Generisanje random grafova

Anđela Damnjanović

Univerzitet u Beogradu, Matematički fakultet

22. januar 2024.

Sadržaj

- Uvod
- Opis problema
- Implementacija
- Rezultati
- Zaključak
- 6 Literatura

Uvod

Uvod

- Značaj grafova praktični i teorijski
- Grafovski algoritmi
- Mane algoritama

- \bullet Željena svojstva \to graf
- Genetski algoritam

Aviz projekat

Implementacija

Učitavanje test primera

```
{"num nodes": 6,
"average degree": 3.33,
"clustering coefficient": 0.7,
"num of connected components": 1,
"transitivity": 0.75}
```

- Organizacija ulaznih vrednosti
- Poziv algoritma
- Rezultati

Implementacija

Klasa Individual

```
self.graph = nx.erdos_renyi_graph(self.num_nodes, 0.5)
```

Implementacija

• Funkcije mutation i selection

```
1000 nx.to_numpy_array(parent1.graph)
   nx.from_numpy_array(adj_mat_cld1)
```

Tabela 1: Vrednosti fitness funkcije			
Broj čvorova	Veličina populacije	Fitness	
6	50	-0.005622222222222093	
6	100	-0.005622222222222093	
10	50	-0.0	
10	100	-0.0	
10	50	-0.008490299823633132	
10	100	-0.018649029982363168	
25	50	-0.9116404928404928	
25	100	-0.8832440425540713	
50	50	-0.22903390715500593	
50	100	-0.25750585310408725	
75	50	-0.13018272330208663	
75	100	-0.09062161448330536	
100	50	-2.463823741959615	
100	100	-2.4304182119027153	

- Poboljšanja?
 - Postojanje linearnog modela?

Poboljšanja?

• Matrica korelacije?

```
Correlation matrix is :
```

	fitness	num_of_nodes	avg_degree	num_components
fitness	1.000000	-0.709088	0.269342	-0.933853
num_of_nodes	-0.709088	1.000000	0.442679	0.521044
avg_degree	0.269342	0.442679	1.000000	-0.354475
num_components	-0.933853	0.521044	-0.354475	1.000000
transitivity	0.571401	-0.329264	0.343455	-0.602434
clustering_coe	eff 0.563877	-0.311776	0.362305	-0.594298

	transitivity	ctustering_coer
fitness	0.571401	0.563877
num_of_nodes	-0.329264	-0.31177
avg_degree	0.343455	0.36230
num_components	-0.602434	-0.594298
transitivity	1.000000	0.998739
clustering_coeff	0.998739	1.00000

- Poboljšanja?
 - Smanjenje verovatnoće za generisanje grana?

Broj čvorova	Veličina populacije	Fitness
6	50	-0.0056222222222222093
6	100	-0.005622222222222093
10	50	-0.0
10	100	-0.0
10	50	-0.015848555815769043
10	100	-0.005712522045855142
25	50	-0.46733944294699015
25	100	-0.37566199261992617
50	50	-0.2838353989472806
50	100	-0.21188723623250064
75	50	-0.14071529552130418
75	100	-0.1109185844873799
100	50	-1.441273414793612
100	100	-1.4511361342392424

- Poboljšanja?
 - Povećanje verovatnoće za mutaciju?

Broj čvorova	Veličina populacije	Fitness
6	50	-0.005622222222222093
6	100	-0.0611777777777778
10	50	-0.01599999999999999
10	100	-0.0120000000000000000
10	50	-0.008549953314659233
10	100	-0.028018633540372477
25	50	-1.1550324678476098
25	100	-1.028002347714707
50	50	-0.3599163664500776
50	100	-0.34342872632582455
75	50	-0.18261250694257553
75	100	-0.17633613692486994
100	50	-2.5018729431754076
100	100	-2.5296294155103167

- Poboljšanja?
 - Ruletska selekcija?

Tabela 4: Rezultati korišćenja ruletske selekcije

Broj čvorova	Veličina populacije	Fitness
6	50	-0.12895555555555546
6	100	-0.35882222222222226
10	50	-0.587999999999999
10	100	-0.723636363636363636
10	50	-0.24011695040710568
10	100	-0.37777777777777
25	50	-1.3691475635475636
25	100	-1.374624532671323
50	50	-0.4782280972914995
50	100	-0.45437317966380203
75	50	-0.2960845929156614
75	100	-0.285166362017774
100	50	-2.6308003269331204
100	100	-2.6048549456728383

Zaključak

- Relativno dobri rezultati
- Problem sa međusobno zavisnim svojstvima
- Prostor za poboljšanje

Literatura

Uvod

- [1] Annu Lambora, Kunal Gupta, and Kriti Chopra. Genetic algorithm- a literature review. 2019 International Conference on Machine Lear- ning, Big Data, Cloud and Parallel Computing (Com-IT-Con), 2019.
- [2] Vesna Marinkovic, Filip Maric, Strahinja Stanojevic, and Sana Stojanovic-Durdevic. Konstrukcija i analiza algoritama. Matematicki fakultet, Univerzitet u Beogradu, 2019.
- [3] M.E.J. Newman. Random graphs with clustering. Physical review letters, 2009.
- [4] Optimization algorithms. Complexica, 2023.
- [5] Vili Podgorelec, Janez Brest, and Peter Kokol. Power of heterogeneous computing as a vehicle for implementing e3 medical decision support systems.

