Introduction to Al

Lecture 3:

Traditional Classification-

Syllabus

Week	Date	Contents
1	9/2	Lecture 1: Class Overview and Unsupervised Learning (HW#1)
2	9/9	Lecture 2: Traditional Classification-Part 1
3	9/16	Lecture 3: Traditional Classification-Part 2
4	9/23	Lecture 4: Neural Networks Basics (HW#2)
5	9/30	Hands-on Tutorials on PyTorch
6	10/7	Lecture 5: Deep Learning in Practice
7	10/14	Lecture 6: Introduction to Natural Language Processing
8	10/21	Midterm

Classification

Classification – Basic Concepts

Decision Tree Induction

Bayes Classification Methods

Rule-Based Classification

Techniques to Improve Classification Accuracy: Ensemble Methods

Lazy Learner

Support Vector Machine

Evaluations

Lazy vs. Eager Learning

- Lazy vs. eager learning
 - Lazy learning (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple
 - Eager learning (the above discussed methods): Given a set of training tuples, constructs a classification model before receiving new (e.g., test) data to classify
- Lazy: less time in training but more time in predicting
- Accuracy
 - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form an implicit global approximation to the target function
 - Eager: must commit to a single hypothesis that covers the entire instance space

The k-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space
- The nearest neighbor are defined in terms of Euclidean distance, dist(X₁, X₂)
- Target function could be discrete- or real- valued
- For discrete-valued, k-NN returns the most common value among the k training examples nearest to x_q
- Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples

Lazy learning example?

Discussion on the k-NN Algorithm

- k-NN for real-valued prediction for a given unknown tuple
 - Returns the mean values of the k nearest neighbors
- Distance-weighted nearest neighbor algorithm
 - Weight the contribution of each of the *k* neighbors according to their distance to the query x_q $w = \frac{1}{d(x_q, x_i)^2}$
 - Give greater weight to closer neighbors
- Robust to noisy data by averaging *k*-nearest neighbors
- Curse of dimensionality: distance between neighbors could be dominated by irrelevant attributes
 - To overcome it, axes stretch or elimination of the least relevant attributes

Classification

Classification – Basic Concepts

Decision Tree Induction

Bayes Classification Methods

Rule-Based Classification

Techniques to Improve Classification Accuracy: Ensemble Methods

Lazy Learner

Support Vector Machine

Evaluations

Today: Support Vector Machine (SVM)

- A classifier derived from statistical learning theory by Vapnik, et al. in 1992
- SVM became famous when, using images as input, it gave accuracy comparable to neural-network with hand-designed features in a handwriting recognition task
- Currently, SVM is widely used in object detection & recognition, content-based image retrieval, text recognition, biometrics, speech recognition, etc.
- Also used for regression (will not cover today)
- Chapter 5.1, 5.2, 5.3, 5.11 (5.4*) in textbook

V. Vapnik

Outline

- Linear Discriminant Function
- Large Margin Linear Classifier
- Nonlinear SVM: The Kernel Trick
- Demo of SVM

Discriminant Function

• Chapter 2.4: the classifier is said to assign a feature vector x to class w_i if

$$g_i(\mathbf{x}) > g_j(\mathbf{x})$$
 for all $j \neq i$

For two-category case, $g(\mathbf{x}) \equiv g_1(\mathbf{x}) - g_2(\mathbf{x})$

Decide ω_1 if $g(\mathbf{x}) > 0$; otherwise decide ω_2

- An example we've learned before:
 - Minimum-Error-Rate Classifier

$$g(\mathbf{x}) \equiv p(\omega_1 \mid \mathbf{x}) - p(\omega_2 \mid \mathbf{x})$$

Discriminant Function

It can be arbitrary functions of x, such as:

Nearest Neighbor

Decision Tree

Linear Functions

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

Nonlinear Functions

= g(x) is a linear function:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$$

- A hyper-plane in the feature space
- (Unit-length) normal vector of the hyper-plane:

$$\mathbf{n} = \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

denotes +1

○ denotes -1

How would you classify these points using a linear discriminant function in order to minimize the error rate?

Infinite number of answers!

denotes +1

 X_1

denotes +1

○ denotes -1

How would you classify these points using a linear discriminant function in order to minimize the error rate?

 X_2

Infinite number of answers!

denotes +1

○ denotes -1

How would you classify these points using a linear discriminant function in order to minimize the error rate?

 X_2

Infinite number of answers!

Which one is the best?

- The linear discriminant function (classifier) with the maximum margin is the best
- Margin is defined as the width that the boundary could be increased by before hitting a data point
- Why it is the best?
 - Robust to outliners and thus strong generalization ability

- denotes +1
- odenotes -1

Given a set of data points:

$$\{(\mathbf{x}_{i}, y_{i})\}, i = 1, 2, L, n, \text{ where }$$

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b > 0$

For
$$y_i = -1$$
, $\mathbf{w}^T \mathbf{x}_i + b < 0$

 With a scale transformation on both w and b, the above is equivalent to

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b \ge 1$

For
$$y_i = -1$$
, $\mathbf{w}^T \mathbf{x}_i + b \le -1$

We know that

$$\mathbf{w}^T \mathbf{x}^+ + b = 1$$
$$\mathbf{w}^T \mathbf{x}^- + b = -1$$

The margin width is:

$$M = (\mathbf{x}^+ - \mathbf{x}^-) \cdot \mathbf{n}$$
$$= (\mathbf{x}^+ - \mathbf{x}^-) \cdot \frac{\mathbf{w}}{\|\mathbf{w}\|} = \frac{2}{\|\mathbf{w}\|}$$

Formulation:

maximize
$$\frac{2}{\|\mathbf{w}\|}$$

such that

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b \ge 1$
For $y_i = -1$, $\mathbf{w}^T \mathbf{x}_i + b \le -1$

Formulation:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

such that

For
$$y_i = +1$$
, $\mathbf{w}^T \mathbf{x}_i + b \ge 1$
For $y_i = -1$, $\mathbf{w}^T \mathbf{x}_i + b \le -1$

Formulation:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

such that

$$y_i(\mathbf{w}^T\mathbf{x}_i+b) \ge 1$$

Quadratic programming with linear constraints

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

s.t.
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$

Lagrangian Function

minimize
$$L_p(\mathbf{w}, b, \alpha_i) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t.
$$\alpha_i \ge 0$$

minimize
$$L_p(\mathbf{w}, b, \alpha_i) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t. $\alpha_i \ge 0$

$$\frac{\partial L_p}{\partial \mathbf{w}} = 0 \qquad \mathbf{w} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i$$

$$\frac{\partial L_p}{\partial b} = 0 \qquad \sum_{i=1}^n \alpha_i y_i = 0$$

minimize
$$L_p(\mathbf{w}, b, \alpha_i) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t.
$$\alpha_i \geq 0$$

Lagrangian Dual Problem

maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

s.t.
$$\alpha_i \ge 0$$
 , and $\sum_{i=1}^n \alpha_i y_i = 0$

Next, substitute $\mathbf{w} = \sum_{i=1}^n lpha_i y_i \mathbf{x}_i$ into the Lagrangian:

The term $\frac{1}{2} \|\mathbf{w}\|^2$ becomes:

$$rac{1}{2}\|\mathbf{w}\|^2 = rac{1}{2}\left(\sum_{i=1}^n lpha_i y_i \mathbf{x}_i
ight)^T \left(\sum_{j=1}^n lpha_j y_j \mathbf{x}_j
ight) = rac{1}{2}\sum_{i=1}^n \sum_{j=1}^n lpha_i lpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

The remaining terms simplify as follows:

$$-\sum_{i=1}^n lpha_i \left[y_i(\mathbf{w}^T\mathbf{x}_i + b) - (1 \quad 1 \quad)
ight] = \sum_{i=1}^n lpha_i$$

because $y_i(\mathbf{w}^T\mathbf{x}_i+b)=1$ for support vectors.

1. 原問題與拉格朗日

$$\min_{\mathbf{w},b} \ frac{1}{2} \|\mathbf{w}\|^2 \quad ext{s.t.} \quad y_i(\mathbf{w}^ op \mathbf{x}_i + b) \geq 1, \ i = 1,\dots,n$$

對每個不等式配 $\alpha_i \geq 0$:

$$\mathcal{L}(\mathbf{w},b,oldsymbol{lpha}) = rac{1}{2}\|\mathbf{w}\|^2 + \sum_{i=1}^n lpha_iig(1-y_i(\mathbf{w}^ op\mathbf{x}_i+b)ig).$$

把項目展開、整理係數:

$$\mathcal{L} = rac{1}{2}\mathbf{w}^ op \mathbf{w} - \Big(\sum_{i=1}^n lpha_i y_i \mathbf{x}_i\Big)^ op \mathbf{w} - b\sum_{i=1}^n lpha_i y_i + \sum_{i=1}^n lpha_i.$$

$$\diamondsuit$$
 $\mathbf{v} = \sum_{i=1}^n lpha_i y_i \mathbf{x}_i$ ॰

則

$$\mathcal{L} = rac{1}{2} \mathbf{w}^ op \mathbf{w} - \mathbf{v}^ op \mathbf{w} - b \sum_{i=1}^n lpha_i y_i + \sum_{i=1}^n lpha_i.$$

2. 對 w 與 b 取極小

一階條件:

$$rac{\partial \mathcal{L}}{\partial \mathbf{w}} = \mathbf{w} - \mathbf{v} = \mathbf{0} \; \Rightarrow \; \mathbf{w}^\star = \mathbf{v} = \sum_{i=1}^n lpha_i y_i \mathbf{x}_i,$$

$$rac{\partial \mathcal{L}}{\partial b} = -\sum_{i=1}^n lpha_i y_i = 0 \ \Rightarrow \ \sum_{i=1}^n lpha_i y_i = 0.$$

對 w 的最小值可以用「完全平方」看出來:

$$\frac{1}{2}\mathbf{w}^{\top}\mathbf{w} - \mathbf{v}^{\top}\mathbf{w} = \frac{1}{2}\|\mathbf{w} - \mathbf{v}\|^2 - \frac{1}{2}\|\mathbf{v}\|^2.$$

極小發生在 $\mathbf{w} = \mathbf{v}$,其值為 $-\frac{1}{2} ||\mathbf{v}||^2$ 。

3. 代回得到對偶函數 $g(oldsymbol{lpha})$

把 \mathbf{w}^{\star} 與條件 $\sum_{i} lpha_{i} y_{i} = 0$ 代回 \mathcal{L} :

$$egin{align} g(oldsymbol{lpha}) &= \inf_{\mathbf{w},b} \mathcal{L} = \left(-rac{1}{2}\|\mathbf{v}\|^2
ight) - b \sum_{i=1}^n lpha_i y_i + \sum_{i=1}^n lpha_i \ &= \sum_{i=1}^n lpha_i - rac{1}{2}\|\mathbf{v}\|^2. \end{align}$$

把 $\|\mathbf{v}\|^2$ 展開成雙和:

$$\|\mathbf{v}\|^2 = \Big\|\sum_{i=1}^n lpha_i y_i \mathbf{x}_i \Big\|^2 = \sum_{i=1}^n \sum_{j=1}^n lpha_i lpha_j y_i y_j \ \mathbf{x}_i^ op \mathbf{x}_j.$$

因此

$$g(oldsymbol{lpha}) = \sum_{i=1}^n lpha_i - rac{1}{2} \sum_{i=1}^n \sum_{j=1}^n lpha_i lpha_j y_i y_j \, \mathbf{x}_i^ op \mathbf{x}_j^ op$$

[Supplements]

1. Primal 問題的形式

以 hard-margin SVM 為例,原始問題是:

$$\min_{w,b} \; rac{1}{2} \|w\|^2 \quad ext{s.t.} \quad y_i(w^T x_i + b) \geq 1, \; orall i$$

這是一個 帶有不等式約束的凸優化問題。

2. Lagrangian 函數

我們引入 Lagrange 乘子 $\alpha_i \geq 0$,得到拉格朗日函數:

$$L(w,b,lpha) = rac{1}{2} \|w\|^2 - \sum_i lpha_i ig(y_i(w^Tx_i+b)-1ig)$$

這是一個 **同時含有** primal **變數** (w, b) 與 dual **變數** (lpha) 的函數。

3. min-max 結構的由來

- 原始問題是 最小化 $\frac{1}{2}||w||^2$,同時要滿足 constraint。
- 在 Lagrangian 表達式裡,為了確保 constraint 成立,需要對 α 做一個 **最大化**(因為 $\alpha \geq 0$ 會懲罰違反 constraint 的情況)。

因此整體問題就變成:

$$\min_{w,b} \max_{lpha \geq 0} L(w,b,lpha)$$

4. 為什麼會寫成 max-min?

這跟 弱對偶性 (weak duality) 與 凸性條件 (Slater's condition) 有關:

• 一般定義 dual problem 時,會把次序反過來寫成

$$\max_{lpha \geq 0} \min_{w,b} L(w,b,lpha)$$

- 這是因為對於 **凸優化問題**,在滿足 Slater's condition 的情況下,min-max 與 max-min 會相等(即 **強對** 偶性 strong duality 成立)。
- 所以圖中寫的

$$\max_{lpha \geq 0} \min_{w,b} L(w,b,lpha)$$

就是 SVM 的 對偶問題。

Advantages of using the dual form

(a) 把限制處理掉

- 原始 primal 問題有很多 inequality constraints,直接求解很麻煩。
- Dual problem 只剩下 $lpha_i \geq 0$ 的簡單條件。

(b) 維度更低

- Primal 裡的變數是 (w,b),維度跟特徵數 d 有關。
- Dual 裡的變數是 $lpha_i$,維度跟樣本數 n 有關。
 - 當特徵維度 d 很大(甚至無窮大,kernel trick 情況),<math>dual 問題反而更好算。

(c) Kernel trick

- 在 dual problem 裡,w 只出現於 $\langle x_i, x_j
 angle$,因此可以用 kernel function 替代內積。
- 這就是為什麼 SVM 可以用 kernel 把資料映射到高維空間,卻不用真的算高維向量。

(d) 支持向量出現

- Dual 的解只有少數 $lpha_i>0$,這些對應到的點就是 support vectors。
- 訓練後模型只需要記住這些支持向量,而不是全部資料。

From KKT condition, we know:

$$\alpha_i \left(y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 \right) = 0$$

- Thus, only support vectors have $\alpha_i \neq 0$
- The solution has the form:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = \sum_{i \in SV} \alpha_i y_i \mathbf{x}_i$$

get *b* from $y_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 = 0$, where \mathbf{x}_i is support vector

Solving the Optimization Problem

The linear discriminant function is:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \sum_{i \in SV} \alpha_i \mathbf{x}_i^T \mathbf{x} + b$$

Notice it relies on a dot product between the test point x and the support vectors x_i

 Also keep in mind that solving the optimization problem involved computing the dot products x_i^Tx_j between all pairs of training points

Large Margin Linear Classifier

 What if data is not linear separable? (noisy data, outliers, etc.)

 Slack variables ξ_i can be added to allow misclassification of difficult or noisy data points

denotes +1

Large Margin Linear Classifier

Formulation:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$

such that

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i$$
$$\xi_i \ge 0$$

Parameter C can be viewed as a way to control over-fitting.

Large Margin Linear Classifier

Formulation: (Lagrangian Dual Problem)

maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

such that

$$0 \le \alpha_i \le C$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

Non-linear SVMs

Datasets that are linearly separable with noise work out great:

But what are we going to do if the dataset is just too hard?

How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature Space

General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:

Nonlinear SVMs: The Kernel Trick

With this mapping, our discriminant function is now:

$$g(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_{i \in SV} \alpha_i \phi(\mathbf{x}_i)^T \phi(\mathbf{x}) + b$$

- No need to know this mapping explicitly, because we only use the dot product of feature vectors in both the training and test.
- A kernel function is defined as a function that corresponds to a dot product of two feature vectors in some expanded feature space:

$$K(\mathbf{x}_i, \mathbf{x}_j) \equiv \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$$

Nonlinear SVMs: The Kernel Trick

An example:

2-dimensional vectors $\mathbf{x}=[x_1 \ x_2]$;

let
$$K(x_i,x_j)=(1+x_i^Tx_j)^2$$
,

Need to show that $K(x_i,x_i) = \varphi(x_i)^T \varphi(x_i)$:

$$\begin{split} \textit{K}(\mathbf{x_i}, \mathbf{x_j}) &= (1 + \mathbf{x_i}^{\mathrm{T}} \mathbf{x_j})^2, \\ &= 1 + x_{il}^2 x_{jl}^2 + 2 \; x_{il} x_{jl} \; x_{i2} x_{j2} + x_{i2}^2 x_{j2}^2 + 2 x_{il} x_{jl} + 2 x_{i2} x_{j2} \\ &= [1 \; \; x_{il}^2 \; \sqrt{2} \; x_{il} x_{i2} \; \; x_{i2}^2 \; \sqrt{2} x_{il} \; \sqrt{2} x_{i2}]^{\mathrm{T}} \; [1 \; \; x_{jl}^2 \; \sqrt{2} \; x_{jl} x_{j2} \; \; x_{j2}^2 \; \sqrt{2} x_{jl} \; \sqrt{2} x_{j2}] \\ &= \varphi(\mathbf{x_i})^{\mathrm{T}} \varphi(\mathbf{x_i}), \quad \text{where } \varphi(\mathbf{x}) = [1 \; \; x_{l}^2 \; \sqrt{2} \; x_{l} x_{2} \; \; x_{2}^2 \; \sqrt{2} x_{l} \; \sqrt{2} x_{2}] \end{split}$$

Nonlinear SVMs: The Kernel Trick

- Examples of commonly-used kernel functions:
 - □ Linear kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$
 - □ Polynomial kernel: $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i^T \mathbf{x}_j)^p$
 - Gaussian (Radial-Basis Function (RBF)) kernel:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|^2}{2\sigma^2})$$

Sigmoid:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(\beta_0 \mathbf{x}_i^T \mathbf{x}_j + \beta_1)$$

In general, functions that satisfy Mercer's condition can be kernel functions.

Nonlinear SVM: Optimization

Formulation: (Lagrangian Dual Problem)

maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$
 such that
$$0 \le \alpha_i \le C$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0$$

The solution of the discriminant function is

$$g(\mathbf{x}) = \sum_{i \in SV} \alpha_i K(\mathbf{x}_i, \mathbf{x}) + b$$

The optimization technique is the same.

Support Vector Machine: Algorithm

- 1. Choose a kernel function
- 2. Choose a value for C
- 3. Solve the quadratic programming problem (many software packages available)
- 4. Construct the discriminant function from the support vectors

Some Issues

Choice of kernel

- Gaussian or polynomial kernel is default
- if ineffective, more elaborate kernels are needed
- domain experts can give assistance in formulating appropriate similarity measures

Choice of kernel parameters

- e.g. σ in Gaussian kernel
- σ is the distance between closest points with different classifications
- In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters.
- Optimization criterion Hard margin v.s. Soft margin
 - a lengthy series of experiments in which various parameters are tested

Summary: Support Vector Machine

- 1. Large Margin Classifier
 - Better generalization ability & less over-fitting

- 2. The Kernel Trick
 - Map data points to higher dimensional space in order to make them linearly separable.
 - Since only dot product is used, we do not need to represent the mapping explicitly.

Additional Resource

http://www.kernel-machines.org/

Classification

Classification – Basic Concepts

Decision Tree Induction

Bayes Classification Methods

Rule-Based Classification

Techniques to Improve Classification Accuracy: Ensemble Methods

Lazy Learner

Support Vector Machine

Evaluations

Model Evaluation and Selection

- Evaluation metrics: How can we measure accuracy? Other metrics to consider?
- Use validation test set of class-labeled tuples instead of training set when assessing accuracy
- Methods for estimating a classifier's accuracy:
 - Holdout method, random subsampling
 - Cross-validation
 - Bootstrap
- Comparing classifiers:
 - Cost-benefit analysis and ROC Curves

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Actual class\Predicted class	C ₁	¬ C ₁	
C ₁	True Positives (TP)	False Negatives (FN)	
¬ C ₁	False Positives (FP)	True Negatives (TN)	

Example of Confusion Matrix:

Actual class\Predicted class	buy_computer	buy_computer =	Total
	= yes	no	
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

- Given m classes, an entry, $CM_{i,j}$ in a confusion matrix indicates # of tuples in class i that were labeled by the classifier as class j
- May have extra rows/columns to provide totals

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

A\P	С	¬C	
С	TP	FN	Р
¬C	FP	TN	N
	P'	N'	All

 Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified
 Accuracy = (TP + TN)/All

• Error rate: 1 - accuracy, or Error rate = (FP + FN)/All

Class Imbalance Problem:

- One class may be rare, e.g. fraud, or HIV-positive
- Significant majority of the negative class and minority of the positive class
- Sensitivity: True Positive recognition rate
 - Sensitivity = TP/P
- Specificity: True Negative recognition rate
 - Specificity = TN/N

Classifier Evaluation Metrics: Precision and Recall, and F-measures

- Precision: exactness what % of tuples that the classifier labeled as positive are actually positive
 - Does not care how many positive instances are mislabeled as negative, i.e., FN
- **Recall:** completeness what % of positive tuples did the $recall = \frac{TP}{TP + FN} = \frac{TP}{P}$ classifier label as positive?
 - But did not tell how many negative instances are mislabeled as positive, i.e., FP
- Perfect score is 1.0
- Inverse relationship between precision & recall
- F measure (F_1 or F-score): harmonic mean of precision and recall,

$$F = \frac{2 \times precision \times recall}{precision + recall}$$

- F_{β} : weighted measure of precision and recall
 - assigns ß times as much weight to recall as to precision $F_{\beta} = \frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$

$$F_{\beta} = \frac{(1+\beta^2) \times precision \times recal}{\beta^2 \times precision + recall}$$

Classifier Evaluation Metrics: Example

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity)
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.50 (<i>accuracy</i>)

$$Recall = 90/300 = 30.00\%$$

Measure	Formula
accuracy, recognition rate	$\frac{TP+TN}{P+N}$
error rate, misclassification rate	$\frac{FP+FN}{P+N}$
sensitivity, true positive rate, recall	$\frac{TP}{P}$
specificity, true negative rate	$\frac{TN}{N}$
precision	$\frac{TP}{TP + FP}$
F, F ₁ , F -score, harmonic mean of precision and recall	$\frac{2 \times precision \times recall}{precision + recall}$
F_{β} , where β is a non-negative real number	$\frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$

Evaluating Classifier Accuracy: Holdout & Cross-Validation Methods

Holdout method

- Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
- Random sampling: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained

Cross-validation (k-fold, where k = 10 is most popular)

- Randomly partition the data into *k mutually exclusive* subsets, each approximately equal size
- At *i*-th iteration, use D_i as test set and others as training set
- Leave-one-out: k folds where k = # of tuples, for small sized data
- *Stratified cross-validation*: folds are stratified so that class dist. in each fold is approx. the same as that in the initial data

Calculate Average Performance

64

Evaluating Classifier Accuracy: Bootstrap

Bootstrap

- Works well with small data sets
- Samples the given training tuples uniformly with replacement
 - i.e., each time a tuple is selected, it is equally likely to be selected again and readded to the training set
- Several bootstrap methods, and a common one is .632 boostrap
 - A data set with d tuples is sampled d times, with replacement, resulting in a training set of d samples. The data tuples that did not make it into the training set end up forming the test set. About 63.2% of the original data end up in the bootstrap, and the remaining 36.8% form the test set (since $(1-1/d)^d \approx e^{-1} = 0.368$) Out-OF-BAG (OOB)
 - Repeat the sampling procedure *k* times, overall accuracy of the model:

$$Acc(M) = \frac{1}{k} \sum_{i=1}^{k} (0.632 \times Acc(M_i)_{test_set} + 0.368 \times Acc(M_i)_{train_set})$$

Model Selection: ROC Curves

- ROC (Receiver Operating Characteristics) curves: for visual comparison of classification models
- Shows the trade-off between the true positive rate and the false positive rate
- The area under the ROC curve is a measure of the accuracy of the model
- Rank the test tuples in decreasing order: the one that is most likely to belong to the positive class appears at the top of the list
- The closer to the diagonal line (i.e., the closer the area is to 0.5), the less accurate is the model

- Vertical axis represents the true positive rate
- Horizontal axis rep.
 the false positive rate
- The plot also shows a diagonal line
- A model with perfect accuracy will have an area of 1.0

ROC curves

Tuple #	Class	Prob.	TP	FP	TN	FN	TPR	FPR
1	P	0.90	1	0	5	4	0.2	0
2	P	0.80	2	0	5	3	0.4	0
3	N	0.70	2	1	4	3	0.4	0.2
4	\boldsymbol{P}	0.60	3	1	4	2	0.6	0.2
5	\boldsymbol{P}	0.55	4	1	4	1	0.8	0.2
6	N	0.54	4	2	3	1	0.8	0.4
7	N	0.53	4	3	2	1	0.8	0.6
8	N	0.51	4	4	1	1	0.8	0.8
9	\boldsymbol{P}	0.50	5	4	1	0	1.0	0.8
10	N	0.40	5	5	0	0	1.0	1.0

Classification

- Classification Basic Concepts
- Decision Tree Induction
- Bayes Classification Methods
- Rule-Based Classification
- Techniques to Improve Classification Accuracy: Ensemble Methods
- Lazy Learner
- Support Vector Machine
- Summary

Issues Affecting Model Selection

Accuracy

classifier accuracy: predicting class label

Speed

- time to construct the model (training time)
- time to use the model (classification/prediction time)
- Robustness: handling noise and missing values
- Scalability: efficiency in disk-resident databases
- Interpretability
 - understanding and insight provided by the model
- Other measures, e.g., goodness of rules, such as decision tree size or compactness of classification rules

References (1)

- C. Apte and S. Weiss. **Data mining with decision trees and decision rules**. Future Generation Computer Systems, 13, 1997
- C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University Press, 1995
- L. Breiman, J. Friedman, R. Olshen, and C. Stone. **Classification and Regression Trees**. Wadsworth International Group, 1984
- C. J. C. Burges. **A Tutorial on Support Vector Machines for Pattern Recognition**. *Data Mining and Knowledge Discovery*, 2(2): 121-168, 1998
- P. K. Chan and S. J. Stolfo. Learning arbiter and combiner trees from partitioned data for scaling machine learning. KDD'95
- H. Cheng, X. Yan, J. Han, and C.-W. Hsu, <u>Discriminative Frequent Pattern Analysis for</u> <u>Effective Classification</u>, ICDE'07
- H. Cheng, X. Yan, J. Han, and P. S. Yu, <u>Direct Discriminative Pattern Mining for Effective Classification</u>, ICDE'08
- W. Cohen. **Fast effective rule induction**. ICML'95
- G. Cong, K.-L. Tan, A. K. H. Tung, and X. Xu. **Mining top-k covering rule groups for gene expression data**. SIGMOD'05

Agenda

- Philosophy
- Machine Learning Concept
- Clustering
- Classification
- Reflection

REFLECTION

THREE LAWS OF ROBOTICS (ASIMOV'S LAWS)

- A robot may not injure a human being or, through inaction, allow a human being to come to harm.
- A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
- A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws.

Join at slido.com #2829580

Please download and install the Slido app on all computers you use

Join at slido.com #2829580

(i) Start presenting to display the joining instructions on this slide.

WHAT IF...

Please download and install the Slido app on all computers you use

A or B?

WHAT IF...

Please download and install the Slido app on all computers you use

A or B?

假如你什麼都不做,電車會壓死你。 假如你扳下拉桿,電車會壓死五個人。 你沒有時間逃離軌道。

Please download and install the Slido app on all computers you use

A or B?

1M USDS!

鐵軌上放著一張百元美金鈔票。 假如你什麼都不做,電車會輾爛鈔票然後撞死五個人。 假如你拉下拉桿,電車會繞過鈔票,然後撞死五個人, 然後你可以把鈔票撿走。

假如你拉下了拉桿,你的舉動該受到譴責嗎? 還是説這是完全合理的作法?

Please download and install the Slido app on all computers you use

A or B

賭徒電車難題

假如你什麼都不做,電車會撞死一個人。

假如你拉下拉桿, 電車會隨機改變軌道, 有3/4的機率開上空軌, 但是有1/4的機率 撞死五個人。

你會拉下拉桿嗎?

Please download and install the Slido app on all computers you use

Choice?

何者較人道:讓五個人在死前看見一個人死在眼前, 或是讓一個人在死前看見五個人死在眼前?

假如你什麼都不做,電車會撞死數不清的人。 假如你拉下拉桿,所有人都會得救。 但是拉桿距離你的沙發有五公尺遠, 而且這張沙發舒服到夭壽。

MORAL MACHINE

http://moralmachine.mit.edu/hl/zh

https://kahoot.it/

1st-3rd: 1 pt 4th and 5th: 0.5 pts

