Definition 1 A repeat element family descriptor (refd) is a string over the alphabet $\{A, C, G, T, *\}$, describing the contents of any string in the family.

Definition 2 We say an refd r matches a Genome G at position i if, for all j such that $r_j \neq *, r_j = G_{i+j}$.

Example If r = AA * TT, and G = AACTTGGAAGTT, then r matches G at positions i = 0 and i = 7. If G = AAATTT, then r matches G at positions i = 0 and i = 1.

Definition 3 A spaced seed s matches an refd r at position i if, for every $0 \le j < |s|$, if $r_{i+j} = *$ then $s_j = 0$.

Example: If s = 11011 and r = AAAAA * GGG, then s matches r at positions i = 0 and i = 3, but not at any other i.

Definition 4 Given a seed s and refd r, let $M_s(r)$ be the set of values i such that s matches r at i.

Let s = 11011 and r = AA * CC * GGGGGG. Then $M_s(r) = [0, 3, 6, 7]$.

Definition 5 A spaced seed s is consistent with an refd r if for every i, $0 \le i < |r|$, there is some $i - |s| \le j \le i$ such that s matches r at position j.

In otherwords: for any position i of the refd, I must be able to match the seed to a position of r such that it then covers position i.

Example: The seed 11011 is compatible with r = AA * AA * AA. (The seed matches at positions 0 and 3, and all positions are covered by these two.) But it is not consistent with AAAAA * *AAAAA, and there is no seed that can match this string at any position that can cover i = 5 or i = 6.

Observation 1 Let L be the sortest sequence of the values in $M_s(r)$. Then s is consistent with r if and only if $\max_{0 < j < |s|-1} L[j+1] - L[j] \le |s|$. In the sorted list, every pair of adjacent elements must be within |s| of each other.

Definition 6 Given a fixed genome G, and fixed spaced seed s, and a fixed value f, we define a elementary repeat family as a set S of genome coordinates, $|S| \ge f$, such that there exists an refd r where:

- r matches the sequence of length |r| starting at each element of S. (S is the set of all instances.)
- s is consistent with r. (r corresponds to the seed.)

- There does not exist a proper substring r' of r such that r is consistent with s and $M_s(r')-M_s(r)=\emptyset$. You can't have a proper substring of r that describes sequences outside of the instances described by r. (Minimality.)
- There does not exist a substring r' propertly containing r such that the instances defined by $M_s(r')$ contain all the instances of $M_s(r)$. (Maximality.)