4,9 #23,25

23. Picture

Goal: To find the antiderivative F of f that satisfies the given condition, F(0)=4.

Setup: Given: FCO)=4, FOX)= 5x4-2x5

Key Formulas: $F(x) = \int f(x) dx$ $\int x^n dx = \frac{x^{n+1}}{n+1} + C$

Work: $F(x) = \sqrt{(5x^4-2x^5)} dx$ $F(0) = 0^5 - \frac{0^6}{3} + C$

$$F(e) = 0^5 - \frac{0}{3} + C$$

$$\frac{5 \times 5}{5} - \frac{2 \times 6}{5} + c \qquad F(0) = C$$

$$= (0) = 4 + 5 + C = 4$$

$$x^{5} - \frac{x^{5}}{3} + c$$
 $F(x) = x^{5} - \frac{1}{3}x^{6} + 4$

Conclusion: The area under fix) = 5x4-2x5 is equal to it's

antiderivative, which was found to be x5-3x2+C.

Then, I solved for C by substituting O for X. C was found to be 4 so the antiderivative of fox) is $x^{s} - \pm x^{6} + 4$.

25. Picture : M/A

Goal: To And f.

Setup: Given= f "(x)= 20x3-12x2+6x

Key Formulas = $f(x) = \sqrt{f(x)} dx$ $f(x) = \sqrt{f(x)} dx$ $\sqrt{x^n} dx = \frac{x^{n+1}}{nx_1} + c$

$$C(x) = \sqrt{\frac{1}{2}} (x) = x + \sqrt{\frac{1}{2}} (x) = x +$$

Work: $f'(x) = 20x^{3}-12x^{2}+6x$ $f(x) = \sqrt{(5x^{4}-4x^{3}+3x^{2}+c)}dx$ $f'(x) = \sqrt{(20x^{3}-12x^{2}+6x)}dx$ $= \frac{5x^{5}-4x^{4}+3x^{3}+cx+D}{4}$ $= \frac{20x^{4}-12x^{3}+6x^{2}+c}{4}$ $= \sqrt{5}-x^{4}+x^{3}+cx+D$

$$= 5x^5 - 4x^4 + 3x^3 + 6x + 1$$

Conclusion: Since the given equation was fick), I integrated the equation two times to obtain for My final answer was for = x5 x4 + x3 + cx + D

(10al: 1 al) to use 6 rectangles to find estimates of each type for the area wind
the given graph of f from x=0 to x=12 using left endpoints right
endpoints and midpoints.
b) To find if Lats an underestimate or overestimate of the true area.
c) to find if Ro is an underestimate or overestimate of the true area.
a) To find which of the numbers L6, R6, M6 gives the best estimate,
and explain.
Stup: Given: $n=b$ $b=12$ $a=0$
Key Formulas: $4x = \frac{120}{10} = \frac{120}{10} = 2$
$L_b = \Delta x \left[f(x_0) + f(x_1) + f(x_2) + f(x_3) + f(x_4) + f(x_5) \right]$
$R_b = \Delta \times \left[f(x_0) + f(y_0) + f(x_0) + f(x_0) + f(x_0) + f(x_0) \right]$
Me = Ax [f(x))+f(x)+f(x)+f(xx)+f(xx)+f(xx)
Work: (a) $L_6 = \Delta \times Lf(x_0) + f(x_1) + f(x_2) + f(x_3) + f(x_4) + f(x_5)$
= 2[f(a)+f(2)+f(4)+f(6)+f(8)+f(10)]
= 2[9+8.8+8.2+7.3+5.9+4.1]
= [86.6]
aii) Ry = AxEfexD+fexD+fexD+fexD+fexD)
= 2[f(2)+f(4)+f(6)+f(8)+f(10)]+f(12)]
= 2[8,8+8,2+7,3+5,9+4,1+1]
= \70.6\
aiii) Mi = ax [f(xi) + f(xz) + f(xz) + f(xz) + f(xz) + f(xz)]
= 2[fc1)+ f(3)+ f(5) + f(7) + f(9) + f(1)]
= 2 (0.9+8.5+7.8+6.6+5.0+2.8)
= 179.2
b) [Lo TS an overestimate]) with
c) Russ an underestimate

d) Mil explain

Conclusion:	
ai) Using 6 subintervals and the left endpoints, the area under	~
the graph from x=0 to x=12 is 86.6	
ail) Using 6 subintervals and the right endpoints the area under	
the graph from x=0 to x=12 is 70.6	
aiil) Using 6 subintervals and the midpoints, the area under	
the graph from x=0 to x=12 is 79.2.	
b) Since the function is decreasing, Lowill be an overestimate.	
When you draw the bars (6 subintervals) they are above the graph.	
C) Since the function is decreasing. Ro will be an underestimate.	
When you draw the bars (6 subintervals) they are below the graph.	
d) He gives the best estimate because Le and Re give an	
over and underestimate. Which you look at the graph for U.	

the bays seem to be closer to the graph lavea.

Godl: To find the lower and upper estimates for the distance that she traveled during these 3 seconds.

Key Formulas:

LB = AX [f(x0)+f(x1)+f(x2)+f(x3)+f(x4)+f(x5)]

Work:

$$= (34.7 \text{ ft})$$

$$= 0.5 [f(0.5) + f(1.0) + f(1.5) + f(2.0) + f(2.5) + f(3.0)]$$

=
$$0.5(6.2110.8 + 14.9 + 18.1 + 19.4 + 20.2)$$

= $44.8 + 14.9 + 18.1 + 19.4 + 20.2$

Conclusion: Using 6 subintervals and left endpoints, the total distance the summer covered was 34.7 feet (during 3 seconds)

Using 6 subintervals and right endpoints, the total distance the runner covered in 3 seconds was 44.8 feet. I used left and right endpoints because it would give me the upper and lower estimates. The left endpoints gave me the lower estimate and the vight endpoints gave me the lower estimate.

5. Picture

Goal: Estimate Infoxdx using 5 subintervals with a) right endpoints, b) left endpoints, and c) midpoints

Setup:

Givens: n=5, b=10, d=0

AX=2

Key Formulas:

Mz: 5 10 fcx)dx & DX [f(x)+f(x)+f(x)+f(x))+f(x))+f(x))

R5: YIN FROM & AX [FORDI FORDI + FORDI + FORDI + FORDI]

Work:

Right: 50 f(x)dx 2 2[f(0)+f(2)+f(4)+f(6)+f(8)] = 2[G)+(0)+(0)+(-2)+(0)]

Left: Vio f(x)dx & 2[f(2)+f(4)+f(6)+f(8)+f(10)] & 2[(3)+6(7+60)+(-2)+(-2)]

2[2] %[4]

Midpaint: \$\ioftx\dx \approx 2[fai) + fai) + fai) + fai) \approx 2[(0) + \io) + (-1) +

Conclusion :

Using 5 subintervals, the estimated area of fix) between x=0 and x=10 for right endpoints is 6 [left endpoints is 4], and midpoints is 2

8.	Picture:				
	T X 3 4 5 6 7 8 9				
	FCX) -3.4 -2.1 -0.6 0.3 0.9 1.4 (18				
	Goal: To estimate Ja fix) dx using three equal subintervals				
	with a) right endpoints b) left endpoints, and c) midpoints.				
	Also, Agure out whether your estimates are less than or				
,	greater than the exact value of the integet, knowing that it is an Thoreasing function.				
	C.S.				
	Setup:				
-	Givens: $n=3$ $b=9$ $a=3$				
of the second se	$\Delta X = \frac{b-a}{h} = 2$				
	Key Formulas: $R_3 = \int_0^q f(x) dx \approx \Delta x \left[f(x) + f(x) + f(x) + f(x_0) + $				
1					
	M3: √9f(x)dx = ΔX [f(x))+f(x2				
	Work:				
and an analysis	Right: $\int_{0}^{9} f(x) dx \approx 2[f(3) + f(5) + f(7)]$ $\approx 2[(+3.4) + (-6.6) + (0.9)] \approx [-6.2]$ Left: $\int_{0}^{9} f(x) dx \approx 2[f(5) + f(7) + f(9)]$				
a care and					
and the second s					
der ends pp the film	\$ 2E(-06)+(0.4)+(1.8)]\$ 4.2				
1 Confirmation	Midpoint: $\zeta^{9}f(x)dx \approx 2[f(4) + f(6) + f(8)]$				
Non-Age all	≈ 2[(-2.D+(0.3)+(€4)] ≈ [-0.8]				
Awar ni Al V gas Fil	Conclusion:				
and and present on the second	Using 3 equal subintowals, the estimated oxea under fox)				
content gifter britis	between x=3 and x=9 for right enapoints is -6,2/16ft enapoints is 4,2)				
V	and [midpoints is -04.] (a) = 6,2 b) 4,2 c) -0.8				
7 die	For right endpoints, the estimate 15 greater than the exact value.				
verde de la companya	For left endpoints, the estimate is less than the exact value, for midpoint,				
Riza de maria de la constante	the estimate is probably very close to the exact value because the left endpoint is an underestimate and the right endpoint is an overestimate. The inappoint is' very close to the graph because it is between the over and under estimates.				
	very close to the graph because It is between the over and under estimates.				

· Sympone with the

 \mathcal{Q}_{\cdot}

Pirtur

Goal: To find which rule produced each product (left, right, Trapezoidal, Midpoint Rule > 0.7811, 0.8675, 0.8632, 0.4590). and to find between which 2 approximations

Setup: Givens: 0,781), 0,8675, 0,8632,0,9540

osame number of subintervals were used

· f is decreasing and concave up

Work/: a) Since fix decreasing, the left endpoint rule would give an Conclusion overestimate. Therefore, it would be the largest estimate of 0.9540.

> Since fis decreasing and concave up, the right endpoint rule would give an underestimate. Therefore, it would be the smallest estimate of 0,7811.

Since fis concave up, when you connect the top sides of the trapezoid when dividing the area Mio Subintovals, there will be some space of the trapezoid outside the graph. Therefore, it would be a slight overestimate the value that is less than 0.9540 is 0.8675, so the trapezoidal Rule produced an area of 0.8675.

Since f is concave up, the Midpoint rule will have some space outside and maide the graph. Also, since fis decreasing, it 7s an undereshmate because the tangent line is under the curve. The Midpoint Rule has a product that is slightly an underestimate, 50 it is 0.8632. (0.8632 Ts greater than 0.7811 but less than 0.8675).

= 09540

R= 0.7811

T=0.8675

M=0.8632

Picture: Goal: Approximate given integral (with specified value of n) using a) The Trapezoidal Rule With Midpoint Rule c) Simpson's Rule. Given: Jalenx dx n=6 Setup: . To= JaJenxdx & 学[f(xo)+2f(x)+2f(xo Mb= V * JUNX dx = AX [FCX 6] + FCX 6) + FCX 2) + FCX 2) + FCX 2] + FCX 2] S6 = 19- Jankon = = [F(X6) + 4F(X1) + 2F(X6) + 4F(X6) + 2F(X4) + 4F(X6) + 1F(X6)] Work: f(x) a) Fortyapezoidal rule: 100 0 0.63676 (,5 6.83255 Trapezoidal rule: 0.45723 n+1 = 7 terms 3.0 1.04815 3.5 1.1427 4.0 1,14741 J4 Jen 4 -2 T6 = = [[f(x0) +2 f(x1) +2 f(x2) +2 f(x3) +2 f(x4) +2 f(x4) +2 f(x5) + f(x6)] (1.17740) = 2.59133 b) For Midpoint rule: (x) 0.47238 1.25 1.75 6.74807 0. 90052

1. 00578

1. 08566

3, 25

Land Contract Contrac 11 14 C - 4 C 7811, 113 ... en estera de la proposición de la final de la companya de la companya de la companya de la companya de la comp · Committee of the State of Marie of Marie of the State of Marie of the State of th eminoral Aestronomic Control Contraction of the Contraction o

 $\int_{0.5}^{4} \sqrt{\ln x} \, dx \approx M_6 = \Delta x \left[f(x_0) + f(x_1) + f(x_2) + f(x_3) + f(x_4) + f(x_5) \right]$ $= 6.5 \left[0.47238 + 0.74807 + 0.90052 + 1.00578 + 1.085666 + 1.08566 + 1.08566 + 1.08566 + 1.08566 + 1.08566 + 1.08566 + 1.08566 + 1.08566 + 1.08566$

= 2.68105

c) For Simpson's Rule: 7terms (NH)

Χ	f(x)
1.0	(Ø ,
1.5	0.63676
2,0	0.83255
2,5	0.95723
3, 0	1.04815
3,5	1.11927
4.0	1,1774

 $\begin{array}{l}
\left(\frac{1}{2}\ln x^{2}dx\right) \approx S_{4} = \frac{6x}{3} \left[\frac{6x}{4} + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + 2f(x_{4}) + 4f(x_{6}) + f(x_{6}) \right] \\
= \frac{6x}{3} \left[\frac{6x}{4} + \frac{6x$

Conclusion: The area under f(x)=Venx between x=1 and x=4 cusing

the Trapezoidal Rule Is approximately 259133. Using the Midpoint

Rule, the approximate area is 2.68105 and using Simpson's Rule,

the approximate area is 2.63198. Therefore, the actual area is

between 259133 and 2.68105.

Control of the contro and the contract of the contra 74 and the second s Special managements of the control o وعاليه وبهان بالفاقية الساموية

5.3 #2,21,37

2) Picture:

Goal: a) Evaluate g(x) for x=0,1,2,3,4,5, and 6

- b) Estimate 9(7)
- c) Find where g has a max value and min value
- d) Graph g

Setup:

Given: g(x) = 5 x f(t) at

Key Information: glx= fxft)dt = area under graph between x=0 and x=x,

Area of Δ : $\frac{bh}{2}$ g(x) = f(x)

Work/ a) g(x)= \$\f(t)\dt

The area of flx) which is equal to gcx)

Condusion: $g(0) = \int_{0}^{\infty} f(t)dt = 0$ from x = 0 to x = a, is as listed on the teft. I used the area formula for a triangle to get the areas undermeath the graph.

g(2)= \(\frac{1}{2} \) fight = \(\frac{1}{2} - \frac{1}{2} = 0 \)

g(3)= 63 f(t)dt= 발-발-발=호-로-로=-호

9(4)= ダ年(出土・堂-堂-堂-皇-之-之-0

g(5)= 5 f(k)d+ 望-望-望+望=主-主-主+望= = 3

g(6)= が在的は= 堂-堂-堂+堂=主-皇-皇+望=4

b) g(7) = 57 febat = 5 febat + 5° febat + 5° febat + 5° febat + 5° febat

The area of = $\frac{1}{2}$ $\frac{1}{2}$

212 because there are about 2.2 squares under fr feedt.

c) g has a max value at t=7, because at t=7, there is a maximum over. Therefore, the max is when t=7, which is 6,2 (g(7)). g has a liminum value at t=3, which is -0.5 because the minimum area occurs at t=3.

Since give=f(x)

d)

Goal: Evaluate $\int_{a}^{1}(x^{e}+e^{x})dx$ Setup: Given= $\int_{a}^{1}(x^{e}+e^{x})dx$ Key Formulas = $\int_{a}^{b}f(x)dx = F(b)-F(a)$

Jexu=ex+c

JE DAX = ATT +C

Work: $\int_{0}^{1} (x^{e} + e^{x}) dx$ $\frac{x^{e+1}}{e+1} + e^{x} \int_{x=0}^{x=1}$

 $\left(\frac{(1)^{eH}}{eH} + e\right) - (1)$

onclusion: The area under for)=xetex between x=0 and x=

