Homotopy Groups of Spheres

D. Zack Garza

Introduction

Spheres

Homotopy Groups of Spheres

Graduate Student Seminar

D. Zack Garza

April 2020

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Spheres

Introduction

Outline

Homotopy Groups of Spheres

D. Zack Garz

Introduction

- Homotopy as a means of classification somewhere between homeomorphism and cobordism
- Comparison to homology
- Higher homotopy groups of spheres exist
- Homotopy groups of spheres govern gluing of CW complexes
- CW complexes fully capture that homotopy category of spaces
- There are concrete topological constructions of many important algebraic operations at the level of spaces (quotients, tensor products)
- Relation to framed cobordism?
- "Measuring stick" for current tools, similar to special values of L-functions
- Serre's computation

Intuition

Homotopy Groups of Spheres

D. Zack Garz

Introduction

Homotopies of paths:

– Regard paths γ in X and homotopies of paths H as morphisms

$$\gamma \in \mathsf{hom}_{\mathsf{Top}}(I, X)$$
 $H \in \mathsf{hom}_{\mathsf{Top}}(I \times I, X).$

- Yields an equivalence relation: write

$$\gamma_0 \sim \gamma_1 \iff \exists H \text{ with } H(0) = \gamma_0, H(1) = \gamma(1)$$

- Write $[\gamma]$ to denote a homotopy class of paths.

Intuition

Homotopy Groups of Spheres

D. Zack Garza

Introduction

– Why care about path homotopies? Historically: contour integrals in $\ensuremath{\mathbb{C}}$

– By the residue theorem, for a meromorphic function f with simple poles $P = \{p_i\}$ we know that

$$\oint_{\gamma} f(z) \ dz \text{ is determined by } [\gamma] \in \pi_1(\mathbb{C} \setminus P)$$

Definitions

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Generalize to a homotopy of morphisms:

$$f, g \in \mathsf{hom}_{\mathsf{Top}}(X, Y) \quad f \sim g \iff \exists F \in \mathsf{hom}_{\mathsf{Top}}(X \times I, Y)$$

- such that F(0) = f, F(1) = g.
- This yields an equivalence relation on morphisms, homotopy classes of maps

$$[X, Y] := \mathsf{hom}_{\mathsf{Top}}(X, Y) / \sim$$

Definition of homotopy equivalence:

$$X \sim Y \iff \exists \begin{cases} f \in \mathsf{hom}(X,Y) \\ g \in \mathsf{hom}(Y,X) \end{cases}$$
 such that $\begin{cases} f \circ g \sim \mathsf{id}_Y \\ g \circ f \sim \mathsf{id}_X \end{cases}$

Similarly write

$$[X] = \{ Y \in \mathsf{Top} \mid Y \sim X \}.$$

The Fundamental Group

Homotopy Groups of Spheres

D. Zack Garza

Introduction

IIItroductioi

- $-\pi_1(X)$ is the group of homotopy classes of loops:
- Can recover this definition by finding a (co)representing object:

$$\pi_1(X) = [S^1, X]$$

Higher Homotopy Groups

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Can now generalize to define

$$\pi_k(X) := [S^k, X]$$

Fun side note: this kind of definition generalizes to AG, see Motivic Homotopy Theory – the (co)representing objects look \mathbb{A}^1 or \mathbb{P}^1 .

Classification

Homotopy Groups of Spheres

D. Zack Garza

Introduction

- Holy grail: understand the topological category completely
 - I.e. have a well-understood geometric model one space of each homeomorphism type

Also have the derived category DTop, its interplay with hoTop is the subject of e.g. the Poincare conjecture(s).

- Any representative from a green box: a homotopy type.

Example: Homotopy Equivalence is Useful

Homotopy Groups of Spheres

D. Zack Garz

Introduction
Spheres

Proposition: Let B be a CW complex; then isomorphism classes of \mathbb{R}^1 -bundles over B are given by $H^1(X, \mathbb{Z}/2\mathbb{Z})$.

- Use the fact that for any fixed group G, the functor

$$h_G(\,\cdot\,):\mathsf{hoTop^{op}}\longrightarrow\mathsf{Set}$$

$$X\mapsto\{G\mathsf{-bundles\ over\ }X\}$$

is representable by a space called BG (Brown's representability theorem).

- I.e., let $Bun_G(X) = \{G-bundles/B\} / \sim$, there is an isomorphism

$$\operatorname{Bun}_G(X) \cong [X, BG]$$

- In general, identify $G = \operatorname{Aut}(F)$ the automorphism group of the fibers - for vector bundles of rank n, take $G = GL(n, \mathbb{R})$.

Example: Homotopy Equivalence is Useful

Homotopy Groups of Spheres

D. Zack Garza

Introduction Spheres Note that for a poset of spaces (M_i, \hookrightarrow) , the space $M^{\infty} := \varinjlim M_i$. These are infinite dimensional "Hilbert manifolds".

Proof:

$$\mathsf{Bun}_{\mathbb{R}^1}(X) = [X, B\mathrm{GL}(1, \mathbb{R})]$$

$$= [X, \mathsf{Gr}(1, \mathbb{R}^{\infty})]$$

$$= [X, \mathbb{RP}^{\infty}]$$

$$= [X, K(\mathbb{Z}/2\mathbb{Z}, 1)]$$

$$= H^1(X; \mathbb{Z}/2\mathbb{Z})$$

Work being swept under the rug: identifying the homotopy type of the representing object.

Example: Homotopy Equivalence is Useful

Homotopy Groups of Spheres

D. Zack Garza

Introduction Spheres **Corollary:** There are 2 distinct line bundles over $X = S^1$ (the cylinder and the mobius strip), since $H^1(S^1; \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$.

Corollary: A Riemann surface Σ_g satisfies $H^1(\Sigma_g; \mathbb{Z}/2\mathbb{Z}) = (\mathbb{Z}/2\mathbb{Z})^{2g}$ and thus there are 2^{2g} distinct real line bundles over it.

Example: Higher Homotopy Groups are Useful

Homotopy Groups of Spheres

D. Zack Garz

Introduction

- Application: computing $\pi_1(SO(n,\mathbb{R})$ (rigid rotations in \mathbb{R}^n).
- The fibration

$$SO(n, \mathbb{R}) \longrightarrow SO(n+1, \mathbb{R}) \longrightarrow S^n$$

yields a LES in homotopy:

$$\cdots \longrightarrow \pi_2(SO(n,\mathbb{R})) \longrightarrow \pi_2(SO(n,\mathbb{R})) \longrightarrow \pi_2(S^n)$$

$$\pi_1(SO(n,\mathbb{R})) \longrightarrow \pi_1(SO(n,\mathbb{R})) \longrightarrow \pi_1(S^n)$$

Uses of Higher Homotopy

Homotopy Groups of Spheres

D. Zack Garza

Introduction Spheres Knowing $\pi_k S^n$, this reduces to

$$\cdots 0 \longrightarrow \pi_2(SO(n,\mathbb{R})) \longrightarrow \pi_2(SO(n,\mathbb{R})) \longrightarrow 0$$

$$\pi_1(SO(n,\mathbb{R})) \longrightarrow \pi_1(SO(n,\mathbb{R})) \longrightarrow 0$$

- Thus $\pi_1(SO(3,\mathbb{R})) \cong \pi_1(SO(4,\mathbb{R})) \cong \cdots$ and it suffices to compute $\pi_1(SO(3,\mathbb{R}))$ (stabilization)
- Use the fact that "accidental" homeomorphism in low dimension SO(3, \mathbb{R}) $\cong_{\mathsf{Top}} \mathbb{RP}^3$, and algebraic topology I yields $\pi_1 \mathbb{RP}^3 \cong \mathbb{Z}/2\mathbb{Z}$.

Can also use the fact that $SU(2,\mathbb{R}) \longrightarrow SO(3,\mathbb{R})$ is a double cover from the universal cover.

Uses of Higher Homotopy

Homotopy Groups of Spheres

D. Zack Garz

Introduction

- Important consequence: SO(3, ℝ) is not simply connected!
- See "plate trick": non-contractible loop of rotations that squares to the identity.
- Robotics: paths in configuration spaces with singularities
- Computer graphics: smoothly interpolating between quaternions for rotated camera views

Homotopy Groups of Spheres

D. Zack Garza

Introduction

pheres

Spheres

Setup

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Spheres

- Defining $\pi_k(X) = [S^k, X]$, the simplest objects to investigate: $X = S^n$
- Can consider the bigraded group $\pi_S := [S^k, S^n]$:

But Wait!

Homotopy Groups of

Spheres

The corresponding picture in homology is very easy:

Slogan: "conservation/duality of complexity"

History

Homotopy Groups of Spheres

D. Zack Garz

Introductio

Spheres

- 1895: Poincare, Analysis situs ("the analysis of position") in analogy to Euler Geometria situs in 1865 on the Kongisberg bridge problem
 - Studies spaces arising from gluing polygons, polyhedra, etc (surfaces!), first use of "algebraic invariant theory" for spaces by introducing π_1 and homology.
- 1920s: Rigorous proof of classification of surfaces (Klein, Möbius, Clifford, Dehn, Heegard)
 - Captured entirely by π_1 (equivalently, by genus and orientability).
- 1931: Hopf discovers a nontrivial (not homotopic to identity) map $S^3 \longrightarrow S^2$

History

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Spheres

- 1932/1935: Cech (indep. Hurewicz) introduce higher homotopy groups, gives map relating $\pi_* \longrightarrow H_*$, shows $\pi_n X$ are **abelian** groups for $n \ge 2$.
 - Withdrew his paper because of this theorem!
- 1951: Serre uses spectral sequences to show that all groups $\pi_k S^n$ are torsion except,
 - k = n, since $\pi_n S^n = \mathbb{Z}$
 - $-k \equiv 3 \mod 4$, $n \equiv 0 \mod 2$, then $\mathbb{Z} \oplus T$
 - Tight bounds on where *p*-torsion can occur.
- 1953: Whitehead shows the homotopy groups of spheres split into stable and unstable ranges.

Today: We know $\pi_{n+k}S^n$ for

- $-k \le 64$ when $n \ge k + 2$ (stable range)
- $k \le 19$ when n < k + 2 (unstable range)
- We *only* have a complete list for S^0 and S^1 , and know *no* patterns beyond this!
 - Open for \sim 80 years.

Spheres

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Spheres

We'll fill out as much of this table as is easily known:

Introduction

Spheres

This follows easily from CW approximation:

Any map $X \xrightarrow{f} Y$ between CW complexes is homotopic to a cellular map.

k < n: CW Complexes

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Spheres

- Analogy from analysis: C^1 functions dense in L^2 .
 - If you're just computing homotopy groups, any space can be replaced with a weakly equivalent CW complex.

k < n: CW Complexes

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Spheres

AT1 can show that spheres have a simple cell decomposition

$$S^k = e_0 \coprod_f e_k$$

Thus any map $f: S^k \longrightarrow S^n$ must send the k-skeleton of S^k to the k-skeleton of S^n , which is just a point:

$k \ge 1$, n = 1: Covering Space Theory

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Spheres

Claim: $\pi_1 S^1 = \mathbb{Z}$ and $\pi_{\geq 2} S^1 = 0$. $\pi_k(S^n)$ n = 13 4 5 6 9 10

$k \ge 1$, n = 1: Covering Space Theory

Homotopy Groups of Spheres

D. Zack Garza

Introduction

Spheres

– Use the fact that $\mathbb{Z} \longrightarrow \mathbb{R} \longrightarrow S^1$ is a covering space and $\mathbb{Z} \curvearrowright \mathbb{R}$ freely.

 \mathbb{R}

$k \ge 1$, n = 1: Covering Space Theory

Homotopy Groups of Spheres

D. Zack Garz

Introduction

Spheres

Theorem: If $F \longrightarrow E \longrightarrow B$ is a *Serre Fibration* then there is a LES in homotopy

- Nontrivial theorem: If $\tilde{X} \longrightarrow X$ is a universal cover then $\pi_{\geq 2}(X) \cong \pi_{\geq 2}\tilde{X}$.

Introduction

pheres

Claim:
$$\pi_2 S^2 = \pi_3 S^2 = \pi_3 S^3 = \mathbb{Z}$$
.

D. Zack Garza

Introduction

Spheres

Use the Hopf fibration: $S^1 \longrightarrow S^3 \longrightarrow S^2$ and the fact that $\pi_{\geq 2}S^1=0$:

