

BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND **MARKENAMT**

Offenlegungsschrift

_m DE 102 19 203 A 1

(51) Int. Cl.⁷: A 01 H 1/00

(21) Aktenzeichen:

102 19 203.0

(22) Anmeldetag:

29. 4.2002

(3) Offenlegungstag:

13. 11. 2003

(7) Anmelder:

BASF Plant Science GmbH, 67065 Ludwigshafen,

(72) Erfinder:

Cirpus, Petra, Dr., 68163 Mannheim, DE; Renz, Andreas, Dr., 67117 Limburgerhof, DE; Lerchl, Jens, Dr., Svalös, SE; Kuijpers, Anne-Marie, Dr., 67166 Otterstadt, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- (A) Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen
- Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Fettsäureester, die ungesättigte Fettsäuren mit mindestens drei Doppelbindungen enthalten, sowie freien ungesättigten Fettsäuren mit einem Gehalt von mindestens 1 Gew.-%, bezogen auf die gesamten in den Pflanzen enthaltenden Fettsäuren durch Expression mindestens einer Nukleinsäuresequenz, die für ein Polypeptid mit A-6-Desaturaseaktivität codiert, und mindestens einer Nukleinsäuresequenz, die für ein Polypeptid mit Δ-6-Elongaseaktivität codiert. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit einer dritten Nukleinsäuresequenz, die für ein Polypeptid mit Δ-5-Desaturaseaktivität codiert, in der transgenen Pflanze exprimiert werden.

Die Erfindung betrifft weiterhin die Verwendung definierter Nukleinsäuresequenzen, die für Polypeptide mit einer Δ-6-Elongaseaktivität Δ-6-Desaturaseaktivität, Δ-5-Desaturaseaktivität codieren, ausgewählt aus einer Gruppe von Nukleinsäuresequenzen bzw. die Verwendung von Nukleinsäurekonstrukten, enthaltend die vorgenannten Nukleinsäuresequenzen.

Beschreibung

[0001] Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Fettsäureester, die ungesättigte Fettsäuren mit mindestens drei Doppelbindungen enthalten, sowie freien ungesättigten Fettsäuren mit einem Gehalt von mindestens 1 Gew.-% bezogen auf die gesamten in der Pflanzen enthaltenden Fettsäuren durch Expression mindestens einer Nukleinsäuresequenz, die für ein Polypeptid mit Δ-6-Desaturaseaktivität codiert, und mindestens einer Nukleinsäuresequenz, die für ein Polypeptid mit Δ-6-Elongaseaktivität codiert. Vorteilhaft können diese Nukleinsäuresequenzen gegebenenfalls zusammen mit einer dritten Nukleinsäuresequenz, die für ein Polypeptid mit Δ-5-Desaturaseaktivität codiert, in der transgenen Pflanze exprimiert werden.

[0002] Die Erfindung betrifft weiterhin die Verwendung definierter Nukleinsäuresequenzen, die für Polypeptide mit einer Δ-6-Desaturaseaktivität, Δ-6-Elongaseaktivität oder Δ-5-Desaturaseaktivität codieren ausgewählt aus einer Gruppe von Nukleinsäuresequenzen bzw. die Verwendung von Nukleinsäurekonstrukten enthalten die vorgenannten Nukleinsäuresequenzen.

[0003] Bestimmte Produkte und Nebenprodukte natürlich vorkommender Stoffwechselprozesse in mikrobiellen Zellen oder in den Zellen von Tieren und vorteilhaft Pflanzen sind für ein breites Spektrum an Industrien, einschließlich der Futtermittel-, Nahrungsmittel-, Kosmetik- und pharmazeutischen Industrie, nützlich. Zu diesen gemeinsam als "Feinchemikalien" bezeichneten Molekülen gehören auch Lipide und Fettsäuren, unter denen eine beispielhafte Klasse die mehrfach ungesättigten Fettsäuren sind. Mehrfach ungesättigte Fettsäuren (polyunsaturated fatty acids, PUFAs) werden beispielsweise Nahrungsmittel für Kinder zugegeben, um einen höheren Nährwert dieser Nahrungsmittel zu erzeugen. PUFAs haben zum Beispiel einen positiven Einfluss auf den Cholesterinspiegel im Blut von Menschen und eignen sich daher zum Schutz gegen Herzkrankheiten. Feinchemikalien wie mehrfach ungesättigte Fettsäuren (polyunsaturated fatty acids, PUFAs) lassen sich aus tierischen Quellen, wie beispielsweise Fisch, isolieren oder mit Mikroorganismen durch Züchtung von Mikroorganismen, die so entwickelt worden sind, dass sie große Mengen eines oder mehrerer gewünschter Moleküle produzieren und akkumulieren oder sezernieren, im großen Maßstab herstellen.

[0004] Fettsäuren und Triglyceride haben eine Vielzahl von Anwendungen in der Lebensmittelindustrie, der Tierernährung, der Kosmetik und im Pharmabereich. Je nachdem ob es sich um freie gesättigte oder ungesättigte Fettsäuren oder um Triglyceride mit einem erhöhten Gehalt an gesättigten oder ungesättigten Fettsäuren handelt, sind sie für die unterschiedlichsten Anwendungen geeignet. Mehrfach ungesättigte Ω-3-Fettsäuren und Ω-6-Fettsäuren stellen dabei einen wichtigen Bestandteil der tierischen und menschlichen Nahrung dar. Aufgrund der heute üblichen Zusammensetzung der menschlichen Nahrung ist ein Zusatz von mehrfach ungesättigten Ω-3-Fettsäuren, die bevorzugt in Fischölen vorkommen, zur Nahrung besonders wichtig. So werden beispielsweise mehrfach ungesättigte Fettsäuren wie Docosahexaensäure (= DHA, C22:6^{Δ4,7,10,13,16,19}) oder Eisosapentaensäure (= EPA, C20:5^{Δ5,8,11,14,17}) Babynahrung zur Erhöhung des Nährwertes zugesetzt. Der DHA wird dabei ein positiver Effekt auf die Entwicklung des Gehirns zugeschrieben.

[0005] Hauptsächlich werden die verschiedenen Fettsäuren und Triglyceride aus Mikroorganismen wie Mortierella oder aus Ölproduzierenden Pflanzen wie Soja, Raps, Sonnenblume, Algen wie Cryptocodinium oder Phaeodactylum und weiteren gewonnen, wobei sie in der Regel in Form ihrer Triacylglyceride (= Triglyceride = Triglycerole) anfallen. Sie können aber auch aus Tieren wie z. B. Fischen gewonnen werden. Die freien Fettsäuren werden vorteilhaft durch Verseifung hergestellt. Höhere mehrfach ungesättigte Fettsäuren wie DHA, EPA, Arachidonsäure (= ARA, C20:4^{Δ5,8,11,14}), Dihomo-γlinolensäure (C20:3^{Δ8,11,14}) oder Docosapentaensäure (DPA, C22:5^{Δ7,10,13,16,19}) lassen sich nicht aus Ölfruchtpflanzen wie Raps, Soja, Sonnenblume, Färberdistel oder anderen isolieren. Übliche natürliche Quellen für diese Fettsäuren sind Fische wie Hering, Lachs, Sardine, Goldbarsch, Aal, Karpfen, Forelle, Heilbutt, Makrele, Zander oder Thunfisch oder Algen.

[0006] Je nach Anwendungszweck sind Öle mit gesättigten oder ungesättigten Fettsäuren bevorzugt, so sind z.B. in der humanen Ernährung Lipide mit ungesättigten Fettsäuren speziell mehrfach ungesättigten Fettsäuren bevorzugt. Den mehrfach ungesättigten Ω -3-Fettsäuren wir dabei ein positiver Effekt auf den Cholesterinspiegel im Blut und damit auf die Möglichkeit der Prävention einer Herzerkrankung zugeschrieben. Durch Zugabe dieser Ω -3-Fettsäuren zu Nahrung kann das Risiko einer Herzerkrankung, eines Schlaganfalls oder von Bluthochdruck deutlich verringert werden. Auch entzündliche speziell chronisch entzündliche Prozesse im Rahmen immunologischer Erkrankungen wie rheumatroider Arthritis lassen sich durch Ω -3-Fettsäuren positiv beeinflussen. Sie werden deshalb Lebensmitteln speziell diätischen Lebensmitteln zugegeben oder finden in Medikamenten Anwendung.

[0007] Ω -6-Fettsäuren wie Arachidonsäure haben bei diesen rheumatischen Erkrankungen aufgrund unserer üblichen Nahrungsmittelzusammensetzung eher einen negativen Effekt auf diese Krankheiten.

[0008] Ω -3- und Ω -6-Fettsäuren sind Vorläufer von Gewebshormonen, den sogenannten Eicosanoiden wie den Prostaglandinen, die sich von der Dihomo- γ -linolensäure, der Arachidonsäure und der Eicosapentaensäure ableiten, den Thromoxanen und Leukotrienen, die sich von der Arachidonsäure und der Eicosapentaensäure ableiten. Eicosanoide (sog. PG₂-Serie), die aus Ω -6-Fettsäuren gebildet werden fördern in der Regel Entzündungsreaktionen, während Eicosanoide (sog. PG₃-Serie) aus Ω -3-Fettsäuren geringe oder keine entzündungsfördernde Wirkung haben.

[0009] Aufgrund ihrer positiven Eigenschaften hat es in der Vergangenheit nicht an Ansätzen gefehlt, Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Organismen mit geändertem Gehalt an ungesättigten Fettsäuren verfügbar zu machen. So wird in WO 91/13972 und seinem US-Äquivalent eine Δ-9-Desaturase beschrieben. In WO 93/11245 wird eine Δ-15-Desaturase in WO 94/11516 wird eine Δ-12-Desaturase beansprucht. Weitere Desaturasen werden beispielsweise in EP-A-0 550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP-A-0 794 250, Stukey et al., J. Biol. Chem., 265, 1990: 20144–20149, Wada et al., Nature 347, 1990: 200–203 oder Huang et al., Lipids 34, 1999: 649–659 beschrieben. Die biochemische Charakterisierung der verschiedenen Desaturasen ist jedoch bisher nur unzureichend erfolgt, da die Enzyme als membrangebundene Proteine nur sehr schwer zu isolieren und zu charakterisieren sind (McKeon et al., Methods in Enzymol. 71, 1981: 12141–12147, Wang et al., Plant Physiol. Biochem., 26, 1988: 777–792). In der Regel erfolgt die Charakterisierung membrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Ensembrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Ensembrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Ensembrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Ensembrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Ensembrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Ensembrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Ensembrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Ensembrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der ansch

zymaktivität mittels Edukt- und Produktanalyse untersucht wird. Δ -6-Desaturasen werden in WO 93/06712, US 5,614,393, US 5614393, WO 96/21022, WO 00/21557 und WO 99/27111 beschrieben und auch die Anwendung zur Produktion in transgenen Organismen beschrieben wie in WO 98/46763 WO 98/46764, WO 9846765. Dabei wird auch die Expression verschiedener Desaturasen wie in WO 99/64616 oder WO 98/46776 und Bildung polyungesättigter Fettsäuren beschrieben und beansprucht. Bzgl. der Effektivität der Expression von Desaturasen und ihren Einfluss auf die Bildung polyungesättigter Fettsäuren ist anzumerken, dass durch Expression einer einzelnen Desaturase wie bisher beschrieben lediglich geringe Gehalte an Δ -6-ungesättigten Fettsäuren/Lipiden wie z. B. gamma-Linolensäure und Stearidonsäure erreicht wurden. Weiterhin wurde in der Regel ein Gemisch aus ω 3 und ω 6 Fettsäuren erhalten, da alle bisher beschriebenen Δ -6-Desaturasen zum Beispiel Linolsäure (ω -6-Fettsäure) als auch α -Linolensäure (ω -3-Fettsäure) umsetzten.

10

55

60

65

[0010] Besonders geeignete Mikroorganismen zur Herstellung von PUFAs sind Mikroorganismen wie Thraustochytrien oder Schizochytrien-Stämme, Algen wie Phaeodactylum tricornutum oder Crypthecodinium-Arten, Ciliaten, wie Stylonychia oder Colpidium, Pilze, wie Mortierella, Entomophthora oder Mucor. Durch Stammselektion ist eine Anzahl von Mutantenstämmen der entsprechenden Mikroorganismen entwickelt worden, die eine Reihe wünschenswerter Verbindungen, einschließlich PUFAs, produzieren. Die Mutation und Selektion von Stämmen mit verbesserter Produktion eines bestimmten Moleküls wie den mehrfach ungesättigten Fettsäuren ist jedoch ein zeitraubendes und schwieriges Verfahren. Deshalb werden, wenn immer möglich wie oben beschrieben gentechnologische Verfahren bevorzugt. Mit Hilfe der vorgenannten Mikroorganismen lassen sich jedoch nur begrenzte Mengen der gewünschten mehrfach ungesättigten Fettsäuren wie DPA, EPA oder ARA herstellen. Wobei diese in der Regel je nach verwendeten Mikroorganismus als Fettsäuregemische aus beispielsweise EPA, DPA und DHA anfallen.

[0011] Alternativ kann die Produktion von Feinchemikalien geeigneterweise über die Produktion in Pflanzen, die so entwickelt sind, dass sie die vorstehend genannten PUFAs herstellen, im großen Maßstab durchgeführt werden. Besonders gut für diesen Zweck geeignete Pflanzen sind Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten wie Raps, Canola, Lein, Soja, Sonnenblumen, Borretsch und Nachtkerze. Aber auch andere Nutzpflanzen, die Öle oder Lipide und Fettsäuren enthalten, sind gut geeignet, wie in der eingehenden Beschreibung dieser Erfindung erwähnt. Mittels herkömmlicher Züchtung ist eine Reihe von Mutantenpflanzen entwickelt worden, die ein Spektrum an wünschenswerten Lipiden und Fettsäuren, Cofaktoren und Enzymen produzieren. Die Selektion neuer Pflanzensorten mit verbesserter Produktion eines bestimmten Moleküls ist jedoch ein zeitaufwändiges und schwieriges Verfahren oder sogar unmöglich, wenn die Verbindung in der entsprechenden Pflanze nicht natürlich vorkommt, wie im Fall von mehrfach ungesättigten C₁₈-, C₂₀-Fettsäuren und C₂₂-Fettsäuren und solchen mit längeren Kohlenstoffketten.

[0012] Aufgrund der positiven Eigenschaften ungesättigter Fettsäuren hat es in der Vergangenheit nicht an Ansätzen gefehlt, diese Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Pflanzen mit einem geändertem Gehalt an mehrfach ungesättigten Fettsäuren verfügbar zu machen. Bisher konnten jedoch längerkettige mehrfach ungesättigte C₂₀- und/oder C₂₂-Fettsäuren wie EPA oder ARA nicht in Pflanzen hergestellt werden.

[0013] Es bestand daher die Aufgabe ein Verfahren zur Herstellung von mehrfach ungesättigten Fettsäureestern und/ oder freien mehrfach ungesättigten Fettsäuren mit mindestens drei Doppelbindungen im Fettsäuremolekül zu entwikkeln. Diese Aufgabe wurde durch das erfindungsgemäße Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I:

$$\begin{array}{c|c}
CH_2 & CH_2 & CH_2 & CH_2 & CH_2 \\
\hline
\end{array}$$

$$\begin{array}{c|c}
CH_2 & CH_2 & CH_2 & CH_3 \\
\hline
\end{array}$$
(I)

in transgenen Pflanzen mit einem Gehalt von mindestens 1 Gew.-% bezogen auf die gesamten Fettsäuren dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst:

- a) Einbringen mindestens einer Nukleinsäuresequenz in eine Pflanze, die für ein Polypeptid mit einer Δ-6-Desaturaseaktivität codiert; sowie
- b) Einbringen mindestens einer zweiten Nukleinsäuresequenz, die für ein Polypeptid mit einer Δ-6-Elongaseaktivität codiert; und
- c) gegebenenfalls Einbringen einer dritten Nukleinsäuresequenz, die für ein Polypeptid mit einer Δ-5-Desaturaseaktivität codiert;
- d) anschließend kultivieren und ernten der Pflanzen; und

wobei die Variablen und Substituenten in der Formeln I folgende Bedeutung haben:

 R^1 = -OH, Coenzym A-(Thioester), Phosphatidylcholin-, Phosphatidylchanolamin-, Phosphatidylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylinositol-, Sphingolipid-, Glycoshingolipid- oder einen Rest der folgenden allgemeinen Formel II

$$H_{2}C-O-R^{2}$$
 $H_{2}C-O$
 $H_{2}C-O$
(II)

R² = H, Phosphatidylcholin-, Phosphatidylethanolamin-, Phoshatidylglycerol-, Diphosphatidylglycerol-, Phosphatidyl-

serin-, Phosphatidylinositol-, Shingolipid-, Glycoshingolipid-, Glycoshingolipid- oder gesättigtes oder ungesättigtes C_2 - C_2 4-Alkylcarbonyl-,

 $R^{\overline{3}}$ = H, gesättigtes oder ungesättigtes C_2 - C_{24} -Alkylcarbonyl-, oder

10

 \mathbb{R}^2 und \mathbb{R}^3 unabhängig voneinander einen Rest der allgemeinen Formel Ia

$$\begin{array}{c|c}
CH_2 & CH_2 & CH_2 & CH_3 \\
\hline
CH & CH & CH_2 & CH_3
\end{array}$$
(Ia),

n=3, 4 oder 6, m=3, 4 oder 5 und p=0 oder 3, bevorzugt bedeutet n=3, m=4 oder 5 und p=0 oder 3. [0014] R^1 bezeichnet in den Verbindungen der Formel I -OH (Hydroxyl-), AcetylCoenzym A-, Phosphatidylcholin-, Phosphatidylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylinositol-, Sphingolipid-, Glycoshingolipid- oder einen Rest der folgenden allgemeinen Formel II

$$H_{2}C-O-R^{2}$$
 $HC-O-R^{3}$
 $H_{2}C-O$

[0015] Die vorgenannten Reste für R¹ sind jeweils als Ester bzw. Thioester an die Verbindungen der allgemeinen Formel I gebunden.

[0016] R² bezeichnet in den Verbindungen der Formel II Wasserstoff, Phosphatidylcholin-, Phosphatidylethanolarnin-, Phosphatidylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylinositol-, Shingolipid-, Glycoshingolipid-, Glycoshingolipid-, Glycoshingolipid-, Glycoshingolipid- oder gesättigtes oder ungesättigtes C₂-C₂₄-Alkylcarbonyl-.

[0017] Als ungesättigtes oder gesättigtes C2-C22-Alkylcarbonyl- seien Reste wie Ethylcarbonyl-, n-Propylcarbonyl-, n-Butylcarbonyl-, n-Pentylcarbonyl-, n-Hexylcarbonyl-, n-Heptylcarbonyl-, n-Octylcarbonyl-, n-Nonylcarbonyl-, n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten können. Bevorzugt sind gesättigte oder ungesättigte C₁₀-C₂₂-Alkylcarbonylreste wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Hex cylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten. Besonders bevorzugt sind gesättigte oder ungesättigte $C_{10}\text{-}C_{22}\text{-}\text{Alkylcarbonyl-}, C_{12}\text{-}\text{Alkylcarbonyl-}, C_{13}\text{-}\text{Alkylcarbonyl-}, C_{14}\text{-}\text{Alkylcarbonyl-}, C_{15}\text{-}\text{Alkylcarbonyl-}, C_{16}\text{-}\text{Alkylcarbonyl-}, C_{1$ Alkylcarbonyl-, C16-Alkylcarbonyl-, C18-Alkylcarbonyl-, C20-Alkylcarbonyl-, C22-Alkylcarbonyl- oder C24-Alkylcarbonyl-Reste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder ungesättigte C₁₆-C₂₂-Alkylcarbonylreste wie C₁₆-Alkylcarbonyl-, C₁₈-Alkylcarbonyl-, C₂₀-Alkylcarbonyl- oder C₂₂-Alkylcarbonylbonyl-Reste, die ein oder mehrere Doppelbindungen enthalten. Bevorzugt enthalten die genannten Reste zwei, drei, vier oder fünf Doppelbindungen. Besonders bevorzugt enthalten die Reste drei, vier oder fünf Doppelbindungen. Ganz besonders bevorzugt sind C_{18} -Alkylcarbonylreste, die eine, zwei, drei oder vier Doppelbindungen enthalten, und C_{20} -Alkylcarbonylreste, die drei, vier oder fünf Doppelbindungen enthalten. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.

15 [0018] R³ bezeichnet in den Verbindungen der Formel II Wasserstoff, gesättigtes oder ungesättigtes C₂-C₂₄-Alkylcarbonyl.

Als ungesättigtes oder gesättigtes C2-C22-Alkylcarbonyl- seien Reste wie Ethylcarbonyl-, n-Propylcarbonyl-, [0019] n-Butylcarbonyl-, n-Pentylcarbonyl-, n-Hexylcarbonyl-, n-Heptylcarbonyl-, n-Octylcarbonyl-, n-Nonylcarbonyl-, n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten können. Bevorzugt sind gesättigte oder ungesättigte C₁₀-C₂₂-Alkylcarbonylreste wie n-Decylcarbonyl-, n-Undecylcarbonyl-, n-Dodecylcarbonyl-, n-Tridecylcarbonyl-, n-Tetradecylcarbonyl-, n-Pentadecylcarbonyl-, n-Hexadecylcarbonyl-, n-Heptadecylcarbonyl-, n-Octadecylcarbonyl-, n-Nonadecylcarbonyl-, n-Eicosylcarbonyl-, n-Docosanylcarbonyl- oder n-Tetracosanylcarbonyl-, die ein oder mehrere Doppelbindungen enthalten. Besonders bevorzugt sind gesättigte oder ungesättigte $C_{10}\text{-}C_{22}\text{-}Alkylcarbonyl-,} C_{12}\text{-}Alkylcarbonyl-,} C_{12}\text{-}Alkylcarbonyl-,} C_{13}\text{-}Alkylcarbonyl-,} C_{14}\text{-}Alkylcarbonyl-,} C_{15}\text{-}Alkylcarbonyl-,} C_{16}\text{-}Alkylcarbonyl-,} C_{16}\text{-}Alkylcarbonyl-,} C_{17}\text{-}Alkylcarbonyl-,} C_{18}\text{-}Alkylcarbonyl-,} C_{18}\text{-$ Alkylcarbonyl-, C₁₆-Alkylcarbonyl-, C₁₈-Alkylcarbonyl-, C₂₀-Alkylcarbonyl-, C₂₂-Alkylcarbonyl- oder C₂₄-Alkylcarbonyl-Reste, die ein oder mehrere Doppelbindungen enthalten. Ganz besonders bevorzugt sind gesättigte oder ungesättigte C₁₆-C₂₂-Alkylcarbonylreste wie C₁₆-Alkylcarbonyl-, C₁₈-Alkylcarbonyl-, C₂₀-Alkylcarbonyl- oder C₂₂-Alkylcarbonylbonyl-Reste, die ein oder mehrere Doppelbindungen enthalten. Bevorzugt enthalten die genannten Reste zwei, drei, vier oder fünf Doppelbindungen. Besonders bevorzugt enthalten die Reste drei, vier oder fünf Doppelbindungen. Ganz besonders bevorzugt sind C18-Alkylcarbonylreste, die eine, zwei, drei oder vier Doppelbindungen enthalten, und C20-Alkylcarbonylreste, die drei, vier oder fünf Doppelbindungen enthalten. Alle genannten Reste leiten sich von den entsprechenden Fettsäuren ab.

[0020] R² und R³ bezeichnen weiterhin in den Verbindungen der Formel II unabhängig voneinander einen Rest der allgemeinen Formel Ia

$$\begin{array}{c|c} CH_2 & CH_2 & CH_2 & CH_2 & CH_3 \end{array}$$

wobei n = 3, 4 oder 6, m = 3, 4 oder 5 und p = 0 oder 3 bedeutet, bevorzugt bedeutet n = 3, m = 4 oder 5 und p = 0 oder 3. [0021] Die vorgenannten Reste R^1 , R^2 und R^3 können auch Substituenten wie Hydoxyl- oder Epoxigruppen tragen oder auch Dreifachbindungen enthalten.

[0022] Bei den im erfindungsgemäßen Verfahren verwendeten Nukleinsäuresequenzen handelt es sich um isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ -5-, Δ -6-Desaturase- oder Δ -6-Elongaseaktivität codieren.

[0023] Die im Verfahren hergestellten Verbindungen der Formel I enthalten vorteilhaft eine Mischung aus unterschiedlichen Resten R¹, R² oder R³, die sich von unterschiedlichen Glyceriden ableiten lassen. Weiterhin lassen sich die vorgenannten Reste von verschieden Fettsäuren wie kurzkettigen Fettsäuren mit 4 bis 6 C-Atomen, mittelkettigen Fettsäuren mit 8 bis 12 C-Atomen oder langkettigen Fettsäuren mit 14 bis 24 C-Atomen ableiten, bevorzugt sind die langkettigen Fettsäuren

[0024] Im erfindungsgemäßen Verfahren werden vorteilhaft Fettsäureester (= Verbindungen der Formel I) mit mehrfach ungesättigten C_{18} -, C_{20} - und/oder C_{22} -Fettsäuremolekülen mit mindestens zwei Doppelbindungen im Fettsäureester hergestellt. Bevorzugt enthalten diese Fettsäuremoleküle drei, vier oder fünf Doppelbindungen und führen vorteilhaft zur Synthese von γ -Linolensäure (= GLA, C18:3 $^{\Delta6,9,12}$), Stearidonsäure (= SDA, C18:4 $^{\Delta6,9,12,15}$), Dihomo- γ -Linolensäure (= DGLA, 20:3 $^{\Delta8,11,14}$), Eicosatetraensäure (= ETA, C20:4 $^{\Delta5,8,11,14}$), Arachidonsäure (ARA), Eicosapentaensäure (EPA) oder deren Mischungen, bevorzugt EPA und/oder ARA.

[0025] Die Fettsäureester mit mehrfach ungestättigten C₁₈-, C₂₀- und/oder C₂₂-Fettsäuremolekülen können aus den Organismen, die für die Herstellung der Fettsäureester verwendet wurden, in Form eines Öls oder Lipids beispielsweise in Form von Verbindungen wie Sphingolipide, Phosphoglyceride, Lipide, Glycolipide wie Glycoshingolipid, Phospholipide wie Phosphatidylethanolamin, Phosphatidylcholin, Phoshatidylserin, Phosphatidylglycerol, Phosphatidylinositol oder Diphosphatidylglycerol, Monoacylglyceride, Diacylglyceride, Triacylglyceride oder sonstige Fettsäureester wie die AcetylCoenzymA-Ester, die die mehrfach ungesättigten Fettsäuren mit mindestens zwei bevorzugt drei Doppelbindungen enthalten, isoliert werden. Neben diesen Estern sind die mehrfach ungesättigten Fettsäuren auch als freie Fettsäuren oder gebunden in anderen Verbindungen in den Pflanzen enthalten. In der Regel liegen die verschiedenen vorgenannten Verbindungen (Fettsäuresster und frei Fettsäuren) in der Pflanze in einer ungefähren Verteilung von 80 bis 90 Gew.-% Triglyceride, 2 bis 5 Gew.-% Diglyceride, 5 bis 10 Gew.-% Monoglyceride, 1 bis 5 Gew.-% freie Fettsäuren, 2 bis 8 Gew.-% Phospholipide vor, wobei sich die Summe der verschiedenen Verbindungen zu 100 Gew.-% ergänzt.

[0026] Im erfindungsgemäßen Verfahren werden die Verbindungen der allgemeinen Formel I mit einem Gehalt von mindestens 1 Gew.-%, vorteilhaft von mindestens 2 Gew.-%, bevorzugt von mindestens 3 Gew.-%; besonders bevorzugt von mindestens 5 Gew.-%; besonders bevorzugt von mindestens 10 Gew.-% bezogen auf die gesamten Fettsäuren in der transgenen Pflanze hergestellt. Da im erfindungsgemäßen Verfahren von den Ausgangsverbindungen Linolsäure (C18:2) bzw. Linolensäure (C18:3) mehrere Reaktionsschritte durchlaufen werden, fallen die Endprodukte des Verfahrens wie beispielsweise Arachidonsäure (ARA) oder Eicosapentaensäure (EPA) nicht als Reinprodukte an, es sind immer auch geringe Spuren der Vorstufen im Endprodukt enthalten. Sind in der Ausgangspflanze sowohl Linolsäure als auch Linolensäure vorhanden, so liegen die Endprodukte wie ARA und EPA als Mischungen vor. Die Vorstufen sollten vorteilhaft nicht mehr als 20 Gew.-%, bevorzugt nicht mehr als 15 Gew.-%, besonders bevorzugt nicht als 10 Gew.-%, ganz besonders bevorzugt nicht mehr als 5 Gew.-% bezogen auf die Menge des jeweilige Endprodukts betragen. Vorteilhaft werden in einer transgenen Pflanze als Endprodukte nur ARA oder nur EPA im erfindungsgemäßen Verfahren gebunden oder als freie Säuren (siehe Verbindungen der allgemeinen Formel I) hergestellt. Werden beide Verbindungen (ARA + EPA) gleichzeitig hergestellt, werden sie vorteilhaft in einem Verhältnis von mindesten 1:2 (EPA: ARA), vorteilhaft von mindestens 1:3, bevorzugt von 1:4, besonders bevorzugt von 1:5 hergestellt.

4ñ

[0027] Als Organismus für die Herstellung im erfindungsgemäßen Verfahren kommen prinzipiell alle Pflanzen wie Moose, Algen, zweikeimblättrige oder einkeimblättrige Pflanzen in Frage. Vorteilhaft werden Organismen im erfindungsgemäßen Verfahren verwendet, die zu den Öl-produzierenden Organismen gehören, das heißt die für die Herstellung von Ölen verwendet werden, wie Algen wie Crypthecodinium, Phaeodactylum oder Pflanzen, insbesondere Pflanzen bevorzugt Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Erdnuss, Raps, Canola, Sonnenblume, Safflor (Färberdistel), Mohn, Senf, Hanf, Rhizinus, Olive, Sesam, Calendula, Punica, Nachtkerze, Königskerze, Distel, Wildrosen, Haselnuss, Mandel, Macadamia, Avocado, Lorbeer, Kürbis, Lein, Soja, Pistazien, Borretsch, Bäume (Ölpalme, Kokosnuss oder Walnuss) oder Feldfrüchte, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa oder Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten sowie ausdauernde Gräser und Futterfeldfrüchte. Bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Erdnuss, Raps, Canola, Sonnenblume, Safflor (Färberdistel), Mohn, Senf, Hanf, Rhizinus, Olive, Calendula, Punica, Nachtkerze, Kürbis, Lein, Soja, Borretsch, Bäume (Ölpalme, Kokosnuss). Besonders bevorzugt sind C18:2- und/oder C18:3-Fettsäure reiche Pflanzen wie Sonnenblume, Färberdistel, Tabak, Königskerze, Sesam, Baumwolle, Kürbis, Mohn, Nachtkerze, Walnuss, Lein, Hanf, Distel oder Färberdistel. Ganz besonders bevorzugt sind Pflanzen wie Färberdistel, Sonnenblume, Mohn, Nachtkerze, Walnuss, Lein oder Hanf.

[0028] Durch die enzymatische Aktivität der im erfindungsgemäßen Verfahren verwendeten Nukleinsäuren, die für Polypeptide mit Δ -5-, Δ -6-Desaturase- oder Δ -6-Elongaseaktivität codieren, können unterschiedliche Verbindungen der Formel I hergestellt werden.

[0029] Je nach Auswahl der für das erfindungsgemäße Verfahren verwendeten Pflanze lassen sich Mischungen der verschiedenen Verbindungen der allgemeinen Formel I oder einzelne Verbindungen wie EPA oder ARA in freier oder ge-

bundener Form herstellen. Je nachdem welche Fettsäurezusammensetzung in der Ausgangspflanze vorherrscht (C18:2oder C18:3-Fettsäuren) entstehen so Verbindungen der allgemeinen Formel I, die sich von C18:2-Fettsäuren ableiten, wie GLA, DGLA oder ARA enthaltende Verbindungen der Formel I oder, die sich von C18:3-Fettsäuren ableiten, wie SDA, ETA oder EPA enthaltende Verbindungen der Formel I. Liegt in der für das Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur Linolsäure (= LA, C18:2^{\Delta 9,12}) vor, so können als Produkte des Verfahrens nur GLA, DGLA und ARA entstehen, die als freie Fettsäuren oder gebunden vorliegen können. Ist in der im Verfahren verwendeten Pflanze als ungesättigte Fettsäure nur α -Linolensäure (= ALA, C18:3^{$\Delta 9,12,15$}) beispielsweise wie in Lein, so können als Produkte des Verfahrens nur SDA, ETA und EPA entstehen, die wie oben beschrieben als freie Fettsäuren oder gebunden vorliegen können. Durch Modifikation der Aktivität der an der Synthese beteiligten Enzyme (Δ-5-, Δ-6-Desaturase und Δ-6-Elongase) bzw. durch Einbringen nur der ersten beiden Gene Δ -6-Desaturase und Δ -6-Elongase) der Synthesekette lassen sich gezielt in den vorgenannten Pflanzen nur einzelne Produkte herstellten (siehe Fig. I). Durch die Aktivität der Δ-6-Desaturase und Δ-6-Elongase entstehen GLA und DGLA bzw. SDA und ETA, je nach Ausgangspflanze und ungesättigter Fettsäure. Bevorzugt entstehen DGLA bzw. ETA oder deren Mischungen. Wird die Δ-5-Desaturase zusätzlich in Pflanze eingebracht, so entstehen zusätzlich ARA oder EPA. Vorteilhaft werden nur ARA oder EPA oder deren Mischungen synthetisiert, abhängig von der in der Pflanze vorliegenden Fettsäure, die als Ausgangssubstanz für die Synthese dient. Da es sich um Biosyntheseketten handelt, liegen die jeweiligen Endprodukte nicht als Reinsubstanzen in den Pflanzen vor. Es sind immer auch geringe Mengen der Vorläuferverbindungen im Endprodukt enthalten. Diese geringen Mengen betragen weniger als 20 Gew.-%, vorteilhaft weniger als 15 Gew.-%, besonders vorteilhaft weniger als 10 Gew.-%, ganz besonders vorteilhaft weniger als 5, 4, 3, 2 oder 1 Gew.-% bezogen auf das Endprodukt DGLA, ETA oder deren Mischungen bzw. ARA, EPA oder deren Mischungen.

[0030] Im erfindungsgemäßen Verfahren werden sind unter transgenen Pflanzen auch Pflanzenzellen, -gewebe, -organe oder ganze Pflanzen zu verstehen, die zur Herstellung von Verbindungen der allgemeinen Formel I angezüchtet werden. Unter Anzucht ist beispielsweise die Kultivierung der transgenen Pflanzenzellen, -gewebe oder -organe auf einem Nährmedium oder der ganzen Pflanze auf bzw. in einem Substrat beispielsweise in Hydrokultur oder auf einem Ackerboden zu verstehen.

[0031] Im erfindungsgemäßen Verfahren können prinzipiell alle Nukleinsäuren verwendet werden, die für Polypeptide mit Δ-5-, Δ-6-Desaturase- oder Δ-6-Elongaseaktivität codieren. Vorteilhaft Stammen diese Nukleinsäuren aus Pflanzen wie Algen wie Isochrysis oder Crypthecodinium, Diatomeen wie Phaeodactylum, Moose wie Physcomitrella, Ceratodon oder höheren Pflanzen wie den Primulaceae wie Aleuritia, Calendula stellata, Osteospermum spinescens oder Osteospermum hyoseroides, Mikroorganismen wie Pilzen wie Aspergillus, Thraustochytrium, Phytophtora, Entomophthora, Mucor oder Mortierella, Hefen oder Tieren wie Nematoden wie Caenorhabditis, Insekten oder dem Mensch. Vorteilhaft stammen die Δ-5-, Δ-6-Desaturase- oder Δ-6-Elongasegene aus Pilzen oder aus Pflanzen wie Algen oder Moosen, bevorzugt aus Pflanzen.

[0032] Vorteilhaft wird im erfindungsgemäßen Verfahren eine Nukleinsäuresequenz ausgewählt aus der Gruppe den in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 oder deren Derivat oder Homologe, die für Polypeptide codieren, die noch die enzymatische Aktivität besitzen. Diese Sequenzen werden einzeln oder in Kombination in Expressionskonstrukte cloniert, diese Expressionskonstrukte sind in den Sequenzen SEQ ID NO: 33–37 wiedergegeben. Diese Expressionskonstrukte ermöglichen eine optimale Synthese der im erfindungsgemäßen Verfahren produzierten Verbindungen der allgemeinen Formel I.

40 [0033] Bei einer bevorzugten Ausführungsform umfasst das Verfahren ferner den Schritt des Gewinnens einer Zelle, die die im Verfahren verwendeten Nukleinsäuresequenzen, die für eine Δ-5- oder Δ-6-Desaturase und eine Δ-6-Elongase codieren, enthält, wobei eine Zelle mit den Nukleinsäuresequenz, einem Genkonstrukt oder einem Vektor, welche die Expression der Δ-5-, Δ-6-Desaturase- oder Δ-6-Elongasenukleinsäure allein oder in Kombination herbeiführen, transformiert wird. Bei einer weiteren bevorzugten Ausführungsform umfasst dieses Verfahren ferner den Schritt des Gewinnens der Feinchemikalie aus der Kultur. Die so hergestellte Zelle ist vorteilhaft eine Zelle einer Ölfruchtpflanze wie beispielsweise Erdnuss, Raps, Canola, Lein, Soja, Safflower, Hanf, Sonnenblumen oder Borretsch.

[0034] Unter transger Pflanze im Sinne der Erfindung ist zu verstehen, daß die im Verfahren verwendeten Nukleinsäuren nicht an ihrer natürlichen Stelle im Genom eines Organismus sind, dabei können die Nukleinsäuren homolog oder heterolog exprimiert werden.

[0035] Tansgen bedeutet aber auch, dass die erfindungsgemäßen Nukleinsäuren an ihrem natürlichen Platz im Genom eines Organismus sind, dass jedoch die Sequenz gegenüber der natürlichen Sequenz verändert wurde und/oder das die Regulationssequenzen, der natürlichen Sequenzen verändert wurden. Bevorzugt ist unter transgen die Expression der erfindungsgemäßen Nukleinsäuren an nicht natürlicher Stelle im Genom zu verstehen, das heißt eine homologe oder bevorzugt heterologe Expression der Nukleinsäuren liegt vor. Bevorzugte transgene Pflanzen sind die Ölfruchtpflanzen. [0036] Transgene Pflanzen, die die im erfindungsgemäßen Verfahren synthetisierten Verbindungen der Formel I enthalten, können direkt vermarktet werden ohne die synthetisierten Verbindungen zu isolieren. Unter Pflanzen im erfindungsgemäßen Verfahren sind alle Pflanzenteile, Pflanzenorgane wie Blatt, Stiel, Wurzel, Knollen oder Samen oder die gesamte Pflanze zu verstehen. Der Samen umfasst dabei alle Samenteile wie die Samenhüllen, Epidermis- und Samenzellen, Endosperm oder Embyrogewebe. Die im erfindungsgemäßen Verfahren hergestellten Verbindungen können aber auch aus den Pflanzen in Form ihrer Öle, Fett, Lipide und/oder freien Fettsäuren isoliert werden. Durch dieses Verfahren hergestellte Verbindungen der Formel I lassen sich durch Ernten der Organismen entweder aus der Kultur, in der sie wachsen, oder vom Feld ernten. Dies kann über Pressen oder Extraktion der Pflanzenteile bevorzugt der Pflanzensamen erfolgen. Dabei können die Öle, Fette, Lipide und/oder freien Fettsäuren durch sogenanntes kalt schlagen oder kalt pressen ohne Zuführung von Wärme durch Pressen gewonnen werden. Damit sich die Pflanzenteile speziell die Samen leichter aufschließen lassen, werden sie vorher zerkleinert, gedämpft oder geröstet. Die so vorbehandelten Samen können anschließend gepresst werden oder mit Lösungsmittel wie warmen Hexan extrahiert werden. Anschließend wird das Lösungsmittel wieder entfernt. Auf diese Weise können mehr als 96% der im Verfahren hergestellten Verbindungen isoliert

werden. Anschließend werden die so erhaltenen Produkte weiter bearbeitet, das heißt raffiniert. Dabei werden zunächst

die Pflanzenschleime und Trübstoffe. Die sogenannte Entschleimung kann enzymatisch oder beispielsweise chemisch/ physikalisch durch Zugabe von Säure wie Phosphorsäure erfolgen. Anschließend werden die freien Fettsäuren durch Behandlung mit einer Base beispielsweise Natronlauge entfernt. Das erhaltene Produkt wird zur Entfernung der im Produkt verbliebenen Lauge mit Wasser gründlich gewaschen und getrocknet. Um die noch im Produkt enthaltenen Farbstoffe zu entfernen werden die Produkte einer Bleichung mit beispielsweise Bleicherde oder Aktivkohle unterzogen. Zum Schluss wird das Produkt noch beispielsweise mit Wasserdampf noch desodoriert.

[0037] Vorzugsweise sind die durch dieses Verfahren produzierten PUFAs C_{18} - oder C_{20-22} -Fettsäuremoleküle mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise drei, vier, bei Kombination mit einer weiteren Elongasen und einer Δ -4 Desaturase fünf oder sechs Doppelbindungen. Diese C_{18} - oder C_{20-22} -Fettsäuremoleküle lassen sich aus dem Organismus in Form eines Öls, Lipids oder einer freien Fettsäure isolieren. Geeignete Organismen sind beispielsweise die vorstehend erwähnten. Bevorzugte Organismen sind transgene Pflanzen.

10

[0038] Eine erfindungsgemäße Ausführungsform sind Öle, Lipide oder Fettsäuren oder Fraktionen davon, die durch das oben beschriebene Verfahren hergestellt worden sind, besonders bevorzugt Öl, Lipid oder eine Fettsäurezusammensetzung, die PUFAs umfassen und von transgenen Pflanzen herrühren.

[0039] Eine weitere erfindungsgemäße Ausführungsform ist die Verwendung des Öls, Lipids oder der Fettsäurezusammensetzung in Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika.

[0040] Unter dem Begriff "Öl" oder "Fett" wird ein Fettsäuregemisch verstanden, das ungesättigte, gesättigte, vorzugsweise veresterte Fettsäure(n) enthält. Bevorzugt ist, dass das Öl oder Fett einen hohen Anteil an ungesättigter, unkonjugierter veresterter Fettsäure(n), insbesondere Linolsäure, γ-Linolensäure, Dihomo-γ-linolensäure, Arachidonsäure, α-Linolensäure, Stearidonsäure, Eicosatetraensäure oder Eicosapentaensäure hat. Vorzugsweise ist der Anteil an ungesättigten veresterten Fettsäuren ungefähr 30%, mehr bevorzugt ist ein Anteil von 50%, noch mehr bevorzugt ist ein Anteil von 60%, 70%, 80% oder mehr. Zur Bestimmung kann z. B. der Anteil an Fettsäure nach Überführung der Fettsäuren in die Methylestern durch Umesterung gaschromatographisch bestimmt werden. Das Öl oder Fett kann verschiedene andere gesättigte oder ungesättigte Fettsäuren, z. B. Calendulasäure, Palmitin-, Stearin-, Ölsäure etc., enthalten. Insbesondere kann je nach Ausgangspflanze der Anteil der verschiedenen Fettsäuren in dem Öl oder Fett schwanken.

[0041] Bei den im Verfahren hergestellten Verbindungen der Formel I, die mehrfach ungesättigte Fettsäuren mit mindestens zwei Doppelbindungen enthalten, handelt es sich um Sphingolipide, Phosphoglyceride, Lipide, Glycolipide, Phospholipide, Monoacylglycerin, Diacylglycerin, Triacylglycerin oder sonstige Fettsäureester.

[0042] Aus den so im erfindungsgemäßen Verfahren hergestellten Verbindungen der allgemeinen Formel I lassen sich die enthaltenden mehrfach ungesättigten Fettsäuren beispielsweise über eine Alkalibehandlung beispielsweise wäßrige KOH oder NaOH oder saure Hydrolyse vorteilhaft in Gegenwart eines Alkohols wie Methanol oder Ethanol oder über eine enzymatische Abspaltung freisetzen und isolieren über beispielsweise Phasentrennung und anschließender Ansäuerung über z. B. H₂SO₄. Die Freisetzung der Fettsäuren kann auch direkt ohne die vorhergehend beschriebene Aufarbeitung erfolgen.

[0043] Die im Verfahren verwendeten Nukleinsäuren können nach Einbringung in eine Pflanzenzelle bzw. Pflanze entweder auf einem separaten Plasmid liegen oder in das Genom der Wirtszelle integriert sein. Bei Integration in das Genom kann die Integration zufallsgemäß sein oder durch derartige Rekombination erfolgen, dass das native Gen durch die eingebrachte Kopie ersetzt wird, wodurch die Produktion der gewünschten Verbindung durch die Zelle moduliert wird, oder durch Verwendung eines Gens in trans, so dass das Gen mit einer funktionellen Expressionseinheit, welche mindestens eine die Expression eines Gens gewährleistende Sequenz und mindestens eine die Polyadenylierung eines funktionell transkribierten Gens gewährleistende Sequenz enthält, funktionell verbunden ist. Vorteilhaft werden die Nukleinsäuren über Multiexpressionskassetten oder Konstrukte zur multiparallelen samen-spezifischen Expression von Genen in die Pflanzen gebracht.

[0044] Moose und Algen sind die einzigen bekannten Pflanzensysteme, die erhebliche Mengen an mehrfach ungesättigten Fettsäuren, wie Arachidonsäure (ARA) und/oder Eicosapentaensäure (EPA) und/oder Docosahexaensäure (DHA) herstellen. Moose enthalten PUFAs in Membranlipiden während Algen, algenverwandte Organismen und einige Pilze auch nennenswerte Mengen an PUFAs in der Triacylglycerolfraktion akkumulieren. Daher eignen sich Nukleinsäuremoleküle, die aus solchen Stämmen isoliert werden, die PUFAs auch in der Triacylglycerolfraktion akkumulieren, besonders vorteilhaft für das erfindungsgemäße Verfahren und damit zur Modifikation des Lipid- und PUFA-Produktionssystems in einem Wirt, insbesondere Pflanzen, wie Ölfruchtpflanzen, beispielsweise Raps, Canola, Lein, Hanf, Soja, Sonnenblumen, Borretsch. Sie sind deshalb vorteilhaft im erfindungsgemäßen Verfahren verwendbar.

[0045] Die Herstellung einer Triensäure mit C_{18} -Kohlenstoffkette mithilfe von Desaturasen konnte bisher gezeigt werden. In diesen literaturbekannten Verfahren wurde die Herstellung von γ -Linolensäure beansprucht. Bisher konnte jedoch niemand die Herstellung sehr langkettiger mehrfach ungesättigter Fettsäuren (mit C_{20} - und längerer Kohlenstoffkette sowie von Triensäuren und höher ungesättigten Typen) allein durch modifizierte Pflanzen zeigen.

[0046] Zur Herstellung der erfindungsgemäßen langkettiger PUFAs müssen die mehrfach ungesättigten C₁₈-Fettsäuren zunächst durch die enzymatische Aktivität einer Desaturase zunächst desaturiert und anschließend über eine Elongase um mindestens zwei Kohlenstoffatome verlängert werden. Nach einer Elongationsrunde führt diese Enzymaktivität zu C₂₀-Fettsäuren, und nach zwei oder drei Elongationsrunden zu C₂₂- oder C₂₄-Fettsäuren. Die Aktivität der erfindungsgemäßen Verfahren verwendeten Desaturasen und Elongasen führt vorzugsweise zu C₁₈-, C₂₀- und/oder C₂₂-Fettsäuren mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier oder fünf Doppelbindungen, besonders bevorzugt zu C₁₈- und/oder C₂₀-Fettsäuren mit mindestens zwei Doppelbindungen im Fettsäuremolekül, vorzugsweise mit drei, vier oder fünf Doppelbindungen im Molekül. Nachdem eine erste Desaturierung und die die Verlängerung stattgefunden hat, können weitere Desaturierungsschritte wie z. B. eine solche in Δ-5-Position erfolgen. Besonders bevorzugt als Produkte des erfindungsgemäßen Verfahrens sind Arachidonsäure und Eicosapentaensäure. Die C₁₈-Fettsäuren mit mindestens zwei Doppelbindungen in der Fettsäure können durch die erfindungsgemäße enzymatische Aktivität in Form der freien Fettsäure oder in Form der Ester, wie Phospholipide, Glycolipide, Sphingolipide, Phosphoglyceride, Monoacylglycerin, Diacylglycerin oder Triacylglycerin, verlängert werden.

[0047] Unter der Verwendung von Klonierungsvektoren in Pflanzen und bei der Pflanzentransformation, wie denjenigen, die veröffentlicht sind in und dort zitiert sind: Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Florida), Kapitel 6/7, S. 71-119 (1993); F. F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-143; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225)), lassen sich die Nukleinsäuren zur gentechnologischen Veränderung eines breiten Spektrums an Pflanzen verwenden, so dass diese ein besserer oder effizienterer Produzent eines oder mehrerer von Lipiden hergeleiteter Produkte, wie PUFAs, wird. Diese verbesserte Produktion oder Effizienz der Produktion eines von Lipiden hergeleiteten Produktes, wie PUFAs, kann durch direkte

Wirkung der Manipulation oder eine indirekte Wirkung dieser Manipulation hervorgerufen werden. [0048] Es gibt eine Reihe von Mechanismen, durch die die Veränderung eines erfindungsgemäßen Desaturase-Proteins die Ausbeute, Produktion und/oder Effizienz der Produktion einer Feinchemikalie aus einer Ölfruchtpflanze oder einem Mikroorganismus aufgrund eines veränderten Proteins direkt beeinflussen kann. Die Anzahl oder Aktivität des Desaturase-Proteins oder -Gens sowie von Genkombinationen von Desaturasen und Elongasen kann erhöht sein, so dass grö-Bere Mengen dieser Verbindungen de novo hergestellt werden, weil den Organismen diese Aktivität und Fähigkeit zur Biosynthese vor dem Einbringen des entsprechenden Gens fehlte. Entsprechendes gilt für die Kombination mit weiteren Desaturasen oder Elongasen oder weiteren Enzymen aus dem Lipidstoffwechsel. Auch die Verwendung verschiedener divergenter, d. h. auf DNA-Sequenzebene unterschiedlicher Sequenzen kann dabei vorteilhaft sein bzw. die Verwendung von Promotoren zur Genexpression, die eine andere zeitliche Genexpression z. B. abhängig vom Reifegrad eines Samens

[0049] Durch das Einbringen eines Desaturase- und/oder Elongase-Gens oder mehrerer Desaturase- und Elongaseoder Öl-speichernden Gewebes ermöglicht. Gene in einen Organismus allein oder in Kombination mit anderen Genen in eine Zelle kann nicht nur den Biosynthesefluss zum Endprodukt erhöhen, sondern auch die entsprechende Triacylglycerin-Zusammensetzung erhöhen oder de novo schaffen. Ebenso kann die Anzahl oder Aktivität anderer Gene, die am Import von Nährstoffen, die zur Biosynthese einer oder mehrerer Feinchemikalien (z. B. Fettsäuren, polaren und neutralen Lipiden) nötig sind, erhöht sein, so dass die Konzentration dieser Vorläufer, Cofaktoren oder Zwischenverbindungen innerhalb der Zellen oder innerhalb des Speicherkompartiments erhöht ist, wodurch die Fähigkeit der Zellen zur Produktion von PUFAs, wie im folgenden beschrieben, weiter gesteigert wird. Fettsäuren und Lipide sind selbst als Feinchemikalien wünschenswert; durch Optimierung der Aktivität oder Erhöhung der Anzahl einer oder mehrerer Desaturasen und/oder Elongasen, die an der Biosynthese dieser Verbindungen beteiligt sind, oder durch Zerstören der Aktivität einer oder mehrerer Desaturasen, die am Abbau dieser Verbindungen beteiligt sind, kann es möglich sein, die Ausbeute, Produktion und/oder Effizienz der Produktion von Fettsäure- und Lipidmolekülen aus Pflanzen zu steigern.

[0050] Die im erfindungsgemäßen Verfahren verwendeten isolierten Nukleinsäuremoleküle codieren für Proteine oder Teilen von diesen, wobei die Proteine oder das einzelne Protein oder Teilen davon eine Aminosäuresequenz enthält, die ausreichend homolog zu einer Aminosäuresequenz der Sequenz SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 ist, so dass das Protein oder der Teil davon eine Desaturase- oder Elongase-Aktivität beibehält. Vorzugsweise hat das Protein oder der Teil davon, das/der von dem Nukleinsäuremolekül kodiert wird, seine wesentliche enzymatische Aktivität und die Fähigkeit, am Stoffwechsel von zum Aufbau von Zellmembranen von Pflanzen notwendigen Verbindungen oder am Transport von Molekülen über diese Membranen teilzunehmen. Vorteilhaft ist das von den Nukleinsäuremolekülen kodierte Protein zu mindestens etwa 50%, vorzugsweise mindestens etwa 60% und stärker bevorzugt mindestens etwa 70%, 80% oder 90% und am stärksten bevorzugt mindestens etwa 95%, 96%, 97%, 98%, 99% oder mehr homolog zu einer Aminosäuresequenz der Sequenz SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32. Bevorzugt ist das Protein ein Volllängen-Protein, das im wesentlichen in Teilen homolog zu einer gesamten Aminosäuresequenz der SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 (die von dem in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 gezeigten offenen Leserahmen herrührt) ist. Im Sinne der

Erfindung ist unter Homologie oder homolog, Identität oder identisch zu verstehen.

[0051] Unter wesentlicher enzymatischer Aktivität der verwendeten Desaturasen und der Elongase ist zu verstehen, dass sie gegenüber den durch die Sequenzen mit SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 codierten Proteinen/Enzymen im Vergleich noch mindestens eine enzymatische Aktivität von mindestens 10%, bevorzugt 20%, besonders bevorzugt 30% und ganz besonders 40% aufweisen und damit am Stoffwechsel von zum Aufbau von Fettsäuren in einer Pflanzenzelle notwendigen Verbindungen oder am Transport von Molekülen über Membranen teilnehmen können, wobei desaturierte C_{18} - oder C_{20-22} -Kohlenstoffketten mit Doppelbindungen an mindestens zwei, vorteilhaft drei, vier oder fünf Stellen gemeint ist.

Vorteilhaft im Verfahren verwendbare Nukleinsäuren stammen aus Pilzen oder Pflanzen wie Algen oder Moosen wie den Gattungen Physcomitrella, Thraustochytrium, Phytophtora, Ceratodon, Isochrysis, Aleurita, Muscarioides, Mortierella, Borago, Phaeodactylum, Crypthecodinium oder aus Nematoden wie Ceanorhabditis, speziell aus den Gattungen und Arten Physcomitrella patens, Phytophtora infestans, Ceratodon purpureus, Isochrysis galbana, Aleurita farinosa, Muscarioides viallii, Mortierella alpina, Borago officinalis, Phaeodactylum tricormutum oder Ceanorhabditis ele-

Alternativ können die verwendeten isolierten Nukleotidsequenzen für Desaturasen oder Elongasen codieren, die an eine Nukleotidsequenz der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 hybridisieren, 100531

[0054] Die im Verfahren verwendeten Nukleinsäuresequenzen werden vorteilhaft in einer Expressionskassette, die die Expression der Nukleinsäuren in Pflanzen ermöglicht, eingebracht.

[0055] Vorteilhafte Expressionskassetten werden in SEQ ID NO: 33 bis 37 wiedergegeben. Dabei werden die für die Desaturasen und/oder die Elongasen codierenden Nukleinsäuresequenzen mit einem oder mehreren Regulationssignalen vorteilhafterweise zur Erhöhung der Genexpression funktionell verknüpft. Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus

bedeuten, dass das Gen erst nach Induktion exprimiert und/oder überexprimiert wird, oder dass es sofort exprimiert und/ oder überexprimiert wird. Beispielsweise handelt es sich bei diesen regulatorischen Sequenzen um Sequenzen an die Induktoren oder Repressoren binden und so die Expression der Nukleinsäure regulieren. Zusätzlich zu diesen neuen Regulationssequenzen oder anstelle dieser Sequenzen kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Die Expressionskassette (= Expressionskonstrukt = Genkonstrukt) kann aber auch einfacher aufgebaut sein, das heißt es wurden keine zusätzlichen Regulationssignale vor die Nukleinsäuresequenz oder dessen Derivate inseriert und der natürliche Promotor mit seiner Regulation wurde nicht entfernt. Stattdessen wurde die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und/oder die Genexpression gesteigert wird. Diese veränderten Promotoren können in Form von Teilsequenzen (= Promotor mit Teilen der erfindungsgemäßen Nukleinsäuresequenzen) auch allein vor das natürliche Gen zur Steigerung der Aktivität gebracht werden. Das Genkonstrukt kann außerdem vorteilhafterweise auch eine oder mehrere sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promotor enthalten, die eine erhöhte Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der DNA-Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden wie weitere regulatorische Elemente oder Terminatoren. Die Δ5-Desaturase-/Δ6-Desaturase und/oder Δ6-Elongase-Gene können in einer oder mehreren Kopien in der Expressionskassette (= Genkonstrukt) enthalten sein. Vorteilhaft liegt nur jeweils eine Kopie der Gene in der Expressionskassette vor. Dieses Genkonstrukt oder die Genkonstrukte können zusammen im Wirtsorganismus exprimiert werden. Dabei kann das Genkonstrukt oder die Genkonstrukte in einem oder mehreren Vektoren inseriert sein und frei in der Zelle vorliegen oder aber im Genom inseriert sein. Es ist vorteilhaft für die Insertion weiterer Gene im Wirtsgenom, wenn die zu exprimierenden Gene zusammen in einem Genkonstrukt vorliegen. [0056] Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.

10

25

30

45

65

[0057] Eine weitere Ausführungsform der Erfindung sind ein oder mehrere Genkonstrukte, die eine oder mehrere Sequenzen enthalten, die durch Seq ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 definiert sind und gem. SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 Polypeptide kodieren. Die genannten Desaturasen führen dabei eine Doppelbindung in Δ-5 oder Δ-6-Position ein, wobei das Substrat ein, zwei, drei oder vier Doppelbindungen aufweisen. Die Elongase (Δ-6-Elongase) besitzt eine Enzymaktivität, die eine Fettsäure um mindestens zwei Kohlenstoffatome verlängert. Gleiches gilt für ihre Homologen, Derivate oder Analoga, die funktionsfähig mit einem oder mehreren Regulationssignalen, vorteilhafterweise zur Steigerung der Genexpression, verbunden sind.

[0058] Vorteilhafte Regulationssequenzen für das neue Verfahren liegen beispielsweise in Promotoren vor, wie dem cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lac I^q -, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, λ -P_R- oder λ -P_L-Promotor und werden vorteilhafterweise in Gram-negativen Bakterien angewendet. Weitere vorteilhafte Regulationssequenzen liegen beispielsweise in den Gram-positiven Promotoren amy und SPO2, in den Hefe- oder Pilzpromotoren ADC1, MFα, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH oder in den Pflanzenpromotoren CaMV/35S [Franck et al., Cell 21 (1980) 285-294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, lib4, usp, STLS1, B33, nos oder im Ubiquitinoder Phaseolin-Promotor vor. In diesem Zusammenhang vorteilhaft sind ebenfalls induzierbare Promotoren, wie die in EP-A-0 388 186 (Benzylsulfonamid-induzierbar), Plant J. 2, 1992: 397-404 (Gatz et al., Tetracyclin-induzierbar), EP-A-0 335 528 (Abzisinsäure-induzierbar) oder WO 93/21334 (Ethanol- oder Cyclohexenol-induzierbar) beschriebenen Promotoren. Weitere geeignete Pflanzenpromotoren sind der Promotor von cytosolischer FBPase oder der ST-LSI-Promotor der Kartoffel (Stockhaus et al., EMBO J. 8, 1989, 2445), der Phosphoribosylpyrophosphatamidotransferase-Promotor aus Glycine max (Genbank-Zugangsnr. U87999) oder der in EP-A-0 249 676 beschriebene nodienspezifische Promotor. Besonders vorteilhafte Promotoren sind Promotoren, welche die Expression in Geweben ermöglichen, die an der Fettsäurebiosynthese beteiligt sind. Ganz besonders vorteilhaft sind samenspezifische Promotoren, wie der ausführungsgemäße USP Promotor aber auch andere Promotoren wie der LeB4-, DC3, Phaseolin- oder Napin-Promotor. Weitere besonders vorteilhafte Promotoren sind samenspezifische Promotoren, die für monokotyle oder dikotyle Pflanzen verwendet werden können und in US 5,608,152 (Napin-Promotor aus Raps), WO 98/45461 (Oleosin-Promotor aus Arobidopsis), US 5,504,200 (Phaseolin-Promotor aus Phaseolus vulgaris), WO 91/13980 (Bce4-Promotor aus Brassica) von Baeumlein et al., Plant J., 2, 2, 1992: 233-239 (LeB4-Promotor aus einer Leguminose) beschrieben sind, wobei sich diese Promotoren für Dikotyledonen eignen. Die folgenden Promotoren eignen sich beispielsweise für Monokotyledonen lpt-2- oder lpt-1-Promotor aus Gerste (WO 95/15389 und WO 95/23230), Hordein-Promotor aus Gerste und andere, in WO 99/16890 beschriebene geeignete Promotoren.

[0059] Es ist im Prinzip möglich, alle natürlichen Promotoren mit ihren Regulationssequenzen, wie die oben genannten, für das neue Verfahren zu verwenden. Es ist ebenfalls möglich und vorteilhaft, zusätzlich oder alleine synthetische Promotoren zu verwenden, besonders wenn sie eine Samen-spezifische Expression vermitteln, wie z. B. beschrieben in WO 99/16890.

[0060] Um einen besonders hohen Gehalt an PUFAs in transgenen Pflanzen zu erzielen, sollten die PUFA-Biosynthesegene vorteilhaft samen-spezifisch in Ölsaaten exprimiert werden. Hierzu können Samen-spezifische Promotoren verwendet werden, bzw. solche Promotoren die im Embryo und/oder im Endosperm aktiv sind. Samen-spezifische Promotoren können prinzipiell sowohl aus dikotolydonen als auch aus monokotolydonen Pflanzen isoliert werden. Im folgenden sind vorteilhafte bevorzugte Promotoren aufgeführt: USP (= unknown seed protein) und Vicilin (Vicia faba) [Bäumlein et al., Mol. Gen Genet., 1991, 225(3)], Napin (Raps) [US 5,608,152], Acyl-Carrier Protein (Raps) [US 5,315,001 und WO 92/18634], Oleosin (Arabidopsis thaliana) [WO 98/45461 und WO 93/20216], Phaseolin (Phaseolus vulgaris) [US 5,504,200], Bce4 [WO 91/13980], Leguminosen B4 (LegB4-Promotor) [Bäumlein et al., Plant J., 2, 2, 1992], Lpt2 und lpt1 (Gerste) [WO 95/15389 u. WO 95/23230], Samen-spezifische Promotoren aus Reis, Mais u. Weizen [WO 99/16890], Amy32b, Amy 6-6 und Aleurain [US 5,677,474], Bce4 (Raps) [US 5,530,149], Glycinin (Soja)

[EP 571 741], Phosphoenol-Pyruvatcarboxylase (Soja) [JP 06/62870], ADR12-2 (Soja) [WO 98/08962], Isocitratlyase (Raps) [US 5,689,040] oder β -Amylase (Gerste) [EP 781 849].

[0061] Die Pflanzengenexpression lässt sich auch über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 89–108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäure-induzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397–404) und ein Ethanol-induzierbarer Promotor.

[0062] Um eine stabile Integration der Biosynthesegene in die transgene Pflanze über mehrere Generation sicherzustellen, sollte jede der im Verfahren verwendeten Nukleinsäuren, die für die Δ-6-Desaturase, die Δ-5-Desaturase oder die Δ-6-Elongase codieren, unter der Kontrolle eines eigenen bevorzugt eines unterschiedlichen Promotors exprimiert werden, da sich wiederholende Sequenzmotive zu Instabilität der T-DNA bzw. zu Rekombinationsereignissen früheren können. Die Expressionskassette ist dabei vorteilhaft so aufgebaut, dass einem Promotor eine geeignete Schnittstelle zur Insertion der zu expremierenden Nukleinsäure folgt vorteilhaft in einem Polylinker anschließend gegebenenfalls ein Terminator hinter dem Polylinker liegt. Diese Abfolge wiederholt sich mehrfach bevorzugt drei-, vier- oder fünfmal, so dass bis zu fünf Gene in einem Konstrukt zusammengeführt werden und so zur Expression in die transgene Pflanze eingebracht werden können. Vorteilhaft wiederholt sich die Abfolge bis zu dreimal (siehe Sequenzprotokoll SEQ ID NO: 33-37). Die Nukleinsäuresequenzen werden zur Expression über die geeignete Schnittstelle beispielsweise im Polylinker hinter den Promotor inseriert. Vorteilhaft hat jede Nukleinsäuresequenz ihren eigenen Promotor und gegebenenfalls ihren eigenen Terminator. Es ist aber auch möglich mehrere Nukleinsäuresequenzen hinter einem Promotor und ggf. vor einem Terminator zu inserieren. Dabei ist die Insertionsstelle bzw. die Abfolge der inserierten Nukleinsäuren in der Expressionskassette nicht von entscheidender Bedeutung, das heißt eine Nukleinsäuresequenz kann an erster oder letzter Stelle in der Kassette inseriert sein, ohne dass dadurch die Expression wesentlich beeinflusst wird. Es können in der Expressionskassette vorteilhaft unterschiedliche Promotoren wie beispielsweise der USP-, LegB4 oder DC3-Promotor und unterschiedliche Terminatoren verwendet werden. Es ist aber auch möglich nur einen Promotortyp in der Kassette zu verwenden. Dies kann jedoch zu unerwünschten Rekombinationsereignissen führen.

[0063] Wie oben beschrieben sollte die Transkription der eingebrachten Gene vorteilhaft durch geeignete Terminatoren am 3'-Ende der eingebrachten Biosynthesegene (hinter dem Stoppcodon) abgebrochen werden. Verwendet werden kann hier z. B. der OCS1 Terminator. Wie auch für die Promotoren, so sollten hier für jedes Gen unterschiedliche Terminatorsequenzen verwendet werden.

[0064] Das Genkonstrukt kann, wie oben beschrieben, auch weitere Gene umfassen, die in die Organismen eingebracht werden sollen. Es ist möglich und vorteilhaft, in die Wirtsorganismen Regulationsgene, wie Gene für Induktoren, Repressoren oder Enzyme, welche durch ihre Enzymaktivität in die Regulation eines oder mehrerer Gene eines Biosynthesewegs eingreifen, einzubringen und darin zu exprimieren. Diese Gene können heterologen oder homologen Ursprungs sein. Weiterhin können vorteilhaft im Nukleinsäurekonstrukt bzw. Genkonstrukt weitere Biosynthesegene des Fettsäureoder Lipidstoffwechsels enthalten sein oder aber diese Gene können auf einem weiteren oder mehreren weiteren Nukleinsäurekonstrukten liegen. Vorteilhaft werden als Biosynthesegene des Fettsäure- oder Lipidstoffwechsels ein Gen ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Fettsäure-Blogase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacyglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n) oder deren Kombinationen und verwandet.

[0065] Dabei können die vorgenannten Desaturasen in Kombination mit Elongasen und anderen Desaturasen in erfindungsgemäßen Expressionskassetten kloniert werden und zur Transformation von Pflanzen mithilfe von Agrobakterium eingesetzt werden.

[0066] Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen
Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren
und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird. Die Expressionskassetten können prinzipiell direkt zum Einbringen
in die Pflanze verwendet werden oder aber in einen Vektoren eingebracht werden.

[0067] Diese vorteilhaften Vektoren, vorzugsweise Expressionsvektoren, enthalten die im Verfahren verwendeten Nukleinsäure, die für Δ-5- oder Δ-6-Desaturen oder Δ-6-Elonagasen codieren, oder ein Nukleinsäurekonstrukt, die die verwendeten Nukleinsäure allein oder in Kombination mit weiteren Biosynthesegenen des Fettsäure- oder Lipidstoffwechsels. Wie hier verwendet, betrifft der Begriff "Vektor" ein Nukleinsäuremolekül, das eine andere Nukleinsäure transportieren kann, an welche es gebunden ist. Ein Vektortyp ist ein "Plasmid", was für eine zirkuläre doppelsträngige DNA-Schleife steht, in die zusätzlichen DNA-Segmente ligiert werden können. Ein weiterer Vektortyp ist ein viraler Vektor, wobei zusätzliche DNA-Segmente in das virale Genom ligiert werden können. Bestimmte Vektoren können in einer Wirtszelle, in die sie eingebracht worden sind, autonom replizieren (z. B. Bakterienvektoren mit bakteriellem Replikationsursprung). Andere Vektoren werden vorteilhaft beim Einbringen in die Wirtszelle in das Genom einer Wirtszelle integriert und dadurch zusammen mit dem Wirtsgenom repliziert. Zudem können bestimmte Vektoren die Expression von Genen, mit denen sie funktionsfähig verbunden sind, steuern. Diese Vektoren werden hier als "Expressionsvektoren" bezeichnet. Gewöhnlich haben Expressionsvektoren, die für DNA-Rekombinationstechniken geeignet sind, die Form von Plasmiden. In der vorliegenden Beschreibung können "Plasmid" und "Vektor" austauschbar verwendet werden, da das Plasmid die am häufigsten verwendete Vektorform ist. Die Erfindung soll jedoch diese anderen Expressionsvektorformen, wie virale Vektoren, die ähnliche Funktionen ausüben, umfassen. Ferner soll der Begriff Vektor auch andere Vektoren, die dem Fachmann bekannt sind, wie Phagen, Viren, wie SV40, CMV, TMV, Transposons, IS-Elemente, Phasmide, Phagemide, Cosmide, lineare oder zirkuläre DNA, umfassen.

[0068] Die im Verfahren vorteilhaft verwendeten rekombinanten Expressionsvektoren umfassen die die unten be-

schriebenen Nukleinsäuren oder das oben beschriebene Genkonstrukt in einer Form, die sich zur Expression der verwendeten Nukleinsäuren in einer Wirtszelle eignen, was bedeutet, dass die rekombinanten Expressionsvektoren eine oder mehrere Regulationssequenzen, ausgewählt auf der Basis der zur Expression zu verwendenden Wirtszellen, die mit der zu exprimierenden Nukleinsäuresequenz funktionsfähig verbunden ist, umfasst. In einem rekombinanten Expressionsvektor bedeutet "funktionsfähig verbunden", dass die Nukleotidsequenz von Interesse derart an die Regulationssequenz(en) gebunden ist, dass die Expression der Nukleotidsequenz möglich ist und sie aneinander gebunden sind, so dass beide Sequenzen die vorhergesagte, der Sequenz zugeschriebene Funktion erfüllen (z. B. in einem In-vitro-Transkriptions-/Translationssystem oder in einer Wirtszelle, wenn der Vektor in die Wirtszelle eingebracht wird). Der Begriff "Regulationssequenz" soll Promotoren, Enhancer und andere Expressionskontrollelemente (z. B. Polyadenylierungssignale) umfassen. Diese Regulationssequenzen sind z. B. beschrieben in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990), oder siehe: Gruber und Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton, Florida, Hrsgb.: Glick und Thompson, Kapitel 7, 89-108, einschließlich der Literaturstellen darin. Regulationssequenzen umfassen solche, welche die konstitutive Expression einer Nukleotidsequenz in vielen Wirtszelltypen steuern, und solche, welche die direkte Expression der Nukleotidsequenz nur in bestimmten Wirtszellen unter bestimmten Bedingungen steuern. Der Fachmann weiß, dass die Gestaltung des Expressionsvektors von Faktoren, wie der Auswahl der zu transformierenden Wirtszelle, dem Ausmaß der Expression des gewünschten Proteins usw., abhängen kann.

15

50

[0069] Die verwendeten rekombinanten Expressionsvektoren können zur Expression von Desaturasen und Elongasen in prokaryotischen oder eukaryotischen Zellen gestaltet sein. Dies ist vorteilhaft, da häufig Zwischenschritte der Vektorkonstruktion der Einfachheithalber in Mikroorganismen durchgeführt werden. Beispielsweise können Desaturase- und/ oder Elongase-Gene in bakteriellen Zellen, Insektenzellen (unter Verwendung von Baculovirus-Expressionsvektoren), Hefe- und anderen Pilzzellen (siehe Romanos, M. A., et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8: 423-488; von den Hondel, C. A. M. J. J., et al. (1991) "Heterologous gene expression in filamentous fungi", in: More Gene Manipulations in Fungi, J. W. Bennet & L. L. Lasure, Hrsgb., S. 396-428: Academic Press: San Diego; und von den Hondel, C. A. M. J. J., & Punt, P. J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J. F., et al., Hrsgb., S. 1-28, Cambridge University Press: Cambridge), Algen (Falciatore et al., 1999, Marine Biotechnology, 1, 3: 239-251), Ciliaten der Typen: Holotrichia, Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya, Potomacus, Desaturaseudocohnilembus, Euplotes, Engelmaniella und Stylonychia, insbesondere der Gattung Stylonychia lemnae, mit Vektoren nach einem Transformationsverfahren, wie beschrieben in WO 98/01572, sowie bevorzugt in Zellen vielzelliger Pflanzen (siehe Schmidt, R. und Willmitzer, L. (1988) "High efficiency Agrobacterium tumefaciensmediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.: 583-586; Plant Molecular Biology and Biotechnology, C Press, Boca Raton, Florida, Kapitel 6/7, S. 71-119 (1993); F. F. White, B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press (1993), 128-43; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225 (und darin zitierte Literaturstellen)) exprimiert werden. Geeignete Wirtszellen werden ferner erörtert in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Der rekombinante Expressionsvektor kann alternativ, zum Beispiel unter Verwendung von T7-Promotor-Regulationssequenzen und T7-Polymerase, in vitro transkribiert und translatiert werden.

[0070] Die Expression von Proteinen in Prokaryoten erfolgt meist mit Vektoren, die konstitutive oder induzierbare Promotoren enthalten, welche die Expression von Fusions- oder nicht-Fusionsproteinen steuern. Typische Fusions-Expressionsvektoren sind u. a. pGEX (Pharmacia Biotech Inc. Smith, D. B., und Johnson, K. S. (1988) Gene 67: 31–40), pMAL (New England Biolabs, Beverly, MA) und pRIT5 (Pharmacia, Piscataway, NJ), bei denen Glutathion-S-Transferase (GST), Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird.

[0071] Beispiele für geeignete induzierbare nicht-Fusions-E. coli-Expressionsvektoren sind u. a. pTrc (Amann et al. (1988) Gene 69: 301–315) und pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60–89). Die Zielgenexpression vom pTrc-Vektor beruht auf der Transkription durch Wirts-RNA-Polymerase von einem Hybrid-trp-lac-Fusionspromotor. Die Zielgenexpression aus dem pET 11d-Vektor beruht auf der Transkription von einem T7-gn10-lac-Fusions-Promotor, die von einer coexprimierten viralen RNA-Polymerase (T7 gn1) vermittelt wird. Diese virale Polymerase wird von den Wirtsstämmen BL21 (DE3) oder HMS174 (DE3) von einem residenten λ-Prophagen bereitgestellt, der ein T7 gn1-Gen unter der Transkriptionskontrolle des lacUV 5-Promotors birgt.

[0072] Andere in prokaryotischen Organismen geeignete Vektoren sind dem Fachmann bekannt, diese Vektoren sind beispielsweise in E. coli pLG338, pACYC184, die pBR-Reihe, wie pBR322, die pUC-Reihe, wie pUC18 oder pUC19, die M113mp-Reihe, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III¹¹³-B1, \lambdagt11 or pBdCI, in Streptomyces pIJ101, pIJ364, pIJ702 oder pIJ361, in Bacillus pUB110, pC194 oder pBD214, in Corynebacterium pSA77 oder pAJ667.

[0073] Bei einer weiteren Ausführungsform ist der Expressionsvektor ein Hefe-Expressionsvektor. Beispiele für Vektoren zur Expression in der Hefe S. cerevisiae umfassen pYeDesaturasec1 (Baldari et al. (1987) Embo J. 6: 229–234), pMFa (Kurjan und Herskowitz (1982) Cell 30: 933–943), pJRY88 (Schultz et al. (1987) Gene 54: 113–123) sowie pYES2 (Invitrogen Corporation, San Diego, CA). Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie den filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: von den Hondel, C. A. M. J. J., & Punt, P. J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, J. F. Peberdy et al., Hrsgb., S. 1–28, Cambridge University Press: Cambridge, oder in: More Gene Manipulations in Fungi [J. W. Bennet & L. L. Lasure, Hrsgb., S. 396–428: Academic Press: San Diego]. Weitere geeignete Hefevektoren sind beispielsweise pAG-1, YEp6, YEp13 oder pEMBLYe23. [0074] Alternativ können die Desaturasen und/oder Elongasen in Insektenzellen unter Verwendung von Baculovirus-

Expressionsvektoren exprimiert werden. Baculovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insek-

tenzellen (z. B. Sf9-Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al. (1983) Mol. Cell Biol. 3: 2156–2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170: 31–39).

[0075] Die oben genannten Vektoren bieten nur einen kleinen Überblick über mögliche geeignete Vektoren. Weitere Plasmide sind dem Fachmann bekannt und sind zum Beispiel beschrieben in: Cloning Vectors (Hrsgb. Pouwels, P. H., et al., Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018). Weitere geeignete Expressionssysteme für prokaryotische und eukaryotische Zellen siehe in den Kapiteln 16 und 17 von Sambrook, J., Fritsch, E. F., und Maniatis, T., Molecular Cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

[0076] Bei einer weiteren Ausführungsform können des Verfahrens können die Desaturasen und/oder Elongasen in einzelligen Pflanzenzellen (wie Algen), siehe Falciatore et al., 1999, Marine Biotechnology 1 (3): 239–251 und darin zitierte Literaturangaben, und Pflanzenzellen aus höheren Pflanzen (z. B. Spermatophyten, wie Feldfrüchten) exprimiert werden. Beispiele für Pflanzen-Expressionsvektoren umfassen solche, die eingehend beschrieben sind in: Becker, D., Kemper, E., Schell, J., und Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20: 1195–1197; und Bevan, M. W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12: 8711–8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Bd. 1, Engineering and Utilization, Hrsgb.: Kung und R. Wu, Academic Press, 1993, S. 15–38.

[0077] Eine Pflanzen-Expressionskassette enthält vorzugsweise Regulationssequenzen, welche die Genexpression in Pflanzenzellen steuern können und funktionsfähig verbunden sind, so dass jede Sequenz ihre Funktion, wie Termination der Transkription, erfüllen kann, beispielsweise Polyadenylierungssignale. Bevorzugte Polyadenylierungssignale sind diejenigen, die aus Agrobacterium tumefaciens-t-DNA stammen, wie das als Octopinsynthase bekannte Gen 3 des Ti-Plasmids pTiACH5 (Gielen et al., EMBO J. 3 (1984) 835ff.) oder funktionelle Äquivalente davon, aber auch alle anderen in Pflanzen funktionell aktiven Terminatoren sind geeignet.

[0078] Da die Pflanzengenexpression sehr oft nicht auf Transkriptionsebenen beschränkt ist, enthält eine Pflanzen-Expressionskassette vorzugsweise andere funktionsfähig verbunden Sequenzen, wie Translationsenhancer, beispielsweise die Overdrive-Sequenz, welche die 5'-untranslatierte Leader-Sequenz aus Tabakmosaikvirus, die das Protein/RNA-Verhältnis erhöht, enthält (Gallie et al., 1987, Nucl. Acids Research 15: 8693–8711).

[0079] Die Pflanzengenexpression muss wie oben beschrieben funktionsfähig mit einem geeigneten Promotor verbunden sein, der die Genexpression auf rechtzeitige, zell- oder gewebespezifische Weise durchführt. Nutzbare Promotoren sind konstitutive Promotoren (Benfey et al., EMBO J. 8 (1989) 2195–2202), wie diejenigen, die von Pflanzenviren stammen, wie 35S CAMV (Franck et al., Cell 21 (1980) 285–294), 19S CaMV (siehe auch US 5352605 und WO 84/02913) oder Pflanzenpromotoren, wie der in US 4,962,028 beschriebene der kleinen Untereinheit der Rubisco.

[0080] Andere bevorzugte Sequenzen für die Verwendung zur funktionsfähigen Verbindung in Pflanzengenexpressions-Kassetten sind Targeting-Sequenzen, die zur Steuerung des Genproduktes in sein entsprechendes Zellkompartiment notwendig sind (siehe eine Übersicht in Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285–423 und darin zitierte Literaturstellen), beispielsweise in die Vakuole, den Zellkern, alle Arten von Plastiden, wie Amyloplasten, Chloroplasten, Chromoplasten, den extrazellulären Raum, die Mitochondrien, das Endoplasmatische Retikulum, Ölkörper, Peroxisomen und andere Kompartimente von Pflanzenzellen.

[0081] Die Pflanzengenexpression lässt sich auch wie oben beschrieben über einen chemisch induzierbaren Promotor erleichtern (siehe eine Übersicht in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48: 89–108). Chemisch induzierbare Promotoren eignen sich besonders, wenn gewünscht wird, dass die Genexpression auf zeitspezifische Weise erfolgt. Beispiele für solche Promotoren sind ein Salicylsäureinduzierbarer Promotor (WO 95/19443), ein Tetracyclin-induzierbarer Promotor (Gatz et al. (1992) Plant J. 2, 397–404) und ein Ethanol-induzierbarer Promotor.

[0082] Auch Promotoren, die auf biotische oder ablotische Stressbedingungen reagieren, sind geeignete Promotoren, beispielsweise der pathogeninduzierte PRP1-Gen-Promotor (Ward et al., Plant. Mol. Biol. 22 (1993) 361–366), der hitzeinduzierbare hsp80-Promotor aus Tomate (US 5,187,267), der kälteinduzierbare Alphaamylase-Promotor aus Kartoffel (WO 96/12814) oder der durch Wunden induzierbare pinII-Promotor (EP-A-0 375 091).

[0083] Es sind insbesondere solche Promotoren bevorzugt, welche die Genexpression in Geweben und Organen herbeiführen, in denen die Lipid- und Ölbiosynthese stattfindet, in Samenzellen, wie den Zellen des Endosperms und des sich entwickelnden Embryos. Geeignete Promotoren sind der Napingen-Promotor aus Raps (US 5,608,152), der USP-Promotor aus Vicia faba (Baeumlein et al., Mol Gen Genet, 1991, 225 (3): 459–67), der Oleosin-Promotor aus Arabidopsis (WO 98/45461), der Phaseolin-Promotor aus Phaseolus vulgaris (US 5,504,200), der Bee4-Promotor aus Brassica (WO 91/13980) oder der Legumin-B4-Promotor (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2): 233–9) sowie Promotoren, welche die samenspezifische Expression in Monokotyledonen-Pflanzen, wie Mais, Gerste, Weizen, Roggen, Reis usw. herbeiführen. Geeignete beachtenswerte Promotoren sind der lpt2- oder lpt1-Gen-Promotor aus Gerste (WO 95/15389 und WO 95/23230) oder die in WO 99/16890 beschriebenen (Promotoren aus dem Gersten-Hordein-Gen, dem Reis-Glutelin-Gen, dem Reis-Oryzin-Gen, dem Reis-Prolamin-Gen, dem Weizen-Gliadin-Gen, Weizen-Glutelin-Gen, dem Mais-Zein-Gen, dem Hafer-Glutelin-Gen, dem Sorghum-Kasirin-Gen, dem Roggen-Secalin-Gen).

[0084] Insbesondere kann die multiparallele Expression der im Verfahren verwendeten Desaturasen und/Elongasen allein oder in Kombination mit anderen Desaturasen oder Elongasen gewünscht sein. Die Einführung solcher Expressionskassetten kann über eine simultane Transformation mehrerer einzelner Expressionskonstrukte erfolgen oder bevorzugt durch Kombination mehrerer Expressionskassetten auf einem Konstrukt. Auch können mehrere Vektoren mit mit jeweils mehreren Expressionskassetten transformiert und auf die Wirtszelle übertragen werden.

[0085] Ebenfalls besonders geeignet sind Promotoren, welche die plastidenspezifische Expression herbeiführen, da Plastiden das Kompartiment sind, in dem die Vorläufer sowie einige Endprodukte der Lipidbiosynthese synthetisiert werden. Geeignete Promotoren, wie der virale RNA-Polymerase-Promotor, sind beschrieben in WO 95/16783 und WO 97/06250, und der clpP-Promotor aus Arabidopsis, beschrieben in WO 99/46394.

[0086] Vektor-DNA lässt sich in prokaryotische oder eukaryotische Zellen über herkömmliche Transformations- oder Transfektionstechniken einbringen. Die Begriffe "Transformation" und "Transfektion", Konjugation und Transduktion,

wie hier verwendet, sollen eine Vielzahl von im Stand der Technik bekannten Verfahren zum Einbringen fremder Nukleinsäure (z. B. DNA) in eine Wirtszelle, einschließlich Calciumphosphat- oder Calciumchlorid-Copräzipitation, DEAE-Dextran-vermittelte Transfektion, Lipofektion, natürliche Kompetenz, chemisch vermittelter Transfer, Elektroporation oder Teilchenbeschuss, umfassen. Geeignete Verfahren zur Transformation oder Transfektion von Wirtszellen, einschließlich Pflanzenzellen, lassen sich finden in Sambrook et al. (Molecular Cloning: A Laboratory Manual., 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) und anderen Labor-Handbüchern, wie Methods in Molecular Biology, 1995, Bd. 44, Agrobacterium protocols, Hrsgb: Gartland und Davey, Humana Press, Totowa, New Jersey.

[0087] Wirtszellen, die im Prinzip zum Aufnehmen der erfindungsgemäßen Nukleinsäure, des erfindungsgemäßen Genproduktes oder des erfindungsgemäßen Vektors geeignet sind, sind alle prokaryotischen oder eukaryotischen Organismen. Die vorteilhafterweise verwendeten Wirtsorganismen sind Organismen, wie Bakterien, Pilze, Hefen oder Pflanzenzellen vorzugsweise Pflanzen oder Teile davon. Pilze, Hefen oder Pflanzen werden vorzugsweise verwendet, besonders bevorzugt Pflanzen, ganz besonders bevorzugt Pflanzen, wie Ölfruchtpflanzen, die große Mengen an Lipidverbindungen enthalten, wie Raps, Nachtkerze, Hanf, Diestel, Erdnuss, Canola, Lein, Soja, Safflor, Sonnenblume, Borretsch, oder Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Baumwolle, Maniok, Pfeffer, Tagetes, Solanaceen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölplame, Kokosnuss) sowie ausdauernde Gräser und Futterfeldfrüchte. Besonders bevorzugte erfindungsgemäße Pflanzen sind Ölfruchtpflanzen, wie Soja, Erdnuß, Raps, Canola, Lein, Hanf, Nachtkerze, Sonnenblume, Safflor, Bäume (Ölpalme, Kokosnuß).

[0088] Im erfindungsgemäßen Verfahren werden vorteilhaft Nukleinsäuresequenzen verwendet, die für die Polypeptide mit einer Δ -6-Desaturaseaktivität, Δ -6-Elongaseaktivität oder Δ -5-Desaturaseaktivität codierenden, ausgewählt aus der Gruppe:

a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29 oder SEQ ID NO: 31 dargestellten Sequenz,

b) Nukleinsäuresequenzen, die aufgrund des degenerierten genetischen Codes durch Rückübersetzung der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Aminosäuresequenzen erhalten werden,

c) Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29 oder SEQ ID NO: 31 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Aminosäuresequenzen codieren und mindestens 50% Homologie auf Aminosäureebene aufweisen, ohne daß die enzymatische Wirkung der Polypeptide wesentlich reduziert ist.

[0089] Die oben genannte erfindungsgemäße Nukleinsäure stammt von Organismen, wie Tieren, Ciliaten, Pilzen, Pflanzen wie Algen oder Dinoflagellaten, die PUFAs synthetisieren können.

[0090] Der Begriff "Nukleinsäure (molekül)", wie hier verwendet, umfasst zudem die am 3'- und am 5'-Ende des kodierenden Genbereichs gelegene untranslatierte Sequenz: mindestens 500, bevorzugt 200, besonders bevorzugt 100 Nukleotide der Sequenz stromaufwärts des 5'-Endes des kodierenden Bereichs und mindestens 100, bevorzugt 50, besonders bevorzugt 20 Nukleotide der Sequenz stromabwärts des 3'-Endes des kodierenden Genbereichs. Ein "isoliertes" Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure vorliegen. Eine "isolierte" Nukleinsäure hat vorzugsweise keine Sequenzen, welche die Nukleinsäure in der genomischen DNA des Organismus, aus dem die Nukleinsäure stammt, natürlicherweise flankieren (z. B. Sequenzen, die sich an den 5'- und 3'-Enden der Nukleinsäure befinden). Bei verschiedenen Ausführungsformen kann das isolierte Desaturase- oder Elongase-Nukleinsäuremolekül zum Beispiel weniger als etwa 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0,5 kb oder 0,1 kb an Nukleotidsequenzen enthalten, die natürlicherweise das Nukleinsäuremolekül in der genomischen DNA der Zelle, aus der die Nukleinsäure stammt flankieren.

50

[0091] Die im Verfahren verwendeten Nukleinsäuremoleküle, z. B. ein Nukleinsäuremolekül mit einer Nukleotidsequenz der SEQ ID NO: 1 oder eines Teils davon, kann unter Verwendung molekularbiologischer Standardtechniken und der hier bereitgestellten Sequenzinformation isoliert werden. Auch kann mithilfe von Vergleichsalgorithmen beispielsweise eine homologe Sequenz oder homologe, konservierte Sequenzbereiche auf DNA oder Aminosäureebene identifiziert werden. Diese können als Hybridisierungssonde sowie Standard-Hybridisierungstechniken (wie z. B. beschrieben in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) zur Isolierung weiterer im Verfahren nützlicher Nukleinsäuresequenzen verwendet werden. Überdies lässt sich ein Nukleinsäuremolekül, umfassend eine vollständige Sequenz der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 oder einen Teil davon, durch Polymerasekettenreaktion isolieren, wobei Oligonukleotidprimer, die auf der Basis dieser Sequenz oder von Teilen davon, verwendet werden (z. B. kann ein Nukleinsäuremolekül, umfassend die vollständigen Sequenz oder einen Teil davon, durch Polymerasekettenreaktion unter Verwendung von Oligonukleotidprimern isoliert werden, die auf der Basis dieser gleichen Sequenz erstellt worden sind), Zum Beispiel lässt sich mRNA aus Zellen isolieren (z. B. durch das Guanidiniumthiocyanat-Extraktionsverfahren von Chirgwin et al. (1979) Biochemistry 18: 5294-5299) und cDNA mittels Reverser Transkriptase (z. B. Moloney-MLV-Reverse-Transkriptase, erhältlich von Gibco/BRL, Bethesda, MD, oder AMV-Reverse-Transskriptase, erhältlich von Seikagaku America, Inc., St. Petersburg, FL) herstellen. Synthetische Oligonukleotidprimer zur

Amplifizierung mittels Polymerasekettenreaktion lassen sich auf der Basis einer der in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 sowie der in Fig. 5a gezeigten Sequenzen oder mithilfe der in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 dargestellten Aminosäuresequenzen erstellen. Eine erfindungsgemäße Nukleinsäure kann unter Verwendung von cDNA oder alternativ von genomischer DNA als Matrize und geeigneten Oligonukleotidprimern gemäß Standard-PCR-Amplifikationstechniken amplifiziert werden. Die so amplifizierte Nukleinsäure kann in einen geeigneten Vektor kloniert werden und mittels DNA-Sequenzanalyse charakterisiert werden. Oligonukleotide, die einer Desaturase-Nukleotidsequenz entsprechen, können durch Standard-Syntheseverfahren, beispielsweise mit einem automatischen DNA-Synthesegerät, hergestellt werden.

[0092] Homologe der verwendeten Desaturase- oder Elongase-Nukleinsäuresequenzen mit der Sequenz SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 bedeutet beispielsweise allelische Varianten mit mindestens etwa 50 bis 60%, vorzugsweise mindestens etwa 60 bis 70%, stärker bevorzugt mindestens etwa 70 bis 80%, 80 bis 90% oder 90 bis 95% und noch stärker bevorzugt mindestens etwa 95%, 96%, 97%, 98%, 99% oder mehr Homologie zu einer in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 gezeigten Nukleotidsequenzen oder ihren Homologen, Derivaten oder Analoga oder Teilen davon. Weiterhin sind isolierte Nukleinsäuremoleküle einer Nukleotidsequenz, die an eine der in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 gezeigten Nukleotidsequenzen oder einen Teil davon hybridisieren, z. B. unter stringenten Bedingungen hybridisiert. Allelische Varianten umfassen insbesondere funktionelle Varianten, die sich durch Deletion, Insertion oder Substitution von Nukleotiden aus/in der in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 dargestellten Sequenz erhalten lassen, wobei aber die Absicht ist, dass die Enzymaktivität der davon herrührenden synthetisierten Proteine für die Insertion eines oder mehrerer Gene vorteilhafterweise beibehalten wird. Proteine, die noch die enzymatische Aktivität der Desaturase oder Elongase besitzen, das heißt deren Aktivität im wesentlichen nicht reduziert ist, bedeutet Proteine mit mindestens 10%, vorzugsweise 20%, besonders bevorzugt 30%, ganz besonders bevorzugt 40% der ursprünglichen Enzymaktivität, verglichen mit dem durch SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 kodierten Protein.

[0093] Homologen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 bedeuten beispielsweise auch bakterielle, Pilz- und Pflanzenhomologen, verkürzte Sequenzen, einzelsträngige DNA oder RNA der kodierenden und nicht-kodierenden DNA-Sequenz.

[0094] Homologen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 bedeutet auch Derivate, wie beispielsweise Promotorvarianten. Die Promotoren stromaufwärts der angegebenen Nukleotidsequenzen können durch einen oder mehrere Nukleotidaustausche, durch Insertion(en) und/oder Deletion(en) modifiziert werden, ohne dass jedoch die Funktionalität oder Aktivität der Promotoren gestört wird. Es ist weiterhin möglich, dass die Aktivität der Promotoren durch Modifikation ihrer Sequenz erhöht ist oder dass sie vollständig durch aktivere Promotoren, sogar aus heterologen Organismen, ersetzt werden.

[0095] Die vorgenannten Nukleinsäuren und Proteinmoleküle mit Desaturase- oder Elongaseaktivität, die am Stoffwechsel von Lipiden und Fettsäuren, PUFA-Cofaktoren und Enzymen oder am Transport lipophiler Verbindungen über Membranen beteiligt sind, werden im erfindungsgemäßen Verfahren zur Modulation der Produktion von Verbindungen der allgemeinen Formel I in transgenen Pflanzen, wie Mais, Weizen, Roggen, Hafer, Triticale, Reis, Gerste, Sojabohne, Erdnuss, Baumwolle, Linum Arten wie Öl- oder Faserlein, Brassica-Arten, wie Raps, Canola und Rübsen, Pfeffer, Sonnenblume, Borretsch, Nachtkerze und Tagetes, Solanacaen-Pflanzen, wie Kartoffel, Tabak, Aubergine und Tomate, Vicia-Arten, Erbse, Maniok, Alfalfa, Buschpflanzen (Kaffee, Kakao, Tee), Salix-Arten, Bäume (Ölpalme, Kokosnuss) und ausdauernden Gräsern und Futterfeldfrüchten, entweder direkt (z. B. wenn die Überexpression oder Optimierung eines Fettsäurebiosynthese-Proteins einen direkten Einfluss auf die Ausbeute, Produktion und/oder Effizienz der Produktion der Fettsäure aus modifizierten Organismen hat) verwenden und/oder können eine indirekt Auswirkung haben, die dennoch zu einer Steigerung der Ausbeute, Produktion und/oder Effizienz der Produktion einer gewünschten Verbindung oder einer Abnahme unerwünschter Verbindungen führt (z. B. wenn die Modulation des Stoffwechsels von Lipiden und Fettsäuren, Cofaktoren und Enzymen zu Veränderungen der Ausbeute, Produktion und/oder Effizienz der Produktion einer oder mehrerer Fettsäuren beeinflussen kann).

[0096] Die Kombination verschiedener Vorläufermoleküle und Biosyntheseenzyme führt zur Herstellung verschiedener Fettsäuremoleküle, was eine entscheidende Auswirkung auf die Zusammensetzung der Lipide hat. Da mehrfach ungesättigte Fettsäuren (= PUFAs) nicht nur einfach in Triacylglycerin sondern auch in Membranlipide eingebaut werden. [0097] Die Lipidsynthese lässt sich in zwei Abschnitte unterteilen: die Synthese von Fettsäuren und ihre Bindung an sn-Glycerin-3-Phosphat sowie die Addition oder Modifikation einer polaren Kopfgruppe. Übliche Lipide, die in Membranen verwendet werden, umfassen Phospholipide, Glycolipide, Sphingolipide und Phosphoglyceride. Die Fettsäuresynthese beginnt mit der Umwandlung von Acetyl-CoA in Malonyl-CoA durch die Acetyl-CoA-Carboxylase oder in Acetyl-ACP durch die Acetyltransacylase. Nach einer Kondensationsreaktion bilden diese beiden Produktmoleküle zusammen Acetoacetyl-ACP, das über eine Reihe von Kondensations-, Reduktions- und Dehydratisierungsreaktionen umgewandelt wird, so dass ein gesättigtes Fettsäuremolekül mit der gewünschten Kettenlänge erhalten wird. Die Produktion der ungesättigten Fettsäuren aus diesen Molekülen wird durch spezifische Desaturasen katalysiert, und zwar entweder aerob mittels molekularem Sauerstoff oder anaerob (bezüglich der Fettsäuresynthese in Mikroorganismen siehe F. C. Neidhardt et al. (1996) E. coli und Salmonella. ASM Press: Washington, D. C., S. 612–636 und darin enthaltene Literaturstellen; Lengeler et al. (Hrsgb.) (1999) Biology of Procaryotes. Thieme: Stuttgart, New York, und die enthaltene Literaturstellen)

[0098] Vorläufer für die PUFA-Biosynthese sind beispielsweise Ölsäure, Linol- und Linolensäure. Diese C_{18} -Kohlenstoff-Fettsäuren müssen auf C_{20} und C_{22} verlängert werden, damit Fettsäuren vom Eicosa- und Docosa-Kettentyp erhalten werden. Mithilfe der im Verfahren verwendeten Desaturasen wie der Δ -5- und Δ -6-Desaturase und der Δ -6-Elongase können Arachidonsäure und Eicosapentaensäure sowie verschiedene andere langkettige PUFAs erhalten, extrahiert und für verschiedene Zwecke bei Nahrungsmittel-, Futter-, Kosmetik- oder pharmazeutischen Anwendungen verwendet wer-

den. Mit den genannten Enzymen können vorzugsweise $C_{18}+C_{20}$ Fettsäuren mit mindestens zwei, drei, vier oder fünf Doppelbindungen im Fettsäuremolekül, vorzugsweise zu C_{20} -Fettsäuren mit vorteilhaft drei, vier oder fünf Doppelbindungen im Fettsäuremolekül hergestellt werden. Die Desaturierung kann vor oder nach Elongation der entsprechenden Fettsäure erfolgen. Daher führen die Produkte der Desaturiaenung kann vor oder nach Elongation der entsprechenden Elongation zu bevorzugten PUFAs mit höherem Desaturierungsgrad, einschließlich einer weiteren Elongation von C_{20} zu C_{22} -Fettsäuren, zu Fettsäuren wie γ -Linolensäure, Dihomo- γ -linolensäure, Arachidonsäure, Stearidonsäure, Eicosatetraensäure oder Eicosapentaensäure. Substrate im erfindungsgemäßen Verfahren sind zum Beispiel Linolsäure, γ -Linolensäure, γ -

[0099] Unter dem Begriff "Glycerid" wird ein mit ein, zwei oder drei Carbonsäureresten verestertes Glycerin verstanden (Mono-, Di- oder Triglycerid). Unter "Glycerid" wird auch ein Gemisch an verschiedenen Glyceriden verstanden. Das Glycerid oder das Gylceridgemisch kann weitere Zusätze, z. B. freie Fettsäuren, Antioxidantien, Proteine, Kohlenhydrate, Vitamine und/oder andere Substanzen enthalten.

15

20

55

[0100] Unter einem "Glycerid" im Sinne des erfindungsgemäßen Verfahrens werden ferner vom Glycerin abgeleitete Derivate verstanden. Dazu zählen neben den oben beschriebenen Fettsäureglyceriden auch Glycerophospholipide und Glyceroglycolipide. Bevorzugt seien hier die Glycerophospholipide wie Lecithin (Phosphatidylcholin), Cardiolipin, Phosphatidylglycerin, Phosphatidylserin und Alkylacylglycerophospholipide beispielhaft genannt.

[0101] Ferner müssen Fettsäuren anschließend an verschiedene Modifikationsorte transportiert und in das Triacylglycerin-Speicherlipid eingebaut werden. Ein weiterer wichtiger Schritt bei der Lipidsynthese ist der Transfer von Fettsäuren auf die polaren Kopfgruppen, beispielsweise durch Glycerin-Fettsäure-Acyltransferase (siehe Frentzen, 1998, Lipid, 100(4–5): 161–166).

[0102] Veröffentlichungen über die Pflanzen-Fettsäurebiosynthese, Desaturierung, den Lipidstoffwechsel und Membrantransport von fetthaltigen Verbindungen, die Betaoxidation, Fettsäuremodifikation und Cofaktoren, Triacylglycerin-Speicherung und -Assemblierung einschließlich der Literaturstellen darin siehe in den folgenden Artikeln: Kinney, 1997, Genetic Engeneering, Hrsgb.: JK Setlow, 19: 149–166; Ohlrogge und Browse, 1995, Plant Cell 7: 957–970; Shanklin und Cahoon, 1998, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 611–641; Voelker, 1996, Genetic Engeneering, Hrsgb.: JK Setlow, 18: 111–13; Gerhardt, 1992, Prog. Lipid R. 31: 397–417; Gühnemann-Schäfer & Kindl, 1995, Biochim. Biophys Acta 1256: 181–186; Kunau et al., 1995, Prog. Lipid Res. 34: 267–342; Stymne et al., 1993, in: Biochemistry and Molecular Biology of Membrane and Storage Lipids of Plants, Hrsgb.: Murata und Somerville, Rockville, American Society of Plant Physiologists, 150–158, Murphy & Ross 1998, Plant Journal. 13(1): 1–16.

[0103] Die im Verfahren hergestellten PUFAs, umfassen eine Gruppe von Molekülen, die höhere Tiere nicht mehr synthetisieren können und somit aufnehmen müssen oder die höhere Tiere nicht mehr ausreichend selbst herstellen können und somit zusätzlich aufnehmen müssen, obwohl sie leicht von anderen Organismen, wie Bakterien, synthetisiert werden, beispielsweise können Katzen Arachidonsäure nicht mehr synthetisieren.

[0104] Der Begriff "Desaturase oder Elongase" oder "Desaturase- oder Elongase-Polypeptid" im Sinne der Erfindung umfasst Proteine, die an der Desaturierung und Elongierung von Fettsäuren teilnehmen, sowie ihre Homologen, Derivaten oder Analoga. Die Begriffe Desaturase oder Elongase-Nukleinsäuresequenz(en) umfassen Nukleinsäuresequenzen, die eine Desaturase oder Elongase kodieren und bei denen ein Teil eine kodierende Region und ebenfalls entsprechende 5'- und 3'-untranslatierte Sequenzbereiche sein können. Die Begriffe Produktion oder Produktivität sind im Fachgebiet bekannt und beinhalten die Konzentration des Fermentationsproduktes (Verbindungen der Formel I), das in einer bestimmten Zeitspanne und einem bestimmten Fermentationsvolumen gebildet wird (z. B. kg Produkt pro Stunde pro Liter). Der Begriff Effizienz der Produktion umfasst die Zeit, die zur Erzielung einer bestimmten Produktionsmenge nötig ist (z. B. wie lange die Zelle zur Aufrichtung einer bestimmten Durchsatzrate einer Feinchemikalie benötigt). Der Begriff Ausbeute oder Produkt/Kohlenstoff-Ausbeute ist im Fachgebiet bekannt und umfasst die Effizienz der Umwandlung der Kohlenstoffquelle in das Produkt (d. h. die Feinchemikalie). Dies wird gewöhnlich beispielsweise ausgedrückt als kg Produkt pro kg Kohlenstoffquelle. Durch Erhöhen der Ausbeute oder Produktion der Verbindung wird die Menge der gewonnenen Moleküle oder der geeigneten gewonnenen Moleküle dieser Verbindung in einer bestimmten Kulturmenge über einen festgelegten Zeitraum erhöht. Die Begriffe Biosynthese oder Biosyntheseweg sind im Fachgebiet bekannt und umfassen die Synthese einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle aus Zwischenverbindungen, beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Die Begriffe Abbau oder Abbauweg sind im Fachgebiet bekannt und umfassen die Spaltung einer Verbindung, vorzugsweise einer organischen Verbindung, durch eine Zelle in Abbauprodukte (allgemeiner gesagt, kleinere oder weniger komplexe Moleküle) beispielsweise in einem Mehrschritt- und stark regulierten Prozess. Der Begriff Stoffwechsel ist im Fachgebiet bekannt und umfasst die Gesamtheit der biochemischen Reaktionen, die in einem Organismus stattfinden.

[0105] Der Stoffwechsel einer bestimmten Verbindung (z. B. der Stoffwechsel einer Fettsäure) umfasst dann die Gesamtheit der Biosynthese-, Modifikations- und Abbauwege dieser Verbindung in der Zelle, die diese Verbindung betreffen.

[0106] Bei einer weiteren Ausführungsform kodieren Derivate des erfindungsgemäßen Nukleinsäuremoleküls Proteine mit mindestens 50%, vorteilhaft etwa 50 bis 60%, vorzugsweise mindestens etwa 60 bis 70% und stärker bevorzugt mindestens etwa 70 bis 80%, 80 bis 90%, 90 bis 95% und am stärksten bevorzugt mindestens etwa 96%, 97%, 98%, 99% oder mehr Homologie (= Identität) zu einer vollständigen Aminosäuresequenz der SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32. Die Homologie der Aminosäuresequenz kann über den gesamten Sequenzbereich mit dem Programm PileUp (J. Mol. Evolution., 25, 351–360, 1987, Higgins et al., CABIOS, 5, 1989: 151–153) oder BEST-FIT oder GAP bestimmt (Henikoff, S. and Henikoff, J. G. (1992). Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89: 10915–10919.)

[0107] Die Erfindung umfasst zudem Nukleinsäuremoleküle, die sich von einer der in SEQ ID NO: 1, 3, 5 oder 11 gezeigten Nukleotidsequenzen (und Teilen davon) aufgrund des degenerierten genetischen Codes unterscheiden und somit die gleiche Desaturase kodieren wie diejenige, die von den in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 gezeigten Nukleotidsequenzen kodiert wird.

[0108] Zusätzlich zu den in SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 gezeigten Desaturase-Nukleotidsequenzen erkennt der Fachmann, dass DNA-Sequenzpolymorphismen, die zu Änderungen in den Aminosäuresequenzen der Desaturasen oder Elongasen führen, innerhalb einer Population existieren können. Diese genetischen Polymorphismen im Desaturase- oder Elongase-Gen können zwischen Individuen innerhalb einer Population aufgrund von natürlicher Variation existieren. Diese natürlichen Varianten bewirken üblicherweise eine Varianz von 1 bis 5% in der Nukleotidsequenz des Desaturase- oder Elongase-Gens. Sämtliche und alle dieser Nukleotidvariationen und daraus resultierende Aminosäurepolymorphismen in der Desaturase oder Elongase, die das Ergebnis natürlicher Variation sind und die funktionelle Aktivität von Desaturasen oder Elongasen nicht verändern, sollen im Umfang der Erfindere erthelten sein.

dung enthalten sein. [0109] Für das erfindungsgemäße Verfahren vorteilhafte Nukleinsäuremoleküle können auf der Grundlage ihrer Homologie zu den hier offenbarten Desaturase- oder Elongase-Nukleinsäuren unter Verwendung der Sequenzen oder eines Teils davon als Hybridisierungssonde gemäß Standard-Hybridisierungstechniken unter stringenten Hybridisierungsbedingungen isoliert werden. Dabei können beispielsweise isolierte Nukleinsäuremoleküle verwendet werden, die mindestens 15 Nukleotide lang sind und unter stringenten Bedingungen mit dem Nukleinsäuremolekülen, die eine Nukleotidsequenz der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 umfassen, hybridisieren. Es können auch Nukleinsäuren mindestens 25, 50, 100, 250 oder mehr Nukleotide verwendet werden. Der Begriff "hybridisiert unter stringenten Bedingungen", wie hier verwendet, soll Hybridisierungs- und Waschbedingungen beschreiben, unter denen Nukleotidsequenzen, die mindestens 60% homolog zueinander sind, gewöhnlich aneinander hybridisiert bleiben. Die Bedingungen sind vorzugsweise derart, dass Sequenzen, die mindestens etwa 65%, stärker bevorzugt mindestens etwa 70% und noch stärker bevorzugt mindestens etwa 75% oder stärker zueinander homolog sind, gewöhnlich aneinander hybridisiert bleiben. Diese stringenten Bedingungen sind dem Fachmann bekannt und lassen sich in Current Protocols in Molecular Biology, John Wiley & Sons, N. Y. (1989), 6.3.1-6.3.6., finden. Ein bevorzugtes, nicht einschränkendes Beispiel für stringente Hybridisierungsbedingungen sind Hybridisierungen in 6 x Natriumchlorid/Natriumcitrat (sodium chloride/sodiumcitrate = SSC) bei etwa 45°C, gefolgt von einem oder mehreren Waschschritten in 0,2 × SSC, 0,1% SDS bei 50 bis 65°C. Dem Fachmann ist bekannt, dass diese Hybridisierungsbedingungen sich je nach dem Typ der Nukleinsäure und, wenn beispielsweise organische Lösungsmittel vorliegen, hinsichtlich der Temperatur und der Konzentration des Puffers unterscheiden. Die Temperatur unterscheidet sich beispielsweise unter "Standard-Hybridisierungsbedingungen" je nach dem Typ der Nukleinsäure zwischen 42°C und 58°C in wässrigem Puffer mit einer Konzentration von 0,1 bis 5 × SSC (pH 7,2). Falls organisches Lösungsmittel im obengenannten Puffer vorliegt, zum Beispiel 50% Formamid, ist die Temperatur unter Standardbedingungen etwa 42°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:DNA-Hybride zum Beispiel 0,1 × SSC und 20°C bis 45°C, vorzugsweise zwischen 30°C und 45°C. Vorzugsweise sind die Hybridisierungsbedingungen für DNA:RNA-Hybride zum Beispiel 0,1 × SSC und 30°C bis 55°C, vorzugsweise zwischen 45°C und 55°C. Die vorstehend genannten Hybridisierungstemperaturen sind beispielsweise für eine Nukleinsäure mit etwa 100 bp (= Basenpaare) Länge und einem G + C-Gehalt von 50% in Abwesenheit von Formamid bestimmt. Der Fachmann weiß, wie die erforderlichen Hybridisierungsbedingungen anhand von Lehrbüchern, wie dem vorstehend erwähnten oder aus den folgenden Lehrbüchern Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989; Hames und Higgins (Hrsgb.) 1985, "Nucleic Acids Hybridization: A Practical Approach", IRL Press at Oxford University Press, Oxford; Brown (Hrsgb.) 1991, "Essential Molecular Biology: A Practical Approach", IRL Press at Oxford University Press, Oxford, bestimmt werden können.

[0110] Zur Bestimmung der prozentualen Homologie (= Identität) von zwei Aminosäuresequenzen (z. B. einer der Sequenzen der SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32) oder von zwei Nukleinsäuren (z. B. einer der Sequenzen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31) werden die Sequenzen zum Zweck des optimalen Vergleichs untereinander geschrieben (z. B. können Lücken in die Sequenz eines Proteins oder einer Nukleinsäure eingefügt werden, um ein optimales Alignment mit dem anderen Protein oder der anderen Nukleinsäure zu erzeugen). Die Aminosäurereste oder Nukleotide an den entsprechenden Aminosäurepositionen oder Nukleotidpositionen werden dann verglichen. Wenn eine Position in einer Sequenz durch den gleichen Aminosäurerest oder das gleiche Nukleotid wie die entsprechende Stelle in der anderen Sequenz belegt wird, dann sind die Moleküle an dieser Position homolog (d. h. Aminosäure- oder Nukleinsäure- "Homologie", wie hier verwendet, entspricht Aminosäure- oder Nukleinsäure- "Identität"). Die prozentuale Homologie zwischen den beiden Sequenzen ist eine Funktion der Anzahl an identischen Positionen, die den Sequenzen gemeinsam sind (d. h. % Homologie = Anzahl der identischen Positionen/Ge-

samtanzahl der Positionen × 100). Die Begriffe Homologie und Identität sind damit als Synonym anzusehen. [0111] Ein isoliertes Nukleinsäuremolekül, das eine Desaturase oder Elongase kodiert, die zu einer Proteinsequenz der SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 homolog ist, kann durch Einbringen einer oder mehrerer Nukleotidsubstitutionen, -additionen oder -deletionen in eine Nukleotidsequenz der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 erzeugt werden, so dass eine oder mehrere Aminosäuresubstitutionen, -additionen oder -deletionen in das kodierte Protein eingebracht werden. Mutationen können in eine der Sequenzen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 durch Standardtechniken, wie stellen-spezifische Mutagenese und PCR-vermittelte Mutagenese, eingebracht werden. Vorzugsweise werden konservative Aminosäuresubstitutionen an einer oder mehreren der vorhergesagten nicht-essentiellen Aminosäureresten hergestellt. Bei einer "konservativen Aminosäuresubstitution" wird der Aminosäurerest gegen einen Aminosäurerest mit einer ähnlichen Seitenkette ausgetauscht. Im Fachgebiet sind Familien von Aminosäureresten mit ähnlichen Seitenketten definiert worden. Diese Familien umfassen Aminosäuren mit basischen Seitenketten (z. B. Lysin, Arginin, Histidin), sauren Seitenketten (z. B. Asparaginsäure, Glutaminsäure), ungeladenen polaren Seitenketten (z. B. Glycin, Asparagin, Glutamin, Serin, Threonin, Tyrosin, Cystein), unpolaren Seitenketten, (z. B. Alanin, Valin, Leucin, Isoleucin, Prolin, Phenylalanin, Methionin, Tryp-

tophan), beta-verzweigten Scitenketten (z. B. Threonin, Valin, Isoleucin) und aromatischen Seitenketten (z. B. Tyrosin, Phenylalanin, Tryptophan, Histidin). Ein vorhergesagter nicht-essentieller Aminosäurerest in einer Desaturase oder Elongase wird somit vorzugsweise durch einen anderen Aminosäurerest aus der gleichen Seitenkettenfamilie ausgetauscht. Alternativ können bei einer anderen Ausführungsform die Mutationen zufallsgemäß über die gesamte oder einen Teil der Desaturase-kodierenden Sequenz eingebracht werden, z. B. durch Sättigungsmutagenese, und die resultierenden Mutanten können nach der hier beschriebenen Desaturase-Aktivität durchmustert werden, um Mutanten zu identifizieren, die Desaturase- oder Elongase-Aktivität beibehalten. Nach der Mutagenese einer der Sequenzen der SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 kann das kodierte Protein rekombinant exprimiert werden, und die Aktivität des Proteins kann z. B. unter Verwendung der hier beschriebenen Tests bestimmt werden.

[0112] Diese Erfindung wird durch die nachstehenden Beispiele weiter veranschaulicht, die nicht als beschränkend aufgefaßt werden sollten. Der Inhalt sämtlicher in dieser Patentanmeldung zitierten Literaturstellen, Patentanmeldungen, Patente und veröffentlichten Patentanmeldungen ist hier durch Bezugnahme aufgenommen.

Beispielteil

15

50

60

65

Beispiel 1

Allgemeine Verfahren

a) Allgemeine Klonierungsverfahren

[0113] Klonierungsverfahren, wie beispielsweise Restriktionsspaltungen, Agarosegelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrocellulose- und Nylonmembranen, Verbindung von DNA-Fragmenten, Transformation von Escherichia coli- und Hefe-Zellen, Anzucht von Bakterien und Sequenzanalyse rekombinanter DNA, wurden durchgeführt wie beschrieben in Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) oder Kaiser, Michaelis und Mitchell (1994) "Methods in Yeast Genetics" (Cold Spring Harbor Laboratory Press: ISBN 0-87969-451-3).

b) Chemikalien

[0114] Die verwendeten Chemikalien wurden, wenn im Text nicht anders angegeben, in p. A.-Qualität von den Firmen Fluka (Neu-Ulm), Merck (Darmstadt), Roth (Karlsruhe), Serva (Heidelberg) und Sigma (Deisenhofen) bezogen. Lösungen wurden unter Verwendung von reinem pyrogenfreiem Wasser, im nachstehenden Text als H₂O bezeichnet, aus einer Milli-Q-Wassersystem-Wasserreinigungsanlage (Millipore, Eschborn) hergestellt. Restriktionsendonukleasen, DNA-modifizierende Enzyme und molekularbiologische Kits wurden bezogen von den Firmen AGS (Heidelberg), Amersham (Braunschweig), Biometra (Göttingen), Boehringer (Mannheim), Genomed (Bad Oeynhausen), New England Biolabs (Schwalbach/Taunus), Novagen (Madison, Wisconsin, USA), Perkin-Elmer (Weiterstadt), Pharmacia (Freiburg), Qiagen (Hilden) und Stratagene (Amsterdam, Niederlande). Wenn nicht anders angegeben, wurden sie nach den Anweisungen des Herstellers verwendet.

Beispiel 2

Isolierung von Gesamt-RNA und poly(A)+RNA aus Pflanzen

[0115] Die Isolierung von Gesamt-RNA aus Pflanzen wie Lein und Raps etc. erfolgt nach einer bei Logemann et al beschriebenen Methode (1987, Anal. Biochem. 163, 21) isoliert. Aus Moos kann die Gesamt-RNA Protonema-Gewebe nach dem GTC-Verfahren (Reski et al., 1994, Mol. Gen. Genet., 244: 352–359) gewonnen werden.

Beispiel 3

Transformation von Agrobacterium

[0116] Die Agrobacterium-vermittelte Pflanzentransformation kann zum Beispiel unter Verwendung des GV3101-(pMP90-) (Koncz und Schell, Mol. Gen. Genet. 204 (1986) 383–396) oder LBA4404- (Clontech) oder C58C1 pGV2260 (Deblaere et al 1984, Nucl. Acids Res. 13, 4777–4788) Agrobacterium tumefaciens-Stamms durchgeführt werden. Die Transformation kann durch Standard-Transformationstechniken durchgeführt werden (ebenfalls Deblaere et al. 1984).

Beispiel 4

Pflanzentransformation

[0117] Die Agrobacterium-vermittelte Pflanzentransformation kann unter Verwendung von Standard-Transformations- und Regenerationstechniken durchgeführt werden (Gelvin, Stanton B., Schilperoort, Robert A., Plant Molecular Biology Manual, 2. Aufl., Dordrecht: Kluwer Academic Publ., 1995, in Sect., Ringbuc Zentrale Signatur: BT11-P ISBN 0-7923-2731-4; Glick, Bernard R., Thompson, John E., Methods in Plant Molecular Biology and Biotechnology, Boca Raton: CRC Press, 1993, 360 S., ISBN 0-8493-5164-2).

[0118] Beispielsweise kann Raps mittels Kotyledonen- oder Hypokotyltransformation transformiert werden (Moloney et al., Plant Cell 8 (1989) 238-242; De Block et al., Plant Physiol. 91 (1989) 694-701). Die Verwendung von Antibiotika

für die Agrobacterium- und Pflanzenselektion hängt von dem für die Transformation verwendeten binären Vektor und Agrobacterium-Stamm ab. Die Rapsselektion wird gewöhnlich unter Verwendung von Kanamycin als selektierbarem Pflanzenmarker durchgeführt.

[0119] Der Agrobacterium-vermittelte Gentransfer in Lein (Linum usitatissimum) lässt sich unter Verwendung von beispielsweise einer von Mlynarova et al. (1994) Plant Cell Report 13: 282–285 beschriebenen Technik durchführen.

[0120] Die Transformation von Soja kann unter Verwendung von beispielsweise einer in EP-A-0 0424 047 (Pioneer Hi-Bred International) oder in EP-A-0 0397 687, US 5,376,543, US 5,169,770 (University Toledo) beschriebenen Technik durchgeführt werden.

[0121] Die Pflanzentransformation unter Verwendung von Teilchenbeschuss, Polyethylenglycol-vermittelter DNAMufnahme oder über die Siliziumcarbonatfaser-Technik ist beispielsweise bes chrieben von Freeling und Walbot "The
maize handbook" (1993) ISBN 3-540-97826-7, Springer Verlag New York).

Beispiel 5

Plasmide für die Pflanzentransformation

[0122] Zur Pflanzentransformation können binäre Vektoren, wie pBinAR (Höfgen und Willmitzer, Plant Science 66 (1990) 221–230) oder pGPTV (Becker et al 1992, Plant Mol. Biol. 20: 1195–1197) verwendet werden. Die Konstruktion der binären Vektoren kann durch Ligation der cDNA in Sense- oder Antisense-Orientierung in T-DNA erfolgen. 5' der cDNA aktiviert ein Pflanzenpromotor die Transkription der cDNA. Eine Polyadenylierungssequenz befindet sich 3' von der cDNA. Die binären Vektoren können unterschiedliche Markergene tragen. Insbesondere kann das nptII-Markergen codierend für Kanamycin-Resistenz vermittelt durch Neomycinphosphotransferase gegen die herbizidresistente Form eines Acetolactat Synthasegens (AHAS oder ALS) ausgetauscht werden. Das ALS-Gen ist beschrieben in Ott et al., J. Mol. Biol. 1996, 263: 359–360. Der v-ATPase-c1-Promotor kann in das Plasmid pBin19 oder pGPTV kloniert werden und durch Klonierung vor das ALS Codierregion für die Markergenexpression genutzt werden. Der genannte Promotor entspricht einem 1153 Basenpaarfragment aus beta-Vulgaris (Plant Mol Biol, 1999, 39: 463–475). Dabei können sowohl Sulphonylharnstoffe als auch Imidazolinone wie Imazethapyr oder Sulphonylharnstoffe als Antimetaboliten zur Selektion verwendet werden.

[0123] Die gewebespezifische Expression lässt sich unter Verwendung eines gewebespezifischen Promotors erzielen. Beispielsweise kann die samenspezifische Expression erreicht werden, indem der DC3- oder der LeB4- oder der USP-Promotor oder der Phaseolin-Promotor 5' der cDNA einkloniert wird. Auch jedes andere samenspezifische Promotorelement wie z. B. der Napin- oder Arcelin Promotor Goossens et al. 1999, Plant Phys. 120(4): 1095–1103 und Gerhardt et al. 2000, Biochimica et Biophysica Acta 1490(1–2): 87–98) kann verwendet werden. Zur konstitutiven Expression in der ganzen Pflanzen lässt sich der CaMV-35S-Promotor oder ein v-ATPase C1 Promotor verwenden.

[0124] Insbesondere lassen sich Gene codierend für Desaturasen und Elongasen durch Konstruktion mehrerer Expressionskassetten hintereinander in einen binären Vektor klonieren, um den Stoffwechselweg in Pflanzen nachzubilden.

[0125] Innerhalb einer Expressionskassette kann das zu exprimierende Protein unter Verwendung eines Signalpeptids, beispielsweise für Plastiden, Mitochondrien oder das Endoplasmatische Retikulum, in ein zelluläres Kompartiment dirigiert werden (Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285–423). Das Signalpeptid wird 5' im Leseraster mit der cDNA einkloniert, um die subzelluläre Lokalisierung des Fusionsprotein zu erreichen.

[0126] Beispiele für Multiexpressionskassetten sind im folgenden gegeben.

I.) Promotor-Terminator-Kassetten

- 45 [0127] Expressionskassetten bestehen aus wenigstens zwei funktionellen Einheiten wie einem Promotor und einem Terminator. Zwischen Promotor und Terminator können weitere gewünschte Gensequenzen wie Targetting-Sequenzen, Codierregionen von Genen oder Teilen davon etc. eingefügt werden. Zum Aufbau von Expressionskassetten werden Promotoren und Terminatoren (USP Promotor: Baeumlein et al., Mol Gen Genet, 1991, 225 (3): 459-67); OCS Terminator: Gielen et al. EMBO J. 3 (1984) 835ff.) mithilfe der Polymerasekettenreaktion isoliert und mit flankierenden Sequenzen nach Wahl auf Basis von synthetischen Oligonukleotiden maßgeschneidert.
 - [0128] Folgende Oligonukleotide können beispielsweise verwendet werden:
 - USP1 vorne: CCGGAATTCGGCGCGCCGAGCTCCTCGAGCAAATTTACACATTGCCA
 - USP2 vorne: CCGGAATTCGGCGCGCCGAGCTCCTCGAGCAAATTTACACATTGCCA
 - USP3 vorne: CCGGAATTCGGCGCGCCGAGCTCCTCGAGCAAATTTACACATTGCCA
- 55 USP1 hinten: AAAACTGCAGGCGGCCGCCCACCGCGGTGGGCTGGCTATGAAGAAATT
 - USP2 hinten: CGCGGATCCGCTGGCTATGAAGAAATT

- USP3 hinten: TCCCCCGGGATCGATGCCGGCAGATCTGCTGGCTATGAAGAAATT
- OCS1 vorne: AAAACTGCAGTCTAGAAGGCCTCCTGCTTTAATGAGATAT
- OCS2 vorne: CGCGGATCCGATATCGGGCCCGCTAGCGTTAACCCTGCTTTAATGAGATAT
- OCS3 vorne: TCCCCCGGGCCATGGCCTGCTTTAATGAGATAT
 - OCS1 hinten: CCCAAGCTTGGCGCCCGAGCTCGAATTCGTCGACGGACAATCAGTAAATTGA
 - OCS2 hinten: CCCAAGCTTGGCGCGCCGAGCTCGAATTCGTCGACGGACAATCAGTAAATTGA
 - OCS3 hinten: CCCAAGCTTGGCGCCCGAGCTCGACGGACAATCAGTAAATTGA
 - [0129] Die Methoden sind dem Fachmann auf dem Gebiet bekannt und sind allgemein literaturbekannt.
- 65 [0130] In einem ersten Schritt werden ein Promotor und ein Terminator über PCR amplifiziert. Dann wird der Terminator in ein Empfängerplasmid kloniert und in einem zweiten Schritt der Promotor vor den Terminator inseriert. Mithin erhält man eine Expressionskassette auf einem Trägerplasmid. Auf Basis des Plamides pUC19 werden die Plasmide pUT1, 2 und 3 erstellt.

[0131] Die Konstrukte sind erfindungsgemäß in SEQ ID NO: 33, 34 bis 42 definiert. Sie enthalten den USP-Promotor und den OCS Terminator. Auf Basis dieser Plasmide wird das Konstrukt pUT12 erstellt, indem pUT1 mittels Sall/Scal geschnitten wird und pUT2 mittels Xhol/Scal geschnitten wird. Die die Expressionskassetten enthaltenden Fragmente werden ligiert und in E. coli XLI blue MRF transformiert. Es wird nach Vereinzelung ampicillinresistenter Kolonien DNA präpariert und per Restriktionsanalyse solche Klone identifiziert, die zwei Expressionskassetten enthalten. Die Xhol/Sall Ligation kompatibler Enden hat dabei die beiden Schnittstellen XhoI und Sall zwischen den Expressionskassetten eleminiert. Es resultiert das Plasmid pUT12, das in SEQ ID NO: 36 definiert ist. Anschließend wird pUT12 wiederum mittels Sal/Scal geschnitten und pUT3 mittels Xhol/Scal geschnitten. Die die Expressionskassetten enthaltenden Fragmente werden ligiert und in E. coli XLI blue MRF transformiert. Es wird nach Vereinzelung ampicillinresistenter Kolonien DNA präpariert und per Restriktionsanalyse solche Klone identifiziert, die drei Expressionskassetten enthalten. Auf diese Weise wird ein Set von Multiexpressionskassetten geschaffen, dass für die Insertion gewünschter DNA genutzt werden kann und in Tabelle 1 beschrieben wird und zudem noch weitere Expressionskassetten aufnehmen kann. [0132] Diese enthalten folgende Elemente:

7	٦.	h	-1	1.	1

PUC19-	Schnittstellen vor dem	Multiple	Schnittstellen hinter dem	•
Derivat	USP Promotor	Klonierungs-Schnittstellen	OCS-Terminator	
PUTI	EcoRI/AscI/ SacI/XhoI	BstXI/NotI/ PstI/XbaI/StuI	Sall/EcoRI/ SacI/AscI/ HindIII	. 20
PUT2	EcoRI/AscI/ SacI/XhoI	BamHI/EcoRV/ ApaI/NheI/ HpaI	Sall/EcoRI/ SacI/AscI/ HindIII	
PUT3	EcoRI/AscI/ SacI/XhoI	BglII/Nael/ ClaI/Smal/Ncol	Sall/Sacl/ Ascl/HindIII	,
PUT12 Doppel- expressions- kasette	EcoRI/AscI/ SacI/XhoI	BstXI/NotI/ PstI/XbaI/StuI Und BamHI/EcoRV/ ApaI/NheI/ HpaI	Sall/EcoRI/ Sacl/Ascl/ HindIII	25
PUT123 Tripel— expressions— kassette	EcoRI/AscI/ SacI/XhoI	BstXI/Notl/ PstI/XbaI/StuI und BamHI/EcoRV/ ApaI/NheI/ HpaI und BglII/NaeI/ ClaI/SmaI/NcoI	Sall/Sacl/Ascl/HindIII	30

[0133] Weiterhin lassen sich wie beschrieben und wie in Tabelle 2 näher spezifiziert weitere Multiexpressionskassetten mithilfe des

- i) USP-Promotors oder mithilfe des
- ii) 700 Basenpaare 3'-Fragmentes des LeB4-Promotors oder mithilfe des
- iii) DC3-Promotors erzeugen und für samenspezifische Genexpression einsetzen.

[0134] Der DC3-Promotor ist beschrieben bei Thomas, Plant Cell 1996, 263: 359–368 und besteht lediglich aus der Region –117 bis +26 weshalb er mithin einer der kleinsten bekannten samenspezifischen Promotoren darstellt. Die Expressionskassetten können mehrfach den selben Promotor enthalten oder aber über drei verschiedene Promotoren aufgebaut werden.

[0135] Dem Sequenzprotokoll SEQ ID NO: 43 bis 49 sind die für die Pflanzentransformation verwendeten Vektoren sowie die Sequenzen der inserierten Gene/Proteine zu entnehmen.

[0136] Vorteilhaft verwendete Polylinker- bzw. Polylinker-Terminator-Polylinker sind den Sequenzen SEQ ID NO: 50 bis 52 zu entnehmen.

55.

60

Tabelle 2

Multiple Expressionskassetten

5	Plasmidname des	Schnittstellen vor dem	Multiple	Schnittstellen hinter
	pUC19-Derivates	jeweiligen Promotor	Klonierungs-Schnittstellen	dem OCS-Terminator
	PUT1 (pUC19 mit	EcoRI/AscI/SacI/XhoI	(1) BstXI/NotI/PstI/ XbaI/StuI	Sall/EcoRl/Sacl/Ascl/
10	USP-OCS1)			HindIII
2.5	PDCT		(2) BamHI/EcoRV/ ApaI/NheI/	Sall/EcoRl/Sacl/Ascl/
	(pUC19 mit	EcoRI/AscI/SacI/XhoI	HpaI	HindIII
	DC3-OCS) PleBT			
15	(pUC19-mit	EcoRI/AscI/SacI/XhoI	(3) BglII/Nael/ Clal/Smal/Ncol	Sall/Sacl/Ascl/HindIII
	LeB4(700)-OCS)			
:	PUD12	,	(1) BstXI/NotI/ PstI/XbaI/StuI	C-17/CD7/C1/A7/
20	(pUC 19 mit mit	EcoRI/AscI/SacI/XhoI	und	Sall/EcoRI/SacI/AscI/ HindIII
	USP-OCS1 und		(2) BamHI/EcoRV/ ApaI/NheI/	Hindiii
	mit DC3-OCS)		Hpal	
	PUDL123		(1) BstXI/Notl/PstI/XbaI/StuI und	Sall/Sacl/Ascl/HindIII
25	Triple expression cassette		(2) BamHI/ (EcoRV*)/ApaI/NheI/	
	(pUC19 mit	EcoRI/AscI/SacI/XhoI	HpaI und	
	USP/DC3 und		(3) BglII/NaeI/ ClaI/SmaI/NcoI	
30	LeB4-700)			

- * EcoRV Schnittstelle schneidet im 700 Basenpaarfragment des LeB4 Promotors (LeB4-700)
 [0137] Analog lassen sich weitere Promotoren für Multigenkonstrukte erzeugen insbesondere unter Verwendung des
 - a) 2,7 kB Fragmentes des LeB4-Promotors oder mithilfe des
 - b) Phaseolin-Promotors oder mithilfe des
 - c) konstitutiven v-ATPase c1-Promotors.
- [0138] Es kann insbesondere wünschenswert sein, weitere besonders geeignete Promotoren zum Aufbau samenspezifischer Multiexpressionskassetten wie z. B. den Napin-Promotor oder den Arcelin-5 Promotor zu verwenden.
 - II) Erstellung von Expressionskonstrukten, die Promotor, Terminator und gewünschte Gensequenz zur PUFA Genexpression in pflanzlichen Expressionskassetten enthalten
- 45 [0139] In pUT123 wird zunächst über BstXI und XbaI die Δ-6-Elongase Pp_PSE1 in die erste Kassette inseriert. Dann wird die Δ-6-Desaturase aus Moos (Pp_des6) über BamHI/NaeI in die zweite Kassette inseriert und schließlich die Δ-5-Desaturase aus Phaeodactylum (Pt_des5) über BglII/NcoI in die dritte Kassette inseriert. Das Dreifachkonstrukt erhält den Namen pARA1.
- [0140] Unter Berücksichtigung sequenzspezifischer Restriktionsschnittstellen können weitere Expressionskassetten gemäß Tabelle 3 mit der Bezeichnung pARA2, pARA3 und pARA4 erstellt werden.

Tabelle 3

Kombinationen von Desaturasen und Elongasen

ഹ

55

35

Ĭ	Gen Plasmid	Δ-6-Desaturase	Δ-5-Desaturase	Δ-6-Elongase
	pARA1	Pp_des6	Pt_des5	Pp_PSE1
	pARA2	Pt_des6	Pt_des5	Pp_PSE1
) -	pARA3	Pt_des6	Ce_des5	Pp_PSE1
	PARA4	Ce_des6	Ce_des5	Ce_PSE1

Pp = Physcomitrella patens, Pt = Phaeodactylum tricornutum

Pp_PSE1 entspricht der Sequenz aus SEQ ID NO: 9.

PSE = PUFA spezifische Δ -6-Elongase

Ce_des5 = Δ-5-Desaturase aus Caenorhabditis elegans (Genbank Acc. Nr. AF 078796)

Ce_des6 = Δ-6-Desaturase aus Caenorhabditis elegans (Genbank Acc. Nr. AF 031477, Basen 11–1342)

Ce_PSE1 = Δ -6-Elongase aus Caenorhabditis elegans (Genbank Acc. Nr. AF 244356, Basen 1-867) [0141] Auch weitere Desaturasen oder Elongasegensequenzen können in Expressionskassetten beschriebener Art inseriert werden wie z. B. Genbank Acc. Nr. AF 231981, NM 013402, AF 206662, AF 268031, AF 226273, AF 110510 oder AF 110509.

iii)Transfer von Expressionskassetten in Vektoren zur Transformation von Agrobakterium tumefaciens und zur Transformation von Pflanzen

[0142] Die so erstellten Konstrukte werden mittels AscI in den binären Vektor pGPTV inseriert. Die multiple Klonierungssequenz wird zu diesem Zweck um eine AscI Schnittstelle erweitert. Zu diesem Zweck wird der Polylinker als zwei doppelsträngige Oligonukleotide neu synthetisiert, wobei eine zusätzliche AscI DNA Sequenz eingefügt wird. Das Oligonukleotid wird mittels EcoRI und HindIII in den Vektor pGPTV inseriert. Die notwendigen Kloniertechniken sind dem Fachmann bekannt und können einfach wie in Beispiel 1 beschrieben nachgelesen werden.

Beispiel 6

10

55

Untersuchung der Expression eines rekombinanten Genproduktes in einem transformierten Organismus

[0143] Die Aktivität eines rekombinanten Genproduktes im transformierten Wirtsorganismus kann auf der Transkriptions- und/oder der Translationsebene gemessen werden.

[0144] Ein geeignetes Verfahren zur Bestimmung der Menge an Transkription des Gens (ein Hinweis auf die Menge an RNA, die für die Translation des Genproduktes zur Verfügung steht) ist die Durchführung eines Northern-Blots wie unten ausgeführt (als Bezugsstelle siehe Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York, oder den oben erwähnten Beispielteil), wobei ein Primer, der so gestaltet ist, dass er an das Gen von Interesse bindet, mit einer nachweisbaren Markierung (gewöhnlich radioaktiv oder chemilumineszent) markiert wird, so dass, wenn die Gesamt-RNA einer Kultur des Organismus extrahiert, auf einem Gel aufgetrennt, auf eine stabile Matrix transferiert und mit dieser Sonde inkubiert wird, die Bindung und das Ausmaß der Bindung der Sonde das Vorliegen und auch die Menge der mRNA für dieses Gen anzeigt. Diese Information zeigt den Grad der Transkription des transformierten Gens an. Zelluläre Gesamt-RNA kann aus Zellen, Geweben oder Organen mit mehreren Verfahren, die alle im Fachgebiet bekannt sind, wie zum Beispiel das von Bormann, E. R., et al. (1992) Mol. Microbiol. 6: 317–326 beschriebene, präpariert werden.

Northern-Hybridisierung

[0145] Für die RNA-Hybridisierung wurden 20 μg Gesamt-RNA oder 1 μg poly(A)*-RNA mittels Gelelektrophorese in Agarosegelen mit einer Stärke von 1,25% unter Verwendung von Formaldehyd, wie beschrieben in Amasino (1986, Anal. Biochem. 152, 304) aufgetrennt, mittels Kapillaranziehung unter Verwendung von 10 × SSC auf positiv geladene Nylonmembranen (Hybond N+, Amersham, Braunschweig) übertragen, mittels UV-Licht immobilisiert und 3 Stunden bei 68°C unter Verwendung von Hybridisierungspuffer (10% Dextransulfat Gew./Vol., 1 M NaCl, 1% SDS, 100 mg Heringssperma-DNA) vorhybridisiert. Die Markierung der DNA-Sonde mit dem Highprime DNA labeling-Kit (Roche, Mannheim, Deutschland) erfolgte während der Vorhybridisierung unter Verwendung von alpha-³²P-dCTP (Amersham, 40 Braunschweig, Deutschland). Die Hybridisierung wurde nach Zugabe der markierten DNA-Sonde im gleichen Puffer bei 68°C über Nacht durchgeführt. Die Waschschritte wurden zweimal für 15 min unter Verwendung von 2 × SSC und zweimal für 30 min unter Verwendung von 1 × SSC, 1% SDS, bei 68°C durchgeführt. Die Exposition der verschlossenen Filter wurde bei -70°C für einen Zeitraum von 1 bis 14 T durchgeführt.

[0146] Zur Untersuchung des Vorliegens oder der relativen Menge an von dieser mRNA translatiertem Protein können Standardtechniken, wie ein Western-Blot, eingesetzt werden (siehe beispielsweise Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York). Bei diesem Verfahren werden die zellulären Gesamt-Proteine extrahiert, mittels Gelelektrophorese aufgetrennt, auf eine Matrix, wie Nitrozellulose, übertragen und mit einer Sonde, wie einem Antikörper, der spezifisch an das gewünschte Protein bindet, inkubiert. Diese Sonde ist gewöhnlich mit einer chemilumineszenten oder kolorimetrischen Markierung versehen, die sich leicht nachweisen lässt. Das Vorliegen und die Menge der beobachteten Markierung zeigt das Vorliegen und die Menge des gewünschten, in der Zelle vorliegenden mutierten Proteins an.

Beispiel 7

Analyse der Auswirkung der rekombinanten Proteine auf die Produktion des gewünschten Produktes

[0147] Die Auswirkung der genetischen Modifikation in Pflanzen, Pilzen, Algen, Ciliaten oder auf die Produktion einer gewünschten Verbindung (wie einer Fettsäure) kann bestimmt werden, indem die modifizierten Mikroorganismen oder die modifizierte Pflanze unter geeigneten Bedingungen (wie den vorstehend beschriebenen) gezüchtet werden und das Medium und/oder die zellulären Komponenten auf die erhöhte Produktion des gewünschten Produktes (d. h. von Lipiden oder einer Fettsäure) untersucht wird. Diese Analysetechniken sind dem Fachmann bekannt und umfassen Spektroskopie, Dünnschichtehromatographie, Färbeverfahren verschiedener Art, enzymatische und mikrobiologische Verfahren sowie analytische Chromatographie, wie Hochleistungs-Flüssigkeitschromatographie (siehe beispielsweise Ullman, Encyclopedia of Industrial Chemistry, Bd. A2, S. 89–90 und S. 443–613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17; Rehm et al. (1993) Biotechnology, Bd. 3, Kapitel III: "Product recovery and purification", S. 469–714, VCH: Weinheim; Belter, P. A., et al. (1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Ken-

nedy, J. F., und Cabral, J. M. S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J. A., und Henry, J. D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Bd. B3; Kapitel 11, S. 1–27, VCH: Weinheim; und Dechow, F. J. (1989) Separation and purification techniques in biotechnology, Noves Publications).

[0148] Neben den oben erwähnten Verfahren werden Pflanzenlipide aus Pflanzenmaterial wie von Cahoon et al. (1999) Proc. Natl. Acad. Sci. USA 96 (22): 12935–12940, und Browse et al. (1986) Analytic Biochemistry 152: 141–145, beschrieben extrahiert. Die qualitative und quantitative Lipid- oder Fettsäureanalyse ist beschrieben bei Christie, William W., Advances in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide – Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 S. (Oily Press Lipid Library; 1); "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952)–16 (1977) u. d. T.: Progress in the Chemistry of Fats and Other Lipids CODEN.

[0149] Zusätzlich zur Messung des Endproduktes der Fermentation ist es auch möglich, andere Komponenten der Stoffwechselwege zu analysieren, die zur Produktion der gewünschten Verbindung verwendet werden, wie Zwischenund Nebenprodukte, um die Gesamteffizienz der Produktion der Verbindung zu bestimmen. Die Analyseverfahren umfassen Messungen der Nährstoffmengen im Medium (z. B. Zucker, Kohlenwasserstoffe, Stickstoffquellen, Phosphat und andere Ionen), Messungen der Biomassezusammensetzung und des Wachstums, Analyse der Produktion üblicher Metandere Ionen), Messungen und Messungen von Gasen, die während der Fermentation erzeugt werden. Standardverbolite von Biosynthesewegen und Messungen von Gasen, die während der Fermentation erzeugt werden. Standardverbahren für diese Messungen sind in Applied Microbial Physiology; A Practical Approach, P. M. Rhodes und P. F. Stanbury, Hrsgb., IRL Press, S. 103–129; 131–163 und 165–192 (ISBN: 0199635773) und darin angegebenen Literaturstellen beschrieben.

[0150] Ein Beispiel ist die Analyse von Fettsäuren (Abkürzungen: FAME, Fettsäuremethylester; GC-MS, Gas-Flüssig-keitschromatographie-Massenspektrometrie; TAG, Triacylglycerin; TLC, Dünnschichtchromatographie).

[0151] Der unzweideutige Nachweis für das Vorliegen von Fettsäureprodukten kann mittels Analyse rekombinanter Organismen nach Standard-Analyseverfahren erhalten werden: GC, GC-MS oder TLC, wie verschiedentlich beschrieben von Christie und den Literaturstellen darin (1997, in: Advances on Lipid Methodology, Vierte Aufl.: Christie, Oily Press, Dundee, 119–169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren, Lipide 33: 343–353).

[0152] Das zu analysierende Material kann durch Ultraschallbehandlung, Mahlen in der Glasmühle, flüssigen Stickstoff und Mahlen oder über andere anwendbare Verfahren aufgebrochen werden. Das Material muss nach dem Aufbrechen zentrifugiert werden. Das Sediment wird in Aqua dest. resuspendiert, 10 min bei 100°C erhitzt, auf Eis abgekühlt und erneut zentrifugiert, gefolgt von Extraktion in 0,5 M Schwefelsäure in Methanol mit 2% Dimethoxypropan für 1 Std. bei 90°C, was zu hydrolysierten Öl- und Lipidverbindungen führt, die transmethylierte Lipide ergeben. Diese Fettsäuremethylester werden in Petrolether extrahiert und schließlich einer GC-Analyse unter Verwendung einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0,32 mm) bei einem Temperaturgradienten zwischen 170°C und 240°C für 20 min und 5 min bei 240°C unterworfen. Die Identität der erhaltenen Fettsäuremethylester muss unter Verwendung von Standards, die aus kommerziellen Quellen erhältlich sind (d. h. Sigma), definiert werden.

[0153] Bei Fettsäuren, für die keine Standards verfügbar sind, muss die Identität über Derivatisierung und anschließende GC-MS-Analyse gezeigt werden. Beispielsweise muss die Lokalisierung von Fettsäuren mit Dreifachbindung über GC-MS nach Derivatisierung mit 4,4-Dimethoxyoxazolin-Derivaten (Christie, 1998, siehe oben) gezeigt werden.

Expressionskonstrukte in heterologen mikrobiellen Systemen

40

55

Stämme, Wachstumsbedingungen und Plasmide

[0154] Der Escherichia coli-Stamm XL1 Blue MRF kan (Stratagene) wurde zur Subklonierung der neuen Desaturase pPDesaturase1 aus Physcomitrella patens verwendet. Für die funktionelle Expression dieses Gens verwendeten wir den Saccharomyces cerevisiae-Stamm INVSc 1 (Invitrogen Co.). E. coli wurde in Luria-Bertini-Brühe (LB, Duchefa, Haarlem, Niederlande) bei 37°C kultiviert. Wenn nötig, wurde Ampicillin (100 mg/Liter) zugegeben, und 1,5% Agar (Gew./Vol.) wurde für feste LB-Medien hinzugefügt. S. cerevisiae wurde bei 30°C entweder in YPG-Medium oder in komplettem Minimalmedium ohne Uracil (CMdum; siehe in: Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., Struhl, K., Albright, L. B., Coen, D. M., und Varki, A. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York) mit entweder 2% (Gew./Vol.) Raffinose oder Glucose kultiviert. Für feste Medien wurden 2% (Gew./Vol.) BactoTM-Agar (Difco) hinzugefügt. Die zur Klonierung und Expression verwendeten Plasmide sind pUC18 (Pharmacia) und pYES2 (Invitrogen Co.).

Beispiel 8

Klonierung und Expression PUFA-spezifischer Desaturasen und Elongaen

[0155] Für die Expression in Pflanzen wurden cDNA Klone aus SeQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31. so modifiziert, dass lediglich die Codierregion mittels Polymerase Kettenreaktion unter Zuhilfenahme zweier Oligonukleotide amplifiziert werden. Dabei wurde darauf geachtet, dass eine Konsensusequenz vor dem Startcodon zur effizienten Translation eingehalten wurde. Entweder wurde hierzu die Basenfolge ATA oder AAA gewählt und vor das ATG in die Sequenz eingefügt (Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell 44, 283–292). Vor diesem Konsensustriplett wurde zusätzlich eine Restriktionsschnittstelle eingeführt, die kompatibel sein muss zur Schnittstelle des Zielvektors, in den das Fragment kloniert werden soll und mit dessen Hilfe die Genexpression in Mikroorganismen oder Pflanzen erfolgen soll.

[0156] Die PCR-Reaktion wurde mit Plasmid-DNA als Matrize in einem Thermocycler (Biometra) mit der Pfu-DNA-(Stratagene)Polymerase und dem folgenden Temperaturprogramm durchgeführt: 3 min bei 96°C, gefolgt von 30 Zyklen

mit 30 s bei 96°C, 30 s bei 55°C und 2 min bei 72°C, 1 Zyklus mit 10 min bei 72°C und Stop bei 4°C. Die Anlagerungstemperatur wurde ie nach gewählten Oligonukleotiden variiert. Pro Kilobasenpaare DNA ist von einer Synthesezeit von etwa einer Minute auszugehen. Weitere Parameter, die Einfluss auf die PCR haben wie z. B. Mg-Ionen, Salz, DNA Polymerase etc., sind dem Fachmann auf dem Gebiet geläufig und können nach Bedarf variiert werden.

[0157] Die korrekte Größe des amplifizierten DNA-Fragments wurde mittels Agarose-TBE-Gelelektrophorese bestätigt. Die amplifizierte DNA wurde aus dem Gel mit dem QIAquick-Gelextraktionskit (QIAGEN) extrahiert und in die Smal-Restriktionsstelle des dephosphorylierten Vektors pUC18 unter Verwendung des Sure Clone Ligations Kit (Pharmacia) ligiert, wobei die pUC-Derivate erhalten wurden. Nach der Transformation von E. coli XL1 Blue MRF kan wurde eine DNA-Minipräparation (Riggs, M. G., & McLachlan, A. (1986) A simplified screening procedure for large numbers of plasmid minipreparation. BioTechniques 4, 310-313) an ampicillinresistenten Transformanden durchgeführt, und positive Klone mittels BamHI-Restriktionsanalyse identifiziert. Die Sequenz des klonierten PCR-Produktes wurde mittels Resequenzierung unter Verwendung des ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer, Weiterstadt) bestätigt.

Fettsäureanalyse

Die Gesamt-Fettsäuren wurden aus Pflanzensamen extrahiert und mittels Gaschromatographie analysiert. Die Samen wurden mit 1% Natriummethanolat in Methoanol aufgenommen und 20 min bei RT inkubiert. Anschließend wird mit NaCl Lösung gewaschen und die FAME in 0,3 ml Heptan aufgenommen. Die Proben wurden auf einer ZEBRON-ZB-Wax-Kapillarsäule (30 m, 0,32 mm, 0,25 mikro m; Phenomenex) in einem Hewlett Packard-6850-Gaschromatograph mit einem Flammenionisationsdetektor aufgetrennt. Die Ofentemperatur wurde von 70°C (1 min halten) bis 200°C mit einer Rate von 20°C/min, dann auf 250°C (5 min halten) mit einer Rate von 5°C/min und schließlich auf 260°C mit einer Rate von 5°C/min programmiert. Stickstoff wurde als Trägergas verwendet (4,5 ml/min bei 70°C). Die Fettsäuren wurden durch Vergleich mit Retentionszeiten von FAME-Standards (SIGMA) identifiziert.

Expressionsanalyse

[0160] Ergebnis der Expression einer Phaeodactylum tricornutum Δ-6-Acyl Lipid Desaturase, einer Phaeodactylum tricornutum Δ-5-Acyl Lipid Desaturase und der delta-6 spezifischen Elongase in Tabaksamen:

[0161] Fig. 2 Fettsäureprofil von transgenen Tabaksamen. Die Pflanzen wurden mit einer 3-fach Expressionskassette transformiert, die unter der Kontrolle des USP Promotors die delta-6-, die delta-5- und die Physcomitrella patens PpPSE1 exprimiert (pARA2). Es wurden 100 transgene Tabak und Leinpflanzen hergestellt, von denen ca. 20% Arachidonsäure im Samen synthetisierten.

[0162] Fig. 3 Tabak Wildtypkontrolle.

Beispiel 9

Reinigung des gewünschten Produktes aus transformierten Organismen

[0163] Die Gewinnung des gewünschten Produktes aus Pflanzenmaterial oder Pilzen, Algen, Ciliaten, tierischen Zellen oder aus dem Überstand der vorstehend beschriebenen Kulturen kann durch verschiedene, im Fachgebiet bekannte Verfahren erfolgen. Wird das gewünschte Produkt nicht aus den Zellen sezerniert, können die Zellen aus der Kultur durch langsame Zentrifugation geerntet werden, die Zellen können durch Standardtechniken, wie mechanische Kraft oder Ultraschallbehandlung, lysiert werden. Organe von Pflanzen können mechanisch von anderem Gewebe oder anderen Organen getrennt werden. Nach der Homogenisation werden die Zelltrümmer durch Zentrifugation entfernt, und die Überstandsfraktion, welche die löslichen Proteine enthält, wird zur weiteren Reinigung der gewünschten Verbindung aufbewahrt. Wird das Produkt aus gewünschten Zellen sezerniert, werden die Zellen durch langsame Zentrifugation aus der Kultur entfernt, und die Überstandsfraktion wird zur weiteren Reinigung aufbewahrt.

[0164] Die Überstandsfraktion aus jedem Reinigungsverfahren wird einer Chromatographie mit einem geeigneten Harz unterworfen, wobei das gewünschte Molekül entweder auf dem Chromatographieharz zurückgehalten wird, viele Verunreinigungen in der Probe jedoch nicht, oder die Verunreinigungen auf dem Harz zurückbleiben, die Probe hingegen nicht. Diese Chromatographieschritte können wenn nötig wiederholt werden, wobei die gleichen oder andere Chromatographieharze verwendet werden. Der Fachinann ist in der Auswahl geeigneter Chromatographieharze und ihrer wirksamsten Anwendung für ein bestimmtes zu reinigendes Molekül bewandert. Das gereinigte Produkt kann durch Filtration oder Ultrafiltration konzentriert und bei einer Temperatur aufbewahrt werden, bei der die Stabilität des Produktes maximal ist.

[0165] Im Fachgebiet ist ein breites Spektrum an Reinigungsverfahren bekannt, und das vorstehende Reinigungsverfahren soll nicht beschränkend sein. Diese Reinigungsverfahren sind zum Beispiel beschrieben in Bailey, J. E., & Ollis, D. F., Biochemical Engineering Fundamentals, McGraw-Hill: New York (1986).

[0166] Die Identität und Reinheit der isolierten Verbindungen kann durch Standardtechniken des Fachgebiets bestimmt werden. Dazu gehören Hochleistungs-Flüssigkeitschromatographie (HPLC), spektroskopische Verfahren, Färbeverfahren, Dünnschichtchromatographie, insbesondere Dünnschichtchromatographie und Flammenionisationsdetektion (IA-TROSCAN, Iatron, Tokio, Japan), NIRS, Enzymtest oder mikrobiologisch. Eine Übersicht über diese Analyseverfahren siehe in: Patek et al. (1994) Appl. Environ. Microbiol. 60: 133-140; Malakhova et al. (1996) Biotekhnologiya 11: 27-32; und Schmidt et al. (1998) Bioprocess Engineer. 19: 67-70. Ulmann's Encyclopedia of Industrial Chemistry (1996) Bd. A27, VCH: Weinheim, S. 89-90, S. 521-540, S. 540-547, S. 559-566, 575-581 und S. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A., et al. (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17.

23

15

10

35

Äquivalente

[0167] Der Fachmann erkennt oder kann viele Äquivalente der hier beschriebenen erfindungsgemäßen spezifischen Ausführungsformen feststellen, indem er lediglich Routineexperimente verwendet. Diese Äquivalente sollen von den Patentansprüchen umfasst sein.

SEQUENZPROTOKOLL

<110>	BASF	Plan	t Sc	ienc	e Gml	ьн											
<120>	Verf	ahren	zur	Her	stel	lung	meh	rfac	h un	gesä	ttig	ter					. 5
	Fett	säure	n in	Pf1	anzei	n.											
•												•			•	. •	10
<130>	2002	/271													٠		10
<140>	2002	_271															
<141>	2002	-04-2	6					-									. 15
-																	
<160>	64															•	
								•			•		,		•		20
<170>	Pate	ntIn	Vers	. 2.	0												
<210>	1															*	25
<211>	1687																
<212>	DNA																
<213>	Bora	go of	fici	nali	s			•		-		•					30
<220>									-	•					٠		
<221>	CDS							-									35
<222>	(42)	(13	88)			-		*								-	
<223>	Delt	a-6-D	esatı	uras	е				•			-					
											•						40
<400>	1														•	•	
tatcto	gccta	ccct	ccca	aa ga	agagt	tagto	c at	tttt	catc	a at	tg g	ct g	ct ca	aa at	c 56		
										Me	et A	la A	la G	ln Il	e :		45
								•			1				5		
aag aa	aa ta	c att	acc	tca	gat	gaa	ctc	aag	aac	cac	gat	aaa	CCC	gga	104		50
Lys Ly	ys Ty	r Ile	Thr	Ser	Asp.	Glu	Leu	Lys	Asn	His	Asp	Lys	Pro	Gly	,		
			10		*			15	-			,	- 20				
												•					55
gat ct	ta tg	g atc	tcg	att	caa	ggg	aaa	gcc	tat	gat	gtt	tcg	gat	tgg	152		
Asp Le	eu Tr	p Ile	Ser	Ile	Gln	Gly	Lys	Ala	Tyr	Asp	Val	Ser	Asp	Trp			
		25					30	•				35					60
		-											•				
gtg aa	aa ga	c cat	cca	ggt	ggc	agc	ttt	ccc	ttg	aag	agt	ctt	gct	ggt	200		
																•	65

	Val	Lys	Asp 40	His	Pro	Gly	Gly	Ser 45	Phe	Pro	Leu	Lys	Ser 50	Leu	Ala	Gly	
5																	
	caa	gag	gta	act	gat	gca	ttt	gtt	gca	ttc	cat	cct	gcc	tct	aca	tgg	248
	Gln	Glu	Val	Thr	Asp	Ala	Phe	Val	Ala	Phe	His	Pro	Ala	Ser	Thr	Trp	
10		55					60					65					
	aag	aat	ctt	gat	aag	ttt	ttc	act	ggg	tat	tat	ctt	aaa	gat	tac	tct	296
15	Lys	Asn	Leu	Asp	Lys	Phe	Phe	Thr	Gly	Tyr	Tyr	Leu	Lys	Asp	Tyr	Ser	
	70					75					80					85	
20	att	tct	gag	gtt	tct	aaa	gat	tat	agg	aag	ctt	gtg	ttt	gag	ttt	tct	344
20	_							Tyr									
					90	-	-	-	_	95		•			100		
25	aaa	atα	aat.	tta	tat	gac	aaa	aaa	aat	cat	att	atg	ttt	gca	act	ttg	392
								Lys									
•	L , 0		017	105	-1-		-3-	-2-	110					115			
30				103													
	tac	+++	ata	aca.	ato	cta	+++	gct	atα	aat	att	tat	aaa	att	tta	ttt	440
								Ala									
35	Cys	FIIC	120	AIG	Mec	Бей	1110	125	1100	001	Vul	112	130	•			
			120					123					200				
	tat	~=~	aat	at t	tta	ata	cat	ttg	+++	tot	aaa	tat	tta	ato	aaa	ttt	488
40	_			_	-			Leu									
	Cys	135		Vai.	пеа	Vai	140	Deu	1110	501	013	145		1100	017		
		133					140					113					
45	ctt	taa	att	C3.C	agt	aat	taa	att	aaa	cat	rat	act	aaa	cat	tat	ato	536
								Ile									331
		ırp	TIE	GIII	Ser	155	пр	116	GLY	1115	160		GLY	*****	-7-	165	
50	150					133										+03	
	~+ n	~+~		~a+	t 0.2	200	att	aat	224		ato	aat	att	+++	act	aca	584
								Asn									50.
55	Vai	vaı	Ser	ASD	170		Leu	ASII	гуу	175	Mec	Gly	116	rne	180	ALG	
					170					1/3					100		
		.		.	~~~				~~+	+~~	+~~		taa	220	cat	aat	632
60								att									05.
	Asn	. cys	Leu			TTE	ser	Ile			TIP	- Lys	TTD	.195		-VOII	
				185	1				190					・エクコ	•		
65			·		~			2~~	- c++	~	. +s+	<i>α=</i> -		~~+	++=	caa	68
	gca	cat	. cac	att	gcc	: cgt	aat	agc		yaa	, cat	. yac		. yaı	LLA	caa	00

Ala	His		Ile	Ala	Cys	Asn	Ser	Leu	Glu	Tyr	Asp	Pro	Asp	Leu	Gln		
		200					205					210					
																	5
•			ttc													728	
Tyr		Pro	Phe	Leu	Val			Ser	Lys	Phe		СТУ	Ser	Leu	Thr		
	215					220					225					•	10
+-+	an t	++~		~~~	÷												
•	•		tat Tyr										•			776	
230	nrs	rne	IYL	GIU	235	ALG	Lea	Tim	·	240	Ser	Leu	ser	Arg	245	•	15
230					233					240		-			243		
ttt	qta	agt	tat	caa	cat	taa	aca	ttt	tac	cct	att	ato	tat	act	gct	824	20
			Tyr										-				20
			-	250		•			255		:		4	260			
												-					25
agg	ctc	aat	atg	tat	gta	caa	tct	ctc	ata	atg	ttg	ttg	acc	aag	aga	872	
Arg	Leu	Asn	Met	Tyr	Val	Gln	Ser	Leu	Ile	Met	Leu	Leu	Thr	Lys	Arg		
			265					270					275			•	30
aat	gtg	tcc	tat	cga	gct	cat	gaa	ctc	ttg	gga	tgc	cta	gtg	ttc	tcg	920	
Asn	Val	Ser	Tyr	Arg	Ala	His	Glu	Leu	Leu	Gly	Cys	Leu	Val	Phe	Ser	• • • • • • •	35
		280	•				285					290	-				
																y	
att	tgg	tac	ccg	ttg	ctt	gţţ	tct	tgt	ttg	cct	aat	tgg	ggt	gaa	aga	968	40
Ile		Tyr	Pro	Leu	Leu		Ser	Суѕ	Leu	Pro	Asn	Trp	Gly	Glu	Arg		•
	295					300					305						
																1016	45
			gtt													1016	
	Mec	PHE	Val	TIE		Sei	Leu	ser	vai		GIY	Met	GIII	GIII			
310					315	•		•		320					325		50
cag	ttc	tcc	ttg	aac	cac	ttc	tct	t.ca	agt.	at.t.	tat	att	gga	ааσ	cct	1064	
			Leu												:	2002	
				330	-				335		•		-	340			55
aaa	ggg	aat	aat	tgg	ttt	gag	aaa	caa	acg	gat	ggg	aca	ctt	gac	att	1112	
Lys	Gly	Asn	Asn	Trp	Phe	Glu	Lys	Gln	Thr	Asp	Gly	Thr	Leu	Asp	Ile		60
			345					350					355				
									:								65
tct	tgt	cct	cct	tgg	atg	gat	tgg	ttt	cat	ggt	gga	ttg	caa	ttc	caa	1160	65

	Ser	Cys	360	Pro	Trp	Met	Asp	Trp 365	Phe	His	Gly	Gly	Leu 370	Gln	Phe	Gln	
5									,								
										cct							1208
	Ile		His	His	Leu	Phe		Lys	Met	Pro	Arg		Asn	Leu	Arg	Lys	
10		375					380					385					
	ato	+ c.c	666	tac	at a	250	~~~									•	1056
										aag Lys							1256
15	390	DCI	110	171	Val	395	GIU	Deu	Cys	nys	400	піз	ASII	Leu	PIO	405	
											400					400	
20	aat	tat	gca	tct	ttc	tcc	aag	gcc	aat	gaa	atg	aca	ctc	aga	aca	ttg	1304
										Glu						_	
					410					415					420		
25																	
	agg	aac	aca	gca	ttg	cag	gct	agg	gat	ata	acc	aag	ccg	ctc	ccg	aag	1352
	Arg	Asn	Thr	Ala	Leu	Gln	Ala	Arg	Asp	Ile	Thr	Lys	Pro	Leu	Pro	Lys	
30				425					430					435			
										cat		taa	aatt	acco	tt		1398
35	ASII	ьеи	440	тъ	GIU	Ala	ren	н1S	rnr	His	GIĀ						
			110					447									
40	agtt	cato	gta a	ataat	ttga	ıg at	tato	rtato	: tcc	tato	ıttt	gtgt	ctto	ıtc t	taat	tctac	1458
40										-		_					
	ttgt	tgga	agt c	atto	gcaac	t to	rtctt	ttat	ggt	ttat	tag	atgt	tttt	ta a	tata	tttta	1518
45																	
	gagg	rtttt	gc t	ttca	itctc	c at	tatt	gato	aat	aagg	ragt	tgca	ıtatt	gt c	aatt	gttgt	1578
50	gctc	aata	itc t	gata	itttt	g ga	atgt	actt	tgt	acca	ctg	tgtt	ttca	igt t	gaag	ctcat	1638
	atat	actt	ct a	taga	cttt	·	+===	taat	· +=+	gaaa		2222					1687
	gege	·ucc		caga		.g cc	cauc	regge	. cac	.yaaa	aaa	aaaa	laaaa	ıa	•		100/
55																	
	<210	> 2															
.	<211	> 44	8														
50	<212	> PF	T														
	<213	> Bc	rago	off	icin	alis	;										
65	-400	. ^															

Met	Ala	Ala	Gln		Lys	Lys	Tyr	Ile		Ser	Asp	Glu	Leu	Lys	Asn		
1				5					10					15			_
His	Asp	Lys	Pro 20	Gly	Asp	Leu	Trp	Ile 25	Ser	Ile	Gln	Gly	Lys 30	Ala	Tyr		5
													30				10
Asp	Val	Ser		Trp	Val	Lys	Asp	His	Pro	Gly	Gly	Ser 45	Phe	Pro	Leu		
																	15
Lys	Ser 50	Leu	Ala	Gly	Gln	Glu 55	Val	Thr	Asp	Ala	Phe 60	Val	Ala	Phe	His		
															÷		20
Pro 65	Ala	Ser	Thr	Trp	Lys 70	Asn	Leu	Asp	Lys	Phe 75	Phe	Thr	Gly	Tyr	Tyr 80		
_	_				_	•		_									25
Leu	Lys	Asp	Tyr	Ser 85	Val	Ser	Glu	Val	Ser 90	Lys	Asp	Tyr	Arg	Lys 95	Leu		
																	30
Val	Phe	Glu	Phe 100	Ser	Lys	Met	Gly		Tyr	Asp	Lys	Lys		His	Ile		
			100					105					110			•	25
Met	Phe	Ala	Thr	Leu	Cys	Phe	Ile	Ala	Met	Leu	Phe	Ala	Met	Ser	Val	•	35
		115	•				120					125					
ጥኒታዮ	Glv	v∍1	Lau	Phe	Cys	Glu	Clv	17a l	T eu	17a 1	uic.	Tou	Pho	Cor	Clv	•	40
-71	130	Vai	Deu	1110	Cys	135	GLY	vai	Deu	Val	140	Dea	rne.	261	GIY		
																	45
	Leu	Met	Gly	Phe	Leu		Ile	Gln	Ser		Trp	Ile	Gly	His			
145					150					155					160		
Ala	Gly	His	Tyr	Met	Val	Val	Ser	Asp	Ser	Arg	Leu	Asn	Lys	Phe	Met		50
				165					170		•			175			
					,												55
СТĀ	Ile	Phe	Ala 180	Ala	Asn	Cys	Leu	Ser 185	Gly	Ile	Ser	Ile	Gly 190	Trp	Trp	·	
			100					103		-			130				
Lys	Trp	Asn	His	Asn	Ala	His	His	Ile	Ala	Cys	Asn	Ser	Leu	Glu	Tyr		60
		195					200					205					
Asp	Pro	Asp	Leu	G] n	Tvr	Tle	Pro	Phe	Len	Va1	Val	Ser	Ser	Ivs	Phe	•	65

		210						215						220						
5	Phe 225	Gly	Se	r L	eu '	Thr	Ser 230	His	Phe	e Ty	yr (Slu	Lys 235	Arg	Le	u I	hr	Phe	As 24	sp 10
10	Ser	Leu	Se	r A		Phe 245	Phe	Val	Sei	r T		31n 250	His	Trp	Th	r I	Phe	туr 255	Pı	: 0
15	Ile	Met	: Су		Ala 260	Ala	Arg	Leu	Ası		et ' 65	Tyr	Val	Gln	Se		Leu 270	Ile	Me	et
20	Leu	Lev	1 Th		Lys	Arg	Asn	Val	Se 28		yr	Arg	Ala	His	G] 28		Leu	Leu	G	ly
25	Cys	Let 290		al	Phe	Ser	Ile	295		r I	?ro	Leu	Lev	300		er	Cys	Leu	P	ro
30	Asr 305		ρG:	ly	Glu	Arg	310	e Met	: Ph	ie 7	Val	Ile	Ala 31		c L	eu	Ser	Va]	L T	hr 20
35	Gly	y Me	t G	ln	Gln	Va]		n Phe	e S€	er :	Leu	Asr 330		s Ph	e S	er	Ser	33	r 1 5	/al
40	ту	r Va	.1 G	ly	Lys 340		o Ly	s Gl	y As		Asn 345	Trj	o Ph	e G1	u L	ys	Glr 350	n Th	r 1	Asp
45	G1	y Th		eu 355	Asp	ıl.	e Se	r Cy		ro 60	Pro	Tr	р Ме	t As		rp 865		e Hi	s (Gly
50	Gl		eu (Gln	Phe	e Gl	n Il	e Gl		is	His	Le	u Ph	ne Pr 38		Lys	Me	t Pr	·o [Arg
55			sn 1	Leu	Ar	g Ly		Le Se	er F	ro	Туг	. Va		le G: 95	lu :	Leu	і Су	s L)	/S	Lys 400
6		is A	sn	Leu	ı Pr	о Ту 40		sn Tj	yr P	la	Sei		ne So 10	er L	ys	Ala	a As	n G	lu 15	Met
ć	T]	hr L	eu	Arg	g Th 42		eu A	rg A	sn '	Thr	Al 42		eu G	ln A	la	Ar	g As 4:	sp I 30	le	Thr

Lys Pro Leu Pro Lys Asn Leu Val Trp Glu Ala Leu His Thr His Gly 435 440 445

																•		
<21	0> 3																	
<21	1> 1	192							÷								•	10
<21	2 > D	NA																
<21	3 > P	hysc	omit:	rell	a pa	tens								•				
																•	*	15
<22	0>																	
<22	1> C	DS										•						
<222	2> (58).	. (93	0)											÷			20
<22	3> D	elta	-6-E	long	ase											÷		
			•															-
<400)> 3				٠								٠		•			25
ctg	cttc	gtc	tcat	cttg	gg gg	gtgt	gatt	c ggg	gagt	gggt	tgag	gttg	gtg q	gagc	gca	57		
atg	gag	gtc	gtg	gag	aga	ttc	tac	ggt	gag	ttg	gat	ggg	aag	gtc	tcg	105		30
Met	Glu	Val	Val	Glu	Arg	Phe	Tyr	Gly	Glu	Leu	Asp	Gly	Lys	Val	Ser			
1				5					10					15				
																		35
						ctg										153		
Gln	Gly	Val		Ala	Leu	Leu	Gly	Ser	Phe	Gly	Val	Glu	Leu	Thr	Asp			
			20					25					30					40
						ttg										201		
Thr	Pro		Thr	rys	СТĀ	Leu		Leu	Val	Asp	Ser			Pro	Ile			45
		35					40				•	45						-
						tac										249		50
vai		GTĀ	vai	Ser	vaı	Tyr 55		Thr	ше	vaı		GIA	GIĀ	Leu	Leu			
	50					23					60							
+~~	2+2	334	~~~	200	~~ t	a+~	222			~~~						207		55
						ctg Leu					_				_	297		
65	116	Буз	AIG	Arg	70	beu	цуз	FIO	ALG	75	Ser	GIU	PIO	FILE	80			
					, ,					, ,								60
ctc	caa	gct	tta	gta	ctt	gtg	cac	aac	cta	ttc	tat	ttt	aca	ctc	agt	345		
						Val										010		
											- 1 -				-			65

					85					90					95			
											act	att	acc	t.aa	caa	ta	c	393
5	ctg	tat	atg	tgc	gtg	ggc	atc	gct	tat	cag	310	710	acc	مصي	Ara	Tv:	r	
	Leu	Tyr	Met	Cys	Val	. Gly	Ile	Ala	Tyr	Gln	Ala	TIE	Thr	110	mg	-3.		
				100					105					110				
10																	_	441
Į.	tct	ctc	tgg	ggc	aat	gca	tac	aat	cct	aaa	cat	aaa	gag	atg	gcg	at	_	441
	Ser	Leu	Trp	Gly	' Ası	n Ala	Tyr	Asn	Pro	Lys	His	Lys	Glu	Met	Ala	II	е	
			115					120					125					
15																		
	ata	ata	tac	tto	ı tt	c tac	atg	tct	aa	g ta	gtg	g gaa	tto	atg	gat	ac	C	489
	T and	172	יייים.	. T.e1	ı Ph	e Tv:	r Met	; Sei	c Ly:	s Ту	r Vai	l Gli	ı Phe	Met	Ası	Tr	ır	
20	Lea			. 10.			135					140)					
		130	,					-										
					- 45	~ 22	מ כמנ	- ag	c ac	c aq	g ca	a ata	a ago	tto	cto	c ca	ac	537
25	gtt	: at	c atg	g at	a cu	.y aa	g cg\	~ Co	r ጥክ	r Ar	a Gl	n Il	e Sei	. Phe	e Le	u H	is	
	Va]	II	e Me	t II	е ге			y se			15	5				1	60	
	145	5				15	U					_						
30											+ +~	a ta	ים מכי	t ati	t ac	t c	at	585
	gt	t ta	t ca	t ca	t to	ct to	a at	t to	C CT	.c at	.L Ly	g cg ⊸ m~	g gc	= T1	- Al	аН	is	
	٧a	1 ту	r Hi	s Hi	s S	er Se	er Il	e Se	r Le			Ъп	p Al	a	17	5		
35					1	65				1	70				'	-		
3.															a +c		raa	633
	ca	c go	t co	t g	gc g	gt g	aa go	a ta	at to	gg t	ct go	g go	t ct	g aa	- 0	.a <u>u</u>	, y u.	
	Hi	s Al	a Pr	co G	ly G	ly G	lu Al	la T	yr T	rp S	er A.	la Al	la Le	u As	n se	er c	2 T Å	
4	0				80					85				19	0			
																		601
	at	a ca	at gi	tt c	tc a	tg t	at g	cg t	at t	ac t	tc t	tg g	ct go	cc to	ic c	tt (cga	681
4	S Va	al H	is V	al L	eu N	1et T	yr A	la T	yr I	yr F	he L	eu A	1a A	la Cy	7s L	eu :	Arg	
	•			95					00				2	05				
:	50	~+ a	ac c	ca a	act 1	tta a	aa a	at a	ag t	ac o	tt t	tt t	gg g	gc a	gg t	ac	ttg	729
	a	gi a	gc c	T	we '	Len I	vs A	sn L	vs :	cyr 1	eu E	he T	rp G	ly A	rg T	уr	Leu	
	5			101	Jys .			15	-	_		2	20					
	55	2	10				_											
						-t- :		-acr 1	-++	ato	ctor a	aac t	ta g	tg c	ag ç	gct	tac	777
	а	.ca c	aa t	tc (caa	atg `	nha 1	-ay '	Dhe '		Len	Asn I	Leu V	al G	ıln 2	la	Tyr	
	60		3ln F	he (31n			1111	116			235					240	
	~ 2	25					230											
											~~ ~	C22	taa (eta a	atc .	aaq	att	825
	t	ac	gac a	atg	aaa	acg	aat	gcg	cca -	cat	Des a		tgg (Tle	Lvs	Ile	•
	65	yr i	Asp 1	Met	Lys	Thr	Asn	Ala	Pro	ıyr	PI.O	GTII	Trp :	ucu .				

245 250 255	
ttg ttc tac tac atg atc tcg ttg ctg ttt ctt ttc ggc aat ttt tac	873
Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr	
260 265 270	
	. 1
gta caa aaa tac atc aaa ccc tct gac gga aag caa aag gga gct aaa	921
Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys	
275 280 285	1.
act gag tga gctgtatcaa gccatagaaa ctctattatg ttagaacctg	970
Thr Glu	2
290	
aagttggtgc tttcttatct ccacttatct tttaagcagc atcagttttg aaatgatgtg	1030 ₂
tgggcgtggt ctgcaagtag tcatcaatat aatcggcctg agcacttcag atggattgtt	1090
	3
agaacatgag taaaagcggt tattacggtg tttattttgt accaaatcac cgcacgggtg	1150
aattgaaata tttcagattt gatcaatttc atctgaaaaa aa	1192 3
<210> 4	-4
<211> 290	
<212> PRT	
<213> Physcomitrella patens	4
<400> 4	
Met Glu Val Val Glu Arg Phe Tyr Gly Glu Leu Asp Gly Lys Val Ser	5
1 5 10 15	••
Gln Gly Val Asn Ala Leu Leu Gly Ser Phe Gly Val Glu Leu Thr Asp	5
20 25 30	•
Thr Pro Thr Thr Lys Gly Leu Pro Leu Val Asp Ser Pro Thr Pro Ile	6
35 40 45	

Val Leu Gly Val Ser Val Tyr Leu Thr Ile Val Ile Gly Gly Leu Leu

Trp Ile Lys Ala Arg Asp Leu Lys Pro Arg Ala Ser Glu Pro Phe Leu	
65 70 75 80	
Leu Gln Ala Leu Val Leu Val His Asn Leu Phe Cys Phe Ala Leu Ser	
85 90 95	
Leu Tyr Met Cys Val Gly Ile Ala Tyr Gln Ala Ile Thr Trp Arg Tyr	
105	
100	
15 Pro Lys His Lys Glu Met Ala Ile	!
Ser Leu Trp Gly Asn Ala Tyr Asn Pro Lys His Lys Glu Met Ala Ile	
115	
20 The Met Asp Thi	-
Leu Val Tyr Leu Phe Tyr Met Ser Lys Tyr Val Glu Fhe Het Hop	
130 135 140	
25 Ser Phe Leu His	_
Val The Met Ile Leu Lys Arg Ser Thr Arg Gin The Ser The	> ^
145 150 155 16	U
Val Tyr His His Ser Ser Ile Ser Leu Ile Trp Trp Ala Ile Ala Hi	S
165 170 175	
His Ala Pro Gly Gly Glu Ala Tyr Trp Ser Ala Ala Leu Asn Ser Gl	У
180 185 190	
100	
Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu A	g
200 205	
195	
Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr L	eu
220	
210 215 220	
50 St. Ch. Pho Met Leu Asn Leu Val Gln Ala T	yr
Thr Gln Phe Gln Met Phe Gln Phe Met Bed 1881	40
225 230 235 2	
- m- reu Tlo Tyre 1	le:
Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys I	
245 250 255	
	Th
Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe	тĀI
260 265 270	

Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys

		275	,				280					285					
Thr	Glu	L	-														5
	290																
		٠												•			10
																	10
<21	0> 5																
	1> 1																1.5
	2> D				·. ·	•		-	•		: .						
			stoc	hutr	ium												
	J- 1			ily CI	± can												
<22	0>																20
	1> C	DS				-											
	•		. (85	8)													25
			-6-E		ase												. 23
				9													٠,
<40	0> 5	-						-	÷								30
		gca	cgag	agcg	ca c	aaaa	cada	o ac	ctica	acca	ca	atσ .	ato (ααα	cca	54	30
			•			J_ J	22	•	5	33		Met 1					
												1					35
							·			•							33
ctc	gac	agg	tac	agg	gcg	ctg	gcg	gag	ctc	gcc	gcg	agg	tac	acc.	agc	102	
			Tyr														40
5					10					15		J	-		20		
	-			•												•	
tcg	gcg	gcc	ttc	aag	tgg	caa	gtc	acg	tac	gac	gcc	aag	gac	agc	ttc	150	45
			Phe													•	43
				25					30					35			
	•		•														
gtc	ggg	ccc	ctg	gga	atc	cgg	gag	ccg	ctc	ggg	ctc	ctg	gtg	ggc	tcc	198	50
Val	Gly	Pro	Leu	Gly	Ile	Arg	Glu	Pro	Leu	Gly	Leu	Leu	Val	Gly	Ser		
			40				4	45					50	•			
											• •						55
gtg	gtc	ctc	tac	ctg	agc	ctg	ctg	gcc	gtg	gtc	tac	gcg	ctg	cgg	aac	246	
Val	Val	Leu	Tyr	Leu	Ser	Leu	Leu	Ala	Val	Val	Tyr	Ala	Leu	Arg	Asn		60
		55					60				•	65				•	60
												•		•			
tac	ctt	ggc	ggc	ctc	atg	gcg	ctc	cgc	agc	gtg	cat	aac	ctc	ggg	ctc	294	
Tyr	Leu	Gly	Glv	Leu	Met	Ala	Leu	Ara	Ser	Val	His	Asn	Leu	Glv	Leu		65

		70					75					80					
5	tgc	ctc	ttc	tcg	ggc	gcc	gtg	tgg	atc	tac	acg	agc	tac	ctc	atg	atc	342
,		Leu															
	85					90					95					100	
	03																
10		gat	~~~	G3C	+++	cac	acc	ctc	gag	aca	gca	acσ	tac	gag	ccg	ctc	390
	Gln	Asp	GŢŽ	HIS		Arg	Ser	Leu	Giu		AIG		Cyc		115		
15					105					110					117		
								_									420
		cat															438
20	Lys	His	Pro	His	Phe	Gln	Leu	Ile	Ser	Leu	Leu	Phe	Ala	Leu	Ser	Lys	
20				120					125					130			
	atc	tgg	gag	taa	ttc	gac	acg	gtg	ctc	ctc	atc	gtc	aag	ggc	aac	aag	486
25		Trp															
	116	ııp		115	1			140					145				
			135					110									
30											~~~	200	+++	taa	ctc	tac	534
		cgc															33 -
	Leu	Arg	Phe	Leu	His	Val	Leu	His	His	Ala	Thr		Pne	Trp	Leu	туг	
35		150					155					160					
33																	
	gcc	atc	gac	cac	atc	ttt	ctc	tcg	tcc	atc	aag	tac	ggc	gtc	gcg	gtc	582
		Ile															
40	165		_			170					175					180	
		,															
		. ~~+	. ++0	. ato	· cac	. acc	atc	ato	tac	aca	cac	tac	ttc	cgc	сса	ttc	630
45																Phe	
	Asr	ı Als	Pne	3 TTE			Val	Mec	, tyt			, 1,-			195		
					185	•				190	,				17.		
50																بد علامة	670
50																ttc	678
	Pro	Lys	Gly	y Leu	ı Arç	g Pro	Leu	$Il\epsilon$	Thr	Glr	ı Leı	ı Glr	ı Ile	· Val	Glr	n Phe	
				200)				205	5				210)		
55																	
	ati	t tto	aqe	c ato	c ggd	ato	cat	aco	gco	att	tac	tgg	gcac	tac	gad	tgc	726
																c Cys	
60			21			•		220					225				
			. ـ ـ	_													
							~ ~=:		- -~	~ ~=	a +=	c at	c acc	ב ככי	c ta	c ctt	774
65																c ctt r Leu	
0.3	Gl:	u Pr	o Le	u Va	l Hi	s Th:	r His	s Ph	e Tr	b GT	u IY	ı va	1 III.	r Lī	O IY	r Leu	

230		235		240	
				ttt tac ctg cag cag Phe Tyr Leu Gln Gln 260	822
			aag aag gca Lys Lys Ala 270	tag ccacgtaaca	1 868
gtagaccag	gc agcgccga	gg acgcgtgcc	g cgttatcgcg	aagcacgaaa taaagaagat	928
catttgatt	c aacgaggct	a cttgcggcc	a cgagaaaaaa	aaaaaaaaaa aaaaaaaaaa	988
aaaaaaaa	aa aaaaaaaa	aa aaaaaaaaa	a aaaaaaaaa	aaaaaaaaaa aaaaaaaaaa	1048 2
ctcgag		· .			1054
<210> 6 <211> 271 <212> PRT	1			· .	
<213> Thr	austochytri	um			. 4
	lu Pro Leu 5	Asp Arg Tyr	Arg Ala Leu 10	Ala Glu Leu Ala Ala 15	
Arg Tyr A	ala Ser Ser 20	Ala Ala Phe	Lys Trp Gln 25	Val Thr Tyr Asp Ala 30	·
	er Phe Val	Gly Pro Leu 40	Gly Ile Arg	Glu Pro Leu Gly Leu 45	. ·
Leu Val G 50	ly Ser Val	Val Leu Tyr 55	Leu Ser Leu	Leu Ala Val Val Tyr 60	

Ala Leu Arg Asn Tyr Leu Gly Gly Leu Met Ala Leu Arg Ser Val His

	Asn	Leu	Gly	Leu	Cys 85	Leu	Phe	Ser	Gly	Ala 90	Val	Trp	Ile	Tyr	Thr 95	Ser
5														•		
	Tyr	Leu	Met	Ile 100	Gln	Asp	Gly	His	Phe 105	Arg	Ser	Leu	Glu	Ala 110	Ala	Thr
10	Cys	Glu	Pro 115	Leu	Lys	His	Pro	His 120	Phe	Gln	Leu	Ile	Ser 125	Leu	Leu	Phe
15																
	Ala	Leu 130	Ser	Lys	Ile	Trp	Glu 135	Trp	Phe	Asp	Thr	Val 140	Leu	Leu	Ile	Val
20	Lys	Gly	Asn	Lys	Leu	Arg	Phe	Leu	His	Val	Leu	His	His	Ala	Thr	Thr
	145					150					155					160
25	Phe	Trp	Leu	Tyr	Ala 165	Ile	Asp	His	Ile	Phe	Leu	Ser	Ser	Ile	Lys 175	Tyr
30	Gly	Val	Ala	Val	Asn	Ala	Phe	Ile	His	Thr	Val	Met	Tyr	Ala 190		Туr
35																
	Phe	Arg	Pro 195	Phe	Pro	Lys	Gly	Leu 200	Arg	Pro	Leu	Ile	Thr 205	Gln	Leu	Gln
40	Ile	Val 210	Gln	Phe	lle	Phe	Ser 215	Ile	Gly	Ile	His		Ala	Ile	Tyr	Trp
45		210					213					220				
	His 225	Tyr	Asp	Cys	Glu	Pro 230	Leu	Val	His	Thr	His 235	Phe	Trp	Glu	Tyr	Val 240
50	Thr	Pro	Tyr	Leu	Phe 245	Val	Val	Pro	Phe	Leu 250	Ile	Leu	Phe	Phe	Asn 255	Phe
55	Tyr	Leu	Gln	Gln 260	Tyr	Val	Leu	Ala	Pro 265	Ala	Lys	Thr	Lys	Lys 270	Ala	
60																
	<210															
65		L> 20													•	
	~ 4 1 4	:> DN	45.7													

<213> Ceratodon purpureus

<22	0>																5
<22	1> C	DS															
<22	2> (176)	(1	.627)												•	
<22	3> D	elta	-6-D	esat	uras	e											10
	•,																
<40	0> 7																٠
ctc	aggc	agg	tctc	agtt	ga t	gaga	cgct	g ag	ttct	gaat	cct	ttga	gct	gtgt	caggct	60	15
cgg	cact	tgt	ggga	tggt	ga a	ggag	tgat	c ga	tcag	gagt	gca	ggag	ctg	catt	agtttc	120	20
tca	gggt	cga	tcag	gtta	tt c	tgaa	aaag	g ct	gcat	ctat	gag	caqt	tta (caaa	a atg	178	20
										-			3		Met		
	•			•											1		25
gcc	ctc	gtt	acc	gac	ttt	ctg	aac	ttt	ctg	ggc	acg	aca	taa	agc	aaσ	226	
				Asp													30
			5					10					15		-		50
															•		
tac	agc	gtg	tac	acc	cat	agc	tat	gct	gga	aac	tat	ggg	cct	act	ttg	274	35
Tyr	Ser	Val	Tyr	Thr	His	Ser	Tyr	Ala	Gly	Asn	Tyr	Gly	Pro	Thr	Leu		٠.
		20	•			•	25					30					
															•		40
				aag												322	
Lys		Ala	Lys	Lys	Val	Ser	Ala	Gln	Gly	Lys	Thr	Ala	Gly	Gln	Thr	•	
	35					40			*		45						45
													·				
															ctg _.	370	
50	Arg	GIII	Arg	Ser		GIN	Asp	rys	гуs		СІЎ	Thr	Tyr	Ser			50
50					55					60					65		
gcc	gat	gtt	gct	tct	cac	gac	agg	cct	gga	gac	tgc	tgg	atg	atc	gtc	418	55
Ala	Asp	Val	Ala	Ser	His	Asp	Arg	Pro	Gly	Asp	Cys	Trp	Met	Ile	Val		33
				70					75					80			
																	60
				tat												466	
Lys	Glu	Lys		Tyr	Asp	Ile	Ser		Phe	Ala	Asp	Asp	His	Pro	Gly		
			85					90					95				

5	Gly ggg	acg Thr	gta Val 100	att Ile	agc Ser	acc Thr	tac Tyr	ttt Phe 105	Gly	cgg Arg	gat Asp	ggc Gly	aca Thr 110	gac Asp	gtt Val	tt Ph	c e	514
10	gca Ala	aca Thr	ttc Phe	cat His	cca Pro	cct Pro	gcc Ala 120	gca Ala	tgg Trp	aag Lys	caa Gln	ctc Leu 125	aat Asn	gac Asp	tac Tyr	ta Ty	.c r	562
15	att Ile	Gly	gac Asp	ctt Leu	gct Ala	agg Arg 135	gaa Glu	gag Glu	ccc Pro	ctt Leu	gat Asp 140	Glu	ttg Leu	ctt	aaa Lys	AS	ac sp 15	610
20	tac Tyr	aga Arg	gat g Asp	atg Met	aga Arg	gcc Ala	gag Glu	ttt Phe	gtt Val	aga Arg	Glu	ggg Gly	ctt Leu	tto Phe	: aaç : Lys 160	5 S	gt er	658
30	tc: Se:	c aag	g gco	tgg Trj 169	Phe	c ctg	rctt Lev	cag Glr	act Thi	r Leu	g att	aat Asr	gca n Ala	gct Ala 17	a Le	c t u P	tt he	706
35	gc Al	t gc a Al	g ag a Se 18	r Il	t gc	g act	t ato	c tgt e Cys 18!	з Ту	c gad r Asj	c aaq	g ag s Se	t tac r Ty: 19	r Tr	g gc	t a a I	itt :le	754
40	۷a	g ct 1 Le	u Se	a gc	c ag a Se	t tte	g ato u Me 20	t Gl	t ct y Le	c tt	c gt e Va	c ca 1 G1 20	n Gl	g tg n Cy	t gg 's Gl	ja t Ly :	igg Prp	802
	ct	eu A	cc ca	at ga is As	it tt sp Pl	c ct ne Le 21	u Hi	t ca .s Gl	a ca n Gl	ig gt .n Va	c tt	ne Gl	ag aa Lu As	ic co	gt ac	nr .	gcg Ala 225	850
3	aa SS As	ac t sn S	cc t er P	tc t he P	he G	gc ta ly Ty 30	it tt	tg tt	cc gg ne Gi	ly A	at to	gc g' ys V	tg c	tt g	ly P	tt he 40	agt Ser	898
	60 g V	ta t	ca t Ser T	rp T	gg a rp A 45	gg ad	og a	ag c	is A	ac a sn I 50	tt c le H	at c	at a	hr A	ct c la I	cg	aat Asn	946

gag	tġc	gac	gaa	cag	tac	aca	cct	cta	gac	gaa	gac	att	gat	act	ctc	994	
Glu	Cys	Asp	Glu	Gln	Tyr	Thr	Pro	Leu	Asp	Glu	Asp	Ile	Asp	Thr	Leu		
		260					265					270			•		5
							•	•									
ccc	atc	att	gcc	tgg	agc	aag	gaa	att	ttg	gcc	acc	gtt	gag	agc	aag	1042	
Pro	Ile	Ile	Ala	Trp	Ser	Lys	Glu	Ile	Leu	Ala	Thr	Val	Glu	Ser	Lys		10
	275					280					285						
aga	att	ttg	cga	gtg	ctt	caa	tat	cag	cac	tac	atg	att	ctg	cct	cta	1090	15
Arg	Ile	Leu	Arg	Val	Leu	Gln	Tyr	Gln	His	Tyr	Met	Ile	Leu	Pro	Leu		
290					295					300		•			305		
															-		20
ttg	ttc	atg	gcc	cgg	tac	agt	tgg	act	ttt	gga	agt	ttg	ctc	ttc	aca	1138	
Leu	Phe	Met	Ala	Arg	Tyr	Ser	Trp	Thr	Phe	Gly	Ser	Leu	Leu	Phe	Thr		
				310					315					320	•		25
														•			
ttc	aat	cct	gat	ttg	agc	acg	acc	aag	gga	ttg	ata	gag	aag	gga	aca	1186	
Phe	Asn	Pro	Asp	Leu	Ser	Thr	Thr	Lys	Gly	Leu	Ile	Glu	Lys	Gly	Thr		30
			325				•	330					335				
										•							
gtt	gct	ttt	cac	tac	gcc	tgg	ttc	agt	tgg	gct	gcg	ttc	cat	att	ttg	1234	35
Val	Ala	Phe	His	Tyr	Ala	Trp	Phe	Ser	Trp	Ala	Ala	Phe	His	Ile	Leu		-
		340			•		345					350					
			٠.														40
ccg	ggt	gtc	gct	aag	cct	ctt	gcg	tgg	atg	gta	gça	act	gag	ctt	gtg	1282	70
Pro	Gly	Val	Ala	Lys	Pro	Leu	Ala	Trp	Met	Val	Ala	Thr	Glu	Leu	Val		
	355					360					365						45
																	43
gcc	ggt	ttg	ttg	ttg	gga	ttc	gtą	ttt	acg	ttg	agt	cac	aat	gga	aag	1330	
Ala	Gly	Leu	Leu	Leu	Gly	Phe	Val	Phe	Thr	Leu	Ser	His	Asn	Gly	Lys ·		50
370					375					380					385		50
															-		
gag	gtt	tac	aat	gaa	tcg	aag	gac	ttc	gtg	aga	gcc	cag	gtt	att	acc	1378	
	Val																55
				390					395					400			
								•									
acc	cgt	aac	acc	aag	cga	ggc	tgg	ttc	aac	gat	tgg	ttc	act	ggg	gga	1426	60
	Arg																
			405					410		-	-		415	-	-		
																•	65

	ctc	gac	acc	cag	att	gag	cat	cac	ctg	ttt	cca	aca	atg	ccc	agg	cac	1474
	Leu	Asp	Thr	Gln	Ile	Glu	His	His	Leu	Phe	Pro	Thr	Met	Pro	Arg	His	
5			420					425					430				
	aac	tac	ccc	aag	atc	gca	cct	cag	gtc	gag	gct	ctt	tgc	aag	aag	cac	1522
10				Lys													
		435					440					445	_	_	-		
15	ggc	ctc	gag	tac	gat	aat	gtc	tcc	gtc	gtt	ggt	gcc	tct	atc	aca	att	1570
				Tyr													
	450					455					460					465	
20																-05	
20	gtg	aag	gcg	ctc	aag	gaa	att	gct	gat	gaa	aca	tca	att	caa	ctt	cac	1618
	Val																1010
25					470				•	475				9	480	****	
2.5																	
	gct	cac	taa	gaaa	tcgt	.cg a	actt	tgac	t at	tcat	tit	tto	acct	aac	,		1667
30	Ala							-					goot	.990			
30																	
•	tacc	tcaa	at g	ttcg	ggag	c aq	atac	ttaa	cao	rtata	ttc	aacc	aaaa	rca c	acto	-2225+	1727
35						_				5 - 5			9949	·	uccy	aaaac	1/2/
33	gtgc	agaa	tc c	attt	ccag	a aa	ttac	catt	cct	aget	aaa	tett	cttt	tt a	ccad	atcaa	1787
					_							0000			ccag	gucgg	1/8/
40	atat	atga	aa c	tttt	ttga	t gc	aaca	agta	gca	ttca	att	gaag	acat	ta t	t.cga	gatat	1847
40								_	•			J J			cogu	gueue	
	aatt	cgca	gt g	tttc	tatt	c ag	cggg	cata	cat	acta	atc	cata	ticaa	ca a	ttac	cgaga	1907
									J		J = 0		99	~g g	cege	cgugu	100
45	gttt	acat	ta t	tagt	tggc	a ca	acga	gtag	atc	tagt	σt.a	aatt	tcta	++ +	ccac	atgta	1967
							_	-		5-	900		ccca		ccgc	atgta	1907
	atat	tact	ct ga	aata	tata	c cg	ttat	ctat	ttt	ccta	aaa :	aaaa.	2222	aa a		aaaaa	2027
50										Jour		uuuu	auau	ua a	aaaa	aaaaa	2027
	aaaaa	aaaa	aa aa	aa													2040
									•								2040
55																	
	<210	> 8											•				
	<211:		3														
60	<212>																
	<213>			don r	ourou	ireus	3										
				- 1			-										
65	<400>	. 8															

Met	Ala	Lev	ı Val	Thr	Asp	Phe	Leu	Asn	Phe	Leu	Gly	Thr	Thr	Trp	Ser	•			
1				5					10		•			15	•				
_	_	_																	
Lys	Туг	Ser		Tyr	Thr	His	Ser			Gly	Asn	Tyr			Thr				
			20					25					30						
Leu	Lvs	His	: Ala	Lys	Lve	Val	Ser	בוג	Cl n	C11.	T	mb	21.	~ 1	. c1			1	
	-,-	35			2 3	Val	40	Ala	GIII	GIY	ьys	45	Ala	GIY	GIN				
																		1	
Thr	Leu	Arg	Gln	Arg	Ser	Val	Gln	Asp	Lys	Lys	Pro	Glv	Thr	Tvr	Ser				
	50				•	55		-			60			-3-					
																		2	,
Leu	Ala	Asp	Val	Ala	Ser	His	Asp	Arg	Pro	Gly	Asp	Cys	Trp	Met	Ile				
65			٠		70					75					80				
•												•			•			. 2	
Val	Lys	Glu	Lys	Val	Tyr	Asp	Ile	Ser	Arg	Phe	Ala	Asp	Asp	His	Pro				
				85		•			90				•	95					
																		3	
Gly	Gly	Thr		Ile	Ser	Thr	Tyr		Gly	Arg	Asp	Gly		Asp	Val				
	•		100					105					110						
Phe	Δla	Thr	Dhe	Uic	Pro	Pro	71 n	71-		T		· ·			_			3	
1116	nia	115	FIIC	His	PIO	PIO	120	Ala	Trp	Lys	GIN	125	Asn	Asp	Tyr		•		
	• • •						120					. 123							
Tyr	Ile	Gly	Asp	Leu	Ala	Arg	Glu	Glu	Pro	Leu	asa	Glu	Leu	Leu	Lvs			4	
	130			•		135					140								
																		4	
Asp	Tyr	Arg	Asp	Met	Arg	Ala	Glu	Phe	Val	Arg	Glu	Gly	Leu	Phe	Lys			7	•
145					150		•			155	•	٠			160				
						• •				•			•					5	1
Ser	Ser	Lys	Ala	Trp	Phe	Leu	Leu	Gln	Thr	Leu	Ile	Asn	Ala	Ala	Leu				
				165		•.			170					175					
5 16 -	.1-	3 -	G	~1.				_	_						•			5	
Pne	Ala	Ala		Ile	Ala	'I'nr	lle		Tyr	Asp	Lys	Ser		Trp	Ala				
			180					185					190	•	*				
[le	Val	Leu	Ser	Ala	Ser	Len	Met	Glv	T.em	Phe	۲ _α γ	C1∽	G1 =	Cvc	C1			6	1
		195					200	G,r y	Jeu	FIIG	ACT	205	GTII	CAR	оту				
		-									÷	200							
rp	Leu	Ala	His	qzA	Phe	Leu	His	Gln	Gln	Val	Phe	Glu	Asn	Arg	Thr			.6	
														_					

		210					215					220				
5	Ala 225	Asn	Ser	Phe :		Gly 230	Tyr	Leu	Phe	Gly	Asn 235	Cys	Val	Leu		Phe 240
10	Ser	Val	Ser	Trp	Trp 245	Arg	Thr	Lys	His	Asn 250	Ile	His	His	Thr	Ala 255	Pro
15	Asn	Glu	Cys	Asp 260	Glu	Gln	Tyr	Thr	Pro 265	Leu	Asp	Glu	Asp	Ile 270	Asp	Thr
20	Leu	Pro	Ile 275	Ile	Ala	Trp	Ser	Lys 280	Glu	Ile	Leu	Ala	Thr 285	Val	Glu	Ser
25	Lys	Arg 290		Leu	Arg	Val	Leu 295	Gln	Tyr	Gln	His	Туr 300	Met	Ile	Leu	Pro
30	Leu 305		Phe	Met	Ala	Arg 310	Tyr	Ser	Trp	Thr	Phe		Ser	Leu	Leu	Phe 320
35	Thr	Ph∈	e Asn	Pro	Asp 325	Leu	Ser	Thr	Thr	330		r Leu	Ile	e Glu	Lys 335	Gly
40	Thr	· Val	l Ala	Phe		Tyr	Ala	Trp	9 Phe		Tr	Ala	a Ala	Phe 350		Ile
45	Let	ı Pro	355		Ala	Lys	Pro	360		a Tr	o Met	t Vai	1 Ala 369		Glu	Leu
50	Va:	1 Ala		y Leu	ı Lev	ı Lev	375		e Val	l Ph	e Thi	r Le		r His	s Asr	n Gly
55			u Va	l Tyr	ASI	n Gli		r Ly:	s Asj	p Ph	e Va 39		g Al	a Glı	n Val	1 Ile 400
6		r Th	r Ar	g Ası	n Th:		s Ar	g Gl	y Tr	p Ph 41		n As	p Tr	p Ph	e Th:	r Gly 5
6	G1 s	y Le	eu As	p Th:		n Il	e Gl	u Hi	s Hi 42		eu Ph	ie Pr	o Th	nr Me		o Arg

His Asn Tyr Pro Lys Ile Ala Pro Gln Val Glu Ala Leu Cys Lys 435 440 445	
	5
His Gly Leu Glu Tyr Asp Asn Val Ser Val Val Gly Ala Ser Val Ala 450 455 460	
Val Val Lys Ala Leu Lys Glu Ile Ala Asp Glu Ala Ser Ile Arg Leu	10
465 470 475 480	•
His Ala His	
<210> 9	20
<211> 1467	
<212> DNA	25
<213> Ceratodon purpureus	
<220>	
<221> CDS	30
<222> (10)(1461)	
<223> Delta-6-Desaturase	35
<pre><400> 9 ggatccaaa atg gcc ctc gtt acc gac ttt ctg aac ttt ctg ggc acg aca !</pre>	E 1
Met Ala Leu Val Thr Asp Phe Leu Asn Phe Leu Gly Thr Thr	40
1 5 10	
	45
	99
Trp Ser Lys Tyr Ser Val Tyr Thr His Ser Tyr Ala Gly Asn Tyr Gly 15 20 25 30	
	50
cct act ttg aag cac gcc aaa aag gtt tct gct caa ggt aaa act gcg	147
Pro Thr Leu Lys His Ala Lys Lys Val Ser Ala Gln Gly Lys Thr Ala	55.
35 40 45	
gga cag aca ctg aga cag aga tcg gtg cag gac aaa aag cca ggc act	195
Gly Gln Thr Leu Arg Gln Arg Ser Val Gln Asp Lys Lys Pro Gly Thr	60
50 55 60	

	tac	tct	ctg	gcc	gat	gtt	gct	tct	cac	gac	agg	cct	gga	gac	tgc	tgg	243
	Tyr	Ser	Leu	Ala	Asp	Val	Ala	Ser	His	Asp	Arg	Pro	Gly	Asp	Cys	Trp	
5			65					70					75				
5											:						
	atg	atc	gtc	aaa	gag	aag	gtg	tat	gat	att	agc	cgt	ttt	gcg	gac	gac	291
10	Met	Ile	Val	Lys	Glu	Lys	Val	Tyr	Asp	Ile	Ser	Arg	Phe	Ala	Asp	Asp	
10		80					85					90				•	
15	cac	cct	gga	ggg	acg	gta	att	agc	acc	tac	ttt	ggg	cgg	gat	ggc	aca	339
13	His	Pro	Gly	Gly	Thr	Val	Ile	Ser	Thr	Tyr	Phe	Gly	Arg	Asp	Gly	Thr	
	95					100					105					110	
20																	
20	gac	gtt	ttc	gca	aca	ttc	cat	cca	cct	gcc	gca	tgg	aag	caa	ctc	aat	387
													Lys				
	-				115					120					125		
25																	
	σac	tac	tac	att	gga	gac	ctt	gct	agg	gaa	gag	ccc	ctt	gat	gaa	ttg	435
													Leu				
30		-1-		130					135					140			
	ctt	aaa	a gac	: tac	aga	gat	atg	aga	gco	gag	ttt	gtt:	aga	gaa	ggg	ctt	483
35	T.eu	Lve	a Asr	יייי אי	Arc	r Ast	Met	Arc	, Ala	a Glu	ı Phe	val	l Arg	Glu	Gly	Leu	
	Dea	יענו	145			, 1		150					155				
40	tto	• aa	a agt	tc	c aac	a gco	tgg	tto	cte	g ctt	cag	g act	t ctg	att	aat	gca	531
	Phe	Lv	s Sei	r Sei	r Lys	s Alá	a Trp	Phe	e Let	ı Lei	ı Glı	n Th	r Lev	ı Ile	e Ası	n Ala	
	111	16			•		165					17					
45			•														
	act	- ct	c tt	t ac	t ac	g age	c att	gc:	g ac	t at	c tg	t ta	c gad	aag	gag	t tac	579
																r Tyr	
50	17		u	•		18					18					190	
	17.	•															
	ta	מ מר	t at	t at	a ct	a tc	a qc	c ag	t tt	g at	g gg	t ct	c tt	c gt	c ca	a cag	627
5																n Gln	
	11,	p Ai	.u	C 144	19					20					20		
						-											
6	0 +~	+ ~	ta to	ra ct	t ac	c ca	t ora	t tt	c ct	t ca	t ca	a ca	ıg gt	c tt	t ga	g aac	675
	cy.	- 95	ou co	70 T.E	en Al	а ні	s As	p Ph	ne Le	eu Hi	s Gl	n Gl	ln Va	l Ph	e Gl	u Asn	
	СУ	. U.	-y	ى 21				•	21					22			
6				د ت													

cgt.	acc	gcg	aac	tcc	ttc	ttt	ggc	tat	ttg	ttc	ggc	aat	tgc	gtg	ctt [°]	723	
Arg	Thr	Ala	Asn	Ser	Phe	Phe	Gly	Tyr	Leu	Phe	Gly	Asn	Cys	Val	Leu		
		225					230					235					5
							•							<i>:</i> .			
ggc	ttt	agt	gta	tca	tgg	tgg	agg	acg	aag	cac	aac	att	cat	cat	act	771	
Gly	Phe	Ser	Val	Ser	Trp	Trp	Arg	Thr	Lys	His	Asn	Ile	His	His	Thr		10
	240					245					250						
gct	ccg	aat	gag	tgc	gac	gaa	cag	tac	aca	cct	cta	gac	gaa	gac	att	819	15
Ala	Pro	Asn	Glu	Cys	Asp	Glu	Gln	Tyr	Thr	Pro	Leu	Asp	Glu	Asp	Ile	•	
255		•			260				-	265		•			270		
															•		20
gat	act	ctc	ccc	atc	att	gcc	tgg	agc	aag	gaa	att	ttg	gcc	acc	gtt	867	
Asp	Thr	Leu	Pro	Ile	Ile	Ala	Trp	Ser	Lys	Glu	Ile	Leu	Ala	Thr	Val		
				275					280			÷		285			25
gag	agc	aag	aga	att	ttg	cga	gtg	ctt	caa	tat	cag	cac	tac	atg	att	915	
Glu	Ser	Lys	Arg	Ile	Leu	Arg	Val	Leu	Gln	Tyr	Gln	His	Tyr	Met	Ile		30
			290					295					300		,		
ctg	cct	cta	ttg	ttc	atg	gcc	cgg	tac	agt	tgg	act	ttt	gga	agt	ttg	963	35
Leu	Pro	Leu	Leu	Phe	Met	Ala	Arg	Tyr	Ser	Trp	Thr	Phe	Gly	Ser	Leu		
		305					310					315					
	v . •																40
ctc	ttc	aca	ttc	aat	cct	gat	ttg	agc	acg	acc	aag	gga	ttg	ata	gag	1011	
Leu	Phe	Thr	Phe	Asn	Pro	Asp	Leu	Ser	Thr	Thr	Lys	Gly	Leu	Ile	Glu		
	320					325					330						45
																	43
aag	gga	aca	gtt	gct	ttt	cac	tac	gcc	tgg	ttc	agt	tgg	gct	gcg	ttc	1059	
Lys	Gly	Thr	Val	Ala	Phe	His	Tyr	Ala	Trp	Phe	Ser	Trp	Ala	Ala	Phe		50
335					340					345					350		30
									-								
cat	att	ttg	ccg	ggt	gtc	gct	aag	cct	ctt	gcg	tgg	atg	gta	gca	act	1107	
His	Ile	Leu	Pro	Gly	Val	Ala	Lys	Pro	Leu	Ala	Trp	Met	Val	Ala	Thr		55
				355					360					365			
																	60
gag	ctt	gtg	gcc	ggt	ttg	ttg	ttg	gga	ttc	gtg	ttt	acg	ttg	agt	cac	1155	60
Glu	Leu	Val	Ala	Gly	Leu	Leu	Leu	Gly	Phe	Val	Phe	Thr	Leu	Ser	His		
			370					375					380				
																	65

					gtt												1203
	Asn	Gly		Glu	Val	Tyr	Asn		Ser	Lys	Asp	Phe		Arg	Ala	Gin	
5			385					390					395				
		244	200	200	cgt	aac	acc	aaσ	cga	aac	taa	ttc	aac	gat	tgg	ttc	1251
					Arg												
.0	Vai	400					405	-		_		410					
15					gac												1299
	Thr	Gly	Gly	Leu	Asp	Thr	Gln	Ile	Glu	His	His	Leu	Phe	Pro	Thr		
	415					420					425				•	430	
20																+~~	1347
					tac												1347
	Pro	Arg	His	Asn	Tyr	Pro	Lys	Ile	Ala		GIN	Vai	GIU	Ala	445		
25					435					440					443		
	224			. ממכ	ctc	gag	tac	gat	aat	atc	tcc	gto	gtt	ggt	gcc	tct	1395
					Leu												
30	טעט	2,0		450			-	_	455					460			
35	gto	gcg	gtt	gtg	aag	gcg	cto	aag	gaa	att	gct	gat	gaa	gcg	r tca	att	1443
33	Val	Ala	val	. Val	Lys	Ala	Leu	Lys	Glu	Ile	Ala	Asp	Glu	Ala	Ser	· Ile	:
			465	5				470)				475	5			
40																	1467
		•			cac		gto	gac									1407
	Arc	480 480		S Ala	a His	•											
45		400	,														
	<21	LO> :	10								٠. ٠						
50	<2:	11> 4	483														
	<23	12>	PRT														
55	<2	13> (Cera	tođo	n pu	rpur	eus			•							
33																	
		00>				_	51-	- * -		n Dh	o T 01	. (1	ኒያ ጥክ	_ጉ ጥካ	_ዮ ጥዮ	n Se	r
60			a Le	u Va	1 Th		p Pn	e re	u AS	n Pn 1		u Gi	y 111	1 111		, 50. 5	-
		1				5				_	-				-		
	Lv	s Tv	r Se	r Va	1 Ту	r Th	r Hi	s Se	r Ty	r Al	a G1;	y As	n Ty	r Gl	y Pr	o Th	r
65		2	-		0				2						0		

Leu	Lys	His 35	Ala	Lys	Lys	Val	Ser 40	Ala	Gln	Gly	Lys	Thr 45	Ala	Gly	Gln			
Thr	Leu 50	Arg	Gln	Arg	Ser	Val 55	Gln	Asp	Lys	Lys	Pro 60	Gly	Thr	Tyr	Ser	. •		l
Leu 65	Ala	Asp	Val	Ala	Ser 70		Asp	Arg	Pro	Gly 75	Asp	Cys	Trp	Met	Ile 80			· 1
Val	Lys	Glu	Lys	Val 85	Tyr	Asp	Ile	Ser	Arg 90	Phe	Ala	Asp	Asp	His 95	Pro			. 2
Gly	Gly	Thr	Val 100	Ile	Ser	Thr	Tyr	Phe 105	Gly	Arg	Asp	Gly	Thr 110	Asp	Val			-
Phe	Ala	Thr 115	Phe	His	Pro	Pro	Ala 120	Ala	Trp	Lys	Gln	Leu 125	Asn	Asp	Tyr			
Tyr	Ile 130	Gly	Asp	Leu	Ala	Arg 135	Glu	Glu	Pro	Leu	Asp 140	Glu	Leu	Leu	Lys		-	
Asp 145	Tyr	Arg	Asp	Met	Arg 150	Ala	Glu	Phe	Val	Arg 155	Glu	Gly	Leu	Phe	Lys 160			
Ser	Ser	Lys	Ala	Trp 165	Phe	Leu	Leu	Gln	Thr 170	Leu	Ile	Asn	Ala	Ala 175	Leu			4
Phe	Ala	Ala	Ser 180	Ile	Ala	Thr	Ile	Cys 185	Tyr	Asp	Lys	Ser	Tyr 190	Trp	Ala			. 4
Ile	Val	Leu 195	Ser	Ala	Ser	Leu	Met 200	Gly	Leu	Phe	Val	Gln 205	Gln	Cys	Gly			5
Trp	Leu 210	Ala	His	Asp	Phe	Leu 215	His	Gln _.	Gln	Val	Phe 220	Glu	Asn	Arg	Thr			
Ala 225	Asn	Ser	Phe	Phe	Gly 230	Tyr	Leu	Phe	Gly	Asn 235	Cys	Val	Leu	Gly	Phe			6

Ser	Val	Ser	Trp	Trp	Arg	Thr	Lys	His	Asn	Ile	His	His	Thr	Ala	Pro
				245					250					255	

- Asn Glu Cys Asp Glu Gln Tyr Thr Pro Leu Asp Glu Asp Ile Asp Thr
- Leu Pro Ile Ile Ala Trp Ser Lys Glu Ile Leu Ala Thr Val Glu Ser 275 280 285
- Lys Arg Ile Leu Arg Val Leu Gln Tyr Gln His Tyr Met Ile Leu Pro 290 295 300
- Leu Leu Phe Met Ala Arg Tyr Ser Trp Thr Phe Gly Ser Leu Leu Phe 305 310 315 320
- Thr Phe Asn Pro Asp Leu Ser Thr Thr Lys Gly Leu Ile Glu Lys Gly 335
- Thr Val Ala Phe His Tyr Ala Trp Phe Ser Trp Ala Ala Phe His Ile
 340 345 350
- Leu Pro Gly Val Ala Lys Pro Leu Ala Trp Met Val Ala Thr Glu Leu 355 360 365
- Val Ala Gly Leu Leu Gly Phe Val Phe Thr Leu Ser His Asn Gly
 370 375 380
- Lys Glu Val Tyr Asn Glu Ser Lys Asp Phe Val Arg Ala Gln Val Ile
 385 390 395 400
- Thr Thr Arg Asn Thr Lys Arg Gly Trp Phe Asn Asp Trp Phe Thr Gly
 405 410 415
- Gly Leu Asp Thr Gln Ile Glu His His Leu Phe Pro Thr Met Pro Arg
 420 425 430
- His Asn Tyr Pro Lys Ile Ala Pro Gln Val Glu Ala Leu Cys Lys Lys
 435 440 445
- 65 His Gly Leu Glu Tyr Asp Asn Val Ser Val Val Gly Ala Ser Val Ala

Val	Val	Lys	Ala	Leu	Lys	Glu	Ile	Ala	Asp	Glu	Ala	Ser	Ile	Arg	Leu			5
465					470					475					480			
	•									,	•							-
His	Ala	His									٠							.,
					•								•					10
				,			•											
<21	0> 1:	1													-			15
<21	1> 2:	160	٠.															
<21	2> DI	AN	• .									٠	•	•	• •	•		
<21	3> Ce	erat	odon	pur	oure	us												20
																		20
<22	0>								•		-							
	1> CI	ng																
•			7.1	7211														25
	2> (:																**	
<22	3> De	этса	-6-D	esatı	ırase	9												
																		30
<40	0> 1:	l		•			٠							•			• • • •	
cgg	aggto	ctc '	ttgt	cgtt	ct to	ggagt	ctg	gto	cgago	cttg	gaa	tgcg	gta g	ggcg	eggeeg	60		
																		35
ttt	cgtgg	gtt	ttgg	cgtt	gg ca	attgo	cgcga	a ggg	gcgga	acag	tgg	gagto	gcg g	ggagg	gtctgt	120		35
ttt	cgtg	gtt	ttgg	cgtt	gg ca	attgo	cgcga	a ggg	gegga	acag	tgg	gagto	gcg (ggagg	gtctgt	120		35
		•				٠		•							gtetgt ge gge			
		•				٠		•		ga at	tg g	tg to	cc ca	ag gg		176		35
		•				٠		•		ga at	tg g	tg to	cc ca	ag gg	ge gge	176		
		•				٠		•		ga at	tg gi	tg to	cc ca	ag gg	gc ggc	176		
ttg	tgcat	tga (cgag	gtgg(ct gt	taato	cttc	g ccí	ggcag	ga at Me	tg g et Va 1	tg to	cc ca er Gl	ag gg	gc ggc ly Gly 5	176		
ttg ggt	tgcat ctc	tga (cgagg cag	gtgg(ggt	tcc	taato att	gaa	g ccq	ggcaq aac	ga at	tg g et Va 1 gac	tg to	cc ca er Gl	ag gg ln G	ge gge ly Gly 5 ttg	176		
ttg ggt	tgcat ctc	tga (cgag cag Gln	gtgg(tcc	taato att	gaa	g cco	ggcag aac Asn	ga at	tg g et Va 1 gac	tg to	gag	ag gg ln G	ge gge ly Gly 5 ttg	176		
ttg ggt	tgcat ctc	tga (cgagg cag	gtgg(ggt	tcc	taato att	gaa	g ccq	ggcag aac Asn	ga at	tg g et Va 1 gac	tg to	cc ca er Gl	ag gg ln G	ge gge ly Gly 5 ttg	176		
ggt Gly	tgcat ctc Leu	tga (tcg Ser	cag Gln 10	gtgg ggt Gly	tcc Ser	att Ile	gaa Glu	gaa Glu 15	ggcag aac Asn	ga at Me att Ile	tg great Value 1 gac Asp	tg to al Se gtt Val	gag Glu 20	ag gg ln G cac His	gc ggc ly Gly 5 ttg Leu	176 224		40
ggt Gly gca	ctc Leu acg	tcg tcg Ser	cag Gln 10	gtggt ggt Gly ctc	tcc Ser	att Ile agt	gaa Glu gac	gaa Glu 15	aac Asn cta	ga at Me att Ile	tg g et Va 1 gac Asp	tg to al Se gtt Val	gag Glu 20	ag gg ln G cac His	gc ggc ly Gly 5 ttg Leu act	176		40
ggt Gly gca	ctc Leu acg	tcg Ser atg Met	cag Gln 10	gtgg ggt Gly	tcc Ser	att Ile agt	gaa Glu gac Asp	gaa Glu 15	aac Asn cta	ga at Me att Ile	tg g et Va 1 gac Asp	tg to al Se gtt Val	gag Glu 20	ag gg ln G cac His	gc ggc ly Gly 5 ttg Leu act	176 224		40
ggt Gly gca	ctc Leu acg	tcg tcg Ser	cag Gln 10	gtggt ggt Gly ctc	tcc Ser	att Ile agt	gaa Glu gac	gaa Glu 15	aac Asn cta	ga at Me att Ile	tg g et Va 1 gac Asp	tg to al Se gtt Val	gag Glu 20	ag gg ln G cac His	gc ggc ly Gly 5 ttg Leu act	176 224		45
ggt Gly gca	ctc Leu acg	tcg Ser atg Met	cag Gln 10	gtggt ggt Gly ctc	tcc Ser	att Ile agt	gaa Glu gac Asp	gaa Glu 15	aac Asn cta	ga at Me att Ile aat	tg g et Va 1 gac Asp	tg to al Se gtt Val ctg	gag Glu 20	ag gg ln G cac His	gc ggc ly Gly 5 ttg Leu act	176 224		45
ggt Gly gca Ala	ctc Leu acg Thr	tcg Ser atg Met 25	cag Gln 10 ccc Pro	gtggt ggt Gly ctc	tcc Ser gtc Val	att Ile agt Ser	gaa Glu gac Asp	gaa Glu 15 ttc Phe	aac Asn cta Leu	ga at Me att Ile aat Asn	gac Asp	gtt Val ctg Leu 35	gag Glu 20 gga Gly	ag gg ln Gl cac His acg	gc ggc ly Gly 5 ttg Leu act Thr	176 224		40
ggt Gly gca Ala	ctc Leu acg Thr	tcg Ser atg Met 25	cag Gln 10 ccc Pro	gtggt ggt Gly ctc Leu	tcc Ser gtc Val	att Ile agt Ser	gaa Glu gac Asp 30	gaa Glu 15 ttc Phe	aac Asn cta Leu	ga at Asn gct	tg gtc. gtc. Val	gtt Val ctg Leu 35	gag Glu 20 gga Gly	ag gg ln G cac His acg Thr	gc ggc ly Gly 5 ttg Leu act Thr	176 224 272		45
ggt Gly gca Ala	ctc Leu acg Thr	tcg Ser atg Met 25	cag Gln 10 ccc Pro	gtggt ggt Gly ctc Leu	tcc Ser gtc Val	att Ile agt Ser	gaa Glu gac Asp 30	gaa Glu 15 ttc Phe	aac Asn cta Leu	ga at Asn gct	tg gtc. gtc. Val	gtt Val ctg Leu 35	gag Glu 20 gga Gly	ag gg ln G cac His acg Thr	gc ggc ly Gly 5 ttg Leu act Thr	176 224 272		40
ggt Gly gca Ala	ctc Leu acg Thr	tcg Ser atg Met 25	cag Gln 10 ccc Pro	gtggt ggt Gly ctc Leu	tcc Ser gtc Val	att Ile agt Ser tcc	gaa Glu gac Asp 30	gaa Glu 15 ttc Phe	aac Asn cta Leu	ga at Asn gct	gac Asp gtc Val	gtt Val ctg Leu 35	gag Glu 20 gga Gly	ag gg ln G cac His acg Thr	gc ggc ly Gly 5 ttg Leu act Thr	176 224 272		40

Thr Lys Lys His Ser Ser Asp Ile Ser Val Glu Ala Gln Lys Glu Ser	
55 60 65	
gtt gcg cgg ggg cca gtt gag aat att tet caa teg gtt geg eag oot Val Ala Arg Gly Pro Val Glu Asn Ile Ser Gln Ser Val Ala Gln Pro 75 80 85	416
10	4.6.4
atc agg cgg agg tgg gtg cag gat aaa aag ccg gtt act tac agc ctg 15 Ile Arg Arg Arg Trp Val Gln Asp Lys Lys Pro Val Thr Tyr Ser Leu 90 95 100	464
aag gat gta gct tcg cac gat atg ccc cag gac tgc tgg att ata atc Lys Asp Val Ala Ser His Asp Met Pro Gln Asp Cys Trp Ile Ile Ile 105	512
aaa gag aag gtg tat gat gtg agc acc ttc gct gag cag cac cct gga Lys Glu Lys Val Tyr Asp Val Ser Thr Phe Ala Glu Gln His Pro Gly 120 125 130	560
ggc acg gtt atc aac acc tac ttc gga cga gac gcc aca gat gtt ttc Gly Thr Val Ile Asn Thr Tyr Phe Gly Arg Asp Ala Thr Asp Val Phe 135 140 145 150	608
tet act tte cae gea tee ace tea tgg aag att ett eag aat tte tae Ser Thr Phe His Ala Ser Thr Ser Trp Lys Ile Leu Gln Asn Phe Tyr 155 160 165	656
atc ggg aac ctt gtt agg gag gag ccg act ttg gag ctg ctg aag gag Ile Gly Asn Leu Val Arg Glu Glu Pro Thr Leu Glu Leu Leu Lys Glu 170 175 180	704
tac aga gag ttg aga gcc ctt ttc ttg aga gaa cag ctt ttc aag agt Tyr Arg Glu Leu Arg Ala Leu Phe Leu Arg Glu Gln Leu Phe Lys Ser 185 190 195	752
tcc aaa tcc tac tac ctt ttc aag act ctc ata aat gtt tcc att gtt Ser Lys Ser Tyr Tyr Leu Phe Lys Thr Leu Ile Asn Val Ser Ile Val 200 205 210	800
65 gcc aca agc att gcg ata atc agt ctg tac aag tct tac cgg gcg gtt	848

Ala	Thr	Ser	Ile	Ala	Ile	Ile	Ser	Leu	Tyr	Lys	Ser	Tyr	Arg	Ala	Val			
215					220					225					230			
																		5
cta	tta	tca	gcc	ant	tta	ato	dac	tta	+++	a++	C22	cac	tac	~~=	taa	896	5	,
												-	_		-, -	091	,	
rea	Leu	ser	Ala		Leu	Met	GTĀ	Leu		TTE	GIn	GIN	Cys	_	Trp			
				235					240					245				10
ttg	tct	cac	gat	ttt	cta	cac	cat	cag	gta	ttt	gag	aca	cgc	tgg	ctc	944	1	
Leu	Ser	His	Asp	Phe	Leu	His	His	Gln	Val	Phe	Glu	Thr	Arg	Trp	Leu			15
			250					255					260					
									٠.			•						
aat	cac	att	gtt	aac	tat	ata	ata	aac	220	att.	~++	cta	~~=	tta	a ~ +	992	,	
								-		-	_	_				,,,,,	•	20
ASI	Asp		Val	GIA	ıyr	vai		GIY	ASN	vaı	val		GIY	Pne	Ser			
		265					270					275						
												,			•			25
gtc	tcg	tgg	tgg	aag	acc	aag	cac	aac	ctg	cat	cat	gct	gct	ccg	aat	104	10	
Val	Ser	Trp	Trp	Lys	Thr	Lys	His	Asn	Léu	His	His	Ala	Άla	Pro	Asn			
	280					285					290							30
										•								30
~ ===	tac	~~~	633	224	t 2.0	202	222	2++	~>+	~~~		~++	~~ t	50+	·	. 100		
										-						108		
	Cys	Asp	Gln	Lys	_	Thr	Pro	IIe	Asp		Asp	IIe	Asp	Thr	Leu			35
295					300				•	305					310		•	
ccc	atc	att	gct	tgg	agt	aaa	gat	ctc	ttg	gcc	act	gtt	gag	agc	aag	113	6	40
Pro	Ile	Ile	Ala	Trp	Ser	Lys	Asp	Leu	Leu	Ala	Thr	Val	Glu	Ser	Lys			
				315					320					325				
acc	atα	ttα	cga	att	ctt	cag	tac	can	cac	cta	ttc	+++	tta	att	ctt	-118	2 Δ	45
	_	_	_	_		•		_					_	-			, ,	•
1111	Mec	Leu	Arg	vaı	теп	GIII	ıyı		птъ	Leu	Pne	Pile		val	neu			
			330					335					340					50
									-									
ttg	acg	ttt	gcc	cgg	gcg	agt	tgg	cta	ttt	tgg	agc	gcg	gcc	ttc	act	123	2	
Leu	Thr	Phe	Ala	Arg	Ala	Ser	Trp	Leu	Phe	Trp	Ser	Ala	Ala	Phe	Thr			55
		345					350					355		•				33
			•															
ctc	agg	ccc	gag	tta	acc	ctt	aac	gag	aaα	ctt	ttα	gag	agg	gga	aca	128	10	
,			Glu														-	60
Leu		110	JIU	Deu	1111		GIY	GIU	בענה	neu		GIU	ar 9	GLY	1111			
	360					365					370							
																		65
atg	gct	ttg	cac	tac	att	tgg	ttt	aat	agt	gtt	gcg	ttt	tat	ctg	ctc	132	8.	30

	Met 375	Ala	Leu	His	Tyr	Ile 380	Trp	Phe	Asn	Ser	Val 385	Ala	Phe	Tyr	Leu	Leu 390	
5	ccc Pro	gga Gly	tgg Trp	aaa Lys	cca Pro	gtt Val	gta Val	tgg Trp	atg Met	gtg Val	gtc Val	agc Ser	gag Glu	ctc Leu	atg Met	tct Ser	1376
10					395					400					405		
	ggt	ttc	ctg	ctg	gga	tac	gtà	ttt	gta	ctc	agt	cac	aat	gga	atg	gag	1424
15	Gly	Phe	Leu	Leu 410	Gly	Tyr	Val	Pne	Val 415	Leu	Ser	nis	ASII	420	1100	02-	
20	gtg Val	tac	aat Asn	acg Thr	tca Ser	aag Lys	gac Asp	ttc Phe	gtg Val	aat Asn	gcc Ala	cag Gln	att Ile	gca Ala	tcg Ser	act Thr	1472
	Vul	-1-	425			-	-	430					435				
25	cgc Ara	gac Asr	atc	aaa Lys	gca Ala	ggg	gtg Val	ttt Phe	aat Asn	gat Asp	tgg Trp	ttc Phe	acc Thr	gga Gly	ggt Gly	ctc Leu	1520
30		440)				445					450					
35	aac Asr 455	Arq	a cag g Glr	g att	gag Glu	cat His 460	s His	cta Lev	a ttt 1 Phe	cca Pro	acg Thr	Met	Pro	agg Arg	cac His	aac Asn 470	1568
40	ctt	. aa	t aaa n Lva	a at	t tc1 e Sei	c cci	t cad	c gto	g gag l Glu	g act	t ttg	g tgo	aag Lys	g aag s Lys	g cat	t gga s Gly	1616
	200		2		47					480					48		
45	ct:	g gt u Va	c ta l Ty	c ga r Gl	a ga u As	c gt p Va	g ag	c at	g gc	t tog a Se	g gg r Gl	c ac	t tac	c cgg	g gt g Va	t ttg l Leu	1664
50	ı			49	0				49	5 .				50	0		
55	Ly	a ac s Th	a ct ir Le 50	u Ly	g ga s As	c gt p Va	t gc	c ga a As 51	p Al	t gc a Al	t tc a Se	a ca r Hi	c ca s Gl 51	n Gl	g ct n Le	t gct u Ala	1712
6)	a Se	gt to er 20	ga gg	gcato	gcag	g cac	tcgt:	cga	aaca	ittt	tg t	ctgt	tata	.g		1761
6	5 tg	ıttcı	atato	g tga	atcga	aggg	gaaa	aaggt	tcc (catgo	ctcto	ga to	ctatt	ctto	tg:	tagcca	at 1821

atttttcaat	tgaaaggagg ttcct	cactt atcttccatc	tatcgttgca catcctgcat	1881
cagagttagc	gttggagtaa tgtta	agcac ttgtagatta	tgcccaccat tgccacattt	1941 5
ctgttcggtt	acaatcgttt gatto	catge tateeteegt	gttcatctcg ttgttataag	
caagcttgaa	aaaacatgct acgag	attgg cagacgttgt	cttggcagct gtagaggttg	2061
gttccattca	ttgtgtagta cagaa	ctctc tcgtccctgt	ttctctacat tacttgttac	2121 15
atagtgactt	tcattcacag caaaa	aaaaa aaaaaaaa		2160
<210× 12				20
<210> 12 <211> 520 <212> PRT		·.		25
<213> Cerat	odon purpureus			30
<400> 12 Met Val Ser	Gln Gly Gly Gly	Leu Ser Gln Gly	Ser Ile Glu Glu Asn	
1	5	10	15	35
Ile Asp Val	. Glu His Leu Ala 20	Thr Met Pro Leu 25	Val Ser Asp Phe Leu 30	
Asn Val Leu	Gly Thr Thr Leu	Glv Gln Tro Ser	Leu Ser Thr Thr Phe	40
35		40	45	45
Ala Phe Lys	Arg Leu Thr Thr		Ser Asp Ile Ser Val	50
Glu Ala Glr	ı Lys Glu Ser Val 70	Ala Arg Gly Pro	Val Glu Asn Ile Ser 80	
Gln Ser Val	Ala Gln Pro Ile	Ara Ara Ara Tro	Val Gln Asp Lys Lys	55,
	85	90	95	60
Pro Val Thi	Tyr Ser Leu Lys	Asp Val Ala Ser	His Asp Met Pro Gln	

j	qzA	Cys		rp : 15	Ile	Ile	Ile	e L		31u 120	Ly	s V	al	Tyr	Asp	Va 12		Ser	Thr	Ph	ıe
5	Ala	Glu 130		ln :	His	Pro	Gly		ly ' 35	Thr	Va	.1 1	(le	Asn	Thr 140	ТУ	r I	Phe	Gly	Aı	g
.0	Asp 145	Ala	T	'hr	Asp	Val	Pho 15		er	Thr	Ph	ne I	His	Ala 155	Ser	Th	r:	Ser	Trp	Ly 10	/s 60
15	Ile	Leu	ı G	Sln	Asn	Phe		r I	le	Gly	As		Leu 170	Val	Arg	G1	u (Glu	Pro 175	T	hr
20 .	Leu	Glu	ı I	Leu	Leu 180	Lys	: Gl	u 7	ľyr	Arg		lu 85	Leu	Arg	Ala	L€	eu	Phe 190	Leu	A	rg
25	Glu	Gl:		Leu 195	Phe	Lys	s S€	r i	Ser	Lys 200		er	Tyr	Туг	Lev		ne 05	Lys	Thr	L	eu
30	Ile	21		Val	Ser	· Il	e Vā		Ala 215	Thi	s S	er	Ile	· Ala	22°		le	Ser	Let	1 T	yr
35	Lys 22		r	Tyr	Arg	, Al		al 30	Leu	Le	ı S	er	Alā	23	r Le	u M	et	Gly	, Le	1 I	Phe 240
40	Il	e Gl	.n	Gln	Су:	s Gl 24		rp	Leu	. Se	r F	lis	Ası 250		e Le	u H	lis	His	s Gl: 25	n ' 5	Val
45	Ph	e G]	lu	Thr	26		p L	eu	Asr	n As		Val 265		l Gl	у Ту	r V	/al	Va:		у.	Asn
50	Va	.1 Vá	al	Let 275		y Pł	ne S	er	Val	1 Se	_	Trp	Tr	p L)	rs Tì		Lys 285		s As	n	Leu
55	ні		is 90	Ala	a Al	a Pi	ro P	sn	G1: 29		7S	Asp	G1	n Ly	/s T:	yr ' 00	Thr	. Pr	o Il	.e	Asp
60		lu A	sp	Il	e As	T q		Leu 310		o I	le	Ile	e Al		rp S 15	er	Lys	s As	p L	eu	Leu 320

Ala	Thr	Val	Glu	Ser 325	Lys	Thr	Met	Leu	Arg 330	Val	Leu	Gln	Tyr	Gln 335	His	-	
Leu	Phe	Phe	Leu 340	Val	Leu	Leu	Thr	Phe 345	Ala	Arg	Ala	Ser	Trp 350	Leu	Phe	. ;	,
Trp	Ser	Ala 355	Ala	Phe	Thr	Leu	Arg 360	Pro	Glu	Leu	Thr	Leu [.] 365	Gly	Glu	Lys		
Leu	Leu 370	Glu	Arg	Gly	Thr	Met 375	Ala	Leu	His	Tyr	Ile 380	Trp	Phe	Asn	Ser		. 1
Val 385	Ala	Phe	Tyr	Leu	Leu 390	Pro	Gly	Trp	Lys	Pro 395	Val	Val	Trp	Met	Val 400		2
Val	Ser	Glu	Leu	Met 405	Ser	Gly	Phe	Leu	Leu 410	Gly	Tyr	Val	Phe	Val 415	Leu		2
Ser	His		Gly 420	Met	Glu	Val	Tyr	Asn 425	Thr	Ser	Lys	Asp	Phe 430	Val	Asn		.3
Ala	Gln	Ile 435	Ala	Ser	Thr	Arg	Asp 440	Ile	Lys	Ala	Gly	Val 445	Phe	Aşn	Asp		3
Trp	Phe 450	Thr	Gly	Gly	Leu	Asn 455	Arg	Gln	Ile	Glu	His 460	His	Leu	Phe	Pro		
Thr 465	Met	Pro	Arg	His	Asn 470	Leu	Asn	Lys	Ile	Ser 475	Pro	His	Val	Glu	Thr 480		4
Leu	Cys	Lys	Lys	His 485	Gly	Leu	Val	Tyr	Glu 490	Asp.	Val	Ser	Met	Ala 495	Ser		· ,
Gly	Thr	Tyr	Arg 500	Val	Leu	Lys	Thr	Leu 505	Lys	Asp	Val	Ala	Asp 510	Ala	Ala		5
Ser	His	Gln 515	Gln	Leu	Ala	Ala	Ser 520						•				6

·	
<210> 13	
<211> 1434	
₅ <212> DNA	
<213> Phaeodactylum tricornutum	
₁₀ <220>	
<221> CDS	
<222> (1)(1434)	
<pre><223> Delta-6-Desaturase</pre>	
<400> 13	48
20 atg ggc aaa gga ggg gac gct cgg gcc tcg aag ggc tca acg gcg gct 4	
Met Gly Lys Gly Gly Asp Ala Arg Ala Ser Lys Gly Box 15	
1 5 10	
25 and can got tot cop gag gac	96
tan can daa gtc aag acc cac gos	
arg Lys Ile Ser Trp Gln Glu Val Lys Thr His Ala Ser Pro Glu Asp	
20 25	
••	144
gcc tgg atc att cac tcc aat aag gtc tac gac gtg tcc aac tgg cac	
gcc tgg atc att cac too and gcc tgg atc att att cac too and gcc tgg atc att at att cac too and gcc tgg atc att att att att att att att att att	
35 40	
gaa cat ccc gga ggc gcc gtc att ttc acg cac gcc ggt gac gac atg	192
gaa cat ccc gga ggc gcc gtc att tte dog 140 Glu His Pro Gly Gly Ala Val Ile Phe Thr His Ala Gly Asp Asp Met	
Glu His Pro Gly Gly Ala Val Tie The 1945	
50	
acg gac att ttc gct gcc ttt cac gca ccc gga tcg cag tcg ctc atg	240
acg gac att ttc gct gcc ttc tab s Thr Asp Ile Phe Ala Ala Phe His Ala Pro Gly Ser Gln Ser Leu Met 80	
70 /5	
50	
aag aag tto tac att ggo gaa ttg oto oog gaa acc acc ggo aag gag	288
Lys Lys Phe Tyr Ile Gly Glu Leu Leu Pro Glu Thr Thr Gly Lys Glu	
Lys Lys Phe 191 116 327 325 90 95	
ccg cag caa atc gcc ttt gaa aag ggc tac cgc gat ctg cgc tcc aaa	336
ccg cag caa acc gee coo gan 60 Pro Gln Gln Ile Ala Phe Glu Lys Gly Tyr Arg Asp Leu Arg Ser Lys	
100 105 110	
	384
65 atc atc atg atg ggc atg ttc aag tcc aac aag tgg ttc tac gtc tac	304

Leu	Ile	Met	Met	Gly	Met	Phe	Lys	Ser	Asn	Lys	Trp	Phe	Tyr	Val	Tyr		
		115					120					125					
		•													•		5
_						gcc										432	
Lys	Cys	Leu	Ser	Asn	Met	Ala	Ile	Trp	Ala	Ala	Ala	Cys	Ala	Leu	Val		
	130					135					140						10
															•		
ttt	tac	tcg	gac	cgc	ttc	tgg	gta	cac	ctg	gcc	agc	gcc	gtc	atg	ctg	480	
	Tyr	Ser	Asp	Arg	Phe	Trp	Val	His	Leu	Ala	Ser	Ala	Val	Met	Leu		15
145					150					155					160		
																528	20
Gly	Thr	Phe	Phe		Gln	Ser	Gly	Trp	·	Ala	His	Asp	Phe		His		
				165	٠.				170					175			
																	25
cac	cag	gtc	ttc	acc	aag	cgc	aag	cac	aaa	gat	ctc	gga	gga	ctc	ttt	576	
His	Gln	Val	Phe	Thr	Lys	Arg	Lys	His	Gly	Asp	Leu	Gly	Gly	Leu	Phe		
·	;		180	•				185					190	· ·			30
tgg	ggg	aac	ctc	atg	cag	ggt	tac	tcc	gta	cag	tgg	tgg	aaa	aac	aag	624	*
Trp	Gly	Asn	Leu	Met	Gln	Gly	Tyr	Ser	Val	Gln	Trp	Trp	Lys	Asn	Lys		35
	,	195			÷		200					205					
cac	aac	gga	cac	cac	gcc	gtc	CCC	aac	ctc	cac	tgc	tcc	tcc	gca	gtc	672	. 40
His	Asn	Gly	His	His	Ala	Val	Pro	Asn	Leu	His	Cys	Ser	Ser	Ala	Val		
	210					215	•				220						
			·														45
						gac										720	
Ala	Gln	Asp	Gly	Asp	Pro	Asp	Ile	Asp	Thr	Met	Pro	Leu	Leu	Ala	Trp		
225					230				٠.	235					240		50
tcc	gtc	cag	caa	gcc	cag	tct	tac	cgg	gaa	ctc	caa	gcc	gac	gga	aag	768	
Ser	Val	Gln	Gln	Ala	Gln	Ser	Tyr	Arg	Glu	Leu	Glņ	Ala	Asp	Gly	Lys		55
				245					250					255		•	
gat	tcg	ggt	ttg	gtc	aag	ttc	atg	atc	cgt	aac	caa	tcc	tac	ttt	tac	816	60
Asp	Ser	Gly	Leu	Val	Lys	Phe	Met	Ile	Arg	Asn	Gln	Ser	Tyr	Phe	Tyr		
			260					265					270				
														-			65
ttt	ccc	atc	ttg	ttg	ctc	gcc	cgc	ctg	tcg	tgg	ttg	aac	gag	tcc	ttc	864	

Phe Pro Ile Leu Leu Ala Arg Leu Ser Trp Leu Asn Glu Ser Phe 275 280 285
aag tgc gcc ttt ggg ctt gga gct gcg tcg gag aac gct gct ctc gaa 912 Lys Cys Ala Phe Gly Leu Gly Ala Ala Ser Glu Asn Ala Ala Leu Glu 290 295
ctc aag gcc aag ggt ctt cag tac ccc ctt ttg gaa aag gct ggc atc 960 15 Leu Lys Ala Lys Gly Leu Gln Tyr Pro Leu Leu Glu Lys Ala Gly Ile 320 305 310 320
ctg ctg cac tac gct tgg atg ctt aca gtt tcg tcc ggc ttt gga 25° Leu Leu His Tyr Ala Trp Met Leu Thr Val Ser Ser Gly Phe Gly Arg 335
ttc tcg ttc gcg tac acc gca ttt tac ttt cta acc gcg acc gcg tcc 1056 Phe Ser Phe Ala Tyr Thr Ala Phe Tyr Phe Leu Thr Ala Thr Ala Ser 340 340 345
tgt gga ttc ttg ctc gcc att gtc ttt ggc ctc ggc cac aac ggc atg 1104 Cys Gly Phe Leu Leu Ala Ile Val Phe Gly Leu Gly His Asn Gly Met 35 355 360 365
gcc acc tac aat gcc gac gcc cgt ccg gac ttc tgg aag ctc caa gtc 1152 Ala Thr Tyr Asn Ala Asp Ala Arg Pro Asp Phe Trp Lys Leu Gln Val 370 375
acc acg act cgc aac gtc acg ggc gga cac ggt ttc ccc caa gcc ttt 1200 Thr Thr Thr Arg Asn Val Thr Gly Gly His Gly Phe Pro Gln Ala Phe 395 385
gtc gac tgg ttc tgt ggt ggc ctc cag tac caa gtc gac cac cac tta 1248 Val Asp Trp Phe Cys Gly Gly Leu Gln Tyr Gln Val Asp His His Leu 415
ttc ccc agc ctg ccc cga cac aat ctg gcc aag aca cac gca ctg gtc 1296 Phe Pro Ser Leu Pro Arg His Asn Leu Ala Lys Thr His Ala Leu Val 420 420 420
65 gaa teg tte tge aag gag tgg ggt gte cag tae cae gaa gee gae ett $$ 1344

C 1392 Y 10 1434 15
y 10 1434 15
y 10 1434 15
1434 15
1434 15
20
20
20
•
•
25
25
25 ··
•
30
a
35
)
· ~ 40
•
45
50
;
1
. 60
•
<u>.</u>

115	120	125
5 Lys Cys Leu Ser Asn Met Al 130 13	5	
Phe Tyr Ser Asp Arg Phe Tr 145	133	·
15 Gly Thr Phe Phe Gln Gln S	er Gly Trp Leu Ala Hi 170	s Asp Phe Leu His 175
20 His Gln Val Phe Thr Lys A	rg Lys His Gly Asp Le 185	eu Gly Gly Leu Phe 190
25 Trp Gly Asn Leu Met Gln (Gly Tyr Ser Val Gln T 200	rp Trp Lys Asn Lys 205
210	215	
Ala Gln Asp Gly Asp Pro 225 230	255	
Ser Val Gln Gln Ala Gln 245	Ser Tyr Arg Glu Leu 250	Gln Ala Asp Gly Lys 255
Asp Ser Gly Leu Val Lys	Phe Met Ile Arg Asn 265	Gln Ser Tyr Phe Tyr 270
Phe Pro Ile Leu Leu Leu 50 275	280	
Lys Cys Ala Phe Gly Le	295	500
Leu Lys Ala Lys Gly Le	.0	,
Leu Leu His Tyr Ala T:	rp Met Leu Thr Val Se 330	r Ser Gly Phe Gly Arg 335

atg	gtg	tcc	cag	ggc	ggc	ggt	ctc	tcg	cag	ggt	tcc	att	gaa	gaa	aac	48	
Met	Val	Ser	Gln	Gly	Gly	Gly	Leu	Ser	Gln	Gly	Ser	Ile	Glu	Glu	Asn		
1				5					10					15		•	5
								_ •									
											-	agt	-			96	
тте	ASP	vai	20	HIS	Leu	Ala	Inr		Pro	Leu	vai	Ser	_	Pne	Leu	•	10
			20					25					30				
aat	atc	cta	aaa	acσ	act	tta	aac	caq	taa	agt	ctt	tcc	act	aca	ttc	144	. 15
												Ser					13
		35	-				40					45					
																	. 20
gct	ttc	aag	agg	ctc	acg	act	aag	aaa	cac	agt	tcg	gac	atc	tcg	gtg	192	
Ala	Phe	Lys	Arg	Leu	Thr	Thr	Lys	Lys	His	Ser	Ser	Asp	Ile	Ser	Val		
	50					55					60						25
						•					•	•	• ••	•.*	•		
gag	gca	caa	aaa	gaa	tcg	gtt	gcg	cgg	ggg	cca	gtt	gag	aat	att	tct	240	
Glu	Ala	Gln	Lys	Glu	Ser	Val	Ala	Arg	Gly	Pro	Val	Glu	Asn	Ile	Ser		.30
65					70			•		75					80		
																•	
												cag				288	35
Gln	Şer	Val	Ala		Pro	Ile	Arg	Arg		Trp	Val	Gln	Asp		Lys	•	
				85					90					95			
	~++	205	t > 0		a+~		~~+									226	40
												gat Asp	-		_	336	-
110	٧٠٦		100	Jei	Dea	Lys	nsp	105	nia	SCI	nis	ASP	110	FIO	GIII		
							_	200					110				45
gac	tgc	tgg	att	ata	atc	aaa	gag	aag	gtg	tat	gat	gtg	agc	acc	ttc	384	
												Val					50
		115					120					125		·	· · ·		50
gct	gag	cag	cac	cct	gga	ggc	acg	gtt	atc	aac	acc	tac	ttc	gga	cga	432	55
Ala	Glu	Gln	His	Pro	Gly	Gly	Thr	Val	Ile	Asn	Thr	Tyr	Phe	Gly	Arg	,	33
	130					135					140				•		
																	60
										_		acc			_	480	
	Ala	Thr	Asp	Val		Ser	Thr	Phe	His		Ser	Thr	Ser	Trp			
145					150					155					160		65

	att	ct	t cag	g aat	tto	: tac	ato	ggg	, aac	ctt	gtt	t agg	gag	g gag	ccg	g act	528
																o Thr	
5					165					170					175		
	tto	gag	gctg	g cto	g aag	r gag	tac	aga	gag	r ttg	aga	a gcc	ctt	ttc	ttg	g aga	576
10																Arg	
				180					185					190			
15	gaa	caç	ctt	tto	aag	agt	tcc	aaa	tcc	tac	tac	ctt	ttc	aaq	act	ctc	624
																Leu	02.
			195					200		_	-		205			204	
20																	
	ata	aat	gtt	tcc	att	gtt	gcc	aca	agc	att	aca	ata	atc	agt	cta	tac	672
					Ile												072
25		210					215					220	110	Jer	пеп	TÄT	
23												220					
	aag	tct	tac	cgg	gcg	att	cta	tta	tca	acc	agt	tta	ato	aac	++ ~		720
30					Ala												720
30	225		-	_		230		2 0 u		riid	235	ьец	Mec	GIY	Leu		
											233					240	
0.5	att	caa	cag	tac	gga	taa	tta	tct	cac	rat.	+++	cta	Cac	aa+	~~~		7.00
35					Gly												768
				-4-	245		200		1113	250	FIIC	Leu	nis	HIS		vaı	
										250					255		
40	ttt	gag	aca	cac	tgg	ctc	aat	gac	at t	att	aac.	tat	~+~				21.5
					Trp												816
				260				ı.op	265	Vai	GIY	IÀT	vai		GIĀ	Asn	
45									203					270			
	gtt	att	cta	gga	ttc	agt	atc	tca	taa	taa	224	200					
					Phe										aac	ctg -	864
50			275	1		501		280	пр	пр	ьys	THE		HIS	Asn	Leu	
								200					285				
	cat	cat	act	act	cca	22t	~==	t ~ ~	~~~								
55					ccg												912
		290		nia	Pro		295	Cys	ASP	GIN	Lys		Thr	Pro	Ile	Asp	
		230					295					300					
0	gag	αat	att	αa+	ac+	at a	co-	- - -	n 4 +		.						
					act												960
	305	_P	TTC	uah	Thr		PIO.	тте	тте.			Ser	Lys .	Asp			
5						310					315					320	

gcc	act	gtt	gag	agc	aag	acc	atg	ttg	cga	gtt	ctt	cag	tac	cag	cac	1008	
Ala	Thr	Val	Glu	Ser	Lys	Thr	Met	Leu	Arg	Val	Leu	Gln	Tyr	Gln	His		
				325					330					335			5
cta	ttc	ttt	ttg	gtt	ctt	ttg	acg	ttt	gcc	cgg	gcg	agt	tgg	cta	ttt	1056	
Leu	Phe	Phe	Leu	Val	Leu	Leu	Thr	Phe	Ala	Arg	Ala	Ser	Trp	Leu	Phe		10
			340	•				345					350				
tgg _.	agc	gcg	gcc	ttc	act	ctc	agg	CCC	gag	ttg	acc	ctt	ggc	gag	aag	1104	15
Trp	Ser	Ala	Ala	Phe	Thr	Leu	Arg	Pro	Glu	Leu	Thr	Leu	Gly	Glu	Lys		
		355					360					365					
										•							20
ctt	ttg	gag	agg	gga	acg	atg	gct	ttg	cac	tac	att	tgg	ttt	aat	agt	1152	
Leu		Glu	Arg	Gly	Thr	Met	Ala	Leu	His	Tyr	Ile	Trp	Phe	Asn	Ser	•	
	370			•		375					380						25
													•				•
gtt	gcg	ttt	tat	ctg	ctc	ccc	gga	tgg	aaa	cca	gtt	gta	tgg	atg	gtg	1200	•
Val	Ala	Phe	Tyr	Leu	Leu	Pro	Gly	Trp	Lys	Pro	Val	Val	Trp	Met	Val		30
385					390					395					400		
												_	•	gta		1248	35
Val	Ser	Glu	Leu		Ser	Gly	Phe	Leu	Leu	Gly	Tyr	Val	Phe	Val	Leu		
				405					410					415			
																•	40
														gtg		1296	
Ser	His	Asn		Met	Glu	Val	Tyr		Thr	Ser	Lys	Asp		Val	Asn		
			420					425					430				45
				•												4044	
														aat -		1344	
Ala	Gin		Ala	Ser	Thr	Arg		ITE	Lys	Ala	GIA		Phe	Asn	Asp		50
		435					440					445					
																1200	
														ttt		1392	55
Trp		THE	GIA	GIÀ	Leu		Arg	GIN	TIE	GIU		H1S	Leu	Phe	Pro		
	450					455					460						
200	a+~		2~~	C = C	227	a++	22+	222	2++	+ ~ +	00+	~ ~~	~+~	~~~	a.c.+	1440	60
														gag		1440	
465	Mec	FIU	vtā	TIS	470	ьeu	MSII	пλг	тте		P10	urs	vaı	Glu	480		
-200					3. / ∪					475					4 00	•	65

	ttg	tgc	aag	aag	cat	gga	ctg	gtc	tac	gaa	gac	gtg	agc	atg	gct	tcg	1488
	Leu	Cys	Lys	Lys	His	Gly	Leu	Val	Tyr	Glu	Asp	Val	Ser	Met	Ala	Ser	
5					485					490					495		
		•															
	ggc	act	tac	cgg	gtt	ttg	aaa	aca	ctt	aag	gac	gtt	gcc	gat	gct	gct	1536
10	Gly	Thr	Tyr	Arg	Val	Leu	Lys	Thr	Leu	Lys	Asp	Val	Ala	Asp	Ala	Ala	
				500					505					510			
																	٠
15	tca	cac	cag	cag	ctt	gct	gcg	agt	tga								1563
	Ser	His	Gln	Gln	Leu	Ala	Ala	Ser									
			515					520									
20																	
	<210)> 16	5														
25	<211	1> 52	20														
	<212	2> PI	RT														
	<213	3> C	erato	nobc	pur	pure	ıs										
30																	
	<400)> 10	5														
	Met	Val	Ser	Gln	Gly	Gly	Gly	Leu	Ser	Gln	Gly	Ser	Ile	Glu	Glu	Asn	
35	1				5					10			•		15	•	•
														,			
	Ile	Asp	Val	Glu	His	Leu	Ala	Thr	Met	Pro	Leu	Val	Ser	Asp	Phe	Leu	
40				20					25					30			
	Asn	Val	Leu	Gly	Thr	Thr	Leu	_	Gln	Trp	Ser	Leu	Ser	Thr	Thr	Phe	
45			35					40					45				
														_		_	
	Ala	Phe	Lys	Arg	Leu	Thr		Lys	Lys	His	Ser		Asp	Ile	Ser	. Val	
50		50					55					60					
															_		
	Glu	Ala	Gln	Lys	Glu	Ser	Val	Ala	Arg	Gly		Val	Glu	Asn	Ile		
55	65					70					75					80	
	Gln	Ser	Val	Ala	Gln	Pro	Ile	Arg	Arg	Arg	Trp	Val	Gln	Asp		Lys	
60					85					90					95		
₩																	
	Pro	Val	Thr	_	Ser	Leu	Lys	Asp		Ala	Ser	His	Asp		Pro	Gln	
4 5				100					105					110			
65																	

Asp	Cys		Ile	Ile	Ile	Lys	-	Lys	Val	Tyr	Asp		Ser	Thr	Phe	
		115					120					125				
Ala _.	Glu 130	Gln	His	Pro	Gly	Gly 135	Thr	Val	Ile		Thr 140	Tyr	Phe	Gly	Arg	•
Asp 145	Ala	Thr	Asp	Val	Phe 150	Ser	Thr	Phe	His	Ala 155	Ser	Thr	Ser	Trp	Lys 160	1
Ile	Leu	Gln	Asn	Phe 165	Tyr	Ile	Gly	Asn	Leu 170	Val	Arg	Glu	Glu	Pro 175	Thr	1:
Leu	Glu	Leu	Leu 180	Lys	Glu	Tyr	Arg	Glu 185	Leu	Arg	Ala	Leu	Phe 190	Leu	Arg	2
Glu	Gln	Leu 195	Phe	Lys	Ser	Ser	Lys 200	Ser	Туг	Tyr	Leu	Phe 205	Lys	Thr	Leu	 2
Ile	Asn 210	Val	Ser	Ile	Val	Ala 215	Thr	Ser	Ile	Ala	Ile 220	Ile	Ser	Leu	Tyr	3
Lys 225	Ser	Туг	Arg	Ala	Val	Leu	Leu	Ser	Ala	Ser 235	Leu	Met	Gly	Leu	Phe 240	
Ile	Gln	Gln	Cys	Gly 245	Trp	Leu	Ser	His	Asp 250	Phe	Leu	His	His	Gln 255	Val	4
Phe	Glu	Thr	Arg 260	Trp	Leu	Asn	Asp	Val 265	Val	Gly	Tyr	Val	Val 270	Gly	Asn	4
Val	Val	Leu 275	Gly	Phe	Ser	Val	Ser 280	Trp	Trp	Lys	Thr	Lys 285	His	Asn	Ļeu	5
His	His 290	Ala	Ala	Pro	Asn	Glu 295	Cys	Asp	Gln	Lys	Tyr 300	Thr	Pro	Ile	Asp	5.
Glu 305	Asp	Ile	Asp	Thr	Leu 310	Pro	Ile	Ile	Ala	Trp 315	Ser	Lys	Asp	Leu	Leu 320	6
Ala	Thr	Val	Glu	Ser	Lys	Thr	Met	Leu	Arg	Val	Leu	Gln	Tyr	Gln	His	6.

					:	325					3	30					33	35	
5	Leu	Phe	Ph		eu '	Val	Leu	Leu	Th		he <i>l</i> 45	Ala	Arg	Ala	Ser	Tr 35	ър L 50	eu l	Phe
10	Trp	Ser	: Al		la	Phe	Thr	Leu	Ar 36		ro (Glu	Leu	Thr	1 Lev	G]	ly G	lu :	Lys
15	Leu	Le:		Lu <i>I</i>	Arg	Gly	Thr	Меt 375		la I	.eu	His	Tyr	380	Tr]	p Pl	he A	Asn	Ser
20	Val		a P	he '	Tyr	Leu	Leu 390		G :	ly '	Trp	Lys	Pro 395	va:	L Va	1 T	rp l	Met	Val 400
25	Va]	L Se	r G	lu	Leu	Met 405		Gly	γP	he :	Leu	Leu 410	Gl	у Ту	r Va	1 P	he '	Val 415	Leu
30	Se:	r Hi	s A	sn	Gly 420		: Gl	ı Va	1 1	yr	Asn 425	Thr	: Se	r Ly	s As	sp I	Phe 130	Val	Asn
35	Al	a GI		[le	Ala	a Se:	r Th	r Ar		Asp 140	Ile	Ly	s Al	a Gl	y Va 4	al 1 45	Phe	Asn	Asp
40	Tr		he '	Thr	Gly	y Gl	y Le		sn 2	Arg	Glr	ı Il	e G]	lu H:	is H 50	is	Leu	Ph€	Pro
4	5	ır M 55	et	Pro	Ar	g Hi	s As		eu .	Asn	Lys	s Il	e S 4'	er P 75	ro H	is	Val	Gli	1 Thr 480
5	L:	eu C	:ys	Lys	: Ly	s Hi		ly L	eu	Val	Ту	r Gl 49		sp V	al S	Ser	Met	Al 49	a Ser 5
	G 55	ly 1	Thr	Туі	6 Ar 50		al L	eu L	ys	Thr	50		ys A	/ qa	al i	Ala	Asp	Al	a Ala
	S 60	er :	His	G1: 51		ln L	eu A	la P	Ala	Se:									

⁶⁵ <210> 17

														•				
<211	> 15	578																
<212	?> DI	AI.																
<213	> Pi	ysc	omiti	rella	a pat	tens								•				5
													-		•			
<220)>			•						•								
	l> CI	os																10
			(1578	3)														10
		-	-6-De		ırası	5												
-02.	,, ,		0 20	-Dac		_												
-400)> 17	7							,					,			•	. 15
			aca	~~~	aat	~~=	ctt	CaG	cac	aac	tot	ctc	~==	~==		48		
			gcg													40		
	vaı	Pne	Ala	_	GIA	GIY	Leu	GIN		GTA	Ser	Leu	GIU		Asn		•	20
1				5					10	٠.				15				
																		•
	_	_	gag			-	_									96		25
Ile	Asp	Val	Glu	His	Ile	Ala	Ser	Met	Ser	Leu	Phe	Ser	Asp	Phe	Phe			
			20					25					30					
							•											30
agt	tat	gtg	tct	tca	act	gtt	ggt	tcg	tgg	agc	gta	cac	agt	ata	caa	144	*	
Ser	Tyr	Val	Ser	Ser	Thr	Val	Gly	Ser	Trp	Ser	Val	His	Ser	Ile	Gln			
		35					40					45						35
																		-
cct	ttg	aag	cgc	ctg	acg	agt	aag	aag	cgt	gtt	tcg	gaa	agc	gct	gcc	192		
Pro	Leu	Lys	Arg	Leu	Thr	Ser	Lys	Lys	Arg	Val	Ser	Glu	Ser	Ala	Ala			:-40
٠.	50					55					60			•		•		
gtg	caa	tgt	ata	tca	gct	gaa	gtt	cag	aga	aat	tcg	agt	acc	cag	gga	240		45
Val	Gln	Cys	Ile	Ser	Ala	Glu	Val	Gln	Arg	Asn	Ser	Ser	Thr	Gln	Gly			
65					7,0					75					80			
													,					50
act	gcg	gag	gca	áta	gca	gaa	tca	gtc	gtg	aag	ccc	acg	aga	cga	agg	288	٠.	50
Thr	Ala	Glu	Ala	Leu	Ala	Glu	Ser	Val	Val	Lys	Pro	Thr	Arg	Arg	Arg			
				85					90	_				95				
																		55
tca	tct	cag	tgg	aaσ	aaq	tca	aca	cac	ccc	cta	tca	σaa	qta	gca	gta	336		
		_	Trp	_	_	_						_						
			100					105					110		•			60
cac	aac	aag	cca	age	gat	tac	taa	att	att	gta	aaa	aac	aao	ata	tat	384		
			Pro															65
	- 1014	د ر_	0		ى د	CYS	10		• • •		~, 5		~, 5					

115	120	125	
gat gtt tcc aat ttt gcg gac Asp Val Ser Asn Phe Ala Asp 130	gag cat ccc gga gga Glu His Pro Gly Gly 140	tca gtt att agt Ser Val Ile Ser	432
act tat ttt gga cga gac ggc Thr Tyr Phe Gly Arg Asp Gly 15 145	e aca gat gtt ttc tct Thr Asp Val Phe Ser 155	agt ttt cat gca Ser Phe His Ala 160	480
gct tct aca tgg aaa att ct 20 Ala Ser Thr Trp Lys Ile Le 165	t caa gac ttt tac ato u Gln Asp Phe Tyr Ilo 170	t ggt gac gtg gag e Gly Asp Val Glu 175	528
agg gtg gag ccg act cca ga Arg Val Glu Pro Thr Pro Gl 180	ng ctg ctg aaa gat tt nu Leu Leu Lys Asp Ph 185	c cga gaa atg aga e Arg Glu Met Arg 190	576
gct ctt ttc ctg agg gag ca Ala Leu Phe Leu Arg Glu G 195	aa ctt ttc aaa agt to 1n Leu Phe Lys Ser So 200	eg aaa ttg tac tat er Lys Leu Tyr Tyr 205	624
gtt atg aag ctg ctc acg a Val Met Lys Leu Leu Thr A	sn Val Ala lle File A	ct gcg agc att gca la Ala Ser Ile Ala 20	672
ata ata tgt tgg agc aag a Ile Ile Cys Trp Ser Lys ' 225 230	act att tca gcg gtt t Thr Ile Ser Ala Val I 235	ttg gct tca gct tgt Leu Ala Ser Ala Cys 240	720 5
atg atg gct ctg tgt ttc Met Met Ala Leu Cys Phe 245	caa cag tgc gga tgg Gln Gln Cys Gly Trp 250	cta tcc cat gat tt Leu Ser His Asp Ph 255	t 768 e
ctc cac aat cag gtg ttt Leu His Asn Gln Val Phe 60 260	gag aca cgc tgg ctt Glu Thr Arg Trp Leu 265	aat gaa gtt gtc gg Asn Glu Val Val G	gg 816 ly
tat gtg atc ggc aac gcc	gtt ctg ggg ttt agt Val Leu Gly Phe Ser	aca ggg tgg tgg a	ag 864 ys

		275					280					285					•
gag	aag	cat	aac	ctt	cat	cat	gct	gct	cca	aat	gaa	tgc	gat	cag	act	912	5
Glu	Lys	His	Asn	Leu	His	His	Ala	Ala	Pro	Asn	Glu	Cys	Asp	Gln	Thr		
	290					295					300	-	•				
																	10
tac	caa	cca	att	gat	gaa	gat	att	gat	act	ctc	CCC	ctc	att	acc	taa	960	10
				Asp												900	
305	GIII	110	116	nsp	310	дед	116	vəħ	1111		PIO	Leu	116	AIG			
303		•			310					315					320		15
																4000	
				ctg -									_	_		1008	
Ser	Lys	Asp	Iте	Leu	Ala	Thr	Val	GIu		Lys	Thr	Phe	Leu	_	Ile		20
				325					330					335			
ctc	caa	tac	cag	cat	ctg	ttc	ttc	atg	ggt	ctg	tta	ttt	ttc	gcc	cgt	1056	25
Leu	Gln	Tyr	Gln	His	Leu	Phe	Phe	Met	Gly	Leu	Leu	Phe	Phe	Ala	Arg		
			340					345					350				*
																	30
ggt	agt	tgg	ctc	ttt	tgg	agc	tgg	aga	tat	acc	tct	aca	gca	gtg	ctc	1104	
Gly	Ser	Trp	Leu	Phe	Trp	Ser	Trp	Arg	Tyr	Thr	Ser	Thr	Ala	Val	Leu		
		355					360					365		•			35
																	33
tca	cct	gtc	gac	agg	ttg	ttg	gag	aag	gga	act	gtt	ctg	ttt	cac	tac	1152	
				Arg										-			
	370		_			375		-	-		380	-	•			•	, 40
ttt	taa	ttc	atc	ggg	aca	aca	tac	tat	ctt	ctc	cct :	aat	táa	aan	cca	1200	
				Gly									-	_		1200	45
385			, , , ,	Cry	390	mu	Cys	-7-	Deu		110	GIY	пр	пуз			
303					390					395					400		
_ يونو																	50
				gcg												1248	
Leu	Val	Trp	Met	Ala	Val	Thr	Glu	Leu		Ser	Gly	Met	Leu		Gly		•
				405					410					415			55,
ttt	gta	ttt	gta	ctt	agc	cac	aat	ggg	atg	gag	gtt	tat	aat	tcg	tct	1296	
Phe	Val	Phe	Val	Leu	Ser	His	Asn	Gly	Met	Glu	Val	Tyr	Asn	Ser	Ser		60
			420					425					430				00
							•										
aaa	gaa	ttc	gtg	agt	gca	cag	atc	gta	tcc	aca	cgg	gat	atc	aaa	gga	1344	
Lys	Glu	Phe	Val	Ser	Ala	Gln	Ile	Val	Ser	Thr	Arg	Asp	Ile	Lys	Gly		65

			43	5				440)				445				
5	aac	ata	a tto	c aac	c gac	tgg	, tto	c act	ggt	t ggd	c ctt	. aac	aga	Caa	a ata	a gag	1392
	Asn	Ile	Phe	e Ası	a Asp	Tr	Phe	e Thr	Gly	/ Gl	/ Leu	Asn	Ara	Glr	l Ile	. gag : Glu	1392
		450)				455					460				014	
10																•	
	cat	cat	ctt	ttc	сса	aca	ato	ccc	ago	g cat	aat	tta	aac	aaa	ata	gca	1440
	His	His	Leu	ı Phe	Pro	Thr	Met	Pro	Arg	, His	Asn	Leu	Asn	Lys	Ile	Ala	
15	465					470					475					480	
	cct	aga	gtg	gag	gtg	ttc	tgt	aag	aaa	cac	ggt	ctg	gtg	tac	gaa	gac	1488
20	Pro	Arg	Val	Glu	Val	Phe	Cys	Lys	Lys	His	Gly	Leu	Val	Tyr	Glu	Asp.	
					485					490	•				495	-	
25	gta	tct	att	gct	acc	ggc	act	tgc	aag	gtt	ttg	aaa	gca	ttg	aag	gaa	1536
	Val	Ser	Ile	Ala	Thr	Gly	Thr	Cys	Lys	Val	Leu	Lys	Ala	Leu	Lys	Glu	
				500					505					510			
30																	
											acc			taa			1578
	Val	Ala		Ala	Ala	Ala	Glu	Gln	His	Ala	Thr	Thr	Ser				
35			515					520					525				
	<210	- 10															
40	<211															٠	
	<212																
	<213																
45		- 111	yscc	4111 CT	етта	pat	ens										
	<400:	> 18									•						
			Phe	Ala	Glv i	i Glv	Clv	Long	~1	01	01 4			_			
50	Met 1				5	O±,	GIY	neu (3111		GIA ?	ser 1	Leu (3lu		Asn	
					_					10					15		
	Ile A	Asp V	Val (Glu 1	His :	Ile i	Ala	Ser 1	det.	Ser :	T 011 T)h					
5				20					25	Ser .	Leu i	ne s	er A		Phe 1	Phe	
									23					30			
_	Ser 1	ſyr (/al :	Ser S	Ser 7	Thr V	Jal (Gly S	Ser '	I'ro :	Ser V	al ¤	Tie C	or -	רוה י	71 	
0			35					40			V	~_ I.	1E	- I	rie (3 T I I	

Pro Leu Lys Arg Leu Thr Ser Lys Lys Arg Val Ser Glu Ser Ala Ala

Val 65	Gln	Cys	Ile	Ser	Ala 70	Glu	Val	Gln	Arg	Asn 75	Ser	Ser	Thr	Gln	Gly 80				
											•			•					5
Thr	Ala	Glų	Ala	Leu	Ala	Glu	Ser	Val	Val	Lys	Pro	Thr	Arg	Arg	Arg	•			
				85					90			•	. •	95					
																			10
Ser	Ser	Gln	Trp	Lys	Lys	Ser	Thr			Leu	Ser	Glu		Ala	Val				
			100					105					110					•	
				_					_								,	•	15
His	Asn		Pro	Ser	Asp	Cys		Ile	Val	Val	Lys		Lys	Val	Tyr				
		115					120		•			125		. •		-		•	
_		_	_			_			_				•						20
Asp		Ser	Asn	Pne	Ala		GIU	HIS	Pro	GTĀ	_	Ser	vaı	ше	ser				
	130					135					140								
Th ~	TP1 225	Phe	Gly	λrα	y e.r.	Cly	Wha:	A cm	17 n 1	Pho	Sor	Cor.	Dhe	Vic	- ר ה				25
145	IYL	FILE	Gry	ALG	150	GIY	1111	nsp	vaı	155	Ser	Ser	FILE	пто	160				
747					150					100	٠				100				
Δla	Ser	ጥ ኮ ዮ	Trp	Lve	Tle	T.e.11	Gln	Asn	Phe	ጥኒያዮ	Tle	Glv	Acn	v-1	Glu				30
	DCI			165			0111	·LDD	170	-3-	110	O _T	nop'	175	Olu				
							•	•	1.0					1,5					25
Arg	Val	Glu	Pro	Thr	Pro	Glu	Leu	Leu	Lvs	Asp	Phe	Ara	Glu	Met	Ara				35
_			180					185	-	•			190						
				*															40
Ala	Leu	Phe	Leu	Arg	Glu	Gln	Leu	Phe	Lys	Ser	Ser	Lys	Leu	Tyr	Tyr				70
		195					200					205							
																,			45
Val	Met	Lys	Leu	Leu	Thr	Asn	Val	Ala	Ile	Phe	Ala	Ala	Ser	Ile	Ala				
	210					215			•		220								
													*						50
Ile	Ile	Cys	Trp	Ser	Lys	Thr	Ile	Ser	Ala	Val	Leu	Ala	Ser	Ala	Cys	•			
225					230				ē	235			•		240				
																			55
Met	Met	Ala	Leu		Phe	Gln	Gln	Cys		Trp	Leu	Ser	His		Phe	•			
				245					250		-			255					
T	TT# -	3	0 3	11. 7	D1	03	mì		.	.		6 3	TT- 3	11. 3	03 = 1				60
ьeu	H1S	ASN	Gln	vaı	rne	GIU	Tnr		Trp	Leu	Asn	GIU		val	GTA				
			260					265					270						
																			65

_	Tyr	Val	Ile 275	Gly	Asn	Ala	Val	Leu 280	Gly	Phe	Ser	Thr	Gly 285	Trp	Trp	Lys
5	Glu	Lys 290	His	Asn	Leu	His	His 295	Ala	Ala	Pro	Asn	Glu 300	Cys	Asp	Gln	Thr
10	Tyr 305	Gln	Pro	Ile	Asp	Glu 310	Asp	Ile	Asp	Thr	Leu 315	Pro	Leu	Ile	Ala	Trp 320
15	Ser	Lys	Asp	Ile	Leu 325	Ala	Thr	Val	Glu	Asn 330	Lys	Thr	Phe	Leu	Arg 335	Ile
20	Leu	Gln	Tyr	Gln 340	His	Leu	Phe	Phe	Met 345	Gly	Leu	Leu	Phe	Phe 350	Ala	Arg
25	Gly	Ser	Trp 355	Leu	Phe	Trp	Ser	Trp 360	Arg	Tyr	Thr	Ser	Thr 365	Ala	Val	Leu
30	Ser	Pro 370	Val	Asp	Arg	Leu	Leu 375	Glu	Lys	Gly	Thr	Val 380	Leu	Phe	His	Tyr
35	Phe 385	Trp	Phe	Val	Gly	Thr 390	Ala	Cys	Tyr	Leu	Leu 395	Pro	Gly	Trp	Lys	Pro 400
40	Leu	Val	Trp	Met	Ala 405	Val	Thr	Glu	Leu	Met 410	Ser	Gly	Met	Leu	Leu 415	Gly
45	Phe	Val	Phe	Val 420	Leu	Ser	His	Asn	Gly 425	Met	Glu	Val	Tyr	Asn 430	Ser	Ser
50	Lys	Glu	Phe 435	Val	Ser	Ala	Gln	Ile 440	Val	Ser	Thr	Arg	Asp 445	Ile	Lys	Gly
55	Asn	Ile 450	Phe	Asn	Asp	Trp	Phe 455	Thr	Gly	Gly	Leu	Asn 460	Arg	Gln	Ile	Glu
60	His 465	His	Leu	Phe	Pro	Thr 470	Met	Pro	Arg	His	Asn 475	Leu	Asn	Lys	Ile	Ala 480
65	Pro	Arg	Val	Glu	Val	Phe	Cys	Lys	Lys	His	Gly	Leu	Val	Tyr	Glu	Asp

	485	490	495
Val Ser Ile Ala 500		ys Val Leu Lys Ala L 05 5	eu Lys Glu 5
300	3	,,	10
•	Ala Ala Glu Gln H	• •	10
515	520	525	
	•		15
<210> 19		•	
<211> 837		•	
<212> DNA	•		. 20
<213> Phytophthe	ora infestans		
•		• • •	
<220>			. 25
<221> CDS	•	•	
<222> (1)(837))	•	
<223> Delta-6-E			20
			30
<400> 19	•		
	cta cto cao aoc ta	ac tac gcg tgg gcc a	ac gcc acg 48
		r Tyr Ala Trp Ala A	33
1	5	10	15
gag gcc aag ctg	cta dac tad atc da	ac cct gag ggc ggc t	gg aag gtg 96
	•	sp Pro Glu Gly Gly T	
20	•		30
	•	•	45
cat cct atd dca	dad tac occ ota d	cc aac ttc tcc agc g	to tac gcc 144
		la Asn Phe Ser Ser V	•
35 ·	40	45	50
35		43	
ato too oto ooa	tac tta cta tta a	ta ato tto ogo soo o	192
		ta atc ttc ggc acg g	55
50		al Ile Phe Gly Thr A	id heu met
50	55 [.]	60	
	000 000 000		60
		cc agt cca tta cag t	
	•	nr Ser Pro Leu Gln P	
65	70	75	80

	aac	ccc	atc	caa	gtc	att	gcc	tgc	tct	tat	atg	tgc	gtg	gag	gcc	gcc	288
	Asn	Pro	Ile	Gln	Val	Ile	Ala	Cys	Ser	Tyr	Met	Cys	Val	Glu	Ala	Ala	
5					85					90					95		
																	226
					cgc												336
10	Ile	Gln	Ala		Arg	Asn	Gly	Tyr		Ala	Ala	Pro	Cys		Ala	Pne	
				100					105					110			
		+ 00	~ 2.0	~ a c	ccc	ata	ato	aac	220	att	cta	tac	ctc	ttc	tat	ctc	384
15					Pro												
	гуѕ	Ser	115	nsp	110	var	1100	120	11.011	•		-1-	125		-4		
			110														
20	tcc	aaq	atg	ctc	gac	ctg	tgc	gac	aca	gtc	ttc	att	atc	cta	gga	aag	432
					Asp												
25		130					135					140					
25																	
	aag	tgg	aaa	cag	ctt	tcc	atc	ttg	cac	gtg	tac	cac	cac	ctt	acc	gtg	480
30	Lys	Trp	Lys	Gln	Leu	Ser	Ile	Leu	His	Val	Tyr	His	His	Leu	Thr	Val	
50	145					150					155					160	
35	ctt	ttc	gtc	tac	tat	gtg	acg	ttc	cgc	gcc	gct	cag	gac	ggg	gac	tca	528
	Leu	Phe	Val	Tyr	Tyr	Val	Thr	Phe	Arg	Ala	Ala	Gln	Asp	Gly		Ser	
					165					170					175		
40																	F 7 C
					gtg												576
	Tyr	Ala	Thr		Val	Leu	Asn	GIY	185	vaı	HIS	THE	TTE	190		1111	
45				180					100					130			
	tac	tac	ttc	atc	agc	acc	cac	acσ	cac	aac	att	taa	tgg	aaq	aag	tac	624
					Ser										Lys	Tyr	
50	÷4 -	-1-	195			•••		200				-	205		_		
	ctc	acg	cgc	att	cag	ctt	atc	cag	ttc	gtg	acc	atg	aac	gtg	cag	ggc	672
55																Gly	
		210					215					220					
60	tac	ctg	acc	tac	tct	cga	cag	tgc	сса	ggc	atg	cct	cct	aag	gtg	ccg	720
	Tyr	Leu	Thr	Tyr	Ser	Arg	Gln	Cys	Pro	Gly	Met	Pro	Pro	Lys	Val	Pro	
	225					230)				235	•				240	
65																	

ctc	atg	tac	ctt	gtg	tac	gtg	cag	tca	ctc	ttc	tgg	ctc	ttc	atg	aat	7	68		
Leu	Met	Tyr	Leu	Val	Tyr	Val	Gln	Ser	Leu	Phe	Trp	Leu	Phe	Met	Asn				
				245					250					255				5	5
ttc	tac	att	cgc	gcg	tac	gtg	ttc	ggc	ccc	aag	aaa	ccg	gcc	gtg	gag	8	16		
												Pro						. 10	n
	_		260		_			265					270			•		•	•
gaa	tca	aac	aaσ	aag	tta	taa										8.	37	.,	_
				Lys									•			0.	<i>.</i>	15	,
		275	-3-	-3-					,										
		J .J																	
																		20)
-210)> 2(`																	
	•																		
	L> 27		•															25	5
	2> PI		. 1			_												٠.	
<213	s> Pr	lytor	ohtho	ora i	infe	stans	5	•											
1																		. 30)
)> 20																		
Met	Ser	Thr	Glu	Leu	Leu	Gln	Ser	Tyr	Tyr	Ala	Trp	Ala	Asn	Ala	Thr				
1				5					10		•			15	٠.			35	5
																		: *	
Glu	Ala	Lys	Leu	Leu	Asp	Trp	Val	Asp	Pro	Glu	Gly	Gly	Trp	Lys	Val				
			20					25					30					40	0
His	Pro	Met	Ala	Asp	Tyr,	Pro	Leu	Ala	Asn	Phe	Ser	Ser	Val	Tyr	Ala				
		35					40					45						45	
																		4.	,
Ile	Cys	Val	Gly	Tyr	Leu	Leu	Phe	Val	Ile	Phe	Gly	Thr	Ala	Leu	Met				
	50					55					60		•					-:	
															•			50)
Ĺуs	Met	Gly	Val	Pro	Ala	Ile	Lys	Thr	Ser	Pro	Leu	Gln	Phe	Val	Tvr				
65					70		_			75					80				
																		55	5.
Asn	Pro	Ile	Gln	Val	Tle	Ala	Cvs	Ser	የ	Met	Cve	Val	Glu	Δla	Δla				
				85			0,10	001	90		Cys	Vul	5.4 C		niu				
									70					95				60)
r1_e	Gln	Δla	ጥ ኒታም	D~~	λe~	G111	лъ	mb~	π 7	21-	D	C- i-	2 ~=	አመ –	70°-				
	J 111	ara		ALG	ASII	GTĀ			wrg	AIG	PTO	Cys		ATG	rne				
			100					105					110						•

	Lys	Ser	Asp 115	Asp	Pro	Val	Met	Gly 120	Asn	Val	Leu	Tyr	Leu 125	Phe	Tyr	Leu
5	Ser	Lys 130	Met	Leu	Asp	Leu	Cys 135	Asp	Thr	Val	Phe	Ile 140	Ile	Leu	Gly	Lys
0	Lys 145	Trp	Lys	Gln	Leu	Ser 150	Ile	Leu	His	Val	Tyr 155	His	His	Leu	Thr	Val 160
.5	Leu	Phe	Val	Tyr	Tyr 165	Val	Thr	Phe	Arg	Ala 170	Ala	Gln	Asp	Gly	Asp 175	Ser
20	Tyr	Ala	Thr	Ile 180	Val	Leu	Asn	Gly	Phe 185	Val	His	Thr	Ile	Met 190	Tyr	Thr
25	Tyr	Tyr	Phe 195	Val	Ser	Ala	His	Thr 200	Arg	Asn	Ile	Trp	Trp 205	Lys	Lys	Tyr
30	Leu	Thr 210	Arg	Ile	Gln	Leu	Ile 215		Phe	Val	Thr	Met 220	Asn	Val	Gln	Gly
35	Tyr 225	Leu	Thr	Tyr	Ser	Arg 230		Cys	Pro	Gly	Met 235		Pro	Lys	Val	Pro 240
40	Leu	Met	Tyr	Leu	Val 245		Val	Gln	Ser	Leu 250		Trp	Leu	Phe	Met 255	Asn
45	Phe	Туг	·Ile	Arg 260		Tyr	Val	. Phe	Gly 265		Lys	Lys	Pro	Ala 270		Glu
50	Glu	Ser	Lys 275	_	Lys	Leu	ı									
55																
60	<21 <21	.0> 2 .1> 1 .2> I	1410	odact	ylur	n tr:	icorr	nutur	n							
65	<22	20>														

<22	1> CI	DS														•	
<22	2> (:	1)	(141	0)													
<22	3> D	elta-	-5-De	esatı	urase	€											5
							٠								·	•	
<40)> 2:	1	•				•	٠	•		:	•					
atg	gct	ccg	gat	gcg	gat	aag	ctt	cga	caa	cgc	cag	acg	act	gcg	gta	48	 10
Met	Ala	Pro	Asp	Ala	Asp	Lys	Leu	Arg	Gln	Arg	Gln	Thr	, Thr	Ala	Val		
1				5					10					15			
														•			15
gcg	aag	cac	aat	gct	gct	acc	ata	tcg	acg	cag	gaa	cgc	ctt	tgc	agt	96	
Ala	Lys	His	Asn	Ala	Ala	Thr	Ile	Ser	Thr	Gln	Glu	Arg	Leu	Cys	Ser		
			20					25					30				20
															•		
ctg	tct	tcg	ctc	aaa	ggc	gaa	gaa	gtc	tgc	atc	gac	gga	atc	atc	tat	144	
Leu	Ser	Ser	Leu	Lys	Gly	Glu	Glu	Val	Cys	Ile	Asp	Gly	Ile	Ile	Tyr		25
		35					40				٠	45		•			
			÷							•	••						
gac	ctc	caa	tca	ttc	gat	cat	ccc	ggg	ggt	gaa	acg	atc	aaa	atg	ttt	192	30
Asp	Leu	Gln	Ser	Phe	Asp	His	Pro	Gly	Gly	Glu	Thr	Ile	Lys	Met	Phe		
	50					55					60						
																	35
ggt	ggc	aac	gat	gtc	act	gta	cag	tac	aag	atg	att	cac	ccg	tac	cat	240	
Gly	Gly	Asn	Asp	Val	Thr	Val	Gln	Tyr	Lys	Met	Ile	His	Pro	Tyr	His		
65					70					75					80		40
acc	gag	aag	cat	ttg	gaa	aag	atg	aag	cgt	gtc	ggc	aag	gtg	acg	gat	288	
Thr	Glu	Lys	His	Leu	Glu	Lys	Met	Lys	Arg	Val	Gly	Lys	Val	Thr	Asp		45
				85					90					95			
	gtc															336	50
Phe	Val	Cys	Glu	Tyr	Lys	Phe	Asp	Thr	Glu	Phe	Glu	Arg	Glu	Ile	Lys		
			100					105				•	110				
																	55
	gaa										_				_	384	
Arg	Glu		Phe	Lys	Ile	Val		Arg	Gly	Lys	Asp	Phe	Gly	Thr	Leu		
		115					120					125					60
	tgg 														_	432	
Gly	Trp	Phe	Phe	Arg	Ala		Cys	Tyr	Ile	Ala		Phe	Phe	Tyr	Leu		65
	130					135					140						

	Gln	Т	ac yr	cat His	tgg Trp	gto Val	aco Thi	acç Thi	gg;	a ao	cc t	Ger '	tgg Trp 155	ctg Leu	ctg Leu	gcc Ala	gto Val	L A.	cc La 50	480
5	145	- ~	ıga	atc	tcc	ca	a gc	g at	g at	t g	gc a	atg	aat	gtc	cag	cac Hie	ga:	t go	cc la	528
10						16	5	a Me			:	170					17	5		
15	aa As	c o	cac	Gly	gco Ala	a Th	c to	c aa r Ly	g co	g F	ecc Pro 185	tgg Trp	gtc Val	Asn	gac As <u>r</u>	ato Met 19	c re	ag u G	gc	576
20	L€	.c	ggt Gly	gcg Ala	a As	t tt p Ph	t at ne I	t gg le Gl	Ly G	gt t ly S	cc Ser	aag Lys	tgg Trp	cto Lei	tgg Trj 20	b GT	g ga	aa c	aa Sln	624
25	Cá H:	ac is	Tr	Th	c ca r Hi	c ca	ac g is A	ct to la T	ac a yr T 15	cc hr	aat Asn	cac	gco Ala	ga a Gl	u Me	g ga	it co	cc (gat Asp	672
3	S	gc er 25	tt:	t aa	t go	c g La G	lu E	ca a Pro M	tg c	tc Leu	cta Leu	tto Phe	aa aa As 23	n As	c tā	at co	cc t	tg eu	gat Asp 240	720
	.0 C	- t	cc Pr	c go	ct co	rg T	icc 1 hr 5	gg (Trp I	ta (Leu 1	cat His	cgc Arg	tt Ph	e Gl	a go .n Al	ca ti	tc t he P	ne :	ac Tyr 255	atg Met	768
	15 C 1 50	ccc Pro	gt Va	c t	eu A	ct (gga Gly	tac Tyr	tgg Trp	ttg Leu	tco Ser 26!	r Al	t gi	tc t	tc a	sn F	ca Pro 270	caa Gln	att Ile	816
	55	ctt Lei	z ga	sp L	tc deu (ag Sln	caa Gln	cgc Arg	ggc Gly	gca Ala 280	Le	t to u Se	ec g er V	tc g	ly 1	itc d [le 2 285	egt Arg	ctc Leu	gac Asp	864
	60	aa As:	n A	ct t 1a I 90	tc (att Ile	cac His	tcg Ser	cga Arg 295	cgo	c aa g Ly	ig ta	at g yr <i>P</i>	la v	ytt Val 300	ttc Phe	tgg Trp	cgg	g gct	912 a

gtg	tac	att	gcg	gtg	aac	gtg.	att	gct	ccg	ttt	tac	aca	aac	tcc	ggc	960		
Val	Tyr	Ile	Ala	Val	Asn	Val	Ile	Ala	Pro	Phe	Tyr	Thr	Asn	Ser	Gly			
305					310	*				315					320			5
		•																
ctc	gaa	tgg	tcc	tgg	cgt	gtc	ttt	gga	aac	atc	atg	ctc	atg	ggt	gtg	1008		
Leu	Glu	Trp	Ser	Trp	Arg	Val	Phe	Gly	Asn	Ile	Met	Leu	Met	Gly	Val	•		10
				325					330					335				
•																		
aca	gaa	tca	ctc	aca	cta	aca	atc	cta	ttt	tca	tta	tea	cac	aat	ttc	1056		15
											_	_			Phe	1030		13
			340				•	345		JCI	·		350	A511	THE			
			340				•	343					330					
~~~	<b>+ - - -</b>	~~~	~~+	~~~	~-+											1101		20
_												_	_	gga	_	1104		
GIU	Ser		Asp	Arg	Asp	Pro		Ala	Pro	ren	rys.	_	Thr	Gly	GIU			
		355					360					365						25
														4			٠,	
												_		tac		1152		
Pro	Val	Asp	Trp	Phe	Lys	Thr	Gln	Val	Glu	Thr	Ser	Cys	Thr	Tyr	Gly	•	•	30
	370					375					380							
															·			
gga	ttc	ctt	tcc	ggt	tgc	ttc	acg	gga	ggt	ctc	aac	ttt	cag	gtt	gaa	1200	٠.,	35
Gly	Phe	Leu	Ser	Gly	Cys	Phe	Thr	Gly	Gly	Leu	Asn	Phe	Gln	Val	Glu			
385					390					395					400			٠.
																		40
cac	cac	ttg	ttc	cca	cgc	atg	agc	agc	gct	tgg	tat	ccc	tac	att	gcc	1248		
His	His	Leu	Phe	Pro	Arg	Met	Ser	Ser	Ala	Trp	Tyr	Pro	Tyr	Ile	Ala			
				405					410					415				
																		45
ccc	aag	gtc	cgc	gaa	att	tgc	gcc	aaa	cac	aac	atc	cac	tac	gcc	tac	1296		
														Ala				
	_		420			-		425					430		-1-			50
tac	cca	taa	atc.	cac	caa	aac	+++	ctc	tcc	200	ata	cac	tac	atg	Cac	1344		
														Met		1244		<b>55</b> .
- , -	110	435		1110	0111	ADII.	440	Deu	361	1111	vai		ıyı	Mec	птэ			
		4JJ					-2 -2 U					445						
~~~	<b>acc</b>	~~~	200	~~+	~~~		• • • • • • • • • • • • • • • • • • • •									1200		60
														aat		1392		
WIG		стА	inr	стА	ATG		LLD	Arg	GIN	met		arg	GIU	Asn	Pro	•		
	450					455					460							65

						r taa											1410
	Leu 465	Tnr	. GIĀ	Arg	Ala	470											
5	403					470											
								-									
10	<21	0> 2	2													•	
	<21	1> 4	69														
	<21	2> P	RT														
15	<21	3> P	haeo	dact	ylum	tri	corn	utum									
	- 4.0	0. 0	^														
		0> 2 בוג		λσο	- רג	7.00	Tira	T 0	3	. a1	*	01	1 .				
20	1	ATO	PIO	ASP	A1a	Asp	гÀ2	ьeu	Arg	10	Arg	GIN	Thr	Thr			
	_				_					10					15		
25	Ala	Lys	His	Asn	Ala	Ala	Thr	Ile	Ser	Thr	Gln	Glu	Arg	Leu	Cys	Ser	
20				20					25					30	_		
														:			
30	Leu	Ser		Leu	Lys	Gly	Glu	Glu	Val	Cys	Ile	Asp	Gly	Ile	Ile	Tyr	
			35					40					45				
	Asn	T.em	Gln	Sar	Dhe	λcn	uic	Dro	C 1		G1	m]	-1-			_,	
35	·wp	50	GIII	Jer	FILE	Asp	55	PIO	GIÀ	GIY	GIU	60	iie	rys	Met	Pne	
												00					•
40	Gly	Gly	Asn	Asp	Val	Thr	Val	Gln	Tyr	Lys	Met	Ile	His	Pro	Tyr	His	
40	65					70					75				_	80	
45	Thr	Glu	Lys	His		Glu	Lys	Met	Lys	Arg	Val	Gly	Lys	Val	Thr	Asp	
					85					90					95		
	Phe	Val	Cvs	Glu	Tvr	Lvs	Phe	Asn	Thr	Glu	Dhe	Glu	λ ~ ~	C1.1	T1.	Lys .	
50			-,-	100	- 3 -	2,0	1110	nsp	105	Giu	FIIE	GIU	Arg	110	TTE	Lys.	
55	Arg	Glu	Val	Phe	Lys	Ile	Val	Arg	Arg	Gly	Lys	Asp	Phe	Gly	Thr	Leu	
55			115					120			•		125				
	~ ?	_															
60	GLY		Phe	Phe	Arg	Ala		Cys	Tyr	Ile	Ala		Phe	Phe	Tyr	Leu	
		130					135					140					
	Gln	Tyr	His	Trp	Val	Thr	Thr	Gly	Thr	Ser	Tro	Leu	Leu	Ala	Val	Ala	

145					150					155					160		
Tyr	Gly	Ile	Ser	Gln 165	Ala	Met	Ile	Gly	Met 170		Val	Gln	His	Asp 175	Ala		
Asn	His	Gly	Ala 180	Thr	Ser	Lys	Arg	Pro 185	Trp	Val	Asn	Asp	Met 190	Leu	Gly		. 1
Leu	Gly	Ala 195	Asp	Phe	Ile	Gly	Gly 200	Ser	Lys	Trp	Leu	Trp 205	Gln	Glu	Gln		1
His	Trp 210	Thr	His	His	Ala	Tyr 215	Thr	Asn	His	Ala	Glu 220	Met	Asp	Pro	Asp		2
Ser 225	Phe	Gly	Ala	Glu	Pro 230	Met	Leu	Leu	Phe	Asn 235	Asp	Tyr	Pro	Leu	Asp 240	·	2
His	Pro	Ala	Arg	Thr 245	Trp	Leu	His	Arg	Phe 250	Gln	Ala	Phe	Phe	Туг 255	Met		3
Pro	Val	Leu	Ala 260	Gly	Tyr	Trp	Leu	Ser 265	Ala	Val	Phe	Asn	Pro 270	Gln	Ile		3
Leu	Asp	Leu 275	Gln	Gln	Arg	Gly	Ala 280	Leu	Ser	Val	Gly	Ile 285	Arg	Leu	Asp		· <u>·</u> 4
Asn	Ala 290	Phe	Ile	His	Ser	Arg 295	Arg	Lys	Tyr	Ala	Val	Phe	Trp	Arg	Ala		
Val 305	Tyr	Ile	Ala	Val	Asn 310	Val	Ile	Ala	Pro	Phe 315	Tyr	Thr	Asn	Ser	Gly 320		
Leu	Glu	Trp	Ser	Trp 325	Arg	Val	Phe	Gly	Asn 330	Ile	Met	Leu	Met	Gly 335	Val		5
Ala	Glu	Ser	Leu 340	Ala	Leu	Ala	Val	Leu 345	Phe	Ser	Leu	Ser	His 350	Asn	Phe		6
Glu	Ser	Ala 355	Asp	Arg	Asp	Pro	Thr 360	Ala	Pro	Leu	Lys	Lys 365	Thr	Gly	Glu		6

	Pro		Asp	Trp	Phe	Lys		Gln	Val	Glu	Thr		Cys	Thr	Tyr	Gly	
		370					375					380					
5	~-7		_	_		_					_						
		Pne	ьeu	Ser	GIY		Pne	Thr	GTĀ	GLY		Asn	Pne	GIn	Val		
	385					390					395					400	
10			_	•	_			_								_	
	His	His	Leu	Phe		Arg	Met	Ser	Ser		Trp	Tyr	Pro	Tyr		Ala	
					405					410					415		
15	_	_		_			_	_ •							_		
	Pro	Lys	Val	Arg	Glu	Ile	Cys	Ala		His	Gly	Val	His	_	Ala	Tyr	
				420					425					430			
20	_	_	_		•		_							-		_	
	Tyr	Pro		Ile	His	Gln	Asn		Leu	Ser	Thr	Val	_	Tyr	Met	His	
			435					440					445				
25	- -					_				_							
	Ala		Gly	Thr	Gly	Ala		Trp	Arg	Gln	Met		Arg	Glu	Asn	Pro	
		450					455					460					
30			~-1	_													
		unr	GIY	Arg	Ala												
	465																
35																	
	-210)> 23															
		l> 1:															
40		2> Di															
				rhabo	91+10	. Als	og a no	_									
	7210	,	aemo.	liabe	A1 C18	s ere	gans	>									
45	<220)~															
		L> CI	25														
				(1344	1)												
50				-5-De		ırage	.										
				-													
	<400)> 23	3														
55				cga	gag	caa	gag	cat	gag	cca	ttc	ttc	att	222	att	gat .	48
				Arg			-									_	
	1			9	5					10				_, _	15		
60	_				_												
	gga	aaa	tga	tgt	caa	att	gac	gat	act	atc	cta	aga	tca	cat	cca	aat	96
				Cys													
,,	-	-	- 4-				~ E					3				1	

														•			
			20					25					30			•	
ggt	agt	qca	att	act	acc	tat	aaa	aat	ato	gat	acc	act	acc	αta	ttc	144	
						Tyr								_	•	111	•
		35				-1-	40			···		45	****		rne		
												47					
cac	202	++~	cat	act	aat	tat		~	~~~			.				100	10
						tct										192	
птэ		FIIE	HIS	1111	GIĀ	Ser	. Lys	GIU	AIA	ıyr		Trp	Leu	Thr	GIu	•	
	50					55					60					٠.	1:
												•			•	•	
						aca									_	240	
Leu	Lys	Lys	Glu	Cys	Pro	Thr	Gln	Glu	Pro	Glu	Ile	Pro	Asp	Ile	Lys		. 20
65			٠		70					75					80		
			•														
gat	gac	cca	atc	aaa	gga	att	gat	gat	gtg	aac	atg	gga	act	ttc	aat	288	2:
Asp	Asp	Pro	Ile	Lys	Gly	Ile	Asp	Asp	Val	Asn	Met	Gly	Thr	Phe	Asn		
				85					90					95			
							-					٠.					30
att	tct	gag	aaa	cga	tct	gcc	caa	ata	aat	aaa	agt	ttc	act	gat	cta	336	
Ile	Ser	Glu	Lys	Arg	Ser	Ala	Gln	Ile	Asn	Lys	Ser	Phe	Thr	Asp	Leu		
			100					105					110		•		3:
															_		
cgt	atg	cga	gtt	cgt	gca	gaa	gga	ctt	atg	gat	gga	tct	cct	tta	ttc	384	
						Glu											
		115					120			-	•	125					41
								•									
tac	att	aga	aaa	att	ctt	gaa	aca	atc	ttc	aca	att	ctt	ttt	aca	ttc	432	
						Glu										472	4:
-	130	3				135					140	Deu	1110	nia	rne		
						133					140						
tac	ctt	caa	tac	Cac		tat	+ > +	a++		+ - - -	~~+					400	50
																480	
_	Deu	GIII	IYI	uis		Tyr	TAL	neu	PIO			пе	Leu	Met			
145					150					155		• •	• •		160		5:
				 -	.					_							
						gga										528	
val	ATG	Trp	GID	GID	ren	Gly	Trp	Leu	Ile.	His	Glu	Phe	Ala	His	His		

cag ttg ttc aaa aac aga tac tac aat gat ttg gcc agc tat ttc gtt

Gln Leu Phe Lys Asn Arg Tyr Tyr Asn Asp Leu Ala Ser Tyr Phe Val

				180					185					190			
	aas	aac	+++	tta	caa	aaa	ttc	tca	tct	aat	aat	taa	aaa	gag	cag	cac	624
5		Asn															
	GIY	non	195	Dea	9111	O.J.	1110	200	Jei	Gry	019	1.5	205	0.10	0111		
			193					200					203				
10		gtg	cat	C2C	~~a	acc	202	22 +	~++	art.	~~=	caa	asc.	aa.	rat	ctt	672
		Val								-							072
	ASII		пто	птэ	Ala	AIa	215	ASII	Vai	vai	GIY	220	vsb	GIY	Asp	Dea	
15		210					215					220			•		
	as t	++=	ata	002	++0	t = t	act	202	ata	aca	~==	cat	ctc	220	aat	tat	720
	-	tta															720
20	_	Leu	vai	PIO	File		Ala	TIII	vai	Ala	235	nis	Deu	ASII	ASII	240	
	225					230					233					240	
		cag	~~ t	+ a a	+~~	~++	250	aat	ata	++0	202	taa	C 2 2	cat	at t	cat	768
25		_												_			,00
	ser	Gln	Asp	Ser	_	Vai	Mec	1111	Leu		ALG	110	GIII	HIS	255	nra	
					245					250					255		
30	.									~+~	+			a++	~~~	± 00	016
		aca		_					_						_		816
	Trp	Thr	Pne		Leu	Pro	Pne	ьeu	-	Leu	Ser	пр	reu		GIII	ser	
35				260					265					270			
	- t-	~++		~++	200	~~~	250	GG 2	20+	an+	+=+	+ = +	~ 2.0	+=+	tag	202	864
		att															004
40	TIE	Ile	275	vaı	ser	GIII	Mec	280	1111	птъ	ıyı	IĂI	285	TAT	TAT	ALG	
			2/5					280					265				
		205	~~~		+-+	~~~		~++	~~+	ata	tat	++~	cac	taa	act	taa	912
45		act Thr															912
	ASII	290	Ата	TIE	TYL	Giu	295		GIY	Dea	Ser	300		ırp	AIG	ΠD	
		290					293					300					
50	tas	ttg	~~+	a aa	++~	+ > +	++-	ot a	000	as t	taa	taa	act	202	ata	ata	960
		_			_												900
	305	Leu	GIY	GIII	neu	-	FILE	Leu	PIO	Asp	315	Ser	1111	ALG	116	320	
55	305					310					313					320	
	**-		a++		+-+		a++	~++	~~-	~~-	++~	a+~	a+	+	ast	at s	100
		ttc Phe		_				_				_					100
60	rne	FIIE	ьeu	vaı		UIS	neu	vaı	GIY	330	FIIE	neu	neu	261	335	Val	
					325					220					223		

1056

gtt act ttc aat cat tat tca gtg gag aag ttt gca ttg agc tcg aac

 65 Val Thr Phe Asn His Tyr Ser Val Glu Lys Phe Ala Leu Ser Ser Asn

								~ <i>-</i>		00							
			340					345					350				
atc	atg	tca	aat	tac	gct	tgt	ctt	caa	atc	atg	acc	aca	aga	aat	atg	1104	
Ile	Met	Ser	Asn	Tyr	Ala	Cys	Leu	Gln	Ile	Met	Thr	Thr	Arg	Asn	Met		
		355					360					365					
																	1
aga	cct	gga	aga	ttc	att	gac	tgg	ctt	tgg	gga	ggt	ctt	aac	tat	cag	1152	
Arg	Pro	Gly	Arg	Phe	Ile	Asp	Ттр	Leu	Trp	Gly	Gly	Leu	Asn	Tyr	Gln		
	370					375					380					•	ı
														•			
att	gag	cac	cat	ctt	ttc	cca	acg	atg	cca	cga	cac	aac	ttg	aac	act	1200	
														Asn			2
385		•			390					395					400		_
gtt	atg	cca	ctt	gtt	aag	gag	ttt	σca	σca	αca	aat	aat	tta	cca	tac	1248	2
														Pro			2
				405					410			CLJ	DCu	415	171		
												,		413			
ato	atc	gac	gat.	tat	ttc	aca	aaa	ttc	taa	ctt	~==	a++	asa.	caa	++0	1206	3
															Phe	1296	
			420	-3-		1111	Gry	425	TID	nea	GIU	116		GIII	Pne.		•
			120	÷				423					430				3
cga	aat	att	CC2	a a t	ar t	aat	~at							gcc		4544	
															tag	1344	
ni g	non,	435	Ala	ASII	Vai	Ата		ьуs	Leu	Thr	rys		тте	Ala			4
		433					440					445					
-210	. 24	1															4
	> 24																•
	.> 44									•							
	> PR				_												5
<413	> Ca	enor	habd	iltis	ele	gans	1									- "	

<400> 24 . Met Val Leu Arg Glu Gln Glu His Glu Pro Phe Phe Ile Lys Ile Asp Gly Lys Trp Cys Gln Ile Asp Asp Ala Val Leu Arg Ser His Pro Gly Gly Ser Ala Ile Thr Thr Tyr Lys Asn Met Asp Ala Thr Thr Val Phe

			35					40					45			
5	His	Thr 50	Phe	His	Thr	Gly	Ser 55	Lys	Glu	Ala	Tyr	Gln 60	Trp	Leu	Thr	Glu
10	Leu 65	Lys	Lys	Glu	Cys	Pro 70	Thr	Gln	Glu	Pro	Glu 75	Ile	Pro	Asp	Ile	Lys 80
15	Asp	Asp	Pro	Ile	Lys 85	Gly	Ile	Asp	Asp	Val 90	Asn	Met	Gly	Thr	Phe 95	Asn
20	Ile	Ser	Glu	Lys 100	Arg	Ser	Ala	Gln	Ile 105	Asn	Lys	Ser	Phe	Thr 110	Asp	Leu
25	Arg	Met	Arg 115	Val	Arg	Ala	Glu	Gly 120	Leu	Met	Asp	Gly	Ser 125	Pro	Leu	Phe
30	Tyr	Ile 130	Arg	Lys	Ile	Leu	Glu 135	Thr	Ile	Phe	Thr	Ile 140	Leu	Phe	Ala	Phe
35	Tyr 145	Leu	Gln	Tyr	His	Thr 150	Tyr	Tyr	Leu	Pro	Ser 155	Ala	Ile	Leu	Met	Gly 160
40	Val	Ala	Trp	Gln	Gln 165	Leu	Gly	Trp	Leu	Ile 170	His	Glu	Phe	Ala	His 175	His
45	Gln	Leu	Phe	Lys 180	Asn	Arg	Tyr	Tyr	Asn 185		Leu	Ala	Ser	Tyr 190	Phe	Val
50	Gly	Asn	Phe 195		Gln	Gly	Phe	Ser 200	Ser	Gly	Gly	Trp	Lys 205	Glu	Gln	His
55	Asn	Val 210		His	Ala	Ala	Thr 215	Asn	Val	Val	Gly	Arg 220	Asp	Gly	Asp	Lei
60	Asp 225		Val	Pro	Phe	Tyr 230	Ala	Thr	Val	Ala	Glu 235		Leu	Asn	Asn	Ту: 240
65	Ser	Gln	Asp	Ser	Trp 245		Met	Thr	Leu	Phe 250		Trp	Gln	His	Val	

Trp	Thr	Phe	Met 260	Leu	Pro	Phe	Leu	Arg 265	Leu	Ser	Trp	Leu	Leu 270	Gln	Ser		
Ile	Ile	Phe 275	Val	Ser	Gln	Met	Pro 280	Thr	His	Tyr	Ťyr	Asp 285	Туr	Tyr	Arg		5
Asn	Thr 290		Ile	Tyr	Glu	Gln 295	Val	Gly	Leu	Ser	Leu 300	His	Trp	Ala	Trp		10
Ser 305	Leu	Gly	Gln	Leu	Tyr 310	Phe	Leu	Pro	Asp	Trp 315	Ser	Thr	Arg	Ile	Met 320		15
Phe	Phe	Leu	Val	Ser 325	His	Leu	Val	Gly	Gly 330	Phe	Leu	Leu	Ser	His	Val		20
Val	Thr	Phe	Asn 340	His	Туr	Ser	Val	Glu 345	Lys	Phe	Ala	Leu	Ser 350	Ser	Asn	· .	25
Ile	Met	Ser.	Asn	Tyr	Ala	Cys	Leu 360	Gln	·Ile	Met	Thr	Thr 365	Arg	Asn	Met		.30
Arg	Pro 370	Gly	Arg	Phe	Ile	Asp 375	Trp	Leu	Trp	Gly	Gly -380	Leu	Asn	Tyr	Gln		, 35
Ile 385	Glu	His	His	Leu	Phe 390	Pro	Thr	Met	Pro	Arg	His	Asn	Leu	Asn	Thr 400		.40
Val	Met	Pro	Leu	Val 405	Lys	Glu	Phe		Ala 410	Ala	Asn	Gly	Leu	Pro 415	Tyr		45
Met	Val	Asp	Asp 420	Tyr	Phe	Thr	Gly	Phe 425	Trp	Leu	Glu	Ile	Glu 430	Gln	Phe	•	
Arg	Asn	Ile 435	Ala	Asn	Val	Ala	Ala 440	Lys	Leu	Thr	Lys	Lys 445	Ile	Ala			55
<210	> 25	3															60
<211	> 95	4															

	<212	> DN	IA														
	<213	> Mc	rtie	erell	a al	pina	ì										
5	<220)>												••			
	<221	.> CI	S														
10		!> (1 !> De				se											•
15)> 25															
		-							gtc								48
	Met	Ala	Ala	Ala		Leu	Asp	Lys	Val		Phe	Gly	He	Asp		Pro	
20	1				5					10					15		
	ttc	gga	atc	aag	ctc	gac	acc	tac	ttt	gct	cag	gcc	tat	gaa	ctc	gtc	96
25	Phe	Gly	Ile	Lys	Leu	Asp	Thr	Tyr	Phe	Ala	Gln	Ala	Tyr	Glu	Leu	Val	
23				20					25					30			
	acc	gga	aag	tcc	atc	gac	tcc	ttc	gtc.	ttc	cag	gag	ggc	gtc	acg	cct	144
30			_						Val								
		_	35					40		•			45	-			
35	ctc	tcg	acc	cag	aga	gag	gtc	gcc	atg	tgg	act	atc	act	tác	ttc	gtc	192
	Leu	Ser	Thr	Gln	Arg	Glu	Val	Ala	Met	Trp	Thr	Ile	Thr	Tyr	Phe	Val	
40		50					55		•			60					
40																	
	gtc	atc	ttt	ggt	ggt	cgc	cag	atc	atg	aag	agc	cag	gac	gcc	ttc	aag	240
45	Val	Ile	Phe	Gly	Gly	Arg	Gln	Ile	Met	Lys	Ser	Gln	Asp	Ala	Phe	Lys	
43	65					70					75					80	
	ctc	aag	ccc	ctc	ttc	atc	ctc	cac	aac	ttc	ctc	ctg	acg	atc	gcg	tcc	288
50	Leu	Lys	Pro	Leu	Phe	Ile	Leu	His	Asn	Phe	Leu	Leu	Thr	Ile	Ala	Ser	
					85					90					95		
55	~~=	+ ~ ~	ot a		ata	at a	ttc	atc	gag	220	cta	atc	ccc	atc	ctc	acc	336
		-	_	_		_			Glu		_						33(
	GIY	Ser	Leu	100	Deu	пеп	FILE	116	105	NS11	Deu	Val	110	110	Dea	n_u	
60				100					100								
	aga	aac	gga	ctt	ttc	tac	gcc	atc	tgc	gac	gac	ggt	gcc	tgg	acc	cag	384
	Arg	Asn	Gly	Leu	Phe	Tyr	Ala	Ile	Cys	Asp	Asp	Gly	Ala	Trp	Thr	Gln	
65			115					120					125				

cgc	ctc	gag	ctc	ctc	tac	tac	ctc	aac	tac	ctg	gtc	aag	tac	tgg	gag	432	
Arg	Leu	Glu	Leu	Leu	Tyr	Tyr	Leu	Asn	Tyr	Leu	Val	Lys	Tyr	Trp	Glu		
	130					135					140						5
																•	
ttg	gcc	gac	acc	gtc	ttt	ttg	gtc	ctc	aag	aag	aag	cct	ctt	gag	ttc	480	
Leu	Ala	Asp	Thr	Val	Phe	Leu	Val	Leu	Lys	Lys	Lys	Pro	Leu	Glu	Phe		10
145					150					155					160		
ctg	cac	tac	ttc	cac	cac	tcg	atg	acc	atg	gtt	ctc	tgc	ttt	gtc	cag	528	15
Leu	His	Tyr	Phe	His	His	Ser	Met	Thr	Met	Val	Leu	Cys	Phe	Val	Gln		
				165					170					175	•		
																	20
ctt	gga	gga	tac	act	tca	gtg	tcc	tgg	gtc	cct	átt	acc	ctc	aac	ttg	576	
Leu	Gly	Gly	Tyr	Thr	Ser	Val	Ser	Trp	Val	Pro	Ile	Thr	Leu	Asn	Leu		
			180		٠			185					190				25
																	23
act	gtc	cac	gtc	ttc	atg	tac	tac	tac	tac	atg	cgc	tcc	gct	gcc	ggt	624	
Thr	Val	His	Val	Phe	Met	Tyr	Tyr	Tyr	Tyr	Met	Arg	Ser	Ala	Ala	Gly		- 30
		195			•		200					205		٠.	,	•	- 30
									-					•	•		•
gtt	cgc	atc	tgg	tgg	aag	cag	tac	ttg	acc	act	ctc	cag	atc	atc	cag	672	25
_				Trp								_		_			35
	210					215					220						•
ttc	gtt	ctt	gac	ctc	gga	ttc	atc	tac	ttc	tgc	gcc	tac	acc	tac	ttc	720	40
Phe	Val	Leu	Asp	Leu	Gly	Phe	Ile	Tyr	Phe	Cys	Ala	Tyr	Thr	Tyr	Phe		
225					230					235					240		
																	. 45
gcc	ttc	acc	tac	ttc	ccc	tgg	gct	ccc	aac	gtc	ggc	aag	tgc	gcc	ggt	768	
				Phe													:
	•			245					250					255			50
		•					•					-		•			
acc	gag	ggt	gct	gct	ctc	ttt	ggc	tgc	gga	ctc	ctc	tcc	agc	tat	ctc	816	
Thr	Glu	Gly	Ala	Ala	Leu	Phe	Gly	Cys	Gly	Leu	Leu	Ser	Ser	Tyr	Leu		55
			260					265		-			270				
_		_						-							-		
ttg	ctc	ttt	atc	aac	ttc	tac	cgc	att	acc	tac	aat	gcc	aag	gcc	aag	864	60
				Asn													
		275					280					285			=		
																	65

	gca	gcc	aag	gag	CC	gt g	ga a	agc Ser	aac Asn	ttt Phe	acc Thr	ccc Pro	aag Lys	act Thr	gtc Val	aag Lys	tcc Ser	912
5	Ala	290	гур	GIL	ı A	ig c		295	11011				300					
10						ys I								atc Ile	taa			954
15		0> 2 1> 3													•			
20	<21	2> F		lere	lla	al	pina	ì										
25	<40 Met		26 a Ala	a Al	.a]	le 5	Leu	Asp	Lys	: Val	. Asn		e Gly	, Ile	. Asp	Gln 15	Pro	
30	Phe	e Gl	y Il		/s I	Leu	Asp	Thr	туг	Phe		Glı	n Ala	а Туг	: Glu		Val	
35	Thi	r Gl	у L у		er :	Ile	Asp	Sei	Phe		l Phe	e Gl	n Gl	u Gly 49		l Thr	Pro	
40	Lei		r Th O	r G	ln .	Arg	Glu	. Va.		a Me	t Trj	o Th	r Il 6		r Ty:	r Phe	e Val	
45	_	1 I1 5	e Ph	ne G	ly	Gly	Arg		n Il	e Me	t Ly		r Gl 5	n As	p Al	a Phe	e Lys 80	
50) Le	u Ly	s Pi	co L	eu	Phe 85		e Le	u Hi	s As		e Le	u L€	eu Th	r Il	e Al	a Ser 5	
5:	5 G1	.y S€	er L		eu .00	Leu	Le	ı Ph	e Il	.e Gl		n Le	eu Va	al Pr	o Il		u Ala	ı
6	⁰ Ar	rg A		ly I 15	Leu	Phe	э Ту:	r Al	.a II		ys As	sp As	sp G		la Ti 25	np Th	ır Glr	ı

Arg		Glu	Leu	Leu	Tyr		Leu	Asn	Tyr	Leu		Lys	Tyr	Trp	Glu	
	130					135	-				140					
										•						:
Leu	Ala	Asp	Thr	Val	Phe	Leu	Val	Leu	Lys	Lys	Lys	Pro	Leu	Glu	Phe	
145					150					155					160	
	•	•				•			-							10
Leu	His	Tyr	Phe	His	His	Ser	Met	Thr	Met	Val	Leu	Cys	Phe	Val	Gln	
				165					170					175		
				•												1
Leu	Gly	Gly	Tyr	Thr	Ser	Val	Ser	Trp	Val	Pro	Ile	Thr	Leu	Asn	Leu	
	-	-	180					185					190			
Thr.	Val	Hic	rev.	Phe	Mat	ጥኒም	ጥረድ	ጥኒደም	Туг	Mot	7~~	Cor	ת 1 ת	7 T =	Cly	2.
1111	val			FILE	Mec	lyı		TYT	IYI	Mec	Arg		ALG	AId	GIY	
	•	195	*			•	200					205				
	_		_	_	_	~ 3	_	_			_					2.
Val		He	Trp	Trp	Lys		Tyr	Leu	Thr	Thr		Gln	Ile	Val	Gln	
	210					215		-			220	-				
						·								•		3
Phe	Val	Leu	Asp	Leu	Gly	Phe	Ile	Tyr	Phe	Cys	Ala	Tyr	Thr	Tyr	Phe	
225					230					235					240	
																3.
Ala	Phe	Thr	Tyr	Phe	Pro	Trp	Ala	Pro	Asn	Val	Gly	Lys	Cys	Ala	Gly	
				245					250					255		
																4
Thr	Glu	Gly	Ala	Ala	Leu	Phe	Gly	Cys	Gly	Leu	Leu	Ser	Ser	Tyr	Leu	•
			260					265					270			
Leu	Leu	Phe	Ile	Asn	Phe	Tyr	Arg	Ile	Thr	Tyr	Asn	Ala	Lys	Ala	Lys	4
		275					280			_		285	-		-	
Ala	Ala	Lvs	Glu	Arg	Glv	Ser	Asn	Phe	ጥh r	Pro	Lvs	ጥከዮ	Val	Lvs	Ser	5
	290	-4-		3	,	295					300		,,,	-,-	501	
	270										300					
C111	C111	Cor	Dro	Tuc	Tara	Dro	Com	T	Co=	T	***	T1.				. 5
	GIŸ	Ser	PIO	Lys		PIO	ser	rys	ser		HIS	шe				•
305					310					315						•
																6
		_														
)> 27												•			
	L> 13															6
<212	2> DN	IA.														O

-																	
	<213>	> Th	raus	toch	ytri	mL				٠				•	-		
5	<220	>															
	<221	> CD	S														
	<222	> (1)(1320)												
10	<223	> De	lta-	5-De	satu	rase											
	<400																4.0
15	atg																48
	Met	Gly	Lys	Gly	Ser	Glu	Gly	Arg	Ser	Ala	Ala	Arg	Glu	Met		Ala	
	1			•	5					10					15		
20																	• •
					gac												96
	Glu	Ala	Asn	Gly	Asp	Lys	Arg	Lys	Thr	Ile	Leu	Ile	Glu	Gly	Val	Leu	
25				20					25					30			
														•			
					aac												144
30	Tyr	Asp	Ala	Thr	Asn	Phe	Lys	His	Pro	Gly	Gly	Ser	Ile	Ile	Asn	Phe	
50			35				÷	40			-		45			•	
35	ttg	acc	gag	ggc	gag	gcc	ggc	gtg	gac	gcg	acg	cag	gcg	tac	cgc	gag	192
,,,	Leu	Thr	Glu	Gly	Glu	Ala	Gly	Val	Asp	Ala	Thr	Gln	Ala	Tyr	Arg	Glu	
		50					55					60					
40																	
70																ccg	240
	Phe	His	Gln	Arg	Ser	Gly	Lys	Ala	Asp	Lys	Tyr	Leu	Lys	Ser	Leu	Pro	
45	65					70					75					80	
43																	
	aag	ctg	gat	gcg	tcc	aag	gtg	gag	tcg	cgg	ttc	tcg	gcc	aaa	gag	cag	288
50	Lys	Leu	. Asp	Ala	Ser	Lys	Val	Glu	Ser	Arg	Phe	Ser	Ala	Lys		Gln	
50					85					90)				95	5	
																g gag	336
55	Ala	Arg	, Arg	j Asp	Ala	Met	Thr	Arg	Asp	туг	: Ala	a Ala	a Phe	e Arg	g Glu	ı Glu	
				100)				105	5				110)		
60																t tac	
	Lev	va:	l Ala	a Glu	a G13	туз	Phe	e Asp	Pro	Se	r Ile	e Pro	o His	s Me	t Il	e Tyr	
			115	5				120)				12	5			

cgc	gtc	gtg	gag	atc	gtg	gcg	ctc	ttc	gcg	ctc	tcg	ttc	tgg	ctc	atg	432	
Arg	Val	Val	Glu	Ile	Val	Ala	Leu	Phe	Ala	Leu	Ser	Phe	Trp	Leu	Met	-	٠
	130					135					140						5
														•			
tcc	aag	gcc	tcg	ccc	acc	tcg	ctc	gtg	ctg	ggc	gtg	gtg	atg	aac	ggc	480	
Ser	Lys	Ala	Ser	Pro	Thr	Ser	Leu	Val	Leu	Gly	Val	Val	Met	Asn	Gly		10
145					150					155					160		
																-	
att	gcg	cag	ggc	cgc	tgc	ggc	tgg	gtc	atg	cac	gag	atg	ggc	cac	ggg	528	- 15
Ile	Ala	Gln	Gly	Arg	Cys	Gly	Trp	Val	Met	His	Glu	Met	Gly	His	Gly		
-				165					170			-		175			
																	20
tcg	ttc	acg	ggc	gtc	atc	tgg	ctc	gac	gac	cgg	atg	tgc	gag	ttc	ttc	576	
Ser	Phe	Thr	Gly	Val	Ile	Trp	Leu	Asp	Asp	Arg	Met	Cys	Glu	Phe	Phe		
			180		-			185		•			190		٠		25
											<i>:</i> .			a •			
tac	ggc	gtc	ggc	tgc	ggc	atg	agc	ggg	cac	tac	tgg	aag	aac	cag	cac	624	
Tyr	Gly	Val	Gly	Cys	Gly	Met	Ser	Gly	His	Tyr	Trp	Lys	Asn	Gln	His		30
		195	-		. •		200			. :.		205	,		,		
agc	aag	cac	cac	gcc	gcg	ccc	aac	cgc	ctc	gag	cac	gat	gtc	gat	ctc	672	35
Ser	Lys	His	His	Ala	Ala	Pro	Asn	Arg	Leu	Glu	His	Asp	Val	Asp	Leu		
	210					215					220						
				.*													40
aac	acg	ctg	CCC	ctg	gtc	gcc	ttt	aac	gag	cgc	gtc	gtg	cgc	aag	gtc	720	
Asn	Thr	Leu	Pro	Leu	Val	Ala	Phe	Asn	Glu	Arg	Val	Val	Arg	Lys	Val		
225					230					235					240	-	45
aag	ccg	gga	tcg	ctg	ctg	gcg	ctc	tgg	ctg	cgc	gtg	cag	gcg	tac	ctc	768	
Lys	Pro	Gly	Ser	Leu	Leu	Ala	Leu	Trp	Leu	Arg	Val	Gln	Ala	Tyr	Leu		50
				245					250				•	255			
ttt	gcg	ccc	gtc	tcg	tgc	ctg	ctc	atc	ggc	ctt	ggc	tgg	acg	ctc	tac	816	55
Phe	Ala	Pro	Val	Ser	Cys	Leu	Leu	Ile	Gly	Leu	Gly	Trp	Thr	Leu	Tyr		
			260					265					270				
																	60
			cgc													864	
Leu	His		Arg	Tyr	Met	Leu		Thr	Lys	Arg	His		Glu	Phe	Val		
		275					280					285					65

	tgg	atc	ttc	gcg	cgc	tac	att	ggc	tgg	ttc	tcg	ctc	atg Met	ggc Glv	gct Ala	ctc	912
	Trp	11e 290	Phe	Ala	Arg	Tyr	11e 295	GIĀ	Trp	Pne	Ser	Leu 300	Mec	GLY	7114	Dea	
5		290															
	ggc	tac	tcg	ccg	ggc	acc	tcg	gtc	ggg	atg	tac	ctg	tgc	tcg	ttc	ggc	960
10	Gly	Tyr	Ser	Pro	Gly	Thr	Ser	Val	Gly	Met		Leu	Cys	Ser	Phe		
	305					310					315					320	
	ctc	aac	tac	att	tac	att	ttc	cta	cag	ttc	gcc	gtc	agc	cac	acg	cac	1008
15												Val					
		017	0 2 -		325					330					335		
20																	1056
	ctg	ccg	gtg	acc	aac	ccg	gag	gac	cag	ctg -	cac	tgg	ctc	gag	tac	gcg	1056
	Leu	Pro	Val			Pro	Glu	Asp		Leu	HIS	Trp	Leu	350	ığı	ALG	
25				340					345					330			
	acc	gac	cac	e acq	ata	aac	att	agc	acc	aag	tcc	tgg	ctc	gtc	acg	tgg	1104
																Trp	
30		_	355					360					365				
																	1150
35	tgg	ato	, tc	aac	ctg	, aac	ttt	cag	ato	gag	cac	cac	ctc	tto	CCC	acg	1152
	Trp	Met	. Sei	Asr	. Lev	ı Asr			Ile	Glu	His	H1S 380		Pne	Pro	Thr	
		370)				375	•				360					
40	acc	r ccc	r cad	r tto	c cac	tto	: aag	gaa	ato	agt:	cct	. cgc	gto	gaç	gco	ctc	1200
																a Leu	
	385					390					395					400	
45																	1040
												g ccc		•	, ,	c gcg	1248
50		e Ly	s Ar	g Hi			ı Pro	о Туі	с Туз			ı Pro	тул	Tini	41	r Ala	
					40	5				410	,				***		
	ati	a to	α ac	c ac	c tt	t ac	c aa	t cti	t ta	t tco	gt	c ggo	cae	c to	g gt	c ggc	1296
55																l Gly	
				42					42					43			
																	1220
60	gc			c aa					a ·								1320
	Al	a As		r Ly	s Ly	s Gl	n As		^								
	_		43	5				44	U								

<210)> 28	3															
<211	L> 43	39															
<212	2> PI	RТ			•												5
<213	3> Tì	nraus	stocl	nytr:	ium												
																	 . •
<400)> 28	3		•										•			10
Met	Gly	Lys	Gly	Ser	Glu	Gly	Arg	Ser	Ala	Ala	Arg	Glu	Met	Thr	Ala		
1			•	5					10					15			
												-					15
Glu	Ala	Asn	Gly	Asp	Lys	Arg	Lys	Thr	Ile	Leu	Ile	Glu	Gly	Val	Leu		
			20					25					30				,
																	20
Tyr	Asp	Ala	Thr	Asn	Phe	Lys	His	Pro	Gly	Gly	Ser	Ile	Ile	Asn	Phe		
		35					40		•		•	45		•			
																	25
Leu	Thr	Glu	Gly	Glu	Ala	Gly	Val	Asp	Ala	Thr	Gln	Ala	Tyr	Arg	Glu		
	50					55					60	-					
											٠						<u> :</u> 30
Phe	His	Gln	Arg	Ser	Gly	Lys	Ala	Asp	Lys	Tyr	Leu	Lys	Ser	Leu	Pro		
65					70					75					80		
				-	-		-										₊ 35
Lys	Leu	Asp	Ala	Ser	Lys	Val	Glu	Ser	Arg	Phe	Ser	Ala	Lys	Glu	Gln		
				85					90					95			
																	40
Ala	Arg	Arg	Asp	Ala	Met	Thr	Arg	Asp	Tyr	Ala	Ala	Phe	Arg	Glu	Glu		
			100					105				•	110				•
																	45
Leu	Val		Glu	Gly	Tyr	Phe		Pro	Ser	Ile	Pro		Met	Ile	Tyr		
		115		-			120					125					
·. ·							_		_ =	_	_		_	_	,		50
Arg		Val	Glu	Ile	Val		Leu	Phe	Ala	Leu		Phe	Trp	Leu	Met		
	130					135					140						
			_			~			_				•	.	-1	٠	55
	Lys	Ala	Ser	Pro	•		Leu	Val	Leu		Val	Val	Met	Asn			
145					150					155					160		
- 1 -	.	01-	01	3	~	01	m	••	30-4	*** -	~ 3	30-6	01	***			60
тте	ATG	GIU	GIA		cys	стĀ	тър	vāl		H1S	GIU	met	СТĀ		Gly		
				165					170					175			

C~~	Dhe	ጥኪዮ	Glv	Val	Ile	Trp	Leu	Asp	Asp	Arg	Met	Cys	Glu	Phe	Phe
ser	FIIC	1111	180					185					190	•	

- Tyr Gly Val Gly Cys Gly Met Ser Gly His Tyr Trp Lys Asn Gln His
- Ser Lys His His Ala Ala Pro Asn Arg Leu Glu His Asp Val Asp Leu
 210 215 220
- Asn Thr Leu Pro Leu Val Ala Phe Asn Glu Arg Val Val Arg Lys Val
 225 230 235 240
- Lys Pro Gly Ser Leu Leu Ala Leu Trp Leu Arg Val Gln Ala Tyr Leu
 245 250 250
- 25
 Phe Ala Pro Val Ser Cys Leu Leu Ile Gly Leu Gly Trp Thr Leu Tyr
 260
 265
 270
- Leu His Pro Arg Tyr Met Leu Arg Thr Lys Arg His Met Glu Phe Val
 275 280 285
- Trp Ile Phe Ala Arg Tyr Ile Gly Trp Phe Ser Leu Met Gly Ala Leu
 290 295 300
- Gly Tyr Ser Pro Gly Thr Ser Val Gly Met Tyr Leu Cys Ser Phe Gly
 305 310 315
- Leu Gly Cys Ile Tyr Ile Phe Leu Gln Phe Ala Val Ser His Thr His 325
- Leu Pro Val Thr Asn Pro Glu Asp Gln Leu His Trp Leu Glu Tyr Ala
 340 345 350
- Ala Asp His Thr Val Asn Ile Ser Thr Lys Ser Trp Leu Val Thr Trp
 365
 365
- Trp Met Ser Asn Leu Asn Phe Gln Ile Glu His His Leu Phe Pro Thr 370 375 380
- 65 Ala Pro Gln Phe Arg Phe Lys Glu Ile Ser Pro Arg Val Glu Ala Leu

385	390	395	400
Phe Lys Arg His Asn		<u> </u>	
405	. ,	• •	
Val Ser Thr Thr Phe 420	Ala Asn Leu Tyr Se	r Val Gly His Ser Va 430	al Gly 10
Ala Asp Thr Lys Lys	Gln Asp		.:
435		·	
1.			20
<210> 29		,	20
<211> 957		•	
<212> DNA			25
<213> Mortierella a	Ipina		
<220>	·		30
<221> CDS			30
<222> (1)(957)		•	
<223> Delta-6-Elong	ase	·	35
<223> Delta-6-Elong	ase		35
<400> 29 atg gag tcg att gcg	cca ttc ctc cca tc	a aag atg ccg caa ga	it ctg 48 40
<400> 29 atg gag tcg att gcg Met Glu Ser Ile Ala	cca ttc ctc cca tc Pro Phe Leu Pro Se	r Lys Met Pro Gln As	at ctg 48 40 sp Leu
<400> 29 atg gag tcg att gcg	cca ttc ctc cca tc Pro Phe Leu Pro Se	r Lys Met Pro Gln As	it ctg 48 40
<400> 29 atg gag tcg att gcg Met Glu Ser Ile Ala 1 5	cca ttc ctc cca tc Pro Phe Leu Pro Se 1	r Lys Met Pro Gln As	at ctg 48 40 40 5p Leu 45
<400> 29 atg gag tcg att gcg Met Glu Ser Ile Ala 1 5 ttt atg gac ctt gcc	cca ttc ctc cca tc Pro Phe Leu Pro Se 1 acc gct atc ggt gt	r Lys Met Pro Gln As	at ctg 48 40 59 Leu 5 45 45 45
<400> 29 atg gag tcg att gcg Met Glu Ser Ile Ala 1 5 ttt atg gac ctt gcc	cca ttc ctc cca tc Pro Phe Leu Pro Se 1 acc gct atc ggt gt	Lys Met Pro Gln As	at ctg 48 40 59 Leu 5 45 45 45
<400> 29 atg gag tcg att gcg Met Glu Ser Ile Ala 1 5 ttt atg gac ctt gcc Phe Met Asp Leu Ala 20	cca ttc ctc cca tc Pro Phe Leu Pro Se 1 acc gct atc ggt gt Thr Ala Ile Gly Va 25	c cgg gcc gcg ccc ta	at ctg 48 40 50 45 45 45 45 45 45 45 45 45 45 45 45 45
<pre><400> 29 atg gag tcg att gcg Met Glu Ser Ile Ala 1</pre>	cca ttc ctc cca tc Pro Phe Leu Pro Se 1 acc gct atc ggt gt Thr Ala Ile Gly Va 25 gcg ctg gtg gcc ca	t Lys Met Pro Gln As C cgg gcc gcg ccc ta L Arg Ala Ala Pro Ty	at ctg 48 40 5p Leu .5 45 45 47 Val 50 6c ccc 144 6e Pro
<pre><400> 29 atg gag tcg att gcg Met Glu Ser Ile Ala 1</pre>	cca ttc ctc cca tc Pro Phe Leu Pro Se 1 acc gct atc ggt gt Thr Ala Ile Gly Va 25 gcg ctg gtg gcc ca	c Lys Met Pro Gln As c cgg gcc gcg ccc ta l Arg Ala Ala Pro Ty 30 g gcc gag aag tac at	at ctg 48 40 50 Leu 55 45 45 45 77 Val 50 50 50 50
<pre><400> 29 atg gag tcg att gcg Met Glu Ser Ile Ala 1</pre>	cca ttc ctc cca tc Pro Phe Leu Pro Se 1 acc gct atc ggt gt Thr Ala Ile Gly Va 25 gcg ctg gtg gcc ca Ala Leu Val Ala Gl 40	c Lys Met Pro Gln As c cgg gcc gcg ccc ta l Arg Ala Ala Pro Ty 30 c gcc gag aag tac at n Ala Glu Lys Tyr II	at ctg 48 40 sp Leu .5 45 at gtc 96 rr Val 50 sc ccc 144 se Pro 55
<pre><400> 29 atg gag tcg att gcg Met Glu Ser Ile Ala 1</pre>	cca ttc ctc cca tc Pro Phe Leu Pro Se 1 acc gct atc ggt gt Thr Ala Ile Gly Va 25 gcg ctg gtg gcc ca Ala Leu Val Ala Gl 40 acg cgt ggg ttc ct	c Lys Met Pro Gln As c cgg gcc gcg ccc ta l Arg Ala Ala Pro Ty 30 g gcc gag aag tac at Ala Glu Lys Tyr I	at ctg 48 40 5p Leu 5 45 45 47 Val 50 6c ccc 144 6e Pro 55
<pre><400> 29 atg gag tcg att gcg Met Glu Ser Ile Ala 1</pre>	cca ttc ctc cca tc Pro Phe Leu Pro Se 1 acc gct atc ggt gt Thr Ala Ile Gly Va 25 gcg ctg gtg gcc ca Ala Leu Val Ala Gl 40 acg cgt ggg ttc ct	t Lys Met Pro Gln As c cgg gcc gcg ccc ta l Arg Ala Ala Pro Ty 30 g gcc gag aag tac at Ala Glu Lys Tyr II 45	at ctg 48 40 5p Leu 5 45 45 47 Val 50 6c ccc 144 6e Pro 55
<pre><400> 29 atg gag tcg att gcg Met Glu Ser Ile Ala 1</pre>	cca ttc ctc cca tc Pro Phe Leu Pro Se 1 acc gct atc ggt gt Thr Ala Ile Gly Va 25 gcg ctg gtg gcc ca Ala Leu Val Ala Gl 40 acg cgt ggg ttc ct Thr Arg Gly Phe Le	c Lys Met Pro Gln As c cgg gcc gcg ccc ta l Arg Ala Ala Pro Ty 30 g gcc gag aag tac at Ala Glu Lys Tyr II 45 g gtc gcg gtg gag ta l Val Ala Val Glu Sa	at ctg 48 40 5p Leu 5 45 45 47 Val 50 6c ccc 144 6e Pro 55

	6	u Al 5	a Ar	g Gl	u Le	u Pro		ı Me	t As	n Pro	9 Ph 7		s Va	l Lei	ı Le	Ile 80	
:	gt	g ct	c gc	t ta	t tt	g gto	acc	g gto	c tti	t gto	g gg	c ato	g ca	g ato	: atg	g aag	288
10		l Le	u Al	а Ту	r Let		Thr	Va:	l Phe	e Val		y Mei	G1:	n Ile	Met 95	Lys	
15																ttt Phe	336
				10)				105	5				110			
20	Cys	ctq Le	g gto 1 Val	l Sei	g ato	agc Ser	gcc	Tyr	Met	tgc Cys	ggt Gly	ggg Gly	ato	ctg Leu	tac Tyr	gag	384
25		: tat			aac	tat	gga	120		gag	220	act	125	gat	ant		420
30	Ala	130	Glr	a Ala	ı Asn	Tyr	Gly 135	Leu	Phe	Glu	Asn	Ala 140	Ala	. Asp	His	Thr	432
35	tto Phe	aag Lys	ggt Gly	ctt Leu	cct Pro	atg Met	gcc Ala	aag Lys	atg Met	atc Ile	tgg Trp	ctc Leu	ttc Phe	tac Tyr	ttc Phe	tcc Ser	480
	145					150		•	•		155					160	
40	Lys	Ile	Met	Glu	Phe	Val	Asp	Thr	Met	Ile 170	atg Met	gtc Val	ctc Leu	aag Lys	aag Lys 175	aac Asn	528
45	aac Asn	cgc	cag	atc	tcc	ttc	ttg	cac	gtt	tac	cac	cac	agc	tcc	atc	ttc	576
50		9	0111	180	Set	Pile	rea	HIS	185	туr	His	His	Ser	Ser 190	Ile	Phe	
55	acc Thr	atc Ile	tgg Trp 195	tgg Trp	ttg Leu	gtc Val	Thr	ttt Phe 200	gtt Val	gca Ala	ccc Pro	aac Asn	ggt Gly 205	gaa Glu	gcc Ala	tac Tyr	624
60	ttc Phe	tct Ser 210	gct Ala	gcg Ala	ttg Leu	Asn	tcg Ser 215	ttc Phe	atc Ile	cat His	gtg Val	Ile	atg Met	tac Tyr	ggc	tac Tyr	672
65	tac		ttg	tcg	gcc			ttc	aag	cag	gtg	220 tcg	ttc	atc	aaq	ttc	720

Tyr	Phe	Leu	Ser	Ala	Leu	Gly	Phe	Lys	Gln	Val	Ser	Phe	Ile	Lys	Phe			
225					230					235					240			
															٠.			,
tac	atc	acg	cgc	tcg	cag	atg	aca	cag	ttc	tgc	atg	atg	tcg	gtc	cag	768		
Tyr	Ile	Thr	Arg	Ser	Gln	Met	Thr	Gln	Phe	Cys	Met	Met	Ser	Val	Gln			
				245					250					255				10
tct	tcc	tgg	gac	atg	tac	gcc	atg	aag	gtc	ctt	ggc	cgc	ccc	gga	tac	816		
Ser	Ser	Trp	Asp	Met	Tyr	Ala	Met	Lys	Val	Leu	Gly	Arg	Pro	Gly	Tyr			1:
			260					265					270					
												•						
ccc	ttc	ttc	atc	acg	gct	ctg	ctt	tgg	ttc	tac	atg	tgg	acc	atg	ctc	864		2
Pro	Phe	Phe	Ile	Thr	Ala	Leu	Leu	Trp	Phe	Tyr	Met	Trp	Thr	Met	Leu			
		275	•				280					285						
																		2.
ggt	ctc	ttc	tac	aac	ttt	tac	aga	aag	aac	gcc	aag	ttg	gcc	aag	cag	912		2.
Gly	Leu	Phe	Tyr	Asn	Phe	Tyr	Arg	Lys	Asn	Ala	Lys	Leu	Ala	Lys	Gln			
	290					295					300							3
																		۰
gcc	aag	gcc	gac	gct	gcc	aag	gag	aag	gca	agg	aag	ttg	cag	taa		957		
				Ala									_					
305	-		_		310	_	•	-		315	-							3:
<210)> 30)																-40
<211	l> 31	L8																
<212	2> PF	ΥT																
<213	3 > Mc	ortie	erell	la al	lpina	a												4:
<400)> 30)																
Met	Glu	Ser	Ile	Ala	Pro	Phe	Leu	Pro	Ser	Lvs	Met	Pro	Gln	Asp	Leu			50
1				5					10					15				
																•		
Phe	Met	Asp	Leu	Ala	Thr	Ala	Ile	Glv	Val	Ara	Ala	Ala	Pro	Tvr	Val			5:
			20					25		9			30	-1-				
														·	. •			
Asp	Pro	Lev	G112	Ala	Ala	Len	Val	Ala	Gln	Ala	Glu	Ive	ጥህጕ	Tle	Pro			6
F		35					40					45						
											•							
ጥከተ	Tle	Val	His	His	ጥኮኖ	Ara	Glv	Phe	T.em	Val	λla	Val	Glu	Ser	Pro		-	6

		50					55					60				
5	Leu 65	Ala	Arg	Glu	Leu	Pro 70	Leu	Met	Asn	Pro	Phe 75	His	Val	Leu	Leu	Ile 80
10	Val	Leu	Ala	Tyr	Leu 85	Val	Thr	Val	Phe	Val 90	Gly	Met	Gln	Ile	Met 95	Lys
15	Asn	Phe	Glu	Arg 100	Phe	Glu	Val	Lys	Thr 105	Phe	Ser	Leu	Leu	His 110	Asn	Phe
20	Cys	Leu	Val 115	Ser	Ile	Ser	Ala	Tyr 120	Met	Cys	Gly	Gly	Ile 125	Leu	Tyr	Glu
25	Ala	Туг 130	Gln	Ala	Asn	Туr	Gly 135	Leu	Phe	Glu	Asn	Ala 140	Ala	Asp	His	Thr
30	Phe 145	Lys	Gly	Leu	Pro	Met 150	Ala	Lys	Met	Ile	Trp 155	Leu	Phe	Tyr	Phe	Ser 160
35	Lys	Ile	Met	Glu	Phe 165	Val	Asp	Thr	Met	Ile 170	Met	Val	Leu	Lys	Lys 175	Asn
40	Asn	Arg	Gln	Ile 180	Ser	Phe	Leu	His	Val 185	Tyr	His	His	Ser	Ser 190	Ile	Phe
45	Thr	Ile	Trp	Trp	Leu	Val	Thr	Phe 200		Ala	Pro	Asn	Gly 205		Ala	Tyr
50	Phe	Ser 210		Ala	Leu	Asn	Ser 215		lle	His	Val	Ile 220		Tyr	Gly	Tyr
55	Туг 225		e Leu	Ser	Ala	Leu 230		√ Ph∈	. Lys	Gln	Val 235		Phe	e Ile	Lys	Phe 240
60	Туг	·Ile	e Thr	Arg	Ser 245		n Met	Thr	Gln	250		. Met	: Met	. Ser	Val 255	Gln
65	Ser	Sei	Tr	260		туг	Ala	a Met	Lys 265		Lev	ı Gly	y Arg	g Pro 270		Tyr

Pr	0	Phe	Phe 275	Ile	Thr	Ala	Leu	Leu 280	Trp	Phe	Tyr	Met	Trp 285	Thr	Met	Leu		
			413					200					200					5
G1	.у	Leu	Phe	Tyr	Asn	Phe	Tyr	Arg	Lys	Asn	Ala	Lys	Ĺeu	Ala	Lys	Gln		
		290					295					300						
ומ	a	Lvs	λla	Asp	Ala	Ala	Lvs	Glu	Lvs	Ala	Ara	Lys	Leu	Gln			•	10
30		2,0				310	2,2	Olu	2,5		315			02				
																		15
)> 31 L> 13						÷										
		2> Di																20
<2	213	s> Mo	ortie	erel	la al	lpina	ā											
					•			-	•									25
	220														•			٠.
		L> CI		(1374	1)	·				•	•		·				•	
					=, esatı	ırase	e											30
												. •						
<4	100)> 3:	L					•										35
												cgg -					48	
Me	et 1	Ala	Ala	Ala	Pro 5	Ser	Val	Arg	Thr	Phe 10	Thr	Arg	Ala	GIu	Val 15	Leu		
	_				J													. 40
aa	at	gçc	gag	gct	ctg	aat	gag	ggc	aag	aag	gat	gcc	gag	gca	ccc	ttc	96	
As	sn	Ala	Glu	Ala	Leu	Asn	Glu	Gly	Lys	Lys	Asp	Ala	Glu	Ala	Pro	Phe		45
				20					25					30				•
t.t	·σ	ato	atc	atc	gac	aac	aaq	ata	tac	gat.	att	cgc	gag	ttc	atc	cct	144	
	_	_			-		-			_	_	_			_	Pro		50
			35					40					45					
																		55
												gtt					192	
	SP.	nis	PIO	GIY	GIY	Ser	vai	TIE	Leu	Thr	HIS	Val	GIY	гуs	ASD	GTÄ	-	
		50					55					60						
•••		50					55					60						60
	:t		gtc	ttt	gac	act		cac	ccc	gag	gct	60 gct	tgg	gag	act	ctt	240	60
ac		gac					ttt				_						240	60

	65					70					75					80	
	acc	aac	+++	tac	att	aat	gat	att	gac	gag	agc	gac	cgc	gat	atc	aag	288
									Asp								-
	Ala	ASII	FILE	1 <u>y</u> 1	85	017	2.05			90		-	_		95		
10		~~ +	~ac	+++	aca	acc	gag	atc	cgc	aaq	cta	cat	acc	ttg	ttc	cag	336
									Arg								
	ASII	ASP	ASP	100	AIG	niu	014	• 4.2	105	-2 -		3		110			
15				100													
	tat	ctt	aat	tac	tac	gat	tct	tcc	aag	gca	tac	tac	gcc	ttc	aag	gtc	384
																Val	
20	Ser	ьęи	115	- 3 -	-1-	1104		120			-	_	125				
			113														
	tca	ttc	220	ctc	tac	atc	taa	aat	ttg	tcg	acg	gtc	att	gtg	gcc	aag	432
25									Leu								
	Ser	130	ASII	Dea	CyD		135	2				140					
		130															•
30	+~~	aac	cad	acc	tca	acc	ctc	acc	aac	ata	ctc	tcg	gct	gcg	ctt	ttg	480
									Asn								
	145	GLY	GIII	1111	JCI	150					155					160	
35	T#7					230											
	aat	cta	++	taa	cad	cad	tac	gga	tgg	ttg	gct	cac	gac	ttt	ttg	cat	528
									Trp								
40	GLY	200			165			-	_	170					175		
	cac	cac	ato	: ttc	cac	gac	cgt	tto	tgg	ggt	gat	ctt	ttc	ggc	gcc	ttc	576
45																Phe	
		0_0		180		_			185					190			
50	tto	aaa	a gat	gto	tgo	cag	ggc	tto	tcg	tcc	teg	g tgg	tgg	r aag	gac	aag	624
																Lys	
			195		_			200					205				
55																	
	cac	aa	c act	cac	cac	e geo	gco		aac	gto	cac	gge	gag	g gat	ccc	gac	672
																gaA c	
60		21					21					220					
									•								
	ati	ga:	c ac	c ca	c cc	t ct	g tt	g ac	c tgg	gag	t ga	g ca	t gc	g tt	g ga	g atg	720
65																u Met	

22	5					230					235	-				240		
tt	c	tcg	gat	gtc	cca	gat	gag	gag	ctg	acc	cgc	atg	tgg	tcg	cgt	ttc	768	5
Ph	ıe	Ser	Asp	Val	Pro	Asp	Glu	Glu	Leu	Thr	Arg	Met	Trp	Ser	Arg	Phe		
					245					250					255			
																		10
at	g	gtc	ctg	aac	cag	acc	tgg	ttt	tac	ttc	ccc	att	ctc	tcg	ttt	gcc	816	
Μe	et	Val	Leu	Asn	Gln	Thr	Trp	Phe	Tyr	Phe	Pro	Ile	Leu	Ser	Phe	Ala		
				260					265					270				15
cg	ηt	ctc	tcc	tgg	tgc	ctc	cag	tcc	att	ctc	ttt	gtg	ctg	cct	aac	ggt	864	
																Gly		20
	•		275	-	•			280					285			•		20
ca	aor	acc	cac	aaσ	ccc	tca	aac	aca	cat	ata	ccc	atc	tca	tta	atc	gag	912	25
	_	_					-		_			Ile	_	_	-			25
-		290		_, ~		-	295		5			300						
		250					2,7,5					300						
-	.~	ata	toa	att	~~~	ata	C2C	taa	200	taa	tac	ctc	~~~	200	ato	ttc	960	30
	_	_	_			_							_		_		900	
		Leu	Ser	rea	Ата		птэ	тр	1111	пр	- ·	Leu	Aia	1111	Mec.			
30) 5					310					315					320		35
-	٠.~	+ +a	250		~~+	222	~+~	226	254	a+~	~+~	+		++~	~+~	+ 00	1008	
				_			_		-	_		tac		_		_	1008	
ьe	=u	Pne	116	гĀS	_	PIO	Vai	ASII	met		Vai	Tyr	Pile	Leu		ser		40
					325					330				•	335			
													.				1056	
												ttc					1056	45
GJ	ιn	Ala	vaı		GIY	ASI	Leu	Leu		116	vaı	Phe	Ser		ASI	HIS		
				340					345					350				
						_					•						4404	50
												gtc					1104	•
As	sn	Gly		Pro	Val	Ile	Ser	_	Glu	Glu	Ala	Val	_	Met	Asp	Phe		
			355					360					365					55
tt	EC.	acg		cag	atc	atc	acg	ggt	cgt	gat	gtc	cac	ccg	ggt	cta	ttt	1152	
	ıe	Thr	aag									cac His				-	1152	60
	ıe		aag													-	1152	60
Pì	1e	Thr 370	aag Lys	Gln	Ile	Ile	Thr 375	Gly	Arg	Asp	Val	His 380	Pro	Gly	Leu	Phe	1152	60
Pì	1e	Thr 370	aag Lys	Gln	Ile	Ile	Thr 375	Gly	Arg	Asp	Val	His	Pro	Gly	Leu	Phe	1152	60

	385					390					395					400	
5	ttc Phe	cct Pro	tcg Ser	atg Met	cct Pro 405	cgc Arg	cac His	aac Asn	ttt Phe	tca Ser 410	aag Lys	atc Ile	cag Gln	cct Pro	gct Ala 415	gtc Val	1248
10	gag Glu	acc Thr	ctg Leu	tgc Cys 420	aaa Lys	aag Lys	tac Tyr	aat Asn	gtc Val 425	cga Arg	tac Tyr	cac His	acc Thr	acc Thr 430	ggt Gly	atg Met	1296
20	atc Ile	gag Glu	gga Gly 435	act Thr	gca Ala	gag Glu	gtc Val	ttt Phe 440	agc Ser	cgt Arg	ctg Leu	aac Asn	gag Glu 445	gtc Val	tcc Ser	aag Lys	1344
25			Ser	aag Lys				Ala									1374
30																	
35	<21 <21	0 > 3 1 > 4 2 > 1 3 > 1	157 PRT	ierel	lla a	ılpir	na										
40		0> :		- 7	- - -		- Wai	1 2 m/	• መъ	r Phe	o Thi	r Arc	r Ala	a Glu	ı Val	. Leu	
45	1		a Al	a Ale		5	L Va.	. AL	, 111	10			,		15		
50				2	0				2	5			٠	30	ס	Phe	
55		u Me		e Il 5	e As	p As	n Ly:	s Va 4		r As	p Va	l Ar	g Gl 4		e Vai	l Pro	
60			s Pr	o Gl	y Gl	y Se	r Va		e Le	u Th	r Hi		1 G1 0	у Гу	s As	p Gly	
6.	6	r As 5	sp Vá	al Ph	ne As		r Ph	e Hi	s Pr	co Gl		.a Al '5	a Tr	p Gl	u Th	r Leu 80	

Ala	Asn	Phe	Tyr	Val 85	Gly	Asp	Ile	Asp	Glu 90	Ser	Asp	Arg	Asp	Ile 95	Lys		
Asn	Asp	Asp	Phe 100	Ala	Ala	Glu	Val	Arg 105	Lys	Leu	Arg	Thr	Leu 110	Phe	Gln		
Ser	Leu	Gly 115	Tyr	Tyr	Asp	Ser	Ser 120	Lys	Ala	Tyr	Tyr	Ala 125	Phe	Lys	Val		
Ser	Phe	Asn	Leu	Cys	Ile	Trp 135	Gly	Leu	Ser	Thr	Val	Ile	Val	Ala	Lys	٠.	. 1
Trp		Gln	Thr	Ser	Thr		Ala	Asn	Val	Leu	•	Ala	Ala	Leu	Leu		2
145					150	**				155				<u>.</u>	160		2
Gly	Leu	Phe	Trp	165	Gln	Cys	GTA	Trp	170	Ala	His	Asp	Phe	175	His	,	
His	Gln	Val	Phe 180	Gln	Asp	Arg	Phe	Trp 185	Gly	Asp	Leu	Phe	Gly 190	Ala	Phe		
Leu	Gly	Gly 195	Val	Cys	Gln	Gly	Phe 200	Ser	Ser	Ser		Trp 205	Lys	Asp	Lys		
His	Asn 210	Thr	His	His	Ala	Ala 215	Pro	Asn	Val	His	Gly 220	Glu	Asp	Pro	Asp		. 4
Ile 225	Asp	Thr	His	Pro	Leu 230	Leu	Thr	Trp	Ser	Glu 235	His	Ala	Leu	Glu	Met 240		4
Phe	Ser	Asp	Val	Pro 245	Asp	Glu	Glu	Leu	Thr 250	Arg	Met	Trp	Ser	Arg 255	Phe		
Met	Val	Leu	Asn 260	Gln	Thr	Trp	Phe	Tyr 265	Phe	Pro	Ile	,Leu	Ser 270	Phe	Ala		
Arg	Leu	Ser 275	Trp	Cys	Leu	Gln	Ser 280	Ile	Leu	Phe	Val	Leu 285	Pro	Asn	Gly		6
Gln	Ala	His	Lys	Pro	Ser	Gly	Ala	Arg	Val	Pro	Ile	Ser	Leu	Val	Glu		ć

290	295	300
	275	300

- Gln Leu Ser Leu Ala Met His Trp Thr Trp Tyr Leu Ala Thr Met Phe 305 310 315 320
- Leu Phe Ile Lys Asp Pro Val Asn Met Leu Val Tyr Phe Leu Val Ser 325 330 335
- $_{15}$ Gln Ala Val Cys Gly Asn Leu Leu Ala Ile Val Phe Ser Leu Asn His $_{340}$ 345 350
- 20 Asn Gly Met Pro Val Ile Ser Lys Glu Glu Ala Val Asp Met Asp Phe 355 360 365
- Phe Thr Lys Gln Ile Ile Thr Gly Arg Asp Val His Pro Gly Leu Phe 370 375 380
- Ala Asn Trp Phe Thr Gly Gly Leu Asn Tyr Gln Ile Glu His His Leu 385 390 395 400
- Phe Pro Ser Met Pro Arg His Asn Phe Ser Lys Ile Gln Pro Ala Val 405 410 415
- Glu Thr Leu Cys Lys Lys Tyr Asn Val Arg Tyr His Thr Thr Gly Met
 420 425 430
- Ile Glu Gly Thr Ala Glu Val Phe Ser Arg Leu Asn Glu Val Ser Lys
 435 440 445
- Ala Ala Ser Lys Met Gly Lys Ala Gln 450 455
- <210> 33
 - <211> 3598
 - <212> DNA
- <213> Unknown
- <220>
- $^{\circ\circ}$ <223> Sequenz stellt eine pflanzliche

Promotor-Terminator-Expressionskassette in Vektor pUC19 dar

<400> 33						
tcgcgcgttt	cggtgatgac	ggtgaaaacc	tctgacacat	gcagctcccg	gagacggtca	60
cagcttgtct	gtaagcggat	gccgggagca	gacaagcccg	tcagggcgcg	tcagcgggtg	
ttggcgggtg	tcggggctgg	cttaactatg	cggcatcaga	gcagattgta	ctgagagtgc	180 15
accatatgcg	gtgtgaaata	ccgcacagat	gcgtaaggag	aaaataccgc	atcaggcgcc	
attcgccatt	caggctgcgc	aactgttggg	aagggcgatc	ggtgcgggcc	tcttcgctat	300
tacgccagct	ggcgaaaggg	ggatgtgctg	caaggcgatt	aagttgggta	acgccagggt	360 ₂₅
tttcccagtc	acgacgttgt	aaaacgacgg	ccagtgaatt	cggcgcgccg	agctcctcga	
gcaaatttac	acattgccac	taaacgtcta	aacccttgta	atttgttttt	gttttactat	480
gtgtgttatg	tatttgattt	gcgataaatt	tttatatttg	gtactaaatt	tataacacct	540
tttatgctaa	cgtttgccaa	cacttagcaa	tttgcaagtt	gattaattga	ttctaaatta	600
tttttgtctt	ctaaatacat	atactaatca	actggaaatg	taaatatttg	ctaatatttc	660
tactatagga	gaattaaagt	gagtgaatat	ggtaccacaa	ggtttggaga	tttaattgtt	720
gcaatgctgc	atggatggca	tatacaccaa	acattcaata	attcttgagg	ataataatgg	780
taccacacaa	gatttgaggt	gcatgaacgt	cacgtggacá	aaaggtttag	taatttttca	840
agacaacaat	gttaccacac	acaagttttg	aggtgcatgc	atggatgccc	tgtggaaagt	900
ttaaaaatat	tttggaaatg	atttgcatgg	aagccatgtg	taaaaccatg	acatccactt	960
ggaggatgca	ataatgaaga	aaactacaaa	tttacatgca	actagttatg	catgtagtct	1020
atataatgag	gattttgcaa	tactttcatt	catacacact	cactaagttt	tacacgatta	1080

taatttette atageeagee caeegeggtg ggeggeegee tgeagtetag aaggeeteet 1140 5 gctttaatga gatatgcgag acgcctatga tcgcatgata tttgctttca attctgttgt 1200 gcacgttgta aaaaacctga gcatgtgtag ctcagatcct taccgccggt ttcggttcat 1260 10 tctaatgaat atatcacccg ttactatcgt atttttatga ataatattct ccgttcaatt 1320 tactgattgt ccgtcgacga attcgagctc ggcgcgccaa gcttggcgta atcatggtca 1380 tagctgtttc ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga 1440 20 agcataaagt gtaaagcctg gggtgcctaa tgagtgagct aactcacatt aattgcgttg 1500 cgctcactgc ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc 1560 caacgcgcgg ggagaggcgg tttgcgtatt gggcgctctt ccgcttcctc gctcactgac 1620 30 tegetgeget eggtegtteg getgeggega geggtateag eteaeteaaa ggeggtaata 1680 cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa 1740 aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct ccgccccct 1800 40 gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa 1860 45 agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc gaccctgccg 1920 cttaccggat acctgtccgc ctttctccct tcgggaagcg tggcgctttc tcatagctca 1980 50 cgctgtaggt atctcagttc ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa 2040 ccccccgttc agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg 2100 gtaagacacg acttategee actggcagea gecactggta acaggattag cagagegagg 2160 tatgtaggcg gtgctacaga gttcttgaag tggtggccta actacggcta cactagaagg 2220 acagtatttg gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc 2280 65

aataaacaa	a taggggttcc	gcgcacattt	ccccgaaaag	tgccacctga	cgtctaagaa	3540	
accattatt	a tcatgacatt	aacctataaa	aataggcgta	tcacgaggcc	ctttcgtc	3598	5
<210> 34 <211> 359	0						10
<212> DNA				•			
<213> Unk	nown						15
<220>							
<223> Seq	uenz stellt	eine pflanz	liche				20
	motor-Termin 19 dar	ator-Express	sionskasset	te in Vektor	r ·		
pool		•			,		25
<400> 34					•		23
tcgcgcgtt	t cggtgatgac	ggtgaaaacc	tctgacacat	gcagctcccg	gagacggtca	60	
cagcttgtc	t gtaagcggat	gccgggagca	gacaagcccg	tcagggcgcg	tcagcgggtg	120	30
ttggcgggt	g teggggetgg	cttaactatg	cggcatcaga	gcagattgta	ctgagagtgc	180	, 35
accatatgc	g gtgtgaaata	ccgcacagat	gcgtaaggag	aaaataccgc	atcaggcgcc	240	
attegecat	t caggetgege	aactgttggg	aagggcgatc	ggtgcgggcc	tcttcgctat	300	. 40
tacgccagc	t ggcgaaaggg	ggatgtgctg	caaggcgatt	aagttgggta	acgccagggt	360	45
tttcccagt	c acgacgttgt	aaaacgacgg	ccagtgaatt	cggcgcgccg	agctcctcga	420	
gcaaattta	c acattgccac	taaacgtcta	aacccttgta	atttgttttt	gttttactat	480	50
gtgtgttat	y tatttgattt	gcgataaatt	tttatatttg	gtactaaatt	tataacacct	540	55
tttatgcta	a cgtttgccaa	cacttagcaa	tttgcaagtt	gattaattga	ttctaaatta	600	
tttttgtct	t ctaaatacat	atactaatca	actggaaatg	taaatatttg	ctaatatttc	660	60
tactatagg	a gaattaaagt	gagtgaatat	ggtaccacaa	ggtttggaga	tttaattgtt	720	

gcaatgctgc atggatggca tatacaccaa acattcaata attcttgagg ataataatgg 780 5 taccacaca gatttgaggt gcatgaacgt cacgtggaca aaaggtttag taatttttca 840 agacaacaat gttaccacac acaagttttg aggtgcatgc atggatgccc tgtggaaagt 900 10 ttaaaaatat tttggaaatg atttgcatgg aagccatgtg taaaaccatg acatccactt 960 ggaggatgca ataatgaaga aaactacaaa tttacatgca actagttatg catgtagtct 1020 atataatgag gattttgcaa tactttcatt catacacact cactaagttt tacacgatta 1080 taatttette atageeageg gateegatat egggeeeget agegttaace etgetttaat 1140 gagatatgcg agacgcctat gatcgcatga tatttgcttt caattctgtt gtgcacgttg 1200 taaaaaacct gagcatgtgt agctcagatc cttaccgccg gtttcggttc attctaatga 1260 atatatcacc cgttactatc gtatttttat gaataatatt ctccgttcaa tttactgatt 1320 gtccgtcgac gaattcgagc tcggcgcgcc aagcttggcg taatcatggt catagctgtt 1380 tectgtgtga aattgttate egeteacaat tecacacaac atacgageeg gaageataaa 1440 gtgtaaagcc tggggtgcct aatgagtgag ctaactcaca ttaattgcgt tgcgctcact 1500 gcccgctttc cagtcgggaa acctgtcgtg ccagctgcat taatgaatcg gccaacgcgc 1560 ggggagaggc ggtttgcgta ttgggcgctc ttccgcttcc tcgctcactg actcgctgcg 1620 ctcggtcgtt cggctgcggc gagcggtatc agctcactca aaggcggtaa tacggttatc 1680 cacagaatca ggggataacg caggaaagaa catgtgagca aaaggccagc aaaaggccag 1740 gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg ctccgccccc ctgacgagca 1800 tcacaaaaat cgacgctcaa gtcagaggtg gcgaaacccg acaggactat aaagatacca 1860 ggcgtttccc cctggaagct ccctcgtgcg ctctcctgtt ccgaccctgc cgcttaccgg 1920

t	tc	cto	CC	ct	:tc	gg	ıga	.ag	C	jtς	gg	cg	ett	t	Ct	ca	tag	jct	С	ac	gc	tg	taç	y]	L98	D		
t	gt	aç	g	to	:gt	tc	gc	tc	Cā	aag	gci	tg	ggc	t	gt	gt	gca	ıcg	a	ac	CC	CC	cgt	: 2	204	o -		5
g	CG	ıco	et	ta	ıtc	cg	gt	aa	ct	at	CÇ	gto	ctt	g	ag	tc	caa	cc	С	gg	ta	aga	aca	1 2	210			10
t	gg	JC &	ag	Cā	ıgc	ca	ct	gg	ta	aac	cag	gga	att	a	gc	aga	ago	ga	g	gta	at	gta	agg	, 2	2160	0		10
t	ct	tç	ja	aç	ŗtg	gt	gg	cc	ta	aac	eta	ac (ggc	t	ac	act	taç	gaa	g	ga	ca	gta	att	: 2	220	ס		15
t	.gc	tç	ја	aç	icc	ag	tt	ac	ct	tc	g	gaa	aaa	a	ga	gti	tgg	ŗta	g	cto	cti	tga	ato	: 2	280)		••
С	cg	rct	g	gt	ag	rcg	gt	gg	tt	tt	:t1	ttg	jt t	t	gc	aag	gca	ıgc	a	gat	t t i	acg	gcg	r 2	340)		20
c	tc	aa	ag	aa	ıga	tc	ct	tt	ga	tc	et!	tti	ct	a	cg	gg	gto	tg	a	cg	cto	cag	gtg	r 2	400)		25
g	tt	aa	ıg	gg	ŗαt	tt	tg	gt	Cã	tc	yaç	gat	ta	t,	ca	aaa	aaç	ga	t	cti	tca	aco	cta	. 2	460)		
a	aa	aa	at	ga	ıag	tt	tt	aa	at	ca	aat	ċċŧ	aa	a	gt	ata	ata	ţg	а	gta	aa	act	ttg	r 2	520)		30
a	at.	gc	t	ta	ıat	.ca	gt	ga	gg	jca	aco	cta	atc	ŧ	ca	gc	gat	ct	g	tct	cat	tti	tcg	r · 2	580)		35
С	ct	gā	ıc	to	:cc	cg	tc	gt	gt	ag	jat	taa	act	a	cg	ata	acg	igg	a	ggg	gci	tta	acc	: 2	640)	-	
С	tg	Cē	ıa	tg	ŗat	ac.	cg	cg	aç	jac	CC	cac	cgc	t	ca	cci	ggo	tc	C	aga	ati	tta	atc	: 2	700)		40
С	ag	CC	g	ga	ıag	gg	cc	ga	go	gc	caç	gaa	agt	g	gt	cci	gc	aa	С	tti	tai	tco	cgc	: 2	760)		45
t	ta	at	t	gt	:tg	cc	gg	ga	ag	ıct	aç	gaç	įta	a	gt	agt	ttc	gc	c	agt	tta	aat	tag	₇ 2	820	כ		
t	tg	CC	a	tt	.gc	ta	.ca	gg	Cā	ıţc	gt	tgg	gtg	t	ca	cgo	cto	gt	C	gti	tţ	ggt	tat	: 2	880)		50
С	cg	gt	t	cc	:ca	.ac	ga	tc	aa	ıgg	jc	gaç	jtt	а	ca	tga	ato	cc	С	cat	tg:	ttg	gtg	r 2	940)	·	55 ,
g	ct	.cc	t	to	:gg	tc	ct	cc	ga	tc	gt	ttg	jtc	. a	ga	agt	taa	gt	t	ggo	cci	gca	agt	: 3	000)		
t	ta	tç	g	ca	ıgc	ac	tg	ca	ta	at	t	cto	tt	a	ct	gto	cat	.gc	С	ato	cci	gta	aag	r 3	060	ס		60
C	tg	gt	g	aç	ŗta	ct	ca	ac	Cā	ıaç	jto	cat	tc	t	ga	gaa	ata	gt	g	tai	.g	cgg	gcg	r. 3	120)		

accgagttgc tettgeecgg egteaatacg ggataatace gegecacata geagaacttt 3180

5 aaaagtgete ateattggaa aacgttette ggggegaaaa eteteaagga tettaeeget 3240

gttgagatee agttegatgt aacceaeteg tgeacceaae tgatetteag catetttae 3300

ttteaccage gtttetgggt gageaaaaae aggaaggeaa aatgeegeaa aaaagggaat 3360

15 aagggegaca eggaaatgtt gaataeteat aetetteett ttteaatatt attgaageat 3420

ttateagggt tattgtetea tgageggata eatattgaa tgtatttaga aaaataaaea 3480

20 aataggggtt eegegeacat tteeeegaaa agtgeeaeet gaegtetaag aaaccattat 3540

tateatgaca ttaacetata aaaataggeg tateaegag eeetttegte 3590

- <210> 35
 - <211> 3584
 - <212> DNA
- <213> Unknown
 - <220>

65

- <223> Sequenz stellt eine pflanzliche
 Promotor-Terminator-Expressionskassette in Vektor
 pUC19 dar
- 400> 35
 tegegegttt eggtgatgac ggtgaaaacc tetgacacat geageteeeg gagacggtea 60
 cagettgtet gtaageggat geegggagea gacaageeeg teagggegeg teagegggtg 120
 ttggegggtg teggggetgg ettaactatg eggeateaga geagattgta etgagagtge 180
 accatatgeg gtgtgaaata eegeacagat gegtaaggag aaaatacege ateaggegee 240
 attegeeatt eaggetgege aactgttggg aagggegate ggtgegggee tettegetat 300
 taegeeaget ggegaaaggg ggatgtgetg eaaggegatt aagttgggta aegeeagggt 360

	420	ageteetega	- cggcgcgccg	ccagcgaacc	aaaacgacgg	acgacgctgc	LLLCCCagte
5	480	gttttactat	atttgttttt	aacccttgta	taaacgtcta	acattgccac	gcaaatttac
	540	tataacacct	gtactaaatt	tttatatttg	gcgataaatt	tatttgattt	gtgtgttatg
10	600	ttctaaatta	gattaattga	tttgcaagtt	cacttagcaa	cgtttgccaa	tttatgctaa
15	660	ctaatatttc	taaatatttg	actggaaatg	atactaatca	ctaaatacat	tttttgtctt
•	720	tttaattgtt	ggtttggaga	ggtaccacaa	gagtgaatat	gaattaaagt	tactatagga
	780	ataataatgg	attcttgagg	acattcaata	tatacaccaa	atggatggca	gcaatgctgc
25	840	taatttttca	aaaggtttag	cacgtggaca	gcatgaacgt	gatttgaggt	taccacacaa
٠.	900	tgtggaaagt	atggatgccc	aggtgcatgc	acaagttttg	gttaccacac	agacaacaat
30	960	acatccactt	taaaaccatg	aagccatgtg	atttgcatgg	tttggaaatg	ttaaaaatat
35	1020	catgtagtct	actagttatg	tttacatgca	aaactacaaa	ataatgaaga	ggaggatgca
	1080	tacacgatta	cactaagttt	catacacact	tactttcatt	gattttgcaa	atataatgag
40	1140	ctgctttaat	gggccatggc	catcgatccc	gatctgccgg	atagccagca	taatttcttc
45	1200	gtgcacgttg	caattctgtt	tatttgcttt	gatcgcatga	agacgcctat	gagatatgcg
	1260	attctaatga		cttaccgccg	agctcagatc	gagcatgtgt	taaaaaacct
50	1320	tttactgatt	ctccgttcaa	gaataatatt	gtatttttat	cgttactatc	atatatcacc
55	1380	tgtttcctgt	tggtcatagc	ggcgtaatca	cgccaagctt	gagctcggcg	gtccgtcgac
	1440	taaagtgtaa	gccggaagca	caacatacga	caattccaca	tatccgctca	gtgaaattgt
60	1500	cactgcccgc	gcgttgcgct	cacattaatt	tgagctaact	gcctaatgag	agcctggggt
	1560	gcgcggggag	atcggccaac	gcattaatga	cgtgccagct	ggaaacctgt	tttccagtcg

aggeggtttg egtattggge getetteege tteetegete actgaetege tgegeteggt 1620 5 cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt tatccacaga 1680 atcaggggat aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg 1740 10 taaaaaggcc gcgttgctgg cgtttttcca taggctccgc ccccctgacg agcatcacaa 1800 aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga ctataaagat accaggcgtt 1860 teccetgga ageteceteg tgegetetee tgtteegace etgeegetta eeggatacet 1920 gtccgccttt ctcccttcgg gaagcgtggc gctttctcat agctcacgct gtaggtatct 1980 cagtteggtg taggtegtte getecaaget gggetgtgtg caegaacece cegtteagee 2040 cgaccgctgc gccttatccg gtaactatcg tcttgagtcc aacccggtaa gacacgactt 2100 30 atcgccactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg taggcggtgc 2160 tacagagttc ttgaagtggt ggcctaacta cggctacact agaaggacag tatttggtat 2220 ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa 2280 acaaaccacc gctggtagcg gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa 2340 40 aaaaggatct caagaagatc ctttgatctt ttctacgggg tctgacgctc agtggaacga 2400 aaactcacgt taagggattt tggtcatgag attatcaaaa aggatcttca cctagatcct 2460 tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa cttggtctga 2520 cagttaccaa tgcttaatca gtgaggcacc tatctcagcg atctgtctat ttcgttcatc 2580 catagttgcc tgactccccg tcgtgtagat aactacgata cgggagggct taccatctgg 2640 ccccagtgct gcaatgatac cgcgagaccc acgctcaccg gctccagatt tatcagcaat 2700 aaaccagcca gccggaaggg ccgagcgcag aagtggtcct gcaactttat ccgcctccat 2760

ccagtc	tatt	aattgttgcc	gggaagctag	agtaagtagt	tcgccagtta	atagtttgcg	2820	•	
caacgt	tgtt	gccattgcta	caggcatcgt	ggtgtcacgc	tcgtcgtttg	gtatggcttc	2880		5
attcago	ctcc	ggttcccaac	gatcaaggcg	agttacatga	tccccatgt	tgtgcaaaaa	2940		
agcggt	tagc	tccttcggtc	ctccgatcgt	tgtcagaagt	aagttggccg	cagtgttatc	3000	1	10
actcat	ggtt	atggcagcac	tgcataattc	tcttactgtc	atgccatccg	taagatgctt	3060	. 1	15
ttctgt	gact	ggtgagtact	caaccaagtc	attctgagaa	tagtgtatgc	ggcgaccgag	3120	, .	
ttgctc	ttgc	ccggcgtcaa	tacgggataa	taccgcgcca	catagcagaa	ctttaaaagt	3180	2	20
gctcato	catt	ggaaaacgtt	cttcggggcg	aaaactctca	aggatcttac	cgctgttgag	3240	. 2	25
atccagi	ttcg	atgtaaccca	ctcgtgcacc	caactgatct	tcagcatctt	ttactttcac	3300		
cagcgti	ttct	gggtgagcaa	aaacaggaag	gcaaaatgcc	gcaaaaaagg	gaataagggc	3360		30
gacacg	gaaa	tgttgaatac	tcatactctt	cctttttcaa	tattattgaa	gcatttatca	3420	. 3	35
gggttat	ttgt	ctcatgagcg	gatacatatt	tgaatgtatt	tagaaaaata	aacaaatagg	3480	٠.	
ggttccg	gcgc	acatttcccc	gaaaagtgcc	acctgacgtc	taagaaacca	ttattatcat	3540	4	40
gacatta	aacc	tataaaaata	ggcgtatcac	gaggcccttt	cgtc		3584		45
<210> 3 <211> 4									50
<212> I					-				
<213> T		wn							55
<220>					-			-	,,
<223> 3	Seque	nz stellt e	eine pflanzl	liche		• .		. 6	٤n
		tor-Termina dar	tor-Express	sionskassett	te in Vektor			. (~
							•		
								•	55

tegegegttt eggtgatgae ggtgaaaace tetgacacat geageteeeg gagaeggtea 60 cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120 ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180 10 accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc 240 attegecatt caggetgege aactgttggg aagggegate ggtgegggee tettegetat 300 tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 360 20 tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt cggcgcgccg agctcctcga 420 gcaaatttac acattgccac taaacgtcta aacccttgta atttgttttt gttttactat 480 gtgtgttatg tatttgattt gcgataaatt tttatatttg gtactaaatt tataacacct 540 tttatgctaa cgtttgccaa cacttagcaa tttgcaagtt gattaattga ttctaaatta 600 tttttgtctt ctaaatacat atactaatca actggaaatg taaatatttg ctaatatttc 660 tactatagga gaattaaagt gagtgaatat ggtaccacaa ggtttggaga tttaattgtt 720 gcaatgctgc atggatggca tatacaccaa acattcaata attcttgagg ataataatgg 780 taccacacaa gatttgaggt gcatgaacgt cacgtggaca aaaggtttag taatttttca 840 agacaacaat gttaccacac acaagttttg aggtgcatgc atggatgccc tgtggaaagt 900 ttaaaaatat tttggaaatg atttgcatgg aagccatgtg taaaaccatg acatccactt 960 ggaggatgca ataatgaaga aaactacaaa tttacatgca actagttatg catgtagtct 1020 55 atataatgag gattttgcaa tactttcatt catacacact cactaagttt tacacgatta 1080 taatttette atageeagee cacegeggtg ggeggeegee tgeagtetag aaggeeteet 1140 getttaatga gatatgegag acgeetatga tegeatgata tttgetttea attetgttgt 1200

•	1260	ttcggttcat	taccgccggt	ctcagatcct	gcatgtgtag	aaaaacctga	gcacgttgta
5	1320	ccgttcaatt	ataatattct	atttttatga	ttactatcgt	atatcacccg	tctaatgaat
	1380	ccttgtaatt	acgtctaaac	ttgccactaa	aatttacaca	ccgtcgagca	tactgattgt
10	1440	atatttggta	ataaattttt	ttgatttgcg	tgttatgtat	ttactatgtg	tgtttttgtt
. 15	1500	gcaagttgat	ttagcaattt	ttgccaacac	atgctaacgt	aacacctttt	ctaaatttat
	1560	ggaaatgtáa	ctaatcaact	aatacatata	ttgtcttcta	taaattattt	taattgattc
20	1620	accacaaggt	tgaatatggt	ttaaagtgag	tataggagaa	atatttctac	atatttgcta
25	1680	ttcaataatt	acaccaaaca	gatggcatat	atgctgcatg	aattgttgca	ttggagattt
	1740	gtggacaaaa	tgaacgtcac	ttgaggtgca	cacacaagat	ataatggtac	cttgaggata
30	1800	tgcatgcatg	agttttgagg	accacacaca	-caacaatgtt	tttttcaaga	ggtttagtaa
- 35	1860 [.]	ccatgtgtaa	tgcatggaag	ggaaatgatt	aaaatatttt	ggaaagttta	gatgccctgt
	1920	acatgcaact	ctacaaattt	atgaagaaaa	ggatgcaata	tccacttgga	aaccatgaca
40	1980	acacactcac	tttcattcat	tttgcaatac	taatgaggat	gtagtctata	agttatgcat
45	2040	gcccgctagc	ccgatatcgg	gccagcggat	tttcttcata	acgattataa	taagttttac
	2100	ttgctttcaa	cgcatgatat	cgcctatgat	atatgcgaga	ctttaatgag	gttaaccctg
50	2160	accgccggtt	tcagatcctt	catgtgtagc	aaaacctgag	cacgttgtaa	ttctgttgtg
55.	2220	taatattctc	tttttatgaa	tactatcgta	tatcacccgt	ctaatgaata	tcggttcatt
	2280	cttggcgtaa	gcgcgccaag	ttcgagctcg	cgtcgacgaa	actgattgtc	cgttcaattt
60	2340	acacaacata	tcacaattcc	tgttatccgc	tgtgtgaaat	agctgtttcc	tcatggtcat
	2400	actcacatta	gagtgagcta	ggtgcctaat	taaagcctgg	gcataaagtg	cgagccggaa

attgcgttgc gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca gctgcattaa 2460 5 tgaatcggcc aacgcgcggg gagaggcggt ttgcgtattg ggcgctcttc cgcttcctcg 2520 ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag 2580 geggtaatae ggttateeae agaateaggg gataaegeag gaaagaaeat gtgageaaaa 2640 ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc tggcgttttt ccataggctc 2700 cgccccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca 2760 ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc tcctgttccg 2820 accetgeege ttaceggata ectgteegee ttteteeett egggaagegt ggegetttet 2880 catageteae getgtaggta teteagtteg gtgtaggteg ttegeteeaa getgggetgt 2940 gtgcacgaac ceceegttea geeegacege tgegeettat eeggtaacta tegtettgag 3000 tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc 3060 agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac 3120 actagaagga cagtatttgg tatctgcgct ctgctgaagc cagttacctt cggaaaaaga 3180 gttggtagct cttgatccgg caaacaaacc accgctggta gcggtggttt ttttgtttgc 3240 45 aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat cttttctacg 3300 gggtctgacg ctcagtggaa cgaaaactca cgttaaggga ttttggtcat gagattatca 3360 aaaaggatct tcacctagat ccttttaaat taaaaatgaa gttttaaatc aatctaaagt 3420 55 atatatgagt aaacttggtc tgacagttac caatgcttaa tcagtgaggc acctatctca 3480 gegatetgte tatttegtte atceatagtt geetgaetee eegtegtgta gataactaeg 3540 atacgggagg gettaccate tggccccagt getgcaatga taccgcgaga cccacgetca 3600°

ccggctccag atttatcagc	aataaaccag	ccagccggaa	gggccgagcg	cagaagtggt	3660	
cctgcaactt tatccgcctc	catccagtct	attaattgtt	gccgggaagc	tagagtaagt	3720	5
agttcgccag ttaatagttt	gcgcaacgtt	gttgccattg	ctacaggcat.	cgtggtgtca	3780	
cgctcgtcgt ttggtatggc	ttcattcagc	tccggttccc	aacgatcaag	gcgagttaca	3840	
tgatccccca tgttgtgcaa	aaaagcggtt	agctccttcg	gtcctccgat	cgttgtcaga	3900	15
agtaagttgg ccgcagtgtt	atcactcatg	gttatggcag	cactgcataa	ttctcttact	3960	
gtcatgccat ccgtaagatg	cttttctgtg	actggtgagt	actcaaccaa	gtcattctga	4020	20
gaatagtgta tgcggcgacc	gagttgctct	tgcccggcgt	caatacggga	taataccgcg	4080	25
ccacatagca gaactttaaa	agtgctcatc	attggaaaac	gttcttcggg	gcgaaaactc	4140	
tcaaggatet tacegetgtt	gagatccagt	tcgatgtaac	ccactcgtgc	acccaactga	4200	30
tcttcagcat cttttacttt	caccagcgtt	tctgggtgag	caaaaacagg	aaggcaaaat	4260	35
gccgcaaaaa agggaataag	ggcgacacgg	aaatgttgaa	tactcatact	cttccttttt	4320	
caatattatt gaagcattta	tcagggttat	tgtctcatga	gcggatacat	atttgaatgt	4380	40
atttagaaaa ataaacaaat	aggggttccg	cgcacatttc	cccgaaaagt	gccacctgac	4440	45
gtctaagaaa ccattattat	catgacatta	acctataaaa	ataggcgtat	cacgaggccc	4500	
tttcgtc	•				4507	50
<210> 37						55
<211> 5410 <212> DNA						
<212> DNA <213> Unknown	•					60
<220>			•	٠.	•	65

<223> Sequenz stellt eine pflanzliche

Promotor-Terminator-Expressionskassette in Vektor pUC19 dar

<400> 37 ttttggaaat gatttgcatg gaagccatgt gtaaaaccat gacatccact tggaggatgc 60 10 aataatgaag aaaactacaa atttacatgc aactagttat gcatgtagtc tatataatga 120 ggattttgca atactttcat tcatacacac tcactaagtt ttacacgatt ataatttctt 180 catagecage ggateegata tegggeeege tagegttaae eetgetttaa tgagatatge 240 20 gagacgccta tgatcgcatg atatttgctt tcaattctgt tgtgcacgtt gtaaaaaacc 300 tgagcatgtg tagctcagat ccttaccgcc ggtttcggtt cattctaatg aatatatcac 360 ccgttactat cgtattttta tgaataatat tctccgttca atttactgat tgtccgtcga 420 gcaaatttac acattgccac taaacgtcta aaccettgta atttgttttt gttttactat 480 gtgtgttatg tatttgattt gcgataaatt tttatatttg gtactaaatt tataacacct 540 tttatgctaa cgtttgccaa cacttagcaa tttgcaagtt gattaattga ttctaaatta 600 tttttgtctt ctaaatacat atactaatca actggaaatg taaatatttg ctaatatttc 660 tactatagga gaattaaagt gagtgaatat ggtaccacaa ggtttggaga tttaattgtt 720 gcaatgctgc atggatggca tatacaccaa acattcaata attcttgagg ataataatgg 780 taccacacaa gatttgaggt gcatgaacgt cacgtggaca aaaggtttag taatttttca 840 agacaacaat gttaccacac acaagttttg aggtgcatgc atggatgccc tgtggaaagt 900 ttaaaaatat tttggaaatg atttgcatgg aagccatgtg taaaaccatg acatccactt 960 ggaggatgca ataatgaaga aaactacaaa tttacatgca actagttatg catgtagtct 1020 atataatgag gattttgcaa tactttcatt catacacact cactaagttt tacacgatta 1080

taatttcttc	atagccagca	gatctgccgg	catcgatccc	gggccatggc	ctgctttaat	1140	
gagatatgcg	agacgcctat	gatcgcatga	tatttgcttt	caattctgtt	gtgcacgttg	1200	5
taaaaaacct	gagcatgtgt	agctcagatc	cttaccgccg	gtttcggttc	attctaatga	1260	
atatatcacc	cgttactatc	gtatttttat	gaataatatt	ctccgttcaa	tttactgatt	1320	10
gtccgtcgac	gagctcggcg	cgccaagctt	ggcgtaatca	tggtcatagc	tgtttcctgt	1380	15
gtgaaattgt	tatccgctca	caattccaca	caacatacga	gccggaagca	taaagtgtaa	1440	
agcctggggt	gcctaatgag	tgagctaact	cacattaatt	gcgttgcgct	cactgcccgc	1500	20
tttccagtcg	ggaaacctgt	cgtgccagct	gcattaatga	atcggccaac	gcgcggggag	1560	25
aggcggtttg	cgtattgggc	gctcttccgc	ttcctcgctc	actgactcgc	tgcgctcggt	1620	
cgttcggctg	cggcgagcgg	tatcagctca	ctcaaaggcg	gtaatacggt	tatccacaga	1680	30
atcaggggat	aacgcaggaa	agaacatgtg	agcaaaaggc	cagcaaaagg	ccaggaaccg	1740	35
taaaaaggcc	gcgttgctgg	cgtttttcca	taggctccgc	cccctgacg	agcatcacaa	1800	
aaatcgacgc	tcaagtcaga	ggtggcgaaa	cccgacagga	ctataaagat	accaggcgtt	1860	40
tccccctgga	agctccctcg	tgcgctctcc	tgttccgacc	ctgccgctta	ccggatacct	1920	45
gtccgccttt	ctcccttcgg	gaagcgtggc	gctttctcat	agctcacgct	gtaggtatct	1980	
cagttcggtg	taggtcgttc	gctccaagct	gggctgtgtg	cacgaacccc	ccgttcagcc	2040	50
cgaccgctgc	gccttatccg	gtaactatcg	tcttgagtcc	aacccggtaa	gacacgactt	2100	55
atcgccactg	gcagcagcca	ctggtaacag	gattagcaga	gcgaggtatg	taggcggtgc	2160	
tacagagttc	ttgaagtggt	ggcctaacta	cggctacact	agaaggacag	tatttggtat	2220	60
ctgcgctctg	ctgaagccag	ttaccttcgg	aaaaagagtt	ggtagctctt	gatccggcaa	2280	

acaaaccacc gctggtagcg gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa 2340 aaaaggatct caagaagatc ctttgatctt ttctacgggg tctgacgctc agtggaacga 2400 aaactcacgt taagggattt tggtcatgag attatcaaaa aggatcttca cctagatcct 2460 10 tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa cttggtctga 2520 cagttaccaa tgcttaatca gtgaggcacc tatctcagcg atctgtctat ttcgttcatc 2580 catagttgcc tgactccccg tcgtgtagat aactacgata cgggagggct taccatctgg 2640 ccccagtgct gcaatgatac cgcgagaccc acgctcaccg gctccagatt tatcagcaat 2700 aaaccagcca geeggaaggg eegagegeag aagtggteet geaactttat eegeeteeat 2760 ccagtctatt aattgttgcc gggaagctag agtaagtagt tcgccagtta atagtttgcg 2820 30 caacgttgtt gccattgcta caggcatcgt ggtgtcacgc tcgtcgtttg gtatggcttc 2880 attcagctcc ggttcccaac gatcaaggcg agttacatga tcccccatgt tgtgcaaaaa 2940 ageggttage teetteggte etcegategt tgtcagaagt aagttggeeg cagtgttate 3000 40 actcatggtt atggcagcac tgcataattc tcttactgtc atgccatccg taagatgctt 3060 ttctgtgact ggtgagtact caaccaagtc attctgagaa tagtgtatgc ggcgaccgag 3120 ttgctcttgc ccggcgtcaa tacgggataa taccgcgcca catagcagaa ctttaaaagt 3180 gctcatcatt ggaaaacgtt cttcggggcg aaaactctca aggatcttac cgctgttgag 3240 atccagttcg atgtaaccca ctcgtgcacc caactgatct tcagcatctt ttactttcac 3300 cagcgtttct gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg gaataagggc 3360 gacacggaaa tgttgaatac tcatactctt cctttttcaa tattattgaa gcatttatca 3420 gggttattgt ctcatgagcg gatacatatt tgaatgtatt tagaaaaata aacaaatagg 3480

gg	ttccgcgc	acatttcccc	gaaaagtgcc	acctgacgtc	taagaaacca	ttattatcat	3540	
ga	.cattaacc	tataaaaata	ggcgtatcac	gaggcccttt	cgtctcgcgc	gtttcggtga	3600	5
tg	acggtgaa	aacctctgac	acatgcagct	cccggagacg	gtcacagctt	gtctgtaagc	3660	
gg	atgccggg	agcagacaag	cccgtcaggg	cgcgtcagcg	ggtgttggcg	ggtgtcgggg	3720	10
ct	ggcttaac	tatgcggcat	cagagcagat	tgtactgaga	gtgcaccata	tgcggtgtga	3780 .	15
aa	taccgcac	agatgcgtaa	ggagaaaata	ccgcatcagg	cgccattcgc	cattcaggct	3840	
gc	gcaactgt	tgggaagggc	gatcggtgcg	ggcctcttcg	ctattacgcc	agctggcgaa	3900	20
ag	ggggatgt	gctgcaaggc	gattaagttg	ggtaacgcca	gggttttccc	agtcacgacg	3960	25
tt	gtaaaacg	acggccagtg	aattcggcgc	gccgagctcc	tcgagcaaat	ttacacattg	4020	
cc	actaaacg	tctaaaccct	tgtaatttgt	ttttgtttta	ctatgtgtgt	tatgtatttg	4080	30
at	ttgcgata	aatttttata	tttggtacta	aatttataac	accttttatg	ctaacgtttg	4140	35
cc	aacactta	gcaatttgca	agttgattaa	ttgattctaa	attatttttg	tcttctaaat	4200	
ac	atatacta	atcaactgga	aatgtaaata	tttgctaata	tttctactat	aggagaatta	4260	40
aa	gtgagtga	atatggtacc	acaaggtttg	gagatttaat	tgttgcaatg	ctgcatggat	4320	45
gg	catataca	ccaaacattc	aataattctt	gaggataata	atggtaccac	acaagatttg	4380	
ag	gtgcatga	acgtcacgtg	gacaaaaggt	ttagtaattt	ttcaagacaa	caatgttacc	4440	50
ac	acacaagt	tttgaggtgc	atgcatggat	gccctgtgga	aagtttaaaa	atattttgga	4500	55
aa	tgatttgc	atggaagcca	tgtgtaaaac	catgacatcc	acttggagga	tgcaataatg	4560	
aa	gaaaacta	caaatttaca	tgcaactagt	tatgcatgta	gtctatataa	tgaggatttt	4620	60
gc	aatacttt	cattcataca	cactcactaa	gttttacacg	attataattt	cttcatagcc	4680	65

agcccaccgc ggtgggcggc cgcctgcagt ctagaaggcc tcctgcttta atgagatatg 4740 5 cgagacgcct atgatcgcat gatatttgct ttcaattctg ttgtgcacgt tgtaaaaaac 4800 ctgagcatgt gtagctcaga tccttaccgc cggtttcggt tcattctaat gaatatatca 4860 10 cccgttacta tcgtattttt atgaataata ttctccgttc aatttactga ttgtccgtcg 4920 agcaaattta cacattgcca ctaaacgtct aaacccttgt aatttgtttt tgttttacta 4980 tgtgtgttat gtatttgatt tgcgataaat ttttatattt ggtactaaat ttataacacc 5040 20 ttttatgcta acgtttgcca acacttagca atttgcaagt tgattaattg attctaaatt 5100 atttttgtct tctaaataca tatactaatc aactggaaat gtaaatattt gctaatattt 5160 ctactatagg agaattaaag tgagtgaata tggtaccaca aggtttggag atttaattgt 5220 tgcaatgctg catggatggc atatacacca aacattcaat aattcttgag gataataatg 5280 gtaccacaca agatttgagg tgcatgaacg tcacgtggac aaaaggttta gtaatttttc 5340 aagacaacaa tgttaccaca cacaagtttt gaggtgcatg catggatgcc ctgtggaaag 5400 5410 tttaaaaata

- <210> 38
 - <211> 12093
 - <212> DNA
- <213> Unknown
 - <220>
- <223> pflanzlicher Expressionsvektor mit einer Promotor-Terminator-Expressionskassette
- <400> 38
 gatctggcgc cggccagcga gacgagcaag attggccgcc gcccgaaacg atccgacagc 60
- 65 gcgcccagca caggtgcgca ggcaaattgc accaacgcat acagcgccag cagaatgcca 120

caç	grgggegg	tgacgtcgtt	- Cyaglgaacc	agategegea	ggaggcccgg	cagcaccggc	180	
ata	aatcaggc	cgatgccgac	agcgtcgagc	gcgacagtgc	tcagaattac	gatcaggggt	240	5
atç	gttgggtt	tcacgtctgg	cctccggacc	agcctccgct	ggtccgattg	aacgcgcgga	300	10
tto	ctttatca	ctgataagtt	ggtggacata	ttatgtttat	cagtgataaa	gtgtcaagca	360	10
tga	acaaagtt	gcagccgaat	acagtgatcc	gtgccgccct	ggacctgttg	aacgaggtcg	420	15
gcg	gtagacgg	tctgacgaca	cgcaaactgg	cggaacggtt	gggggttcag	cagccggcgc	480	
ttt	actggca	cttcaggaac	aagcgggcgc	tgctcgacgc	actggccgaa	gccatgctgg	540	20
cgç	gagaatca	tacgcattcg	gtgccgagag	ċcġġcgacga	ctggcgctca	tttctgatcg	600	25
ggē	aatgcccg	cagcttcagg	caggcgċtgc	tcgcctaccg	cgatggcgcg	cgcatccatg	660	
ccç	gcacgcg	accgggcgca	ccgcagatgg	aaacggccga	cgcgcagctt	cgcttcctct	720	30
gcg	gaggcggg	tttttcggcc	ggggacgccg	tcaatgcgct	gatgacaatc	agctacttca	780	35
ctg	ıttggggc	cgtgcttgag	gagcaggccg	gcgacagcga	tgccggcgag	cgcggcggca	840	
ccg	gttgaaca	ggctccgctc	tcgccgctgt	tgcgggccgc	gatagacgcc	ttcgacgaag	900	40
ccg	gtccgga	cgcagcgttc	gagcagggac	tcgcggtgat	tgtcgatgga	ttggcgaaaa	9 Ĝ O	45
gga	ıggctcgt	tgtcaggaac	gttgaaggac	cgagaaaggg	tgacgattga	tcaggaccgc	1020	
tgc	cggagcg	caacccactc	actacagcag	agccatgtag	acaacatccc	ctcccccttt	1080	50
cca	ccgcgtc	agacgcccgt	agcagcccgc	tacgggcttt	ttcatgccct	gccctagcgt	1140	55
cca	agcctca	cggccgcgct	cggcctctct	ggcggccttc	tggcgctctt	ccgcttcctc	1200	
gct	cactgac	tcgctgcgct	cggtcgttcg	gctgcggcga	gcggtatcag	ctcactcaaa	1260	60
gc	ggtaata	cggttatcca	cagaatcagg	ggataacgca	ggaaagaaca	tgtgagcaaa	1320	

aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct 1380 ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 1440 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1500 10 gaccctgccg cttaccggat acctgtccgc ctttctccct tcgggaagcg tggcgctttt 1560 ccgctgcata accctgcttc ggggtcatta tagcgatttt ttcggtatat ccatcctttt 1620 tcgcacgata tacaggattt tgccaaaggg ttcgtgtaga ctttccttgg tgtatccaac 1680 ggcgtcagcc gggcaggata ggtgaagtag gcccacccgc gagcgggtgt tccttcttca 1740 ctgtccctta ttcgcacctg gcggtgctca acgggaatcc tgctctgcga ggctggccgg 1800 ctaccgccgg cgtaacagat gagggcaagc ggatggctga tgaaaccaag ccaaccagga 1860 agggcagccc acctatcaag gtgtactgcc ttccagacga acgaagagcg attgaggaaa 1920 aggcggcggc ggccggcatg agcctgtcgg cctacctgct ggccgtcggc cagggctaca 1980 aaatcacggg cgtcgtggac tatgagcacg tccgcgagct ggcccgcatc aatggcgacc 2040 40 tgggccgcct gggcggcctg ctgaaactct ggctcaccga cgacccgcgc acggcgcggt 2100 teggtgatge caegateete geeetgetgg egaagatega agagaageag gaegagettg 2160 gcaaggtcat gatgggcgtg gtccgcccga gggcagagcc atgacttttt tagccgctaa 2220 aacggccggg gggtgcgcgt gattgccaag cacgtcccca tgcgctccat caagaagagc 2280 gacttcgcgg agctggtgaa gtacatcacc gacgagcaag gcaagaccga gcgcctttgc 2340 gacgctcacc gggctggttg ccctcgccgc tgggctggcg gccgtctatg gccctgcaaa 2400 cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc gttgtggata 2460 cctcgcggaa aacttggccc tcactgacag atgaggggcg gacgttgaca cttgaggggc 2520

)	2580	cggcgacgtg	cgatttcggc	ggggcaggct	tgacagatga	ggcgcggcgt	cgactcaccc
5) .	2640	tcccacagat	tacgcgagtt	cgcctgattt	tcggcgaaaa	gcctcgcaaa	gagctggcca
10		2700	gcgcgactac	cacttgaggg	gcggtattga	taagtgccct	agcctgggga	gatgtggaca
10	כ	2760	gatgaggggc	agtgctgaca	tgaggggcag	ccttgacact	ggggcgcgat	tgacagatga,
15) .	2820	gcaagggttt	tccagcattt	aggcagaaaa	ggctgtccac	acatttgagg	gcacctattg
) .	2880	caatatttat	gcttttaaac	cttttaacct	gctaacctgt	ttcggccacc	ccgcccgttt
20)	2940	cgaagggggg	ccgcgcacgc	gtgcgcgtga	gctgcgccct	tttaaccagg	aaaccttgtt
25) ,	3000	ccccaggggc	cctcccatcc	ctaacgcggg	teceggeeeg	tetegaacee	tgcccccct
)	3060	gtccttgcca	agcgctggca	caaaaatggc	ggcctcaccc	ggccgcgaac	tgcgcccctc
30)	3120	cccggaagca	gagcgcgacg	cgatcagccc	acgggatggg	cggggcagta	ttgccgggat
35) .	3180	agtgagggcg	ggtgccgggc	tcagcgacca	gcatcgacat	gcaggtgctg	ttgacgtgcc
)	3240	gacttcatgg	ggcattcacg	cggccgtcgg	cccttcactt	tggcggcctg	gcggcctggg
40	э.	3300	gccgtgctcg	ggtcgcgggt	ttggcatagt	ttgggcattc	aatttttacc	cggggccggc
45)	3360	ttataccgag	ataggtaaga	atttgaggtg	ccagcgaacc	tgcgataaac	tgttcggggg
	0 .	3420	atttaaaaag	gaagcgccat	attactctat	cctttacaga	gagaattgga	gtatgaaaac
50	0 .	3480	atattgacaa	tgccttgaat	ggaggcagat	aagaggatga	gaagaggatg	ctaccaagac
55	0	3540	gatttcaggg	cgtatgtaag	aagatatcgc	ttttatatag	ataatatatc	tactgataag
	0	3600	cataaaaact	atgggcaaag	tatctataga	cttatcaata	aggcagcgcg	ggcaaggcat
60	0	3660	ttctatcata	agcttgtaaa	ataaccttat	acccaggaca	aatgcttgaa	tgcatggact
	0	3720	ccgatgactt	cagataatgc	gttttatgtt	tattgatagt	gactccaact	attgggtaat

tgtcatgcag ctccaccgat tttgagaacg acagcgactt ccgtcccagc cgtgccaggt 3780 $_{5}$ gctgcctcag attcaggtta tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt 3840 gcagctttcc cttcaggcgg gattcataca gcggccagcc atccgtcatc catatcacca 3900 cgtcaaaggg tgacagcagg ctcataagac gccccagcgt cgccatagtg cgttcaccga 3960 $_{15}$ atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagcgctggc 4020 gegatttage eccgacatag ecceaetgtt egtecattte egegeagaeg atgaegteae 4080 tgcccggctg tatgcgcgag gttaccgact gcggcctgag ttttttaagt gacgtaaaat 4140 20 cgtgttgagg ccaacgccca taatgcgggc tgttgcccgg catccaacgc cattcatggc 4200 catatcaatg attttctggt gcgtaccggg ttgagaagcg gtgtaagtga actgcagttg 4260 ccatgtttta cggcagtgag agcagagata gcgctgatgt ccggcggtgc ttttgccgtt 4320 30 acgcaccacc ccgtcagtag ctgaacagga gggacagctg atagacacag aagccactgg 4380 agcacctcaa aaacaccatc atacactaaa tcagtaagtt ggcagcatca cccataattg 4440 tggtttcaaa atcggctccg tcgatactat gttatacgcc aactttgaaa acaactttga 4500 40 aaaagctgtt ttctggtatt taaggtttta gaatgcaagg aacagtgaat tggagttcgt 4560 cttgttataa ttagcttctt ggggtatctt taaatactgt agaaaagagg aaggaaataa 4620 taaatggcta aaatgagaat atcaccggaa ttgaaaaaac tgatcgaaaa ataccgctgc 4680 gtaaaagata cggaaggaat gtctcctgct aaggtatata agctggtggg agaaaatgaa 4740 55 aacctatatt taaaaatgac ggacagccgg tataaaggga ccacctatga tgtggaacgg 4800 gaaaaggaca tgatgctatg gctggaagga aagctgcctg ttccaaaggt cctgcacttt 4860 gaacggcatg atggctggag caatctgctc atgagtgagg ccgatggcgt cctttgctcg 4920

gaa	agagtatg	aagatgaaca	aagccctgaa	aagattatcg	agctgtatgc	ggagtgcatc	4980	
agg	gctctttc	actccatcga	catatcggat	tgtccctata	cgaatagctt	agacagccgc	5040	5
tta	agccgaat	tggattactt	actgaataac	gatctggccg	atgtggattg	cgaaaactgg	5100	••
gaa	agaagaca	ctccatttaa	agatccgcgc	gagctgtatg	attttttaaa	gacggaaaag	5160	10
cco	cgaagagg	aacttgtctt	ttcccacggc	gacctgggag	acagcaacat	ctttgtgaaa	5220	15
gat	ggcaaag	taagtggctt	tattgatctt	gggagaagcg	gcagggcgga	caagtggtat	5280	
gad	cattgcct	tctgcgtccg	gtcgatcagg	gaggatatcg	gggaagaaca	gtatgtcgag	5340	20
cta	attttttg	acttactggg	gatcaagcct	gattgggaga	aaataaaata	ttatatttta	5400	25
ctç	ggatgaat	tgttttagta	cctagatgtg	gcgcaacgat	gccggcgaca	agcaggagcg	5460	
cac	ccgacttc	ttccgcatca	agtgttttgg	ctctcaggcc	gaggcccacg	gcaagtattt	5520	30
ggg	gcaagggg	tegetggtat	tcgtgcaggg	caagattcgg	aataccaagt	acgagaagga	5580	35
cgg	gccagacg	gtctacggga	ccgacttcat	tgccgataag	gtggattatc	tggacaccaa	5640	•
ggc	caccaggc	gggtcaaatc	aggaataagg	gcacattgcc	ccggcgtgag	tcggggcaat	5700	40
ccc	gcaagga	gggtgaatga	atcggacgtt	tgaccggaag	gcatacaggc	aagaactgat	5760	45
cga	rcacaaaa	ttttccgccg	aggatgccga	aaccatcgca	agccgcaccg	tcatgcgtgc	5820	
gcc	ccgcgaa	accttccagt	ccgtcggctc	gatggtccag	caagctacgg	ccaagatcga	5880	50
gcg	cgacagc	gtgcaactgg	ctccccctgc	cctgcccgcg	ccatcggccg	ccgtggagcg	5940	55
ttc	gcgtcgt	ctcgaacagg	aggcggcagg	tttggcgaag	tcgatgacca	tcgacacgcg	6000	
agg	gaactatg	acgaccaaga	agcgaaaaac	cgccggcgag	gacctggcaa	aacaggtcag	6060	60
cga	ggccaag	caggccgcgt	tgctgaaaca	cacgaagcag	cagatcaagg	aaatgcagct	6120	

ttccttgttc gatattgcgc cgtggccgga cacgatgcga gcgatgccaa acgacacggc 6180 $_{5}$ cegetetgee etgtteacea egegeaacaa gaaaateeeg egegaggege tgeaaaacaa 6240 ggtcattttc cacgtcaaca aggacgtgaa gatcacctac accggcgtcg agctgcgggc 6300 cgacgatgac gaactggtgt ggcagcaggt gttggagtac gcgaagcgca cccctatcgg 6360 cgagccgatc accttcacgt tctacgagct ttgccaggac ctgggctggt cgatcaatgg 6420 ccggtattac acgaaggccg aggaatgcct gtcgcgccta caggcgacgg cgatgggctt 6480 cacgtccgac cgcgttgggc acctggaatc ggtgtcgctg ctgcaccgct tccgcgtcct 6540 ggaccgtggc aagaaaacgt cccgttgcca ggtcctgatc gacgaggaaa tcgtcgtgct 6600 gtttgctggc gaccactaca cgaaattcat atgggagaag taccgcaagc tgtcgccgac 6660 ggcccgacgg atgttcgact atttcagctc gcaccgggag ccgtacccgc tcaagctgga 6720 aaccttccgc ctcatgtgcg gatcggattc cacccgcgtg aagaagtggc gcgagcaggt 6780 cggcgaagcc tgcgaagagt tgcgaggcag cggcctggtg gaacacgcct gggtcaatga 6840 tgacctggtg cattgcaaac gctagggcct tgtggggtca gttccggctg ggggttcagc 6900 agccagcgct ttactggcat ttcaggaaca agcgggcact gctcgacgca cttgcttcgc 6960 tcagtatcgc tcgggacgca cggcgcgctc tacgaactgc cgataaacag aggattaaaa 7020 ttgacaattg tgattaaggc tcagattcga cggcttggag cggccgacgt gcaggatttc 7080 cgcgagatcc gattgtcggc cctgaagaaa gctccagaga tgttcgggtc cgtttacgag 7140 cacgaggaga aaaagcccat ggaggcgttc gctgaacggt tgcgagatgc cgtggcattc 7200 ggcgcctaca tcgacggcga gatcattggg ctgtcggtct tcaaacagga ggacggcccc 7260 aaggacgctc acaaggcgca tetgteeggc gttttegtgg agecegaaca gegaggeega 7320

ggg	ggtegeeg	gtatgctgct	gcgggcgttg	ccggcgggtt	tattgctcgt	gatgatcgtc	7380	
cga	acagattc	caacgggaat	ctggtggatg	cgcatcttca	tcctcggcgc	acttaatatt	7440	5
tc	gctattct	ggagcttgtt	gtttatttcg	gtctaccgcc	tgccgggcgg	ggtcgcggcg	7500	
acç	ggtaggcg	ctgtgcagcc	gctgatggţc	gtgttcatct	ctgccgctct	gctaggtagc	7560	10
ccç	gatacgat	tgatggcggt	cctgggggct	atttgcggaa	ctgcgggcgt	ggcgctgttg	7620	15
gtç	gttgacac	caaacgcagc	gctagatcct	gtcggcgtcg	cagcgggcct	ggcgggggcg	7680	
gtt	tccatgg	cgttcggaac	cgtgctgacc	cgcaagtggc	aacctcccgt	gcctctgctc	7740	20
acc	tttaccg	cctggcaact	ggcggccgga	ggacttctgc	tcgttccagt	agctttagtg	7800	25
ttt	gatccgc	caatcccgat	gcctacagga	accaatgttc	tcggcctggc	gtġgctcggc	7860	
ctg	gatcggag	cgggtttaac	ctacttcctt	tggttccggg	ggatctcgcg	actcgaacct	7920	30
aca	ıgttgttt	ccttactggg	ctttctcagc	cccagatctg	gggtcgatca	gccggggatg	7980	. 35
cat	caggccg	acagtcggaa	cttcgggtcc	ccgacctgta	ccattcggtg	agcaatggat	8040	
agg	ggagttg	atatcgtcaa	cgttcacttc	taaagaaata	gcgccactca	gcttcctcag	8100	40
cgg	rctttatc	cagcgatttc	ctattatgtc	ggcatagttc	tcaagatcga	cagcctgtca	8160	45
cgg	ttaagcg	agaaatgaat	aagaaggctg	ataattcgga	tctctgcgag	ggagatgata	8220	
ttt	gatcaca	ggcagcaacg	ctctgtcatc	gttacaatca	acatgctacc	ctccgcgaga	8280	50
tca	tccgtgt	ttcaaacccg	gcagcttagt	tgccgttctt	ccgaatagca	tcggtaacat	8340	55.
gag	caaagtc	tgccgcctta	caacggctct	cccgctgacg	ccgtcccgga	ctgatgggct	8400	
gcc	tgtatcg	agtggtgatt	ttgtgccgag	ctgccggtcg	gggagctgtt	ggctggctgg	8460	60
gg	caggata	tattgtggtg	taaacaaatt	gacgcttaga	caacttaata	acacattgcg	8520	65

gacgttttta atgtactggg gtggtttttc ttttcaccag tgagacgggc aacagctgat 8580 tgcccttcac cgcctggccc tgagagagtt gcagcaagcg gtccacgctg gtttgcccca 8640 gcaggcgaaa atcctgtttg atggtggttc cgaaatcggc aaaatccctt ataaatcaaa 8700 agaatagccc gagatagggt tgagtgttgt tccagtttgg aacaagagtc cactattaaa 8760 gaacgtggac tccaacgtca aagggcgaaa aaccgtctat cagggcgatg gcccactacg 8820 tgaaccatca cccaaatcaa gttttttggg gtcgaggtgc cgtaaagcac taaatcggaa 8880 ccctaaaggg agcccccgat ttagagcttg acggggaaag ccggcgaacg tggcgagaaa 8940 20 ggaagggaag aaagcgaaag gagcgggcgc cattcaggct gcgcaactgt tgggaagggc 9000 gateggtgeg ggeetetteg etattaegee agetggegaa agggggatgt getgeaagge 9060 gattaagttg ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg acggccagtg 9120 aattaattcc catcttgaaa gaaatatagt ttaaatattt attgataaaa taacaagtca 9180 ggtattatag tccaagcaaa aacataaatt tattgatgca agtttaaatt cagaaatatt 9240 tcaataactg attatatcag ctggtacatt gccgtagatg aaagactgag tgcgatatta 9300 tgtgtaatac ataaattgat gatatagcta gcttagctca tcggggggatc cgtcgaagct 9360 agcttgggtc ccgctcagaa gaactcgtca agaaggcgat agaaggcgat gcgctgcgaa 9420 tcgggagcgg cgataccgta aagcacgagg aagcggtcag cccattcgcc gccaagctct 9480 tcagcaatat cacgggtagc caacgctatg tcctgatagc ggtccgccac acccagccgg 9540 55 ccacagtcga tgaatccaga aaagcggcca ttttccacca tgatattcgg caagcaggca 9600 tegecatggg teaegacgag atectegeeg tegggeatge gegeettgag cetggegaac 9660 agttcggctg gcgcgagccc ctgatgctct tcgtccagat catcctgatc gacaagaccg 9720

	9780	gaatgggcag	cttggtggtc	cgatgtttcg	tcgctcgatg	gagtacgtgc	gcttccatcc
5	9840	tactttctcg	ccatgatgga	attgcatcag	cagccgccgc	caagcgtatg	gtagccggat
	9900	tagcagccag	cttcgcccaa	tgccccggca	caggagatec	ggtgagatga	gcaggagcaa
10	99.60	cgtcgtggcc	aaggaacgcc	acagetgege	aacgtcgagc	cttcagtgac	tcccttcccg
15	10020	caggtcggtc	gggcaccgga	agttcattca	ctcgtcctgc	gccgcgctgc	agccacgata
	10080	atcagagcag	acacggcggc	gacagccgga	cccctgcgct	gaaccgggcg	ttgacaaaaa
20	10140	ggccggagaa	ccacccaagc	aatagcctct	gtcatagccg	gttgtgccca	ccgattgtct
25	10200	agagtcgaga	gccctcgact	gctcccatgg	ttcaatccaa	atccatcttg	cctgcgtgca ·
	10260	atggaacgtc	aggggaattt	ttggataccg	gagactctaa	gagtgaatat	tctggattga
30	10320	cgacttttga	tgaccttagg	tagctgatag	aaatatttgc	ttttgacaag	agtggagcat
35	10380	aacccgcggc	aaactccaga	ttagctcatt	acgtatgtgc	atggtttctg	acgcgcaata
	10440	cttgtcccgc	cgtaaaacgg	cagttccaaa	gcggttctgt	cttcaacgtt	tgagtggctc
40	10500	ttgatcccct	gctcatgatc	ttaattctcc	cgtgactccc	ggggtcataa	gtcatcggcg
45	10560	gcttcccaac	actttgcagg	catccagttt	gcaagaaagc	atccttggcg	gcgccatcag
	10620	aaaccgccca	gctgtccata	cggttcgctt	ctggcaattc	ggcgccccag	cttaccagag
50	10680	cgcttgcgtt	tttctctttg	agctacctgc	gcccactgca	cgccatgtaa	gtctagctat
55	10740	gtttctgcgg	ggtcagcacc	attcatccgg	agtagctgac	cagatagece	ttcccttgtc
	10800	gcttgcggca	cgccctgagt	gcagcccttg	gcttccttta	tacgtgttcc	actggctttc
60	10860	aaatttacac .	ctcctcgagc	gcgcgccgag	caggtcgacg	tgcatgcctg	gcgtgaagct
	10920	gtgttatgta	tttactatot	ttgtttttgt	cccttgtaat	aacgtctaaa	attgccacta

tttgatttgc gataaatttt tatatttggt actaaattta taacaccttt tatgctaacg 10980 5 tttgccaaca cttagcaatt tgcaagttga ttaattgatt ctaaattatt tttgtcttct 11040 aaatacatat actaatcaac tggaaatgta aatatttgct aatatttcta ctataggaga 11100 10 attaaagtga gtgaatatgg taccacaagg tttggagatt taattgttgc aatgctgcat 11160 ggatggcata tacaccaaac attcaataat tcttgaggat aataatggta ccacacaaga 11220 tttgaggtgc atgaacgtca cgtggacaaa aggtttagta atttttcaag acaacaatgt 11280 taccacaca aagttttgag gtgcatgcat ggatgccctg tggaaagttt aaaaatattt 11340 tggaaatgat ttgcatggaa gccatgtgta aaaccatgac atccacttgg aggatgcaat 11400 aatgaagaaa actacaaatt tacatgcaac tagttatgca tgtagtctat ataatgagga 11460 ttttgcaata ctttcattca tacacactca ctaagtttta cacgattata atttcttcat 11520 agccagccca ccgcggtggg cggccgcctg cagtctagaa ggcctcctgc tttaatgaga 11580 tatgcgagac gcctatgatc gcatgatatt tgctttcaat tctgttgtgc acgttgtaaa 11640 aaacctgagc atgtgtagct cagatcctta ccgccggttt cggttcattc taatgaatat 11700 atcacccgtt actatcgtat ttttatgaat aatattctcc gttcaattta ctgattgtcc 11760 gtcgacgaat tcgagctcgg cgcgcctcta gaggatcgat gaattcagat cggctgagtg 11820 gctccttcaa cgttgcggtt ctgtcagttc caaacgtaaa acggcttgtc ccgcgtcatc 11880 ggcgggggtc ataacgtgac tcccttaatt ctccgctcat gatcagattg tcgtttcccg 11940 ccttcagttt aaactatcag tgtttgacag gatatattgg cgggtaaacc taagagaaaa 12000 gagcgtttat tagaataatc ggatatttaa aagggcgtga aaaggtttat ccttcgtcca 12060 12093 tttgtatgtg catgccaacc acagggttcc cca

		-	•		
		-			5
		• •			•
			•	-	
Emmanaianasa	lebou mie oi				10
_					
minator-Expres		Le			
			·		15
cga gacgagcaag	attggccgcc	gcccgaaacg	atccgacagc	60	
					20
gca ggcaaattgc	accaacgcat	acagcgccag	cagaatgcca	120	
		•			
gtt cgagtgaacc	agatcgcgca	ggaggcccgg	cagcaccggc	180	25
gac agcgtcgagc	gcgacagtgc	tcagaattac	gatcaggggt	240 .	
			_		. 30
tgg cctccggacc	agcctccgct	ggtccgattg	aacgcgcgga	300	•
att aatagacata	ttatotttat	cantnataaa	atatassass	360	
.500,5505500000	coacgeceae	cagegacaaa	gegeedagea		. 35
aat acagtgatcc	gtgccgccct	ggacctgttg	aacgaggtcg	420	
•					40
aca cgcaaactgg	cggaacggtt	gggggttcag	cagccggcgc	480	7
aac aagcgggcgc	tgctcgacgc	actggccgaa	gccatgctgg	540	4:
tcg gtgccgagag	ccgacgacga	ctggcgctca	tttctgatcg	600	
					50
agg caggegetge	tcgcctaccg	cgatggcgcg	cgcatccatg	660	
aca ccacanataa	22200000	ogggggggtt	casttaatat	720	
ged cegeagaegg	aaacygccga	cgcgcagctt	cgccccccc	720	55
gcc ggggacgcca	tcaatgcgct	gatgacaatc	agctacttca	780	
					•
gag gagcaggccg	gcgacagcga	tgccggcgag	cgcggcggca	840	60
	minator-Expressions against a cagea agegagas agegagas agegagas agegagas agegagas agegagagas agegagagagas agegagagas agegagagas agegagas aggagas agg	rega gacgagcaag attggccgcc gca ggcaaattgc accaacgcat ggt cgagtgaacc agatcgcgca ggc agcgtcgagc gcgacagtgc gtt ggtggacata ttatgtttat gat acagtgatcc gtgccgcct aca cgcaaactgg cggaacggtt aca cgcaaactgg cggaacggtt aca aggggcgc tgctcgacgc tcg gtgccgagag ccgacgacga agg caggcgctgc tcgcctaccg gca ccgcagatgg aaacggccga gcc ggggacgccg tcaatgcgct	egca ggcaaattgc accaacgcat acagcgccag egtt cgagtgaacc agatcgcgca ggaggcccgg egac agcgtcgagc gcgacagtgc tcagaattac etgg cctccggacc agcctccgct ggtccgattg egat ggtggacata ttatgtttat cagtgataaa egat acagtgatcc gtgccgcct ggacctgttg egac cgcaaactgg cggaacggtt ggggggttcag egac aagcgggcgc tgctcgacga actggccgaa etcg gtgccgagag ccgacgacga ctggcgctca eggg caggcgctgc tcgcctaccg cgatggcgcg egac ccgcagatgg aaacggccga cgcgcagctt egcc ggggacgccg tcaatgcgct gatgacaatc	rega gacgagcaag attggccgcc gcccgaaacg atccgacagc gca ggcaaattgc accaacgcat acagcgccag cagaatgcca ggt cgagtgaacc agatcgcga ggaggcccgg cagcaccggc gac agcgtcgagc gcgacagtgc tcagaattac gatcaggggt ggt ggtggacata ttatgtttat cagtgataaa gtgtcaagca gat acagtgatcc gtgccgcct ggacctgttg aacgaggtcg aca cgcaaactgg cggaacggtt gggggttcag cagcaggcgc aca agcggcgc tgctcgacg actggccgaa gccatgctgg tcg gtgccgagag ccgacaggat gggggttcag cagccggcgc aca agcgggcgc tgctcgacga actggccgaa gccatgctgg tcg gtgccgagag ccgacagacga ctggcgctca tttctgatcg agg caggcgttc tcgcctaccg cgatggcgc cgcatccatg gca ccgcagatgg aaacggccga cgcgcagctt cgcttcctct gcc ggggaccccg tcaatgcgct gatgacaatc agctacttca	

cegttgaaca ggctccgctc tegecgctgt tgegggccgc gatagacgcc ttegacgaag 900 5 ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa 960 ggaggetegt tgtcaggaac gttgaaggac cgagaaaggg tgacgattga tcaggacege 1020 10 tgccggagcg caacccactc actacagcag agccatgtag acaacatccc ctccccttt 1080 ccaccgcgtc agacgcccgt agcagcccgc tacgggcttt ttcatgccct gccctagcgt 1140 ccaageetea eggeegeet eggeetetet ggeggeette tggegetett eegetteete 1200 gctcactgac tegetgeget eggtegtteg getgeggega geggtateag etcactcaaa 1260 ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa 1320 aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct 1380 ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 1440 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1500 gaccetgeeg ettaceggat acetgteege ettteteeet tegggaageg tggegetttt 1560 ccgctgcata accctgcttc ggggtcatta tagcgatttt ttcggtatat ccatcctttt 1620 tcgcacgata tacaggattt tgccaaaggg ttcgtgtaga ctttccttgg tgtatccaac 1680 ggcgtcagcc gggcaggata ggtgaagtag gcccacccgc gagcgggtgt tccttcttca 1740 ctgtccctta ttcgcacctg gcggtgctca acgggaatcc tgctctgcga ggctggccgg 1800 ctaccgccgg cgtaacagat gagggcaagc ggatggctga tgaaaccaag ccaaccagga 1860 agggcagccc acctatcaag gtgtactgcc ttccagacga acgaagagcg attgaggaaa 1920 aggeggegge ggeeggeatg ageetgtegg cetacetget ggeegtegge eagggetaca 1980 aaatcacggg cgtcgtggac tatgagcacg tccgcgagct ggcccgcatc aatggcgacc 2040

gg	ccgcct	gggeggeetg	ctgaaactct	ggctcaccga	cgacccgcgc	acggcgcggt	2100	
gg	tgatgc	cacgatcctc	gccctgctgg	cgaagatcga	agagaagcag	gacgagcttg	2160	5
aa	ggtcat	gatgggcgtg	gtccgcccga	gggcagagcc	atgacttttt	tagccgctaa	2220	
cg	gccggg	gggtgcgcgt	gattgccaag	cacgtcccca	tgcgctccat	caagaagagc	2280	10
ct	tcgcgg	agctggtgaa	gtacatcacc	gacgagcaag	gcaagaccga	gcgcctttgc	2340	15
cg	ctcacc	gggctggttg	ccctcgccgc	tgggctggcg	gccgtctatg	gccctgcaaa	2400	
cg	ccagaa	acgccgtcga	agccgtgtgc	gagadaccgc	ggccgccggc	gttgtggata	2460	20
tc	gcggaa	aacttggccc	tcactgacag	atgaggggcg	gacgttgaca	cttgaggggc	2520	25
ac	tcaccc	ggcgcggcgt	tgacagatga	ggggcaggct	cgatttcggc	cggcgacgtg	2580	
gc	tggcca	gcctcgcaaa	tcggcgaaaa	cgcctgattt	tacgcgagtt	tcccacagat	2640	. 30
tg	tggaca	agcctgggga	taagtgccct	gcggtattga	cacttgaggg	gcgcgactac	2700	35
ac	agatga	ggggcgcgat	ccttgacact	tgaggggcag	agtgctgaca	gatgaggggc	2760	v.
ac	ctattg	acatttgagg	ggctgtccac	aggcagaaaa	tccagcattt	gcaagggttt	2820	40
gc	ccgttt	ttcggccacc	gctaacctgt	cttttaacct	gcttttaaac	caatatttat	2880	45
ac	cttgtt	tttaaccagg	gctgcgccct	gtgcgcgtga	ccgcgcacgc	cgaagggggg	2940	
cc	cccct	tctcgaaccc	teceggeeeg	ctaacgcggg	cctcccatcc	ccccaggggc	3000	50
cg	cccctc	ggccgcgaac	ggcctcaccc	caaaaatggc	agegetggea	gtccttgcca	3060	55
gc	cgggat	cggggcagta	acgggatggg	cgatcagccc	gagcgcgacg	cccggaagca	3120	•
ga	cgtgcc	gcaggtgctg	gcatcgacat	tcagcgacca	ggtgccgggc	agtgagggcg	3180	. 60
gg	cctggg	tggcggcctg	cccttcactt	cggccgtcgg	ggcattcacg	gacttcatgg	3240	65

cggggccggc aatttttacc ttgggcattc ttggcatagt ggtcgcgggt gccgtgctcg 3300 tgttcggggg tgcgataaac ccagcgaacc atttgaggtg ataggtaaga ttataccgag 3360 gtatgaaaac gagaattgga cctttacaga attactctat gaagcgccat atttaaaaag 3420 ctaccaagac gaagaggatg aagaggatga ggaggcagat tgccttgaat atattgacaa 3480 tactgataag ataatatatc tittatatag aagatatcgc cgtatgtaag gatttcaggg 3540 ggcaaggcat aggcagcgcg cttatcaata tatctataga atgggcaaag cataaaaact 3600 tgcatggact aatgcttgaa acccaggaca ataaccttat agcttgtaaa ttctatcata 3660 attgggtaat gactccaact tattgatagt gttttatgtt cagataatgc ccgatgactt 3720 tgtcatgcag ctccaccgat tttgagaacg acagcgactt ccgtcccagc cgtgccaggt 3780 gctgcctcag attcaggtta tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt 3840 gcagctttcc cttcaggcgg gattcataca gcggccagcc atccgtcatc catatcacca 3900 cgtcaaaggg tgacagcagg ctcataagac gccccagcgt cgccatagtg cgttcaccga 3960 40 atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagcgctggc 4020 gcgatttagc cccgacatag ccccactgtt cgtccatttc cgcgcagacg atgacgtcac 4080 tgcccggctg tatgcgcgag gttaccgact gcggcctgag ttttttaagt gacgtaaaat 4140 50 cgtgttgagg ccaacgccca taatgcgggc tgttgcccgg catccaacgc cattcatggc 4200 55 catatcaatg attttctggt gcgtaccggg ttgagaagcg gtgtaagtga actgcagttg 4260 ccatgtttta cggcagtgag agcagagata gcgctgatgt ccggcggtgc ttttgccgtt 4320 60 acgcaccacc ccgtcagtag ctgaacagga gggacagctg atagacacag aagccactgg 4380 65 agcacctcaa aaacaccatc atacactaaa tcagtaagtt ggcagcatca cccataattg 4440

	4500	acaactttga	aactttgaaa	gttatacgcc	tcgatactat	atcggctccg	tggtttcaaa
5	4560	tggagttcgt	aacagtgaat	gaatgcaagg	taaggtttta	ttctggtatt	aaaagctgtt
	4620	aaggaaataa	agaaaagagg	taaatactgt	ggggtatctt	ttagcttctt	cttgttataa
10	4680	ataccgctgc	tgatcgaaaa	ttgaaaaaac	atcaccggaa	aaatgagaat	taaatggcta
15	4740	agaaaatgaa	agctggtggg	aaggtatata	gtctcctgct	cggaaggaat	gtaaaagata
	4800	tgtggaacgg	ccacctatga	tataaaggga	ggacagccgg	taaaaatgac	aacctatatt
20	4860	cctgcacttt	ttccaaaggt	aagctgcctg	gctggaagga	tgatgctatg	gaaaaggaca
25	4920	cctttgctcg	ccgatggcgt	atgagtgagg	caatctgctc	atggctggag	gaacggcatg
	49.80	ggagtgcatc	agctgtatgc	aagattatcg	aagccctgaa	aagatgaaca	gaagagtatg
30	5040	agacagccgc	cgaatagctt	tgtccctata	catatcggat	actccatcga	aggctctttc
35	5100	cgaaaactgg	atgtggattg	gatctggccg	actgaataac	tggattactt	ttagccgaat
	5160	gacggaaaag	attttttaaa	gagctgtatg	agatccgcgc	ctccatttaa	gaagaagaca
40	5220	ctttgtgaaa	acagcaacat	gạcctgggag	ttcccacggc	aacttgtctt	cccgaagagg
45	5280	caagtggtat	gcagggcgga	gggagaagcg	tattgatctt	taagtggctt	gatggcaaag
	5340	gtatgtcgag	gggaagaaca	gaggatatcg	gtcgatcagg	tctgcgtccg	gacattgcct
50	5400	ttatatttta	aaataaaata	gattgggaga	gatcaagcct	acttactggg	ctattttttg
55	5460	agcaggagcg	gccggcgaca	gcgcaacgat	cctagatgtg	tgttttagta	ctggatgaat
	5520	gcaagtattt	gaggcccacg	ctctcaggcc	agtgttttgg	ttccgcatca	caccgacttc
60	5580	acgagaagga	aataccaagt	caagattcgg	tcgtgcaggg	tcgctggtat	gggcaagggg
	5640	tggacaccaa	gtggattatc	tgccgataag	ccgacttcat	gtctacggga	cggccagacg

ggcaccaggc gggtcaaatc aggaataagg gcacattgcc ccggcgtgag tcggggcaat 5700 5 cccgcaagga gggtgaatga atcggacgtt tgaccggaag gcatacaggc aagaactgat 5760 cgacgcgggg ttttccgccg aggatgccga aaccatcgca agccgcaccg tcatgcgtgc 5820 gccccgcgaa accttccagt ccgtcggctc gatggtccag caagctacgg ccaagatcga 5880 gcgcgacagc gtgcaactgg ctcccctgc cctgcccgcg ccatcggccg ccgtggagcg 5940 ttcgcgtcgt ctcgaacagg aggcggcagg tttggcgaag tcgatgacca tcgacacgcg 6000 20 aggaactatg acgaccaaga agcgaaaaac cgccggcgag gacctggcaa aacaggtcag 6060 cgaggccaag caggccgcgt tgctgaaaca cacgaagcag cagatcaagg aaatgcagct 6120 ttccttgttc gatattgcgc cgtggccgga cacgatgcga gcgatgccaa acgacacggc 6180 30 ccgctctgcc ctgttcacca cgcgcaacaa gaaaatcccg cgcgaggcgc tgcaaaacaa 6240 ggtcattttc cacgtcaaca aggacgtgaa gatcacctac accggcgtcg agctgcgggc 6300 cgacgatgac gaactggtgt ggcagcaggt gttggagtac gcgaagcgca cccctatcgg 6360 cgagccgatc accttcacgt tctacgagct ttgccaggac ctgggctggt cgatcaatgg 6420 ccggtattac acgaaggccg aggaatgcct gtcgcgccta caggcgacgg cgatgggctt 6480 cacgtccgac cgcgttgggc acctggaatc ggtgtcgctg ctgcaccgct tccgcgtcct 6540 ggaccgtggc aagaaaacgt cccgttgcca ggtcctgatc gacgaggaaa tcgtcgtgct 6600 gtttgctggc gaccactaca cgaaattcat atgggagaag taccgcaagc tgtcgccgac 6660 ggcccgacgg atgttcgact atttcagctc gcaccgggag ccgtacccgc tcaagctgga 6720 aaccttccgc ctcatgtgcg gatcggattc cacccgcgtg aagaagtggc gcgagcaggt 6780 cggcgaagcc tgcgaagagt tgcgaggcag cggcctggtg gaacacgcct gggtcaatga 6840

:	gtt	ttc	cgg	rctg	g	ggggt	ttca	gc	6900) .		
2	gct	ctc	gac	gca	C	cttgo	cttc	gc	6960)		5
J	cga	gata	aaa	ıcag	· a	aggat	taa	aa	7020)		
Ţ	cgg	ggc	cga	ıcgt	g	gcagg	gatt	tc	7080		1	O
1	tgt	gtto	cgg	gtc	: c	gttt	acg	ag ·	7140	1	1	5
Ţ	tgc	gega	raga	tgc	c	gtgg	gcat	tc	7200	· ·	· .	
26	tca	caaa	aca	ıgga	g	gaco	gcc	cc	7260		2	0
Ţ	agc	gcc	cga	aca	g	gcgag	gcc	ga	7320		2	5
1	tat	att	gct	cgt	g	gatga	atcg	tc	7380			
= (tcc	cct	cgg	cgc	: a	actta	aata	tt '	7.440	,	3	0
Ţ	tgc	àcci	ggg	rcgg	9	ggtcg	gcgg	cg	7500		3	5
- 9	ctg	gc	cgc	tct	. g	gctag	ggta	gc	7560	ı.		
: 9	ctg	gc	ggg	cgt	g	ggcgd	ctgt	tg	7620		4	0
į	cag	agc	:g g g	rcct	. g	ggcgg	gggg	cg	7680		4	5
1	aac	acci	tcc	cgt	. <u>c</u>	gcct	ctgc	tc	7740			
29	tcg	egti	tcc	agt	ā	agctt	ttag	tg	7800)	5	0
29	tcg	cgg	rcct	ggc	e g	gtggd	ctcg	gc	7860		5	5
Į	gga	gat	ctc	gcg	s	actc	gaac	ct	7920			
3	ggg	ggt	.cga	tca	ı ç	gccg	ggga	tg	7980)	6	0
2	cca	cat	tcg	gtg	į a	agcaa	atgg	at	8040)	*	

aggggagttg atatcgtcaa cgttcacttc taaagaaata gcgccactca gcttcctcag 8100 5 cggctttatc cagcgatttc ctattatgtc ggcatagttc tcaagatcga cagcctgtca 8160 cggttaagcg agaaatgaat aagaaggctg ataattcgga tctctgcgag ggagatgata 8220 10 tttgatcaca ggcagcaacg ctctgtcatc gttacaatca acatgctacc ctccgcgaga 8280 15 tcatccgtgt ttcaaacccg gcagcttagt tgccgttctt ccgaatagca tcggtaacat 8340 gagcaaagtc tgccgcctta caacggctct cccgctgacg ccgtcccgga ctgatgggct 8400 20 gectgtateg agtggtgatt ttgtgeegag etgeeggteg gggagetgtt ggetggetgg 8460 tggcaggata tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg 8520 gacgttttta atgtactggg gtggtttttc ttttcaccag tgagacgggc aacagctgat 8580 tgcccttcac cgcctggccc tgagagagtt gcagcaagcg gtccacgctg gtttgcccca 8640 gcaggcgaaa atcctgtttg atggtggttc cgaaatcggc aaaatccctt ataaatcaaa 8700 agaatagccc gagatagggt tgagtgttgt tccagtttgg aacaagagtc cactattaaa 8760 40 gaacgtggac tccaacgtca aagggcgaaa aaccgtctat cagggcgatg gcccactacg 8820 tgaaccatca cccaaatcaa gttttttggg gtcgaggtgc cgtaaagcac taaatcggaa 8880 ccctaaaggg agcccccgat ttagagcttg acggggaaag ccggcgaacg tggcgagaaa 8940 ggaagggaag aaagcgaaag gagcgggcgc cattcaggct gcgcaactgt tgggaagggc 9000 gatcggtgcg ggcctcttcg ctattacgcc agctggcgaa agggggatgt gctgcaaggc 9060 gattaagttg ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg acggccagtg 9120 aattaattcc catcttgaaa gaaatatagt ttaaatattt attgataaaa taacaagtca 9180 ggtattatag tccaagcaaa aacataaatt tattgatgca agtttaaatt cagaaatatt 9240

tc	aataactg	attatatcag	ctggtacatt	gccgtagatg	aaagactgag	tgcgatatta	9300	
tg	rtgtaatac	ataaattgat	gatatagcta	gcttagctca	tcgggggatc	cgtcgaagct	9360	5
aç	cttgggtc	ccgctcagaa	gaactcgtca	agaaggcgat	agaaggcgat	gcgctgcgaa	9420	
to	gggagcgg	cgataccgta	aagcacgagg	aagcggtcag	cccattcgcc	gccaagctct	9480	10
to	agcaatat	cacgggtagc	caacgctatg	tcctgatagc	ggtccgccac	acccagccgg	9540	. 15
cc	acagtcga	tgaatccaga	aaagcggcca	ttttccacca	tgatattcgg	caagcaggca	9600	
to	gccatggg	tcacgacgag	atcctcgccg	tcgggcatgc	gcgccttgag	cctggcgaac	9660	20
aç	ıttcggctg	gegegageee	ctgatgctct	tcgtccagat	catcctgatc	gacaagaccg	9720	25
go	ttccatcc	gagtacgtgc	tegetegatg	cgatgtttcg	cttggtggtc	gaatgggcag	9780	
gt	agccggat	caagcgtatg	cagccgccgc	attgcatcag	ccatgatgga	tactttctcg	9840	30
gc	aggagcaa	ggtgagatga	caggagatcc	tgccccggca	cttcgcccaa	tagcagccag	9900	35
to	ccttcccg	cttcagtgac	aacgtcgagc	acagctgcgc	aaggaacgcc	cgtcgtggcc	9960	
aç	rccacgata	gccgcgctgc	ctcgtcctgc	agttcattca	gggcaccgga	caggtcggtc	10020	40
tt	gacaaaaa	gaaccgggcg	ccctgcgct	gacagccgga	acacggcggc	atcagagcag	10080	45
CC	gattgtct	gttgtgccca	gtcatagccg	aatagcctct	ccacccaagc	ggccggagaa	10140	
CC	tgcgtgca	atccatcttg	ttcaatccaa	gctcccatgg	gccctcgact	agagtcgaga	10200	50
to	tggattga	gagtgaatat	gagactctaa	ttggataccg	aggggaattt	atggaacgtc	10260	55
ag	gtggagcat	ttttgacaag	aaatatttgc	tagctgatag	tgaccttagg	cgacttttga	10320	
ac	gcgcaata	atggtttctg	acgtatgtgc	ttagctcatt	aaactccaga	aacccgcggc	10380	60
tç	gagtggctc	cttcaacgtt	gcggttctgt	cagttccaaa	cgtaaaacgg	cttgtcccgc	10440	

gtcatcggcg ggggtcataa cgtgactccc ttaattctcc gctcatgatc ttgatcccct 10500 5 gcgccatcag atccttggcg gcaagaaagc catccagttt actttgcagg gcttcccaac 10560 cttaccagag ggcgccccag ctggcaattc cggttcgctt gctgtccata aaaccgccca 10620 10 gtctagctat cgccatgtaa gcccactgca agctacctgc tttctctttg cgcttgcgtt 10680 ttcccttgtc cagatagccc agtagctgac attcatccgg ggtcagcacc gtttctgcgg 10740 actggettte taegtgttee getteettta geageeettg egeeetgagt gettgeggea 10800 20 gcgtgaagct tgcatgcctg caggtcgacg gcgcgccgag ctcctcgagc aaatttacac 10860 attgccacta aacgtctaaa cccttgtaat ttgtttttgt tttactatgt gtgttatgta 10920 tttgatttgc gataaatttt tatatttggt actaaattta taacaccttt tatgctaacg 10980 tttgccaaca cttagcaatt tgcaagttga ttaattgatt ctaaattatt tttgtcttct 11040 aaatacatat actaatcaac tggaaatgta aatatttgct aatatttcta ctataggaga 11100 attaaagtga gtgaatatgg taccacaagg tttggagatt taattgttgc aatgctgcat 11160 40 ggatggcata tacaccaaac attcaataat tcttgaggat aataatggta ccacacaaga 11220 tttgaggtgc atgaacgtca cgtggacaaa aggtttagta atttttcaag acaacaatgt 11280 taccacaca aagttttgag gtgcatgcat ggatgccctg tggaaagttt aaaaatattt 11340 tggaaatgat ttgcatggaa gccatgtgta aaaccatgac atccacttgg aggatgcaat 11400 aatgaagaaa actacaaatt tacatgcaac tagttatgca tgtagtctat ataatgagga 11460 ttttgcaata ctttcattca tacacactca ctaagtttta cacgattata atttcttcat 11520 agccagcgga tccgatatcg ggcccgctag cgttaaccct gctttaatga gatatgcgag 11580 acgcctatga tcgcatgata tttgctttca attctgttgt gcacgttgta aaaaacctga 11640

gcatgtgtag	ctcagatcct	taccgccggt	ttcggttcat	tctaatgaat	atatcacccg	11700	
ttactatcgt	atttttatga	ataatattct	ccgttcaatt	tactgattgt	ccgtcgacga	11760	5
attcgagctc	ggcgcgcctc	tagaggatcg	atgaattcag	atcggctgag	tggctccttc	11820	
aacgttgcgg	ttctgtcagt	tccaaacgta	aaacggcttg	tcccgcgtca	tcggcggggg	11880	10
tcataacgtg	actcccttaa	ttctccgctc	atgatcagat	tgtcgtttcc	cgccttcagt	11940	15
ttaaactatc	agtgtttgac	aggatatatt	ggcgggtaaa	cctaagagaa	aagagcgttt	12000.	
attagaataa	tcggatattt	aaaagggcgt	gaaaaggttt	atccttcgtc	catttgtatg	12060	20
tgcatgccaa	ccacagggtt	cccca				12085	25
<210> 40 <211> 1207 <212> DNA	9					• *.	30
<213> Unkn	own						35
	nzlicher Exp otor-Termina						40
<400> 40							45
gatctggcgc	cggccagcga	gacgagcaag	attggccgcc	gcccgaaacg	atccgacagc	60	45
gcgcccagca	caggtgcgca	ggcaaattgc	accaacgcat	acagegeeag	cagaatgcca	120	50
tagtgggcgg	tgacgtcgtt	cgagtgaacc	agatcgcgca	ggaggcccgg	cagcaccggc	180	
ataatcaggc	cgatgccgac	agcgtcgagc	gcgacagtgc	tcagaattac	gatcaggggt	240	55
atgttgggtt	tcacgtctgg	cctccggacc	agcctccgct	ggtccgattg	aacgcgcgga	300	60
ttctttatca	ctgataagtt	ggtggacata	ttatgtttat	cagtgataaa	gtgtcaagca	360	
		·				400	65

gcgtagacgg tctgacgaca cgcaaactgg cggaacggtt gggggttcag cagccggcgc 480 5 tttactggca cttcaggaac aagcgggcgc tgctcgacgc actggccgaa gccatgctgg 540 cggagaatca tacgcattcg gtgccgagag ccgacgacga ctggcgctca tttctgatcg 600 10 ggaatgcccg cagcttcagg caggcgctgc tcgcctaccg cgatggcgcg cgcatccatg 660 ccggcacgcg accgggcgca ccgcagatgg aaacggccga cgcgcagctt cgcttcctct 720 gcgaggcggg tttttcggcc ggggacgccg tcaatgcgct gatgacaatc agctacttca 780 20 ctgttggggc cgtgcttgag gagcaggccg gcgacagcga tgccggcgag cgcggcggca 840 ccgttgaaca ggctccgctc tcgccgctgt tgcgggccgc gatagacgcc ttcgacgaag 900 ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa 960 30 ggaggctcgt tgtcaggaac gttgaaggac cgagaaaggg tgacgattga tcaggaccgc 1020 tgccggagcg caacccactc actacagcag agccatgtag acaacatccc ctccccttt 1080 ccaccgcgtc agacgcccgt agcagcccgc tacgggcttt ttcatgccct gccctagcgt 1140 40 ccaageetea eggeeget eggeetetet ggeggeette tggegetett eegetteete 1200 gctcactgac tcgctgcgct cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa 1260 ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa 1320 50 aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct 1380 ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 1440 55 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1500 gaccetgeeg ettaceggat acetgteege ettteteeet tegggaageg tggegetttt 1560 ccgctgcata accctgcttc ggggtcatta tagcgatttt ttcggtatat ccatcctttt 1620

cacgat	a tad	aggattt	tgccaaaggg	ttcgtgtaga	ctttccttgg	tgtatccaac	1680	
gtcago	c ggg	gcaggata	ggtgaagtag	gcccacccgc	gagcgggtgt	tccttcttca	1740	5
ccctt	a tto	egcacetg	gcggtgctca	acgggaatcc	tgctctgcga	ggctggccgg	1800	••
ccgccg	ig cgt	taacagat	gagggcaagc	ggatggctga	tgaaaccaag	·ccaaccagga	1860	10
gcagco	c acc	ctatcaag	gtgtactgcc	ttccagacga	acgaagagcg	attgaggaaa	1920	15
ggcgg	ic gg	ccggcatg	agcctgtcgg	cctacctgct	ggccgtcggc	cagggctaca	1980	
cacgg	ıg cgi	tcgtggac	tatgagcacg	tccgcgagct	ggcccgcatc	aatggcgacc	2040	20
geegee	t ggg	geggeetg	ctgaaactct	ggctcaccga	cgacccgcgc	acggcgcggt	2100	25
gtgatg	c ca	cgatecte	gccctgctgg	cgaagatcga	agagaagcag	gacgagcttg	2160	
aggtca	ıt gai	tgggcgtg	gtccgcccga	gggcagagcc	atgacttttt	tagccgctaa	2220	30
ggccgg	ia aa	gtgcgcgt	gattgccaag	cacgtcccca	tgcgctccat	caagaagagc •	2280	35
tegeg	g ag	ctggtgaa	gtacatcacc	gacgagcaag	gcaagaccga	gcgcctttgc	2340	
gctcac	c gg	gctggttg	ccctcgccgc	tgggctggcg	gccgtctatg	gccctgcaaa	2400	40
gccaga	a ac	gccgtcga	agccgtgtgc	gagacaccgc	ggccgccggc	gttgtggata	2460	45
cgcgga		ettggccc	tcactgacag	atgaggggcg	gacgttgaca	cttgaggggc	2520	
ctcacc	c gg	cgcggcgt	tgacagatga	ggggcaggct	cgatttcggc	cggcgacgtg	2580	50
ctggcc	a gc	ctcgcaaa	tcggcgaaaa	cgcctgattt	tacgcgagtt	tcccacagat	2640	55
gtggac	a ag	cctgggga	taagtgccct	gcggtattga	cacttgaggg	gcgcgactac	2700	
cagatg	ga gg	ggcgcgat	ccttgacact	tgaggggcag		gatgaggggc	2760	60
cctatt	g ac	atttgagg	ggctgtccac	aggcagaaaa	tccagcattt	gcaagggttt	2820	

cegecegitt tieggecace getaacetgi ettitaacet getittaaac caatatitat 2880 5 aaaccttgtt tttaaccagg gctgcgccct gtgcgcgtga ccgcgcacgc cgaagggggg 2940 tgcccccct tctcgaaccc tcccggcccg ctaacgcggg cctcccatcc ccccaggggc 3000 10 tgcgcccctc ggccgcgaac ggcctcaccc caaaaatggc agcgctggca gtccttgcca 3060 15 ttgccgggat cggggcagta acgggatggg cgatcagccc gagcgcgacg cccggaagca 3120 ttgacgtgcc gcaggtgctg gcatcgacat tcagcgacca ggtgccgggc agtgagggcg 3180 20 geggeetggg tggeggeetg ceetteactt eggeegtegg ggeatteacg gaetteatgg 3240 cggggccggc aatttttacc ttgggcattc ttggcatagt ggtcgcgggt gccgtgctcg 3300 tgttcggggg tgcgataaac ccagcgaacc atttgaggtg ataggtaaga ttataccgag 3360 30 gtatgaaaac gagaattgga cctttacaga attactctat gaagcgccat atttaaaaag 3420 ctaccaagac gaagaggatg aagaggatga ggaggcagat tgccttgaat atattgacaa 3480 tactgataag ataatatatc ttttatatag aagatatcgc cgtatgtaag gatttcaggg 3540 40 ggcaaggcat aggcagcgcg cttatcaata tatctataga atgggcaaag cataaaaact 3600 tgcatggact aatgcttgaa acccaggaca ataaccttat agcttgtaaa ttctatcata 3660 attgggtaat gactccaact tattgatagt gttttatgtt cagataatgc ccgatgactt 3720 tgtcatgcag ctccaccgat tttgagaacg acagcgactt ccgtcccagc cgtgccaggt 3780 gctgcctcag attcaggtta tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt 3840 gcagctttcc cttcaggcgg gattcataca gcggccagcc atccgtcatc catatcacca 3900 cgtcaaaggg tgacagcagg ctcataagac gccccagcgt cgccatagtg cgttcaccga 3960 atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagcgctggc 4020

gcg	gatttagc	cccgacatag	cccactgtt	cgtccatttc	cgcgcagacg	atgacgtcac	4080		
tgo	ccggctg	tatgcgcgag	gttaccgact	gcggcctgag	ttttttaagt	gacgtaaaat	4140	:	5
cgt	gttgagg	ccaacgccca	taatgcgggc	tgttgcccgg	catccaacgc	cattcatggc	4200		_
cat	catcaatg	attttctggt	gcgtaccggg	ttgagaagcg	gtgtaagtga	actgcagttg	4260	10	ט
CC	atgtttta	cggcagtgag	agcagagata	gcgctgatgt	ccggcggtgc	ttttgccgtt	4320 .	1:	5
acç	gcaccacc	ccgtcagtag	ctgaacagga	gggacagctg	atagacacag	aagccactgg	4380		
ago	cacctcaa	aaacaccatc	atacactaaa	tcagtaagtt	ggcagcatca	cccataattg	4440	20	D
tgg	gtttcaaa	atcggctccg	tcgatactat	gttatacgcc	aactttgaaa	acaactttga	4500	2:	5
aaa	agctgtt	ttctggtatt	taaggtttta	gaatgcaagg	aacagtgaat	tggagttcgt	4560		
ctt	tgttataa	ttagcttctt	ggggtatctt	taaatactgt	agaaaagagg	aaggaaataa	4620		0
taa	aatggcta	aaatgagaat	atcaccggaa	ttgaaaaaac	tgatcgaaaa	ataccgctgc	4680	3:	5
gta	aaaagata	cggaaggaat	gtctcctgct	aaggtatata	agctggtggg	agaaaatgaa	4740	4	
aad	cctatatt	taaaaatgac	ggacagccgg	tataaaggga	ccacctatga	tgtggaacgg	4800		D
gaa	aaaggaca	tgatgctatg	gctggaagga	aagctgcctg	ttccaaaggt	cctgcacttt	4860	4	5
gaa	acggcatg	atggctggag	caatctgctc	atgagtgagg	ccgatggcgt	cctttgctcg	4920		
gaa	agagtatg	aagatgaaca	aagccctgaa	aagattatcg	agctgtatgc	ggagtgcatc	4980		0
ag	gctctttc	actccatcga	catatcggat	tgtccctata	cgaatagctt	agacagccgc	5040	5	5
tta	agccgaat	tggattactt	actgaataac	gatctggccg	atgtggattg	cgaaaactgg	5100		
gaa	agaagaca	ctccatttaa	agatccgcgc	gagctgtatg	attttttaaa	gacggaaaag	5160	6	0
CC	gaagagg	aacttgtctt	ttcccacggc	gacctgggag	acagcaacat	ctttgtgaaa	5220		

gatggcaaag taagtggctt tattgatctt gggagaagcg gcagggcgga caagtggtat 5280 5 gacattgcct tetgegteeg gtegateagg gaggatateg gggaagaaca gtatgtegag 5340 10 ctggatgaat tgttttagta cctagatgtg gcgcaacgat gccggcgaca agcaggagcg 5460 caccgacttc ttccgcatca agtgttttgg ctctcaggcc gaggcccacg gcaagtattt 5520 gggcaagggg tcgctggtat tcgtgcaggg caagattcgg aataccaagt acgagaagga 5580 20 cggccagacg gtctacggga ccgacttcat tgccgataag gtggattatc tggacaccaa 5640 ggcaccaggc gggtcaaatc aggaataagg gcacattgcc ccggcgtgag tcggggcaat 5700 cccgcaagga gggtgaatga atcggacgtt tgaccggaag gcatacaggc aagaactgat 5760 cgacgcgggg ttttccgccg aggatgccga aaccatcgca agccgcaccg tcatgcgtgc 5820 gccccgcgaa accttccagt ccgtcggctc gatggtccag caagctacgg ccaagatcga 5880 gegegacage gtgcaactgg etececetge eetgeeegeg ceateggeeg eegtggageg 5940 40 ttcgcgtcgt ctcgaacagg aggcggcagg tttggcgaag tcgatgacca tcgacacgcg 6000 aggaactatg acgaccaaga agcgaaaaac cgccggcgag gacctggcaa aacaggtcag 6060 cgaggccaag caggccgcgt tgctgaaaca cacgaagcag cagatcaagg aaatgcagct 6120 50 tteettgtte gatattgege egtggeegga eacgatgega gegatgeeaa aegaeaegge 6180 ccgctctgcc ctgttcacca cgcgcaacaa gaaaatcccg cgcgaggcgc tgcaaaacaa 6240 ggtcattttc cacgtcaaca aggacgtgaa gatcacctac accggcgtcg agctgcgggc 6300 cgacgatgac gaactggtgt ggcagcaggt gttggagtac gcgaagcgca cccctatcgg 6360 cgagccgatc accttcacgt tctacgagct ttgccaggac ctgggctggt cgatcaatgg 6420 65

ccg	gtattac	acgaaggccg	aggaatgcct	gtcgcgccta	caggcgacgg	cgatgggctt	6480	
cac	gtccgac	cgcgttgggc	acctggaatc	ggtgtcgctg	ctgcaccgct	tccgcgtcct	6540	5
gga	accgtggc	aagaaaacgt	cccgttgcca	ggtcctgatc	gacgaggaaa	tegtegtget	6600	••
gtt	tgctggc	gaccactaca	cgaaattcat	atgggagaag	taccgcaagc	tgtcgccgac	6660	10
ggo	ccgacgg	atgttcgact	atttcagctc	gcaccgggag	ccgtacccgc	tcaagctgga	6720	15
aac	cttccgc	ctcatgtgcg	gatcggattc	cacccgcgtg	aagaagtggc	gcgagcaggt	6780	
cgg	gcgaagcc	tgcgaagagt	tgcgaggcag	cggcctggtg	gaacacgcct	gggtcaatga	6840	20
tga	acctggtg	cattgcaaac	gctagggcct	tgtggggtca	gttccggctg	ggggttcagc	6900	25
ago	cagcgct	ttactggcat	ttcaggaaca	agcgggcact	gctcgacgca	cttgcttcgc	6960	
tca	agtatcgc	tcgggacgca	cggcgcgctc	tacgaactgc	cgataáacag	aggattaaaa	7020	30
ttg	gacaattg	tgattaaggc	tcagattcga	cggcttggag	cggccgacgt	gcaggatttc	7080	35
cgc	gagatcc	gattgtcggc	cctgaagaaa	gctccagaga	tgttcgggtc	cgtttacgag	7140	
cac	gaggaga	aaaagcccat	ggaggcgttc	gctgaacggt	tgcgagatgc	cgtggcattc	7200	40
ggo	gcctaca	tcgacggcga	gatcattggg	ctgtcggtct	ťċaaacaġga	ggacggcccc	7260	45
aaç	gacgctc	acaaggcgca	tetgteegge	gttttcgtgg	agcccgaaca	gcgaggccga	7320	
ggg	gtcgccg	gtatgctgct	gegggegttg	ccggcgggtt	tattgctcgt	gatgatcgtc	7380	50
cga	acagattc	caacgggaat	ctggtggatg	cgcatcttca	tecteggege	acttaatatt	7440	55 .
tcg	gctattct	ggagcttgtt	gtttatttcg	gtctaccgcc	tgccgggcgg	ggtcgcggcg	7500	
acç	ggtaggcg	ctgtgcagcc	gctgatggtc	gtgttcatct	ctgccgctct	gctaggtagc	7560	60
ccg	gatacgat	tgatggcggt	cctgggggct	atttgcggaa	ctgcgggcgt	ggcgctgttg	7620	65

gtgttgacac caaacgcagc gctagatcct gtcggcgtcg cagcggggcct ggcgggggcg 7680 5 gtttccatgg cgttcggaac cgtgctgacc cgcaagtggc aacctcccgt gcctctgctc 7740 acctttaccg cctggcaact ggcggccgga ggacttctgc tcgttccagt agctttagtg 7800 10 tttgatccgc caatcccgat gcctacagga accaatgttc tcggcctggc gtggctcggc 7860 ctgatcggag cgggtttaac ctacttcctt tggttccggg ggatctcgcg actcgaacct 7920 acagttgttt ccttactggg ctttctcagc cccagatctg gggtcgatca gccggggatg 7980 catcaggccg acagtcggaa cttcgggtcc ccgacctgta ccattcggtg agcaatggat 8040 aggggagttg atatcgtcaa cgttcacttc taaagaaata gcgccactca gcttcctcag 8100 cggctttatc cagcgatttc ctattatgtc ggcatagttc tcaagatcga cagcctgtca 8160 cggttaagcg agaaatgaat aagaaggctg ataattcgga tctctgcgag ggagatgata 8220 tttgatcaca ggcagcaacg ctctgtcatc gttacaatca acatgctacc ctccgcgaga 8280 teateegtgt tteaaacceg geagettagt tgeegttett eegaatagea teggtaacat 8340 40 gagcaaagtc tgccgcctta caacggctct cccgctgacg ccgtcccgga ctgatgggct 8400 gcctgtatcg agtggtgatt ttgtgccgag ctgccggtcg gggagctgtt ggctggctgg 8460 tggcaggata tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg 8520 gacgttttta atgtactggg gtggtttttc ttttcaccag tgagacgggc aacagctgat 8580 tgcccttcac cgcctggccc tgagagagtt gcagcaagcg gtccacgctg gtttgcccca 8640 gcaggcgaaa atcctgtttg atggtggttc cgaaatcggc aaaatccctt ataaatcaaa 8700 agaatagccc gagatagggt tgagtgttgt tccagtttgg aacaagagtc cactattaaa 8760 gaacgtggac tccaacgtca aagggcgaaa aaccgtctat cagggcgatg gcccactacg 8820

	8880	taaatcggaa	cgtaaagcac	gtcgaggtgc	gttttttggg	cccaaatcaa	tgaaccatca
5	8940	tggcgagaaa	ccggcgaacg	acggggaaag	ttagagettg	agcccccgat	ccctaaaggg
10	9000	tgggaagggc	gcgcaactgt	cattcaggct	gagegggege	aaagcgaaag	ggaagggaag
10	9060	gctgcaaggc	agggggatgt	agctggcgaa	ctattacgcc	ggcctcttcg	gatcggtgcg
15	9120	acggccagtg	ttgtaaaacg	agtcacgacg	gggttttccc	ggtaacgcca	gattaagttg
	9180	taacaagtca	attgataaaa	ttaaatattt	gaaatatagt	catcttgaaa	aattaattcc
20	9240	cagaaatatt	agtttaaatt	tattgatgca	aacataaatt	tccaagcaaa	ggtattatag
25	9300	tgcgatatta	aaagactgag	gccgtagatg	ctggtacatt	attatatcag	tcaataactg
	9360	cgtcgaagct	tcgggggatc	gcttagctca	gatatagcta	ataaattgat	tgtgtaatac
30	9420	gcgctgcgaa	agaaggcgat	agaaggcgat	gaactcgtca	ccgctcagaa	agcttgggtc
. 35	9480	gccaagctct	cccattcgcc	aagcggtcag	. aagcacgagg	cgataccgta	tcgggagcgg
. •	9540	acccagccgg	ggtccgccac	tcctgatagc	caacgctatg	cacgggtagc	tcagcaatat
40	9600	caagcaggca	tgatattcgg	ttttccacca	aaagcggcca	tgaatccaga	ccacagtcga
45	9660	cctggcgaac	gcgccttgag	tcgggcatgc	atcctcgccg	tcacgacgag	tcgccatggg
,	9720	gacaagaccg	catcctgatc	tcgtccagat	ctgatgctct	gcgcgagccc	agttcggctg
50	9780	gaatgggcag	cttggtggtc	cgatgtttcg	tcgctcgatg	gagtacgtgc	gcttccatcc
55	9840	tactttctcg	ccatgatgga	attgcatcag	cagccgccgc	caagcgtatg	gtagccggat
	9900	tagcagccag	cttcgcccaa	tgccccggca	caggagatcc	ggtgagatga	gcaggagcaa
. 60	9960	cgtcgtggcc	aaggaacgcc	acagctgcgc	aacgtcgagc	cttcagtgac	tcccttcccg
	10020	caggtcggtc	gggcaccgga	agttcattca	ctcgtcctgc	gccgcgctgc	agccacgata

ttgacaaaaa gaaccgggcg cccctgcgct gacagccgga acacggcggc atcagagcag 10080 ccgattgtct gttgtgccca gtcatagccg aatagcctct ccacccaagc ggccggagaa 10140 cctgcgtgca atccatcttg ttcaatccaa gctcccatgg gccctcgact agagtcgaga 10200 10 tctggattga gagtgaatat gagactctaa ttggataccg aggggaattt atggaacgtc 10260 agtggagcat ttttgacaag aaatatttgc tagctgatag tgaccttagg cgacttttga 10320 acgcgcaata atggtttctg acgtatgtgc ttagctcatt aaactccaga aacccgcggc 10380 20 tgagtggctc cttcaacgtt gcggttctgt cagttccaaa cgtaaaacgg cttgtcccgc 10440 gtcatcggcg ggggtcataa cgtgactccc ttaattctcc gctcatgatc ttgatcccct 10500 gcgccatcag atccttggcg gcaagaaagc catccagttt actttgcagg gcttcccaac 10560 30 cttaccagag ggcgccccag ctggcaattc cggttcgctt gctgtccata aaaccgccca 10620 gtctagctat cgccatgtaa gcccactgca agctacctgc tttctctttg cgcttgcgtt 10680 ttcccttgtc cagatagccc agtagctgac attcatccgg ggtcagcacc gtttctgcgg 10740 40 actggctttc tacgtgttcc gcttccttta gcagcccttg cgccctgagt gcttgcggca 10800 gcgtgaagct tgcatgcctg caggtcgacg gcgcgcgag ctcctcgagc aaatttacac 10860 attgccacta aacgtctaaa cccttgtaat ttgtttttgt tttactatgt gtgttatgta 10920 50 tttgatttgc gataaatttt tatatttggt actaaattta taacaccttt tatgctaacg 10980 tttgccaaca cttagcaatt tgcaagttga ttaattgatt ctaaattatt tttgtcttct 11040 aaatacatat actaatcaac tggaaatgta aatatttgct aatatttcta ctataggaga 11100 attaaagtga gtgaatatgg taccacaagg tttggagatt taattgttgc aatgctgcat 11160 ggatggcata tacaccaaac attcaataat tcttgaggat aataatggta ccacacaaga 11220

ttt	tgaggtgc	atgaacgtca	cgtggacaaa	aggtttagta	atttttcaag	acaacaatgt	11280	
tac	ccacacac	aagttttgag	gtgcatgcat	ggatgccctg	tggaaagttt	aaaaatattt	11340	5
tg	gaaatgat	ttgcatggaa	gccatgtgta	aaaccatgac	atccacttgg	aggatgcaat	11400	
aat	tgaagaaa	actacaaatt	tacatgcaac	tagttatgca	tgtagtctat	ataatgagga	11460	10
tti	ttgcaata	ctttcattca	tacacactca	ctaagtttta	cacgattata	atttcttcat	11520	- 15
age	ccagcaga	tctgccggca	tcgatcccgg	gccatggcct	gctttaatga	gatatgcgag	11580 .	20
ac	gcctatga	tcgcatgata	tttgctttca	attctgttgt	gcacgttgta	aaaaacctga	11640	. 20
gca	atgtgtag	ctcagatcct	taccgccggt	ttcggttcat	tctaatgaat	atatcacccg	11700	25
tta	actatcgt	atttttatga	ataatattct	ccgttcaatt	tactgattgt	ccgtcgacga	11760	30
gc	tcggcgcg	cctctagagg	atcgatgaat	tcagatcggc	tgagtggctc	cttcaacgtt	11820	:
gc	ggttctgt	cagttccaaa	cgtaaaacgg	cttgtcccgc	gtcatcggcg	ggggtcataa	11880	35
cg	tgactccc	ttaattctcc	gctcatgatc	agattgtcgt	ttcccgcctt	cagtttaaac	11940	t 40
ta	tcagtgtt	tgacaggata	tattggcggg	taaacctaag	agaaaagagc	gtttattaga	12000	40
ata	aatcggat	atttaaaagg	gcgtgaaaag	gtttatcctt	cgtccatttg	tatgtgcatg	12060	45
CC	aaccacag	ggttcccca	s.				12079	50
<2	10> 41						-	50
	11> 1300: 12> DNA	2				*		. 55
<2	13> Unkn	own						
	20>							60
<2	23> nfla:	nzlicher Ex	oressionsvel	ktor mit zw	ei			

Promotor-Terminator-Expressionskassetten

<400> 41 gatctggcgc cggccagcga gacgagcaag attggccgcc gcccgaaacg atccgacagc 60 gcgcccagca caggtgcgca ggcaaattgc accaacgcat acagcgccag cagaatgcca 120 tagtgggcgg tgacgtcgtt cgagtgaacc agatcgcgca ggaggcccgg cagcaccggc 180 ataatcagge egatgeegae agegtegage gegaeagtge teagaattae gateaggggt 240 atgttgggtt teacgtctgg ceteeggace ageeteeget ggteegattg aaegegegga 300 ttctttatca ctgataagtt ggtggacata ttatgtttat cagtgataaa gtgtcaagca 360 tgacaaagtt gcagccgaat acagtgatcc gtgccgccct ggacctgttg aacgaggtcg 420 gcgtagacgg tctgacgaca cgcaaactgg cggaacggtt gggggttcag cagccggcgc 480 tttactggca cttcaggaac aagcgggcgc tgctcgacgc actggccgaa gccatgctgg 540 cggagaatca tacgcattcg gtgccgagag ccgacgacga ctggcgctca tttctgatcg 600 ggaatgeeeg cagetteagg caggegetge tegeetaceg egatggegeg egeatecatg 660 ccggcacgcg accgggcgca ccgcagatgg aaacggccga cgcgcagctt cgcttcctct 720 gcgaggcggg tttttcggcc ggggacgccg tcaatgcgct gatgacaatc agctacttca 780 ctgttggggc cgtgcttgag gagcaggccg gcgacagcga tgccggcgag cgcggcggca 840 ccgttgaaca ggctccgctc tcgccgctgt tgcgggccgc gatagacgcc ttcgacgaag 900 ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa 960

65

ggaggctcgt tgtcaggaac gttgaaggac cgagaaaggg tgacgattga tcaggaccgc 1020

tgccggagcg caacccactc actacagcag agccatgtag acaacatccc ctccccttt 1080

ccaccgcgtc agacgcccgt agcagcccgc tacgggcttt ttcatgccct gccctagcgt 1140

	1200	ccgcttcctc	tggcgctctt	ggcggccttc	cggcctctct	cggccgcgct	ccaagcctca
. 5	1260	ctcactcaaa	gcggtatcag	gctgcggcga	cggtcgttcg	tcgctgcgct	gctcactgac
	1320	tgtgagcaaa	ggaaagaaca	ggataacgca	cagaatcagg	cggttatcca	ggcggtaata
10	1380	tccataggct	ctggcgtttt	ggccgcgttg	accgtaaaaa	aaggccagga	aggccagcaa
15	1440	gaaacccgac	cagaggtggc	acgctcaagt	acaaaaatcg	gacgagcatc	ccgccccct
	1500	ctcctgttcc	ctcgtgcgct	tggaagctcc	cgtttccccc	agataccagg	aggactataa
20	1560	tggcgctttt	tegggaageg	ctttctccct	acctgtccgc	cttaccggat	gaccetgeeg
25	1620	ccatcctttt	ttcggtatat	tagcgatttt	ggggtcatta	accctgcttc	ccgctgcata
• •	1680	tgtatccaac	ctttccttgg	ttcgtgtaga	tgccaaaggg	tacaggattt	tcgcacgata
30	1740	tccttcttca	gagcgggtgt	gcccacccgc	ggtgaagtag	gggcaggata	ggcgtcagcc
35	1800	ggctggccgg	tgctctgcga	acgggaatcc	gcggtgctca	ttcgcacctg	ctgtccctta
:	1860	ccaaccagga	tgaaaccaag	ggatggctga	gagggcaagc	cgtaacagat	ctaccgccgg
40	1920	attgaggaaa	acgaagagcg	ttccagacga	gtgtactgcc	acctatcaag	agggcagccc
45	1980	cagggctaca	ggccgtcggc	cctacctgct	agcctgtcgg	ggccggcatg	aggcggcggc
	2040	aatggcgacc	ggcccgcatc	teegegaget	tatgagcacg	cgtcgtggac	aaatcacggg
50	2100	acggcgcggt	cgacccgcgc	ggctcaccga	ctgaaactct	gggcggcctg	tgggccgcct
55,	2160	gacgagcttg	agagaagcag	cgaagatcga	gccctgctgg	cacgatecte	tcggtgatgc
	2220	tagccgctaa	atgactttt	gggcagagcc	gtccgcccga	gatgggcgtg	gcaaggtcat
60	2280	caagaagagc	tgcgctccat	cacgtcccca	gattgccaag	gggtgcgcgt	aacggccggg
	2340	gcgcctttgc	gcaagaccga	gacgagcaag	gtacatcacc	agctggtgaa	gacttcgcgg

gacgeteace gggetggttg ceetegeege tgggetggeg geegtetatg geeetgeaaa 2400 5 cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc gttgtggata 2460 cctcgcggaa aacttggccc tcactgacag atgaggggcg gacgttgaca cttgaggggc 2520 10 cgactcaccc ggcgcggcgt tgacagatga ggggcaggct cgatttcggc cggcgacgtg 2580 gagetggeca geetegeaaa teggegaaaa egeetgattt taegegagtt teecacagat 2640 gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg gcgcgactac 2700 20 tgacagatga ggggcgcgat ccttgacact tgaggggcag agtgctgaca gatgaggggc 2760 gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt gcaagggttt 2820 cegecegttt tteggecace getaacetgt ettttaacet gettttaaac caatatttat 2880 aaaccttgtt tttaaccagg gctgcgccct gtgcgcgtga ccgcgcacgc cgaagggggg 2940 tgcccccct tctcgaaccc tcccggcccg ctaacgcggg cctcccatcc ccccaggggc 3000 tgcgcccctc ggccgcgaac ggcctcaccc caaaaatggc agcgctggca gtccttgcca 3060 ttgccgggat cggggcagta acgggatggg cgatcagccc gagcgcgacg cccggaagca 3120 ttgacgtgcc gcaggtgctg gcatcgacat tcagcgacca ggtgccgggc agtgagggcg 3180 gcggcctggg tggcggcctg cccttcactt cggccgtcgg ggcattcacg gacttcatgg 3240 cggggccggc aatttttacc ttgggcattc ttggcatagt ggtcgcgggt gccgtgctcg 3300 tgttcggggg tgcgataaac ccagcgaacc atttgaggtg ataggtaaga ttataccgag 3360 gtatgaaaac gagaattgga cctttacaga attactctat gaagcgccat atttaaaaag 3420 ctaccaagac gaagaggatg aagaggatga ggaggcagat tgccttgaat atattgacaa 3480 tactgataag ataatatatc ttttatatag aagatatcgc cgtatgtaag gatttcaggg 3540

ggcaagg	cat	aggcagcgcg	cttatcaata	tatctataga	atgggcaaag	cataaaaact	3600	
tgcatgg	act	aatgcttgaa	acccaggaca	ataaccttat	agcttgtaaa	ttctatcata	3660	5
attgggt	aat	gactccaact	tattgatagt	gttttatgtt	cagataatgc	ccgatgactt	3720	
tgtcatg	cag	ctccaccgat	tttgagaacg	acagcgactt	ccgtcccagc	cgtgccaggt	3780	10
gctgcct	cag	attcaggtta	tgccgctcaa	ttcgctgcgt	atatcgcttg	ctgattacgt	3840	15
gcagctt	tcc	cttcaggcgg	gattcataca	gcggcćagcc	atccgtcatc	catatcacca	3900 .	
cgtcaaa	ggg	tgacagcagg	ctcataagac	gccccagcgt	cgccatagtg	cgttcaccga	3960	20
atacgtg	cgc	aacaaccgtc	ttccggagac	tgtcatacgc	gtaaaacagc	cagcgctggc	4020	25
gcgattt	agc	cccgacatag	ccccactgtt	cgtccatttc	cgcgcagacg	atgacgtcac	4080	
tgcccgg	ctg	tatgcgcgag	gttaccgact	gcggcctgag	ttttttaagt	gacgtaaaat	4140	30
cgtgttg	agg	ccaacgccca	-taatgcgggc	tgttgcccgg	catccaacgc	cattcatggc	4200 ₅	35
catatca	atg	attttctggt	gcgtaccggg	ttgagaagcg	gtgtaagtga	actgcagttg	4260	
ccatgtt	tta	cggcagtgag	agcagagata	gcgctgatgt	ccggcggtgc	ttttgccgtt	4320	40
acgcacc	acc	ccgtcagtag	ctgaacagga	gggacagctg	atagacacag	aagccactgg	4380	45
agcacct	caa	aaacaccatc	atacactaaa	tcagtaagtt	ggcagcatca	cccataattg	4440	
tggtttc	aaa	atcggctccg	tcgatactat	gttatacgcc	aactttgaaa	acaactttga	4500	50
aaaagct	gtt	ttctggtatt	taaggtttta	gaatgcaagg	aacagtgaat	tggagttcgt	4560	55
cttgtta	taa	ttagcttctt	ggggtatctt	taaatactgt	agaaaagagg	aaggaaataa	4620	
taaatgg	gcta	aaatgagaat	atcaccggaa	ttgaaaaaac	tgatcgaaaa	ataccgctgc	4680	60
gtaaaag	gata	cggaaggaat	gtctcctgct	aaggtatata	agctggtggg	agaaaatgaa	4740	

aacctatatt taaaaatgac ggacagccgg tataaaggga ccacctatga tgtggaacgg 4800 5 gaaaaggaca tgatgctatg gctggaagga aagctgcctg ttccaaaggt cctgcacttt 4860 gaacggcatg atggctggag caatctgctc atgagtgagg ccgatggcgt cctttgctcg 4920 10 gaagagtatg aagatgaaca aagccctgaa aagattatcg agctgtatgc ggagtgcatc 4980 aggetettte actecatega catateggat tgteectata egaatagett agacageege 5040 ttagccgaat tggattactt actgaataac gatctggccg atgtggattg cgaaaactgg 5100 gaagaagaca ctccatttaa agatccgcgc gagctgtatg attttttaaa gacggaaaag 5160 cccgaagagg aacttgtctt ttcccacggc gacctgggag acagcaacat ctttgtgaaa 5220 gatggcaaag taagtggctt tattgatctt gggagaagcg gcagggcgga caagtggtat 5280 gacattgcct tctgcgtccg gtcgatcagg gaggatatcg gggaagaaca gtatgtcgag 5340 ctggatgaat tgttttagta cctagatgtg gcgcaacgat gccggcgaca agcaggagcg 5460 caccgacttc ttccgcatca agtgttttgg ctctcaggcc gaggcccacg gcaagtattt 5520 gggcaagggg tcgctggtat tcgtgcaggg caagattcgg aataccaagt acgagaagga 5580 45 cggccagacg gtctacggga ccgacttcat tgccgataag gtggattatc tggacaccaa 5640 ggcaccaggc gggtcaaatc aggaataagg gcacattgcc ccggcgtgag tcggggcaat 5700 cccgcaagga gggtgaatga atcggacgtt tgaccggaag gcatacaggc aagaactgat 5760 cgacgcgggg ttttccgccg aggatgccga aaccatcgca agccgcaccg tcatgcgtgc 5820 gccccgcgaa accttccagt ccgtcggctc gatggtccag caagctacgg ccaagatcga 5880 gegegacage gtgeaactgg ctececetge cetgeeegeg ceateggeeg eegtggageg 5940

	8000	tegacaegeg	tegatgacea	tttggcgaag	aggcggcagg	ctcgaacagg	ttcgcgtcgt
5	6060	aacaggtcag	gacctggcaa	cgccggcgag	agcgaaaaac	acgaccaaga	aggaactatg
	6120	aaatgcagct	cagatcaagg	cacgaagcag	tgctgaaaca	caggccgcgt	cgaggccaag
10	6180	acgacacggc	gcgatgccaa	cacgatgcga	cgtggccgga	gatattgcgc	ttccttgttc
15	6240	tgcaaaacaa	cgcgaggcgc	gaaaatcccg	cgcgcaacaa	ctgttcacca	ccgctctgcc
	6300	agctgcgggc	accggcgtcg	gatcacctac	aggacgtgaa	cacgtcaaca	ggtcattttc
20	6360	cccctatcgg	gcgaagcgca	gttggagtac	ggcagcaggt	gaactggtgt	cgacgatgac
· 25	6420	cgatcaatgg	ctgggctggt	ttgccaggac	tctacgagct	accttcacgt	cgagccgatc
	6480	cgatgggctt	caggcgacgg	gtcgcgccta	aggaatgcct	acgaaggccg	ccggtattac
30	6540	tccgcgtcct	ctgcaccgct	ggtgtcgctg	acctggaatc	cgcgttgggc	cacgtccgac
. 35	6600	tcgtcgtgct	gacgaggaaa	ggtcctgatc	cccgttgcca	aagaaaacgt	ggaccgtggc
***	6660	tgtcgccgac	taccgcaagc	atgggagaag	cgaaattcat	gaccactaca	gtttgctggc
40	6720	tcaagctgga	ccgtacccgc	gcaccgggag	atttcagctc	atgttcgact	ggcccgacgg
45	6780	gcgagcaggt	aagaagtggc	cacccgcgtg	gatcggattc	ctcatgtgcg	aaccttccgc
	6840	gggtcaatga	gaacacgcct	cggcctggtg	tgcgaggcag	tgcgaagagt	cggcgaagcc
50	6900	ggggttcagc	gttccggctg	tgtggggtca	gctagggcct	cattgcaaac	tgacctggtg
55	6960	cttgcttcgc	gctcgacgca	agcgggcact	ttcaggaaca	ttactggcat	agccagcgct
	7020	aggattaaaa	cgataaacag	tacgaactgc	cggcgcgctc	tcgggacgca	tcagtatcgc
60	7080	gcaggatttc	cggccgacgt	cggcttggag	tcagattcga	tgattaaggc	ttgacaattg
	7140	cgtttacgag	tgttcgggtc	gctccagaga	cctgaagaaa	gattgtcggc	cgcgagatcc

cacgaggaga aaaagcccat ggaggcgttc gctgaacggt tgcgagatgc cgtggcattc 7200 5 ggcgcctaca tcgacggcga gatcattggg ctgtcggtct tcaaacagga ggacggccc 7260 aaggacgctc acaaggcgca tctgtccggc gttttcgtgg agcccgaaca gcgaggccga 7320 10 ggggtcgccg gtatgctgct gcgggcgttg ccggcgggtt tattgctcgt gatgatcgtc 7380 cgacagattc caacgggaat ctggtggatg cgcatcttca tcctcggcgc acttaatatt 7440 tegetattet ggagettgtt gtttattteg gtetacegee tgeegggegg ggtegeggeg 7500 acggtaggcg ctgtgcagcc gctgatggtc gtgttcatct ctgccgctct gctaggtagc 7560 ccgatacgat tgatggcggt cctgggggct atttgcggaa ctgcgggcgt ggcgctgttg 7620 gtgttgacac caaacgcagc gctagatcct gtcggcgtcg cagcgggcct ggcgggggcg 7680 30 gtttccatgg cgttcggaac cgtgctgacc cgcaagtggc aacctcccgt gcctctgctc 7740 acctttaccg cctggcaact ggcggccgga ggacttctgc tcgttccagt agctttagtg 7800 tttgatccgc caatcccgat gcctacagga accaatgttc tcggcctggc gtggctcggc 7860 ctgatcggag cgggtttaac ctacttcctt tggttccggg ggatctcgcg actcgaacct 7920 acagttgttt ccttactggg ctttctcagc cccagatctg gggtcgatca gccggggatg 7980 catcaggccg acagtcggaa cttcgggtcc ccgacctgta ccattcggtg agcaatggat 8040 aggggagttg atatcgtcaa cgttcacttc taaagaaata gcgccactca gcttcctcag 8100 cggctttatc cagcgatttc ctattatgtc ggcatagttc tcaagatcga cagcctgtca 8160 cggttaagcg agaaatgaat aagaaggctg ataattcgga tctctgcgag ggagatgata 8220 tttgatcaca ggcagcaacg ctctgtcatc gttacaatca acatgctacc ctccgcgaga 8280 tcatccgtgt ttcaaacccg gcagcttagt tgccgttctt ccgaatagca tcggtaacat 8340

	8400	ctgatgggct	ccgtcccgga	cccgctgacg	caacggctct	tgeegeetta	gagcaaagtc
:	8460	ggctggctgg	gggagctgtt	ctgccggtcg	ttgtgccgag	agtggtgatt	gcctgtatcg
	8520	acacattgcg	caacttaata	gacgcttaga	taaacaaatt	tattgtggtg	tggcaggata
16	8580	aacagctgat	tgagacgggc	ttttcaccag	gtggtttttc	atgtactggg	gacgttttta
15	8640	gtttgcccca	gtccacgctg	gcagcaagcg	tgagagagtt	cgcctggccc	tgcccttcac
	8700	ataaatcaaa	aaaatccctt	cgaaatcggc	atggtggttc	atcctgtttg	gcaggcgaaa
20	8760	cactattaaa	aacaagagtc	tccagtttgg	tgagtgttgt	gagatagggt	agaatagccc
2:	8820	gcccactacg	cagggcgatg	aaccgtctat	aagggcgaaa	tccaacgtca	gaacgtggac
•.	8880	taaatcggaa	cgtaaagcac	gtcgaggtgc	gttttttggg	cccaaatcaa	tgaaccatca
30	8940	tggcgagaaa	ccggcgaacg	acggggaaag	ttagagettg	agcccccgat	ccctaaaggg
35	9000	tgggaagggc	gcgcaactgt	cattcaggct	gagcgggcgc	aaagcgaaag	ggaagggaag
	9060	gctgcaaggc	agggggatgt	agctggcgaa	ctattacgcc	ggcctcttcg	gatcggtgcg
40	9120	acggccagtg	ttgtaaaacg	agtcacgacg	gggttttccc	ggtaaçgcca	gattaagttg
4:	9180	taacaagtca	attgataaaa	ttaaatattt	gaaatatagt	catcttgaaa	aattaattcc
	9240	cagaaatatt	agtttaaatt	tattgatgca	aacataaatt	tccaagcaaa	ggtattatag
50	9300	tgcgatatta	aaagactgag	gccgtagatg	ctggtacatt	attatatcag	tcaataactg
55	9360	cgtcgaagct	tcgggggatc	gcttagctca	gatatagcta	ataaattgat	tgtgtaatac
	9420	gcgctgcgaa	agaaggcgat	agaaggcgat	gaactcgtca	ccgctcagaa	agcttgggtc
60	9480	gccaagctct	cccattcgcc	aagcggtcag	aagcacgagg	cgataccgta	tcgggagcgg
	9540	acccagccgg	ggtccgccac	tcctgatagc	caacgctatg	cacgggtagc	tcagcaatat

ccacagtcga tgaatccaga aaagcggcca ttttccacca tgatattcgg caagcaggca 9600 5 tegecatggg teaegacgag atectegeeg tegggeatge gegeettgag cetggegaae 9660 agtteggetg gegegageee etgatgetet tegteeagat cateetgate gacaagaceg 9720 gettecatee gagtacgtge tegetegatg egatgttteg ettggtggte gaatgggeag 9780 10 15 gtagccggat caagcgtatg cagccgccgc attgcatcag ccatgatgga tactttctcg 9840 gcaggagcaa ggtgagatga caggagatcc tgccccggca cttcgcccaa tagcagccag 9900 tecetteceg etteagtgae aacgtegage acagetgege aaggaaegee egtegtggee 9960 agccacgata geogegetge etegteetge agtteattea gggcaeegga caggteggte 10020 ttgacaaaaa gaaccgggcg cccctgcgct gacagccgga acacggcggc atcagagcag 10080 ccgattgtct gttgtgccca gtcatagccg aatagcctct ccacccaagc ggccggagaa 10140 30 cctgcgtgca atccatcttg ttcaatccaa gctcccatgg gccctcgact agagtcgaga 10200 tctggattga gagtgaatat gagactctaa ttggataccg aggggaattt atggaacgtc 10260 agtggagcat ttttgacaag aaatatttgc tagctgatag tgaccttagg cgacttttga 10320 acgcgcaata atggtttctg acgtatgtgc ttagctcatt aaactccaga aacccgcggc 10380 tgagtggctc cttcaacgtt gcggttctgt cagttccaaa cgtaaaacgg cttgtcccgc 10440 gtcatcggcg ggggtcataa cgtgactccc ttaattctcc gctcatgatc ttgatcccct 10500 gcgccatcag atccttggcg gcaagaaagc catccagttt actttgcagg gcttcccaac 10560 cttaccagag ggcgccccag ctggcaattc cggttcgctt gctgtccata aaaccgccca 10620 gtctagctat cgccatgtaa gcccactgca agctacctgc tttctctttg cgcttgcgtt 10680 ttcccttgtc cagatagecc agtagetgae attcateegg ggtcageacc gtttetgegg 10740

	10800	gcttgcggca	cgccctgagt	gcagcccttg	gcttccttta	tacgtgttcc	actggctttc
5	10860	aaatttacac	ctcctcgagc	gcgcgccgag	caggtcgacg	tgcatgcctg	gcgtgaagct
	10920	gtgttatgta	tttactatgt	ttgtttttgt	cccttgtaat	aacgtctaaa	attgccacta
10	10980	tatgctaacg	taacaccttt	actaaattta	tatatttggt	gataaatttt	tttgatttgc
15	11040	tttgtcttct	ctaaattatt	ttaattgatt	tgcaagttga	cttagcaatt	tttgccaaca
	11100	ctataggaga	aatatttcta	aatatttgct	tggaaatgta	actaatcaac	aaatacatat
20	11160	aatgctgcat	taattgttgc	tttggagatt	taccacaagg	gtgaatatgg	attaaagtga
25	11220	ccacacaaga	aataatggta	tcttgaggat	attcaataat	tacaccaaac	ggatggcata
	11280	acaacaatgt	atttttcaag	aggtttagta	cgtggacaaa	atgaacgtca	tttgaggtgc
. 30	11340	aaaaatattt	tggaaagttt	ggatgccctg	gtgcatgcat	aagttttgag	taccacacac
. 35	11400	aggatgcaat	atccacttgg	aaaccatgac	gccatgtgta	ttgcatggaa	tggaaatgat
	11460	ataatgagga	tgtagtctat	tagttatgca	tacatgcaac	actacaaatt	aatgaagaaa
. 40	11520	atttcttcat	cacgattata	ctaagtttta	tacacactca	ctttcattca	ttttgcaata
45	11580	tttaatgaga	ggcctcctgc	cagtctagaa	cggccgcctg	ccgcggtggg	agccagccca
	11640	acgttgtaaa	tctgttgtgc	tgctttcaat	gcatgatatt	gcctatgatc	tatgcgagac
50	11700	taatgaatat	cggttcattc	ccgccggttt	cagatcctta	atgtgtagct	aaacctgagc
55	11760	ctgattgtcc	gttcaattta	aatattctcc	ttttatgaat	actatcgtat	atcacccgtt
	11820	ttttgttt	ttgtaatttg	gtctaaaccc	gccactaaac	tttacacatt	gtcgagcaaa
60	11880	aaatttataa	atttggtact	aaatttttat	gatttgcgat	ttatgtattt	actatgtgtg
4	11940	attgattcta	aagttgatta	agcaatttgc	gccaacactt	gctaacgttt	caccttttat

aattattttt gtcttctaaa tacatatact aatcaactgg aaatgtaaat atttgctaat 12000 5 atttctacta taggagaatt aaagtgagtg aatatggtac cacaaggttt ggagatttaa 12060 ttgttgcaat gctgcatgga tggcatatac accaaacatt caataattct tgaggataat 12120 aatggtacca cacaagattt gaggtgcatg aacgtcacgt ggacaaaagg tttagtaatt 12180 tttcaagaca acaatgttac cacacacaag ttttgaggtg catgcatgga tgccctgtgg 12240 aaagtttaaa aatattttgg aaatgatttg catggaagcc atgtgtaaaa ccatgacatc 12300 20 cacttggagg atgcaataat gaagaaaact acaaatttac atgcaactag ttatgcatgt 12360 agtctatata atgaggattt tgcaatactt tcattcatac acactcacta agttttacac 12420 gattataatt tetteatage eageggatee gatateggge eegetagegt taaceetget 12480 30 ttaatgagat atgcgagacg cctatgatcg catgatattt gctttcaatt ctgttgtgca 12540 cgttgtaaaa aacctgagca tgtgtagctc agatccttac cgccggtttc ggttcattct 12600 aatgaatata tcacccgtta ctatcgtatt tttatgaata atattctccg ttcaatttac 12660 40 tgattgtccg tcgacgaatt cgagctcggc gcgcctctag aggatcgatg aattcagatc 12720 ggctgagtgg ctccttcaac gttgcggttc tgtcagttcc aaacgtaaaa cggcttgtcc 12780 cgcgtcatcg gcgggggtca taacgtgact cccttaattc tccgctcatg atcagattgt 12840 50 cgtttcccgc cttcagttta aactatcagt gtttgacagg atatattggc gggtaaacct 12900 aagagaaaag agcgtttatt agaataatcg gatatttaaa agggcgtgaa aaggtttatc 12960 cttcgtccat ttgtatgtgc atgccaacca cagggttccc ca 13002

60

<210> 42

<211> 13905

<212> DNA

<213> Unknown

<2	20	>	

<223> pflanzlicher Expressionsvektor mit drei Promotor-Terminator-Expressionskassetten

10

65

<400> 42 gatctggcgc cggccagcga gacgagcaag attggccgcc gcccgaaacg atccgacagc 60 15 gegeceagea caggtgegea ggeaaattge aceaacgeat acagegeeag cagaatgeea 120 tagtgggcgg tgacgtcgtt cgagtgaacc agatcgcgca ggaggcccgg cagcaccggc 180 ataatcaggc cgatgccgac agcgtcgagc gcgacagtgc tcagaattac gatcaggggt 240 25 atgttgggtt tcacgtctgg cctccggacc agcctccgct ggtccgattg aacgcgcgga 300 ttctttatca ctgataagtt ggtggacata ttatgtttat cagtgataaa gtgtcaagca 360 tgacaaagtt gcagccgaat acagtgatcc gtgccgccct ggacctgttg aacgaggtcg 420 gcgtagacgg tctgacgaca cgcaaactgg cggaacggtt gggggttcag cagccggcgc 480 tttactggca cttcaggaac aagegggege tgetegaege aetggeegaa gecatgetgg 540 cggagaatca tacgcattcg gtgccgagag ccgacgacga ctggcgctca tttctgatcg 600 ggaatgcccg cagcttcagg caggcgctgc tcgcctaccg cgatggcgcg cgcatccatg 660 ceggeacgeg acegggegea eegeagatgg aaaeggeega egegeagett egetteetet 720 50 gcgaggcggg tttttcggcc ggggacgccg tcaatgcgct gatgacaatc agctacttca 780 55. ctgttggggc cgtgcttgag gagcaggccg gcgacagcga tgccggcgag cgcggcggca 840 cegttgaaca ggetcegete tegeegetgt tgegggeege gatagaegee ttegaegaag 900 60 ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa 960

ggaggetegt tgteaggaac gttgaaggac egagaaaggg tgaegattga teaggaeege 1020

tgccggagcg caacccactc actacagcag agccatgtag acaacatccc ctccccttt 1080 ccaccgcgtc agacgcccgt agcagcccgc tacgggcttt ttcatgccct gccctagcgt 1140 ccaageetea eggeegete eggeetetet ggeggeetet tggegetett eegetteete 1200 10 geteactgae tegetgeget eggtegtteg getgeggega geggtateag eteacteaaa 1260 ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa 1320 aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct 1380 20 cegececet gacgageate acaaaaateg acgeteaagt cagaggtgge gaaaceegae 1440 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1500 gaccetgeeg ettaceggat acetgteege ettteteeet tegggaageg tggegetttt 1560 30 ccgctgcata accctgcttc ggggtcatta tagcgatttt ttcggtatat ccatcctttt 1620 tegeaegata tacaggattt tgeeaaaggg ttegtgtaga ettteettgg tgtatecaae 1680 ggcgtcagcc gggcaggata ggtgaagtag gcccacccgc gagcgggtgt tccttcttca 1740 ctgtccctta ttcgcacctg gcggtgctca acgggaatcc tgctctgcga ggctggccgg 1800 ctaccgccgg cgtaacagat gagggcaagc ggatggctga tgaaaccaag ccaaccagga 1860 45 agggcagccc acctatcaag gtgtactgcc ttccagacga acgaagagcg attgaggaaa 1920 aggeggegge ggeeggeatg ageetgtegg cetacetget ggeegtegge cagggetaca 1980 aaatcacggg cgtcgtggac tatgagcacg tccgcgagct ggcccgcatc aatggcgacc 2040 55 tgggccgcct gggcggcctg ctgaaactct ggctcaccga cgacccgcgc acggcgcggt 2100 teggtgatge caegateete geeetgetgg egaagatega agagaageag gaegagettg 2160 gcaaggtcat gatgggcgtg gtccgcccga gggcagagcc atgacttttt tagccgctaa 2220 65

aa	cggccggg	gggtgcgcgt	gattgccaag	cacgteeeca	tgcgctccat	caagaagagc	2280	
ga	cttcgcgg	agctggtgaa	gtacatcacc	gacgagcaag	gcaagaccga	gcgcctttgc	2340	5
ga	cgctcacc	gggctggttg	ccctcgccgc	tgggctggcg	gccgtctatg	gccctgcaaa	2400	
cg	cgccagaa	acgccgtcga	agccgtgtgc	gagacaccgc	ggccgccggc	gttgtggata	2460	10
CC	tcgcggaa	aacttggccc	tcactgacag	atgaggggcg	gacgttgaca	cttgaggggc	2520	15
cg:	actcaccc	ggcgcggcgt	tgacagatga	ggggcaggct	cgatttcggc	cggcgacgtg	2580	
ga	gctggcca	gcctcgcaaa	tcggcgaaaa	cgcctgattt	tacgcgagtt	tcccacagat	2640	20
ga	tgtggaca	agcctgggga	taagtgccct	gcggtattga	cacttgaggg	gcgcgactac	2700	25
tga	acagatga	ggggcgcgat	ccttgacact	tgaggggcag	agtgctgaca	gatgaggggc	2760	
gc	acctattg	acatttgagg	ggctgtccac	aggcagaaaa	tccagcattt	gcaagggttt	2820	30
cci	gcccgttt	ttcggccacc	gctaacctgt	cttttaacct	gcttttaaac	caatatttat	2880	35
aaa	accttgtt	tttaaccagg	gctgcgccct	gtgcgcgtga	ccgcgcacgc	cgaagggggg	2940	
tg	cccccct	tctcgaaccc	tcccggcccg	ctaacgcggg	cctcccatcc	ccccaggggc	3000	40
tg	cgcccctc	ggccgcgaac	ggcctcaccc	caaaaatggc	agcgctggca	gtccttgcca	3060	45
ttg	gccgggat	cggggcagta	acgggatggg	cgatcagccc	gagcgcgacg	cccggaagca	3120	
tto	gacgtgcc	gcaggtgctg	gcatcgacat	tcagcgacca	ggtgccgggc	agtgagggcg	3180	50
gcq	ggcctggg	tggcggcctg	cccttcactt	cggccgtcgg	ggcattcacg	gacttcatgg	3240	55
cgg	gggccggc	aatttttacc	ttgggcattc	ttggcatagt	ggtcgcgggt	gccgtgctcg	3300	
tgt	tcggggg	tgcgataaac	ccagcgaacc	atttgaggtg	ataggtaaga	ttataccgag	3360	60
gta	atgaaaac	gagaattgga	cctttacaga	attactctat	gaagcgccat	atttaaaaag	3420	

ctaccaagac gaagaggatg aagaggatga ggaggcagat tgccttgaat atattgacaa 3480 tactgataag ataatatat ttttatatag aagatatcgc cgtatgtaag gatttcaggg 3540 ggcaaggcat aggcagcgcg cttatcaata tatctataga atgggcaaag cataaaaact 3600 10 tgcatggact aatgcttgaa acccaggaca ataaccttat agcttgtaaa ttctatcata 3660 attgggtaat gactccaact tattgatagt gttttatgtt cagataatgc ccgatgactt 3720 tgtcatgcag ctccaccgat tttgagaacg acagcgactt ccgtcccagc cgtgccaggt 3780 20 gctgcctcag attcaggtta tgccgctcaa ttcgctgcgt atatcgcttg ctgattacgt 3840 gcagetttee etteaggegg gatteataea geggeeagee ateegteate catateacea 3900 cgtcaaaggg tgacagcagg ctcataagac gccccagcgt cgccatagtg cgttcaccga 3960 atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagcgctggc 4020 gcgatttagc cccgacatag ccccactgtt cgtccatttc cgcgcagacg atgacgtcac 4080 tgcccggctg tatgcgcgag gttaccgact gcggcctgag ttttttaagt gacgtaaaat 4140 cgtgttgagg ccaacgccca taatgcgggc tgttgcccgg catccaacgc cattcatggc 4200 catatcaatg attttctggt gcgtaccggg ttgagaagcg gtgtaagtga actgcagttg 4260 ccatgtttta cggcagtgag agcagagata gcgctgatgt ccggcggtgc ttttgccgtt 4320 acgcaccacc ccgtcagtag ctgaacagga gggacagctg atagacacag aagccactgg 4380 agcacctcaa aaacaccatc atacactaaa tcagtaagtt ggcagcatca cccataattg 4440 tggtttcaaa atcggctccg tcgatactat gttatacgcc aactttgaaa acaactttga 4500 aaaagctgtt ttctggtatt taaggtttta gaatgcaagg aacagtgaat tggagttcgt 4560 cttgttataa ttagcttctt ggggtatctt taaatactgt agaaaagagg aaggaaataa 4620

	aacggeta	aaacyayaac	accaccygaa	ccyaaaaaac	tgatcgaaaa	ataccgctgc	4680	
gt	aaaagata	cggaaggaat	gtctcctgct	aaggtatata	agctggtggg	agaaaatgaa	4740	5
aa	cctatatt	taaaaatgac	ggacagccgg	tataaaggga	ccacctatga	tgtggaacgg	4800	10
ga	aaaggaca	tgatgctatg	gctggaagga	aagctgcctg	ttccaaaggt	cctgcacttt	4860	10
ga	acggcatg.	atggctggag	caatctgctc	atgagtgagg	ccgatggcgt	cctttgctcg	4920	15
ga	agagtatg	aagatgaaca	aagccctgaa	aagattatcg	agctgtatgc	ggagtgcatc	4980	
ag	gctctttc	actccatcga	catatcggat	tgtccctata	cgaatagctt	agacagccgc	5040	20
t t	agccgaat	tggattactt	actgaataac	gatctggccg	atgtggattg	cgaaaactgg	5100	25
ga	agaagaca	ctccatttaa	agatccgcgc	gagctgtatg	attttttaaa	gacggaaaag	5160	
CC	cgaagagg	aacttgtctt	ttcccacggc	gacctgggag	acagcaacat	ctttgtgaaa	5220	30
ga	tggcaaag	taagtggctt	tattgatctt	gggagaagcg	gcagggcgga	caagtggtat	5280	35
ga	cattgcct	tctgcgtccg	gtcgatcagg	gaggatatcg	gggaagaaca	gtatgtcgag	5340	
cta	atttttg	acttactggg	gatcaagcct	gattgggaga	aaataaaata	ttatatttta	5400	40
ct	ggatgaat	tgttttagta	cctagatgtg	gcgcaacgat	gccggcgaca	agcaggagcg	5460	45
cad	ccgacttc	ttccgcatca	agtgttttgg	ctctcaggcc	gaggcccacg	gcaagtattt	5520	
gg	gcaagggg	tcgctggtat	tcgtgcaggg	caagattcgg	aataccaagt	acgagaagga	5580	50
cgg	gccagacg	gtctacggga	ccgacttcat	tgccgataag	giggattatc	tggacaccaa	5640	55
ggo	caccagge	gggtcaaatc	aggaataagg	gcacattgcc	ccggcgtgag	tcggggcaat	5700	
cc	gcaagga	gggtgaatga	atcggacgtt	tgaccggaag	gcatacaggc	aagaactgat	5760	60
ga	rcacaaaa	ttttccgccg	aggatgccga	aaccatcgca	agccgcaccg	tcatgcgtgc	5820	

geceegegaa acetteeagt eegteggete gatggteeag caagetaegg ccaagatega 5880 gcgcgacagc gtgcaactgg ctccccctgc cctgcccgcg ccatcggccg ccgtggagcg 5940 ttcgcgtcgt ctcgaacagg aggcggcagg tttggcgaag tcgatgacca tcgacacgcg 6000 10 aggaactatg acgaccaaga agcgaaaaac cgccggcgag gacctggcaa aacaggtcag 6060 cgaggccaag caggccgcgt tgctgaaaca cacgaagcag cagatcaagg aaatgcagct 6120 ttccttgttc gatattgcgc cgtggccgga cacgatgcga gcgatgccaa acgacacggc 6180 20 ccgctctgcc ctgttcacca cgcgcaacaa gaaaatcccg cgcgaggcgc tgcaaaacaa 6240 ggtcattttc cacgtcaaca aggacgtgaa gatcacctac accggcgtcg agctgcgggc 6300 cgacgatgac gaactggtgt ggcagcaggt gttggagtac gcgaagcgca cccctatcgg 6360 30 cgagccgatc accttcacgt tctacgagct ttgccaggac ctgggctggt cgatcaatgg 6420 ccggtattac acgaaggccg aggaatgcct gtcgcgccta caggcgacgg cgatgggctt 6480 cacgtccgac cgcgttgggc acctggaatc ggtgtcgctg ctgcaccgct tccgcgtcct 6540 40 ggaccgtggc aagaaaacgt cccgttgcca ggtcctgatc gacgaggaaa tcgtcgtgct 6600 gtttgctggc gaccactaca cgaaattcat atgggagaag taccgcaagc tgtcgccgac 6660 45 ggcccgacgg atgttcgact atttcagctc gcaccgggag ccgtacccgc tcaagctgga 6720 50 aaccttccgc ctcatgtgcg gatcggattc cacccgcgtg aagaagtggc gcgagcaggt 6780 cggcgaagcc tgcgaagagt tgcgaggcag cggcctggtg gaacacgcct gggtcaatga 6840 tgacctggtg cattgcaaac gctagggcct tgtggggtca gttccggctg ggggttcagc 6900 agccagcgct ttactggcat ttcaggaaca agcgggcact gctcgacgca cttgcttcgc 6960 tcagtatcgc tcgggacgca cggcgcgctc tacgaactgc cgataaacag aggattaaaa 7020 65

tt	gacaattg	tgattaaggc	tcagattcga	cggcttggag	eggeegaegt	gcaggatttc	7080	
cg	cgagatcc	gattgtcggc	cctgaagaaa	gctccagaga	tgttcgggtc	cgtttacgag	7140	· 5
ca	cgaggaga	aaaagcccat	ggaggcgttc	gctgaacggt	tgcgagatgc	cgtggcattc	7200	
gg	cgcctaca	tcgacggcga	gatcattggg	ctgtcggtct	tcaaacagga	ggacggcccc	72,60	10
aa	ggacgete	acaaggcgca	tctgtccggc	gttttcgtgg	agcccgaaca	gcgaggccga	7320	15
gg	ggtcgccg	gtatgctgct	gcgggcgttg	ccggcgggtt	tattgctcgt	gatgatcgtc	7380	
cg	acagattc	caacgggaat	ctggtggatg	cgcatcttca	tcctcggcgc	acttaatatt	7440	20
tc	gctattct	ggagcttgtt	gtttatttcg	gtctaccgcc	tgccgggcgg	ggtcgcggcg	7500	25
ac	ggtaggcg	ctgtgcagcc	gctgatggtc	gtgttcatct	ctgccgctct	gctaggtagc	7560	
CC	gatacgat	tgatggcggt	cctgggggct	atttgcggaa	ctgcgggcgt	ggcgctgttg	7620	30
gt	gttgacac	caaacgcagc	gctagatcct	gtcggcgtcg	cagcgggcct	ggcgggggcg	7680	35
gt	ttccatgg	cgttcggaac	cgtgctgacc	cgcaagtggc	aacctcccgt	gcctctgctc	7740	
ac	ctttaccg	cctggcaact	ggcggccgga	ggacttctgc	tcgttccagt	agctttagtg	7800	40
tt	tgatccgc	caatcccgat	gcctacagga	accaatgttc	teggeetgge	gtggctcggc	7860	45
ct	gatcggag	cgggtttaac	ctacttcctt	tggttccggg	ggatctcgcg	actcgaacct	7920	
aca	agttgttt	ccttactggg	ctttctcagc	cccagatctg	gggtcgatca	gccggggatg	7980	50
cai	tcaggccg	acagtcggaa	cttcgggtcc	ccgacctgta	ccattcggtg	agcaatggat	8040	55
ag	ggagttg	atatcgtcaa	cgttcacttc	taaagaaata	gcgccactca	gcttcctcag	8100	
cg	gctttatc	cagcgatttc	ctattatgtc	ggcatagttc	tcaagatcga	cagcctgtca	8160	60
cgg	gttaagcg	agaaatgaat	aagaaggctg	ataattcgga	tctctgcgag	ggagatgata	8220	

tttgatcaca ggcagcaacg ctctgtcatc gttacaatca acatgctacc ctccgcgaga 8280 tcatccgtgt ttcaaacccg gcagcttagt tgccgttctt ccgaatagca tcggtaacat 8340 gagcaaagtc tgccgcctta caacggctct cccgctgacg ccgtcccgga ctgatgggct 8400 gcctgtatcg agtggtgatt ttgtgccgag ctgccggtcg gggagctgtt ggctggctgg 8460 tggcaggata tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg 8520 gacgttttta atgtactggg gtggtttttc ttttcaccag tgagacgggc aacagctgat 8580 tgcccttcac cgcctggccc tgagagagtt gcagcaagcg gtccacgctg gtttgcccca 8640 gcaggcgaaa atcctgtttg atggtggttc cgaaatcggc aaaatccctt ataaatcaaa 8700 agaatagccc gagatagggt tgagtgttgt tccagtttgg aacaagagtc cactattaaa 8760 gaacgtggac tccaacgtca aagggcgaaa aaccgtctat cagggcgatg gcccactacg 8820 tgaaccatca cccaaatcaa gttttttggg gtcgaggtgc cgtaaagcac taaatcggaa 8880 ccctaaaggg agcccccgat ttagagcttg acggggaaag ccggcgaacg tggcgagaaa 8940 ggaagggaag aaagcgaaag gagcgggcgc cattcaggct gcgcaactgt tgggaagggc 9000 gatcggtgcg ggcctcttcg ctattacgcc agctggcgaa agggggatgt gctgcaaggc 9060 45 gattaagttg ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg acggccagtg 9120 aattaattcc catcttgaaa gaaatatagt ttaaatattt attgataaaa taacaagtca 9180 ggtattatag tccaagcaaa aacataaatt tattgatgca agtttaaatt cagaaatatt 9240 tcaataactg attatatcag ctggtacatt gccgtagatg aaagactgag tgcgatatta 9300 tgtgtaatac ataaattgat gatatagcta gcttagctca tcggggggatc cgtcgaagct 9360 agcttgggtc ccgctcagaa gaactcgtca agaaggcgat agaaggcgat gcgctgcgaa 9420

39	agcg	g	cgataccgta	aagcacgagg	aagcggtcag	cccattcgcc	gccaagctct	9480	
JC	aata	at	cacgggtagc	caacgctatg	tcctgatagc	ggtccgccac	acccagccgg	9540	5
a	gtcç	ја	tgaatccaga	aaagcggcca	ttttccacca	tgatattcgg	caagcaggca	9600	
cc	atgg	ıg	tcacgacgag	atcctcgccg	tcgggcatgc	gcgccttgag	cctggcgaac	9660	10
c	ggct	g	gcgcgagccc	ctgatgctct	tcgtccagat	catcctgatc	gacaagaccg	9720	. 15
c	cato	c	gagtacgtgc	tcgctcgatg	cgatgtttcg	cttggtggtc	gaatgggcag	9780	
jC	cgga	ıt	caagcgtatg	cagccgccgc	attgcatcag	ccatgatgga	tactttctcg	9840	20
g	agca	ıa	ggtgagatga	caggagatcc	tgccccggca	cttcgcccaa	tagcagccag	9900	25
t	tccc	g	cttcagtgac	aacgtcgagc	acagctgcgc	aaggaacgcc	cgtcgtggcc	9960	
a	cgat	a	gccgcgctgc	ctcgtcctgc	agttcattca	gggcaccgga	caggtcggtc	10020	30
ıc.	aaaa	ıa	gaaccgggcg	cccctgcgct	gacagccgga	acacggcggc	atcagagcag	10080	35
t	tgtc	ŧ	gttgtgccca	gtcatagccg	aatagcctct	ccacccaagc	ggccggagaa	10140	
ſĊ	gtgo	a	atccatcttg	ttcaatccaa	gctcccatgg	gccctcgact	agagtcgaga	10200	40
ıg	attg	a	gagtgaatat	gagactctaa	ttggataccg	aggggaattt'	atggaacgtc	10260	45
ıg	agca	t	ttttgacaag	aaatatttgc	tagctgatag	tgaccttagg	cgacttttga	10320	
:g	caat	a	atggtttctg	acgtatgtgc	ttagctcatt	aaactccaga	aacccgcggc	10380	50
rt	ggct	c	cttcaacgtt	gcggttctgt	cagttccaaa	cģtaaaacgg	cttgtcccgc	10440	55
t	cggc	g	ggggtcataa	cgtgactccc	ttaattctcc	gctcatgatc	ttgatcccct	10500	
c	atca	.g	atccttggcg	gcaagaaagc	catccagttt	actttgcagg	gcttcccaac	10560	60
.C	caga	g	ggcgccccag	ctggcaattc	cggttcgctt	gctgtccata	aaaccgccca	10620	

gtctagctat cgccatgtaa gcccactgca agctacctgc tttctctttg cgcttgcgtt 10680 ttcccttgtc cagatagccc agtagctgac attcatccgg ggtcagcacc gtttctgcgg 10740 actggettte taegtgttee getteettta geageeettg egeeetgagt gettgeggea 10800 10 gcgtgaagct tgcatgcctg caggtcgacg gcgcgccgag ctcctcgagc aaatttacac 10860 attgccacta aacgtctaaa cccttgtaat ttgtttttgt tttactatgt gtgttatgta 10920 tttgatttgc gataaatttt tatatttggt actaaattta taacaccttt tatgctaacg 10980 tttgccaaca cttagcaatt tgcaagttga ttaattgatt ctaaattatt tttgtcttct 11040 aaatacatat actaatcaac tggaaatgta aatatttgct aatatttcta ctataggaga 11100 attaaagtga gtgaatatgg taccacaagg tttggagatt taattgttgc aatgctgcat 11160 30 ggatggcata tacaccaaac attcaataat tcttgaggat aataatggta ccacacaaga 11220 tttgaggtgc atgaacgtca cgtggacaaa aggtttagta atttttcaag acaacaatgt 11280 taccacacac aagttttgag gtgcatgcat ggatgccctg tggaaagttt aaaaatattt 11340 tggaaatgat ttgcatggaa gccatgtgta aaaccatgac atccacttgg aggatgcaat 11400 aatgaagaaa actacaaatt tacatgcaac tagttatgca tgtagtctat ataatgagga 11460 45 ttttgcaata ctttcattca tacacactca ctaagtttta cacgattata atttcttcat 11520 agccagccca ccgcggtggg cggccgcctg cagtctagaa ggcctcctgc tttaatgaga 11580 tatgcgagac gcctatgatc gcatgatatt tgctttcaat tctgttgtgc acgttgtaaa 11640 55 aaacctgagc atgtgtagct cagatcctta ccgccggttt cggttcattc taatgaatat 11700 atcacccgtt actatcgtat ttttatgaat aatattctcc gttcaattta ctgattgtcc 11760 gtcgagcaaa tttacacatt gccactaaac gtctaaaccc ttgtaatttg tttttgtttt 11820

	11880	aaatttataa	atttggtact	aaatttttat	gatttgcgat	ttatgtattt	actatgtgtg
5	11940	attgattcta	aagttgatta	agcaatttgc	gccaacactt	gctaacgttt	caccttttat
	12000	atttgctaat	aaatgtaaat	aatcaactgg	tacatatact	gtcttctaaa	aattatttt
10	12060	ggagatttaa	cacaaggttt	aatatggtac	aaagtgagtg	taggagaatt	atttctacta
15	12120	tgaggataat	caataattct.	accaaacatt	tggcatatac	gctgcatgga	ttgttgcaat
	12180	tttagtaatt	ggacaaaagg	aacgtcacgt	gaggtgcatg	cacaagattt	aatggtacca
20	12240	tgccctgtgg	catgcatgga	ttttgaggtg	cacacacaag	acaatgttac	tttcaagaca
25	12300	ccatgacatc	atgtgtaaaa	catggaagcc	aaatgatttg	aatattttgg	aaagtttaaa
. *.	12360	ttatgcatgt	atgcaactag	acaaatttac	gaagaaaact	atgcaataat	cacttggagg
30	12420	agttttacac	acactcacta	tcattcatac	tgcaatactt	atgaggattt	agtctatata
35	12480	taaccctgct	ccgctagcgt	gatatcgggc	cagcggatcc	tcttcatagc	gattataatt
*** *	12540	ctgttgtgca	gctttcaatt	catgatattt	cctatgatcg	atgcgagacg	ttaatgagat
40	12600	ggttcattct	cgccggtttc	agatccttac	tgtgtagctc	aacctgagca	cgttgtaaaa
.45	12660	ttcaatttac	atattctccg	tttatgaata	ctatcgtatt	tcacccgtta	aatgaatata
	12720	tgtaatttgt	tctaaaccct	ccactaaacg	ttacacattg	tcgagcaaat	tgattgtccg
50	12780	tttggtacta	aatttttata	atttgcgata	tatgtatttg	ctatgtgtgt	ttttgtttta
55	12840	agttgattaa	gcaatttgca	ccaacactta	ctaacgtttg	accttttatg	aatttataac
	12900	aatgtaaata	atcaactgga	acatatacta	tcttctaaat	attatttttg	ttgattctaa
60	12960	acaaggtttg	atatggtacc	aagtgagtga	aggagaatta	tttctactat	tttgctaata
	13020	aataattctt	ccaaacattc	ggcatataca	ctgcatggat	tgttgcaatg	gagatttaat

gaggataata atggtaccac acaagatttg aggtgcatga acgtcacgtg gacaaaaggt 13080 5 ttagtaattt ttcaagacaa caatgttacc acacacaagt tttgaggtgc atgcatggat 13140 gccctgtgga aagtttaaaa atattttgga aatgatttgc atggaagcca tgtgtaaaac 13200 catgacatcc acttggagga tgcaataatg aagaaaacta caaatttaca tgcaactagt 13260 tatgcatgta gtctatataa tgaggatttt gcaatacttt cattcataca cactcactaa 13320 gttttacacg attataattt cttcatagcc agcagatctg ccggcatcga tcccgggcca 13380 tggcctgctt taatgagata tgcgagacgc ctatgatcgc atgatatttg ctttcaattc 13440 25 tgttgtgcac gttgtaaaaa acctgagcat gtgtagctca gatccttacc gccggtttcg 13500 gttcattcta atgaatatat cacccgttac tatcgtattt ttatgaataa tattctccgt 13560 30 tcaatttact gattgtccgt cgacgagete ggcgcgcete tagaggateg atgaattcag 13620 atcggctgag tggctccttc aacgttgcgg ttctgtcagt tccaaacgta aaacggcttg 13680 tecegegtea teggeggggg teataacgtg acteeettaa tteteegete atgateagat 13740 tgtcgtttcc cgccttcagt ttaaactatc agtgtttgac aggatatatt ggcgggtaaa 13800 cctaagagaa aagagcgttt attagaataa tcggatattt aaaagggcgt gaaaaggttt 13860 atccttcgtc catttgtatg tgcatgccaa ccacagggtt cccca 13905

50

<210> 43

<211> 15430

<212> DNA

<213> Unknown

ິ <220>

<223> pflanz. Expressionsvektor mit zwei Promotor-Terminator-Expressionskassetten inseriert ist

65

Physcomitrella patens Elongase und Desaturase

<220>							5
<221> CDS							
<222> (115	43)(12415))					
						1	0
<220>	-		•	•		•	
<221> CDS							
<222> (133	13)(14890)) .			-	1	5
<400> 43		•					
gatctggcgc	cggccagcga	gacgagcaag	attggccgcc	gcccgaaacg	atccgacagc	60 2	0
gcgcccagca	caggtgcgca	ggcaaattgc	accaacgcat	acagcgccag	cagaatgcca	120	
				•			5
tagtgggcgg	tgacgtcgtt	cgagtgaacc	agatcgcgca	ggaggcccgg	cagcaccggc	180	
						240	
acaaccagge	cgatgccgac	agegregage	gcgacagtgc	tcagaattac	gatcaggggt	240 3	0
atattaaatt	tcacgtctgg	cctccaaacc	agesteeget	ggtccgatta	220000000	300	
acgeegggee	·	·	agcecegee	ggcccgactg	aacgcgcgga		
ttctttatca	ctgataagtt	ggtggacata	ttatotttat	cagtgataaa	atatcaaaca		5
		99-99-0-0-		oug og a caaa	gogoodagoa	300	
tgacaaagtt	gcagccgaat	acagtgatcc	gtgccgccct	ggacctgttg	aacgaggtcg	420	
						4	0
gcgtagacgg	tctgacgaca	cgcaaactgg	cggaacggtt	gggggttcag	cagccggcgc	480	
•							5
tttactggca	cttcaggaac	aagcgggcgc	tgctcgacgc	actggccgaa	gccatgctgg		5
•							
cggagaatca	tacgcattcg	gtgccgagag	ccgacgacga	ctggcgctca	tttctgatcg	600	0
•							
ggaatgcccg	cagcttcagg	caggcgctgc	tcgcctaccg	cgatggcgcg	cgcatccatg	660	
				• .		5	5
ccggcacgcg	accgggcgca	ccgcagatgg	aaacggccga	cgcgcagctt	cgcttcctct	720	
			<u> </u>				
gcgaggcggg	tttttcggcc	ggggacgccg	tcaatgcgct	gatgacaatc	agctacttca		0
ctattaaaa	cgtgcttgag	αααααααααα	ucuacaucua	taccaacasa	cacaacaaca	940	
	Jacgeetgag	gageaggeeg	goyacayeya	ryccyycydy	ogoggeggea		
ccattaaaca	aactecacte	teaceactat	tacaaaccac	gatagacgcc	ttcgacgaag	900	5

ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa 960 ggaggetegt tgteaggaac gttgaaggae cgagaaaggg tgaegattga teaggaeege 1020 tgccggagcg caacccactc actacagcag agccatgtag acaacatccc ctccccttt 1080 ccaccgcgtc agacgcccgt agcagcccgc tacgggcttt ttcatgccct gccctagcgt 1140 ccaagectea eggeegegt eggeetetet ggeggeette tggegetett eegetteete 1200 gctcactgac tcgctgcgct cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa 1260 ggcggtaata cggttatcca cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa 1320. aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct 1380 ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac 1440 aggactataa agataccagg cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc 1500 gaccetgeeg ettaceggat acetgteege ettteteeet tegggaageg tggegetttt 1560 ccgctgcata accetgcttc ggggtcatta tagcgatttt ttcggtatat ccatcctttt 1620 40 tcgcacgata tacaggattt tgccaaaggg ttcgtgtaga ctttccttgg tgtatccaac 1680 ggcgtcagcc gggcaggata ggtgaagtag gcccacccgc gagcgggtgt tccttcttca 1740 ctgtccctta ttcgcacctg gcggtgctca acgggaatcc tgctctgcga ggctggccgg 1800 ctaccgccgg cgtaacagat gagggcaagc ggatggctga tgaaaccaag ccaaccagga 1860 agggcagccc acctatcaag gtgtactgcc ttccagacga acgaagagcg attgaggaaa 1920 aggcggcggc ggccggcatg agcctgtcgg cctacctgct ggccgtcggc cagggctaca 1980 aaatcacggg cgtcgtggac tatgagcacg tccgcgagct ggcccgcatc aatggcgacc 2040 tgggccgcct gggcggcctg ctgaaactct ggctcaccga cgacccgcgc acggcgcggt 2100 65

CC	ggtgatge	cacgateete	geeetgetgg	cgaagatega	agagaagcag	gacgagettg	2160	
gc	aaggtcat	gatgggcgtg	gtccgcccga	gggcagagcc	atgacttttt	tagccgctaa	2220	5
aa	cggccggg	gggtgcgcgt	gattgccaag	cacgtcccca	tgcgctccat	caagaagagc	2280	10
ga	cttcgcgg	agctggtgaa	gtacatcacc	gacgagcaag	gcaagaccga	gcgcctttgc	2340	10
ga	cgctcacc	gggctggttg	ccctcgccgc	tgggctggcg	gccgtctatg	gccctgcaaa	2400	15
cg	cgccagaa	acgccgtcga	agccgtgtgc	gagacaccgc	ggccgccggc	gttgtggata	2460	20
cc	ţcgcggaa	aacttggccc	tcactgacag	atgaggggcg	gacgttgaca	cttgaggggc	2520	20
cg	actcaccc	ggcgcggcgt	tgacagatga	ggggcaggct	cgatttcggc	cggcgacgtg	2580	25
ga	gctggcca	gcctcgcaaa	tcggcgaaaa	cgcctgattt	tacgcgagtt	tcccacagat	2640	
ga	tgtggaca	agcctgggga	taagtgccct	gcggtattga	cacttgaggg	gcgcgactac	2700	30
tg	acagatga	ggggcgcgat	ccttgacact	tgaggggcag	agtgctgaca	gatgaggggc	2760	35
gc	acctattg	acatttgagg	ggctgtccac	aggcagaaaa	tccagcattt	gcaagggttt	2820	-
CC	gcccgttt	ttcggccacc	gctaacctgt	cttttaacct	gcttttaaac	caatatttat	2880 -	40
aa	accttgtt	tttaaccagg	gctgcgccct	gtgcgcgtga	ccgcgcacgc	cgaagggggg	2940	45
tg	cccccct	tctcgaaccc	tcccggcccg	ctaacgcggg	cctcccatcc	ccccaggggc	3000	
tg	cgcccctc	ggccgcgaac	ggcctcaccc	caaaaatggc	agcgctggca	gtccttgcca	3060	50
tt	gccgggat	cggggcagta	acgggatggg	cgatcagccc	gagcgcgacg	cccggaagca	3120	55
tt	gacgtgcc	gcaggtgctg	gcatcgacat	tcagcgacca	ggtgccgggc	agtgagggcg	3180	
gc	ggcctggg	tggcggcctg	cccttcactt	cggccgtcgg	ggcattcacg	gacttcatgg	3240	60
cgg	gggccggc	aatttttacc	ttgggcattc	ttggcatagt	ggtcgcgggt	gccgtgctcg	3300	

tgttcggggg tgcgataaac ccagcgaacc atttgaggtg ataggtaaga ttataccgag 3360 5 gtatgaaaac gagaattgga cctttacaga attactctat gaagcgccat atttaaaaag 3420 ctaccaagac gaagaggatg aagaggatga ggaggcagat tgccttgaat atattgacaa 3480 tactgataag ataatatat ttttatatag aagatatcgc cgtatgtaag gatttcaggg 3540 15 ggcaaggcat aggcagcgcg cttatcaata tatctataga atgggcaaag cataaaaact 3600 tgcatggact aatgcttgaa acccaggaca ataaccttat agcttgtaaa ttctatcata 3660 attgggtaat gactccaact tattgatagt gttttatgtt cagataatgc ccgatgactt 3720 tgtcatgcag ctccaccgat tttgagaacg acagcgactt ccgtcccagc cgtgccaggt 3780 getgeeteag atteaggtta tgeegeteaa ttegetgegt atategettg etgattaegt 3840 gcagctttcc cttcaggcgg gattcataca gcggccagcc atccgtcatc catatcacca 3900 cgtcaaaggg tgacagcagg ctcataagac gccccagcgt cgccatagtg cgttcaccga 3960 atacgtgcgc aacaaccgtc ttccggagac tgtcatacgc gtaaaacagc cagcgctggc 4020 gegatttage ceegacatag ceecactgtt egtecattte egegeagaeg atgaegteae 4080 tgcccggctg tatgcgcgag gttaccgact gcggcctgag ttttttaagt gacgtaaaat 4140 cgtgttgagg ccaacgccca taatgcgggc tgttgcccgg catccaacgc cattcatggc 4200 catatcaatg attttctggt gcgtaccggg ttgagaagcg gtgtaagtga actgcagttg 4260 ccatgtttta cggcagtgag agcagagata gcgctgatgt ccggcggtgc ttttgccgtt 4320 acgcaccacc ccgtcagtag ctgaacagga gggacagctg atagacacag aagccactgg 4380 agcacctcaa aaacaccatc atacactaaa tcagtaagtt ggcagcatca cccataattg 4440 tggtttcaaa atcggctccg tcgatactat gttatacgcc aactttgaaa acaactttga 4500 65

aaa	aagctgtt	ttctggtatt	taaggtttta	gaatgcaagg	aacagtgaat	tggagttcgt	4560	
cti	tgttataa	ttagcttctt	ggggtatctt	taaatactgt	agaaaagagg	aaggaaataa	4620	5
taa	aatggcta	aaatgagaat	atcaccggaa	ttgaaaaaac	tgatcgaaaa	ataccgctgc	4680	
gta	aaaagata	cggaaggaat	gtctcctgct	aaggtatata	agctggtggg	agaaaatgaa	4740	10
aa	cctatatt	taaaaatgac	ggacagccgg	tataaaggga	ccacctatga	tgtggaacgg	4800	15
ga	aaaggaca	tgatgctatg	gctggaagga	aagctgcctg	ttccaaaggt	cctgcacttt	4860	
ga	acggcatg	atggctggag	caatctgctc	atgagtgagg	ccgatggcgt	cctttgctcg	4920	20
ga	agagtatg	aagatgaaca	aagccctgaa	aagattatcg	agctgtatgc	ggagtgcatc	4980	25
ag	gctctttc	actccatcga	catatcggat	tgtccctata	cgaatagctt	agacagccgc	5040	*
tt	agccgaat	tggattactt	actgaataac	gatctggccg	atgtggattg	cgaaaactgg	5100	. 30
ga	agaagaca	ctccatttaa	agateegege	gagctgtatg	attttttaaa	gacggaaaag	5160	35
CC	cgaagagg	aacttgtctt	ttcccacggc	gacctgggag	acagcaacat	ctttgtgaaa	5220	
ga	tggcaaag	taagtggctt	tattgatctt	gggagaagcg	gcagggcgga	caagtggtat	5280	40
ga	cattgcct	tetgegteeg	gtcgatcagg	gaggatatcg	gggaagaaca	gtatgtcgag	5340	45
ct	atttttg	acttactggg	gatcaagcct	gattgggaga	aaataaaata	ttatatttta	5400	
ct	ggatgaat	tgttttagta	cctagatgtg	gcgcaacgat	gccggcgaca	agcaggagcg	5460	50
ca	ccgacttc	ttccgcatca	agtgttttgg	ctctcaggcc	gaggcccacg	gcaagtattt	5520	55
gg	gcaagggg	tcgctggtat	tcgtgcaggg	caagattcgg	aataccaagt	acgagaagga	5580	
cg	gccagacg	gtctacggga	ccgacttcat	tgccgataag	gtggattatc	tggacaccaa	5640	60
gg	caccaggc	gggtcaaatc	aggaataagg	gcacattgcc	ccggcgtgag	tcggggcaat	5700	

cccgcaagga gggtgaatga atcggacgtt tgaccggaag gcatacaggc aagaactgat 5760 5 cgacgcgggg ttttccgccg aggatgccga aaccatcgca agccgcaccg tcatgcgtgc 5820 gccccgcgaa accttccagt ccgtcggctc gatggtccag caagctacgg ccaagatcga 5880 gegegacage gtgcaactgg ctececetge cetgeeegeg ceateggeeg cegtggageg 5940 ttcgcgtcgt ctcgaacagg aggcggcagg tttggcgaag tcgatgacca tcgacacgcg 6000 aggaactatg acgaccaaga agcgaaaaac cgccggcgag gacctggcaa aacaggtcag 6060 cgaggccaag caggccgcgt tgctgaaaca cacgaagcag cagatcaagg aaatgcagct 6120 ttccttgttc gatattgcgc cgtggccgga cacgatgcga gcgatgccaa acgacacggc 6180 ccgctctgcc ctgttcacca cgcgcaacaa gaaaatcccg cgcgaggcgc tgcaaaacaa 6240 30 ggtcattttc cacgtcaaca aggacgtgaa gatcacctac accggcgtcg agctgcgggc 6300 cgacgatgac gaactggtgt ggcagcaggt gttggagtac gcgaagcgca cccctatcgg 6360 cgagccgatc accttcacgt tctacgagct ttgccaggac ctgggctggt cgatcaatgg 6420 ccggtattac acgaaggccg aggaatgcct gtcgcgccta caggcgacgg cgatgggctt 6480 cacgtccgac cgcgttgggc acctggaatc ggtgtcgctg ctgcaccgct tccgcgtcct 6540 ggaccgtggc aagaaaacgt cccgttgcca ggtcctgatc gacgaggaaa tcgtcgtgct 6600 gtttgctggc gaccactaca cgaaattcat atgggagaag taccgcaagc tgtcgccgac 6660 ggcccgacgg atgttcgact atttcagctc gcaccgggag ccgtacccgc tcaagctgga 6720 aaccttccgc ctcatgtgcg gatcggattc cacccgcgtg aagaagtggc gcgagcaggt 6780 cggcgaagcc tgcgaagagt tgcgaggcag cggcctggtg gaacacgcct gggtcaatga 6840 tgacctggtg cattgcaaac gctagggcct tgtggggtca gttccggctg ggggttcagc 6900 65

ayc	cagegee	ttactggcat	cccaggaaca	agegggeace	getegaegea	cttgcttcgc	6960	
tca	agtatege	tcgggacgca	cggcgcgctc	tacgaactgc	cgataaacag	aggattaaaa	7020	5
ttg	gacaattg	tgattaaggc	tcagattcga	cggcttggag	cggccgacgt	gcaggatttc	7080	
cgc	gagatcc	gattgtcggc	cctgaagaaa	gctccagaga	tgttcgggtc	cgtttacgag	7140	10
cac	gaggaga	aaaagcccat	ggaggcgttc	gctgaacggt	tgcgagatgc	cgtggcattc	7200	15
ggc	gcctaca	tcgacggcga	gatcattggg	ctgtcggtct	tcaaacagga	ggacggcccc	7260	
aag	gacgctc	acaaggcgca	tctgtccggc	gttttcgtgg	agcccgaaca	gcgaggccga	7320	20
ggg	gtcgccg	gtatgctgct	gcgggcgttg	ccggcgggtt	tattgctcgt	gatgatcgtc	7380	25
cga	ıcagattc	caacgggaat	ctggtggatg	cgcatcttca	tcctcggcgc	acttaatatt	7440	
tcg	gctattct	ggagcttgtt	gtttatttcg	gtctaccgcc	tgccgggcgg	ggtcgcggcg	7500	30
acg	gtaggcg	ctgtgcagcc	gctgatggtc	gtgttcatct	ctgccgctct	gctaggtagc	7560	35
ccg	gatacgat	tgatggcggt	cctgggggct	atttgcggaa	ctgcgggcgt	ggcgctgttg	7620	
gtg	rttgacac	caaacgcagc	gctagatcct	gtcggcgtcg	cagcgggcct	ggcgggggcg	7680	40
gtt	tccatgg	cgttcggaac	cgtgctgacc	cgcaagtggc	aacctcccgt	gcctctgctc	7740	45
acc	tttaccg	cctggcaact	ggcggccgga	ggacttctgc	tcgttccagt	agctttagtg	7800	
ttt	gatccgc	caatcccgat	gcctacagga	accaatgttc	teggeetgge	gtggctcggc	7860	50
ctg	atcggag	cgggtttaac	ctacttcctt	tggttccggg	ggatctcgcg	actcgaacct	7920	55
aca	gttgttt	ccttactggg	ctttctcagc	cccagatctg	gggtcgatca	gccggggatg	7980	-
cat	caggccg	acagtcggaa	cttcgggtcc	ccgacctgta	ccattcggtg	agcaatggat	8040	60
agg	ggagttg	atatcgtcaa	cgttcacttc	taaagaaata	gcgccactca	gcttcctcag	8100	

cggctttatc cagcgatttc ctattatgtc ggcatagttc tcaagatcga cagcctgtca 8160 5 cggttaagcg agaaatgaat aagaaggctg ataattcgga tctctgcgag ggagatgata 8220 tttgatcaca ggcagcaacg ctctgtcatc gttacaatca acatgctacc ctccgcgaga 8280 10 tcatccgtgt ttcaaacccg gcagcttagt tgccgttctt ccgaatagca tcggtaacat 8340 15 gagcaaagtc tgccgcctta caacggctct cccgctgacg ccgtcccgga ctgatgggct 8400 gcctgtatcg agtggtgatt ttgtgccgag ctgccggtcg gggagctgtt ggctggctgg 8460 20 tggcaggata tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg 8520 gacgttttta atgtactggg gtggtttttc ttttcaccag tgagacgggc aacagctgat 8580 tgcccttcac cgcctggccc tgagagagtt gcagcaagcg gtccacgctg gtttgcccca 8640 gcaggcgaaa atcctgtttg atggtggttc cgaaatcggc aaaatccctt ataaatcaaa 8700 agaatagccc gagatagggt tgagtgttgt tccagtttgg aacaagagtc cactattaaa 8760 gaacgtggac tccaacgtca aagggcgaaa aaccgtctat cagggcgatg gcccactacg 8820 tgaaccatca cccaaatcaa gttttttggg gtcgaggtgc cgtaaagcac taaatcggaa 8880 ccctaaaggg agcccccgat ttagagcttg acggggaaag ccggcgaacg tggcgagaaa 8940 ggaagggaag aaagcgaaag gagcgggcgc cattcaggct gcgcaactgt tgggaagggc 9000 gateggtgeg ggeetetteg etattaegee agetggegaa agggggatgt getgeaagge 9060 gattaagttg ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg acggccagtg 9120 aattaattcc catcttgaaa gaaatatagt ttaaatattt attgataaaa taacaagtca 9180 ggtattatag tccaagcaaa aacataaatt tattgatgca agtttaaatt cagaaatatt 9240 tcaataactg attatatcag ctggtacatt gccgtagatg aaagactgag tgcgatatta 9300

tgtgtaatac	ataaattgat	gatatagcta	gcttagctca	tcgggggatc	cgtcgaagct	9360	
agcttgggtc	ccgctcagaa	gaactcgtca	agaaggcgat	agaaggcgat	gcgctgcgaa	9420	5
tegggagegg	cgataccgta	aagcacgagg	aagcggtcag	cccattcgcc	gccaagctct	9480	
tcagcaatat	cacgggtagc	caacgctatg	tcctgatagc	ggtccgccac	acccagccgg	9540	10
ccacagtcga	tgaatccaga	aaagcggcca	ttttccacca	tgatattcgg	caagcaggca	9600	. 15
tcgccatggg	tcacgacgag	atcctcgccg	tcgggcatgc	gcgccttgag	cctggcgaac	9660	
agttcggctg	gcgcgagccc	ctgatgctct	tcgtccagat	catcctgatc	gacaagaccg	9720	20
gcttccatcc	gagtacgtgc	tcgctcgatg	cgatgtttcg	cttggtggtc	gaatgggcag	9780	25
gtagccggat	caagcgtatg	cagccgccgc	attgcatcag	ccatgatgga	tactttctcg	9840	
gcaggagcaa	ggtgagatga	caggagatcc	tgccccggca	cttcgcccaa	tagcagccag	9900	30
tcccttcccg	cttcagtgac	aacgtcgagc	acagctgcgc	aaggaacgcc	cgtcgtggcc	9960	35
agccacgata	gccgcgctgc	ctcgtcctgc	agttcattca	gggcaccgga	caggtcggtc	10020	
ttgacaaaaa	gaaccgggcg	cccctgcgct	gacagccgga	acacggcggc	atcagagcag	10080	40
ccgattgtct	gttgtgccca	gtcatagccg	aatagcctct	ccacccaagc	ggccggagaa	10140	45
cctgcgtgca	atccatcttg	ttcaatccaa	gctcccatgg	gccctcgact	agagtcgaga	10200	
tctggattga	gagtgaatat	gagactctaa	ttggataccg	aggggaattt	atggaacgtc	10260	50
agtggagcat	ttttgacaag	aaatatttgc	tagctgatag	tgaccttagg	cgacttttga	10320	55
acgcgcaata	atggtttctg	acgtatgtgc	ttagctcatt	aaactccaga	aacccgcggc	10380	
tgagtggctc	cttcaacgtt	gcggttctgt	cagttccaaa	cgtaaaacgg	cttgtcccgc	10440	60
gtcatcggcg	ggggtcataa	cgtgactccc	ttaattctcc	gctcatgatc	ttgatcccct	10500	

	gcgccatcag	atccttggcg	gcaagaaagc	catccagttt	actttgcagg	gcttcccaac	10560
5	cttaccagag	ggcgccccag	ctggcaattc	cggttcgctt	gctgtccata	aaaccgccca	10620
	gtctagctat	cgccatgtaa	gcccactgca	agctacctgc	tttctctttg	cgcttgcgtt	10680
10	ttcccttgtc	cagatagccc	agtagctgac	attcatccgg	ggtcagcacc	gtttctgcgg	10740
15	actggctttc	tacgtgttcc	gcttccttta	gcagcccttg	cgccctgagt	gcttgcggca	10800
	gcgtgaagct	tgcatgcctg	caggtcgacg	gcgcgccgag	ctcctcgagc	aaatttacac	10860
20	attgccacta	aacgtctaaa	cccttgtaat	ttgtttttgt	tttactatgt	gtgttatgta	10920
25	tttgatttgc	gataaatttt	tatatttggt	actaaattta	taacaccttt	tatgctaacg	10980
	tttgccaaca	cttagcaatt	tgcaagttga	ttaattgatt	ctaaattatt	tttgtcttct	11040
30	aaatacatat	actaatcaac	tggaaatgta	aatatttgct	aatatttcta	ctataggaga	11100
35	attaaagtga	gtgaatatgg	taccacaagg	tttggagatt	taattgttgc	aatgctgcat	11160
	ggatggcata	tacaccaaac	attcaataat	tcttgaggat	aataatggta	ccacacaaga	11220
40	tttgaggtgc	atgaacgtca	cgtggacaaa	aggtttagta	atttttcaag	acaacaatgt	11280
45	taccacacac	aagttttgag	gtgcatgcat	ggatgccctg	tggaaagttt	aaaaatattt	11340
	tggaaatgat	ttgcatggaa	gccatgtgta	aaaccatgac	atccacttgg	aggatgcaat	11400
50	aatgaagaaa	actacaaatt	tacatgcaac	tagttatgca	tgtagtctat	ataatgagga	11460
55	ttttgcaata	ctttcattca	tacacactca	ctaagtttta	cacgattata	atttcttcat	11520
	agccagccca	ccgcggtgga		gtc gtg gag Val Val Glu	_		11572
60			1	5	-	10	
	ttg gat ggg	aag gtc to	g cag ggc d	rtg aat gca	tta cta aat	agt ttt	11620

Leu	Asp	Gly	Lys		Ser	Gln	Gly	Val	Asn	Ala	Leu	Leu	Gly		Phe		
				15					20					25			5
ggg	gtg	gag	ttg	acg	gat	acg	ccc	act	acc	aaa	ggc	ttg	ccc	ctc	gtt	11668	
Gly	Val	Glu	Leu	Thr	Asp	Thr	Pro	Thr	Thr	Lys	Gly	Leu	Pro	Leu	Val		
			30					35					40				10
	_											-					
									gtt				_			11716	
ASP	ser	45	Thr	Pro	me	vaı		GIY	Val	Ser	Val		Leu	Thr	Ile		15
		47					50					55					
gtc	att	gga	ggg	ctt	ttg	tgg	ata	aag	gcc	agg	gat	ctg	aaá	ccq	cac	11764	20
									Ala			_		_	_		. 20
	60					65					70						
		ě		•													25
gcc	tcg	gag	cca	ttt	ttg	ctc	caa	gct	ttg	gtg	ctt	gtg	cac	aac	ctg	11812	
	Ser	Glu	Pro	Phe	Leu	Leu	Gln	Ala	Leu	Val	Leu	Val	His	Asn	Leu	* *	
75		*			80					85					90		30
	.								_					•			
									tgc							11860	
FILE	Cys	Pile	AId	95	Ser	reu	TYL	Met	Cys 100	vai	GIY	тте	Ата	1yr 105	Gin		35
				,,,					100					105			
gct	att	acc	tgg	cgg	tac	tct	ctc	tgg	ggc	aat	gca	tac	aat	cct	aaa	11908	
									Gly								40
			110					115					120				
																	45
									ttg							11956	
His	Lys		Met	Ala	Ile	Leu	Val	Tyr	Leu	Phe	Tyr	Met	Ser	Lys	Tyr		
		125					130					135					50
71.0	~==	++0	250	~~+	222											10001	
									ata Ile							12004	
	140	THE	Mec	nsp	1111	145	116	Met	116	Leu	150	Arg	ser	THE	Arg		55 ,
											130						
caa	ata	agc	ttc	ctc	cac	gtt	tat	cat	cat	tct	tca	att	tcc	ctc	att	12052	
									His								60
155					160					165					170		
																	65
:gg	tgg	gct	att	gct	cat	cac	gct	cct	ggc	ggt	gaa	gca	tat	tgg	tct	12100	us

	Trp	Trp	Ala	Ile	Ala	His	His	Ala	Pro		Gly	Glu	Ala	Tyr		Ser	
					175					180					185		
5											250	tat	aca	tat	tac	ttc	12148
	_				tca												12110
	Ala	Ala	Leu		Ser	GIĀ	vaı	піз	195	Leu	Mec	ıyı	ALG	200	* 7 -	1110	
10				190					193					200			
	tta	act	acc	tac	ctt	cga	aσt	agc	cca	aaσ	tta	aaa	aat	aag	tac	ctt	12196
	_	-														Leu	
15			205					210		_			215				
20	ttt	tgg	ggc	agg	tac	ttg	aca	caa	ttc	caa	atg	ttc	cag	ttt	atg	ctg	12244
20					Tyr												
		220					225					230					
25														•			
	aac	tta	gtg	cag	gct	tac	tac	gac	atg	aaa	acg	aat	gcg	cca	tat	cca	12292
	Asn	Leu	Val	Gln	Ala	Tyr	Tyr	Asp	Met	Lys	Thr	Asn	Ala	Pro	Tyr	Pro	
30	235					240					245					250	
					aag												12340
35	Gln	Trp	Leu	Ile	Lys	Ile	Leu	Phe	Tyr			Ile	Ser	Leu			
					255					260	ı				265		
															~~~	~~=	12388
40																gga	12300
	Leu	Phe	e GIĀ			ıyr.	vaı	. GII	. шуя 275		TTE	: гу	PIC	280		Gly	
				270	,				215	,				200			
45	220				gct	. aaa	act	. gao	r toa	tet	agaa	aac	ctcc	tact	tt		12435
					Ala						,	-99-		5			
	פעם	GII	285		1110	. 2,2		290									
50			200														
	aat	gaga	atat	gcga	agaco	jcc t	atga	tcgc	a to	gatat	ttg	ttt	caat	tct	gttg	gtgcacg	12495
55	ttg	rtaaa	aaaa	cctg	gagca	atg t	gtag	gctca	ag at	ccti	tacco	g ccg	gttt	cgg	ttca	attctaa	12555
		atai	tatc	acc	egtta	act a	atcgi	catt	t ta	atgaa	ataa	t at	tctc	cgtt	caat	ttactg	12615
60																	
	att	gtc	cgtc	gag	caaat	ttt a	acaca	attgo	cc a	ctaa	acgt	c ta	aacc	cttg	taat	tttgttt	12675
																	40-0-
65	ttç	jttt!	tact	atg	tgtg	tta (	tgta	tttg	at t	tgcg	ataa	a tt	ttta	tatt	tgg	tactaaa	12735

	ataa	cac	cttt	tatg	ct a	acgt	ttgc	c aa	cact	tago	aat	ttgc	aag	ttga	ttaatt	12795	
gat	tcta	aat	tatt	tttg	tc t	tcta	aata	c at	atac	taat	caa	ctgg	aaa	tgta	aatatt	12855	5
tgc	taat	att	tcta	ctat	ag g	agaa	ttaa:	a gt	gagt	gaat	atg	gtac	cac	aagg	tttgga	12915	
gat	ttaa	ttg	ttgc	aatg	ct g	catg	gatg	g ca	tata	cacc	aaa	catt	caa	taat	tcttga	12975	10
gga	taat	aat	ggta	ccac	ac a	agat	ttga	g gt	gcat	gaac	gtc	acgt	gga	caaa	aggttt	13035	15
agt	aatt	ttt	caag	acaa	ca a	tgtt	acca	c ac	acaa	gttt	tga	ggtg	cat	gcat	ggatgc	13095 [.]	
cct	gtgg	aaa	gttt	aaaa	at a	tttt	ggaaa	a tg	attt	gcat	gga	agcc	atg	tgta	aaacca	13155	20
tga	catc	cac	ttgg	agga	tg c	aata	atgaa	a ga	aaac	taca	aat	ttac	atg	caac	tagtta	13215	25
tgc	atgt	agt -	ctat	ataa	tg a	ggat	tttgd	c aa	tact	ttca	ttc	ataca	aca	ctca	ctaagt	13275	
ttt	acac	gat	tata	attt	ct t	cata	gccag	a cai	gatc	c atq	g gta	a tto	c gc	g gg	c ggt	13330	30
										Met	t Va	l Phe	e Ala	a Gl	y Gly		
										•			29	_			35
aa a	c++		<b>636</b>	~~~	tat					•			29	5		**.	35
							gaa Glu			atc	gac	gtc	29 gag	5 cac	att	13378	
			Gln							atc	gac	gtc	29 gag	5 cac	att	13378	35 40
Gly	Leu agt	Gln 300 atg	Gln	Gly	Ser	Leu agc	Glu 305 gac	Glu ttc	Asn	atc Ile	gac Asp	gtc Val 310	gag Glu	cac His	att Ile	13378 13426	
Gly	Leu agt	Gln 300 atg	Gln	Gly	Ser	Leu agc	Glu 305	Glu ttc	Asn	atc Ile	gac Asp	gtc Val 310	gag Glu	cac His	att Ile		40
Gly gcc Ala	agt Ser 315	Gln 300 atg Met	Gln tct Ser	Glý ctc Leu	Ser ttc Phe	agc Ser 320	Glu 305 gac Asp	Glu ttc Phe	ttc Phe	atc Ile agt Ser	gac Asp tat Tyr 325	gtc Val 310 gtg Val	gag Glu tct Ser	cac His tca Ser	att Ile act Thr		40
gcc Ala	agt Ser 315	Gln 300 atg Met	tct Ser	Ctc Leu	ttc Phe	agc Ser 320	Glu 305 gac Asp	Glu ttc Phe	ttc Phe	atc Ile agt Ser	gac Asp tat Tyr 325	gtc Val 310 gtg Val	gag Glu tct Ser	cac His tca Ser	att Ile act Thr	13426	40 45
gcc Ala	agt Ser 315	Gln 300 atg Met	tct Ser	Ctc Leu	ttc Phe	agc Ser 320	Glu 305 gac Asp	Glu ttc Phe	ttc Phe	atc Ile agt Ser	gac Asp tat Tyr 325	gtc Val 310 gtg Val	gag Glu tct Ser	cac His tca Ser	att Ile act Thr	13426	40 45
gcc Ala gtt Val 330	agt Ser 315 ggt Gly	Gln 300 atg Met tcg Ser	tct Ser tgg Trp	ctc Leu agc Ser	ttc Phe gta Val 335	agc Ser 320 cac	Glu 305 gac Asp agt Ser	ttc Phe ata Ile	ttc Phe caa Gln	atc Ile agt Ser cct Pro 340	gac Asp tat Tyr 325 ttg Leu	gtc Val 310 gtg Val aag Lys	gag Glu tct Ser cgc	cac His tca Ser ctg	att Ile act Thr acg Thr 345	13426	40 45 50
gcc Ala gtt Val 330	agt Ser 315 ggt Gly	Gln 300 atg Met tcg Ser	tct Ser tgg Trp	ctc Leu agc Ser	ttc Phe gta Val 335	agc Ser 320 cac His	Glu 305 gac Asp agt Ser	ttc Phe ata Ile	ttc Phe caa Gln	atc Ile agt Ser cct Pro 340	gac Asp tat Tyr 325 ttg Leu	gtc Val 310 gtg Val aag Lys	gag Glu tct Ser cgc Arg	cac His tca Ser ctg Leu	att Ile act Thr acg Thr 345	13426	40 45 50
gcc Ala gtt Val 330	agt Ser 315 ggt Gly	Gln 300 atg Met tcg Ser	tct Ser tgg Trp	ctc Leu agc Ser gtt Val	ttc Phe gta Val 335	agc Ser 320 cac His	Glu 305 gac Asp agt Ser	ttc Phe ata Ile	ttc Phe caa Gln gcc	atc Ile agt Ser cct Pro 340	gac Asp tat Tyr 325 ttg Leu	gtc Val 310 gtg Val aag Lys	gag Glu tct Ser cgc Arg	cac His tca Ser ctg Leu tca	att Ile act Thr acg Thr 345	13426 13474	40 45 50
gcc Ala gtt Val 330	agt Ser 315 ggt Gly	Gln 300 atg Met tcg Ser	tct Ser tgg Trp	ctc Leu agc Ser	ttc Phe gta Val 335	agc Ser 320 cac His	Glu 305 gac Asp agt Ser	ttc Phe ata Ile	ttc Phe caa Gln	atc Ile agt Ser cct Pro 340	gac Asp tat Tyr 325 ttg Leu	gtc Val 310 gtg Val aag Lys	gag Glu tct Ser cgc Arg	cac His tca Ser ctg Leu	att Ile act Thr acg Thr 345	13426 13474	40 45 50

	Glu	Val	Gln	Arg 365	Asn	Ser	Ser	Thr	Gln 370	Gly	Thr	Ala	Glu	Ala 375	Leu	Ala	
5																	
	gaa	tca	gtc	gtg	aag	ccc	acg	aga	cga	agg	tca	tct	cag	tgg	aag	aag	13618
	Glu	Ser	Val	Val	Lys	Pro	Thr	Arg	Arg	Arg	Ser	Ser	Gln	Trp	Lys	Lys	
10			380					385					390				
	tcg	aca	cac	ccc	cta	tca	gaa	gta	gca	gta	cac	aac	aag	cca	agc	gat	13666
15	Ser	Thr	His	Pro	Leu	Ser	Glu	Val	Ala	Val	His	Asn	Lys	Pro	Ser	Asp	
		395					400					405					
20	tgc	tgg	att	gtt	gta	aaa	aac	aag	gtg	tat	gat	gtt	tcc	aat	ttt	gcg	13714
-	Cys	Trp	Ile	Val	Val	Lys	Asn	Lys	Val	Tyr	Asp	Val	Ser	Asn	Phe	Ala	
	410					415	•				420					425	
25																	
23	gac	gag	cat	ccc	gga	gga	tca	gtt	att	agt	act	tat	ttt	gga	cga	gac	13762
	Asp	Glu	His	Pro	Gly	Gly	Ser	Val	Ile	Ser	Thr	Tyr	Phe	Gly	Arg	Asp	
30					430					435					440		
30																	
	ggc	aca	gat	gtt	ttc	tct	agt	ttt	cat	gca	gct	tct	aca	tgg	aaa	att	13810
35	Gly	Thr	Asp	Val	Phe	Ser	Ser	Phe	His	Ala	Ala	Ser	Thr	Trp	Lys	Ile	
33				445					450					455			
	ctt	caa	gac	ttt	tac	att	ggt	gac	gtg	gag	agg	gtg	gag	ccg	act	cca	13858
40	Leu	Gln	Asp	Phe	Tyr	Ile	Gly	Asp	Val	Glu	Arg	Val	Glu	Pro	Thr	Pro	
			460					465					470				
45	gag	ctg	ctg	aaa	gat	ttc	cga	gaa	atg	aga	gct	ctt	ttc	ctg	agg	gag	13906
	Glu	Leu	Leu	Lys	Asp	Phe	Arg	Glu	Met	Arg	Ala	Leu	Phe	Leu	Arg	Glu	
		475					480					485					
50																	
	caa	ctt	ttc	aaa	agt	tcg	aaa	ttg	tac	tat	gtt	atg	aag	ctg	ctc	acg	13954
			Phe														
55	490			_		495	_			_	500		_			505	
	aat	gtt	gct	att	ttt	gct	gcg	agc	att	gca	ata	ata	tgt	tgg	agc	aag	14002
60			Ala			_		_		_			_		_	_	
					510					515			-	_	520		
65	act	att	tca	gcg	gtt	ttg	gct	tca	gct	tgt	atg	atg	gct	ctg	tgt	ttc	14050

			•											•			
Thr	Ile	Ser	Ala	Val	Leu	Ala	Ser	Ala	Cys	Met	Met	Ala	Leu	Cys	Phe		
			525					530					535				
																	5
caa	cag	tgo	gga	tgg	cta	tcc	cat	gat	ttt	ctc	cac	aat	cag	gta	ttt	14098	
															Phe		
		540					545	_				550	•			•	10
gag	aca	cgc	tgg	ctt	aat	gaa	att	atc	aaa	tat	ata	atc	aac	aac	gcc	14146	
			Trp													14140	15
	555		-			560				-3-	565		GLY	ASII			. 13
											202						
att	cta	aaa	. +++	ant	202	~~~	-~~	+									
			ttt													14194	20
	теа	GIY	Phe	Ser		GIĀ	лф	Trp	ьуs		Lys	His	Asn	Leu	His		
570					575					580					585		
																	25
			cca													14242	
His	Ala	Ala	Pro	Asn	Glu	Cys	Asp	Gln	Thr	Tyr	Gln	Pro	Ile	Asp	Glu		
				590			•		595					600			30
	٠																
gat	att	gat	act	ctc	ccc	ctc	att	gcc	tgg	agc	aag	gac	ata	ctg	gcc	14290	
Asp	Ile	Asp	Thr	Leu	Pro	Leu	Ile	Ala	Trp	Ser	Lys	Asp	Ile	Leu	Ala		35
			605					610					615	•			
aca	gtt	gag	aat	aag	aca	ttc	ttg	cga	atc	ctc	caa	tac	cag	cat	ctg	14338	· 40
Thr	Val	Glu	Asn	Lys	Thr	Phe	Leu	Arg	Ile	Leu	Gln	Tyr	Gln	His	Leu		
		620					625					630	-				
																•	45
ttc	ttc	atg	ggt	ctg	tta	ttt	ttc	gcc	cgt	ggt	agt	taa	ctc	ttt	taa	14386	45
			Gly													21300	
	635		₹			640			5	2	645						
																•	50
agc	tgg	aga	tat	acc	tct	aca [°]	aca	ata	ctc	tca	cct	ata	~ ·	200	<b>+</b> +~	1 4 4 2 4	-
			Tyr													14434	
650	_ •		-2-		655			Vul		660	PIO	vai	ASD	Arg			55
•••					055										665		
tta	~~~	220	~~~	-at	~++												
			gga													14482	60
Leu	GIU	r) Z	Gly		val	reg	rne			Pne	Trp	Phe	Val		Thr		
				670					675		-			680			
~~~																	65
gcg	cgc	cat	ctt	ctc	cct	ggt	tgg	aag	cca	tta	gta	tgg	atg	gcg	gtg	14530	

	Ala	a Cys	з Туг			Pro	Gly	Tr	Lys	Pro	Leu	Va]	l Trp	Met	: Ala	a Val	
				685	5				690	l				695	5		
5		- ~-	r ctc	· =+0													
	The	- gay	, tou	Mot	Com	ggc	atg	r ctg	ctg -	ggc	ttt	gta	ttt	gta	ctt	agc	14578
	+ * * * *	. 610	700		. Ser	GTA	Met			Gly	Phe	Val		Val	Leu	Ser	
10			700	,				705					710				
	cac	aat	. aaa	ato	aaa	att	tat	225	t a~							gca	
15																gca Ala	14626
13		715					720	71.511	261	Ser	гуs		Pne	vaı	Ser	Ala	
							.20					725					
20	cag	ato	gta	tcc	aca	cgg	gat	atc	aaa	gga	aac	ata	ttc	aac	asc.	tgg	14674
													Phe				14674
	730					735	_		-		740		1110		тэр	745	
25																, 43	
	ttc	act	ggt	ggc	ctt	aac	agg	caa	ata	gag	cat	cat	ctt	ttc	cca	aca	14722
													Leu				
30					750					755					760		
	atg	ccc	agg	cat	aat	tta	aac	aaa	ata	gca	cct	aga	gtg	gag	gtg	ttc	14770
35													Val				
				765					770					775			
40													att				14818
	Cys	Lys		His	Gly	Leu	Val	Tyr	Glu	Asp	Val	Ser	Ile	Ala	Thr	Gly	
			780					785					790				
45	ac+	+~-															
	Thr	Cyc	aag	gcc	ttg t	aaa	gca	ttg -	aag	gaa	gtc	gcg	gag	gct	gcg	gca	14866
	1111	795	Lys	vai	Leu	rys		Leu	Lys	Glu			Glu .	Ala	Ala	Ala	
50		,,,,					800					805					
	gag	cag	cat	act.	acc	acc	agt :	taa .	acta	acat	t a a.			_		atat	
	Glu	Gln	His .	Ala	Thr	Thr	Ser	caa	gcca	gcyc	La a	CCCL	getti	c aa	tgag	atat	14920
55	810					815	DCI										
	gcga	gacg	cc ta	atga	tege	a tg	atati	ttac	ttto	caat	tet e	ttta:	tacar	~~ +·	+~ + ~		14980
50				_	J			5-			ccc ,	geeg	cyca	Jy L	rg ca	aaaaa	14980
	cctg	agca	tg tạ	gtag	ctca	gate	cctta	accg	ccg	rttte	cara t	tca	ttota	a to	raat:	atato	15040
								_			J.5 .			ب. در	guul	LCALC	エコハボハ
i5	accc	gtta	ct at	cgta	attt	t tat	gaat	aat	atto	tcc	gtt d	caati	ttact	g at	ttat	ccata	15100
																5.20	

gacgaattcg a	gctcggcgc gcctctagaq	g gatcgatgaa	ttcagatcgg ctgagtggct	15160
ccttcaacgt t	gcggttctg tcagttccaa	a acgtaaaacg	gcttgtcccg cgtcatcggc	15220 ₅
gggggtcata a	acgtgactcc cttaattctc	c cgctcatgat	cagattgtcg tttcccgcct	15280
tcagtttaaa c	tatcagtgt ttgacaggat	t atattggcgg	gtaaacctaa gagaaaagag	15340
cgtttattag a	nataatcgga tatttaaaag	g ggcgtgaaaa	ggtttatcct tcgtccattt	15400 ₁₅
gtatgtgcat g	rccaaccaca gggttcccca	a.		15430
		•		20
<210> 44 <211> 290				25
<212> PRT <213> Unknow	m			N.
<400> 44				30
Met Glu Val 1	Val Glu Arg Phe Tyr	Gly Glu Leu 10	Asp Gly Lys Val Ser 15	35
Gln Gly Val	Asn Ala Leu Leu Gly	Ser Phe Gly	Val Glu Leu Thr Asp	22
-	20	25	30	. 40
	Thr Lys Gly Leu Pro	Leu Val Asp		
35	40		45	45
Val Leu Gly 50	Val Ser Val Tyr Leu 55	Thr Ile Val	Ile Gly Gly Leu Leu 60	50
Trp Ile Lys	Ala Arg Asp Leu Lys	Pro Arg Ala	Ser Glu Pro Phe Leu	30
65	70	75	80	55.
Leu Gln Ala	Leu Val Leu Val His		_	
	85	90	95	60
	Cys Val Gly Ile Ala 100	Tyr Gln Ala 105	lle Thr Trp Arg Tyr 110	

Ser Leu Trp Gly Asn Ala Tyr Asn Pro Lys His Lys Glu Met Ala Ile 115 120 125
Leu Val Tyr Leu Phe Tyr Met Ser Lys Tyr Val Glu Phe Met Asp Thr 130 135 140
Val Ile Met Ile Leu Lys Arg Ser Thr Arg Gln Ile Ser Phe Leu His 145 150 155 160
Val Tyr His His Ser Ser Ile Ser Leu Ile Trp Trp Ala Ile Ala His 165 170 175
His Ala Pro Gly Gly Glu Ala Tyr Trp Ser Ala Ala Leu Asn Ser Gly 180 185 190
Val His Val Leu Met Tyr Ala Tyr Tyr Phe Leu Ala Ala Cys Leu Arg 195 200 205
Ser Ser Pro Lys Leu Lys Asn Lys Tyr Leu Phe Trp Gly Arg Tyr Leu 210 215 220
Thr Gln Phe Gln Met Phe Gln Phe Met Leu Asn Leu Val Gln Ala Tyr 225 230 235 240
Tyr Asp Met Lys Thr Asn Ala Pro Tyr Pro Gln Trp Leu Ile Lys Ile 245 250 255
Leu Phe Tyr Tyr Met Ile Ser Leu Leu Phe Leu Phe Gly Asn Phe Tyr 260 265 270
Val Gln Lys Tyr Ile Lys Pro Ser Asp Gly Lys Gln Lys Gly Ala Lys 275 280 285
Thr Glu 290
<210> 45
<211> 45 <211> 525 65

<212> PRT

<21	3> U1	nkno	wn																
<400	0> 4!	5					•										•		5
Met 1	_. Val	Phe	Ala	Gly 5	Gly	Gly	Leu	Gln	Gln 10	Gly	Ser	Leu	Glu	Glu 15	Asn				10
Ile	Asp	Val	Glu 20	His	Ile	Ala	Ser	Met 25	Ser	Leu	Phe	Ser	Asp 30	Phe	Phe				. 15
Ser	Tyr	Val 35	Ser	Ser	Thr	Val	Gly 40	Ser	Trp	Ser	Val	His	Ser	Ile	Gln	•		•	20
Pro	Leu 50	Lys	Arg	Leu	Thr	Ser 55	Lys	Lys	Arg	Val	Ser 60	Glu	Ser	Ala	Ala				25
Val 65	Gln	Cys	Ile	Ser	Ala 70	Glu	Val	Gln	Arg	Asn 75	Ser	Ser	Thr	Gln	Gly 80				30
Thr	Ala	Glu	Ala	Leu 85	Ala	Glu	Ser	Val	Val 90	Lys	Pro	Thr	Arg	Arg 95	Arg				35
Ser	Ser	Gln	Trp 100	Lys	Lys	Ser	Thr	His 105	Pro	Leu	Ser	Glu	Val 110	Ala	Val				40
His	Asn	Lys 115	Pro	Ser	Asp	Cys	Trp	Ile	Val	Val	Lys	Asn 125	Lys	Val	Tyr				45
Asp	Val 130	Ser	Asn	Phe	Ala	Asp 135	Glu	His	Pro	Gly	Gly 140		Val	Ile	Ser				50
Thr 145	Tyr	Phe	Gly	Arg	Asp 150	Gly	Thr	Asp	Val	Phe 155	Ser	Ser	Phe	His	Ala 160	:			55
Ala	Ser	Thr	Trp	Lys 165	Ile	Leu	Gln	Asp	Phe 170	Туr	Ile	Gly	Asp	Val 175	Glu				60
Arg	Val	Glu	Pro 180	Thr	Pro	Glu	Leu	Leu 185	Lys	Asp	Phe	Arg	Glu 190	Met	Arg				

	Ala	Leu	Phe 195	Leu	Arg	Glu	Gln	Leu 200	Phe	Lys	Ser	Ser	Lys 205	Leu	Tyr	Tyr
5																
	Val	Met	Lys	Leu	Leu	Thr	Asn	Val	Ala	Ile	Phe	Ala	Ala	Ser	Ile	Ala
		210					215					220				
10																
		Ile	Cys	Trp	Ser		Thr	Ile	Ser	Ala	Val	Leu	Ala	Ser	Ala	Суѕ
	225					230					235					240
15				_	_	_,			_				_			
	met	met	Ala	Leu		Pne	Gin	GIN	Cys		Trp	Leu	Ser	His		Phe
					245					250					255	
20	T.211	Hie	Δen	Gln	V=1	Phe	Glu	ωρ.×.	7.20	Т	Ton) CD	Clu	17 m]	17 - 7	C1
	Deu	1113	ri311	260	vai	File	Giu	1111	265	ILD	neu	ASII	GIU	270	vai.	GIŞ
				200					203					270		
25	Tyr	Val	Ile	Gly	Asn	Ala	Val	Leu	Glv	Phe	Ser	Thr	Glv	Tro	Tro	Lvs
	_		275	-				280					285		2-	
30																
,,	Glu	Lys	His	Asn	Leu	His	His	Ala	Ala	Pro	Asn	Glu	Cys	Asp	Gln	Thr
		290					295					300				
35								•								
	Tyr	Gln	Pro	Ile	Asp	Glu	Asp	Ile	Asp	Thr	Leu	Pro	Leu	Ile	Ala	Trp
	305					310					315					320
40																
	Ser	Lys	Asp	Ile	Leu	Ala	Thr	Val	Glu	Asn	Lys	Thr	Phe	Leu	Arg	Ile
					325					330					335	
45	-	~ 3	_	~-		_					_	_			_	
	Leu	Gin	Tyr	Gln	His	Leu	Phe	Phe		GTĀ	Leu	Leu	Phe		Ala	Arg
				340					345					350		
50	Gl v	Ser	Т	Leu	Dho	™ ~~	Co~	M	3	M	mla sa	C	mla sa	22-	**- 1	.
	GLY	Ser	355	Deu	rne	пр	Ser	360	Arg	TYL	THE	Ser	365	Ата	vai	Leu
			333					300					303			
55	Ser	Pro	Val	Asp	Arg	Leu	Leu	Glu	Lvs	Glv	Thr	Val	Len	Phe	His	ጥህዮ
		370			5		375	0	2,0	0_1		380		1110	1113	- y-
50	Phe	Trp	Phe	Val	Gly	Thr	Ala	Cys	Tyr	Leu	Leu	Pro	Gly	Trp	Lys	Pro
	385					390					395		_	-	-	400
55	Leu	Val	Trp	Met	Ala	Val	Thr	Glu	Leu	Met	Ser	Gly	Met	Leu	Leu	Gly

				405					410					415				
Phe	Val	Phe	Val 420	Leu	Ser	His	Asn	Gly 425	Met	Glu	Val	Tyr	Asn 430	Ser	Ser			
Lys	Glu	Phe 435	Val	Ser	Ala	Gln	Ile 440	Val	Ser	Thr	Arg	Asp 445	Ile	Lys	Gly			1
Asn	Ile 450	Phe	Asn	Asp	Trp	Phe 455	Thr	Gly	Gly	Leu	Asn 460	Arg	Gln	Ile	Glu			1
His 465	His	Leu	Phe	Pro	Thr 470	Met	Pro	Arg	His	Asn 475	Leu	Asn	Lys	Ile	Ala 480			2
Pro	Arg	Val	Glu	Val 485	Phe	Cys	Lys	Lys	His 490	Gly	Leu	Val	Tyr	Glu 495	Asp			
Val	Ser	Ile	Ala 500	Thr	Gly	Thr	Cys	Lys 505	Val	Leu	Lys	Ala	Leu 510	Lys	Glu		·.	3
Val	Ala	Glu 515	Ala	Ala	Ala	Glu	Gln 520	His	Ala	Thr	Thr	Ser 525					÷	3
<210	> 46	5															. ,	4
<211	> 17	7752											•		•			
<212																		4
~ 213	<i>></i> UI	ıknow	m															
<220	>																	
<223	Pr	lanz	or-T	'ermi	nato	r- E	xpre	essio	nska									3
		nseri Phae							long	ase	+ De	satu	rase	•				5
<220	>															•	•	
<221	> CI	S																6
<222	> (1	1543) (1241	5)			•										

<220>

<221> CDS <222> (13313)..(14890) <220> <221> CDS <222> (15791)..(17200) <400> 46 gatetggege eggeeagega gaegageaag attggeegee geeegaaaeg ateegaeage 60 gcgcccagca caggtgcgca ggcaaattgc accaacgcat acagcgccag cagaatgcca 120 tagtgggcgg tgacgtcgtt cgagtgaacc agatcgcgca ggaggcccgg cagcaccggc 180 ataatcaggc cgatgccgac agcgtcgagc gcgacagtgc tcagaattac gatcaggggt 240 atgttgggtt tcacgtctgg cctccggacc agcctccgct ggtccgattg aacgcgcgga 300 ttctttatca ctgataagtt ggtggacata ttatgtttat cagtgataaa gtgtcaagca 360 tgacaaagtt gcagccgaat acagtgatcc gtgccgccct ggacctgttg aacgaggtcg 420 gcgtagacgg tctgacgaca cgcaaactgg cggaacggtt gggggttcag cagccggcgc 480 tttactggca cttcaggaac aagcgggcgc tgctcgacgc actggccgaa gccatgctgg 540 cggagaatca tacgcattcg gtgccgagag ccgacgacga ctggcgctca tttctgatcg 600 ggaatgcccg cagcttcagg caggcgctgc tcgcctaccg cgatggcgcg cgcatccatg 660 ccggcacgcg accgggcgca ccgcagatgg aaacggccga cgcgcagctt cgcttcctct 720 gcgaggcggg tttttcggcc ggggacgccg tcaatgcgct gatgacaatc agctacttca 780 ctgttggggc cgtgcttgag gagcaggccg gcgacagcga tgccggcgag cgcgqcgaca 840 ccgttgaaca ggctccgctc tcgccgctgt tgcgggccgc gatagacgcc ttcgacgaag 900 ccggtccgga cgcagcgttc gagcagggac tcgcggtgat tgtcgatgga ttggcgaaaa 960

20	102	1	С	cgc	gacc	- cagg	ctga	tgacga	aaggg	cgaga	laggac	gctga	aggaac	. cgcc	getegt	yyay
80	108	1	t	ttt	ccct	ctccc	tccc	acaaca	tgtag	agcca	agcag	actac	ccacto	caac	ggagcg	tgcc
40	114	1:	t	cgt	tagc	gccct	ccct	ttcatgo	gcttt	tacg	cccgc	agcag	gcccgt	agac	cgcgtc	ccac
00	120	1:	С	ctc	ttcc	ccgct	tctt	tggcgci	ccttc	ggcgg	tctct	cggcc	cgcgct	cggc	gcctca	ccaa
60	126	12	a	aaa	ctca	ctcac	tcag	gcggtat	ggcga	gctgo	gttcg:	cggtc	tgcgct	tcgc	actgac	gctc
20	132	13	a	aaa	agca	tgtga	aaca	ggaaaga	acgca	ggata	.tcagg	cagaa	tatcca	cggt	gtaata	ggcg
30	138	13	Ł	gct	tagg	tccata	tttt	ctggcgt	cgttg	ggccg	aaaaa	accgt	ccagga	aagg	cagcaa	aggc
10	144	14	c	gac	ccg	gaaac	tggc	cagaggt	caagt	acgct	.aatcg	acaaa	agcatc	gacg	cccct	ccgc
00	150	15	2	tcc	tgtt	ctcct	cgct	ctcgtgd	gctcc	tggaa	cccc	cgttt	accagg	agat	ctataa	agga
50	156	15	٤	ttt	getti	tggcgd	agcģ	tcgggaa	tccct	ctttc	teege	acctg	ccggat	ctta	ctgccg	gacc
20	162	16	ئ خ	ttt	cctt	ccatco	atat	ttcggta	atttt	tagcg	catta	ggggt	tgcttc	accc	tgcata	ccgc
30	168	16	3 :	aac	.cca	tgtato	tgg	ctttcct	gtaga	ttcgt	aaggg	tgcca	ggattt	taca	acgata	tege
10	174	17	a :	ca	ctto	tcctt	gtgt	gagcggg	ccgc	gccca	agtag	ggtga	aggata	gggc	tcagcc	ggcg
0	180	18	j :	gg	jgcc	ggctgg	gcga	tgctctg	aatcc	acggg	gctca	gcggt	cacctg	ttcg	ccctta	ctgt
0	186	18	ı :	jga	cago	ccaaco	aag	tgaaacc	gctga	ggatg	caagc	gaggg	acagat	cgta	cgccgg	ctaco
0	192	19	a .	ıaa	iggaa	attgag	raca	acgaaga	gacga	ttcca	ctgcc	gtgta	atcaag	acct	cagece	aggg
0	198	19	ı :	ıca	<i>j</i> ctac	cagggo	ggc	ggccgtc	etget	cctac	gtcgg	agcct	ggcatg	ggcc	ggcggc	aggc
0	204	20	: 1	icc	ıcgad	aatggo	atc	ggcccgc	gaget	tccgc	gcacg	tatga	gtggac	cgtc	cacggg	aaato
0	210	21	: 7	ıgt	:gcgg	acggcg	rcgc	cgacccg	accga	ggctc	actct	ctgaa	ggcctg	gggc	ccgcct	gggd
0	216	21	J . 2	:tg	ıgctt	gacgaç	rcag	agagaag	atcga	cgaag	gctgg	gccct	atcctc	cacga	tgatgc	cggt

gcaaggtcat gatgggcgtg gtccgcccga gggcagagcc atgacttttt tagccgctaa 2220 aacggccggg gggtgcgcgt gattgccaag cacgtcccca tgcgctccat caagaagagc 2280 gacttegegg agetggtgaa gtacateace gaegageaag geaagaeega gegeetttge 2340 gacgeteace gggetggttg ecetegeege tgggetggeg geegtetatg geeetgeaaa 2400 cgcgccagaa acgccgtcga agccgtgtgc gagacaccgc ggccgccggc gttgtggata 2460 cetegeggaa aacttggeee teactgaeag atgaggggeg gaegttgaea ettgagggge 2520 20 cgactcaccc ggcgcggcgt tgacagatga ggggcaggct cgatttcggc cggcgacgtg 2580 gagctggcca gcctcgcaaa tcggcgaaaa cgcctgattt tacgcgagtt tcccacaqat 2640 gatgtggaca agcctgggga taagtgccct gcggtattga cacttgaggg gcgcgactac 2700 tgacagatga ggggcgcgat ccttgacact tgaggggcag agtgctgaca gatgaggggc 2760 gcacctattg acatttgagg ggctgtccac aggcagaaaa tccagcattt gcaagggttt 2820 ccgcccgttt ttcggccacc gctaacctgt cttttaacct gcttttaaac caatatttat 2880 aaaccttgtt tttaaccagg gctgcgccct gtgcgcgtga ccgcgcacgc cgaagggggg 2940 tgcccccct tctcgaaccc tcccggcccg ctaacgcggg cctcccatcc ccccaggggc 3000 tgcgcccctc ggccgcgaac ggcctcaccc caaaaatggc agcgctggca gtccttgcca 3060 ttgccgggat cggggcagta acgggatggg cgatcagccc gagcgcgacg cccggaagca 3120 ttgacgtgcc gcaggtgctg gcatcgacat tcagcgacca ggtgccgggc agtgagggcg 3180 55 gcggcctggg tggcggcctg cccttcactt cggccgtcgg ggcattcacg gacttcatgg 3240 cggggccggc aatttttacc ttgggcattc ttggcatagt ggtcgcgggt gccgtgctcg 3300 tgttcggggg tgcgataaac ccagcgaacc atttgaggtg ataggtaaga ttataccgag 3360

gcacyaaaa	gagaactyga	ccccacaga	attactctat	gaagegeeat	atttaaaaag	3420	
ctaccaaga	c gaagaggatg	aagaggatga	ggaggcagat	tgccttgaat	atattgacaa	3480	5
tactgataa	g ataatatatc	ttttatatag	aagatatcgc	cgtatgtaag	gatttcaggg	3540	••
ggcaaggca	aggcagcgcg	cttatcaata	tatctataga	atgggcaaag	cataaaaact	3600	10
tgcatggac	aatgcttgaa	acccaggaca	ataaccttat	agcttg ta aa	ttctatcata	3660	15
attgggtaa	gactccaact	tattgatagt	gttttatgtt	cagataatgc	ccgatgactt	3720	
tgtcatgcag	g ctccaccgat	tttgagaacg	acagcgactt	ccgtcccagc	cgtgccaggt	3780	20
gctgcctca	g attcaggtta	tgccgctcaa	ttcgctgcgt	atatcgcttg	ctgattacgt	3840	25
gcagctttco	cttcaggcgg	gattcataca	gcggccagcc	atccgtcatc	catatcacca	3900	
cgtcaaaggg	g tgacagcagg	ctcataagac	gccccagcgt	cgccatagtg	cgttcaccga	3960	30
atacgtgcgo	aacaaccgtc	ttccggagac	tgtcatacgc	gtaaaacagc	cagcgctggc	4020	35
gcgatttago	cccgacatag	ccccactgtt	cgtccatttc	cgcgcagacg	atgacgtcac	4080	
tgcccggcto	g tatgcgcgag	gttaccgact	gcggcctgag	ttttttaagt	gacgtaaaat	4140	40
cgtgttgagg	g ccaacgccca	taatgcgggc	tgttgcccgg	catccaacgc	cattcatggc	4200	45
catatcaato	attttctggt	gcgtaccggg	ttgagaagcg	gtgtaagtga	actgcagttg	4260	
ccatgtttta	cggcagtgag	agcagagata	gcgctgatgt	ccggcggtgc	ttttgccgtt	4320	50
acgcaccacc	: ccgtcagtag	ctgaacagga	gggacagctg	atagacacag	aagccactgg	4380	55
agcacctcaa	aaacaccatc	atacactaaa	tcagtaagtt	ggcagcatca	cccataattg	4440	
tggtttcaaa	atcggctccg	tcgatactat	gttatacgcc	aactttgaaa	acaactttga	4500	60
aaaagctgtt	ttctggtatt	taaggtttta	gaatgcaagg	aacagtgaat	tggagttcgt	4560	

cttgttataa ttagcttctt ggggtatctt taaatactgt agaaaagagg aaggaaataa 4620 taaatggcta aaatgagaat atcaccggaa ttgaaaaaac tgatcgaaaa ataccgctgc 4680 gtaaaagata cggaaggaat gtctcctgct aaggtatata agctggtggg agaaaatgaa 4740 aacctatatt taaaaatgac ggacagccgg tataaaggga ccacctatga tgtggaacgg 4800 gaaaaggaca tgatgctatg gctggaagga aagctgcctg ttccaaaggt cctgcacttt 4860 gaacggcatg atggctggag caatctgctc atgagtgagg ccgatggcgt cctttgctcg 4920 gaagagtatg aagatgaaca aagccctgaa aagattatcg agctgtatgc ggagtgcatc 4980 aggetette actecatega catateggat tgteectata egaatagett agacageege 5040 ttagccgaat tggattactt actgaataac gatctggccg atgtggattg cgaaaactgg 5100 gaagaagaca ctccatttaa agatccgcgc gagctgtatg attttttaaa gacggaaaag 5160 cccgaagagg aacttgtctt ttcccacggc gacctgggag acagcaacat ctttgtgaaa 5220 gatggcaaag taagtggctt tattgatctt gggagaagcg gcagggcgga caagtggtat 5280 gacattgcct tctgcgtccg gtcgatcagg gaggatatcg gggaagaaca gtatgtcgag 5340 ctggatgaat tgttttagta cctagatgtg gcgcaacgat gccggcgaca agcaggagcg 5460 caccgacttc ttccgcatca agtgttttgg ctctcaggcc gaggcccacg gcaagtattt 5520 gggcaagggg tcgctggtat tcgtgcaggg caagattcgg aataccaagt acgagaagga 5580 55 cggccagacg gtctacggga ccgacttcat tgccgataag gtggattatc tggacaccaa 5640 ggcaccaggc gggtcaaatc aggaataagg gcacattgcc ccggcgtgag tcggggcaat 5700 cccgcaagga gggtgaatga atcggacgtt tgaccggaag gcatacaggc aagaactgat 5760

cgacgcgggg	tttteegeeg	aggatgeega	aaccatcgca	agccgcaccg	tcatgcgtgc	5820	
gccccgcgaa	accttccagt	ccgtcggctc	gatggtccag	caagctacgg	ccaagatcga	5880	. 5
gcgcgacagc	gtgcaactgg	ctcccctgc	cctgcccgcg	ccatcggccg	ccgtggagcg	5940 · .	10
ttcgcgtcgt	ctcgaacagg	aggcggcagg	tttggcgaag	tcgatgacca	tcgacacgcg		10
aggaactatg	acgaccaaga	agcgaaaaac	cgccggcgag	gacctggcaa	aacaggtcag	6060	15
cgaggccaag	caggccgcgt	tgctgaaaca	cacgaagcag	cagatcaagg	aaatgcagct	6120	
ttccttgttc	gatattgcgc	cgtggccgga	cacgatgcga	gcgatgccaa	acgacacggc	6180	20
ccgctctgcc	ctgttcacca	cgcgcaacaa	gaaaatcccg	cgcgaggcgc	tgcaaaacaa	6240	25
ggtcattttc	cacgtcaaca	aggacgtgaa	gatcacctac	accggcgtcg	agctgcgggc	6300	-
cgacgatgac	gaactggtgt	ggcagcaggt	gttggagtac	gcgaagcgca	cccctatcgg	6360	30
cgagccgatc	accttcacgt	tctacgagct	ttgccaggac	ctgggctggt	cgatcaatgg	6420 ₆₋	35
ccggtattac	acgaaggccg	aggaatgcct	gtcgcgccta	caggcgacgg	cgatgggctt	6480	
cacgtccgac	cgcgttgggc	acctggaatc	ggtgtcgctg	ctgcaccgct	tccgcgtcct	6540	40
ggaccgtggc	aagaaaacgt	cccgttgcca	ggtcctgatc	gacgaggaaa	tcgtcgtgct	6600	45
gtttgctggc	gaccactaca	cgaaattcat	atgggagaag	taccgcaagc	tgtcgccgac	6660	·
ggcccgacgg	atgttcgact	atttcagctc	gcaccgggag	ccgtacccgc	tcaagctgga	6720	50
aaccttccgc	ctcatgtgcg	gatcggattc	cacccgcgtg	aagaagtggc	gcgagcaggt	6780	55
cggcgaagcc	tgcgaagagt	tgcgaggcag	cggcctggtg	gaacacgcct	gggtcaatga	6840	
tgacctggtg	cattgcaaac	gctagggcct	tgtggggtca	gttccggctg	ggggttcagc	6900	60
agccagcgct	ttactggcat	ttcaggaaca	agcgggcact	gctcgacgca	cttgcttcgc	6960	

teagtatege tegggaegea eggegegete tacgaactge egataaacag aggattaaaa 7020 5 ttgacaattg tgattaaggc tcagattcga cggcttggag cggccgacgt gcaggatttc 7080 cgcgagatcc gattgtcggc cctgaagaaa gctccagaga tgttcgggtc cgtttacgag 7140 10 cacgaggaga aaaagcccat ggaggcgttc gctgaacggt tgcgagatgc cgtggcattc 7200 15 ggcgcctaca tcgacggcga gatcattggg ctgtcggtct tcaaacagga ggacggcccc 7260 aaggacgctc acaaggcgca tctgtccggc gttttcgtgg agcccgaaca gcgaggccga 7320 ggggtcgccg gtatgctgct gcgggcgttg ccggcgggtt tattgctcgt gatgatcgtc 7380 cgacagattc caacgggaat ctggtggatg cgcatcttca tcctcggcgc acttaatatt 7440 tegetattet ggagettgtt gtttattteg gtetaeegee tgeegggegg ggtegeggeg 7500 acggtaggcg ctgtgcagcc gctgatggtc gtgttcatct ctgccgctct gctaggtagc 7560 ccgatacgat tgatggcggt cctgggggct atttgcggaa ctgcgggcgt ggcgctgttg 7620 gtgttgacac caaacgcagc gctagatcct gtcggcgtcg cagcgggcct ggcgggggcg 7680 gtttccatgg cgttcggaac cgtgctgacc cgcaagtggc aacctcccgt gcctctgctc 7740 acctttaccg cctggcaact ggcggccgga ggacttctgc tcgttccagt agctttagtg 7800 tttgatccgc caatcccgat gcctacagga accaatgttc tcggcctggc gtggctcggc 7860 ctgatcggag cgggtttaac ctacttcctt tggttccggg ggatctcgcg actcgaacct 7920 acagttgttt ccttactggg ctttctcagc cccagatctg gggtcgatca gccggggatg 7980 catcaggecg acagteggaa ettegggtee eegacetgta eeatteggtg ageaatggat 8040 aggggagttg atatcgtcaa cgttcacttc taaagaaata gcgccactca gcttcctcag 8100 cggctttatc cagcgatttc ctattatgtc ggcatagttc tcaagatcga cagcctgtca 8160

cgg	gttaagcg	agaaatgaat	aagaaggctg	ataattegga	tetetgegag	ggagatgata	8220	
ttt	gatcaca	ggcagcaacg	ctctgtcatc	gttacaatca	acatgctacc	ctccgcgaga	8280	5
tca	atccgtgt	ttcaaacccg	gcagcttagt	tgccgttctt	ccgaatagca	tcggtaacat	8340	
gaç	gcaaagtc	tgccgcctta	caacggctct	cccgctgacg	ccgtcccgga	ctgatgggct	8400	10
gcc	ctgtatcg	agtggtgatt	ttgtgccgag	ctgccggtcg	gggagctgtt	ggctggctgg	8460	15
tgg	gcaggata	tattgtggtg	taaacaaatt	gacgcttaga	caacttaata	acacattgcg	8520	
gac	gttttta	atgtactggg	gtggtttttc	ttttcaccag	tgaĝacgggc	aacagctgat	8580	20
tgo	ccttcac	cgcctggccc	tgagagagtt	gcagcaagcg	gtccacgctg	gtttgcccca	8640	25
gca	aggcgaaa	atcctgtttg	atggtggttc	cgaaatcggc	aaaatccctt	ataaatcaaa	8700	
aga	atagccc	gagatagggt	tgagtgttgt	tccagtttgg	aacaagagtc	cactattaaa	8760	30
gaa	acgtggac	tccaacgtca	aagggcgaaa	aaccgtctat	cagggcgatg	gcccactacg	8820	35
tga	accatca	cccaaatcaa	gttttttggg	gtcgaggtgc	cgtaaagcac	taaatcggaa	8880	
ccc	taaaggg	agcccccgat	ttagagcttg	acggggaaag	ccggcgaacg	tggcgagaaa	8940	40
gga	agggaag	aaagcgaaag	gagcgggcgc	cattcaggct	gcgcaactgt	tgggaagggc	9000	45
gat	cggtgcg	ggcctcttcg	ctattacgcc	agctggcgaa	agggggatgt	gctgcaaggc	9060	
gat	taagttg	ggtaacgcca	gggttttccc	agtcacgacg	ttgtaaaacg	acggccagtg	9120	50
aat	taattcc	catcttgaaa	gaaatatagt	ttaaatattt	attgataaaa	taacaagtca	9180	55
ggt	attatag	tccaagcaaa	aacataaatt	tattgatgca	agtttaaatt	cagaaatatt	9240	
tca	aataactg	attatatcag	ctggtacatt	gccgtagatg	aaagactgag	tgcgatatta	9300	60
tgt	gtaatac	ataaattgat	gatatagcta	gcttagctca	tcgggggatc	cgtcgaagct	9360	65

agcttgggtc ccgctcagaa gaactcgtca agaaggcgat agaaggcgat gcgctgcgaa 9420 tegggagegg egatacegta aageaegagg aageggteag eecattegee gecaagetet 9480 tcagcaatat cacgggtagc caacgctatg tcctgatagc ggtccgccac acccagccgg 9540 ccacagtcga tgaatccaga aaagcggcca ttttccacca tgatattcgg caagcaggca 9600 10 tegecatggg teacgaegag atectegeeg tegggeatge gegeettgag cetggegaac 9660 agttcggctg gcgcgagccc ctgatgctct tcgtccagat catcctgatc gacaagaccg 9720 gcttccatcc gagtacgtgc tcgctcgatg cgatgtttcg cttggtggtc gaatgggcag 9780 gtagccggat caagcgtatg cagccgccgc attgcatcag ccatgatgga tactttctcg 9840 gcaggagcaa ggtgagatga caggagatcc tgccccggca cttcgcccaa tagcagccag 9900 tecetteceg etteagtgae aacgtegage acagetgege aaggaaegee egtegtggee 9960 agccacgata gccgcgctgc ctcgtcctgc agttcattca gggcaccgga caggtcggtc 10020 ttgacaaaaa gaaccgggcg cccctgcgct gacagccgga acacggcggc atcagagcag 10080 ccgattgtct gttgtgccca gtcatagccg aatagcctct ccacccaagc ggccggagaa 10140 cctgcgtgca atccatcttg ttcaatccaa gctcccatgg gccctcgact agagtcgaga 10200 tctggattga gagtgaatat gagactctaa ttggataccg aggggaattt atggaacgtc 10260 agtggagcat ttttgacaag aaatatttgc tagctgatag tgaccttagg cgacttttga 10320 acgcgcaata atggtttctg acgtatgtgc ttagctcatt aaactccaga aacccgcggc 10380 55 tgagtggctc cttcaacgtt gcggttctgt cagttccaaa cgtaaaacgg cttgtcccgc 10440 gtcatcggcg ggggtcataa cgtgactccc ttaattctcc gctcatgatc ttgatcccct 10500 gcgccatcag atccttggcg gcaagaaagc catccagttt actttgcagg gcttcccaac 10560

cttaccagag	ggcgccccag	ctggcaattc	cggttcgctt	gctgtccata	aaaccgccca	10620	
gtctagctat	cgccatgtaa	gcccactgca	agctacctgc	tttctctttg	cgcttgcgtt	10680	5
ttcccttgtc	cagatagccc	agtagctgac	attcatccgg	ggtcagcacc	gtttctgcgg	10740	
actggctttc	tacgtgttcc	gcttccttta	gcagcccttg	cgccctgagt	gcttgcggca	10800	10
gcgtgaagct	tgcatgcctg	caggtcgacg	gcgcgccgag	ctcctcgagc	aaatttacac	10860	- 15
attgccacta	aacgtctaaa	cccttgtaat	ttgtttttgt	tttactatgt	gtgttatgta	10920	
tttgatttgc	gataaatttt	tatatttggt	actaaattta	taacaccttt	tatgctaacg	10980	20
tttgccaaca	cttagcaatt	tgcaagttga	ttaattgatt	ctaaattatt	tttgtcttct	11040	25
aaatacatat	actaatcaac	tggaaatgta	aatatttgct	aatatttcta	ctataggaga	11100	
attaaagtga	gtgaatatgg	taccacaagg	tttggagatt.	taattgttgc	aatgctgcat	11160	30
ggatggcata	tacaccaaac	attcaataat	tcttgaggat	aataatggta	ccacacaaga	11220	35
tttgaggtgc	atgaacgtca	cgtggacaaa	aggtttagta	atttttcaag	acaacaatgt	11280	
taccacacac	aagttttgag	gtgcatgcat	ggatgccctg	tggaaagttt	aaaaatattt	11340	40
tggaaatgat	ttgcatggaa	gccatgtgta	aaaccatgac	atccacttgg	aggatgcaat	11400	45
aatgaagaaa	actacaaatt	tacatgcaac	tagttatgca	tgtagtctat	ataatgagga	11460	
ttttgcaata	ctttcattca	tacacactca	ctaagtttta	cacgattata	atttcttcat	11520	50
agccagccca	ccgcggtgga		•	g aga ttc ta		11572	55
		met Giu 1	var var Gru	Arg Phe Ty	10		
ttg gat ggg	g aag gtc to	g cag ggc g	rtg aat gca	ttg ctg ggt	agt ttt	11620	60
Leu Asp Gly		er Gln Gly V		Leu Leu Gly			
	15		20		25		

	ggg Glv	gtg Val	gag Glu	ttg Leu	acg Thr	gat Asp	acg Thr	ccc Pro	act Thr	acc Thr	aaa Lys	ggc Gly	ttg Leu	ccc Pro	ctc Leu	gtt Val	11668
5	U -J			30					35					40			
	gac	agt	ccc	aca	ccc Pro	atc	gtc	ctc	ggt	gtt val	tct	gta Val	tac Tvr	ttg Leu	act Thr	att Ile	11716
10	Asp	Ser	Pro 45	Thr	Pro	iie	Val	50	GIY	Vai	Dez	•	55				
15	gtc	att	gga	ggg	ctt Leu	ttg	tgg	ata Tle	aag	·gcc	agg Arg	gat Asp	ctg Leu	aaa Lys	ccg Pro	cgc Arg	11764
	Val	Ile		GIY	reu	Leu	65	110	232		5	70					
20	gcc	tcg	g gag	cca	ttt Phe	ttg	ctc	caa	gct	ttg Leu	gtg Val	ctt Leu	gtg Val	cac His	aac Asn	ctg Leu	11812
25	Ala 75		c GIU	Pro	Phe	80		0211			85		•			90	
	tto	tg:	t ttt	gc	gctc	agt	ctg	tat	ato Met	tgo Cvs	gtg Val	ggc Gly	atc	gct Ala	tat a Tyr	cag	11860
30	Phe	e Cy	s Pne	s MT	. 95		. Dec	,-		100					109	5	
35	gci	t at	t ac	c tg	g cgg	g ta	c tci	t cto	c tgg	g gg o Gl	c aat y Asi	gca n Ala	a tac a Tyr	aa As	t cc n Pr	t aaa o Lys	11908
	AL	a ll	e III	11		.			11					12	0		
40	ca	t aa	a ga	g at	g gc	g at a Il	t ct	g gt u Va	a ta 1 Ty	c tt r Le	g tt u Ph	c ta e Ty	c ato	g tc t Se	t aa r Ly	g tac	11956
4:		ъ шу	12					13					13	5 ·			
	gt	g ga	aa tt	c at	g ga	t ac	c gt r Va	t at	c at	g at	a ct e Le	g aa u Ly	g cg s Ar	c ag	c ac	c agg nr Arg	12004
5	0		40			•	14					15					
5	C6	aa a	ta aq	gc t	tc ct he Le	c ca	ac gt is Va	t ta	at ca yr H:	at ca	at to is Se	et to er Se	ca at er Il	t to Le So	ec c	tc att	12052
		55	TE 31	. تد عد			60	•	-			55				170	
•	50 t	gg t	gg g	ct a	tt g	ct c	at c	ac g	ct c la P	ct g ro G	gc g ly G	gt g ly G	aa go lu A	ca t la T	at t yr T	gg tct rp Ser	12100
	T 65	rp 1	rp A	1a 1		75	••		_		80				1	85	

gcg	gct	ctg	aac	tca	gga	gtg	cat	gtt	ctc	atg	tat	gcg	tat	tac	ttc	12148	
Ala	Ala	Leu	Asn	Ser	Gly	Val	His	Val	Leu	Met	Tyr	Ala	Tyr	Tyr	Phe		
			190					195					200			·	5
ttg	gct	gcc	tgc	ctt	cga	agt	agc	cca	aag	tta	aaa	aat	aag	tac	ctt	12196	
Leu	Ala	Ala	Cys	Leu	Arg	Ser	Ser	Pro	Lys	Leu	Lys	Asn	Lys	Tyr	Leu	•	10
		205					210					215			. •		
ttt	tgg	ggc	agg	tac	ttg	aca	caa	ttc	caa	atg	ttc	cag	ttt	atg	ctg	12244	15
Phe	Trp	Gly	Arg	Tyr	Leu	Thr	Gln	Phe	Gln	Met	Phe	Gln	Phe	Met	Leu		
	220			-		225					230						
																	20
aac	tta	ata	caq	act	tac	tac	gac	atq	aaa	acg	aat	gcg	cca	tat	cca	12292	. 20
							Asp										
235					240	•			-	245				-	250		25
																	25
caa	taa	cta	atc	aaσ	att	t.ta	ttc	tac	tac	ato	atc	tca	tta	cta	ttt	12340	4
							Phe										
				255				-1-	260					265			30
				233													
ctt	++~	aac	aat	+++	tac	ota	caa	222	tac	atc	222	ccc	tot	gac	aga.	12388	
		-, -					Gln									12300	35
neu	PHE	GTA	270	PHE	TYL	vaı	GIII	275	TAT	116	пур	FIU	280	dev	GIY		
			270					213					200				
	633	224	~~a	aat	222	act	gag	+~=	tat	-~==	700	ctcc	tact			12435	40
		_		_				cya		ayaa	ggc .		cycc	CC		12433	
гўг	Gln	285	GIY	ATA	ьys		290										
		263					290										45
													- a -			12405	
aat	gaga	cat (gcga	gacg	CC L	acga	tege	a tg	acac	ttgc	בננ	caat	LCL	gccg	tgcacg	12495	
														.		10555	50
ttg	caaa	aaa	cctg	agca	tg t	gtag	ctcag	g at	CCLL	accg	ccg	gttt	cgg	ttca	ttctaa	12555	
										.						10615	
tga	atata	atc a	accc	gtta	ct a	ccgt.	actti	t ta	tgaa	taat	att	CECC	gcċ	caat	ttactg	12012	55 .
		_														10655	
att	gtcc	gtc (gagc	aaat	ct a	caca	ttgc	c ac	caaa	cgtc	taa	accc	c cg	caat	ttgttt	120/5	
																40505	60
ttg	tttt	act .	atgt	gtgt	ta t	gtat	ttgai	t tt	gcga	taaa	ttt	ttat	att	tggt.	actaaa	12/35	
														.		10705	
ttt	ataa	cac	cttt.	tatg	ct a	acgt	ttgc	c aa	cact	tagc	aat	ttgc	aag	ttga	ttaatt	12/95	65

	gatt	ctaa	aat	tattt	ttgt	c tt	ctaa	atac	ata	atact	aat	caad	tgga	aaa	tgtaa	atatt	12855
5	tgct	aata	att	tctac	ctata	ıg ga	agaat	taaa	gtg	gagto	gaat	atgg	gtaco	cac a	aaggt	ttgga	12915
	gatt	taat	tg	ttgca	aatgo	t go	catgo	gatgg	g cat	catac	acc	aaad	catto	caa 1	taatt	cttga	12975
10	ggat	aata	aat	ggtad	ccaca	ıc aa	agatt	tgag	gto	gcato	gaac	gtca	acgto	gga (caaaa	aggttt	13035
15	agta	att	tt	caaga	acaac	a at	tgtta	accac	aca	acaag	jttt	tgag	ggtgd	cat o	gcato	ggatgc	13095
	ccto	gtgga	aaa	gttta	aaaaa	ıt ai	ttttg	ggaaa	a tga	attto	gcat	ggaa	agcca	atg 1	tgtaa	aacca	13155
20	tgad	catco	cac	ttgga	aggat	g ca	aataa	atgaa	a gaa	aaact	aca	aatt	taca	atg (caact	agtta	13215
25	tgca	atgta	agt	ctata	ataat	g ag	ggatt	ttgo	aat	cactt	tca	ttca	ataca	aca (ctcac	ctaagt	13275
30	ttta	acacç	gat	tataa	attto	t to	cataç	gccag	g cgg	gatco					a Gly	ggt Gly	13330
35				cag Gln													13378
40	gcc	agt	atg	tct	ctc	ttc	agc	gac	ttc	ttc	agt	tat	gtg	tct	tca	act	13426
45	Ala	Ser 315	Met	Ser	Leu	Phe	Ser 320	Asp	Phe	Phe	Ser	Tyr 325	Val	Ser	Ser	Thr	
50			-	tgg Trp													13474
55	_	_	_	cgt Arg	•	_	_	-	•	_			_			_	13522
60				aga Arg 365													13570
65																	

gaa	tca	gtc	gtg	aag	ccc	acg	aga	cga	agg	tca	tct	cag	tgg	aag	aag	13618	
Glu	Ser	Val	Val	Lys	Pro	Thr	Arg	Arg	Arg	Ser	Ser	Gln	Trp	Lys	Lys	•	
		380					385					390					5
							•										
tcg	aca	cac	ccc	cta	tca	gaa	gta	gca	gta	cac	aac	aag	cca	agc	gat	13666	
Ser	Thr	His	Pro	Leu	Ser	Glu	Val	Ala	Val	His	Asn	Lys	Pro	Ser	Asp	•	10
	395					400					405					£	
																•	
tgc	tgg	att	gtt	gta	aaa	aac	aag	gtg	tat	gat	gtt	tcc	aat	ttt	gcg	13714	. 15
Cys	Trp	Ile	Val	Val	Lys	Asn	Lys	Val	Tyr	Asp	Val	Ser	Asn	Phe	Ala	•	
410					415					420					425		
																	20
gac	gag	cat	ccc	gga	gga	tca	gtt	att	agt	act	tat	ttt	gga	cga	gac	13762	
Asp	Glu	His	Pro	Gly	Gly	Ser	Val	Ile	Ser	Thr	Tyr	Phe	Gly	Arg	Asp		
				430					435					440	*		25
																	23
ggc	aca.	gat	gtt	ttc	tct	agt	ttt	cat	gca	gct	tct	aca	tgg	aaa	att	13810	
Gly	Thr	Asp	Val	Phe	Ser	Ser	Phe	His	Ala	Ala	Ser	Thr	Trp	Lys	Ile	•	30
_			445					450			-		455				
												-					
ctt	caa	gac	ttt	tac	att	ggt	gac	gtg	gag	agg	gtg	gag	ccg	act	cca	13858	35
	Gln	_					_						_			**	33
		460				-	465					470					
																:	40
gag	ctg	ctg	aaa	gat	ttc	cga	gaa	atg	aga	gct	ctt	ttc	ctg	agg	gag	13906	40
Glu	Leu	Leu	Lys	Asp	Phe	Arg	Glu	Met	Arg	Ala	Leu	Phe	Leu	Arg	Glu		
	475		-	_		480					485						
																	45
caa	ctt	ttc	aaa	agt	tcg	aaa	ttg	tac	tat	gtt	atg	aag	ctg	ctc	acg	13954	
Gln	Leu	Phe	Lys	Ser	Ser	Lys	Leu	Tyr	Tyr	Val	Met	Lys	Leu	Leu	Thr		
490					495				•	500					505	•	50
aat	gtt	gct	att	ttt	gct	gcg	agc	att	gca	ata	ata	tgt	tgg	agc	aag	14002	
Asn	Val	Ala	Ile	Phe	Ala	Ala	Ser	Ile	Ala	Ile	Ile	Cys	Trp	Ser	Lys		55
				510					515					520			
															•		
act	att	tca	gcg	gtt	ttg	gct	tca	gct	tgt	atg	atg	gct	ctg	tgt	ttc	14050	60
	Ile														_		
			525					530	=				535				
																	65

caa cag tgc gga tgg cta tcc cat gat ttt ctc cac aat cag gtg ttt 14098 Gln Gln Cys Gly Trp Leu Ser His Asp Phe Leu His Asn Gln Val Phe 540 545
gag aca cgc tgg ctt aat gaa gtt gtc ggg tat gtg atc ggc aac gcc 14146 10 Glu Thr Arg Trp Leu Asn Glu Val Val Gly Tyr Val Ile Gly Asn Ala 555 560 565
gtt ctg ggg ttt agt aca ggg tgg tgg aag gag aag cat aac ctt cat 14194 Val Leu Gly Phe Ser Thr Gly Trp Trp Lys Glu Lys His Asn Leu His 570 585
cat gct gct cca aat gaa tgc gat cag act tac caa cca att gat gaa 14242 His Ala Ala Pro Asn Glu Cys Asp Gln Thr Tyr Gln Pro Ile Asp Glu 590 595 600
gat att gat act ctc ccc ctc att gcc tgg agc aag gac ata ctg gcc 14290 Asp Ile Asp Thr Leu Pro Leu Ile Ala Trp Ser Lys Asp Ile Leu Ala 605 610 615
aca gtt gag aat aag aca ttc ttg cga atc ctc caa tac cag cat ctg 14338 Thr Val Glu Asn Lys Thr Phe Leu Arg Ile Leu Gln Tyr Gln His Leu 620 625 630
ttc ttc atg ggt ctg tta ttt ttc gcc cgt ggt agt tgg ctc ttt tgg 14386 Phe Phe Met Gly Leu Leu Phe Phe Ala Arg Gly Ser Trp Leu Phe Trp 635 640 645
agc tgg aga tat acc tct aca gca gtg ctc tca cct gtc gac agg ttg 14434 Ser Trp Arg Tyr Thr Ser Thr Ala Val Leu Ser Pro Val Asp Arg Leu 650 650 660 665
ttg gag aag gga act gtt ctg ttt cac tac ttt tgg ttc gtc ggg aca 14482 Leu Glu Lys Gly Thr Val Leu Phe His Tyr Phe Trp Phe Val Gly Thr 680
gcg tgc tat ctt ctc cct ggt tgg aag cca tta gta tgg atg gcg gtg 14530 Ala Cys Tyr Leu Leu Pro Gly Trp Lys Pro Leu Val Trp Met Ala Val 685 690 695

act	gag	ctc	atg	tcc	ggc	atg	ctg	ctg	ggc	ttt	gta	ttt	gta	ctt	agc	14578	
Thr	Glu	Leu	Met	Ser	Gly	Met	Leu	Leu	Gly	Phe	Val	Phe	Val	Leu	Ser		
		700					705					710					5
cac	aat	aaa	atg	gag	gtt	tat	aat	tcg	tct	aaa	gaa	ttc	gtg	agt	gca	14626	
His	Asn	Gly	Met	Glu	Val	Tyr	Asn	Ser	Ser	Lys		Phe	Val	Ser	Ala		10
	715					720					725						
_		_		aca	-											14674	15
Gln	Ile	Val	Ser	Thr		Asp	Ile	Lys	Gly	Asn	Ile	Phe	Asn	Asp			
730					735					740		•			745		
										•							20
				ctt												14722	
Phe	Thr	Gly	Gly	Leu	Asn	Arg	Gln	Ile		His	His	Leu	Phe		Thr		
				750					755					760			25
																	٠,
_				aat												14770	
Met	Pro	Arg		Asn	Leu	Asn	Lys	Ile	Ala	Pro	Arg	Val	Glu	Val	Phe		30
			765					770					775				
				ggt												14818	35
Cys	Lys	Lys	His	Gly	Leu	Val		Glu	Asp	Val	Ser		Ala	Thr	Gly		
		780					785					790					
																	40
_	_	_	-	ttg		_	-	_	-	_			_		_	14866	
Thr	_	Lys	Val	Leu	Lys		Leu	Lys	Glu	Val		Glu	Ala	Ala	Ala		
	795					800					805						45
	_		_			-	taa	gcta	agcg	tta a	accc	tgct	tt a	atga	gatat	14920	
	Gln	His	Ala	Thr		Ser											50
810					815												
																1 1000	
gcg	agac	gcc	tatg	atcg	ca to	gata	tttg	c tt	tcaa	ttct	gtt	gtgc	acg	ttgt	aaaaaa	14980	55.
																15040	
cct	gagc	atg	tgta	gctc	ag a	tcct	tacc	g cc	ggtt	tcgg	ttc	attc	taa	tgaa	tatatc	15040	
						_ •										15100	60
acc	cgtt	act	atcg	tatt	ct ta	atga	ataa	t at	tctc	cgtt	caa	ttta	ctg .	attg	tccgtc	12100	
												.		++~+		15160	
gag	caaa	LTT	acac	attg	cc a	ctaa	acgt	c ta	aacc	ceeg	Laa	cccg	LLE	ctgc	tttact	12100	65

	atgtgtgtta	tgtatt	tgat tto	cgataaa	tttttata	tt tggta	ctaaa tt	tataacac	15220
5	cttttatgct	aacgtt	tgcc aac	acttagc	aatttgca	ag ttgat	taatt ga	attctaaat	15280
	tatttttgto	c ttctaa	atac ata	atactaat	caactgga	aa tgtaa	atatt tç	gctaatatt	15340
10	tctactata	g gagaat	taaa gt	gagtgaat	atggtacc	ac aaggt	ttgga ga	atttaattg	15400
15	ttgcaatgc	t gcatgg	gatgg ca	tatacacc	aaacatto	aa taatt	cttga g	gataataat	15460
	ggtaccaca	c aagatt	tgag gt	gcatgaac	gtcacgtg	ga caaaa	iggttt a	gtaatttt	15520
20	caagacaac	a atgtta	accac ac	acaagttt	tgaggtgo	at gcat	ggatgc c	ctgtggaaa	15580
25	gtttaaaaa	it atttt	ggaaa tg	atttgcat	ggaagcca	atg tgta	aaacca t	gacatccac	: 15640
	ttggaggat	g caata	atgaa ga	laaactaca	aatttac	atg caac	tagtta t	gcatgtagt	: 15700
30	ctatataat	cg aggat	tttgc aa	atactttca	ttcatac	aca ctca	ctaagt t	ttacacgat	15760
35	tataattt	ct tcata	gccag ca	agatetaaa	a atg gct	ccg gat	gcg gat	aag ctt Lys Leu	15814
					Met Ald	820		825	
40	cga caa	cgc cag	acg act	gcg gta	gcg aag	cac aat	gct gct	acc ata	15862
45		Arg Gln	830	Ala Val	Ala Lys 835	nis van	ATG TITE	840	
50	Ser Thr	cag gaa Gln Glu 845	cgc ctt	tgc agt Cys Ser	ctg tct Leu Ser 850	tcg ctc Ser Leu	aaa ggc Lys Gly 855	Glu Glu	15910
	gtc tgc	atc gac	gga ato	atc tat	gac ctc	caa tca	ttc gat	cat ccc	15958
5	5 Val Cys	Ile Asp 860	Gly Ile	e Ile Tyr 865	Asp Leu	Gln Ser	Phe Asp 870	His Pro	
6	50		•	3 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	gat ggc	aac gat	gtc act	t gta cag	16006
	ggg ggt Gly Gly 875	gaa acg Glu Thr	lle Lys	s Met Phe	Gly Gly	Asn Asp	Val Thi	r Val Gln	

tac	aag	atg	att	cac	ccg	tac	cat	acc	gag	aag	cat	ttg	gaa	aag	atg	16054	
Туз	Lys	Met	Ile	His	Pro	Tyr	His	Thr	Glu	Lys	His	Leu	Glu	Lys	Met		
890)				895					900					905	•	5
aaç	gcgt	gtc	ggc	aag	gtg	acg	gat	ttc	gtc	tgc	gag	tac	aag	ttc	gat	16102	
Lys	Arg	Val	Gly	Lys	Val	Thr	Asp	Phe	Val	Cys	Glu	Tyr	Lys	Phe	Asp		10
				910					915					920			
acc	gaa	ttt	gaa	cgc	gaa	atc	aaa	cga	gaa	gtc	ttc	aag	att	ata	cga	16150	15
	Glu								_	_		_			_		13
			925	J				930					935		3		
																	20
cas	ggc	aaσ	gat	ttc	aat.	act	tta	gga	taa	ttc	 ttc	cat	aca	ttt	tac	16198	20
_	Gly	-	_				_					_			_	20270	
•	, , , , , ,	940			U -1		945	O ₁	***	1110	1110	950	niu	1110	CJS		
		7.10					713					,,,,					25
tar	att	acc	att	ttc	ttc	tac	cta	cac	tac	cat	taa	ata	200	200	~~a	16246	
		•														10240	
тУı	1le 955	ATG	TTE	FIIE	rne	_	neu	GIII	TYL	nis	_	vai	THE	THE	СТА		30
	955					960			-		965						
																1.6004	
	tct									•			_			16294	35
	Ser	ı.rp	Leu	Leu		Val	Ala	Tyr	GIY		Ser	Gin	Ala	Met			
970	l				975					980					985		
																	40
	atg										-				-	16342	
GΤŽ	Met	Asn	vaı		HIS	Asp	Ата	Asn		GIĀ	Ala	Thr		_	Arg		
				990					995]	1000			45
	tgg										_					16390	
Pro	Trp			Asp	Met	Leu			Gly	Ala	Asp			Gly	Gly		50
		1	1005					1010				3	1015				
	aag															16438	55.
Ser	Lys		Leu	Trp	Gln	Glu	Gln	His	Trp	Thr	His	His	Ala	Tyr	Thr		
	:	L020				1	L025				1	L030					
																	60
	cac											_				16486	
Asr	His	Ala	Glu	Met	Asp	Pro	Asp	Ser	Phe	Gly	Ala	Glu	Pro	Met	Leu		
	1035				1	1040				. 1	1045						65
																	65

	cta	ttc	aac	gac	tat	ccc	ttg	gat	cat	ccc	gct	cgt	acc	tgg	cta	cat	16534
	Leu	Phe	Asn	Asp	Tyr	Pro	Leu	Asp	His	Pro	Ala	Arg	Thr	Trp	Leu	His	
5	1050	0				1055					1060					1065	
																ttg	16582
10	Arg	Phe	Gln	Ala	Phe	Phe	Tyr	Met	Pro	Val	Leu	Ala	Gly	Tyr	Trp	Leu	
					1070					1075					1080		
15	tcc	gct	gtc	ttc	aat	cca	caa	att	ctt	gac	ctc	cag	caa	cgc	ggc	gca	16630
	Ser	Ala	Val	Phe	Asn	Pro	Gln	Ile	Leu	Asp	Leu	Gln	Gln	Arg	Gly	Ala	
			:	1085				:	1090				:	1095			
20																•	
	ctt	tcc	gtc	ggt	atc	cgt	ctc	gac	aac	gct	ttc	att	cac	tcg	cga	cgc	16678
	Leu	Ser	Val	Gly	Ile	Arg	Leu	Asp	Asn	Ala	Phe	Ile	His	Ser	Arg	Arg	
25		;	1100					1105				;	1110				
	aag	tat	gcg	gtt	ttc	tgg	cgg	gct	gtg	tac	att	gcg	gtg	aac	gtg	att	16726
30	Lys	Tyr	Ala	Val	Phe	Trp	Arg	Ala	Val	Tyr	Ile	Ala	Val	Asn	Val	Ile	
	1	1115				:	1120				:	1125					
35	gct	ccg	ttt	tac	aca	aac	tcc	ggc	ctc	gaa	tgg	tcc	tgg	cgt	gtc	ttt	16774
													Trp				
	1130)			1	L135				:	L140				:	L145	
40																	
	gga	aac	atc	atg	ctc	atg	ggt	gtg	gcg	gaa	tcg	ctc	gcg	ctg	gcg	gtc	16822
													Ala				
45					150					1155					L160		
43																	
	ctg	ttt	tcg	ttg	tcg	cac	aat	ttc	gaa	tcc	gcg	gat	cgc	gat	ccg	acc	16870
50	Leu												Arg				
50				1165					170			_		.175			
	gcc	cca	ctg	aaa	aag	acg	gga	gaa	cca	gtc	gac	taa	ttc	aaσ	aca	cag	16918
55	Ala																
			180	-	_			185	-				1190	-2-			
								-				•	•				
60	gtc	gaa	act	tcc	tgc	act	tac	ggt	gga	ttc	ctt	tcc	ggt	tac	ttc	acq	16966
	Val															_	
		195			=		200	-	-			1205		-1-			
65											_						

				aac													17014	
	ly 210	_	Lev	ı Asn		Gln 1215	Val	Glu	His		Leu 1220	Pne	Pro	Arg		Ser 1225		5
								•								•		
	_	_		y tat Tyr													17062	10
			•	-	1230	-				- 1235					1240			
a	a a	cac	aaa	gto	cac	tac	acc	tac	tac	·cca	taa	atc	cac	caa	aac	ttt'	17110	15
				y Val														. 13
				1245				:	L250	•				1255				
С	tc	tcc	aco	gtc	· cgc	tac	atg	cac	gcg	gcc	ggg	acc	ggt	gcc	aac	tgg	17158	20
				val														•
			1260)				1265		•			1270					25
C	gc	cag	ato	g gcc	aga	gaa	aat	ccc	ttg	acc	gga	cgg	gcg	taa			17200	
A	_			: Ala	Arg			Pro	Leu	Thr	-	_	Ala					30
	1	.275					1280				-	1285			٠	•		
a	gat	ctg	ccg	gcat	cgat	cc c	gggc	catg	g cc	tgcti	ttaa	tgag	gata	tgc	gaga	cgccta	17260	35
t	gat	cac	atg	atat	ttgc	tt t	caat	tctai	ta	taca	catt	gtaa	aaaa	acc	tgag	catgtg	17320	
	•	-	J					J	•	-	-	٠.						40
t	ago	tca	gat	cctt	accg	cc g	gttt	cggti	t ca	ttct	aatg	aata	atato	cac	ccgt	tactat	17380	
C	gta	ittt	tta	tgaa	taat	at t	ctcc	gttca	a at	ttac	tgat	tgt	cgt	cga	cgag	ctcggc	17440	45
_			+			.				a+ a a .					~++~	~~~+ + ~	17500	
g	cgo	CCC	cag	agga	tega	tg a	acte	agato	e gg	ctga	grgg	CLC	CLLC	aac	gttg	cggttc	1/500	50
t	gto	agt	tcc	aaac	gtaa	aa c	ggct	tgtc	c cg	cgtc	atcg	gcg	aaaa.	tca	taac	gtgact	17560	50
c	cct	taa	ttc	tcco	ctca	tg a	tcag	attg	t cg	tttc	ccac	ctt	cagt	tta	aact	atcagt	17620	
						- 3	J						•		-			55
g	ttt	gac	agg	atat	attg	gc g	ggta	aacc	t aa	gaga	aaag	agc	gttt	att	agaa	taatcg	17680	
g	ata	ttt	aaa	aggg	cgtg	aa a	aggt	ttat	c ct	tcgt	ccat	ttg	tatg	tgc	atgc	caacca	17740	60
_																	17750	
C	agg	ygct	ccc	ca													17752	. 65

<210> 47

	<21	1> 2	290													
5	<21	.2> 1	PRT													
	<21	.3> t	Jnkno	own												
10	<40	0> 4	17													
10				V-1	Gly	7~0	Dho		. 01-	- 01		_			_	
	1			· vai			Pile	туг	. Сту			Asp	GIY	/ Lys	Val	Ser
	_	•			5)				10)				15	
15																
	Gln	Gly	v Val	. Asn	Ala	Leu	Leu	Gly	Ser	Phe	Gly	Val	Glu	Leu	Thr	Asp
				20	ı				25					30		
20																
	Thr	Pro	Thr	Thr	Lys	Gly	Leu	Pro	Leu	Val	Asp	Ser	Pro	Thr	Pro	Ile
			35					40					45			
25																
	Val	Leu	Gly	Val	Ser	Val	Tyr	Leu	Thr	Ile	Val	Tle	Glv	Glv	Leu	Leu
		50					- 55					60	CLy	Gry	Dea	neu
												00				
30	תיים	Tle	Tare	בומ	7 ~~	3.00	T 011	T	D	_		_				
	65	-10	Буз	Ala	AIG		reu	гàг	Pro	Arg		Ser	Glu	Pro	Phe	Leu
	05					70					75					80
35	T	~7		_												
	Leu	Gin	Ala	Leu		Leu	Val	His	Asn	Leu	Phe	Cys	Phe	Ala	Leu	Ser
					85					90					95	
40																
	Leu	Tyr	Met	Cys	Val	Gly	Ile	Ala	Tyr	${\tt Gln}$	Ala	Ile	Thr	Trp	Arg	Tyr
				100					105					110		
45																
,,,	Ser	Leu	Trp	Gly	Asn	Ala	Tyr	Asn	Pro	Lys	His	Lys	Glu	Met	Ala	Ile
			115					120		_		-	125			
50	Leu	Val	Tvr	Leu	Phe	Tvr	Met	Ser	Lve	ጥኒም	₹7a T	C1.,	Dho	Wa.	.	ml
		130	•			-1-	135	501	LJ S	TYT	Val		Pne	Met	Asp	Thr
							133					140				
55	1/2·1	т1 ~	Mot	T1 ~	T	¥		. .		_		_				
	Val	TIE	Mec	11e	Leu		Arg	Ser	Thr	Arg	Gln	Ile	Ser	Phe	Leu	His
	145					150					155					160
60																
	Val	Tyr	His	His	Ser	Ser	Ile	Ser	Leu	Ile	Trp	Trp	Ala	Ile	Ala	His
					165					170					175	
65																
65																

His	Ala	Pro	Gly 180	Gly	Glu	Ala	Tyr	Trp 185	Ser	Ala	Ala	Leu	Asn 190	Ser	Gly	•	
Val	His	Val 195	Leu	Met	Tyr	Ala	Tyr 200	Tyr	Phe	Leu	Ala	Ala 205	Cys	Leu	Arg		
Ser	Ser 210	Pro	Lys	Leu	Lys	Asn 215	Lys	Tyr	Leu	Phe	Trp 220	Gly	Arg	Tyr	Leu		. 10
Thr 225	Gln	Phe	Gln	Met	Phe 230	Gln	Phe	Met	Leu	Asn 235	Leu	Val	Gln	Ala	Tyr 240		15
Tyr	Asp	Met	Lys	Thr 245	Asn	Ala	Pro	Tyr	Pro 250	Gln	Trp	Leu	Ile	Lys 255	Ile		. 20
Leu	Phe	Tyr	Tyr 260	Met	Ile	Ser	Leu	Leu 265	Phe	Leu	Phe	Gly	Asn 270	Phe	Tyr		25
Val	Gln	Lys 275	Tyr	Ile	Lys	Pro	Ser 280	Asp	Gly	Lys	Gln	Lys 285	Gly	Ala	Lys		30
Thr	Glu 290	-					*									:	35
0.4.4																	40
<211 <212)> 48 L> 52 2> PI B> Ur	25 RT	NTO									•			•		45
)> 48																50
			Ala	Gly 5	Gly	Gly	Leu	Gln	Gln 10	Gly	Ser	Leu	Glu	Glu 15	Asn		
Ile	Asp	Val	Glu	His	Ile	Ala	Ser		Ser	Leu	Phe	Ser		Phe	Phe		55
Ser	Туг	Val	20 Ser	Ser	Thr	Val	Gly	25 Ser	Trp	Ser	Val	His	30 Ser	Ile	Gln		60
		35					40					45				•	69

	Pro	Leu 50	Lys	Arg	Leu	Thr	Ser 55	Lys	Lys	Arg	Val	Ser 60	Glu	Ser	Ala	Ala
5																
	Val	Gln	Cys	Ile	Ser	Ala	Glu	Val	Gln	Arg	Asn	Ser	Ser	Thr	Gln	Gly
	65					70					75					80
10																
	Thr	Ala	Glu	Ala	Leu	Ala	Glu	Ser	Val	Val	Lys	Pro	Thr	Arg	Arg	Arg
					85					90					95	
15																
	Ser	Ser	Gln	Trp	Lys	Lys	Ser	Thr	His	Pro	Leu	Ser	Glu	Val	Ala	Val
				100					105					110		
20																
	His	Asn	Lys	Pro	Ser	Asp	Cys	Trp	Ile	Val	Val	Lys	Asn	Lys	Val	Tyr
			115					120					125			
25																
	Asp	Val	Ser	Asn	Phe	Ala	Asp	Glu	His	Pro	Gly	Gly	Ser	Val	Ile	Ser
		130					135					140				
30																
		Tyr	Phe	Gly	Arg		Gly	Thr	Asp	Val	Phe	Ser	Ser	Phe	His	
	145					150					155					160
35		_	_,	_	_		_		_					_		
	Ala	Ser	Thr	Trp		Ile	Leu	Gln	Asp		Tyr	Ile	Gly	Asp		Glu
					165					170					175	
40	λrα	17a l	Cl.	Pro	mp ~	Pro	Clu	T ON	T 011	Luc	7.00	Dho	7 ~~	C1.,	Mot	2~~
	ALG	vai	GIU	180	1117	PIO	GIU	Leu	185	гур	ASP	FIIE	Ary	190	Mec	Arg
				100					103					100		
45	Ala	T.eu	Phe	Leu	Ara	Glu	Gln	T.en	Phe	Tays	Ser	Ser	Lvs	Len	ጥረታ	ጥ ህዮ
			195		9	024	02	200		טעב	501	501	205	Lou	1,1	-7-
50	Val	Met	Lvs	Leu	Leu	Thr	Asn	Val	Ala	Ile	Phe	Ala	Ala	Ser	Ile	Ala
		210					215					220				
55	Ile	Ile	Cys	Trp	Ser	Lys	Thr	Ile	Ser	Ala	Val	Leu	Ala	Ser	Ala	Cys
	225		-	_		230					235					240
60	Met	Met	Ala	Leu	Cys	Phe	Gln	Gln	Cys	Gly	Trp	Leu	Ser	His	Asp	Phe
					245				-	250	_				255	
65	Leu	His	Asn	Gln	Val	Phe	Glu	Thr	Arg	Trp	Leu	Asn	Glu	Val	Val	Gly

			260					265					270					
Tyr	Val	Ile 275	Gly	Asn	Ala	Val	Leu 280	Gly	Phe	Ser	Thr	Gly 285	Trp	Trp	Lys			
Glu	Lys 290	His	Asn	Leu	His	His 295	Ala	Ala	Pro	Asn	Glu 300	Cys	Asp	Gln	Thr		٠	1
Tyr 305	Gln	Pro	Ile	Asp	Glu 310	Asp	Ile	Asp	Thr	Leu 315	Pro	Leu	Ile		Trp 320			1
Ser	Lys	Asp	Ile	Leu 325	Ala	Thr	Val	Glu	Asn 330	Lys	Thr	Phe	Leu	Arg 335	Ile	٠.		2
Leu	Gln	Tyr	Gln 340	His	Leu	Phe	Phe	Met 345	Gly	Leu	Leu	Phe	Phe 350	Ala	Arģ			2
Gly	Ser	Trp 355	Leu	Phe	Trp	Ser	Trp 360	Arg	Tyr	Thr	Ser	Thr 365	Ala	Val	Leu			3
Ser	Pro 370	Val	Asp	Arg	Leu	Leu 375	Glu	Lys	Gly	Thr	Val 380	Leu	Phe	His	Tyr			3
Phe 385	Trp	Phe	Val	Gly	Thr 390	Ala	Cys	Tyr	Leu	Leu 395	Pro	Gly	Trp	Lys	Pro 400			4
Leu	Val	Trp	Met	Ala 405	Val	Thr	Glu	Leu	Met 410	Ser	Gly	Met	Leu	Leu 415	Gly			4
Phe	Val	Phe	Val 420	Leu	Ser	His	Asn	Gly 425	Met	Glu	Val	Tyr	Asn 430	Ser	Ser	-		5
Lys	Glu	Phe 435	Val	Ser	Ala	Gln	Ile 440	Val	Ser	Thr	Arg	Asp 445	Ile	Lys	Gly	·		5
Asn	11e 450	Phe	Asn	Asp	Trp	Phe 455	Thr	Gly	Gly	Leu	Asn 460	Arg	Gln	Ile	Glu			6
His	His	Leu	Phe	Pro	Thr	Met	Pro	Ara	His	Asn	Leu	Asn	Lys	Ile	Ala			

	Pro	Arg	Val	Glu	Val 485	Phe	Cys	Lys	Lys	His 490	Gly	Leu	Val	Tyr	Glu 495	Asp
5	Val	Ser	Ile	Ala 500	Thr	Gly	Thr	Cys	Lys 505	Val	Leu	Lys	Ala	Leu 510	Lys	Glu
10	Val	Ala	Glu 515	Ala	Ala	Ala	Glu	Gln 520	His	Ala	Thr	Thr	Ser 525			
15														•		
20	<21:	0> 4: 1> 4: 2> P: 3> U:	69 RT	wn												
25	<40	0> 4:	9													
30	Met 1	Ala	Pro	Asp	Ala 5	Asp	Lys	Leu	Arg	Gln 10	Arg	Gln	Thr	Thr	Ala 15	Val
35	Ala	Lys	His	Asn 20	Ala	Ala	Thr	Ile	Ser 25	Thr	Gln	Glu	Arg	Leu 30	Cys	Ser
40	Leu	Ser	Ser 35	Leu	Lys	Gly	Glu	Glu 40	Val	Cys	Ile	Asp	Gly 45	Ile	Ile	Туr
45	Asp	Leu 50	Gln	Ser	Phe	Asp	His 55	Pro	Gly	Gly	Glu	Thr 60	Ile	Lys	Met	Phe
50	Gly 65	_	Asn	Asp	Val	Thr 70	Val	Gln	Tyr	Lys	Met 75	Ile	His	Pro	Tyr	His 80
55	Thr	Glu	Lys	His	Leu 85		Lys	Met	Lys	Arg 90		Gly	Lys	Val	Thr 95	
60	Phe	Val	Суѕ	Glu 100		Lys	Phe	Asp	Thr 105		Phe	Glu	Arg	Glu 110		Lys
	Arg	Glu	Val	Phe	Lys	Ile	Val	Arg		Gly	Lys	Asp	Phe		Thr	Leu

Gly	Trp 130	Phe	Phe	Arg	Ala	Phe 135	Cys	Tyr	Ile	Ala	Ile 140	Phe	Phe	Tyr	Leu			
Gln 145		His	Trp	Val	Thr 150	Thr	Gly	Thr	Ser	Trp 155	Leu	Leu	Ala	Val	Ala 160		•	1
Tyr	Gly	Ile	Ser	Gln 165	Ala	Meț	Ile	Gly	Met 170	Asn	Val	Gln	His	Asp 175	Ala	÷		. 1
Asn	His	Gly	Ala 180	Thr	Ser	Lys	Arg	Pro 185	Trp	Val	Asn	Asp	Met 190	Leu	Gly			2
Leu	Gly	Ala 195	Asp	Phe	Ile	Gly	Gly 200	Ser	Lys	Trp	Leu	Trp 205	Gln	Glu	Gln		·	2
His	Trp 210	Thr	His	His	Ala	Tyr 215	Thr	Asn	His	Ala	Glu 220	Met	Asp	Pro	Asp			
Ser 225	Phe	Gly	Ala	Glu	Pro 230	Met	Leu	Leu	Phe	Asn 235	Asp	Tyr	Pro	Leu	Asp 240			3
His	Pro	Ala	Arg	Thr 245	Trp	Leu	His	Arg	Phe 250	Gln	Ala	Phe	Phe	Tyr 255	Met		٠.	3
Pro	Val	Leu	Ala 260	Gly	Tyr	Trp	Leu	Ser 265	Ala	Val	Phe	Asn	Pro 270		Ile			
Leu	Asp	Leu 275	Gln	Gln	Arg	Gly	Ala 280	Leu	Ser	Val	Gly	Ile 285	Arg	Leu	Asp	,		4
Asn	Ala 290	Phe	Ile	His	Ser	Arg 295	Arg	Lys	Tyr	Ala	Val 300	Phe	Trp	Arg	Ala			
Val 305	Tyr	Ile	Ala	Val	Asn 310	Val	Ile	Ala	Pro	Phe	Tyr	Thr	Asn	Ser	Gly 320			5
Leu	Glu	Trp	Ser	Trp 325	Arg	Val	Phe	Gly	Asn 330	Ile	Met	Leu	Met	Gly 335	Val			•

	Ala	Glu	Ser	Leu 340	Ala	Leu	Ala	Val	Leu 345	Phe	Ser	Leu	Ser	His 350	Asn	Phe	
5																	
	Glu	Ser	Ala 355	Asp	Arg	Asp	Pro	Thr 360	Ala	Pro	Leu	Lys	Lys 365	Thr	Gly	Glu	
10														•			
	Pro	Val 370	Asp	Trp	Phe	Lys	Thr 375	Gln	Val	Glu	Thr	Ser 380	Cys	Thr	Tyr	Gly	
15																	
	Gly	Phe	Leu	Ser	Gly	Cys	Phe	Thr	Gly	Gly	Leu	Asn	Phe	Gln	Val	Glu	
	385					390					395					400	
20																	
20	His	His	Leu	Phe	Pro	Arq	Met	Ser	Ser	Ala	Trp	Tvr	Pro	Tyr	Ile	Ala	
					405					410	-	-		-	415		
25	Pro	Lvs	Val	Ara	Glu	Tle	Cvs	Ala	Lvs	His	Glv	Val	His	TVΥ	Ala	Tvr	
				420			-1-		425		U -1			430		-2-	
30	ጥኒያጕ	Pro	Trans.	Tla	Hic	G1n	Δen	Dhe	Len	Ser	ωb.×	Val	Ara	ጥረጉ	Met	uie	
	ıyı	110	435	116	1112	GIII	ASII	440	Dea	Ser	1111	vaı	445	TYL	Mec	1112	
			433					440					445				
35	ת ד ת	71-	C111	mb~	C1	71-	7 ~~	m	7	C1	Mo+	7 1-	7	C1	7 ~~	Dwo	
	AIA		GIY	1111	GIY	AIa		rrp	Arg	GIII	Met		Arg	GIU	Asn	PIO	
		450					455					460					
40	T 033	mb ~	C1	2	21-												
		THE	GIĀ	Arg	Ala												
	465																
45																	
	-210). F															
)> 50															
50		L> 26 2> Di															
	<213	> A1	CLILI	icia]	. Sec	quenc	ce										
55	<220)>															
	<223	3> Pc	olyli	inker	•												
60																	
	<400)> 50)														
	gaat	tcgg	gcg d	gccg	gagct	c ct	cgaç	3									26

<211> 265						
<212> DNA						
<213> Artif	icial Seque	ence				
<220>						
<223> Poly	linker-Termi	nator-Poly	linker			
<400> 51						15
ccaccgcggt	gggcggccgc	ctgcagtcta	gaaggeetee	tgctttaatg	agatatgcga	
gacgcctatg	atcgcatgat	atttgctttc	aattctgttg	tgcacgttgt	aaaaaacctg	120
agcatgtgta	gctcagatcc	ttaccgccgg	tttcggttca	ttctaatgaa	tatatcaccc	
gttactatcg	tatttttatg	aataatattc	tccgttcaat	ttactgattg	tccgtcgacg	240
aattcgagct	cggcgcgcca	agctt				265
			•			
.010. 50	•					
<210> 52						
<210> 52 <211> 257				-	·	35
		•	·. · · ·			35
<211> 257 <212> DNA	icial Seque	ence	•.			
<211> 257 <212> DNA	ficial Seque	ence				35 40
<211> 257 <212> DNA <213> Artif						
<211> 257 <212> DNA <213> Artif		ence .nator-Polyl	linker			
<211> 257 <212> DNA <213> Artif <220> <223> Poly			linker			40
<211> 257 <212> DNA <213> Artif <220> <223> Poly <400> 52	inker-Termi	.nator-Polyl		tgagatatgc	gagacgccta	40 45
<211> 257 <212> DNA <213> Artif <220> <223> Poly <400> 52 ggatccgata	inker-Termi tcgggcccgc	.nator-Poly] tagcgttaac	cctgctttaa		gagacgccta	45
<211> 257 <212> DNA <213> Artif <220> <223> Poly <400> 52 ggatccgata tgatcgcatg	inker-Termi tcgggcccgc atatttgctt	.nator-Polyl tagcgttaac tcaattctgt	cctgctttaa tgtgcacgtt	gtaaaaaacc		40 45 60 50 120
<211> 257 <212> DNA <213> Artif <220> <223> Poly <400> 52 ggatccgata tgatcgcatg tagctcagat	inker-Termi tcgggcccgc atatttgctt ccttaccgcc	nator-Polyl tagcgttaac tcaattctgt ggtttcggtt	cctgctttaa tgtgcacgtt cattctaatg	gtaaaaaacc	tgagcatgtg	45 60 120 180

<210> 53

<211> 257

5 <212> DNA

<213> Artificial Sequence

10 <220>

25

35

40

45

50

55

60

65

<223> Polylinker-Terminator-Polylinker

15 <400> 53

agatctgccg gcatcgatcc cgggccatgg cctgctttaa tgagatatgc gagacgccta 60

20 tgatcgcatg atatttgctt tcaattctgt tgtgcacgtt gtaaaaaacc tgagcatgtg 120

tagctcagat ccttaccgcc ggtttcggtt cattctaatg aatatatcac ccgttactat 180

cgtattttta tgaataatat tctccgttca atttactgat tgtccgtcga cgaattcgag 240

30 ctcggcgcgc caagctt

257

Patentansprüche

1. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I:

in transgenen Pflanzen mit einem Gehalt von mindestens 1 Gew.-% bezogen auf die gesamten Fettsäuren **dadurch** gekennzeichnet, dass das Verfahren folgende Schritte umfasst:

a) Einbringen mindestens einer Nukleinsäuresequenz in eine Pflanze, die für ein Polypeptid mit einer Δ-6-Desaturaseaktivität codiert; sowie

b) Einbringen mindestens einer zweiten Nukleinsäuresequenz, die für ein Polypeptid mit einer Δ -6-Elongaseaktivität codiert; und

c) gegebenenfalls Einbringen einer dritten Nukleinsäuresequenz, die für ein Polypeptid mit einer Δ -5-Desaturaseaktivität codiert; und

d) anschließend kultivieren und ernten der Pflanzen; und

wobei die Variablen und Substituenten in der Formeln I folgende Bedeutung haben:

 R^1 = -OH, Coenzym A-(Thioester), Phosphatidylcholin-, Phosphatidylchanolamin-, Phosphatidylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylinositol-, Sphingolipid-, Glycoshingolipid- oder einen Rest der folgenden allgemeinen Formel II

$$\begin{array}{c|c} H_2C-O-R^2 \\ HC-O-R^3 \\ H_2C-O - \end{array} \tag{II}$$

 R^2 = H, Phosphatidylcholin-, Phosphatidylethanolamin-, Phoshatidylglycerol-, Diphosphatidylglycerol-, Phosphatidylserin-, Phosphatidylserin-, Phosphatidylinositol-, Shingolipid-, Glycoshingolipid-, Glycoshingolipid- oder gesättigtes oder ungesättigtes C_2 - C_{24} -Alkylcarbonyl-,

 $R^3 = H$, gesättigtes oder ungesättigtes C_2 - C_{24} -Alkylcarbonyl-, oder R^2 und R^3 unabhängig voneinander einen Rest der allgemeinen Formel Ia

$$\begin{array}{c|c}
O & CH_2 & CH_2 & CH_2 & CH_3 \\
\hline
CH & CH & CH_2 & CH_3 & CH_3
\end{array}$$

n = 3, 4 oder 6, m = 3, 4 oder 5 und p = 0 oder 3.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Substituenten \mathbb{R}^2 und \mathbb{R}^3 unabhängig voneinander \mathbb{C}_{10} - \mathbb{C}_{22} -Alkylcarbonyl- bedeuten.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Substituenten R² und R³ unabhängig voneinander C₁₆-, C₁₈-, C₂₀- oder C₂₂-Alkylcarbonyl- bedeuten.

4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die Substituenten R^2 und R^3 unabhängig voneinander ungesättigtes C_{16^-} , C_{18^-} , C_{20^-} oder C_{22^-} Alkylcarbonyl- mit ein, Zwei, drei, vier oder fünf Doppelbindungen bedeuten.

5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die transgene Pflanze eine Ölfruchtpflanze ist.

6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass die transgene Pflanze ausgewählt aus der Gruppe Soja, Erdnuss, Raps, Canola, Lein, Nachtkerze, Königskerze, Distel, Haselnuss, Mandel, Macadamia, Avocado, Lorbeer, Wildrosen, Kürbis, Pistazien, Sesam, Sonnenblume, Färberdistel, Borretsch, Mais, Mohn, Senf, Hanf, Rhizinus, Olive, Calendula, Punica, Ölpalme, Walnuss oder Kokosnuß ist.

7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass die Verbindungen der Formel I durch Pressen oder Extraktion aus den transgenen Pflanzen in Form ihrer Öle, Fette, Lipide oder freien Fettsäuren gewonnen werden.

8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass die gemäß Ansprüch 7 gewonnenen Öle, Fette, Lipide oder freien Fettsäuren raffiniert werden.

9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass man die in den Verbindungen der Formel I enthaltenden gesättigten oder ungesättigten Fettsäuren freisetzt.

10. Verfahren nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass die gesättigten oder ungesättigten Fettsäuren über ein alkalische Hydrolyse oder eine enzymatische Abspaltung freigesetzt werden.

11. Verfahren nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, dass die Verbindungen der allgemeinen Formel I in den transgenen Pflanzen mit einem Gehalt von mindestens 5 Gew.-% bezogen auf die gesamten Fettsäuren enthalten sind.

12. Verfahren nach den Ansprüchen 1 bis 11, dadurch gekennzeichnet, dass, die für die Polypeptide mit einer Δ-6-Desaturaseaktivität, Δ-6-Elongaseaktivität oder Δ-5-Desaturaseaktivität codierenden Nukleinsäuresequenzen, ausgewählt aus der Gruppe sind:

a) einer Nukleinsäuresequenz mit der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29 oder SEQ ID NO: 31 dargestellten Seguenz

b) Nukleinsäuresequenzen, die aufgrund des degenerierten genetischen Codes durch Rückübersetzung der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Aminosäuresequenzen erhalten werden,

c) Derivate der in SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, SEQ ID NO: 27, SEQ ID NO: 29 oder SEQ ID NO: 31 dargestellten Nukleinsäuresequenz, die für Polypeptide mit der in SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26, SEQ ID NO: 28, SEQ ID NO: 30 oder SEQ ID NO: 32 dargestellten Aminosäuresequenzen codieren und mindestens 50% Homologie auf Aminosäureebene aufweisen, ohne daß die enzymatische Wirkung der Polypeptide wesentlich reduziert ist.

13. Verfahren nach den Ansprüchen 1 bis 12, dadurch gekennzeichnet, dass die Nukleinsäuresequenzen gemäß Anspruch 8 in einem Nukleinsäurekonstrukt mit einem oder mehreren Regulationssignalen verknüpft sind.

14. Verfahren nach den Ansprüchen 1 bis 13, dadurch gekennzeichnet, dass das Nukleinsäurekonstrukt zusätzliche Biosynthesegene des Fettsäure- oder Lipidstoffwechsels enthält ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl-Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n).

Hierzu 3 Seite(n) Zeichnungen

65

55

60

5

25

Figur 1: Biosynthesekette

Nummer: Int. Cl.7:

Offenlegungstag:

DE 102 19 203 A1 A 01 H 1/00

