

Patent Abstracts of Japan

PUBLICATION NUMBER

05255730

PUBLICATION DATE

05-10-93

APPLICATION DATE

13-03-92

APPLICATION NUMBER

04089491

APPLICANT: TOYOTA CENTRAL RES & DEV LAB INC;

INVENTOR: SUGIURA NOBORU;

INT.CL.

: C21D 5/00 C22C 37/00

TITLE

: PRODUCTION OF GRAY CAST IRON HAVING HIGH VIBRATION DAMPING CAPACITY

ABSTRACT: PURPOSE: To produce gray cast iron having improved vibration damping capacity.

CONSTITUTION: Raw materials are melted so that it has a composition consisting of, by weight, 3.2-3.7% C, 1.8-3.0% Si, 0.2-1.5% Mn, and the balance essentially Fe and the degree of carbon saturation becomes 0.92-1.05%. The resulting molten metal is cast into an as-cast material. This as-cast material is subjected to annealing treatment, and hardening treatment is applied to the annealed material. By this method, the gray cast iron

having a vibration damping capacity of ≥150×10⁻⁴ (strain amplitude,

1×10⁻⁵ can be produced.

COPYRIGHT: (C)1993,JPO&Japio

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-255730

(43)公開日 平成5年(1993)10月5日

(51) Int.Cl. ⁵ C 2 1 D	5/00	識別記号 Z	庁内整理番号	FI	技術表示箇所
C 2 2 C 3	7/00	D			

審査請求 未請求 請求項の数2(全 6 頁)

(21)出顧番号	特願平4-89491	(71)出顧人	***************************************
(22)出願日	平成4年(1992)3月13日		株式会社豊田中央研究所 愛知県愛知郡長久手町大字長湫字横道41番 地の1
		(72)発明者	阿部 善彦 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内
		(72)発明者	杉浦 昇 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内

(54) 【発明の名称】 高振動減衰能ねずみ鋳鉄の製造方法

(57)【要約】

【目的】 振動減衰能を向上させるねずみ鋳鉄の製造方法を提供する。

【構成】 重量%で、C:3.2~3.7%、S1:1.8~3.0%、Mn:0.2~1.5%を含み、残部が実質的にFeからなり、炭素飽和度が0.92~1.05%になるように原料を溶解し、鋳造して、鋳放し材を得る工程と、該鋳放し材に焼なまし処理を施す工程と、該焼なまし処理を施した材料に焼入れ処理を施す工程とからなる。振動減衰能が150×10-4(歪み振幅;1×10-5)以上のねずみ鋳鉄が製造できる。

【0013】次に、焼入れ処理は、鋳鉄の焼入れ処理で 使われる熱処理炉を用い、通常の条件で行えば良い。該 焼入れ処理によりオーステナイトは10~30%残留す

る。

【0014】この焼入れ処理の後に、サブゼロ処理を行 っても良い。該サブゼロ処理により焼入れ処理で残った 残留オーステナイトが減少し、5%以下になるので、残 留オーステナイトの時効変化等に伴う置き狂いや割れを 防ぐことができる。なお、サブゼロ処理を行っても減衰 値を維持できる。該サブゼロ処理は通常の熱処理で行わ れている方法、例えば、焼入れ後、速やかに-85℃以 下に保持された容器等の冷却手段の中に装入して行う。

【0015】また、必要があれば鋳造後、鋳放し材を所 定の形状に、旋盤、フライス、研削等で加工処理しても 良い。この加工処理によって歪みが生じても次工程の焼 なまし処理によってこの歪みが除去されるので問題はな .43

[0016]

【作用】本発明において、原料の溶解に際し、Scを 0. 92~1. 05%になるように原料の組成を調整 し、溶解する。このようにScを限定するのは、Scが 0. 92%より小さいと、強度は向上するが黒鉛量が減 少するため減衰能が低下する。また、鋳造性も悪くな る。一方、Scが1、05%より大きくなると、黒鉛量 が増加するため減衰能は増大するが強度の低下は避けら れない。そこで、Scを0、92~1、05%になるよ うにC、Si、およびMnを調整する。

【0017】すなわち、C、Si、およびMnの組成 は、上記Scの範囲で以下の点を考慮して決定される。 Cは、溶解性、鋳造性を良好にするために、3.2%以 上が必要であり、一方、Cが3.7%を越えるとSiと の関係でScが1.05%より大きくなり強度が低下す るため好ましくない。S1は、黒鉛化元素であり、片状 黒鉛を生成させるために1.8%以上が必要である。一 方、Siが3.0%より多くなるとCとの関連でScが 1. 05%より大きくなり、強度が低下するため好まし くない。また、Mnは通常の鋳鉄で添加される0.2~ 1. 5%を含有させる。

【0018】原料の溶解に際し、溶湯中に合金元素とし 40 て、Mo、Cr、Vのうち1種以上の元素を重量%で 0. 2~0. 6%、または、これらの合金元素に加え て、さらに、Cu、Niのうち1種以上の元素を重量%

で1.0~2.5%含有せしめても良い。

【0019】Mo、Cr、Vはいずれも炭化物形成元素 であり、約10Kgf/mm²以上の引張り強さを確保 するために含有せしめる。その添加量が0.2%より少 ないと10Kgf/mm²以上の引張り強さを得ること ができない。一方、添加量が多くなると多量の炭化物が 析出し、脆くなるため、上限は0.6%とする。

【0020】Mo、Cr、Vのうちの1種以上の元素 と、Cu、Niの1種以上の元素を併用添加した場合、 能は、焼入れ処理のみを施したものと殆ど変わらず高い 10 С u、N i はS i に比べてその効果は小さいが黒鉛化元 **案であって、減衰能向上に寄与し、一方でこれらの元素** の添加によるScの変動が少ないという利点があり、ま たMo、Cr、あるいはV添加による炭化物形成作用を 緩和させるために有効であり、その添加量を1.0~ 2. 5%とする。

> 【0021】本発明に係る高振動減衰能ねずみ鋳鉄の勢 造方法は、焼入れ処理工程の前に焼なまし処理を行う点 に最大の特徴を有する。該焼なまし処理によって鋳造時 のひずみを除去するとともに、減衰能を150×10⁻¹ 以上と著しく向上させることができる。このように、減 衰能が向上する理由は今のところ明確ではないが、黒鉛 とそれを取り囲む母材との界面に変化が生じ、減衰能の 向上に好都合な状態になったことによるものと推定され

> 【0022】次に、焼入れ処理を行う工程によって、母 材の組織にマルテンサイトを生ぜしめる。以上の工程を 経て高振動減衰能ねずみ鋳鉄が得られる。

[0023]

【発明の効果】本発明のねずみ鋳鉄の製造方法によれ ば、減衰能が150×10⁻⁴以上(歪み振幅:1×10 - * の場合)で、かつ、引張り強さが8 Kg f/mm * 以 上の高減衰能ねずみ鋳鉄を製造することができる。

[0024]

【実施例】まず、表1に示したような組成および炭素飽 和度を有するC、Si、Mnと残部が実質的にFeとか らなる鋳放し材 (試料No. 1、2、3) 、および合金 元素としてMo、Cr、Vの1種を含む鋳放し材(試料 No. 4、5、6)、およびMo、Cr、Vの1種とC uまたはNiのうちの1種を含む鋳放し材(試料No. 7~12)を作製した。

[0025]

【表1】

	·				8			
İ	焼なまし処理後							
試料No.		焼入れ処理		焼入れ処理後サブゼロ処処理				
	減衰能 ×10⁻⁴	引張り強さ Kgf/mm³	残留t-xf t() %	減衰能 ×10-4	引張り強さ Kgf/mm²	残留t-2f ff %		
1	261.5	12.3	13. 2	176.0	9. 4	<5		
2	373.0	11.1	14. 2	223. 0	9. 7	<5		
3	231.0	10.8	_16.4	240. 0	8. 3	. <5		
4	274.0	12. 7	20. 4	201. 1	10. 5	<5		
5	224, 5	11.9	22.9	163, 5	10. 8	<5		
6	238. 5	11.0	22, 1	-	12. 3	< 5		
7	178, 5	12. 7	19.9		13. 5	<5		
8	201.5	11.5	23, 1	169. 5	9. 7	<5		
9	-	16. 4	20. 2	-	14. 2	<5		
10	250. 0	13.5	25. 6	250. 0	11.6	< 5		
11	193. 5	· 12, 6	29.3	173. 0	10. 2	<5		
12	230. 0	13. 9	26. 9	173. 0	10.0	<5		

【0033】表3は、比較例として、本発明の特徴であ る焼なまし処理を行わなかった試験片について、滅衰能 および引張り強さの測定を行った結果について示す。こ の結果より、焼なまし処理を行わなかった試験片の減衰 30 がわかる。 能は、70×10⁻⁴以下の極めて低い値を示しているこ とがわかる。さらに、鋳放し処理後、焼なまし処理を行

わず焼入れ処理を行った試験片についても、減衰能が1 50×10⁻¹以上を示すものもあるものの、その値は殆 どが150×10~より低く、値もばらついていること

[0034] 【表3】

10

9

試料No.	鋳放	し処理材	鋳放し処理後焼入れ処理材			
am ffitu.	減衰能 ×10 ⁻⁴	引張り強さ Kgf/mm²	減衰能 ×10⁻⁴	引張り強さ Kgf/mm²	残留ま-ステ	
1	39. 0	22. 1	151.0	13.4	9. 9	
2	66. 2	19.9	190. 3	10.7	12.6	
3	68.6	19.1	138.0	-	16.4	
4	35. 3	20.9	152. 0	-	19.9	
5	43.5	20.5	119. 0	-	21.3	
6	33.0	23.6	162. 5	-	20, 7 .	
7	26.4	28.3	102. 0	-	19.6	
8	38.2	24.4	145. 5	-	22, 3	
9	33.0	30.1	119. 5	-	19.6	
10	47.0	24.8	135. 0		24. 5	
11	43.5	24.8	115. 0	-	27, 7	
12	. 42. 0	23.4	217. 5	-	25.0	