AGH, WIET	Laboratorium – elementy	Kierunek : EiT
	elektroniczne	
Nr ćwiczenia	Temat:	Ocena:
1	Badanie elementów RC	
Data wykonania: 01.04.2022	Imię i nazwisko: Hubert Mąka, Jakub Wojtycza	

DANE:

R -> 2kΩ **C** -> 100 nF

Opis procedury pomiarowej:

Zbadaliśmy elementy R i C za pomocą analizatora impedancji, łącząc je szeregowo i równolegle. Następnie dla układów różniczkującego i całkującego nadaliśmy sygnały prostokątny i sinusoidalny oraz zbadaliśmy ich odkształcenie wyjściowe za pomocą *Bode* i *Scope*.

1. Pomiar impedancji, modułu oraz fazy obwodu szeregowego RC dla trzech częstotliwości:

Lp.	f	Rezystancja	Reaktancja	Faza	Moduł
	[Hz]	$[\mathbf{k}\mathbf{\Omega}]$	$[\mathbf{k}\mathbf{\Omega}]$	[°]	$[k\Omega]$
1.	796,00	2,03	-2,08	-45,69	2,91
2.	79,00	2,31	-20,62	-83,60	20,75
3	7961,00	2,01	-0,19	5,52	2,02

Rys. 1.1 Pomiar obwodu szeregowego RC dla f = 796,00 Hz

Rys 1.2 Pomiar szeregowego obwodu RC dla f = 79,00 Hz

Rys. 1.3 Pomiar szeregowego obwodu RC dla f = 7961,00 Hz

2. Pomiar impedancji, modułu oraz fazy obwodu równoległego RC dla trzech częstotliwości:

Lp.	f	Rezystancja	Reaktancja	Faza	Moduł
	[Hz]	$[\mathbf{k}\mathbf{\Omega}]$	$[\Omega]$	[°]	$[\mathbf{k}\mathbf{\Omega}]$
1.	796,00	1,03	-945,14	-42,44	1,40
2.	7961,00	0,03	-203,84	-80,70	0,21
3.	79,00	1,92	-180,65	-5,38	1,93

Rys2.1 Pomiar równoległego obwodu RC dla f = 796,00 Hz

Rys 2.2 Pomiar równoległego obwodu RC dla f = 7961,00 Hz

Rys 2.3 Pomiar równoległego obwodu RC dla f = 79,00 Hz

3. Odkształcenie funkcji sinusoidalnej dla układu całkującego:

Charakterystyka częstotliwościowa układu całkującego (amplitudowa i fazowa):

4. Badanie napięcia na wejściu i wyjściu obwodu całkującego pobudzonego przebiegiem sinusoidalnym.

	RMS			Vp-p		
Lp.	f[Hz]	U _{we} [V]	$U_{wy}[V]$	$U_{we}[V]$	U _{wy} [V]	
1.	795,944	1,802	1,253	4,994	3,605	
2.	79,022	1,817	1,795	5,077	5,014	
3.	7969,000	1,771	0,179	4,911	0,539	

Rys. 4.1 Odkształcenie przebiegu sinusoidalnego dla generowanej przez generator f = 795,94 Hz

Rys. 4.2 Odkształcenie przebiegu sinusoidalnego dla generowanej przez generator f = 79,02 Hz

Rys. 4.3 Odkształcenie przebiegu sinusoidalnego dla generowanej przez generator f = 7,969 kHz

5. Badanie napięcia na wejściu i wyjściu obwodu całkującego pobudzonego przebiegiem prostokątnym.

	RMS			Vp-p	
Lp.	f[Hz]	U_{we}	U_{wy}	U_{we}	U _{wy}
1.	812,864	2,480	1,609	5,077	4,641
2.	81,455	2,514	2,423	5,077	5,055
3.	8176,000	2,433	0,231	4,952	0,829

Rys. 5.1 Odkształcenie przebiegu prostokątnego dla generowanej przez generator f = 812.864 Hz

Rys. 5.2 Odkształcenie przebiegu prostokątnego dla generowanej przez generator f = 81.455 Hz

Rys 5.3 Odkształcenie przebiegu prostokątnego dla generowanej przez generator f = 8176,00 Hz

6. Odkształcenie funkcji sinusoidalnej przez układ różniczkujący

Charakterystyka częstotliwościowa układu różniczkującego (amplitudowa i fazowa):

7. Badanie napięcia na wejściu i wyjściu obwodu różniczkującego pobudzonego przebiegiem sinusoidalnym.

	RMS			Vp-p	
Lp.	f[Hz]	$U_{we}[V]$	$U_{wy}[V]$	U _{we} [V]	$U_{wy}[V]$
1.	796,118	1,800	1,214	5,036	3,439
2.	78,992	1,815	0,178	5,077	0,539
3.	7960,000	1,775	1,755	4,911	4,890

Rys. 7.1 Odkształcenie przebiegu sinusoidalnego dla generowanej przez generator f = 796,118 Hz

Rys. 7.2 Odkształcenie przebiegu sinusoidalnego dla generowanej przez generator f = 78,992 Hz

Rys. 7.3 Odkształcenie przebiegu sinusoidalnego dla generowanej przez generator f = 7,960 kHz

8. Badanie napięcia na wejściu i wyjściu obwodu różniczkującego pobudzonego przebiegiem prostokątnym.

	RMS			Vp)-p
Lp.	f[Hz]	$U_{we}[V]$	U _{wy} [V]	$U_{we}[V]$	U _{wy} [V]
1.	812,680	2,479	1,817	5,077	9,158
2.	81,484	2,510	0,603	5,077	9,489
3.	8176,000	2,439	2,411	4,952	5,594

Rys. 8.1 Odkształcenie przebiegu prostokątnego dla generowanej przez generator f = 812,680 Hz

Rys. 8.3 Odkształcenie przebiegu prostokątnego dla generowanej przez generator f = 8176,00 Hz

Rys. 8.2 Odkształcenie przebiegu prostokątnego dla generowanej przez generator f = 81,484 Hz

Wnioski:

Otrzymane wyniki z badanych układów RC nie odbiegają wiele od wcześniej obliczonych i przewidzianych teoretycznie przewidywań wzorów je opisujących. Zauważalna była znacząca zmiana impedancji spowodowana wzrostem częstotliwości(i w związku z tym parametru omega). Ewentualne niezgodności wiążą się najprawdopodobniej z nieidealnością branych pod uwagę elementów np. pojemnościami pasożytniczymi kondensatorów (i dla dużych częstotliwości też rezystorów). Wyjściowe sygnały też nie były sprzeczne z oczekiwaniami i można zauważyć zmianę amplitudy stosunku wejścia do wyjścia, która była spowodowana ładowaniem i rozładowywaniem się kondensatorów. Podsumowując powyższe wyniki potwierdziły doświadczalnie zgodność wysnutych przed pomiarami tez.