I have read and agree to the collaboration policy. Lynne Diep.

Lynne Diep

Homework Heavy Grading

Collaborators: none

Homework 4-1 Due: June 5, 2017

a) Algorithm -

Define vertices v_{in} and v_{out} to replace v

For all v except s and t

Each edge that goes into v, now goes into vin

Each edge that exits out of v, not exits vout

Set edge weight v_{in} and $v_{out} = C_v$

Set each edge that does not equal v_{in} and v_{out} to infinity $(\infty)^*$

*Because we do not want the flow to be restricted, we want original v's to be bottleneck in Ford-Fulkerson. We also want v's to be initially reachable from s.

Run Ford-Fulkerson on this new graph

Return max-flow

Runtime – O(mnC)Space – O(m+n)

Correctness of algorithm in part c

b) An analogue s-t cut of the node-capacitated graph is a partition (A,B) of V. Where $s \in A$ and $t \in B$.

Where A is the set of nodes reachable from s, and B is the set of nodes that are not reachable from s.

Capacity is Σ C_v, where v_{edge} on to A. We define v_{edge} to be edge through vertex v.

- c) Proof (same time):
 - i) \exists a cut (A,B) such that v(f) = cap(A.B)
 - ii) Flow f is a max flow
 - iii) There is no augmenting relative to f
 - $(i) \rightarrow (ii)$
 - $(ii) \rightarrow (iii)$
 - $(iii) \rightarrow (i)$

(i)
$$\rightarrow$$
 (ii)
 $v_f = \Sigma_{fout}(v) - \Sigma_{fin}(v)$
 $\leq \Sigma_{fout}(v)$
 $\leq \Sigma C_v$, where v_{edge} out of A
 $= cap(A,B)$

```
(ii) \rightarrow (iii)
```

Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along the path.

$$(iii) \rightarrow (i)$$

f = flow, no augmenting paths

A = set of vertices reachable from s in residual graph

By definition of A, $s \in A$

By definition of f, $s \notin A$

$$v(f) = \Sigma_{fout}(v) - \Sigma_{fin}(v)$$

$$\leq \Sigma C_{\rm v}$$
, where $v_{\rm edge}$ out of A

$$= cap(A,B)$$

Hence, why the max-flow min-cut theorem holds for the analogue, and proves correctness of the algorithm for part a.