Barème.

- Calculs : chaque question sur 2 point, total sur 30 points, ramené sur 5 points, +5%.
- Problèmes : chaque question sur 4 points, total sur 136 points (V1) ou 128 points (V2), ramené sur 15 points, +45% (V1) ou +85% (V2).

Statistiques descriptives.

Soit
$$\varphi : \mathbb{R} \to \mathbb{R}, \ x \mapsto \min\left(\frac{1}{10} \lceil 10x \rceil; 20\right).$$

	Calculs	Problème V1	Problème V2	Note finale
Transformation	c	p_1	p_2	$\varphi\left(1,05\frac{5c}{30}+1,45\frac{15p_1}{136}+1,85\frac{15p_2}{128}\right)$
Note maximale	30	75	85	20+
Note minimale	4	19	21	5, 2
Moyenne	$\approx 15,81$	$\approx 44,20$	$\approx 42,75$	$\approx 10,42$
Écart-type	$\approx 5,98$	$\approx 14,59$	$\approx 18,74$	$\approx 3,44$
Premier quartile	12	33	22,5	7,85
Médiane	15	42,5	41, 5	9,7
Troisième quartile	20,5	55, 5	49	12,55

Remarques générales.

- Pour une fois, l'exercice «vu en TD» n'a pas été horriblement raté ©.
- Trop de récurrences sont bâclées. Vous devez expliciter l'hypothèse, le type de récurrence...

Étude de deux suites récurrentes (V1).

Une erreur récurrente la confusion entre la suite $(u_n)_{n\in\mathbb{N}}$ et le terme général u_n . Ce dernier est un réel. Écrire $u_n\in S$ est au mieux maladroit, et souvent compté comme une erreur.

La première partie était très simple. C'étaient presque 20 points cadeaux.

- 1) Vous n'avez pas $S \subset \mathbb{R}$.
 - La définition de «S est un espace vectoriel» n'est pas «S est stable par combinaisons linéaires».
- 3a) On vous faisait détailler le début de la synthèse ici.
 - Certains se sont compliqué la vie et ont exprimé α en fonction de $u_2, u_3...$ Vous n'êtes pas des Shadoks :
- **3b)** Vous devez annoncer le type de récurrence effectuée.
- 4 La liberté de cette famille était obtenue en 2b).
- **5a)** Une \mathfrak{Z} HORREUR \mathfrak{Z} : si $u_n \xrightarrow[n \to +\infty]{} \ell$, par passage à la limite, $\ell = (n+1)\ell + \ell$.

Du même acabit : « $u_n \xrightarrow[n \to +\infty]{} \ell$, donc $nu_n \xrightarrow[n \to +\infty]{} n\ell$ »

- **5b)** La réponse était à justifier.
- **6-7)** Une suite strictement positive peut ne pas avoir de limite...

Une suite strictement croissante peut ne pas tendre vers $+\infty$.

Il suffisait de voir que (x_n) et (y_n) prenent des valeurs supérieures à 1 à partir d'un certain rang pour minorer x_n et y_n par n+1...

- **8-15)** $a_{n+1} = z_{2n+2}$ et $b_{n+1} = z_{2n+3}$...
- 17) Une \mathbb{Z} HORREUR \mathbb{Z} : $x_n \xrightarrow[n \to +\infty]{} \theta y_n$.
- **18)** $z_n \xrightarrow[n \to +\infty]{} \theta$ donne bien $\varepsilon_n = o(y_n)$. Mais comme (y_n) n'est pas bornée, cela ne mène à rien!

Étude d'un endomorphisme (V1).

Avec $A = \begin{pmatrix} -2 & 1 \\ 1 & -2 \end{pmatrix}$, vous n'avez surtout pas le droit d'écrire g = A! À gauche : une fonction, à droite : une matrice!

- 1) Il ne suffit pas de mettre g sous la forme $X \mapsto AX$. Encore faut-il rappeler la propriété du produit matriciel utilisée.
- 2) Vérifiez toujours vos calculs.
- 4) Vous devez déterminer l'existence de α et de β . Vous devez donc les introduire correctement.

Nulle unicité à montrer ici, procéder à une analyse est au mieux maladroit, au pire erroné (si vous utilisez sans justification l'unicité de α, β).

Ceux qui n'ont pas explicité α et β ont souvent été bloqués pour la suite.

5) Après avoir écrit $G_{\beta} = \text{Vect}\left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}\right)$, n'oubliez pas de justifier que la famille exhibée est libre.

Étude d'une suite définie implicitement (V2).

- 1a) Encore une fois (après combien de rappels?) : le TVI ne donne que l'existence d'une solution. Utilisez le théorème de la bijection (strictement monotone), en justifiant bien la monotonie STRICTE de la fonction étudiée.
- 1c) La monotonie de la suite de terme général $\sum_{k=0}^{p} x_{p}^{k}$ est loin d'être évidente.
- **1d)** $0 < x_p < 1$ ne donne pas $x_p^p \xrightarrow[p \to +\infty]{} 0$. Pensez à $1 \frac{1}{p}!$

3a-4a) Vous oubliez tout le temps la question de la définition des suites manipulées.

4e) Il convenait de justifier que $\ell \geqslant 0$.

Images et noyaux emboîtés (V2).

- **1a)** Il convenait de justifier la linéarité de u^n .
- **1b)** Pas de récurrence ici.
- **2a)** La croissance de (G_n) ne donne pas que G est un sev de E.
- **2c)** Il convenait de justifier que u^n est un automorphisme, pour tout $n \in \mathbb{N}$.

Et vu qu'il me reste un peu de place, un peu de culture...

