Package 'Carlson'

November 10, 2023

Type Package
Title Carlson Elliptic Integrals and Incomplete Elliptic Integrals
Version 3.0.0
Date 2023-11-10
Author Stéphane Laurent
Maintainer Stéphane Laurent < laurent_step@outlook.fr>
Description Evaluation of the Carlson elliptic integrals and the incomplete elliptic integrals with complex arguments. The implementations use Carlson's algorithms <doi:10.1007 bf02198293="">. Applications of elliptic integrals include probability distributions, geometry, physics, mechanics, electrodynamics, statistical mechanics, astronomy, geodesy, geodesics on conics, and magnetic field calculations.</doi:10.1007>
License GPL-3
<pre>URL https://github.com/stla/Carlson</pre>
<pre>BugReports https://github.com/stla/Carlson/issues</pre>
Imports Rcpp
LinkingTo Rcpp
Suggests gsl, testthat
Encoding UTF-8
RoxygenNote 7.2.3
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-11-10 19:33:25 UTC
R topics documented:
Carlson_RC

2 Carlson_RC

	Carlson_RF	3
	Carlson_RG	4
	Carlson_RJ	4
	elliptic_E	5
	elliptic_F	6
	elliptic_PI	6
	elliptic_Z	7
	Lambda0	7
Index		9

Carlson_RC

Carlson elliptic integral RC

Description

Evaluate the Carlson elliptic integral RC.

Usage

```
Carlson_RC(x, y, minerror = 1e-15)
```

Arguments

x, y real or complex numbers, with y different from 0 minerror bound on the relative error passed to Carlson_RF

Value

A complex number, the value of the Carlson elliptic integral $R_C(x, y)$.

Note

The function returns a value when x or y are negative real numbers, but this value is not the one of the Carlson integral.

Examples

```
Carlson_RC(5, 2)
gsl::ellint_RC(5, 2)
```

Carlson_RD 3

Carlson_RD

Carlson elliptic integral RD

Description

Evaluate the Carlson elliptic integral RD.

Usage

```
Carlson_RD(x, y, z, minerror = 1e-15)
```

Arguments

x, y, z real or complex numbers; at most one can be 0

minerror bound on the relative error

Value

A complex number, the value of the Carlson elliptic integral $R_D(x, y, z)$.

Note

The function returns a value when x, y or z are negative real numbers, but this value is not the one of the Carlson integral.

Examples

```
Carlson_RD(5, 2, 3)
gsl::ellint_RD(5, 2, 3)
```

Carlson_RF

Carlson elliptic integral RF

Description

Evaluate the Carlson elliptic integral RF.

Usage

```
Carlson_RF(x, y, z, minerror = 1e-15)
```

Arguments

x, y, z real or complex numbers; at most one can be 0

minerror bound on relative error

Carlson_RJ

Value

A complex number, the value of the Carlson elliptic integral $R_F(x, y, z)$.

Note

The function returns a value when x, y or z are negative real numbers, but this value is not the one of the Carlson integral.

Examples

```
Carlson_RF(5, 2, 3)
gsl::ellint_RF(5, 2, 3)
```

Carlson_RG

Carlson elliptic integral RG

Description

Evaluate the Carlson elliptic integral RG.

Usage

```
Carlson_RG(x, y, z, minerror = 1e-15)
```

Arguments

x, y, z real or complex numbers; they can be zero

minerror bound on the relative error passed to Carlson_RF and Carlson_RD

Value

A complex number, the value of the Carlson elliptic integral $R_G(x, y, z)$.

Carlson_RJ

Carlson elliptic integral RJ

Description

Evaluate the Carlson elliptic integral RJ.

Usage

```
Carlson_RJ(x, y, z, p, minerror = 1e-15)
```

elliptic_E 5

Arguments

x, y, z, p real or complex numbers; at most one can be 0

minerror bound on the relative error

Value

A complex number, the value of the Carlson elliptic integral $R_J(x, y, z, t)$.

Note

The function returns a value when x, y, z or p are negative real numbers, but this value is not the one of the Carlson integral.

Examples

```
Carlson_RJ(5, 2, 3, 4)
gsl::ellint_RJ(5, 2, 3, 4)
```

elliptic_E

Incomplete elliptic integral of the second kind

Description

Evaluate the incomplete elliptic integral of the second kind.

Usage

```
elliptic_E(phi, m, minerror = 1e-15)
```

Arguments

phi amplitude, real or complex number/vector
m parameter, real or complex number/vector

minerror the bound on the relative error passed to Carlson_RF and Carlson_RD

Value

A complex number or vector, the value(s) of the incomplete elliptic integral $E(\phi, m)$.

Examples

```
elliptic_E(1, 0.2)
gsl::ellint_E(1, sqrt(0.2))
```

6 elliptic_PI

el	1	in	1	i	C	F

Incomplete elliptic integral of the first kind

Description

Evaluate the incomplete elliptic integral of the first kind.

Usage

```
elliptic_F(phi, m, minerror = 1e-15)
```

Arguments

phi amplitude, real or complex number/vector
m parameter, real or complex number/vectot

minerror the bound on the relative error passed to Carlson_RF

Value

A complex number or vector, the value(s) of the incomplete elliptic integral $F(\phi, m)$.

Examples

```
elliptic_F(1, 0.2)
gsl::ellint_F(1, sqrt(0.2))
```

elliptic_PI

Incomplete elliptic integral of the third kind

Description

Evaluate the incomplete elliptic integral of the third kind.

Usage

```
elliptic_PI(phi, n, m, minerror = 1e-15)
```

Arguments

phi amplitude, real or complex number/vector

n characteristic, real or complex number/vector

m parameter, real or complex number/vector

minerror the bound on the relative error passed to Carlson_RF and Carlson_RJ

elliptic_Z 7

Value

A complex number or vector, the value(s) of the incomplete elliptic integral $\Pi(\phi, n, m)$.

Examples

```
elliptic_PI(1, 0.8, 0.2)
gsl::ellint_P(1, sqrt(0.2), -0.8)
```

elliptic_Z

Jacobi zeta function

Description

Evaluate the Jacobi zeta function.

Usage

```
elliptic_Z(phi, m, minerror = 1e-15)
```

Arguments

phi amplitude, real or complex number/vector m parameter, real or complex number/vector

minerror bound on relative error passed to elliptic_E and elliptic_F

Value

A complex number or vector, the value(s) of the Jacobi zeta function $Z(\phi, m)$.

Lambda0

Heuman Lambda function

Description

Evaluates the Heuman Lambda function.

Usage

```
Lambda0(phi, m, minerror = 1e-14)
```

Arguments

phi Jacobi amplitude, a complex number/vector m parameter, a complex number/vector

minerror the bound on the relative error passed to elliptic_F and elliptic_Z

8 Lambda0

Value

A complex number or vector.

Index

```
Carlson_RC, 2
Carlson_RD, 3, 4, 5
Carlson_RF, 2, 3, 4-6
Carlson_RG, 4
Carlson_RJ, 4, 6
elliptic_E, 5, 7
elliptic_F, 6, 7
elliptic_PI, 6
elliptic_Z, 7, 7
Lambda0, 7
```