Метод последовательной верхней релаксации.

Рассмотрим два последовательных приближения в методе Зейделя

$$y = (x_1^{(k+1)}, ..., x_{i-1}^{(k+1)}, x_i^{(k)}, ..., x_n^{(k)})^*$$

$$z = (x_1^{(k+1)}, ..., x_{i-1}^{(k+1)}, x_i^{(k+1)}, x_{i+1}^{(k)}, ..., x_n^{(k)})^*$$

Для того, чтобы наиболее простым способом перейти к следующему методу последовательной релаксации, посмотрим на приближения в методе Зейделя ещё с одной точки зрения. Обозначим через t и r соответственно невязки приближений v и z:

$$t = Ay - f$$
, $t_i = \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} + a_{ii} x_i^{(k)} + \sum_{j=i+1}^n a_{ij} x_j^{(k)} - f_i$

$$r = Az - f$$
, $r_i = \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} + a_{ii} x_i^{(k+1)} + \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} - f_i$

Из расчетной формулы метода Зейделя следует, что $r_i=0$. С другой стороны, обозначим $\alpha=x_i^{(k)}$ - $x_i^{(k+1)}$ и выразим r_i через t_i ,

$$r_i = t_i + a_{ii}(x_i^{(k+1)} - x_i^{(k)}) = t_i - \alpha a_{ii}$$

 $r_i = t_i - \alpha a_{ii}$.

Таким образом, поправка α к значению i-той компоненты находится из условия

$$r_i = t_i - \alpha a_{ii} = 0.$$

Обнуление i-той компоненты невязки r обычно называют полной релаксацией. По этой причине метод Зейделя называют методом полной релаксации.

Иногда можно добиться более быстрой сходимости, если требовать не обнуления r_i , а всего лишь уменьшения $|r_i|$ по сравнению с $|t_i|$, то есть проводить не полную, а частичную релаксацию.

Итак, потребуем, чтобы

$$|r_i| = |t_i - \alpha a_{ii}| < |t_i|$$

$$\left|\alpha - \frac{t_i}{a_{ii}}\right| < \left|\frac{t_i}{a_{ii}}\right|.$$

Если
$$\frac{t_i}{a_{ii}} > 0$$
, то $0 < \alpha < 2 \frac{t_i}{a_{ii}}$; если $\frac{t_i}{a_{ii}} < 0$, то $2 \frac{t_i}{a_{ii}} < \alpha < 0$.

И в том , и в другом случае решения неравенства можно записать в единообразном виде $\alpha = \omega \, \frac{t_i}{a_{ii}}$, где $\omega \in (0,2)$.

При этом i-тая компонента невязки r_i будет определяться формулой

$$r_i = t_i - a_{ii} \omega \frac{t_i}{a_{ii}} = t_i (1 - \omega). \tag{1}$$

Мы получили семейство методов, которые называются методами последовательной релаксации. При $\omega=1$ $r_i=0$, то есть метод Зейделя получается из семейства методов последовательной релаксации при $\omega=1$. Параметр ω называется релаксационным параметром.

Подставляя в формулу (1) выражения для r_i и t_i , нетрудно получить расчетные формулы метода последовательной релаксации

$$x_i^{(k+1)} = (\omega f_i - \omega \sum_{j=1}^{i-1} a_{ij} x_j^{(k+1)} - \omega \sum_{j=i+1}^{n} a_{ij} x_j^{(k)} + (1 - \omega) x_i^{(k)} a_{ii}) / a_{ii}$$

Эту же формулу можно получить, исходя из канонической формы записи при $B = D + \omega A_L$, $\tau = \omega$.

Проверить самостоятельно.

<u>Теорема</u> (достаточное условие сходимости метода последовательной релаксации):

Для симметрических положительно определенных матриц метод последовательной релаксации сходиться, если $\omega \in (0,2)$.

(Без доказательства).