Week 12: Chromosal organization through loop extrusion

Richard Neher

December 4, 2022

This weeks paper by Fudenberg et al (group of Leonid Mirny) is entitled "Formation of Chromosomal Domains by Loop Extrusion". In addition, I encourage you to look at the review article by Mirny et al "Two major mechanisms of chromosome organization" that discusses the interplay of loop extrusion and phase-separation like mechanisms to organize chromatin. The mechanisms of loop extrusion was one of the major insights into chromatin organization of the last decade and is a beautiful example of how non-equilibrium physics can explain large scale features of biological organization. These insights were made possible by high-throughput sequencing technologies and methods like Hi-C.

- Have a look at higlass.io and explore HiC data at scale
- Physics perspective: Seminar by Leonid Mirny https://youtu.be/FqoLm7E0mZ4
- Molecular biology of cohesins by Jan-Michael Pieters https://youtu.be/ ckFS9Wr32Ic.

Question 1: Chromatin conformation capture techniques

- How do they work in principle?
- What are the data they produce? How are these data represented in the papers?
- On what genomic length scale are the structures of interest?

Question 2: Topologically associated domains (TADs)

- What are TADs? What features do they have in contact maps?
- TADs are traditionally thought of as static? What evidence is presented against that view?

Question 3: Simulation model in one dimension

- Describe the 1D model of loop extrusion.
- How are loops initiated? How do boundary elements define domains?
- What aspects of the problem can be described in 1D, which ones require 3D?

Question 4: Simulations in 3D

- What are the elementary units of the 3D model?
- How do LEF affect the polymer dynamics?
- What are the important parameters of the model?

Question 5: TADs

- How does processivity and separation affect the contact maps and fit to the data?
- How does separation between LEFs affect the result?
- What is the loop coverage and the independent loop size in these regimes?

Question 6: Corner peaks, loops, and TADs

- Corner peaks seem to be an optional feature of TADs. What is their origin and interpretation?
- What parameters tend to produce more pronounced corner peaks?
- What features of TADs are missing in model with permanent loops?

Question 7: The role of boundary elements (BE)

- BEs are not physical boundaries but stopping point for LEFs. How does this result in domains?
- What is the evidence for CTCF as boundary element?
- What evidence for directional BEs do they discuss?

Question 8: Large scale organization

In addition to the megabase scale organization of TADs, chromosomes show order on much larger scales. This is discussed in the review article by Mirny et al.

• What is the interpretation of the characteristic checkerboard pattern?

- What are the proposed mechanisms for this organization?
- \bullet How do they differ? Equilibrium/non-equilibrium? ATP-dependent or not?