Classificação de Casos de Doenças Reumáticas

Fernando Concatto

Introdução

Introdução

- Doenças reumáticas são caracterizadas por dores e rigidez em articulações, tendões e músculos.
- Grande parte das doenças são crônicas e algumas não possuem cura.
- Segundo a Organização Mundial da Saúde, os tipos mais comuns de doenças reumáticas são a Artrite Reumatoide e a Osteoartrite, além de traumas, inflamações e dores na coluna vertebral.

Objetivos e Materiais

- Buscou-se implementar uma Rede Neural Artificial alimentada adiante (feedforward) para realizar a classificação de casos de artrite, identificando a categoria da patologia.
- A base de dados contém 49 casos reais, especificando sintomas, exames laboratoriais e o diagnóstico médico (17 entradas e 3 saídas).
- Os dados foram cedidos pela Clínica Mont Godinne, da Université
 Catholique de Louvain, na Bélgica.

Variáveis

Sintomas

Sintoma	Descrição	Não	Sim
Artrite	Dor e inflamação nas articulações, independente de tipo	44,9%	55,1%
Rigidez Matinal	Dores e dificuldade na movimentação após acordar	65,3%	34,7%
Bursite	Inflamação das bolsas nas ligações entre ossos e tendões	87,8%	12,2%
Tofo	Presença de cristais de ácido úrico nas articulações	81,6%	18,4%
Sinovite	Inflamação na membrana que reveste as articulações	55,1%	44,9%
Artralgia	Presença de dor nas articulações, porém sem inflamação	26,5%	73,5%
Nódulos Reumatóides	Presença de nódulos inchados subcutâneos	95,9%	4,1%

Sintomas

Sintoma	Descrição	A / Não	B / Sim	С
HLA-B27	Presença do antígeno leucócito B27 no sangue	61,2%	12,2%	26,6%
Deformação nas Juntas	Alterações estruturais anormais nas juntas	95,9%	4,1%	0%
Dor Lombar	Presença de dor na região lombar do paciente	59,2%	40,8%	0%
Rigidez na Coluna	Dificuldade na movimentação da coluna vertebral	77,6%	22,4%	0%
Deformação na Coluna	Desvios ou defeitos na região da coluna vertebral	87,8%	12,2%	0%
Mobilidade	Situação da capacidade de movimento	51%	49%	0%
Dor no Sacroilíaco	Dor ao toque nas articulações da região pélvica	83,7%	16,3%	0%

Exames Laboratoriais

Exame	Descrição	Α	В	С	D	E
Inflamação Laboratorial	Identificação de regiões com atividade inflamatória	42,8%	18,4%	28,6%	4,1%	6,1%
Evidências Radiológicas	Identificação de anormalidades nos corpo por meio de radiografias	38,8%	4,1%	30,6%	16,3%	10,2%
Tomografia Computadorizada	Identificação de anormalidades via imagens em diversos cortes da estrutura anatômica	65,3%	4,1%	20,4%	10,2%	0%

Diagnóstico

Distribuição das patologias diagnosticadas nos casos clínicos.

Metodologia

Implementação

- A implementação da rede neural foi efetuada com a linguagem Python,
 utilizando a biblioteca NumPy para manipulação numérica.
- Adotou-se uma abordagem inteiramente matricial para os parâmetros treináveis e valores intermediários da rede.
- Como técnica de treinamento, o algoritmo Gradient Descent foi utilizado, buscando minimizar a função do Erro Quadrático Médio.

Arquitetura

- Cada camada possui uma matriz de pesos, uma matriz de biases e três para valores intermediários (gradientes, campos locais induzidos e saída).
- A matriz de pesos possui dimensionalidade M x N, onde M denota o número de neurônios da camada anterior e N o número de neurônios da camada atual.
- A matriz de biases possui dimensões de 1 x N, e as intermediárias possuem K x N, onde K representa o número de exemplos da base.

	а	b	С
d	1.42	-1.08	1.79
е	0.74	0.39	1.44

Modelagem da matriz de pesos das camadas da rede neural.

Propagação para frente

 A propagação é realizada de camada em camada, onde a principal operação é a multiplicação de matrizes.

$$\mathbf{Z}_i = \mathbf{A}_{i-1} \mathbf{W}_i + \boldsymbol{\beta}_i$$

 $\mathbf{A}_i = \varphi(\mathbf{Z}_i)$

Propagação para frente Pesos

Saída

A propaga anterior e camada e camada, o operação é a multiplicação de matrizes

Função de ativação

$$\mathbf{Z}_i = \mathbf{A}_{i-1} \mathbf{W}_i + \boldsymbol{\beta}_i$$

$$\mathbf{A}_i = \varphi(\mathbf{Z}_i)$$

Biases

Formulação matricial da propagação adiante, exceto bias e ativação.

Propagação para trás

- Segundo Haykin, o gradiente (δ) de um neurônio é dado pela aplicação da derivada da função de ativação sobre seu campo local induzido multiplicado por seu sinal de erro (e).
- O sinal de erro na camada de saída é dado pela diferença entre a saída e o valor esperado, enquanto as demais envolvem o somatório dos produtos dos pesos sinápticos com os gradientes da camada à frente.

$$\mathbf{e}_d = oldsymbol{\delta}_a * \mathbf{W}_{da} + \\ oldsymbol{\delta}_b * \mathbf{W}_{db} + \\ oldsymbol{\delta}_c * \mathbf{W}_{dc}$$

Modelagem da matriz de pesos das camadas da rede neural.

Formulação matricial do cômputo dos gradientes.

Formulação matricial do cômputo dos gradientes, corrigida.

Atualização de pesos

- A mudança (Δ) de um peso sináptico para um exemplo é dado pela saída do neurônio à esquerda multiplicado pelo gradiente do neurônio à direita, ponderado pela taxa de aprendizagem.
- Para os *biases*, considera-se que saída à esquerda é igual a 1.
- A mudança total é dada pela soma das mudanças através de todos os exemplos de treinamento.

Formulação matricial do cômputo das mudanças de pesos.

Formulação matricial do cômputo das mudanças de pesos, corrigido.

Experimentos

Configuração dos experimentos

- Dividiu-se a base de 49 exemplos em treinamento (70%) e validação (30%), resultando em 34 e 15 exemplos, respectivamente.
- Coletou-se o erro quadrático médio e a acurácia de cada época.
- Considerou-se como saída da rede a classe com maior valor na camada de saída. Quando esta era igual à esperada, contabilizava-se um acerto.
- Para cada configuração de parâmetros, 10000 épocas foram executadas.

Otimização de parâmetros

- Todas as combinações dos seguintes valores foram testados:
 - Taxa de Aprendizagem: 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4
 - Função de ativação: Logística, Tangente hiperbólica, ReLU
 - Neurônios: 5, 10, 15, 20, 25, 30, 40, 50
- Para cada configuração, 24 replicações foram executadas.
- Ao total, 13824 execuções foram efetuadas, coletando a melhor acurácia e erro quadrático médio no conjunto de validação.

Resultados dos experimentos em relação à função de ativação na camada oculta.

Resultados dos experimentos em relação à **função de ativação na camada de saída**, com a função de tangente hiperbólica na camada oculta.

Resultados dos experimentos em relação ao **número de neurônios na camada oculta**, com a função de tangente hiperbólica na camada oculta e sigmóide na camada de saída.

Resultados dos experimentos em relação à **taxa de aprendizado**, com a função de tangente hiperbólica na camada oculta, sigmóide na camada de saída e 50 neurônios na camada oculta.

Evolução do erro quadrático médio ao longo das épocas de treinamento, com a configuração ótima.

Evolução da acurácia ao longo das épocas de treinamento, com a configuração ótima.

Conclusões

Considerações finais

- Realizou-se um conjunto de experimentos para determinar a melhor configuração da rede neural.
- Verifica-se pouca diferença em acurácia entre as funções de ativação na camada oculta, porém a sigmóide se destaca na camada de saída.
- Observa-se que quanto maior a taxa de aprendizagem e número de neurônios, mais alta será a acurácia (entre os valores testados).
- Cerca de 2000 épocas foram necessárias para atingir a maior acurácia.