Fundamentos de Programação

Prof. Ítalo Mendes da Silva Ribeiro Lista 2

1 — Crie um algoritmo que leia um número inteiro e escreva na tela **menor que 100**, se o número lido for menor que 100. Caso o número lido seja maior ou igual a 100, o programa deverá escrever na tela **maior ou igual a 100**.

```
int main()
2
   {
3
        int numero;
4
5
        printf("Informe um número: ");
6
        scanf("%i", &numero);
7
8
        if(numero < 100){
             printf("Menor que 100.");
9
10
        }else{
             printf("Maior ou igual a 100.");
11
12
13
14
        return 0;
15 \parallel \}
```

- 2 Implemente um algoritmo que leia um número inteiro e informe se o número é maior que 50.
- 3 Faça um programa que leia um número inteiro e diga se o número é diferente de 23.
- $\mathbf{4}$ Desenvolva um algoritmo que receba um número inteiro e escreva \mathbf{OK} na tela, se o número lido for maior que zero e menor que 10.
- 5 Desenvolva um programa que leia um número inteiro e escreva OK na tela, se o número lido for maior que 30 e menor ou igual a 42.
- 6 Escrever um programa para ler um número inteiro e imprimir se ele é positivo, negativo ou nulo.
- 7 Construir um algoritmo que indique se o número digitado está compreendido entre 20 e 90 ou não.
- 8 Implemente um programa que leia um número real (que possui casa decimal), e escreva na tela se a metade do número lido é maior ou menor que 15.
- 9 Desenvolver um algoritmo que leia um número inteiro e verifique se este é divisível por 3.

```
1 || int main()
2 || {
3 || int numero;
```

```
4
5
        printf("Informe um número: ");
6
        scanf("%i", &numero);
7
8
        if(numero \% 3 == 0){
9
            printf("%i é divisível por 3.", numero);
10
       }else{
            printf("%i não é divisível por 3.", numero);
11
12
13
14
       return 0;
15
   }
```

- 10 Leia um número e verifique se ele é par ou ímpar.
- 11 Receba um número inteiro e verifique se este é divisível por 3 e por 5 ao mesmo tempo.
- 12 Escreva um programa que leia um número e escreva na tela **OK** se a metade do número for maior que 10 e o número for ímpar. Caso contrário escreva **Falha**.
- 13 Mostre na tela a mensagem OK, se o triplo de um número lido for maior que 50 ou o cubo seja menor ou igual a 100. Caso contrário o programa escreve Falha.
- 14 Escreva um programa que obtém um número e imprime a sua imagem pela função.

$$f(x) = \begin{cases} 5, & se \quad x \le 3 \quad ou \quad x = 6 \\ 15, & se \quad x > 11 \end{cases}$$

```
1 \parallel
   int main()
2
3
        int x;
4
5
        printf("Digite o valor de x: ");
6
         scanf("%i", &x);
7
8
         if(x \le 3 \mid \mid x == 6){
9
             printf("5");
         else if(x > 11)
10
             printf("15");
11
12
13
14
        return 0;
15 ||
```

15 - Escrever um programa que obtém um número e imprime a sua imagem pela função.

$$f(x) = \begin{cases} 10 & , se \quad x \le 35 \\ 20 & , se \quad x > 35 \end{cases}$$

16 – Escrever um programa que obtém um número e imprime a sua imagem pela função.

$$f(x) = \begin{cases} 0 & , se \quad x < 10 \\ 5 & , se \quad 10 \le x < 50 \\ 10 & , se \quad x \ge 50 \end{cases}$$

17 – Escreva um programa que obtém um número e imprime a sua imagem pela função.

$$f(x) = \begin{cases} 2 & , se \quad x \le 5 \quad ou \quad x = 7 \\ 6 & , se \quad x = 10 \quad ou \quad x = 13 \\ 10 & , se \quad x > 20 \end{cases}$$

- 18 Implemente um algoritmo que receba a data de nascimento de duas pessoas (dia, mês e ano), informe qual das duas é a mais velha.
- 19 Faça um programa que receba a altura e o gênero de uma pessoa e calcule o peso de referência médica (PRM) para essa pessoa. Para homens o peso é dado pela equação PRM = (72.7*h) 58; para mulheres, PRM = (62.1*h) 44.7.
- 20 Escrever um algoritmo que leia dois números e mostre o maior deles ou se eles são iguais.
- 21 Escrever um algoritmo que leia três números diferentes e exiba o maior deles.
- 22 No boxe, os atletas são divididos em categorias de acordo com o seu peso, seguindo a tabela abaixo. Desenvolva um programa que receba o peso de um atleta (em kg) e mostre a classificação do atleta de acordo com a tabela abaixo.

Peso				
até 52 kgs de 53 até 56 kgs de 57 até 60 kgs				
Peso Mosca Peso Galo		Peso Leve		

```
1 \parallel
   int main()
2
3
        int peso;
4
        printf("peso: ");
5
        scanf("%i", &peso);
6
 7
        if(peso <= 52){
8
             printf("Peso mosca.");
9
        }else if(peso >= 53 && peso <= 56){
10
             printf("Peso galo.");
        }else if(peso >= 57 && peso <= 60){</pre>
11
             printf("Peso leve.");
12
13
14
15
        return 0;
16 ||
```

23 – Em uma empresa, os sacos de arroz são classificados de acordo com o peso, como na tabela abaixo. Implemente um algoritmo que receba o peso de um saco e mostre qual sua classificação.

Peso				
de 1 até 3 kgs de 6 até 10 kgs de 17 até 20 kg				
Pequeno	Médio	Grande		

24 — Um supermercado ajustará os preços de seus produtos de acordo com o número de vendas mensal, utilizando a tabela abaixo. Faça um algoritmo que receba o preço atual de um produto e a quantidade de vendas mensal, e informe o novo preço do produto.

Venda Mensal	Percentual de acréscimo/decréscimo
Menor que 500	-10%
$\mathrm{de}\ 500\ \mathrm{a}\ 1200$	+15%
Acima de 1200	+20%

25 — Um determinado imposto é definido com base no salário do trabalhador, de acordo com a tabela abaixo. Faça um programa que receba o salário de uma pessoa e determine o valor a ser pago no imposto e quanto sobrará do salário.

Salário	Percentual do Imposto	
Menor que R\$ 1000	0%	
de R\$ 1000 à R\$ 2500	10%	
de R\$ 2500 à R\$ 4000	12.5%	
acima de R $\$$ 4000	16%	

26 — A confederação brasileira de natação promoverá eliminatórias para o próximo torneio mundial. Faça um algoritmo que obtenha a idade de um nadador, e exiba a sua categoria segundo a tabela a seguir.

Categoria	Idade (anos)	
Infantil A	5 - 7	
Infantil B	8 - 10	
Juvenil A	11 - 13	
Juvenil B	14 - 17	
Senior	Maiores de 18	

- 27 Escreva um programa que leia as três notas de um aluno, calcule a média final e escreva a situação do aluno na disciplina de acordo com a média final: Reprovado (0 à 3.9), Prova Final (4 à 6.9) e Aprovado (7 à 10).
- 28 Leia a velocidade máxima permitida em uma avenida e a velocidade com que o motorista estava dirigindo nela. Mostre a multa que o motorista receberá, sabendo que são pagos:
 - 50 reais se o motorista ultrapassar em até 10km/h a velocidade permitida (ex.: velocidade máxima: 50km/h; motorista a 60km/h ou a 56km/h);
 - 100 reais, se o motorista ultrapassar de 11 a 30 km/h a velocidade permitida;
 - 200 reais, se estiver acima de 30km/h da velocidade permitida.
- 29 Faça um programa que receba um ângulo em graus e informe em qual quadrante ele se encontra. Caso o ângulo informado seja maior que 360° ou menor que -360° , deve ser informado também o número de voltas que o ângulo forma.
- 30 Faça um Programa que peça os 3 lados de um triângulo. O programa deverá informar se os valores podem ser um triângulo. Indique, caso os lados formem um triângulo, se o mesmo é: equilátero, isósceles ou escaleno. Dicas:
 - Três lados formam um triângulo quando a soma de quaisquer dois lados for maior que o terceiro;
 - Triângulo Equilátero: três lados iguais;
 - Triângulo Isósceles: quaisquer dois lados iguais;
 - Triângulo Escaleno: três lados diferentes.
- 31 Escreva um algoritmo que leia três números diferentes. Onde o segundo número deve ser maior que o primeiro. Informe em qual faixa de valor está o terceiro número:

- a) Antes do primeiro número ou;
- b) Entre o primeiro e o segundo número ou;
- c) Depois do segundo número.
- **32** Escreva um algoritmo que leia três números diferentes. Onde o segundo número deve ser maior que o primeiro. Informe em qual faixa de valor está o terceiro número:
 - a) Antes da metade do primeiro número ou;
 - b) Entre o primeiro e o segundo número ou;
 - c) Depois do dobro do segundo número ou;
 - d) Nenhuma das faixas acima.
- 33 Crie um programa que receba 3 números e verifica se a soma de quaisquer dois números, gera o terceiro número.
- 34 Um sistema utiliza um código numérico como senha de acesso. Um código válido obedece as seguintes exigências: número par e menor que 200. Implemente um algoritmo que leia um código e mostre na tela se o código é valido. Caso o código não seja válido, o algoritmo deve informar qual das duas exigências não foi obedecida.
- 35 Para doar sangue, uma pessoa deve obedecer alguns requisitos. Crie um algoritmo que realiza algumas perguntas e informa, se a pessoa pode doar sangue ou não. Caso não possa, o algoritmo deve informar o motivo da impossibilidade. As perguntas são:
 - a) Qual a sua idade?
 - b) Qual o seu peso?
 - c) Ingeriu bebida alcoólica nas últimas 12 horas?

A idade para doação é entre 16 e 69 anos. O peso deve ser maior ou igual a 50kg. Não é permitida doação de sangue, caso o doador ingeriu bebida alcoólica nas últimas 12 horas.

- 36 Desenvolva um programa que tenha o seguinte menu e realize os cálculos necessários de acordo com a opção do menu escolhida:
 - 1 Dobro de um número;
 - 2 A metade de um número;
 - 3 Quadrado de um número;
 - 4 Sair.

```
int main()
1 \parallel
2
   {
3
        printf("==== MENU ====\n");
4
        printf("1 - Dobro\n");
5
        printf("2 - Metade\n");
6
        printf("3 - Quadrado\n");
7
        printf("4 - Sair\n\n");
8
9
        int num, opcao;
10
11
        printf("Opção: ");
12
        scanf("%i", &opcao);
13
```

```
14
        printf("Número: ");
15
        scanf("%i", &num);
16
17
        switch(opcao){
18
            case 1: printf("Dobro é: %i", 2 * num);
19
                     break;
20
            case 2: printf("Metade é: %f", num / 2.0f);
21
22
                     break;
23
24
            case 3: printf("Quadrado é: %i", num * num);
25
                     break;
26
27
            case 4: printf("Tchau");
28
                     break:
29
30
            default:
                     printf("Opção inválida");
31
        }
32
33
34
        return 0;
35 ||
```

37 – Os principais códigos de estado no protocolo HTTP estão na tabela abaixo. Os estados informam o resultado de uma requisição em um servidor Web. Faça um programa que receba um código, e mostre a respectiva mensagem de estado.

Código	\mathbf{Estado}
200	OK
401	Não autorizado
403	Acesso Negado
404	Não Encontrado
409	Conflito

38 — Implemente um programa para perguntar e informar se o usuário respondeu corretamente ou não a seguinte pergunta:

O resultado da equação $2+5\times 10+5$ é

- a) 75
- b) 70
- c) 57
- d) 53
- 39 Em uma empresa, a documentação de um projeto é aprovada em um setor determinado pelo código do projeto, seguindo a tabela seguinte. Crie um algoritmo que leia o código do projeto e informe em qual setor o projeto será aprovado.

Código	Setor para aprovação
22	Fiscal
25	Fiscal
27	Fiscal
34	Fiscal
36	$\operatorname{Cr\'edito}$
39	$\operatorname{Cr\'edito}$
47	$\operatorname{Construç\~ao}$
51	$\operatorname{Constru}$ ção
56	$\operatorname{Construç\~ao}$

40 — Durante as batalhas de um jogo de RPG, o jogador pode escolher uma dentre quatro poções da tabela abaixo para recuperar seus pontos de vida.

Poção	Pontos de Vida
vermelha	50
laranja	100
amarela	200
branca	250

Desenvolva um programa que leia a quantidade de pontos de vida atual do jogador e a poção escolhida. Após o uso da poção, o programa deve mostrar os pontos de vida do jogador, onde o valor máximo é de **300 pontos** de vida.

41 — As aves de uma granja são classificadas de acordo com a idade e o peso, como na tabela abaixo. Desenvolva um programa que receba a idade (em meses) e o peso (em kg) e mostre o tipo de ave seguindo a tabela abaixo.

Tempo	Peso		
	Menos de 2 kg	2 ou mais kg	
3 meses	muito pequena	pequena	
6 meses	media	grande	

```
1 \parallel
   int main()
2
3
        int peso, tempo;
4
5
        printf("Peso: ");
6
        scanf("%i", &peso);
7
8
        printf("Tempo: ");
9
        scanf("%i", &tempo);
10
11
        if(tempo == 3){
12
             if(peso < 2){
13
                 printf("Muito pequena.");
             }else{
14
15
                 printf("Pequena.");
16
17
        }else{
```

```
18
            if(peso < 2){
19
                printf("Média.");
20
            }else{
21
                printf("Grande.");
22
            }
23
       }
24
25
       /*
26
        O código seguinte é um exemplo que apesar de
27
        funcionar, não é aceito na prova nem nos
28
        exercícios, pois são realizadas muito mais
29
        comparações que os ifs aninhados do código
30
       mostrado acima.
31
32
       if(tempo == 3 && peso < 2){
33
            printf("Muito pequena");
34
       }else if (tempo == 3 && peso >= 2){
35
            printf("Pequena");
36
       }else if (tempo == 6 && peso < 2){</pre>
37
            printf("Media);
38
       }else if (tempo == 6 && peso >= 2){
39
            printf("Grande);
       }
40
41
        * /
42
43
       return 0;
44 || }
```

42 — Criar um algoritmo que leia o destino do passageiro, e se a viagem inclui retorno (ida e volta). Informe o preço da passagem conforme a tabela a seguir:

Destino	Ida	Ida e Volta
Região Norte	R\$ 500	R\$ 900
Região Nordeste	R\$ 350	R\$ 650
Região Sul	R\$ 1200	R\$ 2000

43 — Receba a altura e o peso de uma pessoa. De acordo com a tabela a seguir verifique e mostre a classificação dessa pessoa:

Altura	Peso		
	Até 60	60 até 90	Acima de 90
Menos que 1,20	A	D	G
De $1,20$ a $1,70$	В	${f E}$	Н
Maiores que 1,70	С	F	I

44 — Receba a idade e a população de uma cidade. De acordo com a tabela a seguir,mostre a classificação dessa cidade:

idade	População (mil)		
	Até 100	100 até 180	Acima de 180
Menos que 5	A	D	G
$\mathrm{De}\ 5\ \mathrm{a}\ 30$	В	${f E}$	Η
Maior que 30	\mathbf{C}	F	I

45 – Escrever um programa que obtem um número e imprime a sua imagem pela função.

$$f(x) = \begin{cases} 1 & , se & x \le 1 \\ 2 & , se & 1 < x \le 2 \\ x^2 & , se & 2 < x \le 5 \\ x^3 & , se & x > 5 \end{cases}$$