9 GUVI

Capstone Project 5

Industrial Copper Modeling

Using Python scripting, Data Preprocessing, EDA, Streamlit

Rajaguru Irusan

Project Overview

The objective of this project is to leverage advanced machine learning techniques to address key challenges in the copper industry, such as pricing optimization and lead evaluation. The solution focuses on:

Data-Driven Insights: Analyzing and preprocessing historical data to identify patterns, manage skewness, and handle noisy datasets for improved predictions.

Regression Model: Predicting the selling price of copper products based on key parameters such as quantity, thickness, and other product attributes to support dynamic pricing strategies.

Classification Model: Classifying leads into "WON" or "LOST" categories using transactional and customer data, enabling better sales pipeline management.

Streamlit Application: Developing an interactive web-based application for real-time prediction and decision-making, providing a user-friendly interface for entering input features and obtaining actionable predictions.

Streamlined Workflows: Incorporating data preprocessing, feature engineering, and visualization techniques to ensure robust model performance and accurate predictions.

Project Workflow

System Requirements

- Visual Studio Code Version: 1.85.1 or later
- ML libraries
- Streamlit App

Note: Install or register the above tools to execute the project.

PIP Installations

- pip install pandas
- pip install streamlit
- pip install streamlit-option-menu
- pip install numpy
- pip install scikit-learn
- pip install matplotlib
- pip install seaborn
- pip install openpyxl
- pip install joblib
- pip install xlrd
- pip install xgboost
- pip install watchdog

Note: Install the above pip in respective IDE terminal (Eg: VS Code terminal or Run in cmd for Windows)

Coding References

- GITHUB Repositories
- Guvi Classes
- Streamlit Documentation

Coding Flow

Annexure: Screenshots

```
irgicmstfinal.py > ...
      import pandas as pd
      import numpy as np
      import os
      import pickle
      import streamlit as st
      from sklearn.model_selection import train_test_split, GridSearchCV
      from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
      from sklearn.metrics import mean squared error, classification report, roc auc score
      from sklearn.preprocessing import StandardScaler
10
      # Load data function
 11
      def load_data(file):
 12
          return pd.read_excel(file)
 13
14
      # Preprocess data function
15
      def preprocess_data(df, task):
16
                                                                                                                                   | Python + ∨ | | | | | | | ··· ∧ ×
PROBLEMS
              OUTPUT DEBUG CONSOLE
                                     TERMINAL
                                               PORTS
                                                       JUPYTER
  Warning: to view this Streamlit app on a browser, run it with the following
```

streamlit run c:/Users/Rajaguru Irusan/Documents/DS_Project/Industrial Copper Modeling_Project/Python_Code/irgicmstfinal.py [ARGUMENTS]

command:

c:\Users\Rajaguru Irusan\Documents\DS_Project\Industrial Copper Modeling_Project\Python_Code>streamlit run irgicmstfinal.py

You can now view your Streamlit app in your browser.

Local URL: http://localhost:8501 Network URL: http://192.168.1.3:8501 Thank You!!!