Mandatory Assignment 2 Functional Analysis

Name: Derya Diana Cosan

KU-id: wxz639 Date: 25.01.2021

Problem 1

Let H be an infinite dimensional separable Hilbert space with orthonormal basis $(e_n)_{n>1}$. I set $f_N = N^{-1} \sum_{n=1}^{N^2} e_n$ for all $N \ge 1$

(a)

I will in this section show that $f_N \to 0$ weakly as $N \to \infty$. Furthermore I will show that $||f_N|| = 1$ for all $N \ge 1$.

First, I will show that $f_N \to 0$ weakly as $N \to \infty$. I have set $f_N = N^{-1} \sum_{n=1}^{N^2} e_n$ for all $N \ge 1$. Since $(e_n)_{n \ge 1}$ is a orthonormal basis in Hit applies that $f_N = N^{-1} \sum_{n=1}^{N^2} e_n \in H$ i.e. $f_N \in H$. Furthermore, I let $F_y : H \to \mathbb{C}$ be any linear bounded linear functional. From Riesz'

representation theorem it applies that there exists $y = \sum_{n=1}^{\infty} y_n e_n \in H$ such that $F_y(x) = \langle x, y \rangle.$

Now look at

$$F_y(f_N) = \langle f_N, y \rangle = \langle N^{-1} \sum_{n=1}^{N^2} e_n, \sum_{n=1}^{\infty} y_n e_n \rangle$$

$$= N^{-1} \sum_{n=1}^{N^2} \langle e_n, \sum_{n=1}^{\infty} y_n e_n \rangle$$

$$= N^{-1} \sum_{n=1}^{N^2} y_n < \infty$$
Needs some [.],

because in general this.

Is not well-defined.

This $N^{-1} \sum_{n=1}^{N^2} y_n < \infty$ applies because F_y is bounded.

I will now show that $\frac{1}{\sqrt{N}} \sum_{n=1}^{N} y_n \to 0$ as $\underline{n} \to 0$. $\triangleright \bullet$. From the triangle inequality and Cauchy-Schwartz inequality it applies that

$$\left(\frac{1}{\sqrt{N}}\sum_{n=1}^{N}y_{n}\right)^{2} \bigotimes_{n=1}^{N}\left|y_{n}\right|^{2} = \left(\sum_{n=1}^{N}\frac{1}{\sqrt{N}}|y_{n}|\right)^{2} \leq \sum_{n=1}^{N}\left(\frac{1}{\sqrt{N}}\right)^{2}\sum_{n=1}^{N}|y_{n}|^{2} = \sum_{n=1}^{N}|y_{n}|^{2}$$

These inequalities gives

$$\left| \frac{1}{\sqrt{N}} \sum_{n=1}^{N} y_n \right| \le \left(\sum_{n=1}^{N} |y_n|^2 \right)^{\frac{1}{2}} < \infty$$

This applies because $(y_n)_{n\geq 1}\in \ell_2(\mathbb{N})$. Because $\sum_{n=1}^N|y_n|^2<\infty$, there exists a constant $C\in\mathbb{C}$ such that $\sum_{n=1}^N|y_n|^2\to C$ for $n\to\infty$. No, this requires that $\sum_{n=1}^N|y_n|^2<\varepsilon$ have stated without price $\sum_{n=M+1}^\infty|y_n|^2<\varepsilon$

Hence for any constant $K \ge 1$ it applies that $\sum_{n=M+1}^{K+M} |y_n|^2 < \varepsilon$. For $N \ge \frac{C^2}{\varepsilon^2}$ we then have

$$\frac{1}{\sqrt{N}} \sum_{n=1}^{M} |y_n| \le \frac{\varepsilon}{C} \cdot C = \varepsilon$$

By using Triangle inequality and Cauchy-Schwarz inequality we then have

$$\left| \frac{1}{\sqrt{N}} \cdot \sum_{n=1}^{N} y_n \right| \le \frac{1}{\sqrt{N}} \sum_{n=1}^{N} |y_n|$$

$$= \frac{1}{\sqrt{N}} \cdot \sum_{n=1}^{M} |y_n| + \frac{1}{\sqrt{N}} \cdot \sum_{n=M+1}^{N} |y_n|$$

$$\le \varepsilon + \frac{1}{\sqrt{N}} \sum_{n=M+1}^{N+M} |y_n|$$

$$= \varepsilon + \sum_{n=M+1}^{N+M} \frac{1}{\sqrt{N}} \cdot |y_n|$$

$$= \varepsilon + \sqrt{\left(\sum_{n=M+1}^{N+M} \frac{1}{\sqrt{N}} \cdot |y_n|\right)^2}$$

$$\le \varepsilon + \sqrt{\left(\sum_{n=M+1}^{N+M} \frac{1}{N}\right) \cdot \left(\sum_{n=M+1}^{N+M} |y_n|^2\right)}$$

$$= \varepsilon + \sqrt{1 \cdot \sum_{n=M+1}^{N+M} |y_n|^2}$$

$$< \varepsilon + \sqrt{\varepsilon}$$

Thus $\left|\frac{1}{\sqrt{N}}\sum_{n=1}^{N}y_n\right|\to 0$ for $N\to\infty$. This gives that $\left|\frac{1}{\sqrt{N}}\sum_{n=1}^{N^2}y_n\right|\to 0$ for $N\to\infty$. Hence

$$\lim_{N \to \infty} F_y(f_N) = \lim_{N \to \infty} N^{-1} \sum_{n=1}^{N^2} y_n = 0$$

Thus, since F_y is bounded i.e. continuous we can now conclude that $f_N \to 0$ weakly as $N \to \infty$

(\/)

I will now show that $||f_N|| = 1$. For that I will compute $||f_N||^2$. Notice that $||e_n|| = 1$ since $(e_n)_{n\geq 1}$ is an orthonormal basis.

$$||f_N||^2 = ||N^{-1} \sum_{n=1}^{N^2} e_n||^2$$

$$= |N^{-1}|^2 \cdot ||\sum_{n=1}^{N^2} e_n||^2$$

$$= N^{-2}||\sum_{n=1}^{N^2} e_n||^2$$

$$= N^{-2} \sum_{n=1}^{N^2} ||e_n||^2$$

$$= N^{-2} \sum_{n=1}^{N^2} 1^2$$

$$= N^{-2} N^2$$

$$= 1$$

Hence $||f_N|| = 1$.

4

(b)

I will in this section argue that K is weakly compact and that $0 \in K$. I let K be the norm closure of $co\{f_N|N \ge 1\}$ i.e. $K = \overline{co\{f_N|N \ge 1\}}^{||\cdot||}$.

By definition 7.7 (lecture notes) it applies that $co\{f_N|N\geq 1\}$ is convex so by theorem 5.7 (lecture notes) the norm and the weak closure of $co\{f_N|N\geq 1\}$ coincide. This gives that $K = \overline{co\{f_N|N\geq 1\}}^{\tau_w}$, hence K is weakly closed.

So since K is weakly closed and since $f_N \to 0$ as $N \to \infty$ by problem 1a, then $0 \in K$.

I will now show that K is weakly compact. Now look at the unit ball $\overline{B}_{H^*}(0,1) \subset H^*$. Since H is a Hilbert space, hence a normed vector space, then by Alaoglu theorem it applies that $\overline{B}_{H^*}(0,1)$ is compact in the w^* -topology. Furthermore since H is a Hilbert space, H is reflexive. Hence for H^* it applies that $\tau_w = \tau_{w^*}$. Thus $\overline{B}_{H^*(0,1)}$ is weakly compact.

Now by using Riesz' Representation theorem, it applies that every element in H^* can be written in the form $F_y = \langle \cdot, y \rangle$ where $y \in H$. Hence there exists an isomorphism from H^* to H, which sends F_y to Y. Thus we get an isomorphism between $\overline{B}_{H^*(0,1)}$ and $\overline{B}_H(0,1)$. Hence $K \subseteq \overline{B}_H(0,1)$ is a weakly closed subset of a weakly compact space, which gives that K is weakly compact.

Carell, this is an antilinear isomorphism,

(c)

I will in this section show that 0, as well as each f_N , $N \ge 1$, are extreme points in K.

By definition 7.1 notice

$$Ext(K) = \{x \in K | x = \alpha x_1 + (1 - \alpha)x_2 \text{ implies } x_1 = x_2 = x, x_1, x_2 \in K, 0 < \alpha < 1\}$$

I will show that $0 \in Ext(K)$. Notice that $K \subseteq H$ is non-empty convex compact subset. Now for $n \in \mathbb{N}$ look at $h_n = \langle \cdot, -e_n \rangle \in H^*$ where h_n is a continuous linear functional. Notice $h_n(K) \subseteq \mathbb{R}$ and now I let

Notice
$$h_n(K) \subseteq \mathbb{R}$$
 and now I let
$$C = \sup_{n \in \mathbb{N}} \{ \langle x, -e_n \rangle | x \in K \} = \sup_{n \in \mathbb{N}} \{ -\langle x, e_n \rangle | x \in K \}$$

Because we have that $x \in K$ then $x \ge 0$ and $0 \in K$ and this gives that $C = \sup_{n \in \mathbb{N}} \{-\langle x, e_n \rangle | x \in K\} \le 0$. Thus by using lemma 7.5 we then have that

$$F_n := \{x \in K | Re\langle x, -e_n \rangle = 0\} \neq \emptyset$$

is a compact face of K for all $n \in \mathbb{N}$.

So now, since $0 \in F_n \ \forall n \in \mathbb{N}$ thus $0 \in \bigcap_{n=1}^{\infty} F_n \neq \emptyset$. This gives that

$$\cap_{n=1}^{\infty} F_n = \{ x \in K | \langle x, -e_n \rangle = 0 \ \forall n \in \mathbb{N} \} = \{ 0 \}$$

since the only element which is orthogonal on all e_n is 0. By using lemma 7.4(3) (lecture notes), I can now notice that $\bigcap_{n=1}^{\infty} F_n = \{0\}$ is a face of K and by using 7.4(1)(lecture notes) it now applies that $0 \in Ext(K)$.

/

I will now show that $f_N \in Ext(K)$. I start by fixing $N \geq 1$ and assume that

$$f_N = \alpha x_1 + (1 - \alpha)x_2$$
 for $x_1, x_2 \in K$ and $0 < \alpha < 1$

Notice furthermore that $1 = ||f_N||^2 = \langle f_N, f_N \rangle$. Now consider

$$1 = \langle f_N, f_N \rangle = \langle \alpha x_1 + (1 - \alpha) x_2, f_N \rangle = \alpha \langle x_1, f_N \rangle + (1 - \alpha) \langle x_2, f_N \rangle$$

which gives that

$$0 = \alpha \langle x_1, f_N \rangle + (1 - \alpha) \langle x_2, f_N \rangle - 1$$

$$= \alpha \langle x_1, f_N \rangle + (1 - \alpha) \langle x_2, f_N \rangle - (\alpha + (1 - \alpha))$$

$$= \alpha (\langle x_1, f_N \rangle - 1) + (1 - \alpha) (\langle x_2, f_N \rangle - 1)$$

$$\text{Why is this fac?}$$

$$\text{The last of } f(x) = f(x) = f(x)$$

and because $0 < \alpha < 1$ and $\langle x_1, f_N \rangle, \langle x_2, f_N \rangle \ge 0$ it applies that $0 \le \langle x_i, f_N \rangle \le 1$ for i = 1, 2. Thus we get that

$$\langle x_1, f_N \rangle = 1$$

 $\langle x_2, f_N \rangle = 1$

I will now show that $x_1 = x_2 = f_N$.

Now look at

$$1 = ||\langle x_1, f_N \rangle|| \le ||x_1|| \cdot ||f_N|| = ||x_1||$$

where Cauchy Schwartz inequality is used.

Because $x_1 \in K \subseteq \overline{B}_H(0,1)$ it applies that $||x_1|| \le 1$.

So now, since $||x_1|| \le 1$ and $1 \le ||x_1||$, it gives that $||x_1|| = 1$. Thus

$$1 = ||\langle x_1, f_N \rangle|| = ||x_1|| \cdot ||f_N|| = ||x_1||$$

Thus x_1 and f_N are linearly dependent and hence $x_1 = \lambda f_N$ for a scalar λ . Hence

$$1 = \langle \lambda f_N, f_N \rangle = \lambda \langle f_N, f_N \rangle = \lambda ||f_N||^2 = \lambda$$

Thus $\lambda = 1$.

So $x_1 = \lambda f_N = 1 \cdot f_N = f_N$. Hence $x_1 = f_N$. For x_2 the same can be done in the same way. Then $x_1 = x_2 = f_N$. Thus $f_N \in Ext(K) \ \forall N \geq 1$.

I will in this part argue whether there are any other extreme points in K or not. First, notice that $K = \overline{co\{f_N|N \ge 1\}}^{\tau_w}$ is a non-empty compact convex subset for H. By using Milman (theorem 7.9 lecture notes) it gives

$$Ext(K) \subseteq \overline{\{f_N | N \ge 1\}}^{\tau_w}$$

and furthermore by using problem 1c it gives

$$\{f_N|N\geq 1\}\cup\{0\}\subseteq Ext(K)\subseteq \overline{\{f_N|N\geq 1\}}^{\tau_w}$$

Hence

$$\{f_N|N\geq 1\}\cup\{0\}\subseteq\overline{\{f_N|N\geq 1\}}^{\tau_w}$$

Since H is metrizable it gives that $\{f_N|N \ge 1\}$ is metrizable. Thus $\{f_N|N \ge 1\}$ is first countable. Hence it is not necessary to consider nets and instead it is enough to consider sequences which is in $\{f_N|N \ge 1\}$.

Now suppose that $(x_n)_{n\geq 1}$ is a sequence in $\{f_N|N\geq 1\}$ where $(x_n)_{n\geq 1}$ converges weakly to $x\in\overline{\{f_N|N\geq 1\}}^{\tau_w}$. Thus each $x_i=f_N$ for some $N\geq 1$, hence x is equal to some f_N or 0. We then have

$$Ext(K) \subseteq \overline{\{f_N | N \ge 1\}}^{\tau_w} = \{f_N | N \ge 1\} \cup \{0\}$$

From problem 1.c it applies that

$$\{f_N|N\geq 1\}\cup\{0\}\subseteq Ext(K)$$

and now since

$$Ext(K) \subseteq \{f_N | N \ge 1\} \cup \{0\}$$

It is possible to conclude that

$$Ext(K) = \{f_N | N \ge 1\} \cup \{0\}$$

Hence there are not any other extreme points in K.

(/)

Problem 2

Let X and Y be infinite dimensional Banach spaces.

(a)

Let $T \in \mathcal{L}(X,Y)$. For a sequence $(x_n)_{n\geq 1}$ in X and $x \in X$, I will in this section show that $x_n \to x$ weakly, as $n \to \infty$, implies that $Tx_n \to Tx$ weakly, as $n \to \infty$.

So I assume that $x_n \to x$ weakly for $n \to \infty$, and I then want to show that $Tx_n \to Tx$ weakly, as $n \to \infty$.

From HW4 problem 2a we have that $x_n \to x$ weakly for $n \to \infty$ if and only if $f(x_n) \to f(x)$ for all $f \in X^*$. We can use this result from this problem since x_n is a sequence and a sequence is a part of a net, where a net is a generalization.

I now take a $g \in Y^*$ which implies that $g \circ T \in X^*$. This gives that

$$(g \circ T)(x_n) \to (g \circ T)(x)$$

for $n \to \infty$ and for all $g \in Y^*$.

Hence by using HW4 problem 2a, it applies that

$$(g \circ T)(x_n) \to (g \circ T)(x)$$
 for $n \to \infty$ and for all $g \in Y^*$

No, but sequences are ruly. is the same as $Tx_n \to Tx$ weakly as $n \to \infty$. Hence, I can conclude that $x_n \to x$ weakly, as $n \to \infty$, implies that $Tx_n \to Tx$ weakly, as $n \to \infty$.

(b)

Let $T \in \mathcal{K}(X,Y)$. For a sequence $(x_n)_{n\geq 1}$ in X and $x\in X$, I will in this section show that $x_n \to x$ weakly, as $n \to \infty$, implies that $||Tx_n - Tx|| \to 0$ as $n \to \infty$. I will show this by contradiction.

So I suppose by contradiction that $||Tx_n - Tx|| \to 0$ for $n \to \infty$. Thus there exists a 7 Remarkly for $n \to \infty$ which implies that $x_{n_k} \to x$ weakly for $k \to \infty$.

subsequence $(x_{n_k})_{k\in\mathbb{N}}$ such that $||Tx_n - Tx|| > \varepsilon$ for all $k\in\mathbb{N}$. It appnes that $x_n \to x$ weakly for $x_n \to \infty$ which implies that $x_{n_k} \to x$ weakly for $x_n \to \infty$.

Thus $(x_{n_k})_{k\in\mathbb{N}}$ is bounded. This gives that $(x_{n_k})_{k\in\mathbb{N}}$ has a convergent subsequence $(x_{n_k})_{i\in\mathbb{N}}$.

Such that $||Tx_n| = |Tx'|| \to 0$ for some $x' \in X$, because X and Y are Banach spaces. Because $x_{n_k} \to x$ for some $k \to \infty$ weakly, then by 2a it applies that $Tx_{n_k} \to Tx$ weakly and hence $Tx_{n_{k_i}} \to Tx$ weakly for $\underline{i} \in \mathbb{N}$. But if this applies then $||Tx_{n_{k_i}} - Tx|| \to 0$ for $i \to \infty$, because we are in Banach spaces. Why do we obtain num-come specificaly? $||Tx_{n_{k_i}} - Tx|| \to 0$ for $i \to \infty$ contradicts with $||Tx_{n_k} - Tx|| > \varepsilon$ for all $k \in \mathbb{N}$. Hence $||Tx_n - Tx|| \to 0 \text{ for } n \to \infty.$

(c)

I let H be a separable infinite dimensional Hilbert space. I will show that, if $T \in \mathcal{L}(H,Y)$ satisfies that $||Tx_n - Tx|| \to 0$, as $n \to \infty$, whenever $(x_n)_{n \ge 1}$ is a sequence in H converging weakly to $x \in H$, then $T \in \mathcal{K}(H, Y)$.

I will show that $T \in \mathcal{K}(H,Y)$ by contradiction. So I assume by contradiction that T is not compact. Then proposition 8.2 (lecture notes) gives that $T(B_H(0,1))$ is not totally bounded. By definition of totally bounded this means that $\exists \varepsilon > 0$ such that there are union of finitely many open balls with radius ε which does not covering $T(B_H(0,1))$. I will now show that there exists a sequence $(x_n)_{n\geq 1}$ in the closed unit ball of H such that $||Tx_n - Tx_m|| \ge \varepsilon$ for all $n \ne m$.

Then now take $x_1 \in \overline{B}_H(0,1)$ where it applies that $x_1 \in (x_n)_{n\geq 1} \subset \overline{B}_H(0,1)$. Assume that $x_2, x_3, ..., x_n$ satisfying that $||Tx_q - Tx_r|| \ge \varepsilon$ for all $q, r \le n, q, r > 1$ and $q \ne r$. q, r > 1? Now look at

$$P := T(\overline{B}_H(0,1)) \cap (\bigcup_{i=1}^n B_Y(Tx_i,\varepsilon))^C$$

Notice that $T(\overline{B}_H(0,1)) \not\subset (\bigcup_{i=1}^n B_Y(Tx_i,\varepsilon))$ since $T(\overline{B}_H(0,1))$ is not totally bounded, thus $P \neq \emptyset$.

Now take $x_{n+1} \in \overline{B}_H(0,1)$ such that $Tx_{n+1} \in P$. Especially $Tx_{n+1} \in (\bigcup_{i=1}^n B_Y(Tx_i,\varepsilon))^C$, thus $Tx_{n+1} \notin B_Y(Tx_i, \varepsilon)$ for any i.

Thus $||Tx_{n+1} - Tx_i|| \geq \varepsilon$ for all $i \leq n$, which gives what I want to show, because if I continue this proces I get that $||Tx_n - Tx_m|| \ge \varepsilon$ for all $n \ne m$.

Furthermore H is a reflexive space, since H is a Hilbert space, so by theorem 6.3(lecture notes) it applies that $\overline{B}_H(0,1)$ is weakly compact. Hence every sequence has a weakly Generally Avill only have a visibly convergent submet, I not a subsequence

convergent subsequence. Since $\overline{B}_H(0,1)$ is weakly compact, $(x_{n_k})_{k\geq 1}$ can be the weakly convergent subsequence of $(x_n)_{n\geq 1}$. Since $||Tx_n-Tx_m||\geq \varepsilon$ for all $n\neq m$ it means that $||Tx_{n_k}-Tx||\nrightarrow 0$ for $k\to\infty$ which is a contradiction for our assumption. So T is compact.

(/)

(d)

I will show that $T \in \mathcal{L}(\ell_2, (\mathbb{N}), \ell_1(\mathbb{N}))$ is compact. Now let $(x_n)_{n\geq 1} \in H$ and assume that $x_n \to x$ weakly for $n \to \infty$ so by problem $2a \ Tx_n \to Tx$ weakly, as $n \to \infty$, in $\ell_1(\mathbb{N})$.

Since $Tx_n \to Tx$ weakly then by remark 5.3 it applies that $||Tx_n - Tx|| \to 0$. From HW4 problem 4 we have that $\ell_2(\mathbb{N})$ is separable. Furtermore $\ell_2(\mathbb{N})$ is an infinite dimensional Hilbert space. Then by problem 2c I can conclude that T is compact.

(e)

I will in this section show that no $T \in \mathcal{K}(X,Y)$ is onto. This will be done by contradiction. Let X and Y be infinite dimensional Banach spaces. So now I assume that T is onto, hence open (by open mapping theorem).

Because X, Y are normed vector spaces, since they are Banach spaces, and because T is open then there exists r > 0 such that $B_Y(0, r) \subset T(B_X(0, 1))$.

It also applies that $\overline{B_Y(0,r)} \subset \overline{T(B_x(0,1))}$, since taking closure preverses inclusion.

Because T is a compact operator, it gives that $T(B_x(0,1))$ is compact, then a closed subset of a compact $\overline{T(B_x(0,1))}$ is compact and since $\overline{B_Y(0,r)}$ is a closed subset of $\overline{T(B_x(0,1))}$ then $\overline{B_Y(0,r)}$ is compact.

I will now look at the cases where r = 1, r > 1 and r < 1.

When $r = \underline{1}$ then it applies that $\overline{B_Y(0,r)} = \overline{B_Y(0,1)}$ and since $\overline{B_Y(0,r)}$ is compact, it gives that $\overline{B_Y(0,1)}$ is compact, which is a contradiction because we have that since Y is infinite dimensional then by Riezs lemma we have that $\overline{B_Y(0,1)}$ is not compact.

When r > 1 then it applies that $\overline{B_Y(0,1)}$ is a closed subset of the compact subset $\overline{B_Y(0,r)}$, which means that $\overline{B_Y(0,1)}$ is also compact, which is again a contradiction, since Y is infinite dimensional hence $\overline{B_Y(0,1)}$ is not compact.

When r < 1 I look at $f: Y \to Y$ by $x \mapsto \frac{1}{r}x$, which is continuous. Since it applies that the image under a continuous function of a compact set is compact, then it applies that since Y is infinite dimensional then $f(\overline{B_Y(0,1)}) = \overline{B_Y(0,1)}$ is compact which is again a contradiction, with same argument as earlier.

These contradictions gives that no $T \in \mathcal{K}(X,Y)$ is onto.

(f)

Let $H = L_2([0, 1], m)$ and consider the operator $M \in \mathcal{L}(H, H)$ given by Mf(t) = tf(t), for $f \in H$ and $t \in [0, 1]$. I will show that M is self-adjoint, but not compact.

I start by showing that M is self-adjoint i.e. I will show that $M = M^*$. Notice first that $t = \bar{t}$ since t has only real values. Notice furthermore that $g \in H$. I now look at the inner product on H and we deduced the following

$$\begin{split} \langle Mf,g\rangle &= \int_{[0,1]} Mf(t)\overline{g(t)}dm(t)\\ &= \int_{[0,1]} tf(t)\overline{g(t)}dm(t)\\ &= \int_{[0,1]} f(t)\overline{t}\overline{g(t)}dm(t)\\ &= \int_{[0,1]} f(t)\overline{t}\overline{g(t)}dm(t)\\ &= \int_{[0,1]} f(t)\overline{Mg(t)}dm(t)\\ &= \langle f,Mg\rangle \end{split}$$

Hence I have shown that $M = M^*$, which gives that M is self-adjoint.

I will now show that M is not compact. I assume by contradiction that M is compact. From earlier notice that M is self-adjoint. Furtermore $H = L_2([0,1],m)$ is infinite dimensional and from HW4 problem 4 we have that $H = L_2([0,1],m)$ is separable. Hence by the Spectral Theorem for self-adjoint compact operators (theorem 10.1 in lecture notes), we have that H has an ONB consisting of eigenvectors for M with corresponding eigenvalues.

But from HW6 problem 3a we have that M has no eigenvalues. This gives the contradiction and we can conclude that M is not compact.

Problem 3

Consider the Hilbert space $H = L_2([0, 1], m)$ where m is the Lebesgue measure. Define $K : [0, 1] \times [0, 1] \to \mathbb{R}$ by:

$$K(s,t) = \begin{cases} (1-s)t & \text{if } 0 \le t \le s \le 1\\ (1-t)s & \text{if } 0 \le s < t \le 1 \end{cases}$$

and consider $T \in \mathcal{L}(H, H)$ defined by

$$(Tf)(s) = \int_{[0,1]} K(s,t)f(t)dm(t), \quad s \in [0,1], f \in H$$

(a)

I will in this section justify that T is compact. First notice that [0,1] is a compact Hausdorff topological space and m is the Lebesgue measure on [0,1]. Lebesgue measure A L_1 L_2 on [0,1] is a measure on Borel σ -algebra so m is a finite Borel measure on [0,1].

Furthermore K is continuous on $[0,1] \times [0,1]$ so $K \in C([0,1] \times [0,1])$. Hence $T: H \to H$ is a compact operator by theorem 9.6 (lecture notes).

Check at least $S \to t$

(b)

I will in this section show that $T = T^*$. For showing this I will show that $\langle Tf, g \rangle =$

So I consider

$$\langle Tf,g\rangle = \int_{[0,1]} Tf(s)\overline{g(s)}dm(s)$$

$$= \int_{[0,1]} \int_{[0,1]} K(s,t)f(t)dm(t)\overline{g(s)}dm(s)$$

$$= \int_{[0,1]} \int_{[0,1]} K(t,s)f(t)\overline{g(s)}dm(t)dm(s)$$

$$= \int_{[0,1]} \int_{[0,1]} \overline{K(s,t)}f(t)\overline{g(s)}dm(t)dm(s)$$

$$= \int_{[0,1]} \int_{[0,1]} \overline{K(s,t)}f(t)\overline{g(s)}dm(s)dm(t)$$

$$= \int_{[0,1]} \int_{[0,1]} \overline{K(s,t)}g(s)dm(s)f(t)dm(t)$$

$$= \int_{[0,1]} \overline{Tg(t)}f(t)dm(t)$$

$$= \langle f,Tg \rangle$$

where I have used Tonelli-Fubini theorem and the fact that K(t,s) = K(s,t). Hence I have showed that $\langle Tf, g \rangle = \langle f, Tg \rangle$ which gives that $T = T^*$.

(c)

In the following I will show that

$$(Tf)(s) = (1-s) \int_{[0,s]} tf(t)dm(t) + s \int_{[s,1]} (1-t)f(t)dm(t) \quad s \in [0,1], f \in H$$

so I compute (Tf)(s). Notice that the second equality follows by the linearity of Lebesgue integrals

$$(Tf)(s) = \int_{[0,1]} K(s,t)f(t)dm(t)$$

$$= \int_{[0,s]} K(s,t)f(t)dm(t) + \int_{[s,1]} K(s,t)f(t)dm(t)$$

$$= \int_{[0,s]} (1-s)tf(t)dm(t) + \int_{[s,1]} (1-t)sf(t)dm(t)$$

$$= (1-s)\int_{[0,s]} tf(t)dm(t) + s\int_{[s,1]} (1-t)f(t)dm(t)$$

and hence I have shown that

$$(Tf)(s) = (1-s) \int_{[0,s]} tf(t)dm(t) + s \int_{[s,1]} (1-t)f(t)dm(t) \quad s \in [0,1], f \in H$$

I will now argue that Tf is continuous on [0,1]. For showing that Tf is continuous I will show that Tf is bounded. Since $f \in L_2([0,1],m)$ it gives that $||f||_2 < \infty$. Furthermore

not continuity
$$\left(\int_{[0,1]}|f|^2dm(t)\right)^{\frac{1}{2}}<\infty$$

Since $\left(\int_{[0,1]} |f|^2 dm(t)\right)^{\frac{1}{2}} < \infty$ and since $0 \le t \le 1$ and $0 \le s \le 1$ it gives that

$$(1-s)\int_{[0,s]} tf(t)dm(t) < \infty$$

$$s \int_{[s,1]} (1-t)f(t)dm(t) < \infty$$

Hence $(Tf)(s) < \infty$ so Tf is bounded and hence from proposition 1.10 Tf is continuous on [0,1].

P.1.10 is for linear (operators
The is just a franction
not necessarilly linear.

Finally I will show that (Tf)(0) = (Tf)(1) = 0.

$$(Tf)(0) = (1-0) \int_{[0,0]} tf(t)dm(t) + 0 \int_{[0,1]} (1-t)f(t)dm(t)$$

$$= \int_{[0,0]} tf(t)dm(t)$$

$$= 0$$

so (Tf)(0) = 0.

$$(Tf)(1) = (1-1) \int_{[0,1]} tf(t)dm(t) + 1 \int_{[1,1]} (1-t)f(t)dm(t)$$

$$= 0 + \int_{[1,1]} (1-t)f(t)dm(t)$$

$$= \int_{[1,1]} (1-t)f(t)dm(t)$$

$$= 0$$

so (Tf)(1) = 0. Hence I have shown that (Tf)(0) = (Tf)(1) = 0.

Problem 4

Consider the Schwartz space $\mathscr{S}(\mathbb{R})$ and view the Fourier transform as a linear map $\mathcal{F}:\mathscr{S}(\mathbb{R})\to\mathscr{S}(\mathbb{R})$

(a)

For each integer $k \geq 0$, I set $g_k(x) = x^k e^{\frac{-x^2}{2}}$ for $x \in \mathbb{R}$. I will in this section justify that $g_k \in \mathscr{S}(\mathbb{R})$, for all integers $k \geq 0$. Furthermore I will compute $\mathcal{F}(g_k)$, for k = 0, 1, 2, 3

I first notice that $e^{-||x||^2}=e^{-x^2}$. From HW7 I know that $e^{-||x||^2}\in\mathbb{R}$ belongs to $\mathscr{S}(\mathbb{R})$. Hence $e^{-x^2}\in\mathscr{S}(\mathbb{R})$. Notice furthermore that $S_{\sqrt{2}}(e^{-x^2})=e^{-\frac{x^2}{2}}$. From HW7 problem 1d it applies that $S_{\sqrt{2}}(e^{-x^2})\in\mathscr{S}(\mathbb{R})$ (since $\sqrt{2}\in\mathbb{R}\setminus\{0\}$ and $e^{-x^2}\in\mathscr{S}(\mathbb{R})$) so $e^{\frac{-x^2}{2}}\in\mathscr{S}(\mathbb{R})$. Hence by problem 1a in HW7 I can now conclude that $x^ke^{-\frac{x^2}{2}}$.

I will now compute $\mathcal{F}(g_k)$, for k = 0, 1, 2, 3.

I start by fix k and I set $\phi := e^{\frac{-x^2}{2}}$, which is integrable. Furthermore notice that $x^k e^{\frac{-x^2}{2}}$

is also integrable. So since $g_k \in \mathscr{S}(\mathbb{R})$, HW7 1.c gives that $g_k \in L_1(\mathbb{R})$. Furthermore by proposition 11.4 (lecture notes) for n = 1 it applies that $\phi(x) = \hat{\phi}(x)$. So now consider

$$\mathcal{F}(g_k)(\xi) = \hat{g}_k(\xi)$$

$$= (g_k)^{\hat{}}(\xi)$$

$$= (x^k \phi)^{\hat{}}(\xi)$$

$$= i^k (\partial^k \hat{\phi})(\xi)$$

$$= i^k (\partial^k \phi)(\xi)$$

where I have used definition 11.1(lecture notes) since $g_k \in L_1(\mathbb{R})$ and I have used proposition 11.13(d)(lecture notes), which is possible since $x^k e^{\frac{-x^2}{2}} \in L_1(\mathbb{R})$ and $e^{\frac{-x^2}{2}} \in L_1(\mathbb{R})$.

I will now compute $\mathcal{F}(g_k)$ for k = 0, 1, 2, 3. Then for k = 0 I obtain

$$\mathcal{F}(g_0)(\xi) = i^0(\partial^0 \phi)(\xi)$$
$$= 1 \cdot e^{\frac{-\xi^2}{2}}$$
$$= e^{\frac{-\xi^2}{2}} = g_0$$

Thus $\mathcal{F}(g_0)(\xi) = e^{\frac{-\xi^2}{2}}$

For k = 1 I obtain

$$\mathcal{F}(g_1)(\xi) = i^1(\partial^1 \phi)(\xi)$$
$$= i\partial\phi)(\xi)$$
$$= i(e^{\frac{-\xi^2}{2}} \cdot (-\xi))$$
$$= -i\xi e^{\frac{-\xi^2}{2}}$$

Thus $\mathcal{F}(g_1)(\xi) = -i\xi e^{\frac{-\xi^2}{2}}$

For k = 2 I obtain

$$\mathcal{F}(g_2)(\xi) = i^2 (\partial^2 \phi)(\xi)$$

$$= i^2 (-e^{\frac{-\xi^2}{2}} + \xi^2 e^{\frac{-\xi^2}{2}})$$

$$= e^{\frac{-\xi^2}{2}} - \xi^2 e^{\frac{-\xi^2}{2}}$$

Thus
$$\mathcal{F}(g_2)(\xi) = e^{\frac{-\xi^2}{2}} - \xi^2 e^{\frac{-\xi^2}{2}}$$

For k = 3 I obtain

$$\mathcal{F}(g_3)(\xi) = i^3 (\partial^3 \phi)(\xi)$$

$$= i^3 (\xi e^{\frac{-\xi^2}{2}} + 2\xi e^{\frac{-\xi^2}{2}} - \xi^3 e^{\frac{-\xi^2}{2}})$$

$$= i^3 (3\xi e^{\frac{-\xi^2}{2}} - \xi^3 e^{\frac{-\xi^2}{2}})$$

$$= -i(3\xi e^{\frac{-\xi^2}{2}} - \xi^3 e^{\frac{-\xi^2}{2}})$$

Thus $\mathcal{F}(g_3)(\xi) = -i(3\xi e^{\frac{-\xi^2}{2}} - \xi^3 e^{\frac{-\xi^2}{2}}).$

(b)

I will in this part find non-zero functions $h_k \in \mathscr{S}(\mathbb{R})$ such that $\mathcal{F}(h_k) = i^k h_k$ for k = 0, 1, 2, 3. I will use the computations from problem 4a.

I will find a non-zero function $h_0 \in \mathscr{S}(\mathbb{R})$ for which it applies that $F(h_0) = i^0 h_0$. Consider

$$F(g_0) = i^0 e^{\frac{-\xi^2}{2}} = g_0(\xi)$$

so $h_0 = g_0$ such that $\mathcal{F}(h_0) = i^0 h_0$

Now, I will find a a non-zero function $h_1 \in \mathscr{S}(\mathbb{R})$ for which it applies that $F(h_1) = ih_1$. I compute

$$\mathcal{F}(g_3)(\xi) = i(\xi^3 e^{\frac{-\xi^2}{2}} - 3\xi e^{\frac{-\xi^2}{2}}) = i(g_3(\xi) - 3g_1(\xi))$$

Thus

$$\mathcal{F}(g_3 - \frac{3}{2}g_1)(\xi) = \mathcal{F}(g_3)(\xi) - \frac{3}{2}\mathcal{F}(g_1)(\xi)$$

$$= i(g_3(\xi) - 3g_1(\xi)) - \frac{3}{2}(-i\xi e^{\frac{-\xi^2}{2}})$$

$$= i(g_3(\xi) - 3g_1(\xi)) + \frac{3}{2}i\xi e^{\frac{-\xi^2}{2}}$$

$$= i(g_3(\xi) - 3g_1(\xi)) + \frac{3}{2}\xi e^{\frac{-\xi^2}{2}})$$

$$= i(g_3(\xi) - \frac{3}{2}g_1(\xi))$$

Hence $h_1 = (g_3 - \frac{3}{2}g_1)$ such that $\mathcal{F}(h_1) = ih_1$

Now, I will find a non-zero function $h_2 \in \mathscr{S}(\mathbb{R})$ for which it applies that $F(h_2) = i^2h_2 = -h_2$.

I compute

$$\mathcal{F}(g_2)(\xi) = e^{\frac{-\xi^2}{2}} - \xi^2 e^{\frac{-\xi^2}{2}} = g_0(\xi) - g_2(\xi) = -(g_2(\xi) - g_0(\xi))$$

Thus

$$\mathcal{F}(g_2 - \frac{1}{2}g_0)(\xi) = \mathcal{F}(g_2)(\xi) - \frac{1}{2}\mathcal{F}(g_0)(\xi)$$

$$= -(g_2(\xi) - g_0(\xi)) - \frac{1}{2}g_0(\xi)$$

$$= -g_2(\xi) + g_0(\xi) - \frac{1}{2}g_0(\xi)$$

$$= -g_2(\xi) + \frac{1}{2}g_0(\xi)$$

$$= -(g_2(\xi) - \frac{1}{2}g_0(\xi))$$

Thus $h_2 = (g_2 - \frac{1}{2}g_0)$ such that $\mathcal{F}(h_2) = i^2 h_2 = -h_2$

Now, I will find a non-zero function $h_3 \in \mathscr{S}(\mathbb{R})$ for which it applies that $F(h_3) = i^3h_3 = -ih_3$.

I compute

$$\mathcal{F}(g_1)(\xi) = -i\xi e^{\frac{-\xi^2}{2}} = -ig_1(\xi)$$

Thus $h_3 = g_1$ such that $\mathcal{F}(h_3) = i^3 h_3 = -i h_3$

(c)

In this section I will show that $\mathcal{F}^4(f)=f$ for all $f\in\mathscr{S}(\mathbb{R})$

Notice from HW7 1.c that $\mathscr{S}(\mathbb{R}) \subset L_1(\mathbb{R})$ and since $f \in \mathscr{S}(\mathbb{R})$ it gives that $f, \hat{f} \in L_1(\mathbb{R})$.

Notice furthermore that, since $f \in \mathscr{S}(\mathbb{R})$ we have that $\mathcal{F}^*(\mathcal{F}(f)) = \mathcal{F}(\mathcal{F}^*(f)) = f$ (from corollary 12.12(iii) in lecture notes). So now consider

$$\mathcal{F}^{2}(f)(\xi) = \mathcal{F}(\mathcal{F}(f))(\xi)$$

$$= \mathcal{F}(\hat{f}(\xi))$$

$$= \int_{\mathbb{R}} e^{-ix\xi} \hat{f}(x) dm(x)$$

Furthermore it applies that

$$(S_{-1}f)(\xi) = f\left(\frac{\xi}{-1}\right)$$

$$= f(-\xi)$$

$$= \mathcal{F}^*(\mathcal{F}(f))(-\xi)$$

$$= \mathcal{F}^*(\hat{f})(-\xi)$$

$$= \int_{\mathbb{R}} e^{-ix\xi} \hat{f}(x) dm(x)$$

$$= \mathcal{F}^2(f)(\xi)$$

Finally I can look at the following and obtaing what I want to show:

$$(\mathcal{F}^4 f)(x) = \mathcal{F}^2(\mathcal{F}^2 f)(x)$$

$$= \mathcal{F}^2(S_{-1} f)(x)$$

$$= \mathcal{F}^2(f)(-x)$$

$$= (S_{-1} f)(-x)$$

$$= f(x)$$

Hence $\mathcal{F}^4(f) = f$ for all $f \in \mathscr{S}(\mathbb{R})$

(d)

In this problem, I will show that if $f \in \mathscr{S}(\mathbb{R})$ is non-zero and $\mathcal{F}(f) = \lambda f$ for some $\lambda \in \mathbb{C}$ then $\lambda \in \{1, i, -1, -i\}$. I will furthermore conclude that the eigenvalues of \mathcal{F} are precisely $\{1, i, -1, -i\}$

Suppose that $f \in \mathcal{S}(\mathbb{R})$ is non-zero and and $\mathcal{F}(f) = \lambda f$ for some $\lambda \in \mathbb{C}$ then I want to show that $\lambda \in \{1, i, -1, -i\}$. To show this, it is enough to show that $\lambda^4 = 1$. Notice that, $\lambda f = \mathcal{F}(f)$ gives that $\lambda^4 f^4 = \mathcal{F}^4(f)$. Every is this from $\mathcal{F}^4(f) = f$ for all $f \in \mathcal{S}(\mathbb{R})$. This gives that

$$\lambda^4 f^4 = \mathcal{F}^4(f) = f$$

$$\lambda^4 = \frac{f}{f^4}$$
 I need not be non-zero every where !

SO

Furthermore by using $\mathcal{F}^4(f) = f$ from problem 4c we obtain

ng
$$\mathcal{F}^4(f) = f$$
 from problem 4c we obtain
$$f^2 = \mathcal{F}^8(f) = \mathcal{F}^4(\mathcal{F}^4(f)) = \mathcal{F}^4(f) = f$$

$$f^2 = \mathcal{F}^8(f) = \mathcal{F}^4(\mathcal{F}^4(f)) = \mathcal{F}^4(f) = f$$

$$f^3 = \mathcal{F}^8(f) = \mathcal{F}^4(\mathcal{F}^4(f)) = \mathcal{F}^4(f) = f$$

$$f^4 = (f^2)^2 = f^2 = f$$

SO

$$\lambda^4 = \frac{f}{f^4} = \frac{f}{f} = 1$$

Hence $\lambda^4 = 1$ so $\lambda \in \{1, i, -1, -i\}$.

Since $\{1, i, -1, -i\}$ are the only values for λ which satisfy $\mathcal{F}(f) = \lambda f$, then the eigenvalues for T are $\{1, i, -1, -i\}$ genvalues for \mathcal{F} are $\{1, i, -1, -i\}$

Problem 5

Let $(x_n)_{n\geq 1}$ be a dense subset on [0, 1] and I consider the Radon measure $\mu=\sum_{n=1}^{\infty}2^{-n}\delta_{x_n}$ on [0, 1]. I want to show that $supp(\mu) = [0, 1]$ I then want to show that $\operatorname{supp}(\mu) = \sup(\sum_{n=1}^{\infty} 2^{-n} \delta_{x_n}) = [0, 1].$

Notice that μ is a Radon measure on a locally compact Hausdorff topological space [0, 1]. From HW8 problem 3a we then know that it is enough to show that $\mu([0, 1]^c) = 0$. Notice that

Ba we then know that it is enough to show that
$$\mu([0,1]^c) = 0$$
. No.
$$\delta_{x_n}([0,1]^c) = \begin{cases} 0 & \text{if } x_n \notin [0,1]^c \\ 1 & \text{if } x_n \in [0,1]^c \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show that } f([0,1]^c) = 0 \end{cases} \qquad \begin{cases} \int_{\mathbb{R}^2} |x_n| dx & \text{only show th$$

Now consider

$$\mu([0,1]^c) = \sum_{n=1}^{\infty} 2^{-n} \delta_{x_n}([0,1]^c) = 0$$

so $\mu([0,1]^c) = 0$ which applies since $\delta_{x_n}([0,1]^c) = 0$ for $x_n \notin [0,1]^c$. Therefore, since μ is a measure on [0, 1] and since $x_n \in [0, 1] \ \forall n \geq 1$, it applies that $\delta_{x_n}([0, 1]^c) = 0$. Hence $supp(\mu) = [0, 1].$

