

Machine learning and statistical learning

K-Nearest Neighbors

E. Gallic

1 Context

In this exercise, you will build a classifier using the K-Nearest Neighbors algorithm.

2 Lab setup: generating data

In a first step, you will generate data. To do so:

- 1. Draw n = 50 observations in a unit square. To do so:
 - randomly generate 50 observations from a Beta distribution with parameters $\alpha = \beta = 1$ and store the drawn values in an object you will call \mathbf{x} .
 - Do the same procedure and store the draws in an object you will call y.
- 2. Create a vector you will call true_label of size n = 50 which will contain the true labels: "orange" or "blue".
 - "orange" if $x + y \ge 1$
 - "blue" otherwise.
- 3. Create a new point (x_0, y_0) at which you will try to assign a label, depending on the values of the nearest neighbors. For example: $(x_0 = 0.75, y_0 = 0.5)$.
- 4. Create a matrix with 3 columns: the x and y coordinates of your generated points, and the assigned label.
- 5. Plot your 50 observations on a scatter plot and add the new (x_0, y_0) observation using a different color/shape.

3 The algorithm

- 1. To know which are the K closests points of your new observation, you need to compute the distance between each point of your dataset and your new observation. To that end, create a function that computes the distances between two points:
 - this function will require four parameters: the two coordinates of a first point $(x_A \text{ and } y_A)$ and the two coordinates of a second point $(x_B \text{ and } y_B)$.
 - it will return the Euclidean distance between the two points whose coordinates are given as parameters.

- 2. Using a loop, apply this function to your new point (x_0, y_0) and each of the points in your dataset. In other words, at iteration i, store the Euclidean distance between your point (x_0, y_0) and the i-th point from your data, i.e., (x_i, y_i) . Once you have computed the distance from your point (x_0, y_0) to all points from your dataset, order your dataset by increasing distances to your new point.
- 3. Pick a value for K. For example, K=3.
- 4. In a new object, copy the K first rows of your dataset that was previously ordered by ascending values of the distance to the new point: this allows you to keep the K nearest neighbors.
- 5. Plot the points of this dataset in a different color.
- 6. Based on that dataset with only the K nearest neighbors, compute the number of "blue" and the number of "orange", then provide an estimation of the probability for the new observation to be blue.
- 7. Based on that probability, assign a predicted class to your new observation.
- 8. Set a different value for K and look at how it may change your prediction.