Neural Networks 10. Recurrent Networks

Farkaš, Kuzma et al.

Center for Cognitive Science Department of Applied Informatics Faculty of Mathematics, Physics and Informatics UKBA

April 17th, 2018

Recurrent Networks

Simple Recurrent Network (nodes)

(Elman, 1990)

Simple Recurrent Network (blocks)

$$\mathbf{c}(t) = \mathbf{h}(t-1) \quad \mathbf{h} = f_{hid}(\mathbf{W}^{in}\mathbf{x} + \mathbf{W}^{rec}\mathbf{c}) \quad \mathbf{y} = f_{out}(\mathbf{W}^{out}\mathbf{h})$$

Simple Backpropagation (Elman)

$$\mathbf{g}^{out} = f'_{out}(\mathbf{b}) \odot (\mathbf{d} - \mathbf{y})$$

$$\mathbf{g}^{hid} = f'_{hid}(\mathbf{a}) \odot \mathbf{W}^{out} \mathbf{g}^{out}$$

$$\Delta \mathbf{W}^{in} = \mathbf{g}^{hid} \mathbf{x}^{T}$$

$$\Delta \mathbf{W}^{rec} = \mathbf{g}^{hid} \mathbf{c}^{T}$$

$$\Delta \mathbf{W}^{out} = \mathbf{g}^{out} \mathbf{h}^{T}$$

Back-Propagation Through Time

Unfolding in time

■ input sequence $\langle x_1, x_2, x_3 \rangle \mapsto y$:

Gradients and Weight Update

■ input sequence $\langle x_1, x_2, x_3 \rangle \mapsto y$, correct output **d**:

$$\mathbf{g}^{out} = f'_{out}(\mathbf{b}) \odot (\mathbf{d} - \mathbf{y}) \qquad \Delta \mathbf{W}^{out} = \mathbf{g}^{out} \mathbf{h}_{3}^{T}$$

$$\mathbf{g}^{hid_{3}} = f'_{hid}(\mathbf{a}_{3}) \odot \mathbf{W}^{out} \mathbf{g}^{out} \qquad \Delta \mathbf{W}^{rec} = \mathbf{g}^{hid_{2}} \mathbf{h}_{1}^{T} + \mathbf{g}^{hid_{3}} \mathbf{h}_{2}^{T}$$

$$\mathbf{g}^{hid_{2}} = f'_{hid}(\mathbf{a}_{2}) \odot \mathbf{W}^{rec} \mathbf{g}^{hid_{3}} \qquad \Delta \mathbf{W}^{in} = \mathbf{g}^{hid_{1}} \mathbf{x}_{1}^{T} + \mathbf{g}^{hid_{2}} \mathbf{x}_{2}^{T} + \mathbf{g}^{hid_{3}} \mathbf{x}_{3}^{T}$$

$$\mathbf{g}^{hid_{1}} = f'_{hid}(\mathbf{a}_{1}) \odot \mathbf{W}^{rec} \mathbf{g}^{hid_{2}}$$