高级计量经济学

Lecture 10: Instrumental Variable Estimation

黄嘉平

工学博士 经济学博士 深圳大学中国经济特区研究中心 讲师

办公室 粤海校区汇文楼1510

E-mail huangjp@szu.edu.cn
Website https://huangjp.com

工具变量估计

内生性

Endogeneity

至今为止我们讨论过的估计方法(OLS,MM,GLS)都需要假设解释变量(或者信息集)是外生的或者前定的。

例如在 MM 估计中,我们需要从信息集 Ω_t 中选取变量 W_t ,以保证 $E[u_t \mid W_t] = 0$ 。

在实践中很难保证所有解释变量都和误差项不相关。如果某个解释变量和误差项相关,它就是内生变量。内生性可以导致 OLS 估计量有偏且不一致。

内生性可以分为以下几种:

- Errors in variables (measurement error)
- Simultaneity (联立方程、或称双向因果)
- Omitted variables (遗漏变量)

工具变量

Instrumental Variables

考虑下面的线性回归模型

$$y = X\beta + u$$
, $E[uu^{\mathsf{T}}] = \sigma^2 I$

且X中至少有一个内生变量。

假设针对任意观测值 t,我们都能找到信息集 Ω_t 使其满足 $E[u_t \mid \Omega_t] = 0$,并且能定义 $n \times k$ 矩阵 W 使其第 t 行 W_t 的要素都包含在 Ω_t 中。

这样定义的 W 中的变量被称为工具变量(instrumental variables, or instruments)。

工具变量应该是外生的或者前定的,且包含X中所有外生或前定变量。

IV估计量

Instrumental Variables Estimator

工具变量 W 满足矩条件

$$W^{\top}(y - X\beta) = 0$$

此等式的解 $\hat{oldsymbol{eta}}_{ ext{IV}}$ 称为 $ext{IV}$ 估计量,即

$$\hat{oldsymbol{eta}}_{ ext{IV}} = (oldsymbol{W}^{ ext{T}}oldsymbol{X})^{-1}oldsymbol{W}^{ ext{T}}oldsymbol{y}$$
 和 MM 估计量的表达式相同

如果忽略模型上的假设, IV 估计量

从 MM 估计量的性质可知,在前定性和可识别性条件下, $\hat{oldsymbol{eta}}_{ ext{IV}}$ 满足一致性和渐进正态性。基于样 本 X 的可识别性是 $W^{\mathsf{T}}X$ 可逆,而渐进可识别性条件是

$$\underset{n\to\infty}{\lim} \frac{1}{n} W^{\top} X$$
 是非奇异确定矩阵

事实上, $\hat{\beta}_{IV}$ 的一致性不需要前定性条件 $E[u_t \mid W_t] = 0$,而只需要

$$\lim_{n \to \infty} \frac{1}{n} \mathbf{W}^{\mathsf{T}} \mathbf{u} = \mathbf{0} \qquad E[u_t \mid \mathbf{W}_t] = 0 \Rightarrow \lim_{n \to \infty} \frac{1}{n} \mathbf{W}^{\mathsf{T}} \mathbf{u} = \mathbf{0}$$

这个条件被称为工具变量的渐进不相关(asymptotic uncorrelated)条件。

- 1. 当 X 和 W 都只包含一个变量 时,可识别性条件意味着 $Cov[w_t, x_t] \neq 0$
- 2. 前定性条件可以推出 $Cov[W_t, u_t] = 0$

IV估计量的有效性

当真实参数值是 $\boldsymbol{\beta}_0$ 和 σ_0^2 时,

$$\operatorname{Var}\left[\operatorname{plim}_{n\to\infty}\sqrt{n}(\hat{\boldsymbol{\beta}}_{\mathrm{IV}}-\boldsymbol{\beta}_{0})\right] = \sigma_{0}^{2}\operatorname{plim}_{n\to\infty}\left(\frac{1}{n}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{P}_{\boldsymbol{W}}\boldsymbol{X}\right)^{-1}$$

因此,IV 估计量的渐进有效性取决于如何选择 W 中的变量。我们称 IV 估计量满足渐进有效性的工具变量为最优工具变量(optimal instruments)。

理论上,我们可以定义矩阵 \bar{X} ,使其第 t 行为 $\bar{X}_t = E[X_t \mid \Omega_t]$,且满足

$$X = \bar{X} + V$$
, $E[V_t \mid \Omega_t] = 0$ 可以将其理解为生成 X 的 DGP

由此假设可以证明 $\lim_{n\to\infty} \frac{1}{n} X^{\top} P_W X = \lim_{n\to\infty} \frac{1}{n} \bar{X}^{\top} P_W \bar{X}$ 。当 $W = \bar{X}$ 时,右侧的概率极限等于 $\lim_{n\to\infty} \frac{1}{n} \bar{X}^{\top} \bar{X}$,在所有可选择的 W 中最有效,因此 \bar{X} 是最优工具变量(详见 p.318)。

令 Z 为包含 X 中外生或前定变量的子矩阵,则 $\bar{Z}=Z$,因此 Z 也是 \bar{X} 的子矩阵。这就解释了为什么 W 应该包含 X 中的所有外生或前定变量。

和 MM 估计量的渐进有效性类似,我们无法观测 \bar{X} ,而只能想办法找到它的一致估计量。

IV估计中的识别

Identification in IV Estimation

至此,我们假设了工具变量矩阵 W 是 $n \times k$ 矩阵,所以工具变量的个数等于 β 中参数的个数。

在实践中,有时我们可以从信息集中找出 ℓ 个工具变量,从而构建 $n \times \ell$ 矩阵 W。 根据矩条件 $W^{\mathsf{T}}(y - X\beta) = \mathbf{0}$,可知其中共包含 ℓ 个等式,因此:

- 当 $\ell > k$ 时,我们称模型为过度识别(overidentified),此时矩条件的个数大于参数的个数,满足条件的估计量往往不存在;
- 当 $\ell = k$ 时,我们称模型为恰好识别(just/exactly identified),此时矩条件的个数等于参数的个数,因此存在唯一解;
- 当 $\ell > k$ 时,我们称模型为识别不足(underidentified),此时矩条件不存在唯一解。

当 $\ell > k$ 时,最有效的 IV 估计量称为广义 IV 估计量(generalized IV estimator,or GIVE)。 $\ell = k$ 时的 IV 估计量可称为简单 IV 估计量(simple IV estimator)。

广义IV估计量

Generalized IV Estimator

当 $\ell > k$ 时,我们可以从 ℓ 个工具变量中选取 k 种线性结合,从而构筑 k 个矩条件。这可以通过定义 $\ell \times k$ 矩阵 J,从而使 WJ为 $n \times k$ 矩阵,并建立矩条件 $J^{\mathsf{T}}W^{\mathsf{T}}(y - X\beta) = 0$ 来完成。

在选择矩阵J时,应当使其满足下列条件:

- 1. rank(WJ) = k,这是为了保证可识别性
- 2. J 至少应该是渐进确定的(asymptotic deterministic)
- 3. Ϳ 应当使 Ⅳ 估计量满足渐进有效性

因此,矩条件 $J^{\mathsf{T}}W^{\mathsf{T}}(y-X\beta)=0$ 之解 $(J^{\mathsf{T}}W^{\mathsf{T}}X)^{-1}J^{\mathsf{T}}W^{\mathsf{T}}y$ 代表一种估计量的集合,而是其中最有效的是 GIVE。

广义IV估计量

Generalized IV Estimator

从简单 IV 估计量的性质可知,当 $X=\bar{X}+V$, $E[V_t\mid\Omega_t]=0$ 时,用 WJ 替代 W 获得的渐进协方差矩阵是

$$\sigma_0^2 \operatorname{plim}_{n \to \infty} \left(\frac{1}{n} \bar{\boldsymbol{X}}^{\mathsf{T}} \boldsymbol{P}_{\boldsymbol{W} \boldsymbol{J}} \bar{\boldsymbol{X}} \right)^{-1}$$

简单 Ⅳ 估计量中的最优工具变量是 $W = \bar{X}$ 。

根据定义, $\bar{X}_t \in \Omega_t$,因此 \bar{X}_t 是 W_t 中变量的确定函数,但不一定是线性函数。一般情况下不存在满足 $\bar{X}=WJ$ 的矩阵 J。

WJ 是 W 的列空间 S(W) 中的点集,如果无法在 S(W) 中寻找最优解,作为次优解,我们可以选择 \bar{X} 在 S(W) 上的正交投影。即令

$$WJ = P_W \bar{X} = W(W^\top W)^{-1} W^\top \bar{X}$$

此时 $\boldsymbol{J} = (\boldsymbol{W}^{\mathsf{T}}\boldsymbol{W})^{-1}\boldsymbol{W}^{\mathsf{T}}\bar{\boldsymbol{X}}_{\circ}$

可以证明当 $WJ = P_W \bar{X}$ 时,IV 估计量满足渐进有效性(比较对象是所有可能的 WJ ,详见p.320)。

广义IV估计量

Generalized IV Estimator

和前面一样, \bar{X} 未知,因此无法直接计算 $P_W \bar{X}$ 。但是从 $J = (W^T W)^{-1} W^T \bar{X}$ 可得,

$$\lim_{n \to \infty} J = \lim_{n \to \infty} \left(\frac{1}{n} W^{\top} W \right)^{-1} \left(\frac{1}{n} W^{\top} \bar{X} \right)
= \lim_{n \to \infty} \left(\frac{1}{n} W^{\top} W \right)^{-1} \left(\frac{1}{n} W^{\top} X \right) \qquad \lim_{n \to \infty} \frac{1}{n} W^{\top} \bar{X} = \lim_{n \to \infty} \frac{1}{n} W^{\top} X \quad \text{(p.318)}$$

因此,我们可以用 P_WX 替代 $P_War{X}$ 而不改变估计量的渐进性质。

当选择 $WJ = P_WX$ 时,矩条件变为

$$\boldsymbol{X}^{\top}\boldsymbol{P}_{\boldsymbol{W}}(\boldsymbol{y}-\boldsymbol{X}\boldsymbol{\beta})=\boldsymbol{0}$$

GIV 估计量为
$$\hat{\boldsymbol{\beta}}_{\text{GIV}} = (\boldsymbol{X}^{\top} \boldsymbol{P}_{\boldsymbol{W}} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{P}_{\boldsymbol{W}} \boldsymbol{y}$$
。 (在 $\ell = k$ 时, $\hat{\boldsymbol{\beta}}_{\text{GIV}} = \hat{\boldsymbol{\beta}}_{\text{IV}}$)

GIV 估计量也可以作为最优化问题 $\min_{\pmb{\beta}} \ (\pmb{y} - \pmb{X} \pmb{\beta})^{\top} \pmb{P}_W (\pmb{y} - \pmb{X} \pmb{\beta})$ 的解导出。

两阶段最小二乘估计

Two Stage Least Squares Estimation

GIV 估计量可以写成

$$\hat{\boldsymbol{\beta}}_{\mathrm{GIV}} = (\boldsymbol{X}^{\top} \boldsymbol{P}_{\boldsymbol{W}} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{P}_{\boldsymbol{W}} \boldsymbol{y} = (\boldsymbol{X}^{\top} \boldsymbol{P}_{\boldsymbol{W}}^{\top} \boldsymbol{P}_{\boldsymbol{W}} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{P}_{\boldsymbol{W}}^{\top} \boldsymbol{y}$$

从最后一项可以看出, $\hat{oldsymbol{eta}}_{ ext{GIV}}$ 是回归模型

$$y = P_W X \beta + v$$

的 OLS 估计量。其中的解释变量 $P_W X$ 是用 W 回归每一个 x_i 所得的预测值所组成的矩阵。

因此,GIV 估计量 $\hat{m{eta}}_{ ext{GIV}}$ 可以通过下面的两阶段最小二乘回归(2SLS)获得:

- 1. 第一阶段(first stage):对 $x_i = W\beta + w$ 进行 OLS 估计,并计算 \hat{x}_i ;
- 2. 第二阶段(second stage):令 $\hat{X} = [\hat{x}_1, ..., \hat{x}_k]$,并对 $y = \hat{X}\beta + \nu$ 进行 OLS 估计。在第二阶段回归中获得的 OLS 估计量就是原模型的 GIV 估计量。

在计算能力缺乏的时代,2SLS 不失为一种计算 GIV 估计量的好方法。但是通过 2SLS 无法求出原模型中 σ^2 的一致估计量。在实际应用中不需要特意使用 2SLS,因为现在的计量软件都可以直接进行 IV 估计,并正确计算回归标准误差。2SLS 的优点是可以帮助我们理解 IV 估计量的一些性质。

IV估计量的小样本性质

即使 IV (GIV) 估计量能满足一致性、渐进有效性等大样本性质,在有限样本下,它几乎永远是有偏的。

导致 Ⅳ 估计量有限样本偏差的原因可能是:

- 工具变量的数量 ℓ 过多,使第一阶段回归的拟合效果非常好(R^2 接近于 1),导致 \hat{X} 的取值非常接近 X。此时第二阶段回归的结果就非常接近于原模型的 OLS 估计。这种情况下 IV 估计和 OLS 估计的偏差相似。
- 第一阶段中存在解释能力很低的模型(R^2 很小或 F 统计值不显著),称之为存在弱工具变量(weak instruments)。此时 IV 估计量的有限样本分布和其渐进分布可能差别很大,导致有限样本偏差。

因此,选择工具变量时应使其满足:

- 1. 工具变量与误差项不相关(外生性、前定性、或渐近不相关性);
- 2. 工具变量与内生变量相关(第一阶段回归存在 OLS 解)。

通常我们把这两项总结为:工具变量只通过X对y产生影响。

广义矩估计法简介

Generalized Method of Moments Estimation

广义矩估计(GMM)和最大似然估计(ML)是参数估计的两大方法体系。我们至今为止学过的 OLS、GLS、IV 估计都是 GMM 估计的特例。

我们考虑线性回归模型

$$y = X\beta + u$$
, $E[uu^{\top}] = \Omega$

X 中至少有一个内生变量。假设存在工具变量 W,满足 $E[u_t \mid W_t] = 0$,且 $\ell \geq k$ 。

在此基础上,我们假设 $E[u_tu_s \mid W_t, W_t] = \omega_{ts}$, ω_{ts} 是协方差矩阵 Ω 的 (t,s) 要素。

广义矩估计法简介

Generalized Method of Moments Estimation

条件 $E[u_t \mid W_t] = 0$ 可推出

$$E[\boldsymbol{W}_{t}^{\top}(y_{t} - \boldsymbol{X}_{t}\boldsymbol{\beta})] = \boldsymbol{0}$$

此等式被称为理论矩条件(theoretical moment condition),与其相对应的样本矩条件(sample moment condition)是我们非常熟悉的

$$\boldsymbol{J}^{\top} \boldsymbol{W}^{\top} (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta}) = \boldsymbol{0}$$

类似于 IV 估计,我们可以通过选择合适的 J 找到满足一致性和渐进有效性的估计量,即

$$\boldsymbol{J} = (\boldsymbol{W}^{\mathsf{T}} \boldsymbol{\Omega} \boldsymbol{W})^{-1} \boldsymbol{W}^{\mathsf{T}} \boldsymbol{X}$$

此时,有效 GMM 估计量(efficient GMM estimator)是

$$\hat{\boldsymbol{\beta}}_{\text{GMM}} = \left(\boldsymbol{X}^{\top} \boldsymbol{W} (\boldsymbol{W}^{\top} \boldsymbol{\Omega} \boldsymbol{W})^{-1} \boldsymbol{W}^{\top} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{W} (\boldsymbol{W}^{\top} \boldsymbol{\Omega} \boldsymbol{W})^{-1} \boldsymbol{W}^{\top} \boldsymbol{y}$$

广义矩估计法简介

Generalized Method of Moments Estimation

有效 GMM 估计量(efficient GMM estimator)也可以通过下面的最小化问题导出:

$$\min_{\boldsymbol{\beta}} \ (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{\top} \boldsymbol{W} (\boldsymbol{W}^{\top} \boldsymbol{\Omega} \boldsymbol{W})^{-1} \boldsymbol{W}^{\top} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})$$

一阶条件是 $X^{\mathsf{T}}W(W^{\mathsf{T}}\Omega W)^{-1}W^{\mathsf{T}}(y-X\beta)=0$,和矩条件一致。

当 Ω 未知时,我们需要对 $\Sigma = \underset{n \to \infty}{\text{plim}} \frac{1}{n} \boldsymbol{W}^{\mathsf{T}} \Omega \boldsymbol{W}$ 进行一致估计。当我们允许异方差性和自相关性时,我们可以获得类似于 HCCME 的估计量 $\hat{\Sigma}$,称之为 heteroskedasticisy and autocorrelation consistent (HAC) estimator。

MM 估计量总结

	矩条件	估计量	最小化目标函数
NLS	$X^{\top}(\boldsymbol{\beta})\big(y-x(\boldsymbol{\beta})\big)=0$	矩条件的唯一解	$(y-x(\boldsymbol{\beta}))^{\top}(y-x(\boldsymbol{\beta}))$
GLS	$X^{\top} \mathbf{\Omega}^{-1} (y - X \boldsymbol{\beta}) = 0$	$(\boldsymbol{X}^{T}\boldsymbol{\Omega}^{-1}\boldsymbol{X})^{-1}\boldsymbol{X}^{T}\boldsymbol{\Omega}^{-1}\boldsymbol{y}$	$(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{T} \mathbf{\Omega}^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$
IV (GIV)	$J^{\top}W^{\top}(y - X\beta) = 0$ $J = (W^{\top}W)^{-1}W^{\top}\bar{X}$	$(\boldsymbol{X}^{\top}\boldsymbol{P}_{\boldsymbol{W}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\top}\boldsymbol{P}_{\boldsymbol{W}}\boldsymbol{y}$	$(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{T} \mathbf{P}_{\mathbf{W}} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$
GMM	$J^{\top}W^{\top}(y - X\beta) = 0$ $J = (W^{\top}\Omega W)^{-1}W^{\top}X$	$(X^{\top}W(W^{\top}\Omega W)^{-1}W^{\top}X)^{-1} \times X^{\top}W(W^{\top}\Omega W)^{-1}W^{\top}y$	$(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top} \mathbf{W} (\mathbf{W}^{\top} \boldsymbol{\Omega} \mathbf{W})^{-1} \times \mathbf{W}^{\top} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$

课外阅读

- Angrist, J. D. and Kruger, A. B. (1991).
 Does Compulsory School Attendance Affect Schooling and Earnings?
 The Quarterly Journal of Economics, 106:4, 979-1014.
 https://www.jstor.org/stable/2937954
- Bound, J., Jaeger, D. A., and Baker, R. M. (1995).
 Problems with Instrumental Variables Estimation When the Correlation Between the Instruments and the Endogeneous Explanatory Variable is Weak.
 Journal of the American Statistical Association, 90:430, 443-450.
 https://www.jstor.org/stable/2291055
- Angrist, J. D., Imbens, G. W., and Kruger, A. B. (1999).
 Jackknife Instrumental Variables Estimation.
 Journal of Applied Econometrics, 14:1, 57-67.
 https://www.jstor.org/stable/223249