Title of the Document

Author Name

June 22, 2024

Contents

Title of the Document 2

1 Exercises

- 2.1. Let (X,d) be a metric space and $S \subset X$. Show that $\partial S \subset S^{int} = \emptyset$.
- 2.2. Show that for an arbitrary choice of $a, b, r \in \mathbb{R}$, the closed disk $(x-a)^2 + (y-b)^2 \le r^2$ is in a bounded set in \mathbb{R}^2 .
- 2.3. Let (X,d) be a metric space and let $x,y \in X$. Show that if $d(x,y) < \epsilon$ for every $\epsilon > 0$, then x = y.
- 2.1. Assume $\partial S \subset S^{int}$. Then $\exists x \in S^{int} \subset \partial S$. Then by $x \in S^{int} \implies \exists \epsilon > 0 : B_{\epsilon}(x) \subset S$.

However, by $x \in \partial S$, this value of $\epsilon > 0$ implies $B_{\frac{\epsilon}{2}}(x) \cap S^c \neq \emptyset \implies B_{\frac{\epsilon}{2}}(x) \not\subset S$, which is a contradiction, implying our assumption that $x \in \partial S \cap S^{int}$ must be false and $\partial S \cap S^{int} = \emptyset$.

2.2. A set S is bounded iff $\exists M \in \mathbb{R}^+ : \forall x, y \in S \ d(x, y) \leq M$.

Let $a, b, r \in \mathbb{R}$.

$$S := \{(x, y) \in \mathbb{R}^2 \mid (x - a)^2 + (y - b)^2 \le r^2\}$$

$$\implies x^2 - 2ax + a^2 + y^2 - 2yb + b^2 \le r^2$$

$$\implies x^2 - 2ax + y^2 - 2yb < r^2 - a^2 - b^2$$

$$\implies x^2 + y^2 < r^2 - a^2 - b^2 + 2ax + 2yb$$

We need to show x^2 is bounded.

- $(x-a)^2 < r^2$
- $\bullet \implies |x-a| \le |r|$
- $\bullet \implies |x-a| = |x| + |a| \le |r| + |a|$
- $\bullet \implies |x| = |x a + a| \le |x a| + |a| \le r + |a|$

 $\implies |y| \le r + |a|$ $\implies y^2 \le (r + |a|)^2$

Same for x,

$$x^2 < (r + |b|)^2$$

For
$$z = (x, y) \in D^2_{a,b}$$

$$||z|| = \sqrt{x^2 + y^2}$$

$$\leq \sqrt{(r+|a|)^2+(r+|b|)^2}$$

Title of the Document 3

Thus if
$$M = \sqrt{(r+|a|)^2 + (r+|b|)^2}$$
 the bound holds.

IS named boundness = distance boundness.

Let
$$x = (x_1, x_2), y = (y_1, y_2) \in D_{a,b}$$

$$z_1,z_2\in\{x,y\}$$

$$(z_2 - a)^2 + (z_2 - b)^2 = r^2$$

$$\implies d(z_i, (a, b)) = \sqrt{(z_1 - a)^2 + (z_2 - b)^2} \le r$$

$$\implies d(x,y) < d(x,(a,b)) + d(y,(a,b))$$

$$=\sqrt{(x_1-a)^2+(x_2-b)^2}+\sqrt{(y_1-a)^2+(y_2-b)^2}$$

$$\leq r + r = 2r$$
.

- (iii) Suppose that $x \neq y$. Then $d(x,y) \neq 0$. Thus if we choose $\epsilon = d(x,y)$ implies that $\epsilon > 0$ but $d(x,y) \notin \epsilon$. (contradiction).
- Contradiction Suppose x=y and so d(x,y)=0. Choose $\epsilon>0$ so that $\epsilon=d(x,y)$. Then we must have $d(x,y)<\epsilon=\frac{d(x,y)}{2}$, which is a contradiction, as this implies if $d(x,y)<\epsilon\implies d(x,y)=s<\epsilon=\frac{s}{2}$. $-s< s/2\implies 2s< s$.

Thus $x \neq y$.

- (iv) Let $(V, ||\cdot||)$ be a normed vsp. Then let r > 0 and $x \in V$. Then $B_r(x) = \{u \in V | d(x, u) < r\}$ $B_{\epsilon+||x||}(0) = \{v \in V | d(0, v) < r + ||x||\}$ Let $y \in B_r(x)$. $d(0, y) \le d(0, x) + d(x, y) \le ||x|| + r \Longrightarrow B_r(x) \subseteq B_{\epsilon+||x||}(0)$.
- (v) Suppose S is bounded. Then $\exists M \in \mathbb{R} : \forall x \in S \ ||x|| \leq M$. (Equivalent to $\exists M \in \mathbb{R} : \forall x \in V \)x \in B_M(0)$