

Aula 17 – Redes Neurais Convolucionais

Prof. João Fernando Mari

<u>joaofmari.qithub.io</u> joaof.mari@ufv.br

Roteiro

- Perceptron de multiplas camadas (MLP)
- Redes Neurais Convolucionais (CNNs)
- Camada convolucional
- Camada de pooling
- Modelos
- Bibliotecas e ambientes de desenvolvimento
- Conjuntos de imagens

Perceptron de multiplas camadas (MLP)

Learn TensorFlow and deep learning, without a Ph.D.

Redes Neurais Convolucionais (CNNs)

Redes Neurais Convolucionais (CNNs)

Moacir Ponti. http://conteudo.icmc.usp.br/pessoas/moacir/p17sibgrapi-tutorial/

Camada convolucional

Camada de pooling

MODELOS

Neocognitron (1980)

Kunihiko Fukushima

LeNet-5 (1998)

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

AlexNet (2012)

Inception (GoogLeNet) (2014)

Módulos Inception

(a) Inception module, naïve version

(b) Inception module with dimension reductions

VGG (2014) e ResNet (2015)

BIBLIOTECAS E AMBIENTES DE DESENVOLVIMENTO

Bibliotecas e ambientes de desenvolvimento

- O treinamento de CNNs possui alto custo computacional.
 - Recomenda-se que sejam treinados usando GPUs.
 - O Google Colab fornece acesso à GPUs (com algumas restrições).

Bibliotecas e ambientes de desenvolvimento

- Principais bibliotecas para Deep Learning e Redes Neurais Convolucionais
 - PyTorch
 - https://pytorch.org/
 - Tensorflow
 - https://www.tensorflow.org/

Bibliotecas e ambientes de desenvolvimento

Anaconda Distribution:

- Distribuição Python com suporte às principais bibliotecas
- https://www.anaconda.com/products/distribution

Google Colab:

- Ambiente de execução em nuvem com GPUs.
- https://colab.research.google.com

CONJUNTOS DE IMAGENS

- MNIST
 - http://yann.lecun.com/exdb/mnist/
 - 60,000 training images
 - 10,000 testing images
 - 28 x 28 pixels
 - Níveis de cinza

- Cats vs. Dogs
 - https://www.kaggle.com/c/dogs-vs-cats
 - 25,000 images de treinamento
 - 12,500 imagens de teste
 - 2 classes
 - Diversos tamanhos
 - RGB

Sample of cats & dogs images from Kaggle Dataset

- CIFAR10
 - https://www.cs.toronto.edu/~kriz/cifar.html
 - 50,000 training images
 - 10,000 testing images
 - 10 classes
 - 32 x 32 pixels
 - RGB

- ImageNet
 - https://www.image-net.org/
 - ~1,000,000 imagens
 - 1,000 classes
 - RGB

Bibliografia

- Ponti et al. Everything You Wanted to Know about Deep Learning for Computer Vision but Were Afraid to Ask. Sibgrapi 2017.
 - https://sites.icmc.usp.br/moacir/p17sibgrapi-tutorial/
- Prof. Moacir Ponti (ICMC-USP). Material para o minicurso Deep Learning
 - https://github.com/maponti/deeplearning intro datascience
- Görner, M. Learn TensorFlow and deep learning, without a Ph.D.
 - https://cloud.google.com/blog/products/gcp/learn-tensorflow-and-deep-learningwithout-a-phd
- CS231n: Convolutional Neural Networks for Visual Recognition
 - http://cs231n.github.io/
- Goodfellow, Bengio e Courville. Deep Learning. MIT Press, 2016
 - https://www.deeplearningbook.org/
- The MathWorks, Inc. What is a Convolutional Neural Network? 3 things you need to know.
 - https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html

Bibliografia

- Rodrigues, L. F.; Naldi M. C., Mari, J. F. Comparing convolutional neural networks and preprocessing techniques for HEp-2 cell classification in immunofluorescence images. Computers in Biology and Medicine, 2019.
 - https://doi.org/10.1016/j.compbiomed.2019.103542


```
@misc{mari_im_proc_2023,
author = {João Fernando Mari},
title = {Redes Neurais Convolucionais},
year = {2023},
publisher = {GitHub},
journal = {Introdução ao Processamento Digital de Imagens - UFV},
howpublished = {\url{https://github.com/joaofmari/SIN392_Introduction-to-digital-image-processing_2023}}
```

FIM DA DISCIPLINA!