$Chapter\ 4-HW02$

2015 K 8 0 0 9 9 2 9 0 4 9 冯吕

2018年7月9日

- 1. 解:产生回溯的原因是,即使当非终结符用某个产生式匹配成功,但是这种成功可能只是暂时的,因为没有足够的信息来唯一地确定可能的产生式,所以分析过程就会产生回溯。不可以。例如对于产生式 $A \to \alpha \mid \beta$, $FIRST(\alpha)$ 与 $FIRST(\beta)$ 交集为空集,但 ϵ 是其中某个 FIRST 集合的元素,不是一般性,假设 $\epsilon \in FIRST(\alpha)$,想要避免回溯,则还需要考虑 FOLLOW(A) 与 $FIRST(\beta)$ 的情况。
 - 2. 解: a 消除左递归后的文法如下:

$$\begin{split} lexp &\to atom \mid list \\ atom &\to \text{number} \mid \text{identifiler} \\ list &\to (lexp - seq) \\ lexp &- seq \to lexp \; A' \\ A' &\to lexp \; A' \mid \epsilon \end{split}$$

b. FIRST 集合:

```
FIRST(lexp) = \{\text{number, identifiler, (}\}
FIRST(atom) = \{\text{number, identifiler}\}
FIRST(list) = \{\ (\ \}\}
FIRST(number) = \{\text{number}\}
FIRST(identifiler) = \{\text{identifiler}\}
FIRST(\ (\ ) = \{\ (\ \}\}
FIRST(\ (\ ) = \{\ (\ \}\}
FIRST(lexp - seq) = \{\text{number, identifiler, (}\}
FIRST(\ (lexp - seq)\ ) = \{(\}\}
```

FOLLOW 集合:

$$FOLLOW(lexp) = \{\$,), number, identifiler, (\}$$

$$FOLLOW(atom) = \{\$,), number, identifier, (\}$$

$$FOLLOW(list) = \{\$,), number, identifier, (\}$$

$$FOLLOW(lexp - seq) = \{\ \}$$

$$FOLLOW(A') = \{\ \}$$

c. 证明:

- 对于规则 $lexp \to atom \mid list$, atom 推出的串的首字符为 number 或 identifiler, list 推出的串的首字符为 (,满足条件;
- 对于规则 $atom \rightarrow number \mid identifiler$, 显然满足条件;
- 对于规则 $A' \rightarrow lexp \ A' \mid \epsilon$, 也满足 LL(1) 文法的条件;

因此,该文法是 LL(1) 文法。

d. LL(1) 分析表如下:

非终结符号	输入符号				
	number	identifiler	()	\$
lexp	lexp o atom	lexp o atom	lexp o list		
atom	$atom \rightarrow \text{number}$	atom o identifiler			
list			$ list \rightarrow (lexp - seq)$		
lexp-seq	$lexp - seq \rightarrow lexp A'$	$lexp - seq \rightarrow lexp A'$	$lexp - seq \rightarrow lexp A'$		
A'	$A' \rightarrow lexp \ A'$	$A' \rightarrow lexp \ A'$	$A' \rightarrow lexp \ A'$	$A' \to \epsilon$	

d. 对输入串 $(a\ (b\ (2))\ (c))$, LL(1) 分析程序的动作如下:

STACK	INPUT	ACTION
lexp\$	$(a\ (b\ (2))\ (c))$ \$	
list\$	(a (b (2)) (c))\$	$\int output \ lexp ightarrow list$
(lexp-seq)\$	(a (b (2)) (c))\$	$ output\ list \rightarrow (lexp - seq) $
lexp-seq)\$	a (b (2)) (c)\$	match (
lexp A')\$	a (b (2)) (c)\$	$ output \ lexp - seq \rightarrow lexp \ A' $
atom A')\$	a (b (2)) (c)\$	$output\ lexp o atom$
aA')\$	a (b (2)) (c)\$	$output\ atom ightarrow a$
A')\$	$(b\ (2))\ (c))$ \$	match a
lexp A')\$	$(b\ (2))\ (c))$ \$	output $A' \to lexp A'$
$list \ A')\$$	$(b\ (2))\ (c))$ \$	$ output \ lexp \rightarrow list $
(lexp-seq)A')\$	$(b\ (2))\ (c))$ \$	$ output\ list \rightarrow (lexp - seq) $
lexp-seq)A')\$	b(2)(c)\$	match (
$lexp \ A')A')\$$	b(2)(c)\$	$ output \ lexp - seq \rightarrow lexp \ A' $
atom A')A')\$	b(2)(c)\$	$\boxed{output\ lexp \rightarrow atom}$
b A')A')\$	b(2)(c)\$	$output\ atom o b$
A')A')\$	(2)) (c)\$	macth b
lexp A')A')\$	(2)) (c)\$	output $A' \to lexp A'$
$list\ A')A')\$$	(2)) (c)\$	$\int output \ lexp o list$
(lexp-seq)A')A')\$	(2)) (c)\$	$output\ list \rightarrow (lexp - seq)$
lexp-seq)A')A')\$	(c)	match (
lexp A')A')A')\$	(c)	$output \ lexp - seq \rightarrow lexp \ A'$
$atom \ A')A')A')\$$	(c)	$output\ lexp o atom$
2 A'(A')A')\$	(c)	output $atom \rightarrow 2$
A')A')A')\$)) (c))\$	match 2
)A')A')\$)) (c))\$	output $A' \to \epsilon$
A')A')\$) (c))\$	match (
)A')\$) (c))\$	output $A' \to \epsilon$
A')\$	(c)	match (
lexp A')\$	(c)	output $A' \to lexp A'$
$list \ A')\$$	(c)	output lexp rightarrowlist
(lexp-seq)A')\$	(c)	$output\ list \rightarrow (lexp - seq)$
lexp-seq)A')\$	c))\$	match (
lexp A')A')\$	c))\$	$outputlexp - seq \rightarrow lexp A'$
atom A')A')\$	c))\$	outputlexp o atom
c A') A')\$	c))\$	output $atom \rightarrow c$
A')A')))\$	match c
)A')\$))\$	output $A' \to \epsilon$
A')\$)\$	$\mid match \mid$
)\$)\$	output $A' \to \epsilon$
\$	\$	$\mid match \mid$