CORRECTION SÉANCE 3 (2 FÉVRIER)

† FEUILLE 1 - Quelques situations fondamentales

Exercice 6.

1. L'application $\varphi: P \mapsto P.v$ est un morphisme de R-modules de R vers E, surjectif justement parce que E est monogène. Son noyau est un sous-module de R, donc un idéal de R, donc de la forme (P_0) pour un certain polynôme P_0 (car R est principal).

Par le théorème de Cayley-Hamilton, le polynôme caractéristique χ_u est tel que $\chi_u(u) = 0$, en particulier, χ_u est dans le noyau de φ car $\chi_u(u)(v) = 0$. Comme χ_u est de degré dim E, il est non nul, donc ker φ est non nul. Le générateur P_0 de ker φ est donc non nul, et peut-être choisi unitaire.

Par le théorème d'isomorphisme, on a donc $E \simeq R/(P_0)$ pour un certain polynôme unitaire $P_0 \in k[X]$ (isomorphisme de R-modules).

2. Par définition, P_0 engendre le noyau de $\varphi: P \mapsto P.v = P(u)(v)$. On montre que ker φ est égal à l'idéal annulateur de l'endomorphisme u. Autrement dit que, pour $P \in k[X]$, P(u) = 0 si et seulement si P(u)(v) = 0. L'une des implications est évidente : si P(u) = 0, alors en particulier, P(u)(v) = 0. Réciproquement, supposons que P(u)(v) = 0, et soit $x \in E$, on doit montrer que P(u)(x) = 0. Comme (E, u) est engendré (comme R-module) par v, on a x = Q(u)(v) pour un certain polynôme $Q \in k[X]$. On a alors

$$P(u)(x) = P(u)(Q(u)(v))$$

$$= (P(u) \circ Q(u))(v)$$

$$= (Q(u) \circ P(u))(v)$$

$$= Q(u)(P(u)(v))$$

$$= Q(u)(0) = 0$$

On a donc P(u) = 0 car P(u)(x) = 0 quel que soit $x \in E$. Ainsi, le polynôme P_0 est unitaire et engendre en fait l'idéal des polynômes annulateurs de u sur E, c'est la définition du polynôme minimal.

3. Notons B la famille $v, u(v), \dots, u^{n-1}(v)$.

La famille B est libre. Soient en effet $\lambda_1, \ldots, \lambda_{n-1}$ tels que

$$\sum_{i=0}^{n-1} \lambda_i u^i(v) = 0 \Rightarrow \left(\sum_{i=0}^{n-1} \lambda_i X^i\right)(u)(v) = 0$$

Le polynôme $Q(X) = \sum_{i=0}^{n-1} \lambda_i X^i$ est un polynôme annulateur de u de degré n-1, donc Q=0 (car le polynôme minimal P_0 doit diviser Q): les λ_i sont tous nuls et B est libre.

Ensuite, F est génératrice : dire que (E,u) est engendré par v comme R-module signifie que tout élément de E s'écrit Q(u)(v) pour un certain $Q \in R$. En écrivant la division euclidienne $Q = DP_0 + \widetilde{Q}$, on obtient que

$$Q(u)(v) = (DP_0 + \widetilde{Q}(u))(v) = \widetilde{Q}(u)(v)$$

comme deg $\widetilde{Q} < n$, cet élément est bien une combinaison linéaire de la famille B, qui est donc génératrice. d). Le polynôme P_0 est le polynôme minimal d'un endomorphisme u d'un k-ev de dimension n. Le polynôme

caractéristique χ_u de u est un polynôme unitaire de degré n. Par le théorème de Cayley-Hamilton, le polynôme P_0 divise χ_u . Comme ces deux polynômes sont unitaires et ont le même degré, ils sont égaux.

† FEUILLE 2 - Premiers exemples

Exercice 2. (\Leftarrow) Si $\beta = \lambda \alpha$, alors

$$\beta(x) = 0 \Leftrightarrow \lambda \alpha(x) = 0 \Leftrightarrow \alpha(x) = 0$$

car $\lambda \neq 0$. Donc Ker $\alpha = \text{Ker } \beta$ dans ce cas.

(⇒) Si Ker $\alpha = \text{Ker } \beta$. Soit $x \notin \text{Ker } \alpha$, on sait que Vect x est un supplémentaire de Ker $\alpha = \text{Ker } \beta$, donc tout $e \in E$ s'écrit de manière unique $e = y + \mu x$ avec $y \in \text{Ker } \alpha$ et $\mu \in k$. On a alors

$$\alpha(e) = \alpha(y + \mu x) = \mu \alpha(x)$$
 et $\beta(e) = \mu \beta(x)$

En posant $\lambda = \beta(x)/\alpha(x)$, on obtient bien le résultat voulu $(\lambda \neq 0 \text{ car } \beta(x) \neq 0 \text{ par hypothèse})$.