Лабораторная работа №6: Расчет числа молекул в атмосфере

Постановка задачи

Разработать программу для вычисления числа молекул в атмосфере.

Оборудование

• ПК (Использовался ноутбук с установленной ОС GNU/Linux)

Математическая модель

Полное число молекул N в атмосфере равно:

$$N \approx (M \ / \ \mu) N_A$$
 = $(4\pi R^2 p_0 \ / \ \mu g) \ N_A$, где

R — средний радиус Земли,

 μ — средняя молярная масса воздуха,

g — гравитационная постоянная,

ро — давление воздуха на уровне моря

N_A — постоянная Авогадро

Исходные данные

R, км	д, н	μ, кг/моль	р₀, см рт. ст.	N_A
6400	9,8	0,029	76	6,02214082 · 10 ²³

Ход работы

Для выполнения поставленной задачи разработаем программу. Для этого используем язык программирования Pascal.

Для повышения удобства работы с кодом программы, разобъём вычисление N на части и подставим на их место переменные:

$$N \approx \frac{a}{b} \times N_A$$
 , где $a = 4\pi R^2 p_0$, $b = \mu g$

Описание переменных

Переменная	Тип	Суть
R	real	Ср. радиус Земли
g	real	Гравитационная постоянная
U	real	Средняя молярная масса воздуха
p0	real	Давление воздуха на уровне моря
NA	real	Постоянная Авогадро
a	real	Переменная а из мат. модели
b	real	Переменная b из мат. модели
N	real	Примерное число молекул в атмосфере Земли

Код программы и результаты вычислений

```
program LR6;
  2 -
     uses
          math;
     var
         R, g, U, p0, NA, a, b, N: real;
  7 begin
          // Зададим значения переменных
         R := 6400 * 1000;
 10
          g := 9.8;
 11
         U := 0.029;
 12
          p0 := 76 * 1333;
 13
         NA := 6.02214082 * power(10, 23);
 14
 15
          // Вычислим значение а
          a := 4 * pi * sqr(R) * p0;
 16
 17
          // Вычислим значение b
 18
 19
          b := U * g;
 20
 21
          // Вычислим значение N
          N := a / b * NA;
 22
 23
 24
          // Выведем значение N на экран
 25
         N := N / power(10, 44);
                                  ' * 10^44');
 26
         writeln('N = ', N:0:8,
 27
     end.
 28
                       input
Compiled Successfully. memory: 1516 time: 0 exit code: 0
 N = 1.10494430 * 10^44
```

Результат: $N \approx 1,10494430 * 10^{44}$

Вывод

В ходе лабораторной работы была разработана программа на языке Pascal для вычисления приблизительного числа молекул воздуха в атмосфере Земли. Результат работы программы показал, что искомое значение приблизительно равно **1,10494430 * 10**⁴⁴. Поставленная задача выполнена успешно.