$2.2 \ 2^k$ 因子设计及其部分实施(二)

王正明 易泰河

系统工程学院 军事建模与仿真系

2019年11月27日

知识回顾

定义

称由一些符号组成的矩阵为正交表(orthogonal table), 如果任意两列中同行符号构成的若干符号对的重复次数相等.

- 2^2 设计与正交表 $L_4(2^3)$;
- 2^3 设计与正交表 $L_8(2^7)$;
- 正交表的等价与同构;
- 利用正交表 $L_8(2^7)$ 设计试验和分析数据.

2.2 2 因子设计及其部分实施

- 2.2.1 2^2 设计与正交表 $L_4(2^3)$
- 2.2.2 2^3 设计与正交表 $L_8(2^7)$
- 2.2.3 2^k 设计与正交表 $L_{2^k}(2^{2^k-1})$
 - (1) 处理与效应
 - (2) 正交表 $L_{2^k}(2^{2^k-1})$ 的构造
 - (3) 正交表 $L_{2^k}(2^{2^k-1})$ 的应用
- 2.2.4 2 因子试验的部分实施

- 2^k 设计的处理是 k 维空间中顶点坐标用 0 或者 1 表示的立方体的 2^k 个顶点.
- 处理的记号: 从后往前依次引入试验因子, 每引入 一个新的因子, 就依次和已引入的因子组合.
- 如 2⁴ 设计:

(1), d, c, cd, b, bd, bc, bcd,

a, ad, ac, acd, ab, abd, abc, abcd.

(1) 表示处理 (0,0,0,0), d 表示处理 (0,0,0,1),

. . . .

- 2^k 设计的处理是 k 维空间中顶点坐标用 0 或者 1 表示的立方体的 2^k 个顶点.
- 处理的记号: 从后往前依次引入试验因子,每引入 一个新的因子,就依次和已引入的因子组合.
- 如 2⁴ 设计:
- (1), d, c, cd, b, bd, bc, bcd,
- a, ad, ac, acd, ab, abd, abc, abcd.
- (1) 表示处理 (0,0,0,0), d 表示处理 (0,0,0,1),

4 D > 4 B > 4 E > 4 E > 9 Q @

4/39

- 2^k 设计的处理是 k 维空间中顶点坐标用 0 或者 1表示的立方体的 2^k 个顶点.
- 处理的记号: 从后往前依次引入试验因子. 每引入 一个新的因子,就依次和已引入的因子组合。
- 如 2⁴ 设计:

(1), d, c, cd, b, bd, bc, bcd,

a, ad, ac, acd, ab, abd, abc, abcd.

(1) 表示处理 (0,0,0,0), d 表示处理 (0,0,0,1),

- k 个主效应, C_k^2 个二因子交互效应, C_k^3 个三因子交互效应, C_k^3 个三因子交互效应, C_k^3 个三因子
- 一共 $C_k^1 + C_k^2 + \cdots + C_k^k = 2^k 1$ 个效应, 每个效应 的自由度均为 1.
- 如果每个处理重复 m 次, 则总自由度为 $2^k m 1$, 误差自由度为 $2^k m 1 2^k + 1 = 2^k (m 1)$.

- k 个主效应, C_k^2 个二因子交互效应, C_k^3 个三因子交互效应, C_k^3 个三因子交互效应, C_k^3 个三因子
- 一共 $C_k^1 + C_k^2 + \cdots + C_k^k = 2^k 1$ 个效应, 每个效应 的自由度均为 1.
- 如果每个处理重复 m 次, 则总自由度为 $2^k m 1$, 误差自由度为 $2^k m 1 2^k + 1 = 2^k (m 1)$.

- k 个主效应, C_k^2 个二因子交互效应, C_k^3 个三因子交互效应, C_k^3 个三因子交互效应, C_k^3 个三因子
- 一共 $C_k^1 + C_k^2 + \cdots + C_k^k = 2^k 1$ 个效应, 每个效应 的自由度均为 1.
- 如果每个处理重复 m 次, 则总自由度为 $2^k m 1$, 误差自由度为 $2^k m 1 2^k + 1 = 2^k (m 1)$.

• 效应的估计为:

$$AB \cdots K = \frac{1}{2^{k-1}m}(a \pm 1)(b \pm 1) \cdots (k \pm 1)$$

- 如果左边有某个因子时, 右边相应括号内取"-", 否 则取"+":
- 右侧按代数方法展开后,以(1)代替1,每一字母组合 表示对应处理处 m 次试验观察值的总和.

$$SS_{AB\cdots K} = \frac{1}{2^k m} [(a \pm 1)(b \pm 1)\cdots (k \pm 1)]^2.$$

6/39

• 效应的估计为:

$$AB \cdots K = \frac{1}{2^{k-1}m}(a \pm 1)(b \pm 1) \cdots (k \pm 1)$$

- 如果左边有某个因子时, 右边相应括号内取"-", 否 则取"+":
- 右侧按代数方法展开后,以(1)代替1,每一字母组合 表示对应处理处 m 次试验观察值的总和.

• 效应的平方和为:

$$SS_{AB\cdots K} = \frac{1}{2^k m} [(a \pm 1)(b \pm 1)\cdots(k \pm 1)]^2.$$

小测试

● 2³ 设计中, 交互效应 AC 的估计和平方和分别为

$$AC = \underline{\hspace{1cm}},$$
 $SS_{AC} = \underline{\hspace{1cm}},$

② 2⁴ 设计中, 交互效应 AC 的估计和平方和分别为

$$AC = \underline{\hspace{1cm}},$$

$$SS_{AC} = \underline{\hspace{1cm}}$$

一 利用估计诸效应的对照的符号

- Step 2 按字母反序安排行: 首先引入 (1), 每引入一个新的因子就依次和前面已引入的因子组合, 如 $L_8(2^7)$ 的行 (1), c, b, bc, a, ac, ab, abc;
- Step 3 计算各列效应的估计的系数, 如 $L_8(2^7)$ 的 A 列

$$A = \frac{1}{4m} \left[-(1) - c - b - bc + a + ac + ab + abc \right]$$

故 A 列为 $[-,-,-,+,+,+]^{\mathrm{T}}$.

一 利用估计诸效应的对照的符号

- Step 1 按字母正序安排列: 首先引入 A 列, 每引入一个新的 列就依次引入它与前面各列的交互效应列, 如 $L_8(2^7)$ 的列为 A, B, AB, C, AC, BC, ABC;
- Step 2 按字母反序安排行: 首先引入 (1), 每引入一个新的医子就依次和前面已引入的因子组合, 如 $L_8(2^7)$ 的行 (1), c, b, bc, a, ac, ab, abc;
- Step 3 计算各列效应的估计的系数, 如 $L_8(2^7)$ 的 A 列

$$A = \frac{1}{4m} \left[-(1) - c - b - bc + a + ac + ab + abc \right]$$

故 A 列为 $[-,-,-,+,+,+,+]^{\mathrm{T}}$.

$L_{\mathbf{z}^{k}}(2^{2^{k}-1})$ 型正交表的两种构造方式

一 利用估计诸效应的对照的符号

- Step 1 按字母正序安排列: 首先引入 A 列, 每引入一个新的 列就依次引入它与前面各列的交互效应列, 如 $L_8(2^7)$ 的列为 A, B, AB, C, AC, BC, ABC;
- Step 2 按字母反序安排行: 首先引入 (1), 每引入一个新的因子就依次和前面已引入的因子组合, 如 $L_8(2^7)$ 的行 (1), c, b, bc, a, ac, ab, abc;
- Step 3 计算各列效应的估计的系数, 如 $L_8(2^7)$ 的 A 列

$$A = \frac{1}{4m} \left[-(1) - c - b - bc + a + ac + ab + abc \right]$$

故 A 列为 $[-,-,-,+,+,+]^{\mathrm{T}}$.

一 利用估计诸效应的对照的符号

- Step 1 按字母正序安排列: 首先引入 A 列, 每引入一个新的 列就依次引入它与前面各列的交互效应列, 如 $L_8(2^7)$ 的列为 A, B, AB, C, AC, BC, ABC;
- Step 2 按字母反序安排行: 首先引入 (1), 每引入一个新的因子就依次和前面已引入的因子组合, 如 $L_8(2^7)$ 的行 (1), c, b, bc, a, ac, ab, abc;
- Step 3 计算各列效应的估计的系数, 如 $L_8(2^7)$ 的 A 列

$$A = \frac{1}{4m} \left[-(1) - c - b - bc + a + ac + ab + abc \right]$$

故 A 列为 $[-,-,-,+,+,+,+]^{\mathrm{T}}$.

- 一 利用估计诸效应的对照的符号
- 二 利用基本列和交互效应列等列名运算
 - Step 1 构造二分列, 前 2^{k-1} 行置水平 0, 后 2^{k-1} 行置水平 1, 列名记为 A;
 - Step 2 构造四分列, 将二分列的两部分再次二分, 然后利用模 2 加法运算依次得到四分列与前面各列的交互效应列; :
 - Step k 构造 2^k 分列, 该列的各行两个水平交替安排, 并利用模 2 加法运算依次得到 2^k 分列与前面各列的交互效应列.

- 一 利用估计诸效应的对照的符号
- 二 利用基本列和交互效应列等列名运算
 - Step 1 构造二分列, 前 2^{k-1} 行置水平 0, 后 2^{k-1} 行置水平 1, 列名记为 A;
 - Step 2 构造四分列, 将二分列的两部分再次二分, 然后利用模 2 加法运算依次得到四分列与前面各列的交互效应列; :
 - Step k 构造 2^k 分列, 该列的各行两个水平交替安排, 并利用模 2 加法运算依次得到 2^k 分列与前面各列的交互效应列.

- 一 利用估计诸效应的对照的符号
- 二 利用基本列和交互效应列等列名运算
 - Step 1 构造二分列, 前 2^{k-1} 行置水平 0, 后 2^{k-1} 行置水平 1, 列名记为 A;
 - Step 2 构造四分列, 将二分列的两部分再次二分, 然后利用模 2 加法运算依次得到四分列与前面各列的交互效应列;
 - Step k 构造 2^k 分列, 该列的各行两个水平交替安排, 并利用模 2 加法运算依次得到 2^k 分列与前面各列的交互效应列.

- 一 利用估计诸效应的对照的符号
- 二 利用基本列和交互效应列等列名运算
 - Step 1 构造二分列, 前 2^{k-1} 行置水平 0, 后 2^{k-1} 行置水平 1, 列名记为 A;
 - Step 2 构造四分列, 将二分列的两部分再次二分, 然后利用模 2 加法运算依次得到四分列与前面各列的交互效应列; :
 - Step k 构造 2^k 分列, 该列的各行两个水平交替安排, 并利用模 2 加法运算依次得到 2^k 分列与前面各列的交互效应列.

- 一 利用估计诸效应的对照的符号
- 二 利用基本列和交互效应列等列名运算
 - Step 1 构造二分列, 前 2^{k-1} 行置水平 0, 后 2^{k-1} 行置水平 1, 列名记为 A;
 - Step 2 构造四分列, 将二分列的两部分再次二分, 然后利用模 2 加法运算依次得到四分列与前面各列的交互效应列; :
 - Step k 构造 2^k 分列, 该列的各行两个水平交替安排, 并利用模 2 加法运算依次得到 2^k 分列与前面各列的交互效应列.

- 表 $L_{2^k}(2^{2^k-1})$ 的列名运算规则: 首先按照代数运算化简, 然后将幂指数按照模 2 运算化简.
- 如:

$$ABC \times BC = AB^2C^2 = AB^0C^0 = A,$$

- 利用列名运算可得到任意两列的交互效应列.
- $L_{2^k}(2^{2^k-1})$ 型正交表是完备的.

- 表 $L_{2^k}(2^{2^{k-1}})$ 的列名运算规则: 首先按照代数运算化简, 然后将幂指数按照模 2 运算化简.
- 如:

$$ABC \times BC = AB^2C^2 = AB^0C^0 = A,$$

- 利用列名运算可得到任意两列的交互效应列.
- $L_{2^k}(2^{2^k-1})$ 型正交表是完备的.

- 表 $L_{2^k}(2^{2^{k-1}})$ 的列名运算规则: 首先按照代数运算化简, 然后将幂指数按照模 2 运算化简.
- 如:

$$ABC \times BC = AB^2C^2 = AB^0C^0 = A,$$

- 利用列名运算可得到任意两列的交互效应列.
- $L_{2^k}(2^{2^k-1})$ 型正交表是完备的.

- 表 $L_{2^k}(2^{2^{k-1}})$ 的列名运算规则: 首先按照代数运算化简, 然后将幂指数按照模 2 运算化简.
- 如:

$$ABC \times BC = AB^2C^2 = AB^0C^0 = A,$$

- 利用列名运算可得到任意两列的交互效应列.
- $L_{2^k}(2^{2^k-1})$ 型正交表是完备的.

小测试

- ② 试利用列名运算构造正交表 $L_{16}(2^{15})$.

- 称二分列、···、2^k 分列为主效应列或基本列, 2^k 完全因子 设计中主效应列用于安排试验;
- 效应的估计: $(T_{i1} T_{i0})/(2^{k-1}m)$, T_{i0} 表示第 i 列中 0 水平 对应的数据之和, T_{i1} 表示第 i 列中 1 水平对应的数据之和;
- 诸效应的平方和可由相应行来计算:

$$SS_i = \frac{T_{i0}^2 + T_{i1}^2}{2^{k-1}m} - \frac{T^2}{2^k m},$$

• 误差平方和: $SS_E = SS_T - SS_A - SS_B - SS_{AB} - \cdots$

- 称二分列、···、2^k 分列为主效应列或基本列, 2^k 完全因子 设计中主效应列用于安排试验;
- 效应的估计: $(T_{i1} T_{i0})/(2^{k-1}m)$, T_{i0} 表示第 i 列中 0 水平 对应的数据之和, T_{i1} 表示第 i 列中 1 水平对应的数据之和;
- 诸效应的平方和可由相应行来计算:

$$SS_i = \frac{T_{i0}^2 + T_{i1}^2}{2^{k-1}m} - \frac{T^2}{2^k m},$$

• 误差平方和: $SS_E = SS_T - SS_A - SS_B - SS_{AB} - \cdots$.

- 称二分列、···、2^k 分列为主效应列或基本列, 2^k 完全因子 设计中主效应列用于安排试验;
- 效应的估计: $(T_{i1} T_{i0})/(2^{k-1}m)$, T_{i0} 表示第 i 列中 0 水平 对应的数据之和, T_{i1} 表示第 i 列中 1 水平对应的数据之和;
- 诸效应的平方和可由相应行来计算:

$$SS_i = \frac{T_{i0}^2 + T_{i1}^2}{2^{k-1}m} - \frac{T^2}{2^k m},$$

• 误差平方和: $SS_E = SS_T - SS_A - SS_B - SS_{AB} - \cdots$.

- 称二分列、···、2^k 分列为主效应列或基本列, 2^k 完全因子 设计中主效应列用于安排试验;
- 效应的估计: $(T_{i1} T_{i0})/(2^{k-1}m)$, T_{i0} 表示第 i 列中 0 水平 对应的数据之和, T_{i1} 表示第 i 列中 1 水平对应的数据之和;
- 诸效应的平方和可由相应行来计算:

$$SS_i = \frac{T_{i0}^2 + T_{i1}^2}{2^{k-1}m} - \frac{T^2}{2^k m},$$

• 误差平方和: $SS_E = SS_T - SS_A - SS_B - SS_{AB} - \cdots$

例

在梳棉机上纺粘锦混纺纱, 为了提高质量, 选了 3 个因子, 每个因子 2 个水平,

A 金属针布: $A_1 =$ 日本产, $A_2 =$ 青岛产;

B 产量水平: $B_1 = 6$ 公斤, $B_2 = 10$ 公斤;

C 锡林速度: $C_1 = 238$ 转/分, $C_2 = 320$ 转/分.

实践经验表明, 因子间可能有二因子交互效应.

例 (Cont.)

用正交表 L₈(2⁷) 来安排试验:

列号	1	2	3	4	5	6	7	
因子	A	В	AB	C	AC	BC	ABC	
试验号		A(1)		B(2)		C(4)		
1		日本产	=	6		238		
2		日本产		6		320		
3		日本产		10		238		
4		日本产		10		320		
	5	青岛产	青岛产		6		238	
	6	青岛产	青岛产		6			
	7	青岛产	青岛产		10			
	8	青岛产		10 320		320		

试验号	A(1)	B(2)	AB(3)	C(4)	AC(5)	BC(6)	ABC(7)	棉结粒数
1	0	0	0	0	0	0	0	(1) = 0.30
2	0	0	0	1	1	1	1	c = 0.35
3	0	1	1	0	0	1	1	b = 0.20
4	0	1	1	1	1	0	0	bc = 0.30
5	1	0	1	0	1	0	1	a = 0.15
6	1	0	1	1	0	1	0	ac = 0.50
7	1	1	0	0	1	1	0	ab = 0.15
8	1	1	0	1	0	0	1	abc = 0.40
T_0	1.15	1.30	1.20	0.80	1.40	1.15	1.25	T = 2.35
T_1	1.20	1.05	1.15	1.55	0.95	1.20	1.10	I = 2.35
m_0	0.2875	0.3250	0.3000	0.2000	0.3500	0.2875	0.3125	
m_1	0.3000	0.2625	0.2875	0.3875	0.2375	0.3000	0.2750	
\overline{R}	0.0125	0.0625	0.0125	0.1875	0.1125	0.0125	0.0375	

- $R := \max\{m_0, m_1\} \min\{m_0, m_1\}$ 为极差,可用来衡量诸效 应的主次关系,极差越大表明相应的效应越大.
- 2^k 因子设计中. 极差就是效应的估计的绝对值!

两种方式计算各列的偏差平方和,

• 采用计算对照偏差平方和的公式:

$$SS_A = \frac{1}{8} \left[abc + ab + ac + a - bc - b - c - (1) \right]^2$$
$$= \frac{1}{8} \left[T_{A_1} - T_{A_0} \right]^2 = 0.0003125;$$

• 正交表中常用的偏差平方和计算公式:

$$SS_A = \frac{T_{A_0}^2 + T_{A_1}^2}{4} - \frac{T^2}{8} = \frac{1.15^2 + 1.20^2}{4} - \frac{2.35^2}{8}$$

= 0.0003125.

<ロ > ∢回 > ∢回 > ∢ 直 > √ 直 > りへ⊙

方差来源	平方和	自由度	均方	F 值	p 值
\overline{B}	0.0078125	1	0.0078125	8.33	0.0447
C	0.0203125	1	0.0203125	75.00	0.0010
AC	0.0253125	1	0.0253125	27.00	0.0065
误差	0.0037500	4	0.0009375		
\overline{A}	0.0003125	1			
AB	0.0003125	1			
BC	0.0003125	1			
ABC	0.0028125	1			
总和	0.1071825	7			

2.2^{2^k} 因子设计及其部分实施

- 2.2.1 2^2 设计与正交表 $L_4(2^3)$
- 2.2.2 2^3 设计与正交表 $L_8(2^7)$
- 2.2.3 2^k 设计与正交表 $L_{2^k}(2^{2^k-1})$
- 2.2.4 2 因子试验的部分实施

引言

- 2^k 因子试验全面实施能够估计所有效应.
- 当 k 增加时,全面实施所需的试验次数可能超出 实验者所拥有的资源.
- 例如, $2^6 = 64$, 共 63 个自由度:
 - 仅有 6 个与主效应对应;
 - 仅有 15 个与二因子交互效应对应;
 - 其余 42 个自由度与三阶或更高阶交互效应对应.
- 如何采用 2^k 设计的一个试验点数较少的部分实施来估计感兴趣的效应?

引言

- 2^k 因子试验全面实施能够估计所有效应.
- 当 k 增加时,全面实施所需的试验次数可能超出 实验者所拥有的资源.
- 例如, $2^6 = 64$, 共 63 个自由度:
 - 仅有 6 个与主效应对应;
 - 仅有 15 个与二因子交互效应对应;
 - 其余 42 个自由度与三阶或更高阶交互效应对应.
- 如何采用 2^k 设计的一个试验点数较少的部分实施来估计感兴趣的效应?

$2.2.4 2^k$ 因子试验的部分实施

- (1) 混杂与定义关系
- (2) 2^{k-p} 部分因子设计的构造
- (3) 字长型与分辨度

例

23 设计包括 8 个处理, 如果只做 23 设计的一半

	A	В	AB
因子	A	B	C

称它为 2^3 设计的 1/2 实施, 也称为 2^{3-1} 设计.

- 如果 AB 显著,则无法区分 AB 和 C 的效应,产
 生了混杂(confounding).
- 称 AB 与 C 互为别名(alias), 用 C = AB 或 AB = C 表示别名关系.

例

23 设计包括 8 个处理, 如果只做 23 设计的一半

	A	В	AB
因子	A	B	C

称它为 2^3 设计的 1/2 实施, 也称为 2^{3-1} 设计.

- 如果 AB 显著,则无法区分 AB 和 C 的效应,产
 生了混杂(confounding).
- 称 AB 与 C 互为<mark>别名</mark>(alias), 用 C = AB 或 AB = C 表示别名关系.

• 别名关系 C = AB 的两端同时乘 C 得到

$$ABC = C^2 = C^0 = \mathbf{I}.$$

I 称为单位元,表示全部由"+"组成的列,或全 部由"0"组成的列。

• 别名关系 C = AB 的两端同时乘 C 得到

$$ABC = C^2 = C^0 = \mathbf{I}.$$

I 称为单位元. 表示全部由 "+" 组成的列, 或全 部由"0"组成的列。

- 由 ABC = I 可得到别名关系: BC = A, AC = B. AB = C

• 別名关系 C = AB 的两端同时乘 C 得到

$$ABC = C^2 = C^0 = \mathbf{I}.$$

I 称为<mark>单位元</mark>, 表示全部由 "+" 组成的列, 或全部由 "0" 组成的列.

- 由 ABC = I 可得到别名关系: BC = A, AC = B, AB = C.
- ABC = I 表达了该方案的全部别名关系, 称它为这个 2^{3-1} 设计的定义关系(defining relations).

• 定义关系为 $\mathbf{I} = ABC$ 的 2^{3-1} 设计是正交表 $L_8(2^7)$ 中 ABC 列为 + 号对应的四行

处理	Ι	\overline{A}	В	AB	C	AC	BC	\overline{ABC}
c	+	_	_	+	+	_	_	+
b	+	_	+	_	_	+	_	+
a	+	+	_	_	-	_	+	+
abc	+	+	+	+	+	+	+	+
(1)	+	_	_	+	_	+	+	_
bc	+	_	+	_	+	_	+	_
ac	+	+	_	_	+	+	_	_
ab	+	+	+	+	_	_	_	

• 下半部分构成一个定义关系为 $\mathbf{I} = -ABC$ 的 2^{3-1} 设计. 这两个设计构成互补关系, 即上一个 2^{3-1} 设计的 A 列估计出列的效应是 A + BC, 而下一个 2^{3-1} 设计的 A 列估计出来的效应则是 A - BC.

- 一般地,
 - 采用正交表 $L_{2^{k-1}}(2^{2^{k-1}-1})$ 是 2^k 因子试验的 1/2 实施;
 - 采用正交表 $L_{2^{k-2}}(2^{2^{k-2}-1})$ 是 2^k 因子试验的 1/4 实施;
 - ...
 - 采用正交表 $L_{2^{k-p}}(2^{2^{k-p}-1})$ 是 2^k 因子试验的 $1/2^p$ 实施.
- 部分实施是由其定义关系确定的。讨论部分实施时,应指出它的定义关系。
- 试验次数压缩得越多,定义关系就越长,效应混杂 越多.

- 一般地,
 - 采用正交表 $L_{2^{k-1}}(2^{2^{k-1}-1})$ 是 2^k 因子试验的 1/2 实施;
 - 采用正交表 $L_{2^{k-2}}(2^{2^{k-2}-1})$ 是 2^k 因子试验的 1/4 实施;
 - ...
 - 采用正交表 $L_{2^{k-p}}(2^{2^{k-p}-1})$ 是 2^k 因子试验的 $1/2^p$ 实施.
- 部分实施是由其定义关系确定的。讨论部分实施 时,应指出它的定义关系。
- 试验次数压缩得越多,定义关系就越长,效应混杂 越多.

例

 $L_8(2^7)$ 可用来安排 2^4 设计的 1/2 实施、 2^5 设计的 1/4 实施、 2^6 设计的 1/8 实施和 2^7 设计的 1/16 实施:

因子数量	A	В	AB	C	AC	BC	\overline{ABC}
4	A	B		C			D
5	A	B	E	C			D
6	A	B	E	C	F		D
7	A	B	E	C	F	G	D

如何求定义关系?

- 可直接观察, 也通过观察设计矩阵
- 如 2^{4-1} 的定义关系为 I = ABCD, 两边分别乘以 A, B, C, D, AB, AC, AD, 便得到该设计的一切别名关系.

例

 $L_8(2^7)$ 可用来安排 2^4 设计的 1/2 实施、 2^5 设计的 1/4 实施、 2^6 设计的 1/8 实施和 2^7 设计的 1/16 实施:

因子数量	A	В	AB	C	AC	BC	\overline{ABC}
4	A	B		C			D
5	A	B	E	C			D
6	A	B	E	C	F		D
7	A	B	E	C	F	G	D

如何求定义关系?

- 可直接观察, 也通过观察设计矩阵.
- 如 2^{4-1} 的定义关系为 I = ABCD, 两边分别乘以 A, B, C, D, AB, AC, AD, 便得到该设计的一切别名关系.

• 25-2 设计的设计矩阵为

$$m{D}_5 = egin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 1 & 0 \ 0 & 1 & 0 & 1 & 1 \ 0 & 1 & 1 & 0 & 1 \ 1 & 0 & 0 & 1 & 1 \ 1 & 1 & 0 & 0 & 0 \ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

• 根据模 2 加法运算, 观察得到其定义关系为

$$I = ABE = CDE = ABCD.$$

部分因子设计中,称列名记号 A、B 等为字母(letter),称字母串 ABCD、AD 等为字(word),一个字所含字母的个数称为这个字的字长(word length).若一个字经列名运算化简后得到单位元 I,则称这个字为生成字(generator).

• 任意一个 2^{k-p} 设计的所有生成字和单位元 I 组成的集合在列名运算意义下构成一个#(group).

设集合 G 为非空集,如果 G 上定义了一个二元运算 "*",满足

- ① 若 $a \in G$, $b \in G$, 则 $a * b \in G$;
- ② 对任意 $a, b, c \in G$, a * (b * c) = (a * b) * c;
- ③ G 中有一单位元 e, 使得对任意 $b \in G$, b*e = e*b = b;
- **4** 对任意 $a \in G$, 存在逆元 a^{-1} , 使得 $a * a^{-1} = e$;

则称 G 为一个群 (group), 如果 a * b = b * a. 则称 G 为可交换群, 或阿贝尔群 (Abel group).

 $L_8(2^7)$ 可用来安排 2^4 设计的 1/2 实施、 2^5 设计的 1/4 实施、 2^6 设计的 1/8 实施和 2^7 设计的 1/16 实施:

因子数量	A	В	AB	C	AC	BC	ABC
4	A	B		C			D
5	A	B	E	C			D
6	A	B	E	C	F		D
7	A	В	E	C	F	G	D

- D_5 的定义关系子群为 $\{I, ABE, CDE, ABCD\};$
- D_6 的定义关系子群

 $\{I, ABE, CDE, ACF, BDF, ABCD, BCEF, ADEF\}.$

$2.2.4 2^k$ 因子试验的部分实施

- (1) 混杂与定义关系
- (2) 2^{k-p} 部分因子设计的构造
- (3) 字长型与分辨度

- ① 定义关系为 $I = AB \cdots K$ 的 2^{k-1} 设计的构造:
 - Step 1 以正交表 $L_{2^{k-1}}(2^{2^{k-1}-1})$ 的基本列安排前 k-1 个试验 因子;
 - Step 2 以正交表 $L_{2^{k-1}}(2^{2^{k-1}-1})$ 中 k-1 因子交互效应列作为 第 k 个试验因子所在的列.
- 一般地, 2^{k-p} 设计的构造方法为:
 - Step 1 以正交表 $L_{2^{k-p}}(2^{2^{k-p}-1})$ 的基本列安排前 k-p 个试验 因子;
 - Step 2 从正交表 $L_{2^{k-p}}(2^{2^{k-p}-1})$ 的交互效应列中, 选择 p 个合适的高阶交互效应列安排剩余的 p 个因子.
- 2^{k-p} 设计设计有 p 个基本生成字.

ロト 4回 ト 4 重 ト 4 重 ト 9 9 (で

- ① 定义关系为 $I = AB \cdots K$ 的 2^{k-1} 设计的构造:
 - Step 1 以正交表 $L_{2^{k-1}}(2^{2^{k-1}-1})$ 的基本列安排前 k-1 个试验 因子;
 - Step 2 以正交表 $L_{2^{k-1}}(2^{2^{k-1}-1})$ 中 k-1 因子交互效应列作为 第 k 个试验因子所在的列.
- ② 一般地, 2^{k-p} 设计的构造方法为:
 - Step 1 以正交表 $L_{2^{k-p}}(2^{2^{k-p}-1})$ 的基本列安排前 k-p 个试验 因子;
 - Step 2 从正交表 $L_{2^{k-p}}(2^{2^{k-p}-1})$ 的交互效应列中, 选择 p 个合适的高阶交互效应列安排剩余的 p 个因子.
- 2^{k-p} 设计设计有 p 个基本生成字.

- ① 定义关系为 $I = AB \cdots K$ 的 2^{k-1} 设计的构造:
 - Step 1 以正交表 $L_{2^{k-1}}(2^{2^{k-1}-1})$ 的基本列安排前 k-1 个试验 因子;
 - Step 2 以正交表 $L_{2^{k-1}}(2^{2^{k-1}-1})$ 中 k-1 因子交互效应列作为 第 k 个试验因子所在的列.
- ② 一般地, 2^{k−p} 设计的构造方法为:
 - Step 1 以正交表 $L_{2^{k-p}}(2^{2^{k-p}-1})$ 的基本列安排前 k-p 个试验 因子;
 - Step 2 从正交表 $L_{2^{k-p}}(2^{2^{k-p}-1})$ 的交互效应列中, 选择 p 个合适的高阶交互效应列安排剩余的 p 个因子.

- ① 定义关系为 $I = AB \cdots K$ 的 2^{k-1} 设计的构造:
 - Step 1 以正交表 $L_{2^{k-1}}(2^{2^{k-1}-1})$ 的基本列安排前 k-1 个试验 因子;
 - Step 2 以正交表 $L_{2^{k-1}}(2^{2^{k-1}-1})$ 中 k-1 因子交互效应列作为 第 k 个试验因子所在的列.
- 一般地, 2^{k-p} 设计的构造方法为:
 - Step 1 以正交表 $L_{2^{k-p}}(2^{2^{k-p}-1})$ 的基本列安排前 k-p 个试验 因子;
 - Step 2 从正交表 $L_{2^{k-p}}(2^{2^{k-p}-1})$ 的交互效应列中, 选择 p 个合适的高阶交互效应列安排剩余的 p 个因子.

- ① 定义关系为 $I = AB \cdots K$ 的 2^{k-1} 设计的构造:
 - Step 1 以正交表 $L_{2^{k-1}}(2^{2^{k-1}-1})$ 的基本列安排前 k-1 个试验 因子;
 - Step 2 以正交表 $L_{2^{k-1}}(2^{2^{k-1}-1})$ 中 k-1 因子交互效应列作为 第 k 个试验因子所在的列.
- 一般地, 2^{k-p} 设计的构造方法为:
 - Step 1 以正交表 $L_{2^{k-p}}(2^{2^{k-p}-1})$ 的基本列安排前 k-p 个试验 因子;
 - Step 2 从正交表 $L_{2^{k-p}}(2^{2^{k-p}-1})$ 的交互效应列中, 选择 p 个合适的高阶交互效应列安排剩余的 p 个因子.
- ③ 2^{k-p} 设计设计有 p 个基本生成字.

$2.2.4 2^k$ 因子试验的部分实施

- (1) 混杂与定义关系
- (2) 2^{k-p} 部分因子设计的构造
- (3) 字长型与分辨度

- 2^{k-p} 设计不唯一, 挑选合适方案的准则是利用最小的正交表估计出感兴趣的效应.
- 在不考虑先验信息的情况下,如何比较两个不同的 2^{k-p} 设计?
- 分辨度是一个常用的衡量部分实施方案性能的指标。

- 2^{k-p} 设计不唯一, 挑选合适方案的准则是利用最小的正交表估计出感兴趣的效应.
- 在不考虑先验信息的情况下, 如何比较两个不同的 2^{k-p} 设计?
- 分辨度是一个常用的衡量部分实施方案性能的指标。

- 2^{k-p} 设计不唯一, 挑选合适方案的准则是利用最小的正交表估计出感兴趣的效应.
- 在不考虑先验信息的情况下, 如何比较两个不同的 2^{k-p} 设计?
- 分辨度是一个常用的衡量部分实施方案性能的指标.

用 $A_i(D)$ 表示设计 D 的生成字中字长为 i 的字的个数, 称

$$W(\mathbf{D}) = \{A_1(\mathbf{D}), A_2(\mathbf{D}), \cdots, A_k(\mathbf{D})\}\$$

为设计 D 的字长型(word length pattern). 在一个设计的字长型中,所有生成字的最小字长为这个设计的分辨度(resolution).

- 若当 i < t 时 $A_i(D) = 0$, 而 $A_t(D) > 0$, 则 t 为设计 D 的 分辨度.
- 如果大于 t 阶的效应不存在,则分辨度为 2t+1 的设计中任何不超过 t 阶的效应都是可估计的.

用 $A_i(D)$ 表示设计 D 的生成字中字长为 i 的字的个数, 称

$$W(\mathbf{D}) = \{A_1(\mathbf{D}), A_2(\mathbf{D}), \cdots, A_k(\mathbf{D})\}\$$

为设计 D 的字长型(word length pattern). 在一个设计的字长型中,所有生成字的最小字长为这个设计的分辨度(resolution).

- 若当 i < t 时 $A_i(\mathbf{D}) = 0$, 而 $A_t(\mathbf{D}) > 0$, 则 t 为设计 \mathbf{D} 的分辨度.
- 如果大于 t 阶的效应不存在,则分辨度为 2t+1 的设计中任何不超过 t 阶的效应都是可估计的.

用 $A_i(D)$ 表示设计 D 的生成字中字长为 i 的字的个数, 称

$$W(\mathbf{D}) = \{A_1(\mathbf{D}), A_2(\mathbf{D}), \cdots, A_k(\mathbf{D})\}\$$

为设计 D 的字长型(word length pattern). 在一个设计的字长型中, 所有生成字的最小字长为这个设计的分辨度(resolution).

- 若当 i < t 时 $A_i(\mathbf{D}) = 0$, 而 $A_t(\mathbf{D}) > 0$, 则 t 为设计 \mathbf{D} 的分辨度.
- 如果大于 t 阶的效应不存在,则分辨度为 2t+1 的设计中任何不超过 t 阶的效应都是可估计的.

用大写罗马数字表示分辨度:

分辨度 III: 如果二阶和二阶以上交互效应可以忽略,则主效应 之间没有混杂,但至少有一个主效应与某个二阶交互 效应混杂;

分辨度 IV: 如果三阶和三阶以上交互效应可以忽略,则主效应之间、主效应和二阶交互效应之间没有混杂,但至少有一个主效应与某个三阶交互效应混杂;

分辨度 v: 如果三阶和三阶以上交互效应可以忽略,则主效应之间、主效应和二阶交互效应之间,以及任意两对二阶交互效应之间没有混杂.

用大写罗马数字表示分辨度:

分辨度 III: 如果二阶和二阶以上交互效应可以忽略,则主效应 之间没有混杂,但至少有一个主效应与某个二阶交互 效应混杂;

分辨度 IV: 如果三阶和三阶以上交互效应可以忽略,则主效应之间、主效应和二阶交互效应之间没有混杂,但至少有一个主效应与某个三阶交互效应混杂;

分辨度 V: 如果三阶和三阶以上交互效应可以忽略,则主效应之间、主效应和二阶交互效应之间,以及任意两对二阶交互效应之间没有混杂.

用大写罗马数字表示分辨度:

分辨度 III: 如果二阶和二阶以上交互效应可以忽略,则主效应 之间没有混杂,但至少有一个主效应与某个二阶交互 效应混杂;

分辨度 IV: 如果三阶和三阶以上交互效应可以忽略,则主效应之间、主效应和二阶交互效应之间没有混杂,但至少有一个主效应与某个三阶交互效应混杂;

分辨度 V: 如果三阶和三阶以上交互效应可以忽略,则主效应之间、主效应和二阶交互效应之间,以及任意两对二阶交互效应之间没有混杂.

- 称一个 2^{k-p} 设计 D 有最大分辨度(maximum resolution), 如果不存在分辨度更高的 2^{k-p} 设计.
- 设 D₁ 和 D₂ 是两个 2^{k-p} 设计, 如果存在整数 r,
 使得
 - ① $\leq 1 \leq i < r$ 时, $A_i(\mathbf{D}_1) = A_i(\mathbf{D}_2)$,
 - ② $\exists A_r(\mathbf{D}_1) < A_r(\mathbf{D}_2),$

则称 D_1 比 D_2 有较小的低阶混杂. 如果不存在 比 D_1 有更小低阶混杂的 2^{k-p} 设计, 则称 D_1 为最小低阶混杂(minimum aberration) 设计.

小测试

例

 $L_8(2^7)$ 可用来安排 2^4 设计的 1/2 实施、 2^5 设计的 1/4 实施、 2^6 设计的 1/8 实施和 2^7 设计的 1/16 实施:

因子数量	A	В	AB	C	AC	BC	\overline{ABC}
4	A	B		C			D
5	A	B	E	C			D
6	A	B	E	C	F		D
7	A	B	E	C	F	G	D

- 这四个设计的定义关系子群、字长型、分辨度分别是什么?
- 能否构造出比他们具有更高分辨度或更小低阶混杂的设计?

总结

- 2^k 完全因子设计
 - 主效应、交互效应
 - 正交表 $L_{2^k}(2^{2^k-1})$ 的构造与应用
- 2^{k-p} 部分因子设计
 - 混杂与效应别名
 - 定义关系与定义关系子群
 - 2^{k-p} 设计的构造
 - 部分因子设计的比较:字长型、分辨度、最小低阶混杂
- 理解试验资源与获取信息之间的均衡

习题

- 构造正交表 L₁₆(2¹⁵).
- **②** 写出正交表 *L*₃₂(2³¹) 的 *ABCD* 列.
- 给出一种 2⁵⁻² 部分实施方案, 并给出它的定义关系、所有别名关系、字长型以及分辨度.
- R 添加包 FrF2 的函数 FrF2() 可以用于生成 2^k 设计的部分实施方案, 函数 aliases() 可以给出 该方案的全部别名关系. 尝试使用这两个函数.