# Abstract Algebra A

soupless

January 29, 2024

January 29, 2024 CONTENTS

# Contents

| 1 | Sets and relations                  | 1  |
|---|-------------------------------------|----|
| 2 | Sets and relations, continued       | 4  |
| 3 | Introduction to groups              | 7  |
| 4 | Introduction to groups, continued   | 10 |
|   | 4.1 Elementary Properties of Groups | 11 |

# Lecture 1: Sets and relations

# Definition 1.1 (Cartesian product)

Let A and B be sets. The Cartesian product of A and B, denoted by  $A \times B$ , is defined as

$$A \times B := \{(a, b) \mid a \in A, b \in B\}.$$

# Definition 1.2 (Relation)

A relation R between sets A and B is a subset of  $A \times B$ . That is,  $R \subseteq A \times B$ .

We let  $aRb \equiv (a,b) \in \mathbb{R}$  for each  $a \in A$  and  $b \in B$  where R is a relation. It is an implicit assumption that A and B have to be nonempty, otherwise, the relation is trivial.

#### Theorem 1.1

If A and B are finite sets, then there are  $2^{|A|\cdot |B|} - 1$  relations.

**Proof:** Let A and B be finite sets. Then, the question is equivalent to finding the number of subsets of  $A \times B$ , which is  $|\mathcal{P}(A \times B)| - 1 = 2^{|A \times B|} - 1 = 2^{|A| \cdot |B|} - 1$ .

## Definition 1.3 (Function)

A function  $\phi$  mapping X into Y is a relation between X and Y with the property that each  $x \in X$  appears as the first member of exactly one ordered pair  $(x, y) \in \phi$  for all  $y \in Y$ .

## Definition 1.4 (Domain, codomain, range)

Let  $\phi: X \to Y$  be a function mapping X to Y. Then,

- X is the domain of  $\phi$ ,
- Y is the codomain of  $\phi$ ,
- $\phi[X]$  is the range of  $\phi$  such that  $\phi[X] = {\phi(x) \mid x \in X}$ .

Another notation would be  $X \xrightarrow{\phi} Y$  to denote the type signature, and  $x \xrightarrow{\phi} y$  to denote the function definition.

# Definition 1.5 (Injective function)

A function  $\phi: X \to Y$  is *injective* or one-to-one (1-1) if, for all elements  $x_1$  and  $x_2$  of X,  $\phi(x_1) = \phi(x_2)$  implies  $x_1 = x_2$ .

**Example:** Let  $f: \mathbb{R} \to \mathbb{R}$  such that f(x) = 2x + 3 for all  $x \in \mathbb{R}$ . Is f injective?

Let  $x_1$  and  $x_2$  be arbitrary elements of  $\mathbb{R}$ , and suppose that  $f(x_1) = f(x_2)$ . Then,

$$f(x_1) = f(x_2)$$
$$2x_1 + 3 = 2x_2 + 3$$
$$2x_1 = 2x_2$$
$$x_1 = x_2$$

Hence, f is injective.

**Example:** Let  $g: \mathbb{R} \to \mathbb{R}$  such that  $g(x) = x^2$  for all  $x \in \mathbb{R}$ . Is g injective?

No, because g(-1) = 1, and g(1) = 1, but  $-1 \neq 1$ .

Definition 1.6 (Surjective function)

A function  $\phi: X \to Y$  is surjective or onto if  $\phi[X] = Y$ . Equivalently,  $\forall y \in Y \ \exists x \in X (\phi(x) = y)$ .

**Example:** Let  $F: \mathbb{R} \to \mathbb{R}$  defined by  $F(x) = x^2$  for each  $x \in \mathbb{R}$ . Is F surjective?

Since  $F(x) \ge 0$  for all  $x \in \mathbb{R}$ , then F(x) = -1 has no solution. Hence, F is not surjective.

**Example:** Let  $G: \mathbb{N} \to \mathbb{N}$  such that G(x) = x + 1 for each  $x \in \mathbb{N}$ . We define  $\mathbb{N} = \{1, 2, 3, ...\}$ . Is G surjective? No, because G(x) = 1 has no solution in  $\mathbb{N}$ . Hence, G is not surjective.

**Example:** Let  $\phi : \mathbb{N} \to \mathbb{N}$  such that  $\phi(n)$  is the *n*th prime number for each  $n \in \mathbb{N}$ . Then,  $\phi$  is injective. However, it is not surjective, because  $\phi(x) = 4$  has no solution.

**Example:** Let  $g: \mathbb{R} \to \mathbb{R}$  such that g(x) = x + 1 for each  $x \in \mathbb{R}$ . Prove that g is surjective.

Let  $y \in \mathbb{R}$  be arbitrary. Then,  $g(x) = y \implies x + y = 1 \implies x = y - 1$ . Since g(y - 1) = y - 1 + 1 = y, this means g is surjective.

Definition 1.7 (Bijective function)

If  $\phi: X \to Y$  is both injective and surjective, then  $\phi$  is bijective.

#### Definition 1.8 (Inverse)

Let  $\phi: X \to Y$  be a bijective function. The inverse of  $\phi$ , denoted by  $\phi^{-1}$ , is the function  $\phi^{-1}: Y \to X$  such that  $\phi^{-1}(y) = x \Leftrightarrow \phi(x) = y$  for all  $x \in X$  and  $y \in Y$ .

A representation for finite domain maps would be through a matrix representation like

$$\phi: \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ \phi(x_1) & \phi(x_2) & \cdots & \phi(x_n) \end{bmatrix}$$

Definition 1.9 (Function composition)

Let  $\phi: A \to B$  and  $\theta: B \to C$  be functions. The composition  $\theta \phi$  is the function  $\theta \phi: A \to C$  defined by  $\theta \phi(a) = \theta(\phi(a))$  for each  $a \in A$ .

Definition 1.10 (Function equality)

Let 
$$f: X \to Y$$
 and  $g: X \to Y$ . Then,  $f = g$  if  $\forall x \in X (f(x) = g(x))$ .

#### Theorem 1.2

Given functions  $\alpha: A \to B$ ,  $\beta: B \to C$ , and  $\gamma: C \to D$ , then:

- 1.  $(\gamma \beta)\alpha = \gamma(\beta \alpha)$ . That is, function composition is associative.
- 2. If  $\alpha$  and  $\beta$  are both injective, then  $\beta\alpha$  is injective.
- 3. If  $\alpha$  and  $\beta$  are both surjective, then  $\beta\alpha$  is also surjective.

**Proof:** We prove each property listed in the theorem:

• Suppose we have the functions  $\alpha: A \to B$ ,  $\beta: B \to C$ , and  $\gamma: C \to D$ . Let  $a \in A$  be arbitrary. Then,

$$(\gamma\beta)\alpha(a) = \gamma\beta\left(\alpha(a)\right)$$

$$(\gamma \beta)\alpha(a) = \gamma (\beta (\alpha(a)))$$

$$\gamma(\beta\alpha)(a) = \gamma(\beta\alpha(a))$$

$$\gamma(\beta\alpha)(a) = \gamma(\beta(\alpha(a)))$$

Hence,  $(\gamma \beta)\alpha(a) = \gamma(\beta \alpha)(a)$ . Therefore,  $(\gamma \beta)\alpha = \gamma(\beta \alpha)$ .

• Let  $\alpha: A \to B$  and  $\beta: B \to C$  be injective functions. Then,  $\beta\alpha: A \to C$ . Suppose that for all  $a_1, a_2 \in A$ ,  $\beta\alpha(a_1) = \beta\alpha(a_2)$ . We get the following derivation:

$$\beta\alpha(a_1) = \beta\alpha(a_2)$$
$$\beta(\alpha(a_1)) = \beta(\alpha(a_2))$$
$$\alpha(a_1) = \alpha(a_2)$$

 $a_1 = a_2$ 

Therefore,  $\beta \alpha$  is injective.

• Let  $\alpha: A \to B$  and  $\beta: B \to C$  be surjective functions. Let  $c \in C$  be arbitrary. Then, there exists  $b \in B$  such that  $\beta(b) = c$ . Since  $\alpha$  is surjective, there exists  $a \in A$  such that  $\alpha(a) = b$ . Then,  $\beta(b) = \beta(\alpha(a)) = \beta\alpha(a) = c$ . Hence, there exists  $a \in A$  such that  $\beta\alpha(a) = c$ , and so for all  $c \in C$ , there exists  $a \in A$  such that  $\beta\alpha(a) = c$ . Therefore,  $\beta\alpha$  is surjective.

# Lecture 2: Sets and relations, continued

#### Theorem 2.1

Let  $\alpha:A\to B$  be a bijective function. Then there exists a function  $\theta:B\to A$  such that  $\forall a\in A\,(\theta\alpha(a)=a)$  and  $\forall b\in B\,(\alpha\theta(b)=b)$ . The function  $\theta$  is called the inverse of  $\alpha$  and is denoted by  $\theta=\alpha^{-1}$ .

**Proof:** Suppose  $\alpha: A \to B$  is a bijective function. Construct a function  $\theta: B \to A$  satisfying the properties  $\forall a \in A \ (\theta \alpha(a) = a)$  and  $\forall b \in B \ (\alpha \theta(b) = b)$ . We define  $\theta: B \to A$  by  $\theta(b) = a$  iff  $\alpha(a) = b$ .

Let  $a \in A$  be arbitrary. Consider  $\theta \alpha(a)$ . Suppose  $\alpha(a) = b$ . Then,  $\theta \alpha(a) = \theta(\alpha(a)) = \theta(b) = a$ .

Let  $b \in B$  be arbitrary. Consider  $\alpha\theta(b)$ . Suppose  $\theta(b) = a$ . Then,  $\alpha\theta(b) = \alpha(\theta(b)) = \alpha(a) = b$ .

# Definition 2.1 (Identity function)

The identity function is a function having the same domain and codomain such that  $x\mapsto x$  for all x in the domain.

#### Theorem 2.2

Let  $\alpha: A \to B$  be a bijective function. Then,  $\alpha^{-1}: B \to A$  is bijective.

**Proof:** We first prove that  $\alpha^{-1}$  is injective. Let  $b_1, b_2$  be arbitrary elements from B, and suppose that  $\alpha^{-1}(b_1) = \alpha^{-1}(b_2)$ . Then,

$$\alpha^{-1}(b_1) = \alpha^{-1}(b_2)$$
$$\alpha \alpha^{-1}(b_1) = \alpha \alpha^{-1}(b_2)$$
$$b_1 = b_2$$

Hence,  $\alpha^{-1}$  is injective.

We now prove that  $\alpha^{-1}$  is surjective. Let  $a \in A$ . We know that  $\alpha^{-1}\alpha(a) = a$ . Since  $\alpha(a) \in B$ , this means that there is an element  $b \in B$  such that  $\alpha^{-1}(b) = a$ . Hence, for all  $a \in A$ , there exists an element  $b \in B$  such that  $\alpha^{-1}(b) = a$ , and so  $\alpha^{-1}$  is surjective.

Therefore,  $\alpha^{-1}$  is surjective.

#### Definition 2.2 (Equivalence relation)

R is called an equivalence relation on a set S if R is a relation from S to S and it satisfies the following:

- 1.  $\forall a \in S(aRa)$ .
- $2. \ \forall a,b \in S(aRb \implies bRa).$
- 3.  $\forall a, b, c \in S(aRb \land bRc \implies aRc)$ .

**Example:** Define R on  $\mathbb{R}^*$  such that  $aRb \Leftrightarrow ab > 0$  for all  $a, b \in \mathbb{R}^*$ . Let  $a, b, c \in \mathbb{R}^*$  be arbitrary. Since  $a \in \mathbb{R}^*$ , we have  $a \neq 0$ , and since  $x^2 > 0$  for all nonzero real numbers, we get aa > 0 which is equivalent to aRa. Thus, R is reflexive. Now, suppose aRb. Then, ab > 0. Multiplication under real numbers is commutative, hence, ba > 0, and so bRa. This means R is symmetric. Lastly, suppose aRb and bRc. Then, ab > 0 and bc > 0. We get  $ab^2c > 0$ , and dividing both sides by  $b^2$ , we get ac > 0. Hence, aRc, and so R is transitive.

Therefore, R is an equivalence relation.

**Example:** Define  $\sim$  on  $\mathbb{Z}$  by  $a \sim b \Leftrightarrow a \equiv b \pmod{4}$ . We verify if  $\sim$  is an equivalence relation on  $\mathbb{Z}$ .

We have  $4 \mid 0 \implies 4 \mid a-a$ , and so  $a \equiv a \pmod 4$ . Hence,  $\sim$  is reflexive. Now, suppose  $a \sim b$ . Then,  $4 \mid a-b \implies 4 \mid (-1)(a-b) \implies 4 \mid b-a$ . Hence,  $b \sim a$ , and  $\sim$  is symmetric. Lastly, suppose  $a \sim b$  and  $b \sim c$ . Then,  $4 \mid a-b$  and  $4 \mid b-c$ . We have  $4 \mid a-b+b-c \implies 4 \mid a-c$ . Hence, aRc, and so R is transitive.

Therefore,  $\sim$  is an equivalence relation on  $\mathbb{Z}$ .

#### Definition 2.3 (Equivalence class)

Let  $\sim$  be an equivalence relation on S. Let  $a \in S$ , The equivalence containing a, denoted by [a], is the set defined by

$$[a] := \{ x \in S \mid a \sim x \}.$$

**Example:** We have shown that R is an equivalence relation on  $\mathbb{R}^*$ . Finding the equivalence class containing 2,

$$[2] = \{x \in \mathbb{R}^* \mid 2Rx\}$$

$$[2] = \{x \in \mathbb{R}^* \mid 2x > 0\}$$

$$[2] = \{x \in \mathbb{R}^* \mid x > 0\}$$

$$[2] = \mathbb{R}^+$$

Finding the equivalence class containing  $\sqrt{2}$ ,

$$[\sqrt{2}] = \{x \in \mathbb{R}^* \mid \sqrt{2}Rx\}$$
$$[\sqrt{2}] = \{x \in \mathbb{R}^* \mid \sqrt{2}x > 0\}$$
$$[\sqrt{2}] = \{x \in \mathbb{R}^* \mid x > 0\}$$
$$[\sqrt{2}] = \mathbb{R}^+$$

Finding the equivalence class containing -e,

$$[-e] = \{x \in \mathbb{R}^* \mid -eRx\}$$

$$[-e] = \{x \in \mathbb{R}^* \mid -ex > 0\}$$

$$[-e] = \{x \in \mathbb{R}^* \mid x < 0\}$$

$$[-e] = \mathbb{R}^-$$

**Example:** We have shown that  $\sim$  is an equivalence relation on  $\mathbb{Z}$  where  $a \sim b \Leftrightarrow a \equiv b \pmod{4}$ .

Finding the equivalence class containing a,

$$\begin{split} [a] &= \{x \in \mathbb{Z} \ | \ x \sim a \} \\ [a] &= \{x \in \mathbb{Z} \ | \ x \equiv a \pmod 4 \} \\ [a] &= \{x \in \mathbb{Z} \ | \ 4 \ | \ x - a \} \\ [a] &= \{x \in \mathbb{Z} \ | \ 4 \ | \ x - a \} \\ [a] &= \{x \in \mathbb{Z} \ | \ 4k = x - a, k \in \mathbb{Z} \} \\ [a] &= \{x \in \mathbb{Z} \ | \ 4k + a = x, k \in \mathbb{Z} \} \\ [a] &= \{4k + a \ | \ k \in \mathbb{Z} \} \end{split}$$

Hence, the equivalence class containing 0 is just  $\{4k \mid k \in \mathbb{Z}\}$ . The equivalence class containing 1 is  $\{4k+1 \mid k \in \mathbb{Z}\}$ ,  $\{4k+2 \mid k \in \mathbb{Z}\}$  for the equivalence class containing 2, and  $\{4k+3 \mid k \in \mathbb{Z}\}$  for the equivalence class containing 3. The equivalence class containing 5 is just [1] since  $5 \in [1]$ . Finally,  $\mathbb{Z} = [0] \cup [1] \cup [2] \cup [3]$ .

# Definition 2.4 (Partition, cells)

A partition P of a set S is a collection of nonempty disjoint subsets of S whose union is S. Each element of P is called a *cell*.

**Example:** In  $\mathbb{Z}$ , one such partition is  $\{\mathbb{Z}^-, \mathbb{Z}^+, \{0\}\}$ 

**Example:** Let  $S = \{1, 2, 3, 4, 5\}$ . One partition would be  $P_1 = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}\}\}$ . Another partition would be  $P_2 = \{\{1, 2\}, \{3\}, \{4\}, \{5\}\}\}$ . The number of 2-cell partitions of S would be  $\binom{5}{2}$ .

### Theorem 2.3

The equivalence classes of an equivalence relation on a set S constitute a partition of S.

**Proof:** Let  $\sim$  be an equivalence relation on S. For any  $a \in S$ , we have  $a \in [a]$ . Let  $a, b \in S$  such that  $[a] \neq [b]$ . There will be two cases:

- The intersection of [a] and [b] is nonempty. This means that there exists an element x in both [a] and [b]. Then,  $x \sim a$  and  $x \sim b$ , so  $a \sim b$ . Let  $y \in S$  be arbitrary. Suppose  $y \in [a]$ . Then,  $y \sim a$ . Since  $a \sim b$ , then  $y \sim b$ , so  $y \in [b]$ . Hence,  $[a] \subseteq [b]$ . Similarly, suppose  $y \in [b]$ . Then,  $y \sim b$ . Then,  $a \sim b$  implies  $b \sim a$ , so  $y \sim a$ . Hence,  $y \in [a]$ , and so  $[b] \subseteq [a]$ . Hence, [a] = [b]. This contradicts our assumption that  $[a] \neq [b]$ . Hence,  $[a] \cap [b] = \emptyset$ .
- The intersection of [a] and [b] is empty. Hence,  $[a] \cap [b] = \emptyset$ .

In either case, we get  $[a] \cap [b] = \emptyset$ .

Since each equivalence class is disjoint to another, and every element belongs to an equivalence class containing it, this means that the collection of all equivalence classes of S is a partition of S.

# Lecture 3: Introduction to groups

# Definition 3.1 (Binary operation)

A binary operation \* on a set S is a function  $*: S \times S \rightarrow S$ .

We let  $a * b \equiv *((a, b))$  for each  $a, b \in S$ .

# Definition 3.2 (Closure)

If \* is a binary operation on S, then S is closed under \*.

#### Example:

- + is a binary operation on  $\mathbb{R}$  because the signature of + is  $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ .
- - is a binary operation on  $\mathbb{R}$  since :  $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ .
- $\div$  is not a binary operation on  $\mathbb{R}$  since  $a \div 0$  is not in  $\mathbb{R}$ . However,  $\div$  is a binary operation on  $\mathbb{R} \setminus \{0\}$ .
- Define  $\theta$  on  $\mathbb{R}^+$  by  $a\theta b = a^b$ . Then,  $\theta$  is a binary operation on  $\mathbb{R}^+$ .
- Define  $\phi$  on  $\mathbb{R}$  by  $a\phi b = \sqrt{ab}$ . Then,  $\phi$  is not a binary operation on  $\mathbb{R}$  since if ab < 0, then  $\sqrt{ab} \notin \mathbb{R}$ .

## Note 3.1 (Ordinary addition, ordinary multiplication)

We call  $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$  as ordinary addition, and  $:: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ .

#### Definition 3.3 (Commutative binary operation)

A binary operation \* on S is commutative iff  $\forall a, b \in S \ (a * b = b * a)$ .

#### Definition 3.4 (Set of $m \times n$ matrices)

We define  $M_{mn}(\mathbb{R})$  as the set of all  $m \times n$  matrices whose entries belong to  $\mathbb{R}$ .

#### Definition 3.5 (General linear matrix set)

We define  $GL(n, \mathbb{R})$  as the set of  $n \times n$  nonsingular matrices with real entries.

#### Example:

- In  $M_{mn}(\mathbb{R})$ , matrix addition is a binary operation. It is also commutative.
- In  $GL(n,\mathbb{R})$ , matrix multiplication is a binary operation but it is not commutative. Matrix addition is not a binary operation, i.e.,  $I_n + (-1)I_n$  is not in  $GL(n,\mathbb{R})$ .

#### Definition 3.6 (Associative binary operation)

A binary operation \* on S is an associative binary operation iff  $\forall a, b, c \in S$  (a\*(b\*c) = (a\*b)\*c).

**Example:** Define the operation \* on  $\mathbb{R}$  by a\*b=a+b+ab. Is \* an associative binary operation?

It is trivial that \* is a binary operation. Checking if it is associative,

$$a*(b*c) = a*(b+c+bc)$$

$$a*(b*c) = a+(b+c+bc) + a(b+c+bc)$$

$$a*(b*c) = a+b+c+bc+ab+ac+abc$$

$$(a*b)*c = (a+b+ab)*c$$

$$(a*b)*c = (a+b+ab) + c + (a+b+ab)c$$

$$(a*b)*c = a+b+ab+c+ac+bc+abc$$

We see that a\*(b\*c)=(a\*b)\*c. Hence, \* is an associative binary operation.

**Example:** Let  $S = \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$ . Let \* be matrix multiplication. Verify if \* is a commutative or associative binary operation on S.

Let 
$$A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$
 where  $a, b \in \mathbb{R}$ , and  $B = \begin{bmatrix} c & -d \\ d & c \end{bmatrix}$  where  $c, d \in \mathbb{R}$ . Then,

$$AB = \begin{bmatrix} a & -b \\ -b & a \end{bmatrix} * \begin{bmatrix} c & -d \\ d & c \end{bmatrix}$$

$$AB = \begin{bmatrix} ac - bd & -ad - bc \\ ad + bc & ac - bd \end{bmatrix}$$

$$AB = \begin{bmatrix} ac - bd & -(ad + bc) \\ ad + bc & ac - bd \end{bmatrix}$$

This means  $AB \in S$ . Solving for BA,

$$BA = \begin{bmatrix} c & -d \\ d & c \end{bmatrix} * \begin{bmatrix} a & -b \\ -b & a \end{bmatrix}$$

$$BA = \begin{bmatrix} ac - bd & -bc - ad \\ ad + bc & -bd + ac \end{bmatrix}$$

$$BA = \begin{bmatrix} ac - bd & -(ad + bc) \\ ad + bc & ac - bd \end{bmatrix}$$

This also means that  $BA \in S$ . Note that AB = BA. Hence, matrix multiplication is commutative. It is also associative, since the general matrix multiplication is associative.

**Example:** Let  $S = \{a, b, c\}$ . Define \* on S by

Is \* a binary operation? If it is, is it commutative and/or associative?

The operation \* is a binary operation since every output of \* is in S. It is not commutative, since  $a*c \neq c*a$ . Checking if it is associative is left for the reader.

## Theorem 3.1

There are  $n^{n^2}$  binary operations on a set S such that |S| = n.

**Proof:** We have n choices for each cell in the table. There are  $n^2$  cells in the matrix, so there will be  $n^{n^2}$  combinations for the matrix. Hence, there are  $n^{n^2}$  binary operations on a set S such that |S| = n.

# Definition 3.7 (Group)

A group  $\langle G, * \rangle$  is a set G, closed under the binary operation \* such that the following axioms hold:

- $\mathcal{G}_1$ :  $\forall a, b, c \in G(a * (b * c) = (a * b) * c)$ .
- $\mathcal{G}_2$ :  $\exists e \in G \ \forall a \in G(e * a = a * e = a)$ .
- $\mathcal{G}_3$ :  $\forall a \in G \ \exists a' \in G(a * a' = a' * a = e)$ .

In the third axiom, a' is called the inverse of a. We let  $a^{-1} \equiv a'$  for each  $a \in G$ .

# Example:

- Is  $\langle \mathbb{R}, + \text{ a group} ?$ 
  - Yes,  $\langle \mathbb{R}, + \text{ is a group because:}$ 
    - + is associative,
    - + has an identity element which is 0,
    - An arbitrary element a from  $\mathbb{R}$  has an inverse -a such that a+(-a)=0.
- Is  $GL(2,\mathbb{R})$  a group? Yes,  $GL(2,\mathbb{R})$  is a group because:
  - Matrix multiplication is associative,
  - + has an identity element which is  $I_2$ ,
  - A nonsingular  $2 \times 2$  matrix has a nonsingular inverse, which is in  $GL(2,\mathbb{R})$ .

# Lecture 4: Introduction to groups, continued

Definition 4.1 (Set of integers modulo n)

We define  $\mathbb{Z}_n$  be the set of integers modulo n, such that

$$\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}.$$

Note that  $a \pmod{n}$  is the remainder when a is divided by n.

**Example:** Let \* be the binary operation on  $\mathbb{Z}_n$  defined by  $a * b = (a + b) \pmod{n}$ . The table for \* on  $\mathbb{Z}_4$  is

| * | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 |
| 1 | 1 | 2 | 3 | 0 |
| 2 | 2 | 3 | 0 | 1 |
| 3 | 3 | 0 | 1 | 2 |

### Theorem 4.1

$$\langle \mathbb{Z}_n, * \rangle$$
 is a group.

**Proof:** This is because it satisfies the group axioms:

- The operation \* is a binary operation in  $\mathbb{Z}_n$ .
- The binary operation \* is associative on  $\mathbb{Z}_n$ .
- $\bullet$  The binary operation \* has an identity element which is 0.
- If  $a \in \mathbb{Z}_n$ , then  $a^{-1} = n a \pmod{n}$ .

Definition 4.2 (Set of integers relatively prime to n)

We define  $U_n$  to be the set of integers relatively prime to n. That is,

$$U_n = \{x \mid 1 \le x \le n \land \gcd(n, x) = 1\}.$$

#### Theorem 4.2

$$\langle U_n, * \rangle$$
 is a group.

**Proof:**  $\langle U_n, * \rangle$  satisfies the group axioms:

•  $U_n$  is closed under \*.

Let  $a,b \in U_n$ . Then,  $\gcd(a,n) = \gcd(b,n) = 1$ . Suppose  $\gcd(ab,n) \neq 1$ . Then, there exists an integer p such that  $p \mid n$  and  $p \mid ab$ . Let d be such a number. Then, by Euclid's lemma, if  $p \mid ab$ , then  $p \mid a$  or  $p \mid b$ . Suppose  $p \mid a$ . Then,  $\gcd(a,n) \geq p$  which contradicts our assumption that  $\gcd(a,n) = 1$ . Similarly, if  $p \mid b$ , then  $\gcd(b,n) \geq p$  which also contradicts our assumption that  $\gcd(b,n) = 1$ . Regardless of the case, we have a contradiction.

Hence, 
$$gcd(ab, n) = 1$$
.

#### Example:

• The table for  $\mathbb{Z}_6$  is

| * | 0 | 1 | 2 | 3 | 4  | 5 |
|---|---|---|---|---|----|---|
|   | 0 | 1 |   | J | -1 | 9 |
| 0 | 0 | 1 | 2 | 3 | 4  | 5 |
| 1 | 1 | 2 | 3 | 4 | 5  | 0 |
| 2 | 2 | 3 | 4 | 5 | 0  | 1 |
| 3 | 3 | 4 | 5 | 0 | 1  | 2 |
| 4 | 4 | 5 | 0 | 1 | 2  | 3 |
| 5 | 5 | 0 | 1 | 2 | 3  | 4 |

• The table for  $U_9$  is

| * | 1 | 2 | 4 | 5 | 7 | 8 |
|---|---|---|---|---|---|---|
| 1 | 1 | 2 | 4 | 5 | 7 | 8 |
| 2 | 2 | 4 | 8 | 1 | 5 | 7 |
| 4 | 4 | 8 | 7 | 2 | 1 | 5 |
| 5 | 5 | 1 | 2 | 7 | 8 | 4 |
| 7 | 7 | 5 | 1 | 8 | 4 | 2 |
| 8 | 8 | 7 | 5 | 4 | 2 | 1 |

• Let  $G = \{e, a, b, c, d\}$  where e is the identity in G under \*. Complete the table below:

| *              | e | a                | b | c | d |
|----------------|---|------------------|---|---|---|
| e              | e | a                | b | c | d |
| a              | a | $\boldsymbol{b}$ | c | d | e |
| $\overline{b}$ | b | c                | d | e | a |
| $\overline{c}$ | c | d                | e | a | b |
| $\overline{d}$ | d | e                | a | b | c |

**Example:** Define \* on  $\mathbb{R}$  by a\*b=a+b+ab. Verify if  $(\mathbb{R},*)$  is a group.

We can see that a+b+ab=(a+1)(b+1)-1. Since  $a,b\in\mathbb{R}$ , then  $a*b\in\mathbb{R}$ . We also know that \* is associative. Consider a\*e=a. Solving for the identity,

$$a + e + ae = a$$
$$e + ae = 0$$
$$e(1 + a) = 0$$

This means e = 0. To check if every element in  $\mathbb{R}$  has an inverse under \*, suppose  $b = a^{-1}$ . Then, a \* b = 0. Solving for b in terms of a,

$$a+b+ab = 0$$

$$b+ab = -a$$

$$b(1+a) = -a$$

$$b = \frac{-a}{1+a}$$

We can see that b exists only if  $a \neq 1$ . Hence, not all elements have an inverse, so  $(\mathbb{R}, *)$  is not a group.

# 4.1 Elementary Properties of Groups

#### Note 4.1

Let G be a group. For any  $a, b \in G$ , we define ab as a\*b where \* is the binary operation of G, if \* is not stated.

#### Theorem 4.3

The identity element in a group is unique.

**Proof:** Suppose  $e_1$  and  $e_2$  are both identities of a group. Then,  $e_1e_2 = e_1$  since  $e_2$  is an identity. Similarly,  $e_1e_2 = e_2$  since  $e_1$  is an identity. By transitivity, we have  $e_1 = e_2$ .

#### Theorem 4.4

Let  $a, b, c \in G$  where G is a group. Then,

- (i)  $ac = bc \implies a = b$ . This is called right cancellation.
- (ii)  $ca = cb \implies a = b$ . This is called left cancellation.

**Proof:** Let  $a, b, c \in G$  be arbitrary. We prove each item:

- (i) Suppose that ac = bc. Then,  $acc^{-1} = bcc^{-1}$ . Since the binary operation in G is associative, we have  $a(cc^{-1}) = b(cc^{-1})$ , which simplifies to a = b.
- (ii) Suppose that ca = cb. Then,  $c^{-1}ca = c^{-1}cb$ . Since the binary operation in G is associative, we have  $(c^{-1}c)a = (c^{-1}c)b$ , which simplifies to a = b.

#### Theorem 4.5

Let G be a group. The inverse of any element in G is unique.

**Proof:** Let  $g \in G$  be arbitrary. Let  $a, b \in G$  be inverses of g. Then, ag = ga = e, and bg = gb = e, where e is the identity in G. Consider agb. We have a(gb) = b, and (ag)b = a. Since G is associative, then a = b.

#### Theorem 4.6

Let G be a group and let  $a \in G$ . Then,  $(a^{-1})^{-1} = a$ .

**Proof:** Since the inverse of a is  $a^{-1}$  and by the uniqueness of inverses, the inverse of  $a^{-1}$ ,  $(a^{-1})^{-1}$ , is a.

# Theorem 4.7

Let G be a group. If  $a, b \in G$ , then  $(ab)^{-1} = b^{-1}a^{-1}$ .

**Proof:** Let G be a group, and let  $a, b \in G$  be arbitrary. Then,

$$ab(ab)^{-1} = e$$

$$a^{-1}ab(ab)^{-1} = a^{-1}e$$

$$eb(ab)^{-1} = a^{-1}$$

$$b^{-1}eb(ab)^{-1} = b^{-1}a^{-1}$$

$$b^{-1}b(ab)^{-1} = b^{-1}a^{-1}$$

$$(ab)^{-1} = b^{-1}a^{-1}$$

## Theorem 4.8

Let G be a group. Let  $a_1, a_2, \dots, a_n \in G$ . Then,  $(a_1 a_2 \cdots a_n)^{-1} = a_n^{-1} a_{n-1}^{-1} \cdots a_2^{-1} a_1^{-1}$ .

**Proof:** Let  $n \in \mathbb{N}$  be arbitrary, and suppose that for all  $i \in \mathbb{N}$  less than n,  $(a_1 a_2 \cdots a_i)^{-1} = a_i^{-1} a_{i-1}^{-1} \cdots a_2^{-1} a_1^{-1}$ .

$$(a_1 a_2 \cdots a_n)^{-1} = a_n^{-1} (a_1 a_2 \cdots a_{n-1})^{-1}$$
$$(a_1 a_2 \cdots a_n)^{-1} = a_n^{-1} a_{n-1}^{-1} \cdots a_2^{-1} a_1^{-1}$$

Hence, 
$$(a_1 a_2 \cdots a_n)^{-1} = a_n^{-1} a_{n-1}^{-1} \cdots a_2^{-1} a_1^{-1}$$
.