

Chapter 4 Differential Amplifiers

中科大微电子学院

黄鲁

教材:模拟CMOS集成电路设计

Behzad Razavi

4.1 single-ended and differential operation

- 单端信号:参考电位为一固定电位(fixed potential),通常为地。
- 差动信号:两个节点电位之差。该两节点直流电位相对某一固定电位 (即共模电平)大小相等,交变小信号电压方向相反。并要求该两节 点与固定电位(=交流地)节点的阻抗相等(电路对称)。

Figure 4.1 (a) Single-ended and (b) differential signals.

差动(或称差分)工作方式的优点

(1) 对共模噪声(外部环境电磁噪声,如电源和地噪声)的强抑制能力;

共模噪声: 2输入端或输出端相同大小的噪声

Figure 4.3 Effect of supply noise on (a) a single-ended circuit, (b) a differential circuit.

两单端放大器组成差动对

- (2) Vout=Vx-VY,增大了输出电压摆幅
- (3) 提高线性范围(差分)

两单端放大器组成差动对的缺点

输入共模电平影响输出摆幅。

共模CM电平:

2输入端或输出端的相同电平。

Figure 4.5 (a) Simple differential circuit, (b) illustration of sensitivity to the input common-mode level.

4.2 Basic Differential Pair

Iss=ID1+ID2不依赖ViCM。

Figure 4.6 Basic differential pair.

设M1、M2非截止区,尾电流源M3处于饱和区, 当Vin1=Vin2(大信号)时, 输出共模电平VoCM=VDD-RD*Iss/2

4.2.1 Qualitative analysis

$$Iss=ID1+ID2$$

 $\stackrel{\text{"}}{=} V_{\text{in}1} = V_{\text{in}2},$ $V_{\text{out}1} = V_{\text{out}2} = V_{\text{DD}} - R_{\text{D}} * I_{\text{SS}}/2$

• Vin1 电位很低时M1 截止, ID2=ISS, Vout1=VDD, Vout2= VDD-RD*ISS,

Figure 4.7 Input-output characteristics of a differential pair.

具有尾电流源的差动对重要特性:

- (1)输出端的最大和最小电平是完全确定的(VDD和 VDD-RD*Iss),与共模输入电平无关(尾电流源的作用),前提:负载不是电流源,尾电流源在饱和区
- (2) 小信号增益当Vin1=Vin2时(平衡状态equilibrium) 最大,且随|Vin1-Vin2|的增大而减小,即有非线性

common-mode (CM) behavior

 $V_{in1}=V_{in2}=V_{inCM}, V_{out1}=V_{out2}$

Figure 4.8 (a) Differential pair sensing an input common-mode change, (b) equivalent circuit if M_3 operates in deep triode region, (c) common-mode input-output characteristics.

$$CM$$
輸入范围: $V_{DD} - R_D I_{SS} / 2 + V_{TH1} \ge V_{in,CM} \ge V_{TH1} + V_{OD1} + (V_b - V_{TH3})$ M1、M2饱和区 M3饱和区,VOD:过驱动电压

2019/10/22

共模增益: 应很小

共模输入时,两边并联合并为带源极负反馈的共源级。

当沟道长度调制效应可忽略时:

$$A_{\text{VCM}}(或证A_{\text{VC}}) = \frac{\partial V_{\text{out}}}{\partial V_{\text{inCM}}} = \frac{-R_D/2}{\frac{1}{2g_m} + R_S} = \frac{-g_m R_D}{1 + 2g_m r_o} \approx \frac{-R_D}{2r_o}$$

共模CM"变化信号"实为噪声:

地噪声、输入共模噪声、

电源噪声(下一级的输入共模噪声)、输入(温度)漂移,两端相同!

Output voltage swing of a differential pair

单端输出范围(RC上拉负载):

$$V_{DD} > V_{oCM} > V_{in,CM} - V_{TH1}$$

$$V_{in,CM} \geq V_{GS1} + (V_{GS3} - V_{TH3})$$

较大的共模输入变化会扰乱偏置点、改变小信号增益,并限制输出电压摆幅。

Figure 4.10 Maximum allowable output swings in a differential pair.

4.2.2 quantitative analysis

求: 差动增益
$$A_{vd}$$
(或记 A_v) = $\frac{\partial (V_{out1} - V_{out2})}{\partial (V_{in1} - V_{in2})}$

定义差分电路跨导:
$$G_m = \frac{\partial (I_{D1} - I_{D2})}{\partial (V_{in1} - V_{in2})} = \frac{\partial \Delta I_D}{\partial \Delta V_{in}}$$

公式解析法:

$$\begin{split} & \Delta V_{out} = V_{out1} - V_{out2} = (V_{DD} - R_{D1}I_{D1}) - (V_{DD} - R_{D2}I_{D2}) \\ & = -R_D(I_{D1} - I_{D2}) = -R_D\Delta I_D \end{split}$$

$$\therefore V_{in1} - V_{in2} = \sqrt{\frac{2I_{D1}}{\mu_n C_{ox} \frac{W}{L}}} - \sqrt{\frac{2I_{D2}}{\mu_n C_{ox} \frac{W}{L}}}, \quad \vec{\Xi} \quad (4.5)$$

Figure 4.11 Differential pair.

$$R_{D1} = R_{D2} = R_{D}$$

设M1、M2工作在饱和区, 沟道长度调制效应可忽略

quantitative analysis (cont.)

以下利用 I_{SS} 计算 $I_{D1} - I_{D2}$

由
$$I_{D1} + I_{D2} = I_{SS}$$
和公式 (4.5) 得 $(V_{in1} - V_{in2})^2 = \frac{2}{\mu_n C_{ox} \frac{W}{L}} (I_{SS} - 2\sqrt{I_{D1}I_{D2}})$

$$\longrightarrow 2\sqrt{I_{D1}I_{D2}} = I_{SS} - \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{in2})^2$$

$$4I_{D1}I_{D2} = I_{SS}^{2} - I_{SS} \left(\mu_{n}C_{ox}\frac{W}{L}\right) (V_{in1} - V_{in2})^{2} + \frac{1}{4} \left(\mu_{n}C_{ox}\frac{W}{L}\right)^{2} (V_{in1} - V_{in2})^{4}$$

$$V_{\text{out1}} \longrightarrow V_{DD}$$

$$V_{\text{out2}} \longrightarrow V_{\text{out2}}$$

$$V_{\text{in1}} \longrightarrow V_{\text{in2}} \longrightarrow V_{\text{in2}}$$

差分对VI 线性比单管MOSFET好!

$$\therefore (I_{D1} - I_{D2})^2 = I_{SS}^2 - 4I_{D1}I_{D2} = I_{SS}\boldsymbol{\mu}_n C_{ox} \frac{W}{L} (V_{in1} - V_{in2})^2 - \frac{1}{4} (\boldsymbol{\mu}_n C_{ox} \frac{W}{L})^2 (V_{in1} - V_{in2})^4$$

$$= \frac{1}{4} \left[\mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{in2}) \right]^2 \times \left[\frac{4I_{SS}}{\mu_n C_{ox} \frac{W}{L}} - (V_{in1} - V_{in2})^2 \right]$$

$$\therefore \Delta I_{D} = I_{D1} - I_{D2} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{in1} - V_{in2}) \sqrt{\frac{4I_{SS}}{\mu_{n} C_{ox} \frac{W}{L}} - (V_{in1} - V_{in2})^{2}} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} \Delta V_{in} \sqrt{\frac{4I_{SS}}{\mu_{n} C_{ox} \frac{W}{L}} - \Delta V_{in}^{2}}$$
 (4. 9)

2019/10/22

quantitative analysis (cont.)

$$G_{m} = \frac{\partial \Delta I_{D}}{\partial \Delta V_{in}} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} \left(\sqrt{\frac{4I_{SS}}{\mu_{n} C_{ox} \frac{W}{L}}} - \Delta V_{in}^{2}} - \frac{\Delta V_{in}}{\sqrt{\frac{4I_{SS}}{\mu_{n} C_{ox} \frac{W}{L}}}} \right) = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} \frac{\frac{4I_{SS}}{\mu_{n} C_{ox} \frac{W}{L}}}{\sqrt{\frac{4I_{SS}}{\mu_{n} C_{ox} \frac{W}{L}}}} - \Delta V_{in}^{2}}$$

$$\Delta V_{in} = 0$$
平衡状态时,达最大跨导(最大增益): $G_m = \sqrt{\mu_n C_{ox} \frac{W}{L} I_{SS}} = g_m$

差动增益
$$A_{vd} = \frac{\partial (V_{out1} - V_{out2})}{\partial (V_{in1} - V_{in2})} = -G_{m}R_{D} = -g_{m}R_{D}$$
,前提条件?

当全部Iss流过其中一个MOS时,另一个FET截止。最大差模输入:

由式
$$(4.5)$$
 $\Delta V_{inMAX} = V_{in1} - V_{in2} = \sqrt{\frac{2I_{D1}}{\mu_n C_{ox} \frac{W}{L}}} - \sqrt{\frac{2I_{D2}}{\mu_n C_{ox} \frac{W}{L}}} = \sqrt{\frac{2I_{SS}}{\mu_n C_{ox} \frac{W}{L}}}$ $V_{out1} \circ V_{out2} \circ V_{out2}$ 问题: 由式 (4.9) $\Delta V_{in} = \sqrt{\frac{4I_{SS}}{\mu_n C_{ox} \frac{W}{L}}}$ 时, $\Delta I_D = 0$ 对吗?

问题: 由式
$$(4.9)$$
 $\Delta V_{in} = \sqrt{\frac{4I_{SS}}{\mu_n C_{ox} \frac{W}{L}}}$ 时, $\Delta I_D = 0$ 对吗?

推论: 若输入管W/L小或尾电流源 Iss大,则 差动输入变化范围可以较大

Transconductance of differential pair

Figure 4.12 Variation of drain currents and overall transconductance of a differential pair versus input voltage.

Example 4.2

Plot the input-output characteristic of a differential pair as the device width and the tail current vary.

Figure 4.13

(c)

-/SS2

 $-\Delta V_{\rm in1}$

线性范围大!

As Iss increases, both the input range and output current swing increase. 图(c)

Small-signal behavior of differential pairs

计算VX

• Method 1:superposition(叠加法)

Figure 4.14 Differential pair with small-signal inputs.

由
$$I_{D2} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS2} - V_{TH})^2$$
 忽略 λ 和 γ

$$R_s = \frac{\partial V_s}{\partial I_s} = \frac{1}{\partial I_s} = \frac{1}{-\partial I_{D2}} = \frac{1}{g_{m2}}$$

由式 (3.57)
$$\frac{V_{X1}}{V_{in1}} = -\frac{R_D}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}}$$

Figure 4.15 (a) Differential pair sensing one input signal, (b) circuit of (a) viewed as a CS stage degenerated by M_2 , (c) equivalent circuit of (b).

Set Vin2 to zero: 计算Vy

Figure 4.16 Replacing M_1 by a Thevenin equivalent.

小信号
$$\frac{V_{Y1}}{V_{in1}} = \frac{R_D}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}}$$

$$\diamondsuit V_{\text{in 1}} = 0$$

$$R_{\text{T}} = \frac{-V_{1}}{-g_{m1}V_{1}} = \frac{1}{g_{m1}}$$

开路电压:
$$V_T = Isc*R_T = V_{in1}$$

设
$$V_{in2} = 0$$
, $g_{m1} = g_{m2} = g_{m}$, 则 $V_{X1} - V_{Y1} = 2 \frac{-R_{D}}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}}} V_{in1} = -g_{m}R_{D}V_{in1}$

Superposition叠加法

Set Vin1 to zero, 同理得: $V_{X2} - V_{Y2} = g_{m}R_{D}V_{in2} = -g_{m}R_{D}V_{in1}$

差动增益:
$$A_{vd} = \frac{V_X - V_Y}{V_{in1} - V_{in2}} = \frac{(V_{X1} + V_{X2}) - (V_{Y1} + V_{Y2})}{2V_{in1}} = -g_m R_D$$

• 单边输出,增益减半。

差分对与共源级的比较

- 设总偏置电流相同,为Iss.
- 平衡状态下,差分对中单管M1(M2)偏置电流 $I_{D1}=I_{SS}/2$

•
$$\not\equiv$$
 \oint \oint $g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_{D1}} = \sqrt{2\mu_n C_{ox} \frac{W}{L} \frac{I_{SS}}{2}}$

• 差分对增益为单管共源级放大器的 $^{1}\sqrt{2}$

Method 2: concept of half circuit

- 对称电路的"虚地"点概念。
- 设差分输入:

$$V_{in1} = V_{CM} + \Delta V$$
$$V_{in2} = V_{CM} - \Delta V$$

- VCM 共模输入电压
- 如果电路保持线性,保证2个管gm相同

$$g_m \Delta V_1 + g_m \Delta V_2 = 0$$

则P点电位不变, 交流虚地!

适合幅度变化小的信号!

$$\Delta V_1 = -\Delta V_2$$

半边电路概念的应用

半边电路概念适合分析全差动输入的对称差动对。

小情景
$$\frac{V_{X}}{V_{in1}} = -g_{m}R_{D}$$

$$\frac{V_{Y}}{V_{in2}} = \frac{V_{Y}}{-V_{in1}} = -g_{m}R_{D}$$

差动增益
$$A_v = \frac{V_X - V_Y}{V_{in1} - V_{in2}} = \frac{V_X - V_Y}{2V_{in1}} = -g_m R_D$$

Figure 4.20 Application of the half-circuit concept.

半边电路计算简单(全差分结构、输入信号变化幅度小)

Example 4.4 计算差动增益

说
$$r_{o1} = r_{o2} = r_o$$

$$\frac{V_X}{V_{in1}} = -g_m(R_D \parallel r_o)$$

$$\frac{V_{Y}}{V_{in2}} = \frac{V_{Y}}{-V_{in1}} = -g_{m}(R_{D} \mid \mid r_{o})$$

$$A_{vd} = \frac{V_{X} - V_{Y}}{V_{in1} - V_{in2}} = \frac{V_{X} - V_{Y}}{2V_{in1}} = -g_{m}(R_{D} \mid \mid r_{o})$$

$$\lambda \neq 0 \iff r_o \neq \infty$$

考虑沟道长度调制 效应

任何输入可分解成差模信号分量+共模信号分量

$$V_{in1} = rac{V_{in1} - V_{in2}}{2} + rac{V_{in1} + V_{in2}}{2}$$
 $V_{in2} = -rac{V_{in1} - V_{in2}}{2} + rac{V_{in1} + V_{in2}}{2}$ 对所有 V_{in} 均成立

 V_{in1} V_{in2} V_{in2}

(b)

实际电路需要保证两 边直流电压工作点一 致,否则gm失配

(a) $\frac{V_{\text{in1}} - V_{\text{in2}}}{2} \xrightarrow{+} \xrightarrow{+} \underbrace{V_{\text{in2}} - V_{\text{in1}}}{2}$ $\frac{V_{\text{in1}} + V_{\text{in2}}}{2} \xrightarrow{+} \xrightarrow{+} \underbrace{V_{\text{in2}} - V_{\text{in1}}}{2}$

(c)

 $\frac{V_{\text{in1}} - V_{\text{in2}}}{2}$ $\frac{V_{\text{in1}} + V_{\text{in2}}}{2}$

差动信号无直流分量,无 论大小均视为变化量。

Figure 4.22 Conversion of arbitrary inputs to differential and common-mode components.

Example 4.5

In the circuit of Fig. 4.20(a), calculate V_X and V_Y if $V_{in1} \neq -V_{in2}$ and $\lambda \neq 0$.

• 差模小信号: 图4.24(a)

$$V_{X} = -g_{m}(R_{D} \mid \mid r_{o}) \frac{V_{\text{in}1} - V_{\text{in}2}}{2}$$

$$V_{Y} = -g_{m}(R_{D} \mid \mid r_{o}) \frac{V_{\text{in}2} - V_{\text{in}1}}{2}$$

$$V_{X} - V_{Y} = -g_{m}(R_{D} || r_{o})(V_{in1} - V_{in2})$$

•共模小信号(交变): 图4.24(b)

M1和M2的漏电流均为Iss/2, Vx 和Vy不变。共模抑制!

实际电路中若Vincm=1/2(Vin1+Vin2) 上升,则VGS和VP均会上升, Iss稍微上升(沟道长度调制)。

Figure 4.24

4.3 common mode response

- 差动放大器的重要特点是对共模噪声的抑制。
- 设电流源输出电阻Rss (理想值为无穷大)

图4.25(a) 共模输入的差动对电路;图(a)的简化电路;图(b)的等效电路(gm为单管的2倍)

$$A_{v,CM} = \frac{\partial V_{\text{out}}}{\partial V_{\text{in,CM}}} = -\frac{\frac{R_D}{2}}{\frac{1}{2g_m} + R_{SS}}, \quad \vec{x} \quad (4.28)$$

增大R_{SS},减小A_{v, CM}

Example 4.6

已知:
$$I_{SS} = 1mA$$
, $\left(\frac{W}{L}\right)_{1,2} = \frac{2.5}{0.5}$, $\mu_n C_{ox} = 50 \mu A/V^2$,

$$V_{TH} = 0.6V$$
, $\lambda = \gamma = 0$, $V_{DD} = 3.3V$

- (a) VRss=0.5V,输入共模电压应是多少?
- (b) 差模增益=5时RD=?
- (c) 输出共模电平? 最低单端输出电平?
- (d) 输入共模增加50mV, 输出变化多大?

解
$$(a)V_{in,CM} = V_{GS} + V_{RSS}$$

$$I_{D1} = I_{D2} = 0.5 mA$$

$$V_{GS1} = V_{GS2} = \sqrt{\frac{2I_{D1}}{\mu_n C_{ox} \frac{W}{L}}} + V_{TH1} = 1.23V$$

$$V_{in,CM} = V_{CS} + V_{RSS} = 1.23V + 0.5V = 1.73V$$

$$R_{SS} = \frac{0.5V}{1mA} = 500\Omega$$

设
$$\lambda = \gamma = 0$$

Example 4.6 (cont.)

(b): 已知
$$|A_{v}| = \frac{\Delta V_{out}}{\Delta V_{in}} = \sqrt{\mu_{n} C_{ox} \frac{W}{L} I_{SS}} R_{D} = g_{m1} R_{D} = 5$$

$$g_{m1} = \sqrt{2\mu_{n} C_{ox} \frac{W}{L} I_{D1}} = \sqrt{\mu_{n} C_{ox} \frac{W}{L} I_{SS}} = \frac{1}{632\Omega}$$

$$R_{D} = \frac{5}{g_{m}} = 3.16k\Omega :$$

$$(c)$$
: 共模输出 $V_X = V_{DD} - I_{D1}R_D = 3V - 0.5 * 3.16V = 1.42V$

$$V_{in1} - V_{TH1} \le V_X$$

$$V_{X \min} = V_{in,CM} - V_{TH} = 1.73V - 0.6V = 1.13V$$

若输出电压减小1.42-1.13=0.29V晶体管就会进入线性区,RD不可较大。

2019/10/22

Example 4.6 (cont.)

$$(d): \Delta V_{o,CM} = A_{v,CM} \Delta V_{in,CM} = -\frac{R_D}{2} \Delta V_{in,CM}$$

$$3160/2$$

$$V_{out1} \rightarrow V_{out2}$$

$$V_{in1} \rightarrow V_{in2}$$

$$= -\frac{3160/2}{632/2 + 500} \times 50 \,\text{mV} = -96.8 \,\text{mV}$$

结果表明该结构不好,共模抑制差。

原因是Rss阻值太小(电流随输入电平变化)。

差分电路的问题: 失配!

差分电路要求电路严格对称!

小信号
$$A_{v,CM} = \frac{\partial V_{\text{out}}}{\partial V_{\text{in,CM}}} = -\frac{\frac{R_D}{2}}{\frac{1}{2g_{m}} + R_{SS}}$$

设负载失配 ΔR_n :

$$\Delta V_{X} \approx -\frac{R_{D}}{\frac{1}{g_{m}} + R_{SS}} \Delta V_{\text{in,CM}} \qquad \Delta V_{Y} \approx -\frac{R_{D} + \Delta R_{D}}{\frac{1}{g_{m}} + R_{SS}} \Delta V_{\text{in,CM}}$$

导致共模输入产生差动输出, 共模噪声对 输出影响很大。

总结: 差动电路的共摸响应取决于尾电流源和 电路非对称性。

失配导致输入共模信号在输出端产生差模分量。

Figure 4.27 Common-mode response in the presence of resistor mismatch.

Figure 4.28 Effect of CM noise in the presence of resistor mismatch.

失配导致共模噪声转换为差模噪声"信号"

实际差分电路的不对称性产生失配, 主要来自输入晶体管,工艺误差 造成的阈值电压和尺寸(包括版 图不平衡)不一致,体现为gm不 同、电流不同。

差动结构缺点:对工艺质量(失配)敏感,功耗稍大,版图要求对称。

2019/10/22

共模输入噪声影响:输入管不匹配情况讨论

交变小信号

$$I_{D1} = g_{m1}(V_{in,CM} - V_P) \qquad I_{D2} = g_{m2}(V_{in,CM} - V_P)$$

$$V_{P} = (I_{D1} + I_{D2})R_{SS} = (g_{m1} + g_{m2})(V_{in,CM} - V_{P})R_{SS}$$

$$\therefore V_{P} = \frac{(g_{m1} + g_{m2})R_{SS}}{(g_{m1} + g_{m2})R_{SS} + 1} V_{in,CM}
V_{X} = -I_{D1}R_{D} = -g_{m1}(V_{in,CM} - V_{P})R_{D}
= -g_{m1} \frac{1}{(g_{m1} + g_{m2})R_{SS} + 1} V_{in,CM}R_{D}
V_{Y} = -I_{D2}R_{D} = -g_{m2}(V_{in,CM} - V_{P})R_{D}
= -g_{m2} \frac{1}{(g_{m1} + g_{m2})R_{SS} + 1} V_{in,CM}R_{D}$$

Figure 4.30 (a) Differential pair sensing CM input, (b) equivalent circuit of (a).

由失配产生的差动输出:
$$V_X - V_Y = -\frac{g_{m1} - g_{m2}}{(g_{m1} + g_{m2})R_{SS} + 1} V_{in,CM} R_D$$

应当极小

共模噪声转化成

共模噪声转化成
差动小信号误差:
$$A_{CM-DM} = \frac{V_X - V_Y}{V_{in,CM}} = -\frac{g_{m1} - g_{m2}}{(g_{m1} + g_{m2})R_{SS} + 1} R_D = -\frac{\Delta g_m}{(g_{m1} + g_{m2})R_{SS} + 1} R_D,$$
式 (4. 43)

Example 4.7

M3和M4的跨导失配 Δg_m 。多大比例的电源噪声以差动分量的形式出现在输出端?

Assume $\lambda = \gamma = 0$.

Figure 4.31

解:电源噪声是共模噪声。尾电源源的交流阻抗很大,因此电源噪声全部加到A点和B点成为M3和M4的共模输入(交变小信号)。由(4.43)

$$\mathbf{A}_{\text{CM-DM}} = \frac{V_{X} - V_{Y}}{V_{in,CM}} = -\frac{\Delta g_{m}}{(g_{m3} + g_{m4})\frac{1}{j\omega C_{p}} + 1} R_{D} \longrightarrow |\mathbf{A}_{\text{CM-DM}}| = \frac{\Delta g_{m}}{\sqrt{(g_{m3} + g_{m4})^{2} \left|\frac{1}{\omega C_{p}}\right|^{2} + 1}} R_{D}$$

共模抑制比Common-mode rejection ratio

$$CMRR = \frac{A_{DM}}{A_{CM-DM}}$$

注意区别 |
$$\frac{A_{DM}}{A_{CM}}$$
 |

设MOS失配: $g_{m1} \neq g_{m2}$, I_{SS} 的 $R_{SS} \neq \infty$

$$I_{SS}$$
的 $R_{SS} \neq \infty$

• 参考图4.15采用叠加定律 (失配时半边电路分析不成立)

$$R_{T} = \frac{1}{g_{m1}} \mid \mid R_{SS} = \frac{\frac{1}{g_{m1}} R_{SS}}{\frac{1}{g_{m1}} + R_{SS}} = \frac{R_{SS}}{1 + g_{m1} R_{SS}}$$

$$V_T = V_{in} g_{m1} \left(\frac{1}{g_{m1}} \parallel R_{SS} \right) = V_{in} \frac{g_{m1} R_{SS}}{1 + g_{m1} R_{SS}}$$

Common-mode rejection ratio (cont.)

由共栅级增益公式:
$$\frac{V_{out2}}{V_T} = \frac{R_{D2}}{\frac{1}{g_{m2}} + R_T}$$

得
$$\frac{V_{y}}{V_{in1}} = \frac{V_{y}}{V_{T}} \frac{V_{T}}{V_{in1}} = \frac{R_{D}}{R_{T} + \frac{1}{g_{m2}}} * \frac{g_{m1}R_{SS}}{1 + g_{m1}R_{SS}} = \frac{R_{D}}{\frac{1}{g_{m1}} \parallel R_{SS} + \frac{1}{g_{m2}}} * \frac{g_{m1}R_{SS}}{1 + g_{m1}R_{SS}}$$

$$(V_{X} - V_{Y})_{Vinl} = \left(\frac{-R_{D}}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}} || R_{SS}} - \frac{R_{D}}{\frac{1}{g_{m1}} || R_{SS} + \frac{1}{g_{m2}}} * \frac{g_{m1}R_{SS}}{1 + g_{m1}R_{SS}} \right) V_{inl}$$

同理
$$(V_X - V_Y)_{Vin2} = \left(\frac{R_D}{\frac{1}{g_{m1}} + \frac{1}{g_{m2}} \parallel R_{SS}} * \frac{g_{m2}R_{SS}}{1 + g_{m2}R_{SS}} + \frac{R_D}{\frac{1}{g_{m1}} \parallel R_{SS} + \frac{1}{g_{m2}}}\right) V_{in2}$$

$$V_{in1} = -V_{in2} \qquad A_{DM} = \frac{(V_X - V_Y)_{tot}}{V_{in1} - V_{in2}} = \frac{(V_X - V_Y)_{in1} + (V_X - V_Y)_{in2}}{V_{in1} - V_{in2}}$$
$$= -\frac{R_D}{2} \frac{g_{m1} + g_{m2} + 4g_{m1}g_{m2}R_{SS}}{1 + (g_{m1} + g_{m2})R_{SS}}$$
(4.46)

CMRR (cont.)

当
$$g_{m1} = g_{m2} = g_m$$

$$A_{DM} = -g_m R_D$$
即得(4.19)
$$\frac{(V_X - V_Y)_{tot}}{V_{in1} - V_{in2}} = -g_m R_D$$

$$\stackrel{\text{dis}}{=} g_{m1} \neq g_{m2}$$

CMRR =
$$\left| \frac{A_{DM}}{A_{CM-DM}} \right| = \left| \frac{-\frac{R_D}{2} \frac{g_{m1} + g_{m2} + 4g_{m1}g_{m2}R_{SS}}{1 + (g_{m1} + g_{m2})R_{SS}}}{-\frac{\Delta g_m}{(g_{m1} + g_{m2})R_{SS} + 1}R_D} \right|$$

$$= \left| \frac{g_{m1} + g_{m2} + 4g_{m1}g_{m2}R_{SS}}{2\Delta g} \right|$$

版图设计: 质心法(对称)

• 质心法布局W/L大的MOS

交叉 对角

> 分割 对称

哑元器件(改善临近注入效应)

2019/10/22

例: 镜像电流源

应避免的版图画法

版图改善: 例

四极照明: 100nm工艺光学分辨率增强

消除对图形形成没有贡献的光线,增加对比度

四极照明要求MOS 版图摆放方向一致

铜工艺(0.13um工艺后)金属层连线

化学机械抛光CMP后铜厚度损失

版图改进

4.4 MOS为负载的差动对

• 差动增益可用半边电路(参考图3.12和式3.42)

$$A_{DM} = -g_{mN} \left(\frac{1}{g_{mP}} \| r_{oP} \| r_{oN} \right) \approx -\frac{g_{mN}}{g_{mP}}$$
$$g_{m1} = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_{D1}}$$

• 平衡点附近 $A_{DM} \approx -\frac{g_{mN}}{g_{mP}} = \sqrt{\frac{\mu_{nox} \left(\frac{W}{L}\right)_N}{\mu_n \left(\frac{W}{L}\right)}}$ (4.51)

图4.32(a)以二极管为负载 的差动对

注意增益方向:输入输出 同侧为-,异侧为+

- 二极管负载减少了输出电压余度。
- 要增大增益,需减小(W/L)p,从而|VGSP-VTHP|增大,X和Y点允许的 共模电平下降。

2019/10/22

MOS为负载的差动对

Figure 4.33 Addition of current sources to increase the voltage gain.

采用减少电流而不是减少宽度的方法减小负载PMOS的gm,见(式4.51)

由式(3.43)

$$A_{DM} = -g_{mN}(r_{oP} \parallel r_{oN})$$

图4.32(B)电流源负载差动对

以电流源为负载的差动对的 小信号增益

$$\mathbf{A}_{\mathrm{DM}} = -g_{mN}(r_{oP} \parallel r_{oN})$$

一般为几十,可用cascode增 大增益(实质是增大输出 阻抗,注意后级的输入阻抗 要大)。

采用cascode差动对提高增益

Figure 4.34 (a) Cascode differential pair, (b) half circuit of (a).

- 缺点是减少了输出电压余度,只适合小信号放大。
- 注意: 电流源负载差动放大必须用某种方法确定输出共模电平;
- 二极管负载结构的图4.32(a)和图4.33输出共模电平是确定的,为

$$V_{DD} - V_{SGP}$$

2019/10/22

吉尔伯特单元 Gilbert cell: 乘法器

实现
$$\Delta V_{out} = k\Delta V_{cout}\Delta V_{in} = k(V_{cont2} - V_{cont1})\Delta V_{in}$$

考察

小信号
$$g_{m} = \sqrt{\mu} C_{ox} (\frac{W}{L})_{1} I_{1}$$

$$= \sqrt{\mu} C_{ox} (\frac{W}{L})_{1} \times \frac{1}{2} \mu_{n} C_{ox} (\frac{W}{L})_{cant 1} (V_{cant 1} - V_{TH})^{2}$$

$$= \mu C_{ox} \sqrt{\frac{1}{2} (\frac{W}{L})_{1} (\frac{W}{L})_{cant 1} (V_{cant 1} - V_{TH})}$$

小信号增益是尾电流的函数, Vcont控制尾电流

$$A_1 = -g_m R_D = -k (V_{cont1} - V_{TH})$$

$$\begin{split} & \Delta \textit{V}_{out} = \textit{k}(\textit{V}_{cont\,2} - \textit{V}_{cont\,1}) \Delta \textit{V}_{in} \\ & = \textit{k}(\textit{V}_{cont\,2} - \textit{V}_{\text{TH}} - \textit{V}_{cont\,1} + \textit{V}_{\text{TH}}) \Delta \textit{V}_{in} \\ & = -\textit{k}(\textit{V}_{cont\,1} - \textit{V}_{\text{TH}}) \Delta \textit{V}_{in} + \textit{k}(\textit{V}_{cont\,2} - \textit{V}_{\text{TH}}) \Delta \textit{V}_{in} \end{split}$$

Gilbert cell: 电路演变

如何实现
$$\Delta V_{out} = k(V_{cont2} - V_{cont1}) \Delta V_{in}$$
$$= -k(V_{cont1} - V_{TH}) \Delta V_{in} + k(V_{cont2} - V_{TH}) \Delta V_{in}$$
注意 V_{out2} 方向

差动输出Vout= Vout1+ Vout2

大信号分析:

差动输出
$$V_{out1} = [V_{DD} - R_D I_{D1}] - [V_{DD} - R_D I_{D2}]$$

$$= R_D(I_{D2} - I_{D1})$$
差动输出 $V_{out2} = [V_{DD} - R_D I_{D4}] - [V_{DD} - R_D I_{D3}]$

$$= R_D(I_{D3} - I_{D4})$$

$$V_{out} = V_{out1} + V_{out2} = R_D(I_{D2} - I_{D1}) + R_D(I_{D3} - I_{D4})$$

$$= R_D(I_{D2} + I_{D3}) - R_D(I_{D1} + I_{D4}), \text{ 如何实现?}$$

$$\begin{split} V_{out} &= [V_{DD} - R_D (I_{D1} + I_{D4})] - [V_{DD} - R_D (I_{D2} + I_{D3})] \\ &= R_D (I_{D2} - I_{D1}) + R_D (I_{D3} - I_{D4}) = V_{out1} + V_{out2} \end{split}$$

Vin相同, Vout1和 Vout2反相

Gilbert cell 电路结构

交变信号
$$\Delta V_{out} = V_{out} = k (V_{cont2} - V_{cont1}) \Delta V_{in} = k \Delta V_{cont} \times \Delta V_{in}$$

Figure 4.36 (c) use of M_5 - M_6 to control the gain, (d) Gilbert cell.

- · 吉尔伯特单元 可作为乘法器和Mixer,什么信号之间隔离较好?
- 输入交变信号很大时,输出中含有其它非理想混频信号和杂散信号

2019/10/22