多元函数微分

二元函数的极限

定义

• 重极限:

自变量 x,y **同时** 以任何方式趋近于 x_0,y_0 ,表示为

$$L=\lim_{(x,y) o(x_0,y_0)}f(x,y)$$

• 累次极限:

自变量 x, y **依一定的先后顺序** 相继趋近于 x_0, y_0 , 以先对 $x(\rightarrow x_0)$ 后对 $y(\rightarrow y_0)$ 的累次极限为例

$$K = \lim_{y o y_0} \lim_{x o x_0} f(x,y)$$

定理

- 若两种累次极限和重极限均存在,则三者相等
- 若两种累次极限存在但是不相等,则重极限必不存在

二元函数的连续性

• 连续与间断点

f关于 D 在 P_0 连续 $\iff \lim_{P \to P_0} f(P) = f(P_0)$

- 。 若 P_0 是 D 的聚点,而上式不成立,则 P_0 称为 **间断点**
- 。 若左边的极限存在而不等于 $f(P_0)$ 则称为 **可去间断点**
- 全增量与偏增量

对于 $P_0(x_0,y_0),P(x,y)\in D,\Delta x=x-x_0,\Delta y=y-y_0$,称 $\Delta z=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)$ 为 f 在 P_0 的 **全增量**

- 。 f 关于 D 在 P_0 连续 $\iff \lim_{(\Delta x, \Delta y) o (0,0)} \Delta z = 0$
- 。 在全增量中取 $\Delta x = 0$ 或 $\Delta y = 0$,相应的函数增量称为 **偏增量**
- 。 全增量极限为零 则 偏增量极限也为零 (反过来则不一定)

• 有界闭域上连续函数的性质

。 有界性与最大最小值定理

若 f 在有界闭域上连续,则在该区域内有界 且 能取得最大最小值

。 一致连续性定理

若 f 在有界闭域上连续,则 f 在该区域上 **一致连续**,既 对任何 $\epsilon>0$,总存在 $\delta(\epsilon)$,使得 对一切点 P,Q,只要 $\rho(P,Q)<\delta$ 就有 $|f(P)-f(Q)|<\epsilon$

。 介值性定理

若 f 在有界闭域上连续, P_1,P_2 为 D 中任意两点,且 $f(P_1) < f(P_2)$ 则对任何满足 $f(P_1) < \mu < f(P_2)$ 的 实数 μ 必存在点 $P_0 \in D$,使得 $f(P_0) = \mu$

多元函数微分学

全微分

若 f 在点 $P_0(x_0, y_0)$ 处的全增量 Δz 可以表示为

$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) \ = A\Delta x + B\Delta y + o(
ho)$$

其中 A,B 是仅与 P_0 有关的常数, $\rho = \sqrt{\Delta x^2 + \Delta y^2}$, $o(\rho)$ 是较 ρ 高阶的无穷小量,则称 f 在 P_0 **可微**,

称线性函数 $A\Delta x + B\Delta y$ 为函数 f 在点 P_0 的 **全微分**,记作

$$dz|_{P_0}=df(x_0,y_0)=A\Delta x+B\Delta y$$

• 当 $|\Delta x|, |\Delta y|$ 足够小时,全微分可以作为全增量的近似值,既

$$f(x,y) pprox f(x_0,y_0) + A(x-x_0) + B(y-y_0)$$

可微性条件

• 可微的必要条件:

若 f 在区域 D 上每一点都可微,则 f 在 D 上的全微分为

$$df(x,y) = f_x(x,y) dx + f_y(x,y) dy$$

• 可微的充分条件:

若函数 z=f(x,y) 的偏导数在点 (x_0,y_0) 的某邻域内存在,且 f_x , f_y 在点 (x_0,y_0) 连续,则函数 f 在点 (x_0,y_0) 可微

- 注:由于这是充分条件,所以不能通过偏导数的不连续推出函数的不可微
- 。 若函数在某点处的偏导数均连续,则称该函数在这点上 连续可微

• 中值公式:

若函数 f 在点 (x_0,y_0) 的某邻域存在偏导数,对于该邻域内的点 (x,y) 存在 $\xi=x_0+\theta_1(x-x_0), \eta=y_0+\theta_2(y-y_0), 0<\theta_1,\theta_2<1$ 使得

$$f(x,y) - f(x_0,y_0) = f_x(\xi,y)(x-x_0) + f_y(x_0,\eta)(y-y_0)$$

复合函数的全微分

若以 x,y 为自变量的函数 z=f(x,y) 可微,则其全微分为

$$dz = rac{\partial z}{\partial x} dx + rac{\partial z}{\partial y} dy$$

用例子来说明 利用复合函数全微分求偏导数 的方法

例: 设 $z=e^{xy}\sin(x+y)$, 求 $rac{\partial z}{\partial x},rac{\partial z}{\partial u}$

解:

$$\diamondsuit z = e^u \sin v, u = xy, v = x + y$$
,得到

$$egin{aligned} dz &= z_u du + z_v dv = e^u \sin v du + e^u \cos v dv \ du &= y dx + x dy \ dv &= dx + dy \end{aligned}$$

$$\therefore dz = e^u \sin v(ydx + xdy) + e^u \cos v(dx + dy)$$
$$= e^{xy} [y \sin(x+y) + \cos(x+y)] dx + e^{xy} [x \sin(x+y) + \cos(x+y)] dy$$

$$\therefore z_x = e^{xy}[y\sin(x+y) + \cos(x+y)]$$
$$z_y = e^{xy}[x\sin(x+y) + \cos(x+y)]$$

偏导数

设 $z=f(x,y),(x,y)\in D$ 若 $(x_0,y_0)\in D$ 且 $f(x,y_0)$ 在 x_0 的某邻域内有定义,则当

$$\lim_{\Delta x o 0} rac{\Delta_x f(x_0,y_0)}{\Delta x} = \lim_{\Delta x o 0} rac{f(x_0 + \Delta x,y_0) - f(x_0,y_0)}{\Delta x}$$

存在时,称中国极限为 f 在点 (x_0,y_0) 关于 x 的 **偏导数**,记作

$$\left.f_x(x_0,y_0)
ight.$$
 或 $\left.rac{\partial f}{\partial x}
ight|_{(x_0,y_0)}$

若 $z = f(x,y), (x,y) \in D$ 在每一点上都存在对 x 或对 y 的偏导数,则可得到 z = f(x,y) 对 x 或对 y 的偏导函数(简称偏导数),记作

$$f_x(x,y)$$
 或 $\frac{\partial f}{\partial x}$

如何求偏导数

- 1. 先将其他自变量看作常数
- 2. 对当前自变量作一元函数求导

复合函数求导(链式法则)

若函数 $x=\varphi(s,t), y=\psi(s,t)$ 在点 $(s,t)\in D$ 可微,且 z=f(x,y) 在 点 $(x,y)=(\varphi(s,t),\psi(s,t))$ 可微,则复合函数 $z=f(\varphi(s,t),\psi(s,t))$ 在点 (s,t) 可微,其偏导数为

$$\frac{\partial z}{\partial s} \Big|_{(s,t)} = \frac{\partial z}{\partial x} \Big|_{(x,y)} \frac{\partial z}{\partial s} \Big|_{(s,t)} + \frac{\partial z}{\partial y} \Big|_{(x,y)} \frac{\partial y}{\partial s} \Big|_{(s,t)}$$

$$\frac{\partial z}{\partial t} \Big|_{(s,t)} = \frac{\partial z}{\partial x} \Big|_{(x,y)} \frac{\partial z}{\partial t} \Big|_{(s,t)} + \frac{\partial z}{\partial y} \Big|_{(x,y)} \frac{\partial y}{\partial t} \Big|_{(s,t)}$$

一般的,对于 $f(u_1, u_2, \ldots, u_m), u_k = g_k(x_1, x_2, \ldots, x_n)$ 复合函数的偏导数为

$$rac{\partial f}{\partial x_i} = \sum_{k=1}^m rac{\partial f}{\partial u_k} rac{\partial u_k}{\partial x_i}, \ (i=1,2,\ldots,n)$$

方向导数

定义

设三元函数 f 在点 $P(x_0,y_0,z_0)$ 的某邻域 $U(P_0)\subset \mathbf{R^3}$ 有定义,l 为从点 P_0 出发的射线,

P(x,y,z) 为在 l 上且含于 $U(P_0)$ 内的任一点,以 ρ 表示 P,P_0 之间的距离,若极限

$$\lim_{
ho o 0^+}rac{f(P)-f(P_0)}{
ho}=\lim_{
ho o 0^+}rac{\Delta_l f}{
ho}$$

存在,则称此极限为 f 在点 P_0 沿方向 l 的 **方向导数**,记作

$$f_t(P_0)$$
 或 $\frac{\partial f}{\partial l}\Big|_{P_0}$

计算公式

$$f_t(P_0) = f_x(P_0)\coslpha + f_y(P_0)\coseta + f_z(P_0)\cos\gamma \ \cos heta_i = rac{l_i}{|l|}$$

其中 α , β , γ 为方向 l 的方向余弦

梯度

定义

若多元函数在某点存在对所有自变量的偏导数,

则称向量 $(f_x(P_0), f_y(P_0), f_z(P_0))$ 为函数 f 在点 P_0 的 **梯度**,记作

$$\mathbf{grad} f = (f_x(P_0), f_y(P_0), f_z(P_0)) \ |\mathbf{grad} f| = \sqrt{f_x(P_0^2 + f_y(P_0^2 + f_z(P_0^2)))}$$

• 若记 l 方向上的单位向量为

$$l_0 = (\cos \alpha, \cos \beta, \cos \gamma)$$

则方向导数公式也可以写成

$$f_l(P_0) = \mathbf{grad} f(P_0) \cdot l_0 = |\mathbf{grad} f(P_0)| \cos \theta$$

 θ 指梯度向量与 l_0 的夹角

高阶偏导数

$$egin{aligned} f_{xx}(x,y) &= rac{\partial}{\partial x}(rac{\partial z}{\partial x}) = rac{\partial^2 z}{\partial x^2} \ f_{xy}(x,y) &= rac{\partial}{\partial y}(rac{\partial z}{\partial x}) = rac{\partial^2 z}{\partial x \partial y} \ f_{yx}(x,y) &= rac{\partial}{\partial x}(rac{\partial z}{\partial y}) = rac{\partial^2 z}{\partial y \partial x} \ f_{yy}(x,y) &= rac{\partial}{\partial y}(rac{\partial z}{\partial y}) = rac{\partial^2 z}{\partial y^2} \end{aligned}$$

定理

• 若 $f_{xy}(x,y), f_{yx}(x,y)$ 都在点 (x_0,y_0) 连续,则

$$f_{xy}(x,y) = f_{yx}(x,y)$$

复合函数的高阶偏导数

例: 设 $z = f(x, \frac{x}{y})$, 求 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial x \partial y}$

解:

令
$$z = f(u, v), u = x, v = \frac{x}{y}$$
, 得到
$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial x} = \frac{\partial f}{\partial u} + \frac{1}{u} \frac{\partial f}{\partial v}$$

$$\begin{split} \frac{\partial^2 z}{\partial x^2} &= \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial u} + \frac{1}{y} \frac{\partial f}{\partial v} \right) \\ &= \frac{\partial^2 f}{\partial u^2} + \frac{2}{y} \frac{\partial^2 f}{\partial u \partial v} + \frac{1}{y^2} \frac{\partial^2 f}{\partial v^2} \\ \frac{\partial^2 z}{\partial x \partial y} &= \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial u} + \frac{1}{y} \frac{\partial f}{\partial v} \right) \\ &= -\frac{x}{y^2} \frac{\partial^2 f}{\partial u \partial v} - \frac{x}{y^3} \frac{\partial^2 f}{\partial v^2} - \frac{1}{y^2} \frac{\partial f}{\partial v} \end{split}$$

中值定理

设二元函数 f 在凸开域 $D\subset \mathbf{R^2}$ 上可微,则对任意两点 $P(a,b), Q(a+h,b+k)\in D$ 存在 $0<\theta<1$ 使得

$$f(a+h,b+k)-f(a,b) \ = hf_x(a+ heta h,b+ heta k)+kf_y(a+ heta h,b+ heta k)$$

注:

此处的公式与二元函数可微性条件中的中值公式的区别在于, 此处的公式的中值点在两点连线上,且只有一个 θ

• **推论**: 若函数 *f* 在区域 *D* 上存在偏导数,且

$$f_x = f_y \equiv 0$$

则 f 在区域 D 上为常量函数

泰勒公式

若函数 f 在点 $P_0(x_0,y_0)$ 的某邻域 $U(P_0)$ 上有直到 n+1 阶的**连续偏导数**,则对 $U(P_0)$ 上任一点 (x_0+h,y_0+k) ,存在相应的 $\theta\in(0,1)$,使得

$$f(x_0+h,y_0+k) = f(x_0,y_0) + \ (hrac{\partial}{\partial x} + krac{\partial}{\partial y})f(x_0,y_0) + \ rac{1}{2!}(hrac{\partial}{\partial x} + krac{\partial}{\partial y})f(x_0,y_0) + \ \cdots + \ rac{1}{n!}(hrac{\partial}{\partial x} + krac{\partial}{\partial y})^n f(x_0,y_0) + \ rac{1}{(n+1)!}(hrac{\partial}{\partial x} + krac{\partial}{\partial y})^{n+1}f(x_0+\theta h,y_0+\theta k)$$

其中
$$rac{1}{n!}(hrac{\partial}{\partial x}+krac{\partial}{\partial y})^nf(x_0,y_0) \ =\sum_{i=0}^n C_n^irac{\partial^n}{\partial x^i\;\partial y^{m-i}}\;h^ik^{m-i}\;f(x_0,y_0)$$

极值问题

• 极值的必要条件:

若函数 f 在点 $P_0(x_0, y_0)$ 存在偏导数,且在 P_0 取得极值,则

$$f_x(x_0,y_0)=0, f_y(x_0,y_0)=0$$

旦称该点为 **极值点**

- 。 若满足上式而取不到极值则称为 稳定点
- 极值的充分条件:

设二元函数 f 在点 $P_0(x_0, y_0)$ 的某邻域 $U(P_0)$ 上具有二阶连续偏导数,且 P_0 是稳定点,则

当 $\mathbf{H}_f(P_0)$ 是正定矩阵, f 在点 P_0 取得 **极小值**

当 $\mathbf{H}_f(P_0)$ 是负定矩阵,f 在点 P_0 取得 **极大值**

当 $\mathbf{H}_f(P_0)$ 是不定矩阵,f 在点 P_0 不取极值

• 黑塞矩阵:

$$\mathbf{H}_f(P_0) = egin{pmatrix} f_{xx}(P_0) & f_{xy}(P_0) \ f_{yx}(P_0) & f_{yy}(P_0) \end{pmatrix} = egin{pmatrix} f_{xx} & f_{xy} \ f_{yx} & f_{yy} \end{pmatrix}_{P_0}$$

- 极值的充分条件的实用写法:
 - 1. 当 $f_{xx}(P_0)>0, (f_{xx}f_{yy}-f_{xy}^2)(P_0)>0$ 时,取极小值
 - 2. 当 $f_{xx}(P_0) < 0$, $(f_{xx}f_{yy} f_{xy}^{2})(P_0) > 0$ 时,取极大值
 - 3. 当 $(f_{xx}f_{yy}-f_{xy}^2)(P_0)<0$ 时,不取极值
 - 4. 当 $(f_{xx}f_{yy}-f_{xy}^{2})(P_{0})=0$ 时,不确定

隐函数定理