REQUIN Coda & Juliette

version du 15 Germinal, an 232

REQUIN

recueil de questions d'informatique

Sommaire

Chapitre I. Algorithmique	
Chapitre II. Arbres & Graphes	5
Chapitre III. Langages formels	7
Chapitre IV. Théorie des jeux	9
Chapitre V. Calculabilité	11
Chapitre VI. Logique	13
Chapitre VII. Langages fonctionnels	15
Chapitre VIII. Mathématiques pour l'informatique	17
Problème VIII.1: Un peu de théorie	18
/III.1.a Demi-groupes, monoïdes et groupes	18
/III.1.b Associativité ?	18
/III.1.c Retouches	18

Chapitre I. Algorithmique

Chapitre II. Arbres & Graphes

Chapitre III. Langages formels

Chapitre IV. Théorie des jeux

Chapitre V. Calculabilité

Chapitre VI. Logique

Chapitre VII. Langages fonctionnels

Chapitre VIII. Mathématiques pour l'informatique

Problème VIII.1: Un peu de théorie

VIII.1.a Demi-groupes, monoïdes et groupes

Soit un demi-groupe $(\mathbb{E}, +)$, c'est-à-dire que

• E est stable par +

• La loi + est associative

On dira de plus que $\mathbb E$ est un *monoïde* si il existe $e \in \mathbb E$ tel que

$$\forall x \in \mathbb{E}, xe = ex = x$$

On dira enfin que $\mathbb E$ est un *groupe* si il existe $\cdot^{-1}: \mathbb E \to \mathbb E$ tel que

$$\forall x \in \mathbb{E}, xx^{-1} = x^{-1}x = e$$

0. Donner un groupe, puis un monïde qui n'est pas un groupe, et enfin un demi-groupe qui n'est pas un monoïde.

Si \mathbb{E} est un monoïde, soit $\sim \in (\mathbb{E}^2)^2$ telle que $(a,b)\sim (c,d) \iff a+d=b+c$.

1. Que dire de \mathbb{E}^2/\sim ?

Soit Σ un ensemble fini. On appelle Σ^* le plus petit monoïde contenant Σ et tel que

$$\forall u, v, w, x \in \Sigma^{\star}, (u, v) = (w, x) \iff uv = wx$$

On note son neutre ε .

2. Justifier que Σ^* est l'ensemble des mots finis sur Σ

On pose $\mathcal{A} := \{x \mapsto xw, w \in \Sigma^{\star}\}$, que l'on munit de la loi de composition usuelle des fonctions.

3. Fustifier que Σ^{\star} et $\mathcal A$ sont en isomorphes comme monoïdes.

VIII.1.b Associativité?

Dans cette partie, (S, +) est un demi-groupe.

Soit $n \in \mathbb{N}$ puis $a \in S^n$ un n —uplet.

4. Donner le langage des expressions calculant $\sum a$. Est-il rationnel ?

Par exemple, pour n = 3, $\mathcal{L} = \{a_1 + (a_2 + a_3), (a_1 + a_2) + a_3\}.$

5. Mettre en bijection $\mathcal L$ et l'ensemble des arbres binaires à n noeuds. Dénombrer $\mathcal L$.

On considère maintenant posséder une machine capable d'exécuter $\omega \in \mathbb{N}^*$ opérations "+" simultanées.

6. Donner un mauvais ordre de calcul de $\sum a$, puis un choix plus raisonnable.

VIII.1.c Retouches

Soient $\mathcal L$ un langage rationnel et $M\in \Sigma^\star$ un mot de longueur $n\in \mathbb N^\star$. On appelle une requête un couple $1\leq i\leq j\leq n$ et sa taille est r:=j-i. On satisfait une requête en renvoyant si $M[i:j]\in \mathcal L$. On note $q\in \mathbb N$ le nombre d'états d'un automate qui reconnaît $\mathcal L$.

7. Donner un algorithme satisfaisant une requête.

Moyennant un précalcul,

8. Donnez un algorithme efficace satisfaisant une requête en temps $\mathcal{O}(q \log r)$

Une modification est une opération de la forme $M[i] \leftarrow a$ avec $a \in \Sigma$.

9. Modifier l'algorithme précédent pour permettre des modifications en temps $\mathcal{O}(q \log r)$. $\star \star \star \star \star$