

planetmath.org

Math for the people, by the people.

delta distribution

Canonical name DeltaDistribution
Date of creation 2013-03-22 13:45:52
Last modified on 2013-03-22 13:45:52

Owner matte (1858) Last modified by matte (1858)

Numerical id 6

Author matte (1858)
Entry type Definition
Classification msc 46-00
Classification msc 46F05

Related topic ExampleOfDiracSequence

Let U be an open subset of \mathbb{R}^n such that $0 \in U$. Then the delta distribution is the mapping

$$\delta: \mathcal{D}(U) \to \mathbb{C}$$
$$u \mapsto u(0).$$

Claim The delta distribution is a distribution of zeroth order, i.e., $\delta \in \mathcal{D}'^0(U)$.

Proof. With obvious notation, we have

$$\delta(u+v) = (u+v)(0) = u(0) + v(0) = \delta(u) + \delta(v),$$

 $\delta(\alpha u) = (\alpha u)(0) = \alpha u(0) = \alpha \delta(u),$

so δ is linear. To see that δ is continuous, we use condition (3) on this http://planetmath.org/Distribution4this page. Indeed, if K is a compact set in U, and $u \in \mathcal{D}_K$, then

$$|\delta(u)| = |u(0)| \le ||u||_{\infty},$$

where $||\cdot||_{\infty}$ is the supremum norm. \square