Sistemi

UniVR - Dipartimento di Informatica

Fabio Irimie

Indice

1	Cor	ncetti base	2
	1.1	Tipi di segnali	2
	1.2	Rappresentazione dei sistemi	3
2	Not	azioni	4
3	Sist		6
	3.1	Approccio classico	6
	3.2	Approccio moderno	6
	3.3	Obsolescenza	6
	3.4	Causalità	7
	3.5	Stabilità	7
		3.5.1 Stabilità BIBO (Bounded Input Bounded Output)	8
		3.5.2 Stabilità Asintotica	9
4	Mo	dello di segnali	0
5	Fun	zioni in C	2
	5.1	Funzione a variabili complesse	2
	5.2	Funzioni complesse	4
	5.3	Funzioni polinomiali	5
		5.3.1 Risoluzione	5
6	Seg	nali 1	5
	6.1	Segnali continui	_
		6.1.1 Sinusoidale	
		6.1.2 Esponenziali reali	~
		6.1.3 Esponenziali complessi	
	6.2	Segnali discreti	-
	0.2	6.2.1 Sinusoidale	-
		6.2.2 Esponenziali Reali	
			~

1 Concetti base

Un sistema è formato da **segnali trasmessi**, un'esempio di segnale è la voce che usiamo per comunicare tra di noi. Il sistema prende le informazioni ricevute dal segnale e le rielabora.

Degli esempi di sistema sono:

- ullet Microfono-Casse
- Freno della macchina

1.1 Tipi di segnali

I segnali possono essere di due tipi:

• Segnali a tempo continuo: Segnali che hanno infiniti punti per ogni infinitesimo di tempo.

Figura 1: Esempio di segnale a tempo continuo

• Segnali a tempo discreto: Segnali che hanno un numero finito di punti per ogni intervallo di tempo.

Figura 2: Esempio di segnale a tempo discreto

Per elaborare i dati attraverso un computer bisogna convertire un segnale continuo in uno discreto, questo processo è chiamato **campionamento** e non è **distruttivo**, cioè si può tornare indietro al segnale originale.

Figura 3: Esempio di campionamento

Una volta campionato il segnale si deve **quantizzare**, ovvero approssimare il valore del segnale a un valore discreto, questa operazione è **parzialmente distruttiva**, cioè si può tornare indietro al segnale originale perdendo alcune informazioni.

Figura 4: Esempio di quantizzazione

Infine si fa **encoding**, ovvero si codifica il segnale per poterlo adattare ad un altro tipo di segnale, questo processo è **completamente distruttivo**.

I segnali possono essere di dimensioni diverse, ad esempio:

- L'andamento di una borsa è un segnale a 1 dimensione.
- Una foto in bianco e nero è un segnale a 2 dimensioni (x,y).
- Una foto colorata è un segnale multidimensionale $(x, y)^3$ per rappresentare ogni colore (R,G,B).

1.2 Rappresentazione dei sistemi

Un sistema lo rappresentiamo con un blocco, dove all'ingresso mettiamo il segnale in ingresso e all'uscita il segnale in uscita.

Figura 5: Rappresentazione di un sistema

L'output di un sistema può essere rielaborato per essere inserito nuovamente come input in un altro sistema, ad esempio:

Figura 6: Rappresentazione di due sistemi in cascata

2 Notazioni

Tutti i segnali sono indicati con la lettera minuscola, ad esempio:

$$\underbrace{f}_{segnale} \qquad \underbrace{f(t)}_{\text{segnale a tempo continuo}}$$

Oppure si utilizzano delle notazioni standard:

- 1. t, τ, t_i : tempo continuo
- 2. k: tempo discreto

In questo corso si considerano solo segnali continui o discreti monodimensionali non negativi e solo sistemi **LTI** (Lineari e Tempo Invarianti):

- 1. Lineare: Vale la sovrapposizione degli effetti, cioè se $v_1(t)$ è l'uscita del sistema per $u_1(t)$ e $v_2(t)$ è l'uscita del sistema per $u_2(t)$ allora $v_1(t) + v_2(t)$ è l'uscita del sistema per $u_1(t) + u_2(t)$.
- 2. **Tempo Invariante**: A prescindere dal punto di tempo in cui si applica il segnale, l'uscita del sistema è sempre la stessa.

Figura 7: Esempio di invarianza nel tempo

I sistemi vengono rappresentati con lettere maiuscole greche o non.

3 Sistemi

3.1 Approccio classico

Questo approccio prevede di avere un **evento fisico** (circuito, molla, ecc...) e per questo evento bisogna definire un **modello** del sistema. Questo si può fare attraverso degli strumenti grafici o matematici. Come strumenti matematici si usano:

1. Continuo:

- (a) Equazioni differenziali
- (b) Trasformate di Laplace
- (c) Trasformate di Fourier

2. Discreto:

- (a) Equazioni alle differenze
- (b) Transformate Z

Una volta modellato l'evento fisico si può fare un'analisi del sistema e ciò permette di descrivere la **stabilità** e le **proprietà** del sistema.

L'ultima fase è quella di **sintesi**, cioè la fase di correzione del sistema per far si che risulti stabile.

3.2 Approccio moderno

L'approccio moderno ha solo un blocco per rappresentare gli stati:

Figura 8: Rappresentazione di un sistema con l'approccio moderno

3.3 Obsolescenza

L'obsolescenza è il numero di anni che un sistema può durare. I sistemi che verranno studiati sono quelli che si trovano nella sezione di comportamento lineare, cioè i sistemi che non cambiano nel tempo.

Figura 9: Sezione di comportamento lineare

Un'esempio è una molla che si deforma in base alla forza applicata, quando essa si deforma assume un comportamento plastico e quindi non lineare, mentre quando non si deforma assume un comportamento elastico e quindi lineare.

3.4 Causalità

La causalità è l'input del sistema e l'effetto è l'output che produce, quindi la causa precede sempre l'effetto. Non esiste un sistema causale che abbia l'output prima dell'input.

Figura 10: Esempio di causalità

3.5 Stabilità

Un sistema è stabile se, a seguito di un'oscillazione, ritorna al suo stato di equilibrio e il sistema si ferma. Un sistema è instabile se, a seguito di un'oscillazione, si allontana dal suo stato di equilibrio.

Figura 11: Sistema instabile

Figura 12: Sistema stabile

3.5.1 Stabilità BIBO (Bounded Input Bounded Output)

Se il segnale di ingresso è limitato in ampiezza allora il segnale di uscita è limitato in ampiezza.

$$\exists M>0, \ |u(t)| < M \ \forall t \in \mathbb{R}$$

$$\downarrow \downarrow$$

$$\exists N>0, \ |v(t)| < N \ \forall t \in \mathbb{R}$$

con $M,N\in\mathbb{R}$ non per forza uguali

Figura 13: Esempio di sistema stabile BIBO

3.5.2 Stabilità Asintotica

Se il segnale di ingresso si annulla allora il segnale di uscita si annulla.

$$\lim_{t\to\infty}v(t)=0\ \, \forall r\;\mathrm{di}\;u(t),\;t\in\mathbb{R}$$

Figura 14: Esempio di sistema stabile asintotico

La stabilità asintotica implica la stabilità BIBO, ma non viceversa.

4 Modello di segnali

Un segnale si può scrivere nel seguente modo:

$$lpha\in\mathbb{C}$$
 $t\in\mathbb{R}$ $l\in\mathbb{Z}$ $y(t)=\sum_i\sum_j c_{ij}\cdot\underbrace{e^{lpha t}}_{ ext{Parte esponenziale}}\cdot\underbrace{\frac{t^l}{l!}}_{ ext{Parte polynomia}}$

Figura 15: Esempo di segnale

Ad esempio con l = 1:

$$y(t) = \sum_{i} \sum_{j} c_{ij} \cdot e^{\alpha t} \cdot \frac{t^{1}}{1!} = \sum_{i} \sum_{j} c_{ij} \cdot e^{\alpha t} \cdot t$$

Con $\alpha < 0$ il sistema è stabile perchè l'esponenziale tende a 0.

Con l=2:

$$y(t) = \sum_{i} \sum_{j} c_{ij} \cdot e^{\alpha t} \cdot \frac{t^2}{2!} = \sum_{i} \sum_{j} c_{ij} \cdot e^{\alpha t} \cdot \frac{t^2}{2}$$

ecc...

Siccome $\alpha \in \mathbb{C}$ si può riscrivere come:

$$\alpha = \lambda + j\omega$$

 λ è la parte reale

 $j\omega$ è la parte immaginaria

Quindi il segnale diventa:

$$y(t) = \sum_{i} \sum_{j} c_{ij} \cdot e^{\lambda t} \cdot e^{j\omega t} \cdot \frac{t^{l}}{l!}$$

Utilizzando la forma trigonometrica dei numeri complessi si ha che:

$$e^{j\omega} = \cos(\omega t) + j\sin(\omega t)$$

$$e^{(\lambda+j\omega)}=e^{\alpha t}=\rho(\cos(\omega t)+j\sin(\omega t))$$

Per le formule di Eulero che dice:

$$cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$sin\theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

Definizione 4.1 (Complesso cognugato). A ogni numero complesso è associato un cognugato che ha la stessa parte reale, ma parte immaginaria opposta.

$$S = \rho(\cos(\theta) + j\sin(\theta))$$

$$\bar{S} = \rho(\cos(-\theta) + j\sin(-\theta))$$

5 Funzioni in C

5.1 Funzione a variabili complesse

Definizione 5.1 (Funzione a variabile complessa). Una funzione a variabile complessa è una funzione che ha come dominio un insieme di numeri complessi e come codominio un insieme di numeri complessi.

Definizione 5.2 (Punto interno). Un punto S_0 appartenente a un intorno $D(f) \subseteq \mathbb{C}$ è interno a D(f) se e solo se esiste un disco $B_{\rho}(S_0)$ di raggio $\rho \in \mathbb{R}_+$ centrato in S_0 tale che:

$$B_{\rho}(S_0) \subset D(f)$$

Quindi D(f) è un dominio e $B_{\rho}(S_0)$ è un sottoinsieme:

$$B_{\rho}(S_0) = \{ S \in \mathbb{C} \mid ||S_0 - S|| < \rho \}$$

Definizione 5.3 (Insieme aperto). È l'insieme di tutti i punti che sono definiti interni.

Ad esempio:

- ullet insieme ${\mathbb C}$
- insieme \emptyset
- i dischi in un punto S_0 , $B_{\rho}(S_0) = \{S \in \mathbb{C} \mid ||S_0 S|| < \rho\}$
- $\bullet\,$ corone circolari centrate in un punto x ,

$${S \in \mathbb{C}, \ \rho_1, \rho_2 \in \mathbb{R} \ | \ \rho_1 < |S - x| < \rho_2}$$

5.2 Funzioni complesse

$$f:D(f)\to \mathbb{C}\quad D(f)\subseteq \mathbb{C}$$
e aperto

Alcuni esempi sono:

•
$$S \to S$$
 $D(f) = \mathbb{C}$

- $S \to S^2$ $D(f) = \mathbb{C}$
- $S \to \Re(S) + j\Im(S)^2$ $D(f) = \mathbb{C}$
- $S \to \sum_{k=0}^{n} a_k^S$ $a_k \in \mathbb{C}$; $k, n \in \mathbb{Z}$ (Funzioni polinomiali)
- $\sum_{k=0}^{\infty} a_k (S S_0)^k$ $a_k \in \mathbb{C}$; $S, S_0 \in \mathbb{C}$; $k \in \mathbb{Z}$ (Serie di potenze)

5.3 Funzioni polinomiali

$$P(s) = \sum_{k=0}^{n} a_k \cdot \underbrace{S^k}_{\text{Variabile complessa}}$$

Con n=2:

$$a_0 S^0 + a_1 S^1 + a_2 S^2$$

Con n = 3:

$$a_0S^0 + a_1S^1 + a_2S^2 + a_3S^3$$

5.3.1 Risoluzione

Per risolvere una funzione polinomiale si usano le solite tecniche, ad esempio:

$$S^2 - 2S + 1 = (S - 1)^2$$

Che ha una sola soluzione, ma con molteplicità 2.

Teorema 5.1 (Teorema fondamentale delle radici). Ogni polinomio P(S) a coefficienti complessi di grado n>0 ha n radici complesse ed è decomponibile in un solo modo

$$P(s) = a_n \prod_{r=1}^{r} (s - s_r)^{\mu_r}$$

Dove:

 s_r sono delle radici

 μ_r sono le molteplicità delle radici

 a_n è il coefficiente del polinomio

$$\sum_{r=1}^{\infty} \mu_r = n$$

6 Segnali

Il segnale più presente è quello sinusoidale.

6.1 Segnali continui

$$t \in \mathbb{R} \ \mathbb{R} \to \mathbb{C}; \ \mathbb{R} \to \mathbb{R}$$

6.1.1 Sinusoidale

$$x(t) = A \cdot \cos(\omega_0 t + \phi)$$

Dove:

- $\bullet~A$ è l'ampiezza
- ω è la frequenza $f = \frac{1}{T} \ (T = \text{ periodo} \)$
- ϕ è la fase

• Periodico

$$\begin{split} x(t) &= x(t+T_0) \\ Acos(\omega_0 t + \phi) &= Acos(\omega_0 t + \omega_0 T_0 + \phi) \\ T_0 &= \frac{2\pi m}{\omega_0} \to \text{ periodo } \frac{2\pi}{\omega_0} \quad m \in \mathbb{R} \text{ (indica il multiplo)} \end{split}$$

Il sistema si comporta nello stesso modo per ogni periodo.

• Shift temporale equivale ad un cambio di fase

$$Acos[\omega_0(t-t_0)] = Acos(\omega_0 t + \underbrace{\omega_0 t_0}_{\Delta \phi})$$

$$A\cos[\omega_0(t+t_0)+\phi] = A\cos(\omega_0 t + \omega_0 t_0 + \phi)$$

• Se $\phi = 0$ Il segnale assume la seguente forma:

$$A = cos(\omega_0 t)$$

e ha le seguenti proprietà:

- Periodico
- Pari

$$x(t) = x(-t)$$

Se $\phi=-\frac{\pi}{2}$ Il segnale assume la seguente forma:

$$x(t) = \begin{cases} A\cos(\omega_0 t - \frac{\pi}{2}) \\ A\sin(\omega_0 t) \\ A\cos(\omega_0 (t + \frac{T_0}{4})) \end{cases}$$

e ha le seguenti proprietà:

- Periodico
- Dispari

$$x(t) = -x(-t)$$

6.1.2 Esponenziali reali

$$x(t) = Ce^{\alpha t}$$

Figura 16: Esempo di segnale

Figura 17: Esempo di segnale

• Shift Temporale

$$Ce^{\alpha(t+t_0)} = Ce^{\alpha t} \cdot \underbrace{Ce^{\alpha t_0}}_{\mathbb{R}}$$

6.1.3 Esponenziali complessi

$$x(t) = Ce^{\alpha t}$$

$$C = |c|e^{j\Theta} \text{ (polare)}$$

$$\alpha = r + j\omega_o \text{ (cartesiana)}$$

$$x(t) = |c|e^{j\Theta} \cdot e^{(r+j\omega_0)t} =$$
$$= |c|e^{rt} \cdot e^{j(\omega_0 t + \Theta)} \text{ (Eulero)}$$

Definizione 6.1 (Eulero). La formula di Eulero è la seguente:

$$e^{j(\omega_0 t + \Theta)} = cos(\omega_0 t + \Theta) + jsin(\omega_0 t + \Theta)$$

$$x(t) = |c|e^{rt} \cdot (\cos(\omega_0 t + \Theta) + j\sin(\omega_0 t + \Theta))$$

6.2 Segnali discreti

$$k\in\mathbb{Z}\ \mathbb{Z}\to\mathbb{Z};\ \mathbb{Z}\to\mathbb{R};\ \mathbb{Z}\to\mathbb{C}$$

6.2.1 Sinusoidale

$$x[n] = A\cos(\Omega_0 n + \phi)$$

Dove:

- Aè l'ampiezza
- Ω_0 è la frequenza $f = \frac{\Omega_0}{2\pi}$

• ϕ è la fase

Figura 18: Esempio di segnale sinusoidale discreto

• Shift temporale equivale ad un cambio di fase

$$Acos[\Omega_0(n+n_0)] = Acos(\Omega_0 n + \underbrace{\Omega_0 n_0}_{\Delta \phi})$$

• Se $\phi=0$ Il segnale rimane coseno ed è pari

$$x[n] = x[-n]$$

Se $\phi=-\frac{\pi}{2}$ Il segnale diventa un seno ed è dispari:

$$x[n] = -x[-n]$$

• Il cambio di fase equivale allo shift temporale?

$$Acos[\Omega_0(n+n_0)] \stackrel{?}{=} Acos[\Omega_0 n + \Omega_0 \omega_0 \phi]$$

dove ϕ è il rapporto tra ϕ e Ω_0 è un numero intero:

$$\phi = \Omega_0 \omega_0$$

$$\frac{\phi}{\Omega_0} = n_0$$

Esempio 6.1.

$$\phi=\frac{2\pi}{12}$$

$$\Omega_0=?$$

$$\frac{2\pi}{\Omega_0}=\frac{2\pi}{12}=12=\Omega_0 \quad (m=1)$$

Esempio 6.2.

$$\phi = \frac{1}{6} \to \frac{2\pi}{\Omega_0} = \frac{1}{6} = \Omega_0 = \frac{1}{3}\pi$$

6.2.2 Esponenziali Reali

$$x[n] = Ce^{\beta n} = C\alpha^n \quad \alpha = e^{\beta}; \quad C, \ \alpha \in \mathbb{R}$$

