1	20. (currently amended) The method set forth in claim 25-32 wherein:
2	the step of making a-the lay-up includes the steps of:
3	wrapping each tube in the joint with a first carbon fiber fabric that is impregnated with the
4	matrix material, the ends of the fabric extending beyond the tube;
5	wrapping the ends of the carbon fiber fabric that is wrapped around a given tube around the
6	tube the given tube joins to;
7	wrapping the entire joint in a second carbon fiber fabric whose fibers have an orientation
8	different from that of the fibers in the first carbon fiber fabric.
1	21. (canceled)
1	22. (canceled)
1	23. (original) The method set forth in claim 20 wherein:
2	the step of wrapping the entire joint is done such that all seams in the second carbon fiber
3	fabric are at the top and bottom of the tubes and the second carbon fiber fabric is overlapped at the
4	seams.
1	24. (canceled)

1	25. (currently amended) A method of making a lug for a joint that joins carbon fiber
2	tubes in a bicycle frame,
3	the method employing a closable-mold that may be closed around the tubes has surfaces
4	which fit with each other and with the tubes when the mold is closed around the tubes to
5	form a closed cavity that contains the tubes at the joint and the method comprising the
6	steps of:
7	making a lay-up for the lug of at least carbon fibers and a matrix material around
8	the tubes at the joint, the lay up forming a continuous wrap around the tubes and being
9	enclosed by the closed mold;
10	including an expandable element that is also enclosed by the closed mold;
11	closing the mold around the lay-up, the tubes at the joint, and the an expandable
12	element, the lay-up and the expandable element being completely contained within the
13	closed cavity; and
14	applying heat from a source outside the cavity to the closed mold to euring cure
15	the lay-up-while the mold is closed, the cure of the layupheat causing expansion of the
16	expandable element and the expansion compacting the enclosed-lay-up against the tubes
17	such that voids in the lug are prevented.
1	26. (canceled)
	27. (currently amended) the method set forth in claim 25 wherein:
	the distance between the inner-surface of the moldclosed cavity and a tube being
	joined decreases as the distance from the joint increases,
	whereby the lug tapers towards the tube.
1	28. (currently amended) The method set forth in claim 25 wherein:

29. (currently amended) The method set forth in claim 25 wherein:

with expandable element is a silicone lining on the cavity's surface.

2

3

1

the step of including the expandable element is performed by lining the mold

2	the step of including the expandable element is performed by including a layer
3	ofexpandable element is expandable syntactic foam in the lay-up, the syntactic foam
4	having an expansion rate which is substantially greater than the lay-up's expansion rate.
1	30. (currently amended) The method set forth in claim 20 wherein:
2	the step of including the expandable element is performed by
3	includingthe expandable element is a layer of expandable syntactic foam in the
4	lay-up, the syntactic foam having an expansion rate which is substantially greater than the
5	lay-up's expansion rate.
1	31. (previously presented) The method set forth in claim 30 wherein:
2	the layer of expandable syntactic foam is included in the lay-up before the step of
3	wrapping the entire joint in a second carbon fiber fabric.
1	32. (new) The method set forth in claim 25 wherein:
2	in the step of making the lay-up for the lug, the lay-up conforms substantially to
3	the tubes' surfaces at the joint.