Introto Reural Networks

BA865 – Mohannad Elhamod

GNNS

Convolutional Networks

A Problem of Scalability

- How many parameters in this network?
- Do we really need to learn all these parameters?

output layer

Structure in Images

- Interesting images have:
 - Locality of information.
 - Spatial invariance.

VS.

Figure courtesy of Jorge Stolfi

Convolutional Filters

 Instead of learning a mesh of all possible parameters, let's learn local descriptors (kernels or filters) that can be reused across the image!

Figure courtesy of Thushan Ganegedara

Mathematically Speaking...

Stride and Padding

- Stride controls feature field overlap.
- Padding controls the down-sampling.

Non-Linearity: MaxPooling

- In addition to being a nonlinearity...
 - it helps down-sample the image.
 - It helps summarize information in terms of larger blocks.

Putting It All Together

Deeper layers generally have more kernels that are smaller.

Learned Features

- Early layers learn low-level features.
 - spots, edges, etc.
- Later layers learn to detect high-level features as a combination of low-level features.
 - Eyes, ears, hair, etc.
- Demo

Hyper-Parameters

Continued...

Batch Normalization

- Even if input data is properly normalized, the gradient in subsequent layers may vanish or explode.
- For that, you may add <u>"batch</u> normalization" at every layer.

Figure courtesy of Brandon Rohrer

Learning Rate: Schedulers

- Since larger learning rates may converge faster but smaller ones are more stable, you could adjust the learning rate in phases to get the best of both worlds!
 - This way, you still converge but faster.
- Using a scheduler is a common practice.

Hyper-Parameter Tuning

Be Smart About It

- It is expensive!
 - 1 hyper-parameter with 3 values → 3 experiments
 - 2 hyper-parameter with 3 values each → 9 experiments
 - 3 hyper-parameter with 3 values each → 27 experiments
 - ... exponential growth!

Be Smart About It

- It is expensive!
- Start with generally accepted wisdom:
 - Start with good initial guesses.
 - Different settings work better for different models/problems (e.g., SGD + momentum for computer vision vs. Adam otherwise)
- Be picky about what to fine-tune.
 - Use early stopping.
 - Learning rate is the most important parameter!

Hyper-Parameter Tuning Methods

- Generally, use log-scale for numerical hyper-parameters.
- Random and Adaptive searches generally find optimal values faster than grid searches.

Grid Search

Random Search

Adaptive Selection

Figure courtesy of Liam Li

