

NumPy and Image Basics

- Section Goals
 - Understand how to work with the basics of NumPy
 - Understand how to create arrays
 - Slice and index elements from arrays
 - Open and display images with NumPy

Let's get started!

What is an image?

- Before we talk about how to use numpy with image files, let's first discuss how computers handle images.
- Let's imagine we wanted to build software that could sort out mail based on the zip code of the address.

- Often mail is handwritten, which means we would need to begin to understand how to use computer vision to actual read in image data of these handwritten numbers.
- How does a computer represent image data?

 Let's imagine we have a simple image of a handwritten number:

1

Each single digit image can be represented as an array

For example, here a number is 28 by 28 pixels

• Then how dark a pixel should be can be represented as a value between 0 and 1.

 Often the default images have values between 0 and 255

 The range 0 to 255 has to do with how computers store 8-bit numbers.

 But you can always divide all the values by 255 to normalize to between 0 and 1

- Now that we've understood how grayscale images can be represented as arrays, what about color images?
- Color images can be represented as a combination of Red, Green, and Blue.

 Additive color mixing allows us to represent a wide variety of colors by simply combining different amounts or R, G, B.

RGB allows to produce a range of colors

 Later on in the course we will learn about alternative color mappings that can be applied to images.

- Each color channel will have intensity values.
- You may have already seen this sort of representation in other software with RGB sliders.

- The shape of the color array then has 3 dimensions.
- Height
- Width
- Color Channels

- This means when you read in an image and check its shape, it will look something like:
 - o (1280,720,3)
 - o 1280 pixel width
 - 720 pixel height
 - o 3 color channels

- This means when you read in an image and check its shape, it will look something like:
 - o (720,1280,3)
 - 720 pixel height
 - **1280** pixel width
 - 3 color channels

 Keep in mind the computer won't "know" a channel is Red, it just knows that there are now 3 intensity channels.

- The user needs to dictate which channel is for which color.
- Each channel alone is essentially the same as a grayscale image.

- Let's explore this further with Numpy and Python!
- I encourage you to also check out the Wikipedia article on RGB color channeling for more interesting details!

NumPy Arrays

Images and NumPy

Numpy and Images Assessment Overview

Numpy and Images Assessment Solutions

