Příklad (2.3)

Nechť S je podrozdělení trojúhelníku T v rovině. Korektní obarvení vrcholů S přiřazuje jednu ze tří barev (modrá, červená a zelená) každému vrcholu z S tak, že všechny tři barvy jsou použité na vrcholech z T. Navíc každý vrchol z S ležící na hraně z T musí mít jednu z barev, kterou má nějaký vrchol této hrany ležící v T. Dokažte, že v každém korektním obarvení S existuje trojúhelníková stěna v S jejíž vrcholy jsou obarveny všemi třemi barvami.

Lemma 0.1

Mějme konečnou posloupnost dvou barev (tj. funkci f z množiny $\{1, 2, ..., n\}$ do $\{R, G\}$). Víme, že začíná jednou barvou (tj. f(1) = R) a končí druhou (tj. f(n) = G). Potom existuje místo, kde se sousední prvky posloupnosti liší (tj. ex. i z $\{1, ..., n-1\}$, že f(i) = R a f(i+1) = G nebo f(i) = G a f(i+1) = R).

$D\mathring{u}kaz$

Zvolím poslední prvek první barvy (tj. $i = max\{j|f(j) = R\}$). Potom nutně není poslední (tj. i < n), neboť poslední prvek je druhé barvy, tedy nutně další prvek je druhé barvy a toto je hledané místo (tj. f(i) = R a f(i+1) = G).

$D\mathring{u}kaz$

Vybereme jeden z vrcholů T (je jedno který), BÚNO je modrý, označme si ho V_B . Nyní vezměme z S pouze modré vrcholy a označme K_B komponentu souvislosti obsahující V_B . Potom vezměme z S pouze vrcholy, které nepatří do K_B , a označme K_{RG} komponentu souvislosti obsahující zbylé dva vrcholy z T (musí obsahovat oba zároveň, neboť na hraně mezi nimi není modrý vrchol).

Nyní vytvoříme posloupnost vrcholů v K_{RG} "po rozhraní s K_B ": Na hraně v T z V_B do jednoho z dalších vrcholů T, BÚNO červeného (tedy V_R), najdeme bod z K_{RG} nejvzdálenější od V_B , označíme ho V_1 . Jeho soused (značme V_1) na stejné hraně vzdálenější od V_B musí patřit do K_{RB} (neboť všechny vrcholy počínaje tímto sousedem a konče ve V_R (ten je v K_{RG} z definice) nejsou v K_B a sousedí spolu, tedy jsou v K_{RG}).

Máme hranu $V_1' - V_1$, tedy musí být součástí nějakého trojúhelníku. Tedy existuje V takové, že $V - V_1' - V_1$ je trojúhelník. Vzhledem k tomu, že z V vede hrana do K_B i K_{RG} , tak musí být v jedné z těchto množin (buď je modrý a pak je v K_B , nebo není modrý, a pak je v K_{RG} z definic těchto množin). Pokud je v K_B , tak ho označme V_2' , pokud je v K_{RG} , tak ho označme V_2 .

Nyní indukcí: máme hranu $V'_m - V_n$. Jeden trojúhelník s ní sousedící jsme již řešili. Pokud existuje druhý, tak postupujeme jako v prvním případě (přidáme třetí vrchol jako V'_{m+1} nebo V_{n+1}). Pokud ne, tak jsme "dorazili" na nějakou hranu T. Hrana mezi červeným a zeleným to být nemůže, protože V' jsou modré. Hrana mezi modrým a červeným to být také nemůže, protože pak jsme rozřízly posloupností $\{V_i\}$ množinu K_B , takže by to nebyla komponenta. Tím pádem je to hrana mezi modrým a zeleným.

Posloupnost $\{V_i\}$ tedy začíná červeným vrcholem (je na hraně T mezi modrým a červeným) a končí zeleným. Tedy existuje i takové, že V_i je červené a V_{i+1} zelené. Navíc existuje j tak, že V'_j — V_i je hrana, při které jsme přidali V_{i+1} , tedy V_{i+1} — V'_j — V_i je trojúhelník a má vrcholy 3 různých barev.