Shortest Path Trees and Reach in Road Networks

Louis Abraham & Sayuli Drouard

Our subject: shortest paths

- Given a starting point, where do *t* hours on a shortest path bring you?
- What if your **destination** is at least *t*' **hours** away?
- Study of the notion of reach (option B)

Method for Part I

• Given a starting point, where do *t* hours on a shortest path bring you?

Dijkstra implemented with binary

• What if your **destination** is at least *t*' hours away?

Compute shortest paths using Dijkstra, then select vertices further away than *t*', and backtrack to a *t* distance

Optimization

Dijkstra stop

• Dijkstra memoization

Distance sorting

Online Dijkstra

The notion of reach

 T_{out} = set of points from problem (1.3)

 S_{in} : same definition as T_{out} with the converse graph

If reach(v) < 1 hour:

NO shortest path joins S_{in} and T_{out} through v

If $reach(v) \ge 2$ hours:

There MUST be a shortest path joining S_{in} and T_{out} through v

The algorithm: estimating **reach(v)**

Reach in France

Reach in France

Thank you.