

	1 1A																	18 8A
1	1 H 1.00794	2 2A											13 3A	14 4A	15 5 A	16 6A	17 7A	He 4.002602
2	³ Li 6.941	4 Be 9.012182											B 10.811	C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	Ne 20.1797
3	11 Na 22.989770	12 Mg 24,3050	3 3B	4 4B	5 5 B	6 6B	7 7B ı	8	9 8B	10	11 1 1B	12 2B	13 Al 26.981538	Si 28.0855	15 P 30.973761	S 32.066	17 Cl 35.4527	18 Ar 39.948
4	19 K 39.0983	Ca 40.078	Sc 44.955910	Ti 47.867	V 50.9415	Čr	Mn 54.938049	Fe 55.845	Co 58.933200	28 Ni 58.6934	Cu 63.546	Zn 65.39	Ga 69.723	Ge 72.61	AS 74.92160	34 Se 78.96	35 Br 79.904	Kr 83.80
5	37 Rb 85.4678	38 Sr 87.62	Y 88.90585	Zr 91.224	Nb 92.90638	Mo 95.94	Tc (98)	Ru 101.07	Rh 102.90550	Pd 106.42	Ag 107.8682	Cd 112.411	In 114.818	50 Sn 118.710	Sb 121.760	Te	53 I 126.90447	Xe 131.29
6	55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	Pb 207.2	Bi 208.98038	Po (209)	85 At (210)	86 Rn (222)
7	Fr (223)	Ra (226)	89 Ac (227)	Rf (261)	Db (262)	Sg (263)	Bh (262)	HS (265)	109 Mt (266)									

Lanthanoids

Actinoids

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th 232.0381	Pa 231.03588	U 238.0289	Np	Pu (244)	Am	Cm	Bk (247)	Cf	Es (252)	Fm (257)	Md (258)	No (259)	Lr

Electronegativity

Activity Series

Colour Rosette

yellow

green

560-600 nm

Н	
2.1	
Li	Be
1.0	1.5
Na	Mg
0.9	1.2
K	Ca
8.0	1.0
Rb	Sr
8.0	1.0
Cs	Ва
0.7	0.9

F	0	N	С	В
4.0	3.5	3.0	2.5	2.0
CI	s	Р	Si	Al
3.0	2.5	2.1	1.8	1.5
Br	Se	As	Ge	Ga
2.8	2.4	2.0	1.8	1.6
T	37.40,47.65	//	Ro	5.9 95
2.4				

Lithium	Li
Potassium	K
Barium	Ba
Calcium	Ca
Sodium	Na
Magnesium	Mg
Aluminum	A 1
Zinc	Zn
Iron	Fe
Nickel	Ni
Tin	Sn
Lead	Pb
Hydrogen	Н
Copper	Cu
Mercury	Hg
Silver	Ag
Gold	Au

Useful Constants

Avogadro Constant: 6.02×10^{23} particles/mol $1 L = 1 \text{ dm}^3 = 0.001 \text{ m}^3 = 1000 \text{ cm}^3 = 1000 \text{ mL}$

Molar Volume of Ideal Gas:

22.4L/mol at STP (100.0 kPa, 0°C)

24.8L/mol at SATP (100.0 kPa, 25°C)

1.000atm = 101.3kPa = 760mmHg (torr) = 14.7 psi

 $R = 8.314 \text{ L} \cdot \text{kPa} \cdot \text{mol}^{-1} \text{K}^{-1} \text{ (or J} \cdot \text{mol}^{-1} \text{K}^{-1} \text{)}$

 $= 0.0821 \text{ L} \cdot \text{atm} \cdot \text{mol}^{-1} \text{K}^{-1}$

 $= 62.4 \text{ L} \cdot \text{mmHg} \cdot \text{mol}^{-1} \text{K}^{-1}$

density of H₂O₍₁₎: 1.00g•mL⁻¹

 $0^{\circ}C = 273K$

Faraday Constant: 96,485 C/mol electrons

Formulae

density = mass/volume

 $C_1V_1 = C_2V_2$

Gases: PV = nRT; $P_1V_1/T_1 = P_2V_2/T_2$

 $K_w = [H_3O^+][OH^-] = 1.00 \times 10^{-14} @ 25^{\circ}C$

pH + pOH = 14

 $pH = -log_{10}[H_3O^+]; [H_3O^+] = 10^{-pH}$

 $A = -\log (\%T/100) = l \cdot c \cdot \epsilon$

 $\Delta T_{fp} = K_f \cdot cm \cdot i \text{ (similarly for } \Delta T_{bp})$

 $[A]_t = -kt + [A]_o$ (zero order)

 $t_{1/2} = [A]_o/2k$ (zero order)

 $ln[A]_t/[A]_o = -kt$ (first order)

 $t_{1/2} = 0.693/k$ (first order)

 $1/[A]_t = kt + 1/[A]_o$ (second order)

 $t_{1/2} = 1/(k[A]_o)$ (second order)

 $k = Ae^{-Ea/RT}$

 $ln(k_2/k_1) = (E_a/R)(1/T_1 - 1/T_2)$

 $K_c = K_{eq} = ([C]^c [D]^d) / ([A]^a [B]^b)$

(similarly for Q or K_c trial, but use initial conds.)

 $K_a \cdot K_b = K_w$

 $pH = pK_a + log_{10}[A^-]/[HA]$

 $\Delta H_r = \Sigma$ bonds broken - Σ bonds formed

= $\Sigma \Delta H^{\circ}_{f}$ products - $\Sigma \Delta H^{\circ}_{f}$ reactants

 $\Delta G^{o} = \Delta H^{o} - T\Delta S^{o} = -RTln(K_{eq}) = -nF \mathcal{E}^{o}_{cell}$

Vapour Pressure of Water

1	
Temperature (°C)	Pressure (kPa)
10	1.23
11	1.31
12	1.40
13	1.50
14	1.60
15	1.70
16	1.92
17	1.94
18	2.06
19	2.20
20	2.34
21	2.49
22	2.64
23	2.81
24	2.98
25	3.17
26	3.36
27	3.56
28	3.78
29	4.00
30	4.24

bond energies

	0	
Bond	Bond Length	Bond Energy
	(nm)	(kJ/mol)
H–H	0.074	436
H-C1	0.127	431
Cl-Cl	0.198	243
Н-С	0.109	413
C-C1	0.177	328
C-C	0.154	347
C=C	0.134	607
C≡C	0.120	812
C-O	0.143	351
C=O	0.120	803
C≣O	0.113	1075
N-N	0.145	159
N=N	0.125	473
N≡N	0.110	941

Solubility at 25 °C and 101.3

	acetate	bromide	carbonate	chlorite	chloride	hydroxide	iodite	nitrate	oxide	perchlorate	phosphate	sulfate	sulfide
aluminum	S	S	_	S	S	I	S	S	I	S	I	S	d
ammonium	S	S	S	S	S	_	S	S	_	S	S	S	S
barium	S	S	I	S	S	S	S	S	sS	S	I	I	d
calcium	S	S	I	S	S	S	S	S	sS	S	I	sS	I
copper(II)	S	S	_	S	S	I	S	S	I	S	I	S	I
iron(II)	S	S	I	S	S	I	S	S	I	S	I	S	I
iron(III)	S	S	_	S	S	I	S	S	I	S	I	sS	d
lithium	S	S	sS	S	S	S	S	S	S	S	sS	S	S
magnesium	S	S	I	S	S	I	S	S	I	S	I	S	d
potassium	S	S	S	S	S	S	S	S	S	S	S	S	S
silver	sS	I	I	S	I	_	I	S	I	S	I	sS	I
sodium	S	S	S	S	S	S	S	S	S	S	S	S	S
strontium	S	S	I	S	S	S	S	S	S	S	I	I	I
zinc	S	S	I	S	S	I	S	S	I	S	I	S	I

Key: S = soluble sS = slightly soluble d = decomposes in water = no such compound

sS = slightly soluble = no si I = insoluble