ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Лабораторная работа 3.4.5 **Петля Гистерезиса (динамический метод)**

Цель работы: изучение петель гистерезиса различных ферромагнитных материалов в переменных полях.

В работе используются: автотрансформатор, понижающий трансформатор, интегрирующая цепочка, амперметр, вольтметр, электронный осциллограф, делитель напряжения, тороидальные образцы с двумя обмотками.

1 Экспериментальная установка

Схема установки изображена на рис. ??. Напряжение сети (220 В, 50 Γ ц) с помощью трансформаторного блока T, состоящего из регулировочного автотрансформатора и разделительного понижающего трансформатора, подаётся на намагничивающую обмотку N_0 исследуемого образца.

Рис. 1: Схема установки для исследования намагничивания образцов

В цепь намагничивающей катушки, на которую подаётся некоторое напряжение U_0 , последовательно включено сопротивление R_0 . Напряжение на R_0 , равное $U_R = R_0 I_0$, где I_0 — ток в намагничивающей обмотке N_0 , подаётся на канал X осциллографа. Связь напряжённости H в образце и тока I_0 рассчитывается по теореме о циркуляции. Действующее значение переменного тока в обмотке N_0 измеряется амперметром А. Для измерения магнитной индукции B с измерительной обмотки $N_{\rm u}$ на вход RC-цепочки подаётся напряжение $U_{\rm u}$ ($U_{\rm bx}$), пропорциональное производной dB/dt. С интегрирующей ёмкости $C_{\rm u}$ снимается напряжение U_C ($U_{\rm bux}$), пропорциональное величине B, и подаётся на вход Y осциллографа. Значение индукции поля B рассчитывается по формуле (??). Замкнутая кривая, возникающая на экране, воспроизводит в некотором масштабе (различном для осей X и Y) петлю гистерезиса. Чтобы придать этой кривой количественный смысл, необходимо установить масштабы изображения, т. е. провести калибровку каналов X и Y осциллографа.

2 Ход работы

2.1 Измерение петли гистерезиса

- 1. Соберем схему, подключаем в сеть. Параметры установки $R_{\rm u}=20~{\rm кOm}, C_{\rm u}=20~{\rm mk\Phi}, R_0=0.2~{\rm Om}.$ Параметры образцов:
- 2. Подбираем ток питания и коэффициенты усиления ЭО так, чтобы предельная петля гистерезиса занимала большую часть экрана.

	Кремнистое железо	Феррит	Пермаллой
N_0 , витков	20	42	15
$N_{\rm m}$, витков	200	400	300
S, cm ²	2	3	0,66
$2\pi R$, cm	11	25	14,1

3. Снимаем начальную кривую намагничивания: плавно уменьшая ток намагничивания до нуля, будем отмечать вершины наблюдаемых частных петель. Кривая, соединяющая эти вершины, проходит вблизи начальной кривой намагничивания.

	Кремнистое железо	Феррит	Пермаллой
K_X , В/дел	0,19	0,048	0,048
K_Y , В/дел	0,038	0,015	0,038
<i>I</i> , A	2.24	0.73	0,66

4. По экрану ЭО измеряю полную ширину и высоту предельных петель - $2X_s$ и $2Y_s$, соответствующие удвоенной амплитуде колебания напряженности H_s и индукции B_s поля в образце в состоянии насыщения.

Рис. 2: Петля гистрезиса для кремниего железа

Рис. 3: Петля гистрезиса для феррита

Рис. 4: Петля гистрезиса для пермвллоя

5. Также измерим $2X_c$ - ширина петли на пересечении с осью абсцисс и $2Y_c$ - высота петли на пересечении с осью ординат.

Значения, полученные в пунктах 4 - 5 представлены в таблице:

2.2 Определение параметров RC-ячейки

6. Измерим постоянную времени RC-ячейки. Для этого разберем цепь тороида и подадим на вход ячейки синусоидальное напряжение с обмотки U_0 понижающего трансформатора. Подключим

	Кремнистое железо	Феррит	Пермаллой
$2X_s$, дел	7	9	4,2
$2Y_s$, дел	3,9	6,8	3,6
$2X_c$, дел	0,7	1	1,8
$2Y_c$, дел	1,4	2,8	3,4

Y-вход ЭО ко входу интегрирующей ячейки и отключим X-вход ЭО. Определим входное напряжение на RC-цепочке: $U_{\rm Bx}=4,26{\rm B}$. Не меняя тока, переключим Y-вход ЭО к выходу ячейки и аналогичным образом определим напряжение $U_{\rm Bыx}=0,033{\rm B}$. Тогда (с учётом $\nu=50~\Gamma{\rm H}$)

$$\tau = \frac{U_{\text{bx}}}{\omega U_{\text{bbix}}} = 0.41 \text{ c}$$

Рассчитывая через параметры цепи, $\tau = R_{\rm u}C_{\rm u} = 0.4$ с, что почти равно полученному.

2.3 Обработка результатов

7. Рассчитаем коэрцитивную силу и индукцию насыщения для каждого образца и сравним с табличными. При расчетах будем использовать формулы связи напряженности и тока в торо-идальном образце : $H = \frac{IN_0}{2\pi R}$ и результаты калибровки канала X.

Цена деления: $h=rac{K_xN_0}{2\pi RR_0}$ $b=rac{K_yR_uC_u}{SN_u}$

Умножая X_c на h получаем H_c , аналогично B_s - это Y_s умноженное на b. Полученные h и b для всех образцов:

	Кремнистое железо	Феррит	Пермаллой
h, А/м дел	1,72	40,3	25,5
b, Тл/дел	0,38	0,05	0,77

Полученные значения для H_c и B_s :

	Кремнистое железо	Феррит	Пермаллой
H_c , A/M	120	20,15	22,9
Табл H_c , А/м	40	4-100	5,6
B_s , Тл	0,133	0,07	1,31
${\rm Ta}$ бл B_s , ${\rm T}$ л	1,95	0,1-0,4	1,05 - 1,6

 Работа 3.4.5
 2 Ход работы

 Работа 3.4.5
 2 Ход работы

Полученные значения $\mu_{\text{диф}}$:

	Кремнистое железо	Феррит	Пермаллой
$\mu_{\text{Ha}} - \mu_{max}$	$(3980 - 5175) \pm 800$	9010 ± 500	1700 ± 760
табличные значения	500-7000	500-20000	1200-3500

3 Выводы

Т. к. в работе присутствует осциллограф, практически все погрешности определяются погрешностью, связанной со снятием показаний по экрану. Т. к. физически невозможно считать показания лучше, чем с точностью 1/10 дел., погрешность h и b 10%.

В работе я получила начальные кривые намагничивания, нашла значения B_s и H_c , сравнила с табличными, нашла $\mu_{\text{диф}}$ и постоянную времени RC-ячейки τ . Полученные значения получились близки к табличным, кроме пермаллоя, там есть небольшое отклонение.