Análisis estadístico con Jamovi

Parte III: Pruebas de Hipótesis

Juan R Gonzalez

Bioinformatics Research Group in Epidemiology, Barcelona Institute for Global Health (ISGlobal) and

Department of Mathematics, Autonomous University of Barcelona (UAB)

http://brge.isglobal.org

Tests para datos categóricos (Chi-cuadrado)

Pulso, ejercicio físico y fármaco

Factores que se asocian al aumento de la frecuencia cardiaca (pulso.txt)

- IB: Número de identificación
- Sexo: 1=Hombre; 2=Mujer
- Fumador: 1=sí; 2=no
- Edad: Edad en años
- FC1: Frecuencia cardiaca antes del ejercicio
- FC2: Frecuencia cardiaca después del ejercicio
- FC2FC1 : Incremento de la frecuencia cardiaca
- Status: Nivel de entrenamiento físico 1, 2 ó 3
- Farmaco: 1=Fármaco1; 2=Fármaco2

Pulso, ejercicio físico y fármaco

- HIPÓTESIS: Sospecho que en mi población la prevalencia de fumadores es menor que en la población general (π=0.3)
- PREGUNTA CIENTÍFICA: ¿La prevalencia de fumadores es de 0.3?
- PREGUNTA ESTADÍSTICA:

$$H_0$$
: π =0.3

- MUESTRA: la que hay en 'pulso.txt'

Estadístico: Una proporción

Contraste de hipótesis (1 proporción)

Un 30% de la muestra es fumador:

$$H_0$$
: $\pi = 0.3$

Veamos cómo obtener el p-valor del test

Proportion Test (2 Outcomes)

Binomial Test

	Level	Count	Total	Proportion	р
FUMADOR	1	16	40	0.400	0.268
	2	24	40	0.600	0.268

Note. H_a is proportion ≠ 0.5

Proportion Test (2 Outcomes)

Binomial Test

	Level	Count	Total	Proportion	р
FUMADOR	1	16	40	0.400	0.170
	2	24	40	0.600	< .001

Note. H_a is proportion ≠ 0.3

Dos variables categóricas

 ¿La proporción de fumadores es igual en hombres que en mujeres?

- Dos variables categóricas:
 - Fumadores ('Si' y 'No')
 - Sexo (Hombre y Mujer)

Contingency Tables

Contingency Tables

SEXO	1	2	Total
1	10	12	22
2	6	12	18
Total	16	24	40

χ² Tests

	Value	df	р
χ² N	0.606 40	1	0.436

Test exacto de Fisher

• Cuando en alguna casilla la frecuencia esperada es <5, se usa este test y no el de χ^2

Con Jamovi:

Statistics -> Fisher's exact test

Cálculo del P-valor (Jamovi)

Contingency Tables

Contingency Tables

	_		
SEXO	1	2	Total
1	10	12	22
2	6	12	18
Total	16	24	40

χ² Tests

	Value	df	р
χ²	0.606	1	0.436
Fisher's exact test	1.65		0.526
N	40		

Tests para datos continuos (t-Student)

Objetivos: Preguntas

- Pregunta científica:
 - 1 muestra
 - ¿La altura de la población española es 1,65?
 - ¿El nivel de colesterol en España es 200?
 - 2 muestras
 - ¿La altura en España es igual que en Italia?
 - ¿El nivel de colesterol es igual en los individuos que hacen deporte que en los sedentarios?

Pregunta: ¿La altura media es 165 cm?

¿Altura = 165?

¿Altura = 165?

¿Altura = 165?

Comparación de grupos

Comparación de grupos independientes

 ¿La diferencia de FC antes y despues se asocia al consumo de cierto fármaco?

Descriptives

Descriptives	5	
	FARMACO	FC2FC1
N	1	20
	2	20
Missing	1	0
	2	0
Mean	1	61.1
	2	62.4
Median	1	59.5
	2	62.0

Datos independientes

Datos independientes

Datos apareados: FC2 vs FC1

- En el estudio hemos recogido sobre los mismos individuos la FC antes y después de tomar el fármaco (o hacer ejercicio, o tomar un recuperador, ...)
- Estamos ante un diseño apareado
- Se calculan las diferencias entre mediciones y se compara la media de la diferencia con la diferencia teórica esperada (generalmente δ =0)
- Desde el punto de vista de análisis estadístico es idéntico el análisis de 1 población

Datos apareados

Datos apareados

Condiciones

- Normalidad de la variable numérica
 - Si el tamaño de muestra no es muy pequeño, esta condición no es muy importante
 - Se pueden transformar los datos
- Homogeneidad de varianzas (homocedasticidad)
 - Esta condición sí afecta cuando los tamaños de grupo son diferentes
 - No es muy importante con grupos del mismo tamaño

Asunciones

No se cumplen las condiciones

- ¿Qué podemos hacer cuando nuestra variable de interés no cumple las condiciones de la t-Student?
 - No normalidad
 - No homocedasticidad

Transformaciones (logaritmo) / Welch's Métodos no paramétricos

Test con Jamovi

