

个性化教育新标杆

教师姓名	沈炜炜	学生姓名		首课时间		本课时间	
学习科目	数学	上课年级	高一	教材版本		人教 A 版	
课题名称	三角恒等变换练习						
重点难点	三角恒等变换的应用						

知识点总结

两角的和与差

- $C_{\alpha \pm \beta}$: $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
- $S_{\alpha \pm \beta}$: $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$
- $T_{\alpha \pm \beta}$: $\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$

二倍角公式

- $S_{2\alpha}$: $\sin 2\alpha = 2 \sin \alpha \cos \alpha$
- $C_{2\alpha}$: $\cos 2\alpha = \cos^2 \alpha \sin^2 \alpha = 2\cos^2 \alpha 1 = 1 2\sin^2 \alpha$
- $T_{2\alpha}$: $\tan 2\alpha = \frac{2 \tan \alpha}{1 \tan^2 \alpha}$

半角公式

- $\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 \cos \alpha}{2}}$
- $\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$
- $\tan \frac{\alpha}{2} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 \cos \alpha}{\sin \alpha}$

万能公式

- $\sin \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$
- $\cos \alpha = \frac{1 \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$
- $\tan \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 \tan^2 \frac{\alpha}{2}}$

辅助角公式

- $a \sin x + b \cos x = \sqrt{a^2 + b^2} \sin(x + \varphi)$ 其中 $\sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$, $\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}$ a > 0 时,
- $a \sin x + b \cos x = \sqrt{a^2 + b^2} \sin(x + \varphi)$ 其中 $\tan \varphi = \frac{b}{a}, \ \varphi \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

性化教育新标杆

习题

- A. $-\frac{2\sqrt{3}}{5}$
- B. $\frac{2\sqrt{3}}{5}$

- A. $3\alpha \beta = \frac{\pi}{2}$ B. $3\alpha + \beta = \frac{\pi}{2}$ C. $2\alpha \beta = \frac{\pi}{2}$ D. $2\alpha + \beta = \frac{\pi}{2}$
- **2.3** (2013•浙江) 已知 $\alpha \in \mathbb{R}$, $\sin \alpha + 2\cos \alpha = \frac{\sqrt{10}}{2}$, 则 $\tan 2\alpha = \dots$ (

- **2.4** (2011 福建) 若 $\tan \alpha = 3$,则 $\frac{\sin 2\alpha}{\cos^2 \alpha}$ 的值等于......()

- **2.5** 化筒: $\sin\left(3x + \frac{\pi}{2}\right)\cos\left(x \frac{\pi}{6}\right) + \cos\left(3x + \frac{\pi}{2}\right)\cos\left(x + \frac{\pi}{2}\right) =$ _______.
- **2.6** (2013•全国新课标)设当 $x = \theta$ 时,函数 $f(x) = \sin x 2\cos x$ 取得最大值,则 $\cos \theta = _$
- **2.7** 函数 $y = \sin\left(\frac{\pi}{2} + x\right)\cos\left(\frac{\pi}{6} x\right)$ 的最大值为______.
- **2.8** 已知 $\cos(x + 2\theta) + 2\sin\theta\sin(x + \theta) = \frac{1}{3}$,则 $\cos 2x$ 的值为 ______.
- **2.9** (2017•江苏) 若 $\tan \left(\alpha \frac{\pi}{4}\right) = \frac{1}{6}$, 则 $\tan \alpha =$ ______.
- **2.10** 已知 $\sin 2\alpha 2 = 2\cos 2\alpha$,则 $\sin^2 \alpha + \sin 2\alpha =$
- **2.11** (2016•上海) 方程 $3 \sin x = 1 + \cos 2x$ 在区间 $[0, 2\pi]$ 上的解为
- **2.12** (2014•广东) 已知函数 $f(x) = A \sin\left(x + \frac{\pi}{4}\right), x \in \mathbb{R}, 且 f\left(\frac{5\pi}{12}\right) = \frac{3}{2}$
 - (I) 求 A 的值;
 - (II) $\stackrel{\text{def}}{=} f(\theta) + f(-\theta) = \frac{3}{2}, \quad \theta \in \left(0, \frac{\pi}{2}\right), \quad \vec{x} f\left(\frac{3\pi}{4} \theta\right).$

个性化教育新标杆

2.13 (2010•上海) 已知 $0 < x < \frac{\pi}{2}$,化简:

$$\lg(\cos x \tan x + 1 - 2\sin^2\frac{x}{2}) + \lg\left[\sqrt{2}\cos\left(x - \frac{\pi}{4}\right)\right] - \lg(1 + \sin 2x).$$

- **2.14** (2016 天津) 已知函数 $f(x) = 4 \tan x \sin(\frac{\pi}{2} x) \cos(x \frac{\pi}{3}) \sqrt{3}$.
 - (I) 求 f(x) 的定义域与最小正周期;
 - (II) 讨论 f(x) 在区间 $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ 上的单调性.

- **2.15** (2012•广东) 已知函数 $f(x) = 2\cos(\omega x + \frac{\pi}{6})$ (其中 $\omega > 0$, $x \in \mathbb{R}$) 的最小正周期为 10π .
 - (I) 求 ω 的值
 - (II) 设 $\alpha, \beta \in \left[0, \frac{\pi}{2}\right], \ f\left(5\alpha + \frac{5\pi}{3}\right) = -\frac{6}{5}, \ f\left(5\beta \frac{5\pi}{6}\right) = \frac{16}{17}, \ 求 \cos\left(\alpha + \beta\right)$ 的值.

个性化教育新标杆

二、参考答案

2.1 C

2.2 C

2.3 C

2.4 D

2.5 $\cos 2x$

2.6 $-\frac{2\sqrt{5}}{5}$

2.7 $\frac{2+\sqrt{3}}{4}$ 2.8 $-\frac{7}{9}$

2.9 $\frac{7}{5}$

2.10 1 或 $\frac{8}{5}$

2.11 $\frac{\pi}{6}$, $\frac{5\pi}{6}$

2.12 (I) $A = \sqrt{3}$; (II) $f(\frac{3\pi}{4} - \theta) = \frac{\sqrt{30}}{4}$

2.13 0

2.14 (I) $f(x) = 2\sin(2x - \frac{\pi}{3})$, 定义域: $\{x \mid x \neq x \}$ $\frac{\pi}{2} + k\pi, k \in \mathbb{Z}$; 最小正周期: $T = \pi$. (II) f(x) 在 区间 $\left[-\frac{\pi}{12}, \frac{\pi}{4}\right]$ 上单调递增,在区间 $\left[-\frac{\pi}{4}, -\frac{\pi}{12}\right]$ 上单调递减.

2.15 (I) $\omega = \frac{1}{5}$. (II) $\sin \alpha = \frac{3}{5}$, $\cos \beta = \frac{8}{17}$, $\cos \alpha = \frac{4}{5}$, $\sin \beta = \frac{15}{17}$, $\cos (\alpha + \beta) = -\frac{13}{85}$.