1 Алгоритмы имитационной модели

В начале проведения симуляции управление находится у ведущей программы π_0 . В ходе её выполнения управление может передаваться программным процессам π_a , π_{bs} и π_{es} . Алгоритмы данных процессов приведены ниже.

Алгоритм программного процесса π_a — «Поступление требования в систему» — включает следующие действия:

- 1. Определение момента $t = t_{now} + t_a$ поступления требования в систему, где t_{now} текущий момент модельного времени.
- 2. Выход из процесса π_a и возврат к ведущей программе.
- 3. Формирование требования и разбиение его на фрагменты. Этот процесс заключается в определении числа фрагментов, что является случайной величиной, создании для каждого фрагмента элемента коллекции, который будет содержать набор переменных, хранящих такие атрибуты фрагмента, как момент времени его появления в системе, идентификатор требования, к которому он относится, и его текущее состояние.
 - a) Первому атрибуту присваивается значение текущего момента модельного времени t_{now} .
 - a) Последнему атрибуту присваивается значение -1, означающее, что этот фрагмент находится в очереди.
- 4. Все фрагменты требования ставятся в очередь системы.
- 5. Переход на шаг 1.

Алгоритм программного процесса π_{bs} — **«Начало обслуживания»** — включает следующие действия:

- 1. Определение номера свободного прибора обслуживания.
- 2. Изменение состояние этого прибора на значение «занят».
- 3. Атрибуту «текущее состояние» взятого из очереди фрагменту требования присваивается значение, равное номеру прибора.
- 4. Определение момента $t = t_{now} + t_{es}$ завершения обслуживания фрагмента требования, где t_{now} текущий момент модельного времени, а t_{es} длительность обслуживания данного фрагмента.
- 5. Выход из процесса π_{bs} и возврат к ведущей программе.

Алгоритм программного процесса π_{es} — «Завершение обслуживания» — включает следующие действия:

1. Изменение состояния завершившего обслуживание прибора на значение

- «свободен».
- 2. Атрибуту «текущее состояние» обслуженного фрагмента требования присваивается значение, равное общему числу приборов, что означает его готовность к сборке.
- 3. Проверка: если все фрагменты данного требования были обслужены и ожидают сборки, то они покидают систему как единое требование.
- 4. Если очередь системы не пуста, то перейти к программному процессу π_{bs} с шага 1. В противном случае, выход из процесса π_{es} и возврат к ведущей программе.

Алгоритм **ведущей программы** π_0 :

- 1. Определение начальных условий.
- 2. Если очередь системы не пуста и хотя бы один прибор обслуживания свободен, то передать управление программному процессу π_{bs} с шага 1. Иначе выполнить шаг 3.
- 3. Из таблицы расписания событий выбрать событие с минимальным моментом активации.
- 4. Продвинуть текущий момент модельного времени t_{now} до момента активации выбранного события.
- 5. Выполняется проверка условия $t_{now} \leq t_{max}$, где t_{now} общее время моделирования. Если неравенство не выполняется, то процесс моделирования завершается, и вычисляются характеристики модели. Конец алгоритма. В противном случае переход к шагу 6.
- 6. В соответствии с событием выбирается программный процесс, которому необходимо передать управление:
 - a) Если выбранным событием является генерация нового требования, то управление получает процесс π_a .
 - δ) Если выбранным событием является завершение обслуживания фрагмента требования, то управление получает процесс π_{es} .

2 Вероятностно-временные характеристики имитационной модели

В ходе осуществления функционирования имитационной модели ведущая программа ведёт сбор статистических данных и вычисляет оценки некоторых характеристик системы.

Записывается суммарное время $t_n, n=0,1,2,\ldots$, нахождения в системе ровно n требований. Затем с помощью выражения

$$\hat{p}_n = \frac{t_n}{t_{max}}$$

вычисляются оценки стационарных вероятностей состояний системы.

Кроме того, после окончания обслуживания каждого требования, его общая длительность τ пребывания в системе записывается в суммирующую переменную, содержащую аналогичную характеристику для всех обслуженных требований. С помощью выражения

$$\hat{u} = \frac{\sum_{i=1}^{Q} \tau_i}{Q},$$

где Q — количество обслуженных требований, вычисляется оценка среднего времени пребывания требования в системе.

3 Структура программы имитационной модели

По описанным ранее алгоритмам была разработана программа имитационной модели. Для реализации использовался язык программирования Python и модули math, numpy и json. Программа позволяет вычислять оценки следующих вероятностно-временных характеристик рассматриваемой системы массового обслуживания типа $M^{[x]}/M/C$ при заданных параметрах:

- стационарное распределение вероятностей состояний системы \hat{p} .
- среднее времени прибывания требования \hat{u} в системе. Программа состоит из двух модулей:
- 1. System.py модуль, в котором содержится класс Mx_M_C , описывающий соответствующую систему. В классе определены следующие атрибуты:
 - *lambda*_ интенсивность входящего потока;
 - servers_count число обслуживающих приборов в системе;
 - *mu* интенсивность обслуживания на приборах системы;
 - servers_states вектор состояния обслуживающих приборов системы;
 - *demands* коллекция, содержащая требования, находящиеся в очереди системы;
 - $-last_state$ номер предыдущего состояния, то есть числа требований, системы.

В классе Mx_M_C содержатся следующие методы:

- *arrival_time* возвращает момент времени, когда очередной требование появится в системе;
- service_time возвращает момент времени, когда система завершит обслуживание требования;
- *pack_size* возвращает число фрагментов, на которые разобьётся требование;
- *export_states* сохраняет данные о времени пребывания системы в каждом состоянии в соответствующей файл;
- *export_demands* сохраняет данные о фрагментах требований в системе в соответствующей файл;
- *import_states* загружает данные о времени пребывания системы в каждом состоянии из соответствующего файла;

- *import_demands* загружает данные о фрагментах тербований в системе из соответствующего файла;
- *current_demands* возвращает идентификаторы присутствующих в системе требований;
- *update_time_states* обновляет данные о времени пребывания системы в каждом состоянии.
- 2. main.py основной модуль, содержащий точку входа в программу. Содержит исходные данные для моделирования:
 - *t_max* общее время моделирования;
 - lambda_ интенсивность входящего потока;
 - *mu* интенсивность обслуживания приборами системы;
 - servers_count число обслуживающих приборов;
 - -b среднее число фрагментов, на которые разбивается требование;
 - *t* текущее значение модельного времени;
 - *indicator* индикатор, отражающий, произошло ли на данном моменте модельного времени какое-либо событие;
 - schedule таблица временных отметок активации событий;
 - $ready_packs_count$ количество обслуженных требований;
 - *sum_packs_life_time* суммарное время нахождения требований в системе;

В теле модуля содержится функция *simulation*, которая осуществляет процесс симуляции, продвигая модельное время вперёд и обрабатывая возникающие события, а также собирает данные статистики.

4 Результаты имитационного моделирования

В ходе проведения экспериментов с реализованной имитационной моделью с целью нахождения оценок характеристик рассматриваемой системы массового обслуживания типа $M^{[x]}$ были получены примеры результатов моделирования.

На основе данных экспериментов можно сделать вывод, что разработанная модель применима для анализа системы массового обслуживания с делением и слиянием требований: интенсивность поступления требований в систему, интенсивностью их обслуживания, количеством обслуживающих приборов и средним числом фрагментов, на которые разделяется требование.

Пример 1.

Рассматривается система массового обслуживания $M^{[x]}/M/C$.

Параметры генерации требований следующие: длительности интервалов между поступающими требованиями имеют экспоненциальное распределение, интенсивность поступления $\lambda=1/10$.

Параметры системы определены следующим образом:

- длительность обслуживания имеет экспоненциальное распределение,
- интенсивность обслуживания $\mu 1/281$,
- число обслуживающих приборов = 150,
- среднее число фрагментов разбиения требования $\overline{b}=5$.

Результаты моделирования системы массового обслуживания:

- оценка среднего времени пребывания требования в системе $\hat{u} = 0$
- оценка вероятностей стационарного распределения состояний системы $\hat{p}=().$

Пример 2.

Рассматривается система массового обслуживания $M^{[x]}/M/C$.

Параметры генерации требований следующие: длительности интервалов между поступающими требованиями имеют экспоненциальное распределение, интенсивность поступления $\lambda=1/10$.

Параметры системы определены следующим образом:

- длительность обслуживания имеет экспоненциальное распределение,
- интенсивность обслуживания $\mu 1/281$,
- число обслуживающих приборов = 150,
- среднее число фрагментов разбиения требования $\bar{b}=5.$

Результаты моделирования системы массового обслуживания:

- оценка среднего времени пребывания требования в системе $\hat{u}=$,
- оценка вероятностей стационарного распределения состояний системы $\hat{p}=().$