

Name:

KIT-Fakultät für Informatik

Prof. Dr. Mehdi Tahoori, Prof. Dr. Wolfgang Karl

Lösungsblätter zur Klausur

Digitaltechnik und Entwurfsverfahren (TI-1)

und

Rechnerorganisation (TI-2)

am 23. Juli 2018, 14:00 – 16:00 Uhr

Matrikelnummer:

Vorname:

	I
Digitaltechnik und En	atwurfsverfahren (TI-1)
Aufgabe 1	von 11 Punkten
Aufgabe 2	von 10 Punkten
Aufgabe 3	von 6 Punkten
Aufgabe 4	von 9 Punkten
Aufgabe 5	von 9 Punkten
Rechnerorganisation (Aufgabe 6	(TI-2) von 10 Punkten
Aufgabe 7	von 10 Punkten
Aufgabe 8	von 11 Punkten
Aufgabe 9	von 8 Punkten
Aufgabe 10	von 6 Punkten
Gesamtpunktzahl:	
	Note:

${\bf Aufgabe\ 1} \quad \textit{Schaltfunktionen}$

1. f(d, c, b, a):

Primimplikanten:

- 2. Disjunktive Minimal form von f(d, c, b, a):
- 3. Die Schaltfunktion ist

Begründung:

- 4. Kernprimimplikanten:
- $5. \ \, \ddot{\text{U}} \text{berdeckungs} \text{funktion:}$

Aufgabe 2 Schaltnetze und CMOS-Technologie

1. Disjunktive **Minimal**form von f(d, c, b, a):

2. Disjunktive **Normal**form von g(d, c, b, a):

3. Schaltfunktion h(d,c,b,a) in disjunktiver Form:

Name: Vorname: Matr.-Nr.: 4

4. Funktionstabelle und Transistor-Schaltnetz eines Tristate-Inverters:

Aufgabe 3 Laufzeiteffekte

Vorname:

1. Verlauf von y:

2.

3.

Vorname: Matr.-Nr.: 6 Name:

\mathbf{A}

u	fgabe 4 Schaltwerke
1.	Automatentyp:
	Begründung:
2.	Ansteuerfunktion:
	Zustandsübergangsgleichung:
	Ausgabefunktion:

3. Automatengraph des Schaltwerks:

4. Automatengraph mit minimaler Anzahl Zustände:

5. Zustandsübergangsgleichungen:

Name: Matr.-Nr.: 8 Vorname:

A

Aufgabe 5 Rechnerarithmetik & Codes	
1. $43, 21_5$ als Dezimalzahl:	
2. $9,6C_{16}$ als Zahl zur Basis 8:	
3. 1001 0100 0010 0000 0000 0000 0000 00	
(a) Vorzeichenlose Dualzahl:	
(b) Zahl in Zweierkomplement-Darstellung:	
(c) Gleitkomma-Zahl im IEEE-754-Standard in einfacher Genauigkeit	:
4. Datenwörter:	

Name:

Vorname:

Matr.-Nr.:

9

${\bf Aufgabe~6} \quad \textit{MIPS-Assembler}$

1. Inhalte der Zielregister:

Befehl	Zielregister = Wert	(z.B. \$s6 = 0x0000 F00A)
ori \$s1, \$zero, 0x2009		
sll \$s2, \$s1, 3		
slti \$s3, \$s2, 0x0001 0049		
sub \$s4, \$s3, \$s2		

2. C-Kontrollstrukturen in MIPS-Assembler:

(a) if (
$$k == j$$
) $k = 0$;

3. Fehlerfreie Version:

Aufgabe 7 Pipelining

1. Kategorisierte Datenabhängigkeiten:

2. Zustand von Pipeline und Registern:

Takt	IF	ID/RF	EX	MEM	WB	\$t1	\$t2	\$t3	\$t4	\$t5
1	S1					3	5	7	9	2

Anzahl der Takte:

Name:	Vorname:	MatrNr.:	11
3. Behebung der Pipeline	konflikte durch Einfügen v	on NOP-Befehlen:	

Anzahl der Takte:

4. Bedingte Sprünge (Problem und zwei Behandlungsmöglichkeiten):

${\bf Aufgabe~8} \quad {\it Cache-Speicher}$

1. (a) Anzahl der Cache-Einträge:

(b) Cache-Organisation:

2. Speicherbedarf:

3. Speicherzugriffe:

Adresse	64	32	64	0	112	64	128	48	240	0
read/write	r	r	r	r	W	w	r	r	r	W
Index	0	2								
Tag	1	0								
Hit/Miss	Miss									
write back?	nein									

Aufgabe 9 Virtuelle Speicherverwaltung

1. Virtuelle und physikalische Adresse:

2. Anzahl der Seiten:

Anzahl der Einträge in der Seitentabelle:

3. Anzahl der Bits pro Eintrag:

Anzahl der benötigten Seiten für die Seitentabelle:

Name: Vorname: Matr.-Nr.: 14

Aufgabe 10 Multiple Choice

1.

Speicher-Bausteine	richtig	falsch
SDRAM arbeitet synchron zum Systemtakt und Datenpakete werden sowohl bei steigender als auch bei fallender Taktflanke übertragen.		
SRAM wird vorwiegend für schnelle Zwischenspeicher wie Register und Caches eingesetzt.		
Eine DRAM-Speicherzelle besteht aus zwei rückgekoppelten Invertern.		
Statische RAM-Bausteine lassen sich dichter als dynamische RAM-Bausteine integrieren.		

2.

Cache-Speicher	richtig	falsch
Cache-Speicher größer Kapazität werden in der Regel als vollassoziative Cache-Architektur realisiert.		
Bei einem virtuellen Cache-Speicher werden die höherwertigen Bits der logischen Adresse als Tag abgelegt		
Bei einem physikalischen Cache-Speicher werden höchstens genauso viele Bits als Tag gespeichert wie bei einem virtuellen Cache-Speicher.		
Bei einem Hit in einem physikalischen Cache-Speicher wird die Speicherverwaltungseinheit (MMU) zur Adressumsetzung nicht benötigt.		

3.

Systembusse	richtig	falsch
Ein semi-synchroner Systembus arbeitet synchron zum Systemtakt.		
Die langsamste Komponente an einem synchronen Systembus bestimmt den Systemtakt.		
An einem Bus darf es immer nur einen Master geben, aber beliebig viele Slaves.		
Auf einem Split-Bus werden Adresse und Daten zeitlich nacheinander auf den gleichen Leitungen übertragen.		