THIAGARAJAR COLLEGE OF ENGINEERING MADURAI

Smart Farmer-IOT Enabled Smart Farming Application

IBM PROJECT: NALAIYATHIRAN

TEAM ID: PNT2022TMID21357

DONE BY: GOKULA KRISHNAN K (19D023)

ARUNAN K (19D011)

MICHEAL HALINS V (19D049)

RAHUL KUMAR K (19D069)

TABLE OF CONTENTS

S.NO		TITLE	PAGE NO
1.		INTRODUCTION	
	1.1	PROJECT OVERVIEW	2
	1.2	PURPOSE	2
2.		LITERATURE SURVEY	
	2.1	EXISTING PROBLEM	3
	2.2	PROBLEM STATEMENT DEFINITION	3
3.		IDEATION AND	
		PROPOSEDSOLUTION	_
	3.1		4
	3.2	IDEATION AND BRAINSTORMING	5
	3.3	PROPOSED SOLUTION	7
	3.4	PROBLEM SOLUTION FIT	9
4.		REQUIREMENT ANALYSIS	
	4.1	FUNCTIONAL REQUIREMENT	10
	4.2	NON-FUNCTIONAL REQUIREMENT	11
5 .		PROJECT DESIGN	
	5.1	DATA FLOW DIAGRAMS	12
	5.2		
		TECHNICAL ARCHITECTURE	
	5.3	USER STORIES	14
6.		PROJECT PLANNING	
		ANDSCHEDULING	
	6.1	SPRINT PLANNING AND ESTIMATION	15
	6.2	SPRINT DELIVERY AND SCHEDULE	16

7.		CODING AND SOLUTIONING	
	7.1	FEATURE 1	17
8.		TESTING	
	8.1	TEST CASES	19
	8.2	USER ACCEPTENCE TESTING	
9.		RESULTS	
	9.1	PERFORMANCE METRICS	21
10.		ADVANTAGES AND	23
		DISADVANTAGES	
11.		CONCLUSION	23
12 .		FUTURE SCOPE	24
13		APPENDIX	
		SOURCE CODE	26
		GITHUB & PROJECT DEMO LINK	26

1 INTRODUCTION

1.1 PROJECT OVERVIEW

An IOT-based application is introduced to know about various data about their land remotely, where they can schedule some events for a month or a day. It also provides suggestions to users based on the crop they planted. In IOT based Agriculture Smart Farming Technique Enables Farmers better to monitor the fields and maintain the humidity level accordingly.

1.2 PURPOSE

Reduces the wages for labors who work in the agricultural field. It saves a lot of time. IoT can help improve customer relationships by enhancing the customer's overall experience. Easily identify maintenance needs, build better products, send personalized communications, and more. IoT can also help ecommerce businesses thrive and increase sales. Increased production and optimization of all the processes related to agriculture and livestock-rearing increases production rates. Less Water usage.

The Data collected by sensors, in terms of humidity, temperature, moisture, and dew detections help in determining the weather pattern in Farms. So, cultivation is done for suitable crops.

2 LITERATURE SURVEY

2.1 EXISTING PROBLEM

- Controlling the device from longer distance from web application.
- Getting the weather data from weather station.
- Transfer of node data to the gateway at faster rate.
- Unavailability of data such as PH level, potassium, Nitrogen etc related to the soil.

2.2 PROBLEM STATEMENT DEFINITION

Watering the field is a difficult process; Farmers have to wait in the field until the water covers the whole farm field and sometimes, they may over irrigate it. The Second Challenge Faced in the Agricultural Sector are Lack of Information, High Adoption, Cost and Security Concerns, etc.

IoT sensor nodes collect information from the farming environment, such as soil moisture, air humidity, temperature, nutrient ingredients of soil, pest images, and water quality, and then transmit collected data to IoT backhaul Giving farmers the remote access to their farms.

3 IDEATION AND PROPOSED SOLUTION

3.1 EMPATHY MAP CANVAS

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviors and attitudes. It is a useful tool to helps teams better understand their users. Creating an effective solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.

Empathy Map Canvas

Smart Farmer - IOT Enabled Smart Farmin Application

Edit this template
Right-click to unlock

DONE BY BATCH NO :B9-3A5E (917719D023, 917719D011, 917719D049, 917719D066)

3.2 IDEATION AND BRAINSTORMING

Brainstorming provides a free and open environment that encourages everyone within a team to participate in the creative thinking process that leads to problem solving. Prioritizing volume over value, out- of-the-box ideas are welcome and built upon, and all participants are encouraged to collaborate, helping each other develop a rich number of creative solutions. Use this template in your own brainstorming sessions so your team can unleash their imagination and start shaping concepts even if you're not sitting in the same room.

Brainstorm
& idea prioritization
Use this template in your own
brainstorming sessions so your team
can unleash their imagination and
in the same room.

1 Item to collidate

1 It

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-3: Idea Prioritization

3.3 PROPOSED SOLUTION

Project team shall fill the following information in proposed solution template.

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	 Watering the field is a difficult process; Farmers have to wait in the field until the water covers the whole farm field and sometimes they may over irrigate it. The Second Challenge Faced in the Agricultural Sector are Lack of Information, High Adoption, Cost and Security Concerns, etc
2.	Idea / Solution description	 In IOT based Agriculture Smart Farming Technique Enables Farmers better to monitor the fields and maintain the humidity level accordingly. The Data collected by sensors, In terms of humidity, temperature, moisture, and dew detections help in determining the weather pattern in Farms. So cultivation is done for suitable crops.
3. N	Novelty / Uniqueness	 IoT sensor nodes collect information from the farming environment, such as soil moisture, air humidity, temperature, nutrient ingredients of soil, pest images, and water quality, and then transmit collected data to IoT backhaul Giving farmers the remote access to their farms

4.	Social Impact / Customer Satisfaction	 Reduces the wages for labours who work in the agricultural field. It saves a lot of time. IoT can help improve customer relationships by enhancing the customer's overall experience. Easily identify maintenance needs, build better products, send personalized communications, and more. IoT can also help e-commerce businesses thrive and increase sales. Increased production and optimisation of all the processes related to agriculture and livestock-rearing increases production rates. Less Water usage
5.	Business Model (Revenue Model)	Climate-smart agriculture is a pathway towards development and food security built on three pillars: increasing productivity and incomes, enhancing resilience of livelihoods and ecosystems and reducing and removing greenhouse gas emissions from the atmosphere
6.	Scalability of the Solution	Smart Farming systems use modern technology to increase the quantity and quality of agricultural products. Livestock tracking and Geo fencing. Smart logistics and warehousing. Smart pest management. Smart Greenhouses

3.4 PROBLEM SOLUTION FIT

4. REQUIREMENT ANALYSIS

4.1 FUNCTIONAL REQUIREMENT

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form Registration through Gmail.
FR-2	User Confirmation	As a user Confirmation via Email then generate the Confirmation via OTP
FR-3	Log in to system	Measure the Temperature and Humidity Measure the Soil Monitoring Check the crop diseases
FR-4	Check Credentials	Once check the credentials after go to the Manage modules.
FR-5	Manage modules	Manage System Admins Manage Roles of User Manage User permission and etc
FR-6	Data Management	Manage the data of weather conditions Manage the data of crop conditions Manage the data of live stock conditions

4.2 NON-FUNCTIONAL REQUIREMENT

Following are the non-functional requirements of the proposed solution:

FR No.	Non-Functional Requirement	Description				
NFR-1	Usability	User friendly guidelines for users to avail the features. Nost simplistic user interface for ease of use.				
NFR-2	Security	Sensitive and private data must be protected from their production until the decision-making and storage stages.				
NFR-3	Reliability	Implementing Mesh IoT Networks Euilding a Multi-layered defence for IoT Networks.				
NFR-4	Performance	The use of modern technology solutions helps to achieve the maximum performances thus resulting in better quality and quantity yields				

5.PROJECT DESIGN

5.1 DATA FLOW DIAGRAM

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

Data Flow Diagram

5.2 SOLUTION AND TECHNICAL ARCHITECTURE:

The different soil parameters (temperature, humidity, Soil Moisture) are sensed using different sensors (A sensor is a device that detects and responds to some type of input from the physical environment. The input can be light, heat, motion, moisture, pressure or any number of other environmental phenomena), and the obtained value is stored in the IBM cloud.

Arduino UNO (The Arduino Uno is an open-source microcontroller board based on the Microchip ATmega328P microcontroller and the board is equipped with sets of digital and analog input/output (I/O) pins that may be interfaced to various expansion boards) is used as a processing unit that processes the data obtained from sensors and weather data from the weather API.

Node-red is used as a programming tool to wire the hardware, software, and APIs. The MQTT protocol is followed for communication. All the collected data are provided to the user through a mobile application that was developed using the MIT app inventor. The user could make a decision through an app, whether to water the crop or not depending upon the sensor values. By using the app, they can remotely operate the motor switch.

Example - Solution Architecture Diagram:

5.3 USER STORIES

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through Gmail		Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application by entering email & password		High	Sprint-1
Customer (Web user)	Dashboard	USN-5	As a User can view the dashboard, and this dashboard include the check roles of access and then move to the manage modules.	I can view the dashboard in this smart farming application system.	Medium	Sprint-3
Customer Care Executive		USN-6	User can remotely access the motor switch	In the smart farming app	High	Sprint 3
Administrator			As a user once view the manage modules this describes the Manage system Admins and Manage Roles of User and etc.			Sprint 2

6.PROJECT PLANNING AND SCHEDULING

6.1 SPRINT PLANNING AND ESTIMATION

	Functional	User		Points		Team
	Requirement	Story				Members
	(Epic)	Number				
Sprint-1	Simulation creation	USN-1	Connect Sensors and Arduino withpython code	2	High	Arunan
Sprint-2	Software	USN-2	Creating device in the IBM WatsonIoT platform, workflow for IoT scenarios using Node-Red	2	High	Micheal halins

Sprint-3	MIT App Inventor	USN-3	Develop an application for the Smart farmer project using MIT App Inventor	2	High	Rahulkumar
Sprint			User Story / Task	Story	Priori	ty
Sprint-3	Dashboard	USN-3	Design the Modules and test the app	2	High	Gokulakrishnan
Sprint-4	Web UI	USN-4	To make the user to interact withsoftware.	2	High	Gokulakrishnan

6.2 SPRINT DELIVERY AND SCHEDULE

	Total Story Points	n	Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	7 Days	2 Nov 2022	09 Nov 2022	20	29 Oct 2022
Sprint-2	20	9 Days	1 Nov 2022	10 Nov 2022		05 Oct 2022
Sprint-3	20	6 Days	06 Nov 2022	13 Nov 2022		12 Oct 2022
Sprint-4	20	6 Days	11 Nov 2022	17 Nov 2022		15 Oct 2022

Start Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

7.CODING AND SOLUTIONING

7.1 FEATURE 1

```
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "11k6qs"
deviceType = "abcd"
deviceld = "1234"
authMethod = "token"
authToken = "NAX7rDwisCAY4?TO*a"
# Initialize GPIO
def myCommandCallback(cmd):
  print("Command received: %s" % cmd.data['command'])
  status=cmd.data['command']
  if status=="on":
    print ("led is on")
  elif status == "off":
    print ("led is off")
  else:
    print ("please send proper command")
try:
```

```
deviceOptions = {"org": organization, "type": deviceType, "id": deviceId, "auth-
method": authMethod, "auth-token": authToken}
      deviceCli = ibmiotf.device.Client(deviceOptions)
      #.....
except Exception as e:
      print("Caught exception connecting device: %s" % str(e))
      sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event of
type "greeting" 10 times
deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
    temp=random.randint(-50,60)
    Humid=random.randint(60,100)
    mois = random.randint(10,100)
    data = { 'temp' : temp, 'Humid': Humid ,'mois' : mois}
    #print data
    def myOnPublishCallback():
       print ("Published Temperature = %s C" % temp, "Humidity = %s " % Humid,
"Moisture = %s %%" % mois + "to IBM Watson")
                                                          "ison",
                    deviceCli.publishEvent("IoTSensor",
                                                                    data,
                                                                            qos=0,
    success
on_publish=myOnPublishCallback)
    if not success:
       print("Not connected to IoTF")
    time.sleep(10)
```

deviceCli.commandCallback = myCommandCallback

Disconnect the device and application from the cloud deviceCli.disconnect()

8. TESTING

8.1 TEST CASES

8.2 USER ACCEPTENCE TESTING

9.RESULTS

9.1 PERFORMANCE METRICS

10 ADVANTAGE AND DISADVANTAGE

10.1 ADVANTAGE

- 1. Communicating the device at larger distance through web application. It will play an important role in reducing the man power and travelling expenses of a farmer.
- 2. Monitoring the parameter like temperature, humidity etc will play an important role in improving the growth of the plant.
- 3. Integrating the weather station to the web browser will provide the details of status of the cloud, wind speed etc. It will allow the farmer to prevent their plants from natural calamities.

10.2 DISADVANTAGE

- 1. Since the real time sensor will be connected to the controller, the controller requires continuous supply of internet to transfer the data.
- 2. Non availability of weather prediction for long period of time. Since the long weather prediction require additional payment to open weather.

11. CONCLUSION

Farmers can benefit greatly from an IoT-based smart agriculture system. As a result of the lack of irrigation, agriculture suffers. Climate factors such as humidity, temperature, and moisture can be 28 adjusted dependents on the local environmental variables. This technology also detects animal invasions, which are a major cause of crop loss. This technology aids in the scheduling of

irrigation based on present data from the field and records from a climate source. It helps in deciding the farmer to whether to do irrigation or not to do. Continuous internet connectivity is required for continuous monitoring of data from sensors. This also can be overcome by using GSM unit as an alternative of mobile app. By GSM, SMS can be sent to farmer's phone.

12.FUTURE SCOPE

- The various data of soil nutrients is not added in the web browser, that can be added to the web application.
- Long range forecast is not available in the web application, it can also be added to provide accurate information about weather.
- Controlling the device through mobile application and voice will play important role in enhancing this project.
- Providing the GPS and GIS information will also improve productivity of the farmer.

13. Appendix Source

Code

A. PYTHON CODE

```
import time
import sys
import ibmiotf.application # to install pip install ibmiotf
import ibmiotf.device
#Provide your IBM Watson Device Credentials
organization = "****" #replace the ORG ID
deviceType = "****"#replace the Device type wi
```

```
deviceId = "*****"#replace Device ID
authMethod = "****"
authToken = "*****" #Replace the authtoken
def myCommandCallback(cmd): # function for Callback
print("Command received: %s" % cmd.data)
print(cmd.data['command'])
if cmd.data['command'] == 'Turned on Motor':
print("MOTOR ON IS RECEIVED")
elif cmd.data['command']=="Turned off Motor':
print("MOTOR OFF IS RECEIVED")
if cmd.command == "setInterval":
if 'interval' not in cmd.data:
print("Error - command is missing required information: 'interval'")
else:
interval = cmd.data['interval']
elif cmd.command == "print":
if 'message' not in cmd.data:
print("Error - command is missing required information: 'message'")
else:
output=cmd.data['message']
print(output)
try:
deviceOptions = {"org": organization, "type": deviceType, "id": deviceId,
"auth-method": authMethod, "auth-token": authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
#............
except Exception as e:
print("Caught exception connecting device: %s" % str(e))
sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud
as an event of type "greeting" 10 times
while True:
deviceCli.commandCallback = myCommandCallback
# Disconnect the device and application from the cloud
deviceCli.disconnect()
```

GITHUB LINK: https://github.com/IBM-EPBL/IBM-Project-21109-1659772706.

PROJECT DEMO LINK: https://github.com/IBM-EPBL/IBM-Project-21109-1659772706/tree/main/Demo%20link.