

CFRM 410: Probability and Statistics for Computational Finance

Week 6 Distributions

Jake Price

Instructor, Computational Finance and Risk Management University of Washington Slides originally produced by Kjell Konis

Outline

Utility

Lotteries and Risk Aversion Certainty Equivalent

Discrete Distributions

Bernoulli Trial Binomial Distribution Poisson Distribution

Continuous Distributions

Uniform Distribution Normal Distribution χ^2 Distribution t Distribution

Value at Risk

Statistical Definition of VaR

Expected Utility Framework

- ▶ W₀: Initial wealth (considered fixed)
- ▶ W: End of period wealth (considered random)
- ightharpoonup U(w): Utility function
- ightharpoonup E[U(W)]: Expected Utility

Setup

- Consider a single period, with investment decisions made at the beginning and returns received at the end
- Key Assumption: investors seek to maximize end-of-period expected utility

Basic Properties

- Used only to rank investments
 - Utility functions are invariant under positive affine transformations
- ▶ If U_1 and U_2 are related by

$$U_2 = aU_1 + b$$
 $a > 0$

then U_1 and U_2 are equivalent $\implies U_1 \sim U_2$

 Intuition: rank investments by utility, so only the order, not the absolute level, is important

Key Assumptions

- 1. Investors prefer more to less
- 2. Investors are never satisfied $\implies U(w)$ is a strictly increasing function of wealth w

$$U(x) > U(y)$$
 when $x > y$

Play the Lotto

Lottery: an asset that has a risky payoff

- ▶ Initial wealth: W₀
- An investor with utility function U(W) considers a lottery with payoffs h_i , i = 1, 2
- End of period wealth

$$W = egin{cases} W_0 + h_1 & ext{with probability } p \ W_0 + h_2 & ext{with probability } 1 - p \end{cases}$$

Expected utility from participating in the lottery

$$E[U(W)] = pU(W_0 + h_1) + (1 - p)U(W_0 + h_2)$$

Suppose that

$$h_1 = -|h_1| < 0$$
 $h_2 = |h_2| > 0$

Risk Aversion

If, for any admissible h_1 and h_2 , and for all $p \in (0,1)$, the utility function satisfies

$$U(p(W_0 - |h_1|) + (1 - p)(W_0 + |h_2|))$$

$$\geq pU(W_0 - |h_1|) + (1 - p)U(W_0 + |h_2|)$$

then the investor is risk averse

Typically "risk averse" for strict inequality >

Wealth

Risk Aversion

▶ Interpretation: if the investor were offered the lottery or a fixed payment of E[h], the investor would always take the fixed payment

$$U(E[W]) = U(W_0 - \underbrace{p|h_1| + (1-p)|h_2|}_{ ext{expected payoff}}) \ge E[U(W)]$$

In fact, a risk-averse investor would actually accept a payment less than the expected lottery payoff rather than participate in the lottery

- Mathematically, the utility function of a risk-averse investor is concave
- ▶ Jensen's Inequality: if U(w) is a concave function and W is a random variable, then

$$U(E[W]) \geq E[U(W)]$$

Certainty Equivalent

► For a risk-averse investor

$$U(E[W]) \geq E[U(W)]$$

- Question: what fixed payoff would the investor accept such that they are indifferent between participating in the lottery and accepting the payoff?
- ► Solve for *w_C*

$$U(w_C) = E(U(W)]$$

▶ Certainty Equivalent: the fixed level of wealth, w_C , offered to an investor that would make them indifferent to participating in the lottery or accepting the certainty equivalent wealth

Certainty Equivalent

▶ A risk-averse investor's certainty equivalent satisfies:

$$w_C \leq E[W]$$

Interpretation: a risk-averse investor would give up some expected value to avoid risk since they would be indifferent to receiving a fixed payoff less than that expected from the lottery, and actually participating in the lottery

Utility and Risk Preferences

Three Classficiations: Risk-Averse, Risk-Neutral, and Risk-Seeking

- Risk-Averse: utility function is concave
- ► Risk-Neutral: utility function is linear
- Risk-Seeking: utility function is strictly convex

Outline

Utility

Lotteries and Risk Aversion Certainty Equivalent

Discrete Distributions

Bernoulli Trial
Binomial Distribution
Poisson Distribution

Continuous Distributions

Uniform Distribution Normal Distribution χ^2 Distribution

Value at Risk

Statistical Definition of VaR

A discrete distribution is described by a probability mass function

$$f_X(x) = P(X = x)$$

and a support $S_X = \{x_1, x_2, \ldots\}$

A discrete distribution is described by a probability mass function

$$f_X(x) = P(X = x)$$

and a support $S_X = \{x_1, x_2, \ldots\}$

The expected value (expectation) of a discrete random variable is

$$E(X) = \sum_{x_i \in S_X} x_i f_X(x_i) = \sum_{x_i \in S_X} x_i P(X = x_i)$$

A discrete distribution is described by a probability mass function

$$f_X(x) = P(X = x)$$

and a support $S_X = \{x_1, x_2, \ldots\}$

The expected value (expectation) of a discrete random variable is

$$E(X) = \sum_{x_i \in S_X} x_i f_X(x_i) = \sum_{x_i \in S_X} x_i P(X = x_i)$$

The expected value of a function g of a discrete random variable is

$$E[g(X)] = \sum_{x_i \in S_X} g(x_i) f_X(x_i) = \sum_{x_i \in S_X} g(x_i) P(X = x_i)$$

A discrete distribution is described by a probability mass function

$$f_X(x) = P(X = x)$$

and a support $S_X = \{x_1, x_2, \ldots\}$

The expected value (expectation) of a discrete random variable is

$$\mathsf{E}(X) = \sum_{x_i \in S_X} x_i \, f_X(x_i) = \sum_{x_i \in S_X} x_i \, P(X = x_i)$$

The expected value of a function g of a discrete random variable is

$$E[g(X)] = \sum_{x_i \in S_X} g(x_i) f_X(x_i) = \sum_{x_i \in S_X} g(x_i) P(X = x_i)$$

The variance of a discrete random variable is

$$Var(X) = E[(X - E(X))^{2}] = \sum_{x_{i} \in S_{X}} [(x_{i} - E(X))^{2}] f_{X}(x_{i})$$

A Bernoulli random variable X takes values

$$X = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}$$

A Bernoulli random variable X takes values

$$X = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}$$

Notation: $X \sim \text{Bernoulli}(p)$ for $0 \le p \le 1$

A Bernoulli random variable X takes values

$$X = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}$$

Notation: $X \sim \mathsf{Bernoulli}(p)$ for $0 \le p \le 1$

X = 1 is often called a success; X = 0 a failure

A Bernoulli random variable X takes values

$$X = \begin{cases} 1 & \text{with probability } p \\ 0 & \text{with probability } 1 - p \end{cases}$$

Notation: $X \sim \text{Bernoulli}(p)$ for $0 \le p \le 1$

X = 1 is often called a success; X = 0 a failure

Probability mass function

$$f_X(x) = P(X = x) = \begin{cases} p & x = 1\\ 1 - p & x = 0 \end{cases}$$
 $x \in \{0, 1\}$

Expected value of $X \sim \text{Bernoulli}(p)$

$$\mathsf{E}(X) = \sum_{x_i \in S_X} x_i f_X(x_i)$$

Expected value of $X \sim \text{Bernoulli}(p)$

$$\mathsf{E}(X) = \sum_{x_i \in S_X} x_i f_X(x_i) = 1 \cdot f_X(1) = 0 \cdot (1-p) + 1 \cdot p = p$$

Expected value of $X \sim \text{Bernoulli}(p)$

$$E(X) = \sum_{x_i \in S_X} x_i f_X(x_i) = 1 \cdot f_X(1) = 0 \cdot (1-p) + 1 \cdot p = p$$

Need second moment to compute the variance

$$\mathsf{E}(X^2) = 0^2 \cdot f_X(0) + 1^2 \cdot f_X(1)$$

Expected value of $X \sim \text{Bernoulli}(p)$

$$E(X) = \sum_{x_i \in S_X} x_i f_X(x_i) = 1 \cdot f_X(1) = 0 \cdot (1-p) + 1 \cdot p = p$$

Need second moment to compute the variance

$$\mathsf{E}(X^2) = 0^2 \cdot f_X(0) + 1^2 \cdot f_X(1) = 0 \cdot (1-p) + 1 \cdot p = p$$

Expected value of $X \sim \text{Bernoulli}(p)$

$$\mathsf{E}(X) = \sum_{x_i \in S_X} x_i f_X(x_i) = 1 \cdot f_X(1) = 0 \cdot (1-p) + 1 \cdot p = p$$

Need second moment to compute the variance

$$\mathsf{E}(X^2) = 0^2 \cdot f_X(0) + 1^2 \cdot f_X(1) = 0 \cdot (1-p) + 1 \cdot p = p$$

Use the relation

$$\mathsf{Var}(X) = \mathsf{E}(X^2) - [\mathsf{E}(X)]^2$$

Expected value of $X \sim \text{Bernoulli}(p)$

$$\mathsf{E}(X) = \sum_{x_i \in S_X} x_i f_X(x_i) = 1 \cdot f_X(1) = 0 \cdot (1-p) + 1 \cdot p = p$$

Need second moment to compute the variance

$$\mathsf{E}(X^2) = 0^2 \cdot f_X(0) + 1^2 \cdot f_X(1) = 0 \cdot (1-p) + 1 \cdot p = p$$

Use the relation

$$Var(X) = E(X^2) - [E(X)]^2 = p - p^2 = p(1-p)$$

A Binomial random variable is the sum of a sequence of n independent Bernoulli trials

A Binomial random variable is the sum of a sequence of n independent Bernoulli trials

Each Bernoulli trial has the same probability parameter p

A Binomial random variable is the sum of a sequence of n independent Bernoulli trials

Each Bernoulli trial has the same probability parameter p

Probability mass function

$$f_X(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$
 for $x = 0, 1, ..., n$

zero otherwise

A Binomial random variable is the sum of a sequence of n independent Bernoulli trials

Each Bernoulli trial has the same probability parameter p

Probability mass function

$$f_X(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$
 for $x = 0, 1, ..., n$

zero otherwise

Interpret outcome as the number of successes in a sequence of n trials

A Binomial random variable is the sum of a sequence of n independent Bernoulli trials

Each Bernoulli trial has the same probability parameter p

Probability mass function

$$f_X(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$
 for $x = 0, 1, ..., n$

zero otherwise

Interpret outcome as the number of successes in a sequence of n trials

A binomial random variable X is denoted $X \sim \text{Binomial}(n, p)$

A Binomial random variable is the sum of a sequence of n independent Bernoulli trials

Each Bernoulli trial has the same probability parameter p

Probability mass function

$$f_X(x) = P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$$
 for $x = 0, 1, ..., n$

zero otherwise

Interpret outcome as the number of successes in a sequence of n trials

A binomial random variable X is denoted $X \sim \text{Binomial}(n, p)$

The random variable $X \sim \text{Binomial}(1, p)$ is a Bernoulli trial

Binomial Theorem

Theorem For any two real numbers x and y and for an integer $n \ge 0$

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

Binomial Theorem

Theorem For any two real numbers x and y and for an integer $n \ge 0$

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

Proof:
$$(x+y)^n = (x+y)(x+y)\cdots(x+y)$$

Binomial Theorem

Theorem For any two real numbers x and y and for an integer $n \ge 0$

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

Proof:
$$(x+y)^n = (x+y)(x+y)\cdots(x+y)$$

Let x = p and y = 1 - p then

$$1 = (p + (1 - p))^n = \sum_{i=0}^n \binom{n}{i} p^i (1 - p)^{n-i}$$

Binomial Theorem

Theorem For any two real numbers x and y and for an integer $n \ge 0$

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

Proof:
$$(x+y)^n = (x+y)(x+y)\cdots(x+y)$$

Let x = p and y = 1 - p then

$$1 = (p + (1 - p))^n = \sum_{i=0}^n \binom{n}{i} p^i (1 - p)^{n-i}$$

Also neat: let x = y = 1 then

$$2^n = \sum_{i=0}^n \binom{n}{i}$$

$$\mathsf{E}(X) = \sum_{x \in S_X} x \, f_X(x) = \sum_{x=0}^n x \, f_X(x) = \sum_{x=0}^n x \binom{n}{x} p^x (1-p)^{n-x}$$

$$E(X) = \sum_{x \in S_X} x f_X(x) = \sum_{x=0}^n x f_X(x) = \sum_{x=0}^n x \binom{n}{x} p^x (1-p)^{n-x}$$
$$= \sum_{x=1}^n x \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

$$E(X) = \sum_{x \in S_X} x f_X(x) = \sum_{x=0}^n x f_X(x) = \sum_{x=0}^n x \binom{n}{x} p^x (1-p)^{n-x}$$

$$= \sum_{x=1}^n x \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

$$= np \sum_{x=1}^n \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1} (1-p)^{n-x} \qquad \binom{u=x-1}{m=n-1}$$

$$E(X) = \sum_{x \in S_X} x f_X(x) = \sum_{x=0}^n x f_X(x) = \sum_{x=0}^n x \binom{n}{x} p^x (1-p)^{n-x}$$

$$= \sum_{x=1}^n x \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

$$= np \sum_{x=1}^n \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1} (1-p)^{n-x} \qquad \binom{u=x-1}{m=n-1}$$

$$= np \sum_{u=0}^{n-1} \frac{(n-1)!}{u![n-(u+1)]!} p^u (1-p)^{n-(u+1)}$$

$$E(X) = \sum_{x \in S_X} x f_X(x) = \sum_{x=0}^n x f_X(x) = \sum_{x=0}^n x \binom{n}{x} p^x (1-p)^{n-x}$$

$$= \sum_{x=1}^n x \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

$$= np \sum_{x=1}^n \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1} (1-p)^{n-x} \qquad \binom{u=x-1}{m=n-1}$$

$$= np \sum_{u=0}^{n-1} \frac{(n-1)!}{u![n-(u+1)]!} p^u (1-p)^{n-(u+1)}$$

$$= np \left[\sum_{u=0}^m \frac{m!}{u!(m-u)!} p^u (1-p)^{m-u} \right]$$

$$E(X) = \sum_{x \in S_X} x f_X(x) = \sum_{x=0}^n x f_X(x) = \sum_{x=0}^n x \binom{n}{x} p^x (1-p)^{n-x}$$

$$= \sum_{x=1}^n x \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

$$= np \sum_{x=1}^n \frac{(n-1)!}{(x-1)!(n-x)!} p^{x-1} (1-p)^{n-x} \qquad \binom{u=x-1}{m=n-1}$$

$$= np \sum_{u=0}^{n-1} \frac{(n-1)!}{u![n-(u+1)]!} p^u (1-p)^{n-(u+1)}$$

$$= np \left[\sum_{u=0}^m \frac{m!}{u!(m-u)!} p^u (1-p)^{m-u} \right] = np$$

$$E(X^2) = \sum_{x=0}^{n} x^2 \binom{n}{x} p^x (1-p)^{n-x}$$

$$E(X^{2}) = \sum_{x=0}^{n} x^{2} {n \choose x} p^{x} (1-p)^{n-x}$$

$$= n \sum_{x=1}^{n} x \frac{(n-1)!}{(x-1)!(n-x)!} p^{x} (1-p)^{n-x} \qquad (u = x-1)$$

$$E(X^{2}) = \sum_{x=0}^{n} x^{2} \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$= n \sum_{x=1}^{n} x \frac{(n-1)!}{(x-1)!(n-x)!} p^{x} (1-p)^{n-x} \qquad (u = x-1)$$

$$= n \sum_{x=1}^{n-1} (u+1) \frac{(n-1)!}{u!(n-1-u)!} p^{u+1} (1-p)^{n-1-u} \qquad (m = n-1)$$

$$E(X^{2}) = \sum_{x=0}^{n} x^{2} \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$= n \sum_{x=1}^{n} x \frac{(n-1)!}{(x-1)!(n-x)!} p^{x} (1-p)^{n-x} \qquad (u = x-1)$$

$$= n \sum_{u=0}^{n-1} (u+1) \frac{(n-1)!}{u!(n-1-u)!} p^{u+1} (1-p)^{n-1-u} \qquad (m = n-1)$$

$$= np \left[\sum_{u=0}^{m} u \binom{m}{u} p^{u} (1-p)^{m-u} \right]$$

$$E(X^{2}) = \sum_{x=0}^{n} x^{2} {n \choose x} p^{x} (1-p)^{n-x}$$

$$= n \sum_{x=1}^{n} x \frac{(n-1)!}{(x-1)!(n-x)!} p^{x} (1-p)^{n-x} \qquad (u = x-1)$$

$$= n \sum_{u=0}^{n-1} (u+1) \frac{(n-1)!}{u!(n-1-u)!} p^{u+1} (1-p)^{n-1-u} \qquad (m = n-1)$$

$$= np \left[\sum_{u=0}^{m} u {m \choose u} p^{u} (1-p)^{m-u} \right] + np \left[\sum_{u=0}^{m} {m \choose u} p^{u} (1-p)^{m-u} \right]$$

$$E(X^{2}) = \sum_{x=0}^{n} x^{2} \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$= n \sum_{x=1}^{n} x \frac{(n-1)!}{(x-1)!(n-x)!} p^{x} (1-p)^{n-x} \qquad (u = x-1)$$

$$= n \sum_{u=0}^{n-1} (u+1) \frac{(n-1)!}{u!(n-1-u)!} p^{u+1} (1-p)^{n-1-u} \qquad (m = n-1)$$

$$= np \left[\sum_{u=0}^{m} u \binom{m}{u} p^{u} (1-p)^{m-u} \right] + np \left[\sum_{u=0}^{m} \binom{m}{u} p^{u} (1-p)^{m-u} \right]$$

$$= np \cdot mp + np$$

$$E(X^{2}) = \sum_{x=0}^{n} x^{2} \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$= n \sum_{x=1}^{n} x \frac{(n-1)!}{(x-1)!(n-x)!} p^{x} (1-p)^{n-x} \qquad (u = x-1)$$

$$= n \sum_{u=0}^{n-1} (u+1) \frac{(n-1)!}{u!(n-1-u)!} p^{u+1} (1-p)^{n-1-u} \qquad (m = n-1)$$

$$= np \left[\sum_{u=0}^{m} u \binom{m}{u} p^{u} (1-p)^{m-u} \right] + np \left[\sum_{u=0}^{m} \binom{m}{u} p^{u} (1-p)^{m-u} \right]$$

$$= np \cdot mp + np = n(n-1)p^{2} + np$$

$$E(X^{2}) = \sum_{x=0}^{n} x^{2} \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$= n \sum_{x=1}^{n} x \frac{(n-1)!}{(x-1)!(n-x)!} p^{x} (1-p)^{n-x} \qquad (u = x-1)$$

$$= n \sum_{u=0}^{n-1} (u+1) \frac{(n-1)!}{u!(n-1-u)!} p^{u+1} (1-p)^{n-1-u} \qquad (m = n-1)$$

$$= np \left[\sum_{u=0}^{m} u \binom{m}{u} p^{u} (1-p)^{m-u} \right] + np \left[\sum_{u=0}^{m} \binom{m}{u} p^{u} (1-p)^{m-u} \right]$$

$$= np \cdot mp + np = n(n-1)p^{2} + np$$

$$Var X = E(X^{2}) - [E(X)]^{2} = n(n-1)p^{2} + np - (np)^{2} = np(1-p)$$

The Poisson distribution is used to model the number of occurrences in a given time interval

The Poisson distribution is used to model the number of occurrences in a given time interval $\,$

Parameter: intensity $\lambda \geq 0$

The Poisson distribution is used to model the number of occurrences in a given time interval

Parameter: intensity $\lambda \geq 0$

Probability mass function

$$f_X(x) = P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$
 for $x = 0, 1, \dots$

The Poisson distribution is used to model the number of occurrences in a given time interval

Parameter: intensity $\lambda \geq 0$

Probability mass function

$$f_X(x) = P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$$
 for $x = 0, 1, ...$

Hint: Taylor series expansion of e^x gives

$$e^{\lambda} = \sum_{i=0}^{\infty} \frac{\lambda^i}{i!}$$

Expected value of a random variable $X \sim \mathsf{Poisson}(\lambda)$

$$\mathsf{E}(X) = \sum_{x \in S_X} x \, f_X(x) = \sum_{x=0}^{\infty} x \frac{\lambda^x e^{-\lambda}}{x!}$$

Expected value of a random variable $X \sim \mathsf{Poisson}(\lambda)$

$$\mathsf{E}(X) = \sum_{x \in S_X} x \, f_X(x) = \sum_{x=0}^{\infty} x \frac{\lambda^x e^{-\lambda}}{x!} = \sum_{x=1}^{\infty} x \frac{\lambda^x e^{-\lambda}}{x!}$$

Expected value of a random variable $X \sim \text{Poisson}(\lambda)$

$$E(X) = \sum_{x \in S_X} x f_X(x) = \sum_{x=0}^{\infty} x \frac{\lambda^x e^{-\lambda}}{x!} = \sum_{x=1}^{\infty} x \frac{\lambda^x e^{-\lambda}}{x!}$$
$$= \lambda \sum_{x=1}^{\infty} \frac{\lambda^{(x-1)} e^{-\lambda}}{(x-1)!} \qquad (u = x - 1)$$

Expected value of a random variable $X \sim \mathsf{Poisson}(\lambda)$

$$E(X) = \sum_{x \in S_X} x f_X(x) = \sum_{x=0}^{\infty} x \frac{\lambda^x e^{-\lambda}}{x!} = \sum_{x=1}^{\infty} x \frac{\lambda^x e^{-\lambda}}{x!}$$
$$= \lambda \sum_{x=1}^{\infty} \frac{\lambda^{(x-1)} e^{-\lambda}}{(x-1)!}$$
$$= \lambda \sum_{u=0}^{\infty} \frac{\lambda^u e^{-\lambda}}{u!}$$
$$(u = x - 1)$$

Expected value of a random variable $X \sim \text{Poisson}(\lambda)$

$$E(X) = \sum_{x \in S_X} x f_X(x) = \sum_{x=0}^{\infty} x \frac{\lambda^x e^{-\lambda}}{x!} = \sum_{x=1}^{\infty} x \frac{\lambda^x e^{-\lambda}}{x!}$$

$$= \lambda \sum_{x=1}^{\infty} \frac{\lambda^{(x-1)} e^{-\lambda}}{(x-1)!}$$

$$= \lambda \sum_{u=0}^{\infty} \frac{\lambda^u e^{-\lambda}}{u!}$$

$$= \lambda$$

$$E(X^2) = \sum_{x=0}^{\infty} x^2 \frac{\lambda^x e^{-\lambda}}{x!}$$

$$E(X^{2}) = \sum_{x=0}^{\infty} x^{2} \frac{\lambda^{x} e^{-\lambda}}{x!}$$

$$= \lambda \sum_{u=0}^{\infty} (1+u) \frac{\lambda^{u} e^{-\lambda}}{u!}$$

$$(u = x - 1)$$

$$E(X^{2}) = \sum_{x=0}^{\infty} x^{2} \frac{\lambda^{x} e^{-\lambda}}{x!}$$

$$= \lambda \sum_{u=0}^{\infty} (1+u) \frac{\lambda^{u} e^{-\lambda}}{u!}$$

$$= \lambda \left[\sum_{u=0}^{\infty} \frac{\lambda^{u} e^{-\lambda}}{u!} + \sum_{u=0}^{\infty} u \frac{\lambda^{u} e^{-\lambda}}{u!} \right]$$

$$(u = x - 1)$$

$$E(X^{2}) = \sum_{x=0}^{\infty} x^{2} \frac{\lambda^{x} e^{-\lambda}}{x!}$$

$$= \lambda \sum_{u=0}^{\infty} (1+u) \frac{\lambda^{u} e^{-\lambda}}{u!}$$

$$= \lambda \left[\sum_{u=0}^{\infty} \frac{\lambda^{u} e^{-\lambda}}{u!} + \sum_{u=0}^{\infty} u \frac{\lambda^{u} e^{-\lambda}}{u!} \right]$$

$$= \lambda \left[1 + \lambda \right]$$

$$(u = x - 1)$$

$$E(X^{2}) = \sum_{x=0}^{\infty} x^{2} \frac{\lambda^{x} e^{-\lambda}}{x!}$$

$$= \lambda \sum_{u=0}^{\infty} (1+u) \frac{\lambda^{u} e^{-\lambda}}{u!} \qquad (u = x - 1)$$

$$= \lambda \left[\sum_{u=0}^{\infty} \frac{\lambda^{u} e^{-\lambda}}{u!} + \sum_{u=0}^{\infty} u \frac{\lambda^{u} e^{-\lambda}}{u!} \right]$$

$$= \lambda \left[1 + \lambda \right]$$

$$Var X = E(X^{2}) - \left[E(X) \right]^{2} = \lambda \left[1 + \lambda \right] - (\lambda)^{2} = \lambda$$

Outline

Utility

Lotteries and Risk Aversion Certainty Equivalent

Discrete Distributions

Bernoulli Trial Binomial Distribution Poisson Distribution

Continuous Distributions

Uniform Distribution Normal Distribution χ^2 Distribution t Distribution

Value at Risk

Statistical Definition of VaR

Described by a probability density function $f_X(x)$ satisfying

$$P(X \le x) = F_X(x) = \int_{-\infty}^x f_X(t) dt$$

Described by a probability density function $f_X(x)$ satisfying

$$P(X \le x) = F_X(x) = \int_{-\infty}^x f_X(t) dt$$

The support S_X is the set of points X satisfying $f_X(x) > 0$

Described by a probability density function $f_X(x)$ satisfying

$$P(X \le x) = F_X(x) = \int_{-\infty}^x f_X(t) dt$$

The support S_X is the set of points X satisfying $f_X(x) > 0$

The expected value (expectation) of a continuous random variable is

$$\mathsf{E}(X) = \int_{-\infty}^{\infty} x \, f_X(x) \, dx = \int_{S_X} x \, f_X(x) \, dx$$

Described by a probability density function $f_X(x)$ satisfying

$$P(X \le x) = F_X(x) = \int_{-\infty}^x f_X(t) dt$$

The support S_X is the set of points X satisfying $f_X(x) > 0$

The expected value (expectation) of a continuous random variable is

$$\mathsf{E}(X) = \int_{-\infty}^{\infty} x \, f_X(x) \, dx = \int_{\mathcal{S}_X} x \, f_X(x) \, dx$$

The expected value of a function of a continuous random variable is

$$\mathsf{E}\big[g(X)\big] = \int_{-\infty}^{\infty} g(x) \, f_X(x) \, dx = \int_{S_X} g(x) \, f_X(x) \, dx$$

Described by a probability density function $f_X(x)$ satisfying

$$P(X \le x) = F_X(x) = \int_{-\infty}^x f_X(t) dt$$

The support S_X is the set of points X satisfying $f_X(x) > 0$

The expected value (expectation) of a continuous random variable is

$$\mathsf{E}(X) = \int_{-\infty}^{\infty} x \, f_X(x) \, dx = \int_{\mathcal{S}_X} x \, f_X(x) \, dx$$

The expected value of a function of a continuous random variable is

$$\mathsf{E}\big[g(X)\big] = \int_{-\infty}^{\infty} g(x) \, f_X(x) \, dx = \int_{S_X} g(x) \, f_X(x) \, dx$$

The variance of a continuous random variable is

$$Var(X) = E[(X - E(X))^2] = \int_{-\infty}^{\infty} [x - E(X)]^2 f_X(x) dx$$

Uniform Distribution

A uniform random variable distributes the mass of the distribution evenly over an interval

A uniform random variable distributes the mass of the distribution evenly over an interval

Notation: $X \sim uniform(a, b)$

A uniform random variable distributes the mass of the distribution evenly over an interval

Notation: $X \sim uniform(a, b)$

 \hookrightarrow distributes the mass uniformly over the interval [a,b]

A uniform random variable distributes the mass of the distribution evenly over an interval

Notation: $X \sim uniform(a, b)$

 \hookrightarrow distributes the mass uniformly over the interval [a,b]

Probability density function

$$f_X(x|a,b) = \begin{cases} \frac{1}{b-a} & a \le x \le b\\ 0 & \text{otherwise.} \end{cases}$$

A uniform random variable distributes the mass of the distribution evenly over an interval

Notation: $X \sim uniform(a, b)$

 \hookrightarrow distributes the mass uniformly over the interval [a,b]

Probability density function

$$f_X(x|a,b) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{otherwise.} \end{cases}$$

Uniform Distribution (cumulative distribution function)

Cumulative distribution function of a uniform(a, b) random variable

$$F_X(x|a,b) = \int_{-\infty}^x f_X(t|a,b) dt = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

Uniform Distribution (cumulative distribution function)

Cumulative distribution function of a uniform(a, b) random variable

$$F_X(x|a,b) = \int_{-\infty}^x f_X(t|a,b) dt = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

$$\mathsf{E}(X) = \int_{-\infty}^{\infty} x \, f_X(x|a,b) \, dx$$

$$E(X) = \int_{-\infty}^{\infty} x f_X(x|a, b) dx$$
$$= \int_{a}^{b} \frac{x}{b-a} dx$$

$$E(X) = \int_{-\infty}^{\infty} x f_X(x|a, b) dx$$
$$= \int_{a}^{b} \frac{x}{b - a} dx$$
$$= \frac{x^2}{2(b - a)} \Big|_{a}^{b}$$

$$E(X) = \int_{-\infty}^{\infty} x f_X(x|a, b) dx$$
$$= \int_{a}^{b} \frac{x}{b-a} dx$$
$$= \frac{x^2}{2(b-a)} \Big|_{a}^{b}$$
$$= \frac{b^2 - a^2}{2(b-a)}$$

$$E(X) = \int_{-\infty}^{\infty} x f_X(x|a, b) dx$$

$$= \int_{a}^{b} \frac{x}{b-a} dx$$

$$= \frac{x^2}{2(b-a)} \Big|_{a}^{b}$$

$$= \frac{b^2 - a^2}{2(b-a)}$$

$$= \frac{(b+a)(b-a)}{2(b-a)}$$

$$E(X) = \int_{-\infty}^{\infty} x f_X(x|a, b) dx$$

$$= \int_{a}^{b} \frac{x}{b-a} dx$$

$$= \frac{x^2}{2(b-a)} \Big|_{a}^{b}$$

$$= \frac{b^2 - a^2}{2(b-a)}$$

$$= \frac{(b+a)(b-a)}{2(b-a)}$$

$$= \frac{b+a}{2}$$

$$E(X^2) = \int_{-\infty}^{\infty} x^2 f_X(x|a,b) dx = \int_a^b \frac{x^2}{b-a} dx$$

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f_{X}(x|a,b) dx = \int_{a}^{b} \frac{x^{2}}{b-a} dx$$
$$= \frac{x^{3}}{3(b-a)} \Big|_{a}^{b} = \frac{b^{3}-a^{3}}{3(b-a)} = \frac{(b-a)(b^{2}+ab+a^{2})}{3(b-a)}$$

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f_{X}(x|a,b) dx = \int_{a}^{b} \frac{x^{2}}{b-a} dx$$
$$= \frac{x^{3}}{3(b-a)} \Big|_{a}^{b} = \frac{b^{3}-a^{3}}{3(b-a)} = \frac{(b-a)(b^{2}+ab+a^{2})}{3(b-a)}$$

$$Var(X) = E(X^2) - [E(X)]^2 = \frac{(b^2 + ab + a^2)}{3} - \frac{(b+a)^2}{4}$$

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f_{X}(x|a,b) dx = \int_{a}^{b} \frac{x^{2}}{b-a} dx$$
$$= \frac{x^{3}}{3(b-a)} \Big|_{a}^{b} = \frac{b^{3}-a^{3}}{3(b-a)} = \frac{(b-a)(b^{2}+ab+a^{2})}{3(b-a)}$$

$$Var(X) = E(X^2) - [E(X)]^2 = \frac{(b^2 + ab + a^2)}{3} - \frac{(b+a)^2}{4}$$
$$= \frac{4b^2 + 4ab + 4a^2 - 3b^2 - 6ab - 3a^2}{12}$$

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f_{X}(x|a,b) dx = \int_{a}^{b} \frac{x^{2}}{b-a} dx$$
$$= \frac{x^{3}}{3(b-a)} \Big|_{a}^{b} = \frac{b^{3}-a^{3}}{3(b-a)} = \frac{(b-a)(b^{2}+ab+a^{2})}{3(b-a)}$$

$$Var(X) = E(X^{2}) - [E(X)]^{2} = \frac{(b^{2} + ab + a^{2})}{3} - \frac{(b + a)^{2}}{4}$$

$$= \frac{4b^{2} + 4ab + 4a^{2} - 3b^{2} - 6ab - 3a^{2}}{12}$$

$$= \frac{b^{2} - 2ab + a^{2}}{12} = \frac{(b - a)^{2}}{12}$$

Normal Distribution (probability density function)

A random variable $X \sim \mathcal{N}(\mu, \sigma^2)$ has probability density function

$$f_X(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{\frac{-(x-\mu)^2}{2\sigma^2}\right\} \qquad -\infty < x < \infty$$

Normal Distribution (probability density function)

A random variable $X \sim \mathcal{N}(\mu, \sigma^2)$ has probability density function

$$f_X(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{\frac{-(x-\mu)^2}{2\sigma^2}\right\} \qquad -\infty < x < \infty$$

Parameterized by the mean $-\infty < \mu < \infty$ and variance $\sigma^2 > 0$

Normal Distribution (probability density function)

A random variable $X \sim \mathcal{N}(\mu, \sigma^2)$ has probability density function

$$f_X(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{\frac{-(x-\mu)^2}{2\sigma^2}\right\} \qquad -\infty < x < \infty$$

Parameterized by the mean $-\infty < \mu < \infty$ and variance $\sigma^2 > 0$

Cumulative Distribution Function (Normal Distribution)

Normal cumulative distribution function

$$F_X(x|\mu,\sigma^2) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{\frac{-(x-\mu)^2}{2\sigma^2}\right\} dx$$

Cumulative Distribution Function (Normal Distribution)

Normal cumulative distribution function

$$F_X(x|\mu,\sigma^2) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{\frac{-(x-\mu)^2}{2\sigma^2}\right\} dx$$

No closed-form expression for $F_X(x|\mu,\sigma^2)$

Cumulative Distribution Function (Normal Distribution)

Normal cumulative distribution function

$$F_X(x|\mu,\sigma^2) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{\frac{-(x-\mu)^2}{2\sigma^2}\right\} dx$$

No closed-form expression for $F_X(x|\mu,\sigma^2)$

The normal distribution is a location-scale distribution

The normal distribution is a location-scale distribution

▶ The mean μ is a *location* parameter

The normal distribution is a location-scale distribution

- ▶ The mean μ is a *location* parameter
- ▶ The standard deviation σ is a *scale* parameter

The normal distribution is a location-scale distribution

- ▶ The mean μ is a *location* parameter
- ▶ The standard deviation σ is a *scale* parameter

Let
$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$$Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

where $\mathcal{N}(0,1)$ is called the *standard normal* distribution

The normal distribution is a location-scale distribution

- ▶ The mean μ is a *location* parameter
- ▶ The standard deviation σ is a *scale* parameter

Let
$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$$Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$$

where $\mathcal{N}(0,1)$ is called the *standard normal* distribution

Probability that $X \sim \mathcal{N}(\mu, \sigma^2)$ falls in the interval [a, b]

$$P(a \le X \le b) = P\left(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$

where $\Phi(x) = F_Z(z \mid 0, 1)$ is the standard normal cdf

$$\mathsf{E}(X) = \int_{-\infty}^{\infty} x \, \frac{1}{\sqrt{2\pi}\sigma} \exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right] \, dx \qquad \left(|\mathsf{et} \, z = \frac{x-\mu}{\sigma}\right)$$

$$E(X) = \int_{-\infty}^{\infty} x \, \frac{1}{\sqrt{2\pi}\sigma} \exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right] dx \qquad \left(\text{let } z = \frac{x-\mu}{\sigma}\right)$$
$$= \int_{-\infty}^{\infty} (\mu + \sigma z) \, \frac{1}{\sqrt{2\pi}} \exp\left[\frac{-z^2}{2}\right] dz$$

$$E(X) = \int_{-\infty}^{\infty} x \, \frac{1}{\sqrt{2\pi}\sigma} \exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right] dx \qquad \left(\text{let } z = \frac{x-\mu}{\sigma}\right)$$

$$= \int_{-\infty}^{\infty} (\mu + \sigma z) \, \frac{1}{\sqrt{2\pi}} \exp\left[\frac{-z^2}{2}\right] dz$$

$$= \mu \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left[\frac{-z^2}{2}\right] dz + \int_{-\infty}^{\infty} \frac{\sigma z}{\sqrt{2\pi}} \exp\left[\frac{-z^2}{2}\right] dz$$

$$E(X) = \int_{-\infty}^{\infty} x \, \frac{1}{\sqrt{2\pi}\sigma} \exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right] dx \qquad \left(\text{let } z = \frac{x-\mu}{\sigma}\right)$$

$$= \int_{-\infty}^{\infty} (\mu + \sigma z) \, \frac{1}{\sqrt{2\pi}} \exp\left[\frac{-z^2}{2}\right] dz$$

$$= \mu \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left[\frac{-z^2}{2}\right] dz + \int_{-\infty}^{\infty} \frac{\sigma z}{\sqrt{2\pi}} \exp\left[\frac{-z^2}{2}\right] dz$$

$$= \mu + \int_{-\infty}^{\infty} \frac{\sigma z}{\sqrt{2\pi}} \exp\left[\frac{-z^2}{2}\right] dz \qquad (\text{let } v = -z^2/2)$$

$$\begin{split} \mathsf{E}(X) &= \int_{-\infty}^{\infty} x \, \frac{1}{\sqrt{2\pi}\sigma} \exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right] \, dx \qquad \left(\det z = \frac{x-\mu}{\sigma} \right) \\ &= \int_{-\infty}^{\infty} (\mu + \sigma z) \, \frac{1}{\sqrt{2\pi}} \exp\left[\frac{-z^2}{2}\right] \, dz \\ &= \mu \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left[\frac{-z^2}{2}\right] \, dz + \int_{-\infty}^{\infty} \frac{\sigma z}{\sqrt{2\pi}} \exp\left[\frac{-z^2}{2}\right] \, dz \\ &= \mu + \int_{-\infty}^{\infty} \frac{\sigma z}{\sqrt{2\pi}} \exp\left[\frac{-z^2}{2}\right] \, dz \qquad (|\det v = -z^2/2) \\ &= \mu + \int_{z=-\infty}^{z=\infty} \frac{-1}{z} \frac{z}{\sqrt{2\pi}} \, e^{v} \, dv \end{split}$$

Normal Distribution (expected value)

$$= \mu + \frac{-1}{\sqrt{2\pi}} \int_{z=-\infty}^{z=\infty} e^{v} dv$$

Normal Distribution (expected value)

$$= \mu + \frac{-1}{\sqrt{2\pi}} \int_{z=-\infty}^{z=\infty} e^{v} dv$$
$$= \mu + \frac{-1}{\sqrt{2\pi}} e^{v} \Big|_{z=-\infty}^{z=\infty}$$

Normal Distribution (expected value)

$$= \mu + \frac{-1}{\sqrt{2\pi}} \int_{z=-\infty}^{z=\infty} e^{v} dv$$

$$= \mu + \frac{-1}{\sqrt{2\pi}} e^{v} \Big|_{z=-\infty}^{z=\infty}$$

$$= \mu + \frac{-1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} \Big|_{z=-\infty}^{z=\infty}$$

Normal Distribution (expected value)

$$= \mu + \frac{-1}{\sqrt{2\pi}} \int_{z=-\infty}^{z=\infty} e^{v} dv$$

$$= \mu + \frac{-1}{\sqrt{2\pi}} e^{v} \Big|_{z=-\infty}^{z=\infty}$$

$$= \mu + \frac{-1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} \Big|_{z=-\infty}^{z=\infty}$$

$$= \mu + \frac{-1}{\sqrt{2\pi}} (0 - 0)$$

Normal Distribution (expected value)

$$= \mu + \frac{-1}{\sqrt{2\pi}} \int_{z=-\infty}^{z=\infty} e^{v} dv$$

$$= \mu + \frac{-1}{\sqrt{2\pi}} e^{v} \Big|_{z=-\infty}^{z=\infty}$$

$$= \mu + \frac{-1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} \Big|_{z=-\infty}^{z=\infty}$$

$$= \mu + \frac{-1}{\sqrt{2\pi}} (0 - 0)$$

$$= \mu$$

$$\mathsf{E}(X)^2 = \int_{-\infty}^{\infty} x^2 \, \frac{1}{\sqrt{2\pi}\sigma} \exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right] \, dx \qquad \left(|\mathsf{et} \, z = \frac{x-\mu}{\sigma}\right)$$

$$E(X)^{2} = \int_{-\infty}^{\infty} x^{2} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[\frac{-(x-\mu)^{2}}{2\sigma^{2}}\right] dx \qquad \left(\text{let } z = \frac{x-\mu}{\sigma}\right)$$
$$= \int_{-\infty}^{\infty} (\mu + \sigma z)^{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz$$

$$E(X)^{2} = \int_{-\infty}^{\infty} x^{2} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[\frac{-(x-\mu)^{2}}{2\sigma^{2}}\right] dx \qquad \left(\text{let } z = \frac{x-\mu}{\sigma}\right)$$

$$= \int_{-\infty}^{\infty} (\mu + \sigma z)^{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz$$

$$= \int_{-\infty}^{\infty} (\mu^{2} + 2\mu\sigma z + \sigma^{2}z^{2}) \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz$$

$$E(X)^{2} = \int_{-\infty}^{\infty} x^{2} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[\frac{-(x-\mu)^{2}}{2\sigma^{2}}\right] dx \qquad \left(\text{let } z = \frac{x-\mu}{\sigma}\right)$$

$$= \int_{-\infty}^{\infty} (\mu + \sigma z)^{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz$$

$$= \int_{-\infty}^{\infty} (\mu^{2} + 2\mu\sigma z + \sigma^{2}z^{2}) \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz$$

$$= \mu^{2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz + \mu\sigma \int_{-\infty}^{\infty} \frac{z}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz$$

$$+ \sigma^{2} \int_{-\infty}^{\infty} \frac{z^{2}}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz$$

$$\begin{split} \mathsf{E}(X)^2 &= \int_{-\infty}^{\infty} x^2 \, \frac{1}{\sqrt{2\pi}\sigma} \exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right] \, dx \qquad \left(\det z = \frac{x-\mu}{\sigma} \right) \\ &= \int_{-\infty}^{\infty} (\mu + \sigma z)^2 \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \, dz \\ &= \int_{-\infty}^{\infty} (\mu^2 + 2\mu\sigma z + \sigma^2 z^2) \, \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \, dz \\ &= \mu^2 \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \, dz + \mu\sigma \int_{-\infty}^{\infty} \frac{z}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \, dz \\ &+ \sigma^2 \int_{-\infty}^{\infty} \frac{z^2}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \, dz \\ &= \mu^2 + \mu\sigma \, \mathsf{E}(Z) + \sigma^2 \int_{-\infty}^{\infty} \frac{z^2}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \, dz \end{split}$$

Integration By Parts

$$= \mu^2 + \sigma^2 \int_{-\infty}^{\infty} \frac{z^2}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

Integration By Parts

$$= \mu^2 + \sigma^2 \int_{-\infty}^{\infty} \frac{z^2}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

Integration by parts:

$$\int u \ dv = uv - \int v \ du$$

Integration By Parts

$$= \mu^2 + \sigma^2 \int_{-\infty}^{\infty} \frac{z^2}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$$

Integration by parts:

$$\int u \ dv = uv - \int v \ du$$

Let
$$u = \frac{z}{\sqrt{2\pi}}$$
 \rightarrow $du = \frac{1}{\sqrt{2\pi}} dz$

Let
$$v = -e^{-\frac{z^2}{2}}$$
 \rightarrow $dv = z e^{-\frac{z^2}{2}} dz$

$$= \mu^2 + \sigma^2 \left[\int_{-\infty}^{\infty} \frac{-z}{\sqrt{2\pi}} \left(-z e^{-\frac{z^2}{2}} \right) dz \right]$$

$$= \mu^{2} + \sigma^{2} \left[\int_{-\infty}^{\infty} \frac{-z}{\sqrt{2\pi}} \left(-ze^{-\frac{z^{2}}{2}} \right) dz \right]$$

$$= \mu^{2} + \sigma^{2} \left[\frac{-z}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} \right]_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz \right]$$

$$= \mu^{2} + \sigma^{2} \left[\int_{-\infty}^{\infty} \frac{-z}{\sqrt{2\pi}} \left(-ze^{-\frac{z^{2}}{2}} \right) dz \right]$$

$$= \mu^{2} + \sigma^{2} \left[\frac{-z}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} \right]_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz \right]$$

$$= \mu^{2} + \sigma^{2} [0 + 1]$$

$$= \mu^{2} + \sigma^{2} \left[\int_{-\infty}^{\infty} \frac{-z}{\sqrt{2\pi}} \left(-ze^{-\frac{z^{2}}{2}} \right) dz \right]$$

$$= \mu^{2} + \sigma^{2} \left[\frac{-z}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} \right]_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz \right]$$

$$= \mu^{2} + \sigma^{2} [0 + 1]$$

$$= \mu^{2} + \sigma^{2}$$

$$= \mu^{2} + \sigma^{2} \left[\int_{-\infty}^{\infty} \frac{-z}{\sqrt{2\pi}} \left(-ze^{-\frac{z^{2}}{2}} \right) dz \right]$$

$$= \mu^{2} + \sigma^{2} \left[\frac{-z}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} \right]_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz \right]$$

$$= \mu^{2} + \sigma^{2} [0 + 1]$$

$$= \mu^{2} + \sigma^{2}$$

$$Var(X) = E(X^2) - [E(X)]^2 = \mu^2 + \sigma^2 - (\mu)^2$$

$$= \mu^{2} + \sigma^{2} \left[\int_{-\infty}^{\infty} \frac{-z}{\sqrt{2\pi}} \left(-ze^{-\frac{z^{2}}{2}} \right) dz \right]$$

$$= \mu^{2} + \sigma^{2} \left[\frac{-z}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} \right]_{-\infty}^{\infty} + \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^{2}}{2}} dz \right]$$

$$= \mu^{2} + \sigma^{2} [0 + 1]$$

$$= \mu^{2} + \sigma^{2}$$

Var(X) =
$$E(X^2) - [E(X)]^2 = \mu^2 + \sigma^2 - (\mu)^2$$

= σ^2

Higher Moments (Normal Distribution)

First 4 moments and central moments

k	<i>kth</i> moment	k th central moment
1	μ	0
2	$\mu^2 + \sigma^2$	σ^2
3	$\mu^3 + 3\mu\sigma^2$	0
4	$\mu^4 + 6\mu^2\sigma^2 + 3\sigma^4$	$3\sigma^4$

Higher Moments (Normal Distribution)

First 4 moments and central moments

k	<i>kth</i> moment	k th central moment
1	μ	0
2	$\mu^2 + \sigma^2$	σ^2
3	$\mu^3 + 3\mu\sigma^2$	0
4	$\mu^3 + 3\mu\sigma^2$ $\mu^4 + 6\mu^2\sigma^2 + 3\sigma^4$	$3\sigma^4$

Coefficient of skewness:
$$\alpha_3 = \frac{\mu_3}{(\mu_2)^{3/2}} = \frac{0}{\sigma^3} = 0$$

Higher Moments (Normal Distribution)

First 4 moments and central moments

k	k^{th} moment	<i>k</i> th central moment
1	μ	0
2	$\mu^2 + \sigma^2$	σ^2
3	$\mu^3 + 3\mu\sigma^2$	0
4	$\mu^3 + 3\mu\sigma^2$ $\mu^4 + 6\mu^2\sigma^2 + 3\sigma^4$	$3\sigma^4$

Coefficient of skewness:
$$\alpha_3 = \frac{\mu_3}{(\mu_2)^{3/2}} = \frac{0}{\sigma^3} = 0$$

Coefficient of kurtosis:
$$\alpha_4 = \frac{\mu_4}{(\mu_2)^2} = \frac{3\sigma^4}{\sigma^4} = 3$$

Let $Z_i \sim \mathcal{N}(0,1)$ for $i=1,2,\dots p$

Let $Z_i \sim \mathcal{N}(0,1)$ for $i=1,2,\ldots p$

The $\{Z_i\}$ must be independent

Let $Z_i \sim \mathcal{N}(0,1)$ for $i = 1, 2, \dots p$

The $\{Z_i\}$ must be independent

The random variable

$$X = \sum_{i=1}^{p} Z_i^2$$

has a χ_p^2 distribution (read: chi-squared on p degrees of freedom)

Let
$$Z_i \sim \mathcal{N}(0,1)$$
 for $i = 1, 2, \dots p$

The $\{Z_i\}$ must be independent

The random variable

$$X = \sum_{i=1}^{p} Z_i^2$$

has a χ_p^2 distribution (read: chi-squared on p degrees of freedom)

Hint: The Γ (gamma) function is defined to be

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt$$

and has the property that for integer n > 0

$$\Gamma(n) = (n-1)!$$

Probability Density Function (χ^2 Distribution)

A random variable $X \sim \chi_p^2$ has probability density function

$$f_X(x|p) = \frac{1}{\Gamma(\frac{p}{2})2^{\frac{p}{2}}}x^{(\frac{p}{2})-1}e^{-\frac{x}{2}} \qquad 0 \le x < \infty$$

Probability Density Function (χ^2 Distribution)

A random variable $X \sim \chi_p^2$ has probability density function

$$f_X(x|p) = \frac{1}{\Gamma(\frac{p}{2})2^{\frac{p}{2}}}x^{(\frac{p}{2})-1}e^{-\frac{x}{2}} \qquad 0 \le x < \infty$$

Parameterized by the degrees of freedom p > 0

Probability Density Function (χ^2 Distribution)

A random variable $X \sim \chi_p^2$ has probability density function

$$f_X(x|p) = \frac{1}{\Gamma(\frac{p}{2})2^{\frac{p}{2}}}x^{(\frac{p}{2})-1}e^{-\frac{x}{2}} \qquad 0 \le x < \infty$$

Parameterized by the degrees of freedom p > 0

Let $X \sim \chi_p^2$

Let $X \sim \chi_p^2$

▶ The expected value of X is E(X) = p

Let $X \sim \chi_p^2$

- ▶ The expected value of X is E(X) = p
- ▶ The variance of X is Var(X) = 2p

Let $X \sim \chi_p^2$

- ▶ The expected value of X is E(X) = p
- ▶ The variance of X is Var(X) = 2p

t Distribution

Let $X \sim \mathcal{N}(0,1)$

t Distribution

Let $X \sim \mathcal{N}(0,1)$

Let $Y \sim \chi_p^2$

t Distribution

Let
$$X \sim \mathcal{N}(0,1)$$

Let
$$Y \sim \chi_p^2$$

Then the random variable

$$T = \frac{X}{Y}$$

has a t distribution with p degrees of freedom

Probability Density Function (t Distribution)

A random variable $X \sim t_p$ has probability density function

$$f_X(x|p) = \frac{\Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{\sqrt{p\pi}} \frac{1}{\left(1 + \left(\frac{x^2}{p}\right)\right)^{(p+1)/2}} - \infty < x < \infty$$

Probability Density Function (t Distribution)

A random variable $X \sim t_p$ has probability density function

$$f_X(x|p) = \frac{\Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{\sqrt{p\pi}} \frac{1}{\left(1 + \left(\frac{x^2}{p}\right)\right)^{(p+1)/2}} - \infty < x < \infty$$

Parameterized by the degrees of freedom p > 0

Probability Density Function (t Distribution)

A random variable $X \sim t_p$ has probability density function

$$f_X(x|p) = \frac{\Gamma\left(\frac{p+1}{2}\right)}{\Gamma\left(\frac{p}{2}\right)} \frac{1}{\sqrt{p\pi}} \frac{1}{\left(1 + \left(\frac{x^2}{p}\right)\right)^{(p+1)/2}} - \infty < x < \infty$$

Parameterized by the degrees of freedom p > 0

Let $X \sim t_p$

Let $X \sim t_p$

▶ the expected value of X is E(X) = 0 when p > 1

Let $X \sim t_p$

- ▶ the expected value of X is E(X) = 0 when p > 1
- ▶ the variance of X is $Var(X) = \frac{p}{p-2}$ when p > 2

Let $X \sim t_p$

- ▶ the expected value of X is E(X) = 0 when p > 1
- ▶ the variance of X is $Var(X) = \frac{p}{p-2}$ when p > 2

Variations:

▶ Noncentral t distribution

$$t_p pprox rac{ ext{normal}(0,\,1)}{\sqrt{\chi_p^2/p}} \qquad \qquad ext{noncentral } t_p pprox rac{ ext{normal}(\mu,1)}{\sqrt{\chi_p^2/p}}$$

has noncentrality parameter $\delta = \sqrt{\mu^2}$

Let $X \sim t_p$

- ▶ the expected value of X is E(X) = 0 when p > 1
- ▶ the variance of X is $Var(X) = \frac{p}{p-2}$ when p > 2

Variations:

▶ Noncentral *t* distribution

$$t_p pprox rac{ ext{normal}(0,\,1)}{\sqrt{\chi_p^2/p}}$$
 noncentral $t_p pprox rac{ ext{normal}(\mu,1)}{\sqrt{\chi_p^2/p}}$

has noncentrality parameter $\delta = \sqrt{\mu^2}$

Skewed t Distribution

Outline

Utility

Lotteries and Risk Aversion Certainty Equivalent

Discrete Distributions

Bernoulli Trial Binomial Distribution Poisson Distribution

Continuous Distributions

Uniform Distribution Normal Distribution χ^2 Distribution t Distribution

Value at Risk

Statistical Definition of VaR

Absolute Risk Measures

- ► A widely used absolute risk measure is Value-at-Risk (VaR)
- ▶ Developed after the stock market crash of 1987. JP Morgan published the methodology in 1994
- ▶ In 1997 US SEC ruled that public corporations must disclose quantitative information about their derivatives activity
- ► Major banks and dealers chose to use VaR in their financial statements to implement the rule
- ▶ VaR is the preferred measure of market risk in Basel II

VaR

- Value-at-Risk is an effort to enable risk managers to make a statement of the form:
 - we are $1-\alpha$ percent certain that we will not lose more than V dollars in the next N days
- ▶ V is the VaR of the asset associated with a horizon of N days and certainty level of $(1 \alpha) \times 100\%$
- It is the loss level over N days that we are $(1 \alpha) \times 100\%$ certain will not be exceeded
- In general, VaR is the loss corresponding to the αth percentile of the distribution of the change in value of the portfolio over the next N days

VaR

Value-at-Risk (VaR): a threshold value of loss over a given period, often stated with a probability that the loss will exceed this threshold. Example:

- ▶ An asset with "a one-day $\alpha=0.05$ VaR of \$ 1 million" means that there is a 5% probability (1 in 20 chance) that the asset's loss will exceed \$ 1 million over a one-day period
- ▶ Note that the actual loss could be much more that \$ 1 million; in this sense, VaR is not aptly named

Statistical Definition of VaR

 $\Delta W=W-W_0$: the 1-period change in the asset value $1-\alpha$: VaR certainty level q_{α} : the α -quantile of the 1-period change in the asset value

$$P(\Delta W \le q_{\alpha}) = \int_{-\infty}^{q_{\alpha}} f(x) dx = F(q_{\alpha}) = \alpha$$

 $\implies q_{\alpha} = F^{-1}(\alpha)$

The VaR is:

$$VaR(\alpha) = -q_{\alpha}$$

Interpretation: the asset/portfolio $\$ losses will be q_α or larger with probability α

Statistical Definition of VaR

Equivalently, we can think of VaR in terms of the distribution of the asset's 1-period arithmetic rate of return

$$lpha = P(\Delta W \le q_{lpha}) = P\left(W_0\left(\frac{W - W_0}{W_0}\right) \le q_{lpha}\right)$$

$$= P(W_0 r \le q_{lpha}) = P\left(r \le \frac{q_{lpha}}{W_0}\right)$$

$$= P(r \le q_{lpha}^{(r)})$$

where

$$\alpha$$
 – quantile of r : $q_{\alpha}^{(r)} = \frac{q_{\alpha}}{W_0}$

The 1-period VaR is

$$VaR(\alpha) = -q_{\alpha}^{(r)}W_0$$

where W_0 is the initial value of the asset

Example

 $W_0=\$1,000,000$: asset price today $\alpha=0.05\implies 95\%$ VaR certainty level $q_{\alpha}=-\$1,000$: the $\alpha-$ quantile for the 1-day asset price change

$$\mathsf{VaR}(\alpha) = -q_\alpha = \$1,000$$

VaR

Why is VaR in widespread use?

- Distills risk-management to a single number
- Easy to implement using a model or empirical distribution

Serious limitation of VaR:

- It is a quantile measure; no information about how large losses are beyond VaR!
- Easy to misunderstand and potentially catastrophic if it creates a false sense of security

Interesting New York Times article on VaR:
http://www.nytimes.com/2009/01/04/magazine/04risk-t.html?
dlbk=&pagewanted=all&_r=0

COMPUTATIONAL FINANCE & RISK MANAGEMENT UNIVERSITY of WASHINGTON Department of Applied Mathematics

http://computational-finance.uw.edu