Cálculo Numérico (521230/525240)

Laboratorio 2

Interpolación

Conceptos Previos

Supongamos que los n+1 $(n \in \mathbb{N})$ pares ordenados

$$(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$$
 (1)

son tales que $x_0 < x_1 < \cdots < x_n$. ¹

El problema de **interpolación polinomial** consiste en determinar el **único** polinomio p, de grado menor o igual que n, que satisface $p(x_i) = y_i$ para cada i entre 0 y n.

Una spline cúbica que interpola los pares (1) es una función $s \in C^2([x_0, x_n])$ tal que

$$s(x) = \begin{cases} q_0(x), & \text{si } x \in [x_0, x_1[, \\ q_1(x), & \text{si } x \in [x_1, x_2[, \\ \vdots & \vdots \\ q_{n-1}(x), & \text{si } x \in [x_{n-1}, x_n] \end{cases}$$

siendo $q_0, q_1, \ldots, q_{n-1}$, polinomios de grado menor o igual que 3 que satisfacen $q_0(x_0) = y_0, q_1(x_1) = y_1, \ldots, q_{n-1}(x_{n-1}) = y_{n-1}$ y $q_{n-1}(x_n) = y_n$.

Tanto p como s se determinan para poder aproximar valores de una función desconocida que pasa por $(x_0, y_0), \ldots, (x_n, y_n)$ en puntos z_0, z_1, \ldots, z_m entre x_0 y x_n .

Denotemos por \mathbf{x} al vector cuyas componentes son x_0, x_1, \ldots, x_n , por \mathbf{y} al vector con componentes y_0, y_1, \ldots, y_n y por \mathbf{z} al vector cuyas componentes son z_0, z_1, \ldots, z_m , es decir, los valores donde deseamos evaluar a p y a s.

En MATLAB el par de comandos polyfit, polyval permite determinar y evaluar p, mientras que el par de comandos spline, permite determinar y evaluar s.

Ellos son tales que:

polyfit: permite determinar p.

spline: permite determinar s.

Recibe: x, y, n.

Recibe: x, y.

Retorna: vector que contiene los coeficientes de p.

Retorna: vector que contiene coeficientes de s. Si y tiene la misma cantidad de elementos que \mathbf{x} , MATLAB utiliza la condición no-nodo (continuidad de s''' en x_1 y x_{n-1}) para determinar s.

polyval: permite evaluar p.

ppval: permite evaluar s.

Recibe: vector que retorna polyfit y z.

Recibe: vector que retorna spline y z.

Retorna: los valores de p en z.

Retorna: los valores de s en z.

¹Para llamar a las funciones en MATLAB no es necesario que los valores estén ordenados, esta suposición es solo para facilitar la escritura de esta guía de laboratorio.

Actividad 1: (Desarrollar en laboratorio por el/la ayudante) Realice los siguientes pasos:

- 1. Desarrolle una función en MATLAB almacenada en el fichero lagrange.m que satifisfaga lo siguiente:
 - a) Su sintaxis está dada por function y = lagrange(nodos,x);
 - b) Sus datos de entrada son vector de nombre nodos y un número real x;
 - c) Su argumento de salida es un vector de nombre y, que tiene el mismo largo que nodos y contiene la evaluación en x de los polinomios de lagrange asociados a cada punto almacenado en nodos.
- 2. Considere la siguiente tabla que contiene los valores de una función f en los puntos dados:

- Use la función lagrange para evaluar el polinomio de interpolación f en los puntos del vector
 X = -2:4/1000:2;
- 4. Gafique la interpolación obtenida en el item anterior;
- 5. Use el comando c=polyfit(nodos,valores,4) para calcula los coeficientes del polinomio de grado 4

$$p(x) = c_1 x^4 + c_2 x^3 + c_3 x^2 + c_4 x + c_5$$

que pasa por los puntos de la tabla 2. El vector c es tal que $c_i = c(i), \forall i = 1, ..., n + 1$.

- 6. Use el comando polyval para evaluar el polinomio definido en el punto anterior en los puntos del vector X = -2:4/1000:2;
- 7. Grafique los datos obtenidos en el punto anterior;
- 8. Compare en el mismo gráfico lo obtenido en los items 4 y 7, junto a los puntos de la tabla 2, denotando cado uno de ellos por una equis en el gráfico.

Actividad 2: (Desarrollar en laboratorio como trabajo individual guiado por el/la ayudante) La siguiente tabla muestra los valores de *emitancia térmica* o *emisividad térmica* del tungsteno como función de la temperatura (en grados Kelvin).

Temperatura	300	400	500	600	700	800	900	1000	1100
Emisividad térmica	0.024	0.035	0.046	0.058	0.067	0.083	0.097	0.111	0.125

Nuestro objetivo es, con ayuda de la tabla anterior, determinar valores aproximados para la emisividad térmica del tungsteno a 350, 550 y 850 grados Kelvin.

Escribe un rutero en MATLAB, tungsteno.m, en el que:

- 1. determines el polinomio p que interpola a los pares ordenados en la tabla,
- 2. evalúes al polinomio en 350, 550 y 850,
- $3.\,$ realices un gráfico del polinomio, evaluado en 1000 puntos entre 300 y 1100 y en el que también incluyas los pares en la tabla.

Observa que en los subintervalos [300,400] y [1000,1100] p tiene un comportamiento distinto al que tiene en [400,1000]. Ya sabemos que si los puntos a interpolar son muchos y equidistantes, el polinomio de interpolación puede alejarse mucho de la función a interpolar, sobre todo en puntos cercanos a los extremos del intervalo. Esto se conoce como fenómeno de Runge. Los valores 550 y 850 no son cercanos a los extremos del intervalo, pero 350 sí lo es.

En el rutero tungsteno.m realiza ahora lo siguiente:

- 1. determina la spline cúbica s que interpola los datos en la tabla, evalúala en 350, 550 y 850,
- 2. calcula |p(350) s(350)|, |p(550) s(550)| y |p(850) s(850)|.

Observa que la diferencia en 350 es casi 10 veces mayor que en 550 y 850.

EJERCICIOS PARA TRABAJO AUTÓNOMO

1. Con el objetivo de aproximar el contorno superior del pato que se muestra en la figura 1 se midieron las coordenadas de 21 puntos (x_i, y_i) , i = 1, 2, ..., 21 sobre él, los cuales se muestran en la tabla 1

x	0.9	1.3	1.9	2.1	2.6	3	3.9	4.4	4.7	5
y	1.3	1.5	1.85	2.1	2.6	2.7	2.4	2.15	2.05	2.1
6	7	8	9.2	10.5	11.3	11.6	12	12.6	13	13.3

Cuadro 1: Pares en contorno superior del pato

Figura 1: Se quiere interpolar borde superior de figura mostrada

- a) Encuentre el polinomio que interpola a los datos en la tabla anterior, escoja el grado del mismo de forma que su existencia y unicidad estén garantizadas.
- b) Grafique, en un mismo gráfico, los puntos de interpolación y el polinomio antes determinado, evaluado en 100 puntos entre 0.9 y 13.3. ¿Cree usted que este polinomio proporcione una buena aproximación a la curva que se quiere aproximar? Justifique.
- c) Determine, con ayuda del comando spline, un spline cúbico que interpole los pares de valores dados. Grafique nuevamente los valores en la tabla y el spline cúbico obtenido, evaluado en 100 puntos entre 0.9 y 13.3. ¿Se obtiene con éste una mejor aproximación al contorno superior del pato en la figura 1?
- 2. La siguiente tabla muestra los valores de viscosidad del ácido sulfúrico (en milipascal por segundos) como función de la concentración (en porciento de masa),

Concentración	0	20	40	60	80	100
Viscosidad	0.89	1.40	2.51	5.37	17.4	24.2

Se quiere, con ayuda de esta tabla, determinar la viscosidad de ácido sulfúrico cuando la concentración es del 5% y del 63%.