Parallelizing Gradient Boosted Regression for Facial Landmark Recognition

Zhecheng Yao, Yixian Gan, Rebecca Qiu, Lucy Li May 2023

Contents

Introduction & Research Problem

Methods & Algorithms

Results & Validation

and Applied Sciences

Sequential Baseline

Contents

Introduction & Research Problem

Parallel Design & Algorithms

Results & Validation

Get Training Data Sequential

Work Logic

colored image of any size

four coordinates of face rectangle

(same landmark count for all input images)

vector { (1.5,1.5), (2.5,3.5), (3.5,1.5) }

Then all DataPoints are stored in a vector of DataPoints

Get Training Data MPI

Rank 0 Image read

serial code has m regressor
each regressor need all S images' data
for MPI code with rank count n
we still want m regressors
each train with S images
-> need communication to share image data

Rank 2 ...

Rank 1 Image read

. . .

DataPoint 0

grayscale matrix 0

face rectangle vector 0

landmark vector 0

communication to distribute partial read data

DataPoint 1

grayscale matrix 1

face rectangle vector 1

landmark vector 1

• • •

Design choice: regressor parallelism on feature-level not data-level

Get Training Data MPI

Design Breakdown

Step 1 Each Rank Load Assigned Images

Read info text file

Text lines w/ data paths assigned to each rank

Each rank do parallel read in of images, face rectangle & facial landmarks

Step 2 Gather All Images to Rank 0

Serialize local DataPoints into array for send buffer

Gather sizes of each rank's send buffer to rank 0 and calculate displacements

Gathery collect all image data

Deserialize rank 0 receive buffer into complete DataPoints

Step 3 Rank 0 Scatter Images to all ranks

rank 0 serialize complete DataPoints into array for send buffer

Broadcast send buffer size to all ranks so each rank can prepare properly sized receive buffer

Broadcast complete DataPoints

Each rank deserialize complete DataPoints and update DataPoints

DataPoint 1

grayscale matrix

_[150]	100	100	100 50 255 255 150	150
150	50	255	50	150
150	255	255	255	150
150	255	50	255	150
-150	150	150	150	150 ^J

face rectangle vector

{ (0,1), (0,4), (4,1), (4,4) }

landmark vector

 $\{(1.5,1.5),(2.5,3.5),(3.5,1.5)\}$

Serialize

Deserialize

Send/Recv Buffer

{ 5, 5, // matrix size 150 . 100. 100.... // fir

150 , 100, 100.... // first row in matrix

150, 50 // second and other rows

4, 2 // face rectangle vector size, each has x&y

0, 1, 0, 4 // face rectangle vector values

3, 2, 1.5, 1.5 // similar logic for landmark vector ...}

Get Training Data MPI

Parallel Result

Highlights

- More ranks provide better Speedup (~2-3x for 1-4 ranks)
- More Images take longer time to process
- Serialization/deserialization takes toll on performance

Fern Regress Sequential

T_{f0}= Time to select feature 0

T_{i0}= Time to compute feature of image 0

 T_{00} = Time to compute outputs 0

Process 0

Runtime

Fern Regress MPI

Runtime

Fern Regress MPI

Parallel Result

Highlights

- More ranks give better performance up to a threshold
- Larger improvements for larger problem size (# of training images)
- Efficiency depends on training hyper-parameter

Target: Reconstructing of noisy result vector from the Fern regressions

$$\hat{y} \in \mathbb{R}^{N \times 1}$$

1. Samples a matrix B

$$B \in \mathbb{R}^{N \times M}$$

2. $residual \leftarrow \hat{y}$

3. OMP chooses the best Q candidate basis vector in matrix B maximizing dot product (Greedy)

residual

FLOPS:

(N multiplications + N - 1 additions) M (columns) Q (iterations)

Best Basis Vector Selection


```
3
 B_j \leftarrow \arg\max_{B_{j'} \in B} |\langle residual, B_{j'} \rangle|
\\ Native OpenCV implementation
double current_value = abs(static_cast < cv::Mat>(residual.t() * base.col(j)).at < double > (0));
\\ Eigen Implementation
Eigen::MatrixXd column = baseEigen.col(j);
double current_value = (residual.transpose() * column).cwiseAbs().sum();
                                                                                        FLOPS:
                                                                                        (N multiplications + N - 1 additions) M
                                                                                        (columns) Q (iterations)
         residual
```

 B_j

Best Basis Vector Selection

Optimization Problem

 $\mathbf{B_{sparse}}^{ op} \in \mathbb{R}^{i imes N}$

 $\mathbf{B_{sparse}} \in \mathbb{R}^{N imes i}$

$$\hat{y} \in \mathbb{R}^{N \times 1}$$

•	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	•

$$x_i \leftarrow \arg\min_{x_i} \|\hat{y} - \mathbf{B_{sparse}} x_i\|$$

 $x_i = \left(\mathbf{B_{sparse}}^{\top} \mathbf{B_{sparse}}\right)^{-1} \mathbf{B_{sparse}}^{\top} \hat{y}.$

FLOPS in the i-th iteration FLOPS in the Q total iterations

$\mathbf{B_{sparse}}^{\top}\mathbf{B_{sparse}}$	$(2N-1)i^2$	(2N-1)(Q/6)(Q+1)(2*Q+1)
$\mathbf{B_{sparse}}^{\top} \hat{y}$	(2*N-1)*i	$({f Q})({f Q}+{f 1})/{f 2}*({f 2}*{f N}-{f 1})$
SVD	$13*i^3$	$13*0.25*(\mathbf{Q^4} + 2*\mathbf{Q^3} + \mathbf{Q^2})$

Solving the Linear Systems

.

 $residual \leftarrow residual - \mathbf{B_{sparse}} x_i$

FLOPS in the Q total iterations

$$(({\bf Q})({\bf Q}+1)/2-1){\bf N}+{\bf N}*{\bf Q}$$

Figure 4: Performance Analysis of the OMP Kernel

Total L1 cache misses for Q = 5 with OpenCV is **26,327**

Tota L1 cache missesfor Q= 5 with theEigen library is **7554**

Note: **OpenCV** in green, **Eigen** in yellow

Faint triangles and circles are PAPI measured

theoretical OI is darker circles and triangles

Covariance Sequential Version

and Applied Sciences

Covariance ISPC Version

2 arrays both of size n

Covariance - ISPC Performance Analysis

Highlights

- ISPC at same level of magnitude as nominal peak performance
- Could push further with loop unrolling to saturate all registers
- ~4x time reduction for a medium sized data input (O2 flag)

Procrustes: find the optimal linear transformation between two sets of DataPoints

2 arrays of size N

Point2d Object a	a[0] = (a[0].x, a[0].y)	a[1] = (a[1].x, a[1].y)		a[N] = (a[N].x, a[N].y)
Point2d Object b	b[0] = (b[0].x, b[0].y)	b[1] = (b[1].x, b[1].y		b[N] = (b[N].x, b[N].y)

Within the for loop:

Z +=
$$(b[i].x)^2 + (b[i].y)^2$$

At the very end:

Return:

Transformation Vector = A.inv() b

Time

Procrustes - AVX2

2 arrays of size N

→Time

Point2d Object a	a[0] = (a[0].x, a[0].y)	a[1] = (a[1].x, a[1].y)		a[N] = (a[N].x, a[N].y)
Point2d Object b	b[0] = (b[0].x, b[0].y)	b[1] = (b[1].x, b[1].y		b[N] = (b[N].x, b[N].y)

At the very end:

Return:

Transformation Vector = A.inv() b

Procrustes - AVX2

with -O3 flag 2x Speedup

without -O3 flag 4x Speedup

Contents

Introduction & Research Problem

Parallel Design & Algorithms

Results & Validation

Performance Benchmarks and Strong Scaling

Optimal Number of Parallel Processes: 5

Sequential vs. Parallelized

Process Count	1	2	3	4	5	6	8	10	12	14	16	baseline	speedup
250 Images	14.70	13.56	13.02	12.89	11.71	11.74	12.19	12.10	12.22	12.31	12.21	51.54	4.41
500 Images	21.31	19.01	18.01	17.67	16.32	17.09	17.43	17.74	17.77	17.60	17.54	59.85	3.67
1000 Images	44.51	34.68	31.32	31.10	27.40	27.66	28.06	28.68	29.18	29.41	29.44	81.93	2.99
2000 Images	84.26	66.70	58.75	57.14	49.52	51.93	50.40	51.93	50.99	52.23	52.57	120.86	2.44
4000 images	158.72	125.12	113.11	106.43	91.52	93.68	95.86	94.76	94.15	94.68	94.04	200.51	2.19

Table 2: Time (s) Taken to process various input file quantities

5 processes running in parallel

4.4x Speedup for training 250 images

2.2X Speedup for training 4000 images

Sequential vs. Parallelized

Sequential

Parallelized

Future Works

- Real time recognition
 - Optimize FaceX
- Hyperparameter tuning automation
- Integrated Preprocessing Code
 - Handle initialization calculation faster
 - Provide starter code in repo, tested to deliver identical DataPoints when compared to serial version

References

[1] Cao X, Wei Y, Wen F, et al. Face alignment by explicit shape regression[J]. International Journal of Computer Vision, 2014, 107(2): 177-190.

Parallelizing Gradient Boosted Regression for Facial Landmark Recognition

Zhecheng Yao, Yixian Gan, Rebecca Qiu, Lucy Li May 2023

