Litu Rout

Association for the Advancement of Artificial Intelligence (AAAI-21)

Preprint: https://liturout.github.io/data/aaai21 preprint.pdf

- Adversarial Interaction
 - Generative Adversarial Networks (GANs)
 - Application of conditional GANs
- Non-Homogeneous Patterns
 - Homogeneous patterns
 - Supervised learning

- Adversarial Interaction
 - Generative Adversarial Networks (GANs)
 - Application of conditional GANs
- Non-Homogeneous Patterns
 - Homogeneous patterns
 - Supervised learning

- Reaction-Diffusion
 - Turing's RD model (1952)
 - Gray-Scott RD model (1984)
- Turing Instability
 - Reaction dynamics
 - Diffusion dynamics

- Adversarial Interaction
 - Generative Adversarial Networks (GANs)
 - Application of conditional GANs
- Non-Homogeneous Patterns
 - Homogeneous patterns
 - Supervised learning

- Reaction-Diffusion
 - Turing's RD model (1952)
 - Gray-Scott RD model (1984)
- Turing Instability
 - Reaction dynamics
 - Diffusion dynamics

Three Pillars of Deep Learning

Three Pillars of Deep Learning

- Setting Up DL Environment
- Defining Problem Statement
- Implementation Details

Setting Up DL Environment

- Data Processing
- Network Design
- Visualization

Setting Up DL Environment

- Data Processing
- Network Design
- Visualization

- Programming Language
- Image Processing
- Numeric Computation
- Data Manipulation

OpenCV

Pandas

Copyright 2019 Business over Broadway

- Programming Language
- Image Processing
- Numeric Computation
- Data Manipulation

OpenCV

Pandas

matpletlib

Puthon

python

r ercent or nespondents

Package Installation via "pip"
 >> pip install package

Package Installation via "conda"
 >> conda install package

Many packages ship pre-installed in Anaconda

- Offline Installation
 - Download on Thin Client

- >> pip install package.whl or
- >> pip install package.tar.gz

Setting Up DL Environment

- Data Processing
- Network Design
- Visualization

Network Design

Popular Libraries

PyTorch (Solid) vs TensorFlow (Dotted) Raw Counts

DL Libraries in 2018

Setting Up DL Environment

- Data Processing
- Network Design
- Visualization

Visualization

Popular Libraries

matpletlib

Seaborn

Li et al. NeurIPS 2018

Visualization of Loss Surface

Visualization

Popular Libraries

Li et al. NeurIPS 2018

Three Pillars of Deep Learning

- Setting Up DL Environment
- Defining Problem Statement
- Implementation Details

- Linear Function Approximation
 - Dataset Preparation

$$\left\{ \left(x_p, y_p \right) \right\}_{p=1}^n \subset R^{d_{in} \times d_{out}}$$

Function Approximator

$$f(m,c,x) = m x + c$$

Goal

$$m = ?, c = ?$$

$\boldsymbol{\mathcal{X}}$	\mathcal{Y}
-10	-48
- 9	-43
•••	•••
10	52

- Linear Function Approximation
 - **Error Computation**

r Computation
$$l(f(m,c,x),y) = \frac{1}{2}(f(m,c,x)-y)^{2}$$

$$L(m,c) = \frac{1}{2n} \sum_{p=1}^{n} (f(m,c,x_p) - y_p)^2 = \frac{1}{2n} \sum_$$

Optimization

$$(m^*,c^*) = \arg\min_{((m,c)\in R^{1\times 1})} L(m,c)$$

- Linear Function Approximation
 - Optimization

$$(m^*,c^*) = \arg\min_{((m,c)\in R^{1\times 1})} L(m,c)$$

Learning Algorithm: GD

$$\frac{dm}{dt} = -\eta \frac{\partial L(m,c)}{\partial m(t)}, \quad m(t+1) = m(t) - \eta \frac{\partial L(m,c)}{\partial m(t)}$$
$$\frac{dc}{dt} = -\eta \frac{\partial L(m,c)}{\partial c(t)}, \quad c(t+1) = c(t) - \eta \frac{\partial L(m,c)}{\partial c(t)}$$

- Linear Function Approximation
 - Gradient Descent (GD)

$$m(t+1) = m(t) - \eta \frac{\partial L(m,c)}{\partial m(t)}$$

$$\frac{\partial L(m,c)}{\partial m(t)} < 0 \quad \text{at point A}$$

$$\frac{\partial L(m,c)}{\partial m(t)} > 0 \quad \text{at point B}$$

- Linear Function Approximation
 - Gradient Descent (GD)

Learning Rate: η

- Linear Function Approximation
 - **Gradient Descent (GD)**

- Linear Function Approximation
 - Gradient Descent (GD)

$$m_{t+1} = m_t - \beta^{-1} \nabla L(m_t), \nabla L(m_t) \triangleq \frac{\partial L(m,c)}{\partial m(t)}$$

• Assumption: β -Smoothness

$$\|\nabla L(m_{t+1}) - \nabla L(m_t)\|_2 \le \beta \|m_{t+1} - m_t\|_2$$

Or
$$\|\nabla^2 L(m_t)\|_2 \leq \beta$$

- Linear Function Approximation
 - Gradient Descent (GD)

$$m_{t+1} = m_t - \beta^{-1} \nabla L(m_t)$$

$$L(m_{t+1}) = L(m_t) + \langle \nabla L(m_t), m_{t+1} - m_t \rangle + \frac{1}{2} (m_{t+1} - m_t)^T \nabla^2 L(m_t) (m_{t+1} - m_t)$$

- Linear Function Approximation
 - Gradient Descent (GD)

$$m_{t+1} = m_t - \beta^{-1} \nabla L(m_t)$$

$$\begin{split} L(m_{t+1}) &= L(m_t) + \langle \nabla L(m_t), m_{t+1} - m_t \rangle + \frac{1}{2} (m_{t+1} - m_t)^T \nabla^2 L(m_t) (m_{t+1} - m_t) \\ &\leq L(m_t) + \langle \nabla L(m_t), m_{t+1} - m_t \rangle + \frac{\beta}{2} \|m_{t+1} - m_t\|_2^2, \because \|\nabla^2 L(m_t)\|_2 \leq \beta \end{split}$$

- Linear Function Approximation
 - Gradient Descent (GD)

$$m_{t+1} = m_t - \beta^{-1} \nabla L(m_t)$$

$$\begin{split} L(m_{t+1}) &= L(m_t) + \langle \nabla L(m_t), m_{t+1} - m_t \rangle + \frac{1}{2} (m_{t+1} - m_t)^T \nabla^2 L(m_t) (m_{t+1} - m_t) \\ &\leq L(m_t) + \langle \nabla L(m_t), m_{t+1} - m_t \rangle + \frac{\beta}{2} \|m_{t+1} - m_t\|_2^2, \because \|\nabla^2 L(m_t)\|_2 \leq \beta \\ &\leq L(m_t) - \beta^{-1} \|\nabla L(m_t)\|_2^2 + \frac{\beta^{-1}}{2} \|\nabla L(m_t)\|_2^2, \end{split}$$

- Linear Function Approximation
 - Gradient Descent (GD)

$$m_{t+1} = m_t - \beta^{-1} \nabla L(m_t)$$

$$L(m_{t+1}) \le L(m_t) - \frac{\beta^{-1}}{2} \|\nabla L(m_t)\|_2^2$$

- Linear Function Approximation
 - Iteration Complexity $L(m_1) \leq L(m_0) \frac{\beta^{-1}}{2} \|\nabla L(m_0)\|_2^2$ $L(m_2) \leq L(m_1) \frac{\beta^{-1}}{2} \|\nabla L(m_1)\|_2^2$ \vdots $L(m_T) \leq L(m_{T-1}) \frac{\beta^{-1}}{2} \|\nabla L(m_{T-1})\|_2^2$

- Linear Function Approximation
 - Iteration Complexity $L(m_1) \le L(m_0) \frac{\beta^{-1}}{2} \|\nabla L(m_0)\|_2^2$ $L(m_2) \le L(m_1) \frac{\beta^{-1}}{2} \|\nabla L(m_1)\|_2^2$

$$L(m_T) \le L(m_{T-1}) - \frac{\beta^{-1}}{2} \|\nabla L(m_{T-1})\|_2^2$$

- Linear Function Approximation
 - Iteration Complexity

$$L(m_T) \le L(m_0) - \frac{\beta^{-1}}{2} \sum_{t=0}^{I-1} \|\nabla L(m_t)\|_2^2$$

$$L(m_0) - L(m_T) \ge \frac{\beta^{-1}}{2} \sum_{t=0}^{T-1} \|\nabla L(m_t)\|_2^2$$

- Linear Function Approximation
 - E-Stationary Solution

$$\|\nabla L(m_T)\|_2 \le \epsilon \longrightarrow \text{ For all } t = 0, ..., T-1,$$

$$\|\nabla L(m_t)\|_2 > \in$$

- Linear Function Approximation
 - E-Stationary Solution

$$\|\nabla L(m_T)\|_2 \le \epsilon \longrightarrow \text{ For all } t = 0, ..., T-1,$$

$$\|\nabla L(m_t)\|_2 > \in$$

Iteration Complexity

$$L(m_0) - L(m_T) \ge \frac{\beta^{-1}}{2} \sum_{t=0}^{T-1} \|\nabla L(m_t)\|_2^2$$

- Linear Function Approximation
 - E-Stationary Solution

$$\|\nabla L(m_T)\|_2 \le \epsilon \longrightarrow \text{ For all } t = 0, ..., T-1,$$

$$\|\nabla L(m_t)\|_2 > \epsilon$$

- Linear Function Approximation
 - E-Stationary Solution

$$\|\nabla L(m_T)\|_2 \le \epsilon \longrightarrow \text{ For all } t = 0, ..., T-1,$$

$$\|\nabla L(m_t)\|_2 > \in$$

Iteration Complexity

$$L(m_0) - L(m_T) \ge \frac{\beta^{-1}}{2} T \in \mathbb{R}^2$$

- Linear Function Approximation
 - E-Stationary Solution

$$\|\nabla L(m_T)\|_2 \le \epsilon \longrightarrow \text{ For all } t = 0, ..., T-1,$$

$$\|\nabla L(m_t)\|_2 > \in$$

Iteration Complexity

$$L(m_0) - L(m_T) \ge \frac{\beta^{-1}}{2} T \in \mathbb{R}^2$$

$$T \le \frac{2\beta \left(L(m_0) - L(m_T)\right)}{\epsilon^2} = \mathcal{O}\left(\frac{1}{\epsilon^2}\right)$$

- Linear Function Approximation
 - Stochastic Gradient Descent (SGD)

$$L(m,c) = \frac{1}{2n} \sum_{p=1}^{n} (f(m,c,x_p) - y_p)^2$$

$$L_{\mathcal{B}}(m,c) = \frac{1}{2|\mathcal{B}|} \sum_{p=1}^{|\mathcal{B}|} (f(m,c,x_p) - y_p)^2$$

$$m(t+1) = m(t) - \eta \frac{\partial L_{\mathcal{B}}(m,c)}{\partial m(t)}$$

• Linear Function Approximation

$$l_p(m,c) = (f(m,c,x_p) - y_p)^2$$

$$L(m,c) = \frac{1}{2n} \sum_{p=1}^{n} (f(m,c,x_p) - y_p)^2$$

$$L(m,c) = \frac{1}{2n} (l_1(m,c) + l_2(m,c) + \dots + l_n(m,c))$$

• Linear Function Approximation

$$l_p(m,c) = (f(m,c,x_p) - y_p)^2$$

$$L(m,c) = \frac{1}{2n} \sum_{p=1}^{n} (f(m,c,x_p) - y_p)^2$$

$$L(m,c) = \frac{1}{2n} (l_1(m,c) + l_2(m,c) + \dots + l_n(m,c))$$

$$L_r(m,c) = \frac{1}{2} (l_r(m,c))$$

• Linear Function Approximation

$$l_p(m,c) = (f(m,c,x_p) - y_p)^2$$

$$L(m,c) = \frac{1}{2n} \sum_{p=1}^{n} (f(m,c,x_p) - y_p)^2$$

$$L(m,c) = \frac{1}{2n} (l_1(m,c) + l_2(m,c) + \dots + l_n(m,c))$$

$$L_r(m,c) = \frac{1}{2} (l_r(m,c))$$

$$m(t+1) = m(t) - \eta \frac{\partial L_r(m,c)}{\partial m(t)}$$

Linear Function Approximation

$$l_p(m,c) = (f(m,c,x_p) - y_p)^2$$

$$L(m,c) = \frac{1}{2n} (l_1(m,c) + l_2(m,c) + \dots + l_n(m,c))$$

$$L_{\mathcal{B}}(m,c) = \frac{1}{2|\mathcal{B}|} \sum_{p=1}^{|\mathcal{B}|} l_p(m,c)$$

$$m(t+1) = m(t) - \eta \frac{\partial L_{\mathcal{B}}(m,c)}{\partial m(t)}$$

Three Pillars of Deep Learning

- Setting Up DL Environment
- Defining Problem Statement
- Implementation Details

- Linear Function Approximator
- One Layer Neural Network Function Approximator
- Two Layer Neural Network Function Approximator
- Three Layer Convolutional Neural Network Function Approximator

Linear Function Approximation

Paired Training Data

Linear Function Approximation

Linear Function Approximation

Inference Stage

- Linear Function Approximator
- One Layer Neural Network Function Approximator
- Two Layer Neural Network Function Approximator
- Three Layer Convolutional Neural Network Function Approximator

One Layer Neural Network Function Approximator

Dataset Preparation

$$\left\{ \left(x_p, y_p \right) \right\}_{p=1}^n \subset R^{d_{in} \times d_{out}}$$

$$d_{in} = 28 \times 28 = 784$$

$$d_{out} = 10$$

$$n = 60000$$

One Layer Neural Network Function Approximator

$x = (x_1, x_2, \dots, x_{784})$	$y = (y_1, y_2,, y_{10})$
(0,0.5,, 1)	(1,0,,0)
(0.8,1,,0)	(0,1,,0)
•••	•••
(1,0,,0.2)	(0,0,,1)

- One Layer Neural Network Function Approximator
 - Function Approximator

$$f_{i}(\mathbf{m}, c, \mathbf{x}) = m_{1}x_{1} + m_{2}x_{2} + \dots + m_{784}x_{784} + c_{i}$$

$$= \sum_{j=1}^{784} m_{j}x_{j} + c_{j}$$

$$\mathbf{f}(f_{1}, f_{2}, \dots, f_{10}) = \mathbf{M}\mathbf{x} + \mathbf{c}$$

$$[10x1] = [10x784][784x1] + [10x1]$$

$$x_{1} \quad x_{2} \quad y_{1} \quad \vdots \quad f_{10}(\mathbf{m}, c, \mathbf{x})$$

$$\vdots \quad y_{10} \quad \vdots \quad y_{10}$$

One Layer Neural Network Function Approximator

 $f(f_1, f_2, ..., f_{10}) = Mx + c$

Function Approximator

$$f_i(\mathbf{m}, c, \mathbf{x}) = m_1 x_1 + m_2 x_2 + \dots + m_{784} x_{784} + c_i$$

Trainable Parameters 10x784+10 = 7850

$$= \sum_{j=1}^{784} m_j x_j + c_j$$

$$f(f_1, f_2, ..., f_{10}) = Mx + c$$

$$[10x1] = [10x784][784x1] + [10x1]$$

Demo code 2

- Linear Function Approximator
- One Layer Neural Network Function Approximator
- Two Layer Neural Network Function Approximator
- Three Layer Convolutional Neural Network Function Approximator

- Two Layer Neural Network Function Approximator
 - Function Approximator

$$f(f_{1}, f_{2}, ..., f_{10}) = M_{2}(M_{1}x + c_{1}) + c_{2}$$

$$x_{1} \qquad M_{1} \qquad C_{1} \qquad M_{2} \qquad C_{2}$$

$$x_{2} \qquad \vdots \qquad \vdots \qquad \vdots$$

$$x_{784} \qquad k \qquad i$$

- Two Layer Neural Network Function Approximator
 - Function Approximator

$$f(f_1, f_2, ..., f_{10}) = M_2(\sigma(M_1x + c_1)) + c_2$$

 $\sigma(x) = x$, if $x \ge 0$

= 0, otherwise

- Linear Function Approximator
- One Layer Neural Network Function Approximator
- Two Layer Neural Network Function Approximator
- Three Layer Convolutional Neural Network Function Approximator

- Three Layer Convolutional Neural Network Function Approximator
 - Local Connectivity
 - Weight Sharing

- Linear Function Approximator
- One Layer Neural Network Function Approximator
- Two Layer Neural Network Function Approximator
- Three Layer Convolutional Neural Network Function Approximator

Three Pillars of Deep Learning

Why Adversarial Interaction Creates Non-Homogeneous Patterns: A Pseudo-Reaction Diffusion Model for Turing Instability

- Adversarial Interaction
 - Generative Adversarial Networks (GANs)
 - Application of conditional GANs
- Non-Homogeneous Patterns
 - Homogeneous patterns
 - Supervised learning

- Reaction-Diffusion
 - Turing's RD model (1952)
 - Gray-Scott RD model (1984)
- Turing Instability
 - Reaction dynamics
 - Diffusion dynamics