Cleaning the Data

```
In [29]:
            import pandas as pd
In [30]:
            # This gets data for county off of gender, ethnicity and removing nation and state levels
            master_df = pd.read_csv("Heart_Disease_Mortality_Data_Among_US_Adults__35___by_State_Territor
            # removes the insufficient data columns
            rem_null_overall_df = master_df[master_df['Data_Value_Footnote'].isnull()]
            # gets only male/female
            only_gen_overall_df = rem_null_overall_df[rem_null_overall_df['Stratification1'] != 'Overall']
            # removes the overall for the ethnicity
            only_eth_overall_df = only_gen_overall_df[only_gen_overall_df['Stratification2'] != 'Overall']
            # only gets the county
            only_county_overall_df = only_eth_overall_df[only_eth_overall_df['GeographicLevel'] == 'County']
            # get the columns we are only using
            desired_columns = ['LocationAbbr', 'LocationDesc', 'Data_Value', 'Stratification1', 'Stratification2']
            cleaned_county_df = only_county_overall_df[desired_columns]
            # Renamed the columns to better naming for the project
            cleaned_county_df.columns = ['State', 'County', 'Heart Disease per 100k', 'Gender', 'Ethnicity']
            # Validated the column total (I checked against the excel and made sure this was correct)
            # print(len(cleaned_county_df))
            # Checking the data
            cleaned_county_df.head()
```

Out[30]:	State		County	Heart Disease per 100k	Gender	Ethnicity
	102	AK	Anchorage	317.5	Male	White
	105	AK	Denali	400.7	Male	White
	106	AK	Fairbanks North Star	401.0	Male	White
	107	AK	Haines	385.5	Male	White
	108	AK	Juneau	281.6	Male	White

```
In [31]: #This block is to get the clean county overall data only

rem_null_overall_df = master_df[master_df['Data_Value_Footnote'].isnull()]

# gets overall for gender

only_gen_overall_df = rem_null_overall_df[rem_null_overall_df['Stratification1'] == 'Overall']

# gets overall for ethnicity

only_eth_overall_df = only_gen_overall_df[only_gen_overall_df['Stratification2'] == 'Overall']

# only gets the county
```

```
only_county_overall_df = only_eth_overall_df[only_eth_overall_df['GeographicLevel'] == 'County']

# get the columns we are only using
cleaned_county_overall_df = only_county_overall_df[desired_columns]

# Renamed the columns to better naming for the project
cleaned_county_overall_df.columns = ['State', 'County', 'Heart Disease per 100k', 'Gender', 'Ethnicity']

# Validated the column total (Verified the excel and it's correct)

# print(len(cleaned_county_overall_df))

cleaned_county_overall_df.head()
```

```
Out[31]:
                State
                              County Heart Disease per 100k Gender Ethnicity
            0
                  ΑK
                        Aleutians East
                                                           105.3
                                                                   Overall
                                                                              Overall
                   AK Aleutians West
             1
                                                                   Overall
                                                                              Overall
                                                           211.9
            2
                  ΑK
                           Anchorage
                                                           257.9
                                                                  Overall
                                                                              Overall
            3
                  \mathsf{AK}
                                Bethel
                                                           351.6
                                                                   Overall
                                                                              Overall
            5
                                Denali
                                                          305.5 Overall
                   ΑK
                                                                              Overall
```

```
In [32]: # This function finds the outliers using the interquartile range method
            def find_outliers_iqr(df, column):
               # Extract the data column
               data = df[column]
               # Calculate the quartiles
               Q1 = data.quantile(0.25)
               Q3 = data.quantile(0.75)
               # Calculate the interquartile range (IQR)
               IQR = Q3 - Q1
               # Calculate the lower bound and upper bound for outliers
               lower_bound = Q1 - 1.5 * IQR
               upper_bound = Q3 + 1.5 * IQR
               # Find outliers based on the bounds
               outliers = (data < lower_bound) | (data > upper_bound)
               # Remove outliers from the DataFrame
               df = df[~outliers]
               return df
            # Clean outliers from cleaned_county_df DataFrame
            cleaned_county_df = find_outliers_iqr(cleaned_county_df, 'Heart Disease per 100k')
            # Clean outliers from cleaned_county_overall_df DataFrame
            cleaned_county_overall_df = find_outliers_iqr(cleaned_county_overall_df, 'Heart Disease per 100k')
```

Exploratory Data Analysis

```
In [33]:
            import numpy as np
            import matplotlib.pyplot as plt
            import seaborn as sns
            from scipy.stats import chi2_contingency
            from scipy import stats
In [34]:
            # Print 5 Number Summary for cleaned data with no outliers
            print("5 Number Summary for cleaned data with no outliers\n", cleaned_county_df.describe())
            # Print 5 Number Summary for cleaned data overall with no outliers
            print("\n5 Number Summary for cleaned data overall with no outliers\n", cleaned_county_overall_df.de
            # Calculate statistics for overall cleaned data
            overall_mean = np.mean(cleaned_county_overall_df['Heart Disease per 100k'])
            overall_std = np.std(cleaned_county_overall_df['Heart Disease per 100k'], ddof=1)
            overall_size = len(cleaned_county_overall_df)
            # Calculate statistics for individual cleaned data
            indy_mean = np.mean(cleaned_county_df['Heart Disease per 100k'])
            indv_size = len(cleaned_county_df)
            # Calculate standard error for the sample
            se_indv = overall_std / np.sqrt(indv_size)
            # Print calculated statistics
            print("Population Mean:", overall_mean)
            print("Sample Mean:", indv_mean)
            print("Standard Error for the Sample:", se_indv)
            5 Number Summary for cleaned data with no outliers
                  Heart Disease per 100k
                          13484.000000
            count
            mean
                             347.002648
            std
                           143.989750
                             6.000000
            min
                            239.675000
            25%
            50%
                            335.900000
                            445.800000
            75%
                            763.500000
            max
            5 Number Summary for cleaned data overall with no outliers
                  Heart Disease per 100k
            count
                           3162.000000
                            353.284756
            mean
            std
                            79.606042
            min
                           133.500000
            25%
                            294.025000
            50%
                             345.850000
            75%
                            404.575000
                            580.400000
            max
            Population Mean: 353.2847564832387
            Sample Mean: 347.0026475823194
            Standard Error for the Sample: 0.6855460914644189
            # Create a figure and axes with a 2x1 layout
In [35]:
            fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(10, 12))
            # Subplot 1: Histogram for cleaned_county_df
            sns.histplot(cleaned_county_df['Heart Disease per 100k'], bins='auto', kde=True, color='black', ax=axes[0]
```

```
axes[0].set_title('Distribution of Heart Disease Mortality Rate per 100k population (County)')
axes[0].set_xlabel('Heart Disease Mortality Rate')
axes[0].set_ylabel('Frequency')

# Subplot 2: Histogram for cleaned_county_overall_df
sns.histplot(cleaned_county_overall_df['Heart Disease per 100k'], bins='auto', kde=True, color='green', ax
axes[1].set_title('Distribution of Heart Disease Mortality Rate per 100k population (Overall)')
axes[1].set_xlabel('Heart Disease Mortality Rate')
axes[1].set_ylabel('Frequency')

plt.tight_layout() # Adjust layout to prevent overlapping
plt.show()
```



```
# Plot for Ethnicity
In [36]:
            plt.figure(figsize=(12, 8)) # Countplot for Ethnicity
            sns.countplot(data=cleaned_county_df, x='Ethnicity')
            plt.title('Heart Disease Mortality Death Rate based on Race', fontsize=12)
            plt.xticks(rotation=45, ha='right', fontsize=10) # Rotate labels by 45 degrees and align them to the right
            plt.xlabel('Race', fontsize=12)
            plt.ylabel('Count', fontsize=12)
            plt.tight_layout() # Adjust layout to prevent overlapping
             plt.show()
             # Plot for Gender
             plt.figure(figsize=(12, 8)) # Countplot for Gender
            sns.countplot(data=cleaned_county_df, x='Gender')
            plt.title('Heart Disease Mortality Death Rate based on Gender', fontsize=12)
            plt.xticks(rotation=45, fontsize=8) # Decrease font size
            plt.xlabel('Gender', fontsize=12)
             plt.ylabel('Count', fontsize=12)
            plt.tight_layout() # Adjust layout to prevent overlapping
            plt.show()
             # Plot for States
             fig, axs = plt.subplots(nrows=2, ncols=1, figsize=(12, 16)) # Create a figure and axes with a 2x1 layout
             # Subplot 1: Countplot for State in cleaned_county_df
            sns.countplot(data=cleaned_county_df, x='State', ax=axs[0])
            axs[0].set_title('Heart Disease Mortality Death Rate based on State (County)', fontsize=12)
            axs[0].tick_params(axis='x', labelrotation=45, labelsize=8) # Rotate and decrease x-axis tick label size
             axs[0].set_xlabel('State', fontsize=12)
            axs[0].set_ylabel('Count', fontsize=12)
             # Subplot 2: Countplot for State in cleaned_county_overall_df
            sns.countplot(data=cleaned_county_overall_df, x='State', ax=axs[1])
            axs[1].set_title('Heart Disease Mortality Death Rate based on State (Overall)', fontsize=12)
            axs[1].tick_params(axis='x', labelrotation=45, labelsize=8) # Rotate and decrease x-axis tick label size
             axs[1].set_xlabel('State', fontsize=12)
            axs[1].set_ylabel('Count', fontsize=12)
            plt.tight_layout() # Adjust layout to prevent overlapping
            plt.show()
             # Plot for top 10 counties
             top_counties = cleaned_county_df['County'].value_counts().nlargest(10).index # Calculate the top 10 cd
             top_counties_overall = cleaned_county_overall_df['County'].value_counts().nlargest(10).index
            top_county_data = cleaned_county_df[cleaned_county_df['County'].isin(top_counties)] # Filter the data
             top_county_data_overall = cleaned_county_overall_df[cleaned_county_overall_df['County'].isin(top_cou
             fig, axs = plt.subplots(nrows=2, ncols=1, figsize=(12, 16)) # Create a figure and axes with a 2x1 layout
             # Subplot 1: Countplot for top 10 counties' heart disease mortality death rates
            sns.countplot(data=top_county_data, x='County', order=top_counties, ax=axs[0])
            axs[0].set_title('Top 10 Heart Disease Mortality Death Rate by County', fontsize=12)
             axs[0].tick_params(axis='x', labelrotation=45, labelsize=8) # Rotate and decrease x-axis tick label size
             axs[0].set_xlabel('County', fontsize=12)
            axs[0].set_ylabel('Count', fontsize=12)
             # Subplot 2: Countplot for top 10 counties' heart disease mortality death rates (overall)
            sns.countplot(data=top_county_data_overall, x='County', order=top_counties_overall, ax=axs[1])
             axs[1].set_title('Top 10 Heart Disease Mortality Death Rate by County (Overall)', fontsize=12)
```

```
axs[1].tick_params(axis='x', labelrotation=45, labelsize=8) # Rotate and decrease x-axis tick label size axs[1].set_xlabel('County', fontsize=12) axs[1].set_ylabel('Count', fontsize=12)

plt.tight_layout() # Adjust layout to prevent overlapping plt.show()
```


Top 10 Heart Disease Mortality Death Rate by County

In [37]: # Create a figure and axes for the first set of subplots
fig, axes1 = plt.subplots(nrows=2, ncols=1, figsize=(12, 14))

Subplot 1: Box plot for Heart Disease per 100k by Gender in cleaned_county_df
cleaned_county_df.boxplot(column='Heart Disease per 100k', by='Gender', ax=axes1[0])
axes1[0].set_title('Heart Disease per 100k by Gender (County)')
axes1[0].set_ylabel('per_100000_population')

```
# Subplot 2: Box plot for Heart Disease per 100k by Gender in cleaned_county_overall_df
cleaned_county_overall_df.boxplot(column='Heart Disease per 100k', by='Gender', ax=axes1[1])
axes1[1].set_title('Heart Disease per 100k by Gender (Overall)')
axes1[1].set_ylabel('per_100000_population')
plt.tight_layout() # Adjust layout to prevent overlapping
plt.show()
# Create a new figure and axes for the second set of subplots
fig, axes2 = plt.subplots(nrows=2, ncols=1, figsize=(12, 14))
# Subplot 1: Box plot for Heart Disease per 100k by Ethnicity in cleaned_county_df
cleaned_county_df.boxplot(column='Heart Disease per 100k', by='Ethnicity', ax=axes2[0])
axes2[0].set_title('Heart Disease per 100k by Ethnicity (County)')
axes2[0].set_ylabel('per_100000_population')
axes2[0].tick_params(axis='x', rotation=45, labelsize=8) # Rotate and decrease x-axis tick label size
# Subplot 2: Box plot for Heart Disease per 100k by Ethnicity in cleaned_county_overall_df
cleaned_county_overall_df.boxplot(column='Heart Disease per 100k', by='Ethnicity', ax=axes2[1])
axes2[1].set_title('Heart Disease per 100k by Ethnicity (Overall)')
axes2[1].set_ylabel('per_100000_population')
axes2[1].tick_params(axis='x', rotation=45, labelsize=8) # Rotate and decrease x-axis tick label size
plt.tight_layout() # Adjust layout to prevent overlapping
plt.show()
```


Ethnicity

```
# Create a DataFrame for the chi-square statistics and p-values
               'Category': ['Gender', 'Ethnicity', 'County', 'State'],
               'Chi-square statistic': [chi2_stat_gender, chi2_stat_race, chi2_stat_geo, chi2_stat_state],
               'p-value': [p_val_gender, p_val_race, p_val_geo, p_val_state]
            # Create the DataFrame for Chi-Square test
            chi_square_df = pd.DataFrame(data)
            # Print the DataFrame
            print(chi_square_df)
               Category Chi-square statistic
                                                   p-value
            0
                 Gender
                                7.171499e+03 3.097805e-69
            1 Ethnicity
                               2.560000e+04 2.355235e-111
                                9.512658e+06 1.000000e+00
                 County
                  State
                               2.557907e+05 9.999865e-01
In [39]:
            # Calculate the overall mean heart disease rate
            mean_heart_disease = cleaned_county_df['Heart Disease per 100k'].mean()
            # Iterate through each state and perform the Z-test
            for state in cleaned_county_df['State'].unique():
               heart_disease_state = cleaned_county_df[cleaned_county_df['State'] == state]['Heart Disease per 10
               # Performing the Z-test
               z_stat = (heart_disease_state.mean() - mean_heart_disease) / (heart_disease_state.std() / np.sqrt
               p_value = stats.norm.cdf(z_stat) * 2 # two-tailed test
               # Round Z-statistic and P-value to two decimals
               z_stat_rounded = round(z_stat, 2)
               p_value_rounded = round(p_value, 2)
               # Outputting the result
               print(f"Z-test for {state}:")
               print(f"Z-statistic: {z_stat_rounded}")
               print(f"P-value: {p_value_rounded}")
               if p_value < 0.05:
                   print("The mean heart disease rate for this state is significantly different from the overall mean.
                   print("The mean heart disease rate for this state is not significantly different from the overall m
               print()
            # Z-test for Ethnicity
            # Iterate through each ethnicity and perform the Z-test
            for ethnicity in cleaned_county_df['Ethnicity'].unique():
               heart_disease_ethnicity = cleaned_county_df[cleaned_county_df['Ethnicity'] == ethnicity]['Heart Dis
               # Performing the Z-test
               z_stat = (heart_disease_ethnicity.mean() - mean_heart_disease) / (heart_disease_ethnicity.std() /
               p_value = stats.norm.cdf(z_stat) * 2 # two-tailed test
               # Round Z-statistic and P-value to two decimals
               z_stat_rounded = round(z_stat, 2)
               p_value_rounded = round(p_value, 2)
               # Outputting the result
               print(f"Z-test for {ethnicity}:")
```

```
print(f"Z-statistic: {z_stat_rounded}")
   print(f"P-value: {p_value_rounded}")
   if p_value < 0.05:
      print("The mean heart disease rate for this ethnicity is significantly different from the overall m
      print("The mean heart disease rate for this ethnicity is not significantly different from the overa
   print()
# Z-test for Gender
# Iterate through each gender and perform the Z-test
for gender in cleaned_county_df['Gender'].unique():
   heart_disease_gender = cleaned_county_df[cleaned_county_df['Gender'] == gender]['Heart Disease
   # Performing the Z-test
   z_stat = (heart_disease_gender.mean() - mean_heart_disease) / (heart_disease_gender.std() / np.
   p_value = stats.norm.cdf(z_stat) * 2 # two-tailed test
   # Round Z-statistic and P-value to two decimals
   z_stat_rounded = round(z_stat, 2)
   p_value_rounded = round(p_value, 2)
   # Outputting the result
   print(f"Z-test for {gender}:")
   print(f"Z-statistic: {z_stat_rounded}")
   print(f"P-value: {p_value_rounded}")
   if p_value < 0.05:
      print("The mean heart disease rate for this gender is significantly different from the overall med
   else:
      print("The mean heart disease rate for this gender is not significantly different from the overall
   print()
```

Z-test for AK: Z-statistic: -1.62 P-value: 0.11

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for AL: Z-statistic: 11.87 P-value: 2.0

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for AR: Z-statistic: 12.6 P-value: 2.0

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for AZ: Z-statistic: -7.56 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for CA: Z-statistic: -9.3 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for CO: Z-statistic: -19.56 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for CT: Z-statistic: -7.8 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for DC: Z-statistic: -1.08 P-value: 0.28

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for DE: Z-statistic: -3.04 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for FL: Z-statistic: -11.37 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for GA: Z-statistic: 5.96 P-value: 2.0

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for HI: Z-statistic: -1.89 P-value: 0.06

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for IA: Z-statistic: -0.69 P-value: 0.49

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for ID: Z-statistic: -8.2 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for IL: Z-statistic: -0.52 P-value: 0.6

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for IN: Z-statistic: 1.76 P-value: 1.92

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for KS: Z-statistic: -2.77 P-value: 0.01

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for KY: Z-statistic: 11.18 P-value: 2.0

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for LA: Z-statistic: 9.9 P-value: 2.0

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for MA: Z-statistic: -11.18 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for MD: Z-statistic: -4.44 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for ME: Z-statistic: -2.19 P-value: 0.03

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for MI: Z-statistic: 2.14 P-value: 1.97

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for MN: Z-statistic: -14.01 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for MO: Z-statistic: 7.69 P-value: 2.0

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for MS: Z-statistic: 18.52 P-value: 2.0

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for MT: Z-statistic: 0.18 P-value: 1.15

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for NC: Z-statistic: -4.3 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for ND: Z-statistic: -2.35 P-value: 0.02

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for NE: Z-statistic: -6.8 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for NH: Z-statistic: -6.24 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for NJ: Z-statistic: -6.82 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for NM: Z-statistic: -6.32 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for NV: Z-statistic: -0.86 P-value: 0.39

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for NY: Z-statistic: -3.92 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for OH: Z-statistic: 1.78 P-value: 1.92

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for OK: Z-statistic: 12.53 P-value: 2.0

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for OR: Z-statistic: -13.78 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for PA: Z-statistic: -2.78 P-value: 0.01

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for RI: Z-statistic: -5.72 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for SC: Z-statistic: 0.34 P-value: 1.27

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for SD: Z-statistic: -1.29 P-value: 0.2

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for TN: Z-statistic: 10.22 P-value: 2.0

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for TX: Z-statistic: 3.04 P-value: 2.0

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for UT: Z-statistic: -9.95 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for VA: Z-statistic: -3.89 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for VT: Z-statistic: -2.24 P-value: 0.03

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for WA: Z-statistic: -9.59 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for WI: Z-statistic: -5.06 P-value: 0.0

The mean heart disease rate for this state is significantly different from the overall mean.

Z-test for WV: Z-statistic: 5.87 P-value: 2.0

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for WY: Z-statistic: -1.04 P-value: 0.3

The mean heart disease rate for this state is not significantly different from the overall mean.

Z-test for White: Z-statistic: 14.14 P-value: 2.0

The mean heart disease rate for this ethnicity is not significantly different from the overall mean.

Z-test for Black: Z-statistic: 37.39 P-value: 2.0

The mean heart disease rate for this ethnicity is not significantly different from the overall mean.

Z-test for Hispanic: Z-statistic: -58.1 P-value: 0.0

The mean heart disease rate for this ethnicity is significantly different from the overall mean.

Z-test for American Indian and Alaskan Native:

Z-statistic: 9.97 P-value: 2.0

The mean heart disease rate for this ethnicity is not significantly different from the overall mean.

Z-test for Asian and Pacific Islander:

Z-statistic: -81.73 P-value: 0.0

The mean heart disease rate for this ethnicity is significantly different from the overall mean.

Z-test for Male: Z-statistic: 39.28

The mean heart disease rate for this gender is not significantly different from the overall mean.

Z-test for Female: Z-statistic: -56.6 P-value: 0.0

The mean heart disease rate for this gender is significantly different from the overall mean.

Model Selection and Analysis

Linear Regression and Clustering

In [40]: import statsmodels.api as sm from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans

```
In [41]: # Create a copy of cleaned_county_df for regression analysis
            gender_regression_df = cleaned_county_df.copy()
            # Convert 'Gender' to dummy variables
            # Now 'Gender' will be encoded as 1 for Male and 0 for Female
            qender_regression_df['Gender'] = pd.get_dummies(gender_regression_df['Gender'], drop_first=True)
            # Define the independent variable (X) and dependent variable (Y)
            x_gender = gender_regression_df['Gender']
            y_heart = gender_regression_df['Heart Disease per 100k']
            # Add a constant term to the independent variable
            x_gender = sm.add_constant(x_gender)
            # Fit the regression model
            gender_regression_model = sm.OLS(y_heart, x_gender).fit()
            # Print the summary of the regression model
            print(gender_regression_model.summary())
            # Notes for the presentation
            # R-Squared shows 23.6% of variability of the heart disease is explained by gender
            # F statistic 4167 the model is significantly better fit than a model with no predictors
            # prob of F statistics is close to 0 which proves that gender is related to heart disease
            # Log-likelihood is for model comparison. Higher is better
            # AIC, BIC are for other model comparisons. The lower is better
            # males = 1
            # females 0
            # Const coef: this is to show when all values are 0 (Gender = 0 = female) which shows female average
            # Gender Coef: males have a higher disease mortality rate by 139.94 units
            # t stat: shows gender is statistically significant
            # P>|t|: shows the p-values are close to .00 so are significant
            # omnibus: this is small so it is normally distributed
            # prob(omnibus): higher values show it is normal
            # Durbin-Watson: Since it is not close to two this shows significant autocorrelation
            # Cond. No. : This measures multicollinearity. Values greater than 30 indicate multicollinearity
            # MODEL AND DATA IS SIGNIFICANT
```

OLS Regression Results

______ Dep. Variable: Heart Disease per 100k R-squared: 0.236 OLS Adj. R-squared: Least Squares F-statistic: 0.236 Model: Method: 4167. Least Squares F-Statistic: 0.00

Sat, 24 Feb 2024 Prob (F-statistic): 0.00

18:18:23 Log-Likelihood: -84329.

13484 AIC: 1.687e+05

13482 BIC: 1.687e+05 Date: Sat,
Time:
No. Observations:
Df Residuals: Df Model: 1 Covariance Type: nonrobust ______ coef std err t P>|t| [0.025 0.975] ______ const 275.9017 1.545 178.542 0.000 272.873 278.931 139.9395 2.168 64.550 0.000 135.690 144.189 Gender ______ 0.196 Durbin-Watson: 0.726 Prob(Omnibus): 0.907 Jarque-Bera (JB): Skew: -0.005 Prob(JB): 0.217 0.897 2.983 Cond. No. Kurtosis: ______ [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. c:\Users\User\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142: FutureWarning: In a futur e version of pandas all arguments of concat except for the argument 'objs' will be keyword-only x = pd.concat(x[::order], 1)In [42]: # Create a copy of cleaned_county_df for regression analysis ethnicity_regression_df = cleaned_county_df.copy() # One-hot encode the 'Ethnicity' column ethnicity_dummies = pd.get_dummies(ethnicity_regression_df['Ethnicity']) # Concatenate the dummy variables with the original DataFrame ethnicity_regression_dummies = pd.concat([ethnicity_regression_df, ethnicity_dummies], axis=1) # Define the independent variables (X) and dependent variable (Y) y_heart = ethnicity_regression_dummies['Heart Disease per 100k']

One-hot encode the 'Ethnicity' column
ethnicity_dummies = pd.get_dummies(ethnicity_regression_df['Ethnicity'])

Concatenate the dummy variables with the original DataFrame
ethnicity_regression_dummies = pd.concat([ethnicity_regression_df, ethnicity_dummies], axis=1)

Define the independent variables (X) and dependent variable (Y)
x_ethnicity = ethnicity_regression_dummies['White', 'Black', 'Hispanic', 'American Indian and Alaskan Nay_heart = ethnicity_regression_dummies['Heart Disease per 100k']

Add a constant term to the independent variables
x_ethnicity = sm.add_constant(x_ethnicity)

Fit the regression model
ethnicity_regression_model = sm.OLS(y_heart, x_ethnicity).fit()

Print the summary of the regression model
print(ethnicity_regression_model.summary())

R-Squared: 28% of the data is explained by ethnicity
F statistic: 1329 shows the model is significant
Prob of F statistics: is close to 0 which shows it's significant
Log-likelihood: is for model comparison. Higher is better
AIC, BIC: are for other model comparisons. The lower is better

Const coef: the average when no one has ethnicity (the default is assumed white)

Rest of Coef: average heart disease for each ethnicity

t stat: larger absolute values indicate greater evidence against the null hypothesis
P>|t|: no significance since close to 1

MODEL is significant but the data is not

OLS Regression Results

Dep. Variable: Heart Disease per 100k R-squared: 0.340 Model: OLS Adj. R-squared: 0.340 Method: Least Squares F-statistic: 1737. Date: Sat, 24 Feb 2024 Prob (F-statistic): 0.00 -83342. Time: 18:18:23 Log-Likelihood: No. Observations: 13484 AIC: 1.667e+05 1.667e+05 Df Residuals: 13479 BIC:

Df Model: 4
Covariance Type: nonrobust

=====

coef std err t P>|t| [0.025 0.975] ------

 const
 265.1469
 1.126
 235.436
 0.000
 262.939
 267.354

 White
 103.0378
 1.653
 62.343
 0.000
 99.798
 106.277

 Black
 163.3917
 1.976
 82.673
 0.000
 159.518
 167.266

 Hispanic
 -47.6185
 2.408
 -19.779
 0.000
 -52.338
 -42.899

American Indian and Alaskan Native 138.5605 3.845 36.036 0.000 131.024 146.097 Asian and Pacific Islander -92.2246 3.092 -29.824 0.000 -98.286 -86.163

 Omnibus:
 570.105
 Durbin-Watson:
 0.821

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 644.453

 Skew:
 0.534
 Prob(JB):
 1.14e-140

 Kurtosis:
 3.081
 Cond. No.
 1.44e+15

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 8.69e-27. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.
- c:\Users\User\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142: FutureWarning: In a futur
 e version of pandas all arguments of concat except for the argument 'objs' will be keyword-only
 x = pd.concat(x[::order], 1)

```
In [43]: # Make a copy of the dummy data without the 'White' column to remove multicollinearity
ethnicity_regression_dummies_noCol = ethnicity_regression_dummies.drop(columns=['White'])

# Define the predictor variables after removing 'White' to address multicollinearity
x_no_white = ethnicity_regression_dummies_noCol[['Black', 'Hispanic', 'American Indian and Alaskan Nati

# Define the target variable
y_heart = ethnicity_regression_dummies['Heart Disease per 100k']

# Calculate Variance Inflation Factor (VIF) to detect multicollinearity
vif_data = sm.add_constant(x_no_white)
vif = pd.DataFrame()
vif["Variable"] = vif_data.columns
vif["VIF"] = [variance_inflation_factor(vif_data.values, i) for i in range(vif_data.shape[1])]
```

Identify variables with VIF greater than 10 (common threshold indicating multicollinearity)

high_vif_variables = vif[vif["VIF"] > 10]["Variable"].tolist()

2/26/24, 6:51 PM

```
final_proj
# Drop high VIF variables from the predictor variables
x_no\_white = x_no\_white.drop(columns=high\_vif\_variables)
x_no_white = sm.add_constant(x_no_white)
# Fit Ordinary Least Squares (OLS) regression model using the updated predictor variables
# and the target variable y_heart
model = sm.OLS(y_heart, x_no_white).fit()
# Print the summary of the regression model
print("\nModel Summary After Addressing Multicollinearity:")
print(model.summary())
# R-Squared: 31% of the data is explained by ethnicity
# F statistic: 1529 shows the model is significant
# Prob of F statistics: is close to 0 which shows it's significant
# Log-likelihood (negative does not matter): is for model comparison. Higher is better
# AIC, BIC: are for other model comparisons. The lower is better
# Const coef: the average when no one has ethnicity (the default is assumed white)
# black coef: higher than white
# hispanic coef: lower than white
# indian coef: higher than white
# asian coef: worse than white
# t stat: larger absolute values indicate greater evidence against the null hypothesis
# P>|t|: significance since close to .00
# MODEL AND DATA IS SIGNIFICANT
Model Summary After Addressing Multicollinearity:
                     OLS Regression Results
_______
Dep. Variable: Heart Disease per 100k R-squared:
                                                       0.340
                            OLS Adj. R-squared:
                                                         0.340
Model:
                                                         1737.
Method:
                    Least Squares F-statistic:
          Sat, 24 Feb 2024 Prob (F-statistic):
18:18:23 Log-Likelihood:
Date:
                                                          0.00
                                                      -83342.
Time:
                                                     1.667e+05
No. Observations:
                         13484 AIC:
                                                    1.667e+05
                         13479 BIC:
Df Residuals:
Df Model:
                             4
Covariance Type:
                       nonrobust
______
                             coef std err t P>|t|
                                                             [0.025
```

368.1847 1.482 248.516 0.000 365.281 371.089 const Black 60.3540 2.480 24.334 0.000 55.492 65.216 Hispanic -150.6563 2.998 -50.256 0.000 -156.532 -144.780 American Indian and Alaskan Native 35.5227 4.740 7.494 0.000 26.231 44.814 Asian and Pacific Islander -195.2623 3.826 -51.039 0.000 -202.761 -187.763

Omnibus: 570.105 Durbin-Watson: 0 821 Prob(Omnibus): 644.453 0.534 Prob(JB): Skew: Kurtosis: 3.081 Cond. No. 5.19

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

c:\Users\User\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142: FutureWarning: In a futur e version of pandas all arguments of concat except for the argument 'objs' will be keyword-only x = pd.concat(x[::order], 1)

```
# Make a copy of the original dataframe
In [44]:
            state_regression_df = cleaned_county_df.copy()
            # Create hot encoded data, dropping the first state (AK)
            state_regression_encode = pd.get_dummies(state_regression_df, columns=['State'], drop_first=True)
            # Define predictor variables (hot encoded states) and target variable (heart disease rate)
            x_hot_encoded_state = state_regression_encode.drop(['Heart Disease per 100k', 'County', 'Gender', 'Ethr
            y_heart = state_regression_encode['Heart Disease per 100k']
            # Calculate Variance Inflation Factor (VIF) to detect multicollinearity
            vif_data_state = sm.add_constant(x_hot_encoded_state)
            vif_state = pd.DataFrame()
            vif_state["Variable"] = vif_data_state.columns
            vif_state["VIF"] = [variance_inflation_factor(vif_data_state.values, i) for i in range(vif_data_state.shape
            # Identify variables with VIF greater than 10 (common threshold indicating multicollinearity)
            high_vif_variables = vif_state[vif_state["VIF"] > 10]["Variable"].tolist()
            # Remove constant from high VIF variables list
            high_vif_variables.remove('const')
            # Drop variables with high VIF
            x_hot_encoded_state = x_hot_encoded_state.drop(high_vif_variables, axis=1)
            # Add constant
            x_hot_encoded_state = sm.add_constant(x_hot_encoded_state)
            # Fit Ordinary Least Squares (OLS) regression model using the updated predictor variables and the tar
            model = sm.OLS(y_heart, x_hot_encoded_state).fit()
            # Print the summary of the regression model
            print("\nModel Summary After Addressing Multicollinearity:")
            print(model.summary())
            # R-Squared: 16% of the data is explained by the ethnicity
            # F statistic: 54 shows the model is significant
            # Prob of F statistics: is close to 0 which shows it's significant
            # Log-likelihood (negative does not matter): is for model comparison. Higher is better
            # AIC, BIC: are for other model comparisons. The lower is better
            # Const coef: the average when no one has the state (the default is assumed Alaska)
            # t stat: larger absolute values indicate greater evidence against the null hypothesis
            # P>|t|: Depends on the state, some of them are not significant. These would be the states to study
            # MODEL AND DATA ARE SIGNIFICANT (depending on state)
            # Based on the chi-square test, these results for significant contribution to heart disease mortality
            # can be due to random chance. It is best to examine the counties that do not have significance if you
            # deep dive more and go under the assumption that this is not due to random chance.
            # Texas and Georgia were removed due to high VIF.
```

c:\Users\User\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142: FutureWarning: In a futur
e version of pandas all arguments of concat except for the argument 'objs' will be keyword-only
x = pd.concat(x[::order], 1)

Model Summary After Addressing Multicollinearity: **OLS Regression Results**

Dep. Variable: Heart Disease per 100k R-squared: 0.165 Model: OLS Adj. R-squared: 0.162 Method: Least Squares F-statistic: 55.22 Sat, 24 Feb 2024 Prob (F-statistic): Date: 0.00 18:18:24 Log-Likelihood: Time: -84931. 13484 AIC: No. Observations: 1.700e+05 Df Residuals: 13435 BIC: 1.703e+05

Df Model: 48

Dt Model:		48					
Covariance	Туре:	nonrobust					
=======		d err	† P>		025 0.97	======== 75]	
const	 364.7796	2.867	127.256	0.000	359.161	370.398	
State_AL	88.6038	8.267	10.717	0.000	72.398	104.809	
State_AR		8.331	10.633	0.000	72.257	104.917	
State_AZ	-90.5651	11.869	-7.630	0.000	-113.830	-67.300	
State_CA		6.399		0.000	-79.066	-53.981	
State_CO		8.098	-14.363	0.000	-132.180		
State_CT		16.726	-6.896	0.000		-82.554	
	-94.7171	46.696	-2.028	0.043		-3.186	
State_DE		28.252	-3.618	0.000	-157.602		
State_FL	-82.7003	6.882	-12.017	0.000	-96.189	-69.211	
State_HI	-52.1943	22.789	-2.290	0.022	-96.865	-7.524	
State_IA			-2.617	0.009	-39.589	-5.683	
State_ID	-85.7739	12.227	-7.015	0.000	-109.741	-61.807	
State_IL	-20.9818	7.063	-2.970	0.003	-34.827	-7.136	
State_IN	-5.6106	7.507	-0.747	0.455	-20.326	9.104	
State_KS	-35.5576	7.984	-4.454	0.000	-51.207	-19.908	
State_KY	61.3907	7.507	8.178	0.000	46.676	76.106	
State_LA	76.7923	8.410	9.131	0.000	60.307	93.277	
State_MA	-136.2924	13.896	-9.808	0.000			
State_MD	-70.5372	11.104	-6.352	0.000	-92.303	-48.771	
State_ME	-50.2948	23.127	-2.175	0.030	-95.626	-4.963	
State_MI	-1.7622	7.561	-0.233	0.816	-16.583	13.059	
State_MN	-107.0522	8.619	-12.420	0.000	-123.948	-90.157	
State_MO	39.4462	7.589	5.198	0.000	24.571	54.321	
State_MS	121.7279	7.782	15.642	0.000	106.474	136.982	
State_MT	-15.8614	11.391	-1.393	0.164	-38.189	6.466	
State_NC	-44.9266	6.413	-7.005	0.000	-57.498	-32.356	
State_ND	-42.9216	12.420	-3.456	0.001	-67.267	-18.577	
State_NE	-62.2146	9.282	-6.703	0.000	-80.408	-44.021	
State_NH	-124.1877	21.861	-5.681	0.000	-167.039	-81.337	
State_NJ	-85.2237	10.567	-8.065	0.000	-105.936	-64.511	
State_NM	-67.7342	10.057	-6.735	0.000	-87.448	-48.020	
State_NV	-29.6679	12.420	-2.389	0.017	-54.013	-5.323	
State_NY	-42.7607	7.386	-5.789	0.000	-57.239	-28.282	
State_OH	-5.9818	7.056	-0.848	0.397	-19.813	7.850	
State_OK	72.8691	6.954	10.479	0.000	59.239	86.499	
State_OR	-117.0711	9.775	-11.977	0.000	-136.231	-97.911	
State_PA	-38.1785	7.626	-5.006	0.000	-53.126	-23.231	
State_RI	-109.8884	22.789	-4.822	0.000	-154.559	-65.218	
State_SC	-14.3324	9.100	-1.575	0.115	-32.169	3.504	
State_SD	-31.6919	10.970	-2.889	0.004	-53.194	-10.190	
State_TN	56.9666	7.353	7.747	0.000	42.553	71.380	
State_UT	-98.2617	12.227	-8.036	0.000	-122.229	-74.295	
State_VA	-38.7069	6.200	-6.243	0.000	-50.860	-26.554	
State_VT	-50.6996	24.238	-2.092	0.036	-98.210	-3.189	

8.708 -10.497 0.000 State_WA -91.4170 -108.487 -74.347 State_WI -58.0087 8.963 -6.472 0.000 -75.577 -40.441 State_WV 30.1527 10.596 2.846 0.004 9.383 50.923 State_WY -31.8337 15.590 -2.042 0.041 -62.393 -1.274______ Omnibus: 137.350 Durbin-Watson: 0.697 Prob(Omnibus): 0.000 Jarque-Bera (JB): 131.983 Skew: 0.215 Prob(JB): 2.19e-29 Kurtosis: 2.775 Cond. No. 41.6 _____

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [45]: # Define states of interest
             states_of_interest = ['AZ', 'CA', 'CO', 'CT', 'DE', 'FL', 'IA', 'ID', 'LA', 'MA',
                                'MD', 'ME', 'MN', 'NC', 'ND', 'NE', 'NH', 'NJ', 'NM', 'NV',
                                'NY', 'OR', 'PA', 'RI', 'UT', 'VA', 'VT', 'WA', 'WI']
             # Initialize dictionaries to store coefficients and p-values
             coefficients = {}
             p_values = {}
             # Extract coefficients and p-values from Table 1
             table_data = model.summary().tables[1].data
             for row in table_data[2:]: # Skip the first two rows as they contain headers
                state = row[0].split('_')[1] # Extract state abbreviation
                if state in states_of_interest:
                    coef = float(row[1]) # Extract coefficient value
                    p_val = float(row[4]) # Extract p-value
                    coefficients[state] = coef
                    p_values[state] = p_val
             # Print coefficients and p-values for the specified states
             for state in states_of_interest:
                print(f"State: {state}, Coefficient: {coefficients[state]}, P-value: {p_values[state]}")
             # Comments:
             # The code extracts coefficients and p-values from Table 1 of the regression model summary and prints
             # The specified states of interest are those in the list 'states_of_interest'.
             # Coefficients are stored in the 'coefficients' dictionary, and p-values are stored in the 'p_values' diction
             # The code ensures that only coefficients and p-values for the specified states are extracted and print
             # The loop iterates through the table data, skipping the first two rows (which contain headers), and spl
             # It then checks if the state is in the list of states of interest and extracts the coefficient and p-value
```

```
State: AZ, Coefficient: -90.5651, P-value: 0.0
State: CA, Coefficient: -66.5237, P-value: 0.0
State: CO, Coefficient: -116.3073, P-value: 0.0
State: CT, Coefficient: -115.339, P-value: 0.0
State: DE, Coefficient: -102.2251, P-value: 0.0
State: FL, Coefficient: -82.7003, P-value: 0.0
State: IA, Coefficient: -22.6363, P-value: 0.009
State: ID, Coefficient: -85.7739, P-value: 0.0
State: LA, Coefficient: 76.7923, P-value: 0.0
State: MA, Coefficient: -136.2924, P-value: 0.0
State: MD. Coefficient: -70.5372, P-value: 0.0
State: ME, Coefficient: -50.2948, P-value: 0.03
State: MN, Coefficient: -107.0522, P-value: 0.0
State: NC, Coefficient: -44.9266, P-value: 0.0
State: ND, Coefficient: -42.9216, P-value: 0.001
State: NE, Coefficient: -62.2146, P-value: 0.0
State: NH, Coefficient: -124.1877, P-value: 0.0
State: NJ, Coefficient: -85.2237, P-value: 0.0
State: NM, Coefficient: -67.7342, P-value: 0.0
State: NV, Coefficient: -29.6679, P-value: 0.017
State: NY, Coefficient: -42.7607, P-value: 0.0
State: OR, Coefficient: -117.0711, P-value: 0.0
State: PA, Coefficient: -38.1785, P-value: 0.0
State: RI, Coefficient: -109.8884, P-value: 0.0
State: UT, Coefficient: -98.2617, P-value: 0.0
State: VA, Coefficient: -38.7069, P-value: 0.0
State: VT, Coefficient: -50.6996, P-value: 0.036
State: WA, Coefficient: -91.417, P-value: 0.0
State: WI, Coefficient: -58.0087, P-value: 0.0
```

```
# Drop the constant column from x_no_white as it's not needed in this context
In [46]:
            default_white_race = x_no_white.drop(columns='const')
            # Combine gender and race with heart disease data
            combined = pd.concat([gender_regression_df[['Gender', 'Heart Disease per 100k']], default_white_race],
            # Separate predictors (x_comb) and target (y_comb)
            x_comb = combined.drop('Heart Disease per 100k', axis=1)
            y_comb = combined['Heart Disease per 100k']
            # Add constant for the intercept term
            x_comb = sm.add_constant(x_comb)
            # Fit Ordinary Least Squares (OLS) regression model
            model = sm.OLS(y\_comb, x\_comb).fit()
            # Print model summary
            print(model.summary())
            # R-Squared: 58% of the data is explained by ethnicity
            # F statistic: 3816 show model is significant
            # prob of F statistics: is close to 0 which shows it significant
            # Log-likelohood(neg does not matter): is for model comparison. Higher is better
            # AIC, BIC: are for other model comparisons. the lower is better
            # Const coef: the average when someone is a white female (all other refs are 0)
            # Gender coef: being male increases 142 units
            # black coef: being black incerease by 60
```

```
# hispanic coef: lowers by 155
# indian coef: higher by 28
# asian coef: being asian lowers by 196
# t stat: larger absolutes values indicate greater evidence against the null hypothesis
# P>|t|: significance since close to .00

# MODEL AND DATA IS SIGNIFICANT
```

OLS Regression Results

______ Dep. Variable: Heart Disease per 100k R-squared: 0.586 OLS Adj. R-squared: 0.586 Model: Method: Least Squares F-statistic: 3816. Date: Sat, 24 Feb 2024 Prob (F-statistic): 0.00 18:18:24 Log-Likelihood: -80198. Time: No. Observations: 13484 AIC: 1.604e+05 Df Residuals: 13478 BIC: 1.605e+05

Df Model: 5
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

=====

const 296.8629 1.419 209.274 0.000 294.082 299.643
Gender 142.8956 1.597 89.485 0.000 139.766 146.026
Black 60.2072 1.964 30.648 0.000 56.357 64.058
Hispanic -155.7819 2.375 -65.589 0.000 -160.437 -151.126
American Indian and Alaskan Native 28.7282 3.755 7.650 0.000 21.367 36.089

Asian and Pacific Islander -196.9472 3.030 -64.994 0.000 -202.887 -191.008

 Omnibus:
 518.354
 Durbin-Watson:
 1.229

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 753.898

 Skew:
 0.378
 Prob(JB):
 1.96e-164

 Kurtosis:
 3.878
 Cond. No.
 5.87

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

c:\Users\User\anaconda3\lib\site-packages\statsmodels\tsa\tsatools.py:142: FutureWarning: In a futur
e version of pandas all arguments of concat except for the argument 'objs' will be keyword-only
x = pd.concat(x[::order], 1)

```
In [47]: #Extracting necessary data
all_races = ethnicity_regression_dummies.copy()
all_races_only = all_races[['Black', 'Hispanic', 'American Indian and Alaskan Native', 'Asian and Pacific Isla
gender_bi = gender_regression_df.copy()
gender_bi = gender_bi[['Gender', 'Heart Disease per 100k']]
all_state = pd.get_dummies(state_regression_df, columns=['State'])
all_state_only = all_state.drop(['Heart Disease per 100k', 'County', 'Gender', 'Ethnicity'], axis=1)

# Combine all data for clustering
combined_cluster_no_state = combined.copy()
default_state = x_hot_encoded_state.drop(columns='const')
combined_cluster = pd.concat([all_races_only, gender_bi, all_state_only], axis=1)

# Standardize the features
scaler = StandardScaler()
```

```
combined_cluster_scaled = scaler.fit_transform(combined_cluster)
# Choose the number of clusters
num_clusters = 50
# Initialize and fit the KMeans model
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
kmeans.fit(combined_cluster_scaled)
# Get cluster labels for each data point
cluster_labels = kmeans.labels_
# Add cluster labels to the DataFrame
combined_cluster['Cluster'] = cluster_labels
# Get centroids
centroids = kmeans.cluster_centers_
# Create a DataFrame to display centroid values
centroid_df = pd.DataFrame(centroids, columns=combined_cluster.columns[:-1]) # Exclude the 'Cluster'
# Display centroid values
#print("Centroid Values for Each Cluster:")
#print(centroid_df)
# Scatter plot for Gender
plt.figure(figsize=(16, 12))
plt.scatter(combined_cluster['Gender'], combined_cluster['Heart Disease per 100k'], c=cluster_labels, cm
plt.title('Clusters')
plt.xlabel('Gender')
plt.ylabel('Heart Disease per 100k')
plt.colorbar(label='Cluster')
plt.show()
# Scatter plot for White race
plt.figure(figsize=(16, 12))
plt.scatter(combined_cluster['White'], combined_cluster['Heart Disease per 100k'], c=cluster_labels, cmaj
plt.title('Clusters')
plt.xlabel('White')
plt.ylabel('Heart Disease per 100k')
plt.colorbar(label='Cluster')
plt.show()
# Scatter plot for Black race
plt.figure(figsize=(16, 12))
plt.scatter(combined_cluster['Black'], combined_cluster['Heart Disease per 100k'], c=cluster_labels, cmap
plt.title('Clusters')
plt.xlabel('Black')
plt.ylabel('Heart Disease per 100k')
plt.colorbar(label='Cluster')
plt.show()
# Scatter plot for Hispanic race
plt.figure(figsize=(16, 12))
plt.scatter(combined_cluster['Hispanic'], combined_cluster['Heart Disease per 100k'], c=cluster_labels, cn
plt.title('Clusters')
plt.xlabel('Hispanic')
plt.ylabel('Heart Disease per 100k')
plt.colorbar(label='Cluster')
plt.show()
```

```
# Scatter plot for American Indian and Alaskan Native race
plt.figure(figsize=(16, 12))
plt.scatter(combined_cluster['American Indian and Alaskan Native'], combined_cluster['Heart Disease per
plt.title('Clusters')
plt.xlabel('Native American')
plt.ylabel('Heart Disease per 100k')
plt.colorbar(label='Cluster')
plt.show()
# Scatter plot for Asian and Pacific Islander race
plt.figure(figsize=(16, 12))
plt.scatter(combined_cluster['Asian and Pacific Islander'], combined_cluster['Heart Disease per 100k'], c=
plt.title('Clusters')
plt.xlabel('Asian')
plt.ylabel('Heart Disease per 100k')
plt.colorbar(label='Cluster')
plt.show()
# Scatter plot for State (Hawaii)
plt.figure(figsize=(16, 12))
plt.scatter(combined_cluster['State_HI'], combined_cluster['Heart Disease per 100k'], c=cluster_labels, c
plt.title('Clusters')
plt.xlabel('Hawaii')
plt.ylabel('Heart Disease per 100k')
plt.colorbar(label='Cluster')
plt.show()
```


Linear Regression Visual Modeling

```
In [48]:
            from sklearn.linear_model import LinearRegression
            from sklearn.preprocessing import OneHotEncoder
            from sklearn.compose import ColumnTransformer
            from sklearn.pipeline import Pipeline
In [49]:
            # Selecting relevant columns
            X = cleaned_county_df[['Gender', 'Ethnicity', 'State']]
            y = cleaned_county_df['Heart Disease per 100k']
            # Define preprocessing steps for encoding categorical variables
            preprocessor = ColumnTransformer(
               transformers=[
                  ('cat', OneHotEncoder(), ['Gender', 'Ethnicity', 'State']) # One-hot encode categorical variables
               remainder='passthrough' # Pass through any remaining columns
            # Create a pipeline with preprocessing and linear regression model
            pipeline = Pipeline([
               ('preprocessor', preprocessor),
               ('regressor', LinearRegression()) # Linear regression model
            ])
            # Fit the pipeline on the data
```

```
pipeline.fit(X, y)
# Predict heart disease mortality death rate
y_pred = pipeline.predict(X)
# Plot for Gender
plt.figure(figsize=(14, 10))
sns.scatterplot(data=cleaned_county_df, x=y_pred, y=y, hue='Gender', palette='viridis', legend='full')
for category in cleaned_county_df['Gender'].unique():
   category_mask = (cleaned_county_df['Gender'] == category)
   sns.regplot(x=y_pred[category_mask], y=y[category_mask], scatter=False, color='gray')
plt.xlabel('Predicted Heart Disease Mortality Death Rate')
plt.ylabel('Actual Heart Disease Mortality Death Rate')
plt.title('Linear Regression Model by Gender')
plt.legend(title='Gender')
plt.show()
# Plot for Race
plt.figure(figsize=(14, 10))
sns.scatterplot(data=cleaned_county_df, x=y_pred, y=y, hue='Ethnicity', palette='viridis', legend='full')
for category in cleaned_county_df['Ethnicity'].unique():
   category_mask = (cleaned_county_df['Ethnicity'] == category)
   sns.regplot(x=y_pred[category_mask], y=y[category_mask], scatter=False, color='blue')
plt.xlabel('Predicted Heart Disease Mortality Death Rate')
plt.ylabel('Actual Heart Disease Mortality Death Rate')
plt.title('Linear Regression Model by Race')
plt.legend(title='Race')
plt.show()
# Plot for State
plt.figure(figsize=(14, 10))
sns.scatterplot(data=cleaned_county_df, x=y_pred, y=y, hue='State', palette='viridis')
for category in cleaned_county_df['State'].unique():
   category_mask = (cleaned_county_df['State'] == category)
   sns.regplot(x=y_pred[category_mask], y=y[category_mask], scatter=False, color='blue')
plt.xlabel('Predicted Heart Disease Mortality Death Rate')
plt.ylabel('Actual Heart Disease Mortality Death Rate')
plt.title('Predicted vs Actual Heart Disease Mortality Death Rate by State')
plt.legend(title='State', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.show()
```



```
In [50]:
            # Determine the number of groups (graphs) needed
            num_states = len(cleaned_county_df['State'].unique())
            num_groups = int(np.ceil(num_states / 10)) # Round up to the nearest integer
            # Plot for each group of states
            for i in range(num_groups):
               start_index = i * 10
                end_index = min((i + 1) * 10, num_states) # Ensure not to exceed the number of states
               states_subset = list(cleaned_county_df['State'].unique())[start_index:end_index]
                plt.figure(figsize=(14, 10))
                for category in states_subset:
                   category_mask = (cleaned_county_df['State'] == category)
                   sns.regplot(x=y_pred[category_mask], y=y[category_mask], scatter=False, label=category)
                plt.xlabel('Predicted Heart Disease Mortality Death Rate')
                plt.ylabel('Actual Heart Disease Mortality Death Rate')
                plt.title(f'Predicted vs Actual Heart Disease Mortality Death Rate by State (States {start_index+1}-{e
                plt.legend(title='State', bbox_to_anchor=(1.05, 1), loc='upper left')
                plt.show()
                # Assumption for Hawaii. It is the amount of data collected (seen in clustering) and
                # assuming the population is majority Asian
```


