Import packages

```
In [1]: import pandas as pd
   import statsmodels.api as sm
   from statsmodels.tsa.statespace.sarimax import SARIMAX
   import matplotlib.pyplot as plt
   import itertools
   import warnings
   warnings.filterwarnings("ignore")
```

Function definition

-> S.ARIMA model gerneration

```
In [2]: def Return_SARIMA_Model(y, p, d, q ,P, D, Q, S):
    order = [p,d,q]
    s_order = [P,D,Q,S]
    model=sm.tsa.statespace.SARIMAX(endog=y,order=order,seasonal_order=s_order)
    results=model.fit()
    return results
```

-> Add dummy columns

```
In [3]: def Add_Month_Datecolumn(df, No):
    month_NO = []
    for i in range(1, len(df)+1):
        if (i - No)%12 == 0:
            month_NO.append(1)
        else:
            month_NO.append(0)
        df.loc[:, str(No)] = month_NO
```

Prepare dataset (TSA HW07.co2.csv)

Out[4]:

	time_trend	month	co2_level
0	1994.000000	Jan	363.05
1	1994.083333	Feb	364.18
2	1994.166667	Mar	364.87
3	1994.250000	Apr	364.47
4	1994.333333	May	364.32
127	2004.583333	Aug	368.69
128	2004.666667	Sep	368.55
129	2004.750000	Oct	373.39
130	2004.833333	Nov	378.49
131	2004.916667	Dec	381.62

132 rows × 3 columns

```
In [5]: # adding dummy columns.
for i in range(1,12):
         Add_Month_Datecolumn(df, i)
df
```

Out[5]:

	time_trend	month	co2_level	1	2	3	4	5	6	7	8	9	10	11
0	1994.000000	Jan	363.05	1	0	0	0	0	0	0	0	0	0	0
1	1994.083333	Feb	364.18	0	1	0	0	0	0	0	0	0	0	0
2	1994.166667	Mar	364.87	0	0	1	0	0	0	0	0	0	0	0
3	1994.250000	Apr	364.47	0	0	0	1	0	0	0	0	0	0	0
4	1994.333333	May	364.32	0	0	0	0	1	0	0	0	0	0	0
127	2004.583333	Aug	368.69	0	0	0	0	0	0	0	1	0	0	0
128	2004.666667	Sep	368.55	0	0	0	0	0	0	0	0	1	0	0
129	2004.750000	Oct	373.39	0	0	0	0	0	0	0	0	0	1	0
130	2004.833333	Nov	378.49	0	0	0	0	0	0	0	0	0	0	1
131	2004.916667	Dec	381.62	0	0	0	0	0	0	0	0	0	0	0

132 rows × 14 columns

```
In [6]: # plot the series
plt.plot(df["time_trend"].tolist(), df["co2_level"].tolist())
plt.show()
```


Q5.

Consider the famous time series data "co2" (monthly carbon dioxide through 11 years in Alert, Canada).

(a). Fit a deterministic regression model in terms of months and time. Are the regression coefficients significant? What is the adjusted R-squared? (Note that the month variable should be treated as categorical and transformed into 11 dummy variables.)

==> By the OLS regression summary no cofficients are significant. The adjusted R-squared is 0.989

```
X = sm.add_constant(df.drop(['month', "co2_level"], axis=1))
y = df["co2_level"]
# OLS regression
reg = sm.OLS(y, X)
result = reg.fit()
# print result
print("parameters: \n", result.params)
print("\n", result.summary())
parameters:
 const
              -3291.877932
time_trend
                1.832098
                 1.336697
1
2
                 2.004932
3
                 2.300437
4
                 2.567763
5
                 2.864180
6
                 0.660595
7
                -5.948443
8
               -12.104754
9
               -11.483794
10
                -6.923741
11
                -2.590960
dtype: float64
                              OLS Regression Results
______
Dep. Variable:
                             co2_level R-squared:
                                                                             0.990
Model:
                                   OLS Adj. R-squared:
                                                                            0.989
Method:
                        Least Squares F-statistic:
                                                                            997.7
                                                                     2.93e-113
Date:
                     Sun, 19 Dec 2021 Prob (F-statistic):
Time:
                              13:11:14 Log-Likelihood:
                                                                          -151.49
No. Observations:
                                   132
                                         AIC:
                                                                             329.0
Df Residuals:
                                   119
                                          BIC:
                                                                             366.4
Df Model:
                                    12
Covariance Type:
                             nonrobust
______
                 coef
                          std err
                                           t
                                                               [0.025
                                                                           0.975]

      44.199
      -74.478
      0.000
      -3379.397
      -3204.359

      0.022
      82.899
      0.000
      1.788
      1.876

      0.343
      3.897
      0.000
      0.658
      2.016

      0.343
      5.847
      0.000
      1.326
      2.684

const -3291.8779
time_trend
             1.8321
                         0.343
0.343
1
               1.3367
2
               2.0049
                                                0.000
0.000 1.2
0.000 2.186
0.056 -0.018
-6.627
3
               2.3004
                          0.343
                                      6.711
                                                                            2.979
                                     7.493
8.360 0.66
1.928 0.056
258 0.000
9.000
4
               2.5678
                          0.343
                                                                            3.246
5
                          0.343
               2.8642
                                                                           3.543
                       0.343
6
               0.6606
                                                                            1.339
7
             -5.9484
                          0.342 -17.368
                                                                          <del>-</del>5.270
                                                0.000
                                   -35.347
8
             -12.1048
                           0.342
                                                              -12.783
                                                                          -11.427
9
                            0.342 -33.537
                                                 0.000
                                                             -12.162
             -11.4838
                                                                          -10.806
```

In [7]: # split X and y

10

11

-6.9237

-2.5910

0.342

0.342

-20.221

-7.567

0.000

0.000

-7.602

-3.269

-6.246

-1.913

```
Omnibus:
                           Durbin-Watson:
                      3.248
                                                  0.983
Prob(Omnibus):
                      0.197
                           Jarque-Bera (JB):
                                                  3.189
Skew:
                           Prob(JB):
                                                  0.203
                      0.376
Kurtosis:
                      2.883
                           Cond. No.
                                                1.26e+06
______
```

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.26e+06. This might indicate that there are strong multicollinearity or other numerical problems.

(b). Identify, estimate the SARIMA model for the co2 level.

==> After testing multiple parameter settings, we found out that p, d, q = (0, 1, 1) X P, D, Q = (0, 1, 1) 12 has minimum AIC

```
In [8]: # finding AIC under different parameter settings
p = d = q = range(0, 2)
pdq = list(itertools.product(p, d, q))
s_pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p, d, q))]

aic_list = []
pdq_index = []
s_pdq_index = []
for i in range(0,len(pdq)):
    for j in range(0,len(s_pdq)):
        order = pdq[i]
        s_order = s_pdq[j]
        result = Return_SARIMA_Model(y, *order, *s_order)
        aic_list.append(result.aic)
        pdq_index.append(j)
```

Out[9]:

	p, d, q	P, D, Q, S	AIC
0	(0, 0, 0)	(0, 0, 0, 12)	1937.143243
1	(0, 0, 0)	(0, 0, 1, 12)	1797.507621
2	(0, 0, 0)	(0, 1, 0, 12)	528.074894
3	(0, 0, 0)	(0, 1, 1, 12)	504.978544
4	(0, 0, 0)	(1, 0, 0, 12)	717.257477
59	(1, 1, 1)	(0, 1, 1, 12)	287.056872
60	(1, 1, 1)	(1, 0, 0, 12)	405.983285
61	(1, 1, 1)	(1, 0, 1, 12)	359.570864
62	(1, 1, 1)	(1, 1, 0, 12)	305.871366
63	(1, 1, 1)	(1, 1, 1, 12)	289.032710

Optimal (P, D, Q, S): (0, 1, 1, 12)

64 rows × 3 columns

```
In [10]: # finding minimum AIC setting
    min_aic = min(aic_list)
    min_index = aic_list.index(min_aic)
    op_order = pdq[pdq_index[min_index]]
    op_s_order = s_pdq[s_pdq_index[min_index]]

# print
    print("Optimal (p, d, q) : ", op_order)
    print("Optimal (P, D, Q, S) : ", op_s_order)
Optimal (p, d, q) : (0, 1, 1)
```

```
In [11]: # show optimal SARIMA result
           result = Return_SARIMA_Model(y, *op_order, *op_s_order)
           print("least AIC: \n", result.aic)
           result.summary()
           least AIC:
            285.0949783730558
Out[11]:
           SARIMAX Results
               Dep. Variable:
                                             co2 level No. Observations:
                                                                             132
                     Model: SARIMAX(0, 1, 1)x(0, 1, 1, 12)
                                                          Log Likelihood -139.547
                      Date:
                                      Sun, 19 Dec 2021
                                                                   AIC
                                                                         285.095
                      Time:
                                              13:12:08
                                                                    BIC
                                                                         293.432
                    Sample:
                                                    0
                                                                  HQIC
                                                                         288.481
                                                 - 132
            Covariance Type:
                                                  opg
                        coef std err
                                         z P>|z| [0.025 0.975]
              ma.L1 -0.5791
                              0.093 -6.254 0.000 -0.761 -0.398
           ma.S.L12 -0.8205
                               0.117 -7.017 0.000 -1.050 -0.591
             sigma2 0.5448
                              0.073 7.484 0.000 0.402
                                                          0.687
               Ljung-Box (L1) (Q): 0.01 Jarque-Bera (JB):
                        Prob(Q): 0.94
                                              Prob(JB):
                                                        0.34
           Heteroskedasticity (H): 1.04
```

Warnings:

Prob(H) (two-sided): 0.90

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Kurtosis:

Skew: -0.15

3.58

(c) Compare the two models above, what do you observe?

==> we conclude S.ARIMA fits this time series better, having smaller AIC than OLS regression does (285 < 329)