Physics

Kinematics Kinematics

- Displacement
- Velocity
- Acceleration

- Constant acceleration
- Vectors

Position of a body at time t is denoted as x(t)

x is called a function of t

Displacement

Position at time t₁ is denoted as x(t₁)

Position at time t₂ is denoted as x(t₂)

The displacement Δx in time interval $\Delta t = t_2 - t_1$ is:

$$\Delta X = X(t_2) - X(t_1) = X_2 - X_1$$

Imagine a graph of a particle's position along the x-axis as a function of time...

$$\Delta x = x_2 - x_1$$
= 30m - 10m
= +20 m

$\Delta X = X_2 - X_1$ = 10 m - 30 m = -20 m

Notice that the sign indicates the direction!

Speed And Velocity

speed and velocity measure how position changes with time

average speed = total distance traveled total time

average velocity = displacement total time

Average velocity

$$=\frac{X_2-X_1}{t_2-t_1}=\frac{\Delta X}{\Delta t}$$

formula for a slope!

V_{av} = slope connecting line from t₁ to t₂

Instantaneous velocity is the velocity at a particular time

Instantaneous velocity

Take two times very close to each other so ∆t is very small

Acceleration

Acceleration measures how the velocity changes with time

average acceleration = change in velocity time taken

Average acceleration

$$=\frac{\mathbf{V}_2-\mathbf{V}_1}{\mathbf{t}_2-\mathbf{t}_1}=\frac{\Delta \mathbf{V}}{\Delta \mathbf{t}}$$

formula for a slope!

Instantaneous acceleration: is the acceleration at a specific instant of time:

a = limit ΔV $\Delta t \rightarrow 0$ Δt

Note that acceleration a does <u>not</u> have to be in the same direction as velocity v!!

Constant Acceleration

Take for convenience $t_1 = 0$ and $t_2 = t$

then:

$$x_1 = x_0$$
 and $x_2 = x$
 $v_1 = v_0$ and $v_2 = v$

If acceleration is constant, then $a = a_{av}$

$$\mathbf{a} = \frac{\mathbf{V}_2 - \mathbf{V}_1}{\mathbf{t}_2 - \mathbf{t}_1}$$

 $v = v_o + at$

Definition of average

$$\hat{\mathbb{I}}$$

$$V_{av} = \frac{1}{2}(V_o + V)$$

$$\mathbf{v}_{av} = \frac{\mathbf{x}_2 - \mathbf{x}_1}{\mathbf{t}_2 - \mathbf{t}_1}$$

$$\mathbf{v}_{av} = \mathbf{v}_{av}$$

$$x = x_o + v_{av}t$$

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

Two Main Equations

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

 $v = v_0 + at$

From these two:

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

$$v = v_o + at$$

$$v^2 = v_o^2 + 2a(x - x_o)$$

(v as a function of x)

Vectors

- Vectors have magnitude and direction
- In 1-D, direction has a +
 or sign

 Consider the position vector r in 2 dimensions

Example:

Where is Islamabad?

Choose origin at Karachi

 Choose coordinates of distance (km) and direction (N,S,E,W)

Velocity Vector

• Components of *r* are its (x,y) coordinates

$$\cdot \vec{r} = (r_x, r_y) = (x, y)$$

 Components can be expressed as:

$$r_x = x = r \cos \theta$$

$$r_y = y = r \sin \theta$$

where $r = |\vec{r}|$ and

$$\theta = \arctan(y/x)$$

Magnitude (length) of r
is found by Pythagorean
theorem:

$$|\vec{r}| = r = \sqrt{x^2 + y^2}$$

The length of a vector does not depend on its direction.

Vector Addition

We can arrange the vectors any way we want, as long as we maintain their length and direction!

Parallelogram Method

Vector Addition

COMPONENT METHOD

then
$$\overrightarrow{C}_x = \overrightarrow{A}_x + \overrightarrow{B}_x$$

 $\overrightarrow{C}_y = \overrightarrow{A}_y + \overrightarrow{B}_y$

Vector addition:

- 1. add components
- 2. then use

$$C = \sqrt{C_x^2 + C_y^2}$$

3. and the angle is

$$\theta = \arctan(C_y / C_x)$$