

TEST REPORT

Report Number: 101277992MIN-005B Project Number: G101277992

Testing performed on the Model 4100, Pocket Programmer

to ETSI EN 301 839-1 v1.3.1 (2009-10) ETSI EN 301 839-2 v1.3.1 (2009-10) ETSI EN 301 489-27 v1.1.1 (2004-06)

Minnetronix

Test Performed by: Intertek Testing Services NA, Inc. 7250 Hudson Blvd., Suite 100 Oakdale, MN 55128 USA Test Authorized by:
Minnetronix
1635 Energy Park Drive
St. Paul, MN 55108 USA

Prepared by:	/்//. ≤ுட்கள் Uri Spector	_ Date:	November 26, 2013
Reviewed by:	Simon Khazon	_ Date:	November 26, 2013

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

TABLE OF CONTENTS

1.0	GENERAL DESCRIPTION	3
2.0	TEST SUMMARY	4
2.1	Statement of the measurement uncertainty	5
3.0	EQUIPMENT UNDER TEST	6
3.1	Power configuration	6
3.2	Antenna configuration	6
3.3	EUT Configuration	7
3.4	Environmental conditions	7
4.0	TEST CONDITIONS AND RESULTS	8
4.1	Effective Radiated Power at Fundamental	8
4.2	Bandwidth of Emissions	12
4.3	Radiated Spurious Emissions	14
4.4	Frequency Error	20
4.5	MICS Operation	
4.6	Receiver spurious emissions	32
4.	6.1 Enclosure radiated spurious emissions	32
4.7	Radiated Emissions of ancillary equipment enclosure	37
4.8	Conducted Emissions at AC port, DC port, and Telecommunication port	41
4.9	Harmonic Current Emissions	45
	OVoltage Fluctuations and Flicker	
4.11	1 Radiated, Radio-frequency, Electromagnetic Field	50
4.12	2 Electrostatic Discharge	52
	3 Electrical Fast Transients / Burst	
4.14	4 RF common mode (Conducted Disturbances)	56
	5 Voltage Dips and Voltage Interruptions	
4.16	Surges Immunity	
5.0	TEST EQUIPMENT	61

1.0 GENERAL DESCRIPTION

Model:	4100
Type of EUT:	Pocket Programmer, MICS Radio
Serial Number:	DBR 1616
Company:	Minnetronix
Customer:	Sue Sibilski
Address:	1635 Energy Park Drive St. Paul, MN 55108
Phone:	(651) 917-4060
Fax:	(651) 917-4066
e-mail:	ssibilski@minnetronix.com
Test Standards:	☑ EN 301 839-1 v1.3.1 (2009-10) ☑ EN 301 839-2 v1.3.1 (2009-10) □ EN 300 330-2 V1.3.1 (2006-04) □ EN 300 440-2 V1.3.1 (2009-03) □ EN 301 489-1 V1.8.1 (2008-04) □ EN 301 489-3 V1.4.1 (2002-08) ☑ EN 301 489-27 V1.1.1 (2006-04)
Operating Frequency Range(s):	Range: from 402-405 MHz
Power Level Setting:	52
Modulation:	□ FHSS ⊠ Digital □ Other
Type of radio:	☑ Stand -alone ☐ Module ☐ Hybrid
Date Sample Submitted:	August 16, 2013
Test Work Started:	August 19, 2013
Test Work Completed:	November 26, 2013
Test Sample Conditions:	□ Damaged □Poor (Usable) ☒ Good

Page 3 of 61

2.0 TEST SUMMARY

Referring to the performance criteria and the operating mode during the tests specified in this report, the equipment complies with the requirements according to the following standards.

TEST SPECIFICATION	TEST PARAMETERS	RESULT
8.3	Effective Radiated Power at Fundamental	Pass
8.2	Bandwidth of the emission	Pass
8.4	Radiated Spurious Emissions	Pass
9.1	Receiver Spurious Emissions	Pass
8.1	Frequency Error	Pass
10	The MICS Communication Sessions (Threshold Power Levels, Monitoring System Bandwidth, Scan Cycle Time, Minimum Channel Monitoring Period, Channel Access, Discontinuation of a MICS Session, and Use of Pre-Scanned Alternate Channel)	Pass
8.2	Radiated Emissions of enclosure of ancillary equipment	Pass
8.3	Conducted Emissions, DC ports	N/A
8.4	Conducted Emissions, AC mains	Pass
8.5	Harmonic Current Emissions	Pass
8.6	Voltage Fluctuations	Pass
8.7	Conducted Emissions, telecommunication ports	N/A
9.2	RF Electromagnetic Field	Pass
9.3	Electrostatic Discharge	Pass
9.4	Fast Transients	Pass
9.5	RF common mode	Pass
9.6	Transients and surges in vehicular environment	Pass
9.7	Voltage Dips and Voltage Interruptions	Pass
9.8	Surges	Pass

2.1 Statement of the measurement uncertainty

Note 1: The measured result in this report is within the specification limits by more than the measurement uncertainty; the measured result indicates that the product tested complies with the specification limit.

The expanded uncertainty (k = 2) for radiated emissions from 30 to 1000 MHz has been determined to be: ± 4 dB at 10m and ± 5.4 dB at 3m

The expanded uncertainty (k = 2) for conducted emissions from 150 kHz to 30 MHz has been determined to he:

±2.6 dB

3.0 EQUIPMENT UNDER TEST

3.1 Power configuration

Rated voltage:

Rated current:	Amp.
Rated frequency:	☑ 50-60Hz ☐ 60Hz
Power source:	☐ Internal battery ☑ External power source
Battery:	☐ Nickel Cadmium ☐ Alkaline ☐ Nickel-Metal Hydride ☐ Lithium-Ion
3.2 Antenna configurat	ion
Antenna type:	⊠ wire loop antenna □ External
Antenna gain:	-9.7dBi

3.3 EUT Configuration

The equipment under test was operated during the measurement under the following conditions:

\boxtimes	 Standt 	ì۱
\sim	Otalia	Jν

□ - Continuous

 $\ensuremath{\boxtimes}$ - Continuous un-modulated

☐ - Test program (customer specific)

□ -

Operating modes of the EUT:

	· ····································
No.	Description
	The EUT was powered 230VAC and was activated to transmit continuously modulated carrier except frequency error testing were a CW signal was transmitted. Channel 5 (403.65MHz) was utilized for testing. During Immunity testing the EUT MICS RF communication was established with the remote Implant Emulation (Avid) board.

Cables:

No.	Туре	Length	Designation	Note
1	Not shielded USB Power cable	2m	Power Cable	

Support equipment/Services:

No.	Item	Description		
1	Avid Board	Implant Emulation board used during MICS Communication Sessions testing.		

General notes: None

3.4 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

□ Normal

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 86-106 kPa

⊠ Extreme

☐ Temperature:	+25 to +45 ° C
	-20 to +55 ° C
	<u>+</u> 10%
☐ Battery:	As declared by
•	the manufacturer

EMC Report No: 101277992MIN-005B Page 7 of 61

4.0 TEST CONDITIONS AND RESULTS

4.1 Effective	Radiated Power at F	-undamental
Test location:	☐ OATS	
Test distance:	☐ 10 meters	
Test result:	Pass	
Max. Emissions	margin at fundamen	tal: 2.0dB below the limits
Notes: Ta	ble 1 shows ERP Pov	ver at Fundamentals (substitution measurements).

Test Setup Photos

Date:	August 28, 2013	Result:	Pass
Standard:	EN ETSI 301 839-1		
Tested by:	Uri Spector		
Test Point:	Enclosure		
Operation mode:	See Page 7		
Note:	None		

Table 1

Frequency	Antenna	Measured	Substitution	Substitution	Cable	ERP Spur.	Limit	Margin
	Polarity	Emissions	Antenna Power	Antenna Gain	Loss	Emissions		
MHz		dΒμV	dBm	dBi	dB	dBm	dBm	dB
403.66	V	58.2	-20.3	0.0	0.5	-20.8	-16.0	-4.8
403.66	Η	61.9	-17.5	0.0	0.5	-18.0	-16.0	-2.0

EMC Report No: 101277992MIN-005B Page 10 of 61

Graph 4.1.1

4.2 Bandwidth of Emissions

Center Frequency of operation MHz	Measured 20dB bandwidth kHz	Maximum bandwidth allowed kHz	
403.66	255.4	300	

Graph 4.2.1 shows bandwidth of emissions

Notes:	None				

Graph 4.2.1

4.3 Radiated Spurious Emissions

Test location:	OATS	
Test distance:	☐ 10 meters	
Test result:	Pass	
Frequency range:		25MHz-4GHz

Notes: Graphs 4.3.1- 4.3.4 show pre-scan radiated emissions

Emissions at fundamentals and below CISPR 22 Class B limits were excluded from substitution

measurements.

Test Setup Photos

Graph 4.3.1 Vertical Antenna Polarity

Graph 4.3.2 Horizontal Antenna Polarity

Graph 4.3.3

Graph 4.3.4

4.4 Frequency Error

Table 4.4.1

	Output	Frequency	Frequency	Frequency	
Temperature	Frequency	Deviation	Stability	error limit	Test
Degree C	MHz	kHz	ppm	ppm	Result
-20	403.6567	7.4	18.3	±100	Pass
0	403.6571	7.0	17.3	±100	Pass
15	403.6590	5.1	12.6	±100	Pass
25	403.6641	0.0	0.0	±100	Pass
35	403.6698	5.7	14.1	±100	Pass
55	403.6713	7.2	17.8	±100	Pass

Table 4.4.2

Input	Input	Output	Frequency	
Voltage	Voltage	Frequency	Band	Test
V	Description	MHz	MHz	Result
230	Nominal	403.6641	402-405	Pass
253	Upper Extreme	403.6641	402-405	Pass
207	Lower Extreme	403.6641	402-405	Pass

EMC Report No: 101277992MIN-005B Page 20 of 61

4.5 MICS Operation

The MICS communication sessions must meet operating requirements for Threshold Power Levels, Monitoring System Bandwidth, Scan Cycle Time, Minimum Channel Monitoring Period, Channel Access, Discontinuation of a MICS Session, and Use of Pre-Scanned Alternate Channel.

For these tests, a blocking band was created using the vector signal generator. A notch was created in the blocking band by removing some of the tones, or by lowering the output power of some of the tones in relation to the other. A second signal generator was used to generate a tone on specific channel. Below is an example plot of the blocking band at the EUT, including a single notch in the center.

Graph 4.5.1

System Threshold Power Levels

The monitoring threshold power level shall not be greater the calculated level given by the equation, 10logB(Hz)-150(dBm/Hz)+G(dBi), where B is the emissions bandwidth of the MICS communication session transmitter having the widest emissions bandwidth and G is the antenna gain of the medical implant programmer transmitter monitoring system.

Calculated Threshold Power: 10 log(255.4kHz) -150+(-9.7)= -105.6dBm

The blocking band was set to -102.6dBm (3dB above the calculated threshold level), with a notch left open at 403.65MHz. A tone was introduces at the center of the notch at -111.6dBm, and was stepped up to the threshold level, -105.6dBm. At each step, MICS communications session was initiated and the selected channel was observed.

Measured Threshold Power: -107.6dBm

Monitoring System Bandwidth

The monitoring system bandwidth measured at its 20dB down points shall be equal to, or greater than the emissions bandwidth of the intended transmission.

The blocking band was set to -102.6dBm (3dB above the calculated threshold level), with a notch left open at 403.65MHz. A tone was introduced at the frequencies corresponding to the 20dB down points of the fundamental emission, and was increased until the EUT no longer transmitted on the central frequency. At each step, a MICS communication session was initiated and the selected channel was observed. The difference between the values at which the EUT detects the center channel emission and the channel edge emissions should be less than 20dB in order for the order for the monitoring system bandwidth to be wider than the emission bandwidth.

Flow = 403.522MHz Fhigh = 403.777MHz

Pa= -105.3dBm Pb= -94.7dBm Pc= -102.8dBm

D1= Pa-Pb= -105.3-(-94.7)= -10.6dB D2= Pa-Pc= -105.2-(-102.8)= -2.7dB

D1 and D2 are both less than 20dB

Test result: Pass

Scan Cycle Time

Within 5 seconds prior to initiating a communications session, circuitry associated with a medical implant programmer transmitter shall monitor all the channels in the 402-405MHz frequency band.

The blocking band was set to -102.6dBm (3dB above the calculated threshold level), with a notch left open at 403.65MHz. A tone was introduced at the center of the notch at -99.6dBm. The tone was removed and a MICS communications session was initiated. The time elapsed between removal of the CW tone and the start of the MICS session was recorded. The highest value was: **4.0sec**

Test result: Pass

Graph 4.5.2 Scan Cycle Time 1 (1.78 sec)

Graph 4.5.3 Scan Cycle Time 2 (820ms)

Graph 4.5.4 Scan Cycle Time 3 (1.64 sec)

Graph 4.5.5 Scan Cycle Time 4 (640ms)

Graph 4.5.6 Scan Cycle Time 5 (1.74sec)

Minimum Channel Monitoring Period

Each MICS channel shall be monitored for a minimum of 10 milliseconds during each scan cycle of 5 seconds or less.

The level of the out-of-operating-region disturbance was increased sufficiently high to prevent operation under any circumstances on a channel other than fc as specified by the manufacturer. It was verified that the EUT transmits on fc. The CW signal at frequency fc was introduced at a level equal to the out-of operating-region disturbance level. Then the out-of-operating-region disturbance was temporarily removed and the process was initiated and it was verified that the communications do not occur on fc. The out-of-operating-region disturbance was reinserted at a level 3 dB above the level used before. It was verified that the EUT never communicates outside the EUT operating region at fc after reinitiating communication.

The out of operating region disturbance signal was modulated with 0.1 ms pulse whose repetition frequency was adjusted to 100Hz corresponding to a silent period between pulses of 9.9 ms. This condition was monitored for several times, at least 10 attempts, and it was verified that the EUT did not select a channel in the blocking band over several attempts.

Test result: Pass

Channel Access

Immediate access is permitted on any channel having an ambient power level that is below the maximum threshold. If no channel having an ambient power below the maximum threshold is available, the equipment under test shall access and transmit on the least interfered channel.

The blocking band was set to -95.6dBm (10dB above the calculated threshold level), with a notch left open at 403.65MHz. A second notch was created at out-of operating-region by lowering the blocking tones by 7dB. A CW tone was introduced at the center of the channel at -108.6dB (3dB below the calculated threshold). A MICS communication session was then initiated and it was verified that the EUT transmitted only on the center frequency through several attempts. The CW tone at center frequency was then increased by 9dB to -99.6dBm, and it was verified that the EUT transmitted on the center frequency of the LIC channel over 10+ attempts.

Test result: Pass

Discontinuation of a MICS session

MICS shall cease transmission in the event the communication session is interrupted for a period of 5 seconds or more.

A MICS communication session was initiated, and the MICS implant was caused to cease transmission during the session. The time from when the implant ceased transmission until the programmer ceased communication was 4.76 seconds, as shown in the plot below. Communication was set on channel 5 (403.65MHz). Power was turned off block the implant transmission.

Test result: Pass

Graph 4.5.7

Use of the Pre-scanned Alternate Channel

Pre-scanned alternate channel operation is not implemented

4.6 Receiver spurious emissions

4.0	Receiver spurious emissions					
4.6.1	Enclosure radiated spurious emissions					
Test lo	cation:	OATS				
Test re	esult:	Pass				
Frequency range:		25MHz	z-4GHz			
Notes:			scan radiated emissions SPR 22 Class B limits were excluded from substitution measurements.			

Graph 4.6.1 Vertical Antenna Polarity

Graph 4.6.2 Horizontal Antenna Polarity

Graph 4.6.3

Graph 4.6.4

4.7 Radiated Emissions of ancillary equipment enclosure

Descript	tion of the tes	t location	
Test loc	ation:	OATS	
Test dis	tance:	☐ 10 meters	
Test res	sult:	Pass	
Frequen	ncy range:		30MHz-1000MHz
Max. Em	nissions marg	in:	4.0dB below the limits
		Emissions pre-s Graph 4.7.1 and	scan was performed in the Anechoic chamber at 3m measurement Table 4.7.1).

Page 37 of 61

Test Setup Photos

Date:	August 28, 2013	Result:	Pass
Standard:	EN 55022, Class B		
Tested by:	Uri Spector		
Test Point:	Enclosure		
Operation mode:	See Page 7		
Note:	None		

Table 4.7.1

Frequency	Ant.	Peak Reading	Total C.F.	Total at 3m	Limit	Margin
	Polarity	dΒμV	dB1/m	dBμV/m	dBµV/m	dB
31.87 MHz	V	8.4	19.0	27.5	40.0	-12.5
37.204 MHz	>	11.3	16.1	27.5	40.0	-12.5
47.836 MHz	V	25.5	10.6	36.0	40.0	-4.0
59.819 MHz	>	14.2	7.2	21.4	40.0	-18.7
77.467 MHz	V	13.6	8.3	21.9	40.0	-18.1
128.95 MHz	>	12.5	14.0	26.5	40.0	-13.5
189.24 MHz	>	12.8	11.3	24.1	40.0	-15.9
30.069 MHz	Н	7.1	20.2	27.3	40.0	-12.7
45.619 MHz	Н	12.0	11.6	23.6	40.0	-16.4
49.187 MHz	Н	13.1	10.0	23.1	40.0	-16.9
123.06 MHz	Н	11.9	14.0	25.9	40.0	-14.1
189.4 MHz	Н	11.4	11.3	22.7	40.0	-17.3

Graph 4.7.1

4.8 Conducted Em	nissions at AC port, DC port, and Telecommunication port
Test location:	☐ OATS ☐ Anechoic Chamber ☐ Other
Test result:	Pass
Frequency range:	0.15MHz-30MHz
Max. Emissions margi	n: 9.4dB below the limits
Notes: The EUT does	not have Telecommunication port.

Test Setup Photos

Date:	October 10, 2013	Result:	Pass
Standard:	EN 55022, Class B		
Tested by:	Uri Spector		
Test Point:	AC Port		
Operation mode:	See Page 7		
Note:	None		

Table 4.8.1

Line 1

Frequency	Peak	QP Limit	AVG Limit	QP Margin	AVG Margin
	dΒμV	dΒμV	dΒμV	dB	dB
272.02 KHz	34.2	61.1	51.1	-26.9	-16.9
347.65 KHz	35.2	59.0	49.0	-23.8	-13.8
349.35 KHz	35.8	59.0	49.0	-23.2	-13.2
371.51 KHz	34.7	58.5	48.5	-23.8	-13.8
382.44 KHz	35.0	58.2	48.2	-23.2	-13.2
541.16 KHz	35.1	56.0	46.0	-20.9	-10.9
560.81 KHz	36.2	56.0	46.0	-19.9	-9.9
947.66 KHz	34.7	56.0	46.0	-21.3	-11.3
961.38 KHz	36.5	56.0	46.0	-19.5	-9.5
968.25 KHz	36.6	56.0	46.0	-19.4	-9.4
991.04 KHz	35.6	56.0	46.0	-20.4	-10.4
1.0403 MHz	34.7	56.0	46.0	-21.3	-11.3

Line 2

Frequency	Peak	QP Limit	AVG Limit	QP Margin	AVG Margin
	dΒμV	dBmV	dBmV	dB	dB
161.73 KHz	31.6	65.4	55.4	-33.8	-23.8
186.16 KHz	31.6	64.2	54.2	-32.6	-22.6
262.17 KHz	31.5	61.4	51.4	-29.9	-19.9
269.99 KHz	31.6	61.1	51.1	-29.5	-19.5
350.44 KHz	32.4	59.0	49.0	-26.6	-16.6
434.25 KHz	31.5	57.2	47.2	-25.6	-15.6
435.81 KHz	31.7	57.1	47.1	-25.5	-15.5
515.85 KHz	32.2	56.0	46.0	-23.8	-13.8
527.77 KHz	31.9	56.0	46.0	-24.1	-14.1
530.59 KHz	33.1	56.0	46.0	-22.9	-12.9
940.6 KHz	32.2	56.0	46.0	-23.8	-13.8
1.0048 MHz	32.0	56.0	46.0	-24.0	-14.0

Graph 4.8.1

4.9 Harmonic Current Emissions

Date:	November 26, 2013	Result:	Pass
Tested by:	Ivaylo Nadarliyski		
Standard:	IEC 61000-3-2		
Test Point:	AC Input		
Operation mode:	See Page 5		
Note:	None		

Test Parameters

Frequency Range:	50Hz – 2000Hz
Observation Period:	Tobs = 10 min
Classification:	☐ Class A ☐ Class B ☐ Class C ☐ Class D

Notes: None

Harmonics - Class-A per Ed. 3.2 (2009)(Run time)

EUT: PoP 4100 (s/n EMC 001D BR1616) (ps Model EA1015-AR s/n: 32300017) Tested by:

Ivaylo Nadarliyski

Test category: Class-A per Ed. 3.2 (2009) (European limits)
Test Margin: 100
Test date: 11/26/2013
Start time: 10:38:08 AM
End time: 10:48:29 AM

Test duration (min): 10 Data file name: H-000530.cts_data

Comment: Comments Customer: Minnetronix

Test Result: Pass Source qualification: Normal

Current & voltage waveforms

Harmonics and Class A limit line European Limits

Test result: Pass Worst harmonic was #0 with 0.00% of the limit.

Current Test Result Summary (Run time)

EUT: PoP 4100 (s/n EMC 001D BR1616) (ps Model EA1015-AR s/n: 32300017) Tested by:

Ivaylo Nadarliyski

Test category: Class-A per Ed. 3.2 (2009) (European limits)
Test Margin: 100
Test date: 11/26/2013
Start time: 10:38:08 AM
End time: 10:48:29 AM

Test duration (min): 10 Data file name: H-000530.cts_data

Comment: Comments Customer: Minnetronix

Test Result: Pass Source qualification: Normal

THC(A): 0.00 I-THD(%): 0.00 POHC(A): 0.000 POHC Limit(A): 0.320

Highest parameter values during test:

 V_RMS (Volts):
 229.84
 Frequency(Hz):
 50.00

 I_Peak (Amps):
 0.060
 I_RMS (Amps):
 0.026

 I_Fund (Amps):
 0.026
 Crest Factor:
 2.337

 Power (Watts):
 0.3
 Power Factor:
 0.054

	· ono. (mano	,. 0.0			0.00		
Harm#	Harms(avg)	100%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status
2	0.000	1.080	0.0	0.000	1.620	0.00	Pass
3	0.001	2.300	0.0	0.001	3.450	0.03	Pass
4	0.000	0.430	0.0	0.000	0.645	0.01	Pass
5	0.001	1.140	0.0	0.001	1.710	0.04	Pass
6 7	0.000	0.300	0.0	0.000	0.450	0.08	Pass
	0.001	0.770	0.0	0.001	1.155	0.06	Pass
8	0.000	0.230	0.0	0.000	0.345	0.02	Pass
9	0.001	0.400	0.0	0.001	0.600	0.11	Pass
10	0.000	0.184	0.0	0.000	0.276	0.02	Pass
11	0.001	0.330	0.0	0.001	0.495	0.13	Pass
12	0.000	0.153	0.0	0.000	0.230	0.11	Pass
13	0.001	0.210	0.0	0.001	0.315	0.20	Pass
14	0.000	0.131	0.0	0.000	0.197	0.05	Pass
15	0.001	0.150	0.0	0.001	0.225	0.28	Pass
16	0.000	0.115	0.0	0.000	0.173	0.08	Pass
17	0.001	0.132	0.0	0.001	0.199	0.31	Pass
18	0.000	0.102	0.0	0.000	0.153	0.13	Pass
19	0.001	0.118	0.0	0.001	0.178	0.34	Pass
20	0.000	0.092	0.0	0.000	0.138	0.08	Pass
21	0.001	0.107	0.0	0.001	0.161	0.36	Pass
22	0.000	0.084	0.0	0.000	0.125	0.06	Pass
23	0.001	0.098	0.0	0.001	0.147	0.38	Pass
24	0.000	0.077	0.0	0.000	0.115	0.10	Pass
25	0.001	0.090	0.0	0.001	0.135	0.40	Pass
26	0.000	0.071	0.0	0.000	0.106	0.08	Pass
27	0.000	0.083	0.0	0.001	0.125	0.41	Pass
28	0.000	0.066	0.0	0.000	0.099	0.11	Pass
29	0.000	0.078	0.0	0.000	0.116	0.42	Pass
30	0.000	0.061	0.0	0.000	0.092	0.15	Pass
31	0.000	0.073	0.0	0.000	0.109	0.44	Pass
32	0.000	0.058	0.0	0.000	0.086	0.13	Pass
33	0.000	0.068	0.0	0.000	0.102	0.45	Pass
34	0.000	0.054	0.0	0.000	0.081	0.11	Pass
35	0.000	0.064	0.0	0.000	0.096	0.46	Pass
36	0.000	0.051	0.0	0.000	0.077	0.13	Pass
37	0.000	0.061	0.0	0.000	0.091	0.46	Pass
38	0.000	0.048	0.0	0.000	0.073	0.15	Pass
39	0.000	0.058	0.0	0.000	0.087	0.43	Pass
40	0.000	0.046	0.0	0.000	0.069	0.27	Pass

4.10 Voltage Fluctuations and Flicker

Date:	September 9, 2013	Result:	Pass
Standard:	EN 61000-3-3		
Tested by:	Uri Spector		
Test Point:	AC Input		
Operation mode:	See Page 7		
Note:	None		

Test Parameters

Flicker Value:	□ Pst
	☑ Plt
Observation Period:	Tobs = 120 min
Relative Voltage	│ ☑ dc
Change:	☐ dmax
	\boxtimes d(t)

Notes: N/A

Test Result: Pass Status: Test Completed

Pst_i and limit line European Limits

Plt and limit line

Parameter values recorded during the test:

229.80			
0.55	Test limit (%):	3.30	Pass
0.0	Test limit (mS):	500.0	Pass
0.00	Test limit (%):	3.30	Pass
0.38	Test limit (%):	4.00	Pass
0.097	Test limit:	1.000	Pass
0.069	Test limit:	0.650	Pass
	0.0 0.00 0.38 0.097	0.55 Test limit (%): 0.0 Test limit (mS): 0.00 Test limit (%): 0.38 Test limit (%): 0.097 Test limit:	0.55 Test limit (%): 3.30 0.0 Test limit (mS): 500.0 0.00 Test limit (%): 3.30 0.38 Test limit (%): 4.00 0.097 Test limit: 1.000

4.11 Radiated, Radio-frequency, Electromagnetic Field

Description of the test location

Frequency step:

Antenna polarisation:

Test location: ⊠ Im	munity Anechoic Chamber	3 meters	Anechoic Ch	amber	
Date:	October 4-7, 2013			Result:	Pass
Standard:	EN 61000-4-3				
Tested by:	Ivaylo Nadarliyski				
Test Point:	Four sides of EUT				
Operation mode:	See Page 7				
Note:	None				
Test specification					
Frequency range:		MHz to 1000 MHz		z to 2.7 GH	lz
Field strength:		//m 🔲 10 V/m			
EUT - antenna separ	ation: 🛛 🖾 2.5	5 m			
Modulation:		AM: 80 %			

Notes: The EUT lost MICS communication near 100MHz up to 1000MHz and did not re-establish communication until the application was restarted manually. According to the manufacturer this degradation is acceptable as long as it can be manually re-established.

horizontal

☐ PM duty cycle 50% 100Hz

900 MHz Pulse Modulation 1 % with 9 sec dwell time

Test Setup Photo

4.12 Electrostatic Discharge

Date:	November 14, 2013	Result:	Pass
Standard:	EN 61000-4-2		
Tested by:	Ivaylo Nadarliyski		
Test Point:	Enclosure		
Operation mode:	See Page 7		
Note:	None		

Test specification

□ 2 kV □ 6 kV
☑ 330 Ω / 150 pF ☐ Other:
≥ 1 sec.
Direct Discharge ☐ Air Discharge
Indirect Discharge ☐ Contact Discharge
□ Positive □ Negative □ Negative
⊠ see photo of the test set-up
□ all external locations accessible by hand

Notes: During application of +8kV Air Discharge to the edges of the display the whole display blinked momentary with the discharge. No degradations at all other settings. Per manufacturer, the Pocket Programmer has no Essential Performance. Therefore the momentary blink of the display during Electrostatic Discharge does not affect patient safety or compromise Essential Performance. Also indicators on the display signifying a loss of MICS connection or dropped pockets is acceptable and does not affect Essential Performance.

Test Setup Photo

4.13 Electrical Fast Transients / Burst

Description of the test	location							
Test location:	☐ Shielded Room			☐ 3 m	eter	s Anechoic Cl	hamber	
Date:	October 8, 2013						Result:	Pass
Standard:	EN 61000-4-4							
Tested by:	Ivaylo Nadarliyski							
Test Point:	⊠ L1 ⊠ L2 □	1 L3	⊠N	⊠G		I/O		
Operation mode:	See Page 7		· · · ·					
Note:	None							
Test specification								
Coupling network:	[0.5 kV		kV	☐ 2 kV		
Coupling clamp:]	==-	0.5 kV	☐ 1 k	٠V			
Burst frequency:			5.0 kHz					
Coupling duration:			≥ 60 s					
Polarity:		M I	positive 🛭	nega	ative	<u> </u>		
Coupling points Cable description:	J	AC	Port					
Screening:]		screened			unscreened		
Status:]		passive			active		
Signal transmission:]		analogue			digital		
Length:			0.5m					
Cable description:								
Screening:	[□ s	creened			unscreened		
Status:	[passive			active		
Signal transmission:	[analogue			digital		
Length:								
Cable description:								
Screening:	<u> </u>		screened		-==-	unscreened		
Status:	<u> </u>		passive			active		
Signal transmission:		닖.:	analogue		Щ.	digital		
Length:		Ш						
Notes: During the test	no deviation was de	etect	ed to the	selecte	d op	peration mode	e(s).	

Test Setup Photo

4.14 RF common mode (Conducted Disturbances)

Description of the test	location						
Test location:	☐ Shielded Room	l	□ 3	met	ers Anechoic C	hamber	
Date:	October 4, 2013					Result:	Pass
Standard:	EN 61000-4-6						
Tested by:	Ivaylo Nadarliyski						
Test Point:	⊠ AC □ I/Ó						
Operation mode:	See Page 7						
Note:	None						
Test specification	15.	7					
Frequency range:			0.15 MHz to 80				
Test voltage:	×		3 V □ 10 V R	IIVIS			
Modulation:			AM: 80 % sinusoidal 1KHz				
Frequency step:		3 7	1 % with 9 sec c	lwell	time		
Coupling points Cable description:	Δ	C I	Port				
Screening:	<u></u>		screened	X	unscreened		
Status:			passive		active		
Signal transmission:	 		analogue		digital		
Length:			0.3m		digital		
Cable description:		3					
Screening:] {	screened		unscreened		
Status:] r	passive		active		
Signal transmission:			analogue		digital		
Length:		וכ					
Cable description :							
Screening:] [screened		unscreened		
Status:] p	oassive		active		
Signal transmission:] a	analogue		digital		
Length:							
Cable description:							
Screening:] [screened		unscreened		
Status:] p	oassive		active		
Signal transmission:] a	analogue		digital		
Length:		וכ					
Notes: During the test	no deviation was de	ete	ected to the sele	cted	operation mode	e(s).	

Test Setup Photo

4.15 Voltage Dips and Voltage Interruptions

Date:	October 8, 2013	Result:	Pass
Standard:	EN 61000-4-11		
Tested by:	Ivaylo Nadarliyski		
Test Point:	AC Input		
Operation mode:	See Page 7		
Note:	None		

Test specification

Nominal Mains Voltage (V _N):	\boxtimes	230 V A] 120 V	/ AC			
Level of reduction (dip):	\boxtimes	100%						
Number of periods:	\boxtimes	0.5						
Phase angle:	\boxtimes	0°	\boxtimes	90°	⊠ 18	30°		
Number of Interruptions:	\boxtimes	3					 	
Repetition:	\boxtimes	15 sec						
Level of reduction (dip):	\boxtimes	100%					 	
Number of periods:		1.0					 	
Phase angle:		0°	\boxtimes	90°	☑ 18	30°		
Number of Interruptions:		3					 	
Repetition:	_	15 sec						
Level of reduction (dip):		60%					 	
Duration:		200mS					 	
Phase angle:	\boxtimes	0°	\boxtimes	90°	⊠ 18	30°		
Number of Interruptions:	\boxtimes	3					 	
Repetition:	\boxtimes	15 sec						
Level of reduction (dip):		30%					 	
Duration:		500mS					 	
Phase angle:		0°	\boxtimes	90°	⊠ 18	30°		
Number of Interruptions:	\boxtimes	3					 	
Repetition:	\boxtimes	15 sec						
Level of reduction (dip):	\boxtimes	100%					 	
Interruption duration:		5 sec					 	
Phase angle:		0°	\boxtimes	90°	☑ 18	30°		
Number of Interruptions:		3					 	
Repetition:	\boxtimes	15 sec						

Notes: During the test no deviation was detected to the selected operation mode(s). During 5 sec interruption the EUT was powered from the internal battery and resumes operation from AC port.

4.16 Surges Immunity

Date:	October 9, 2013					Result:	Pass
Standard:	EN 61000-4-5						
Tested by:	Ivaylo Nadarliysk	j					
Test Point:			_3 ⊠N □G	□ I/	O'		
Operation mode:	See Page 7						
Note:	None						
Test specification							
Source impedance: 12) () . OuE		0.5 kV □ 1 kV] 2 kV 🔲 4	1 kV □ (Other
			0.5 kV] 2 kV	 .	Other
Source impedance: 2						+ KV	Julei
Polarity:		△ I ☑ (oositive 0° 🛭 90°] negative] 180° ⊠ 2	 270°	
Phase angle:			0.5 kV □ 1 kV		1 100 🔼 🗸	270	
Line-to-ground surges							
Repetition rate:			60 s				
Number of surges:		<u> </u>	5 surges at each po	OSITIO	n		
Coupling points							
Cable description:			C Port				
Screening:			screened		unscreened		
Status:		ļ	passive	- 	active		
Signal transmission:		1	analogue	\boxtimes	digital		
Length:] 2m				
Cable description:		100					
Screening:			screened	П	unscreened		
Status:		ΤĒ	passive	-==	active		
Signal transmission:		ΤĒ	analogue		digital		
Length:		Ē]				
Cable description:		1					
Screening:			screened	□ ī	unscreened		
Status:		ĪĒ] passive		active		
Signal transmission:		ΪĒ] analogue		digital		
Length:		15	1		V		
•							
			J				
			I				

Notes: During the surge test, the EUT stopped charging due to the damage to the AC adapter, and EUT continue to operate from an internal battery. Per manufacturer, the Pocket Programmer has no Essential Performance. Therefore the damage to power adaptor during surge does not affect patient safety or compromise Essential Performance. Also indicators on the display signifying a loss of MICS connection or dropped pockets is acceptable and does not affect Essential Performance.

Test Setup Photo

5.0 TEST EQUIPMENT

DESCRIPTION	MANUFACTURER	MODEL	SERIAL NO.	INTERTEK ID	CAL DUE	USED
Spectrum Analyzer	R&S	ESU	100398	25283	12/19/2013	\boxtimes
Spectrum Analyzer	R & S	FSP 40	100024	12559	11/29/2013	
Bicono-Log Antenna	Schaffner-Teseq	CBL6112B	2468	9734	11/30/2013	
Horn Antenna	EMCO	3115	6579	15580	07/18/2014	\boxtimes
LISN	Fischer Custom Communications	FCC-LISN-50-25-2	2014	9665	04/23/2014	\boxtimes
System	Quantum Change	TILE! Instrument Control	Ver. 3.4.K.29	15259	VBU	\boxtimes
Pre-Amplifier	MITEQ	AMF-5D-00501800-28- 13P	1122951	13475	11/01/2013	\boxtimes
Environmental Chamber	ESPEC	ESX-4CA	0111386	24300	04/11/2014	\boxtimes
Power Amplifier	IFI	SMX150	N987-0809	26024	VBU	
Power Amplifier	Milmega	ASO104-30/30BB	980047	12665	VBU	\boxtimes
Signal Generator	R & S	SMT 03	DE12157	9950	11/30/2013	
Radiant Arrow Antenna	Amplifier Research	AT5080	304256	12723	VBU	\boxtimes
ESD Simulator	Schaffner	NSG 438	311	17071	04/11/2014	\boxtimes
Power Meter	HP	HP 437B	3215U11273	15237	05/20/2014	\boxtimes
Power Sensor	HP	8482A	3318A26196	172159	07/16/2014	\boxtimes
Power Source/Analyzer	California Instruments System	5001ix	55864, 55863, 55862, 72277	17668-17673	05/10/2014	\boxtimes
Harmonic/Flicker Software	California Instruments	CTS 3.0	Ver. 3.2.0.30	12723	05/10/2014	\boxtimes
EMC test set	Schaffner	Modula6100	34384	15546	08/30/2014	\boxtimes
CDN	Fischer Custom Communications	FCC-801-M3-25	37	9970	09/03/2014	\boxtimes
Surge Generator	Schaffner	NSG 2050	200717-600LU	19991	04/01/2014	\boxtimes
Impulse Network Plugin	Schaffner	PNW 2050	200711-601LU	19993	04/01/2014	\boxtimes