probability theory

李博

July 3, 2019

1 基本定义

定义 1.1 (半集代数). 如果 Ω 的子集类 $\mathscr L$ 满足

- $(1)\Omega,\emptyset\in\mathscr{L}$
- $(2)A, B \in \mathcal{L} \Rightarrow A \cap B \in \mathcal{L}$
- $(3)A, B \in \mathcal{L} \Rightarrow \exists A_i \in \mathcal{L}A_i \quad A B = A_i$

定义 1.2 (集代数). 如果 Ω 的子集类 $\mathscr L$ 满足

- $(1)\Omega \in \mathcal{L}$
- $(2)A, B \in \mathcal{L} \Rightarrow A B \in \mathcal{L}$

定义 1.3 (σ 代数). 如果 Ω 的子集类 $\mathscr L$ 满足

- $(1)\Omega \in \mathcal{L}$
- (2) 若 $A \in \mathcal{L}, A^c \in \mathcal{L}$
- (3) 可数的 $A_i \in \mathcal{L}$, $\Rightarrow \bigcup A_i \in \mathcal{L}$
- 将 σ 代数条件整理为 π 系 λ 系

定义 1.4 (borel σ 代数). 由开集生成的 σ 代数

命题 1.1. 半集代数需要添加有限集合的并变成集代数,集代数可数集合交和并变为 σ 代数 (也称为单调类定理)

定义 1.5 (乘积空间与乘积 σ 代数). \mathscr{A}_i 是 Ω_i 的 σ 代数, $\mathscr{L} = \{\mathscr{A}_i \times ...\}$ 是 半集代数, $\sigma(\mathscr{L})$ 称为乘积 σ 代数

定义 1.6. 如果集函数 Φ 具有 σ 可加性,为符号测度,如果非负,为测度,如果 $\Phi(\Omega) = 1$,为概率测度。若测度还有限,则为有限可加测度。

定义 1.7 (lebesgue 测度). 在 R^n 空间的所有子集上定义外侧度 (不是测度), 但是这个外测度不满足可数可加性,为此选出 lebesgue 可测集: $\forall T \in R^n, m*T = m*(T \cap E) + m*(T \cap E^C)$, 定义在 lebesgue 可测集上的外侧度是 lebesgue 测度 (满足外侧度的性质和完全可加性)

定义 1.8. 设 (Ω, \mathscr{A}, P) 是概率空间, $\xi : \Omega \to R$ 是实函数, 如果 $\{\omega : \xi(\omega) < x\} \in \mathscr{A}$, 则称 ξ 实随机变量。 $F(x) = P(\xi < x)$ 为分布函数。¹

定义 1.9 (可测映射). (Ω, \mathscr{A}) 与 (E, \mathscr{B}) 是两个可测空间, $f: \Omega \to E$, 若 $\forall B \in \mathscr{B}, f^-(B) \in \mathscr{A}$, 称 f 是可测映射。

定义 1.10 (几乎处处收敛). $\{f_n\}$ 是可测函数列,若 $E \in \mathscr{A}$ 是非零测集, $f_n \to f$,则称 f_n 几乎处处收敛 f_o 2

定义 1.11 (依测度收敛). 如果 $\forall \epsilon > 0, \mu (|f_n - f| \ge \epsilon) \to 0 (n \to \infty)$, 称 f_n 依测度 μ 收敛于 f_n 3

命题 1.2 (控制收敛定理). 设 g 是可积函数, $|f_n| \leq g$, 如果 $f_n \xrightarrow{a.e.} f$ 或者 $f_n \xrightarrow{\mu} f$,则 $\int_{\Omega} f_n d\mu \to \int_{\Omega} f d\mu^4$

定义 1.12 (勒贝格积分). $\int_{\Omega} f d\mu = \sup\{\int_{\Omega} g d\mu : 0 \le g \le f, g \ 为简单函数 \}$, 若上述确界存在则称可积。

定理 1.1 (Hahn 分解定理). $(\Omega, \mathscr{A}, \mu)$, 则存在 $D \in \mathscr{A}, st.\mu(D) = \inf_{A \in \mathscr{A}} \mu(A)$. 令 $\mu^{+}(A) = \mu(A \cap D^{c}), \mu^{-}(A) = -\mu(A \cap D)$,则 μ^{-}, μ^{+} 均为测度,且 $\mu = \mu^{+} - \mu^{-}$

定理 1.2 (Fubini 定理). $(\Omega_1, \mathscr{A}_1, \mu_1)$, $(\Omega_2, \mathscr{A}_2, \mu_2)$ 是两个测度空间, $(\Omega_1 \times \Omega_2, \mathscr{A}_1 \times \mathscr{A}_2, \mu = \mu_1 \times \mu_2)$ 是乘积测度。若 f 是其上可积函数,则 $\int_{\Omega_1 \times \Omega_2} f d\mu_1 \times \mu_2 = \int_{\Omega_1} \left(\int_{\Omega_2} f d\mu_2 \right) d\mu_1^5$

定义 1.13. $(R^n, \mathcal{B}^n, \mu)$, 称 $f(t) = \int_{R^n} e^{i < t, x >} d\mu$ 为 μ 的特征函数。 ⁶

定理 1.3. 设 f 为 μ 的特征函数,若 $\forall x \in R^n, \mu(x) = 0$,则 $\mu([a,b]) = \lim_{T \to \infty} \frac{1}{(2\pi)^n} \int_{-T}^T ... \int_{-T}^T \prod_{k=1}^n \frac{e^{-it_k a_k} - e^{-it_k b_k}}{it_k} f(t_1...t_n) dt_1...dt_n$

Proof. 右端 ^{Fubini}

¹由分布函数生成的测度称为 L-S 测度

 $^{^2}$ 当 f 可积时,若以 $\mu(f*g)$ 作为"配合",即引入对偶空间,则上述定义可以描述为弱收敛。

 $^{^3}$ 处处收敛必依测度收敛,以绝对值的积分当作 1 范数,测度收敛为 1 范数收敛,前提自然是 \mathbf{f} 可和

⁴此定理说明某收敛情况下,函数数列的极限在积分号内外相等

 $^{^5}$ 若 μ 不能表示为乘积测度,可以利用转移测度化为累次积分

⁶特征函数类似展成傅立叶的一族正交基系数

$$\begin{split} & \int_{R^n} d\mu \frac{1}{(2\pi)^n} \int_{-T}^T \dots \int_{-T}^T \prod_{k=1}^n \frac{e^{-it_k a_k} - e^{-it_k b_k}}{it_k} f\left(t_1...t_n\right) dt_1...dt_n \\ & = \int_{R^n} d\mu \frac{1}{(2\pi)^n} \int_{-T}^T \dots \int_{-T}^T \prod_{k=1}^n \frac{e^{-it_k a_k} - e^{-it_k b_k}}{it_k} e^{it_k x_k} dt_1...dt_n \\ & = \int_{R^n} d\mu \frac{1}{(\pi)^n} \int_{-T}^T \dots \int_{-T}^T \prod_{k=1}^n \frac{\sin t_k \left(x_k - a_k\right) - \sin t_k \left(x_k - b_k\right)}{t_k} dt_1...dt_n \end{split}$$

由
$$\int_{-\infty}^{+\infty} \frac{\sin t}{t} dt = \pi$$
 可得结论

2 wassertein 距离与最优传输

定义 2.1. 在 borel 可测空间 (E,\mathcal{B}) 上,以 \mathcal{B}_b 表示有界可测函数全体,以 C_b 表示有界连续函数全体。

- $\forall f \in \mathcal{B}_b, \mu_n(f) \to \mu(f), \, \text{则称} \, \mu_n \, \text{强收敛到} \, \mu^7$
- $\forall f \in C_b, \mu_n(f) \to \mu(f), \text{ 则称 } \mu_n \text{ 弱收敛到 } \mu^8$

命题 2.1. 在此定义下, 测度空间是弱紧空间

Proof. https://wujilingfeng.top/2019/07/03/

倘若对于空间 E 中两个概率测度 u,v 如果用全变差度量其距离,则 $(u-v)^+$ $E=(u-v)^ E=\frac{1}{2}|u-v|_{var}$

命题 2.2. 我们考虑以下最优传输模型,E 的 σ 代数 \mathscr{A} ,若有 $a_i, a_j \in \mathscr{A}$,则代价函数 $cost(a_i, a_j) = 1 - \delta_{ij}$,可分析得出它的最优传输 (某个 wassertein 耦合) π ,满足 $\pi(E) = (u - v)^- E$

命题 2.3. 最优 wassertein 耦合是距离正定性,对称性,三角不等式性,前两个条件需要限制代价函数的对称性,非负性及对角线为0的。最后一个三角不等式由最优性保证

⁷等价全变差作为范数的收敛, 也等价与 $\forall A \in \mathcal{B}, \mu_n(A) \rightarrow \mu(A)$

⁸我不知道这个弱收敛跟泛函中由对偶空间定义相容,但是以下结论是成立的