HW 10 Due: April 11th 2025

- 1. Prove that the Turing-acceptable languages are closed under union, intersection, and reversal. For each property, give a detailed <u>sketch</u> of the proof, by saying how you would build a Turing machine that accepts the resulting language, given the Turing machine(s) that accept the original language(s). **Answer.**
 - (a) Turing-recognizable languages are closed under union. For any two Turing-recognizable languages L_1 and L_2 , let M_1 and M_2 be Turing machines that recognize them such that $L_1 = L(M_1)$ and $L_2 = L(M_2)$. We construct a Turing machine M that recognizes the union $L_1 \cup L_2$:

$$L(M) = \{ w \mid w \in L(M_1) \lor w \in L(M_2) \}$$

Algorithm 1 Turing machine accepting the union of two Turing-recognizable languages

- 1: **Input:** $w \in \Sigma^*$
- 2: Simulate M_1 and M_2 on w concurrently through dovetailing
- 3: if at least one of the computations halts and accepts then
- 4: Halt and accept
 - (b) Turing-acceptable languages are closed under intersection. For any two Turing-recognizable languages L_1 and L_2 , let M_1 and M_2 be Turing machines that recognize them such that $L_1 = L(M_1)$ and $L_2 = L(M_2)$. We construct a Turing machine M that recognizes the intersection $L_1 \cap L_2$:

$$L(M) = \{ w \mid w \in L(M_1) \land w \in L(M_2) \}$$

Algorithm 2 Turing machine accepting the intersection of two Turing-recognizable languages

- 1: Input: $w \in \Sigma^*$
- 2: Simulate M_1 on w
- 3: **if** M_1 halts and accepts **then**
- 4: Simulate M_2 on w
- 5: **if** M_2 halts and accepts **then**
- 6: Halt and accept
 - (c) Turing-acceptable languages are closed under reversal. For any Turing-recognizable language such as L let M be the Turing machine that recognize it such that L = L(M). We construct a Turing machine M' that recognizes the reversal of L:

$$L(M') = \{ w \mid w^R \in L(M) \}$$

Algorithm 3 Turing machine accepting the reversal of a Turing-recognizable language

- 1: **Input:** $w \in \Sigma^*$
- 2: w^R = reverse of w
- 3: Simulate M on w^R
- 4: **if** M halts and accepts **then**
- 5: Halt and accept
 - 2. Prove or disprove that the Turing-acceptable languages are closed under concatenation. For any two Turing-recognizable languages L_1 and L_2 , let M_1 and M_2 be Turing machines that recognize them, such that $L_1 = L(M_1)$ and $L_2 = L(M_2)$. We construct a Turing machine M that recognizes the concatenation of L_1 and L_2 , defined as:

$$L(M) = \{x \mid x = yz, y \in L(M_1), z \in L(M_2)\}\$$

Algorithm 4 Turing Machine Accepting the Concatenation of Two Turing-Recognizable Languages

- 1: **Input:** $x \in \Sigma^*$
- 2: Simulate all pairs where $x = x_i y_i$; $(0 \le i \le n)$ by running M_1 on x_i and M_2 on y_i concurrently through dovtailing
- 3: **if** M_1 halts and accepts x_i **then**
- 4: **if** M_2 halts and accepts y_i **then**
- 5: Halt and accept