Algebraic Methods in Graph Theory

Let G be a graph with vertex set $\{v_1, v_2, \ldots, v_n\}$. Recall its adjacent matrix $A = A(G) = (a_{ij})_{n \times n}$, where a_{ij} is the number of edges joining vertices v_i and v_j , each loop counted as 2 edges.

	u	v	w	\boldsymbol{x}	y
u	2	1	0	1	0
v	1	0	1	1	0
w	0	1	0	2	0
\boldsymbol{x}	1	1	2	0	1
y	0	0	$\frac{w}{0}$	1	0

A walk in a graph G is a sequence $W = v_0 e_1 v_1 \cdots v_{\ell-1} e_{\ell} v_{\ell}$, whose terms are alternately vertices and edges of G (not necessarily distinct), such that v_{i-1} and v_i are the ends of e_i , $1 \le i \le \ell$. The length of W is ℓ .

Theorem 46. Let G be a graph with vertex set $V(G) = \{v_1, v_2, \dots, v_n\}$ and adjacency matrix $A = (a_{ij})_{n \times n}$. Then the (i, j)-entry of A^k is the number of (v_i, v_j) -walks of length k in G.

Proof. Clearly, the result holds for k = 1.

Assume that the result holds for k-1. Then the (i,j)-entry of

$$A^{k} = \begin{matrix} v_{1} \\ b_{11} \\ b_{12} \\ \vdots \\ b_{i1} \\ b_{i2} \\ \vdots \\ b_{n1} \\ b_{n2} \\ \vdots \\ b_{nn} \end{matrix} \begin{matrix} v_{1} \\ v_{n} \\ b_{1n} \\ \vdots \\ b_{nn} \end{matrix} \begin{matrix} v_{1} \\ v_{1} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ a_{11} \\ \vdots \\ a_{21} \\ \vdots \\ a_{n1} \\ \vdots \\ a_{n1} \\ \vdots \\ a_{n1} \\ \vdots \\ a_{n1} \\ \vdots \\ a_{nn} \end{matrix} \begin{matrix} v_{1} \\ v_{2} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ a_{21} \\ \vdots \\ a_{n1} \\ \vdots \\ a_{n1} \\ \vdots \\ a_{nn} \end{matrix} \begin{matrix} v_{1} \\ v_{2} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ v_{2} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_{n} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \begin{matrix} v_{1} \\ \vdots \\ v_$$

is

$$b_{i1}a_{1j}+b_{i2}a_{2j}+\cdots+b_{in}a_{nj},$$

and so the result follows.

If G is a simple graph with vertex set $\{v_1, v_2, \dots, v_n\}$, then its adjacent matrix is $A = A(G) = (a_{ij})_{n \times n}$, where

 $a_{ij} = 1$ if $v_i v_j \in E(G)$, and $a_{ij} = 0$ otherwise.

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix}$$

Thus $A = A(G) = (a_{ij})_{n \times n}$ is a symmetric matrix with zero diagonal. The eigenvalues of A are the n roots of the characteristic polynomial

$$|\lambda I - A|$$
.

They are independent of the labelling of the vertices of G, because similar matrices have the same characteristic polynomial: if the labels are permuted we obtain a (0,1)-adjacency matrix $A' = P^{-1}AP$, where P is a permutation matrix.

Accordingly we speak of the *characteristic polynomial of G*, denoted by $P_G(x)$, and the *spectrum of G*, which consists of the *n eigenvalues of G*:

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$$
.

The eigenvalues of A are the real numbers λ satisfying

$$Ax = \lambda x$$

for some non-zero vector $x \in \mathbb{R}^n$. Each such vector x is called an *eigenvector* of the matrix A corresponding to the eigenvalue λ .

The relation $Ax = \lambda x$ can be interpreted in the following way:

if
$$x = (x_1, x_2, ..., x_n)^T$$
, then

$$A \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix},$$

$$\sum_{i=1}^{n} x_i \quad (i = 1, 2, -n)$$

$$\lambda x_i = \sum_{v_i v_j \in E(G)} x_j \ (i = 1, 2, ..., n).$$

Proposition 12. If the graph G has maximum degree $\Delta(G) = \Delta$, then $|\lambda| \leq \Delta$

for every eigenvalue λ of G.

Proof. Let λ be any eigenvalue of A(G) = A, and $x = (x_1, x_2, \dots, x_n)^T$ be an eigenvector of A corresponding to the eigenvalue λ .

Suppose that $|x_i| = \max\{|x_j| : 1 \le j \le n\}$. It is clear that $x_i \ne 0$.

By the arguments before, we have

$$|\lambda||x_i| = \left|\sum_{v_i v_j \in E(G)} x_j\right| \le \sum_{v_i v_j \in E(G)} |x_j| \le \Delta |x_i|.$$

Example. For the graph W_4 , as shown before, we have

$$\begin{vmatrix} \lambda & -1 & 0 & -1 & -1 \\ -1 & \lambda & -1 & 0 & -1 \\ 0 & -1 & \lambda & -1 & -1 \\ -1 & 0 & -1 & \lambda & -1 \\ -1 & -1 & -1 & -1 & \lambda \end{vmatrix} = x^{2}(x+2)(x^{2}-2x-4).$$

$$\lambda_{1} = 1 + \sqrt{5}, \qquad x_{1} = (-1, -1, -1, -1, -1 + \sqrt{5})^{T};$$

$$\lambda_{2} = \lambda_{3} = 0, \qquad x_{2} = (0, 1, 0, -1, 0)^{T}, \quad x_{3} = (1, 0, -1, 0, 0)^{T};$$

$$\lambda_{4} = 1 - \sqrt{5}, \qquad x_{4} = (-1, -1, -1, -1, -1, -1 - \sqrt{5})^{T};$$

$$\lambda_{4} = -2, \qquad x_{5} = (1, -1, 1, -1, 0)^{T};$$

Proposition 13. A graph G is regular (of degree k) if and only if all-1 vector is an eigenvector of G (with corresponding eigenvalue k).

Proof. If G is k-regular, then each row of A = A(G) has exactly k 1's, so

$$A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = k \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

On the other hand, if

$$A \begin{pmatrix} 1 \\ 1 \\ \dots \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \\ \dots \\ 1 \end{pmatrix},$$

then each row of A = A(G) has exactly λ 1's, so G is regular of degree λ .

Example. The spectrum of Petersen graph is

$$3,1,1,1,1,1,-2,-2,-2,-2$$

We say that two graphs are *cospectral* if they have the same spectrum.

Clearly, isomorphic graphs are cospectral (in other words, the spectrum is a graph invariant). However, cospectral graphs are not necessarily isomorphic:

Example. non-isomorphic cospectral connected graphs with fewest vertices.

$$(x-1)(x+1)^2(x^3-x^2-5x+1)$$

Theorem 47. Let $\mathcal{F} = \{F_1, \dots, F_k\}$ be a decomposition of K_n into complete bipartite graphs. Then $k \ge n-1$.

Proof. Let $V = V(K_n)$ and F_i have bipartition (X_i, Y_i) , $1 \le i \le k$.

Associated each $v \in V$ a variable x_v . Consider the following linear equations:

$$\sum_{v \in V} x_v = 0, \qquad \sum_{v \in X_i} x_v = 0, \quad 1 \le i \le k.$$

If k < n - 1, then this linear equations has a solution $x_v = c_v$, $v \in V$, with $c_v \ne 0$ for at least one $v \in V$. Thus

$$\sum_{v \in V} c_v = 0, \qquad \sum_{v \in X_i} c_v = 0, \quad 1 \le i \le k.$$

Because \mathcal{F} is a decomposition of K_n ,

$$\sum_{uv \in E} c_u c_v = \sum_{i=1}^k \left(\sum_{u \in X_i} c_u \right) \left(\sum_{v \in Y_i} c_v \right).$$

Therefore,

$$0 = \left(\sum_{u \in V} c_u\right)^2 = \sum_{u \in V} c_u^2 + 2\sum_{i=1}^k \left(\sum_{u \in X_i} c_u\right) \left(\sum_{v \in Y_i} c_v\right) = \sum_{u \in V} c_u^2 > 0.$$

Theorem 48 (*The Friendship Theorem*). Let G be a simple graph of order n in which any two vertices have exactly one common neighbor. Then G has a vertex of degree n-1.

Proof. Assume to the contrary that $\Delta(G) < n - 1$. Consider two nonadjacent vertices x and y. Assume $d(x) \ge d(y)$ and z the unique common neighbor of x and y. For any $v \in N_G(x) \setminus \{z\}$, let f(v) be the unique common neighbor of v and y.

There are at most one $v \in N_G(x) \setminus \{z\}$ such that f(v) = z, for otherwise,

There is one $v \in N_G(x) \setminus \{z\}$, say v_1 , such that $f(v_1) = z$.

There is no $v \in N_G(x) \setminus \{z\}$ such that f(v) = z.

By the arguments above, d(x) = d(y) for any nonadjacent vertices x and y. We now show that G is regular.

It suffices to show that \overline{G} is connected. Because $\delta(\overline{G}) = n - 1 - \Delta(G) > 0$, each component of \overline{G} has at least 2 vertices.

If \overline{G} is disconnected, then G has a quadrilateral C_4 , a contradiction. So G is k-regular for some integer k.

Count the number of paths of length 2 in G in two ways, we have

$$n\binom{k}{2} = \binom{n}{2},$$

which implies

$$n = k^2 - k + 1$$
.

Let A be the adjacency matrix of G. Then

$$A^{2} = \begin{pmatrix} k & 1 & \cdots & 1 \\ 1 & k & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & k \end{pmatrix} = J + (k-1)I.$$

The eigenvalues of J are: 0 (n-1), and n (1), A^2 are: k-1 (n-1), and k^2 (1), A are: $\pm \sqrt{k-1}$ (n-1), and k (1).

Because tr(A) = 0, we have $t\sqrt{k-1} = k$ for some integer t, which implies k = 2, n = 3.

Exercise 13.

1. Show that the eigenvalues of a cycle C_n are

$$2\cos\frac{2\pi i}{n}, i = 0,1,...,n-1.$$

Moore Graphs

A *Moore graph* is a graph with diameter d and girth 2d + 1, for some d > 1. The 5-cycle and the Petersen graph are two known examples with d = 2.

Lemma 1. A Moore graph is regular.

Proof. Let G be a Moore graph with diameter d.

We show first that d(u) = d(v) for any two vertices u, v of G at distance d. Let P(u, v) be the unique path of length d from u to v, and let w be any neighbor of v not on P(u, v). Then d(u, w) = d and the path P(u, w) includes a neighbor w' of u not on P(u, v). Different w determine different w', and so $d(v) \le d(u)$. Similarly, $d(u) \le d(v)$. Next, let C be a cycle of length 2d + 1 in G.

If x, y are adjacent vertices of C, then there exists a vertex z of C such that d(x, z) = d(y, z) = d, and so d(x) = d(y). It follows that all vertices of C have the same degree.

Finally, consider a vertex u not on C, and a shortest path of length ℓ say, from u to C. We may add $d - \ell$ consecutive edges of C to this path to reach a vertex u' of C at distance d from u. Then d(u) = d(u'), and it follows that all vertices of G have the same degree.

Theorem 45. If G is a k-regular Moore graph of order n diameter 2, then we have $k \in \{2,3,7,57\}$.

Definition 1. A *strongly regular* graph with parameters (n, k, p, q) is a k-regular on n vertices in which any two adjacent vertices have exactly p common neighbors and any two nonadjacent vertices have exactly q common neighbors.

Proposition 14. A k-regular Moore graph G of order n diameter 2 is strongly regular with parameters (n, k, 0, 1).

Proof of Theorem 45. For any two nonadjacent vertices u, v, there exists a unique walk of length 2 between u and v. It follows that the adjacency matrix A of G satisfies

$$A^2 + A - (k-1)I = J$$
.

Since J is a polynomial of A, A and J have a common set of eigenvectors. One of these eigenvectors is $\xi = (1,1,...,1)^T$. Thus, we have

$$J\xi = n\xi, \qquad A\xi = k\xi.$$

Let η be any other eigenvector corresponding to eigenvalue λ , then

$$J\eta=0, \qquad A\eta=\lambda\eta,$$

which implies that

$$\lambda^2 + \lambda - (k-1) = 0.$$

Hence A has other two distinct eigenvalues:

$$\lambda_1 = \frac{1}{2} \left(-1 + \sqrt{4k - 3} \right),$$

$$\lambda_2 = \frac{1}{2} \left(-1 - \sqrt{4k - 3} \right).$$

If k is such that λ_1 and λ_2 are not rational, then each has multiplicity (n-1)/2, because A is rational. Thus,

$$tr(A) = k + \frac{n-1}{2} (\lambda_1 + \lambda_2) = k - \frac{k^2}{2} = 0$$

which means that k = 0 and n = 1, or k = 2 and n = 5, that is, $G = C_5$.

If k is such that λ_1 and λ_2 are rational, then since any rational eigenvalues of A are also integral, $\sqrt{4k-3}$ is a square integer, say $\sqrt{4k-3}=t$. Assume the multiplicity of λ_1 is ℓ . Then

$$tr(A) = k + \ell \cdot \frac{t-1}{2} + (n-\ell-1) \cdot \frac{-t-1}{2} = 0.$$

Noting that $n = k^2 + 1$ and $k = (t^2 + 3)/4$, we have

$$t^5 + t^4 + 6t^3 - 2t^2 + (9 - 32\ell)t - 15 = 0.$$

Since the equality above requires solutions in integers, the only candidates for *t* are the factors of 15. The solutions are

$$t = 1,$$
 $\ell = 0,$ $k = 1,$ $n = 2;$
 $t = 3,$ $\ell = 5,$ $k = 3,$ $n = 10;$
 $t = 5,$ $\ell = 28,$ $k = 7,$ $n = 50;$
 $t = 15,$ $\ell = 1729,$ $k = 57,$ $n = 3250;$

Probabilistic Methods in Graph Theory

A (finite) *probability space* (Ω, P) consists of a finite set Ω , called the *sample space*, and a *probability function* $P: \Omega \mapsto [0,1]$ satisfying

$$\sum_{\omega \in \Omega} P(\omega) = 1.$$

We may regard the set \mathcal{G}_n of all labelled graphs on n vertices(or, equivalently, the set of all spanning subgraphs of K_n) as the sample space of a finite probability space (\mathcal{G}_n, P) . The result of selecting an element G of this sample space according to the probability function P is called a *random graph*.

The simplest example of such a probability space arises when all graphs $G \in \mathcal{G}_n$ have the same probability of being chosen. Because $|\mathcal{G}_n| = 2^N$, where $N = \binom{n}{2}$, the probability function in this case is:

$$P(G) = \frac{1}{2^N} \text{ for all } G \in \mathcal{G}_n.$$

A natural way of viewing this probability space is to imagine the edges of K_n as being considered for inclusion one by one, each edge being chosen with probability one half (for example, by flipping a fair coin), these choices being made independently of one another.

The result of such a procedure is a spanning subgraph G of K_n , with all $G \in \mathcal{G}_n$ being equiprobable.

A more refined probability space on the set \mathcal{G}_n may be obtained by fixing a real number p between 0 and 1 and choosing each edge with probability p, these choices again being independent of one another. Because 1-p is the probability that any particular edge is not chosen, the resulting probability function P is given by

$$P(G) = p^m (1-p)^{N-m}$$
 for each $G \in \mathcal{G}_n$,

where m = e(G). This probability space is denoted by $\mathcal{G}_{n,p}$.

Example.

 $\mathcal{G}_{3,p}$ has as sample space the $2^{\binom{3}{2}} = 8$ spanning subgraphs of K_3 shown in the following figure, with the probability function indicated.

The probability space $\mathcal{G}_{3,p}$

Note that the smaller the value of p, the higher the probability of obtaining a sparse graph. We are interested in computing or estimating the probability that a random graph has a particular property.

To each graph property, such as connectedness, there corresponds a subset of \mathcal{G}_n , namely those members of \mathcal{G}_n which have the given property.

The probability that a random graph has this particular property is then just the sum of the probabilities of these graphs.

Example. For a random graph G in $\mathcal{G}_{3,p}$,

the probability that it is connected is $3p^2(1-p) + p^3 = p^2(3-2p)$; the probability that it is bipartite is

$$(1-p)^3 + 3(1-p)^2p + 3(1-p)p^2 = 1 - p^3;$$

and the probability that it is both connected and bipartite is $3p^2(1-p)$.

Recall the lower bound for classical diagonal Ramsey number R(p, p):

Erdős' lower bound (1947):

$$R(p,p) > 2^{\frac{p}{2}} \text{ for } p \ge 3.$$

The number of all red-blue edge colorings of K_n is

$$2^{\binom{n}{2}}$$
.

The number of colorings with monochromatic K_p is at most

$$\binom{n}{p} \cdot 2 \cdot 2^{\binom{n}{2} - \binom{p}{2}}$$

If

$$\binom{n}{p} \cdot 2^{\binom{n}{2} - \binom{p}{2} + 1} < 2^{\binom{n}{2}},$$

then there exists

a red-blue colorings such that K_n has no monochromatic K_p .

By the definition of R(p,p), we have

$$R(p,p) > n$$
.

It is not difficult to show that if $n \le 2^{\frac{p}{2}}$, then

$$\binom{n}{p} < \frac{n^p}{2^{p-1}} \le 2^{\frac{p^2}{2} - p + 1}$$

$$= 2^{\frac{1}{2}p(p-1) - 1} \cdot 2^{-\frac{p}{2} + 2} \le 2^{\binom{p}{2} - 1}$$

Thus,

$$\binom{n}{p} \cdot 2^{\binom{n}{2} - \binom{p}{2} + 1} < 2^{\binom{n}{2}}.$$

By the argument above, we have

$$R(p,p) > 2^{\frac{p}{2}}.$$

Proof using Probabilistic Method:

Color the edges of a complete graph K_N randomly.

That is, color each edge red with probability 1/2, and blue with probability 1/2.

Since the probability that a given copy of K_p has all edges red is

$$2^{-\binom{p}{2}},$$

the expected number of red copies of K_p is

$$2^{-\binom{p}{2}} \binom{N}{p}$$

Similarly, the expected number of blue copies of K_p is

$$2^{-\binom{p}{2}}\binom{N}{p}.$$

Therefore, the expected number of monochromatic copies of K_p is

$$2^{1-\binom{p}{2}}\binom{N}{p}.$$

Since

$$2^{1-\binom{p}{2}}\binom{N}{p} \le 2^{1-\binom{p}{2}}\left(\frac{eN}{p}\right)^p,$$

take

$$N = \left(1 - o(1)\right) \frac{p}{\sqrt{2}e} \left(\sqrt{2}\right)^p,$$

we have

$$2^{1-\binom{p}{2}}\binom{N}{p} \le 2^{1-\binom{p}{2}}\left(\frac{eN}{p}\right)^p < 1.$$

This implies

$$R(p,p) \ge \left(1 - o(1)\right) \frac{p}{\sqrt{2}e} \left(\sqrt{2}\right)^p.$$