SVM Problem with SVO Solver

By Minghe Ren, Xinqiao Wei

EC500 (HPC) Project

1. SVM problem Introduction

In machine learning algorithm, SVM (support vector machine) is often used in supervised classification. The idea is, giving a data set, the algorithm trying to find the best hyperplane that separating the data. For example, in two dimension case, suppose you have a dataset which has two different labels. And the data points has two features (two dimension). The general idea can be represented as figure below, $W \cdot x + b = 0$ represents the hyperplane.

In our project, we decided to write a two dimensional SVM classifier in C++. That is, writing our SVM solver code for two dimensional dataset to find the best w and b the separate data, which is the hyperplane.

The idea can be shown as:

data toming = IR d In this case d=2 2C	= (x, , xr) famuel feacumer
labe(: 4 = { -1, +1}	
$Pata = \{(x_1, y_1), (x_1, y_2) \cdots (x_n, y_n)\}$	-
The state of the s	-
at least one sample from each class	-
	-
hyperplane can be represented as WT to +b=	
alacs of alacs	-
maxin to	a is linearly
Pati	
Cone	roble case
X X Sege	•
(as)	
1.0 2,	
class x,	
Distance of oc to hyperplane (WT, b) can	be represented:
Distance = 120tx+bl Mangi	= min (Digace) = min (WTZ+6)
best 111	1 1 1 200
Our goal: Final the hyperplane which has	, the largest
	margin
(w,b)= aramax [min Lwtx]+b)) w,b [min Lwtx]+b))	
The same of the sa	

The hyperplane is the classifier. Above it, it's class +1. Below it, it's class - 1.

If we let the $min|W\cdot x + b| = 1$, we can represent the margin as:

By introduce Laplacian Multipliers and KKT condition, we actually are solving this dual optimization problem:

Lagrangian: for all $\mathbf{w}, b, \alpha_i \ge 0$,

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^{m} \alpha_i [y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1].$$

KKT conditions:

$$\nabla_{\mathbf{w}} L = \mathbf{w} - \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i = 0 \iff \mathbf{w} = \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i.$$

$$\nabla_b L = -\sum_{i=1}^{m} \alpha_i y_i = 0 \iff \sum_{i=1}^{m} \alpha_i y_i = 0.$$

$$\forall i \in [1, m], \ \alpha_i[y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1] = 0.$$

asum and state of the state of the solled of a solled of the analytical methods of analytical methods of analytical methods of the solled of the sol Complementary Conditions Support Vector (SV)

A teature n; for which a; Sum 70 is called =) if n; is a SV then 1 - y; (w svm) Ta; + 6 svm) = 0 =) (W sum) Trj+b sum = y =) all Sv's are closed to the sun

Our problem becomes: a dual optimization problem with boundary condition:

$$\alpha^{\text{SVM}} = \operatorname{argmin}[\sum_{j=1}^{n} \alpha_j - \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_j \alpha_k y_j y_k (x_j^T x_k)]$$

The condition is $\sum_{j=1}^{n} \alpha_j y_j = 0$ and $0 \le \alpha_j \le C$ (C is hyper parameter). This can be solved by Sequential minimal Optimization.

2. SMO

SMO breaks this problem into a series of smallest possible subproblems, which are then solved analytically. Because of the linear equality constraint involving the Lagrange multipliers α the smallest possible problem involves two such multipliers. Then, for any two multipliers α 1 and α 2, the constraints are reduced to:

$$0 \le \alpha_1, \alpha_2 \le C$$
$$V_1\alpha_1 + V_2\alpha_2 = R$$

This reduced problem can be solved analytically: one needs to find a minimum of a one-dimensional quadratic function. K is the negative of the sum over the rest of terms in the equality constraint, which is fixed in each iteration.

The linear classifier f(x) = wTx + b can be express as:

$$f(x) = \sum_{i=1}^{m} \alpha_i y^i < x^i, x > +b$$

The KKT condition for this problem:

$$\alpha_i = 0 \to y^i (w^T x_i + b) \ge 1$$

$$\alpha_i = C \to y^i (w^T x_i + b) \le 1$$

$$0 < \alpha_i < C \to y^i (w^T x_i + b) = 1$$

Next step,optimizing αi and αj . First, find the bounds L and H such that L $\leq \alpha j \leq H$ for the constraint $0 \leq \alpha j \leq C$:

If
$$y_i \neq y_j$$
, $L = max(0, \alpha_j - \alpha_i)$, $H = min(C, C + \alpha_j - \alpha_i)$

If
$$y_i = y_j$$
, $L = max(0, \alpha_i + \alpha_j - C)$, $H = min(C, \alpha_i + \alpha_j)$

The optimal αj is given by:

$$\alpha_j := \alpha_j - \frac{y_i(E_i - E_j)}{\eta}$$

where Ek = f(xk) – Yk . It is the error between the SVM output on the kth example and the true label Yk. And $\eta=2< xi$, xj > - < xj, xj > - < xj

If α ends up lying outside the bounds L and H, we modify α :

$$\alpha_{j} := \begin{cases} H & \text{if } \alpha_{j} > H \\ \alpha_{j} & \text{if } L \leq \alpha_{j} \leq H \\ L & \text{if } \alpha_{j} < L \end{cases}$$

Then we solve for ai:

$$\alpha_i := \alpha_i + y_i y_j (\alpha_j^{old} - \alpha_j)$$

Select the threshold b satisfying KKT for xi and xj. If ai is not at the bounds then b1 is valid:

$$b_2 = b - E_i - y_i(a_i - a_i^{old}) < x_i, x_i > -y_i(\alpha_j - \alpha_j^{old}) < x_i, x_j > 0$$

Similarly, if $0 < \alpha j < C$, b2 is valid:

$$b_2 = b - E_j - y_i(a_i - a_i^{old}) < x_i, x_j > -y_j(\alpha_j - \alpha_j^{old}) < x_j, x_j >$$

If both b1 and b2 are both valid, the value would be the same. If both α s are at the bounds then the b := (b1 + b2)/2 would meet the KKT condition.

3. Code

Here is our pseudo-code:

```
1: Initial: \alpha_i = 0, \forall i, b = 0, passes = 0
 2: while passes < max\_passes do
        num\_changed\_alphas = 0;
3:
        for i = 1, ..., m do
 4:
            Calculate E_i = f(x^i) - y^i
 5:
            if ((y^i E_i < -tol \&\& a_i < C) || (y^i E_i > tol \&\& a_i > 0)) then
 6:
                Select j \neq i randomly.
 7:
                Calculate E_j = f(x^i) - y^j
8:
                Save old \alpha's: \alpha_i^{old} = \alpha_i, \alpha_i^{old} = \alpha_j
                Compute L and H.
10:
                if (L == H) then
11:
                    continue to next i.
12:
                Compute \eta.
13:
                if (\eta \ge 0) then
14:
                    continue to next i.
15:
```

```
Compute and clip new value for \alpha_i
16:
               if (|\alpha_j - \alpha_j^{old}| < 10^{-5}) then
17:
                   continue to next i.
18:
               Determine value for \alpha_i
19:
               Compute b_1 and b_2
20:
               Compute b
21:
               num\_changed\_alphas := num\_changed\_alphas + 1
22:
           end if
23:
       end for
24:
       if (num\_changed\_alphas == 0) then
25:
26:
           passes := passes + 1
       else
27:
           passes := 0
28:
29: end while
```

4. Result

For 15 points dataset:

Green line is the hyperplane and the red lines represents the margin. The hyperplane we calculate perfectly separates the data.

For 100 data points:

The green hyperplane also perfectly solve the problem and with some data points living the boundary.

The output of our code shown below, where most of the Laplacian multipliers are zero.

For 1000 data points, our code can't converge due to some unknown reason.

5. Future work

- **a.** Test on a much bigger dataset like 100,000 points and check the performance.
- **b.** Different algorithms to achieve SVM like Quadratic Programming.
- **c.** Test on non-linear separable dataset and non-separable dataset.
- d. Try to parallelize our code

6. Reference:

http://cs229.stanford.edu/materials/smo.pdf

Our Github link:

https://github.com/rmhsawyer/EC500-HPC-Final-Project