PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11) International Publication Number: WO 99/45235
E21B 47/10	A1	(43) International Publication Date: 10 September 1999 (10.09.99)
 (21) International Application Number: PCT/EPG (22) International Filing Date: 4 March 1999 (6) (30) Priority Data: 60/077,023 6 March 1998 (06.03.98) (71) Applicant (for all designated States except CA): INTERNATIONALE RESEARCH MAATSCHAF [NL/NL]; Carel van Bylandtlaan 30, NL-2596 Hague (NL). (71) Applicant (for CA only): SHELL CANADA I [CA/CA]; 400 - 4th Avenue S.W., Calgary, Alt 2H5 (CA). (72) Inventor: SMITH, David, Randolph; 861 White Oa Bellville, TX 77418 (US). 	SHEI PU B. HR T	BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ TM), European patent (AT, BE, CH, CY, DE, DK, ES, FJ FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI paten (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE SN, TD, TG). Published With international search report. Before the expiration of the time limit for amending th claims and to be republished in the event of the receipt of

(54) Title: INFLOW DETECTION APPARATUS AND SYSTEM FOR ITS USE

(57) Abstract

There is provided a method for monitoring fluid flow within a region to be measured of a subterranean formation, said method comprising placing at least one source within said subterranean formation; placing at least one sensor within said region to be measured, wherein each said at least one sensor is adjacent to at least one source such that said sensor measures changes to said fluid caused by said source; and providing at least one means for transmitting data from each said at least one sensor to at least one data collection device, said at least one data collection device capable of communicating with an operator.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВЈ	Benin	ΙE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/45235 PCT/EP99/01397

INFLOW DETECTION APPARATUS AND SYSTEM FOR ITS USE

Field of the Invention

This invention relates to a method for measuring fluid flow in a subterranean formation; in particular measurements of flow rates of liquids, gases, and mixed fluids in subterranean formations.

Background

5

10

15

20

25

30

Recent developments in the oil drilling industry of well bore construction techniques such as horizontal wells and multi-lateral wells, present new challenges to the completion and reservoir engineering disciplines. High rate horizontal wells in deep water conditions further push the technology tools the petroleum engineer has available to safely and prudently produce the reservoirs.

Classical methods of reservoir monitoring assume the permeability ("K") and height ("H") of the zone contributing to the production of the well is known. This "KH" is often confirmed with production logs on a periodic basis and is typically considered constant. The KH of a well is paramount for most reservoir calculations. In a horizontal well or a multi-lateral well, the H of the well bore penetrating the reservoir is known from electric logging methods, and more recently by logging while drilling techniques. However, the logged reservoir interval may not be the same as the H actually contributing to the well production and, in fact, the H may change with time.

The industry has adopted a laze faire attitude relating to the assumption of inflow performance in horizontal and multi-lateral wells. Grand assumptions regarding inflow well performance are made based on

5

10

15

20

25

30

surface data (i.e. flow rates, pressures, water cut, etc.), possible down hole pressure gauges, and rules of thumb. The reality is that these assumption can lead to poor well performance, poor reservoir management, completion equipment failures, and in the worst cases, catastrophic failure of the well.

The only method currently available to the reservoir or production engineer to monitor changes or losses in "H" is to run a wire line or tubing deployed production log during well interventions. These logs are difficult to interpret, particularly in horizontal and high angle This is due to the flow meters inability to measure the 3 phase flow rates, often referred in the literature as water hold up or gas blow by. procedure of production logging requires a rig mobilization, resulting in lost production during the rig up and rig down of the logging equipment, and presents a risk of loosing equipment in the well. Production logging is not always possible (e.g. some subsea completions or wells in which an electrical submersible pump (ESP) is installed). Moreover, since the production logging data is subject to interpretation, the decision to run the production-logging suite is often avoided. The end result is that the production is maintained by increasing the choke size at the surface. This can result in more damage, and ultimately in screen and well bore failures or large hydrate production and blowouts. Summary of the Invention

The method of the invention provides a means for monitoring fluid flow directly within a region to be measured of a subterranean formation, said method comprising:

placing at least one source within said subterranean formation;

PCT/EP99/01397

- 3 -

placing at least one sensor within said region to be measured, wherein each said at least one sensor is adjacent to at least one source such that said sensor measures changes to said fluid caused by said source;

providing at least one means for transmitting data from each said at least one sensor to at least one data collection device, said at least one data collection device capable of communicating with an operator.

There is also provided a method for monitoring fluid flow in a region to be measured of a well bore, while the well bore is on-line, said method comprising:

placing at least one source selected from a thermal source, an acoustic source, and combinations thereof within said region to be measured;

placing at least one sensor selected from a thermal sensor, an acoustic sensor, and combinations thereof within said region to be measured, wherein each said at least one sensor is adjacent to at least one source such that said sensor measures changes to said fluid caused by said sources;

providing at least one means for transmitting data from each said at least one sensor to at least one data collection device, said at least one data collection device capable of communicating with an operator.

Detailed Description

WO 99/45235

5

10

15

20

25

30

The method of the invention provides a means for monitoring the flow of fluid, wherein fluid means liquids or gases or mixtures of liquids and gases, from subterranean formations. Measurement takes place directly in the region where a measurement is desired. In the case of a flowing well, the measurements may be taken while the well is producing. Thermal and/or acoustic sources are placed in the fluid flow path and sensors capable of detecting temperature or acoustic

changes placed near the sources detect changes to the fluid caused by the sources.

5

10

15

20

25

30

One embodiment of the invention provides a method for monitoring fluid flow within a region to be measured of a subterranean formation. At least one source is placed within the formation. Placement is relatively permanent, meaning the source is set and then left in the measurement zone. At least one sensor is also placed within the region to be measured. Each sensor should be adjacent to one or more sources, in close enough proximity to measure changes to the fluid caused by the source(s). It is necessary to also provide at least one means for transmitting data from the sensors to at least one data collection device. The data collection device may be subterranean, on the surface, or in the air but it must be capable of communicating with an operator. used herein, an operator may be an object, such as an operating station, or a human.

The sources may be optical sources, electrical heat sources, acoustic sources, or combinations thereof. Examples include thermisters, optical heaters, continual heating elements, electric cables, sonar generators, and vibration generators. Because it is optimum to limit restrictions in the formation, the preferred sensors are optical fibres, which are small enough to be non-intrusive. The optical fibres may also act as the data transmission means, thereby serving two purposes. The sources and the sensors are preferably oriented perpendicular to the fluid flow.

When the subterranean formation is a well, the fluid flow region to be measured is typically within the well bore, be it vertical, horizontal or deviated. A means for deploying the sensors and data links in a fairly nonintrusive manner is via hollow tubular members. WO 99/45235 PCT/EP99/01397

The system of the invention is expected to perform well using applied well technology known as Micro Optical Sensing Technology ("MOST"). MOST allows for the miniaturization of sensing equipment in submersible equipment. Fundamentally, oil and gas well environments have restricted geometry and hostile conditions of temperature and pressure. MOST is able to function in these environments due to it's ability to use very small diameter data links (optic fibres) and to use sensors that can withstand temperatures above 200 °C.

5

10

15

20

25

30

35

Since the sources, sensors and data links are permanently installed in the desired region of the formation, there is no need for well interventions, such as production logging. The method can provide a continual inflow performance profile of the formation on a real time basis and multiple flow detection nodes along the formation can be monitored.

The use of thermal sources and sensors will be used as an example. A series of electrically or optically powered heat sources may be placed along a well bore axis parallel to a series of thermal sensors. The thermal sources may be in many forms, including but not limited to single point heating elements like thermisters, optical heaters, or a continual heating element like electric cable.

The heat sensors are preferably single or multiple optic fibres. The fibres may be deployed into the well in multiple means and in multiple geometry. An example of deployment which will protect the fibres from hydrogen exposure is to arrange the temperature sensors and data links in small hollow members, such as tubes. The flow detection system is formed by placing the optic fibres in the flow stream before the heaters, after the heaters, or both. Other embodiments uses the optic fibres and heaters deployed parallel to one another, surrounding one

another in coil configurations, and many other geometry's. The preferred embodiment places the heat source and thermal sensors perpendicular to the fluid flowing in the well bore, such that the heat source heats the fluid while the thermal sensors measure the heat change in the fluid stream flowing over the heat source. This system then forms a series of classic thermal flow meters according to the following simplified heat flow equation:

 $Q = Wc_p (T_2 - T_1)$

where

5

15

20

25

30

35

Q = heat transferred (BTU/Hr);

W = mass flow rate of fluid (lbm/Hr); and

 c_p = specific heat of fluid (BTU/lbm °F).

The accuracy of the flow meter is dependent on the accuracy of specific heat data for the flowing fluids. The specific heat of the fluids in the well will change with time, flowing pressures, and reservoir conditions (e.g. coning).

Optimum well production requires the heat sources and temperature measurement devices to be small and non-intrusive to the well bore inside diameter. Non-intrusive deployment allows for the well to be fully opened and thus allows for stimulation, squeeze, or logging techniques to be performed through the completion with the sources, sensors and data links permanently installed.

The preferred sensors and/or data links of the invention are optic fibres. Optic fibres are exotic glass fibres which are available with many different coatings and by various different manufacturing methods that affect their optical characteristics. Optic fibres have a rapid decrease in functionality when exposed to hydrogen, and of course subterranean water is a readily available hydrogen carrier. Therefore the fibres must be

WO 99/45235 - 7 -

placed in a carrier. But other characteristics of optic fibres allow one fibre to read multiple changes along the fibre's length, an obvious advantage.

5

10

15

20

25

30

Fibers may be used in oil and gas wells in conjunction with Optical Time Delay Reflectometry ("OTDR") devices (commonly referred to as "intrinsic measurement"). Intrinsic sensing along the fibre is done with application of quantum electrodynamics ("QED"). relates to the science of sub-atomic particles like photons, electrons, etc. For this application, interest is in the photons travelling through a very special glass sub-atomic matrix. The probability, or probability amplitude, of the photon interacting with a silicon dioxide sub atomic structure is known for each specialized optic fibre. The resulting back scattering of light as a function of thermal affects in the glass subatomic structure has a very well known relationship to the index of refraction of the optic fibre. Knowledge of the power and frequency of the light being pumped, or launched down the optic fibre allows for calculation of the predicted light and frequency emitted or back scattered at a given length along the optic fibre.

The process of the invention uses OTDR and thermal and/or acoustic sources to measure flow in wells. changes at each node may be monitored versus time, providing a qualitative measurement on a permanent basis in real time. Knowing the glass and laser light being used, a back scattering returning power can be measured with "OTDR" according to the following equation:

 $P_{bs}(1) = \frac{1}{2} P_0 \Delta t v_a C_s NA^2 exp (\int -2\alpha dx)$ where

> Pbs = backscattering power returning from distance 1; P_0 = launch power;

 Δt = source time pulse width, in time units;

PCT/EP99/01397 WO 99/45235

 $v_a = group velocity;$

 C_S = scattering constant;

NA = numerical aperture of fibre; and

 α = total loss of attenuation coefficient.

OTDR can successfully and very repeatable measure the back scattering changes as a function of temperature caused by a laser pulsed light wave down an optic fibre, by relating Cs to and α .

$$C_s \cong (\alpha_r)_{CO} + (\alpha_s)_{CO} + P_C/P_t (\alpha_s)_d$$

10 and

5

15

20

25

30

$$\alpha = \alpha_{co} + P_c/P_t (\alpha_d)$$

where

 α_r = Raman scattering coefficient;

 α_s = Rayleigh scattering coefficient;

() co = parameter associated with fibre core;

() cl = parameter associated with fibre cladding; and

 P_{cl}/P_{total} = ratio of total power exists in cladding due to evanescent wave effects.

The OTDR equipment uses a laser source, an optic fibre; a directional coupler connected to the fibre, an optoelectronic receiver, signal processing, and data acquisition equipment.

The method of the invention allows simple actions to be performed downhole without surface intervention, and allows reservoir performance downhole to be monitored using 4D seismic and other technologies. The present invention may also be applied to other flow processes (i.e. pipelines, refining processes, etc.). It will be apparent to one of ordinary skill in the art that many changes and modifications may be made to the invention without departing from its spirit or scope as set forth herein.

PCT/EP99/01397 WO 99/45235 - 9 -

CLAIMS

1. A method for monitoring fluid flow within a region to be measured of a subterranean formation, said method comprising:

placing at least one source within said subterranean formation;

5

10

15

20

25

30

placing at least one sensor within said region to be measured, wherein each said at least one sensor is adjacent to at least one source such that said sensor measures changes to said fluid caused by said source;

providing at least one means for transmitting data from each said at least one sensor to at least one data collection device, said at least one data collection device capable of communicating with an operator.

- 2. A method according to claim 1 wherein said source is selected from an optical source, an electrical heat source, an acoustic source, and combinations thereof.
- 3. A method according to claim 2 wherein said source is selected from a thermister, an optical heater, a continual heating element, an electric cable, a sonar generator, a vibration generator, and combinations thereof.
- 4. A method according to claim 1 wherein said sensor is one or more optical fibres.
- 5. A method according to claim 1 wherein said one or more sensor and said one or more source are oriented perpendicular to said fluid flow.
- 6. A method for monitoring fluid flow in a region to be measured of a well bore, said method comprising:

placing at least one source selected from a thermal source, an acoustic source, and combinations thereof within said region to be measured;

5

10

15

20

25

placing at least one sensor selected from a thermal sensor, an acoustic sensor, and combinations thereof within said region to be measured, wherein each said at least one sensor is adjacent to at least one source such that said sensor measures changes to said fluid caused by said sources;

PCT/EP99/01397

providing at least one means for transmitting data from each said at least one sensor to at least one data collection device, said at least one data collection device capable of communicating with an operator.

- 7. A method according to claim 6 wherein said source is selected from an optical source, an electrical heat source, an acoustic source, and combinations thereof.
- 8. A method according to claim 7 wherein said thermal source is selected from a thermister, an optical heater, a continual heating element, an electric cable, a sonar generator, a vibration generator, and combinations thereof.
- 9. A method according to claim 6 wherein said sensor is one or more optical fibres.
- 10. A method according to claim 9 wherein said sensors and data links are deployed in hollow tubular members.
- 11. A method according to claim 6 wherein said one or more sensor and said one or more source are oriented perpendicular to the fluid flow in said region to be measured of said wellbore.

INTERNATIONAL SEARCH REPORT

Ir ational Application No PCT/EP 99/01397

				
A. CLASSII IPC 6	FICATION OF SUBJECT MATTER E21B47/10			
According to	rtternational Patent Classification (IPC) or to both national classifica	tion and IPC		
B. FIELDS	SEARCHED			
Minimum do IPC 6	cumentation searched (classification system tollowed by classification E21B G01F	in symbols)		
	ion searched other than minimum documentation to the extent that su		rched	
Electronic d	ata base consulted during the international search (name of data bas	e and, where practical, search terms used)		
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to claim No.	
X	EP 0 442 188 A (TEXACO DEVELOPMEN 21 August 1991	T CORP)	1-3,6,7	
Y	see abstract see page 2, column 1, line 1 - li	ne 21	4,9,11	
	see page 3, column 3, line 32 - c line 30; claim 1			
X	EP 0 481 141 A (TEXACO DEVELOPMEN 22 April 1992 see abstract see page 2, column 1, line 1 - li see page 2, column 2, line 4 - li see page 3, column 3, line 42 - c line 31; claims 1,2	ne 35	1-3,6,7	
		/		
		′		
	her documents are listed in the continuation of box C.	Patent family members are listed in	n annex.	
° Special ca	tegories of cited documents :	T later document published after the inter		
	ent defining the general state of the art which is not lered to be of particular relevance	or priority date and not in conflict with t cited to understand the principle or the invention		
"E" earlier o	document but published on or after the international	"X" document of particular relevance; the cla		
"L" docume	nt which may throw doubts on priority claim(s) or	cannot be considered novel or cannot to involve an inventive step when the doc	ument is taken alone	
citation	n or other special reason (as specified)	"Y" document of particular relevance; the cla cannot be considered to involve an involve	entive step when the	
"O" docume other r	ent referring to an oral disclosure, use, exhibition or means	document is combined with one or mor ments, such combination being obvious		
"P" docume later th	ent published prior to the international filling date but nan the priority date claimed	in the art. "&" document member of the same patent for	smily	
Date of the	actual completion of the International search	Date of mailing of the international sear	ch report	
2	9 June 1999	05/07/1999		
Name and n	nailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer		
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,	lamas D		
	Fax: (+31-70) 340-3016	Lorne, B		

2

INTERNATIONAL SEARCH REPORT

In ational Application No PCT/EP 99/01397

C /Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category '		Relevant to claim No.
X Y	FR 2 707 697 A (FIS) 20 January 1995 see page 2, line 30 - page 3, line 23 see page 6, line 20 - page 7, line 11; claims 1,2; figure 4B	1-3,5 11
Y	EP 0 508 894 A (SCHLUMBERGER LTD; SCHLUMBERGER TECHNOLOGY BV (NL); SCHLUMBERGER HO) 14 October 1992 see abstract see page 2, column 1, line 1 - line 11 see page 2, column 2, line 20 - line 36 see page 3, column 4, line 37 - line 54; claims 4,7,9-11	4,9
A	US 5 208 650 A (GIALLORENZI THOMAS G) 4 May 1993 see column 1, line 5 - line 13 see column 2, line 50 - line 56; claims 1-3	8
A	US 5 493 626 A (SCHULTZ PHILIP K ET AL) 20 February 1996 see column 1, line 10 - line 13 see column 3, line 46 - column 4, line 6; claim 1	

INTERNATIONAL SEARCH REPORT

information on patent family members

In ational Application No
PCT/EP 99/01397

Patent document cited in search report		Publication date		tent family ember(s)	Publication date
EP 0442188	Α	21-08-1991	US	4905203 A	27-02-1990
EP 0481141	Α	22-04-1992	US DK	4982383 A 481141 T	01-01-1991 03-10-1994
FR 2707697	Α	20-01-1995	NONE		
EP 0508894	Α	14-10-1992	FR	2675202 A	16-10-1992
US 5208650	Α	04-05-1993	NONE		
us 5493626	Α	20-02-1996	CA EP NO WO	2140748 A 0656127 A 950217 A 9428450 A	08-12-1994 07-06-1995 20-03-1995 08-12-1994

THIS PAGE BLANK (USPTO)