LISTING OF CLAIMS

Claims

1. (Currently Amended) Use of a compound of formula (I) for the manufacture of a medicament for the prevention or the treatment of HIV infection wherein the A compound of formula (I): is a compound of formula

$$\begin{array}{c|c}
C & & \\
N &$$

a N-oxide, a pharmaceutically acceptable addition salt, a quaternary amine or a stereochemically isomeric form thereof, wherein

A and B each represents a radical of formula

$$\mathbb{R}^{1}$$
 \mathbb{E} \mathbb{R}^{2} (a) or \mathbb{X}_{1} \mathbb{E} \mathbb{R}^{3} (b) wherein

ring E represents phenyl, pyridyl, pyridazinyl, pyrimidinyl or pyrazinyl;

ring F represents phenyl, pyridyl, pyridazinyl, pyrimidinyl or pyrazinyl;

R¹ represents hydrogen; aryl; formyl; C₁₋₆alkylcarbonyl; C₁₋₆alkyloxycarbonyl;

C₁₋₆alkyl optionally substituted with formyl, C₁₋₆alkylcarbonyl,

 $C_{1\text{-}6}$ alkyloxycarbonyl, $C_{1\text{-}6}$ alkyloxycarbonyl substituted with $C_{1\text{-}6}$ alkyloxycarbonyl;

R² represents cyano; aminocarbonyl; mono- or di(C₁₋₄alkyl)aminocarbonyl; C₁₋₆alkyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; C₂₋₆alkenyl substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; or C₂₋₆alkynyl substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl;

 X_1 represents $-NR^5$ -; -NH-NH-; -N=N-; -O-; -C(=O)-; $-C_1$ -4alkanediyl-; -CHOH-; -S-;

-S(=O) $_p$ -; -X2-C1-4alkanediyl-; -C1-4alkanediyl-X2-; or

 $-C_{1-4}$ alkanediyl- X_2 - C_{1-4} alkanediyl-;

 X_2 represents $-NR^5$ -; -NH-NH-; -N=N-; -O-; -C(=O)-; -CHOH-; -S-; or $-S(=O)_p$ -; m represents an integer of value 1, 2, 3 or 4;

R³ represents cyano; aminocarbonyl; amino; halo; NHR¹³; NR¹³R¹⁴; -C(=O)-NHR¹³; -C(=O)-NR¹³R¹⁴; -C(=O)-R¹⁵; -CH=N-NH-C(=O)-R¹⁶; C1-6alkyl optionally substituted with one or more substituents each independently selected from R³a; C1-6alkyloxy optionally substituted with one or more substituents each independently selected from R³a; C1-6alkyloxyC1-6alkyl optionally substituted with

```
one or more substituents each independently selected from R<sup>3a</sup>; C<sub>2-6</sub>alkenyl
  optionally substituted with one or more substituents each independently selected
  from R<sup>3a</sup>; C<sub>2-6</sub>alkynyl optionally substituted with one or more substituents each
  independently selected from R<sup>3a</sup>; -C(=N-O-R<sup>8</sup>)-C<sub>1-4</sub>alkyl; R<sup>7</sup> or -X<sub>3</sub>-R<sup>7</sup>;
R<sup>3a</sup> represents halo, cyano, hydroxy, NR<sup>9</sup>R<sup>10</sup>, -C(=O)-NR<sup>9</sup>R<sup>10</sup>, -C(=O)-C<sub>1-6</sub>alkyl,
  -C(=O)-O-C_{1-6}alkyl, -C(=O)-polyhaloC_{1-6}alkyl, -C(=O)-O-polyhaloC_{1-6}alkyl or \mathbb{R}^7;
X_3 represents -NR^5-; -NH-NH-; -N=N-; -O-; -C(=O)-; -S-; -S(=O)_0-;
       -X_{4a}-C_{1-4}alkanediyl-; -C_{1-4}alkanediyl-X_{4b}-; -C_{1-4}alkanediyl-X_{4a}-C_{1-4}alkanediyl-;
       or -C(=N-OR<sup>8</sup>)-C<sub>1</sub>-alkanediyl-;
X_{4a} represents -NR^5-; -NH-NH-; -N=N-; -C(=O)-; -S-; or -S(=O)_{p}-;
X_{4b} represents -NH-NH-; -N=N-; -O-; -C(=O)-; -S-; or -S(=O)<sub>0</sub>-;
each R<sup>4</sup> independently represents hydroxy; halo; C<sub>1-6</sub>alkyl optionally substituted with
  one or more substituents each independently selected from R<sup>4a</sup>; C<sub>2-6</sub>alkenyl
  optionally substituted with one or more substituents each independently selected
  from R<sup>4a</sup>;
  C<sub>2-6</sub>alkynyl optionally substituted with one or more substituents each independently
  selected from R<sup>4a</sup>; C<sub>3-7</sub>cycloalkyl; C<sub>1-6</sub>alkyloxy; C<sub>1-6</sub>alkyloxycarbonyl;
  C<sub>1-6</sub>alkylcarbonyloxy; carboxyl; formyl; cyano; nitro; amino; mono- or
  di(C<sub>1-6</sub>alkyl)amino; polyhaloC<sub>1-6</sub>alkyl; polyhaloC<sub>1-6</sub>alkyloxy; polyhaloC<sub>1-6</sub>alkylthio;
  -S(=O)_{D}R^{6}; -NH-S(=O)_{D}R^{6}; -C(=O)R^{6}; -NHC(=O)H; -C(=O)NHNH_{2}; NHC(=O)R^{6};
  C(=NH)R^6; or R^7:
R<sup>4a</sup> represents halo, cyano, NR<sup>9</sup>R<sup>10</sup>, hydroxy or -C(=O)R<sup>6</sup>;
R<sup>5</sup> represents hydrogen; aryl; formyl; C<sub>1-6</sub>alkylcarbonyl; C<sub>1-6</sub>alkyloxycarbonyl;
   C<sub>1</sub>-6alkyl optionally substituted with formyl, C<sub>1</sub>-6alkylcarbonyl,
   C1-6alkyloxycarbonyl or C1-6alkylcarbonyloxy; or C1-6alkyloxyC1-
   6alkylcarbonyl substituted with C1-6alkyloxycarbonyl;
R<sup>6</sup> represents C<sub>1.6</sub>alkyl, amino, mono- or di(C<sub>1.4</sub>alkyl)amino or polyhaloC<sub>1.4</sub>alkyl;
R<sup>7</sup> represents a monocyclic, bicyclic or tricyclic saturated carbocycle; a monocyclic,
   bicyclic or tricyclic partially saturated carbocycle; a monocyclic, bicyclic or
   tricyclic aromatic carbocycle; a monocyclic, bicyclic or tricyclic saturated
   heterocycle; a monocyclic, bicyclic or tricyclic partially saturated heterocycle; or a
   monocyclic, bicyclic or tricyclic aromatic heterocycle; wherein each of said
   carbocyclic or heterocyclic ring systems may, whenever possible, optionally be
   substituted with one, two, three, four or five substituents each independently
   selected from halo, hydroxy, mercapto, C<sub>1-6</sub>alkyl, hydroxyC<sub>1-6</sub>alkyl, aminoC<sub>1-</sub>
   6alkyl, mono or di(C1-6alkyl)aminoC1-6alkyl, formyl, C1-6alkylcarbonyl, C3.
   7cycloalkyl, C1-6alkyloxy, C1-6alkyloxycarbonyl, C1-6alkylthio, cyano, nitro,
```

```
polyhaloC_{1-6}alkyl, polyhaloC_{1-6}alkyloxy, aminocarbonyl, -CH(=N-O-R<sup>8</sup>), R<sup>7a</sup>, -X<sub>3</sub>-R<sup>7a</sup> or R<sup>7a</sup>-C<sub>1-4</sub>alkanediyl-;
```

R^{7a} represents a monocyclic, bicyclic or tricyclic saturated carbocycle; a monocyclic, bicyclic or tricyclic partially saturated carbocycle; a monocyclic, bicyclic or tricyclic aromatic carbocycle; a monocyclic, bicyclic or tricyclic saturated heterocycle; a monocyclic, bicyclic or tricyclic partially saturated heterocycle; or a monocyclic, bicyclic or tricyclic aromatic heterocycle; wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto,

C₁-6alkyl, hydroxyC₁-6alkyl, aminoC₁-6alkyl, mono or di(C₁-6alkyl)aminoC₁-6alkyl, formyl, C₁-6alkylcarbonyl, C₃-7cycloalkyl, C₁-6alkyloxy, C₁-6alkyloxycarbonyl, C₁-6alkylthio, cyano, nitro, polyhaloC₁-6alkyl, polyhaloC₁-6alkyloxy, aminocarbonyl, -CH(=N-O-R⁸);

R⁸ represents hydrogen, C_{1.4}alkyl optionally substituted with aryl, or aryl;

R⁹ and R¹⁰ each independently represent hydrogen; hydroxy; C₁₋₆alkyl; C₁₋₆alkyloxy; C₁₋₆alkylcarbonyl; C₁₋₆alkyloxycarbonyl; amino; mono- or di(C₁₋₆alkyl)amino; mono- or di(C₁₋₆alkyl)aminocarbonyl; -CH(=NR¹¹) or R⁷, wherein each of the aforementioned C₁₋₆alkyl groups may optionally and each individually be substituted with one or two substituents each independently selected from hydroxy, C₁₋₆alkyloxy, hydroxyC₁₋₆alkyloxy, carboxyl, C₁₋₆alkyloxycarbonyl, cyano, amino, imino, mono- or di(C₁₋₄alkyl)amino, polyhaloC₁₋₄alkyl, polyhaloC₁₋₄alkyloxy, polyhaloC₁₋₄alkylthio, -S(=O)_pR⁶, -NH-S(=O)_pR⁶, -C(=O)R⁶, -NHC(=O)H, -C(=O)NHNH₂, -NHC(=O)R⁶, -C(=NH)R⁶, or R⁷; or

R⁹ and R¹⁰ may be taken together to form a bivalent or trivalent radical of formula

-CH₂-CH₂-CH₂-CH₂- (d-1); -CH₂-CH₂-CH₂-CH₂- (d-2); -CH₂-CH₂-O-CH₂-CH₂- (d-3); -CH₂-CH₂-S-CH₂-CH₂- (d-4); -CH₂-CH₂-NR¹²-CH₂-CH₂- (d-5); -CH₂-CH=CH-CH₂- (d-6); or =CH-CH=CH-CH=CH- (d-7);

R¹¹ represents cyano; C₁₋₄alkyl optionally substituted with C₁₋₄alkyloxy, cyano, amino, mono- or di(C₁₋₄alkyl)amino or aminocarbonyl; C₁₋₄alkylcarbonyl; C₁₋₄alkyloxycarbonyl; aminocarbonyl; mono- or di(C₁₋₄alkyl)aminocarbonyl; R¹² represents hydrogen or C₁₋₄alkyl;

R¹³ and R¹⁴ each independently represent C₁₋₆alkyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; C₂₋₆alkenyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; C₂₋₆alkynyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl;

R¹⁵ represents C₁₋₆alkyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl;

R¹⁶ represents C₁₋₆alkyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; or R⁷;

-C-D- represents a bivalent radical of formula

-N=CH-NR¹⁷-

(c-1); or

-NR¹⁷-CH=N-

(c-2);

R¹⁷ represents hydrogen; C₁₋₆alkyl optionally substituted with hydroxy, cyano, aminocarbonyl, mono-or di(C₁₋₄alkyl)aminocarbonyl, C₁₋₄alkyloxycarbonyl or aryl; p represents an integer of value 1 or 2;

aryl represents phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, aminoC₁₋₆alkyl, mono or di(C₁₋₆alkyl)aminoC₁₋₆alkyl, C₁₋₆alkylcarbonyl, C₃₋₇cycloalkyl, C₁₋₆alkyloxy, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylthio, cyano, nitro, polyhaloC₁₋₆alkyl, polyhaloC₁₋₆alkyloxy, aminocarbonyl, R⁷ or -X₃-R⁷;

provided that when A represents a radical of formula (a) then B represents a radical of formula (b) and when A represents a radical of formula (b) then B represents a radical of formula (a).

(Original) A compound as defined in claim 1 provided that when R² represents aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl then R³ represents cyano; - C(=O)-R¹⁵;
 CH=N-NH-C(=O)-R¹⁶: C1 calkyl substituted with one or more substituents each

-CH=N-NH-C(=O)-R¹⁶; C₁₋₆alkyl substituted with one or more substituents each independently selected from R^{3b}; C₁₋₆alkyloxy substituted with one or more substituents each independently selected from R^{3a}; C₁₋₆alkyloxyC₁₋₆alkyl optionally substituted with one or more substituents each independently selected from R^{3a}; C₂₋₆alkenyl optionally substituted with one or more substituents each independently selected from R^{3a}; C₂₋₆alkynyl optionally substituted with one or more substituents each independently selected from R^{3a}; -C(=N-O-R⁸)-C₁₋₄alkyl; R⁷ or -X₃-R⁷; with R^{3b} representing cyano, hydroxy, NR⁹R¹⁰, -C(=O)-NR⁹R¹⁰, -C(=O)-PolyhaloC₁₋₆alkyl, -C(=O)-PolyhaloC₁₋₆alkyl or R⁷.

3. (Original) A compound according to claim 2 wherein the compound has the formula

$$(R^4)_m$$
 F
 R^3
 $(I-A)$
 R
 R
 R
 R

a N-oxide, a pharmaceutically acceptable addition salt, a quaternary amine or a stereochemically isomeric form thereof,

wherein R¹, R², R³, R⁴, ring E, ring F, C, D and m are as defined in claim 1.

4. (Original) A compound according to claim 3 wherein the compound of formula (I-A) has the formula

$$\begin{array}{c|c}
R^4 & F \\
X_1 & F \\
R^4 & (I-A-2)
\end{array}$$

$$\begin{array}{c|c}
C & R^4 & E \\
R^2 & R^2
\end{array}$$

a N-oxide, a pharmaceutically acceptable addition salt, a quaternary amine or a stereochemically isomeric form thereof,

wherein R¹, R², R³, R⁴, ring E, ring F, C and D are as defined in claim 1.

5. (Original) A compound according to claim 2 wherein the compound has the formula

$$\begin{array}{c|c}
R^{1} & E \\
\hline
R^{2} \\
\hline
R^{4})_{m} & (I-B) \\
\hline
R^{3} & C
\end{array}$$

a N-oxide, a pharmaceutically acceptable addition salt, a quaternary amine or a stereochemically isomeric form thereof,

wherein R¹, R², R³, R⁴, ring E, ring F, C, D and m are as defined in claim 1:

6. (Original) A compound according to claim 5 wherein the compound of formula (I-B) has the formula

$$\begin{array}{c|c}
R^{1} & E \\
R^{2} & \\
R^{4} & (\text{I-B-2})
\end{array}$$

$$\begin{array}{c|c}
C & \\
R^{3} & \\
R^{4} & \\
\end{array}$$

a N-oxide, a pharmaceutically acceptable addition salt, a quaternary amine or a stereochemically isomeric form thereof,

wherein R¹, R², R³, R⁴, ring E, ring F, C and D are as defined in claim 1.

- 7. (Currently Amended) A compound according to <u>claim 2any one of claims 2 to 6</u> wherein ring E is phenyl.
- 8. (Currently Amended) A compound according to <u>claim 2 any one of claims 2 to 7</u> wherein ring F is phenyl.
- 9. (Original) A compound according to claim 2 wherein the compound has the formula

$$(R^{4})_{m} = \frac{R^{3}}{b^{4}}$$

$$b^{4} = b^{3}$$

$$X_{1}$$

$$A^{1} = a^{2}$$

$$A^{2} = A^{2}$$

$$A^{2$$

a N-oxide, a pharmaceutically acceptable addition salt, a quaternary amine or a stereochemically isomeric form thereof, wherein

 $-a^1=a^2-C(R^2)=a^3-a^4$ represents a bivalent radical of formula

-CH=CH-C(
$$\mathbb{R}^2$$
)=CH-CH= (a-1);

$$-N=CH-C(R^2)=CH-CH=$$
 (a-2);

$$-CH=N-C(R^2)=CH-CH= (a-3);$$

```
-N=CH-C(R^2)=N-CH=
                                              (a-4);
         -N=CH-C(R^2)=CH-N=
                                              (a-5);
         -CH=N-C(R^2)=N-CH=
                                              (a-6); or
         -N=N-C(R^2)=CH-CH=
                                              (a-7);
-b<sup>1</sup>=b<sup>2</sup>-b<sup>3</sup>=b<sup>4</sup>- represents a bivalent radical of formula
         -CH=CH-CH=CH-
                                              (b-1);
         -N=CH-CH=CH-
                                              (b-2);
         -N=CH-N=CH-
                                              (b-3);
         -N=CH-CH=N-
                                              (b-4); or
         -N=N-CH=CH-
                                              (b-5);
 -C-D- represents a bivalent radical of formula
         -N=CH-NR<sup>17</sup>-
                                              (c-1); or
          -NR<sup>17</sup>-CH=N-
                                              (c-2);
 m represents an integer of value 1, 2, 3 and in case -b^1=b^2-b^3=b^4 is (b-1), then m may
 R<sup>1</sup> represents hydrogen; aryl; formyl; C<sub>1-6</sub>alkylcarbonyl; C<sub>1-6</sub>alkyloxycarbonyl;
     C<sub>1</sub>-6alkyl optionally substituted with formyl, C<sub>1</sub>-6alkylcarbonyl,
     C<sub>1</sub>-6alkyloxycarbonyl, C<sub>1</sub>-6alkylcarbonyloxy; or C<sub>1</sub>-6alkyloxyC<sub>1</sub>-6alkylcarbonyl
     substituted with C1-6alkyloxycarbonyl;
 R<sup>2</sup> represents cyano; aminocarbonyl; mono- or di(C<sub>1-4</sub>alkyl)aminocarbonyl; C<sub>1-6</sub>alkyl
     optionally substituted with cyano, aminocarbonyl or mono- or
     di(C<sub>1-4</sub>alkyl)aminocarbonyl; C<sub>2-6</sub>alkenyl substituted with cyano, aminocarbonyl or
     mono- or di(C<sub>1-4</sub>alkyl)aminocarbonyl; or C<sub>2-6</sub>alkynyl substituted with cyano,
     aminocarbonyl or mono- or di(C<sub>1-4</sub>alkyl)aminocarbonyl;
 X_1 represents -NR^5-, -NH-NH-, -N=N-, -O-, -C(=O)-, C_{1-4} alkanediyl, -CHOH-, -S-, -
         S(=O)_0-, -X_2-C_{1-4}alkanediyl- or -C_{1-4}alkanediyl-X_2-;
 X_2 represents -NR^5-, -NH-NH-, -N=N-, -O-, -C(=O)-, -CHOH-, -S-, -S(=O)_p-;
 R<sup>3</sup> represents NHR<sup>13</sup>; NR<sup>13</sup>R<sup>14</sup>; -C(=O)-NHR<sup>13</sup>; -C(=O)-NR<sup>13</sup>R<sup>14</sup>; -C(=O)-R<sup>15</sup>; -
        CH=N-NH-C(=O)-R<sup>16</sup>; cyano; halo; C<sub>1</sub>-6alkyl; polyhaloC<sub>1</sub>-6alkyl; C<sub>1</sub>-6alkyl
        substituted with one or more substituents each independently selected from
        cyano, NR<sup>9</sup>R<sup>10</sup>, -C(=O)-NR<sup>9</sup>R<sup>10</sup>, -C(=O)-C<sub>1.6</sub>alkyl or R<sup>7</sup>; C<sub>1.6</sub>alkyl substituted
        with hydroxy and a second substituent selected from cyano, NR<sup>9</sup>R<sup>10</sup>, -C(=O)-
        NR<sup>9</sup>R<sup>10</sup>, -C(=O)-C<sub>1-6</sub>alkyl or R<sup>7</sup>; C<sub>1-6</sub>alkyloxyC<sub>1-6</sub>alkyl optionally substituted
        with one or more substituents each independently selected from cyano, NR<sup>9</sup>R<sup>10</sup>,
        -C(=O)-NR^9R^{10}, -C(=O)-C_{1-6}alkyl or R^7; C_{1-6}alkyloxy optionally substituted
        with one or more substituents each independently selected from cyano, NR<sup>9</sup>R<sup>10</sup>,
        -C(=O)-NR<sup>9</sup>R<sup>10</sup>, -C(=O)-C<sub>1-6</sub>alkyl or R<sup>7</sup>; C<sub>2</sub>-6alkenyl optionally substituted
```

with one or more substituents each independently selected from halo, cyano, NR⁹R¹⁰, -C(=O)-NR⁹R¹⁰, -C(=O)-C₁₋₆alkyl or R⁷; C₂₋₆alkynyl optionally substituted with one or more substituents each independently selected from halo, cyano, NR⁹R¹⁰, -C(=O)-NR⁹R¹⁰, -C(=O)-C₁₋₆alkyl or R⁷; -C(=N-O-R⁸)-C₁₋₄alkyl; R⁷ or -X₃-R⁷;

$$\begin{split} X_3 \text{ is } -NR^5\text{-, -NH-NH-, -N=N-, -O-, -C(=O)-, -S-, -S(=O)_p\text{-, -}X_{4b}\text{-}C_{1-4}\text{alkanediyl-}X_{4a}\text{-, -}C_{1-4}\text{alkanediyl-}X_{4b}\text{-}C_{1-4}\text{alkanediyl,} \\ -C_{1-4}\text{alkanediyl-}X_{4a}\text{-, -}C_{1-4}\text{alkanediyl-}X_{4b}\text{-}C_{1-4}\text{alkanediyl,} \end{split}$$

 $-C(=N-OR^8)-C_{1-4}$ alkanediyl-;

with X_{4a} being -NH-NH-, -N=N-, -O-, -C(=O)-, -S-, -S(=O)_p-; and with X_{4b} being -NH-NH-, -N=N-, -C(=O)-, -S-, -S(=O)_p-;

each R⁴ independently represents halo, hydroxy, C₁₋₆alkyl, C₃₋₇cycloalkyl, C₁₋₆alkyloxy, hydroxyC₁₋₆alkyl, aminoC₁₋₆alkyl, cyano, nitro, polyhaloC₁₋₆alkyl,

polyhalo C_{1-6} alkyloxy, aminocarbonyl, mono- or di(C_{1-4} alkyl)aminocarbonyl, C_{1-6} alkyloxycarbonyl, C_{1-6} alkylcarbonyl, formyl, amino, mono- or di(C_{1-4} alkyl)amino or R^7 ;

- R⁵ is hydrogen; aryl; formyl; C₁-6alkylcarbonyl; C₁-6alkyloxycarbonyl; C₁-6alkyl optionally substituted with formyl, C₁-6alkylcarbonyl, C₁-6alkylcarbonyl or C₁-6alkylcarbonyloxy; or C₁-6alkyloxyC₁-6alkylcarbonyl substituted with C₁-6alkyloxycarbonyl;
- R⁶ is C₁₋₄alkyl, amino, mono- or di(C₁₋₄alkyl)amino or polyhaloC₁₋₄alkyl;
- R⁷ is a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic carbocycle or a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic heterocycle, wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted where possible with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C1-6alkyl, hydroxyC1-6alkyl, aminoC1-6alkyl, mono or di(C1-6alkyl)aminoC1-6alkyl, formyl, C1-6alkylcarbonyl, C3-7cycloalkyl, C1-6alkyloxy, C1-6alkyloxycarbonyl,

C₁₋₆alkylthio, cyano, nitro, polyhaloC₁₋₆alkyl, polyhaloC₁₋₆alkyloxy, aminocarbonyl, -CH(=N-O-R⁸), R^{7a}, -X₃-R^{7a} or R^{7a}-C₁₋₄alkanediyl-;

R^{7a} is a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic carbocycle or a monocyclic, bicyclic or tricyclic saturated, partially saturated or aromatic heterocycle, wherein each of said carbocyclic or heterocyclic ring systems may optionally be substituted where possible with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C₁-6alkyl, hydroxyC₁-6alkyl, aminoC₁-6alkyl, mono or di(C₁-6alkyl)aminoC₁-

```
6alkyl, formyl, C<sub>1-6</sub>alkylcarbonyl, C<sub>3-7</sub>cycloalkyl, C<sub>1-6</sub>alkyloxy, C<sub>1-6</sub>alkyloxycarbonyl,
```

 $C_{1\text{-}6}$ alkylthio, cyano, nitro, polyhalo $C_{1\text{-}6}$ alkyl, polyhalo $C_{1\text{-}6}$ alkyloxy, aminocarbonyl, or -CH(=N-O-R⁸);

R⁸ is hydrogen, C₁₋₄alkyl optionally substituted with aryl, or aryl;

R⁹ and R¹⁰ each independently are hydrogen; C₁₋₆alkyl; C₁₋₆alkylcarbonyl; C₁₋₆alkyloxycarbonyl; amino; mono- or di(C₁₋₆alkyl)amino; mono- or di(C₁₋₆alkyl)aminocarbonyl; -CH(=NR¹¹) or R⁷, wherein each of the aforementioned C₁₋₆alkyl groups may optionally and each individually be substituted with one or two substituents each independently selected from hydroxy, C₁₋₆alkyloxy, hydroxyC₁₋₆alkyloxy, carboxyl, C₁₋₆alkyloxycarbonyl, cyano, amino, imino, mono- or di(C₁₋₄alkyl)amino, polyhaloC₁₋₄alkyl, polyhaloC₁₋₄alkyloxy, polyhaloC₁₋₄alkylthio, -S(=O)_pR⁶, -NH-S(=O)_pR⁶, -C(=O)R⁶, -NHC(=O)H, -C(=O)NHNH₂, -NHC(=O)R⁶, -C(=NH)R⁶, R⁷; or

R⁹ and R¹⁰ may be taken together to form a bivalent or trivalent radical of formula

```
-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>- (d-1);

-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>- (d-2);

-CH<sub>2</sub>-CH<sub>2</sub>-O-CH<sub>2</sub>-CH<sub>2</sub>- (d-3);

-CH<sub>2</sub>-CH<sub>2</sub>-S-CH<sub>2</sub>-CH<sub>2</sub>- (d-4);

-CH<sub>2</sub>-CH<sub>2</sub>-NR<sup>12</sup>-CH<sub>2</sub>-CH<sub>2</sub>- (d-5);

-CH<sub>2</sub>-CH=CH-CH<sub>2</sub>- (d-6); or

=CH-CH=CH-CH=CH- (d-7);
```

R¹¹ represents cyano; C₁₋₄alkyl optionally substituted with C₁₋₄alkyloxy, cyano, amino, mono- or di(C₁₋₄alkyl)amino or aminocarbonyl; C₁₋₄alkylcarbonyl; C₁₋₄alkyloxycarbonyl; aminocarbonyl; mono- or di(C₁₋₄alkyl)aminocarbonyl;

R¹² represents hydrogen or C₁₋₄alkyl;

- R¹³ and R¹⁴ each independently represent C₁₋₆alkyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; C₂₋₆alkenyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; C₂₋₆alkynyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl;
- R¹⁵ represents C₁₋₆alkyl substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl;
- R¹⁶ represents C₁₋₆alkyl optionally substituted with cyano, aminocarbonyl or mono- or di(C₁₋₄alkyl)aminocarbonyl; or R⁷;
- R^{17} represents hydrogen; C_{1-6} alkyl; or C_{1-6} alkyl substituted with aryl; p is 1 or 2;

aryl represents phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, mercapto, C₁-6alkyl, hydroxyC₁-6alkyl, aminoC₁-6alkyl, mono or di(C₁-6alkyl)aminoC₁-6alkyl, C₁-6alkylcarbonyl, C₃₋₇cycloalkyl, C₁-6alkyloxy, C₁-6alkyloxycarbonyl, C₁-6alkylthio, cyano, nitro, polyhaloC₁-6alkyl, polyhaloC₁-6alkyloxy, aminocarbonyl, R⁷ or -X₃-R⁷; provided that when R² represents aminocarbonyl or mono- or di(C₁-4alkyl)aminocarbonyl then R³ represents -C(=O)-R¹⁵; -CH=N-NH-C(=O)-R¹⁶; cyano; C₁-6alkyl substituted with one or more substituents each independently selected from cyano, NR⁹R¹⁰, -C(=O)-NR⁹R¹⁰, -C(=O)-C₁-6alkyl or R⁷; C₁-6alkyl or R⁷; C₁-6alkyl or R¹⁰, -C(=O)-NR⁹R¹⁰, -C(=O)-C₁-6alkyl or R¹⁰, -C(=O)-C₁-6alkyl or R¹⁰

-C(=O)-C₁₋₆alkyl or R^7 ; C₂₋₆alkenyl optionally substituted with one or more substituents each independently selected from halo, cyano, NR^9R^{10} , -C(=O)-NR $^9R^{10}$, -C(=O)-C₁₋₆alkyl or R^7 ;

substituents each independently selected from cyano, NR⁹R¹⁰, -C(=O)-NR⁹R¹⁰,

C₂-6alkynyl optionally substituted with one or more substituents each independently selected from halo, cyano, NR^9R^{10} , $-C(=O)-NR^9R^{10}$, $-C(=O)-C_{1-6}$ alkyl or R^7 ; $-C(=N-O-R^8)-C_{1-4}$ alkyl; R^7 or $-X_3-R^7$.

- 10. (Currently Amended) A compound according to claim 2 any one of claims 2 to 9 wherein R² represents cyano; aminocarbonyl; mono- or di(C₁. 4 alkyl) aminocarbonyl; C₁-6 alkyl substituted with cyano, aminocarbonyl or mono- or di(C₁.4 alkyl) aminocarbonyl; C₂-6 alkenyl substituted with cyano, aminocarbonyl or mono- or di(C₁.4 alkyl) aminocarbonyl; or C₂-6 alkynyl substituted with cyano, aminocarbonyl or mono- or di(C₁.4 alkyl) aminocarbonyl.
- 11. (Currently Amended) A compound according to <u>claim 2any one of claims 2 to 10</u> wherein R² represents cyano or aminocarbonyl.

12. (Currently Amended) A compound according to <u>claim 2</u>any one of claims 2 to 11 wherein R³ is cyano; aminocarbonyl; C₁₋₆alkyl optionally substituted with cyano or aminocarbonyl;

 C_{1-6} alkyloxy optionally substituted with cyano or aminocarbonyl; C_{2-6} alkenyl substituted with cyano or aminocarbonyl.

13. (Currently Amended) A compound according to <u>claim 2 any one of claims 2 to 9</u> wherein m is 2; R¹ represents hydrogen; R² represents cyano, aminocarbonyl or C₁₋₆alkyl; R³ represents cyano;

C1-6alkyl; C1-6alkyl substituted with cyano; C_{1-6} alkyloxy optionally substituted with cyano; C2-6alkenyl substituted with cyano or -C(=O)-NR⁹R¹⁰; each R⁴ independently represents halo, C1-6alkyl or C1-6alkyloxy; X₁ represents -NR⁵- or -O-; R⁵ represents hydrogen; R⁹ and R¹⁰ each independently are hydrogen or C₁₋₆alkyl; or R⁹ and R¹⁰ may be taken together to form a bivalent radical of formula -CH₂-CH₂-O-CH₂-CH₂- (d-3); R¹⁷ is hydrogen; C₁₋₆alkyl optionally substituted with hydroxy, cyano, aminocarbonyl, C₁₋₄alkyloxycarbonyl or aryl; aryl is phenyl substituted with C₁₋₆alkyloxy.

14. (Currently Amended) A compound according to claim 2 wherein the compound is selected from the group consisting of:

HN N N N N N N N N N N N N N N N N N N	HN N N N N N N N N N N N N N N N N N N
HN CI N N N N N N N N N N N N N N N N N N N	
HIN N N N N N N N N N N N N N N N N N N	
$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$	

HN N N N N N N N N N N N N N N N N N N	HN N N N N N N N N N N N N N N N N N N
N NH NH NH NH NH NH	HIN N N N N N N N N N N N N N N N N N N
HIN N N N N N N N N N N N N N N N N N N	HIN N N N N N N N N N N N N N N N N N N

a N-oxide, a pharmaceutically acceptable addition salt, a quaternary amine or a stereochemically isomeric form thereof.

15. (Cancelled).

- 16. (Currently Amended) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredient a therapeutically effective amount of a compound as claimed in <u>claim 1</u> any one of claims 2 to 14.
- 17. (Currently Amended) A process for preparing a pharmaceutical composition according to claim 16 <u>comprising characterized in that</u> a therapeutically effective amount of a compound as claimed in <u>claim 1 any one of claims 2 to 14 is</u> intimately mixed with a pharmaceutically acceptable carrier.
- 18. (Currently Amended)A process for preparing a compound as claimed in claim 2, characterized by comprsing:
 - a) reacting an intermediate of formula (II-a) or (II-b) with an intermediate of formula (III) in the presence of a suitable catalyst, a suitable ligand, a suitable base, and a suitable solvent,

HCN
$$W_1$$
 W_1 W_1

with W_1 representing a suitable leaving group, R^{17b} representing C_{1-6} alkyl optionally substituted with aryl, and A and B being defined as in claim 2; b) reacting an intermediate of formula (II'-a) or (II'-b) with an intermediate of formula (III') in the presence of a suitable catalyst, a suitable ligand, a suitable base, and a suitable solvent,

with W₁ representing a suitable leaving group, R^{17b} representing C₁₋₆alkyl optionally substituted with aryl, and A and B being defined as in claim 2; c) by converting a compound of formula (I-a) or (I-b) into a compound of formula (I-c) and (I-d) by reaction with a suitable acid,

with R^{17b} representing C_{1-6} alkyl optionally substituted with aryl, and A and B being defined as in claim 2;

d) converting a compound of formula (I-c) into a compound of formula (I-e) by reaction with an intermediate of formula R^{17c}-W₂ in the presence of a suitable base and a suitable solvent,

with W_2 representing a suitable leaving group, R^{17c} representing C_{1-6} alkyl optionally substituted with cyano or C_{1-4} alkyloxycarbonyl, and A and B being defined as in claim 2;

e) converting a compound of formula (I-e-1) into a compound of formula (I-f), by reaction with NH₃ in the presence of a suitable solvent,

with A and B being defined as in claim 2;

f) converting a compound of formula (I-e-1) into a compound of formula (I-g), by reaction with NaBH₄ in the presence of a suitable solvent,

with A and B being defined as in claim 2;

g) converting a compound of formula (I-f) into a compound of formula (I-h), by reaction with POCl₃ in the presence of a suitable solvent,

with A and B being defined as in claim 2;

or, if desired, further converting compounds of formula (I) into each other following art-known transformations; or further, if desired, converting the compounds of formula (I), into a therapeutically active non-toxic acid addition salt by treatment with an acid, or conversely, converting the acid addition salt form into the free base by treatment with alkali; or, if desired, preparing stereochemically isomeric forms, *N*-oxide forms or quaternary amines thereof.

- 19. (Currently Amended) A product containing (a) a compound as defined in <u>claim 1</u> any one of claims 1 to 14, and (b) another antiretroviral compound, as a combined preparation for simultaneous, separate or sequential use in the treatment of HIV infection.
- 20. (Currently Amended) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredients (a) a compound as defined in <u>claim 1</u> any one of claims 1 to 14, and (b) another antiretroviral compound.
- 21. (New) A product containing (a) a compound as defined in claim 14, and (b) another antiretroviral compound, as a combined preparation for simultaneous, separate or sequential use in the treatment of HIV infection.
- 22. (New) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredients (a) a compound as defined in claim 14 and (b) another antiretroviral compound.

23. (New) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredient a therapeutically effective amount of a compound as claimed in claim 14.

24. (New) A process for preparing a pharmaceutical composition according to claim 23 comprising a therapeutically effective amount of a compound as claimed in claim 14-intimately mixed with a pharmaceutically acceptable carrier.