RÉSUMÉ

Titre: Méthode de couplage vague-morphodynamisme du littoral par principe de minimisation.

Mot clés: Hydro-morphodynamisme, Optimisation, Validation de modèle, Littoral, Approche variationnelle, Minimisation d'énergie, Transport Optimal, Ondes.

Résumé: Les modèles morphodynamiques dans les eaux côtières peu profondes sont souvent très complexes, en particulier lorsqu'il s'agit de reproduire des phénomènes physiques tels que la création de barres sédimentaires. Les modèles classiques sont généralement hautement paramétrés; ils résolvent séparément les équations physiques de l'hydrodynamique et de la morphodynamique à une très petite échelle de l'ordre de la seconde dans le temps et du mètre dans l'espace. Durant cette thèse, nous avons développé un modèle numérique proposant une approche plus globale de la morphodynamique côtière, basée sur un principe d'optimisation.

La théorie de l'optimisation est l'étude de l'évolution d'un système en recherchant systématiquement le minimum d'une fonction dérivée de certaines de ses propriétés physiques. En utilisant la théorie de l'optimisation mathématique, nous avons conçu un modèle qui décrit l'évolution de l'élévation du fond marin en tenant compte du couplage entre les processus morphodynamiques et hydrodynamiques. Notre modèle est basé sur l'hypothèse que le fond marin s'adapte pour minimiser l'énergie des vagues. Le choix de cette fonction déter-

mine la force motrice de l'évolution morphologique du fond marin.

Les modèles basés sur le principe de minimisation reposent sur le calcul de certaines dérivées. Ce calcul peut être effectué par des méthodes lourdes (différenciation automatique) ou plus légères (solutions analytiques), mais elles présentent toutes des inconvénients. En utilisant la dérivée à la manière d'Hadamard, nous avons élaboré une stratégie pour calculer le gradient de toute fonction de coût par rapport à la forme, ce qui nous permet de résoudre le problème d'optimisation au cœur du modèle. Cette stratégie nous a permis de créer un modèle morphodynamique générique qui peut être utilisé avec n'importe quel outil hydrodynamique. Ainsi, notre modèle a pu être validé numériquement (convergences, ...) mais également expérimentalement à travers des cas d'expériences en canal.

Grâce à ces développements, le code est opérationnel en 1D et en 2D et est disposé à résoudre des problèmes d'optimisation liés à l'ingénierie côtière, visant à optimiser les positions et les formes d'ouvrages de protection du littoral.