

USN:

Course Code: 21AI33

Date: 18-Jan-2023

Sem: III

Duration: 90 Minutes

CIE-II Data Structures and Data Analysis (DSDA) Scheme and Solutions

SL. No	Questions	M	BT	CO	
l a	Given the following Max Heap, write various steps in delealso show heapifcation.	ting the data element 89 and	04	03	01
	90				
	36 75 63 21 18 15	65)			
	ANS: (1M x 4 Steps) Step 1: Search for the location of 89 Step 2: Swap 89 with the rightmost leave in the bottommos Step 3: Compare 15 with the children, i.e., 36 and 75 Step 4: Swap 15 with the highest child, i.e., 75	t level, i.e., 15			
b	Write a C program to create a Max Heap of integers and carrays to represent the Max Heap) ANS: Scheme	06	03	03	
	Correct declaration of all variables and data types	01 M			
	Creation of Max Heap	03 M			
	Displaying the Max Heap and Overall coding effort	02 M			
	ANS: Sample Solution				
	# include <stdio.h></stdio.h>				
	int arr[100],n;				
	void display()				
	{ int i;				
	if(n==0)				
	printf("Heap is empty\n");				
	return;				
	}				

USN:

	for(i=0;i <n;i++) printf(''%d '',arr[i]);</n;i++) 				
	printf("\n"); }/*End of display()*/				
	<pre>void insert(int num,int loc) {</pre>				
	int par;				
	while(loc>0) {				
	par=(loc-1)/2;				
	<pre>if(num<=arr[par]) {</pre>				
	arr[loc]=num;				
	return;				
	arr[loc]=arr[par];				
	loc=par; }/*End of while*/				
	arr[0]=num; /*assign num to the root node */	1			
	}/*End of insert()*/				
	main()				
	int num;				
	n=0;/*Represents number of nodes in the hea	p*/			
	while(1) {				
	printf("Enter the number to be inserted o	r -1 break the loop ");			
	scanf(''%d'',#); if (num == -1) break;				
	insert(num,n);				
	n=n+1;				
	display();				
	}				
2	Write a C program to create an adjacency matrix of a dire using DFS. Assume maximum size of the adjancency ma		10	03	03
	(NOTE: Your program should accept vertices and ed				
	ANS: Scheme				
	Correct declaration of all variables and data types Creation of an adjacency matrix for a graph	02 M 03 M			
	DFS logic	03 M			
	Output	02 M			
	ANS: Sample Solution				
	#include <stdio.h></stdio.h>				

U	ISN	•				

```
#include <stdlib.h>
int sourceV, Vertex, Edge, time, visited [10], Graph [10] [10];
void DepthFirstSearch(int i)
  int j;
  visited[i]=1;
  printf(" %d->",i++);
  for(j=1;j<=Vertex;j++)
    if(Graph[i][j]==1\&\&visited[j]==0)
    DepthFirstSearch(j);
}
void main()
  int i,j,vertex1,vertex2;
  printf("\t\tGraphs\n");
  printf("Enter no. of edges:");
  scanf("%d",&Edge);
  printf("Enter no. of vertices:");
  scanf("%d",&Vertex);
  for(i=1;i<=Vertex;i++)</pre>
          for(j=1;j<=Vertex;j++)</pre>
          Graph[i][j]=0;
  for(i=1;i<=Edge;i++)
          printf("Enter the edges in V1 V2:");
          scanf("%d%d",&vertex1,&vertex2);
          Graph[vertex1][vertex2]=1;
  for(i=1;i<=Vertex;i++)</pre>
          for(j=1;j<=Vertex;j++)
          printf(" %d ",Graph[i][j]);
          printf("\n");
          printf("DFS Traversal\n ");
          scanf("%d",&sourceV);
          DepthFirstSearch(sourceV)
```


U	ISN	•				

3	2	Write the DFS traversal for the given weighted graph. Assume starting vertex as 3.	04	02	03
3	a	Write the DFS traversal for the given weighted graph. Assume starting vertex as 3.	04	02	03
		ANS:			
		Final Correct Answer: 3->4->8->0->1->7->2->5->6 (2M) Traversal Steps based on least weight (2M)			
	b	Given the following C function, which is written for BFS traversal of a graph, with source vertex as v. Correct the logic if there are any errors, and write the corrected version. Assume adj[][], visited[], front, and rear have been properly initialised before the function was called. void bfs(int v) { for (i = 1; i <= n; i++) if (adj[v][i] && visited[i]) queue[rear++] = i; if (front <= rear) { visited[queue[front]] = 1; printf("Node visited = %d\n", queue[front]); bfs(adj[v][i]); } }	06	04	01
		<pre>void bfs(int v) { for (i = 1; i <= n; i++) if (adj[v][i] && !visited[i]) 2M queue[++rear] = i; 2M if (front <= rear) { visited[queue[front]] = 1; printf("Node visited = %d\n", queue[front]); bfs(queue[front++]); 2M } }</pre>			
4	a	Give the interpretations of the following statements;	04	04	04

USN:

USI	N	•				
UJI	V					

ı	Departifie	nt of Artificial Intelligence and Machine Learni	<u>''g</u>	1	1
	0	9679			
	1	4371			
	2	1989			
	3	1323			
	4	6173			
	5	4344			
	6				
	7				
	8				
	9	4199			
	b. Hashing v	with Quadratic probing (03 M)			
	_				
	0	9679			
	1	4371			
	2				
5	3	1323			
	4	6173			
	5	4344			
	6				
	7				
	8	1989			
	9	4199			
		-			
	Write a block diagram explain the importa	ram depicting various phases of the CRISP-DM Process and briefly nce of all stages.	10	02	02
	ANS:				

USN:

Department of Artificial Intelligence and Machine Learning

Cours	e Outcome
CO1	Apply the knowledge of data structures in providing solutions to some software development
	requirements.
CO2	Perform data analysis of some real-world scientific/business use cases and present the analysis results.
CO3	Investigate appropriate data structures and understand requirements in solving some problems of industry
	and society.
CO4	Use data analysis tools to illustrate the principles of data interpretation, statistical analysis, and graphical
	visualizations of the datasets.
CO5	Appraise data structures and analysis knowledge to build a successful career as an AIML engineer, work in
	teams, and communicate their ideas effectively.

M-Marks, BT-Blooms Taxonomy Levels, CO-Course Outcomes

Marks	Particulars	CO1	CO2	CO3	CO4	CO5	L1	L2	L3	L4	L5
Distribution		10	16	20	04			14	26	10	
Distribution	Max										
	Marks										

USN			
ODIN	d .		

Course Code: 21AI33

Date: 18-Jan-2023

Sem:III

Duration: 20 Minutes

Data Structures and Data Analysis (DSDA)

Scheme and Solutions

SL. No	Questions	M	BT	CO
1	Differentiate Data and Knowledge. Give an example for each.	02	02	01
	ANS: Any valid difference (1M) + Examples for each (01M)			
2	Write any two differences between Trees and Graphs. Give an application of a Graph. ANS: Any yellid differences (1M) - Application of Graphs (1M)	02	01	03
3	ANS: Any valid differences (1M) + Application of Graphs (1M) Give Data Structure representations of the following graphs.	02	02	01
	ANS: Adjacency Matrix/Adjacency list representation for each of the above(1M+1M)			
4	How do Hash Tables are used to implement Set ADT? ANS : How hashing achieves Unique and Membership properties of a set (1M + 1M)	02	02	01
5	Is the hash function $h(x)=x \mod m$ a perfect hash function? Justify.	02	02	01
	ANS: No, the reason is single hash value can be mapped to multiple key elements			

Marks Distribution	Particulars	CO1	CO2	CO3	CO4	CO5	L1	L2	L3	L4	L5
		08		02			02	08			
	Max										
	Marks										