CS 4602

Introduction to Machine Learning

"The Other" Networks and Learning Strategies

Instructor: Po-Chih Kuo

CS4602

Roadmap

- Introduction and Basic Concepts
- Regression
- Bayesian Classifiers
- Decision Trees
- KNN
- Linear Classifier
- Neural Networks
- Deep learning
- Convolutional Neural Networks
- RNN/Transformer
- Reinforcement Learning
- Model Selection and Evaluation
- Clustering
- Data Exploration & Dimensionality reduction

Learning, learning, learning

- Supervised learning
 - FFNNs
 - CNNs
 - RNNs
 - Encoder Decoder
- Unsupervised learning
 - Autoencoder
 - GAN
- Self-Supervised learning
- Reinforcement learning
- Transfer learning
- Federated learning

CS4602

Supervised learning

• Feed Forward Neural Networks (FFNNs) - classification and regression based on features.

 Convolutional Neural Networks (CNNs) - image classification, object detection, video action recognition

CS4602

Supervised learning (cont.)

 Recurrent Neural Networks (RNNs) - language modeling, speech recognition/generation

 Encoder Decoder Architectures - semantic segmentation, machine translation

Recurrent Neural Network (RNN)

Long-Short Term Dependencies

Short-Term

Long-Term

Long-Short Term Memory (LSTM)

CS4602

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Supervised learning (cont.)

 Recurrent Neural Networks (RNNs) - language modeling, speech recognition/generation

 Encoder Decoder Architectures - semantic segmentation, machine translation

Encoder Decoder

 Fully Convolutional Networks for Semantic Segmentation

1.7

Transformer

Output

 Further reading: https://theaisummer.com/transformer/

Figure 1: The Transformer - model architecture.

[&]quot;Attention Is All You Need"

Unsupervised learning

 Autoencoder - unsupervised embeddings, denoising

 Generative Adversarial Networks (GANs) generation of realistic images

AutoEncoder

Convolutional AutoEncoder (CAE)

(Guo et al., 2017)

Variational AutoEncoder (VAE)

Unsupervised learning

 Autoencoder - unsupervised embeddings, denoising

 Generative Adversarial Networks (GANs) generation of realistic images

Generative Adversarial Networks (GAN)

 GAN is the most interesting idea in the last ten years in machine learning.—Yann LeCun, Director, Facebook Al

"Generative adversarial network in medical imaging: A review", 2019

Self-Supervised Learning (SSL)

- A representation learning method where a supervised task is created out of the unlabelled data.
- Self-supervised learning is used to reduce the data labelling cost and leverage the unlabelled data pool.
- Some of the popular methods:
 - Rotation
 - Jigsaw Puzzle
 - Colorization

Rotation

Unsupervised Representation Learning by Predicting Image Rotations https://arxiv.org/pdf/1803.07728.pdf

Jigsaw Puzzle

Learning the right positions

Given 9 tiles, there are 9! = 362,880 possible permutations.

SSL + Contrastive Learning

 SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Reinforcement Learning

 Deep Reinforcement Learning - game playing, robotics in simulation, self-play, neural architecture search

Reinforcement Learning

- Supervised Learning: Immediate feedback (labels provided for every input).
- Unsupervised Learning: No feedback (no labels provided).
- Reinforcement Learning: Delayed scalar feedback (a number called reward).
- RL deals with agents that must sense & act upon their environment.
- Examples:
 - A robot cleaning the room and recharging its battery
 - Robot-soccer
 - Modeling the economy through rational agents
 - Learning how to fly a helicopter
 - Scheduling planes to their destinations

The Big Picture

- S– set of states
- A– set of actions
- T(s,a,s') = P(s'|s,a)— the probability of transition from s to s given action a
- R(s,a)— the expected reward for taking action *a* in state *s*

$$s_0 \xrightarrow[r_0]{a_0} s_1 \xrightarrow[r_1]{a1} s_2 \xrightarrow[r_2]{a2} s_3$$

Your action influences the state of the world which determines its reward

The Task

• To learn an optimal *policy* that maps states of the world to actions of the agent. I.e., if this patch of room is dirty, I clean it. If my battery is empty, I recharge it.

$$\pi: S \to A$$

- What is it that the agent tries to optimize?
 - the total discounted future reward:

$$V^{\pi}(s_t) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$$
$$= \sum_{i=0}^{\infty} \gamma^i r_{t+i}, 0 \le \gamma < 1$$

Note: immediate reward is worth more than future reward.

Value Function

- Let's say we have access to the optimal value function that computes the total future reward $V^*(s)$
- •The optimal policy $\pi^*(s)$ is chosen by maximizing:

$$p^*(s) = \underset{a}{\operatorname{argmax}} \stackrel{\text{\'e}}{\underset{a}{\text{\'e}}} r(s,a) + gV^*(\sigma(s,a))^{\hat{U}}_{\hat{U}}$$

- We assume that we know what the reward will be if we perform action "a" in state "s": r(s,a)
- We also assume we know what the next state of the world will be if we perform action "a" in state "s":

$$S_{t+1} = \delta(S_t, a)$$

Example: Find your way to G

r(s, a) (immediate reward) values

 $V^*(s)$ values

$$\gamma = 0.9$$

One optimal policy

NTHU CS 4602

Q-Function

- One approach to RL to estimate V*(s). $V^*(s) \max_a [r(s,a) + gV^*(\mathcal{O}(s,a))]$
- However, this approach requires you to know r(s,a) and δ (s,a).
- We need a function that directly learns good state-action pairs,
- i.e. what action should I take in this state. We call this Q(s,a).
- Given Q(s,a) it is now trivial to execute the optimal policy, without knowing r(s,a) and $\delta(s,a)$. We have:

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q(s,a)$$
 $V^*(s) = \underset{a}{\operatorname{max}} Q(s,a)$

 $V^*(s)$ values

One optimal policy

NTHU CS 4602

$$\pi^*(s) = \underset{a}{\operatorname{arg\,max}} Q(s,a)$$
 $V^*(s) = \underset{a}{\operatorname{max}} Q(s,a)$

Q-Learning

$$Q(s,a) \circ r(s,a) + gV^*(\mathcal{O}(s,a))$$

$$= r(s,a) + g_{\max_{a'}} Q(\mathcal{O}(s,a),a')$$

- This still depends on r(s,a) and $\delta(s,a)$.
- However, imagine the robot is exploring its environment, trying new actions as it goes.
- At every step it receives some reward "r", and it observes the environment change into a new state s' for action a.

How can we use these observations, (s,a,s',r) to learn a model?

$$\hat{Q}(s,a) - r + g \max_{a'} \hat{Q}(s',a')$$
 $s' = s_{t+1}$

- This equation continually estimates Q at state s consistent with an estimate of Q at state s': temporal difference (TD-Q) learning.
- Do an update after each state-action pair.

3 steps in Q-learning

- 1. Agent starts in a state (s1) takes an action (a1) and receives a reward (r1)
- 2. Agent selects action by referencing Q-table with highest value (max) OR by random (epsilon, ε)
- 3. Update q-values

Initialized

Q-Table South (0) North 0 0 0 . . .	0	West (3) 0	Pickup (4) 0	Dropoff (5)
		0	0	0
			•	
	•	•	•	•
States 327 0 0	0	0	0	0
The second secon				
499 0 0	0	0	0	0

Q-Table		Actions							
		South (0)	North (1)	East (2)	West (3)	Pickup (4)	Dropoff (5)		
	0	0	0	0	0	0	0		
States									
		•	•	•	•	•	•		
	328	-2.30108105	-1.97092096	-2.30357004	-2.20591839	-10.3607344	-8.5583017		
			•	•					
	499	9.96984239	4.02706992	12.96022777	29	3.32877873	3.38230603		

https://en.wikipedia.org/wiki/Q-learning

CS4602 39

Example Q-Learning

$$\hat{Q}(S_1, a_{right}) \leftarrow r + \gamma \max_{a'} \hat{Q}(S_2, a') \\
\leftarrow 0 + 0.9 \max(63, 81, 100) \\
\leftarrow 90$$

Q-learning propagates Q-estimates 1-step backwards

Example: Atari Breakout

https://colab.research.google.com/github/Hvass-Labs/TensorFlow-Tutorials/blob/master/16_Reinforcement_Learning.ipynb#scrollTo=CT6gxbxlJ-V_

$$Q(s_t, a_t) \leftarrow \underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of future rewards}}$$

$$Q(state_t, NOOP) \leftarrow \underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount}} \cdot \underbrace{\max_{a} Q(state_{t+1}, a)}_{\text{estimate of future rewards}} = 1.0 + 0.97 \cdot 1.830 \simeq 2.775$$

RL + DL = Deep Q-Network (DQN)

Transfer learning

 Improvement of learning for new task through the transfer of knowledge from similar task that has been trained.

Traditional learning vs. Transfer learning

Federated learning

Database B₁

Database B_k

CS4602 46

arXiv:1610.05492 (2016).

Learning, learning, learning

- Supervised learning
 - FFNNs
 - CNNs
 - RNNs
 - Encoder Decoder
- Unsupervised learning
 - Autoencoder
 - GAN
- Self-Supervised learning
- Reinforcement learning
- Transfer learning
- Federated learning

CS4602 47

Questions?

#10yearchallenge