Weather: Temperatures around 1100000°, F

Sports: CS Professor runs 100₂ meter dash in under 3₁₀ seconds!

CS 101₂ Today

News Briefs

Spam proven to be even healthier than chocolate (page 1100101₂)

Hoch-Shanahan to use Spam in all its dishes (page 1000101₂)

Proof of Spam's merits proven to be false (page 110101₂)

Harvey Mudd to adopt Base 2 as Official Number System

(Claremont, AP): Harvey Mudd College, a small science and engineering college in Los Angeles county, has announced that it will henceforth exclusively use base 2. "One obvious advantage is that there will now be 11000 hours in each day." said a CS professor who first proposed that the college adopt the binary system. Other professors happily noticed that their monthly paychecks are now on the order of \$1000000000000. Students too were excited that they would be able to take 10000 units per semester without overloading. However, one disgruntled student complained that he flexed a friend into the dining hall and he was charged over \$110 for the meal. "The food here is good, but \$110 for lunch is outrageous!"

Computing Digitally

From Description to Circuit!

Abstract

Concrete

Words

f is a function of TWO binary (Boolean) variables s.t. the output is 1 if and only if exactly one of the two inputs is 1

<u>Table</u>

X	У	f(x,y
0	0	0
0	1	1
1	0	1
1	1	0

<u>Formula</u>

$$\overline{x}y + x\overline{y}$$

Circuit

x y

Digital Logic Gates

X	NOT X
0	1
1	0

Also written $\frac{x}{x}$

<i></i>	(y	X AND	У
C	0 0	0	x y
C) 1	0	Ц
1	0	0	
1	1 1	1	Y
	Also	written	X AND

Try building circuits for these...

X	У	output
0	0	1
0	1	0
1	0	0
1	1	0

X	У	output
0	0	1
0	1	0
1	0	0
1	1	1

Circuit 1

Circuit 2

X	У	\boldsymbol{x} and \boldsymbol{y}	_ <i>x y</i>	1		l o=	x y
0	0	0	_	<i>X</i>	У	X OR y	— I I
	1	0	Щ	0	0	0	\coprod
0	1	U		0	1	1	
1	0	0	\vee	4	•		Y
1	1	1		1	0	1	
-	-	-	x and y	1	1	1	X OR Y
			xy				<i>X</i> + <i>y</i>

Χ		
\forall	X	NOT X
Y	0	1
\overline{X}	1	0

Try This One

Consider this function...

Words		Truth Table	Formula
A fur	nction of	x y z output	
THR	EE binary	0 0 0	
inputs <i>x,y,z</i> where the		0 0 1 1	
	ut is 1 iff	0 1 0 1	<u>Circuit</u>
the number of 1's		0 1 1 0	
is odd		1 0 0 1	
This is called an "odd" "parity"		1 0 1 0	
		1 1 0 0	
Ť	circuit.	1 1 1 1	
		t's odd doesn't mean ld parity it!	

Base 2 Addition

Base 2 Addition

Base 2 Addition

Cool, but how do we build a FA?

Base 2 Addition

X	У	carry _{in}	sum	carry _{out}
0	0	0	0	0
0	0	1	1	0

Fill the rest of this table in your *NOTES*. Then, start building the circuit with AND, OR, NOT gates! (The next slide is blank for your work)

This Slide for Rent (Call 1-800-CS5 Black)

Base 2 Addition

X	У	carry _{in}	sum	carry _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Now what!??

Base 2 Addition

This looks vaguely familiar...

Base 2 Addition

X	У	carry _{in}	sum	carry _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Ah! I know how to do that!

Logisim: A Digital Logic Simulator

Implementing Gates with Relays

NOT Gate

And AND...

Integrated Circuits

3mm

http://personalpages.manchester.ac.uk/staff/p.dudek/projects/scamp

http://www.helicon.co.uk

A real early relay computer

See the anagram solver at http://www.ssynth.co.uk/~gay/anagram.html

Relays to Vacuum Tubes, ...

The ENIAC at U.Penn. 17,468 vacuum tubes. 30 tons.

A vacuum tube

Digital Logic with Water and Legos!

Hydraulic Logic Gates!

http://www.cs.princeton.edu/introcs/lectures/fluid-computer.swf

Lego Logic Gates!

http://goldfish.ikaruga.co.uk/logic.html

You're Stranded on a Desert Island...

Yay! A Radio Shack!

And of course...

Can we implement *every possible* boolean function with AND, OR, and NOT gates alone???

AND, OR, NOT is a "Universal" Set!

<u>X</u>	У	Z	Output	
0	0	0	1	$\overline{x}\overline{y}$
0	0	1	0	
0	1	0	1	
0	1	1	1	
1	0	0	0	
1	0	1	0	
0	1	0	0	
1	1	1	1	

The Minterm Expansion Principle Revisited!

X ₁	X ₂	X ₃ X	100	output
0	0		0	1
1	1	■	1	1

The Minterm Expansion Principle Revisited!

X ₁ >	κ ₂	. X ₁₀₀	output	"1" (6v)
0 (0 0	0 1	1	
• • 1 ′	• • 1 1	1	1	output

Are other Sets of Gates Universal?

De Morgan's Laws:

$$\overline{xy} = \overline{x} + \overline{y}$$

$$\overline{X+y} = \overline{X} \overline{y}$$

Augustus De Morgan: 1806-1871

Are other Sets of Gates Universal?

De Morgan's Laws:

$$\overline{xy} = \overline{x} + \overline{y}$$

$$\overline{X+y} = \overline{X} \overline{y}$$

Augustus De Morgan: 1806-1871

This Space for Rent

A 1-bit Memory

From S-R Latches to D-Latches

A Random Access Memory (RAM)

A 512K RAM (About 4.2 million bits)

A True Story...

Donald Gillies Sr.

A prime example of Gillies' work!

Homework 101₂

- 0. Reading (Computing with DNA)
- 1. Lab: Building a Ripple-Carry Adder
- 2. Multiplier circuit
- 3. Division circuit

