Formale Systeme

Week 3

Lecturer: Andreas Haas

Instructions: Dr. Ana Sokolova + Andreas Haas

http://cs.uni-salzburg.at/~anas/teaching/FormaleSysteme/

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

$$P \Rightarrow Q \stackrel{val}{\neq} Q \Rightarrow P$$

P	$\mid Q \mid$	$P \Rightarrow Q$	$Q \Rightarrow P$
0	$\mid 1 \mid$	1	0

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

$$(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$$
$$(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$$
$$(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$$

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

$$(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$$
$$(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$$
$$(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$$

$$(P \Rightarrow Q) \Rightarrow R \stackrel{val}{\neq} P \Rightarrow (Q \Rightarrow R)$$

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

$$(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$$
$$(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$$
$$(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$$

$$(P \Rightarrow Q) \Rightarrow R \stackrel{val}{\neq} P \Rightarrow (Q \Rightarrow R)$$

P	Q	$\mid R \mid$	$(P \Rightarrow Q) \Rightarrow R$	$P \Rightarrow (Q \Rightarrow R)$

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

$$(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$$
$$(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$$
$$(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$$

$$(P \Rightarrow Q) \Rightarrow R \stackrel{val}{\neq} P \Rightarrow (Q \Rightarrow R)$$

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

$$(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$$
$$(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$$
$$(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$$

$$(P \Rightarrow Q) \Rightarrow R \stackrel{val}{\neq} P \Rightarrow (Q \Rightarrow R)$$

Idempotence and Double Negation

Idempotence

$$P \wedge P \stackrel{val}{=} P$$

$$P \vee P \stackrel{val}{=} P$$

$$P \Rightarrow P \stackrel{val}{\neq} P$$
$$P \Leftrightarrow P \stackrel{val}{\neq} P$$

Idempotence and Double Negation

Idempotence

$$P \land P \stackrel{val}{=} P$$
$$P \lor P \stackrel{val}{=} P$$

$$P \Rightarrow P \stackrel{val}{\neq} P$$
$$P \Leftrightarrow P \stackrel{val}{\neq} P$$

Double negation

$$\neg \neg P \stackrel{val}{=} P$$

Inversion

$$\neg T \stackrel{val}{=} F$$
$$\neg F \stackrel{val}{=} T$$

Inversion

$$\neg T \stackrel{val}{=} F$$
$$\neg F \stackrel{val}{=} T$$

Negation

$$\neg P \stackrel{val}{=} P \Rightarrow F$$

Inversion

$$\neg T \stackrel{val}{=} F$$
$$\neg F \stackrel{val}{=} T$$

Negation

$$\neg P \stackrel{val}{=} P \Rightarrow F$$

Contradiction

$$P \wedge \neg P \stackrel{val}{=} F$$

Inversion

$$\neg T \stackrel{val}{=} F$$
$$\neg F \stackrel{val}{=} T$$

Negation

$$\neg P \stackrel{val}{=} P \Rightarrow F$$

Contradiction

$$P \wedge \neg P \stackrel{val}{=} F$$

Excluded Middle

$$P \vee \neg P \stackrel{val}{=} T$$

Inversion

$$\neg T \stackrel{val}{=} F$$
$$\neg F \stackrel{val}{=} T$$

Negation

$$\neg P \stackrel{val}{=} P \Rightarrow F$$

Contradiction

$$P \wedge \neg P \stackrel{val}{=} F$$

Excluded Middle

$$P \vee \neg P \stackrel{val}{=} T$$

T/F - elimination

$$P \wedge T \stackrel{val}{=}$$

$$P \wedge F \stackrel{val}{=}$$

$$P \vee T \stackrel{val}{=}$$

$$P \vee F \stackrel{val}{=}$$

Inversion

$$\neg T \stackrel{val}{=} F$$
$$\neg F \stackrel{val}{=} T$$

Negation

$$\neg P \stackrel{val}{=} P \Rightarrow F$$

Contradiction

$$P \wedge \neg P \stackrel{val}{=} F$$

Excluded Middle

$$P \vee \neg P \stackrel{val}{=} T$$

T/F - elimination

$$P \wedge T \stackrel{val}{=} P$$

$$P \wedge F \stackrel{val}{=} F$$

$$P \vee T \stackrel{val}{=} T$$

$$P \vee F \stackrel{val}{=} P$$

Distributivity, De Morgan

Distributivity

$$P \wedge (Q \vee R) \stackrel{val}{=} (P \wedge Q) \vee (P \wedge R)$$

 $P \vee (Q \wedge R) \stackrel{val}{=} (P \vee Q) \wedge (P \vee R)$

$$P \lor (Q \land R) \stackrel{val}{=} (P \lor Q) \land (P \lor R)$$

Distributivity, De Morgan

Distributivity

$$P \wedge (Q \vee R) \stackrel{val}{=} (P \wedge Q) \vee (P \wedge R)$$

$$P \lor (Q \land R) \stackrel{val}{=} (P \lor Q) \land (P \lor R)$$

De Morgan

$$\neg (P \land Q) \stackrel{val}{=} \neg P \lor \neg Q$$
$$\neg (P \lor Q) \stackrel{val}{=} \neg P \land \neg Q$$

$$\neg (P \lor Q) \stackrel{val}{=} \neg P \land \neg Q$$

Implication and Contraposition

Implication

$$P \Rightarrow Q \stackrel{val}{=} \neg P \lor Q$$
$$P \lor Q \stackrel{val}{=} \neg P \Rightarrow Q$$

$$P \vee Q \stackrel{vat}{=} \neg P \Rightarrow Q$$

Implication and Contraposition

Implication

$$P \Rightarrow Q \stackrel{val}{=} \neg P \lor Q$$
$$P \lor Q \stackrel{val}{=} \neg P \Rightarrow Q$$

Contraposition

$$P \Rightarrow Q \stackrel{val}{=} \neg Q \Rightarrow \neg P$$

Implication and Contraposition

Implication

$$P \Rightarrow Q \stackrel{val}{=} \neg P \lor Q$$
$$P \lor Q \stackrel{val}{=} \neg P \Rightarrow Q$$

Contraposition

$$P \Rightarrow Q \stackrel{val}{=} \neg Q \Rightarrow \neg P$$

Bi-implication and Self-equivalence

Bi-implication

$$P \Leftrightarrow Q \stackrel{val}{=} (P \Rightarrow Q) \land (Q \Rightarrow P)$$

Bi-implication and Self-equivalence

Bi-implication

$$P \Leftrightarrow Q \stackrel{val}{=} (P \Rightarrow Q) \land (Q \Rightarrow P)$$

Self-equivalence

$$P \Leftrightarrow P \stackrel{val}{=}$$

Bi-implication and Self-equivalence

Bi-implication

$$P \Leftrightarrow Q \stackrel{val}{=} (P \Rightarrow Q) \land (Q \Rightarrow P)$$

Self-equivalence

$$P \Leftrightarrow P \stackrel{val}{=} T$$