KyotoUx-009x (/github/ryo0921/KyotoUx-009x/tree/master) / 01 (/github/ryo0921/KyotoUx-009x/tree/master/01)

# **Stochastic Processes: Data Analysis and Computer Simulation**

# Python programming for beginners

# 1. Using Python, iPython, and Jupyter notebook

## 1.1. Install anaconda

### Instractions

- Download the Python 3.\* Anaconda package appropriate for your platform (Windows/Mac/Linux) from the official website (<a href="https://www.continuum.io/downloads">https://www.continuum.io/downloads</a>).
- Install anaconda by executing the installer program (see details at <a href="https://docs.continuum.io/anaconda/install">https://docs.continuum.io/anaconda/install</a> (https://docs.continuum.io/anaconda/install).
- You can update to the latest version of Anaconda by executing the following commands from the command line (optional).

conda update conda
conda update anaconda

# 1.2. Launch jupyter notebook

# **Demonstration**

mkdir work
cd work
jupyter notebook
[I 18:10:21.427 NotebookApp] Serving notebooks from local directo
ry: /Users/ryoichi/work
[I 18:10:21.427 NotebookApp] 0 active kernels



# Demo continued...



# Demo continued...



# 1.3. Check Python version

## **Demonstration**

- Type the following commands, and perform one of the followings or click the icon circled in red in the figure.
  - 1. press "Control-Return"
  - 2. choose "Cell" menu -> "Insert Cell below".

```
In [2]: import sys sys.version
```



# 1.4. Use jupyter notebook to run Python in interactive mode: Code mode

Creat a new sell

#### Instructions

- Perform one of the following operations to create a new cell.
  - 1. press "Shift-Return"
  - 2. choose "Insert" -> "Insert Cell below" from the menubar.
  - 3. click "+" icon circled in blue in the figure.



# The simplest calculation

#### A code example

```
In [2]: 1+1
Out[2]: 2
```

## **Mathematical functions**

### A code example

```
In [2]: import numpy as np
    thrad=0.5
    theta=thrad*np.pi
    sinth=np.sin(theta)
    costh=np.cos(theta)
    print('theta =',thrad,'* pi')
    print('sin(theta) =',sinth)
    print('cos(theta) =',costh)

theta = 0.5 * pi
    sin(theta) = 1.0
    cos(theta) = 6.123233399574e-17
```

# 1.5. Use jupyter notebook to write documents: Markdown mode

## Change cell mode

#### Instructions

- Select the cell and change cell type to Markdown mode by one of the following operations.
  - 1. press "ESC" to enter command mode and then press "m"
  - 2. choose "Cell" -> "Cell Type" -> "Markdown" from the menu

### Write text

## A code example

• Type (or copy and paste) the following code example in the selected cell and run it.

```
# Title level 1
## Title level 2
### Title level 3
- Item 1
- Item 2

1. Enumerate 1
2. Enumerate 2
```

# Title level 1

### Title level 2

#### Title level 3

- Item 1
- Item 2
- 1. Enumerate 1
- 2. Enumerate 2

# **Mathematical Typesetting**

#### A code example

• Type (or copy and paste) the following code example in the selected cell and run it.

```
 \begin{array}{l} \$\$ \\ \text{d}_{R}(t) \ dt = \mathbb{V}(t) \ \text{d}_{1} \\ \$\$ \\ \$\$ \\ \$ \\ \text{m}_{d}_{V}(t) \ dt = -\mathbb{V}(t) - \mathbb{V}(t) - \mathbb{R}(t) \ \text{d}_{2} \\ \$\$ \\ \end{aligned}
```

$$\frac{d\mathbf{R}(t)}{dt} = \mathbf{V}(t) \tag{1}$$

$$m\frac{d\mathbf{V}(t)}{dt} = -\zeta \mathbf{V}(t) - k\mathbf{R}(t) \tag{2}$$

# 1.6. Save jupyter notebook

### Save to file

- 1. Select "File" menu -> "Save and Checkpoint".
- 2. click the "save" icon circled in green in the figure shown below.

# Change file name

• Select "File" menu -> "Rename" -> Enter a new notebook name -> "OK"



# 1.7. Terminate jupyter notebook

### Server

- 1. Press "Control-C" ("Control" and "c" keys together) in command line.
- 2. Select "File" menu -> "Close and Halt".

#### **Browser**

 If the jupyter notebook server is not terminated, you can resume the notebook by re-opening the same local URL (by default, <a href="http://localhost:8888">http://localhost:8888</a>).

# References

- Local URL for Jupyter notebook, by default, <a href="http://localhost:8888">http://localhost:8888</a> (http://localhost:8888)
- The numpy website, <a href="http://www.numpy.org/">http://www.numpy.org/</a>)
- Mastering Markdown, <a href="https://guides.github.com/features/mastering-markdown/">https://guides.github.com/features/mastering-markdown/</a>)
- The LaTeX project, <a href="https://www.latex-project.org/">https://www.latex-project.org/</a>)

8 / 8