

Smart contracts in a proof assistant

<u>Danil Annenkov</u>, Mikkel Milo, Jakob Botsch Nielsen and Bas Spitters The COBRA Seminar, October 5, 2021.

Aarhus University, Concordium Blockchain Research Center

• What are types for?

1

- What are types for?
- To write specs!

```
int compute (int n, int m) {
  n + n/m;
}
```

• What we can say about compute by its signature?

- What are types for?
- To write specs!

```
int compute (int n, int m) {
  n + n/m;
}
```

- What we can say about compute by its signature?
- Not much:
 - takes two (32-bit signed) integer numbers;
 - returns an integer number.

- What are types for?
- To write specs!

```
int compute (int n, int m) {
  n + n/m;
}
```

- What we can say about compute by its signature?
- Not much:
 - takes two (32-bit signed) integer numbers;
 - returns an integer number.
- It is helpful: compute("blah", true) is rejected by the compiler.

- What are types for?
- To write specs!

```
int compute (int n, int m) {
  n + n/m;
}
```

- What we can say about compute by its signature?
- Not much:
 - takes two (32-bit signed) integer numbers;
 - returns an integer number.
- It is helpful: compute("blah", true) is rejected by the compiler.
- But not so much, sometimes:
 compute(42,0) is well-typed, but fails at run-time.

- What are types for?
- To write specs!

```
int compute (int n, int m) {
  n + n/m;
}
```

- What we can say about compute by its signature?
- Not much:
 - takes two (32-bit signed) integer numbers;
 - returns an integer number.
- It is helpful: compute("blah", true) is rejected by the compiler.
- But not so much, sometimes:
 compute (42,0) is well-typed, but fails at run-time.
- Can we do better?

Proof assistants

Proof assistants — software for developing machine-checkable proofs.

- For mathematics and computer science.
- Proofs are developed by interacting with users.
- Proof automation: tactics, decision procedures, SMT integration.

Proof assistants

Proof assistants — software for developing machine-checkable proofs.

- For mathematics and computer science.
- Proofs are developed by interacting with users.
- Proof automation: tactics, decision procedures, SMT integration.

Some application in CS:

- Proving correctness of compilers, type checking/type inference, etc.
- Program verification.
- "Extraction" of the bug-free implementation.

The Coq proof assistant

- Coq means "rooster" in French.
- Mature system: more than 30 year!
- Used in many project in CS and mathematics:
 CompCert, Four color theorem, Feit-Thompson theorem, ...
- Based on dependent types: can express specs in types!
- Widely used in COBRA verification projects.

Notation

Java-like syntax

```
int my_func (int n, int m) {
   ...
}
```

Coq syntax

```
\begin{array}{ll} \textbf{Definition my\_func (n m : Z) : } & \textbf{Z} := \\ & \dots \end{array}
```

- we write z for the integer type;
- n : Z means that n is an integer.

- Coq's version of refinement types.
- Types with a predicate.
- Notation: $\{x : A \mid P x\}$.
- Elements of A that satisfy the predicate P.

- Coq's version of refinement types.
- Types with a predicate.
- Notation: $\{x : A \mid P x\}$.
- Elements of A that satisfy the predicate P.
- Elements are essentially value-proof pairs with projections
 - proj1_sig returns a value of type A;
 - proj2_sig returns a proof that P hold for the value.

- Coq's version of refinement types.
- Types with a predicate.
- Notation: $\{x : A \mid P x\}$.
- Elements of A that satisfy the predicate P.
- Elements are essentially value-proof pairs with projections
 - proj1_sig returns a value of type A;
 - proj2_sig returns a proof that P hold for the value.
- Examples:
 - $\{n : nat \mid 0 < n\}$ positive natural numbers;
 - {i : Z | 0 <> i} non-zero integers;

- Coq's version of refinement types.
- Types with a predicate.
- Notation: $\{x : A \mid P x\}$.
- Elements of A that satisfy the predicate P.
- Elements are essentially value-proof pairs with projections
 - proj1_sig returns a value of type A;
 - proj2_sig returns a proof that P hold for the value.
- Examples:
 - $\{n : nat \mid 0 < n\}$ positive natural numbers;
 - {i : Z | 0 <> i} non-zero integers;
 - $\{xs : list A \mid 0 < length xs\}$ non-empty lists.
- Program environment for managing proof obligations.
- Convenient for the correct-by-construction approach.

We can do better now

We specify the invariant for division in the type

```
\begin{array}{llll} \textbf{Program Definition safe\_div } \left(\mathbf{n}:\mathbf{Z}\right) \left(\mathbf{m}: \left\{ \begin{array}{lll} \mathbf{i}: \ \mathbf{Z} \mid \ \mathbf{i} <> 0 \right\} \right): \mathbf{Z}:=... \\ \textbf{Definition safe\_compute } \left(\mathbf{n}:\mathbf{Z}\right) \left(\mathbf{m}: \left\{ \begin{array}{lll} \mathbf{i}: \ \mathbf{Z} \mid \ \mathbf{i} <> 0 \right\} \right): \mathbf{Z}:=\\ \mathbf{n} + \mathbf{safe\_div n m}. \end{array}
```

We can do better now

We specify the invariant for division in the type

```
Program Definition safe_div (n : Z) (m : { i : Z | i <> 0}) : Z := ... Definition safe_compute (n : Z) (m : { i : Z | i <> 0}) : Z := n + safe_div n m.
```

For each call of safe_compute, we must provide a proof of the invariant.

```
Program Definition compute_power_2 (n m : nat) : Z :=
  safe_compute (2^n) (2^m).
(* Here we prove that 2^m <> 0 *)
```

We can do better now

We specify the invariant for division in the type

```
Program Definition safe_div (n : Z) (m : { i : Z | i <> 0}) : Z := ... Definition safe_compute (n : Z) (m : { i : Z | i <> 0}) : Z := n + safe_div n m.
```

For each call of safe_compute, we must provide a proof of the invariant.

```
Program Definition compute_power_2 (n m : nat) : Z :=
  safe_compute (2^n) (2^m).
(* Here we prove that 2^m <> 0 *)
```

A validation barrier at the entry point:

validate user input once and for all, the rest works on valid data

```
Program Definition public_compute (n m : Z) : option Z :=
  match is_zero m with
  | right p \Rightarrow Some (safe_compute n m)
  | left p \Rightarrow None (* signals that the validation has failed *)
  end.
```

NOTE: option z means it is a partial function.

Smart contracts

Programs deployed on a blockchain

- Transaction protocols between parties.
- Use the underlying blockchain infrastructure.
- Often targeted by hackers.

Smart contract layer

Transaction layer

Consensus layer

Peer-to-peer layer

Functional smart contract languages

• Contracts are (partial) state transition functions:

```
\texttt{contract} : \texttt{CallCtx} * \texttt{Msg} * \texttt{State} \rightarrow \texttt{option} \ (\texttt{State} * \texttt{list} \ \texttt{Action})
```

- takes a triple (call_ctx, msg, st);
- either returns a tuple (st, actions), or fails.

Functional smart contract languages

• Contracts are (partial) state transition functions:

```
\mathtt{contract}: \mathtt{CallCtx} * \mathtt{Msg} * \mathtt{State} \rightarrow \mathtt{option} \ (\mathtt{State} * \mathtt{list} \ \mathtt{Action})
```

- takes a triple (call_ctx, msg, st);
- either returns a tuple (st, actions), or fails.
- A scheduler
 - updates the state;
 - handles transfers and calls to other contracts in Action list.

Fits well with modern blockchains: Concordium, Tezos, Dune.

ConCert: A Smart Contract Certification Framework

- Infrastructure for developing smart contracts in Coq.
- The execution layer (formalises the scheduler).
- Smart contract verification infrastructure.
- Generation of executable code for several target platforms: Concordium, Tezos, Dune.

ConCert: A Smart Contract Certification Framework

- Infrastructure for developing smart contracts in Coq.
- The execution layer (formalises the scheduler).
- Smart contract verification infrastructure.
- Generation of executable code for several target platforms:
 Concordium, Tezos, Dune.
- Verified: token standards implementations, escrow, crowdfunding . . .
- Most recent (by Eske Hoy Nielsen):
 Dexter a decentralised exchange for Tezos.
- WIP: formalisation of the Concordium's token standard (CTS).

Program Definition dec_counter (...) := ...

```
Definition State := Z.

Program Definition inc_counter
   (prev_st : State) (* take the previous state *)
   (inc : Z) : (* increment by [inc] *)
   State (* return a new (incremented!) state *)
   := prev_st + inc.

Program Definition dec_counter (...) := ...
```

```
Definition State := Z.

Program Definition inc_counter
   (prev_st : State)
   (inc : {z : Z | 0 < z }) :
    { new_st : State | prev_st < new_st \land new_st = prev_st + inc }
    := prev_st + inc.
    (* the proof is constructed using proof automation *)

Program Definition dec_counter (...) := ...</pre>
```

```
Definition State := Z.

pre-condition

Program Definition inc_counter

(prev_st : State)

(inc : {z : Z | (0 < z)}) :

{ new_st : State | (prev_st < new_st \wedge new_st = prev_st + inc)}

:= prev_st + inc.

(* the proof is constructed using proof automation *)

Program Definition dec_counter (...) := ...
```

```
Definition State = 7
Program Definition inc_counter
      (prev_st : State)
      (inc : {z : Z | 0 < z }) :
      \{ \text{ new\_st} : \text{State} \mid \text{prev\_st} < \text{new\_st} \land \text{new\_st} = \text{prev\_st} + \text{inc} \} 
      := prev_st + inc.
      (* the proof is constructed using proof automation *)
Program Definition dec_counter (...) := ...

    validation barrier

Program Definition counter_receive (msg : Msg) (st : State)
      : option (State * list Action) :=
     match msg with
      Inc i \Rightarrow match is_gt_zero i with
                        \label{eq:leftham} \begin{array}{l} \texttt{left} \; \texttt{H} \Rightarrow \texttt{Some} \; (\texttt{inc\_counter} \; \texttt{st} \; \texttt{i}, \, []) \\ \texttt{right} \; \_ \Rightarrow \texttt{None} \end{array}
        Dec i \Rightarrow ...
   end.
```

More properties!

• Subset types are convenient for invariants on the contract's state.

More properties!

- Subset types are convenient for invariants on the contract's state.
- Crowdfunding:

individual contributions and the total balance agree.

More properties!

- Subset types are convenient for invariants on the contract's state.
- Crowdfunding:

individual contributions and the total balance agree.

• Tokens:

balances are preserved.

More theorems!

- Sometimes subset types are not enough:
 - how different functions relate to each other
 FMap.find k (FMap.add k v m) = Some v
 - smart contract interactions
 - ..

More theorems!

- Sometimes subset types are not enough:
 - how different functions relate to each other
 FMap.find k (FMap.add k v m) = Some v
 - smart contract interactions
 - ...
- Use a different verification style: state and proof theorems after writing all definitions.

More theorems!

- Sometimes subset types are not enough:
 - how different functions relate to each other
 FMap.find k (FMap.add k v m) = Some v
 - smart contract interactions
 - ...
- Use a different verification style: state and proof theorems after writing all definitions.
- A property for Counter on execution traces:

```
Theorem counter_correct: forall init_val state contract_calls, reachable state → (* other conditions *) state = sum_inc_dec contract_calls init_val.
```

the contract's state is exactly the sum of all increments and decrements sent to the contract, plus the initial counter value.

Code extraction in Coq

- Now we have a verified smart contract in Coq.
- How we can obtain "actual" SC code from a formal development?

Code extraction in Coq

- Now we have a verified smart contract in Coq.
- How we can obtain "actual" SC code from a formal development?
- Coq features code extraction: producing executable code in a conventional programming language.
- Support supports OCaml, Haskell and Scheme out of the box.

Code extraction in Coq

- Now we have a verified smart contract in Coq.
- How we can obtain "actual" SC code from a formal development?
- Coq features code extraction: producing executable code in a conventional programming language.
- Support supports OCaml, Haskell and Scheme out of the box.

However:

- X Does not support smart contract languages.
- Current Coq extraction is not verified.

Code extraction in Coq

- Now we have a verified smart contract in Coq.
- How we can obtain "actual" SC code from a formal development?
- Coq features code extraction: producing executable code in a conventional programming language.
- Support supports OCaml, Haskell and Scheme out of the box.

However:

- X Does not support smart contract languages.
- X Current Cog extraction is not verified.

We address these points in ConCert.

Extraction in ConCert

An extensible extraction pipeline with small TCB

Extraction in ConCert

An extensible extraction pipeline with small TCB

- Implement the extraction pipeline in Coq.
- Use MetaCog's verified erasure as a basis.
- Add verified pre- and post-processing steps.
- Let the users add transformations/target languages.

 \bullet preprocess: inlining, specialisation ... + generate proofs

- preprocess: inlining, specialisation ... + generate proofs
- erase proofs: use the extended verified MetaCoq erasure

- preprocess: inlining, specialisation ... + generate proofs
- erase proofs: use the extended verified MetaCoq erasure
- optimise: verified dead argument elimination

- preprocess: inlining, specialisation ... + generate proofs
- erase proofs: use the extended verified MetaCoq erasure
- optimise: verified dead argument elimination
- print: Rust (Concordium), CameLIGO (Tezos), Liquidity (Dune)

- preprocess: inlining, specialisation ... + generate proofs
- erase proofs: use the extended verified MetaCoq erasure
- optimise: verified dead argument elimination
- print: Rust (Concordium), CameLIGO (Tezos), Liquidity (Dune)
- add new pre-processing steps

- preprocess: inlining, specialisation ... + generate proofs
- erase proofs: use the extended verified MetaCoq erasure
- optimise: verified dead argument elimination
- print: Rust (Concordium), CameLIGO (Tezos), Liquidity (Dune)
- add new pre-processing steps
- add new optmisations

- ullet preprocess: inlining, specialisation ... + generate proofs
- erase proofs: use the extended verified MetaCoq erasure
- optimise: verified dead argument elimination
- print: Rust (Concordium), CameLIGO (Tezos), Liquidity (Dune)
- add new pre-processing steps
- add new optmisations
- add new target languages

Extracted code

```
Inductive sig (A : Type)  (P:A \rightarrow Prop): Type := \\ exist: forall (x:A), P x \rightarrow \{x:A \mid P x\}  Definition inc_counter  (prev\_st: State) \\ (inc: \{z:Z \mid 0 < z \}): \\ \{ new\_st: State \mid \dots \}   := prev\_st + inc.
```

Extracted code

```
Inductive sig (A : Type)  (P:A \to Prop): Type := \\ exist: forall (x:A), P : x \to sig P  Definition inc_counter  (prev\_st:State) \\ (inc:sig (fun : z \Rightarrow 0 < z)): \\ sig (fun : new\_st \Rightarrow ...)  := exist  (Z.add : prev\_st (proj1\_sig : inc)) \\ BIG\_PROOF\_TERM
```

Extracted code

```
Inductive sig (A : Type)  (P : A \rightarrow Prop) : Type := \\ exist : forall (x : A), P x \rightarrow sig P  Definition inc_counter  (prev\_st : State) \\  (inc : sig (fun z \Rightarrow 0 < z)) : \\  sig (fun new\_st \Rightarrow ...)   := exist \\  (Z.add prev\_st (proj1\_sig inc)) \\  BIG\_PROOF\_TERM
```

Conclusion and future work

- Smart contracts are crucial to get right.
- Expressive type systems in proof assistants: specs in types.
- Use the Coq proof assistant to develop smart contracts.
- Get smart contract code using code extraction.

Conclusion and future work

- Smart contracts are crucial to get right.
- Expressive type systems in proof assistants: specs in types.
- Use the Coq proof assistant to develop smart contracts.
- Get smart contract code using code extraction.
- Expressive type come at a price: proofs.
- Good news: proof automation helps.
- Future work: better proof automation :)

Conclusion and future work

- Smart contracts are crucial to get right.
- Expressive type systems in proof assistants: specs in types.
- Use the Coq proof assistant to develop smart contracts.
- Get smart contract code using code extraction.
- Expressive type come at a price: proofs.
- Good news: proof automation helps.
- Future work: better proof automation :)

 ${\sf ConCert} \, + \, {\sf extraction} = \\ \\ {\sf dependent} \, \, {\sf types} \, \, {\sf in} \, \, {\sf your} \, \, {\sf favorite} \, \, {\sf SC} \, \, {\sf language} \\ \\$

Thank you for your attention!

Our development on GitHub: https://github.com/AU-COBRA/ConCert