DEVOIR À LA MAISON N°12

- ▶ Le devoir devra être rédigé sur des copies *doubles*.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- ▶ Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Exercice 1.★

Soit E un \mathbb{R} -espace vectoriel de dimension $n \geqslant 2$. On dit qu'un sous-espace vectoriel F de E est *stable* par un endomorphisme f de E si $f(F) \subset F$.

- **1.** Soit $f \in \mathcal{L}(E)$ tel que $f^{n-1} \neq \mathbf{0}$ et $f^n = \mathbf{0}$ où $\mathbf{0}$ désigne l'endomorphisme nul de E.
 - **a.** Montrer qu'il existe $x \in E$ tel que $f^{n-1}(x) \neq 0$.
 - **b.** Montrer que, pour un tel vecteur x, la famille $(f^{n-1}(x), f^{n-2}(x), \dots, f(x), x)$ est une base de E.

Dans toute la suite de l'exercice, f est un endomorphisme de E tel que $f^{n-1} \neq \mathbf{0}$ et $f^n = \mathbf{0}$ et x un vecteur de E tel que $f^{n-1}(x) \neq \mathbf{0}$.

- 2. Pour k un entier tel que $1 \leqslant k \leqslant n$, on pose $F_k = \text{vect}\left((f^{n-i}(x))_{1 \leqslant i \leqslant k}\right)$.
 - **a.** Déterminer la dimension de F_k.
 - **b.** Montrer que $F_k = Ker(f^k) = Im(f^{n-k})$.
 - **c.** Montrer que F_k est stable par f.
- 3. Soit F un sous-espace vectoriel stable par f. On suppose que F est de dimension k avec $1 \le k \le n-1$. On note \tilde{f} l'endomorphisme de F défini par : $\forall y \in F, \, \tilde{f}(y) = f(y)$.
 - a. Montrer qu'il existe un entier $p\geqslant 1$ tel que $\tilde{f}^{p-1}\neq \tilde{\mathbf{0}}$ et $\tilde{f}^p=\tilde{\mathbf{0}}$ où $\tilde{\mathbf{0}}$ désigne l'endomorphisme nul de F
 - **b.** Soit $y \in F$ tel que $\tilde{f}^{p-1}(y) \neq 0$. Que peut-on dire de la famille $(y, \tilde{f}(y), \dots, \tilde{f}^{p-1}(y))$? En déduire que $\tilde{f}^k = \tilde{\mathbf{0}}$.
 - **c.** Montrer que $F = \text{Ker } f^k$.
 - **d.** Déterminer tous les sous-espaces vectoriels stables par f.
- **4.** On veut déterminer tous les endomorphismes g de E qui commutent avec f, c'est-à-dire tels que $f \circ g = g \circ f$.
 - **a.** Soit g un endomorphisme de E. Montrer qu'il existe un unique n-uplet de nombres réels $(\alpha_0, \alpha_1, \dots, \alpha_{n-1})$ tel que :

$$g(x) = \alpha_0 x + \alpha_1 f(x) + \dots + \alpha_{n-1} f^{n-1}(x)$$

b. En déduire que si g commute avec f alors,

$$g = \alpha_0 \operatorname{Id}_E + \alpha_1 f + \cdots + \alpha_{n-1} f^{n-1}$$

où $\alpha_0, \alpha_1, \dots, \alpha_{n-1}$ sont les réels définis à la question précédente.

c. Montrer que l'ensemble des endomorphismes qui commutent avec f est un sous-espace vectoriel de $\mathcal{L}(\mathsf{E})$ et préciser sa dimension.

EXERCICE 2.

Soient E un \mathbb{C} -espace vectoriel, $\mathfrak{u}\in\mathcal{L}(E)$ et $X^2+\mathfrak{a}X+\mathfrak{b}$ un polynôme à coefficients complexes.

1. On note r_1 et r_2 les deux racines (éventuellement confondues) de $X^2 + aX + b$. Montrer que

$$u^2 + au + b\operatorname{Id}_E = (u - r_1\operatorname{Id}_E) \circ (u - r_2\operatorname{Id}_E) = (u - r_2\operatorname{Id}_E) \circ (u - r_1\operatorname{Id}_E)$$

- 2. On pose $F = \text{Ker}(\mathfrak{u}^2 + \mathfrak{a}\mathfrak{u} + b \operatorname{Id}_E)$, $F_1 = \text{Ker}(\mathfrak{u} r_1 \operatorname{Id}_E)$ et $F_2 = \text{Ker}(\mathfrak{u} r_2 \operatorname{Id}_E)$. Montrer que $F_1 \subset F$ et $F_2 \subset F$.
- **3.** A partir de maintenant, on supose que les deux racines r_1 et r_2 sont *distinctes*. Montrer que $F = F_1 \oplus F_2$.
- **4. Application :** Dans cette question, on suppose que E est le \mathbb{C} -espace vectoriel des fonctions de \mathbb{R} dans \mathbb{C} de classe \mathcal{C}^{∞} et que \mathfrak{u} est l'endomorphisme de E qui à f associe f'. On considère l'équation différentielle (\mathcal{E}) y'' + ay' + by = 0 dont on cherche les solutions à valeurs complexes.
 - **a.** Montrer que toute solution de (\mathcal{E}) est de classe \mathcal{C}^{∞} sur \mathbb{R} .
 - **b.** Montrer que l'ensemble des solutions de (\mathcal{E}) est F.
 - **c.** Déterminer F_1 et F_2 .
 - **d.** En déduire le résultat du cours déjà connu : les solutions de (\mathcal{E}) sont les fonctions de \mathbb{R} dans \mathbb{C} du type $t \mapsto \lambda e^{r_1 t} + \mu e^{r_2 t}$ avec λ et μ décrivant \mathbb{C} .