DFS Traversal

- //1. Choose a vertex as start vertex.
- //2. Push start vertex on stack & mark it.
- //3. Pop vertex from stack.
- //4. Print the vertex.
- //5. Put all non-visited neighbours of the vertex //on the stack and mark them.
- //6. Repeat 3-5 until stack is empty.

Single Source Path length

- //1. Create path length array to keep length of vertex from start vertex.
- //2. push start on queue & mark it.
- //3. pop the vertex.
- //4. push all its non-marked neighbors on the queue, mark them.
- //5. For each such vertex calculate length as length[neighbor] = length[current] + 1
- //6. print current vertex to that neighbor vertex edge.
- //7. repeat steps 3-6 until queue is empty.
- //8. Print path length array.

Spanning Tree

- Tree is a graph without cycles. Includes all V vertices and V-1 edges.
- Spanning tree is connected sub-graph of the given graph that contains all the vertices and sub-set of edges.
- Spanning tree can be created by removing few edges from the graph which are causing cycles to form.
- One graph can have multiple different spanning trees.
- In weighted graph, spanning tree can be made who has minimum weight (sum of weights of edges). Such spanning tree is called as Minimum Spanning Tree.
- Spanning tree can be made by various algorithms.
 - BFS Spanning tree
 - DFS Spanning tree
 - Prim's MST
 - Kruskal's MST

DFS Spanning Tree

- //1. push starting vertex on stack & mark it.
- //2. pop the vertex.
- //3. push all its non-marked neighbors on the stack, mark them. //Also print the vertex to neighboring vertex edges.
- 4. repeat steps 2-3 until stack is empty.

- //1. push starting vertex on queue & mark it.
- //2. pop the vertex.
- //3. push all its non-marked neighbors on the queue, mark them. //Also print the vertex to neighboring vertex edges.
- //4. repeat steps 2-3 until queue is empty.

Prim's MST

- 1. Create a set mst to keep track of vertices included in MST.
- 2. Also keep track of parent of each vertex. Initialize parent of each vertex -1.
- 3. Assign a key to all vertices in the input graph. Key for all vertices should be initialized to INF. The start vertex key should be 0.
- 4. While mst doesn't include all the vertices
 - i. Pick a vertex u which is not there in mst and has minimum key.
 - ii. Include vertex u to mst.
 - iii. Update key and parent of all adjacent vertices of u.
 - a. For each adjacent vertex v,
 if weight of edge u-v is less than the current key of v,
 then update the key as weight of u-v.
 - b. Record u as parent of v.

Prim's MST

	K	P
0	1	3
1	2	Ò
2	2	S
3	\sim	
4	Q	W
5	1	6
6	4	3

	K P
0	13,
1	3
2	23
3	D -1
4	73
5	83
6	43

	K	P
0	1	3,
1	2	0
2	2	3
3	0	
4	フ	3
5	8	N
6	4	3

	K	P
0	-	3,
1	2	O
2	2	3
3	\Diamond	-
4	7	3
5	8	\mathcal{S}
6	4	3

	K	P
0	-	$\mathcal{S}_{\tilde{a}}$
1	2	0
2	2	3
3	\sim	
4	7	8
5	5	N
6	4	3
	•	

	K	P
0	1	3,
1	2	Ò
2	2	3
3	Q	-
4	6	D
5	1	6
6	4	3

	K	P
0	_	3,
1	2	Ò
2	2	3
3	\mathcal{O}	<u>-</u>
4	Ų	W
5	1	6
6	4	3

Prim's MST


```
public int findMinKeyVertex() {
              int minKey = 999, minKeyVertex = -1;
              for(int i = 0; i < keys.length; i++) {
                   if(!mst[i] && keys[i] < minKey) {
                        minKey = keys[i];
                        minKeyVertex = i;
              return minKeyVertex;
                                                     0
                                                                        00
                                          ©
                                                                 \infty
                                                00
                                           9
                                                             \sum
                                                       2
                                                  0
                                                                                0
                                                                         ()
                                            \emptyset
                                                              2
```

Dijkstra's Algorithm

- 1. Create a set spt to keep track of vertices included in shortest path tree.
- 2. Track distance of all vertices in the input graph. Distance for all vertices should be initialized to INF. The start vertex distance should be 0.
- 3. While spt doesn't include all the vertices
 - i. Pick a vertex u which is not there in spt and has minimum distance.
 - ii. Include vertex u to spt.
 - iii. Update distances of all adjacent vertices of u.

For each adjacent vertex v,

if distance of u + weight of edge u-v is less than the current distance of v, then update its distance as distance of u + weight of edge u-v.

Dijkstra's Algorithm

	D
0	4
1	6
2	\bigcirc
3	O
4	12
5	W
6	7

	D
0	4
1	
2	\bigcirc
3	∞
4	\propto
5	W
6	8

	D
0	4
1	6
2	0
3	5
4	\propto
5	
6	∞

	D
0	4
1	6
2	\Diamond
3	
4	12
5	
6	7

	D
0	4
1	- 6
2	\bigcirc
3	W
4	12
5	W
6	07

	D
0	4
1	6
2	\bigcirc
3	0
4	12
5	
6	7

	D
0	4
1	6
2	\bigcirc
3	5
4	12
5	
6	۵)