

Overview of Previous Lectures

- Chapter 1: The Foundations: Logic and Proofs
- 1.1 Propositional Logic
- Statement, Proposition, Truth value
- Propositional symbol, Open proposition
- Compound Propositions
- Operators
- Conditional statements
- Truth tables of compound propositions
- Precedence of logical operators
- Logic and bit operation
- 1.2 Application of Propositional Logic
- Translating English Statement
- System Specifications
- Boolean Searches
- Logic Puzzles
- Logic Circuits

Converse

• The proposition

$$d \rightarrow b$$

is called the converse of

$$p \rightarrow q$$

Note that

$$\mathbf{q} \rightarrow \mathbf{p} \stackrel{!}{=} \mathbf{p} \rightarrow \mathbf{q}$$

Converse

• "If it is raining, then the home team wins."

The converse is

• "If the home team wins, then it is raining."

$q \rightarrow p \not\equiv p \rightarrow q$

р	q	$p \rightarrow q$	q → p
T	T	T	T
Т	F	F	Т
F	Т	Т	F
F	F	Т	Т

Contrapositive

• The proposition

$$\neg q \rightarrow \neg p$$

is called the contrapositive of

$$b \rightarrow d$$

Note that

$$\neg q \rightarrow \neg p \equiv p \rightarrow q$$

Contrapositive

• "If it is raining, then the home team wins."

The contrapositive is

• "If the home team does not win, then it is not raining."

$$\neg q \rightarrow \neg p \equiv p \rightarrow q$$

р	q	$\mathbf{p} o \mathbf{q}$	¬р	¬q	¬q →¬p
Т	Т	Т	F	F	Т
т	F	F	F	Т	F
F	Т	Т	т	F	Т
F	F	Т	Т	Т	Т

$$\neg q \rightarrow \neg p \equiv p \rightarrow q$$

р	q	$p \rightarrow q$	¬р	¬q	¬q → ¬p
Т	Т	Т	F	F	Т
Т	F	F	F	Т	F
F	Т	Т	Т	F	Т
F	F	Т	Т	Т	Т

Inverse

• The proposition

$$\neg p \rightarrow \neg c$$

is called the inverse of

$$p \rightarrow q$$

Note that

$$\neg p \rightarrow \neg q ! \equiv p \rightarrow q$$

Inverse

• "If it is raining, then the home team wins."

The inverse is

• "If it is not raining, then the home team does not win."

$$\neg p \rightarrow \neg q \mid \equiv p \rightarrow q$$

р	q	$p \rightarrow q$	¬р	¬ч	¬р →¬q
Т	Т	Т	F	F	т
Т	F	F	F	Т	т
F	Т	Т	Т	F	F
F	F	Т	Т	Т	т

$$\neg p \rightarrow \neg q \mid \equiv p \rightarrow q$$

р	q	$p \rightarrow q$	¬р	¬q	¬p→¬q
т	т	Т	F	F	Т
т	F	F	F	Т	Т
F	Т	Т	т	F	F
F	F	Т	т	т	Т

TAUTOLOGY

A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it, is called a tautology.

Examples:

- R∨(¬R)
- $\cdot \neg (P \land Q) \leftrightarrow (\neg P) \lor (\neg Q)$

CONTRADICTION

A compound proposition that is always false is called a contradiction.

Examples:

- R∧(¬R)
- $\cdot \neg (\neg (P \land Q) \leftrightarrow (\neg P) \lor (\neg Q))$

CONTINGENCY

A compound proposition that is neither a tautology nor a contradiction is called a contingency.

• **b** ∨ **d**

Some Important Tautologies

$$p \land (p \rightarrow q) \rightarrow q$$

$$\neg q \land (p \rightarrow q) \rightarrow \neg p$$

$$(p \lor q) \land \neg p \rightarrow q$$

Some Important Contingencies

$$q \land (p \rightarrow q) \rightarrow p$$

LOGICAL EQUIVALENCE

 The compound propositions p and q are called logically equivalent if

 $p \leftrightarrow q$ is a tautology.

• The notation $\mathbf{p} \equiv \mathbf{q}$ denotes that p and q are logically equivalent.

LOGICAL EQUIVALENCE

$$p \equiv q$$

- The symbol ≡ is not a logical connective
 - Hence, $p \equiv q$ is not a compound proposition, rather it is the statement that $p \leftrightarrow q$ is a tautology.
- The symbol

 is sometimes used instead of

 to denote logical equivalence.

LOGICAL EQUIVALENCE

- Definition: two propositional statements S1 and S2 are said to be (logically) equivalent, denoted S1 \equiv S2 if
 - They have the same truth table, or
 - S1 ⇔ S2 is a tautology
- Equivalence can be established by
 - Constructing truth tables
 - Using equivalence laws

LOGICAL EQUIVALENCE using TRUTH TABLES

Prove that $\neg (P \land Q)$ and $(\neg P) \lor (\neg Q)$ are logically equivalent and $\neg (P \land Q) \longleftrightarrow (\neg P) \lor (\neg Q)$ is a Tautology

Р	Q	¬(P∧Q)	(¬P)∨(¬Q)	$\neg (P \land Q) \leftrightarrow (\neg P) \lor (\neg Q)$
T	T	F	F	T
T	F	T	Т	T
F	T	T	Т	T
F	F	T	Т	Т

A VERY IMPORTANT EQUIVALENCE

• $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent

	TABLE 4 Truth Tables for $\neg p \lor q$ and $p \to q$.							
p	\boldsymbol{q}	$\neg p$	$\neg p \lor q$	p o q				
Т	T	F	T	T				
Т	F	F	F	F				
F	T	T	Т	T				
F	F	T	Т	T				

DE MORGAN'S LAWS

TABLE 2 De Morgan's Laws.

$$\neg(p \land q) \equiv \neg p \lor \neg q$$

$$\neg(p \lor q) \equiv \neg p \land \neg q$$

DE MORGAN'S LAWS

TABL	TABLE 3 Truth Tables for $\neg (p \lor q)$ and $\neg p \land \neg q$.						
p	\boldsymbol{q}	$p \lor q$	$\neg (p \lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$	
T	T	T	F	F	F	F	
T	F	T	F	F	T	F	
F	T	T	F	T	F	F	
F	F	F	T	T	T	T	

DE MORGAN'S LAWS

Express the negations of

- "Miguel has a cellphone and he has a laptop computer".
- "Heather will go to the concert or Steve will go to the concert."

DE MORGAN'S LAWS

- "Miguel has a cellphone and he has a laptop computer"
- "Heather will go to the concert or Steve will go to the concert."

- "Miguel does not have a cellphone or he does not have a laptop computer."
- "Heather will not go to the concert and Steve will not go to the concert."

SOME IMPORTANT EQUIVALENCES

Equivalence	Name
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws

LOGICAL EQUIVALENCES of DISTRIBUTIVE LAW

Show that p V (q Λ r) and (p V q) Λ (p V r) are logically equivalent. This is the distributive law of disjunction (OR) over conjunction (AND)

p	\boldsymbol{q}	r	$q \wedge r$	$p \lor (q \land r)$	$p \lor q$	$p \lor r$	$(p \lor q) \land (p \lor r)$
Т	T	T	Т	T	T	T	Т
T	T	F	F	T	T	T	T
T	F	T	F	T	T	Т	T
T	F	F	F	Т	T	T	T
F	T	T	T	T	T	T	T
F	T	F	F	F	T	F	F
F	F	T	F	F	F	T	F
F	F	F	F	F	F	F	F

LOGICAL EQUIVALENCES INVOLVING CONDITIONAL STATEMENTS

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

LOGICAL EQUIVALENCES INVOLVING BICONDITIONAL STATEMENTS

TABLE 8 Logical Equivalences Involving Biconditional Statements.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

CONSTRUCTING NEW LOGICAL EQUIVALENCES

Using already Established Equivalences

Exercises

Show that $(P \rightarrow Q) \land (P \rightarrow R) \equiv P \rightarrow (Q \land R)$ by equivalence laws:

LHS =
$$(P \rightarrow Q) \land (P \rightarrow R)$$

= $(\neg P \lor Q) \land (\neg P \lor R)$ Implication Law: $P \rightarrow Q = \neg P \lor Q$
= $\neg P \lor (Q \land R)$ Distributive Law: $P \lor (Q \land R) = (P \lor Q) \land (P \lor R)$

RHS =
$$P \rightarrow (Q \land R)$$

= $\neg P \lor (Q \land R)$ Implication Law: $P \rightarrow Q = \neg P \lor Q$

Hence LHS = RHS

Show that $\neg(p \rightarrow q)$ and $p \land \neg q$ are logically equivalent using Equivalence Laws.

LHS =
$$\neg (p \rightarrow q)$$

 $\equiv \neg (\neg p \lor q)$ Implication Law: $P \rightarrow Q = \neg P \lor Q$
 $\equiv \neg (\neg p) \land \neg q$ Second DeMorgan law: $\neg (P \lor Q) = \neg P \land \neg Q$
 $\equiv p \land \neg q$ Double Negation Law: $\neg (\neg P) = P$

= RHS

Show that $\neg(p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent.

$$\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg (\neg p \land q) \qquad \text{Second DeMorgan law: } \neg (P \lor Q) = \neg P \land \neg Q$$

$$\equiv \neg p \land [\neg (\neg p) \lor \neg q] \qquad \text{First DeMorgan law: } \neg (P \land Q) = \neg P \lor \neg Q$$

$$\equiv \neg p \land (p \lor \neg q) \qquad \text{Double Negation Law: } \neg (\neg P) = P$$

$$\equiv (\neg p \land p) \lor (\neg p \land \neg q) \qquad \text{Distributive Law: } P \land (Q \lor R) = (P \land Q) \lor (P \land R)$$

$$\equiv \mathbf{F} \lor (\neg p \land \neg q) \qquad \text{Negation Law: } P \land \neg P = F$$

$$\equiv (\neg p \land \neg q) \lor \mathbf{F} \qquad \text{Commutative Law: } P \lor \mathbf{Q} = Q \lor P$$

$$\equiv \neg p \land \neg q \qquad \text{Identity Law: } P \lor \mathbf{F} = \mathbf{P}$$

Summary

Chapter 1: The Foundations: Logic and Proofs

- 1.3 Propositional Equivalence
- Tautology vs Contradiction
- Logical Equivalence
 - DeMorgan's Law,
 - Other Laws of Equivalence
- Constructing New Logical Equivalences
 - Using Truth Tables
 - Using Laws of Equivalences
- Propositional Satisfiability

