Friedrich-Alexander-Universität Erlangen-Nürnberg

Decision Theory

Lecture 5

Michael Hartisch

Friedrich-Alexander Universität Erlangen-Nürnberg, Department Data Science May 13, 2024

Recap: what did we do?

- Decision under certainty
- Implicit description of solutions
 - Linear programming
 - Knapsack problem
- Multi-criteria decision making
 - Pareto efficiency
 - Weighted sum method
 - \circ ϵ -constraint method
 - Goal programming
- Data Envelopment Analysis (DEA)

Single-Criterion Decision Making

- It's simple to choose the best from a list
- If solutions are given trough an implicit description, can be tricky!
- Linear programming:

$$\max c^t x$$
s.t. $Ax \le b$

$$x \ge 0$$

Greedy for knapsack

Pareto Efficiency

- Want to maximize
- For solution x, let (e_x^1, \dots, e_x^K) be the K criteria values
- *x* is Pareto efficient if there is no *y* such that

$$e_y^i \ge e_x^i$$
 for all $i \in [K]$
 $e_y^i > e_x^i$ for at least one $i \in [K]$

Fantastic Solutions and How to Find Them

Multi-criteria problem:

$$\max c^t x$$

 $\max d^t x$

s.t.
$$Ax \leq b$$

$$x \ge 0$$

Weighted sum:

$$\max \lambda \cdot c^t x + (1 - \lambda) \cdot d^t x$$

s.t.
$$Ax \leq b$$

$$x \ge 0$$

Fantastic Solutions and How to Find Them

Multi-criteria problem:

$$\max c^t x$$

$$\max d^t x$$

s.t.
$$Ax \leq b$$

$$x \ge 0$$

 ϵ -constraint:

$$\max c^t x$$

s.t.
$$Ax \leq b$$

$$d^t x \geq \epsilon$$

$$x \ge 0$$

Supported/Unsupported

- If a solution is Pareto efficient, you can further check If it is supported or unsupported
- Supported: on the boundary of the convex hull of points in the objective space
- Unsupported: inside the convex hull
- Weighted sum can only find supported Pareto solutions

Data Envelopment Analysis

- Given multiple decision making units (DMUs)
- Input values
- Output values
- For example, DMU = dairy farm
 - Input 1: energy expense
 - Input 2: vet expense
 - Input 3: number of cows
 - Output 1: milk volume

Setting

efficiency =
$$\frac{\text{output}}{\text{input}}$$

- Evaluate a DMU relative to the other DMUs
- Not efficient, if we can combine the other DMUs such that
 - At least the same amount of output
 - Is produced with less input
- Notation:
 - $\circ X_i = (x_{i1}, \dots, x_{iN})$ vector of inputs for DMU i
 - $\circ Y_i = (y_{i1}, \dots, y_{iM})$ vector of outputs for DMU i
 - \circ Efficiency of DMU *i* is θ_i

Setting

Formulation as linear program:

$$\min \theta_{j}$$
s.t.
$$\sum_{i \in I} \lambda_{i} x_{ik} \leq \theta_{j} x_{jk} \qquad \forall k \in [N]$$

$$\sum_{i \in I} \lambda_{i} y_{ik} \geq y_{jk} \qquad \forall k \in [M]$$

$$\theta_{j} \in \mathbb{R}$$

$$\lambda_{i} \in \mathbb{R}_{+} \qquad \forall i \in I$$

Setting

Formulation as linear program:

$$\min \theta_{j}$$
s.t. $\sum_{i \in I} \lambda_{i} x_{ik} \leq \theta_{j} x_{jk}$ $\forall k \in [N]$

$$\sum_{i \in I} \lambda_{i} y_{ik} \geq y_{jk}$$
 $\forall k \in [M]$

$$\theta_{j} \in \mathbb{R}$$

$$\lambda_{i} \in \mathbb{R}_{+}$$
 $\forall i \in I$

for a fixed DMU j, find the worst combination of DMUs

Setting

Formulation as linear program:

$$\min \theta_{j}$$
s.t.
$$\sum_{i \in I} \lambda_{i} x_{ik} \leq \theta_{j} x_{jk} \qquad \forall k \in [N]$$

$$\sum_{i \in I} \lambda_{i} y_{ik} \geq y_{jk} \qquad \forall k \in [M]$$

$$\theta_{j} \in \mathbb{R}$$

$$\lambda_{i} \in \mathbb{R}_{+} \qquad \forall i \in I$$

such that each output is at least as much

Setting

Formulation as linear program:

$$\min \theta_{j}$$

$$\text{s.t. } \sum_{i \in I} \lambda_{i} x_{ik} \leq \theta_{j} x_{jk} \qquad \forall k \in [N]$$

$$\sum_{i \in I} \lambda_{i} y_{ik} \geq y_{jk} \qquad \forall k \in [M]$$

$$\theta_{j} \in \mathbb{R}$$

$$\lambda_{i} \in \mathbb{R}_{+} \qquad \forall i \in I$$

and each input is less

Example				
	Input 1	Input 2	Input 3	Output 1
farm no	energy	vet	cows	milk
1	117.9	21.2	121	86.3
2	72.0	43.9	80	60.6
3	158.5	54.6	95	86.6
4	66.8	45.5	87	66.2
5	101.7	81.6	125	100.3

Example

How efficient is DMU 1?

- Determine θ_1 : min θ_1
- Find combination of all DMUs: $\lambda_1, \ldots, \lambda_5$
- Such that the combination is less with respect to energy

$$117.9\lambda_1 + 72.0\lambda_2 + 158.5\lambda_3 + 66.8\lambda_4 + 101.7\lambda_5 \le \theta_1 117.9$$

- In the same way better with respect to vet and cows
- And better (more) with respect to output milk

$$86.3\lambda_1 + 60.6\lambda_2 + 86.6\lambda_3 + 66.2\lambda_4 + 100.3\lambda_5 \ge 86.3$$

Efficiency Score

- Solving the linear program for one DMU, we get a value θ_i
- Value cannot be larger than 1
- Value = 1: DMU is efficient
- Value < 1: DMU is not efficient, and we get a set of comparison DMUs (where $\lambda > 0$)

FAU M. Hartisch Decision Theory May 13, 2024 15/59

Alternative Model

- Choose (imaginary) price u_k for each input $k \in [N]$, and v_k for each output $k \in [M]$
- Efficiency of DMU i is

efficiency =
$$\frac{\text{output}}{\text{input}} = \frac{v^t Y_j}{u^t X_j}$$

- Is there any set of prices such that DMU i looks good?
- Under the constraint that all efficiencies are ≤ 1

Alternative Model

$$\max \sum_{k \in [M]} v_k y_{jk}$$
s.t.
$$\sum_{k \in [N]} u_k x_{jk} = 1$$

$$\sum_{k \in [M]} v_k y_{ik} - \sum_{k \in [N]} u_k x_{ik} \le 0 \qquad \forall i \in I$$

$$u \in \mathbb{R}^N_+, v \in \mathbb{R}^M_+$$

Alternative Model

$$\max \sum_{k \in [M]} \frac{v_k y_{jk}}{u_k x_{jk}} = 1$$
s.t.
$$\sum_{k \in [N]} \frac{v_k y_{ik}}{v_k y_{ik}} - \sum_{k \in [N]} \frac{u_k x_{ik}}{u_k x_{ik}} \le 0$$

$$u \in \mathbb{R}_+^N, v \in \mathbb{R}_+^M$$

$$\text{chose prices } u_k, v_k$$

Alternative Model

$$\max \sum_{k \in [M]} v_k y_{jk}$$
s.t.
$$\sum_{k \in [N]} u_k x_{jk} = 1$$

$$\sum_{k \in [M]} v_k y_{ik} - \sum_{k \in [N]} u_k x_{ik} \le 0$$

$$u \in \mathbb{R}^N_+, v \in \mathbb{R}^M_+$$

that maximize the efficiency of DMU j

Alternative Model

$$\max \sum_{k \in [M]} v_k y_{jk}$$
s.t.
$$\sum_{k \in [N]} u_k x_{jk} = 1$$

$$\sum_{k \in [M]} v_k y_{ik} - \sum_{k \in [N]} u_k x_{ik} \le 0$$

$$u \in \mathbb{R}_+^N, v \in \mathbb{R}_+^M$$
while all efficiencies are < 1

Alternative Model

- Objective value of first and second model are the same
- Can be seen through duality
- We are free to choose which model we prefer

FAU M. Hartisch Decision Theory May 13, 2024 18/59

DEA

- Each DMU is a black box, need to know nothing but input and output
- Very flexible, general, can be applied to a wide range of problems
- Popular in the literature
- Need to determine what value is input, what is output

Today

- Analytic Hierarchy Process (AHP)
- Multi-Attribute Utility Theory (MAUT)

FAU M. Hartisch Decision Theory May 13, 2024 20/59

AHP

- Analytic Hierarchy Process (AHP)
- Alternatives are given again
 - E.g., where to go on vacation?
 - \circ a_1 =Rome
 - ∘ *a*₂ =Barcelona
 - *a*₃ =Reykjavik

AHP

- Goal: achieve a normalized vector indicating the quality of alternatives
 - \circ e.g., w = (6/9, 2/9, 1/9)
- What we do: pairwise comparisons in a matrix

$$R = \begin{pmatrix} r_{11} & \dots & r_{1n} \\ \vdots & \vdots & \vdots \\ r_{n1} & \dots & r_{nn} \end{pmatrix}$$

• $r_{ij} > 0$ indicates the preference of a_i over a_i

AHP – Example

- Rome is "3 times better" than Barcelona
- Rome is "6 times better" than Reykjavik
- Barcelona is "2 times better" than Reykjavik
- Results in:

$$R = \begin{pmatrix} 1 & 3 & 6 \\ 1/3 & 1 & 2 \\ 1/6 & 1/2 & 1 \end{pmatrix}$$

AHP

• Typically:

$$R = \begin{pmatrix} 1 & r_{12} & \dots & r_{1n} \\ 1/r_{12} & 1 & \dots & r_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 1/r_{1n} & 1/r_{2n} & \dots & 1 \end{pmatrix}$$

• If the matrix is derived from a preference vector, then

$$r_{ij} pprox rac{w_i}{w_j}$$

Multiple Criteria

- What if there are multiple criteria?
- Example: Climate, Environmental Friendliness, Costs
- "Hierarchy" in AHP through relations between
 - Overall goal
 - Criteria
 - Alternatives

Multiple Criteria

- Build matrix R^k for each criterion k
- Example: three matrices

$$R^{c} = \begin{pmatrix} 1 & 1 & 4 \\ 1 & 1 & 4 \\ 1/4 & 1/4 & 1 \end{pmatrix} \text{ (climate)}$$

$$R^{e} = \begin{pmatrix} 1 & 1/2 & 1/8 \\ 2 & 1 & 1/4 \\ 8 & 4 & 1 \end{pmatrix} \text{ (environment)}$$

$$R^{s} = \begin{pmatrix} 1 & 2 & 6 \\ 1/2 & 1 & 3 \\ 1/6 & 1/3 & 1 \end{pmatrix} \text{ (cost)}$$

Weight Vectors

- Assuming, based on matrices, we can estimate three weight vectors
- Normalized: $\sum_{i=1}^{n} w_i = 1$
- Recall, we want: $r_{ij} \approx w_i/w_j$

$$w^{c} = \begin{pmatrix} 4/9 \\ 4/9 \\ 1/9 \end{pmatrix}, w^{e} = \begin{pmatrix} 1/11 \\ 2/11 \\ 8/11 \end{pmatrix}, w^{s} = \begin{pmatrix} 6/10 \\ 3/10 \\ 1/10 \end{pmatrix}$$

FAU M. Hartisch Decision Theory May 13, 2024 27/59

Weighting

- Now, we want to find a compromise solution
- Average of criteria not meaningful
- Approach: again a comparison matrix, this time between the criteria
- "How much more important is climate than the environment?"
- Example:

$$\hat{R} = \begin{pmatrix} 1 & 1/2 & 1/4 \\ 2 & 1 & 1/2 \\ 4 & 2 & 1 \end{pmatrix}$$

Weighting

• Assuming, we can build a weight vector again from \hat{R} :

$$\hat{w} = \begin{pmatrix} 1/7 \\ 2/7 \\ 4/7 \end{pmatrix}$$

• Use this to weight the three criteria vectors:

$$w = \hat{w}_1 w^c + \hat{w}_3 w^e + \hat{w}_2 w^s$$

$$= \frac{1}{7} \begin{pmatrix} 4/9 \\ 4/9 \\ 1/9 \end{pmatrix} + \frac{4}{7} \begin{pmatrix} 1/11 \\ 2/11 \\ 8/11 \end{pmatrix} + \frac{2}{7} \begin{pmatrix} 6/10 \\ 3/10 \\ 1/10 \end{pmatrix} \approx \begin{pmatrix} 0.287 \\ 0.253 \\ 0.460 \end{pmatrix}$$

Answer: Reykjavik!

Summary AHP

- 1. Structure the problem, define hierarchy
- 2. Pairwise comparisons
- 3. Calculate weight vectors
- 4. Choose alternative with the best weighting

FAU M. Hartisch Decision Theory May 13, 2024 30/59

FAU M. Hartisch Decision Theory

Applications

- "Livability index" of cities
- As a precursor to the Human Development Index (instead of just GDP)
- Allocation of organ donations
- Prediction of wins in a chess tournament

Drawbacks

- "Rank reversal": adding a new alternative changes the evaluations of other alternatives
- How to say "Barcelona is 4 times better than Reykjavik"?
 - E.g., set a scale

Verbal description	Saaty's scale	Balanced scale
Indif erence	1	1
	2	1.22
Moderate preference	3	1.5
	4	1.86
Strong preference	5	2.33
	6	3
Very strong or demonstrated preference	7	4
	8	5.67
Extreme preference	9	9

Weight Vectors

- Still missing: Given comparison matrix, how do I determine appropriate weight vectors?
- Want to find w so that $r_{ij} \approx w_i/w_j$
 - Find eigenvector
 - Calculate geometric mean
 - Method of least squares

FAU M. Hartisch Decision Theory

Eigenvector

$$RW = \begin{pmatrix} w_1/w_1 & w_1/w_2 & \dots & w_1/w_n \\ w_2/w_1 & w_2/w_2 & \dots & w_2/w_n \\ \vdots & \vdots & \vdots & \vdots \\ w_n/w_1 & w_n/w_2 & \dots & w_n/w_n \end{pmatrix} \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} nw_1 \\ \vdots \\ nw_n \end{pmatrix} = nw$$

- A vector w such that $Rw = \lambda w$ is called an eigenvector
- λ is called an eigenvalue
- Easily determined using mathematical software
- Choose eigenvector corresponding to the largest eigenvalue

Geometric Mean

$$W_{i} = \frac{\left(\prod_{j=1}^{n} r_{ij}\right)^{1/n}}{\sum_{i=1}^{n} \left(\prod_{j=1}^{n} r_{ij}\right)^{1/n}}$$

- Advantage: closed formula
- If there exists w with $r_{ij} = w_i/w_j$, it will be found

FAU M. Hartisch Decision Theory

Method of Least Squares

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} \left(r_{ij} - \frac{w_i}{w_j} \right)^2$$
s.t.
$$\sum_{i=1}^{n} w_i = 1$$

s.t.
$$\sum_{i=1}^{n} w_i = \frac{1}{2}$$

Example: Choice of Transportation

Using AHP

MAUT

• Now: MAUT (multiattributive utility theory)

MAUT Setting

- Similar to AHP: multiple alternatives and criteria, how to weigh them?
- In AHP: pairwise comparisons
- Determine weights λ_k and functions u_k for

$$U(a_i) = \sum_{k \in [K]} \lambda_k u_k(e_i^k)$$

- *u* is a utility function that should be consistent with preference relations
- AHP is a special case

FAU M. Hartisch Decision Theory

Example

- Mr. Müller wants to go on vacation
- Vacation in Calabria, Mallorca, or Sylt?
- He asks for our help

Example

- Mr. Müller wants to go on vacation
- Vacation in Calabria, Mallorca, or Sylt?
- He asks for our help

Calabria		
Mallorca		
Sylt		

Example

- Mr. Müller wants to go on vacation
- Vacation in Calabria, Mallorca, or Sylt?
- He asks for our help

	Air Temp.	Water Temp.	Cost	
Calabria				
Mallorca				
Sylt				

Example

- Mr. Müller wants to go on vacation
- Vacation in Calabria, Mallorca, or Sylt?
- He asks for our help

	Air Temp.	Water Temp.	Cost	
Calabria	27	25	1800	
Mallorca	25	23	2000	
Sylt	15	13	1500	

Example

- Mr. Müller wants to go on vacation
- Vacation in Calabria, Mallorca, or Sylt?
- He asks for our help

	Air Temp.	Utility	Water Temp.	Utility	Cost	Utility	
Calabria	27		25		1800		
Mallorca	25		23		2000		
Sylt	15		13		1500		

Example

- Mr. Müller wants to go on vacation
- Vacation in Calabria, Mallorca, or Sylt?
- He asks for our help

	Air Temp.	Utility	Water Temp.	Utility	Cost	Utility	
Calabria	27	1.0	25	1.0	1800	0.7	
Mallorca	25	8.0	23	0.9	2000	0.3	
Sylt	15	0.5	13	0.5	1500	1.0	

Example

- Mr. Müller wants to go on vacation
- Vacation in Calabria, Mallorca, or Sylt?
- He asks for our help

	Air Temp.	Utility	Water Temp.	Utility	Cost	Utility	
Calabria	27	1.0	25	1.0	1800	0.7	
Mallorca	25	8.0	23	0.9	2000	0.3	
Sylt	15	0.5	13	0.5	1500	1.0	
Importance							

Example

- Mr. Müller wants to go on vacation
- Vacation in Calabria, Mallorca, or Sylt?
- He asks for our help

	Air Temp.	Utility	Water Temp.	Utility	Cost	Utility	
Calabria	27	1.0	25	1.0	1800	0.7	
Mallorca	25	8.0	23	0.9	2000	0.3	
Sylt	15	0.5	13	0.5	1500	1.0	
Importance		0.3		0.5		0.2	

Example

- Mr. Müller wants to go on vacation
- Vacation in Calabria, Mallorca, or Sylt?
- He asks for our help

	Air Temp.	Utility	Water Temp.	Utility	Cost	Utility	Overall
Calabria	27	1.0	25	1.0	1800	0.7	
Mallorca	25	8.0	23	0.9	2000	0.3	
Sylt	15	0.5	13	0.5	1500	1.0	
Importance		0.3		0.5		0.2	

Example

- Mr. Müller wants to go on vacation
- Vacation in Calabria, Mallorca, or Sylt?
- He asks for our help

	Air Temp.	Utility	Water Temp.	Utility	Cost	Utility	Overall
Calabria	27	1.0	25	1.0	1800	0.7	0.94
Mallorca	25	8.0	23	0.9	2000	0.3	0.75
Sylt	15	0.5	13	0.5	1500	1.0	0.60
Importance		0.3		0.5		0.2	

MAUT Workflow

- Decision-maker defines goals (goal hierarchy)
- Decision-maker determines alternatives
- Analyst queries decision-maker for value preferences u_k
 - Introduce methods
 - AHP: pairwise comparisons
- Analyst queries decision-maker for goal weights λ_k
 - Introduce methods
 - AHP: pairwise comparisons
- Determination of overall utility
- Sensitivity analysis

Value Preferences u_k : Direct Rating

- Set the result of the worst alternative to 0
- Set the result of the best alternative to 100
- Obtain scores from the decision-maker
- Normalize all values to [0, 1]
- Normalization allows us to determine goal weights sensibly

Example

Water Temp.	13	16.5	20	23.5	27
Points	0				100

Example

Water Temp.	13	16.5	20	23.5	27
Points	0	60			100

Example

Water Temp.	13	16.5	20	23.5	27
Points	0	60	90		100

Example

Water Temp.	13	16.5	20	23.5	27
Points	0	60	90	95	100

Example

Water Temp.	13	16.5	20	23.5	27
Points	0	60	90	95	100
Normalized	0.00	0.60	0.90	0.95	1.00

Example

 Water Temp.
 13
 16.5
 20
 23.5
 27

 Points
 0
 60
 90
 95
 100

 Normalized
 0.00
 0.60
 0.90
 0.95
 1.00

Value Preferences u_k : Direct Rating

- We practically provide no support
- Solution "for emergencies"
- Helpful when consequences are not measurable
- Consistency check:
 - Are preferences correctly reflected?
 - \circ If a_1 is better than a_2 , then a better score for a_1 .
 - Are differences correctly reflected?
 - \circ For u(4) = 0, u(5) = 0.6, and u(6) = 1, is it true that the utility difference between 4 and 5 is greater than between 5 and 6?

Value Preferences u_k : Bisection Method

- Write x_i^v for the manifestation of goal i with $u_i(x_i^v) = v$
- Set utility of the worst result to 0: $u_i(x_i^0) = 0$
- Set utility of the best result to 1: $u_i(x_i^1) = 1$
- Query the utility median $x_i^{0.5}$, i.e., the value z such that

$$u_i(z) - u_i(x_i^0) = u_i(x_i^1) - u_i(z)$$

Successively halve all subintervals until the desired accuracy is reached

FAU M. Hartisch Decision Theory

Example 0.8 0.6 0.4 Air Temp. 15 16 18 - 27 0.2 24 16 18 20 22 26

Temperatur

Example 0.8 0.6 $x_i^0 x_i^{0.25} x_i^{0.5} x_i^{0.75} x_i^1$ Utility 0 0.25 0.5 0.75 1 0.4 Air Temp. 15 16 18 ? 27 0.2 24 16 18 20 26 Temperatur

Example 0.8 0.6 $x_i^0 x_i^{0.25} x_i^{0.5} x_i^{0.75} x_i^1$ Utility 0 0.25 0.5 0.75 1 0.4 Air Temp. 15 16 18 21 27 0.2 22 24 16 18 20 26 Temperatur

Interpolation

- Given data points (e.g., $(x_1, u(x_1)), \ldots, (x_k, u(x_k))$)
- Find function u(x) that:
 - Satisfies the given data points
 - Provides a mathematical relationship for calculating intermediate values
- Linear interpolation: connect points with straight line segments
- For neighboring points $(x_1, u(x_1))$ and $(x_2, u(x_2))$, for all $x \in [x_1, x_2]$:

$$u(x) = u(x_1) + \frac{u(x_2) - u(x_1)}{x_2 - x_1} \cdot (x - x_1)$$

Interpolation – Example

Goal Weights λ_k : Tradeoff Method

- Normalized utility functions already found
- Rank goals so that the transition from x_1^0 to x_1^1 is most important
- For all other goals k = 2, ..., K:
 - What manifestation \overline{x}_k must goal 1 have for the combination (\overline{x}_k, x_k^0) to be as valuable as (x_1^0, x_k^1)
 - In this case:

$$\lambda_1 u_1(\overline{x}_k) + \lambda_k u_k(x_k^0) = \lambda_1 u_1(x_1^0) + \lambda_k u_k(x_k^1)$$

So:

$$\lambda_1 u_1(\overline{x}_k) + \lambda_k \cdot 0 = \lambda_1 \cdot 0 + \lambda_k \cdot 1$$

Thus:

$$\lambda_k = u_1(\overline{X}_k)\lambda_1$$

Goal Weights λ_k : Tradeoff Method

• Solve the $K \times K$ system of equations

$$\lambda_k = u_1(\overline{x}_k)\lambda_1 \qquad \forall k = 2, \dots, K$$

$$\sum_{k \in [K]} \lambda_k = 1$$

FAU M. Hartisch Decision Theory May 13, 2024 53/59

Example

- Air temperature: $x_1^0 = 15$, $x_1^1 = 27$
- Water temperature: $x_2^0 = 13$, $x_2^1 = 27$
- Decision-maker finds the transition from 15 to 27 degrees Celsius in air temperature more important than from 13 to 27 degrees Celsius in water temperature
- Correct order already established
- Question: How warm must \overline{x}_2 be for the following alternatives to be equally good:
 - \circ Air \overline{x}_2 , Water 13 degrees
 - Air 15, Water 27 degrees
- Answer: 21 degrees

Example

- $\overline{X}_2 = 21$
- From utility functions, $u_1(\overline{x}_2) = 0.75$
- Thus, the system of equations:

$$\lambda_2 = 0.75\lambda_1$$
$$\lambda_1 + \lambda_2 = 1$$

• Solution: $\lambda_1 = 4/7, \ \lambda_2 = 3/7$

Example: MAUT Process

	Water Temp.		Air Temp.		Overall Utility
	°C ∣	Utility	°C	Utility	
a ₁	13.0	0.00	27.0	1.00	0.43
a_2	16.5	0.60	26.0	0.96	0.75
a_3	20.0	0.90	20.0	0.67	0.80
a_4	23.5	0.95	18.0	0.50	0.76
a 5	27.0	1.00	15.0	0.00	0.57
Importance	0	.57	0.	.43	

FAU M. Hartisch Decision Theory May 13, 2024 56/59

Bandwidth Effect

We want to buy a child car seat:

	Safety		Cost	
	Points	Utility	Euro	Utility
a_1	100	1.0	1200	0.5
a_2	90	0.9	800	1.0
a_3	0	0.0	1600	0.0

FAU M. Hartisch Decision Theory May 13, 2024 57/59

Bandwidth Effect

We want to buy a child car seat:

	Safety		Cost	
	Points	Utility	Euro	Utility
a_1	100	1.0	1200	0.5
a_2	90	0.9	800	1.0
a_3	0	0.0	1600	0.0

- Alternative *a*₃ is uninteresting
- Can we simply remove it?

Bandwidth Effect

We want to buy a child car seat:

	Safety		Cost	
	Points	Utility	Euro	Utility
a_1	100	1.0	1200	0.5
a_2	90	0.9	800	1.0

- Alternative *a*₃ is uninteresting
- Can we simply remove it?

Bandwidth Effect

We want to buy a child car seat:

	Safety		Cost	
	Points	Utility	Euro	Utility
a_1	100	1.0	1200	0.5
a_2	90	0.9	800	1.0

- Alternative *a*₃ is uninteresting
- Can we simply remove it?
- Must adjust utility function!

Bandwidth Effect

- When an additional alternative is added (or removed), causing the utility bandwidth to change, we must:
 - Determine new utility functions
 - Determine new goal weights
- When a new goal is added, we must:
 - Determine new goal weights

FAU M. Hartisch Decision Theory May 13, 2024 58/59

Quiz

Question 1

Is there a precisely fitting weight vector *w*?

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 3/2 \\ 1/2 & 2/3 & 1 \end{pmatrix}$$

Question 2

You are looking for a place to live and consider the time it takes to commute. The following alternatives are available:

	Time (<i>h</i>)
a_1	1/4
a_2	1/3
a_3	1
a_4	2

Determine a utility function using the bisection method.

Quiz

Question 1

Is there a precisely fitting weight vector *w*?

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 3/2 \\ 1/2 & 2/3 & 1 \end{pmatrix}$$

Question 2

You are looking for a place to live and consider the time it takes to commute. The following alternatives are available:

	Time (<i>h</i>)
a_1	1/4
a_2	1/3
a_3	1
a_4	2

Determine a utility function using the bisection method.

No.