

上课内容总结 Introduction of Applied Operations Research

许子骏 3160100056 计算机科学与技术 1603

2019年12月25日

目录

1.1	相关定 1.1.1 1.1.2	_																														
1.2		Ę	占建					•	•	•	•									•		•		•		•	•	•			•	3
1.2	1.1.2		1/1	及	马运	函娄	文																									3
1.2		丝	钱性	规	划																											4
	单纯形	多法	. .																													5
	1.2.1	Ē	鱼纯	形	去																											5
	1.2.2	Ţ	鱼纯	形;	表	•																										6
	1.2.3	i	と化																													8
	1.2.4	j	. M	[法	÷ .																											8
	1.2.5	Þ	5阶	段	去																											9
1.3	对偶理	里论																														11
	1.3.1	ヌ	付偶	问	题																											11
	1.3.2	ヌ	付偶	问	题自	的化	生丿	质																								11
	1.3.3	ヌ	付偶	单组	纯升	移治	Ļ																									14
	1.3.4	J;	反始	对个	禺	方法	Ļ																									15
组合	优化																															19
2.1	整数规	见戈																														19
	2.1.1	東土	ف数	规	划																											19
	2.1.2	害	月平	面	去																											20
	2.1.3	Ś	支	定	界	去																										22
2.2	贪心算	仁注	. .																													24
	2.2.1	_																														24
	2.2.2																															25
	2.2.3	扌	以阵																													26
	2.2.4	J	5类																													27
2.3	近似算	牟注	. .																													29
	2.3.1	ì																														29
		4	午句.	问	颐																											29
	2.2	2.1.1 2.1.2 2.1.3 2.2 贪心算 2.2.1 2.2.2 2.2.3 2.2.4 2.3 近似算 2.3.1	2.1.1 惠 2.1.2 害 2.1.3 分 2.2.1 一 2.2.1 一 2.2.2 一 2.2.3 扣 2.2.4 两 2.3 近似算法 2.3.1 过	2.1.1 整数 2.1.2 割平 2.1.3 分支 2.2 贪心算法 2.2.1 一类 2.2.2 一类 2.2.3 拟阵 2.2.4 两类 2.3 近似算法 2.3.1 近似	2.1.1 整数规 2.1.2 割平面 2.1.3 分支定 2.2 贪心算法 2.2.1 一类贪, 2.2.2 一类最 2.2.3 拟阵 . 2.2.4 两类贪, 2.3.1 近似算法	2.1.1 整数规划 2.1.2 割平面法 2.1.3 分支定界 2.2 贪心算法 2.2.1 一类贪心 2.2.2 一类最大 2.2.3 拟阵 2.2.4 两类贪心 2.3 近似算法 2.3.1 近似算法	2.1.1 整数规划 2.1.2 割平面法 2.1.3 分支定界法 2.2 贪心算法 2.2.1 一类贪心算法 2.2.2 一类最大(人2.2.3 拟阵 2.2.4 两类贪心算法 2.3.1 近似算法 2.3.1 近似算法 2.3.1	2.1.1 整数规划 2.1.2 割平面法 2.1.3 分支定界法 2.2 贪心算法 2.2.1 一类贪心算法 2.2.2 一类最大(小) 2.2.3 拟阵 2.2.4 两类贪心算法 2.3 近似算法 2.3.1 近似算法	2.1.1 整数规划	2.1.1 整数规划 2.1.2 割平面法 2.1.3 分支定界法 2.2 贪心算法 2.2.1 一类贪心算法 2.2.2 一类最大 (小) 化 2.2.3 拟阵 2.2.4 两类贪心算法 2.3 近似算法 2.3 近似算法 2.3.1 近似算法	2.1.1 整数规划 2.1.2 割平面法 2.1.3 分支定界法 2.2 贪心算法 2.2.1 一类贪心算法 2.2.2 一类最大 (小) 化后 2.2.3 拟阵 2.2.4 两类贪心算法 2.3 近似算法 2.3 近似算法 2.3.1 近似算法	2.1.1 整数规划	2.1.1 整数规划 2.1.2 割平面法 2.1.3 分支定界法 2.2.2 贪心算法 2.2.1 一类贪心算法 2.2.2 一类最大(小)化问题 2.2.3 拟阵 2.2.4 两类贪心算法 2.3.1 近似算法	2.1.1 整数规划	2.1.1 整数规划	2.1.1 整数规划	2.1.1 整数规划 2.1.2 割平面法 2.1.3 分支定界法 2.2 贪心算法 2.2.1 一类贪心算法 2.2.2 一类最大(小)化问题 2.2.3 拟阵 2.2.4 两类贪心算法 2.3 近似算法 2.3.1 近似算法	2.1.1 整数规划 2.1.2 割平面法 2.1.3 分支定界法 2.2.2 贪心算法 2.2.1 一类贪心算法 2.2.2 一类最大(小)化问题 2.2.3 拟阵 2.2.4 两类贪心算法 2.3 近似算法	2.1.1 整数规划 2.1.2 割平面法 2.1.3 分支定界法 2.2.2 贪心算法 2.2.1 一类贪心算法 2.2.2 一类最大(小)化问题 2.2.3 拟阵 2.2.4 两类贪心算法 2.3 近似算法													

		2.3.3	顶点覆盖 30
		2.3.4	非等同并行机调度 32
		2.3.5	表箱问题 34
		2.3.6	旅行商问题
3	Con	vex O _j	ptimization 38
	3.1	Conve	x Functions
		3.1.1	First-order condition
		3.1.2	Second-order condition
		3.1.3	Examples of convex and concave functions
		3.1.4	Operations that preserve convexity
	3.2	Conve	x Optimization Problems
		3.2.1	Optimization problem in standard form
		3.2.2	Local and global optimal
	3.3	Uncon	strained Minimization
		3.3.1	Unconstrained minimization
		3.3.2	Initial point and sublevel set
		3.3.3	Strong convexity and implications
		3.3.4	Descent methods
		3.3.5	Line search types
		3.3.6	Gradient descent method
		3.3.7	Steepest descent method
		3.3.8	Newton step
		3.3.9	Newton decrement
		3.3.10	Newton's method
		3.3.11	Classical convergence analysis
	3.4	Dualit	y
		3.4.1	Lagrange dual function
		3.4.2	Least-norm solution of linear equations
		3.4.3	Standard form LP
		3.4.4	Two-way partitioning
		3.4.5	Equality constrained norm minimization 50
		3.4.6	Slater's constraint qualification
		3.4.7	Karush-Kuhn-Tucker (KKT) conditions 50

Chapter 1

线性规划

- 1.1 相关定义
- 1.1.1 凸集及凸函数

凸集

对于集合 S, 若任意两元素 $x,y \in S$, 且对于任意 $0 \le \theta \le 1$ 有

$$\theta x + (1 - \theta)y \in S$$

则 S 是凸集 (convex set)。

可以推广: 若 S 为凸集,

$$\sum_{i=1}^{n} \theta_{i} x_{i} \in S$$

$$\begin{cases} x_{1}, x_{2}, \dots, x_{n} \in S, \ \forall n \geq 2 \\ \forall \sum_{i=1}^{n} \theta_{i} = 1 \end{cases}$$

凸函数

对于定义在凸集 S 上的函数 f(x), 若对于 $\forall 0 \leq \theta \leq 1$ 有

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

则 f(x) 是凸函数 (convex function)。

若 f(x) 是凸函数,

$$f(\sum_{i=1}^{n} \theta_i x_i) \le \sum_{i=1}^{n} \theta_i f(x_i), \ \forall \sum_{i=1}^{n} \theta_i = 1$$

 $\overline{H} = f(x)$ 是凸函数,则 f(x) 是凹函数 (concave function);根据定义,仿射函数 (affine function)既是凸函数也是凹函数。

对于所有凸函数, 局部最优就是全局最优。

1.1.2 线性规划

线性规划 (linear programming, LP) 问题指的是如下形式的优化问题:

$$\max_{x} \quad c^{T} x$$

s.t.
$$\begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

简单来说,就是目标函数和约束函数都是仿射函数的优化问题。

极点

设 S 为凸集,若 $x \in S$ 无法表示为其它两个 S 内元素的凸组合,则 x 是极 点 (extreme point)。

基可行解

假设 A 是一个 $m \times n$ 的矩阵,我们讨论 Ax = b 有解且 A 行满秩的情况,可以从 A 中选出最多 m 列线性无关的列向量,其它列向量都和它们线性相关,把 A 分成 $\begin{bmatrix} A_B & A_N \end{bmatrix}$,其中 A_B 就是那 m 个线性无关的列向量。我们容易构造出 Ax = b 的一个解:

$$x = \begin{bmatrix} A_B^{-1}b \\ 0 \end{bmatrix}$$

称这种解为基可行解 (basic feasible solution)。显然,基可行解至多有 C_n^m 种。

基可行解有个重要的性质:每个极点都对应着一个基可行解,且每个基可行解都对应着一个极点。

1.2 单纯形法

1.2.1 单纯形法

单纯形法 (simplex method) 的每一步都在引入一个非基变量取代某一基变量, 找出目标函数值更优的另一基本可行解, 逐渐调整到最优解。 有以下步骤:

- 1. 把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基可行解。
- 2. 若基本可行解不存在, 即约束条件有矛盾, 则问题无解。
- 3. 若基本可行解存在,从初始基可行解作为起点,根据最优性条件和可行性 条件,引入非基变量取代某一基变量,找出目标函数值更优的另一基本可 行解。
- 4. 按步骤 3 进行迭代, 直到对应检验数满足最优性条件(这时目标函数值不能再改善), 即得到问题的最优解。
- 5. 若迭代过程中发现问题的目标函数值无界,则终止迭代。

假设有以下问题:

$$\max \quad 3x_1 + 2x_2$$
s.t.
$$\begin{cases} 2x_1 + x_2 \le 12 \\ x_1 + 2x_2 \le 9 \\ x_1, x_2 \ge 0 \end{cases}$$

加入松弛变量,将原问题变为

$$\max \quad 3x_1 + 2x_2$$
s.t.
$$\begin{cases} 2x_1 + x_2 + x_3 = 12 \\ x_1 + 2x_2 + x_4 = 9 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

此时,有初始可行解: $x=\begin{bmatrix}0&0&12&9\end{bmatrix}^T$,当前目标函数值为 z=0。将各个变量用非基变量进行表示,有

$$\begin{cases} x_3 = 12 - 2x_1 - x_2 \\ x_4 = 9 - x_1 - 2x_2 \\ z = 3x_1 + 2x_2 \end{cases}$$

 x_1 的系数比较大(这个系数称为检验数),将 x_1 变成基变量。根据 x_1 与 x_3 和 x_4 之间的表达式不难看出,当 $x_1 = 6$ 时, x_3 最先变成 0,将它从基变量中去除。此时,可行解变为 $x = \begin{bmatrix} 6 & 0 & 0 & 3 \end{bmatrix}^T$,当前目标函数值为 z = 18。将各个变量用非基变量进行表示,有

$$\begin{cases} x_1 = 6 - x_2/2 - x_3/2 \\ x_4 = 3 - 3x_2/2 + x_3/2 \\ z = 18 + x_2/2 - 3x_3/2 \end{cases}$$

从系数可以看出,只有增加 x_2 才能增大目标函数值,将 x_2 变成基变量。从 x_2 与 x_1 和 x_4 的关系式中也不难发现,当 $x_2=2$ 时, x_4 最先变成 0,我们把它从基变量中去除。此时,可行解变为 $x=\begin{bmatrix} 5 & 2 & 0 & 0 \end{bmatrix}^T$,当前目标函数值为 z=19。将各个变量用非基变量进行表示,有

$$\begin{cases} x_1 = 5 - 2x_3/3 + x_4/3 \\ x_2 = 2 + x_3/3 - 2x_4/3 \\ z = 19 - 4x_3/3 - x_4/3 \end{cases}$$

可以发现, x_3 和 x_4 与 z 相关的系数都是负值,此时无论把哪个变量加入基变量,都只能让目标函数值变小了。此时得到了线性规划问题的最优解: $x=\begin{bmatrix}5&2&0&0\end{bmatrix}^T$,目标函数值为 z=19。

1.2.2 单纯形表

单纯形表 (simplex tableau) 用矩阵的形式,将单纯形法中各个变量用非基变量进行表示。假设有以下线性规划问题:

$$\max \quad z = c^T x$$
s.t.
$$\begin{cases} Ax \le b \\ x \ge 0 \end{cases}$$

将各个矩阵或向量根据基变量和非基变量分为两部分: 令 $c^T = \begin{bmatrix} c_B^T & c_N^T \end{bmatrix}, A = \begin{bmatrix} A_B & A_N \end{bmatrix}, x = \begin{bmatrix} x_B^T & x_N^T \end{bmatrix}^T$,有

$$\begin{cases} A_B x_B + A_N x_N = b \\ z = c_B^T x_B + c_N^T x_N \end{cases}$$

通过移项就能用 x_N 表示其它变量:

$$\begin{cases} x_B = A_B^{-1}b - A_B^{-1}A_N x_N \\ z = c_B^T A_B^{-1}b + (c_N^T - c_B^T A_B^{-1}A_N)x_N \end{cases}$$

由于基可行解中 $x_N = 0$, 有

$$\begin{cases} x_B = A_B^{-1}b \\ z = c_B^T A_B^{-1}b \end{cases}$$

首先画一张这样的表:

$$\begin{array}{c|cccc} & c_B^T & c_N^T & 0 \\ \hline x_B & A_B & A_N & b \end{array}$$

利用行变换将 A_B 变为 I, 有

$$\begin{array}{c|ccc} & c_B^T & c_N^T & 0 \\ \hline x_B & I & A_B^{-1}A_N & A_B^{-1}b \end{array}$$

接着把下面一行乘上 c_B^T , 用上面一行相减, 有

表格每计算一次,即为单纯形法的一次迭代。

假设有以下问题: (和上一节例子相同)

$$\max \quad 3x_1 + 2x_2$$
s.t.
$$\begin{cases} 2x_1 + x_2 \le 12 \\ x_1 + 2x_2 \le 9 \\ x_1, x_2 \ge 0 \end{cases}$$

加入松弛变量后,有

$$\max \quad 3x_1 + 2x_2$$
s.t.
$$\begin{cases} 2x_1 + x_2 + x_3 = 12\\ x_1 + 2x_2 + x_4 = 9\\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

初始单纯形表:

选择检验数中较大的那个(3, 对应 x_1)。由于 12/2 = 6 < 9/1 = 9, 所以 x_1 成为基变量, x_3 被移出基变量。修改表格为

选择最大的检验数 (1/2, 对应 x_2), 由于 3/(3/2) = 2 < 6/(1/2) = 12, 所以 x_2 成为基变量, x_4 被移出基变量。修改表格为

此时所有检验数都为非正数,单纯形法结束。单纯形表右上角的 -z 就是最优目标函数的相反数,所以最优目标函数为 19。表格最右一列的 $A_B^{-1}b$ 就是 x_B 的取值,所以最优解为 $x_1=5$, $x_2=2$ 。

1.2.3 退化

退化 (degeneration) 指一个基可行解中,存在至少一个基变量为 0 的情况,即这个基变量可以和另一个非基变量任意互换,而不影响结果。

可以通过以下规则,避免单纯形法进入循环:在有多个可以入基的变量时,选择下标最小的一个;在有多个可以出基的变量时,也选择下标最小的一个。

接下来证明单纯形法在非退化的情况下必定可以取到最优解:

首先证明: 若检验数向量 $\hat{c} = c_N - c_B^T A_B^{-1} A_N$ 的每一维都小等于 0, 那么此时基可行解 x 是最优解。

利用反证法, 假设有一个更优的 y 才是最优解。令 d = x - y, 我们有

$$Ax - Ay = b - b = 0 = Ad = A_B d_B + A_N d_N$$

 $\diamondsuit d_B = -A_B^{-1} A_N d_N$ N

$$c^{T}d = c_{B}^{T}d_{B} + c_{N}^{T}d_{N} = (c_{N}^{T} - c_{B}^{T}A_{B}^{-1}A_{N})d_{N} = \hat{c}d_{N}$$

根据基可行解的定义 $x_N = 0$,又 $y \ge 0$,因此 $d_N \ge 0$;又 $\hat{c} \le 0$,所以 $c^T d = \hat{c} d_N \le 0$,则 $c^T y = c^T x + c^T d \le c^T x$,说明 y 并没有比 x 更优,矛盾。这说明了在检验数均小等于 0 时停止算法,就能得到最优解。

类似地,可以说明若基可行解 x 是非退化的最优解,检验数向量的每一维都小等于 0。否则由于 x 是非退化的最优解,如果有一个检验数大于 0,它对应的非基变量一定有增加的空间,就能构造一个更优的解。这说明了在非退化的情况下,肯定有解满足算法停止的情况。

1.2.4 大 M 法

大 M 法 (big M method) 将线性规划的目标函数改为

$$z = c^T x - M \sum_{i=1}^{m} \bar{x}_i$$

如果 M 是一个足够大的正数,如果原问题存在可行解, \bar{x} 就会在 -M 这个"惩罚"之下变成 0。然而,M 的值无从定义。如果 M 的值取得太小导致 \bar{x} 最后仍非 0,此时,有两种可能,一是 M 太小了,另一个则是因为问题没有可行解;如果 M 的值取得太大,可能会带来计算上的误差。

1.2.5 两阶段法

两阶段法 (two-phase metehod) 将原问题改变为只由松弛变量组成的优化问题, 解决了这个优化问题, 就找到了原问题的一个可行解。 有优化问题如下:

$$\min \sum_{i=1}^{m} \bar{x}_{i}$$
s.t.
$$\begin{cases} Ax + \bar{x} = b \\ x, \bar{x} \ge 0 \end{cases}$$

对于这个优化问题, $\bar{x} = b$ 就是一个可行解。

如果这个优化问题的最优解的目标函数值不为 0, 原问题无可行解; 如果最优解让目标函数值为 0,则存在一种 x 的取值满足约束,且 $\bar{x}=0$,这样就找到了原问题的一个可行解。再以这个可行解为起点,利用单纯形法求出原问题的最优解即可。

假设有以下问题:

$$\max \quad 4x_1 - x_2 + x_3$$
s.t.
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 1\\ 2x_1 + 3x_2 + 2x_3 = 2\\ x \ge 0 \end{cases}$$

加入松弛变量后, 转化为两阶段法的优化问题:

s.t.
$$\begin{cases} x_1 + 2x_2 + 3x_3 + x_4 = 1\\ 2x_1 + 3x_2 + 2x_3 + x_5 = 2\\ x \ge 0 \end{cases}$$

初始单纯形表:

选择 x_1 入基, x_4 出基, 有

此时,目标函数值已经是 0 了,但是基变量里有一个 x_5 ,这是一个退化情况,我们有 $x_2=x_3=x_5=0$ 。此时可以让 x_2 入基, x_5 出基,就能把基变量变为 x_1 和 x_2 。同时也求出了原问题的一个可行解: $x_1=1, x_2=x_3=0$,基变量是 x_1 和 x_2 。利用单纯形表求解原问题,有初始单纯形表:

这一个退化情况。让 x_3 入基, x_2 出基, 有

所有检验数都非正, 迭代结束。得到了原问题的最优解: $x_1 = 1, x_2 = x_3 = 0$, 此时目标函数值为 4。

1.3 对偶理论

1.3.1 对偶问题

对于一个线性规划问题(称为原问题, primal, 记为 P)

$$\max \quad c^T x$$
s.t.
$$\begin{cases} Ax \le b \\ x \ge 0 \end{cases}$$

定义它的对偶问题 (dual, 记为 D) 为

$$\min \quad b^T y$$

s.t.
$$\begin{cases} A^T y \ge c \\ y \ge 0 \end{cases}$$

这里的对偶变量 y, 可以看作是对原问题的每个限制, 都用一个变量来表示。

原问题限制条件的不等号,和对偶问题限制条件的不等号,是相互关联的。假设原问题是一个最大化问题,设 a_i^T 表示 A 中的第 i 行,我们有以下结论:

1. a^Tx_bx 和 y_{i_0} 关系:

		y_{i}_{0}
	\leq	\geq
a^Tx_bx	\geq	<u> </u>
	=	无限制

2. x_{i}_{0} 和 $A_{i}^{T}y_{c_{i}}$ 关系:

		$A_i^T y_c_i$
	≥	≥
x_i_0	\leq	<u> </u>
	无限制	=

1.3.2 对偶问题的性质

对称性

对称性 (symmetry), 即假设有原问题, 以及其对偶问题, 则其对偶问题的对偶问题即原问题。

将对偶问题变成标准形式,有

$$\max \quad y^T(-b)$$

s.t.
$$\begin{cases} (-A^T)y \le -c \\ y \ge 0 \end{cases}$$

它的对偶问题是

$$\min \quad -c^T x$$
s.t.
$$\begin{cases} -Ax \ge -b \\ x \ge 0 \end{cases}$$

把目标函数和限制都乘以一1后即原问题。

弱对偶定理

弱对偶定理 (weak duality), 即假设 x 和 y 分别是原问题和对偶问题的可行解, 有 $c^Tx \leq b^Ty$ 。

由 y 的可行性, 有 $A^T y \ge c$, 即 $y^T A \ge c^T$, 两边同乘以 x , 有 $y^T A x \ge c^T x$; 由 x 的可行性, 有 Ax < b, 则 $y^T A x < y^T b$, 合起来就是 $c^T x < b^T y$ 。

最优性

最优性 (optimality), 即假设 x 和 y 分别是原问题和对偶问题的可行解, 且 $c^Tx = b^Ty$, 那么 x 和 y 分别是原问题和对偶问题的最优解。

无界性

无界性 (unbounded), 即

- 1. 若原问题有可行解无最优解(目标函数值可以取无穷大),则对偶问题无可 行解。
- 2. 若对偶问题有可行解无最优解,则原问题无可行解。

强对偶定理

强对偶定理 (strong duality),即若原问题 (或对偶问题)有有限最优解,则对偶问题 (或原问题)也有有限最优解,且最优解相等。以下通过通过单纯形法的计算过程辅助证明:

假设加上松弛变量后, 原问题变为

$$\max_{s.t.} \begin{cases} \bar{A}x = b \\ x \ge 0 \end{cases}$$

有初始单纯形表

$$\begin{array}{c|cccc} & c^T & 0 & 0 \\ \hline x_B^* & A & I & b \end{array}$$

最终单纯形表为

由于 x_B^* 是原问题最优的基变量组合,则检验数均非正,有

$$c^T \le c_B^T \bar{A}_B^{-1} A \tag{1}$$

$$-c_B^T \bar{A}_B^{-1} \le 0 \tag{2}$$

取 $y^{*T} = c_B^T \bar{A}_B^{-1}$,代入以上条件 (1) 和 (2),有 $A^T y^* \ge c$ 和 $y^* \ge 0$,即 y^* 是一个可行解。

根据单纯形法,有 $x_B^* = \bar{A}_B^{-1}b$, $x_N^* = 0$, 则对偶问题的目标函数值为 $b^Ty^* = y^{*T}b = c_B^T\bar{A}_B^{-1}b = c_B^Tx_B^* = c^Tx^*$, 为一对可行的 x 和 y, 使得原问题和对偶问题的目标函数值相等。

根据弱对偶定理, 这两个可行解分别是原问题和对偶问题的最优解。

互补松弛定理

互补松弛定理 (complementary slackness), 即假设 x^* 与 y^* 分别是原问题和对偶问题的可行解, 以下条件等价:

 $1. x^*$ 和 y^* 分别是原问题和对偶问题的最优解。

2.
$$(y^{*T}A - c^T)x^* = 0 \text{ If } y^{*T}(Ax^* - b) = 0$$

有以下证明:

$1 \Rightarrow 2$:

 $y^{*T}b=y^{*T}Ax^*=c^Tx^*$,根据弱对偶定理得 x^* 和 y^* 分别是原问题和对偶问题的最优解。

$2 \Rightarrow 1$:

根据弱对偶定理的推导,有 $y^{*T}b \geq y^{*T}Ax^* \geq c^Tx^*$ 。因为 x^* 和 y^* 分别是原问题和对偶问题的最优解,有 $y^{*T}b = c^Tx^*$,则 $y^{*T}b = y^{*T}Ax^* = c^Tx^*$,即 $(y^{*T}A - c^T)x^* = 0$ 且 $y^{*T}(Ax^* - b) = 0$ 。

1.3.3 对偶单纯形法

对单纯形法的停止条件是所有检验数非正(max 问题, 若是 min 问题所有检验数非负),根据强对偶定理的推导,当所有检验数非正,此时能构造一个对偶问题的可行解,使得原问题和对偶问题的目标函数值相等,则这两目标函数值分别是原问题和对偶问题的最优解。

即保证原问题可行解的情况下,尝试构造对偶问题的可行解,如果构造成功,则两个目标函数值都是最优解。

相应地,在保证对偶问题可行解(max问题所有检验数非正,若是 min问题所有检验数非负)的情况下,尝试构造原始问题的可行解,如果构造成功,则两个目标函数值都是最优解。

这种单纯形法的变型又称为对偶单纯形法 (dual simplex method)。 对于 min 问题, 有以下步骤:

- 1. 找到一组基, 使得所有检验数非负。
- 2. 若单纯形表中 b 的那一列出现负数,因为有 $x \ge 0$ 的限制,当前基不可行,选择负数中 b 的绝对值最大的那一行(设为第 i 行),对应的变量 x_i 作为出基变量(需将该变量从负数变换为 0)。
- 3. 假设第 i 行中, x_j 的系数为 a_j ,检验数为 d_j ,则在所有 $a_j < 0$ 的变量中,选择 d_j/a_j 绝对值最小的那一列,对应的变量 x_k 作为入基变量,回到步骤 2。如果所有 $a_j \geq 0$,则原问题无可行解。
- 4. 若单纯形表中 b 的那一列均非负,即构造出了一个原问题的可行解,算法结束。

假设有以下问题:

min
$$9x_1 + 5x_2 + 3x_3$$

s.t.
$$\begin{cases} 3x_1 + 2x_2 - 3x_3 \ge 3\\ 2x_1 + x_3 \ge 5\\ x \ge 0 \end{cases}$$

加入松弛变量后, 问题转化为

s.t.
$$\begin{cases} 3x_1 + 3x_2 + 3x_3 \\ 3x_1 + 2x_2 - 3x_3 - x_4 = 3 \\ 2x_1 + x_3 - x_5 = 5 \\ x \ge 0 \end{cases}$$

有初始单纯形表

选择 x_5 出基. 由于 3/1 < 9/2, 选择 x_3 入基, 有

选择 x_4 出基. 由于 3/9 < 5/2, 选择 x_1 入基, 有

此时最后一列第二、三行均非负, 迭代结束。原问题的最优解为 $x_1 = 2, x_2 = 0, x_3 = 1$, 目标函数值为 21。

1.3.4 原始对偶方法

假设已知对偶问题的可行解 y , 需要寻找一个原问题的可行解 x 满足互补松弛定理。假设 A_j 表示矩阵 A 的第 j 列,定义 $J = \{j | A_j^T y = c_j\}$ (称 J 为允许指标集)。根据原问题的定义和互补松弛定理,有

$$Ax = b (1)$$

$$x_j = 0 \quad \forall j \notin J \tag{2}$$

$$x_j \ge 0 \quad \forall j \in J \tag{3}$$

如果能找到一个x满足上面三个条件,x和y就能满足互补松弛定理。为了获得一个可行的x,构造一个优化问题,称为限制的原问题(restricted primal, RP)。

$$\max \sum_{i=1}^{m} \bar{x}_i$$

s.t.
$$\begin{cases} \sum_{j \in J} a_{i,j} x_j + \bar{x}_i = b_i \\ x_j \ge 0, \bar{x}_i \ge 0 \end{cases}$$

若目标函数值取 0,则得到满足互补松弛定理的 x。写出 RP 的对偶问题,称为限制的对偶问题(dual restricted primal, DRP)。

$$\max \quad b^T y$$
s.t.
$$\begin{cases} A_j^T y \le 0, \ \forall j \in J \\ y_i \le 1, \ \forall i \in \{1, 2, \dots, m\} \end{cases}$$

假设 \bar{y} 为 DRP 的最优解,根据强对偶定理,若 $b^T\bar{y}=0$,则 RP 的目标函数值 也可以取 0 ,则当前对偶可行的 y 就是对偶问题的最优解;否则有 $b^T\bar{y}\geq 0$,因 为至少 $\bar{y}=0$ 是 DRP 的可行解。

如果发现 RP 问题无可行解,或者 DRP 问题无有限最优解,则原问题无可行解。

如果 DRP 的最优解让 DRP 的目标函数值超过 0,说明当前的 y 还不是最优的。

假设新的对偶可行解 $\hat{y}=y+\theta \bar{y}$ ($\theta \geq 0$), 有 $b^T\hat{y}=b^Ty+\theta b^T\bar{y}>b^Ty$, 改进对偶问题的目标函数值。由于 \hat{y} 仍然是对偶可行的,即必须满足 $A^T\hat{y}=A^Ty+\theta A^T\hat{y}\leq c$

对于 $j \in J$, 因为 $A_j^T \bar{y} \le 0$, 无论 θ 取多大, 都不会超过 c 的限制; 对于 $j \not\in J$, 选择

$$\theta = \min_{j \notin J, A_i^T \bar{y} > 0} \quad \frac{c_j - A_j^T y}{A_i^T \bar{y}}$$

使得 $j \not\in J$ 中的一条限制变紧,其它限制不会超过,仍然是对偶可行的。若 θ 可以无限增大,则对偶问题没有有限最优解,原问题无可行解。将 y 调整为 \hat{y} 之后,进入下一轮迭代继续调整,直到 DRP 的最优解让目标函数值为 0,此时的 y 就是对偶问题的最优解。

应用: 最短路问题

考虑有向图上的最短路问题,起点为 s, 终点为 t。对有向图定义点 - 弧关联矩阵,若一条边是一个顶点的出边,那么矩阵对应元素为 1; 若一条边是一个顶点的入边,那么矩阵对应元素为 -1。假设 w_i 表示第 i 条边的长度, x_i 表示第 i 条边是否在最短路上,可构造线性规划问题

$$\min \quad w^T x$$
s.t.
$$\begin{cases} Ax = v \\ x \ge 0 \end{cases}$$

因为s为起点,t为终点,

$$v_i = \begin{cases} 1 & i = s \\ -1 & i = t \\ 0 & \text{otherwise} \end{cases}$$

根据点 - 弧关联矩阵的定义很容易发现,把 A 的每一行加起来,最后会获得都是 0 的一行,即 A 中的行向量线性相关。可从 A 中去掉代表终点 t 的那一行,得到新矩阵 \bar{A} 。

得到新的线性规划问题

$$\min \quad w^T x$$
s.t.
$$\begin{cases} \bar{A}x = v \\ x \ge 0 \end{cases}$$

其中

$$v_i = \begin{cases} 1 & i = s \\ 0 & \text{otherwise} \end{cases}$$

写出对偶问题

$$\text{s.t.} \begin{cases} \pi_i - \pi_j \le w_e, \ \forall e = (i, j) \in E \\ \pi_t = 0 \end{cases}$$

只要令 $\pi = 0$ 即可得到对偶问题的可行解。 写出 DRP

s.t.
$$\begin{cases} \pi_i - \pi_j \le 0, \ \forall (i,j) \in J \\ \pi_i \le 1 \\ \pi_t = 0 \end{cases}$$

如果已知从点 s 到某点 p 的最短路, 而边 j 就在这条最短路上, 根据最短路的三角不等式, 这条边一定在 j 中。假设 C 为已知最短路的点构成的连通块, 为了让 π_s 的取值最大并满足 DRP 的限制条件, C 中所有点的变量值都必须和 π_s 相同。若 $t \not\in C$, $\pi_s = 1$; 若 $t \in C$, 由于 $\pi_t = 0$ 的条件, $\pi_s = 0$, 得到了从 s 到 t 的最短路。

假设有以下问题:

图 1.1: 最短路问题例子。

	π_s	π_{v_2}	π_{v_3}		π_{v_5}	π_t
0	0	0	0	0	0	0
1	1	0	0	0	0	0
2	2	0	1	0	0	0
3	4	2	3	0	2	0
4	6	5	4	2	4	0

表 1.1: 最短路问题例子迭代过程。

绘制表格,记录每次迭代的 π 值。通过表 1.1 ,经过 4 次迭代,得到 s - t 的最短路为 6。

Chapter 2

组合优化

2.1 整数规划

2.1.1 整数规划

整数规划就是线性规划加上解必须为整数的限制, 其基本形式为

$$\max \quad c^T x$$
s.t.
$$\begin{cases} Ax \le b \\ x \in \mathbb{N} \end{cases}$$

常见的很多算法问题都能写成线性整数规划的形式,特别是能写成整数规划的一种特殊形式: 0-1 规划。

0-1 背包问题

假设共有 n 件物品, v_i 表示第 i 件物品的价值, w_i 表示第 i 件物品的重量,c 表示背包的最大承重, $x_i \in \{0,1\}$ 表示是否选择第 i 件物品。0-1 背包问题可以写为

$$\text{s.t.} \begin{cases} \sum_{i=1}^{n} w_i x_i \le c \\ x \in \{0, 1\} \end{cases}$$

最小生成树问题

假设共有 n 个点, 点集为 V, $(i,j) \in E$ 表示从第 i 个点连到第 j 个点的一条有向边, $w_{i,j}$ 表示边的权重, $x_{i,j} \in \{0,1\}$ 表示这一条边是否在最小生成树内。最小生成树问题可以写为

$$\min \sum_{(i,j)\in E} w_{i,j} x_{i,j}$$
 s.t.
$$\begin{cases} \sum_{(i,j)\in E} x_{i,j} = n-1 \\ \sum_{i\in S, j\notin S} x_{i,j} \geq 1, \ \forall S\subset V, \ S\neq V \\ x_{i,j}\in\{0,1\} \end{cases}$$

装箱问题

假设共有 n 个物品, w_i 表示第 i 个物品的重量, c 表示每个箱子的承重, $x_{i,j} \in \{0,1\}$ 表示是否将第 i 个物品放入第 j 个箱子, y_i 表示是否使用第 i 个箱子。装箱问题可以写为

$$\min \sum_{i=1}^{n} y_{i}$$
s.t.
$$\begin{cases} \sum_{i=1}^{n} w_{i} x_{i,j} \leq c y_{i}, \ \forall j \in \{1, 2, \dots, n\} \\ \sum_{j=1}^{n} x_{i,j} = 1, \ \forall i \in \{1, 2, \dots, n\} \\ x_{i,j} \in \{0, 1\} \\ y_{i,j} \in \{0, 1\} \end{cases}$$

匹配问题

假设图的点集为 V,边集为 E。设 $(i,j) \in E$ 表示从第 i 个点连到第 j 个点的一条有向边, $x_{i,j}$ 表示这条边是否为匹配边。一般无向图的最大匹配问题可以写为

$$\min \sum_{(i,j)\in E} x_{i,j}$$
s.t.
$$\begin{cases} \sum_{(i,j)\in E} x_{i,j} \le 1, \ \forall i \in V \\ \sum_{(i,j)\in E} x_{i,j} \le 1, \ \forall j \in V \\ x_{i,j} \in \{0,1\} \end{cases}$$

2.1.2 割平面法

Gomory 割平面法 (Gomory cutting-plane method) 是一种解线性整数规划问题的方法,思想就是一直去除非整数的最优解,直到某一次求得的最优解为整数。

考虑一个线性规划问题, 假设使用单纯形表求解后获得的不是整数解, 可以选择

一个非整数的变量 x_i , 根据单纯形表有

$$x_i + \sum_{j=n+1}^n a_{i,j}^- x_j = \bar{b}_i \tag{1}$$

既然 x_i 不是整数,说明 $\bar{b_i}$ 一定不是整数,当然 $a_{i,j}$ 也可能不是整数。调整 (1)。

$$x_i + \sum_{j=n+1}^n \lfloor \bar{a_{i,j}} \rfloor x_j \le \bar{b_i} \tag{2}$$

(1) 一定是 (2) 的解。调整 (2)

$$x_i + \sum_{j=n+1}^n \lfloor \bar{a_{i,j}} \rfloor x_j \le \lfloor \bar{b_i} \rfloor \tag{3}$$

(2) 的整数解一定符合 (3), 若用单纯形表求出的非整数解就不符合 (3)。只要把式 (3) 加入原来的线性规划问题, 重新求解多出一个限制的线性规划问题。如果求出来的是整数解就停止, 否则继续加入限制并求解, 直到获得整数解为止。改变 (3), 变为 (1) – (3)

$$x_i + \sum_{j=n+1}^n (\bar{a_{i,j}} - \lfloor \bar{a_{i,j}} \rfloor) x_j \ge \bar{b_i} - \lfloor \bar{b_i} \rfloor$$
(3)

假设有以下问题:

$$\max \quad 3x_1 + 2x_2$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 + x_3 = 14\\ 2x_1 + x_2 + x_4 = 9\\ x \ge 0 \end{cases}$$

有最终单纯形表

选择 x_2 , 加入限制: $x_2 - x_4 \le 2$, 即 $x_2 - x_4 + x_5 = 2$ 。 用单纯形表求解加入限制后的问题, 得到最终单纯形表

选择 x_1 , 加入限制: $x_1 + x_4 - x_5 \le 3$, 即 $x_1 + x_4 - x_5 + x_6 = 3$. 用单纯形表求解加入限制后的问题, 得到最终单纯形表

	0	0	0	-1	0	-1	-14
x_3	0	0	1	1	0	-4	3
x_1	1	0	0	1	0	-1	4
x_5	0	0	0	0	1	-2	1
x_2	0	1	0	-1	0	$ \begin{array}{r} -4 \\ -1 \\ -2 \\ 2 \end{array} $	1

得到原问题的最优解为 $x_1 = 4, x_2 = 1$, 目标函数值为 14。

2.1.3 分支定界法

将原问题放松成线性规划问题,解这个线性规划,得到了整数规划最优解的上界。假设最优解中 $N < x_i < N+1$ 不是整数,此时有两种可能: $x_i \le N$ 或 $x_i \ge N+1$,对两种情况分别进行搜索。如果在某一枝算出了一个整数解,就得到了原整数规划最优解的下界;如果在另一枝线性规划问题的解没有比这个下界更优,则那一枝可以直接不考虑了(因为线性规划问题的解是那一枝能找到的最优解的上界)。

假设有以下问题:

图 2.1: 分支定界法例子。

- 1. 首先考虑 $x_2 \le 2$,也就是 node1A,算得该情况下最优解为 $x_1 = 8, x_2 = 2$,目标函数值为 34。这是一个整数解,记录并回溯。
- 2. 考虑 $x_2 \ge 3$, 也就是 node1B, 算得该情况下的最优解为 $x_1 = 6.5, x_2 = 3$, 目标函数值为 34.5。它还优于我们已知的下界 34, 继续搜索。
- 3. 考虑 $x_1 \le 6$, 也就是 node2C, 算得该情况下的最优解为 $x_1 = 6, x_2 = 3.25$, 目标函数值为 34.25。它还优于我们已知的下界 34, 继续搜索。
- 4. 考虑 $x_2 \le 3$, 也就是 node3E, 算得该情况下的最优解为 $x_1 = 6, x_2 = 3$, 目标函数值为 33。它劣于我们已知的下界 34, 回溯。
- 5. 考虑 $x_2 \ge 4$, 也就是 node3F, 算得该情况下的目标函数值为 33.5。它劣于 我们已知的下界 34, 回溯。
- 6. 考虑 $x_1 \ge 7$, 也就是 node2D, 该情况下无可行解, 回溯。

搜索得最优解为 $x_1 = 8, x_2 = 2$, 目标函数值为 34。

2.2 贪心算法

2.2.1 一类贪心算法

一类贪心算法

考虑一个有限元素集合 E,给 E 中的每个元素 e 定义一个非负的费用 c(e)。 再考虑 $F \in 2^E$,对于 $F \in \mathcal{F}$,定义 F 的费用 $c(F) = \sum_{e \in F} c(e)$ 。一类问题即找出一个 F,使得 c(F) 最大(或最小)。

独立集系统

对于一个二元组 (E, \mathcal{F}) ,

- 1. $\emptyset \in \mathcal{F}$.
- 2. $\forall Y \in \mathcal{F}, X \subseteq Y \to X \in \mathcal{F}$.

称 (E, \mathcal{F}) 为独立系统 (independent system)。 在独立系统 (E, \mathcal{F}) 中, \mathcal{F} 中的元素称为独立集, $E - \mathcal{F}$ 中的元素称为相关集。

基和圈

将 F 中的极大独立集称为基 (basis),将 E - F 中的极小相关集称为圈 (circuit)。对于 $X \subset E$,定义 X 上的基为 X 中的极大独立集。

秩商

对于 $X\subseteq E$, X 中的基大小可能不同。定义 X 的秩 r(X) 为 X 中最大的基的大小,类似地定义 X 的下秩 $\rho(X)$ 为 X 中最小的基的大小。由此定义独立系统的秩商 $q(E,\mathcal{F})=\min_{x\subset E} \frac{\rho(X)}{r(X)}$ 。秩商是一类问题中贪心解法近似比的下界。

独立集系统的对偶

 $(E,\mathcal{F}) \to (E,\mathcal{F}^*)$, $\mathcal{F}^* = \{X \subseteq E \mid \exists F \text{ 的一个基 } \beta, \ X \cap \beta = \emptyset\}$ 。 有以下性质:

- $1. (E, \mathcal{F}^*)$ 是一个独立集系统。
- 2. 若 $B \not\in (E, \mathcal{F})$ 的基, $E B \not\in (E, \mathcal{F}^*)$ 的基。

3. $(E, \mathcal{F}^{**}) = (E, \mathcal{F})$ 。 证明:

$$\forall X \in \mathcal{F}^{**} \iff \exists (E, \mathcal{F}^*) \text{的一个基} B^*, X \cap B^* = \emptyset$$

$$\iff \exists (E, \mathcal{F}) \text{的一个基} B, X \cap (E - B) = \emptyset$$

$$\iff \exists (E, \mathcal{F}) \text{的一个基} B, X \subseteq B$$

$$\iff X \subseteq \mathcal{F}$$

2.2.2 一类最大(小)化问题

根据独立系统的定义, 可以引出一类最大(小)化问题。

- 最大化问题:
- 给出一个独立系统 (E, \mathcal{F}) ,找出一个 $F \in \mathcal{F}$,使得 c(F) 最大。由于每个元素的费用都是非负的,所以 |F| 越大,c(F) 也越大。因此最优的 F 一定是基。
- 最小化问题: 给出一个独立系统 (E, \mathcal{F}) , 找出一个 $F \in \mathcal{F}$, 使得 F 是基,且 c(F) 最小。

对任一最大化问题 (E,\mathcal{F}) 有 $q(E,\mathcal{F}) \leq \frac{G(E,\mathcal{F})}{OPT(E,\mathcal{F})} \leq 1$, 其中 $G(E,\mathcal{F})$ 是贪心算法的目标函数值。

以下证明:

 $E = \{e_1, \dots, e_n\}, c: E \to R^+$ 。 G_n 是贪心算法的解, O_n 是最优解,有 $G_j = G_n \cap E_j, O_j = O_n \cap E_j$,其中 $E_j = \{e_1, \dots, e_j\}, c_1 \le c_2 \le \dots, c_n, G_0 = O_o = \emptyset$ 。

$$c(G_n) = \sum_{j=1}^{n} (|G_j| - |G_{j-1}|) \times c_j$$
(1)

$$= \sum_{j=1}^{n} |G_j| \times (c_j - c_{j+1})$$
 (2)

$$\geq \sum_{j=1}^{n} \rho(E_j) \times (c_j - c_{j+1}) \tag{3}$$

$$\geq q \sum_{j=1}^{n} r(E_j)(c_j - c_{j+1}) \tag{4}$$

$$\geq q \sum_{j=1}^{n} |O_j| (c_j - c_{j+1}) \tag{5}$$

$$= q \times c(O_n) \tag{6}$$

$$\Rightarrow \frac{c(G_n)}{c(O_n)} \ge q \tag{7}$$

((2) \Rightarrow (3): 因为 $|G_j|$ 是 E_j 的一个最大独立集; (4) \Rightarrow (5): 因为 $r(E_j)$ 是最大个数)

$$\exists F, \ rac{
ho(F)}{r(F)} = q(E,F) = rac{|X|}{|Y|}$$
,构造

$$c(e) = \begin{cases} 1, & e \in F \\ 0, & e \notin F \end{cases} \quad (c_1 = c_2 = \dots = c_{|X|} = 1, \ c_{|X|+1} = \dots = c_n = 0)$$

最大化问题的实例

- 0-1 背包问题: E 中的元素是每个物品, F 中的元素是所有可以放进背包的物品集合, 费用就是物品的价值。
- 最大权独立集: E 中的元素是点,F 中的元素是独立集,费用就是每个点的权值。
- 最长简单路径: E 中的元素是边, F 中的元素是所有从起点到终点的简单 路径以及其子集, 费用就是每条边的距离。
- 最大权森林: E 中的元素是边,F 中的元素是所有不含圈的边集,费用就是每条边的权值。

最小化问题的实例

- 最小生成树问题: E 中的元素是边, F 中的元素是所有不含圈的边集, 费用就是每条边的权值。
- 最短路问题: E 中的元素是边, F 中的元素是所有从起点到终点的简单路 径以及其子集, 费用就是每条边的距离。
- 旅行商问题: E 中的元素是边,F 中的元素是哈密尔顿回路及其子集,费用就是每条边的距离。

2.2.3 拟阵

拟阵 (matroid) 是一个特殊的独立集系统。一个独立系统需要满足以下三个条件中的一个才被称为是拟阵 (以下三个条件等价):

- 1. 若 $X,Y \in \mathcal{F}$,且 |X| > |Y|,则 $\exists e \in X Y$, $Y \cup \{e\} \in \mathcal{F}$ 。
- 2. 若 $X,Y \in \mathcal{F}$, 且 |X| = |Y| + 1, 则 $\exists e \in X Y$, $Y \cup \{e\} \in \mathcal{F}$ 。
- 3. $\forall X \subseteq E$, X 的所有基大小相同。

例子

- 1. $E = \{v_1, \dots, v_m\}$, $\mathcal{F} = \{z \subseteq E \mid z \ \text{ 是线性无关组 } \}$ 。
- 2. E 是有限集合, $\mathcal{F} = \{X \subseteq E, |X| \le k \in \mathbb{N}\}$ 。(一致拟阵)
- 3. E 是无向图 G, $\mathcal{F} = \{X \subseteq E, X 构成一个森林 \}$ 。(图拟阵)

拟阵的交

假设有两拟阵 (E, \mathcal{F}_1) , (E, \mathcal{F}_2) , 其交为 $(E, \mathcal{F}_1 \cap \mathcal{F}_2)$ 。 n 个拟阵的交,用贪心算法得到的解近似比为 $\frac{1}{n}$ 。

任一个独立集系统都是有限个拟阵的交。

以下证明:

独立集系统 (E, \mathcal{F}) , 假设其有 k 个圈 C_1, \dots, C_k , $F_i = \{X \subseteq E | X \not\supseteq C_i\}$ 。 $(E, \mathcal{F}_i), \forall \mathcal{F} \subset E$, 此时有两种可能:

- 1. $F \not\supseteq C_i$.
- 2. $F \supseteq C_i$, $\forall e \in C_i$, $\mathcal{F} \{e\}$ 是极大独立集。

 $\forall X \in \mathcal{F}, X$ 不含任何圈 $\iff X \in \bigcap_{i=1}^k \mathcal{F}_i$

 (E,\mathcal{F}) 为独立集系统, $\mathcal{F} = \bigcap_{i=1}^k \mathcal{F}_i$ 。

设 $F \subseteq E$, 考虑 (E, \mathcal{F}) 在 \mathcal{F} 上,两个不同的极大独立集,A, B $(|B| \ge |A|)$ 欲证 $|B| \le k|A|$ 。

 $\forall e \in B-A$,有 $e \notin \bigcap_{i=1}^k (A_i-A)$, $A_i: (E,\mathcal{F}_i)$ 在 $A \cup B$ 含 A 极大独立集,则 e 最多出现在 (k-1) 个 A_i-A 中, $\sum_{i=1}^k |A_i-A| \leq (k-1)|B-A| \leq (k-1)|B|$,同理 $k|B| \leq \sum_{i=1}^k |A_i|$ (因为极大独立集有相同维数) $\leq k|A| + (k-1)|B|$ 。得证 $|B| \leq k|A|$ 。

2.2.4 两类贪心算法

Best in

将 E 中所有元素按费用从大到小排序,使得 $c(e_1) \ge c(e_2) \ge ... \ge c(e_n)$ 。假设 $F = \emptyset$,依照 $e_1, e_2 ..., e_n$ 的顺序考虑,若 e_i 加入 F 后 F 仍是独立集,就加入 e_i 。此贪心算法用于解决最大化问题。

设 $G(E,\mathcal{F})$ 表示 Best in 算法得到的解; $OPT(E,\mathcal{F})$ 表示最优解,则

$$q(E, \mathcal{F}) \le \frac{G(E, \mathcal{F})}{\text{OPT}(E, \mathcal{F})} \le 1$$

从此定理可以看出:若一个独立集系统是拟阵,则用 Best in 算法得到的最大化问题的解一定是最优解。

Worst out

将 E 中所有元素按费用从大到小排序,使得 $c(e_1) \ge c(e_2) \ge ... \ge c(e_n)$ 。假设 F = E,依照 $e_1, e_2 ..., e_n$ 的顺序考虑,若把 e_i 从 F 中去掉后 F 还含有至少一个基,就去掉 e_i 。此贪心算法用于解决最小化问题。

使用 Worst out 贪心得到的解满足

$$1 \le \frac{G(E, \mathcal{F})}{\mathrm{OPT}(E, \mathcal{F})} \le \max_{F \subseteq E} \quad \frac{|F| - \rho^*(F)}{|F| - r^*(F)}$$

其中 $\rho^*(F)$ 表示对偶独立集系统中的下秩, $r^*(F)$ 表示对偶独立系统中的秩。

2.3 近似算法

2.3.1 近似算法

算法 A 是一近似算法 (approximation), A(I) 是算法 A 在例子 I 的目标函数值, OPT(I) 是最优解的目标函数值。

算法 A 的近似比 $\rho_A=\sup_I\{\frac{OPT(I)}{A(I)},\frac{A(I)}{OPT(I)}\}$ 。 称算法 A 为 r 近似,在极大化问题中, $\forall I,OPT(I)\leq r\times A(I)$;或在极小化问题中, $\forall I,A(I)\leq r\times OPT(I)$ 。

2.3.2 背包问题

假设 s_i 表示物品 i 的所占空间, v_i 表示物品 i 的价值, C 表示总共空间, $F_i(i)$ 表示前 j 个物品中价值和为 i 的物品所需最小空间, 有

$$OPT : argmax\{i|F_j(i) \le c\} \ F_j(i) = min\{F_{j-1}(i), F_{j-1}(i-v_i) + s_i\}$$

时间复杂度为 $O(n^2v_{max})$ 属于伪多项式时间算法。

若将各个物品的价值缩小 K 倍, $v_i' = \left\lfloor \frac{v_i}{K} \right\rfloor$,此时时间复杂度变为 $O(\frac{n^2 v_{max}}{K})$ 。令动态规划的解为 S',原问题最优解为 S^* ,有

$$\sum_{j \in S'} v_j \ge \sum_{j \in S'} \left\lfloor \frac{v_j}{K} \right\rfloor \times K$$

$$= K \times \sum_{j \in S'} v'_j$$

$$\ge K \times \sum_{j \in S^*} v'_j$$

$$\ge \sum_{j \in S^*} \left(\frac{v_j}{K} - 1\right) \times K$$

$$= \sum_{j \in S^*} v_j - K|S^*|$$

$$\ge OPT - n \times K$$

希望

$$n \times K \le \epsilon \times OPT$$

$$\Rightarrow K \le \frac{\epsilon}{n} \times v_{max} \text{ (因为 $OPT \ge v_{max}\text{)}}$

$$(\diamondsuit K = \frac{\epsilon}{n} \times v_{max}\text{)}$$

$$\Rightarrow OPT - n \times K = (1 - \epsilon) \times K$$$$

此时时间复杂度变为 $O(\frac{n^2 v_{max}}{K}) = O(\frac{n^3}{\epsilon})$ 。

2.3.3 顶点覆盖

近似算法1

假设共有n个点, x_i 表示第i个点是否在答案集合中, w_i 表示第i个点的权重,E表示边集,(u,v)表示连接点u与点v的一条边。构造出顶点覆盖 (vertex cover) 模型:

$$\min \quad \sum_{i=1}^{n} w_i x_i$$

s.t.
$$\begin{cases} x_i + x_j \ge 1, \ \forall (i,j) \in E \\ x \in \{0,1\} \end{cases}$$

这是一个整数规划问题, 假设该问题的最优目标函数值为 OPT。

对该问题进行松弛,将 $x \in \{0,1\}$ 改为 $x \ge 0$ 。设松弛后的线性规划问题最优解为 x^* ,最优目标函数值为 OPT_{LP} ,有 $OPT_{LP} \le OPT$ 。构造出原问题的可行解 x 如下:

$$x_i = \begin{cases} 1 & x_i^* \ge 0.5 \\ 0 & x_i^* < 0.5 \end{cases}$$

由于对于每条边 (i,j) 存在 $x_i^* + x_j^* \ge 1$ 的限制,则 $\max(x_i^*, x_j^*) \ge 0.5$, $x_i + x_j \ge 1$ 仍然成立,此解可行。

有 $x_i \leq 2x_i^*$ 。将构造的可行解代入目标函数,有

$$\sum_{i=1}^{n} w_i x_i \le 2 \sum_{i=1}^{n} w_i x_i^* \le 2 \text{OPT}_{LP} \le 2 \text{OPT}$$

证明了算法的近似比为 2。

近似算法 2: 原始对偶算法

有对偶问题:

$$\max \quad \sum_{e \in E} y_e$$

s.t.
$$\begin{cases} \sum_{i \in e} y_e \le w_i, \ \forall i \in V \\ y_e \ge 0 \end{cases}$$

互补松弛条件:

- PCS (原始问题的互补松弛条件): $x_i \times (w_i \sum_{i \in e} y_e) = 0$ 。
- DCS (对偶问题的互补松弛条件): $y_e \times (x_i + x_j 1) = 0$ 。

若 PCS 成立,有

$$\begin{cases} x_i \neq 0 \Rightarrow w_i = \sum_{i \in e} y_e \\ y_e \neq 0 \Rightarrow 1 \le x_i + x_j \le 2 \end{cases}$$

则

$$\sum_{i=1}^{n} w_i x_i = \sum_{i=1}^{n} (\sum_{i \in e} y_e) x_i$$

$$\leq 2 \times \sum_{e \in E} y_e$$

$$\leq 2 \times \sum_{i=1}^{n} w_i x_i^*$$

$$\leq 2 \times C_{IP}^*$$

算法步骤:

- 1. x = 0, y = 0, 所有边未标记。
- 2. 任选一条未标记的边,提升 y_e 到其某一端点约束变紧。
- $3. x_i = 1$, 与 v_i 关联的边全部标记。
- 4. 重复上述第二、第三步骤,直到所有边被标记。

假设有以下问题:

图 2.2: 顶底覆盖例子。

- 1. 先选 v_1 , 提升 $e_1 = 3$, v_1 覆盖, 因为 e_6 连接 v_5 , 提升 $e_6 = 3 3 = 0$ 。
- 2. 选择 v_2 , 提升 $e_2 = 4-3 = 1$, v_2 覆盖, 因为 e_7 连接 v_5 , 提升 $e_7 = 4-3-1 = 0$; e_8 连接 v_4 , 提升 $e_8 = 4-3-1-0 = 0$ 。
- 3. 选择 v_3 , 提升 $e_3 = 3 1 = 2$, v_3 覆盖。
- 4. 选择 v_4 , 提升 $e_4 = 2 0 2 = 0$, v_4 覆盖。
- 5. 选择 v_6 , 提升 $e_5 = 1$, v_6 覆盖。

得到原问题权重: 13 (点); 对偶问题权重: 7 (边)。

图 2.3: 顶底覆盖例子结果。

2.3.4 非等同并行机调度

有m台机器和n件物品,每件物品都要在一台机器上加工, $a_{i,j}$ 表示第i台机器加工第j件物品的时间。求一种把物品分配给机器的方案,使得加工总时长最长的机器,加工总时长最短,即为非等同并行机调度 (Unrelated Parallel Machine Scheduling, UPMS)。构造出模型:

s.t.
$$\begin{cases} \sum_{i=1}^{m} x_{i,j} = 1, \ \forall j \in \{1, 2, \dots, n\} \\ \sum_{j=1}^{n} a_{i,j} x_{i,j} \leq T, \ \forall i \in \{1, 2, \dots, m\} \\ x_{i,j} \in \{0, 1\} \end{cases}$$

此模型不适合进行松弛。假设只有一件物品需要加工,且该物品在所有机器上的加工时间都为 1,则原问题的最优目标函数值为 1,然而松弛求出的最优解为 $x_{i,1} = 1/m$,下界不够紧,难以进行近似比分析。

先二分 T 。若 $a_{i,j} > T$,加上 $x_{i,j} = 0$ 的限制,让改动后的问题存在可行解的最小的 T,就是原问题最优目标函数值的下界(可利用两阶段法的第一阶段判断是否存在可行解)。

假设改动后的问题最优解为 x^* , 对于第 j 件物品,若 $\exists i, x_{i,j}^* = 1$,则称该物品为 "整数物品",否则称该物品为 "分数物品",假设共有 n_1 个 "整数物品", n_2 个 "分数物品"。有 $n_1 + n_2 = n$,若第 j 件物品为 "分数物品", $x_{i,j}$ 中至少有两个非零值。由于原问题有 n+m 条限制,根据单纯形法,非零的变量至多有n+m 个,有 $n_1+2n_2 \le n+m$,得到 $n_2 \le m$ 。

通过使得每台机器的加工总时长都不超过 2T, 设计一个近似比为 2 的算法。

定义:若连通图中边数小等于点数,称该连通图为伪树;若一张图的所有连通块都是伪树,称该图为伪森林。

构造一张二分图: 左边有 m 个点,每个点表示一台机器; 右边有 n 个点,每个点表示一件物品。若 $x_{i,j} > 0$ 则连接第 i 台机器和第 j 件物品。如果这个二分图不连通,那么对每个连通块分别求解,最后将解合并即为答案,因此可以假设该二分图连通。由于非零变量至多有 n+m 个,所以该连通图的边数不超过点数,是一个伪树。首先考虑"整数物品"。每个"整数物品"j 都只和一台机器 i 有连边 (i,j),将"整数物品"j 放在机器 i 中加工,并去掉物品 j 和边 (i,j)。由于每次恰好去除一个点和一条边,这张图仍然是伪树。此时每台机器的加工总时长至多为 T,否则问题的最优目标函数值就会超过 T。

此时,仅剩机器和"分数物品"了。考虑所有度数为 1 的机器 i。假设唯一连接机器 i 的边是 (i,j),将"分数物品"j 放在机器 i 中加工,并去掉机器 i、物品j 和物品 j 的所有连边。由于每件"分数物品"都有至少两条连边,所以我们每次都会去掉两个点以及至少两条边,可知剩下的图是伪森林。反复删除度数为 1 的机器,直到最后不存在度数为 1 的机器为止。

由于剩下的图是伪森林也是二分图,则剩下的图中只能包含若干偶环,在偶环上任意给每台机器分配一件物品即可。

因此,每台机器至多分配到一个"分数物品",再加上原来分配给它的"整数物品",每台机器的总加工时长至多为2T,得到一个近似比为2的算法。

2.3.5 装箱问题

均摊体积

假设第 i 件物品体积为 a_i , 定义权重 $w(a_i)$:

$$w(a_i) = \frac{6}{5}a_i + v(a_i)$$

称 v 为 bonus, 定义为:

$$v(a_i) = \begin{cases} 0 & a_i \le \frac{1}{6} \\ \frac{3}{5}(a_i - \frac{1}{6}) & \frac{1}{6} < a_i \le \frac{1}{3} \\ \frac{1}{10} & \frac{1}{3} < a_i \le \frac{1}{2} \\ \frac{2}{5} & a_i > \frac{1}{2} \end{cases}$$

记 w(I) 为装箱问题 (bin packing) 的一个实例 I 的权重总和, FF(I) 表示对实例 I 运用 First fit 算法得到的目标函数值, OPT(I) 表示实例 I 的最优目标函数值。 再记 B 为 first fit 算法得到的方案, B^* 为最优方案, $c(B_j)$ 表示第 j 个 bin 中物品的体积总和, $w(B_i)$ 表示第 j 个 bin 中物品的权重总和, 有

$$w(I) = \sum_{i=1}^{n} w(a_i) = \sum_{j=1}^{\text{FF}(I)} w(B_j) = \sum_{j=1}^{\text{OPT}(I)} w(B_j^*)$$

先是证明均摊体积不超过1.7。

对于一个箱子,可分以下情况讨论:

- 1. 所有物品体积 c 均有 $c \leq \frac{1}{6}$ 。箱子的权重就是箱中物品体积总和的 1.2 倍,不会超过 1.7。
- 2. 存在物品体积 c 有 $\frac{1}{6} < c \le \frac{1}{2}$ 。这种物品在一个箱中至多有 5 个,bonus 不会超过 $\frac{1}{10} \times 5 = \frac{1}{2}$,权重也不会超过 1.7。
- 3. 存在两个物品体积 c_1 和 c_2 有 $c_1 > \frac{1}{2}$ 且 $\frac{1}{3} < c_2 \le \frac{1}{2}$ 。 其它物品的体积都不 会超过 $\frac{1}{6}$,没有 bonus; c_1 和 c_2 带来的 bonus 恰为 0.5,权重不会超过 1.7。
- 4. 存在三个物品体积 c_1 , c_2 和 c_3 有 $c_1 > \frac{1}{2}$, $\frac{1}{6} < c_2$, $c_3 \le \frac{1}{3}$ 且 $c_2 + c_3 < \frac{1}{2}$ 。 其它物品的体积都不会超过 $\frac{1}{6}$, 没有 bonus; c_2 和 c_3 带来的 bonus 为 $\frac{3}{5}(c_2 - \frac{1}{6}) + \frac{3}{5}(c_3 - \frac{1}{6}) < 0.1$,再加上 c_1 带来的 bonus 0.4,权重不会超过 1.7。

证明了均摊体积不超过1.7。

接着证明除两个箱子外,其它箱子的权值均值至少为1。首先去掉权值至少为1的箱子,考虑权值不足1的箱子。可知权值不足1的箱子有以下性质:

- 1. 不含体积至少为 0.5 的物品, 因为若含体积大于 0.5 的物品, 该物品的权重就会超过 1。
- 2. 一个箱中不会包含两个体积至少为 $\frac{1}{3}$ 的物品,因为若含两个体积大于 $\frac{1}{3}$ 的物品,该两个物品的权重就会超过 1。
- 3. 箱子的体积之和小于 $\frac{5}{6}$, 因为若箱子的体积之和大于 $\frac{5}{6}$, 不算 bonus 就足以使权重超过 1。

可得

- 1. 除了最后一个箱子, 其它箱子中至少有两个物品。
- 2. 除了最后两个箱子,其它箱子的体积之和都大于 $\frac{2}{3}$ (如果有一个 bin 的体积之和不超过 $\frac{2}{3}$, 由于是 First fit 算法,后面的箱子里的物品体积至少为 $\frac{1}{3}$ 但少于 $\frac{1}{2}$; 而后面至少还有两个箱子,违反了"一个箱子内不会包含两个体积至少为 $\frac{1}{3}$ 的物品"的性质)。

再来证明一个引理: 如果两个箱子 B_1 和 B_2 满足 B_1 在 B_2 前面、 $w(B_1), w(B_2) < 1$ 、 $c(B_1) \geq \frac{2}{3}$ 以及 B_2 有至少两个物品,则 $\frac{6}{5}c(B_1) + v(B_2) \geq 1$ 。 有以下性质:

- 1. $c' \geq \frac{1}{6}$, 否则 B_1 将会与"箱子的体积之和小于 $\frac{5}{6}$ "的性质矛盾。
- $2. \ c' < \frac{1}{3}$,否则 B_2 将会与"一个箱子中不会包含两个体积至少为 $\frac{1}{3}$ 的物品"的性质矛盾。
- 3. $c' > 1 c(B_1)$, 否则 c' 就会放进 B_1 。

得到 $\frac{1}{6} \le c' < \frac{1}{3}$, 则

$$\frac{6}{5}c(B_1) + v(B_2) \ge \frac{6}{5}c(B_1) + 2 \times v(c')$$

$$> \frac{6}{5}c(B_1) + \frac{6}{5}(1 - c(B_1) - \frac{1}{6})$$

$$= 1$$

假设 First fit 算法得到的方案中,权重之和小于 1 的箱子按先后顺序为 B_1, B_2, \ldots, B_k ,则

$$w(B_1) + w(B_2) + \dots + w(B_{k-2}) + w(B_{k-1}) + w(B_k)$$

$$= v(B_1) + (\frac{6}{5}c(B_1) + v(B_2)) + \dots + (\frac{6}{5}c(B_{k-2}) + v(B_{k-1}))$$

$$+ (\frac{6}{5}c(B_{k-1}) + \frac{6}{5}c(B_k)) + v(B_k)$$

$$\geq (k-2) + \frac{6}{5}$$

即除了最后两个箱子, 其它的箱子权值均值都至少为 1, 再加上 0.8 以及权值至少为 1 的箱子, 则所有的箱子的权值均值就都至少为 1。证明 First fit 算法有 1.7 的近似比。

2.3.6 旅行商问题

在满足三角不等式的完全图上, 旅行商问题 (Travelling Salesman Problem, TSP), 可通过搜索最小生成树 (Minimum Spanning Tree, MST), 将树上每条边重复一次变成欧拉图 (Euler graph), 在欧拉图上 short-cutting, 得到近似比为 2的上界。

下面证明近似比为 1.5 的近似算法:

将树上度数为奇数的点进行配对(一张图上度数为奇数的点有偶数个),每一对之间连一条边,则构成的图上的点的度数都是偶数,即为欧拉图。

图 2.4: 度数为奇数的点匹配示意图。

在图 2.4 上,白色的点是最小生成树上的度数为奇数的点。将奇点按顺序进行 short-cutting,得到两个不相交匹配($1-2,3-4,\cdots,(2k-1)-2k$ 以及 $2-3,4-5,\cdots,2k-1$)。由于满足三角不等式,这两个匹配的权值之和不大于OPT,则两个匹配中较小的权值不大于 0.5OPT。因为算法中求出的是最小完美匹配,则最小完美匹配的权值也不大于 0.5OPT。因此,最小生成树和最小权完美匹配证明了 1.5 的近似比。

图 2.5: 最小权完美匹配示意图。

图 2.5 可说明近似比 1.5 是紧的。途中没有画出来的边权值都是 2,右图实线是算法可能获得的最小生成树,虚线是算法可能算出的最小权完美匹配。可得最优解为 n,而算法可能得出的解是 $n+\frac{n}{2}$ 。

只要"梯形"上面的点足够多,则近似比为 1.5。

满足三角不等式的完全图的最短哈密尔顿路

在满足三角不等式的完全图中, 求最短哈密尔顿路 (shortest Hamiltonian path)。算法步骤:

- 1. 求个最小生成树 T。假设 S 为在最小生成树上度数为奇数的点的集合。
- 2. 求 S 的最小权匹配 M。假设最优解上有 2t 个度数为奇数的点,则可以拆成两个匹配: $1-2,3-4,\cdots,(2t-3)-(2t-2)$ ((2t-1) 和 2t 没有匹配)与 $2-3,4-5,6-7,\cdots,(2t-2)-(2t-1)$ (1 和 2t 没有匹配,其中 u-v 表示点 u 和点 v 匹配),可以证明 M 的权值之和至多为 0.5 OPT。
- 3. $T \cup M$ 即为一张有欧拉路 (Euler path) 的图, 通过 short-cutting 把欧拉路 变成哈密尔顿路即可。

此算法的近似比为 1.5。

与哈密尔顿圈相关的优化问题

- 最长哈密尔顿路 (Longest Hamiltonian path)。
- 最小圈覆盖 (Minimum cycle cover problem, MCCP).
- 最小双联通子图 (Minimum biconnected subgraph (边数最少)).
- 最小分支双联通子图 (Minimum branch biconnected subgraph).
- 最大内部生成树 (Maximum internal spanning tree (叶子节点最少)).

Chapter 3

Convex Optimization

3.1 Convex Functions

Definitions:

- Convex set: contains the line through any two distinct points in the set. $x_1, x_2 \in \mathbb{C}, 0 \le \theta \le 1 \Rightarrow \theta x_1 + (1 \theta)x_2 \in \mathbb{C}$. Intersection of convex sets is convex.
- Convex combination of x_1, x_2, \dots, x_n : any point x of the form $x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$, where $\theta_1 + \theta_2 + \dots + \theta_k = 1, \theta_i \ge 0$.
- $f: \mathbb{R}^n \to \mathbb{R}$ is convex if dom f is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \ \forall x, y \in \text{dom} f, 0 \le \theta \le 1$$

f is concave if -f is convex.

• Sublevel set: α -sublevel set of $f: \mathbb{R}^n \to \mathbb{R}$:

$$C_{\alpha} = \{x \in \text{dom} f | f(x) \le \alpha \}$$

Sublevel sets of convex functions are convex.

• Epigraph of $f: \mathbb{R}^n \to \mathbb{R}$:

$$epi\ f = \{(x,t) \in \mathbb{R}^{n+1} | x \in \text{dom} f, \ f(x) \le t\}$$

f is convex if and only if epi f is a convex set.

3.1.1 First-order condition

f is differentiable if dom f is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \cdots, \frac{\partial f(x)}{\partial x_n}\right), \ \forall x \in \text{dom} f$$

Differentiable f with convex domain is convex if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

3.1.2 Second-order condition

f is twice differentiable if dom f is open and the Hessian $\nabla^2 f(x) \in \mathbb{S}^n$

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial y'_j}, \ \forall i, j = 1, 2, \dots, n, \ x \in \text{dom} f$$

Twice differentiable f with convex domain is convex if and only if $\nabla^2 f(x) \succcurlyeq 0$, $\forall x \in \text{dom } f$. And if $\nabla^2 f(x) \succ 0$, $\forall x \in \text{dom } f$, then f is strictly convex.

3.1.3 Examples of convex and concave functions

- Convex.
 - Affine: ax + b, $\forall a, b \in \mathbb{R}$.
 - Exponential: e^{ax} , $\forall a \in \mathbb{R}$.
 - Powers: x^a , $\forall a \geq 0$ or $a \leq 0$.
 - Negative entropy: $x \log x$ on \mathbb{R}_{++} .
 - All Norms: $||x||_p$.
- Concave.
 - Affine: ax + b, $\forall a, b \in \mathbb{R}$.
 - Powers: $x^a, \forall 0 \le a \le 1$.
 - Negative entropy: $x \log x$ on \mathbb{R}_{++} .

3.1.4 Operations that preserve convexity

- Positive weighted sum and composition with affine function
 - Nonnegative multiple: αf is convex if f is convex and $\alpha \geq 0$.
 - Sum: $f_1 + f_2$ is convex if f_1, f_2 are convex.

- Composition with affine function: f(Ax + b) is convex if g is convex.
- Pointwise maximum: If f_1, f_2, \dots, f_m are convex, then $f(x) = \max\{f_1(x), \dots, f_m(x)\}$ is convex.
- Pointwise supermum: If f(x,y) is convex in x for each $y \in \mathcal{A}$, then $g(x) = \sup_{u \in \mathcal{A}} f(x,y)$ is convex.
- Composition with scalar functions: $g: \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R} \to \mathbb{R}$ and f(x) = h(g(x)). f is convex if
 - -g and f are convex and \tilde{h} is nondecreasing.
 - -g is concave, h is convex and \tilde{h} is nonincreasing.
- Minimization: If f(x,y) is convex in (x,y) and C is a convex set, then $g(X) = \inf_{y \in C} f(x,y)$ is convex. Distance to a set: $dist(x,S) = \inf_{y \in S} ||x y||$ is convex if S is convex.
- Perspective: The perspective of a function $f: \mathbb{R}^n \to \mathbb{R}$ is the function $g: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$.

$$g(x,t) = tf(\frac{x}{t}), \text{ dom } g = \{(x,t) | \frac{x}{t} \in \text{dom } f, t > 0 \}$$

g is convex if f is convex.

3.2 Convex Optimization Problems

3.2.1 Optimization problem in standard form

$$\min \quad f_0(x)$$
s.t.
$$\begin{cases}
f_i(x) \le 0, & \forall i = 1, 2, \dots, m \\
h_i(x) = 0, & \forall i = 1, 2, \dots, p
\end{cases}$$

- $f_i: \mathbb{R}^n \to \mathbb{R}$: are inequality constraint functions.
- $h_i: \mathbb{R}^n \to \mathbb{R}$: are equality constraint functions.
- Optimal value:

$$p^* = \inf\{f_0(x)|f_i(x) \le 0, \ \forall i = 1, 2, \dots, m. \ h_i(x) = 0, \ \forall i = 1, 2, \dots, p\}$$

 $p^* = \infty$, if problem is infeasible; $p^* = -\infty$, if problem is unbounded below.

3.2.2 Local and global optimal

Any locally optimal point of a convex problem is (globally) optimal.

Proof:

Suppose x is locally optimal and y is optimal with $f_0(y) < f_0(x)$. x is locally optimal means there is an R > 0 such that

$$(z \text{ is feasible}) ||z - x||_2 \le R \Rightarrow f_0(z) \ge f_0(x)$$

Consider $z = \theta y + (1 - \theta)x$ with $\theta = \frac{R}{2||y - x||_2}$. $||y - x||_2 > R$, so $0 < \theta < 1/2$. z is a convex combination of two feasible points, and $||z - x||_2 = R/2$, hence z is feasible.

$$f_0(z) \le \theta f_0(y) + (1 - \theta) f_0(x) < f_0(x)$$

which contradicts our assumption that x is locally optimal.

- x is optimal if and only if it's feasible and $\nabla f_0(x)^T(y-x) \geq 0$, $\forall feasible y$.
- Unconstrained problem: x is optimal if and only if $x \in \text{dom } f, \nabla f_0(x) = 0$.
- Equality constrained problem: x is optimal if and only if there exists a v such that

$$x \in \text{dom} f_0$$
, $Ax = b$, $\nabla f_0(x) + A^T x = 0$

• Minimization over nonnegative orthant: x is optimal if and only if

$$x \in \text{dom} f, x \succcurlyeq 0, \begin{cases} \nabla f_0(x)_i \ge 0, \ x_i = 0 \\ \nabla f_0(x)_i = 0, \ x_i > 0 \end{cases}$$

3.3 Unconstrained Minimization

3.3.1 Unconstrained minimization

minimization f(x)

- f is convex and twice differentiable, hence dom f is open.
- Assume that optimal value $p^* = \inf_x f(x)$ is attained and finite.
- Unconstrained minimization methods: Produce sequence of points $x^{(k) \in \text{dom} f, \ \forall k=0,1,\cdots}$ with

$$f(x^{(k)} \to p^*)$$

can be interpreted as iterative methods for solving optimality condition

$$\nabla f(x^*) = 0$$

3.3.2 Initial point and sublevel set

- $x^{(0)} \in \text{dom} f$.
- Sublevel set $S = \{x | f(x) \le f(x^{(0)})\}$ is closed.
- Second condition is hard to verify, except when all sublevel sets are closed:
 - Equivalent to condition that epi f is closed.
 - True if dom $f = \mathbb{R}^n$.
 - True if $f(x) \to \infty$ as $x \to \text{bddom } f$.

3.3.3 Strong convexity and implications

• f is strongly convex on S if there exists an m > 0 such that

$$\nabla^2 f(x) \succeq mI, \ \forall x \in S$$

• Implications:

$$f(y) \geq f(x) + \nabla f(x)^T (y-x) + \frac{m}{2} ||x-y||_2^2, \ \forall x,y \in S$$

Hence, S is bounded.

 $-p^* > -\infty$, and

$$f(x) - p^* \le \frac{1}{2m} ||\nabla f(x)||_2^2, \ \forall x \in S$$

3.3.4 Descent methods

Algorithm:

Algorithm 1 General descent methods.

- 1: Given: a starting point $x \in \text{dom } f$.
- 2: repeat
- 3: 1. Determine a descent direction Δx .
- 4: 2. Line search. Choose a step size t > 0.
- 5: 3. Update. $x := x + t\Delta x$.
- 6: **until** stopping criterion is satisfied.

3.3.5 Line search types

• Exact line search:

$$t = argmin_{t>0} f(x + t\Delta x)$$

• Backtracking line search (with parameters $\alpha \in (0, 1/2), \beta \in (0, 1)$): Starting at t = 1, repeat $t := \beta t$ until

$$f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x$$

3.3.6 Gradient descent method

Algorithm:

Algorithm 2 Gradient descent method.

- 1: Given: a starting point $x \in \text{dom } f$.
- 2: repeat
- 3: $1. \ \Delta x := -\nabla f(x).$
- 4: 2. Line search. Choose step size t via exact or backtracking line search.
- 5: 3. Update. $x := x + t\Delta x$.
- 6: **until** stopping criterion is satisfied.
 - Stopping criterion usually of teh form $||\nabla f(x)||_2 \leq \epsilon$.
 - Convergence result: for strong convex f,

$$f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$$

 $c \in (0,1)$ depends on $m, m^{(0)}$, line search type.

3.3.7 Steepest descent method

$$\Delta x_{nsd} = argmin\{\nabla f(x)^T v \mid ||v|| = 1\}$$

- For small v, $f(x+v) \approx f(x) + \nabla f(x)^T v$.
- Direction Δx_{nsd} is unit-norm step with most negative directional derivative.
- General descent method with $\Delta x = \Delta x_{sd}$.
- Convergence properties are similar to gradient descent.

3.3.8 Newton step

$$\Delta x_{nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

• $x + \Delta x_{nt}$ minimizes second-order approximation.

$$\hat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v$$

• $x + \Delta x_{nt}$ solves linearized optimality condition.

$$\nabla f(x+v) \approx \nabla \hat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$$

• Δx_{nt} is steepest descent direction at x in local Hessian norm.

$$||u||_{\nabla^2 f(x)} = (u^T \nabla^2 f(x)u)^{1/2}$$

3.3.9 Newton decrement

$$\lambda(x) = (\nabla f(x)^T \nabla^2 f(X)^{-1} \nabla f(x))^{1/2}$$

- A measure of the proximity of x to x^* .
- Gives an estimate of $f(x) p^*$, using quadratic approximation \hat{f} .

$$f(x) - \inf_{y} \hat{f}(y) = \frac{1}{2}\lambda(x)^{2}$$

• Equal to the norm of the Newton step in the quadratic Hessian norm.

$$\lambda(x) = (\Delta x_{nt}^T \nabla^2 f(x) \Delta x_{nt})^{1/2}$$

• Direction derivative in teh Newton direction:

$$\nabla f(x)^T \Delta x_{nt} = -\lambda(x)^2$$

3.3.10 Newton's method

Algorithm:

Algorithm 3 Newton's method.

- 1: Given: a starting point $x \in \text{dom } f$, tolerance $\epsilon > 0$.
- 2: repeat
- 3: 1. Compure the Newton step and decrement.
- 4: $\Delta x_{nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \ \lambda^2 := \nabla f(x)^T \nabla^2 f(X)^{-1} \nabla f(x).$
- 5: 2. Stopping criterion. Quit if $\lambda^2/2 \le \epsilon$.
- 6: 3. Line search. Choose step size t by backtracking line search.
- 7: 4. Update. $x := x + t\Delta x_{nt}$

Newton iterates for $\tilde{f}(y) = f(Ty)$ with starting point $y^{(0)} = T^{-1}x^{(0)}$ are

$$y^{(k)} = T^{-1}x^{(k)}$$

3.3.11 Classical convergence analysis

Assumptions

- f is strongly convex on S with constant m.
- $\nabla^2 f$ is Lipschitz continuous on S, with constant L > 0:

$$||\nabla^2 f(x) - \nabla^2 f(y)||_2 \le L||x - y||_2$$

(L measures how well f can be approximated by a quadratic function.)

Outline

There exists constants $\eta \in (0, m^2/L), \gamma > 0$ such that

• If $||\nabla f(x)||_2 \ge \eta$, then

$$f(x^{(k+1)}) - f(x^{(k)}) \le -\gamma$$

• If $||\nabla f(x)||_2 < \eta$, then

$$\frac{L}{2m^2}||\nabla f(x^{(k+1)})||_2 \le (\frac{L}{2m^2}||\nabla f(x^{(k)})||_2)^2$$

Damped Newton phase $(||\nabla f(x)||_2 \ge \eta)$

- Most iterations require backtracking steps.
- Function vales decreases by at least γ .
- If $p^* > -\infty$, this phase ends after at most

$$(f(x^{(0)}) - p^*)/\gamma$$

iterations.

Quadratically convergent phase $(||\nabla f(x)||_2 < \eta)$

- All iterations use step size t = 1.
- $||\nabla f(x)||_2$ converges to zero quadratically: if $||\nabla f(x^{(k)})||_2 < \eta$, then

$$\frac{L}{2m^2}||\nabla f(x^l)||_2 \le (\frac{L}{2m^2}||\nabla f(x^k)||_2)^{2^{l-k}} \le (\frac{1}{2})^{2^{l-k}}, \ l \ge k$$

Conclusion

Number of iterations until $f(x) - p^* \le \epsilon$ is bounded above by

$$\frac{f(x^{(0)}) - p^*}{\gamma} + \log_2 \log_2(\epsilon_0/\epsilon)$$

- γ, ϵ_0 are constants that depend on $m, L, x^{(0)}$.
- Second term is small (of the order of 6) and almost constant for practical purposes.
- In practice, constants m,L (hence γ,ϵ_0) are usually unknown.
- Provides qualitative insight in convergence properties, i.e., explains two algorithm phases.

3.4 Duality

3.4.1 Lagrange dual function

$$\min \quad f_0(x)$$
s.t.
$$\begin{cases}
f_i(x) \le 0, & \forall i = 1, 2, \dots, m \\
h_i(x) = 0, & \forall i = 1, 2, \dots, p
\end{cases}$$

 $x \in \mathbb{R}^n$, domain \mathcal{D} , optimal value p^* .

• Lagrangian: $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$, with $\text{dom} L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p$

$$L(x, \lambda, v) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{m} v_i h_i(x)$$

• Lagrange dual function $g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$

$$g(\lambda, v) = \inf_{x \in \mathcal{D}} L(x, \lambda, v)$$
$$= \inf_{x \in \mathcal{D}} (f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^m v_i h_i(x))$$

- g is concave, can be $-\infty$ for some λ, v .
- Lower bound property: $\lambda \geq 0$, then $g(\lambda, v) \leq p^*$.

3.4.2 Least-norm solution of linear equations

$$\min \quad x^T x$$

s.t.
$$Ax = b$$

Lagrangian is

$$L(x,v) = x^T x + v^T (Ax - b)$$

To minimize L over x, set gradient equal to zero:

$$\nabla_x L(x, v) = 2x + A^T v = 0 \Rightarrow x = -\frac{1}{2}A^T v$$

Plug it in L to obtain g:

$$g(v) = L(-\frac{1}{2}A^T)$$
$$= -(\frac{1}{4})v^T A A^T v - b^T v$$

A concave function of v.

• Lower bound property: $p^* \ge -(\frac{1}{4})v^TAA^Tv - b^Tv$, $\forall v$.

3.4.3 Standard form LP

$$\min \quad c^T x$$
s.t. $Ax = b, \ x \ge 0$

Lagrangian is

$$L(x, v) = c^T x + v^T (Ax - b) - \lambda^T x$$
$$= -b^T v + (c + A^T v - \lambda)^T x$$

L is affine in x, hence

$$g(\lambda, v) = \inf_{x \in \mathcal{D}} L(x, \lambda, v) = \begin{cases} -b^T v, & A^T v = \lambda + c = 0\\ -\infty, & \text{otherwise} \end{cases}$$

- g is linear on affine domain $\{(\lambda, v)|A^Tv \lambda + c = 0\}$, hence concave.
- Lower bound property: $p^* \ge -b^T v$ if $A^T v + c \ge 0$.

3.4.4 Two-way partitioning

$$\min \quad x^T W x$$
 s.t. $x_i^2 = 1, \ \forall i = 1, 2, \cdots, n$

Partition $\{1, 2, \dots, n\}$ in two sets; W_{ij} is cost of assigning i, j to the same set; $-W_{i,j}$ is the cost of assigning to different sets.

$$g(v) = \inf_{x \in \mathcal{D}} (x^T W x + \sum_i v_i (x_i^2 - 1))$$

$$= \inf_{x \in \mathcal{D}} (x^T (W + diag(v)) x - \mathbf{1}^T v)$$

$$= \begin{cases} -\mathbf{1}^T v, & W + diag(v) \geq 0 \\ -\infty, & \text{otherwise} \end{cases}$$

• Lower bound property: $p^* \ge -\mathbf{1}^T v$ if $W + diag(v) \ge 0$.

3.4.5 Equality constrained norm minimization

$$\min \quad ||x||$$
 s.t.
$$Ax = b$$

$$g(v) = \inf_{x \in \mathcal{D}} (||x|| - v^T Ax + b^T x)$$

$$g(v) = \inf_{x \in \mathcal{D}} (||x|| - v^T Ax + b^T x)$$
$$= \begin{cases} b^T v, & ||A^T v||_* \le 1\\ -\infty, & \text{otherwise} \end{cases}$$

- Where $||v||_* = \sup_{||u|| \le 1} u^T v$ is dual norm of $||\cdot||$.
- Lower bound property: $p^* \ge b^T v$ if $||A^T v||_* \le 1$.

3.4.6 Slater's constraint qualification

$$\min \quad f_0(x)$$
s.t.
$$\begin{cases}
f_i(x) \le 0, & \forall i = 1, 2, \dots, m \\
Ax = b
\end{cases}$$

If it's strictly feasible, i.e.,

$$\exists x \in \text{relint} \mathcal{D}$$
s.t.
$$\begin{cases} f_i(x) < 0, \ \forall i = 1, \dots, m \\ Ax = b \end{cases}$$

(relint \mathcal{D} is relative interior of set \mathcal{D} .)

• Guarantee that the dual opyimum is attained (if $p^* > -\infty$).

3.4.7 Karush-Kuhn-Tucker (KKT) conditions

The following four conditions are called KKT conditions (with differentiable f_i, h_i):

• Primal constraints:

$$\begin{cases} f_i(x) \le 0, \ \forall i = 1, \dots, m \\ h_i(x) = 0, \ \forall i = 1, \dots, p \end{cases}$$

• Dual constraints:

$$\lambda \succcurlyeq 0$$

• Complementary slackness:

$$\lambda_i^* f_i(x^*) = 0, \ \forall i = 1, \cdots, m$$

• Gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^m v_i \nabla h_i(x) = 0$$

If strong duality holds and x, λ, v are optimal, then they must satisfy the KKT conditions.

- If $\tilde{x}, \tilde{\lambda}, \tilde{v}$ satisfy KKT conditions for a convex problem, then they are optimal
 - From complementary slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{v})$.
 - From fourth condition and convexity: $g(\tilde{\lambda}, \tilde{v}) = L(\tilde{x}, \tilde{\lambda}, \tilde{v})$.

Hence,
$$f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{v}).$$

• If Slater's condition is satisfied: x is optimal if and only if there exists λ, v that satisfy KKT conditions.