CS256 - Midterm Exam Study Guide

By: Zayd Hammoudeh

Classification

Task of assigning objects to one of several predefined categories.

Training Set

A collection of records. Each **record** contains a set of attributes one of which is the **class**.

Model

A function from the value of record attributes to the class attribute.

Test Set

A collection of records used to determine the accuracy of the classification model.

Example Classification Techniques

- 1. Neural Networks
- 2. Decision Tree
- 3. Rule Based Classifier
- 4. Memory Based Reasoning
- 5. Support Vector Machines
- 6. Naïve Bayes and Bayesian Belief Networks

Induction

Using a training set to generate a model.

Deduction

Process of applying a model to a training set.

Decision Tree Induction

- Greedy Strategy
- Key Decision #1: Attribute to expand next
- Key Decision #2: When to stop expanding

Hunt's Decision Tree Induction Algorithm:

- Let D_t be the set of training records that reach a node t.
- If D_t contains records that all belong to the same class y_t, then t is a leaf node with class value y_t.
- 2. If D_t is an **empty set**, then t is a leaf node with default value V_t .
- If D_t contains records that belong to more than one class and there are no attributes left, then t is a leaf node with default value is a leaf node with default value y_d.
- If D_t contains records that belong to more than one class, then use an attribute test to split the data into smaller subsets. Recursively apply the same procedure above.

Attribute Types

- Binary Attribute with exactly two possible values.
- Nominal Two or more class values with no intrinsic Order
- Ordinal Two or more class values that can be ordered or ranked
- Continuous Quantitative attribute that can be measured along a continuum.

Splitting Nominal and Ordinal Attributes

- Binary Divides attribute values into two subsets. This requires the additional step of finding optimal partitioning.
- Multi-way Use as many partitions as distinct values.

Splitting Based on Continuous Attributes

- Discretization Form an ordinal categorical attribute.
 - o Static Discretize once at the beginning
 - Dynamic Ranges can be found by equal interval bucketing, equal frequency bucketing, or clustering.
- Binary Decision (A < v or A > v) Consider all possible splits and find the best cut.
 - Binary Decision Procedure: Go between each training set record value and calculate the GINI index if the splitting point was at that value. Select the splitting point with the lowest GINI_{SPLIT} value.
 - Computationally inefficient O(n) where n is the number of records.

Homogeneity/Low Impurity – Extent to which nodes in the decision tree have the same class value/distribution.

Nodes with high levels of homogeneity (i.e. low levels of impurity) are preferred.

Impurity Measures

For all of these metrics, a lower score is generally preferable.

GINI Index

$$GINI(t) = 1 - \sum_{j=1}^{n_c} (p(j|t))^2$$

- t Node in the decision tree
- j Class value
- n_c Number of class values
- p(j|t) Probability (i.e. relative frequency) of class value j in node t

Minimum Value: 0 when:

$$\exists j(p(j|t) = 1)$$

$$\forall j \left(p(j|t) = \frac{1}{n_c} \right)$$

GINI_{SPLIT}

$$GINI_{SPLIT} = \sum_{i=1}^{k} \frac{n_i}{n} \cdot GINI(i)$$

- i Child nod
- $\it n$ Number of records in parent node. Note:

$$n = \sum_{i=1}^k n_i$$

- n_i Number of child nodes (i.e. attribute partitions)
- GINI(i) GINI index value of node i.

Minimum Value: 0 when:

$$\forall i(GINI(i)=0)$$

Maximum Value: $1 - \frac{1}{n_c}$ when:

$$\forall i \left(GINI(i) = 1 - \frac{1}{n_c} \right)$$

Entropy

$$Entropy(t) = -\sum_{j=1}^{n_c} p(j|t) \cdot log_2(p(j|t))$$

- t Node in the decision tree
- j Class value
- \bullet n_c Number of class values
- p(j|t) Probability (i.e. relative frequency) of class value j in node t

Minimum Value: 0 when:

$$\exists j(p(j|t)=1)$$

Maximum Value: $log_2(n_c)$ when:

$$\forall j \left(p(j|t) = \frac{1}{n_c} \right)$$

Information Gain

$$GAIN_{SPLIT}(t) = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} \cdot Entropy(i)\right)$$

- p Parent node in the decision tree
- *i* Child node in the decision tree
- **k** Number of child nodes
- n_i Number of records in child node i
- *n* Number of records in parent node *p*

$$n = \sum_{i=1}^{k} n_i$$

Key Note: A higher $GAIN_{SPLIT}$ is preferable unlike with the other metrics where a lower value was better.

Disadvantage of Information Gain: Tends to prefer splits that result in a large number of partitions, each being small but pure (i.e. overfitting)

Normalizing for Split Size

$$GainRATIO_{Split} = \frac{Gain_{SPLIT}(t)}{SplitINFO}$$

$$SplitINFO = -\sum_{i=1}^{k} \frac{n_i}{n} \cdot log_2\left(\frac{n_i}{n}\right)$$

 $Split_{INFO}$ penalizes a large split by reducing the gain.

Classification Error

$$Error(t) = 1 - max_i(p(j|t))$$

- *t* Node in the decision tree
- *j* Class value
- p(j|t) Probability (i.e. relative frequency) of class value j in node t

Minimum Value: 0 when:

$$\exists j(p(j|t) = 1)$$

Maximum Value: $1-\frac{1}{n_c}$ when: $\forall j \left(p(j|t) = \frac{1}{n_c}\right)$

$$\forall j \left(p(j|t) = \frac{1}{n_c} \right)$$