Proof. For part (i), as $f \in \mathcal{S}_p^*$, then due to the geometry of the function $1 + \mathcal{P}_{0,\pi}(z) = 1 + 2/\pi^2 (\log((1 + \sqrt{z})/(1 - \sqrt{z})))^2$ it can be observed that

$$\max_{|z|=r} \text{Re}(1 + \mathcal{P}_{0,\pi}(z)) = 1 + \mathcal{P}_{0,\pi}(r).$$

Now for f(z) to lie in the class $\mathcal{F}_{\mathcal{LP}}$, we must have

FIGURE 3. Pictorial boundary description of inclusion results pertaining to the parabolic function $\mathcal{LP}(z)$

$$1 + \frac{2}{\pi^2} \left(\log \left(\frac{1 + \sqrt{r}}{1 - \sqrt{r}} \right) \right)^2 \le \frac{3}{2},$$

which holds provided $r \leq \mathcal{R}_{\mathcal{F}_{\mathcal{LP}}}(\mathcal{S}_p^*)$. Clearly equality in (i) is attained for the function $\tilde{f}(z)$ such that $z\tilde{f}'(z_0)/\tilde{f}(z_0) = 1 + \mathcal{P}_{0,\pi}(z_0)$ at $z_0 = \mathcal{R}_{\mathcal{F}_{\mathcal{LP}}}(\mathcal{S}_p^*)$. Further observe that, if $p \in \mathcal{P}[A,B] = \{p(z) : p(z) = 1 + c_1z + c_2z^2 \dots \prec (1+Az)/(1+Bz), -1 \leq B < A \leq 1\}$, then for |z| = r < 1, it is a known fact that

$$\left| p(z) - \frac{1 - ABr^2}{1 - B^2r^2} \right| < \frac{|A - B|r}{1 - B^2r^2}. \tag{2.2}$$

Then, in view of (2.2), for part (ix) $f \in \mathcal{S}^*(A, B)$ lies in $\mathcal{F}_{\mathcal{LP}}$, if

$$\frac{(A-B)r+1-ABr^2}{1-B^2r^2} \le \frac{3}{2}.$$

Equivalently, we can say that $(1 - Br)((2A - 3B)r - 1) \leq 0$, provided $r \leq \mathcal{R}_{\mathcal{F}_{\mathcal{LP}}}(\mathcal{S}^*(A, B))$. Extremal function in this case is $\hat{f} \in \mathcal{A}$ satisfying $z_0 \hat{f}'(z_0)/\hat{f}(z_0) = (1 + Az_0)/(1 + Bz_0)$, where $z_0 = \tilde{R}$. For part (iv), as $f \in \mathcal{F}_{\mathcal{LP}}$, then proceeding as before, f lies in \mathcal{S}^*_{ϱ} if for |z| = r we have $3/2 \geq \cosh \sqrt{r}$, provided $r = \mathcal{R}_{\mathcal{F}_{\mathcal{LP}}}(\mathcal{S}^*_{\varrho})$. Sharpness holds for the function $f_{\varrho} \in \mathcal{A}$ defined as $zf'_{\varrho}(z)/f_{\varrho}(z) = \cosh \sqrt{z}$. Further we know that $\max_{|z|=r} \operatorname{Re}(1+\sin z) = 1+\sin r$, then for part (ii) it is enough to find an r < 1 satisfying the equation $\sin r = 1/2$, thus $r = \mathcal{R}_{\mathcal{F}_{\mathcal{LP}}}(\mathcal{S}^*_s) = \pi/6$. Sharpness holds for the function $f_s(z)$ given by $zf'_s(z)/f_s(z) = 1 + \sin z$. In all the subsequent parts, the proofs follow along the same lines, therefore they are omitted.

Let \mathcal{P}_{α} consist of functions of the form $p(z) = 1 + c_1 z + c_2 z^2 + \ldots$, satisfying $\operatorname{Re} p(z) > \alpha$ for $0 \le \alpha < 1$, then we say p(z) is a Carathéodory function of order α . Denote $\mathcal{P}(0) =: \mathcal{P}$, commonly known as the class of Carathéodory functions. Further, assume $\mathfrak{P}_{\mathcal{L}\mathcal{P}}$ to be the class of functions of the form $p(z) = 1 + c_1 z + c_2 z^2 + \ldots$, such that $p(z) \prec \mathcal{L}\mathcal{P}(z)$.