

Blue Smoke Team Hardware Project

EE463 Fall 2019

Paul Brown İbrahim Duru Mustafa Şahin

11 December 2019

Topology Options Considered

- 1. Three-phase thyristor rectifier (SCR)
- 2. Three-phase diode rectifier + buck converter
- 3. Single-phase thyristor rectifier (SCR)
- 4. Single-Phase Diac-Controlled Triac Rectifer

Single-Phase Diac-Controlled Triac Rectifer

Single-Phase Diac-Controlled Triac Rectifer

Advantages

- Circuit is very simple with few components (simplicity bonus!)
- Single control circuit needed
- Different from other groups in the past
- Recommended by prof. practically guaranteed to work!!

Disadvantages

- "Snap on" at maximum firing angle
- Introduction of feedback control difficult to incorporate

Simulation Model

Simulation Results

Simulation Results

Input Side Simulation Summary

Load	\mathbf{R}_2 ($\mathbf{k}\mathbf{\Omega}$)	\mathbf{V}_{IN} ($\mathbf{V}_{\mathrm{RMS}}$)	\mathbf{I}_{IN} ($\mathbf{A}_{\mathrm{RMS}}$)	P _{IN} (W)	Q _{IN} (var)	S _{IN} (VA)	PF	I _{IN} THD (%)
Starting	190	219.8	7.07	199.3	1541	1554	0.13	133.5
No Load	25	219.5	7.68	878.1	1439	1686	0.52	66.62
Kettle Load	20	218.8	17.64	2505	2936	3859	0.65	40.31

Input current THD is high, especially at high firing angle.

Output Side Simulation Summary

Load	V _{OUT} (V _{AVG})	V _{out} Ripple	I _{OUT} (A _{AVG})	I _{out} Ripple	P _{OUT} (W)	Efficiency (%)
Starting	11.47	153.4	14.46	8.69	170.9	85.76
No Load	174.8	304.8	4.77	15.56	863	98.27
Kettle Load	175	307.1	13.45	30.2	2463	98.33

Diode Selection

Load	I _{avg} (A)	I _{RMS} (A)	V _{MAX} (V)	P _{Loss} (W)
Starting	7.23	8.16	152.6	5.85
No Load	2.39	5.43	304	1.94
Kettle Load	6.7	12.49	306.3	5.52

Diode bridge, 1000V, 35A

Triac Selection

Load	I _{avg} (A)	I _{RMS} (A)	V _{MAX} (V)	P _{Loss} (W)
Starting	3.04	7.07	311.1	4.61
No Load	4.77	7.68	138.6	7.21
Kettle Load	12.84	17.64	128.8	19.57

Triac 600V, 25A

Capacitor Selection

Load	C ₁ I _{RMS} (A)	C ₁ V _{MAX} (V)	C ₂ I _{RMS} (A)	C ₂ V _{MAX} (V)
Starting	0.95	42.67	2.39	36
No Load	1.64	59.79	2.38	36
Kettle Load	1.64	56.68	2.38	36

< 60 V (But Littlefuse application note lists 400 V & 100 V)

Capacitor, polyester 100nF 400V for C₁ & C₂

Resistor Selection

Load	$R_1 I_{RMS}$ (mA)	R ₁ P (mW)	$R_2 I_{RMS}$ (mA)	R ₂ P (mW)	$R_3 I_{RMS}$ (mA)	R ₃ P (mW)
Starting	1.04	1.08	1.04	205.3	0.82	10.05
No Load	1.77	3.12	1.77	78.09	1.03	15.82
Kettle Load	1.73	3	1.73	60.06	0.94	13.35

All < 1/4 W. (But Littlefuse application note recommends 1/2 W for R_3)

Project Plan

- Complete bill of material
- Procure components (Direnc.net + Konya Sokak)
- Build prototype
- Test on increasing loads (load bank ⇒ motor)
- Troubleshoot & modify prototype as needed
- Once working prototype is obtained, as time allows
 - Consider modifications for feedback in firing circuit
 - · Add remaining touches like enclosure, PCB, etc

Feedback

How can we incorporate feedback (e.g. to limit current during motor starting)?

- Maybe use a TCA785 IC & some op amp circuit to modify voltage setpoint based on feedback?
- Other ideas?

What is your feedback for us?

Credits

Nuclear explosion logo made by Freepik from Flaticon.com

Idea Bulb by Subhashish Panigrahi, derived from "Light Bulb" by Ian Mawle from The Noun Project. CC BY-SA 3.0

