

La Méthode de Monte Carlo

Faire avancer la sûreté nucléaire

Formation CRISTAL

Sommaire

- Introduction
 - Historique
 - Généralités
- Application au calcul de criticité
 - Simulation
 - Vie du neutron
 - Sections efficaces
 - Convergence
 - Estimateurs
- Voies de calcul CRISTAL
 - Multigroupe
 - Ponctuelle

Sommaire

- Introduction
 - Historique
 - Généralités
- Application au calcul de criticité
 - Simulation
 - Vie du neutron
 - Sections efficaces
 - Convergence
 - Estimateurs
- Voies de calcul CRISTAL
 - Multigroupe
 - Ponctuelle

Introduction: Historique

Première version connue

- Expériences des Aiguilles
- Comte de Buffon XVIIIe siècle « Essai d'arithmétique morale »

Projet Manhattan

- 1946 ENIAC Modèle diffusion neutron dans la matière
- S. Ulam, N. Metropolis, J. Von Neumann

The question was what are the chances that a Canfield solitaire laid out with 52 cards will come out successfully? ..., I wondered whether a more practical method than "abstract thinking" might not be to lay it out say one hundred times and simply observe and count the number of successful plays.

S. Ulam

A ce jour : méthode répandue

• Physique des particules, radiothérapie, météorologie ...

Von Neumann

Monte Carlo: Une première approche

Calcul de π

- Cercle de rayon 1
 - aire = $\pi/4$
- inscrit dans carré de coté 1
 - aire = 1

méthode du rejet

- échantillonne coordonnées
 - lance deux dés
- Le point est-il dans le disque?
 - oui : point accepté
 - non : point rejeté
- Aire du disque

Nb tirages réussis Nb total tirages

Introduction: Calcul d'intégrale

Monte Carlo

- choix aléatoire des xi dans [0,1]
- intégrale : moyenne des f(xi)
- convergence : $\frac{1}{\sqrt{N}}$

Déterministe

- f approchée par fonction en escalier
- xi imposés par la discrétisation
- intégrale : surface des rectangles
- convergence : $\frac{1}{N^{2/d}}$

Introduction: Généralités

Déterministe

- Résolution de l'équation de transport sur un espace discrétisé
- Pas d'incertitude sur le résultat
- Obtention rapide des résultats
- Requiert approximations (ralentissement, collision)
- Vitesse de convergence dépend dimension du problème
- Limitation à des configuration 1D/2D

Monte Carlo

- Simulation d'un grand nombre de neutrons comportement moyen
- Incertitude sur le résultat
- Vitesse de convergence indépendante de la dimension
- Possibilité de traiter toutes les configurations géométriques
- Continu en angle, énergie, espace

Application à la neutronique

Simulation de la vie d'un certain nombre de particules

N: naissance

• T: transport

• C: collision

• F: fuite

• A : absorption

• D : disparition

hors du domaine d'intérêt

Comportement moyen

Moyenne sur le comportement des particules simulées

Sommaire

- Introduction
 - Historique
 - Généralités
- Application au calcul de criticité
 - Simulation
 - Organisation, nombres aléatoires
 - Vie du neutron
 - Sections efficaces
 - Convergence
 - Estimateurs
- Voies de calcul CRISTAL
 - Multigroupe
 - Ponctuelle

Equation de Boltzmann

| Équation d'équilibre sur le flux neutronique

$$\phi = v.n$$

- Bilan sur: Transport, Collisions, Diffusions, Fissions
- A priori pas de raisons qu'il y ait l'équilibre
 - Utilisation d'une constante pour ajuster les fissions

$$\underbrace{\Omega.\nabla\phi}_{Transport} + \underbrace{\Sigma_{t}\phi}_{Collision} = \underbrace{S\phi}_{Diffusion} + \frac{1}{k_{eff}} \underbrace{F\phi}_{Fission}$$

- keff : distance à la criticité
 - facteur par lequel doit être divisé v pour atteindre la criticité
 - v : nombre moyen de neutron par fission

Application à la criticité

- Simulation de générations de neutrons
 - Dépendance d'une génération à l'autre
 - Calcul aux valeurs propres

Simulation

- Naissance, Transport, Collision
- Phénomènes modélisés grâce à des lois de probabilité

Echantillonnage d'une probabilité

- Tirage d'un nombre aléatoire ξ sur [0,1]
 - f une densité de probabilité
 - F la cumulée associée
- Lois discrète (N valeurs possibles)
 - Dé à 6 faces : x_i = face i
 - $f(x_i) = 1/6$
 - $F(x_i) = i/6$

$$F(i-1) \le \xi \le F(i)$$

- Lois continue
 - Recherche de x tel que
 - $F(x) = \xi$

Nombres aléatoires

- Nombres pseudo-aléatoires en réalité
- Suite périodique déterministe (très grande période) de réels obtenus entre 0 et 1
- Permet d'obtenir une distribution « uniforme » dans un espace à n dimensions
- « Changer l'aléa » revient à éliminer un certain nombre de premiers termes de la suite
- Ex sur Tripoli4: $(x_k, a_i \in \{0, 1\})$

$$x_k \equiv \sum_{i=1}^p a_i \, x_{k-i}$$

$$W_i = x_i x_{i+d} \cdots x_{i+(l-1)d}$$

GFSR (Generalized Feed-back Shift Register)
S. Aluru, G.M. Prabhu and J. Gustafson
« A random number generator for parallel computers »
PARALLEL COMPUTING 1992 vol. 18

Sommaire

- Introduction
 - Historique
 - Généralités
- Application au calcul de criticité
 - Simulation
 - Vie du neutron
 - Naissance, Transport, Interaction
 - Sections efficaces
 - Convergence
 - Estimateurs
- Voies de calcul CRISTAL
 - Multigroupe
 - Ponctuelle

Naissance

- Coordonnées modifiées: position, énergie, angle
 - distribution géométrique de production, Spectre énergétique, Isotrope
- Distribution énergétique

Sites de naissances pour la génération suivante

- MORET-4
- sites de collision
- Position
 - x,y,z
- poids:

- $w.v.\frac{\sum_{f}}{\sum_{i}}$
- poids neutron
- × nb neutrons produits par fission
- × proba que le choc soit une fission)
- <u>intérêt</u>: multiplier le nombre de sites - plusieurs sites par neutron simulé

- TRIPOLI-4
- sites de <u>fission</u>
- Position
 - x,y,z
- poids: w.V
 - poids neutron
 - x nb neutrons produits par fission

Transport

- Coordonnées modifiées : position
 - Lois de transport
- Loi de probabilité en milieu infini
 - Probabilité de parcourir une distance l sans interactions
 - Interaction entre l et l+dl

$$T(r \to r') = \sum_{t} \exp(-\sum_{t} l)$$

- Probabilité d'interaction avec traversée de plusieurs milieux
 - Probabilité de parcourir une distance l sans interactions
 - Interaction entre l et l+dl

$$T(r \to r') = \sum_{t,N} \exp(-\sum_{n=1}^{N} \sum_{t,n} l_n)$$

Transport

- Déterminer la distance parcourue sans collision
- La fonction de répartition

$$F(l) = \int_0^l p(l) dl = 1 - \exp(-\Sigma_t l)$$

- Tirage d'un nombre aléatoire ξ sur [0,1]
- Distance parcourue

$$l = F^{-1}(\xi) = -\frac{1}{\Sigma_t} \ln(1 - \xi)$$

Géométrie

Calcul de la trajectoire dans la géométrie

- Volume courant
- Volume voisins
- Distances aux frontières des volumes
- Intersection de la trajectoire du neutron
- Nécessité de traiter chaque volume que le neutron est susceptible de « voir »

Coût de calcul important

Temps de calcul augmente avec nb volumes

Description

- Volumique (MORET, TRIPOLI)
- Surfacique (MCNP)

- Coordonnées modifiées : Energie, Angle
- Choix du noyau collisionné
 - en multigroupe : un seul noyau « équivalent »
- Choix de l'interaction
 - Diffusion, capture, fission, (n,xn)
- Capture stérile ou fission
 - Traitement équivalent : Absorption
 - Mort du neutron
- Diffusion
 - Lois de détermination des (E,omega) de sortie
 - Lois de la cinématique + sections efficaces : E continu

- Choix du noyau collisionné parmi N noyaux
 - N_i: nombres d'atomes de chaque noyau (utilisateur)
 - $\sigma_{t,i}$: section microscopique totale de chaque noyau (données nucléaires)
- Probabilité d'interaction avec noyau i

$$p(i) = \frac{N_i \sigma_{t,i}}{\sum_{i=1}^{N} N_i \sigma_{t,i}}$$

- Fonction de répartition $F(i) = \sum_{k=1}^{l} p(k)$

- - Calcul avec un seul noyau « équivalent »

- Choix de l'interaction
 - $\sigma_{i,j}$: section efficace de l'interaction j du noyau i
- Probabilité de l'interaction j $p_i(j) = \frac{\sigma_{j,i}}{\sum_{k=1}^{M} \sigma_{j,i}} = \frac{\sigma_{j,i}}{\sigma_{t,i}}$ Fonction de répartition $F(j) = \sum_{k=1}^{j} p_i(k)$
- Tirage d'un nombre aléatoire ξ sur [0,1]
- Interaction j tel que $F(j-1) \le \xi \le F(j)$
- Interaction différentes selon traitement énergie
 - Continu : traitement de toutes les réactions
 - multigroupe : réactions « équivalente »
 - pas de distinction entre les différentes diffusions

Détermination des cosinus et énergies de sortie

Energie continue

- Cosinus de sortie
 - section efficaces
- Energie de sortie
 - sections efficaces
 - cinématique à 2 corps

Multigroupe

- Détermine le groupe d'arrivée
 - matrice de transfert
- Cosinus de sortie
 - Lois : polynômes de Legendre
 - Peut prendre des valeurs négatives
- Modèles pour représenter l'anisotropie
 - Coveyou (P1), Lux (P3), Angles Discret (≥P5)

Sommaire

- Introduction
 - Historique
 - Généralités
- Application au calcul de criticité
 - Simulation
 - Vie du neutron
 - Sections efficaces
 - Convergence
 - Estimateurs
- Voies de calcul CRISTAL
 - Multigroupe
 - Ponctuelle

Sections efficaces

Sections efficaces

Continu

- Interpolation linéaire entre les valeurs
- Temps de calcul

Multigroupe

Lecture directe des valeurs

$$\Sigma(\mathbf{r}, E) \to \Sigma_{g}(\mathbf{r}) \equiv \frac{\int_{E_{g}}^{E_{g-1}} \Sigma(\mathbf{r}, E) \phi(\mathbf{r}, \mathbf{\Omega}, E) dE}{\int_{E_{g}}^{E_{g-1}} \phi(\mathbf{r}, \mathbf{\Omega}, E) dE}$$

Sections efficaces

$$\Sigma(\mathbf{r}, E) \to \Sigma_{g}(\mathbf{r}) \equiv \frac{\int_{E_{g}}^{E_{g-1}} \Sigma(\mathbf{r}, E) \phi(\mathbf{r}, \mathbf{\Omega}, E) dE}{\int_{E_{g}}^{E_{g-1}} \phi(\mathbf{r}, \mathbf{\Omega}, E) dE}$$

- Production de sections multigroupes
 - Rôle important des hypothèses sur la forme du flux $\phi(E)$
- Comparer les flux multigroupe et ponctuel
 - Multigroupe : pas de division par ΔE
 - pas une densité
 - Comparaison graphiques de flux MORET / flux TRIPOLI
 - Attention les formes peuvent donc être différentes
 - Diviser les valeurs multigroupes par ΔE

Sommaire

- Introduction
 - Historique
 - Généralités
- Application au calcul de criticité
 - Simulation
 - vie du neutron
 - Sections efficaces
 - Convergence
 - Estimateurs
- Voies de calcul CRISTAL
 - Multigroupe
 - Ponctuelle

Convergence

Résultat du calcul : **moyenne des k_i** converge vers valeur k_{eff} réelle Écart type de la moyenne en $1/\sqrt{N}$

Convergence: Un exemple

Keff = 0.799 +/- 100 pcm 218 batchs / 2400 neutrons

Keff = 0.792 +/- 100 pcm 413 batchs / 2400 neutrons

Keff = 0.766 +/- 100 pcm 178 batchs / 2400 neutrons

Les Questions à se poser pour garantir une bonne convergence

- Quelle est la distribution initiale ?
 - Les volumes les plus réactifs contiennent-il des neutrons sources ?
 - Cette distribution est-elle proche du mode fondamental ?
- **Echantillonnage**?
 - Combien de neutrons faut-il simuler par étape?
 - Combien d'étapes ?
- Quelle est la longueur du transitoire ?
 - À quelle étape commencer les encaissements ?
- Caractéristiques des cas difficiles
 - Systèmes peu couplés du point de vue neutronique
 - Un cœur complet de réacteur
 - Un crayon de 4m à fort taux de combustion
 - Entreposage piscine combustibles irradiés

Sommaire

- Introduction
 - Historique
 - Généralités
- Application au calcul de criticité
 - Simulation
 - Les lois régissant la vie d'un neutron
 - Sections efficaces
 - Convergence
 - Estimateurs
- Voies de calcul CRISTAL
 - Multigroupe
 - Ponctuelle

Estimateurs: nature du résultat

Variables aléatoires

- Moyenne µ
- Ecart type σ

Intervalle de confiance

- $[\mu N \sigma, \mu + N \sigma]$
- Pour N = 1, la probabilité est 0.66
- Pour N = 2, la probabilité est 0.95
- Pour N = 3, la probabilité est 0.99

Estimateurs

Estimation sur les collisions d'une grandeur

$$I = \int f(x)\phi(x)dx$$

Estimateur collision : évènements selon densité Ψ

$$\psi = \sum_{t} \phi$$

Calcul de

$$I = \int f(x) \frac{\psi(x)}{\Sigma_t(x)} dx$$

Dans le calcul Monte Carlo:

- neutrons y_n selon Ψ
- ullet w_n : poids statistique du neutron

$$\bar{I} = \frac{1}{N} \sum_{n=1}^{N} w_n \frac{f(y_n)}{\Sigma_t(y_n)}$$

Estimateurs

- Valeur par génération
- Détermine moyenne et l'écart type
- Trois estimateurs
 - Estimation repose sur des évènements différents
 - Collision, absorption, déplacement
 - Taux d'exces (n,xn) ne peuvent pas être estimés par l'absorption
- Comparer les flux multigroupe et ponctuel
 - Multigroupe : pas de division par ΔE
 - pas une densité
 - Comparaison graphiques de flux MORET / flux TRIPOLI
 - Attention les formes peuvent donc être différentes
 - Diviser les valeurs multigroupes par ΔE

Estimateurs de flux

Fonction de réponse f = 1

• Poids statistique du neutron W_n

Estimateurs pour le flux

dans un volume V et groupe g

• Collisions
$$\overline{\phi}_{V,g} = \frac{1}{N} \sum_{neutrons \ collisions}^{N} \sum_{n \in \mathcal{S}} w_n \frac{1}{\Sigma_t} \delta(V,g)$$

• Absorptions
$$\overline{\phi}_{V,g} = \frac{1}{N} \sum_{neutrons}^{N} w_n \frac{1}{\Sigma_a} \delta(V,g)$$

• Déplacement
$$\overline{\phi}_{V,g} = \frac{1}{N} \sum_{neutrons}^{N} \sum_{déplacement} w_n \ell_n \delta(V,g)$$

37/45

Estimateurs de taux de production

- Fonction de réponse $f = v\Sigma_f$
 - Poids statistique du neutron W_n
- Estimateurs pour le flux
 - dans un volume V et groupe g

• Collisions
$$\overline{\phi}_{V,g} = \frac{1}{N} \sum_{neutrons \ collisions}^{N} W_n \frac{\upsilon \Sigma_f}{\Sigma_t} \delta(V,g)$$

• Absorptions
$$\overline{\phi}_{V,g} = \frac{1}{N} \sum_{neutrons}^{N} w_n \frac{v\Sigma_f}{\Sigma_a} \delta(V,g)$$

• Déplacement
$$\overline{\phi}_{V,g} = \frac{1}{N} \sum_{neutrons}^{N} \sum_{déplacement} w_n \ell_n v \Sigma_f \delta(V,g)$$

Estimateurs du keff

- 2 définitions classiques du keff
 - Source $k_{\it eff} = \frac{{
 m production~s~durant~la~g\'en\'eration}}{{
 m nb~neutrons~simul\'es~durant~la~g\'en\'eration}}$ Bilan $k_{\it eff} = \frac{{
 m productions~durant~la~g\'en\'eration}}{{
 m bilan~des~neutrons~de~la~g\'en\'eration}}$
- productions, absorptions et excès estimés à partir du même estimateur de flux (choc, absorption, corde)
- Keff bilan a généralement une variance plus faible

Estimateurs

- Aucun estimateur n'est performant dans tous les cas
- Tous les estimateurs convergent vers le même résultat mais de façon plus ou moins rapide en fonction de la configuration
- Meilleur estimateur selon les cas :
 - absorption : milieu infini
 - corde : milieux compacts de faible épaisseur optique
 - choc : autres cas

Sommaire

Introduction

- Historique
- Généralités

Simulation

- Quelques éléments calcul
 - Organisation, nombres aléatoires, géométrie
- Les lois régissant la vie d'un neutron
 - Naissance, Transport, Interaction
- Sections efficaces
- Convergence
 - Définition des Sources
- Estimateurs

Voies de calcul CRISTAL

- Multigroupe
- Ponctuelle

Voies CRISTAL: APOLLO2 - MORET4

Voies CRISTAL: TRIPOLI4

Description géométrique détaillée

Sections ponctuelles pour chacun des isotopes de chaque

milieu

Temps de calcul

Comparaison

- Multigroupe
- Continu

Configuration				APOLLO2-MORET4					TRIPOLI4			facteur
géométrie	volumes	isotopes	neutrons	étapes	sigma (pcm)	Tps (s) A2	Tps (s) M4	Tps total (s)	batchs	sigma (pcm)	Tps (s)	de mérite
Sphère U235	1	1	2000	251	98	1.38	74.6	75.98	650	107	266	3.8
Sphère U-Pu	1	6	2000	204	97	3.94	111.6	115.5	650	101	546	4.9
Sphère U-H2O	1	3	2000	324	91	1.92	150.7	152.6	650	109	293	2.3
benchmark : réseau 20 x 20 MOX	M4 : 17 T4 : 13 + 5 par maille		2000	324	93	33.4	2029	2062	1000	74	18572	7.2

Quelques références

- Essai d'arithmétique morale, *G. Comte de Buffon*, Supplément à la naturelle, Vol.4, 1777
- Stan Ulam, John von Neumann, and the Monte Carlo Method, R. Eckhardt, Los Alamos Science, Special Issue, pp. 131-143, 1987
- N. Metropolis. The beginning of the Monte Carlo method. Los Alamos Science, Special issue, 1987
- Monte Carlo particle transport methods: neutron and photons calculations, I.Lux L.Koblinger, CRC Press 1991