Algebra: Chapter 0 Exercises Chapter 2, Section 4

David Melendez

June 5, 2017

Problem 4.9. Prove that if m, n are positive integers such that gcd(m, n) = 1, then $C_{mn} \cong C_m \times C_m$.

Solution. We know that the order of $C_m \times C_n$ is mn, so we just have to prove that $C_m \times C_n$ has an element of order mn.

Proposition. $|([1]_m, [1]_n)| = mn$

Proof. We're looking for the smallest k such that $k \equiv 0 \mod m$ and $k \equiv 0 \mod n$. By definition, we have k = lcm(m, n) = mn.

Problem 4.10. Let $p \neq q$ be odd prime integers; show that $(\mathbb{Z}/pq\mathbb{Z})^*$ is not cyclic.

Proof. Let N be the order of $G = (\mathbb{Z}/pq\mathbb{Z})^*$. We know, from the properties of Euler's totient function (TODO: prove this myself?), that

$$N = \phi(p)\phi(q)$$

= $(p-1)(q-1)$
= $pq - p - q + 1$
= $pq + 1 - (p+q)$

Suppose for the sake of contradiction that G is cyclic, and hence has a generating element g of order N. We then have:

$$g^{N} = g^{pq+1-(p+q)}$$

= $g^{pq+1}g^{-(p+q)}$
= g^{0}

It then follows that pq + 1 = p + q.

But there is a problem. Without loss of generality, let 2 < q < p. We then have:

$$pq + 1 > pq$$

$$= p + (q - 1)p$$

$$> p + q$$

A contradiction. G is not cyclic.

Problem 4.11. Given that $x^d = 1$ can have at most d solutions in $(\mathbb{Z}/p\mathbb{Z})$ for prime p, prove that the multiplicative group $G = (\mathbb{Z}/p\mathbb{Z})^*$ is cyclic. (Hint: let $g \in G$ be an element of maximal order; show that $h^{|g|} = 1$ for all $h \in G$)

Solution. Let $g \in G$ be an element of maximal order. By exercise 1.15, we know that |h| divides |g| for all $h \in G$, so $h^{|g|} = 1$. Since $h^{|g|} = 1$ for all $h \in G$, there are at least |G| solutions to the equation $x^d = 1$ in $\mathbb{Z}/p\mathbb{Z}$. It then follows that $|G| \leq |g|$ by the given theorem in the problem, so |G| = |g| and therefore G is cyclic.