

Universidad Nacional Autónoma de México FACULTAD DE CIENCIAS

FUNDAMENTOS DE BASES DE DATOS

Forma Normal de Boyce - Codd

Gerardo Avilés Rosas

□ gar@ciencias.unam.mx

FORMA NORMAL DE BOYCE - CODD

Una **relación** R está en BCNF si y sólo si en toda DF no trivial $A_1, A_2, ..., A_n \rightarrow B$ para R, se tiene que $\{A_1, A_2, ..., A_n\}$ es **superllave** de R.

Por ejemplo:

- La relación C(nombre, calle, ciudad) con DF = {nombre → calle ciudad}
 {nombre}+={nombre, calle, ciudad} ∴ nombre no es una llave para C
 nombre → calle, ciudad es una Dependencia funcional No Trivial, ya que una Dependencia Funcional Trivial α→β es Trivial, si β ⊆ α.
- La relación $S(nombre, no_prestamo)$ con $DF = \{nombre \rightarrow no_prestamo\}$ {nombre}+={nombre, no_prestamo} ∴ nombre es una llave para \$

...FORMA NORMAL DE BOYCE - CODD

Cualquier relación de dos atributos \boldsymbol{A} y \boldsymbol{B} está en \boldsymbol{BCNF} si:

- 1. No hay **DF** no triviales, se mantiene entonces la condición BCNF, debido a que sólo una **DF** no trivial puede violar esta condición (notar que {A,B} es la única llave).
- 2. Si se tiene $A \to B$, pero no $B \to A$, entonces A es la única llave y cada **dependencia no trivial** contiene A en la izquierda, por tanto, **no hay violación a la condición** BCNF.
- 3. Si $B \rightarrow A$ y no se tiene $A \rightarrow B$ es un caso simétrico al anterior.
- 4. Si se tiene $A \rightarrow B$ y $B \rightarrow A$. Entonces tanto A como B son llaves, y cualquier dependencia tiene al menos uno de ellos en su lado izquierdo, por tanto, no puede haber violación de la norma BCNF.

...FORMA NORMAL DE BOYCE - CODD

- Es posible dividir cualquier relación en otras con las siguientes propiedades:
 - ☐ Son esquemas de relaciones en BCNF.
 - Los datos en la relación original se representan fielmente por las relaciones que son resultado de la descomposición.

La estrategia a seguir es:

- 1. Buscar una DF no trivial $X \rightarrow B$ que viole BCNF.
- 2. Calcular X +.
- 3. Fraccionar R en $R_1(X+)$ $\mathcal{D}R_2((R-X+)\cup X)$.
- 4. Encontrar las DF para las nuevas relaciones.

Se debe aplicar la **regla de descomposición tantas veces como sea necesario** hasta que todas las relaciones estén en **BCNF**.

La relación

Prestamo (nombreSuc, nombre $_cliente$, no $_prestamo$, importe) $DF = \{no_prestamo \rightarrow importe, nombre<math>Suc\}$

Calculamos la cerradura del lado izquierdo de la DF:

{no_prestamo}+ = {no_préstamo, importe, sucursal} ⇒ Como se observa, no "alcanzamos" todos los atributos de la relación Prestamo, por lo que no_prestamo por sí solo no es una llave.

Por el contrario, prestamo, nombrecliente si resulta ser una llave para Prestamo:

{no_préstamo, nombre_cliente}+ = {no_préstamo, nombre_cliente, importe, sucursal}

Tomamos la violación no_prestamo → importe, nombresuc y dividimos en:

R(no_préstamo, importe, nombresuc) con no_préstamo → importe, nombresuc ⇒ la llave es no_prestamo S(no_prestamo, nombrecliente), hay una DF trivial

⇒ no_préstamo, nombre_cliente → no_préstamo, nombre_cliente

Ejemplo 2. Sea R(A,B,C,D,E) con el conjunto de $DF = \{A \rightarrow BC,C \rightarrow D,B \rightarrow E\}$. Normalizar por BCNF.

SOLUCIÓN. BUSCAMOS VIOLACIONES A BONF

1 CALCULAHOS LA CERRADURA DE LOS LAPOS IZQUIERDOS

DELEGIMOS ALGUNA DE LAS VIOLACIONES Y DIVIDIMOS R

Ejemplo 2. Sea R(A,B,C,D,E) con el conjunto de $DF = \{A \rightarrow B, A \rightarrow D, C \rightarrow E\}$. Normalizar por BCNF.

Solución. Buscamos viaaciones A BONF

AL REVISAR EL CONJUNTO DE DF, OBSERVANOS QUE PODEMOS APLICAR REGIA DE LA UNIÓN:

O CALCULANOS CERRADURA DE LOS LADOS (ZQUIERDOS

3 ELEGIMOS ALGUNA DE LAS VIOLACIONES, TOMAHOS LA PRIMEZA VIOLACIÓN:

$$R_1(A,B,D)$$
 con $A \rightarrow BD$; $\{Af+=\{ABD\}=\}A$ ES UNA LIQUE PARA R_1
 $R_2(A,C,E)$ con $C \rightarrow E$

=> EN R1 NO HAY VIDIACIÓN PARA BENF. REUISAMOS R2

FINALMENTE:

Ejemplo 3. Sea R(A,B,C,D) con el conjunto de $DF = \{A \rightarrow C,B \rightarrow D,C \rightarrow B\}$. Normalizar por **BCNF**.

SOLUCIÓN. BUSCAMOS VIOLACIONES A BONF

D CALCULANOS CERRADURAS DE LOS LADOS IZQUIERDOS

2 ELEGINOS ALGUNA DE LAS VIOLACIONES. TOMPHOS B-D Y DIVIDIMOS:

$$VR_1(B,D)$$
 con $B \Rightarrow D$; $\{B\} + = \{B,D\} \Rightarrow B \Rightarrow \text{ what Lique PARA } R_1$

$$R_2(B,A,C) \text{ con } \{A \Rightarrow C, C \Rightarrow B\}$$

Ejemplo 4. Sea R(A,B,C,D,E) con el conjunto de $DF = \{AB \rightarrow CD,E \rightarrow C,D \rightarrow B\}$. Normalizar por **BCNF**.

SOLUCIÓN. BUSCAR VIDIACIONES A BCNF.

O CALCULANOS CERRADURAS DE LOS LADOS 1200E 2003.

② ELEGIMOS ALGUNA DE LAS VIOLAGONES. TOMAMOS LA VIOLACIÓN AB→CD Y DIVIDIMOS:

DIVIDIOS R1

: BCNF NO SIRVE EN ESTE PINTO Y SE DEBE BUSCAR OTRO
ESQUEHA DE NORMALIZACIÓN -> 3NF

FINALMENTE:
R2(A,B,E) con ABE > ABE
R3(D,B) con D >> B

*BONF GARANTIZA REDUNDANCIA CERO, PERO PUEDE PERDER DF.

SE PRESENTA JOIN CON PERDIDA

¡GRACIAS!

No estés muy orgulloso de haber comprendido estas notas. La habilidad para manejar la Normalización por BCNF es insignificante comparado con el poder de la Fuerza.

