BUAN 6337.001: Predictive Analytics using SAS

A Report On

Frozen Pizza Brand Marketing

Submitted by:

Arvindh Arul- AXA170033

Under The Guidance of

Prof. B. Murthi

Introduction:

Pizza is undoubtedly one of the most relished food items in the United States. The Tombstone Pizza Company, a freestanding division of Kraft Foods, is one among the most popular frozen pizza brands in the country. In this report, we have captured several insights that help determine the standing that Tombstone establishes in the market against various other pizza brands.

Tombstone has a market share of 23.21% and Di Giorno tops the chart with 25.5%.

Comparing Sales Trend of Tombstone and Di Giorno in the year 2001

Understanding the contribution of Tombstones Products with respect to sales

+TMBSN FZ RGCRS PPRN 20.70Z	+TMBSN FZ RGCRS PNSCB 220Z	+TMBSN FZ TCRP FAM SSG 22.10Z	+TMBSN FZ TCRP FAM FORMT 230Z	+TMBSN TRTLC TO 19.30Z		+TMBS STFDC 26.520	CHS	+TMBSN FZ DPDSH SXPCK 37.20Z
	+TMBSN FZ RGCRS HLPPH 21.40Z	+TMBSN FZ TRTLC CKFJT 19.30Z	+TMBSN FZ RGCRS HSGHP 21.30Z	+TMBSN FZ STFDC THRMT 28.6902	FZ RC HF	MBSN CRS SPP 3.390Z		
+TMBSN FZ TCRP EXCHS 20.50Z	+TMBSN FZ STFDC PPRN 28.180Z	+TMOVR FZ RSCRT PPRN 29.80Z	+TMBLT FZ RGCRS VGT					
		+TMBSN FZ TCRI FAM PPRN 19.50Z	TCRP PPRN					
+TMBSN FZ RGCRS SPRM 22.850Z	+TMBSN FZ RGCRS DLXE 23.60Z	+TMBSN FZ RGCRS NHGRN 21.40Z	+TMBSN FZ TCRP FAM : +TMBSN FZ	3CHS +1	MBSI			
	+TMBSN FZ DPDSH MINI ASST 37.80Z	+TMBSN FZ TRTLC CSQSD 13.80Z	+TMBSN FZ RGCRS HSH	5				

PROBLEM STATEMENT-1

Determine the effect of price, display, feature and promotion on the sales of Tombstone frozen pizza

Data Preparation:

861 stores which had data for all 52 weeks were filtered to create a balanced data set for **Panel regression**.

Standardised price per unit for a unit volume equivalent was calculated so that they can compared with all other brands.

Total Volume = Volume Equivalent of a Product * Number of Units Sold **Standardised Price** = Total Cost of a Purchase / Total Volume

Multicollinearity Check:

We observe that the VIF values are well within 10 and the Collinearity Condition indices are much lesser than 100. Therefore, we can rule out multicollinearity in this model.

					Paramete	er Estimate	S			
	v	ariable		DF	Parameter Estimate	Standard Error	t Value	Pr > t	Variance Inflation	
	h	tercept		1	-11.09529	9.16668	-1.21	0.2261	(0
	а	vg_price		1	13.34401	2.53267	5.27	<.0001	2.02872	2
	s	ım_w_feature	е	1	136.76509	3.66840	37.28	<.0001	1.86582	2
	s	ım_w_displa	у	1	278.05012	4.52171	61.49	<.0001	1.16159	9
	s	ım_w_promo	tion	1	54.46818	3.87247	14.07	<.0001	2.5906	1
					Collinearit	y Diagnosti	cs			
		Condition					ortion of			
Number	Eigenvalu	- To The Total Co.	In	terce	pt avg_pri	ice sum_v	_feature	sum_w	_display	sum_w_promotion
	3.2931	1.00000	0.00	0687	20 0.000737	793	0.02200		0.02721	0.01474
1		1.91008	(0.002	0.003	346	0.10049		0.19775	0.0100
1 2	0.9026	1.91000	00					12		
	0.9026 0.5855	C 10,000,740.00	(4)	0061	38 0.000291	127	0.16444		0.77500	0.0415
2	0.5080.00	0 2.37161	0.00	0061	507 (1900a)	200	0.16444 0.69811	0.	0.77500	0.04158 0.5867

Non-Linearity Check:

These clearly shows the Non-Linear characteristics of Price. For this reason we have also added a squared price term in our model.

Panel Regression:

Based on the Hausman test, we go with Fixed effects model.

Dependent Variable: Total Units Sold/Week In a Store

Independent Variables: Weighted Price, Weighted Display, Weighted Feature, Weighted Promotion, Interaction between Display and Feature, Interaction between Display and Promotion, Interaction between Feature and Promotion, Interaction between Display, Feature and Promotion

Parameter Estimates								
Variable	DF	Estimate	Standard Error	t Value	Pr > t	Label		
Intercept	1	876.4733	30.8510	28.41	<.0001	Intercept		
avg_price	1	-83.7802	15.0070	-5.58	<.0001			
pricesq	1	9.303238	2.3335	3.99	<.0001			
sum_w_feature	1	-5.50804	7.8806	-0.70	0.4846			
sum_w_display	1	87.46746	6.6998	13.06	<.0001			
sum_w_promotion	1	15.55397	3.5379	4.40	<.0001			
INF_D	1	154.308	26.3535	5.86	<.0001			
INF_P	1	89.38004	9.9525	8.98	<.0001			
IND_P	1	-7.43432	12.4133	-0.60	0.5492			
INF D P	1	102.0227	31.6742	3.22	0.0013			

Effects of Price, Display, Feature and Price Reduction on Sales

Weighted Price: Nonlinear relationship between price and number of sheets sold is seen from the estimates. As price increases the amount spent increases to a certain limit and then decreases.

Weighted Display: As the display increases by 1% number of units sold per week in a shop increases by 87 units.

Weighted Promotion: As the promotion increases by 1% number of units sold per week in a shop increases by 15 units.

Interaction between Display and Feature: This produces a synergistic effect in number of units sold per week in a shop

Interaction between Promotion and Feature: This produces a synergistic effect in number of units sold per week in a shop

Interaction between Display, Promotion and Feature: This produces a synergistic effect in number of units sold per week in a shop

Recommendation: Featuring alone does not have a significant effect on sales. But when combined with Display or Promotion it has a significant effect than having those separately. This insight can save money when spent only for featuring.

PROBLEM STATEMENT-2

Analyze the demographic features of the most valuable customers of the Tombstone frozen pizza brand

Data Preparation & Analysis:

Panel Data has purchase information for all frozen pizza products purchased in all stores. We filter out for Tombstone and perform **RFM analysis** to segment customers who are most valuable with respect to the following 3 metrics:

- Recency: Difference between last purchase date and the latest week of year to find out how recently a purchase has been made.
- Frequency: Number of weeks a customer has made a purchase
- Monetary: Total Amount spent by customers

			Sin	nple S	tatis	tics				
Variab	le	N	Mean	Std I	Dev	Sum	Minin	num	Maximum	
MONET	ARY	1255	24.32140	19.95	297	30523	4.3	3000	172.08000	
FREQU	ENCY	1255	4.77849	3.82	058	5997	2.0	0000	31.00000	
RECEN	CY	1255	8.18247	6.82	331	10269		0	27.00000	
			MONE	TARY	FRE	EQUENC	Y RE	CENC	CY	
	MON	ONETARY 1		000 000 000 000 000		0.8700	37009 -0.328 .0001 <.00			
	FRE	FREQUENCY		0.87009 <.0001		1.0000	00 -0.345 <.00		5.53	
	RECENCY			32846		-0.3458	5-03	1.0000	00	

Since Monetary and Frequency are highly correlated we will use only Monetary and Recency to split our customers into 3 segments.

Variable	Minimum	20th Pctl	40th Pctl	60th Pctl	80th Pctl	Maximum
MONETARY RECENCY	Secretary States and The	10.0000000 2.0000000				172.0800000 27.0000000

Based on the Pareto principle, we assume that 20% of the customers contribute more revenue to the company than the rest. So we split the customers into 3 segments.

Segment 1 - Monetary > \$34.39

Segment 2 - (Monetary > \$21.96 AND Monetary < \$34.39) AND (Recency > 13)

Segment 0 - Rest

For Segment 1 we mapped it to the demographics and found the average for each characteristics of a customer using dummy variables.

Customer Demographics	Levels	Average
Large Family Size	4,5,6	53%
Normal Family Size	1,2,3	46%
Low Income	1,2,3,4	4%
Medium Income	5,6,7,8	40%
High Income	9,10,11,12	55%
Age of Male - Young	1	0%
Age of Male - Mid	2,3,4	69%
Age of Male - Old	5,6	31%
Age of Female - Young	1	1%
Age of Female - Mid	2,3,4	74%
Age of Female - Old	5,6	24%
Education - Male -School	1,2,3	1%
Education - Male - College	4,5,6	70%
Education - Male - Graduate	7,8	28%
Education - Female -School	1,2,3	1%
Education - Female - College	4,5,6	70%
Education - Female - Graduate	7,8	28%
One Child	1,2,3	32%
Two Children	4,5,6	13%

Three Children	7	0%
No Children	8	53%
Male - White Collar High Post	1,2,3	46%
Male - White Collar Low Post	4,5	7%
Male Blue Collar	6,7,8,9	33%
Male No Occupation	10,13	13%
Female - White Collar High Post	1,2,3	44%
Female - White Collar Low Post	4,5	22%
Female Blue Collar	6,7,8,9	11%
Female No Occupation	10,13	22%
Pets in House (Cats+Dogs)		68%

The following characteristics of top 20% Customers are as follows:

- Family size ranging from 4 to 6
- High income from \$55K to \$100K
- Age group 25-54
- Education Level graduated High School, Technical School or studying in some College
- Houses with no children and have at least 1 dog or cat.
- People having a high position white collar job

Recommendation: Concentrating on the Top 20% and understanding their purchase history enables us to attract similar customers in the future. New customers with similar demographic features can be targeted to improve sales in long run.

PROBLEM STATEMENT-3

Evaluating the Brand preferences among different customers

Analysis:

We build a **Multinomial Logistic Regression** for our analysis. The outcome of this analysis measures Brand preference among — Tombstone, Di Giorno or Red Baron- from which we are going to see what relationships exists with Family Size (Fam Size), Family Income (Fam Income) and number of children (Childcount).

Tombstone is chosen as the reference category and coded as 1. Di Giorno is coded as 2 and Red Baron as 3.

R	esponse Pro	ofile
Ordered Value	DECISION	Total Frequency
1	1	9158
2	2	1910
3	3	3476

Model Fit Statistics						
Criterion	Intercept Only	Intercept and Covariates				
AIC	26181.339	26051.483				
SC	26196.509	26112.163				
-2 Log L	26177.339	26035.483				

DECISION: Two models were defined in this multinomial regression: one relating DI GIORNO to the referent category, TOMBSTONE, and another model relating RED BARON to TOMBSTONE. The DECISION number indicates to which model an estimate, standard error, chi-square, and p-value refer. Our DECISION categories 2 and 3 are DI GIORNO AND RED BARON.

Analysis of Maximum Likelihood Estimates							
Parameter	DECISION	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Intercept	2	1	-0.9692	0.1273	57.9967	<.0001	
Intercept	3	1	-0.3606	0.0988	13.3130	0.0003	
FAM_INCOME	2	1	0.0347	0.0418	0.6898	0.4062	
FAM_INCOME	3	1	-0.1954	0.0323	36.5507	<.0001	
CHILDCOUNT	2	1	0.00674	0.0467	0.0208	0.8852	
CHILDCOUNT	3	1	0.1352	0.0343	15.5434	<.0001	
FAM_SIZE	2	1	-0.4772	0.0658	52.5861	<.0001	
FAM_SIZE	3	1	-0.1452	0.0508	8.1617	0.0043	

Odds Ratio Estimates								
Effect	DECISION	Point Estimate						
FAM_INCOME	2	1.035						
FAM_INCOME	3	0.823						
CHILDCOUNT	2	1.007						
CHILDCOUNT	3	1.145						
FAM_SIZE	2	0.621						
FAM_SIZE	3	0.865						

MODEL 1: DI GIORNO relative to TOMBSTONE

Intercept – This is the multinomial logit estimate for DI GIORNO relative to TOMBSTONE when the predictor variables in the model are evaluated at zero. The logit for preferring DI GIORNO to TOMBSTONE is -0.96.

FAM_SIZE: This is the multinomial logit estimate for when FAMILY SIZE increases from regular (1,2,3) to large family size(4,5,6) for DI GIORNO relative to TOMBSTONE, given the other variables in the model are held constant.

If a customer were to move from regular (1,2,3) to large family size(4,5,6) the multinomial log-odds for preferring DI GIORNO to TOMBSTONE would be expected to decrease by -0.47 unit while holding all other variables in the model constant.

MODEL 2: RED BARON relative to TOMBSTONE

Intercept: This is the multinomial logit estimate for DI GIORNO relative to TOMBSTONE when the predictor variables in the model are evaluated at zero. The logit for preferring RED BARON to TOMBSTONE is -0.36.

FAM_INCOME: This is the multinomial logit estimate for when FAMILY INCOME bracket increases from low to medium or medium to high for RED BARON relative to TOMBSTONE, given the other variables in the model are held constant.

If a customer were to move from lower income bracket to higher income bracket the multinomial log-odds for preferring RED BARON to TOMBSTONE would be expected to decrease by 0.19 unit while holding all other variables in the model constant.

CHILDCOUNT: If the number of children in a house increase by one unit the multinomial log-odds for preferring RED BARON to TOMBSTONE would be expected to increase by 0.13 unit while holding all other variables in the model constant.

FAM_SIZE: This is the multinomial logit estimate for when FAMILY SIZE increases from regular (1,2,3) to large family size(4,5,6) for RED BARON to TOMBSTONE, given the other variables in the model are held constant.

If a customer were to move from regular (1,2,3) to large family size(4,5,6) the multinomial log-odds for preferring RED BARON to TOMBSTONE would be expected to decrease by -0.14 unit while holding all other variables in the model constant.

Recommendation:

With an increase in income and family size, Tombstone is preferred. But to sustain increase in consumption from Families, Tombstone needs to target children as it is clearly seen that Red Baron is preferred in the houses with children. Just like how McDonald's introduced Happy Meals with Action Comic characters, Tombstone can also experiment with children-friendly product lines.