SYDNEY TECHNICAL HIGH SCHOOL

YEAR 12 HSC COURSE

Extension 2 Mathematics

Assessment 2 June 2014

TIME ALLOWED: 75 minutes

Instructions:

- Start each question on a new page.
- Write your name and class at the top of this page, and on your answer booklet.
- Hand in your answers attached to the rear of this question sheet.
- All necessary working must be shown. Marks may not be awarded for careless or badly arranged work.
- Marks indicated within each question are a guide only and may be varied at the time of marking
- Write in blue or black pen only.
- It is suggested that you spend no more than 7 minutes on Part A.
- Approved calculators may be used.
- Standard Integrals are supplied at the rear of this paper. This is the only sheet which may be detached from any booklet.

PART A: (5 Marks)

Answers to these multiple choice should be completed on the multiple choice answer sheet supplied with your answer booklet.

All questions are worth 1 mark

	A Primitive of $\frac{1}{\sqrt{x^2+16}}$ is
	A. $\frac{1}{4}\ln(x^2+16)$
	$B. \qquad \frac{1}{2}\sqrt{x^2+16}$
	$\ln(x + \sqrt{x^2 + 16})$
	D. $\frac{1}{4}tan^{-1}(x^2+16)$
2	P(x) is a monic polynomial with real coefficients and has zeros of $2 + i$, 2 and -2.
	P(x) =
	A. $x^4 - 4x^3 + x^2 + 16x - 20$
	B. $x^4 + 4x^3 + x^2 - 16x - 20$
 	C. $x^4 + 2ix^3 + 9x^2 - 8ix + 20$
	D. $x^3 - (2+i)x^2 - 4x + (8+4i)$
3	$\int sec^2xtanxdx =$
	A. $tanx + k$ B. $tan^2x + k$
	C. $\frac{1}{2}tan^2x + k$ D. $\frac{1}{3}sec^3x + k$

If two of its roots are equal, the roots of $2x^{3} + 3x^{2} - 12x + 7 = 0$ are:

A. x = -1 and $x = \frac{7}{2}$ B. x = 1 and $x = -\frac{7}{2}$ C. x = -2 and $x = -\frac{7}{8}$ D. x = 2 and $x = \frac{7}{8}$ 5 $\int \sin^{3}x \, dx =$ A. $\frac{1}{4}\sin^{4}x + k$ B. $\frac{1}{4}\cos^{4}x + k$ C. $\frac{1}{3}\cos^{3}x - \cos x + k$ D. $-\cos x - \frac{1}{3}\cos^{3}x + k$

PART B

(START EACH QUESTION ON A NEW PAGE)

QUESTION 6: (10 Marks)

Marks

1 (a) Find
$$\int \frac{dx}{1 - \sin^2 x}$$

2 (b) Evaluate
$$\int_{2}^{7} \frac{x-2}{\sqrt{x+2}} dx$$

2 (c) (i) Find values of a, b and c, so that

$$\frac{5x^2 - x - 2}{(x+1)(x^2+1)} = \frac{a}{x+1} + \frac{bx + c}{x^2 + 1}$$

2 (ii) Hence find
$$\int \frac{5x^2 - x - 2}{(x+1)(x^2+1)} dx$$

3 (d) Sketch the curve, y = ln|sinx| for $-2\pi \le x \le 2\pi$, showing all keypoints

QUESTION 7: (10 Marks) (Start on a new page)

Marks

3 (a) Using t-results, or otherwise, evaluate:

$$\int_0^{\frac{\pi}{2}} \frac{dx}{2 + \cos x}$$

3 (b) The equation $ax^4 + bx^3 + cx + d = 0$ has a triple root.

Show that $4a^2c + b^3 = 0$

- 1 (c) (i) Solve the equation $\cos 5\theta + 1 = 0$ for $0 \le \theta \le 2\pi$
- 3 (ii) Using the substitution $x = \cos \theta$,

solve $16x^{5} - 20x^{3} + 5x + 1 = 0$ and hence show that $\cos \frac{\pi}{5} + \cos \frac{3\pi}{5} = \frac{1}{2}$

(You may assume the result: $cos5\theta = 16cos^5\theta - 20cos^3\theta + 5cos\theta$)

QUESTION 8: (10 Marks) (Start on a new page)

Marks

5 (a) By using the substitution $x = 3\sin \theta$, or otherwise, show that

$$\int \frac{x^2}{\sqrt{9-x^2}} dx = \frac{9}{2} \sin^{-1} \frac{x}{3} - \frac{x}{2} \sqrt{9-x^2} + k$$

- (b) The real roots of $x^3 + 4x m = 0$ are α , β and γ .
- 1 (i) Find the value of $\frac{1}{\alpha^2 \beta \gamma} + \frac{1}{\alpha \beta^2 \gamma} + \frac{1}{\alpha \beta \gamma^2}$
- 1 (ii) Explain why $\frac{1}{\alpha^2 \beta \gamma} = \frac{1}{m\alpha}$
- 3 (iii) Hence, or otherwise, find the cubic polynomial whose roots are

$$\frac{1}{\alpha^2 \beta \gamma}$$
, $\frac{1}{\alpha \beta^2 \gamma}$, and $\frac{1}{\alpha \beta \gamma^2}$

QUESTION 9: (10 Marks) (Start on a new page)

Marks

2 (a) Find $\int \frac{dx}{\sqrt{3+2x-x^2}}$

(b)

In the diagram above, the points A, B and C represent the points of intersection of the curve $y = x^2 + 2x - 1$ and the curve $y = \frac{1}{x}$. O is the origin

The x-values of A, B and C are α , β , and γ .

- 1 (i) Show that α , β , and γ satisfy $x^3 + 2x^2 x 1 = 0$
- 2 (ii) Find a polynomial with roots α^2 , β^2 and γ^2
- 2 (iii) Find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$
- 3 (iv) Prove that $OA^2 + OB^2 + OC^2 = 11$

SOLUTIONS - YEAR 12 SERM 2 EXTENSION ? ASSELUMENT.

Multiple Chance

1) c 2, A 3, C 4/B 5, C.

Question 6:
(a)
$$\int \frac{dn}{1-si^{3}x} = \int \frac{dn}{cos^{3}x}$$
 (b) $\int \frac{n+2}{\sqrt{n+2}} dn - \int \frac{4}{\sqrt{n+2}} dn$
 $= tan x + k$ $= \left[\frac{2}{3}(n+2)^{3k}\right]^{\frac{7}{3}} - \left[8(x+2)^{\frac{k}{2}}\right]^{\frac{7}{3}}$
(c) (i) $a = 2$, $b = 3$, $c = -4$ $= 18 - \frac{18}{3} - 8(3 \cdot 2)$
 $= 18 - \frac{18}{3} - \frac$

QUESTION 7:
$$t = \frac{\tan^{n}/2}{dx} = \frac{dx}{2 \sec^{2} \frac{2}{2}} = 0$$
, $t = 0$

$$\frac{1}{1+1^{2}} \frac{2}{1+1^{2}} \frac{dx}{1+1^{2}} = \frac{2}{1+1^{2}} \frac{2 \cot^{2} \frac{2}{2}}{1+1^{2}} = \frac{2}{1+1^{2}} = \frac{2}{1+1^{2}} \frac{2 \cot$$

$$= 25' \frac{dt}{t^2 + 3}$$

$$= 2.\sqrt{3} \left[\frac{1}{40.1}, \frac{1}{\sqrt{3}} \right]_0^1$$

$$= \sqrt{3}\sqrt{3}$$

(b)
$$P(n) = 4qn^3 + 3bn^3 + c$$
 $P'(n) = 12an^2 + 6bn$

For triple mosts, $P'(n) = 0$
 $Condot (2an + b) = 0$
 $Condot (2an +$

QUESTION 9:
(a)
$$\int \frac{dn}{\sqrt{3+2n-2^2}} = \int \frac{dn}{\sqrt{3-(n-1)^2+1}} = \int \frac{dn}{\sqrt{4-(n-1)^2}} = \int \frac{dn}{\sqrt{4-(n-1)^2}} + \int \frac{dn}{\sqrt{2n-1}} = \int \frac{dn}{\sqrt{2$$

(b) (i) Intersection of
$$y = /n$$
 and $y = n^3 - 2n - 1$
ie $n^3 - 2n - 1 = /n$
 $n^4 - 2n^2 + n = 1$
 $n^4 - 2n^2 - n - 1 = 0$

(ii)
$$P(Jn) = (Jn)^3 + 2(Jn)^2 - (Jn) - 1 = 0$$

 $Jn(n-1)^2 = (1-2n)^2$
 $x^3 - 2n^2 + n$
 $x^3 - 6x^2 + 5n - 1$
 $y = 0$

(iii) In above,
$$\lambda^{2} + \beta^{2} + \beta^{2} = 6$$

$$\lambda^{2}\beta^{2} + \lambda^{2}\beta^{2} + \beta^{2}\beta^{2} = 5$$

$$\lambda^{2}\beta^{3}\beta^{2} = 1$$

(iv) If m is the foot of the perpendicular from A to the x-axis.

$$OA^2 = d^2 + (4)^2$$
 by distance formula.