Luca Aceto Ignacio Fábregas Carlos Gregorio-Rodríguez Anna Ingólsfdóttir

> ICE-TCS, School of Computer Science Reykjavik University, Iceland.

Departamento Sistemas Informáticos y Computación Universidad Complutense de Madrid, Spain

> NWPT 2015 Friday, 23rd October

Formal Methods

Motivation

LTS

- NonDeterminism
- Inputs
- Outputs
- Explicit quiescence
- Input enabled (not requiered

- LTS
- Non
- Determinism

- LTS
- Non Determinism
- Inputs

- LTS
- Non Determinism
- Inputs
- Outputs

- LTS
- Non Determinism
- Inputs
- Outputs
- **Explicit** quiescence

- LTS
- Non Determinism
- Inputs
- Outputs
- **Explicit** quiescence

- LTS
- Non Determinism
- Inputs
- Outputs
- **Explicit** quiescence
- Input enabled (not requiered)

Example 1

- iocos is a branching semantic.
- \blacksquare *i* iodos *s*.

- iocos is a branching semantic.
- \blacksquare *i* iodos *s*.

- iocos is a branching semantic.
- \blacksquare *i* iodos *s*.

- iocos is a conformance semantic.
- input actions in the specification should be implemented.

- iocos is a conformance semantic.
- input actions in the specification should be implemented.
- All outputs in the implementation must be allowed by the specification.

- iocos is a conformance semantic.
- input actions in the specification should be implemented.
- All outputs in the implementation must be allowed by the specification.
- i iocos s.

Example 3

- i must be able to do all the inputs specify by s.

- i must be able to do all the inputs specify by s.
- \blacksquare *i* iodos *s*.

- The implementation can add new behaviours for the inputs.

- The implementation can add new behaviours for the inputs.
- i iocos s.

An iocos relation

R is an iocos-relation iff for any $(i, s) \in R$:

- 1 ins(s) \subseteq ins(i)
- 2 $a? \in ins(s)$ $i \xrightarrow{a?} i'$ then $s \xrightarrow{a?} s'$, $(i', s') \in R$
- $x! \in \text{outs}(i) \ i \xrightarrow{x!} i' \ \text{then} \ s \xrightarrow{x!} s', \ (i', s') \in R$

iocos

 $iocos = \bigcup \{R \mid R \text{ is a iocos-relation}\}\$ $(i, s) \in iocos \leftrightarrow i iocos s$ What has already be done?

Offline testing

Soundness

p pass T for any $T \in \mathcal{T}(p)$

Completeness

 $\forall T \in \mathcal{T}(s) \ i \text{ pass } T \text{ iff } i \text{ iocos } s$

"C. Gregorio-Rodríguez, L. Llana, R. Martínez-Torres: Input Output Conformance Simulation (iocos) for Model Based Testing. FORTF 2013"

What has already be done?

Online testing

```
Algorithm 1 Online Testing Algorithm for iocos
 1: function TE(s, iut, maxIter)
       continue \leftarrow \checkmark
       numIter \leftarrow maxIter
       while numIter > 0 \land continue == \checkmark do
           continue, numIter \leftarrow TE_{REC}(s, iut, numIter)
           if continue == √ then
 7-
               vocat int
       return continue
 9: function TE<sub>REC</sub>(s, iut, numIter)
       if numIter = 0 then
10:
11:
           return √.numIter
       else
           choice
13:
               case action do
14:
                                                 Offers an input to the implementation
15-
                   choice a \in ins(s)
                   if a? is not enabled in iut then
                      return X. numIter
18-
                   send a? to int
19:
                   iut_0 \leftarrow copy(iut)
20:
                   for s' \in s after a? do
21:
                      iut \leftarrow copy(iut_0)
22:
                      continue, numIter \leftarrow TE_{nuc}(s', iut, numIter - 1)
23:
                      if continue == \( \square \) then
24:
                           return √, numIter
25:
                   return X, numIter
26:
               case wait do
                                         > Waits for an output from the implementation
27:
                   wait o! from iut
28:
                   if s after o! = \emptyset then
29:
                      return X.T
30:
                   iut_0 \leftarrow copu(iut)
31:
                   for s' \in s after o! do
32:
                      iut \leftarrow copy(iut_0)
33:
                       continue, numIter \leftarrow TE_{REC}(s', iut, numIter - 1)
34:
                      if continue == \( \square \) then
                           return √. numIter
35:
36:
                   return X. numIter
37:
               case reset do
                                                     Resets implementation and restart
38:
                   return √. maxIter
39:
```

"C. Gregorio-Rodríguez, L. Llana, R. Martínez-Torres: Effectiveness for Input Output Conformance Simulation iocos. FORTE 2014"

Implementations

General Coarser Partition Problem (GCPP)

- Can be effectively computed using the GCPP algorithm.
- This allows to perform iocos-minimisation.
 - Given process p, compute q s.t. q iocos= p and q has a minimal LTS.

mCRL2 tool (Jan Friso Groote, TU Eindhoven (CWI, Twente...))

Implementation of iocos in mCRL2.

"C. Gregorio-Rodríguez, L. Llana, R. Martínez-Torres: Extending mCRL2 with ready simulation and iocos input-output conformance simulation. SAC 2015"

Model Checking

Model **Properties** Operational description Logic formula 'Minimal' and 'equivalent' Logic formula

- We present a logic that characterizes iocos.
 - Both, preorder and equivalence.
- Is a subset of the Hennessy-Milner Logic.

Syntax of \mathcal{L}_{iocos}

$$\phi ::= \mathsf{tt} \mid \mathsf{ff} \mid \phi \land \phi \mid \phi \lor \phi \mid \langle a? \rangle \phi \mid \langle x! \rangle \phi.$$

Logic

Semantics of \mathcal{L}_{iocos}

- \blacksquare Standard interpretations for tt, ff, \land and \lor .
- $p \models \langle x! \rangle \phi$ iff $p' \models \phi$ for some $p \xrightarrow{x!} p'$.

Definitions

Syntax of \mathcal{L}_{iocos}

$$\phi ::= \mathsf{tt} \mid \mathsf{ff} \mid \phi \land \phi \mid \phi \lor \phi \mid \langle a? \rangle \phi \mid \langle x! \rangle \phi.$$

Semantics of $\mathcal{L}_{\mathsf{locos}}$

- \blacksquare Standard interpretations for tt, ff, \land and \lor .
- $p \models \langle x! \rangle \phi$ iff $p' \models \phi$ for some $p \xrightarrow{x!} p'$.
- $p \models \langle a? \rangle \phi$ iff $p \xrightarrow{a?} \phi$ or $p' \models \phi$ for some $p \xrightarrow{a?} p'$.
- $\langle a? \rangle \phi$ is logically equivalent to [a?]ff $\vee \langle a? \rangle \phi$.

$\mathcal{L}_{\mathsf{locos}}$ characterizes the preorder

i iocos *s* iff $(\forall \phi \in \mathcal{L}_{iocos} \quad i \models \phi \text{ then } s \models \phi)$.

$\mathcal{L}_{\text{iocos}}$ characterizes the induced equivalence

 $i \text{ iocos} = s \text{ iff } (\forall \phi \in \mathcal{L}_{\text{iocos}} \quad i \models \phi \text{ iff } s \models \phi).$

Corollary

For all ϕ in \mathcal{L}_{iocos} if we want to check $p \models \phi$, it is equivalent to minimise p to q (using GCPP) and solve $q \models \phi$

An Alternative logic

- \blacksquare \mathcal{L}_{iocos} follows a standard approach to the characterisation of simulation semantics.
- However, iocos was originated in the model based testing environment.
 - The natural reading for a logical characterisation would be "every formula produced by the specification should be also proved correct in the implementation".

Syntax

$$\phi ::= \mathsf{tt} \mid \mathsf{ff} \mid \phi \land \phi \mid \phi \lor \phi \mid [\![a?]\!] \phi \mid [\![x!]\!] \phi.$$

Logic

Semantics

- \blacksquare Standard interpretations for tt, ff, \land and \lor .
- $p \models [x!] \phi \text{ iff } p' \models \phi \text{ for each } p \xrightarrow{x!} p'.$
- $p \models [a?] \phi$ iff $p \xrightarrow{a?}$ and $p' \models \phi$ for each $p \xrightarrow{a?} p'$.
- $[a?]\phi$ is logically equivalent to $\langle a?\rangle$ tt $\wedge [a?]\phi$.

An Alternative logic

Syntax

$$\phi ::= \mathsf{tt} \mid \mathsf{ff} \mid \phi \land \phi \mid \phi \lor \phi \mid [\![a?]\!] \phi \mid [\![x!]\!] \phi.$$

Semantics

- Standard interpretations for tt, ff, \land and \lor .
- $p \models [x!] \phi$ iff $p' \models \phi$ for each $p \xrightarrow{x!} p'$.
- $p \models [a?] \phi$ iff $p \xrightarrow{a?}$ and $p' \models \phi$ for each $p \xrightarrow{a?} p'$.
- $[a?]\phi$ is logically equivalent to $\langle a?\rangle$ tt $\wedge [a?]\phi$.

Some results

\mathcal{L}_{iocos} characterizes the preorder

 $i \text{ iocos } s \text{ iff } (\forall \phi \in \widetilde{\mathcal{L}}_{\text{iocos}} \quad s \models \phi \text{ then } i \models \phi).$

$\mathcal{L}_{\text{iocos}}$ characterizes the induced equivalence

 $i \text{ iocos} = s \text{ iff } (\forall \phi \in \mathcal{L}_{\text{iocos}} \quad s \models \phi \text{ iff } i \models \phi).$

Corollary

For all ϕ in $\widetilde{\mathcal{L}}_{iocos}$ if we want to check $p \models \phi$, it is equivalent to minimise p to q (using GCPP) and solve $q \models \phi$

Logic

Relation between \mathcal{L}_{iocos} & \mathcal{L}_{iocos}

Bijection $T: \mathcal{L}_{iocos} \to \widetilde{\mathcal{L}}_{iocos}:$

- \mathbf{I} $\mathcal{T}(\mathsf{tt}) = \mathsf{ff}.$
- $\mathcal{T}(ff) = tt.$
- $T(\phi_1 \wedge \phi_2) = T(\phi_1) \vee T(\phi_2).$
- $T(\phi_1 \vee \phi_2) = T(\phi_1) \wedge T(\phi_2).$
- $T(\langle a? \rangle \phi) = [a?]T(\phi).$
- $T(\langle x! \rangle \phi) = [x!]T(\phi).$

The inverse function $\mathcal{T}^{-1}:\widetilde{\mathcal{L}}_{iocos}\to\mathcal{L}_{iocos}$ is defined in the obvious way.

Logic 0000

Definition

A formula ϕ is *characteristic* for s iff

- $\blacksquare s \models \phi$ and
- for all i it holds that $i \models \phi$ if and only if i iocos s.

Bisimulation

$$\chi(p) = \bigwedge_{a,p \xrightarrow{a} p'} \langle a \rangle \chi(p') \wedge \bigwedge_{a \in A} [a] \bigvee_{p \xrightarrow{a} p'} \chi(p')$$

$$\chi(p) = \bigwedge_{a? \in \mathsf{ins}(p)} \llbracket a? \rrbracket \bigvee_{p \xrightarrow{a?} p'} \chi(p') \land \bigwedge_{x! \in O} [x!] \bigvee_{p \xrightarrow{x!} p'} \chi(p')$$

$$\chi(p) = \bigwedge_{a? \in \mathsf{ins}(p)} \llbracket a? \rrbracket \bigvee_{p \xrightarrow{a?} p'} \chi(p') \wedge \bigwedge_{x! \in O} \llbracket x! \rrbracket \bigvee_{p \xrightarrow{x!} p'} \chi(p')$$

$$\chi(p) = \bigwedge_{a? \in \mathsf{ins}(p)} \llbracket a? \rrbracket \bigvee_{p \xrightarrow{a?} p'} \chi(p') \land \bigwedge_{x! \in O} \llbracket x! \rrbracket \bigvee_{p \xrightarrow{x!} p'} \chi(p')$$

Theorem

 Applying a result in "L. Aceto, A. Ingólfsdóttir, and J. Sack. Characteristic formulae for fixed-point semantics: A genera framework. EXPRESS 2009".

$$\chi(p) = \bigwedge_{a? \in \mathsf{ins}(p)} \llbracket a? \rrbracket \bigvee_{p \xrightarrow{a?} p'} \chi(p') \wedge \bigwedge_{x! \in O} \llbracket x! \rrbracket \bigvee_{p \xrightarrow{x!} p'} \chi(p')$$

Theorem

Applying a result in "L. Aceto, A. Ingólfsdóttir, and J. Sack. Characteristic formulae for fixed-point semantics: A general framework. EXPRESS 2009".

Future Work

- \blacksquare Relation of \mathcal{L}_{iocos} with other logics in the literature
 - Ready simulation logic, covariant-contravariant simulation logic and μ-calculus.
- Expressive logic for iocos
 - ACTL