Objective

- Molecular dynamics (MD)
- Ingredients for running MD simulations
- Properties from MD simulations
- MD Fortran code for Argon
- Generate initial configurations
- Visualize the trajectory in VMD

Molecular dynamics (MD)

- Mimic the behavior of atoms in real systems.
- The potential energy function allows to calculate the force experienced by each atom due to the others
- Newton's law governs the motion of atoms

Molecular dynamics (MD)

Simple MD program

```
program MD
call initialization
t=0
do while (t<tmax)
    call force
    call integrate
    t = t + delt
enddo
stop
end program MD
```

Characteristics of good integrator

- Consumes little memory
- Allows a longer timestep
- Time-reversible and conserves energy

velocity-Verlet algorithm

$$r(t+dt)=r(t)+v(t)dt+\frac{1}{2}a(t)dt^{2}$$

$$\mathbf{v}(t+dt) = \mathbf{v}(t) + \frac{1}{2} [\mathbf{a}(t) + \mathbf{a}(t+dt)] dt$$

Properties from MD trajectories

- Potential energy
- density
- Temperature

Pressure

$$P = \frac{Nk_BT}{V} + \frac{\sum_{i}^{N'} r_i \bullet f_i}{dV}$$

Enthalpy of vaporization

$$\Delta H_{vap} = H_{gas} - H_{liquid} = U_{gas} - U_{liquid} + P(V_{gas} - V_{liquid})$$

Isothermal compressibility

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$$

• Thermal expansion coefficient

$$\alpha_P = -\frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_P$$

Properties from MD trajectories

Self-diffusion coefficient

$$D = \frac{1}{3} \int_0^\infty \langle v_i(t)v_i(0)\rangle dt$$

• Static dielectric constant

Surface tension

$$\epsilon = 1 + \frac{4\pi}{3Vk_B \langle T \rangle} \left(\langle \mathbf{M}^2 \rangle - \langle \mathbf{M} \rangle^2 \right)$$

$$\gamma = \frac{1}{2}L_z \left\langle P_{zz} - \frac{1}{2} \left(P_{xx} + P_{yy} \right) \right\rangle$$

Pair correlation function or

radial distribution function

http://www.physics.emory.edu/faculty/weeks//idl/gofr.html

Steps in performing MD simulation

- Select interaction energy or molecular mechanics model
- Select boundary conditions, PBC?
- Select initial positions and velocities
- Select Ensemble (NVT, NVE, NPT, etc)
- Select target temperature, pressure, etc
- Select integrator, thermostat and barostat, etc
- Select timestep
- Perform equilibration
- Perform production simulation
- Analyze the results

Initial configuration

Use packmol http://m3g.iqm.unicamp.br/packmol/

Initial velocities

Assign velocities according to Boltzmann distribution:

$$\frac{1}{2}\sum m_i v_i^2 = \frac{3}{2}Nk_BT$$

$$P(v_i) = \left(\frac{m_i}{2\pi k_B T}\right)^{1/2} e^{\frac{-m_i v_i^2}{k_B T}}$$

Benchmark

Ī	Potential	System	Atoms	Timestep	CPU	LJ Ratio
	Granular	chute flow	32000	$0.0001 \mathrm{tau}$	5.08e-7	0.34x
	FENE bead/spring	polymer melt	32000	$0.012 \mathrm{tau}$	5.32e-7	0.36x
	Lennard-Jones	LJ liquid	32000	$0.005 \mathrm{tau}$	1.48e-6	1.0x
	DPD	pure solvent	32000	$0.04 \mathrm{\ tau}$	2.16e-6	1.46x
	EAM	bulk Cu	32000	5 fmsec	3.59e-6	2.4x
	Tersoff	bulk Si	32000	1 fmsec	6.01e-6	4.1x
	Stillinger-Weber	bulk Si	32000	1 fmsec	6.10e-6	4.1x
	EIM	crystalline NaCl	32000	$0.5 \mathrm{fmsec}$	9.69e-6	6.5x
	SPC/E	liquid water	36000	2 fmsec	1.43e-5	9.7x
	CHARMM + PPPM	solvated protein	32000	2 fmsec	2.01e-5	13.6x
	MEAM	bulk Ni	32000	5 fmsec	2.31e-5	15.6x
	Peridynamics	glass fracture	32000	$22.2 \; \mathrm{nsec}$	2.42e-5	16.4x
	Gay-Berne	ellipsoid mixture	32768	$0.002 \mathrm{tau}$	4.09e-5	28.3x
	AIREBO	polyethylene	32640	$0.5 \mathrm{fmsec}$	8.09e-5	54.7x
	COMB	crystalline SiO2	32400	$0.2 \mathrm{fmsec}$	4.19e-4	284x
	${ m eFF}$	H plasma	32000	$0.001 \; \mathrm{fmsec}$	4.52e-4	306x
	ReaxFF	PETN crystal	16240	$0.1 \; \mathrm{fmsec}$	4.99e-4	337x
	ReaxFF/C	PETN crystal	32480	$0.1 \; \mathrm{fmsec}$	2.73e-4	185x
	VASP/small	water	192/512	$0.3 \mathrm{fmsec}$	26.2	17.7e6
	VASP/medium	CO2	192/1024	$0.8 \mathrm{fmsec}$	252	170e6
	VASP/large	Xe	432/3456	2.0 fmsec	1344	908e6

Periodic boundary conditions

No surface atoms!

Image coordinates:

$$x' = x + n1L$$

$$y' = y + n2L$$

$$z' = z + n3L$$

Minimum image convention

- Each ith particle interacts with other as well as its images i_A, i_B...in neighboring boxes.
- Infinite no. of calculations
- Avoided: short-range forces
- which lie within a certain radius,
 which is the closest periodic images
 of other N-1 molecules.

Computer simulations of liquids; Allen and Tildesley; Chapter 1

Topic:

Reading material

 Understanding Molecular Simulation. From Algorithms to Applications, Daan Frenkel and Berend Smit (Chapter 4. Read Chapter 1 and 2 as well)

For packmol, See http://m3g.iqm.unicamp.br/packmol/home.shtml