МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Звіт до лабораторної роботи з дисципліни «Теорія алгоритмів та структур даних»

Виконав: Пфайфер В.В.

Група: ТР - 35

Прийняв: Андрущак В.С.

Завдання № 1: Дослідження залежності часу та пам'яті від кількості елементів у масиві, при застосуванні алгоритму інтерполяційного пошуку.

code is contributed by Hardik Jain
https://www.geeksforgeeks.org/interpolation-search/

Табл. 1 Алгоритм інтерполяційного пошуку, час

	100	500	1000	5000	10 000	50 000	100 000
Best, t	0	0.094	0.47	2.031	4.25	0.25	0.25
Average,	0.0156	0.547	1.078	3.58	3.03	0.34	0.94
Worst, t	0.03125	1.046	1.672	3.6	3.53	0.0156	0

Табл.2 Алгоритм інтерполяційного пошуку, пам'ять

	100	500	1000	5000	10 000	50 000	100 000
space, Mb	78,8	79.5	79.7	82.1	80.6	84.1	84.1

Рис.1 Теоретична складність інтерполяційного алгоритму за часом

Рис. 2 Практична складність інтерполяційного алгоритму за часом

Рис.3 Складність інтерполяційного алгоритму за використаною пам'яттю

За найкращий випадок приймаємо значення індексу, яке складає 20% від усього масиву даних.

За середній випадок приймаємо значення індексу, яке складає 50% від усього масиву даних.

За крайній, найгірший випадок, приймаємо значення індексу, яке складає 99-100% від усього масиву даних.

*Примітка: при застосуванні алгоритму для 100 елементів - у діапазоні 0 -17 індексів виявлявся Best case; у діапазоні 17 - 75 - Average case; 75 >> Worst case.

При кількості елементів у масиві даних > 10 000 проявляються аномалії в поведінці даного алгоритму.

Завдання № 2: Дослідження залежності часу та пам'яті від кількості елементів у масиві, при застосуванні алгоритму експоненціального пошуку.

Табл.3 Алгоритм експоненціального пошуку

	100	500	1000	5000	10 000	50 000	100 000
Best, t	0	0,15625	0	0	0	0	0
Average,	0,15625	0,15625	0,15625	0,15625	0,15625	0,15625	0,15625
Worst, t	0	0,04687	0,01562	0	0,03125	0,01562	0,03125

Табл.4 Алгоритм експоненціального пошуку, пам'ять

	100	500	1000	5000	10 000	50 000	100 000
space, Mb	80	78,8	78,8	78,5	78,9	79,3	82,6

Рис.4 Теоретична складність експоненціального алгоритму за часом (пам'яттю)

Рис. 5 Практична складність експоненціального алгоритму за часом

Рис.6 Практична складність експоненціального алгоритму за пам'яттю

За найкращий випадок приймаємо значення індексу, яке складає 50% від усього масиву даних.

За середній випадок приймаємо значення індексу з проміжку 2,4,8,16 .. 1024,2048...65536

За крайній, найгірший випадок, приймаємо значення індексу, яке ϵ непарним, та розташоване подальше від значень з проміжку, який описаний для середнього випадку

Висновок:

На даній лабораторній роботі досліджено два різних алгоритми пошуку - інтерполяційний та експоненціальний. Практично визначено їхню складність за часом та використаною пам'яттю. За даними досліду

прослідковується, що інтерполяційний алгоритм показує кращі результати складності в часовій площині, при великих масивах даних (>50~000 елементів), у порівнянні з масивами даних із малою кількістю елементів. Експоненціальний алгоритм є більш стабільним, у порівнянні з інтерполяційним, та швидшим, з огляду на те, що у найкращому та середньому випадках, його складність практично O(1). Проте за пам'яттю експоненціальний алгоритм незначно програє інтерполяційному.