STA347H1 - Assignment 1

1.11: Let $A_1, A_2, \ldots \subseteq \omega$ and $w \in \Omega$. Define $B_i^w = A_i$ if $w \in A_i$ and A_i^c if $w \notin A_i$. Notice that $\forall A_i, w$ either $\in A_i$ or $\notin A_i$. Thus, $\{B_i^w\}_{i=1}^{\infty}$ are independent. By the definition of B_i^w , $\{w\} \subseteq B_1^w, B_2^w, \ldots$, meaning that $\forall n \in \mathbb{N}^+$, $\{w\} \subseteq \bigcap_{i=1}^n B_i^w$. Then, $\mathbb{P}(\{w\}) \leq \mathbb{P}(\bigcap_{i=1}^n B_i^w) = \prod_{i=1}^n \mathbb{P}(B_i^w) = (\frac{1}{2})^n \to 0$ as $n \to \infty$, which contradicts the assumption that Ω is countable.

2.7:

• a) $F_X(x) = \mathbb{P}(YZ \le x) = \mathbb{P}(YZ \le x|Z=-1)\mathbb{P}(Z=-1) + \mathbb{P}(YZ \le x|Z=1)\mathbb{P}(Z=1)$ by the law of total probability $= \frac{1}{2}(\mathbb{P}(-Y < x) + \mathbb{P}(Y < x)) = \frac{1}{2}(\mathbb{P}(Y > -x) + \mathbb{P}(Y < x)) = \mathbb{P}(Y < x) = F_Y(y)$ since $\mathbb{P}(Y > -x) = \mathbb{P}(Y < x)$ for the normal distribution. Differentiating both sides yields $f_X(x) = f_Y(x)$, so $X \sim \mathcal{N}(0,1)$.

Revised: Instead of differentiating, notice that Theorem 2.2.3 implies X and Y have the same distribution.

- b) $\mathbb{P}(|X| = |Y|) = \mathbb{P}(\{X = Y\} \cup \{X = -Y\}) = \mathbb{P}(X = Y) + \mathbb{P}(X = -Y)$ since the sets are disjoint $= \mathbb{P}(YZ = Y) + \mathbb{P}(YZ = -Y) = \mathbb{P}(Z = 1) + \mathbb{P}(Z = -1) = \frac{1}{2} + \frac{1}{2} = 1$.
 - Revised: $\{w \in \Omega : |X(w)| = |Y(w)|\} = \{w \in \Omega : |Z(w)Y(w)| = |Y(w)|\} = \{w \in \Omega : |Z(w)||Y(w)| = |Y(w)|\} = \{w \in \Omega : |Y(w)| = |Y(w)|\} = \Omega \implies \mathbb{P}(|X| = |Y|) = 1.$
- c) Suppose X and Y are independent. Then, for any $A \in \mathcal{B}(\mathbb{R})$ such that $\{0\} \notin A$ and $\mathbb{P}(Y \in A) > 0$, $\mathbb{P}(\{X \in A\} \cap \{Y \in A\}) = \mathbb{P}(\{X \in A\} \cap \{Y \in A\} | Z = 1)\mathbb{P}(Z = 1) + \mathbb{P}(\{X \in A\} \cap \{Y \in A\} | Z = -1)\mathbb{P}(Z = -1) = \frac{1}{2}\mathbb{P}(\{Y \in A\} \cap \{Y \in A\}) + \frac{1}{2}\mathbb{P}(\{-Y \in A\} \cap \{Y \in A\}) = \frac{1}{2}\mathbb{P}(Y \in A) + \frac{1}{2}\mathbb{P}(\emptyset) = \frac{1}{2}\mathbb{P}(Y \in A) = \mathbb{P}(X \in A)\mathbb{P}(Y \in A)$ by assumption. Since $\mathbb{P}(Y \in A) > 0$, this implies $\mathbb{P}(X \in A) = \frac{1}{2}$, but this is a contradiction since A is arbitrary.
- **2.8:** Define $E_n = \{w \in \Omega : X(w) \ge \frac{1}{n}\} \nearrow E = \{w \in \Omega : X(w) > 0\}$, so that $\lim_{n \to \infty} \mathbb{P}(E_n) = \mathbb{P}(\lim_{n \to \infty} E_n) = \mathbb{P}(X > 0) > 0$ by the continuity of probability. Note that $\lim_{n \to \infty} \mathbb{P}(E_n) > 0$ means that $\exists N \in \mathbb{N}$ such that $\forall n \ge N$, $\mathbb{P}(\{X \ge \frac{1}{n}\}) > 0$. The result then follows if $\delta = \frac{1}{N}$.
- **2.9:** Let $A_1, A_2 \in \mathcal{B}(\mathbb{R})$ and define $B_1 = \{x \in \mathbb{R} : f(x) \in A_1\} \in \mathcal{B}(\mathbb{R})$ and $B_2 = \{y \in \mathbb{R} : g(y) \in A_2\} \in \mathcal{B}(\mathbb{R})$. Then, $\mathbb{P}(f(X) \in A_1 \cap g(Y) \in A_2) = \mathbb{P}(X \in \{x \in \mathbb{R} : f(x) \in A_1\} \cap Y \in \{y \in \mathbb{R} : g(y) \in A_2\}\} = \mathbb{P}(X \in B_1 \cap Y \in B_2) = \mathbb{P}(X \in B_1)\mathbb{P}(Y \in B_2)$ by the assumption of independence $= \mathbb{P}(f(X) \in A_1)\mathbb{P}(f(Y) \in A_2)$.
- **2.11:** X and Y are random variables since they map from Ω to $\{0,1\} \subseteq \mathbb{R}$. Also, notice that $\mathbb{P}(\{w \in \Omega : X(w) = 1\} \cap \{w \in \Omega : Y(w) = 1\}) = \mathbb{P}(\{w \in \Omega : \mathbb{I}(w \in A) = 1\} \cap \{w \in \Omega : \mathbb{I}(w \in B) = 1\}) = \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$ by assumption = $\mathbb{P}(\{w \in \Omega : \mathbb{I}(w \in A) = 1\})\mathbb{P}(\{w \in \Omega : \mathbb{I}(w \in B) = 1\}) = \mathbb{P}(\{w \in \Omega : X(w) = 1\})\mathbb{P}(\{w \in \Omega : Y(w) = 1\})$. By proposition 1.2.2, this equality also holds for the cases of X = 0 and Y = 1; X = 1 and Y = 0; and X = Y = 0. Thus, X and Y are independent.
- **3.3:** Notice that $A_n \cap B_n \subseteq A_n \implies \bigcup_{k=n}^{\infty} (A_k \cap B_k) \subseteq \bigcup_{k=n}^{\infty} A_k \implies \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} (A_k \cap B_k) \subseteq \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k \implies \lim\sup_{n\to\infty} (A_n \cap B_n) \subseteq \limsup_{n\to\infty} A_n$. Similarly, $\limsup\sup_{n\to\infty} (A_n \cap B_n) \subseteq \limsup_{n\to\infty} B_n$. Thus, $\limsup\sup_{n\to\infty} (A_n \cap B_n) \subseteq \limsup_{n\to\infty} A_n \cap (\limsup\sup_{n\to\infty} A_n) \cap (\limsup\sup_{n\to\infty} A_n)$
- **3.6:** For $t \in [0,1]$, construct the sequence $X_1 = \mathbb{I}(t \in [0,1]), X_2 = \mathbb{I}(t \in [0,\frac{1}{2}]), X_3 = \mathbb{I}(t \in [\frac{1}{2},1]), X_4 = \mathbb{I}(t \in [0,\frac{1}{3}]), X_5 = \mathbb{I}(t \in [\frac{1}{3},\frac{2}{3}])$, and so on. The chance that $X_n = 1$ decreases as $n \to \infty$, so $\{X_n\}_n$ converges in probability; however, $X_n = 1$ for infinity many n, so $\{X_n\}_n$ does not converge almost surely.

- **3.7:** $X_n \to X$ a.s. $\iff \mathbb{P}(\lim_{n \to \infty} X_n = X) = \mathbb{P}(\lim_{n \to \infty} (X_n X) = 0) = 1 \iff (X_n X) \to 0$ a.s. $X_n \stackrel{p}{\to} X \iff \forall \varepsilon > 0, \lim_{n \to \infty} \mathbb{P}(|X_n X| \le \varepsilon) = \lim_{n \to \infty} \mathbb{P}(|(X_n X) 0| \le \varepsilon) = 1 \iff (X_n X) \stackrel{p}{\to} 0.$
- **3.8:** Notice that $\forall \varepsilon > 0$, $\{w \in \Omega : |X_n(w) a| \ge \varepsilon\} = \{w \in \Omega : |X_n(w) a_n + a_n a| \ge \varepsilon\} \subseteq \{w \in \Omega : |X_n(w) a_n| + |a_n a| \ge \varepsilon\}$ by the triangle inequality $\subseteq \{w \in \Omega : |X_n(w) a_n| \ge \varepsilon\} \cup \{|a_n a| \ge \varepsilon\}$. Thus, by lemma 1.1.11, $\lim_{n \to \infty} \mathbb{P}(|X_n a| \ge \varepsilon) \le \lim_{n \to \infty} \left[\mathbb{P}(|X_n a_n| \ge \varepsilon) + \mathbb{P}(|a_n a| \ge \varepsilon)\right] = \lim_{n \to \infty} \mathbb{P}(|X_n a_n| \ge \varepsilon) + \lim_{n \to \infty} \mathbb{P}(|a_n a| \ge \varepsilon) = 0$ by assumption.
- **3.9:** By Theorem 3.2.7, there exists a subsequence $\{X_{n_k}\}_{n_k}$ such that $X_{n_k} \to X$ a.s. Notice that $\forall n \in \mathbb{N}^+, \exists k \in \mathbb{N}^+$ such that $n_k \leq n \leq n_{k+1}$. By monotonicity, $X_{n_k} \leq X_n \leq X_{n_{k+1}} \leq X \implies |X_n X| \leq |X_{n_k} X|$. Thus, $\forall \varepsilon > 0, \exists m \in \mathbb{N}$ such that $n \geq m \implies |X_{n_k} X| \leq \varepsilon \implies |X_n X| \leq \varepsilon$, so $X_n \to X$ a.s.

4.3:

- Bernoulli: $\mathbb{E}(X) = 0p_X(0) + 1p_X(1) = 0(1-p) + 1(p) = 1$. $\operatorname{Var}(X) = \mathbb{E}(X^2) \mathbb{E}(X)^2 = (0^2p_X(0) + 1^2p_X(1)) p^2 = p p^2 = p(1-p)$.
- Binomial: Since $X \sim \sum_{i=1}^{n} X_i$ where each $X_i \sim \text{Bernoulli}(p)$ and is independent, $\mathbb{E}(X) = \sum_{i=1}^{n} \mathbb{E}(X_i)$ since the sum is finite = np and $\text{Var}(X) = \sum_{i=1}^{n} \text{Var}(X_i)$ by independence = np(1-p).
- Poisson: $\mathbb{E}(X) = \sum_{x=0}^{\infty} x \frac{\lambda^x e^{-\lambda}}{x!} = \lambda e^{-\lambda} \sum_{x=1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!} = \lambda e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = \lambda e^{-\lambda} e^{\lambda}$ by the exponential power expansion $= \lambda$. $\mathbb{E}(X(X-1)) = \sum_{x=0}^{\infty} x(x-1) \frac{\lambda^x e^{-\lambda}}{x!} = \lambda^2 e^{-\lambda} \sum_{x=2}^{\infty} \frac{\lambda^{x-2}}{(x-2)!} = \lambda^2 e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = \lambda^2 e^{-\lambda} e^{\lambda}$ by the exponential power expansion $= \lambda^2$. $\mathrm{Var}(X) = \mathbb{E}(X^2) \mathbb{E}(X)^2 = \mathbb{E}(X^2 X) + \mathbb{E}(X) \mathbb{E}(X)^2 = \lambda^2 + \lambda \lambda^2 = \lambda$.

4.4:

- Bernoulli: $\mathbb{E}(e^{\lambda X}) = e^0 p_X(0) + e^{\lambda} p_X(1) = 1 p + e^{\lambda} p$.
- Binomial: Since $X \sim \sum_{i=1}^{n} X_i$ where each $X_i \sim \text{Bernoulli}(p)$ and is independent, by Lemma 4.4.4, $\mathbb{E}(e^{\lambda X}) = \prod_{i=1}^{n} \mathbb{E}(e^{\lambda X_i}) = (1 p + e^{\lambda}p)^n$.
- Poisson: $\mathbb{E}(e^{tX}) = \sum_{x=0}^{\infty} e^{tx} \frac{\lambda^x e^{-\lambda}}{x!} = e^{-\lambda} \sum_{x=0}^{\infty} \frac{(\lambda e^t)^x}{x!} = e^{-\lambda} \exp(\lambda e^t)$ by the exponential power expansion $= \exp(\lambda(e^t 1))$.
- **4.7:** The MGF of the normal distribution is $M_X(\lambda) = \exp(\mu\lambda + \frac{1}{2}\sigma^2\lambda^2)$ for some $X \sim \mathcal{N}(\mu, \sigma^2)$. By Lemma 4.4.4, for $S = \sum_{i=1}^n X_i$, $M_S(\lambda) = \prod_{i=1}^n M_{X_i}(\lambda) = \prod_{i=1}^n \exp(\mu\lambda + \frac{1}{2}\sigma^2\lambda^2) = \exp(\sum_{i=1}^n (\mu\lambda + \frac{1}{2}\sigma^2\lambda^2)) = \exp(n\mu\lambda + \frac{n}{2}\sigma^2\lambda^2)$. Thus, $S \sim \mathcal{N}(n\mu, n\sigma^2)$.

Revised: $\exp(n\mu\lambda + \frac{n}{2}\sigma^2\lambda^2)$) is the MGF of some $Y \sim \mathcal{N}(n\mu, n\sigma^2)$. Additionally, $\forall \lambda, M_S(\lambda) < \infty$. By Theorem 4.4.3, S and Y have the same distribution.

- **4.10:** Notice that $X \geq x\mathbb{I}(X \geq x) \ \forall x > 0$, so $0 = \mathbb{E}(X) \geq \mathbb{E}(x\mathbb{I}(X \geq x)) = x\mathbb{E}(\mathbb{I}(X \geq x)) = x\mathbb{P}(X \geq x)$ by the properties of expectation, implying $\mathbb{P}(X \geq x) = 0$. Then, $\mathbb{P}(X > 0) = \mathbb{P}(\bigcup_{n=1}^{\infty} \{X \geq \frac{1}{n}\}) \leq \sum_{n=1}^{\infty} \mathbb{P}(X \geq \frac{1}{n}) = 0$, so $\mathbb{P}(X = 0) = \mathbb{P}(X \geq 0) \mathbb{P}(X > 0) = 1$. Alternatively, suppose that $\mathbb{P}(X > 0) > 0 \iff \exists \varepsilon > 0, \delta > 0$ s.t. $\mathbb{P}(X \geq \delta) = \varepsilon$. Notice that $\mathbb{E}(X) = \mathbb{E}(X\mathbb{I}(X < \delta)) + \mathbb{E}(X\mathbb{I}(X \geq \delta)) \geq \mathbb{E}(\delta\mathbb{I}(X \geq \delta)) = \delta\mathbb{P}(X \geq \delta) = \delta\varepsilon > 0$, a contradiction.
- **4.14:** Define $Y = \sum_{i=1}^{N} X_i$. By the law of total expectation, $\mathbb{E}(Y) = \mathbb{E}(\mathbb{E}(Y|N)) = \sum_{n=1}^{\infty} \mathbb{E}(Y|N = n) \mathbb{P}(N = n) = \sum_{n=1}^{\infty} (\sum_{i=1}^{n} \mathbb{E}(X_i|N = n)) \mathbb{P}(N = n)$ since the inner sum is finite $= \sum_{n=1}^{\infty} (\sum_{i=1}^{n} \mathbb{E}(X_i)) \mathbb{P}(N = n)$ by independence $= \sum_{n=1}^{\infty} n\mu \mathbb{P}(N = n) = \mu \sum_{n=1}^{\infty} n\mathbb{P}(N = n) = \mu \mathbb{E}(N) = \mu m$. Notice that $\mathbb{E}_N(\text{Var}(Y|N)) = \mathbb{E}_N(\sum_{i=1}^{N} \text{Var}(X_i))$ by independence $= \mathbb{E}_N(N\text{Var}(X_i)) = \text{Var}_N(\sum_{i=1}^{N} \mathbb{E}(X_i|N))$ since the inner sum is finite $= \text{Var}_N(\sum_{i=1}^{N} \mathbb{E}(X_i))$ by independence $= \text{Var}_N(N\mathbb{E}(X_i)) = \mathbb{E}(X_i)^2 \text{Var}(N) = \mu^2 v$. The result follows by the law of total variance.

4.18: Define $Y_t = t\mathbb{I}(X > t) \ \forall t > 0$. Notice that $\mathbb{I}(X > t) = 0$ for large enough $t \implies \mathbb{P}(\lim_{t \to \infty} t\mathbb{I}(X > t) = 0 < X) = 1$. Thus, $Y_n \to 0$ a.s. and $|Y_n| \le X$ a.s., so by the DCT, $0 = \lim_{t \to \infty} \mathbb{E}(Y_t) = \lim_{t \to \infty} t\mathbb{P}(X > t)$.