4. Übungsblatt zur Physik IV

SS2015

Ausgabe: 27.04. Rückgabe 4.05. (vor der Vorlesung)

8. Aufgabe: Lennard-Jones Potential (5 Punkte)

Die Wechselwirkung der Atome in einem Edelgaskristall lässt sich gut durch ein Lennard-Jones Potential (s. Vorlesung) beschreiben.

- a. Berechnen Sie den Gleichgewichtsabstand R_0 als Funktion der Parameter ϵ und σ sowie der Gittersummen A_6 und A_{12} (2 Punkte)
- b. Berechnen Sie die Bindungsenergie/Atom und den Nächst-Nachbar Abstand im Gleichgewicht für Neon (Annahme: fcc-Gitter mit $A_{12}=12.1319$ und $A_6=14.4539$; $\epsilon=3.1$ meV; $\sigma=0.278$ nm) . (1 Punkt)
- c. Berechnen Sie die Nullpunktsenergie von Neon ($E_0=\frac{1}{2}\hbar\omega_0$) in dem Potential (Machen Sie dazu eine harmonische Näherung für das Potential in der Nähe des Gleichgewichtsabstands und ermitteln Sie ω_0 mit Hilfe der "Federkonstante" k des harmonischen Potentials ($M_{Neon}=3.35\cdot 10^{-26}{
 m kg}$). (2 Punkte)

9. Aufgabe: Lineare Kette aus zweiatomigen Molekülen (5 Punkte)

Betrachten Sie eine lineare Kette mit zweiatomigen Molekülen. Der Abstand der Atome, die beide die gleiche Masse M haben sollen, im Molekül (z.B. H_2) sei gleich $\alpha/2$ und der Abstand zwischen den Molekülen sei auch gleich $\alpha/2$. Die "Federkonstante" zwischen den Atomen im Molekül soll $C_1=10\cdot C$ betragen und die "Federkonstante" zwischen den Molekülen $C_2=C$.

- a. Bestimmen Sie $\omega(q)$ (Lösen Sie dazu die Bewegungsgleichungen für die jeweilige Verschiebung (u_n,v_n) der beiden Atome des n-ten Moleküls mit dem Ansatz von Wellen $(u_n(t)=u_0e^{i(qna-\omega t)}\ bzw.\ v_n(t)=v_0e^{i(qna-\omega t)})$). (2 Punkte)
- b. Bestimmen Sie die Lösungen von $\omega(q)$ bei q=0 (Entwickeln Sie dazu die Lösung aus a) in der Nähe von q=0) und $q=\frac{\pi}{a}$. (2 Punkte)
- c. Skizzieren Sie die Dispersionrelation in der 1. Brillouinzone. (1 Punkt)