

张羽中

with 张睿雄 王育航 林海芃 冯旭 傅宗玫

疫情时间线

二氧化氮(NO₂)浓度的卫星观测

- 短期的浓度变化 ≠ 排放变化
- 气象因素有多大贡献?
- 追踪经济活动的复苏情况

利用卫星NO2观测快速追踪短期经济波动

• 大气中的NO₂主要来源于高温燃烧生成的氮氧化物(NO_x)

电厂

工业

汽车

- 其排放强度波动很大程度上反映了人类经济活动强度的短期波动
- GDP的统计具有滞后性,空间分辨率也较差

氮氧化物浓度/排放与人类活动

周末效应

经济危机

春节效应

奥运会

Yang et al., 2011

氮氧化物排放与GDP

- 总体上人均GDP与人均氮氧化物排放有一定正相关
- 随着经济增长、技术进步,GDP增长对氮氧化物排放的 依赖降低

Huang et al., EST, 2014

基于卫星NO2推断NOx排放变化

卫星观测的二氧化氮浓度分布

剔除气象因 素的影响

估计氮氧化物 排放的变化

基于卫星NO2推断NOx排放变化

WRF-GEOS-Chem 耦合模型

Online coupled model based on the regional meteorology model, <u>WRF</u>, and the chemical transport model, <u>GEOS-Chem</u>. Developed by **Haipeng Lin**, **Xu Feng**, and **Tzung-May Fu**.

WRF-GC Model (v1.0)

- 利用实时气象数据
- 灵活的网格设置

疫情期间氮氧化物浓度变化

TROPOMI 卫星对流层柱浓度

增速排名	地区	2020年一季度 GDP (亿元)	实际增长
1	新疆	3055. 51	-0.2%
2	湖南	8824. 82	-1.9%
3	贵州	3704. 04	-1.9%
4	青海	652. 68	-2.1%
5	宁夏	808. 13	-2.8%
6	四川	10172. 85	-3.0%
7	广西	4670. 85	-3.3%
8	甘肃	1908. 30	-3.4%
9	江西	5343. 4	-3.8%
10	云南	5107. 77	-4.3%
11	海南	1115. 28	-4.5%
12	山西	3634. 73	-4.6%
13	江苏	21002. 8	-5.0%
14	福建	8999. 09	-5.2%
15	浙江	13114	-5.6%
16	陕西	5439. 66	-5.6%
17	山东	14919. 3	-5.8%
18	内蒙古	3550. 9	-5.8%
19	河北	7410. 1	-6. 2%
20	安徽	7821. 30	-6. 5%
21	重庆	4987. 66	-6.5%
22	北京	7462. 2	-6.6%
23	吉林	2441. 84	-6.6%
24	广东	22518. 67	-6. 7%
25	河南	11510. 15	-6.7%
26	上海	7856. 62	-6. 7%
27	辽宁	5082.10	-7.7%
28	黑龙江	2409	-8, 3%
29	天津	2874. 35	-9.5%
30	湖北	6379. 4	-39. 2%
-	西藏	-	-//

快速推断NO_x排放算法: 讨论

优点: 只需要跑一遍模型, 就大致剔除了气象因素的影响, 适合快速计算追踪

局限: 以下因素的影响尚未充分评价

化学非线性

GOME-2 OMI

T. 4

ON

O

O

O

O

S

NO₂ column [10¹⁵ molec. cm⁻²]

传输非局域性

讨论: 化学非线性

$$E = \frac{NO2_{satellite}}{NO2_{WRF-GC}} \times E_a$$

1. NO。浓度-NOx寿命的非线性

高排放NOx, 抑制OH浓度, 延长NOx 大气寿命, 进而非线性地增加NOx浓度

NO₂+OH → HNO₃ 夏季控制NOx lifetime的主要反应

Gu et al., AMT, 2016

<u>改进</u>:每日迭代反演(daily retrieval-inversion, Gu et al., JGR, 2014),仅需一遍正向模拟,迭代更新先验模拟的排放,使其保持在实际值附近

讨论: 化学非线性

2. 其它物种浓度-NO2寿命的非线性

 N_2O_5 水解的非均相汇,依赖于 O_3 对 NO_2 的氧化、颗粒物浓度、颗粒物水含量等因素

$$2NO_2+O_3 \rightarrow N_2O_5$$

$$N_2O_5 + H_2O(I) \rightarrow 2HNO_3$$

冬季控制NOx lifetime的主要反应

Shah et al., ACP, 2020

<u>改进</u>: 同化其它物种的观测浓度,使先验模拟大致反映颗粒物、臭氧的浓度变化

讨论: 传输非局域性

卫星观测与模拟的mismatch不一定是由观测所在格点的排放误差导致的,而是上风向的排放误差导致

- 因冬季NOx lifetime长更为重要
- 分辨率越高越重要 > 以粗分辨率(省)计算排放

通过传输模型模拟(adjoint模型 等方法),表征空间上的敏感度

 $\frac{\partial y_i}{\partial x_j}$ i格点的浓度 j格点的排放

计算量大, 不适合快速处理

改进: 快速的获得近似解

- 扰动模拟获得一阶近似
- 基于风速风向的参数化

总结

- 基于卫星观测,快速反演氮氧化物排放,利用模拟剔除气象影响,定量估计疫情期间(1月-3月)排放的变化,表征各省市排放下降和恢复的情况。
- 下一步计划进一步改进快速反演 排放的算法,减少化学非线性、 传输带来的误差。

Article

NOx Emission Reduction and Recovery during COVID-19 in East China

Ruixiong Zhang 1,2,*, Yuzhong Zhang 3,4,*, Haipeng Lin 5, Xu Feng 6, Tzung-May Fu 7 and Yuhang Wang 1

- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- ² ClimaCell Inc., 280 Summer Street Floor 8, Boston, MA 02210, USA
- ³ School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; hplin@seas.harvard.edu
- ⁶ Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China; fengx7@pku.edu.cn
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; fuzm@sustech.edu.cn
- * Correspondence: zhangruixiong@gmail.com (R.Z.); zhangyuzhong@westlake.edu.cn (Y.Z.)

Received: 8 April 2020; Accepted: 21 April 2020; Published: 24 April 2020

谢 谢!