Notes of Probability and Stochastics

Xie Zejian

Zhang Songxin

2021-01-26

Contents

1	Measure and integrations		
	1.1	Measurable space	Ę
	1.2	Measurable function	7
	1.3	Random Variable	8
	1 4	Measure	19

4 CONTENTS

Chapter 1

Measure and integrations

1.1 Measurable space

1.1.1 σ algebra

Definition 1.1. A nonempty system of subset of Ω is an algebra on Ω if it's

- 1. Closed under complement: $A^c \in \mathcal{A} \iff A \in \mathcal{A}$
- 2. Closed under finite union: $\cup_i A_i \in \mathcal{A} \iff \forall i, A_i \in \mathcal{A}$

it's an σ algebra on Ω if it's also closed under countable union.

Remark. \mathcal{A} is an algebra auto implies $\emptyset \in \mathcal{A}$ and $\Omega \in \mathcal{A}$. So $\{\emptyset, \Omega\}$ is the minimum algebra on Ω and thus minimum σ algebra while the discrete algebra 2^{Ω} is maximum.

Let $\{\mathcal{A}_{\gamma} : \gamma \in \Gamma\}$ is a collection of σ algebra, then we have $\mathcal{A} = \cap_{\gamma \in \Gamma} \mathcal{A}_{\gamma}$ is also a σ algebra. Hence we can define the smallest σ algebra as intersection of all σ algebras contains \mathcal{A} , that called the σ algebra **generated** by \mathcal{A} and denoted by $\sigma(\mathcal{A})$.

The smallest σ -algebra generated by the system of all open sets in a topological space (Ω, τ) is called **Borel** σ **algebra** on Ω and denoted by $\mathcal{B}(\Omega)$, its elements are called **Borel sets**.

1.1.2 π, λ, m systems

A collection of subsets \mathcal{A} is called.

- 1. **m-system** if closed under monotone series, that is if $(A_n) \subset \mathcal{A}$ and $A_n \nearrow A$, then $A \in \mathcal{A}$.
- 2. π -system is closed under finite intersection
- 3. λ system if
 - 1. $\Omega \in \mathcal{A}$
 - 2. closed under proper difference:

$$A - B \in \mathcal{A} \iff B \subset A \text{ and } B, A \in \mathcal{A}$$

3. is an m-system.

Theorem 1.1. Let \mathcal{A} be a collection of subsets of Ω iff it's both a π system and λ system.

Which can be proved as follows:

- **⇒**:
 - 1. $\Omega \in \mathcal{A}$
 - $2. \ A-B=A\cap B^c\in \mathcal{A}$
 - 3. is an m-system
- =:
 - 1. $A^c = \Omega A \in \mathcal{A}$
 - 2. $A \cup B = (A^c \cap B^c)^c \in \mathcal{A}$
 - 3. hence \mathcal{A} is an algebra and \mathcal{A} is a m-system.

Similarly, for m, π, λ -system, they also has a minimum system generated by some collection $\mathcal{C}.$

Lemma 1.1. Let \mathcal{A} be an algebra, then

- 1. $m(A) = \sigma(A)$
- 2. if \mathcal{B} is an m class and $\mathcal{A} \subset \mathcal{B}$, then $\sigma(\mathcal{A}) = m(\mathcal{A}) \subset \mathcal{B}$

Similarly, let \mathcal{A} be a π class, then $\lambda(\mathcal{A}) = \sigma(\mathcal{A})$

Then we have **Monotone class theorem**:

Theorem 1.2. $\forall \mathcal{A} \subset \mathcal{B} \subset \mathcal{P}(\Omega), s.t.$:

- 1. If \mathcal{A} is a π -class, \mathcal{B} is a λ -class, then $\sigma(\mathcal{A}) \subset \mathcal{B}$
- 2. If \mathcal{A} is an algebra, \mathcal{B} is a m-class, then $\sigma(\mathcal{A}) \subset \mathcal{B}$

1.1.3 Measurable spaces

Definition 1.2 (Measurable Space). Pair (Ω, \mathcal{A}) where \mathcal{A} is a σ -Algebra on Ω .

Definition 1.3 (Products of measurable spaces). Let $(E, \mathcal{E}), (F, \mathcal{F})$ be two measurable spaces. For $A \subset E, B \subset F, A \times B$ is the set of all pairs $(x, y) : x \in A, y \in B$. Note that $\mathcal{E} \times \mathcal{F}$ is also a σ -Algebra with all $A \times B$ where $A \in \mathcal{E}, B \in \mathcal{F}$ which is called the product σ -Algebra.

1.2 Measurable function

1.2.1 Mappings

Let $X:\Omega_1\to\Omega_2$ be a mapping, $\forall B\subset\Omega_2$ and $\mathcal{G}\subset\mathcal{P}(\Omega_2)$, the **inverse image** of

•
$$B \text{ is } X^{-1}(B) = \{\omega : \omega \in \Omega_1, X(\omega) \in B\} := \{X \in B\}$$

$$\bullet \ \mathcal{G} \text{ is } X^{-1}(\mathcal{G}) = \left\{X^{-1}(B) : B \in \mathcal{G}\right\}$$

There is some properties:

1.
$$X^{-1}(\Omega_2) = \Omega_1, X^{-1}(\varnothing) = \varnothing$$

2.
$$X^{-1}(B^c) = [X^{-1}(B)]^c$$

3.

$$\begin{array}{l} X^{-1}\left(\cup_{\gamma\in\Gamma}B_{\gamma}\right)=\cup_{\gamma\in\Gamma}X^{-1}\left(B_{\gamma}\right) \text{ for } B_{\gamma}\subset\Omega_{2}, \gamma\in\Gamma\\ X^{-1}\left(\cap_{\gamma\in\Gamma}B_{\gamma}\right)=\cap_{\gamma\in\Gamma}X^{-1}\left(B_{\gamma}\right) \text{ for } B_{\gamma}\subset\Omega_{2}, \gamma\in\Gamma \end{array}$$

where Γ may not countable.

4.
$$X^{-1}(B_1 - B_2) = X^{-1}(B_1) - X^{-1}(B_2) \forall B_1, B_2 \subset \Omega_2$$

5.
$$B_1 \subset B_2 \subset \Omega_2 \implies X^{-1}(B_1) \subset X^{-1}(B_2)$$

- 6. If \mathcal{B} is a σ -algebra, $X^{-1}(\mathcal{B})$ is also a σ -algebra. It's easy to check $X^{-1}(\mathcal{B})$ is closed under complement and countable union. (From properties 2 and 3)
- 7. If \mathcal{C} is nonempty, $X^{-1}(\sigma(\mathcal{C})) = \sigma(X^{-1}(\mathcal{C}))$

Remarks X^{-1} preserves all the set operations on Ω .

1.2.2 Measurable functions

Definition 1.4. For two measurable spaces (Ω_1, \mathcal{A}) , (Ω_1, \mathcal{B}) , $f : \Omega_1 \to \Omega_2$ is a **measurable mapping** if $f^{-1}(\mathcal{B}) \subset \mathcal{A}$, where

$$f^{-1}(\mathcal{B})=\{f^{-1}(B):B\in\mathcal{B}\}$$

It is a measurable function if $(\Omega_2, \mathcal{B}) = (\mathcal{R}^n, \mathcal{B}(\mathcal{R}^n))$, moreover, a Borel function if $(\Omega_1, \mathcal{A}) = (\mathcal{R}^m, \mathcal{B}(\mathcal{R}^m))$

Remark. If $\mathcal{B} = \sigma(\mathcal{C})$, the definition can be reduced to $X^{-1}(\mathcal{C}) \subset \mathcal{A}$ since

$$X^{-1}(\mathcal{B}) = X^{-1}(\sigma(\mathcal{C})) = \sigma\left(X^{-1}(\mathcal{C})\right) \subset \sigma(\mathcal{A}) = \mathcal{A}$$

Lemma 1.2. Suppose $f: \mathcal{E} \to \mathcal{F}$ and $g: \mathcal{F} \to \mathcal{G}$ are measurable, then so is $f \circ g$.

 ${\it Proof.}$ The same as how we proved composition of continuous function is continuous.

1.3 Random Variable

A r.v. X is a measurable function from (Ω_1, \mathcal{A}) to $(\mathcal{R}, \mathcal{B})$. It denoted by X is \mathcal{A} -measurable or $X \in \mathcal{A}$

(Another definition): A r.v. X is a measurable mapping from (Ω, \mathcal{A}, P) to $(\mathcal{R}, \mathcal{B})$ such that

$$P(|X| = \infty) = P(\{\omega : |X(\omega)| = \infty\}) = 0$$

Lemma 1.3. X is a r.v. from (Ω, \mathcal{A}) to $(\mathbb{R}, \mathcal{B})$

$$\iff X \leq x = X^{-1}([-\infty], x) \in \mathcal{A} \quad \forall x \in \mathbb{R} \iff X \leq x = X^{-1}([-\infty], x) \in \mathcal{A} \quad \forall x \in D$$

where D is a dense subset of \mathbb{R} , e.g. \mathbb{Q} . $\{X \leq x\}$ above can be replaced by

$$\{X \le x\}, \quad \{X \ge x\}, \quad \{X < x\}, \quad \{X > x\}, \quad \{x < X < y\}$$

1.3.1 Construction of random variables

Lemma 1.4. $\mathbf{X} = (X_1, \dots, X_n)$ is a random vectors if X_k is a r.v. $\forall k$ iff \mathbf{X} is a measurable function from (Ω, \mathcal{A}) to $(\mathcal{R}^n, \mathcal{B}(\mathcal{R}^n))$.

Proof. Note that

$$\{\mathbf{X}\in\prod I_n\}=\bigcap\{X_n\in I_n\}\in\mathcal{A}$$

where $I_k=(a_k,b_k], -\infty \leq a_k \leq b_k \leq \infty$ and follows from $\sigma(\{\prod I_n\})=\mathcal{B}(\mathcal{R}^n)$. For the other direction, note

$$\{X_k \leq t\} = \{\mathbf{X} \in \prod_{i < k} \mathbb{R} \times \{-\infty, t\} \times \prod_{i > k} \mathbb{R}\} \in \mathcal{A}. \blacksquare$$

Recall lemma 1.2 we have:

Theorem 1.3. \forall random n vectors $X = (X_{1:n})$ and Borel function f from $\mathcal{R}^n \to \mathcal{R}^m$, then f(X) is a random m vectors.

Remark. Note that continuous function are borel measurable since continuity leads to inverse image of an open set is still open. So if $X_{1:n}$ are r.v.'s, so are $\sum X_n$, $\sin(x)$, e^X , $\operatorname{Poly}(X)$, That implies:

$$\forall X,Y \in \mathcal{A}, \text{ so are } aX + bY, X \lor Y = \max\{X,Y\}, X \land Y = \min\{X,Y\}, X^2, XY, X/Y, X^+ = \max(x,0), X^- = -\min(x,0), |X| = X^+ + X^-$$

1.3.2 Limiting opts

Let (X_n) are r.v. on (Ω, \mathcal{A}) , then $\sup_{n \to \infty} X_n$, $\inf_{n \to \infty} X_n$, $\lim\sup_{n \to \infty} X_n$, $\liminf_{n \to \infty} X_n$ are r.v.'s. Moreover, if it exists, $\lim_{n \to \infty} X_n$ is r.v..

Proof. First two follows from, $\forall t \in \mathbb{R}$:

$$\{\sup_{n\to\infty}X_n\leq t\}=\bigcap_{n=1}^\infty\{X_n\leq t\}\in\mathcal{A}$$

$$\{\inf_{n\to\infty}X_n\geq t\}=\bigcap_{n=1}^\infty\{X_n\geq t\}\in\mathcal{A}$$

and the last two follows from $\limsup_{n\to\inf}=\inf_{k\to\infty}\sup_{m\geq k}X_m$ and $\liminf_{n\to\inf}=\sup_{k\to\infty}\inf_{m\geq k}X_m.$

That implies

Lemma 1.5. If $S = \sum_{1}^{\infty} X_n$ exists everywhere, then S is a r.v.

Proof. Note $\sum_{1}^{\infty} X = \lim_{n \to \infty} \sum_{n} X_n$ is a r.v.

If $X = \lim_{n \to \infty} X_n$ holds **almost** everywhere, i.e., define Ω_0 is the set of all ω , such that $\lim_n X_n(\omega)$ exists, then $P(\Omega_0) = 1$, we say that X_n converges a.s. and write:

$$X_n \to X$$
 a.s.

For a measurable function f, we may modify it at a null set into f' and it remain mesurable since for any open set G, $f'^{-1}(G)$ differ $f^{-1}(G)$ a at most null set, by the completion of lebesgue measure space, f'-1(G) is measurable and thus f^{-1} measurable. Hence, for $f_n \to f$ a.s., we may ignore a null set and then $f_n \to f$ everywhere and thus f measurable.

1.3.3 Approximations of r.v. by simple r.v.'s

Definition 1.5. If $A \in \mathcal{A}$, the indicator function $\mathbf{1}_A$ is a r.v.

If $\Omega = \sum_{1}^{n} A_i$, where $A_i \in \mathcal{A}$, then $X = \sum_{1}^{n} a_i I_{A_i}$ is a r.v. and called **simple** r.v.

Any r.v. can be approximated by simple ones:

Theorem 1.4. $\forall X \in \mathcal{A}, \ \exists 0 \leq X_1 \leq X_2 \cdots X_n \ s.t. \ X_n(\omega) \nearrow X(\omega) \ everywhere.$

Proof. Suppose

$$X_n(\omega) = \sup\{\frac{j}{2^n}: j \in \mathbb{Z}, \frac{j}{2^n} \leq \min(X(\omega), 2^n)\}$$

One can check X_n is simple r.v. and $X_n(\omega)\nearrow X(\omega)$ for all $\omega\in\Omega.$

1.3.4 σ algebra generated by r.v.

Let $\{X_{\lambda}, \lambda \in \Lambda\}$ is r.v.s on (Ω, \mathcal{A}) . Define

$$\sigma\left(X_{\lambda},\lambda\in\Lambda\right):=\sigma\left(X_{\lambda}\in B,B\in\mathcal{B},\lambda\in\Lambda\right)=\sigma\left(X_{\lambda}^{-1}(\mathcal{B}),\lambda\in\Lambda\right)=\sigma\left(\cup_{\lambda\in\Lambda}X_{\lambda}^{-1}(\mathcal{B})\right)$$

which is called σ algebra generated by $\{X_{\lambda}, \lambda \in \Lambda\}$, where Λ is a index set which can be uncountable.

For $\Lambda = \mathbb{N}^+$:

1.
$$\sigma\left(X_{i}\right)=\sigma\left(X_{i}^{-1}(\mathcal{B})\right)=X_{i}^{-1}(\mathcal{B})=\left\{X_{i}\in\mathcal{B}\right\}$$

$$\sigma\left(X_{1},\ldots,X_{n}\right)=\sigma\left(\cup_{i=1}^{n}X_{i}^{-1}(\mathcal{B})\right)=\sigma\left(\cup_{i=1}^{n}\sigma\left(X_{i}\right)\right)$$

2.
$$\begin{split} \sigma\left(X_{1}\right) \subset \sigma\left(X_{1}, X_{2}\right) \subset \ldots \ldots \subset \sigma\left(X_{1}, \ldots, X_{n}\right) \\ \sigma\left(X_{1}, X_{2}, \ldots \ldots\right) \supset \sigma\left(X_{2}, X_{3}, \ldots \ldots\right) \supset \ldots \ldots \supset \sigma\left(X_{n}, X_{n+1}, \ldots \ldots\right) \end{split}$$

3. $\bigcap_{1}^{\infty} \sigma(X_n, X_{n+1}, \cdots)$ is the tail σ algebra of X_1 .

If $A_{1:n}$ are not mutually exclusive to each other, then we have

$$|\sigma(A_{1:n})| = 2^{2^n}$$

Which follows from for a partition $A_{1:n}$,

$$\sigma(A_1,\cdots,A_n)=\{\bigcup_{i\in J}A_i\}$$

where J is any subset of $\mathbb{N} \leq n$ and $A_0 = \emptyset$. Hence for discrete r.v. Y, $\sigma(Y)$ can be generated from $A_i = \{Y = y_i\}$ for all y_i 's. For continuous case, it's generated by all intervals.

1.3.5 Monotone classes of function

Definition 1.6 (monotone class). \mathcal{M} is called a monotone class if: $-1 \in \mathcal{M} - f, g \in \mathcal{M}_b$ and $a, b \in \mathbb{R} \implies af + bg \in \mathcal{M} - (f_n) \subset M_+, f_n \uparrow f \implies f \in \mathcal{M}$

where \mathcal{M}_+ is a subcollection consisting of positive functions in \mathcal{M} , and \mathcal{M}_b for the bounded function in \mathcal{M} .

Theorem 1.5 (Monotone class theorem for functions). Let \mathcal{M} be a monotone class of functions on E. Suppose for some p-system \mathcal{C} generating \mathcal{E} and $1_A \in \mathcal{M}$ for every $A \in \mathcal{C}$. Then \mathcal{M} includes all positive \mathcal{E} -measurable functions and all bounded \mathcal{E} -measurable functions.

Proof. First we need to show that $1_A \in \mathcal{M}$ for every $A \in \mathcal{E}$. Let $\mathcal{D} = \{A \in \mathcal{E} : 1_A \in \mathcal{M}\}$. Now we check that \mathcal{D} is a d-system: $-1_E = 1$, so $E \in \mathcal{D}$. $-B \subset A$, $A, B \in \mathcal{D}$. $1_{A-B} = 1_A - 1_B \in \mathcal{D}$ $-(A_n) \subset \mathcal{D}$ and $A_n \uparrow A$, then $1_{A_n} \uparrow 1_A$, so $1_A \in \mathcal{M}$, then $A \in \mathcal{D}$

By assuption, $\mathcal{C} \subset \mathcal{D}$, and $\sigma(\mathcal{C})$ is the smallest d-system by the theorem above, so $\mathcal{E} \subset \mathcal{D}$, so $1_A \in \mathcal{M}$ for every $A \in \mathcal{E}$.

As $1_A \in \mathcal{M}$ for every $A \in \mathcal{E}$, we can easily prove that all of the positive simple function is generated by the linear combination of 1_A s. And all positive \mathcal{E} -measurable functions is generated by a sequence of positive simple functions.

Then for general bounded \mathcal{E} -measurable function f, using $f = f^+ - f^-$ where $f^+, f^- \in \mathcal{M}$.

Let $(E,\mathcal{E}),(F,\mathcal{F})$ be two mesurable spaces and f is a bijection $E\to F$. Then f is said to be a isomorphism of (E,\mathcal{E}) and (F,\mathcal{F}) if f is \mathcal{E} -measurable and f^{-1} is \mathcal{F} -measurable. These two spaces are called isomorphic if there exists an isomophism between them.

A measurable apce (E,\mathcal{E}) is said to be standard if it is isomorphic to (F,\mathcal{B}_F) for some Borel subset $F \subset \mathbb{R}$.

1.4Measure

Let Ω be a space and \mathcal{A} a class, then function $\mu: \mathcal{A} \to R = [-\infty, \infty]$ is a set function.

It's

- 1. **finite** if $\forall A \in \mathcal{A}$, $|\mu(A)| < \infty$
 - 2. σ -finite if $\exists A_n \subset \mathcal{A}, \quad s.t. \quad \cup_{i=1}^{\infty} A_i = \Omega \quad \forall n \quad |\mu(A_n)| < \infty$ 3. Σ finite if there exist finite (μ_n) s.t. $\mu = \sum_n \mu_n$.
- 1. additive $\iff \mu\left(\sum_{i=1}^{n}A_{i}\right) = \sum_{i=1}^{n}\mu\left(A_{i}\right)$ 2. σ -additive $\iff \mu\left(\sum_{i=1}^{\infty}A_{i}\right) = \sum_{i=1}^{\infty}\mu\left(A_{i}\right)$

Remark. Finite implies σ finite and σ finite implies Σ finite.

 μ is a **measure** on \mathcal{A} if

- 1. $\forall A \in \mathcal{A} : \mu(A) \geq 0$
- 2. It's σ additive.

the triplet $(\Omega, \mathcal{A}, \mu)$ is a **measure space** when μ is a measure and (Ω, \mathcal{A}) is a measurable space. Whose sets are called **measurable sets** or \mathcal{A} -measurable.A measure space is a **probability space** if $P(\Omega) = 1$.

Assume that $A_{1:n} \in \mathcal{A}$ and $A \in \mathcal{A}$ and μ is a measure.

- 1. μ is continues from above, if $A_n \searrow A \implies \mu(A_n) \rightarrow \mu(A)$ 2. μ is continues from below, if $A_n \nearrow A \implies \mu(A_n) \rightarrow \mu(A)$
- 3. μ is continues at A, if $A_n \to A \implies \mu(A_n) \to \mu(A)$

 \forall Measure μ is continues from below and may not continues from above. It will be continues from above if $\exists m < \infty, \mu(A_m) < \infty$. So finite measure μ are always continues.

1.4. MEASURE 13

Properties of measure 1.4.1

1.4.1.1 Semialgebras

Let μ be a nonnegative additive set function on a semialgebra \mathcal{A} . $\forall A, B \in \mathcal{A}$ and $\{A_n, B_n, n \ge 1\} \in \mathcal{A}$

- 1. (Monotonicity): $A \subset B \implies \mu(A) \leq \mu(B)$
- 2. $(\sigma$ -subadditivity):
 - $\begin{array}{ll} 1. \ \sum_{1}^{\infty}A_{n}\subset A, &\Longrightarrow \ \sum_{1}^{\infty}\mu\left(A_{n}\right)\leq\mu(A) \\ 2. \ \ \text{Moreover, if} \ \mu \ \text{is a measure, then} \end{array}$

$$B \subset \sum_{n=1}^{\infty} B_n \implies \mu(B) \leq \sum_{n=1}^{\infty} \mu\left(B_n\right)$$

We can assert a nonnegative set function μ is a measure by:

- 1. μ is additive
- 2. μ is σ subadditive on \mathcal{S}

1.4.1.2 Algebras

Let μ be a measure on an algebra \mathcal{A}

$$A \subset \cup_1^\infty A_n \implies \mu(A) \leq \sum_1^\infty \mu\left(A_n\right)$$

Proof Note $A=A\cap (\cup A_n)=\cup (A\cap A_n),$ hence we can write A as union in $\mathcal A$ by take $B_n = A \cap A_n \in \mathcal{A}$.

$$A = \bigcup_{1}^{\infty} B_n$$

and then we can take $C_n = B_n - \cup_1^{n-1} B_i \in \mathcal{A}$ to write A as disjoint union:

$$A = \sum C_n$$

Then

$$\mu(\mathcal{A}) = \mu(\sum C_n) = \sum \mu(C_n) \leq \sum \mu(B_n) \leq \sum \mu(A_n)$$

as
$$C_n \subset B_n \subset A_n$$
.

1.4.1.3 σ algebras

Let μ be a measure on an σ algebra \mathcal{A}

- 1. Monotonicity
- 2. Boole's inequality(Countable Sub-Additivity)

$$\mu\left(\cup_{i=1}^{\infty}A_{i}\right)\leq\sum_{i=1}^{\infty}\mu\left(A_{i}\right)$$

- 3. Continuity from below
- 4. Continuity from above if μ is finite in A_i .

The sense of 4 follows from suppose $A_i \searrow A$, then $A_1 - A_i \nearrow A_1 - A$, then

$$\mu(A_1) - \mu(A) = \mu(A_1 - A) = \lim \mu(A_1 - A_i) = \mu(A_1) - \lim(A_i)$$

where $\mu(A_1)$ cannot be cancelled if $\mu(A_i) = \infty$.

Definition 1.7. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space, and $N \subset \Omega$

- 1. N is a μ null set iff $\exists B \in \mathcal{A}$ s.t. $\mu(B) = 0$, $N \subset B$
- 2. This measure space is a **complete measure** space if \forall μ null space N, $N \in \mathcal{A}$

Theorem 1.6. Given any measure space $(\Omega, \mathcal{A}, \mu)$, there exist a complete measure space $(\Omega, \bar{\mathcal{A}}, \bar{\mu})$, such that $\mathcal{A} \subset \bar{\mathcal{A}}$ and $\bar{\mu}$ is an extension of μ . This space is called completion of $(\Omega, \mathcal{A}, \mu)$.

Proof. Take

$$\begin{split} \bar{\mathcal{A}} &= \{A \cup N : A \in \mathcal{A}\} \\ \bar{\mathcal{B}} &= \{A \Delta N : A \in \mathcal{A}\} \end{split}$$

 $\bar{\mathcal{A}} = \bar{\mathcal{B}}$ since $A \cup N = (A - B)\Delta(B \cap (A \cup N))$ and $A\Delta N = (A - B)\cup(B \cap (A\Delta N))$.

Then we can show that $\bar{\mathcal{A}}$ is a σ algebra. Let $E_i = A_i \cup N_i \in \bar{\mathcal{A}}$, then

$$\bigcup_1^\infty E_i = \bigcup_1^\infty A_i \cup \bigcup_1^\infty N_i$$

and note $\bigcup_1^{\infty} A_i \in \mathcal{A}$ and $\mu(\bigcup_1^{\infty} N_i) \leq \mu(\bigcup_1^{\infty} B_i) \leq \bigcup_1^{\infty} \mu(B_i) = 0$. Thus $\bar{\mathcal{A}}$ is closed by countable union. As for complements, note $E^c = A^c \cap N^c = (A^c \cap N^c \cap B^c) \cup (A^c \cap N^c \cap B) = (A^c \cap B^c) \cup (A^c \cap N^c \cap B) \in \bar{\mathcal{A}}$.

1.4. MEASURE 15

Finally we define a measure $\bar{\mu}$ on $\bar{\mathcal{A}}$ by

$$\bar{\mu}(A \cup N) = \mu(A)$$

We should prove it's well defined. Suppose $A_1 \cup N_1 = A_2 \cup N_2 \in \bar{\mathcal{A}}$, note $A\Delta B\Delta C = A\Delta (B\Delta C)$ and $A\Delta B = B\Delta A$.

$$\begin{split} (A_1 \Delta A_2) \Delta (N_1 \Delta N_2) &= (A_1 \Delta A_2 \Delta N_1) \Delta N_2 \\ &= (A_1 \Delta N_1) \Delta (A_2 \Delta N_2) \\ &= \varnothing \end{split}$$

Hence $A_1\Delta A_2=N_1\Delta N_2$, note $N_1\Delta N_2\subset N_1\cup N_2\subset B_1\cup B_2$, hence $\mu(A_1\Delta A_2)=0$ and thus $\mu(A_1-A_2)=\mu(A_2-A_1)=0$. Therefore

$$\begin{split} \mu(A_1) &= \mu(A_1 - A_2) + \mu(A_1 \cap A_2) = \mu(A_1 \cap A_2) \\ \mu(A_2) &= \mu(A_2 - A_1) + \mu(A_1 \cap A_2) = \mu(A_1 \cap A_2) \end{split}$$

 $\bar{\mu}$ is do well defined. μ^* is auto σ additive since so is μ and is easy to check that all μ^* null set is μ null set.

1.4.2 Specification of measures

Theorem 1.7. Let (E,\mathcal{E}) be a measurable space. Let μ,ν be measures on it with $\mu(E) = \nu(E) < \infty$. If μ,ν agree on a p-system generating \mathcal{E} , then μ,ν are identical. >

Proof. Let $\mathcal C$ be the p-system generating $\mathcal E$ and $\mu(A)=\nu(A)$ for every $A\in\mathcal C$. Consider $\mathcal D=\{A\in\mathcal E:\mu(A)=\nu(A)\}$ which satisfies $\mathcal C\subset\mathcal D\subset\mathcal E$. Then we need to prove that $\mathcal D$ is a d-system: $-E\in\mathcal D$ by the assuption. - Let $A,B\in\mathcal D$ and $B\subset A$. Then $\mu(A-B)=\mu(A)-\mu(B)=\nu(A)-\nu(B)=\nu(A-B)$, so $A-B\in\mathcal D$ - Let $(A_n)\uparrow A$ and $(A_n)\subset\mathcal D$, then $\mu(A_n)\uparrow\mu(A),\nu(A_n)\uparrow\nu(A)$, since $\mu(A_n)=\nu(A_n)$ for every n, so $\mu(A)=\nu(A)$. So $\mathcal D$ is a d-system.

So $\mathcal{D} = \mathcal{E}$, so for every $A \in \mathcal{E}$, $\mu(A) = \nu(A)$.

Let (E, \mathcal{E}) be a measurable space. Suppose that the sigleton $\{x\} \in \mathcal{E}$ for every $x \in E$.

Let μ be a measure on (E, \mathcal{E}) . A point x is said to be an atom if $\mu(\{x\}) > 0$, the measure is said to be *diffuse* if it has no atoms. It is said to be *purely atomic* if the set D of its atoms is countable and $\mu(E - D) = 0$.

Theorem 1.8. Let μ be a Σ -finite measure on (E, \mathcal{E}) . Then $\mu = \nu + \lambda$ where λ is a diffuse measure and ν is purely atomic.