

CALCULUS, FINAL EXAM, 2017/01/13 (TOTAL 100 PTS)

1.(60%) Find the following values and integrals:

(a)
$$\lim_{x \to 0^+} x \left(\log_2(x+1) - \log_2 x \right)$$

(a)
$$\lim_{x \to 0^+} x \left(\log_2(x+1) - \log_2 x \right);$$
 (b) $\int_0^{\pi/3} \cos x \ln(\sin x) dx;$ $\chi = \chi - (\chi + 1)$

$$(c) \int x(1+\csc^2 x)dx;$$

$$(a) \int_1^2 \frac{4x+9}{x(x+3)^2} dx;$$

(e)
$$\int x\sqrt{2x-x^2}dx; = h\sqrt{-\int h} \int_1^\infty \frac{dx}{\sqrt{x}(x+1)}.$$
2. (10%) Set $f(x) = \int_0^x e^{-t^2}dt$, where $-\infty < x < \infty$

- (a) On what intervals is f concave upward?
- (b) Prove that $\int_{0}^{1} e^{-t^2} dt > \frac{1}{4} \left(e^{-1/16} + e^{-1/4} + e^{-9/16} + e^{-1} \right)$

 $\sqrt{\frac{10\%}{10\%}}$ Let $f(x) = \sin^{-1} x$ $(0 \le x \le 1)$.

- (a) Sketch the graph of y = f(x).
- (b) Find the volume of the solid obtained by rotating the graph of y = f(x)about the x-axis.
- 4. (10%) The growth of a cell population generally follows the law:

$$\frac{dN}{dt} = \alpha N - \beta N^2,$$

where N(t) is the total population at time t and α , β are positive constants. If $N(0) < \alpha/\beta$, find the extrema of N(t).

5. (10%) Evaluate

$$\lim_{n\to\infty}\frac{\tan\frac{1}{2n}+\tan\frac{3}{2n}+\tan\frac{5}{2n}+\cdots+\tan\frac{2n-1}{2n}}{n}$$

by first finding a function f such that the limit is equal to

$$\int_0^1 f(x)dx.$$

CALCULUS, MIDTERM EXAM, 04/11/2017 (TOTAL 100 PTS)

1.(20%) Determine which of the following converges:

$$(\cancel{b}) \quad \sum_{n=1}^{\infty} \frac{1}{(n+2)\ln(n+1)}; \quad (\cancel{b}) \quad 1 + \sum_{n=1}^{\infty} \frac{(-1)^n 10^{2n}}{2^{2n} (n!)^2}.$$

2. (20%) Let
$$f(x) = \frac{1}{1-x} + \left(\frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots\right)$$

Write out the power series expansion of f(x) with the base point 0.

(b) What is its radius of convergence? What is its interval of convergence?

3. (20%) (a) Sketch the direction field of
$$y' = x + y$$
.

3. (20%) (a) Sketch the direction near of y = u + y.

(b) Solve y' = x + y by making the change of variable u = x + y.

At $y = \frac{dy}{dx} + 1 = \frac{dy}{dx}$

4.~(20%) A particle moves in the plane. Its position at time t is described by

$$x(t) = 1 + 3t^2, \ y(t) = 4 + 2t^3 \qquad (0 \le t \le 1).$$

(a) Find dy/dx at t = 1/2.

(b) Find the arc length of the curve which this particle travels.

5. (20%) (a) Sketch the curve $r^2 = \sin 2\theta$.

(b) Find all points of intersection of the curves $r^2 = \sin 2\theta$ and $r = 2\cos \theta$

(c) Find the area of the region inside both of the curves given in (b).

0	0	27	73							
4w50	4	2	1							
Sin(2 (9)	0	1	53							
x y = x44			3/8	1/2						
1 600										

1

CALCULUS, FINAL EXAM, 06/16/2017 08:00am-10:00am (TOTAL 100 PTS)

1.	(10%)	Let	f(x)	=	\boldsymbol{x}	cos	\boldsymbol{x}
----	-------	-----	------	---	------------------	-----	------------------

- (a) Find the power series expansion of f at x = 0.
- (b) Find $f^{(99)}(0)$.

(25%) The motion of a particle is described by $\gamma(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$.

(a) Find the vector v for which ||v|| = 2 and v has the same direction with The unit tangent vector T at t=1.

- (b) Find the tangential component a_T of the acceleration a(1).
- (c) Find $\gamma'(t) \times \gamma''(t)$.
- (d) Find the curvature of the curve at t = 1.
- (e) Find the arc length function s(t) and show that $s(t) \ge$
- 3. (15%) Let $f(x,y) = \sin(x + 2\pi y + xy)$, $u = (1, \sqrt{2})$, and P = (0,1).
 - (a) Find $D_u f(0,1)$;
- (b) Find the linearization of f at P.
- (c) Find the equation of the tangent plane to z = f(x, y) at (0, 1, 0).

$$\frac{\partial f}{\partial x}(1,0) = 1, \quad \frac{\partial f}{\partial y}(1,0) = 0, \quad \text{which}$$

$$\frac{\partial f}{\partial x}(-1,0) = -1, \quad \frac{\partial f}{\partial y}(-1,0) = -\frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx$$

Find $z'(\pi)$, where $z(\theta) = f(\cos 2\theta, \sin 2\theta)$.

- 5. (15%) Let f(x,y) = xy x + 4.
 - (a) Find all critical points of f.
 - (b) Minimize f subject to the constraint $x^2 + y^2 = 3$.
 - (c) Find the minimum value of f on $x^2 + y^2 \le 3$

6. (15%) Let
$$V(\Omega)$$
 denote the volume of the solid Ω bounded by the planes

x + 2y + z = 2, x = 0, y = 0, and $z_{1} = 0$.

(a) Set up a double integral for $V(\Omega)$. (b) Find the area of each x-cross section.

(c) Evaluate
$$V(\Omega)$$
.

(c) Evaluate $V(\Omega)$. $= 2 - \frac{1}{2} + \frac{1}{4}$ 7. (10%) Evaluate the double integral $\iint_{D} \ln(\sqrt{x^2 + y^2}) dA$, where

$$D = \{(x,y)|1 \le x^2 + y^2 \le 4\}.$$

$$\frac{12}{7} \times \frac{36}{35} + \frac{1}{4} = \frac{3}{4}$$