Шаги аргументационного алгоритма

Шаг 1. Порождение множества гипотез.

 $\forall e \in O : (e, e_1) \in TRA \Rightarrow S(e_1) \text{ in } \forall e \in O : (e, e_1) \in RS \Rightarrow H(e_1).$

Шаг 2. Расширение множества аргументов.

 $\forall e \in H : (e, e_1) \in RS \Rightarrow M(e_1)$.

Шаг 3. Тестирование аргументов.

 $\forall e \in M$ если Q(e) = O(e), то $O := O \cup \{e\}$.

Шаг 1-3 выполняются до стабилизации множеств ${\cal O}$ и ${\cal H}$.

Шаг 4. Редукция мн-ва гипотез по отвергающим аргументам.

 $\forall e \in H(e), O(e_1), (e_1, e) \in S \Rightarrow H := H \setminus \{e\}.$

Шаг 5. Редукция множества гипотез по отсутствующим аргументам.

 $\forall e \in H(e), \neg O(e_1), (e, e_1) \in TRA \Rightarrow \neg H(e) \text{ in } H := H \setminus \{e\} \text{ .}$

Шаг 6. Если $|H| <= 1 \Rightarrow S = H$ и алгоритм завершает работу.

Шаг 7. Дифференциация множества аргументов.

Если найдутся две гипотезы $h_1,h_2\in H:ARG(h_1)\subset ARG(h_2)$ и $ARG(h_1)\neq ARG(h_2)=>S:=S\setminus\{h_1\}.$

Шаг 8. Минимизация объясняющего множества

Если |H| > 2 и для некоторой гипотезы h_1 найдутся гипотезы $h_2, \dots, h_n : ARG(h_1) \subset ARG(h_2) \cup \dots \cup ARG(h_n) \Rightarrow H := H \setminus \{h_1\}$, речь идёт о строгом вложении, повторяется до исчерпания множества таких гипотез.

База знаний

База знаний реализована в виде неоднородной семантической сети. Состоит из узлов, разделов, связей между узлами, атрибутов.

База знаний

База знаний реализована в виде неоднородной семантической сети. Состоит из узлов, разделов, связей между узлами, атрибутов.

Узлами могут быть:

- утверждения,
- ситуации,
- результаты наблюдений,
- факты,
- ит. д.

Узлы

- 1.Узлы-признаки узлы описывающие некоторые факты и влияющие на ход рассуждений
- 2.Вспомогательные узлы для реализации конструкций И и ИЛИ
- 3. Целевые узлы узлы участвующие в формировании решений

Типы связей

TRA - «При наблюдении узла e_1 всегда наблюдается узел e_2 ».

RS - «При наблюдении узла e_1 может наблюдаться узел e_2 ».

S - «При наблюдении узла e_1 отсутствует узел e_2 ».

Типы связей

TRA - «При наблюдении узла e_1 всегда наблюдается узел e_2 ».

RS - «При наблюдении узла e_1 может наблюдаться узел e_2 ».

S - «При наблюдении узла e_1 отсутствует узел e_2 ».

$$(e_1, e_2) \in TRA$$

$$(e_1, e_2) \in RS$$
$$(e_1, e_2) \in S$$

$$(e_1,e_2) \in S$$

O(e) - узел e имеет место

 $\neg O(e)$ - узел e не имеет места

M(e) - узел e может наблюдаться

H(e) - узел e является гипотезой

 $\neg H(e)$ - узел e не является гипотезой

S(e) - узел e является решением

 $\neg S(e)$ - узел e не является решением

O(e) - узел e имеет место

 $\neg O(e)$ - узел e не имеет места

M(e) - узел e может наблюдаться

H(e) - узел e является гипотезой

 $\neg H(e)$ - узел e не является гипотезой

S(e) - узел e является решением

 $\neg S(e)$ - узел e не является решением

O(e) - узел e имеет место

 $\neg O(e)$ - узел e не имеет места

M(e) - узел e может наблюдаться

H(e) - узел e является гипотезой

 $\neg H(e)$ - узел e не является гипотезой

S(e) - узел e является решением

 $\neg S(e)$ - узел e не является решением

1.
$$O = \{e \mid O(e)\}$$

2.
$$\neg O = \{e \mid \neg O(e)\}$$

3.
$$M = \{e | M(e)\}$$

4.
$$H = \{e | H(e)\}$$

5.
$$\neg H = \{e \mid \neg H(e)\}$$

6.
$$S = \{e \mid S(e)\}$$

7.
$$\neg S = \{e \mid \neg S(e)\}$$

- целевой узел

9(N)

- узел-признак

- вспомогательный

узел

$$O = \{e_1, e_3, e_4, e_6\}$$

$$\neg O = \{e_2\}$$

$$M = \{\}$$

$$H = \{\}$$

$$\neg H = \{\}$$

$$S = \{\}$$

$$\neg S = \{\}$$

$$O = \{e_1, e_3, e_4, e_6\}$$

$$\neg O = \{e_2\}$$

$$M = \{ \}$$

$$H = \{e_{12}\}$$

$$\neg H = \{\}$$

$$S = \{\}$$

$$\neg S = \{\}$$

Шаг 1. Порождение множества гипотез.

$$O = \{e_1, e_3, e_4, e_6\}$$
 $\neg O = \{e_2\}$
 $M = \{\}$
 $H = \{e_{11}, e_{12}\}$
 $\neg H = \{\}$

$$S = \{ \}$$

$$\neg S = \{\}$$

 $\forall e \in H : (e, e_1) \in RS \Rightarrow M(e_1)$.

$$O = \{e_1, e_3, e_4, e_6\}$$

$$\neg O = \{e_2\}$$

$$M = \{ \}$$

$$H = \{e_{11}, e_{12}\}$$

$$\neg H = \{\}$$

$$S = \{\}$$

$$\neg S = \{\}$$

 $\forall e \in H : (e, e_1) \in RS \Rightarrow M(e_1)$.

$$O = \{e_1, e_3, e_4, e_6\}$$

$$\neg O = \{e_2\}$$

$$M = \{e_5\}$$

$$H = \{e_{11}, e_{12}\}$$

$$\neg H = \{\}$$

$$S = \{\}$$

$$\neg S = \{\}$$

$$O = \{e_1, e_3, e_4, e_6\}$$
 $\neg O = \{e_2\}$
 $M = \{e_5\}$
 $H = \{e_{11}, e_{12}\}$
 $\neg H = \{\}$
 $S = \{\}$

$$O = \{e_1, e_3, e_4, e_5, e_6\}$$

$$\neg O = \{e_2\}$$
 $M = \{\}$

$$H = \{e_{11}, e_{12}\}$$

$$\neg H = \{\}$$

$$S = \{\}$$

Шаг 1-3 выполняются до стабилизации множеств O и H .

$$O = \{e_1, e_3, e_4, e_5, e_6\}$$

$$\neg O = \{e_2\}$$
 $M = \{\}$

$$H = \{e_{11}, e_{12}\}$$

$$\neg H = \{\}$$

$$S = \{\}$$

Шаг 1. Порождение множества гипотез.

$$O = \{e_1, e_3, e_4, e_5, e_6\}$$

$$\neg O = \{e_2\}$$
 $M = \{\}$

$$H = \{e_{11}, e_{12}\}$$

$$\neg H = \{\}$$

$$S = \{\}$$

Шаг 1. Порождение множества гипотез.

$$O = \{e_1, e_3, e_4, e_5, e_6\}$$

$$\neg O = \{e_2\}$$
 $M = \{\}$

$$H = \{e_{11}, e_{12}, e_{13}\}$$

$$\neg H = \{\}$$
 $S = \{\}$

 $\forall e \in H : (e, e_1) \in RS \Rightarrow M(e_1)$.

$$O = \{e_1, e_3, e_4, e_5, e_6\}$$

$$\neg O = \{e_2\}$$
 $M = \{\}$

$$H = \{e_{11}, e_{12}, e_{13}\}$$

$$\neg H = \{\}$$
 $S = \{\}$

$$O = \{e_1, e_3, e_4, e_5, e_6\}$$

$$\neg O = \{e_2\}$$

$$M = \{\}$$

$$H = \{e_{11}, e_{12}, e_{13}\}$$

$$\neg H = \{\}$$

$$S = \{\}$$

Шаг 1. Порождение множества гипотез.

$$O = \{e_1, e_3, e_4, e_5, e_6\}$$

$$\neg O = \{e_2\}$$

$$M = \{\}$$

$$H = \{e_{11}, e_{12}, e_{13}\}$$

$$\neg H = \{\}$$

$$S = \{\}$$

 $\forall e \in H : (e, e_1) \in RS \Rightarrow M(e_1)$.

$$O = \{e_1, e_3, e_4, e_5, e_6\}$$

$$\neg O = \{e_2\}$$
 $M = \{\}$

$$H = \{e_{11}, e_{12}, e_{13}\}$$

$$\neg H = \{\}$$
 $S = \{\}$

$$O = \{e_1, e_3, e_4, e_5, e_6\}$$

$$\neg O = \{e_2\}$$

$$M = \{\}$$

$$H = \{e_{11}, e_{12}, e_{13}\}$$

$$\neg H = \{\}$$

$$S = \{\}$$

Шаг 4. **Редукция мн-ва гипотез по отвергающим аргументам.**

 $\forall e \in H(e), O(e_1), (e_1, e) \in S \Rightarrow H := H \setminus \{e\}.$

$$O = \{e_1, e_3, e_4, e_5, e_6\}$$

$$\neg O = \{e_2\}$$

$$M = \{\}$$

$$H = \{e_{11}, e_{12}, e_{13}\}$$

$$\neg H = \{\}$$

$$S = \{\}$$

Шаг 4. **Редукция мн-ва гипотез по отвергающим аргументам.**

 $\forall e \in H(e), O(e_1), (e_1, e) \in S \Rightarrow H := H \setminus \{e\}.$

$$O = \{e_1, e_3, e_4, e_5, e_6\}$$

$$\neg O = \{e_2\}$$
 $M = \{\}$

$$H = \{e_{11}, e_{12}\}$$

$$\neg H = \{e_{13}\}$$

$$S = \{\}$$

Шаг 5. Редукция множества гипотез по отсутствующим аргументам.

 $\forall e \in H, \neg O(e_1), (e, e_1) \in TRA \Rightarrow \neg H(e) \ \bowtie H := H \setminus \{e\}.$

$$O = \{e_1, e_3, e_4, e_5, e_6\}$$

$$\neg O = \{e_2\}$$
 $M = \{\}$

$$H = \{e_{11}, e_{12}\}$$

$$\neg H = \{e_{13}\}$$
 $S = \{\}$

Шаг 5. Редукция множества гипотез по отсутствующим аргументам.

 $\forall e \in H, \neg O(e_1), (e, e_1) \in TRA \Rightarrow \neg H(e) \text{ if } H := H \setminus \{e\}.$

$$O = \{e_1, e_3, e_4, e_5, e_6\}$$

$$\neg O = \{e_2\}$$
 $M = \{\}$

$$H = \{e_{11}\}$$

$$\neg H = \{e_{12}, e_{13}\}$$
 $S = \{\}$

Шаг 6. Если $|H| <= 1 \Rightarrow S = H$ и алгоритм завершает работу.

$$O = \{e_1, e_3, e_4, e_5, e_6\}$$

$$\neg O = \{e_2\}$$

$$M = \{\}$$

$$H = \{e_{11}\}$$

$$\neg H = \{e_{12}, e_{13}\}$$

$$S = \{\}$$

Шаг 6. Если $|H| <= 1 \Rightarrow S = H$ и алгоритм завершает работу.

$$O = \{e_1, e_3, e_4, e_5, e_6\}$$

$$\neg O = \{e_2\}$$
 $M = \{\}$

$$H = \{e_{11}\}$$

$$\neg H = \{e_{12}, e_{13}\}$$

$$S = \{e_{11}\}$$

$$\neg S = \{\}$$

$$O = \{e_1, e_4, e_5\}$$

Шаг 7. **Дифференциация множества аргументов.**

Если найдутся две гипотезы $h_1, h_2 \in H : ARG(h_1) \subset ARG(h_2)$ и $ARG(h_1) \neq ARG(h_2) = > H := H \setminus \{h_1\}$.

$$O = \{e_1, e_4, e_5\}$$

 $\neg O = \{\}$
 $M = \{\}$
 $H = \{e_{11}, e_{13}\}$
 $\neg H = \{\}$
 $S = \{\}$
 $ARG(e_{11}) = \{e_1, e_4, e_5\}$
 $ARG(e_{13}) = \{e_5\}$

Шаг 7. Дифференциация множества аргументов.

Если найдутся две гипотезы $h_1,h_2\in H:ARG(h_1)\subset ARG(h_2)$ и $ARG(h_1)\neq ARG(h_2)=>S:=S\setminus\{h_1\}.$

$$O = \{e_1, e_4, e_5\}$$
 $\neg O = \{\}$
 $M = \{\}$
 $H = \{e_{11}\}$
 $\neg H = \{e_{13}\}$
 $S = \{\}$
 $ARG(e_{11}) = \{e_1, e_4, e_5\}$
 $ARG(e_{13}) = \{e_5\}$

Шаг 8. Минимизация объясняющего множества

Если |H| > 2 и для некоторой гипотезы h_1 найдутся гипотезы $h_2, \ldots, h_n : ARG(h_1) \subset ARG(h_2) \cup \ldots \cup ARG(h_n) \Rightarrow H := H \setminus \{h_1\}$, речь идёт о строгом вложении, повторяется до исчерпания множества таких гипотез.

Шаг 8. Минимизация объясняющего множества

Если |H| > 2 и для некоторой гипотезы h_1 найдутся гипотезы $h_2, \ldots, h_n : ARG(h_1) \subset ARG(h_2) \cup \ldots \cup ARG(h_n) \Rightarrow H := H \setminus \{h_1\}$, речь идёт о строгом вложении, повторяется до исчерпания множества таких гипотез.

```
Пусть H = \{h_1, h_2, h_3, h_4\}
ARG(h_1) = \{e_1, e_2, e_3\}
ARG(h_2) = \{e_1, e_4\}
ARG(h_3) = \{e_2, e_5\}
ARG(h_4) = \{e_3, e_6\}
```

Шаг 8. Минимизация объясняющего множества

Если |H| > 2 и для некоторой гипотезы h_1 найдутся гипотезы $h_2, \ldots, h_n : ARG(h_1) \subset ARG(h_2) \cup \ldots \cup ARG(h_n) \Rightarrow H := H \setminus \{h_1\}$, речь идёт о строгом вложении, повторяется до исчерпания множества таких гипотез.

Пусть
$$H = \{h_1, h_2, h_3, h_4\}$$
 $ARG(h_1) = \{e_1, e_2, e_3\}$
 $ARG(h_2) = \{e_1, e_4\}$
 $ARG(h_3) = \{e_2, e_5\}$
 $ARG(h_4) = \{e_3, e_6\}$

Тогда, очевидно, что $ARG(h_1) \subset ARG(h_2) \cup ARG(h_3) \cup ARG(h_4)$, что приводит к исключению гипотезы h_1 из множества H.

Шаг 9. S = H