1 laboratorinis darbas

Aštuonių skilčių mokomosios mikroprocesorinės sistemos tyrimas

1. Darbo tikslas

Susipažinti su aštuonių skilčių mokomosios mikroprocesorinės sistemos M85-01 struktūra, valdymo ir indikacijos priemonėmis. Išsiaiškinti sisteminio monitoriaus funkcijas.

2. Trumpas mokomosios mikroprocesorinės sistemos aprašymas

2.1. Sistemos paskirtis

Mokomoji mikroprocesorinė sistema M85-01 – tai minimalios architektūros vienos plokštės kompiuteris su 8 skilčių mikroprocesoriumi Intel® 8085, kuris plačiai taikomas mokyti kurti programinę ir aparatinę įrangą įvairiems gamybos procesams bei jiems valdyti. Ši mokomoji sistema skirta:

- praktiškai susipažinti su mikroprocesorinės sistemos struktūra;
- mikroprocesoriaus komandų sistemos nagrinėjimui;
- suteikti pradinių žinių apie mikroprocesorinių sistemų praktinio taikymo galimybes.

2.2. Sistemos techninės charakteristikos

Mikroprocesoriaus tipas – Intel[®] 8085 (patobulintas Intel[®] 8080);

Taktinis dažnis – 3,07 MHz;

Pastovioji atmintis – 8 KB;

Operatyvioji atmintis – 8 KB (plečiama iki 40 KB);

Ivesties ir išvesties liniju -24;

Įvykių skaitiklis-laikmatis – 16 skilčių (programuojamas);

Nuoseklioji sasaja – RS-232C;

Programinė iranga – sistemos monitorius;

Maitinimo šaltinis $-+5 \text{ V} / 1 \text{ A ir } \pm 12 \text{ V} / 250 \text{ mA};$

Matmenys $-260 \times 172 \times 88 \text{ mm}$;

Darbinė temperatūra − 0–50 °C

2.3. Sistemos galimybės

• Peržiūrėti bet kurios atminties ląstelės turinį.

- Peržiūrėti arba pakeisti bet kurio mikroprocesoriaus registro turinį.
- Pakeisti bet kurios operatyvios atminties lastelės turinį.
- Perkelti duomenų masyvą iš vienos atminties vietos į kitą.
- Įterpti vieną ar daugiau duomenų baitų į vartotojo programą arba duomenų sritį.
- Ištrinti vieną ar daugiau duomenų baitų iš vartotojo programos arba duomenų srities.
- Perkelti vartotojo programą iš vienos atminties srities į kitą.
- Surasti duomenų eilutę atmintyje tam tikru adresu.
- Įrašyti konstantą į tam tikrą atminties sritį.
- Palyginti du duomenų masyvus.
- Vykdyti vartotojo programą nuo pradžios iki galo.
- Vykdyti vartotojo programą žingsnio režimu po vieną komandą.

2.4. Sistemos valdymo ir indikacijos elementai

Mokomoji mikroprocesorinė sistema M85-01 turi 28 klavišus ir šešių 7 segmentų indikatorių displėjų.

Displėjaus aukštesnieji keturi 7 segmentų indikatoriai "ADDRESS DISPLAY" yra skirti atminties ląstelės adresui arba mikroprocesoriaus registro vardui atvaizduoti, o žemesnieji du 7

segmentų indikatoriai "**DATA DISPLAY**" yra skirti atminties ląstelės arba mikroprocesoriaus registro turiniui atvaizduoti (1 pav.).

1 pav. Mokomosios mikroprocesorinės sistemos M85-01 valdymo ir indikacijos elementai

Visa informacija tiek duomenys, tiek atminties ląstelių adresai įvedami ir atvaizduojami šešioliktaine forma (1 lentelė).

1 Lentelė. Šešioliktainių skaičių atvaizdavimas

Šešioliktainė	Dešimtainė sis-	Dvejetainė sis-	Šešioliktainio skaičiaus atvaiz-
sistema	tema	tema	davimas siste-
			moje
0	0	0000	0
1	1	0001	1
2	2	0010	2
3	3	0011	3

1 Lentelės pabaiga.

4	4	0100	4
5	5	0101	5
6	6	0110	Б
7	7	0111	7
8	8	1000	8
9	9	1001	9
A	10	1010	R
В	11	1011	Ь
С	12	1100	Ε
D	13	1101	Ь
Е	14	1110	Ε
F	15	1111	F

Mokomoji mikroprocesorinė sistema valdoma klaviatūra, sudaryta iš informacinių ir komandinių klavišų grupių.

Informacinę grupę sudaro šešioliktainė matrica 4×4, skirta adresams ir duomenims įvesti. Šios grupės klavišais taip pat nurodomi ir mikroprocesoriaus registrų vardai.

4 PCH	Šešioliktainis skaičius 4 arba mikroprocesoriaus komandų skaitiklio PC aukštesnysis baitas.
5 PCL	Šešioliktainis skaičius 5 arba mikroprocesoriaus komandų skaitiklio PC žemesnysis baitas.
6 SPH	Šešioliktainis skaičius 6 arba mikroprocesoriaus dėklo rodyklės SP aukštesnysis baitas.
7 SPL	Šešioliktainis skaičius 7 arba mikroprocesoriaus dėklo rodyklės SP žemesnysis baitas.
8 H	Šešioliktainis skaičius 8 arba mikroprocesoriaus registras H .
9 L	Šešioliktainis skaičius 9 arba mikroprocesoriaus registras L .
A	Šešioliktainis skaičius A arba mikroprocesoriaus registras A arba kaupiklis.
В	Šešioliktainis skaičius B arba mikroprocesoriaus registras B .
С	Šešioliktainis skaičius C arba mikroprocesoriaus registras C.
D	Šešioliktainis skaičius D arba mikroprocesoriaus registras D .
E	Šešioliktainis skaičius E arba mikroprocesoriaus registras E .
F	Šešioliktainis skaičius F arba mikroprocesoriaus požymių registras \mathbf{F} .

Komandinę grupę sudaro 12 klavišų. Kai kurie šios grupės klavišai gali atlikti dvi komandas (sudvejinti klavišai), t. y. ant klavišų užrašytos komandos yra dviejuose lygiuose: pirmajame ir antrajame.

SHIFT	Pereiti į antrąjį (aukštesnįjį) arba pirmąjį (žemesnįjį) komandų lygį.
VCT	Iškviesti pertraukties aptarnavimo paprogramį.
RESET	Nustatyti mikroprocesorinę sistemą į pradinę būseną.
GO	Vykdyti vartotojo programą nuo pradžios iki galo.
SI	Vykdyti vartotojo programą žingsnio režimu po vieną komandą.
EXREG	Peržiūrėti arba keisti mikroprocesoriaus registrų turinius.
EXMEM	Peržiūrėti arba keisti atminties ląstelių turinius.
PRE	Pereiti į ankstesnį atminties ląstelės adresą, jų mažėjimo kryptimi, arba tikrinti anksčiau į atminties ląstelę įvestus duomenis.
NEXT	Pereiti į kitą registrą ar atminties ląstelės adresą, jų didėjimo kryptimi. Šis klavišas taip pat taikomas kaip skyriklis įvedant du ar daugiau atminties ląstelių adresų.
•	Vykdyti arba užbaigti veiksmą.

B.M	Perkelti duomenų masyvą iš vienos atminties vietos į kitą.
REL	Perkelti vartotojo programą iš vienos atminties srities į kitą.
FILL	Įrašyti konstantą į tam tikrą atminties sritį.
INS DATA	Įterpti vieną ar daugiau duomenų baitų į vartotojo programą arba duomenų sritį.
DEL DATA	Ištrinti vieną ar daugiau duomenų baitų iš vartotojo programos arba duomenų srities.
STRING	Surasti duomenų eilutę atmintyje tam tikru adresu.
MEMC	Palyginti dvi atminties sritis.

Jeigu mikroprocesorinės sistemos displėjaus aukščiausiajame 7 segmentų indikatoriuje šviečia ženklas "-", vadinasi mikroprocesorinė sistema laukia komandos. Jei buvo įvesta neteisinga komanda arba įvyko kita klaida, displėjuje atsiranda užrašas "-Err" arba "E". Taškas displėjaus lauke "ADDRESS DISPLAY" reiškia, kad sistema laukia adreso arba registro vardo įvedimo, o taškas displėjaus lauke "DATA DISPLAY" reiškia, kad sistema laukia duomenų įvedimo.

2.5. Atminties organizacija

Mokomoji mikroprocesorinė sistema M85-01 turi 8 KB operatyviosios ir 8 KB pastoviosios EPROM tipo atminties. Visa atmintis

gali būti išplėsta iki 64 KB. Sistemoje yra numatyti trys lizdai atminties mikroschemoms **MEM0**, **MEM1** ir **MEM2** (1 pav.)

Pastoviosios EPROM tipo atminties mikroschemoje **MEMO** yra įrašytas 8 KB sisteminis monitorius, t. y. mikroprocesorinės sistemos valdymo programinė įranga.

Mikroschemoje **MEM1** yra 8 KB vartotojo operatyvioji atmintis. Mikroschema **MEM2** yra skirta vartotojo operatyviajai atminčiai išplėsti dar 32 KB.

Atskirų atminties laukų paskirstymas yra pateiktas 2 lentelėje.

2 Lentelė. Atminties laukų paskirstymas

8 KB nuolatinė atmintis (MEM0)	Adresai
Sisteminis monitorius	0000_{16} –1FFF $_{16}$
8 KB operatyvioji atmintis (MEM1)	Adresai
Vartotojo laukas	2000 ₁₆ –3FFF ₁₆
Sisteminio monitoriaus dėklas	2770 ₁₆ –27FF ₁₆
32 KB operatyvioji atmintis (MEM2)	Adresai
Vartotojo laukas	6000 ₁₆ –DFFF ₁₆

Dèmesio! Atminties srities, skirtos sisteminio monitoriaus déklui, nenaudoti programai ir duomenims saugoti.

2.6. Darbas su sistema

2.6.1. Įjungimas

Ijungus mokomąją mikroprocesorinę sistemą M85-01 (jungiklis galinėje sienelėje), displėjuje turi pasirodyti užrašas "-5£b 85" (1 pav.). Jei taip nėra, paspauskite klavišą "**RESET**".

Dėmesio! Pakartotinai įjungti mokomąją mikroprocesorinę sistemą galima tik praėjus ne mažiau kaip10 s po jos išjungimo.

2.6.2. Registrų turinių peržiūra arba keitimas

"SHIFT" "EXREG" R ["NEXT" [D1 D2] ...] "•",

čia **R** – registro vardas; **D1**, **D2** – šešioliktainiai skaičiai, kurie sudaro į registrą įrašomų duomenų baitą.

Pastaba: laužtiniuose skliaustuose pažymėti nebūtini sintaksės elementai.

Pavyzdžiui, peržiūrėkime registrų $\bf A$, $\bf B$ ir $\bf C$ turinius, ir pakeiskime registro $\bf C$ turinį į 05_{16} :

Klavišai	Adresų ir duomenų displėjus				
SHIFT					
A			A	Ε	Ε
NEXT			Ь	F	F
NEXT			Γ		
0 5			Γ		5.
•	-				

Pastaba: pradiniai registrų turiniai gali skirtis.

Tokiu pat būdu, gali būti peržiūrėtas arba pakeistas bet kurio kito mikroprocesoriaus registro turinys.

2.6.3. Atminties ląstelių turinių peržiūra arba keitimas

"EXMEM" A1 A2 A3 A4 "NEXT" [D1 D2] ["NEXT" [D1 D2] ...] "•",

čia A1, A2, A3, A4 – šešioliktainiai skaičiai, kurie sudaro atminties ląstelės adresą; D1, D2 – šešioliktainiai skaičiai, kurie sudaro į atminties ląstelę įrašomų duomenų baitą. Patikrinti, ar tikrai buvo įrašyti reikiami duomenys, galima spaudant klavišą "PRE".

Pastaba: laužtiniuose skliaustuose pažymėti nebūtini sintaksės elementai.

Pavyzdžiui, peržiūrėkime atminties ląstelių, kurių adresai yra 2000_{16} , 2001_{16} , 2002_{16} , 2003_{16} , turinius, ir pakeiskime 2002_{16} ir 2003_{16} atminties ląstelių turinius į 11_{16} :

Klavišai	Adresų ir duomenų displėjus					
EXMEM				•		
2 0 0 0	2			0.		
NEXT	2	0		0	F	
NEXT	2			1	F	
NEXT	2		0	2	F	
1 1	2		0	2	1	1.
NEXT	2	0	0	3	F	
1 1	2			3	1	1.

Pastaba: pradiniai atminties ląstelių turiniai gali skirtis.

Tokiu pat būdu, gali būti peržiūrėtas arba pakeistas bet kurios kitos operatyviosios atminties ląstelės turinys.

2.6.4. Sudarytos programos vykdymas

Programa įrašoma į mokomosios mikroprocesorinės sistemos M85-01 vartotojui skirtą operatyviąją atmintį nuo pasirinkto adreso (dažniausiai nuo adreso 2000₁₆) ir vykdoma taikant klavišus "**SI**" arba "**GO**". **Programa turi būti užbaigta komanda RST 5** (kodas EF₁₆).

2.6.4.1. Programos vykdymas žingsnio režimu

Į komandų skaitiklį **PC** įrašomas pradinis programos adresas. Programa vykdoma po vieną komandą su kiekvienu klavišo "**NEXT**" paspaudimu:

"SI" A1 A2 A3 A4 "NEXT" ["NEXT" ...] "•",

čia A1, A2, A3, A4 – šešioliktainiai skaičiai, kurie sudaro pradinį programos adresą.

Pastaba: laužtiniuose skliaustuose pažymėti nebūtini sintaksės elementai.

Pavyzdžiui, žingsnio režimu įvykdykime duotą programą, ir patikrinkime registrų **A** ir **B** turinius:

Adresse	Komandos	Komandos	Komentaras				
Auresas ₁₆	kodas ₁₆	mnemonika	Komentaras				
2000	06		Į registrą B persiunčiamas vieno baito				

2001	11		šešioliktainis skaičius (antrasis koman-
			dos baitas) $(11_{16} \rightarrow B, B = 11_{16}).$
2002	78	MOV A, B	Registro B turinys persiunčiamas į
			registrą A (B \rightarrow A, A = 11 ₁₆).
2003	EF	RST 5	Nutraukiamas vartotojo programos
			vykdymas ir valdymas perduodamas
			mikroprocesorinės sistemos monitoriui.

Pirmiausiai į mokomosios mikroprocesorinės sistemos M85-01 vartotojui skirtą operatyviąją atminti įvedame duotą programą:

Pastaba: pradiniai atminties ląstelių turiniai gali skirtis. Žingsnio režimu vykdome įvestą programą:

Pirmoji komanda, kuri yra 2000₁₆ ir 2001₁₆ adresuose buvo įvykdyta, t. y. į registrą **B** buvo persiųstas vieno baito šešioliktainis skaičius 11₁₆. Kad įsitikinti ar tikrai buvo įvykdyta pirmoji komanda, reikia nutraukti programos vykdymą žingsnio režimu ir peržiūrėti registro **B** turinį:

Paleidžiame toliau programą vykdyti žingsnio režimu:

Kaip matyti programa pradedama vykdyti nuo tos vietos kur buvo nutraukta. Įvykdžius antrąją komandą, kuri yra 2002₁₆ adrese, registro **B** turinys buvo persiųstas į registrą **A**. Komanda 2003₁₆ adrese pervedą mikroprocesorinę sistemą į 0028₁₆ adresą, kuriame yra pertraukties aptarnavimo paprogramis. Šis paprogramis nutraukia programos vykdymą ir valdymą perduoda mikroprocesorinės sistemos monitoriui.

Patikrinkime ar registro **A** turinys lygus 11₁₆:

Kaip matome programa veikia teisingai.

2.6.4.2. Visos programos vykdymas

"GO" A1 A2 A3 A4 "•",

čia A1, A2, A3, A4 – šešioliktainiai skaičiai, kurie sudaro pradinį programos adresą.

Pavyzdžiui, įvykdykime 2.6.4.1 skyriuje duotą programą nuo pradžių iki galo, ir patikrinkime registrų **A** ir **B** turinius.

Į mokomosios mikroprocesorinės sistemos M85-01 vartotojui skirtą operatyviąją atminti įvedame duotą programą (žr. 2.6.4.1. skyrių).

Visos programos vykdymas atliekamas taip:

Programa buvo įvykdyta nuo pradžios iki galo. Tikriname registrų ${\bf A}$ ir ${\bf B}$ turinius:

Kaip matome programa veikia teisingai.

2.6.4.3. Papildomų funkcijų vykdymas

Mokomojoje mikroprocesorinėje sistemoje M85-01 yra keletas užprogramuotų funkcijų. Paminėsime kai kurias iš jų.

Konstantos įrašymas į tam tikrą atminties sritį atliekamas taip:

"SHIFT" "FILL" (A1 A2 A3 A4)₁ "NEXT" (A1 A2 A3 A4)₂ "NEXT" D1 D2 "•",

čia (A1 A2 A3 A4)₁ – šešioliktainiai skaičiai sudarantys atminties srities, į kurią bus įrašyta konstanta, pradžios adresą; (A1 A2 A3 A4)₂ – šešioliktainiai skaičiai sudarantys atminties srities, į kurią bus įrašyta konstanta, pabaigos adresą; D1, D2 – šešioliktainiai skaičiai, kurie sudaro į atminties sritį įrašomą konstantą.

Pavyzdžiui įrašykime konstantą 33₁₆ į atminties sritį nuo 2010₁₆ iki 2015₁₆ adreso:

Patikrinkime ar tikrai įrašėme konstantą 33_{16} į atminties sritį nuo 2010_{16} iki 2015_{16} adreso:

Duomenų masyvo perkėlimas iš vienos atminties vietos į kitą atliekamas taip:

"B.M" (A1 A2 A3 A4)₁ "NEXT" (A1 A2 A3 A4)₂ "NEXT" (A1 A2 A3 A4)₃ "•",

čia (A1 A2 A3 A4)₁ – šešioliktainiai skaičiai, kurie sudaro duomenų masyvo pradžios adresą; (A1 A2 A3 A4)₂ – šešioliktainiai skaičiai, kurie sudaro duomenų masyvo pabaigos adresą; (A1 A2 A3 A4)₃ – šešioliktainiai skaičiai, kurie sudaro paskirties adresą, t. y. adresas, kuriuo pradedant bus perkeltas duomenų masyvas.

Pavyzdžiui, duomenų masyvą sukurtą įrašant konstantą, t. y. masyvą esantį atmintyje nuo 2010_{16} iki 2015_{16} adreso, perkelkime į kitą atminties vietą pradedant adresu 2050_{16} :

Klavišai	A	dresų	ir du	omenų	ı displėjus
В.М				•	
2 0 1 0	2		1	Ο.	
NEXT				•	
2 0 1 5	2		1	5.	
NEXT				•	
2 0 5 0	2	0	5	Ο.	
•	-				

Patikrinkime ar tikrai duomenų masyvas buvo perkeltas:

Dviejų duomenų masyvų palyginimas atliekamas taip:

"SHIFT" "MEMC" (A1 A2 A3 A4)₁ "NEXT" (A1 A2 A3 A4)₂ "NEXT" (A1 A2 A3 A4)₃ "•" ["NEXT" ...],

čia (A1 A2 A3 A4)₁ – šešioliktainiai skaičiai, kurie sudaro pirmojo duomenų masyvo pradžios adresą; (A1 A2 A3 A4)₂ – šešioliktainiai skaičiai, kurie sudaro pirmojo duomenų masyvo pabaigos adresą; (A1 A2 A3 A4)₃ – šešioliktainiai skaičiai, kurie sudaro antrojo duomenų masyvo pradžios adresą.

Pastaba: laužtiniuose skliaustuose pažymėti nebūtini sintaksės elementai.

Pavyzdžiui, palyginkime du duomenų masyvus (priimkime, kad duomenų masyvai jau yra įvesti į atmintį):

Pirmasis duo	menų masyvas	Antrasis duomenų masyvas			
$Adresas_{16}$	Duomenys ₁₆	Adresas ₁₆	Duomenys ₁₆		
2020	11	2030	11		
2021	12	2031	11		
2022	11	2032	11		
2023	10	2033	11		
2024	11	2034	11		

Klavišai	A	dresų	ir du	omeni	į dis	plė	jus
SHIFT				•			
2 0 2 0	2		2	□.			
NEXT				•			
2 0 2 4	2		2	4.			
NEXT				•			
2 0 3 0	2		3	Ο.			
•	2	0	2	1		1	2
NEXT	2		2	3		1	
NEXT	-						

Kaip matome rastos dvi besiskiriančios atminties ląstelės, kurių adresai yra 2021_{16} ir 2023_{16} .

3. Užduotis

- 1. Įjungti mokomąją mikroprocesorinę sistemą M85-01 (jungiklis galinėje sienelėje) ir inicijuoti sisteminį monitorių (paspausti klavišą "**RESET**").
 - 2. Nubraižyti 3 lentelę.

3 lentelė. Mikroprocesoriaus registrų turinių peržiūros ir keitimo rezultatai

	Registro turinys			
Registras	Pradinis	Pakeistas	Paspaudus "RESET"	
A	CC	22	CC	
 SPL				

Registrų pavadinimai (identifikatoriai):

- A 8 skilčių registras A arba kaupiklis;
- $\mathbf{B} 8$ skilčių registras \mathbf{B} ;
- C 8 skilčių registras C;
- $\mathbf{D} 8$ skilčių registras \mathbf{D} ;
- $\mathbf{E} 8$ skilčių registras \mathbf{E} ;
- $\mathbf{H} 8$ skilčių registras \mathbf{H} ;
- L 8 skilčių registras L;
- $\mathbf{F} 8$ skilčių požymių registras \mathbf{F} ;
- **PCH** komandy skaitiklio **PC** aukštesnysis baitas;
- PCL komandų skaitiklio PC žemesnysis baitas;
- **SPH** dėklo rodyklės **SP** aukštesnysis baitas;
- **SPL** dėklo rodyklės **SP** žemesnysis baitas.
- 3. Peržiūrėti ir pakeisti visų mikroprocesoriaus registrų turinius. Paspausti mikroprocesorinės sistemos nustatymo į pradinę būseną

klavišą "**RESET**" ir dar kartą peržiūrėti tuos pačius registrus. Rezultatus surašyti į 3 lentelę. Padaryti išvadą.

4. Nusibraižyti 4 lentelę.

Pastaba: vietoje XX įrašyti laisvai pasirinktus skaičius.

4 lentelė. Atminties ląstelių turinių peržiūros ir keitimo rezultatai

Atmintias lasta	Atminties ląstelės turinys			
Atminties ląste- lės adresas ₁₆	Pradinis	Pakeistas	Paspaudus "RESET"	
20XX	F0	33	33	
 1FXX 				

5. Peržiūrėti ir pakeisti nedidelius (3–5 baitų) atminties laukus, į kuriuos patenka tam tikri atminties laukų ribiniai adresai. Paspausti mikroprocesorinės sistemos nustatymo į pradinę būseną klavišą "RESET" ir dar kartą peržiūrėti tuos pačius atminties laukus. Rezultatus surašyti į 4 lentelę. Padaryti išvadą.

6. Nusibraižyti 5 lentelę.

Pastaba: vietoje X įrašyti laisvai pasirinktą skaičių.

5 lentelė. Atminties užpildymo konstanta rezultatai

Pradiniai duomenys		Komanda "FILL" užpildytos konstanta atminties ląstelės		
Atminties ląste- lės adresas ₁₆	Duomenys ₁₆	Atminties ląste- lės adresas ₁₆	Duomenys ₁₆	
20X0		20X0		
20X1		20X1		
20X2		20X2		
20X3		20X3		
20X4		20X4		

- 7. Į pasirinktą atminties lauką įrašyti konstantą. Rezultatus surašyti į 5 lentelę.
 - 8. Nusibraižyti 6 lentelę.

Pastaba: vietoje X įrašyti laisvai pasirinktą skaičių.

6 lentelė. Duomenų perkėlimo atmintyje rezultatai

Pradiniai duomenys		Komanda " B.M " perkelti duomenys	
Atminties ląste- lės adresas ₁₆	Duomenys ₁₆	Atminties ląste- lės adresas ₁₆	Duomenys ₁₆
20X0		20X0	
20X1		20X1	
20X2		20X2	
20X3		20X3	
20X4		20X4	

- 9. Perkelti pasirinktą duomenų masyvą į kitą atminties vietą. Rezultatus surašyti į 6 lentelę.
- 10. Palyginti du pasirinktus duomenų masyvus. Surašyti tam reikalingas komandas.
- 11. Įvesti ir įvykdyti duotą programą. Surašyti tam reikalingas komandas.

Žymė	Adresas ₁₆	Komandos kodas ₁₆	Komandos mne- monika	Komentaras
	2000	31	LXI SP, 20FF	Nustatoma dėklo viršūnė.
	2001	FF		
	2002	20		
	2003	CD	CALL CLEAR	Užgesinamas displėjus.
	2004	47		
	2005	03		
START	2006	AF	XRA A	Ištrinamas registro A turinys, kad būtų atvaiz- duojami simboliai displė- jaus lauke "ADDRESS DISPLAY".
	2007	47	MOV B, A	Ištrinamas registro B turi-

			nys, kad nebūtų atvaizduojami taškai displėjaus lauke "ADDRESS DISPLAY".
2008	21	LXI H, 2050	Nustatoma simbolių, ku-
2009	50	,	rie bus atvaizduojami
200A	20		displėjaus lauke
			"ADDRESS DISPLAY",
			kody vieta atmintyje
			(duomenys programai).
200B	CD	CALL OUTPUT	Simboliai atvaizduojami
200C	D0	CALL OUT OF	displėjaus lauke
200D	05		"ADDRESS DISPLAY".
200E	3E	MVI A, 01	J registra A persiunčiamas
200E 200F	01	MIVIA, UI	vienetas, kad būtų atvaiz-
2001	01		duojami simboliai displė-
			jaus lauke "DATA
			DISPLAY".
2010	06	MAZED OO	
2010	06	MVI B, 00	Ištrinamas registro B turi-
2011	00		nys, kad nebūtų atvaiz-
			duojami taškai displėjaus
			lauke "DATA
2012	2.1		DISPLAY".
2012	21	LXI H, 2054	Nustatoma simbolių, ku-
2013	54		rie bus atvaizduojami
2014	20		displėjaus lauke "DATA
			DISPLAY", kodų vieta
			atmintyje (duomenys
			programai).
2015	CD	CALL OUTPUT	Simboliai atvaizduojami
2016	D0		displėjaus lauke "DATA
2017	05		DISPLAY".
2018	11	LXI D, 0000	Simboliai atvaizduojami
2019	00		apie 0,5 s.
201A	00		
201B	CD	CALL DELAY	Iškviečiamas vėlinimo
201C	BC		paprogramis.
201D	03		
201E	CD	CALL CLEAR	Užgesinamas displėjus.

201F	47		
2020	03		
2021	11	LXI D, 0000	Mikroprocesorinės siste-
2022	00		mos displėjus užgesina-
2023	00		mas apie 0,5 s.
2024	CD	CALL DELAY	Iškviečiamas vėlinimo
2025	BC		paprogramis.
2026	03		
2027	C3	JMP START	Pereinama prie komandos
2028	06		pažymėtos žyme
2029	20		"START" vykdymo.
	Du	omenys programai	i
2050	16		Tarpas.
2051	0C		Raidė C.
2052	12		Raidė P.
2053	15		Raidė U.
2054	08		Skaičius 8.
2055	05		Skaičius 5.

4. Ataskaitos turinys

- 1. Darbo tikslas.
- 2. Registrų turinių peržiūros ir keitimo rezultatai.
- 3. Atminties ląstelių turinių peržiūros ir keitimo rezultatai.
- 4. Atminties užpildymo konstanta rezultatai.
- 5. Duomenų perkėlimo atmintyje rezultatai.
- 6. Dviejų atminties masyvų palyginimo rezultatai.
- 7. Visų vykdytų sistemos monitoriaus komandų apiforminimo pavyzdžiai.
 - 8. Išvados.

5. Kontroliniai klausimai

1. Kokios yra pagrindinės mokomosios mikroprocesorinės sistemos M85-01 charakteristikos?

- 2. Kokios yra mokomosios mikroprocesorinės sistemos M85-01 galimybės?
- 3. Paaiškinkite mokomosios mikroprocesorinės sistemos M85-01 valdymo ir indikacijos elementų paskirtį.
- 4. Kaip paskirstyta mokomosios mikroprocesorinės sistemos M85-01 atmintis?
 - 5. Paaiškinkite, kaip peržiūrėti arba pakeisti registro turinį.
- 6. Paaiškinkite, kaip peržiūrėti arba pakeisti atminties ląstelės turinį.
- 7. Paaiškinkite, kaip žingsnio režimu vykdyti sudarytą programą.
 - 8. Paaiškinkite, kaip įrašyti konstantą į tam tikrą atminties sritį.
- 9. Paaiškinkite, kaip perkelti duomenų masyvą iš vienos atminties vietos į kitą.

Literatūra

- GRAŽULEVIČIUS, G. 2008. *Mikroprocesorinė technika*: mokomoji knyga. I dalis. Vilnius: Technika, 224 p. ISBN 978-9955-28-280-8.
- ROUTT, W. A. 2007. *Microprocessor Architecture, Programming, and Systems Featuring the 8085*. USA, New York: Thomson Delmar Learning. 271 p. ISBN 1-4180-3241-7.