Mathematical Statistics. Exam 1.
$$2018/10/22$$

- (5%) If event A and event B are disjoint, are they independent? Why or why not?
- (10%) If X is the geometric random variable with probability p, denoted as X ~ Geo(p). Show that X has the memoryless property:

$$P(X > n + k - 1|X > n - 1) = P(X > k),$$

for some non-negative integers n and k.

- (10%) Two fair dice are rolled.
 - (a) (5%) What is the probability that the sum of face values is seven?
 - (b) (5%) What is the probability that at least one of the dice came up a three?
- (15%) Suppose that a random X has a probability density function:

$$f(x) = 1 - \frac{x}{2}$$
, for $0 \le x \le 2$.

- (a) (5%) Let the cumulative distribution function of X be denoted by F_X(x). Find F_X(x).
- (b) (5%) Let Z = F_X(X). Find the distribution of Z.
- (c) (5%) Let U ~ U(0,1). Find a function g(·), so that the random variable Y = g(U) has the same distribution as X.
- 5. (30%) Suppose that Betty works at the front counter in McDonald, and she serves four customers this morning. For simplicity, a customer is classified as female or male. Assume that the probability that affemal customer comes to McDonald with probability p = 0.6 and a male customer with probability q =0.4. Denote the gender of a customer by F (female) or M (male). There are two bonus policy. Policy X pays Betty additional 5 dollars for each female customers she serves. Policy Y only focuses on the first and the fourth sustomers, and pays Betty additional 5 dollars for each male customers. Example: If the sequence of the gender of the customers is FFMF, Betty receives 15 dollars from policy X, and 0 dollar from policy Y. If the sequence of the gender of the customers is MFMF, Betty receives 10 dollars from policy X, and 5 dollars from policy Y.

(a) (5%) Write down the sample space of this scenario.

(b) (5%) Find the probabilities of each outcome in (a).

 $1 \sim 0$. (c) (5%) Find the joint frequency function of X and Y.

 $_{\text{1-y}} \sim_{\text{1-y}}$ (d) (5%) Find the marginal frequency functions of X and Y.

(e) (5%) Are X and Y independent? Why or why not?

(f) (5%) Find the conditional distribution of X given Y = 5.

Y= 9(0).

(30%) Assume that X, Y are uniformly distributed on the unit circle, i.e.,

6. (30%) Assume that
$$X, Y$$
 are uniformly distributed on the unit circle, i.e.,
$$f_{X,Y}(x) = \frac{1}{2} \qquad f_{X,Y}(x,y) = c, \quad \text{for } x^2 + y^2 \le 1,$$

$$f_{X,Y}(x,y) = c, \quad \text{for } x^2 + y^2 \le 1,$$

for some constant c.

- (a) (5%) Find c so that f_{X,Y} (x, y) is a legitimate joint probability density function.
- (b) (5%) Find probability P(X + Y < 1).</p>
- (c) (5%) Find the marginal probability density function for X, f_X(x).
- (d) (5%) Let Z = |X|. Find the probability density function of Z.
- (e) (5%) Are X and Y independent? why or why not?
- (f) (5%) Find the conditional probability density function of Y|X = 0.

density function for
$$X$$
, $f_X(x)$.

Solility density function of Z .

The property of the following function of $Y|X=0$.

The property of the following function of $Y|X=0$.

The property of the following function of $Y|X=0$.

The property of the following function of $Y|X=0$.

The property of the following function of $Y|X=0$.

Mathematical Statistics. Exam 2. 2018/12/3

 (10%) Let X and Y has a joint probability density function: $f(x,y) = 1, y \ge 0, y \le 1 + x, y \le 1 - x.$ Set Z = Y/X. Find the probability density function of Z. (2.) (10%) If $X_i \stackrel{i.i.d.}{\sim} U(0,1)$ for $i=1,\ldots,9$. Let $X_{(1)} \leq X_{(2)} \leq X_{(3)}$ be the order statistics. Let $U=X_{(9)}$ be the maximum, $V=X_{(1)}$ be the minimum, and $M=X_{(5)}$ be the median. (a) (5%) Find the probability density function of M. (14) (b) (5%) Find the joint probability density function of (U, M, V). 31648 \times . (1- \times) 3. (10%) Suppose that Var(X) = 1, Var(Y) = 4, Var(Z) = 9. And the correlations, $\rho_{X,Y} = 0.2$, $\rho_{Y,Z} = -9.3$, and $\rho_{X,Z} = 0.5$. Find the numerical solutions of the following questions.

(a) (2%) Find Cov(X,Y), Cov(X,Z), and Cov(Y,Z). (b) (3%) Find Var(X + Y + Z). 14, ≥ (c) (5%) Find Cov(X + 2Y + 3Z, Y - Z). (20%) Let X and Y be random variables with joint density function: f(x,y) = 1, for $0 \le x$, $0 \le y$, 2x + y < 2. (a) (5%) Find the conditional expectation of E[Y|X=1/2]. (b) (5%) Find E[Y|X] as a function of X. (c) (10%) Find the probability density function of E[Y|X]. $\nearrow \mathcal{F}$ (20%) Let X be the exponential distribution with rate 1 with density $f(x) = \exp^{-x}$, for 0 < x. (a) (5%) Find the moment generating function of X, M(t). (Need to specify the domain of t (2%).) (b) (5%) Find M'(0) and M"(0). (c) (5%) Find the upper bound of P(X > 2) using Markov inequality. (d) (5%) Find the upper bound of P(|X - 1| > 2) using Chebyshev inequality. $\sqrt{6}$. (10%) Suppose that $X_i \stackrel{i.i.d.}{\sim} X$ where X has the probability density function Denote $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Find α , so that \bar{X}_n converges in probability to α . $\frac{3}{2}$ (10%) Show that if $P(Y = \alpha X + b) = 1.6$ 7. (10%) Show that if P(Y = aX + b) = 1 for some given constants a and b. Then, the correlation between X and Y is either 1 or -1. 8. (10%) A point is generated on a unit disk in the following way: The radius, R, is uniform on [6,1], and the angle θ is uniform on $[0, 2\pi]$ and is independent or R. (Hint: $\frac{d}{d\theta} \tan^{-1}(\theta) = \frac{1}{1+\theta^2}$.) (a) (5%) Find the joint density of R and θ .

(b) (5%) Find the joint density of $X = R\cos(\theta)$ and $Y = R\sin(\theta)$.

Mathematical Statistics. Exam 3. 2019/1/7

- (10%) Describe the Central Limit Theorem.
- (10%) Explain the type I error and type II error.
- 3 (10%) Let X_1, \ldots, X_n be independent $N(\mu, \sigma^2)$ random variables; we sometimes refer to them as sample from a normal distribution. The sample mean is $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. The sample variance is $S^2 = \frac{1}{n} \sum_{i=1}^{n} X_i$. $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\bar{X})^2$. Find the distribution of $\frac{\bar{X}-\mu}{S/\sqrt{n}}$. $\sim t_{n-1}$
- 4. (10%) Recall the MLE of μ and σ^2 from an i.i.d. normal sample are $\hat{\mu} = \bar{X}$, $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$. Derive the $(1-\alpha)\times 100\%$ confidence interval for σ^2 .

Derive the
$$(1-\alpha) \times 100\%$$
 confidence interval for σ^2 .

5. (30%) Let $X \sim N(\mu, \sigma^2)$. Then, X has the probability density function
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2}, \ -\infty < x < \infty.$$

(a) (10%) Find the estimators for μ and σ^2 using the method of moments.

- (a) (10%) Find the estimators for μ and σ^{*} using the method of moments.
- (b) (10%) Recall that a two-parameter member of the exponential family has a density or frequency function of the form

$$f(x|\theta) = \exp\left[\sum_{i=1}^{2} c_i(\theta) T_i(x) + d(\theta) + S(x)\right], \quad x \in A$$

where the set A does not depend on $\theta = (\theta_1, \theta_2)$. Show that X is a member of two-parameter member of the exponential family, and identify the functions $c_i(\theta)$, $T_i(x)$, $\underline{d(\theta)}$, $\underline{S(x)}$, for i = 1, 2.

- (c) (10%) Find the two sufficient statistics for X. 5×1 2×1 $-195 \times 200 \times 10^{-100}$ 6. (30%) Coin 0 has probability of heads equal to 0.5, and coin 1 has probability of heads equal to 0.3. I
- choose one of the coins, toss it 5 times and tell you the number of heads, do not tell you weather it was coin 0 or coin 1. We set the null hypothesis, $[H_0: coin 0 is selected]$ and the alternative hypothesis, $[H_1: coin 0 is selected]$ coin 1 is selected. Formally, let X be the number of heads observed. Then, $X \sim Binomial(5, p)$. Then, we have the equivalent statements that $H_0: p = 0.5$, and $H_1: p = 0.3$. The following table gives us the probabilities of X = x under H_0 and H_1 , and their ratios.

_	X = x 2	0	1	2	3	4	5
H0 H0	coin 0	0.03	0.16	0.31	0.31	0.16	0.03
	coin 172	0.17	0.36	0.31	0.13	0.03	0.00
	$\frac{P(x H_0)}{P(x H_1)}$	0.19	0.43		2.36	5.51	12.86

Recall that the likelihood ratio test rejects H_0 when $\frac{P(H_0|x)}{P(H_1|x)} < c$.

(a) (10%) Suppose that $P(H_0) = P(H_1) = \frac{1}{2}$. Show that the likelihood ratio equals to

$$\frac{P(H_0|x)}{P(H_1|x)} = \frac{P(x|H_0)}{P(x|H_1)} \stackrel{\text{T(H_0)}}{\cdot} \stackrel{\text{T(H_0)}}{(H_0)}$$

- (b) (10%) Set c = 1 Find the significance level of this test. , □
- (c) (10%) Set c = Q Find the power of this test. _{b.S}↓

