Real World Optimization of Energy Efficient Vehicle Control Current State

Bastian Lang

Bonn-Rhein-Sieg University of Applied Science

July 21, 2016

Content

- Project Description
- The Simple Model
- NEAT with the Simple Model
- Control Program for Velomobile
- Open Tasks

Content

- Project Description
- 2 The Simple Model
- NEAT with the Simple Model
- Control Program for Velomobile
- Open Tasks

Project Description

What is the project about?

Project Description

What is the project about?

Creating Energy Efficient Vehicle Controller

Project Description

What is the project about?

Creating Energy Efficient Vehicle Controller

What ML technologies are being used?

Project Description

What is the project about?

Creating Energy Efficient Vehicle Controller

What ML technologies are being used?

ANNs evolved using NEAT

Project Description

What is the project about?

Creating Energy Efficient Vehicle Controller

What ML technologies are being used?

ANNs evolved using NEAT

What is the project based on?

Project Description

What is the project about?

Creating Energy Efficient Vehicle Controller

What ML technologies are being used?

ANNs evolved using NEAT

What is the project based on?

Paper showing ANNs can compete with state-of-the-art approaches (cite paper)

Task Overview

Task Overview

Minimum		

Task Overview

Minimum

• Evolve Energy Efficient Controller with Simple Model

Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality

Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality
- Compare Simulation vs Reality

Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality
- Compare Simulation vs Reality

Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality
- Compare Simulation vs Reality

Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality
- Compare Simulation vs Reality

Expected

Create Data Driven Model

Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality
- Compare Simulation vs Reality

- Create Data Driven Model
- Evolve Energy Efficient Controller with DD Model

Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality
- Compare Simulation vs Reality

- Create Data Driven Model
- Evolve Energy Efficient Controller with DD Model
- Evaluate in Reality

Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality
- Compare Simulation vs Reality

- Create Data Driven Model
- Evolve Energy Efficient Controller with DD Model
- Evaluate in Reality
- Compare Solutions

Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality
- Compare Simulation vs Reality

- Create Data Driven Model
- Evolve Energy Efficient Controller with DD Model
- Evaluate in Reality
- Compare Solutions

Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality
- Compare Simulation vs Reality

Expected

- Create Data Driven Model
- Evolve Energy Efficient Controller with DD Model
- Evaluate in Reality
- Compare Solutions

Maximum

Project Description Task Overview

Minimum

- Evolve Energy Efficient Controller with Simple Model
- Evaluate in Reality
- Compare Simulation vs Reality

Expected

- Create Data Driven Model
- Evolve Energy Efficient Controller with DD Model
- Evaluate in Reality
- Compare Solutions

Maximum

• Use Multi-Objective Approach (i.e. Surrogate Modelling)

Content

- Project Description
- 2 The Simple Model
- NEAT with the Simple Model
- Control Program for Velomobile
- Open Tasks

Simple Vehicle Model

Time Based Model

$$\frac{ds}{dt} = \begin{pmatrix} t' \\ x' \\ v' \\ W' \end{pmatrix} = \begin{pmatrix} 1 \\ v \\ \frac{F(x,v)}{m} \\ F_u * v \end{pmatrix}$$

Where

- ullet F_U : Force at wheel due to control command
- F(x, v): F_U some drag

Simple Vehicle Model

Visualizations of Simulations

Content

- Project Description
- The Simple Model
- NEAT with the Simple Model
- Control Program for Velomobile
- Open Tasks

NEAT with the Simple Model Data

Tracks Used

- 35
- cross validation

NEAT Parameters

- population
- speciation kmeans
- maximum generations
- nr of runs
- topology

NEAT with the Simple Model

Results

- Average Best Fitness
- Average Nr Generations

NEAT with the Simple Model

Simulations

Content

- Project Description
- The Simple Model
- NEAT with the Simple Model
- Control Program for Velomobile
 - Control Program(s)
 - Problems
- Open Tasks

Control Program

TODO: diagram multi-threading

The Task

The Task

Content

- Project Description
- The Simple Model
- NEAT with the Simple Model
- Control Program for Velomobile
- Open Tasks

The Task