cmsc 141 2nd semester, 2016-2017

- "Ang kuneho ay nasa loob ng sombrero"
 - At least syntactically correct
- "Ang sombrero ay nasa loob ng kuneho"
- You can readily tell whether sentences are formed according to generally accepted rules for sentence structure
 - Language Recognizer a device that accepts valid strings Finite automata
- You are also capable of producing legal Filipino sentences
 - Language generator

- Recall regular expressions
 - Can be viewed as language generators
- Consider a(a* U b*)b
 - Output an a
 - Then do one of the following two things
 - Output a number of a's
 - Output a number of b's
 - Finally, output a b

- Notice that any string in the language generated by a(a* U b*)b consists of a leading a, followed by a middle part, then by a trailing b
- ☐ If we let S be a new symbol interpreted as "a string in the language" and M be a symbol standing for "middle part" then we can express this observation by
 - \supset S \rightarrow aMb referred to as a rule
 - M → A and M → B additional rules where A and B are new symbols that stand for strings of a's and b's
 - \triangle A \rightarrow e, A \rightarrow aA
 - \blacksquare B \rightarrow e, B \rightarrow bB

- The language denoted by the r.e. in the previous slide can then be defined alternatively
 - Start with the string consisting of the single symbol S
 - \Box Find a symbol in the current string that appears to the of a \rightarrow in one of the rules
 - Replace every occurrence of this symbol with the string that appears to the right of → in the same rule
 - Repeat this process until so such symbol can be found
- To generate aaab:
 - \square S => aMb using S \rightarrow aMb
 - \square => aAb using M \rightarrow A
 - \blacksquare => aaAb using A \rightarrow aA
 - \blacksquare => aaaAbusing A \rightarrow aA
 - \blacksquare => aaab using A \rightarrow e
- We say S =>* aaab

- A context-free grammar is a language generator that operates like the one in the previous slides with some such set of rules
- Why context-free?
 - Consider the string aaAb
 - ☐ The strings aa and b that surround the symbol A the context of A in the string above
 - The rule A → aA says that we can replace A by the string aA no matter what the surrounding strings are (independently of the context of A)

- A context-free grammar is denoted by G = (V, T, P, S) where V is the finite set of symbols called non-terminals, T is a finite set of symbols called terminals, S an element of V called the start symbol and P is the finite set of productions
- Each production is of the form $A\rightarrow α$, where A is a variable and α is a string of symbols from the set of strings formed from the elements of the non-terminals and terminals, i.e. (V U T)*
- ☐ The language generated by the CFG G is denoted by L(G) and is called a context-free language (CFL)

- Conventions on CFGs
- Capital letters denote variable (non-terminals)
- S being the start symbol unless otherwise stated
- Small letters and digits are used to represent terminals
- Lower case Greek letters are used to denote strings of variables and terminals
- Use | (or) to represent alternatives in the productions

- The grammar for the language composed of strings starting with a and followed by any number of b's and any number of a's ended by a b is given by $G = (\{S,M,A,B\}, \{a,b\}, P,S)$ where $P = \{S \rightarrow aMb, M \rightarrow A|B, A \rightarrow aA|, B \rightarrow bB|\}$
- Derivation
 - □ If $A \rightarrow \beta$ is a production of P in grammar G and α and γ are any strings in (V U T)*, then $\alpha A \gamma => \alpha \beta \gamma$ (read as derives)
 - The operator => may be applied one or more steps, i.e.
 - \square $\alpha_1 => \alpha_2 => \dots => \alpha_n$ where α_1 , α_2 , ..., α_n are strings in (V U T)*
 - \Box $\alpha_1 = > * \alpha_n$
 - \square α_1 derives α_n in one or more steps in grammar G

- \Box Consider the CFG G = ({S}, {a, b}, P, S) where
 - Arr P = {S \rightarrow aSb, S \rightarrow }
- A possible derivation is
 - S => aSb => aaSbb => aabb
- \Box What is L(G)? What does this suggest?

■ Let G = (W, T, R, S)

V→ate}

- \square W = {S, A, N, V, P}
- T = {Jim, big, green, cheese, ate}
- $R = \{S \rightarrow PVP, P \rightarrow N, P \rightarrow AP, A \rightarrow big, A \rightarrow green, N \rightarrow cheese, N \rightarrow Jim, P \rightarrow AP, A \rightarrow big, A \rightarrow green, N \rightarrow cheese, N \rightarrow Jim, A \rightarrow BPVP, A \rightarrow B$
- Some strings in L(G)
 - Jim ate cheese
 - big Jim ate green cheese
 - big cheese ate Jim
- Too big cheese ate green green big green big cheese
 - green Jim ate green big Jim

- Exercise
 - Consider the CFG G = ({S, A}, {a, b}, P, S} and P = { $S \rightarrow AA$, $A \rightarrow AAA$, $A \rightarrow a$, $A \rightarrow bA$, $A \rightarrow Ab$ }
 - Give at least four distinct derivations for the string babbab

- \Box G = ({S},{(,)}, P, S)
 - $P = \{S \rightarrow (S), S \rightarrow \in\}$
 - Generate a derivation for the following
 - **((()))**
 - **(**)(())()

- G = ({S},{(,)}, P, S) □ P = {S \rightarrow SS, S \rightarrow (S), S \rightarrow ∈}
 - Generate a derivation for the following
 - **((()))**
 - **(**)(())()

- Construct CFG's generating the following languages
 - accepts any string
 - accepts all strings containing any number of a's only, including 0 a's
 - accepts all strings containing the substring aba
 - \square accepts all strings w such that w = w^R

- Exercise
 - Design a CFG that generates all strings or properly balanced left and right parentheses: every left parenthesis can be paired with a unique subsequent right parenthesis, and every right parenthesis can be paired with a unique preceding left parenthesis
 - Design the rules/productions of a grammar that generates the language over the alphabet {x,1,2,+,*,(,)} that represent syntactically correct arithmetic expressions involving + and * over the variables x1 and x2

- Derivation (Parse) Tree
 - an alternative to showing derivations is the use of derivation trees or parse trees
 - let G = (V, T, P, S) be a CFG. A tree is a derivation or parse tree in G if
 - every vertex has a label which is a symbol of V U T U {∈}
 - the label of the root is S
 - if a vertex is an interior vertex and has label A, then A must be in V
 - if vertex v has label A and vertices $v_1, v_2, ..., v_k$ are the children of v, in order from left to right, with labels $x_1, x_2, ..., x_k$, respectively, then $A \rightarrow x_1x_2...x_k$ must be a production in P
 - if vertex v has label \subseteq , then v is a leaf and is the child of its parent

- Derivation (Parse) Tree
 - **□** G = ({S, R, T},{(,)}, P, S) where P = {S \rightarrow R, R \rightarrow RT|T, T \rightarrow (R)|()}
 - \Box the derivation tree for string ()(())

- Derivation (Parse) Tree
 - a **leftmost derivation** is a derivation in which at each step, the leftmost non-terminal is replaced
 - \Box G = ({S, A}, {a, b}, P, S) where P = { S→aAS | a, A→SbA | SS | ba}
 - \Box S \Rightarrow aAS
 - ⇒ aSbAS
 - ⇒ aabAS
 - ⇒ aabbaS
 - ⇒ aabbaa
 - Draw the parse tree

- Derivation (Parse) Tree
 - a **rightmost derivation** is a derivation in which at each step, the rightmost non-terminal is replaced
 - \Box G = ({S, A}, {a, b}, P, S) where P = { S→aAS | a, A→SbA | SS | ba}
 - \Box S \Rightarrow aAS
 - ⇒ aAa
 - ⇒ aSbAa
 - ⇒ aSbbaa
 - ⇒ aabbaa
 - Draw the parse tree and compare this with the leftmost derivation

context-free grammar - ambiguity

- □ A CFG is ambiguous if and only if it generates some sentence by two or more distinct leftmost (rightmost) derivations
- \Box G = ({S, T}, {a, b}, P, S) where P = {S \rightarrow T, T \rightarrow TT | ab}
 - produce a leftmost derivation for the string ababab
 - draw the parse tree as well

context-free grammar - simplification

- Given a CFL L ≠ ∅, it can be generated by a grammar CFG G with the following properties
 - each variable and each terminal of G appears in the derivation of some string in L, i.e. each symbol is useful
 - there are no productions of the form A→B (unit productions),
 where A and B are variables
 - if the empty string is not in L, then there is no need for the production $A \rightarrow \subseteq$

context-free grammar - simplification

- \Box G = (V, T, P, S) where the productions in P is given by
 - \square {S \rightarrow aAS | C, S \rightarrow a, A \rightarrow SbA, A \rightarrow SS, A \rightarrow ba, B \rightarrow abc, C \rightarrow c}
 - Notice that
 - ullet variable B and production Boabc are useless
 - \square S \rightarrow C is useless as well, use S \rightarrow c instead

context-free grammar - chomsky normal form

- Any CFL without \subseteq can be generated by a grammar in which all productions are of the form $A \rightarrow BC$ or $A \rightarrow a$, where A, B and C are non-terminals and a terminal
 - \Box G = ({S, A, B}, {a, b}, P, S) where P = {A \rightarrow bA | aB, A \rightarrow bAA | aS | a, B \rightarrow aBB | bS | b}
 - \square note that $A \rightarrow a$ and $B \rightarrow b$ are already in CNF
 - what need to be transformed are the following
 - \square S \rightarrow bA by S \rightarrow C_bA and C_b \rightarrow b
 - \square S \rightarrow aB by S \rightarrow C $_a$ B and C $_a$ \rightarrow a
 - \triangle A \rightarrow aS by A \rightarrow C_aS
 - \blacksquare B \rightarrow bS by B \rightarrow C_bS
 - \triangle A \rightarrow bAA by A \rightarrow C_bAA
 - \blacksquare B \rightarrow aBB by B \rightarrow C_aBB
 - Then we transform the non-CNF productions produced in the previous step into CNF
 - \rightarrow A \rightarrow C_bAA by A \rightarrow C_bD₁ and D₁ \rightarrow AA
 - \blacksquare B \to C_aBB by B \to C_aD₂ and D₂ \to BB

context-free grammar - backus-naur form

- BNF is a grammar developed for the syntactic definition of Algol-60
- BNF grammar is a set of rules or productions of the form
 - leftSide ::= rightSide
 - leftSide is a non-terminal symbol
 - rightSide is a string of non-terminals and terminals
 - a terminal represents the atomic symbols in the language and a non-terminal represents other symbols as defined to the right of the symbol "::=" (read as "produces" or "is defined as")
 - | alternative and {} possible repetition
 - □ A::=B | {C}

- PDA is an automaton equivalent to the CFG in language-defining power.
- models parsers
 - most programming languages have deterministic PDA's
- think of an NFA with the additional power that it can manipulate a stack
 - moves are determined by:
 - current state (of its "NFA")
 - \Box current input symbol (or ε)
 - current symbol on top of its stack.

- being non-deterministic, the PDA can have a choice of next moves
- in each choice, the PDA can
 - change state, and also
 - replace the top symbol on the stack by a sequence of zero or more symbols
 - zero symbols
 - pop
 - many symbols
 - sequence of pushes

- \square A PDA is a sextuple M = (K, Σ , Γ , Δ , s, F) where
 - K is a finite set of states
 - \Box Σ is the alphabet
 - Γ is a stack alphabet
 - s is the start state
 - Arr F \subseteq K is the set of final states
 - \triangle is the transition relation, is a finite subset of (K x (Σ U {e}) x Γ *) x (K x
 - $((p, a, \beta), (q, \gamma)) \in \Delta$
 - a transition of M
 - since several transitions of M may be simultaneously applicable at any point, the machines we are describing are nondeterministic in operation.

- to push a symbol is to add it to the top of the stack
- to pop a symbol is to remove it from the top of the stack
 - ((p, u, e), (q, a))
 - pushes a
 - ((p, u, a), (q, e))
 - pops a
- as is the case with finite automata, during a computation the portion of the input already read does not affect the subsequent operation of the machine
 - a configuration of a pushdown automaton is defined to be a member of
 - $K \times \Sigma^* \times \Gamma^*$
 - **(**q, w, abc)

- \Box if (p, x, a) and (q, y, ζ) are configurations of M
- (p, x, α) yields in one step (q, y, ζ) ((p, x, α) \vdash M (q, y, ζ)) if there is a transition ((p, a, β), (q, γ)) \in Δ such that x = ay, α = βη, and ζ = γη for some $η \in \Gamma^*$
- ☐ M accepts a string $w \in \Sigma^*$ if and only if $(s, w, e) \vdash^* M (p, e, e)$ for some state $p \in F$
- $C_0, C_1, ..., C_n$ (n > 0) such that $C_0 \vdash M C_1 \vdash M ... \vdash M C_n$, $C_0 = (s,w,e)$, and $C_n = (p, e, e)$ for some $p \in F$
 - Any sequence of configurations C_0 , C_1 , ..., C_n such that $C_i \vdash M C_{i+1}$ for i = 0, ..., n 1 will be called a computation by Mlength n or have n steps
- the language accepted by M, denoted L(M), is the set of all strings accepted by M

 \Box L = {wcw^R : w ∈ {a, b}*} □ ababcbaba ∈ L ■ abcab ∉ L □ cbc ∉ L \square M = (K, Σ , Γ , Δ , s, F) \Box K = {s, f} $\Sigma = \{a, b, c\}$ $\Gamma = \{a,b\}$ ightharpoonup $F = \{f\}$

- - ((s, a, e), (s, a))
 - ((s, b, e), (s, b))
 - ((s, c, e), (f, e))
 - ((f, a, a), (f, e))
 - ((f, b, b), (f, e))

((s, a, e), (s, a)) ((s, b, e), (s, b)) ((s, c, e), (f, e)) ((f, a, a), (f, e)) ((f, b, b), (f, e)) abbcbba

state	unread input	stack	transition used
S	abbcbba	е	-
S	bbcbba	а	1
S	bcbba	ba	2
S	cbba	bba	2
f	bba	bba	3
f	ba	ba	5
f	а	а	5
f	е	е	-

 \bot L = {ww^R : w \in {a, b}*} □ ababbaba ∈ L □ abab ∉ L \Box cc \in L \square M = (K, Σ , Γ , Δ , s, F) \Box K = {s, f} $\Sigma = \{a, b, c\}$ $\Gamma = \{a,b\}$ ightharpoonup $F = \{f\}$

- - ((s, a, e), (s, a))
 - ((s, b, e), (s, b))
 - \Box ((s, c, e), (f, e))
 - ((f, a, a), (f, e))
 - ((f, b, b), (f, e))

 \bot L = {ww^R : w \in {a, b}*} □ ababbaba ∈ L □ abab ∉ L \Box cc \in L \square M = (K, Σ , Γ , Δ , s, F) \Box K = {s, f} $\Sigma = \{a, b, c\}$ $\Gamma = \{a,b\}$ ightharpoonup $F = \{f\}$

- - ((s, a, e), (s, a))
 - ((s, b, e), (s, b))
 - ((s, e, e), (f, e))
 - ((f, a, a), (f, e))
 - ((f, b, b), (f, e))

 \Box ((q₀, e, e), (q₁, c))

 $((q_1, a, e), (q_1, a))$

 \Box ((q₁, e, e), (q₂, e))

 $((q_2, b, b), (q_2, e))$

 $((q_2, e, c), (q_3, e))$

L = $\{a^nb^n : n \ge 0\}$ □ aaaabbbb ∈ L □ abab ∉ L □ aaaabbb ∉ L □ aaabbbbb ∉ L \square M = (K, Σ , Γ , Δ , s, F) \Box K = {q₀, q₁, q₂, q₃} $\Sigma = \{a, b\}$ $\Gamma = \{a, b, c\}$ \Box s = q_0 \Box F = {q₂}

- CFG and PDA equivalence
 - ☐ The class of languages accepted by pushdown automata is exactly the class of context-free languages.
 - each context-free language is accepted by some pushdown automaton

```
CFG and PDA equivalence
\Box G = ({S,A,B}, {a,b}, P, S}
\square P = {S->AbB, A->aA|a, B->bbB|e}
□ S => AbB
       => aAbB
       => aaAbB
       => aaaAbB
       => aaaaAbB
         leftmost derivation
```

- match stack top to a rule/production
- pop the stack
- push right-hand side of the rule
 - □ A -> BDF
 - needs some extra states
 - what if the rule has alternatives?
 - which rule to use?
 - nondeterminism
 - B -> bbB
 - match terminal symbols to the stack top

- at start state that pushes a symbol not used in the alphabet nor in the stack alphabet
- push the starting symbol and go to next state
- for every rule, push the right-hand side
- for every terminal symbol matched, pop the stack
 - for both cases, stay at the same state
 - there might be intermediate states
- check whether we are done
 - sees the non-alphabet, non-stack alphabet symbol on top of the stack

- CFG and PDA equivalence
 - □ The class of languages accepted by pushdown automata is exactly the class of context-free languages.
 - if a language is accepted by a pushdown automaton, it is a context-free language

- CFG and PDA equivalence
 - PDA has some states
 - \Box start state (q_0)
 - some intermediate states
 - final state/s
 - for every pair of states, create a non-terminal
 - \Box starting symbol for the grammar will Aq_0q_f

- CFG and PDA equivalence
 - simplify the PDA
 - one final state only
 - make the PDA empties the stack
 - new start state
 - new final state
 - the PDA either pushes or pops only but not both
 - the PDA does not do neither
 - use a non-alphabet, non-stack alphabet
 - introduce a new state

- CFG and PDA equivalence
 - the curious case of using a stack
 - the stack may have been empty or may have contents

- CFG and PDA equivalence
 - consider states p and q
 - create a nonterminal A_{pq}
 - irst transition can be a push but not a pop
 - last transition can be a pop but not a push
 - ightharpoonup $A_{pq} \rightarrow aA_{rs}b$
 - first transition pushes a symbol different from the symbol popped in the last transition but still ends up empty
 - what happened?
 - ightharpoonup $A_{pq} \rightarrow aA_{pr}A_{rq}$

- CFG and PDA equivalence
 - for each p, q, r, $s \in K$ such that ((p, a, e), (r, t)) and ((s, b, t), e)(q, e)), then add the rule $A_{pq} \rightarrow aA_{rs}b$ for each p, q, r \in K, such that we could go from p to q without
 - "touching" the stack and from q to r, still without "touching" the stack, then add $A_{pq} \rightarrow A_{pr}A_{rq}$
 - add a rule App for transitions that go from p to p (trivial)

- pumping lemma for context-free languages
 - \bot L = {dadaⁿcbⁿfafa n ≥ 0}
 - Arr P = {S \rightarrow dadRfafa, R \rightarrow aRb | c}
 - generate strings
 - for any string w, it can be written as uvxyz
 - $uv^ixy^iz \in L$

- pumping lemma for context-free languages
- Let L be a CFL. There is an integer $p \ge 1$ (pumping length) such that any string $s \in L$ with $|s| \ge p$ can be rewritten as s = uvxyz such that $uv^ixy^iz \in L$ for each $i \ge 0$, |vy| > 0, and $|vxy| \le p$

- pumping lemma for context-free languages
 - L = $\{a^nb^nc^n, n \ge 0\}$ is not context-free
 - proof by contradiction
 - assume that L is context-free
 - let $s = a^p b^p c^p$, rewrite s = uvxyz
 - case 1: v contains same symbols, y contains same symbols
 - case 2: either v or y contains more than one symbol

- CFGs are extensively used in modeling the syntax of programming languages
 - compilers must embody parsers
 - determine whether a given string is in the language generated by a CFG
 - if so, construct the parse tree
 - takes too much time
 - use PDA
 - nondeterministic
 - can we always make pushdown automata operate deterministically?

deterministic if for each configuration there is at most one configuration that can succeed it in a computation by M