Heuristics and Local Search

Version 2 ©2009, 2001

José Fernando Oliveira, Maria Antónia Carravilla – FEUP

Approximate methods to solve combinatorial optimization problems

Heuristics

Aim to efficiently generate very good solutions. They do not find the optimal solution, or at least do not guarantee the optimality of the found solutions.

Heuristics characteristics

- "Short" running times
- Easy to implement
- Flexible
- Simple

Types of heuristics

- Constructive Build a solution, step by step, according to a set of rules defined before-hand.
- **Improvement** Start form a feasible solution (any one) and improve it by applying successive small changes.
- **Compound** First have a constructive phase and then an improvement phase.

These type of heuristics will be illustrated using the Traveling Salesperson Problem.

The Traveling Salesperson Problem (TSP)

The goal is to find the shortest path for a salesperson that leaves a city, visits n other cities and goes back to the initial city, without repeating any city.

Constructive heuristics

Build a solution, step by step, according to a set of rules defined before-hand. These rules concern:

- the choice of the initial sub-cycle (or starting point) -initialization;
- \bullet a criterion to choose the next element to add to the solution selection;
- the selection of the position where the new element will be inserted insertion.

TSP – Nearest neighbor

- 1. Initialization Start with a partial tour with just one city i, randomly chosen;
- 2. Selection Let (1, ..., k) be the current partial tour (k < n). Find city k + 1 that is not yet in the tour and that is closer to k.
- 3. Insertion Insert k+1 at the end of the partial tour.
- 4. If all cities are inserted then STOP, else go back to 2.

Nearest neighbor – exemple

Total length of the tour: 19

TSP – Nearest insertion of arbitrary city

- 1. Initialization Start with a partial tour with just one city i, randomly chosen; find the city j for which c_{ij} (distance or cost from i to j) is minimum
 - find the city j for which c_{ij} (distance or cost from i to j) is minimum and build the partial tour (i, j).
- 2. Selection Given a partial tour, arbitrary select a city k that is not yet in the partial tour.
- 3. Insertion Find the edge $\{i, j\}$, belonging to the partial tour, that minimizes $c_{ik} + c_{kj} cij$. Insert k between i and j.
- 4. If all cities are inserted then STOP, else go back to 2.

Nearest insertion of arbitrary city – example

Total length of the tour: 17

TSP – Nearest insertion

- 1. Initialization Start with a partial tour with just one city i, randomly chosen;
 - find the city j for which c_{ij} (distance or cost from i to j) is minimum and build the partial tour (i, j).
- 2. Selection Find cities k and j (j belonging to the partial tour and k not belonging) for which c_{kj} is minimized.
- 3. Insertion Find the edge $\{i, j\}$, belonging to the partial tour, that minimizes $c_{ik} + c_{kj} cij$. Insert k between i and j.
- 4. If all cities are inserted then STOP, else go back to 2.

This heuristic as a variant named "Farthest Insertion" that replaces the selection step by:

2. Selection – Find cities k and j (j belonging to the partial tour and k not belonging) for which $\min_{k,j} \{c_{k,j}\}$ is maximized.

TSP – Cheapest insertion

- 1. Initialization Start with a partial tour with just one city i, randomly chosen.
- 2. Selection Find cities k, i and j (i and j being the extremes of an edge belonging to the partial tour and k not belonging to that tour) for which $c_{ik} + c_{kj} cij$ is minimized.
- 3. Insertion Insert k between i and j.
- 4. If all cities are inserted then STOP, else go back to 2.

TSP – Convex hull^a

- 1. Initialization Start with a partial tour formed by the convex hull of all cities.
- 2. Selection For each city not yet inserted in the partial tour, find the edge $\{i, j\}$, belonging to the partial tour, that minimizes $c_{ik} + c_{kj} cij$. From all triplets $\{i, j, k\}$ evaluated in step 2, find the triplet $\{i^*, j^*, k^*\}$ for which $\frac{c_{i^*k^*} + c_{k^*j^*}}{c_{i^*j^*}}$ is minimum.
- 3. Insertion Insert k^* between i^* and j^* .
- 4. If all cities are inserted then STOP, else go back to 2.

^aConvex hull of a set A – convex shape that includes in its interior or frontier all the elements of set A

TSP – Nearest merger

- 1. Initialization Start with n partial tours formed, each one, by just one city i.
- 2. Selection Find two cities i and k (i belonging to a partial tour C and k belonging to another partial tour C') for which c_{ik} is minimized.
- 3. Insertion Let i, j, k and l be cities so that $\{i, j\} \in C$, $\{k, l\} \in C'$ and $c_{ik} + c_{jl} c_{ij} c_{kl}$ is minimized. Insert $\{i, k\}\}$ e $\{j, l\}\}$ and delete $\{i, j\}\}$ e $\{k, l\}\}$.
- 4. If all cities are inserted then STOP, else go back to 2.

The minimum spanning tree problem

- Definitions (for non-oriented graphs):
 - a tree is an acyclic connected graph;
 - a graph is connected if there is a path (sequence of edges) connecting any pair of vertices.

• Problem:

Find the tree of minimum total length (or cost) that supports all nodes of the graph (i.e. that connects all nodes).

• Applications:

- communication networks;
- power system networks.

—

Prim's algorithm (greedy procedure)

- 1. Select a node randomly and connect it to the nearest node;
- 2. Find the node that is nearest to a node already inserted in the tree, among those not yet inserted, and connect those two nodes;
- 3. If all nodes are already inserted then STOP, else go back to 2.

greedy procedure – Example

TSP – Minimum spanning tree

- 1. Build the minimum spanning tree that connects all cities.
- 2. Make a depth-first visit to the tree.
- 3. Insert shortcuts (replacing sequences of 2 ou more edges by just one edge) in the path generated by the depth-first visit, so that a tour is generated.

Minimum spanning tree – example

Total length of the tour: 21

Bibliography

- Stephan Mertens. TSP Algorithms in Action. Animated Examples of Heuristic Algorithms,

 http://www-e.uni-magdeburg.de/mertens/TSP/index.html
- David S. Johnson, Lyle A. McGeoch (1995). The Traveling Salesman Problem: A Case Study in Local Optimization,

 http://www.research.att.com/~dsj/papers/TSPchapter.pdf.
- Goldbarg, Marco Cesar e Luna, Henrique Pacca (2000). Otimização Combinatória e Programação Linear, Editora CAMPUS.
- Golden, B.L. and Stewart, W.R. (1985). *Empirical analysis of heuristics* in The Traveling Salesman Problem, John Wiley & Sons, Inc..
- Sousa, Jorge Pinho (1991). Apontamentos de Optimização Combinatória.