Exam 1a Chem 1142 Spring 2011

Name:					
MULTIPLE CHOICE	. [3 pts ea.] Choo	ose the best respo	nse on the scantro	on sheet. [33 pts total.]	
, ,	orid orbital is req	uired on the cent	ral carbon atom in	the following molecul	
: O: : FСн					
a) sp	b) sp ²	c) sp ³	d) sp ³ d	e) sp^3d^2	
Q2. The angle between a) 180°	en sp hybrid orbi b) 120°	itals is: c) 109.5°	d) 90°	e) 60°	
Q3. The number of s		ds in the following	g molecule is:		
• •	b) 2 σ, 2 π	c) 3 σ, 1 π	d) 4 σ	e) 4 π	
Q4. Which of the fol a) C ₂ H ₆	lowing molecules b) HI	s are capable of h	ydrogen bonding a d) BeH2	nmong themselves: e) CH ₃ NH ₂	
Q5. Which of the fol a) Ice	lowing substance b) Glass	es forms an amorp c) Quartz	phous crystal in the d) Graphite	e solid state: e) Ammonia	
Q6. Which type of ur	nit cell is shown l	oelow?			
a) Simple cubicd) Tetragonal	b) Face-cent e) Monoclini		c) Body-cente	ed cubic	
Q7. Which of the fol a) NaNO ₃	lowing substance b) HCl	es would be most c) NH ₃	likely to dissolve i d) CH3OH	n CCl ₄ ? e) Br ₂	
Q8. Which of the fol a) 0.100 m C ₆ F d) 0.050 m Nat	$I_{12}O_6$	solutions would h b) 0.080 m N e) pure water	JaCl	oiling point? c) 0.070 m CaCl ₂	

Q9. Which substance has the following solid-state structure?

- a) Graphite
- b) Quartz
- c) Diamond
- d) Glass
- e) Sodium
- Q10. The phase diagram for an unknown substance is show below. Based on this phase diagram, what is the boiling point of this substance at 60 atm?

- Temperature (degrees Celsius)
- a) 60 °C
- b) 350 °C
- c) 370 °C
- d) 550 °C
- e) 760 °C
- Q11. The Henry's law constant for ethanol in water is 160 M atm⁻¹ at 37 °C. What is the predicted partial pressure of ethanol vapor above an aqueous sample of ethanol whose molar concentration is 1.7 x 10-2 M? (Note: this corresponds to a Blood Alcohol Concentration of 0.08, which is the legal definition of intoxication.)
 - a) 1.1 x 10⁻⁴ atm b) 9400 atm
- c) 5.5×10^{-5} atm d) 2.72 atm
- e) 1.7 x 10-2 atm

Short Response.

Show ALL work to receive credit.

Q12. [10 pts.] Calculate the % by mass, the molarity, and the molality of a solution made by mixing 12.0 g NaCl with 139.0 g H₂O, such that its final volume is 141.0 mL. Show ALL work.

Q13. [2 pts.] The greater the molar heat of vaporization of a liquid, the greater is vapor pressure. True or false?

Q14. [5 pts.] What is the osmotic pressure of 0.100 M Ca(NO₃)₂(aq) at 37 °C?

Q15. [3 pts.] Under what circumstance will a gas not obey Henry's law? Give an example.

Q16. [8 pts.] Draw a diagram show label the location of the hydrogen		n bonds between molecules of CH₃OH	. Clearly
Q17. [8 pts.] EXPLAIN which of	the following substances woul	d have the GREATEST vapor pressur	2.
CH ₃ CH ₂ NH ₂	CH ₃ CH ₂ CH ₃	CH₃CH₂Br	
Q18. [8 pts.] If the osmotic pressure 1.31×10^{-3} atm, then what is the n		olution at 305 K containing 0.0341 g of solute is a non-electrolyte.	Esolute is

Q19.	[3 pts.] Why are	metals good	d conductors	of el	ectricity?
------	---------	-----------	-------------	--------------	-------	------------

Old-Time Chemistry Corner

Q20. [10 pts.] Write formulas for the following substances:

i) sodium carbonate	
ii) ammonium bromide	
iii) iron(III) nitrate	
iv) heptabromine octoxide	
v) calcium sulfite dihydrate	

Q21. [10 pts.] Predict the MOLECULAR geometry of SF₄. Your answer should include a valid Lewis structure, and a sketch of the molecular geometry including approximate bond angles.

Explain whether SF₄ is polar or non-polar.

Seful Information

Periodic Table of the Elements

1.4	11.4											ша	13.7.4	1/4	\/IA	\/II.A	V/III A
IA 1	IIA											IIIA	IVA	VA	VIA	VIIA	VIIIA 18
1	I																2
Н																	He
1.01	2											13	14	15	16	17	4.00
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	P	s	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.87	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92160	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba*	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.20	208.98	[210]	[210]	[222]
87	88	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra**	Lr	Rf	Db	Sg	Bh	Hs	Mt									
[223]	[226]	[262]	[261]	[262]	[266]	[264]	[265]	[268]	[269]	[272]	[277]		[285]		[289]		[293]
-	-																
		57	58	59	60	61	62	63	64	65	66	67	68	69	70		
	*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
		138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04		
		89	90	91	92	93	94	95	96	97	98	99	100	101	102		

Am

Cm

Bk

1 atm = 101,325 Pa = 760 mmHg = 760 torr

 $R = 0.08206 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$

$$(p + an^2/\underline{V^2})(V - nb) = nRT$$

$$v_{rms} = \sqrt{\frac{3RT}{M}}$$

$$pM = dRT$$

 $\Delta H^{\circ}_{rxn} = \Sigma n \Delta H_{f}^{\circ}(products) - \Sigma m \Delta H_{f}^{\circ}(reactants)$

 $E = h \mathbf{v}$

$$c = \nu \lambda$$

 $c = 3.00 \times 10^8 \,\text{m/s}$

$$h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$$

 $R_{\rm H} = 2.18 \times 10^{-18} \, \text{J}$

 $\Delta T_{\rm f} = i k_{\rm f} m$

$$E_n = -R_{\rm H} \left(1/n^2 \right)$$

$$\Delta T_{\rm b} = ik_{\rm b}m$$

$$c = kP$$

$$R = 8.314 \text{ J/mol} \cdot \text{K}$$

Fm

Md

No

$$pV = nRT$$

Cf

$$q = ms\Delta t = C\Delta t$$

Es

$$N_{\rm A} = 6.022 \times 10^{23} \, \text{mol}^{-1}$$

$$E = \frac{hc}{\lambda}$$

$$M_1V_1 = M_2V_2$$

$$\Pi = iMRT$$

