Departamento de Matemática, Universidade de A	VEIRO MATEMÁTICA DISCRETA
EXAME FINAL, 29 de Junho de 2022, Duração: 2h30m	1 Classificação:
Nome:	Nr^{o} Mec.:
Curso:	Turma:
Declaro que desisto:	Folhas supl·

(1) Converta a fórmula

$$\exists x\, \forall y \Big(\forall w \Big(P(x,y) \vee \neg Q(y,w) \Big) \rightarrow \forall z\, \exists t \Big(R(f(x),y,z) \vee \neg Q(x,z) \Big) \Big)$$

para a forma normal prenex e em seguida determine a partir desta uma fórmula na forma normal de Skolem. Aqui P e Q são símbolos de predicado de duas variáveis, R é um símbolo de predicado de três variáveis e f é um símbolo de função de uma variável.

Departamento de Matemática, Universidade de A	Aveiro Matemática Discreta
EXAME FINAL, 29 de Junho de 2022, Duração: 2h30m	2 Classificação:
Nome:	Nr^{Ω} Mec.:
Curso:	Turma:
Declaro que desisto:	Folhas supl.:

(2) Considere uma linguagem de primeira ordem com os símbolos de relação P,Q,R de uma variável e as seguintes fórmulas:

F1:
$$\forall x \ (P(x) \rightarrow (\neg Q(x) \rightarrow R(x))),$$

F2:
$$\exists x \ P(x),$$

F3:
$$\forall x \ \neg Q(x),$$

C:
$$\exists x \ R(x)$$
.

Usando o princípio da resolução, mostre que C é consequência de F1, F2 e F3.

Departamento de Matemática, Universidade de Aveiro		Matemática Discreta
EXAME FINAL, 29 de Junho de 2022, Duração: 2h30m	3	Classificação:
Nome:		$\rm Nr^{o}$ Mec.:
Curso:		Turma:
Declaro que desisto:		Folhas supl.:

- (3) Um contentor contém 100 maçãs, 100 morangos, 100 bananas e 100 peras.
 - a) Qual o número mínimo de frutas que tem que tirar do contentor, de maneira a garantir que tirou 10 frutas da mesma espécie?
 - b) Qual o número mínimo de frutas que tem que tirar do contentor, de maneira a garantir que tirou frutas de pelo menos 3 espécies diferentes?

Departamento de Matemática, Universidade de Aveiro		Matemática Discreta
EXAME FINAL, 29 de Junho de 2022, Duração: 2h30m	4	Classificação:
Nome:		Nr^{o} Mec.:
Curso:		Turma:
Declaro que desisto:		Folhas supl.:

- (4) Um comboio tem quatro carruagens de primeira classe, sete de segunda classe, uma carruagem restaurante e duas de bagagem. Qual é o número de possíveis sequências diferentes de carruagens
 - a) sem restrições.
 - b) quando as carruagens de primeira classe não podem estar separadas.

Departamento de Matemática, Universidade de A	AVEIRO MATEMÁTICA DISCRETA
EXAME FINAL, 29 de Junho de 2022, Duração: 2h30m	5 Classificação:
Nome:	Nr^{o} Mec.:
Curso:	Turma:
Declaro que desisto:	Folhas supl.:

(5) Considere a sucessão $(a_n)_{n\geq 0}$, onde $a_0=1,\ a_1=0,\ a_n=4a_{n-1}-4a_{n-2}+3$, para $n\geq 2$. Determine uma fórmula não recursiva para a_n .

Departamento de Matemática, Universidade de Aveiro		Matemática Discreta
EXAME FINAL, 29 de Junho de 2022, Duração: 2h30m	6	Classificação:
Nome:		Nr^{o} Mec.:
Curso:		Turma:
Declaro que desisto:		Folhas supl.:

(6) Seja G um grafo simples não orientado, com matriz de custos (ou pesos)

$$C = \begin{bmatrix} 0 & 20 & 20 & 10 & \infty & \infty \\ 20 & 0 & \infty & \infty & 30 & 30 \\ 20 & \infty & 0 & 20 & \infty & \infty \\ 10 & \infty & 20 & 0 & 10 & 60 \\ \infty & 30 & \infty & 10 & 0 & 40 \\ \infty & 30 & \infty & 60 & 40 & 0 \end{bmatrix}$$

- a) Indique um subgrafo H de G com 5 vértices que seja bipartido e conexo (apresente uma figura com o subgrafo, identificando os vértices). Determine uma bipartição de H. Justifique.
- b) Determine um caminho de custo mínimo entre os vértices 1 e 6, aplicando o algoritmo de Dijkstra. Apresente todos os passos do algoritmo.
- c) Considere o subgrafo F de G induzido pelo subconjunto de arestas $E' = \{12, 13, 14, 25, 34, 45\}$. Determine o número de árvores abrangentes de F, aplicando a fórmula recursiva e indicando em cada passo a aresta selecionada.
- d) Determine uma árvore abrangente de G com custo mínimo, aplicando o algoritmo de Kruskal ou o algoritmo de Prim. Apresente todos os passos do algoritmo.