ITYM 2021 - Problem 6: Binomial Coefficients and Prime Numbers

Presented by Philémon France

Compoundness: definitions

An integer $n \ge 2$ is S-compound if for each $1 \le k \le n-1$, $\binom{n}{k}$ is divisible by one number from S (a set of integers).

An integer n is ℓ -compound if there exists a set S of ℓ prime numbers s.t. n is S-compound.

Compoundness: definitions

An integer $n \ge 2$ is *S-compound* if for each $1 \le k \le n-1$, $\binom{n}{k}$ is divisible by one number from S (a set of integers).

An integer n is ℓ -compound if there exists a set S of ℓ prime numbers s.t. n is S-compound.

Example of *S*-compoundness

```
n = 0:
n = 1 : 1 1
n = 2: 1 2 1
n = 3: 1 3 3 1
n = 4: 1 4 6 4 1
n = 5: 1 5 10 10 5 1
n = 6: 1 6 15 20 15 6 1
n = 7: 1 7
            21 35 35 21 7
```

Example with n = 6 and $S = \{3, 5\}$: n is S-compound

Useful tool: Lucas's Theorem

Let p a prime number. If $n = \overline{a_\ell} \ \overline{a_{\ell-1} \ \dots \ a_0}^p$ and $k = \overline{b_\ell} \ \overline{b_{\ell-1} \ \dots \ b_0}^p$ then

$$\binom{n}{k} \equiv \prod_{i=0}^{\ell} \binom{a_i}{b_i} \mod p$$

Useful tool : **Lucas's Theorem** Let p a prime number. If $n = \overline{a_\ell \ a_{\ell-1} \ \dots \ a_0}^p$ and $k = \overline{b_\ell \ b_{\ell-1} \ \dots \ b_0}^p$ then

$$\binom{n}{k} \equiv \prod_{i=0}^{\ell} \binom{a_i}{b_i} \mod p$$

Claim:

The only $\{p\}$ -compound integers are the powers of p.

 \triangleright we note $n=\overline{a_\ell}\ \overline{a_{\ell-1}\ \dots\ \overline{a_0}^p}$ and we use Lucas's Theorem with specific k's to show that we must have $a_0=a_1=\dots=a_{\ell-1}=0$ and $a_\ell=1$, which precisely means that $n=p^\ell$

 \triangleright if $n=p^{\ell}$, then for each $1\leqslant k\leqslant n-1$, there exists a non-zero digit b_i of k in base p and using once again Lucas's Theorem gives $\binom{p^{\ell}}{k}\equiv\binom{1}{0}\prod_{i=0}^{\ell-1}\binom{0}{b_i}\equiv 0\mod p$ and show the equivalence.

Claim:

The only $\{p\}$ -compound integers are the powers of p. **Sketch of proof** :

 \triangleright we note $n=\overline{a_\ell}\ \overline{a_{\ell-1}\ \dots\ a_0}^p$ and we use Lucas's Theorem with specific k's to show that we must have $a_0=a_1=\dots=a_{\ell-1}=0$ and $a_\ell=1$, which precisely means that $n=p^\ell$

ho if $n=p^\ell$, then for each $1\leqslant k\leqslant n-1$, there exists a non-zero digit b_i of k in base p and using once again Lucas's Theorem gives $\binom{p^\ell}{k}\equiv \binom{1}{0}\prod_{i=0}^{\ell-1}\binom{0}{b_i}\equiv 0 \mod p$ and show the equivalence. \blacksquare

Claim:

The only $\{p\}$ -compound integers are the powers of p. **Sketch of proof** :

 \triangleright we note $n=\overline{a_\ell}\ \overline{a_{\ell-1}\ \dots\ a_0}^p$ and we use Lucas's Theorem with specific k's to show that we must have $a_0=a_1=\dots=a_{\ell-1}=0$ and $a_\ell=1$, which precisely means that $n=p^\ell$

 \triangleright if $n=p^\ell$, then for each $1\leqslant k\leqslant n-1$, there exists a non-zero digit b_i of k in base p and using once again Lucas's Theorem gives $\binom{p^\ell}{k}\equiv\binom{1}{0}\prod_{i=0}^{\ell-1}\binom{0}{b_i}\equiv 0\mod p$ and show the equivalence.

1. b) 1-compoundness

Direct corollary:

an integer $n \geqslant 2$ is 1-compound if and only if $n = p^{\ell}$ for a certain prime number p and a certain $\ell \geqslant 1$.

S is a set of $\ell \geqslant 1$ prime numbers.

Proposition: There exist infinitely many *S*-compound integers $n \ge 2$.

Main idea: S-compoundness is preserved by inclusion.

Therefore to prove that there are infinitely many S-compound integers $n \ge 2$, it's sufficient to find $S' \subseteq S$ s.t. there are infinitely many S'-compound integers $n \ge 2$.

S is a set of $\ell \geqslant 1$ prime numbers.

Proposition: There exist infinitely many *S*-compound integers $n \ge 2$.

Main idea : S-compoundness is preserved by inclusion.

Therefore to prove that there are infinitely many S-compound integers $n \ge 2$, it's sufficient to find $S' \subseteq S$ s.t. there are infinitely many S'-compound integers $n \ge 2$.

S is a set of $\ell \geqslant 1$ prime numbers.

Proposition: There exist infinitely many *S*-compound integers $n \ge 2$.

Main idea : S-compoundness is preserved by inclusion.

Therefore to prove that there are infinitely many S-compound integers $n \ge 2$, it's sufficient to find $S' \subseteq S$ s.t. there are infinitely many S'-compound integers $n \ge 2$.

S is a set of $\ell \geqslant 1$ prime numbers.

Proposition: There exist infinitely many *S*-compound integers $n \ge 2$.

Main idea : S-compoundness is preserved by inclusion.

Therefore to prove that there are infinitely many S-compound integers $n \ge 2$, it's sufficient to find $S' \subseteq S$ s.t. there are infinitely many S'-compound integers $n \ge 2$.

Claim:

There are infinitely many non S-compound integers $n \ge 2$.

```
Sketch of proof:
```

We set $A = \{n \ge 2 \mid \forall p \in S, p \nmid n\}$, and we show

→ A is an infinite set

 \triangleright for each $n \in A$, n is not S-compound.

Claim:

There are infinitely many non S-compound integers $n \ge 2$.

Sketch of proof:

We set $A = \{n \ge 2 \mid \forall p \in S, p \nmid n\}$, and we show :

 $\triangleright A$ is an infinite set

 \triangleright for each $n \in A$, n is not S-compound.

Claim:

There are infinitely many non S-compound integers $n \ge 2$.

Sketch of proof:

We set $A = \{n \ge 2 \mid \forall p \in S, p \nmid n\}$, and we show :

- A is an infinite set
- \triangleright for each $n \in A$, n is not S-compound.

3. a) Around 2-compoundness when $n = p^{\alpha} + 1$

Proposition: If $n = p^{\alpha} + 1$ with p a prime number and $\alpha \geqslant 1$, then n is 2-compound.

```
Sketch of proof: We actually show that n is \{p,q\}-compound where q is any prime divisor of n p if p
```

3. a) Around 2-compoundness when $n = p^{\alpha} + 1$

Proposition: If $n = p^{\alpha} + 1$ with p a prime number and $\alpha \geqslant 1$, then n is 2-compound.

Sketch of proof: We actually show that n is $\{p,q\}$ -compound where q is any prime divisor of n. \triangleright if $2 \leqslant k \leqslant n-2$, then $p \mid \binom{p^{\alpha}}{k-1}, \binom{p^{\alpha}}{k}$ by 1.a) so $p \mid \binom{p^{\alpha}}{k-1} + \binom{p^{\alpha}}{k} = \binom{p^{\alpha}+1}{k} = \binom{n}{k}$ \triangleright if k=1 or k=n-1, then $q \mid \binom{n}{k} = n$.

3. a) Around 2-compoundness when $n = p^{\alpha} + 1$

Proposition: If $n = p^{\alpha} + 1$ with p a prime number and $\alpha \geqslant 1$, then n is 2-compound.

Sketch of proof: We actually show that n is $\{p,q\}$ -compound where q is any prime divisor of n. \triangleright if $2 \leqslant k \leqslant n-2$, then $p \mid \binom{p^{\alpha}}{k-1}, \binom{p^{\alpha}}{k}$ by 1.a) so $p \mid \binom{p^{\alpha}}{k-1} + \binom{p^{\alpha}}{k} = \binom{p^{\alpha}+1}{k} = \binom{n}{k}$ \triangleright if k=1 or k=n-1, then $q \mid \binom{n}{k} = n$.

3. b) Around 2-compoundness when $n < p_s^{\alpha_s} + q(n)$

Here we have the prime factorisation $n = \prod_{i=1}^{s} p_i^{\alpha_i}$ with $p_1^{\alpha_1} < \ldots < p_s^{\alpha_s}$.

We denote by q(n) the largest prime less than n.

Proposition: If $n < q(n) + p_s^{\alpha_s}$, then n is 2-compound

We did not send a proof for this proposition, but we have some ideas.

3. b) Around 2-compoundness when $n < p_s^{\alpha_s} + q(n)$

Here we have the prime factorisation $n = \prod_{i=1}^{3} p_i^{\alpha_i}$ with $p_1^{\alpha_1} < \ldots < p_s^{\alpha_s}$.

We denote by q(n) the largest prime less than n.

Proposition: If $n < q(n) + p_s^{\alpha_s}$, then n is 2-compound.

We did not send a proof for this proposition, but we have some ideas.

3. b) Around 2-compoundness when $n < p_s^{\alpha_s} + q(n)$

Here we have the prime factorisation $n = \prod_{i=1}^{3} p_i^{\alpha_i}$ with $p_1^{\alpha_1} < \ldots < p_s^{\alpha_s}$.

We denote by q(n) the largest prime less than n.

Proposition: If $n < q(n) + p_s^{\alpha_s}$, then n is 2-compound.

We did not send a proof for this proposition, but we have some ideas.

Thank for listening!

When $n < q(n) + p_s^{\alpha_s}$:

By symmetry, since $\binom{n}{k} = \binom{n}{n-k}$, it is sufficient to satisfy the divisibility condition for $k \le n/2 \le n-k$.

⊳ if q(n) > n - k, then q(n) is coprime to k! and (n - k)! and divides n!, so it divides $\frac{n!}{k!(n-k)!} = \binom{n}{k}$

ho if $q(n) \leqslant n-k$, then $n-q(n) \geqslant k$ so $k < p_s^{\alpha_s}$ and so by Lucas's Theorem :

$$\binom{n}{k} \equiv \prod_{i=lpha_s}^{\ell} \binom{a_i}{0} \prod_{i=0}^{lpha_s-1} \binom{0}{b_i} \equiv 0 \mod p_s$$

When
$$n < q(n) + p_s^{\alpha_s}$$
:

By symmetry, since $\binom{n}{k} = \binom{n}{n-k}$, it is sufficient to satisfy the divisibility condition for $k \le n/2 \le n-k$.

▷ if q(n) > n - k, then q(n) is coprime to k! and (n - k)! and divides n!, so it divides $\frac{n!}{k!(n-k)!} = \binom{n}{k}$

ho if $q(n) \leqslant n-k$, then $n-q(n) \geqslant k$ so $k < p_s^{\alpha_s}$ and so by Lucas's Theorem :

$$\binom{n}{k} \equiv \prod_{i=\alpha_s}^{\ell} \binom{a_i}{0} \prod_{i=0}^{\alpha_s-1} \binom{0}{b_i} \equiv 0 \mod p_s$$

When $n < q(n) + p_s^{\alpha_s}$:

By symmetry, since $\binom{n}{k} = \binom{n}{n-k}$, it is sufficient to satisfy the divisibility condition for $k \le n/2 \le n-k$.

 \triangleright if q(n) > n - k, then q(n) is coprime to k! and (n - k)! and divides n!, so it divides $\frac{n!}{k!(n-k)!} = \binom{n}{k}$

ho if $q(n) \leqslant n-k$, then $n-q(n) \geqslant k$ so $k < p_s^{\alpha_s}$ and so by Lucas's Theorem :

$$\binom{n}{k} \equiv \prod_{i=\alpha_s}^{\ell} \binom{a_i}{0} \prod_{i=0}^{\alpha_s - 1} \binom{0}{b_i} \equiv 0 \mod p_s$$

When $n < q(n) + p_s^{\alpha_s}$:

By symmetry, since $\binom{n}{k} = \binom{n}{n-k}$, it is sufficient to satisfy the divisibility condition for $k \le n/2 \le n-k$.

 \triangleright if q(n) > n - k, then q(n) is coprime to k! and (n - k)! and divides n!, so it divides $\frac{n!}{k!(n-k)!} = \binom{n}{k}$

 \triangleright if $q(n) \leqslant n-k$, then $n-q(n) \geqslant k$ so $k < p_s^{\alpha_s}$ and so by Lucas's Theorem :

$$\binom{n}{k} \equiv \prod_{i=\alpha_s}^{\ell} \binom{a_i}{0} \prod_{j=0}^{\alpha_s - 1} \binom{0}{b_j} \equiv 0 \mod p_s$$

Another useful tool:

Kummer's Theorem

Let p a prime and non-negative integers $n \ge k$. Then $\nu_p \binom{n}{k}$ is the number of carries when adding k and n-k is base p.

Another useful tool:

Kummer's Theorem

Let p a prime and non-negative integers $n \geqslant k$. Then $\nu_p\left(\binom{n}{k}\right)$ is the number of carries when adding k and n-k is base p.