Repaso Conceptos de Probabilidad

Alejandro Daniel José Gómez Flórez

1 Espacio muestral

Consideremos el experimento de lanzar tres monedas. Cada moneda puede dar **cara** (1) o **sello** (0). Por lo tanto, el número total de resultados posibles es

$$|\Omega| = 2^3 = 8.$$

El espacio muestral es:

$$\Omega = \{(0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1)\}.$$

1.1 Eventos

Un **evento** es cualquier subconjunto del espacio muestral Ω . En nuestro ejemplo:

- Evento elemental: Un resultado específico, por ejemplo $A = \{(1, 1, 0)\}$
- Evento compuesto: Múltiples resultados, por ejemplo $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ (exactamente una cara)
- Evento seguro: Todo el espacio muestral, $E = \Omega$
- Evento imposible: El conjunto vacío, $F = \emptyset$

2 σ -álgebra

Un σ -álgebra \mathcal{F} sobre Ω es una colección de subconjuntos de Ω que cumple:

• $\Omega \in \mathcal{F}$,

- Si $A \in \mathcal{F}$, entonces $A^c \in \mathcal{F}$,
- Si $A_1, A_2, \dots \in \mathcal{F}$, entonces $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

En espacios finitos, el $\sigma\text{-}$ álgebra más común es el conjunto de partes de $\Omega\text{:}$

$$\mathcal{F} = \mathcal{P}(\Omega).$$

Como $|\Omega| = 8$, se tiene $|\mathcal{F}| = 2^8 = 256$.

3 Variable aleatoria

Una variable aleatoria es una función medible:

$$X:\Omega\to\mathbb{R}$$
.

Ejemplo: Definimos X como el número de caras en los tres lanzamientos. Entonces:

$$X(\omega) \in \{0, 1, 2, 3\}.$$

Ejemplos de asignación:

$$X(0,0,0) = 0$$
, $X(1,0,0) = 1$, $X(1,1,0) = 2$, $X(1,1,1) = 3$.

3.1 ¿Es una variable aleatoria válida?

Sí, porque:

- El dominio es Ω (el espacio muestral de los tres lanzamientos).
- El rango está en \mathbb{R} (números enteros entre 0 y 3).
- $\bullet\,$ Para cualquier conjunto de valores $A\subseteq\{0,1,2,3\},$ la preimagen

$$X^{-1}(A) = \{ \omega \in \Omega : X(\omega) \in A \}$$

es un subconjunto de Ω , por lo tanto pertenece a $\mathcal{P}(\Omega)$, el σ -álgebra.

Esta última propiedad garantiza que X es una función medible, lo cual es requisito fundamental para ser una variable aleatoria.

4 Distribución de probabilidad de X

Cada resultado elemental tiene probabilidad 1/8. El número de caras en tres lanzamientos sigue una distribución binomial:

$$X \sim \text{Binomial}(n = 3, p = 0.5).$$

La función de probabilidad (pmf) es:

$$\mathbb{P}(X=k) = \binom{3}{k} \left(\frac{1}{2}\right)^3, \quad k = 0, 1, 2, 3.$$

Valores explícitos:

$$\mathbb{P}(X=0) = \frac{1}{8}, \quad \mathbb{P}(X=1) = \frac{3}{8}, \quad \mathbb{P}(X=2) = \frac{3}{8}, \quad \mathbb{P}(X=3) = \frac{1}{8}.$$

5 Variable aleatoria: codificación

Podemos definir otra variable aleatoria Y que codifica cada resultado como un número entre 0 y 7:

$$(0,0,0) \mapsto 0, \quad (0,0,1) \mapsto 1, \quad \dots, \quad (1,1,1) \mapsto 7.$$

En este caso, estamos construyendo una función:

$$Y: \Omega \to \{0, 1, \dots, 7\}.$$

5.1 ¿Es una variable aleatoria válida?

Sí, porque:

- El **dominio** sigue siendo Ω (el espacio muestral original).
- El rango está en \mathbb{R} (en este caso, números enteros entre 0 y 7).
- Para cualquier conjunto de valores $A \subseteq \{0, \dots, 7\}$, la preimagen

$$Y^{-1}(A) = \{ \omega \in \Omega : Y(\omega) \in A \}$$

es un subconjunto de Ω , por lo tanto pertenece a $\mathcal{P}(\Omega)$, el σ -álgebra.

Esta última propiedad garantiza que Y es una función medible, lo cual es requisito fundamental para ser una variable aleatoria.

5.2 Distribución de probabilidad

Como cada elemento de Ω es igualmente probable:

$$\mathbb{P}(Y = k) = \frac{1}{8}, \quad k = 0, \dots, 7.$$

Esto corresponde a una distribución uniforme discreta.

6 Ejemplo de evento

Consideremos el evento "X = 1 y X = 2". Formalmente:

$$\mathbb{P}(X = 1 \text{ y } X = 2) = \mathbb{P}(\{\omega : X(\omega) = 1\} \cap \{\omega : X(\omega) = 2\}) = 0,$$

porque X no puede tomar dos valores distintos en el mismo experimento. En cambio, la probabilidad "X=1 o X=2" es:

$$\mathbb{P}(X = 1 \text{ o } X = 2) = \mathbb{P}(X = 1) + \mathbb{P}(X = 2) = \frac{3}{8} + \frac{3}{8} = \frac{6}{8}.$$

7 Variable aleatoria: primera moneda

Podemos definir otra variable aleatoria Z como el resultado de la primera moneda:

$$Z:\Omega\to\{0,1\}.$$

Su distribución es:

$$\mathbb{P}(Z=0) = \frac{1}{2}, \quad \mathbb{P}(Z=1) = \frac{1}{2}.$$

Por lo tanto, $Z \sim \text{Bernoulli}(0.5)$.

8 Relación entre Ω , X y $X(\Omega)$

- Ω : espacio muestral, definido independientemente de la variable aleatoria.
- X: función que asigna a cada $\omega \in \Omega$ un número real.
- $X(\Omega)$: conjunto de valores posibles de la variable aleatoria (espacio imagen).

9 Proceso estocástico

Un **proceso estocástico** es una familia de variables aleatorias indexada por un conjunto de tiempos T:

$${X_t: t \in T}.$$

Cada X_t es una variable aleatoria definida sobre el mismo espacio de probabilidad $(\Omega, \mathcal{F}, \mathbb{P})$.

9.1 Ejemplo con tres monedas

Recordemos la variable aleatoria Y que codifica cada resultado de los tres lanzamientos como un número entre 0 y 7:

$$Y: \Omega \to \{0, 1, 2, 3, 4, 5, 6, 7\}.$$

Si repetimos el experimento de lanzar tres monedas muchas veces, podemos definir una secuencia de variables aleatorias $\{X_n\}_{n\geq 1}$ como:

$$X_n: \Omega \to \{0, 1, \dots, 7\}, \quad n = 1, 2, 3, \dots$$

donde X_n corresponde a la codificación del n-ésimo experimento.

9.2 Distribución del proceso

Cada X_n sigue una distribución uniforme discreta:

$$\mathbb{P}(X_n = k) = \frac{1}{8}, \quad k = 0, 1, \dots, 7.$$

Si suponemos independencia entre los experimentos, la colección $\{X_n\}_{n\geq 1}$ es una **secuencia de variables aleatorias i.i.d.** (independientes e idénticamente distribuidas).

9.3 Interpretación

- Ω : espacio de todas las secuencias infinitas de lanzamientos de tres monedas.
- X_n : resultado codificado del *n*-ésimo experimento.
- $\{X_n\}_{n\geq 1}$: proceso estocástico que modela la repetición temporal del experimento.