Soham Chatterjee

Assignment - 2.2: Quantum Foundations

Email: sohamc@cmi.ac.in

Course: Quantum Information Theory

Roll: BMC202175 Date: February 29, 2024

For all the questions

- $[k] := \{1, 2, ..., k\}$ where $k \in \mathbb{N}$.
- $\mathcal{L}(\mathcal{H}) := \text{Linear operators on } \mathcal{H}$
- $\mathscr{R}(\mathcal{H}) \coloneqq \text{Self-adjoint or hermitian operators on } \mathcal{H}$
- $\mathscr{P}(\mathcal{H}) := \text{Positive semi-definite operators on } \mathcal{H}$
- $\mathcal{D}(\mathcal{H}) := \text{Density operators on } \mathcal{H}$

$$\sum_{i=1}^{d} \langle e_i | Te_i \rangle = \sum_{i=1}^{d} \langle f_i | Tf_i \rangle$$

For $T:\mathcal{H}\to\mathcal{H}$, prove that $\sum_{i=1}^d \langle e_i \, | Te_i \rangle = \sum_{i=1}^d \langle f_i \, | Tf_i \rangle$ if $\{|e_i\rangle\in\mathcal{H} \mid 1\leq i\leq d\}$ and $\{|f_i\rangle\in\mathcal{H} \mid 1\leq i\leq d\}$ are ONB.

Solution: Let $S:\mathcal{H}\to\mathcal{H}$ where it maps the basis vectors from $|e_i\rangle\to|f_i\rangle$. Then $S|e_i\rangle=|f_i\rangle$. Hence S is an unitary matrix since

$$\langle e_j | S^{\dagger} S | e_i \rangle = \langle f_j | f_i \rangle = \delta_{ji}$$
 and $\langle f_j | S S^{\dagger} | f_i \rangle = \langle e_j | e_i \rangle = \delta_{ji}$

Hence

$$\sum_{i=1}^{d} \langle f_i | T f_i \rangle = \sum_{i=1}^{d} \langle e_i | S^{\dagger} T S | e_i \rangle = tr(S^{\dagger} T S) = tr(S S^{\dagger} T) = tr(T) = \sum_{i=1}^{d} \langle e_i | T e_i \rangle$$

Therefore we have

$$\sum_{i=1}^{d} \langle e_i | Te_i \rangle = \sum_{i=1}^{d} \langle f_i | Tf_i \rangle$$

If $\{|e_i\rangle \in \mathcal{H}_1 \mid 1 \leq i \leq d\}$ and $\{|f_i\rangle \in \mathcal{H}_2 \mid 1 \leq i \leq d\}$ are ONB, then $\{|e_i\rangle \otimes |f_j\rangle \mid 1 \leq i, j \leq d\} \subseteq \mathcal{H}_1 \otimes \mathcal{H}_2$ is ONB

Solution: Let $|\psi\rangle \otimes |\phi\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2$. Then $|\psi\rangle = \sum_{i=1}^d \alpha_i |e_i\rangle$ where $\alpha_i \in \mathbb{C}$ for all $i \in [d]$ since $\{|e_i\rangle \in \mathcal{H}_1 \mid 1 \leq e_i\}$ $i \leq d$ } is ONB for \mathcal{H}_1 . Hence

$$|\psi
angle\otimes|\phi
angle=\sum_{i=1}^dlpha_i\,|e_i
angle\otimes|\phi
angle$$

Now $|\phi\rangle = \sum_{i=1}^{d} \beta_i |f_i\rangle$ where $\beta_i \in \mathbb{C}$ for all $i \in [d]$ since $\{|f_i\rangle \in \mathcal{H}_2 \mid 1 \leq i \leq d\}$ is ONB for \mathcal{H}_2 . Hence

$$\forall i \in [d] |e_i\rangle \otimes |phi\rangle = \sum_{i=1}^d \beta_j |e_i\rangle \otimes |f_j\rangle$$

Thereofore we get

$$|\psi\rangle\otimes|\phi\rangle = \sum_{i=1}^{d} \alpha_{i} |e_{i}\rangle\otimes|\phi\rangle = \sum_{i=1}^{d} \alpha_{i} \sum_{j=1}^{d} \beta_{j} |e_{i}\rangle\otimes|f_{j}\rangle = \sum_{1\leq i,j\leq d} \alpha_{i}\beta_{j} |e_{i}\rangle\otimes|f_{j}\rangle$$

Therefore $\{|e_i\rangle \otimes |f_j\rangle \mid 1 \leq i, j \leq d\}$ is a basis of $\mathcal{H}_1 \otimes \mathcal{H}_2$. Now for any $i1, i2, j1, j2 \in [d]$

$$(\langle e_{i1}| \otimes \langle f_{j1}|)(|e_{i2}\rangle \otimes |f_{j2}\rangle) = \langle e_{i1}|e_{i2}\rangle \langle f_{j1}|f_{j2}\rangle = \delta_{i1,i2}\,\delta_{j1,j2}$$

Therefore $\{|e_i\rangle\otimes|f_j\rangle\mid 1\leq i,j\leq d\}$ is orthonormal. Therefore $\{|e_i\rangle\otimes|f_j\rangle\mid 1\leq i,j\leq d\}$ is a ONB for $\mathcal{H}_1\otimes\mathcal{H}_2$.

Problem 3

Let $\{|g_k\rangle \mid 1 \leq k \leq d_2\} \subseteq \mathcal{H}_2$ be ONB. For $T \in \mathscr{L}(\mathcal{H}_1 \otimes \mathcal{H}_2)$, let $tr_2(T) \in \mathscr{L}(\mathcal{H}_1)$ denote the operator satisfying

$$\langle u | tr_2(T) | v \rangle = \sum_k \langle u \otimes g_k | T | v \otimes g_k \rangle$$

for any choice \ket{u} , $\ket{v}\in\mathcal{H}_1$. Prove that $\sum\limits_{k}ra{u\otimes g_k}T\ket{v\otimes g_k}$ is invariant.

Solution: Let $\{|f_k\rangle \mid 1 \le k \le d_2\} \subseteq \mathcal{H}_2$ be another ONB. Suppose $S: \mathcal{H}_2 \to \mathcal{H}$ be a map such that $S|g_k\rangle = |f_k\rangle$. As we previously showed in Problem 1, S is unitary. Then for all $k \in [d_2]$ we have

$$|f_k\rangle = \sum_{i=1}^{d_2} w_{i,k} |e_i\rangle$$

where $w_{i,k} \in \mathbb{C}$. Hence

$$\langle f_i | S^{\dagger} S | f_j \rangle = \sum_{k=1}^{d_2} w_{i,k}^* w_{j,k} = \delta_{i,j}$$

Now for any $|u\rangle$, $|v\rangle \in \mathcal{H}_1$ we have

$$\langle u|\operatorname{tr}_{2}(T)|v\rangle_{\{|f_{k}\rangle\}} = \langle u|\left[\sum_{k=1}^{d_{2}}(I\otimes\langle f_{k}|)T(I\otimes|f_{k}\rangle)\right]|v\rangle$$

$$= \langle u|\left[\sum_{k=1}^{d_{2}}\left(I\otimes\left(\sum_{i=1}^{d_{2}}w_{i,k}^{*}\left\langle g_{i}\right|\right)\right)T\left(I\otimes\left(\sum_{j=1}^{d_{2}}w_{j,k}\left|g_{j}\right\rangle\right)\right)\right]|v\rangle$$

$$= \sum_{k=1}^{d_{2}}\sum_{i=1}^{d_{2}}\sum_{j=1}^{d_{2}}\left\langle u|\left[w_{i,k}^{*}w_{j,k}(I\otimes\langle g_{i}|)T(I\otimes|g_{j}\rangle)\right]|v\rangle$$

$$= \sum_{i=1}^{d_{2}}\sum_{j=1}^{d_{2}}\left\langle u|\left[\left(\sum_{k=1}^{d_{2}}w_{i,k}^{*}w_{j,k}\right)\left(I\otimes\langle g_{i}|\right)T(I\otimes|g_{j}\rangle\right)\right]|v\rangle$$

$$= \sum_{i=1}^{d_{2}}\sum_{j=1}^{d_{2}}\left\langle u|\left[\delta_{i,j}(I\otimes\langle g_{i}|)T(I\otimes|g_{j}\rangle)\right]|v\rangle$$

$$= \sum_{i=1}^{d_{2}}\left\langle u|\left[\left(I\otimes\langle g_{i}|\right)T(I\otimes|g_{i}\rangle\right)\right]|v\rangle$$

$$= \langle u|\operatorname{tr}_{2}(T)|v\rangle_{\{|g_{k}\rangle\}}$$

Hence $\sum\limits_{k} \langle u \otimes g_k | T | v \otimes g_k \rangle$ is invariant.

Problem 4

Show that the Pauli matrices are all Hermitian, unitary, they square to the identity, and their eigenvalues are ± 1

Solution: Fuck you arun

Problem 5 Mark Wilde: Exercise 3.3.3

For $S, T \in \mathcal{L}(\mathcal{H})$, show that

$$tr(T) = tr(T^+), \qquad tr(ST) = tr(TS)$$

[Recall T^+ denotes adjoint of T]. For $|x\rangle$, $|y\rangle \in \mathcal{H}$ show

$$tr(|x\rangle \langle y|T) = tr(T|x\rangle \langle y|) = \langle y|Tx\rangle$$

Problem 6

Suppose \mathcal{H} is finite dimensional complex inner product spacewith $\dim(\mathcal{H}) = d$. Show complex dimensionality of $\mathcal{L}(\mathcal{H})$ is d^2 , real dimensionality of $\mathcal{R}(\mathcal{H})$ is d^2 .

Suppose \mathcal{H} is a real inner product space of dim d, show $\mathcal{L}(\mathcal{H})$ has dimension d and the space of all symmetric operators is a real vector space of dimension $\frac{d(d+1)}{2}$.

Solution: Suppose $\{|e_i\rangle \in \mathcal{H} \mid 1 \leq i \leq d\}$ is an ONB of \mathcal{H} . Let $T \in \mathcal{L}(\mathcal{H})$. Then for all $i \in [d]$

$$T\left|e_{i}\right\rangle = \sum_{j=1}^{d} \alpha_{i,j} \left|e_{j}\right\rangle$$

where $\alpha_{i,j} \in \mathbb{C}$. Hence the map T is uniquely decided by the numbers $\alpha_{i,j} \in \mathbb{C}$ for all $i, j \in [d]$. Hence there are d^2 many numbers which uniquely decides T. Therefore $\dim(\mathcal{L}(\mathcal{H})) = d^2$.

Now let $T \in \mathcal{R}(\mathcal{H})$. Then $T^{\dagger} = T$. Again suppose $\{|e_i\rangle \in \mathcal{H} \mid 1 \leq i \leq d\}$ is an ONB of \mathcal{H} . Let (i,j)th element of T is denoted by $t_{i,j}$. Then for all $i \in [d]$, $T_{i,i} \in \mathbb{R}$ since $T^{\dagger} = T$. Now for all off diagonal entries $t_{j,i} = t_{i,j}^*$. So there are $\frac{n^2-n}{2}$ many complex numbers which decides T uniquely apart from the n real entries in the diagonal. Now for each $i, j \in [d]$ let $t_{i,j} = x_{i,j} + iy_{i,j}$ where $x_{i,j}, y_{i,j} \in \mathbb{R}$. Therefore

$$t_{j,i} = t_{i,j}^* = x_{i,j} - iy_{i,j}$$

So for each off-diagonal entries there are corresponding 2 real numbers. And there are total $\frac{n^2-n}{2}$ many off-diagonal entries which participates in uniquely deciding T. Hence there are total $2 \times \frac{n^2-n}{2} + n = n^2$ real numbers which uniquely decides T. Hence $\dim(\mathcal{R}(\mathcal{H})) = d^2$.

Problem 7

Show that $\mathscr{D}(\mathcal{H})$ is a convex subset of the real vector space of all Hermitian operators on \mathcal{H} . Show that the extreme points of $\mathscr{D}(\mathcal{H})$ are pure states, i.e. rank 1 projection operators.

Problem 8

Show that if $\dim(\mathcal{H}) = d$, then $\mathcal{D}(\mathcal{H})$ can be embedded into a real vector space of dimension $n = d^2 - 1$

Problem 9

Prove the Singular value decomposition theorem stated in class.

Problem 10

Suppose $|\psi\rangle_{AR_1} \in \mathcal{H}_A \otimes \mathcal{H}_{R_1}$, $|\psi\rangle_{AR_2} \in \mathcal{H}_A \otimes \mathcal{H}_{R_2}$ are purifications of $\rho_A \in \mathscr{D}(\mathcal{H}_A)$ and $\dim(\mathcal{H}_{R_2}) \geq \dim(\mathcal{H}_{R_1})$, then show that there exists an isometry $V : \mathcal{H}_{R_1} \to \mathcal{H}_{R_2}$ such that

$$|\psi\rangle_{AR_2} = (V \otimes I) |\psi\rangle_{AR_1}$$

Problem 11 Mark Wilde: Exercise 3.6.5

Show that the Bell states form an orthonormal basis:

$$\langle \Phi^{z_1 x_1} | \Phi^{z_2 x_2} \rangle = \delta_{z_1, z_2} \, \delta_{x_1, x_2}$$

Problem 12 Mark Wilde: Exercise 3.7.11

Show that the set of states $\{|\Phi^{x,z}\rangle_{AB}\}_{x,z=0}^{d-1}$ forms a complete, orthonormal basis:

$$\langle \Phi^{x_1,z_1} | \Phi^{x_2,z_2} \rangle = \delta_{x_1,x_2} \, \delta_{z_1,z_2} \qquad \sum_{x,z=0}^d | \Phi^{x,z} \rangle \, \langle \Phi^{x,z} | = I_{AB}$$

Problem 13 Mark Wilde: Exercise 4.1.5

Show that the following ensembles have the same density operator: $\left\{\left\{\frac{1}{2},|0\rangle\right\},\left\{\frac{1}{2},|1\rangle\right\}\right\}$ and $\left\{\left\{\frac{1}{2},|+\rangle\right\},\left\{\frac{1}{2},|-\rangle\right\}\right\}$

Problem 14

Show that the set of states $\{|\Phi^{x,z}\rangle_{AB}\}_{x,z=0}^{d-1}$ forms a complete, orthonormal basis:

$$\langle \Phi^{x_1,z_1} | \Phi^{x_2,z_2} \rangle = \delta_{x_1,x_2} \, \delta_{z_1,z_2} \qquad \sum_{x,z=0}^d | \Phi^{x,z} \rangle \, \langle \Phi^{x,z} | = I_{AB}$$

Problem 15 Mark Wilde: Exercise 4.1.3

Show that the following ensembles have the same density operator: $\left\{\left\{\frac{1}{2},|0\rangle\right\},\left\{\frac{1}{2},|1\rangle\right\}\right\}$ and $\left\{\left\{\frac{1}{2},|+\rangle\right\},\left\{\frac{1}{2},|-\rangle\right\}\right\}$

Problem 16 Mark Wilde: Exercise 3.7.12

Show that the following ensembles have the same density operator: $\left\{\left\{\frac{1}{2},|0\rangle\right\},\left\{\frac{1}{2},|1\rangle\right\}\right\}$ and $\left\{\left\{\frac{1}{2},|+\rangle\right\},\left\{\frac{1}{2},|-\rangle\right\}\right\}$

Problem 17

Show that the following ensembles have the same density operator: $\left\{\left\{\frac{1}{2},|0\rangle\right\},\left\{\frac{1}{2},|1\rangle\right\}\right\}$ and $\left\{\left\{\frac{1}{2},|+\rangle\right\},\left\{\frac{1}{2},|-\rangle\right\}\right\}$

4

Problem 18

Show that the following ensembles have the same density operator: $\left\{\left\{\frac{1}{2},|0\rangle\right\},\left\{\frac{1}{2},|1\rangle\right\}\right\}$ and $\left\{\left\{\frac{1}{2},|+\rangle\right\},\left\{\frac{1}{2},|-\rangle\right\}\right\}$

Problem 19

Show that the following ensembles have the same density operator: $\left\{\left\{\frac{1}{2},|0\rangle\right\},\left\{\frac{1}{2},|1\rangle\right\}\right\}$ and $\left\{\left\{\frac{1}{2},|+\rangle\right\},\left\{\frac{1}{2},|-\rangle\right\}\right\}$