

alternative definitions of countable

Canonical name AlternativeDefinitionsOfCountable

Date of creation 2013-03-22 19:02:49 Last modified on 2013-03-22 19:02:49

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771) Entry type Definition Classification msc 03E10 The following are alternative ways of characterizing a countable set.

Proposition 1. Let A be a set and \mathbb{N} the set of natural numbers. The following are equivalent:

- 1. there is a surjection from \mathbb{N} to A.
- 2. there is an injection from A to \mathbb{N} .
- 3. either A is finite or there is a bijection between A and \mathbb{N} .

Proof. First notice that if A were the empty set, then any map to or from A is empty, so $(1) \Leftrightarrow (2) \Leftrightarrow (3)$ vacuously. Now, suppose that $A \neq \emptyset$.

- $(1) \Rightarrow (2)$. Suppose $f : \mathbb{N} \to A$ is a surjection. For each $a \in A$, let $f^{-1}(a)$ be the set $\{n \in \mathbb{N} \mid f(n) = a\}$. Since $f^{-1}(a)$ is a subset of \mathbb{N} , which is well-ordered, $f^{-1}(a)$ itself is well-ordered, and thus has a least element (keep in mind $A \neq \emptyset$, the existence of $a \in A$ is guaranteed, so that $f^{-1}(a) \neq \emptyset$ as well). Let g(a) be this least element. Then $a \mapsto g(a)$ is a well-defined mapping from A to \mathbb{N} . It is one-to-one, for if g(a) = g(b) = n, then a = f(n) = b.
- $(2) \Rightarrow (1)$. Suppose $g: A \to \mathbb{N}$ is one-to-one. So $g^{-1}(n)$ is at most a singleton for every $n \in \mathbb{N}$. If it is a singleton, identify $g^{-1}(n)$ with that element. Otherwise, identify $g^{-1}(n)$ with a designated element $a_0 \in A$ (remember A is non-empty). Define a function $f: \mathbb{N} \to A$ by $f(n) := g^{-1}(n)$. By the discussion above, $g^{-1}(n)$ is a well-defined element of A, and therefore f is well-defined. f is onto because for every $a \in A$, f(g(a)) = a.
 - $(3) \Rightarrow (2)$ is clear.
- $(2) \Rightarrow (3)$. Let $g: A \to \mathbb{N}$ be an injection. Then g(A) is either finite or infinite. If g(A) is finite, so is A, since they are equinumerous. Suppose g(A) is infinite. Since $g(A) \subseteq \mathbb{N}$, it is well-ordered. The (induced) well-ordering on g(A) implies that $g(A) = \{n_1, n_2, \ldots\}$, where $n_1 < n_2 < \cdots$.

Now, define $h: \mathbb{N} \to A$ as follows, for each $i \in \mathbb{N}$, h(i) is the element in A such that $g(h(i)) = n_i$. So h is well-defined. Next, h is injective. For if h(i) = h(j), then $n_i = g(h(i)) = g(h(j)) = n_j$, implying i = j. Finally, h is a surjection, for if we pick any $a \in A$, then $g(a) \in g(A)$, meaning that $g(a) = n_i$ for some i, so h(i) = g(a).

Therefore, countability can be defined in terms of either of the above three statements.

Note that the axiom of choice is not needed in the proof of $(1) \Rightarrow (2)$, since the selection of an element in $f^{-1}(a)$ is definite, not arbitrary.

For example, we show that \mathbb{N}^2 is countable. By the proposition above, we either need to find a surjection $f: \mathbb{N} \to \mathbb{N}^2$, or an injection $g: \mathbb{N}^2 \to \mathbb{N}$. Actually, in this case, we can find both:

- 1. the function $f: \mathbb{N} \to \mathbb{N}^2$ given by f(a) = (m, n) where $a = 2^m (2n+1)$ is surjective. First, the function is well-defined, for every positive integer has a unique representation as the product of a power of 2 and an odd number. It is surjective because for every (m, n), we see that $f(2^m (2n+1)) = (m, n)$.
- 2. the function $g: \mathbb{N}^2 \to \mathbb{N}$ given by $f(m,n) = 2^m 3^n$ is clearly injective.

Note that the injectivity of g, as well as f being well-defined, rely on the unique factorization of integers by prime numbers. In this http://planetmath.org/ProductOfCourwe actually find a bijection between \mathbb{N} and \mathbb{N}^2 .

As a corollary, we record the following:

Corollary 1. Let A, B be sets, $f: A \to B$ a function.

- If f is an injection, and B is countable, so is A.
- If f is a surjection, and A countable, so is B.

The proof is left to the reader.