Calculer à l'aide des identités remarquables

En utilisant une identité remarquable, développer chaque expression (on ne demande pas de calculs) :

Les identités remarquables ne servent pas à ça! C'est juste pour vous faire pratiquer les identités.

1. $(3+4)^2=3^2+2\times 3\times 4+4^2$ mais on sait que le résultat vaut 49

1

En utilisant une identité remarquable, développer chaque expression (on ne demande pas de calculs) :

- 1. $(3+4)^2=3^2+2\times 3\times 4+4^2$ mais on sait que le résultat vaut 49
- 2. $(3+8)^2 = \dots$ et on sait que le résultat vaut \dots

En utilisant une identité remarquable, développer chaque expression (on ne demande pas de calculs) :

- 1. $(3+4)^2=3^2+2\times 3\times 4+4^2$ mais on sait que le résultat vaut 49
- 2. $(3+8)^2 = \dots$ et on sait que le résultat vaut \dots
- 3. $(3-4)^2 = \dots$ et on sait que le résultat vaut \dots

En utilisant une identité remarquable, développer chaque expression (on ne demande pas de calculs) :

- 1. $(3+4)^2=3^2+2\times 3\times 4+4^2$ mais on sait que le résultat vaut 49
- 2. $(3+8)^2 = \dots$ et on sait que le résultat vaut \dots
- 3. $(3-4)^2 = \dots$ et on sait que le résultat vaut \dots
- 4. $(5-3)^2 = \dots$ et on sait que le résultat vaut \dots

En utilisant une identité remarquable, développer chaque expression (on ne demande pas de calculs) :

- 1. $(3+4)^2=3^2+2\times 3\times 4+4^2$ mais on sait que le résultat vaut 49
- 2. $(3+8)^2 = \dots$ et on sait que le résultat vaut \dots
- 3. $(3-4)^2 = \dots$ et on sait que le résultat vaut \dots
- 4. $(5-3)^2 = \dots$ et on sait que le résultat vaut \dots
- 5. $(3+4)(3-4) = \dots$ et on sait que le résultat vaut \dots

En utilisant une identité remarquable, développer chaque expression (on ne demande pas de calculs) :

- 1. $(3+4)^2=3^2+2\times 3\times 4+4^2$ mais on sait que le résultat vaut 49
- 2. $(3+8)^2 = \dots$ et on sait que le résultat vaut \dots
- 3. $(3-4)^2 = \dots$ et on sait que le résultat vaut \dots
- 4. $(5-3)^2 = \dots$ et on sait que le résultat vaut \dots
- 5. $(3+4)(3-4) = \dots$ et on sait que le résultat vaut \dots
- 6. $(4+5)(4-5) = \dots$ et on sait que le résultat vaut \dots

1.
$$24^2 = (20+4)^2 = 20^2 + 2 \times 20 \times 4 + 4^2 = 400 + 160 + 16 = 576$$

1.
$$24^2 = (20+4)^2 = 20^2 + 2 \times 20 \times 4 + 4^2 = 400 + 160 + 16 = 576$$

2.
$$35^2 = \dots$$

1.
$$24^2 = (20+4)^2 = 20^2 + 2 \times 20 \times 4 + 4^2 = 400 + 160 + 16 = 576$$

- 2. $35^2 = \dots$
- 3. $13^2 = \dots$

1.
$$24^2 = (20+4)^2 = 20^2 + 2 \times 20 \times 4 + 4^2 = 400 + 160 + 16 = 576$$

- 2. $35^2 = \dots$
- 3. $13^2 = \dots$
- 4. $52^2 = \ldots$, puis remarquez que $52 = 13 \times \ldots$

1.
$$24^2 = (20+4)^2 = 20^2 + 2 \times 20 \times 4 + 4^2 = 400 + 160 + 16 = 576$$

- 2. $35^2 = \dots$
- 3. $13^2 = \dots$
- 4. $52^2 = \ldots$, puis remarquez que $52 = 13 \times \ldots$
- 5. $39^2 = (40 1)^2 = 40^2 2 \times 40 \times 1 + 1^2 = 1600 80 + 1 = 1520 + 1 = 1521$

1.
$$24^2 = (20+4)^2 = 20^2 + 2 \times 20 \times 4 + 4^2 = 400 + 160 + 16 = 576$$

- 2. $35^2 = \dots$
- 3. $13^2 = \dots$
- 4. $52^2 = \ldots$, puis remarquez que $52 = 13 \times \ldots$
- 5. $39^2 = (40 1)^2 = 40^2 2 \times 40 \times 1 + 1^2 = 1600 80 + 1 = 1520 + 1 = 1521$
- 6. $19^2 = \dots$

1.
$$24^2 = (20+4)^2 = 20^2 + 2 \times 20 \times 4 + 4^2 = 400 + 160 + 16 = 576$$

- 2. $35^2 = \dots$
- 3. $13^2 = \dots$
- 4. $52^2 = \ldots$, puis remarquez que $52 = 13 \times \ldots$
- 5. $39^2 = (40 1)^2 = 40^2 2 \times 40 \times 1 + 1^2 = 1600 80 + 1 = 1520 + 1 = 1521$
- 6. $19^2 = \dots$
- 7. $17^2 13^2 = (15 + 2)(15 2) = \dots$