

Bengaluru, India

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

### **Investigating Super learner for Credit Risk Modeling in Mortgage** Scenario



**Lalit Aggarwal** 

SRN: R19DM003

**Date: 27th Aug 2022** 

### **PGDM/MBA** in Business Analytics

Capstone Project Presentation Year: II

race.reva.edu.in



## Agenda

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

**01** Introduction

Back Ground | Current status | Why this study

**05** Project Methodology

Conceptual Framework | Research Design

**02** Literature Review

Seminal works | Summary | Research Gap

**06** Business Understanding

Business Context | Monetary Impact

**03** Problem Statement

Business Problem | Analytics Solution

7 Data Understanding

Data Collection | Variables

**04** Project Objectives

Primary & Secondary Objectives | Expected Outcome

**08** Data Preparation

Pre-processing | Process | Techniques

**09** Descriptive Analytics

Univariate | Bivariate | Hypothesis

10 Modeling

Machine Learning | Model Evaluation | Insights

11 Model Deployment

Applications | Demo

**12** Suggestions and Conclusions

Insights | Next Step | Future Scope

13 Annexure

References | Publications | Plagiarism Score

### Introduction

Background | Current status | Why this study

Credit risk analysis

Approved by AICTE, New Delhi

- Credit risk modeling
- ❖ High turnaround time Machine learning approach
- ❖ Automatic Machine learning (AutoML)



Source: www.wallstreetmojo.com



## Literature Review

|        | he section 2(f) of the UGC Act, 1956,                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sr.No. | Title                                                                                | Author                                                          | Detailed Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1      | RBI CIRCULARS for all<br>Commercial Banks                                            | RBI Circulars, 2008-09                                          | In this paper author describing the standard practice to be followed for handing the credit risks in the comercial banking. Stressing to <b>use risk expert strategies</b> to eliminate or minimizing the risk in lending the money.                                                                                                                                                                                                                                                      |
| 2      | Introduction to Credit Risk Modeling                                                 | Christian Bluhm, Ludger<br>Overbeck, Christoph Wagner<br>(2010) | In this paper author stressing <b>the use of credit risk modeling</b> where authors referred to access borrower's probability to default the loan and the impact on the lender's financial position if this default occurs.                                                                                                                                                                                                                                                               |
| 3      | Credit Risk: Modeling, Valuation and<br>Hedging                                      | Tomasz R. Bielecki, Marek<br>Rutkowski (2013)                   | In this paper discussing about approval of loan as well <b>interest on the loan</b> based on borrower's financial status and record by the use of credit risk models. By using the latest analytics and big data tools to model credit risk. In this author <b>considering other factors also</b> , such as the development of economies and the subsequent emergence of different types of credit risk.                                                                                  |
| 4      | Credit Risk: Implementing Structural Models                                          | Omomehin, Victor (2021)                                         | In this paper author focusing the use of credit risk model to quantify <b>the amount of economic capital necessary to support the bank's exposures</b> . Author describe about structure models. Structural models are used to calculate the probability of failure of a business based on the value of its assets and liabilities. A <b>firm defaults if the market value of its assets is less than a debt person has to pay.</b>                                                       |
| 5      | Basel II: The New Basel Capital<br>Accord, Basel Committee on<br>Banking Supervision | Basel Committee on Banking<br>Supervision (2003)                | In this paper author discuss about <b>quantifying the economic capitals</b> . The process of allocating economic capital varies widely between banks. While some banks have implemented systems that capture most exposures across the organization, while others capture exposures within a given business line or legal entity. Besides, they have banks often developed <b>separate models for corporate and retail exposures</b> , and not all banks capture both types of exposures. |



### **Problem Statement**

Business Problem | Analytics Solution

Currently in the financial and Banking sector, they are using various Machine learning models which takes lot of time to develop, training and hyper parameter tuning. Usually they used to be very complex Black Box models where researcher used high end machine learning algorithms which are very difficult to interpret, a part of this if any customer loan couldn't approved by machine learning model, banker couldn't provide any valid reason why their loan application got rejected.



Approved by AICTE, New Delhi

## **Project Objectives**

Primary & Secondary Objectives | Expected Outcome

- Developing Different Super learner as well Base models.
- Comparison of different models.
- Explaining working of Super learners and Base models.
- ❖ Interpreting individual prediction (SHAP, PDP and ICE).



**Project Methodology** 

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi



Diagram Showing the Data Flow of the Super Learner Algorithm.

#### Conceptual Framework | Research Design

The procedure can be summarized as follows:

- 1. Select a k-fold split of the training dataset.
- 2. Select m base-models or model configurations.
- 3. For each base model:
  - a. Evaluate using k-fold cross-validation.
  - b. Store all out-of-fold predictions.
  - c. Fit the model on the full training dataset and store.
- 4. Fit a meta-model on the out-of-fold predictions.
- 5. Evaluate the model on a holdout dataset or use model to make predictions.



# **Project Methodology**

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

#### Conceptual Framework | Research Design



Existing ML model approach vs AutoML





## **Business Understanding**

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Business Impact | Challenges | Monetary Impact

#### Impacts:

- ❖ Borrower's failure to repay a loan or meet contractual obligations.
- ❖ Interruption of cash flows and increased costs for collection.
- ❖ Properly assessing and managing credit risk can lessen the severity of a loss.

#### Challenges are:

- ❖ Inefficient data management.
- Getting data out of silos and into models
- **❖** Calculating Credit Risk
- \* Lack of Credit Risk efficient models

Biggest monetary impact has been seen in Sept. 2008, when **Lehman Brothers** meltdown, it was the 4<sup>th</sup> largest bank of USA have been in operation for 158 years. It propelled the horrors in the financial sector in USA and sparked a global financial crisis not witnessed in over last 80 years. It was involved more than **US\$600 billion** in assets.



Approved by AICTE, New Delhi

## Data Understanding

Data Collection | Variables

Dataset has been collected from the internet and modified it for the Credit risk prediction as there was no relevant data available anywhere.

It had total of 9 features where Loan\_Status was a target variable.





Target variable Loan\_status has 45,000 of records, out of that there were 5,289 client whose loan application got approved and 39,922 client's application got rejected.



## **Data Preparation**

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

| Pre-processing | Techniques |
|----------------|------------|
|----------------|------------|

|   | ID   | AGE | JOB          | MARITAL | EDUCATION |
|---|------|-----|--------------|---------|-----------|
| 0 | 2836 | 58  | management   | married | tertiary  |
| 1 | 2837 | 44  | technician   | single  | secondary |
| 2 | 2838 | 33  | entrepreneur | married | secondary |
| 3 | 2839 | 47  | blue-collar  | married | unknown   |
| 4 | 2840 | 33  | unknown      | single  | unknown   |

|   | ID   | DEFAULT | HOUSING | LOAN | Income |
|---|------|---------|---------|------|--------|
| 0 | 2836 | no      | yes     | по   | 2194   |
| 1 | 2837 | no      | yes     | no   | 6423   |
| 2 | 2838 | no      | yes     | yes  | 728    |
| 3 | 2839 | no      | yes     | no   | 2036   |
| 4 | 2840 | no      | no      | no   | 669    |

|   | ID   | LOAN_STATUS | Unnamed: 2 |
|---|------|-------------|------------|
| 0 | 2836 | по          | NaN        |
| 1 | 2837 | по          | NaN        |
| 2 | 2838 | по          | NaN        |
| 3 | 2839 | по          | NaN        |
| 4 | 2840 | по          | NaN        |

Client Info

Loan History

Loan Approval

|   | ID   | DEFAULT | HOUSING | LOAN | Income | AGE | JOB          | MARITAL | EDUCATION | LOAN_STATUS |
|---|------|---------|---------|------|--------|-----|--------------|---------|-----------|-------------|
| 0 | 2836 | no      | yes     | no   | 2194   | 58  | management   | married | tertiary  | no          |
| 1 | 2837 | no      | yes     | no   | 6423   | 44  | technician   | single  | secondary | no          |
| 2 | 2838 | no      | yes     | yes  | 728    | 33  | entrepreneur | married | secondary | no          |
| 3 | 2839 | no      | yes     | no   | 2036   | 47  | blue-collar  | married | unknown   | по          |
| 4 | 2840 | no      | по      | по   | 669    | 33  | unknown      | single  | unknown   | по          |

Client info + Loan History + Loan Approval = Final Data-Set



## **Descriptive Analytics**

Bengaluru, mu

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi



Education vs Loan\_Status: Clients who are **Tertiary or Secondary Education** has better chance than other of getting loan approval.



Marital vs Loan\_Status: Clients who are **married or single** has better chance than divorced of getting loan approval.

#### Multivariate Analysis | Hypothesis



Job vs Loan\_Status: Clients who are working in **management role or technician** have better chance than other of getting loan approval.



## Modeling

| model_id                                                | auc      | logloss  | aucpr    | mean_per_class_error | rmse     | mse       |
|---------------------------------------------------------|----------|----------|----------|----------------------|----------|-----------|
| StackedEnsemble_BestOfFamily_7_AutoML_2_20220824_183759 | 0.691487 | 0.332963 | 0.257057 | 0.363023             | 0.309998 | 0.098099  |
| StackedEnsemble_AllModels_2_AutoML_1_20220824_181038    | 0.689357 | 0.333451 | 0.255477 | 0.355738             | 0.310152 | 0.098194  |
| StackedEnsemble_AllModels_1_AutoML_1_20220824_181038    | 0.689135 | 0.333823 | 0.253464 | 0.380379             | 0.310314 | 0.0962945 |
| StackedEnsemble_BestOfFamily_3_AutoML_1_20220824_181038 | 0.688648 | 0.33379  | 0.254494 | 0.38715              | 0.310311 | 0.0982927 |
| StackedEnsemble_BestOfFamily_8_AutoML_2_20220824_183759 | 0.688503 | 0.335648 | 0.256424 | 0.35715              | 0.31115  | 0.0968144 |
| StackedEnsemble_BestOfFamily_2_AutoML_1_20220824_181038 | 0.688061 | 0.334248 | 0.252488 | 0.36203              | 0.31047  | 0.0963914 |
| GBM_grid_1_AutoML_2_20220824_183759_model_3             | 0.685723 | 0.335591 | 0.249722 | 0.369964             | 0.311378 | 0.0969561 |
| StackedEnsemble_BestOfFamily_1_AutoML_1_20220824_181038 | 0.685462 | 0.335038 | 0.248778 | 0.371197             | 0.310938 | 0.0966824 |
| XRT_2_AutoML_2_20220824_183759                          | 0.685185 | 0.340844 | 0.253002 | 0.371889             | 0.314104 | 0.0986611 |
| GBM_grid_1_AutoML_2_20220824_183759_model_6             | 0.684839 | 0.335535 | 0.24968  | 0.361034             | 0.311281 | 0.0968956 |
| GBM_7_AutoML_2_20220824_183759                          | 0.683234 | 0.336114 | 0.247742 | 0.382919             | 0.311328 | 0.0969248 |
| GBM_2_AutoML_1_20220824_181038                          | 0.683234 | 0.338114 | 0.247742 | 0.362919             | 0.311328 | 0.0969248 |
| GBM_10_AutoML_2_20220824_183759                         | 0.682514 | 0.33658  | 0.246377 | 0.361747             | 0.3116   | 0.0970945 |
| GBM_6_AutoML_2_20220824_183759                          | 0.682412 | 0.336528 | 0.248819 | 0.374916             | 0.31137  | 0.0969513 |
| GBM_1_AutoML_1_20220824_181038                          | 0.682412 | 0.336528 | 0.248819 | 0.374916             | 0.31137  | 0.0989513 |
| GBM_5_AutoML_1_20220824_181038                          | 0.682328 | 0.336295 | 0.246526 | 0.365245             | 0.311548 | 0.0970821 |
| GBM_grid_1_AutoML_2_20220824_183759_model_7             | 0.682295 | 0.336875 | 0.249792 | 0.365376             | 0.311946 | 0.09731   |
| GBM_3_AutoML_1_20220824_181038                          | 0.682268 | 0.336884 | 0.247817 | 0.369229             | 0.311449 | 0.0970007 |
| GBM_8_AutoML_2_20220824_183759                          | 0.682268 | 0.336884 | 0.247817 | 0.369229             | 0.311449 | 0.0970007 |
| GBM_grid_1_AutoML_2_20220824_183759_model_2             | 0.682258 | 0.335538 | 0.250499 | 0.373032             | 0.31113  | 0.0968019 |
| DRF_2_AutoML_2_20220824_183759                          | 0.681966 | 0.343633 | 0.249756 | 0.367832             | 0.312976 | 0.0979539 |
| XRT_1_AutoML_1_20220824_181038                          | 0.678356 | 0.339351 | 0.245942 | 0.38422              | 0.313121 | 0.0980448 |
| DRF_1_AutoML_1_20220824_181038                          | 0.676756 | 0.345244 | 0.246482 | 0.376885             | 0.313318 | 0.098168  |
| GBM_4_AutoML_1_20220824_181038                          | 0.676389 | 0.339594 | 0.242271 | 0.384259             | 0.312362 | 0.0975701 |
| GBM_9_AutoML_2_20220824_183759                          | 0.676389 | 0.339594 | 0.242271 | 0.384259             | 0.312362 | 0.0975701 |
| GBM_grid_1_AutoML_2_20220824_183759_model_4             | 0.667997 | 0.341998 | 0.231982 | 0.384912             | 0.313895 | 0.0985304 |
| GLM_2_AutoML_2_20220824_183759                          | 0.665746 | 0.341551 | 0.216353 | 0.372929             | 0.314072 | 0.0986411 |

#### Modeling Techniques | Modeling Process | Model Building

With the following parameters, AutoML produced 38 machine learning statistical models (Superlearner and base models)

- •max\_runtime\_sec = 600,
- • $max_models = 50$ ,
- •Balance\_classes = True,
- •Stopping metric = AUC
- •Stopping rounds = 3

It's a combination of following models:

- 1. StackedEnsemble\_BestOfFamily
- 2. StackedEnsemble\_AllModels
- Base models (GBM, XRT, DRF, GLM, DeepLearning, GBM\_grid, DeepLearning\_grid)
- DRF: Distributed RF, XRF: Xtremely Randomize Trees, GLM: Generalized Linear Models
- Grid-searching is the process of scanning the data to configure optimal parameters for a given model..

#### Leader-board of AutoML



Bengaluru, India

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

```
metalearner.varimp()
```

In the case of Super Learner "StackedEnsemble\_**BestOfFamily**\_7\_AutoML\_2\_20220824\_18 3759" considering best base models one from each family, out of that it gives more importance to GBM\_grid\_1 and least to DeepLearning\_grid as a features.

#### Results | Interpretation | Insights

model.model\_performance(test)

ModelMetricsBinomial: gbm \*\* Reported on test data. \*\*

MSE: 0.10050197232167722 RMSE: 0.3170204604149032 LogLoss: 0.3443474364669525

Mean Per-Class Error: 0.3687871665059467

AUC: 0.6950938119441765 AUCPR: 0.26415888202544396 Gini: 0.39018762388835304

In the case of Base models best model is: **GBM**\_grid\_1\_AutoML\_2\_20220824\_183759\_model\_3, with Accuracy is 87.81% and AUC: 69.51%



Bengaluru, India

Established as per the section 2(f) of the UGC Act, 1956 Approved by AICTE, New Delh



Results | Interpretation | Insights

Variable importance given by best base model (GBM\_grid\_1\_AutoML\_2\_20220824\_183759\_model\_3), its treating Housing, Age and Job are playing most important roles in deciding Loan Approval



Approved by AICTE, New Delhi

### **Model Evaluation**

Results | Interpretation | Insights



As per the dataset Actual value of row index 25<sup>th</sup> is "No" and Best base model is giving a probability of 92.77 % of rejection.



Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi



SHAP explanation shows contribution of features for a given instance. The sum of the feature contributions and the bias term is equal to the raw prediction of the model

Individual conditional expectations (ICE) plot gives a graphical depiction of the marginal effect of a variable on the response for a given row.



Bengaluru, India

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi



#### Results | Interpretation | Insights



Individual conditional expectations (ICE) plot gives a graphical depiction of the marginal effect of a variable on the response for a given row.

Partial dependence plot (PDP) gives a graphical depiction of the marginal effect of a variable on the response. PDP assumes independence between the feature for which is the PDP computed and the rest.











## Model Deployment

**Demonstration** 

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi



We are planning to deploy the model on the flask server with the help of pickel file of the saved model which can predict the category of Employee.

Model.pkl

Request Model to predicts label on new data



## Results and Insights

Key Findings | Suggestions

On the present data of credit risk data set, with help of AutoML there are 38 statistical has been developed including Super learner as well the base models. With the best base models which was GBM grid we found the accuracy of 87.81% and AUC as 69.50%. In case of Best super learner which is the "StackedEnsemble\_BestOfFamily" has the test Accuracy 87.86% and AUC: 69.94%.

In this research, it has been shown that with the use of Automate Machine learning technique in the combination of different explanations e.g. SHAP, PDP and ICE. Different complex, as well as base models, can be developed in a short time with minimal knowledge of programming and compared with different metrics. Researchers could save a lot of time in developing, training, or tuning the different machine learning models, they could spend that time on data collection and understanding it. On rejecting any loan application end user can explain the reason or features behind that so the customer can also be satisfied with the explanation.



### Conclusion and Future Work

Proposed solutions | Scope for future work

Hence in this project we've developed many high end complex machine learning statistical models in very short time with development, training and their hypertunning. With their metrics user can compare them and select the best model to suit to their requirement. In this AutoML also explain the role of each input variable in the prediction of different high end complex models.

With the help of SHAP, ICE and PDP user can explain each individual prediction by any base as well Super learner machine learning models. So the financial/ Banking institution can give clear explanation to their customers why their loan got rejected or approved.

In this project we have used the sample dataset from the internet as the customer information is very confidential property in any financial institution. In case if we get some real data in future we could test this approach on that. It can be very useful in assessing the credit risk while approving any loan application as well giving the better interpretation of any individual prediction also.



Approved by AICTE, New Delhi

### References

Bibliography | Webliography

- \*BCBS. (2003). Basel II: The New Basel Capital Accord, Basel Committee on Banking Supervision. https://www.bis.org/bcbs/bcbscp3.htm, 226.
- ❖CIRCULARS, R. (2008). *RBI CIRCULARS*. Retrieved from Reserve Bank Of India: https://rbi.org.in/Scripts/BS\_CircularIndexDisplay.aspx?Id=4682
- ❖ Christian Bluhm, L. O. (2010). *Introduction to Credit Risk Modeling*. New York: Taylor & Francis Group.
- ❖ Tomasz R. Bielecki, M. R. (2013). Credit Risk: Modeling, Valuation and Hedging. New York: Springer Finance.
- ❖Omomehin, V. (2021). Credit Risk: Implementing Structural Models. Cork: AIMS.
- ❖ Pandey, P. (2019). A Deep dive into H2O's AutoML. https://towardsdatascience.com/a-deep-dive-into-h2os-automl-4b1fe51d3f3e.
- ❖ Chatterjee, S. (2022). Modelling Credit Risk | Bank of England.
- https://www.bankofengland.co.uk/ccbs/modelling-credit-risk.
- ❖BIS. (2009). Basel II: Revised international capital framework, Basel Committee on Banking Supervision. https://www.bis.org/publ/bcbsca.htm.
- ❖ Narasimham, M. (n.d.). Narasimham Committee. https://en.wikipedia.org/wiki/Narasimham\_Committee .



### Annexure

Additional Information | Plagiarism score

#### **Similarity Index Report**

❖Software Used : Turnitin

Approved by AICTE, New Delhi

❖Date of Report Generation : 26<sup>th</sup> - Aug-2022

❖Similarity Index in % : 11%

❖Total word count: 9,033

❖Name of the Guide: Ravi Shukla

### Investigating Super learner for Credit Risk Modeling in Mortgage Scenario

by Lalit Aggarwal

**Submission date:** 26-Aug-2022 10:37AM (UTC+0530)

**Submission ID:** 1887290814

File name: arner\_for\_Credit\_Risk\_Modeling\_in\_Mortgage\_Scenario\_-\_Lalit.docx (845.42K)

Word count: 9033 Character count: 49485

Investigating Super learner for Credit Risk Modeling in Mortgage Scenario

ORIGINALITY REPORT



**7**%

1 %

8%

EX INTERNET SOURCES

RCES PUBLICATIONS

STUDENT PAPERS

PRIMARY SOURCES



Bengaluru, India

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New [] "

### Annexure

\_Publications | Conferences





Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Special thanks to Ravi Shukla,

Dr. J. B. Simha and Dr. Shinu

Abhi for their guidance and all

the support on this initiative !!!

