Turing machines - equivalent models.

Tape with multiple tracks.

	-	a	a	Ь	a	5		П	
-	 	6	J	6	a	Ь	م	J	
	I -	Ь	a	a	a	Ь	a	Ц	

Turing machines - equivalent models.

	1-	a	Ь	a	م	Ь	Л	L	П	•		-
				\uparrow	7	ນຄ) – (Ja				
Q								•	K	h	200	X

Tape with multiple tracks.

		a							
1	 -	6	σ	6	ď	G	م	J	
	<u> -</u>	ь	a	a	a	σ	a	Ц	

Claim. For $A \leq \underline{z}^*$, if A is r.e. and \overline{A} is r.e. then A is recursive. Proof. Let $L(M_1) = A$ and $L(M_2) = \overline{A}$.

Construct M that on input of runs both MIRMZ Simultaneously on two tracks of its tape.

-	a	a	Ь	a	5		П
-	6	Ь	6	a	Ь	م	L

if M_1 accepts than M accepts. if M_2 accepts then M rejects $X \in A \Rightarrow X \in L(M_1) \Rightarrow M_1$ accepts $\Rightarrow M$ accepts. $\nearrow T$ otal TM $X \notin A \Rightarrow X \in L(M_2) \Rightarrow M_2$ accepts $\Rightarrow M$ rejects \nearrow

Multiple topes

S: QX \(\begin{aligned} \text{3} & \text{QX \(\Gamma^3 \text{X} \left\) \(\L_1 R_2^3 \right\)

	-	a	Ь	a	a	5	口	П	
 -	-	6	ط	a	Ь	b	IJ		
	1-	a	a	Ь	a	Ь	П	Ц	

Take the tape alphabet to be
$$\leq U \{1\} \cup (\Gamma \cup \Gamma')^3$$
 where $\Gamma' = \{\hat{\alpha} \mid \alpha \in \Gamma\}$

Two way infinite tape

	Ь	a	a	9	a	
,	а	b	<u>ط</u>	a	Ь	

Simulate top track when head is on the left of X and simulate bottom track when head is on the right of X.

Two stacks.

Claim. A finite state machine with a two-way,

read only input heed and two stacks is as powerful as a Turing machine.

Power of the model - Universal Turing machine.

Fix an encoding scheme of TM over some alphabet - say {0,13.

Any encoding is fine as long as it is possible for another TM to take as input the encoded string and decode the description.

An example encoding scheme.

On 10 m 10 k 10 s 10 t 10 r 10 d 10 t 1

Mhas I I

n states of m tope symbols of which first k are input

symbols

Similar encoding possible for transitions.

Important properties of the encoding scheme

- Able to encode all TMs upto isomorphism.
- Easy to interpret.

Universal Turing machine.

L(u) = 2 M#x | x \in L(M)}.

encoding of M > encoding of input string x x is over the input alphabet of M.

Symbol in Us input alphabet to delimit M and x.

How does Uwork?

- 1. Check if M and ocare valid encodings. If not, reject.
- 2. U does a step-by-step simulation of Mon x.

Description of M

Contents of M's tape

State of M and position of tape head