CS2040S Data Structures and Algorithms

Welcome!

Admin

Recorded recitation this week!

Recorded tutorial this week!

Part 1: Review (more this week)

Part 2: Harder questions (only one optional this week)

- Check with your tutor on room scheduling.
- Do prepare in advance.
- Do have questions.
- Do take advantage of tutorial to get to know your tutor and other students in your class

Sorting Detective

- Six suspicious sorting algorithms
 - Investigate the mysterious sorting code.
 - Identify each sorting algorithm.
 - Find the criminal: Dr. Evil!
- Focus on the properties:
 - Asymptotic performance
 - Stability
 - Performance on special inputs
- Absolute speed is not a good reason...

Sorting Detective

Six suspicious sorting algorithms

- Investigate the mysterious sorting
- Identify each sorting algorithm
- Find the criminal: Dr. Evil!

It ran the fastest so it must be QuickSort.

operties:

mance

bility

erformance on special inputs

Absolute speed is not a good reason...

Sorting Detective

Six suspicious sorting algorithms

- Investigate the mysterious sorting
- Identify each sorting algorithm
- Find the criminal: Dr. Evil!

It ran to forcest so it must be called the control operties: mance

erformance on special inputs

Absolute speed is not a good reason...

of A and a B was much from it must be insertion. It.

Sorting Detective

Sorting Detective

Six suspicious sorting algorithms

- Investigate the mysterious sorting
- Identify each sorting algorithm
- Find the criminal: Dr. Evil!
- Focus on the properties:
 - Asymptotic performance
 - Stability
 - Performance on special inputs

I ran algorithm A on these sets of arrays and from the results, I discovered that....

Report should provide

evidence based on

testing each algorithm.

Absolute speed is not a good reason...

Sorting Detective

- Six suspicious sorting algorithms
 - Investigate the mysterious sorting code.
 - Identify each sorting algorithm.
 - Find the criminal: Dr. Evil!
- Focus on the properties:
 - Asymptotic performance
 - Stability
 - Performance on special inputs

Warning: we cover QuickSort next week...

Sorting Detective

Six suspicious sorting algorithms

Pset 3 will be delayed until next week!!

Warning: we cover QuickSort next week...

Today: Sorting

Sorting algorithms

- BubbleSort
- SelectionSort
- InsertionSort
- MergeSort

Properties

- Running time
- Space usage
- Stability

Key questions:

How to analyze a sorting algorithm?

Invariants

Trade-offs: how to decide which algorithm to use for which problem?

Sorting

Problem definition:

```
Input: array A[1..n] of words / numbers
```

Output: array B[1..n] that is a permutation of A such that:

$$B[1] \le B[2] \le ... \le B[n]$$

Example:

$$A = [9, 3, 6, 6, 6, 4] \rightarrow [3, 4, 6, 6, 6, 9]$$

Sorting

```
public interface ISort{
    public void sort(int[] dataArray);
}
```

Aside: BogoSort

```
BogoSort(A[1..n])
Repeat:
```

- a) Choose a random permutation of the array A.
- b) If A is sorted, return A.

What is the expected running time of BogoSort?

Aside: BogoSort

```
BogoSort(A[1..n])
Repeat:
```

- a) Choose a random permutation of the array A.
- b) If A is sorted, return A.

What is the expected running time of BogoSort?

O(n·n!)

Aside: BogoSort

```
QuantumBogoSort(A[1..n])
```

- a) Choose a random permutation of the array A.
- b) If A is sorted, return A.
- c) If A is not sorted, destroy the universe.

What is the expected running time of Quantum BogoSort?

(Remember QuantumBogoSort when you learn about non-deterministic Turing Machines.)

Aside: MaybeBogoSort

MaybeBogoSort(A[1..n])

- 1. Choose a random permutation of the array A.
- If A[1] is the minimum item in A then: MaybeBogoSort(A[2..n])

Else

MaybeBogoSort(A[1..n])

What is the expected running time of MaybeBogoSort?

Today: Sorting

Sorting algorithms

- BubbleSort
- SelectionSort
- InsertionSort
- MergeSort

Properties

- Running time
- Space usage
- Stability

```
BubbleSort(A, n)

repeat n times:

for j \leftarrow 1 to n-1

if A[j] > A[j+1] then swap(A[j], A[j+1])
```


Example: 8 2 4 9 3 6

Example:

8 2

Example:

8 2

Example:

8 2

8 4

Example:

8 2

8 4

8 9

Example:

8 2

(

Example:

8 2

Pass 2:

Pass 3:

Pass 4:

```
BubbleSort(A, n)

repeat n times:

for j \leftarrow 1 to n-1

if A[j] > A[j+1] then swap(A[j], A[j+1])
```



```
BubbleSort(A, n)

repeat (until no swaps):

for j \leftarrow 1 to n-1

if A[j] > A[j+1] then swap(A[j], A[j+1])
```


Big-O Notation

How does an algorithm scale?

- For large inputs, what is the running time?
- T(n) = running time on inputs of size n

What is the running time of BubbleSort?

- A. $O(\log n)$
- B. O(n)
- C. $O(n \log n)$
- D. $O(n\sqrt{n})$
- E. $O(n^2)$
 - F. $O(2^n)$

Running time:

– Depends on the input!

Example:

2 3

3 4

4 6

Running time:

– Depends on the input!

Best-case:

Already sorted: O(n)

Best-case:

Already sorted: O(n)

Average-case:

Assume inputs are chosen at random.

Worst-case:

Max running time over all possible inputs.

BubbleSort

Best-case:

Already sorted: O(n)

Average-case:

Assume inputs are chosen at random.

Worst-case:

Unless otherwise specified, in CS2040S, we focus on worst-case

Max running time over all possible inputs.

BubbleSort(A, n)

repeat (until no swaps):

for $j \leftarrow 1$ to n-1

if A[j] > A[j+1] then swap(A[j], A[j+1])


```
BubbleSort(A, n)

repeat (until no swaps):

for j \leftarrow 1 to n-1

if A[j] > A[j+1] then swap(A[j], A[j+1])
```



```
BubbleSort(A, n)
  repeat (until no swaps):
      for j \leftarrow 1 to n-1
        if A[j] > A[j+1] then swap(A[j], A[j+1])
Iteration 1:
                               max item
                 10
```

10

```
BubbleSort(A, n)
  repeat (until no swaps):
      for j \leftarrow 1 to n-1
       if A[j] > A[j+1] then swap(A[j], A[j+1])
Iteration 1:
```

```
BubbleSort(A, n) 

repeat (until no swaps): 

for j \leftarrow 1 to n-1 

if A[j] > A[j+1] then swap(A[j], A[j+1])
```

Iteration 2:

Loop invariant:

At the end of iteration j: ???

Loop invariant:

At the end of iteration j, the biggest j items are correctly sorted in the final j positions of the array.

Loop invariant:

At the end of iteration j, the biggest j items are correctly sorted in the final j positions of the array.

Correctness: after n iterations - sorted

Loop invariant:

At the end of iteration j, the biggest j items are correctly sorted in the final j positions of the array.

Worst case: n iterations

Loop invariant:

At the end of iteration j, the biggest j items are correctly sorted in the final j positions of the array.

Worst case: n iterations \longrightarrow O(n²) time

BubbleSort

Best-case: O(n)

Already sorted

Average-case: O(n²)

Assume inputs are chosen at random...

Worst-case: O(n²)

Bound on how long it takes.

Today: Sorting

Sorting algorithms

- BubbleSort
- SelectionSort

- o InsertionSort
- MergeSort

Properties

- Running time
- Space usage
- Stability

```
SelectionSort(A, n)

for j \leftarrow 1 to n-1:

find minimum element A[j] in A[j..n]

swap(A[j], A[k])
```


Example: 8 2 4 9 3 6

Example: 8 2 4 9 3 6

Example: 8 2 4 9 3 6

2 8 4 9 3 6

Example: 8 2 4 9 3

2 8 4 9 **3** 6

Example: 8 2 4 9

2 8 4 9 **3** 6

2 3 4 9 8 6

Example: 8 2 4 9 3

2 8 4 9 **3** 6

2 3 4 9 8 6

Example:	8	2	4	9	3	6
	2	8	4	9	3	6
	2	3	4	9	8	6
	2	3	4	9	8	6

Example:	8	2	4	9	3	6
	2	8	4	9	3	6
	2	3	4	9	8	6
	2	3	4	9	8	6
	2	3	4	6	8	9

Example:	8	2	4	9	3	6
	2	8	4	9	3	6
	2	3	4	9	8	6
	2	3	4	9	8	6
	2	3	4	6	8	9
	2	3	4	6	8	9

What is the (worst-case) running time of SelectionSort?

- A. $O(\log n)$
- B. O(n)
- C. O(n log n)
- D. $O(n\sqrt{n})$
- E. $O(n^2)$
 - F. $O(2^n)$

```
SelectionSort(A, n)

for j \leftarrow 1 to n-1:

find minimum element A[j] in A[j..n]

swap(A[j], A[k])
```



```
SelectionSort(A, n)

for j \leftarrow 1 to n-1:

find minimum element A[j] in A[j..n]

swap(A[j], A[k])
```

Running time:
$$n + (n-1) + (n-2) + (n-3) + ...$$

sorted, all smallest elements

```
SelectionSort(A, n)

for j \leftarrow 1 to n-1:

find minimum element A[j] in A[j..n]

swap(A[j], A[k])
```


first iteration

$$n + (n-1)$$

second iteration

$$n + (n - 1) + (n - 2)$$

third iteration

$$n + (n-1) + (n-2) + (n-3) + ... + 1 =$$

$$n + (n-1) + (n-2) + (n-3) + ... + 1 = (n)(n+1)/2$$

=

$$n + (n-1) + (n-2) + (n-3) + ... + 1 = (n)(n+1)/2$$
$$= \Theta(n^2)$$

```
SelectionSort(A, n)

for j \leftarrow 1 to n-1:

find minimum element A[j] in A[j..n]

swap(A[j], A[k])
```

Running time: O(n²)

What is the BEST CASE running time of SelectionSort?

- A. $O(\log n)$
- B. O(n)
- C. O(n log n)
- D. $O(n\sqrt{n})$
- E. $O(n^2)$
 - F. $O(2^n)$

```
SelectionSort(A, n)

for j \leftarrow 1 to n-1:

find minimum element A[j] in A[j..n]

swap(A[j], A[k])
```

Running time: $O(n^2)$ (always; in the worst-case) and $\Omega(n^2)$ (even in the best case)

SelectionSort

```
SelectionSort(A, n)
```

for $j \leftarrow 1$ to n-1:

What is a good loop invariant for SelectionSort?

find minimum element A[j] in A[j..n]

swap(A[j], A[k])

SelectionSort Analysis

Loop invariant:

At the end of iteration j: the smallest j items are correctly sorted in the first j positions of the array.

SelectionSort Analysis

Loop invariant: (Alternative)

At the **end** of iteration j, for all i <= j, A[i] is the ith smallest element of the entire array.

Today: Sorting

Sorting algorithms

- BubbleSort
- SelectionSort
- InsertionSort

MergeSort

Properties

- Running time
- Space usage
- Stability

```
InsertionSort(A, n)

for j \leftarrow 2 to n

key \leftarrow A[j]

Insert key into the sorted array A[1..j-1]
```

Illustration: At iteration j

InsertionSort(A, n)

for $j \leftarrow 2$ to n

 $key \leftarrow A[j]$

Insert key into the sorted array A[1..j-1]

Illustration: At iteration j


```
InsertionSort(A, n)
      for j \leftarrow 2 to n
          key \leftarrow A[i]
          i ← j-1
          while (i > 0) and (A[i] > key)
              A[i+1] \leftarrow A[i]
              i \leftarrow i-1
          A[i+1] \leftarrow key
```

Example:

9

3

6

Example: 8 2 4 9 3 6 2 8 4 9 3 6 swap

	2	3	4	8	9	6
	2	4	8	9	3	
	2	4	8	9	3	
	2	8	4	9	3	6
Example:	8	2	4	9	3	

	2	3	4	6	8	9
	2	3	4	8	9	6
	2	4	8	9	3	6
	2	4	8	9	3	6
	2	8	4	9	3	6
Example:	8	2	4	9	3	6

What is the (worst-case) running time of InsertionSort?

- A. $O(\log n)$
- B. O(n)
- C. O(n log n)
- D. $O(n\sqrt{n})$
- E. $O(n^2)$
 - F. $O(2^n)$

We need to analyse this step:

Insertion-Sort(A, n)

for $j \leftarrow 2$ to n $key \leftarrow A[j]$

Insert key into the sorted array A[1..j-1]

What is the max distance that the key needs to be moved?

Insertion-Sort(A, n)

for $j \leftarrow 2$ to n

 $key \leftarrow A[j]$

Insert key into the sorted array A[1..j-1]

Insertion Sort Analysis

```
Insertion-Sort(A, n)
      for j \leftarrow 2 to n
          key \leftarrow A[i]
          i ← j−1
          while (i > 0) and (A[i] > key)
               A[i+1] \leftarrow A[i]
               i \leftarrow i-1
          A[i+1] \leftarrow key
```

Basic facts

$$1 + 2 + 3 + \dots + (n - 2) + (n - 1) + n = (n)(n+1)/2$$
$$= \Theta(n^2)$$

```
Insertion-Sort(A, n)

for j \leftarrow 2 to n

key \leftarrow A[j]

Insert key into the sorted array A[1..j-1]
```

Running time: O(n²)

Insertion-Sort(A, n)

for $j \leftarrow 2$ to n

 $key \leftarrow A[j]$

What is a good loop invariant for InsertionSort?

Insert key into the sorted array A[1..j-1]

Loop invariant:

At the end of iteration j: the first j items in the array are in sorted order.

Best-case:

Average-case:

Random permutation

Worst-case:

Best-case:

Already sorted: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Average-case:

– Random permutation?

Worst-case:

- Inverse sorted: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Best-case: O(n)
Very fast!

- Already sorted: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Average-case:

– Random permutation?

Worst-case: O(n²)

- Inverse sorted: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

Insertion Sort Analysis

Average-case analysis:

On average, a key in position j needs to move j/2 slots backward (in expectation).

Assume all inputs equally likely

$$\sum_{j=2}^{n} \Theta\left(\frac{j}{2}\right) = \Theta(n^2)$$

- In expectation, still $\Theta(n^2)$

Today: Sorting

Sorting algorithms

- BubbleSort
- SelectionSort
- o InsertionSort
- MergeSort

Properties

- Running time
- Space usage
- Stability

Puzzle: Slowest Sorting Algorithm

What is the *slowest* sorting algorithm you can think of?

Slower than BogoSort...
But must always sort correctly...

Hint: recursion can be a powerful source of slowness!

Today: Sorting

Sorting algorithms

- BubbleSort
- SelectionSort
- o InsertionSort
- MergeSort

Properties

- Running time
- Space usage
- Stability

Time complexity

• Worst case: O(n²)

Sorted list:

Time complexity

• Worst case: O(n²)

Sorted list: BubbleSort

SelectionSort

How expensive is it to sort:

[1, 2, 3, 4, 5, **7**, **6**, 8, 9, 10]

How expensive is it to sort:

[1, 2, 3, 4, 5, **7**, **6**, 8, 9, 10]

BubbleSort and InsertionSort are fast.

SelectionSort is slow.

Challenge of the Day:

Find a permutation of [1..n] where:

- BubbleSort is slow.
- InsertionSort is fast.

Or explain why no such sequence exists.

Moral:

Different sorting algorithms have different inputs that they are good or bad on.

All $O(n^2)$ algorithms are not the same.

Space complexity

Worst case: O(n)

How much space does a sorting algorithm need?

Space complexity

- Worst case: O(n)
- An In-place sorting algorithm:
 - Only O(1) extra space needed.
 - All manipulation happens within the array.

So far:

All sorting algorithms we have seen are in-place.

Subtle issue:

How do you count space?

- Maximum space every allocated at one time?
- Total space ever allocated.

Clarification:

There are 2 options here, they are slightly different.

Subtle issue:

How do you count space?

Maximum space every allocated at one time?

Total space ever allocated.

Clarification:

Subtle issue:

In CS2040S, we will use the second option ,

How do you count space?

- Maximum space every allocated at one time?
- Total space ever allocated.

Stability

What happens with repeated elements?

Key	1	2	5	3	4	5	6	7	8	9
Value	а	b	С	g	h	D	j	k	_	m

Databases often contain (key, value) pairs.

The key is an index to help organize the data.

Stability

Stability

Key	1	2	5	3	4	5	6	7	8	9
Value	а	b	C	g	h	D	j	k	_	m
			,							
Key	1	2	3	4	5	5	6	7	8	9
Value	а	b	g	h	D	C	j	k	I	m

Stability

Key	1	2	5	3	4	5	6	7	8	9
Value	а	b	C	g	h	D	j	k	_	m
	J UNSTABLE									
Key	1	2	3	4	5	5	6	7	8	9
Value	а	b	g	h	D	С	j	k	I	m

Stability: preserves order of equal elements

Key	1	2	5	3	4	5	6	7	8	9
Value	а	b	C	g	h	D	j	k	1	m
	J STABLE									
Key	1	2	3	4	5	5	6	7	8	9
Value	а	b	g	h	С	D	j	k	1	m

Which are stable?

- A. BogoSort
- B. BubbleSort
- C. SelectionSort
- D. InsertionSort

Which are stable?

- A. BogoSort 👡
- B. BubbleSort
- C. SelectionSort
- D. InsertionSort

Not stable:

Random permutation may swap elements!

Which are stable?

- A. BogoSort
- B. BubbleSort
- C. SelectionSort
- D. InsertionSort

Stable:

Only swap elements that are different.

SelectionSort

```
SelectionSort(A, n)

for j \leftarrow 1 to n-1:

find minimum element A[j] in A[j..n]

swap(A[j], A[k])
```

Not stable: swap changes order

SelectionSort

```
SelectionSort(A, n)

for j \leftarrow 1 to n-1:

find minimum element A[j] in A[j..n]

swap(A[j], A[k])
```

Not stable: swap changes order

InsertionSort

```
Insertion-Sort(A, n)
      for j \leftarrow 2 to n
          key \leftarrow A[i]
          i ← j-1
          while(i > 0) and(A[i] > key)
              A[i+1] \leftarrow A[i]
              i \leftarrow i-1
              A[i+1] \leftarrow key
```

Stable as long as we are careful to implement it properly!

Sorting Analysis

Summary:

BubbleSort: O(n²)

SelectionSort: O(n²)

InsertionSort: O(n²)

Properties: time, space, stability

Today: Sorting

Sorting algorithms

- BubbleSort
- SelectionSort
- InsertionSort
- MergeSort

Properties

- Running time
- Space usage
- Stability

Divide-and-Conquer

- 1. Divide problem into smaller sub-problems.
- 2. Recursively solve sub-problems.
- 3. Combine solutions.

Divide-and-Conquer Sorting

- 1. Divide: split array into two halves.
- 2. Recurse: sort the two halves.
- 3. Combine: merge the two sorted halves.

Divide-and-Conquer Sorting

- 1. Divide: split array into two halves.
- 2. Recurse: sort the two halves.
- 3. Combine: merge the two sorted halves.

Advice:

When thinking about recursion, do not "unroll" the recursion.

Treat the recursive call as a magic black box.

(But don't forget the base case.)

Step 1: Divide array into two pieces.

```
MergeSort(A, n)

if (n=1) then return;

else:
```

```
X \leftarrow MergeSort(A[1..n/2], n/2);
```

$$Y \leftarrow MergeSort(A[n/2+1, n], n/2);$$

Merge (X,Y, n/2);

return

Step 2: Recursively sort the two halves.

```
MergeSort(A, n)
    if (n=1) then return;
     else:
        X \leftarrow MergeSort(A[1..n/2], n/2);
       Y \leftarrow MergeSort(A[n/2+1, n], n/2);
       Merge (X,Y, n/2);
        return
                                         Sort
                Sort
```

```
MergeSort(A, n)
    if (n=1) then return;
    else:
       X \leftarrow MergeSort(A[1..n/2], n/2);
```

return

Step 3: Merge the two halves into one sorted array.

 $Y \leftarrow MergeSort(A[n/2+1, n], n/2);$ Merge (X,Y, n/2); Merge

```
Base case
MergeSort(A, n)
    if (n=1) then return;
     else:
        X \leftarrow MergeSort(A[1..n/2], n/2);
        Y \leftarrow MergeSort(A[n/2+1, n], n/2);
        Merge (X,Y, n/2);
        return
                                      Recursive "conquer" step
  Combine solutions
```

The only "interesting" part is merging!

Divide-and-Conquer Sorting

- 1. Divide: split array into two halves.
- 2. Recurse: sort the two halves.
- 3. Combine: merge the two sorted halves.

Advice:

When thinking about recursion, do not "unroll" the recursion.

Treat the recursive call as a magic black box.

(But don't forget the base case.)

Divide-and-Conquer

Merging

Key subroutine: Merge

- How to merge?
- How fast can we merge?

return result of left recursive call

return result of right recursive call

Clarification:

We have this (only-once) allocated auxiliary array for the entire algorithm. Size: n

Total space complexity: O(n)

Clarification:

We will merge the two lists into the allocated array.

Clarification:

Then we can move the items back into the original array after we're done using it.

Clarification:

Then we can keep reusing the auxiliary array throughout all of the recursion.

2 7 13 20 1 9 11 12

1 2 7 9 11 12 13 20

Merge: Running Time

Given two lists:

- A of size n/2
- B of size n/2

Total running time: ??

Merge: Running Time

Given two lists:

- A of size n/2
- B of size n/2

Total running time: O(n) = cn

- In each iteration, move one element to final list.
- After n iterations, all the items are in the final list.
- Each iteration takes O(1) time to compare two elements and copy one.

Let T(n) be the worst-case running time for an array of n elements.

```
MergeSort(A, n)
     if (n=1) then return; \leftarrow ---- \Theta(1)
     else:
        X \leftarrow Merge-Sort(...);
                                      \leftarrow - - - - - T(n/2)
        Y \leftarrow Merge-Sort(...); \leftarrow ----T(n/2)
     return Merge (X,Y, n/2); \leftarrow ----\Theta(n)
```

Let T(n) be the worst-case running time for an array of n elements.

$$T(n) = \Theta(1)$$
 if (n=1)
= $2T(n/2) + cn$ if (n>1)

Techniques for Solving Recurrences

1. Guess and verify (via induction).

Draw the recursion tree.

3. Use the Master Theorem (see CS3230) or the Akra–Bazzi Method, or other advanced techniques.

MergeSort: Recurse "downwards"

$$T(n) = 2T(n/2) + cn$$

Each level, we do O(n) work, regardless of level

$$T(n) = 2T(n/2) + cn$$

Key question: how many levels?

$$T(n) = 2T(n/2) + cn$$

level	number
0	1
1	2
2	4
3	8
4	16
	•••
h	??

number = 2^{level}

$$T(n) = 2T(n/2) + cn$$

Level	Number
0	1
1	2
2	4
3	8
4	16
• • •	•••
h	n

$$n = 2^h$$

$$log n = h$$

$$T(n) = 2T(n/2) + cn$$

Total work: work at level 1 + work at level 2 + ...

$$T(n) = 2T(n/2) + cn$$

Since work at each level is same: (# of levels) x (# total work level 1)

$$T(n) = 2T(n/2) + cn$$


```
T(n) = O(n \log n)
MergeSort(A, n)
    if (n=1) then return;
     else:
        X \leftarrow MergeSort(...);
        Y \leftarrow MergeSort(...);
     return Merge (X,Y, n/2);
```

Techniques for Solving Recurrences

1. Guess and verify (via induction).

Draw the recursion tree.

3. Use the Master Theorem (see CS3230) or the Akra–Bazzi Method, or other advanced techniqus.

Guess: $T(n) = O(n \log n)$

$$T(n) = 2T(n/2) + c \cdot n$$

$$T(1) = c$$

Guess: $T(n) = c \cdot n \log n$

More precise guess: Fix constant c.

$$T(n) = 2T(n/2) + c \cdot n$$

$$T(1) = c$$

Guess:
$$T(n) = c \cdot n \log n$$

Induction: Base case

$$T(1) = c$$

$$T(n) = 2T(n/2) + c \cdot n$$

$$T(1) = c$$

Guess:
$$T(n) = c \cdot n \log n$$

Induction:

Assume true for all smaller values.

$$T(1) = c$$

$$T(x) = c \cdot x \log x$$
 for all $x < n$.

$$T(n) = 2T(n/2) + c \cdot n$$

$$T(1) = c$$

Guess:
$$T(n) = c \cdot n \log n$$

$$T(1) = c$$

$$T(x) = c \cdot x \log x$$
 for all $x < n$.

$$T(n) = 2T(n/2) + cn$$

$$T(n) = 2T(n/2) + c \cdot n$$

$$T(1) = c$$

Guess:
$$T(n) = c \cdot n \log n$$

$$T(1) = c$$

$$T(x) = c \cdot x \log x$$
 for all $x < n$.

$$T(n) = 2T(n/2) + cn$$

= $2(c(n/2)\log(n/2)) + cn$

$$T(n) = 2T(n/2) + c \cdot n$$

$$T(1) = c$$

Guess:
$$T(n) = c \cdot n \log n$$

$$T(1) = c$$

$$T(x) = c \cdot x \log x$$
 for all $x < n$.

$$T(n) = 2T(n/2) + cn$$

$$= 2(c(n/2)\log(n/2)) + cn$$

$$= cn\log(n/2) + cn$$

$$T(n) = 2T(n/2) + c \cdot n$$

 $T(1) = c$

Guess:
$$T(n) = c \cdot n \log n$$

$$T(1) = c$$

 $T(x) = c \cdot x \log x$ for all x < n.

$$T(n)$$
 = $2T(n/2) + cn$
 = $2(c(n/2)\log(n/2)) + cn$
 = $cn\log(n/2) + cn$
 = $cn\log(n) - cn\log(2) + cn$

$$T(n) = 2T(n/2) + c \cdot n$$

 $T(1) = c$

Guess: $T(n) = c \cdot n \log n$

$$T(1) = c$$

 $T(x) = c \cdot x \log x$ for all x < n.

$$T(n) = 2T(n/2) + cn$$

$$= 2(c(n/2)\log(n/2)) + cn$$

$$= cn\log(n/2) + cn$$

$$= cn\log(n) - cn\log(2) + cn$$

$$= cn\log(n)$$

Induction: It works!

$$T(n) = 2T(n/2) + c \cdot n$$

 $T(1) = c$

Performance Profiling

(Dracula vs. Lewis & Clark)

Version	Change	Running Time
Version 1		4,311.00s
Version 2	Better file handling	676.50s
Version 3	Faster sorting	6.59s
Version 4	No sorting!	2.35s

V.2 > V.3 was using MergeSort instead of SelectionSort.

real world performance

When is it better to use InsertionSort instead of MergeSort?

- A. When there is limited space?
- B. When there are a lot of items to sort?
- C. When there is a large memory cache?
- D. When there are a small number of items?
- E. When the list is mostly sorted?

When the list is mostly sorted:

- InsertionSort is fast!
- MergeSort is O(n log n)

How "close to sorted" should a list be for InsertionSort to be faster?

Small number of items to sort:

- MergeSort is slow!
- Caching performance, branch prediction, etc.
- User InsertionSort for n < 1024, say.

Base case of recursion:

Use slower sort.

Run an experiment and post on the forum what the best switch-over point is for your machine.

Space usage:

- Need extra space to do merge.
- Merge copies data to new array.
- How much extra space?

Challenge of the Day 2:

How much space does MergeSort need to sort n items? (Use the version presented today.)

Design a version of MergeSort that minimizes the amount of extra space needed.

Stability:

- MergeSort is stable if "merge" is stable.
- Merge is stable if carefully implemented.

Sorting Analysis

Summary:

BubbleSort: O(n²)

SelectionSort: O(n²)

InsertionSort: O(n²)

MergeSort: O(n log n)

Also:

The power of divide-and-conquer!

How to solve recurrences...

Properties: time, space, stability

<u>Step 1</u>:

Generate all the permutations of the input.

<u>Step 2</u>:

Sort the permutations (by number of inversions).

<u>Step 3</u>:

<u>Step 1</u>:

Generate all the permutations of the input.

<u>Step 2</u>:

- Sort the permutations (by number of inversions).

Step 1:

Generate all the permutations of the input.

<u>Step 2</u>:

Sort the permutations (by number of inversions).

Recurse!

Step 3: Recursive instance is larger than original!

<u>Step 1</u>:

Generate all the permutations of the input.

<u>Step 2</u>:

Sort the permutations (by number of inversions).

Recurse!

<u>Step 3</u>:

After n! recursions, use QuickSort for the "base case".

Ingrassia-Kurtz Sort

<u>Step 1</u>:

Generate all the permutations of the input.

<u>Step 2</u>:

Sort the permutations (by number of inversions).

Recurse!

<u>Step 3</u>:

After n! recursions, use QuickSort for the "base case".

For next time...

Next Monday class:

More sorting!