Training Models

Elliott Ash

Text Data Course, Bocconi 2018

Different Methods for Different Goals

- Supervised: Pursuing a known goal prediction or classification.
- Unsupervised: Unknown goal, let the computer summarize the data.

Approximating Y = f(X)

- ▶ We want to predict a real-valued outcome Y given X, that is, constructing an approximation of the function f(X).
 - With high-dimensionality and multi-collinearity, normal regression methods do not work.
- Supervised learning:
 - regularized regression
 - random forests
 - cross-validation

OLS Regression

Consider the linear model

$$Y_i = X_i' \beta + \epsilon_i$$

where Y_i and all elements of X_i have been de-meaned and standardized to s.d. = 1.

- OLS assumptions:
 - X_i uncorrelated with ϵ_i
 - Let's just assume this for now; will come back later.
 - \triangleright Columns of X_i are not highly collinear.
 - In the case of word/n-gram frequency data, this is not a good assumption.

Univariate OLS Regressions to Rank Predictive Features

Consider the univariate regression

$$Y_i = \beta_w x_i^w + \epsilon_i$$

for each text feature w (e.g., relative word or n-gram frequency).

- Can be estimated with OLS.
 - ► Can add fixed effects, or even better: residualize *Y* and *X* on fixed effects before running any regressions.
 - Robust or clustered standard errors is optional, if the goal is just to rank predictors or filter out noise features.

OLS Regression in Python statsmodels

- ▶ One could write a DO file to run these regressions in Stata.
 - But the loops and data saving would be tricky with so many feature variables.

import statsmodels.formula.api as smf

```
tstats , betas = [] , []
for xvar in vocab: # loop through the words in v
print(xvar)
model = smf.ols('Yu~u%s' % xvar, data=df4)
result = model.fit()
tstats.append(result.tvalues[1])
betas.append(result.params[1])
```

 $\begin{array}{lll} {\sf stats} &= {\sf list} \, ({\sf zip} \, ({\sf vocab} \, , {\sf tstats} \,)) \\ {\sf stats.sort} \, ({\sf key} \, = \, {\sf lambda} \, \, {\sf x:} \, \, {\sf x} [1] \, , \, \, {\sf reverse=True}) \\ {\sf stats} \, [:10] \\ {\sf stats} \, [-10:] \end{array}$

Ash-Morelli-Osnabrugge: Interpreting Classes

- Recall the policy topic model, which we applied to New Zealand parliamentary speeches:
 - ▶ We then looked at the n-grams in that corpus that were predictive of the topic classification.
 - \blacktriangleright Formally, for each topic k and each phrase m, regress

$$\Pr(y_i = k) = \alpha + \delta_m x_i^m + \epsilon_i$$

where $Pr(y_i = k)$ is the predicted probability that speech i is topic k, and x_i^m is the tf-idf frequency of phrase m in speech i.

• select phrases with highest positive t-statistic for δ_m

Agriculture and Education Topics

Estimating OLS

▶ OLS minimizes the mean squared error:

$$\min_{\hat{\theta}} \frac{1}{m} \sum_{i=1}^{m} (\mathbf{x}_i' \hat{\theta} - y_i)^2$$

where
$$\mathbf{x}_{i} = (x_{i1}, x_{i2}, ..., x_{ip})$$

▶ This has a closed form solution

$$\hat{\theta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

- Most machine learning models do not have a closed form solution.
 - objective must be minimized using some other optimization algorithm.

Gradient Descent

Figure 4-3. Gradient Descent

- Gradient descent measures the local gradient of the error function, and then steps in that direction.
 - Once the gradient equals zero, you have reached a minimum.

Gradient Descent Pitfalls

► Gradient descent will find a local minimum, not necessarily a global minimum. And it can get stuck on plateaus.

Gradient Descent and Scaling

When using gradient descent, all features should be standardized to the same scale to speed up convergence.

Gradient Descent Implementation

▶ The partial derivative of MSE for feature *j* is

$$\frac{\partial \mathsf{MSE}}{\partial \theta_j} = \frac{2}{m} \sum_{i=1}^n (\mathbf{x}_i' \hat{\theta} - y_i) x_{ij}$$

▶ The gradient is the vector of these partial derivatives is

$$\nabla_{\theta} \mathsf{MSE} = \begin{bmatrix} \frac{\partial \mathsf{MSE}}{\partial \theta_0} \\ \frac{\partial \mathsf{MSE}}{\partial \theta_0} \\ \vdots \\ \frac{\partial \mathsf{MSE}}{\partial \theta_i} \end{bmatrix} = \frac{2}{m} \mathbf{X}' (\mathbf{X}' \theta - \mathbf{y})$$

Gradient descent step:

$$\theta_{t+1} = \theta_t - \eta \nabla_{\theta} \mathsf{MSE}$$

Stochastic Gradient Descent

► SGD picks a random instance in the training set and computes the gradient only for that single instance.

▶ Much faster to train, but can still bounce around even after it is close to the minimum.

16/39

Mini-Batch Gradient Descent

➤ A compromise between gradient descent and stochastic gradient descent is mini-batch gradient descent, which selects a small number of rows (a "mini-batch") for gradient compute, rather than a single row.

The Problem of Overfitting

```
m = 100
X = 6 * np.random.rand(m,1) - 3
v = 0.5 * X ** 2 + X + 2 + np.random.randn(m, 1)
from sklearn.preprocessing import PolynomialFeatures
poly_2 = PolynomialFeatures(degree=2) # also adds interactions
X \text{ poly } 2 = \text{poly } 2 \cdot \text{fit transform}(X)
poly_30 = PolynomialFeatures (degree=300)
X poly 30 = poly 300. fit transform (X)
lin_reg = LinearRegression()
scores_1 = cross_val_score(lin_reg , X, y, cv=3, n_jobs=3)
scores_2 = cross_val_score(lin_reg , X_poly_2, y, cv=3, n_jobs=3)
scores_3 = cross_val_score(lin_reg, X_poly_300, y, cv=3, n_jobs=3)
print(scores_1.mean())
print(scores_2.mean())
print(scores_3.mean())
```

The Problem of Overfitting

Figure 4-14. High-degree Polynomial Regression

Bias-Variance Tradeoff

- Bias
 - ► Error due to wrong assumptions, such as summing data is linear when it is quadratic.
 - Will underfit the training data
- Variance
 - Error due to excess sensitivity to small variations in the training data.
 - ▶ A model with high variance is likely to overfit the training data.
- ► Irreducible error
 - Error due to noise in the data.

Training Notes

- In general, increasing a model's complexity will increase variance and reduce bias.
- If the model is underfitting:
 - adding more training data will not help.
 - use a more complex model
- If the model is overfitting:
 - adding more training data may help
 - or use regularization

Lasso, Ridge, and Elastic Net

- Lasso and ridge regression are tools for dealing with large feature sets where:
 - models have multicollinearity that causes bias
 - models tend to overfit
 - models are computationally costly to fit
- These algorithms work by constraining estimated parameter sizes.

Lasso Regresison

▶ The Lasso cost function is

$$J(\theta) = \mathsf{MSE}(\theta) + \alpha_1 \sum_{i=1}^{n} |\theta_i|$$

- ▶ i indexes over n features
- lacktriangledown $lpha_1$ is a hyperparameter setting the strength of the L1 penalty
- Lasso automatically performs feature selection and outputs a sparse model.

```
 \begin{array}{lll} \textbf{from} & \textbf{sklearn.linear\_model import} & \textbf{Lasso} \\ \textbf{lasso\_reg} & = \textbf{Lasso} \big( \textbf{alpha} \! = \! 0.1 \big) \\ \textbf{lasso\_reg.fit} \big( \textbf{X}, \textbf{y} \big) \\ \end{array}
```

Ridge Regression

► The Ridge cost function is

$$J(\theta) = \mathsf{MSE}(\theta) + \alpha_2 \frac{1}{2} \sum_{i=1}^{n} \theta_i^2$$

- i indexes over n features
- \triangleright α_2 is a hyperparameter setting the strength of the L2 penalty
- ▶ It turns out that the Ridge estimator, like OLS, has a closed-form solution:

$$\hat{\theta}_{\mathsf{Ridge}} = (X'X + \alpha_2 \mathbf{I}_n)^{-1} X' \mathbf{y}$$

26/39

where I_n is the identity matrix.

But it can also be solved by (stochastic) gradient descent.

```
from sklearn.linear_model import Ridge
ridge_reg = Ridge(alpha=1)
ridge_reg.fit(X,y)
sgd_ridge_reg = SGDRegresor(penalty="12")
sgd_ridge_reg.fit(X,y)
```

Elastic Net

► Elastic Net uses both L1 and L2 penalties:

$$J(\theta) = \mathsf{MSE}(\theta) + \lambda \alpha_1 \sum_{i=1}^{n} |\theta_i| + (1 - \lambda) \alpha_2 \frac{1}{2} \sum_{i=1}^{n} \theta_i^2$$

- in general, elastic net is preferred to lasso, which can behave erratically when the number of features is greater than the number of rows, or when some features are highly collinear.
- ► For elastic net, as with Lasso and Ridge, the hyperparameters can be selected by cross-validation.

Scaling while maintaining sparsity

- Regularization penalties are designed to work with scaled data.
 - ► An important feature of text data is sparsity, which is lost when taking out the mean:

$$\tilde{x}_i = \frac{x_i - \bar{\boldsymbol{x}}}{\mathsf{SD}[\boldsymbol{x}]}$$

Solution:

$$\tilde{x}_i = \frac{x_i}{\mathsf{SD}[\boldsymbol{x}]}$$

 $\begin{array}{lll} \textbf{from} & \textbf{sklearn.preprocessing} & \textbf{import} & \textbf{StandardScaler} \\ \textbf{sparse_scaler} & = & \textbf{StandardScaler} (\textbf{with_mean} = \textbf{False}) \\ \textbf{X_sparse} & = & \textbf{sparse_scaler.fit_transform} (\textbf{X}) \end{array}$

Logistic Regression

- Like OLS, logistic regression computes a weighted sum of the input features to predict the output.
 - But rather than output the sum directly, it transforms the sum using the logist function.

$$\hat{p} = \Pr(Y_i = 1) = \sigma(\theta' \mathbf{x})$$

where $\sigma(\cdot)$ is the signmoid function

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

For the binary version of the classifier, the prediction $\hat{Y} \in \{0,1\}$ is determined by whether $\hat{p} \geq .5$.

Logistic Regression Cost Function

▶ The cost function to minimize is the

$$J(\theta) = \underbrace{-\frac{1}{m}}_{\text{negative}} \sum_{i=1}^{m} \underbrace{\underbrace{y_i}_{y_i=1} \underbrace{\log(\hat{p}_i)}_{\log \text{prob}y_i=1} + \underbrace{(1-y_i)}_{y_i=0} \underbrace{\log(1-\hat{p}_i)}_{\log \text{prob}y_i=0}$$

- this does not have a closed form solution
- but it is convex, so gradient descent will find the global minimum.
- Just like linear models, logistic can be regulared with L1 or L2 penalties, e.g.:

$$J(\theta) = \log \log + \alpha_2 \frac{1}{2} \sum_{i=1}^{n} \theta_i^2$$

Multinomial Logistic Regression

- Logistic can be generalized to multiple classes.
 - When given an instance x_i , multinomial logistic computes a score $s_k(x_i)$ for each class k,

$$s_k(\mathbf{x}_i) = \theta'_k \mathbf{x}_i$$

- ▶ If there are n features and K output classes, there is a $K \times n$ parameter matrix Θ , where the parameters for each class are stored as rows.
- Using the scores, probabilities for each class are computed using the softmax function

$$\hat{p}_k(\boldsymbol{x}_i) = \Pr(Y_i = k) = \frac{\exp(s_k(\boldsymbol{x}_i))}{\sum_{j=1}^K \exp(s_j(\boldsymbol{x}_i))} = \frac{e^{\theta_k \boldsymbol{x}_i}}{\sum_{j=1}^K e^{\theta_j \boldsymbol{x}_i}}$$

▶ And the prediction $Y_i \in \{1,...,K\}$ is determined by the highest-probability category.

Multinomial Logistic Cost Function

► The binary cost function generalizes to the cross entropy

$$J(\theta) = \underbrace{-\frac{1}{m}}_{\text{negative}} \sum_{i=1}^{m} \sum_{k=1}^{K} \underbrace{\mathbf{1}[y_i = k]}_{y_i = k} \underbrace{\log(\hat{p}_k(\mathbf{x}_i))}_{\log \text{ prob}y_i = k}$$

again, this is convex, so gradient descent will find the global minimum.

scores.mean(), scores.std()

Comparative Manifesto Project Corpus

- ▶ 44,020 annotated English-language political statements
 - hundreds of political party platforms from English-speaking countries.
- Each statement gets a CMP code, e.g. "decentralization", "education"
 - 45 topics
 - some topics are somewhat esoteric, such as "marxist analysis"
 - We normalized to 19 broader, more interpretable topics

Featurizing the Statements

- ▶ Each row includes a CMP code and a statement.
 - ▶ The statements are plain text.
- Standard featurization steps:
 - remove capitalization, punctuation, stopwords
 - construct n-grams up to length 3
 - remove n-grams appearing in less than 10 statements or more than 40 percent of statements
 - ► *M* = 7,646 features
 - compute tf-idf-weighted n-gram frequencies

Regularized Logit Model

- ▶ *N* rows, *M* text features, *K* policy topics
- Probability model:

$$P(Y_i = c) = \frac{e^{\beta_c X_i}}{\sum_{k=1}^K e^{\beta_k X_i}},$$

where $c \in 1,...,K$ are the topic labels and β is an $M \times K$ matrix of parameters.

Cost function:

$$J(\beta) = -\frac{1}{N} \left[\sum_{i=1}^{N} \sum_{k=1}^{K} \mathbf{1} \{ y^{i} = k \} \log \frac{e^{\beta_{k} X_{i}}}{\sum_{l=1}^{K} e^{\beta_{l} X_{i}}} \right] + \gamma \sum_{j=1}^{M} \sum_{k=1}^{K} \beta_{jk}^{2}$$

- $ightharpoonup \gamma = {
 m strength} \ {
 m of} \ {
 m L2} \ {
 m penalty}$
 - $\gamma^* = 1/2$ selected by 3-fold cross-validation grid search.

Prediction Model

- ► Given a chunk of text, the logistic model computes a probability distribution over policy topics.
 - harnesses expert knowledge about political topics from Manifesto Project
- Validation of accuracy: predict the CMP code in a held-out sample of manifesto corpus statements
 - ► In-sample accuracy = 71%, Out-of-sample accuracy = 53%
 - quite good given there are 19 policy areas choosing randomly would be correct 5% of the time; choosing top category (other topic) would be correct 15% of the time.

Confusion Matrix

	Admin.	Agri.	Cult.	De- cent.	Econ.	Educ.	Freed.	Intni.	Labor	Milit.	Nati Way Life	Demos	Other	Party Pol.	Quality	Target	Tech	Morals	Wel- fare	Total True
Adminis- tration	270	5	2	7	77	12	71	7	5	3	4	1	78	11	36	3	11	0	101	704
Agricul- ture	5	114	0	3	24	3	7	4	2	0	2	2	23	1	56	0	7	0	22	275
Culture	8	3	155	5	22	21	22	4	0	1	19	4	56	3	18	7	17	1	26	392
Decentral- ization	27	2	6	73	16	11	24	1	0	1	3	1	32	7	20	0	13	2	22	261
Economics	59	12	5	4	715	13	29	16	19	2	11	4	138	30	96	1	49	2	126	1331
Education	7	1	9	1	17	461	8	0	0	0	1	4	75	10	10	2	37	3	69	715
Freedom	51	0	9	20	41	13	642	19	3	16	12	6	126	34	16	4	14	7	89	1122
Interna- tionalism	8	1	4	3	33	2	45	245	2	14	11	1	46	9	19	3	3	0	26	475
Labor Groups	11	2	2	0	36	7	12	2	92	0	2	3	20	3	13	0	6	1	40	252
Military	7	0	1	0	7	1	24	27	2	118	5	0	32	2	10	0	9	1	13	259
Nat'l Way of Life	4	1	5	3	38	3	32	17	2	6	88	6	61	21	19	2	2	4	44	358
Non-Econ Demo Grps	7	1	7	0	15	15	30	1	5	2	5	95	36	8	4	5	5	5	104	350
Other Topic	38	14	17	13	78	48	86	25	20	12	20	26	1263	39	71	20	48	7	159	2004
Party Poli- tics	20	5	5	2	44	2	48	9	4	5	10	0	80	183	25	4	10	2	53	511
Quality of Life	21	17	9	4	102	9	13	14	7	3	7	1	112	16	684	0	42	0	34	1095
Target Groups	11	2	7	2	7	17	24	2	4	0	8	1	28	4	1	67	8	1	63	257
Tech & In- fra	22	8	5	8	57	31	6	6	5	1	4	2	85	1	62	1	413	0	40	757
Trad'l Morality	2	0	2	0	6	9	21	2	0	0	8	3	25	4	1	1	0	61	40	185
Welfare	33	6	11	3	93	32	62	3	10	1	9	26	142	37	29	11	23	7	1173	1711
Total Predicted	611	194	261	151	1428	710	1206	404	182	185	229	186	2458	423	1190	131	717	104	2244	