Chapitre 4: Fonctions usuelles

1 Fonctions logarithmes, exponentielles, puissance

1.1 La fonction logarithme népérien

Définition

On appelle fonction logarithme népérien et l'on note ln l'unique primitive sur \mathbb{R}_+^* de $x\mapsto \frac{1}{x}$ qui s'annule en 1, ce qui s'écrit aussi :

$$\forall x \in \mathbb{R}_+^*, \ \ln(x) = \int_1^x \frac{dt}{t}$$

Remarque : La fonction $x \mapsto \frac{1}{x}$ étant continue sur \mathbb{R}_+^* , on sait qu'elle admet des primitives et que celles-ci diffèrent d'une constante. En choisissant la valeur en 1 de la fonction logarithme népérien, on fixe cette constante.

Proposition

- In est dérivable sur \mathbb{R}_+^* et on a : $\forall x \in \mathbb{R}_+^*$, $\ln'(x) = \frac{1}{x}$.
- In est strictement croissante sur \mathbb{R}_+^*

Proposition

Pour tout $(a, b) \in (\mathbb{R}_+^*)^2$, on a : ab > 0 et $\ln(ab) = \ln(a) + \ln(b)$.

Démonstration. Si a > 0 et b > 0 alors ab > 0, ce qui assure la bonne définition de chacun des termes.

Soit $b \in \mathbb{R}_+^*$. On pose $g_b : \mathbb{R}_+^* \to \mathbb{R}$ $t \mapsto \ln(bt) - \ln(t) - \ln(b)$. g_b est dérivable sur \mathbb{R}_+^* comme combinaison linéaire et composée de fonctions qui le sont, et on a :

$$\forall t \in \mathbb{R}_+^*, \ g_b'(t) = \frac{b}{bt} - \frac{1}{t} = 0.$$

Ainsi, g_b est constante sur \mathbb{R}_+^* . Comme $g_b(1) = \ln(b) - \ln(1) - \ln(b) = 0$, g_b est constante nulle. On en déduit : $\forall a \in \mathbb{R}^{+*}$, $\ln(ab) - \ln(a) - \ln(b) = 0$.

Corollaire

Soient $(a, b) \in (\mathbb{R}_+^*)^2$ et $n \in \mathbb{Z}$. On a :

$$\ln\left(\frac{1}{a}\right) = -\ln(a); \qquad \ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b); \qquad \ln(a^n) = n\ln(a).$$

Démonstration. • On a $\ln(a) + \ln(\frac{1}{a}) = \ln(1) = 0$ par la proposition précédente. Ainsi $\ln(\frac{1}{a}) = -\ln(a)$.

- On a avec la proposition précédente, $\ln\left(\frac{a}{b}\right) = \ln(a) + \ln\left(\frac{1}{b}\right) = \ln(a) \ln(b)$.
- Montrons par récurrence que : $\forall n \in \mathbb{N}$, $\ln(a^n) = n \ln(a)$.
 - Pour n = 0, $\ln(a^0) = \ln(1) = 0 = 0 \times \ln(a)$.
 - Soit $n \in \mathbb{N}$. Supposons que $\ln(a^n) = n \ln(a)$. On a $\ln(a^{n+1}) = \ln(a^n \times a) = \ln(a^n) + \ln(a)$. Ainsi, par hypothèse de récurrence, on obtient : $\ln(a^{n+1}) = n \ln(a) + \ln(a) = (n+1) \ln(a)$.

On a donc montré par récurrence que : $\forall n \in \mathbb{N}$, $\ln(a^n) = n \ln(a)$.

Soit $n \in \mathbb{Z} \setminus \mathbb{N}$. D'après ce qui précède. On a donc $\ln(a^n) = \ln\left(\frac{1}{a^{-n}}\right) = -\ln(a^{-n})$. Or, -n > 0 donc en utilisant la récurrence précédente, on obtient : $\ln(a^n) = -(-n)\ln(a) = n\ln(a)$.

Proposition

$$\lim_{x \to +\infty} \ln(x) = +\infty$$

$$\lim_{x \to 0^+} \ln(x) = -\infty$$

$$\lim_{x \to 1} \frac{\ln(x)}{x - 1} =$$

$$\lim_{x \to 0^+} \ln(x) = -\infty \qquad \lim_{x \to 1} \frac{\ln(x)}{x - 1} = 1 \qquad \lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1$$

Démonstration. • La fonction ln est croissante, donc, par le théorème de la limite monotone, soit elle admet une limite finie L en $+\infty$, soit elle tend vers $+\infty$ (si elle n'est pas majorée). Or, pour tout $n \in \mathbb{N}$, on a $\ln(2^n) = n \ln(2)$ et $\ln(2) > 0$, donc $\lim_{n\to+\infty} \ln(2^n) = +\infty$. La fonction ln n'est donc pas majorée. On a donc $\lim_{n\to+\infty} \ln(x) = +\infty$

- On a $\lim_{x \to 0^+} \frac{1}{x} = +\infty$ et $\lim_{X \to +\infty} \ln(X) = +\infty$ donc par composition des limites $\lim_{x \to 0} \ln\left(\frac{1}{x}\right) = +\infty$. Or, pour tout $x \in \mathbb{R}_+^*$, $\ln(x) = -\ln\left(\frac{1}{x}\right)$. Ainsi, $\lim_{x \to 0^+} \ln(x) = -\infty$.
- La fonction ln est dérivable en 1 donc on a : $\frac{\ln x}{x-1} = \frac{\ln(x) \ln(1)}{x-1} \underset{x \to 1}{\to} \ln'(1) = 1$ La fonction $x \mapsto \ln(1+x)$ est dérivable en 0 donc on a : $\frac{\ln(1+x)}{x} = \frac{\ln(1+x) \ln(1+0)}{x-0} = 1$

Corollaire

La fonction logarithme népérien est bijective de $]0; +\infty[$ sur \mathbb{R} .

Démonstration. In est continue (car dérivable) et strictement croissante sur \mathbb{R}_+^* donc ln est bijective de]0; $+\infty$ [dans $\lim_{x \to 0^+} l n(x); \lim_{x \to +\infty} l n(x) \Big[= \mathbb{R}.$

Remarque : Il existe donc un unique réel strictement positif, noté e, tel que $\ln e = 1$. On a $e \approx 2,72$.

Terminons par la courbe représentative de la fonction ln :

1.2 La fonction logarithme décimal

Définition

On appelle logarithme décimal (ou logarithme de base 10) et on note log (ou log10) la fonction $\log: \mathbb{R}_+^*$

Remarque:

- log vérifie les même propriétés que ln, la seule différence est que $\log(10) = 1$ ce qui permet d'avoir $\log(10^n) = n$ pour
- Cette fonction est très utilisée en physique et en chimie (pH). Le pH par exemple, est lié au logarithme décimal des concentrations.

2

Proposition

La fonction log est dérivable sur \mathbb{R}_+^* et on a : $\forall x \in \mathbb{R}_+^*$, $\log'(x) = \frac{1}{x \ln(10)}$.

1.3 La fonction exponentielle

Définition

On appelle fonction exponentielle et on note exp la fonction réciproque de la fonction ln.

Remarque : On a donc : $\forall (x, y) \in \mathbb{R} \times \mathbb{R}_+^*$, $y = \exp x \iff x = \ln y$.

Proposition

- Pour tout $x \in \mathbb{R}$, $\ln(\exp(x)) = x$ et pour tout $x \in \mathbb{R}_+^*$, $\exp(\ln(x)) = x$.
- La fonction exponentielle est une bijection continue et strictement croissante de \mathbb{R} sur \mathbb{R}^*_+ .
- La fonction exp est dérivable sur \mathbb{R} et $\exp' = \exp$.

Démonstration. • Les deux premiers points sont des conséquences du fait que exp est la réciproque de la fonction ln : $\mathbb{R}_+^* \to \mathbb{R}$ qui est bijective, continue et strictement croissante. La fonction ln : $\mathbb{R}_+^* \to \mathbb{R}$ est bijective, dérivable sur \mathbb{R}_+^* et on a : $\forall x \in \mathbb{R}_+^*$, $\ln'(x) = \frac{1}{x} > 0$. Ainsi exp est dérivable sur \mathbb{R} par le théorème de dérivabilité de la fonction réciproque. Soit $x \in \mathbb{R}$.

$$\exp'(x) = \frac{1}{\ln'(\exp(x))} = \frac{1}{\frac{1}{\exp(x)}} = \exp(x).$$

Proposition

Soient $(a, b) \in \mathbb{R}^2$ et $n \in \mathbb{Z}$.

$$\exp(a+b) = \exp(a)\exp(b) \qquad \exp(-a) = \frac{1}{\exp(a)} \qquad \exp(a-b) = \frac{\exp(a)}{\exp(b)} \qquad \exp(na) = (\exp(a))^n.$$

Démonstration. On a $\ln(\exp(a+b)) = a+b$ et $\ln(\exp(a)\exp(b)) = \ln(\exp(a)) + \ln(\exp(b)) = a+b$. Par unicité de l'antécédent de a+b par la fonction $\ln, \exp(a+b) = \exp(a)\exp(b)$. Les trois autres propriétés se démontrent de même. □

Remarque : Pour tout $n \in \mathbb{Z}$, on a $\exp(n) = (\exp(1))^n = e^n$.

Proposition
$$\lim_{x \to +\infty} \exp(x) = +\infty, \qquad \lim_{x \to -\infty} \exp(x) = 0, \qquad \lim_{x \to 0} \frac{\exp(x) - 1}{x} = 1.$$

Démonstration. Les deux premières se déduisent des limites de ln en 0^+ et en $+\infty$. La dernière limite est une conséquence du fait que exp est dérivable en 0. On reconnait alors le taux d'accroissement en 0 de la fonction exp. □

Terminons par la courbe représentative de la fonction exp :

1.4 Fonctions trigonométriques hyperboliques

Définition

On définit les fonctions cosinus hyperbolique, noté ch, et sinus hyperbolique, noté sh, par :

Remarque:

- Ces deux fonctions sont appelées ainsi par analogie avec les formules d'Euler.
- La courbe de la fonction ch correspond à la forme d'une chainette (corde fixée à ses extrémités) et soumis à la pesanteur. Elle apparait donc dans certaines équations physique.

Proposition

- ch et sh sont définies, continues et dérivables sur \mathbb{R} , avec ch' = sh et sh' = ch.
- ch est paire, sh est impaire.
- $\lim_{x \to -\infty} \operatorname{ch}(x) = +\infty$ et $\lim_{x \to +\infty} \operatorname{ch}(x) = +\infty$.
- $\lim_{x \to +\infty} \operatorname{sh}(x) = -\infty$ et $\lim_{x \to +\infty} \operatorname{sh}(x) = +\infty$.
- Soit $x \in \mathbb{R}$. On a:

$$ch(x) + sh(x) = exp(x),$$

$$ch(x) - sh(x) = exp(-x),$$

$$ch^{2}(x) - sh^{2}(x) = 1.$$

Démonstration. En multipliant entre elles les deux égalités précédentes, on reconnait une identité remarquable et on utilise le fait que $\exp(x) \exp(-x) = \exp(x-x) = \exp(0) = 1$.

Cosinus hyperbolique:

			P1		
х	$-\infty$		0		+∞
ch'(x)		_	0	+	
ch	+∞ _		→ 1 <i>-</i>		→ +∞

Sinus hyperbolique:

Silius flyperbolique.					
X	$-\infty$	0	+∞		
sh'(x)		+			
sh	-∞		+∞		

Démonstration. Soit $x \in \mathbb{R}$, sh'(x) = ch(x) > 0. Ainsi, sh est strictement croissante sur \mathbb{R} .

Soit
$$x \in \mathbb{R}$$
, $\operatorname{ch}'(x) = \operatorname{sh}(x) = \frac{\exp(x) - \exp(-x)}{2}$. Or,

$$\operatorname{ch}'(x) \ge 0 \iff \exp(x) \ge \exp(-x)$$
 $\iff \exp(2x) \ge 1 \quad \operatorname{car} \exp(-x) \ge 0$
 $\iff x \ge 0$

et ch' ne s'annule qu'en 0. Ainsi, ch' est strictement croissante sur \mathbb{R}_+ , strictement décroissante sur \mathbb{R}_- . Elle admet donc un minimum en 0 valant ch (0) = 1.

1.5 Fonctions puissances

On connait déjà la fonction $x\mapsto x^\alpha$ dans les cas suivants :

• si $\alpha = n \in \mathbb{N}^*$, on pose : $\forall x \in \mathbb{R}$, $x^n = \underbrace{x \times ... \times x}$. La fonction $x \mapsto x^n$ est alors définie sur \mathbb{R} .

- si $\alpha = 0$, par convention, on pose : $\forall x \in \mathbb{R}$, $x^0 = 1$. La fonction $x \mapsto x^0$ est alors définie sur \mathbb{R} .
- si $\alpha = n \in \mathbb{Z} \setminus \mathbb{N}$, on pose : $\forall x \in \mathbb{R}^*$, $x^n = \frac{1}{x^{-n}}$. La fonction $x \mapsto x^n$ est alors définie sur \mathbb{R}^* .

Pour $x \in \mathbb{R}^*_+$ et $n \in \mathbb{Z}$, on a $x^n = (\exp(\ln(x)))^n = \exp(n\ln(x))$. Cette propriété permet de généraliser la notion de puissance à des exposants réels.

Définition

Soit $\alpha \in \mathbb{R}$. On appelle fonction puissance d'exposant α la fonction

$$\begin{array}{ccc}
\mathbb{R}_{+}^{*} & \to & \mathbb{R} \\
x & \mapsto & x^{\alpha} = \exp(\alpha \ln(x))
\end{array}$$

Remarque:

- Si $\alpha \notin \mathbb{Z}$, la définition précédente impose une définition sur \mathbb{R}_{+}^{*} .
- Si $\alpha \in \mathbb{Z}$, cette définition est compatible avec celle que l'on connaissait déjà (sur un domaine plus large).
- Si $\alpha > 0$, on a $\lim_{\alpha \to 0} x^{\alpha} = 0$. On peut donc prolonger la fonction $x \mapsto x^{\alpha}$ par continuité en 0, en posant $0^{\alpha} = 0$.
- Soit $x \in \mathbb{R}$. La constante e > 0 est strictement positive et par définition $e^x = \exp(x \ln(e)) = \exp(x)$. La fonction exponentielle évaluée en $x \in \mathbb{R}$ est la fonction puissance d'exposant x évaluée en la constante e.
- La fonction racine carrée n'est autre que $x \mapsto x^{1/2}$: soit $x \in \mathbb{R}_+^*$, $(x^{1/2})^2 = \left(e^{\frac{1}{2}\ln(x)}\right)^2 = e^{\ln(x)} = x$ et $x^{1/2} > 0$ donc $x^{1/2} = \sqrt{x}$ et ceci reste vrai en 0.

Proposition

Soient $(x, y) \in (\mathbb{R}_+^*)^2$ et $(\alpha, \beta) \in \mathbb{R}^2$. On a :

$$(xy)^{\alpha} = x^{\alpha}y^{\alpha},$$
 $x^{\alpha+\beta} = x^{\alpha}x^{\beta},$ $(x^{\alpha})^{\beta} = x^{\alpha\beta},$ $\ln(x^{\alpha}) = \alpha \ln(x)$

Démonstration. Ces propriétés sont des conséquences des propriétés de la fonction exponentielle.

Proposition

Soit $\alpha \in \mathbb{R}$. La fonction $\begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R} \\ x & \mapsto & x^{\alpha} \end{array}$ est dérivable sur \mathbb{R}_+^* et sa dérivée est $\begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R} \\ x & \mapsto & \alpha x^{\alpha-1} \end{array}$.

Pour $\alpha \in \mathbb{R}^*$, la fonction $\begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R} \\ x & \mapsto & x^{\alpha} \end{array}$ est donc strictement monotone sur \mathbb{R}_+^* et sa monotonie dépend du signe de α .

Démonstration. On pose $\begin{array}{cccc} p_{\alpha} & \mathbb{R}_{+}^{*} & \rightarrow & \mathbb{R} \\ & x & \mapsto & x^{\alpha} \end{array}$

 p_{α} est dérivable sur \mathbb{R}_{+}^{*} comme composée de fonctions qui le sont et pour tout $x \in \mathbb{R}_{+}^{*}$, on a $p'_{\alpha}(x) = \exp(\alpha \ln(x)) \frac{\alpha}{x} = \alpha x^{\alpha - 1}.$

Pour $\alpha \in \mathbb{R}^*$, p_α est donc strictement monotone sur \mathbb{R}_+^* et sa monotonie dépend du signe de α .

Remarque : Si $\alpha > 0$, la fonction $p_{\alpha} : x \mapsto x^{\alpha}$ peut être prolongé en 0. Etudions la dérivabilité de ce prolongement.

- Si $\alpha > 1$, $\frac{p_{\alpha}(x) p_{\alpha}(0)}{x 0} = \frac{x^{\alpha}}{x} = x^{\alpha 1} \xrightarrow[x \to 0]{} 0$. Donc $x \mapsto x^{\alpha}$ est également dérivable en 0 et sa dérivée en 0 vaut 0.
- Si $\alpha \in]0,1[$, $\frac{p_{\alpha}(x)-p_{\alpha}(0)}{x-0}=\frac{x^{\alpha}}{x}=x^{\alpha-1} \xrightarrow[x\to 0]{} +\infty$. La courbe présente donc une tangente verticale en (0,0).

Proposition

Soit $\alpha \in \mathbb{R}^*$.

- Si $\alpha > 0$, $\lim_{x \to +\infty} x^{\alpha} = +\infty$ et $\lim_{x \to 0} x^{\alpha} = 0$. Si $\alpha < 0$, $\lim_{x \to +\infty} x^{\alpha} = 0$ et $\lim_{x \to 0} x^{\alpha} = +\infty$.

		Cas $\alpha > 0$:	
x	0	1	$+\infty$
p_{α}	0 -	l	, +∞

		Cas $\alpha < 0$:	
x	0	1	$+\infty$
p_{α}	+∞	1_	0

Méthode

Si une fonction est donnée sous la forme $u(x)^{v(x)}$ (où u est une fonction définie sur un intervalle I et à valeurs strictement positives). On se ramène a toujours à une écriture $u(x)^{v(x)} = e^{v(x)\ln(u(x))}$

Théorème de croissances comparées

Soit $(\alpha, \beta) \in (\mathbb{R}_+^*)^2$. On a :

•
$$\lim_{x \to +\infty} \frac{(\ln x)^{\beta}}{x^{\alpha}} = 0 \text{ et } \lim_{x \to 0^+} x^{\alpha} |\ln x|^{\beta} = 0.$$

•
$$\lim_{x \to +\infty} \frac{e^{\alpha x}}{r^{\beta}} = +\infty \text{ et } \lim_{x \to -\infty} |x|^{\beta} e^{\alpha x} = 0.$$

Remarque:

- Il faut surtout retenir la philosophie de ce théorème : les fonctions exponentielles l'emportent sur les fonctions puissances qui l'emportent sur les fonctions logarithmes.
- Le cas $\alpha \le 0$ et $\beta \ge 0$ peut s'étudier directement (il n'y a pas d'indétermination); de même pour $\alpha \ge 0$ et $\beta \le 0$. Le cas α < 0 et β < 0 s'obtient en passant à l'inverse dans le cas précédent.

onstration. • **Préliminaire :** montrons que $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$: Soit x > 1. Soit $t \in [1, x]$, on a $0 < \sqrt{t} \le t$ et donc $0 \le \frac{1}{t} \le \frac{1}{\sqrt{t}}$ puis en intégrant (les bornes étant dans le bon sens),

$$0 \le \ln x = \int_{1}^{x} \frac{dt}{t} \le \int_{1}^{x} \frac{dt}{\sqrt{t}} = \left[2\sqrt{t}\right]_{1}^{x} = 2\sqrt{x} - 2 \le 2\sqrt{x}.$$

En divisant par x (x > 0), il vient $0 \le \frac{\ln x}{x} \le \frac{2\sqrt{x}}{x} = \frac{2}{\sqrt{x}}$. Par le théorème d'encadrement, on a alors $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$.

• Soit x > 1. On a: $\frac{(\ln x)^{\beta}}{x^{\alpha}} = \left(\frac{\ln x}{x^{\frac{\alpha}{\beta}}}\right)^{\beta} = \left(\frac{\frac{\beta}{\alpha}\ln\left(x^{\frac{\alpha}{\beta}}\right)}{x^{\frac{\alpha}{\beta}}}\right)^{\beta} = \left(\frac{\beta}{\alpha}\right)^{\beta} \left(\frac{\ln\left(x^{\frac{\alpha}{\beta}}\right)}{x^{\frac{\alpha}{\beta}}}\right)^{\beta}$. Comme $\lim_{x \to +\infty} x^{\frac{\alpha}{\beta}} = +\infty$ (car $\frac{\alpha}{\beta} > 0$), on en déduit

(par composition) que $\lim_{x \to +\infty} \frac{\ln\left(x^{\frac{\overline{\beta}}{\beta}}\right)}{x^{\frac{\alpha}{\beta}}} = 0$. De plus, $\lim_{T \to 0} T^{\beta} = 0$ (car $\beta > 0$) et donc par composition $\lim_{x \to +\infty} \frac{(\ln x)^{\beta}}{x^{\alpha}} = 0$.

• On a $\lim_{x \to 0^+} \frac{1}{x} = +\infty$ et $\lim_{X \to +\infty} \frac{(\ln X)^{\beta}}{X^{\alpha}} = 0$. Ainsi, par composition, $\lim_{x \to 0^+} \frac{\left(\ln \left(\frac{1}{x}\right)\right)^{\beta}}{\left(\frac{1}{x}\right)^{\alpha}} = 0$.

Soit $x \in]0,1[$, on a: $\frac{\left(\ln\left(\frac{1}{x}\right)\right)^{\beta}}{\left(\frac{1}{x}\right)^{\alpha}} = x^{\alpha} \left(-(\ln x)\right)^{\beta} = x^{\alpha} |\ln x|^{\beta}$. Donc $\lim_{x\to 0} x^{\alpha} |\ln x|^{\beta} = 0$.

- $\lim_{x \to +\infty} e^x = +\infty$ et $\lim_{X \to +\infty} \frac{(\ln X)^{\beta}}{X^{\alpha}} = 0$ donc par composition, $\lim_{x \to +\infty} \frac{(\ln(e^x))^{\beta}}{(e^x)^{\alpha}} = 0$ c'est à dire $\lim_{x \to +\infty} \frac{x^{\beta}}{e^{\alpha x}} = 0$. De plus, pour tout x > 0, $\frac{x^{\beta}}{e^{\alpha x}} > 0$. Ainsi, $\lim_{x \to +\infty} \frac{e^{\alpha x}}{x^{\beta}} = +\infty$.
- $\lim_{x \to -\infty} e^x = \text{et } \lim_{X \to 0} |X|^{\alpha} |\ln X|^{\beta} = 0 \text{ donc par composition}, \lim_{x \to -\infty} (e^x)^{\alpha} |\ln (e^x)|^{\beta} = 0 \text{ donc } \lim_{x \to +\infty} e^{\alpha x} |x|^{\beta} = 0.$

2 Fonctions trigonométriques

2.1 Fonctions circulaires

2.1.1 Cosinus - Sinus

Définition

Soit $x \in \mathbb{R}$ et $(0, \overrightarrow{i}, \overrightarrow{j})$ un repère orthonormé direct. On note M le point du cercle trigonométrique (cercle de centre O et de rayon 1) tel que l'angle orienté $(\overrightarrow{i}, \overrightarrow{OM})$ a pour mesure x radians. On note alors $(\cos x, \sin x)$ les coordonnées de M dans le repère $(O, \overrightarrow{i}, \overrightarrow{j})$.

On appelle cosinus la fonction $cos: \mathbb{R} \to \mathbb{R}$ et sinus la fonction $cos: \mathbb{R} \to \mathbb{R}$ $x \mapsto cos(x)$ et sinus la fonction $cos: \mathbb{R} \to \mathbb{R}$ $x \mapsto sin(x)$.

Proposition

- La fonction cos est définie sur \mathbb{R} , 2π -périodique, paire , continue et dérivable sur \mathbb{R} de dérivée $\cos' = -\sin$.
- La fonction sin est définie sur \mathbb{R} , 2π -périodique, impaire, continue et dérivable sur \mathbb{R} de dérivée sin' = cos.
- $\forall x \in \mathbb{R}$, $\cos^2 x + \sin^2 x = 1$.
- Leurs variations sur $[0,\pi]$ sont donnés par :

x	0		$\frac{\pi}{2}$		π
$(\sin)'(x)$		+	0	_	
sin	0		× 1		0

x	0	$\frac{\pi}{2}$	π
$(\cos)'(x)$	0	_	0
cos	1 -	0	1

Remarque : Revoir le formulaire pour les valeurs usuelles, les formules d'additions, de duplication, de transformations de produits en sommes.

Proposition

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \qquad \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

Démonstration. • On reconnait le taux d'accroissement de la fonction sin en 0. Or, sin est dérivable en 0 et $\sin'(0) = \cos(0) = 1$. Ce qui donne le résultat.

• Soit $x \in \mathbb{R}^*$. $\frac{1-\cos(x)}{x^2} = \frac{2\left(\sin\left(\frac{x}{2}\right)\right)^2}{x^2} = \frac{1}{2}\left(\frac{\sin\left(\frac{x}{2}\right)}{\left(\frac{x}{2}\right)}\right)^2$. Ainsi, par composition et produit, on obtient que $\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \times 1^2 = \frac{1}{2}.$

Soient $x, y, a \in \mathbb{R}$. On dit que x est congru à y modulo a, que l'on note $x \equiv y$ [a] s'il existe $k \in \mathbb{Z}$ tel que x = y + ka.

Proposition

Soient $x, y, u, v, a \in \mathbb{R}, b \in \mathbb{R}^*$.

- Si $x \equiv y$ [a] alors $y \equiv x$ [a].
- Si $x \equiv y$ [a] et $u \equiv v$ [a], $x + u \equiv y + v$ [a].
- $x \equiv y \ [a] \iff xb \equiv yb \ [ab].$

• $x \equiv y[a]$ alors il existe $k \in \mathbb{Z}$ tel que x - y = ka. On a alors y - x = (-k)a avec $-k \in \mathbb{Z}$ donc $y \equiv x[a]$. Démonstration.

- Si $x \equiv y[a]$ et $u \equiv v[a]$ alors, il existe $k, k' \in \mathbb{Z}$ tels que x y = ka et u v = k'a. Donc (x + u) (y + v) = (k + k')a avec $k + k' \in \mathbb{Z} \text{ donc } x + u \equiv y + v[a].$
- $x \equiv y[a] \iff \exists k \in \mathbb{Z}, x y = ka$ $\iff_{b\neq 0} \exists k \in \mathbb{Z}, \ xb - yb = kab$ $\iff xb \equiv yb[ab]$

Proposition

Soit $x \in \mathbb{R}$.

$$\cos x = 0 \quad \Longleftrightarrow \quad x \equiv \frac{\pi}{2} \quad [\pi]$$

$$\sin x = 0 \iff x \equiv 0 \quad [\pi]$$

Démonstration. Voir cercle trigonométrique.

Proposition: Cas d'égalité des fonctions trigonométriques

Soient $x, y \in \mathbb{R}$. Alors,

•
$$\cos x = \cos y \iff \begin{cases} x \equiv y & [2\pi] \\ \text{ou} \\ x \equiv -y & [2\pi] \end{cases}$$

• $\sin x = \sin y \iff \begin{cases} x \equiv y & [2\pi] \\ \text{ou} \\ x \equiv \pi - y & [2\pi] \end{cases}$

•
$$\sin x = \sin y \iff \begin{cases} x \equiv y \ [2\pi] \\ \text{ou} \\ x \equiv \pi - y \ [2\pi] \end{cases}$$

Démonstration. • On sait que:

$$\forall a, b \in \mathbb{R}, \cos(a+b) - \cos(a-b) = -2\sin a \sin b$$

Soient $x, y \in \mathbb{R}$. Posons, $a = \frac{x+y}{2}$ et $b = \frac{x-y}{2}$.

On a alors:

$$\cos x - \cos y = \cos(a+b) - \cos(a-b)$$

$$= -2\sin a \sin b$$

$$= -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$

Ainsi,

$$\cos x = \cos y \iff \cos x - \cos y = 0$$

$$\iff -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right) = 0$$

$$\iff \begin{cases} \sin\left(\frac{x+y}{2}\right) = 0 \\ \text{ou} \\ \sin\left(\frac{x-y}{2}\right) = 0 \end{cases}$$

$$\iff \begin{cases} \frac{x+y}{2} \equiv 0 \quad [\pi] \\ \text{ou} \\ \frac{x-y}{2} \equiv 0 \quad [\pi] \end{cases}$$

$$\iff \begin{cases} x \equiv -y \quad [2\pi] \\ \text{ou} \\ x \equiv y \quad [2\pi] \end{cases}$$

• On sait que:

$$\forall c, d \in \mathbb{R}, \sin(c+d) - \sin(c-d) = 2\sin d\cos c$$

Soient $x, y \in \mathbb{R}$. Posons, $c = \frac{x+y}{2}$ et $d = \frac{x-y}{2}$. On a alors :

$$\sin x - \sin y = \sin(c+d) - \sin(c-d)$$

$$= 2\sin d\cos c$$

$$= 2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right)$$

Ainsi,

$$\sin x = \sin y \iff \sin x - \sin y = 0$$

$$\iff 2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right) = 0$$

$$\iff \begin{cases} \sin\left(\frac{x-y}{2}\right) = 0 \\ \text{ou} \\ \cos\left(\frac{x+y}{2}\right) = 0 \end{cases}$$

$$\iff \begin{cases} \frac{x-y}{2} \equiv 0 \quad [\pi] \\ \text{ou} \\ \frac{x+y}{2} \equiv \frac{\pi}{2} \quad [\pi] \end{cases}$$

$$\iff \begin{cases} x \equiv y \quad [2\pi] \\ \text{ou} \\ x \equiv \pi - y \quad [2\pi] \end{cases}$$

Exemple : Résolvons les équations $\cos(2x) = \frac{1}{2}$ et $\cos(x) + \sin(-3x) = 0$ d'inconnue $x \in \mathbb{R}$.

• Soit $x \in \mathbb{R}$.

$$\cos(2x) = \frac{1}{2} \iff \cos(2x) = \cos(\frac{\pi}{3})$$

$$\iff \begin{cases} 2x \equiv \frac{\pi}{3} [2\pi] \\ \text{ou} \\ 2x \equiv -\frac{\pi}{3} [2\pi] \end{cases}$$

$$\iff \begin{cases} x \equiv \frac{\pi}{6} [\pi] \\ \text{ou} \\ x \equiv -\frac{\pi}{6} [\pi] \end{cases}$$

L'ensemble des solutions est $\left\{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\right\} \cup \left\{-\frac{\pi}{6} + k\pi, k \in \mathbb{Z}\right\}$.

• Soit $x \in \mathbb{R}$.

$$\cos(x) + \sin(-3x) = 0 \iff \cos(x) = -\sin(-3x)$$

$$\iff \cos(x) = \sin(3x)$$

$$\iff \cos(x) = \cos(\frac{\pi}{2} - 3x)$$

$$\iff \begin{cases} x \equiv \frac{\pi}{2} - 3x \ [2\pi] \\ \text{ou} \\ x \equiv -\frac{\pi}{2} + 3x \ [2\pi] \end{cases}$$

$$\iff \begin{cases} 4x \equiv \frac{\pi}{2} \ [2\pi] \\ \text{ou} \\ 2x \equiv \frac{\pi}{2} \ [2\pi] \end{cases}$$

$$\iff \begin{cases} x \equiv \frac{\pi}{8} \ [\frac{\pi}{2}] \\ \text{ou} \\ x \equiv \frac{\pi}{4} \ [\pi] \end{cases}$$

Ainsi, l'ensemble des solutions est $\left\{\frac{\pi}{8} + k\frac{\pi}{2}, k \in \mathbb{Z}\right\} \cup \left\{\frac{\pi}{4} + k\pi, k \in \mathbb{Z}\right\}$.

2.1.2 Tangente

Définition

On appelle fonction tangente et on note tan, la fonction $x \mapsto \frac{\sin x}{\cos x}$

- tan est définie sur $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$.
- tan est π -périodique et impaire.
- $\lim_{x \to (\frac{\pi}{2})^-} \tan(x) = +\infty$ et $\lim_{x \to (-\frac{\pi}{2})^+} \tan(x) = -\infty$.
- tan est dérivable sur $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi, k\in\mathbb{Z}\}$ et on a : $\forall x\in\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi, k\in\mathbb{Z}\}$, $\tan'(x)=\frac{1}{\cos^2 x}=1+\tan^2 x$.

Remarque : $\underline{\wedge}$ tan n'est pas strictement croissante sur $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$, car $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$ n'est pas un intervalle! Elle est strictement croissante sur tout intervalle inclus dans $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$, par exemple $]-\frac{\pi}{2},\frac{\pi}{2}[$.

• Soit $x \in \mathbb{R}$. On a: $\cos(x) = 0 \iff x \equiv \frac{\pi}{2}$ [π]. Ainsi, tan est définie sur $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$. Démonstration.

• Montrons que tan est π périodique.

Soit $x \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$. Montrons que $x + \pi \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$.

Par l'absurde. Supposons que $x + \pi \in \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$. Ainsi, il existe $p \in \mathbb{Z}$ tel que $x + \pi = p\pi + \frac{\pi}{2}$.

On a alors : $x = \frac{\pi}{2} + (p-1)\pi$ donc $x \in \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$. Contradiction avec le fait que $x \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$. Ainsi, $x + \pi \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$. De même, on prouve que $x - \pi \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$. De plus, $\tan(x + \pi) = \frac{\sin(x + \pi)}{\cos(x + \pi)} = \frac{-\sin x}{-\cos x} = \frac{\sin x}{\cos x} = \tan x$.

Ainsi, tan est π périodique.

• Montrons que tan est impaire.

Soit $x \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$. On $a - x \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$ (prouvé comme précédemment). De plus, $\tan(-x) = \frac{\sin(-x)}{\cos(-x)} = \frac{-\sin x}{\cos x} = -\tan(x)$. Ainsi, tan est impaire.

$$\tan(-x) = \frac{\sin(-x)}{1 + \cos(x)} = \frac{-\sin x}{1 + \cos(x)} = -\tan(x)$$

- On a $\lim_{x \to \frac{\pi}{2}} \sin x = 1$ et $\lim_{x \to \frac{\pi}{2}} \cos x = 0$. De plus, pour tout $x \in \left[0, \frac{\pi}{2}\right[, \cos(x) > 0$. Ainsi, $\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \tan x = +\infty$. Par imparité, on a $\lim_{x \to \left(\frac{\pi}{2}\right)^{+}} = -\infty$.
- tan est dérivable sur $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$ comme quotient de fonctions qui le sont, le dénominateur ne s'annulant pas. Soit $x \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}\$,

$$\tan'(x) = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = 1 + \tan^2 x = \frac{1}{\cos^2 x}.$$

Tableau de variations de tan sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ et son graphe :

x	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$
$(\tan)'(x)$		+	
tan	-∞	-0	+∞

Proposition : Cas d'égalité de tan

Soient $x, y \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$, on a:

 $\tan x = \tan y \iff x \equiv y [\pi].$

Démonstration. On a :

$$\tan x = \tan y \iff \frac{\sin x}{\cos x} = \frac{\sin y}{\cos y}$$

$$\iff \sin x \cos y = \sin y \cos x$$

$$\iff \sin x \cos y - \sin y \cos x = 0$$

$$\iff \sin(x - y) = 0$$

$$\iff x - y \equiv 0 \quad [\pi]$$

$$\iff x \equiv y \quad [\pi]$$

2.2 Fonctions circulaires réciproques

Théorème

• La fonction sin réalise une bijection de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ sur [-1, 1]. On appelle Arc sinus et on note arcsin : $[-1, 1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ sa bijection réciproque.

La fonction cos réalise une bijection de [0,π] sur [-1,1].
 On appelle Arc cosinus et on note arccos : [-1,1] → [0,π] sa bijection réciproque.

• La fonction tan réalise une bijection de $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{sur } \mathbb{R}.$ On appelle Arc tangente et on note arctan : $\mathbb{R} \to \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ sa bijection réciproque.

Démonstration. On a vu que cos est continue et strictement décroissante sur $[0,\pi]$. Ainsi, cos est bijective de $[0,\pi]$ sur $[\cos(\pi),\cos(0)]=[-1,1]$.

Les autres points se montrent de même.

Corollaire

On a les équivalences suivantes :

•
$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \forall y \in [-1, 1], \left(y = \sin(x) \iff x = \arcsin(y)\right).$$

•
$$\forall x \in [0, \pi], \forall y \in [-1, 1], (y = \cos(x) \iff x = \arccos(y)).$$

•
$$\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \forall y \in \mathbb{R}, \left(y = \tan(x) \iff x = \arctan(y)\right).$$

Proposition: Arcsin

- arcsin est continue et strictement croissante sur [−1;1].
- arcsin est dérivable sur] 1;1[et on a : $\forall x \in$] 1,1[, $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$.
- · arcsin est impaire.
- Pour tout $x \in [-1, 1]$, $\sin(\arcsin(x)) = x$
- Soit $x \in \mathbb{R}$. $\arcsin(\sin(x)) = x$ si et seulement si $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$

Démonstration. • $\sin:\left[-\frac{\pi}{2},\frac{\pi}{2}\right] \to [-1,1]$ est continue et strictement croissante. Il en est donc de même de sa bijection réciproque arcsin.

• $\sin: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to [-1, 1]$ est bijective et dérivable et : $\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $\sin'(x) = \cos(x)$. Ainsi, on a : $\forall x \in \left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$, $\sin'(x) \neq 0$ et $\sin'\left(\frac{\pi}{2}\right) = \sin'\left(-\frac{\pi}{2}\right) = 0$.

Par le théorème de dérivabilité de la fonction réciproque, arcsin est dérivable sur $\left|\sin\left(-\frac{\pi}{2}\right),\sin\left(\frac{\pi}{2}\right)\right|$. Ainsi, arcsin est dérivable sur]-1,1[.

Soit $x \in]-1,1[$. On a $\arcsin'(x) = \frac{1}{\cos(\arcsin x)}$

D'autre part, $\cos^2(\arcsin x) + \sin^2(\arcsin x) = 1$, donc $\cos^2(\arcsin x) = 1 - x^2$ puis $\cos(\arcsin x) = \pm \sqrt{1 - x^2}$. Comme $\arcsin x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, on a $\cos(\arcsin x) \ge 0$ et donc $\cos(\arcsin x) = \sqrt{1 - x^2}$.

Finalement, on obtient que $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$.

[-1,1] est symétrique par rapport à 0.
 Soit y ∈ [-1,1]. Il existe x ∈ [-π/2, π/2] tel que y = sin x. Ainsi, arcsin (y) = arcsin (sin(x)) = x.
 On a de plus arcsin (-y) = arcsin (-sin(x)) = arcsin (sin(-x)) (car sin est impaire). De plus, -x ∈ [-π/2, π/2] donc arcsin (-y) = -x

Finalement, $\arcsin(-y) = -x = -\arcsin(y)$. Ainsi, arcsin est impaire.

- Propriété de la fonction réciproque.
- Soit $x \in \mathbb{R}$. Si $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, alors $\arcsin(\sin x) = x$ propriété des fonctions réciproques. Réciproquement, si $\arcsin(\sin x) = x$ alors, comme arcsin est à valeurs dans $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, on en déduit que $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

П

Remarque : La fonction arcsin est utilisé en physique notamment dans le domaine de la réfraction avec les lois de Descartes, réflexion avec la 3ème loi de Kepler.

Proposition: Arccos

- arccos est continue et strictement décroissante sur [-1;1].
- arccos est dérivable sur] 1;1[et on a : $\forall x \in$] 1;1[, $\arccos'(x) = \frac{-1}{\sqrt{1-x^2}}$.
- Pour tout $x \in [-1, 1]$, $\cos(\arccos(x)) = x$
- Soit $x \in \mathbb{R}$, $\arccos(\cos(x)) = x$ si et seulement si $x \in [0; \pi]$

Démonstration. • cos : $[0,\pi]$ → [-1,1] est continue et strictement décroissante. Il en est donc de même de sa bijection réciproque arccos.

- $\cos: [0,\pi] \to [-1,1]$ est dérivable et : $\forall x \in [0,\pi]$, $\cos'(x) = -\sin(x)$.
 - Ainsi, on a : $\forall x \in [0, \pi[, \cos'(x) \neq 0 \text{ et } \cos'(0) = \cos'(\pi) = 0.$ Par le théorème de dérivabilité de la fonction réciproque, arcsin est dérivable sur] $\cos(\pi)$, $\cos(0)$ [. Ainsi, arccos est dérivable sur] -1,1 [.

Soit
$$x \in]-1,1[$$
. On a $\arccos'(x) = -\frac{1}{\sin(\arccos x)}$

- D'autre part, $\cos^2(\arccos x) + \sin^2(\arccos x) = 1$, donc $\sin^2(\arccos x) = 1 \frac{x^2}{2}$ puis $\sin(\arccos x) = \pm \sqrt{1 x^2}$.
- Comme $\arccos x \in]0, \pi[$, on a $\sin(\arccos x) \ge 0$ et donc $\sin(\arccos x) = \sqrt{1-x^2}$. Finalement, on obtient que $\arccos'(x) = -\frac{1}{\sqrt{1-x^2}}$.
- Propriété de la fonction réciproque.
- Soit $x \in \mathbb{R}$.
 - Si $x \in [0, \pi]$, alors $\arccos(\cos x) = x$ propriété des fonctions réciproques.
 - Réciproquement, si $\arccos(\cos x) = x$ alors, comme arccos est à valeurs dans $[0, \pi]$, on en déduit que $x \in [0, \pi]$.

x	-1	0	1
arccos	π	$\frac{\pi}{2}$	→ 0

Proposition: Arctan

- 1. arctan est continue et strictement croissante sur \mathbb{R} .
- 2. arctan est dérivable sur \mathbb{R} et on a : $\forall x \in \mathbb{R}$, arctan'(x) = $\frac{1}{1+r^2}$.
- 3. arctan est impaire.
- 4. $\lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2}$ et $\lim_{x \to -\infty} \arctan(x) = -\frac{\pi}{2}$.
- 5. Pour tout $x \in \mathbb{R}$, tan(arctan(x)) = x
- 6. Soit $x \in \mathbb{R} \setminus \{y \in \mathbb{R} \mid \cos(y) = 0\}$. arctan $(\tan(x)) = x$ si et seulement si $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

• $\tan: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to \mathbb{R}$ est continue et strictement croissante. Il en est donc de même de sa bijection réci-Démonstration. proque arctan.

• $\tan: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\to \mathbb{R} \text{ est dérivable et} : \forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[, \tan'(x) = 1 + (\tan(x))^2.$ Ainsi, on a : $\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $\tan'(x) \neq 0$. Par le théorème de dérivabilité de la fonction réciproque, arctan est dérivable sur \mathbb{R} . Soit $x \in \mathbb{R}$,

$$\arctan'(x) = \frac{1}{1 + \tan^2(\arctan x)} = \frac{1}{1 + x^2}.$$

- \mathbb{R} est symétrique par rapport à 0.
 - Soit $y \in \mathbb{R}$. Il existe $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ tel que $y = \tan x$. Ainsi, $\arctan(y) = \arctan(\tan(x)) = x$.

On a de plus $\arctan(-y) = \arctan(-\tan(x)) = \arctan(\tan(-x))$ (car tan est impaire). De plus, $-x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ donc $\arctan(-y) = \arctan(-x)$

Finalement, arctan(-y) = -x = -arctan(y). Ainsi, arctan est impaire.

- Propriété de la fonction réciproque.
- Soit $x \in \mathbb{R}$.

Si $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, alors arctan $(\tan x) = x$ propriété des fonctions réciproques.

Réciproquement, si arctan (tan x) = x alors, comme arctan est à valeurs dans $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, on en déduit que $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

П

х	$-\infty$	0	+∞
arctan	$-\frac{\pi}{2}$	0	$\frac{\pi}{2}$

Méthode

Soit I un intervalle de \mathbb{R} . Pour montrer une égalité de la forme :

$$\forall x \in I, \ f(x) = g(x),$$

faisant intervenir les fonctions trigonométriques réciproques, on peut :

- montrer que f et g ont même dérivée sur I. On en déduit alors qu'il existe $C \in \mathbb{R}$ tel que : $\forall x \in I$, f(x) = g(x) + C. Puis, on détermine la valeur de C en évaluant cette dernière relation en un point.
- montrer que les cosinus/sinus/tangentes des deux membres sont égaux. Il faut ensuite avoir un encadrement des deux membres pour conclure à l'égalité souhaitée.

Par étude de fonction.
On pose $f: \mathbb{R}^* \to \mathbb{R}$ $x \mapsto \arctan(x) + \arctan(\frac{1}{x})$.

f est définie et dérivable sur \mathbb{R}^*

Soit $x \in \mathbb{R}^*$, $f'(x) = \frac{1}{1+x^2} + \frac{1}{1+\left(\frac{1}{x}\right)^2} \times \left(-\frac{1}{x^2}\right) = \frac{1}{1+x^2} - \frac{1}{1+x^2} = 0$. Ainsi, il existe $C_1, C_2 \in \mathbb{R}$ tels que :

$$\forall x \in \mathbb{R}_{-}^{*}, f(x) = C_1$$

$$\forall x \in \mathbb{R}_+^*, \ f(x) = C_2$$

•
$$f(1) = 2\arctan(1) = \frac{\pi}{2} \text{ Donc } C_1 = \frac{\pi}{2}.$$

= C_1

•
$$f(-1) = 2\arctan(-1) = -\frac{\pi}{2}$$
 Donc $C_2 = -\frac{\pi}{2}$.
= C_2

Ainsi,

$$\arctan(x) + \arctan(\frac{1}{x}) = \begin{cases} -\frac{\pi}{2} & \text{si } x \in \mathbb{R}_{-}^{*} \\ \frac{\pi}{2} & \text{si } x \in \mathbb{R}_{+}^{*} \end{cases}$$

Méthode directe:

Soit $x \in \mathbb{R}_+^*$. Montrons que $\arctan(x) = \frac{\pi}{2} - \arctan\left(\frac{1}{x}\right)$.

$$\tan\left(\frac{\pi}{2} - \arctan\left(\frac{1}{x}\right)\right) = \frac{\sin\left(\frac{\pi}{2} - \arctan\left(\frac{1}{x}\right)\right)}{\cos\left(\frac{\pi}{2} - \arctan\left(\frac{1}{x}\right)\right)}$$

$$= \frac{\cos\left(\arctan\left(\frac{1}{x}\right)\right)}{\sin\left(\arctan\left(\frac{1}{x}\right)\right)}$$

$$= \frac{1}{\tan(\arctan\left(\frac{1}{x}\right))}$$

$$= x$$

 $= \tan(\arctan(x))$

De plus, $\arctan(x) \in \left]0, \frac{\pi}{2}\right[\text{ et }\arctan\left(\frac{1}{x}\right) \in \left]0, \frac{\pi}{2}\right[(\text{car } x > 0 \text{ et } \frac{1}{x} > 0) \text{ donc } \frac{\pi}{2} - \arctan\left(\frac{1}{x}\right) \in \left]0, \frac{\pi}{2}\right[\text{ Ainsi, }\arctan(x) = \frac{\pi}{2} - \arctan\left(\frac{1}{x}\right).$

Soit $x \in \mathbb{R}_{+}^{*}$. La fonction arctan étant impaire, on a : $\arctan(x) + \arctan(\frac{1}{x}) = -\left(\arctan(-x) + \arctan(\frac{1}{(-x)})\right)$ avec $-x \in \mathbb{R}_{+}^{*}$. Ainsi, $\arctan(x) + \arctan(\frac{1}{x}) = -\frac{\pi}{2}$.

Méthode: résolution d'une équation faisant intervenir les fonctions trigonométriques

Pour résoudre une équation faisant intervenir les fonctions trigonométriques réciproques, on procède souvent par analyse-synthèse. Dans la phase d'analyse, on applique la fonction cosinus/ sinus ou tangente afin d'obtenir les solutions éventuelles.

- L'équation a un sens pour $x \in [-1, 1]$.
- Analyse: supposons qu'il existe $x \in [-1, 1]$ tel que $\arcsin \frac{4}{5} + \arcsin \frac{5}{13} = \arcsin x$. Alors, $\sin \left(\arcsin \frac{4}{5} + \arcsin \frac{5}{13}\right) = \sin(\arcsin x)$.

$$\sin(\arcsin x) = \sin\left(\arcsin\frac{4}{5} + \arcsin\frac{5}{13}\right) \iff x = \sin\left(\arcsin\frac{4}{5}\right)\cos\left(\arcsin\frac{5}{13}\right) + \sin\left(\arcsin\frac{5}{13}\right)\cos\left(\arcsin\frac{4}{5}\right)$$

$$\iff x = \frac{4}{5} \times \sqrt{1 - \left(\frac{5}{13}\right)^2 + \frac{5}{13}}\sqrt{1 - \left(\frac{4}{5}\right)^2}$$

$$\iff x = \frac{4}{5} \sqrt{\frac{169 - 25}{13^2} + \frac{5}{13}}\sqrt{\frac{25 - 16}{5^5}}$$

$$\iff x = \frac{4}{5} \times \frac{12}{13} + \frac{5}{13} \times \frac{3}{5}$$

$$\iff x = \frac{48 + 15}{65}$$

$$\iff x = \frac{63}{65}$$

$$Donc x = \frac{63}{65}$$

• Synthèse : Posons $x = \frac{63}{65}$.

Alors, $\sin(\arcsin x) = \sin\left(\arcsin\frac{4}{5} + \arcsin\frac{5}{13}\right)$, d'après l'équivalence de la phase d'analyse.

- Or, $\arcsin(x) \in [0, \frac{\pi}{2}] \operatorname{car} x \ge 0$
- De plus, on a $0 \le \frac{4}{5} \le \frac{\sqrt{3}}{2}$ car $\frac{16}{25} \le \frac{3}{4}$ (car $64 \le 75$) donc $0 \le \arcsin\left(\frac{4}{5}\right) \le \arcsin\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3}$ (croissance de l'arcsinus).

De même, $0 \le \frac{5}{13} \le \frac{1}{2}$ car 10 < 13 donc $0 \le \arcsin\left(\frac{5}{13}\right) \le \frac{\pi}{6}$.

On en déduit que $\arcsin\left(\frac{4}{5}\right) + \arcsin\left(\frac{5}{13}\right) \in \left[0, \frac{\pi}{2}\right].$

- Donc $\arcsin x = \arcsin \frac{4}{5} + \arcsin \frac{5}{13}$.
- En conclusion, l'ensemble des solutions est $\left\{\frac{63}{65}\right\}$.