Chapter 43

Energy From The Nucleus

43.1: Nuclear Fission: The Basic Process:

Ta	bl	e 4	43	-1
			_	_

Energy Released by 1 kg of Matter

Form of Matter	Process	Time ^a	
Water	A 50 m waterfall	5 s	
Coal	Burning	8 h	
Enriched UO ₂	Fission in a reactor	690 y	
^{235}U	Complete fission	$3 \times 10^4 \mathrm{y}$	
Hot deuterium gas	Complete fusion	$3 \times 10^4 \mathrm{y}$	
Matter and antimatter	Complete annihilation	$3 \times 10^7 \mathrm{y}$	

^aThis column shows the time interval for which the generated energy could power a 100 W lightbulb.

In both atomic and nuclear burning, the release of energy is accompanied by a decrease in mass, according to the equation $Q=-\Delta m c^2$. The central difference between burning uranium and burning coal is that, in the former case, a much larger fraction of the available mass (by a factor of a few million) is consumed.

Fig. 43-1 The distribution by mass number of the fragments that are found when many fission events of ²³⁵U are examined. Note that the vertical scale is logarithmic.

The most probable mass numbers, occurring in about 7% of the fission events, are centered around $A \sim 95$ and $A \sim 140$.

An example: ${}^{235}U + n \rightarrow {}^{236}U \rightarrow {}^{140}Xe + {}^{94}Sr + 2n$.

Since the products are not stable, they undergo further fissions, such as:

140
Xe $\rightarrow ^{140}$ Cs $\rightarrow ^{140}$ Ba $\rightarrow ^{140}$ La $\rightarrow ^{140}$ Ce
 $\frac{T_{1/2}}{Z}$ | 14 s | 64 s | 13 d | 40 h | Stable
 $\frac{7}{Z}$ | 54 | 55 | 56 | 57 | 58

The energy released by the fission, Q, is:

$$Q = \begin{pmatrix} \text{total final} \\ \text{binding energy} \end{pmatrix} - \begin{pmatrix} \text{initial} \\ \text{binding energy} \end{pmatrix}.$$

$$Q = \begin{pmatrix} \text{final} \\ \Delta E_{\text{ben}} \end{pmatrix} \begin{pmatrix} \text{final number} \\ \text{of nucleons} \end{pmatrix} - \begin{pmatrix} \text{initial} \\ \Delta E_{\text{ben}} \end{pmatrix} \begin{pmatrix} \text{initial number} \\ \text{of nucleons} \end{pmatrix}.$$

For a high-mass nuclide ($A \sim 240$), the binding energy per nucleon is about 7.6 MeV/nucleon.

For middle-mass nuclides ($A \sim 120$), it is about 8.5 MeV/nucleon.

Thus, the energy released by fission of a high-mass nuclide to two middle-mass nuclides is

$$Q = \left(8.5 \frac{\text{MeV}}{\text{nucleon}}\right) (2 \text{ nuclei}) \left(120 \frac{\text{nucleons}}{\text{nucleus}}\right)$$
$$-\left(7.6 \frac{\text{MeV}}{\text{nucleon}}\right) (240 \text{ nucleons}) \approx 200 \text{ MeV}.$$

A generic fission event is

$$^{235}U + n \rightarrow X + Y + 2n$$
.

Which of the following pairs *cannot* represent X and Y: (a) 141 Xe and 93 Sr; (b) 139 Cs and 95 Rb; (c) 156 Nd and 79 Ge; (d) 121 In and 113 Ru?

c and d

Example, Q-value in a fission of U-235:

Find the disintegration energy Q for the fission event of Eq. 43-1, taking into account the decay of the fission fragments as displayed in Eqs. 43-2 and 43-3. Some needed atomic and particle masses are

KEY IDEAS

(1) The disintegration energy Q is the energy transferred from mass energy to kinetic energy of the decay products. (2) $Q = -\Delta m c^2$, where Δm is the change in mass.

Calculations: Because we are to include the decay of the fission fragments, we combine Eqs. 43-1, 43-2, and 43-3 to write the overall transformation as

$$^{235}U \rightarrow ^{140}Ce + ^{94}Zr + n.$$
 (43-7)

Only the single neutron appears here because the initiating neutron on the left side of Eq. 43-1 cancels one of the two neutrons on the right of that equation. The mass difference for the reaction of Eq. 43-7 is

$$\Delta m = (139.9054 \text{ u} + 93.9063 \text{ u} + 1.008 66 \text{ u})$$

$$- (235.0439 \text{ u})$$

$$= -0.223 54 \text{ u},$$

and the corresponding disintegration energy is

$$Q = -\Delta m c^2 = -(-0.223 54 \text{ u})(931.494 013 \text{ MeV/u})$$

= 208 MeV, (Answer)

which is in good agreement with our estimate of Eq. 43-6.

If the fission event takes place in a bulk solid, most of this disintegration energy, which first goes into kinetic energy of the decay products, appears eventually as an increase in the internal energy of that body, revealing itself as a rise in temperature. Five or six percent or so of the disintegration energy, however, is associated with neutrinos that are emitted during the beta decay of the primary fission fragments. This energy is carried out of the system and is lost.

43.3: A Model for Nuclear Fission:

The ²³⁵U absorbs a slow neutron (with little kinetic energy), becoming ²³⁶U. Energy is transferred from mass energy to energy of the oscillations caused by the absorption. Both globs contain protons and are positively charged and thus they repel each other. But the protons and neutrons also attract one another by the strong force that binds the nucleus.

(d)

The strong force, however, decreases very quickly with distance between the globs.

So, if the globs move apart enough, the electric repulsion rips apart the nucleus.

This fission decreases the mass energy, thus releasing energy.

The two fragments eject neutrons, further reducing mass energy.

Fig. 43-2 The stages of a typical fission process, according to the collective model of Bohr and Wheeler.

Fig. 43-3 The potential energy at various stages in the fission process, as predicted from the collective model of Bohr and Wheeler. The Q of the reaction (about 200 MeV) and the fission barrier height E_b are both indicated.

In the figure, the potential energy is plotted against the *distortion parameter r*, which is a rough measure of the extent to which the oscillating nucleus departs from a spherical shape. When the fragments are far apart, this parameter is simply the distance between their centers.

Table 43-2 Test of the Fissionability of Four Nuclides $E_{\rm n}\,({\rm MeV})$ Fission by Thermal Neutrons? Target Nuclide Nuclide Being Fissioned E_b (MeV) 235U 236U 6.5 5.2 Yes 238**[** J 239**[** J 4.8 5.7 No ²³⁹Pu ²⁴⁰Pu 6.4 4.8 Yes ²⁴⁴Am ²⁴³Am 5.5 5.8 No

Table 43-2 shows, for four high-mass nuclides, this test of whether capture of a thermal neutron can cause fissioning. For each nuclide, the table shows both the barrier height E_b of the nucleus that is formed by the neutron capture and the excitation energy E_n due to the capture.

Fig. 43-4 This image has transfixed the world since World War II. When Robert Oppenheimer, the head of the scientific team that developed the atomic bomb, witnessed the first atomic explosion, he quoted from a sacred Hindu text: "Now I am become Death, the destroyer of worlds."

43.2: The Nuclear Reactor:

Three main difficulties stand in the way of a working reactor:

- 1. The Neutron Leakage Problem. (Some neutrons produced by fission leak out from the reactor).
- 2. The Neutron Energy Problem. (Fast neutrons are not as effective in Producing fission as slower thermal fissions neutrons).
 - 3. The Neutron Capture Problem. (non-fission capture of neutrons)

Fig. 43-5 Neutron bookkeeping in a reactor. A generation of 1000 thermal neutrons interacts with the ²³⁵U fuel, the ²³⁸U matrix, and the moderator. They produce 1370 neutrons by fission, but 370 of these are lost by nonfission capture or by leakage, meaning that 1000 thermal neutrons are left to form the next generation. The figure is drawn for a reactor running at a steady power level.

43.2: The Nuclear Reactor:

Example, Nuclear reactor:

A large electric generating station is powered by a pressurizedwater nuclear reactor. The thermal power produced in the reactor core is 3400 MW, and 1100 MW of electricity is generated by the station. The fuel charge is 8.60×10^4 kg of uranium, in the form of uranium oxide, distributed among 5.70×10^4 fuel rods. The uranium is enriched to 3.0% ²³⁵U.

(a) What is the station's efficiency?

eff =
$$\frac{\text{useful output}}{\text{energy input}} = \frac{1100 \text{ MW (electric)}}{3400 \text{ MW (thermal)}}$$

= 0.32, or 32%.

The efficiency—as for all power plants—is controlled by the second law of thermodynamics. To run this plant, energy at the rate of 3400 MW - 1100 MW, or 2300 MW, must be discharged as thermal energy to the environment.

(Answer)

(b) At what rate R do fission events occur in the reactor core? **Calculation:** For steady-state operation (*P* is constant), we

find
$$R = \frac{P}{Q} = \left(\frac{3.4 \times 10^9 \,\text{J/s}}{200 \,\text{MeV/fission}}\right) \left(\frac{1 \,\text{MeV}}{1.60 \times 10^{-13} \,\text{J}}\right)$$
= 1.06 × 10²⁰ fissions/s

appearing? Assume conditions at start-up.

$$\approx 1.1 \times 10^{20}$$
 fissions/s. (Answer) (c) At what rate (in kilograms per day) is the ²³⁵U fuel dis-

of ²³⁵U decreases is $(1 + 0.25)(1.06 \times 10^{20} \text{ atoms/s}) = 1.33 \times 10^{20} \text{ atoms/s}.$

Calculations: The total rate at which the number of atoms

$$\frac{dM}{dt} = (1.33 \times 10^{20} \text{ atoms/s})(3.90 \times 10^{-25} \text{ kg/atom})$$
$$= 5.19 \times 10^{-5} \text{ kg/s} \approx 4.5 \text{ kg/d}. \tag{Answ}$$

(d) At this rate of fuel consumption, how long would the fuel supply of ²³⁵U last?

Calculation: At start-up, we know that the total mass of $^{235}\mathrm{U}$ is 3.0% of the 8.60×10^4 kg of uranium oxide. So, the time T required to consume this total mass of 235 U at the steady rate of 4.5 kg/d is

$$T = \frac{(0.030)(8.60 \times 10^4 \text{ kg})}{4.5 \text{ kg/d}} \approx 570 \text{ d.} \quad \text{(Answer)}$$
In practice, the fuel rods must be replaced (usually in

In practice, the fuel rods must be replaced (usually in batches) before their ²³⁵U content is entirely consumed.

(e) At what rate is mass being converted to other forms of

energy by the fission of ²³⁵U in the reactor core? **Calculation:** From Einstein's relation $E = mc^2$, we can write

$$\frac{dm}{dt} = \frac{dE/dt}{c^2} = \frac{3.4 \times 10^9 \,\mathrm{W}}{(3.00 \times 10^8 \,\mathrm{m/s})^2}$$
(43-8)

(Answer) $= 3.8 \times 10^{-8} \text{ kg/s} = 3.3 \text{ g/d}.$