Soal Ujian Semester Gasal 2020/2021 Dept.: Ilmu Komputer FSM Undip

Mata Kuliah : Sistem Operasi (3 SKS) Waktu / Sifat : 90 menit / Tutup Buku

Dosen Pengampu : Drs. Eko Adi Sarwoko, M.Kom.

Jawablah dengan singkat dan jelas. Jumlah bobot soal 145 poin.

- 1. [Bobot 15] Sebutkan tiga esensi kebutuhan storage (terkait untuk menyimpan dan mengambil suatu informasi)?.
- 2. [Bobot 10] Berilah suatu contoh pengalaman saudara dalam menangani :
 - a. Implementasi file system (keamanan file, akses file, dsb).
 - b. Implementasi piranti Input/Output (software, hardware).
- 3. [**Bobot 10**] Piranti I/O dikategorikan menjadi 2 yaitu block device dan character device. Jelaskan dan berilah contohnya.
- 4. [**Bobot 40**] Pikirkan suatu disk dengan 40 silinder, saat ini membaca blok silinder 11, kemudian *disk request* datang secara berturutan untuk membaca cylinder 1, 34, 21, 18, 34, 8, 5, 19, 23 dan 15. Misalkan *seek time per cylinder* adalah 5 msec, gambarkan skenario dan berapa *seek time* yang diperlukan, jika *disk arm scheduling algorithm* yang digunakan adalah *First Come First Served*, *Shortest Seek First*, dan *Elevator Algorithm* (periksa bila elevator bergerak naik). Menurut saudara apa kelebihan dan kelemahan ketiga metode tersebut.

5. [Bobot 10] Pada suatu saat sebuah system memiliki status sbb:

i dad saata saat seedam system memmiki status see:						
Proses	Resources					
	R1	R2	R3	R4	R5	R6
P1			Hold		Want	
P2			Want	Hold	Want	
P3		Hold	Want			
P4		Want		Hold		
P5			Want		Hold	
P6	·	Want	·	Want	·	Hold
P7	Hold	Want				

Hold =use= menggunakan resource dan *Want = request*= meminta resource Gunakan deadlock modeling untuk menganalisis apakah pada system tersebut terjadi deadlock atau tidak. Jika ya, tunjukkan proses yang mengalami deadlock.

6. [**Bobot 10**] Dengan menggunakan *Bankers algorithm*, tentukan apakah state berikut ini *safe* atau unsafe. Jika safe, tunjukkan bahwa ada cara agar semua proses dapat berjalan hingga akhirnya *terminate*.

iya territirare.							
Proses	Has	Max					
A	1	9					
В	1	3					
С	2	5					
D	4	9					
Free = 2							

7. [**Bobot 30**] Dengan menggunakan *Bankers algorithm*, tentukan apakah state berikut ini *safe* atau *unsafe*. Jika safe, tunjukkan bahwa ada cara agar semua proses dapat berjalan hingga akhirnya terminate. Catatan : Memiliki 5 Tape drive, 3 Plotter, 3 Printer, dan 2 CD ROM drive.

Existing resource (E) $= (5 \ 3 \ 3 \ 2)$

Processed resource $(P) = (2 \ 1 \ 3 \ 1)$

Available resource $(A) = (3 \ 2 \ 0 \ 1)$

Resource assigned (C) =
$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 2 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$
 Resource still need (R) =
$$\begin{bmatrix} 3 & 2 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 2 & 1 & 0 & 1 \end{bmatrix}$$

8. [Bobot 20] Ada empat kondisi yang menyebabkan deadlock dapat terjadi, sebutkan dan bagaimana deadlock prevention dapat dilakukan.

1