	9 13			_	$\frac{1}{2} \sin(2\theta) \sin(\phi) \cos^{2}(\phi)$	$\sqrt{7}$	$\sqrt{35}$
11	M_{11}	14	3	-1	$\sqrt{\frac{21}{8}}\sin(\theta)(5\sin^2(\phi)-1)\cos(\phi)$	$\frac{1}{\sqrt{7}}$	$\sqrt{rac{45}{224}}$
12	K_9	15	3	0	$\frac{\sqrt{7}}{2}\sin(\phi)(5\sin^2(\phi)-3)$	$\frac{1}{\sqrt{7}}$	$\frac{1}{\sqrt{7}}$
13	$L_{ exttt{10}}$	13	3	1	$\sqrt{\frac{21}{8}}\cos(\theta)(5\sin^2(\phi)-1)\cos(\phi)$	$\frac{1}{\sqrt{7}}$	$\sqrt{rac{45}{224}}$
14	N_{12}	11	3	2	$\frac{\sqrt{105}}{2}\cos(2\theta)\sin(\phi)\cos^2(\phi)$	$\frac{1}{\sqrt{7}}$	$\frac{3}{\sqrt{35}}$
15	P_{14}	9	3	3	$\sqrt{rac{35}{8}}\cos(3 heta)\cos^3(\phi)$	$\frac{1}{\sqrt{7}}$	$\sqrt{\frac{8}{35}}$
16	ø	17	4	-4	$\frac{3}{8}\sqrt{35}\sin(4\theta)\cos^4(\phi)$	$\frac{1}{3}$	Ø
17	Ø	19	4	-3	$\frac{3}{2}\sqrt{\frac{35}{2}}\sin(3\theta)\sin(\phi)\cos^3(\phi)$	$\frac{1}{3}$	Ø
18	ø	21	4	-2	$\frac{3}{4}\sqrt{5}\sin(2\theta)(7\sin^2(\phi)-1)\cos^2(\phi)$	$\frac{1}{3}$	Ø
19	ø	23	4	-1	$\frac{3}{4}\sqrt{\frac{5}{2}}\sin(\theta)\sin(2\phi)(7\sin^2(\phi)-3)$	$\frac{1}{3}$	Ø
20	ø	24	4	0	$\frac{3}{8}(35\sin^4(\phi)-30\sin^2(\phi)+3)$	$\frac{1}{3}$	Ø
21	Ø	22	4	1	$\frac{3}{4}\sqrt{\frac{5}{2}}\cos(\theta)\sin(2\phi)(7\sin^2(\phi)-3)$	$\frac{1}{3}$	Ø
22	Ø	20	4	2	$rac{3}{4}\sqrt{5}\cos(2 heta)(7\sin^2(\phi)-1)\cos^2(\phi)$	$\frac{1}{3}$	Ø
23	Ø	18	4	3	$\frac{3}{2}\sqrt{\frac{35}{2}}\cos(3\theta)\sin(\phi)\cos^3(\phi)$	$\frac{1}{3}$	Ø
24	Ø	16	4	-4	$\frac{3}{8}\sqrt{35}\cos(4\theta)\cos^4(\phi)$	$\frac{1}{3}$	Ø

	B		de]		$Y_\ell^m (\equiv Y_{ACN})$	Conversion factors	
ACN ÷	FuMa ¢	SID ¢	ℓ +	<i>m</i> *	Spherical harmonic in N3D +	to SN3D \$	to maxN* ^[note 2]
0	W_{0}	0	0	0	1	1	$\frac{1}{\sqrt{2}}$
1	Y_2	2	1	-1	$\sqrt{3}\sin(heta)\cos(\phi)$	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$
2	Z_3	3	1	0	$\sqrt{3}\sin(\phi)$	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$
3	<i>X</i> ₁	1	1	1	$\sqrt{3}\cos(heta)\cos(\phi)$	$\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$
4	V_8	5	2	-2	$\frac{\sqrt{15}}{2}\sin(2\theta)\cos^2(\phi)$	$\frac{1}{\sqrt{5}}$	$\frac{2}{\sqrt{15}}$
5	T 6	7	2	-1	$\frac{\sqrt{15}}{2}\sin(\theta)\sin(2\phi)$	$\frac{1}{\sqrt{5}}$	$\frac{2}{\sqrt{15}}$
6	R_4	8	2	0	$\frac{\sqrt{5}}{2}(3\sin^2(\phi)-1)$	$\frac{1}{\sqrt{5}}$	$\frac{1}{\sqrt{5}}$
7	S_5	6	2	1	$\frac{\sqrt{15}}{2}\cos(\theta)\sin(2\phi)$	$\frac{1}{\sqrt{5}}$	$\frac{2}{\sqrt{15}}$
8	U_7	4	2	2	$\frac{\sqrt{15}}{2}\cos(2\theta)\cos^2(\phi)$	$\frac{1}{\sqrt{5}}$	$\frac{2}{\sqrt{15}}$
9	Q_{15}	10	3	-3	$\sqrt{rac{35}{8}}\sin(3 heta)\cos^3(\phi)$	$\frac{1}{\sqrt{7}}$	$\sqrt{rac{8}{35}}$
10	O ₁₃	12	3	-2	$\frac{\sqrt{105}}{2}\sin(2\theta)\sin(\phi)\cos^2(\phi)$	$\frac{1}{\sqrt{7}}$	$\frac{3}{\sqrt{35}}$
11	M_{11}	14	3	-1	$\sqrt{\frac{21}{8}}\sin(\theta)(5\sin^2(\phi)-1)\cos(\phi)$	$\frac{1}{\sqrt{7}}$	$\sqrt{rac{45}{224}}$
12	K_9	15	3	0	$rac{\sqrt{7}}{2}\sin(\phi)(5\sin^2(\phi)-3)$	$\frac{1}{\sqrt{7}}$	$\frac{1}{\sqrt{7}}$ en.wikipedia.org

$$W = S \cdot rac{1}{\sqrt{2}}$$

 $X = S \cdot \cos \theta \cos \phi$

 $Y = S \cdot \sin heta \cos \phi$

 $Z = S \cdot \sin \phi$

Being omnidirectional, the W channel always gets the same consangles. So that it has more-or-less the same average energy as the by about 3 dB (precisely, divided by the square root of two). The the polar patterns of figure-of-eight microphones (see illustration of their value at θ and ϕ , and multiply the result with the input signal in all components exactly as loud as the corresponding microphone

Virtual microphones [edit]

The B-format components can be microphones with any first-order produced cardioid, hypercardioid, figure-of-pointing in any direction. Several parameters can be derived at the stereo pairs (such as a Blumlein)