Class 8 MDPS

Class 8

Shikhar Saxena

January 31, 2023

Contents

MDPs	. 1
Example	. 1

MDPs

- \circ Times $t = 0, 1, \dots, T$
- $\circ \mathcal{S}$: State Space
- \circ \mathcal{A} : Action Space
- $\circ S_{t+1} = f_t(S_t, A_t, W_t)$

$$V_t^{\pi_t}(s_t) := E\left[V_{t+1}^{\pi_{t+1}}(s')\right] + r_t(s_t, \pi_t)$$

Here Expectation is not over revenue as we have assumed it to be deterministic (over the state). (This is when MDP is a Markov Reward Process).

$$Q_t(s,a) = r_t(s,a) + E_{s,a} \left[V_{t+1}(f_t(s,a,W_t)) \right]$$

Example

Two state MDP

Notation: (reward, probability)

- \circ State S_1
 - \star Action $a_{1,1}$
 - $\{5,.5\}$: come back to S_1
 - $\{5,.5\}$: go to S_2
 - \star Action $a_{1,2}$
 - $\{10, 1\}$: goto S_2
- \circ State S_2
 - \star Action $a_{2,1}$
 - $\{-1,1\}$: goto S_1

Write the Bellman Optimality Equation and find the optimal policy.

(Assume the N for the finite horizon problem and solve for that).