EEG Seizure Detection Competition

BitTiger | 来自硅谷的终身学习平台

Rand Xie

Disclaimer Any opinions and code here are my own, and in no way reflect that of MathWorks

Outline

- Introduction to EEG dataset and Kaggle community
- Time series feature extraction
- From loading data to submission
- Introduction to feature selection
- Introduction to parameter tuning

Seizure Prediction

Data Description

- Signal Description
 - 16 Channel EEG signals
 - Sampling rate: 400 Hz
 - Number of patients: 3
 - 1 hour signals are splitted into 6 segments
 - Original signal size: 73.9 GB
- How can we condense the information?

What is Time Series?

- Definition
 - o a sequence of data generated from discretized dynamic equations
- Characteristics
 - Correlation in time axis
- Applications
 - Sales
 - Biomedical Signals
 - Financial Data
 - Audio

Extract Information from Time Series

- Summary Statistics
- Frequency Domain
- Multiple Channels Features
 - Eigenvalue of Correlation Matrix (Time/Spectral)
- Model Based
 - AR Model

Summary Statistics

- Mean
- Variance
- Skewness
- Kurtosis

Non-stationary Time Series

Fourier Transform

Transform time domain signal to frequency domain

$$\hat{f}\left(\xi
ight) = \int_{-\infty}^{\infty} f(x) \; e^{-2\pi i x \xi} \; dx$$

$$x(t) = \cos(2\pi * 10t) + \cos(2\pi * 25t) + \cos(2\pi * 50t) + \cos(2\pi * 100t)$$

10, 25, 50, 100Hz

EEG Frequency Domain Analysis

- Frequency band energy
 - predefined band
 - dyadic band
- Spectral edge frequency
 - The frequency below which x percent of the total <u>power</u> of a given signal are located

• delta: 0.1~4, theta: 1~4, alpha: 4~8, beta: 15~30, low gamma: 30~90, high gamma: 90~170

Multiple Channels

- Before seizure happens, some EEG channels will show join-excitation
- Use Correlation matrix in time/frequency domain and their eigenvalues

Model Based

- Winner team uses AR coefficients as features
- For a set of observations: y(1), y(2).....,y(N)

$$y_t = c + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + \varepsilon_t$$

Coefficient: [- 1.081, 1]

Pole: 0.5405 + 0.8413i and 0.5405 - 0.8413i

Coefficient: [-2, 1]

Pole: 1 and 1

Non-stationary signals

Time-frequency

- Short-time Fourier Transform (STFT)
- Wigner-Ville distribution (WVD)
- Empirical mode decomposition (EMD)
- Basis pursuit
- Spectral kurtosis
- Cyclostationary analysis

Wavelets

- Continuous wavelet transform (CWT)
- Discrete wavelet transform (DWT)
- Wavelet packet transform
- Morlet wavelet
- Hilbert-Huang transform

Yan, W. et al, 2008

Feature used but not covered

- Wavelet packet coefficients
- Hurst exponent

Where to find features?

- Google Scholar
- Previous Competitions
- Github
- Books
-

After feature extraction

The extracted features are provided due to the time constraint. There are some more steps to do.

- Handle missing data: Fill nan using training data mean
- Identify zero signals: Remove all-zero signals

From loading data to submission

- Datawarehouse: A class to handle data exchange
 - Read and process data
 - Select features
 - Generate submission files
- Model: A class to store machine learning models
 - Training models
 - Cross validation

What happens to the private leaderboard

#	∆1w	Team Name * in the money	Kernel	Team Members	Score @	Entries	Last
1	<u>^1</u>	* Not-so-random-anymore			0.80701	260	3mo
2	3 5	* Areté Associates		9 2 0 9 9	0.79898	56	3m
3	1 2	* GarethJones			0.79652	74	3m
4	2 3	QingnanTang			0.79458	62	3m
5	1 1	nullset		8 12	0.79363	119	3m
6	- 14	tralala boum boum pouêt pouêt			0.79197	57	3m
7	_7	Medrr		to increase the	0.79183	89	3m
8	1 4	michaln		. 9	0.79074	48	3m
9	▼8	DataSpring		7.7	0.79053	55	3mo
10	▼ 5	fugusuki		4	0.78773	82	3mo

Net LB Gain for top 10: 104

Cross Validation Methods

- K-fold
- Leave p out
- Based on group
- Sequential

Which one is suitable for our data?

Feature Selection

Filter Approaches

sklearn.feature_selection: Feature Selection

The **sklearn.feature_selection** module implements feature selection algorithms. It currently includes univariate filter selection methods and the recursive feature elimination algorithm.

User guide: See the Feature selection section for further details.

<pre>feature_selection.GenericUnivariateSelect([])</pre>	Univariate feature selector with configurable strategy.
feature_selection.SelectPercentile([])	Select features according to a percentile of the highest scores.
<pre>feature_selection.SelectKBest ([score_func, k])</pre>	Select features according to the k highest scores.
<pre>feature_selection.SelectFpr ([score_func, alpha])</pre>	Filter: Select the pvalues below alpha based on a FPR test.
<pre>feature_selection.SelectFdr ([score_func, alpha])</pre>	Filter: Select the p-values for an estimated false discovery rate
feature_selection.SelectFromModel (estimator)	Meta-transformer for selecting features based on importance weights.
<pre>feature_selection.SelectFwe ([score_func, alpha])</pre>	Filter: Select the p-values corresponding to Family-wise error rate
feature_selection.RFE (estimator[,])	Feature ranking with recursive feature elimination.
<pre>feature_selection.RFECV (estimator[, step,])</pre>	Feature ranking with recursive feature elimination and cross- validated selection of the best number of features.
<pre>feature_selection.VarianceThreshold ([threshold])</pre>	Feature selector that removes all low-variance features.
feature_selection.chi2(X, y)	Compute chi-squared stats between each non-negative feature and class.
feature_selection.f_classif(X, y)	Compute the ANOVA F-value for the provided sample.
feature_selection.f_regression (X, y[, center])	Univariate linear regression tests.
<pre>feature_selection.mutual_info_classif(X, y)</pre>	Estimate mutual information for a discrete target variable.
<pre>feature_selection.mutual_info_regression(X, y)</pre>	Estimate mutual information for a continuous target variable.

Wrapper Approaches - Genetic Algorithm

- Use binary vector to represent feature selection
- Randomized selection algorithm
- Computational Intensive

Embedded Approaches

Let's try L1 regularized logistic regression

Comparison

Model	Local	Public	Private
L1 Regularized LR	0.79080	0.63398	0.65289
Random Forest	0.82348	0.75597	0.72346 (rank 66, bronze)
Random Forest with L1	0.82277	0.75811	0.72965 (rank 66, bronze)

Parameter Tuning

- Graduate student descent
- Grid search
- Random search (Genetic algorithm can also be used here)
- Bayesian optimization

