MULTIPLEXER

Pokok Bahasan :

- 1. Pendahuluan
- 2. Dasar-dasar rangkaian Multiplexer.
- 3. Mendesain rangkaian Multiplexer

Tujuan Instruksional Khusus:

- Mahasiswa dapat menerangkan dan memahami rangkaian Multiplexer.
- 2. Mahasiswa dapat membuat dan mendesain rangkaian Multiplexer.
- 3. Mahasiswa dapat membedakan antara rangkaian Multiplexer Dan rangkaian bukan Multiplexer.

MULTIPLEXER

- Multiplexer: Adalah perangkat pemilih beberapa jalur data kedalam satu jalur data untuk dikirim ke titik lain.
 - Mempunyai dua atau lebih signal digit sebagai input dan control sebagai pemilih (selector)
 - Merupakan Data Selector (Pemilih data)
 - Jumlah Masukan (Input) > Jumlah Keluaran (1 Output)

Data sel control in		Data input
S ₁	S ₀	selected
0	0	D_0
0	1	D_1
1	0	D_2
1	1	D ₃

Diagram logika untuk 4 jalur Multiplexer dengan $S_1=0$, $S_2=1$ (Data D1 yang dipilih)

Tabel IC TTL dan IC CMOS Multiplexer

Function	Device	Logic family
Quad two-input	74157	TTL
	74HC157	H-CMOS
	4019	CMOS
Dual eight-input	74153	TTL
	74HC153	H-CMOS
	4539	CMOS
Eight-input	74151	TTL
	74HC151	H-CMOS
	4512	CMOS
16-input	74150	TTL

IC 74151 Multiplexer 8 jalur input

Logic Simbol

IC 74151 Multiplexer 8-jalur input

IC 74151 Multiplexer 8 jalur input

Hubungan pin-pin

DEMULTIPLEXER

Pokok Bahasan :

- 1. Pendahuluan
- 2. Dasar-dasar rangkaian Demultiplexer.
- 3. Mendesain rangkaian Demultiplexer

Tujuan Instruksional Khusus:

- Mahasiswa dapat menerangkan dan memahami rangkaian Demultiplexer.
- Mahasiswa dapat membuat dan mendesain rangkaian Demultiplexer
- 3. Mahasiswa dapat membedakan antara rangkaian Demultiplexer dan rangkaian bukan Demultiplexer

DEMULTIPLEXER

- Demultiplexer: Merupakan kebalikan dari Multiplexer
 - Mempunyai satu input data dan beberapa output (yang dicontrol oleh selector untuk menentukan keluaran yang diinginkan)
 - Merupakan Data Distributor (Pendistribusi data)
 - Jumlah masukan (1 Input) < Jumlah Keluaran (Output)

IC 74139 Demultiplexer 2-4 jalur (2 selector dan 4 jalur output)

Logic Simbol

IC 74139 Demultiplexer 2-4 jalur

Logic Diagram

IC 74139 Demultiplexer 2-4 jalur

Koneksi input dan output

IC 74154 Demultiplexer 16 jalur

Demultiplexer 74154 me-rute kan sinyal input ke output nomor 5

CODE CONVERTER

Pokok Bahasan :

- 1. Pendahuluan
- 2. Dasar-dasar rangkaian Code Converter
- 3. Mendesain rangkaian Code Converter

Tujuan Instruksional Khusus:

- Mahasiswa dapat menerangkan dan memahami rangkaian Code Converter
- Mahasiswa dapat membuat dan mendesain rangkaian Code Converter
- 3. Mahasiswa dapat membedakan antara rangkaian Code Converter dan rangkaian bukan Code Converter

CODE CONVERTER

Converter : Pengkonversi dari suatu code bilangan ke code bilangan

yang lain

Jenis-jenis Converter : BCD to Excess Three, BCD to seven segment, atau code-code lainnya.

1. BCD to Excess Three Converter

Blok Diagram BCD to Excess Three Converter

Tabel Converter BCD to Excess three

Decimal Number	BCD					Excess-three				
(Map Value)	Α	В	С	D	W	Х	Υ	Z		
	(8)	(4)	(2)	(1)						
0	0	0	0	0	0	0	1	1		
1	0	0	0	1	0	1	0	0		
2	0	0	1	0	0	1	0	1		
3	0	0	1	1	0	1	1	0		
4	0	1	0	0	0	1	1	1		
5	0	1	0	1	1	0	0	0		
6	0	1	1	0	1	0	0	1		
7	0	1	1	1	1	0	1	0		
8	1	0	0	0	1	0	1	1		
9	1	0	0	1	1	1	0	0		

Rangkaian BCD to Excess Three Converter

2. **2*421** to BCD Converter

Blok Diagram 2*421 to BCD converter

Tabel Converter 2*421 to 8421 CODE

Map Value	Decimal Number	A (2*)	B (4)	C (2)	D (1)	W (8)	X (4)	Y (2)	Z (1)
0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	1	0	0	0	1
2	2	0	0	1	0	0	0	1	0
3	3	0	0	1	1	0	0	1	1
4	4	0	1	0	0	0	1	0	0
11	5	1	0	1	1	0	1	0	1
12	6	1	1	0	0	0	1	1	0
13	7	1	1	0	1	0	1	1	1
14	8	1	1	1	0	1	0	0	0
15	9	1	1	1	1	1	0	0	1

AA=RC	W	=B	C
-------	---	----	---

\ A	ιB			
CD	00	01	11	10
00	0	4 1	12	8 X
01	1	X	1	9 X
11	3	X	15	1
10	, 2	X	14	X 10

 $Y=A\overline{C}+\overline{A}C$

\ A	ΔB			
CD \	00	01	11	10
00	0	4	12	8 X
01	1 1	X 5	1	X
11	3 1	X	1	1
10	2	X	14	X

$$Z=D$$

Rangkaian 2*421 to BCD Converter

3. Seven Segment Display Code

Tabel Code Seven-Segments Display

Map Value	A	В	C	D	a	b	c	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	0	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	0	0	1	1

K Map dan Rangkaian untuk Output segment a:

Rangkaian Logika untuk Output a

K Map dan Rangkaian Logic untuk Output segment b:

Soal Latihan

- 1. Buat sebuah rangkaian Multiplexer 4-line to 1-line dari gerbang NAND saja
- 2. Disain sebuah rangkaian multiplexer 8x1 yang dibentuk dari dua buah multiplexer 4x1 (Dual 4-line to 1-line Multiplexer 74153).

 Gunakan Enable input untuk mengaktifkan kedua mux tersebut.
- 3. Buat rangkaian yang mengkonversikan Binary Code 4 bit ke Gray Code