ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Образовательная программа «Программная инженерия»

профессор департамента программной инженерии факультета компьютерных наук
Легалов Александр Иванович

МикроПроект по предмету Архитектура Вычисленных Системы

Пояснительная записка

Исполнитель: студент группы _ БПИ197 Ф.И: Яхя Янал

Москва 2020

Задание

Разработать программу, вычисляющую с помощью степенного ряда с точностью не хуже 0,1% значение функции гиперболического тангенса $\boldsymbol{th}(\boldsymbol{x}) = \frac{(e^{\boldsymbol{x}} - e^{-\boldsymbol{x}})}{(e^{\boldsymbol{x}} + e^{-\boldsymbol{x}})}$ для заданного параметра х (использовать FPU)

применяемые расчётные методы

чтобы считать th(x), через формулы $\boldsymbol{th}(x) = \frac{(e^x - e^{-x})}{(e^x + e^{-x})}$, надо использовать степенный ряд, чтобы считать e^x и e^{-x} , и это возможно через ряда Тейлора $\boldsymbol{e}^x = 1 + \frac{x}{1} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$, где x вокруг нуля, но почему не использовал степенный ряд, чтобы это сработал для всех $x \in R$? Пусть x = a, где a большое число, и пусть x = a, тогда:

$$e^x = e^a (1 + \frac{(x-a)}{1} + \frac{(x-a)^2}{2!} + \dots + \frac{(x-a)^n}{n!})$$

Но из начала было надо считать e^a , и вдруг опять в нашей формуле появилось ещё $f^n(e^x \ where \ x=a)=e^a$, из этого следует что мы не можем считать e^x в нашем случай с помощью степенного ряда, поэтому в моей программе есть ограничение на x, где x должен $\in [-4.4, 4.4]$, чтобы получить ответ с точностью не хуже 0.1%.

Но а если мы взяли N какое то большое число то получим хорошую точность для больших х? Да получим, но, а если x=100,

Тогда N должно быть тоже достаточно большое, пусть для этого достаточно взять N=23, получится что надо в ряде Тейлора считать 100^{23} , но нас $100^{23} > 2^{80} - 1$, то есть 100^{23} не поместится в директиве DT(10 bytes), поэтому увлечение N не решает нашу проблему, и вот из-за чего я ограничил значение x.

список используемых источников

- Презентация семинара по FPU и его запись
- Знание ряды из первого курса

Текст Программы

Microproject.ASM:

```
format PE console
entry start
include 'win32a.inc'
include 'my_lib.inc'
                                        ; including my Library
section '.code' code readable executable
start:
    ; input x
   invoke printf, strx
   invoke scanf, formatEnterX, x;
   FINIT
                                         ;coprocessor initialization
   jmp FirstCon
IncorrectInput:
    invoke printf, IncInput
   jmp start
FirstCon:
    ; check if x is in range [-4.4, 4.4]
                                         ;loading x into the top of the stack st(0)
   fld [x]
   fcomp [rLimitation]
                                         ; comparing st(0) and rLimitation, with
clearing st(0)
   fstsw
          ax
    sahf
   jnbe IncorrectInput
                                         ; if st(0) > rLimitation
secondCon:
   fld [x]
                                         ; comparing st(0) and lLimitation, with
   fcomp [lLimitation]
clearing st(0)
   fstsw ax
   sahf
   jb IncorrectInput
                                         ; if st(0) < lLimitation
   invoke printf, formatX, dword[x], dword[x+4] ;print x
   invoke printf, formatInt ,[N]
   TH [x]
                                         ; calling TH macro in my_lib
    ; printing the result of tanh(x)
   invoke printf, formatTH,dword[x], dword[x+4], dword[th_res], dword[th_res+4]
   invoke getch
;-----third act - including HeapApi-----
section '.data' data readable writable
                     "Enter x between [-4.4, 4.4], to calculate tanh(x): ", 0
               db
   strx
   formatEnterX db
                     '%lf' , 0
                     'tanh(%lf) = %lf',10, 0
   formatTH
               db
```

```
db
                       'x = %lf',10, 0
    formatX
                       'N = %d',10, 0
    formatInt
                db
                dq
    Х
                       0
    e_To_X
    e_To_X dq
e_To_nX dq
                dq
                       ?
                       ?
    N
                dd
                       12
              da
                       ?
    resPow
              dd
dq
    resFac
                    1.0
    resSum
                dd
                       0
    th_res
                dq
    denominator dq
                      ?
                    4.4
    rLimitation dq
    lLimitation dq
                       -4.4
                      ?
                dq
section '.idata' import data readable
    library kernel, 'kernel32.dll',\
            msvcrt, 'msvcrt.dll'
    import kernel,\
           ExitProcess, 'ExitProcess'
    import msvcrt,\
           printf, 'printf',\
sprintf, 'sprintf',\
           scanf, 'scanf',\
getch, '_getch'
```

my_lib.inc:

```
;-----Factorial macro-----
macro Fac N {
local Factorial, endf
   mov eax, 1
                           ; loading 1 into register eax, in eax will be saved
the result of N!
   mov ecx, N
                           ; loading N into register ecx
Factorial:
                          ;compare ecx with 0
        cmp ecx,0
        jle endf
                          ;end loop if N <= 0</pre>
        mul ecx
                          ; eax <- eax * ecx
                          ; ecx <- ecx - 1
        dec ecx
        endf:
                          ; pushing the value from eax to the stack
        push eax
}
;-----Power macro-----
macro Power X, N{
local CalcPower, endPoweer
    mov eax, 1
                          ; loading 1 into register eax, in eax will be saved
the result of N!
    mov ecx, N
                          ; loading N into register ecx
    fld1
                           ; loading 1 into the top of the stack st(0)
CalcPower:
                         ; comparing ecx with 0
        cmp ecx, 0
        je endPoweer
                          ; end loop if ecx == 0
                          ; st(0) <- st(0) * X
        fmul X
                          ; ecx <- ecx - 1
        dec ecx
        jmp CalcPower ; goto CalcPower
```

```
endPoweer:
       fstp [resPow] ; writing the result of x^N to memory in resPow, with
clearing the stack
}
;-----e^x macro-----
macro EpowX X, N{
local Ex_Loop, Start_Ex_Loop, end_Ex_Loop
Ex_Loop:
                                     ; loading N into register ebx
      mov ebx, N
Start_Ex_Loop:
            cmp ebx,0
            cmp ebx,0 ; compare ebx with 0
je end_Ex_Loop ; end the loop if ebx == 0
mov [j],ebx ; saving temp value of ebx in j
Fac ebx ; calling Fac macro to calculate ebx!
pop [resFac] ; saving the result of Fac macro(ebx!) which was
pushed to stack, in memory into resFac
            Power X, ebx ; calling Power macro to calculate X^ebx

fld [resPow] ; loading resPow into the top of the stack st(0)

fidiv [resFac] ; s(0) <- s(0) / resFac

fadd [resSum] ; s(0) <- s(0) + resSum

fstp [resSum] ; resSum <- s(0), and clear s(0)

mov ebx, [j] ; restore the value of ebx from the value of j

dec ebx ; ebx <- ebx - 1

jmp Start_Ex_Loop ; goto Start_Ex_Loop
end Ex Loop:
                                                  ; no operation
            nop
}
;-----tanh(x) macro-----
macro TH X{
            fld X
fstp [tmp]
EpowX X, [N]
fld [resSum]
fstp [e_To_X]
fld [re_To_X]
fld [resSum]
fld [resSum]
fstp [e_To_X]
fld [resSum]
fstp [e_To_X]
fld [resSum]
fstp [e_To_X]
floading x into the top of the stack st(0)
floading resSum into the top of the stack st(0)
floading resSum into the top of the stack st(0)
            ; loading 1 into the top of the stack st(0)

fstp [resSum] ; resSum <- st(0), and clearing st(0)

; getting -X

fldz ; loading 0 into the tom
             fstp X
                                                  ; X <- st(0), and clear st(0)
            ; re-assign to base its base value
             fld[tmp]
             fstp X
}
```

macro Fac:

	Входные параметры	Выходные параметры	
Имя	N	закружится в стек	
Тип	dd (4 bytes)	dd (4 bytes)	
	Число, которое будет		
Назначение	вычислено его	N!	
	факториал		
Метод передачи	По значению	По значению в стек	
Функциональность	Посинтоти фокторион опродолжиного имена		
макроса	Посчитать факториал определённого числа		

Macro Power:

	Входные параметры	Выходные параметры
Имя	X, N	resPow
Тип	dq (8 bytes), dd(4bytes)	dq (8bytes)
	Х: число для которого	
Назначение	будет вычислено tanh	X^N
	N: степень X	
		По значению из
Метод передачи	По значению	регистра FPU в памяти
		(resPow)
Функциональность	Посчитать X^N где, X вещественное число и N	
макроса	целое положительное число	

Macro EpowX:

	Входные параметры	Выходные параметры
Имя	X, N	resSum
Тип	dq (8 bytes), dd(4bytes)	dq (8bytes)
Назначение	X: число для которого будет вычислено tanh N: то N которое в формуле ряда Тейлора	e^X
Метод передачи	По значению	По значению из регистра FPU в памяти (resSum)
Функциональность макроса	Посчитать e^{X} где, X вещественное число	

Macro TH:

	Входные параметры:	Выходные параметры:	
Имя	X	th_res	
Тип	dq (8 bytes)	dq (8bytes)	
Назначение	X: число для которого будет вычислено tanh	Tanh(x)	
Метод передачи	По значению	По значению из регистра FPU в памяти (th_res)	
Функциональность макроса	Посчитать $tanh(X)$ где, X вещественное число		

Примеры Выполнение

Enter x between [-4.4, 4.4], to calculate tanh(x): 4.5 Opps, your input value was outside the range [-4.4, 4.4]. Please try agian! Enter x between [-4.4, 4.4], to calculate tanh(x): 4.6 Opps, your input value was outside the range [-4.4, 4.4]. Please try agian! Enter x between [-4.4, 4.4], to calculate tanh(x): 4.7 Opps, your input value was outside the range [-4.4, 4.4]. Please try agian! Enter x between [-4.4, 4.4], to calculate tanh(x): -4.5 Opps, your input value was outside the range [-4.4, 4.4]. Please try agian! Enter x between [-4.4, 4.4], to calculate tanh(x): -4.5 Opps, your input value was outside the range [-4.4, 4.4]. Please try agian! Enter x between [-4.4, 4.4], to calculate tanh(x): 4.5 Opps, your input value was outside the range [-4.4, 4.4]. Please try agian! Enter x between [-4.4, 4.4], to calculate tanh(x): 4.5 Opps, your input value was outside the range [-4.4, 4.4]. Please try agian! Enter x between [-4.4, 4.4], to calculate tanh(x): 4.5 Opps, your input value was outside the range [-4.4, 4.4]. Please try agian! Enter x between [-4.4, 4.4], to calculate tanh(x): 4.5 Opps, your input value was outside the range [-4.4, 4.4]. Please try agian! Enter x between [-4.4, 4.4], to calculate tanh(x): 4.5 Opps, your input value was outside the range [-4.4, 4.4]. Please try agian! Enter x between [-4.4, 4.4], to calculate tanh(x): 4.5 Opps, your input value was outside the range [-4.4, 4.4]. Please try agian! Enter x between [-4.4, 4.4], to calculate tanh(x): 4.5 Opps, your input value was outside the range [-4.4, 4.4]. Please try agian! Enter x between [-4.4, 4.4], to calculate tanh(x): 4.5 Opps, your input value was outside the range [-4.4, 4.4]. Please try agian! Enter x between [-4.4, 4.4], to calculate tanh(x): 4.5 Opps, your input value was outside the range [-4.4, 4.4]. Please try agian!

```
E:\Second Vear HSE\AVS\mikroproject\microProject.EXE

Enter x between [-4.4, 4.4], to calculate tanh(x): -5.234322

Oops, your input value was outside the range [-4.4, 4.4]. Please try agian!

Enter x between [-4.4, 4.4], to calculate tanh(x): 4.5342

Oops, your input value was outside the range [-4.4, 4.4]. Please try agian!

Enter x between [-4.4, 4.4], to calculate tanh(x): 3.57385

x = 3.573850

N = 12

tanh(3.573850) = 0.998317
```

E:\Second Year HSE\AVS\mikroproject\microProject.EXE

```
Enter x between [-4.4, 4.4], to calculate tanh(x): 0.435323
x = 0.435323
N = 12
tanh(0.435323) = 0.409760
```

■ E:\Second Year HSE\AVS\mikroproject\microProject.EXE

```
Enter x between [-4.4, 4.4], to calculate tanh(x): -2.34556
x = -2.345560
N = 12
tanh(-2.345560) = -0.981812
```

■ E:\Second Year HSE\AVS\mikroproject\microProject.EXE

```
Enter x between [-4.4, 4.4], to calculate tanh(x): 0.9342
x = 0.934200
N = 12
tanh(0.934200) = 0.732546
-
```

■ E:\Second Year HSE\AVS\mikroproject\microProject.EXE

```
Enter x between [-4.4, 4.4], to calculate tanh(x): -34552
Opps, your input value was outside the range [-4.4, 4.4]. Please try agian?
Enter x between [-4.4, 4.4], to calculate tanh(x): 0
x = 0.000000
N = 12
tanh(0.00000) = 0.000000
```