R Lesson 4: Data Wrangling

vanderbi.lt/r

Steve Baskauf

Recommended for this lesson:

URLs in R script for this week

- R For Data Science (free online); chapter links in script
- Data Carpentries lesson "Manipulating, analyzing and exporting data with tidyverse" (also free online)

Options for recording data

Cockroach electroretinogram

experiment

- See https://youtu.be/aAdnZsggZZw
- Difference in ability to detect colors of light

Experimental design

- two factors:
 - color (red, green, or blue)
 - block (24 individual roach measurements labeled a through x)
- one measured value (response in volts)

How to record in notebook (or Excel)?

Logical method

- columns for color
- rows for roach measured

	Α	В	С	D	
1	block	blue	green	red	
2	a	7.6	9.1	1.9	
3	b	5.6	6.4	2.6	
4	С	14	1.2	3.4	
5	d	6.8	5.7	0.8	
6	е	18.5	17.7	5.3	
7	f	7.2	6.4	1.5	
8	g	19.5	16.6	4.5	
9	h	10.5	8.3	2.6	
10	i	5.27	4.9	1.16	
11	j	6	1	1.3	
12	k	8	1	2	
13	I	7.5	3	2	
14	m	23	23	6.7	
15	n	5.8	6.13	1.44	
16	О	11	9	2	
17	р	9	2	2	
18	q	6		1	
19	r	6	4.5	1	
20	s	9.5	10	1.5	
21	t	8	4	2	
22	u	25.6	27.2	4.1	
23	v	19	17	4.5	
24	w	9	9.8	3.4	
25	x	6.8	6.8	1.1	
26					
07					

Another method

	Α	В	С	D	Е	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	
1	color	a	b	С	d	е	f	g	h	i	j	k	l	m	n	o	р	q	r	s	t	u	v	w	х	
2	blue	7.6	5.6	14	6.8	18.5	7.2	19.5	10.5	5.27	6	8	7.5	23	5.8	11	9	6	6	9.5	8	25.6	19	9	6.8	
3	green	9.1	6.4	1.2	5.7	17.7	6.4	16.6	8.3	4.9	1	1	3	23	6.13	9	2	4	4.5	10	4	27.2	17	9.8	6.8	
4	red	1.9	2.6	3.4	0.8	5.3	1.5	4.5	2.6	1.16	1.3	2	2	6.7	1.44	2	2	1	1	1.5	2	4.1	4.5	3.4	1.1	
5																										
6																										

- columns for roach measured
- rows for color

Also logical, although probably less convenient

Tidy Data (tidyr)

"Tidy data" is a buzzword

- Made up by Hadley Wickham, R guru.
- Rules:
 - Each variable must have its own column.
 - Each observation must have its own row.
 - Each value must have its own cell.

See https://r4ds.had.co.nz/tidy-data.html

What are the variables in the roach experiment? variables

- block and color are factors (discontinuous independent variables)
- response is a continuous dependent variable

observations

 So block, color, and response should be in separate columns if data are tidy.

Pre-buzzword

- This format has been required by stats software for many years.
- Organizing factors in columns rather than mixing them in rows and columns makes them "grouping variables", since the software can use those columns to group the data in various ways
- "Tidy data" is a handy term for this format, so we'll use it.

"Tidying" with tidyr: pivot_longer()

- "tidy" form = "long", "notebook" form ="wide"
- key = column to form from headers, value = data

Examples with ERG data

Untidying data

- One can use the pivot_wider() function to reverse the tidying process.
- Result not good for analysis purposes, but sometimes easier for data entry.

Modifying tibbles (dplyr)

dplyr functions

- filter() subsets rows
- select() subsets columns
- mutate() calculates new columns or changes existing ones

Examples with schools data

Joins

- Joins merge data from multiple tables (tibbles)
- Keys are the columns used to match table rows
- Inner join only outputs rows with matching keys

• Full outer join includes rows that don't match (with NA values inserted)

+1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	1 x1 2 x2 3 x3 4 NA	y1 y2 NA y3

- Many other permutations
- See https://r4ds.had.co.nz/relational-data.html for explanation and examples (diagrams from there)

Join format

- First two arguments are the two tibbles to join
- by value are columns to join by; use = if names differ
- suffix value is added to columns with duplicate names
- other join types: inner_join(), left_join(), ...

piplines (magrittr)

Classic function/variable interaction

Piping

 output of one function goes directly into input of next

f A

• intermediate storage objects not necessary

Examples

• Classic

```
x <- function_a(w, p)
y <- function_b(x, q)
z <- function c(y, r)</pre>
```

• Piping

```
z <- w %>%
    function_a(p) %>%
    function_b(q) %>%
    function_c(r)
```

 Notice that no intermediate storage object needs to be input into the piped function

Examples with schools data