

CFD Modeling and Optimization of Fin Array Packaging Solutions for Micro-Thermoelectric Generator (µTEG) Devices

Top View t

Q Tam¹, H Kwon¹, R Kini¹, M Dunham², J Cornett², B Chen², M Asheghi¹, K Goodson¹ ¹Stanford University, ²Analog Devices, Inc.

Motivation and Background

- Prior work¹ demonstrated that optimization of the thermal packaging is critical for successful implementation of µTEGs.
- The packaging's footprint and thermal resistance are key parameters of this study. A thermal resistance of 20 K/W was adopted as the maximum threshold.

COLD **R**_{Heat Sink} Heat Sink R_{TIM} $R_{\mu TEG}$ uTEG Thermal Interface Materia R_{TIM} Heat Source HOT

Natural Convection

···· Optimum Spacing

2.5

y [cm]

Aluminum Base

y [cm]

 $\Delta T [K]$

- While plate fins have clearly defined optimum number of fins, pin fins' performance change marginally with increasing number of fins.
- The jagged behavior of the plastic plate fins is a result of the centering of plate fins over the heat source.
- The simulation's results ($\Delta T = 20 \text{ K}$) agree with the analytical method's prediction³ of the optimum fin spacing under the assumption that the fins have a uniform surface temperature of 313 K (T_{∞} = 298 K).

Forced Convection

- There is less variation between plate and pin fins in forced convection. Turbulence in staggered pin fins improves performance in forced convection.
- There is only a marginal difference in thermal resistance with higher pin fin densities. For a larger number of fins, the air velocity surrounding the fins reduce dramatically.
- Increased flow separation causes a decrease in the heat transfer coefficient.

Simulation Parameters

Comsol Multiphysics: Non-Isothermal Flow

Fin heights were determined using:

Healing length calculations.

 Max heat fin dimensions: 5x5x5 cm³ 				(Plate Fins)	
Material		Plastic	Aluminum		
Thermal Conductivity [W/m-K]		20	170		
Boundary Conditions	Natural Convection	Forced Convection		y	
Fluid	All walls: no slip	Inlet velocity = v [m/s] Outlet gage pressure = 0 Pa Other walls: no slip		Top View	
Volume Force	Gravity parallel to x-axis.	Not specified		(Pin Fins)	d (1) O
Temperature	Outer walls = 298 K	Inlet wall = 298 K Other outer walls insulating			
	μTEG = 298 K + ΔT		y		
ΔT					

Conclusions and Future Work

heat flux through $\mu TEG * surface area of \mu TEG$

- Under natural & forced convection, plate fins achieve better performance in ideal conditions. However, unlike plate fins, pin fins do not have a preferred flow direction in the x-y plane. Thus, pin fins are expected to perform better in multi-directional flows.
- Natural Convection (Thermal Resistance < 20 K/W):
 - ➤ Al plate and pin fins of 5x5 cm² footprint.
- Forced Convection (Thermal Resistance < 20 K/W):
- \rightarrow Al plate fins of 1x1 cm² footprint for air velocity > 0.5 m/s.
- Further studies are currently being done on more complex designs.

 \triangleright All and plastic pin fins of 1x1 cm² footprint for air velocity > 5 m/s.

¹Marc T. Dunham, et. al. *Energy* **93** (2015)

Thermal Resistance = -

² Micropelt Thermogenerators. Retrieved from http://micropelt.com/thermogenerator.php ³Adrian Bejan. Convection Heat Transfer. 3rd ed., Hoboken, NJ, Wiley, 2004.

This Work is Funded by: Analog Devices