

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-181289

(43)Date of publication of application: 28.06.1994

(51)Int.CI.

H01L 27/04

H01L 23/50

(21)Application number: 04-353627

(71)Applicant:

TOSHIBA CORP

(22)Date of filing:

14.12.1992

(72)Inventor:

KOZONO HIROYUKI

(54) SEMICONDUCTOR DEVICE

(57) Abstract:

PURPOSE: To provide a semiconductor device which is used in a high frequency band and has an inductance to be freely placed. CONSTITUTION: A metal thin film grounded substantially on an entire surface except a peripheral part is formed on a surface of a semiconductor substrate through an insulating film made of polyimide, etc., and an inductance 6 is formed thereon also through a polyimide film. Pads 7, 9 of the inductance 6 and a pad 101 of the metal thin film are formed on a peripheral edge part not formed with the metal thin film. Since the metal thin film is formed, high frequency characteristics are improved, a position of the inductance 6 can be formed at an arbitrary place on the metal thin film, and the degree of freedom of design is increased.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

公開特許公報(A)

(1)特許出願公開番号

特開平6-181289

(43)公開日 平成6年(1994)6月28日

(51) Int.Cl.⁵

識別記号

庁内整理番号

FI

技術表示箇所

HO1L 27/04

L 8427-4M

23/50

X 9272-4M

審査請求 未請求 請求項の数7(全 13 頁)

(21)出願番号

特願平4-353627

(71)出願人 000003078

株式会社東芝

(22)出願日

平成 4年(1992)12月14日

神奈川県川崎市幸区堀川町72番地

(72)発明者 小園 浩由樹

神奈川県川崎市幸区小向東芝町 1番地 株

式会社東芝多摩川工場内

(74)代理人 弁理士 竹村 壽

(54)【発明の名称】 半導体装置

(57)【要約】

【目的】 高周波領域においても使用され、自由な配置が可能なインダクタンスを備えた半導体装置を提供する。

【構成】 半導体基板1の表面には、ポリイミドなどの 絶縁膜を介して、周辺部分を除いてほぼ全面に接地され た金属薄膜10が形成され、その上にやはりポリイミド 膜を介してインダクタンス6が形成されている。金属薄 膜10の形成されていない周縁部分には、インダクタン ス6のパッド7、9や金属薄膜10のパッド101が形 成されている。金属薄膜10が形成されているので、高 周波特性が良く、かつ、インダクタンス6の位置は、金 属薄膜10の上の任意の場所に形成することができ、設 計上の自由度が大きくなる。

【特許請求の範囲】

半導体基板と、 【請求項1】

前記半導体基板の主面上に形成されている第1の絶縁膜 と、

前記第1の絶縁膜上に形成され、前記半導体基板主面の ほぼ全面を被覆する接地された金属薄層と、

前記金属薄層を被覆するように前記半導体基板主面上に 形成されている第2の絶縁膜と、

前記金属薄層の上に配置されるように、前記第2の絶縁 膜上に形成されているインダクタンスとを備えているこ とを特徴とする半導体装置。

【請求項2】 半導体基板と、

前記半導体基板の主面上に形成されている第1の絶縁膜

前記第1の絶縁膜上に形成されているインダクタンス と、

前記インダクタンスを被覆するように前記第1の絶縁膜 上に形成されている第2の絶縁膜と、

前記第2の絶縁膜上に形成され、前記半導体基板主面の ほぼ全面を被覆する接地された金属薄層とを備えている ことを特徴とする半導体装置。

前記金属薄層とは接続配線によって接続 【諸求項3】 されている金属層がさらに前記インダクタンスと同一平 面上にこれに近接して形成されていることを特徴とする 請求項1又は請求項2に記載の半導体装置。

前記金属薄層上の絶縁膜の上に金属膜を 【請求項4】 設け、この金属膜を第1の電極、前記金属薄層を第2の 電極とするキャパシタを形成することを特徴とす請求項 1に記載の半導体装置。

前記インダクタンスには、その両端に形 【請求項5】 成した端子とその中間に形成された少なくとも1つの端 子とを備えていることを特徴とする請求項1乃至請求項 4のいずれかに記載の半導体装置。

【請求項6】 半導体基板と、

前記半導体基板が載置されるデバイスホールを有する絶 縁フィルムと、

前記絶縁フィルムの第1の主面に形成され、前記半導体 基板と電気的に接続されているインダクタンスと、

前記絶縁フィルムの第1の主面に形成され、その一端が 前記半導体基板の接続電極と接続されている複数のリー ドと、

前記絶縁フィルムの第2の主面のほぼ全面に対向し、こ れと接合している接地された金属薄膜とを備えているこ とを特徴とする半導体装置。

【請求項7】 少なくとも1つの半導体基板と、

2つ以上の基板載置部が形成されているリードフレーム と、

少なくとも1つの前記基板載置部のほぼ全面に形成され ている絶縁膜と、

え、

置。

2 前記インダクタンスが形成されている前記基板載置部に は半導体基板を載置せず、かつ、この基板載置部は接地 されており、残りの前記基板載置部には前記半導体基板

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、インダクタンスを備 え、高周波特性に優れた半導体装置及びその製造方法に 関するものである。

がそれぞれ載置されていることを特徴とする半導体装

[0002]

【従来の技術】IC、LSIなどの半導体装置には、イ ンダクタンス、抵抗、キャパシタなどの受動素子を備え ている。図20及び図21を参照してインダクタンスを 備えた従来の半導体装置について説明する。半導体基板 として、例えば、シリコン半導体基板13を用い、この 半導体基板13主面の表面領域にMOSICやバイポー ラICなどの集積回路(図示せず)が形成されている。 この半導体基板13上には、SiO2 などの層間絶縁膜 2が形成されており、その上に、半導体基板13の内部 に形成されている前記集積回路と電気的に接続された所 定のパターンを有するAlもしくはポリシリコンなどの 配線3が形成されている。接続配線3と前記集積回路と の接続は、配線3を半導体基板13主面の周辺部に形成 されている電極パッドに接続し、この電極パッドを半導 体基板13内部の前記集積回路に接続することによって 行われる。この配線3をこの様に電極パッドに接続しな くとも直接半導体基板13の素子領域に接続することも できるし、或いは、この集積回路と接続されている半導 体基板13上の単層又は多層配線と接続することもでき る。さらに、この配線3の上にSiO2などの層間絶縁 膜4を施して配線3を被覆する。層間絶縁膜4は、表面 を平坦化し、この上にフォトレジストなどを用いてA1 などからなるプレーナ型のインダクタンス6を渦巻き状 に形成する。この渦巻き状のインダクタンス6の中心に は、端子5が形成されており、この端子5は、層間絶縁 膜4に形成したコンタクト孔41を介して前記配線3に 接続している。このインダクタンス6は、BPSGなど 周知の絶縁膜からなるパッシベーション膜(図示せず) で被覆保護される。前記半導体基板13は、内部に集積 回路が形成されているが、この半導体基板には、内部回 路は形成しないで、内部に集積回路が形成されている少 なくとも1つの半導体基板を別に用意し、この半導体基 板13とともに1つのパッケージに封止してマルチチッ プ型半導体装置とすることも知られている。

[0003]

【発明が解決しようとする課題】近年半導体装置は、高 周波での使用が多くなっている。前述した従来のインダ 前記絶縁膜の上に形成されているインダクタンスとを備 50 クタンスを含む半導体装置は、高周波領域での使用を考

慮すると渦巻き状のインダクタンスにおける信号の反射 が大きな問題になってきた。これは、特に特性インピー ダンスの整合がなされていないことに原因がある。従来 層間絶縁膜にはシリコンの酸化膜が使用されているが、 その誘電率が大きいので配線間の容量が大きくなるとい う問題もある。配線材料には、通常、Alなどを用いて いるが、その抵抗が大きく、半導体装置の微細化が進む に連れて抵抗成分は増加する。したがって、この構造の 半導体装置では、100MHz以上の周波数帯では、Q ファクタが低下して良好なインダクタンスが形成できな 10 い。また、インダクタンスの面積の集積回路に占める割 合は、可なり大きくなり、集積回路中に取込む事は困難 であった。本発明は、このような事情によりなされたも ので、髙周波領域においても使用でき、かつ、自由な配 置が可能なプレーナ型インダクタンスを備えた半導体装 置を提供することを目的にしている。

3

[0004]

【課題を解決するための手段】本発明は、半導体基板上 に形成されたインダクタンスに近接して接地された金属 薄層を形成し、さらに層間絶縁膜の材料に低誘電率材料 を使用することを特徴としている。本発明の半導体装置 は、半導体基板と、前記半導体基板の主面上に形成され ている第1の絶縁膜と、前記第1の絶縁膜上に形成さ れ、前記半導体基板主面のほぼ全面を被覆する接地され た金属薄層と、前記金属薄層を被覆するように前記半導 体基板主面上に形成されている第2の絶縁膜と、前記金 **属薄層の上に配置されるように、前記第2の絶縁膜上に** 形成されているインダクタンスとを備えていることを第 1の特徴としている。また、半導体基板と、前記半導体 基板の主面上に形成されている第1の絶縁膜と、前記第 1の絶縁膜上に形成されているインダクタンスと、前記 インダクタンスを被覆するように前記第1の絶縁膜上に 形成されている第2の絶縁膜と、前記第2の絶縁膜上に 形成され前記半導体基板主面のほぼ全面を被覆する接地 された金属薄層とを備えていることを第2の特徴として いる。前記金属薄層とは接続配線によって接続されてい る金属層がさらに前記インダクタンスと同一平面上に、 これに近接して形成することができる。前記金属薄層上 の絶縁膜の上に金属膜を設け、この金属膜を第1の電 極、前記金属薄層を第2の電極とするキャパシタを形成 することができる。

【0005】前記インダクタンスには、その両端に形成した端子とその中間に形成された少なくとも1つの端子とを備えている事ができる。さらに、半導体基板と、前記半導体基板が載置されるデバイスホールを有する絶縁フィルムと、前記絶縁フィルムの第1の主面に形成され、前記半導体基板と電気的に接続されているインダクタンスと、前記絶縁フィルムの第1の主面に形成され、その一端が前記半導体基板の接続電極と接続されている複数のリードと、前記絶縁フィルムの第2の主面のほぼ 50

全面に対向し、これと接合している接地された金属薄膜とを備えていることを第3の特徴としている。そして、少なくとも1つの半導体基板と、2つ以上の基板載置部が形成されているリードフレームと、少なくとも1つの前記基板載置部のほぼ全面に形成されている絶縁膜と、前記絶縁膜の上に形成されているインダクタンスとを備え、前記インダクタンスが形成されている前記基板載置部には半導体基板を載置せず、かつ、この基板載置部は接地されており、残りの前記基板載置部には前記半導体基板がそれぞれ載置されていることを第4の特徴としている。

[0006]

【作用】金属薄層が形成されることにより金属配線での特性インピーダンスが正確に50Ωに設定することが可能になる。また、ポリイミドなどの低誘電率材料を層間の絶縁膜に用いることにより配線間容量を大きく低減させることができる。半導体基板のほぼ全面に形成された接地された金属薄層の存在によって、インダクタンスやリードもしくはキャパシタンスを形成する際に設計段階における自由度を十分確保することができる。

[0007]

【実施例】以下、図面を参照して本発明の実施例を説明 する。まず、図1及至図6を参照して第1の実施例を説 明する。図1は、半導体装置の平面図、図2は、前図の A-A'部分の断面図である。図3は、従来例と本発明 の半導体装置の高周波損失における周波数依存性を示す 特性図である。図4乃至図6は、基板の他の例を示す部 分断面図である。基板には、例えば、シリコン半導体基 板1を用い、この上に、例えば、ポリイミドなどからな る第1の絶縁膜2を形成する。次いで、例えば、Cuか らなる金属薄層10をほぼ半導体基板1の全面に、例え ば、スパッタリングなどにより形成する。この金属薄層 10は、半導体基板1の周縁部にあり、金属薄膜10や 後に形成されるインダクタンスなどが他と電気的に接続 するために設けられる接続電極、即ち、電極パッドが形 成される領域には形成されないので、前記半導体基板1 の全面を完全に被覆するものではない。この金属薄層 1 0を被覆するように、この上にポリイミドなどからなる 第2の絶縁膜4を形成し、この上にCuなどの接続配線 3を形成し、これをポリイミドなどの第3の絶縁膜8で 被覆する。接続配線3の一端は、半導体基板1の周辺部 に露出している電極パッド7と接続している。

【0008】次いで、パターニングされたフォトレジストを利用して絶縁膜8の所定の領域にRIE(Reactive Ion Etching)などによりコンタクト孔81を形成することにより接続配線3を部分的に露出する。次いで、絶縁膜8の上に、フォトレジストを利用して、例えば、Cuからなるインダクタンス6を渦巻き状に形成する。その一端は、インダクタンス6のほぼ中心に形成され、コンタクト孔81内に形成された端子5を介して接続配線3

5

の他端に接続されている。インターンス6の他端は、 半導体基板1の周辺部に露出している電極パッド9と接続している。次いで、インダクタンス6を含む半導体基板1表面を、例えば、ポリイミドのようなパッシベーション膜(図示せず)で保護する。図1には、図2に示されている絶縁膜2、4、8の表示は省略している。この実施例においては、半導体基板1に集積回路を形成しない。そして、内部に集積回路が形成されている少なくとも1つの半導体基板を別に用意し、この半導体基板を前記半導体基板1とともに1つのパッケージに封止してマルチチップ型半導体装置とする。この半導体装置は、マルチチップ構造をとることによりシステム規模での集積化が可能である。

【0009】このインダクタンスが形成された基板1 は、集積回路が形成された素子領域を有する半導体基 板、例えば、シリコン半導体基板に接合され、パッケー ジングされて1チップの半導体装置として移動型通信装 置などの小型機器に組込むこともできる。前述の様にイ ンダクタンスが形成され、集積回路が形成されていない 半導体基板上にキャパシタや抵抗などの受動素子を組込 むことができ、この受動素子を組込んだ半導体基板と集 積回路を形成した半導体基板を組合わせて半導体装置を 構成する。その組合わせの仕方には、まず、集積回路を 形成した半導体基板に直接接着剤などを用いて受動素子 の基板を貼付ける方法がある。また、半導体基板と受動 素子の基板とをワイヤボンディングなどの配線で接続す る組合わせの方法もある。この配線には、TAB(Tape Automated Bonding)テープを用いることができ、リード フレームを利用して両基板を電気的に接続することがで きる。金属薄層10には表面に露出する端子101を複 数形成している。その1つは、他の半導体基板に形成さ れた金属薄層に接続し、他の1つは、接地するGND端 子となる。

【0010】金属薄層は、インダクタンスに入ってくる 高周波信号の反射を防ぐ特性インピーダンスのばらつき を無くすことができる。図3の特性図に示すように、金 属薄層が形成されない場合、-3.0dBが特性の良否 を決める基準線とすると、周波数が約0.1~3GHz 程度のときは特性が良いが、この範囲を外れると損失が 大きくなって使用が困難になる。これに対し、この金属 薄層を設けることによって10.0GHz以上まで使用 が可能になる。この様にインダクタンスは、金属薄層の 上に形成することにより特性インピーダンスが整合し、 インダクタンスを通過する高周波の信号の反射および損 失を低減することができるが、この様な金属薄層の効果 は、金属薄層が、インダクタンスに近接していることに よって生じるものであり、どの様な形で近接しているか は、余り関係しない。

【0011】例えば、図4は、金属薄層がインダクタンスの下に形成され、この金属薄層から分岐した金属層を

インダクタンスの渦を上伏の間に配置した例である。シ リコン半導体基板1上にポリイミドの第1の絶縁膜2を 形成し、その上に、周辺部を除いた半導体基板のほぼ全 面に金属薄層10を形成する。その上にポリイミドの第 2の絶縁膜4を被覆し、その上にインダクタンスの接続 配線3をCuなどにより形成する。次いで、この接続配 線3と第2の絶縁膜4の上にポリイミドからなる第3の 絶縁膜8を形成し、その上に渦巻き状のインダクタンス 6を形成する。インダクタンス6の中心部分の先端に端 子5を形成し、この端子は、第3の絶縁膜8に形成した コンタクト孔を介して接続配線3と接続させる。この第 3の絶縁膜8の上に渦巻き状インダクタンス6の間に配 置されるようにCuなどの金属層104を任意の形状に 形成し、第2及び第3の絶縁膜4、8に形成したコンタ クト孔を通してこの金属層104と金属薄層10とを接 続電極103で接続する。この半導体基板1の表面は、 ポリイミドのパッシベーション膜(図示せず)で保護す る。この構造によるとインダクタンス6と金属層104 との間の距離d′は図2に示すインダクタンス6と金属 薄層10との間の半分にすることができ、また、金属薄 層10とインダクタンス6との間の距離は、特に考慮す る必要はないので、金属薄層10の位置を任意に設定す ることができる。

6

【0012】即ち、d'は、ほぼd/2にすることがで きるが、図では、d′の大きさを強調するために誇張し て狭く描いている。次ぎに、図5を参照して、この実施 例における他の例を説明する。金属薄層がインダクタン スの上に形成され、この金属薄層から分岐した金属層を インダクタンスの渦巻き状の間に配置した例である。シ リコン半導体基板1上にポリイミドの第1の絶縁膜2を 形成し、その上に、Cuなどのインダクタンスの接続配 線3を形成する。その上に、ポリイミドの第2の絶縁膜 4を形成し、この上にCuなどからなる渦巻き状インダ クタンス6及びこの渦巻き状体の間に任意の形状のCu の金属層104を形成する。そして、インダクタンス6 の中心部分の先端に端子5を形成し、この端子は、第2 の絶縁膜4に形成したコンタクト孔を介して接続配線3 と接続させる。次いで、インダクタンス6と金属層10 4等を被覆するようにポリイミドからなる第3の絶縁膜 8を形成し、その上に、周辺部を除いた半導体基板のほ ぼ全面に金属薄層10を形成する。つぎに、第3の絶縁・ 膜8に形成したコンタクト孔を通して、この金属層10 4と金属薄層10とを接続電極により接続する。この半 導体基板1の表面はポリイミドのパッシベーション膜 (図示せず) で保護する。この様に形成した金属薄層か ら分岐した金属層104は、インダクタンスの特性イン ピーダンスを整合させることができる。

【0013】したがって、この金属層104がインダクタンス6に近接していれば、金属薄層10が多少インダクタンス6から離れていても作用効果に格別影響は無

7

い。その結果、この金属薄層が段えずある変化の大きい所に配置しても特性インピーダンスが変化することはない。さらに、図6に示すように、単に図2のインダクタンス6と金属薄層10の位置を置換えた構造も、本発明に適用することは可能である。この場合は、両者間の距離を図2と同じ様にすることが好ましい。この金属薄層の材料には、Cuに限らず、AuやAlなどを用いることが可能である。層間絶縁膜などの絶縁膜に用いる低誘電率の材料には、ポリイミド以外にエポキシ樹脂などがある。インダクタンス6と金属薄層10との距離はは、大体数μm~数10μmが適当である。特に、ポリイミドを金属薄層とインダクタンスとの間の絶縁膜厚は、ポリイミドなら1~10μm程度であり、SiO2膜なら10~50μm程度が適当である。

【0014】次に、図7乃至図11を参照して第2の実 施例について説明する。図7は、表面にインダクタンス およびキャパシタタンスが形成されている半導体基板の 平面図、図8は、図7と同じ平面図であり、領域S1、 S2 をさらに加えている。図9は、領域S1 のインダク タンス形成領域の部分平面図、図10は、領域S2のキ 20 ャパシタ領域の部分平面図、図11は、図7のB-B' 部分の断面図である。半導体基板1の上にポリイミドな どの低誘電率を有する第1の層間絶縁膜2が被覆されて いる。この第1の層間絶縁膜2の上にCuなどの金属薄 層10が半導体基板1の周辺部を除いて、ほぼ全面に、 例えば、真空蒸着などにより、形成される。この金属薄 層10は、GND端子となる少なくとも1つの電極パッ ド101およびキャパシタの引出し電極に用いられる少 なくとも1つの電極パッド102が半導体基板1の周辺 部に形成されている。金属薄層10は、ポリイミドなど 30 の低誘電率材料の第2の層間絶縁膜4により被覆され る。この第2の層間絶縁膜4の上にフォトレジストを用 いたエッチング処理により、インダクタンスの接続配線 3を形成し、この一端は、渦巻き状インダクタンスの中 心部が形成される予定の領域に形成し、他端は、半導体 基板1周辺部に引き出し、そこに外部端子となる電極パ ッド7を形成する。この第2の層間絶縁膜4上には、さ らに、他の接続配線31、32を形成する。

【0015】それらの一端は渦巻き状インダクタンスが 形成される予定の領域に形成し、他端は半導体基板1周 辺部に引き出し、そこに外部端子となる電極パッド9 1、92をそれぞれ形成する。第2の層間絶縁膜4の上 にこれら接続配線を被覆するようにポリイミドなどの低 誘電率材料の第3の層間絶縁膜8が形成される。この層 間絶縁膜8の上にCuなどの低抵抗材料からなる渦巻き 状のインダクタンス6を1対形成する。この層間絶縁膜 8に異方性エッチングなどによりコンタクト孔を形成し て層間絶縁膜8の下の接続配線3の一端部分を露出さ せ、インダクタンス6と接続配線3とをインダクタンス 6の端子5によりコンタクト孔を通して接続する(この コンタクト部分は図とこ同じ構造になっている)。同様に、第3の層間絶縁膜8の他の部分にもコンタクト孔を形成して接続配線31、32のそれぞれ一端を露出させ、インダクタンス6の任意の箇所と接続配線31、32とをこれらコンタクト孔に形成した端子51、52によりそれぞれ接続する。接続配線をインダクタンスに接続してから半導体基板1表面をBPSGなどのパッシベーション絶縁膜(図示せず)で被覆保護する。金属薄層10の表面とインダクタンス6が形成されている第3の層間絶縁膜8の表面との間の距離d、即ち、インダクタンス/金属薄層間は、この実施例では、層間絶縁膜4、8にポリイミドを用いているので、約1μm~10μmにしている。

8

【0016】この様にインダクタンスは、金属薄層の上 に形成することにより特性インピーダンスが整合し、イ ンダクタンスを通過する髙周波の信号の反射を低減する ことができる。また、半導体基板のほぼ全面に金属薄層 を形成するので、半導体基板上に形成されるインダクタ ンスの位置の自由度が増大する。さらに、この実施例で は、インダクタンス6の両端の電極パッド9と端子5以 外に、インダクタンス6の金属配線パターンの途中で幾 つかの端子51、52を形成している。この実施例で は、2個の端子を形成しているが、端子数は、任意であ り必要な数だけ設けることができる。これらの金属配線 パターンの途中に設けられている端子は、前記電極パッ ド9と同じ役割を果たすもので、電極パッド9を含めた これらの端子の任意の1つとインダクタンス6の中心に 形成された端子5との間でインダクタンスを構成してい る。そして、前記任意の1つの端子を選択することによ り、構成されるインダクタンスの特性を任意に決定する ことができる。

【0017】次ぎに、図10及び図11を参照してこの 実施例のキャパシタを説明する。本発明に用いるCuな どからなる金属薄層10は、キャパシタの一方の電極に 用いることができる。金属薄層10には、キャパシタの 引出し電極に用いられる電極パッド102が接続されて おり、この電極パッド102は、その表面は露出してい る。金属薄層10の上には、ポリイミドなどの第2の絶 縁膜4が形成され、その上にキャパシタの他方の電極と なるCuなどの金属層11が複数個形成されている。金 属層11を互いに接続するように、これらの上にCuな どからなる金属配線層12を形成する。この金属配線層 12は、半導体基板1の周辺部にまで延在する領域があ り、この領域に半導体基板1の表面に露出する複数の端 子121が形成されている。ここに金属薄層10と金属 層11とを対向する電極とし、第2の絶縁膜4を誘電体 とするキャパシタが形成される。以上、インダクタンス を形成した半導体基板を用いて半導体装置を形成するに は、この半導体基板自身に集積回路を形成する例、集積 回路が形成されている半導体基板の上に、このインダク

Q

タンスを形成した半導体基板を取られる例あるいはイン ダクタンスを形成した半導体基板を含む複数の半導体基 板をリードフレームの半導体基板搭載部上に取付け、こ れら半導体基板を1つのパッケージに収める例などが挙 げられる。

【0018】次に、図12乃至図20を参照して前記イ ンダクタンスを形成した半導体基板を他の半導体基板と 組合わせて構成した半導体装置の例を説明する。図12 は、集積回路などが形成されている半導体基板の上に前 記インダクタンスを形成した半導体装置の断面図であ る。半導体基板13には集積回路や抵抗アレーなどを形 成し、その表面は、多層配線などの配線構造が形成され ており、それらを被覆するようにパッシベーション絶縁 膜が形成されている(図示せず)。この様に表面が処理 された半導体基板13の表面にA1などのリード配線1 4がスパッタリング法などを用いて形成される。リード 配線表面はAuメッキやSnメッキが施されている。こ の半導体基板13の表面にインダクタンス6を形成した 半導体基板 1 を絶縁性のエポキシ樹脂などの接着剤で接 合する。そして、半導体基板1の周辺部に形成されたイ ンダクタンスやキャパシタの電極パッド7、9と半導体 基板13上のリード配線14とは、ワイヤボンディング 15などにより接続されている。金属薄層10は、半導 体基板13のGND端子に、ワイヤボンディング14の 1つにより接続されている。図は模式的に描いているの で、半導体基板1の全面を金属薄膜10で覆っている が、実際は、図1などに示すように半導体基板1の周縁 部分にはこの薄膜を形成しない。以下の図面も同様であ る。

【0019】図13は、この半導体基板13上のリード 30 配線14と半導体基板1とが半導体基板1上の電極パッ ド7、9に形成したAuバンプなどを介して接続される 半導体装置の断面図である。半導体基板1表面の金属薄 層10の端子101にもバンプを取付けて前記リード配 線14のうちの接地リード配線に接続する。図14は、 半導体基板1をTAB (Tape Automated Bonding) テー プに装着してTABテープの絶縁フィルム16に取付け たリード17を半導体基板13のリード配線14に半田 接続した半導体装置の断面図である。このインダクタン スやキャパシタが形成された半導体基板1は、数多くの リードを用いないのでTABテープを用いるには効率的 ではない。半導体基板1表面の金属薄層10の端子にも リード17を接続し、このリード17を介して前記リー ド配線14のうちの接地リード配線に端子を接続する。 半導体基板1表面は、例えば、モールド樹脂25などで 被覆されている。

【0020】図15は、インダクタンスをTABテープに搭載した半導体装置の平面図、図16は、その部分断面図である。この実施例では、TABテープの絶縁フィルム16にリード17とともにインダクタンス6を形成 50

する。通常TABテープを形成する方法に従い、ポリイ ミドフィルム16にCu箔を貼着し、これを選択エッチ ングしてインダクタンスおよびリード17を同じ工程で 形成する。外部回路に接続するインダクタンスの一端に は、分岐点がインダクタンスの前記一端近傍に設けられ ている分岐部に接続配線31、32が形成されていて、 それらの端部はやはり外部回路に接続されるようになっ ている。インダクタンス6の他端は、Cuなどの接続配 線3に接続され、この接続配線3は、TABテープのデ バイスホール19に突出していて、デバイスホール19 内に搭載される半導体基板13の周辺部に形成された接 続電極に接続される。このTABテープは、不要部分を 接続除去してから、リード17及び分岐部の接続配線3 1、32とインダクタンスコイルの前記一端を回路基板 の回路パターンに接続する。金属薄膜10をTABテー プに取付けるには、接続配線3、31、32を形成した 第1の絶縁フィルム16の裏側にCu箔などの金属薄層 10を貼付けた第2の絶縁フィルム21を貼付ける。こ の時金属薄層は、ポリイミドフィルム16のほぼ全域 (送り孔の部分などの周辺部分を含めても良いし、開口

(送り礼の部分などの周辺部分を含めても良いし、開口部で囲まれた部分だけに張り付けても良い) 覆うように貼付けると、リードに対する高周波特性も改善させることができる(図16)。 【0021】図17に、デバイスホールが2つ形成され

【0021】図17に、デバイスホールか2つ形成されたTABテープ26の例を示す。TABテープのデバイスホールの数は、2つ以上でも良く、また、それぞれの大きさが異なっていても良い。一方のデバイスホール191にはインダクタンスが形成された半導体基板1を搭載し、他方デバイスホール192には集積回路や抵抗アレーなどを形成した半導体基板13を搭載する。この図に説明したTABテープ26のフィルム16に図16のインダクタンスを形成することも可能であり、その構成は、適宜に組合わせることができる。

【0022】次ぎに、リードフレームを用いた半導体装 置を説明する。図18は、その半導体装置の断面図であ る。Cuなどから構成されたリードフレームの半導体基 板搭載部(以下、ベッド部という)22には、インダク タンスが形成された半導体基板1が搭載されており、そ の他のベッド部221、222には、集積回路や抵抗ア レーが形成されている半導体基板13が搭載されてい る。半導体基板間及び半導体基板とリードフレームのリ ード23の間等これら相互の接続は、ボンディングワイ ヤ15を用いて行われる。半導体基板1の金属薄層10 も、ボンデングワイヤを利用してリードフレームの接地 リード24と接続される。半導体基板、ベッド部、ボン ディングワイヤ、リードの一部をエポキシ樹脂などのモ ールド樹脂25で被覆する。図19は、リードフレーム を用いた他の半導体装置の断面図である。ここではベッ ド部22を金属薄層10として利用したことに特徴があ る。ベッド部は、接地リードと接続することができれ

11

ば、シールド作用のある金属薄層として用いることはできる。図示のように、ベッド部22の表面にポリイミドからなる絶縁膜2を形成し、その上にインダクタンス6を形成する。ベッド部22と接地リード24は、ボンディングワイヤ15を介して互いに接続される。

【0023】ベッド部221又は222もインダクタン スを形成した半導体基板1を搭載することが可能であ る。ベッド部22と半導体基板13とは、ボンディング ワイヤ15で接続する。リードフレームを用いる場合、 複数のベッド部に搭載された半導体基板を相互に接続す るために、TABテープを利用することもできる。以 上、本発明においては、インダクタンスコイルに金属薄 層を近接させることにより、インダクタンスに入ってく る信号の反射を防ぐ特性インピーダンス50Ωを約±1 5%の精度でばらつき無く形成することができるように なる。さらにインダクタンスの材料にCuなどのような 低抵抗の材料にし、層間絶縁膜をポリイミドのような低 誘電率の材料にすれば、インダクタンスの抵抗成分が約 40%も低下し、容量成分は、約50%も低下する。さ らに、100MHz以上での周波数帯でも使用すること 20 ができる。また、インダクタンスコイルの一端から複数 の端子を取出すようにしているので、半導体装置の対応 の自由度を大きくしている。その上、インダクタンスを 含んだ半導体基板を個別に複数形成し、これらを1つの 半導体装置とするマルチチップ構造を取ることによりシ ステム規模での集積化が可能になる。この時、インダク タンスは、シリコン基板上に作成しているために従来の アッセンブリ工程での対応が可能である。

[0024]

【発明の効果】基板のほぼ全面に形成した接地した金属 薄層をインダクタンスに近接させることにより、100 MHz以上の周波数帯でも良好な特性を有するインダク タンスが形成された髙周波特性が良く設計上の自由度が 高い半導体装置を得ることができる。

【図面の簡単な説明】

【図1】本発明の第1の実施例に係る半導体基板の部分 平面図。

- 【図2】図1のA-A'部分の部分断面図。
- 【図3】 高周波損失の周波数依存性を示す特性図。
- 【図4】第1の実施例に係る半導体基板の部分断面図。
- 【図5】第1の実施例に係る半導体基板の部分断面図。

【図6】第1の実施例に係る半導体基板の部分断面図。

12

【図7】第2の実施例に係る半導体基板の平面図。

【図8】第2の実施例に係る半導体基板の平面図。

【図9】図8に示された半導体基板の部分平面図。

【図10】図8に示された半導体基板の部分平面図。

【図11】図8に示された半導体基板の部分断面図。

【図12】本発明の半導体装置の断面図。

【図13】本発明の半導体装置の断面図。

【図14】本発明の半導体装置の断面図。

【図15】本発明の半導体装置の平面図。

【図16】図14に示された半導体装置の断面図。

【図17】本発明の半導体装置の平面図。

【図18】本発明の半導体装置の平面図。

【図19】本発明の半導体装置の断面図。

【図20】従来の半導体装置に用いる半導体基板の部分平面図。

【図21】図20の半導体基板の部分断面図。

【符号の説明】

1、13半導体基板2、4、8絶縁膜3、31、32接続配線5、51、52端子

6 インダクタンス

7、9、91、92、101、102、121 電極パッド

10 金属薄層

11 キャパシタ電極

12 金属配線層

14 リード配線

15 ボンディングワイヤ

16 ポリイミドフィルム

17、23 リード

19、191、192 デバイスホール

21 絶縁フィルム

22、221、222 ベッド部

24 接地リード

25 モールド樹脂

26 TABテープ

41、81 コンタクト孔

40 103 接続電極

104 金属層

【図12】

【図13】

DEST AVAILABLE COPY

[図7]

[図8]

【図9】

【図10】

【図15】

【図17】

【図18】

DEST AVAILABLE COPY

【図21】

【手続補正書】 【提出日】平成5年7月29日 【手続補正1】 【補正対象書類名】図面

【図1】

【図12】

*【補正対象項目名】全図 【補正方法】変更

* 【補正内容】

※ 【図2】

【図16】

※ 【図5】

best AVAILABLE COPY

BEST AVAILABLE COPY

【図10】

【図14】

【図17】

【図19】

【図11】

※ 【図15】

★ 【図18】

【図20】

BEST AVAILABLE COPY

【図21】

