CS1231-Midterm 1, 2016

Name: Matric No:

1.

Yes.

p q r	$p \vee \neg q$	$q \vee \neg r$	$p \to r$	$(p \vee \neg q) \wedge (q \vee \neg r) \wedge (p \to r)$
T T T	T	T	T	T
T T F	T	T	F	F
T F T	T	F	T	F
F T T	F	T	T	F
T F F	T	T	F	F
F T F	F	T	T	F
F F T	T	F	T	F
F F F	T	T	T	T

- **2.** Yes. (p,q,r) = (T,T,T), (F,F,F).
- **3.** $\forall x \in D, S(x) \to K(x) \text{ or } \forall x, S(x) \to K(x).$
- **4.** (a) Each box contains a card.
- (b) Each card is in a box.
- (c) Each box contains at most one card.
- **5.** $\exists i, \exists j, \exists k, Q(i,j) \land P(i,k) \land P(j,k)$

There is a box that contains 2 different cards.

6. The answer is yes.

If $\exists x \forall y P(x,y)$ is true, then there is particular x_0 such that $P(x_0,y)$ is true for all y. This in turn implies that $\forall y \exists x P(x,y)$ is true.

7.

1.
$$\neg t$$
, (c)

2.
$$\neg t \rightarrow \neg p$$
 (d)

3.
$$\neg p$$
, (from 1, 2)

4.
$$\neg p \lor q$$
, (from 3).

5.
$$r$$
, (from 4, (a)).

6.
$$\neg p \land r$$
, (from 3, 5)

7.
$$\neg s$$
, (from e).

8.
$$\neg q$$
, (from b).