Predicting Vehicle Collisions from Dashcam Video

Can we predict crashes before they happen? Spoiler: we can't.

Today's Presenters

Adam Stein

Hung Tran

Sean Morris

David Corcoran

Agenda

- 1. Introduction
- 2. Data Collection and Preprocessing
- 3. Model Architectures
- 4. Model Results
- 5. Conclusion, Limitations, and Future Work

Introduction

Introduction

- Enhancing road safety through early accident prediction
- Supports autonomous vehicles and advanced driver assistance systems (ADAS)
- Our Task: Analyze dashcam footage to predict vehicle collisions before they happen
- Challenges: Real-world complexity including:
 - Varying weather conditions
 - Visual occlusions
 - Unpredictable road events

<u>Goal</u>: Build a neural network model that accurately classifies whether a dashcam video contains a collision

Data Collection and Preprocessing

Raw dashcam videos

- 1500 annotated video clips ~40s in length & 30 fps
- Represent diverse range of real-world conditions
- Labeled as collision vs normal driving

- Extracted frames of each video at 1 frame per second
- ~60,000 total frames
 extracted

- Extracted object-level spatial features per frame using YOLOv8 (You Only Look Once)
- Detected bounding boxes, object classes, and confidence scores

Fed a sequence of frame-level features into an LSTM, GRU, and Transformer

Model Architectures - LSTM

- RNN designed to better handle long-term dependencies
- Cell state flows through time with three gates controlling the flow of information:
 - Forget Gate: Decides what information to discard
 - Input Gate: Decides what new information to add
 - Output Gate: Decides what information to output
- Preserves gradients over long sequences

Hyperparameter Tuning Results

Hidden Layers: 3 **Optimizer:** Adam

Layer Size: 128 Learning Rate: 0.001

Dropout: 0.2

Model Architectures - GRU

- Do not use a separate cell state they rely solely on the hidden state to store and transfer information
- Two gates instead of three:
 - Update Gate: Controls what previous information to retain and how much of the new input to use
 - Reset Gate: Decides how much of the past information to forget
- Less complex and typically train faster than LSTMs

Hyperparameter Tuning Results

Hidden Layers: 2 Optimizer: Adam

Layer Size: 128 Learning Rate: 0.001

Dropout: 0.2

Model Architectures - Transformer

- Unlike RNNs, Transformers do not process data sequentially
 - No hidden or cell state use self-attention to dynamically relate all time steps to one another
- Self-Attention Layer:
 - Allows model to focus on different parts of the input sequence when encoding a particular time step
- Positional Encoding:
 - Positional signals (sine in this case) to preserve sequence structure
- Layer Normalization & Skip Connections:
 - Used to stabilize training and improve gradient flow

Hyperparameter Tuning Results

Hidden Layers: 2 **Optimizer:** Adam

(Encoders)

Layer Size: 128 Learning Rate: 0.001

Dropout: 0.1

Model Results - LSTM

Evaluation Metrics

Accuracy 63%

Precision 59%

Recall 78%

F1 Score 67%

Model Results - GRU

Evaluation Metrics

Accuracy 68 %

Precision 73 %

Recall 66 %

F1 Score 69 %

Model Results - Transformer

Evaluation Metrics

Accuracy 58%

Precision 59%

Recall 53%

F1 Score 56%

Conclusion, Limitations, and Future Work

Limitations:

YOLO captures spatial features (per frame) and LSTM models temporal changes

Future Work:

- Train a 3D convolutional neural network (CNN) to extract spatiotemporal features
 - 3D convolution would apply a filter that slides not only left-right and up-down, but also forward-backward through the frames
 - o Model would learn to distinguish between "collision" and "normal" driving
- Extend the model to incorporate additional sensor inputs, such as GPS, LiDAR, accelerometers, gyroscopes, or vehicle telemetry

Data and YOLO Limitations

Camera Angles

Weather Conditions

YOLO Misclassifications

3D Convolution for Video Processing

Goal: Train a binary classifier using a 3D CNN that learns spatiotemporal patterns distinguishing "collision" from "normal" driving

References

https://www.kaggle.com/competitions/nexar-collision-prediction

https://arxiv.org/abs/2503.03848

https://www.geeksforgeeks.org/video-classification-with-a-3d-convolutional-neural-network/