

Using Fast Repetition Rate fluorometry to estimate PSII electron flux per unit volume: A purely optical method for estimating GPP?

Kevin Oxborough Principal Scientist Kevin Oxborough (CTG)
Mark Moore (Southampton)
Dave Suggett, Richard Geider (Essex)

Photosynthetic electron transport

From PSII electron flux to GPP

$$J_{PII} = \sigma_{PII}' \cdot E$$

$$JV_{PII} = a_{PII}' \cdot E$$

 $\sigma_{\rm PII}{}' = {\rm absorption\ cross\ section\ of\ PSII\ photochemistry\ (m^2\ PSII^{-1})}$

 $a_{\rm PII}{}'$ = absorption coefficient for PSII photochemistry (m⁻¹)

 $E = \text{Photon irradiance (photons m}^{-2} \text{ s}^{-1})$

Photochemistry and fluorescence

Open RCII

$$\Phi_f = \frac{k_f}{k_p + k_f + k_d}$$

$$\Phi_p = \frac{k_p}{k_p + k_f + k_d}$$

$$\frac{P}{F} \propto \frac{k_p}{k_f}$$

How consistent is this relationship?

Photochemistry and fluorescence

Closed RCII

$$\Phi_f = \frac{k_f}{k_f + k_d}$$

$$\Phi_p = 0$$

The FRRf technique

Biochimica et Biophysica Acta 1367 (1998) 88-106

Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols

Zbigniew S. Kolber, Ondřej Prášil 1, Paul G. Falkowski *

Environmental Biophysics and Molecular Biology Program, Rutgers University, 71 Dudley Rd, New Brunswick, NJ 08901-8521, USA

Received 12 December 1997; revised 15 June 1998; accepted 23 June 1998

Single turnover (ST) FRRf measurement

Saturation and relaxation phases

Saturation and relaxation phases

Absorption cross section (Sigma)

Physical cross section of the PSII light-harvesting system (LHII)

Absorption cross section of LHII (σ_{IHII})

Absorption cross section of PSII photochemistry (σ_{PII})

All unit area (m² PSII⁻¹)

The FRR-ST data fit

$$C_n = C_{n-1} + R\sigma_{\text{PII}} \cdot \frac{1 - C_{n-1}}{1 - C_{n-1} \cdot p}$$

$$F_{n} = F_{o} + (F_{m} - F_{o}) \cdot C_{n} \cdot \frac{1 - p}{1 - C_{n} \cdot p}$$

$$C_n$$
 = closed RCII at flashlet n
 $R\sigma_{\text{PII}}$ = RCII closed by first flashlet
 p = RCII connectivity

Kolber, Prášil and Falkowski (1998)

$R\sigma_{\mathsf{PH}}$

- Probability of an RCII being closed by the first flashlet in an FRR-ST sequence
- Dimensionless parameter
- Workable range of 0.03 to 0.06
- Can be 'set' by changing $E_{\rm LED}$

$R\sigma_{PII}$ – optimum E_{LED} intensity

Increasing E_{LED}

Connectivity among RCIIs

Connectivity among RCIIs

Photosystem II dimer

- X-ray crystallography
- Core from cyanobacterium
- LHCII from spinach
- Cryo-EM from spinach

taken from Nield & Barber (2006)

Basic terminology

Parameter	PSII photochemistry	PSII light harvesting
Absorption cross section (m ⁻² PSII ⁻¹)	$\sigma_{\mathrm{PII}}^{(\prime)}$	$\sigma_{ ext{LHII}}$
Absorption coefficient (m ⁻¹)	$a_{\mathrm{PII}}^{(\prime)}$	$a_{\scriptscriptstyle ext{LHII}}$
Photon efficiency (dimensionless)	φ _{PII} (′)	

$$\sigma_{\text{PII}}' = \sigma_{\text{LHII}} \cdot \phi_{\text{PII}}'$$

$$a_{\mathrm{PII}}' = a_{\mathrm{LHII}} \cdot \phi_{\mathrm{PII}}'$$

Flux terminology

Flux	PSII electron flux	Photon flux
Defined area	J_{PII} (e ⁻ PSII ⁻¹ s ⁻¹)	
Unit area		E (photons m ⁻² s ⁻¹)
Unit volume	JV_{PII} (e ⁻ m ⁻³ s ⁻¹)	

e- PSII-1 s-1
$$J_{\mathrm{PII}} = \sigma_{\mathrm{PII}}{}' \cdot E$$
 m² PSII-1 · photons m-2 s-1

$$e^{-}$$
 m⁻³ s⁻¹ $JV_{PII} = a_{PII}' \cdot E$ m⁻¹ · photons m⁻² s⁻¹

From PSII electron flux to GPP

$$J_{PII} = (\sigma_{PII}') E$$

Sigma method

$$JV_{PII} = a_{PII}' \cdot E$$

$$= (a_{LHII}) \cdot (\phi_{PII}') \cdot E$$

Absorption method

Calculation of PSII electron flux per unit volume $(JV_{\rm PII})$ using the sigma method

$$JV_{PII} = \sigma_{PII}' \cdot [RCII] \cdot (1 - C) \cdot E$$

 $\sigma_{PII}' \rightarrow$ from iterative curve fit to FRR-ST data

[RCII] \rightarrow from chlorophyll determination (n_{PSII})

 $(1 - C) \rightarrow$ from light + dark FRR data

 $E \rightarrow$ from PAR sensor

Kolber, Prášil and Falkowski (1998)

The sigma method (Kolber et al. 1998)

- ✓ Can be applied on wide spatial and temporal scales
- ✓ Can be used to probe PSII photochemistry
- ✓ Provides a good estimate of PSII electron flux (J_{PII})
- ✓ Estimate of rETR (relative electron transport rate to NADP)

- JV_{PII} requires an independent estimate of [RCII]
- Requires an assumed level of connectivity to quantify C

The absorption method (Oxborough et al. 2012)

LIMNOLOGY and OCEANOGRAPHY: METHODS

Limnol. Oceanogr.: Methods 10, 2012, 142–154 © 2012, by the American Society of Limnology and Oceanography, Inc.

Direct estimation of functional PSII reaction center concentration and PSII electron flux on a volume basis: a new approach to the analysis of Fast Repetition Rate fluorometry (FRRf) data

Kevin Oxborough¹*, C. Mark Moore², David J. Suggett³, Tracy Lawson³, Hoi Ga Chan¹, and Richard J. Geider³ ¹CTG Ltd., 55 Central Avenue, West Molesey, KT8 2QZ, UK

²Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, SO14 3ZH, UK ³School of Biological Sciences, University of Essex, CO4 3SQ, UK

Basic principle of the absorption method

$$\phi_f = \frac{k_f}{k_p + k_f + k_d}$$

$$\phi_p = \frac{k_p}{k_p + k_f + k_d}$$

$$\frac{P}{F} \propto \frac{k_p}{k_f}$$

Absorption method requires that this is a consistent relationship

Open RCI

Calculation of [RCII] using the absorption method

Hypothesis:

$$rac{k_p}{k_f}$$
 falls within a very narrow range

Consequence:

$$[RCII] = \frac{F_o}{\sigma_{PII}} \cdot \frac{K_R}{E_{LED}}$$

NIOZ PROTOOL workshop, Yerseke (2012)

Organised by: Greg Silsbe & Jacco Kromkamp

12 phytoplankton species

Chaetoceros sp.

Ditylum brightwellii

Emiliania huxleyi

Nannochloropsis gaditana

Phaeocystis glabosa

Prorocentrum sp.

Skeletonema sp.

Synechococcus (red 9903 + green 0417)

Tetraselmis sp.

Thalassiosira pseudonana (-Fe / +Fe)

Thalassiosira westfloggii (-Fe / +Fe)

Methods

Fast Repetition Rate fluorometers

Mk I and Mk II FAST tracka

FastOcean

Flash O₂ release

Thermoluminescence

MIMS

13**C**

Absorption spectrometry

Fluorescence excitation spectrometry

NIOZ PROTOOL workshop, Yerseke (2012)

Implications for the sigma algorithm

$$JV_{PII} = \sigma_{PII}' \cdot [RCII] \cdot (1 - C) \cdot E$$

 $\sigma_{PII}' \rightarrow$ from iterative curve fit to FRR-ST data

[RCII] → from FRR-ST data

 $(1 - C) \rightarrow$ from light + dark FRR data

 $E \rightarrow$ from PAR sensor

No longer a requirement for independent measurement of [RCII]

The absorption algorithm

Hypothesis:

$$rac{k_p}{k_f}$$
 falls within a very narrow range

Consequence:
$$JV_{PII} = oF' \cdot \frac{K_R}{E_{LED}} \cdot E$$

Where oF' is the emission from open RCII under ambient light

$$_{0}F' = F_{o} \cdot \frac{\sigma_{PII}'}{\sigma_{PII}} \cdot (1 - C)$$
 (Sigma algorithm)

$$oF' = \frac{F_m \cdot F_o}{F_m - F_o} \cdot \frac{F'_m - F'}{F'_m}$$
 (Absorption algorithm)

Absorption algorithm doesn't require σ_{PII} , σ_{PII} or 1 - C

Instrument calibration

Oxborough et al. (2012):

$$[RCII] = \frac{F_o}{\sigma_{PII}} \cdot \frac{K_R}{E_{LED}}$$

 K_R is an instrument specific constant, which cannot be used with other instruments of the same design

FastOcean calibration:

$$[RCII] = \frac{F_o}{\sigma_{PII}} \cdot K_a$$

K_a is an instrument type-specific constant, which can be used with all FastOcean sensors

Practical overview of the sigma method

Instrument calibration –

Gain against chlorophyll a

 $E_{\rm LED}$ (photons m⁻² s⁻¹)

GPP estimated through –

 $JV_{PII} = \sigma_{PII} \cdot [RCII] \cdot (1 - C) \cdot E$

Each measurement requires -

 σ_{PII} (m²) from ambient FRR-ST data

[RCII] (m⁻³) from chlorophyll (n_{PSII})

 $1 - C \text{ (proportion)} = (F_m' - F')/(F_m' - F_o')$

E (photons m⁻² s⁻¹) from a PAR sensor

Practical overview of the absorption method

Instrument calibration -

Same as Sigma method plus:

$$K_a (m^{-1}) = [RCII] \cdot (\sigma_{PII} / F_o)$$

Derivation of K_a requires –

[RCII] (m^{-3}) from flash O_2 release

 F_o (dimensionless) and...

 σ_{PII} (m²) from dark FRRf data

GPP estimated through -

$$JV_{PII} = a_{LHII} \cdot \phi_{PII}' \cdot E$$

Each measurement requires -

$$a_{\text{LHII}} (\text{m}^{-1}) = ([F_{\text{m}} \cdot F_{\text{o}}] / [F_{\text{m}} - F_{\text{o}}]) \cdot K_{a}$$

$$\phi_{PII}' = 1 - (F' / F_m')$$

E (photons m⁻² s⁻¹) from a PAR sensor

Field measurements - sigma

$$JV_{PII} = \sigma_{PII}' \cdot [RCII] \cdot (1 - C) \cdot E$$

$$[RCII] = K_a \cdot \frac{F_o}{\sigma_{PII}}$$

$$1 - C = \frac{F'_{m} - F'}{F'_{m} - F_{o}'}$$

Field measurements - absorption

$$JV_{PII} = a_{LHII} \cdot \phi_{PII}' \cdot E$$

$$a_{LHII} = ([F_m \cdot Fo] / [F_m - Fo]) \cdot K_a$$

$$\phi_{\text{PII}}' = 1 - (F' / Fm')$$

Baseline fluorescence

$$\frac{F_{\rm v}}{F_{\rm m}}$$
 < 0.5 due to:

- Photoinactivation of RCII (photoinhibition)
- Downregulation (non-photochemical quenching)

Baseline fluorescence

$$F_{b} = F_{m} - F_{v} / (F_{v}/F_{m})^{*}$$

Where:

- $(F_v/F_m)^*$ is the assumed 'true' F_v/F_m from active RCII
- F_b is baseline fluorescence

Baseline fluorescence = 0

Baseline fluorescence = 0 or F_b

Fe-limited, oligotrophic conditions — natural phytoplankton population

Anna Macey, Tom Bibby and Mark Moore (University of Southampton, NOC)

Fe-limited, oligotrophic conditions — natural phytoplankton population

 $F_v/F_m = 0.45$ gives the best fit to the +Fe points

 $F_v/F_m = 0.6$ would give lower JV_{PII} values than 0.45

Summary

The absorption method:

- Can be used to estimate JV_{PII} on wide spatial and temporal scales
- Provides a much better S:N than the sigma method particularly at high ambient photon irradiance (E)
- Baseline 'correction' of data looks to be a viable method for dealing with low F_v/F_m from dark-adapted material
 - More data are required to test this idea

