Sniff, Learn, detect: A Lightweight ML-Based Intrusion Detection Method Using Packet Features

Minor Project Research Report

Prepared by

Harshita Kumawat (2022BTECH040)

Kushagra Gupta (2022BTECH051)

(Section – A)

Under the guidance of Dr. Devika Kataria

Submitted in partial fulfillment of the requirements for the course of

Minor Project (PR1103)

Institute of Engineering & Technology (IET)

JK Lakshmipat University

(April 2025)

ABSTRACT

Network sniffing is a technique used to monitor and analyze network traffic by identifying the types of packets, their source and destination IP addresses, ports, and the protocols in use. The effectiveness of packet sniffers can be significantly enhanced by incorporating machine learning algorithms to detect potential cyber-attacks targeting specific hosts.

In this study, live network traffic was captured using a sniffer developed with raw sockets, and packets from a DHCP starvation attack—generated through the Yersinia tool—were collected. The captured packets were stored in PCAP format and subsequently converted into structured CSV datasets for the purpose of attack analysis. Through feature extraction and preprocessing, key attributes such as IP addresses, port numbers, protocol types (e.g., TCP, UDP, DHCP DISCOVER, ICMP), and packet sizes were derived and transformed into suitable inputs for machine learning models.

A Naive Bayes classifier was employed to categorize the packets as either normal or malicious. The study emphasizes enhancing detection accuracy, reducing false positive rates, and improving the adaptability and efficiency of the model. Techniques such as Laplace smoothing, feature binning, and scalable training were used to address the zero-probability problem and ensure model robustness.

To go further that just malicious/benign classification, we will use Decision tree to further analyze components. After classification, Decision Tree is used further analyzing based on entropy or information gain for every feature to identify whether the attack had "Just Started," is "Under Progress," or is in a "Critical" stage. This makes it easier to understand the contribution of features towards the final decision.

This paper proposes a computationally efficient and effective approach for real-time network threat detection. The integration of machine learning into packet sniffing holds significant promise for strengthening network security, particularly in Intrusion Detection Systems (IDS) and broader cybersecurity infrastructures.

INTRODUCTION

In this wide digital era, computer networks are very prone to cyber-attacks as they are exposed to large amount of data. Among these, the DDoS or DHCP starvation or ICMP flooding attacks are the most commons ones.

Traditional Intrusion Detection Systems (IDS) are not that adaptable and scalable. They require manual attention and will not always recognize and detect the modern attack patterns which can be solved using Machine Learning algorithms that is based on learning data to distinguish between normal and anomalous data packets in real-time.

The project aims to enhance packet sniffing and attack detection by:

- Capturing live traffic
- Extracting the useful features from the PCAP file
- Training a machine learning model to classify malicious vs normal packets
- Further using entropy-based Decision Tree (ID3) to determine how severe the attack is.

The final objective is to make a simple framework to detect the novel attack patterns and improve IDS.

PROBLEM STATEMENT

In the evolving field of cyber-security, one of the most challenging issues faced by organization in detection of the Distributed Denial of Service (DDoS) attacks and flooding networks using different type of packets. In this attack, the network gets flooded with extensive traffic (packets) making it to slow down or even crashes the system degrading the performance.

The traditional Intrusion Detection Systems (IDS) used were all used signature based techniques to detect attacks which is unable to detect the novel attacks and recognize patterns. Because of these pre-defined rules, they fail to detect the attack if there is a change in method or pattern of the attack. They can also generate false positives, which means marking normal traffic as an attack or false negatives, which means missing the actual attacks.

Another big challenge is the network traffic is huge and keeps getting larger and complex with increasing digitalization. Analyzing raw packets in such case is a heavy task and timeconsuming, which is not practical in real-life scenario. So there is a need of a framework that is automated, accurate and intelligent enough to analyze the packet traffic and detect is as early as possible.

This project focuses on solving these problems by using machine learning techniques:

- Naïve bayes Classification to predict weather the network packets are normal or malicious based on the features like protocol, SYN flag, and traffic count.
- A Decision Tree model to further classify the level of threat based on its severity, such as weather the attack is just started, in progress or at a critical stage.

By combining both the methods, the system detects the attack and provide accurate insight about the severity of the attack. This helps to improve decision making in real-life scenarios.

DATASET DESCRIPTION

The dataset used in this project consists of network packet data collected from live traffic when there is normal activity and a simulated attack scenario. The attack simulated was a DHCP starvation using Yersinia tool. The packets were captured using the Wireshark tool and traffic was stored in a PCAP format. And for analysis, PCAP file was converted in csv file to use pandas library to preprocess and visualize the data.

DATA COLLECTION PROCESS

- Network traffic was monitored and captured in real-time using Wireshark
- To create a labeled dataset, a DHCP Starvation Attack was executed. This type of attack floods the network with DHCP DISCOVER messages to exhaust IP addresses from the DHCP server. Also, ICMP flooding was done.
- The raw PCAP data was converted to CSV format using Scapy. Key fields like source IP, destination IP, protocol type, source and destination ports were extracted.

FEATURES USED

After cleaning and preprocessing, the dataset is enhanced with following features:

- SYN Packet: Indicating weather the TCP packet has SYN flag set or not.
- src / dst: Source and destination IP addresses.
- proto: Protocol used (TCP, UDP, ICMP, DISCOVER, Other).
- count: Number of packets grouped by src, dst, proto, and SYN flag.
- attack: Binary label indicating whether the traffic is normal (0) or malicious (1).

PURPOSE

- Training and testing machine learning models like Naive Bayes and Decision Trees to classify packets as normal or malicious.
- Understanding patterns in traffic behavior based on the features extracted.
- Simulating the real-world scenarios to evaluate how well the model performs.
- Supporting feature-based classification and making decision based on traffic patterns rather than using pre-defined rules.

By building the dataset from scratch and using real-world traffic, we ensure that the data is customized and relevant for practical security applications.

DATA PREPROCESSING

Data Preprocessing is one of the most important steps while applying machine learning algorithms. In this project, the raw data captured is unstructured, noisy and not directly usable for model. So is processed to make it clean and organized, transforming it into structured format making it effective for classification and attack detection.

The following steps were carried out:

- Conversion to PCAP to CSV using python Scapy library.
- Features are extracted: source and destination IP addresses, protocol type and packet count.
- A binary column for SYN packet was created, where 1 if SYN flag is present, else 0.
- Dropping unnecessary columns.
- Grouping and counting packets based on src, dst, proto, and SYN_Packet, and a count column.
- Encoding categorical data as machine learning model works best with numerical data. proto, src, and dst columns were encoded using label encoding to convert them into numeric values.
- Features like count, proto encoded, and SYN Packet were normalized using minmax scaling to ensure all features were on the same scale.

Following were the outcomes:

- Clean, simplified and structured dataset.
- Reduced Noice and removal of irrelevant data. Clearly defined features.
- Highlight pattern in traffic behavior.
- Dataset prepared for machine learning model.

METHODOLOGY

Here we used 2 algorithms, Naïve Bayes and Decision Tree as:

- Both are simple to understand and implement giving clear reasons for prediction.
- Our dataset was small having basic features, hence complex models are like Random Forest is not needed.
- These models are quick and easy to train and test. Having light weight and suitable for real-time detection.
- The features are easy to handle and understand making the splitting for Decision Tree easier.
- Naïve Bayes and Decision Tree were the right fit for the balance between accuracy, speed and understanding.

NAÏVE BAYES ALGORITHM

- In Naïve Bayes, features like SYN packet, protocol type and count is used to classify the packets being normal or malicious.
- Laplace Smoothing was applied to avoid zero probabilities in conditional feature distributions.
- The classifier worked on the following principle of computing: $P(Attack|Features) \propto P(Attack) \cdot P(SYN|Attack) \cdot P(proto|Attack) \cdot P(count|Attack)$
- Predictions were made for all protocol types: TCP, UDP, ICMP, DISCOVER, Others

DECISION TREE

To gain more information about attack rather than just normal or malicious packets, a Decision Tree is implemented to determine the severity of the attack based on ID3 algorithm (Iterative Dichotomiser 3). ID3 uses entropy and information gain to select the best feature for splitting the data and building a decision/classification tree.

STEPS:

- The count has 3 levels: low, medium and high based on traffic intensity
 - \circ low: count < 0.0005
 - o medium: $0.0005 < \text{count} \le 0.005$
 - \circ high: count > 0.005
- Features used
 - o SYN packet indicating 1 if SYN flag present, else 0.
 - proto_encoded: Protocol type encoded as an integer (e.g., TCP = 0, UDP = 1, ICMP = 2, etc.)
 - o count for intensity of network traffic.
- Training
 - o A Decision Tree classifier is used using Skit-learn library of python.
 - The splitting was done based on entropy using ID3 logic.

- The maximum tree depth was set to 4 to avoid overfitting and maintain interpretability.
- The features used to train are: proto_encoded (encoded protocol type),
 count_binned (traffic volume), and SYN_Packet (SYN flag indicator).

Visualization of tree

- Root node has proto_encoded meaning protocol type.
- o If protocol type is TCP (<= 0.5), all packets are normal.
- And for other protocol types, further checks like count and SYN flag were checked.
- The attack predicted by model is shown in blue
- Many of the branched predict normal traffic due to fewer attack samples.
- o Entropy is low which means the splits are clear and easy
- The protocol type and count are the most important features

RESULTS AND EVALUATION

The goal is to detect weather the packet is normal or malicious based on the machine learning technique Naïve Bayes and computing its severity using Decision Tree. The system was evaluated based on how accurately it could classify the traffic and provide insight to severity of the attack.

ENCODING AND NORMALIZING DATA

NAÏVE BAYES RESULTS

Output:

Note: Some misclassifications occurred due to overlap in feature values for attack and normal packets, which is a limitation of Naive Bayes being a simplistic model assuming feature independence.

DECISION TREE

Decision Tree classifier is using ID3 logic to train processed dataset using features like SYN_Packet, proto encoded, and count. It learned to split on the basis of entropy using protocol types, traffic volume, and SYN flag presence.

- Protocol is the root node.
- The tree was able to correctly flag DISCOVER traffic as an attack.
- All other protocols like TCP, UDP, ICMP, and Other were predicted as normal due to limited attack samples.
- Predictions for each protocol using ID3 Decision Tree Protocol: TCP (0) → V NORMAL Protocol: UDP (1) → V NORMAL Protocol: ICMP (2) → V NORMAL Protocol: DISCOVER (3) → 3 ATTACK Protocol: Other (4) → ✓ NORMAL

CONCLUSION

In this project, we designed and implemented a framework with packet sniffing, machine learning classification and decision tree analysis to detect network attack in real-time.

Initiating from capturing network packets, simulating DDoS and DHCP starvation attacks. The final PCAP file was created, then for analysis, important features like protocol type, SYN flags and packet count were extracted building a custom dataset reflecting real-world traffic. After preprocessing (encoding and normalization) the data is final as input for machine learning model.

A Naïve Bayes classifier was used to classify packets as normal or malicious based on the probability calculations using Laplace Smoothing. Laplace Smoothing helped to handle zero probability problem to detect attack probability based on the given features.

Then further we built Decision Tree (ID3 algorithm) to classify packets and analyze the severity of the attack. Splitting in Decision tree was based on entropy and information gain for making decision by understanding how different features can contribute.

Naïve Bayes provided simple and quick results for binary classification. And Decision Tree further break it down in stages like normal, attack just started, attack in progress or critical attack based on feature threshold.

So, finally this project shows, how combining statistical model and machine learning algorithm can help create more intelligent and detailed Intrusion Detection System (IDS). This method will adapt new attack pattern and improve real-time network defense making it more efficient and contributing to modern cyber security solutions.

LEARNING OUTCOME

Following is the learning we achieved:

- Understood the network traffic and how different type of traffic behave (TCP, UDP, ICMP, DHCP DISCOVER).
- Data processing skills were improved and how cleaning, transforming, encoding, and normalizing real-world data is important for analysis and suitable for machine learning models.
- Applied Naïve bayes and Decision Tree algorithms and solved the problems like zero probability problem using Laplace Smoothing and splitting in Decision Tree.
- Identified the most relevant features that will be useful to analyze the traffic behavior so that better model performance can be there.
- Developed an automated framework as a real-world solution adapting the traditional Intrusion Detection System (IDS).

REFERENCES

- 1. Gregorczyk, M., Żórawski, P., Nowakowski, P., Cabaj, K. and Mazurczyk, W., 2020. Sniffing detection based on network traffic probing and machine learning. IEEE Access, 8, pp.149255-149269.
- 2. Rahman, O., Quraishi, M.A.G. and Lung, C.H., 2019, July. DDoS attacks detection and mitigation in SDN using machine learning. In 2019 IEEE world congress on services (SERVICES) (Vol. 2642, pp. 184-189). IEEE.
- 3. SEED Labs Network Security Labs: Sniffing and Spoofing Lab. SEED Project, Syracuse University. Available at: https://seedsecuritylabs.org/Labs 20.04/Networking/Sniffing Spoofing/
- 4. Wenliang (Kevin) Du, Computer & Internet Security: A Hands-on Approach, 3rd Edition, Syracuse University, 2023

APPENDICES

NAÏVE BAYES HAND CALCULATION

			9
# Implementing on datase	F. (1)	X negro. = X-X wind	
Syn d. IP Dest. IP Brote	Count	Attack	X MAX - X MAN
1 Hz-145-1-2 HZ-165-1-1 TCP	500	Muk	Descripe 8 8 ← neglecting theore.
0 142-168-1-3 142-168-1-1 UDP	700	Normal	Syn O 1
1 192-168-1-5 192-168-1-1 1CMP	200	-	Boute IP 8 8 + neglecting
O 140 -168-1-6 142-168-1-1 TEP	10	N	
0 191-165-1-7 197-165-1-1 TCP	3	A	Count 3 700
0 192-168-1-9 192-168-1-1 Corp	310	2	Normalizing
(1000	20	10	Syn Source 20 Prob. Count habel
abelling the outsteet			1.0 0.0 0.00 0.43 0
of Sym packet is a class 0.		2.	Normalizing Sign Source 24 Prob. Count Askel 10 0.0 0.00 0.002 1.0 0.48 0.00 1.0 1.0 0.48 0.00 1.0 1.0 0.48 0.00 0.010 0.0 0.67 0.0 0.010 0.0 0.71 0.0 0.010 0.0 0.71 0.0 0.024 0.0 0.10 0.024 Step-4 J Compute prior probabilities
) If ign = s and count > 100 (Dos attack)	+ Attack		1.0 0.48 1.0 0.283
" If proto = ICMP 1 count >150	+ Attack	- 1	0:0 0:41 0:0 0:010
" UDM + high + attack.		-	1.0 0.85 0.5 0.426
Else Normal.			0.0 . 1.00 01.0 0.024
" Convailing the categorical data in	to nume	rual.	Step. 4 & compute prior probabilities
Map & TOP + O , USP = 3 , ICMP	-12		" How likely each class appear"in deleaset
Attack +1 and Normal +0.			Plattack) = No. of attack 5 4 = 0.5
and distination = 8	1516,45	=/-	P(Nomal) = 4 = 0.5
So, our updated dataset will	be as	1-	The state of the s
A Land of the land		3	Step-5 compute conditional prob. (likelihoods)
	t Attack	K.	P(feeture class).
1 0 8 0 500	1		P(x; y) = cound (x; y)
1 2 2 4	1		Total (curt (y)
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1		(5) ((((((((-
0 4 9 0 10	0	2	(1) For SYN feature (without smooting)
	0		P(Sm=1 Atlack) = 4 = 1
0 5 8 0 3	0		(d.) To avoid the O out 1:12
1 6 8 1 300 0 4 8 2 20	-		(2.) To avoid the O probability, we will use laplace sure
0 7 8 2 20	0:		well use laplace suno smoothing (x=1)
Step-9 him at	and and		(xily) = count (xily) +0
Step-2 Normalize Data			Total count (Y) +a. N
4 Using nun-max scaling.			Here, N = binary features of Syn
		9	(0,1) = 3
1			-

```
Now again Calculate
                                          of How we will predict whether's
      P(syn=1 | attack) = 4+1
                                          it is attack packet or not.
                                            - Celculate
     P(34N=0 \mid attack) = \frac{O+1}{4+1\times 2} = \frac{1}{6} \approx 0.167
                                            P(A) Features) - P(FIA) x P(A)
    P(Poo = 0 | att.) = 2+1 = 3 = 0.4286
                                            b ( w ( t) = b ( t | m) x b ( m)
                   U+1×3
    P(P=0| N) = 2+1 = 0.42
                                          of P(AIF) > P(NIF) - attack
                                         cuit P(NIF) > P(AIF) + normal
    P(P=11A) = 1+1 2 0.28
    P(P=0(N) = 0.28
                                         Eg. + SyN=1, Proto-2, Count +0.8
    P(P=21A) = 1+1 = 0.28
                                        Calculate + P(A) & P(N) F)
     P(P=2 | N) = 0.28
                                            P(A) = 0.5
                                           P(N) = 0.5
  P(SYN=1 | N) = 1+1 = 0.33
                                           P(SYN=1 | A) = 0.83
 P(SYN=0/N) = 3+1 = 0.00
                                           P(P=2 | A) = 0.28
                                                                     Attack.
                                           P(c>00 (A) = 0.833
 a Now for count, we have to choose the
                                          P(54N=1|N) = 0.33
 threshold.
 + observing the dataset.
                                          P(0=2 1N) = 0.28
                                          P(C>20/N) = 0.166
   Attack -> 2 500, 700, 200, 300} -> 20
  Nosumal + {5,10,3,20} + 520
                                         P(A|F) = 0.83 x 0.28 x 0.833 x 0. 5
  + 20 as threshold value
                                                 = 0.096
                                         6 (N|t) = 0.33 x 0.88 x 0.186 x 0.2
Now for count -
  4 low ( = 20)
                                                   > 0.0076
         4 attack + 0+1 = 0.166
                                         here P(AIF) > P(NIF)
                   4+2
         4 Normal + 4+1 = 0.833
                                               0.096 > 0.0076
-) High (>20)
                                          # Attack
      4 attack -1 4+1 = 0.833
                 4+2
      4 Namal + 0+1
                      = 0.166
                 4+2
```

DECISION TREE HAND CALCULATION

	De	cision	True	Algosutem	H(S) = - (2/12) log2 (2/12) + (2/12) log2 (2/12)
	Decision True Algorithm Dataset for analysis:				+ (2/12) log2 (2/12) + (6/12) log2 (6/12)
ı	for analysis!			1	=)-[0.1667 (-2.585) + 0.1667 (-2.585)
1	Sym	Proto	Count	label	+0.1667(-2.585)+(0.5)(-1)]
ı	1	ТСР	50	A Start	=) -[-0.4308-0.4308-0.4308-0.5]
1	1	ТСР	120	A in progre	
	1	Тер	300	A critical	=) 1=7978 -7924(3)
	0	TCP	5	N	Calculate Information gain for
	0	ТСР	10	N	each potential Split.
	0	900	2	N	(t) Priotocol
	0	UDP	3	N	
	0	ICMP	1	N	TCP > 7 (total)
	0	Jemp	2	N	4 2 A Start, 2 critical 4 2 Priogress, 2 Nomal
	,	ТСР	40	A staut	ODP & ICMP - age of all some
	,	Тер	200	A en pero.	, w, entropy of
	,	Тср	350	A critical	H(TCP) = -[(2)7) logo(2/4) + (2/7) logo (2/2)
					+(2/7) log, (2/7) + (2/7) log, (2/4)]
	Count -> low < 100				= 1.8424
	Medium + 100 - 250			10-520	weighted average
	High > 250			0	4 Total TCP + 7, UDP = 2, ICMD -12
					Coral Cotal Samples = 12
	consent categorical to numerical.			o numerica.	→ (7/12) (1.8424) + (2/12) (0) +
	TCP = 0 A Stand = 0				(7/12)(0)
	ICMP = 2 A Critical + 2				₹ 1.01.41
	Normal - 3				Information gain grom (1)
	» Calculate Entropy of the Root wode			the Root woods	In (Protocol) = H(s) - 1.0747
	H(s) = - E (pi + log2 (pi)			log- loi)	= 1.7924-1.0747
	Total S + 12				= 0.7177
	Atlact stand -12				
	Atlack In prog. +2				
	OHLACK Contical + 2				
	Normal + 6			Carle Control	
	No. of Concession, Name of Street, or other party of the last of t				

H (TCP) = 1.8424 (TCP) Now again calculate entropy, where count (= 100) Top is there. Needs split Needs split So, total samples having TCP as proto. are f. Now for (count = 100) (+) SYN (1.) Syn Split sport progress critical SYN=1 +6 (2,2,2) Syn = 1 + 2 (both start) Syn=0+1 (Normal) Syn = 0 + 1 (Normal. H(syn=1) = 1.5857 from pres. H(syn=1) = 0 H(syn =0) = 0 H(syn=0) = 0 changes will be now. In = perfect split. weighted = (6/7) (1.585) = 1.3586 IG = H(TCP) - 1.3586 (count = 100) = 1.8424 - 1.35 86 Syn= 1 Syn=0 = 0.4838 (normal) (Attack Start) (2.) count. count = 100 + 3 (2 Start, 1 Normal) Now for count (>100) - definately count 7100 - 4 (2 Progress, 2 critical) there well be attack. So, for split we well take new H(=100) = - [(2/3) log, (2/3) + (1/3) log, (1/3)] threshold, as 275 H (>100) = - \$ (2/4) Log , (2/4) + (2/4) Log , (2/4) from here 1-(=100) = 0.9183 H(>100)=1.0 H(>100) = 1.0 to Possible Split. wighted = (3/7)(0.9183) + (4/7)(1.0) count (= 275) = 2 -> both & progress e 0.9656 count (> 245) = 2 + both A critical IG = 1.8424 - 0.9656 = 0.8768 So both are same, then In = perfect split. Here Its (count) "is higher so. TCP branch split on count

