Networks compression.

Pruning, trained quantization, matrix factorization.

Зачем сжимать нейросети?

- нужно много вычислений и памяти
- глубокие нейронные сети на мобильных устройствах

Pipeline

Pruning

Pruning

- удаление весов
- удаление нейронов
 - о по весу
 - по выходу
 - похожие

Trained Quantization and Weight Sharing

Trained Quantization and Weight Sharing

Clustering. Centroid initialization

k-means

$$\underset{C}{\operatorname{arg\,min}} \sum_{i=1}^{k} \sum_{w \in c_i} |w - c_i|^2$$

- Forgy
- Density-based
- Linear

Huffman coding

Network	Top-1 Error	Top-5 Error	Parameters	Compress Rate
LeNet-300-100 Ref	1.64%	-	1070 KB	
LeNet-300-100 Compressed	1.58%	-	27 KB	40 ×
LeNet-5 Ref	0.80%	-	1720 KB	
LeNet-5 Compressed	0.74%	-	44 KB	39 ×
AlexNet Ref	42.78%	19.73%	240 MB	
AlexNet Compressed	42.78%	19.70%	6.9 MB	$35 \times$
VGG-16 Ref	31.50%	11.32%	552 MB	
VGG-16 Compressed	31.17%	10.91%	11.3 MB	49 ×

Matrix factorization

Neural Network Matrix factorization(NNMF)

- ullet N x M data array $X_{n.m}$
- latent features $U_n \in \mathbb{R}^D$ $U_n' \in \mathbb{R}^{D' \times K}$

$$\hat{X}_{n,m} := \hat{X}(U_n, V_m, U'_n, V'_m) := f_{\theta}(U_n, V_m, U'_{n,1} \circ V'_{m,1}, \dots, U'_{n,D'} \circ V'_{m,D'})$$

$$\sum_{(n,m)\in J} (X_{n,m} - \hat{X}_{n,m})^2 + \lambda \left[\sum_{n} ||U_n'||_F^2 + \sum_{n} ||U_n||_2^2 + \sum_{m} ||V_m'||_F^2 + \sum_{m} ||V_m||_2^2 \right]$$

	Edges	27144	52900	100000	1000209
Table 1: Data ser	ts and their di	mensions	. The mark	c "-" highlig	that the array is square.

230

Protein ML100k ML1m

6040

3900

943

1682

NIPS

Vertices X 234

Vertices V -

	NIPS	Protein	ML-100K		ML-1M
RFM (3) PMF (3) PMF (60) BiasedMF (60) NTN (60) NNMF (3HL) NNMF (4HL)	0.110 0.130 0.062 0.065 0.048 0.040	0.136 0.139 0.104 0.111 0.071 0.065	0.952 0.911 0.910 0.907 0.903	PMF (60) LLORMA-GLOBAL I-RBM BiasedMF (60) NTN (60) LLORMA-LOCAL I-AutoRec NNMF (3HL)	0.883 0.865 0.854 0.852 0.852 0.833 0.831
				NNMF (4HL)	0.843

Table 2: Results across the four data sets for a variety of techniques. The token (D) specifies that a rank-D factorization was used. The token (nHL) specifies that n hidden layers were used.

Источники

- https://arxiv.org/pdf/1510.00149.pdf
- https://arxiv.org/pdf/1511.06443.pdf
- https://www.oreilly.com/content/deep-matrix-factorization-using-apache-mxnet/
- https://towardsdatascience.com/pruning-neural-networks-1bb3ab5791f9