

Bladed

Presented at DTU Course on Wind Turbine Aeroelasticity

Erik Nim Sigurd Jensen

23 April 2025

Agenda

Introduction to Bladed

Multibody Structural Dynamics

Demos

Q&A

What is Bladed?

A wind turbine design tool capable of:

- Coupled nonlinear aero-hydro-servo-elastic simulation in time domain
 - Aerodynamic models
 - Hydrodynamic models
 - Control and electrical system (servo) dynamics models
 - Structural (elastic) dynamics models
- Stability analysis

Bladed – 32 years of development

1993

Bladed is started by Dr Andrew Garrad

2000

Wave module added to support offshore modelling

2011

Floating turbines. Catenary and tension leg moorings using lookup tables.

2014

New batch run tool Import radiation diffraction hydrodynamics LIDAR functionality

2018

Bladed API External Loads DLL NOK 30 million sales for 2018 Moved to Digital Solutions 2025+

Bladed 5 First commercial release

1993

1996 Bladed commercial launch

2006

Offshore support structure modelling 2010

Electrical dynamics Multibody dynamics 2013

New function based External Controller interface

2016

Non-linear "multi-part" blade model (and new integrator methods) New BEM aerodynamics implementation 3D results animation **Bladed Cloud** Multibody mooring line model

Blade stability tool

2020

Bladed on Linux **Calculation engine speed** up project

Integrated Jacket structure analysis enhancements... Floating structure analysis workflow integration...

What can Bladed model?

What can Bladed model: Offshore Fixed

What can Bladed model: Floating

Semi-Submersible Tension Leg Platform Spar

What can Bladed model: Number of blades

What can Bladed model: Concepts

Nacelle system sub-models

- Rotor, hub and actuators
- Gearbox, shafts and bearings
- Generator and grid connection
- DLL interfaces for custom models
- In-built or custom controllers
- Linearization for controller design

Aerodynamic models

- Blade Element Momentum (BEM)
- Vortex Wake

Structural dynamic models

- Multi-body structural dynamics based on Timoshenko FE
- Modal reduction for solver speed
- · Non-linear blade deflection model

Example applications

Who uses Bladed? – Load Certification Calculations

Who uses Bladed? – Control Designer

Who uses Bladed? - Hardware-in-the-loop, pitch actuators

Other applications of Bladed

Concept design

• Loads prediction for cost estimation

Detailed design

- Blade design (e.g. evaluate aerodynamic performance)
- Component design
- Site suitability

Operational

- Load sensor calibration
- Fault detection (digital twin)
- Life extension
- Failure investigation
- Training of loads prediction models

Workflows

Design workflow

Turbine Manufacturer

Support Structure Designer

Encryption

Turbine Manufacturer

Support Structure Designer

Encryption

DNV

Concept models

Turbine Manufacturer

Support Structure Designer

Concept models

Turbine

Bladed Manufacturer Concept Model Support Structure Designer

Concept models

Support Structure Designer **Turbine** Bladed Manufacturer Concept Model Run as many Realistic Reduced times as verification model required

Sesam - Supports a wide range of industries

Sesam

Modelling

Jackets, monopiles, GBS and floating structures

model

- Easy and effective 3D modelling
- Frame and shell models
- Complex transition piece and joints
- Parametric scripting

Preliminary design

- Natural frequency analysis
- Fatigue analysis using damage equivalent load cycles and wave loading
- Member check and joint check

DNV

Co-simulation with other tools

Specialised offshore tools

- Floating platforms
- Mooring systems

Save time on:

- Model alignment
- Verification

Loose couplings

Bladed 5

Why Bladed 5?

Greater control of your turbine modelling

Automation

JSON inputs for faster data interchange

Collaboration

Share, store and distribute data efficiently

LCOE and Process Cost Reduction

Flexible turbine assembly tree

DNV

Bladed 5 API First Workflow

Distributable Data

- Separate inputs into files
- Manage, store and share data effectively
- Build databases and libraries for e.g.
 - Blades, towers, hubs, etc..
 - Aerofoils
 - Load cases

Input validation and editing support

JSON format enables input files and programming APIs with:

- Error highlights
- Auto-complete
- Mouse tip and docstring documentation
- Same data template across programming languages

Services for validation of your model before simulation

Fully documented to take full control of your inputs

Wind Module

```
IEA15MW PowerProd powprod.json - Visual St... 🔲 🔲 🔐
刘 Restricted Mode is intended for safe code browsing. Trust this window to enable all features. <u>Manage Learn More</u>
      ★ Get Started
                        {} IEA15MW_PowerProd_powprod.json ×
                                                                                                             □ …
     Bladed5 > Samples > {} IEA15MW_PowerProd_powprod.json > {} TimeDomainSimulation > {} Environment > {} Wind > \equiv WindType
                      "FileStem": "IEA15MW PowerProd powprod",
                      "FileFormat": "BINARY",
                      "OutputDongleActivity": false
                    "Environment": {
                      "Wind": {
                        "WindType": "LaminarFlow",
                        "MeanSpeed" : 10.0,
留
                        "VerticalShear": 0.0,
                        "HorizontalShear": 0.0,
                        "DirectionShear": 0.0,
                        "UseGustPropagation": false,
                        "WindShear": {
                          "WindShearType": "ExponentialShearModel",
          22
                          "ShearExponent": 0.200000002980232
                        "Inclination": 0.0,
                        "Direction": 0
                    "InitialConditions": [
                        "InitialConditionType": "InitialAzimuthPosition",
                        "AngleOfFirstBladeToVertical": 0.0
(8)
                  "Settings": {
```

www.dnv.com

