Proyecto 1 – Diseño y Análisis de Algoritmos

- Santiago Rodriguez Mora 202110332
- Valeria Torres Gomez 202110363

Algoritmo de solución:

Se deben construir exactamente k números enteros no negativos cuya suma total sea n, maximizando la **creatividad** total. La creatividad de una celda depende únicamente de los dígitos 3, 6, 9 presentes en cada columna decimal y de su **peso** por posición (P_0 , ..., P_4):

- Unidades P_0 , decenas P_1 , centenas P_2 , miles P_3 , diez-miles P_4
- Aportes por dígito en la columna $3 \to P_p$, $6 \to 2P_p$, $9 \to 3P_p$.
- El resto de los dígitos no suman creatividad.

Entradas y salidas:

E/S	Nombre	Tipo	Descripción
Е	k	int	Número de celdas (números) en las que se reparte la energía. Límite: $1 \le k \le 10^4$.
Е	n	int	Suma total de energía a repartir entre las k celdas. Límite: $1 \le n \le 10^5$.
Е	P_0	int	Peso (creatividad) de la posición de unidades . Límite: $1 \le P_0 \le 10^5$.
Е	P_1	int	Peso de la posición de decenas . Límite: $1 \le P_1 \le 10^5$.
Е	P_2	int	Peso de la posición de centenas . Límite: $1 \le P_2 \le 10^5$.
Е	P_3	int	Peso de la posición de miles . Límite: $1 \le P_3 \le 10^5$.
Е	P_4	int	Peso de la posición de diez-miles . Límite: $1 \le P_4 \le 10^5$.
S	max_crea	int	Máximo puntaje de creatividad posible.

Algoritmo DP:

Podemos definir como $n = \sum_{p \ge 0} n_p \ 10^p$ su descomposición decimal y k el número de celdas. En la columna p, la suma de dígitos entre las k celdas es:

$$S_p = \sum_{j=1}^k d_{p,j} \in [0.9k]$$

Esto cumple la conservación de suma con acarreos: $S_p + c_p = n_p + 10c_{p+1} \Leftrightarrow S_p = n_p - c_p + 10c_{p+1}$. Además, la creatividad **local** de una columna depende de cuántas unidades de 3 caben en S_p :

$$\operatorname{crea}_p(S_p) = P_p \left\lfloor \frac{S_p}{3} \right\rfloor$$

Procesamos columnas desde la más significativa hasta la de unidades (cubriendo al menos hasta p = 4). En cada columna mantenemos un arreglo

Proyecto 1 – Diseño y Análisis de Algoritmos

 $dp[c] = max_crea si entran c acarreos a la columna actual$

• Base: más allá de la última columna no debe quedar carry: $dp_{p+1} = [0]$.

Transiciones:

Para la columna p con un dígito $t = n_p$ y peso $w = P_p$ (si p > 4, w = 0):

1. Definir rangos de candidatos para $y = c_{p+1}$ (carry saliente), dados c (carry entrante):

$$l = \left\lceil \frac{c-t}{10} \right\rceil, \qquad u = \left\lfloor \frac{9k+c-t}{10} \right\rfloor, \qquad y \in \{l, u\} \cap [0, \text{limiteSig}]$$

2. Descomponer en mod 3: $c = 3q + r \operatorname{con} r \in \{0,1,2\}$. Usando

$$\left\lfloor \frac{n_p - c + 10y}{3} \right\rfloor = 3y + \left\lfloor \frac{y + t - r}{3} \right\rfloor - \left\lfloor \frac{c}{3} \right\rfloor$$

la contribución local se separa en una parte que no depende del c específico (dentro de la clase r) y una corrección $-\left|\frac{c}{3}\right|$.

3. Pre-cómputo por residuo: Para cada $r \in \{0,1,2\}$ construimos:

$$A_r[y] = \mathrm{dp_{sig}}[y] + 3wy + w \left[\frac{y+t-r}{3} \right]$$

- 4. Sliding window (deque):
 - a. Para cada clase r, recorremos los c tales que $c = r \pmod{3}$.
 - b. Para cada c calculamos $[\ell, u]$ y obtenemos en O(1) suprimiendo el máximo de $A_r[y]$ en esa ventana usando un deque monótono (cada índice entra y sale a lo sumo una vez).
- 5. Actualización del estado:

$$dp_{sig}[c] = \max A_r[y] - w \left\lfloor \frac{c}{3} \right\rfloor$$

Si no hay un y válido, definimos un PUNTAJE MINIMO.

- **6.** Pasar a la siguiente columna. $dp_{sig} \leftarrow dp$.
- 7. Respuesta final: Tras procesar todas las columnas, la solución del caso es max $(0, dp_{sig}[0])$.

Ecuación de recurrencia:

$$DP[p][c] = \max_{y \in \{l, u\}} \left\{ w_p \left[\frac{n_p - c + 10y}{3} \right] + DP[p + 1][y] \right\}$$

La respuesta final sería DP[0][0]

Proyecto 1 – Diseño y Análisis de Algoritmos

Grafo de necesidades:

Análisis de complejidades espacial y temporal:

Sea $L = \max(4, \lceil \log_{10} n \rceil)$ el número de columnas consideradas y $C = \mathcal{O}(k)$ el rango operativo de acarreos.

a) Tiempo:

Por columna:

- Pre-cómputo $A_r[y]$ para $r = 0,1,2 \rightarrow \mathcal{O}(C)$
- Para cada r, recorrido de $c=r \pmod 3$ con deque (cada y entra/sale máximo una vez): $\mathcal{O}(C)$

En *L* columnas:

-
$$T(n,k) = \mathcal{O}(L \cdot C) = \mathcal{O}(\log n \cdot k)$$

b) Espacio:

Dos capas de *DP* y tres arreglos *A* de orden *C* :

$$MEM(n,k) = \mathcal{O}(C) = \mathcal{O}(k)$$