

Deployment

Machine Learning Operations
Nicki Skafte Detlefsen,
Postdoc
DTU Compute

Freeing the model

- Model deployment is part of the operations in MLOps
- In a nutshell: make the model available to others

Remember this?

Many levels of deployment (within machine learning)

- 1. Github reposatory + link to model weights
 - Easy to "deploy"
 - Pain in the *** to use
- 2. Deploy on local computer/cluster
 - Fairly easy getting up and running, just requires people can access from outside
 - Can be fairly easy to use
 - Does not scale at all
- 3. Deploy to cloud service
 - Can be a pain to setup
 - Easy to use and scales to ∞ (and beyond!)

Production requirements

Portability

Models should be exportable to wide variety of environments, from C++ servers to mobile

2. Performance

We want to optimize common patterns in neural networks to improve inference <u>latency</u> and <u>throughput</u>

What are the challenges with Pytorch in production

- Pytorch is a dynamic framework (uses a dynamic graph)
 - This is not great in production as we need to know sizes etc. for compilation and optimization

- Why not use a static framework (Tensorflow 1.x, Caffe2 etc.)?
 - Do you really want to port all your work?
- What can we do to solve this?

Convert to script mode!

For prototyping, training, experimenting

SCRIPT MODE

For production deployment

Serilization

• torch.jit.script serialize the model, but what does it mean?

 Serilization essentially encodes all modules methods, submodules, parameters, and attributes into a byte stream

This makes the encoded model independent of python!

This is basically just "pickling" and "unpickling".