PATENT ABSTRACTS OF JAPAN

(11) Publication number:

04302836 A

(43) Date of publication of application: 26.10.92

(51) Int. CI

G11B 11/10 C04B 41/89

(21) Application number: 03092974

(71) Applicant:

KYOCERA CORP

(22) Date of filing: 29.03.91

(72) Inventor:

ISHII YOSHINOBU ARIMUNE HISAO

(54) MAGNETO-OPTICAL RECORDING MEDIUM

(57) Abstract:

PURPOSE: To obtain a high heat insulating effect and C/N value as well as high sensitivity by forming the 2nd dielectric layer among 1st dielectric layer, dielectric layer, and reflection layer on a substrate of yttrium sialon having a specific thickness.

CONSTITUTION: The magneto-optical recording medium R is made into at least a 4-layered structure successively laminated with the 1st dielectric layer 2, the recording layer 3, the 2nd dielectric layer 4, and the reflection layer 5 on the light transparent substrate 1. The 2nd dielectric layer 4 among the respective layers thereof is formed of the yttrium sialon having 150 to 500Å thickness. The magneto-optical recording medium which has the high heat insulating effect, can attain the high C/N value and high sensitivity, has a wide recording power margin and has high reliability is obtd. in this way.

COPYRIGHT: (C)1992,JPO&Japio

BEST AVAILABLE COPY

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-302836

(43)公開日 平成4年(1992)10月26日

(51) Int.Cl.5

識別記号 庁内整理番号

FΙ

技術表示箇所

G 1 1 B 11/10

A 9075-5D

C 0 4 B 41/89

Z 8821-4G

審査請求 未請求 請求項の数1(全 4 頁)

(21)出願番号

特願平3-92974

(22)出願日

平成3年(1991)3月29日

(71)出願人 000006633

京セラ株式会社

京都府京都市山科区東野北井ノ上町5番地

の22

(72)発明者 石井 義伸

滋賀県八日市市蛇溝町長谷野1166番地の6

京セラ株式会社滋賀八日市工場内

(72)発明者 有宗 久雄

滋賀県八日市市蛇溝町長谷野1166番地の6

京セラ株式会社滋賀八日市工場内

(54)【発明の名称】 光磁気記録体

(57)【要約】

【目的】 高い断熱効果、高いC/N値、及び高感度の 光磁気記録体を提供すること。

【構成】 透光性の基板上に第1誘電体層、記録層、第2誘電体層、及び反射層を順次積層した光磁気記録体において、前記第2誘電体層を厚さ150~500 Aのイットリウム・サイアロンで形成したことにより、高い断熱効果有し、かつ48dB以上の高いC/N値及び記録パワー8 my以下の高感度を実現でき、幅広い記録パワーマージンを得ることができる。

【特許請求の範囲】

【請求項1】 透光性の基板上に第1誘電体層、記録 層、第2誘電体層、及び反射層を順次積層した光磁気記 録体において、前記第2誘電体層を厚さ150~500 人の イットリウム・サイアロンで形成したことを特徴とする 光磁気記録体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、基板上に第1誘電体 層、記録層、第2誘電体層、及び反射層を順次積層して 10 ガラス製基板も用いることができる。 なる光磁気記録体において、第2誘電体層にイットリウ ム・サイアロンを用いた新規な光磁気記録体に関する。 [0002]

【従来の技術とその問題点】レーザ光を用いて記録・再 生・消去等を行う光磁気記録体は、透光性の基板上に第 1誘電体層、記録層、第2誘電体層、及び反射層が順次 積層された4層構造が一般的であり、第1及び第2誘電 体層はカーエンハンスメント効果によりカー回転角を増 大させるために設ける。

【0003】特に第2誘電体層は、記録層と反射層との 20 S, Sb₂ S₁, Si₁ N₄ 等も用いうる。 間のカーエンハンスメント効果によりカー回転角を増大 させ、読み出し性能を向上させる 役割を果たすととも に、記録層の保護層としての働き、及び反射層に対する 断熱効果により、レーザ光の熱が反射層側へ逃げるのを 極力防止し、レーザ光を無駄なく利用することで書き込 み性能も向上させるなどの重要な役割を果たす。

【0004】しかしながら、第2誘電体層を断熱層とし てみた場合、その厚みは厚ければ厚いほどよく、また熱 伝導率は低ければ低いほどよいが、層厚を厚くしすぎる と第2誘電体層内で光が多重に干渉する際に、層内で光 30 DyFeCo, NdGdDyFe, NdDyFeCo, が吸収され、反射光量が減少するという問題が生じる。 また、逆に薄くしすぎると光学的には良好でも断熱効果 が不十分となり、光磁気記録体の記録感度が大幅に低減 するという問題が生じる。したがって、第2誘電体層と して従来から用いられているAIN膜であればせいぜい 200 ~300 A程度の狭い範囲でしか有効でなく、また、 たとえその範囲内でも記録パワーマージンが不十分であ 、るという問題があった。

[0005]

【発明の目的】そこで、本発明は上記問題点を解消し、 高い断熱効果、高いC/N値、及び高感度の光磁気記録 体を提供することを目的とする。

[0006]

【課題を解決するための手段】上記目的を達成するため に、本発明の光磁気記録体は、透光性の基板上に第1誘 電体層、記録層、第2誘電体層、及び反射層を順次積層 した光磁気記録体において、前記第2誘電体層を厚さ15 0~500 人のイットリウム・サイアロンで形成したこと を特徴とする。

[0007]

【実施例】本発明に係る実施例を図面に基づき詳細に説 明する。図1に示すように本実施例に適用した光磁気記 録体Rは、直径約130mm の円盤状で透光性の基板1上 に、第1誘電体層2、記録層3、第2誘電体層4、及び 反射層 5 が順次積層された少なくとも 4 層構造となって いる。なお、上記各層はマグネトロンスパッタ装置を用 い、Ar圧0.40~0.65Paで成膜した。

【0008】ここで、基板1は膜厚約1.2mm のポリカー ボネートの樹脂製基板であり、この他に強化ガラス等の

【0009】第1誘電体層2は膜厚約1100点の非晶質の イットリウム・サイアロンである。このイットリウム・ サイアロンは、Y. ·Si. ·Al. ·O. ·N. で表 0 < d < 0.5, 0.1 < e < 0.7, a + b + c + d + e =1の条件を満たす組成である。本実施例ではa=0.04. b = 0.60, c = 0.04, d = 0.07, e = 0.25 rbs. a お、第1誘電体層2は上記材料の他にSiO:, Si O. CeO₂, ZrO₂, TiO₂, Bi₂O₃, Zn

【0010】記録層3は、基板1の面に対し垂直な磁化 方向を有する垂直磁化膜であり、主に希土類元素と鉄族 元素よりなる非晶質合金を用いるが、本実施例では厚さ 約200 AのGdDyFeを用いる。なお、記録層はT b, Dy, Gd, Hoの内少なくとも1種類の元素と、 Fe,Coのいずれか一方もしくは両方の元素とを含む ものであり、例えばGdDyFeTi、GdDyFe、 GdTbFe, TbFeCo, DyFeCo, GdTb Dyfe, GdTbfeCo, TbDyfeCo, Gd NdGdDyFeCo等の組成を有する。

【0011】第2誘電体層4は第1誘電体層2と同様な 組成の材料を用いることができるが、本実施例ではY o.o.・Sio.s.・Alo.o.・Oo.or・No.z.を用い、厚 さを100 ~600 人に変えて特性を測定した。なお、上記 組成の第2誘電体層4の屈折率は約2.3 であり、吸収係 数は約0.01である。これらの特性値は主にSiとNとの 組成比により若干変化するが、膜応力や信頼性等を考慮 してペストの組成比としている。

【0012】反射層 5 は厚さ約500 AのAlであり、そ の他にTi, Cr, Cu, Ag, Au等の金属単体やそ れらの合金、又はその低酸化物を用いることができる。 【0013】次に、第2誘電体層4の厚みを種々に変え て特性を測定した結果を図2に示す。光磁気記録体Rの 中心から30mmの位置を測定位置とし、回転数2400rpm 、 記録周波数4.9MHz、記録デューティ33%の条件で、C/ N値及びレーザの記録パワーを測定したところ、C/N 値が48dB以上(ISO規格では45dB以上が要求される) でかつ実用的な記録パワーである8mW 以下を実現できる 50 第2誘電体層4の厚みは100~500 Åであることが判明

-238-

した.

Ź

5

:

ን

₹

)

)

ŧ

【0014】比較のために、第2誘電体層4に屈折率約2.0、吸収係数約0.05のAlo. No. を用いた場合の測定結果を図3に示す。なお、他の構成部材は上述した通りであるので説明を省略する。この図から明らかなように、C/N値48dB以上でかつ記録パワー8 以下を実現できるAlN膜は200~300 Åであり、本実施例のイットリウム・サイアロンに比してかなり狭い範囲の膜厚に限られる。

.3

【0015】実用上、低い記録パワーでC/N値が立ち上がり、高い記録パワーまでC/N値が低下しないことが望ましいが、図4に示すように、C/N値が48dB以上の値をとる記録パワーの範囲を Δ P(=P2-P1)とすると、図5に示すように、第2誘電体層4がイットリウム・サイアロンの場合、 Δ Pが3.5 mF以上の膜厚範囲は150~500 人の広い範囲で可能である。一方、第2誘電体層4が Δ 1 Nの場合では、上記条件下では250~450 人の狭い膜厚範囲に限られる。また、この層がイットリウム・サイアロンの場合、 Δ Pが4 mF以上でも可能であり、その膜厚範囲は250~350 Δ Pが4 aF以上でも可能であり、その膜厚範囲は250~350 Δ Pが4 aF以上でも可能であり、その膜厚範囲は250~350 Δ Pが4 mF以上でも可能で

[0016]

【発明の効果】本発明の光磁気記録体によれば、第2誘 電体層として膜厚150~500 Aのイットリウム・サイア ロンを用いたので、高い断熱効果有し、かつ48dB以上の 高いC/N値及び記録パワー8 呼以下の高感度を実現でき、幅広い記録パワーマージンを有する高信頼性の光磁気記録体を提供することができる。

【図面の簡単な説明】

【図1】本発明に係る光磁気記録体の一部断面図である。

【図2】第2誘電体層として種々に膜厚を変えたイット リウム・サイアロンを用いた場合のC/N値及び記録パワーの測定結果を示す図である。

(図3)第2誘電体層として種々に膜厚を変えたAINを用いた場合のC/N値及び記録パワーの測定結果を示す図である。

【図4】C/N値が48dB以上の記録パワーの範囲を示す図である。

【図 5】第2誘電体層がイットリウム・サイアロンもしくはA1 Nの場合における膜厚と Δ P との関係を示す図である。

【符号の説明】

City Assembly				
1		基板	2	 第1誘電
4-17	,			

20 体層

3 ・・・ 記録層 4 ・・・ 第2誘電

体層

5 ・・・ 反射層R ・・・ 光磁気記録体

[222]

[図1]

100 200 300 400 500 600 庭 /集 (点)

10<u>L</u>

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.