

Università degli Studi di Padova

Tommaso Amico, Andrea Lazzari 05/07/2022 Advanced Statistics for Physics analysis course 2021/2022, Prof. Alberto Garfagnini

MCCXXII MCCXXII

Università degli Studi di Padova

The Formats

Sprint:

- 3 loops
- One prone shooting range
- One standing shooting range
- A penalty lap for each miss
- The athletes start at equal time intervals

Pursuit:

- 5 loops
- A first prone shooting range
- A second prone shooting range
- A first standing shooting range
- A second standing shooting range
- A penalty lap for each miss
- The athletes start following the sprint's results

Mass start:

- 5 loops
- A first prone shooting range
- A second prone shooting range
- A first standing shooting range
- A second standing shooting range
- A penalty lap for each miss
- The athletes start all together

Individual:

- 5 loops
- A first prone shooting range
- A first standing shooting range
- A second prone shooting range
- A second standing shooting range
- 1 additional minute for each miss
- · The athletes start at equal time intervals

The analysis

- Consider only head-to head races
- Separate the data frame, for each athlete, in races where he entered the last shooting range in the top 10 from races where he entered outside of it
- Compute and analyse the efficiency
- Look for differences among men and women using a gaussian approximation and Markov Chain Monte Carlo with the Rjags library

Vaccine analogy

- Placebo shots -> Bullets shot when outside the top 10
- Vaccine shots -> Bullets shot when in the top 10

• Efficiency ->
$$\frac{Placebo - Vaccine}{Placebo} \cdot 100$$

Likelihood

Binomial distribution

$$PDF(p \mid n, k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k}$$

You either hit the target or you miss it

Prior

Beta distribution

$$PDF(x \mid \alpha, \beta) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}$$

- Defined between 0 and 1
- Conjugate properties with the binomial likelihood

Università degli Studi di Padova

Preliminary results

Results

Markov Chain Monte Carlo

Posterior Distribution for the Mean of the Normal

Posterior Distribution for the Precision of the Normal

- Posterior distribution of the mean
- Posterior distribution of the precision:

$$\tau = \frac{1}{\sigma^2}$$

- Chains of the MCMC
- The slight difference between male and female athletes can be explained by chance alone

Università DEGLI STUDI DI PADOVA

Top 10 versus

Retrieved Normal Distribution for the Efficiency

Difference between Male and Female athletes

Retrieved Normal Distribution for the Efficiency

Difference between Male and Female athletes

Individual's analysis

- Divide the data frame between individual races and the other 4-shooting-ranges race formats
- Take into accounts only records where the athlete was a perfect 19 hits after the first 19 shots
- Compute the percentage of times the last shot was good in pursuits and mass starts
- Set up the null hypothesis ${\cal H}_0$: the probability of hitting the last shot in individuals is greater and equal then in pursuits and mass starts
- Perform a one sided hypothesis test trying to prove the alternative hypothesis ${\cal H}_1$: the last shot of the an individual is the toughest in biathlon

Results

Posterior Distribution Men

Bayesian Hypothesis Testing

Posterior Distribution - Women

Bayesian Hypothesis Testing

- The value of the integral is 0.007
- We reject the Null hypothesis for men with 99% probability

- The value of the integral is 0.002
- We reject the Null hypothesis for women with 99% probability

Conclusions

Efficiency

- We show how being in contention for a meaningful position influences some biathletes: we have cases where the performance is improved and, more often, where the performance worsens
- Both athletes with great experience and sharp-shooters can be influenced
- We find confirmation on the reputation of biathletes that are known for crumbling under pressure
- The behaviour is confirmed when looking at the top 5 with a few interesting outliers

Hypothesis test

 We determined, for both men and women, with 99% probability that the last shot in individuals is more difficult than in other 4-range races, if you have hit the first 19 bullets

