Lecture 12: Algorithms for HMMs

Nathan Schneider

(some slides from Sharon Goldwater)

ENLP | 17 October 2016

Recap: tagging

- POS tagging is a sequence labelling task.
- We can tackle it with a model (HMM) that uses two sources of information:
 - The word itself
 - The tags assigned to surrounding words
- The second source of information means we can't just tag each word independently.

Local Tagging

Words:

Possible tags: (ordered by frequency for each word)

<s></s>	one	dog	bit	
<s></s>	CD	NN	NN	
	NN	VB	VBD	
	PRP			

- Choosing the best tag for each word independently, i.e. not considering tag context, gives the wrong answer (<s> CD NN NN </s>).
- Though NN is more frequent for 'bit', tagging it as VBD may yield a better sequence (<s> CD NN VB </s>)
 - because P(VBD | NN) and P(</s> | VBD) are high.

Recap: HMM

- Elements of HMM:
 - Set of states (tags)
 - Output alphabet (word types)
 - Start state (beginning of sentence)
 - State transition probabilities $P(t_i \mid t_{i-1})$
 - Output probabilities from each state $P(w_i \mid t_i)$

Recap: HMM

• Given a sentence $W=w_1...w_n$ with tags $T=t_1...t_n$, compute P(W,T) as:

$$P(\mathbf{W}, \mathbf{T}) = \prod_{i=1}^{n} P(w_i|t_i)P(t_i|t_{i-1})$$

- But we want to find $\underset{\mathsf{T}}{\operatorname{argmax}} P(\mathbf{T}|\mathbf{W})$ without enumerating all possible tag sequences \mathbf{T}
 - Use a greedy approximation, or
 - Use Viterbi algorithm to store partial computations.

Greedy Tagging

Words:

Possible tags: (ordered by frequency for each word)

<s></s>	one	dog	bit	
< S>	CD	NN	NN	
	NN	VB	VBD	
	PRP			

- For i = 1 to N: choose the tag that maximizes
 - transition probability $P(t_i|t_{i-1}) \times$
 - emission probability $P(w_i|t_i)$
- This uses tag context but is still suboptimal. Why?
 - It commits to a tag before seeing subsequent tags.
 - It could be the case that ALL possible next tags have low transition probabilities. E.g., if a tag is unlikely to occur at the end of the sentence, that is disregarded when going left to right.

Greedy vs. Dynamic Programming

- The greedy algorithm is fast: we just have to make one decision per token, and we're done.
 - Runtime complexity?
 - -O(TN) with T tags, length-N sentence
- But subsequent words have no effect on each decision, so the result is likely to be suboptimal.
- Dynamic programming search gives an optimal global solution, but requires some bookkeeping (= more computation). Postpones decision about any tag until we can be sure it's optimal.

Viterbi Tagging: intuition

Words:

Possible tags: (ordered by frequency for each word)

<s></s>	one	dog	bit	
< \$>	CD	NN	NN	
	NN	VB	VBD	
	PRP			

- Suppose we have already computed
 - a) The best tag sequence for $\leq s > \dots$ bit that ends in NN.
 - b) The best tag sequence for <s> ... bit that ends in VBD.
- Then, the best full sequence would be either
 - sequence (a) extended to include </s>, or
 - sequence (b) extended to include </s>.

Viterbi Tagging: intuition

Words:

Possible tags: (ordered by frequency for each word)

<s></s>	one	dog	bit	
< S>	CD	NN	NN	
	NN	VB	VBD	
	PRP			

- But similarly, to get
 - a) The best tag sequence for $\leq s > \dots$ bit that ends in NN.
- We could extend one of:
 - The best tag sequence for <s> ... dog that ends in NN.
 - The best tag sequence for <s> ... dog that ends in VB.
- And so on...

Viterbi: high-level picture

- Intuition: the best path of length i ending in state t must include the best path of length i-1 to the previous state. So,
 - Find the best path of length i-1 to each state.
 - Consider extending each of those by 1 step, to state t.
 - Take the best of those options as the best path to state t.

Viterbi: high-level picture

- Want to find $\operatorname{argmax}_{\mathbf{T}} P(\mathbf{T}|\mathbf{W})$
- Intuition: the best path of length i ending in state t must include the best path of length i-1 to the previous state. So,
 - Find the best path of length i-1 to each state.
 - Consider extending each of those by 1 step, to state t.
 - Take the best of those options as the best path to state t.

Viterbi algorithm

- Use a chart to store partial results as we go
 - T × N table, where v(t, i) is the probability* of the best state sequence for $w_1...w_i$ that ends in state t.

^{*}Specifically, v(t,i) stores the max of the joint probability $P(w_1...w_i,t_1...t_{i-1},t_i=t\,|\,\lambda)$

Viterbi algorithm

- Use a chart to store partial results as we go
 - T × N table, where v(t, i) is the probability* of the best state sequence for $w_1...w_i$ that ends in state t.
- Fill in columns from left to right, with

$$v(t,i) = \max_{t'} v(t',i-1) \cdot P(t|t') \cdot P(w_i|t_i)$$

- The max is over each possible previous tag t'
- Store a **backtrace** to show, for each cell, which state at i-1 we came from.

^{*}Specifically, v(t,i) stores the max of the joint probability $P(w_1...w_i,t_1...t_{i-1},t_i=t|\lambda)$

Transition and Output Probabilities

Transition matrix: $P(t_i | t_{i-1})$:

	Noun	Verb	Det	Prep	Adv	
<s></s>	.3	.1	.3	.2	.1	0
Noun	.2	.4	.01	.3	.04	.05
Verb	.3	.05	.3	.2	.1	.1
Det	.9	.01	.01	.01	.07	0
Prep	.4	.05	.4	.1	.05	0
Adv	.1	.5	.1	.1	.1	.1

Emission matrix: $P(w_i | t_i)$:

	a	cat	doctor	in	is	the	very
Noun	0	.5	.4	0	0.1	0	0
Verb	0	0	.1	0	.9	0	0
Det	.3	0	0	0	0	.7	0
Prep	0	0	0	1.0	0	0	0
Adv	0	0	0	.1	0	0	.9

Example

Suppose W=the doctor is in. Our initially empty table:

<i>v</i>	w_1 =the	w ₂ =doctor	$w_3=is$	$w_4=in$	
Noun					
Verb					
Det					
Prep					
Adv					

Filling in the first column

Suppose W=the doctor is in. Our initially empty table:

V	w ₁ =the	w ₂ =doctor	w ₃ =is	w ₄ =in	
Noun	0				
Verb	0				
Det	.21				
Prep	0				
Adv	0				

$$v(\text{Noun, the}) = P(\text{Noun}|<\text{s}>)P(\text{the}|\text{Noun})=.3(0)$$

$$v(\text{Det, the}) = P(\text{Det}|<\ddot{\text{s}}>)P(\text{the}|\text{Det})=.3(.7)$$

```
v(\text{Noun, doctor})
= \max_{t'} v(t', \text{the}) \cdot P(\text{Noun}|t') \cdot P(\text{doctor}|\text{Noun})
```

V	w_1 =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0				
Verb	0				
Det	.21				
Prep	0				
Adv	0				

P(Noun|Det) P(doctor|Noun)=.3(.4)

```
v(Noun, doctor)
        = \max_{t'} v(t', \text{the}) \cdot P(\text{Noun}|t') \cdot P(\text{doctor}|\text{Noun})
       = \max \{ 0, 0, .21(.12), 0, 0 \} = .0252
           w_1=the |w_2=doctor |w_3=is |w_4=in |</s>
                            .0252
 Noun
 Verb
               .21
 Det
 Prep
 Adv
```

P(Noun|Det) P(doctor|Noun)=.3(.4)

```
v(\text{Verb, doctor})
= \max_{t'} v(t', \text{the}) \cdot P(\text{Verb}|t') \cdot P(\text{doctor}|\text{Verb})
= \max \{ 0, 0, .21(.001), 0, 0 \} = .00021
```

V	w_1 =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0	.0252			
Verb	0	.00021			
Det	.21				
Prep	0				
Adv	0				

P(Verb|Det) P(doctor|Verb) = .01(.1)

```
v(\text{Verb}, \text{doctor})
= \max_{t'} v(t', \text{the}) \cdot P(\text{Verb}|t') \cdot P(\text{doctor}|\text{Verb})
= \max \{ 0, 0, .21(.001), 0, 0 \} = .00021
```

V	w ₁ =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0	.0252			
Verb	0	.00021			
Det	.21	0			
Prep	0	0			
Adv	0	0			

P(Verb|Det) P(doctor|Verb) = .01(.1)

The third column

```
v(\text{Noun, is})
= \max_{t'} v(t', \text{doctor}) \cdot P(\text{Noun}|t') \cdot P(\text{is}|\text{Noun})
= \max \{ .0252(.02), .00021(.03), 0, 0, 0 \} = .000504
```

V	w_1 =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0	.0252 ←	000504		
Verb	0	.00021			
Det	.21	0			
Prep	0	0			
Adv	0	0			

$$P(\text{Noun}|\text{Noun}) P(\text{is}|\text{Noun})=.2(.1)=.02$$

 $P(\text{Noun}|\text{Verb}) P(\text{is}|\text{Noun})=.3(.1)=.03$

The third column

```
v(\text{Verb, is})
= \max_{t'} v(t', \text{doctor}) \cdot P(\text{Verb}|t') \cdot P(\text{is}|\text{Verb})
= \max \{ .0252(.36), .00021(.045), 0, 0, 0 \} = .009072
v(\text{Verb, is})
```

<i>v</i>	w ₁ =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0	.0252	000504		
Verb	0	.00021	.009072		
Det	.21	0	0		
Prep	0	0	0		
Adv	0	0	0		

$$P(\text{Verb}|\text{Noun}) P(\text{is}|\text{Verb}) = .4(.9) = .36$$

 $P(\text{Verb}|\text{Verb}) P(\text{is}|\text{Verb}) = .05(.9) = .045$

The fourth column

```
v(Prep, in)
        = \max_{t'} v(t', is) \cdot P(\text{Prep}|t') \cdot P(in|\text{Prep})
       = \max \{.000504(.3), .009072(.2), 0, 0, 0\} = .001814
           w_1=the w_2=doctor w_3=is w_4=in
                                   ← .000504
                           .0252
 Noun
                           .00021
                                       .009072
               0
 Verb
               .21
                                          0
 Det
                                                 .001814
                                          \mathbf{0}
 Prep
 Adv
```

```
P(\text{Prep}|\text{Noun}) P(\text{in}|\text{Prep})=.3(1.0)
P(\text{Prep}|\text{Verb}) P(\text{in}|\text{Prep})=.2(1.0)
```

The fourth column

```
v(Prep, in)
       = \max_{t'} v(t', is) \cdot P(\text{Prep}|t') \cdot P(in|\text{Prep})
       = \max \{.000504(.03), .009072(.02), 0, 0, 0\} = .0001814
           w_1=the w_2=doctor w_3=is w_4=in
                                  ← .000504
                          .0252
 Noun
                          .00021
                                     .009072
               0
                                                   0
 Verb
              .21
                                         0
 Det
                                                .001814
                                         0
               0
 Prep
                                               .0001814
 Adv
```

$$P(\text{Prep}|\text{Noun}) P(\text{in}|\text{Prep})=.3(.1)$$

 $P(\text{Prep}|\text{Verb}) P(\text{in}|\text{Prep})=.2(.1)$

End of sentence

```
v(</s>)
       = \max_{t'} v(t', \text{in}) \cdot P(\langle /s \rangle | t')
       = \max\{0, 0, 0, .001814(0), .0001814(.1)\} = .00001814
           w_1=the |w_2=doctor |w_3=is |w_4=in
                                  ← .000504
                           .0252
 Noun
                          .00021
                                      .009072
               0
                                                    0
 Verb
                                                           .000018
              .21
                                          0
 Det
                                                              14
                                                 .001814
                                          0
               0
                             0
 Prep
                                                .0001814
 Adv
```

$$P(|Prep)=0$$

 $P(|Adv)=.1$

Completed Viterbi Chart

$oldsymbol{v}$	w_1 =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0	.0252	000504	0	
Verb	0	.00021	.009072	0	
Det	.21	0	0	0	.000018
Prep	0	0	0	.001814	
Adv	0	0	0	.0001814	

V	w_1 =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0	.0252	000504	0	
Verb	0	.00021	.009072	0	
Det	.21	0	0	0	.000018
Prep	0	0	0	.001814	
Adv	0	0	0	0001814	

$oldsymbol{v}$	w_1 =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0	.0252	000504	0	
Verb	0	.00021	.009072	0	
Det	.21	0	0	0	.000018
Prep	0	0	0	.001814	
Adv	0	0	0	0001814	

V	w ₁ =the	w ₂ =doctor	$w_3=is$	w ₄ =in	
Noun	0	.0252	000504	0	
Verb	0	.00021	.009072	0	
Det	.21	0	0	0	.000018
Prep	0	0	0	.001814	1.
Adv	0	0	0	.0001814 [*]	

V	w ₁ =the	w ₂ =doctor	w ₃ =is	w ₄ =in	
Noun	0	.0252	000504	0	
Verb	0	.00021	.009072	0	
Det	.21	0	0	0	.000018 / 14
Prep	0	0	0	.001814	
Adv	0	0	0	0.0001814	
	Det	Noun	Verb	Prep	

Implementation and efficiency

- For sequence length N with T possible tags,
 - Enumeration takes $O(T^N)$ time and O(N) space.
 - Bigram Viterbi takes $O(T^2N)$ time and O(TN) space.
 - Viterbi is exhaustive: further speedups might be had using methods that prune the search space.
- As with N-gram models, chart probs get really tiny really fast, causing underflow.
 - So, we use costs (neg log probs) instead.
 - Take minimum over sum of costs, instead of maximum over product of probs.

Higher-order Viterbi

- For a tag **trigram** model with T possible tags, we effectively need T^2 states
 - n-gram Viterbi requires T^{n-1} states, takes $O(T^nN)$ time and $O(T^{n-1}N)$ space.

HMMs: what else?

- Using Viterbi, we can find the best tags for a sentence (**decoding**), and get P(W, T).
- We might also want to
 - Compute the **likelihood** $P(\mathbf{W})$, i.e., the probability of a sentence regardless of its tags (a language model!)
 - learn the best set of parameters (transition & emission probs.) given only an *unannotated* corpus of sentences.

Computing the likelihood

From probability theory, we know that

$$P(\mathbf{W}) = \sum_{\mathbf{T}} P(\mathbf{W}, \mathbf{T})$$

- There are an exponential number of Ts.
- Again, by computing and storing partial results, we can solve efficiently.
- (Advanced slides show the algorithm for those who are interested!)

Summary

- HMM: a generative model of sentences using hidden state sequence
- Greedy tagging: fast but suboptimal
- Dynamic programming algorithms to compute
 - Best tag sequence given words (Viterbi algorithm)
 - Likelihood (forward algorithm—see advanced slides)
 - Best parameters from unannotated corpus (forward-backward algorithm, an instance of EM see advanced slides)