Teoría de Autómatas y Lenguajes Formales

Prueba de Evaluación de Lenguajes Regulares, Autómatas a Pila y Máquinas de Turing.

Autores:

Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel Alonso Weber

UNIVERSIDAD CARLOS III DE MADRID TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES. GRADO EN INGENIERÍA INFORMÁTICA. EVALUACIÓN CONTINUA

Apellidos:	
Nombre:	
NIA:	_
Firma:	

Tiempo de examen: 55 minutos

Tipo de Examen: A

1. Indica si las siguientes afirmaciones son Verdaderas o Falsas marcando con una \boldsymbol{X} la casilla correspondiente.

Calificación:

Respuesta correcta: **+0,2ptos**. Respuesta incorrecta: **-0.1 ptos**. Sin respuesta: 0 ptos.

Calificación máxima: **2 ptos**. Calificación mínima: 0 ptos.

	Verdadero	Falso
1. Las ecuaciones X=XA + B y X=A*B expresan el		
mismo conjunto de palabras.		
2. $(\alpha \cdot \beta) = \lambda + (\alpha + \beta) \cdot \beta$.		
3. $(a+b)^* = \lambda + (a+b) \cdot (a+b)^*$		
4. La expresión regular $E1 = \alpha \cdot \Phi$ es equivalente a $E2 =$		
$\Phi \cdot \alpha$ y por lo tanto equivalente a E3 = α .		
5. El AF correspondiente a la expresión regular a=b*		
puede definirse con un solo estado.		
6. (1+0)* sólo expresa números binarios que acaban en		
cero.		
7. Si la ecuación característica correspondiente a un AF		
es $X_1=1$ X_1+0 X_2+0+1 X_0 , entonces el autómata es		
no determinista.		
8. si $\alpha = 0*10*$, entonces las palabras de L(α)		
comienzan por cero y acaban en cero.		
9. α* es la unión de todas las potencias de α,		
incluyendo λ		
10. Para conseguir un AF a partir de una expresión		
regular debemos necesariamente plantear y resolver		
las ecuaciones características del AF.		

2. Indica si las siguientes afirmaciones son Verdaderas o Falsas marcando con una X la casilla correspondiente.

Calificación:

Respuesta correcta: **+0,2ptos**. Respuesta incorrecta: **-0.1 ptos**. Sin respuesta: 0 ptos.

Calificación máxima: **2 ptos**. Calificación mínima: 0 ptos.

		Verdadero	Falso
1.	Sea $\Sigma = \{a,b\}$ y R=ab entonces $D_a(R) = b$		
2.	Dab(R) = Da(Db(R))		
3.	El teorema de síntesis nos asegura que para todo lenguaje regular existe un autómata finito correspondiente.		
4.	$f(q,\lambda,A)=\{(q,\lambda)\}$, es una transición independiente de la entrada.		
5.	El alfabeto de pila y el alfabeto de entrada de un autómata de pila son conjuntos disjuntos.		
6.	Un autómata de pila puede aceptar una palabra sin estar en estado final.		
7.	Existe un algoritmo para transformar autómatas de pila no deterministas en autómatas de pila deterministas.		
8.	Las máquinas de Turing necesitan una estructura de pila para realizar transiciones.		
9.	En una máquina de Turing, después de leer un símbolo la cabeza lectora puede avanzar varias posiciones hacia la izquierda.		
10	En una máquina de Turing el movimiento de la cabeza lectora depende del estado en el que se encuentra la máquina.		

3.	Diseñar una Máquina de Turing transductora que tome como entrada una serie de
	unos (palabras formadas por el símbolo del alfabeto {1}) y añada al final de dicha
	entrada tantos símbolos X como unos tiene dicha palabra.
	Por ejemplo, dada la entrada: □111□ Se deberá devolver en la cinta: □111XXX□
	donde □ representa la celda de la cinta vacía.

Calificación Máxima: 3 ptos.

