

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
КАФЕЛРА «Программное обеспечение ЭВМ и информационные технологии»	

ОТЧЕТ по лабораторной работе № 1

Название Изучение принципов работы ми	кропроцессорного ядра	a RISC-V	
Дисциплина Архитектура элекронно-вычи	слительных машин		
			_
Студент:		Шубенина Д. В.	
Произворожения	подпись, дата	Фамилия, И.О. Попов А. Ю.	
Преподаватель:	полпись, дата		

Содержание

Ц	ель ј	работы	3
1	Осн	овные сведения	4
	1.1	Модель памяти	4
	1.2	Система команд	4
2	Ход	ц работы	5
	2.1	Задание 0	5
	2.2	Задание 1	7
	2.3	Задание 2	11
	2.4	Задание 3	12
	2.5	Задание 4	13
	2.6	Задание 5	14
		2.6.1 Выполнение команды	14
		2.6.2 Регистр x31	15
		2.6.3 Трасса выполнения программы	16
3	Зак	тючение	17

Цель работы

Основной целью работы является ознакомление с принципами функционирования, построения и особенностями архитектуры суперскалярных конвейерных микропроцессоров.

Дополнительной целью работы является знакомство с принципами проектирования и верификации сложных цифровых устройств с использованием языка описания аппаратуры SystemVerilog и ПЛИС.

1 Основные сведения

RISC-V является открытым современным набором команд, который может использоваться для построения как микроконтроллеров, так и высокопроизводительных микропроцессоров. Таким образом, термин RISC-V фактически является названием для семейства различных систем команд, которые строятся вокруг базового набора команд, путем внесения в него различных расширений.

В данной работе исследуется набор команд RV32I, который включает в себя основные команды 32-битной целочисленной арифметики кроме умножения и деления.

1.1 Модель памяти

Архитектура RV32I предполагает плоское линейное 32-х битное адресное пространство. Минимальной адресуемой единицей информации является 1 байт. Используется порядок байтов от младшего к старшему (Little Endian), то есть, младший байт 32-х битного слова находится по младшему адресу (по смещению 0). Отсутствует разделение на адресные пространства команд, данных и ввода-вывода. Распределение областей памяти между различными устройствами (ОЗУ, ПЗУ, устройства ввода-вывода) определяется реализацией.

1.2 Система команд

Большая часть команд RV32I является трехадресными, выполняющими операции над двумя заданными явно операндами, и сохраняющими результат в регистре. Операндами могут являться регистры или константы, явно заданные в коде команды. Операнды всех команд задаются явно.

Архитектура RV32I, как и большая часть RISC-архитектур, предполагает разделение команд на команды доступа к памяти (чтение данных из памяти в регистр или запись данных из регистра в память) и команды обработки данных в регистрах.

2 Ход работы

2.1 Задание 0

Ниже приведен дизассмблированный код общей программы, полученный в результате выполнения команды make.

Листинг 2.1 – Дизассемблированный код общей программы

```
1 SYMBOL TABLE:
2 80000000 1
                    .text
                            00000000 .text
3 80000040 1
                    .data
                            00000000 .data
4 00000000 1
                 df *ABS*
                            00000000 test.o
5 00000008 1
                    * ABS *
                            00000000 len
6 00000004 1
                    *ABS*
                            00000000 enroll
7 00000004 1
                    *ABS*
                            00000000 elem_sz
8 80000040 1
                    .data
                            x_ 00000000
9 8000000c 1
                    .text
                            00000000 loop
10 8000003c 1
                    .text
                            00000000 forever
11 80000000 g
                    .text
                            00000000 _start
12 80000060 g
                     .data
                            00000000 _end
13
14 Disassembly of section .text:
15
16 80000000 <_start>:
17 80000000:
                   00200a13
                                             addi
                                                     x20,x0,2
18 80000004:
                   00000097
                                             auipc
                                                     x1,0x0
19 80000008:
                   03c08093
                                                     x1,x1,60 # 80000040 <_x>
                                             addi
20
21 8000000c <loop>:
22 8000000c:
                   0000a103
                                             lw
                                                     x2,0(x1)
23 80000010:
                   002f8fb3
                                             add
                                                     x31,x31,x2
24 80000014:
                   0040a103
                                             lw
                                                     x2,4(x1)
25 80000018:
                   002f8fb3
                                             add
                                                     x31,x31,x2
26 8000001c:
                   0080a103
                                             lw
                                                     x2,8(x1)
27 80000020:
                   002f8fb3
                                                     x31,x31,x2
                                             add
28 80000024:
                   00c0a103
                                                     x2,12(x1)
                                             lw
29 80000028:
                   002f8fb3
                                             add
                                                     x31,x31,x2
30 8000002c:
                   01008093
                                             addi
                                                     x1,x1,16
31 80000030:
                                                     x20,x20,-1
                   fffa0a13
                                             addi
32 80000034:
                                                     x20,x0,8000000c <loop>
                   fc0a1ce3
                                             bne
33 80000038:
                   001f8f93
                                             addi
                                                     x31,x31,1
34
35 8000003c <forever>:
36 8000003c:
                   0000006f
                                                     x0,8000003c <forever>
                                             jal
37
38 Disassembly of section .data:
```

```
39
40 80000040 <_x>:
41 80000040:
                   0001
                                            c.addi x0,0
42 80000042:
                   0000
                                            c.unimp
43 80000044:
                   0002
                                            c.slli64
                                                             x0
44 80000046:
                   0000
                                            c.unimp
45 80000048:
                   0000003
                                            lb
                                                     x0,0(x0) # 0 < elem_sz-0x4>
46 8000004c:
                   0004
                                            .2byte 0x4
47 8000004e:
                   0000
                                            c.unimp
48 80000050:
                   0005
                                            c.addi x0,1
49 80000052:
                   0000
                                            c.unimp
50 80000054:
                   0006
                                            c.slli x0,0x1
51 80000056:
                   0000
                                            c.unimp
52 80000058:
                   0000007
                                            .4byte 0x7
53 8000005c:
                   8000
                                            .2byte 0x8
```

2.2 Задание 1

Листинг 2.2 – Исходный текст программы для варианта 21

```
.section .text
2
       .globl _start;
3
       len = 8 # Размер массива
4
       enroll = 4 # Количество обрабатываемых элементов за одну итерацию
5
       elem_sz = 4 # Размер одного элемента массива
6
7
  _start:
8
      la x1, _x
9
       addi x20, x0, (len-1)/enroll
10
       lw x31, 0(x1)
       addi x1, x1, elem_sz*1
11
12 lp:
      1w x2, 0(x1)
13
      lw x3, 4(x1)
14
      lw x4, 8(x1)
15
16
      lw x5, 12(x1)
17
      bltu x2, x31, lt1
18
       add x31, x0, x2
           bltu x3, x31, lt2
19 lt1:
20
       add x31, x0, x3
21 lt2:
           bltu x4, x31, lt3
       add x31, x0, x4 #!
23 lt3:
           bltu x5, x31, lt4
24
       add x31, x0, x5
25 lt4:
26
       add x1, x1, elem_sz*enroll
27
       addi x20, x20, -1
       bne x20, x0, lp
29 lp2: j lp2
30
31
       .section .data
32
  _x: .4byte 0x1
33
       .4byte 0x2
       .4byte 0x3
34
35
       .4byte 0x4
36
       .4byte 0x5
37
       .4byte 0x6
38
       .4byte 0x7
39
       .4byte 0x8
       .4byte 0x9
```

Листинг 2.3 – Дизассеблированный код программы для варианта 21

```
1 SYMBOL TABLE:
2 80000000 1
                   .text
                           00000000 .text
3 80000054 1
                d .data
                           00000000 .data
4 00000000 1
                df *ABS*
                           00000000 individual.o
5 00000008 1
                   *ABS*
                           00000000 len
6 00000004 1
                   * ABS *
                           00000000 enroll
7 00000004 1
                   *ABS*
                           00000000 elem_sz
8 80000054 1
                    .data
                           00000000 _x
9 80000014 1
                    .text
                           00000000 lp
10 8000002c 1
                    .text
                           00000000 lt1
11 80000034 1
                    .text
                           00000000 lt2
12 8000003c 1
                    .text
                           00000000 lt3
13 80000044 1
                    .text
                           00000000 lt4
14 80000050 1
                    .text
                           00000000 lp2
15 80000000 g
                    .text
                           00000000 _start
16 80000078 g
                   .data
                           00000000 _end
17
18 Disassembly of section .text:
19
20 80000000 <_start>:
21 80000000:
                  00000097
                                           auipc
                                                    x1,0x0
22 80000004:
                  05408093
                                                    x1,x1,84 # 80000054 <_x>
                                           addi
23 80000008:
                                                    x20,x0,1
                   00100a13
                                            addi
24 8000000c:
                                                   x31,0(x1)
                   0000af83
                                           lw
25 80000010:
                   00408093
                                            addi
                                                    x1,x1,4
26
27 80000014 <lp>:
28 80000014:
                   0000a103
                                           lw
                                                    x2,0(x1)
29 80000018:
                   0040a183
                                            lw
                                                    x3,4(x1)
30 8000001c:
                   0080a203
                                           lw
                                                    x4,8(x1)
31 80000020:
                   00c0a283
                                           lw
                                                    x5,12(x1)
32 80000024:
                                                    x2,x31,8000002c <1t1>
                   01f16463
                                           bltu
33 80000028:
                   00200fb3
                                            add
                                                    x31,x0,x2
34
35 8000002c <1t1>:
36 8000002c:
                                                    x3,x31,80000034 <1t2>
                   01f1e463
                                           bltu
37 80000030:
                   00300fb3
                                            add
                                                    x31,x0,x3
38
39 80000034 <1t2>:
40 80000034:
                                                    x4,x31,8000003c <1t3>
                   01f26463
                                           bltu
41 80000038:
                   00400fb3
                                                    x31,x0,x4
                                            add
42
43 8000003c <1t3>:
44 8000003c:
                                                    x5,x31,80000044 <1t4>
                  01f2e463
                                           bltu
45 80000040:
                   00500fb3
                                            add
                                                    x31,x0,x5
46
47 80000044 <1t4>:
```

```
48 80000044:
                   01008093
                                            addi
                                                     x1,x1,16
49 80000048:
                   fffa0a13
                                            addi
                                                     x20,x20,-1
50 8000004c:
                                                     x20,x0,80000014 <1p>
                   fc0a14e3
                                            bne
52 80000050 <1p2>:
53 80000050:
                   0000006f
                                            jal
                                                     x0,80000050 <1p2>
55 Disassembly of section .data:
56
57 80000054 <_x>:
58 80000054:
                   0001
                                            c.addi x0,0
59 80000056:
                   0000
                                            c.unimp
60 80000058:
                                            c.slli64
                   0002
                                                             x0
61 8000005a:
                   0000
                                            c.unimp
62 8000005c:
                   0000003
                                            1b
                                                     x0,0(x0) # 0 < elem_sz-0x4>
63 80000060:
                   0004
                                            .2byte 0x4
64 80000062:
                   0000
                                            c.unimp
65 80000064:
                   0005
                                            c.addi x0,1
66 80000066:
                   0000
                                            c.unimp
67 80000068:
                   0006
                                            c.slli x0,0x1
68 8000006a:
                   0000
                                            c.unimp
69 8000006c:
                   0000007
                                            .4byte 0x7
70 80000070:
                   8000
                                            .2byte 0x8
71 80000072:
                   0000
                                            c.unimp
72 80000074:
                   0009
                                            c.addi x0,2
```

Листинг 2.4 – Псевдокод на языке С эквивалентной программы

```
1 #define len 8
2 #define enroll 4
3 #define elem_sz 4
4 int _x[]={1,2,3,4,5,6,7,8};
5 void _start() {
6
      int x20 = len/enroll;
7
      int *x1 = _x;
8
9
      do {
10
          int x2 = x1[0];
          x31 += x2;
11
12
          x2 = x1[1];
13
          x31 += x2;
14
          x2 = x1[2];
15
          x31 += x2;
16
          x2 = x1[3];
17
          x31 += x2;
18
          x1 += enroll;
19
          x20--;
20
      } while(x20 != 0);
21
      x31++;
22
      while(1){}
23 }
```

2.3 Задание 2

Для выполнения задания 2 необходимо получить снимок экрана, содержащий временную диаграмму выполнения стадий выборки и диспетчеризации команды с указанным адресом.

Вариант 21:

Адрес команды: 80000030, 2-я итерация

Код команды: fffa0a13

Команда: addi x20, x20, -1

Рисунок 2.1 – Временная диаграмма выборки и диспетчеризации команды

2.4 Задание 3

Для выполнения задания 3 необходимо получить снимок экрана, содержащий временную диаграмму выполнения стадии декодирования и планирования на выполнение команды с указанным адресом.

Вариант 21:

Адрес команды, номер итерации: 80000018, 1-я.

Код команды: 002f8fb3. Команда: add x31,x31,x2.

Рисунок 2.2 – Временная диаграмма выполнения стадии декодирования и планирования на выполнение команды

На этапе декодирования никаких конфликтов не возникает. На следующем такте, когда происходит планирование на выполнение команды, сигнал rs2_conflict выставляется в единицу и сохраняет это значение еще один такт.

Причина этому в том, что предыдущая команда lw x2,4(x1) еще не закончила свое выполнение, а значит целевой для обеих команд регистр x2 не может быть предоставлен еще 2 такта, поэтому и возникает конфликт.

2.5 Задание 4

Для выполнения задания 4 необходимо получить снимок экрана, содержащий временную диаграмму стадии выполнения команды с указанным адресом.

Вариант 21:

Адрес команды, номер итерации: 80000028, 2-я.

Код команды: 002f8fb3. Команда: add x31,x31,x2.

Рисунок 2.3 – Выполнение команды с адресом 80000028

2.6 Задание 5

Данное задание связано с получением временных диаграмм для программы по варианту. Согласно полученным временным диаграммам необходимо построить трассу выполнения программы.

2.6.1 Выполнение команды

Ниже приведены временные диаграммы этапов выполнения команды add x31,x0,x4 (адрес команды 80000038).

Рисунок 2.4 – Выборка и диспетчеризация

Рисунок 2.5 – Декодирование и выполнение

2.6.2 Регистр х31

Рисунок 2.6 – Значение регистра x31 на момент завершения общей программы

Рисунок 2.7 – Значение регистра x31 на момент завершения программы по варианту

2.6.3 Трасса выполнения программы

A	Код	V	Номер такта 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28														\neg															
Адрес	команды		10	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
80000000<_start>	00000097	auipc x1,0x0	0	F	ID	D	ΑL																									
80000004	05408093	addi x1,x1,84#8000054<_x>	1		F	ID	D	AL																								
80000008	00100a13	addi x20,x0,1	2			F	ID	D	AL																							
8000000c	0000af83	lw x31,0(x1)	3				F	ID	D	М1	M2	МЗ																				
80000010	00408093	addi x1,x1,4	4					F	ID	D	AL																					
80000014 <lp></lp>	0000a103	lw x2,0(x1)	5						F	ID	D	M1	М2	МЗ																		
80000018	0040a183	lw x3,4(x1)	6							F	ID	D	М1	M2	МЗ																	
8000001c	0080a203	lw x4,8(x1)	7								F	ID	D	M1	M2	МЗ													П	П	П	
80000020	00c0a283	lw x5,12(x1)	0									F	ID	D	M1	M2	МЗ															
80000024	01f16463	bltu x2,x31,8000002c <lt1></lt1>	1										F	ID	D	В													П	П	П	
80000028	00200fb3	add x31,x0,x2	2											F	ID	D	AL															
8000002c <lt1></lt1>	01f1e463	bltu x3,x31,80000034 <lt2></lt2>	3												F	ID	D	В											П	П	П	
80000030	00300fb3	add x31,x0,x3	4													F	ID	D	AL													
80000034<1t2>	01f26463	bltu x4,x31,8000003c <lt3></lt3>	5														F	ID	D	В									П	П	П	
80000038	00400fb3	add x31,x0,x4	6															F	ID	D	AL											
8000003c<1t3>	01f2e463	bltu x5,x31,80000044 <lt4></lt4>	7																F	ID	D	В							П	П	П	
80000040	00500fb3	add x31,x0,x5	0																	F	ID	D	AL									
80000044	01008093	addi x1,x1,16	1																		F	ID	D	AL					П	П	П	
80000048	fffa0a13	addi x20,x20,-1	2																			F	ID	D	AL							
8000004c	fc0a14e3	bne x20,x0,80000014<1p>	3																				F	ID	D	В			П	П	П	
80000050<1p2>	0000006f	jal x0,80000050 <1p2>	4																					F	ID	D	В					
80000054	00000001	<invalid command=""></invalid>	5																						F	ID	D	х	П	П	П	
80000058	00000002	<invalid command=""></invalid>	6																							F	ID	DX				
8000005c	00000003	<invalid command=""></invalid>	7																								F	х				
80000060	00000004	<invalid command=""></invalid>	0																									FX				
80000050<1p2>	0000006f	jal x0,80000050 <1p2>	6																				L		L				F	ID	D	В
Адрес	Код команды	Команда	id	1	2	3	4	5	6	7	8	9	10	11	12	_	14 оме	_	_	_	18	19	20	21	22	23	24	25	26	27	28	29

Рисунок 2.8 – Трасса выполнения программы

При составлении трассы, изображенной на рисунке 2.8, не было обнаружено ни одного конфликта, программа в оптимизации не нуждается.

3 Заключение

В ходе выполнения лабораторной работы были изучены основные особенности архитектуры процессора RISC-V, а также основные инструкции и регистры процессора. Были получены навыки работы с ModelSim и составления трассы выполнения программы по временным диаграммам, получаемом с помощью этого ПО.