Практическое занятие - 6

Решение линейного неоднородного ДУ второго порядка с постоянными коэффициентами

Метод неопределенных коэффициентов для специальной правой части ДУ

Рассмотрим метод решения линейных, неоднородных ДУ второго порядка.

Пусть имеем ДУ в форме y'' + py' + qy = f(x), где p,q- постоянные числа.

Решение этого уравнения должно состоять из суммы общего решения однородного уравнения: y'' + py' + qy = 0, $y_{od}(x) = C_1 y_1(x) + C_2 y_2(x)$ и частного решения y_{un} неоднородного уравнения: y'' + py' + qy = f(x), с правой частью f(x).

Итак, решаем последовательно две задачи.

Первая - это нахождение общего решения соответствующего однородного ДУ.

Вторая задача заключается в подборе частного решения, когда правую часть ДУ можно представить в специальной форме. Если правые части ДУ состоят из алгебраических композиций степенных, показательных и тригонометрических функций, то разработано достаточно много методов подбора частного решения. Рассмотрим только некоторые из них.

I. Пусть правая часть ДУ имеет вид $f(x) = P_n(x)e^{mx}$,

где $P_n(x)$ полином n -ого порядка с заданными коэффициентами.

Тогда частное решение неоднородного ДУ ищется в виде $y_q = x^k Q_n(x) e^{mx}$, где $Q_n(x)$ полином n -ого порядка, только с неизвестными коэффициентами. Величина k определяется из условия кратности корней характеристического уравнения и значением величины m из правой части ДУ. Возможны следующие варианты:

- a.) $\kappa_1 \neq \kappa_2 \neq m$, To k = 0;
- б.) $\kappa_1 \neq \kappa_2$, κ_1 или $\kappa_2 = m$, то k = 1;
- B.) $\kappa_1 = \kappa_2 = m$, To k = 2.

Пример 1. Решить неоднородное ДУ второго порядка: $y'' - 3y' + 2y = xe^{3x}$. Решение. **Первая задача** - это нахождение общего решения соответствующего однородного ДУ: y'' - 3y + 2y = 0, для которого характеристическое уравнение $\kappa^2 - 3\kappa + 2 = 0$, имеет действительные

различные корни $\kappa_1 = 1$, $\kappa_2 = 2$ и общее решение однородного ДУ второго порядка имеет вид $y_{oo} = C_1 e^x + C_2 e^{2x}$.

Вторая задача заключается в подборе частного решения ДУ. Правая часть ДУ имеет вид $f(x) = xe^{3x}$. В правой части ДУ содержится полином первой степени (в общем виде это (Ax+B)) и множитель e^{3x} . Можно предположить, что $y_q = (Ax+B)e^{3x}$. Это действительно так, поскольку ни один из корней характеристического уравнения не равен 3- численному показателю экспоненты в правой части уравнения. Коэффициенты A и B пока неизвестны. Для их отыскания используем заданное неоднородное ДУ. Находим первую и вторую производную частного решения $y_q = (Ax+B)e^{3x}$ и подставляем в ДУ: $y_q' = (3Ax + 3B + A)e^{3x}$, $y_q'' = (6A+9Ax+9B)e^{3x}$.

После сокращения на e^{3x} , получим алгебраическое уравнение 9Ax + 9B + 6A - 9Ax - 9B - 3A + 2Ax + 2B = x. Приведя подобные члены, получаем 3A + 2Ax + 2B = x. Приравнивая коэффициенты при одинаковых степенях переменной x, получаем 2 уравнения: $\begin{cases} 2A = 1 \\ 3A + 2B = 0 \end{cases}$, отсюда

 $A = \frac{1}{2}$, $B = -\frac{3}{4}$, частное решение ДУ имеет вид $y_{4} = (\frac{1}{2}x - \frac{3}{4})e^{3x}$.

Общее решение неоднородного уравнения:

$$y = C_1 e^x + C_2 e^{2x} + (\frac{1}{2}x - \frac{3}{4})e^{3x}$$
Other:
$$y = C_1 e^x + C_2 e^{2x} + (\frac{1}{2}x - \frac{3}{4})e^{3x}$$

Пример 2. Решить неоднородное ДУ второго порядка: $y'' - 2y' + y = (1+x)e^x$

Решение. **Первая задача** - это нахождение общего решения соответствующего однородного ДУ: y'' - 2y' + y = 0, для которого характеристическое уравнение $\kappa^2 - 2\kappa + 1 = 0$, имеет действительные кратные корни $\kappa_1 = \kappa_2 = 1$ и общее решение однородного ДУ второго порядка имеет вид $y_{oo} = (C_1 + C_2 x)e^x$.

Вторая задача заключается в подборе частного решения, когда правая часть ДУ имеет вид $f(x) = (1+x)e^x$

В правой части ДУ содержится полином первой степени, в общем виде это (Ax+B) и множитель e^x . Можно предположить что $y_q = (Ax+B)e^x$, но так как корни характеристического уравнения кратные и равны 1, а значение степени показателя в правой части ДУ также равно m=1, то выбираем вариант (в) и частное решение ищем в форме $y_q = x^2(Ax+B)e^x$. Находим первую и вторую производную частного решения и подставляем в ДУ

$$y'_{q} = (2Ax^{2} + 2xB + x^{2}A + Ax^{3} + Bx^{2})e^{x},$$

$$y''_{q} = (2Ax + 2B + 2Ax + 2Ax^{2} + 2Bx + 2Ax + Ax^{2} + 2Ax^{2} + 2Ax^$$

После сокращения на e^x , получим алгебраическое уравнение

$$6Ax + 2B + 2Ax^{2} + 4xB + 4Ax^{2} + Ax^{3} + Bx^{2} - 4Ax^{2} - 4Bx - 2Ax^{2} - 2Ax^{3} - Bx^{2} + Ax^{3} = 1 + x.$$

Приравнивая коэффициенты в правой и левой частях уравнения при одинаковых степенях x, получаем систему для определения неопределенных коэффициентов A и B.

$$x^3$$
 $0=0$ x^2 $0=0$. Получим $A=\frac{1}{6},\ B=\frac{1}{2}$. x^1 $6A=1$ x^0 $2B=1$

Частное решение неоднородного уравнения имеет вид:

$$y_{y} = \frac{x^{2}}{2}(1+\frac{x}{3})e^{x}$$
.

Общее решение неоднородного уравнения имеет вид:

$$y = (C_1 + C_2 x)e^x + \frac{x^2}{2}(1 + \frac{x}{3})e^x$$

Other:
$$y = (C_1 + C_2 x)e^x + \frac{x^2}{2}(1 + \frac{x}{3})e^x$$
.

2. Пусть правая часть ДУ имеет вид $(\hat{e}_1 = \alpha - i\beta, \hat{e}_2 = \alpha + i\beta)$

$$f(x) = Asin\beta x + Bcos\beta x$$

и если число $i\beta$ не является корнем характеристического уравнения, то частное решение ищется в виде $y = M sin\beta x +$

 $Ncos\beta x$, где M и N пока не известные числа.

Если же $i\beta$ является корнем, то $y = x(Msin\alpha x + Ncos\beta x)$

3. Пусть правая часть ДУ имеет вид

$$f(x) = e^{\alpha x} (P_n(x) \sin \beta x + Q_m(x) \cos \beta x)$$

и если число $\alpha \pm i \beta$ не являются корнями характеристического

уравнения, то частное решение ищется в виде.

$$y = e^{\alpha x} (R_n(x) \sin \beta x + R_m(x) \cos \beta x)$$

Здесь $P_n(x)$, $Q_m(x)$ заданные полиномы с известными коэффициентами, а полиномы $R_n(x)$, $R_m(x)$ - соответствующие по порядку полиномы, только с неизвестными коэффициентами.

Пример 3. Решить неоднородное ДУ: $y'' + 6y' + 10y = 80e^x \cos x$.

Решение. **Первая задача** - это нахождение общего решения соответствующего однородного ДУ: y'' + 6y' + 10y = 0 для которого

характеристическое уравнение

 $k^2 + 6k + 10 = 0$, $\Rightarrow k_{1,2} = -3 \pm i$. Общее решение однородного уравнения имеет вид:

$$y_{\text{од}} = (C_1 \sin x + C_2 \cos x)e^{-3x}$$

Вторая задача. Корни характеристического уравнения разные, комплексно сопряженные, и ни один из них по параметрам не совпадает с параметрами правой части ДУ: $\alpha = 1$, $\alpha \neq -3$. Поэтому частное решение ищем в виде

$$y = (Asinx + Bcosx)e^x$$

Определяем значения А и В подставляя в ДУ, которое рассматриваем как тождество. Находим первую и вторую производные частного решения

$$y' = (\sin x(A - B) + (A + B)\cos x)e^{x},$$

$$y'' = 2(A\cos x - B\sin x)e^{x}.$$

Тогда ДУ после сокращения на e^x превратится в соотношение $4BCosx + 12B(\cos x + \sin x) + 10(A\cos x + B\sin x) \equiv 80\cos x$. Отсюда получим уравнение при $\cos x : 8 \text{ B} + 16 \text{ A} = 80$ и уравнение при $\sin x : 16 \text{ B} - 8\text{A} = 0$. Решение этой системы дает значения A = 4, B = 2. Таким образом, частное решение ДУ имеет вид $y_{\perp} = e^x 2(2\cos x + \sin x)$.

OTBET:
$$y = e^{-3x} (C_1 \cos x + C_2 \sin x) + 2e^x (2\cos x + \sin x)$$
.