Aprendizaje Estadístico.

Máster Interuniversitario en Tecnologías de Análisis de Datos Masivos: Big Data Curso 2021/2022

Segunda actividad de evaluación de prácticas

Método de descenso de gradiente

Considera un modelo de regresión lineal simple $Y = \beta_0 + \beta_1 X_1 + \epsilon$. En primer lugar, simula una muestra con n = 100 observaciones, (y_i, x_i) , del modelo de regresión lineal simple con parámetros β_0 y β_1 dados. Para ello, genera en primer lugar los valores x_i a partir de una distribución uniforme. A continuación genera los errores del modelo, ϵ_i , a partir de una distribución normal de media 0 y varianza σ^2 . Los valores y_i se calcularán entonces como

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i.$$

Aproxima los parámetros del modelo mediante el método de descenso de gradiente (también conocido como batch gradient descent). Para ello debes minimizar la función:

$$J(\beta_0, \beta_1) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2.$$

El método de gradiente para minimizar la función $J(\beta_0, \beta_1)$ se puede escribir:

Algoritmo: Método de descenso de gradiente para $J(\beta_0, \beta_1)$ Dado $(\hat{\beta}_0, \hat{\beta}_1)$ y t > 0repite $\hat{\beta}_0 = \hat{\beta}_0 + t \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)$ $\hat{\beta}_1 = \hat{\beta}_1 + t \sum_{i=1}^n x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)$ hasta que se cumpla el criterio de parada

Prográmalo en R y haz una comparativa de los resultados obtenidos con los que devuelve la función 1m.