Poznámka

At least 1 from (3-)4 homework (flexible deadlines – last lecture).

Poznámka

In this lecture, there was also the revision of topology. (Topological space, topology, basis of topology, continuous map, quotient space, product topology, Hausdorff spaces).

Poznámka

World Homotopy comes from homós (= same, simiar) and topos (place).

Definice 0.1 (Homotopic functions)

Given two topological spaces X and Y and two continuous functions $f, g: X \to Y$, we say that f is homotopic to g ($f \sim g$) if there is a 1-parametric family $f_t: X \to Y$: $f_0 = f$, $f_1 = g$ and the map $F: [0,1] \times X \to Y$ defined by $(t,x) \mapsto f_t(x)$ is continuous.

Definice 0.2 (Homotopy equivalent spaces)

Given two topological spaces X and Y we say that X and Y are homotopy equivalent if there is a pair of continuous maps (f,g) such that $f:X\to Y$ and $g:Y\to X$ and $X\stackrel{f}{\to} Y$ and $Y\stackrel{g}{\to} X$, $g\circ f\sim \mathrm{id}_X$, $f\circ g\sim \mathrm{id}_Y$.

Příklad

Given \mathbb{R} , \mathbb{R}^2 with the standard Euclidean topology and two maps $f: \mathbb{R} \to \mathbb{R}^2$, $x \mapsto f(x) = (x, x^3)$, $g: \mathbb{R} \to \mathbb{R}^2$, $x \mapsto g(x) = (x, e^x)$.

Are f and g homotopic? (Show that by constructing homotopy.)

Řešení

$$F(t,x) = (1-t)(x,x^3) + t(x,e^x) = (x,(1-t)x^3 + te^x).$$

Příklad

Given three topological spaces $(X, \tau_X), (Y, \tau_Y), (Z, \tau_Z)$ and two pairs of continuous maps $f_1, g_1 : (X, \tau_X) \to (Y, \tau_Y)$ and $f_2, g_2 : (Y, \tau_Y) \to (Z, \tau_Z)$. Assume that f_1 is homotopic to g_1 and f_2 is homotopic to g_2 . Show that $f_2 \circ f_1$ is homotopic to $g_2 \circ g_1$.

Řešení

$$F(t,x) = F_2(t, F_1(t,x)).$$

Příklad

Take $B^n := \{x, \dots, x_n | \sqrt{x_1^2 + \dots + x_n^2} \le 1\} \subseteq \mathbb{R}^n$. And take a map $f : B^n \to B^n$: $f(x) = (0, \dots, 0) \in B^n$ for all $x \in B^n$. Shows that there is a homotopy from id to f.

Řešení

$$F: [0,1] \times B^n \to B^n, \qquad (t,x) \mapsto (1-t)x.$$

Příklad

Take a 2-ball B^2 . B^2 is homotopy equivalent to its center by previous problem, but it is not homeomorphic to (0,0).

Definice 0.3 (Deformation retraction)

A deformation retraction of a topological space X onto a subspace A is a family of maps $f_t: X \to X, t \in [0,1]$: $f_0 = \mathrm{id}_X, f_1(X) = A$ and $f_t|_A = \mathrm{id}_A$. And family f_t is continuous in the following sense:

$$F: [0,1] \times X \to X, (t,x) \to f_t(x)$$
, is continuous.

Tvrzení 0.1

Given a deformation retraction $f_t: X \to X$, there is a pair $(f,g): X \xrightarrow{f} A \xrightarrow{g} X: g \circ f \sim \mathrm{id}_X$, $f \circ g \sim \mathrm{id}_A$.

Poznámka (Suggestion)

$$f = f_1, g = f_i \circ i_A \ (A \stackrel{i_A}{\hookrightarrow} X), \text{ tj. } f \circ g : A \stackrel{i_A}{\hookrightarrow} X \stackrel{f_1}{\rightarrow} X \stackrel{f_1}{\rightarrow} X, a \mapsto a \mapsto a \text{ (or } A)$$

 $\implies f \circ g = \mathrm{id}_A. \ g \circ f : X \stackrel{f_i}{\rightarrow} A \stackrel{i_A}{\rightarrow} X \implies f_1(x) \sim \mathrm{id}_X.$

Definice 0.4

Given two topological spaces X and Y and a continuous map $f: X \to Y$, the mapping cylinder M_f is defined to be the quotient space of $X \times [0,1] \coprod Y$ and $\sim: (x,1) \sim f(x)$. $M_f = X \times [0,1] \times Y / \sim$.

Tvrzení 0.2

Given X, Y and f, M_f deformation retracts to Y.

Důkaz (/ Idea of proof)

The way to construct $f_t = F(\cdot, t) : M_f \to M_f$ is to slide each point (x, t) along the segment $\{x\} \times [0, 1]$ to f(x):

$$F: (x,t) \mapsto f(x), \quad \forall y \in Y: y = F \mapsto \{f_1 = \operatorname{id} Y \to Y\}$$

In your HW you will check that F(x,t) is continuous.

Poznámka

Cell complex (CW complex) is a topological space with a nice decomposition into small pieces.

- 1. Start with a discrete set X^0 , whose points are called 0-cells.
- 2. We form the *n*-skeleton X^n from X^{n-1} by attaching cells $e^n_\alpha = I^n = [0,1]^n$. By the attachment we mean $(e^n_a = B^n_\alpha, \partial e^n_a = S^n_\alpha)$ $\varphi_\alpha: \partial e^n_\alpha \to X^{n-1}$. Hence we can view $X^n = X^{n-1} \coprod \coprod B^n_\alpha / \sim$, where $x \sim \varphi_\alpha(x)$ for $x \in \partial \partial B^n_\alpha$.
- 3. We can either stop this inductive process at a certain finite steps or take an infinite number of steps. In the first case $X = X^n$ for some n, in the second one $X = \bigcup_{n \in \mathbb{N}_0} X^n$ with the weak topology $(A \subset X \text{ is open } \leftrightarrow A \cap X^n \text{ is open for all } n)$.

Například

Example of 1-skeleton is graph.

Definice 0.6

Given a cell complex X. Each cell e^n_{α} has a characteristic map $\Phi_{\alpha}: e^n_{\alpha} = B^n_{\alpha} \to X$ which extends the attaching map $\varphi_{\alpha}: \partial B^n_{\alpha} \to X^n$, it is homeomorphism from the interior of B^n_{α} onto e^n_{α} . Namely

$$B^n_{\alpha} \hookrightarrow X^{n-1} \coprod \coprod_{\beta} B^n_{\beta} \stackrel{quotient}{\longrightarrow} X^n \to X, \qquad B^n_{\alpha} \to X$$

Definice 0.7

A subcomplex of CW complex is a closed subspace $A \subset X$ that is a union of cells with the corresponding attachments.

Příklad

Construct two different CW structures on S^2 .

$$S^2 = e^0 \cup e^2, \ S^2 = e^0 \cup e^1 \cup \{e_1^2, e_2^2\}.$$
 (See practicals.)

Příklad

We define $\mathbb{R}P^n$ to be the quotient of S^n/\sim , where $V\sim$ the antipodal point to V. TODO?

Definice 0.8

Consider a pair (X,A) where X is a CW complex and A is subcomplex. Then we define the quotient complex X/A to be the CW complex with the structure: There are all the cells of $X\backslash A$ with the corresponding attaching maps, and there is a extra 0-cell which is A in $X\backslash A$. For a cell e^n_α of $X\backslash A$ attached by $\varphi_\alpha: S^{n-1} \to X^{n-1}$, the attaching map in the corresponding cell in $X\backslash A$ is the composition $S^{n-1} \to X^{n-1} \to X^{n-1}/A^{n-1}$.

Příklad

Show that $S^n = e^0 \cup e^n$ is $B^n/S^{n-1} = TODO/e^0 \cup e^{n-1}$.

TODO!!!

Tvrzení 0.3

There is an isomorphism $\Pi_1(X, x_1) \to \Pi_1(X, x_0)$ for x_0 and x_1 in the same path connected component.

 $D\mathring{u}kaz$

Since x_0 , x_1 are in one path connected component \tilde{X} , \exists path $h:[0,1] \to X$: h is in \tilde{X} and $h(0) = x_0$, $h(1) = x_1$. $\overline{h}(s) := h^{-1}(s) := h(1-s)$, $s \in [0,1]$.

To each loop f based at x_1 we associate a loop $h \circ f \circ h^{-1}$. $h \circ f \circ h^{-1}$ is based at x_0 . $\beta_h : \Pi_1(x, x_1) \to \Pi_1(x, x_0), [f] \mapsto [h \circ f \circ h^{-1}]$. We claim, that β_h is an isomorphism. β_h is homomorphism.

$$\beta_h([f \cdot h]) = [hfgh^{-1}] = [hfh^{-1}hgh^{-1}] = [hfh^{-1}] \cdot [hgh^{-1}] = \beta_h([f]) \cdot \beta_h([g]).$$

" β_h is isomorphism": "the inverse of β_h is $\beta_{h^{-1}}$ " (which is homomorphism too by the argument we used for β_h):

$$\beta_{h^{-1}}(\beta_h([f])) = \beta_{h^{-1}}([hfh^{-1}]) = [h^{-1}hfh^{-1}h] = [f].$$

Věta 0.4 (Fundamental group of S^1)

 $\overline{S^1}$ is path connected, thus $\Pi_1(S^1, x_0) = \Pi_1(S^1)$.

 $\Pi_1(S^1) \simeq \mathbb{Z}.$

 $D\mathring{u}kaz$

We claim that $\Pi_1(S^1) \simeq \langle [\omega] \rangle$, where $\omega : [0,1] \to S^1$, $s \mapsto (\cos(2\pi s), \sin(2\pi s)) \in \mathbb{R}^2$, $s \in [0,1]$. $\omega_n(s) := (\cos(2\pi ns), \sin(2\pi ns)) \sim \omega^n$, so $[\omega]^n = [\omega_n]$.

Now our theorem is equivalent to the statement that every loop in S^1 based at (1,0) is homotopic to the unique ω_n . We use the following two facts:

Fact 1: For every path $f: I \to X$ starting at $x_0 \in X$ and each $\tilde{x}_0 \in p^{-1}(x_0)$ there is a unique lift $\tilde{f}: I \to \tilde{X}$ starting at x_0 .

Fact 2: For each homotopy $f_x: I \to X$ of paths starting at x_0 and each $\tilde{x}_0 \in p^{-1}(x_0) \exists$ unique lifted homotopy $\tilde{f}_t: I \to \tilde{X}$ of paths starting at \tilde{x}_0 .

p that we need: $p: \mathbb{R} \to S^1$; $p(s) = (\cos 2\pi s, \sin 2\pi s)$. If we define $\tilde{\omega}_n(s) = n \cdot s$. We will apply Facts 1 and 2 to $p: \mathbb{R} \to S^1$, $\tilde{\omega}_n$: Given $f: [0,1] \to S^1$ based at (0,1) representing some element of $\Pi_1(S^1)$. We take \tilde{f} . Since $p\tilde{f}(1) = f(1) = (1,0)$ (and $p^{-1}(1) \in \mathbb{Z}$), we can argument that if \tilde{f} ends at u (i.e. $\tilde{f}(1) = f$), it is homotopoc to $\tilde{\omega}_n$ by the homotopy $\tilde{F} = (1-t)\tilde{f} + t\tilde{\omega}_n$.

From fact 1 exists \tilde{f} starting at 0 and ending at $p^{-1}(1) \in \mathbb{Z}$.

Theorem: Exists homotopy \tilde{F} from $\tilde{\omega}_k$ to \tilde{f} denoted by (*).

So we define homotopy F from ω_n to f by $F = p \circ \tilde{F}$, homotopy from ω_n to f. Since $[\omega_n] = n \cdot [\omega]$, $\Pi_1(S^1) \simeq \mathbb{Z}$.

Now we would like to show that [f] is uniformly determined. Assume that $f \sim \omega_n$ and $f \sim \omega_m$, then using Facts 1 and 2 we have $[\omega_n] = [\omega_m]$ which lends to contradiction since they have different endpoints on \mathbb{R} .

Definice 0.9

Given a topological space X, a covering space of X consists of a topological space \tilde{X} and a continuous map $p: \tilde{X} \to X$ satisfying that $\forall x \in X \exists$ open neighbourhood U of x in X such that $p^{-1}(U)$ is a disjoint union of open subsets U_{α} each of which is homeomorphically mapped to U.

Definice 0.10

Given a map $[0,1] \xrightarrow{f} X$ and $p: \tilde{X} \to X$ we say that $\tilde{f}: [0,1] \to \tilde{X}$ is a lift of f if $p \circ \tilde{f} = f$.

The same construction can be defined for homotopy.

Tvrzení 0.5

Given a map $F: Y \times [0,1] \to X$ and a map $\tilde{F}: Y \times \{\mathbf{o}\} \to \tilde{X}$, where $p: \tilde{X} \to X$ is a covering space, and \tilde{F} lifts $F|_{Y \times \{\mathbf{o}\}}$; there restricting to \tilde{F} on $Y \times \{\mathbf{o}\}$.

Pozn'amka (Corollary: Fact 1 and Fact 2 from the previous proof) Fact 1 is free, it comes when $Y = \{point\}$, Fact 2 also follows.

Příklad

We say that a topological (path-connected) space is simply connected $\Leftrightarrow \Pi_1(X) = \{e\}$. Examples of simply connected topological spaces: $\mathbb{R}, \mathbb{R}^2, \ldots S^1$ is not simply connected.

Příklad

Given X, Y path-connected and $x_0 \in X$, $y_0 \in Y$. Show that $\Pi_1(X \times Y, (x_0, y_0)) \simeq \Pi_1(X, x_0) \times \Pi_1(Y, y_0)$.

Řešení

Product topology is defined to be such that a map $f: Z \to X \times Y$ is continuous $\Leftrightarrow (p_x: X \times Y \to X, p_y: X \times Y \to Y) \ p_x \circ f$ and $p_y \circ f$ are continuous.

A loop $\gamma:[0,1] \to X \times Y$ based at (x_0,y_0) splits at two loops $\gamma_1:[0,1] \to X$, $\gamma_2:[0,1] \to Y$. The same holds for homotopy, i.e. F from γ to $\tilde{\gamma}$ splits into (F_1,F_2) , where F_1 is a homotopy on X from γ_1 to $\tilde{\gamma}_1$ and F_2 is a homotopy on Y from γ_2 to $\tilde{\gamma}_2$.

Důsledek

$$\Pi_1(T^n) := \Pi_1(S^1 \times S^1 \times \ldots \times S^1) = \mathbb{Z}^n.$$

Příklad

Show that TODO!!! is a covering space for S^1VS^1 .

TODO!!!