

□ (+1) 530-220-2141 | Seskavvas@gmail.com | Aerolkavvas.github.io | Derolkavvas | Derolkavvas

Summary

Data scientist with +10 years of experience developing AI and mechanistic models for functional genomics. Proven track record in building and deploying scalable, interpretable ML solutions for genomics, drug/target discovery, and precision medicine. Skilled in leading crossfunctional collaborations, mentoring teams, and optimizing cloud-based pipelines for high-dimensional biomedical data. Passionate about translating biological complexity into therapeutic insight through Al-driven modeling.

Skills

Machine Learning PyTorch, scikit-learn, Deep Learning, Large Language Models, Neural Nets, Linear models, SVMs,

Interpretable ML, LIME, SHAP, Tree-based Methods, Decomposition Methods, Ensemble Methods,

Network Modeling, Recommender Systems, Model Optimization

Programming Python (Expert), R, SQL, Linux, C, Visual Basic, Fortran, Bash

Data Analysis & Visualization Pandas, Numpy, Matplotlib, Seaborn, NetworkX, Statistics, A/B Testing, Experimental Design

Big Data Technologies PySpark, Microsoft Azure (Synapse, ML Studio), Microsoft Fabric, Docker, GPU Optimization

Other Skills Git, NGS Analysis (DNA, RNA, ¹³C flux, 16s-rDNA), Flux Balance Analysis, Affinity Designer

Experience

Envisagenics (RNA Therapeutics Startup)

New York City, NY

DATA SCIENTIST - FUNCTIONAL GENOMICS

July 2022 - Feb 2025

- Built and deployed SplicePath, an Azure cloud-based ML pipeline for modeling exon/transcript impact on pathway activity; adopted by cross-functional oncology teams for experimental design and hypothesis generation of 20+ drug targets.
- Led development of a graph interpretation algorithm for SplicePath to explain transcript-pathway effects via molecular interactions; cellular network was built using COBRApy and results visualized with NetworkX.
- Designed a no-code interface via Microsoft Fabric for non-technical users and improved internal adoption of SplicePath across oncology teams
- Developed SpliceImpact, a transformer-based LLM model for predicting per-residue functional effects from protein sequence; input embeddings generated by ESM2 and optimized with Azure ML GPUs.
- Designed an algorithm simulating alternative splicing to generate 70,000 non-functional protein sequences used to train the SpliceImpact LLM model; optimized using PySpark.

Integrative Biology and Predictive Analytics Lab

UC Davis, CA

POSTDOCTORAL RESEARCHER

Sep 2020 - July 2022

- Developed ML models for personalized dietary recommendations by integrating chemical composition data from FoodAtlas, 5000+ samples from the American Gut Project, and microbiome metabolic models from AGORA2; performed community-scale metabolic modeling using MICOM to simulate individual-specific microbial responses.
- · Applied ML to multi-omics data to identify genetic determinants of isobutyl acetate (IBA) tolerance, in collaboration with an experimental evolution lab
- Led ML development on a systems biology project in collaboration with the veterinary school to uncover how bats tolerate viral infections using proteomics data; co-authored the successful grant proposal.

Sinopia Biosciences (Drug Discovery Startup)

San Diego, CA

MACHINE LEARNING CONSULTANT

Oct 2019 - Jan 2020

- Preprocessed and batch-corrected drug response metabolomics data from 1,000+ samples.
- Built ML models to identify metabolic signatures distinguishing drug action.

Systems Biology Research Group

UC San Diego, CA

GRADUATE STUDENT RESEARCHER

Sep 2015 - Sep 2020

- Wrote 4 first-author publications and coauthored 10 papers; cited 900+ times.
- Research received an F1000 recommendation, a UCSD press release, and two invited talks at AI conferences.
- Built pangenome from 1,595 pathogens and trained SVMs to predict drug resistance; identified 33 known and 24 novel resistance genes.
- Pioneered first hybrid FBA-ML framework to model biochemical effects of mutations; matched SOTA performance while improving interpretability and experimental hypotheses for 3 anti-tuberculosis drugs.
- Applied ICA and statistical modeling to link E. coli adaptive mutations to transcriptomic and flux-level constraints; identified 6 conserved transcriptomic strategies, 5 regulatory tradeoffs, 4 mutation-flux correlates, and 8 mutation-transcriptome correlates.

Selected Publications

(Full list at my Google Scholar)

2021	Independent component analysis recovers consistent regulatory signals, [5th Author][Github link]	PLoS Comp. Bio
2020	A biochemically-interpretable machine learning classifier for microbial GWAS, [*1st Author][Github link]	Nature Comm.
2020	Machine learning with random subspace ensembles identifies antimicrobial, [2nd Author]	PLoS Comp. Bio.
2019	Systems Biology and Pangenome of Salmonella O-Antigens, [4th Author]	mBio
2018	Escherichia coli B2 strains prevalent in inflammatory bowel disease patients, [6th Author]	BMC Syst. Bio.
2018	Machine learning and structural analysis of <i>M. tuberculosis</i> pangenome, [*1st Author] [Github link]	Nature Comm.
2018	Updated and standardized genome-scale reconstruction of <i>M. tuberculosis</i> , [*1st Author] [Github link]	BMC Syst. Bio.
2018	Genome-scale metabolic reconstructions of multiple Salmonella strains, [2nd Author]	Nature Comm.
2018	ssbio: a Python framework for structural systems biology, [6th Author] [Github link]	Bioinformatics
2018	The Staphylococcus aureus Two-Component System AgrAC Displays Four Distinct, [4th Author]	Front. in Microbio.
2018	iCN718, an Updated and Improved Genome-Scale Metabolic Network Reconstruction, [2nd Author]	Front. in Genetics

Education

University of California, San Diego

San Diego, CA

PHD IN BIOENGINEERING, ADVISOR: BERNHARD Ø. PALSSON

2015 - 2020

THESIS: Biologically-Interpretable Machine Learning for Microbial Genomics

2010 2020

University of California, Davis

Davis, CA

B.S. IN CIVIL AND ENVIRONMENTAL ENGINEERING

2010 - 2015

Invited Talks & Posters

Artificial Intelligence in Genomics

Potsdam, Germany

PRESENTER FOR < ASSOCIATION OF GENE DIAGNOSTICS MEETING>

Sep, 2019

Tuberculosis and Machine Learning

Oslo, Norway

PRESENTER FOR <4TH TURNING THE TIDE OF ANTIMICROBIAL RESISTANCE MEETING>

Nov. 2019

COBRA 2018

Seattle, Washington

POSTER FOR <5TH CONFERENCE ON CONSTRAINT-BASED RECONSTRUCTION AND ANALYSIS>

Montared LIVA undergraduate Saumil Chukka during his data science internship

Oct. 2018

NIH NIAID UO1 Conference

Ann Arbor, Michigan

POSTER FOR <NIH NIAID UO1 ANTIMICROBIAL RESISTANCE CONFERENCE>

Oct. 2017

Leadership & Mentorship

2024	Mentored OVA undergraduate, Saurini Chukka, during his data science internship.	Erivisagenics
2021	Mentored 3rd year Veterinary Science PhD student on her analysis of bat proteomics data.	UC Davis
2018	Mentored 1st year PhD student, Jason Hyun, on his first thesis project.	UC San Diego
2018	Managed 16 students and 5 group projects for a graduate level systems biology course.	UC San Diego

Teaching & Training

2018	BENG 125. Modeling and Computation in Bioengineering	UC San Diego
2018	BENG 123: Dynamic Simulation in Bioengineering	UC San Diego
2017	BENG 212: Systems Biology and Bioengineering	UC San Diego
2012	ENGR 422: Engineering Mechanics, Statics	Sac. City College
2010	Private math tutor for Davis Senior High School students	Davis

References _____

Bernhard Ø. Palsson, Ph.D.

Distinguished Professor Bioengineering Jacobs School of Engineering University of California, San Diego La Jolla, CA 92093-0411 palsson@ucsd.edu

Martin Ackermann, Ph.D.

Co-Founder and CTO Envisagenics 30-02 48th Ave, Suite 140, Long Island City, NY 11101 makerman@envisagenics.com

Ilias Tagkopoulos, Ph.D.

Associate Professor Computer Science College of Engineering University of California, Davis 1 Shields Ave, Davis, CA 95616 itagkopoulos@ucdavis.edu