

Physics 30 Physics 30

sics 30 Physics 30

Physics 30 Physics 30 Physics 30 June 2000 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30

Physics 30

Grade 12 Diploma Examination

sics 30 Physics 30

Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30

sics 30 Physics 30

Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30

sics 30 Physics 30

Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30

sics 30 Physics 30

Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30 Physics 30

sics 30 Physics 30

view 30 Physics 30

Copyright 2000, the Crown in Right of Alberta, as represented by the Minister of Learning, Alberta Learning, Student Evaluation Branch, 11160 Jasper Avenue, Edmonton, Alberta T5K 0L2. All rights reserved. Additional copies may be purchased from the Learning Resources Distributing Centre.

Special permission is granted to **Alberta educators only** to reproduce, for educational purposes and on a non-profit basis, parts of this examination that do **not** contain excerpted material **only after the administration of this examination.**

Excerpted material in this examination **shall not** be reproduced without the written permission of the original publisher (see credits page, where applicable).

June 2000

Physics 30

Grade 12 Diploma Examination

Description

Time: This examination was developed to be completed in 2.5 h; however, you may take an additional 0.5 h to complete the examination.

This is a **closed-book** examination consisting of

- 37 multiple-choice and 12 numerical-response questions, of equal value, worth 70% of the examination
- 2 written-response questions, of equal value, worth a total of 30% of the examination

This examination contains sets of related questions. A set of questions may contain multiple-choice and/or numerical-response questions.

A tear-out Physics Data Sheet is included near the back of this booklet. A Periodic Table of the Elements is also provided.

Note: *The perforated pages at the back of this booklet may be torn out and used for your rough work. No marks will be given for work done on the tear-out pages.*

Instructions

- You are expected to provide your own scientific calculator.
- Use only an HB pencil for the machine-scored answer sheet.
- Fill in the information required on the answer sheet and the examination booklet as directed by the presiding examiner.
- Read each question carefully.
- Consider all numbers used in the examination to be the result of a measurement or observation.
- When performing calculations, use the values of constants provided on the tear-out sheet.
Do not use the values programmed in your calculator.
- If you wish to change an answer, erase **all** traces of your first answer.
- Do not fold the answer sheet.
- The presiding examiner will collect your answer sheet and examination booklet and send them to Alberta Learning.
- Now turn this page and read the detailed instructions for answering machine-scored and written-response questions.

Multiple Choice

- Decide which of the choices **best** completes the statement or answers the question.
- Locate that question number on the separate answer sheet provided and fill in the circle that corresponds to your choice.

Example

This examination is for the subject of

- A. science
- B. physics
- C. biology
- D. chemistry

Answer Sheet

- (A)
- (B)
- (C)
- (D)

Numerical Response

- Record your answer on the answer sheet provided by writing it in the boxes and then filling in the corresponding circles.
- If an answer is a value between 0 and 1 (e.g., 0.25), then be sure to record the 0 before the decimal place.
- Enter the first digit of your answer in the left-hand box and leave any unused boxes blank.**

Examples

Calculation Question and Solution

If a 121 N force is applied to a 77.7 kg mass at rest on a frictionless surface, the acceleration of the mass will be _____ m/s^2 .

(Record your **three-digit answer** in the numerical-response section on the answer sheet.)

$$a = \frac{F}{m}$$

$$a = \frac{121\text{N}}{77.7\text{kg}} = 1.557 \text{ m/s}^2$$

Record 1.56 on the answer sheet →

1 . 5 6

Calculation Question and Solution

A microwave of wavelength 16 cm has a frequency, expressed in scientific notation, of $b \times 10^w$ Hz. The value of b is _____.
(Record your **two-digit answer** in the numerical-response section on the answer sheet.)

$$f = \frac{c}{\lambda}$$

$$f = \frac{3.00 \times 10^8 \text{ m/s}}{0.16 \text{ m}} = 1.875 \times 10^9 \text{ Hz}$$

Record 1.9 on the answer sheet →

1 . 9

Correct-Order Question and Solution

When the following subjects are arranged in alphabetical order, the order is _____, _____, _____, and _____.

- 1 physics
- 2 biology
- 3 science
- 4 chemistry

(Record all **four digits** of your answer in the numerical-response section on the answer sheet.)

Answer: 2413

**Record 2413 on the
answer sheet**

→ **2 | 4 | 1 | 3**

Scientific Notation Question and Solution

The charge on an electron is $-a.b \times 10^{-cd}$ C. The values of a , b , c , and d are _____, _____, _____, and _____.

(Record all **four digits** of your answer in the numerical-response section on the answer sheet.)

Answer: $q = -1.6 \times 10^{-19}$ C

**Record 1619 on the
answer sheet**

→ **1 | 6 | 1 | 9**

Written Response

- Write your answers in the examination booklet as neatly as possible.
- For full marks, your answers must address **all** aspects of the question.
- Descriptions and/or explanations of concepts must be correct and include pertinent ideas, diagrams, calculations, and formulas.
- Your answers must be presented in a well-organized manner using complete sentences, correct units, and significant digits where appropriate.
- Relevant scientific, technological, and/or societal concepts and examples must be identified and made explicit.

Digitized by the Internet Archive
in 2016

1. The following statements all relate to a collision between any two objects on a horizontal frictionless surface. Which of these statements is **always true**?

 - A. The kinetic energy of each object before and after the collision is the same.
 - B. The momentum of each object before and after the collision is the same.
 - C. The total momentum of the two objects before and after the collision is the same.
 - D. With respect to the surface, the gravitational potential energy of each object before and after the collision increases.
2. A 500 g rock is thrown straight down from a bridge to the water 5.20 m below. If the rock strikes the water at a speed of 12.5 m/s, what was the initial speed of the rock?

 - A. 2.40 m/s
 - B. 7.36 m/s
 - C. 12.1 m/s
 - D. 16.1 m/s
3. The concept of mechanical energy deals with the idea that

 - A. mechanical energy is the amount of energy saved by a mechanical device
 - B. mechanical energy is the sum of potential and kinetic energy
 - C. potential energy and kinetic energy are always equal
 - D. mechanical energy is a vector quantity

Use the following information to answer the next two questions.

Foundation piles for tall buildings are hammered into the ground using a “pile-driver.” A pile-driver similar to the one shown below lifts a 900 kg hammer a distance of 3.50 m above the top of a pile, and then allows it to drop.

4. The magnitude of the impulse delivered by the hammer to the pile is
- A. 61.8 kN·s
 - B. 30.9 kN·s
 - C. 7.46 kN·s
 - D. 3.73 kN·s

*Use your recorded answer for Multiple Choice 4 to answer Numerical Response 1.**

Numerical Response

1. The impulse is delivered by this pile-driver in 2.10×10^{-3} s. The magnitude of the force that the hammer exerts on the pile, expressed in scientific notation, is $b \times 10^w$ N. The value of b is _____.

(Record your **three-digit answer** in the numerical-response section on the answer sheet.)

*You can receive marks for this question even if the previous question was answered incorrectly.

Use the following information to answer the next two questions.

A particular supertanker is fully loaded with oil and has a mass of 1.00×10^9 kg. The supertanker has a cruising speed of 20.0 km/h. One way to stop the ship is to reverse its engines. At maximum reverse thrust, the ship takes 32.0 min to stop.

Numerical Response

2. The momentum of the supertanker at cruising speed, expressed in scientific notation, is $b \times 10^w$ kg·m/s. The value of b is _____.

(Record your **three-digit answer** in the numerical-response section on the answer sheet.)

Numerical Response

3. The kinetic energy of the supertanker at cruising speed, expressed in scientific notation, is $b \times 10^w$ J. The value of b is _____.

(Record your **three-digit answer** in the numerical-response section on the answer sheet.)

5. An empty freight car of mass m coasts along a track at 2.00 m/s until it couples to a stationary freight car of mass $2m$. The final speed of the two freight cars immediately after collision is

- A. 1.50 m/s
- B. 1.33 m/s
- C. 1.15 m/s
- D. 0.667 m/s

Use the following information to answer the next three questions.

On July 16, 1994, one of the fragments of comet Shoemaker-Levy 9 entered Jupiter's atmosphere travelling at 60.0 km/s.

As a comet fragment approaches a planet and before it enters the atmosphere, it gains kinetic energy according to the formula

$$\Delta E_k = GM_p m \left(\frac{1}{r_f} - \frac{1}{r_i} \right)$$

where G = gravitational constant

M_p = mass of the planet

m = mass of the fragment

r = distance from the centre of the planet to the fragment

As the fragment approached Jupiter's surface, the atmosphere became too dense for the fragment to push through. The fragment's tremendous kinetic energy was dissipated in an enormous explosion.

The mass of Jupiter is 318 times the mass of Earth. The mass of the comet fragment was 6 000 kg.

6. The kinetic energy of the comet fragment as it entered into Jupiter's atmosphere was

- A. 1.08×10^7 J
- B. 1.80×10^8 J
- C. 1.80×10^{11} J
- D. 1.08×10^{13} J

Numerical Response

4. The increase in kinetic energy of the Shoemaker-Levy 9 comet fragment as it moved from 8.50×10^9 m to 1.00×10^8 m from the centre of Jupiter, expressed in scientific notation, was $b \times 10^w$ J. The value of b is _____.

(Record your **three-digit answer** in the numerical-response section on the answer sheet.)

7. When the comet fragment's kinetic energy was dissipated in the explosion, most of this energy was converted to
- A. potential and kinetic energy
 - B. chemical energy only
 - C. light and heat
 - D. light only
-

Use the following information to answer the next question.

Sheet of Curling Ice

A red curling rock travelling straight down a sheet of ice at 0.36 m/s contacts a stationary blue curling rock. After contact, the blue rock moves at 0.14 m/s at an angle of 67° and the red rock moves at an angle of 23° , as illustrated. The mass of a curling rock is 18.8 kg .

8. The speed of the red rock, after contact, is
- A. 0.15 m/s
 - B. 0.22 m/s
 - C. 0.33 m/s
 - D. 0.39 m/s

9. A rock climber falls and is saved from injuries by a climbing rope that is slightly elastic. The importance of the elasticity of the climbing rope can be understood in terms of impulse because elasticity results in
- A. decreased force during an increased time interval
 - B. increased force during an increased time interval
 - C. decreased force during a decreased time interval
 - D. increased force during a decreased time interval
10. Two boys, Ted and Larry, initially at rest, push each other apart on a frictionless surface. Ted has a mass of 40 kg and Larry has a mass of 60 kg. After the boys push each other apart, Ted has a speed of 6 m/s. As the boys move apart, Larry has
- A. more momentum than Ted
 - B. less momentum than Ted
 - C. more kinetic energy than Ted
 - D. less kinetic energy than Ted

Use the following information to answer the next two questions.

Speakers

At a particular volume setting, a stereo amplifier applies a maximum voltage of 30.0 V across each of two 8.00Ω speakers.

11. The effective current in each speaker at this setting is
- A. 1.88 A
 - B. 2.65 A
 - C. 3.75 A
 - D. 5.30 A

*Use your recorded answer for Multiple Choice 11 to answer Numerical Response 5.**

Numerical Response

5. The average power dissipated in each speaker at this setting, expressed in scientific notation, is $b \times 10^w$ W. The value of b is _____.

(Record your **three-digit answer** in the numerical-response section on the answer sheet.)

*You can receive marks for this question even if the previous question was answered incorrectly.

Use the following information to answer the next two questions.

Air Cleaner

One type of air cleaner uses a single-stage electrostatic precipitator to remove very fine particles, such as cigarette smoke and pollen, from the air in a room. The first grid, marked as **X** in the diagram, removes electrons from the particles through a combination of friction and electrostatic action. The particles pass through grid **X** and leave with a positive charge. The positively charged particles are then removed from the air stream by a negatively charged grid, marked as **Y** in the diagram. This cleaner also contains a pre-filter and a carbon filter to help remove dust and odours.

12. When particles are between grids **X** and **Y**, they are repelled by
- A. grid **X** and each other, but are attracted to grid **Y**
 - B. grid **Y** and each other, but are attracted to grid **X**
 - C. grid **X** but are attracted to each other and grid **Y**
 - D. grid **Y** but are attracted to each other and grid **X**

13. An electric field of magnitude 7.17×10^4 N/C is maintained between the grids of the electrostatic precipitator. The distance between grids X and Y is 5.60 cm. The potential difference across grids X and Y is
- A. 1.28×10^6 V
B. 4.02×10^5 V
C. 1.28×10^4 V
D. 4.02×10^3 V
-

Use the following information to answer the next question.

Charged Spheres

The force exerted on sphere X by sphere Y has a magnitude of 6.0 N. A third sphere, Z, with a charge $-3.0 Q$ is introduced, as shown in the diagram.

14. The magnitude of the **net** force on sphere X, due to spheres Y and Z, is
- A. 9.0 N
B. 12 N
C. 18 N
D. 24 N

Use the following information to answer the next two questions.

Magnetic Resonance Imaging

Magnetic resonance imaging is used in medicine to produce images of a body's internal structures and tissues. This imaging technique relies on the interaction of nuclei with an external magnetic field.

When a hydrogen atom is placed in a magnetic field, it will absorb electromagnetic radiation (EMR) in the radio frequency range. The frequency absorbed varies as a function of the magnetic field strength.

Frequency as a Function of Magnetic Field Strength

The slope of the line in the graph above is called the gyromagnetic ratio.

15. The units of the gyromagnetic ratio will be

- A. $\frac{\text{T}}{\text{MHz}}$
- B. $\frac{\text{T}}{\text{s}}$
- C. $\frac{1}{\text{T}\cdot\text{s}}$
- D. $\text{T}\cdot\text{MHz}$

Numerical Response

6. When a hydrogen atom is placed in a magnetic field with a strength of 0.80 T, the EMR wavelength absorbed is _____ m.

(Record your **two-digit answer** in the numerical-response section on the answer sheet.)

16. A proton and an alpha particle have identical circular orbits in a magnetic field. The proton has a speed of 4.4×10^5 m/s. The speed of the alpha particle is
- A. 1.1×10^5 m/s
 - B. 2.2×10^5 m/s
 - C. 4.4×10^5 m/s
 - D. 8.8×10^5 m/s
17. Extra-high-voltage lines carrying 600 kV are used to transmit electrical energy. A transformer must be used to reduce the voltage to 120 kV for use in a factory. If there are 500 turns on the primary coil, the number of turns on the secondary coil **and** the type of transformer used are, respectively,
- A. 100 turns, step up
 - B. 2 500 turns, step up
 - C. 100 turns, step down
 - D. 2 500 turns, step down

Numerical Response

7. A small object carrying a charge of $3.47 \mu\text{C}$ experiences an electric force of $7.22 \times 10^{-2} \text{ N}$ when placed at a distance, d , from a second, identically charged object. The value of d is _____ m.

(Record your **three-digit answer** in the numerical-response section on the answer sheet.)

Numerical Response

8. The number of excess electrons on a ball that has a charge of $-3.60 \times 10^{-17} \text{ C}$, expressed in scientific notation, is $a.bc \times 10^d$. The values of a , b , c , and d are _____, _____, _____, and _____.

(Record all **four digits** of your answer in the numerical-response section on the answer sheet.)

18. An electron accelerates from rest across the gap between charged parallel plates and reaches a final speed of v . If the potential difference across the plates is tripled, the final speed of an electron accelerating from rest across the gap will be
- A. $\frac{1}{3}v$
B. $\frac{1}{\sqrt{3}}v$
C. $\sqrt{3}v$
D. $9v$
19. X-rays are produced by
- A. an alternating current of about 10^{18} Hz
B. firing gamma rays at a tungsten electrode
C. varying the speed of electrons in a magnetic field
D. collisions between high-speed electrons and a metal target

Use the following information to answer the next question.

In 1996, the space shuttle Columbia attempted to drag a conducting tether through Earth's magnetic field. The tether was 2.07×10^4 m long. The average magnitude of Earth's magnetic field perpendicular to the tether was 9.02×10^{-6} T. The speed of the shuttle and tether was 8.00×10^3 m/s, relative to Earth's magnetic field.

Numerical Response

9. The electric potential difference generated across the ends of the tether, expressed in scientific notation, was $a.bc \times 10^d$ V. The values of a , b , c , and d are ____ , ____ , ____ , and ____ .

(Record all **four digits** of your answer in the numerical-response section on the answer sheet.)

Use the following information to answer the next question.

Series Circuit

20. In the circuit above, the voltmeter reads 90 V and the ammeter reads 1.5 A. The value of the resistor, R , will be
- A. $11\ \Omega$
B. $20\ \Omega$
C. $30\ \Omega$
D. $80\ \Omega$

Use the following information to answer the next two questions.

The following data were recorded from the back of a small microwave oven that has only one power setting.

Input	120 V (60 Hz AC)
Power Consumption	900 W
Frequency of Microwaves	2 450 MHz
Output Power	450 W

21. During its operation, the microwave oven draws a current of
- A. 0.133 A
 - B. 0.267 A
 - C. 3.75 A
 - D. 7.50 A

Numerical Response

10. The wavelength of the microwave radiation produced by the oven, expressed in scientific notation, is $a.bc \times 10^{-d}$ m. The values of a , b , c , and d are _____, _____, _____, and _____.

(Record all **four digits** of your answer in the numerical-response section on the answer sheet.)

22. The path followed by a moving proton in an external magnetic field is shown in

A.

vertically down

B.

vertically up

C.

horizontally right

D.

horizontally left

23. A result that emerged from Einstein's work is the expression $E = pc$, where p is the magnitude of the momentum of a photon. The magnitude of the momentum of a 1.30×10^2 eV photon is

A. 6.93×10^{-26} kg·m/s

B. 2.08×10^{-17} kg·m/s

C. 8.20×10^{-14} kg·m/s

D. 4.33×10^{-7} kg·m/s

24. The magnitude of the magnetic force exerted on a charged particle in a magnetic field will be doubled by doubling **any one** of
- A. the charge of the particle, or the speed of the particle, or the mass of the particle
 - B. the magnitude of the field or the angle of entry of the particle
 - C. the speed of the particle, or the mass of the particle, or the magnitude of the field
 - D. the charge of the particle, or the speed of the particle, or the magnitude of the field
25. One $\frac{\text{N} \cdot \text{C} \cdot \text{m}}{\text{A} \cdot \text{m} \cdot \text{s}}$ is the same as
- A. 1 A
 - B. 1 N
 - C. 1 C
 - D. 1 J
26. The particle nature of X-ray radiation is **best** demonstrated by the observation that X-rays
- A. exhibit the Compton effect
 - B. have great penetrating ability
 - C. are diffracted by pure crystals
 - D. are not deflected by magnetic fields

Use the following information to answer the next two questions.

A cyclotron uses a magnetic field to move charged particles in a circular path. It also uses a high frequency power supply to repeatedly accelerate the particles.

Ernest Lawrence was the first person to use a cyclotron. His cyclotron accelerated protons to a maximum energy of 8.0×10^4 eV. With this energy, the protons moved in a circular path with a radius of 6.5×10^{-2} m.

27. The maximum speed of the protons in Lawrence's cyclotron was

- A. 1.5×10^{13} m/s
- B. 1.7×10^8 m/s
- C. 3.9×10^6 m/s
- D. 9.8×10^{15} m/s

*Use your recorded answer for Multiple Choice 27 to answer Multiple Choice 28.**

28. The magnitude of the magnetic field used by Lawrence was

- A. 6.3×10^{-1} T
- B. 2.7×10^1 T
- C. 2.4×10^6 T
- D. 1.6×10^9 T

*You can receive marks for this question even if the previous question was answered incorrectly.

Use the following information to answer the next question.

Sources of Electromagnetic Radiation

- 1 Movement of outer electrons to lower orbitals
- 2 Deceleration of high-speed electrons
- 3 Decay of radioactive nuclei
- 4 Rotation of an armature in a generator

Numerical Response

- 11.** Match each of the sources of electromagnetic radiation with the type of electromagnetic radiation it produces given below. Use each number only once.

Process:

Type:	Gamma rays	Visible light	X-rays	Extremely low frequency wave (AC)
-------	------------	---------------	--------	-----------------------------------

(Record all **four digits** of your answer in the numerical-response section on the answer sheet.)

- 29.** An ice rink is lit by a bluish light with a wavelength of 500 nm. The period of the light is

- A. 1.67×10^{-15} s
- B. 8.33×10^{-13} s
- C. 6.00×10^5 s
- D. 6.00×10^{14} s

Numerical Response

12. The Compton Gamma Ray Observatory is a satellite that is able to detect electromagnetic radiation from throughout the universe. The Compton Observatory can detect photons ranging from 4.00×10^4 eV to 3.00×10^{10} eV. The highest frequency that can be detected, expressed in scientific notation, is $b \times 10^w$ Hz. The value of b is _____.

(Record your **three-digit answer** in the numerical-response section on the answer sheet.)

30. Two scientists who conducted experiments that led to the determination of the mass of an electron were
- A. Planck and Einstein
 - B. Rutherford and Bohr
 - C. Thomson and Millikan
 - D. Compton and de Broglie
31. In the photoelectric equation, the symbol W represents the
- A. energy gain of the target metal
 - B. wavelength of the incident radiation
 - C. maximum wavelength of an emitted electron
 - D. minimum energy required to release an electron from a metal
32. Violet light striking the negative electrode in a phototube causes a current to flow in the tube. Under the same conditions, another form of light that will always cause a current to flow is
- A. blue
 - B. green
 - C. infrared
 - D. ultraviolet

33. A photon of UV-B light with a wavelength of 2.90×10^{-7} m strikes an electron in a hydrogen atom in its ground state. As a result, the electron will
- A. be raised to energy level 2
 - B. be raised to energy level 3
 - C. be raised to energy level 5
 - D. not be raised to a higher energy level

Use the following information to answer the next question.

Maximum Kinetic Energy of Photoelectrons as a Function of Incident Electromagnetic Frequency

34. The work function of the material emitting the photoelectrons is
- A. 2.0×10^{15} J
 - B. 1.3×10^{-18} J
 - C. 6.6×10^{-34} J
 - D. 0.0 J

Use the following information to answer the next three questions.

Some smoke detectors use the radioactive source americium-243 to ionize the air between two electric plates in a detection chamber. A 9.0 V battery in the detector causes a continuous current to flow between the plates. When smoke particles enter the chamber, they neutralize the ionized air molecules, which decreases the current and triggers an alarm.

35. Typically, the 9.0 V battery used in this type of detector will transfer 200 C of charge in 1.0 years. The resistance of the circuit in the detector is
- A. $1.4 \times 10^6 \Omega$
 - B. $5.9 \times 10^4 \Omega$
 - C. $3.9 \times 10^3 \Omega$
 - D. $7.0 \times 10^{-7} \Omega$
36. If the air is ionized by alpha particles produced by the americium-243, what immediate byproduct would one expect to find?
- A. Curium-243
 - B. Plutonium-243
 - C. Berkelium-247
 - D. Neptunium-239
37. Americium-243 has a half-life of approximately 7 000 years. If a detector containing 20 mg of this isotope were discarded and then rediscovered 70 years later, approximately how much americium-243 would remain?
- A. 20 mg
 - B. 0.20 mg
 - C. $2.0 \times 10^{-7} \text{ mg}$
 - D. No measurable amount would remain.

The written-response questions follow on the next page.

Use the following information to answer the next question.

A positively charged sphere is suspended by an insulating thread between two neutral parallel plates, I and II. The plates are connected by wire to a copper rod.

A student moves the copper rod to the right in an external magnetic field. The motion of the rod through the magnetic field causes electrons to move in the rod and induces a potential difference across the plates. The charged sphere moves toward one of the plates but does not come in contact with it.

Written Response — 15%

- 1.** Explain the motion of the charged sphere. In your answer,
 - describe and explain the movement of the electrons in terms of the direction of the motion of the copper rod through the magnetic field
 - describe and explain the motion of the charged sphere in terms of the charges on it and on plates I and II
 - describe a change to the apparatus or procedure that would cause the charged sphere to have a larger deflection toward the metal plate

NOTE: Marks will be awarded for the physics principles used in your response and for the effective communication of your response.

Written-response question 2 begins on the next page.

Use the following information to answer the next question.

The supernova known as SN1987A reached its maximum brightness, or luminosity (energy release per second), in mid-May 1987. After that, its luminosity decreased.

Decline in Luminosity in Supernova SN1987A

Time (Days)	Luminosity (10^{35} W)
0	1.000
50	0.638
100	0.407
150	0.260
200	0.166
250	0.106
300	0.067
350	0.043

The most likely reason that the luminosity decreased is that luminosity depends on the radioactive decay of isotopes created in the explosion. One source of the luminosity could be the gamma rays that result from any one of the decay chains listed in the following table.

Radioactive Decay Chains (Showing Half-Life and Gamma Ray Energy)

NOTE: The time provided above the arrow in each decay is the half-life. The energy provided below the arrow in each decay is the gamma ray energy.

Written Response — 15%

- 2.**
- Plot a graph of luminosity versus time.
 - Determine the half-life of the luminosity, and identify the single decay believed to be responsible for most of the energy released by the supernova.
 - The amount of radioactive nickel-56 predicted to have been created in the supernova is about 1.49×10^{29} kg. How many days would it take for the mass of nickel-56 to be reduced to 1.86×10^{28} kg?
 - The decay chain ${}^{60}\text{Fe} \rightarrow {}^{60}\text{Co} \rightarrow {}^{60}\text{Ni}$ shows two radioactive decays. Write the nuclear decay equation for iron-60. Provide the name of the particle emitted.
 - Identify the decay chain in the table that releases gamma rays with the shortest wavelength. Explain why you identified this decay chain, and calculate the shortest gamma wavelength.

Clearly communicate your understanding of the physics principles that you are using to solve this question. You may communicate this understanding mathematically, graphically, and/or with written statements.

(Title) _____

*You have now completed the examination.
If you have time, you may wish to check your answers.*

PHYSICS DATA SHEET

CONSTANTS

Gravity, Electricity, and Magnetism

Acceleration Due to Gravity or Gravitational Field Near Earth	a_g or $g = 9.81 \text{ m/s}^2$ or 9.81 N/kg
Gravitational Constant	$G = 6.67 \times 10^{-11} \text{ N}\cdot\text{m}^2/\text{kg}^2$
Mass of Earth	$M_e = 5.98 \times 10^{24} \text{ kg}$
Radius of Earth	$R_e = 6.37 \times 10^6 \text{ m}$
Coulomb's Law Constant.....	$k = 8.99 \times 10^9 \text{ N}\cdot\text{m}^2/\text{C}^2$
Electron Volt.....	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$
Elementary Charge.....	$e = 1.60 \times 10^{-19} \text{ C}$
Index of Refraction of Air	$n = 1.00$
Speed of Light in Vacuum	$c = 3.00 \times 10^8 \text{ m/s}$

Trigonometry and Vectors

For any Vector \vec{R}	For any Vector \vec{R}
$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$	$R = \sqrt{R_x^2 + R_y^2}$
$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$	$\tan \theta = \frac{R_y}{R_x}$
$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$	$R_x = R \cos \theta$
$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	$R_y = R \sin \theta$
$c^2 = a^2 + b^2 - 2ab \cos C$	

Atomic Physics

Energy of an Electron in the 1st Bohr Orbit of Hydrogen	$E_1 = -2.18 \times 10^{-18} \text{ J}$ or -13.6 eV
Planck's Constant	$h = 6.63 \times 10^{-34} \text{ J}\cdot\text{s}$ or $4.14 \times 10^{-15} \text{ eV}\cdot\text{s}$
Radius of 1st Bohr Orbit of Hydrogen	$r_1 = 5.29 \times 10^{-11} \text{ m}$
Rydberg's Constant for Hydrogen	$R_H = 1.10 \times 10^7 \frac{1}{\text{m}}$

Particles

Rest Mass	Charge
Alpha Particle	$m_\alpha = 6.65 \times 10^{-27} \text{ kg}$
Electron	$m_e = 9.11 \times 10^{-31} \text{ kg}$
Neutron	$m_n = 1.67 \times 10^{-27} \text{ kg}$
Proton	$m_p = 1.67 \times 10^{-27} \text{ kg}$

Prefixes Used With SI Units

Exponential Value	Symbol	Prefix	Symbol	Exponential Value
10^{-12}	p	pico	p	10^{-12}
10^{-9}	n	nano	n	10^{-9}
10^{-6}	μ	micro	μ	10^{-6}
10^{-3}	m	milli	m	10^{-3}
10^{-2}	c	centi	c	10^{-2}
10^{-1}	d	deci	d	10^{-1}

EQUATIONS

Kinematics

$$\vec{v}_{\text{ave}} = \frac{\vec{d}}{t}$$

$$\vec{d} = \vec{v}_f t - \frac{1}{2} \vec{a} t^2$$

$$\vec{a} = \frac{\vec{v}_f - \vec{v}_i}{t}$$

$$\vec{d} = \vec{v}_i t + \frac{1}{2} \vec{a} t^2$$

$$v = \frac{2\pi r}{T}$$

$$F = \frac{mv^2}{r}$$

$$F_g = \frac{Gm_1 m_2}{r^2}$$

Dynamics

$$\vec{F} = m\vec{a}$$

$$\vec{F} \Delta t = m\vec{v}$$

$$\vec{F}_g = m\vec{g}$$

$$F_c = \frac{mv^2}{r}$$

$$\vec{F}_s = -k\vec{x}$$

$$E_{k_{\text{max}}} = qV_{\text{stop}}$$

Momentum and Energy

$$\vec{p} = m\vec{v}$$

$$W = Fd$$

$$W = \Delta E = Fd \cos \theta$$

$$P = \frac{W}{t} = \frac{\Delta E}{t}$$

Waves and Light

$$T = 2\pi\sqrt{\frac{m}{k}}$$

$$T = 2\pi\sqrt{\frac{l}{g}}$$

$$\lambda = \frac{xd}{nl}$$

$$T = \frac{1}{f}$$

$$v = f\lambda$$

$$\frac{\lambda_1}{2} = l; \frac{\lambda_1}{4} = l$$

$$\frac{1}{f} = \frac{1}{d_0} + \frac{1}{d_i}$$

$$m = \frac{h_i}{h_0} = \frac{-d_i}{d_0}$$

$$\lambda = \frac{d \sin \theta}{n}$$

$$F_e = \frac{kq_1 q_2}{r^2}$$

$$|\vec{E}| = \frac{kq_1}{r^2}$$

$$\vec{E} = \frac{\vec{F}_e}{q}$$

$$F_m = IIB_\perp$$

$$F_m = qvB_\perp$$

$$V = \frac{\Delta E}{q}$$

$$R = R_i + R_2 + R_3$$

$$\frac{1}{R} = \frac{1}{R_i} + \frac{1}{R_2} + \frac{1}{R_3}$$

$$I_{\text{eff}} = 0.707 I_{\text{max}}$$

$$N = N_0 \left(\frac{1}{2}\right)^n$$

Quantum Mechanics and Nuclear Physics

$$E = mc^2$$

$$p = \frac{h}{\lambda}$$

$$p = \frac{hf}{c}; E = pc$$

Electricity and Magnetism

$$T = IR$$

$$F_e = \frac{kq_1 q_2}{r^2}$$

$$|\vec{E}| = \frac{kq_1}{r^2}$$

$$I = \frac{q}{t}$$

$$F_m = IIB_\perp$$

$$V = IV$$

Periodic Table of the Elements

1 H		2 He		3 Li		4 Be		5 B		6 C		7 N		8 O		9 F		10 Ne																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
IA	IIA	IA	IIIA	VA	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIA or O																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	VIIA																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
IA	IIA	IA	IIIA	VA	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIIB	VIA																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
1.01 hydrogen	6.94 beryllium	9.01 lithium	12.01 magnesium	19.99 sodium	22.99 potassium	39.10 calcium	40.08 scandium	44.96 titanium	50.94 chromium	52.00 vanadium	54.94 manganese	55.85 iron	58.93 cobalt	61.73 nickel	63.55 copper	65.38 zinc	69.72 gallium	72.59 germanium	78.96 arsenic	79.90 selenium	83.80 bromine	83.80 krypton																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
3 Li	4 Be	5 B	6 C	7 N	8 O	9 F	10 Ne	11 Na	12 Mg	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
IA	IIA	IA	IIIA	VA	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIIB	VIB	VIIB																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																	
1.01 hydrogen	6.94 beryllium	9.01 lithium	12.01 magnesium	19.99 sodium	22.99 potassium	39.10 calcium	40.08 scandium	44.96 titanium	50.94 chromium	52.00 vanadium	54.94 manganese	55.85 iron	58.93 cobalt	61.73 nickel	63.55 copper	65.38 zinc	69.72 gallium	72.59 germanium	78.96 arsenic	79.90 selenium	83.80 bromine	83.80 krypton	87.62 rubidium	88.91 strontium	89.91 yttrium	91.22 zirconium	92.91 niobium	95.94 molybdenum	98.91 technetium	101.07 ruthenium	102.91 rhodium	106.40 palladium	107.87 silver	112.41 cadmium	114.82 indium	118.69 tin	121.75 antimony	127.60 tellurium	128.90 iodine	131.30 xenon	132.91 cesium	137.33 barium	138.91 lanthanum	140.12 cerium	140.91 praseodymium	144.24 neodymium	144.91 promethium	150.35 samarium	151.96 europium	158.93 gadolinium	162.50 dysprosium	164.93 holmium	167.26 erbium	168.93 thulium	173.04 ytterbium	174.97 lutetium	175.10 neptunium	175.10 mendelevium	175.10 nobelium	175.10 lawrencium																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
223.02 francium	(226.03) radium	87 Fr	88 Ra	89-103 (226.11)	104 Unq	105 Unp	106 Unh	107 Uns	108 Uno	109 Une	(262.12)	(263.12)	(265)	(266)	unniloctium	unnilennium	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn	87 Fr	88 Ra	89-103 (226.11)	104 Unq	105 Unp	106 Unh	107 Uns	108 Uno	109 Une	110 Unq	111 Unp	112 Unh	113 Uns	114 Uno	115 Unq	116 Unp	117 Unh	118 Uns	119 Uno	120 Unq	121 Unp	122 Unh	123 Uns	124 Uno	125 Unq	126 Unp	127 Unh	128 Uns	129 Uno	130 Unq	131 Unp	132 Unh	133 Uns	134 Uno	135 Unq	136 Unp	137 Unh	138 Uno	139 Unq	140 Unp	141 Unh	142 Uno	143 Unq	144 Unp	145 Unh	146 Uno	147 Unq	148 Unp	149 Unh	150 Uno	151 Unq	152 Unp	153 Unh	154 Uno	155 Unq	156 Unp	157 Unh	158 Uno	159 Unq	160 Unp	161 Unh	162 Uno	163 Unq	164 Unp	165 Unh	166 Uno	167 Unq	168 Unp	169 Unh	170 Uno	171 Unq	172 Unp	173 Unh	174 Uno	175 Unq	176 Unp	177 Unh	178 Uno	179 Unq	180 Unp	181 Unh	182 Uno	183 Unq	184 Unp	185 Unh	186 Uno	187 Unq	188 Unp	189 Unh	190 Uno	191 Unq	192 Unp	193 Unh	194 Uno	195 Unq	196 Unp	197 Unh	198 Uno	199 Unq	200 Unp	201 Unh	202 Uno	203 Unq	204 Unp	205 Unh	206 Uno	207 Unq	208 Unp	209 Unh	210 Uno	211 Unq	212 Unp	213 Unh	214 Uno	215 Unq	216 Unp	217 Unh	218 Uno	219 Unq	220 Unp	221 Unh	222 Uno	223 Unq	224 Unp	225 Unh	226 Uno	227 Unq	228 Unp	229 Unh	230 Uno	231 Unq	232 Unp	233 Unh	234 Uno	235 Unq	236 Unp	237 Unh	238 Uno	239 Unq	240 Unp	241 Unh	242 Uno	243 Unq	244 Unp	245 Unh	246 Uno	247 Unq	248 Unp	249 Unh	250 Uno	251 Unq	252 Unp	253 Unh	254 Uno	255 Unq	256 Unp	257 Unh	258 Uno	259 Unq	260 Unp	261 Unh	262 Uno	263 Unq	264 Unp	265 Unh	266 Uno	267 Unq	268 Unp	269 Unh	270 Uno	271 Unq	272 Unp	273 Unh	274 Uno	275 Unq	276 Unp	277 Unh	278 Uno	279 Unq	280 Unp	281 Unh	282 Uno	283 Unq	284 Unp	285 Unh	286 Uno	287 Unq	288 Unp	289 Unh	290 Uno	291 Unq	292 Unp	293 Unh	294 Uno	295 Unq	296 Unp	297 Unh	298 Uno	299 Unq	300 Unp	301 Unh	302 Uno	303 Unq	304 Unp	305 Unh	306 Uno	307 Unq	308 Unp	309 Unh	310 Uno	311 Unq	312 Unp	313 Unh	314 Uno	315 Unq	316 Unp	317 Unh	318 Uno	319 Unq	320 Unp	321 Unh	322 Uno	323 Unq	324 Unp	325 Unh	326 Uno	327 Unq	328 Unp	329 Unh	330 Uno	331 Unq	332 Unp	333 Unh	334 Uno	335 Unq	336 Unp	337 Unh	338 Uno	339 Unq	340 Unp	341 Unh	342 Uno	343 Unq	344 Unp	345 Unh	346 Uno	347 Unq	348 Unp	349 Unh	350 Uno	351 Unq	352 Unp	353 Unh	354 Uno	355 Unq	356 Unp	357 Unh	358 Uno	359 Unq	360 Unp	361 Unh	362 Uno	363 Unq	364 Unp	365 Unh	366 Uno	367 Unq	368 Unp	369 Unh	370 Uno	371 Unq	372 Unp	373 Unh	374 Uno	375 Unq	376 Unp	377 Unh	378 Uno	379 Unq	380 Unp	381 Unh	382 Uno	383 Unq	384 Unp	385 Unh	386 Uno	387 Unq	388 Unp	389 Unh	390 Uno	391 Unq	392 Unp	393 Unh	394 Uno	395 Unq	396 Unp	397 Unh	398 Uno	399 Unq	400 Unp	401 Unh	402 Uno	403 Unq	404 Unp	405 Unh	406 Uno	407 Unq	408 Unp	409 Unh	410 Uno	411 Unq	412 Unp	413 Unh	414 Uno	415 Unq	416 Unp	417 Unh	418 Uno	419 Unq	420 Unp	421 Unh	422 Uno	423 Unq	424 Unp	425 Unh	426 Uno	427 Unq	428 Unp	429 Unh	430 Uno	431 Unq	432 Unp	433 Unh	434 Uno	435 Unq	436 Unp	437 Unh	438 Uno	439 Unq	440 Unp	441 Unh	442 Uno	443 Unq	444 Unp	445 Unh	446 Uno	447 Unq	448 Unp	449 Unh	450 Uno	451 Unq	452 Unp	453 Unh	454 Uno	455 Unq	456 Unp	457 Unh	458 Uno	459 Unq	460 Unp	461 Unh	462 Uno	463 Unq	464 Unp	465 Unh	466 Uno	467 Unq	468 Unp	469 Unh	470 Uno	471 Unq	472 Unp	473 Unh	474 Uno	475 Unq	476 Unp	477 Unh	478 Uno	479 Unq	480 Unp	481 Unh	482 Uno	483 Unq	484 Unp	485 Unh	486 Uno	487 Unq	488 Unp	489 Unh	490 Uno	491 Unq	492 Unp	493 Unh	494 Uno	495 Unq	496 Unp	497 Unh	498 Uno	499 Unq	500 Unp	501 Unh	502 Uno	503 Unq	504 Unp	505 Unh	506 Uno	507 Unq	508 Unp	509 Unh	510 Uno	511 Unq	512 Unp	513 Unh	514 Uno	515 Unq	516 Unp	517 Unh	518 Uno	519 Unq	520 Unp	521 Unh	522 Uno	523 Unq	524 Unp	525 Unh	526 Uno	527 Unq	528 Unp	529 Unh	530 Uno	531 Unq	532 Unp	533 Unh	534 Uno	535 Unq	536 Unp	537 Unh	538 Uno	539 Unq	540 Unp	541 Unh	542 Uno	543 Unq	544 Unp	545 Unh	546 Uno	547 Unq	548 Unp	549 Unh	550 Uno	551 Unq	552 Unp	553 Unh	554 Uno	555 Unq	556 Unp	557 Unh	558 Uno	559 Unq	560 Unp	561 Unh	562 Uno	563 Unq	564 Unp	565 Unh	566 Uno	567 Unq	568 Unp	569 Unh	570 Uno	571 Unq	572 Unp	573 Unh	574 Uno	575 Unq	576 Unp	577 Unh	578 Uno	579 Unq	580 Unp	581 Unh	582 Uno	583 Unq	584 Unp	585 Unh	586 Uno	587 Unq	588 Unp	589 Unh	590 Uno	591 Unq	592 Unp	593 Unh	594 Uno	595 Unq	596 Unp	597 Unh	598 Uno	599 Unq	600 Unp	601 Unh	602 Uno	603 Unq	604 Unp	605 Unh	606 Uno	607 Unq	608 Unp	609 Unh	610 Uno	611 Unq	612 Unp	613 Unh	614 Uno	615 Unq	616 Unp	617 Unh	618 Uno	619 Unq	620 Unp	621 Unh	622 Uno	623 Unq	624 Unp	625 Unh	626 Uno	627 Unq	628 Unp	629 Unh	630 Uno	631 Unq	632 Unp	633 Unh	634 Uno	635 Unq	636 Unp	637 Unh	638 Uno	639 Unq	640 Unp	641 Unh	642 Uno	643 Unq	644 Unp	645 Unh	646 Uno	647 Unq	648 Unp	649 Unh	650 Uno	651 Unq	652 Unp	653 Unh	654 Uno	655 Unq	656 Unp	657 Unh	658 Uno	659 Unq	660 Unp	661 Unh	662 Uno	663 Unq	664 Unp	665 Unh	666 Uno	667 Unq	668 Unp	669 Unh	670 Uno	671 Unq	672 Unp	673 Unh	674 Uno	675 Unq	676 Unp	677 Unh	678 Uno	679 Unq	680 Unp	681 Unh	682 Uno	683 Unq	684 Unp	685 Unh	686 Uno	687 Unq	688 Unp	689 Unh	690 Uno	691 Unq	692 Unp	693 Unh	694 Uno	695 Unq	696 Unp	697 Unh	698 Uno	699 Unq	700 Unp	701 Unh	702 Uno	703 Unq	704 Unp	705 Unh	706 Uno	707 Unq	708 Unp	709 Unh	710 Uno	711 Unq	712 Unp	713 Unh	714 Uno	715 Unq	716 Unp	717 Unh	718 Uno	719 Unq	720 Unp	721 Unh	722 Uno	723 Unq	724 Unp	725 Unh	726 Uno	727 Unq	728 Unp	729 Unh	730 Uno	731 Unq	732 Unp	733 Unh	734 Uno	735 Unq	736 Unp	737 Unh	738 Uno	739 Unq	740 Unp	741 Unh	742 Uno	743 Unq	744 Unp	745 Unh	746 Uno	747 Unq	748 Unp	749 Unh	750 Uno	751 Unq	752 Unp	753 Unh	754 Uno	755 Unq	756 Unp	757 Unh	758 Uno	759 Unq	760 Unp	761 Unh	762 Uno	763 Unq	764 Unp	765 Unh	766 Uno	767 Unq	768 Unp	769 Unh	770 Uno	771 Unq	772 Unp	773 Unh	774 Uno	775 Unq	776 Unp	777 Unh	778 Uno	779 Unq	780 Unp	781 Unh	782 Uno	783 Unq	784 Unp	785 Unh	786 Uno	787 Unq	788 Unp	789 Unh	790 Uno	791 Unq	792 Unp	793 Unh	794 Uno	795 Unq	796 Unp	797 Unh	798 Uno	799 Unq	800 Unp	801 Unh	802 Uno	803 Unq	804 Unp	805 Unh	806 Uno	807 Unq	808 Unp	809 Unh	810 Uno	811 Unq	812 Unp	813 Unh	814 Uno	815 Unq	816 Unp	817 Unh	818 Uno	819 Unq	820 Unp	821 Unh	822 Uno	823 Unq	824 Unp	825 Unh	826 Uno	827 Unq	828 Unp	829 Unh	830 Uno	831 Unq	832 Unp	833 Unh	834 Uno	835 Unq	836 Unp	837 Unh	838 Uno	839 Unq	840 Unp	841 Unh	842 Uno	843 Unq	844 Unp	845 Unh	846 Uno	847 Unq	848 Unp	849 Unh	850 Uno	851 Unq	852 Unp	853 Unh	854 Uno	855 Unq	856 Unp	857 Unh	858 Uno	859 Unq	860 Unp	861 Unh	862 Uno	863 Unq	864 Unp	865 Unh	866 Uno	867 Unq	868 Unp	869 Unh	870 Uno	871 Unq	872 Unp	873 Unh	874 Uno	875 Unq	876 Unp	877 Unh	878 Uno	879 Unq	880 Unp	881 Unh	882 Uno	883 Unq	884 Unp	885 Unh	886 Uno	887 Unq	888 Unp	889 Unh	890 Uno	891 Unq	892 Unp	893 Unh	894 Uno	895 Unq	896 Unp	897 Unh	898 Uno	899 Unq	900 Unp	901 Unh	902 Uno	903 Unq	904 Unp	905 Unh	906 Uno	907 Unq	908 Unp	909 Unh	910 Uno	911 Unq	912 Unp	913 Unh	914 Uno	915 Unq	916 Unp	917 Unh	918 Uno	919 Unq	920 Unp	921 Unh	922 Uno	923 Unq	924 Unp	925 Unh	926 Uno	927 Unq	928 Unp	929 Unh	930 Uno	931 Unq	932 Unp	933 Unh	934 Uno	935 Unq	936 Unp	937 Unh	938 Uno	939 Unq	940 Unp	941 Unh	942 Uno	943 Unq	944 Unp	945 Unh	946 Uno	947 Unq	948 Unp	949 Unh	950 Uno	951 Unq	952 Unp	953 Unh	954 Uno	955 Unq	956 Unp	957 Unh	958 Uno	959 Unq	960 Unp	961 Unh	962 Uno	963 Unq	964 Unp	965 Unh	966 Uno	967 Unq	968 Unp	969 Unh	970 Uno	971 Unq	972 Unp	973 Unh	974 Uno	975 Unq	976 Unp	977 Unh	978 Uno	979 Unq	980 Unp	981 Unh	982 Uno	983 Unq	984 Unp	985 Unh	986 Uno	987 Unq	988 Unp	989 Unh	990 Uno	991 Unq	992 Unp	993 Unh	994 Uno	995 Unq	996 Unp	997 Unh	998 Uno	999 Unq	1000 Unp	1001 Unh	1002 Uno	1003 Unq	1004 Unp	1005 Unh	1006 Uno	1007 Unq	1008 Unp	1009 Unh	1010 Uno	1011 Unq	1012 Unp	1013 Unh	1014 Uno	1015 Unq	1016 Unp	1017 Unh	1018 Uno	1019 Unq	1020 Unp	1021 Unh	1022 Uno	1023 Unq	1024 Unp	1025 Unh	1026 Uno	1027 Unq	1028 Unp	1029 Unh	1030 Uno</td

No marks will be given for work done on this page.

Fold and tear along perforation.

No marks will be given for work done on this page.

Fold and tear along perforation.

No marks will be given for work done on this page.

Fold and tear along perforation.

No marks will be given for work done on this page.

Physics 30

June 2000

Name

Apply Label With Student's Name

Physics 30

(Last Name)

(Legal First Name)

D

Name:

Sex:

Permanent Mailing Address:
School Code:
School: _____

(Apt./Street/Ave./P.O. Box)

Date of Birth: (Postal Code)

Signature: _____

For 3 3286 52054328 7

Question 1
Marker 1

C1

Question 1
Marker 2

C2

Question 1
Marker 3

C3

Question 2
Marker 1

C4

Question 2
Marker 2

C5

Question 2
Marker 3

C6

No Name

Apply Label Without Student's Name

Physics 30

