

Demo

空

作者: 邹文杰

组织:无

时间:2024/10/25

版本:ElegantBook-4.5

自定义:信息

宠辱不惊,闲看庭前花开花落; 去留无意,漫随天外云卷云舒.

目录

第·	一章	问题 1	1
	1.1	螺线方程	1
	1.2	计算龙头前把手中心在各时刻的位置	1
	1.3	计算板凳龙其余各节板凳的后把手中心在各时刻的位置	2
		1.3.1 计算第 1 节板凳的后把手中心在第 t 秒时的位置 $P_1(t)$	2
		1.3.2 计算第 $i(2 \le i \le 223)$ 节板凳的后把手中心在第 t 秒时的位置 $P_i(t)$	2
	1.4	计算板凳龙其余各节板凳的后把手中心在各时刻的速度	3

第一章 问题 1

1.1 螺线方程

在题目图 4 中的直角坐标系下, 以坐标原点 O 为极点建立极坐标系, 设图 4 中的等距螺线 Γ 的极坐标方程为

$$\Gamma: \rho = a + b\theta. \tag{1.1}$$

其中 ρ 为极径, θ 为极角,a,b 均为待定常数. 设龙头前把手中心的初始位置 P_0 极坐标和直角坐标分别为(ρ_0 , θ_0),(x_0 , y_0), 记 d_0 (m) 为图 4 中等距螺线的螺距,则由题可知

$$d_0 = 0.55, \rho_0 = 16d_0 = 8.8, \theta_0 = 16 \times 2\pi = 32\pi.$$
 (1.2)

又由图 4 可知图中等距螺线 Γ 过原点 O 和 (ρ_0,θ_0) 点, 于是将 (0,0) 和 (ρ_0,θ_0) 代入(1.1)式解得

$$a = 0, b = \frac{d_0}{2\pi} = \frac{0.55}{2\pi} \tag{1.3}$$

因此,等距螺线 Γ 的极坐标方程为

$$\Gamma: \rho = \frac{d_0}{2\pi}\theta, (0 \leqslant \theta \leqslant 32\pi). \tag{1.4}$$

再利用

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases},$$

得到等距螺线 Γ 的直角坐标方程为

$$\begin{cases} x = \frac{d_0}{2\pi} \theta \cos \theta \\ y = \frac{d_0}{2\pi} \theta \sin \theta \end{cases}, (0 \leqslant \theta \leqslant 32\pi). \tag{1.5}$$

1.2 计算龙头前把手中心在各时刻的位置

设龙头前把手的行进速度为 v_0 ,由题可知 $v_0 = 1(\mathbf{m} \cdot s^{-1})$. 记龙头前把手中心在第 t 秒时的位置为 $P_0(t), P_0(t)$ 点的极坐标和直角坐标分别为 $(\rho_0(t), \theta_0(t))$ 和 $(x_0(t), y_0(t))$,则利用第一型曲线积分计算公式可得,曲线 $\overline{P_0P_0(t)}$ 的长度 S 为

$$S = \int_{P_0 P_0(t)} ds = \int_{\theta_0(t)}^{\theta_0} \sqrt{[\rho(\theta)]^2 + [\rho'(\theta)]^2} d\theta.$$
 (1.6)

又由题可知

$$S = v_0 t. (1.7)$$

联立(1.4)(1.6)(1.7)式解得

$$\theta_t \sqrt{\theta_t^2 + 1} - \ln(\theta_0(t) + \sqrt{(\theta_0(t))^2 + 1}) = \theta_0 \sqrt{\theta_0^2 + 1} + \ln(\theta_0 + \sqrt{\theta_0^2 + 1}) - \frac{4\pi}{d_0} v_0 t. \tag{1.8}$$

根据上式, 利用 Python 求解得到当 $t \in \{1, 2, \dots, 300\}$ 时, $P_0(t)$ 的极角 $\theta_0(t)$, 再将其代入(1.4)式得到, $P_0(t)$ 的极坐标 $(\rho_0(t), \theta_0(t))$ 见表 1. 再利用

$$\begin{cases} x_0(t) = \rho_0(t) \cos \theta_0(t) \\ y_0(t) = \rho_0(t) \sin \theta_0(t) \end{cases} , \tag{1.9}$$

得到当 $t \in \{1, 2, \dots, 300\}$ 时, $P_0(t)$ 的的直角坐标 $(x_0(t), y_0(t))$ 见表 2.

1.3 计算板凳龙其余各节板凳的后把手中心在各时刻的位置

记第 i 节板凳的后把手中心在第 t 秒时的位置为 $P_i(t)$, 并设 $P_i(t)$ 的极坐标和直角坐标分别为 $(\rho_i(t), \theta_i(t))$ 和 $(x_i(t), y_i(t))$, 再记 $P_i(t)$ 与 P_t^{i+1} 之间的距离为 $|P_i(t)P_t^{i+1}|$ (m) $(0 \le i \le 223)$. 再记 l_1, l_2 分别为龙头和龙身前把手中心与后把手中心之间的距离,则由条件可知

$$|P_0(t)P_1(t)| = l_1 = 3.41 - 2 \times 0.275 = 2.86$$
 (1.10)

$$|P_{i-1}(t)P_i(t)| = l_2 = 2.2 - 2 \times 0.275 = 1.65, 2 \le i \le 223.$$
 (1.11)

1.3.1 计算第 1 节板凳的后把手中心在第 t 秒时的位置 $P_1(t)$

当 $t \in \{1, 2, \dots, 300\}$ 时, 由极坐标系的两点之间距离公式可得

$$l_1^2 = |P_0(t)P_1(t)|^2 = (\rho_1(t))^2 + (\rho_0(t))^2 - 2\rho_1(t)\rho_0(t)\cos(\theta_0(t) - \theta_1(t)). \tag{1.12}$$

又因为板凳龙各把手中心均位于螺线 Γ上, 所以再结合(1.5)式可得

$$\rho_1(t) = \frac{d_0}{2\pi} \theta_1(t), (0 \leqslant \theta_1(t) \leqslant 32\pi). \tag{1.13}$$

因此联立(1.12)(1.13)式可得

$$l_1^2 = \frac{d_0^2}{4\pi^2} [(\theta_1(t))^2 + (\theta_0(t))^2 - 2\theta_1(t)\theta_0(t)\cos(\theta_0(t) - \theta_1(t))]. \tag{1.14}$$

根据上式利用 Python 求解 $\theta_1(t)$, 可能得到多个不同解. 不妨设这些为不同的解为 $\alpha_j^1(t)(j=1,2,\cdots,m)$, 注意到一定有 $\theta_1(t) > \theta_0(t)$, 因此令

$$A_1 = \{\alpha_j^1(t) | \alpha_j^1(t) > \theta_0(t), j = 1, 2, \dots, m\}.$$
(1.15)

又因为龙头前把手与第1个把手的极角之差一定最小,所以

$$\theta_1(t) = \min_{\alpha_i(t) \in A} \left[\alpha_j^1(t) - \theta_0(t) \right] + \theta_0(t). \tag{1.16}$$

再将上述求得的 $\theta_1(t)$ 代入(1.13)式就能得到此时 $P_1(t)$ 的极坐标 ($\rho_1(t)$, $\theta_1(t)$). 令 t 依次取 1,2,···,300, 反复进行上述操作就能得到, 当 $t \in \{1,2,\cdots,300\}$ 时, $P_1(t)$ 的极坐标 ($\rho_1(t)$, $\theta_1(t)$). 再利用

$$\begin{cases} x_1(t) = \rho_1(t)\cos\theta_1(t) \\ y_1(t) = \rho_1(t)\sin\theta_1(t) \end{cases} , \tag{1.17}$$

得到当 $t \in \{1, 2, \dots, 300\}$ 时, $P_1(t)$ 的直角坐标 $(x_1(t), y_1(t))$.

1.3.2 计算第 $i(2 \le i \le 223)$ 节板凳的后把手中心在第 t 秒时的位置 $P_i(t)$

当 $i \in \{2, 3, \dots, 223\}$ 时, 由(1.3.1)同理可得, 当 $t \in \{1, 2, \dots, 300\}$ 时, 我们有

$$l_2^2 = |P_{i-1}(t)P_i(t)|^2 = (\rho_i(t))^2 + (\rho_{i-1}(t))^2 - 2\rho_i(t)\rho_{i-1}(t)\cos(\theta_{i-1}(t) - \theta_i(t)). \tag{1.18}$$

$$\rho_i(t) = \frac{d_0}{2\pi} \theta_i(t), (0 \le \theta_i(t) \le 32\pi). \tag{1.19}$$

从而联立(1.18)(1.19)式可得

$$l_2^2 = \frac{d_0^2}{4\pi^2} [(\theta_i(t))^2 + (\theta_{i-1}(t))^2 - 2\theta_i(t)\theta_{i-1}(t)\cos(\theta_{i-1}(t) - \theta_i(t))]. \tag{1.20}$$

根据上式利用 Python 求解 $\theta_i(t)$, 可能得到多个不同解. 不妨设这些为不同的解为 $\alpha_j^i(t)(j=1,2,\cdots,m)$, 注意到一定有 $\theta_i(t) > \theta_{i-1}(t)$, 因此令

$$A_i = \{\alpha_j^i(t) | \alpha_j^i(t) > \theta_{i-1}(t), j = 1, 2, \cdots, m\},$$
(1.21)

又因为第 i - 1 个把手与第 i 个把手的极角之差一定最小, 所以

$$\theta_i(t) = \min_{\alpha_i^i(t) \in A_i} [\alpha_j^i(t) - \theta_{i-1}(t)] + \theta_{i-1}(t). \tag{1.22}$$

再将上述求得的 $\theta_i(t)$ 代入(1.13)式就能得到此时 $P_i(t)$ 的极坐标 ($\rho_i(t)$, $\theta_i(t)$). 令 t 依次取 1,2,…,300, 反复进行上述操作就能得到, 当 $t \in \{1, 2, \dots, 300\}$ 时, $P_i(t)$ 的极坐标 ($\rho_i(t)$, $\theta_i(t)$). 再利用

$$\begin{cases} x_i(t) = \rho_i(t)\cos\theta_i(t) \\ y_i(t) = \rho_i(t)\sin\theta_i(t) \end{cases} , \tag{1.23}$$

得到当 $t \in \{1, 2, \dots, 300\}$ 时, $P_i(t)$ 的直角坐标 $(x_i(t), y_i(t))$.

综上所述, 令 i 依次取 1,2,···,223, 按照上述(1.3.1)(1.3.2)的方式, 利用 Python 不断迭代计算就能得到每秒板凳 龙各把手中心的位置直角坐标见表 3.

1.4 计算板凳龙其余各节板凳的后把手中心在各时刻的速度

记第 $i(1 \le i \le 223)$ 节板凳的后把手中心在第 t 秒时的速度为 $v_i(t)$. 根据(1.2),(1.3.1),(1.3.2)得到的第 $i(1 \le i \le 223)$ 节板凳的后把手中心第 t 秒时的位置 $P_i(t)$ 的极坐标 ($\rho_i(t)$, $\theta_i(t)$), 于是当 $i \in \{1, 2, \cdots, 223\}$ 时, 对(1.14)(1.20)式 两边同时对 t 求导可得

$$\frac{\mathrm{d}\theta_i}{\mathrm{d}t} = \frac{\theta_{i-1} + \theta_i \cos(\theta_{i-1} - \theta_i) - \theta_i \theta_{i-1} \sin(\theta_{i-1} - \theta_i)}{\theta_i + \theta_i \theta_{i-1} \sin(\theta_{i-1} - \theta_i) - \theta_{i-1} \cos(\theta_{i-1} - \theta_i)} \cdot \frac{\mathrm{d}\theta_{i-1}}{\mathrm{d}t}.$$
(1.24)

设第 $i(1 \le i \le 223)$ 节板凳的后把手中心在充分短的时间 dt 内经过的路程微分为 ds_i , 又因为各把手中心始终在 螺线 Γ 上, 从而各把手的路程微分 ds_i 就是螺线 Γ 的弧微分, 所以利用(1.4)式及弧微分的计算公式可得

$$ds_{i} = \sqrt{[\rho(\theta_{i})]^{2} + [\rho'(\theta_{i})]^{2}} d\theta_{i} = \frac{d_{0}}{2\pi} \sqrt{{\theta_{i}}^{2} + 1} d\theta_{i}, i \in \{1, 2, \cdots, 223\}$$
(1.25)

故当 $t \in \{1, 2, \dots, 300\}$ 时, 由瞬时速度的定义可得

$$v_i(t) = \frac{ds_i}{dt} = \frac{d_0}{2\pi} \frac{\sqrt{\theta_i^2 + 1} d\theta_i}{dt}, i \in \{1, 2, \dots, 223\}.$$
 (1.26)

联立(1.24)(1.26)式得到

$$|v_{i}(t)| = \left| \frac{d_{0}}{2\pi} \frac{\sqrt{\theta_{i}^{2} + 1} d\theta_{i}}{dt} \right| = \frac{|\theta_{i-1} + \theta_{i} \cos(\theta_{i-1} - \theta_{i}) - \theta_{i}\theta_{i-1} \sin(\theta_{i-1} - \theta_{i})|}{|\theta_{i} + \theta_{i}\theta_{i-1} \sin(\theta_{i-1} - \theta_{i}) - \theta_{i-1} \cos(\theta_{i-1} - \theta_{i})|} \sqrt{\frac{1 + \theta_{i}^{2}}{1 + \theta_{i-1}^{2}}} \left| \frac{d\theta_{i-1}}{dt} \right|$$
(1.27)

$$= \frac{|\theta_{i-1}(t) + \theta_i \cos(\theta_{i-1} - \theta_i) - \theta_i \theta_{i-1} \sin(\theta_{i-1} - \theta_i)|}{|\theta_i + \theta_i \theta_{i-1} \sin(\theta_{i-1} - \theta_i) - \theta_{i-1} \cos(\theta_{i-1} - \theta_i)|} \sqrt{\frac{1 + \theta_i^2}{1 + \theta_{i-1}^2}} |v_{i-1}(t)|, i \in \{1, 2, \dots, 223\}.$$
(1.28)

其中 $\theta_i = \theta_i(t), \theta_{i-1} = \theta_{i-1}(t), v_0(t) \equiv 1, \forall t \geqslant 0$. 乂因为 $v_i(t)(1 \leqslant i \leqslant 223)$ 均大于 0, 所以上式可化为

$$v_{i}(t) = \sqrt{\frac{1 + \theta_{i}^{2}}{1 + \theta_{i-1}^{2}}} \frac{|\theta_{i-1} + \theta_{i} \cos(\theta_{i-1} - \theta_{i}) - \theta_{i}\theta_{i-1} \sin(\theta_{i-1} - \theta_{i})|}{|\theta_{i} + \theta_{i}\theta_{i-1} \sin(\theta_{i-1} - \theta_{i}) - \theta_{i-1} \cos(\theta_{i-1} - \theta_{i})|} v_{i-1}(t), i \in \{1, 2, \dots, 223\},$$

$$(1.29)$$

其中 $\theta_i = \theta_i(t)$, $\theta_{i-1} = \theta_{i-1}(t)$, $v_0(t) \equiv 1$, $\forall t \geq 0$. 于是根据上式, 令 i 依次取 1, 2, \cdots , 223, 再利用 Python 进行迭代计算, 就能得到板凳龙的第 $i(1 \leq i \leq 223)$ 节板凳的后把手中心在第 t 秒时的速度 $v_i(t)$. 再令 t 依次取 1, 2, \cdots , 300, 反复进行上述操作, 就能得到当 $t \in \{1, 2, \cdots, 300\}$ 时, 板凳龙的第 $i(1 \leq i \leq 223)$ 节板凳的后把手中心每秒的速度见表 7.