

Date	4 oct 2025
Team ID	LTVIP2025TMIDS67798
Project Name	
	RAINFALL PREDICTION USING MACHINE LEARNING
Maximum Marks	5 Marks

Model Selection Report

Project Name: Rainfall Prediction Team:

Lakshmi Sravya Savaram

Mohammad Shouqat Azeez

N Gokul Chowdary

Nallabotula Vijaya Karthik

Date: 13/10/2025

Objective

The objective of this report is to evaluate different machine learning models for predicting rainfall based on historical climate data and select the best-performing model based on accuracy and other relevant metrics.

Dataset Overview

Feature	Description	Data Type
Date	Date of observation	datetime
Temperature	e Daily average temperature (°C)	float
Humidity Wind Speed	Daily average humidity (%) Wind speed (km/h)	float float
Rainfall	Rainfall amount (mm)	float

Weather Weather description categorical

Total Records: [Number of rows] **Train-Test Split:** [e.g., 80%-20%]

Models Considered

Model	Description	Hyperparameters
Linear Regression	Predicts rainfall using linear relationship with features	r Default
Random Forest Regressor	Ensemble model using multiple decision trees	n_estimators=100, max_depth=None
Gradient Boosting Regressor	Boosted ensemble of decision trees	n_estimators=100, learning_rate=0.1, max_depth=3
XGBoost Regressor	Gradient boosting optimized for speed and performance	n_estimators=100, learning_rate=0.1, max_depth=3

Support Vector

Uses kernel-based regression for

Regressor (SVR)

prediction

kernel='rbf', C=1.0, epsilon=0.1

Evaluation Metrics

Metric Description Formula/Explanation

Mean Absolute Error Average absolute difference between

 $MAE = (\Sigma$

(MAE) predicted and actual values

Mean Squared Error Average squared difference between

y actual)^2)/n

(MSE) predicted and actual values

y_actual/ 2//11

 $MSE = (\Sigma(y \text{ pred} -$

Root Mean Squared Square root of MSE, measures prediction

RMSE = sqrt(MSE)

Error (RMSE) error in same units as target

Proportion of variance in the dependent

R-squared (R^2) $R^2 = 1 - (SS res/SS tot)$

variable explained by the model

Model Performance Summary

Model MAE MSE RMSE R² Remarks

Linear Regression [value] [value] [value] [value] Baseline model

Handles non-linear relationships

Random Forest Regressor [value] [value] [value] [value]

well

Model MAE MSE RMSE R² Remarks

Slightly better than Random

Gradient Boosting

[value] [value] [value]

Regressor

Forest

XGBoost Regressor [value] [value] [value] [value] Best performance observed

SVR [value] [value] [value] [value] Sensitive to feature scaling

Note: Fill in [value] with your experimental results.

Model Selection Criteria

- Best R² and lowest MAE/RMSE.
- · Robustness to overfitting and generalization capability.
- Computational efficiency and scalability for future predictions.
- Interpretability (optional, if required).

Selected Model

Model

Reason for Selection

Achieved highest R² and lowest MAE/RMSE. Handles non-linear [Selected Model Name, relationships in rainfall data effectively and performs well on e.g., XGBoost Regressor]

unseen test data.

Conclusion

The selected model is ready for final training on the complete dataset and deployment for rainfall prediction. Future steps include:

- Hyperparameter tuning (if not already done)
- · Feature importance analysis
- · Model deployment and monitoring