```
FindMinInd(A[1..n] : array; \ell : index in A) @1 m \leftarrow \ell @2 for j = \ell + 1 to n do @3 if A[j] < A[m] then @4 m \leftarrow j @5 done @6 return m
```

Твърдение 0.1. При всеки вход от масив A от n числа и индекс $\ell \le n$, процедурата FindMinInd завършва след като извършва не повече от $3(n-\ell)+3$ операции и поне $n-\ell+1$ операции.

Доказателство. Ред @1 се изпълнява веднъж. След това, контролният ред за цикъла на ред @2 се изпълнява $(n-\ell)+1$ пъти. При първите $(n-\ell)$ от тях се изпълнява и тялото на цикъла, тоест още ред @3 и евентуално ред @4. Поради това цикълът завършва, като се изпълняват не повече от $3(n-\ell)+1$ операции за това и поне $(n-\ell)+1$. Накрая има още една операция от ред @6.

Следствие 0.1. Нека $k=n-\ell+1$ е броят на елементите в подмасива $A[\ell..n]$ при изпълнението на процедурата FindMaxInd c аргументи A[1..n] и ℓ . $Time(n,\ell)=Time(k)\in\Theta(k)$ и $Time(n,\ell)\in O(n)$.

Доказателство. Видяхме, че $Time(k) = Time(n,\ell) \le 3(n-\ell) + 3 = 3k$. Следователно $\frac{Time(k)}{k} \le 3$. От друга страна $Time(k) \ge (n-\ell) + 1 = k+1 \ge 1.k$. Следователно $1.k \le Time(k) \le 3.k$ за всяко k, което означава, че $Time(k) \in \Theta(k)$. Тъй като $k \le n$, то $Time(n,\ell) \le 3n+3 \le 4n$ за n > 3. Следователно $Time(n,\ell) \in O(n)$.

Твърдение 0.2. При всеки вход на масив A от n числа и индекс $\ell \leq n$, процедурата FindMinInd връща индекс m със следните свойства:

- 1. $A[m] = \min A[\ell..n],$
- 2. ako $m' \in \{\ell, ..., n\}$ u $A[m'] = \min A[\ell..n]$, mo $m \le m$.

Доказателство. Нека m_j е стойността на параметъра m непосредствено преди проверката за край на цикъл с брояч j+1 на ред @2. Тогава $m_\ell = \ell$ и резултатът от процедурата е $m=m_n$. Ще покажем следния инвариант:

$$I(j): m_j \in \{\ell, \dots, j\}$$
 и $A[m_j] = \min A[\ell, j]$ и ако $m' \in \{\ell, \dots, m_j - 1\}$, то $A[m'] > A[m_j]$.

Доказателството извършваме с индукция по j.

• $j = \ell$. Тогава $m_{\ell} = \ell$ и това е единственият елемент в множеството $\{j, \dots, \ell\}$. Поради това първата част е ясна. Втората също е очевидна, защото

$$\{\ell, \dots, m_j - 1\} = \{\ell, \dots, \ell - 1\} = \emptyset.$$

• Нека I(j) е истина и да допуснем, че $j+1 \le n$. Тогава се изпълнява тялото на for-цикъла с аргумент брояч j+1. При това се променя параметърът m. По определение, непосредствено преди изпълнението на тялото на цикъла, $m=m_j$, а непосредствено след това $m=m_{j+1}$. Така че, разликата между m_j и m_{j+1} се дължи единствено на изпълнението на тялото на цикъла върху m_j , като:

$$m_{j+1} = egin{cases} j+1, & ext{ ако } A[j+1] < A[m_j] \ m_j, & ext{ иначе} \end{cases}$$
 .

Сега, ако $m_{j+1}=j+1\in\{\ell,\ldots,j+1\}$, то $A[m_{j+1}]< A[m_j]\stackrel{I(j)}{=}\min A[\ell..j]$ и следователно, ако $m'\in\{\ell,\ldots,m_{j+1}-1\}=\{\ell,\ldots,j\}$, то $A[m']>A[m_{j+1}]$. От друга страна $A[m_{j+1}]=A[j+1]$ и от предишното разсъждение следва, че $A[m_{j+1}]=\min A[\ell..j+1]$.

Ако пък $m_{j+1} = m_j$, то $A[j+1] \ge A[m_i]$ и следователно

$$A[m_j] = \min(A[m_j], A[j+1]) = \min(\min A[\ell..j], A[j+1]) = \min A[\ell..j+1].$$

Теорема 0.1. Нека P е произволна (детерминирана) процедура, която получава на вход масив A[1..n] от числа и връща индекс m, за който $A[m] = \min A[1..n]$. Ако единствените операции, в които участват елементите на масива A[1..n] са сравнения $\{<, \leq, =, >, \geq\}$, то броят на тези сравнения e поне e

Доказателство. Тъй като единствените операции, които се извършват от P върху масива A[1..n] са сравнения, то P зависи единствено от релацията $R = \{(i,j) \,|\, A[i] < A[j]\}$, Да разгледаме граф $G_k = (V,E_k)$, чиито върхове са $V = \{1,\ldots,n\}$, а E_k са множествата $\{i,j\}$, за които едно от първите k сравнения, направени от P, е било сравнение $A[i] \sim A[j]$ или $A[j] \sim A[i]$ за някое $\sim \in \{<,\leq,=,>,\geq\}$. Да допуснем, че общият брой сравнения, направени от P, е N < n-1. Тогава графът $G_N = (V,E_N)$ не е свързан. Следователно, ако резултатът от P върху A[1..n] е M, то има елемент $M' \in \{1,\ldots,n\}$, който е недостижим от M в графа M. Нека M'[1..n] е масивът, за който:

$$A'[i] = egin{cases} A[i] \ {
m ako} \ m
ightarrow^*_{G_N} \ i \ A[i] - A[m'] + A[m] - 1, \ {
m иначе}. \end{cases}$$

Тогава резултатите от сравненията, които прави P върху A и A' ще са едни и същи. Наистина, тъй като сравненията не зависят от транслация, единствената разлика може да бъде ако се сравняват A'[i] и A'[j], за които $m \to_{G_N}^* i$ и $m \not\to_{G_N}^* j$. Това, обаче не се случва при вход A и следователно (по индукция) няма да се случи и при вход A'. Следователно P ще върне резултат m и при вход A'. Но A'[m'] = A[m'] - A[m'] + A[m] - 1 = A[m] - 1 < A[m]. Това е противоречие. Следователно, върху всеки вход от n елемента, p извършва поне n-1 операции за сравнение. \square

```
\begin{array}{lll} \texttt{SelectionSort}(A[1..n]: \texttt{ array}) \\ \texttt{@1} & \texttt{for } \ell = 1 \texttt{ to } n \texttt{ do} \\ \texttt{@2} & m \leftarrow FindMinInd(A,\ell) \\ \texttt{@4} & swap(A,m,\ell) \\ \texttt{@5} & \texttt{done} \end{array}
```

Твърдение 0.3. При вход A[1..n] от n числа, процедурата SelectionSort променя A до негова пермутация A', която e сортирана във възходящ ред: Нещо повече, времевата сложност на SelectionSort e $\Theta(n^2)$.

Доказателство. От предишната лема знаем, че ред @2 отнема $\Theta(n-\ell)$ време, докато редовете @3 и @4 отнемат време $\Theta(1)$. Следователно, ℓ -тата итерация на for-цикъла отнема:

$$T(n,\ell) \in \Theta(n-\ell)$$
 време, по-точно $(n-\ell)+1 \le T(n,\ell) \le 3(n-\ell)+6$.

Следователно, времето необходимо за изпълнението на цялата процедура е:

$$2 + \sum_{\ell=1}^{n} T(n,\ell) \in \Theta\left(2 + \sum_{\ell=1}^{n} (n-\ell)\right) = \Theta\left(2 + \sum_{\ell=0}^{n-1} \ell\right) = \Theta\left(2 + \binom{n-1}{2}\right) = \Theta\left(n^2\right).$$

С това показахме, че в частност процедурата завършва. Сега ще покажем коректността. Нека A'_ℓ и π_ℓ са масивите A и $\pi[1..\ell]$ непосредствено преди $(\ell+1)$ -та итерация на for-цикъла. Тъй като единствените операции, които се извършват на масива A са swap, то A'_ℓ е пермутация на елементите на A. Нещо на ред @2 се намира най-малкият елемент A[m] на масива $A'_\ell[\ell..n]$. Следователно, след размяната, $A'_{\ell+1}[\ell] \leq \min A'_{\ell+1}[\ell+1..n]$. Оттук, по индукция, получаваме, че елементите $A'_\ell[1..\ell]$ са сортирани във възходящ ред. При $\ell=n$, получаваме, че $A'=A'_n$ е сортиран във възходящ ред и тъй като A' представлява пермутация на елементите на A, то SelectionSort наистина сортира всеки свой вход A.