

Espacios Tangentes

El concepto abstracto de curva en \mathbb{R}^2 y variedad en \mathbb{R}^n

Joaquín González Cervantes joaquin@yandex.com

22 de septiembre de 2016

¿De qué trata?

- Definir el concepto general de curva en \mathbb{R}^2 y su espacio tangente.
- Una breve introducción al concepto de variedad y su espacio tangente.

Estrategia

- Empezar con curvas suaves parametrizadas en \mathbb{R}^2 y calcular su espacio tangente.
- Generalizar la definición de curva en R².
- Con nuestra nueva definición, determinar el espacio tangente.
- Teorema de la función implícita para funciones F(x, y) = 0.
- Conectar lo anterior con el concepto de curva en \mathbb{R}^n .

Antes que el vector

1545

Girolamo Cardano

1679

Gottfried Leibniz

1687

Isaac Newton

1799

Caspar Wessel

1831

Carl Friedrich Gauss

William Rowan Hamilton (1843)

William Rowan Hamilton (1843)

Cuaternión:

$$Q = a + x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

William Rowan Hamilton (1843)

Cuaternión:

$$Q = a + x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$
$$= SQ + VQ$$

William Rowan Hamilton (1843)

Cuaternión:

$$Q = a + x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$$
$$= SQ + VQ$$

$$Q_1 Q_2 = -Q_2 Q_1$$

Más sistemas vectoriales

Hermann Grassmann (1844)

Josiah Willard Gibbs (1881)

$$egin{array}{lll} lpha.eta &=&eta.lpha & {
m Gibbs} \\ Slphaeta &=&Setalpha & {
m Tait} \\ lpha imeseta &=&-eta imeslpha & {
m Gibbs} \\ Vlphaeta &=&-Vetalpha & {
m Tait} \end{array}$$

Universidad de Guadalajara

pronto ...

pronto ...