Project_3

November 20, 2024

1 Introduction to Quantum Information and Quantum Machine Learning

Instructor: Dr Sci. Eng. Przemysław Głowacki Kacper Dobek 148247

```
[301]: from qiskit import (
           QuantumRegister,
           ClassicalRegister,
           QuantumCircuit,
           execute,
           Aer,
           BasicAer,
           IBMQ,
       from qiskit.compiler import transpile, assemble
       from qiskit.visualization import (
           plot_state_city,
           plot_bloch_multivector,
           plot_state_hinton,
           plot_state_qsphere,
           plot_histogram,
           plot_distribution,
       from numpy import pi
       import matplotlib.pyplot as plt
       import pandas as pd
       import numpy as np
       from collections import Counter
       from IPython.display import display, Markdown
```

```
[302]: N_REPS = 1024

# selection of quantum simulator (or processor)
QASM_BACKEND = Aer.get_backend("qasm_simulator")
```

1.0.1 Create Charlie's circuit

```
[303]: qreg_q = QuantumRegister(2, "q")
    creg_c = ClassicalRegister(2, "c")
    circuit_Charlie = QuantumCircuit(qreg_q, creg_c)

    circuit_Charlie.x(qreg_q[0])
    circuit_Charlie.x(qreg_q[1])
    circuit_Charlie.h(qreg_q[0])
    circuit_Charlie.cx(qreg_q[0])
    circuit_Charlie.draw(output="mpl"))
```


1.0.2 Alice's circuits

```
[304]: circuit_Alice_X = QuantumCircuit(qreg_q, creg_c)
    circuit_Alice_X.h(qreg_q[0])
    circuit_Alice_X.measure(qreg_q[0], creg_c[0])
    display(circuit_Alice_X.draw(output="mpl"))
```



```
[305]: circuit_Alice_W = QuantumCircuit(qreg_q, creg_c)
    circuit_Alice_W.s(qreg_q[0])
    circuit_Alice_W.h(qreg_q[0])
    circuit_Alice_W.t(qreg_q[0])
    circuit_Alice_W.h(qreg_q[0])
    circuit_Alice_W.measure(qreg_q[0], creg_c[0])
display(circuit_Alice_W.draw(output="mpl"))
```



```
[306]: circuit_Alice_Z = QuantumCircuit(qreg_q, creg_c)
    circuit_Alice_Z.measure(qreg_q[0], creg_c[0])

display(circuit_Alice_Z.draw(output="mpl"))
```


1.0.3 Bob's circuits

```
[307]: circuit_Bob_W = QuantumCircuit(qreg_q, creg_c)
    circuit_Bob_W.s(qreg_q[1])
    circuit_Bob_W.h(qreg_q[1])
    circuit_Bob_W.t(qreg_q[1])
    circuit_Bob_W.h(qreg_q[1])
    circuit_Bob_W.measure(qreg_q[1], creg_c[1])
display(circuit_Bob_W.draw(output="mpl"))
```



```
[308]: circuit_Bob_Z = QuantumCircuit(qreg_q, creg_c)
circuit_Bob_Z.measure(qreg_q[1], creg_c[1])
display(circuit_Bob_Z.draw(output="mpl"))
```



```
[310]: # Put circuits in dictionaries
alice_circuits = {"X": circuit_Alice_X, "W": circuit_Alice_W, "Z":

→circuit_Alice_Z}
bob_circuits = {"W": circuit_Bob_W, "Z": circuit_Bob_Z, "V": circuit_Bob_V}

# Randomly select the measurement type for Alice and Bob
```

```
alice_mesurement_types = np.random.choice(["X", "W", "Z"], N_REPS)
bob_mesurement_types = np.random.choice(["W", "Z", "V"], N_REPS)
```

```
[311]: # Define a dictionary to store relevant results

results = {
    "XW": [],
    "XV": [],
    "ZW": [],
    "ZV": [],
}
```

```
[312]: # Combine the circuits and run experiments
for i in range(N_REPS):
    # Combine the circuits
    circuit = circuit_Charlie.compose(
        alice_circuits[alice_mesurement_types[i]])
    ).compose(bob_circuits[bob_mesurement_types[i]])

# Execute the circuit
    job_sim = execute(circuit, QASM_BACKEND, shots=1)
    result = job_sim.result().get_counts(circuit)
    result = list(result.keys())[0]

# Store the result
    measurement_type = alice_mesurement_types[i] + bob_mesurement_types[i]
    if measurement_type in results.keys():
        results[measurement_type].append(result)
```

1.0.4 Process the results

```
row.set_index(["measurement_type", "prob_sum", "N", "a"], inplace=True)
table = pd.concat([table, row])
```

```
Calculate S value
[314]: prob_sum = table.index.get_level_values("prob_sum").unique()
      S = prob_sum[0] - prob_sum[1] + prob_sum[2] + prob_sum[3]
[315]: table.index.rename(
              "Measurement type",
              r"{A} \cot B  - \sin_{a, a'} 
        \varphi_{jk}(a,a')\times(a \times a')",
              r"$N_{jk}$",
              "a",
          ],
          inplace=True,
[316]: # Reorder the columns
      table = table[["ap", "count", "freq", "prob"]]
[317]: # Rename the columns to use symbols
      table.rename(
          columns={
              "ap": r"$a'$",
              "count": r"$n_{jk}(a,a')$",
              "freq": r"$p_{jk}(a,a')$",
              "prob": r"$p_{jk}(a,a') \times (a \times a')$",
          },
          inplace=True,
[318]: # Due to latex rendering issues, the table is pasted as an image
      # display(Markdown(table.to latex()))
```

•				a'	$n_{jk}(a,a')$	$p_{jk}(a,a')$	$p_{jk}(a,a') \times (a \times a')$
Measurement type	$\langle \hat{A} \otimes \hat{B} \rangle = \sum_{a,a'} p_{jk}(a,a') \times (a \times a')$	N_{jk}	\mathbf{a}		•		
$\hat{X}\otimes\hat{W}$	-0.633028	109	1	-1	55	0.504587	-0.504587
			-1	-1	8	0.073394	0.073394
			-1	1	34	0.311927	-0.311927
			1	1	12	0.110092	0.110092
$\hat{X}\otimes\hat{V}$	0.811966	117	1	1	56	0.478632	0.478632
			1	-1	6	0.051282	-0.051282
			-1	-1	50	0.427350	0.427350
			-1	1	5	0.042735	-0.042735
$\widehat{Z}\otimes\widehat{W}$	-0.614035	114	1	-1	47	0.412281	-0.412281
			-1	1	45	0.394737	-0.394737
			1	1	9	0.078947	0.078947
			-1	-1	13	0.114035	0.114035
$\hat{Z}\otimes\hat{V}$	-0.792000	125	1	-1	49	0.392000	-0.392000
			-1	1	63	0.504000	-0.504000
			1	1	5	0.040000	0.040000
			-1	-1	8	0.064000	0.064000

[319]: print(f"S = {S}")

S = -2.8510284226208906