

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
1. August 2002 (01.08.2002)

PCT

(10) Internationale Veröffentlichungsnummer
WO 02/059471 A1

(51) Internationale Patentklassifikation⁷: F02D 41/18,
41/14, 21/08

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): STADLER, Wolfgang
[DE/DE]; Bayerbacher Str. 22 a, 84061 Ergoldsbach (DE).

(21) Internationales Aktenzeichen: PCT/DE01/04929

(74) Gemeinsamer Vertreter: SIEMENS AKTIENGESELLSCHAFT; Postfach 22 16 34, 80506 München (DE).

(22) Internationales Anmeldedatum:
27. Dezember 2001 (27.12.2001)

(81) Bestimmungsstaat (national): US.

(25) Einreichungssprache: Deutsch

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(26) Veröffentlichungssprache: Deutsch

Veröffentlicht:

— mit internationalem Recherchenbericht

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR DETERMINING AN ESTIMATED VALUE OF A MASS FLOW IN THE INTAKE PASSAGE OF AN INTERNAL COMBUSTION ENGINE

(54) Bezeichnung: VERFAHREN ZUM ERMITTLEN EINES SCHÄTZWERTES EINES MASSENSTROMS IN DEN ANSAUGTRAKT EINER BRENNKRAFTMASCHINE

WO 02/059471 A1

(57) Abstract: A measured value (MAP_MES) of the pressure in a suction pipe is the reference variable of a control loop. The regulated variable is an estimated value (MAP_EST) of the pressure in the suction pipe, said estimated value being determined according to the regulating variable of the control loop. Said regulating variable is calculated according to the difference between the estimated value (MAP_EST) and a measured value (MAP_MES) of the pressure in the suction pipe and according to the temporal change of the measured value (MAP_MES) of the pressure in the suction pipe. An estimated value (MAF_EST) of the mass flow in the intake passage (1) is calculated according to the regulating variable.

[Fortsetzung auf der nächsten Seite]

- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(57) Zusammenfassung: Ein Messwert (MAP MES) eines Saugrohrdrucks ist die Führungsgröße eines Regelkreises. Die Regelgröße ist ein Schätzwert (MAP EST) des Saugrohrdrucks, der abhängig von der Stellgröße des Regelkreises ermittelt wird. Die Stellgröße wird abhängig von der Differenz des Schätzwertes (MAP EST) und eines Messwertes (MAP MES) des Saugrohrdrucks und abhängig von der zeitlichen Änderung des Messwertes (MAP MES) des Saugrohrdrucks berechnet. Ein Schätzwert (MAF EST) und abhängig von der Massenstroms in den Ansaugtrakt (1) wird abhängig von der Stellgröße berechnet.

Beschreibung

Verfahren zum Ermitteln eines Schätzwertes eines Massenstroms in den Ansaugtrakt einer Brennkraftmaschine

5

Die Erfindung betrifft ein Verfahren zum Ermitteln eines Schätzwertes eines Massenstroms in den Ansaugtrakt einer Brennkraftmaschine.

10 Aus der EP 0 886 725 B1 ist ein Verfahren zum Ermitteln eines Schätzwertes eines Massenstroms in die Zylinder einer Brennkraftmaschine bekannt. Dabei wird abhängig von einem Messwert eines Massenstroms stromauf einer Drosselklappe in dem Ansaugtrakt, dem Öffnungsgrad der Drosselklappe, der Drehzahl, 15 der Kurbelwelle, einem Messwert des Saugrohrdrucks und weiteren Betriebsgrößen der Brennkraftmaschine der Schätzwert des Massenstroms in die Zylinder der Brennkraftmaschine ermittelt. Dazu ist ein dynamisches Modell des Ansaugtraktes der Brennkraftmaschine vorgesehen. Das dynamische Modell wird im 20 Betrieb korrigiert abhängig von dem Messwert des Massenstroms in den Ansaugtrakt und von einer Differenz eines Messwertes und eines Schätzwertes des Saugrohrdrucks, die einem Regler zugeführt wird und dessen Stellgröße zur Korrektur des dynamischen Modells des Ansaugtraktes eingesetzt wird.

25

Bei bestimmten Lastzuständen der Brennkraftmaschine - insbesondere bei einer Brennkraftmaschine mit vier Zylindern - treten starke Pulsationen der Gasmasse in dem Ansaugtrakt auf, die zu einer starken Verfälschung des Messsignals des 30 Massenstrommessers führen können. Aus der EP 0 886 725 B1 ist es aus diesem Grund bekannt, in diesen Lastzuständen auf eine Korrektur des dynamischen Modells des Ansaugtraktes durch den Messwert des Massenstrommessers zu verzichten. Dies kann jedoch zu einem Verlust an Präzision bei der Ermittlung von 35 Schätzwerten durch das dynamische Modell des Ansaugtrakts führen.

Die Aufgabe der Erfindung ist es, ein Verfahren zum Ermitteln eines Schätzwertes eines Massenstroms in den Ansaugtrakt einer Brennkraftmaschine zu schaffen, dass auch bei Pulsationen des Massenstroms in dem Ansaugtrakt eine hohe Präzision aufweist.

Die Aufgabe wird gelöst durch die Merkmale des unabhängigen Patentanspruchs. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.

10

Ausführungsbeispiele der Erfindung sind anhand der schematischen Zeichnungen näher erläutert. Es zeigen:

Figur 1 eine Brennkraftmaschine mit einer Steuereinrichtung,

15

Figur 2 ein Blockschaltbild eines für die Erfindung relevanten Teils der Steuereinrichtung

20

Eine Brennkraftmaschine (Figur 1) umfasst einen Ansaugtrakt 1 mit vorzugsweise einer Drosselklappe 10 und mit einem Motorblock 2, der einen Zylinder 20 und eine Kurbelwelle 23 aufweist. Ein Kolben 21 und eine Pleuelstange 22 sind dem Zylinder 20 zugeordnet. Die Pleuelstange 22 ist mit dem Kolben und der Kurbelwelle 23 gekoppelt.

25

Ein Zylinderkopf 3 ist vorgesehen, in dem ein Ventiltrieb angeordnet ist mit mindestens einem Einlassventil 30 und einem Auslassventil 31. In dem Zylinderkopf 3 ist ferner ein Kraftstoff-Injektor 33 eingebracht. Alternativ kann der Kraftstoff-Injektor 33 auch im Ansaugtrakt 1 angeordnet sein. Die Brennkraftmaschine ist in der Figur 1 mit einem Zylinder dargestellt. Sie kann jedoch auch mehrere Zylinder umfassen.

Ferner ist ein Abgastrakt 4 vorgesehen, der über eine Abgasrückführung 5 mit dem Ansaugtrakt 1 verbunden ist. In der Abgasrückführung 5 ist ein AGR-Ventil 51 angeordnet, dass zur Einstellung der rückgeführten Abgasmasse vorgesehen ist. Ge-

gebenenfalls kann in der Abgasrückführung 5 auch ein Massenstrommesser angeordnet sein, der einen Abgasrückführungs-Massenstrom M_{EGR} erfasst.

5 Ferner ist eine Steuereinrichtung 6 vorgesehen, der Sensoren zugeordnet sind, die verschiedene Messgrößen erfassen und jeweils den Messwert der Messgröße ermitteln. Die Steuereinrichtung 6 ermittelt abhängig von mindestens einer Messgröße ein oder mehrere Stellsignale, die jeweils ein Stellgerät 10 steuern.

Die Sensoren sind ein Pedalstellungssensor 71, der einen Pedalwert des Fahrpedals 7 erfasst, ein Drosselklappenstellungsgeber 11, welcher einen Öffnungsgrad der Drosselklappe 15 10 erfasst, ein Luftmassenmesser 12, der einen Luftmassenstrom erfasst und ein Saugrohrdrucksensor 13, der einen Saugrohrdruck in dem Ansaugtrakt 1 erfasst, ein Temperatursensor 14, der eine Ansauglufttemperatur erfasst, ein Drehzahlsensor 24, der die Drehzahl der Kurbelwelle 23 erfasst, und ein Temperatursensor 25, der eine Kühlmitteltemperatur erfasst. Je 20 nach Ausführungsform der Erfindung kann eine beliebige Unter- menge der genannten Sensoren oder auch zusätzliche Sensoren vorhanden sein.

25 Die Stellgeräte umfassen jeweils einen Stellantrieb und ein Stellglied. Der Stellantrieb ist ein elektromotorischer Antrieb, ein elektromagnetischer Antrieb, piezoelektrischer Antrieb oder ein weiterer dem Fachmann bekannter Antrieb. Die Stellglieder sind als Drosselklappe 10, als Kraftstoff- 30 Injektor 33 oder als EGR-Ventil 51 ausgebildet. Auf die Stellgeräte wird im Folgenden mit dem jeweils zugeordneten Stellglied Bezug genommen.

35 Die Steuereinrichtung 6 ist vorzugsweise als elektronische Motorsteuerung ausgebildet. Sie kann jedoch auch mehrere Steuergeräte umfassen, die elektrisch leitend miteinander verbunden sind, so z. B. über ein Bussystem.

In einem Block B1 (Figur 2) wird ein MAF_MAN innerhalb des Ansaugtrakts 1 mit folgender Beziehung ermittelt:

5 $MAF_MAN = MAF_MES + M_EGR - MAF_CYL$

Wobei MAF_MES den Messwert des Massenstroms in den Ansaugtrakt bezeichnet, der von dem Massenstrommesser 12 erfasst wird, M_EGR den Abgasrückführungs-Massenstrom, der entweder 10 durch den Massenstromsensor in der Abgasrückführung 5 erfasst wird oder mittels eines Modells als Schätzwert berechnet wird, und MAF_CYL einen Massenstrom in die Zylinder 2 der Brennkraftmaschine bezeichnen, der vorzugsweise mittels eines dynamischen Modells des Ansaugtraktes ermittelt wird, wie es 15 beispielsweise in der EP 0 886 725 B1 beschrieben ist und deren Inhalt hiermit diesbezüglich einbezogen ist.

In einer Summierstelle S1 wird der Massenstrom MAF_MAN innerhalb des Ansaugtrakts 1 additiv korrigiert mit dem Korrekturwert COR, der weiter unten detailliert beschrieben ist. 20

In einem Block B2 wird eine Gasmasse MASS_MAN innerhalb des Ansaugtrakts 1 abhängig von dem korrigierten Massenstrom MAF_MAN_COR durch Integration des korrigierten Massenstroms 25 MAF_MAN_COR über die Zeit ermittelt.

In einem Block B3 wird ein Schätzwert MAP_EST des Saugrohrdrucks mittels der folgenden Beziehung ermittelt:

30 $MAP_EST = \frac{R}{VOL} \cdot TIA \cdot MASS_MAN$

Dabei bezeichnen R die allgemeine Gaskonstante, VOL das Volumen des Ansaugtraktes stromabwärts der Drosselklappe bis hin zum Einlass zu den Zylindern der Brennkraftmaschine und TIA 35 die Ansaugluft-Temperatur oder die Temperatur des Massenstroms stromab der Drosselklappe 10.

In einer Summierstelle S2 wird die Differenz des Messwertes MAP_MES und des Schätzwertes MAP_EST des Saugrohrdrucks gebildet. Die Differenz wird dann in einem Block B4 integriert
5 und der integrierte Werte dann zur Summierstelle S3 geführt.

- In einem Block B5 wird ein Wert ermittelt, der charakteristisch ist für die Änderung des Messwertes MAP_MES des Saugrohrdrucks. Vorzugsweise wird hierzu in dem Block B5 die
10 zeitliche Ableitung des Messwertes MAP_MES des Saugrohrdrucks ermittelt. Diese ist dann Eingangsgröße eines Kennfeldes, mittels dessen in dem Block B6 ein Korrekturfaktor FAC ermittelt wird. In einer Multiplizierstelle M1 wird die Differenz des Messwertes MAP_MES und des Schätzwertes MAP_EST des Saugrohrdrucks multipliziert mit dem Korrekturfaktor FAC. Dieser
15 Wert wird dann zur Summierstelle S3 geführt und zu dem Integral, dass in dem Block B4 ermittelt wird, hinzu addiert. Dies ergibt dann den Korrekturwert COR.
- 20 In einem Block B7 wird abhängig von dem korrigierten Massenstrom MAF_MAN_COR innerhalb des Ansaugtrakts 1, dem Abgasrückführungs-Massenstrom M_EGR und dem Massenstrom MAF_CYL in die Zylinder der Brennkraftmaschine ein Schätzwert MAP_EST des Luftmassenstroms in den Ansaugtrakt der Brennkraftmaschine ermittelt. Dies erfolgt mittels folgender Gleichung:
25

$$\text{MAF_EST} = \text{MAF_MAN_COR} - \text{M_EGR} + \text{MAF_CYL}$$

Die Blöcke B2, B3, B4, B5, B6 bilden somit einen Regelkreis,
30 dessen Führungsgröße der Messwert MAP_MES des Saugrohrdrucks ist, dessen Regelgröße der Schätzwert MAP_EST des Saugrohrdrucks ist, dessen Stellgröße der Korrekturwert COR ist, der wiederum korrigiert wird mit dem Massenstrom MAF_MAN innerhalb des Ansaugtrakts 1 und damit den korrigierten Massenstrom MAF_MAN_COR innerhalb des Ansaugtrakts 1 bildet.
35

Durch das Multiplizieren der Differenz des Messwertes MAP_MES und des Schätzwertes MAP_EST des Saugrohrdrucks mit dem Korrekturfaktor FAC, der abhängig von der zeitlichen Änderung des Messwertes MAP_MES des Saugrohrdrucks ermittelt wird, ist
5 auch bei Lastzuständen mit starken Pulsationen des Massenstroms in dem Ansaugtrakt eine äußerst präzise Ermittlung des Schätzwertes MAP_EST des Massenstroms in den Ansaugtrakts auf äußerst einfache Art und Weise gewährleistet. Der Korrekturfaktor FAC ist dabei durch Versuche an einem Motorprüfstand
10 oder durch Simulationen vorab ermittelt und in der Kennlinie abgelegt.

Der Schätzwert MAF_EST kann sogar in einer alternativen Ausführungsform ohne den Massenstrom MAF_MAN innerhalb des Ansaugtrakts ermittelt werden. Dazu wird einfach der Massenstrom MAF_MAN innerhalb des Ansaugtrakts auf den Wert Null gesetzt, was einem Weglassen des Blocks B1 entspricht. So kann also auch vereinfacht ohne die Berechnungen in dem Block B1 ein ausreichend präziser Schätzwert MAF_EST des Massenstroms in den Ansaugtrakt ermittelt werden. Eine Einbeziehung des Blocks B1 hat jedoch den Vorteil, dass durch die Berechnung des Massenstroms MAF_MAN innerhalb des Ansaugtrakts in dem Block B1 eine grobe Arbeitspunktbestimmung für den Regelkreis im Sinne einer Vorsteuerung erfolgt und somit schneller
20 ein präziser Schätzwert MAF_EST des Massenstroms in den Ansaugtrakt zur Verfügung gestellt wird, was insbesondere bei
25 einem dynamischen Fahrbetrieb der Brennkraftmaschine ein wesentlicher Vorteil ist.

30 Die Berechnung des Integrals des Messwertes MAP_MES und des Schätzwertes MAP_EST des Saugrohrdrucks hat den Vorteil, dass eine höhere stationäre Genauigkeit des Schätzwertes MAF_EST gewährleistet ist. Sie kann jedoch in einer einfacheren Ausführungsform ebenso weggelassen werden.

Der Schätzwert MAF_EST des Massenstroms kann dann zur weiteren Berechnung von Stellsignalen für Stellglieder der Brennkraftmaschine oder auch zur Diagnose eingesetzt werden.

Patentansprüche

1. Verfahren zum Ermitteln eines Schätzwertes eines Massenstroms in den Ansaugtrakt einer Brennkraftmaschine, bei dem
5 ein Messwert (MAP_MES) eines Saugrohrdrucks die Führungsgröße eines Regelkreises ist, die Regelgröße ein Schätzwert (MAP_EST) des Saugrohrdrucks ist, der abhängig von der Stellgröße des Regelkreises ermittelt wird, und die Stellgröße abhängig von der Differenz des Schätzwertes (MAP_EST) und eines
10 Messwertes (MAP_MES) des Saugrohrdrucks und abhängig von der zeitlichen Änderung des Messwertes (MAP_MES) des Saugrohrdrucks berechnet wird und bei dem der Schätzwert (MAF_EST) des Massenstroms in den Ansaugtrakt (1) berechnet wird abhängig von der Stellgröße.
- 15 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Stellgröße berechnet wird durch Multiplizieren der Differenz des Schätzwertes (MAP_EST) und des Messwertes (MAF_MES) des Saugrohrdrucks mit einem Korrekturfaktor (FAC), der abhängig von der zeitlichen Änderung des Messwertes (MAP_MES)
20 des Saugrohrdrucks ermittelt wird.
- 25 3. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Korrekturfaktor (FAC) aus einer Kennlinie ermittelt wird.
- 30 4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Stellgröße korrigiert wird abhängig von einem Messwert (MAF_MES) des Luftmassenstroms.
- 35 5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Stellgröße abhängig von dem Integral der Differenz des Schätzwertes (MAP_EST) und des Messwertes (MAP_MES) des Saugrohrdrucks ermittelt wird.

1/2

FIG 1

2/2

