# Report of the Entropy and Perplexity of Chinese and English Using the N-gram Model

Shihui Yang yangshihui@buaa.edu.cn

#### **Abstract**

This is a Report of the Entropy and Perplexity of Chinese and English Using the N-gram Model. It employs unigram, bigram, and trigram models to calculate the average information entropy and perplexity at both the character level (letters or characters) and the lexical level (words or terms) for Chinese and English texts. This approach can reveal the statistical regularities of language, enhance the understanding of the intrinsic nature of linguistic statistics, and may provide data-driven decision-making support for model selection, optimization, and deployment in practical tasks.

#### Introduction

Information entropy and perplexity are crucial metrics in the field of natural language processing (NLP) for quantifying the statistical properties of language. Information entropy reflects the uncertainty or information content of linguistic symbols (such as words, characters, or letters), while perplexity is used to measure the predictive capability of a language model on a given corpus. These metrics not only reveal the statistical regularities of language but also provide a theoretical foundation for the evaluation and optimization of language models. In recent years, with the rapid development of deep learning techniques, the N-gram model, as a classical approach to language modeling, continues to play a significant role in linguistic statistical analysis and preliminary model evaluation due to its simplicity and efficiency.

This report aims to calculate the information entropy and perplexity at the word and character levels for a Chinese corpus (wiki\_zh\_2019), as well as at the word and letter levels for an English corpus (Gutenberg Corpus), using unigram, bigram, and trigram models. By doing so, it seeks to uncover the differences in statistical properties between Chinese and English at both the character and lexical levels. Through comparing the information entropy and perplexity across different linguistic units (such as words, characters, and letters), we can gain a deeper understanding of the statistical nature of language and provide data-driven decision-making support for subsequent model selection, optimization, and deployment.

### Methodology

N-gram models are a fundamental approach in natural language processing (NLP) for modeling sequences of linguistic units, such as words or characters. These models are based on the Markov assumption, which posits that the probability of a unit in a sequence depends only on a fixed number of preceding units. This assumption allows for the simplification of complex joint probability distributions into products of conditional probabilities, making N-gram models computationally efficient and widely applicable in tasks such as language modeling, text generation, and machine translation.

The core idea of N-gram models is to decompose the joint probability of a sequence w<sub>1</sub>,w<sub>2</sub>,...,w<sub>N</sub> into a product of conditional probabilities, where the context size is

determined by the value of N. The choice of N defines the specific type of N-gram model: unigram, bigram, or trigram, each with increasing levels of contextual information.

$$P(w_1, w_2, ..., w_N) = \prod_{i=1}^{N} P(w_i | w_{i-1}, w_{i-2}, ..., w_{i-(N-1)})$$

The unigram model is the simplest form of N-gram, where each linguistic unit  $w_i$  is assumed to be independent of other units in the sequence. The probability of a unit  $w_i$  is calculated solely based on its frequency in the corpus, without considering any contextual information. The probability of a sequence  $w_1, w_2, ..., w_N$  is given by:

$$P(w_1, w_2, ..., w_N) = \prod_{i=1}^{N} P(w_i)$$

The bigram model extends the unigram model by incorporating contextual information from the immediately preceding unit. It assumes that the probability of a unit  $w_i$  depends only on the previous unit  $w_{i-1}$ . The joint probability of a sequence is decomposed as:

$$P(w_1, w_2, ..., w_N) = \prod_{i=1}^{N} P(w_i | w_{i-1})$$

The trigram model further extends the context by considering the two preceding units. It assumes that the probability of a unit wi depends on the previous two units  $w_{i-2}$  and  $w_{i-1}$ . The joint probability of a sequence is given by:

$$P(w_1, w_2, ..., w_N) = \prod_{i=1}^{N} P(w_i | w_{i-2}, w_{i-1})$$

In the field of Natural Language Processing (NLP), entropy is a pivotal concept. It not only aids in quantifying the uncertainty or randomness of information but also profoundly influences the efficiency of language encoding, storage, transmission, and processing. By analyzing the entropy of language, we can gain a deeper understanding of the complexity of natural language and explore methods to enhance processing efficiency. In NLP, entropy can be utilized to measure the uncertainty of textual information. Its mathematical formulation can be expressed as:

$$H(X) = -\sum_{x \in X} P(x) \log P(x)$$

In the realm of Natural Language Processing, perplexity serves as a metric to evaluate the efficacy of probabilistic language models. A probabilistic language model can be conceptualized as a probability distribution over entire sentences or textual segments. It primarily estimates the likelihood of a sentence's occurrence based on each constituent word, normalized by the sentence's length. The formula is presented as follows:

$$Perplexity(W) = P(W)^{-\frac{1}{N}} = \left(\prod_{i=1}^{N} P(w_i|w_1, w_2, ..., w_{i-1})\right)^{-\frac{1}{N}}$$

This report will calculate and analyze the character-level and word-level information entropy and perplexity of the Chinese corpus (wiki\_zh\_2019) and the English corpus (Gutenberg Corpus) based on Unigram, Bigram, and Trigram models. To achieve this goal, we will sequentially preprocess the corpus data, perform frequency statistics, compute information entropy and perplexity, and conduct data visualization.

#### Step1: Data Preprocessing

In this phase, the process entails the tokenization and textual purification of both corpora, which involves the elimination of extraneous data such as punctuation, numerals, and stop words.

```
import re
def clean_and_join_words(word_list):
    pattern = re.compile(r'[^\w\s]')
    cleaned_words = [word for word in word_list if not
pattern.match(word)]
    result_string = ' '.join(cleaned_words)
    result_list = [result_string]
    return result_list
```

Additionally, for the English textual data, we have implemented stemming procedures to further refine the dataset. The corresponding code example is provided below.

```
from nltk.stem import PorterStemmer
```

```
def stem_tokens(token_list):
    stemmer = PorterStemmer()
    stemmed_tokens = [stemmer.stem(token) for token in token_list]
    return stemmed_tokens
```

#### **Step2: Frequency Calculation**

In this phase, we quantified the corpus by enumerating the total word count, calculating the average word length, and determining the frequency of the top 16 high-frequency words for each corpus. Subsequently, these results were subjected to visualization for analytical scrutiny. The relevant code example is provided as follows.

```
def calculate_average_word_length(text):
   words = text[0].split()
   if not words:
        return 0
   total_length = sum(len(word) for word in words)
   average_length = total_length / len(words)
    return average_length,len(words)
import matplotlib.pyplot as plt
import seaborn as sns
from collections import Counter
import numpy as np
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
def get_top_16_words(nested_list):
   words = [word for sublist in nested_list for word in sublist]
   word_counts = Counter(words)
   top_16_words = word_counts.most_common(16)
   top_words_list = [word for word, count in top_16_words]
   return top_words_list, top_16_words
```

#### **Step3: Entropy and Perplexity Calculation**

In this phase, the computations were performed utilizing the formula  $H(X) = -\sum_{x \in X} P(x) \log P(x)$  to calculate the Entropy and the formula  $Perplexity(W) = P(W)^{-\frac{1}{N}} = \left(\prod_{i=1}^{N} P(w_i|w_1,w_2,...,w_{i-1})\right)^{-\frac{1}{N}}$  to compute the Perplexity. To prevent issues related to excessively large orders of magnitude or data overflow, it is common practice to first apply a logarithmic transformation followed by an exponential operation. In our calculations of information entropy and perplexity, we also implemented smoothing techniques to mitigate the problem of data sparsity and enhance the accuracy of probability estimation. The corresponding code example is provided below (utilizing the trigram model to compute the information entropy and perplexity at the word level in English).

```
import math
from collections import defaultdict, Counter

def calculate_entropy(text):
    words = text[0].split()
    bigram_counts = defaultdict(Counter)
    trigram_counts = Counter()
    for i in range(len(words) - 2):
        bigram = (words[i], words[i+1])
        trigram = (*bigram, words[i+2])
        bigram_counts[bigram][words[i+2]] += 1
        trigram_counts[trigram] += 1
    total_trigrams = sum(trigram_counts.values())
    entropy = 0
```

```
for trigram, count in trigram_counts.items():
        bigram = trigram[:2]
        next_word = trigram[2]
        joint_prob = count / total_trigrams
        if bigram in bigram_counts and next_word in
bigram counts[bigram]:
            cond_prob = bigram_counts[bigram][next_word] /
sum(bigram_counts[bigram].values())
            cond_prob = 1e-10
        entropy -= joint_prob * math.log2(cond_prob)
   return entropy
import math
from collections import defaultdict, Counter
def calculate perplexity(text):
   words = text[0].split()
   bigram_counts = defaultdict(Counter)
   trigram counts = defaultdict(Counter)
   for i in range(len(words) - 2):
        bigram = (words[i], words[i+1])
        trigram = (*bigram, words[i+2])
        bigram_counts[bigram][words[i+2]] += 1
   log_perplexity = 0
   N = len(words) - 2
   for i in range(len(words) - 2):
        bigram = (words[i], words[i+1])
        next_word = words[i+2]
        if bigram in bigram_counts and next_word in
bigram_counts[bigram]:
            prob = bigram_counts[bigram][next_word] /
sum(bigram_counts[bigram].values())
        else:
            prob = 1e-10
        log_perplexity += math.log(prob)
   perplexity = math.exp(-log perplexity / N)
   return perplexity
```

### **Experimental Studies**

In this section, we will individually present the fundamental corpus information, frequency statistics, as well as the information entropy and perplexity for both corpora. Due to the limitations of the computer configuration, the information entropy and perplexity were calculated only for a subset of 400 texts from the Chinese corpus. The overall statistical results for the Chinese corpus comprising 400 texts are as follows: the total number of segmented words is 45,463,758, the total number of characters is 95,181,312, and the average word length is 2.09. For the English corpus, the total number of words is 1,023,063, and the average word length is 4.7825.

Table 1: results of entropy and perplexity

|                    | English (letter) | English (word) | Chinese (character) | Chinese (word) |
|--------------------|------------------|----------------|---------------------|----------------|
| Unigram entropy    | 3.0213           | 11.2329        | 10.0320             | 14.5628        |
| Bigram entropy     | 2.6625           | 4.9053         | 7.5783              | 8.3743         |
| Trigram entropy    | 3.3676           | 1.4173         | 4.9601              | 1.9597         |
| Unigram perplexity | 20.5185          | 2406.8765      | 1046.9697           | 24201.5824     |
| Bigram perplexity  | 14.3324          | 135.0132       | 191.1104            | 331.8199       |

### **Gutenberg Corpus**

The following presents a comprehensive statistical description of the Gutenberg Corpus, including the information about the average word length, total words, the entropy and perplexity based on unigram, bigram and trigram.

| text serial | average word length | total words | unigram entropy | unigram perplexity | bigram entropy | bigram perplexity | trigram entropy | trigram perplexity |
|-------------|---------------------|-------------|-----------------|--------------------|----------------|-------------------|-----------------|--------------------|
| 1.0         | 5.1469              | 73388.0     | 10.0181         | 1036.9067          | 3.6771         | 39.5315           | 0.7627          | 1.6966             |
| 2.0         | 5.2196              | 38341.0     | 10.1203         | 1113.049           | 3.1743         | 23.9095           | 0.4914          | 1.4058             |
| 3.0         | 3.0 5.3136 53951    |             | 10.1381         | 1126.8345 3.4631   |                | 31.9162           | 0.5474          | 1.4615             |
| 4.0         | 4.4277              | 436965.0    | 9.8848          | 945.3997           | 4.4841         | 88.5993           | 1.9143          | 3.7692             |
| 5.0         | 5.0 4.6311          |             | 9.3377          | 647.0321           | 1.6447         | 5.1797            | 0.1385          | 1.1008             |
| 6.0         | 4.7112              | 21784.0     | 9.975           | 1006.3964          | 2.7058         | 14.9657           | 0.4179          | 1.336              |
| 7.0         | 4.6837              | 7613.0      | 8.7556          | 432.2274           | 2.1476         | 8.5641            | 0.7557          | 1.6885             |
| 8.0         | 4.71                | 12242.0     | 9.3795          | 666.0739           | 2.5298         | 12.5506           | 0.48            | 1.3948             |
| 9.0         | 5.1136              | 39871.0     | 10.8126         | 1798.5509          | 2.8563         | 17.3968           | 0.3231          | 1.251              |
| 10.0        | 5.1234              | 35335.0     | 10.8601         | 1858.7176          | 2.728          | 15.3029           | 0.2805          | 1.2146             |
| 11.0        | 5.0881              | 28306.0     | 10.5892         | 1540.544           | 2.6852         | 14.6609           | 0.3001          | 1.2312             |
| 12.0        | 4.9527              | 78145.0     | 10.5177         | 1466.0649          | 3.5384         | 34.4113           | 0.5793          | 1.4942             |
| 13.0        | 5.071               | 110650.0    | 11.3861         | 2676.4039          | 3.4405         | 31.2024           | 0.3816          | 1.3028             |
| 14.0        | 5.0027              | 45554.0     | 10.9745         | 2012.1188          | 2.9687         | 19.4674           | 0.206           | 1.1534             |
| 15.0        | 4.6924              | 11120.0     | 9.7825          | 880.6981           | 2.3467         | 10.4508           | 0.2518          | 1.1907             |
| 16.0        | 4.7205              | 15876.0     | 10.2814         | 1244.513           | 2.3645         | 10.6389           | 0.2401          | 1.181              |
| 17.0        | 4.7261              | 10137.0     | 10.1709         | 1152.7667          | 2.0439         | 7.7207            | 0.1641          | 1.1204             |
| 18.0        | 5.0122              | 65351.0     | 11.2987         | 2519.1089          | 3.0747         | 21.6443           | 0.2374          | 1.1789             |

Figure 1: the comprehensive statistical description of the Gutenberg Corpus (word)

| text serial | average word length | total words | unigram entropy | unigram perplexity | bigram entropy | bigram perplexity | trigram entropy | trigram perplexity |
|-------------|---------------------|-------------|-----------------|--------------------|----------------|-------------------|-----------------|--------------------|
| 1.0         | 5.1469              | 73388.0     | 2.9483          | 19.073             | 2.594          | 13.3831           | 2.9895          | 8.8629             |
| 2.0         | 5.2196              | 38341.0     | 2.9307          | 18.7404            | 2.5867         | 13.2859           | 2.8546          | 9.1009             |
| 3.0         | 5.3136              | 53951.0     | 2.9237          | 18.6099            | 2.5685         | 13.0468           | 2.914           | 8.855              |
| 4.0         | 4.4277              | 436965.0    | 3.0851          | 21.8705 2.6476     |                | 14.1195           | 3.2039          | 9.3707             |
| 5.0         | 4.6311              | 3801.0      | 2.92            | 18.5413            | 2.5586         | 12.9173           | 1.8337          | 9.883              |
| 6.0         | 4.7112              | 21784.0     | 2.9395          | 18.9072            | 2.601          | 13.4766           | 2.8294          | 9.2572             |
| 7.0         | 4.6837              | 7613.0      | 2.9526          | 19.1559            | 2.5281         | 12.5291           | 1.9002          | 7.8776             |
| 8.0         | 4.71                | 12242.0     | 2.943           | 18.973             | 2.5939         | 13.3822           | 2.5412          | 8.9655             |
| 9.0         | 5.1136              | 39871.0     | 2.9463          | 19.0354            | 2.6238         | 13.7876           | 2.8616          | 10.0719            |
| 10.0        | 5.1234              | 35335.0     | 2.9352          | 18.8258            | 2.6263         | 13.822            | 3.1095          | 10.1303            |
| 11.0        | 5.0881              | 28306.0     | 2.935           | 18.8207            | 2.6146         | 13.662            | 2.8855          | 9.9459             |
| 12.0        | 4.9527              | 78145.0     | 2.9449          | 19.0093            | 2.6317         | 13.8972           | 3.0984          | 9.8639             |
| 13.0        | 5.071               | 110650.0    | 2.9495          | 19.0968            | 2.6305         | 13.8811           | 3.2332          | 10.3967            |
| 14.0        | 5.0027              | 45554.0     | 2.9224          | 18.5865            | 2.5956         | 13.4041           | 3.0141          | 10.0105            |
| 15.0        | 4.6924              | 11120.0     | 2.9077          | 18.3143            | 2.5865         | 13.2832           | 2.4465          | 9.5499             |
| 16.0        | 4.7205              | 15876.0     | 2.9157          | 18.4614            | 2.611          | 13.6125           | 2.8953          | 9.9199             |
| 17.0        | 4.7261              | 10137.0     | 2.9368          | 18.8553            | 2.6125         | 13.6324           | 2.6282          | 9.9553             |
| 18.0        | 5.0122              | 65351.0     | 2.9364          | 18.8483            | 2.63           | 13.8738           | 3.1742          | 10.5296            |

Figure 2: the comprehensive statistical description in Gutenberg Corpus (letter) Top 16 Words Heatmap (Horizontal)



Figure 3: top 16 frequent words in the Gutenberg Corpus



Figure 4: the frequency distribution of 26 letters in the Gutenberg Corpus

Chinese Wikipedia
This section provides a detailed statistical overview of the Chinese Wikipedia Corpus, encompassing metrics such as average word length, total word count, as well as entropy and perplexity calculated using unigram, bigram, and trigram models. Due to space constraints, the main text only presents the sub-textual data results from 100 texts in the corpus, while the data results from 400 texts are provided in the appendix.

|   | text serial    | word segments<br>112752.0 | total character<br>244383.0 | 2. 1674            | 12. 5542 | unigram perplexity<br>6014.3366 | 3.8275            | 14, 197            | 0.3402  | 1. 2659 |
|---|----------------|---------------------------|-----------------------------|--------------------|----------|---------------------------------|-------------------|--------------------|---------|---------|
| _ |                |                           |                             |                    |          |                                 |                   |                    |         |         |
| _ | 2.0            | 113767. 0                 | 254062. 0                   | 2. 2332            | 12. 6127 | 6263. 2817<br>6681. 9698        | 3. 679<br>3. 5848 | 12.8085<br>11.9984 | 0.3964  | 1. 3162 |
|   | 3.0            | 113349. 0                 | 247289. 0                   | 2. 1817            | 12. 7061 |                                 |                   |                    | 0. 3929 | 1. 313  |
|   | 4.0            | 115079.0                  | 244439.0                    | 2. 1241            | 12. 9277 | 7791.5667                       | 3.4816            | 11. 1705           | 0. 3237 | 1. 2516 |
|   | 5.0            | 117997. 0                 | 247895.0                    | 2. 1009            | 13, 1692 | 9211.3816                       | 3. 3455           | 10.1645            | 0. 2683 | 1. 2043 |
|   | 6.0            | 112820.0                  | 240696.0                    | 2. 1335            | 12. 7051 | 6677. 7331                      | 3.6633            | 12.6696            | 0.3407  | 1. 2663 |
|   | 7.0            | 113394.0                  | 240832.0                    | 2. 1239            | 12. 8883 | 7581. 462                       | 3.5195            | 11.4673            | 0.3122  | 1. 2416 |
| _ | 8.0            | 112842.0                  | 244292.0                    | 2 1649             | 12. 7307 | 6797. 2066                      | 3.6093            | 12. 2038           | 0.3439  | 1. 2692 |
| - | 9.0            | 113148.0                  | 243180.0                    | 2.1492             | 12. 8338 | 7300. 6145                      | 3.5126            | 11.413             | 0.3423  | 1. 2678 |
| - | 10.0           | 110823.0                  | 242782.0                    | 2. 1907            | 12. 6087 | 6246.0666                       | 3.6362            | 12. 4336           | 0. 3771 | 1. 2988 |
| - |                |                           |                             |                    |          |                                 |                   |                    |         |         |
| _ | 11. 0          | 115157. 0                 | 244815.0                    | 2. 1259            | 13. 0372 | 8405. 7912                      | 3. 3847           | 10. 4449           | 0. 2931 | 1. 2253 |
|   | 12. 0          | 117544.0                  | 248091.0                    | 2.1106             | 12. 9647 | 7993. 8036                      | 3.4706            | 11.0857            | 0. 3293 | 1. 2564 |
|   | 13. 0          | 114948.0                  | 247511.0                    | 2. 1532            | 12. 6414 | 6389. 3192                      | 3. 653            | 12.5797            | 0.3828  | 1. 3039 |
|   | 14. 0          | 111647.0                  | 238899.0                    | 2. 1398            | 12.8164  | 7213.0866                       | 3.5262            | 11.521             | 0. 3359 | 1. 2621 |
|   | 15.0           | 115530.0                  | 246067.0                    | 2, 1299            | 12. 9779 | 8067, 504                       | 3. 4321           | 10, 7939           | 0.3154  | 1. 2443 |
| _ | 16.0           | 115407.0                  | 248198.0                    | 2, 1506            | 12. 7222 | 6757, 3434                      | 3.6082            | 12.195             | 0.3781  | 1. 2996 |
| - | 17. 0          |                           |                             |                    |          | 0.852.852.002                   | 3.4199            |                    |         |         |
|   |                | 114297. 0                 | 244064. 0                   | 2. 1353            | 12. 9137 | 7716. 2874                      |                   | 10. 7026           | 0.3484  | 1. 2732 |
|   | 18. 0          | 114655.0                  | 248721.0                    | 2. 1693            | 12. 7505 | 6891. 1973                      | 3.588             | 12.0252            | 0. 3691 | 1. 2916 |
|   | 19. 0          | 115566. 0                 | 245212. 0                   | 2. 1218            | 12. 9919 | 8146, 2984                      | 3, 4123           | 10.6461            | 0. 3269 | 1. 2543 |
|   | 20.0           | 109198.0                  | 230437. 0                   | 2.1103             | 12. 8273 | 7267. 5692                      | 3.4923            | 11. 2534           | 0. 3281 | 1. 2554 |
|   | 21.0           | 116922.0                  | 247763.0                    | 2.119              | 12. 9388 | 7851.5547                       | 3.4532            | 10.9524            | 0.3435  | 1. 2689 |
|   | 22 0           | 115405.0                  | 244233.0                    | 2 1163             | 13 0534  | 8501 0556                       | 3 383             | 10 4323            | 0.2977  | 1 2292  |
| _ | 23.0           | 112243.0                  | 239669.0                    | 2. 1353            | 12. 8317 | 7290. 0249                      | 3,5239            | 11.503             | 0.3249  | 1. 2526 |
| _ | 24. 0          | 117001.0                  | 239669.0                    | Z. 1303<br>Z. 1172 | 12. 8317 | 8625. 5193                      | 3. 5239           | 10.392             | 0.3249  | 1. 2359 |
| _ |                |                           |                             |                    |          |                                 |                   |                    |         |         |
|   | 25. 0          | 115657. 0                 | 248997. 0                   | 2. 1529            | 12. 849  | 7377. 7022                      | 3.5223            | 11. 4897           | 0.3422  | 1. 2677 |
|   | 26. 0          | 112407.0                  | 244261.0                    | 2.173              | 12. 6984 | 6646. 7505                      | 3, 55             | 11. 7129           | 0.3986  | 1. 3182 |
|   | 27. 0          | 116995.0                  | 249875.0                    | 2. 1358            | 12. 7957 | 7110.1581                       | 3.5087            | 11.3823            | 0. 3788 | 1. 3002 |
| _ | 28. 0          | 110527.0                  | 233811.0                    | 2.1154             | 13. 0879 | 8706. 5548                      | 3.2514            | 9. 5231            | 0.3187  | 1. 2472 |
|   | 29. 0          | 116391. 0                 | 244923.0                    | 2. 1043            | 13. 2461 | 9715. 6727                      | 3.2121            | 9. 2671            | 0. 2843 | 1. 2178 |
|   | 30. 0          | 114243.0                  | 243530.0                    | 2.1317             | 12. 8881 | 7580. 6715                      | 3.4889            | 11, 2267           | 0.331   | 1, 2579 |
| - | 31. 0          | 113631.0                  | 243530.0                    | 2 1365             | 12.8682  | 7476 8965                       | 3.4559            | 10.9734            | 0.3548  | 1. 2788 |
| - | 31. 0          | 113631.0                  | 242770.0                    | 2.1464             | 12. 8682 | 7661, 615                       | 3. 4559           | 9,5916             | 0. 3548 | 1, 3246 |
| _ |                |                           |                             |                    |          |                                 |                   |                    |         |         |
|   | 33. 0          | 91005. 0                  | 189373. 0                   | 2. 0809            | 12. 8468 | 7366.8651                       | 2.9027            | 7. 4784            | 0. 2845 | 1. 218  |
|   | 34. 0          | 108403.0                  | 229702.0                    | 2.119              | 13, 1086 | 8832. 4283                      | 3. 2119           | 9. 2658            | 0.3178  | 1. 2464 |
| Ĵ | 35. 0          | 113402.0                  | 241440.0                    | 2, 1291            | 13, 0875 | 8704. 2443                      | 3, 3007           | 9. 8539            | 0. 3183 | 1. 2469 |
| _ | 36.0           | 114274.0                  | 241720.0                    | 2.1153             | 12. 9957 | 8167. 5768                      | 3.3728            | 10.359             | 0.3161  | 1. 2449 |
| _ | 37. 0          | 115425.0                  | 243216.0                    | 2. 1071            | 13. 1048 | 8808. 9835                      | 3.3066            | 9. 8942            | 0.3087  | 1. 2386 |
| _ | 38. 0          | 111609.0                  | 244465.0                    | 2.1904             | 12. 7976 | 7119.8269                       | 3.44              | 10. 8529           | 0.3714  | 1. 2936 |
| _ | 39. 0          | 115002.0                  | 241784.0                    | 2. 1904            | 13, 2551 | 9776, 2898                      | 3. 2215           | 9, 3274            | 0. 2637 | 1. 2936 |
| _ |                | 115002.0                  | 241784. 0<br>236751. 0      | 2. 1024            | 13. 2551 |                                 | 3. 2215           | 9. 3274            |         | 1. 2006 |
| _ | 40.0           |                           |                             |                    |          | 7350. 2397                      |                   |                    | 0.3646  |         |
|   | 41.0           | 114672. 0                 | 246489. 0                   | 2. 1495            | 12. 8969 | 7626. 9225                      | 3.4913            | 11. 2454           | 0. 3328 | 1. 2594 |
| Ĵ | 42.0           | 110487.0                  | 234717. 0                   | 2. 1244            | 12. 8791 | 7533, 7314                      | 3.4449            | 10.8895            | 0. 3275 | 1. 2548 |
| _ | 43.0           | 117948.0                  | 249686.0                    | 2.1169             | 12. 9518 | 7922.6515                       | 3.3439            | 10. 1533           | 0.4034  | 1. 3226 |
|   | 44.0           | 113801.0                  | 244278.0                    | 2.1465             | 12. 993  | 8152. 3928                      | 3. 373            | 10.36              | 0.3363  | 1. 2625 |
| _ | 45.0           | 114913.0                  | 240845.0                    | 2. 0959            | 13, 1411 | 9033. 4037                      | 3.289             | 9. 7743            | 0. 2948 | 1. 2267 |
| _ | 46.0           | 116850.0                  | 249083.0                    | 2. 1316            | 12. 9734 | 8042.0906                       | 3.3506            | 10. 2006           | 0. 3827 | 1. 3038 |
| _ |                |                           |                             |                    |          |                                 |                   |                    |         |         |
|   | 47.0           | 112902. 0                 | 237193.0                    | 2. 1009            | 12. 9697 | 8022. 0149                      | 3.3797            | 10.4088            | 0. 3311 | 1. 258  |
|   | 48.0           | 112386.0                  | 238514.0                    | 2. 1223            | 13. 0401 | 8422. 9025                      | 3.3286            | 10.0462            | 0. 3155 | 1. 2445 |
|   | 49.0           | 113783.0                  | 239548. 0                   | 2. 1053            | 13. 1298 | 8963. 2611                      | 3.2754            | 9. 6826            | 0. 3123 | 1. 2416 |
|   | 50.0           | 113966. 0                 | 241049.0                    | 2.1151             | 13.0273  | 8348. 6703                      | 3.3417            | 10. 1382           | 0. 3147 | 1. 2437 |
|   | 51.0           | 113649.0                  | 238121.0                    | 2, 0952            | 13, 0889 | 8712.6499                       | 3.2713            | 9.655              | 0.3179  | 1. 2465 |
|   | 52.0           | 117545.0                  | 246424.0                    | 2. 0964            | 12. 8667 | 7468. 8375                      | 3.4472            | 10,9073            | 0.3835  | 1, 3045 |
| _ | 53.0           | 113647.0                  | 241560.0                    | 2, 1255            | 13.0102  | 8250.0103                       | 3.3119            | 9. 9308            | 0.3434  | 1. 2687 |
| - | 54.0           | 116263.0                  | 243967.0                    | 2.0984             | 12. 9975 | 8177. 5702                      | 3.347             | 10.175             | 0.3646  | 1. 2875 |
| _ | 55.0           | 111897. 0                 | 236799. 0                   | 2.1162             | 12. 9002 | 7644. 4648                      | 3. 4371           | 10.8307            | 0.3308  | 1. 2577 |
|   |                |                           |                             |                    |          |                                 |                   |                    |         |         |
|   | 56.0           | 115568. 0                 | 241811.0                    | 2. 0924            | 13. 0313 | 8371. 4045                      | 3.3014            | 9. 8586            | 0. 3539 | 1. 278  |
|   | 57.0           | 110749.0                  | 235075.0                    | 2. 1226            | 12. 7384 | 6833, 3777                      | 3. 4538           | 10.9571            | 0. 4002 | 1. 3197 |
|   | 58.0           | 113703. 0                 | 240510.0                    | 2. 1152            | 13. 0655 | 8572. 2887                      | 3.3076            | 9. 9011            | 0.325   | 1. 2527 |
| _ | 59.0           | 113891.0                  | 238419.0                    | 2. 0934            | 12. 7258 | 6774. 2626                      | 3.541             | 11.6402            | 0. 4081 | 1. 3269 |
|   | 60.0           | 116675.0                  | 247253.0                    | 2.1192             | 12, 9853 | 8108. 9897                      | 3.4037            | 10.5832            | 0.3376  | 1. 2636 |
| - | 61. 0          | 112856. D                 | 238881.0                    | 2.1167             | 13. 0195 | 8303. 2266                      | 3. 3241           | 10. 0153           | 0.3416  | 1. 2671 |
| _ | 62. 0          | 112856.0                  | 238881. U<br>245266. U      | 2.1107             | 13, 0195 | 8503. 2266<br>8637. 2827        | 3. 3241           | 10.0153            | 0.3416  | 1. 2434 |
|   |                |                           |                             |                    |          |                                 |                   |                    |         |         |
|   | 63. 0          | 115620.0                  | 243500.0                    | 2.106              | 12. 8713 | 7492.7703                       | 3, 4549           | 10.9652            | 0. 3775 | 1. 2991 |
|   | 64. 0          | 115596. 0                 | 244706.0                    | 2.1169             | 12. 9254 | 7779. 3509                      | 3.3679            | 10.324             | 0.3975  | 1. 3172 |
| Ĵ | 65.0           | 114287.0                  | 241076.0                    | 2.1094             | 13. 015  | 8277. 4196                      | 3.2773            | 9. 6951            | 0.3463  | 1. 2713 |
| Π | 66. 0          | 113829.0                  | 239842.0                    | 2.107              | 12. 8601 | 7435. 1621                      | 3.4739            | 11. 1108           | 0.3517  | 1. 2761 |
|   | 67. 0          | 114015.0                  | 241545.0                    | 2. 1185            | 13. 0269 | 8346. 3145                      | 3.3093            | 9.9127             | 0.3423  | 1. 2678 |
| _ | 68.0           | 115118.0                  | 244621.0                    | 2. 125             | 12. 9517 | 7922.3157                       | 3.3919            | 10.497             | 0.3506  | 1. 2751 |
| - | 69.0           | 115134.0                  | 246043.0                    | 2.137              | 13. 0346 | 8391.0559                       | 3.3107            | 9,9224             | 0.3419  | 1. 2674 |
| - | 70. 0          | 114563.0                  | 246101.0                    | 2.1482             | 12. 9358 | 7835. 47                        | 3.3466            | 10. 1726           | 0.3811  | 1. 3024 |
| - | 71. 0          | 114563. U<br>115146. D    | 243685.0                    | 2.1163             | 12. 9356 | 8079. 0557                      | 3.3400            | 10. 1726           | 0.3531  | 1. 3024 |
| _ |                |                           |                             |                    |          |                                 |                   |                    |         |         |
|   | 72. 0          | 114524. 0                 | 240827.0                    | 2. 1029            | 12. 9642 | 7990. 9591                      | 3. 3696           | 10. 3358           | 0.354   | 1. 2781 |
|   | 73. 0          | 115426. 0                 | 242830.0                    | 2. 1038            | 13. 0156 | 8281. 2151                      | 3. 2215           | 9. 3273            | 0. 3612 | 1. 2845 |
|   | 74. 0          | 111811.0                  | 236975. 0                   | 2.1194             | 13. 0814 | 8667. 5013                      | 3. 2587           | 9. 5715            | 0. 3171 | 1. 2458 |
|   | 75. 0          | 117564. 0                 | 247510.0                    | 2. 1053            | 12. 8509 | 7387. 4691                      | 3. 3901           | 10. 4836           | 0. 4258 | 1, 3433 |
|   | 76. 0          | 116496.0                  | 243987. 0                   | 2.0944             | 13. 1048 | 8809. 5235                      | 3.3007            | 9.8536             | 0.3149  | 1. 244  |
|   | 77. 0          | 116799.0                  | 245096.0                    | 2.0984             | 12. 9208 | 7754, 4019                      | 3. 4283           | 10.7649            | 0.363   | 1. 2861 |
| _ | 78. 0          | 115331.0                  | 242417.0                    | 2.1019             | 13, 1171 | 8884. 4652                      | 3.2817            | 9, 7248            | 0.3207  | 1, 249  |
| - | 79. 0          | 114655.0                  | 239555.0                    | 2. 0894            | 13. 0332 | 8382, 868                       | 3.2912            | 9, 7895            | 0.3558  | 1, 2797 |
| - | 80.0           | 112941. 0                 | 240172.0                    | 2. 1265            | 12. 9517 | 7922.2187                       | 3.3365            | 10. 1015           | 0.3669  | 1. 2896 |
| - |                |                           |                             |                    |          |                                 |                   |                    |         |         |
| _ | 81. 0          | 113630.0                  | 237771.0                    | 2. 0925            | 12.8401  | 7332.7568                       | 3.4652            | 11.0441            | 0. 3708 | 1. 2931 |
|   | 82. 0          | 112533.0                  | 237603.0                    | 2.1114             | 12. 9739 | 8045, 3007                      | 3. 341            | 10, 1331           | 0. 3543 | 1. 2784 |
|   | 83. 0          | 116589. 0                 | 244027. 0                   | 2. 0931            | 13. 0234 | 8326. 2415                      | 3.336             | 10.0982            | 0.3518  | 1. 2762 |
| ľ | 84. 0          | 118103.0                  | 246378.0                    | 2.0861             | 13. 0889 | 8712. 4477                      | 3.3134            | 9.9407             | 0.3354  | 1. 2618 |
| 1 | 85. 0          | 115653.0                  | 244505.0                    | 2. 1141            | 13. 0421 | 8434, 5451                      | 3.2775            | 9. 6969            | 0.3599  | 1. 2833 |
|   | 86. 0          | 114716.0                  | 242989.0                    | 2.1182             | 13. 0915 | 8728. 4608                      | 3.2403            | 9. 4497            | 0.3599  | 1. 2833 |
| _ | 87. 0          | 116840.0                  | 244268.0                    | 2.0906             | 13, 1478 | 9075.4522                       | 3. 2325           | 9, 3991            | 0.3461  | 1, 2711 |
| - | 88.0           | 116607. 0                 | 245889.0                    | 2.1087             | 13. 168  | 9203.7495                       | 3.1682            | 8, 9895            | 0.3462  | 1, 2712 |
| _ |                |                           |                             |                    |          |                                 |                   |                    |         |         |
| _ | 89. 0          | 112259. 0                 | 239290. 0                   | 2 1316             | 12. 8857 | 7567. 8118                      | 3. 449            | 10. 9208           | 0.3465  | 1. 2715 |
| Ĺ | 90.0           | 112886. 0                 | 238294. 0                   | 2.1109             | 13. 0884 | 8709. 4777                      | 3. 2978           | 9. 8345            | 0.306   | 1. 2363 |
| Ī | 91.0           | 112073.0                  | 235309. 0                   | 2. 0996            | 12. 9427 | 7872. 9135                      | 3. 369            | 10.3314            | 0.3458  | 1. 2708 |
| _ | 92.0           | 117198.0                  | 245898. 0                   | 2. 0981            | 13. 0975 | 8764.8713                       | 3.2715            | 9. 6563            | 0.3534  | 1. 2776 |
| _ | 93.0           | 111691.0                  | 235191.0                    | 2. 1057            | 13. 0146 | 8275. 4233                      | 3.3096            | 9.9148             | 0.3344  | 1. 2608 |
| _ |                | 112214.0                  |                             | 2.1057             | 13. 0706 |                                 | 3. 2853           | 9. 7493            | 0.3323  | 1. 2591 |
| _ | 94.0           |                           | 236200.0                    | 2 1049             | 13.0706  | 8602. 6775                      |                   |                    |         |         |
|   | 95.0           | 114563.0                  | 241659.0                    | 2. 1094            | 13. 1846 | 9309. 9246                      | 3. 1878           | 9. 1121            | 0.325   | 1. 2527 |
| _ | 96.0           | 117196.0                  | 244018.0                    | 2. 0821            | 13. 3645 | 10546.8825                      | 3.0958            | 8. 5492            | 0. 2894 | 1. 2221 |
| _ |                | 114553.0                  | 240602.0                    | 2. 1004            | 13. 0518 | 8491. 4598                      | 3.3242            | 10.016             | 0.3314  | 1. 2582 |
| _ | 97.0           |                           |                             |                    |          | 8731. 1279                      | 3.3019            | 9.8618             | 0. 3315 | 1. 2583 |
| _ | 97. 0<br>98. 0 | 116409. 0                 | 245651.0                    | 2.1102             | 13. 092  |                                 |                   |                    |         |         |
| _ |                | 116409. 0<br>114185. 0    | 245651. 0<br>236025. 0      | 2.1102             | 13. 092  | 8598. 9778                      | 3. 2824           | 9, 7301            | 0.3315  | 1, 2606 |

Figure 5: the comprehensive statistical description of 100 texts in the Chinese Wiki Corpus (word)

|          | text serial    | total character        | unigram entropy    | unigram perplexity     | bigram entropy     | bigram perplexity    | trigram entropy    | trigram perple     |
|----------|----------------|------------------------|--------------------|------------------------|--------------------|----------------------|--------------------|--------------------|
|          | 1. 0           | 205722. 0              | 9. 5031            | 725. 6431              | 5. 3785            | 41.6004              | 2. 005             | 4. 0138            |
| L        | 2. 0           | 213974. 0              | 9. 4344            | 691. 8699              | 5. 2829            | 38. 9322             | 1. 9732            | 3. 9264            |
| ┡        | 3. 0           | 209287. 0              | 9. 5762            | 763. 343               | 5. 3328            | 40. 3031             | 1. 9073            | 3. 7511            |
| _        | 4. 0<br>5. 0   | 207651. 0<br>210131. 0 | 9. 7494<br>9. 8437 | 860. 7381<br>918. 8481 | 5. 4562<br>5. 5382 | 43. 9003<br>46. 4705 | 1. 7721            | 3. 4156<br>3. 2151 |
| -        | 6. 0           | 202773.0               | 9. 6565            | 807. 0536              | 5. 3911            | 41, 9649             | 1. 8711            | 3. 658             |
| _        | 7. 0           | 203462.0               | 9. 7466            | 859. 0367              | 5. 4349            | 43. 2582             | 1, 7817            | 3. 4384            |
|          | 8. 0           | 206483.0               | 9. 6428            | 799. 4062              | 5. 3719            | 41 . 4096            | 1. 8424            | 3. 5861            |
|          | 9. 0           | 203944. 0              | 9. 7024            | 833. 1224              | 5. 3944            | 42.0606              | 1. 7998            | 3. 4818            |
|          | 10. 0          | 204685. 0              | 9. 6296            | 792. 1346              | 5. 2688            | 38. 5527             | 1. 8687            | 3. 6521            |
|          | 11.0           | 204611.0               | 9: 8597            | 929. 0913              | 5. 482             | 44. 6929             | 1. 7061            | 3. 2627            |
|          | 12. 0          | 209060. 0              | 9. 8273            | 908. 4748              | 5. 4311            | 43. 1456             | 1. 7399            | 3. 3401            |
|          | 13. 0          | 206165. 0              | 9. 6253            | 789. 7835              | 5. 3841            | 41. 7614             | 1. 8924            | 3. 7125            |
| _        | 14. 0<br>15. 0 | 199534. 0<br>207231. 0 | 9. 7757<br>9. 7492 | 876. 5428<br>860. 5864 | 5. 4004<br>5. 4854 | 42. 2361<br>44. 7983 | 1. 7493<br>1. 7787 | 3. 362<br>3. 4312  |
| -        | 16. 0          | 210810.0               | 9. 6779            | 819 0969               | 5. 3458            | 40, 6673             | 1. 8528            | 3. 4312            |
|          | 17. 0          | 205760.0               | 9. 7195            | 843. 0376              | 5. 426             | 42. 992              | 1. 7718            | 3. 4148            |
|          | 18. 0          | 210251.0               | 9. 6813            | 821. 0573              | 5. 3493            | 40. 7671             | 1. 8532            | 3. 613             |
|          | 19. 0          | 206385. 0              | 9. 8107            | 898. 1102              | 5. 4688            | 44. 2868             | 1. 7034            | 3. 2568            |
|          | 20. 0          | 194481.0               | 9. 7214            | 844. 1924              | 5. 4388            | 43. 3758             | 1. 7574            | 3. 381             |
|          | 21.0           | 209630. 0              | 9. 7378            | 853. 8239              | 5. 4599            | 44. 0158             | 1. 7864            | 3. 4496            |
| _        | 22. 0          | 204774. 0              | 9. 8094            | 897. 272               | 5. 5048            | 45. 4064             | 1. 7213            | 3. 2973            |
| _        | 23. 0          | 202491. 0<br>209593. 0 | 9. 786<br>9. 8586  | 882. 8225<br>928. 3879 | 5. 3989<br>5. 5005 | 42. 1935<br>45. 2718 | 1. 7579            | 3. 3822<br>3. 2702 |
| _        | 25. 0          | 209841.0               | 9. 7016            | 832. 6819              | 5. 4149            | 42. 6631             | 1. 8087            | 3. 5034            |
| _        | 26. 0          | 204927. 0              | 9. 6703            | 814. 8172              | 5. 272             | 38. 6399             | 1. 7629            | 3. 3937            |
|          | 27. 0          | 211118.0               | 9. 781             | 879. 7895              | 5. 3532            | 40. 8756             | 1. 7528            | 3. 3702            |
|          | 28. 0          | 198245. 0              | 9. 8439            | 918. 9614              | 5. 4552            | 43. 8725             | 1. 6599            | 3. 16              |
|          | 29. 0          | 204944. 0              | 9. 9306            | 975. 9249              | 5. 5521            | 46. 9194             | 1. 6023            | 3. 0362            |
|          | 30. 0          | 206334. 0              | 9. 7687            | 872. 292               | 5. 4234            | 42. 9142             | 1. 7613            | 3. 3899            |
|          | 31.0           | 202983. 0              | 9. 7715            | 874. 0241              | 5. 4116            | 42.5651              | 1. 7577            | 3. 3815            |
| _        | 32.0           | 204522. 0              | 9. 6387<br>9. 836  | 797. 1712<br>913. 973  | 5. 3347            | 40. 3558<br>37. 4863 | 1. 738             | 3. 3357            |
| _        | 33. 0<br>34. 0 | 160092. 0<br>195769. 0 | 9. 836<br>9. 8524  | 913. 973<br>924. 4292  | 5. 2283<br>5. 4208 | 37. 4863<br>42. 8378 | 1. 4541            | 2. 7398<br>3. 1449 |
| -        | 35. 0          | 204517. 0              | 9. 8107            | 924. 4292<br>898. 1008 | 5. 4208            | 43. 9225             | 1. 6949            | 3. 1449            |
|          | 36.0           | 204195.0               | 9. 8258            | 907. 5157              | 5. 4529            | 43. 8008             | 1. 7211            | 3. 2968            |
|          | 37. 0          | 205272. 0              | 9. 883             | 944. 2198              | 5. 4979            | 45. 1902             | 1. 6635            | 3. 1678            |
|          | 38. 0          | 207865. 0              | 9. 6666            | 812. 7103              | 5. 303             | 39. 4775             | 1. 7634            | 3. 395             |
|          | 39. 0          | 203079.0               | 9. 8995            | 955. 0706              | 5. 5657            | 47. 3636             | 1. 6251            | 3. 0847            |
| Ĺ        | 40. 0          | 197789. 0              | 9. 7589            | 866. 4108              | 5. 3724            | 41. 4235             | 1. 7399            | 3. 34              |
| _        | 41.0           | 208283. 0              | 9. 7856            | 882. 5799              | 5. 3965            | 42. 1225             | 1. 7613            | 3. 3901            |
| _        | 42. 0          | 197120.0               | 9. 8397            | 916. 3399              | 5. 3527            | 40. 8614             | 1. 7198            | 3. 294             |
| _        | 43. 0          | 211464. 0              | 9. 7779<br>9. 8033 | 877. 8625<br>893. 4603 | 5. 4119<br>5. 4345 | 42. 5738<br>43. 2461 | 1. 7252<br>1. 7288 | 3. 3063<br>3. 3144 |
|          | 45. 0          | 203992. 0              | 9. 9026            | 957. 1648              | 5. 5062            | 45. 4503             | 1. 6423            | 3. 1215            |
|          | 46. 0          | 212022. 0              | 9. 719             | 842. 7496              | 5. 4333            | 43. 2103             | 1. 7489            | 3, 361             |
|          | 47. 0          | 201295.0               | 9. 8361            | 914. 0023              | 5. 4283            | 43. 0604             | 1. 7074            | 3. 2657            |
|          | 48. 0          | 201166. 0              | 9. 8319            | 911. 3503              | 5. 4581            | 43. 958              | 1. 6843            | 3. 2138            |
|          | 49.0           | 201984. 0              | 9. 9447            | 985. 4964              | 5, 4516            | 43. 7615             | 1, 6325            | 3. 1006            |
| Ĺ        | 50. 0          | 203428.0               | 9, 8366            | 914. 3681              | 5. 4692            | 44. 2995             | 1. 6934            | 3. 2341            |
|          | 51.0           | 202982. 0              | 9. 9042            | 958. 223               | 5. 4205            | 42. 8295             | 1. 6401            | 3. 117             |
| H        | 52. 0<br>53. 0 | 210018.0               | 9. 7044<br>9. 7858 | 834. 2714<br>882. 6889 | 5. 3903<br>5. 4569 | 41. 9413             | 1. 7734            | 3, 4187            |
| H        | 54. 0          | 206970.0               | 9. 8447            | 919, 4696              | 5. 3947            | 43. 924              | 1, 6916            | 3. 2243            |
| -        | 55.0           | 197996.0               | 9. 8666            | 933, 5499              | 5. 424             | 42. 9324             | 1, 6811            | 3. 2066            |
|          | 56. 0          | 202274.0               | 9. 865             | 932. 5024              | 5. 4564            | 43. 9081             | 1. 6651            | 3. 1713            |
|          | 57. 0          | 196406. 0              | 9, 7394            | 854. 7923              | 5. 2854            | 38. 9994             | 1. 7434            | 3, 3483            |
|          | 58. 0          | 201972. 0              | 9. 8442            | 919. 2081              | 5. 4815            | 44. 6776             | 1, 6812            | 3. 207             |
|          | 59. 0          | 199364. 0              | 9. 7264            | 847. 1125              | 5. 387             | 41.8443              | 1. 7653            | 3. 3994            |
|          | 60.0           | 208160. 0              | 9. 7715            | 874. 0099              | 5. 4635            | 44. 1236             | 1. 7499            | 3. 3635            |
|          | 61.0           | 199806. 0              | 9. 8679            | 934. 4228              | 5. 4632            | 44, 114              | 1. 657             | 3. 1537            |
| H        | 62.0           | 208197. 0              | 9. 9096            | 961. 8209<br>896. 8353 | 5. 4458            | 43. 5858<br>41. 6065 | 1. 6744            | 3. 1919<br>3. 3522 |
| $\vdash$ | 63. 0<br>64. 0 | 204749. 0<br>205261. 0 | 9. 8087<br>9. 8188 | 896. 8353<br>903. 1517 | 5. 3787<br>5. 4253 | 41. 6065<br>42. 9714 | 1. 7451            | 3. 3522            |
|          | 65. 0          | 205261.0               | 9. 8968            | 953. 2924              | 5. 4253            | 41. 5311             | 1. 6544            | 3. 2144            |
|          | 66.0           | 203965.0               | 9. 8608            | 929. 788               | 5. 3428            | 40. 5821             | 1. 7159            | 3. 285             |
|          | 67. 0          | 204808. 0              | 9. 8292            | 909. 6608              | 5. 4443            | 43. 5403             | 1. 6883            | 3. 2228            |
|          | 68. 0          | 207307. 0              | 9. 7815            | 880. 1068              | 5. 409             | 42. 4878             | 1. 7452            | 3. 3525            |
|          | 69.0           | 206185. 0              | 9. 8273            | 908. 4789              | 5. 4471            | 43. 6259             | 1. 6811            | 3. 2067            |
| Ĺ        | 70. 0          | 204295. 0              | 9. 7331            | 851. 057               | 5. 4339            | 43. 2282             | 1. 7281            | 3. 313             |
|          | 71.0           | 206397. 0              | 9. 8226            | 905. 5382              | 5. 4089            | 42. 4863             | 1. 693             | 3. 2333            |
| H        | 72. 0<br>73. 0 | 202265. 0              | 9. 8074<br>9. 7989 | 896. 0313<br>890. 7822 | 5. 4299<br>5. 3888 | 43. 1095<br>41. 8973 | 1. 7071            | 3. 2649<br>3. 1324 |
| H        | 73. 0          | 206229. 0<br>198571. 0 | 9. 7989            | 890. 7833<br>952. 8667 | 5. 3888            | 41. 8973             | 1. 6472            | 3. 1324            |
| H        | 75. 0          | 208463.0               | 9. 7854            | 882. 4618              | 5. 3431            | 40. 5916             | 1. 7077            | 3. 2664            |
| H        | 76. 0          | 206510.0               | 9. 8422            | 917. 8859              | 5. 5083            | 45. 517              | 1. 6775            | 3. 1988            |
|          | 77. 0          | 206093. 0              | 9. 7716            | 874. 094               | 5. 4636            | 44. 1283             | 1. 7531            | 3. 3709            |
|          | 78. 0          | 205520.0               | 9. 9012            | 956. 1884              | 5. 4688            | 44. 2865             | 1. 6509            | 3, 1403            |
|          | 79. 0          | 202135.0               | 9. 8727            | 937. 5196              | 5. 4455            | 43. 5759             | 1. 6438            | 3. 1248            |
|          | 80.0           | 200390. 0              | 9. 8075            | 896. 0764              | 5. 4246            | 42.9504              | 1. 6781            | 3. 2               |
| -        | 81.0           | 202404.0               | 9. 77              | 873. 0685              | 5. 364             | 41, 1843             | 1. 7736            | 3. 4191            |
| H        | 82. 0<br>83. 0 | 198709. 0<br>205411. 0 | 9. 8281<br>9. 8174 | 908. 9517<br>902. 2619 | 5. 4307<br>5. 4958 | 43. 1333<br>45. 1233 | 1. 6856<br>1. 6838 | 3. 2168<br>3. 2127 |
| H        | 84. 0          | 209075.0               | 9. 8174            | 948. 3503              | 5. 4958            | 45. 1233             | 1. 6838            | 3. 2127            |
|          | 85. 0          | 207057. 0              | 9. 8392            | 915. 9967              | 5. 4424            | 43. 4827             | 1. 6812            | 3. 207             |
|          | 86. 0          | 204734. 0              | 9. 8194            | 903. 5395              | 5. 4791            | 44. 6036             | 1. 6616            | 3. 1637            |
|          | 87. 0          | 207730.0               | 9. 9519            | 990. 4351              | 5. 45              | 43. 7126             | 1. 6359            | 3. 1079            |
|          | 88. 0          | 207434.0               | 9. 9233            | 970. 9867              | 5. 4534            | 43. 8169             | 1. 6074            | 3, 0471            |
|          | 89. 0          | 201363.0               | 9. 805             | 894. 5662              | 5. 4127            | 42. 597              | 1. 7035            | 3. 257             |
|          | 90. 0          | 200538.0               | 9. 9404            | 982. 5813              | 5. 466             | 44. 2012             | 1. 6172            | 3. 0678            |
|          | 91.0           | 198387. 0              | 9. 8361            | 914. 0464              | 5. 4075            | 42. 4442             | 1. 687             | 3. 2199            |
| -        | 92. 0          | 207086.0               | 9. 8925            | 950. 4548              | 5. 4765            | 44. 5223             | 1. 6476            | 3, 1331            |
|          | 93. 0          | 197918.0               | 9. 846             | 920. 352               | 5, 4613            | 44. 0578             | 1, 6686            | 3. 1791            |
| -        | 94. 0<br>95. 0 | 198549. 0<br>204401. 0 | 9. 9095<br>9. 9181 | 961. 7226<br>967. 5112 | 5. 4157<br>5. 4846 | 42. 6868<br>44. 7733 | 1. 6315            | 3. 0984<br>3. 0596 |
| -        | 95. U<br>96. 0 | 204401.0               | 9, 9181            | 1009. 5784             | 5. 4846            | 44. 7733             | 1. 6134            | 2. 9658            |
|          | 97. 0          | 202249. 0              | 9. 8937            | 951. 2311              | 5. 4674            | 44. 2435             | 1, 6461            | 3. 1299            |
|          | 98. 0          | 208171.0               | 9. 8533            | 925. 0215              | 5. 4839            | 44. 7528             | 1. 6817            | 3. 2081            |
|          | 99.0           | 199466. 0              | 9. 8416            | 917, 5081              | 5. 4971            | 45. 1654             | 1. 6429            | 3. 123             |
|          | 100.0          | 202406.0               | 9. 9448            | 985, 5914              | 5. 499             | 45. 2248             | 1, 5689            | 2.9667             |

Figure 6: the comprehensive statistical description of 100 texts in the Chinese Wiki Corpus (character)





Figure 8: top 16 frequent characters in the Chinese Wiki corpus

#### **Conclusions**

The analysis of the Gutenberg Corpus (English) and the Chinese Wiki Corpus (Chinese) using unigram, bigram, and trigram models reveals significant insights into the lexical and structural differences between the two languages, as well as the impact of model complexity on text predictability. Below are conclusions drawn based on the findings:

Firstly, the frequency heatmaps for English letters and words demonstrate a relatively dispersed distribution. High-frequency words such as "shall" and "said" appear with moderate frequency, indicating a diverse vocabulary usage. Similarly, the letter frequency heatmap shows a balanced distribution, with common letters like "e" and "m" appearing frequently but not overwhelmingly so. In contrast, Chinese character and word frequency heatmaps reveal a more concentrated distribution. High-frequency characters such as "年" and "中" dominate the corpus, reflecting a higher degree of lexical repetition. This suggests that Chinese text relies more heavily on a smaller set of core characters and words compared to English.

Secondly, the entropy and perplexity results for Chinese indicate a higher degree of unpredictability at both the character and word levels. Unigram entropy values for Chinese words are notably higher compared to English, reflecting the greater lexical diversity and lower repetition of words in Chinese texts. Bigram and trigram entropy values further highlight the importance of context in Chinese, as predictability increases with additional preceding words. English exhibits lower unigram entropy values, suggesting a more predictable structure at the character level due to the frequent repetition of common characters.

Finally, across both languages, the transition from unigram to bigram and trigram models shows a consistent decrease in entropy and perplexity. This trend underscores the importance of context in language modeling. For example, in Chinese, bigram entropy drops significantly from unigram levels, and trigram entropy further reduces this unpredictability. A similar pattern is observed in English words, where bigram and trigram models capture more contextual information, reducing the uncertainty in character and word sequences. What should also be noticed is that compared to the entropy in Chinese and to the entropy of English at the word level, the entropy of English at the letter level is less influenced by the value of N in the n-gram model. The reason why the entropy of English at the letter level is less affected by the value of N in the n-gram model can be analyzed from the following perspectives: letters in English exhibit a relatively high degree of independence. Compared to words or Chinese characters, the dependency between letters is weaker; the English alphabet is limited to 26 letters, making the combinations of letters relatively simple; the spelling rules of English are relatively fixed, and the combinations of letters follow certain patterns; at the letter level, due to the simplicity of letter combinations, the issue of data sparsity is less pronounced compared to the word level.

## References

- [1] Brown, P.F., Pietra, S.D., Pietra, V.J., Lai, J.C., & Mercer, R.L. (1992). An Estimate of an Upper Bound for the Entropy of English. *Comput. Linguistics*, *18*, 31-40.
- [2] Sloane, N.J., & Wyner, A.D. (1951). Prediction and Entropy of Printed English.

Note: some code used in this study were generated with the assistance of artificial intelligence.