Honors Linear Algebra: : Homework 07

March 7, 2024

Ahmed Saad Sabit, Rice University

Problem 01

Let $v \in V$ and $v = b_1 \vec{v}_1 + b_2 \vec{v}_2 + \cdots + b_n \vec{v}_n$ so the matrix of v is

$$\mathcal{M}(v) = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Similarly consider $u \in V$ and $u = d_1 \vec{v}_1 + d_2 \vec{v}_2 + \cdots + d_n \vec{v}_n$, it's matrix is

$$\mathcal{M}(u) = \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix}$$

Additivity: From vector summation we directly know,

$$v + u = (b_1 + d_1)\vec{v}_1 + \dots + (b_n + d_n)\vec{v}_n$$

The matrix representation of v + u is thus,

$$\mathcal{M}(v+u) = \begin{pmatrix} b_1 + d_1 \\ b_2 + d_2 \\ \vdots \\ b_n + d_n \end{pmatrix}$$

Now let's consider matrix addition of $\mathcal{M}(u) + \mathcal{M}(v)$,

$$\mathcal{M}(v) + \mathcal{M}(u) = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} + \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{pmatrix} = \begin{pmatrix} b_1 + d_1 \\ b_2 + d_2 \\ \vdots \\ b_n + d_n \end{pmatrix}$$

So apparently,

$$\mathcal{M}(u+v) = \mathcal{M}(u) + \mathcal{M}(v)$$

Multiplicity: Given $\alpha \in \mathbb{F}$ and for the vector

$$v = b_1 \vec{v}_1 + \dots + b_n \vec{v}_n$$
$$\alpha v = \alpha b_1 \vec{v}_1 + \dots + \alpha b_n \vec{v}_n$$

The matrix representation is going to be

$$\mathcal{M}(\alpha v) = \begin{pmatrix} \alpha b_1 \\ \alpha b_2 \\ \vdots \\ \alpha b_n \end{pmatrix}$$

Now let's consider the following,

$$\alpha \mathcal{M}(v) = \alpha \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

From scalar to matrix multiplication we can see,

$$\alpha \mathcal{M}(v) = \begin{pmatrix} \alpha b_1 \\ \alpha b_2 \\ \vdots \\ \alpha b_n \end{pmatrix}$$

So turns out

$$\mathcal{M}(\alpha v) = \alpha \mathcal{M}(v)$$

From $\alpha = 0$ case we can show 0 gets mapped to 0 trivially. So the Linearity is Proven.

Problem 02

Consider the *i*-th vector u_i such that

$$u_i = \lambda v_i$$

Here v_i is a basis vector of V. i ranges from $0, 1, \ldots, n$. Now, for u_1, \ldots, u_n to be a basis vector we need,

$$c_1u_1 + \dots c_nu_n = 0$$

If and only if $c_i = 0$ for all i. But as we had defined u_i

$$c_1(\lambda v_1) + \ldots + (\lambda v_n) = 0$$

$$\lambda \left(c_1 v_1 + \ldots + c_n v_n \right) = 0$$

Because $\lambda \neq 0$ the only way this system is zero is if $c_i = 0$, as v_i each are linearly independent basis of V. So the only possible way for this system of equation to hold is for $c_i = 0$, hence,

$$c_1u_1+\ldots c_nu_n=0$$

is linearly independent. Which means $\lambda v_1, \ldots, \lambda v_n$ is a basis.

Problem 03

The given matrix

$$\mathcal{M}(I_V, (\lambda \vec{v}_1, \dots, \lambda \vec{v}_n), (\vec{v}_1, \dots, \vec{v}_n))$$

is a matrix of a linear map I_V from the basis $\lambda \vec{v}_1, \dots, \lambda \vec{v}_n$ to the basis $\vec{v}_1, \dots, \vec{v}_n$. For now let's call $\{\lambda \vec{v}_i\}$ as $\{\vec{u}_i\}$ for all i,

$$\mathcal{M}(I_V, (\vec{u}_1, \ldots, \vec{u}_n), (\vec{v}_1, \ldots, \vec{v}_n))$$

So a vector $\vec{t} = t_1 \vec{u}_1 + \ldots + t_n \vec{u}_n$ transforms into $\vec{t} = t_1 \lambda \vec{v}_1 + \ldots + t_n \lambda \vec{v}_n$ where the basis is \vec{v}_i . In matrix notation,

$$\begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix} \to \begin{pmatrix} \lambda t_1 \\ \vdots \\ \lambda t_n \end{pmatrix}$$

Consider the matrix,

$$\lambda \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{pmatrix}$$

This validly gives us the transformation,

$$\begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{pmatrix} \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \end{pmatrix} = \begin{pmatrix} \lambda t_1 \\ \lambda t_2 \\ \vdots \\ \lambda t_n \end{pmatrix}$$

Hence,

$$\mathcal{M}(I_V, (\lambda \vec{v}_1, \dots, \lambda \vec{v}_n), (\vec{v}_1, \dots, \vec{v}_n)) = \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{pmatrix}$$

To solve the opposite direction as stated in the problem, from 3.82 in LADR we know that

$$\mathcal{M}(I_V, (\vec{v}_1, \dots, \vec{v}_n), (\lambda \vec{v}_1, \dots, \lambda \vec{v}_n)) = \text{Inverse of} \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{pmatrix}$$

As this is a diagonal matrix, our life is easier,

$$\mathcal{M}(I_V, (\vec{v}_1, \dots, \vec{v}_n), (\lambda \vec{v}_1, \dots, \lambda \vec{v}_n)) = \begin{pmatrix} \frac{1}{\lambda} & 0 & \cdots & 0\\ 0 & \frac{1}{\lambda} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \frac{1}{\lambda} \end{pmatrix}$$

This can be easily justifiable because if we start with λt_i components for *i*-th basis, we get t_i which is an inverse transform. For example, consider a vector $\vec{t} = t_1 \vec{v}_1 + \dots + t_n \vec{v}_n$, after transformation to new basis, $\vec{t} = (t_1/\lambda)\lambda \vec{v}_1 + \dots + (t_n/\lambda)\vec{v}_n$, so the transformation is,

$$\begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix} \to \begin{pmatrix} \frac{t_1}{\lambda} \\ \vdots \\ \frac{t_n}{\lambda} \end{pmatrix}$$

From the matrix multiplication, it's apparent that,

$$\begin{pmatrix} \frac{1}{\lambda} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{\lambda} \end{pmatrix} \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix} = \begin{pmatrix} \frac{t_1}{\lambda} \\ \vdots \\ \frac{t_n}{\lambda} \end{pmatrix}$$

Problem 04

Aid for my small brain Use to get a sense of the problem let's try the m=3 case.

Then the basis are

$$w_1, w_2, w_3$$

The new basis are

$$w'_1, w'_2, w'_3$$

The relation of one to the other basis

$$w'_1 = T_{11}w_1 + T_{21}w_2 + T_{31}w_3$$

$$w'_2 = T_{12}w_1 + T_{22}w_2 + T_{32}w_3$$

$$w'_3 = T_{13}w_1 + T_{23}w_2 + T_{33}w_3$$

This numbering looks a little bit weird to me. Decomposing above into a matrix form (unnecessary)

$$\begin{pmatrix} T_{11} & T_{21} & T_{31} \\ T_{12} & T_{22} & T_{32} \\ T_{13} & T_{23} & T_{33} \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} = \begin{pmatrix} w'_1 \\ w'_2 \\ w'_3 \end{pmatrix}$$

$$\begin{pmatrix} T_{11} & T_{21} & T_{31} \\ T_{12} & T_{22} & T_{32} \\ T_{13} & T_{23} & T_{33} \end{pmatrix} \begin{pmatrix} w_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + w_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + w_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} w'_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + w'_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + w'_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}$$

The given shift to w'_k is

$$w_k' = B_{1k}w_1 + B_{2k}w_2 + \dots + B_{mk}w_m$$

This w'_k can be thought of as $T(w'_k) = w'_k$ which maps to itself but changes the basis.

$$T(w_k') = B_{1k}w_1 + B_{2k}w_2 + \dots + B_{mk}w_m = w_k'$$

From the given information we can build a matrix

$$B = \begin{pmatrix} B_{11} & \cdots & B_{m1} \\ \vdots & \ddots & \vdots \\ B_{1m} & \cdots & B_{mm} \end{pmatrix}$$

Here k = 1, ..., m. The map T is inverse in W and B is the change of basis linear map from $w'_1, ..., w'_m$ to $w_1, ..., w_m$. We can say,

$$B = \mathcal{M}(I_W, (w'_1, \dots, w'_m), (w_1, \dots, w_m))$$

By 3.82 LADR, B is invertible with inverse B^{-1} where

$$B^{-1} = \mathcal{M}(I_W, (w_1, \dots, w_m), (w'_1, \dots, w'_m))$$

Problem 05

From V basis v_1, \ldots, v_n we can consider another basis of V that such

$$v_k' = A_{1k}v_1 + \dots + A_{nk}v_n$$

For $A_{jk} \in \mathbb{F}$ and j, k = 1, ..., n. This can be assembled into a matrix $A \in \mathbb{F}^{n,n}$. If $T \in \mathcal{L}(V, W)$, we shall show that,

$$\mathcal{M}(T,(v_1',\ldots,v_n'),(w_1',\ldots,w_m')) = B^{-1}\mathcal{M}(T,(v_1,\ldots,v_n),(w_1,\ldots,w_m))A$$

We had shown that

$$B = \mathcal{M}(I_W, (w'_1, \dots, w'_m), (w_1, \dots, w_m))$$

And in similar way we can say that

$$A = \mathcal{M}(I_V, (v'_1, \dots, v'_n), (v_1, \dots, v_n))$$

By using 3.81 LADR we have

$$B^{-1}\mathcal{M}(T, (v_1, \dots, v_n), (w_1, \dots, w_m))A =$$

$$= (\mathcal{M}(I_W, (w_1, \dots, w_m), (w'_1, \dots, w'_m))) * (\mathcal{M}(I_V, (v_1, \dots, v_n), (w_1, \dots, w_m)) A)$$

$$= [\mathcal{M}(I_W T, (v_1, \dots, v_n), (w'_1, \dots, w'_m)) * \mathcal{M}(I_V, (v'_1, \dots, v'_n), (v_1, \dots, v_n))]$$

$$= \mathcal{M}(I_W T I_V, (v'_1, \dots, v'_n), (w'_1, \dots, w'_m))$$

By the definitions of I_V and I_W , we have

$$T = I_W T$$

$$T = TI_V$$

Thus,

$$T = I_W T I_V$$

This follow that,

$$\mathcal{M}(I_W T I_V, (v'_1, \dots, v'_n), (w'_1, \dots, w'_m)) = \mathcal{M}(T, (v'_1, \dots, v'_n), (w'_1, \dots, w'_m))$$

Hence forth as desired we get,

$$\mathcal{M}(T, (v'_1, \dots, v'_n), (w'_1, \dots, w'_m)) = B^{-1} \mathcal{M}(T, (v_1, \dots, v_n), (w_1, \dots, w_m)) A$$

Problem 06

Consider $A = \mathcal{M}(T)$. Then if $A \in \mathbb{F}^{m,n}$ then A is a m-by-n matrix. The linear map $T \in \mathcal{L}(V, W)$ and basis of V is v_1, \ldots, v_n (notice the n) and W is w_1, \ldots, w_m (notice the m). This also means

$$\dim V = n \quad \dim W = m$$

A being invertible means that T transformation also has an inverse. But T is only inverse if T is **injective** and surjective.

From 3.22 LADR we know that linear map to lower dimensional space is not injective so a condition on V, W is,

$$\dim V \ge \dim W \implies n \ge m$$

From 3.24 LADR we know that linear map to higher dimensional space is not surjective so another condition is,

$$\dim V \le \dim W \implies n \le m$$

The only way both of the condition is true is if n=m. Hence m=n proven for $A\in\mathbb{F}^{m,n}$

Problem 07

Let's consider the matrix

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

If this 2-by-2 matrix is invertible, then there exists another matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Such that

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Let's compute the right hand side, then we get,

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$$

Look at the 2,2 entry of the matrix multiplication, and for the matrix to be invertible we need,

$$\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

But this is impossible because the 2, 2 entry $0 \neq 1$. So the considered matrix is not invertible.

Problem 08

 (\Longrightarrow) ST is invertible.

Let R be the inverse. This satisfies R(ST) = I. Now suppose $v \in \text{null } T$. This means Tv = 0. Then

$$v = Iv$$

$$= R(ST)v$$

$$= RS(0)$$

$$= R(0)$$

$$= 0$$

Thus $v \subset \{0\}$. This is the only possible way for T to have a null. Hence T is injective. We also know from 3.65 LADR that T is injective hence means T is also invertible.

Now let's show S is invertible. Let there be another vector u such that $u \in \text{null } S$. Because we know T is invertible, define $u^* = T^{-1}(u)$. Then,

$$u^* = Iu^*$$

$$= R(ST)u^*$$

$$= RS(u)$$

$$= R(0)$$

$$= 0$$

This says $u^* = 0$, and hence $u^* = T^{-1}(0) = 0$. We proved u = 0, so S is injective hence also invertible.

(\Leftarrow) S and T are invertible.

 S^{-1} and T^{-1} exist. Then let's try the following,

$$(T^{-1}S^{-1})(ST) = T^{-1}(S^{-1}S)T$$

= $T^{-1}IT$
= $T^{-1}T$
= I

And,

$$(ST)(T^{-1}S^{-1}) = S(TT^{-1})S^{-1}$$

= SIS^{-1}
= SS^{-1}
= I

Problem 09

The system of equation can be easily written in terms of matrix multiplication with vector,

$$\begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

Condensed form,

$$A\vec{x} = \vec{c}$$

Matrix \mathcal{A} is $\mathcal{A} \in \mathbb{F}^{n,n}$. It can be thought of a linear map $T: V \to W$ where dim $V = \dim W = n$.

$$(a) \Longrightarrow (b)$$

(a) mentions that $\vec{x} = \vec{0}$ is the only possible solution for $\vec{c} = \vec{0}$. This means from the fundamental theorem of Linear Algebra,

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$$

$$n = \dim \operatorname{null} T + n \implies \dim \operatorname{null} T = 0$$

Where $\dim(\text{range }T) = \dim W = n$. More importantly $\dim \text{null }T = 0$ means that T is *injective*. From 3.65 LADR we know that Injectivity is same as Surjectivity for finite dimension case and hence invertibility.

 \mathcal{A}^{-1} exists as per given conditions. So,

$$\mathcal{A}\vec{x} = \vec{c}$$

Here we can do the following,

$$\mathcal{A}^{-1}\left(\mathcal{A}\vec{x}\right) = \mathcal{A}^{-1}\vec{c}$$
$$I\vec{x} = \mathcal{A}^{-1}\vec{c}$$

Which means,

$$\vec{x} = \mathcal{A}^{-1}\vec{c}$$

From injectivity we know that \vec{x} is unique and we are also guarenteed \vec{x} exists. $\vec{x} = (x_1, x_2, \dots, x_n)$ is the solution to this system.

$$(b) \implies (a)$$

For every $\vec{c} \in W$ we have a solution $\vec{x} \in V$. If we consider a linear map $T \in \mathcal{L}(V, W)$ such that

$$T(\vec{x}) = \vec{c}$$

Every $\vec{c} \in W$ has a solution, which means that range T = W. This is the definition of surjectivity. From 3.65 LADR we know that Surjectivity implies Injectivity and hence Invertibility.

This map being injective implies that

$$T(\vec{x}) = 0 \implies \vec{x} = 0$$

So $T(\vec{x}) = \vec{c}$ where $\vec{c} = 0$ means $\vec{x} = 0$ and that is the only solution.

Problem 10

Suppose one vector space V_r in $\Pi = V_1 \times V_2 \times \cdots \times V_m$ is infinite-dimensional where Π itself is finite dimensional. From definition of products,

$$V_1 \times \cdots \times V_m = \{(v_1, \dots, v_m) : v_1 \in V_1, \dots, v_m \in V_m\}$$

Solution 01 using a member vector

Let's consider a member element $\mathbf{q} \in \Pi$. It can be written in the form,

$$\mathbf{q} = (\vec{q_1}, \dots, \vec{q_m})$$

Where $\vec{q}_k \in V_k$. We had defined V_r to be the infinite dimensional vector space. Hence,

$$\vec{q}_r = (f_1, f_2, \dots, f_{\infty})$$

Where $f_i \in \mathbb{F}$. \vec{q}_r requires infinite number of basis vectors because,

$$\vec{q}_r = f_1(1,0,\ldots) + f_2(0,1,\ldots) + \cdots$$

So if $\mathbf{q} = (\vec{q}_1, \dots, \vec{q}_r, \dots, \vec{q}_m)$ has to span all of Π it needs to go through all multiples of all possible basis vectors of \vec{q}_r . But \vec{q}_r having infinite basis yields \mathbf{q} to have infinite dimension too.

Solution 02 using a formulation of dimension

What does dimension mean for Product Space? Example.

Consider a simple $\pi = V_1 \times V_2 \times V_3$, then a member of this π is

$$\mathbf{d} = (\vec{d_1}, \vec{d_2}, \vec{d_3})$$

if each vector spaces V_i are two dimensional,

$$\mathbf{d} = \left(a^x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a^y \begin{pmatrix} 0 \\ 1 \end{pmatrix}, b^x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b^y \begin{pmatrix} 0 \\ 1 \end{pmatrix}, c^x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c^y \begin{pmatrix} 0 \\ 1 \end{pmatrix}\right)$$

Dimension (specifically Hamel Dimension from Wikipedia), the dimension of vector space V is the number of basis of V over it's base field. For π we have total of 6 basis. The set of basis for this system is,

$$\{(1,0),(0,0),(0,0)\}, \\ \{(0,1),(0,0),(0,0)\}, \\ \{(0,0),(1,0),(0,0)\}, \\ \{(0,0),(0,1),(0,0)\}, \\ \{(0,0),(0,0),(1,0)\}, \\ \{(0,0),(0,0),(0,1)\}$$

The representation of \mathbf{d} is,

$$\mathbf{d} = a^{x}[(1,0), (0,0), (0,0)] \\ + a^{y}[(0,1), (0,0), (0,0)] \\ + b^{x}[(0,0), (1,0), (0,0)] \\ + b^{y}[(0,0), (0,1), (0,0)] \\ + c^{x}[(0,0), (0,0), (1,0)] \\ + c^{y}[(0,0), (0,0), (0,1)]$$

Obviously the terms $t^z \in \mathbb{F}$ where t = a, b, c and z = x, y

Suppose one vector space V_r in $\Pi = V_1 \times V_2 \times \cdots \times V_m$ is infinite-dimensional where Π itself is finite dimensional. From definition of products,

$$V_1 \times \cdots \times V_m = \{(v_1, \dots, v_m) : v_1 \in V_1, \dots, v_m \in V_m\}$$

Basis of Π is,

$$\begin{aligned} \text{Basis set } \Sigma &= \bigcup_{j=1}^{\dim V_1} \left\{ (\vec{v}_j, 0, \dots, 0) : v_j \in \text{basis of } V_1 \right\} \\ & \cup \bigcup_{j=1}^{\dim V_2} \left\{ (0, \vec{v}_j, \dots, 0) : v_j \in \text{basis of } V_2 \right\} \\ & \cdots \cup \bigcup_{j=1}^{\dim V_m} \left\{ (0, 0, \dots, \vec{v}_j) : v_j \in \text{basis of } V_m \right\} \end{aligned}$$

We can count the number of elements we have in the mentioned set above to get the dimension. Turns out for all V_i being finite, we simply have dim $V_1 + \ldots + \dim V_m$. But as we are considering the infinite dimensional V_r the

basis is,

$$\Sigma = \bigcup_{j=1}^{\dim V_1} \left\{ (\vec{v}_j, 0, \dots, 0) : v_j \in \text{basis of } V_1 \right\}$$

$$\cup \bigcup_{j=1}^{\dim V_2} \left\{ (0, \vec{v}_j, \dots, 0) : v_j \in \text{basis of } V_2 \right\}$$

$$\cdots \cup \bigcup_{j=1}^{\infty} \left\{ (0, 0, \dots, \vec{v}_j, \dots, 0) : v_j \in \text{basis of } V_r \right\} \cup \dots$$

$$\cup \bigcup_{j=1}^{\dim V_m} \left\{ (0, 0, \dots, \vec{v}_j) : v_j \in \text{basis of } V_m \right\}$$

Counting this sets gives us dim V_1 + dim V_2 + ... + ∞ + ... + dim V_m . So dimension of the product space Π is ∞ . This is a contradiction to the definition of what we started with, hence there can be no V_r vector space that is infinite dimensional in Π . So the member vector spaces are all finite.