Enostavne metode napovednega modeliranja

Ljupčo Todorovski Univerza v Ljubljani, Fakulteta za upravo

Februar 2018

Todorovski, UL-FU

Pregled predavanja

Linearna regresija

- Metoda najmanjših kvadratov
- Intervali zaupanja in statistična značilnost

Logistična regresija

- Metoda največjega verjetja
- Razlike med linearno in logistično regresijo

Metoda najbližjih sosedov

- Soseščina in razdalje
- Vpliv števila najbližjih sosedov

Naloga

Podatkovna množica $S \in \mathbb{R}^{p+1}$

- Numerične napovedne spremenljivke $\boldsymbol{X} = \{X_1, X_2, \dots X_p\}, \ D_i = \mathbb{R}$
- ullet Numerična ciljna spremenljivka Y, $D_Y=\mathbb{R}$

Model

$$\hat{Y} = \beta_0 + \sum_{i=1}^p \beta_i X_i$$

 $\beta = (\beta_0, \beta_1, \dots \beta_p) \in \mathbb{R}^{p+1}$ je vektor konstantnih koeficientov modela: izsek β_0 in p smernih koeficientov β_i , i = 1..p

Vektorska predstavitev linearnega modela

$$\hat{Y} = \boldsymbol{\beta}^T \boldsymbol{X}$$

 $\mathbf{X}=(X_0,X_1,\ldots X_p)$ je razširjen vektor napovednih spremenljivk; dodana spremenljivka $X_0=\mathbf{1}$ ima domeno $D_0=\{1\}$, t.j., vrednost X_0 je v vseh primerih podatkovne množice 1.

Kako do vrednosti koeficientov?

lščemo optimalne vrednosti koeficientov $oldsymbol{eta}$ za učno množico S

$$\min_{\beta} \sum_{(\mathbf{x}, \mathbf{y}) \in S} (\mathbf{y} - \boldsymbol{\beta}^T \mathbf{x})^2 = \min_{\beta} (S_Y - S_{\mathbf{X}} \boldsymbol{\beta})^T (S_Y - S_{\mathbf{X}} \boldsymbol{\beta})$$

- $S_{\boldsymbol{X}}$ je matrika (dimenzij $|S| \times p$) vrednosti spremenljivk napovednih spremenljivk \boldsymbol{X} v primerih iz S
- S_Y je vektor (dolžine |S|) vrednosti spremenljivke Y v S

Todorovski, UL-FU

Opozorilo o spremembi notacije $S_X \to X, S_Y \to Y$

Za matriko S_X bomo uporabljali oznako X (običajno napovedna spremenljivka), za vektor S_Y pa Y (običajno ciljna spremenljivka)

Metoda najmanjših kvadratov

Prva dva odvoda ciljne funkcije za minimizacijo RSS

•
$$\frac{\partial RSS}{\partial \beta} = -2X^T(Y - X\beta)$$

$$\bullet \ \frac{\partial^2 RSS}{\partial \beta^2} = 2X^T X$$

Minimum RSS dosežemo pri

$$X^T(Y-X\beta)=0$$

Rešitev

$$\beta = (X^T X)^{-1} X^T Y$$

Geometrijska interpretacija

$$\hat{Y} = X(X^TX)^{-1}X^TY = HY$$

Projekcijska matrika $H = X(X^TX)^{-1}X^T$

 \hat{Y} je projekcija vektorja Y na hiper-ravnino, ki jo razpenja X

Intervali zaupanja in statistična značilnost koeficientov

Intervali zaupanja za parametre $oldsymbol{eta}$

$$Var(\beta) = (X^T X)^{-1} Var(Y)$$

- $Var(\beta_j) = v_j Var(Y)$, kjer je $v_j = (X^T X)_{jj}^{-1}$
- Ocena Var(Y) na množici $S: \sigma^2 = \sum_{(\mathbf{x}, \mathbf{y}) \in S} (\mathbf{y} \boldsymbol{\beta}^T \mathbf{x})^2 / (n p 1)$

Ali je vpliv X_j na Y statistično značilen?

- Ničelna $H_0: \beta_j = 0$ in alternativna hipoteza $H_A: \beta_j \neq 0$
- $z_i = \beta_i/(\sigma\sqrt{v_i})$ je porazdeljena po Studentu t(n-p-1)

Todorovski, UL-FU

Napaka in statistična značilnost modela

Residualna standardna napaka

$$RSE = \sqrt{\frac{RSS}{n-p-1}}, RSS = \sum_{(\mathbf{x}, \mathbf{y}) \in S} (\mathbf{y} - \boldsymbol{\beta}^T \mathbf{x})^2$$

Pogosto računamo tudi $R^2=1-RSS/TSS,\,TSS=\sum_{(\mathbf{x},y)\in S}(y-\bar{y})^2$, t.j., delež variance Y, ki ga lahko pojasnimo s pomočjo linearnega modela.

Ali je vpliv vsaj ene napovedne spremenljivke X_j na Y statistično značilen?

- Ničelna $H_0: orall j: eta_j = 0$ in alternativna hipoteza $H_A: \exists j: eta_j
 eq 0$
- F = ((TSS-RSS)/p)/(RSS/(n-p-1)) je porazdeljena po Fišerju F(p, n-p-1)

Koliko spremenljivk ima statistično značilen vpliv?

$$Y = (1 + X_1 + X_1X_2)/3 + \mathcal{N}(0, 0.05), D_i = [0, 1], i = 1..10, D_Y = [0, 1]$$

Februar 2018 11 / 36

Todorovski, UL-FU Enostavne metode Februar 2018

Izbira napovednih spremenljivk

Katero podmnožico vhodnih spremenljivk izbrati, da bomo dobili najboljši linearni model?

Preverjanje vseh množic nemogoče: tri požrešne strategije

- Izbira naprej: Začnemo s praznim modelom, ki vključuje le β_0 nato iterativno dodajamo po eno spremenljivko X_i , ki najbolj zmanjša RSS.
- Izbira nazaj: Začnemo s polnim modelom, ki vključuje vse napovedne spremenljivko, nato iterativno odstranjujemo spremenljivke z najnižjo statistično značilnost vpliva na Y (uporabna le takrat, ko velja $p \leq n$).
- Izbira naprej-nazaj: Začnemo z izbiro naprej in ko se značilnost vpliva spremenljivk zniža pod neko ravnijo, začnemo izbiro nazaj; ponavljamo dokler se množica še spreminja.

Kvalitativne napovedne spremenljivke

Spremenljivko X_i z domeno vrednosti $D_i = \{v_1, v_2, \dots v_m\}$

• Spremenimo v U_{jk} , k = 1..m - 1 z domenami $D_{jk} = \{0, 1\}$

$$U_{jk} = \left\{ \begin{array}{ll} 1 & : X_j = v_k \\ 0 & : X_j \neq v_k \end{array} \right.$$

• Koeficient β_{ik} je enak spremembi vrednosti ciljne spremenljivke Y, ki jo povzroči sprememba vrednosti X_i iz v_m v v_l .

13 / 36

Potencialne težave

Soodvisnost napovednih spremenljivk

- Posledica $rang(X^TX) < p$, torej ne moremo izračunati $(X^TX)^{-1}$
- ullet Alternativni načini ocenjevanja $oldsymbol{eta}$

Nelinearni vpliv spremenljivk X na Y

- Predpostavke o možnih interakcijah in nelinearnostih
- Dodatne spremenljivke, npr. X_1X_2 ali X_1^2 : v obeh primerih model ostaja linearen glede na koeficiente β

Korelacija med reziduali modela za posamezne primere

- Omejena aplikacija linearnega modela za obravnavo časovnih vrst
- Oziroma časovno odvisnih primerov v podatkovni množici

Kaj če je ciljna spremenljivka Y diskretna?

Rešitev: klasifikacijski model kot množica regresijskih modelov

- ullet Zamenjava ene ciljne spremenljivke z $|D_Y|$ ciljnih spremenljivk
- Za vsako vrednost $v \in D_Y$, definiramo

$$Y_{v} = \left\{ \begin{array}{ll} 1 & ; Y = v \\ 0 & ; Y \neq v \end{array} \right.$$

- ullet Za vsako novo ciljno spremenljivko Y_{v} zgradimo regresijski model
- ullet Napoved $\hat{Y}_{
 u}$ je verjetje, da je pravilna napoved za podan primer u
- ullet Klasifikacijski model napove v, kjer \hat{Y}_v doseže maksimum

Dve težavi in bolj korektna rešitev

Težavi

- Napovedana verjetja so lahko tudi negativna
- Običajna predpostavka, da je napaka regresijskega modela normalno porazdeljena je za te model očitno neveljavna

Korektna rešitev: logistična regresija

- Namesto da modeli napovedovali p = p(Y = v | X = x)
- Napovedujejo logaritem obetov log(p/(1-p))
- ullet Pogosto uporabljena pri $|D_Y|=2$, kjer rabimo en regresijski model

Model logistične regresije

Od regresije k klasifikaciji pri $|D_Y|=2, D_Y=\{0,1\}$

$$p(Y = 1 | \mathbf{X}) = \frac{e^{\hat{Y}}}{1 + e^{\hat{Y}}}$$
 $p(Y = 0 | \mathbf{X}) = 1 - p(Y = 1 | \mathbf{X}) = \frac{1}{1 + e^{\hat{Y}}}$

 \hat{Y} je napoved regresijskega modela

Linearni klasifikacijski model

Odločitvena ali klasifikacijska meja
$$p(Y=1|X)=p(Y=0|X)=0.5$$

- To se zgodi pri $e^{\hat{Y}}=1$, t.j., pri $\hat{Y}=0$ oziroma $\boldsymbol{\beta}^T \boldsymbol{X}=0$
- Meja je torej (linearna) hiper-ravnina

Todorovski, UL-FU

Zakaj ravno logaritem obetov?

Obet dogodka A

$$obet(A) = \frac{p(A)}{1 - p(A)}$$

- Kolikokrat je verjetnost A večja od verjetnosti, da se A ne zgodi
- V obliki razmerja pogosta uporaba pri stavah (npr. 1:10, 1:100)
- Domena možnih vrednosti \mathbb{R}_0^+
- Regresijski model ne more zagotoviti nenegativnih vrednosti

Zato: logaritem obetov

Domena možnih vrednosti $\mathbb R$

Obet in logaritem obetov

Kako do vrednosti koeficientov?

Metoda največjega verjetja (maximum likelihood) L

$$L(\boldsymbol{X}, Y; \beta) = \prod_{(\boldsymbol{x}, y) \in S} p(Y = y | \boldsymbol{X} = \boldsymbol{x}; \beta)$$

$$= \prod_{(\boldsymbol{x}, y) \in S: y = 1} \frac{e^{\beta^T \boldsymbol{x}}}{1 - e^{\beta^T \boldsymbol{x}}} \prod_{(\boldsymbol{x}, y) \in S: y = 0} \frac{1}{1 - e^{\beta^T \boldsymbol{x}}}$$

Kako do vrednosti koeficientov?

Logaritem verjetja

$$\log L = \sum_{(\mathbf{x}, y) \in S: y=1} (\beta^T \mathbf{x} - \log(1 + e^{\beta^T \mathbf{x}})) \quad [\cdot y]$$

$$+ \sum_{(\mathbf{x}, y) \in S: y=0} -\log(1 + e^{\beta^T \mathbf{x}}) \quad [\cdot (1 - y)]$$

$$= \sum_{(\mathbf{x}, y) \in S} (\beta^T \mathbf{x} y - \log(1 + e^{\beta^T \mathbf{x}}))$$

lščemo rešitev

$$\max_{\boldsymbol{\beta}} \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in S} (\boldsymbol{\beta}^T \boldsymbol{x} \boldsymbol{y} - \log(1 + e^{\boldsymbol{\beta}^T \boldsymbol{x}}))$$

4 D > 4 D > 4 E > 4 E > E 9 Q P

Todorovski, UL-FU

Razlike med linearno in logistično regresijo

Drugačna interpretacija koeficientov

Če se vrednost X_i spremeni za eno enoto, se

- logaritem obeti za napoved Y spremeni za β_j oz.
- ullet obet za napoved Y se spremeni za e^{eta_j} krat

Pozor: sprememba **verjetnosti** napovedi Y je odvisna od trenutne vrednosti X_j , še vedno predznak β_j nakazuje smer spremembe.

Nelinearna optimizacija

- $\log L(X, Y; b)$ je nelinearna funkcija glede na β
- Izpeljava intervalov zaupanja in statistične značilnosti bolj zapletena

Katere spremenljivke so pomembne?

 $Y = I((1 + X_1 + X_1X_2)/3 \ge 0.5), D_i = [0, 1], i = 1..10, D_Y = \{0, 1\}$ zamenjamo vrednost Y 0.05 naključno izbranim primerom

Todorovski, UL-FU Enostavne metode Februar 2018 24 / 36

Izbira napovednih spremenljivk in težave

Problem hujši kot pri linearni regresiji

Uporabljamo splošne metode za izbiro spremenljivk, ki jih bomo obravnavali proti koncu semestra.

Ostale težave in njih rešitve enake kot pri linearni regresiji

- Obravnava kvalitativnih spremenljivk s pretvorbo v numerične
- Soodvisnost vhodnih spremenljivk povzroča probleme
- Nelinearni vpliv spremenljivk X na Y
- Povezava/korelacija med reziduali modela za posamezne primere

Najbližji sosedi

Soseščina $N_k(\mathbf{x}_0) \subseteq S$ točke \mathbf{x}_0

$$|N_k(\mathbf{x}_0)| = k, \ \forall ((\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2)) \in N_k(\mathbf{x}_0) \times S : d(\mathbf{x}_1, \mathbf{x}_0) \leq d(\mathbf{x}_2, \mathbf{x}_0)$$

je množica k primerov iz S, ki so najbližji sosedi točke x_0 , $d: \times_{i=1}^p D_i \times \times_{i=1}^p D_i \to \mathbb{R}_0^+$ je mera razdalje med primeri

Napovedni model

- Regresija: $\hat{y}_0 = \frac{1}{k} \sum_{(\boldsymbol{x}, y) \in N_k(\boldsymbol{x}_0)} y$
- Klasifikacija: \hat{y}_0 vrne vrednost, ki se največkrat pojavi v množici $\{y: (x,y) \in N_k(x_0)\}$

Neparametrična metoda

- Ne zastavi (močnih) predpostavk glede oblike odvisnosti Y od X
- Odločitvena meja pri razvrščanju je lahko poljubne oblike

Linearna in logistična regresija so parametrične metode

- Predpostavijo linearno odvisnost Y od X
- Odločitvena meja pri klasifikaciji je linearna

Mere razdalje

Razdalja med primeri
$$d: \times_{i=1}^p D_i \times \times_{i=1}^p D_i \to \mathbb{R}_0^+$$

 $d(\mathbf{x}_1, \mathbf{x}_2) = \sum_{i=1}^p \delta(x_{1i}, x_{2i})$, kjer x_{ki} predstavlja vrednost X_i za primer x_k

Razdalja med vrednostmi $\delta:D_i \times D_i o \mathbb{R}_0^+$

Če je X_i numerična, sta običajni izbiri

- Evklidska razdalja $\delta(v_1, v_2) = (v_1 v_2)^2$
- ullet Manhatnska razdalja $\delta(v_1,v_2)=|v_1-v_2|$

Če je X_i diskretna, je običajna izbira $\delta(v_1,v_2)=I(v_1
eq v_2)$

Normalizacija

Pred uporabo metode najbližjih sosedov običajno normaliziramo (ali standardiziramo) vrednosti napovednih spremenljivk.

一《四》《圖》《意》《意》》 墓

28 / 36

Učinkovito iskanje najbližjih sosedov

Iskanje najbližjih sosedov računsko zahteven problem

Vsaka napoved zahteva O(pn) časa: lahko težavno pri velikem n

Učinkovita rešitev $O(p \log n)$: podatkovna struktura drevo kD

Vpliv parametra k

Število sosedov k vpliva na prilagodljivost modela

- Pri k=1 se model popolnoma prilagodi učni množici
- Za večje vrednosti k se model vedno manj prilagaja učni množici

Vpliv k: regresijski model (X_1 in X_2)

$$Y = (1 + X_1 + X_1X_2)/3 + \mathcal{N}(0, 0.05), D_i = [0, 1], i = 1..10, D_Y = [0, 1]$$

4 D M 4 B M

Todorovski, UL-FU Enostavne metode Februar 2018 31 / 36

Vpliv k: klasifikacijski model (X_1 in X_2)

 $Y = I((1 + X_1 + X_1X_2)/3 \ge 0.5), D_i = [0, 1], i = 1..10, D_Y = \{0, 1\}$ zamenjamo vrednost Y 0.05 naključno izbranim primerom

Todorovski, UL-FU Enostavne metode Februar 2018 32 / 36

Vpliv števila napovednih spremenljivk: regresija k=5

 $Y = (1 + X_1 + X_1X_2)/3 + \mathcal{N}(0, 0.05), D_i = [0, 1], i = 1..10, D_Y = [0, 1]$

Todorovski, UL-FU Enostavne metode Februar 2018 33 / 36

Vpliv števila napovednih spremenljivk: klasifikacija k=7

 $Y = I((1 + X_1 + X_1X_2)/3 \ge 0.5), D_i = [0, 1], i = 1..10, D_Y = \{0, 1\}$ zamenjamo vrednost Y 0.05 naključno izbranim primerom

Primerjava enostavnih modelov: regresija

Skoraj identični napaki: RMSE(LM) = 0.060, RMSE(kNN) = 0.059

$$Y = (1 + X_1 + X_1X_2)/3 + \mathcal{N}(0, 0.05), D_i = [0, 1], i = 1..10, D_Y = [0, 1]$$

Todorovski, UL-FU Enostavne metode Februar 2018 35 / 36

Primerjava enostavnih modelov: klasifikacija

Model najbližjih sosedov boljši: Err(LM) = 13%, Err(kNN) = 7%

$$Y = I((1 + X_1 + X_1X_2)/3 \ge 0.5), D_i = [0, 1], i = 1..10, D_Y = \{0, 1\}$$
 zamenjamo vrednost Y 0.05 naključno izbranim primerom

Todorovski, UL-FU Enostavne metode Februar 2018 36 / 36