

Estática y Dinámica: Interrogación 1.

Facultad de Física Facultad de Ingeniería

Lunes 5 de Septiembre de 2016

Nombre:	#Alumno:	Rut:	
---------	----------	------	--

Instrucciones:

- -Tiene 150 minutos para resolver los siguientes problemas.
- -Marque con una cruz solo la alternativa que considere correcta en la hoja de respuesta.
- -Todos los problemas tienen el mismo peso en la nota final.
- -Las respuestas incorrectas descuentan 1/4 de pregunta correcta.
- -No está permitido utilizar calculadora ni teléfono celular.

Enunciado para problemas 1-4:

Considere un misil que despega desde el reposo en el punto A y sube verticalmente durante 4 segundos hasta llegar al punto B, donde se acaba su combustible. El módulo de la aceleración durante el tramo A-B está dada por $a_y=6t$, donde a_y está en m/s² y t en s. En el punto B el misil se inclina bruscamente (mediante un mecanismo interno) de manera tal que forma un ángulo de 45° con respecto a la horizontal, y desde B se mueve solamente influenciado por la gravedad.

Figura 1: Problemas 1-4.

Problema 1: Determine la rapidez v_B del proyectil en el punto B.

- a) $v_B = 12 \text{ m/s}$
- b) $v_B = 24 \text{ m/s}$
- c) $v_B = 48 \text{ m/s}$
- d) $v_B = 96 \text{ m/s}$

Problema 2: Determine la altura que alcanza el misil (h_B) en el punto B.

- a) $h_B = 12 \text{ m}$
- b) $h_B = 30 \text{ m}$
- c) $h_B = 64 \text{ m}$
- d) $h_B = 40 \text{ m}$

Problema 3: En términos de la altura h_B y la rapidez v_B determinadas en las preguntas anteriores, ¿cuál es la altura máxima (h_C) que alcanza el proyectil?

a)
$$h_C = h_B + \frac{v_B^2}{2g}$$

$$b) h_C = h_B + \frac{v_B^2}{4g}$$

c)
$$h_C = h_B + \frac{2v_B^2}{g}$$

$$d) h_C = h_B + \frac{v_B}{\sqrt{2g}}$$

Problema 4: En términos de la altura h_B y la rapidez v_B determinadas en las preguntas anteriores, ¿cuál es la distancia horizontal desde el punto de lanzamiento (R) a la cual el misil se estrella con el suelo?

a)
$$R = \frac{v_B^2}{2g} \left[1 + \sqrt{1 + \frac{4gh_B}{v_B^2}} \right]$$

b)
$$R = \frac{v_B^2}{g} \left[1 + \sqrt{1 + \frac{4gh_B}{v_B^2}} \right]$$

c)
$$R = \frac{v_B^2}{g} \left[1 + \sqrt{1 + \frac{2gh_B}{v_B^2}} \right]$$

d)
$$R = \frac{v_B^2}{2g} \left[1 + \sqrt{1 + \frac{8gh_B}{v_B^2}} \right]$$

Enunciado para los problemas 5-6:

Se tiene un bloque A de masa m_A encima de un carro C de masa m_C . El carro se tira con una fuerza horizontal F, tal como se muestra en la figura. Considere que A y C parten del reposo, y que puede despreciar cualquier tipo de roce en los engranes de las ruedas del carro.

Figura 2: Problemas 5-6.

Problema 5: Determine el valor mínimo del coeficiente de roce estático μ_s^{min} que se necesita para que A no deslice sobre C:

a)
$$\mu_s^{min} = \frac{m_A m_C g}{F(m_C + m_A)}$$

b)
$$\mu_s^{min} = \frac{m_A}{m_C}$$

c)
$$\mu_s^{min} = \frac{m_A g}{F}$$

d)
$$\mu_s^{min} = \frac{F}{(m_A + m_C)g}$$

Problema 6: Ahora asuma que el coeficiente de roce estático entre A y C es $\mu_s < \mu_s^{min}$, y que el coeficiente de roce cinético (dinámico) es μ_k . Determine el módulo de la aceleración del bloque respecto al carro:

a)
$$a_{A/C} = \frac{F(m_C + m_A) - m_C \mu_k g}{m_A m_C}$$

b)
$$a_{A/C} = \frac{\mu_k g(m_C + m_A) - F}{m_C}$$

c)
$$a_{A/C} = \frac{F - \mu_k m_A g}{m_C}$$

$$d) \ a_{A/C} = \frac{F - \mu_k m_C g}{m_A}$$

Enunciado para los problemas 7-8:

Se tiene un bloque de masa m unido a una varilla vertical con dos cordones de igual longitud y sin masa. Cuando el sistema gira con velocidad angular constante en torno al eje de la varilla, los cordones se extienden y quedan tensos.

Figura 3: Problemas 7-8.

Problema 7: Determine la aseveración correcta:

- a) La tensión es la misma en los dos cordones
- b) La tensión es mayor en el cordón superior
- c) La tensión es mayor en el cordón inferior
- d) Se podría cortar el cordón inferior y la masa seguiría describiendo el mismo movimiento

Problema 8: Si la tensión en el cordón superior es T, determine la velocidad angular a la que el sistema está rotando:

a)
$$\dot{\theta} = \sqrt{\frac{5mg - 4T}{3md}}$$

b)
$$\dot{\theta} = \sqrt{\frac{3T - mg}{4md}}$$

c)
$$\dot{\theta} = \sqrt{\frac{4mg - 2T}{md}}$$

d)
$$\dot{\theta} = \sqrt{\frac{8T - 5mg}{5md}}$$

Enunciado para los problemas 9-11:

Considere el sistema de la Figura 4, en el cual ángulo $\theta=\pi/4$, la razón entre la masa de los bloques es $m_1=2m_2$, donde el valor de m_2 se considera como conocido. El sistema de poleas, así como la cuerda inextensible poseen masa despreciable, y el coeficiente de roce para el plano inclinado es μ_c (μ_d). Note que el bloque de masa m_1 es solidario a la polea P_1 mediante una barra ideal y que la polea P_2 es solidaria a P_3 también por una barra ideal. Para sus cáculos considere $a_1=\ddot{b}$ y $a_2=\ddot{s}$.

Figura 4: Problemas 9-11.

Problema 9: El valor mínimo del coeficiente de roce estático μ_e , para que el sistema esté en reposo, está dado por:

a)
$$\mu_e = \frac{3 + 2\sqrt{2}}{3}$$

b)
$$\mu_e = \frac{3}{3 + 2\sqrt{2}}$$

c)
$$\mu_e = \frac{3 - 2\sqrt{2}}{3}$$

d)
$$\mu_e = \frac{3}{3 - 2\sqrt{2}}$$

Problema 10: La condición de ligazón para el sistema con roce y la ecuación de movimiento de Newton para el bloque de masa m_2 , están dadas por:

a) $3a_1 - a_2 = 0$; $-T + m_2 g(\sin \theta - \mu_c \cos \theta) = m_2 a_2$

b) $3a_1 + a_2 = 0$; $-T/m_2 + g(\sin\theta + \mu_c\cos\theta) = -a_2$

c) $2a_1 + a_2 = 0$; $-T + m_2 g(\sin \theta - \mu_c \cos \theta) = m_2 a_2$

d) $3a_1 + a_2 = 0$; $-T + m_2 g(\sin \theta - \mu_c \cos \theta) = m_2 a_2$

Problema 11: Considere que el sistema se deja evolucionar libremente desde el reposo, de manera tal que los bloques se comienzan a mover. ¿Cuál es la aceleración del bloque de masa m_1 ?

a)
$$a_1 = \frac{g}{11} (2 - 3(\sin \theta + \mu_c \cos \theta))$$

b)
$$a_1 = \frac{g}{11} (2 + 3(\sin \theta - \mu_c \cos \theta))$$

c)
$$a_1 = \frac{g}{11} (2 - 3(\sin \theta - \mu_c \cos \theta))$$

d)
$$a_1 = \frac{g}{11} (2 + 3(\sin \theta + \mu_c \cos \theta))$$

Enunciado para los problemas 12-13:

El brazo ranurado OA gira en sentido contrario al de las manecillas del reloj alrededor de O, de modo que cuando se encuentra formando un ángulo θ respecto de la horizontal, el brazo OA gira con una velocidad angular de $\dot{\theta}$ y una aceleración angular de $\ddot{\theta}$. El movimiento del pasador B está limitado a la superficie circular fija y a lo largo de la ranura en OA, como se muestra en la figura. Note que r es equivalente a coordenada radial ρ .

Figura 5: Problemas 12-13.

Problema 12: ¿Cuál es la magnitud de la velocidad (i.e. rapidez) del pasador B en ese instante?

- a) $b\dot{\theta}$
- b) $2b\dot{\theta}\sin\theta$
- c) $2b\dot{\theta}\cos\theta$
- d) $2b\dot{\theta}$

Problema 13: ¿Cuál es la magnitud de la aceleración del pasador B en ese instante?

- a) $2b\ddot{\theta}$
- d) $2b\ddot{\theta}\sin\theta$
- c) $2b\sqrt{\ddot{\theta}^2 + 4\dot{\theta}^4}$
- d) $2b\ddot{\theta}\cos\theta$

Enunciado para los problemas 14-17:

La masa M de la figura está adosada al extremo de un resorte de largo natural ℓ_0 y constante elástica k. El otro extremo del resorte está fijo a un pivote que permite al sistema girar libremente sobre una mesa horizontal sin roce.

Figura 6: Problemas 14-17

Supongamos primero que la masa está rotando en movimiento circular uniforme con una velocidad angular fija $\dot{\theta} = \omega$ y con un radio de giro R.

Problema 14: En este caso, la aceleración de M en coordenadas polares es:

- a) $\vec{a} = -R\omega^2 \ \hat{\theta}$
- b) $\vec{a} = -R\omega^2 \hat{\rho}$
- c) $\vec{a} = R\omega^2 \hat{\theta}$
- d) $\vec{a} = R\omega^2 \hat{\rho}$

Problema 15: Entonces el largo R del resorte está dado por:

a)
$$R = \frac{\ell_0 k}{k - M\omega^2}$$

b)
$$R = \frac{\ell_0 k}{M\omega^2 - k}$$

c)
$$R = \frac{\ell_0 M \omega^2}{k - M \omega^2}$$

d)
$$R = \frac{\ell_0 M \omega^2}{M \omega^2 - k}$$

En cierto instante comienza a actuar sobre la masa una fuerza de magnitud constante T.

Problema 16: Considere $\Delta \ell$ como el estiramiento del resorte (con respecto a su largo natural). Entonces, si la fuerza de magnitud constante T es aplicada en la dirección $\hat{\theta}$, justo en el instante de su aplicación la aceleración está dada por:

a)
$$\vec{a} = -\frac{k\Delta\ell - T}{M}\hat{\rho} + \frac{T}{M}\hat{\theta}$$

b)
$$\vec{a} = -\frac{k\Delta\ell}{M}\hat{\rho} + \frac{T}{M}\hat{\theta}$$

c)
$$\vec{a} = \frac{k\Delta\ell}{M}\hat{\rho} + \frac{T}{M}\hat{\theta}$$

d)
$$\vec{a} = \frac{k\Delta \ell - T}{M}\hat{\rho} + \frac{T}{M}\hat{\theta}$$

Problema 17: Considere $\Delta \ell$ como el estiramiento del resorte (con respecto a su largo natural). Entonces, si la fuerza de magnitud constante T es aplicada en la dirección $\hat{\rho}$, justo en el instante de su aplicación la aceleración está dada por:

a)
$$\vec{a} = -\frac{k\Delta\ell + T}{M}\hat{\rho}$$

b)
$$\vec{a} = -\frac{k\Delta\ell - T}{M}\hat{\theta}$$

c)
$$\vec{a} = -\frac{k\Delta\ell + T}{M}\hat{\theta}$$

d)
$$\vec{a} = -\frac{k\Delta\ell - T}{M}\hat{\rho}$$