

Medical Language Models for Data Scientists

April 2025

Welcome - We have a lot of things ahead of us

	50 min	Building Patient Journeys & Cohorts
	10 min	Break
	50 min	Medical Terminology Server
	10 min	Break
	50 min	Oncology research and treatment with Healthcare
	10 min	Break
	50 min	De-identification of Medical Images in DICOM Format

Building Patient Journeys & Cohorts

Healthcare Data Comes From Multiple Sources

Building Patient Journeys

Integrate Multimodal Data
Natural Language Q&A
Build Patient Cohorts

Understand Timelines

Make Clinical Inferences

Explain & Discuss

Keep Provenance of Information

Using Structured Data Only

The JSON data provided does not explicitly list any details related to preventative care or screenings for the patient. There are no specific entries for routine vaccinations, screenings like mammograms, colonoscopies, or other preventative measures typically logged in EHRs, such as blood pressure checks or diabetes screenings.

Adding Unstructured Notes

Routine Imaging and Screenings:

•There is a mention of a 'Diagnostic mammogram and ultrasound panel' which typically serves as a screening tool for breast cancer. This reflects an engagement in preventative health measures related to potentially identifying malignancies early.

Lung and Respiratory Health Monitoring:

•The repeated references to 'pulmonary emphysema,' 'bronchiectasis,' and 'chronic obstructive lung disease' suggest ongoing monitoring efforts for respiratory conditions, which can be preventative in nature, particularly to manage the progression and complications associated with chronic lung diseases.

•Skin Assessments:

•Several entries indicate monitoring of skin nodules and conditions that may correlate with skin cancer screenings or evaluations:: 1105-1111.

Blood Tests:

•There are a variety of routine blood tests mentioned which can provide information necessary for preventative care regarding metabolic health, and cardiovascular risk factors. Screening for conditions such as hyperlipidemia relates to cardiovascular prevention strategies

Adding FHIR Resources

Chronic Obstructive Lung Disease (COPD) Management: The patient has numerous instances indicating chronic obstructive lung disease with an emphasis on ongoing symptom management, including the use of inhalers such as **tiotropium**. Regular monitoring and use of inhaled medications are part of the standard preventative care for COPD patients to manage symptoms and reduce exacerbations.

Screening for Lung Health: There are several measurements related to lung capacity, including Exploratory Reserve Volume and Diffusion Capacity noted within the entries. These tests are critical in assessing lung function and can be part of routine screenings for patients with respiratory conditions.

Disease Management for Cardiovascular Health: There are references to **Coronary Arteriosclerosis** and treatments like **atorvastatin**, which suggest routine cholesterol screening and treatment to mitigate cardiovascular risk factors is part of the patient's preventative care regimen.

Screening for Psychosocial Issues: The records also suggest continuous monitoring of mental health through various scales that may be used for evaluating conditions like anxiety and depression as part of preventative mental health care.

Routine Lab Work: Frequent entries related to blood counts, renal function tests, and other metabolic panels indicate an emphasis on preventative health measures through regular laboratory assessments, which are essential for early detection of any abnormalities that may require intervention.

Semantic Information Extraction (Healthcare NLP)

begin	end	entity_type	assertion	confidence
47	59	Cancer_Dx	Present	0.9992
74	80	Smoking_Status	Past	0.9310
160	172	Cancer_Dx	Family	1.0000

Medical Terminology: Resolving to Standard Codes

```
"url": "https://fhir/Mutation#assessed.gene",
"valueCodeableConcept": {
  "coding": [
      "system": "http://ncit.nci.nih.gov",
      "code": "C17757",
      "display": "EGFR"
"url": "https://fhir/Mutation#assessed.referenceSeq",
"valueCodeableConcept": {
  "coding": [
      "system": "http://ncbi.nlm.nih.gov/CCDS",
      "code": "5514.1",
      "display": "CCDS 5514.1"
"url": "https://fhir/Mutation#assessed.variant",
"valueCodeableConcept": {
  "coding": [
      "system": "http://www.hgvs.org/mutnomen",
      "code": "c.2369C>T",
      "display": "c.2369C>T"
      "system": "http://www.hgvs.org/mutnomen",
      "code": "p. T790M",
      "display": "T790M"
```


ner_chunk	entity	snomed_code	resolved_text
Catheterization of left heart	Procedure	67629009	Catheterization of left heart
selective coronary angiogram	Test	33367005	Coronary angiography
common femoral angiogram	Test	4701000087107	Angiography of right femoral artery
StarClose closure of right common femoral artery	Procedure	310621009	Patch repair of femoral artery

Merging & Deduplicating Facts to Build a Patient Graph

4150125 - Persistent pain following procedure	EHR billing record
77670 - Chest pain	EHR billing record
198263 - Right upper quadrant pain	EHR billing record
77670 - Chest pain	NLP derived
4329041 - Pain	NLP derived
200219 - Abdominal pain	NLP derived
4329041 - Pain	NLP derived
4329041 - Pain	NLP derived
4170554 - Hip pain	NLP derived
4329041 - Pain	NLP derived
761856 - Pain at rest of left upper limb due to ather	NLP derived
4329041 - Pain	NLP derived
4170554 - Hip pain	NLP derived
4329041 - Pain	NLP derived
77670 - Chest pain	NLP derived
4147218 - Swallowing painful	NLP derived
4329041 - Pain	NLP derived
200219 - Abdominal pain	NLP derived
4329041 - Pain	NLP derived
4329041 - Pain	NLP derived

Making Clinical Inferences and Calculations

Rule-based Medical Calculation

Patient Note

A 68-year-old man with the left hemiparesis from 2 h previously visited the emergency room. His medical history included hypertension and bilateral emphysema due to heavy smoking. Vital sign assessment revealed tachycardia; examination of the heart revealed atrial [...]

Question

What is the patient's CHA2DS2-VASc score?

Explanation

The patient is 68 years old. Because the age is between 65 and 74, one point added to the score, making the current total 0 + 1 = 1. The patient's gender is male so no points are added to the current total, keeping the total at 1. The patient history for congestive heart [...]

Final Answer

7

Equation-based Medical Calculation

Patient Note

The patient was a 20-year-old previously healthy woman. She was a university student. Her height and body weight were 168.1 cm and 52.2 kg, respectively. She ingested bamboo salt (about 150 grams) in a day for the purpose of digestion and weight reduction [...]

Question

What is the patient's albumin corrected anion gap in mEq/L?

Explanation

The formula for computing a patient's albumin corrected anion gap is: anion gap (in mEq/L) + 2.5 * (4 - albumin (in g/dL)). The formula for computing a patient's anion gap is: sodium (mEq/L) - (chloride (mEq/L)+ bicarbonate (mEq/L)). The concentration of sodium [...]

Final Answer

19.25

MedCalc-Bench: Evaluating Large Language Models for Medical Calculations

Nikhil Khandekar, Qiao Jin, Guangzhi Xiong, Soren Dunn, Serina S Applebaum, Zain Anwar, Maame Sarfo-Gyamfi, Conrad W Safranek, Abid A Anwar, Andrew Zhang, Aidan Gilson, Maxwell B Singer, Amisha Dave, Andrew Taylor, Aidong Zhang, Qingyu Chen, Zhiyong Lu

Current LLMs Can't Work on Complex Queries

Q: "Find patients diagnosed with back pain that have had spinal fusion."

- RAG can't find relevant information
- Text2SQL hallucinates in real-world DB settings, or build queries that fail
- Lack of consistency
- **Democratize** Cohort creation

```
WITH
- Identify tuberculosis diagnosis concepts
tb_diagnosis_concepts AS (
  SELECT c.concept_id
  FROM concept c
  JOIN concept_ancestor ca ON ca.descendant_concept_id = c.concept_id
  WHERE ca.ancestor_concept_id IN (
       -- Add the root concept ID for tuberculosis and its descendants
       SELECT concept_id
       FROM concept
       WHERE concept_name = 'Tuberculosis Family'
       -- Ensure you replace 'Tuberculosis Family' with the correct name if different
     AND c.standard_concept = 'S'
- Identify tuberculosis drug concepts
tb_drug_concepts AS (
  SELECT c.concept_id
  FROM concept c
  JOIN concept_ancestor ca ON ca.descendant_concept_id = c.concept_id
  WHERE ca.ancestor_concept_id IN (
       -- Add the root concept ID for tuberculosis treatments and its descendants
       SELECT concept_id
       FROM concept
       WHERE concept_name = 'Tuberculosis Treatment'
       -- Ensure you replace 'Tuberculosis Treatment' with the correct name if
different
     AND c.standard_concept = 'S'
```


The OMOP CDM

Observational Medical Outcomes Partnership - Common Data Model

Enhancing Healthcare through Data, since 2009

Foundation: Part of the Observational Health Data Sciences and Informatics (OHDSI) initiative.

Objective: Utilize open-source data solutions to improve human health via large-scale analysis.

Purpose: Standardize the structure and content of observational healthcare data.

Methods:

- Through pseudonymisation and common data quality assessments, the OMOP-CDM provides a robust framework for converting complex EMR data into a standardised format.
- By securely sharing de-identified and aggregated data and conducting analyses across multiple OMOP-converted databases, patient-level data is securely firewalled within its respective local site.

"an international collaborative whose goal is to create and apply open-source data analytic solutions to a large network of health databases to improve human health and wellbeing"

Seamless EMR data access: Integrated governance, digital health and the OMOP-CDM, Feb 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10882353/

The OMOP CDM

Observational Medical Outcomes Partnership - Common Data Model

CDM v5.4

- > 39 tables
- > 433 fields
- > 7 categories

https://ohdsi.github.io/CommonDataModel/cdm54.html

Data Ingestion

Natural Language in Cohort Level

Behind the scenes: Multi-agent system

Find patients diagnosed with back pain that have had spinal fusion

Concept resolver: Find concept id for given entity.

Back pain: Condition (SNOMED

194133)

Spinal fusion: Procedure (SNOMED

4177164)

Build query for OMOP CDM

Retrieve records and make reply

Flexible Cohort Review

Natural Language in Patient Level

Fine-Grained View of Patient Journeys

Track Provenance of Information

- EHR System
- FHIR document
- Raw clinical notes
 (NLP)

OMOP CDM (PostgreSQL)

Records for one patient

table_name name	row_count bigint
note_nlp	5852
observation	211
visit_occurrence	151
note	151
condition_occurrence	138
measurement	76
person	11
procedure_occurrence	11
drug_exposure	8

OMOP CDM (PostgreSQL)

Can query the DB directly

