# **Baseball Statistical Analysis**

Eugene Ohba, Jon Karanezi, Clarity Kummer, Max Gehred

Can we accurately predict or classify the offensive value of an MLB player as measured by On Base Percentage Plus Slugging Percentage (OPS)?

## **Dataset**

"MLB Statcast" Dataset made publicly via Baseball Savant.

#### Dataset:

- All batters in the MLB over the four years 2020-2023.
  - Reason for choosing four years: Training (2020,2021), Validation (2022), Test (2023)
- 538 observations on 23 features.

#### What does the dataset look like?

- **Player Info:** First and Last Name, Player ID, Plate Appearances
- **At Bat Outcome Metrics:** Hits, Single, Double, Triple, Home Run, Strike Out Percentage, Walk Percentage, On Base Percentage Plus Slugging Percentage
- **At Bat Quality Metrics**: Average Exit Velocity, Sweet Spot Percentage, Barrel Batted Rate, Solid Contact Percentage, Hard Hit Percentage, Average Best Speed and Hyper Speed, Whiff Percentage, Swing Percentage, Ground Ball Percentage, Flyball Percentage

# Goal

- Goal: To create a model that accurately predicts on-base percentage plus slugging percentage, <u>OPS</u>
- OPS: provides a comprehensive overview of a player's offensive value. It's calculated by adding the player's On Base Percentage and their Slugging Percentage
  - On Base Percentage (OBP): the rate at which a player gets on base
  - Slugging Percentage (SLG): the average number of bases a player records per at bat

## **OPS and Variable Selection**

- OPS = On Base Percentage (OBP) + Slugging Percentage (SLG)
- SLG = (hits+ (doubles \*2)+ (triples\*3) + (HRs\*4)) / at bats
- OBP = (hits + walks + hit by pitch) / (Plate Appearances)
- Ex: 5 plate appearances Out, Out, Single, Home run, Out = 1.400 OPS
- To reduce multicollinearity, we chose predictor features that are more directly related to OBP and SLG but are not already included in the OPS calculation. The 12 non-outcome oriented features considered are:
  - Strikeout percentage, Exit Velocity Average, Sweet Spot Percentage, Barrel Batted Rate, Solid Contact Percentage, Hard Hit Percentage, Average Best and Average Hyper Speed, Whiff Percentage, Swing Percentage, Ground Ball Percentage, Flyball Percentage

# **Questions of Interest**

- Which features (of those considered in this analysis) are most predictive and significant on a player's offensive value, as measured by OPS?

How closely can non-outcome oriented features predict OPS?

- How does our predictive model compare to other professional projection systems.

# Methodologies - Initial Data Discoveries

- **Data Collection :** Compile a baseball hitters dataset, made publicly available by MLB Baseball Statcast over the years 2020-2023, ensure representation across a diverse range of players.
- **Data Preprocessing:** Clean the data for missing values, outliers, duplicate observations, and ensure normalization of features when necessary. Additionally, ensure each feature included is relevant to the task at hand.
- **Exploratory Data Analysis:** Visualize the datasets and subsets of such to identify correlations and underlying relationships present within and between attributes. Additionally, analyze the distribution of each feature and the target variable, OPS
- Regression Model Comparison: Compare the results of 3 different linear models: Linear,
  Ridge and Lasso Regression, choosing the one that best predicts OPS to use on test data, for analysis and interpretation
- **Classification:** Create a classification model that can be used to classify hitters as at least average or below average, based on OPS





# **Linear Regression Methodologies:**

#### Create Base Model:

- Including variables which demonstrate a linear relationship with OPS
  - (12 features included shown on previous slides)
- Standardized Data using StandardScaler()
- Evaluate Performance based error metrics:
  - Mean Absolute Error (MAE)
  - Root Mean Squared Error (RMSE)
  - Accuracy as a measure of R<sup>2</sup> is not as good of a performance measure– response is continuous

#### Feature Permutation for Feature Importance

- Using 'permutation\_importance' to identify a subset of features that contribute most to the model's performance
- Create a subset model using only the most important features
- Compare the performance of the subset model to the base (full) model
- In this way, we are able to identify the fewest number of features that account for predicting a players OPS

#### Feature importance for Linear Regression, on\_base\_plus\_slg vs. rest of MLB



# 6 most important features identified:

- k\_percent
- exit\_velocity\_avg
- sweet\_spot\_percent
- barrel\_batted\_rate
- avg\_best\_speed
- avg\_hyper\_speed

# Performance Linear Train / Val

#### **BASE (FULL) MODEL**

 $R^2$  train = .637

| $\operatorname{Metric}$ | Value    |
|-------------------------|----------|
| RMSE TRAIN              | 0.058858 |
| MAE TRAIN               | 0.046586 |

Table 1: Performance Training Data; Base (Full) Model

| $\mathbb{R}^2$ | va | [ = | = . | 4 | 1 | 7 |
|----------------|----|-----|-----|---|---|---|
|----------------|----|-----|-----|---|---|---|

| Metric   | Value    |
|----------|----------|
| RMSE VAL | 0.063538 |
| MAE VAL  | 0.052186 |



Table 1: Performance Validation Data; Base (Full) Model

#### SUBSET (REDUCED) MODEL- by feature permutation for feature

| Metric     | Value    |
|------------|----------|
| RMSE TRAIN | 0.218420 |
| MAE TRAIN  | 0.047707 |

| Table 1: Performance | Training | Data; Subset | (Reduced) | Model |
|----------------------|----------|--------------|-----------|-------|
|----------------------|----------|--------------|-----------|-------|

| Metric   | Value    |
|----------|----------|
| RMSE VAL | 0.065918 |
| MAE VAL  | 0.054388 |

Table 1: Performance Validation Data; Subset (Reduced) Model

$$R^2$$
 train = .609

$$R^2$$
 val = .373

# Outcomes - Linear Regression Model on 2023 Data



#### **Outcomes:**

| Mean Absolute Error: .042 | Mean Squared Error: .003 | Root Mean Squared Error: .052 |

Our model slightly overestimated OPS of 2023 Hitters

# **Ridge Regression**

#### Create Base Model:

- **Features**: Used the same 12 linear features
- Standardization: Utilized standardscaler() to standardize data
- Cross-validation: Utilized 5 folds

#### Ridge for Feature Importance

- **Grid Search:** We have used grid search to find the optimal alpha level for our ridge regression.
- Optimal alpha level: 4.94
- Create a subset model using only the most important features
- Compare the performance of the subset model to the base (full) model
- In this way, we are able to identify the fewest number of features that account for predicting a players OPS

# **Ridge Feature Selection**



# Performance Ridge Train / Val

| $\operatorname{Metric}$ | Value   |
|-------------------------|---------|
| RMSE TRAIN              | .059088 |
| MAE TRAIN               | .046727 |

Table 1: Performance Training Data; Ridge Model

 $R^2$  train = .635

| $\operatorname{Metric}$ | Value   |
|-------------------------|---------|
| RMSE VAL                | .063589 |
| MAE VAL                 | .052316 |

Table 1: Performance Validation Data; Ridge Model

$$R^2$$
 val = .416

# Outcomes - Ridge Regression Model on 2023 Data



**Outcomes:** 

| Mean Absolute Error: .042 | Mean Squared Error: .003 | Root Mean Squared Error: .052 |

Our model slightly overestimated OPS of 2023 Hitters

## Lasso

#### Create Base Model:

- **Features:** Used the same 12 linear features
- Standardization: Utilized standardscaler() to standardize data
- Cross-validation: Utilized 5 folds

#### Ridge for Feature Importance

- **Grid Search:** We have used grid search to find the optimal alpha level for our ridge regression.
- Optimal alpha level: 0.0010
- Create a subset model using only the most important features
- Compare the performance of the subset model to the base (full) model
- In this way, we are able to identify the fewest number of features that account for predicting a players OPS

# **Lasso Feature Selection**



# 6 most important features identified:

- k\_percent
- sweet\_spot\_percent
- barrel\_batted\_rate
- Solid Contact Percent
- Swing Percent
- Fly balls Percent

# Performance Lasso Train / Val

| Metric     | Value   |
|------------|---------|
| RMSE TRAIN | .059091 |
| MAE TRAIN  | .046518 |

Table 1: Performance Training Data; Lasso Model

$$R^2$$
 train = .634

| Metric   | Value   |
|----------|---------|
| RMSE VAL | .063316 |
| MAE VAL  | .052077 |

Table 1: Performance Validation Data; Lasso Model

$$R^2$$
 val = .421

# Outcomes - Lasso Model on 2023 Data



#### **Outcomes:**

| Mean Absolute Error: .041 | Mean Squared Error: .003 | Root Mean Squared Error: .052 |

Our model slightly overestimated OPS of 2023 Hitters

# Outcomes - Comparing our Projections to State-of-the Art BATX Projections for 2023 Hitters

Our model's predictions were fairly similar to BATX's, on average we predicted a .026 higher OPS than BATX

BATX compared to Actual Outcomes

On average BATX underpredicted OPS by .027

The SD between it's predicted and actual scores is

Difference in OPS: Real Outcomes vs. BatX

Our model compared to Actual Outcomes

On average our model overpredicted OPS by .042

The SD between our predicted and actual scores is

.049



# Classification Methodologies:

- Bill James, a baseball statistician, developed a comprehensive 7-point ordinal scale to categorize hitters based on OPS
- Drawing inspiration from James' scale, we've crafted a concise 2-point system for classifying hitters by OPS, distilling complex insights into accessible categories.

#### **Bill James' Scale:**

| Category | Classification | OPS range        |
|----------|----------------|------------------|
| Α        | Great          | .9000 and higher |
| В        | Very good      | .8334 to .8999   |
| С        | Above average  | .7667 to .8333   |
| D        | Average        | .7000 to .7666   |
| Е        | Below average  | .6334 to .6999   |
| F        | Poor           | .5667 to .6333   |
| G        | Very poor      | .5666 and lower  |

#### Scale we manually engineered:

| Category | Classification   | OPS range        |
|----------|------------------|------------------|
| 1        | At least Average | .7000 and higher |
| 0        | Below average    | .6999 and lower  |

# Classification Methodologies Continued

#### Created a column 'Classification'

- Player's whose OPS was at least average according to Bill James' scale (.7000) received a 1 in the Classification column, else for OPS values less than average (.7000) they received a 0 in the Classification columns

#### - Training:

- As consistently throughout the analysis: Training was performed on data from the years 2020 and 2021
- Normalized the data using StandardScaler()
- The distribution of class observations in the training set were:
  - Counter({1: 235, 0: 39})
- To address the class imbalance: fit RandomOverSampler() to the training data, and then resampled such data
- After resampling (by oversampling) the distribution of class observation in the training set were:
  - Counter({1: 235, 0: 235})

# **Classification Methodologies**

- Created a Base Model Including all 12 features using
  - Model = LogisticRegression()
- Performed Grid Search in aims to increase performance compared to Base Model
  - parameters = [{'max\_iter': [1000, 5000, 10000], 'C': [0.01, 1, 10, 1000], 'penalty': ['l2']}]
- Feature Permutation For Feature Importance performed on Grid Search Model
- Compared the performance of Base Model, Grid Search Model, and Feature
  Permutation in order to determine which model would be best for classification tasks

(Results shown on next slide)



# 6 most important features identified:

- k\_percent
- barrel\_batted\_rate
- hard\_hit\_percent
- avg\_best\_speed
- avg\_hyper\_speed
- Flyballs\_percent

#### **Base Model**

| Training Accuracy    | 0.779 |            |
|----------------------|-------|------------|
| Validation Accuracy  | .792  | <b>***</b> |
| Validation Precision | .837  | <b>**</b>  |

Table 1: Performance Base (Full) Model

#### **Grid Search**

| Training Accuracy    | 0.804 |
|----------------------|-------|
| Validation Accuracy  | .785  |
| Validation Precision | .834  |

Table 1: Performance Base (Full) Model: Grid Search

#### **Subset Model**

| Training Accuracy    | .789 |
|----------------------|------|
| Validation Accuracy  | .777 |
| Validation Precision | .831 |

Table 1: Performance of Reduced Model: Feature Importance

Generalization performance was the best on the base model so we proceed with that model for our classification tasks and analysis.



| Test Accuracy  | .806 |
|----------------|------|
| Test Precision | .885 |

Table 1: Performance of Full Model on Test Data



# **Revisiting Questions of Interest**

- Which features (of those considered in this analysis) are most predictive and significant on a player's offensive value, as measured by OPS?
  - k\_percent, exit\_velocity\_avg, sweet\_spot\_percent, barrel\_batted\_rate, avg\_best\_speed,
    avg\_hyper\_speed, hard\_hit\_percent, flyballs\_percent
- How closely can non-outcome oriented features predict or classify OPS?
  - Lasso Regression: on average our model overpredicted OPS by .042
  - Classification: AUC = .86
- How does our predictive model compare to other professional projection systems.
  - Lasso Regression: on average we predicted a .026 higher OPS than BATX