

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2002-15314

(P2002-15314A)

(43)公開日 平成14年1月18日(2002.1.18)

(51) Int.Cl. ⁷	識別記号	F I	テマコード(参考)
G 0 6 T 1/00	5 1 0	G 0 6 T 1/00	5 1 0 5 B 0 5 7
H 0 4 N 1/60		H 0 4 N 1/40	D 5 C 0 5 5
1/46		1/46	Z 5 C 0 7 7
9/79		9/79	H 5 C 0 7 9

審査請求 未請求 請求項の数18 O.L (全 17 頁)

(21)出願番号	特願2001-91706(P2001-91706)
(22)出願日	平成13年3月28日(2001.3.28)
(31)優先権主張番号	特願2000-130733(P2000-130733)
(32)優先日	平成12年4月28日(2000.4.28)
(33)優先権主張国	日本 (JP)

(71)出願人	000005201 富士写真フィルム株式会社 神奈川県南足柄市中沼210番地
(72)発明者	竹本 文人 神奈川県足柄上郡開成町宮台798番地 富士写真フィルム株式会社内
(74)代理人	100073184 弁理士 柳田 征史 (外1名)

最終頁に続く

(54)【発明の名称】 画像出力方法および装置並びに記録媒体

(57)【要約】

【課題】 デジタルカメラにおいて得られた画像データをソフトコピーおよびハードコピーとして出力するに際し、ソフトコピー出力時には処理時間を短縮して画像を高速に表示する。

【解決手段】 画像データ S 0 から生成されたモニタ表示用のインデックス画像データ S 1 1 に対しては、階調変換手段 2 2 において階調変換処理のみを施してモニタに表示する。プリント用の 3 D L U T 生成時には、画像データ S 0 を階調変換するとともに、色補正する。これにより、色補正がされていない分低画質であるが、モニタには画像を高速に表示できる。

【特許請求の範囲】

【請求項1】 デジタルカメラにより取得した画像データに対して画像処理を施してハードコピーおよびソフトコピーとして出力する画像出力方法において、前記画像データをハードコピーとして出力する場合は、前記画像データに対して階調変換処理および色補正処理を施す3次元ルックアップテーブルを生成し、該3次元ルックアップテーブルにより前記画像データを変換して該画像データに前記階調変換処理および前記色補正処理を施し、

前記画像データをソフトコピーとして出力する場合は、前記画像データに対して、前記階調変換処理のみをすることを特徴とする画像出力方法。

【請求項2】 前記3次元ルックアップテーブルは、前記デジタルカメラの種別に応じた階調変換処理および色補正処理を施すものであることを特徴とする請求項1記載の画像出力方法。

【請求項3】 前記画像データのビット数に応じて前記3次元ルックアップテーブルの格子点数を設定することを特徴とする請求項1または2記載の画像出力方法。

【請求項4】 前記画像データにより表される画像の画素数と、前記3次元ルックアップテーブルの格子点数とを比較し、

前記画素数が前記格子点数より多い場合は、前記3次元ルックアップテーブルを生成し、該3次元ルックアップテーブルにより前記画像データを変換して該画像データに前記階調変換処理および前記色補正処理を施し、前記画素数が前記格子点数以下の場合は、前記画像データに対して該画像データにより表される画像の画素毎に前記階調変換処理および前記色補正処理を施すことを特徴とする請求項1から3のいずれか1項記載の画像出力方法。

【請求項5】 画像データに対して画像処理を施してハードコピーおよびソフトコピーとして出力する画像出力方法において、

前記画像データをハードコピーとして出力する場合は、前記画像データに対して階調変換処理および色補正処理を施す3次元ルックアップテーブルの格子点数と、該画像データにより表される画像の画素数とを比較し、前記画素数が前記格子点数より多い場合は、前記3次元ルックアップテーブルを生成し、該3次元ルックアップテーブルにより前記画像データを変換して該画像データに前記階調変換処理および前記色補正処理を施し、

前記画素数が前記格子点数以下の場合は、前記画像データに対して該画像データにより表される画像の画素毎に前記階調変換処理および前記色補正処理を施し、

前記画像データをソフトコピーとして出力する場合は、前記画像データに対して、前記階調変換処理を施すことを特徴とする画像出力方法。

【請求項6】 前記画像データのビット数に応じて前

記3次元ルックアップテーブルの格子点数を設定することを特徴とする請求項5記載の画像出力方法。

【請求項7】 デジタルカメラにより取得した画像データに対して画像処理を施す画像処理手段と、該画像処理が施された画像データをハードコピーとして出力するハードコピー出力手段と、該画像処理が施された画像データをソフトコピーとして出力するソフトコピー出力手段とを備えた画像出力装置において、

前記画像処理手段は、前記画像データをハードコピーとして出力する場合は、前記画像データに対して階調変換処理および色補正処理を施す3次元ルックアップテーブルを生成し、該3次元ルックアップテーブルにより前記画像データを変換して該画像データに前記階調変換処理および前記色補正処理を施し、

前記画像データをソフトコピーとして出力する場合は、前記画像データに対して、前記階調変換処理のみを施す手段であることを特徴とする画像出力装置。

【請求項8】 前記3次元ルックアップテーブルは、前記デジタルカメラの種別に応じた階調変換処理および色補正処理を施すものであることを特徴とする請求項7記載の画像出力装置。

【請求項9】 前記画像処理手段は、前記画像データのビット数に応じて前記3次元ルックアップテーブルの格子点数を設定する手段であることを特徴とする請求項7または8記載の画像出力装置。

【請求項10】 前記画像処理手段は、前記画像データにより表される画像の画素数と、前記3次元ルックアップテーブルの格子点数とを比較し、

前記画素数が前記格子点数より多い場合は、前記3次元ルックアップテーブルを生成し、該3次元ルックアップテーブルにより前記画像データを変換して該画像データに前記階調変換処理および前記色補正処理を施し、

前記画素数が前記格子点数以下の場合は、前記画像データに対して該画像データにより表される画像の画素毎に前記階調変換処理および前記色補正処理を施す手段であることを特徴とする請求項7から9のいずれか1項記載の画像出力装置。

【請求項11】 画像データに対して画像処理を施す画像処理手段と、該画像処理が施された画像データをハードコピーとして出力するハードコピー出力手段と、該画像処理が施された画像データをソフトコピーとして出力するソフトコピー出力手段とを備えた画像出力装置において、

前記画像処理手段は、前記画像データをハードコピーとして出力する場合は、前記画像データに対して階調変換処理および色補正処理を施す3次元ルックアップテーブルの格子点数と、該画像データにより表される画像の画素数とを比較し、

前記画素数が前記格子点数より多い場合は、前記3次元ルックアップテーブルを生成し、該3次元ルックアップ

テーブルにより前記画像データを変換して該画像データに前記階調変換処理および前記色補正処理を施し、前記画素数が前記格子点数以下の場合は、前記画像データに対して該画像データにより表される画像の画素毎に前記階調変換処理および前記色補正処理を施し、前記画像データをソフトコピーとして出力する場合は、前記画像データに対して、前記階調変換処理を施す手段であることを特徴とする画像出力装置。

【請求項12】 前記画像処理手段は、前記画像データのビット数に応じて前記3次元ルックアップテーブルの格子点数を設定する手段であることを特徴とする請求項1記載の画像出力装置。

【請求項13】 デジタルカメラにより取得した画像データに対して画像処理を施してハードコピーおよびソフトコピーとして出力する画像出力方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体において、

前記プログラムは、前記画像データをハードコピーとして出力する場合は、前記画像データに対して階調変換処理および色補正処理を施す3次元ルックアップテーブルを生成し、該3次元ルックアップテーブルにより前記画像データを変換して該画像データに前記階調変換処理および前記色補正処理を施す手順と、

前記画像データをソフトコピーとして出力する場合は、前記画像データに対して、前記階調変換処理のみを施す手順とを有することを特徴とするコンピュータ読取り可能な記録媒体。

【請求項14】 前記3次元ルックアップテーブルは、前記デジタルカメラの種別に応じた階調変換処理および色補正処理を施すものであることを特徴とする請求項13記載のコンピュータ読取り可能な記録媒体。

【請求項15】 前記プログラムは、前記画像データのビット数に応じて前記3次元ルックアップテーブルの格子点数を設定する手順をさらに有することを特徴とする請求項13または14記載のコンピュータ読取り可能な記録媒体。

【請求項16】 前記プログラムは、前記画像データにより表される画像の画素数と、前記3次元ルックアップテーブルの格子点数とを比較する手順をさらに有し、前記階調変換処理および前記色補正処理を施す手順は、前記画素数が前記格子点数より多い場合は、前記3次元ルックアップテーブルを生成し、該3次元ルックアップテーブルにより前記画像データを変換して該画像データに前記階調変換処理および前記色補正処理を施し、前記画素数が前記格子点数以下の場合は、前記画像データに対して該画像データにより表される画像の画素毎に前記階調変換処理および前記色補正処理を施す手順であることを特徴とする請求項13から15のいずれか1項記載のコンピュータ読取り可能な記録媒体。

【請求項17】 画像データに対して画像処理を施し

てハードコピーおよびソフトコピーとして出力する画像出力方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体において、

前記プログラムは、前記画像データをハードコピーとして出力する場合は、前記画像データに対して階調変換処理および色補正処理を施す3次元ルックアップテーブルの格子点数と、該画像データにより表される画像の画素数とを比較する手順と、

10 前記画素数が前記格子点数より多い場合は、前記3次元ルックアップテーブルを生成し、該3次元ルックアップテーブルにより前記画像データを変換して該画像データに前記階調変換処理および前記色補正処理を施す手順と、

前記画素数が前記格子点数以下の場合は、前記画像データに対して該画像データにより表される画像の画素毎に前記階調変換処理および前記色補正処理を施す手順と、前記画像データをソフトコピーとして出力する場合は、前記画像データに対して、前記階調変換処理を施す手順

20 とを有することを特徴とするコンピュータ読取り可能な記録媒体。

【請求項18】 前記プログラムは、前記画像データのビット数に応じて前記3次元ルックアップテーブルの格子点数を設定する手順をさらに有することを特徴とする請求項17記載のコンピュータ読取り可能な記録媒体。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明はデジタルカメラにより取得したデジタル画像データをプリンタにおいてハードコピーとして、あるいはモニタにおいてソフトコピーとして出力する画像出力方法および装置並びに画像出力方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体に関するものである。

【0002】

【従来の技術】 デジタルスチルカメラ（以下デジタルカメラとする）においては、撮影により取得した画像をデジタル画像データとしてデジタルカメラ内部に設けられた内部メモリやICカードなどの記録媒体に記録し、記録されたデジタル画像データに基づいて、プリンタやモニタに撮影により取得した画像を表示することができる。このように、デジタルカメラにより取得した画像をプリントする場合においては、ネガフィルムからプリントされた写真と同様の高品位な画質を有するものとすることが期待されている。

【0003】 一方、印刷の分野においては、スキャナによりカラー原稿を読み取ることにより入力画像データを得、この入力画像データに対して所望の画像処理を施して出力画像データを生成してプリンタにハードコピーと

して画像を出力するようにしたシステムが用いられている（例えば特開平11-234523号）。このシステムは、入力画像データをRGB色信号からCMYK網%信号に変換するものである。まず、予め入力画像データに対してトーンカーブ（階調変換テーブル）およびカラーコレクション部の色補正量等を設定し、設定されたトーンカーブおよびカラーコレクション部の色補正量等に基づいて、入力画像データを出力画像データに変換するための3次元ルックアップテーブル（以下3DLUTとする）を作成する。次いで、入力画像データであるRGB色信号をこの3DLUTを補間することにより出力画像データであるCMYK網%信号に変換する。印刷は、この網%信号により各色のインクの量を制御することにより行われる。

【0004】

【発明が解決しようとする課題】しかしながら、上記システムにおいては、濃度補正キーにより濃度をマニュアル補正する毎に階調変換および色補正まで含めた3DLUTが作成されて出力画像データが得られ、さらにモニタに表示するためにはSRGB色空間への変換も行われるため、モニタへの画像の表示に長時間を要するものとなっている。ここで、モニタに表示される画像は、画像の内容確認や上記マニュアル操作による補正時の補正量の確認にのみ使用されるものであるため、それほど高画質である必要はないものである。

【0005】本発明は上記事情に鑑みなされたものであり、デジタルカメラにおいて得られた画像データをハードコピーおよびソフトコピーとして出力するに際し、ソフトコピー出力時の処理を高速に行うことができる画像出力方法および装置並びに画像出力方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体を提供することを目的とするものである。

【0006】

【課題を解決するための手段】本発明による第1の画像出力方法は、デジタルカメラにより取得した画像データに対して画像処理を施してハードコピーおよびソフトコピーとして出力する画像出力方法において、前記画像データをハードコピーとして出力する場合は、前記画像データに対して階調変換処理および色補正処理を施す3次元ルックアップテーブルを生成し、該3次元ルックアップテーブルにより前記画像データを変換して該画像データに前記階調変換処理および前記色補正処理を施し、前記画像データをソフトコピーとして出力する場合は、前記画像データに対して、前記階調変換処理のみを施すことを特徴とするものである。

【0007】ここで、画像データをハードコピーとして出力するかソフトコピーとして出力するかの選択は、外部からの入力により行ってよい。

【0008】なお、本発明による第1の画像出力方法に

おいては、前記3次元ルックアップテーブルは、前記デジタルカメラの種別に応じた階調変換処理および色補正処理を施すものであることが好ましい。

【0009】また、3次元ルックアップテーブルは予めその格子点数が定められているものであるが、前記画像データのビット数に応じて前記3次元ルックアップテーブルの格子点数を設定することが好ましい。

【0010】ここで、3次元ルックアップテーブルの格子点数を、画像データのビット数と同一（例えば画像データがRGBそれぞれ8ビットのビット数を有する場合には、2⁵⁶³）とすると、3次元ルックアップテーブルを生成するための演算時間が長時間となる。一方、3次元ルックアップテーブルの格子点数を少なくしすぎると、画像データの変換時における格子点間の補間演算精度が落ちてしまうおそれがある。したがって、「ビット数に応じて格子点数を設定する」とは、3次元ルックアップテーブルを算出するための演算時間と格子点間の補間演算精度とを設定することを意味する。例えば、画像データのビット数に応じて格子点間の補間演算精度を向上させる場合には、格子点数を(2ⁿ/8+1)個または画像データのビット数と同一とすればよい。

【0011】さらに、本発明による第1の画像出力方法においては、前記画像データにより表される画像の画素数と、前記3次元ルックアップテーブルの格子点数とを比較し、前記画素数が前記格子点数より多い場合は、前記3次元ルックアップテーブルを生成し、該3次元ルックアップテーブルにより前記画像データを変換して該画像データに前記階調変換処理および前記色補正処理を施し、前記画素数が前記格子点数以下の場合は、前記画像データに対して該画像データにより表される画像の画素毎に前記階調変換処理および前記色補正処理を施すことが好ましい。

【0012】「画素毎に階調変換処理および色補正処理を施す」とは、3次元ルックアップテーブルを用いることなく、所定の演算式により各画素に対して階調変換処理および色補正処理を施すことを意味する。

【0013】なお、画像データはExifやJPEG等のタグ情報を有するファイル形式とすることが好ましく、この場合、画像データのビット数、画素数をタグ情報に記述することが好ましい。

【0014】本発明による第2の画像出力方法は、画像データに対して画像処理を施してハードコピーおよびソフトコピーとして出力する画像出力方法において、前記画像データをハードコピーとして出力する場合は、前記画像データに対して階調変換処理および色補正処理を施す3次元ルックアップテーブルの格子点数と、該画像データにより表される画像の画素数とを比較し、前記画素数が前記格子点数より多い場合は、前記3次元ルックアップテーブルを生成し、該3次元ルックアップテーブルにより前記画像データを変換して該画像データに前記階調変換処理および色補正処理を施すことが好ましい。

調変換処理および前記色補正処理を施し、前記画素数が前記格子点数以下の場合は、前記画像データに対して該画像データにより表される画像の画素毎に前記階調変換処理および前記色補正処理を施し、前記画像データをソフトコピーとして出力する場合は、前記画像データに対して、前記階調変換処理を施すことを特徴とするものである。

【0015】なお、本発明による第2の画像出力方法においては、画像データをソフトコピーとして出力する場合には、画像データに階調変換処理を施すものであるが、階調変換処理に加えて、色補正処理等を施してもよい。

【0016】また、本発明による第2の画像出力方法においては、前記画像データのビット数に応じて前記3次元ルックアップテーブルの格子点数を設定することが好ましい。

【0017】本発明による第1の画像出力装置は、デジタルカメラにより取得した画像データに対して画像処理を施す画像処理手段と、該画像処理が施された画像データをハードコピーとして出力するハードコピー出力手段と、該画像処理が施された画像データをソフトコピーとして出力するソフトコピー出力手段とを備えた画像出力装置において、前記画像処理手段は、前記画像データをハードコピーとして出力する場合は、前記画像データに対して階調変換処理および色補正処理を施す3次元ルックアップテーブルを生成し、該3次元ルックアップテーブルにより前記画像データを変換して該画像データに前記階調変換処理および前記色補正処理を施し、前記画像データをソフトコピーとして出力する場合は、前記画像データに対して、前記階調変換処理のみを施す手段であることを特徴とするものである。

【0018】なお、本発明による第1の画像出力装置においては、前記3次元ルックアップテーブルは、前記デジタルカメラの種別に応じた階調変換処理および色補正処理を施すものであることが好ましい。

【0019】また、本発明による第1の画像出力装置においては、前記画像処理手段は、前記画像データのビット数に応じて前記3次元ルックアップテーブルの格子点数を設定する手段であることが好ましい。

【0020】さらに、本発明による第1の画像出力装置においては、前記画像処理手段は、前記画像データにより表される画像の画素数と、前記3次元ルックアップテーブルの格子点数とを比較し、前記画素数が前記格子点数より多い場合は、前記3次元ルックアップテーブルを生成し、該3次元ルックアップテーブルにより前記画像データを変換して該画像データに前記階調変換処理および前記色補正処理を施し、前記画素数が前記格子点数以下の場合は、前記画像データに対して該画像データにより表される画像の画素毎に前記階調変換処理および前記色補正処理を施す手段であることが好ましい。

【0021】本発明による第2の画像出力装置は、画像データに対して画像処理を施す画像処理手段と、該画像処理が施された画像データをハードコピーとして出力するハードコピー出力手段と、該画像処理が施された画像データをソフトコピーとして出力するソフトコピー出力手段とを備えた画像出力装置において、前記画像処理手段は、前記画像データをハードコピーとして出力する場合は、前記画像データに対して階調変換処理および色補正処理を施す3次元ルックアップテーブルの格子点数と、該画像データにより表される画像の画素数とを比較し、前記画素数が前記格子点数より多い場合は、前記3次元ルックアップテーブルを生成し、該3次元ルックアップテーブルにより前記画像データを変換して該画像データに前記階調変換処理および前記色補正処理を施し、前記画素数が前記格子点数以下の場合は、前記画像データに対して該画像データにより表される画像の画素毎に前記階調変換処理および前記色補正処理を施し、前記画像データをソフトコピーとして出力する場合は、前記画像データに対して、前記階調変換処理を施す手段であることを特徴とするものである。

【0022】なお、本発明による第2の画像出力装置においては、前記画像処理手段は、前記画像データのビット数に応じて前記3次元ルックアップテーブルの格子点数を設定する手段であることが好ましい。

【0023】また、本発明による第2の画像出力方法においては、画像データをソフトコピーとして出力する場合には、画像データに階調変換処理を施すものであるが、階調変換処理に加えて、色補正処理等を施してもよい。

【0024】なお、本発明による画像出力方法をコンピュータに実行させるためのプログラムとして、コンピュータ読取り可能な記録媒体に記録して提供してもよい。

【0025】

【発明の効果】本発明によれば、画像データをハードコピーとして出力する場合は、画像データに対して階調変換処理および色補正処理を施す3次元ルックアップテーブルが生成され、この3次元ルックアップテーブルにより画像データが変換されて出力される。一方、画像データをソフトコピーとして出力する場合は階調変換処理のみが施される。したがって、画像データをハードコピーとして出力する場合には色補正も含めた高画質の画像を出力することができる。また、画像データをソフトコピーとして出力する場合には、ハードコピーと比較して色補正がされていない分低画質であるが、画像を高速に表示することができる。

【0026】また、デジタルカメラの種別に応じて、階調変換処理および色補正処理を施すことにより、デジタルカメラの種別に拘わらず均一な画像となるような処理を画像データに対して施すことができ、これにより、デジタルカメラの種別に拘わらず高画質の画像を得ること

ができる。

【0027】さらに、画像データのビット数に応じて3次元ルックアップテーブルの格子点数を決定することにより、3次元ルックアップテーブル生成のための演算時間と画像データの変換時における格子点間の補間演算精度とを制御することができ、これにより画像データの変換を高速あるいは高精度に行うことができる。

【0028】また、画像データにより表される画像の画素数が3次元ルックアップテーブルの格子点数より多い場合には3次元ルックアップテーブルを生成し、この3次元ルックアップテーブルにより階調変換処理および色補正処理を施し、画素数が格子点数以下の場合には各画素毎に階調変換処理および色補正処理を施すことにより、より少ない演算量によって画像データに対して階調変換処理および色補正処理を施すことができる。

【0029】

【発明の実施の形態】以下図面を参照して本発明の実施形態について説明する。

【0030】図1は本発明の実施形態による画像出力装置の構成を示す概略ブロック図である。図1に示すように、本実施形態による画像出力装置1は、デジタルカメラにより被写体を撮影することにより取得された画像データS0を記憶したメモリカード2から色データR0, G0, B0からなる画像データS0を読み出す読出手段3と、画像データS0を縮小してインデックス画像を表すインデックス画像データS11を作成するインデックス画像作成手段4と、画像データS0を解析して後述する階調変換テーブルT0を設定するのに必要な階調の設定情報H0を生成する設定情報生成手段5と、インデックス画像データS11に対して階調変換処理を施すとともに、画像データS0をプリント出力する際に画像データS0に対して階調変換処理および色補正処理を施すための画像処理条件を設定する画像処理条件決定手段6と、階調変換処理が施されたインデックス画像データS11'をインデックス画像として表示するモニタ7と、画像処理条件決定手段6に種々の入力を行う入力手段8と、濃度を変更するDCMYキー9と、画像処理条件決定手段6において生成された3DLUTまたは設定された画像処理条件を用いて画像データS0を変換して変換画像データS12を得る処理手段10と、画像データS0の画素数がプリントの画素数よりも多い場合に画像データS0を縮小して縮小画像データS0'を得る縮小手段11と、画像データS0の画素数がプリントの画素数よりも少ないと変換画像データS12を拡大して拡大画像データS12'を得る拡大手段12と、変換画像データS12または拡大画像データS12'に対してシャープネス処理を施して処理済み画像データS13を得るシャープネス処理手段13と、処理済み画像データS13をプリント出力してプリントPを得るプリンタ14とを備える。

【0031】なお、以下の説明においては、画像データS0が縮小手段11において縮小された場合には、縮小画像データS0'に対して処理が施されるが、便宜上画像データS0にのみ処理が施されるものとし、縮小画像データS0'については説明を省略する。

【0032】読出手段3は、メモリカード2から画像データS0を読み出すカードリーダ等からなる。また、メモリカード2から読み出した画像データは通常圧縮されているため、読出手段3には不図示の解凍手段が設けられており、この解凍手段においてメモリカード2から読み出した画像データを解凍して画像データS0とするものである。また、画像データS0には撮影を行ったデジタルカメラの種別を表す情報（以下カメラ種情報とする）がタグ情報として付与されているため、このカメラ種情報も同時に読み出される。ここで、カメラ種情報をタグ情報として記録する規格として例えばExifファイルの非圧縮ファイルとして採用されている「Baseline TIFF Rev.6.0RGB Full Color Image」が挙げられる。なお、画像データS0にカメラ種情報が付随されていない場合に、入力手段8からカメラ種情報をマニュアル入力することもできる。

【0033】インデックス画像作成手段4は、画像データS0を間引くなどして縮小してインデックス画像データS11を作成する。

【0034】設定情報生成手段5は以下のようにして設定情報H0を生成する。通常デジタルカメラにおいては、画像データS0をモニタに再生することを前提としてオート露出制御処理（AE処理）およびオートホワイトバランス調整処理（AWB処理）が施されてなるものである。しかしながら、画像データS0をプリンタにおいて再生する場合には、デジタルカメラにおいて行われたAE処理およびAWB処理（以下AE/AWB処理とする）だけでは不十分であるため、プリントに適したAE/AWB処理を行う必要がある。設定情報生成手段5は、画像データS0を構成するRGB色信号毎に、プリントに最適なAE/AWB処理を行うために必要な補正量を推定し、この補正量を設定情報H0に含めるものである。このため、例えば特開平11-220619号に記載されたように、画像データS0を構成するRGB各色信号毎に平均値を求め、この平均値がプリントに適した目標値となるように修正値を求め、この修正値を補正量として設定情報H0に含めて出力する。なお、この補正量は、露光量およびホワイトバランスの双方の補正を行うものとなっている。

【0035】また、設定情報生成手段5においては、後述するように画像処理条件決定手段6において画像処理条件を決定する際に、階調のハイライトおよびシャドーを非線形に修正するための修正量が求められ、この修正量も設定情報H0に含められる。ここで、プリンタは濃度の再現域が狭く、画像のハイライト部に飛びが、シャ

ド一部に潰れが生じやすい状態にある。このため、設定情報生成手段5は、例えば特開平11-331596号に記載された方法により、A E処理あるいはA W B処理によりプリントの濃度が上がるような場合には、ハイライト側の階調を硬調化させるとともにシャドー側の階調を軟調化させ、逆にプリントの濃度が下がるような場合には、ハイライト側の濃度を軟調化させるとともにシャドー側の階調を硬調化させるように修正量を求め、これを設定情報H0に含める。

【0036】さらに設定情報生成手段5においては、画像データS0のタグ情報が読み出され、タグ情報のカメラ種情報および画像データS0により表される画像の画素数Y0が設定情報H0に含まれられる。なお、タグ情報にストロボ情報が含まれている場合は、これも設定情報H0に含まれられる。

【0037】モニタ7にはインデックス画像データS1'により表されるインデックス画像が表示される。また、後述する階調曲線および色補正条件の修正時には、インデックス画像とともに階調曲線および色補正条件も表示される。なお、本実施形態においては6枚のインデックス画像が同時に表示されるものとする。

【0038】入力手段8は、画像処理条件決定手段6に対して種々の入力をするキーボード、マウスなどからなるものである。ここで、入力手段8からは、画像処理条件決定時に基準となる階調（以下基準階調とする）の種類が入力される。なお、基準階調とは、プリンタ14においてプリントを行う際に、適切な階調を有するプリントPが得られるように画像データに対して階調変換処理を行う階調を表すものである。ここで基準階調としては、例えば標準的な階調、曇天用の階調、逆光用の階調、および近接ストロボシーン用の階調が選択可能とされており、入力手段8から選択された基準階調を入力することにより、選択された基準階調を表す階調曲線が画像処理条件決定手段6において設定される。また、所望とする階調が得られるように階調曲線を修正したい場合があるが、その場合は階調曲線をモニタ7に表示して、入力手段8を用いて階調曲線を修正することができる。

【0039】DCM Yキー9は、画像全体の濃度DおよびC（シアン）、M（マゼンタ）、Y（イエロー）の各色の濃度を補正するための4つのキーからなり、キーを押下した回数に応じて画像処理条件決定手段6において画像全体および各色の濃度が変更される。なお、入力手段8から入力された階調曲線の修正およびDCM Yキー9から入力された濃度の変更は、リアルタイムでモニタ7に表示されたインデックス画像に反映される。

【0040】画像処理条件決定手段6は画像データS0に対して階調変換処理および色補正処理を施すための画像処理条件を設定するためのものであり、画像データS0のタグ情報に含まれた画像データS0により表される画像の画素数Y0に応じて、設定した画像処理条件その

ものを処理手段10に出力するか、または設定した画像処理条件に基づいて3DLUTを作成して3DLUTを処理手段10に出力するかの2通りの動作をする。本実施形態による画像出力装置においては、画像処理条件決定手段6は、処理時間を短縮するために、画素数Y0と3DLUTの格子点数を比較し、画素数Y0が3DLUTの格子点数より多い場合は3DLUTを作成し、作成された3DLUTを画像処理条件として処理手段10に出力する。一方、画素数Y0が3DLUTの格子点数以下の場合は3DLUTを作成せず、画像処理条件そのものを処理手段10に出力する。以下図2を参照して画像処理条件決定手段6の詳細を説明する。

【0041】図2は画像処理条件決定手段6の構成を示す概略ブロック図である。なお、3DLUTを作成するに際し、画像データS0がRGB各色8ビットのデータである場合、全てのデータを変換する3DLUTを作成しようとすると 2^{56} のデータが必要となり、3DLUTの作成に長時間を要するものとなる。したがって、本実施形態においては、格子点数が $(2^n/8+1)$ 個（n：画像データS0のビット数）となるように各色データR0, G0, B0ビット数を低減して3DLUTを作成する。例えば、画像データS0がRGB各色8ビットのデータである場合、各色データR0, G0, B0のビット数を低減して0, 7, 15, ..., 247, 255の各色33のデータからなる33³個の格子点を有する3DLUTを作成するものとする。

【0042】図2に示すように、画像処理条件決定手段6は、ITU-R BT.709 (REC.709)に準拠した画像データS0（ビット数が低減されたもの）

から、下記の式(1)～(3)に基づいて、被写体そのものの測色値を表す真数の色データR0', G0', B0'を求め、これを対数変換して画像データS1を得る対数変換手段21と、対数変換された画像データS1に対して階調を変換する処理を施して画像データS2を得る階調変換手段22と、階調変換手段22における階調変換に用いられる階調変換テーブルT0を設定する階調設定手段23と、複数の階調曲線を記憶したメモリ24と、画像データS2を逆対数変換して色データR3, G3, B3からなる画像データS3を得る逆対数変換手段25と、画像データS3を構成する色データR3, G3, B3を明度L*、彩度C*および色相H Aを表すデータL3, C3, H3に変換するLCH変換手段26と、データL3, C3, H3に対して色を補正する処理を施して色補正データL4, C4, H4を得る色補正手段27と、色補正データL4, C4, H4をモニタ用の色空間であるsRGB色空間に変換して色データR4, G4, B4からなる色補正画像データS4を得るsRGB変換手段28と、色補正画像データS4をプリンタ用の色空間に変換してプリンタ用画像データS5を得るプリンタ変換手段29と、プリンタ用画像データS5と画像

データS0に基づいて3DLUTを作成するLUT作成手段30とを備える。なお、色補正手段27には、色補正手段27に使用される色補正条件を設定する色補正条件設定手段32が接続されており、この色補正条件設定手段32が、設定情報H0および入力手段8の入力に基づいて、基準となる色補正条件を表す複数の基準色補正メニューおよび各々のデジタルカメラの機種に対応し

$$\begin{aligned} R' &= ((Pr+0.099)/1.099)^{2.222} \\ G' &= ((Pg+0.099)/1.099)^{2.222} \\ B' &= ((Pb+0.099)/1.099)^{2.222} \\ R' &= Pr/4.5 \\ G' &= Pg/4.5 \\ B' &= Pb/4.5 \end{aligned}$$

メモリ24には、標準的な階調曲線、曇天用の階調曲線、逆光用の階調曲線、および近接ストロボシーン用の階調曲線からなる基準階調曲線、およびカメラ種別に応じた複数の階調曲線が記憶されている。

【0044】階調設定手段23においては下記のようにして画像データS1を階調変換するための階調変換テーブルT0が設定される。図3は階調変換テーブルT0の設定を説明するための図であり、この階調変換テーブルT0は、画像データS1を構成する色データR1, G1, B1を、第1象限から第4象限にかけて階調変換して画像データS2を構成する色データR2, G2, B2を得るものである。なお、階調設定手段23においては、RGBの各色毎に階調変換テーブルT0が設定される。まず、階調設定手段23には設定情報H0が入力され、この設定情報H0のうちカメラ種情報に基づいて、そのカメラ種情報に応じた階調曲線がメモリ24から読み出される。一方、基準階調曲線としてデフォルトの標準的な階調曲線がメモリ24から読み出されるが、入力手段8から曇天用の階調曲線を読み出す旨が入力されている場合は、曇天用の階調曲線が読み出され、逆光用の階調曲線を読み出す旨が入力されている場合は、逆光用の階調曲線が読み出され、近接ストロボ用の階調曲線を読み出す旨が入力されている場合には、近接ストロボ用の階調曲線が読み出される。

【0045】カメラ種別の階調曲線C1は図3に示すように第1象限に設定される。ここで、デジタルカメラにおいては、デジタルカメラの製造メーカーや機種などのカメラの種別に応じて、再生画像の画質が異なるものである。したがって、この階調曲線C1は、カメラ種別に拘わらず一定品質の画像を得るために、個々のカメラの階調特性を吸収するようにカメラ種別に応じて作成されてなるものである。なお、この階調曲線C1により色データR1, G1, B1を変換すると、カメラ内の階調特性を補償した対数露光量を表すデータが得られることとなる。

【0046】第2象限には露光量を補正する直線C2が設定される。この露光量を補正する直線C2は基本的に

た色補正条件を表す機種色補正メニューを記憶したメモリ31から該当する色補正メニューを呼び出し、必要に応じてカスタマイズして色補正手段27に入力する。

【0043】

$$\begin{aligned} Pr &= R0/255 \\ Pg &= G0/255 \\ Pb &= B0/255 \end{aligned} \quad (1)$$

$$(Pr, Pg, Pb \geq 0.081) \quad (2)$$

$$(Pr, Pg, Pb < 0.081) \quad (3)$$

は原点を通る直線であるが、設定情報H0に含まれる露光量およびホワイトバランスを補正するための補正量に基づいてこの直線C2を矢印A方向に平行移動させることにより露光量が補正される。そしてこの直線C2により、プリントに適したA/E/AWB処理が施され、実被写体の反射濃度を表すデータが得られることとなる。

【0047】第3象限には、基準階調曲線が設定される。なお、ここでは標準の階調曲線C3が設定されたものとする。この標準の階調曲線C3はS字状の曲線となっており、中間部は $\gamma = 1.6$ に相当するものとなっている。ここで、本実施形態においては階調曲線C3による変換を γ 変換と称する。そしてこの階調曲線C3によりプリントに適した濃度データを得ることができる。

【0048】第4象限には、画像のハイライト部およびシャドー部を非線形に補正する階調曲線C4が設定される。この階調曲線C4による補正量は、設定情報H0に含まれるハイライト部およびシャドー部の修正量に応じて定められる。そしてこの階調曲線C4により画像データS2を構成する色データR2, G2, B2を得ることができる。

【0049】なお、この階調変換テーブルT0は入力手段8および/またはDCMYキー9の入力に応じて変更される。ここで、DCMYキー9の押下によって、モニタ7に表示されるインデックス画像のC, M, Yがシフトするが、ここではC, M, Yのシフト量をR, G, B濃度のシフト量に変換して階調変換テーブルT0を変更するものである。すなわち、DCMYキー9の押下の回数に応じたR, G, B濃度のシフト量が予め設定されており、DCMYキー9の押下の回数に応じてR, G, Bの濃度が変更される。具体的には、第2象限の直線C2をDCMYキー9の押下回数に応じて矢印A方向に平行移動させることにより、R, G, Bの濃度が変更される。さらに、入力手段8からの入力によっては、第1象限の階調曲線C1あるいは第3象限の階調曲線C3の γ の値が変更される。この場合、インデックス画像とともに各色毎の階調曲線C1, C3をモニタ7に表示し、インデックス画像を観察しながらユーザが所望とする階調

となるように入力手段8を用いて階調曲線C1、C3を変更すればよい。そして、このように階調曲線C1、直線C2および/または階調曲線C3を変更することにより、階調変換テーブルT0が変更される。

【0050】階調変換手段22は、階調設定手段23において設定された階調変換テーブルT0により画像データS1を変換して画像データS2を得る。

【0051】なお、対数変換手段21、階調変換手段22、および逆対数変換手段25ではRGB色空間にて全ての処理が行われるものである。

【0052】LCH変換手段26は画像データS3をR

$$\begin{array}{ll} X & R_3 \\ Y = |A| \cdot G_3 \\ Z & B_3 \end{array}$$

ここで、マトリクス|A|は、色データR3、G3、B3を三刺激値X、Y、Zに変換するためのマトリクスで

$$|A| = \begin{array}{lll} 0.4124 & 0.3576 & 0.1805 \\ 0.2126 & 0.7152 & 0.0722 \\ 0.0193 & 0.1192 & 1.0571 \end{array}$$

なお、マトリクス|A|に代えて、ルックアップテーブルにより三刺激値X、Y、Zを求めるようにしてもよい。

【0055】次に、三刺激値X、Y、Zから下記の式

$$\begin{aligned} a^* &= 500 \{f(X/X_n) - f(Y/Y_n)\} \\ b^* &= 200 \{f(Y/Y_n) - f(Z/Z_n)\} \\ L^* &= 116 (Y/Y_n)^{1/3} - 16 (Y/Y_n > 0.008856 \text{ のとき}) \\ L^* &= 903.25 (Y/Y_n) (Y/Y_n \leq 0.008856 \text{ のとき}) \end{aligned} \quad (6)$$

ここで、

$$\begin{aligned} X/X_n, Y/Y_n, Z/Z_n &> 0.008856 \text{ のとき} \\ f(a/a_n) &= (a/a_n)^{1/3} (a = X, Y, Z) \end{aligned}$$

$$X/X_n, Y/Y_n, Z/Z_n \leq 0.008856 \text{ のとき}$$

$$\begin{aligned} f(a/a_n) &= 7.787 (a/a_n) + 16/11 \\ C^* &= (a^* + b^*)^{1/2} \\ HA &= \tan^{-1} (b^*/a^*) \end{aligned}$$

色補正手段27は、R、G、B、C、M、Y、YellowGreen(YG)、BlueSky(BS)、ハイライト側の肌色SK(HL)、中間濃度の肌色SK(MD)およびシャドー側の肌色SK(SD)の11色についての明度、彩度および色相を補正する。具体的には、下記の式(9)～(11)に示すようにデータL3、C3、H3を補正して補正データL4、C4、H4を得る。

【0058】

【数1】

$$L4 = L3 - \Delta L$$

$$\Delta L = \sum LPi \cdot Wi + \sum LPj \cdot Wj + \Delta \ell \cdot Wj \quad (9)$$

$$C4 = C3 - \Delta C$$

$$\Delta C = \sum CPi \cdot Wi + \sum CPj \cdot Wj + \Delta c \cdot Wj \quad (10)$$

$$H4 = H3 - \Delta H$$

$$\Delta H = \sum HPi \cdot Wi + \sum HPj \cdot Wj + \Delta h \cdot Wj \quad (11)$$

GB色空間からL*a*b*色空間に変換するとともに、明度L*、彩度(クロマ値)C*および色相角HAを表すデータL3、C3、H3を得るものである。以下、この変換について説明する。デジタルカメラにおいて取得される画像データS0は、ITU-R BT.709(RC.709)に準拠しているため、下記の式(4)に基づいて画像データS3を構成する色データR3、G3、B3がCIE1931三刺激値X、Y、Zに変換される。

【0053】

(4)

あり、例えば以下のようないいことができる。

【0054】

(5)

20 (6)～(8)によりCIE1976L*(=L3)、クロマ値C*(=C3)および色相角HA(=H3)を求める。

【0056】

6 なお、Xn、Yn、Znは白色に対する三刺激値であり、CIE-D65(色温度が6500Kの光源)に対応する三刺激値により代用することができる。

【0057】

(7)

(8)

但し、i: R、G、B、C、M、Y、SK、BS

j: SK(HL)、SK(MD)、SK(SD)

LPi、LPj: 明度変更度

CPi、CPj: 彩度変更度

HPi、HPj: 色相変更度

Wi、Wj: 強度閾数

ΔL: 階調変更に伴う明度変更分

Δc: 階調変更に伴う彩度変更分

Δh: 階調変更に伴う色相変更分

明度変更度LPi、LPj、彩度変更度CPi、CPj

および色相変更度HPi、HPjは、色補正条件設定手段32により提供される。色補正条件設定手段32は、

メモリ31に記憶された複数の基準色補正メニューおよ

び各々のデジタルカメラの機種に対応した機種色補正メ

ニュー(図4参照)から所望の基準色補正メニューおよ

びデジタルカメラの機種に対応した機種色補正メニュー

を読み出し、必要に応じてカスタマイズして色補正手段27に入力する。色補正条件設定手段32に設定情報H0が入力されると、この設定情報H0に含まれるカメラ種情報に基づいて、そのカメラ種別に応じた機種色補正メニューがメモリ31から読み出される。一方、基準色補正メニューとしてデフォルトの標準的な色補正メニューがメモリ31から読み出されるが、入力手段8から曇天用の色補正メニューを読み出す旨が入力されている場合は、曇天用の色補正メニューが読み出され、逆光用の色補正メニューを読み出す旨が入力されている場合は、逆光用の色補正メニューが読み出され、近接ストロボ用の色補正メニューを読み出す旨が入力されている場合には近接ストロボ用の色補正メニューが読み出される。

【0059】なお、選択された基準色補正メニューおよび機種色補正メニューに対して、入力手段8より所望に応じて変更を加えてカスタマイズすることができる。なお、カスタマイズされた基準色補正メニューおよび機種

$$W_i = F(d)$$

$$d = \sqrt{(L_i - L)^2 + (a_i - a)^2 + (b_i - b)^2}$$

ここで、 L_i , a_i , b_i はR、G、B、C、M、Y、YG、BSの $L^* a^* b^*$ 色空間における中心色であり、R、G、B、C、M、Yについてはマクベスカラーチェッカー（登録商標；米国コールモージェン社マクベス部門（Macbeth A division kollmorgen）製）の各色の測色値、YGおよびBSについては画像データS0により表される画像の緑葉および空の部分の平均的な測色値とする。また、dは、中心色 L_i , a_i , b_i とLCH変換手段26において得られる L^* , a^* , b^* の値との $L^* a^* b^*$ 色空間における距離であり、 $F(d)$ は、例えば図5に示すように、距離dが所定値（ここでは30）までは一定の値を有し、所定値よりも距離dが大きくなると値が小さくなるような関数である。

【0063】一方、強度関数 W_j は肌色用の強度関数であり、画像データS0により表される画像の $L^* a^* b^*$ 色空間におけるハイライト側の肌色SK(HL)、中間濃度の肌色SK(MD)およびシャドー側の肌色SK

(SD)の統計的な分布範囲を求め、その分布において図6に示すように、周辺部の値が小さく中心部の値が大きくなる（但し $0 \leq W_j \leq 1$ ）ように設定されている。

【0064】なお、図7に示すようにモニタ7に表示されたインデックス画像の1つにおいて、上述したR、G、B、C、M、Y、YG、BS、SK(HL)、SK(MD)、SK(SD)以外の任意の色を指定し、指定した色を中心色としてその色の変更度を設定して上記式(9)から(11)にその色の変更を反映させてよい。この場合、図7の点A、Bが指定されたとすると、点A、Bを中心とした 5×5 の範囲の色が求められ、そ

$$\begin{aligned} R' &= X_5 \\ G' &= |A|^{-1} \cdot Y_5 \end{aligned}$$

色補正メニューは、ユーザ毎に例えば「ユーザA用曇天シーン基準色補正メニュー」、「ユーザAデジタルカメラA用曇天シーン機種色補正メニュー」のように分類してメモリ31に記憶保存してもよい。

【0060】ここで、色補正メニューには、明度、彩度および色相をどの程度修正すべきかを表す数値が設定されており、色補正手段27は基準色補正メニューおよび機種色補正メニューにおいて設定された数値にしたがって、式(9)～(11)における明度変更度 L_{Pi} , L_{Pj} 、彩度変更度 C_{Pi} , C_{Pj} および色相変更度 H_{Pi} , H_{Pj} を設定する。なお、各色における変更度は、基準色補正メニューと機種色補正メニューとの数値の和として得られる。

【0061】強度関数 W_i は下記の式(12)により定められる。

【0062】

(12)

の色について図8に示すように色補正メニューが設定され、上記式(9)から(11)により補正データ L_4 , C_4 , H_4 が求められる。

【0065】 Δl , Δc , Δh は、階調設定手段23の第4象限で設定される非線形な階調変換に伴う肌色の明度、彩度、色相の変化分であり、下記のようにして求められる。すなわち、階調変換前の色データ R_1 , G_1 , B_1 および階調変換後の色データ R_2 , G_2 , B_2 に対して、上記式(4)～(8)の処理および逆対数変換手段25における処理を施して、各画素毎に明度 L^* 、クロマ値 C^* および色相角 H_A の変化量 ΔL^* , ΔC^* および ΔH_A を算出する。そして、下記の式(13)～(15)に示すように、変化量 ΔL^* , ΔC^* および ΔH_A と図6に示す肌色用の強度関数 W_j とを乗算することにより、 Δl , Δc , Δh を求めることができる。

【0066】

$$\Delta l = \Delta L^* \times W_j \quad (13)$$

$$\Delta c = \Delta C^* \times W_j \quad (14)$$

$$\Delta h = \Delta H_A \times W_j \quad (15)$$

【0067】RG B変換手段28は、補正データ L_4 , C_4 , H_4 について、上記式(7)、(8)を逆に解くことにより、補正後の a' , b' を求め、この補正後の a' , b' および L^* について、式(6)を逆に解くことにより補正後の三刺激値 X_5 , Y_5 , Z_5 を求める。そして、下記の式(16)により三刺激値 X_5 , Y_5 , Z_5 を色データ R'_4 , G'_4 , B'_4 に変換する。

【0068】

(16)

B 4' Z 5

さらに、下記の式(17)により色データR 4, G 4, B 4を得、これをモニタ7表示用のsRGB色空間の色

$$R 4 = 255 \times (1.055 R 4')^{1.0/2.4} - 0.055$$

$$G 4 = 255 \times (1.055 G 4')^{1.0/2.4} - 0.055 \quad (0.00304 \leq R 4', G 4', B 4' \leq 1)$$

$$B 4 = 255 \times (1.055 B 4')^{1.0/2.4} - 0.055$$

$$R 4 = 255 \times 12.92 R 4'$$

$$G 4 = 255 \times 12.92 G 4'$$

$$B 4 = 255 \times 12.92 B 4'$$

補正画像データS 4とする。

【0068】

$$(0 \leq R 4', G 4', B 4' < 0.00304)$$

(17)

ここで、処理方法決定手段33は、画像データS 0のビット数から、画像データS 0に対して階調変換および色補正を行うための3DLUTの格子点数を算出し、算出された3DLUTの格子点数と画像データS 0により表される画像の画素数Y 0とを比較して、3DLUTの格子点数が画素数Y 0より多い場合には3DLUTを作成せず、画像処理条件(階調変換テーブルT 0と色補正条件)を処理手段10に出力する(破線により示された処理)。一方、3DLUTの格子点数が画素数Y 0以下の場合には、3DLUTを作成する処理(プリンタ変換手段29およびLUT作成手段30による処理)へ進む。

【0069】プリンタ変換手段29は、sRGB色空間の色補正画像データS 4をプリント用の色空間に変換する3DLUTにより色補正画像データS 4を変換してプリンタ用画像データS 5を得る。

【0070】LUT作成手段30は、画像データS 0を構成する色データR 0, G 0, B 0とプリント用画像データS 5を構成する色データR 5, G 5, B 5との対応関係を各色毎に求め、これを 3^3 の3次元のルックアップテーブル(3DLUT)として処理手段10に出力する。

【0071】ここで、画像処理条件決定手段6にはインデックス画像データS 11が入力されて階調変換処理が施されるが、インデックス画像データS 11についてはビット数を低減することなく、階調変換手段22において階調変換テーブルT 0を用いた階調変換処理のみが施され、色補正手段27における色補正処理は施されることなくsRGB色空間に変換されて、階調変換処理が施されたインデックス画像データS 11'として出力される。この際、インデックス画像データS 11は3DLUTの作成には用いられないため、階調設定手段23においてDCMYキー9の押下あるいは階調曲線の変更による濃度シフトを反映させて逐次設定される階調変換テーブルT 0により、階調変換手段22において逐次階調変換がなされてインデックス画像データS 11'として出力される。これにより、階調が変更されたインデックス画像をリアルタイムでモニタ7に表示することができる。

【0072】なお、インデックス画像データS 11に対

$$S 13 = S 12 + \beta (S 12 - S 12_{us})$$

して階調変換処理に加えて、色補正処理を施してもよい。これにより、階調が変更されるとともに色補正処理が施されたインデックス画像をリアルタイムでモニタ7に表示することができる。

【0073】図1に戻り、画像処理条件決定手段6において作成された3DLUTあるいは画像処理条件決定手段6において決定された画像処理条件は処理手段10に入力される。処理手段10においては、3DLUTが入力された場合、画像データS 0が3DLUTにより変換されて変換画像データS 12が得られる。この際、3DLUTは 3^3 のデータにより作成されているため、変換画像データS 12を構成する色データは、例えば特開平2-87192号に記載されたように、3DLUTを体積補間あるいは面積補間することにより求められる。

【0074】一方、処理手段10に、階調変換テーブルT 0および色補正条件からなる画像処理条件が入力された場合、これらの画像処理条件を用いて画像データS 0に対して各画素毎に演算を行うことによって階調変換および色補正処理を行い、さらにプリンタ用の変換画像データS 12へと変換する。

【0075】ところで、画像データS 0を取得したデジタルカメラの画素数は種々のものがあり、プリントに必要な画素数に満たないものあるいはプリントに必要な画素数以上の画素数を有するものがある。このため、画像データS 0がプリントに必要な画素数以上の画素数を有する場合、処理手段10の前段において縮小手段11により画像データS 0を縮小して縮小画像データS 0'を得、縮小画像データS 0'から変換画像データS 12を得る。一方、画像データS 0がプリントに必要な画素数に満たない場合、処理手段10の後段において処理手段10において得られた変換画像データS 12を拡大手段12により拡大して拡大画像データS 12'を得る。

【0076】シャープネス処理手段13は、例えば下記の式(18)により、変換画像データS 12または拡大画像データS 12'に対してシャープネス処理を施して処理済み画像データS 13を得る。なお、式(18)においては変換画像データS 12にシャープネス処理を施している。

【0077】

(18)

但し、S12us：変換画像データS12のボケ画像データ

β ：強調度

なお、強調度 β を縮小手段11による縮小率または拡大手段12による拡大率に応じて変更してもよい。

【0078】次いで、本実施形態の動作について説明する。図9は本実施形態の動作を示すフローチャートである。まず、デジタルカメラにより撮影を行うことにより得られた画像データS0が記憶されたメモリカード2から読出手段3において画像データS0が読み出される

(ステップS1)。インデックス画像作成手段4においては、画像データS0のインデックス画像を表すインデックス画像データS11が作成され(ステップS2)、画像処理条件決定手段6に入力される。一方、設定情報生成手段5においては設定情報H0が生成され(ステップS3)、画像処理条件決定手段6に入力される。

【0079】画像処理条件決定手段6の階調設定手段23においては、設定情報H0に基づいて画像データS0を変換するための階調変換テーブルT0が設定され(ステップS4)、この階調変換テーブルT0に基づいて階調変換手段22において、まず、インデックス画像データS11が階調変換されて(ステップS5)、色補正を行うことなくモニタ7にインデックス画像が表示される

(ステップS6)。オペレータはこのインデックス画像を観察し、必要があれば(ステップS7：YES)入力手段8あるいはDCMYキー9からの入力により(ステップS7)、インデックス画像の階調および／または濃度を修正する(ステップS8)。そしてステップS4に戻り、修正された階調および／または濃度に基づいて階調変換テーブルT0を新たに設定し、新たに設定された階調変換テーブルT0によりインデックス画像データS11を階調変換してモニタ7に表示するステップS4からステップS6の処理を繰り返す。

【0080】修正がない場合、あるいは修正が完了した場合はステップS7が否定され、画像データS0のビット数に基づいて算出された3DLUTの格子点数と画像データS0により表される画像の画素数Y0とを比較し(ステップS9)、3DLUTの格子点数が画素数Y0以上の場合(ステップS9：YES)、画像処理条件(階調変換テーブルT0および色補正条件)を処理手段10に出力する(ステップS15)。一方、3DLUTの格子点数が画素数Y0未満の場合(ステップS9：NO)、画像データS0に対して最終的に設定された階調変換テーブルT0により階調変換が施され(ステップS10)、さらに色補正が施される(ステップS11)。さらに、RGB色空間への変換およびプリント用色空間への変換がなされて(ステップS12)、プリント用画像データS5が得られる。そして、LUT作成手段30において画像データS0とプリント用画像データS5との対応関係がRGBの各色毎に求められて3DLUT

が作成され(ステップS13)、処理手段10に出力される(ステップS14)。

【0081】前述したように、処理手段10は、3DLUTが入力された場合には、3DLUTを用いて画像データS0を変換して変換画像データS12を得るが、階調変換テーブルT0および色補正条件からなる画像処理条件が入力された場合には、これらの画像処理条件を用いて画像データS0に対して各画素毎に演算を行うことにより階調変換および色補正処理を施して変換画像データS12を得る。

【0082】変換画像データS12は、さらにシャープネス処理手段13においてシャープネス処理が施され、プリンタ14においてプリントPとして出力される。

【0083】なお、メモリカード2から読み出された画像データS0は、必要であれば縮小手段11において縮小処理が施されて縮小画像データS0'が得られる。この場合、この縮小画像データS0'を画像データS0として、上記と同様に処理が行われる。一方、拡大が必要な場合には、画像データS0から得られた変換画像データS12に対して拡大手段12において拡大処理が施されて拡大画像データS12'が得られ、上記と同様に処理が行われる。

【0084】このように、本実施形態においては、画像データS0をプリント出力する場合は、画像データS0に対して階調変換処理および色補正処理を施す3DLUTが生成され、この3DLUTにより画像データS0が変換されてプリント出力される。一方、画像データS0をモニタ7に表示する場合は、モニタ表示用のインデックス画像データS11に対して階調変換処理のみが施される。したがって、画像データS0をプリント出力する場合には色補正も含めた高画質の画像を出力することができます。また、画像データS0をモニタ7に表示する場合には、プリント出力する場合と比較して、色補正がされていない分低画質であるが、画像を高速に表示することができる。

【0085】また、画像データS0のビット数に応じて3DLUTの格子点数を決定することにより、3DLUT生成のための演算時間と画像データS0の変換時における格子点間の補間演算精度とを制御することができ、これにより画像データS0の変換を高速あるいは高精度に行うことができる。

【0086】また、画像データS0により表される画像の画素数Y0が3DLUTの格子点数より多い場合に3DLUTを生成し、この3DLUTにより階調変換処理および色補正処理を施し、画素数Y0が格子点数以下の場合には各画素毎に階調変換処理および色補正処理を施すことにより、より少ない演算量によって画像データS0に対して階調変換処理および色補正処理を施すことができる。

【0087】なお、上記実施形態においては、画像出力

装置はメモリカード2から画像データを読み取るようにしており、LAN、WANなどのネットワークを介して送信装置から画像データを受信するシステムに応用することができる。

【0088】また、上記実施形態においては、画像データS0のモニタ7への出力およびプリント出力の双方を行っているが、いずれか一方のみに出力を行うようにしてもよい。この場合、出力の指定は入力手段8において行えばよい。

【図面の簡単な説明】

【図1】本発明の実施形態による画像出力装置の構成を示す概略ブロック図

【図2】画像処理条件決定手段の構成を示す概略ブロック図

【図3】階調変換テーブルの設定を説明するための図

【図4】色補正メニューを示す図

【図5】強度関数の例を示す図

【図6】肌色用の強度関数の例を示す図

【図7】モニタに表示されたインデックス画像の1つを示す図

【図8】追加の色補正メニューを示す図

【図9】本実施形態の動作を示すフローチャート

【符号の説明】

1 画像出力装置

2 メモリカード

- 3 読出手段
- 4 インデックス画像作成手段
- 5 設定情報生成手段
- 6 画像処理条件決定手段
- 7 モニタ
- 8 入力手段
- 9 DCMYキー
- 10 处理手段
- 11 縮小手段
- 12 拡大手段
- 13 シャープネス処理手段
- 14 プリンタ
- 21 対数変換手段
- 22 階調変換手段
- 23 階調設定手段
- 24, 31 メモリ
- 25 逆対数変換手段
- 26 LCH変換手段
- 27 色補正手段
- 28 RGB変換手段
- 29 プリンタ変換手段
- 30 LUT生成手段
- 32 色補正条件設定手段
- 33 処理方法決定手段

【図3】

【図4】

	L	C	H		L	C	H
R	0	-5	-3	R	0	-2	-5
G	0	0	0	G	0	0	0
B	0	0	0	B	0	-3	0
C	0	0	0	C	0	0	0
M	0	0	0	M	0	0	0
Y	0	0	0	Y	0	3	0
YG	0	0	0	YG	0	0	0
BS	0	0	0	BS	0	0	10
SK(HL)	0	0	0	SK(HL)	0	0	0
SK(MD)	0	0	0	SK(MD)	0	0	0
SK(SD)	0	0	0	SK(SD)	0	0	0

【図5】

【図6】

【図7】

【図1】

【図2】

【図8】

点A	0	5	0
点B	0	-5	0

【図9】

フロントページの続き

F ターム(参考) 5B057 CA01 CA08 CA12 CA16 CB01
CB08 CB12 CB16 CC01 CE11
CE17 CE18 CH07
5C055 AA06 BA05 BA07 BA08 EA05
GA00 HA37
5C077 LL18 NP05 PP15 PP37 PP71
PQ08 PQ20 PQ23 SS06 TT02
TT09
5C079 HB01 HB03 HB05 HB06 HB08
HB11 LA12 LA31 LB01 MA05
MA11 MA17 NA03 NA05 NA11
NA29 PA00 PA03 PA05