Някои изброимо безкрайни множества

Иво Стратев

7 март 2019 г.

Увод

С този документ целя да докажа, че няколко множества са изброимо безкрайни. Идеята се зароди от желанието ми да докажа, че $\mathbb{N} \times \mathbb{N}$ е изброимо безкрайно, както и следното обобщение: ако $n \in \mathbb{N}$, n > 0 и A_1, \ldots, A_n са непразни множества и поне едно от тях е изброимо безкрайно, то $A_1 \times A_2 \times \cdots \times A_n$ е изброимо безкрайно. Ще се опитам да подам идеите как се достига до съответните биекции, но преди това ще формулирам и докажа няколко помощни твърдения, които ще използвам в доказателствато, че $\mathbb{N} \times \mathbb{N}$ е изброимо безкрайно.

Лема 1.

Нека разгледаме следното множество $\mathbb{N}_{<} = \{(i,j) \in \mathbb{N} \times \mathbb{N} \mid i < j\}$, това всъщност е релацията "по-малко" над множеството на естествените числа. Няма да се интересуваме от този факт. Ще разглеждаме $\mathbb{N}_{<}$ като множество и ще докажем, че е изброимо безкрайно.

Твърдение:

Множеството $\mathbb{N}_{<}$ е изброимо безкрайно.

Идея за биекция:

Очевидно е вярно $\mathbb{N}_{<}=\{(i,j)\mid j\in\mathbb{N},\ j>0,\ i\in\{0,1,\ldots,j-1\}\}$. Нека фиксираме $n\in\mathbb{N}$ и нека n>0. Тогава наредените двойки от $\mathbb{N}_{<}$ с втора компонента n са: $(0,n),(1,n),\ldots,(n-1,n)$. Те очевидно са n на брой и очевидно броят на тези с втора компонента строго по-малка от n е $1+2+\cdots+n-1$, тоест $\frac{(n-1)n}{2}$ на брой. Тогава на наредената двойка (i,j) от $\mathbb{N}_{<}$ ще съпоставим естественото число $\frac{(j-1)j}{2}+i$.

Доказателство:

Дефинираме функцията $f:=\left\{\left((i,j),\frac{(j-1)j}{2}+i\right)\;\middle|\;(i,j)\in\mathbb{N}_{<}\right\}$. Ще докажем, че f е биекция между $\mathbb{N}_{<}$ и \mathbb{N} . Това, че f е функция от $\mathbb{N}_{<}$ в \mathbb{N} вземаме за очевидно. Очевидно е също, че f(0,1)=0, f(0,2)=1, f(1,2)=2 и така нататък.

f е инекция:

Нека (i,j) и (l,k) са различни елементи на $\mathbb{N}_{<}$. Тогава имаме два случая: Случай 1 $j \neq k$:

Нека без ограничение на общноста j < k. Тогава

$$f(i,j) = \frac{(j-1)j}{2} + i = \sum_{m=1}^{j-1} m + i < \sum_{m=1}^{j-1} m + j = \sum_{m=1}^{j} m \le \sum_{m=1}^{k-1} m = \frac{(k-1)k}{2} \le \frac{(k-1)k}{2} + l = f(l,k).$$

Така f(i,j) < f(l,k) тоест $f(i,j) \neq f(l,k)$.

Случай 2 $j=k \wedge i \neq l$:

Нека n = j, тогава

$$f(i,j) = f(i,n) = \frac{(n-1)n}{2} + i \neq \frac{(n-1)n}{2} + l = f(l,n) = f(l,k).$$

Toect $f(i, j) \neq f(l, k)$.

Така в и двата случая доказахме, че е в сила импликацията

$$(i, j) \neq (l, k) \longrightarrow f(i, j) \neq f(l, k).$$

Понеже (i,j) и (l,k) бяха произволни е в сила

$$\forall (i,j) \in \mathbb{N}_{<} \ \forall (l,k) \in \mathbb{N}_{<} \ (i,j) \neq (l,k) \longrightarrow f(i,j) \neq f(l,k).$$

Toect f е инекция.

f е сюрекция:

Трябва да докажем $\forall n \in \mathbb{N} \ \exists (i,j) \in \mathbb{N}_{<} \ f(i,j) = n$ Доказателството ще извършим по индукция.

База:

$$f(0,1) = \frac{(1-1)1}{2} + 0 = 0 + 0 = 0.$$

Индукционна хипотеза:

Допускаме, че е вярно $\exists m \in \mathbb{N} \ \exists (i,j) \in \mathbb{N}_{<} \ f(i,j) = m.$

Индукционна стъпка: Ще докажем за n=m+1. От индукционната хипотеза имаме $\exists (i,j) \in \mathbb{N}_{<} \ f(i,j) = m$. Нека тогава $(i,j) \in \mathbb{N}_{<} \ f(i,j) = m$. Следователно f(i,j)+1=m+1=n. Има две възможности:

Случай 1 j = i + 1:

Тогава

$$n = f(i,j) + 1 = f(i,i+1) + 1 = \left(\frac{(i+1-1)(i+1)}{2} + i\right) + 1 = \frac{i(i+1)}{2} + i + 1 = \frac{(i+1)(i+2)}{2} = \frac{j(j+1)}{2} = \frac{(j+1-1)(j+1)}{2} + 0 = f(0,j+1).$$

Очевидно $(0, j + 1) \in \mathbb{N}_{<}$ и f(0, j + 1) = n.

Случай 2 i < j - 1:

Тогава

$$n = f(i,j) + 1 = \left(\frac{(j-1)j}{2} + i\right) + 1 = \frac{(j-1)j}{2} + (i+1) = f(i+1,j).$$

Очевидно i+1 < j-1+1 = j и значи $(i+1,j) \in \mathbb{N}_{<}$ и f(i+1,j) = n.

Така и в двата случая доказахме $\exists (l,k) \in \mathbb{N}_{<} f(l,k) = n = m+1.$

Заключение: $\forall n \in \mathbb{N} \ \exists (i,j) \in \mathbb{N}_{<} \ f(i,j) = n$.

Което искахме да докажем. Тоест f е сюрекция.

Следователно f е биекция между $\mathbb{N}_<$ и \mathbb{N} от където $\mathbb{N}_<$ е изброимо безкрайно. \square

Дефиниция (Композиция).

Нека A, B и C са множества и нека f е функция от B в C и нека g е функция от A в B. Тогава множеството $f \circ g := \{(a,c) \in A \times C \mid \exists b \in B \ g(a) = b \ \land \ f(b) = c\}$ наричаме композицията на f и g.

Лема 2.

Нека A, B и C са множества и нека f е функция от B в C и нека g е функция от A в B. Тогава $f \circ g$ е функция от A в C и $\forall a \in A \ (f \circ g)(a) = f(g(a))$.

Доказателство:

Нека $a \in A$ тогава понеже g е функция от A в B то $\exists!b \in B$ g(a) = b. Нека тогава $b \in B$ g(a) = b. f е функция от B в C следователно $\exists!c \in C$ f(b) = c. Тогава $(a,c) \in f \circ g$, при това е вярно $\exists!(a,c) \in A \times C$ $(a,c) \in f \circ g$ и значи $(f \circ g)(a) = c = f(b) = f(g(a))$. Следователно $\forall a \in A \exists!c \in C$ $(a,c) \in f \circ g \land (f \circ g)(a) = f(g(a))$ и значи $f \circ g$ е функция от A в C и $\forall a \in A$ $(f \circ g)(a) = f(g(a))$. \square

Лема 3.

Нека A, B и C са множества и нека f е биекция от B в C и нека g е биекция от A в B. Тогава $f \circ g$ е биекция от A в C.

Доказателство:

Инекция:

Нека $a_1, a_2 \in A$ и $a_1 \neq a_2$. g е биекция от A в B, в частност g е инекция следователно $g(a_1) \neq g(a_2)$, но f е биекция от B в C, в частност f е инекция и значи $f(g(a_1)) \neq f(g(a_2))$. От **Лема 2.** $(f \circ g)(a_1) = f(g(a_1)) \neq f(g(a_2)) = (f \circ g)(a_2)$. Следователно $\forall a_1 \in A \ \forall a_2 \in A \ a_1 \neq a_2 \longrightarrow (f \circ g)(a_1) \neq (f \circ g)(a_2)$. Значи $f \circ g$ е инекция.

Сюрекция:

Нека $c \in C$ f е биекция, в частност f е сюрекция следователно $\exists b \in B$ f(b) = c. Нека тогава $b \in B$ и f(b) = c. g е биекция, в частност g е сюрекция следователно $\exists a \in A$ g(a) = b. Нека тогава $a \in A$ и g(a) = b. Тогава f(g(a)) = f(b) = c. От **Лема 2.** $(f \circ g)(a) = f(g(a)) = c$. Следователно $\forall c \in C$ $\exists a \in A$ $(f \circ g)(a) = c$. Значи $f \circ g$ е сюрекция.

Заключение:

 $f \circ g$ е инекция и $f \circ g$ е сюрекция следователно $f \circ g$ е биекции.

Лема 4.

 $\mathbb{N} \times \mathbb{N}$ е равномощно с $\mathbb{N}_{<}$.

Идея за биекция:

Нека фиксираме произволно естествено число n. Нека наредената двойка $(i,j) \in \mathbb{N} \times \mathbb{N}$ е такава, че i+j=n. Тогава е вярно, че $i \in \{0,1,\ldots,n\}$ и j=n-i. Следователно има n+1 на брой наредени двойки $(i,j) \in \mathbb{N} \times \mathbb{N}$, за които е вярно i+j=n. От друга страна е вярно, че има n+1 на брой наредени двойки $(k,n+1) \in \mathbb{N}_<$. Тогава на наредената двойка (i,j) от $\mathbb{N} \times \mathbb{N}$ ще съпоставим наредената двойка (i,i+j+1).

Доказателство:

Дефинираме функцията $f:=\{((i,j),(i,i+j+1))\mid (i,j)\in\mathbb{N}\times\mathbb{N}\}$ Ще докажем, че f е биекция между $\mathbb{N}\times\mathbb{N}$ и $\mathbb{N}_<$. Това, че f е функция от $\mathbb{N}\times\mathbb{N}$ в $\mathbb{N}_<$ вземаме за очевидно. Очевидно е също, че f(0,0)=(0,1), f(0,1)=(0,2), f(1,1)=(1,2) и така нататък.

f е инекция:

Нека $(i,j) \in \mathbb{N} \times \mathbb{N}$ и $(l,k) \in \mathbb{N} \times \mathbb{N}$ и $(i,j) \neq (l,k)$. Тогава имаме два случая: Случай $\mathbf{1}$ $i \neq l$:

Тогава $f(i,j) = (i,i+j+1) \neq (l,l+k+1) = f(l,k)$.

Случай 2 $i=l \wedge j \neq k$:

Тогава е вярно $i+j\neq i+k=l+k$ и значи $i+j+1\neq l+k+1$. Следователно $f(i,j)=(i,i+j+1)\neq (i,i+k+1)=(l,l+k+1)=f(l,k)$.

Заключение: Тогава е в сила $(i,j) \neq (l,k) \longrightarrow f(i,j) \neq f(l,k)$.

Тогава $\forall (i,j) \in \mathbb{N} \times \mathbb{N} \ \forall (l,k) \in \mathbb{N} \times \mathbb{N} \ (i,j) \neq (l,k) \longrightarrow f(i,j) \neq f(l,k)$ следователно f е инекция.

f е сюрекция:

Нека $(i,k)\in\mathbb{N}_{<}$ и нека j=k-i-1. k>i тогава k-i>0 и значи $k-i\geq 1$ тогава $j=k-i-1\geq 0$ и $(i,k)\in\mathbb{N}\times\mathbb{N}$ следователно $j\in\mathbb{N}$. f(i,j)=(i,i+j+1)=(i,i+(k-i-1)+1)=(i,k). Тоест $(i,j)\in\mathbb{N}\times\mathbb{N}$ и f(i,j)=(i,k). Тогава $\forall (i,k)\in\mathbb{N}_{<}$ $\exists (l,j)\in\mathbb{N}\times\mathbb{N}$ f(l,j)=(i,k) следователно f е сюрекция.

Заключение:

f е инекция и f е сюрекция следователно f е биекции. \square

Теорема 1.

 $\mathbb{N} \times \mathbb{N}$ е изброимо безкрайно.

Доказателство:

От **Лема 4.** $\mathbb{N} \times \mathbb{N}$ е равномощно с $\mathbb{N}_{<}$. Следователно съществува биекция между $\mathbb{N} \times \mathbb{N}$ и $\mathbb{N}_{<}$. Нека тогава g е една биекция между $\mathbb{N} \times \mathbb{N}$ и $\mathbb{N}_{<}$. От **Лема 1.** $\mathbb{N}_{<}$ е изброимо безкрайно, тоест съществува биекция между $\mathbb{N}_{<}$ и \mathbb{N} . Нека тогава f е една биекция между $\mathbb{N}_{<}$ и \mathbb{N} . Според **Лема 3.** $f \circ g$ е биекция между $\mathbb{N} \times \mathbb{N}$ и \mathbb{N} . Следователно $\mathbb{N} \times \mathbb{N}$ е изброимо безкрайно. \square

Теорема 2.

 \mathbb{Z} е изброимо безкрайно.

Идея за биекция:

Множеството на целите числа се разбива на две множества - отрицателни и неотрицателни. От друга страна множеството на естествените числа се разбива на нечетни и на четни. Тогава ако $z \in \mathbb{Z}$ и z < 0 на цялото отрицателно число z ще съпоставим нечетно естественото число 2(-z) - 1. Ако $z \in \mathbb{Z}$ и $z \geq 0$ на цялото неотрицателно число z ще съпоставим четно естественото число z.

Доказателство:

Дефинираме функцията $f: \mathbb{Z} \to \mathbb{N}$

$$f(z) = \begin{cases} 2z & , z \ge 0 \\ 2(-z) - 1 & , z < 0 \end{cases}$$

Очевидно f(0) = 0, f(-1) = 1, f(1) = 2, f(-2) = 3 и така нататък.

f е инекция:

Нека $z_1, z_2 \in \mathbb{Z}$ и $z_1 \neq z_2$. Тогава без ограничение на общността има три случая. Случай 1 $z_1 \geq 0 \ \land \ z_2 \geq 0$:

$$z_1 \neq z_2 \longrightarrow 2z_1 \neq 2z_2 \longrightarrow f(z_1) \neq f(z_2)$$

Случай 2 $z_1 \ge 0 \land z_2 < 0$:

В такъв случай $f(z_1) = 2z_1$ и $f(z_2) = 2(-z_2) - 1$. Това са две естествени числа с различна четност и значи не са равни. Тоест $f(z_1) \neq f(z_2)$.

Случай 3 $z_1 < 0 \land z_2 < 0$:

$$z_1 \neq z_2 \longrightarrow 2(-z_1) \neq 2(-z_2) \longrightarrow 2(-z_1) - 1 \neq 2(-z_2) - 1 \longrightarrow f(z_1) \neq f(z_2)$$

Заключение

В сила е $\forall z_1 \in \mathbb{Z} \ \forall z_2 \in \mathbb{Z} \ z_1 \neq z_2 \longrightarrow f(z_1) \neq f(z_2)$. Тоест f е инекция.

f е сюрекция:

Нека $n \in \mathbb{N}$ тогава има два случая.

Случай 1 n **е четно:** Тогава $\exists k \in \mathbb{N} \ n = 2k$. Нека $k \in \mathbb{N}$ и n = 2k. $k \in \mathbb{N}$ значи $k \in \mathbb{Z}$ и n = 2k = f(k).

Случай 2 n **е нечетно:** Тогава $\exists k \in \mathbb{N} \ n = 2k+1$. Нека $k \in \mathbb{N}$ и n = 2k+1. Разглеждаме уравнението f(z) = n и търсим целите решения.

$$f(z) = 2(-z) - 1 = 2k + 1 = n \longrightarrow$$

$$2(-z) = 2k + 2 \longrightarrow$$

$$-z = k + 1 \longrightarrow$$

$$z = -(k + 1)$$

Ако $k \in \mathbb{N}$, то очевидно $-(k+1) \in \mathbb{Z}$ и при това

$$k > 0 \longrightarrow k+1 > 0 \longrightarrow -(k+1) < 0.$$

Значи ако z=-(k+1), то $z\in\mathbb{Z}\ \wedge\ z<0\ \wedge\ f(z)=n.$

Заключение:

Вярно е $\forall n \in \mathbb{N} \ \exists z \in \mathbb{Z} \ f(z) = n$. Тоест f е сюрекция.

Заключение:

f е функция от \mathbb{Z} в \mathbb{N} , f е инекция и f е сюрекция значи f е биекция от \mathbb{Z} в \mathbb{N} . Следователно \mathbb{Z} е изброимо безкрайно.

Преминаваме към обобщението на **Теорема 1**. За целта дефинираме рекурсивна редица от подмножества на \mathbb{N} :

$$J_0 := \emptyset$$

$$J_{n+1} := J_n \cup \{n\}.$$

Очевидно ако n > 0 то $J_n = \{0, \dots, n-1\}.$

Лема 5.

Нека $n \in \mathbb{N}$ и n > 0 тогава $J_n \times \mathbb{N}$ е изброимо безкрайно.

Идея за биекция:

Нека $m \in \mathbb{N}$ очевидно има n наредени двойки $(i,j) \in J_n \times \mathbb{N}$, за които j=m. Очевидно и броят на наредените двойки $(l,k) \in J_n \times \mathbb{N}$, за които k < m е m.n. Тогава на наредената двойка $(a,b) \in J_n \times \mathbb{N}$ ще съпоставяме естественото число bn + a.

Доказателство:

Дефинираме следната функция $f := \{((i,j), jn+i) \mid (i,j) \in J_n \times \mathbb{N}\}$. Очевидно f(0,0) = 0, f(1,0) = 1 и f(0,1) = n и очевидно f е фунцкия от $J_n \times \mathbb{N}$ в \mathbb{N} . Ще покажем, че f е биекция.

f е инекция:

Нека $(i,j) \in J_n \times \mathbb{N}$ и $(l,k) \in J_n \times \mathbb{N}$ и нека f(i,j) = f(l,k), Тогава jn+i = kn+l и значи i-l = (k-j)n. $i \in J_n$ и $l \in J_n$ следователно $0 \le |i-l| < n$. Понеже n дели (k-j)n, то n дели и i-l. Следователно i-l = 0, тоест i=l от където jn = kn и значи j = k. Следователно (i,j) = (l,k). Тоест получихме, че е вярно $\forall (i,j) \in J_n \times \mathbb{N} \ \forall (l,k) \in J_n \times \mathbb{N} \ f(i,j) = f(l,k) \longrightarrow (i,j) = (l,k)$, което е контрапозитивното на f е инекция.

f е сюрекция:

Нека $m \in \mathbb{N}$. n > 0 тогава прилагаме теоремата за деление с частно и остатък за m и n и получаваме $\exists! q \in \mathbb{N} \ \exists! r \in \mathbb{N} \ m = qn + r \ \land \ r \in J_n$. Нека тогава $q \in \mathbb{N}$ и $r \in \mathbb{N}$ и $m = qn + r \ \land \ r \in J_n$. Тогава очевидно m = qn + r = f(r,q) и $(r,q) \in J_n \times \mathbb{N}$. Следователно е вярно $\forall m \in \mathbb{N} \ \exists (i,j) \in J_n \times \mathbb{N} \ f(i,j) = m$. Тоест f е сюрекция.

Заключение:

f е функция от $J_n \times \mathbb{N}$ в \mathbb{N} , f е инекция и f е сюрекция значи f е биекция от $J_n \times \mathbb{N}$ в \mathbb{N} . Следователно $J_n \times \mathbb{N}$ е изброимо безкрайно. \square Нуждаем се от още четири помощни твърдения преди да докажем обобщението.

Лема 6.

Нека A и B са непразни множества. Тогава съществува биекция от $A\times B$ в $B\times A$.

Доказателство:

Дефинираме функцията $f := \{((a, b), (b, a)) \mid (a, b) \in A \times B\}$

f е инекция:

Нека $(a_1, b_1) \in A \times B$ и $(a_2, b_2) \in A \times B$ и $(a_1, b_1) \neq (a_2, b_2)$. Тогава очевидно $(b_1, a_1) \neq (b_2, a_2)$, тоест $f(a_1, b_1) \neq f(a_2, b_2)$. Тогава е вярно $\forall (a_1, b_1) \in A \times B \ \forall (a_2, b_2) \in A \times B \ (a_1, b_1) \neq (a_2, b_2) \longrightarrow f(a_1, b_1) \neq f(a_2, b_2)$. Тоест f е инекция.

f е сюрекция:

Нека $(b,a) \in B \times A$ тогава f(a,b) = (b,a). Тоест вярно е $\forall (b,a) \in B \times A \ \exists (a',b') \in A \times B \ f(a,b) = (b,a)$. Значи f е сюрекция.

Заключение:

f е инекция и f е сюрекция следователно f е биекция. \square

Лема 7.

Нека A,B,C и D са непразни множества и нека $f:A\to C$ е биекция и нека $g:B\to D$ е биекция. Тогава съществува биекции между $A\times B$ и $C\times D$.

Доказателство:

Дефинираме функцията $h := \{((a, b), (f(a), g(b))) \mid (a, b) \in A \times B\}$

h е инекция:

Нека $(a_1,b_1)\in A\times B$ и $(a_2,b_2)\in A\times B$ и $h(a_1,b_1)=h(a_2,b_2)$. Тогава $(f(a_1),g(b_1))=(f(a_2),g(b_2))$ понеже f и g са биекции, в частност инекции. То $a_1=a_2$ и $b_1=b_2$ и значи $(a_1,b_1)=(a_2,b_2)$. Тогава е вярно $\forall (a_1,b_1)\in A\times B\ \forall (a_2,b_2)\in A\times B\ h(a_1,b_1)=h(a_2,b_2)\longrightarrow (a_1,b_1)=(a_2,b_2)$. Тоест h е инекция.

h е сюрекция:

Нека $(c,d) \in C \times D$. f е биекция, в частност сюрекция. Тогава $\exists a \in A \ f(a) = c$. Нека тогава $a \in A$ и f(a) = c. g е биекция, в частност сюрекция. Тогава $\exists b \in B \ g(b) = d$. Нека тогава $b \in B$ и g(b) = d. Така h(a,b) = (f(a),g(b)) = (c,d). Следователно е вярно $\forall (c,d) \in C \times D \ \exists (a,b) \in A \times B \ h(a,b) = (c,d)$. Тоест h е сюрекция.

Заключение:

h е инекция и h е сюрекция следователно h е биекция. \square

Лема 8.

Нека $n \in \mathbb{N}$ и n > 2 и нека A_1, A_2, \ldots, A_n са непразни множества. Тогава съществува биекция между $A_1 \times A_2 \times \cdots \times A_n$ и $A_1 \times (A_2 \times \cdots \times A_n)$.

Доказателство:

Дефинираме функцията $f:=\{((a_1,a_2,\ldots,a_n),(a_1,(a_2,\ldots,a_n)))\mid (a_1,a_2,\ldots,a_n)\in A_1\times A_2\times\cdots\times A_n\}.$ Очевидно f е функция от $A_1\times A_2\times\cdots\times A_n$ в $A_1\times (A_2\times\cdots\times A_n).$

f е инекция:

Нека
$$(a_{11},a_{21},\ldots,a_{n1})\in A_1\times A_2\times\cdots\times A_n$$
 и $(a_{12},a_{22},\ldots,a_{n2})\in A_1\times A_2\times\cdots\times A_n$ и нека $f(a_{11},a_{21},\ldots,a_{n1})=f(a_{12},a_{22},\ldots,a_{n2}).$ Тогава $(a_{11},(a_{21},\ldots,a_{n1}))=(a_{12},(a_{22},\ldots,a_{n2}))$ следователно $a_{11}=a_{12}$ и $(a_{21},\ldots,a_{n1})=(a_{22},\ldots,a_{n2}).$ Значи $\forall i\in\{1,2,\ldots,n\}$ $a_{i1}=a_{i2},$ тоест $(a_{11},a_{21},\ldots,a_{n1})=(a_{12},a_{22},\ldots,a_{n2}).$ Тогава е вярно $\forall a_1\in A_1\times A_2\times\cdots\times A_n\ \forall a_2\in A_1\times A_2\times\cdots\times A_n\ f(a_1)=f(a_2)\longrightarrow a_1=a_2.$ Следователно f е инекция.

f е сюрекция:

Нека $(a_1, (a_2, \ldots, a_n)) \in A_1 \times (A_2 \times \cdots \times A_n)$. Очевидно $f(a_1, a_2, \ldots, a_n) = (a_1, (a_2, \ldots, a_n))$. Тогава е в сила $\forall y \in A_1 \times (A_2 \times \cdots \times A_n) \; \exists x \in A_1 \times A_2 \times \cdots \times A_n \; f(x) = y$. Следователно f е сюрекция.

Заключение:

f е инекция и f е сюрекция следователно f е биекция. \square

Лема 9.

Нека $n \in \mathbb{N}$ и n > 2 и нека A_1, A_2, \ldots, A_n са непразни множества. Тогава съществува биекция между $A_1 \times A_2 \times \cdots \times A_n$ и $(A_1 \times \cdots \times A_{n-1}) \times A_n$.

Доказателство:

Дефинираме функцията

$$f := \{((a_1, a_2, \dots, a_n), ((a_1, \dots, a_{n-1}), a_n)) \mid (a_1, a_2, \dots, a_n) \in A_1 \times A_2 \times \dots \times A_n\}.$$
 Очевидно f е функция от $A_1 \times A_2 \times \dots \times A_n$ в $(A_1 \times \dots \times A_{n-1}) \times A_n$.

f е инекция:

Нека
$$(a_{11},a_{21},\ldots,a_{n1})\in A_1\times A_2\times\cdots\times A_n$$
 и $(a_{12},a_{22},\ldots,a_{n2})\in A_1\times A_2\times\cdots\times A_n$ и нека $f(a_{11},a_{21},\ldots,a_{n1})=f(a_{12},a_{22},\ldots,a_{n2}).$ Тогава $((a_{11},\ldots,a_{n-1,1}),a_{n1})=((a_{12},\ldots,a_{n-1,2}),a_{n2})$ следователно $(a_{11},\ldots,a_{n-1,1})=(a_{12},\ldots,a_{n-1,2})$ и $a_{n1}=a_{n2}.$ Значи $\forall i\in\{1,2,\ldots,n\}$ $a_{i1}=a_{i2},$ тоест $(a_{11},a_{21},\ldots,a_{n1})=(a_{12},a_{22},\ldots,a_{n2}).$ Тогава е вярно $\forall a_1\in A_1\times A_2\times\cdots\times A_n\ \forall a_2\in A_1\times A_2\times\cdots\times A_n\ f(a_1)=f(a_2)\longrightarrow a_1=a_2.$ Следователно f е инекция.

f е сюрекция:

Нека
$$((a_1,\ldots,a_{n-1}),a_n)\in (A_1\times\cdots\times A_{n-1})\times A_n$$
. Очевидно $f(a_1,a_2,\ldots,a_n)=((a_1,\ldots,a_{n-1}),a_n)$. Тогава е в сила $\forall y\in (A_1\times\cdots\times A_{n-1})\times A_n\ \exists x\in A_1\times A_2\times\cdots\times A_n\ f(x)=y$. Следователно f е сюрекция.

Заключение:

f е инекция и f е сюрекция следователно f е биекция. \square

Теорема 3.

Нека $n \in \mathbb{N}$, n > 0 и A_1, \ldots, A_n са непразни множества и поне едно от тях е изброимо безкрайно. Тогава $A_1 \times A_2 \times \cdots \times A_n$ е изброимо безкрайно.

Доказателство:

Доказателството ще направим чрез индукция по броя на множествата.

База:

При n=1 твърдението е че ако A е непразно и е изброимо безкрайно, то A е изброимо безкрайно. Което очевидно е вярно.

При n=2 Нека A и B са непразни множества и нека поне едно от тях е изброимо безкрайно. Ще докажем, че $A\times B$ е изброимо безкрайно. Възможни са два случая.

Случай 1 А е изброимо безкрайно:

Тогава съществува биекция от A в \mathbb{N} . Нека си вземем една биекция $f:A\to\mathbb{N}$. Има два подслучая за B:

Случай 1.1 B е изброимо безкрайно:

Тогава съществува биекция от B в \mathbb{N} . Нека си вземем една биекция $q:B\to\mathbb{N}$. Тогава от **Лема 7.** съществува биекция от $A\times B$ в $\mathbb{N}\times\mathbb{N}$. Нека

тогава $h:A\times B\to\mathbb{N}\times\mathbb{N}$ е биекция. От **Теорема 1.** знаем, че $\mathbb{N}\times\mathbb{N}$ е изброимо. Тоест съществува биекция от $\mathbb{N}\times\mathbb{N}$ в \mathbb{N} . Нека тогава $p:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ е биекция. От **Лема 3.** $p\circ h$ е биекция от $A\times B$ в \mathbb{N} . Следователно $A\times B$ е изброимо безкрайно.

Случай 1.2 B е крайно:

Тогава нека n = |B| и съществува биекция между B и J_n . Нека си вземем една биекция $g: B \to J_n$. Тогава от **Лема 7.** съществува биекция от $A \times B$ в $\mathbb{N} \times J_n$. Нека $h: A \times B \to \mathbb{N} \times J_n$ е биекция. От **Лема 6.** съществува биекция от $\mathbb{N} \times J_n$ в $J_n \times \mathbb{N}$. Нека $r: \mathbb{N} \times J_n \to J_n \times \mathbb{N}$ е биекция. От **Лема 3.** $r \circ h$ е биекция от $A \times B$ в $J_n \times \mathbb{N}$. От **Лема 5.** $J_n \times \mathbb{N}$ е изброимо безкрайно. Тоест съществува биекция от $J_n \times \mathbb{N}$ в \mathbb{N} . Нека тогава $p: J_n \times \mathbb{N} \to \mathbb{N}$ е биекция. От **Лема 3.** $p \circ (r \circ h)$ е биекция от $A \times B$ в \mathbb{N} . Следователно $A \times B$ е изброимо безкрайно.

Случай 2 A е крайно и B е изброимо безкрайно:

Тогава нека n = |A| и съществува биекция между A и J_n . Нека си вземем една биекция $f: A \to J_n$. B е изброимо безкрайно тогава съществува биекция от B в \mathbb{N} . Нека си вземем една биекция $g: B \to \mathbb{N}$. Тогава от **Лема 7.** съществува биекция от $A \times B$ в $J_n \times \mathbb{N}$. Нека $h: A \times B \to J_n \times \mathbb{N}$ е биекция. От **Лема 5.** $J_n \times \mathbb{N}$ е изброимо безкрайно. Тоест съществува биекция от $J_n \times \mathbb{N}$ в \mathbb{N} . Нека тогава $p: J_n \times \mathbb{N} \to \mathbb{N}$ е биекция. От **Лема 3.** $p \circ h$ е биекция от $A \times B$ в \mathbb{N} . Следователно $A \times B$ е изброимо безкрайно.

Индукционна хипотеза:

Допускаме, че съществува $m \in \mathbb{N}$ и $m \geq 2$ и за всеки m непразни подмножества $A_1, \ldots A_m$ поне едно, от които е изброимо безкрайно е вярно, че $A_1 \times \cdots \times A_m$ е изброимо безкрайно.

Индукционна стъпка:

Нека $A_1, \ldots A_m, A_{m+1}$ са непразни подмножества и поне едно от тях е изброимо безкрайно. Тогава са възможни два случая за A_1 .

Случай 1 A_1 е изброимо безкрайно:

Тогава от индукционната хипотеза $A_1 \times \cdots \times A_m$ е изброимо безкрайно. От **Лема 9.** съществува биекция от $A_1 \times \cdots \times A_m \times A_{m+1}$ в $(A_1 \times \cdots \times A_m) \times A_{m+1}$. Нека $g: A_1 \times \cdots \times A_m \times A_{m+1} \to (A_1 \times \cdots \times A_m) \times A_{m+1}$ е биекция. От базата $(A_1 \times \cdots \times A_m) \times A_{m+1}$ е изброимо безкрайно. Тогава съществува биекция от $(A_1 \times \cdots \times A_m) \times A_{m+1}$ в \mathbb{N} . Нека $p: (A_1 \times \cdots \times A_m) \times A_{m+1} \to \mathbb{N}$ е биекция. Тогава от **Лема 3.** $p \circ g$ е биекция от $A_1 \times \cdots \times A_m \times A_{m+1}$ в \mathbb{N} . Следователно $A_1 \times \cdots \times A_m \times A_{m+1}$ е изброимо безкрайно.

Случай 2 A_1 е крайно:

Тогава някое от A_2, \ldots, A_{m+1} е изброимо безкрайно. Тогава от индукционната хипотеза $A_2 \times \cdots \times A_{m+1}$ е изброимо безкрайно. От **Лема 8.** съществува биекция от $A_1 \times A_2 \times \cdots \times A_m \times A_{m+1}$ в $A_1 \times (A_2 \cdots \times A_m \times A_{m+1})$. Нека $g:A_1 \times \cdots \times A_m \times A_{m+1} \to A_1 \times (A_2 \times \cdots \times A_{m+1})$ е биекция. От базата $A_1 \times (A_2 \times \cdots \times A_{m+1})$ е изброимо безкрайно. Тогава съществува биекция от $A_1 \times (A_2 \times \cdots \times A_{m+1})$ в \mathbb{N} . Нека $p:A_1 \times (A_2 \times \cdots \times A_{m+1}) \to \mathbb{N}$ е биекция.

Тогава от **Лема 3.** $p \circ g$ е биекция от $A_1 \times \cdots \times A_m \times A_{m+1}$ в \mathbb{N} . Следователно $A_1 \times \cdots \times A_m \times A_{m+1}$ е изброимо безкрайно.

Заключение:

За всяко $n\in\mathbb{N}$, такова че n>0 и за всеки A_1,\dots,A_n непразни множества поне едно, от които е изброимо безкрайно. Множеството $A_1\times\dots\times A_n$ е изброимо безкрайно. \square

Следствие:

За всяко $n\in\mathbb{N}$ $\mathbb{N}^{n+1},$ $\mathbb{Z}^{n+1},$ $\mathbb{N}^{n+1}_<$ и $(\mathbb{N}\times\mathbb{N})^{n+1}$ са изброимо безкрайни.