UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma D - 2022/2 Prova da área IIB

1 - 5	6	7	Total

Nome: _	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- $\bullet\,$ Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- $\bullet~$ Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- $\bullet\,$ Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.

Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$

	Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}.$					
1.	Linearidade	$\mathcal{F}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{F}\left\{f(t)\right\} + \beta \mathcal{F}\left\{g(t)\right\}$				
2.	Transformada da derivada	Se $\lim_{t\to\pm\infty} f(t) = 0$, então $\mathcal{F}\left\{f'(t)\right\} = iw\mathcal{F}\left\{f(t)\right\}$				
		Se $\lim_{t \to \pm \infty} f(t) = \lim_{t \to \pm \infty} f'(t) = 0$, então $\mathcal{F}\left\{f''(t)\right\} = -w^2 \mathcal{F}\left\{f(t)\right\}$				
3.	Deslocamento no eixo w	$\mathcal{F}\left\{e^{at}f(t)\right\} = F(w+ia)$				
4.	Deslocamento no eixo \boldsymbol{t}	$\mathcal{F}\left\{f(t-a)\right\} = e^{-iaw}F(w)$				
5.	Transformada da integral	Se $F(0) = 0$, então $\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{F(w)}{iw}$				
6.	Teorema da modulação	$\mathcal{F}\{f(t)\cos(w_0t)\} = \frac{1}{2}F(w - w_0) + \frac{1}{2}F(w + w_0)$				
7.	Teorema da Convolução	$\mathcal{F}\left\{(f*g)(t)\right\} = F(w)G(w), \text{onde} (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$				
		$(F * G)(w) = 2\pi \mathcal{F}\{f(t)g(t)\}$				
8.	Conjugação	$\overline{F(w)} = F(-w)$				
9.	Inversão temporal	$\mathcal{F}\{f(-t)\} = F(-w)$				
10.	Simetria ou dualidade	$f(-w) = \frac{1}{2\pi} \mathcal{F}\left\{F(t)\right\}$				
11.	Mudança de escala	$\mathcal{F}\left\{f(at)\right\} = \frac{1}{ a }F\left(\frac{w}{a}\right), \qquad a \neq 0$				
12.	Teorema da Parseval	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) ^2 dw$				
13.	Teorema da Parseval para Série de Fourier	$\frac{1}{T} \int_0^T f(t) ^2 dt = \sum_{n = -\infty}^{\infty} C_n ^2$				

<u>Séries e transformadas</u>	de Fourier:			
	Forma trigonométrica	Forma exponencial		
Série de Fourier	$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos(w_n t) + b_n \sin(w_n t) \right]$	$f(t) = \sum_{n = -\infty}^{\infty} C_n e^{iw_n t},$		
	onde $w_n = \frac{2\pi n}{T}$, T é o período de $f(t)$	onde $C_n = \frac{a_n - ib_n}{2}$		
	$a_0 = \frac{2}{T} \int_0^T f(t)dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t)dt,$			
	$a_n = \frac{2}{T} \int_0^T f(t) \cos(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(w_n t) dt,$			
	$b_n = \frac{2}{T} \int_0^T f(t) \sin(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_n t) dt$			
Transformada de Fourier	$f(t) = \frac{1}{\pi} \int_0^\infty \left(A(w) \cos(wt) + B(w) \sin(wt) \right) dw, \text{ para } f(t) \text{ real},$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{iwt}dw,$		
do I surior	onde $A(w) = \int_{-\infty}^{\infty} f(t) \cos(wt) dt$ e $B(w) = \int_{-\infty}^{\infty} f(t) \sin(wt) dt$	onde $F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt}dt$		

Tabela de integrais definidas:

Tabela de integrais definidas:	
1. $\int_0^\infty e^{-ax} \cos(mx) dx = \frac{a}{a^2 + m^2} \qquad (a > 0)$	2. $\int_0^\infty e^{-ax} \sin(mx) dx = \frac{m}{a^2 + m^2}$ $(a > 0)$
3. $\int_0^\infty \frac{\cos(mx)}{a^2 + x^2} dx = \frac{\pi}{2a} e^{-ma} \qquad (a > 0, \ m \ge 0)$	4. $\int_0^\infty \frac{x \sin(mx)}{a^2 + x^2} dx = \frac{\pi}{2} e^{-ma} \qquad (a \ge 0, \ m > 0)$
5. $ \int_0^\infty \frac{\sin(mx)\cos(nx)}{x} dx = \begin{cases} \frac{\pi}{2}, & n < m \\ \frac{\pi}{4}, & n = m, & (m > 0, \\ 0, & n > m \end{cases} $	6. $ \int_0^\infty \frac{\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{2}, & m > 0\\ 0, & m = 0\\ -\frac{\pi}{2}, & m < 0 \end{cases} $
7. $\int_0^\infty e^{-r^2 x^2} dx = \frac{\sqrt{\pi}}{2r} \qquad (r > 0)$	8. $\int_0^\infty e^{-a^2x^2} \cos(mx) dx = \frac{\sqrt{\pi}}{2a} e^{-\frac{m^2}{4a^2}} \qquad (a > 0)$
9. $\int_0^\infty x e^{-ax} \sin(mx) dx = \frac{2am}{(a^2 + m^2)^2} \qquad (a > 0)$	10. $\int_0^\infty e^{-ax} \sin(mx) \cos(nx) dx =$
	$= \frac{m(a^2 + m^2 - n^2)}{(a^2 + (m-n)^2)(a^2 + (m+n)^2)} (a > 0)$
11. $\int_0^\infty x e^{-ax} \cos(mx) dx = \frac{a^2 - m^2}{(a^2 + m^2)^2} \qquad (a > 0)$	12. $\int_0^\infty \frac{\cos(mx)}{x^4 + 4a^4} dx = \frac{\pi}{8a^3} e^{-ma} (\sin(ma) + \cos(ma))$
13. $\int_0^\infty \frac{\sin^2(mx)}{x^2} dx = m \frac{\pi}{2}$	14. $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$
15. $ \int_0^\infty \frac{\sin^2(ax)\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{4}, & (0 < m < 2a) \\ \frac{\pi}{8}, & (0 < 2a = m) \\ 0, & (0 < 2a < m) \end{cases} $	16. $ \int_0^\infty \frac{\sin(mx)\sin(nx)}{x^2} dx = \begin{cases} \frac{\pi m}{2}, & (0 < m \le n) \\ \frac{\pi n}{2}, & (0 < n \le m) \end{cases} $
17. $\int_0^\infty x^2 e^{-ax} \operatorname{sen}(mx) dx = \frac{2m(3a^2 - m^2)}{(a^2 + m^2)^3} \qquad (a > 0)$	18. $\int_0^\infty x^2 e^{-ax} \cos(mx) dx = \frac{2a(a^2 - 3m^2)}{(a^2 + m^2)^3} (a > 0)$
19. $\int_0^\infty \frac{\cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a^3} (1 + ma)e^{-ma} \begin{array}{c} (a > 0, \\ m \ge 0) \end{array}$	20. $\int_0^\infty \frac{x \sin(mx)}{(a^2 + x^2)^2} dx = \frac{\pi m}{4a} e^{-ma} (a > 0, \ m > 0)$
21. $\int_0^\infty \frac{x^2 \cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a} (1 - ma) e^{-ma} (a > 0, m \ge 0)$	22. $\int_0^\infty x e^{-a^2 x^2} \operatorname{sen}(mx) dx = \frac{m\sqrt{\pi}}{4a^3} e^{-\frac{m^2}{4a^2}} (a > 0)$

Frequências das notas musicais em hertz:

Nota \ Escala	2	3	4	5	6	7
Dó	65,41	130,8	261,6	523,3	1047	2093
Dó #	69,30	138,6	277,2	554,4	1109	2217
Ré	73,42	146,8	293,7	587,3	1175	2349
Ré #	77,78	155,6	311,1	622,3	1245	2489
Mi	82,41	164,8	329,6	659,3	1319	2637
Fá	87,31	174,6	349,2	698,5	1397	2794
Fá #	92,50	185,0	370,0	740,0	1480	2960
Sol	98,00	196,0	392,0	784,0	1568	3136
Sol #	103,8	207,7	415,3	830,6	1661	3322
Lá	110,0	220,0	440,0	880,0	1760	3520
Lá ‡	116,5	233,1	466,2	932,3	1865	3729
Si	123,5	246,9	493,9	987,8	1976	3951

Identidades Trigonométricas:

$$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2}$$
$$\sin(x)\sin(y) = \frac{\cos(x-y) - \cos(x+y)}{2}$$
$$\sin(x)\cos(y) = \frac{\sin(x+y) + \sin(x-y)}{2}$$

Integrais:

$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

$$\int x^2 \cos(\lambda x) dx = \frac{2\lambda x \cos(\lambda x) + (\lambda^2 x^2 - 2) \sin(\lambda x)}{\lambda^3} + C$$

$$\int x^2 \sin(\lambda x) dx = \frac{2\lambda x \sin(\lambda x) + (2 - \lambda^2 x^2) \cos(\lambda x)}{\lambda^3} + C$$

• Questão 1 (2.0 pontos) Considere a função dada por:

$$f(t) = \sum_{n=1}^{\infty} e^{-n} \operatorname{sen}(n\pi t) = \sum_{n=-\infty}^{\infty} C_n e^{in\pi t}.$$

Responda:

Período fundamental

()
$$T_f = 1$$

$$(X) T_f = 2$$

()
$$T_f = \pi$$

()
$$T_f = 2\pi$$

Valor médio $\frac{1}{T} \int_0^T f(t) dt$

- $(\)\ -2$
- $(\)\ -1$
- (X)0
- () 1
- () N.D.A

Módulo de C_2

$$(X) |C_2| = \frac{e^{-2}}{2}$$

$$(\)\ |C_2| = \frac{\sqrt{2}e^{-2}}{2}$$

$$(\)\ |C_2| = e^{-2}$$

()
$$|C_2| = 2e^{-2}$$

Potência média $\frac{1}{T} \int_0^T |f(t)|^2 dt$

()
$$\bar{P}_f = 1 + \frac{1}{2} \frac{e^2}{e^2 - 1}$$

()
$$\bar{P}_f = 2 + \frac{1}{2} \frac{e^2}{e^2 - 1}$$

(X)
$$\bar{P}_f = \frac{1}{2} \frac{1}{e^2 - 1}$$

$$(\)\ \bar{P}_{f} = \frac{1}{2} \frac{1}{e-1}$$

Solução da d:

$$\frac{1}{T} \int_0^T |f(t)|^2 dt = \sum_{n=-\infty}^\infty |C_n|^2 = 2 \sum_{n=1}^\infty |C_n|^2 = 2 \sum_{n=1}^\infty \left| \frac{e^{-n}}{2} \right|^2$$
$$= \frac{1}{2} \sum_{n=1}^\infty e^{-2n} = \frac{1}{2} \frac{e^{-2}}{1 - e^{-2}} = \frac{1}{2} \frac{1}{e^{2} - 1}$$

• Questão 2 (1.0 ponto) Considere os diagramas de espectro de magnititudes das função f(t) dada. Sabendo que f(t) representa uma função real, sabendo que $\bar{f}:=\int_{-\infty}^{\infty}f(t)dt$ e $E:=\int_{-\infty}^{\infty}|f(t)|^2dt$, assinale as alternativas que melhor aproximam os valores de $|\bar{f}|$ e E:

() 0

() 0.25(X) 0.5 () 0.75

() 1.0

() 165 () 231

(X) 326 () 541

Solução:

$$\bar{f} := \int_{-\infty}^{\infty} f(t)dt = F(0) \Longrightarrow |\bar{f}| = |F(0)| = 0.5$$

$$E = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(w)|^2 dw$$
$$= \frac{1}{\pi} \left[0.5^2 \times 100 + 2^2 \times 200 + 1^2 \times 200 \right]$$
$$= \frac{1025}{\pi} \approx 326.$$

• Questão 3 (1.0 pontos) Considere a função periódica dada pelo gráfico abaixo:

Seja a expansão em série de Fourier dada por: $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(w_n t) + b_n \sin(w_n t))$

Indique os valores de a_n e b_n . () $a_n = \frac{8}{3}$

$$() a_n = \frac{8}{3}$$

()
$$b_n = \frac{8}{3}$$

(X)
$$a_n = \frac{4}{3}$$

$$() b_n = \frac{4}{3}$$

$$() a_n = \frac{8}{3n}$$

$$() b_n = \frac{8}{3n}$$

$$() a_n = \frac{4}{3n}$$

$$() b_n = \frac{4}{3n}$$

()
$$a_n = 0$$

$$(X) b_n = 0$$

• Questão 4 (1.0 pontos) Considere os diagramas de espectro de amplitude e fase de um sinal f(t) dados nos gráficos abaixo.

A forma exponencial do sinal é dada por

$$f(t) = C_{-3}e^{-3\pi t} + C_{-2}e^{-2\pi t} + C_{-1}e^{-\pi t} + C_0 + C_1e^{\pi t} + C_2e^{2\pi t} + C_3e^{3\pi t}$$

e a forma trigonométrica é dada por

$$f(t) = \frac{a_0}{2} + a_1 \cos(\pi t) + b_1 \sin(\pi t) + a_2 \cos(2\pi t) + b_2 \sin(2\pi t) + a_3 \cos(3\pi t) + b_3 \sin(3\pi t)$$

Assinale as alternativas corretas.

(X)
$$C_3 = \frac{-\sqrt{2} - i\sqrt{2}}{4}$$
, $C_2 = 2i$, $C_1 = \frac{3\sqrt{2} - 3i\sqrt{2}}{2}$ e $C_0 = -1$
() $C_3 = \frac{-\sqrt{2} + i\sqrt{2}}{4}$, $C_2 = -2i$, $C_1 = \frac{3\sqrt{2} - 3i\sqrt{2}}{2}$ e $C_0 = 1$
(X) $C_3 = \frac{-\sqrt{2} - i\sqrt{2}}{4}$, $C_2 = 2i$, $C_1 = \frac{3\sqrt{2} - 3i\sqrt{2}}{2}$ e $C_0 = 1$
(Y) $C_3 = \frac{-\sqrt{2} - i\sqrt{2}}{4}$, $C_2 = 2i$, $C_1 = \frac{3\sqrt{2} - 3i\sqrt{2}}{2}$ e $C_0 = -1$
(Y) $C_3 = \frac{-\sqrt{2} - i\sqrt{2}}{4}$, $C_2 = 2i$, $C_1 = \frac{3\sqrt{2} - 3i\sqrt{2}}{2}$ e $C_0 = -1$

()
$$C_3 = \frac{-\sqrt{2} + i\sqrt{2}}{4}$$
, $C_2 = -2i$, $C_1 = \frac{3\sqrt{2} - 3i\sqrt{2}}{2}$ e $C_0 = 1$

(X)
$$C_3 = \frac{-\sqrt{2} - i\sqrt{2}}{4}$$
, $C_2 = 2i$, $C_1 = \frac{3\sqrt{2} - 3i\sqrt{2}}{2}$ e $C_0 = -1$

()
$$C_3 = \frac{-\sqrt{2} - i\sqrt{2}}{4}$$
, $C_2 = -2i$, $C_1 = \frac{3\sqrt{2} + 3i\sqrt{2}}{2}$ e $C_0 = 1$

() n.d.a.

()
$$a_3 = \frac{\sqrt{2}}{2}$$
, $b_3 = \frac{\sqrt{2}}{2}$, $a_2 = 0$, $b_2 = -1$, $a_1 = 3\sqrt{2}$, $b_1 = 3\sqrt{2}$ e $a_0 = -2$

()
$$a_3 = \frac{-\sqrt{2}}{2}$$
, $b_3 = \frac{\sqrt{2}}{2}$, $a_2 = 0$, $b_2 = 1$, $a_1 = 3\sqrt{2}$, $b_1 = 3\sqrt{2}$ e $a_0 = -2$

()
$$a_3 = \frac{-\sqrt{2}}{2}, b_3 = \frac{\sqrt{2}}{2}, a_2 = 0, b_2 = -1,$$

 $a_1 = 3\sqrt{2}, b_1 = 3\sqrt{2} e a_0 = 2$

• Questão 5 (1.0 pontos) Considere as funções dadas por:

$$f(t) = te^{-t^2}$$

$$g(t) = t\cos(2t)e^{-t^2}$$

Assinale as alternativas que indicam, respectivamente, $F(w) = \mathcal{F}\{f(t)\}\$ e $G(w) = \mathcal{F}\{g(t)\}\$.

$$() \frac{-\sqrt{\pi}w}{2}e^{-\frac{w^2}{4}}$$

()
$$\frac{\sqrt{\pi}w}{2}e^{-\frac{w^2}{4}}$$

$$(X) \frac{-\sqrt{\pi}iw}{2}e^{-\frac{w^2}{4}}$$

$$(\)\ \frac{\sqrt{\pi}iw}{2}e^{-\frac{w^2}{4}}$$

$$(\)\ \frac{-\sqrt{\pi}(w+2)}{4}e^{-\frac{(w+2)^2}{4}}+\frac{-\sqrt{\pi}(w-2)}{4}e^{-\frac{(w-2)^2}{4}}$$

$$(\)\ \frac{\sqrt{\pi}(w+2)}{4}e^{-\frac{(w+2)^2}{4}}+\frac{\sqrt{\pi}(w-2)}{4}e^{-\frac{(w-2)^2}{4}}$$

$$(\)\ \frac{-\sqrt{\pi}i(w+2)}{2}e^{-\frac{(w+2)^2}{4}}+\frac{-\sqrt{\pi}i(w-2)}{2}e^{-\frac{(w-2)^2}{4}}$$

$$(\)\ \frac{\sqrt{\pi}i(w+2)}{2}e^{-\frac{(w+2)^2}{4}}+\frac{\sqrt{\pi}i(w-2)}{2}e^{-\frac{(w-2)^2}{4}}$$

(X) n.d.a

ullet Questão 6 (2.0 pontos) Um fluido se desloca em um tubo com perdas de calor e com velocidade constante v de forma que a evolução da temperatura u(x,t) como uma função da coordenada x e do tempo é descrita pelo seguinte modelo simplificado:

$$u_t + vu_x - u_{xx} + u = 0.$$

Sabendo que no instante t=0, a temperatura foi bruscamente aquecida em uma região muito pequena, de forma que podemos considerar

$$u(x,0) = 300\delta(x).$$

Use a técnica das transformadas de Fourier para obter a solução desta equação diferencial quando v=1m/s.

Resposta resumida

$$\begin{split} \frac{d}{dt}U(k,t) + ivkU(k,t) + k^2U(k,t) + U(k,t) &= 0 \\ \frac{d}{dt}U(k,t) &= -\left(ivk + k^2 + 1\right)U(k,t) &= 0 \\ \\ U(k,t) &= U(k,0)e^{-\left(ivk + k^2 + 1\right)t} \\ &= 300e^{-\left(1 + ivk + k^2\right)t} \\ &= e^{-t}e^{-ivk}300e^{-k^2t} \end{split}$$

Calculamos a transformada inversa de $300e^{-k^2t}\colon$

$$\mathcal{F}\left\{300e^{-k^{2}t}\right\} = \frac{150}{\pi} \int_{-\infty}^{\infty} e^{-k^{2}t} e^{ikx} dx
= \frac{300}{\pi} \int_{0}^{\infty} e^{-k^{2}t} \cos(kx) dx
= \frac{300}{\pi} \cdot \frac{\sqrt{\pi}}{2} e^{-\frac{x^{2}}{4t}}
= \frac{150}{\sqrt{\pi t}} e^{-\frac{x^{2}}{4t}}$$

Usando a propriedade do deslocamento, temos a solução:

$$u(x,t) = \frac{150}{\sqrt{\pi t}}e^{-t}e^{-\frac{(x-vt)^2}{4t}}$$

• Questão 7 (2.0 pontos) Sejam f(t) uma função cuja transformada de Fourier é dada por $F(w) = \mathcal{F}\{f(t)\}$. O gráfico abaixo apresenta o diagrama de espectro de magnitudes de F(w).

Esboce a diagrama de espectro de magnititudes da transformada de Fourier da função $g(t) = f''(t) + \cos(3t)$ Resposta resumida

$$|F(w)| = \begin{cases} 0, & w < -2, \\ w + 2, & -2 \le w < -1, \\ 1, & -1 \le w < 1, \\ 2 - w & 1 \le w < 2, \\ 0, & w > 2. \end{cases}$$

A transformada de f''(w) é $(iw)^2 F(w)$, assim:

$$|w^2 F(w)| = \begin{cases} 0, & w < -2, \\ w^2 (w+2), & -2 \le w < -1, \\ w^2, & -1 \le w < 1, \\ w^2 (2-w) & 1 \le w < 2, \\ 0, & w > 2. \end{cases}$$

Além disso, sabemos que $\mathcal{F}\left\{\cos(3t)\right\} = \pi\delta(w-3) + \pi\delta(w+3)$

