A Completeness Theorem for Probabilistic Regular Expressions

Wojciech Różowski (University College London) and Alexandra Silva (Cornell University)

Regular expressions

(Non)deterministic finite automata

Regular languages

$$\{\varepsilon, a, aa, aaa, \ldots\} \in A^* \to 2$$

This talk: Probabilistic Regular Expressions (PRE)

 $e, f \in \text{Exp} ::= 0 \mid 1 \mid a \in A \mid e + f \mid e, f \mid e^*$

do e with probability p or do f with probability 1-p

do e with probability p and then start again or terminate with probability 1-p

Sem: $A^* \to [0,1]$

Sem
$$\left(a^{\left[\frac{1}{2}\right]}\right)(w) = \begin{cases} \frac{1}{2} \times \left(\frac{1}{2}\right)^n & w = a^n \\ 0 & \text{otherwise} \end{cases}$$

The word aaa is accepted with probability $\frac{1}{16}$

Contribution: Complete axiomatisation of probabilistic language equivalence of PREs

In the case of RE, problem studied by Salomaa, Krob, Boffa and Kozen

Generative Probabilistic Transition Systems

Operational semantics

Transition system whose states are expressions (similar to Antimirov derivatives)

The axioms

Probabilistic choice

$$e \bigoplus_{p} e \equiv e$$

$$e \bigoplus_{1} f \equiv e$$

$$e \bigoplus_{p} f \equiv f \bigoplus_{1-p} e$$

$$(e \bigoplus_{p} f) \bigoplus_{q} g \equiv e \bigoplus_{pq} (f \bigoplus_{\frac{(1-p)q}{1-pq}} g)$$

Can be generalised to an n-ary subprobalistic choice and becomes Positive Convex Algebra

Sequential composition

$$1; e \equiv e \equiv e; 1$$

$$0; e \equiv 0 \equiv e; 0$$

$$e; (f; g) \equiv (e; f); g$$

$$e; (f \bigoplus_{p} g) \equiv e; g \bigoplus_{p} e; g$$

$$(e \bigoplus_{p} f); g \equiv e; g \bigoplus_{p} f; g$$

Loops

$$e^{[p]} \equiv e; e^{[p]} \oplus_p 1$$

$$(e \oplus_p 1)^{[q]} \equiv e^{\left[\frac{pq}{1-(1-p)q}\right]}$$

$$1^{[1]} \equiv 0$$

$$g \equiv eg \oplus_p f$$
 e accepts the empty word with probability 0

$$g \equiv e^{[p]};f$$

Soundness: If $e \equiv f$ then Sem(e) = Sem(f)

Completeness: If Sem(e) = Sem(f) then $e \equiv f$

Equivalent to establishing a certain universal property

Using a series of very hard results in convex algebra

(Due to Sokolova, Woracek, Milius)

...and through a reduction which is the most technical bit of this work

It suffices to show:

Every finite-state automaton can be uniquely converted to an expression (up to the axioms of \equiv)

Automaton

System of equations

$$x \equiv ax \oplus_{\frac{1}{2}} 1$$

Solution

$$x \rightarrow a^{\left[\frac{1}{2}\right]}, 1$$

Thank you!

 Generalisation of classic automata theory through heavy tools from coalgebra and convex algebra

 Previous work by Silva and Sokolova relied on extending the complete axiomatisation modulo bismilarity of a probabilistic process calculus

• Future work: quantitative axiomatisations, algebraic Kozen-style axiomatisation

Check out the full paper:)