

Diseño Digital Avanzado

Unidad 2 - Implementación de F

Dr. Ariel L. Pola ariel.pola@mi.unc.edu.ar September 21, 2024

Tabla de Contenidos

1. Implementación de Filtros

Simulación de Filtros FIR e IIR

Efectos de cuantización

- Ejecutar los script de python con el objetivo de comprender los efectos de cuantización de los coeficientes.
 - fir filter direct form.ipynb
 - iir_filter_direct_form.ipynb
 - IIR_Filter_Design.ipynb
- Instanciar y ejecutar el testbench de cada uno de los filtros.
 - filtro fir.v, tb filtro fir.v
 - iir.v, filter tb.v
 - iir_top.v, iir_filter.v, coeffSec1.v, coeffSec2.v, coeffSec3.v, tb_iir_filter.v

Implementación Filtro FIR en FPGA

Primer modelo

- Implementar en FPGA el filtro FIR según los siguientes archivos
 - top_design.v
 - signal generator.v
 - filtro fir.
 - SarTruncFP.v
- Agregar los IPs VIO e ILA para controlar en forma remota el diseño

Implementación Filtro FIR en FPGA

Laboratorio

- Considerar un sistema de transmisión compuesto por una señal senoidal y un filtro pasa bajo con las siguientes características:
 - Señal senoidal compuesta por dos frecuencias $f_1 = 17kHz$ (A = 0.5) y $f_2 = 1.5kHz$ (A = 1.0)
 - Frecuencia de muestreo $f_s = 48kHz$
 - Filtro pasa bajo con frecuencia de corte $f_{cut} = 8khz$

Implementación Filtro FIR en FPGA

Laboratorio

- Desarrollo del modelo
 - Utilizando el scripts de Python coeff.ipynb, determinar los coeficientes del filtro para una frecuencia de corte de f_{cut} = 8khz. El filtro debe tener una longitud de 15 coeficientes.
 - 2 Realizar el diagrama en bloques del filtro.
 - 3 Generar un proyecto con los archivos entregador por la cátedra con la herramienta Vivado.
 - 4 Configurar el archivo mem.hex con las señales senoidales especificadas previamente utilizando el script genmem.py.
 - Generar los coeficientes del filtro utilizando el script coeff.ipynb para los siguientes valores de frecuencias de corte $f_{cut} = 0.5khz, 8khz, 18khz$.
 - 6 Configurar el filtro en verilog con los valores de los coeficientes cuantizados (sintetizar cada filtro por separado).
 - Implementar en FPGA y graficar las señales senoidales pre y pos filtradas.

