K-map Minimizer
Digital Design 1
Dr. Mona Farouk

Mariam Fawzy 900192318
Basant Abdelaal 900192802

Program Design:

The program consists of functions to achieve 3 goals:

- 1) Validation of input
- 2) Creating K-map
- 3) Calculating the simplified function

1. Validation of Input:

The user enters two inputs: 1. the number of variables in the function 2. the minterms.

Validation of the number of variables:

- Should be between 2 and 4 variables (inclusive).

Validation of the minterms:

- Should be non-negative values.
- Should be less than 2^{number of variables}.

2. Creating K-map:

This is done through two functions: 1. buildKmap 2. get_row_col (helper function)

buildKmap:

It simply initializes a table for the K-map with the proper size according to the number of variables and fills it with zeros.

And then, loops over the minterms and calculates the position in the K-map using get_row_col and changes its value to one.

get_row_col (helper function):

It calculates the position of the minterms with equations that make use of its binary representation.

3. Calculating the simplified function:

This is done through steps:

- 1. Getting all the prime implicants
- 2. Extracting the essential prime implicants
- 3. Minimizing the remaining prime implicants

Getting all the prime implicants

- 1. we get all the binary representation of the possible minterms in "string" format using the helper function getBinaryRep.
- 2. We try to get the largest combination of adjacent minterms to form prime implicants.
- 3. So, we start by getting all the combination starting from $2^{\text{number of variables}}$ to 1 using next_permutation
- 4. We only add the prime implicant if its minterms are not covered by a larger prime implicant by the help of keeping track of included minterms using visited array vis.

Extracting the essential prime implicants:

- 1. We created a table of the prime implicants (rows) and the minterms (columns) where its value is 1 whenever this minterm is included in that prime implicant.
- 2. Then, for each minterm, we looped over the prime implicants. So, if it is only present in one prime implicant, it is an essential prime implicant.

Minimizing the remaining prime implicants

- 1. To minimize the remaining prime implicants, we tried to generate the least combination of them, starting from 0 to all the non-essential prime implicants, using next_permutation.
- 2. Once it covered all the minterms along with the essential prime implicants, terminate as we got the simplified function.

Problems in your program:

We covered all the number of variables from 2 to 4 and provided all the prime implicants and essential ones with no problems.

Instructions for how to build and use the program:

- To build the program just run the cpp file on any ide.
- The user interface is very intuitive, just enter the number of variables and then the minterms (in a single line) as in the example below:

