第三周作业

董仕强

Sunday 9th March, 2025

0 说明

可以将作业中遇到的问题标注在此. 如有, 请补充.

目录

0	<mark>说明</mark>	0
	Problem Set for 3th March 2025	1
	1.1 Problem	1
	Problem Set for 6th March 2025	1
	2.1 Exercise 1	1
	2.2 Exercise 2	2

1 Problem Set for 3th March 2025

1.1 Problem

Let \mathbb{F} denote the ground field, and let S be any finite set.

- 1. Demonstrate that $\operatorname{Hom}_{\operatorname{Sets}}(S,\mathbb{F})$ forms a vector space.
- 2. Construct a linear bijection (hereinafter refeered to as a linear isomorphism)

$$\operatorname{Hom}_{\operatorname{Sets}}(S,\mathbb{F}) \to \mathbb{F}^{|S|}$$

3. Demonsrate that following function constitutes an injection of sets:

$$\varphi: S \to \operatorname{Hom}_{\mathbb{F}}(\operatorname{Hom}_{\operatorname{Sets}}(S, \mathbb{F}), \mathbb{F})$$

$$s \mapsto \begin{bmatrix} \operatorname{Hom}_{\operatorname{Sets}}(S, \mathbb{F}) & \to & \mathbb{F} \\ f & \mapsto & f(s) \end{bmatrix}$$

- 4. Demonstrate that the image $\varphi(S)$ forms a basis for $\operatorname{Hom}_{\mathbb{F}}(\operatorname{Hom}_{\operatorname{Sets}}(S,\mathbb{F}),\mathbb{F})$.
- 5. This is how we define

$$\mathbb{F}_{s_1} \oplus \mathbb{F}_{s_2} \oplus \cdots \oplus \mathbb{F}_{s_n} \qquad S = \{s_1, \dots, s_n\}$$

解答

- 1. $\operatorname{Hom}_{\operatorname{Sets}}(S, \mathbb{F}) \neq \emptyset$ (f+g)(s) = f(s) + g(s) $(\lambda f)(s) = \lambda f(s).$
- 2. $\operatorname{Hom}_{\operatorname{Sets}}(S, \mathbb{F}) \to \mathbb{F}^{|S|}$ $f \mapsto (f(s_1), f(s_2), \dots, f(s_n))$
- 3. φ is injective. $\forall s \neq t, \varphi(s)$ is a map from $\operatorname{Hom}_{\operatorname{Sets}}(S, \mathbb{F})$ to $\mathbb{F}.\varphi(s), \varphi(t)$ is two different maps.
- 4. $\operatorname{Hom}_{\operatorname{Sets}}(S,\mathbb{F}) \cong \mathbb{F}^{|S|}$ By the iso we can see that $\varphi(S)$ is a basis for $\operatorname{Hom}_{\mathbb{F}}(\operatorname{Hom}_{\operatorname{Sets}}(S,\mathbb{F}),\mathbb{F})$.
- 5. $\mathbb{F}_{s_1} \oplus \mathbb{F}_{s_2} \oplus \cdots \oplus \mathbb{F}_{s_n} = \operatorname{Hom}_{\operatorname{Sets}}(S, \mathbb{F})$

2 Problem Set for 6th March 2025

2.1 Exercise 1

Here is the compositon rules for linear maps $U \to V \to W$. Show that

- 1. if f and g are linear injections, then so is $g \circ f$.
- 2. if $f \circ g$ is a linear injection, then so is f.

- 3. if f and g are linear surjections, then so is $g \circ f$.
- 4. if $f \circ g$ is a linear surjection, then so is g.

解答

- 1. $\forall x, y \in U, g(f(x)) = g(f(y)) \Rightarrow f(x) = f(y) \Rightarrow x = y.$
- 2. $\forall x, y \in U, f(x) = f(y) \Rightarrow g(f(x)) = g(f(y)) \Rightarrow x = y.$
- 3. $\forall z \in W, \exists x \in U, g(f(x)) = z.$
- 4. $\forall z \in W, \exists x \in U, g(f(x)) = z.$

2.2 Exercise 2

show that:

- 1. $\Phi(f_1, f_2)$ is an injection, only if f_1 and f_2 are injections.
- 2. $\Phi(f_1, f_2)$ is a surjection, if f_1 or f_2 are surjections.
- 3. $\Psi(f_1, f_2)$ is an injection, if f_1 or f_2 are injections.
- 4. $\Psi(f_1, f_2)$ is a surjection, only if f_1 and f_2 are surjections.

解答

1. $(\Phi(f_1, f_2))(u_1, u_2) = f_1(u_1) + f_2(u_2)$ so

$$f_1(u_1) = f_1(u_1') \Rightarrow (\Phi(f_1, f_2))(u_1, u_2) = (\Phi(f_1, f_2))(u_1', u_2) \Rightarrow u_1 = u_1'$$

so f_1 and f_2 are injections.

- 2. $\forall z \in V, \exists u_1 \in U_1, \exists u_2 \in U_2, f_1(u_1) = z \text{ or } f_2(u_2) = z.$
- 3. $(\Psi(f_1, f_2))(u) = (f_1(u), f_2(u))$ so

$$\forall u_1 \neq u_2$$
, only need $f_1(u_1) \neq f_1(u_2)$ or $f_2(u_1) \neq f_2(u_2)$

so f_1 or f_2 are injections.

4. $\forall z_1 \in V_1, z_2 \in V_2$, need $\exists u \in U$ such that $f_1(u) = z_1$ and $f_2(u) = z_2$.