Candidate's Name:	•••••		•••••	•••••	•••••	• • • • • •	•••••	••••
	Random No.					Personal No.		
Signature:								

(Do not write your School/Centre Name or Number anywhere on this booklet.)

P525/1 CHEMISTRY (Theory) Paper 1 Nov./ Dec. 2022 2³/₄ hours

UGANDA NATIONAL EXAMINATIONS BOARD Uganda Advanced Certificate of Education

CHEMISTRY (THEORY)

Paper 1

2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES:

Answer all questions in section A and six questions from section B.

All your answers must be written in the spaces provided.

The Periodic Table, with relative atomic masses, is attached at the end of the paper.

Mathematical tables (3-figure tables) are adequate or non-programmable scientific electronic calculators may be used.

Illustrate your answers with equation(s) where applicable.

Where necessary, use the following:

Molar gas constant, $R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$.

Molar volume of gas at s.t.p is 22.4 litres.

Standard temperature

= 273 K.

Standard pressure

 $= 101325 \text{ Nm}^{-2}.$

	For Examiners' Use Only																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total
										į.							

© 2022 Uganda National Examinations Board

SECTION A (46 MARKS)

Answer all questions in this section.

1. Complete the following nuclear reaction equations:

(a)
$$^{30}_{15}P \longrightarrow ^{30}_{16}S + \dots$$
 (01 mark)

(b)
$${}^{56}_{26}Fe + {}^{2}_{1}H \longrightarrow \dots + {}^{1}_{0}n$$
. (01 mark)

(c)
$${}_{1}^{1}H + {}_{3}^{7}Li \longrightarrow (01 \text{ mark})$$

(d)
$$\stackrel{234}{_{90}}Th$$
 \longrightarrow + $\stackrel{0}{_{-1}}e$. (01 mark)

2. Draw the structure and state the shape of each of the following species in table 1.

Table 1 (4½ marks)

Species	Structure	Shape
SiO ₃ ²⁻		
BrO ₃ -		
Cl ₂ O		

3. Complete the following equations and write a mechanism for the reaction in each case:

Mechanism:	
(b) $+ CH_3COCl \xrightarrow{AlCl_3}$	(03 marks)
Mechanism:	
(a) State what is meant by bond energy .	(1½ marks)
	•••••••••••••••••••••••••••••••••••••••

(b) Table 2 shows standard average bond energies for some selected bonds.

Table 2

4.

Bond	C-C	C-O	C-H	H-O	C=O
Average bond energy (kJmol ⁻¹)	348	360	412	463	743

Use the data in the table to determine the standard enthalpy change of the reaction. (03 marks)

$$CH_3 - C \xrightarrow{H}^{(g)} + HCN_{(g)} \longrightarrow CH_3 - C \xrightarrow{H}^{(g)}_{CN}^{OH}$$

3

		••••••	• • • • • • • • • • • • • • • • • • • •
		***************************************	••••••
		•••••	
		•••••	
(a)	To a	mixture of chromium(III) sulphate solution and excertainty solution, was added hydrogen peroxide solution	ess sodium
	resu (i)	Itant mixture heated. State what was observed.	(½ mark)
•••••	•••••		
•••••	(ii)	Write an equation for the reaction that took place.	(1½ marks)
(b)	The follo	resultant solution in (a) was divided into portions and ows:	l treated as
	(i)	To the first portion dilute sulphuric acid was added was observed and write an equation for the reaction place.	
		Observation:	(½ mark)
		······································	
•••••	•••••	Equation:	(1½ marks)
	••••••		••••••
	(ii)	To the second portion, a few drops of lead(II) ethan solution was added. State what was observed and veguation for the reaction that took place	oate rite an

		(½ mark)		

		Equation:	$(1\frac{1}{2} marks)$	
			•••••	
6.	(a)	State what would be observed if benzene was added to wa	ter. (01 mark)	
		······································		
	(b)	0.5 moles of Q was shaken with a mixture containing 40 and 20 cm ³ of benzene and the mixture allowed to stand equilibrium was attained.	0 cm ³ of water	
		(KD for \mathbf{Q} between benzene and water at 25 $^{\circ}$ C is 5.)		
		Calculate the number of moles of \mathbf{Q} in the water.	(04 marks)	

	•••••		•••••	
			••••••	
			•••••	
7.	(a)	Propylamine is a weak base.		
		Write an;		
		(i) equation for the dissolution of propylamine in water	$(1\frac{1}{2} marks)$	
	•••••			

	(11)	propylamine.	(01 mark)
 (b)	Dete $(K_b f)$	rmine the degree of dissociation of a 0.1 M $_{1}$ for propylamine 6.918 \times 10 ⁻⁴)	propylamine solution. (2½ marks)
•••••			
•••••	•••••		
		rial reaction in which sulphur dioxide is converted the contact process is reversible and exothern	
(a)	Writ	e equation to illustrate the reaction.	(02 marks)
(b)		ng reason(s) in each case, state the effect on t ion of the reaction in (a) if;	he equilibrium
	(i)	the temperature was increased.	(1½ marks)
	 (ii)	helium was added to the reaction mixture a	t constant volume
	(11)	nenum was added to the reaction minutes a	(1½ marks)
		••••••	

(a)	te equations to show how the following compounds can be so $(CH_3CH_2)_2O$ from ethene.	yninesized:
()	to 3-1-2/20 Hom emene.	(03 marks)
••••		
••••	•••••••••••••••••••••••••••••••••••••••	
		•••••
(b)	Propanone from 1, 2 - dibromopropane.	(03 mayka)
	- uioromopropane.	(03 marks)
••••		
	SECTION B (54 MARKS)	
	Answer six questions from this section.	
	Any additional question(s) answered will not be marked.	
NI:4m	ogen reacts with hydrogen according to the following equation	on:
N_2	$_{g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$	(11/ marka)
(a)	State the condition(s) that favour formation of ammonia.	(172 marks)
	••••	
	•••••	
	he converted	to nitric
(b)	Write equation(s) to show how ammonia can be converted	$(4\frac{1}{2} marks)$
()	acid.	

		Turn Over

(c)	Write (i)	e an equation for the reaction between tin a cold dilute nitric acid.	and (1½ marks
•••••		•••••••••••••••••••••••••••••••••••••••	
	` ,	hot concentrated nitric acid.	$(1\frac{1}{2} marks)$
		de reacts with aqueous sodium hydroxide s	
		$+ NaOH_{(aq)} \xrightarrow{heat} CH_3CH_2OH$	+ NaBr _(aq)
(a)	Write	e the mechanism for the reaction.	(02 marks)
 (b)		e the type of mechanism in (a).	(01 mark)
(c)		e the rate equation for the reaction.	(01 mark)
(d)	Sketc	h a labelled diagram to show an energy pro	ofile for the reaction.

(e)		e equations to show how CH_3CH_2 Br can be conver CH_2CHO .	$(2\frac{1}{2} marks)$
	3		,
			· • • • • • • • • • • • • • • • • • • •
(a)	State	e what is meant by the term enthalpy of hydration.	(01 mark)
 (b)	The	hydration energies of barium and chloride ions are	-1275 kJ mol ⁻¹
	and -	-394 kJ mol ⁻¹ respectively and the lattice energy of	
		ride is -2056 kJ mol ⁻¹ .	
	Calc (i)	culate the; hydration energy of barium chloride.	(1½ marks)
	(1)	ny diamon onoigy or ourself	
•••••	(ii)	heat of solution of barium chloride.	(1½ marks)
. <mark></mark>			
		00 41 4-1 6	
(c)	(i)	State two factors that can affect the magnitude of hydration.	(01 mark)
•••••			
••••	(ii)	Explain how the factors you have stated in (c) (i) enthalpy of hydration.	affect the (04 marks)
		9	Turn Over

(a)	A compound J contains 19.1% nitrogen, 43.6% oxygen by mass, the rest being manganese.							
	(i)	Calculate the empirical formula of J.	$(2\frac{1}{2} marks)$					
•••••	•••••							
•••••	•••••							
•••••	••••••							
•••••	•••••							
•••••	•••••	••••••						
•••••								
•••••	•••••							
•••••	•••••	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •					
		10 g of J in 1000 g of water lowered the freez by 0.127 °C. Determine the molecular formul (K_f for water = 1.86 °C mol ⁻¹ kg ⁻¹)	ang point of water la of J . (02 marks)					
• • • • • •	••••••							
•••••	•••••		•••••					
•••••	•••••		•••••					
• • • • • •	•••••							
•••••	•••••		•••••					
•••••	••••••	•••••••••••••••••••••••••••••••••••••••	•••••					
•••••	•••••		•••••					
•••••	••••••							
•••••	••••••							
• • • • • •	• • • • • • •							

	(b)	When of J , purpl	n a few drops of concentrated nitric acid were added to be a little lead(IV) oxide and the mixture the;	d to a solution boiled, a
		Write		
		(i)	formula and name of J. Formula:	(01 mark)
			Name:	
		(ii)	equation for the reaction leading to formation of t coloured solution.	$(1\frac{1}{2} \text{ marks})$
	(c)	A fev (i)	v drops of aqueous sodium carbonate was added to a State what was observed.	solution of J . (½ mark)
		(ii)	Write an equation for the reaction that took place	(1½ marks)
14.	Nam pairs mem	e a rea of cor	gent that can be used to distinguish between each one of the case state what would be observed the pair was separately treated with the reagent you	f the following
	(a)	C_6H_5	CHO and CH_3CHO .	

				Turn Over
			11	

(b)	$CH_3CH_2C \equiv CH$ and $CH_3CH_2CH = CH_2$.	(03 mar
•••••		
•••••		
(c)	CH_3CHCH_2OH and $CH_3CHCH_2CH_3$. CH_3 OH	(03 mar
•••••	••••••	
•••••		
•••••		
(a)		•••••
(a)	•	(02 mari
(a)	Briefly explain what is meant by the term basic buffer.	(02 mari
(a)(b)	Briefly explain what is meant by the term basic buffer . 500 cm ³ of a 1 M solution of ammonia was mixed with 50	(02 mari
	Briefly explain what is meant by the term basic buffer.	(02 mar)
	Briefly explain what is meant by the term basic buffer . 500 cm ³ of a 1 M solution of ammonia was mixed with 50 1 M ammonium chloride solution. Calculate the pH of the resultant solution. (pK_b of ammonia solution = 4.74)	(02 mari
	Briefly explain what is meant by the term basic buffer . 500 cm ³ of a 1 M solution of ammonia was mixed with 50 1 M ammonium chloride solution. Calculate the pH of the resultant solution. (pK_b of ammonia solution = 4.74)	(02 mar)
	Briefly explain what is meant by the term basic buffer . 500 cm ³ of a 1 M solution of ammonia was mixed with 50 1 M ammonium chloride solution. Calculate the pH of the resultant solution. (pK_b of ammonia solution = 4.74)	(02 mari
	Briefly explain what is meant by the term basic buffer . 500 cm ³ of a 1 M solution of ammonia was mixed with 50 1 M ammonium chloride solution. Calculate the pH of the resultant solution. (pK_b of ammonia solution = 4.74)	(02 mark

	•••••	••••••••••••••••••••••••••••••••••	
	•••••		
	•••••		
	(c)	Two drops of dilute sodium hydroxide solution were added t resultant solution in (b). State what happened to the pH of the solution. Give a reason for your answer.	ne (02 marks)
16.	(a)	State three properties in which cobalt differs from calcium. ([1½ marks)
		11.	1
	(b)	To an aqueous solution containing cobalt(II) ions was added concentrated hydrochloric acid dropwise until in excess.	1
		Name the cobalt species present in the solution;	
		(i) before addition of hydrochloric acid.	(½ mark)
		(ii) after addition of excess hydrochloric acid.	(½ mark)

	(c) Concentrated ammonia solution was added dropwise until in excess a solution containing cobalt(II) ions and the mixture allowed to stand										
		(i)	State what was observed.	(02 marks)							
			······································								
	•••••	• • • • • • • • • • • • • • • • • • • •									
		(ii)	Write equation(s) for the reactions that took place.								
		•••••••									
17.	(a)	11.6	% solution of a monomer, M has the same osmotic process of a solution containing 1.65 g of a polymer of a 1040 at 298 K.								
		Calc	ulate the relative molecular mass of M.	(03 marks)							
			······································								
			······································								
		• • • • • • • • • • • • • • • • • • • •									
	•••••			· · · · · · · · · · · · · · · · · · ·							
		,									
				• • • • • • • • • • • • • • • • • • • •							

(b) The structural formulae of some monomers are shown in the table 3. Complete the table by writing in the spaces provided; the structural formula of the polymers formed, type of polymerisation and one use of each polymer.

Table 3

(06 marks)

Table 3		(06	marks)
Structural formula of monomer (s)	Structural formula of polymer	Type of Polymerisation	Use of Polymer
(i) $CH_2 = C - CH = CH_2$ CH_3	p o symmet	Folymerisation	Totymer
(ii) HOCH ₂ CH ₂ OH + O H C C H C H C H C H C H C H C H C C H			
(iii) $CH_2 = CH - CN$			

Periodic Table

												Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, which i	1		1		
1	2		-									3	4	5	6	7	8
1.0 H 1		J										5				1.0 H 1	4.0 He 2
6.9 Li 3	9.0 Be 4											10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 No 10
	24.3 Mg 12											27.0 Al 13	28.1 Si 14	31.0 P 15	32.1 S 16	35.4 Cl 17	40.0 A1 18
39.1 K 19	40.1 Ca 20	45.0 Sc 21	47.9 Ti 22	50.9 V 23	52.0 Cr 24	54.9 Mn 25	l	1	58.7 Ni 28	63.5 Cu 29				74.9 As 33	79.0 Se 34		83.8 K 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40	92.9 Nb 41	95.9 Mo 42	98.9 Tc 43	101 Ru 44			108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
133 Cs 55	137 Ba 56	139 La 57	178 Hf 72	181 Ta 73	184 W 74	186 Re 75	190 Os 76	192 Ir 77	195 Pt 78	197 Au 79			207 Pb 82	Bi	Po	210 At 85	222 Ri 86
223 Fr 87	226 Ra 88	227 Ac 89		I		175		L									
L			139 La 57	140 Ce 58		144 Nd 60	147 Pm 61			157 Gd 64			165 Ho 67		169 Tm 69		175 L 71
			227 Ac 89	232 Th 90	ı	238 U 92	237 Np 93	244 Pu 94		247 Cm 96	247 Bk 97		Es	Fm	Md	No	260 L 103

CS CamScanner