Ifi

Aprendizagem 2023

Lab 4: Linear Regression and kNN

Prof. Rui Henriques

Practical exercises

I. Lazy learning

1. Consider the following data:

	input		output	
	У1	У2	Уз	У4
\mathbf{X}_1	1	1	Α	1.4
\mathbf{x}_2	2	1	В	0.5
X 3	2	3	В	2
\mathbf{x}_4	3	3	В	2.2
X 5	2	2	Α	0.7
\mathbf{x}_6	1	2	Α	1.2

Assuming a k-nearest neighbor with k=3 applied within a leave-one-out schema:

- a) Let y_3 be the output variable (*categoric*). Considering an Euclidean (*l*2) distance, provide the classification estimates for x_1 .
- b) Let y_4 be the output variable (*numeric*). Considering cosine similarity, provide the mean regression estimate for x_1 .
- c) Consider a weighted-distance k-nearest neighbor with Manhattan (l_1) distance, identify the:
 - i. weighted mode estimate of x_1 for y_3 outcome
 - ii. weighted mean estimate of x_1 for y_4 outcome

II. Linear regression

1. Considering the following data to learn a model $z=w_1y_1+w_2y_2+\varepsilon$, where $\varepsilon\sim N(0,0.1)$

	У1	У2	output
<i>x</i> ₁	3	-1	2
χ_2	4	2	1
Х3	2	2	1

Compare:

- a) $\mathbf{w} = [w_1 \ w_2]^T$ using the maximum likelihood approach
- b) w using the Bayesian approach, assuming $p(w) = N\left(w \mid u = [0 \ 0], \sigma = \begin{bmatrix} 0.2 & 0 \\ 0 & 0.2 \end{bmatrix}\right)$