Homework 7

p131 D.1 and D.2, p143 C.1, C.3, C.4, and C.8

1. **p131 D.1** Let G be a finite group, and let H and K be subgroups of G. Prove the following:

Suppose $H \subseteq K$ (therefore H is a subgroup of K). Then (G : H) = (G : K)(K : H). Solution.

Proof. By definition (G:H) = order of G / order of H.

Thus, (G:K)(K:H) = (order of G / order of K) * (order of K / order of H), which can be simplified to order of G / order of H.

2. **p131 D.2** Let G be a finite group, and let H and K be subgroups of G. Prove the following:

The order of $H \cap K$ is a common divisor of the order of H and the order of K.

Solution.

Proof. Let h be the order of H, k be the order of K, and i be the order of $H \cap K$.

By Lagrange's theorem, since $H \cap K$ is a subgroup of H, it follows that i divides h. Additionally, since $H \cap K$ is a subgroup of K, it follows that i divides k.

Thus the order of $H \cap K$ is a common divisor of the order of H and the order of K.

3. **p143** C.1 Let G, H, and K be groups. Prove the following:

If $f: G \to H$ and $g: H \to K$ are homomorphisms, then their composite $g \circ f: G \to K$ is a homomorphism.

Solution.

Proof. Let $a, b \in G$. The composite $(g \circ f)(a * b) = g(f(a * b)) = g(f(a) * f(b)) = g(f(a)) * g(f(b)) = (g \circ f)(a) * (g \circ f)(b)$. Thus, the composite is a homomorphism. \square

4. p143 C.3 Let G, H, and K be groups. Prove the following:

If $f: G \to H$ is a homomorphism and K is any subgroup of G, then $f(K) = \{f(x) : x \in K\}$ is a subgroup of H.

Solution.

Proof. To prove $f(K) = \{f(x) : x \in K\}$ is a subgroup of H, we must show:

- The subgroup is closed, as it is created from a closed group.
- The subgroup is closed under inversion.
- For $a, b \in K$, there must exist $a * b \in K$, which is true since K is a subgroup of G. Additionally, since $f : G \to H$ is a homomorphism and K is any subgroup of G, we know f(K) is closed.
- For $a \in K$, there must exist $a^{-1} \in K$ because K is a subgroup of G. Additionally, since f is a homomorphism, we know f(K) is closed under inversion.

Thus, f(K) is a subgroup of H.

5. **p143** C.4 Let G, H, and K be groups. Prove the following:

If $f: G \to H$ is a homomorphism and J is any subgroup of H, then

$$f^{-1}(J) = \{ x \in G : f(x) \in J \}$$

is a subgroup of G. Furthermore, ker $f \subseteq f^{-1}(J)$.

Solution.

Proof. We must show the same criteria as the previous problem. Because f is a homomorphism and J is a subgroup of H, we know these criteria are satisfied. Thus, $f^{-1}(J)$ is a subgroup of G.

6. p143 C.8 Let G, H, and K be groups. Prove the following:

The function $f:G\to G$ defined by $f(x)=x^2$ is a homomorphism iff G is abelian.

Solution.

Proof. Prove both directions:

Suppose f is a homomorphism. Thus f(x * y) = f(x) * f(y) for $x, y \in G$. Using the definition of f we get $f(xy) = (xy)^2 = xyxy$. Because f is a homomorphism, $f(xy) = f(x)f(y) = x^2y^2$, thus G must be abelian.

Suppose G is abelian, meaning xy = yx. We can show $f(xy) = (xy)^2 = xyxy = xxyy = x^2y^2 = f(x)f(y)$. Thus, because G is abelian, f must be a homomorphism.