Deadline: 2022/12/07, 17:00.

1. For what values of r is

$$\int_0^\infty x^r e^{-x} \, dx$$

convergent?

2. Use Comparison Theorem to determine whether the integral converges

(a)
$$\int_{1}^{\infty} \frac{x}{\sqrt{1+x^5}} dx$$
 (b) $\int_{1}^{\infty} 2^{-x^2} dx$ (c) $\int_{0}^{\infty} (1+x^5)^{-\frac{1}{6}} dx$

$$(d) \int_{\pi}^{\infty} \frac{\sin^2(2x)}{x^2} \, dx \quad (e) \int_{1}^{\infty} \frac{\ln x}{x^2} \, dx \quad (f) \int_{e}^{\infty} \frac{1}{\sqrt{x+1} \ln x} \, dx$$

3. (87' Calculus Exam) Determine that the improper integral

$$\int_{-\infty}^{\infty} e^{x - e^x} \, dx$$

is convergent or divergent.

- 4. If f is nonnegative, show that $\int_{-\infty}^{\infty} f(x) dx = L$ if and only if $\lim_{c \to \infty} \int_{-c}^{c} f(x) dx = L$.
- 5. (a) Show that

$$\lim_{b \to \infty} \int_{-b}^{b} \sin x \, dx = 0.$$

(b) Determine whether the integral

$$\int_{-\infty}^{\infty} \sin x \, dx$$

converges.

6. (Cauchy Criterion) Let f(x) be integrable on every bounded intervals. Show that $\int_a^\infty f(x) dx$ converges if and only if for every $\varepsilon > 0$, there exists A > a such that for any s, t > A, we have

$$\left| \int_{s}^{t} f(x) \, dx \right| < \varepsilon.$$

Note: In this problem, you should do the direction (\Rightarrow) without any additional assumption. For the direction (\Leftarrow) , you can do it under an additional assumption that $f(x) \geq 0$ for every $x \geq a$.

7. Prove that if $\int_a^\infty |f(x)| dx$ is convergent, then $\int_a^\infty f(x) dx$ is convergent.

Hint: Use Cauchy Criterion.

8. Find the exact length of the curve

(a)
$$y = \frac{x^5}{6} + \frac{1}{10x^3}, 1 \le x \le 2.$$

(b)
$$x = \frac{y^4}{8} + \frac{1}{4y^2}, 1 \le y \le 2.$$

(c)
$$y = 3 + \frac{1}{2}\cosh(2x), 0 \le x \le 1.$$

(d)
$$y = \ln(1 - x^2), 0 \le x \le \frac{1}{2}$$
.

(e)
$$y = \int_{1}^{x} \sqrt{\sqrt{t} - 1} dt$$
, $1 \le x \le 16$.

9. Find the arc length function for the curve $y = \sin^{-1} x + \sqrt{1 - x^2}$ with starting point (0, 1).