VJEROJATNOST I STATISTIKA

ZADACI ZA VJEŽBU

11. Intervalne procjene

FER, Zagreb

SADRŽAJ:

Zadaci za vježbu iz udžbenika Nevena Elezovića: Statistika i procesi Cjelina 11 – Intervalne procjene

*** Prije rješavanja zadataka treba proći teoretsko gradivo ove cjeline ***

1. Formule	.3
2. Zadaci	.4
3. Rješeni zadaci	5
4. Službena rješenja	8
5. Kvantili Studentove razdiobe (tablica)	9
6. Kvantili standardne normalne razdiobe $u_{\mathfrak{p}}$	11
7. Literatura	12

NAPOMENA

Potrebno je rješiti SVE zadatke!

Zadaci koji nedostaju: -

Posebna zahvala LORD OF THE LIGHT na rješenjima nekih zadataka!

FORMULE:

11. INTERVALNE PROCJENE

Kvantil reda p: $\int_{-\infty}^{x_p} f(t)dt = p$

Nivo značajnosti: $\alpha = 1 - p$

Intervali povjerenja za očekivanje normalne razdiobe, uz poznati σ^2 :

$$P\left(\overline{x}-u_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\leq a\leq \overline{x}+u_{1-\alpha/2}\frac{\sigma}{\sqrt{n}}\right)=p$$

Intervali povjerenja za očekivanje normalne razdiobe, uz nepoznati σ^2 :

$$P\left(\overline{x}-t_{n-1,1-\alpha/2}\frac{s}{\sqrt{n}}\leq a\leq \overline{x}+t_{n-1,1-\alpha/2}\frac{s}{\sqrt{n}}\right)=p$$

Intervali povjerenja za disperziju normalne razdiobe, uz poznato očekivanje *a*: lednostrani:

$$P\left(0 \le \sigma^2 \le \frac{nd^2}{\chi_{n,1-n}^2}\right) = p$$

Dvostrani:

$$P\left(\frac{nd^2}{\chi^2_{n,1-\alpha/2}} \leq \sigma^2 \leq \frac{nd^2}{\chi^2_{n,\alpha/2}}\right) = p$$

Intervali povjerenja za disperziju normalne razdiobe, uz nepoznato očekivanje *a*: Jednostrani:

$$P\left(0 \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{n-1} \alpha}\right) = p$$

Dvostrani:

$$P\left(\frac{(n-1)s^2}{\chi^2_{n-1,1-\alpha/2}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{n-1,\alpha/2}}\right) = p$$

Intervali povjerenja za vjerojatnost događaja:

$$P(p_1 \le p \le p_2) = 1 - \alpha$$

$$p_{1,2} = p \mp u_{1-\alpha/2} \sqrt{\frac{p(1-p)}{n}}, \quad p = \frac{m}{n}, \quad \text{za n} < 100: \ p_{1,2} = \frac{p + \frac{c^2}{2n} \mp c\sqrt{\frac{p(1-p)}{n} + \frac{c^2}{4n^2}}}{1 + \frac{c^2}{n}}, \quad c = u_{1-\alpha/2}$$

Intervali povjerenja za parametar λ eksponencijalne razdiobe:

$$P\left(\frac{1-u_{1-\alpha/2}/\sqrt{n}}{\overline{x}}\right) < \lambda < \left(\frac{1+u_{1-\alpha/2}/\sqrt{n}}{\overline{x}}\right) = p$$

Intervali povjerenja za parametar λ Poissonove razdiobe:

$$P\left(|\overline{X}-\lambda| < u_{1-\alpha/2}\sqrt{\frac{\lambda}{n}}\right) = p$$

§ 11. Zadatci za vježbu

1. Rezultati mjerenja normalne slučajne varijable X dani su u tablici:

x_j	20	21	22	23	24	25	
n_i	2	1	3	2	1	1	

Odredi interval unutar kojeg se s vjerojatnošću 0.95 nalazi očekivana vrijednost slučajne varijable X.

2. Zabilježene su sljedeće realizacije normalne slučajne varijable *X*:

x_j								
n_j	2	1	2	3	2	2	2	1

Izračunaj interval unutar kojeg se s vjerojatnošću 0.95 nalazi očekivanje slučajne varijable X.

3. Iz populacije koja se podvrgava normalnom zakonu N(m,4) izvučen je sljedeći uzorak:

Odredi 90 % interval za matematičko očekivanje a.

- 4. Rezultati 11 mjerenja neke veličine dani su u tablici:
- 6.0 9.2 9.8 9.9 10,3 10,3 10,9 11.6 11.8 12.5 14.0

Greška pri mjerenju je normalna varijabla bez sistematske pogreške. Odredi procjenu za matematičko očekivanje i disperziju, kao i 95 % interval za matematičko očekivanje.

- 5. Iz generalnog skupa koji ima normalnu razdiobu sa devijacijom $\sigma=0.5$ i nepoznatim očekivanjem, izvučen je uzorak volumena 8:
- 16, 16, 16, 16.2, 16.2, 16.2, 16.5, 16.5

Odredi procjenu i 90% interval za matematičko očekivanje a.

6. Rezultati nekog mjerenja dani su u tablici. Greška pri mjerenju je normalna varijabla, s očekivanjem 0 i nepoznatom devijacijom σ . Odredi procjenu za mjerenu veličinu, kao i 95 % interval unutar kojeg se ona nalazi.

x_j	64	65	66	67	68	
n_j	3	4	8	5	2	

7. Iz populacije koja se podvrgava normalnom zakonu izvučen je sljedeći uzorak:

x_j	110	115	120	125	130	135	
n_j	2	3	6	5	2	2	

Izračunaj procjenu i 90% interval za matematičko očekivanje i disperziju.

8. Iz populacije koja se podvrgava normalnom zakonu N(a, 4) izvučen je sljedeći uzorak:

Odredi procjenu i 90% interval za matematičko očekivanje a.

9. Iz populacije koja se podvrgava normalnom zakonu $N(a, \sigma^2 = 3)$ izvučen je sljedeći uzorak

Odredi 90 % interval za matematičko očekivanje a.

10. Na izlaznoj anketi, od 200 glasača za kandidata A svoj je glas dalo 110 glasača. Odredi (a) 95%, (b) 99% interval pouzdanosti za postotak glasova za tog kandidata. (c) S kojom vjerojatnošću će taj kandidat biti izabran? (d) Koliko velik uzorak treba biti da bi taj izbor bio siguran uz nivo značajnosti 5%?