International Research and Development Corporation

SPONSOR:

3M Company

COMPOUND:

Fluorad® Fluorochemical FC-143

SUBJECT:

Ninety Day Subacute Rhesus Monkey Toxicity Study.

Edwin I. Goldenthal, Ph.D. Vice President and Director of Research

Collaborators:

D. C. Jessup, Ph.D., Associate
Director of Research
R. G. Geil, D.V.M., Vice
President and Director of Pathology
J. S. Mehring, Ph.D., Director of
Large Animal Toxicology

Date:	November	10	1078
	THO ACIMPET	TO.	17/0

International Research and Development Corporation

TABLE OF CONTENTS (Continued)

o.	Page
Individual Hematological Values	19_20
Means and Significance of Biochemical Values	21
Individual Biochemical Values	22-24
Means and Significance of Urinalysis Values	25
Individual Urinalysis Values	26-28
Summary of Gross Necropsy Observations	29-30
Absolute and Relative Organ Weights	31-32
Microscopic Observations	33-39
	Individual Hematological Values Means and Significance of Biochemical Values Individual Biochemical Values Means and Significance of Urinalysis Values Individual Urinalysis Values Summary of Gross Necropsy Observations Absolute and Relative Organ Weights Microscopic Observations

I. SYNOPSIS

In a ninety day oral study in rhesus monkeys, Fluorad® Fluorochemical FC-143 was administered at dosage levels of 0 (control, treated only with 0.5% Methocel®), 3, 10, 30 and 100 mg/kg/day. Two male and two female monkeys were initiated at each dosage level and also in a control group. The monkeys were observed twice daily for general physical appearance and behavior and pharmacotoxic signs. Body weights were recorded weekly. Hematological, biochemical and urinalysis studies were conducted once in the control period, at the end of the first and third months of study.

The monkeys treated with the higher dose, (100 mg/kg/day) all died during weeks 2 through 5 of the study. At the 30 mg/kg/day dosage level, three monkeys died during weeks 7-12. They all showed signs of toxicity in the gastrointestinal tract (anorexia, emesis, sometimes brown in color, black stools), pale face and gums, swollen face and eyes, slight to severe decreased activity and prostration. The monkeys of the 30 and 100 mg/kg/day dosage level showed body weight losses from the first week of the study.

Because of the early deaths of the monkeys at the 100 mg/kg/day dosage level, the clinical laboratory tests were not conducted.

The monkeys at the 30 mg/kg/day dosage level showed, in the first month of the study, slight increase in prothrombin time and in activated partial thromboplastin time (A.P.T.T.) values, as well as decreased alkaline phosphatase activity in the serum (statistically significant). Only one monkey from this dosage level in this period showed a low albumin value. At the end of the study, the only remaining monkey from the 30 mg/kg/day dosage level showed apparent anemia, low blood glucose, alkaline phosphatase, total protein and albumin values.

There was no mortality at the 10 mg/kg/day dosage level. One monkey had black stool on several days in week 12 and occasionally

anorexia and one monkey exhibited pale face and gums. At this dosage level there was a very slight increase in the activated P.T.T. values in the female monkeys during the first month of the study (not statistically significant). There were no changes in the other indices and no changes in the body weight. In single monkeys from the 3 and 10 mg/kg/day dosage levels, there were trends toward decreased alkaline phosphatase in the serum.

In the control and the 3 mg/kg/day dosage level there was no mortality, no changes in the body weights and no signs of toxicity. Soft stool, diarrhea or emesis were observed occasionally.

The mortality and the above mentioned signs of toxicity in the 30 and 100 mg/kg/day dosage levels were compound-related. There was a trend toward the same signs of toxicity in single monkeys at the 10 mg/kg/day dosage level. The 3 mg/kg/day dosage level seems to be free of signs of toxicity. There is an evident relationship between the administered doses and the degree of the toxicity.

No gross or microscopic lesions which were considered compound-related were seen in tissues other than the adrenals, bone marrow, spleen and lymph nodes for male and female monkeys at the 30 and 100 mg/kg/day dosage levels. Microscopically, the adrenals from male and female monkeys at the 30 and 100 mg/kg/day dosage levels had compound-related marked diffuse lipid depletion; the bone marrow from male and female monkeys at the 30 and 100 mg/kg/day dosage levels had compound-related slight to moderate hypocellularity; the spleen and lymph nodes from male and female monkeys at the 30 and 100 mg/kg/day dosage levels had compound related moderate atrophy of lymphoid follicles.

Statistically significant variations in sex group mean weights of a few organs occurred between the control and experimental groups. These variations were of unknown biological significance and were not accompanied by morphologic alterations.

International Research and Development Corporation

Page 3

II. COMPOUND

The compound was received from 3M Company, Saint Paul, Minnesota on October 24, 1977 as shown below:

 Label	Description		
Fluorochemical FC-143 No. 98-0211-0008-0	white powder		

III. CLINICAL STUDIES

A. METHODS:

1. General Procedure:

Ten male rhesus monkeys (weighing from 2.60 to 3.90 kilograms) and 10 females (weighing from 2.95 to 3.80 kilograms) were initiated on this study. The monkeys were purchased from Primate Imports Corporation, Port Washington, N. Y. 11050. The monkeys were housed individually in hanging wire mesh, "squeeze type" cages and maintained in a temperature, humidity and light controlled environment. Purina® Monkey Chow® was fed twice each day and fresh apples were fed 3 times a week. Water was available ad libitum.

During the conditioning period, the monkeys were tattooed on the inner surface of the thigh and intrapalpebral tuberculin tests were conducted. Tuberculin tests were conducted at bimonthly intervals during the treatment period. Also a complete physical examination was conducted by the staff veterinarian prior to initiation of compound administration. Only monkeys in good health were selected for the study.

This study was initiated on January 11, 1978. Terminal sacrifices were conducted on April 12, 1978.

2. Compound Administration:

At the end of the conditioning period the monkeys were divided into five groups on a random basis, so that the initial average body weights were similar:

Number	of Monkeys	
Male	Female	Dosage Level
2	2	Control
2	2	3 mg/kg/day
2	2	10 mg/kg/day
2	2	30 mg/kg/day
2	2	100 mg/kg/day

The test compound, suspended in 0.5% Methocel®, was administered by gavage, 7 days each week. All doses were given in a constant volume. Also the same volume of 0.5% Methocel® was given to the vehicle control group. Individual daily doses were based upon the body weights obtained weekly.

3. Observations:

The monkeys were observed twice daily for general physical appearance and behavior and pharmacotoxic signs. Individual body weights were recorded weekly. General physical examinations were conducted in the control period and monthly during the study.

4. Clinical Laboratory Tests:

Blood and urine samples were obtained for analysis from all monkeys once during the control period and at 1 and 3 months of study. The monkeys were fasted overnight prior to the collection of blood and urine samples.

a. Hematology:

Hematological studies included: hemoglobin¹, hematocrit², erythrocyte count³, total³ and differential leucocyte counts, reticulocyte count⁴, platelet count⁵, prothrombin time⁶, activated partial thromboplastin time⁷ (A.P.T.T.). Mean corpuscular hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin concentration were calculated.

b. Biochemistry:

Biochemical studies included: fasting blood glucose⁸, blood urea nitrogen⁸, serum alkaline phosphatase⁸, serum glutamic oxalacetic and pyruvic transaminase activities⁸, cholesterol⁹, total protein⁹, albumin⁸, sodium¹⁰, potassium¹⁰, chloride⁹, inorganic phosphate⁹, γ -glutamyl transpeptidase¹¹ (γ -G.T.P.) and creatinine phosphokinase⁹.

c. Urinalysis:

Urinalysis included: measurement of volume, pH^{12} and specific gravity; description of color and appearance; qualitative tests for protein 12 , glucose 12 , ketones 12 , occult blood 12 and microscopic examination of the sediment.

d. Statistical Analysis:

Analysis of body weights and clinical laboratory tests were performed. All statistical analyses compared the treatment groups with the control group, by sex. The tests were compared by analysis of variance (one-way classification) Bartlett's test for homogeneity and the appropriate t-test (for equal or unequal variances) as described by Steel and Torrie¹³ using Dunnett's¹⁴ multiple comparison tables to judge significance of differences.

B. RESULTS:

1. General Behavior, Appearance and Survival:

There was no mortality in monkeys at 0, 3 and 10 mg/kg/day dosage levels.

The monkeys from the control and 3 mg/kg/day dosage levels did not show any unusual behavior or signs of toxicity. Soft stool or moderate to marked diarrhea were noted occasionally. Frothy emesis was also noted occasionally.

At the 10 mg/kg/day dosage level the monkeys did not show any unusual signs of toxicity, except Monkey 7363. In week 7 its face appeared swollen and pale. It had been occasionally anorexic in week 4 and black stools appeared for several days in week 12 of the study.

At the 30 mg/kg/day dosage level, three monkeys died during weeks 7, 12 and 13 of the study. From week 4, the monkeys were anorexic. Slight to moderate and sometimes severe decreased activity was noted occasionally to frequently for the four monkeys. Emesis and ataxia were very rarely noted, for one monkey.

Swollen face, eyes and vulva, as well as pallor of the face and gums were noted. From week 6, for two monkeys, black stools were noted. Monkey 7387 showed slight to moderate dehydration and ptosis of the eyelids.

All monkeys from the 100 mg/kg/day dosage level died during weeks 2 through 5 of study. They showed the same symptoms of toxicity as the previous group, but they appeared sooner in the study (from week 1) and were more marked: anorexia, frothy emesis (sometimes brown in color) pale face and gums, swollen face and eyes, decreased activity from slight to severe, prostration and body trembling.

2. Body Weights (Tables 1-3):

Changes in body weight were similar for monkeys from the control and the 3 and 10 mg/kg/day dosage levels. Monkeys at the 30 and 100 mg/kg/day dosage levels lost body weight after the first week of study. There was statistically significant decreases in the body weight for the male monkeys at the 30 mg/kg/day dosage level in week 13 of the study. The female monkeys of the same dosage level and the monkeys from the 100 mg/kg/day dosage level were dead in this period.

3. Laboratory Test (Tables 4-15):

a. Hematology:

There were no noteworthy changes in monkeys from the 3 and 10 mg/kg/day dosage levels. In the first month of the study there was a slight increase (not statistically significant) of the A.P.T.T. values in the females at the 10 mg/kg/day dosage level and a statistically significant increase of the A.P.T.T. and prothrombin time values in monkeys at the 30 mg/kg/day dosage level. In the third month of the study there was a high increase in the above mentioned indices for the one surviving monkey from the 30 mg/kg/day dosage level. The same monkey (#7455) had pronounced anemia as well.

The statistically significant increase in the hematocrit in monkeys at the 10~mg/kg/day dosage level and in the platelet count in monkeys at the 3~mg/kg/day dosage level at 3~months of study, were within the normal physiological limits.

b. Biochemistry:

There were no noteworthy changes in monkeys from the control, 3 and 10 mg/kg/day dosage level. Only one monkey from the 3 mg/kg/day dosage level and one monkey from the 10 mg/kg/day dosage level showed trends toward decreases of alkaline phosphatase (432 and 474 units/l, respectively), without statistical significance.

In the first month of the study, decrease in serum alkaline phosphatase was noted in monkeys at the 30 mg/kg/day dosage level (statistically significant) and in one monkey in the same dosage level, the albumin in the serum was lower (3.22 g/100ml). The one surviving monkey (7455) from the 30 mg/kg/day dosage level showed decreasing of: blood sugar (66 mg/100ml), total protein (5.52 g/100ml) with albumin (2 g/100ml) and alkaline phosphatase (360 units/l) and slightly elevated cholesterol (240 mg/100ml).

c. Urinalysis:

No changes considered to be related to compound were seen in the urinalysis studies.

IV. PATHOLOGICAL STUDIES

A. METHODS:

1. Gross Pathology:

After completion of the compound administration period all surviving monkeys were anesthetized with Sernylan®*, exsanguinated and necropsied. At necropsy, the heart, liver, adrenals, spleen, pituitary, kidneys, testes/ovaries and brain were weighed and representative tissues were collected in buffered neutral 10% formalin. Eyes were fixed in Russell's fixative. The thyroid/parathyroid was weighed after fixation.

Monkeys which died during the study were necropsied as above.

2. Histopathology:

Microscopic examination of formalin fixed hematoxylin and eosin stained paraffin sections was performed for all monkeys in the control and treatment groups. The following tissues were examined:

adrenals aorta bone brain esophagus eyes gallbladder heart (with coronary vessels) duodenum ileum jejunum cecum colon rectum	kidneys liver lung skin mesenteric lymph node retropharyngeal lymph node mammary gland nerve (with muscle) spleen pancreas prostate/uterus rib junction (bone marrow) salivary gland	lumbar spinal cord pituitary stomach testes/ovaries thyroid parathyroid thymus trachea tonsil tongue urinary bladder vagina tattoo
--	--	--

and any other tissue(s) with lesions

^{*}Phencyclidine HCl - Bio-Ceutic Laboratories, Inc., St. Joseph, Missouri.

B. RESULTS:

1. Gross Pathology (Table 16) and Organ Weights (Table 17):

No gross lesions considered compound related were seen in male and female rhesus monkeys which died on study or were sacrificed after 90 days of study.

Statistically significant variations in sex group mean weights of few organs occurred between the control and experimental groups.

The following statistically significant organ weight variations occurred:

	Dosage	S			
	Level	e			
Organ	mg/kg/day	x	Weight	Change	_P<
Heart	10	F	absolute, relative	decrease, decrease	0.05,0.01
Brain	10	F	absolute	decrease	0.01
Pituitar	y 3	M	relative	increase	0.05

The biological significance of these variations is unknown. These organ weight variations were not accompanied by morphologic changes which were considered compound related.

2. <u>Histopathology</u> (Table 18):

One male and two female rhesus monkeys at the 30 mg/kg/day dosage level and all male and female rhesus monkeys at the 100 mg/kg/day dosage level had marked diffuse lipid depletion in the adrenals. All male and female rhesus monkeys at the 30 and 100 mg/kg/day dosage levels had slight to moderate hypocellularity of the bone marrow. All male and female rhesus monkeys at the 30 and 100 mg/kg/day dosage levels had moderate atrophy of lymphoid follicles in the spleen. One female at the 30 mg/kg/day dosage level and all male and female rhesus monkeys at the 100 mg/kg/day dosage level had moderate atrophy of the lymphoid follicles in the lymph nodes.

No microscopic changes considered compound related were seen in the adrenals, bone marrow, spleen and lymph nodes of male and female rhesus monkeys at the 3 and 10 mg/kg/day dosage levels. No microscopic

International Research and Development Corporation

Page 11

lesions in tissues other than the adrenals, bone marrow, spleen and lymph nodes at the 30 and 100 mg/kg/day dosage levels were considered compound-related.

Reference

- Coulter Hemoglobinometer. Coulter Electronics, 590 W. 20th Street, Hialeah, Florida.
- Microhematocrit, John B. Miale, 3rd Ed., 1967, The C. V. Mosby Company, p. 1154.
- 3. Coulter Particle Size Counter, Model ${\rm Z}_{\rm B}$, Coulter Electronics, 590 W. 20th Street, Hialeah, Florida.
- 4. Gradwhol's Clinical Laboratory Methods and Diagnosis, Frankel and Reitman, Editors 6th Ed., 1963, The C. V. Mosby Company, p. 1132.
- Coulter Particle Size Counter, Model A, Coulter Electronics, 590 W.
 Steet, Hialeah, Florida.
- 6. General Diagnostics Warner Chilcott Laboratories Revised April 1965.
- 7. General Diagnostics Warner Chilcott Laboratories Revised Janurary 1967.
- 8. Technicon Auto Analyzer, 6/60 Micro Methodology.
- 9. Micro Auto Analyzer II, 6/60 Micro Methodology.
- 10. Atomic Absorption IL, Model 353
- 11. Sigma GGTP Procedure Bulletin #545. Sigma Chem. Co., St. Louis, Mo.
- 12. Bililabstix (Ames Reagent Strips).
- 13. Steel, R. G. D. and Torrie, J. H. (1960), <u>Principles and Procedures of Statistics</u>, McGraw-Hill, New York, N. Y.
- 14. Dunnett, C. W., New Tables for Multiple Comparisons With a Control, Biometrics, McGraw-Hill, New York, N. Y.

Mean	Body	Weights	of	Monkeys	Week	13	of	Study
				•			O.L	ocuay.

		nean body we	eignts of Monkeys Week 13	of Study.	
<u>Sex</u> M F	Group I (Control) 3.78 3.55	Group II (3 mg/kg/day) 3.50 3.68	Group III (10 mg/kg/day) 3.68 3.78	Group IV (30 mg/kg/day) 2.30* dead	Group V (100 mg/kg/day) dead dead

FC-143:

Ninety Day Subacute Rhesus Monkey Toxicity Study.

TABLE 2.						Indivi	dual Bo	ody Weig	ghts, Ki	lograms	s.					
Group, Monkey Number	Sex	Con 1	trol 2	1	2	3	4	5		Week of	Study					,
							 -		6	7	8	9	10	11	12	13
Control:																
7362 7365 7336	M M F	3.15 3.50	3.30 3.50	3.15 3.50	3.30 3.50	3.35 3.50	3.10 3.40	3.20 3.55	3.20 3.60	3.00 3.60	3.15 3.80	3.20 3.75	3.05 3.75	3.20	3.40	3.50
7386 Mean	F	3.05 3.90 3.40	3.20 3.70	3.25 3.70	3.25 3.65	3.35 3.55	3.15 3.45	3.00 3.40	3.15 3.55	3.20 3.40	3.30 3.40	3.45 3.55	3. 30 3. 40	3.80 3.35 3.50	4.00 3.35	4.0 <u>9</u>
3 mg/kg/d	lay:	3.40	3.43	3.40	3.43	3.44	3.28	3.29	3.38	3.30	3.41	3.49	3.38	3.46	3.50 3.56	3.50 3.66
7364 7366	M M	3.70 2.60	3.90 2.60	3.85 2.70	3.95 2.60	3.85 2.65	3.85 2.65	3.80 2.70	3.80 2.70	3.85	4.10	4.10	4.05	4.05	4.20	4.30
7384 7385	F F	3.55 3.50	3.60 3.55	3.70 3.45	3.80 3.45	3.80 3.45	3.80 3.45	3.70	3.70	2.50 3.60	2.70 3.55	2.70 3.80	2.45 3.55	2.55 3.70	2.50 3.90	2.70
Mean		3.34	3.41	3.43	3.45	3.44	3.44	3.40	3.40	3.50	3.55	3.60	3.40	3.30	3.40	3.75 3.60
0 mg/kg/	day:					3.44	J•44	3.40	3.40	3.36	3.48	3.55	3.36	3.40	3.50	3.59
7363 7458	M M	3.55 3.10	3.70 3.10	3.70 3.25	3.65 3.20	3.65 3.10	3.65 3.05	3.65 2.95	3.60 3.20	3.60 3.00	3.70 3.15	3.65	3.75	3.85	3.90	3.90
328 383 Mean	F F	3.30 3.60	3.30 3.60	3.45 3.50	3.40 3.80	3.40 3.60	3.30 3.55	3.20 3.50	3.30 3.60	3.25 3.60	3.45 3.65	3.10 3.60 3.80	3.10 3.50 3.65	3.25 3.40	3.25 3.60	3.45 3.75
*ve all		3.39	3.43	3.48	3.51	3.44	3.39	3.33	3.43	3.36	3.49	3.54	3.50	3.75 3.56	3.75 3.63	3.80 3.73

TABLE 2	. Con	c. 				Indivi	dual Bo	dy Weig	hts, Ki	lograms						
Group, Monkey		Control								of Stud						
Number	Sex	<u> </u>	2	1	2	3	4	5	6	7	8 8	9	10	11	12	12
30 mg/kg	/day:														12	13
7367 7455	M M	3.40 3.50	3.40 3.30	3.25 3.20	3.25 3.05	3.10 2.85	2.95 2.65	2.65 2.45	2.30 2.50	2.10*	Died					
7382 7387	F F	3.25 3.70	3.30 3.75	3.20 3.50	3.20 3.55	3.05 3.50	3.00 3.45	2.85 3.10	2.80 2.95	2.55 2.80 2.85	2.60 2.80 2.85	2.70 2.80 2.70	2.70 2.80 2.65	2.65	2.50 2.60	2.30 2.25* Di
Mean 100 mg/kg	g/day:	3.46	3.44	3.29	3.26	3.13	3.01	2.76	2.64	2.73	2.75	2.73	2.72	2.50 2.65	2.25* 2.55	Died 2.30
7361 7456 7335	M M F	3.50 3.10	3.85 3.10	3.50 2.60	3.30 2.70*	3.00 Died	2.55	2.40*	Died							
7381	F	2.80 3.85	2.95 3.80	2.70 3.55	2.45 3.20	2.05* 2.80	Died 2.60*	Died								
Mean		3.31	3.43	3.09	2.98	2.90	2.55	_								

FC-	1	4	3	
10-	4	-	J	

Ninety Day Subacute Rhesus Monkey Toxicity Study.

TABLE 3	3.		T-Test Comparison of Body Weights.							
Study Week	Sex	Control	3 mg/kg/day	10 mg/kg/day	30 mg/kg/day	100 mg/kg/day				
13	M F	3.78 3.55	3.50 3.68	3.68 3.78	2.30ª	-				

^{*}p<0.05

¹³⁷⁻⁰⁹⁰

^{**}p<0.01

aNot included in statistical analysis due to only one surviving animal.

⁻ Line indicates animals had died prior to week 13.

Ninety Day Subacute Rhesus Monkey Toxicity Study.

FC-143:

137-090

TABLE 4.		Means and Signi	ficance of Hemato	logical Values.	
Hematology	Month of Study	Control	3 mg/kg/day	10 mg/kg/day	30 mg/kg/da
Erythrocytes, 106/cmm	1 3	4.46 4.90	4.26 4.74	4.71 5.47	4.53 3.84 ^a
Hemoglobin, g/100 ml	1 3	11.7 12.9	11.4 12.7	12.1 13.3	11.7
Hematocrit,	1 3	38 37	37 37	39 40**	9.7 ^a 36 30 ^a
Platelets,	1	253	233	210	219
10 ³ /cmm	3	210	285*	216	261 ^a
Reticulocytes, %	1	0.2	0.5	0.5	0.2
	3	0.3	0.2	0.2	0.2ª
Prothrombin	1	12	12	13	15**
Time, sec	3	11	11	11	30 ^a
Activated P.T.T., sec	1	28	28	31	35**
	3	26	26	24	65 ^a
Leucocytes,	1 3	9.49	9.78	9.93	8.44
10 ³ /cmm		9.40	9.83	11.96	10.14 ^a
Neutrophils, %	1	24	19	26	15
	3	16	19	25	36ª
Lymphocytes,	1	75	76	72	85
%	3	80	76	67	54 ^a
Eosinophils,	1	3	5 *	2	0
%	3		3	6	3a
Monocytes,	1	0	0	0	0
%	3	1	2	2	7a
Basophils,	1	0	0	0	0
%	3	0	0		0a
ICV,	1	86	86	82	80
3	3	75	78	73	78 ^a
ICH,	1	27	27	26	26
	3	26	27	24	25 a
CHC,	1	31	31	32	32*
:/100 ml	3	36	35	34	32a

^{*}Significantly different from control group, p<0.05.

^{**}Significantly different from control group, p<0.01. aValue not used in statistical analysis due to only one animal surviving.

Ninety Day Subacute Rhesus Honkey Toxicity Study.

Craus				• •			Ividual Hemat	ological Va	lues - Co	mtrol	l I.							
Group, Monkey Number	y	Erythro- cytes x 10 ⁶ /cmm	Hemo- globin g/100 m)	7.	10 ³ /c _{inta}	z z	Prothrombia Time sec	Р.Т.Т.	cytes	Seg.	Non-Seg	cytes	nhlla ⁰	Mono- cytes ^a	Baso- phtts [#]	MCV	HCH	MCHe:
Contro	<u>d</u> :						5ec								%. 	μ ³	ong	g/100 (
7362 7365	14 14	5.08 4.72	13.0 11.9	40 38	207 319	0.1 0.3	13 13	29	10.96	36	1	62	1	0		7.0		
7336 7386	F F	5.27 4.20	12.8 11.1	39 34	226 227	0.6	14	30 29	14.79 7.86	27 38	0	72 59	i	0	0	79 81	26 25	33 31
Mean	ı	4.82	12.2	38			14	21	12.09	59	0	39	3 	0	0	74 81	24	33
3 mg/k		y:		311	245	0.4	14	27	11.43	40	0	58	2	0	0	79	26 25	33 33
7364 7366	14 14	4.50 4.48	11.5 12.0	37 37	155 297	0.4 0.3	13	25	8.98	42	0	57	0					
7384 7385	F F	4.55 4.19	11.7 11.4	38 35	160	0.2	14 13	29 30	7.39 14.72	41 31	0	59	0	0		82 83	26 27	31 32
Mean		4.43	11.7	37	145 232	0.6 0.4	13 13	24 27	8.16	38	0	64 59	5 3	0 0		84 84	26 27	31 33
10 mg/l	kg/d	ay:						27	9.81	38	0	60	2	0	0	83	27	32
7363 7458	M	5.24 5.29	13.7 12.2	42 36	264 263	0.4 0.2	13 13	31	12.97	46	0	49	5	0	0	80		
7328 7383	F F	5.32 5.04	12.5 13.5	39 42	192 120	0.8	13 13	29 31	17.34 7.89	16* 35	0	78 65	6	0	0	68	26 23	33
Mean		5.22	13.0	40	210	0.5		28	8.22	47	O	48	4	0 1		73 83	23 27	32 32
O mg/k		-			210	0.5	13	36	11.61	36	0	60	4	0		76	25	13
367 455	M	4.98 5.16	12.4 13.6	38 40	143 133	0.2 0.5	12 12	28		41	0	57	2	0	0	7.6	0.5	
382 387	F F	4.84 4.67	12.8 12.2	38 35	157 113	0.6	13	24 26		21 26	0	76 73	3	0	0	78	25 26	33 34
Mean		4.91	12.8	38	137	0.5	14	27	5.10	29	0	68	i	0 2			26 26	34 35
00 mg/t	kg/d	ay:			• • • •	0.0	13	26	7.61	29	0	68	2	1	•		26	34
	M M	4.75 5.36	12.4 13.4	36 42	282 196	0.3 0.2	12	27	10.77	30	0	67	3	0				14
	F F	5.46 4.82	12.8 11.5	40 36	185	0.2	11 14	28 28		38 38	0	60	0	1			26 25	34 12
Mean		5.10	12.5	30	115	0.5	14	26		54	0	57 44	5 1	0	0 7		23	32
				, · · ·	195	0.3	13	27	9.58	10	0	57	2	0	1 /		24 25	12 11

^{*}Repeat determination

a. The differential leucocyte means have been adjusted to equal 100%.

TABLE	6.										, active.							
						lı	ety Day Subaci odlyldual Hema	itologicat v	/alues -	1 Mon	t le .					- -		
Monkey Number	Sex	cytes 10 ⁶ /cmm	Hemo- globin g/100 ml	Hemato- crtt	Platelets 10 /cmm	Reticu- locytes %	Prothrombin Time sec	Activated P.T.T.	beuco- cytes	Neur	trophils Non-Seg.	i.vmnho-	Eostao- phils ^a %	Mono- cytes ^a	Baso- phits	MCV		·
Control	t:						and the contract of the contra				· · · · · · · · · · · · · · · · · · ·		··	7.	2	μ^3		g/100 m
7362 7365	H H	4.80 4.71	11.9 11.9	38 39	224 349	0.2	12 12	30	6.91	28	0	69	'n				· · · · · ·	* - •
7336 7386	F F	4.20 4.13	11.2	37	246	0.2	13	28	14.58	15	0	84	ì	0	0	79 83	25 25	31 31
Mean	*	4.46	11.9 11.7	38	191	0.3	12	28 27	7.46 8.99	11 42	0	89 58	0	0	0	88	27	30
3 mg/kg	/day		11.7	38	253	0.2	12	28	9.49	24	0	26 75	0	0		92	29	31
7364 7366	M M	4.35 3.96	11.6 10.7	37 35	264 188	0.5 0.4	11	27	6.81	17	0	80	4	0	0	86	27	31
'384 '385	F F	4.46 4.25	11.9 11.2	39	234	0.2	12 13	28 28	5.83	16	Ö	78	3 6	0		85 88	27 27	31 31
Mean		4.26	11.4	35 37	247	0.9	12	29	17.07 9.41	22 18	1 0	73 73	3	1 0		87	27	31
0 mg/k	g/day	<u>′</u> :		• •	233	0.5	12	28	9.78	19	0	76	5	0		82 86	26	32
	H H	4.42 4.81	12.3 11.3	38 37	168 281	1.0 0.3	13	27	8.08	42	0	57				nt)	27	31
	F F	4.70 4.92	12.0 12.8	39 40	181 209	0.5	13 13	31 33	17.98 7.01	11 35	0	87	i	0		86 77	28 23	32 31
Mean		4.71	12.1	39	209	0.1 0t5	12	33		18	0	63 79	2 3	0		83 81	26 26	31
0 mg/kg	/day	:				U()	13	31	9.93	26	0	72	2	0		31 32	26 26	32 32
	14 14	4.59 4.44	11.2 11.8	36 37	135 237	0.1 0.2	13	34		12	0	88	0					14
182 187	F F	4.51 4.56	11.9 12.0	35 37	268	0.3	14 15	33 35	6.19	27 9	0	73	0	0 0			24 27	31 32

8.54

8.44

100 mg/kg/day:

Mean

7456 H Died, week 5 М Died, week 2 F Died, week 3

4.53

11.7

Died, week 4 0.2

0.2

BEST COPY AVAILABLE

The differential leucocyte means have been adjusted to equal 100%.

FC-143:

Group,

Control:

М

F

H

Ħ

F

M

M

F

F

М

М

F

М

М

F

F

7 165

Mean

Mean

30 mg/kg/day:

Mean

10 mg/kg/day:

Hean

3 mg/kg/day:

----TABLE 7.

Erythro- Hemo- Hemato-

globin

12.9

13.1

12.9

12.8

12.9

12.9

12.0

13.0

13.0

12.7

13.6

12.6

13.4

13.5

13.3

9.7

crit

cytes

4.89

5.29

4.72

4.69

4.90

4.86

4.46

4.92

4.71

4.74

5.04

5.70

5.47

5.65

5.47

3.84

Died, week 7

3.84a,h 9.7

Med, week 13

Died, week 12

Died, week 5

Dled, week 2

Died, week 3

Died, week 4

Number Sex 10^h/cmm g/100 ml

1	
2	
' _	
J	
P	
1	
-	137-090

a2+ Polklocytosis				
Z Nucleated seems				
	rncyles/100 leucocyles Teucocyle means have been) ad Justed	to equal	100%.

.....,,,,,,,,,,,,,,,, Ninety Day Subacute Rhesus Monkey Toxicity Study.

cytes Seg. Non-Seg.

%

103/cmm 2

7.82

12.84

8.41

8.51

9.40

7.33

5.44

18.21

8.35

9.83

8.41

20.18

10.72

11.96

10.14

10.14

8.52

Lympho_ Eosfuo- Mono- Baso-

Z.

phHs

cytes

Z

cytes^c phils^c MCV MCH

300g g/100 m1

%

()

Individual Hematological Values - 3 Months.

Reticu- Prothrombin Activated Louco- Neutrophils

P.T.T.

sec

Time

sec

u

Plagelets locytes

%

0.2

0.3

0.4

0.3

0.3

0.1

0.2

0.2

0.2

0.2

0.2

0.3

0.3

0.1

0.2

0.2

0.2

10³/cmm

BEST COPY AVAII ABLE

FC-143:

Ninety Day Subacute Rhesus Monkey Toxicity Study.

TABLE 8.		Means and Sign	ificance of Bioch	hemical Values	
Biochemistry	Month of Study	Control	3 mg/kg/day	10 mg/kg/day	30 mg/kg/da
Glucose,	1	89	117 *	104	122
mg/100 ml	3	81	96	88	66ª
B.U.N., mg/100 ml	1 3	23.0 27.6	21.2 20.2	22.5 22.0	26.1
Alk. Phos., int'l units/l	1 3	597 851	847 783	601 743	22.6ª 365* 360ª
S.G.O.T., int'l units/l	1 3	29 45	35 41	34 35	59 ** 88 ^a
S.G.P.T. int'l units/l	1 ^b	15	21	34 *	44
	3 ^c	31	31	34	46 a
Cholesterol, mg/100 ml	1	165	154	158	174
	3	165	141	154	240a
Total Protein, g/100 ml	1	7.94	8.23	8.66	8.36
	3	8.21	8.24	8.43	5.52ª
Albumin, g/100 ml	1	4.78	5.05	4.66	4.28
	3	4.82	5.12	5.17	2.00 ^a
Sodium,	1	153	152	155	152
meq/liter	3	151	154	159**	150 ^a
Potassium,	1	5.1	5.1	5.2	5.7
meq/liter	3	5.5	5.6	6.0	5.9 ^a
Chloride,	1	112	110	113	112
meq/liter	3	113	112	114	113 ^a
γ-G.T.P., Sigma units/ml	1 3	61 44	49 38	47 51	33 49a
C.P.K., Sigma units/ml	1 3	9 7	14 6	16 9	19* 10ª
Inorganic Phosphate, mg/100 ml	1 3	7.9 6.9	7.2 6.3	7.0 7.3	6.7 5.0ª

137-090

^{*}Significantly different from control group, p<0.05.

^{**}Significantly different from control group, p<0.01.

avalue not used in statistical analysis due to only one animal surviving.

b1.U./1

cSigma units/ml

Ninety Day Subacute Rhesus Monkey Toxicity Study.

Croup,						THUIVIUM	1 Blochemi	cal Values	s - Control	1.					·
Honkey Number	Sex	Glucose mg/100 ml	B.U.N. mg/100 ml	Alk. Phos. Int'l units/1	S.G.O.T. int'l units/	S.G.P.T. int't units/	mg/100 ml	Total Protein g/100 ml	Albumin g/100 ml	Sodium meq/1	Sium	ride	Inorganic Phosphate mg/100 mi	γ-G.T.P. Sigma u/mi	Creat Infoe Phosphok Luase
Cont rol	:													organa u/ml	Sigma 4/ml
7362 7365	H	94 82	41.0 16.7	780 659	40 61	99 88	219 123	8.68 9.50	5.40	160	5.0	111	6.5	67	
7336 7386	F F	79 85	24.0 21.0	915 960	3 0 3 9	80	185	9.52	4.30 5.30	155 156	5.3 4.3	110 110	6.7	44	15 18
Mean	_	85	25.7	829	43	86 88	190 179	8.52 9.06	5.12	162	5.0	111	6.5 6.5	41 37	85 16
mg/kg	/day:						•••	9.00	5.03	158	4.9	111	6.6	47	34
7364 7366	M M	111 71	19.0 28.7	880 580	42 60	94 89	197 172	9.08	5.28	155	4.3	108	5.0	50	
7384 7385	F F	96 107	22.0 22.0	570 1320	38 60	106 76	133	9.12	5.80 5.19	157 162	4.9 6.0	108 113	7.1 6.1	30	12 26
Mean		96	22.9	838	50		154	8.72	4.80	158	5.2	116	5.4	32 41	16 29
0 mg/kg				030	50	91	164	9.26	5.27	158	5.1	111	5.9	38	21
363 458	M M	89 180	27.2 24.2	1167 806	46 6 3	118 136	237 107	9.84	5.10	167	6.2	117	6.7	78	•.
328 383	F F	98 98	20.0 27.3	776 581	26 31	75	189	10.08 8.48	3.99 5.14	150 157	4.9	107 109	7.7 6.3	55	16 14
Mean		116	24.7	833	42	91 105	168 175	8.32 9.18	5.25 4.87	159	5.1	112	6.0	51 59	34 64
U mg/kg									4.07	136	5.2	111	6.7	61	32
367 555	M M	108 110	26.9 24.0	970 687	47 37	114 86		9.38	5.60		6.2	116	6.9	65	1.0
382 387	P P	132 117	27.9 23.8	641 978	40 45	79	176 1	9.50 1.10	5.31 5.72	_	5.3 5.5	111 112	6.6	59	15 9
Mean		117	25.7	819	42	1 38 104		9.44 9.86	5.60 5.56	155	3.9	113	6.8 5.4	43 39	18 16
00 mg/k								50	J. JU	163	5.2	113	6.4	52	15
56	H	93 100	29.0 23.0	598 799	43 40	80 104		8.60 9.00				116	6.9	64	17
81	F F	75 119	28.0 22.1	570 1233	40 40	96 103	151	8.98	5.19	157	_	109 111	5.7 5.6	44 58	22
Mean		97	25.5	800	41	96					5.2	112 112	6.7	38 47	20 10

Ninety Day Subacute Rhesus Monkey Toxicity Study.

TABLE	1U. 					Individo	al Blochem	lcal Value	s - I Mont	:h.					
Group, Honkey Number	Sex	Glucose mg/100 ml	B.U.N. mg/100 ml	Alk. Phos. int'l units/l	S.G.O.T. int'l units/l		Choles- terol mg/100 ml	Total Protein	Albumlo	Sodtum	Potas- sium meq/l	ride	Inorganic Phosphate mg/100 ml	Y-G.T.P. Sigma u/ml	Creatinine Phosphokinase Sigma u/ml
Cont rol	:														
7362 7365	H	87 84	33.9 14.2	611 626	27 33	18 17	191 121	7.30 8.40	4.82 4.11	153 153	5.4 5.4	117	6.6	81	8
7336 7386	F	87 96	23.9 14.9	672 480	25 31	15 10	142 206	7.90 8.15	4.89 5.30	148	4.2	111	8.4 8.4	50 68	1.t 7
Mean 3 mg/kg	/day:	89	23.0	597	29	15	165	7.94	4.78	158 153	5.4 5.1	112 112	8.1 7.9	44 61	1.1 9
7364 7366	M M	1 12 1 31	18.0 23.3	9 70 69 3	30 39	36 19	173 148	8.15 8.05	5.20 5.42	150	4.3	106	6.9	77	4
7384 7385	F F	105 120	24.2 19.1	539 1185	30 40	15 13	141 153	8.70 8.00	4.85 4.72	154 152 152	4.9 5.8 5.2	110 111	6.6 7.5	26 47	7 39
Mean 10 mg/ks	g/day:	117	21.2	847	35	21	154	8.23	5.05	152	5.1	114 110	7.8 7.2	47 49	7 14
7363 7458 7328	M M F	98 97	24.9 22.5	552 732	40 40	35 43	219 134	9.40 9.05	4.62 4.32	161 151	6.3 4.9	118 109	6.9 8.4	65 44	7
7383 Mean	F	98 124	22.7 20.0	640 480	23 31	19 37	1.45 1.32	8.20 8.00	4.50 5.19	152 154	4.3	111 113	5.4 7.2	37 43	20 24
30 mg/kg	/day:	104	22.5	601	34	34	158	8.66	4.66	155	5.2	113	7.0	47	14 16
7367 7455	M M	112 86	35.2 21.0	376 322	48 61	30 80	180 177	8.20 8.55	4.70	157	6.0	110	6.6	40	25
7382 7387	F F	104 185	25.2 22.8	400 360	83 45	43	161 179	8.15 8.55	3.22 4.21	148 149	5.9	112 111	6.9 6.0	40 28	16 17
Mean 100 mg/k	g/dav	122 :	26.1	365	59	44	174	8.36	5.00 4.28	153 152	5.6 5.7	114 112	7.2 6.7	24 33	18
7361 7456	M M	Died, weel Died, weel													• •

Died, week 2 7335 7381 Died, week 3 Died, week 4

Ninety Day Subacute Rhesus Monkey Toxicity Study.

TABLE	11. 		*			Individu	al Blochem	ical Value	s - 3 Mont	hs.					
Group, Monkey Number	Sex	Glucose mg/t00 ml	B.U.N. mg/100 ml	Alk. Phos. Int'l units/l	S.G.O.T. int'l units/l	Sigma	Chotes- terot mg/100 mt	Total Protein g/100 ml	Albumin g/100 ml	Sodium	Potas- sium	Chlo- ride	Inorganic Phogobata	γ-G.T.P. Signa u/mi	Creatinine Phosphokinase Sigma u/ml
Cont rol	.:														
7362 7365	M M	95 77	41.9 17.4	804 744	55 47	44 30	197 135	7.59 9.18	4.99 4.40	150 151	5.5 6.1	114 113	5.6 8.0	37	7
7336 7386 Mean	F F	67 86	33.1 18.1	786 1068	39 39	24 27	150 177	8.31 7.76	4.98 4.90	151 153	5.1 5.1	114 109	7.3 6.7	53 42 45	8 7
3 mg/kg	/day:	81	27.6	851	45	31	165	8.21	4.82	151	5.5	113	6.9	44	6 7
7364 7366 7384	H M F	106 111	17.1 18.1	1092 594	41 39	28 33	164 126	7.72 8.09	5.09 5.52	153 153	5.8 5.5	112 109	7.0 5.3	45 51	7
7385	F	94 74	23.4 22.0	4 32 1014	39 43	33 29	1 32 142	8.93 8.21	4.91 4.97	153 155	5.2 6.0	112 114	6.5	27 29	6
Mean 10 mg/kg	g/day:	96	20.2	783	41	31	141	8.24	5.12	154	5.6	112	6.3	38	6 6
7363 7458 7328	M M	87 88	24.9 21.1	936 936	42 38	42 31	194 139	8.44 9.71	5.61 4.69	164 159	7.0 6.2	119 112	8.0 9.0	43 52	7 12
7383 Me <i>n</i> n	F	75 100 88	21.8	624 474	30 30	25 37	155 128	7.93 7.62	5.27 5.11	156 158	4.8 5.8	110 113	5.6 6.5	60 48	7 9
30 mg/kg	g/day:		22.0	743	35	34	154	8.43	5.17	159	6.0	114	7.3	51	9
7367 7455 7382	M M F	Died, we 66 Died, we	22.6	360	88	46	240	5.52	2.00	150	5.9	113	5.0	49	10
7387	F	Died, we	ek 12												
Mean 100 mg/k	g/day	66 :	22.6	360	88	46	240	5.52	2.00	150	5.9	113	5.0	49	10
7361 7456	M M	Died, we Died, we													
7335 7381	F F	Died, we Died, we													

Ninety Day Subacute Rhesus Monkey Toxicity Study.

TABLE 12.		Means and Sig	nificance of Uri	nalysis Values.	
Urinalysis	Month of Study	Control	3 mg/kg/day	10 mg/kg/day	30 mg/kg/day
Volume, ml	1 3	35 71	33 94	51 51	41 40 ^a
рН	1 3	8.5 8.3	8.5 7.6	8.1 8.2	8.1 6.6ª
Specific Gravity	1 3	1.028 1.018	1.026 1.015	1.026 1.024	1.026 1.031

aValue not used in statistical analysis due to only one animal surviving.

Group,			C-1.					rauar Ut	malysis	Values -	Control 1	l.						* * * * .
Monkey Number	Sex	Volume ml	Color and Appear.				Glucose		Ketones	Leuco-	Erythro- cytes	Ep1.		Triple	Cal	Uric Acid Crystals		
Control:														- 111791		Crystals	Bacterla	Cant
7362 7365	M M	100 28	1.S-c1 1.S-c1	7.6 7.2	1.010 1.037	N N	N N	tr N	N N	-	occ	occ	F	oce				
7336 7386	F F	27 70	I.S-C I.S-c I	7.0 8.4	1.036 1.023	N N	N N	N 4+	1+	-	1-3 -	oec -	F occ	oce	- 000	-	M N	-
Mean		56			1.027		••	47	N	-	-	occ	occ	occ	M	-	F M	-
mg/kg/	day:				******												••	-
364 366	M M	25 25	LS-c1 LS-c1	7.8 7.2	1.032 1.035	N	N	tr	N	_	_		_					
384 385	F F	215 35	LS-C LS-c1	8.3	1.033 1.026 1.020	N N	N	tr N	N N	-	_	000 000	F F	F occ	F occ	-	H H	-
Mean		75	- ***		1.020	N	N	N	N	-	-	occ occ	occ F	0cc	-	-	M	_
0 mg/kg/	/day:			7.7	1.028								•	occ	-	-	Н	-
363 458	M M	20 50	LS-c1 LS-c1	7.7 7.5	1.020 1.036	N	N	tr	N	-	-		_					
328 383	F F	35 35	LS-c1 LS-c1	7.8	1.036 1.036 1.020	N N	N N	tr tr	N N	_	_	осс осс 1-3	F F	F occ	F	-	H H	-
Mean) mg/kg/	day:	35			1.028	IT	И	3+	N	-	-	0cc	F occ	000 000	H -	~ -	F F	-
36.7 155	M M	20 35	LS-cl LS-cl	7.1	1.050 1.030	N	N	tr	N	_	1 2							
382 187	F F	20 48	LS-c1 LS-c1	7.0	1.055 1.030	N N N	N N N	tr N	N N	-	1-3 1-3	1-3 1-3 1-3	occ occ F	F	осе -	- -	M H	-
Mean		31			1.041	••	N	N	N	-	-	0CC	F	0CC	- oce	-	F	-
O mg/kg/	/day:													·		=	М	-
56	H H	21 25	LS-c1 LS-c1	7.6 7.1	1.035 1.042	N N	N N	tr	N	_	occ	-	F					
Bl	F F	25 40	LS-c1	7.2		N N	N	tr	3+ 1+	- -	- 1-3	occ	F		F	-	H H	- ~
kan		28		7.5		••	N	1+	1+	-					F M	-	F F	-

Code:

cl - Cloudy

C - Clear

R - Rare

occ - Occasional

tr - Trace 1+ - Trace to slight 2+ - Slight to moderate 3+ - Moderate 4+ - Marked

S - Straw LS - Light Straw DS - Dark Straw 1.Am - Light Amber DAm - Dark Amber

N - Negative F - Few L ~ Loaded M - Many

QNS - Quantity not sufficient norm - Normal - None seen

·							Indi	vidual (Urinalysis	Values	- 1 Month.							
Group, Monkey Number	Sex	Volume ml	Color and Appear,	pll	Spec.			Occult	Ketones			Epi.		Triple Phos.	Cal	Uric Acid		
Control:	:																Bacteria	Casts
7362 7365	M M	55 35	LS-C LS-C	8.5 8.5	1.021	N N	N N	И	и	-	occ	-	oce	occ	М			
7336 7386	F F	20 30	LS-C LS-C	8.5	1.033	N	N	N 3+	N N	-	-	- 1-3	occ F	F	occ	-	M	-
Nean		35	13-0		1.030 1.028	N	N	tr	N	-	-	occ	H H	F F	F M	-	M M	-
3 nig/kg/	<u>day</u> ∶																	
7364 7366	M M	20 20	LS-C J.S-C	8.8 8.5	1.019 1.036	N N	N N	N N	N N	-	-	occ	F	м	occ	_	н	
384 385	F F	40 50	DS-c1 LS-c1	8.0 8.5	1.021 1.027]+ N	N N	 4+ N	2+	-	- 8~12	occ -	F F	F occ	F F	-	М	-
Mean		33		8.5	1.026		••	.,	N	-	-	oce	F	occ	М	~	M M	_
0 mg/kg/	/day:																	
363 458	H H	65 35	LS-c1 LS-C		1.023 1.028	N	N N	N N	N		occ	-	F	occ	M	_		
328 383	F F	55 50	1.5-c1 1.5-c1	8.5	1.026 1.028	N N	N N	N	N	_	-	- 1-3	occ occ	occ	M M	-	M N	-
Nean		51			1.026	.,	N	tr	N	-	occ	occ	F	occ	M	-	M M	-
0 mg/kg/	day:																	
367 455	H M	30 30	LS-C LS-c1		1.024 1.026	N N	N N	N N	N	_	-	occ	oce	occ	_			
382 387	P P	60 45	LS-e1 LS-e1	8.3	1.022 1.032	N	N N	N N	N N N	-	occ	occ -	M F	F F	-	-	L M	-
Mean		41		8.1	1.026		**	.,	N	-	-	oce	F	occ	осс	_	M M	_
00 mg/kg 164 156 135 181	/ <u>day</u> : М М F	Died, w Died, w Died, w	eek 2															

Code:

C - Clear

M - Many

R - Rare occ - Occasional

tr - Trace

I+ - Trace to slight

^{2+ -} Slight to moderate

^{3+ -} Moderate 44 - Marked

S - Straw

LS - Light Straw

DS - Dark Straw

LAm - Light Amber DAm - Dark Amber c1 - Cloudy

N - Negative

F - Few L - Loaded

QNS - Quantity not sufficient norm - Normal - None seen

-	•
C,	-
Ĉ	
È	ž
	Ţ
e	ב ד
×	٠
	_

137-090

Group,			Color						tinalysis	Values -	3 Months.							
Monkey Number		Volume m1	and Appear.	pli	Spec. Grav.	Protein	Glucose	Occult Blood	Ketones	Leuco- cytes	Erythro-	Epi. Cells	Urates	Triple	Cal.	Urie Acid		
Cont rol	:														Oxai.	Crystals	Bacteria	Casts
7362	М	110	I.S-C	8 2	1.012													
7365	М	40	LS-c1	8.1	1.029	N N	N N	N	N	-	-	occ	F					
7336	F	85	LS-C				N	N	1+	-	occ	1-3	F	occ F	-	-	М	_
7386	F	50	LS-C	0.Z	1.015 1.016	N	N	N	tr	_	_			•	-	-	М	-
Mean		71				N	N	3+	N	occ	_	oce	F F	occ F	F	-	H	_
3 mg/kg/		71		8.3	1.018							000	r	r	F	-	М	-
7364	М	50	LS-C	6.0	1.020	N												
7366	М	150	LS-C	7.9	1.007	N	N N	N	tr	-	-	_	F	occ				
7 384	F	125	LS-C		1.010			N	N	-	-	occ	F	occ	_	-	H	_
7 385	F	50	LS-C	8.5	1.021	N N	N	N	N	-	_	occ	F		_	-	M	-
Mean		94				14	N	tr	N	-	Occ	1-3	M	F F	F M	-	М	
O mg/kg	/day:			7.0	1.015									•	11	-	М	~
7363										••.								
7458	M M	40	LS-C	8.0	1.027	N	N	N										
		35	LS-c1	8.7	1.022	N	N	N	N N	-	-	occ	F	осс	occ	_	••	
328	F	50	LS-C	9.0	1.029	N	N			-	-	-	F	occ	-	-	M M	-
383	F	80	LS-ci		1.019	N N	N N	N N	N	-	occ	occ	F	occ	_			-
Mean		51		8.2	1.024	••	.,	N	N	-	occ	occ	F	-	_	-	M	-
0 mg/kg/	day:				11024												М	-
367	М	Died, w	ool 7															
455	M	40	S-C		1.001													
382	F			0.0	1.031	N	N	1+	N	1-3	occ		_					
387	F	Died, w	cek 13							- •	000	-	F	M .	occ	-	M	_
Mean	-	Died, w	eek 12															
		40		6.6	1.031													
00 mg/kg	<u>/day:</u>																	
36 1	Н	Died, w	eek 5															
156	M	Died, w	eek 2															
335	F	Died, w																
181	F	Died, we																

S -	-	Straw
1.S -	-	Light Straw
		Dark Straw
I.Am −	-	Light Amber

DAm - Dark Amber el - Cloudy

N - Negative F - Few L - Loaded

M - Many

R - Rare occ - Occasional

QNS - Quantity not sufficient norm - Normal

- None seen

Tinety Day Subacute Rhesus Monkey Toxicity Study. FC-143: TABLE 16. Summary of Gross Necropsy Observations, Terminal Sacrifice. 0 mg/kg, day 10 mg/kg/day 3 mg/kg/day 30 mg/kg/day 100 mg/kg/day Z, × z ± Z Σı Z Z <u>ب</u> Group, Monkey Number Site 7.365 7366 7384 Lesion No Gross Lesions х :: External swelling, eye area alopecia × denydrated х emaciated red vaginal discharge × scab, facial area × x Lung mite lesion x x x х х х х х adhesions х х dark red foci/reddish purple area х х yellow, white foci х x x nodules х x Heart hemorrhage, subendocardial gelatinized fat, endocardial x x atrophy Lymph Nodes enlarged х reddish black in color x Thymus atrophy x Abdominal Cavity depletion of fat X Stomach dark red foci arosion, mucosa, pyloric portion х x x х mucosal hyperemia yellowish gelatinous material, fundic portion hemorrhage, fundic mucosa х ulcers :: X Small Intestine greenish-gray mucoid material dark red/brown mucoid material х liquid, blood tinged fluid x x x reddish brown in color congestion, mucosa hemorrhage, mucosa x Large Intestine congestion, mucosa hemorrhage, mucosa dark recdish black foci X semi solid, blood stained contents х

*Died on Study

BEST COPY AVAILABLE Page 30

FC-143:	Nine	ty Day Subacute	Rhesus Monkey	Toxicity Study		2 100 200 200
TABLE 16. Cont.		Summary of Gros				
Sice Lesion	Group, Monkey Number	7362 H 60 6 7366 F 7366	3 mg/kg/day W 44 4 5867 3 867	7363 N 07 7458 N 22 7328 F 28 7383 F 78	7367 Hx 08 7455 H 45 7382 Fx 33/88 7387 Fx 45 7387 Fx 4	7361 HK 7335 F F F F F F F F F F F F F F F F F F
Pancreas accessory spleen			x		7 7 7 7	
Liver cyst brownish color accentuated lobulations granular surface yellowish mottling reddish yellow color				х	x x x x	x x
Cidneys brownish discoloration						
kin subcutaneous edema, abdome subcutaneous hemorrhage, a	n bdomen				x	x

137-090

Group, Monkey								Sacrifice a	The Armstein Street Street			stes/
Number	Sex	i/t.	Sp	leen		lvor					1.0	stes/
	эех	kg	g	7		lver		enals	KI	dneys	R A	. 7
Terminal Sacrifice:					·		g	2×10	g	7	g	artes 2x10
Control:												
7362												
7365	М	3.25	2.35	0.07	70. 10	_						
7,300	М	3.85	7.87	0.20	70.73	2.18	0,65	0.20	11.82	0.3.		
Hean		3 66			79.15	2.06	0.71	0.18	17.06	0.36	0.85	0.03
7336		3.55	5.11	0.14	74.94	2.12	0.40			0.44	3.23	0,08
7386	F	3.40	5,03	0.15	04 n-		0.68	0.19	14.44	0.40	2.04	0.06
7.300	F	3.50	3.87	11.0	84.79	2.49	-	-	13.80			0.00
Нел п		2.45		0.11	77.77	2.22	0.62	0.18	19.58	0.41	0.28	0.82
1 ma/h = / 1		3.45	4.45	0.13	81.28	2.36	0.62 ^a		17.30	0.56	0.27	0.77
3 mg/kg/day:						a. sJt.r	0.62	0.18 ^a	16.69	0.48	0.28	0.80
7364	14	1 10									.,.20	0.60
7.366	M	4.10	4.67	0.11	91.40	2.23	0.77					
M	••	2.65	1.87	0.07	63.17	2.38		0.19	19.76	0.48	3.66	0.09
Mean		3.38	3.27	0.09		2.30	0.82	0.31	12.40	0.47	0.85	
7384	F			0.09	77.29	2.31	0.80	0.25	16.08		0.07	0.03
7385	F	3.70	6.82	0.18	102.64	2.77			10.08	0.47	2.26	0.06
••	Г	3.45	2.94	0.09	67.25	1.95	0.78	0.21	17.60	0.48	0.18	0.49
Mean		3.58	4.88	0.13			0.55	0.16	14.44	0.42	0.16	0.49
0 mg/kg/day:			7.00	0.13	84.95	2.36	0.67	0.19	16.02	0.45		
363										0.4,	0.17	0.48
458	M	3.80	2.39	0.06	87.25	0.00						
	М	3.25	4.91	0.15	82,30	2.30	0.74	0.19	16.84	0,44	1 76	
Hean		3.53	3 (6			2.53	0.67	0.21	16.54	0.51	1.75	0.05
128	_		3.65	0.11	84.78	2.41	0.71	0.20			1.99	0.06
383	F	3,55	4.06	0.11	83.00			0.20	16.69	0.48	1.87	0.05
	F	3.70	3.99	0.11	85,35	2.34	0.66	0.19	15.32	0.43	0.00	
Mean		3.63	/ 03		05, 55	2.31	0,86	0.23	13.56	0.37	0.29	0.82
0 mg/kg/day ^a ;		J • U J	4.03	0.11	84.18	2.32	0.76	0.21			0.39	1.05
								W. ZI	14.44	0.40	0.34	0.94
455	М	2,40	3 50									
eaths:		2.40	3,50	0.15	70.76	2,95	0.84	0.35	14			
							4 1779	W. 13	16.85	0.70	1.16	0.05
mg/kg/day:												* * *
67	M	0.10										
82	M T	2.10	1.45	0.07	75.33	3.59	1.40					
87	r F	2.25	3.01	0.13	112.87	5.02	1,63 1,74	0.78	16.34	0.78	1.94	0.00
0 4 4	•	2.25	1.97	0.09	85.17	3,79		0.77	19.03	0.85	0.21	$0.09 \\ 0.93$
0 mg/kg/day:						3.73	1.20	0,53	15.96	0.71	0.32	1.42
61	М	2 / 0	_									1.92
56	m 14	2.40	1.65	0.07	79.02	3.29	1.59	0.77				
35	rı F	2.70	1.76	0.07	85.08	3.15		0.66	21.88	0.91	1.37	0.06
81	r F	2.05	2.49	0.12	74.28	3,62	1.45	0.54	14.77	0.55	0.71	0.06
	r	2.60	3.05	0.12	82.58	3.18	1.03 1.16	0.50	15.40	0.75	0.10	0.03
							1.10	0.45	18.28	0.70	0.13	0.50

Group mean relative organ weights shown in this table were calculated by averaging the individually calculated relative

^{*}Significantly different from Control group mean, ps0.05. **Significantly different from Control group mean, p.0.01.

Not included in analysis.

137-090

Group,		bsolute (Grams) Body		(% Body Weight)	Crigan weights	, Terminal Saci	Tire and Deat	lis.		
Monkey		Wt.				rold/				
Number	Sex	kg		leart		thyroid				
			g	ž	g	7×10		<u>caln</u>	Plta	Hary
Terminal Sacrifice:							<u> </u>	7	g	7×10
Control:										
7362										
7365	M	3.25	11.69	0.36						
	Н	3.85	18.17	0.47	1.050	0.32	87.04	2.68		
Mean .		3.55		0.47	0.296	0.08	90.39	2.35	0.053	0.16
7336		3.33	14.93	0.42	0.673	0.20	•	2.35	0.063	0.16
7386	F	3.40	15.30	0.75		0.20	88.72	2.51	0.058	0.14
	F	3.50	14.75	0.45	~	-	82.64	0.40		0.16
Mean		2	14.73	0.42	0.839	0.24	81.55	2.43	0.050	0.45
3 mg/kg/day:		3.45	15.03	0.44	0.839 ⁸		111.33	2.33	0.073	0.21
z.mg/*k/any:					0.039	0.24 ^a	82.10	2.38	0.062	
7364									0.00.	0.18
7366	M M	4.10	18.90	0.46						
••	rı	2.65	12.70	0.48	0.893	0.22	96.01	2.34		
Mean		3.38			0.378	0.14	83.50	3.15	0.080	0.20
7384			15.80	0.47	0.636	0.18		3.13	0.051	0.19
7 385	F	3.70	16.87	0.46		0.16	89.76	2.75	0.066	
	F	3.45	15.19		0.694	0.19	78,66		(7.1700)	0.19*
Mean		3.58		0.44	0,543	0.16	80.21	2.13	0.086	0.23
0 mg/kg/day:		3.36	16.03	0.45	0.619	0.13	00.21	2.32	0.053	0.15
					0.019	0.17	79.44	2.23	0.070	
363	H	2 00						-	0.070	0.19
458	M	3.80	15.10	0.40	1 211					
Mean	.,	3.25	14.14	0.44	1.211	0.32	77.73	2.05	0.040	
ricali		3.53	14.62		0.488	0.15	83.38	2.57	0.063	0.17
328	F		14.62	0.42	0.850	0.23			0.047	0.14
383	F	3.55	11.85	0.33			80.56	2.31	0.055	0.16
• •	r	3.70	11.69	0.32	0.461	0.13	77,19	2.17		0.10
Mean		3.63			0.537	0.15	75.88	2.05	-	-
0 mg/kg/day ^a :		.7103	11.77*	0.32**	0.499	0.14		2.05	0.071	0.19
					,	9.14	76.54**	2.11	0.071 ^a	0.19^{A}
455	M	2.40	• • •							0.19
eaths:		4.70	to,50	0.44	0.292	0.12				
. – • • •						0.12	75.01	3.13	0.049	0.20
) mg/kg/day:									1147	0.20
167										
82	M	2.10	10.39	0,49						
87	F	2.25	11.93	0.49	0.532	0.25	82.27	3.03		
	F	2.25	10,21	0.33	0.543	0.24	83.22	3.92	0.068	0.32
0 mg/kg/day:				W.43	0.845	0.38	91.45	3.70	0.070	0.31
61							74.47	4.06	0.057	0.25
56	M	2,40	14.54	0.61						
35	M	2.70	15.55	0.61	0.791	0.33	92,43	2 05		
81	F	2.05	11,44	0.58	0.718	0.27	95,42	3.85	0.072	0.30
01	F	2.60	12,95	0.56	0.479	0.23	74.28	3.53	0.046	0.17
			14.73	0.50	0.417	0.16	74.28 86,20	3.62	0.056	0.27
		Group mean r						3.32	0.082	0.32

Group mean relative organ weights shown in this table were calculated by averaging the individually calculated rel-

^{*}Significantly different from Control group mean, p 0.05.

^{**}Significantly different from Control group mean, p.0.01. ANOT Included in analysts.

^{- *} Not avallable

FC-143:

TABLE 18.

Ninety Day Subacute Rhesus Monkey Toxicity Study. Microscopic Observations.

			Con	tro	1	_	3 ta	g/kg	/day		10 m	g/kg	/dav		30 n	10 /1	د/ ہ	•	,	00	_ /•	٠.
လ		X	Z	[a	. <u>:</u>				F (F	-	-			_		. <u>5/.</u> E	<u> </u>	<u>r</u>	Σ	n 00 ≖		
Tissue days	Number	7362	7365	7336	7386	736%		000/	7385	7363	26.58	73.28	0367		7455	*/95/	7382*	7387*	7456*	7361* 1	7335*	
Brain focal perivascular lymphoid infiltrates		1	1	1	1	1		l	1 1	1	. 3		1 :	1	1	1	1	1	1	1	1	_
Spinæl cord		1	1	1	1	1		. :	1 1	1	1	. 1		L :	L :		1	1	1	1	1	
Peripheral nerve	:	1	1	1	1	1	1	. 1	. 1	1	1	1	1	. 1		L	1	1	1	1	1	
Sye Sarcocystis sp. in ocular muscle focal lymphoid infiltrates in sclera focal lymphoid infiltrates in	1		x	1	1	1	1	x				3	1		1	•	1	1	1	1	x	
lacrimal gland focal lymphoid infiltrate in palpebral conjunctiva cystic tarsal gland						÷			3	3	3			3								
ituitary diffuse congestion small parenchymal cyst	1		1	1	1	1	1	1	1	1	×	1	1	1	3		1	3	3	1	3	
nyroid foci of interstitial lymphoid infiltrates focal interstitial fibrosis diffuse congestion	1	1	•	1	3	1	2	1	1	1	1	1	1	1	1	3		2	3	1	1	
rathyroid diffuse congestion	1	1	•	1	1	1	1	•	•	•	-	-	•	-	1	-			3	-	-	1
ngue foci of inflammatory cell infil- trates in lamina propria and mucosal epithelium foci of inflammatory cell infil-	1	3		3	4	2	3	2	3	1	3	3	1	2	2	1]	L	1	1	2	_
trates in muscle arcocystis sp.		2						3			3	2		2							2	

x - condition present
a - autolyzed
l - not remarkable
2 - very slight
3 - slight Code: 4 - moderate 5 - marked 6 - extreme

- = not available *Died or sacrificed in extremis

Ninety Day Subacute Rhesus Monkey Toxicity Study.

TABLE 15. Cont.					Micr	0800	pic	0bs	erv	atio	ns.													
				ntr	01	_	3	mg/l	kg/c	day		10 :	ng.′k	g/d	ay		30 -	ng/k:	7/ds	•	1	100	/1	
	1× 0	I	Σ	: :	. .	4	Σ	Σ	Ča.,	Çe.,			Σ.	D	<u>.</u>			E	<u>570a</u>	-				kg/da
Tissue Esion	Monkey	7362	7365	72.67	7386		7304	7366	7384	7385	7363		7458	7328	7383	77.55		/367*	7382*	7387*	1496*			7335* 1
Tonsil							1																	
foci of inflammatory cell in trates in mucosal epithel and tonsillar crypt Sarcocystis sp. in muscle	nfil- ium	3	4 *	2	: 3		•	4	3	3	3	i	3	4	4	•	-	2	1	3	-		-	-
Gongylonema sp. in mucosal epithelium					×																			
atrophy of lymphoid follicle	: \$																			4				
Adrenal					·																			
foci of dystrophic mineraliz tion diffuse congestion	a-	3	3	2	2	3		1	2			3	}	2	2						2			
diffuse lipid depletion foci of lymphoid infiltrates in sinusoids																	5		;	3 5	3 5	5	4 5	
acidophilic degeneration of individual to small groups of cells				3		2			2	3	3	3			2	2				3				
Tachea			1			:											-							
foci of inflammatory cell instructes in lamina propria		3	_	3	3	3	2	! .	2	3	3	3	3		2	2	1	3	1	<u> </u>	1	i	3	3
alivary gland focal interstitial lymphoid infiltrates				1		1					1		-									1	1	
diffuse congestion decreased cell size, loss of cytoplasmic granules		2	3		2		3	4	•	3		2	2	;	3	3	3	2 3	3		3			3
ing																		·			4			
acarian pigment (peribronchia peribronchiolar, perivas- cular)			_																					
focal perivascular lymphoid infiltrates	3		2	2	2	3	2	2		2	2	2	3	2		3	2	2	4		2		2	2
focal peribronchial/peribron- chiolar lymphoid aggregates	4	,		3	,	3	_			_		3	3											
lung mite in bronchiolar lumer	. x		•	3	4 x	3	3	4	:	3	3	4	4	3		3		2	2				3	3
interstitial pneumonia Liffuse congestion	3		•		4	3		3	4	4	3			3		4		4				3		
foreign body pneumonia focal hemorrhage		. 5							5	5							3	3	3		4	•		
acute focal bronchopneumonia numerous aggregates of pigment	4					3						-	4								3			
laden alveolar macrophages																			5					
C	ode:	a 1	- 1	Butc 10t	lyze rema	rkab:		nt	5	- n	oder arke	d				-								
		2	- 1	ery lig	sli	ght			_	= n	ot a	vai	labl rifí	.e .ced	in	ext	ייים די	í e						

Ninety Day Subacute Rhesus Monkey Toxicity Study.

TABLE 18. Cont.				MIC	rosc	opi	c Ot	ser	Vati	ons	•											
х ш х	. -		ntr	ol	<u>.</u>		3 mg	/kg/	/day	·) നള	/kg/	day	3	30 л	g/k	g/day		100	mg/l	cg/di
Tissue Croup, Nonkey Number							Σ.		• ;	æ. -	Σ-	Σ	íe.	Œ.	2	_	Z		- ;	Σ :	Ε	Œ,
Lesion C U U U U U U U U U U U U U U U U U U	7362	7365	2	0557	7386	7364	7366	7384	3305		7363	7458	7328	7383	7455		/36/*	7382*	1001	*06.47		/335*
Reart focal interstitial lymphoid		1				1					1	1		1	1			1			L .	
infiltrates focus of lymphoid infiltrate in endocardium	3		:	3	3		2	3	;	3			-			:	3		2	2		2
focal subendocardial hemorrhage atrophy of epicardial fat													3					4	. 3	3	4	۷.
Aorta	1	1	1		1	1	1	1	1		1	1	1	1	1		L	1 1	1	1		1
Spleen	1	1	1			1	1	1	1	·····-	1	1										
atrophy of lymphoid follicles diffuse congestion focal amyloidosis in lymphoid					-	•	•	•	•		•	1	3	3	4 3	4 3	. 4	4	4		4	. 4
follicles increased amount of hemosiderin pigment																		3			3	
ymph node	1			1		1	1	1								····						
acrophy of lymphoid follicles increased amount of hemosiderin pigment	-	3	•	•		•	1	1	1		1	1	1	1	1	1		4	4	4	4	4
neutrophil infiltrate in sinuses diffuse congestion		•															3		3	3	5	
lymphoid hyperplasia		3															3			•		3
sophagus foci of inflammatory cell infil-	1			1			1				-						1				1	1
trates in lamina propria foci of interstitial lymphoid		3	2			2		3	2			3	2	2	3	2	-	2	•	2	•	1
infiltrates in muscularis Gongylonema sp. in mucosal epithelium		2						2		,		2	2	2								
Omach						-																
diffuse congestion	3	4	3	3	3	3	3	4	4	4	:	3	4	3	3			3	3	2	4	3
foci of inflammatory cell infil- trates in submucosa foci of inflammatory cell infil-					4					4			4	3		3	3				3	
trates in muscularis foci of inflammatory cell infil-								3			3	3										
trates in serosa Parasitic granuloma in omentum											3 x											
focal mucosal hemorrhage focal coagulation necrosis in mucosa													2		2						2	
Code:									,								-				3	_
<u> </u>	1		auto not	olyz rem	ed ærka	able	ent		5 -	mar	era ked rem											
- 090	2	-	very slig	7 51	1ght	ŧ			- =	not	ava	aila	ble Lfic	ed <u>in</u>	ext	rem	ÍS					

Ninety Day Subacute Rhesus Monkey Toxicity Study.

TABLE 18. Cont.					Mic	rosc	opia	c Ob	ser	vati	ons.													
		_		ontr	ol		_3	шg	/kg/	day		10	ng/	kg/d	av		30 an	- /l-	/4.		,			
	- > ri	Σ		Σ	-	124	Σ	I	24	- 12		Σ	Σ	Ca ₄	<u> </u>		5		, / U.a	<u> </u>	Σ		ng/k	<u>g/c</u>
Tissue Education S	Monkey	7362	3366		/336	. 986.	7364	7366	7384	7385	. 261	5057	7458	7328	7383	5572	7,47	70067	¥790	7387*	1496*	7361*		
Small intestine diffuse villous atrophy focal hemorrhage diffuse congestion focal aggregate of brown pi laden foamy macrophages in mesentery inflammatory cell infiltrate	n.	1]		1	1	1	1	1	1		1	1	1	1	1				3	5	5)
serosa atrophy of lymph nodule															•		4				4		4	
Cecum transmural inflammatory cell infiltrates		1	1	-		l	1	1	1	1			l	1	1						1			
diffuse congestion focal mucosal hemorrhage inflammatory cell infiltrate serosa parasitic granuloma in muscu											2						3 2	3		3		4 3 2	3 4	
atrophy of lymph nodule						•										×			4	4			4	
olon diffuse congestion parasitic granuloma in submuc transmural inflammatory cell infiltrates focal mucosal hemorrhage		1	1	1	1		1	1	1	1	1	1		1	1	1	3	3	3	3	*	3	3	,
atrophy of lymph nodule																	3		4		•		4	
ectum diffuse congestion		1	1	1	1	1		1	1	1	1	1	1		1	1	·	-				1		
<pre>inflammatory cell infiltrates in muscularis atrophy of lymphoid nodule</pre>																	3	3	3				3	•
				·															4				4	
ncreas focal periductal lymphoid infiltrates	1		1	•			1				1		1	ì							.	1	1	_
focal interstitial lymphoid infiltrates iiffuse congestion				3	4	3			3	2		3				2								
		····															3	3	3					
mus				1	1	1	1	1																_

Code:

x - condition present
a - autolyzed
1 - not remarkable
2 - very slight
3 - slight

4 - moderate 5 - marked 6 - extreme

- = not available
*Died or sacrificed in extremis

FC-143:

Ninety Day Subacute Rhesus Monkey Toxicity Study.

TABLE 18. Cont.	-					110	086	:opı	.c 0	bse	Iva	ion	5.														_
				Cor	tro	1	_	:	3 ans	z/ks	z/da	v	1	.0 ms	/1	. /									-		_
	o a x		I	Σ	[a		<u>.</u>	Σ		:	<u>.</u>	<u>~</u>	Ξ			3/Q a			30 m		3/d	<u>ey</u>		100) mg	/kg	/
Tissue	Group, Monkey Number	١.										-	_	-	•		124	Σ	-	=	12.	<u> </u>		Σ	x	îe.	_
Lesion	o de de		7967	7365	7336	2067	6	7364	7366)	3 6	35		30	,	3	6		. *		*	*	٠	*	*	*	
	UŽŽ	<u> </u>	<u> </u>	-	73		7	73	73	: 1	7384	7385	7363	7458		/328	7383	7455	7367*		/382*	7387*	7	/42 0 *	7361*	7335*	
Liver																	_	_			_	~	<u>_</u> _	<u>.</u>	73	73	
portal inflammatory cell i	nfil-																										_
trates		-	3	3	3	3	,				_														1		
parenchymal inflammatory co	ell	_		•	_	3	,				3	2	3	3	- 2	2	2		2					2			
infiltrates		2	:	2	2	3		3	3		3		_										-	-			
diffuse congestion				_	-			,		•		3	3	3	2	2										3	
acidophilic degeneration of	E																		4	:	3	3	3	ţ		3	
individual to small group of hepatocytes	os																									•	
diffuse hepatocellular hype												3															
trophy with cytoplasmic	er-											_										3					
Vacuolation .																											
neutrophil infiltrates in																		3		3							
sinusoids																		•		3							
																		3									
allbladder																											
fort of tastan																											_
foci of inflammatory cell in trates in lamina propria	nfil-																	1	a	a		æ	a		ı	1	
In landing propria		3		3	4	3		3	2	2	3		2	3	3	3											
Idney																											
focal interstitial lymphoid							;																				
infiltrates		2	2	!		2	3	1	3	4	2			_	_												
multinucleated lining epithe in papillary ducts	lium					-	-	•	,	•	2		2	3	2	3	:	2		2	2	2		2	: 2	,	
cyst in medulla			x	: ;	ĸ					x														_	•	•	
chronic interstitial nephrit			x							^						x											
diffuse congestion	is			:	3																						
microlith in renal tubules																			,	_							
Small foci of dystrophic min																			4	3	3		3	3	3		3
alization	er-			_																			x				
				2													2				2			•			
inary bladder																					-			2	2		
foci of inflammatory cell inf															1	1			_								~
traces in lamina amounts		•	_	_											-	+	1		Ţ		1			1			
diffuse congestion		3	2	3		2	2	3		2	3	3	:	3													
																				3			3		,		
tes																						•	•		3	3	ļ
repuberal development																											•
hronic focal vasculiese	3		x				x	x				x	х														
Ocal perivascular lumbada			4									••	•	•			x	2	τ			3	•	x			
infiltrate																											
													2														
ries			_																								
mall foci of dystrophic miner	_				1				1		1			1		,											
ization	al-								•		•			ī		Ţ					1				1	1	
iffuse congestion				2															2							-	

x - condition present 4 - moderate
a - autolyzed 5 - marked
1 - not remarkable 6 - extreme
2 - very slight -= not available
3 - slight *Died or sacrificed in extremis Code:

137-090

FC-143:

Ninety Day Subacute Rhesus Monkey Toxicity Study.

						scopi																
				trol		_	3 2015	g/kg	/day	_	10	mg/l	(g/d	av	3	0 mg	/kg/	dav	1	.00 a	ng/ke	e /.
	1× 0 c	Σ	Σ	(Re	įs.	Z	3		<u>.</u>	L ,	Z	Σ	<u> </u>	54,	Ξ	Σ	24	2	. <u>.</u>			
Tissue 5 Lesion 5	Monkey	7362	7365	7336	7386	7364	7366	7367	7385		7363	7458	7328	7383	7455	7367*	7382*	7387*	7456*			
Prostate																1						-
focal interstitial lymphoid infiltrates		3	3			2	3									1			1	-		
focal lymphoid infiltrate i	Ω					•	,				2	3			2							
corpus cavernosum			3				2				2				3							
terus										-										-		
diffuse congestion													1	1			_	1				
blood in uterine glands small foci of hemorrhage in				2	2			2									3 2				3	
endometrium				2	•			_									_				2	
brown pigment-laden macropha	ges			2	2			3														
in endometrium									3													
inflammatory cell infiltrate endometrium	s in			_	_																	
proteinaceous fluid and infl	am-			3	2			4	2													
matory cells in uterine lu	men																				3	
foci of lymphoid infiltrates lamina propria and mucosal epithelium foci of lymphoid infiltrates muscularis Sarcocystis sp. focal lymphoid infiltrate in tunica adventitia diffuse congestion focal neutrophil infiltrate i mucosa	in			3	4 2	;		3 x 3	3			3	4	3			2	3			2	
eletal muscle Earcocystis sp.	1			1	1	1	1			1		1							1			
focal interstitial inflammato	ГУ	×						×	x							x			•		x	
cell infiltrates	•	3						4	2		3		:	,								
Interstitial fibrosis Focal/multifocal atrophy of m									_		•		•	•				4				_
increased sarcolemmal nuclei	iscie														4	4		4		4		4
.n																	-					_
rown/black pigment in dermis	x	×	×	: 3	:	x	x	x	x	v	v	x				_	_					
ermal inflammatory cell infil	.•									••	^		х	. :	ж :	K :	x :	X	x	x	x	Z
iffuse acanthosis	3	2	3				3	3														
iffuse congestion	•		,																_			
yperkeratosis ew large areas of hemorrhage						3 :	3		3		3	3				3	3 3	1	3		,	_
in subcutis								•			-	-			•	•	•	•			3	3
								3											5			

x - condition present Code:

a - autolyzed
l - not remarkable

2 - very slight 3 - slight

4 - moderate 5 - marked 6 - extreme

- = not available
*Died or sacrificed in extremis

137-090

TABLE 18. Cont.	Ninety Day Subacute Rhesus Monkey Toxicity Study. Microscopic Observations.																			
	Control							-						 -						
	Ξ		<u></u>		Ξ.			kg/day		10 mg/kg/day			30 mg/kg/day			10	100 mg/kg/da			
					-	Σ	(A.	í.	Z	I	24	ís.	Σ	Σ		<u> </u>	E			/ u a
Tissue Lesion	7362	7365	7336	7386	7364	7366	7384	7385	7363	7458	7328	7383	7455	7367*	7382*	7387*	7456*	7361* ,		
fammary gland															_		_ 7	73	2	ŕ
brown pigment in dermis hyperkeratosis dermal inflammatory cell infil-	х 3	x	3	ж 3	х 3	3	3	1	x	x 3	x	3	x 3	X 3		x	x	x	x	
trates inflammatory exudate in acinar			3	3	2		3		3	ر	3	3	•	3	3					
inflammatory cell infilements in		2		2					•		3	3	2							
intralobular connective tissue diffuse congestion		3							2							2				
intraepidermal microabscess													x				3			
our																				
						•	•	-	-	-	-	-	-	1	-	1	1	1	1	1
one marrow (Rib junction) hypocellular marrow	1	1	1	1	1	1	1	1	1	1	1	1								_
congestion													3	4 3	4 3	3	4 3	4	4	4

Code: x - condition present 4 - moderate
a - autolyzed 5 - marked
l - not remarkable 6 - extreme
2 - very slight -= not available
3 - slight *Died or sacrificed in extremis

4