1. Problem Background and Challenges

- Market Impact: Large trades may trigger adverse price movements.
- **Price Risk**: Slow execution may miss favorable price windows.

Traditional methods (e.g., the Almgren-Chriss model) rely on strict market assumptions (e.g., prices following Brownian motion), but real-world markets are complex and dynamic, limiting their practicality. **Reinforcement Learning methods** bypass market assumptions but face challenges:

- Noisy Data: Leads to low sample efficiency.
- Imperfect Information: Only historical data is available; future information is unknown.

Objective Function: Maximize the $\alpha_{q_1,q_2,\ldots,q_T}\sum_{t=0}^{T-1} (q_{t+1}\cdot q_{t+1}), s.t.\sum_{t=0}^{T-1}q_{t+1}=Q.$

- \$q_t\$: Quantity traded at timestep \$t\$.
- \$p_t\$: Market price at timestep \$t\$.
- \$Q\$: Total quantity to be traded.

2. MDP Formulation for Order Execution

Order execution is modeled as a Markov Decision Process (MDP):

State:

- private variables (remaining inventory, elapsed time)
- o public variables (historical market data, e.g., open prices, trading volumes).

Action

- The proportion of assets to trade at each step \$a_t\$,
- constrained by\$\sum_{t=0}^{T-1} a_t = 1\$.

• Reward:

- Price Advantage: Measures trading gains relative to the market average price(across the trading period, no information leakage).
- Market Impact Penalty: Penalizes adverse price effects from large trades.

Reward Function:

 $$$\hat{P}^+(|boldsymbol\{s\}t,a_t)=|frac\{q\{t+1\}\}\{Q\}|cdot|overbrace\{|left(|frac\{p\{t+1\}-t]\}\}\} $$ $$\Big(\|frac\{p\}+1\}-\|frac\{q\{t+1\}\}\{t\}\} $$$

$$$$\hat{R}_t^-=-\alpha(a_t)^2$$

$$R_t = \hat{R}_t^+ + \hat{R}_t^-$$

- \$p_{t+1}\$: Market price at the next timestep.
- \$\tilde{p}\$: Average market price over the execution window (contains future information, since reward fucntion is not in state, no information leakage).
- \$\alpha\$: Penalty coefficient controlling trade size impact (only temporary, market is resilient, price bounce baket at next timestep).

Objective Function: $\$ arg $\max_{pi\in E}|pi|\left[sum\{t=0\}^{T-1}\right].$

• \$\pi\$: Policy function. Decides the action of trading volume at each timesteps.

3. Policy Distillation Framework

A **teacher-student framework** addresses imperfect information:

- **Teacher Policy**: Trained with perfect information (including future prices) via RL to generate optimal strategies.
- **Student Policy**: Accesses only historical data and learns generalized strategies by mimicking the teacher.

Training Process:

Loss Function: Combines policy loss L_p , value function loss L_v , and distillation loss L_d : L_v , and distillation loss L_v , and distillation loss L_v .

- Policy Loss (\$L_p\$): Maximizes expected rewards by adjusting policy parameters.
- Value Function Loss (\$L_v\$): Minimizes the difference between predicted and actual state values. \$\$L_v(\boldsymbol{\theta})=\mathbb{E}t|\left[\forall V{\boldsymbol{\theta}}(\boldsymbol{\s}t)-\forall V_t\2\right]\$\$ \$\$V_t=|\sum{t^{\prime}=t}^{T-1}|\mathbb{E}|\left[|\gamma^{T-t^{\prime}-1}R{t^{\prime}}(\s_{t^{\prime}},a_{t^{\prime}}))\right]\$\$ you can imagine this is the reward value of future timesteps using monte carlo simulation.
- **Distillation Loss (\$L_d\$)**: Aligns student and teacher policies to enhance generalization. \$\$L_d=-\mathbb{E}_t\left[\log\Pr(a_t=\tilde{a}t/|pi{\boldsymbol{\theta}},\boldsymbol{s}t;|pi{\boldsymbol{\phi}},\tilde{\boldsymbol{s}}_t)\right]\$\$ **Network Architecture**:
- Recurrent Neural Network (RNN) processes sequential market data.
- Shared-parameter networks output both action distributions (Actor) and state values (Critic).

4. Experiments and Results

4.1 Experimental Setup

• Dataset: Minute-level trading data from China's A-share market (2017–2019), covering 3,569 assets.

4.2 Evaluation Metrics

1. Reward: Mean cumulative reward.

- 2. Price Advantage (PA): Return improvement over market average (basis points, BP).

4.3 Results

Category	Strategy	Reward($\times 10^{-2}$)	PA	GLR
financial	TWAP (Bertsimas et al. 1998)	-0.42	0	0
model-	AC (Almgren et al. 2001)	-1.45	2.33	0.89
based	VWAP (Kakade et al. 2004)	-0.30	0.32	0.88
learning- based	DDQN (Ning et al. 2018)	2.91	4.13	1.07
	PPO (Lin et al. 2020)	1.32	2.52	0.62
	OPD ^S (pure student)	3.24	5.19	1.19
	OPD (our proposed)	3.36*	6.17*	1.35

