Suites Numériques

Première Spécialité Mathématiques

1 Définition d'une suite

Définition 1. Une suite numérique réelle est une fonction u définie sur \mathbb{N} à valeurs dans \mathbb{R} . Pour tout $n \in \mathbb{N}$, on note l'image u(n) sous le format u_n , qui se lit « u indice n ». Cette image est appellée terme de rang n de u.

Exemple. De nombreux phénomènes ne présentent pas de continuité, et peuvent être modélisés par des suites.

- Le chiffre d'affaire d'une entreprise n mois après sa création.
- Le nombre de façons de ranger n figurines sur une étagère.
- ullet L'aire de la figure suivante après la n-ième étape.

Remarque. Une suite peut-être présentée sous la forme d'une séquence de nombres. Dans ce cas, le premier nombre de cette liste correspond au terme d'indice 0.

Pour parler d'une suite u en toute généralité, on la note $(u_n)_{n\in\mathbb{N}}$.

Remarque. Ainsi, on ne confondra pas les notations $(u_n)_{n\in\mathbb{N}}$ (la suite en toute généralite) et u_n (le n^e terme de la suite).

Définition 2. Si l'on connait f(n) une expression dépendant de n telle que pour tout n, $u_n = f(n)$, alors on dit que la suite $(u_n)_{n \in \mathbb{N}}$ est définie de façon **explicite**.

Exemple. Pour chacune des définitions explicites de $(u_n)_{n\in\mathbb{N}}$ données ci-dessous, donner les 4 premiers termes u_0 ; u_1 ; u_2 et u_3 .

- $u_n = 3n + 1$ pour tout $n \in \mathbb{N}$:
- $u_n = 5 \times 2^n$ pour tout $n \in \mathbb{N}$:
- $u_n =$ « Le nombre de lettres dans l'écriture en français de n », pour tout $n \in \mathbb{N}$:

Définition 3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique. On dit que u_n est définie **par récurrence** si u_0 est connue, et si pour tout $n\in\mathbb{N}$, le terme u_{n+1} est obtenu en fonction de u_n .

Exemple. Pour chacune des définition par récurrence de $(v_n)_{n\in\mathbb{N}}$, calculer les 4 premiers termes v_0 ; v_1 ; v_2 et v_3 .

- $v_0 = 6$ et $v_{n+1} = v_n + 4$:
- $v_0 = 2$ et $v_{n+1} = 5 \times v_n$:

2 Étude de suites

2.1 Représentation graphique

Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique. Pour représenter $(u_n)_{n\in\mathbb{N}}$ sur un repère orthonormé, on y fait figurer les points de coordonnées $(n;u_n)$.

2.2 Variation de suites

Définition 4. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique.

- On dit que $(u_n)_{n\in\mathbb{N}}$ est **croissante** si et seulement si pour tout $n\in\mathbb{N}$, on a $u_n\leq u_{n+1}$.
- On dit que $(u_n)_{n\in\mathbb{N}}$ est décroissante si et seulement si pour tout $n\in\mathbb{N}$, on a $u_{n+1}\leq u_n$.

Proposition 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique.

- La suite $(u_n)_{n\in\mathbb{N}}$ est croissante si et seulement si, pour tout $n\in\mathbb{N}$, $u_{n+1}-u_n\geq 0$.
- La suite $(u_n)_{n\in\mathbb{N}}$ est décroissante si et seulement si, pour tout $n\in\mathbb{N}$, $u_{n+1}-u_n\leq 0$.

Exemple. Étudier les variations des suites suivantes :

- a) $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=8+4n$ pour tout $n\in\mathbb{N}$.
- b) $(v_n)_{n\in\mathbb{N}}$ définie par $v_0=64$ et $v_{n+1}=\frac{v_n}{2}$ pour tout $n\in\mathbb{N}$.
- c) $(w_n)_{n\in\mathbb{N}}$ définie par $w_n=\frac{n}{n+1}$ pour tout $n\in\mathbb{N}$.
- d) $(z_n)_{n\in\mathbb{N}}$ définie par $z_n=(-1)^n$ pour tout $n\in\mathbb{N}$.

3 Suites arithmétiques

Définition 5. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique. On dit que la suite est **arithmétique** si et seulement il existe $r\in\mathbb{R}$ tel que

$$u_{n+1} = u_n + r$$

Dans ce cas, on dit que $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de **premier terme** u_0 et de **raison** r.

Remarque. Le calcul des termes d'une suite arithmétique de raison $r \in \mathbb{R}$ peut être schématisé comme suit :

Exemple. Calculer les termes u_1 , u_2 et u_3 pour chaque définition suivante :

- a) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 0 et de raison 1 :
- b) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 1 et de raison 2 :
- c) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 10 et de raison $-\frac{1}{2}$:

Proposition 2 (Variation d'une suite arithmétique). *Soit* $(u_n)_{n\in\mathbb{N}}$ *une suite arithmétique de raison* $r\in\mathbb{R}$.

- La suite $(u_n)_{n\in\mathbb{N}}$ est croissante si et seulement si $r\geq 0$.
- La suite $(u_n)_{n\in\mathbb{N}}$ est décroissante si et seulement si $r\leq 0$.

Remarque. Dans le cas particulier où r = 0, on dit que la suite $(u_n)_{n \in \mathbb{N}}$ est **constante**.

Proposition 3 (Formule explicite d'une suite arithmétique). *Soit* $(u_n)_{n\in\mathbb{N}}$ *une suite arithmétique de raison* $r\in\mathbb{R}$. *Alors, pour tout* $n\in\mathbb{N}$ *, on observe*

$$u_n = u_0 + n \times r$$

Remarque. On peut résumer cette formule à l'aide du schéma suivant :

Exemple. Pour chacune des définitions suivantes de $(u_n)_{n\in\mathbb{N}}$, calculer u_{10} :

- a) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 6 et de raison 5 :
- b) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 0 et de raison -2:
- c) $(u_n)_{n\in\mathbb{N}}$ est la suite arithmétique de premier terme 1 et de raison $\frac{1}{5}$:

Proposition 4. Si $(u_n)_{n\in\mathbb{N}}$ est une suite arithmétique, alors les points de sa représentation graphique sont alignés sur la droite d'équation $y=rx+u_0$:

On dit que les suites arithmétiques permettent de modéliser des évolutions linéaires.

4 Suites géométriques

Définition 6. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique. On dit que la suite est **géométrique** si et seulement il existe $q\in\mathbb{R}$ tel que

$$u_{n+1} = u_n \times q$$

Dans ce cas, on dit que $(u_n)_{n\in\mathbb{N}}$ est la suite géométrique de **premier terme** u_0 et de **raison** q.

Remarque. Le calcul des termes d'une suite géométrique de raison $q \in \mathbb{R}$ peut être schématisé comme suit :

Exemple. Calculer les termes u_1 , u_2 et u_3 pour chaque définition suivante :

- a) $(u_n)_{n\in\mathbb{N}}$ est la suite géométrique de premier terme 1 et de raison 2 :
- b) $(u_n)_{n\in\mathbb{N}}$ est la suite géométrique de premier terme 64 et de raison $\frac{1}{2}$:
- c) $(u_n)_{n\in\mathbb{N}}$ est la suite géométrique de premier terme 1000 et de raison -0,1:

Proposition 5 (Variation d'une suite géométrique). Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison $q\in\mathbb{R}$. On suppose que son premier terme u_0 est non nul.

- Si q > 1:
 - Si $u_0 > 0$, alors $(u_n)_{n \in \mathbb{N}}$ est strictement croissante.
 - Si $u_0 < 0$, alors $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante.
- $Si \ 0 < q < 1$:
 - Si $u_0 > 0$, alors $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante.
 - Si $u_0 < 0$, alors $(u_n)_{n \in \mathbb{N}}$ est strictement croissante.
- Si q = 0 ou q = 1, alors $(u_n)_{n \in \mathbb{N}}$ est constante à partir du terme u_1 .
- $Si \ q < 0$, alors la suite n'est pas **monotone** (elle n'est ni croissante, ni décroissante).

Proposition 6 (Formule explicite d'une suite géométrique). *Soit* $(u_n)_{n\in\mathbb{N}}$ *une suite géométrique de raison* $q\in\mathbb{R}$. *Alors, pour tout* $n\in\mathbb{N}$ *, on observe*

$$u_n = u_0 \times q^n$$

Remarque. On peut résumer cette formule à l'aide du schéma suivant :

Exemple. Pour chacune des définitions suivantes de $(u_n)_{n\in\mathbb{N}}$, calculer u_{10} :

- a) $(u_n)_{n\in\mathbb{N}}$ est la suite géométrique de premier terme 1 et de raison -2:
- b) $(u_n)_{n\in\mathbb{N}}$ est la suite géométrique de premier terme $5^{10}=9\,765\,625$ et de raison $\frac{1}{5}$:

Définition 7. Les suites géométriques permettent de modéliser des évolutions dites **exponentielles**.

5 Calcul de sommes

5.1 Sommes arithmétiques

Proposition 7. Soit n un nombre entier naturel. Alors,

$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$	
Démonstration.	
Donate Control of the	L
Proposition 8. Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison r , et N un entier naturel. Alors,	
$u_0 + u_1 + u_2 + \dots + u_N = (N+1)u_0 + \frac{N(N+1)r}{2}$	
Démonstration.	
Exemple. Soit $(u_n)_{n\in N}$ une suite arithmétique de premier terme $u_0=2$ et de raison $r=3$. Calculer u_0+u_1+1	L - 110 -
Exemple. Soli $(u_n)_{n\in\mathbb{N}}$ the same arithmetique we premier terms $u_0=2$ et de raison $r=5$. Calculer $u_0+u_1+u_2+u_3=1$ (somme des 16 premiers terms).	- 42 -

5.2 Sommes géométriques

Proposition 9. Soit n un nombre entier naturel, et $q \neq 1$ un réel. Alors,

$$1 + q^{1} + q^{2} + \dots + q^{n} = \frac{1 - q^{n+1}}{1 - q} = \frac{q^{n+1} - 1}{q - 1}$$

<u> </u>
Démonstration.
Proposition 10. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison $q\neq 1$, et N un entier naturel. Alors,
$u_0 + u_1 + u_2 + \dots + u_N = u_0 \frac{q^{n+1} - 1}{q - 1}$
$u_0 + u_1 + u_2 + \dots + u_N = u_0 \frac{1}{q-1}$
Démonstration.
Exemple. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de premier terme $u_0=3$ et de raison $q=2$. Calculer $u_0+u_1+u_2+\cdots+u_{19}$ (somme des 20 premiers termes).

6 Notion de limite

6.1 Convergence de suites

Définition 8 (Limite finie d'une suite). Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique, et l un nombre réel. On dit que la suite $(u_n)_{n\in\mathbb{N}}$ admet l comme limite quand les nombres u_n sont aussi proches de l que l'on veut à mesure que les indices n sont grands. On le note

$$\lim_{n \to +\infty} u_n = l$$

Remarque.

- Quand une suite admet une limite finie, on dit que la suite converge.
- Quand une suite ne converge pas, on dit qu'elle diverge.

Exemple. On représente une suite $(u_n)_{n\in\mathbb{N}}$ par les points de coordonnées (n,u_n) .

La suite (u_n) semble converger vers le réel 2: plus n est grand (pour des abscisses de plus en plus grandes), et plus u_n est proche de 2 (les ordonnées des points sont de plus en plus proche de 2).

Ici, la suite représentée ne semble pas admettre de limite finie l. En effet, les ordonnées des points de coordonnées (n,u_n) ne semblent pas se rapprocher d'une valeur en particulier, à la mesure que n augmente.

6.2 Divergence vers l'infini

Définition 9. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique. On dit que **la suite** (u_n) **admet** $+\infty$ **comme limite** quand les valeurs de u_n sont de plus en plus grandes à la mesure où n augmente. On le note

$$\lim_{n \to +\infty} u_n = +\infty$$

Définition 10. Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique. On dit que **la suite** (u_n) **admet** $-\infty$ **comme limite** quand les valeurs de u_n sont de plus en plus petites à la mesure où n augmente. On le note

$$\lim_{n \to +\infty} u_n = -\infty$$

Remarque. *Une suite admettant* $+\infty$ *ou* $-\infty$ *comme limite est dite divergente. Une suite diverge donc dans deux cas :*

- si elle n'admet pas de limite finie;
- ou si elle admet $+\infty$ ou $-\infty$ comme limite.

Exemple. Les deux suites (u_n) et (v_n) représentées ci-après admettent $-\infty$ et $+\infty$ comme limite.

