Студент: Карабанов Егор

Группа: 2362 Вариант: 29

Дата: 16 октября 2024 г.

Математическая логика и теория алгоритмов Индивидуальное домашнее задание №1

Дана функция $f(x,y,z) = ((y \oplus z) \lor x)((x \oplus z) \lor xy).$

Задание 1. Построить таблицу истинности для f(x,y,z)

Решение.

X	у	\mathbf{z}	$y\oplus z$	$(y \oplus z) \vee x$	$x \oplus z$	xy	$(x \oplus z) \lor xy$	f
0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	0	1	1
0	1	0	1	1	0	0	0	0
0	1	1	0	0	1	0	1	0
1	0	0	0	1	1	0	1	1
1	0	1	1	1	0	0	0	0
1	1	0	1	1	1	1	1	1
1	1	1	0	1	0	1	1	1

Задание 2. Построить таблицу истинности для $f(x, xy, x \lor y)$ и формулу, упростив ее до ДНФ Решение.

X	У	z	$xy \oplus (x \lor y)$	$(xy \oplus (x \lor y)) \lor x$	$x \oplus (x \lor y)$	xy	$(x \oplus (x \lor y)) \lor xy$	f
0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	1	0	1	1	1	0	1	1
0	1	1	1	1	1	0	1	1
1	0	0	1	1	0	0	0	0
1	0	1	1	1	0	0	0	0
1	1	0	0	1	0	1	1	1
1	1	1	0	1	0	1	1	1

$$f(x, xy, x \vee y) = ((xy \oplus (x \vee y)) \vee x)((x \oplus (x \vee y)) \vee xy) = *$$

$$(xy \oplus (x \vee y)) \vee x = (\overline{xy}(x \vee y) \vee xy\overline{(x \vee y)}) \vee x = ((\overline{x} \vee \overline{y})(x \vee y) \vee xy\overline{x}\overline{y}) \vee x = (\overline{y}x \vee \overline{x}y) \vee x = x \vee \overline{x}y$$

$$(\overline{x}(x \vee y) \vee x\overline{(x \vee y)}) \vee xy = \overline{x}y \vee xy = y$$

$$* = (x \vee \overline{x}y)y = xy \vee \overline{x}y = y(x \vee \overline{x}) = y$$

Задание 3. Построить СДНФ для f(x,y,z) с помощью ТИ и АП.

Решение.

X	У	\mathbf{z}	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Из ТИ выбираем строки, где f=1, т.е. $2,\,5,\,7$ и 8 строки.

$$f(x,y,z) = \bar{x}\bar{y}z \lor x\bar{y}\bar{z} \lor xy\bar{z} \lor xyz$$

С помощью АП:

$$f(x,y,z) = ((y \oplus z) \lor x)((x \oplus z) \lor xy) = (\bar{y}z \lor y\bar{z} \lor x)(\bar{x}z \lor x\bar{z} \lor xy) = \bar{x}\bar{y}z \lor xy\bar{z} \lor x\bar{y} = \bar{x}\bar{y}z \lor xy\bar{z} \lor xy\bar{z} \lor xy\bar{z}$$

Задание 4. Построить минимальную ДНФ для f(x,y,z) двумя способами, один из которых это метод минимизирующих карт.

Решение.

Метод минимизирующих карт:

\bar{x}	\bar{y}	\bar{z}	$\bar{x}\bar{y}$	$\bar{x}\bar{z}$	$\bar{y}\bar{z}$	$\bar{x}\bar{y}\bar{z}$
\bar{x}	\bar{y}	z	$\bar{x}\bar{y}$	$\bar{x}z$	$\bar{y}z$	$\bar{x}\bar{y}z$
\bar{x}	y	\bar{z}	$\bar{x}y$	$\bar{x}\bar{z}$	$y\bar{z}$	$\bar{x}y\bar{z}$
\bar{x}	y	z	$\bar{x}y$	$\bar{x}z$	yz	$\bar{x}yz$
x	\bar{y}	\bar{z}	$x\bar{y}$	$x\bar{z}$	$\bar{y}\bar{z}$	$x\bar{y}\bar{z}$
x	\bar{y}	z	$x\bar{y}$	xz	$\bar{y}z$	$x\bar{y}z$
x	y	\bar{z}	xy	$x\bar{z}$	$y\bar{z}$	$xy\bar{z}$
x	y	z	xy	xz	yz	xyz

Вычеркнем строки, в которых f=0

菜	\vec{y}	ŧ	ΣŢ	$\bar{x}\bar{z}$	ÿŹ	<i>x̄ȳz</i>
\bar{x}	\bar{y}	z	$\bar{x}\bar{y}$	$\bar{x}z$	$\bar{y}z$	$\bar{x}\bar{y}z$
菜	y	ŧ	ĪÝ	$\bar{x}\bar{z}$	yŹ	π̄yz̄
菜	y	Ź	ĪÝ	ĪZZ	yz	<i>xyz</i>
x	\bar{y}	\bar{z}	$x\bar{y}$	$x\bar{z}$	$\bar{y}\bar{z}$	$x\bar{y}\bar{z}$
X	\vec{y}	Ź	ŊŢ	æz	ÿŹ	xyz
x	y	\bar{z}	xy	$x\bar{z}$	$y\bar{z}$	$xy\bar{z}$
x	y	z	xy	xz	yz	xyz

Вычеркнем значения, которые уже были вычеркнуты ранее и из оставшихся, в каждой строке, выберем минимальное.

Ţ.	Ø	ŧ	ĪŢ	$\bar{x}\bar{z}$	ÿΖ	$\bar{x}\bar{y}\bar{z}$
\vec{x}	Ø	Ź	ĪΖ	ĪZ	ÿŹ	$\bar{x}\bar{y}z$
\vec{x}	Ý	ŧ	ĪÝ	$\bar{x}\bar{z}$	y₹	$ar{x}y\overline{z}$
\vec{x}	Ý	Ź	ĪÝ	ĪZ	yz	xyz
¢	Ø	ŧ	ŊŢ	$x\bar{z}$	ÿZ	$x\bar{y}\bar{z}$
¢	Ø	£	ŊŢ	XZ	ÿŹ	xÿz
¢	ý	ŧ	xy	$x\bar{z}$	y₹	$xy\bar{z}$
¢	y	Ź	xy	25%	yz	xyz

Мин. ДНФ: $f(x,y,z) = xy \lor x\bar{z} \lor \bar{x}\bar{y}z$

Метод карт Карно:

yz x	00	01	11	10
0	0	1	0	0
1	1	0	1	1

Конъюнкция: ху

yz x	00	01	11	10
0	0	1	0	0
1	1	0	1	1

Конъюнкция: $x\bar{z}$

x yz	00	01	11	10
0	0	1	0	0
1	1	0	1	1

Конъюнкция: $\bar{x}\bar{y}z$

Мин. ДНФ: $f(x,y,z) = xy \lor x\bar{z} \lor \bar{x}\bar{y}z$

Задание 5. Построить СКНФ для f(x,y,z) при помощи ТИ и АП исходной фуормулы.

Решение.

х	у	z	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Из ТИ выбираем строки, где f = 0, т.е. 1, 3, 4 и 6 строки.

$$f(x, y, z) = (x \vee y \vee z)(x \vee \bar{y} \vee z)(x \vee \bar{y} \vee \bar{z})(\bar{x} \vee y \vee \bar{z})$$

С помощью АП:

$$f(x,y,z) = ((y \oplus z) \lor x)((x \oplus z) \lor xy) = (\bar{y}z \lor y\bar{z} \lor x)(\bar{x}z \lor x\bar{z} \lor xy) = (x \lor y \lor z)(x \lor \bar{y} \lor \bar{z})(\bar{x} \lor y \lor \bar{z})(x \lor z) = (x \lor y \lor z)(x \lor \bar{y} \lor \bar{z})(\bar{x} \lor y \lor \bar{z})(x \lor \bar{y} \lor z)$$

Задание 6. Построить полином Жегалкина для f(x, y, z) методом неопеределенных коэффициентов и при помощи $A\Pi$ исходной форумулы.

Решение.

Методом неопределённых коэффициентов: $P_f = a_0 \oplus a_1 x \oplus a_2 y \oplus a_3 z \oplus a_{12} xy \oplus a_{13} xz \oplus a_{23} yz \oplus a_{123} xyz$

 $a_1 = 0 \oplus 1 = 1$

 $a_2 = 0 \oplus 0 = 0$

 $a_3 = 0 \oplus 1 = 1$

 $a_{12}=0\oplus 1\oplus 0\oplus 1=0$

 $a_{13}=0\oplus 1\oplus 1\oplus 0=0$

 $a_{23}=0\oplus 0\oplus 1\oplus 0=1$

 $a_{123} = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 0$

 $P_f = x \oplus z \oplus yz$

При помощи АП:

$$f(x,y,z) = ((y \oplus z) \lor x)((x \oplus z) \lor xy) = ((y \oplus z)x \oplus x \oplus (y \oplus z))((x \oplus z)xy \oplus (x \oplus z) \oplus xy) = (yx \oplus zx \oplus x \oplus y \oplus z)(xy \oplus xyz \oplus x \oplus z \oplus xy) =$$

Задание 7. Построить таблицу истинности для $f^*(x, y, z)$.

Решение.

$$f(x,y,z) = ((y \oplus z) \lor x)((x \oplus z) \lor xy)$$

$$f^*(x,y,z) = (y \Leftrightarrow z)x \lor (x \Leftrightarrow z) \land (x \lor y)$$

X	У	\mathbf{z}	f	f^*
0	0	0	0	0
0	0	1	1	0
0	1	0	0	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1

Задание 8. Построить полином Жегалкина для $f^*(x,y,z)$.

Решение.

$$f^*(x, y, z) = (y \Leftrightarrow z)x \lor (x \Leftrightarrow z) \land (x \lor y)$$

X	У	\mathbf{z}	f^*
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

$$\begin{split} a_0 &= 0 \\ a_1 &= 0 \oplus 1 = 1 \\ a_2 &= 0 \oplus 1 = 1 \\ a_3 &= 0 \oplus 0 = 0 \\ a_{12} &= 0 \oplus 1 \oplus 1 \oplus 0 = 0 \\ a_{13} &= 0 \oplus 1 \oplus 0 \oplus 1 = 0 \\ a_{23} &= 0 \oplus 1 \oplus 0 \oplus 0 = 1 \\ a_{123} &= 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 1 = 0 \\ P_{f^*} &= x \oplus y \oplus yz \end{split}$$

Задание 9. Проверить полноту системы булевых функций $f(x,y,z)ar{f}(x,y,z).$

Решение.

X	у	Z	f	\overline{f}
0	0	0	0	1
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	1	0
1	1	1	1	0

	f	\overline{f}
T_0	+	-
T_1	+	-
L	-	-
\mathbf{S}	-	-
Μ	-	-

- f и \overline{f} не линейны, т.к. $deg(P_f)>1$ и $deg(P_{\overline{f}})>1$
- \bullet f и \overline{f} не самодвойственны, т.к. столбцы их значений не кососимметричны
- f не монотонна, т.к. f(0,1,1)=0 < f(0,0,1)=1• \overline{f} не монотонна, т.к. f(1,1,1)=0 < f(0,0,0)=1

Система является полной

Задание 10. Выразить при помощи композиции функций из предыдущего пункта: $1, 0, \overline{x}, xy$. Решение.

- $f \notin S \Leftrightarrow \exists \alpha, \overline{\alpha} \in \mathbb{B}^3 : f(\alpha) = f(\overline{\alpha})$ $f(0,0,1) = f(1,0,0) = 1 \Rightarrow f(x,x,\overline{x}) = 1; \overline{f}(x,x,\overline{x}) = 0$
- ullet $\overline{x}=\overline{f}(x,x,x)$, т.к. $\overline{f}(0,0,0)=1$ и $\overline{f}(1,1,1)=0$
- $f(x,y,z) = x \oplus z \oplus yz \Rightarrow f(0,y,x) = x \oplus yx = x\overline{y} \Rightarrow f(0,\overline{y},x) = xy \Rightarrow f(\overline{f}(x,x,\overline{x}),\overline{y},x) = xy$