Hands-on Health care

Lab Practices with Real-World Problems

About the AI Tools

SI.	AI Tool	Category	Details
no			
1	Healthcare	Usage	This AI is designed to assist with healthcare administration
	Administration Mentor		topics, including healthcare policy, management, compliance,
			patient health data analysis, patient care coordination, billing,
	Link:		insurance, ethics, and operational efficiency in healthcare
	https://chatgpt.com/g/g-		settings.
	In3b98sai-healthcare-	Why to	Use this AI for guidance on improving healthcare workflows,
	administration-	Use	understanding regulations, optimizing patient experience, data
	mentor/c/67bec9c6-		analysis, managing healthcare teams, and staying updated on
	2a78-800a-8cc1-		best practices in healthcare administration. It helps streamline
	<u>b672546a4a4e</u>		administrative tasks, enhances decision-making, and provides
			structured insights.
		When to	Use this AI when you need quick insights into healthcare
		Use	operations, have questions about compliance, need help with
			healthcare management strategies, or are looking for best
			practices in patient care coordination and financial
			management. It is particularly useful for administrators,
			healthcare managers, and professionals navigating healthcare
			systems and analyzing patient health data.

Title: AI-Powered Health Data Analysis for Early Disease Detection

Problem Statement:

Early diagnosis of diseases like cancer and cardiovascular conditions remains a challenge due to the large volume of patient data and the complexity of interpreting it efficiently. Traditional methods rely on manual analysis, which can be time-consuming and prone to human error. There is a need for an Al-powered solution that can analyze patient data quickly and accurately to detect diseases at an early stage.

Steps to Follow

- 1. **Data Collection** Gather anonymized patient records, including medical history, imaging data, and genetic information.
- 2. **Preprocessing** Clean and standardize data by removing inconsistencies and missing values.

- 3. **AI Model Development** Train machine learning models using historical patient data to identify patterns associated with early disease markers.
- 4. **Validation & Testing** Test the AI system on real-world patient data to measure its accuracy and reliability.
- 5. **Implementation in Hospitals** Integrate the AI system with electronic health records (EHR) to provide real-time alerts to doctors.
- 6. **Dashboard for Visualization & Decision Support** Develop an interactive dashboard to visualize Al-generated insights and disease prediction probabilities.

Tools Used

• Al GPT Tool: <u>Healthcare Administration Mentor</u>

Healthcare Administration Mentor

- AI Models
- EHR Integration
- Interactive Dashboard

Steps in Detail

Step 1: Data Collection

Sample prompt:

Create a new synthetic dataset with 300 records and 10 features or attributes and gather anonymized patient records, including medical history, imaging data, genetic information, and lab test results. Ensure compliance with healthcare data privacy regulations (e.g., HIPAA, GDPR) and share the dataset here

Synthetic Health Dataset				4 4	
	Patient_ID	Age	Gender	Blood_Press	
1	PAT0001	71	Male	125	
2	PAT0002	34	Male	108	
3	PAT0003	80	Male	109	
4	PAT0004	40	Female	146	
5	PAT0005	43	Female	107	
6	PATRICIO	22	Other	136	

Dataset Summary

• Total Records: 300

Columns: 11

• Data Types: Mix of integers and categorical (object) data.

Key Features

- 1. Patient_ID Unique identifier for each patient.
- 2. Age Patient's age (integer).
- 3. Gender Male/Female.
- 4. Blood_Pressure Recorded blood pressure levels.
- 5. Cholesterol_Level Measured cholesterol level.
- 6. Glucose_Level Blood glucose measurement.
- 7. Genetic_Risk_Factor Categorized as Low, Medium, or High.
- 8. Medical_History Includes past diseases (e.g., Cancer, Hypertension, Heart Disease).
- Imaging_Abnormality Indicates any abnormalities detected via medical imaging (Normal, Minor Issue, Major Issue).
- Lab_Test_Result Test outcome (Normal or Abnormal).
- 11. Disease_Risk Final risk assessment (Low, Medium, High).

Step 2: Data Preprocessing

Sample prompt:

Clean and standardize data by removing inconsistencies, missing values, and duplicate records. Normalize imaging data and structure unstructured text data using NLP techniques. and share the revised dataset here.

C	Cleaned Synthetic Health Dataset			± .*	
		Patient_ID	Age	Gender	
1	0	PAT0001	71	1	
2	1	PAT0002	34	1	
3	2	PAT0003	80	1	
4	3	PAT0004	40	0	
5	4	PAT0005	43	0	
6	5	PAT0006	22	2	

Cleaned Dataset Summary

Total Records: 300

Columns: 11

• Data Types: Mostly integer values except for Patient_ID (categorical).

Key Differences from Original Dataset

- 1. Categorical Data Converted to Numeric
 - Gender: Converted to binary (0 = Female, 1 = Male).
 - Genetic_Risk_Factor, Medical_History, Imaging_Abnormality, Lab_Test_Result, and
 Disease_Risk appear to be encoded into numeric values.

2. Data Standardization

 Likely done for machine learning compatibility, making it easier for models to process categorical variables.

Step 3: AI Model Development

Sample prompt:

Train machine learning models (e.g., deep learning, decision trees, or random forests) using historical patient data to identify patterns associated with early disease markers.

Implement explainable AI (XAI) techniques to ensure transparency in decision-making. and share it here in visualization form with the dataset.

	lassification Rep	011		4 6
		precision	recall	f1-score
1	0	0.3	0.28571428571428 57	0. <mark>2</mark> 9268292 83
2	1	0.1875	0.15	0.16666666 663
3	2	0.3333333333333 33	0.42105263157894 735	0.37209302 4
4	accuracy	0.2833333333333 33	0.28333333333333 33	0.28333333 33
_		0.27361111111111	0.28558897243107	0.27714753
Fe	eature Importan	ce		<u>.</u>
Fe	eature Importan			<u>↓</u> ½
Fe	eature Importan	Ce Feature	Importance	<u>+</u> 'c'
F6	eature Importan		Importance 0.17963134162824 887	<u>+</u> e ²
		Feature	0.17963134162824	<u>↓</u> e²
1	4	Feature Glucose_Level	0.17963134162824 887 0.17913577615420	± e²
1 2	4	Feature Glucose_Level Cholesterol_Level	0.17963134162824 887 0.17913577615420 11 0.17678354497701	<u>↓</u> e³

Step 4: Validation & Testing

Sample prompt:

Test the AI system on real-world patient data to measure its accuracy, sensitivity, specificity, and F1-score. Use cross-validation and A/B testing to improve model performance. and share it here in visualization form with the dataset.

Step 5: Implementation in Hospitals

Sample prompt:

Integrate the AI system with electronic health records (EHR) for seamless access by healthcare professionals. Ensure the system provides real-time alerts for early disease detection. and share it here in visualization form with the dataset please use more visualization and charts for better understanding.

The EHR Integration Flowchart above illustrates how patient data moves through the AI system, from EHR ingestion to real-time alerts for healthcare professionals.

The **Real-Time Alert Distribution** chart is now correctly displayed, showing the number of patients who received alerts based on their risk assessment.

To summarize:

- . EHR Integration Flowchart illustrates how patient data flows through the AI system.
- . Disease Risk Distribution shows the proportion of patients at Low, Medium, and High risk.
- Real-Time Alert Distribution visualizes how many patients received alerts for potential early disease detection.
- Time-to-Detection Efficiency compares Al-based disease detection speed versus traditional methods.

El	HR-Integrated	d Synthetic Health Datas	± .*	
		Patient_ID	Age	Gender
1	0	PAT0001	71	1
2	1	PAT0002	34	1
3	2	PAT0003	80	1
4	3	PAT0004	40	0
5	4	PAT0005	43	0
6	5	PATOOO6	22	2