Tema 1: Representación de números

- **#Sistemas de numeración**
- **#**Representación de números con signo
- **#Operaciones aritméticas básicas**

Sistema Numérico Posicional

Notación radical, poliádica o polinómica

Un sistema de base B (B>1) si sus pesos crecen de forma geométrica.

Un número N de base B con n dígitos:

$$N_B = \sum_{i=0}^{n-1} D_i B^i = D_{n-1} B^{n-1} + D_{n-2} B^{n-2} + \dots + D_1 B^1 + D_0 B^0$$

Sistema Numérico Posicional

Notación polinómica

Este sistema es válido para otras bases:

Notación radical, poliádica o polinómica

Si el número N es decimal, con *n* dígitos enteros y *m* dígitos decimales, su notación es:

$$N_B = \sum_{i=-m}^{n-1} D_i B^i =$$

$$= D_{n-1}B^{n-1} + D_{n-2}B^{n-2} + \dots + D_1B^1 + D_0B^0 + D_{-1}B^{-1} + D_{-2}B^{-2} + \dots + D_{-m}B^{-m}$$

Ejemplo

•Descomponer:

$$258.37_{10} = 2 \times 10^{2} + 5 \times 10^{1} + 8 \times 10^{0} + 3 \times 10^{-1} + 7 \times 10^{-2}$$

Paso de binario a decimal

En diseño digital, nos interesan las bases 2, 8, y 16.

$$N_2 = \sum_{i=-m}^{n-1} D_i 2^i = N_{10}$$

$$110_{2}$$

$$1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$$

$$1 \times 4 + 1 \times 2 + 0 \times 1$$

$$4_{10} + 2_{10} + 0_{10}$$

$$6_{10}$$

$$1011001_{2} = 1 \times 2^{6} + 0 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 89_{10}$$
$$101.011_{2} = 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} = 5.375_{10}$$

Paso de binario a decimal

Si el número binario no tiene excesivos dígitos, la costumbre agiliza la transformación

	2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	2 ⁻¹	2 ⁻²	2 -3
•	1024	512	256	128	64	32	16	8	4	2	1	0.5	0.25	0.125

Generalizando, para pasar de cualquier base a decimal:

$$N_B = \sum_{i=-m}^{n-1} D_i B^i = N_{10}$$

$$61.72_8 = 6 \times 8^1 + 1 \times 8^0 + 7 \times 8^{-1} + 2 \times 8^{-2}$$
$$321_5 = 3 \times 5^2 + 2 \times 5^1 + 1 \times 5^0$$

$$923_{16}$$

$$9 \times 16^{2} + 2 \times 16^{1} + 3 \times 16^{0}$$

$$9 \times 256 + 2 \times 16 + 3 \times 1$$

$$2304_{10} + 32_{10} + 3_{10}$$

$$2339_{10}$$

Paso a decimal de otras bases

En diseño digital, nos interesan las bases 2, 8, y 16.

Paso de decimal a binario

- Si el número decimal es entero, se usa la división sucesiva:
 - Se divide el n

 o original entre 2.

Paso de decimal a binario

- Si el número decimal es fraccionario, la parte fraccionaria se obtiene mediante multiplicación sucesiva:
 - Se multiplica la parte fraccionaria por 2
 - ∠La nueva parte fraccionaria se multiplica por 2.
 Esto se repite hasta que sea nula o hasta obtener
 la precisión deseada

Sistema binario

Nº combinaciones: 2ⁿ

Rango: [0 : 2ⁿ-1]

Decimal		
	Binario	Binario
		4 bits
0	0	0000
1	1	0001
2	10	0010
3	11	0011
4	100	0100
5	101	0101
6	110	0110
7	111	0111
8	1000	1000
9	1001	1001
10	1010	1010
11	1011	1011
12	1100	1100
13	1101	1101
14	1110	1110
15	1111	1111

Sist. Octal y hexadecimal

Decimal			
	Binario	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

Enteros con signo

- ○Problema: dados 2^k patrones de bits diferentes, cada uno de k bits, asignarles enteros de tal manera que:
 - Los números deben distribuirse alrededor del cero sin huecos.
 - Aproximadamente la mitad de las combinaciones representen números positivos, y la otra mitad números negativos.
 - Si se aplica la suma binaria ordinaria, a un entero n dado, debería cumplirse que:

Magnitud-Signo

Patrón	Valor Representado
	Magnitud-Signo
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

En la representación Magnitud-Signo, el bit más significativo del patrón para indicar si se trata de un número positivo o negativo.

Magnitud-Signo

Patrón	Valor Representado
	Magnitud-Signo
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	
1001	-1
1010	-2
1011	-3
1100	-4
1101	-5
1110	-6
1111	-7

¿Qué pasa con el 1000?

Magnitud-Signo

Patrón	Valor Representado
	Magnitud-Signo
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-0
1001	-1
1010	-2
1011	-3
1100	-4
1101	-5
1110	-6
1111	-7

Tenemos +0 y -0, dos patrones para un mismo valor.

Es fácil leer el valor entero de cualquier patrón.

¿Se conserva la propiedad de la adición?

Por ejemplo, ¿cuál es el resultado de patrón(-1) + patrón(1)?

Complemento a 1

Patrón	Valor Rep	resentado
	M-s	Ca1
0000	+0	+0
0001	+1	+1
0010	+2	+2
0011	+3	+3
0100	+4	+4
0101	+5	+5
0110	+6	+6
0111	+7	+7
1000	-0	-7
1001	-1	-6
1010	-2	-5
1011	-3	-4
1100	-4	-3
1101	-5	-2
1110	-6	-1
1111	-7	-0

Características:

- •Su interpretación decimal no es inmediata
- •Negar es realizar la operacion Ca1
- •Rango: [-(2ⁿ⁻¹-1) a +2ⁿ⁻¹-1]
- •Hay +0 y -0
- •Es relativamente cómodo operar
- •El 0 no está centrado entre positivos y negativos

Complemento a 2

Patrón				
	Sin signo	M-S	Ca1	Ca2
0000	0	0	0	0
0001	1	1	1	1
0010	2	2	2	2
0011	3	3	3	3
0100	4	4	4	4
0101	5	5	5	5
0110	6	6	6	6
0111	7	7	7	7
1000	8	-0	-7	-8
1001	9	-1	-6	-7
1010	10	-2	-5	-6
1011	11	-3	-4	-5
1100	12	-4	-3	-4
1101	13	-5	-2	-3
1110	14	-6	-1	-2
1111	15	-7	-0	-1

Características:

- •Su interpretación decimal no es inmediata
- •Negar es realizar la operacion Ca2
- •Rango: [-2ⁿ⁻¹ a +2ⁿ⁻¹-1]
- •Un solo 0
- •Es cómodo operar
- •El 0 no está centrado entre positivos y negativos

Criterio de exceso o con sesgo

Patrón	Binario puro	M-S	Ca1	Ca2	XS7	XS8
0000	0	+0	+0	0	-7	-8
0001	1	+1	+1	1	-6	-7
0010	2	+2	+2	2	-5	-6
0011	3	+3	+3	3	-4	-5
0100	4	+4	+4	4	-3	-4
0101	5	+5	+5	5	-2	-3
0110	6	+6	+6	6	-1	-2
0111	7	+7	+7	7	0	-1
1000	8	-0	-7	-8	+1	0
1001	9	-1	-6	-7	+2	+1
1010	10	-2	-5	-6	+3	+2
1011	11	-3	-4	-5	+4	+3
1100	12	-4	-3	-4	+5	+4
1101	13	-5	-2	-3	+6	+5
1110	14	-6	-1	-2	+7	+6
1111	15	-7	-0	-1	+8	+7

Codificación de nº decimal:

- 1. Se le suma el exceso, que suele ser 2^{n-1} ó 2^{n-1} -1
- 2. Se codifica en binario puro

Decodificación:

- El número binario es interpretado como decimal
- 2. Sele resta el sesgo

Criterio de exceso o con sesgo

Patrón	Binario puro	M-S	Ca1	Ca2	XS7	XS8
0000	0	+0	+0	0	-7	-8
0001	1	+1	+1	1	-6	-7
0010	2	+2	+2	2	-5	-6
0011	3	+3	+3	3	-4	-5
0100	4	+4	+4	4	-3	-4
0101	5	+5	+5	5	-2	-3
0110	6	+6	+6	6	-1	-2
0111	7	+7	+7	7	0	-1
1000	8	-0	-7	-8	+1	0
1001	9	-1	-6	-7	+2	+1
1010	10	-2	-5	-6	+3	+2
1011	11	-3	-4	-5	+4	+3
1100	12	-4	-3	-4	+5	+4
1101	13	-5	-2	-3	+6	+5
1110	14	-6	-1	-2	+7	+6
1111	15	-7	-0	-1	+8	+7

Características:

- •Su interpretación decimal no es inmediata
- •La negación de un número no es directa

- •Un solo 0
- •Es cómodo operar
- •El 0 está centrado entre positivos y negativos
- •Se usa para representar el exponente de la representación en coma flotante

Resumen

	Complemento a 1	Complemento a 2	Binario con sesgo	Magnitud y signo
Interpretación	No inmediata	No inmediata	No inmediata	Inmediata
Negación	Ca1 sencillo	Ca2 Sencillo	No sencillo	Bit signo. Fácil
Rango	$[-2^{n-1}+1,+2^{n-1}-1]$	[-2 ⁿ⁻¹ ,+2 ⁿ⁻¹ -1]	[-2 ⁿ⁻¹ ,+2 ⁿ⁻¹ -1]	$[-2^{n-1}+1,+2^{n-1}-1]$
			$[-2^{n-1}+1,+2^{n-1}]$	
Duplicidad 0	Sí	No	No	Sí
Simetría 0	No	No	Sí	No
Operatividad	Sencilla	Sencilla	Normal	Complicada