Table of Contents

Dedicat	ion		ii		
Acknowledgments					
Table of	f Conter	nts	v		
List of	Tables		viii		
List of I	Figures		X		
Chapter		introduction	1		
1.1		round	1		
	1.1.1	Photoplethysmography (PPG) and Remote PPG	1		
	1.1.2	Electrocardiogram (ECG) and Its Physiological and Signal Rela-			
		tion With PPG	4		
	1.1.3	Digital Twins	8		
	1.1.4	Blood Oxygen Saturation	9		
1.2		Contributions	11		
	1.2.1	Cross-domain Joint Dictionary Learning for ECG Inference from PPG	12		
	1.2.2	Never-Miss-A-Beat: A Physiological Digital Twins Framework			
		for Cardiovascular Health	13		
	1.2.3	Noncontact Hand Video Based SpO ₂ Monitoring Using Smartphone Cameras	14		
Chapter	2:	Cross-domain Joint Dictionary Learning for ECG Inference from PPG	16		
2.1	Motiv	ation and Problem Formulation	16		
2.2	Related Works				
	2.2.1	ECG reconstruction from PPG	19		
	2.2.2	Dictionary learning	20		
2.3	Proposed Methods				
	2.3.1	Signal Preprocessing	22		
	2.3.2	Cross-domain Joint Dictionary Learning (XDJDL)	24		
	2.3.3	Label Consistent XDJDL (LC-XDJDL)	29		
2.4	Exper	imental Evaluation	32		
	2.4.1	Dataset	32		
	2.4.2	Metrics for Evaluation	33		

	2.4.3	Overall Morphological Reconstruction	35			
	2.4.4	Subwave Morphological Reconstruction	39			
	2.4.5	Time Interval Recovery				
2.5	Discussions					
	2.5.1	Result Using PPG-based Segmentation Scheme	43			
	2.5.2	Evaluation on the Capnobase TBME-RR Dataset	45			
	2.5.3	Feasibility Analysis of The Proposed Method for The Internet-of-				
		Healthcare-Things (IoHT)	46			
	2.5.4	Limitations of The Proposed Method	49			
	2.5.5	Future Work Towards Explainable AI	54			
2.6	Chapte	er Summary	55			
Chapter	3: N	Never-Miss-A-Beat: A Physiological Digital Twins Framework for				
	(Cardiovascular Health	56			
3.1	Digita	l Twins Relating PPG and ECG Sensing: Motivation and Problem				
	Formulation					
3.2		d Background				
3.3	Metho	Methodology				
	3.3.1	Backbone Model for ECG Inference from PPG	59			
	3.3.2	Transfer Learning for Building Precision Healthcare Digital Twins	61			
	3.3.3	Testing Modes for ECG Inference	64			
3.4	Experi	Experimental Results Using XDJDL as The Backbone For The Personal-				
	ized D	ized Digital Twin Model				
	3.4.1	Dataset	66			
	3.4.2	Hyperparameters Selection	67			
	3.4.3	Performance of ECG Inference	69			
3.5	Discus	Discussions for XDJDL-based Personalized Digital Twin Model				
	3.5.1	Results Based on PPG Segmentation Scheme	76			
	3.5.2	Performance Evaluation for Long Time Scale Data	78			
3.6	Using	Using the Neural network as The Backbone for ECG Inference from PPG				
	to Bui	ld Digital Twins	83			
	3.6.1	A Retrospect: The Physiological Process Behind PPG and ECG				
		Generation	84			
	3.6.2	Conditional Variational Autoencoder (CVAE) for PPG-to-ECG				
		Inference	85			
	3.6.3	Transfer Learning to Build Personalized Digital Twin for Cardio-				
		vascular Monitoring	88			
3.7	Incorp	Incorporating Causality into CVAE Model Based on Structural Causal				
	Model	Model (SCM)				
	3.7.1	Importance of Incorporating Causality into Machine Learning Al-				
		gorithms and Structural Causal Model	92			
	3.7.2	Causal CVAE Model for PPG-to-ECG Inference	95			
	3.7.3	ECG Reconstruction Performance of Personalized Digital Twins .	97			
	3.7.4	Intervention Experiment	98			
3.8	Chante	er Summary	105			

Chapter	4: A	Multi-Channel Ratio-of-Ratios Method for Noncontact Hand Vio			
		Based SpO ₂ Monitoring Using Smartphone Cameras	106		
4.1	Related Works				
	4.1.1	Contact-based SpO ₂ measurement using smart devices	106		
	4.1.2	Noncontact SpO ₂ measurement using cameras			
4.2	Ratio-	of-ratios (RoR) Model for Noncontact SpO_2 Measurement	109		
4.3	Proposed Multi-Channel RoR Method				
	4.3.1	ROI Localization and Spatial Combining			
	4.3.2	rPPG Extraction and HR Estimation	113		
	4.3.3	Feature Extraction			
	4.3.4	Regression and Postprocessing	116		
4.4	Experimental Results				
	4.4.1	Data Collection	117		
	4.4.2	Performance Metrics			
	4.4.3	Results From Proposed Algorithm			
	4.4.4	Ablation Study of Proposed Pipeline	126		
	4.4.5	Leave-One-Out Experiments			
4.5	Discus	ssions			
	4.5.1	Performance on Contact SpO ₂ Monitoring			
	4.5.2	Resilience Against Blurring			
	4.5.3	Limitations and Further Verification with Intermittent Hypox	ia		
		Protocols			
4.6	Chapte	er Summary	141		
C 1 4	5 . C	Note that I also I Market Could I Normal Notice the few Courts of			
Chapter		Optophysiological Model Guided Neural Networks for Contactle			
5 1		Blood Oxygen Estimation From Hand Videos action	143		
5.1					
5.2		Proposed Optophysiology-Guided Neural Network Method for estimating			
	-	From Videos			
		Extraction of Skin Color Signals			
5.2		Neural Network Architectures			
5.3		mental Results			
	5.3.1 5.3.2	Dataset and Capturing Conditions			
		Participant-Specific Results			
	5.3.3 5.3.4	Leave-One-Participant-Out Results			
~ 4		Ablation Studies			
5.4	5.4.1	Sions			
		Contact-based Dataset Testing			
	5.4.2	Ability to Track SpO ₂ Change			
<i>5 5</i>	5.4.3	Visualizations of RGB Combination Weights			
5.5	Cnapte	er Summary	168		
Chapter	6: 0	Conclusions and Future Perspectives	169		
Ribliogr	anhy		172		