PRIJEMNI ISPIT IZ MATEMATIKE ZA UPIS NA ELEKTROTEHNIČKI FAKULTET

šifra zadatka: 24048

(A) 1008

(A) 436

(B) | 952

(B) 218

10 cm, iznosi (u cm³):

(C) 1200

(C) 109

Test ima 20 zadataka na 2 stranice. Zadaci 1–2 vrede po 3 poena, zadaci 3–7 vrede po 4 poena, zadaci 8–13 vrede po 5 poena, zadaci 14–18 vrede po 6 poena i zadaci 19–20 po 7 poena. Pogrešan odgovor donosi -16% od broja poena predviđenih za tačan odgovor. Zaokruživanje N ne donosi ni pozitivne ni negativne poene. U slučaju zaokruživanja više od jednog odgovora, kao i nezaokruživanja nijednog odgovora, dobija se -0.5 poena.

1. Vrednost izraza $3 \cdot \frac{\sqrt{8+2\sqrt{7}}}{\sqrt{8-2\sqrt{7}}} - \frac{\sqrt{3+\sqrt{7}}}{\sqrt{3-\sqrt{7}}} \cdot \sqrt{2}$ iznosi:										
(A) 2	(B) $\sqrt{6}$	(C) $3 \cdot \sqrt{2}$	(D) $\sqrt{2}$	(E) 1	(N) Ne znam					
2. Rastojanje tačke $A(3,4)$ od centra kružnice $x^2 + y^2 + 2x + 6y + 6 = 0$ iznosi:										
(A) 8	$(B) \sqrt{65}$	(C) $\sqrt{17}$	(D) $\sqrt{53}$	(E) 5	(N) Ne znam					
3. Trapez je opisan oko kruga poluprečnika r . Ako je poznato da je površina trapeza (u cm²) pet puta veća od obima tog trapeza (u cm), tada dužina poluprečnika r (u cm) iznosi:										
(A) 5	(B) 30	(C) 10	(D) 20	(E) 40	(N) Ne znam					
4. Skup svih realnih rešenja nejednačine $\sqrt{(2x+1)^4-(2x+1)^2}+(2x+1)^2 \geq 0$ je oblika (za neke $a,b,c \in R$, za koje važi $a < b < c$):										
<u> </u>	$ \begin{array}{ c c } \hline (\mathbf{A}) \hline \\ (-\infty,a] \cup \{b\} \cup [c,+\infty) \\ \hline (\mathbf{C}) & [a,b] \cup [c,+\infty) \\ \hline (\mathbf{E}) & \{a,b,c\} \\ \end{array} $			(B) $[a,b) \cup (b,c]$ (D) $(-\infty,a] \cup [b,c]$ (N) Ne znam						
5. Neka je B tačka na kružnici poluprečnika r i BC tangentna duž dužine 8 cm. Ako je A tačka na istoj kružnici takva da je duž AC dužine 9 cm i da sadrži centar kružnice, onda obim kružnice (u cm) iznosi:										
(A) $\frac{36}{17}\pi$	(B) 2π	(C) $\frac{11}{9}\pi$	$(D) \frac{17}{9}\pi$	(E) $\frac{289}{324}\pi$	(N) Ne znam					
6. Ako su x_1 , x_2 , x_3 koreni jednačine $p x^3 + q x^2 + p x + 1 = 0$, $(p, q \in R \text{ i } p \neq 0)$, tada vrednost izraza $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}$ iznosi:										
(A) $-p/q$	(B) -1	(C) 1	(D) p	(E) -p	(N) Ne znam					
7. U kocku K_1 ivice 1 cm upisana je lopta L_1 , zatim je u loptu L_1 upisana kocka K_2 , zatim u nju lopta L_2 i zatim se postupak nastavlja na isti način. Zbir površina (u cm ²) svih kocki K_n , $n \in \mathbb{N}$, iznosi:										
(A) 2	(B) 8	(C) 18	(D) 4	(E) 9	(N) Ne znam					
8. Zbir svih rešenja jednačine $z^2+z\bar z+i\bar z=0,z\in C,$ iznosi:										
(A) -1	(B) 0	(C) $-\frac{1}{2} - \frac{1}{2}i$	$\boxed{\rm (D)} -i$	(E) $\frac{1}{2} - \frac{1}{2}i$	(N) Ne znam					
9. Broj četvorocifrenih brojeva deljivih sa 5 čije su sve cifre različite jednak je:										

(D) 896

(D) 900

10. Zapremina prave pravilne četvorostrane zarubljene piramide, dijagonale 18 cm i stranica osnove 14 cm i

(E) 840

872

(N) Ne znam

(N) Ne znam

11.	Broj realnih	i različitih rešenja j	ednačine $\cos 7x - s$	$\sin 5x = \sqrt{3} \left(\cos 5x - \right)$	$-\sin 7x$) na segment	u $\left[0, \frac{\pi}{2}\right]$ je:				
(A)	veći od 4	(B) 2	(C) 4	(D) 1	(E) 3	(N) Ne znam				
12.	Date su funk	ccije								
	$f_1(x) =$	$\sqrt{x-1} \cdot \log_3 3^{x-1},$	$f_2(x) = \sqrt{3}^{3\log_3(x-1)}$	$f_3(x) = \sqrt{(x - 1)^2}$	$\overline{(1)^3}$, $f_4(x) = 10^{\log_{\frac{1}{10}}}$	$\int_{0}^{\infty} x-1 ^{-3/2}$.				
	Tačan je iskaz:									
(C)	među datim funkcijama nema jednakih $f_1=f_2=f_3 eq f_4 \ f_1=f_2=f_3=f_4$			(B) $f_2 \neq f_1 = f_3 \neq f_4$ (D) $f_1 \neq f_2 = f_3 \neq f_4$ (N) Ne znam						
13.	• Pri deljenju polinoma P_1 polinomom $x^2 - 1$ dobija se ostatak x , a pri deljenju polinoma P_2 polinomom $x^2 - 1$ dobija se ostatak $x + 2$. Tada je ostatak pri deljenju polinoma $P_1 \cdot P_2$ polinomom $x^2 - 1$ jednak:									
(A)	1	(B) $x + 2$	(C) $2x$	$\boxed{\text{(D)}} \ 2x + 1$	(E) $2x - 1$	(N) Ne znam				
14.	. Razlika najvećeg i najmanjeg realnog rešenja nejednačine $\log_{\frac{1}{2}}(\sqrt{x+1}-x)\leq 2$, iznosi:									
(A) (C) (E)				(B) nijedan od ponuđenih odgovora(D) 2(N) Ne znam						
15 .	Binomni koeficijent četvrtog člana u razvoju binoma $\left(\sqrt{2} + \frac{1}{\sqrt[3]{2}}\right)^n$, $n \in \mathbb{N}$, veći je 26 puta od binomnog koeficijenta trećeg člana. Broj racionalnih sabiraka u ovom razvoju iznosi:									
(A)	9	(B) 14	(C) 15	(D) 16	(E) 13	(N) Ne znam				
16.	. Broj realnih rešenja sistema jednačina $x^2+3xy+2y^2=0,\cos^2x+\cos^2y=1,$ za $x\in[-\pi,0]$ i $y\in[0,\pi],$ je:									
(A)	2	(B) 5	(C) veći od 5	(D) 4	(E) 3	(N) Ne znam				
17.	. Skup svih realnih rešenja nejednačine $\frac{1}{4^{\sqrt{x-1}-1}} - \frac{5}{2^{\sqrt{x-1}}} + 1 \ge 0$ je oblika (za neke $a,b \in R$, takve da je $a < b$):									
(A)	$[a,\infty)$	(B) $(-\infty, a] \cup \{b\}$		(D) $[a,b)$	(E) $\{a,b\}$	(N) Ne znam				
18.	8. Broj različitih vrednosti parametra $p \in R$ za koje jednačina $\frac{p^2}{x+1} - \frac{x(p+2)}{x^2-1} = \frac{2p}{1-x^2}$ nema rešenja iznosi:									
(A)	1	(B) 2	(C) 0	(D) više od 3	(E) 3	(N) Ne znam				
19.	. Polulopta poluprečnika r upisana je u pravu pravilnu četvorostranu piramidu tako da osnova polulopte pripada ravni osnove piramide i sve bočne strane piramide dodiruju poluloptu. Ako je površina takve piramide minimalna, onda njena osnovna ivica iznosi:									
(A)	$\frac{2\sqrt{3}r}{3}$	(B) $\frac{48 r}{9}$	$(C) \frac{4\sqrt{3}r}{3}$	(D) $\frac{\sqrt{3}r}{4}$	$(E) \frac{16\sqrt{3}r}{9}$	(N) Ne znam				
20.	. Skup svih vrednosti parametra $n \in R$ za koje prava $y = x + n$ i kriva $y = x^3 - 2x^2 + x - 2$ imaju najveći broj presečnih tačaka je oblika (za neke $a, b \in R$, takve da je $a < b$):									
(A)	$(-\infty, a] \cup \{b\}$			(B) $\{a\} \cup [b, \infty)$						

(D) (a,b) $\overline{\mathrm{(N)}}$ Ne znam

(C) $(-\infty, a] \cup [b, \infty)$

(E) [a, b]