Computer Networks

Fakulta elektrotechniky a informatiky VŠB-TU Ostrava (bakalářský)

Datum aktualizace originálu: 26. 12. 2023 v 9:16:17

Datum vygenerování PDF: 2. 7. 2025 v 14:41:20

Computer Networks

Obsah

- Data Transfers
 - <u>Data Transmission Processes</u>
 - Broadband Transmission
 - Baseband Transmission

Data Transfers

We can classify transfers using several criteria:

According to the Direction of the Communication

- Simplex signal can flow in only one direction;
- Half duplex communication is possible in both directions, but only one direction at a time;
- Full duplex allows communication in both directions simultaneously.

• According to the Multiple of Units in Communication

- Parallel multiple bits transmitted in parallel;
- Serial data are transmitted bit-by-bit, mostly used in computer networks;
 - Asynchronous Serial Communication data are transmitted character by character, both sides
 maintain their own clocks; before transmission of every single character, the phase of a receiver
 clock is synchronized; the parity bit at the end of each character helps to detect transmission
 errors;
 - Synchronous Serial Communication data are transmitted in frames containing header, payload and frame checksum delimited by flags in a transmitted bit stream. If there are no data to transmit, the transmitter transmits just the empty frames.

According to the means of Transmission

- Baseband utilizes the full bandwidth of the medium; the signal can include frequencies that are very near zero
- Broadband uses a specific part of the utilizable bandwidth of the medium, multiple communications may share the medium at the same time

Data Transmission Processes

1 2 3 4 5 6 n The transmitted data are represented by changes of a suitable physical quantity, i.e. a **signal** s(t). The signal travels along the **medium** (either guided or wireless). **Transmitter encodes** the signal with **modulation** to transfer via medium to use **demodulation** and **decoding** on the **receiver** side. Via travelling through the medium, we care about several **media** characteristics - attenuation (decreasing the

amplitude of signal), crosstalk, velocity of the signal propagation or return loss. Media characteristics are often frequency-dependent.

Harmonic Decomposition of Signal

Sine-wave signal contains just the single frequency, any other periodic signal may be treated as a sum of the sine-wave signals of various frequencies (decomposing signal into the **harmonic components**). Using Fourier series we use discrete decomposition with first n components and create the **frequency spectrum of the signal** and asses the media characteristics with the signal.

Broadband Transmission

The signal have to be shifted to a frequency band suitable for transmission over a particular medium using the **modulation**. Using sine-wave equation $s(t) = A \cdot \sin(\omega t + \phi)$ we define amplitude, frequency and phase modulation.

- **Phase-Shift Keying** (PSK) if we have 2^n possible phase changes, we may encode n bits using one signal change. The number of possible signal change options is limited by capability of the receiver to differentiate between them;
- **Quadrature Amplitude Modulation** (QAM, QAM64) combines together the amplitude and PSK modulation.

Modulation Rate is a number of changes of a signal during a time interval, measured in bauds [Bd]. **Transfer rate** is a number of bits transferred during a time interval, measured in bits per seconds [bps]. The transfer rate can be higher than the modulation rate, as we may represent multiple bits by a single signal change.

Baseband Transmission

The encoded bit stream is transmitted in the original frequency band. We need an another mechanism of the phase synchronization between transmitter and receiver using **data encoding** – we need to ensure enough changes of the signal.

- Non Return to Zero Encoding (NRZ) 0s and 1s are encoded directly by a low and high signal levels during the whole bit interval.
- Line code http://en.wikipedia.org/wiki/Line code
- **Manchester** 1 is expressed by a low-to-high transition at the middle of the period, a 0 by a high-to-low transition; used in 10Mbps Ethernet
- **Differential Manchester** 0 is expressed as a signal change at the beginning of a period, 1 is an unchanged value
- **Return Zero (RZ)** three signal levels, the first half of the bit interval encodes the bit value (+1 represents 1, -1 represents 0), the signal always goes to 0 in the second half of the bit interval.
- Non Return to Zero Inverted (NRZI) two signal levels, change of the signal encodes binary 1

- Alternate Mark Inversion (AMI) 3 signal levels, binary 0 represented as 0, binary 1 alternates +1 and -1, violation of polarity marks a significant event in the data stream.
- **HDB3** modification of AMI, inserts 1 after 3 consecutive 0s, the inserted 1 is identified by violation of polarity alternation rule, used on PCM E1-E3 links
- **Code Mark Inversion (CMI)** transfers AMI/HDB3 over optical lines, the one of the original 3 signal levels is encoded as a combination of two bits

Veškeré materiály na této stránce jsou osobními poznámkami autora, vytvořenými na základě univerzitních přednášek. Jsou poskytovány bez záruky a slouží výhradně ke studijním účelům.

Obsah je licencován pod <u>Creative Commons Uveďte původ-Neužívejte komerčně-Zachovejte licenci 4.0 Mezinárodní</u>. To znamená, že materiály můžete volně sdílet a upravovat pro nekomerční účely, pokud uvedete původního autora a zachováte stejnou licenci.

Závěrečné informace

Veškeré materiály v tomto dokumentu jsou osobními poznámkami autora, vytvořenými na základě univerzitních přednášek. Jsou poskytovány bez záruky a slouží výhradně ke studijním účelům.

Datum aktualizace originálu: 26. 12. 2023 v 9:16:17

Datum vygenerování PDF: **2. 7. 2025 v 14:41:20**

Licencováno pod Creative Commons BY-NC-SA 4.0.