

	Date	Open	High	Low	Close	Adj Close	Volume		
2016-07-22	2016-07-22	44.397999	44.900002	43.776001	44.453999	44.453999	12898500		
2016-07-25	2016-07-25	44.453999	46.278000	44.273998	46.001999	46.001999	22453500		
2016-07-26	2016-07-26	45.537998	46.000000	45.060001	45.902000	45.902000	17150000		
2016-07-27	2016-07-27	45.868000	46.672001	45.383999	45.698002	45.698002	14445000		
2016-07-28	2016-07-28	45.590000	46.152000	45.320000	46.122002	46.122002	12095500		
2021-07-15	2021-07-15	658.390015	666.140015	637.880005	650.599976	650.599976	20209600		
2021-07-16	2021-07-16	654.679993	656.700012	642.200012	644.219971	644.219971	16339800		
2021-07-19	2021-07-19	629.890015	647.200012	621.289978	646.219971	646.219971	21297100		
2021-07-20	2021-07-20	651.989990	662.390015	640.500000	660.500000	660.500000	15442700		
2021-07-21	2021-07-21	659.609985	664.859985	650.289978	655.289978	655.289978	13910800		
1258 rows × 7 columns									

[5] #Visually show the close price
 plt.figure(figsize=(12.2, 6))
 plt.title('Close Price', fontsize =18)
 plt.plot(df['Close'])
 plt.xlabel('Date', fontsize = 18)
 plt.ylabel('Close Price', fontsize = 18)
 plt.show()

(5) #Calculate the three moving averages
 #Calculate the short/fast exponential moving average
 ShortEMA = df.Close.ewm(span=5, adjust=False).mean()
 #Calculate the Middle/Medium exponential moving average
 MiddleEMA = df.Close.ewm(span=21, adjust=False).mean()
 #Calculate the long/slow exponential moving average
 LongEMA = df.Close.ewm(span=63, adjust = False).mean()

```
pit.piot(middietma, label = middie/medium tma , color= orange )
plt.plot(LongEMA, label='Long/Slow EMA', color='green')
plt.xlabel('Date', fontsize = 18)
plt.ylabel('Close Price', fontsize = 18)
plt.show()
```



```
[8] #Add the exponential moving averages to the data set

df['Short'] = ShortEMA

df['Middle'] = MiddleEMA

df['Long'] = LongEMA
```

[9] #Show the data

	Date	0pen	High	Low	Close	Adj Close	Volume	Short	Middle	Long
2016-07-22	2016-07-22	44.397999	44.900002	43.776001	44.453999	44.453999	12898500	44.453999	44.453999	44.453999
2016-07-25	2016-07-25	44.453999	46.278000	44.273998	46.001999	46.001999	22453500	44.969999	44.594726	44.502374
2016-07-26	2016-07-26	45.537998	46.000000	45.060001	45.902000	45.902000	17150000	45.280666	44.713569	44.546112
2016-07-27	2016-07-27	45.868000	46.672001	45.383999	45.698002	45.698002	14445000	45.419778	44.803063	44.582109
2016-07-28	2016-07-28	45.590000	46.152000	45.320000	46.122002	46.122002	12095500	45.653853	44.922967	44.630231
2021-07-15	2021-07-15	658.390015	666.140015	637.880005	650.599976	650.599976	20209600	658.871649	653.992862	650.204036
2021-07-16	2021-07-16	654.679993	656.700012	642.200012	644.219971	644.219971	16339800	653.987756	653.104417	650.017034
2021-07-19	2021-07-19	629.890015	647.200012	621.289978	646.219971	646.219971	21297100	651.398494	652.478558	649.898376
2021-07-20	2021-07-20	651.989990	662.390015	640.500000	660.500000	660.500000	15442700	654.432330	653.207780	650.229677
2021-07-21	2021-07-21	659.609985	664.859985	650.289978	655.289978	655.289978	13910800	654.718212	653.397071	650.387811

1258 rows × 10 columns

```
\frac{\checkmark}{0} [11] #Create the function to buy and sell the stock
          def buy_sell_function(data):
            buy_list = []
sell_list = []
flag_long = False
            flag_short = False
             for i in range(0, len(data)):
                if \ data['Middle'][i] < \ data['Long'][i] \ and \ data['Short'][i] < \ data['Middle'][i] \ and \ flag\_long == False \ and \ flag\_short == False; 
                 buy_list.append(data['Close'][i])
                 sell_list.append(np.nan)
flag_short = True
               elif flag_short == True and data['Short'][i] > data['Middle'][i]:
                  sell_list.append(data['Close'][i])
                 buy_list.append(np.nan)
flag_short = False
               elif data['Middle'][i] > data['Long'][i] and data['Short'][i] > data['Middle'][i] and flag_long == False and flag_short == False:
    buy_list.append(data['Close'][i])
    sell_list.append(np.nan)
                  flag_long = True
               elif flag_long == True and data['Short'][i] < data['Middle'][i]: sell_list.append(data['Close'][i]) buy_list.append(np.nan)
                  flag_long = False
               else:
                 buy_list.append(np.nan)
                  sell_list.append(np.nan)
```

```
recurr (buy_iist, seii_iist/
on [12] #Add the buy and sell signals to the data set df['Buy']= buy_sell_function(df)[0] df['Sell'] = buy_sell_function(df)[1]
                                                                                                                                                                                                                                                                                                                                                                                                            ↑ ↓ ⊖ 目 $ 🖟 🗎 :
 #Visually show the stock buy and sell signals
                    plt.figure(figsize=(18, 10))
plt.title('Buy and Sell Plot', fontsize = 18)
plt.plot(df['close'], label= 'close Price', color= 'blue', alpha=0.35)
plt.plot(ShortEMA, label = 'Short/Fast EMA', color='red', alpha=0.35)
plt.plot(MiddleEMA, label='Middle/Medium EMA', color='orange')
plt.plot(LongEMA, label='Long/Slow EMA', color='green', alpha=0.35)
plt.scatter(df.index, df['Suy'], color='green', marker='n', alpha=1)
plt.scatter(df.index, df['Sell'], color='red', marker='v', alpha=1)
plt.xlabel('Date', fontsize = 18)
plt.ylabel('Close Price', fontsize = 18)
plt.ylabel('Close Price', fontsize = 18)
                      plt.show()
                                                                                                                                                                                                                            Buy and Sell Plot
                                800
                      Close Price
                                200
                                       0
                                                                                        2017
                                                                                                                                                                                                                                                                                                                                                                                                  2021
                                                                                                                                                                  2018
                                                                                                                                                                                                                                             2019
                                                                                                                                                                                                                                                                                                                       2020
```

Date