第3章

Fibered Categories

七条彰紀

2019年6月19日

目次

1	Fibered Categories.	2
1.1	Motivation	2
1.2	Definitions	2
1.3	Examples.	5
1.4	Propositions	6
2	Cleavage	7
2.1	Split Fibration	7
3	Fiber of Fibered Categories	g
3.1	Motivation	9
3.2	Definition	9
3.3	Propositions	
4	Grothendieck Construction	11
5	Category Fibered in Groupoids/Sets	12
5.1	Motivation	12
5.2	Definition	12
6	Equivalence of Fibered Categories	14
6.1	Definition	14
6.2	Propositions	14

1 Fibered Categories.

1.1 Motivation.

"family"あるいは "object on/over a base space" (例えば schemes over a scheme や sheaves on a scheme など) の抽象的な枠組が fibered category である. 今後は fibered category が提供する枠組を sheaves on a site の貼り合わせや stack の定義の為に活用する.

1.2 Definitions.

 $\mathfrak{X}, \mathbf{B} :: \text{category }$ と関手 $\pi \colon \mathfrak{X} \to \mathbf{B}$ を考える.

- π を projection あるいは fibration と呼ぶ.
- $\mathfrak X$ を fibered category と呼ぶ.
- $\pi(O) = P$ であるとき O は P の上にある (O is over P) という.

定義 1.1 (Cartesian Arrow, Cartesian Lifting, Cartesian Functor, Base Preserving Natural Transformation, [3] and [2])

(i) 以下の性質 (Triangle Lifting という) を満たす $\mathfrak X$ の射 $\phi\colon x\to y$ を cartesian arrow という: (1) にあるような対象と射があるとき, (2) の様に射 $z\to y$ がただ一つ存在し, 可換と成る.

(ii) $y \in \mathfrak{X}, u \to \pi(y) \in \mathbf{B}$ に対し、以下の図式を満たす $^{\dagger 1}$ $\underline{x} \in \mathfrak{X}$ と cartesian arrow :: $x \to y \in \mathfrak{X}$ を、cartesian lifting(or cleavage) of $u \to \pi(y)$ と呼ぶ.

- (iii) 任意の $y \in \mathfrak{X}$ と $u \to \pi(y) \in \mathbf{B}$ に対して cartesian lifting が存在する $\pi: \mathfrak{X} \to \mathbf{B}$ を fibered category という. fibered category over \mathbf{B} が成す圏を $\mathbf{Fib}(\mathbf{B})$ とする.
- (iv) 二つの fibered category :: π : $\mathfrak{X} \to \mathbf{B}$, π' : $\mathfrak{X}' \to \mathbf{B}$ について, \mathfrak{X} と \mathfrak{X}' の間の射 (morphism of fibered categories, cartesian functor) とは, functor :: g: $\mathfrak{X} \to \mathfrak{X}'$ であって, π , π' と整合的 $^{\dagger 2}$ であり, cartesian arrow を cartesian arrow に写すもの.

(v)

注意 1.2

少し圏論の言葉を整理しておく.

対象を 0-morphism (あるいは 0-cell) と呼ぶ時, 非負整数 $k \ge 0$ について, k-morphism (cell) は (k-1)-

 $^{^{\}dagger 1}$ すなわち, $\pi(x)=u,\pi(x o y)=u o\pi(y)$ を満たす.

^{†2} すなわち $\pi' \circ q = \pi$ を満たす.

morphism (cell) の間の射と定義できる. こうして k-morphism (cell) は階層を成す. そこで, ここで定義した性質を階層別にまとめると次のように成る.

arrow	arrow in a fibered category	(i) Cartesian Arrow, (ii) Cartesian Lifting
0-cell	fibered category	(iii) Existence of Cartesian Lifting
1-cell	functor between fibered categories	(iii) Morphism of Fibered Category
2-cell	nat. trans. between functors	(iv) Base-Preserving Natural Transformation

通常の圏同型を 1-iso と呼び $\stackrel{1}{\cong}$ と書く.この時,階層ごとの iso/equiv は以下のようなものである.

iso.	$x \cong y$	\iff	2 つの arrow ϕ : $x \rightleftarrows y$: ψ が存在し、 $\psi \circ \phi = \mathrm{id}_x, \phi \circ \psi = \mathrm{id}_y$.
1-iso.	$x \stackrel{1}{\cong} y$	\iff	2 つの 1-cell ϕ : $x \rightleftarrows y$: ψ が存在し、 $\psi \circ \phi = \mathrm{id}_x, \phi \circ \psi = \mathrm{id}_y$.
1-equiv.	$x \stackrel{1}{\simeq} y$	\iff	2 つの 1-cell ϕ : $x \rightleftarrows y$: ψ が存在し, $\psi \circ \phi \cong \mathrm{id}_x, \phi \circ \psi \cong \mathrm{id}_y$.
2-iso.	$x \stackrel{2}{\cong} y$	\iff	2 つの 2 -cell ϕ : $x \rightleftarrows y$: ψ が存在し、 $\psi \circ \phi = \mathrm{id}_x, \phi \circ \psi = \mathrm{id}_y$.
2-equiv.	$x \stackrel{2}{\simeq} y$	\iff	2 つの 2 -cell ϕ : $x \rightleftarrows y$: ψ が存在し, $\psi \circ \phi \overset{1}{\cong} \mathrm{id}_x, \phi \circ \psi \overset{1}{\cong} \mathrm{id}_y$.

注意 1.3

 $\mathbf{Fib}(\mathbf{B})$ は 2-category である。2-category は 2-morphism ($\mathbf{Fib}(\mathbf{B})$ では natural transformation) に "vertical composition" と "horizontal composition" の二種類の合成が定まる圏である。詳しくはこのノートでは触れない。

定義 1.4 (Base-Preserving Natural Transformation, HOM, Equivalence)

(i) 二つの fibered category :: π : $\mathfrak{X} \to \mathbf{B}$, π' : $\mathfrak{X}' \to \mathbf{B}$ の間の 2 つの射 g, g': $\mathfrak{X} \to \mathfrak{X}'$ と natural transformation :: α : $g \to g'$ を考える.

任意の $x \in \mathfrak{X}$ について, $\pi'(\alpha_x)$: $\pi'(g(x)) \to \pi'(g'(x))$ が恒等射になるとき, α を base-preserving natural transformation という.

(ii) $\mathfrak{X}, \mathfrak{X}' \in \mathbf{Fib}(\mathbf{B})$ について、 $\mathrm{HOM}_{\mathbf{B}}(\mathfrak{X}, \mathfrak{X}')$ を次の圏とする.

Object. morphism of fibered category $\mathfrak{X} \to \mathfrak{X}'$.

Arrows. base-preserving natural transformation.

(iii) morphism of fibered category :: $g: \mathfrak{X} \to \mathfrak{X}'$ が equivalence of fibered category であるとは、別の morphism $h: \mathfrak{X}' \to \mathfrak{X}$ が存在し、 $h \circ g \succeq \mathrm{id}_{\mathfrak{X}}$ 、 $g \circ h \succeq \mathrm{id}_{\mathfrak{X}'}$ の間に base-preserving isomorphism が 存在すること \dagger^3 .

$$h \circ g \stackrel{2}{\cong} \mathrm{id}_{\mathfrak{X}}, g \circ h \stackrel{2}{\cong} \mathrm{id}_{\mathfrak{X}'}.$$

^{†3} 基本的には category of equivalence の定義と同じである.

二つの fibrered category が equivalent であるとは、二つの間に equivalence of fibered category が存在するということである.

注意 1.5

2-morphism (2-cell) を base-preserving natural transformation に制限した fibered category の圏を ${\bf Fib}^{\rm bp}({\bf B})$ とすると、HOM は ${\rm Hom}_{{\bf Fib}^{\rm bp}({\bf B})}$ であるし、equivalence of fibered category は ${\bf Fib}^{\rm bp}({\bf B})$ での 2-iso である.

1.3 Examples.

例 1.6

morphism of schemes :: $f: X \to Y$ を取る. この f に対し、f の pullback が成す圏 $\Pi(f)$ を考えることが出来る. 以下のように定義する.

Arrow. pullback diagram と整合的な射の組 $(Z \to Z', P \to P')$.

 $\Pi(f)$ から次のように projection が定まる.

$$\pi \colon \prod(f) \longrightarrow \mathbf{Sch}/Y$$

$$P \xrightarrow{p.b.} \int_{f} \mapsto [Z \to Y]$$

$$Z \xrightarrow{p} Y$$

ここで注意したいのは, $\Pi(f)$ は pullback of f の同型類や代表ではなく, pullback of f 全てであることである. したがって $\pi\colon\Pi(f)\to\mathbf{Sch}/Y$ は pullback of f を選択公理無しに扱う枠組を与えている.

例 1.7

category :: \mathbf{C} について, arrow category :: \mathbf{C}^{\rightarrow} を以下で定める.

Object. \mathbf{C} の射 ($[x \to u]$ の様に表記する).

Arrow. 射
$$[x \to u] \to [y \to v]$$
 は次の図式を可換にする $x \to y, u \to v$ の組: $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$

すると Cartesian Lifting は ${\bf C}$ が pullback を持つことを意味し、Triangle Lifting は pullback の普遍性を意味する.

例 1.8

以下の関手は fibration である.

$$\begin{array}{cccc} \pi \colon & \mathbf{Sch}/X & \to & \mathbf{Sch} \\ & [Y \to X] & \mapsto & Y \end{array}$$

1.4 Propositions.

命題 1.9 ([5] Prop3.4)

- (i) cartesian arrow の合成は cartesian arrow である.
- (ii) $\phi: x \to y, \psi: y \to z$ について、 $\psi \circ \phi, \psi:$ cartesian arrow ならば $\psi:$ cartesian arrow.

(証明). Triangle Lifting のみを用いて証明できる. 簡単なので証明は省略する.

次の命題の証明は Cartesian Lifting と Triangle Lifting の使い方をよく示している.

命題 1.10

 π : $\mathcal{X} \to \mathbf{B}$ を fibered category over \mathbf{B} とする. \mathcal{X} の射 $x \to y$ は以下のような二つの射の合成 $x \to z \to y$ に 分解できる.

- $x \to z :: \text{ over id}_{\pi(x)}$.
- $z \to y$:: cartesian, over $\pi(x \to y)$.

(証明). $\pi(\phi)$ の cartesian lifting として以下の図式 (1) の z と $z \to y$ を得る. さらに Triangle Lifting により図式 (2) の通り $\mathrm{id}_{\pi(x)}$ 上の射 $x \to z$ を得る.

命題 1.11

 π : $\mathfrak{X} \to \mathbf{B}$ を fibered category とする. \mathfrak{X} の任意の cartesian morphism :: ϕ : $x \to y$ について, ϕ :: iso と $\Phi := \pi(\phi)$:: iso は同値.

(証明). 以下の図式 (1) に Triangle Lifting を用いれば、 $\phi \circ \psi = \mathrm{id}_y$ なる射 $\psi \colon y \to x$ を得る. さらに図式 (2) に於いて、 $\phi \circ \mathrm{id}_x = \phi = \phi \circ \psi \circ \phi$ と Triangle Lifting の一意性から $\psi \circ \phi = \mathrm{id}_x$ を得る.

2 Cleavage

Cartesian lifting は普遍性 (Triangle Lifting) で特徴づけられている。なので同型を除いて一意であるが、厳密な意味で一意であるというものではない。どの Cartesian lifting を用いるか選んだものが Cleavage(分裂、劈開)。これは Fibered category :: $\mathfrak X$ の Cartesian arrow の class を成す。Cleavage と fibration (resp. Fibered category) を併せたものを Cloven fibration (resp. Cloven fibered category) と呼ぶ。選択公理によって、我々は常に Fibration を Cloven fibration にできる。

2.1 Split Fibration

Cleavage は Cartesian arrow の class であると書いたが、この class が圏を成すと綺麗である。そのような Cleavage を選べる Fibration を Split fibration と呼ぶ.

定義 2.1 ([3])

 $\pi\colon \mathfrak{X} \to \mathbf{B}$:: fibered category とする. splitting of π とは、以下を満たす subcategory :: $\mathbf{S} \subset \mathfrak{X}$ のことである.

- (i) **S** は **X** の任意の対象を持つ.
- (ii) S の任意の射は cartesian.
- (iii) 任意の ${\bf B}$ の射 $f\colon U\to V$ と V 上の対象 $v\in\mathfrak{X}$ について,f 上の射 $u\to v$ がただ一つ存在する.(すなわち,cartesian lifting が一意に存在する.)

この時、組 $(\mathfrak{X}, \mathbf{S})$ を split fibered category と呼ぶ.

任意の Fibration は Split fibration とは限らないが、 Split fibration と圏同値である.

定理 2.2

 $\pi:\mathfrak{X}\to \mathbf{B}::$ fibered category とする. この時, split fibered category over $\mathbf{B}::(\tilde{\mathfrak{X}},\mathbf{S})$ が存在し, 圏同値

 $\tilde{\mathfrak{X}} \simeq \mathfrak{X}$ が成立する.

(証明). ここでは圏と部分圏 $(\tilde{\mathcal{X}}, \mathbf{S})$ 及び関手 $\Phi: \tilde{\mathcal{X}} \to \mathcal{X}$ を構成するにとどめる. (TODO: これらがそれぞれ split fibered category over \mathbf{B} と equivalence であることはここでは確認しない.)

以下のように $\tilde{\Omega}$ を構成する.

Objects. object :: $U \in \mathbf{B}$ と morphism of fibered category :: $u : \mathbf{B}/U \to \mathfrak{X}$ の組 (U, u).

Arrows. 射 $(V,v) \to (U,u)$ は \mathbf{B} の射 $g\colon V \to U$ と base-preserving isomorphism :: $\alpha\colon v \to u \circ g$ の 組 (g,α) .

$$\mathbf{B}/V \xrightarrow{g} \mathbf{B}/U \xrightarrow{u} \mathfrak{X}$$

まず projection functor が以下のように定まる.

$$\tilde{\pi} : \quad \tilde{\mathfrak{X}} \quad \to \quad \mathbf{B}$$

$$(U, u) \quad \mapsto \quad U$$

この関手によって fibered category の構造が入る.

さらに次の関手によって equivalence が与えられる.

$$\Phi \colon \quad \tilde{\mathfrak{X}} \quad \to \quad \mathfrak{X}$$

$$(U, u) \quad \mapsto \quad u(\mathrm{id}_U)$$

これが equivalence であることは 2-Yoneda Lemma による.

最後に、splitting of $\tilde{\pi}$:: **S** が次で定められる.

Objects. $\tilde{\mathfrak{X}}$ と同じ.

Arrows. $\tilde{\mathcal{X}}$ の射で, (g, id) と表されるもの. すなわち,射 $(V, v) \to (U, u)$ は \mathbf{B} の射 $g \colon V \to U$ であって $v = u \circ g$ であるもの.

定義 2.3

圏 B に対し,

- Cloven fibration over \mathbf{B} の圏を $\mathbf{cFib}(\mathbf{B})$,
- Split fibration over \mathbf{B} の圏を $\mathbf{sFib}(\mathbf{B})$

と書く. ぞれぞれ忘却関手 $\mathbf{sFib}(\mathbf{B}) \to \mathbf{cFib}(\mathbf{B}), \mathbf{cFib}(\mathbf{B}) \to \mathbf{Fib}(\mathbf{B})$ をもつ.

3 Fiber of Fibered Categories

3.1 Motivation

3.2 Definition

定義 **3.1** (Fiber)

 π : $\mathfrak{X} \to \mathbf{B}$ を fibered category とする. 任意の $b \in \mathbf{B}$ について、以下で定める圏を \mathfrak{X}_b あるいは $\mathfrak{X}(b)$ と書き、fiber of π at (over) b と呼ぶ:

Object. $\pi(x) = b$ となる object :: $x \in \mathfrak{X}$.

Arrow. $\pi(\phi) = \mathrm{id}_b$ となる arrow :: $\phi \in \mathfrak{X}$.

morphism of fibered category :: $g: \mathfrak{X} \to \mathcal{Y}$ から fiber の間に誘導される射を $g_B: \mathfrak{X}_B \to \mathcal{Y}_B$ と書く.

注意 3.2

標語的には次のように定義されている.

$$\mathfrak{X}_b = \mathfrak{X}(b) := "\pi^{-1} \left(b \bigcap \mathrm{id} \right) "$$

また, morphism of schemes :: $f: X \to B$ の fiber が $f^{-1}(b)$ と表現されることと比較せよ。

定義 3.3 (Psuedo-functor (weak 2-functor))

(以下の URL を参照せよ: https://stacks.math.columbia.edu/tag/003G.) 2-圏 \mathbf{C} から 2-圏 \mathbf{D} への psuedo-functor :: $F: \mathbf{C} \to \mathbf{D}$ とは, \mathbf{C} の object を \mathbf{D} の object へ, \mathbf{C} の arrow を \mathbf{D} の arrow へ対応させ るものであり,以下を満たす.

- (a) 任意の $c \in \mathbb{C}$ について 2-isomorphism $\alpha_c \colon F(\mathrm{id}_c) \to \mathrm{id}_{F(c)}$ が存在する.
- (b) 任意の $f\colon c\to d, g\colon d\to e\in \mathbf{C}$ について 2-isomorphism $\alpha_{g,f}\colon F(g\circ f)\to F(g)\circ F(f)$ が存在する.
- (c) $f: x \to y, g: y \to z, h: z \to w$ について以下の等式が成り立つ.

3.3 Propositions

補題 3.4

 π : $\mathfrak{X} \to \mathbf{B}$ を fibered category とする. 任意の \mathbf{B} の射 $f: b \to b'$ と $x \in \mathfrak{X}(b')$ について、f と x に対する cartesian lifting は、同型を除いて一意に存在する.

(証明). 存在は fibered category の定義から明らか. 一意性は cartesian lifting が普遍性を持つことを Triangle Lifting を用いて示せば良い. ■

補題 3.5

 $\pi: \mathfrak{X} \to \mathbf{B}$ を fibered category とする. このとき, fiber of π は psuedo-functor である.

(証明). $b \in \mathbf{B}$ について, $\mathfrak{X}(b)$ は既に既に定義した。 \mathbf{B} の射 ϕ : $b' \to b$ について,関手 $\mathfrak{X}(\phi)$: $\mathfrak{X}(b) \to \mathfrak{X}(b')$ は次のように定められる。まず $u \in \mathfrak{X}(b)$ について, $\mathfrak{X}(\phi)(u)$ は ϕ による u の pullback :: ϕ^*u (cartesian lifting of ϕ) である。次に $\mathfrak{X}(b)$ の射 λ : $u \to v$ ($\mathfrak{X}(b)$ の定義から $\pi(\lambda) = \mathrm{id}$ を満たす)について,下の図式 に triangle lifting を用いて $\phi^*u \to \phi^*v$ を得る。

定義 (3.3) にある条件 (a) については,各 $b \in \mathbf{B}$ について,命題 (1.11) を用いれば同型の存在が分かる.条件 (b) については,各 $f: c \to d, g: d \to e \in \mathbf{C}$ と各 $b \in \mathbf{B}$ について補題 (3.4) を用いれば $\mathfrak{X}(g \circ f)(b) \cong \mathfrak{X}(f) \circ \mathbf{B}(g)(b)$ が得られる.あとはこの同型が自然である(すなわち自然変換を定める)ことを確かめれば良い.

この事実は次のセミナーで用いる.

定理 3.6 (2-Yoneda Lemma (Fibered Yoneda Lemma))

 $\pi\colon \mathfrak{X} \to \mathbf{B}$:: fibered category とする. 以下のように関手を定める.

$$\begin{array}{cccc} Y \colon & \mathbf{B} & \to & \mathbf{Fib}(\mathbf{B}) \\ & U & \mapsto & \mathbf{B}/U \end{array}$$

ここで \mathbf{B}/U は例 (1.8) にあるとおり fibered category over \mathbf{B} である.

この時, 圏同値 $\mathrm{HOM}_{\mathbf{U}}(Y(U),\mathfrak{X}) \to \mathfrak{X}(U)$ が成り立つ.

(証明). (TODO)

注意 3.7

この定理から、 $\mathfrak{X}(U)$ を「空間」 \mathfrak{X} の U-rational points と考えることが出来る. また、この定理から関手 Y が $U \in \mathbf{B}$ の fibered category over \mathbf{B} への「昇格」を与えていることが分かる.

系 3.8

圏同値 $U, V \in \mathbf{B}$ について $Y(U) \simeq Y(V)$ と $U \cong V$ は同値.

4 Grothendieck Construction

今, fibered category から fiber として psuedo-functor を構成した. 実はこの逆が出来る.

定義 4.1 (Grothendieck Construction, [3], [2])

psuedo-functor :: $P: \mathbf{B} \to \mathbf{Cat}/\mathbf{B}$ について、以下のように圏 $\int P$ を定義する.

Object. $b \in \mathbf{B} \ \succeq x \in P(b)$ の組 (b, x).

Arrow. ϕ : $b \to b' \ \succeq \Phi$: $P(\phi)(x) \to x'$ の組 (ϕ, Φ) .

射の合成は $(\psi, \Psi) \circ (\phi, \Phi) = (\psi \circ \phi, \Phi \circ P(\psi)(\Phi))$ で与えられる.

この圏によって以下の関手が定まる.

$$\int : \left\{ \begin{array}{ccc} \text{psuedo-functor} \\ \mathbf{B} \to \mathbf{Cat} \end{array} \right\} & \to & \mathbf{sFib}(\mathbf{B}) \\ P & \mapsto & \int P \\$$

例 4.2

scheme :: S について, representable functor :: S は Sch/S に対応する.

例 4.3

presheaf of set :: $F \colon \mathbf{C} \to \mathbf{Sets}$ は $\bigsqcup_{c \in \mathbf{C}} F(c)$ に対応する.

注意 4.4

David I. Spivak "Category theory for scientists" によると、Grothendieck Construction を最初に構成したのは Grothendieck ではない。例えば MacLane が以前から扱っている。

定義 **4.5** (weak/strict 2-equivalence)

関手 $F: \mathbf{C} \to \mathbf{D}$ が weak 2-equivalence であるとは,以下が成り立つこと:逆向きの関手 $\mathbf{C} \leftarrow \mathbf{D}$: G と二つの自然変換 $\alpha: GF \to \mathrm{id}_{\mathbf{C}}, \beta\colon FG \to \mathrm{id}_{\mathbf{D}}$ が存在し,

- 各 $c \in \mathbb{C}$, $d \in \mathbb{D}$ について α_c , β_d は同型であり,
- 射 $\phi \in Arr(\mathbf{C}), \psi \in Arr(\mathbf{D})$ について $\alpha_{\phi}, \beta_{\psi}$ も同型.

 $\alpha_{\phi}, \beta_{\psi}$ が恒等射であるときは strict 2-equivalence という.

定理 4.6 (Grothendieck Construction give Category Equivalence)

Grothendieck Construction

$$\int \colon \left\{ \begin{matrix} \text{psuedo-functor} \\ \mathbf{B} \to \mathbf{Cat} \end{matrix} \right\} \to \mathbf{cFib}(\mathbf{B})$$

は strict 2-equivalence である. また、このあとに忘却関手 $\mathbf{cFib}(\mathbf{B}) \to \mathbf{Fib}(\mathbf{B})$ を続けると、weak 2-equivalence となる.

(証明). [5] §3.1.3 に詳しい証明がある. あるいは、P. T. Johnstone "Sketches of an Elephant: A Topos Theory Compendium vol.1 (Oxford Logic Guides 43)" に証明がある. ■

注意 4.7

 $\mathbf{Fib}(\mathbf{B})$ と "anafunctor" の圏が strict 2-equivalence である,という述べ方もあるようだが, "anafunctor" を用いる理由が特に無いので,このノートでは導入しない.

注意 4.8

この定理から、psuedo-functor の理論と fibered category の理論は殆ど同じ、と言える. また、今後現れる stack などは psuedo-functor に対して定義され、一見、fibered category の理論は扱う必要性がなくなる.

しかし実際には、fibered category の方が psuedo-functor より構成しやすい、あるいは全体の性質を理解しやすいという面がある。また技術的な有利としては、fibered category は cleavage (例えば pullback, fiber product 等)を選択する必要がなく、例えば、pullback の貼り合わせ(貼り合わせの際には同型での変形が必要に成る)を自然に扱うことが出来る^{†4}.

また,直観としては, fibered category は family である. ここから得られる fiber は正に fiber of family である. そのため fibered category は大域的, psuedo-functor は局所的だと考えられる.

(TODO: あとで分かったらもっと追記する.)

5 Category Fibered in Groupoids/Sets

5.1 Motivation

Category Fibered in Groupoids は「綺麗すぎる」fibered category であるが、我々が研究する範囲では珍しいものではない。

5.2 Definition

定義 **5.1** (Groupoid)

任意の射が同型射である圏を groupoid と呼ぶ.

注意 5.2

群は対象がただ一つで任意の射が同型であるものとみなせるため, groupoid にはこの名前がある.

群以外の極めて単純な groupoid として、集合を射が恒等射しかない圏(離散圏)とみなしたものがある. そのため、逆に恒等射しか無い圏も set と呼ぶ.

^{†4} もう少し具体的な例としては、trivial family の貼り合わせで出来る locally trivial family も扱える. 詳しい例は私の Deformation Theory に関するノートを読んで欲しい.

定義 5.3 (Category fibered in groupoids/sets)

 π : $\mathfrak{X} \to \mathbf{B}$ を fibered category とする. 任意の $b \in \mathbf{B}$ について、 π の b における fiber $\mathfrak{X}(b)$ が groupoid (set) であるとき、 \mathfrak{X} を category fibered in groupoids (sets) と呼ぶ.

category fibered in groupoids は次のように定義しても同値である.

定義 5.4 (Category fibered in groupoid (Another Definition))

任意の射が cartesian である fibered category を category fibered in groupoids と呼ぶ. すなわち、以下の 2 条件が成立する圏 $\mathfrak X$ と関手 $\pi\colon \mathfrak X\to \mathbf B$ を category fibered in groupoids と呼ぶ.

(i) 以下の図式 (1) において、上の箱と下の箱が π で対応し、下の箱にある図式が可換であるとする.この時、図式 (2) のように上の箱にある図式を可換にし、 π での対応を保つ射 $z \to x$ がただ一つ存在する.

(ii) $y \in \mathfrak{X}, u \to \pi(y) \in \mathbf{B}$ に対し、以下の図式を満たす $^{\dagger 5}x \in \mathfrak{X}$ と射 $x \to y \in \mathfrak{X}$ が存在する.

(証明). [4] $003V^{\dagger 6}$.

 $^{^{\}dagger 5}$ すなわち, $\pi(x)=u,\pi(x\to y)=u\to\pi(y)$ を満たす.

^{†6} https://stacks.math.columbia.edu/tag/003V

6 Equivalence of Fibered Categories

Fibered category の一般論の最後に、この直後に扱うことと成る Equivalence を扱う. この節では fibered categories :: $\pi: \mathfrak{X} \to \mathbf{B}, \pi': \mathfrak{X}' \to \mathbf{B}$ と、これらの間の射 $q: \mathfrak{X} \to \mathfrak{X}'$ を考える.

6.1 Definition

定義 6.1 (Equivalence)

g が equivalence of fibered categories であるとは、別の射 $h: \mathfrak{X}' \to \mathfrak{X}$ が存在し、 $g \circ h, h \circ g$ がそれぞれ恒等 関手と base-preserving isomorphic であるということである.

この時, $\mathfrak{X} \simeq \mathfrak{X}'$ と書き, h は psuedo-inverse of g と呼ばれる.

注意 6.2

比較すれば分かるとおり、equivalence of fibered categories は、通常の圏同値の定義に"base-preserving"という条件が追加されただけである.

6.2 Propositions

命題 6.3

fibered とは限らない圏 ${f C}, {f D}$ とその間の関手 $F\colon {f C} \to {f D}$ について,F が圏同値であることは以下の 2 条件が同時に成立することと同値.

Fully Faithfulness.

任意の $c, c' \in \mathbf{C}$ について,

関手 F が与える class の対応 $\operatorname{Hom}_{\mathbf{C}}(c,c') \to \operatorname{Hom}_{\mathbf{D}}(F(c),F(c'))$ は全単射である.

Essential Surjectivity.

任意の $d \in \mathbf{D}$ について, $F(c) \cong d$ となる対象 $c \in \mathbf{C}$ が存在する.

(証明). [1] Prop7.26 を参照せよ.

命題 6.4 ([3] Prop3.1.18, 3.1.10)

 $b \in \mathbf{B}$ について, g を $\mathfrak{X}(b)$ に制限して得られる関手を $g_b \colon \mathfrak{X}(b) \to \mathfrak{X}'(b)$ とする.

- (a) g :: fully faithful \iff 任意の $b \in \mathbf{B}$ について, g_b :: fully faithful.
- (b) g :: equivalence \iff 任意の $b \in \mathbf{B}$ について, g_b :: equivalence \dagger^7 .

(証明). いずれも \Longrightarrow は自明なので \Longleftarrow を示す.

^{†7} こちらは通常の圏同値

(i) の証明の概略は以下の通り、まず $\operatorname{Hom}_{\mathbf{C}}(c,c'), \operatorname{Hom}_{\mathbf{D}}(F(c),F(c'))$ を

$$\operatorname{Hom}_{\mathbf{C}}(c,c') = \bigsqcup_{h \in \operatorname{Hom}_{\mathbf{B}}(\pi(c),\pi(c'))} \left\{ \begin{matrix} \operatorname{morphisms} \ c \to c', \\ \operatorname{over} \ h \end{matrix} \right\},$$

$$\operatorname{Hom}_{\mathbf{D}}(F(c),F(c')) = \bigsqcup_{h \in \operatorname{Hom}_{\mathbf{B}}(\pi(c),\pi(c'))} \left\{ \begin{matrix} \operatorname{morphisms} \ F(c) \to F(c'), \\ \operatorname{over} \ h \end{matrix} \right\}$$

と分解する. そして各 h について session 4 の命題 4.2 (射は cartesian arrow e id に写る射の合成に分解できる) を用いる. すると各成分について全単射を構成できる.

参考文献

- [1] Steve Awodey. Category Theory (Oxford Logic Guides). Oxford University Press, U.S.A., 2 edition, 8 2010.
- [2] Behrang Noohi. A quick introduction to fibered categories and topological stacks. http://www.maths.qmul.ac.uk/~noohi/papers/quick.pdf.
- [3] Martin Olsson. Algebraic Spaces and Stacks (American Mathematical Society Colloquium Publications). Amer Mathematical Society, 4 2016.
- [4] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu, 2018.
- [5] Angelo Vistoli. Notes on grothendieck topologies, fibered categories and descent theory (version of october 2, 2008). http://homepage.sns.it/vistoli/descent.pdf.