# **ESc201: Introduction to Electronics**

# Metal Oxide Semiconductor Field-Effect Transistors (MOSFETs)

Dr. Y. S. Chauhan
Dept. of Electrical Engineering
IIT Kanpur

#### Introduction

#### **Classification of MOSFET**

P channel
 ✓ Enhancement type
 ✓ Depletion type
 N channel
 ✓ Enhancement type
 ✓ Depletion type

Widely used in IC circuits

#### **MOSFET**

#### Metal Oxide Semiconductor Field Effect Transistor



An NMOSFET

#### **Device Structure of Enhancement-Type NMOS**



L: 1 to 10 µm

W: 2 to 500 µm

Thickness of oxide layer: 0.02 to 0.1 µm

#### **Device Structure of Enhancement-Type NMOS**



### **Symbols**



#### **NMOSFET**

- (a) Circuit symbol for the *n*-channel enhancement-type MOSFET.
- (b) Modified circuit symbol with an arrowhead on the source terminal to distinguish it from the drain and to indicate device polarity (i.e., *n* channel).
- (c) Simplified circuit symbol to be used when the source is connected to the body or when the effect of the body on device operation is unimportant.

# **Symbols**





# **Mostly** Used

**NMOSFET** 





# **PMOSFET**

# **Physical Operation**

- Creating an *n* channel
- Drain current controlled by  $v_{DS}$
- Drain current controlled by  $v_{GS}$

#### **Creating a Channel for Current Flow**



- The enhancement-type NMOS transistor with a positive voltage applied to the gate.
- $\succ$  An *n* channel is induced at the top of the substrate beneath the gate.

# Drain Current Controlled by Small Voltage $v_{DS}$



- > An NMOS transistor with  $v_{GS} > V_t$  and with a small  $v_{DS}$  applied.
- > The channel depth is uniform.
- > The device acts as a resistance.
- > The channel conductance is proportional to effective voltage.
- $\succ$  Drain current is proportional to  $(v_{GS} V_t) v_{DS}$ .

### $v_{DS}$ is increased



- $\triangleright$  Operation of the enhancement NMOS transistor as  $v_{DS}$  is increased.
- > The induced channel acquires a tapered shape.
- $\succ$ Channel resistance increases as  $v_{DS}$  is increased.
- >Drain current is controlled by both of the two voltages.

#### **Channel Pinch- Off**

- · Channel is pinched off
  - > Inversion layer disappeared at the drain point
  - > Drain current is n't disappeared
- Drain current is saturated and only controlled by the  $v_{GS}$
- Triode region and saturation region

# Drain Current Controlled by $v_{GS}$

- $v_{GS}$  creates the channel.
- Increasing  $v_{GS}$  will increase the conductance of the channel.
- At saturation region only the  $v_{GS}$  controls the drain current.
- At subthreshold region, drain current has the exponential relationship with  $v_{\mathcal{GS}}$

#### **Transfer Characteristics**



#### **I-V** Characteristics



 $\begin{array}{c}
+ \\
v_{GS} \\
- \\
\hline
G \\
\downarrow v_{G} = 0
\end{array}$ 

# Regions of Transistor 'Operation'

- Cut off region  $(v_{GS} < V_t)$ 
  - Input voltage less than threshold voltage



# Regions of Transistor 'Operation'

• Triode region ( $v_{GS} > V_{T}$  and  $v_{DS} < v_{GS} - V_{T}$ )

- Linear relationship between  $i_{DS}$  and  $v_{DS}$  reflects resistive

behaviour for small v<sub>DS</sub>

 $V_{\rm T}$ : Threshold Voltage



# Regions of Transistor 'Operation'

- Saturation region  $(v_{GS} > V_T \text{ and } v_{DS} \ge v_{GS} V_T)$ 
  - Transistor is 'on'
  - Drain bias is above saturation voltage
  - Amplifier should operate in this region







The current  $i_{DS}$  begins to saturate as  $v_{DS}$  approaches the value of  $v_{GS} - V_T$ .

 $V_{\rm T}$ : Threshold Voltage

# Saturation region ( $v_{GS} > V_{T}$ and $v_{DS} > v_{GS} - V_{T}$ )



The current  $i_{DS}$  begins to saturate as  $v_{DS}$  approaches the value of  $(v_{GS} - V_T)$ .

The saturation region of MOSFET Operation

MOSFET operates in saturation region when following

two conditions are met:

$$v_{GS} > V_T$$
 $v_{DS} > v_{GS} - V_T$ 

# Different values of $v_{\rm GS}$ (> $V_{\rm t}$ ) provides different $i_{\rm DS}$ and $v_{\rm DS}$ Characteristics



#### The Switch Current Source MOSFET Model







**MOS Device** 

**Open State** 

**Closed State** 

#### The Switch Current Source MOSFET Model



When 
$$v_{GS} > V_{T}$$
 and  $v_{DS} > v_{GS} - V_{T}$  the amount of current provided by the source is

$$i_D = \frac{K}{2} \left( v_{GS} - V_T \right)^2$$

Unit of K: A/V<sup>2</sup>

where 
$$K = k_n' \frac{W}{L} = \mu_n C_{ox}$$
 W: gate width; L: gate Length

k'<sub>n</sub>: Constant related to MOSFET properties (A/V<sup>2</sup>)

**µ**<sub>n</sub>: Electron mobility in channel

Cox: Capacitance per unit area of parallel plate capacitor by gate electrode and channels

**Example-1:** Determine the current  $i_{DS}$  for the circuit shown below. Assume:  $K = 1 \text{mA/V}^2$  and  $V_T = 1 \text{V}$ 



$$i_D = \frac{K}{2} \left( v_{GS} - V_T \right)^2$$

$$i_D = \frac{1}{2} (2 - 1)^2$$

$$i_D = 0.5$$
 mA

### **Example-2:** Assume: $K = 1 \text{mA/V}^2$ and $V_T = 1 \text{V}$



What should be the minimum value of the drain to source  $v_{DS}$  for which MOSFET will operate in saturation region. (Assume  $V_{GS}$  is 2V)

#### For the MOSFET to operate in saturation:

$$egin{aligned} 
u_{GS} > V_T \ 
u_{DS} > 
u_{GS} - V_T \end{aligned}$$

$$v_{DS} > 1$$
 V

### **Example-3:** Assume: $K = 1 \text{mA/V}^2$ and $V_T = 1 \text{V}$



What is maximum value of  $v_{GS}$  for which MOSFET will operate in saturation region

#### For the MOSFET to operate in saturation:

$$\begin{aligned} v_{GS} > V_T \\ v_{DS} > v_{GS} - V_T \end{aligned} \qquad 5$$

$$5 > v_{GS} - 1$$

$$v_{GS} < 6 \quad V$$

$$v_{GS} > 1$$
 V

$$1 V < v_{GS} < 6 V$$

# p Channel Device

- Structure of p channel device
  - The substrate is *n* type and the inversion layer is *p* type.
  - > Carrier is hole.
  - > Threshold voltage is negative.
  - $\triangleright$  All the voltages and currents are opposite to the ones of n channel device.
  - Physical operation is similar to that of n channel device.

# **Complementary MOS or CMOS**



- $\triangleright$  The PMOS transistor is formed in n well.
- Another arrangement is also possible in which an n-type body is used and the n device is formed in a p well.
- >CMOS is the most widely used of all the analog and digital IC circuits.

### Large Signal Equivalent Circuit Model for NMOS



Large Signal Equivalent circuit model of the *n*-channel MOSFET in saturation, incorporating the output resistance  $r_o$ . The output resistance models the linear dependence of  $i_D$  on  $v_{DS}$ 

# **MOSFET Circuit: DC Analysis**

- a. Assuming device operates in saturation thus  $i_D$  satisfies with  $i_D \sim v_{GS}$  equation.
- b. According to biasing method, write voltage loop equation.
- c. Combining above two equations and solve these equations.
- d. Usually we can get two value of  $v_{GS}$ , only the one of two has physical meaning.
- e. Checking the value of  $v_{DS}$ 
  - i. if  $v_{DS} \ge v_{GS} V_t$ , assumption is correct.
  - ii. if  $v_{DS} \le v_{GS} V_t$ , assumption is not correct.

#### **Example 4 (DC Analysis of MOSFET Circuits)**

Design the circuit shown in figure so that the MOSFET operates in saturation region with  $I_D = 0.4$  mA and  $V_D = 1$  V. The MOSFET has

$$V_t = 2$$
 V,  $\mu_n C_{0x} = 20~\mu\text{A/V}^2$  ,  $L = 10~\mu\text{m}$  and  $W = 400~\mu\text{m}$  .

$$r_0 \rightarrow \infty$$



$$R_{\rm D} = \frac{5-1}{0.4 \, \text{mA}} = 10 \, \text{K}\Omega$$

$$I_{D} = \frac{1}{2} \mu_{0} C_{0x} \frac{W}{L} (V_{GS} - V_{t})^{2}$$

$$0.4 \text{ mA} = \frac{1}{2} 20 \times 10^{-6} \frac{A}{V^2} \cdot \frac{400}{10} (V_{GS} - 2)^2$$

$$(V_{GS} - 2)^2 = 1 \implies V_{GS} - 2 = \pm 1$$

or 
$$V_{GS} = +1 \text{ V or } +3 \text{ V}$$

$$V_{GS} = +1 \text{ V or } +3 \text{ V}$$



•The first solution is not consistent with our initial assumption of operation in the saturation mode  $V_t$  (=2 V) Therefore



$$V_{GS} = 3 V$$

$$V_{GS} = 3 V$$

$$\Rightarrow V_{S} = -3 V$$

$$R_{S} = \frac{V_{S} - (-5)}{I_{S}} = \frac{V_{S} + 5}{I_{D}}$$

$$=\frac{-3+5}{0.4\,\mathrm{mA}}=5\,\mathrm{K}\Omega$$

# **Example 5 (DC Analysis of MOSFET Circuits)**

Design the circuit shown in figure for MOSFET to operate in saturation with drain voltage of 0.1 V. Determine  $R_D$ . The MOSFET has  $V_t = 1 \text{ V}$  and kn  $W/L = 1 \text{ mA/V}^2$ . Neglect  $r_0$ .



$$egin{aligned} 
u_{GS} > V_T \ 
u_{DS} > 
u_{GS} - V_T \ 
V_T > 
u_{GD} \end{aligned}$$

$$V_D = +0.1 \text{ V}$$
  $V_{GS} = 5 \text{ V} \text{ (>V}_T \text{)}$  MOSFET is ON

$$V_{GD} = 5 - 0.1 = 4.9 \text{ V}$$

$$V_T < v_{GD}$$

**MOSFET** is not in saturation

# **Example 6 (DC Analysis of MOSFET Circuits)**

Design the circuit as shown in figure so that the MOSFET operates in saturation region with  $I_D=0.4$  mA. The MOSFET has  $V_t=2$  V,  $\mu_n C_{0x}=20~\mu\text{A/V}^2~$  ,  $L=10~\mu\text{m}$  and  $~W=100~\mu\text{m}$ . Neglect  $r_0$  .





$$I_D = 0.4 \text{ mA}, V_t = 2 \text{ V}, \mu_n C_{0x} = 20 \mu \text{A/V}^2$$
  $L = 10 \mu \text{m} \text{ and } W = 100 \mu \text{m}.$ 

$$I_{D} = \frac{1}{2} \mu_{0} C_{0x} \frac{W}{L} (V_{GS} - V_{t})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{0} C_{0x} \frac{W}{L} (V_{GS} - V_{t})^{2} \quad 0.4 \text{ mA} = \frac{1}{2} 20 \times 10^{-6} \cdot \frac{100}{10} (V_{GS} - 2)^{2}$$

$$(V_{GS} - 2)^2 = 4 \quad \Rightarrow \quad V_{GS} - 2 = \pm 2$$

$$V_{GS} = 0$$
 or 4 V

$$\Rightarrow V_{GD} < V_{t}$$



#### **MOSFET** is in saturation

$$V_{GS} = 4 V$$

$$\Rightarrow$$
  $V_D = 4 V$ 

$$R = \frac{10 - V_D}{0.4 \text{ mA}}$$

$$R = \frac{10 - V_D}{0.4 \text{ mA}} = \frac{10 - 4}{0.4 \text{ mA}} = 15 \text{ K}\Omega$$

