Chapter 5 Network Layer (6)

王昊翔 <u>hxwang@scut.edu.cn</u>

School of Computer Science & Engineering ,SCUT Communication & Computer Network key-Lab of GD

Content of the second part

- Internet protocol
 - Packet
 - IP address
- □ Other protocol
 - Arp
 - Dhcp
 - Rarp
 - ICMP
 - CIDR

Outline

- ☐ Main function of router
- ☐ Learn IP
 - **■** IP packet format
 - IP address and it's classification
- Reserved IPv4 address
- Subnet and subnetting

Network Layer in the Internet

- □ Design Principles for Internet (RFC 1958)
 - 1. Make sure it works.
 - 2. Keep it simple.
 - 3. Make clear choices.
 - 4. Exploit modularity.
 - 5. Expect heterogeneity.
 - 6. Avoid static options and parameters.
 - 7. Look for a good design; it need not be perfect.
 - 8. Be strict when sending and tolerant when receiving.
 - 9. Think about scalability.
 - 10. Consider performance and cost.

Internet and Its Network Layer

- ☐ The Internet can be viewed as a collection of subnetworks or Autonomous Systems (ASes) that are interconnected.
- ☐ The glue that holds the whole Internet together is the network layer protocol, IP (Internet Protocol).
- ☐ Its job is to provide a best-efforts (i.e., not guaranteed) way to transport datagrams from

source to destination.

Internet - Collection of Subnetworks

Addressing(寻址)

- □ 寻址:连网的目的是共享资源、与远端节点通信, 要做到这一点,首先必须找到目的节点,寻找目 的节点(设备)的过程叫做寻址。
- Two type of addressing
 - MAC addressing: locate destination according to MAC address
 - IP addressing: locate destination according to IP address

IP addressing

- □ Step
 - Packet arrive a router
 - The router forward the packet
 - Locate the destination
- ☐ Analogy: mailing

Addressing: Network and Host

- Network Address Location part used by the router
- · Host Address Specific port or device on the network

Main function of router

- ☐ Process of router
 - Open packet (de-encapsulation)
 - Decide destination network
 - Look up routing-table , re-encapsulation and forward
- Main function
 - Routing
 - Forward
 - other

Data go through routers

How a packet go from A to Z?

Routing table

- ☐ Including network address, interface, metric (f.g. hop), subnet mask, gateway, and so on •
- ☐ Besides IP and MAC address of connecteddevices, router has IP and MAC address of it's neighbor router (arp table)
- ☐ May be somewhat different, because of different factory

ARP table and routing table

Routing of router R1

	<u> </u>				
网络	网络地址	网络掩码	网关	接口	跳数
A	203.74.205.0	255.255.255.0	203.74.205.1	203.74.205.1	0
В	203.74.206.0	255.255.255.0	203.74.206.1	203.74.206.1	0
С	203.74.207.0	255.255.255.0	203.74.207.1	203.74.207.1	0
D	203.74.208.0	255.255.255.0	203.74.206.2	203.74.206.1	1

Internet protocol

- □ IP is to provide a best-efforts (i.e., not guaranteed) way to transport datagrams (packet) from source to destination
 - A routed protocol
- Internet protocol
 - Packet format
 - Addressing

IP packet format ...

ensure IP header integrity.

A checksum on the header only, helps

IP address

- ☐ IP address: network number and host number
- ☐ Binary figure of IP address

1 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 1 0 0

32 Bits

☐ Disadvantage: difficult to remember

Dotted decimal notation of IP address

- ☐ Binary IP is difficult to remember
- Dotted decimal notation:
 - 32 bits is parted into 4 8-bits group
 - "." is used to separate the 8-bits groups
 - Each 8-bits group is written in decimal, from 0 to 255

IP Addressing Format

An IP address is thirty-two bits long. It consists of two main parts, a network number, and a host number. Because thirty-two bits are nearly impossible for most people to remember, IP addresses are grouped eight bits at a time, separated by dots, and represented in decimal, not in binary format. This is c known as "Dotted Decimal" format.

Hierachical property of IP addr.

Classification of IP address

A class

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0	network	host		
	0 - 127	0 - 255	0 - 255	0 - 255

- ☐ The first byte is identified to network, the last three bytes are identified to host
- \square Each net can include (2²⁴ -2) host at most
- ☐ The highest bit is "0"
- \square The first byte range "0-127", so number of net is 128

B class

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

10	network		host	
	128 -191	0 - 255	0 - 255	0 - 255

- ☐ The first two bytes are network bits, the last two bytes are host bits.
- \square Each net can include (2¹⁶-2) host at most
- ☐ The highest two bits are "10"
- □ The first byte range "128—191"
- \square Number of net is 2^{14}

C class

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

110	network		host	
19	2-223	0 - 255	0 - 255	0255→

- ☐ The first three bytes are network bits, the last byte is host bits
- □ Each net can include 254 host at most
- ☐ The highest three bits are"110"
- ☐ The first byte range "192—223"
- \square number of net is 2^{21}

Special IP address

- **32 bit all 0, 0.0.0.0 Cisco default routing**
- **255.255.255.255 259.255 259.255 259.255 259.255 259.255 259.255 259.255**
- **■** Host id all 0, network address 172.16.0.0
- Host id all 1, 172.16.255.255 Direct Broadcast
- **127.0.0.0** Lookback Network
- **127.0.0.1** Lookback test

Flood Broadcast = Local Broadcast

255.255.255.255

Direct Broadcast

192.168.20.255

Example: analyze 172.16.20.200

□ 172.16.20.200 is Class B address

■ Network portion: 172.16

■ Network address: 172.16.0.0

Broadcast address: 172.16.255.255

Public and private address

- ☐ Global IP
- □ IP地址枯竭
 - CIDR
 - IPv6
 - subnetting
 - private

地址类别	地址
A类	10.0.0.0 - 10.255.255.255
B类	172.16.0.0 - 172.31.255.255
C类	192.168.0.0 - 192.168.255.255

- \square A: 10.0.0.0- 10.0.255.255 (1 \uparrow A)
- □ B: 172.16.0.0-172.31.255.255 (16 $^{\diamondsuit}$ B),
- □ C: 192.168.0.0- 192.168.255.255 (256个C)

Subnet(子网)

- □ A LAN may grow to be too large to handle and must be <u>split into</u> subnets.
- □ Subsets allow a network to be split into several parts for internal use but still act like a single network (i.e., a single routing table entry) to the outside world.
- ☐ This allows different subnets to be connected within an organization.

A Subnet Examples

What function of main router?

- □ Communication with outside
- Main router forwards packets from outside, but how to know inside intranet structure?
 - A table?
 - A mechanism, subnet mask

Subnet Masks

- ☐ A mask is used by the router to determine which subnet the packet should travel to.
- Subnet masks can be specified in dotted decimal notation, with the addition of a slash followed by the number of bits in the network + subnet part.
 - **255.255.255.224**
 - **202.10.23.102/27**
- □ Routers will AND the destination address with the subnet mask in order to get the address of the router where the packet should go.
- ☐ Using this method reduces the number of individual addresses that each router must store, resulting in smaller router tables.

Subnet Masks

☐ Default subnet mask

A: 255.0.0.0

B: 255.255.0.0

C: 255.255.255.0

The AND Function

Addr. Of subnet

Using subnet to show network addr.

☐ A network addr.: 10.0.0.0

10/8

broadcast addr.: 10.255.255.255

host addr.: 10.0.0.1~10.255.255.254

☐ B network addr.: 166.111.0.0

166.111/16

broadcast adr.: 166.111.255.255

host addr.: 166.111.0.1~166.111.255.254

☐ C network addr.: 212.111.1.0

212.111.1/24

broadcast addr.: 212.111.1.255

host addr.: 212.111.1.1~212.111.1.254

How to subnet? An example

Subnet address space

- ☐ Subnet is construct via borrowing bits from host part of a IP address
- □ Subnetting results in loss of IP address space
 - For example: C class IP 202.38.197.0, 256 Ipaddresses, 254valid IP.
 - 4 subnets, total IP addresses, 2*62=124.

subnetting

□ subnetting: divide a big network into

small subnet

■ Borrowing rule

Address Class	Size of Default Host Field	Maximum Number of Subnet Bits
Α	24	22
В	16	14
С	8	6

summary

- □ Router's main function
- ☐ Internetprotocol
 - Packet fromat
 - IP address
- ☐ IPv4 address reserved space
- □ Subnetting

Thank you!

