Zadanie 5

Rozwiąż następujące zależności:

- $a_0 = 1$, $a_n = \frac{2}{a_{n-1}}$, $b_0 = 0$, $b_n = \frac{1}{1 + b_{n-1}}$, $c_0 = 1$, $c_n = \sum_{i=0}^{n-1} c_i$, $d_0 = 1$, $d_1 = 2$, $d_n = \frac{d_{n-1}^2}{d_{n-2}}$

Rozwiazanie:

• Zauważmy, że $\{a_n \mid n \in \mathbb{N}\} = \{1, 2, 1, 2, \ldots\}$. Zatem $a_{2k} = 1 \land a_{2k+1} = 2$, dla $k \in \mathbb{N}$.

Dowód. Indukcyjnie względem n. Niech $X = \{n \in \mathbb{N} \mid (a_n = 1 \ n \equiv 0 \ (mod \ 2)) \lor (a_n = 2 \ (n \equiv 1 \ (mod \ 2))\}.$ Oczywiście $0, 1 \in X$ (patrz dwie linijki wyżej).

Weźmy dowolne $n \in \mathbb{N}$. Załóżmy, że $n \in X$. Pokażmy, że $n+1 \in X$. Jeśli n jest parzyste, to $a_{n+1} =$ $\frac{2}{a_n}\stackrel{zal}{=}\frac{2}{1}=2$, czyli $n+1\in X$. W przeciwnym wypadku $a_{n+1}=\frac{2}{a_n}\stackrel{zal}{=}\frac{2}{2}=1$, co również oznacza, że $(n+1)\in X$. Zatem na mocy zasady indukcji matematycznej $X=\mathbb{N}$, a ciąg a_n ma żądaną postać. \square

• $b_n = \frac{F(n)}{F(n+1)}$, gdzie F(n) to n-ta liczba Fibonacciego

Dowód. Analogicznie jak w poprzednim podpunkcie indukcja przebiegać będzie względem zmiennej n.

$$X = \{ n \in \mathbb{N} \mid b_n = \frac{F(n)}{F(n+1)} \}.$$

Zauważmy, że $0 \in X$, ponieważ $b_0 = 0 = \frac{0}{1} = \frac{F(0)}{F(1)}$. Weźmy dowolne $\in \mathbb{N}$ i załóżmy, że $n \in X$. Pokażmy, $\dot{z}e \ n+1 \in X$.

$$b_{n+1} = \frac{1}{1 + b_n} = \frac{1}{1 + \frac{F(n)}{F(n+1)}} = \frac{F(n+1)}{F(n) + F(n+1)} = \frac{F(n+1)}{F(n+2)}$$

Zatem $n+1\in X$. Zgodnie z zasadą indukcji żądana własność zachodzi dla dowolnego $n\in\mathbb{N}$.

• Rozwiązaniem jest $c_0 = 1$ oraz $c_n = 2^{n-1}$ dla n > 0.

Dowód. Znowu tak samo... W skrócie: Załóżmy, że $c_n = 2^{n-1}$. Wtedy $c_{n+1} = \sum_{i=0}^n c_i = c_n + 1$ $\sum_{i=0}^{n-1} c_i \stackrel{def}{=} c_n + c_n = 2c_n \stackrel{zal}{=} 2 \cdot 2^{n-1} = 2^n$, co dowodzi poprawności wyprowadzonego wzoru.

• Zwartą postacią d_n jest 2^n .

Dowód. Niech $X = \{n \in \mathbb{N} \mid d_n = 2^n\}$. Zauważmy, że $d_0 = 1 = 2^0$ oraz $d_1 = 2 = 2^1$. Stąd wniosek, że $0,1\in X.$ Weźmy dowolne $n\in\mathbb{N}.$ Załóżmy, że $n-1,n-2\in X.$

$$d_n = \frac{d_{n-1}^2}{d_{n-2}} = \frac{2^{n-1} \cdot 2^{n-1}}{2^{n-2}} = 2^n.$$

Zatem $n \in X$. Zgodnie z zasadą indukcji matematycznej $X = \mathbb{N}$, czyli $\forall_{n \in \mathbb{N}} d_n = 2^n$.