Lab5: Translating by Prompting a LLM On the Importance of Parallel Data

He HUANG 22107447

November 23, 2023

1 Introduction

2 Your work

We will use the challenge set available ¹ to evaluate the capacity of a LLM to translate (either one of Mistral LLM or LLaMA) and compare their performance to mBART.

1. What is the BLEU score achieved on the challenge set by an LLM? by mBART? Mistral LLM:

To make it easier to clean up the generated text, here I set up the LLM model without much explanation.

```
1 # Mistral LLM
 # Use the LLM prompt method and pipeline to generate the translation
3 pipe = pipeline("text-generation",
                   model="HuggingFaceH4/zephyr-7b-alpha",
                   torch_dtype=torch.bfloat16,
                   device_map="auto")
  def mistral_translate(dataset):
9
      translated = []
10
      for i in range(0, len(dataset)):
11
           # take the source sentence and add the prompt
12
           message = [{"role": "user", "content": "translate into French and do not
13
      add explanations or notes: " + dataset['source'][i]}]
           # tokenize the prompt
14
           prompt = pipe.tokenizer.apply_chat_template(message,
                                                 tokenize=False,
16
                                                 add_generation_prompt=True)
17
          # generate the translation
18
           outputs = pipe(prompt,
                 max_new_tokens=256,
20
                 do_sample=True,
21
                 temperature=0.7,
22
                 top_k=50,
23
                 top_p=0.95)
24
```

¹https://aclanthology.org/D17-1263/

```
translated.append(outputs[0]["generated_text"])
      return translated
28
29 # extract the content translated by Mistral
30 mistral_en_fr = []
31 for sent in translated_mistral:
      sent = re.split("\n", sent)
32
      if '<|assistant|>' in sent:
33
         ids = sent.index('<|assistant|>')
34
         mistral_en_fr.append(sent[ids+1])
36
# compute BLEU score for Mistral
38 mistral_results = bleu.compute(predictions=mistral_en_fr, references=corpus["
     reference"])
39 print(f"Bleu score of Mistral model : {mistral_results}")
```

mBART:

```
# define the mBart model and tokenizer
2 from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
4 mbart_name = "facebook/mbart-large-50-many-to-many-mmt"
5 mbart_model = MBartForConditionalGeneration.from_pretrained(mbart_name).to(
     device)
6 mbart_tokenizer = MBart50TokenizerFast.from_pretrained(mbart_name, src_lang="
8 # translate English sentences into French
 def mbart_translate(en_source):
    # encode the french sentence
10
    inputs = mbart_tokenizer(en_source["source"], return_tensors="pt", truncation=
11
     True, max_length=512, padding=True).to(device)
12
    # generate
    generated_tokens = mbart_model.generate(**inputs, forced_bos_token_id=
13
     mbart_tokenizer.lang_code_to_id["fr_XX"])
    # decode the english sentence
    eng_sent = mbart_tokenizer.batch_decode(generated_tokens, skip_special_tokens=
15
     True)
    return {"mbart_en_fr": eng_sent}
16
17
18
19 # Compute BLEU score
20 import evaluate
21 bleu = evaluate.load("bleu")
23 mbart_results = bleu.compute(predictions=corpus["mbart_en_fr"], references=
     corpus["reference"])
24 print(f"Bleu score of mBART model : {mbart_results}")
```

Results:

As can be seen from the results, there is a difference between the bleu score of the LLM model and the mBART translation model, although it is not particularly large.

```
Bleu score of Mistral model : {'bleu': 0.45006544291275874, 'precisions': [0.70833333333333334, 0.5048309178743962, 0.386111111111111111, 0.3088235294117647], 'brevity_penalty': 0.9904306953846911, 'length_ratio': 0.9904761904761905, 'translation_length': 936, 'reference_length': 945}
```

2. Compute for each major category of difficulty the proportion of sentences in which the difficulty (identified by square brackets) is correctly translated?

And here are all the results:

	category_major	GNMT_correct
0	Lexico-Syntactic	56.097561
1	Morpho-Syntactic	72.413793
2	Syntactic	73.684211

Figure 1: Accuracy of GNMT model

	category_major	PBMT1_correct
0	Lexico-Syntactic	39.024390
1	Morpho-Syntactic	17.241379
2	Syntactic	28.947368

Figure 2: Accuracy of PBMT1 model

	category_major	PBMT2_correct
0	Lexico-Syntactic	43.902439
1	Morpho-Syntactic	17.241379
2	Syntactic	26.315789

Figure 3: Accuracy of PBMT2 model

category_major NMT_correct

0	Lexico-Syntactic	46.341463
1	Morpho-Syntactic	75.862069
2	Syntactic	34.210526

Figure 4: Accuracy of NMT model