STAT 2509B4

Assignment 1

Krystian Wojcicki, 101001444

Winter 2020

1. Define the following:

- (i) variable: a characteristic that varies from a person or a thing to another one, or over time.
- (ii) experimental unit: individuals or objects on which a variable is measured
- (iii) a single measurement: a single measurement is the value of a variable measured on a an experimental unit.
- (iv) **population:** the set of all measurements of a variable of interest to the investigator
- (v) sample: a subset of measurements selected and observed from the population of interest
- 2. (a) List the possible types of variables: The possible types of variables are qualitative and quantitative. Qualitative can be split up into pure qualitative and qualitative ranked. Quantitative can be split up into quantitative & discrete and quantitative & continuous.
 - (b) Identify the following variables as either "pure qualitative" (or "pure categorical"), "qualitative & ranked" (or "categorical & ranked)", "quantitative & discrete", or "quantitative & continuous":
 - (i) **Time until a bulb burns out:** quantitative & continuous
 - (ii) Beer tasting ranking (excellent, good, fair, or poor): qualitative & ranked
 - (iii) Student ID number: pure qualitative
 - (iv) Number of cars entering Carleton each day: quantitative & discrete
 - (v) Average daily temperature in Ottawa during January: quantitative & continuous
 - (vi) Letter grade of a course (A, B, C, D, E, or F): qualitative & ranked
 - (vii) Number of M&M candies in a bag: quantitative & discrete
 - (viii) Blood type of a person: pure qualitative
- 3. Consider a normal population distribution with the value of the standard deviation σ known
 - (a) What are the confidence level for the following confidence intervals about the population mean:
 - (i) $\bar{x} \pm 1.96 \sigma / \sqrt{n}$: 95%
 - (ii) $\bar{x} \pm 2.65 \sigma / \sqrt{n}$: 99.2%
 - (iii) $\bar{x} \pm 3.34 \sigma / \sqrt{n}$: 99.92%
 - (b) What value of z in the confidence interval formula

$$(\bar{x} - z_{\alpha/2}\sigma/\sqrt{n}, \bar{x} + z_{\alpha/2}\sigma/\sqrt{n})$$

results in a confidence level of

- (i) **97.96%:** $\rightarrow 1 \alpha = 0.9796 \rightarrow \alpha = 0.0204 \rightarrow \alpha/2 = 0.0102 \rightarrow z_{\alpha/2} = 2.32$
- (ii) **78.88%:** $\rightarrow 1 \alpha = 0.7888 \rightarrow \alpha = 0.2112 \rightarrow \alpha/2 = 0.1056 \rightarrow z_{\alpha/2} = 1.25$
- (iii) **99.94%:** $\rightarrow 1 \alpha = 0.9994 \rightarrow \alpha = 0.0006 \rightarrow \alpha/2 = 0.0003 \rightarrow z_{\alpha/2} = 3.43$

4. Which of the following histograms looks like a histogram for data from a normal distribution?

Explain

Graph #3 looks like a histogram displaying a normal distribution. This is because a normal distribution is characterized by a symmetric, bell-shaped curve. Which is what is displayed in that graph.

- 5. Let X be a random variable having a normal distribution with mean μ and standard deviation σ . Let c be a constant. Find the <u>distribution</u>, <u>mean</u> and <u>standard deviation</u> of each of the following random variables:
 - (i) X+c: as taught in class if X is a random variable with a normal distribution then $X \sim N(\mu, \sigma^2)$. Meaning X+c (where c is a constant) gives us $X+c \sim N(\mu+c, \sigma^2)$. Therefore for X+c it's a normal distribution, with a mean of $\mu+c$ and standard deviation of σ .
 - (ii) $(X \mu)/\sigma$: as $X \sim N(\mu, \sigma^2)$ then $z := (X \mu)/\sigma \sim N(0, 1)$. Meaning $(X \mu)/\sigma$ is a standard normal distribution, with a mean of 0 and standard deviation of 1.
- 6. Find the following values from the upper-tail z and t tables:
 - (i) $z_{0.0154} = 2.16$
 - (ii) $z_{0.9846} = z_{0.0154} = 2.16$
 - (iii) $z_{0.1215} = 1.17$
 - (iv) $t_{6;0.05} = 1.943$
 - (v) $-t_{10;0.025} = -2.228$
 - (vi) $t_{10;0.975} = -t_{10;0.025} = -2.228$
- 7. a Define two-sided and one-sided hypotheses about a parameter θ and give the steps involved in their testing:

2-sided hypothesis is a 2 tailed test for testing parameter $\theta \neq 0$. For example $H_0: \theta = 0$ or $H_a: \theta \neq 0$. 1-sided hypothesis is a 1 tailed test for testing parameter $\theta < 0$ or $\theta > 0$. For example $H_0: \theta \leq 0$ vs $H_a: \theta > 0$ or the other side, $H_0: \theta \geq 0$ vs $H_a: \theta < 0$.

The steps involved for either hypothesis is as follows:

- 1) State H_0 and H_a
- 2) Find the test statistic for the test
- 3) Find the rejection or critical region (or p-value)
- 4) Draw conclusion

b For any hypothesis test, what are the two types of errors that may be made? Explain.

Type I error is an error when we reject H_0 when it is in fact true. The probability of type I error is α . Type II error is an error when we do not reject H_0 when it is in fact false. The probability of type II error is β .

8. Classify each of the following quantities as either a parameter or a statistic:

- (i) σ^2 : parameter
- (ii) $\hat{\beta}_1$: statistic
- (iii) s^2 : statistics
- (iv) μ : parameter
- (v) β_0 : parameter
- (vi) \bar{x} : statistic

9. Show that:

$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i - \frac{(\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{n}$$

$$\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})$$

$$= \sum_{i=1}^{n} (x_{i}y_{i} - x_{i}\bar{y} - \bar{x}y_{i} + \bar{x}\bar{y})$$

$$= \sum_{i=1}^{n} (x_{i}y_{i} - x_{i}\bar{y} - \bar{x}y_{i}) + n\bar{x}\bar{y}$$

$$= \sum_{i=1}^{n} (x_{i}y_{i}) - \bar{y}\sum_{i=1}^{n} x_{i} - \bar{x}\sum_{i=1}^{n} y_{i} + n\bar{x}\bar{y}$$

$$= \sum_{i=1}^{n} (x_{i}y_{i}) - \bar{y}\bar{x}n - \bar{x}\bar{y}n + n\bar{x}\bar{y}$$

$$= \sum_{i=1}^{n} (x_{i}y_{i}) - 2\bar{y}\bar{x}n + n\bar{x}\bar{y}$$

$$= \sum_{i=1}^{n} (x_{i}y_{i}) - \bar{y}\bar{x}n$$

$$= \sum_{i=1}^{n} (x_{i}y_{i}) - \frac{\sum_{i=1}^{n} y_{i}}{n} \sum_{i=1}^{n} x_{i}}{n}n$$

$$= \sum_{i=1}^{n} x_{i}y_{i} - \frac{(\sum_{i=1}^{n} x_{i})(\sum_{i=1}^{n} y_{i})}{n}$$

Therefore
$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i - \frac{(\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{n}$$