Manuel Technique de l'Implémentation MO5 sur FPGA

Introduction

Ce document détaille l'implémentation en VHDL de l'ordinateur Thomson MO5 sur une plateforme FPGA Intel/Altera. Le MO5 était un ordinateur domestique français populaire des années 1980, et cette implémentation FPGA reproduit fidèlement ses fonctionnalités en utilisant du matériel moderne.

Vue d'Ensemble du Système

L'implémentation FPGA du Thomson MO5 est conçue pour la carte de développement DE1 équipée d'un FPGA Intel/Altera. Le système reproduit l'architecture originale du MO5, comprenant :

- CPU compatible 6809
- 32Ko de RAM
- Système ROM avec support de cartouches
- Interface PIA pour clavier, joystick et périphériques
- Sortie vidéo supportant les modes couleur
- Interface clavier PS/2 avec support de plusieurs dispositions
- Génération sonore
- Interface carte SD pour le stockage

Architecture Matérielle

Module Principal (DE1_MO5)

Le module principal (DE1_MO5) s'interface avec le matériel de la carte DE1 et connecte tous les composants du système. Il gère :

- La génération et la distribution d'horloge
- La logique de réinitialisation
- Le mappage mémoire entre CPU, RAM, ROM et périphériques
- L'interfaçage des E/S (clavier, vidéo, audio, stockage)

Implémentation CPU

Le système utilise un cœur CPU compatible 6809 (MO5_CPU), qui est un wrapper autour du cœur CPU09 de John Kent. Caractéristiques principales :

- Jeu d'instructions 6809 entièrement compatible
- Espace d'adressage de 64Ko
- Support des modes d'interruption IRQ et FIRQ

Commutable entre 1MHz et 10MHz

Système Mémoire

Le système mémoire se compose de :

1. **RAM (MO5_RAM)**:

- Mappe le modèle mémoire original de 32Ko sur la SRAM de la carte FPGA
- Gère la commutation de banques pour la mémoire vidéo et la mémoire principale

2. ROM (MO5 ROM):

- Mappe la ROM système originale (moniteur) et la ROM cartouche dans la mémoire flash
- Fournit un mécanisme de sélection de cartouche

3. Initialisateur RAM:

- Initialise la RAM au démarrage du système
- Assure un état approprié pendant la séquence de démarrage

Adaptateurs d'Interface Périphérique (MO5_PIA)

Le système inclut une implémentation PIA compatible MC6821 qui gère :

- Le balayage de la matrice de clavier
- Le contrôle de la couleur de bordure
- La sortie du bit sonore
- Le support du crayon optique
- La synchronisation temporelle du système

Sous-système Vidéo (MO5_VIDEO)

Le système vidéo implémente les capacités graphiques du MO5 avec une sortie VGA améliorée :

- Supporte une sortie VGA 1024x768 (configurable pour d'autres résolutions)
- Implémente la résolution originale de 320x200 avec bordure
- Mappages mémoire séparés pour les formes de caractères et les couleurs
- Palette de 16 couleurs correspondant aux couleurs originales du MO5
- Génération matérielle accélérée des pixels

Interface Clavier (MO5_KBD)

Le sous-système clavier convertit l'entrée d'un clavier PS/2 moderne vers la matrice de clavier originale du MO5 :

Décodeur de protocole PS/2

- Traduction des codes de balayage
- Support pour plusieurs dispositions de clavier :
 - QWERTY
 - AZERTY (Français)
 - Mappage direct 1-à-1
- Combinaisons de touches spéciales pour le contrôle du système

Système Sonore (MO5_SOUND)

Le système sonore implémente l'audio 1-bit du MO5 original avec des améliorations :

- Convertit le son numérique 1-bit en analogique via le codec WM8731
- Interface I2C pour la configuration du codec
- Taux d'échantillonnage de 48kHz
- Sortie audio 16-bit

Interface Carte SD (MO5_SDDRIVE)

Le système inclut une interface carte SD pour le stockage :

- Implémentation du protocole SPI pour la communication avec la carte SD
- Pilote basé sur ROM
- LEDs d'activité pour les opérations de lecture/écriture

Documentation Détaillée des Signaux

Système d'Horloge

Le module MO5_CLOCK génère quatre horloges critiques :

- 1. Horloge CPU: 1MHz ou 10MHz, sélectionnable via un interrupteur
- 2. Horloge VGA: 25MHz pour VGA standard, plus élevée pour les résolutions améliorées
- 3. **Horloge SYNLT**: 50Hz pour la synchronisation système
- 4. Horloge Sonore: 48kHz pour l'échantillonnage audio

Carte Mémoire

La carte mémoire du MO5 est préservée :

- \$0000-\$1FFF : Mémoire vidéo (accédée en fonction du signal 'forme')
- \$2000-\$9FFF: RAM principale
- \$A000-\$A7BF : RAM système
- \$A7C0-\$A7C3 : Registres PIA

\$A7BF: Interface carte SD

\$B000-\$EFFF: ROM cartouche

\$F000-\$FFFF: ROM système (moniteur)

Signaux de Contrôle

• reset_n : Réinitialisation système (actif bas)

• **forme** : Sélection du mode d'accès mémoire (forme vidéo vs données couleur)

• **synlt_clock** : Signal de synchronisation système 50Hz

• **cpu_reset_n** : Signal de réinitialisation CPU

Implémentation de la Disposition du Clavier

Le système de clavier supporte trois modes sélectionnés par des interrupteurs :

1. Mode QWERTY (00): Mappage standard de clavier US

2. Mode AZERTY (01): Mappage de clavier français

3. Mode Direct (10/11): Mappage direct pour des configurations personnalisées

La conversion des codes de balayage PS/2 vers la matrice de clavier MO5 est gérée en trois étapes :

1. **Décodeur PS/2** : Décode le protocole PS/2 brut

2. **Assembleur de Code de Balayage** : Traite les codes d'appui/relâchement et les touches étendues

3. **Décodeur Clavier MO5** : Mappe les codes de balayage traités à la matrice de clavier MO5

Combinaisons de touches spéciales :

• Ctrl+Alt+Suppr : Réinitialisation système

Touches de fonction : Mappées aux touches numériques

Détails du Système Vidéo

Le système vidéo génère une sortie VGA à partir des données d'affichage originales du MO5 en utilisant plusieurs composants :

1. Contrôleur VGA : Génère des signaux de synchronisation pour la résolution sélectionnée

2. **Traducteur de Coordonnées** : Mappe les coordonnées VGA à la mémoire vidéo MO5

3. **Mémoire de Forme et de Couleur** : RAMs double port pour les données de pixel et de couleur

4. **Sélecteur de Pixel** : Extrait les pixels individuels de la mémoire

5. **Sélecteur de Couleur** : Détermine la couleur finale du pixel

6. Palette: Convertit les codes couleur MO5 en valeurs RGB

Modes d'affichage:

- Mode Pixel 00 : Zone d'effacement (noir)
- Mode Pixel 01 : Zone de bordure (couleur de bordure)
- Mode Pixel 10/11: Zone d'affichage active (couleur avant-plan/arrière-plan)

Interface Carte SD

L'interface carte SD fournit une capacité de stockage de masse :

- Implémentation simple du protocole SPI
- Capacités de transfert de commande/données
- Indication de statut via LEDs

Notes d'Implémentation

Compatibilité Carte

Cette implémentation est spécifiquement conçue pour la carte de développement FPGA DE1 avec :

- FPGA Altera/Intel
- 8Mo de SDRAM
- 4Mo de mémoire Flash
- CODEC audio I2C
- Port clavier PS/2
- Slot carte SD
- Sortie VGA

Utilisation des Ressources

L'implémentation nécessite :

• Éléments logiques : ~8 000

• Bits mémoire : ~300 000

• PLLs: 1-2 selon la configuration

• Broches E/S: ~70

Construction et Configuration

Exigences de Construction

- Intel Quartus Prime (ou Altera Quartus II)
- ModelSim pour la simulation (optionnel)

• Outils de synthèse compatibles VHDL

Options de Configuration

Le système fournit plusieurs options de configuration :

- 1. Résolution Vidéo: Configurable dans les paramètres génériques VGA_CTRL
- 2. **Disposition du Clavier** : Sélectionnable via les interrupteurs SW[1:0]
- 3. Vitesse CPU: Sélectionnable via l'interrupteur SW[2]

Guide d'Utilisation

- 1. Allumez la carte DE1 avec la configuration FPGA MO5
- 2. Le système initialisera la RAM et réinitialisera le CPU

3. Sélection du Mode Clavier :

 Réglez SW[1:0] pour sélectionner la disposition du clavier (00=QWERTY, 01=AZERTY, 10/11=Direct)

4. Sélection de la Vitesse CPU :

Réglez SW[2] pour sélectionner la vitesse CPU (0=1MHz, 1=10MHz)

5. Réinitialisation:

- Appuyez sur KEY[0] pour une réinitialisation matérielle
- Utilisez Ctrl+Alt+Suppr pour une réinitialisation logicielle

Limitations Techniques et Améliorations

Limitations

- Pas d'implémentation d'interface cassette
- Mécanisme de sélection de cartouche limité
- Quelques différences de timing par rapport au matériel original

Améliorations

- Sortie VGA à plus haute résolution
- Vitesse CPU commutable
- Support de plusieurs dispositions de clavier
- Stockage carte SD au lieu de cassette
- Sortie audio améliorée

Fonctionnalités de Débogage

Affichages 7 segments montrant l'adresse CPU

- Indicateurs LED pour l'état du système
- Boutons KEY pour le contrôle manuel

Crédits

Cette implémentation s'appuie sur plusieurs composants open-source :

- Cœur CPU09 par John Kent
- Architecture de contrôleur VGA
- Logique de décodeur de clavier PS/2
- Contrôleur I2C pour codec audio

Annexe: Description des Signaux

Interfaces Externes

Interface	Description	
VGA	Sortie vidéo (HS, VS, R, G, B)	
PS/2	Entrée clavier (CLK, DAT)	
AUDIO	Interface codec audio I2C	
CARTE SD	Interface de stockage basée sur SPI	
4		

Signaux Internes Clés

Signal	Largeur	Description
address	16 bits	Bus d'adresse CPU
data_in	8 bits	Entrée de données CPU
data_out	8 bits	Sortie de données CPU
rw	1 bit	Contrôle lecture/écriture
vma	1 bit	Adresse mémoire valide
irq_n	1 bit	Demande d'interruption
firq_n	1 bit	Demande d'interruption rapide
reset_n	1 bit	Réinitialisation système
forme	1 bit	Sélection du mode mémoire vidéo