第二次上机作业

问题描述:

编写非线性方程求根的不动点迭代算法程序。

从不同的初始点开始,分别采用以下三种迭代方式求解方程 $x^2 - x - 1 = 0$ 的正根,记录迭代过程并说明原因。

(1)
$$x = x^2 - 1$$
 (2) $x = 1 + \frac{1}{x}$ (3) $x = \sqrt{x+1}$

问题分析:

令 $f(x)=x^2-x-1$,在 x=1 时,f(x)=-1<0; x=2 时,f(x)=1>0,则根在(1, 2)范围内。不动点法中,x=g(x)存在不动点条件是在所有 x ∈ (1, 2)范围内,都有|g'(x)|<1。(1)式中

g'(x)=2x,在该范围内,不满足条件,不会收敛到不动点处。(2) 式 $|g'(x)|=\frac{1}{r^2}$,在该范围内,

满足条件,能够成功收敛到不动点处。(3) 式 $|g'(x)| = \frac{1}{2\sqrt{x+1}}$,在该范围内满足条件,能够成功收敛到不动点处。

在此次作业中, 我选择让结果出现 5 位有效数字, 容限设置为 5e-6。

Matlab 程序:

主程序:

```
f = @funB; %funA为第一种方法,funB为第二种方法,funC为第三种方法
x = 1;%初始值
patients = fun(f,x) %获取迭代过程记录表格
```

函数文件:

循环计算求值并绘制表格的函数: fun()

```
□ function[patients] = fun(f,x)%f为具体的表达式,是一个函数,x为初始值
         es = 5e-6;%容限
^2 -
 3 —
         ea = 1;
 4 —
         n = 0:
5 —
          data_n = []:%表格中的n值
         data_fx = [];%表格中的每次迭代值
          data_ea = [];%表格记录相对百分误差
        while ea/es && n<100 %当n达到100时,我们则认为选取g(x)发散了,无法获取到最终结果
9 —
             n = n + 1;
             fx = f(x);%以函数形式计算f(x)
10 -
11 -
             ea = abs((fx-x)/fx);
12 -
             x = fx:
             data_n(end+1) = n;%以下三式为向矩阵中添加数据
13 -
             data_fx(end+1) = fx;
14 —
15 -
             data_ea(end+1) = ea;
16 —
         end
17 -
          patients = table(data_n', data_fx', data_ea');%绘制表格
18 —
      - end
```

表达式 1, 2, 3 对应函数分别为 funA(),funB(),funC(),具体代码如下:

运行结果与分析:

第一种方法:

取值 x 在 1 到 2 内的步进为 0.1 的十个值,都无法得到正确的结果,运行时出现了两种情况,一种是 f(x) 在 0 和 -1 之间循环,另一种是 f(x) 达到了 inf,发散了。

patients	=		patients =					
100×3	table		12×3 <u>ta</u>	<u>b1e</u>		patients =		
Var1	Var2	Var3	Var1	Var2	Var3	11×3 <u>ta</u>	<u>ole</u>	
1	0	Inf				Varl	Var2	Var3
2	-1	1	1	1. 89	0. 10053			
3	0	Inf	2	2. 5721	0. 26519			0.00000
4	-1	1	3	5. 6157	0.54198	1	3	0. 33333
5	0	Inf	4	30. 536	0.8161	2	8	0. 625
_	_		5	931. 45	0. 96722	3	63	0. 87302
6	-1	1	6	8.676e+05	0. 99893	4	3968	0. 98412
7	0	Inf	7	7. 5273e+11	1	5	1. 5745e+07	0. 99975
8	-1	1	8	5. 666e+23	1	6	2.4791e+14	1
9	0	Inf	9	3. 2104e+47	1	7	6. 1457e+28	1
10	-1	1			_	8	3.777e+57	1
11	0	Inf	10	1. 0307e+95	1	9	1.4266e+115	1
12	-1	1	11	1.0623e+190	1	10	2.0351e+230	1
13	0	Inf	12	Inf	NaN	11	Inf	NaN
14	-1	1						

选择不同的初始值,会有着不同的发散快慢。

第二种方法:

同样的。我们选取在1到2之间步进长度为0.1的10个值,运行结果如下:

patients =

14×3 <u>tab1e</u>

其中。Var1 为迭代次数,Var2 为 x 值,Var3 为相对百分误差,

左图是初始值 x=1 的情况

Var1	Var2	Var3
1	2	0. 5
2	1. 5	0. 33333
3	1.6667	0. 1
4	1.6	0.041667
5	1.625	0. 015385
6	1.6154	0.0059524
7	1.619	0.0022624
8	1.6176	0.0008658
9	1.6182	0.00033047
10	1. 618	0.00012626
11	1.6181	4. 8223e-05
12	1.618	1.842e-05
13	1. 618	7. 0358e-06
14	1. 618	2.6875e-06

将不同初始值情况汇总如下表:

初始值 x	最终迭代次数	fx 值	相对百分误差
1.0	14	1.6180	2.6875e-06
1.1	14	1.6180	2.1215e-06
1.2	13	1.6180	4.2355e-06
1.3	13	1.6180	3.0543e-06
1.4	13	1.6180	1.9902e-06
1.5	12	1.6180	2.6875e-06
1.6	10	1.6180	2.6875e-06
1.7	11	1.6180	4.4643e-06
1.8	12	1.6180	3.6291e-06
1.9	13	1.6180	2.0627e-06
2.0	13	1.6180	2.6875e-06

从以上结果中我们可以看出,越靠近不动点值 1.6180 的初始值,所需最终迭代次数越少。 在相同最终迭代次数时,相对百分误差也越小,收敛速度越快。 其中 x=1.6 时,收敛速度最快运行结果如下:

patients =

10×3 <u>table</u>

Var1	Var2	Var3
1	1. 625	0. 015385
2	1.6154	0.0059524
3	1.619	0.0022624
4	1.6176	0.0008658
5	1.6182	0.00033047
6	1. 618	0.00012626
7	1.6181	4. 8223e-05
8	1. 618	1.842e-05
9	1. 618	7.0358e-06
10	1. 618	2. 6875e-06

运行时,每次迭代使得根越来越接近于真实根 1.6180,并且迭代解是振荡的。方法收敛时,误差大致与前一次的迭代误差成比例,并且小于前一次的迭代误差。(线性收敛)

第三种方法:

同样的。我们选取在1到2之间步进长度为0.1的10个值。

将不同初始值情况汇总如下表:

初始值x	最终迭代次数	fx 值	相对百分误差
1.0	11	1.6180	2.3024e-06
1.1	11	1.6180	1.8981e-06
1.2	10	1.6180	4.8782e-06
1.3	10	1.6180	3.6543e-06
1.4	10	1.6180	2.4681e-06
1.5	9	1.6180	4.2614e-06
1.6	8	1.6180	2.0775e-06
1.7	9	1.6180	2.8781e-06
1.8	10	1.6180	1.9483e-06
1.9	10	1.6180	2.9801e-06
2.0	10	1.6180	3.9863e-06

从以上结果中我们同样可以看出,越靠近不动点值 1.6180 的初始值,所需最终迭代次数越少。在相同最终迭代次数时,相对百分误差也越小,收敛速度越快。

其中 x=1 时,距离真实值 1.6180 最远,收敛速度最慢运行结果如下:

patients =

11×3 <u>table</u>

Var1	Var2	Var3
1	1. 4142	0. 29289
2	1. 5538	0. 08982
3	1. 5981	0. 027708
4	1.6118	0.0085582
5	1.6161	0.0026443
6	1.6174	0.00081709
7	1.6179	0.00025249
8	1. 618	7.8024e-05
9	1. 618	2. 4111e-05
10	1. 618	7. 4506e-06
11	1.618	2.3024e-06

运行时,每次迭代使得根越来越接近于真实根 1.6180,并且迭代解是单调增加的。方法收敛时,误差大致与前一次的迭代误差成比例,并且小于前一次的迭代误差。(线性收敛)

总结:

三种方法中后两种方法成功得到了最终结果,第一种方法最终发散了,而第三种方法要比第二种方法收敛的更迅速。这提示着我们,不动点法的使用和 g (x) 的选取有着很大关联,选择一个能够收敛的函数才能得到最终结果。除此以外,初始值的选择也和我们的运算速度挂钩,越接近,得到结果的速度越快,相对百分误差越小。