f(t) = \(\frac{2\pi_1 \tau}{\tau_1 \tau_2 \tau_1 \tau_2 \tau_2 \tau_1 \tau_2 \tau_2 \tau_1 \tau_2 \

For
$$f(t) = f(-t)$$
,

$$\tilde{f}(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{1}t) + i s_{1}(-c_{2}t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{1}t) + i s_{1}(-c_{2}t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{1}t) + i s_{1}(-c_{2}t)) dt$$

$$= \frac{2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{1}t) + i s_{1}(-c_{2}t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{1}t) + i s_{1}(-c_{2}t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{1}t) + i s_{1}(-c_{2}t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{1}t) + i s_{1}(-c_{2}t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{1}t) + i s_{1}(-c_{2}t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{1}t) + i s_{1}(-c_{2}t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{1}t) + i s_{2}(-c_{2}t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{1}t) + i s_{2}(-c_{2}t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{2}t) + i s_{2}(-c_{2}t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{2}t) + i s_{2}(-c_{2}t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{2}t) + i s_{2}(-c_{2}t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{2}t) + i s_{2}(-c_{2}t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{2}t) + i s_{2}(-c_{2}t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{2}t) + i s_{2}(-c_{2}t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{2}t) + i s_{2}(-c_{2}t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{2}t) + i s_{2}(-c_{2}t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{2}t) + i s_{2}(-c_{2}t)) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{2}t) + i s_{2}(-c_{2}t) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{2}t) + i s_{2}(-c_{2}t) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{2}t) + i s_{2}(-c_{2}t) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{2}t) + i s_{2}(-c_{2}t) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{2}t) + i s_{2}(-c_{2}t) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{2}t) + i s_{2}(-c_{2}t) dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) (s_{2}(-c_{2}t) + i s_{2}(-c_{2}t) dt$$

$$= \frac$$

= 2 for f(w) (oswada) (osut dw

FOURIER'S INVERSION
THEOREM

$$\widetilde{h}(k): \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left\{ \int_{-\infty}^{\infty} f(x) \, y(z-x) \, dx \right\} e^{ikz} \, dz$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \left\{ \int_{-\infty}^{\infty} q(z-x)e^{-ikz} dz \right\}$$

$$=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)\left\{\int_{-\infty}^{\infty}d(z-x)e^{-ikz}dz\right\}dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \left\{ \int_{-\infty}^{\infty} q(z-x)e^{-ikz} dz \right\} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \left\{ \int_{-\infty}^{\infty} q(u)e^{-ik(u+x)} du \right\} dx : u=z-x$$

 $= \frac{1}{\sqrt{2\pi}} \int_{\overline{2\pi}} \widetilde{f}(k) \int_{\overline{2\pi}} \widetilde{q}(k)$

= J2TT F(K)q(k)

$$=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)\frac{q(z-x)dx}{dz}e^{-ikz}dz$$

 $= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(x) \left\{ \int_{0}^{\infty} q(u) e^{iku} e^{-ikx} du \right\} dx$

= $\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}f(x)e^{inx}dx\int_{-\infty}^{\infty}q(u)e^{iku}du$

FOURIER TRANSFORM!

$$\lim_{t \to \infty} \frac{3}{s} - \frac{2}{s+1}$$

$$\lim_{t \to \infty} \frac{3}{s} - \frac{2}{s} = \frac{1}{s}$$

$$\lim_{t \to \infty} \frac{3}{s} - \frac{3}{s} = \frac{3}{s}$$

$$\lim_{t \to \infty} \frac{3}{s} - \frac{3}{s}$$

$$\lim_{t \to \infty} \frac{3}{s} - \frac{3}{s}$$

$$\lim_{t \to \infty} \frac{3}{s} - \frac{3}{s}$$

$$\lim_{t$$

 $\tilde{f}(s) = \frac{s+3}{s(s+1)} = \frac{A}{s} + \frac{B}{s+1} = \frac{s+3}{s+3} = \frac{s+3}{$

 $\frac{d}{ds} \tilde{f}(s) = \frac{d}{ds} \int_{a}^{b} e^{st} f(t) dt$

(not affecting t)

 $\cdots = \int_{\infty}^{\infty} (-t)^{2} e^{-t} f(t) dt$

... = \(\int (-1) \cdot e^{-1} f(t) dt

··· - (-1) \ e^- [t^f(+)] At

··· = C·J [[ef()]

=) L[ef(1)] = (-1) L F(5)

(-1) = (-1)