11: Dala Association

* Summery of L10 SLAM: Online SLAM uning EKF

$$g(y_t, u_t) = \begin{bmatrix} g^x \\ m_t \end{bmatrix}, \quad z_c = h(y_t, c_t)$$

$$\overline{M}_{\text{new}} = h^{-1}(x_{t}, \overline{z}_{t})|_{\overline{M}_{t}} \qquad M_{t} = \begin{bmatrix} M_{t} \\ M_{\text{new}} \end{bmatrix} \qquad \overline{Z}_{t} = \underbrace{M_{t}}_{\text{new}}$$

$$H = \begin{bmatrix} H^{r}, 0, \dots, 0, H^{l}, 0, \dots, 0 \end{bmatrix}$$

* Euclidean nearest neighbour

$$\int_{0}^{\infty} \int_{0}^{\infty} i = 1, \dots, N \qquad (zoh)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{2} \left[\lim_{n \to \infty} \frac{1}{2} \left[\lim_{n \to \infty$$

Mailchen each observation to closest landmark

Easy and fact of O(KW)

X Greedy data amounting

Jon the Boyer filter, we should calculate the distribution of cover por dences:

revy complicated! segmence of all correspondences should be re-evaluated completely for all observestions.

* Aproximation 1: Solve DA incrementally

p(4 | Zt, yt) The history of correspondences G:T onto depends on the last anoth corresponds.

Assumer previous correspondences were correct.

p(Ct | Zt, yt) & p(Zt | Ct, yt)

posterios likalihood for a given Ct

C* = augment { p(Zt | Ct, yt) }

Morximum likelihood alingto.

P(2016, yt) = P(21/2:K, yt, Ct) · p(26 | 23: K · P (23 | 24:16 yt, Ct)

P (Zt / yt, Ct)

Approximation 2: Independence assurption

p(zt | ct, yt) ~ The p(zt | ct, yt) Ct = argmax Tp (Zt | Ct, yt)

where, CE= 4 Ct = mj1, Ct = mj2, ... Ct = mj; ... 4 Since co are independent:

 $\max\left(\prod_{i=1}^{K} p(z_{t}^{i}|c_{t}^{i},y_{t})\right) = \prod_{i=1}^{K} \max_{i=1}^{K} p(z_{t}^{i}|c_{t}^{i},y_{t})$ evaluate ct individually!

Zi N N (Zi; h | Mt, Ci), Hi Zi HiT + At)

New landmerk:

(Prob Rob 327) thoushold value. p(zil Ci = new, yt) = X hard to time.

If we don't set this X.H. to a, then the new amamark won't be created.

We exerte a lundmerk only of destance to all other budments 15 higher then ix.

Efficient way to express DA: Tree representation.

Best first exploration (from graph rearch). Greedy but eightent Time dimensionality of the tree: exporantial O(U+1)*)!!

* Individual compatibility

DZ

* Joint Compositibility (Ja) (Neise and Tardis 2001) Confext provider more accurate soleitrons Ex: Stars is constellations

Set of hypothems + size exponential (later).

$$H_i = \langle Z_1 = m_1, Z_2 = m_3, Z_3 = m_{new} \rangle$$

We will evaluate joint candidates based on their joint conjutibility

$$1 \int_{\mathbb{H}_{\ell}}^{2} \langle \chi_{k}^{2} \rangle$$

- for Individual comperliability: (IC)

Innovation vector (ideally 1, 0)

$$f_{Ale}(y_1z) = \begin{cases} f_{Ale}(y_1z) \\ f_{Ale}(y_1z) \end{cases}$$

$$f_{Ale}(y_1z) = \begin{cases} f_{Ale}(y_1z) \\ f_{Ale}(y_1z) \end{cases}$$

hypotheris He= 1 c1, c3, c3, .., ck5

If we rewrite
$$f_{He}(y,z)$$
 incrementally:
 $f_{He}(y,z) = \begin{cases} f_{He}(y,z) \\ f_{He}(y,z) \end{cases}$
 $f_{He}(y,z) + G_{He}(y,z) + G_{He}(y,z) + H_{He}(z-z)$
 $f_{He}(y,z) + G_{He}(y,z) + G_{He}(y,z) + G_{He}(z-z)$

Covariance of the joint innovation

CHe = Hali SHali + Gali ZGAli

$$\Rightarrow d^2 He = \int (\bar{g}_1 z)^T C_{He}^{-1} \int (\bar{g}_1 z) < \chi^2_{d,\alpha}$$
, $d = dim|Ale|$

this test is carried out incrementally (see paper)

* Ich branch and Bound.

Xpoint X Xchild

This allows as to obscend bromeher without ovaluating!

CHE captures assistantelections of the observations, while MI doen't (assumed independence).

More accurate and probabilistically more complete Slow (not insponential, but it is on the worst-case) LAS pore piller!