Ejercicio

¿Cuál es la transmitancia térmica (U) de la siguiente fachada vertical?

$$U = \frac{1}{R_{\text{total}}}$$

Material	Espesor e (mm)	Conductividad térmica λ (W/m·K)
Ladrillo Obra Vista	140	0.87
Cámara de aire	-	Resistencia térmica = $0.15 \text{ m}^2 \text{ K/W}$
Poliestireno extruido	30	0.033
Barrera de vapor	10	0.19
Ladrillo Perforado	40	0.44
Mortero	10	1.4
Cerámica	10	0.8

Table 1: Características de los materiales de la fachada

Cálculo

La resistencia térmica de cada capa se calcula como:

$$R_i = \frac{e_i}{\lambda_i}$$

Donde: - e_i : Espesor de la capa en metros. - λ_i : Conductividad térmica del material en W/m·K.

La resistencia térmica total se calcula como la suma de las resistencias de todas las capas más la resistencia de la cámara de aire:

$$R_{\text{total}} = \sum R_i + R_{\text{cámara}}$$

Finalmente, la transmitancia térmica se calcula como:

$$U = \frac{1}{R_{\text{total}}}$$

Resultado

Sustituyendo los valores:

$$R_{\text{total}} = \frac{0.14}{0.87} + 0.15 + \frac{0.03}{0.033} + \frac{0.01}{0.19} + \frac{0.04}{0.44} + \frac{0.01}{1.4} + \frac{0.01}{0.8} = 1.546 \,\text{m}^2 \cdot \text{K/W}$$

$$U = \frac{1}{1.546} \approx 0.647 \,\mathrm{W/m}^2 \cdot \mathrm{K}$$

Solución: La transmitancia térmica de la fachada es $U\approx 0.647\,\mathrm{W/m}^2\cdot\mathrm{K}.$