

Nikolai Bjørnestøl Hansen

OSLO METROPOLITAN UNIVERSITY
STORBYUNIVERSITETET

- Skrå asymptoter
 - Skrå asymptoter
 - Regne på skråasymptoter

En skrå asymptote er en linje, y = ax + b, som grafen nærmer seg når $x \to \infty$.

- En skrå asymptote er en linje, y = ax + b, som grafen nærmer seg når $x \to \infty$.
- Horisontale asymptoter er teknisk sett skrå asymptoter med a = 0.

- En skrå asymptote er en linje, y = ax + b, som grafen nærmer seg når $x \to \infty$.
- Horisontale asymptoter er teknisk sett skrå asymptoter med a = 0.

Definisjon

Linja y er en skrå asymptote til f(x) om

$$\lim_{x\to\pm\infty}\Big(f(x)-y\Big)=0.$$

- En skrå asymptote er en linje, y = ax + b, som grafen nærmer seg når $x \to \infty$.
- Horisontale asymptoter er teknisk sett skrå asymptoter med a = 0.

Definisjon

Linja y er en skrå asymptote til f(x) om

$$\lim_{x\to\pm\infty}\Big(f(x)-y\Big)=0.$$

Vi kan skrive

$$f(x) \approx y$$
 når $x \to \pm \infty$.

■ Vi ser på
$$f(x) = x + 1 + \frac{1}{2x-2}$$
.

- Vi ser på $f(x) = x + 1 + \frac{1}{2x-2}$.
- Når $x \to \pm \infty$ vil $\frac{1}{2x-2} \to 0$.

- Vi ser på $f(x) = x + 1 + \frac{1}{2x-2}$.
- Når $x \to \pm \infty$ vil $\frac{1}{2x-2} \to 0$.
- Så f(x) vil likne mer og mer på x + 1 etter hvert som x vokser.

- Vi ser på $f(x) = x + 1 + \frac{1}{2x-2}$.
- Når $x \to \pm \infty$ vil $\frac{1}{2x-2} \to 0$.
- Så f(x) vil likne mer og mer på x + 1 etter hvert som x vokser.
- Vi kan vise at y = x + 1 er den skrå asymptoten ved å regne ut

$$\lim_{x\to\pm\infty}\Bigl(f(x)-y\Bigr)$$

- Vi ser på $f(x) = x + 1 + \frac{1}{2x-2}$.
- Når $x \to \pm \infty$ vil $\frac{1}{2x-2} \to 0$.
- Så f(x) vil likne mer og mer på x + 1 etter hvert som x vokser.
- Vi kan vise at y = x + 1 er den skrå asymptoten ved å regne ut

$$\lim_{x\to\pm\infty} \left(f(x) - y \right) = \lim_{x\to\pm\infty} \left(x + 1 + \frac{1}{2x - 2} - (x + 1) \right)$$

- Vi ser på $f(x) = x + 1 + \frac{1}{2x-2}$.
- Når $x \to \pm \infty$ vil $\frac{1}{2x-2} \to 0$.
- Så f(x) vil likne mer og mer på x + 1 etter hvert som x vokser.
- Vi kan vise at y = x + 1 er den skrå asymptoten ved å regne ut

$$\lim_{x \to \pm \infty} \left(f(x) - y \right) = \lim_{x \to \pm \infty} \left(x + 1 + \frac{1}{2x - 2} - (x + 1) \right)$$

- Vi ser på $f(x) = x + 1 + \frac{1}{2x-2}$.
- Når $x \to \pm \infty$ vil $\frac{1}{2x-2} \to 0$.
- Så f(x) vil likne mer og mer på x + 1 etter hvert som x vokser.
- Vi kan vise at y = x + 1 er den skrå asymptoten ved å regne ut

$$\lim_{x \to \pm \infty} \left(f(x) - y \right) = \lim_{x \to \pm \infty} \left(x + 1 + \frac{1}{2x - 2} - (x + 1) \right)$$
$$= \lim_{x \to \pm \infty} \frac{1}{2x - 2}$$

- Vi ser på $f(x) = x + 1 + \frac{1}{2x-2}$.
- Når $x \to \pm \infty$ vil $\frac{1}{2x-2} \to 0$.
- Så f(x) vil likne mer og mer på x + 1 etter hvert som x vokser.
- Vi kan vise at y = x + 1 er den skrå asymptoten ved å regne ut

$$\lim_{x \to \pm \infty} \left(f(x) - y \right) = \lim_{x \to \pm \infty} \left(x + 1 + \frac{1}{2x - 2} - (x + 1) \right)$$
$$= \lim_{x \to \pm \infty} \frac{1}{2x - 2}$$
$$= 0.$$

- Skrå asymptoter
 - Skrå asymptoter
 - Regne på skråasymptoter

For å finne den skrå asymptoten til en rasjonal funksjon kan vi polynomdividere.

- For å finne den skrå asymptoten til en rasjonal funksjon kan vi polynomdividere.
- Resten ved polynomdivisjon vil alltid gå mot 0 når x går mot $\pm \infty$.

- For å finne den skrå asymptoten til en rasjonal funksjon kan vi polynomdividere.
- Resten ved polynomdivisjon vil alltid gå mot 0 når x går mot $\pm \infty$.
- Om divisjonen gir et førstegradspolynom er dette skråasymptoten.

- For å finne den skrå asymptoten til en rasjonal funksjon kan vi polynomdividere.
- Resten ved polynomdivisjon vil alltid gå mot 0 når x går mot $\pm \infty$.
- Om divisjonen gir et førstegradspolynom er dette skråasymptoten.

- For å finne den skrå asymptoten til en rasjonal funksjon kan vi polynomdividere.
- Resten ved polynomdivisjon vil alltid gå mot 0 når x går mot $\pm \infty$.
- Om divisjonen gir et førstegradspolynom er dette skråasymptoten.

Eksempel

Vi skal finne den skrå asymptoten til $f(x) = \frac{6x^2 - 17x + 14}{3x - 4}$.

- For å finne den skrå asymptoten til en rasjonal funksjon kan vi polynomdividere.
- Resten ved polynomdivisjon vil alltid gå mot 0 når x går mot $\pm \infty$.
- Om divisjonen gir et førstegradspolynom er dette skråasymptoten.

- Vi skal finne den skrå asymptoten til $f(x) = \frac{6x^2 17x + 14}{3x 4}$.
- Vi polynomdividerer og får

$$\frac{6x^2-17x+14}{3x-4}=2x-3+\frac{2}{3x-4}.$$

- For å finne den skrå asymptoten til en rasjonal funksjon kan vi polynomdividere.
- Resten ved polynomdivisjon vil alltid gå mot 0 når x går mot $\pm \infty$.
- Om divisjonen gir et førstegradspolynom er dette skråasymptoten.

Eksempel

- Vi skal finne den skrå asymptoten til $f(x) = \frac{6x^2 17x + 14}{3x 4}$.
- Vi polynomdividerer og får

$$\frac{6x^2 - 17x + 14}{3x - 4} = 2x - 3 + \frac{2}{3x - 4}.$$

■ Vi har at $\frac{2}{3x-4} \rightarrow 0$ når $x \rightarrow \pm \infty$.

- For å finne den skrå asymptoten til en rasjonal funksjon kan vi polynomdividere.
- Resten ved polynomdivisjon vil alltid gå mot 0 når x går mot $\pm \infty$.
- Om divisjonen gir et førstegradspolynom er dette skråasymptoten.

- Vi skal finne den skrå asymptoten til $f(x) = \frac{6x^2 17x + 14}{3x 4}$.
- Vi polynomdividerer og får

$$\frac{6x^2-17x+14}{3x-4}=2x-3+\frac{2}{3x-4}.$$

- Vi har at $\frac{2}{3x-4} \rightarrow 0$ når $x \rightarrow \pm \infty$.
- Den skrå asymptoten er derfor y = 2x 3.

La $f(x) = \frac{P(x)}{Q(x)}$ være en rasjonal funksjon

- La $f(x) = \frac{P(x)}{Q(x)}$ være en rasjonal funksjon
- Om P(x) har lavere grad enn Q(x) har f(x) en horisontal asymptote i y=0.

- La $f(x) = \frac{P(x)}{Q(x)}$ være en rasjonal funksjon
- Om P(x) har lavere grad enn Q(x) har f(x) en horisontal asymptote i y=0.
- Om P(x) har lik grad som Q(x) har f(x) også en horisontal asymptote.

- La $f(x) = \frac{P(x)}{Q(x)}$ være en rasjonal funksjon
- Om P(x) har lavere grad enn Q(x) har f(x) en horisontal asymptote i y=0.
- Om P(x) har lik grad som Q(x) har f(x) også en horisontal asymptote.
- Om P(x) er nøyaktig én grad høyere enn Q(x), har f(x) en skrå asymptote.

- La $f(x) = \frac{P(x)}{Q(x)}$ være en rasjonal funksjon
- Om P(x) har lavere grad enn Q(x) har f(x) en horisontal asymptote i y=0.
- Om P(x) har lik grad som Q(x) har f(x) også en horisontal asymptote.
- Om P(x) er nøyaktig én grad høyere enn Q(x), har f(x) en skrå asymptote.
- Om P(x) er mer enn én grad høyere enn Q(x), har f(x) verken horisontal eller skrå asymptote.

- La $f(x) = \frac{P(x)}{Q(x)}$ være en rasjonal funksjon
- Om P(x) har lavere grad enn Q(x) har f(x) en horisontal asymptote i y=0.
- Om P(x) har lik grad som Q(x) har f(x) også en horisontal asymptote.
- Om P(x) er nøyaktig én grad høyere enn Q(x), har f(x) en skrå asymptote.
- Om P(x) er mer enn én grad høyere enn Q(x), har f(x) verken horisontal eller skrå asymptote.

- La $f(x) = \frac{P(x)}{Q(x)}$ være en rasjonal funksjon
- Om P(x) har lavere grad enn Q(x) har f(x) en horisontal asymptote i y=0.
- Om P(x) har lik grad som Q(x) har f(x) også en horisontal asymptote.
- Om P(x) er nøyaktig én grad høyere enn Q(x), har f(x) en skrå asymptote.
- Om P(x) er mer enn én grad høyere enn Q(x), har f(x) verken horisontal eller skrå asymptote.

Eksempel

Funksjonen $f(x) = \frac{x-2}{x^2+1}$ har en horisontal asymptote i y = 0.

- La $f(x) = \frac{P(x)}{Q(x)}$ være en rasjonal funksjon
- Om P(x) har lavere grad enn Q(x) har f(x) en horisontal asymptote i y=0.
- Om P(x) har lik grad som Q(x) har f(x) også en horisontal asymptote.
- Om P(x) er nøyaktig én grad høyere enn Q(x), har f(x) en skrå asymptote.
- Om P(x) er mer enn én grad høyere enn Q(x), har f(x) verken horisontal eller skrå asymptote.

- Funksjonen $f(x) = \frac{x-2}{x^2+1}$ har en horisontal asymptote i y = 0.
- Funksjonen $f(x) = \frac{2x^2+1}{x^2-2}$ har en horisontal asymptote i y = 2.

- La $f(x) = \frac{P(x)}{Q(x)}$ være en rasjonal funksjon
- Om P(x) har lavere grad enn Q(x) har f(x) en horisontal asymptote i y=0.
- Om P(x) har lik grad som Q(x) har f(x) også en horisontal asymptote.
- Om P(x) er nøyaktig én grad høyere enn Q(x), har f(x) en skrå asymptote.
- Om P(x) er mer enn én grad høyere enn Q(x), har f(x) verken horisontal eller skrå asymptote.

- Funksjonen $f(x) = \frac{x-2}{x^2+1}$ har en horisontal asymptote i y = 0.
- Funksjonen $f(x) = \frac{2x^2+1}{x^2-2}$ har en horisontal asymptote i y = 2.
- Funksjonen $f(x) = \frac{2x^2 x + 1}{x + 2}$ har en skrå asymptote i y = 2x 5.

- La $f(x) = \frac{P(x)}{Q(x)}$ være en rasjonal funksjon
- Om P(x) har lavere grad enn Q(x) har f(x) en horisontal asymptote i y=0.
- Om P(x) har lik grad som Q(x) har f(x) også en horisontal asymptote.
- Om P(x) er nøyaktig én grad høyere enn Q(x), har f(x) en skrå asymptote.
- Om P(x) er mer enn én grad høyere enn Q(x), har f(x) verken horisontal eller skrå asymptote.

- Funksjonen $f(x) = \frac{x-2}{x^2+1}$ har en horisontal asymptote i y = 0.
- Funksjonen $f(x) = \frac{2x^2+1}{x^2-2}$ har en horisontal asymptote i y = 2.
- Funksjonen $f(x) = \frac{2x^2 x + 1}{x + 2}$ har en skrå asymptote i y = 2x 5.
- Funksjonen $f(x) = \frac{x^3 2x^2 + 1}{x 2}$ har verken horisontal eller skrå asymptote.

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET