## Performance Matrix (Measurement)

#### 1. Accuracy:

Acc = Total number of Data pts

Problem with Accuracy:

if the dataset is imbalanced then the accuracy will be affected by majority class.

#### 2. Probability Score:

- Yp will be a probability for any particular class.
- for each class we will calculate the accuracy.
- by keeping some threshold we can make the final prediction.

#### 3. Confusion Matrix:

Confusion Matrix is the visual representation of the Actual VS Predicted values. It measures the performance of our Machine Learning classification model and looks like a table-like structure.

# Actual values 1 0 Predicted values 0 FN TN

#### Elements of Confusion Matrix

It represents the different combinations of Actual VS Predicted values. Let's define them one by one.

TP: True Positine: values were actually positive and were predicted positive.

FP: False Positive values which were actually negative but falsely predicted as positive. Also known as Type I Error.

FN: False Negative which were actually positive but falsely predicted as negative. Also known as Type II Error.

TN: True NegEthie values which were actually negative and were predicted negative

#### Lets take an example :



In the above matrix, we can analyze the model as :

True positive: 540 records of the stock market crash were predicted correctly by the model.
False-positive: 150 records of not a stock market crash were wrongly predicted as a market crash.
False-negative: 110 records of a market crash were wrongly predicted as not a market crash.
True Negative: 200 records of not a market crash were predicted correctly by the model.

Other Evaluation Metrics associated with it



$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

Recall / Sensitivity:

The recall is the measure to check correctly positive predicted outcomes out of the total number of positive outcomes.

$$Recall = \frac{TP}{TP + FN}$$

Precision:

Precision checks how many outcomes are actually positive outcomes out of the total positively predicted outcomes.

$$Precision = \frac{TP}{TP + FP}$$

F1 score:

$$F1 Score = 2 * \frac{Precision * Recall}{Precision + Recall}$$

When to use which metrics for evaluation

Domain-Specific case



Spam Detection :

In this case, we need to focus on reducing the value of FP (i.e when the mail is falsely predicted as spam) and as a result, increasing the value of Precision.

In some cases of imbalanced data problems, both Precision and Recall are important so we consider the F1 score as an evaluation metric.

### ROC Curve and AUC score

-- Binary Classification -- Probability Score

#### Steps:

- find the probability score for class.
   Take each probability as the threshold.
   calculate TPR and FPR.
- 4. Plot a graph with TPR and FPR values.

TPR = TP/(TP+FN)FPR = FP/(FP+TN)

| Α  | В  | С  | D 🔻     | Е        | F  | G  | Н  |
|----|----|----|---------|----------|----|----|----|
| X1 | X2 | X3 | Y(true) | Y(proba) | t1 | t2 | t3 |
| 1  | 0  | 13 | 1       | 0.95     |    |    |    |
| 1  | 1  | 9  | 0       | 0.6      |    |    |    |
| 1  | 2  | 16 | 1       | 0.75     |    |    |    |
| 0  | 3  | 0  | 0       | 0.4      |    |    |    |
| 0  | 14 | 1  | 1       | 0.6      |    |    |    |
|    |    |    |         |          |    |    |    |





2. if AUC < 0.5 then swap the predicted values.

# Log loss

it is also based on Probability score (as small as good).For binary classification

$$H_p(q) = -\frac{1}{N} \sum_{i=1}^{N} y_i \cdot log(p(y_i)) + (1 - y_i) \cdot log(1 - p(y_i))$$

