CLAIMS

What is claimed is:

1	 A double clutch assembly comprising: 	
2	an abutment assembly having an outer circumferential surface;	
3	a first clutch assembly comprising a first pressure plate;	
4	a first force exerting assembly which can move said first pressure plate	
5	toward said abutment assembly;	
6	a second clutch assembly comprising a second pressure plate;	
7.	a second force exerting assembly which can move said second pressure	
8	plate toward said abutment assembly;	
9	a connecting plate assembly for connecting the abutment assembly to a	
10	drive element, said connecting plate assembly having a radially outer first connecting	
11	section extending over said outer circumferential surface; and	
12	a plurality of connecting elements connecting said first connecting section	
13	to said outer circumferential surface.	
1	2. A double clutch assembly as in claim 1 wherein said connecting	
2	assembly comprises an integrally formed starter ring gear, said first connecting section	
3	extending axially from said ring gear.	
1	3. A double clutch assembly as in claim 1 wherein said connecting	
2	plate assembly comprises:	
3	a radially outer part having said first connecting section;	

4	a radially inner part having a second connecting section which can be		
5	connected to said drive element; and		
6	an elastic connecting assembly connecting said radially inner part to said		
7	radially outer part to permit relative rotational movement.		
1	4. A double clutch assembly comprising:		
2	an abutment assembly,		
3	a first clutch assembly comprising a first pressure plate;		
4	a first force exerting assembly which can move said first pressure plate		
5	toward said abutment assembly;		
6	a second clutch assembly comprising a second pressure plate;		
7	a second force exerting assembly which can move said second pressure		
8	plate toward said abutment assembly;		
9	a connecting plate assembly for connecting the abutment assembly to a		
.0	drive element, said connecting plate assembly comprising a radially outer first		
.1	connecting section which extends axially;		
2	an axial projection formation on said abutment assembly, at least part of		
3	said axial projection section axially overlapping said first connecting section of said		
4	connecting plate assembly; and		
15	a plurality of connecting elements fixing said first connecting section to		
16	said axial projecting section for rotation in common.		

1	J. A double clutch assembly as in claim 4 wherein said axial
2	projection formation lies radially outside of said first connecting section.
1	6. A double clutch assembly as in claim 4 wherein said connecting
2	plate assembly comprises:
.3	a radially outer part having said first connecting section;
4	a radially inner part having a second connecting section which can be
5	connected to said drive element, and
6	an elastic connecting assembly connecting said radially inner part to said
7	radially outer part to permit relative rotational movement.
1	7. A double clutch assembly comprising:
2	an abutment assembly having a radially outer area;
3	a first clutch assembly comprising a first pressure plate;
4	a first force exerting assembly which can move said first pressure plate
· 5	toward said abutment assembly;
6	a second clutch assembly comprising a second pressure plate;
7	a second force exerting assembly which can move said second pressure
8	plate toward said abutment assembly:
9	a connecting assembly for connecting the abutment assembly to a drive
10	element, said connecting assembly comprising an intermediate connecting ring and a
11	connecting plate assembly having a radially outer first connecting section;

12	a plurality of first connecting elements fastening said intermediate		
13	connecting ring to said radially outer area of said abutment assembly; and		
14	a plurality of second connecting elements fastening said first connecting		
15	section to said intermediate connecting ring.		
1	 A double clutch assembly as in claim 7 further comprising a starter 		
2	ring gear formed on said intermediate connecting ring.		
1	9. A double clutch assembly as in claim 7 wherein at least some of		
2	said first connecting elements and at least some of said second connecting elements		
3	are threaded bolts, said intermediate connecting element comprising threaded holes,		
4	each of said threaded holes receiving both a first connecting element and a second		
5	connecting element.		
1	10. A double clutch assembly as in claim 9 wherein said intermediate		
2	connecting ring is a formed metal plate.		
1	11. A double clutch assembly as in claim 7 wherein said first		
2	connecting section extends essentially radially.		
· 1	12. A double clutch assembly as in claim 7 wherein said connecting		
2	plate assembly comprises:		
3	a radially outer part having said first connecting section;		
4	a radially inner part having a second connecting section which can be		
5	connected to said drive element; and		

6	an elastic connecting assembly connecting said radially inner part to said		
7	radially outer part to permit relative rotational movement.		
1	13. A double clutch assembly comprising:		
2	an abutment assembly having a radially outer area;		
3	a first clutch assembly comprising a first pressure plate;		
4	a first force exerting assembly which can move said first pressure plate		
5, .	toward said abutment assembly;		
6	a second clutch assembly comprising a second pressure plate;		
7	a second force exerting assembly which can move said second pressure		
8	plate toward said abutment assembly;		
9	a connecting plate assembly for connecting the abutment assembly to a		
10	drive element, said connecting plate assembly having a radially outer first connecting		
11,	section extending essentially radially; and		
12	a plurality of connecting elements fastening said first connecting section to		
13	said radially outer area of said abutment assembly for rotation in common.		
1	14. A double clutch assembly as in claim 13 wherein said abutment		
2	section has tapered fastening holes, at least some of said connecting elements having		
3	tapered fastening sections which are received in said tapered fastening holes in an		
4	interference fit.		

1	. 1	5. A double clutch assembly as in claim 13 wherein at least some of
2	said connecting	g elements have tapered fastening sections which pass through the first
3	connecting sec	etion.
1	. 1	6. A double clutch assembly as in claim 13 wherein at least some of
2	said connecting	g elements have cylindrical sections which pass through the first
3	connecting sec	ction.
1	1	7. A double clutch assembly as in claim 13 wherein said connecting
2	plate assembly	comprises:
3	а	radially outer part having said first connecting section;
4.	a	radially inner part having a second connecting section which can be
5	connected to s	aid drive element; and
6	а	n elastic connecting assembly connecting said radially inner part to said
7	radially outer p	eart to permit relative rotational movement.
1	1	A double clutch assembly comprising:
2	а	n abutment assembly having a set of teeth;
3	a	first clutch assembly comprising a first pressure plate;
4	,	first force exerting assembly which can move said first pressure plate
5	toward said ab	utment assembly;
6	· a	second clutch assembly comprising a second pressure plate;
7	a	second force exerting assembly which can move said second pressure
8	plate toward sa	aid abutment assembly;

9	a connecting plate assembly for connecting the abutment assembly to a
10	drive element, said connecting plate assembly having a radially outer first connecting
11	section with a set of teeth which engage said teeth on said abutment assembly for
12	rotation in common.
1 2	19. A double clutch assembly as in claim 18 wherein said teeth on said first connecting section engage said teeth on said abutment assembly under pretension.
1 2	20. A double clutch assembly as in claim 18 wherein said teeth on said first connecting section have tapered ends which engage in correspondingly tapered
3	gaps between said teeth on said abutment assembly.
1	21. A double clutch assembly as in claim 18 wherein said connecting
2	plate assembly comprises:
3	a radially outer part having said first connecting section;
4	a radially inner part having a second connecting section which can be
. 5	connected to said drive element; and
6	an elastic connecting assembly connecting said radially inner part to said

radially outer part to permit relative rotational movement.