A new spatial model for points above a threshold

April 15, 2014

3 1 Introduction

2

4 2 Statistical model

- Let $Y_t(\mathbf{s}) \in \mathcal{R}$ be the observed value at location \mathbf{s} on day t. To avoid bias in estimating tail parameters, we
- 6 model the thresholded data

$$\tilde{Y}_t(\mathbf{s}) = \begin{cases} Y_t(\mathbf{s}) & Y_t(\mathbf{s}) > T \\ T & Y_t(\mathbf{s}) \le T \end{cases}$$
(1)

 7 where T is a pre-specified threshold.

We first specify a model for the complete data, $Y_t(\mathbf{s})$, and then study the induced model for thresholded data, $\tilde{Y}_t(\mathbf{s})$. The full data model is given in Section 2.1 assuming a multivariate normal distribution with a different variance each day. Computationally, the values below the threshold are updated using standard Bayesian missing data methods as described in Section 3.

2 2.1 Complete data

Consider the spatial process

$$Y_t(\mathbf{s}) = X_t(\mathbf{s})\beta + e_t(\mathbf{s}) \tag{2}$$

$$e_t(\mathbf{s}) = \sigma \delta |u_t(\mathbf{s})| + v_t(\mathbf{s})$$
 (3)

where $u_t(\mathbf{s}) = u_{tl}$ if $s \in P_{tl}$ where P_{t1}, \ldots, P_{tL} form a partition, and $u_{tl} \stackrel{iid}{\sim} N(0,1)$, $\delta \in (-1,1)$ controls skew, and $v_t(\mathbf{s})$ is a spatial process with mean zero and variance $\sigma^2(1-\delta^2)$. Then $Y_t(\mathbf{s})$ is skew normal within each partition (?). We model this with a Bayesian hierarchical model as follows. Let w_{t1}, \ldots, w_{tL} be partition centers so that P_{tl} includes all spatial locations \mathbf{s} that are within the partition. Then

$$Y_t(\mathbf{s}) \mid \Theta = \mu_t(\mathbf{s}) + v_t(\mathbf{s}) \tag{4}$$

$$\mu_t(\mathbf{s}) = X_t(\mathbf{s})\beta + \sigma\delta|u_{tl}| \tag{5}$$

where $l = \arg\min_j ||\mathbf{s} - w_j||$ and $\Theta = \{u_{t1}, \dots, u_{tL}, w_{t1}, \dots, w_{tL}, \beta, \rho, \nu, \sigma\}$ are the random effects, knot locations, and parameters for the mean, and spatial covariance.

15 3 Computation

- The MCMC for this model is fairly straightforward. First, we impute values below the threshold. Then, we
- update Θ using random walk MH or Gibbs sampling when appropriate. Finally, we make spatial predictions.
- 18 Each requires the joint distribution for the complete data given Θ. As defined in 4, the distribution of
- 19 $Y_t(\mathbf{s}) \mid \Theta$ is the usual multivariate normal distribution with a Matérn spatial covariance structure.

20 3.1 Imputation

- We can use Gibbs sampling to update $\tilde{Y}_t(\mathbf{s})$ for observations that are below T, the thresholded value. Given
- Θ , $Y_t(\mathbf{s})$ has truncated normal full conditional with these parameter values. So we sample $Y_t(\mathbf{s}) \sim \text{TN}_{(-\infty,T)}$

23 3.2 Parameter updates

To update Θ given the current value of the complete data Y_1, \dots, Y_T , we use a standard Gibbs updates for

25 all parameters except for the knot locations which are done using a Metropolis update. See Appendix A.1

for details regarding Gibbs sampling and $|u_t(\mathbf{s})|$.

27 3.3 Spatial prediction

Given Y_t the usual Kriging equations give the predictive distribution for $Y_t(\mathbf{s}^*)$ at prediction location (\mathbf{s}^*)

29 4 Data analysis

5 Conclusions

31 Acknowledgments

32 Appendix A.1: Posterior distributions

33 Half-normal

Let $u=\xi+\sqrt{\eta}|x|$ where $X\sim N(0,1)$. Then ? show that U follows a half-normal distribution which we shall write as $U\sim \mathrm{HN}(\xi,\theta)$ where $\theta=\frac{1}{\eta}$ is a precision term. The density is given by

$$f_U(u) = \frac{\sqrt{\theta\pi}}{\sqrt{2}} \exp\left(-\frac{(u-\xi)^2\theta}{2}\right), \quad u > \xi.$$
 (6)

Conditional posterior of U|Y

Let $Y_i|U \sim N(U, \sigma^2)$, i = 1, ..., n, let $\tau = 1/\sigma^2$, and let $\pi(U) \propto \exp\left\{-\frac{u^2\theta}{2}\right\}$. Then the conditional posterior of $U \mid ...$ is

$$\pi(U \mid \dots) \propto \exp\left\{-\frac{u^2\theta}{2}\right\} \exp\left\{-\sum_{i=1}^n \frac{\tau(y_i - u)^2}{2}\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\left[u^2\theta + \sum_{i=1}^n \tau(y_i^2 - 2y_i u + u^2)\right]\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\left(u - \frac{\tau\sum_{i=1}^n y_i}{\theta + n\tau}\right)^2(\theta + n\tau)\right\}$$

$$\propto \text{HN}(\xi^*, \theta^*)$$
(7)

where

$$\xi^* = \frac{\tau \sum_{i=1}^n y_i}{\theta + n\tau}$$
$$\theta^* = \theta + n\tau$$

Conditional posterior of $U_{tl} \mid \dots$

For a single day, consider $Y(\mathbf{s})$ as given by (4) with two partitions. Then conditioned on the observations in partition 2,

$$Y_1 \mid Y_2 \sim N_{n_1}(\overline{\mu}, \overline{\Sigma})$$
 (8)

where $\overline{\mu} = \mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(y_{t2} - \mu_2)$, and $\overline{\Sigma} = \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}$. Let $U_l \stackrel{iid}{\sim} \text{HN}(0, \theta_0), l = 1, 2$. Then conditional posterior of $U_1 \mid \ldots$ is

$$\pi(U_1 \mid \mathbf{Y}_1) \propto \exp\left\{-\frac{1}{2}u_1^2\theta_0 - \frac{1}{\sigma^2(1-\delta^2)}\left[\mathbf{Y}_1 - \overline{\mu}\right]^T \overline{\Sigma}^{-1}\left[\mathbf{Y}_1 - \overline{\mu}\right]\right\}$$

$$\left\{-\frac{1}{2}\sum_{i=1}^{n} \frac{2}{\pi} \sum_{i=1}^{n-1} \frac{1}{\pi}\right\}$$
(9)

$$\propto \exp\left\{-\frac{1}{2}\left[\theta_0 + \frac{\sigma^2 \delta^2 \mathbf{1}^T \overline{\Sigma}^{-1} \mathbf{1}}{\sigma^2 (1 - \delta^2)}\right] u_1^2 - 2u_1 \mathbf{1}^T \overline{\Sigma}^{-1} [\mathbf{Y}_1 - X_1 \beta - \Sigma_{12} \Sigma_{22}^{-1} (\mathbf{Y}_2 - \mu_2)]\right\}$$
(10)

$$\propto \exp\left\{-\frac{1}{2}(u_1 - \xi^*)^2(\theta^*)\right\}$$
 (11)

where

$$\xi^* = \frac{\sigma \delta \mathbf{1}^T \overline{\Sigma}^{-1} \left[\mathbf{Y}_1 - X_1 \beta - \Sigma_{12} \Sigma_{22}^{-1} (\mathbf{Y}_2 - \mu_2) \right]}{\theta_0 + \frac{\delta^2 \mathbf{1}^T \overline{\Sigma}^{-1} \mathbf{1}}{(1 - \delta^2)}}$$
(12)

$$\theta^* = \theta_0 + \frac{\delta^2 \mathbf{1}^T \overline{\Sigma}^{-1} \mathbf{1}}{(1 - \delta^2)} \tag{13}$$

Conditional posterior of $\beta \mid \dots$

Let $\beta \sim N_p(0, \Lambda_0)$ where Λ_0 is a precision matrix. Then

$$\pi(\beta \mid \ldots) \propto \exp\left\{-\frac{1}{2}\beta^{T}\Lambda_{0}\beta - \frac{1}{2}[\mathbf{Y}_{t}(\mathbf{s}) - X_{t}(\mathbf{s})\beta - \sigma\delta|u_{t}|]^{T}\Sigma^{-1}[\mathbf{Y}_{t}(\mathbf{s}) - X_{t}(\mathbf{s})\beta - \sigma\delta|u_{t}|]\right\}$$

$$\propto \exp\left\{-\frac{1}{2}\beta^{T}\Lambda_{p}\beta - 2[\beta^{T}X_{t}(\mathbf{s})\Sigma^{-1}(\mathbf{Y}_{t}(\mathbf{s}) + \sigma\delta|u_{t}|)]\right\}$$

$$\propto N_{p}(\mu_{p}, \Lambda_{p})$$
(14)

where

$$\mu_p = \Lambda_p^{-1} \left[X_t(\mathbf{s})^T \Sigma^{-1} (\mathbf{Y}_t(\mathbf{s}) + \sigma \delta | u_t |) \right]$$

$$\Lambda_p = \left(\Lambda_0 + X_t(\mathbf{s})^T \Sigma^{-1} X_t(\mathbf{s}) \right)$$

and Λ_p is a precision matrix.

Appendix A.2: MCMC Details

39 Priors