Wird eine Intervallfolge umso kleiner je größer
n gilt: Die Folgen a und b konvergieren zu einem Punkt \mathbf{x} .

Mathematisch dargestellt: In= [an; bn] In....... Intervallfolge an...... untere Intervallsgrenze bn....... obere Intervallsgrenze + [an+1; bn+1] \subseteq [an; bn] für alle n \in N + limn=> ∞ (In) = limn=> ∞ (bn - an) = 0

Beispiel 1:	Beispiel 2:
[0; 0,5]	[1,4; 1,5]
[0,3; 0,4]	[1,41; 1,42]
[0,33; 0,34]	[1,414; 1,415]
[0,333; 0,334]	[1,4142; 1,4143]
[0,3333; 0,3334]	[1,41421; 1,41422]
[0,33333; 0,33334]	[1,414213; 1,414214]
1 /3	$\sqrt{2}$

Figure 1: Bild

 $[[{\bf Beschr\"{a}nktheit}]][[{\bf Reihen\ und\ Folgen}]]$