COMP40016 Calculus Imperial College London

Boxuan Tang

Autumn 2021

Contents

1	Sequences 1.1 Convergence Tests for Sequences	2 4
2	Continuous Functions	5
3	Integration	7
4	Series 4.1 Convergence Tests for Series	9 10
5	Differentiation	11
6	Power Series	13
7	Numerical Methods	14
8	Metric Spaces	15
9	Deep Learning and Multivariate Chain Rule	18

1 SEQUENCES CALCULUS

1 Sequences

Definition 1.1 (Sequence) A sequence is a function $f: \mathbb{N}^+ \to \mathbb{R}$ that maps positive natural numbers to real numbers, written as $(a_n)_{n\geq 1}$ where $a_n = f(n)$.

Definition 1.2 (Arithmetic Sequence) An arithmetic sequence is the sequence $f: \mathbb{N}^+ \to \mathbb{R}$ defined by

$$f: n \mapsto \begin{cases} a_1, & n = 1 \\ a_1 + (n-1)d, & otherwise \end{cases}$$

$$S_n = \frac{n}{2}(a_1 + a_n)$$

Definition 1.3 (Geometric Sequence) An geometric sequence is the sequence $f: \mathbb{N}^+ \to \mathbb{R}$ defined by

$$f: n \mapsto ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

Definition 1.4 (Fibonacci Sequence) An fibonacci sequence is the sequence $f: \mathbb{N}^+ \to \mathbb{R}$ defined by

$$f: n \mapsto \begin{cases} 0, & n = 1 \\ 1, & n = 2 \\ f(n-1) + f(n-2) & n \ge 3 \end{cases}$$

Definition 1.5 (Monotonic) A sequence is increasing if $a_{n+1} \ge a_n$ for $n \ge 1$ and decreasing if $a_{n+1} \le a_n$ for $n \ge 1$. A sequence is monotonic if it is either increasing or decreasing.

Theorem 1.6 (Triangle Inequality and Reverse)

$$|a+b| < |a| + |b|$$
 AND $|a-b| > ||a| - |b||$

Definition 1.7 (Cauchy Sequences) A sequence is a Cauchy sequence iff for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all n, m > N we have $|a_n - a_m| < \epsilon$.

• Every sequence that converges to a real number is a Cauchy sequence.

Definition 1.8 (Completeness) A subset $A \subseteq \mathbb{R}$ is complete iff any Cauchy sequence in A converges to a limit in A.

 $\bullet \ \mathbb{Q}$ is not complete but \mathbb{R} is complete.

1 SEQUENCES CALCULUS

Definition 1.9 (Subsequence) If $f : \mathbb{N} \to \mathbb{R}$ is a sequence $(a_n)_{n \geq 1}$ and M is an infinite subset of \mathbb{N} , then $g : M \to \mathbb{R}$ is a subsequence $(a_{n_i})_{i \geq 1}$ of f.

- Any subsequence converges to the limit of the sequence.
- Any sequence of real numbers has a monotonic subsequence.

Theorem 1.10 (Order Theory) Let $X \subseteq \mathbb{R}$ and l, u, s and $i \in \mathbb{R}$

- 1. u is an **upper bound** of X if $x \le u$ for all $x \in X$
- 2. l is an **lower bound** of X if $l \le x$ for all $x \in X$
- 3. s is the **supremum** (least upper bound) of X if $s \le u$ for all u of X
- 4. i is the **infimum** (greatest lower bound) of X if $l \leq i$ for all l of X
- 5. X is bounded above if X has an upper bound
- 6. X is bounded below if X has a lower bound
- 7. X is bounded if X has an upper and lower bound

Theorem 1.11 (Dedekind-completeness of \mathbb{R}) *Every nonempty subset of* \mathbb{R} *that is bounded above has a supremum (least upper bound).*

Theorem 1.12 (Fundamental Theorem of Analysis)

If $(a_n)_{n\geq 1}$ is increasing and bounded above, then $s=\sup\{a_n|n\geq 1\}$ exists and is the limit of $(a_n)_{n\geq 1}$.

If $(a_n)_{n\geq 1}$ is decreasing and bounded below, then $i=\inf\{a_n|n\geq 1\}$ exists and is the limit of $(a_n)_{n\geq 1}$.

Theorem 1.13 (Bolzano-Weierstrass Theorem) Every bounded sequence in \mathbb{R} has a convergent subsequence.

1.1 Convergence Tests for Sequences

Definition 1.14 (Convergence to a limit) Let $(a_n)_{n\geq 1}$ be a sequence which

converges to a limit l in \mathbb{R} iff for all $\epsilon > 0$, there exists an $N \in \mathbb{N}$ such that for all n > N we have $|a_n - l| < \epsilon$

converges to $+\infty$ iff for all r in \mathbb{R} there exists an $N \in \mathbb{N}$ such that for all $n \geq N$ we have $a_n > r$

converges to $-\infty$ iff for all r in \mathbb{R} there exists an $N \in \mathbb{N}$ such that for all $n \geq N$ we have $a_n < r$

written as $\lim_{n\to\infty} a_n = x$ or $(a_n)_{n\geq 1}\to x$, where x is the unique limit

diverges if it does not converge to a real number, ∞ or $-\infty$

Corollary 1.15 (Common convergent sequences)

$$(\frac{1}{n^c})_{n\geq 1} \to 0, \ when \ c > 0$$

$$(\frac{1}{c^n})_{n\geq 1} \to 0, \ when \ |c| > 1 \ OR \ (c^n)_{n\geq 1} \to 0, \ when \ |c| < 1$$

$$(\frac{1}{n!})_{n\geq 1} \to 0$$

$$(\frac{1}{\log n})_{n\geq 1} \to 0$$

Theorem 1.16 (Limits of combination of sequences)

Given $(a_n)_{n\geq 1} \to a$ and $(b_n)_{n\geq 1} \to b$ with a real constant λ

$$(\lambda a_n)_{n\geq 1} \to \lambda a$$

$$(a_n + b_n)_{n\geq 1} \to a + b$$

$$(a_n b_n)_{n\geq 1} \to ab$$

$$(\frac{a_n}{b_n})_{n\geq 1} \to \frac{a}{b} \text{ provided } b \neq 0$$

Theorem 1.17 (Sandwich Theorem) Let $(l_n)_{n\geq 1} \to l$ and $(u_n)_{n\geq 1} \to l$ for some real number l. If for $(a_n)_{n\geq 1}$ we have some $N\in\mathbb{N}$ such that $l_n\leq a_n\leq u_n$ for all $n\geq N$, then $(a_n)_{n\geq 1} \to l$ as well.

Theorem 1.18 (Ratio Test for Sequences) Let $c \in \mathbb{R}$ such that $0 \le c \le 1$. If there exists $N \in \mathbb{N}$ such that for all $n \ge N$ we have $\left|\frac{a_{n+1}}{a_n}\right| \le c$, then $(a_n)_{n\ge 1} \to 0$.

Theorem 1.19 (Limit Ratio Test for Sequences) Let $c \in \mathbb{R}$ such that $0 \le c \le 1$. If there exists $N \in \mathbb{N}$ such that for all $n \ge N$ we have $\left|\frac{a_{n+1}}{a_n}\right| \le c$, then $(a_n)_{n\ge 1} \to 0$.

2 Continuous Functions

Definition 2.1 (Neighbourhood) A set $A \subseteq \mathbb{R}$ is called a neighbourhood of a if there exists an open interval I where $a \in I \subseteq A$

• An open interval is a neighbourhood of each of its points

Definition 2.2 (Accumulation Point) A real number ξ is an accumulation point of a set $A \subseteq R$ if every neighbourhood of ξ contains an infinite number of members of A.

Definition 2.3 (Limit of a Function) $f: A \to \mathbb{R}, A \subseteq \mathbb{R}, has a limit <math>l \in \mathbb{R}$

- at the accumulation point x_0 of **A** if for all $\epsilon > 0$ there exists $\delta > 0$ such that if $x \in A$ and $|x x_0| < \delta$, then $|f(x) l| < \epsilon$
- as x approaches $+\infty$ if for all $\epsilon > 0$ there exists c such that if x > c then $|f(x) l| < \epsilon$
- as x approaches $-\infty$ if for all $\epsilon > 0$ there exists c such that if x < c then $|f(x) l| < \epsilon$

written as $\lim_{x\to x_0} f(x) = l$ or $f(x) \to l$ as $x \to x_0$, where l is the unique limit

• Let $f: I \to \mathbb{R}$ where $I \subseteq \mathbb{R}$ is an open interval and x_0 is an accumulation point of I, then $\lim_{x \to x_0} f(x) = l \in \overline{\mathbb{R}}$ iff for all sequences of points of I with $(y_n)_{n \ge 1} \to x_0$ we have $\lim_{n \to \infty} f(y_n) = l$

Theorem 2.4 (Limits of combination of sequences)

Given $f, g: A \to \mathbb{R}$ have limits $k, l \in \mathbb{R}$ at accumulation point x_0 of A,

$$f \pm g$$
 has limit $k \pm l$ at x_0

$$fg \text{ has limit } kl \text{ at } x_0$$

$$\frac{f}{g} \text{ has limit } \frac{k}{l} \text{ at } x_0 \text{ if } l \neq 0$$

Lemma 2.5 (Axoim of Choice) For any collection χ of nonempty sets, there exists a choice function f that maps each set of χ to an element of that set.

Lemma 2.6 (Axoim of Countable Choice) Let $(S_n)_{n\in\mathbb{N}}$ be a sequence of nonempty sets, then there exists a sequence $(x_n)_{n\in\mathbb{N}}$ such that $x_n\in S_n$ for all $n\in\mathbb{N}$.

Definition 2.7 (Continuity of functions) $f:[a,b] \to \mathbb{R}$, where $x \in \mathbb{R}$, is

continuous at $x_0 \in [\mathbf{A}, \mathbf{B}]$ iff $\lim_{x \to x_0} f(x) = f(x_0)$ OR for every $\epsilon > 0$ there exists $\delta > 0$ such that for all x, if $|x - x_0| < \delta$

continuous in [A, B] iff f is continuous at all $x_0 \in [A, B]$

Theorem 2.8 (Combination of continuous functions)

Given $f, g: A \to \mathbb{R}$ are continuous at x_0 ,

 $f \pm g$ is continuous at x_0

fg is continuous at x_0

 $\frac{f}{g}$ is continuous at x_0 if $g(x_0) \neq 0$

Theorem 2.9 (Composition of continuous functions) If g is continuous at x_0 and f is continuous at $g(x_0)$, then $f \circ g$ is continuous at x_0 . Note that f need not be continuous at x_0 .

Theorem 2.10 (Maxima and Minima) If $f : [a,b] \to \mathbb{R}$ with $a,b \in \mathbb{R}$, then there exists $r,s \in [a,b]$ such that $f(r) = \sup_{x \in [a,b]} f(x)$ and $f(s) = \inf_{x \in [a,b]} f(x)$.

• A continuous function on a closed bounded interval is bounded and attains their supremum and infimum

Theorem 2.11 (Intermediate Value Theorem) If $f : [a,b] \to \mathbb{R}$ is continuous with $s \in \mathbb{R}$ such that f(a) < s < f(b), then there exists $c \in (a,b)$ such that f(c) = b.

Definition 2.12 (Uniform Continuity) $f: A \to \mathbb{R}$ is uniformly continuous if for all $\epsilon > 0$ there exists $\delta > 0$ such that for all $x, x_0 \in A$ we have $|f(x) - f(x_0)| < \epsilon$ if $|x - x_0| < \delta$. In other words, δ is independent of x_0 .

Theorem 2.13 If $f : [a, b] \to \mathbb{R}$, for $a, b \in \mathbb{R}$, is continuous then it is uniformly continuous on [a, b].

3 INTEGRATION CALCULUS

3 Integration

Definition 3.1 (Partition) A partition P of [a,b] is given by the finite set

$$P = \{r_i : 0 \le i \le n - 1, a = r_0, b = r_n, r_i < r_{i+1}\}\$$

subinterval of P is a closed interval $[r_i, r_{i+1}]$ for $0 \le i \le n-1$

norm of P is the largest length of the subintervals in P, or $||P|| = max\{r_{i+1} - r_1 : 0 \le i \le n - 1\}$

 P_2 refines P_1 if $P_1 \subset P_2$

Definition 3.2 (Sums) Given $f : [a,b] \to \mathbb{R}$ and a partition P of [a,b], the **Lower Sum** L(f,P) and **Upper Sum** U(f,P) are defined as

$$L(f,P) = \sum_{i=0}^{n-1} (r_{i+1} - r_i) \times \inf_{x \in [r_i, r_{i+1}]} f(x), \ U(f,P) = \sum_{i=0}^{n-1} (r_{i+1} - r_i) \times \sup_{x \in [r_i, r_{i+1}]} f(x)$$

Riemann Sum for P for any choice of $s_i \in [r_i, r_{i+1}]$ for $0 \le i \le n-1$ is

$$S(f, P, (s_i)_{0 \le i \le n-1}) = \sum_{i=0}^{n-1} (r_{i+1} - r_i) \times f(s_i)$$

- $L(f, P) \le S(f, P, (s_i)_{0 \le i \le n-1}) \le U(f, P)$
- If $P_1 \subset P_2$, then $L(f, P_1) \leq L(f, P_2) \leq U(f, P_2) \leq U(f, P_1)$

Definition 3.3 (Integrals) Lower and Upper integrals of $f : [a, b] \to \mathbb{R}$ are

$$\int_a^b f(x) \, dx = \sup_P L(f, P), \ \overline{\int_a^b} f(x) \, dx = \inf_P U(f, P)$$

Riemann Integral $\int_a^b f(x) dx$ exists if $\underline{\int_a^b} f(x) dx = \overline{\int_a^b} f(x) dx$.

 $f:[a,b]\to\mathbb{R}$ is Riemann integrable with Riemann integral $c\in\mathbb{R}$ iff

- for each $\epsilon > 0$ there exists a partition P of [a,b] with $c L(f,P) < \epsilon$ and $U(f,P) c < \epsilon$
- for each $\epsilon > 0$ there exists a $\delta > 0$ such that for all partitions P of [a,b] with $||P|| < \delta$ we have $|S(f,P,(s_i)_{0 \le i \le n-1})| < \epsilon$

Theorem 3.4 A bounded function $f : [a, b] \to \mathbb{R}$ with a countable set of discontinuities on [a, b] is Riemann integrable.

• If f is continuous on [a, b] then the Riemann integral $\int_a^b f(x) dx$ exists

3 INTEGRATION CALCULUS

Theorem 3.5 (Properties of Riemann Integrals)

$$\int_{a}^{b} sf(x) + tg(x) dx = s \int_{a}^{b} f(x) dx + t \int_{a}^{b} g(x) dx, \text{ if } f \text{ and } g \text{ are integrable}$$

$$\int_{a}^{b} c dx = c(b-a), \text{ where } c \in \mathbb{R}$$

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx, \text{ if the integrals exists for } a < b < c$$

$$If f(x) \ge 0 \text{ for } x \in [a, b], \text{ then } \int_{a}^{b} f(x) dx \ge 0 \text{ if the integral exists}$$

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx \text{ if the integral exists}$$

Definition 3.6 (Improper Riemann Integral) $f:[a,b)\to\mathbb{R}$ has improper Riemann integral (integral converges) if $\lim_{x\to b}\int_a^x f(x)\,dx\in\mathbb{R}$ exists. If the limit does not exists or is $\pm\infty$, the integral diverges.

4 SERIES CALCULUS

4 Series

Definition 4.1 (Series) Series are formal infinite sums of real numbers $\sum_{i=1}^{\infty} a_i$.

Remark 4.1.1 We can associate $\sum_{i=1}^{\infty} a_i$ to $(S_n)_{n\geq 1}$ where for each $n\geq 1$, S_n is defined as the partial sum $\sum_{i=1}^{n} a_i$.

Definition 4.2 (Convergence) The series $\sum_{i=1}^{\infty} a_i$

converges iff $(S_n)_{n\geq 1}$ has limit $l\in\mathbb{R}$ OR $\sum_{i=1}^{\infty} a_i$ converges for any $N\in\mathbb{N}$

diverges if it does not converges to some $l \in \mathbb{R}$

Theorem 4.3 (Increasing and bounded above) When $a_i \geq 0$ for all $i \geq 1$, $(S_n)_{n\geq 1}$ is increasing. If $(S_n)_{n\geq 1}$ is also bounded above, by the Fundamental Theorem of Analysis, $\sum_{i=1}^{\infty} a_i$ converges to a limit.

Definition 4.4 (Permutation) A permutation π over the natural numbers \mathbb{N} is a function $\pi : \mathbb{N} \to \mathbb{N}$ that has an inverse (injective & surjective).

Definition 4.5 (Unconditional Convergence) A series $\sum_{i=1}^{\infty} a_i$ is unconditionally convergent iff it converges and the permuted series $\sum_{i=1}^{\infty} a_{\pi(i)}$ converges to the same limit for all permutations π .

Definition 4.6 (Absolute Convergence) A series $\sum_{i=1}^{\infty} a_i$ is absolutely convergent iff the corresponding series $\sum_{i=1}^{\infty} |a_i|$ converges. Absolute convergence implies unconditional convergence.

Definition 4.7 (Limit Superior) The limit superior of $(a_n)_{n\geq 1}$ is the limit of $(b_n)_{n\geq 1}\in \mathbb{R}$, where $b_n=\sup\{a_m|m\geq n\}$, denoted $\limsup_{n\to\infty}a_n$

Definition 4.8 (Limit Inferior) The limit inferior of $(a_n)_{n\geq 1}$ is the limit of $(c_n)_{n\geq 1}\in \mathbb{R}$, where $c_n=\inf\{a_m|m\geq n\}$, denoted $\liminf_{n\to\infty}a_n$

Lemma 4.9 (Known Divergent & Convergent Series)

Geometric series $\sum_{n=1}^{\infty} x^n \to \frac{x}{1-x}$ for all $x \in \mathbb{R}$ with |x| < 1

Inverse squares series $\sum_{n=1}^{\infty}\frac{1}{n^2}\rightarrow\frac{\pi^2}{6}$

 $\frac{1}{n^c}$ series $\sum_{n=1}^{\infty} \frac{1}{n^c}$ converges for all $c \in \mathbb{R}$ with c > 1

Harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges

Harmonic primes $\sum_{p:prime}^{\infty} \frac{1}{p}$ diverges

Geometric series $S = \sum_{n=1}^{\infty} x^n \ diverges \ for |x| \ge 1$

SERIES **CALCULUS**

4.1 Convergence Tests for Series

Theorem 4.10 If $\lim_{n\to\infty} a_n \neq 0$, $\sum_{i=1}^{\infty} a_i$ diverges.

Theorem 4.11 (Comparison Test) Let $\lambda > 0$ and $N \in \mathbb{N}$.

If $a_i \leq \lambda c_i$ for all i > N for some convergent series $\sum_{i=1}^{\infty} c_i$, $\sum_{i=1}^{\infty} a_i$ converges. If $a_i \geq \lambda d_i$ for all i > N for some divergent series $\sum_{i=1}^{\infty} d_i$, $\sum_{i=1}^{\infty} a_i$ diverges.

Theorem 4.12 (Limit Comparison Test)

If $\lim_{i\to\infty} \frac{a_i}{c_i} \in \mathbb{R}$ exists for some convergent series $\sum_{i=1}^{\infty} c_i$, $\sum_{i=1}^{\infty} a_i$ converges. If $\lim_{i\to\infty} \frac{d_i}{a_i} \in \mathbb{R}$ exists for some divergent series $\sum_{i=1}^{\infty} d_i$, $\sum_{i=1}^{\infty} a_i$ diverges.

Theorem 4.13 (D'Alembert's Ratio Test) Let $N \in \mathbb{N}$ If there exists $k \in \mathbb{R}$ with k < 1 such that $\frac{a_{i+1}}{a_i} \leq k$ for all $i \geq N$, then $\sum_{i=1}^{\infty} a_i$

If $\frac{a_{i+1}}{a_i} \geq 1$ for all $i \geq N$, then $\sum_{i=1}^{\infty} a_i$ diverges.

Theorem 4.14 (D'Alembert's Limit Ratio Test) If $\lim_{i\to\infty}\frac{a_{i+1}}{a_i}$ exists, if $\lim_{i\to\infty}\frac{a_{i+1}}{a_i}<1$, then $\sum_{i=1}^{\infty}a_i$ converges. if $\lim_{i\to\infty}\frac{a_{i+1}}{a_i}>1$, then $\sum_{i=1}^{\infty}a_i$ diverges. else $\lim_{i\to\infty}\frac{a_{i+1}}{a_i}=1$, the test is inconclusive.

Theorem 4.15 (Integral Test) Let $f: \mathbb{R} \to \mathbb{R}^+$ be continuous, decreasing and positive on $[N, \infty)$, where $N \in \mathbb{Z}$, with $a_n = f(n)$ for all $n \in \mathbb{N}$. If $\int_N^\infty f(x) dx$ converges, then $\sum_{i=1}^\infty a_i$ converges. If $\int_N^\infty f(x) dx$ diverges, then $\sum_{i=1}^\infty a_i$ diverges.

Theorem 4.16 (Absolute Value Comparison Test) Let $(b_n)_{n\geq 1}$ be a nonnegative sequence such that $\sum_{i=1}^{\infty} b_i$ converges, and $(a_n)_{n\geq 1}$ be a sequence such that $|a_i| \leq b_i$ for all $i \geq 1$. Then $\sum_{i=1}^{\infty} a_i$ converges.

Theorem 4.17 (Limit Absolute Value Ratio Test)

Let $\sum_{i=1}^{\infty} a_i$ with $a_i \neq 0$ for $i \geq 1$,

if $\lim_{i\to\infty}\left|\frac{a_{i+1}}{a_i}\right|<1$, then $\sum_{i=1}^{\infty}a_i$ converges and absolutely converges. if $\lim_{i\to\infty}\left|\frac{a_{i+1}}{a_i}\right|>1$, then $\sum_{i=1}^{\infty}a_i$ diverges.

else $\lim_{i\to\infty}\left|\frac{a_{i+1}}{a_i}\right|=1$, the test is inconslusive.

Theorem 4.18 (n^{th} Root Test) Consider $\sum_{i=1}^{\infty} a_i$,

if $\limsup_{n\to\infty} |a_n|^{\frac{1}{n}} < 1$, $\sum_{i=1}^{\infty} a_i$ converges and absolutely converges. if $\limsup_{n\to\infty} |a_n|^{\frac{1}{n}} > 1$, $\sum_{i=1}^{\infty} a_i$ diverges.

else $\limsup_{n\to\infty} |a_n|^{\frac{1}{n}} = 1$, the test is inconclusive.

5 Differentiation

Definition 5.1 Let $f : \mathbb{R} \to \mathbb{R}$, $x \in \mathbb{R}$ and h > 0.

Newton's Difference Quotient at x for f is given by

$$\frac{\Delta f(x)}{\Delta(x)} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$$

f is differentiable at x iff $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ exists as a real number and has the same value for all ways where $h\to 0$

derivative of f at x equals to this limit if it exists, denoted as f'(x) or $\frac{dy}{dx}$

Theorem 5.2 (Properties of derivatives)

Given $f, g: (a, b) \to \mathbb{R}$ be two functions,

- 1. Polynomials have derivatives at all points
- 2. If f is differentiable at x, f is continuous at x
- 3. If f is differentiable in (a,b), $f'(x_0) = 0$ for any point x_0 where f is maximum or minimum
- 4. If f and g are differentiable at x, $f \cdot g$ is differentiable under **product rule**

$$(f \cdot g)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

5. If f and g are differentiable at g(x) and x respectively, $f \circ g$ is differentiable under **product rule**

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$

6. Differentiation is a **linear function**, where for all f and g differentiable at x and for all $a, b \in \mathbb{R}$

$$(a \cdot f + b \cdot q)'(x) = a \cdot f'(x) + b \cdot q'(x)$$

Theorem 5.3 (Rolle's Theorem) If $f : [a,b] \to \mathbb{R}$ is continuous and $f : (a,b) \to \mathbb{R}$ is differentiable with f(a) = f(b), there exists $c \in (a,b)$ such that f'(c) = 0.

Theorem 5.4 (Mean Value Theorem) If $f:[a,b] \to \mathbb{R}$ is continuous and $f:(a,b) \to \mathbb{R}$ is differentiable, there exists $c \in (a,b)$ such that $\frac{f(b)-f(a)}{b-a} = f'(c)$.

• If x is close to x_0 , $f(x) = f(x_0) + f'(x_0)(x - x_0) + E$, where E is small

Boxuan Tang

Theorem 5.5 (Taylor's Theorem) If f is n times differentiable in (a, b) with $x_0 \in (a, b)$, then for any $x \in (a, b)$ we have

$$f(x) = f(x_0) + \frac{1}{1!}(x - x_0)f'(x_0) + \dots + \frac{1}{n!}(x - x_0)^n f^{(n)}(x_0) + E_n$$

where $E_n = \frac{f^{(n+1)}(x^*)}{(n+1)!}(x-x_0)^{n+1}$ is the **Lagrange error term** with x^* between x and x_0 .

Theorem 5.6 (L'Hospital's Rule) Suppose $f, g : (a, b) \to \mathbb{R}$ have derivatives $f', g' : (a, b) \to \mathbb{R}$ that are continuous in (a, b).

• If f(c) = g(c) = 0 for some $c \in (a, b)$ and $g'(c) \neq 0$,

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f'(c)}{g'(c)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

• If $\lim_{x\to c} |f(x)| = \lim_{x\to c} |g(x)| = \infty$ for some $c \in (a,b)$

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{\frac{1}{g(x)}}{\frac{1}{f(x)}}$$

• It can be extend to $x \to \infty$ by restricting $f, g : [0, \infty) \to [0, \infty)$

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{y \to 0} \frac{f(\frac{1}{y})}{g(\frac{1}{y})}$$

Theorem 5.7 (Fundamental Theorem of Calculus) If $f:[a,b]\to \mathbb{R}$ is continuous and $F:[a,b]\to \mathbb{R}$ is defined by $F(y)=\int_a^y f(x)\,dx$, then F is uniformly continuous on [a,b] and F'(x)=f(x) for $x\in(a,b)$.

Corollary 5.8 (Change of variable) Let $g:[a,b] \to [c,d]$ be a differentiable function with $g':[a,b] \to \mathbb{R}$ and $f:[c,d] \to \mathbb{R}$ be a continuous function with y=g(x).

$$\int_{a}^{b} f(g(x))g'(x) \, dx = \int_{g(a)}^{g(b)} f(y) \, dy$$

6 Power Series

Definition 6.1 A power series is a series of the form $\sum_{i=0}^{\infty} a_i \cdot (x-c)^i$ where x is a variable $\in \mathbb{R}$, c is a constant $\in \mathbb{R}$ and $(a_n)_{n\geq 0} \subseteq \mathbb{R}$.

• Polynomials are power series where c=0 and there exists N such that $a_n=0$ for all $n \geq N$. They converge for all $x \in \mathbb{R}$.

Definition 6.2 (Radius of Convergence) Let $c \in \mathbb{R}$ and $(a_n)_{n \geq 0} \subseteq \mathbb{R}$. $\sum_{i=o}^{\infty} a_i \cdot (x-c)^i$ has a radius of convergence $r \in [0,\infty) \cup \{\infty\}$ such that:

- 1. If $r \neq \infty$, then $\sum_{i=o}^{\infty} a_i \cdot (x-c)^i$ converges for all $x \in \mathbb{R}$ when |x-c| < r and diverges for all $x \in \mathbb{R}$ when |x-c| > r.
- 2. If $r = \infty$, then $\sum_{i=0}^{\infty} a_i \cdot (x-c)^i$ converges for all $x \in \mathbb{R}$

given by $r^{-1} = \limsup_{n \to \infty} |a_n|^{\frac{1}{n}}$.

Theorem 6.3 (Ratio Test) Suppose $\binom{|a_{n+1}|}{|a_n|}_{n\geq 1}$ has a limit $l\in\mathbb{R}$, then setting l<1 gives l^{-1} the radius of convergence of any $\sum_{i=0}^{\infty}a_i\cdot(x-c)^i$.

Definition 6.4 (Smoothness) $f : \mathbb{R} \to \mathbb{R}$ is smooth at x_0 if for all $k \ge 1$ the k^{th} derivative exists at x_0 .

Definition 6.5 (Analytical) Given $f : \mathbb{R} \to \mathbb{R}$, if the power series has the same outputs as f within the radius of convergence, f is a real analytical function.

• Not every smooth real function is analytical.

Definition 6.6 (Maclaurin Series) $\sum_{i=0}^{\infty} a_i \cdot (x-c)^i$ is called the Maclaurin Series when c=0, or $f(x)=\sum_{i=0}^{\infty} a_i \cdot x^i$.

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n, \text{ with } r^{-1} = \limsup_{n \to \infty} \left| \frac{f^{(n)}(0)}{n!} \right|^{\frac{1}{n}}$$

Definition 6.7 (Taylor Series)

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x - c)^n$$

Theorem 6.8 Within the radius of convergence, $\sum_{i=0}^{\infty} a_i \cdot (x-c)^i$ is continuous and can be differentiated and integrated term by term.

7 Numerical Methods

Theorem 7.1 (Newton's Method) Approximates f(x) = 0

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

The rate of convergence is at least quadratic if

- 1. $f'(x) \neq 0$ for $x \in I$ where $I = [\alpha r, \alpha + r]$ for some $r \geq |\alpha x_0|$
- 2. f''(x) is continuous in I
- 3. x_0 is sufficiently close to α

Theorem 7.2 (Relaxed Newton's Method) For some $0 < \gamma \le 1$,

$$x_{n+1} = x_n - \gamma \frac{f(x_n)}{f'(x_n)}$$

Theorem 7.3 (Secant Method) Reduces calculation of derivatives

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Theorem 7.4 (Gradient Descent) Minimises f(x) using a small enough η

$$x_{n+1} = x_n - \eta f'(x_n)$$

Theorem 7.5 (Euler's Method) Approximates the solution to the initial-value problem in differential equations. Given y' = f(x, y) and $y(x_0) = y_0$,

$$x_{n+1} = x_0 + nh$$
, $y_{n+1} = y_n + hf(x_n, y_n)$, for $n = 0, 1, ...$

Theorem 7.6 (Heun's Method) A predictor-corrector method to modify Euler's Method. First approximate $y(x_{n+1})$ with $y_{n+1}^* = y_n + hf(x_n, y_n)$.

$$y_{n+1} = y_n + \frac{1}{2}h[f(x_n, y_n) + f(x_{n+1}, y_{n+1}^*)]$$

Theorem 7.7 (Runge-Kutta Method of Order Four) Uses Simpson's Rule

$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = hf(x_n, y_n),$$
 $k_2 = hf(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}),$ $k_3 = hf(x_n + \frac{h}{2}, y_n + \frac{k_2}{2}),$ $k_4 = hf(x_{n+1}, y_n + k_3)$

Boxuan Tang

8 Metric Spaces

Definition 8.1 (Sequence of Functions) Let $I \in \mathbb{R}$. For each $n \in \mathbb{N}$, $f_n(x): I \to \mathbb{R}$. Then (f_n) is a sequence of functions on I.

Definition 8.2 (Pointwise Convergence) (f_n) converges pointwise to f iff $\lim_{n\to\infty} f_n(x) = f(x)$ for every $x \in I$, written as $\lim_{n\to\infty} f_n = f$ pointwise.

Definition 8.3 (Uniform Convergence) (f_n) converges uniformly to f iff $\lim_{n\to\infty} \sup\{|f_n(x) - f(x)| | x \in I\} = 0$, written as $\lim_{n\to\infty} f_n = f$ uniformly.

- Every uniformly convergent sequence is pointwise convergent to the same limiting function.
- The pointwise limit of a sequence of continuous functions may be a discontinuous function but only if the sequence is not uniformly convergent.

Definition 8.4 (Ring) A ring is a set R equipped with 2 binary operators + (addition) and \cdot (multiplication) satisfying the ring axioms.

- 1. R is an abelian group under addition, meaning for all $a \in R$
 - (a) + is associative
 - (b) + is commutative
 - (c) There exists $0 \in R$ which is the additive identity (a + 0 = a)
 - (d) -a is the additive inverse of a (a + (-a) = 0)
- 2. R is a monoid under multiplication, meaning for all $a \in R$
 - (a) · is associative
 - (b) There exists $1 \in R$ which is the multiplicative identity $(a \cdot 1 = 1 \cdot a = a)$
- 3. Multiplication is **distributive** to addition, meaning for all $a, b, c \in R$
 - (a) $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ (left associative)
 - (b) $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$ (right associative)

Definition 8.5 (Fields) Fields are commutative rings with identity $(1 \neq 0)$ in which every nonzero element has a multiplicative inverse.

Definition 8.6 (Distance) $d: X \times X \to \mathbb{R}$ is a distance function or metric on the underlying set X if

- 1. d(x,y) = 0 iff x = y (identity of indiscernibles)
- 2. d(x,y) = d(y,x) (symmetry)
- 3. $d(x,z) \leq d(x,y) + d(y,z)$ (subadditivity or triangle inequality)

Definition 8.7 (Metric Space) An ordered pair (X, d) consisting of a nonempty set X and distance function d on X is a metric space

• If (X,d) is a metric space and $S \subset X$, (S,d) is a metric subspace of (X,d)

Definition 8.8 (Limit) Let (X,d) be a metric space and $(x_n)_{n\geq 1}$ be a sequence of points in X, a point $x \in X$ is the limit of $(x_n)_{n\geq 1}$ if $\lim_{n\to\infty} d(x,x_n) = 0$

Definition 8.9 (Open Ball) Let (X,d) be a metric space, $a \in X$ and $\delta > 0$. The subset of X containing all points $x \in X$ such that $d(a,x) < \delta$ is called the open ball about a of radius delta, denoted by $B(a;\delta)$.

Definition 8.10 (Neighbourhood) Let (X,d) be a metric space and $a \in X$. A subset N of X is a neighbourhood of a if there exists $\delta > 0$ such that $B(a; \delta) \subseteq N$. The **complete system of neighbourhoods** of the point a \mathbb{N}_a is the collection of all neighbourhoods of a. For all a and any neighbourhood N of a,

- 1. there exists at least one neighbourhood of a
- $2. \ a \in N$
- 3. if $N' \supseteq N$, then N' is a neighbourhood of a
- 4. if M is another neighbourhood of a, $N \cap M$ is also a neighbourhood of a
- 5. there exists a neighbourhood O of a such that $O \subseteq N$ such that O is a neighbourhood of each of its points

Lemma 8.11 (First Axiom of Countability) Let (X,d) be a metric space. For every $a \in X$, there is a sequence of neighbourhoods of a $(O_n)_{n\geq 1}$ such that N contains at least one neighbourhood of this sequence.

Lemma 8.12 (Hausdorff Axiom) For every pair of distinct points x,y of (X,d), there is a neighbourhood M of X and N of Y such that $M \cap N = \emptyset$.

Theorem 8.13 Let (X,d) be a metric space and $a \in X$. For each $\delta > 0$, the open ball $B(a;\delta)$ is a neighbourhood of each of its points.

Definition 8.14 (Open Set) A subset O of a metric space (X,d) is open if O is a neighbourhood of each of its points.

- O is an open set iff it is a union of open balls
- 1. \varnothing and X is open
- 2. The union and intersection of open sets is open

Definition 8.15 (Function Composition) Let (X,d), (Y,d') and (Z,d'') be metric spaces. Also let $f: X \to Y$ be continuous at $a \in X$ and $g: Y \to Z$ be continuous at $f(a) \in Y$. Then $g \circ f: X \to Z$ is continuous at $a \in X$.

Definition 8.16 (Topology) An ordered pair (X, τ) consisting of a set X and a collection τ of subsets of X satisfying the following axioms:

- 1. \varnothing and X belongs to τ
- 2. any arbitrary union of members of τ belong to τ
- 3. the intersection of any finite members of τ belongs to τ

with the elements of τ called **open sets** and τ is called a topology on X. A subset $C \subseteq X$ is said to be closed in (X, τ) iff its complement $X \setminus C$ is open.

Definition 8.17 (Homeomorphism) (X,τ) and (X',τ') are homeomorphic if there exists mutually inverse continuous functions $f: X \to X'$ and $g: X' \to X$. f and g then define a homeomorphism between (X,τ) and (X',τ') .

• Homeomorphisms form an equivalence relation on the class of topological spaces. The resulting equivalence classes are homeomorphism classes.

Definition 8.18 (Embedding) A map f between (X, τ) and (X', τ') is a topological embedding if f yields a homeomorphism between X and f(X), where f(X) carries the relative topology inherited from X', denoted by $X \hookrightarrow X'$.

• X can be treated as a subspace of X'

Definition 8.19 (Compactness) (X, τ) is compact if each of its open covers has a finite subcover, that is for any collection C of open subsets of X such that $X = \bigcup_{x \in C} x$ there exists a finite subset $F \subseteq C$ such that $X = \bigcup_{x \in F} x$.

Theorem 8.20 (Heine-Borel Theorem) For any subset A of a Euclidean space, A is compact iff A is closed and bounded.

• Closed intervals are compact

Definition 8.21 (Continuity)

(Metric Spaces) $f:(X,d)\to (Y,d')$ is continuous at $a\in X$ if

- (Epsilon-Delta) for any $\epsilon > 0$, there exists $\delta > 0$ such that
 - $-d'(f(x), f(a)) < \epsilon \text{ whenever } x \in X \text{ and } d(x, a) < \delta$
 - $-f(B(a;\delta))\subseteq B(f(a);\epsilon)$ OR $B(a;\delta)\subseteq f^{-1}(B(f(a);\epsilon))$
- (Neighbourhood) for any neighbourhood M of f(a)
 - there exists a corresponding neighbourhood N of a such that $f(N) \subseteq M$ OR $N \subseteq f^{-1}(M)$
 - $f^{-1}(M)$ is a neighbourhood of a
- (Open Set) for any open set O of Y, the subset f⁻¹(O) is an open subset of X

(Topology) $f:(X,\tau)\to (X',\tau')$ is continuous at $x\in X$ if for any neighbourhood G of f(x), where $G\in \tau'$, $f^{-1}(G)$ is a neighbourhood of x.

9 Deep Learning and Multivariate Chain Rule

Definition 9.1 (Perceptron) The function $f: x \mapsto \sigma(w^{\tau}x + b)$ where w is the vector of weights, b the scalar bias (offset), and the activation function σ is the Heaviside step function.

$$\sigma(v) = \begin{cases} 0, & v < 0 \\ 1, & v \ge 0 \end{cases}$$

function	w_1	w_2	b
	-1		0
^	0.5	0.5	-1
V	1	1	-1

Definition 9.2 (Loss Function) Let \hat{y} be the output of $\sigma(\mathbf{w}^{\tau}\mathbf{x} + b)$ and y the true value (target). The **zero-one loss function** is defined as

$$l_{0-1}(y,\hat{y}) = \begin{cases} 0, & \hat{y} \neq y \\ 1, & \hat{y} = y \end{cases}$$

which is a piecewise constant function of the weights and bias. Hence we use the surrogate loss function

$$l_{SE}(y, \hat{y}) = \frac{1}{2}(y - \hat{y})^2$$

Theorem 9.3 (Gradient Descent)

$$\mathbf{w}_{n+1} = \mathbf{w}_n - \gamma \frac{\partial l_{SE}}{\partial \mathbf{w}} = \mathbf{w}_n - \gamma (\hat{y} - y) \mathbf{x}$$
$$b_{n+1} = b_n - \gamma \frac{\partial l_{SE}}{\partial b} = b_n - \gamma (\hat{y} - y)$$

Definition 9.4 (Multilayer Perceptron) or feedforward network

$$\hat{\boldsymbol{Y}}(\boldsymbol{X}) \coloneqq \boldsymbol{F}_{\boldsymbol{W},\boldsymbol{b}}(\boldsymbol{X}) = \left(\boldsymbol{f}_{\boldsymbol{W}^{(L)},\boldsymbol{b}^{(L)}}^{(L)} \circ ... \circ \boldsymbol{f}_{\boldsymbol{W}^{(1)},\boldsymbol{b}^{(1)}}^{(1)}\right)(\boldsymbol{X})$$

• If we take σ to be the identity function in each layer, the MLP becomes a linear regression

Theorem 9.5 (Chain Rule)

$$(f \circ g)' = (f' \circ g) \cdot g'$$
, in Lagrange's notation
$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$$
, in Leibniz's notation

Theorem 9.6 (Multivariate Chain Rule) Let $g: \mathbb{R}^p \to \mathbb{R}^n$ and $f: \mathbb{R}^n \to \mathbb{R}^m$, with $\mathbf{b} = g(\mathbf{a})$ and $\mathbf{c} = f(\mathbf{b})$ where $\mathbf{a} \in \mathbb{R}^p$, $\mathbf{b} \in \mathbb{R}^n$ and $\mathbf{c} \in \mathbb{R}^m$.

$$\frac{\partial c_i}{\partial a_j} = \sum_{k=1}^n \frac{\partial c_i}{\partial b_k} \cdot \frac{\partial b_k}{\partial a_j}$$