Date		
Page		

Exact Differential Education's

let f: D->R, D SR2 be a differentiable function.

Then df(x,y) = 0 is Called on Exact differential equation. and its general solution is f(x,y) = c where c is an aubitmany Constant.

 $df = \frac{\partial f}{\partial x} \cdot dx + \frac{\partial f}{\partial y} \cdot dy - (1)$

Let a first orden first defree diff Epu" as $\frac{M(x,y)dx + N(x,y)dy}{=0} = 0$

Comparing (1) & (2), we get

M(x,y) = 2f; N(x,y) = 2f.

We assume that M and N have Pontinuous partial desiratives Exist

So $\frac{3N}{3} = \frac{3^2f}{3y_{3x}}$ and $\frac{3N}{3N} = \frac{3^2f}{3x_{3y}}$

Now If Second order partial derivatives are continuous then $\frac{3^2 f}{3^4 3^2 x} = \frac{3^2 f}{3x^3 y}$

= DM - DN.

Hence. On Equⁿ M(x,y) dn + N(x,y) dy is an exact differential equation if $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$.

=> There Exist a function f(x,y) St.

$$\frac{\partial f}{\partial x} = M(x,y)$$
 and $\frac{\partial f}{\partial y} = N(x,y)$

f(x,y) can be determined from (A) & (B).

Date		
Page		

Integrate (A) west x, we get
$$f(x,y) = \int M(x,y) dx + g(y)$$

=) Rt
$$f(x,y) = K(x,y) + g(y)$$
 where $K(x,y) = \int M(x,y) dx$.

Rut
$$f(x,y)$$
 in (B), we get
$$\frac{\partial f}{\partial y} = \frac{\partial k}{\partial y} + g'(y) = N(x,y)$$

So
$$f(x,y) = K(x,y) + \left(N(x,y) - \frac{\partial k}{\partial y}\right) dy + C$$

$$(3x^2+3e^y)dx + (2xe^y+3y^2)dy = 0$$
.

$$M(x,y) = 3x^2 + 2e^y$$
; $N(x,y) = 2xe^y + 3y^2$
 $\frac{\partial M}{\partial y} = 2e^y$; $\frac{\partial N}{\partial x} = 2e^y$

$$f(x,y) = x^3 + 3xe^y + g(y)$$
Put in (B); $3f = 3xe^y + g'(y) = 2xe^y + 3y^2$

$$g(y) = 3y^2$$

$$\Rightarrow \int g(y) dy = \int 3y^2 dy + c$$

$$=$$
 $g(y) = y^3 + c$

$$e^{x}$$
 (Cosy dx - Siny dy) = 0. —(1)
 e^{x} Gsy dx - e^{x} Siny dy = 0
 $M = e^{x}$ Gsy; $N = -e^{x}$ Siny.
 $\frac{\partial M}{\partial y} = -e^{x}$ Siny; $\frac{\partial N}{\partial x} = -e^{x}$ Siny.

$$\exists f(x,y) \text{ s.t. } \partial f = e^{x} \text{ Gay and } \partial f \neq e^{x} \text{ Giny}$$

$$-(A) \qquad -(B)$$
from (A);
$$f(x,y) = \int e^{x} \text{ Gay } dx + g(y)$$

$$= f(x,y) = e^{x} G_{1}y + g(y)$$

$$= e^{x} S_{1}y + g'(y)$$

Put in (8), we get
$$-e^{x} \sin(y + g|y) = -e^{x} \sin(y + g|y) = 0$$

$$= g'(y) = 0$$

$$= g(y) = 0$$

=)
$$g(y) = c$$

[. $f(x,y) = e^{x} G_{xy} + c$] = q

	Date
du	$(y+x^3)dx + (ax+by^3)dy = 0$ Page
Soln	J+2/02-13
5017	$M = y + x^3; N = 0x + by^3$
	$\frac{\partial M}{\partial y} = \frac{1}{\partial x}$; $\frac{\partial N}{\partial x} = \alpha$
	3) The Equ' is Exact for a = 1 no matters what b we cho
	i. (y+x3) dx + (x+by3) dy =0 is Exact
	⇒ ∃ f(x,y) s.t.
	$\frac{\partial f = y + x^3}{\partial x}, \frac{\partial f}{\partial y} = x + by^3.$
	-(A) $3y - (B)$
	$f(x,y) = \int (y+x^3)dx + g(y)$
	Je > 0.67
	$\frac{\partial}{\partial x} f(x,y) = xy + xy + g(y)$
	$\frac{1}{2}$ $\frac{\partial f}{\partial y} = x + g(y)$
	29 (J. 2)
	Put in (B), we get χ + g'(y) = χ + by 3
	$\Rightarrow 4/4) = 64^3$
	$= g(y) = by^3$ $= g(y) = \int by^3 dy + c$
	= 24/2 4
597	=) g(y) = by +c
	:. \$(x,y)= xy+ \ x4 + by4
	4 4
	Direct formulais
	Mdx + Ndy=0 is Exact diff Equal 4
	$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial x}$
	The soln flags is given by
	J'anstant + (tourns In N not Containing x) dy = C.
	y constant

