Lasso estimatoren og dens generaliseringer

20. juni 2018

Louise N. Christensen Trine Graff

Aalborg universitet

Lasso estimatoren

The Least Absolute Shrinkage Selection Operator (lasso) løser optimeringsproblemet

$$\widehat{\beta}^{\text{lasso}} = \underset{\beta \in \mathbb{R}^p}{\min} \left\{ \sum_{i=1}^n \left(y_i - \sum_{j=1}^p x_{ij} \beta_j \right)^2 \right\}, \text{ u.h.t. at } \sum_{j=1}^p |\beta_j| \leqslant t,$$

som kan omskrives til et lagrange problem

$$\widehat{\boldsymbol{\beta}}^{\text{lasso}} = \mathop{\text{arg min}}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2 + \lambda \| \boldsymbol{\beta} \|_1 \right\}.$$

Ridge regression estimatoren findes ud fra

$$\begin{split} \widehat{\boldsymbol{\beta}}^{\text{ridge}} &= \underset{\boldsymbol{\beta} \in \mathbb{R}^{\rho}}{\text{erg min}} \left\{ \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2 + \lambda \| \boldsymbol{\beta} \|_2^2 \right\} \\ &= \left(\boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I}_{\rho} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}. \end{split}$$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

) Lasso og dens generaliseringer

Statistisk infernes

ovarians testen

Data

Benchmark modellen

Benchmark modellen

Crydsvalidering

Lasso modellen og den: generaliseringer

Lasso estimatoren

Figur: Estimations illustration for lasso (venstre) og ridge regression (højre). De blå arealer er betingelsesområderne $|\beta_1|+|\beta_2|\leqslant t$ og $\beta_1^2+\beta_2^2\leqslant t^2$, mens de røde ellipser er konturkurver for SSR. Konturkurverne har centrum i OLS estimatoren, $\widehat{\beta}^{\text{OLS}}$.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

2 Lasso og dens generaliseringer

Statistisk infernes

Statistisk infernes

Kovarians testen

Data

Dometros automa a de Hom

Benchmark modellen

ydsvalidering -

Lasso modellen og den generaliseringer

Generaliseringer af lasso estimatoren

Naiv elastisk net

Selvom lasso har vist succes i mange tilfælde, har den også nogle begrænsninger:

- ▶ Hvis p > n, da udvælger lasso højst n variable
- ► Hvis der eksisterer en gruppe af variable med høj parvis korrelation, da vil lasso blot udvælge én variabel fra denne gruppe og denne variabel udvælges tilfældigt

Naiv elastisk net løser optimeringsproblemet

$$\widehat{\boldsymbol{\beta}}^{\text{naivEN}} = \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\text{arg min}} \left\{ \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2 + \lambda \left[\frac{1}{2} (1 - \alpha) \| \boldsymbol{\beta} \|_2^2 + \alpha \| \boldsymbol{\beta} \|_1 \right] \right\}.$$

- ▶ Hvis $\alpha = 0$, da reduceres det til den kvadrerede ℓ_2 -norm svarende til strafleddet for ridge regression
- ▶ Hvis $\alpha = 1$ reduceres strafleddet til ℓ_1 -normen svarende til strafleddet for lasso.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk inferne

Covarians testen

Saka

Benchmark modellen

oordinate descent

BIC Lasso modellen og de

generaliseringer

Generaliseringer af lasso estimatoren

Antag prædiktorerne er opdelt i J grupper, hvor p_j er antallet i gruppe j. Group lasso løser følgende optimeringsproblem

$$\widehat{\boldsymbol{\theta}}_{j}^{\text{group lasso}} = \underset{\boldsymbol{\theta}_{j} \in \mathbb{R}^{p_{j}}}{\min} \left\{ \frac{1}{2} \| \mathbf{y} - \sum_{j=1}^{J} \mathbf{Z}_{j} \boldsymbol{\theta}_{j} \|_{2}^{2} + \lambda \sum_{j=1}^{J} \sqrt{p_{j}} \| \boldsymbol{\theta}_{j} \|_{2} \right\}.$$

- ► Alle indgange i $\widehat{\theta}_j^{\text{group lasso}}$ vil være lig nul eller ikke-nul afhængig af λ .
- ▶ Når $p_j = 1$, da har vi, at $\|\theta_j\|_2 = |\theta_j|$, således at alle grupper består af én prædiktor, dermed reduceres optimeringsproblemet til standard lasso.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske varjable

MAOK9 5.2018

Lasso og dens
 generaliseringer

Statistisk inferne

Kovarians testen

Date

Benchmark modellen

oordinate descent

rydsvalidering

Lasso modellen og dens generaliseringer

Generaliseringer af lasso estimatoren

Antag $\widetilde{\beta}$ er rod-n konsistent til β^* . Vælg $\gamma>0$, da er adaptive lasso estimaterne givet ved

$$\widehat{\boldsymbol{\beta}}^{\mathsf{AL}} = \operatorname*{arg\;min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \| \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \|_2^2 + \lambda \sum_{j=1}^p \frac{|\beta_j|}{|\widetilde{\beta}_j|^{\gamma}} \right\}.$$

- ▶ Antag $\frac{\lambda_n}{\sqrt{n}} \to 0$ og $\lambda_n n^{\frac{\gamma-1}{2}} \to \infty$, da opfylder adaptive lasso orakelegenskaberne:
 - ► Konsistent variabeludvælgelsen: $\lim_{n\to\infty} \mathbb{P}(\mathcal{A}_n^{\mathsf{AL}} = \mathcal{A}) = 1$.
 - ► Asymptotisk normalitet: $\sqrt{n} \left(\widehat{\boldsymbol{\beta}}_{\mathcal{A}}^{\text{AL}} \boldsymbol{\beta}_{\mathcal{A}}^* \right) \stackrel{d}{\rightarrow} N(\mathbf{0}, \sigma^2 \boldsymbol{C}_{11}^{-1}).$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5,2018

Lasso og dens generaliseringer

Statistisk inferne

Statistisk illierile

G test

Benchmark modellen

irydsvalide

Lasso modellen og den generaliseringer

Kovarians testen

- ► Anvendes på LARS algoritmen med lasso modifikation
- \blacktriangleright Giver p-værdier til prædiktorerne når de indgår i den aktive mængde, som noteres \mathcal{A}
- ▶ Vi ønsker, at teste om prædiktoren j, som tilføjes i A_k i trin k, er signifikant

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

Benchmark modellen

ordinate descent

Lasso modellen og der generaliseringer

Out-of-sample

Kovarians testen

- ▶ Lad A_{k-1} være den aktive mængde i trin k-1 inden den j'te prædiktorer tilføjes
- ► Lad $\tilde{\beta}_{\mathcal{A}_{k-1}}^{lasso}(\lambda_{k+1})$ være løsningen i λ_{k+1} ved at kun anvende prædiktorerne i \mathcal{A}_{k-1} , dvs

$$\mathbf{\tilde{\beta}}_{\mathcal{A}_{k-1}}^{\text{lasso}}\left(\lambda_{k+1}\right) = \underset{\boldsymbol{\beta}_{\mathcal{A}_{k-1}} \in \mathbb{R}^{|\mathcal{A}_{k-1}|}}{\text{arg min}} \left\{ \left\| \boldsymbol{y} - \boldsymbol{X}_{\mathcal{A}_{k-1}} \boldsymbol{\beta}_{\mathcal{A}_{k-1}} \right\|_{2}^{2} + \lambda_{k+1} \left\| \boldsymbol{\beta}_{\mathcal{A}_{k-1}} \right\|_{1} \right\}$$

- ▶ Lad $\widehat{\beta}$ (λ_{k+1}) betegne løsningen i λ_{k+1} ud fra prædiktorerne i $\mathcal{A}_{k-1} \cup \{j\}$
- ► Teststørrelsen:

$$T_k^{\mathsf{cov}} = \frac{1}{\sigma^2} \left(\left\langle \mathbf{y}, \mathbf{X} \widehat{\boldsymbol{\beta}}^{\mathsf{lasso}} \left(\lambda_{k+1} \right) \right\rangle - \left\langle \mathbf{y}, \mathbf{X}_{\mathcal{A}_{k-1}} \widetilde{\boldsymbol{\beta}}_{\mathcal{A}_{k-1}}^{\mathsf{lasso}} \left(\lambda_{k+1} \right) \right\rangle \right)$$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

0 - 4 -

Benchmark modellen

oordinate descent

Lasso modellen og den generaliseringer

Kovarians testen

▶ Under $\mathcal{H}_0: \mathcal{A}_{k-1} \supseteq \text{supp }(\beta^*)$, har teststørrelsen en asymptotisk standard eksponentiel fordeling

$$T_k^{\text{cov}} \stackrel{d}{\to} Exp(1)$$

- ► Tilfælde hvor vi har ukendt σ^2 og n > p:
 - ▶ Teststørrelsen

$$\begin{split} F_k &= \frac{T_k}{\widehat{\sigma}^2/\sigma^2} \\ &= \frac{1}{\widehat{\sigma}^2} \left(\left\langle \mathbf{y}, \mathbf{X} \widehat{\boldsymbol{\beta}}^{\text{lasso}} \left(\lambda_{k+1} \right) \right\rangle - \left\langle \mathbf{y}, \mathbf{X}_{\mathcal{A}_{k-1}} \widetilde{\boldsymbol{\beta}}^{\text{lasso}}_{\mathcal{A}_{k-1}} \left(\lambda_{k+1} \right) \right\rangle \right) \overset{d}{\to} F_{2,n-p}, \end{split}$$

hvor
$$\widehat{\sigma}^2 = \left\| \mathbf{y} - \mathbf{X} \widehat{\boldsymbol{\beta}}^{OLS} \right\|_2^2 / (n - p).$$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

ata

Benchmark modellen

Benchmark modellen Coordinate descent

Krydsvalidering BIC

Lasso modellen og dens generaliseringer

Polyede lemmaet

► Variableudvælgelse af LARS og lasso kan karakteriseres som et polyede

► Giver p-værdier og konfidensintervaller efter et polyede variableudvælgelse

prædiktion af makroøkonomiske variable

Inferens i lasso modellen med anvendelse inden for

MAOK9 5.2018

Lasso og dens generaliseringer

TG testen

Benchmark modellen

Lasso modellen og dens generaliseringer

► Vi betragter en statisk model på formen

$$\textbf{\textit{y}} = \boldsymbol{\mu} + \boldsymbol{\epsilon}, \ \boldsymbol{\epsilon} \sim \textit{N}\left(\textbf{0}, \sigma^2 \textbf{I}_n\right)$$

hvor $\mathbf{y} \sim N(\mathbf{\mu}, \mathbf{\Sigma})$, $\mathbf{\mu}$ er en ukendt $n \times 1$ vektor, og $\mathbf{\Sigma}$ er en kendt $n \times n$ matrix.

▶ Betragt polyedet

$$\mathcal{P} = \{ \mathbf{y} : \Gamma \mathbf{y} \geqslant \mathbf{u} \},$$

hvor Γ er en $m \times n$ matrix, \boldsymbol{u} er en fast $m \times 1$ vektor.

- ▶ Vi ønsker, at lave inferens om $\eta^T \mu$ givet $y \in \mathcal{P}$, hvor η er en givet $n \times 1$ vektor
 - $ightharpoonup \mathcal{H}_0: \eta^T \mu = 0$, givet $extbf{\emph{y}} \in \mathcal{P}$
- ► Vi udleder en teststørrelse med egenskaben

$$T(\boldsymbol{y}, \mathcal{P}, \boldsymbol{\eta}) \stackrel{\mathbb{P}_0}{\sim} \textit{Unif}(0, 1).$$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

TG testen

Benchmark modellen

Coordinate descent

BIC asso modellen og

Lasso modellen og den generaliseringer

Polyede lemma

For ethvert Σ og η , hvor $\eta^T \Sigma \eta \neq 0$, gælder der at

$$\Gamma \boldsymbol{y} \geqslant \boldsymbol{u} \Leftrightarrow \mathcal{V}^{-}\left(\boldsymbol{y}\right) \leqslant \boldsymbol{\eta}^{T} \boldsymbol{y} \leqslant \mathcal{V}^{+}\left(\boldsymbol{y}\right), \quad \mathcal{V}^{0}\left(\boldsymbol{y}\right) \leqslant \boldsymbol{0},$$

hvor

$$\mathcal{V}^{-}(\mathbf{y}) = \max_{j:\rho_{j}>0} \frac{u_{j} - (\Gamma \mathbf{y})_{j} + \rho_{j} \mathbf{\eta}^{T} \mathbf{y}}{\rho_{j}}$$

$$\mathcal{V}^{+}(\mathbf{y}) = \min_{j:\rho_{j}<0} \frac{u_{j} - (\Gamma \mathbf{y})_{j} + \rho_{j} \mathbf{\eta}^{T} \mathbf{y}}{\rho_{j}}$$

$$\mathcal{V}^{0}(\mathbf{y}) = \max_{i:\rho_{j}=0} u_{j} - (\Gamma \mathbf{y})_{j},$$

hvor $\rho = \frac{\Gamma \Sigma \eta}{\eta^{7} \Sigma \eta}$. Yderligere er η^{7} og $\left(\mathcal{V}^{-}\left(\mathbf{\emph{y}}\right)$, $\mathcal{V}^{+}\left(\mathbf{\emph{y}}\right) \mathcal{V}^{0}\left(\mathbf{\emph{y}}\right)\right)$ uafhængige.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

tatistisk inferne:

TG testen

Data

Benchmark modellen

Benchmark modellen

BIC

Lasso modellen og den generaliseringer

- ► Illustrationen er for p = 2, og $\Sigma = I_n$
- $> y = P_n y + P_{n^{\perp}} y$
- ► P_{η} **y** = $\eta \eta^{T}$ er projektionen af **y** på η

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk inferne

Councians toston

Benchmark modellen

Coordinate descent

Lasso modellen og dens generaliseringer

Lad $\Phi(x)$ betegne fordelingsfunktionen af en standard normalfordeling, da er fordelingsfunktionen af en trunkeret normalfordelt stokastisk variabel med middelværdi μ og varians σ^2 indenfor intervallet [a, b] givet ved

$$F_{\mu,\sigma^{2}}^{[a,b]}(x) = \frac{\Phi\left(\frac{x-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)}{\Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)}.$$

Hvis $\eta^T \Sigma \eta \neq 0$, da er $F_{\mathbf{n}^T \mathbf{u}, \mathbf{n}^T \Sigma \mathbf{n}}^{[\mathcal{V}^-, \mathcal{V}^+]} \left(\eta^T \mathbf{y} \right)$ givet $\Gamma \mathbf{y} \geqslant \mathbf{u}$ en standard uniform fordeling, dvs

$$\mathbb{P}\left(F_{\eta^{\mathsf{T}}\mu,\eta^{\mathsf{T}}\Sigma\eta}^{[\mathcal{V}^{-},\mathcal{V}^{+}]}\left(\eta^{\mathsf{T}}\mathbf{y}\right)\leqslant\alpha\,\big|\,\Gamma\mathbf{y}\geqslant\mathbf{u}\right)=\alpha,$$

for ethvert $0 \le \alpha \le 1$

Inferens i lasso modellen med anyendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

generaliseringer

Benchmark modellen

Af polyede lemmaet kan fordeling af enhver lineær funktion $\eta^T y$ givet $\Gamma y \geqslant u$ skrives som en følgende betinget fordeling

$$\mathbf{\eta}^{\mathsf{T}} \mathbf{y} \mid \mathcal{V}^{-} (\mathbf{y}) \leqslant \mathbf{\eta}^{\mathsf{T}} \mathbf{y} \leqslant \mathcal{V}^{+} (\mathbf{y})$$
 ,

da $\eta^T y$ er normalfordeling er overstående trunkeret normalfordelt.

For enhver lineær funktion $\eta^T y$ kan vi udregne p-værdier for nulhyptesen at $\mathcal{H}_0: \eta^T y = 0$ og tilhørende betingede konfidensintervaller

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians te

14 TG test

Data

Benchmark modellen

Coordinate descent

BIC

generaliseringer

Data

► Datasæt fra FRED

- ▶ 128 variable
- ► 1. januar 1959 1. november 2017 (707 observationer)
- ► Opdelt i 8 grupper:
 - Output og indkomst ■
 - 2. Arbejdsmarked
 - 3. Bolig
 - Forbrug, ordrer og varebeholdninger ■
- ► Transformerede datasæt
 - ► 123 variable
 - ► 1. januar 1960 1. juli 2017 (691 observationer)
 - ► Træningsmængde: 1. januar 1960 1. december 2005 (552 observationer)

5. Penge og kredit

8 Aktiemarked

7. Priser

6. Renter og valutakurser

- ► Testmængde: 1. januar 2006 1. juli 2017 (139 observationer)
- ► centre responsvariablen og standardiser prædiktorerne

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk inferne:

Kovarians testen

Data

Benchmark modellen

Coordinate descent

С

Lasso modellen og der generaliseringer

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

> tatistisk infernes Kovarians testen

Data

Benchmark modellen

Coordinate descent

BIC

Lasso modellen og der

generaliseringer

Figur: Arbejdsløshedsraten og 1. differensen af arbejdsløshedsraten fra 1. januar 1960 til 1. juli 2017.

Benchmark modellen

Den autoregressive model

ightharpoonup ordenen bestemmes ud fra BIC, hvor $p=1,\ldots,12$

$\widehat{\varphi}_1$	-0.0162
$\widehat{\Phi}_2$	0.1992***
$\widehat{\Phi}_3$	0.1873***
$\widehat{\varphi}_4$	0.1686***
BIC	-3.5651
R_{adj}^2	12.31%
LogLik	211.8617

Tabel: Estimationsresultater for en AR (4), BIC, justeret R² og log-likehood. Det opløftede symbol betegner signifikans ved henholdsvis *** 0.1%, **1%, *5% og †10%.

- ▶ afviser normalitet samt at de første 10 autokorrelationer er nul
- MAE på 0.1312 og MSE på 0.0272

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Benchmark modellen

► Antallet af faktorer bestemmes ud fra følgende informationskriterier, hvor $k = 1, \dots, 20$:

►
$$IC_1(k) = \ln V\left(k, \widehat{\mathbf{F}}\right) + k \frac{p+T}{pT} \ln\left(\frac{pT}{p+T}\right),$$

► $IC_2(k) = \ln V\left(k, \widehat{\mathbf{F}}\right) + k \frac{p+T}{pT} \ln\left(\min\{p, T\}\right),$

$$IC_2(k) = \ln V(k, \widehat{\mathbf{F}}) + k \frac{p+T}{pT} \ln (\min \{p, T\}),$$

$$\blacktriangleright \mathsf{IC}_3(k) = \mathsf{In}\,V\left(k,\widehat{\mathbf{F}}\right) + k\frac{\mathsf{In}\left(\mathsf{min}\left\{p,T\right\}\right)}{\mathsf{min}\left\{p,T\right\}},\,$$

hvor
$$V\left(k,\widehat{\mathbf{F}}\right) = (pT)^{-1} \sum_{j=1}^{p} \sum_{t=1}^{T} \left(x_{jt} - \lambda_j \widehat{\mathbf{F}}_t\right)^2$$
.

- ▶ Lad $\widehat{\mathbf{Z}} = (\widehat{\mathbf{F}}^T \mathbf{\omega}^T)^T$ være en $(k+m) \times T$ matrix, hvor $\widehat{\mathbf{F}}$ er en $T \times k$ matrix af estimerede faktorer og ω er en $T \times m$ matrix af laggede værdier af arbejdsløshedsraten. Lad m=4, da fjernes de første 4 rækker i $\widehat{\mathbf{Z}}$.
- $\blacktriangleright \ \ \text{Parametrene} \ \widehat{\beta} = \left(\widehat{\beta}_{\textbf{F}}^{\, \intercal} \ \widehat{\beta}_{\textbf{G}}^{\, \intercal}\right)^{\! \intercal} \text{ estimeres med OLS}.$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

generaliseringer

Benchmark modellen

Benchmark modellen

Faktor modellen

Faktor model (IC ₁)									
Værdi 6	IC ₁ -0.3519	R _{adj} 15.79%	LogLik 224.3621						
Faktor model (IC ₂)									
Værdi 11	IC ₂ -0.5314	R _{adj} 16.85%	LogLik 230.3414						
	Faktor mo	del (IC ₃)							
Værdi 20	IC ₃ -0.6931	R _{adj} 17.87%	LogLik 238.3753						
	6 Værdi 11	Værdi IC1 6 -0.3519 Faktor mo Værdi IC2 11 -0.5314 Faktor mo Værdi IC3	Værdi IC1 R_{adj}^2 6 -0.3519 15.79% Værdi IC2 R_{adj}^2 11 -0.5314 16.85% Faktor model (IC3) Værdi IC3 R_{adj}^2						

Tabel: Antal faktorer, værdien af informationskriteriet, justeret R² samt log-likehood for faktormodellerne valgt ud fra IC₁, IC₂ og IC₃, som betegnes faktor model (IC₁), faktor model (IC₂) og faktor model (IC₃).

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Benchmark modellen

- ► Faktor model (IC₁): afviser normalitet, men kan ikke afvise at de første 10 autokorrelationer er nul
- ► Faktor model (IC₂): kan ikke afvise normalitet samt at de første 10 autokorrelationer er nul

	Faktor model (IC ₁)	Faktor model (IC ₂)
MAE	0.1190	0.1111
MSE	0.0221	0.0187

Tabel: MAE og MSE for faktor modellerne valgt ud fra IC₁ og IC₂.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5,2018

Lasso og dens generaliseringer

tatistisk inferne

lovarians testen

Data

Benchmark modellen

coordinate descent

sso modellen og den

Lasso modellen og den generaliseringer

Coordinate descent

- ▶ Coordinate descent
 - ► Koordinat k er valgt i iteration t, så er opdatering givet ved

$$\beta_k^{t+1} = \operatorname*{arg\,minf}_{\beta_k} \left(\beta_1^t, \ldots, \beta_{k-1}^t, \beta_k, \beta_{k+1}^t, \ldots, \beta_p^t \right)$$

- ► Krydsvalidering
 - \triangleright $CV_k = \frac{1}{k} \sum_{i=1}^k MSE_i$
- ▶ BIC
 - ► $BIC = \log \widehat{\sigma_p^2} + \frac{p \log T}{T}$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Benchmark modellen

Coordinate descent

Lasso modellen og dens

- ► Elastik net (CV), $\alpha = 1$
- ▶ Adaptive lasso med OLS vægte (CV), $\gamma = 0.5$
- ▶ Adaptive lasso med lasso vægte (CV), $\gamma = 0.5$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

tatistisk iiiieiiies

rG testen

Data

Benchmark modellen

Benchmark modellen

Lasso modellen og dens generaliseringer

		Lass			Ridge regression (CV)						
	$log(\lambda)$	MSE	р	R _{adj}	LogLik		$log(\lambda)$	MSE	р	R_{adj}^2	LogLik
λ_{min}	-6.6361	0.0019	28	94.52%	983.956	λ_{\min}	-4.3800	0.0045	126	93.96%	1014.633
λ_{1sd}	-5.7057	0.0020	14	94.46%	973.765	λ_{1sd}	-4.1939	0.0047	126	93.96 %	1014.633
		Group l	asso ((CV)			Adaj	o. lasso m.	OLS v	ægte (CV)	
	log (\lambda)	MSE	р	R _{adj}	LogLik		log (\lambda)	MSE	р	R_{adj}^2	LogLik
λ_{min}	-8.2644	0.0022	126	93.96%	1014.633	λ_{min}	-5.1333	0.0018	5	94.44%	968.274
λ_{1sd}	-7.6365	0.0023	119	94.03%	1013.333	λ_{1sd}	-3.4586	0.0019	2	94.28%	959.0402
	Adap	. lasso m.	lassov	ægte (CV)							
	$log(\lambda)$	MSE	р	R_{adj}^2	LogLik						
λ_{min}	-6.3897	0.0017	6	94.48%	970.5874						
λ_{1sd}	-3.5057	0.0018	2	94.28%	959.0402						

Tabel: Logaritmen af λ_{min} og λ_{lsd} , gennemsnitlig krydsvalideringsfejl, som er målt i MSE, antallet af parametre, justeret R² og log-likelihood for lasso og dens generaliseringer. De valgte tuning parametre er markeret med tykt.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Benchmark modellen

Krydsvalidering

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infornes

Kovarians testen

Benchmark modellen

Coordinate descent

Krydsvalidering

Lasso modellen og dens

generaliseringer

Prædiktor	Koefficient	Z-score	<i>p</i> -værdi	Konfidensinterval	$[\mathcal{V}^-,\mathcal{V}^+]$
DPCERA3M086SBEA	-0.002	-1.362	0.671	[-0.009, 0.027]	[0.002, 0.004]
IPDMAT	-0.003	-1.113	0.265	[-0.012, 0.006]	[0.000, 0.004]
HWIURATIO	0.002	0.717	0.199	[-0.003, 0.014]	[-0.002, 0.004]
CLF16OV	0.243	36.671	0	[0.232, 0.259]	[0.203, 0.252]
CE16OV	-0.266	-37.393	0	[-0.280, -0.254]	[0.230, 0.278]
UEMPLT5	0.001	0.240	0.402	[-0.005, 0.008]	[-0.011, 0.009]
UEMP5TO14	0.000	-0.118	0.430	[-0.006, 0.004]	[-0.010, 0.005]
UEMP15OV	0.004	1.593	0.056	[0.000, 0.009]	[-0.006, 0.013]
PAYEMS	0.001	0.280	0.219	[-0.007, 0.030]	[-0.002, 0.002]
USCONS	-0.002	-0.883	0.566	[-0.009, 0.016]	[0.001, 0.004]
TB6MS	-0.001	-0.480	0.682	[-0.009, 0.026]	[0.000, 0.004]
GS5	-0.003	-1.130	0.219	[-0.025, 0.007]	[0.001, 0.004]
EXUSUKx	0.003	1.307	0.870	[-0.071, 0.003]	[0.002, 0.006]
lag 1	-0.009	-4.065	0.003	[-0.013, -0.004]	[0.005, 0.015]

Tabel: Koefficienter, Z-scores, p-værdier, konfidensintervaller og trunkeret intervaller for lasso₇₆ (CV). Den estimeres standard afvigelse er 0.043, og resultaterne er for $\lambda_{76} = \lambda_{1sd} \cdot 548 \approx 1.823$ med $\alpha = 0.1$.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk inforne

ovarians testen

.

Benchmark modellen

Coordinate descent

Krydsvalidering BIC

Lasso modellen og dens generaliseringer

BIC

modellen med anvendelse inden for prædiktion af makroøkonomiske variable

Inferens i lasso

MAOK9 5.2018

generaliseringer

Statistisk infernes

Benchmark modellen

Lasso modellen og dens generaliseringer

- ▶ Elastik net (BIC), $\alpha = 1$
- ▶ Adaptive lasso med OLS vægte (BIC), $\gamma = 2$
- Adaptive lasso med lasso vægte (BIC), $\gamma = 0.5$

		Lasso			Ridge regression (BIC)						
λ_{BIC}	$\begin{array}{c} \log{(\lambda)} \\ -6.2639 \end{array}$	BIC -6.1608	р 17	R _{adj} 94.46%	LogLik 974.9938	λ_{BIC}	$\begin{array}{c} \log{(\lambda)} \\ -4.4730 \end{array}$	BIC -3.3230	<i>p</i> 126	R _{adj} 93.96%	LogLik 1014.633
Group lasso (BIC)							Adap. lasso m. OLS vægte (BIC)				
λ_{BIC}	$\begin{array}{c} \log{(\lambda)} \\ -7.2876 \end{array}$	BIC -5.0721	р 99	R _{adj} 94.17%	LogLik 1007.311	λ_{BIC}	$\begin{array}{c} \log{(\lambda)} \\ -4.3308 \end{array}$	BIC -6.3143	р 2	R _{adj} 94.28%	Loglik 959.0402
	Adap	. lasso m. la	sso va	ægte (BIC)							
λ_{BIC}	log (λ) -4.9440	BIC -6.3191	р 3	R _{adj} 94.4%	LogLik 965.2423						

Tabel: Logaritmen af λ_{BIC} , antallet af parametre, BIC, justerede R^2 og log-likelihood for lasso og dens generaliseringer.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

ovarians testen

Dat

Benchmark modellen

oordinate descent

BIC

BIC

Lasso modellen og dens generaliseringer

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistick informac

Kovarians testen

Data

Benchmark modellen

oordinate descent

28 BIC

Lasso modellen og dens generaliseringer

Out-of-samp

Aalborg universitet

Prædiktor	Koefficient	Z-score	p-værdi	Konfidensinterval	$\left[\mathcal{V}^{-},\mathcal{V}^{+} ight]$
DPCERA3M086SBEA	-0.002	-0.960	0.093	[-0.071, 0.003]	[0.001, 0.002]
IPDMAT	-0.002	-0.680	0.159	[-0.032, 0.005]	[-0.001, 0.002]
CLF16OV	0.241	36.686	0	[0.235, 0.350]	[0.200, 0.242]
CE160V	-0.264	-37.339	0	[-0.455, -0.260]	[0.142, 0.264]
UEMPLT5	0.000	0.027	0.777	[-0.029, 0.005]	[-0.001, 0.013]
UEMP5TO14	-0.001	-0.266	0.599	[-0.007, 0.014]	[-0.001, 0.004]
UEMP15OV	0.004	1.299	0.249	[-0.005, 0.008]	[0.001, 0.010]
CLAIMSx	0.001	0.387	0.689	[-0.030, 0.011]	[0.000, 0.002]
USCONS	-0.001	-0.591	0.100	[-0.088, 0.004]	[0.000, 0.001]
USTRADE	0.000	-0.118	0.988	$[0.007, \infty)$	[0.000, 0.006]
AMDMNOx	-0.002	-0.813	0.641	[-0.008, 0.020]	[0.001, 0.004]
TB6MS	-0.001	-0.415	0.677	[-0.008, 0.023]	[0.000, 0.005]
GS5	-0.003	-1.207	0.144	[-0.032, 0.005]	[0.001, 0.004]
EXUSUKx	0.003	1.449	0.303	[-0.007, 0.012]	[0.002, 0.004]
	0.002	0.855	0.865	[-0.054, 0.003]	[0.001, 0.009]
lag 1	-0.010	-4.362	0.499	[-0.011, 0.033]	[0.009, 0.021]
lag 4	0.002	1.106	0.311	[-0.014, 0.028]	[0.001, 0.003]

Tabel: Koefficienter, Z-scores, p-værdier, konfidensintervaller og trunkeret intervaller for lasso $_{TG}$ (BIC). Den estimeres standard afvigelse er 0.043, og resultaterne er for $\lambda_{TG} = \lambda_{BIC} \cdot 548 \approx 1.0432$ $med \alpha = 0.1$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Benchmark modellen

Lasso modellen og dens generaliseringer

LARS

- ► Fitter en model for hvert trin
 - ► LARS algoritmen foretager 127 trin
 - ► LARS algoritmen med lasso modifikationen udfører 192 trin
- ▶ Igen anvendes krydsvalidering og BIC til at estimere tuning parameteren, som for LARS algoritmen er fraktionen af ℓ_1 -normen $f = \frac{|\beta|}{\max{|\beta|}}$, hvor $f \in [0, 1]$.
 - f = 0: ingen variabler tilføjet til den aktive mængde
 - ightharpoonup f = 1: alle variable inkluderet

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk inferne

Kovarians testen

Data

Benchmark modellen

oordinate descent

BIC

Lasso modellen og dens generaliseringer

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

tatistisk infernes

G testen

Data

Benchmark modellen

coordinate descent

iryusvanuering IC

Lasso modellen og dens generaliseringer

Figur: 10-fold krydsvalideringsfeil som funktion af fraktionen af ℓ_1 -normen LARS og lasso LARS.

	LARS (CV)							Lasso LARS (CV)				
f	Værdi	MSE 0.0019	,	a a g	LogLik 974.8317	1		MSE 0.0019	,	R _{adj}	Loglike	
					967.2669							

Tabel: Værdien af f_{min} og f_{1sd} , gennemsnitlig krydsvalideringsfejl, som er målt i MSE, antallet af parametre, justeret R^2 og log-likelihood for LARS og lasso LARS. De valgte tuning parametre er markeret med tykt.

► 22 trin udføres for lasso LARS (CV), hvor variablerne CUMFNS, MANEMP og GS1 tilføjes og fjernes igen og variablen TB6MS bliver tilføjet, fjernet og så tilføjet igen.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk inferne

Kovarians testen

Data

Benchmark modellen

oordinate descent

32 Lasso modellen og dens generaliseringer

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

generaliseringer

Benchmark modellen

Lasso modellen og dens generaliseringer

Figur: Til venstre vises et boxplot af 1000 bootstrap realisationer af $\widehat{\beta}^{LARS}(f_{1sd})$. Plottet til højre

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Benchmark modellen

Lasso modellen og dens

generaliseringer

Figur: Til venstre vises et boxplot af 1000 bootstrap realisationer af $\widehat{\beta}^{lasso}$ (f_{lsd}). Plottet til højre

Cov test	<i>p</i> -værdi
864.6317	0
161.3770	0
163.0670	0
122.3840	0
14.7416	0
0.3356	0.7151
5.0872	0.0066
221.9181	0
0.0668	0.9354
0.3856	0.6803
0.8897	0.4115
0.0419	0.9590
0.0132	0.9869
	864.6317 161.3770 163.0670 122.3840 14.7416 0.3356 5.0872 221.9181 0.0668 0.3856 0.8897 0.0419

Tabel: Kovarians testen for lasso LARS (CV). Vi viser kun p-værdier for prædiktorer som medtages og bliver i modellen, dvs hvis en prædiktor medtages i et trin og senere forlader modellen, vises denne prædiktor ikke. p-værdier $< 2.2 \cdot 10^{-16}$ sættes lig 0.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Benchmark modellen

Lasso modellen og dens generaliseringer

Prædiktor	Koefficient	Z-score	<i>p</i> -værdi	Konfidensinterval	$[\mathscr{V}^-,\mathscr{V}^+]$
HWIURATIO	0.002	0.694	0.160	$(-\infty, \infty)$	[0.002, 0.002]
UEMP15OV	0.004	1.606	0.923	$(-\infty, 0.032]$	[0.004, 0.005]
UEMPLT5	0.001	0.149	0.064	$[-0.018, \infty)$	[0.000, 0.001]
MANEMP	0.002	0.486	0.273	$[-0.171, \infty)$	[0.002, 0.003]
UEMP5TO14	-0.001	-0.242	0.077	$(-\infty, 0.016]$	[0.000, 0.001]
CE16OV	-0.267	-37.446	0.130	$(-\infty, 0.532]$	[0.267, 0.267]
PAYEMS	0.000	0.006	0.563	$(-\infty, \infty)$	[0.000, 0.000
USGOOD	-0.003	-0.498	0.638	$(-\infty, \infty)$	[0.003, 0.003]
CUMFNS	0.002	0.404	0.478	$(-\infty, \infty)$	[0.002, 0.002]
CLF16OV	0.243	36.643	0.179	$(-\infty, \infty)$	[0.243, 0.243]
IPDMAT	-0.006	-1.626	0.874	$[-0.125, \infty)$	[0.006, 0.006
TB6MS	-0.005	-0.715	0.569	$(-\infty, \infty)$	[0.005, 0.006
INDPRO	0.003	0.513	0.328	$(-\infty, \infty)$	[0.003, 0.003]
GS1	0.006	0.577	0.473	$(-\infty, \infty)$	[0.006, 0.006
GS5	-0.005	-1.146	0.037	$(-\infty, -0.025]$	[0.005, 0.005]
lag1	-0.009	-3.949	0.910	$(-\infty, \infty)$	[0.009, 0.009
DPCERA3M086SBEA	-0.003	-1.436	0.233	$(-\infty, \infty)$	[0.003, 0.003]
EXUSUKx	0.003	1.383	0.964	$(-\infty, -0.053]$	[0.003, 0.003]
CLAIMSx	0.002	0.813	0.226	$(-\infty, \infty)$	[0.002, 0.002

Tabel: Koefficienter, Z-scores, p-værdier, konfidensintervaller og trunkeret intervaller for LARS_{TG} (CV). Den estimeres standard afvigelse er 0.043, og resultaterne er for $f_{\rm lsd} = 0.2542$ med $\alpha = 0.1$.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

atistisk infernes

ovarians testen

Data

Benchmark modellen

oordinate descent

BIC

Lasso modellen og dens generaliseringer

	LARS (BIC)							Lasso L	ARS (I	BIC)	
f_{BIC}	Værdi 0.2623				LogLik 975.2909						

Tabel: Værdien af f_{BIC} , antallet af parametre, BIC, justeret R^2 og log-likelihood for LARS og lasso LARS.

 32 trin udføres for lasso LARS (BIC), hvor variablerne CUMFNS, MANEMP, GS1, HWIURATIO, PAYMENS og USGOOD tilføjes og fjernes igen og variablen TB6MS bliver tilføjet, fjernet og så tilføjet igen. Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk inferne

Covarians testen

Data

Benchmark modellen

oordinate descent

Lasso modellen og dens generaliseringer

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5,2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

Data

Benchmark modellen

oordinate descent

C

Lasso modellen og dens generaliseringer

Figur: Til venstre vises et boxplot af 1000 bootstrap realisationer af $\widehat{\beta}^{LARS}$ (f_{BIC}). Plottet til højre

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5,2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

Benchmark modellen

oordinate descent

BIC

Lasso modellen og dens

Lasso modellen og den generaliseringer

Figur: Til venstre vises et boxplot af 1000 bootstrap realisationer af $\widehat{\beta}^{lasso}$ (f_{BlC}). Plottet til højre

Prædiktor	Cov test	<i>p</i> -værdi
UEMP15OV	161.3770	0
UEMPLT5	163.0670	0
UEMP5TO14	122.3840	0
CE16OV	14.7416	0
CLF16OV	221.9181	0
IPDMAT	0.0668	0.9354
GS5	0.3856	0.6803
lag1	0.8897	0.4115
TB6MS	0.0419	0.9590
USCONS	0.0132	0.9869
DPCERA3M086SBEA	0.0254	0.9750
EXUSUKx	0.2309	0.7939
CLAIMSx	0.0082	0.9919
AMDMNOx	0.0464	0.9546
lag4	0.2281	0.7962
	0.0719	0.9307
USTRADE	0.0029	0.9971

Tabel: Kovarians testen for lasso LARS (BIC). Vi viser kun p-værdier for prædiktorer som medtages og bliver i modellen, dvs hvis en prædiktor medtages i et trin og senere forlader modellen, vises denne prædiktor ikke. p-værdier $< 2.2 \cdot 10^{-16}$ sættes lig 0.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

ovarians testen

Data

Benchmark modellen

oordinate descent

Lasso modellen og dens generaliseringer

Out-of-sample

Prædiktor	Koefficient	Z-score	<i>p</i> -værdi	Konfidensinterval	$\left[\mathscr{V}^{-},\mathscr{V}^{+}\right]$
HWIURATIO	0.002	0.720	0.161	$(-\infty, \infty)$	[0.002, 0.002]
UEMP15OV	0.004	1.596 4	0.920	$(-\infty, 0.034]$	[0.004, 0.005]
UEMPLT5	0.001	0.148	0.065	$[-0.018, \infty)$	[0.000, 0.001]
MANEMP	0.003	0.561	0.766	$(-\infty, 0.120]$	[0.003, 0.003]
UEMP5TO14	0.001	-0.261	0.093	$(-\infty, 0.023]$	[0.000, 0.001]
CE16OV	-0.267	-37.412	0.130	$(-\infty, 0.574]$	[0.266, 0.267]
PAYEMS	0.000	0.012	0.428	$(-\infty, \infty)$	[0.000, 0.000]
USGOOD	-0.004	-0.584	0.721	$(-\infty, \infty)$	[0.004, 0.004]
CUMFNS	0.002	0.390	0.455	$(-\infty, \infty)$	[0.002, 0.002]
CLF16OV	0.243	36.646	0.179	$(-\infty, \infty)$	[0.243, 0.243]
IPDMAT	-0.006	-1.618	0.869	$[-0.130, \infty)$	[0.006, 0.006]
TB6MS	-0.006	-0.790	0.615	$(-\infty, \infty)$	[0.006, 0.006]
INDPRO	0.003	0.591	0.494	$(-\infty, \infty)$	[0.003, 0.003]
GS1	0.007	0.675	0.571	$(-\infty, \infty)$	[0.007, 0.007]
GS5	-0.006	-1.240	0.302	$(-\infty, \infty)$	[0.006, 0.006]
lag1	-0.009	-3.914	0.912	$(-\infty, \infty)$	[0.009, 0.009]
DPCERA3M086SBEA	-0.002	-1.331	0.225	$(-\infty, \infty)$	[0.002, 0.002]
EXUSUKx	0.003	1.357	0.964	$(-\infty, -0.051]$	[0.003, 0.003]
CLAIMSx	0.001	0.629	0.208	$(-\infty, \infty)$	[0.001, 0.001]
AMDMNOx	-0.002	-0.904	0.855	$(-\infty, \infty)$	[0.002, 0.002

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

ovarians testen

Benchmark modellen

oordinate descent

Krydsvalide BIC

Lasso modellen og dens generaliseringer

Out-of-sample

Tabel: Koefficienter, *Z*-scores, *p*-værdier, konfidensintervaller og trunkeret intervaller for LARS_{TG} (BIC). Den estimeres standard afvigelse er 0.043, og resultaterne er for $\widehat{f}_{BIC} = 0.2623$ med $\alpha = 0.1$.

Oversigt over in-sample resultater

Inkluderingsrate	Variable	Beskrivelse
100%	CLF16OV	Civilarbejdsstyrke
100%	CE16OV	Civilbeskæftigelse
94.44%	lag 1	Den tidligere værdi af arbejdsløshedsraten
88.89%	IPDMAT	Holdbart materiale
88.89%	UEMPLT5	Civile arbejdsløse - mindre end 5 uger
88.89%	UEMP5TO14	Civile arbejdsløse i 5 - 14 uger
88.89%	UEMP150V	Civile arbejdsløse i 15 - 26 uger
88.89%	TB6MS	6-måneders statsskat
88.89%	GS5	5-årig statsobligationsrente

Tabel: Inkluderingsraten af de 9 hyppigst valgte variable for de ialt 18 modeller samt beskrivelse af variablerne.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

tatistisk infernes

ovarians testen

Data

Benchmark modellen

ordinate descent

IC

Lasso modellen og dens generaliseringer

Out-of-sample

	MAE	R^{MAE}	MSE	R^{MSE}
Benchmark model	0.1111	1	0.0187	1
AR(4)	0.1312	1.1811	0.0272	1.454
Faktor model (IC ₁)	0.119	1.0717	0.0221	1.1798
Lasso (CV)	0.032	0.2877	0.0016	0.0876
Lasso (BIC)	0.0308	0.277	0.0015	0.0795
Ridge regression (CV)	0.0582	0.5239	0.0052	0.28
Ridge regression (BIC)	0.0573	0.5155	0.0051	0.2706
Group lasso (CV)	0.0352	0.3168	0.0019	0.1042
Group lasso (BIC)	0.0382	0.3437	0.0022	0.1202
Adap. lasso m. OLS vægte (CV)	0.0304	0.2733	0.0014	0.0729
Adap. lasso m. OLS vægte (BIC)	0.0310	0.2787	0.0014	0.0743
Adap. lasso m. lasso vægte (CV)	0.0298	0.2684	0.0013	0.0716
Adap. lasso m. lasso vægte (BIC)	0.0304	0.274	0.0014	0.0729
Lasso _{TG} (CV)	0.0303	0.2724	0.0014	0.0744
Lasso _{TG} (BIC)	0.031	0.279	0.0014	0.0767
LARS (CV)	0.0307	0.2761	0.0015	0.0802
LARS (BIC)	0.0305	0.2747	0.0015	0.0793
Lasso LARS (CV)	0.0352	0.317	0.002	0.1089
Lasso LARS (BIC)	0.0322	0.2901	0.0017	0.0903
$LARS_{TG}$ (CV)	0.0300	0.2701	0.0014	0.0745
$LARS_{TG}$ (BIC)	0.0301	0.2708	0.0014	0.0750

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

ovarians testen

Doto

Benchmark modellen

encomark modellen

Crydsvalidering

Lasso modellen og dens

generaliseringer

Out-of-sample

Tabel: Den gennemsnitlige absolutte og kvadrerede fejl samt gennemsnitlig tabs ratio mellem hver model og benchmark modellen.

Out-of-sample

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

. . .

Benchmark modellen

oordinate descent

Krydsvalidering

Lasso modellen og der

generaliseringer

Figur: Rullende gennemsnitlig absolut tabs ratio.

Out-of-sample Diebold-Mariano testen

	Absolutte fejl	Kvadrerede fej
AR(4)	0.0021	0.0032
Faktor model (IC ₁)	0.1692	0.1183
Lasso (CV)	0	$2.933 \cdot 10^{-12}$
Lasso (BIC)	0	$2.728 \cdot 10^{-12}$
Ridge regression (CV)	$6.418 \cdot 10^{-13}$	$3.551 \cdot 10^{-9}$
Ridge regression (BIC)	$2.85 \cdot 10^{-13}$	$2.507 \cdot 10^{-9}$
Group lasso (CV)	0	$5.999 \cdot 10^{-12}$
Group lasso (BIC)	0	$8.845 \cdot 10^{-12}$
Adap. lasso m. OLS vægte (CV)	0	$2.797 \cdot 10^{-12}$
Adap. lasso m. OLS vægte (BIC)	0	$2.905 \cdot 10^{-12}$
Adap. lasso m. lasso vægte (CV)	0	$2.676 \cdot 10^{-12}$
Adap. lasso m. lasso vægte (BIC)	0	$2.814 \cdot 10^{-12}$
Lasso _{TG} (CV)	0	0
Lasso _{TG} (BIC)	0	0
LARS (CV)	0	$2.64 \cdot 10^{-12}$
LARS (BIC)	0	$2.615 \cdot 10^{-12}$
Lasso LARS (CV)	0	$4.694 \cdot 10^{-12}$
Lasso LARS (BIC)	0	$3.328 \cdot 10^{-12}$
LARS _{TG} (CV)	0	0
LARS _{TG} (BIC)	0	0

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

generaliseringer

Statistisk infernes

Benchmark modellen

Lasso modellen og dens generaliseringer

Out-of-sample

Tabel: p-værdier for Diebold-Mariano testen for hver model imod benchmark modellen. p-værdier $< 2.2 \cdot 10^{-16}$ sættes til 0.

Out-of-sample

1	T_R		T_{max}		
$\alpha = 0.1$	$\alpha = 0.2$	$\alpha = 0.1$	$\alpha = 0.2$		
Benchmark model	Benchmark model	Benchmark model	Benchmark model		
AR(4)	AR(4)	AR(4)	AR(4)		
Lasso (CV)	Lasso (CV)	Faktor (IC ₁)	Lasso (CV)		
Lasso (BIC)	Lasso (BIC)	Lasso (CV)	Lasso (BIC)		
Group lasso (CV)	Group lasso (CV)	Lasso (BIC)	Ridge regression (CV)		
Group lasso (BIC)	Group lasso (BIC)	Ridge regression (CV)	Ridge regression (BIC)		
Adap. lasso m. OLS vægte (CV)	Adap. lasso m. OLS vægte (CV)	Ridge regression (BIC)	Group lasso (CV)		
Adap. lasso m. OLS vægte (BIC)	Adap. lasso m. OLS vægte (BIC)	Group lasso (CV)	Group lasso (BIC)		
Adap. lasso m. lasso vægte (CV)	Adap. lasso m. lasso vægte (CV)	Group lasso (BIC)	Adap. lasso m. OLS vægte (CV)		
Adap. lasso m. lasso vægte (BIC)	Adap. lasso m. lasso vægte (BIC)	Adap. lasso m. OLS vægte (CV)	Adap. lasso m. OLS vægte (BIC)		
Lasso _{TG} (BIC)	Lasso _{TG} (BIC)	Adap. lasso m. OLS vægte (BIC)	Adap. lasso m. lasso vægte (CV)		
LARS (CV)	LARS (CV)	Adap. lasso m. lasso vægte (CV)	Adap. lasso m. lasso vægte (BIC		
LARS (BIC)	LARS (BIC)	Adap. lasso m. lasso vægte (BIC)	$Lasso_{TG}$ (CV)		
Lasso LARS (CV)	Lasso LARS (CV)	$Lasso_{TG}$ (CV)	$Lasso_{TG}$ (BIC)		
Lasso LARS (BIC)	Lasso LARS (BIC)	$Lasso_{TG}$ (BIC)	LARS (CV)		
		LARS (CV)	LARS (BIC)		
		LARS (BIC)	Lasso LARS (CV)		
		Lasso LARS (CV)	Lasso LARS (BIC)		
		Lasso LARS (BIC)	$LARS_{TG}$ (CV)		
		$LARS_{TG}$ (CV)	LARS _{TG} (BIC)		
		$LARS_{TG}$ (BIC)			

modellen med anvendelse inden for prædiktion af makroøkonomiske variable MAOK9 5.2018

Inferens i lasso

generaliseringer

Statistisk infernes

Benchmark modellen

Lasso modellen og dens

generaliseringer

Out-of-sample

Tabel: 80% og 90% model confidence set for arbejdsløshedsraten for absolutte og kvadrerede fejl.

Aalborg universitet