Name: Zhu Jin Shun

Student ID: 22101071d

Subject code: AMA1131

Subject lecturer: Dr Bob He

Assignment 1

Dom (4)
$$\bigcirc \sqrt{4-x^2}$$
 $\bigcirc \sqrt{2} = \arccos(\frac{x}{4})$
 $\bigcirc \sqrt{4}$ $\bigcirc \sqrt{4}$ $\bigcirc \sqrt{2}$ $\bigcirc \sqrt{4}$ \bigcirc

C)
$$f(x) = \frac{\sqrt{9-x^2}}{x}$$
 $g(x) = arccos(\frac{x}{4})$
 $fg = \sqrt{9-x^2}$ $arccos(\frac{x}{4}) = \frac{\sqrt{9-x^2} \cdot arccos(\frac{x}{4})}{x}$

d)
$$\frac{9}{7} = \frac{\text{arcos}(x)}{\sqrt{9-x^2}} = \frac{\text{arccos}(x)-x}{\sqrt{9-x^2}}$$

e)
$$f \circ g$$

$$= f cg(x)$$

$$= f (arcos(4))$$

$$= g (4(x))$$

$$= g (\sqrt{4x^2})$$

$$= \frac{\sqrt{9-\cos (\cos (\frac{x}{4})^2)}}{\arccos (\frac{x}{4})}$$

$$= \arcsin (\frac{\sqrt{9-x^2}}{4})$$

$$fog = \frac{\sqrt{q - \alpha r c \cos (\frac{x_0}{4})^2}}{\alpha r \cos (\frac{x_0}{4})} = \alpha r \cos (\frac{\sqrt{q - x}}{\sqrt{x}})$$

$$go f = \alpha r c \cos (\frac{\sqrt{q - x}}{\sqrt{x}})$$

Let
$$\theta = \operatorname{arcton}(C_{\overline{4}})$$
, hypotenuse = h

 $h = \sqrt{3^2 + 5^2} = \sqrt{34}$,

Graph: χ

$$h = \sqrt{3^2 + 5^2} = \sqrt{34}$$

Sin (20)= 2
$$\sin(\theta)$$
 cos (0)
= 2 $\times \frac{3}{54}$ $\times \frac{5}{134}$

3)
$$f(x) = \frac{3x-2}{x+1}$$
 Find $f''(y) = \frac{3x-2}{x+1}$ Find $f''(y) = \frac{3x$

Find
$$f^{-1}(y)$$
 $g = f(x) = \frac{3x-2}{x+1}$
 $g = \frac{3x-2}{x+1}$

4)
$$f(x) = \sin(x^2)$$
 -> prove $\lim_{h \to 0} = \frac{f(xth) - f(x)}{h} = 2x \cos(x^2)$

Substitute: => $\lim_{h \to 0} = \frac{\sin((xth)^2) - \sin x^2}{h}$

$$= \frac{\sin(x^2 + 2xh + fh^2) - \sin x^2}{h}$$

$$= \lim_{h \to 0} = \frac{2\cos(x^2 + xh + \frac{h^2}{2})}{h} = \frac{3\sin(x + 2xh + fh^2)}{h} = \frac{3\sin(x + 2xh + fh^2)}{h}$$

As $h \to 0 = \frac{2\cos(x^2 + xh + \frac{h^2}{2})}{h} = \frac{3\sin(x + 2xh + fh^2)}{h} = \frac{3\cos(x^2) \cdot h(x + fh^2)}{h} = \frac{3\sin(x + 2xh + fh^2)}{h} = \frac{3\sin(x + 2xh + fh^2)}{h} = \frac{3\sin(x + 2xh + fh^2)}{h} = \frac{3\cos(x^2) \cdot (x + fh^2)}{h} = \frac{3\sin(x + fh^2)}{h} =$

6)

G)
$$f(0)$$
 $x=0$ => $f(x)$: $3x$
 $3\times0=0$

Thus, $f(0)=0$

b) $x\to 0^{-1}$
 $x \le 0$
 $f(x)=3x=3\cdot0=0$
 $x > 0^{+1}$
 $x \le 0$
 $x \le 0$
 $x \ge 0$

7) a)
$$\log_{3}(x-2) = 3 - \log_{3}(x-1)$$
 $\log_{3}(x-2) + \log_{3}(x-1) = 3$
b) $\log_{16}(2x+3) + \log_{16}(x+2)$
 $\log_{2}(x-2) + (x-1) = 3$
 $(x-2) + (x-1) = 3$
 $\log_{16}(2x+3) + (x+5) = \log_{4}(x)$
 $(x^{2} - 3x + 2 = 8)$
 $(x^{2} - 3x + 2 = 8)$
 $(x^{2} - 3x - 6 = 0)$
 $\log_{4}(2x+3) + (x+5) = \log_{4}(x)$
 $(x^{2} - 3x - 6 = 0)$
 $\log_{4}(2x+3) + (x+5) = \log_{4}(x)$
 $(x^{2} - 3x - 6 = 0)$
 $\log_{4}(2x+3) + (x+5) = \log_{4}(x)$
 $(x^{2} - 3x + 2 = 8)$
 $\log_{4}(2x+3) + (x+5) = \log_{4}(x)$
 $(x+5) = \log_{4}(x)$
 $($

8) Perine
$$f(x) = 3x - (lf tan^{-1}(x) + sin(x)) \in (0, 1)$$

As $x = 0$
 $f(0) = 3(0) - (lf tan^{-1}(0) + sin(0)) = 0 - (lf 0 + 0) = -1$

As $x = 1$
 $f(1) = 3(1) - (lf tan^{-1}(1) + sin(1)) = 3 - (lf + x + 0.8411) = 0.3731$
 $f(0) = -1 + (Nequive) + f(1) = 0.3731 + (Positive)$

Since $f(x) = 3x - (lf tan^{-1}(x) + sin(x)) + (sin(x)) + (sin($

9)

a)
$$\lim_{x\to 2} t \ln (x^2 - x + 1) \frac{\sin(x^2 - x^2)}{2(x^2 - 2)}$$
b) $\lim_{x\to 2} \frac{x \cos x}{(x^2 + 1) + \sin^2 x}$
 $\lim_{x\to 2} \frac{x^2 - x + 1}{x^2 + (x^2 + 2 + 1)^2} = \frac{x^2 - x^2}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 $\lim_{x\to 2} \frac{x \cos x}{x^2 + (x^2 + 2 + 1)^2}$
 \lim

d)
$$\lim_{x \to -\infty} (\sqrt{4x^2 - x + 1} + 2x)$$

$$= (\sqrt{4x^2 - x + 1} + 2x) \cdot \sqrt{4x^2 - x + 1} - 2x$$

$$= \frac{4x^2 - x + 1}{\sqrt{4x^2 - x + 1} - 2x}$$

$$= \frac{-x + 1}{\sqrt{4x^2 - x + 1} - 2x}$$

$$= \frac{-x + 1}{\sqrt{4x^2 - x + 1} - 2x}$$

$$= \frac{-x + 1}{\sqrt{4x^2 - x + 1} - 2x}$$

$$= \frac{-x + 1}{\sqrt{4x^2 - x + 1} - 2x}$$

$$= \frac{-x + 1}{\sqrt{4x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{1}{x}}{\sqrt{x^2 - x + 1} - 2x}$$

$$= \frac{-1 + \frac{$$

10) At
$$x=0$$
 $f(x) = \frac{1}{4}$

As $x \to 0^+$
 $f(x) = \frac{1}{2} - \frac{\sin(4 \cdot 0)}{16 \cdot 0} = \frac{1}{2} - 0 = \frac{1}{2}$
 $f(x) = \frac{1}{4} + \frac{f(x)}{16 \cdot 0} = \frac{f(x)}{1$

As
$$x-7|^{-1}$$

 $f(x) = \frac{1}{2} - \frac{\sin(4\pi)}{16\cdot 1} = \frac{1}{2} - \frac{\sin(4\pi)}{16} \times 0.5472$

A
$$\epsilon$$
 $x=3$
 $f(3) := \sqrt{16-3^2} := \sqrt{7}$
As $x-73^ f(x) := \sqrt{7}$ $(x) := \sqrt{7}$ $($