Demonstre a identidade de Euler $e^{i\pi} + 1 = 0$.

Consideremos a função $f(\theta) = \frac{\cos \theta + i \sin \theta}{e^{i\theta}}.$

$$f'(\theta) = \frac{e^{i\theta}(-\sin\theta) + e^{i\theta}\sin\theta}{e^{2i\theta}} = 0$$

Pela derivada ser nula, f é constante.

Tomemos $\theta = 0$, f(0) = 1, logo $\cos \theta + i \sin \theta = e^{i\theta}$.

Seja $\theta=\pi\colon -1=e^{i\pi},$ logo:

$$e^{i\pi} + 1 = 0$$

Documento compilado em Thursday $13^{\rm th}$ March, 2025, 20:55, tempo no servidor.

Última versão do documento (podem haver correções e/ou aprimoramentos): "bit.ly/mathematicalramblings_public".

Comunicar erro: "a.vandre.g@gmail.com"