```
In [53]: import pandas as pd
import warnings
warnings.filterwarnings("ignore")
```

In [54]: data=pd.read\_csv("/home/placement/Downloads/fiat500.csv")

In [55]: data.describe()

Out[55]:

|       | ID          | engine_power | age_in_days | km            | previous_owners | lat         | lon         | price        |
|-------|-------------|--------------|-------------|---------------|-----------------|-------------|-------------|--------------|
| count | 1538.000000 | 1538.000000  | 1538.000000 | 1538.000000   | 1538.000000     | 1538.000000 | 1538.000000 | 1538.000000  |
| mean  | 769.500000  | 51.904421    | 1650.980494 | 53396.011704  | 1.123537        | 43.541361   | 11.563428   | 8576.003901  |
| std   | 444.126671  | 3.988023     | 1289.522278 | 40046.830723  | 0.416423        | 2.133518    | 2.328190    | 1939.958641  |
| min   | 1.000000    | 51.000000    | 366.000000  | 1232.000000   | 1.000000        | 36.855839   | 7.245400    | 2500.000000  |
| 25%   | 385.250000  | 51.000000    | 670.000000  | 20006.250000  | 1.000000        | 41.802990   | 9.505090    | 7122.500000  |
| 50%   | 769.500000  | 51.000000    | 1035.000000 | 39031.000000  | 1.000000        | 44.394096   | 11.869260   | 9000.000000  |
| 75%   | 1153.750000 | 51.000000    | 2616.000000 | 79667.750000  | 1.000000        | 45.467960   | 12.769040   | 10000.000000 |
| max   | 1538.000000 | 77.000000    | 4658.000000 | 235000.000000 | 4.000000        | 46.795612   | 18.365520   | 11100.000000 |

In [56]: data.head(10)

Out[56]:

|   | ID | model  | engine_power | age_in_days | km     | previous_owners | lat       | lon       | price |
|---|----|--------|--------------|-------------|--------|-----------------|-----------|-----------|-------|
| 0 | 1  | lounge | 51           | 882         | 25000  | 1               | 44.907242 | 8.611560  | 8900  |
| 1 | 2  | pop    | 51           | 1186        | 32500  | 1               | 45.666359 | 12.241890 | 8800  |
| 2 | 3  | sport  | 74           | 4658        | 142228 | 1               | 45.503300 | 11.417840 | 4200  |
| 3 | 4  | lounge | 51           | 2739        | 160000 | 1               | 40.633171 | 17.634609 | 6000  |
| 4 | 5  | pop    | 73           | 3074        | 106880 | 1               | 41.903221 | 12.495650 | 5700  |
| 5 | 6  | pop    | 74           | 3623        | 70225  | 1               | 45.000702 | 7.682270  | 7900  |
| 6 | 7  | lounge | 51           | 731         | 11600  | 1               | 44.907242 | 8.611560  | 10750 |
| 7 | 8  | lounge | 51           | 1521        | 49076  | 1               | 41.903221 | 12.495650 | 9190  |
| 8 | 9  | sport  | 73           | 4049        | 76000  | 1               | 45.548000 | 11.549470 | 5600  |
| 9 | 10 | sport  | 51           | 3653        | 89000  | 1               | 45.438301 | 10.991700 | 6000  |

In [57]: data1=data.loc[(data.previous\_owners==1)]
 data1

## Out[57]:

|      | ID   | model  | engine_power | age_in_days | km     | previous_owners | lat       | lon       | price |
|------|------|--------|--------------|-------------|--------|-----------------|-----------|-----------|-------|
| 0    | 1    | lounge | 51           | 882         | 25000  | 1               | 44.907242 | 8.611560  | 8900  |
| 1    | 2    | pop    | 51           | 1186        | 32500  | 1               | 45.666359 | 12.241890 | 8800  |
| 2    | 3    | sport  | 74           | 4658        | 142228 | 1               | 45.503300 | 11.417840 | 4200  |
| 3    | 4    | lounge | 51           | 2739        | 160000 | 1               | 40.633171 | 17.634609 | 6000  |
| 4    | 5    | pop    | 73           | 3074        | 106880 | 1               | 41.903221 | 12.495650 | 5700  |
|      |      |        |              |             |        |                 |           |           |       |
| 1533 | 1534 | sport  | 51           | 3712        | 115280 | 1               | 45.069679 | 7.704920  | 5200  |
| 1534 | 1535 | lounge | 74           | 3835        | 112000 | 1               | 45.845692 | 8.666870  | 4600  |
| 1535 | 1536 | pop    | 51           | 2223        | 60457  | 1               | 45.481541 | 9.413480  | 7500  |
| 1536 | 1537 | lounge | 51           | 2557        | 80750  | 1               | 45.000702 | 7.682270  | 5990  |
| 1537 | 1538 | pop    | 51           | 1766        | 54276  | 1               | 40.323410 | 17.568270 | 7900  |

1389 rows × 9 columns

## Out[58]:

|      | model  | engine_power | age_in_days | km     | previous_owners | price |
|------|--------|--------------|-------------|--------|-----------------|-------|
| 0    | lounge | 51           | 882         | 25000  | 1               | 8900  |
| 1    | pop    | 51           | 1186        | 32500  | 1               | 8800  |
| 2    | sport  | 74           | 4658        | 142228 | 1               | 4200  |
| 3    | lounge | 51           | 2739        | 160000 | 1               | 6000  |
| 4    | pop    | 73           | 3074        | 106880 | 1               | 5700  |
|      |        |              |             |        |                 |       |
| 1533 | sport  | 51           | 3712        | 115280 | 1               | 5200  |
| 1534 | lounge | 74           | 3835        | 112000 | 1               | 4600  |
| 1535 | pop    | 51           | 2223        | 60457  | 1               | 7500  |
| 1536 | lounge | 51           | 2557        | 80750  | 1               | 5990  |
| 1537 | pop    | 51           | 1766        | 54276  | 1               | 7900  |

1389 rows × 6 columns

In [60]: data3

Out[60]:

|      | engine_power | age_in_days | km     | previous_owners | price | model_lounge | model_pop | model_sport |
|------|--------------|-------------|--------|-----------------|-------|--------------|-----------|-------------|
| 0    | 51           | 882         | 25000  | 1               | 8900  | 1            | 0         | 0           |
| 1    | 51           | 1186        | 32500  | 1               | 8800  | 0            | 1         | 0           |
| 2    | 74           | 4658        | 142228 | 1               | 4200  | 0            | 0         | 1           |
| 3    | 51           | 2739        | 160000 | 1               | 6000  | 1            | 0         | 0           |
| 4    | 73           | 3074        | 106880 | 1               | 5700  | 0            | 1         | 0           |
|      |              |             |        |                 |       |              |           |             |
| 1533 | 51           | 3712        | 115280 | 1               | 5200  | 0            | 0         | 1           |
| 1534 | 74           | 3835        | 112000 | 1               | 4600  | 1            | 0         | 0           |
| 1535 | 51           | 2223        | 60457  | 1               | 7500  | 0            | 1         | 0           |
| 1536 | 51           | 2557        | 80750  | 1               | 5990  | 1            | 0         | 0           |
| 1537 | 51           | 1766        | 54276  | 1               | 7900  | 0            | 1         | 0           |

1389 rows × 8 columns

```
In [61]: data2.shape
Out[61]: (1389, 6)
In [62]: #predicted value we removed from data frame
    y=data3['price']
    x=data3.drop('price',axis=1)
```

```
In [63]: y
Out[63]: 0
                    8900
                    8800
                    4200
           2
           3
                    6000
           4
                    5700
           1533
                    5200
           1534
                    4600
           1535
                    7500
           1536
                    5990
           1537
                    7900
           Name: price, Length: 1389, dtype: int64
In [64]: #divide the data into testing & training
          from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=42)
In [65]: x_test.head(5)
```

Out[65]:

|     | engine_power | age_in_days | km     | previous_owners | model_lounge | model_pop | model_sport |
|-----|--------------|-------------|--------|-----------------|--------------|-----------|-------------|
| 625 | 51           | 3347        | 148000 | 1               | 1            | 0         | 0           |
| 187 | 51           | 4322        | 117000 | 1               | 1            | 0         | 0           |
| 279 | 51           | 4322        | 120000 | 1               | 0            | 1         | 0           |
| 734 | 51           | 974         | 12500  | 1               | 0            | 1         | 0           |
| 315 | 51           | 1096        | 37000  | 1               | 1            | 0         | 0           |

In [66]: x\_train.head(5)

Out[66]:

|     | engine_power | age_in_days | km    | previous_owners | model_lounge | model_pop | model_sport |
|-----|--------------|-------------|-------|-----------------|--------------|-----------|-------------|
| 915 | 51           | 397         | 17081 | 1               | 1            | 0         | 0           |
| 12  | 51           | 456         | 18450 | 1               | 1            | 0         | 0           |
| 638 | 51           | 397         | 21276 | 1               | 1            | 0         | 0           |
| 190 | 51           | 821         | 19000 | 1               | 1            | 0         | 0           |
| 701 | 51           | 701         | 27100 | 1               | 1            | 0         | 0           |

```
In [67]: y_test.head(5)
Out[67]: 625
                 5400
         187
                 5399
         279
                 4900
         734
                10500
         315
                 9300
         Name: price, dtype: int64
In [68]: y_train.head(5)
Out[68]: 915
                10900
         12
                 9700
         638
                10850
         190
                 9990
         701
                10300
         Name: price, dtype: int64
```

```
In [69]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import ElasticNet
         elastic=ElasticNet()
         parameters={'alpha':[1e-15,1e-10,1e-8,1e-4,1e-3,1e-2,1,5,10,20]}
         elastic regressor=GridSearchCV(elastic, parameters)
         elastic regressor.fit(x train,y train)
Out[691:
                GridSearchCV
          ▶ estimator: ElasticNet
                ▶ ElasticNet
In [70]: elastic regressor.best params
Out[70]: {'alpha': 0.01}
In [71]: elastic=ElasticNet(alpha=0.01)
         elastic.fit(x train,y train)
         y pred elastic=elastic.predict(x test)
In [75]: from sklearn.metrics import mean squared error
         Elastic Error=mean squared error(y pred elastic,y test)
         Elastic Error
Out[75]: 515349.9787871871
In [74]: from sklearn.metrics import r2 score
         r2 score(y test,y pred elastic)
Out[74]: 0.8602162350730707
```

```
In [76]: Results=pd.DataFrame(columns=['Actual', 'predicted'])
    Results['Actual']=y_test
    #Results=pd.DataFrame(columns=['price', 'predicted'])
    #Results['price']=y_test
    Results['predicted']=y_pred_elastic
    #Results['km']=x_test['km']
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results.head(10)
```

## Out[76]:

|   | index | Actual | predicted    | ID |
|---|-------|--------|--------------|----|
| 0 | 625   | 5400   | 5482.171479  | 0  |
| 1 | 187   | 5399   | 5127.531740  | 1  |
| 2 | 279   | 4900   | 4803.203231  | 2  |
| 3 | 734   | 10500  | 9662.825235  | 3  |
| 4 | 315   | 9300   | 9408.645424  | 4  |
| 5 | 652   | 10850  | 10350.952605 | 5  |
| 6 | 1472  | 9500   | 9806.127960  | 6  |
| 7 | 619   | 7999   | 8341.142824  | 7  |
| 8 | 992   | 6300   | 5913.786719  | 8  |
| 9 | 1154  | 10000  | 10149.093829 | 9  |

In [77]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Actual',data=Results.head(50))#blue
sns.lineplot(x='ID',y='predicted',data=Results.head(50))#orange
plt.plot()

## Out[77]: []



| In [ ]: |  |
|---------|--|
|         |  |