WS 2020/2021

Funktionale Programmierung

0. Übungsblatt

Prof. Dr. Margarita Esponda

Ziel: Auseinandersetzung mit der Haskell-Syntax, vordefinierten Haskell-Funktionen und ersten einfachen Funktionsdefinitionen.

1. Aufgabe

Haskell installieren (aus http://www.haskell.org).

2. Aufgabe

Verwenden Sie Haskell als Taschenrechner und berechnen Sie folgende Ausdrücke. Erläutern Sie kurz die Ergebnisse oder die Fehlern, die dabei angezeigt werden.

7^500	8^0	2**1023	2**1024
div 5 2	div 5 (-2)	quot 5 2	abs (-7)
5 /= 5	0.9 == 3*(0.3)	2^^8	'a' < `b'
'1' < 'a'	mod 5 (-2)	rem 5 2	rem 5 (-2)
-3 `mod` 5	(-3) `mod` 5	sqrt (-1)	exp 1

3. Aufgabe

Was ist der **Wert** folgender Ausdrücke? Versuchen Sie, zuerst die Lösungen mit Zwischenschritte zu schreiben, ohne in dem Haskell-Interpreter die Ausdrücke einzugeben. Oder begründen Sie Ihre Antworten.

4. Aufgabe

Warum ist (min -2 0) kein gültiger Haskell-Ausdruck in Prelude?

Warum ist der Ausdruck (mod 10) fehlerhaft?

Warum ist (0.1 == 0.3/3) oder 0.9 == 3*(0.3) gleich False?

Warum sind die Ausdrücke quot 1.0 3 und 3^1.0 fehlerhaft?

5. Aufgabe

Testen Sie folgende Kommandos des GHCI-Compiler.

:help	:?	:browse	:info max
::show modules	:!ls	:type 0	:type 'a'
:type '5'	:type "1"	:type 0.0	:type (+)
:load <filename></filename>	:reload	:quit	usw.

6. Aufgabe

Der Body-Mass-Index eine Person wird nach folgende Formel berechnet:

BMI = Körpergewicht in Kg./ (Körpergrößen in m.)²

Definieren Sie eine Funktion **body_mass_index** in Haskell, die bei Eingabe des Körpergewichts und der Körpergröße einer Person den Body-Mass-Index berechnet.

7. Aufgabe

Der Flächeninhalt eines Dreiecks kann mit Hilfe der Heron Formel wie folgt berechnet werden:

Fläche
$$\triangle = \sqrt{s(s-a)(s-b)(s-c)}$$
 mit $s = \frac{a+b+c}{2}$

Definieren Sie die entsprechende Haskell-Funktion, die die Berechnung macht.

8. Aufgabe

Definieren Sie eine Haskell-Funktion, die die Windchill-Temperatur (WCT) mit Hilfe folgenden Formel berechnet:

$$WCT = 13,12+0,6215 \cdot T - 11,37 \cdot v^{0,16} + 0,3965 \cdot T \cdot v^{0,16}$$
 mit T = Lufttemperatur in Grad-Celsium v = Windgeschwindigkeit in Kilometer pro Stunde

Wichtige Hinweise für die Aufgaben 6 bis 8:

- 1) Verwenden Sie geeignete Namen für Ihre Variablen und Funktionsnamen, die den semantischen Inhalt der Variablen oder die Semantik der Funktionen wiedergeben.
- 2) Verwenden Sie vorgegebene Funktionsnamen, falls diese angegeben werden.
- 3) Kommentieren Sie Ihre Programme.
- 4) Verwenden Sie geeignete lokale Funktionen und Hilfsfunktionen in Ihren Funktionsdefinitionen.
- 5) Schreiben Sie in alle Funktionen die entsprechende Signatur.