Statistical Modeling 2 Exercise 1

January 23, 2017

1 Bayesian inference in simple conjugate families

 \mathbf{A}

$$p(w \mid x_1, \dots, x_N) \propto p(x_1, \dots, x_N \mid w) p(w)$$
 (Bayes rule)

$$\propto \prod_{i=1}^N p(x_i \mid w) w^{a-1} (1-w)^{b-1}$$
 (indepence)

$$\propto w^s (1-w)^{N-s} w^{a-1} (1-w)^{b-1}$$
 (let $s = \sum_{i=1}^N x_i$)

$$= w^{s+a-1} (1-w)^{N-s+b-1}$$

$$\propto \text{Beta}(s+a, N-s+b)$$

 \mathbf{B}

Let
$$f(x_1, x_2) = (y_1, y_2) = (x_1/(x_1 + x_2), x_1 + x_2)$$
, we have:

$$f^{-1}(y_1, y_2) = (x_1, x_2) = (y_1y_2, y_2 - y_1y_2)$$

We then calculate the Jacobian of f^{-1} :

$$\begin{aligned} \partial x_1/\partial y_1 &= y_2 \\ \partial x_1/\partial y_2 &= y_1 \\ \partial x_2/\partial y_1 &= -y_2 \\ \partial x_2/\partial y_2 &= 1 - y_1 \end{aligned}$$

Therefore,

$$|J(f^{-1})| = \begin{vmatrix} y_2 & y_1 \\ -y_2 & 1 - y_1 \end{vmatrix}$$
$$= y_2(1 - y_1) + y_1y_2$$
$$= y_2$$

Let p_X be the joint density of (x_1, x_2) . We have the joint density of y_1 and y_2 :

$$\begin{aligned} p(y_1, y_2) &= p_X(f^{-1}(y_1, y_2))|J(f^{-1}(y_1, y_2))| \\ &= \operatorname{Ga}(y_1 y_2; a_1, 1)\operatorname{Ga}(y_2 - y_1 y_2; a_2, 1)y_2 \\ &= \frac{(y_1 y_2)^{a_1 - 1} \exp(-y_1 y_2)}{\Gamma(a_1)} \frac{((1 - y_1)y_2)^{a_2 - 1} \exp(y_1 y_2 - y_2)}{\Gamma(a_2)} y_2 \\ &= \frac{y_1^{a_1 - 1} y_2^{a_1 + a_2 - 1} (1 - y_1)^{a_2 - 1} \exp(-y_2)}{\Gamma(a_1)\Gamma(a_2)} \end{aligned}$$

The marginals are:

$$p(y_1) = \int_0^\infty p(y_1, y_2) dy_2$$

$$= \frac{y_1^{a_1 - 1} (1 - y_1)^{a_2 - 1}}{\Gamma(a_1) \Gamma(a_2)} \int_0^\infty y_2^{a_1 + a_2 - 1} \exp(-y_2) dy_2$$

$$= \frac{y_1^{a_1 - 1} (1 - y_1)^{a_2 - 1} \Gamma(a_1 + a_2)}{\Gamma(a_1) \Gamma(a_2)}$$

and

$$p(y_2) = \int_0^\infty p(y_1, y_2) dy_1$$

$$= \frac{y_2^{a_1 + a_2 - 1} \exp(-y_2)}{\Gamma(a_1)\Gamma(a_2)} \int_0^\infty y_1^{a_1 - 1} (1 - y_1)^{a_2 - 1}$$

$$= \frac{y_2^{a_1 + a_2 - 1} \exp(-y_2)}{\Gamma(a_1)\Gamma(a_2)} \text{Beta}(a_1, a_2)$$

 \mathbf{C}

The posterior is:

$$p(\theta|x_1, \dots, x_N) \propto p(x_1, \dots, x_N|\theta)p(\theta)$$

$$= \prod_{i=1}^N N(x_i; \theta, \sigma^2)N(\theta; m, v)$$

$$\propto \prod_{i=1}^N \exp\left(-\frac{(x_i - \theta)^2}{2\sigma^2}\right) \exp\left(-\frac{(\theta - m)^2}{2v}\right)$$

$$= \prod_{i=1}^N \exp\left(-\frac{x_i^2 - 2x_i\theta + \theta^2}{2\sigma^2}\right) \exp\left(-\frac{\theta^2 - 2\theta m + m^2}{2v}\right)$$

$$= \exp\left(-\frac{\sum_i x_i^2 + 2\sum_i x_i\theta - N\theta^2}{2\sigma^2}\right) \exp\left(-\frac{\theta^2 + 2\theta m - m^2}{2v}\right)$$

$$= \exp\left(-\theta^2 \left(\frac{N}{2\sigma^2} + \frac{1}{2v}\right) + \theta\left(\frac{\sum_i x_i}{\sigma^2} + \frac{m}{v}\right) - \frac{\sum_i x_i^2}{2\sigma^2} - \frac{m^2}{2v}\right)$$

We then complete the square by setting the posterior to:

$$= \exp \left[-a \left(\theta^2 - 2b\theta + b^2 \right) \right]$$
$$= \exp \left[-a \left(\theta - b \right)^2 \right]$$
$$= \exp \left[-\frac{(\theta - b)^2}{2(1/(2a))} \right]$$

We calculate a, b by matching coefficients:

$$a = \frac{N}{2\sigma^2} + \frac{1}{2v} = \frac{Nv + \sigma^2}{2\sigma^2v}$$

$$2ab = \frac{\sum_i x_i}{\sigma^2} + \frac{m}{v}$$

$$\implies b = \frac{v\sum_i x_i + m\sigma^2}{v\sigma^2} \frac{\sigma^2v}{Nv + \sigma^2}$$

$$= \frac{v\sum_i x_i + m\sigma^2}{Nv + \sigma^2}$$

The posterior is then:

$$N(b, 1/(2a))$$

$$= N\left(\frac{v\sum_{i} x_{i} + m\sigma^{2}}{Nv + \sigma^{2}}, \frac{\sigma^{2}v}{Nv + \sigma^{2}}\right)$$

 \mathbf{D}

$$p(\omega \mid x_1, \dots, x_N) \propto \prod_{i=1}^N p(x_i \mid \theta, \omega) p(\omega)$$

$$\propto \prod_{i=1}^N \omega^{1/2} \exp\left[-\frac{\omega}{2} (x_i - \theta)^2\right] \frac{b^a}{\Gamma(a)} \omega^{a-1} \exp(-b\omega)$$

$$\propto \omega^{N/2 + a - 1} \exp\left[-\omega \left(b + \frac{\sum_i (x_i - \theta)^2}{2}\right)\right]$$

$$\propto \operatorname{Ga}\left(a + \frac{N}{2}, b + \frac{\sum_i (x_i - \theta)^2}{2}\right)$$

We have the posterior of the variance:

$$p(\sigma^2 \mid x_1, \dots, x_N) = \operatorname{IG}\left(a + \frac{N}{2}, b + \frac{\sum_i (x_i - \theta)^2}{2}\right)$$

 \mathbf{E}

The posterior is:

$$\begin{split} p(\theta|x_1,\dots,x_N) &\propto p(x_1,\dots,x_N|\theta)p(\theta) \\ &= \prod_{i=1}^N \mathrm{N}(x_i;\theta,\sigma_i^2)\mathrm{N}(\theta;m,v) \\ &\propto \prod_{i=1}^N \exp\left(-\frac{(x_i-\theta)^2}{2\sigma_i^2}\right) \exp\left(-\frac{(\theta-m)^2}{2v}\right) \\ &= \exp\left(-\sum_{i=1}^n \frac{(x_i-\theta)^2}{2\sigma_i^2} - \frac{(\theta-m)^2}{2v}\right) \\ &= \exp\left[-\frac{1}{2}\left(\sum_{i=1}^n \frac{(x_i-\theta)^2}{\sigma_i^2} + \frac{(\theta-m)^2}{v}\right)\right] \\ &= \exp\left[-\frac{1}{2}\left(\sum_{i=1}^n \frac{x_i^2}{\sigma_i^2} + \sum_{i=1}^n \frac{-2x_i\theta}{\sigma_i^2} + \sum_{i=1}^n \frac{\theta^2}{\sigma_i^2} + \frac{\theta^2 - 2\theta m + m^2}{v}\right)\right] \\ &= \exp\left\{-\frac{1}{2}\left[\theta^2\left(\sum_{i=1}^n \frac{1}{\sigma_i^2} + \frac{1}{v}\right) - 2\theta\left(\sum_{i=1}^N \frac{x_i}{\sigma_i^2} + \frac{m}{v}\right) + \sum_{i=1}^n \frac{x_i^2}{\sigma_i^2} + \frac{m^2}{v}\right]\right\} \\ &= \exp\left\{-\frac{1}{2}\left[a(\theta^2 - 2\theta b + b^2)\right]\right\} \\ &= \exp\left\{-\frac{1}{2}\left[\frac{(\theta-b)^2}{1/a}\right]\right\} \end{split}$$

Matching the coefficients, we have:

$$a = \sum_{i=1}^{n} \frac{1}{\sigma_i^2} + \frac{1}{v}$$

$$b = \left(\sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} + \frac{m}{v}\right) / \left(\sum_{i=1}^{n} \frac{1}{\sigma_i^2} + \frac{1}{v}\right)$$

The posterior is:

 \mathbf{F}

$$p(x) = \int_0^\infty p(x \mid \sigma^2) p(\sigma^2) d\sigma^2$$

$$= \int_0^\infty p(x \mid \omega) p(\omega) d\omega$$

$$= \int_0^\infty \left(\frac{\omega}{2\pi}\right)^{1/2} \exp\left(-\frac{\omega}{2}x^2\right) \frac{b^a}{\Gamma(a)} \omega^{a-1} \exp(-b\omega) d\omega$$

$$\propto \int_0^\infty \omega^{1/2+a-1} \exp\left(-\omega\left(\frac{x^2}{2} + b\right)\right) d\omega$$

$$= \frac{\Gamma(a+1/2)}{(b+x^2/2)^{a+1/2}}$$

$$\propto \frac{\Gamma(\frac{2a+1}{2})}{(1+\frac{x^2/2}{b})^{a+1/2}}$$

2 The multivariate normal distribution

 \mathbf{A}

$$cov(x) = E\{(x - \mu)(x - \mu)^T\}$$

$$= E\{xx^T - x\mu^T - \mu x^T + \mu \mu^T\}$$

$$= E(xx^T) - E(x)\mu^T - \mu E(x)^T + \mu \mu^T$$

$$= E(xx^T) - \mu \mu^T$$

We have:

$$E(Ax + b) = AE(x) + b = A\mu + b$$

then

$$cov(Ax + b) = E\{[(Ax + b) - (A\mu + b)][(Ax + b) - (A\mu + b)]^{T}\}$$

$$= E\{(Ax - A\mu)(Ax - A\mu)^{T}\}$$

$$= E\{A(x - \mu)(x - \mu)^{T}A^{T}\}$$

$$= AE\{(x - \mu)(x - \mu)^{T}\}A^{T}$$

$$= Acov(x)A^{T}$$

 \mathbf{B}

$$p(z) = \prod_{i=1}^{p} p(z_i)$$

$$= \frac{1}{(\sqrt{2\pi})^p} \exp\left(-\sum_{i=1}^{p} \frac{z_i^2}{2}\right)$$

$$= \frac{1}{(\sqrt{2\pi})^p} \exp\left(-\frac{z^T z}{2}\right)$$

The MGF of z is:

$$E(\exp(t^T z)) = E\left[\exp\left(\sum_{i=1}^p t_i z_i\right)\right]$$

$$= E\left[\prod_{i=1}^p \exp(t_i z_i)\right]$$

$$= \prod_{i=1}^p E[\exp(t_i z_i)]$$

$$= \prod_{i=1}^p \exp(t_i^2/2)$$

$$= \exp\left[\sum_{i=1}^p t_i^2/2\right]$$

$$= \exp(t^T t/2)$$

 \mathbf{C}