Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{6ik}{(3+2k^2)^2t_3}$	$\frac{3 i \sqrt{2} k}{(3+2 k^2)^2 t_3}$	0	$\frac{6k^2}{(3+2k^2)^2t_3}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	$\frac{3}{(3+2k^2)^2t_3}$	0	$-\frac{3i\sqrt{2}k}{(3+2k^2)^2t_3}$
$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+2k^2)^2t_3}$	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	0	$\frac{6ik}{(3+2k^2)^2t_3}$
$\tau_{1}^{\#1}_{+}\alpha\beta$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
,	$r_1^{\#1} + \alpha \beta$	$r_1^{#2} + \alpha \beta$	$_{1}^{\#1} + ^{\alpha\beta}$	$\sigma_{1}^{\#_1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} + ^{\alpha}$

$f_{1^-}^{\#2} \alpha$	0	0	0	-2 ikt3	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^{\bar{-}}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	٤ 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#_+^2}$	$\frac{\sqrt{2}t_2}{3}$	2 ع	$-\frac{1}{3}$ I k t_2	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}$ i $\sqrt{2}$ kt_2	0	0	0	0
	$\omega_1^{#1} + \alpha^{\beta}$	$\omega_1^{#2} + \alpha \beta$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_{1}^{#2} + \alpha$

Quadratic (free) Lagrangian density
$rac{2}{3}t_{3}\;\omega_{,}^{\;lpha\prime}\;\;\omega_{\kappalpha}^{\;\;\;\;\;\;\; +rac{2}{3}t_{2}\;\omega_{,}^{\;\;\;\;\;\;\;\; \kappa\lambda'}+rac{1}{3}t_{2}\;\omega_{\kappa\lambda'}^{\;$
$f^{\alpha\beta} \iota_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + \tfrac{2}{3} r_2 \partial^\beta \omega^{\theta\alpha}_{\ \ \kappa} \partial_\theta \omega_{\alpha\beta}^{\ \ \ \kappa} - \tfrac{1}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{\ \ \kappa} \partial_\kappa \omega^{\alpha\beta\theta} -$
$\frac{2}{3}r_2\partial_\theta\omega_{\alpha\beta}^{}\partial_\kappa\omega^{\theta\alpha\beta} + \frac{1}{6}t_2\partial^\alpha f_{\theta}\partial^\kappa f_{\theta}^{\theta} - \frac{1}{6}t_2\partial^\alpha f_{\theta}\partial^\kappa f_{\theta}^{\theta} + \frac{1}{6}t_2\partial^\alpha f^{\lambda}_{\theta}\partial^\kappa f_{\lambda}^{\theta} -$
$\frac{2}{3}t_3 \ \omega_{\kappa\alpha}^{\ \alpha} \ \partial^{\kappa} f'_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\frac{1}{3}t_2 \; \omega_{,\theta \kappa} \; \partial^{\kappa} f^{I\theta} - \frac{2}{3}t_2 \; \omega_{_{IK\theta}} \; \partial^{\kappa} f^{I\theta} - \frac{1}{3}t_2 \; \omega_{\theta_{IK}} \; \partial^{\kappa} f^{I\theta} + \frac{2}{3}t_2 \; \omega_{\theta_{KI}} \; \partial^{\kappa} f^{I\theta} +$
$\frac{2}{3}t_3\;\omega_{,\alpha}^{\alpha}\;\partial^{\kappa}\!f^{\prime}_{\kappa}+\frac{2}{3}t_3\;\omega_{,\lambda}^{\lambda}\;\partial^{\kappa}\!f^{\prime}_{\kappa}-\frac{1}{6}t_2\;\partial^{\alpha}\!f^{\lambda}_{\kappa}\;\partial^{\kappa}\!f_{\lambda\alpha}^{\alpha}-\frac{1}{6}t_2\;\partial_{\kappa}\!f_{\alpha}^{\lambda}\partial^{\kappa}\!f_{\alpha}^{\beta}+$
$rac{1}{6}t_2\partial_\kappa f^\lambda_{\theta}\partial^\kappa f_{\lambda}^{\theta} + rac{2}{3}t_3\partial^\alpha f^\lambda_{\alpha}\partial^\kappa f_{\lambda\kappa} + rac{1}{3}r_2\partial_\kappa\omega^{\alpha\beta\theta}\partial^\kappa\omega_{\alpha\beta\theta} +$
$\frac{2}{3} r_2 \partial_{\kappa} \omega^{\theta \alpha \beta} \partial^{\kappa} \omega_{\alpha \beta \theta} - \frac{2}{3} r_2 \partial^{\beta} \omega_{\alpha}^{\ \alpha \lambda} \partial_{\lambda} \omega_{\alpha \beta}^{\ \prime} + \frac{2}{3} r_2 \partial^{\beta} \omega_{\lambda}^{\ \lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\ \prime}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^+\alpha\beta}^{\#1}$	$\omega_{2-\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	0	0	0
$f_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\omega_2^{#1} \dagger^{\alpha\beta\chi}$	0	0	0

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2^- \alpha\beta\chi}^{\#1}$
$\sigma_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	0	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_2^{\#1}$ † $^{lphaeta\chi}$	0	0	0

Source constraints/gauge generators			
SO(3) irreps Multiplicities			
$\tau_{0^{+}}^{\#2} == 0$	1		
$\tau_{0^{+}}^{\#1} - 2 \bar{i} k \sigma_{0^{+}}^{\#1} == 0$	1		
$\tau^{\#2\alpha} - i k \sigma^{\#1\alpha} = 0$	3		

$\tau_{0}^{"2} = 0$	I
$\tau_{0^{+}}^{\#1} - 2 ik\sigma_{0^{+}}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} - i k \sigma_{1}^{\#1\alpha} == 0$	3
$\tau_1^{\#1\alpha} == 0$	3
$\sigma_{1}^{\#1\alpha} + 2 \sigma_{1}^{\#2\alpha} == 0$	3
$ \overline{\tau_{1+}^{\#1}{}^{\alpha\beta} + \bar{\imath} k \sigma_{1+}^{\#1}{}^{\alpha\beta}} = 0 $	3
$\sigma_{1+}^{\#1\alpha\beta} = \sigma_{1+}^{\#2\alpha\beta}$	3
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5
$\tau_{2^{+}}^{\sharp 1 \alpha \beta} == 0$	5
$ \overline{\sigma_{2^{+}}^{\sharp 1} \alpha \beta} = 0 $	5
Total constraints:	32

$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2 + t_2$
$f_{0}^{\#2}$	0	0	0	0
$f_0^{\#1}$	-i $\sqrt{2} kt_3$	$2 k^2 t_3$	0	0
$\omega_{0}^{\#1}$	£3	$i\sqrt{2}kt_3$	0	0
	$\omega_0^{\#1}$ †	$f_{0}^{\#1}$ †	$f_0^{\#2} \uparrow$	$\omega_{0^{ ext{-}1}}^{\#1}$ \dagger

$\sigma_{0^-}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
$\tau_0^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
	$\sigma_{0}^{\#1}$ +	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}$ \dagger

Massive and massless spectra

e particle				
sidue: $-\frac{1}{r_2} > 0$				
ations:	1			
mass:	$-\frac{t_2}{r_2} > 0$			
	0			
Odd				

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$