

RSC'd PCT/PTO 1 6 AUG 2002

	GRANDI Guido RAPPUOLI Rino GIULIANI Marzia Monica PIZZA Mariagrazia	
<120>	ENHANCEMENT OF BACTERICIDAL ACTIVITY OF NEISSERIA ANTIGENS WITH OLIGONUCLEOTIDES CONTAINING CG MOTIFS	
<130>	P023888WO	
	PCT/IB00/00176 2000-02-09	
	US-60/121,792 1999-02-26	
<160>	34	
<170>	SeqWin99	
<210>	1	
<211>	20	
<212>		
<213>	Artificial Sequence	
<220>	21	
<223>	oligonucleotide adjuvant	
<400>	1	
tccatga	cgt tcctgacgtt	20
<210>	2	
<211>	20	
<212>		
	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	
<400>	2	
ataatcg	acg ttcaagcaag	20
<210>	3	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	
400		

ggggtca	ggggtcaacg ttgaggggg 20									
<210>	4									
<211>	18									
<212>	DNA									
<213>	Artificial Sequence									
<220>										
<223>	oligonucleotide adjuvant									
(223)	origonacieociae adjuvanic									
<400>	4									
tctccca	gcg tgcgccat	18								
<210>	5									
	20									
<212>										
<213>	Artificial Sequence									
<220>										
	oligonucleotide adjuvant									
<400>	5									
gagaacg	ctc gaccttcgat	20								
<210>	6									
<211>	20									
	DNA									
	Artificial Sequence									
	•									
<220>										
<223>	oligonucleotide adjuvant									
<400>	6									
	cgt tcctgatgct	20								
cccacge		20								
<210>	7									
<211>	20									
<212>	DNA									
<213>	Artificial Sequence									
000										
<220>										
<223>	oligonucleotide adjuvant									
<400>	7									
tccatga	cgt tcctgatgct	20								
-										
<210>	8									
<211>	15									
<212>	DNA									
<213>	Artificial Sequence									
<220>										
<223>	oligonucleotide adjuvant									
_ _ ·										

<400> gctagacq	8 gtt agcgt	15
<210>	9	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	
<400>	9	
atcgacto	ctc gagegttete	20
<210>	10	
<211>	20	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	
<400>	10	
gaacctt	cca tgctgttccg	20
<210>	11	
<211>	15	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	
<400>	11	
gctagat	gtt agcgt	15
<210>	12	
<211>	8	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	
<400>	12	
tcaacgt	t e e e e e e e e e e e e e e e e e e e	8
<210>	13	
<211>	8	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	

```
<400>
        13
gcaacgtt
                                                                      8
<210>
        14
<211>
        8
<212>
        DNA
<213>
        Artificial Sequence
<220>
<223>
        oligonucleotide adjuvant
<400>
                                                                      8
tcgacgtc
<210>
        15
<211>
        8
<212>
        DNA
<213>
        Artificial Sequence
<220>
<223>
        oligonucleotide adjuvant
<400>
        15
tcagcgct
                                                                      8
<210>
        16
<211>
        8
<212>
        DNA
<213>
        Artificial Sequence
<220>
        oligonucleotide adjuvant
<223>
<400>
        16
tcaacgct
                                                                      8
<210>
        17
<211>
        8
<212>
        DNA
        Artificial Sequence
<213>
<220>
<223>
        oligonucleotide adjuvant
<400>
        17
tcatcgat
                                                                      8
<210>
        18
<211>
        8
<212>
        DNA
<213>
        Artificial Sequence
<220>
        oligonucleotide adjuvant
<223>
```

<400>	18	
tcttcgaa	A	8
<210>	19	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	
400		
<400>	19	~ ~
tgactgtg	gaa cgttcgagat ga	22
<210>	20	
<211>	22	
<211>	DNA	
	Artificial Sequence	
(213)	Altilitial Sequence	
<220>		
<223>	oligonucleotide adjuvant	
(225)	origonacieociae adjuvanc	
<400>	20	
	gaa cgttagcgat ga	22
egacege	gaa egeeagegae ga	22
<210>	21	
<211>	22	
	DNA	
	Artificial Sequence	
	··	
<220>		
	oligonucleotide adjuvant	
<400>	21	
tgactgtg	gaa cgttagagcg ga	22
<210>	22	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	
<400>	22	
gtttgcg	caa cgttgttgcc at	22
<210>	23	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	

<400>	23	
atggcaa	caa cgttgcgcaa ac	22
<210>	24	
<211>	22	
<212>	DNA	
	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	
<400>	24	
cattgga	aaa cgttcttcgg gg	22
0.1.0		
<210>	25 22	
<211> <212>		
	Artificial Sequence	
(213)	Artificial bequence	
<220>		
<223>	oligonucleotide adjuvant	
<400>	25	
ccccgaa	gaa cgttttccaa tg	22
<210>	26	
<211>	12	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	
-		
<400>	26	
attgacg	tca at	12
<210>	27	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide adjuvant	
\223/	origonacicociae aajavane	
<400>	27	
	ttg acgtcaatgg gt	22
<210>	28	
<211>	33	
<212>	DNA	
<213>	Artificial Sequence	
.000		
<220>	Forward primar from example 2	
<223>	Forward primer from example 2	

```
<400>
        28
cgcggatccc atatgtgcca aagcaagagc atc
                                                                     33
<210>
        29
<211>
        25
<212>
       DNA
<213>
        Reverse primer from example 2
<400>
        29
cccgctcgag cgggcggtat tcggg
                                                                     25
<210>
        30
<211>
        1326
<212>
       DNA
<213>
        Neisseria meningitidis
<400>
        30
atgaaaaaat acctattccg cgccgccctg tacggcatcg ccgccgccat cctcgccgcc
                                                                     60
tgccaaagca agagcatcca aacctttccg caacccgaca catccgtcat caacggcccg
                                                                     120
gaccggccgg tcggcatccc cgaccccgcc ggaacgacgg tcggcggcgg cggggccgtc
                                                                     180
tataccgttg taccgcacct gtccctgccc cactgggcgg cgcaggattt cgccaaaagc
                                                                     240
ctgcaatcct tccgcctcgg ctgcgccaat ttgaaaaacc gccaaggctg gcaggatgtg
                                                                     300
tgcgcccaag cctttcaaac ccccgtccat tcctttcagg caaaacagtt ttttgaacgc
                                                                     360
tatttcacgc cgtggcaggt tgcaggcaac ggaagccttg ccggtacggt taccggctat
                                                                     420
tacgaaccgg tgctgaaggg cgacgacagg cggacggcac aagcccgctt cccgatttac
                                                                     480
ggtattcccg acgattttat ctccgtcccc ctgcctgccg gtttgcggag cggaaaagcc
                                                                     540
cttgtccgca tcaggcagac gggaaaaaac agcggcacaa tcgacaatac cggcggcaca
                                                                     600
catacogcog acctetecog attececate accgogogoa caacagcaat caaaggcagg
                                                                     660
tttgaaggaa geegetteet eeectaceae aegegeaace aaateaaegg eggegegett
                                                                     720
gacggcaaag ccccgatact cggttacgcc gaagaccctg tcgaactttt ttttatgcac
                                                                     780
atccaaggct cgggccgtct gaaaaccccg tccggcaaat acatccgcat cggctatgcc
                                                                     840
gacaaaaacg aacatccyta cgtttccatc ggacgctata tggcggataa gggctacctc
                                                                     900
aaactcggac aaacctccat gcagggcatt aagtcttata tgcggcaaaa tccgcaacgc
                                                                     960
ctcgccgaag ttttgggtca aaaccccagc tatatctttt tccgcgagct tgccggaagc
                                                                     1020
agcaatgacg gccctgtcgg cgcactgggc acgccgctga tggggggaata tgccggcgca
                                                                     1080
gtegacegge actacattae ettgggtgeg ceettatttg tegecacege ceateeggtt
                                                                     1140
accegeaaag cccteaaceg cctgattatg gegeaggata ceggeagege gattaaagge
                                                                     1200
geggtgegeg tggattattt ttggggatae ggegaegaag ceggegaaet tgeeggeaaa
                                                                     1260
cagaaaacca cgggatatgt ctggcagctc ctacccaacg gtatgaagcc cgaataccgc
                                                                     1320
ccqtaa
                                                                     1326
<210>
        31
<211>
        441
<212>
        PRT
<213>
       Neisseria meningitidis
Met Lys Lys Tyr Leu Phe Arg Ala Ala Leu Tyr Gly Ile Ala Ala Ala
Ile Leu Ala Ala Cys Gln Ser Lys Ser Ile Gln Thr Phe Pro Gln Pro
                                25
```

Asp Thr Ser Val Ile Asn Gly Pro Asp Arg Pro Val Gly Ile Pro Asp

Pro	50	GIY	Thr	Tnr	vaı	55	GIÀ	GIY	GIY	Ala	60	Tyr	Thr	vai	vaı
Pro 65	His	Leu	Ser	Leu	Pro 70	His	Trp	Ala	Ala	Gln 75	Asp	Phe	Ala	Lys	Ser 80
Leu	Gln	Ser	Phe	Arg 85	Leu	Gly	Cys	Ala	Asn 90	Leu	Lys	Asn	Arg	Gln 95	Gly
Trp	Gln	Asp	Val 100	Cys	Ala	Gln	Ala	Phe 105	Gln	Thr	Pro	Val	His 110	Ser	Phe
Gln	Ala	Lys 115	Gln	Phe	Phe	Glu	Arg 120	Tyr	Phe	Thr	Pro	Trp 125	Gln	Val	Ala
Gly	Asn 130	Gly	Ser	Leu	Ala	Gly 135	Thr	Val	Thr	Gly	Tyr 140	Tyr	Glu	Pro	Val
Leu 145	Lys	Gly	Asp	Asp	Arg 150	Arg	Thr	Ala	Gln	Ala 155	Arg	Phe	Pro	Ile	Tyr 160
Gly	Ile	Pro	Asp	Asp 165	Phe	Ile	Ser	Val	Pro 170	Leu	Pro	Ala	Gly	Leu 175	Arg
Ser	Gly	Lys	Ala 180	Leu	Val	Arg	Ile	Arg 185	Gln	Thr	Gly	Lys	Asn 190	Ser	Gly
Thr	Ile	Asp 195	Asn	Thr	Gly	Gly	Thr 200	His	Thr	Ala	Asp	Leu 205	Ser	Arg	Phe
Pro	Ile 210	Thr	Ala	Arg	Thr	Thr 215	Ala	Ile	Lys	Gly	Arg 220	Phe	Glu	Gly	Ser
Arg 225	Phe	Leu	Pro	Tyr	His 230	Thr	Arg	Asn	Gln	Ile 235	Asn	Gly	Gly	Ala	Leu 240
Asp	Gly	Lys	Ala	Pro 245	Ile	Leu	Gly	Tyr	Ala 250	Glu	Asp	Pro	Val	Glu 255	Leu
Phe	Phe	Met	His 260	Ile	Gln	Gly	Ser	Gly 265	Arg	Leu	Lys	Thr	Pro 270	Ser	Gly
Lys	Tyr	Ile 275	Arg	Ile	Gly	Tyr	Ala 280	Asp	Lys	Asn	Glu	His 285	Pro	Tyr	Val
Ser	Ile 290	Gly	Arg	Tyr	Met	Ala 295	Asp	Lys	Gly	Tyr	Leu 300	Lys	Leu	Gly	Gln
Thr 305	Ser	Met	Gln	Gly	Ile 310	Lys	Ser	Tyr	Met	Arg 315	Gln	Asn	Pro	Gln	Arg 320

Leu Ala Glu Val Leu Gly Gln Asn Pro Ser Tyr Ile Phe Phe Arg Glu

Leu Ala Gly Ser Ser Asn Asp Gly Pro Val Gly Ala Leu Gly Thr Pro
340 345 350

Leu Met Gly Glu Tyr Ala Gly Ala Val Asp Arg His Tyr Ile Thr Leu 355 360 365

Gly Ala Pro Leu Phe Val Ala Thr Ala His Pro Val Thr Arg Lys Ala 370 380

Leu Asn Arg Leu Ile Met Ala Gln Asp Thr Gly Ser Ala Ile Asp Gly 385 390 395 400

Ala Val Arg Val Asp Tyr Phe Trp Gly Tyr Gly Asp Glu Ala Gly Glu 405 410 415

Leu Ala Gly Lys Gln Lys Thr Thr Gly Tyr Val Trp Gln Leu Leu Pro
420 425 430

Asn Gly Met Lys Pro Glu Tyr Arg Pro 435 440

<210> 32

<211> 797

<212> PRT

<213> Neisseria meningitidis

<400> 32

Met Lys Leu Lys Gln Ile Ala Ser Ala Leu Met Met Leu Gly Ile Ser 1 5 10 15

Pro Leu Ala Leu Ala Asp Phe Thr Ile Gln Asp Ile Arg Val Glu Gly
20 25 30

Leu Gln Arg Thr Glu Pro Ser Thr Val Phe Asn Tyr Leu Pro Val Lys 35 40 45

Val Gly Asp Thr Tyr Asn Asp Thr His Gly Ser Ala Ile Ile Lys Ser 50 55 60

Leu Tyr Ala Thr Gly Phe Phe Asp Asp Val Arg Val Glu Thr Ala Asp 70 75 80

Gly Gln Leu Leu Thr Val Ile Glu Arg Pro Thr Ile Gly Ser Leu 85 90 95

Asn Ile Thr Gly Ala Lys Met Leu Gln Asn Asp Ala Ile Lys Lys Asn 100 105 110

Leu Glu Ser Phe Gly Leu Ala Gln Ser Gln Tyr Phe Asn Gln Ala Thr

Leu Asn Gln Ala Val Ala Gly Leu Lys Glu Glu Tyr Leu Gly Arg Gly

- Lys Leu Asn Ile Gln Ile Thr Pro Lys Val Thr Lys Leu Ala Arg Asn 145 150 155 160

 Arg Val Asp Ile Asp Ile Thr Ile Asp Glu Gly Lys Ser Ala Lys Ile 165 170 175
- Thr Asp Ile Glu Phe Glu Gly Asn Gln Val Tyr Ser Asp Arg Lys Leu 180 185 190
- Met Arg Gln Met Ser Leu Thr Glu Gly Gly Ile Trp Thr Trp Leu Thr
 195 200 205
- Arg Ser Asn Gln Phe Asn Glu Gln Lys Phe Ala Gln Asp Met Glu Lys 210 220
- Val Thr Asp Phe Tyr Gln Asn Asn Gly Tyr Phe Asp Phe Arg Ile Leu 225 230 235 240
- Asp Thr Asp Ile Gln Thr Asn Glu Asp Lys Thr Lys Gln Thr Ile Lys 245 250 255
- Ile Thr Val His Glu Gly Gly Arg Phe Arg Trp Gly Lys Val Ser Ile 260 265 270
- Glu Gly Asp Thr Asn Glu Val Pro Lys Ala Glu Leu Glu Lys Leu Leu 275 280 285
- Thr Met Lys Pro Gly Lys Trp Tyr Glu Arg Gln Gln Met Thr Ala Val 290 295 300
- Leu Gly Glu Ile Gln Asn Arg Met Gly Ser Ala Gly Tyr Ala Tyr Ser 305 310 315 320
- Glu Ile Ser Val Gln Pro Leu Pro Asn Ala Glu Thr Lys Thr Val Asp 325 330 335
- Phe Val Leu His Ile Glu Pro Gly Arg Lys Ile Tyr Val Asn Glu Ile 340 345 350
- His Ile Thr Gly Asn Asn Lys Thr Arg Asp Glu Val Val Arg Arg Glu 355 360 365
- Leu Arg Gln Met Glu Ser Ala Pro Tyr Asp Thr Ser Lys Leu Gln Arg 370 375 380
- Ser Lys Glu Arg Val Glu Leu Leu Gly Tyr Phe Asp Asn Val Gln Phe 385 390 395 400
- Asp Ala Val Pro Leu Ala Gly Thr Pro Asp Lys Val Asp Leu Asn Met
 405 410 415
- Ser Leu Thr Glu Arg Ser Thr Gly Ser Leu Asp Leu Ser Ala Gly Trp

- Val Gln Asp Thr Gly Leu Val Met Ser Ala Gly Val Ser Gln Asp Asn 435 440 445
- Leu Phe Gly Thr Gly Lys Ser Ala Ala Leu Arg Ala Ser Arg Ser Lys 450 455 460
- Thr Thr Leu Asn Gly Ser Leu Ser Phe Thr Asp Pro Tyr Phe Thr Ala 465 470 475 480
- Asp Gly Val Ser Leu Gly Tyr Asp Val Tyr Gly Lys Ala Phe Asp Pro
 485 490 495
- Arg Lys Ala Ser Thr Ser Ile Lys Gln Tyr Lys Thr Thr Thr Ala Gly
 500 505 510
- Ala Gly Ile Arg Met Ser Val Pro Val Thr Glu Tyr Asp Arg Val Asn 515 520 525
- Phe Gly Leu Val Ala Glu His Leu Thr Val Asn Thr Tyr Asn Lys Ala 530 540
- Pro Lys His Tyr Ala Asp Phe Ile Lys Lys Tyr Gly Lys Thr Asp Gly 545 550 560
- Thr Asp Gly Ser Phe Lys Gly Trp Leu Tyr Lys Gly Thr Val Gly Trp 565 570 575
- Gly Arg Asn Lys Thr Asp Ser Ala Leu Trp Pro Thr Arg Gly Tyr Leu
 580 585 590
- Thr Gly Val Asn Ala Glu Ile Ala Leu Pro Gly Ser Lys Leu Gln Tyr 595 600 605
- Tyr Ser Ala Thr His Asn Gln Thr Trp Phe Phe Pro Leu Ser Lys Thr 610 615 620
- Phe Thr Leu Met Leu Gly Gly Glu Val Gly Ile Ala Gly Gly Tyr Gly 625 635 635
- Arg Thr Lys Glu Ile Pro Phe Phe Glu Asn Phe Tyr Gly Gly Leu 645 650 655
- Gly Ser Val Arg Gly Tyr Glu Ser Gly Thr Leu Gly Pro Lys Val Tyr 660 665 670
- Asp Glu Tyr Gly Glu Lys Ile Ser Tyr Gly Gly Asn Lys Lys Ala Asn 675 680 685
- Val Ser Ala Glu Leu Leu Phe Pro Met Pro Gly Ala Lys Asp Ala Arg 690 695 700
- Thr Val Arg Leu Ser Leu Phe Ala Asp Ala Gly Ser Val Trp Asp Gly

Lys Thr Tyr Asp Asp Asn Ser Ser Ser Ala Thr Gly Gly Arg Val Gln
725 730 735

Asn Ile Tyr Gly Ala Gly Asn Thr His Lys Ser Thr Phe Thr Asn Glu
740 745 750

Leu Arg Tyr Ser Ala Gly Gly Ala Val Thr Trp Leu Ser Pro Leu Gly 755 760 765

Pro Met Lys Phe Ser Tyr Ala Tyr Pro Leu Lys Lys Lys Pro Glu Asp 770 785

Glu Ile Gln Arg Phe Gln Phe Gln Leu Gly Thr Thr Phe
785 790 795

<210> 33

<211> 792

<212> PRT

<213> Neisseria gonorrhoeae

<400> 33

Met Lys Leu Lys Gln Ile Ala Ser Ala Leu Met Met Leu Gly Ile Ser 1 5 10 15

Pro Leu Ala Phe Ala Asp Phe Thr Ile Gln Asp Ile Arg Val Glu Gly
20 25 30

Leu Gln Arg Thr Glu Pro Ser Thr Val Phe Asn Tyr Leu Pro Val Lys 35 40 45

Val Gly Asp Thr Tyr Asn Asp Thr His Gly Ser Ala Ile Ile Lys Ser 50 55 60

Leu Tyr Ala Thr Gly Phe Phe Asp Asp Val Arg Val Glu Thr Ala Asp 65 70 75 80

Gly Gln Leu Leu Thr Val Ile Glu Arg Pro Thr Ile Gly Ser Leu 85 90 95

Asn Ile Thr Gly Ala Lys Met Leu Gln Asn Asp Ala Ile Lys Lys Asn 100 105 110

Leu Glu Ser Phe Gly Leu Ala Gln Ser Gln Tyr Phe Asn Gln Ala Thr 115 120 125

Leu Asn Gln Ala Val Ala Gly Leu Lys Glu Glu Tyr Leu Gly Arg Gly 130 135 140

Lys Leu Asn Ile Gln Ile Thr Pro Lys Val Thr Lys Leu Ala Arg Asn 145 150 155 160

Arg Val Asp Ile Asp Ile Thr Ile Asp Glu Gly Lys Ser Ala Lys Ile

Thr	Asp	Ile	Glu 180	Phe	Glu	Gly	Asn	Gln 185	Val	Tyr	Ser	Asp	Arg 190	Lys	Leu
Met	Arg	Gln 195	Met	Ser	Leu	Thr	Glu 200	Gly	Gly	Ile	Trp	Thr 205	Trp	Leu	Thr
Arg	Ser 210	Asp	Arg	Phe	Asp	Arg 215	Gln	Lys	Phe	Ala	Gln 220	Asp	Met	Glu	Lys
Val 225	Thr	Asp	Phe	Tyr	Gln 230	Asn	Asn	Gly	Tyr	Phe 235	Asp	Phe	Arg	Ile	Leu 240
Asp	Thr	Asp	Ile	Gln 245	Thr	Asn	Glu	Asp	Lys 250	Thr	Arg	Gln	Thr	Ile 255	Lys
Ile	Thr	Val	His 260	Glu	Gly	Gly	Arg	Phe 265	Arg	Trp	Gly	Lys	Val 270	Ser	Ile
Glu	Gly	Asp 275	Thr	Asn	Glu	Val	Pro 280	Lys	Ala	Glu	Leu	Glu 285	Lys	Leu	Leu
Thr	Met 290	Lys	Pro	Gly	Lys	Trp 295	Tyr	Glu	Arg	Gln	Gln 300	Met	Thr	Ala	Val
Leu 305	Gly	Glu	Ile	Gln	Asn 310	Arg	Met	Gly	Ser	Ala 315	Gly	Tyr	Ala	Tyr	Ser 320
Glu	Ile	Ser	Val	Gln 325	Pro	Leu	Pro	Asn	Ala 330	Gly	Thr	Lys	Thr	Val 335	Asp
Phe	Val	Leu	His 340	Ile	Glu	Pro	Gly	Arg 345	Lys	Ile	Tyr	Val	Asn 350	Glu	Ile
His	Ile	Thr 355	Gly	Asn	Asn	Lys	Thr 360	Arg	Asp	Glu	Val	Val 365	Arg	Arg	Glu
Leu	Arg 370	Gln	Met	Glu	Ser	Ala 375	Pro	Tyr	Asp	Thr	Ser 380	Lys	Leu	Gln	Arg
Ser 385	Lys	Glu	Arg	Val	Glu 390	Leu	Leu	Gly	Tyr	Phe 395	Asp	Asn	Val	Gln	Phe 400
Asp	Ala	Val	Pro	Leu 405	Ala	Gly	Thr	Pro	Asp 410	Lys	Val	Asp	Leu	Asn 415	Met
Ser	Leu	Thr	Glu 420	Arg	Ser	Thr	Gly	Ser 425	Leu	Asp	Leu	Ser	Ala 430	Gly	Trp
Val	Gln	Asp	Thr	Gly	Leu	Val	Met	Ser	Ala	Gly	Val	Ser	Gln	Asp	Asn

Leu Phe Gly Thr Gly Lys Ser Ala Ala Leu Arg Ala Ser Arg Ser Lys

Thr 465	Thr	Leu	Asn	Gly	Ser 470	Leu	Ser	Phe	Thr	Asp 475	Pro	Tyr	Phe	Thr	Ala 480
Asp	Gly	Val	Ser	Leu 485	Gly	Tyr	Asp	Ile	Tyr 490	Gly	Lys	Ala	Phe	Asp 495	Pro
Arg	Lys	Ala	Ser 500	Thr	Ser	Val	Lys	Gln 505	Tyr	Lys	Thr	Thr	Thr 510	Ala	Gly
Gly	Gly	Val 515	Arg	Met	Gly	Ile	Pro 520	Val	Thr	Glu	Tyr	Asp 525	Arg	Val	Asn
Phe	Gly 530	Leu	Ala	Ala	Glu	His 535	Leu	Thr	Val	Asn	Thr 540	Tyr	Asn	Lys	Ala
Pro 545	Lys	Arg	Tyr	Ala	Asp 550	Phe	Ile	Arg	Lys	Tyr 555	Gly	Lys	Thr	Asp	Gly 560
Ala	Asp	Gly	Ser	Phe 565	Lys	Gly	Leu	Leu	Tyr 570	Lys	Gly	Thr	Val	Gly 575	Trp
Gly	Arg	Asn	Lys 580	Thr	Asp	Ser	Ala	Ser 585	Trp	Pro	Thr	Arg	Gly 590	Tyr	Leu
Thr	Gly	Val 595	Asn	Ala	Glu	Ile	Ala 600	Leu	Pro	Gly	Ser	Lys 605	Leu	Gln	Tyr
Tyr	Ser 610	Ala	Thr	His	Asn	Gln 615	Thr	Trp	Phe	Phe	Pro 620	Leu	Ser	Lys	Thr
Phe 625	Thr	Leu	Met	Leu	Gly 630	Gly	Glu	Val	Gly	Ile 635	Ala	Gly	Gly	Tyr	Gly 640
Arg	Thr	Lys	Glu	Ile 645	Pro	Phe	Phe	Glu	Asn 650	Phe	Tyr	Gly	Gly	Gly 655	Leu
Gly	Ser	Val	Arg 660	Gly	Tyr	Glu	Ser	Gly 665	Thr	Leu	Gly	Pro	Lys 670	Val	Tyr
Asp	Glu	Tyr 675	Gly	Glu	Lys	Ile	Ser 680	Tyr	Gly	Gly	Asn	Lys 685	Lys	Ala	Asr
Val	Ser 690	Ala	Glu	Leu	Leu	Phe 695	Pro	Met	Pro	Gly	Ala 700	Lys	Asp	Ala	Arg
Thr 705	Val	Arg	Leu	Ser	Leu 710	Phe	Ala	Asp	Ala	Gly 715	Ser	Val	Trp	Asp	Gly 720
Arg	Thr	Tyr	Thr	Ala 725	Ala	Glu	Asn	Gly	Asn 730	Asn	Lys	Ser	Val	Tyr 735	Ser

Glu Asn Ala His Lys Ser Thr Phe Thr Asn Glu Leu Arg Tyr Ser Ala

 740
 745
 750

Gly Gly Ala Val Thr Trp Leu Ser Pro Leu Gly Pro Met Lys Phe Ser 755 760 765

Tyr Ala Tyr Pro Leu Lys Lys Pro Glu Asp Glu Ile Gln Arg Phe
770 780

Gln Phe Gln Leu Gly Thr Thr Phe 785 790

<210> 34

<211> 797

<212> PRT

<213> Neisseria meningitidis

<400> 34

Met Lys Leu Lys Gln Ile Ala Ser Ala Leu Met Val Leu Gly Ile Ser 1 5 10 15

Pro Leu Ala Leu Ala Asp Phe Thr Ile Gln Asp Ile Arg Val Glu Gly
20 25 30

Leu Gln Arg Thr Glu Pro Ser Thr Val Phe Asn Tyr Leu Pro Val Lys
35 40 45

Val Gly Asp Thr Tyr Asn Asp Thr His Gly Ser Ala Ile Ile Lys Ser 50 55 60

Leu Tyr Ala Thr Gly Phe Phe Asp Asp Val Arg Val Glu Thr Ala Asp 65 70 75 80

Gly Gln Leu Leu Thr Val Ile Glu Arg Pro Thr Ile Gly Ser Leu
85 90 95

Asn Ile Thr Gly Ala Lys Met Leu Gln Asn Asp Ala Ile Lys Lys Asn 100 105 110

Leu Glu Ser Phe Gly Leu Ala Gln Ser Gln Tyr Phe Asn Gln Ala Thr 115 120 125

Leu Asn Gln Ala Val Ala Gly Leu Lys Glu Glu Tyr Leu Gly Arg Gly
130 135 140

Lys Leu Asn Ile Gln Ile Thr Pro Lys Val Thr Lys Leu Ala Arg Asn 145 150 155 160

Arg Val Asp Ile Asp Ile Thr Ile Asp Glu Gly Lys Ser Ala Lys Ile 165 170 175

Thr Asp Ile Glu Phe Glu Gly Asn Gln Val Tyr Ser Asp Arg Lys Leu 180 185 190

Met Arg Gln Met Ser Leu Thr Glu Gly Gly Ile Trp Thr Trp Leu Thr

Arg	Ser 210	Asn	Gln	Phe	Asn	Glu 215	Gln	Lys	Phe	Ala	Gln 220	Asp	Met	Glu	Lys
Val 225	Thr	Asp	Phe	Tyr	Gln 230	Asn	Asn	Gly	Tyr	Phe 235	Asp	Phe	Arg	Ile	Leu 240
Asp	Thr	Asp	Ile	Gln 245	Thr	Asn	Glu	Asp	Lys 250	Thr	Lys	Gln	Thr	Ile 255	Lys
Ile	Thr	Val	His 260	Glu	Gly	Gly	Arg	Phe 265	Arg	Trp	Gly	Lys	Val 270	Ser	Ile
Glu	Gly	Asp 275	Thr	Asn	Glu	Val	Pro 280	Lys	Ala	Glu	Leu	Glu 285	Lys	Leu	Leu
Thr	Met 290	Lys	Pro	Gly	Lys	Trp 295	Tyr	Glu	Arg	Gln	Gln 300	Met	Thr	Ala	Val
Leu 305	Gly	Glu	Ile	Gln	Asn 310	Arg	Met	Gly	Ser	Ala 315	Gly	Tyr	Ala	Tyr	Ser 320
Glu	Ile	Ser	Val	Gln 325	Pro	Leu	Pro	Asn	Ala 330	Glu	Thr	Lys	Thr	Val 335	Asp
Phe	Val	Leu	His 340	Ile	Glu	Pro	Gly	Arg 345	Lys	Ile	Tyr	Val	Asn 350	Glu	Il€
His	Ile	Thr 355	Gly	Asn	Asn	Lys	Thr 360	Arg	Asp	Glu	Val	Val 365	Arg	Arg	Glu
Leu	Arg 370	Gln	Met	Glu	Ser	Ala 375	Pro	Tyr	Asp	Thr	Ser 380	Lys	Leu	Gln	Arg
Ser 385	Lys	Glu	Arg	Val	Glu 390	Leu	Leu	Gly	Tyr	Phe 395	Asp	Asn	Val	Gln	Phe 400
Asp	Ala	Val	Pro	Leu 405	Ala	Gly	Thr	Pro	Asp 410	Lys	Val	Asp	Leu	Asn 415	Met
Ser	Leu	Thr	Glu 420	Arg	Ser	Thr	Gly	Ser 425	Leu	Asp	Leu	Ser	Ala 430	Gly	Trp
Val	Gln	Asp 435	Thr	Gly	Leu	Val	Met 440	Ser	Ala	Gly	Val	Ser 445	Gln	Asp	Asn
Leu	Phe 450	Gly	Thr	Gly	Lys	Ser 455	Ala	Ala	Leu	Arg	Ala 460	Ser	Arg	Ser	Lys
Thr 465	Thr	Leu	Asn	Gly	Ser 470	Leu	Ser	Phe	Thr	Asp 475	Pro	Tyr	Phe	Thr	Ala

200

205

195

Asp Gly Val Ser Leu Gly Tyr Asp Val Tyr Gly Lys Ala Phe Asp Pro

- Arg Lys Ala Ser Thr Ser Ile Lys Gln Tyr Lys Thr Thr Thr Ala Gly 500 505 510
- Ala Gly Ile Arg Met Ser Val Pro Val Thr Glu Tyr Asp Arg Val Asn 515 520 525
- Phe Gly Leu Val Ala Glu His Leu Thr Val Asn Thr Tyr Asn Lys Ala 530 540
- Pro Lys His Tyr Ala Asp Phe Ile Lys Lys Tyr Gly Lys Thr Asp Gly 545 550 555 560
- Thr Asp Gly Ser Phe Lys Gly Trp Leu Tyr Lys Gly Thr Val Gly Trp
 565 570 575
- Gly Arg Asn Lys Thr Asp Ser Ala Leu Trp Pro Thr Arg Gly Tyr Leu
 580 585 590
- Thr Gly Val Asn Ala Glu Ile Ala Leu Pro Gly Ser Lys Leu Gln Tyr 595 600 605
- Tyr Ser Ala Thr His Asn Gln Thr Trp Phe Phe Pro Leu Ser Lys Thr 610 615 620
- Phe Thr Leu Met Leu Gly Gly Glu Val Gly Ile Ala Gly Gly Tyr Gly 625 630 635 640
- Arg Thr Lys Glu Ile Pro Phe Phe Glu Asn Phe Tyr Gly Gly Leu 645 650 . 655
- Gly Ser Val Arg Gly Tyr Glu Ser Gly Thr Leu Gly Pro Lys Val Tyr
 660 665 670
- Asp Glu Tyr Gly Glu Lys Ile Ser Tyr Gly Gly Asn Lys Lys Ala Asn 675 680 685
- Val Ser Ala Glu Leu Leu Phe Pro Met Pro Gly Ala Lys Asp Ala Arg 690 695 700
- Thr Val Arg Leu Ser Leu Phe Ala Asp Ala Gly Ser Val Trp Asp Gly 705 710 715 720
- Lys Thr Tyr Asp Asp Asn Ser Ser Ser Ala Thr Gly Gly Arg Val Gln
 725 730 735
- Asn Ile Tyr Gly Ala Gly Asn Thr His Lys Ser Thr Phe Thr Asn Glu
 740 745 750
- Leu Arg Tyr Ser Ala Gly Gly Ala Val Thr Trp Leu Ser Pro Leu Gly
 755 760 765
- Pro Met Lys Phe Ser Tyr Ala Tyr Pro Leu Lys Lys Pro Glu Asp

770 775 780

Glu Ile Gln Arg Phe Gln Phe Gln Leu Gly Thr Thr Phe 785 790 795