

S. B. JAIN INSTITUTE OF TECHNOLOGY, MANAGEMENT & RESEARCH, NAGPUR.

Practical No. 1 (b)

Aim: Demonstrate the Problem related to Logistics Regression in Data Analytics.

Name of Student : Shrutika Pradeep Bagdi

Roll No.: CS22130

Semester/Year: $6^{th}/3^{rd}$

Academic Session: 2024 - 2025

Date of Performance:

Date of Submission:

AIM: Demonstrate the Problem related to Logistics Regression in Data Analytics.

OBJECTIVE/EXPECTED LEARNING OUTCOME:

The objectives and expected learning outcome of this practical are:

- Understand the use of odds, odds ratios and transformations in logistic regression.
- Logistic regression is a statistical analysis method to predict a binary outcome
- To measure the relationship between a categorical dependent variable and one or more independent variables (usually continuous) by plotting the dependent variables' probability scores.
- Able to calculate both simple and multiple regression models. You will learn how to assess the model's "fit", test model assumptions, and transform predictor and response variables to improve outcomes.

THEORY:

Logistic regression

- Name is somewhat misleading. Really a technique for classification, not regression. technique for classification, not regression.
- "Regression" comes from fact that we fit a linear model to the feature space
- Involves a more probabilistic view of classification

$$p = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$
 logistic function

Standard logistic function

Using a logistic regression model

Can interpret prediction from a logistic regression model as:

- A probability of class membership –
- A class assignment by applying threshold to A class assignment, by applying threshold to probability.
- Threshold represents decision boundary in feature space

Training a logistic regression model

Need to optimize β so the model gives the best possible reproduction of training set labels possible reproduction of training set labels

- Usually done by numerical approximation of maximum likelihood
- On really large datasets, may use stochastic gradient descent

Logistic regression in one dimension

Logistic regression in two dimensions

Subset of Fisher iris dataset

- Two classes -

First two columns (SL, SW)

STEPS:

- 1) Split the data set into training and test sets.
- 2) Fit logistic regression model on training set.
- 3) Prepare Confusion matrix.
- 4) Compute model accuracy, precision, recall.

	Machine Learning (PECCS605P)					
PROGRAM CODE:						
Department of Computer Scien	ce & Engineering, S.B.J.I.T.M.R, Nagpur.					

OUTPUT (SCREENSHOT):

Department of Computer Science & Engineering, S.B.J.I.T.M.R, Nagpur.

Department of Computer Science & Engineering, S.B.J.I.T.M.R, Nagpur.

Department of Computer Science & Engineering, S.B.J.I.T.M.R, Nagpur.

NCLU	JSION:					
						-
. — — — -						
De	epartment of C	Computer Sci	ience & En	gineering, S	S.B.J.I.T.M	R, Nagi

DISCUSSION AND VIVA VOCE:

- What is the basic principle of logistic regression?
- What is the practical application of logistic regression?
- What is logistic regression used for in machine learning?
- What are the analytical challenges during model development?
- What are the difference between linear regression and logistic?

REFERENCE:

- https://www.techtarget.com/searchitoperations/definition/virtual-machine-VM
- https://medium.com/analytics-vidhya/20-interview-questions-on-linear-regression-and-logistic-regression-ef4d341d2805
- www.cs.sfu.ca/~han/MachineLearnig.html