This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Requested Patent:

EP0676395A2

Title:

SUBSTITUTED N-HETEROAROYLGUANIDINES, A PROCESS FOR THEIR PREPARATION, THEIR USE AS A MEDICAMENT OR DIAGNOSTIC AGENT, AND A MEDICAMENT CONTAINING THEM:

Abstracted Patent:

US5698581;

Publication Date:

1997-12-16;

Inventor(s):

KLEEMANN HEINZ-WERNER (DE); LANG HANS-JOCHEN (DE); SCHWARK JAN-ROBERT (DE); WEICHERT ANDREAS (DE); SCHOLZ WOLFGANG (DE); ALBUS UDO (DE) ;

Applicant(s):

HOECHST AG (DE);

Application Number:

US19950418434 19950407 ;

Priority Number(s):

DE19944412334 19940411 ;

IPC Classification:

A61K31/38; C07D333/22;

Equivalents:

AU1635495, AU683722, CA2146707, CN1073988B, CN1117044, DE4412334, FI951681, HU71616, IL113310, JP7291927, NO304426B, NO951405, NZ270894, ZA9502930

ABSTRACT:

The invention relates to heteroaroylguanidines of the formula I I in which the substituents HA and R(1) to R(5) have the meanings given in the specification. These compounds exhibit very good antiarrhythmic properties and are outstandingly suitable for use as antiarrhythmic pharmaceuticals possessing a cardioprotective component for the prophylaxis and treatment of infarction and for the treatment of angina pectoris, in connection with which they also inhibit or strongly reduce, in a preventative manner, the pathophysiological processes associated with the genesis of ischemically induced damage, in particular associated with the elicitation of ischemically induced cardiac arrhythmias.

Europäisch s Patentamt

European Pat nt Office

Office européen d s br v ts

1 Veröffentlichungsnumm r: 0 676 395 A2

(2)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 95105088.9

② Anmeldetag: 05.04.95

(3) Int. Cl.⁶; **C07D 207/40**, C07D 307/68, C07D 333/38, C07D 403/04, C07D 405/04, C07D 409/04, C07D 401/12, C07D 403/12, C07D 405/12, C07D 409/12,

Priorität: 11.04.94 DE 4412334

Veröffentlichungstag der Anmeldung: 11.10.95 Patentblatt 95/41

Benannte Vertragsstaaten:
 AT_BE_CH_DE_DK_ES_FR_GB_GR_IE_IT_LI_LU_NL
PT_SE

7) Anmelder: HOECHST AKTIENGESELLSCHAFT Brüningstrasse 50 D-65929 Frankfurt am Main (DE)

Erfinder: Kleemann, Heinz-Werner, Dr. Mainstrasse 29
D-65474 Bischofshelm (DE)

Erfinder: Lang, Hans-Jochen, Dr.

A61K 31/34

Rüdesheimer Strasse 7 D-65719 Hofheim (DE)

Erfinder: Schwark, Jan-Robert, Dr.

Loreleistrasse 63 D-65929 Frankfurt (DE)

Erfinder: Welchert, Andreas, -Dr.-

Leipziger Strasse 21
D-63329 Egelsbach (DE)
Erfinder: Scholz, Wolfgang, Dr.
Unterortstrasse 30
D-65760 Eschborn (DE)
Erfinder: Albus, Udo, Dr.

Am Römerkastell 9 D-61197 Florstadt (DE)

- Substituierte N-Heteroaroylguanidine, als Inhibitoren des zellulären Natrium-Protonen-Antiporters, als Antiarrhythmika und als Inhibitoren der Proliferation von Zellen.
- Die Erfindung betrifft Heteroaroylguanidine der Formel !

676 395 A

Ш

worin die Substituenten HA und R(1) bis R(5) die in Anspruch 1 wiedergegebenen Bedeutungen haben. Diese Verbindungen I haben sehr gute antiarrhythmische Eigenschaften aufweisen, wie sie zum Behandeln von Krankheiten wichtig sind, die beispielsweise bei Sauerstoffmangelerscheinungen auftreten. Die Verbindungen sind infolge ihrer pharmakologischen Eigenschaften als antiarrhythmische Arzneimittel mit cardioprotektiver Komponente zur Infarktprophylaxe und dr. Infarktbehandlung sowie zur Behandlung der angina pectoris hervorragend-geeignet,-wobei-sie-auch-präventiv-die-pathophysiologischen_Vorgänge_beim_Entsteh n_ischämisch induzierter Schäden, insbesondere bei der Auslösung ischämisch induzierter Herzarrhythmien, inhibi ren od r stark vermindern. Wegen ihrer schützenden Wirkungen g gen pathologische hypoxisch und ischämische Situationen k"nn n di erfindungsgemäßen Verbindungen der Form I I infolge Inhibition des zellulären Na*/H* Austauschmechanismus als Arzneimittel zur Behandlung aller akuten od r chronischen durch Ischämie ausgelö-

sten Schäden oder dadurch primär oder sekundär induzi rt n Krankheiten verwindet wirden. Dies betrifft ihre Verwendung als Arzneimittel für operative Eingriffe, z.B. bei Organ-Transplantationen, wobei die Verbindungen sowohl für din Schutz der Organe im Spender vor und währ nd der Entnahme, zum Schutz entnommener Organe beispielsweise bei Bihandlung mit oder dir n Lagerung in physiologisch in Badflüssigkeiten, wie auch bei der Überführung in din Empfängerorganismus virwendet werd in können. Di Verbindungen sind benfalls wirtvolle, protektiv wirk inde Arzn imittel bei der Durchführung angioplastischer operativer Eingriffe beispielsweise am Herzen wie auch an peripheren Gefäßen. Entsprechend ihrer protektiven Wirkung gegen ischämisch induzierte Schäden sind die Verbindungen auch als Arzneimittel zur Behandlung von Ischämien des Nervensystems, insbesondere des ZNS, geeignet, wobei sie z.B. zur Behandlung des Schlaganfalls oder des Hirnöd ims geeignet sind. Darüberhinaus eignen sich die erfindungsgemäßen Verbindungen der Formet I ebenfalls zur Behandlungen von Formen des Schocks, wie beispielweise des allergischen, cardiogenen, hypovolämischen und des bakteriellen Schocks.

Die Erfindung b trifft Heteroaroylguanidin d r Formel I

R(3) R(2) R(4) HA R(1)

10 worin bedeuten:

5

15

20

25

45

HA SOm, O, NR(5).

m Null, 1, 2,

R(5) Wasserstoff, (C1-C8)-Alkyl, -CamH2amR(81),

am Null, 1, 2 R(81) (C3-C8)-Cycloalkyl, Phenyl,

welches nicht substituiert oder substituiert ist mit 1 - 3 Substituenten aus der Gruppe F, Cl. CF₃, Methyl, Methoxy oder NR(82)R(83), mit R(82) und R(83) H oder CH₃; oder

R(81) (C₁-C₂)-Heteroaryl,

das über C oder N verknüpft ist und das unsubstituiert oder substituiert ist mit 1 - 3 Substituenten aus der Gruppe F, Cl, CF₃, CH₃, Methoxy, Hydroxy, Amino, Methylamino, Dim - thylamino;

einer der beiden Substituenten R(1) und R(2)

 $-CO-N = C(NH_2)_2$

und der jeweils andere

Wasserstoff, F, Cl, Br, I, (C_1-C_3) -Alkyl, -OR(6), C_1F_{2r+1} , $-CO-N = C(NH_2)_2$, -NR(6)R(7),

R(6), R(7) unabhängig Wasserstoff, (C₁-C₃)-Alkyl,

1, 2, 3, 4,

R(3), R(4) unabhängig voneinander

Wasserstoff, F. Cl. Br, I, -C=N, X-(CH₂)_p-(C_q-F_{2q+1}), R(8)-SO_{bm}, R(9)R(10)N-CO, R(11)-CO- oder R(12)R-30 (13)N-SO₂-,

wobei die Perfluoralkylgruppe geradkettig oder verzweigt ist,

X Sauerstoff, S, NR(14),

R(14) H, (C₁-C₃)-Alkyl,

bm Null, 1, 2,

35 p Null, 1, 2,

q Null, 1, 2, 3, 4, 5, 6,

R(8), R(9), R(11) und R(12) unabhängig

 (C_1-C_8) -Alkyl, (C_3-C_6) -Alkenyl, $-C_nH_{2n}$ -R(15), CF_3 ,

n Null, 1, 2, 3, 4,

40 R(15) (C₃-C₇)-Cycloalkyl, Phenyl,

welches nicht substituiert ist oder substituiert mit 1 - 3 Substituenten aus der Gruppe F, Cl, CF₃, Methyl, Methoxy oder NR(16)R(17) mit R(16) und R(17) gleich H oder C_1 - C_4 -Alkyl,

wobei R(9), R(11) und R(12) auch in der Bedeutung von H steht, R(10) und R(13) unabhängig H oder (C₁-C₄)-Alkyl,

wobei R(9) und R(10) sowie R(12) und R(13) gemeinsam 4 oder 5 Methylengruppen sein können, von denen eine CH₂-Gruppe durch Sauerstoff, S, NH, N-CH₃ oder N-Benzyl ersetzt sein kann, oder

R(3), R(4) unabhängig voneinander

(C1-C8)-Alkyl, -CalH2alR(18),

so al Null, 1, 2

R(18) (C₃-C₈)-Cycloalkyl, Phenyl,

welches nicht substituiert oder substituiert ist mit 1 - 3 Substituenten aus der Gruppe F, Cl, CF₃, Methyl, Methoxy od r NR(19)R(20), mit R(19) und R(20) gleich H oder CH₃; oder

55 R(3), R(4) unabhängig voneinander

(C1-C9)-Heteroaryl,

das über C oder N verknüpft ist und das unsubstituiert oder substituiert ist mit 1 - 3 Substituenten aus der Gruppe F, Cl, CF₃, CH₃, Methoxy, Hydroxy, Amino, Methylamino oder Dimethylamino;

oder

R(3), R(4) unabhängig von inand r

10

15

oder
$$(C)_{ad} - (CHOH)_{ae} - (CH_2)_{af} - (CHOH)_{ag} - R(24)$$

25

Y Sauerstoff, -S- oder -NR(22)-,

h, ad, ah unabhängig Null, 1,

i, j, k, ae, af, ag, ao, ap und ak unabhängig Null, 1, 2, 3, 4,

wobei jedoch jeweils

30 h, i und k nicht gleichzeitig Null,

ad, ae und ag nicht gleichzeitig Null sowie

ah, ao und ak nicht gleichzeitig Null sind,

R(23), R(24) R(25) und R(22) unabhängig Wasserstoff, (C_1-C_3) -Alkyl,

oder

35 R(3), R(4) unabhängig voneinander

Wasserstoff, F. Cl. Br. I, CN, (C₁-C₈)-Alkyl, (C₁-C₈)-Perfluoralkyl, (C₃-C₈)-Alkenyl, -C₀H₂₀R(26),

Null, 1, 2, 3, 4

R(26) (C₃-C₈)-Cycloalkyl, Phenyl, Biphenylyl oder Naphthyl,

wobei die Aromaten nicht substituiert oder substituiert sind mit 1 - 3 Substituenten aus der Gruppe F,

60 CI, CF₃, Methyl, Methoxy oder NR(27)R(28), mit R(27) und R(28) gleich H, (C₁-C₄)-Alkyl oder (C₁-C₄)-Perfluoralkyl;

oder

R(3), R(4) unabhängig voneinander

SR(29), -OR(30), -NR(31)R(32), -CR(33)R(34)R(35);

R(29), R(30), R(31) und R(33) unabhängig -C_eH_{2e}-(C₁-C₉)-Heteroaryl, das unsubstituiert oder substituiert ist mit 1 - 3 Substituenten aus der Gruppe F, Cl, CF₃, CH₃, Methoxy, Hydroxy, Amino, Methylamino, Dimethylamino,

a Null, 1, 2,

R(32), R(34) und R(35) unabhängig voneinander wie R(29) definiert oder Wasserstoff, (C₁-C₄)-Alkyl oder (C₁-C₄)-Perfluoralkyl;

oder

R(3), R(4) unabhängig voneinander

R(96), R(97), R(98) unabhängig (C1-C9)-Heteroaryl,

das über C oder N verknüpft ist und das unsubstituiert oder substituiert ist mit 1 bis 3 Substituenten aus der Gruppe F, Cl, CF₃, CH₃, Methoxy, Hydroxy, Amino, Methylamino oder Dimethylamino, Benzyl,

W Sauerstoff, S oder NR(36)-, R(36) H, (C₁-C₄)-Alkyl,

oder

5

15

35

R(3), R(4) unabhängig voneinander

R(37)-SO_{cm}, R(38)R(39)N-SO₂-,

cm 1 oder 2.

R(37) (C_1 - C_8)-Alkyl, (C_1 - C_8)-Perfluoralkyl, (C_3 - C_8)-Alkenyl, - C_5 H $_{2s}$ -R(40),

s Null, 1, 2, 3 oder 4,

R(40) (C₃-C₈)-Cycloalkyl, Phenyl, Biphenylyl oder Naphthyl, wobei die Aromaten nicht substituiert oder substituiert sind mit 1 - 3 Substituenten aus der Gruppe F, Cl, CF₃, Methyl, Methoxy oder NR(41)R(42), mit R(41) und R(42) gleich H, (C₁-C₄)-Alkyl oder (C₁-C₄)-Perfluoralkyl;

R(38) H, (C_1-C_8) -Alkyl, (C_1-C_8) -Perfluoralkyl, (C_3-C_8) -Alkenyl, $-C_wH_{2w}$ -R(43).

25 w Null, 1, 2, 3, 4,

R(43) (C_3 - C_8)-Cycloalkyl, Phenyl, Biphenylyl oder Naphthyl, wobei die Aromaten nicht substituiert oder substituiert sind mit 1 - 3 Substituenten aus der Gruppe F, Cl, CF₃, Methyl, Methoxy oder NR(44)R(45), mit R(44) und R(45) gleich H, (C_1 - C_4)-Alkyl oder (C_1 - C_4)-Perfluoralkyl,

R(39) H. (C1-C4)-Alkyl oder (C1-C4)-Perfluoralkyl,

wobei R(38) und R(39) gemeinsam 4 oder 5 Methylengruppen sein können, von denen eine CH₂-Gruppe durch Sauerstoff, S, NH, N-CH₃ oder N-Benzyl ersetzt sein kann; oder

R(3), R(4) unabhängig voneinander

R(46)X(1)-,

X(1) Sauerstoff, S, NR(47), (D = O)A-, NR(48)C = MN^(*)R(49)-,

M Sauerstoff, S.

A Sauerstoff, NR(50),

D C. SO

R(46) (C₁-C₈)-Alkyl, (C₃-C₈)-Alkenyl, (CH₂)_bC_dF_{2d+1}. -C_xH_{2x}-R(51),

b Null, 1

d 1, 2, 3, 4, 5, 6, 7,

x Null, 1, 2, 3, 4,

R(51) (C₃-C₈)-Cycloalkyl, Phenyl, Biphenylyl, Naphthyl, wobei die Aromaten nicht substituiert oder substituiert sind mit 1 - 3 Substituenten aus der Gruppe F, Cl, CF₃, Methyl, Methoxy oder NR(52)R(53); mit R(52) und R(53) gleich H, (C₁-C₆)-Alkyl oder (C₁-C₆)-Perfluoralkyl;

R(47), R(48) und R(50) unabhängig

Wasserstoff, (C1-C4)-Alkyl, (C1-C4)-Perfluoralkyl.

R(49) definiert wie R(46), wobei

R(46) und R(47) beziehungsweise R(46) und R(48) gemeinsam 4 oder 5 Methylengruppen sein können, von denen eine CH₂-Gruppe durch Sauerstoff, S, NH, N-CH₃ oder N-Benzyl ersetzt sein kann,

wobei A und N⁽⁺⁾ an den Phenylkern des Benzoylguanidin-Grundkörpers gebunden sind;

oder

R(3), R(4) unabhängig voneinander

-SR(64), -OR(65), -NHR(66), -NR(67)R(68), -CHR(69)R(70),

$$-C \stackrel{R(54)}{\underset{OH}{\longleftarrow}}$$

R(64), R(65), R(66), R(67), R(69) gleich oder verschieden

-(CH₂)_y-(CHOH)_z-(CH₂)_{aa}-(CH₂OH)_t-R(71) oder

-(CH₂)_{ab}-O-(CH₂-CH₂O)_{ac}-R(72),

R(71), R(72) Wasserstoff, Methyl,

1, 2, 3, 4,

Null, 1, 2, 3, 4,

y, z, aa gleich oder verschieden

Null, 1, 2, 3 oder 4,

1, 2, 3, 4,

R(68), R(70), R(54), R(55) gleich oder verschieden

Wasserstoff, (C1-C6)-Alkyl, oder

R(69) und R(70) beziehungsweise R(54) und R(55) zusammen mit dem sie tragenden Kohlenstoff-Atom oin (C₃-C₈)-Cycloalkyl;

R(63)

H, (C₁-C₆)-Alkyl, (C₃-C₈)-Cycloalkyl, -C_eH_{2e}-R(73),

Null, 1, 2, 3 oder 4,

R(56), R(57) und R(73) unabhängig

35 Phenyl,

5

20

25

das unsubstituiert oder substituiert ist mit 1 - 3 Substituenten aus der Gruppe F, Cl, CF₃, Methyl, Methoxy oder NR(74)R(75) mit R(74) und R(75) gleich H oder (C_1-C_4) -Alkyl,

oder R(56), R(57) und R(73) unabhängig (C₁-C₂)-Heteroaryl,

das unsubstituiert oder wie Phenyl substituiert ist;

40 R(58), R(59), R(60), R(61) und R(62) Wasserstoff oder Methyl,

oder

R(3), R(4) unabhängig voneinander R(76)-NH-SO₂-,

R(76) R(77)R(78)N-(C = Y')-,

Y' Sauerstoff, S. N-R(79).

45 R(77) und R(78) gleich oder verschieden

H, (C₁-C₈)-Alkyl, (C₃-C₆)-Alkenyl, -C₁H₂₁-R(80),

Null, 1, 2, 3, 4,

R(80) (C₅-C₇)-Cycloalkyl, Phenyl,

welches unsubstituiert oder substituiert mit 1-3 Substituenten aus der Gruppe F, Cl, CF₃, Methoxy oder (C₁-C₄)-Alkyl, oder

R(77) und R(78) gemeinsam 4 oder 5 Methylengruppen bilden, von denen eine CH₂-Gruppe durch Sauerstoff, S, NH, N-CH₃ oder N-Benzyl ersetzt sein kann, wobei

R(79) wie R(77) definiert ist oder gleich Amidin;

oder

55 R(3), R(4) unabhängig voneinander

NR(84)R(85),

R(84), R(85) unabhängig voneinander

H. (C1-C1)-Alkyl, oder gemeinsam 4 oder 5 Methylengruppen, von denen eine CH2-Gruppe durch

Sau rstoff, S. NH, N-CH₃ od r N-Benzyl ers tzt s in kann.

oder von d n n eine od r zw i CH_2 -Grupp n durch CH- $C_{dm}H_{2dm+1}$ ers tzt s in könn n, sowie d r n pharmaz utisch v rträgliche Salz ,

wobei jedoch Verbindungen ausgenommen sind, in denen die Reste R(1) bis R(4) sowie HA folg ndermaßen kombiniert sind:

R(1) R(2) R(3)

Bevorzugt sind Verbindungen der Formel I, in denen bedeuten:

HA SOm, O. NR(5).

10

m Null, 1, 2,

R(5) Wasserstoff, Methyl,

einer der beiden Substituenten R(1) und R(2)

-CO-N = C(NH₂)₂,

und der jeweils andere Wasserstoff, F, Cl, CH₃, -OH, -CO-N = C(NH₂)₂,

R(3) Wasserstoff, F, Cl, Br, I, -C=N, Cq-F2q+1, R(8)-SO2,

R(9)R(10)N-CO, R(11)-CO-, R(12)R(13)N-SO2-,

wobei die Perfluoralkylgruppe geradkettig oder verzweigt ist,

q Null, 1, 2, 3, 4, 5, 6,

R(8), R(9), R(11) und R(12) unabhängig

(C₁-C₈)-Alkyl, (C₃-C₄)-Alkenyl, -C_nH_{2n}-R(15), CF₃,

n Null, 1, 2, 3, 4,

R(15) (C₃-C₆)-Cycloalkyl, Phenyl,

welches nicht substituiert ist oder substituiert mit 1 - 2 Substituenten aus der Gruppe F, Cl, CF₃, Methyl, Methoxy oder NR(16)R(17) mit R(16) und R(17) gleich H oder Methyl,

wobei R(9), R(11) und R(12) auch in der Bedeutung von H stehen,

R(10) und R(13) unabhängig H oder Methyl,

ode

35

 $R(3) (C_1 - C_8) - Alkyl, -C_{al}H_{2al}R(18),$

al Null, 1, 2

R(18) (C₃-C₆)-Cycloalkyl, Phenyl,

welches nicht substituiert oder substituiert ist mit 1 - 2 Substituenten aus der Gruppe F, Cl, CF₃, Methyl, Methoxy oder NR(19)R(20), mit R(19) und R(20) gleich H oder CH₃; oder

R(3) Chinolyl, Isochinolyl, Pyrrolyl, Pyridyl, Imidazolyl, die über C oder N verknüpft sind und die unsubstituiert oder substituiert sind mit 1 - 2 Substituenten aus der Gruppe F, Cl, CF₃, CH₃, Methoxy, Hydroxy, Amino, Methylamino oder Dimethylamino; oder

R(3) -C=CR(56).

R(56) Phenyl,

das unsubstituiert oder substituiert ist mit 1 - 2 Substituenten aus der Gruppe F, Cl, CF₃, Methyl, Methoxy oder NR(16)R(17) mit R(16) und R(17) gleich H, CH₃,

R(4)

50

45

oder $(C)_{ah} - (CHOH)_{ae} - (CH_2)_{ap} - (CHOH)_{ak} - R(25)$

Y Sauerstoff, -S- oder -NR(22)-,

h, ad, ah unabhängig Null, 1,

5____i, k, ag, ao und ak unabhängig Null, 1, 2, 3,

j, af und ap unabhängig Null, 1,

wobei jedoch jeweils

h, i und k nicht gleichzeitig Null,

ad, ae und ag nicht gleichzeitig Null sowie

ah, ao und ak nicht gleichzeitig Null sind,

R(23), R(24) R(25) und R(22) unabhängig Wasserstoff, Methyl,

oder

30

35

R(4) Wasserstoff, F, Cl, Br. CN, (C_1 - C_8)-Alkyl, C_q - F_{2q+1} , (C_3 - C_8)-Alkenyl, $-C_qH_{2q}R(26)$,

wobei die Perfluoralkylgruppe geradkettig oder verzweigt ist,

q Null, 1, 2, 3, 4,

g Null, 1, 2,

R(26) (C₃-C₈)-Cycloalkyl, Phenyl,

welches nicht substituiert oder substituiert ist mit 1 - 2 Substituenten aus der Gruppe F, Cl, CF₃, Methyl, Methoxy oder NR(27)R(28), mit R(27) und R(28) gleich H, CH₃, oder

R(4) SR(29), -OR(30), -NR(31)R(32), -CR(33)R(34)R(35);

R(29), R(30), R(31) und R(33) unabhängig -C_aH_{2a}-(C₁-C₉)-Heteroaryl, ausgewählt aus der Gruppe bestehend aus Pyrrolyl, Imidazolyl, Pyrazolyl und Pyridyl,

das unsubstituiert oder substituiert ist mit 1 - 2 Substituenten aus der Gruppe F, Cl. CF₃, CH₃, Methoxy, Hydroxy, Amino, Methylamino, Dimethylamino,

a Null, 1,

R(32), R(34) und R(35) unabhängig voneinander Wasserstoff, CH_3 ,

50 oder

R(4)

R(96), R(97), R(98) unabhängig Pyrrolyl, Imidazolyl, Pyrazolyl, Pyridyl, das j w ils unsubstituiert oder substituiert ist mit 1 bis 2 Resten aus der Reihe

F. Cl. CF₃, CH₃, Methoxy, Dim thylamino, B nzyl,

W Sauerstoff, S oder NR(36)-,

R(36) H, Methyl,

oder

5

15

30

35

45

55

R(4) R(37)-SO_{cm}, R(38)R(39)N-SO₂-.

R(37) (C₁-C₆)-Alkyl, CF₃, (C₃-C₄)-Alkenyl, -C₃H₂₅-R(40),

Null, 1.

10 R(40) (C₃-C₆)-Cycloalkyl, Phenyl,

welches nicht substituiert oder substituiert ist mit 1 - 2 Substituenten aus der Gruppe F, Cl, CF₃, Methyl, Methoxy oder NR(41)R(42), mit R(41) und R(42) gleich H, CH₃,

R(38) H, (C₁-C₄)-Alkyl, CF₃, (C₃-C₄)-Alkenyl, -C_wH_{2w}-R(43),

Null, 1,

R(43) (C₃-C₈)-Cycloalkyl, Phenyl,

das nicht substituiert oder substituiert ist mit 1 - 2 Substituenten aus der Gruppe F, Cl, CF₃, Methyl, Methoxy oder NR(44)R(45), mit R(44) und R(45) gleich H, (C₁-C₄)-Alkyl, CH₃.

R(39) H, CH₃

wobei R(38) und R(39) gemeinsam 4 oder 5 Methylengruppen sein können, von denen eine CH₂-70 Gruppe durch Sauerstoff, S, NH, N-CH₃ oder N-Benzyl ersetzt sein kann; oder

R(4) R(46)X(1)-,

X(1) Sauerstoff, S. NR(47), (C = O)A-, NR(48)C = MN⁽⁻⁾R(49)-,

M Sauerstoff,

25 A Sauerstoff, NR(50),

R(46) (C₁-C₆)-Alkyl, (C₃-C₄)-Alkenyl, (CH₂)_bC_dF_{2d+1}, -C_xH_{2x}-R(51),

b Null, 1,

d 1, 2, 3, 4, 5, 6, 7,

x Null, 1,

R(51) (C₃-C₈)-Cycloalkyl, Phenyl,

welches nicht substituiert oder substituiert ist mit 1 - 2 Substituenten aus der Gruppe F. Cl. CF₃. Methyl, Methoxy oder NR(52)R(53); mit R(52) und R(53) gleich H, CH₃,

R(47), R(48) und R(50)

Wasserstoff, (C1-C4)-Alkyl.

R(49) definiert wie R(46), wobei

R(46) und R(47) beziehungsweise R(46) und R(48) gemeinsam 4 oder 5 Methylengruppen sein können, von denen eine CH₂-Gruppe durch Sauerstoff, S, NH, N-CH₃ oder N-Benzyl ersetzt sein kann,

wobei A und N⁽⁻⁾ an den Phenylkern des Benzoylguanidin-Grundkörpers gebunden sind; er

40 R(4) -SR(64), -OR(65), -NHR(66), -NR(67)R(68), -CHR(69)R(70),

$$-C \stackrel{R(54)}{\underset{OH}{\leftarrow}}$$

R(64), R(65), R(66), R(67), R(69) gleich oder verschied n -(CH₂)_y-(CHOH)_z-(CH₂)_{aa}-(CH₂OH)_t-R(71) oder

```
-(CH<sub>2</sub>)<sub>ab</sub>-O-(CH<sub>2</sub>-CH<sub>2</sub>O)<sub>ac</sub>-R(72),
           R(71), R(72) Wasserstoff, Methyl.
                1, 2,
                Null, 1, 2,
  5
                y, z, aa gleich od r v rschieden
                    Null, 1, 2,
           R(68), R(70), R(54), R(55) gleich oder verschieden Wasserstoff, CH<sub>3</sub>,
           R(69) und R(70) beziehungsweise R(54) und R(55) zusammen mit dem sie tragenden Kohlenstoff-Atom
  10
      ein (C3-C6)-Cycloalkyl;
           R(63)
           H. (C<sub>1</sub>-C<sub>4</sub>)-Alkyl, (C<sub>3</sub>-C<sub>6</sub>)-Cycloalkyl, -C<sub>e</sub>H<sub>2e</sub>-R(73),
                Null, 1, 2,
 15
           R(56), R(57) und R(73) unabhängig
           Phenyl,
           das unsubstituiert oder substituiert ist mit 1 - 2 Substituenten aus der Gruppe F. Cl. CF3. Methyl,
      Methoxy oder NR(74)R(75) mit R(74) und R(75) gleich H oder CH<sub>3</sub>.
          oder
 20
          R(56), R(57) und R(73) unabhängig
          (C1-C3)-Heteroaryl, ausgewählt aus der Gruppe bestehend aus Pyrrolyl, Imidazolyl, Pyrazolyl und
          das unsubstituiert oder wie Phenyl substituiert ist;
          R(58), R(59), R(60), R(61) und R(62)
          Wasserstoff oder Methyl,
 25
     oder
          R(4) R(76)-NH-SO2-.
          R(76) R(77)R(78)N-(C = Y')-,
               Sauerstoff, S, N-R(79),
30
          R(77) und R(78) gleich oder verschieden
          H. (C1-C4)-Alkyl, (C3-C4)-Alkenyl, -C1H21-R(80),
            Null, 1,
          R(80)
          (C<sub>5</sub>-C<sub>7</sub>)-Cycloaikyi, Phenyl,
          welches unsubstituiert mit 1 - 2 Substituenten aus der Gruppe F, Cl, CF<sub>3</sub>, Methoxy oder CH<sub>3</sub>, oder
35
         R(77) und R(78) gemeinsam 4 oder 5 Methylengruppen bilden, von denen eine CH2-Gruppe durch
     Sauerstoff, S, NH, N-CH3 oder N-Benzyl ersetzt sein kann, wobei
         R(79) wie R(77) definiert ist.
     oder
         R(4) NR(84)R(85),
40
         R(84), R(85) unabhängig voneinander
         H, (C1-C4)-Alkyl, oder gemeinsam 4 oder 5 Methylengruppen, von denen eine CH2-Gruppe durch
     Sauerstoff, S, NH, N-CH<sub>3</sub> oder H-Benzyl ersetzt sein kann,
         oder von denen eine oder zwei CH2-Gruppen durch CH-CH3 ersetzt sein können.
45
         Besonders bevorzugt sind Verbindungen der Formel I, in denen bedeuten:
         R(1)
         -CO-N = C(NH2)2
        HA
         S, O, NH, NCH3
    und die Reste R(2) bis R(4) wie folgt kombiniert sind:
```

	R(2)	R(3)	R(4)
5	Н	n-BuNH-	CI
	Н	H ₂ NSO ₂ -	<u> </u>
	Н	MeSO ₂	⊘ -s-
15	Н		Me
20		○ N -	○ -•-
	Н		Me
25	Н	N -	CI
30	H	○ N-	MeSO ₂ -
35			
40		·	
45			
5 0			

			
	Н	MeSO ₂	NH ₂
5	H	MeSO ₂ -	NH-
	Н	MeSO ₂ -	⊘ -∘-
10	Н	MeSO ₂ -	C 1
•	Н	MeSO ₂ -	M • 0 — NH -
20	Н	MeSO ₂ -	M a N H -
25	Н	MeSO ₂ -	Ne Ne
			₩н-
30	н	CI-	N
	Н	MeSO ₂ .	(CH ₃) ₂ -CHCH ₂ -O-
35	н	MeSO ₂ .	2- 0 M e
40	н	MeSO ₂ .	S-
~	н	MeSO ₂	M. C. N.
50			I I

	•		
5	Н		© (°)
10	н	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	C I
15	н	N-	0 C H 3
20	Н	N-	C I O
_25	Н	N	0 4 0
30	н	N-	O _o -
35	н	MeSO ₂ -	C1 C1
40	. н	MeSO ₂ -	C1 C1
45	Me	Me	c ı S
	Н	MeSO ₂ -	i-Pr
50	Н	CF ₃	
	п	CF3	Ĥ

	н	N-	CI
5	н	MeSO ₂ -	MeNH-
	н	MeSO ₂ -	Et ₂ N-
	Н	t-Bu	ОН
10	н	MeSO ₂ -	c 1 0
15	Н	MeSO ₂ -	C 1
20	Н	MeSO ₂ -	© N S ✓
25	н	MeSO ₂ -	CI
30			0,-
	н	MeSO ₂ -	N-
35	Н	MeSO ₂ -	2-Naphthyl
	н	MeSO ₂ -	N
40	Н	△ N-	Me
45	н .	N-	™•
	н	CI	Et ₂ N-
50	н	Me ₂ N-	Н

5	H	MeSO ₂ -	OC I
	Н	Br	NH ₂
10	н	Ci	। ਜ
	н	MeSO ₂ -	F
20	н	MeSO ₂ -	F
	Н	CF ₃	CF ₃
	Н	Me	Me
25	Н	1	CF ₃
	H	Me	н
	Н	Н	t-Bu
30	Н	MeSO ₂ -	F
	Н	Me	CI
35	Н	Br	Me
33	Н	CI	MeO-
·	н	MeCO-	
40	Н	Br	Br
	н	MeSO ₂ -	CH2-CH2-
45	н	MeSO ₂ -	© c = c-
50	NH ₂	Br	Me

	Н	Me ₂ N-	t-Bu
5	н	MeSO ₂ -	н о
	н	△ N-	н
10	Н		MeO-
	Н	Me	Br
15	Н	CI	F
	Н	t-Bu	Н
	NH ₂	CI	Н
20	Н		Me ₂ N
	Н	Me ₂ N	CI
-	Н	MeSO ₂ -	7-Isochinolinoxy
25	Н	MeSO ₂ -	6-Chinolinoxy
30	н	MeSO ₂ -	
35	Н	MeSO ₂ -	
40	Н	MeSO ₂ -	(CH ₃) ₂ CH-CH ₂ -
	Н	MeSO ₂ -	\bigcirc
45	Н	Me ₂ N-	⊘ -•-
5 <i>o</i>	Н	Me ₂ N-	c 1————————————————————————————————————
90	Н	Me	Me ₂ N-

Me₂N-

	Н	₽	⊘ -•-
	н	Me	₽ N-
	Н	CI	i-Pr
10	н		i-Pr
	н	MeSO ₂ -	5-Chinolinoxy
15	н	0	CF ₃
	Н	i-Pr	MeSO ₂ -
20	н	i-Pr	CF ₃
	Н	Н	i-Pr
	NH ₂	Br	Br
-25	H	MeSO ₂ -	N0 ○ N
30	н	○ N-	MeSÖ ₂ -
35	н	MeSO ₂ -	
40	н	CI	—ин
	Н	Me ₂ N	i-Pr
45	Н	MeHN-	i-Pr
	н	· CI	CI
	Н	Me	H ₂ N-
50	н	Ci	H ₂ N

5	н	MeSO ₂ -	₩———•-
10	н	MeSO ₂ -	M e N - M e
15	Н	Me ₂ N-	i-Pr
	CF ₃	H	CF ₃
	H	Br	Me
20	Н	Me	CI
20	н		
		Me ₂ N	Me
	Н	CF ₃	MeHN-
25	Н	CH ₃ CO-	(CH ₃) ₂ CH-CH ₂
	Н	MeSO ₂ -	<u></u>
30	Н	CF ₃ -O-	н
	Н	Me	Me ₂ N
	н	Ci	Me ₂ N-
35	н	MeSO ₂ -	C I — 0-
	н	CH3CO-	i-Pr
40	. н	Br	BnO-
	н	CF ₃	Br
	Н	i-Pr	MeO-
4 5	н	MeSO ₂ -	•
50	н	MeSO ₂ -	Q-O

	Н	MeO-	t-Bu
	н	Br	i-Pr
5	CF ₃	Н	Н
	Н	CF ₃	F
	н	Ph	CF ₃
10	Н	CF ₃	1-Imidazolyl
•	н	MeCO-	t-Butylmethyl
	Н	Br	F
15	Н	Br	MeO-
	Н	CF ₃	PhO-
	Н	CF ₃	Cyclopentyl
20	Н	MeSO ₂ -	Cyclobutyl
20	Н	Me	CF ₃
25	,	MeSO ₂ -	, LO
	Н	ОН	t-Butyl
30	Н	CI	ÓMe
	н	CF ₃	i-Pr
	F	CF ₃	н
35	F	н	CF ₃
	н	t-Butyl	OMe
40	н	MeCO-	'\(\).
45	н	MeCO-	' \(\).
	Н	t-Butyl	i-Butyl
50	Н	CF ₃ CF ₂ -	i-Propyl

			
	Н	CF ₃ -50 ₂ -	
5			
	CI	CF ₃	Н
	CI	Н	CF ₃
10	Н	Н	Perfluoro-i-propyl
	H	Н	н
15	Н	MeSO ₂	>n~o
	н	н	Perfluoro-n-propyl
20	н	CF ₃	© c == c-
25	н	CF ₃	c 1————————————————————————————————————
30	н	CF ₃	' \(\).
	Н	F	CF ₃
35	н	MeSO ₂ -	Ç1 pm
40	Н	t-Butyl	i-Propyl
	Н	t-Butyl	n-Butyl
	н	i-Propyl	F
45	н	i-Butyl	F
	н	CI	1-Imidazolyl
	Н	н	CF ₃ -CF ₂ -
50	Н	н	CF ₃

Н	н	F ₃ C
Н	MeSO ₂	>n ~ 0 ^ 0 ~
Н	CF ₃ SO ₂	i-propyl

Unter (C₁-C₉)-Heteroaryl werden insbesondere Reste verstanden, die sich von Phenyl oder Naphthyl ableiten, in welchen eine oder mehrere CH-Gruppen durch N ersetzt sind und/oder in welchen mindestens zwei benachbarte CH-Gruppen (unter Bildung eines fünfgliedrigen aromatischen Rings) durch S, NH oder O ersetzt sind. Des weiteren können auch ein oder beide Atome der Kondensationsstelle bicyclischer Reste (wie im Indolizinyl) N-Atome sein.

Als Heteroaryl gelten insbesondere Furanyl, Thienyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Triazolyl, Tetrazolyl, —Oxazolyl,—Isoxazolyl,—Thiazolyl,—Isothiazolyl,—Pyridyl,—Pyrazinyl,—Pyrimidinyl, Pyridazinyl, Indolyl,—Indazolyl,—Chinolyl, Isochinolyl, Phthalazinyl, Chinoxalinyl, Chinazolinyl, Cinnolinyl.

Enthält einer der Substituenten R(1) bis R(5) ein oder mehrere Asymmetriezentren, so können dies sowohl S als auch R konfiguriert sein. Die Verbindungen können als optische Isomere, als Diastereomere, als Racemate oder als Gemische derselben vorliegen.

Die bezeichneten Alkylreste können sowohl geradkettig wie verzweigt vorliegen.

Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung der Verbindungen I, dadurch gekennzeichnet, daß man Verbindungen der Formel II

$$\begin{array}{c}
R(3) \\
R(4) \\
NH
\end{array}$$

10

15

30

35

40

worin L für eine leicht nucleophil substituierbare Fluchtgruppe steht, mit Guanidin umsetzt.

Die aktivierten Säurederivate der Formel II, worin L eine Alkoxy-, vorzugsweise eine Methoxygruppe, eine Phenoxygruppe, Phenylthio-, Methylthio-, 2-Pyridylthiogruppe, einen Stickstoffheterocyclus, vorzugsweise 1-Imidazolyl, bedeutet, erhält man vorteilhaft in an sich bekannter Weise aus den zugrundeliegend n Carbonsäurechloriden (Formel II, L = CI), die man ihrerseits wiederum in an sich bekannter Weise aus den zugrundeliegenden Carbonsäuren (Formel II, L = OH) beispielsweise mit Thionylchlorid herstellen kann. Neben den Carbonsäurechloriden der Formel II (L = CI) lassen sich auch weitere aktivierte Säurederivate der Formel II in an sich bekannter Weise direkt aus den zugrundeliegenden Heteroarylcarbonsäurederivaten (Formel II, L = OH) herstellen, wie beispielsweise die Methylester der Formel II mit L = OCH₃ durch Behandeln mit gasförmigem HCl in Methanol, die Imidazolide der Formel II durch Behandeln mit Carbonyldiimidazol [L = 1-Imidazolyl, Staab, Angew. Chem. Int. Ed. Engl. 1,351-367 (1962)], die gemischten Anhydrid II mit Cl-COOC₂H₅ oder Tosylchlorid in Gegenwart von Triethylamin in ein m inert n Lösungsmitt I, wie auch di Aktivi rung n von Heteroarylcarbonsäuren mit Dicyclohexylcarbodiimid (DCC) oder mit O-[(Cyano(ethoxycarbonyl)-methyl n)amino>-1,1,3,3-tetramethyluronium-tetrafluoroborat] ("TOTU") [Proceedings of the 21. European Peptide Symposium, Peptides 1990, Editors E. Giralt and D. Andreu, Escom,

L iden, 1991]. Ein Reihe geeignet r Methoden zur Herstellung von aktivierten Carbonsäur derivaten d r Form I II sind unter Angabe von Quellenlit ratur in J. March, Advanc d Organic Chemistry, Third Edition (John Wiley & Sons, 1985), S. 350 angeg ben.

Die Umsetzung eines aktiviert n Carbonsäured rivates der F rm I I mit Guanidin erfolgt in an sich bekannter Weise in einem protischen oder aprotischen polaren ab r inerten organischen Lösungsmitt I. Dabei haben sich bei der Umsetzung der Heteroarylcarbonsäuremethylester (II, L = OMe) mit Guanidin Methanol, Isopropanol oder THF zwischen 20°C und Siedetemperatur dieser Lösungsmittel bewährt. Bei den meisten Umsetzungen von Verbindungen II mit salzfreien Guanidin wurde vorteilhaft in inerten Lösungsmitteln wie THF, Dimethoxyethan, Dioxan oder Isopropanol gearbeitet. Aber auch Wasser kann als Lösungsmittel dienen.

Wenn L = CI bedeutet, arbeitet man vorteilhaft unter Zusatz eines Säurefängers, z.B. in Form von überschüssigen Guanidin zur Abbindung der Halogenwasserstoffsäure.

Ein Teil der zugrundeliegenden Heteroarylcarbonsäurederivate der Formel II sind bekannt und in der Literatur beschrieben. Die unbekannten Verbindungen der Formel II können nach literatur-bekannten Methoden hergestellt werden, indem man beispielsweise 5-Halogen-4-chlorsulfonylbenzoesäuren mit Ammoniak oder Aminen in 4-Aminosulfonyl-5-Halogen-heteroarylcarbonsäuren bzw. mit einem schwachen Reduktionsmittel wie Natriumbisulfit und anschließender Alkylierung in 4-Alkylsulfonyl-5-Halogen-Heteroarylcarbonsäuren überführt und nach einer der oben beschriebenen Verfahrensvarianten zu erfindungsgemäßen Verbindungen I umgesetzt werden.

Die Einführung von substituierten Schwefel-, Sauerstoff- oder Stickstoffnucleophilen gelingt durch literaturbekannte Methoden der nucleophilen Substitution am Aromaten. Als Abgangsgruppe haben sich bei dieser Substitution Halogenide und Trifluormethansulfonate bewährt. Man arbeitet vorteilhaft in einem dipolar aprotischen Lösungsmittel, wie zum Beispiel DMF oder TMU bei einer Temperatur zwischen 0°C und dem Siedepunkt des Lösungsmittels, bevorzugt zwischen 80°C und dem Siedepunkt des Lösungsmittels. Als Säurefänger dient vorteilhaft ein Alkali- oder Erdalkalisalz mit einem Anion hoher Basizität und geringer Nucleophilie, wie zum Beispiel K₂CO₃.

Die Einführung der Alkyl- oder Arylsubstituenten gelingt durch literaturbekannte Methoden des Palladium-vermittelten cross-couplings von Arylhalogeniden mit beispielsweise Organozinkverbindungen, Organostannanen, Organoboronsäuren oder Organoboranen.

Heteroaroylguanidine I sind im allgemeinen schwache Basen und können Säure unter Bildung von Salzen binden. Als Säureadditionssalze kommen Salze aller pharmakologisch verträglichen Säuren infrage, beispielsweise Halogenide, insbesondere Hydrochloride, Lactate, Sulfate, Citrate, Tartrate, Acetate, Phosphate, Methylsulfonate, p-Toluolsulfonate.

30

Es war überraschend, daß die erfindungsgemäßen Verbindungen keine unerwünschten und nachteiligen salidiuretischen, jedoch sehr gute antiarrhythmische Eigenschaften aufweisen, wie sie zum Behandeln von Krankheiten wichtig sind, die beispielsweise bei Sauerstoffmangelerscheinungen auftreten. Die Verbindungen sind infolge ihrer pharmakologischen Eigenschaften als antiarrhythmische Arzneimittel mit cardioprotektiver Komponente zur Infarktprophylaxe und der Infarktbehandlung sowie zur Behandlung der angina pectoris hervorragend geeignet, wobei sie auch präventiv die pathophysiologischen Vorgänge beim Entstehen ischämisch induzierter Schäden, insbesondere bei der Auslösung ischämisch induzierter Herzarrhythmien, inhibieren oder stark vermindern. Wegen ihrer schützenden Wirkungen gegen pathologische hypoxische und ischämische Situationen können die erfindungsgemäßen Verbindungen der Formel I infolge Inhibition des zellulären Na⁺/H⁺ Austauschmechanismus als Arzneimittel zur Behandlung aller akuten oder chronischen durch Ischämie ausgelösten Schäden oder dadurch primär oder sekundär induzierten Krankheiten verwendet werden. Dies betrifft ihre Verwendung als Arzneimittel für operative Eingriffe, z.B. bei Organ-Transplantationen, wobei die Verbindungen sowohl für den Schutz der Organe im Spender vor und während der Entnahme, zum Schutz entnommener Organe beispielsweise bei Behandlung mit oder deren Lagerung in physiologischen Badflüssigkeiten, wie auch bei der Überführung in den Empfängerorganismus verwendet werden können. Die Verbindungen sind ebenfalls wertvolle, protektiv wirkende Arzneimittel bei der Durchführung angioplastischer operativer Eingriffe beispielsweise am Herzen wie auch an peripheren Gefäßen. Entsprechend ihrer protektiven Wirkung gegen ischämisch induzierte Schäden sind die Verbindungen auch als Arzneimittel zur Behandlung von Ischämien des Nervensystems, insbesondere des ZNS, geeignet, wobei sie z.B. zur Behandlung des Schlaganfalls oder des Hirnödems geeignet sind. Darüberhinaus ignin sich die rfindungsgemäßen Verbindung n der Formel I ebenfalls zur Behandlungen von Form n des Schocks, wie beispielweise des allergischen, cardiogenen, hypovolämischen und des bakteriellen Schocks.

Darüberhinaus zeichnen sich die erfindungsgemäßen Verbindungen der Formel I durch starke inhibierende Wirkung auf di Proliferationen von Zellen, beispielsweise der Fibroblasten- Zellproliferation und der

Proliferation d r glatten Gefäßmuskelz llen, aus. Deshalb komm n die V rbindungen der Formel I als wertvoll Therapeutika für Krankh iten infrage, bei den n die Zellproliferati n in primäre oder sekundäre Ursach darstellt, und können deshalb als Antiatherosklerotika, Mittel gegen diab tische Spätk mplikation n, Kr bserkrankungen, fibrotische Erkrankungen wie Lung nfibrose, Leberfibros oder Ni renfibros, Organhypertrophien und -hyperplasien, insbesondere bei Prostatahyperplasie bzw. Prostatahypertrophie verwendet werden.

Die erfindungsgemäßen Verbindungen sind wirkungsvolle Inhibitoren des zellulären Natrium-Protonen-Antiporters (Na*/H*-Exchanger), der bei zahlreichen Erkrankungen (Essentielle Hypertonie, Atherosklerose, Diabetes usw.) auch in solchen Zellen erhöht ist, die Messungen leicht zugänglich sind, wie beispielsweise in Erythrocyten, Thrombocyten oder Leukozyten. Die erfindungsgemäßen Verbindungen eignen sich d shalb als hervorragende und einfache wissenschaftliche Werkzeuge, beispielsweise in ihrer Verwendung als Diagnostika zur Bestimmung und Unterscheidung bestimmter Formen der Hypertonie, aber auch der Atherosklerose, des Diabetes, proliferativer Erkrankungen usw.. Darüber hinaus sind die Verbindungen dir Formel I für die präventive Therapie zur Verhinderung der Genese des Bluthochdrucks, beispielweise dir essentiellen Hypertonie, geeignet.

Gegenüber den bekannten Verbindungen weisen die Verbindungen nach der Erfindung eine signifikant verbesserte Wasserlöslichkeit auf. Daher sind sie wesentlich besser für i.V.-Applikationen geeignet.

Arzneimittel, die eine Verbindung I enthalten, können dabei oral, parenteral, intravenös, rektal oder durch Inhalation appliziert werden, wobei die bevorzugte Applikation von dem jeweiligen Erscheinungsbild der Erkrankung abhängig ist. Die Verbindungen I können dabei allein oder zusammen mit galenisch n Hilfsstoffen zur Anwendung kommen, und zwar in der Veterinär- als auch in der Humanmedizin.

Welche Hilfsstoffe für die gewünschte Arzneimittelformulierung geeignet sind, ist dem Fachmann auf Grund seines Fachwissens geläufig. Neben Lösemitteln, Gelbildnern, Suppositoriengrundlagen, Tablettenhilfsstoffen, und anderen Wirkstoffträgern können beispielsweise Antioxidantien, Dispergiermittel, Emulgatoren, Entschäumer. Geschmackskorrigentien, Konservierungsmittel, Lösungsvermittler oder Farbstoffe verwendet werden.

Für eine orale Anwendungsform werden die aktiven Verbindungen mit den dafür geeigneten Zusatzstofen, wie Trägerstoffen, Stabilisatoren oder inerten Verdünnungsmittel vermischt und durch die üblichen Methoden in die geeigneten Darreichungsformen gebracht, wie Tabletten, Dragees, Steckkapseln, wäßrig , alkoholische oder ölige Lösungen. Als inerte Träger können z.B. Gummi arabicum, Magnesia, Magnesium-carbonat, Kaliumphosphat, Milchzucker, Glucose oder Stärke, insbesondere Maisstärke, verwendet werden. Dabei kann die Zubereitung sowohl als Trocken- als auch als Feuchtgranulat erfolgen. Als ölige Trägerstoffe oder als Lösemittel kommen beispielsweise pflanzliche oder tierische Öle in Betracht, wie Sonnenblumenöl oder Lebertran.

Zur subkutanen oder intravenösen Applikation werden die aktiven Verbindungen, gewünschtenfalls mit den dafür üblichen Substanzen wie Lösungsvermittler, Ernulgatoren oder weiteren Hilfsstoffen in Lösung, Suspension oder Ernulsion gebracht. Als Lösungsmittel kommen z.B. in Frage: Wasser, physiologisch Kochsalzlösung oder Alkohole, z.B. Ethanol, Propanol, Glycerin, daneben auch Zuckerlösungen wie Glucose- oder Mannitlösungen, oder auch eine Mischung aus den verschiedenen genannten Lösungsmitteln.

Als pharmazeutische Formulierung für die Verabreichung in Form von Aerosolen oder Sprays sind geeignet z.B. Lösungen, Suspensionen oder Emulsionen des Wirkstoffes der Formel I in einem pharmazeutisch unbedenklichen Lösungsmittel, wie insbesondere Ethanol oder Wasser, oder einem Gemisch solcher Lösungsmittel. Die Formulierung kann nach Bedarf auch noch andere pharmazeutische Hilfsstoffe wie Tenside, Emulgatoren und Stabilisatoren sowie ein Treibgas enthalten. Eine solche Zubereitung enthält den Wirkstoff üblicherweise in einer Konzentration von etwa 0,1 bis 10, insbesondere von etwa 0,3 bis 3 Gew.-%.

Die Dosierung des zu verabreichenden Wirkstoffs der Formel I und die Häufigkeit der Verabreichung hängen von der Wirkstärke und Wirkdauer der verwendeten Verbindungen ab; außerdem auch von Art und Stärke der zu behandelnden Krankheit sowie von Geschlecht, Alter, Gewicht und individueller Ansprechbarkeit des zu behandelnden Säugers.

Im Durchschnitt beträgt die tägliche Dosis einer Verbindung der Formel I bei einem etwa 75 kg schweren Patienten mindestens 0,001 mg, vorzugsweise 0,01 mg bis 10 mg, vorzugsweise 1 mg. Bei akuten Ausbrüch n der Krankheit, etwa unmitt Ibar nach Erleiden eines Herzinfarkts, können auch noch höhere und vor allem häufigere Dosierungen notwendig sein, z.B. bis zu 4 Einzeldos n pro Tag. Insbesonder bei i.v. Anwendung, etwa bei in m Infarktpatienten auf der Intensivstation können bis zu 100 mg pro Tag notwendig werden.

Analog der in den Ausführungsbeispielen angeg benen Vorschriften können die nachfolgend aufgeführten erfindungsgemäßen Verbindungen der Formel I bzw. deren physiologisch verträglichen Salz hergestellt

w rd n:

Liste d r Abkürzungen:

5	м он	Methanol
	DMF	N,N-Dimethylformamid
	TMU	N,N,N',N'-Tetramethylhamstoff
	NBS	N-Bromsuccinimid
	AIBN	a,a-Azo-bis-isobutyronitril
10	EI	electron impact
	DCI	Desorption-Chemical Ionisation
	RT	Raumtemperatur
	EE	Ethylacetat (EtOAc)
	DIP	Diisopropylether
15	MTB	Methyltertiärbutylether
	mp	Schmelzpunkt
	HEP	n-Heptan
	DME	Dimethoxyethan
	FAB	Fast Atom Bombardment
20	CH ₂ Cl ₂	Dichlormethan
	THF	Tetrahydrofuran
	eq	Äquivalent
	ES	Elektrospray-lonisation
	Me	Methyl
25	Et	Ethyl — — — —
	Bn	Benzyl
	ZNS	Zentralnervensystem
	Brine	gesättigte wäßrige NaCI-Lösung

30 Experimenteller Teil

Beispiel 1

5-Heptafluorisopropyl-1-methyl-pyrrol-2-carbonsäureguanidid

35

- a) 5-Heptafluoroisopropyl-1-methyl-pyrrol-2-carbonsäuremethylester
- 1.1 g 1-Methyl-pyrrol-2-carbonsäuremethylester, 1.7 ml Perfluoroisopropyliodid und 1.3 g FeSO₄ x 7 H₂O werden in 80 ml DMSO vorgelegt und bei RT 4.1 ml H₂O₂(35%) langsam zugetropft. 1.5 h wird bei RT gerührt, anschließend 3 x mit je 200 ml MTB extrahiert und die organische Phase noch 1 x mit 100 ml Wasser und 2x mit 100 ml Brine gewaschen. Über Na₂SO₄ wird getrocknet und das Solvens im Vakuum entfernt. Chromatographie mit EE/HEP 1/4 liefert 310 mg eines farblosen Öls.
 - $R_{\rm f}$ (EE/HEP 1/4) = 0.62 MS (DCI) : 308 (M + H)+
- 45 b) 5-Heptafluorisopropyl-1-methyl-pyrrol-2-carbonsäureguanidid

310 mg 5-Heptafluoroisopropyl-1-methyl-pyrrol-2-carbonsäuremethylester und 295 mg Guanidin werden in 5 ml wasserfreiem Isopropanol 4 h unter Rückfluß gekocht. Das Solvens wird im Vakuum entfernt und mit EE chromatographiert. Man erhält 123 mg eines farblosen Öls.

 $R_1 (EE) = 0.26$ MS (ES) : 335 (M + H)+

Überführung in das Hydrochlorid liefert Weiße Kristalle, mp 165 °C

Die Titelverbindungen der Beispiele 2 - 5 werden analog Beispiel 1 synthetisiert:

Beispiel 2

5-Heptafluoro-n-propyl-1-methyl-pyrrol-2-carbonsäureguanidid

 $5 R_1 (EE) = 0.20$

MS (ES) : 335 (M + H)+

mp (Hydrochlorid): 207 ° C

Beispiel 3

o 5-Pentafluoroethyl-1-methyl-pyrrol-2-carbonsäureguanidid

 R_t (EE) = 0.16

MS (DCI): 285 (M + H)*

mp (Hydrochlorid): 210 °C

15 Beispiel 4

5-Trifluoromethyl-1-methyl-pyrrol-2-carbonsäureguanidid

 R_{i} (EE) = 0.16

MS (DCI) :235 (M + H)+

20 mp (Hydrochlorid): 230 °C

Beispiel 5

1-Methyl-pyrrol-2-carbonsäureguanidid

25

 R_{f} (EE/MeOH 10:1) = 0.13

MS (ES): 167 (M + H)+

mp (Hydrochlorid): 255 °C

Beispiel 6

30

5-Isopropyl-4-methylsulfonyl-thiophen-2-carbonsäureguanidid

a) 5-Brom-thiophen-2-carbonsäure

10 g Thiophen-2-carbonsäure werden in 100 ml Essigsäure und 100 ml Wasser gelöst und bei 0°C eine Lösung von 4 ml Brom in 50 ml Essigsäure und 50 ml Wasser während einer Stunde zugetropft. 1 h wird bei 0°C nachgerührt, das Produkt abgesaugt und aus Wasser umkristallisiert. Man erhält 4.8 g farbloser Kristalle, mp 140°C

 R_f (MTB 2% HOAc) = 0.54

MS (DCI): 207 (M + H)+

b) 5-Brom-4-chlorsulfonyl-thiophen-2-carbonsäure

37 g 5-Brom-thiophen-2-carbonsäure werden bei RT in 133 ml Chlorsulfonsäure gelöst und bei 100 °C 45 min gerührt. Anschließend wird auf 1 kg Eis gegossen und das Produkt abgesaugt. Man erhält 53 g eines farblosen Feststoffs, mp 96 °C

 R_f (MTB 2% HOAc) = 0.3

MS (DCI): 305 (M + H)+

c) 5-Brom-4-hydroxysulfinyl-thiophen-2-carbonsäure

27.5 g Natriumsulfit werden in 300 ml Wasser gelöst und bei 70°C portionsweise insgesamt 35 g 5-Brom-4-chlorsulfonyl-thiophen-2-carbonsäure zugegeben, wobei mit 10 N NaOH pH = 9 - 11 gehalten wird. 2h wird bei 70°C nachgerührt, dann mit HCl auf pH = 1 gestellt und das Produkt abgesaugt. Man erhält 41 g farbloser Kristalle.

mp 195 °C (Zersetzung)

- d) 5-Brom-4-hydroxysulfinyl-thiophen-2-carbonsäure, Dinatriumsalz
- 41 g 5-Brom-4-hydroxysulfinyl-thiophen-2-carbonsäure werden in 150 ml Wass r suspendiert und mit 90 ml 2 N NaOH v rsetzt (pH = 10). Das Wasser wird im Vakuum entfernt, mit 1 l Ac ton verrührt und das Produkt abgesaugt. Man erhält 46 g ines farblosen, amorphen F ststoffs, d r dir kt weit r umgesetzt wird.
 - e) 5-Brom-4-methylsulfonyl-thiophen-2-carbonsäuremethylester
- 46 g der Titelverbindung 6 d) werden in 150 ml DMF suspendiert und mit 32 ml Methyliodid versetzt. 5 h wird bei 50°C gerührt, auf 1 I Wasser gegossen und das Produkt abgesaugt. Man erhält 35 g eines farblosen Feststoffs, mp 135 °C

 $R_1(DIP) = 0.20$

MS (DCI): 299 (M + H)+

f) 5-Isopropyl-4-methylsulfonyl-thiophen-2-carbonsäuremethylester

15

- 30 ml einer 2 M Lösung von Isopropylmagnesiumchlorid in THF werden zu 140 ml einer 0.5 M Lösung von Zinkchlorid in THF hinzugefügt. 5 h wird bei 50 °C gerührt und das entstanden Isopropylzink-Derivat als Lösung A weiterverwendet.
- 6 g 5-Brom-4-methylsulfonyl-thiophen-2-carbonsäuremethylester, 0.6 g [1,1'-Bis(diphenylphosphino)-20 ferrocen]Pd(II)Cl₂ x CH₂Cl₂ und 180 mg CuI werden in 100 ml wasserfreiem THF 10 min bei RT gerührt und anschließend Lösung A zugetropft. 18 h wird bei RT nachgerührt und anschließend das Solvens im Vakuum entfernt. Der Rückstand wird in 200 ml gesättigter wäßriger NaHSO4-Lösung suspendiert und 3 x mit je 200 ml EE extrahiert. Über Na2SO4 wird getrocknet, das Solvens im Vakuum entfernt und je einmal mit DIP und EE/HEP 1:3 chromatographiert. Man erhält 1.7 g eines farblosen Öls. R_{t} (DIP)-=-0.29 — R_{t} (EE/HEP_1:3) = 0.32 MS (DCI) : 253 (M + H)

700 mg 5-lsopropyl-4-methylsulfonyl-thiophen-2-carbonsäure in 5 ml wasserfreiem Isopropanol gelöst und 1 h unter Rückflus entfernt, 80 ml Wasser zugegeben, mit wäßriger HCl auf pH = 2 Niederschlag wird in 50 ml gesättigter wäßriger Na₂CO₃-Lösung ge-Die organische Phase wird über Na₂SO₄ getrocknet und das Solven. ** /akuum entfernt. Man erhält 850 mg eines amorphen Feststoffs.

g) 5-Isopropyl-4-methylsulfonyl-thiophen-2-carbonsäureguanidic

eter und 790 mg Guanidin werd n tot. Das Solvens wird im Vakuum Ilt und das Produkt abfiltriert. Der red 3 x mit je 50 ml EE extrahiert.

 R_t (MeOH/EE 1:10) = 0.41

 $MS (ES) :290 (M = H)^+$

mp (Hydrochlorid): 267 °C

mp (Methansulfonat): 128 °C

Die Titelverbindungen der Beispiele 7, 8 und 10 wurden analog Beispiel 6 g) synthetisiert:

- Beispiel 7
 - 5-Methyl-thiophen-2-carbonsäureguanidid

mp (Hydrochlorid): 236 °C

MS (DCI): 184 (M + H)+

Beispiel 8

- 4.5-Dibrorn-thiophen-2-carbonsäureguanidid
- mp (Hydrochlorid): 268 °C

MS (DCI): 326 (M + H)+

B ispiel 9

4-Isopropyl-5-methylsulfonyl-thioph n-2-carbonsäureguanidid

5 a) 4-Brom-5-methylthio-thiophen-2-carbonsäure

25 g 4,5-Dibrom-thiophen-carbonsäure, 12.2 g NaSCH₃ und 60 g K₂CO₃ werden in 1 l DMF 5 h lang bei 120 °C gerührt. Anschließend wird auf 3 l Wasser gegossen, mit HCl auf pH = 1 gestellt, das Produkt abgesaugt und ohne Reinigung weiter eingesetzt.

Ausbeute: 14 g amorphes Pulver.

 R_1 (DIP 2% HOAc) = 0.46

- b) 4-Brom-5-methylsulfonyl-thiophen-2-carbonsäure
- 14 g Methylthio-Verbindung 9 a) werden in 500 ml CH₂Cl₂ gelöst, und dann werden 41 g m-Chlorperbenzoesäure portionsweise zugegeben. 1.5 h wird bei RT gerührt, anschließend das Solvens im Vakuum entfernt und das Produkt ohne Reinigung verestert.
 R₁ (DIP 2% HOAc) = 0.10
- 20 c) 4-Brom-5-methylsulfonyl-thiophen-2-carbonsäure-methylester

Das gesamte Rohprodukt des Beispiels 9b) wird in 200 ml MeOH mit 50 ml SOCl₂ versetzt und 5 h unter Rückfluß gekocht. Überschüssiges SOCl₂ sowie das Solvens werden im Vakuum entfernt und der Rückstand mit DIP-chromatographiert. Man erhält 1.1 g eines farblosen Öls.

25 R_1 (DIP) = 0.28

MS (DCI): 299 (M + H)+

d) 4-Isopropyl-5-methylsulfonyl-thiophen-2-carbonsäure-methylester

30 ml einer 2 M Isopropylmagnesiumchlorid-Lösung in Diethylether werden zu einer 1 M Lösung von ZnCl₂ in Diethylether zugetropft und 6 h unter Rückfluß gekocht. (Lösung A) 6 g Bromid 9 c), 588 mg [1,1-Bis(diphenylphosphino)ferrocen]Pd(II)Cl₂ und 183 mg Cul werden in 100 ml THF 10 min. bei RT gerührt und anschließend mit Lösung A versetzt. 19 h wird bei RT gerührt, 200 ml EE zugegeben und je 1 x mit 200 ml Wasser und 200 ml Brine gewaschen. Das Solvens wird im Vakuum entfernt und mit EE/HEP 1:2 chromatographiert.

5 Man erhält 2 g eines farblosen Öls.

 $R_{t}(EE/HEP 1:2) = 0.25$

MS (DCI): 263 (M + H)+

- e) 4-Isopropyl-5-methylsulfonyl-thiophen-2-carbonsäureguanidid
- 1 g Methylester 9 d) werden analog Beispiel 6 g) mit 1.1 g Guanidin umgesetzt. Man erhält 900 mg eines amorphen Pulvers.

 $Rf(EE/MeOH\ 10:1) = 0.41$

MS (ES): 290 (M + H)+

Die Verbindung wird in das Methansulfonat überführt, mp = 210 °C

45 Beispiel 10

50

3-Methyl-thiophen-2-carbonsäureguanidid

mp (Hydrochlorid): 232 °C

MS (DCI): 184 (M + H)+

Pharmakologische Daten:

Inhibition des Na⁺/H⁺-Exchangers von Kaninchenerythrocyten

Weiße Neuseeland-Kaninchen (Ivanovas) rhielten eine Standard-Diät mit 2% Cholesterin für sechs Wochen, um den Na⁺/H⁺-Austausch zu aktivieren und so den Na⁺-Influx in die Erythrocyten via Na⁺/H⁺-Austausch flammenphotom trisch bestimm n zu können. Das Blut wurde den Ohrarterien entnommen und durch 25 IE Kalium-Heparin ungerinnbar gemacht. Ein Teil jeder Probe wurde zur Doppelbestimmung d s

Hämatokrits durch Z ntrifugier n benutzt. Aliquots von j weils 100 µl dienten zur M ssung des Na*-Ausgangsgehalts d r Erythrocyten.

Um den Amilorid-sensitiv n Natrium-Influx zu bestimmen, wurden 100 μ l jeder Blutprobe in jeweils 5 ml eines hyp rosmolaren Salz-Sucrose-Mediums (mmol/l: 140 NaCl, 3 KCl, 150 Sucrose, 0,1 Ouabain, 20 Trishydroxym thyl-aminomethan) bei pH 7,4 und 37 °C inkubiert. Die Erythrocyten wurden danach dr imal mit eiskalter MgCl₂-Ouabain-Lösung (mmol/l: 112 MgCl₂, 0,1 Ouabain) gewaschen und in 2,0 ml destilliertem Wasser hämolysiert. Der intrazelluläre Natriumgehalt wurde flammenphotometrisch bestimmt.

Der Na⁺-Nettoinflux wurde aus der Differenz zwischen Natrium-Ausgangswerten und dem Natriumgehalt der Erythrocyten nach Inkubation errechnet. Der Amiloridhemmbare Natrium-Influx ergab sich aus der Differenz des Natriumgehalts der Erythrocyten nach Inkubation mit und ohne Amilorid 3 x 10⁻⁴ mol/l. Auf diese Weise wurde auch bei den erfindungsgemäßen Verbindungen verfahren.

Ergebnisse

15 Inhibition des Na⁺/H⁺-Exchangers:

1 0.3 2 1.0 3 0.3 4 0.2 5 5.0 6 0.5

ICso [umol/l]

3

0.5

Beispiel

7

8

30

35

50

55

Patentansprüche

1. Heteroaroylguanidine der Formel I

R(3) R(4) HA R(1)

s worin bedeuten:

HA SO_m, O. NR(5),

m Null, 1, 2,

R(5) Wasserstoff, (C₁-C₈)-Alkyl, -C_{am}H_{2am}R(81),

am Null, 1, 2

R(81) (C₃-C₈)-Cycloalkyl, Phenyl,

welches nicht substituiert oder substituiert ist mit 1 - 3 Substituenten aus der Gruppe F. Cl. CF₃, Methyl, Methoxy oder NR(82)R(83), mit R(82) und R(83) H oder CH₃;

oder

R(81) (C₁-C₃)-H t roaryl,

das über C od r N verknüpft ist und das unsubstituiert oder substituiert ist mit 1 - 3 Substituenten aus der Gruppe F, Cl, CF₃, CH₃, Methoxy, Hydroxy, Amino, Methylamino, Dimethylamino; einer der beiden Substituenten R(1) und R(2)

 $-CO-N = C(NH_2)_2$,

```
und der jew ils andere
                Wasserstoff, F, Cl, Br, I, (C_1-C_3)-Alkyl, -OR(6), C_rF_{2r+1}, -CO-N = C(NH_2)_2, -NR(6)R(7),
                R(6), R(7) unabhängig Wass rstoff, (C1-C3)-Alkyl,
  5
                R(3), R(4) unabhängig voneinander
                Wasserstoff, F, Cl, Br, I, -C=N, X-(CH<sub>2</sub>)_{p}-(C_{q}-F_{2q+1}), R(8)-SO_{bm}, R(9)R(10)N-CO, R(11)-CO- oder R-
           (12)R(13)N-SO2-,
                wobei die Perfluoralkylgruppe geradkettig oder verzweigt ist,
              X
                       Sauerstoff, S, NR(14),
 10
                       R(14) H, (C1-C3)-Alkyl,
              bm
                       Null, 1, 2,
                       Null, 1, 2,
              р
                       Null, 1, 2, 3, 4, 5, 6,
                R(8), R(9), R(11) und R(12) unabhängig
 15
                (C<sub>1</sub>-C<sub>5</sub>)-Alkyl, (C<sub>3</sub>-C<sub>6</sub>)-Alkenyl, -C<sub>n</sub>H<sub>2n</sub>-R(15), CF<sub>3</sub>,
                    Null, 1, 2, 3, 4,
               R(15) (C<sub>3</sub>-C<sub>7</sub>)-Cycloalkyl, Phenyl,
                welches nicht substituiert ist oder substituiert mit 1 - 3 Substituenten aus der Gruppe F, Cl, CF3,
           Methyl, Methoxy oder NR(16)R(17) mit R(16) und R(17) gleich H oder C1-C4-Alkyl,
               wobei R(9), R(11) und R(12) auch in der Bedeutung von H steht,
 20
               R(10) und R(13) unabhängig
               H oder (C1-C4)-Alkyl,
               wobei R(9) und R(10) sowie R(12) und R(13) gemeinsam 4 oder 5 Methylengruppen sein können,
          von denen eine CH2-Gruppe durch Sauerstoff, S, NH, N-CH3 oder N-Benzyl ersetzt sein kann,
25
          oder
               R(3), R(4) unabhängig voneinander
               (C_1 - C_8)-Aikyi, -C_{ai}H_{2ai}R(18),
                    Null, 1, 2
             al
               R(18) (C<sub>3</sub>-C<sub>8</sub>)-Cycloalkyl, Phenyl,
               welches nicht substituiert oder substituiert ist mit 1 - 3 Substituenten aus der Gruppe F, Cl, CF<sub>3</sub>,
30
          Methyl, Methoxy oder NR(19)R(20), mit R(19) und R(20) gleich H oder CH<sub>3</sub>;
          oder
               R(3), R(4) unabhängig voneinander
              (C1-C2)-Heteroaryl,
              das über C oder N verknüpft ist und das unsubstituiert oder substituiert ist mit 1 - 3 Substituenten
35
          aus der Gruppe F, Cl, CF<sub>3</sub>, CH<sub>3</sub>, Methoxy, Hydroxy, Amino, Methylamino oder Dimethylamino;
          oder
              R(3), R(4) unabhängig voneinander
40
```

55

45

oder
$$(C)_{ah} - (CHOH)_{ao} - (CH_2)_{ap} - (CHOH)_{ak} - R(25)$$

Y Sauerstoff, -S- oder -NR(22)-,

h, ad, ah unabhängig Null, 1,

i, j, k, ae, af, ag, ao, ap und ak unabhängig Null, 1, 2, 3, 4,

wobei jedoch jeweils

h, i und k nicht gleichzeitig Null,

ad, ae und ag nicht gleichzeitig Null sowie

ah, ao und ak nicht gleichzeitig Null sind,

R(23), R(24) R(25) und R(22) unabhängig Wasserstoff, (C₁-C₃)-Alkyl,

oder

30

35

40

45

R(3), R(4) unabhängig voneinander

Wasserstoff, F, Cl, Br, I, CN, (C₁-C₈)-Alkyl, (C₁-C₈)-Perfluoralkyl, (C₂-C₈)-Alkenyl, -C₀H₂₀R(26),

Null, 1, 2, 3, 4

R(26) (C3-C8)-Cycloalkyl, Phenyl, Biphenylyl oder Naphthyl,

wobei die Aromaten nicht substituiert oder substituiert sind mit 1 - 3 Substituenten aus der Gruppe F, CI, CF₃, Methyl, Methoxy

oder NR(27)R(28), mit R(27) und R(28) gleich H, (C_1-C_4) -Alkyl oder (C_1-C_4) -Perfluoralkyl; oder

R(3), R(4) unabhängig voneinander

SR(29), -OR(30), -NR(31)R(32), -CR(33)R(34)R(35);

R(29), R(30), R(31) und R(33) unabhängig -C_aH_{2a}-(C₁-C₅)-Heteroaryl, das unsubstituiert oder substituiert ist mit 1 - 3 Substituenten aus der Gruppe F, Cl, CF₃, CH₃, Methoxy, Hydroxy, Amino, Methylamino, Dimethylamino,

a Null, 1, 2,

R(32), R(34) und R(35) unabhängig voneinander wie R(29) definiert oder Wasserstoff, (C₁-C₆)-Alkyl oder (C₁-C₆)-Perfluoralkyl;

R(3), R(4) unabhängig voneinander

R(96), R(97), R(98) unabhängig (C1-C2)-Heteroaryl,

das über C oder N verknüpft ist und das unsubstituiert oder substitui int ist mit 1 bis 3 Substitu in-

```
t n aus d r Gruppe F. Cl. CF2, CH3, M thoxy, Hydroxy, Amino, Methylamino od r Dim thylamino,
             Benzyl,
                W
                        Sauerstoff, S oder NR(36)-,
   5
                  R(36) H, (C1-C4)-Alkyl,
             oder
                 R(3), R(4) unabhängig voneinander
                 R(37)-SO<sub>cm</sub>, R(38)R(39)N-SO<sub>2</sub>-,
                cm
                        1 oder 2,
                 R(37) (C<sub>1</sub>-C<sub>8</sub>)-Alkyl, (C<sub>1</sub>-C<sub>8</sub>)-Perfluoralkyl, (C<sub>2</sub>-C<sub>8</sub>)-Alkenyl, -C<sub>s</sub>H<sub>2s</sub>-R(40),
  10
                      Null, 1, 2, 3 oder 4,
                 R(40) (C3-C8)-Cycloalkyl, Phenyl, Biphenylyl oder Naphthyl,
                 wobei die Aromaten nicht substituiert oder substituiert sind mit 1 - 3 Substituenten aus der Gruppe
            F, Cl, CF<sub>3</sub>, Methyl, Methoxy oder NR(41)R(42), mit R(41) und R(42) gleich H, (C<sub>1</sub>-C<sub>4</sub>)-Alkyl oder (C<sub>1</sub>-
  15
            C4)-Perfluoralkyl;
                 R(38) H, (C_1-C_8)-Alkyl, (C_1-C_8)-Perfluoralkyl, (C_3-C_8)-Alkenyl,
                -CwH2w-R(43).
                      Null, 1, 2, 3, 4,
                R(43) (C3-C8)-Cycloalkyl, Phenyl, Biphenylyl oder Naphthyl, wobei die Aromaten nicht substitui rt
 20
            oder substituiert sind mit 1 - 3 Substituenten aus der Gruppe F, Cl, CF<sub>3</sub>, Methyl, Methoxy oder NR(44)-
            R(45), mit R(44) und R(45) gleich H, (C<sub>1</sub>-C<sub>4</sub>)-Alkyl oder (C<sub>1</sub>-C<sub>4</sub>)-Perfluoralkyl,
                R(39) H. (C1-C4)-Alkyl oder (C1-C4)-Perfluoralkyl,
                wobei R(38) und R(39) gemeinsam 4 oder 5 Methylengruppen sein können, von denen eine CH₂-
           Gruppe durch-Sauerstoff, S,-NH,-N-CH<sub>3</sub>-oder_N-Benzyl_ersetzt_sein_kann;
           oder
 25
                R(3), R(4) unabhängig voneinander
                R(46)X(1)-.
                X(1) Sauerstoff, S, NR(47), (D = O)A-, NR(48)C = MN<sup>(-)</sup>R(49)-,
              M
                     Sauerstoff, S.
              A
                     Sauerstoff, NR(50),
 30
              D
                     C, SO
               R(46) \ (C_1 - C_8) - Alkyl, \ (C_3 - C_8) - Alkenyl, \ (CH_2)_b C_d F_{2d+1}, \ - C_x H_{2x} - R(51),
              b
                     Null, 1,
              d
                     1, 2, 3, 4, 5, 6, 7,
35
                     Null, 1, 2, 3, 4,
               R(51) (C<sub>3</sub>-C<sub>8</sub>)-Cycloalkyl, Phenyl, Biphenylyl, Naphthyl,
               wobei die Aromaten nicht substituiert oder substituiert sind mit 1 - 3 Substituenten aus der Gruppe
          F, Cl, CF<sub>3</sub>, Methyl, Methoxy oder NR(52)R(53); mit R(52) und R(53) gleich H, (C<sub>1</sub>-C<sub>4</sub>)-Alkyl oder (C<sub>1</sub>-
          C4)-Perfluoralkyl;
               R(47), R(48) und R(50) unabhängig
               Wasserstoff, (C1-C4)-Alkyl, (C1-C4)-Perfluoralkyl,
               R(49) definiert wie R(46), wobei
               R(46) und R(47) beziehungsweise R(46) und R(48) gemeinsam 4 oder 5 Methylengruppen sein
          können, von denen eine CH2-Gruppe durch Sauerstoff, S. NH, N-CH3 oder N-Benzyl ersetzt sein kann,
               wobei A und N<sup>(+)</sup> an den Phenylkern des Benzoylguanidin-Grundkörpers gebunden sind;
45
               R(3), R(4) unabhängig voneinander
               -SR(64), -OR(65), -NHR(66), -NR(67)R(68), -CHR(69)R(70),
50
```

oder von denen eine oder zwei CH2-Gruppen durch CH-CdmH2dm+1 ersetzt sein können,

sowi der n pharmazeutisch verträgliche Salze.

wob i jedoch Verbindungen ausgenommen sind, in den in die R st. R(1) bis R(4) sowie HA folgendermaß in kombiniert sind:

5

R(1)	R(2)	R(3)	R(4)	НА
$CON = C(NH_2)$	Н	Н	Et	0
$CON = C(NH_2)$	Н	н	Me	0
CON = C(NH ₂)	н	Н	н	0

10

15

20

25

30

35

40

2. Heteroaroylguanidine I nach Anspruch 1, dadurch gekennzeichnet, daß darin bedeuten:

HA SOm. O. NR(5)

n Null, 1, 2,

R(5) Wasserstoff, Methyl,

einer der beiden Substituenten R(1) und R(2)

 $-CO-N = C(NH_2)_2$.

und der jeweils andere Wasserstoff, F, Cl, CH₃ -OH, -CO-N = C(NH₂)₂

R(3) Wasserstoff, F, Cl, Br, I, -C=N, C_q -F_{2q+1}, R(8)-SO₂.

R(9)R(10)N-CO, R(11)-CO-, R(12)R(13)N-SO2-,

wobei die Perfluoralkylgruppe geradkettig oder verzweigt ist,

q:---Null;-1,-2,-3,-4,-5,-6,-

R(8), R(9), R(11) und R(12) unabhängig

(C₁-C₈)-Alkyl, (C₃-C₄)-Alkenyl, -C_nH_{2n}-R(15), CF₃,

n Null, 1, 2, 3, 4,

R(15) (C₃-C₆)-Cycloalkyl, Phenyl,

welches nicht substituiert ist oder substituiert mit 1 - 2 Substituenten aus der Gruppe F, Cl, CF₃,

Methyl, Methoxy oder NR(16)R(17) mit R(16) und R(17) gleich H oder Methyl,

wobei R(9), R(11) und R(12) auch in der Bedeutung von H stehen.

R(10) und R(13) unabhängig H oder Methyl.

oder

 $R(3) (C_1 - C_8) - Alkyl. - C_{al}H_{2al}R(18)$

al Null, 1, 2

R(18)(C₃-C₆)-Cycloalkyl, Phenyl,

welches nicht substituiert oder substituiert ist mit 1 - 2 Substituenten aus der Gruppe F, Cl, CF₃, Methyl, Methoxy oder NR(19)R(20), mit R(19) und R(20) gleich H oder CH_3 ;

R(3) Chinolyl, Isochinolyl, Pyrrolyl, Pyridyl, Imidazolyl, die über C oder N verknüpft sind und die unsubstituiert oder substituiert sind mit 1 - 2 Substituenten aus der Gruppe F, Cl, CF₃, CH₃, Methoxy, Hydroxy, Amino, Methylamino oder Dimethylamino; oder

R(3) -C=CR(56),

R(56) Phenyl,

das unsubstituiert oder substituiert ist mit 1 - 2 Substituenten aus der Gruppe F, Cl, CF₃, Methyl, Methoxy oder NR(16)R(17) mit R(16) und R(17) gleich H, CH₃

R(4)

50

45

R(96), R(97), R(98) unabhängig Pyrrolyl, Imidazolyl, Pyrazolyl, Pyridyl, das jeweils unsubstituiert

oder substitui rt ist mit 1 bis 2 R sten aus der Reihe F, CI, CF₃, CH₃, Methoxy, Dimethylamino, B nzyl, W Sauerstoff, S oder NR(36)-, R(36) H, Methyl,

oder

5

10

15

25

30

35

R(4) R(37)-SO_{cm}, R(38)R(39)N-SO₂-.

R(37) (C₁-C₆)-Alkyl, CF₃, (C₃-C₄)-Alkenyl, -C₅H₂₅-R(40),

s Null, 1.

R(40) (C₃-C₆)-Cycloalkyl, Phenyl,

welches nicht substituiert oder substituiert ist mit 1 - 2 Substituenten aus der Gruppe F, Cl. CF₃, Methyl, Methoxy oder NR(41)R(42), mit R(41) und R(42) gleich H, CH₃,

R(38) H, (C₁-C₄)-Alkyl, CF₃, (C₃-C₄)-Alkenyl, -C_wH_{2w}-R(43),

w Null, 1.

R(43) (C₃-C₈)-Cycloalkyl, Phenyl,

das nicht substituiert oder substituiert ist mit 1 - 2 Substituenten aus der Gruppe F, Cl. CF₃, Methyl, Methoxy oder NR(44)R(45), mit R(44) und R(45) gleich H, (C_1 - C_4)-Alkyl, CH₃,

R(39) H, CH₃,

wobei R(38) und R(39) gemeinsam 4 oder 5 Methylengruppen sein können, von denen eine CH₂-Gruppe durch Sauerstoff, S, NH, N-CH₃ oder N-Benzyl ersetzt sein kann;

20 oder

R(4) R(46)X(1)-,

X(1) Sauerstoff, S, NR(47), (C = O)A-, NR(48)C = MN⁽⁻⁾R(49)-,

M Sauerstoff,

A Sauerstoff, NR(50),

R(46) (C₁-C₆)-Alkyl, (C₃-C₄)-Alkenyl, (CH₂)_bC_dF_{2d+1}, -C_xH_{2x}-R(51),

b Null, 1,

d 1, 2, 3, 4, 5, 6, 7,

x Null, 1,

R(51) (C₃-C₈)-Cycloalkyl, Phenyl,

welches nicht substituiert oder substituiert ist mit 1 - 2 Substituenten aus der Gruppe F. Cl. CF₃, Methyl, Methoxy oder NR(52)R(53); mit R(52) und R(53) gleich H, CH₃.

R(47), R(48) und R(50)

Wasserstoff, (C1-C4)-Alkyl.

R(49) definiert wie R(46), wobei

R(46) und R(47) beziehungsweise R(46) und R(48) gemeinsam 4 oder 5 Methylengruppen sein können, von denen eine CH₂-Gruppe durch Sauerstoff, S, NH, N-CH₃ oder N-Benzyl ersetzt sein kann, wobei A und N⁽⁺⁾ an den Phenylkern des Benzoylguanidin-Grundkörpers gebunden sind;

er

R(4) -SR(64), -OR(65), -NHR(66), -NR(67)R(68), -CHR(69)R(70),

40

$$-C \stackrel{R(54)}{\underset{OH}{\leftarrow}}$$

45

$$-C \equiv CR(56), -C C-R(57), \begin{bmatrix} R(59) & 0 & R(61) \\ -C & 0 & C \\ R(60) & R(62) \end{bmatrix} -R(63)$$

55

R(64), R(65), R(66), R(67), R(69) gl ich oder verschieden $-(CH_2)_y$ - $(CHOH)_2$ - $(CH_2)_{aa}$ - $(CH_2OH)_1$ -R(71) oder $-(CH_2)_{ab}$ -O- $(CH_2$ - $CH_2O)_{ac}$ -R(72),

```
R(71), R(72) Wasserstoff, Methyl.
                    1. 2.
                    Null, 1, 2,
                    y. z, aa gl ich oder verschieden
                        Null, 1, 2,
                    1, 2, 3,
               R(68), R(70), R(54), R(55) gleich oder verschieden
               Wasserstoff, CH<sub>3</sub>,
           oder
               R(69) und R(70) beziehungsweise R(54) und R(55) zusammen mit dem sie tragenden Kohlenstoff-
  10
           Atom ein (C<sub>3</sub>-C<sub>6</sub>)-Cycloalkyl;
               R(63)
               H, (C_1-C_4)-Alkyl, (C_3-C_6)-Cycloalkyl, -C_6H_{2e}-R(73).
                   Null. 1. 2.
               R(56), R(57) und R(73) unabhängig
 15
               Phenyl,
               das unsubstituiert oder substituiert ist mit 1 - 2 Substituenten aus der Gruppe F, Cl, CF<sub>3</sub>, Methyl,
          Methoxy oder NR(74)R(75) mit R(74) und R(75) gleich H oder CH<sub>3</sub>.
              R(56), R(57) und R(73) unabhängig
 20
              (C1-C2)-Heteroaryl, ausgewählt aus der Gruppe bestehend aus Pyrrolyl, Imidazolyl, Pyrazolyl und
              das unsubstituiert oder wie Phenyl substituiert ist;
              R(58), R(59), R(60), R(61) und R(62)
              Wasserstoff oder Methyl.
 25
          oder
              R(4) R(76)-NH-SO2-,
              R(76) R(77)R(78)N-(C = Y')-,
 30
                   Sauerstoff, S. N-R(79),
              R(77) und R(78) gleich oder verschieden
              H. (C1-C4)-Alkyl. (C3-C4)-Alkenyl. -C1H21-R(80).
                  Null, 1,
              R(80)
              (C5-C7)-Cycloalkyl, Phenyl,
35
              welches unsubstituiert mit 1 - 2 Substituenten aus der Gruppe F, Cl, CF<sub>3</sub>, Methoxy oder CH<sub>3</sub>, oder
              R(77) und R(78) gemeinsam 4 oder 5 Methylengruppen bilden, von denen eine CH2-Gruppe durch
         Sauerstoff, S, NH, H-CH3 oder N-Benzyl ersetzt sein kann, wobei
              R(79) wie R(77) definiert ist,
         oder
40
             R(4) NR(84)R(85),
             R(84), R(85) unabhängig voneinander
             H. (C1-C4)-Alkyl, oder gemeinsam 4 oder 5 Methylengruppen, von denen eine CH2-Gruppe durch
         Sauerstoff, S. NH, N-CH<sub>3</sub> oder N-Benzyl ersetzt sein kann.
45
             oder von denen eine oder zwei CH2-Gruppen durch CH-CH3 ersetzt sein können.
        Heteroaroylguanidine I nach einem oder mehreren der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß
         darin bedeuten:
             R(1)
50
             -CO-N = C(NH2)2
             S, O, NH, NCH<sub>3</sub>
```

55

und die Reste R(2) bis R(4) wie folgt kombiniert sind:

	R(2)	R(3)	R(4)
_	Н	n-BuNH-	CI
5	Н	H ₂ NSO ₂ -	⊘ -s-
10	Н	MeSO ₂	<u>s-</u>
15	Н	N-	Me
	H	○ N-	⊘ -•-
20	Н	N-	Me
25	Н		CI
	н	○ N-	MeSO ₂ -
30	Н	MeSO ₂	NH ₂
	н	MeSO ₂ -	N H -
35	Н	MeSO ₂ -	⊘ -•-
40			
45			

5	н	MeSO ₂ -	C 1
10	н	MeSO ₂ -	M • 0 — N H -
15	Н	MeSO ₂ -	м• О нн-
20	Н	MeSO ₂ -	M. W. H.
	Н	CI-	
25			N-
	н	MeSO ₂ .	(CH ₃) ₂ -CHCH ₂ -O-
30	н	MeSO ₂ .	2 - 0 M e
35	н	MeSO ₂ .	∭e S −
45	H	MeSO ₂	M e S
50	Н	N-	O

5	Н		C - C - C - C - C - C - C - C - C - C -
10	н	○ N-	O_c + 3
15	Н	N-	c i
20	H	<u></u>	OM e
	н	N-	N 0
<i>30</i>	н	MeSO ₂ -	C1 2 .
40		MeSO ₂ -	c ı S ·
	Me	Me	Н
	Н	MeSO ₂ -	i-Pr
45	Н	CF ₃	н
	Н	○ N-	CI
50	Н	MeSO ₂ -	MeNH-
	Н	MeSO ₂ -	Et ₂ N-

	Н	t-Bu	ОН
5	н	MeSO ₂ -	c i O
10	н	MeSO ₂ -	C 1 0
	H	MeSO ₂ -	On s
20	H	MeSO ₂ -	C C
25	Н	MeSO ₂ -	
	Н	MeSO ₂ -	2-Naphthyl
30	н	MeSO ₂ -	N
	Н	△ N-	Me
35	Н	N-	₩•
	Н	Ci	Et ₂ N-
	Н	Me ₂ N-	н
45	н	Me\$O ₂ -	© C 1
50		i i	11

	н	Br	NH ₂
	Н	CI	н
5	н	MeSO ₂ -	F
10	н	MeSO ₂ -	F
	H	CF ₃	CF ₃
15	H	Me	Me
	Н		CF ₃
	H	Me	Н
20,	H	Н	t-Bu
	Н	MeSO ₂ -	F—————————————————————————————————————
25	н	Me	CI
	н	Br	Me
	Н	CI ·	MeO-
30	н	MeCO-	
	Н	Br	Br
35	Н	MeSO ₂ -	CH2-CH2-
40	н	MeSO ₂ -	C = C-
	NH ₂	Br	Me
45	Н	Me ₂ N-	t-Bu
	н	Me\$O ₂ -	н 0—О-0-
50	Н	N-	Н

	н		MeO-
5	Н	Me	Br
	Н	CI	F
	Н	t-Bu	Н
10	NH ₂	CI	Н
	н		Me ₂ N
	н	Me ₂ N	CI
15	н	MeSO ₂ -	7-Isochinolinoxy
	Н	MeSO ₂ -	6-Chinolinoxy
20	Н	MeSO ₂ -	0
20			
-25	Н	_MeSO ₂	·
30			
	Н	MeSO ₂ -	(CH ₃) ₂ CH-CH ₂ -
35	Н	MeSO ₂ -	
	н	Me ₂ N-	⊘ -∘-
40	н	Me ₂ N-	c 1——0-
	Н	Me	Me ₂ N-
45	Н	△ N-	⊘ -•-
50	Ħ	Me	△ N-
	н	CI	i-Pr

	Н		i-Pr
5	Н	MeSO ₂ -	5-Chinolinoxy
	Н		CF ₃
10	н	i-Pr	MeSO ₂ -
	н	i-Pr	CF ₃
15	Н	Н	i-Pr
73	NH ₂	Br	Br
20	Н	MeSO ₂ -	NO ON
25	Н		MeSO ₂ -
30	н	MeSO ₂ -	in in the second
35	Н	CI	⊘ —ии [^] ии-
	Н	Me ₂ N	i-Pr
40	Н	MeHN-	i-Pr
	Н	CI	CI
i	Н	CI	H ₂ N-
45	Н	CI	H ₂ N
50	Н	MeSO ₂ -	[N H H

	H	MeSO ₂ -	, M e
5			N-
3			
			M e
••			
10	Н	Me ₂ N-	i-Pr
	CF ₃	Н	CF ₃
	Н	Br	Me
15	Н	Me	CI
	Н	Me ₂ N	Me
	Н	CF ₃	MeHN-
20	н	CH ₃ CO-	(CH ₃) ₂ CH-CH ₂
	н	MeSO ₂ -	P -O
25	н	CF ₃ -O-	н
	Н	Me	Me ₂ N
	Н	СІ	Me ₂ N-
	H	CI MeSO ₂ -	Me ₂ N-
30	li .	1	
	li .	1	
	н - н	MeSO ₂ - CH ₃ CO- Br	C 1 — 0 -
30	H H H	MeSO ₂ - CH ₃ CO- Br CF ₃	c 1————————————————————————————————————
30	н н н	MeSO ₂ - CH ₃ CO- Br CF ₃ i-Pr	c 1————————————————————————————————————
30	H H H	MeSO ₂ - CH ₃ CO- Br CF ₃	cı—0- i-Pr BnO- Br
3 <i>0</i>	н н н	MeSO ₂ - CH ₃ CO- Br CF ₃ i-Pr	i-Pr BnO- Br MeO-
3 <i>0</i>	н н н	MeSO ₂ - CH ₃ CO- Br CF ₃ i-Pr MeSO ₂ -	i-Pr BnO- Br MeO-
30 35	н н н	MeSO ₂ - CH ₃ CO- Br CF ₃ i-Pr MeSO ₂ -	i-Pr BnO- Br MeO-
30 35	н н н н	MeSO ₂ - CH ₃ CO- Br CF ₃ i-Pr MeSO ₂ -	I-Pr BnO- Br MeO- IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
30 35	H H H H	MeSO ₂ - CH ₃ CO- Br CF ₃ i-Pr MeSO ₂ - MeSO ₂ -	I-Pr BnO- Br MeO- I-Bu

	н	Ph	CF ₃
	Н	CF ₃	1-lmidazolyl
5	Н	MeCO-	t-Butylmethyl
	Н	Br	F
	н	Br	MeO-
10	Н	CF ₃	PhO-
,,	Н	CF ₃	Cyclopentyl
	Н	MeSO ₂ -	Cyclobutyl
	Н	Me	CF ₃
15	н	MeSO ₂ -	7
			· ^ _
			~~.
20	<u> </u>		
	Н	ОН	t-Butyl
	Н	CI	OMe
_25	Н	CF ₃	i-Pr
	F	CF ₃	н
	F	Н	CF ₃
30	н	t-Butyl	OMe
	н	MeCO-	' \\\.
35	н	MeCO-	
40		Meco	
	Н	t-Butyl	i-Butyl
	Н	CF ₃ CF ₂ -	i-Propyl
4 5	Н	CF ₃ -SO ₂ -	' \(\).
50	CI	CF ₃	Н

	CI	н	CF ₃
1	Н	Н	Perfluoro-i-propyl
5	Н	Н	Н
10	н	MeSO ₂	>n~o~O~o~
.•	Н	н	Perfluoro-n-propyl
15	н	CF ₃	© c = c-
	Н	CF ₃	C 1————————————————————————————————————
20	Н	CF ₃	' \(\tau_{\circ}\)
25	Н	F	CF ₃
30	н	MeSO ₂ -	P C1
35	Н	t-Butyl	i-Propyl
÷	н	t-Butyl	n-Butyl
	Н	i-Propyl	F
40	н	i-Butyl	F
	Н	CI	1-Imidazolyl
•	Н	Н	CF ₃ -CF ₂ -
45	Н	Н	CF ₃
50	H	н	F,3c

H	MeSO ₂)N ~ 0 ~
Н	CF ₃ SO ₂	i-Propyl

 Verfahren zum Herstellen einer Verbindung I nach Anspruch 1, dadurch gekennzeichnet, daß man Verbindungen der Formel II

15

20

- 25 mit-Guanidin-umsetzt, worin-L-für-eine-leicht nucleophil-substituierbare-Fluchtgruppe-steht.
 - 5. Verwendung einer Verbindung I nach einem oder mehreren der Ansprüche 1 bis 3 zur Herstellung eines Medikaments zu Behandlung von Arrhythmien.
- 30 6. Methode zum Behandeln von Arrhythmien, dadurch gekennzeichnet, daß man eine wirksame Meng einer Verbindung I nach einem oder mehreren der Ansprüche 1 bis 3 mit den üblichen Zusatzstoffen versetzt und in einer geeigneten Darreichungsform verabreicht.
- 7. Verwendung einer Verbindung I nach einem oder mehreren der Ansprüche 1 bis 3 zur Herstellung eines Medikaments zur Behandlung oder Prophylaxe des Herzinfarkts.
 - 8. Verwendung einer Verbindung I nach einem oder mehreren der Ansprüche 1 bis 3 zur Herstellung eines Medikaments zur Behandlung oder Prophylaxe der Angina Pectoris.
- 40 9. Verwendung einer Verbindung I nach einem oder mehreren der Ansprüche 1 bis 3 zur Herstellung eines Medikaments zur Behandlung oder Prophylaxe von ischämischen Zuständen des Herzens.
 - 10. Verwendung einer Verbindung I nach einem oder mehreren der Ansprüche 1 bis 3 zur Herstellung eines Medikaments zur Behandlung oder Prophylaxe von ischämischen Zuständen des peripheren und zentralen Nervensystems und des Schlaganfalls.
 - Verwendung einer Verbindung I nach einem oder mehreren der Ansprüche 1 bis 3 zur Herstellung eines Medikaments zur Behandlung oder Prophylaxe von ischämischen Zuständen peripherer Organe und Gliedmaßen.

50

- Verwendung einer Verbindung I nach einem oder mehreren der Ansprüche 1 bis 3 zur Herstellung eines Medikaments zur Behandlung von Schockzuständen.
- 13. Verw ndung iner Verbindung I nach einem oder mehreren der Ansprüche 1 bis 3 zur Herstellung
 eines Medikaments zum Einsatz bei chirurgischen Operation n und Organtransplantation n.
 - 14. V rwendung einer Verbindung I nach einem od r m hreren der Ansprüche 1 bis 3 Herstellung eines Medikaments zur Kons rvierung und Lagerung von Transplantaten für chirurgische Maßnahmen.

- 15. Verwindung einer Verbindung I nach einem od rim hreren dir Ansprüche 1 bis 3 zur Herstellung eines Medikam ints zur B handlung von Krankheit in, bei denen die Zellproliferation eine primäre oder sekundäre Ursache darstellt, und somit ihre Verwindung als Antiatherosklerotika, Mittel gegen diab tische Spätkomplikationen, Krebserkrankungen, fibrotisch Erkrankungen wie Lungenfibrose, Leberfibrose oder Nierenfibrose. Prostatahyperplasie.
- 16. Verwendung einer Verbindung I nach einem oder mehreren der Ansprüche 1 bis 3 zur Herstellung eines wissenschaftliches Tools zur Inhibition des Na⁺/H⁺-Exchangers, zur Diagnose der Hypertonie und proliferativer Erkrankungen.
- 17. Heilmittel, enthaltend eine wirksame Menge einer Verbindung I nach einem oder mehreren der Ansprüche 1 bis 3.

-25-