

Audio source separation

Roland Badeau, roland.badeau@telecom-paris.fr

TSIA 206 - Speech and audio processing

Part I

Introduction

Introduction

- Source separation
 - ► Art of estimating "source" signals, assumed independent, from the observation of one or several "mixtures" of these sources
- Application examples:
 - ▶ Denoising (cocktail party, suppression of vuvuzela, karaoke)

Audio source separation

- ► Separation of the instruments in polyphonic music
- ► Remix, transformations, re-spatialization

Une école de l'IMT

Audio source separation

Typology of the mixture models

- ▶ Definition of the problem
 - ▶ Observations: M mixtures $x_m(t)$, concatenated in a vector $\mathbf{x}(t)$
 - ▶ Unknowns: K sources $s_k(t)$, concatenated in a vector $\mathbf{s}(t)$
 - ▶ General mixture model: function \mathscr{A} which transforms $\mathbf{s}(t)$ into $\mathbf{x}(t)$
- ► Linearity: 𝒜 is a linear map
- ► Memory:
 - Convolutive mixtures
 - Instantaneous mixtures: $\mathbf{x}(t) = \mathbf{A}\mathbf{s}(t)$
 - \blacktriangleright \mathscr{A} is defined by the "mixture matrix" **A** (of dimension $M \times K$)
- ► Inversibility:
 - \triangleright Determined mixtures: M = K
 - Over-determined mixtures: M > K
 - ► Under-determined mixtures: *M* < *K*

三選 新

Une école de l'IMT

Audio source separation

Une école de l'IMT

Audio source separation

P PARIS

Convolutive linear mixtures

Part II

Mathematical reminders

Real random vectors

- Notation: $\phi[x]$ denotes a function of $\rho(x)$
- Mean vector: $\mu_{\mathsf{x}} = \mathbb{E}[\mathsf{x}]$
- Covariance matrix: $\mathbf{\Sigma}_{xx} = \mathbb{E}[(\mathbf{x} \mu_x)(\mathbf{x} \mu_x)^T]$
- Characteristic function: $\phi_{\mathsf{x}}(\mathbf{f}) = \mathbb{E}[e^{-2i\pi\mathbf{f}^{\mathsf{T}}\mathbf{x}}] = \int_{\mathbb{D}} p(\mathbf{x})e^{-2i\pi\mathbf{f}^{\mathsf{T}}\mathbf{x}}d\mathbf{x}$
- ► Probability distribution: $p(\mathbf{x}) = \int_{\mathbb{R}} \phi_{\mathbf{x}}(\mathbf{f}) e^{+2i\pi \mathbf{f}^T \mathbf{x}} d\mathbf{f}$
- Cumulants:
 - ► Definition: $\ln(\phi_X(\mathbf{f})) = \sum_{n=1}^{+\infty} \frac{(-2i\pi)^n}{n!} \sum_{k_1=1}^K \sum_{k_n=1}^K \kappa_{k_1...k_n}^n[\mathbf{x}] f_{k_1} ... f_{k_n}$
 - $\triangleright \kappa^n[\mathbf{x}]$ is an *n*-th order tensor
 - $ightharpoonup \kappa^1[\mathbf{x}]$ is the mean vector, $\kappa^2[\mathbf{x}]$ is the covariance matrix
 - If p(x) is symmetric (p(-x) = p(x)), $\kappa^n[x] = 0$ for any odd value n
 - the ratio $\kappa_{k,k,k,k}^4[\mathbf{x}]/(\kappa_{k,k}^2[\mathbf{x}])^2$ is called "kurtosis"

- ▶ The Gaussian distribution is the one such that all cumulants of order n > 2 are zero
- Characteristic function

$$\phi_{\mathsf{x}}(\mathbf{f}) = \exp(-2i\pi\mathbf{f}^{\mathsf{T}}\boldsymbol{\mu}_{\mathsf{x}} - 2\pi^{2}\mathbf{f}^{\mathsf{T}}\boldsymbol{\Sigma}_{\mathsf{xx}}\mathbf{f})$$

ightharpoonup Probability density function (defined if Σ_{xx} is invertible)

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{K}{2}}\det(\mathbf{\Sigma}_{xx})^{\frac{1}{2}}}\exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_{x})^{T}\mathbf{\Sigma}_{xx}^{-1}(\mathbf{x} - \boldsymbol{\mu}_{x})\right)$$

Une école de l'IMT

Audio source separation

Une école de l'IMT

Audio source separation

D IP PARIS

WSS vector processes

- ▶ Definition: the cumulants of orders 1 et 2 are translation-invariant
- \triangleright Covariance matrices of 2 centered WSS processes $\mathbf{x}(t)$ and $\mathbf{y}(t)$:
 - ▶ Definition: $\mathbf{R}_{xy}(\tau) = \mathbb{E}\left[\mathbf{x}(t+\tau)\mathbf{y}(t)^T\right]$
 - Property: $\mathbf{R}_{xx}(0) = \mathbf{\Sigma}_{xx}$ is Hermitian and positive semi-definite.
- \triangleright PSD matrices of a WSS process $\mathbf{x}(t)$:
 - ▶ Definition: $\mathbf{S}_{xx}(v) = \sum_{\tau \in \mathcal{T}} \mathbf{R}_{xx}(\tau) e^{-2i\pi v \tau}$
 - Property: $\forall v$, $\mathbf{S}_{xx}(v)$ is Hermitian and positive semi-definite

Information theory

- ► Shannon entropy
 - ▶ Definition: $\mathbb{H}[\mathbf{x}] = -\mathbb{E}[\ln(p(\mathbf{x}))]$
 - ightharpoonup $\mathbb{H}[x]$ is not necessarily non-negative for a continuous r.v.
- ► Kullback-Leibler divergence
 - $D_{KL}(p||q) = \int p(\mathbf{x}) \ln \left(\frac{p(\mathbf{x})}{q(\mathbf{x})} \right) d\mathbf{x}$
 - Property: $D_{KL}(p||q) \ge 0$, $D_{KL}(p||q) = 0$ if and only if p = q
- Mutual information
 - ► Definition: $\mathbb{I}[\mathbf{x}] = \mathbb{E}\left[\ln\left(\frac{p(\mathbf{x})}{p(\mathbf{x}_1)...p(\mathbf{x}_K)}\right)\right] = D_{KL}(p(\mathbf{x})||p(\mathbf{x}_1)...p(\mathbf{x}_K))$
 - Property: $\mathbb{I}[\mathbf{x}] = 0$ if and only if $x_1 \dots x_K$ are mutually independent
 - ▶ Relationship with entropy: $\mathbb{I}[\mathbf{x}] = \sum_{k=1}^{K} \mathbb{H}[x_k] \mathbb{H}[\mathbf{x}]$

Part III

Linear instantaneous mixtures

- Observation model:
 - $\forall t, \mathbf{x}(t) = \mathbf{A}\mathbf{s}(t)$ where $\mathbf{A} \in \mathbb{R}^{M \times K}$ is called the "mixture"
 - Sources are assumed IID: $p(\{s_k(t)\}_{k,t}) = \prod_{k=1}^K \prod_{t=1}^T p_k(s_k(t))$
- Problem: estimate **A** and sources $\mathbf{s}(t)$ given $\mathbf{x}(t)$
- ▶ Definition: non-mixing matrix
 - \triangleright a matrix **C** of dimension $K \times K$ is non-mixing if and only if it has a unique non-zero entry in each row and each column
- ▶ If $\widetilde{\mathbf{s}}(t) = \mathbf{C}\mathbf{s}(t)$ and $\widetilde{\mathbf{A}} = \mathbf{A}\mathbf{C}^{-1}$, then $\mathbf{x}(t) = \widetilde{\mathbf{A}}\widetilde{\mathbf{s}}(t)$ is another admissible decomposition of the observations
 - ► Sources can be recovered up to a permutation and a multiplicative factor

Une école de l'IMT

Audio source separation

Une école de l'IMT

Audio source separation

Linear separation of sources

- ▶ Let $\mathbf{y}(t) = \mathbf{B}\mathbf{x}(t)$, where $\mathbf{B} \in \mathbb{R}^{K \times M}$ is referred to as the "separation matrix"
- Linear separation is feasible if **A** has rank *K*:
 - We get $\mathbf{y}(t) = \mathbf{s}(t)$ by defining:
 - ▶ $\mathbf{B} = \mathbf{A}^{-1}$ in the determined case (M = K)
 - **B** = \mathbf{A}^{\dagger} in the over-determined case (M > K)
 - ightharpoonup the pseudo-inverse $\mathbf{A}^{\dagger} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$ is such that $\mathbf{A}^{\dagger} \mathbf{A} = \mathbf{I}_K$
- ▶ In the under-determined case (M < K), separation is not feasible

Part IV

Independent component analysis

Independent component analysis (ICA)

- ► In practice matrix **A** is unknown:
 - \triangleright We look for a matrix **B** that makes the v_k independent (ICA)
 - ▶ We then get equation $\mathbf{y}(t) = \mathbf{C}\mathbf{s}(t)$, where $\mathbf{C} = \mathbf{B}\mathbf{A}$
 - ► The problem is solved if matrix **C** is non-mixing

- Theorem (identifiability)
 - \triangleright Let s_k be K IID sources, among which at most one is Gaussian, and $\mathbf{y}(t) = \mathbf{C}\mathbf{s}(t)$ with **C** invertible ((over)-determined case). If signals $y_k(t)$ are independent, then **C** is non-mixing.

- We now suppose that the sources are centered: $\mathbb{E}[\mathbf{s}(t)] = \mathbf{0}$ and that the mixture is (over-)determined
- ► Canonical problem: we can assume without loss of generality that $\mathbf{s}(t)$ is spatially white $(\mathbf{\Sigma}_{ss} = \mathbb{E}[\mathbf{s}(t)\mathbf{s}(t)^T] = \mathbf{I}_K)$
- ▶ Then $\Sigma_{xx} = A\Sigma_{ss}A^T = AA^T$: A is a matrix square root of
- ▶ We first aim to whiten (decorrelate) the mixture:
 - $ightharpoonup \Sigma_{xx}$ is diagonalizable in an orthonormal basis: $\Sigma_{xx} = \mathbf{Q} \mathbf{\Lambda}^2 \mathbf{Q}^T$ where $\Lambda = \mathrm{diag}(\lambda_1 \dots \lambda_M)$ with $\lambda_1 \ge \lambda_K > \lambda_{K+1} = \lambda_M = 0$ (the rank of Σ_{xx} is equal to K)
 - ▶ Let $\mathbf{S} = \mathbf{Q}_{(:,1:K)} \mathbf{\Lambda}_{(1:K,1:K)} \in \mathbb{R}^{M \times K}$
 - **S** is a matrix square root of Σ_{xx} : $\Sigma_{xx} = SS^T$
 - ► Let $\mathbf{W} = \mathbf{S}^{\dagger}$ and $\mathbf{z}(t) = \mathbf{W}\mathbf{x}(t)$
 - ► Then $\mathbf{z}(t)$ is white $(\mathbb{E}[\mathbf{z}(t)] = \mathbf{0}$ and $\mathbf{\Sigma}_{zz} = \mathbf{W}\mathbf{\Sigma}_{xx}\mathbf{W}^T = \mathbf{I})$

Une école de l'IMT

Audio source separation

Une école de l'IMT

Audio source separation

Whitening

- \blacktriangleright We conclude without loss of generality that $\mathbf{U} \triangleq \mathbf{W}\mathbf{A}$ is a rotation matrix ($\mathbf{U}\mathbf{U}^T = \mathbf{I}$).
- ► Then $\mathbf{y}(t) = \mathbf{U}^T \mathbf{z}(t) = \mathbf{U}^T \mathbf{W} \mathbf{x}(t) = (\mathbf{W} \mathbf{A})^{-1} (\mathbf{W} \mathbf{A}) \mathbf{s}(t) = \mathbf{s}(t)$.
- ightharpoonup We can thus assume $\mathbf{B} = \mathbf{U}^T \mathbf{W}$ where \mathbf{U} is a rotation matrix.

$$\begin{array}{c|c}
\mathbf{y}(t) & \mathbf{z}(t) & \mathbf{w} \\
\downarrow & & \downarrow \\
\end{array}$$

Higher order statistics

- \triangleright One can estimate Σ_{xx} from the observations and get **W**
- ▶ The whiteness property (second order cumulants) determines W and leaves U unknown.
- ▶ If sources are Gaussian, the z_k are independent and **U** cannot be determined.
- ▶ In order to determine rotation **U**, we need to exploit the non-Gaussianity of sources and characterize the independence property by using cumulants of order greater than 2.

Contrast functions

- ▶ Definition: ϕ is a "contrast function" if and only if $\phi[\mathbf{C}\mathbf{s}(t)] \ge \phi[\mathbf{s}(t)] \ \forall \mathbf{C}$ and if $\phi[\mathbf{C}\mathbf{s}(t)] = \phi[\mathbf{s}(t)] \Leftrightarrow \mathbf{C}$ is non-mixing.
- ► Separation is performed by minimizing $\phi[\mathbf{y}(t) = \mathbf{C}\mathbf{s}(t)]$ with respect to \mathbf{U} (or \mathbf{B})
- ▶ "Canonical" contrast function: $\phi_{IM}[\mathbf{y}(t)] = \mathbb{I}[\mathbf{y}(t)]$
- ► Orthogonal contrasts: to be minimized under the constraint $\mathbb{E}[\mathbf{y}(t)\mathbf{y}(t)^T] = \mathbf{I}$. For instance, $\phi_{IM}^{\circ}[\mathbf{y}(t)] = \sum_{k=1}^{K} \mathbb{H}(y_k(t))$
- ▶ Order 4 approximation of ϕ_{IM}° : $\phi_{ICA}^{\circ}[\mathbf{y}(t)] = \sum_{ijkl \neq iiii} (\kappa_{ijkl}^{4}[\mathbf{y}(t)])^{2}$
- **D**escent algorithms for minimizing ϕ with respect to **B** or **U**:
 - ► Gradient algorithm applied to matrix **B**
 - ► Parameterization of **U** with Givens rotations and coordinate descent

- 1. Estimation of the covariance matrix Σ_{xx}
- 2. Diagonalization of Σ_{xx} : $\Sigma_{xx} = \mathbf{Q} \mathbf{\Lambda}^2 \mathbf{Q}^T$ where $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1 \dots \lambda_M)$ with $\lambda_1 \geq \dots \geq \lambda_M \geq 0$
- 3. Computation of $\mathbf{S} = \mathbf{Q}_{(:,1:K)} \mathbf{\Lambda}_{(1:K,1:K)}$
- 4. Computation of the whitening matrix $\mathbf{W} = \mathbf{S}^{\dagger}$
- 5. Data whitening: $\mathbf{z}(t) = \mathbf{W}\mathbf{x}(t)$
- 6. Estimation of **U** by minimizing the contrast function ϕ°
- 7. Estimation of source signals via $\mathbf{y}(t) = \mathbf{U}^T \mathbf{z}(t)$

/48 Une école de l'IMT

Audio source separation

№ IP PARIS 22/48

Une école de l'IMT

Audio source separation

Temporal coherence of sources

Part V

Second order methods

- ightharpoonup Canonical problem: we assume that $\Sigma_{ss} = R_{ss}(0) = I$
- ▶ We first aim to spatially whiten the mixture:
 - Let **S** be a matrix square root of $Σ_{xx}$
 - ► Let $\mathbf{W} = \mathbf{S}^{\dagger}$ and $\mathbf{z}(t) = \mathbf{W}\mathbf{x}(t)$
- ▶ Since $\Sigma_{xx} = \mathbf{A} \mathbf{A}^T$, $\mathbf{U} \triangleq \mathbf{W} \mathbf{A}$ is a rotation matrix
- ▶ However, $\forall \tau \in \mathbb{Z}$, $\mathbf{R}_{zz}(\tau) = \mathbf{U}\mathbf{R}_{ss}(\tau)\mathbf{U}^T$
- The joint diagonalization of matrices $\mathbf{R}_{zz}(\tau)$ for various values of τ permits us to identify rotation \mathbf{U}

23/48

Joint diagonalization

SOBI algorithm

- Unicity theorem :
 - Let a set of matrices $\mathbf{R}_{zz}(\tau)$ of dimension $K \times K$ and of the form $\mathbf{R}_{zz}(\tau) = \mathbf{U}\mathbf{R}_{ss}(\tau)\mathbf{U}^T$ with \mathbf{U} unitary and $\mathbf{R}_{ss}(\tau) = \mathrm{diag}(r_{s_k}(\tau))$. Then \mathbf{U} is unique (up to a non-mixing matrix) if and only if $\forall 1 \leq k \neq l \leq K$, there is τ such that $r_{s_k}(\tau) \neq r_{s_l}(\tau)$
- ▶ Joint diagonalization methods: minimize the criterion

$$J(\mathbf{U}) = \sum_{\tau} \|\mathbf{U}^{T} \mathbf{R}_{zz}(\tau) \mathbf{U} - \operatorname{diag}(\mathbf{U}^{T} \mathbf{R}_{zz}(\tau) \mathbf{U})\|_{F}^{2}$$

► Parameterization of **U** with Givens rotations and coordinate descent

- ► Second Order Blind Identification (SOBI)
 - 1. Estimation and diagonalization of Σ_{xx} : $\Sigma_{xx} = \mathbf{Q} \mathbf{\Lambda}^2 \mathbf{Q}^T$ where $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1 \dots \lambda_M)$ with $\lambda_1 \geq \dots \geq \lambda_M \geq 0$
 - 2. Computation of $S = Q_{(:,1:K)} \Lambda_{(1:K,1:K)}$
 - 3. Computation of the whitening matrix $\mathbf{W} = \mathbf{S}^{\dagger}$
 - 4. Data whitening: $\mathbf{z}(t) = \mathbf{W}\mathbf{x}(t)$
 - 5. Estimation of covariance matrices $\mathbf{R}_{zz}(\tau)$ for various delays τ
 - 6. Approximate joint diagonalization of matrices $\mathbf{R}_{zz}(\tau)$ in a common basis \mathbf{U}
 - 7. Estimation of source signals via $\mathbf{y}(t) = \mathbf{U}^T \mathbf{z}(t)$

5/48 Une école de l'IMT

Audio source separation

Une école de l'IMT

Audio source separation

Non-stationarity of sources

- ▶ Model: $\mathbb{E}(\mathbf{s}(t)) = \mathbf{0}$, $\mathbf{\Sigma}_{ss}(t) \triangleq \mathbb{E}(\mathbf{s}(t)\mathbf{s}(t)^T) = \operatorname{diag}(\sigma_k^2(t))$
- ▶ Then $\forall t \in \mathbb{Z}$, $\mathbf{\Sigma}_{\mathsf{xx}}(t) = \mathbf{A}\mathbf{\Sigma}_{\mathsf{ss}}(t)\mathbf{A}^{\mathsf{T}}$
- ▶ Joint diagonalization methods: minimize the criterion

$$J(\mathbf{B}) = \sum_{t} \|\mathbf{B} \mathbf{\Sigma}_{xx}(t) \mathbf{B}^{T} - \operatorname{diag}(\mathbf{B} \mathbf{\Sigma}_{xx}(t) \mathbf{B}^{T})\|_{F}^{2}$$

- ► Gradient descent algorithm applied to matrix **B**
- In the over-determined case, **B** must be constrained to span the principal subspace of all matrices $\Sigma_{xx}(t)$
- ► Variant of the SOBI algorithm:
 - 1. Segmentation of source signals and estimation of covariance matrices $\Sigma_{xx}(t)$ on windows centered at different times t
 - 2. Joint diagonalization of matrices $\Sigma_{xx}(t)$ in a common basis B
 - 3. Estimation of source signals via $\mathbf{y}(t) = \mathbf{B}\mathbf{x}(t)$

Conclusion of the first part

- ► The use of higher order cumulants is only necessary for the non-Gaussian IID source model
- ▶ Second order statistics are sufficient for sources that are:
 - stationary but not IID (→ spectral dynamics)
 - ▶ non stationary (→ temporal dynamics)
- ▶ Remember that classical tools (based on second order statistics) are appropriate for blind separation of independent (and possibly Gaussian) sources, on condition that the spectral / temporal source dynamics is taken into account.

Part VI

Time-frequency methods

- Motivations
 - Spectral and temporal dynamics are highlighted by a time-frequency (TF) representation of signals
 - ► TF representations are appropriate to process convolutive and/or under-determined mixtures
- ▶ Use of a filter bank (examples: STFT, MDCT):
 - \blacktriangleright Decomposition in F sub-bands and decimation of factor $T \le F$
 - \blacktriangleright Analysis filters h_f and synthesis filters g_f
 - ► TF representation of sources: $s_k(f, n) = (h_f * s_k)(nT)$

 - ► TF representation of mixtures: $x_m(f,n) = (h_f * x_m)(nT)$ ► Perfect reconstruction: $s_k(t) = \sum_{f=1}^F \sum_{n \in \mathbb{Z}} g_f(t-nT) s_k(f,n)$
- ▶ Then $\forall f, n, \mathbf{x}(f, n) = \mathbf{A}\mathbf{s}(f, n)$ (same linear instantaneous mixture)

Une école de l'IMT

Audio source separation

Une école de l'IMT

Audio source separation

Non-stationary source model

- Assumption: independent and centered second order processes
 - Model of non-stationary sources:
 - \blacktriangleright if the time frames n_1 and n_2 are disjoint, then $s_k(., n_1)$ and $s_k(., n_2)$ are uncorrelated and of distinct variances
 - Model of WSS sources:
 - if sub-bands f_1 and f_2 are disjoint $(h_{f_1} * \widetilde{h}_{f_2} = 0)$, then $s_k(f_1, .)$ and $s_k(f_2,.)$ are WSS, uncorrelated and of distinct variances $\sigma_k^2(f_1) = (h_{f_1} * \widetilde{h}_{f_1} * r_{s_k})(0)$ and $\sigma_k^2(f_2) = (h_{f_2} * \widetilde{h}_{f_2} * r_{s_k})(0)$
 - ► Time-frequency source model:
 - ightharpoonup all $s_k(f,n)$ are uncorrelated for all n and f, of distinct variances $\sigma_{k}^{2}(f,n)$ (\Rightarrow time-frequency dynamics)

Separation method

► Separation by joint matrix diagonalization:

Let
$$\Sigma_{ss}(f, n) = \mathbb{E}[\mathbf{s}(f, n)\mathbf{s}(f, n)^T]$$
 and $\Sigma_{xx}(f, n) = \mathbb{E}[\mathbf{x}(f, n)\mathbf{x}(f, n)^T]$

- ► Then $\Sigma_{xx}(f,n) = \mathbf{A}\Sigma_{ss}(f,n)\mathbf{A}^T$ where $\Sigma_{ss}(f,n) = \operatorname{diag}(\sigma_{k}^{2}(f,n))$
- ► Variant of the SOBI algorithm:
 - 1. TF analysis of the mixtures: $x_k(f,n) = (h_f * x_k)(nT)$
 - 2. Estimation of covariance matrices $\Sigma_{xx}(f,n)$
 - 3. Joint diagonalization of matrices $\Sigma_{xx}(f,n)$ in a basis **B**
 - 4. Estimation of the source signals via $\mathbf{y}(f,n) = \mathbf{B}\mathbf{x}(f,n)$
 - 5. TF synthesis of the sources: $y_k(t) = \sum_{f=1}^F \sum_{n \in \mathbb{Z}} g_f(t - nT) y_k(f, n)$

31/48

Part VII

Convolutive mixtures

- Instantaneous mixture model unsuitable for real acoustic mixtures
- ▶ Let $\mathbf{x}_k(f,n) \in \mathbb{R}^M$ be the **image** of source $s_k(f,n)$
 - received multichannel signal if only source $s_k(f, n)$ was active
- ► Mixture model: $\mathbf{x}(f,n) = \sum_{k=1}^{K} \mathbf{x}_k(f,n)$
- ▶ Decomposition of the source separation problem
 - **separation**: estimate $\mathbf{x}_k(f,n)$ from the mixture $\mathbf{x}(f,n)$
 - **deconvolution**: estimate $s_k(f, n)$ from $\mathbf{x}_k(f, n)$
- Mixture model: $x_m(t) = \sum_{k=1}^K (a_{mk} * s_k)(t)$, i.e. $\mathbf{x}(t) = \mathbf{A} * \mathbf{s}(t)$
- ► Theorem (identifiability)
 - Let s_k be K IID sources, among which at most one is Gaussian, and $\mathbf{y}(t) = \mathbf{C} * \mathbf{s}(t)$ with \mathbf{C} invertible ((over)-determined case). If signals $y_k(t)$ are independent, then \mathbf{C} is non-mixing.

33/48

Une école de l'IMT

Audio source separation

Une école de l'IMT

Audio source separation

Time-frequency approach

- Assumptions:
 - ▶ the filter bank corresponds to an STFT
 - ightharpoonup the IR of a_{mk} is short compared with the window length
 - $ightharpoonup \forall m, k, f, a_{mk}(v)$ varies slowly compared with $h_f(v)$
 - $ightharpoonup \Rightarrow (h_f * a_{mk})(t) \approx a_{mk}(f) h_f(t)$
- ► Approximation of the convolutive mixture model:

$$x_m(f,n) = \sum_{k=1}^K a_{mk}(f) s_k(f,n)$$

- Matrix form: $\mathbf{x}(f,n) = \mathbf{A}(f)\mathbf{s}(f,n)$
 - F instantaneous mixture models in every sub-band
 - ▶ ⇒ we can use any ICA method in every sub-band

Independent component analysis

- ▶ Let $\mathbf{y}(f,n) = \mathbf{B}(f)\mathbf{x}(f,n)$, where $\mathbf{B}(f) \in \mathbb{C}^{K \times M}$
- ▶ Linear separation is feasible if A(f) has rank K:
 - ▶ We get $\mathbf{y}(f, n) = \mathbf{s}(f, n)$ by defining:
 - ▶ $\mathbf{B}(f) = \mathbf{A}(f)^{-1}$ in the determined case (M = K)
 - ▶ $\mathbf{B}(f) = \mathbf{A}(f)^{\dagger}$ in the over-determined case (M > K)
- ▶ In the under-determined case (M < K), separation remains impossible
- ▶ In practice matrix $\mathbf{A}(f)$ is unknown:
 - We look for B(f) that makes the $y_k(f,n)$ independent (ICA)
 - We then get $\mathbf{y}(f,n) = \mathbf{C}(f)\mathbf{s}(f,n)$, where $\mathbf{C}(f) = \mathbf{B}(f)\mathbf{A}(f)$
 - ightharpoonup C(f) is non-mixing

Audio source separation

Une école de l'IMT

Audio source separation

Indeterminacies

- ▶ Problem: indeterminacies (permutations and multiplicative factors) in matrices C(f)
 - \blacktriangleright $\forall k$, identify indexes k_f such that $\forall f$, $y_{k_f}(f,n) = c_{k_f,k} s_k(f,n)$
 - ightharpoonup identify the multiplicative factors $c_{k_f,k}$
- ▶ Infinitely many solutions ⇒ need to constrain the model:
 - Assumptions on the mixture
 - ightharpoonup continuity of the frequency responses $a_{mk}(f)$ with respect to f
 - ▶ → beamforming model and anechoic model
 - Assumptions on the sources
 - \blacktriangleright similarity of the temporal dynamics of $\sigma_k^2(f,n)$

- **Beamforming** model:
 - Assumptions: plane waves, far field, no reverberation, linear antenna
 - ► Model: $a_{mk}(f) = e^{-2i\pi f \tau_{mk}}$ where $\tau_{mk} = \frac{d_m}{c} \sin(\theta_k)$
 - Parameters: positions d_m of the sensors and angles θ_k of the sources
- ► Anechoic model:
 - Assumptions: punctual sources, no reverberation
 - Model: $a_{mk}(f) = \alpha_{mk}e^{-2i\pi f \tau_{mk}}$ where $\alpha_{mk} = \frac{1}{\sqrt{4\pi r_{mk}}}$ and $\tau_{mk} = \frac{r_{mk}}{c}$
 - \triangleright Parameters: distances r_{mk} between the sensors and sources

7/48 Une école de l'IMT

Audio source separation

№ IP PARIS 38/48

Une école de l'IMT

Audio source separation

Part VIII

Under-determined mixtures

Under-determined convolutive mixtures

- ▶ Usual case in audio: monophonic (M = 1) or stereophonic (M = 2) mixtures, with a number of sources K > M
- ► Convolutive mixture model: $\mathbf{x}(f,n) = \mathbf{A}(f)\mathbf{s}(f,n)$ with M < K
- Assumption: the mixture model $\mathbf{A}(f)$ and the source model $\mathbf{\Sigma}_{ss}(f,n)$ are known
- Even in this case, the exact separation is not feasible, because there is no matrix $\mathbf{B}(f)$ such that $\mathbf{B}(f)\mathbf{A}(f)=\mathbf{I}_K$

$$\mathbf{y}(f,n)$$
 $\mathbf{B}(f)$ $\mathbf{x}(f,n)$ $\mathbf{A}(f)$ $\mathbf{s}(f,n)$

Separation via non-stationary filtering

- Let $\mathbf{v}(f,n) = \mathbf{B}(f,n)\mathbf{x}(f,n)$ where $\mathbf{B}(f,n) \in \mathbb{C}^{K \times M}$ depends on n
- ▶ Minimum Mean Square Error (MMSE) estimator: we look for $\mathbf{B}(f,n)$ which minimizes $\mathbb{E}[\|\mathbf{y}(f,n)-\mathbf{s}(f,n)\|_2^2]$
- ► Solution: $\mathbf{B}(f,n) = \mathbf{\Sigma}_{sx}(f,n)\mathbf{\Sigma}_{xx}(f,n)^{-1}$ where $\mathbf{\Sigma}_{xx}(f,n) = \mathbf{A}(f)\mathbf{\Sigma}_{ss}(f,n)\mathbf{A}(f)^H$ and $\Sigma_{sx}(f,n) = \Sigma_{ss}(f,n)\mathbf{A}(f)^H((.)^H \text{ denotes the Hermitian}$ conjugate)
- ▶ Remark: $\mathbf{x}(f,n) = \mathbf{A}(f)\mathbf{y}(f,n)$ (exact reconstruction)
- ► Particular case: monophonic mixtures
 - ▶ Without loss of generality, we define $\mathbf{A}(f) = [1, ..., 1]$
 - ► We get $y_k(f, n) = \frac{\sigma_k^2(f, n)}{\sum_{l=1}^K \sigma_l^2(f, n)} x(f, n)$
 - ▶ ⇒ similar to Wiener filtering

Separation method

- 1. TF analysis of the mixtures: $x_k(f,n) = (h_f * x_k)(f,nT)$
- 2. Estimation of $\mathbf{A}(f)$ and $\sigma_{k}^{2}(f,n)$
 - instantaneous mixture model
 - sparse source model
- 3. Computation of $\mathbf{B}(f,n) = \mathbf{\Sigma}_{ss}(f,n)\mathbf{A}(f)^{H} \left(\mathbf{A}(f)\mathbf{\Sigma}_{ss}(f,n)\mathbf{A}(f)^{H}\right)^{-1}$
- 4. Estimation of the source signals via $\mathbf{y}(f,n) = \mathbf{B}(f,n)\mathbf{x}(f,n)$
- 5. TF synthesis of the sources: $y_k(t) = \sum_{f=1}^F \sum_{n \in \mathbb{Z}} g_f(t - nT) y_k(f, n)$

Une école de l'IMT

Audio source separation

Une école de l'IMT

Audio source separation

D IP PARIS

Stereophonic mixtures: temporal sparsity

Case of a linear instantaneous stereophonic mixture: $\mathbf{x}(t) = \mathbf{A}\mathbf{s}(t)$

(a) Temporal source signals and corresponding stereo mixture

Dispersion diagrams (x_1, x_2) over time

Audio source separation

Sparsity in a transformed domain

Case of a linear instantaneous stereophonic mixture: $\mathbf{x}(f,n) = \mathbf{A}\mathbf{s}(f,n)$

Time-frequency coefficients after MDCT decomposition

DUET method

- ► Degenerate Unmixing Estimation Technique (DUET)
- Linear instantaneous stereophonic mixture model: $\mathbf{x}(f,n) = \mathbf{A}\mathbf{s}(f,n)$
 - ▶ Without loss of generality, we assume $\mathbf{A}_{(:,k)} = \begin{bmatrix} \cos(\theta_k) \\ \sin(\theta_k) \end{bmatrix} \forall k$
- ► **Sparse** source model:
 - ▶ $\forall f, n, \exists ! \ k_{(f,n)}$ such that $\sigma^2_{k_{(f,n)}}(f,n) > 0$, and $\forall l \neq k_{(f,n)}$, $\sigma^2_l(f,n) = 0$
- ▶ If only source k is active at (f,n), then $\mathbf{x}(f,n) = \mathbf{a}_k s_k(f,n)$

- 1. TF analysis of the mixtures: $x_k(f,n) = (h_f * x_k)(nT)$
- 2. Estimation of parameters θ_k and of the active source $k_{(f,n)}$
 - \triangleright computation of the histogram of the angles of vectors $\mathbf{x}(f,n)$
 - \triangleright peak detection in order to estimate parameters θ_k
 - determination of the active source at (f, n) by proximity with θ_{ν}
- 3. Source separation: for all k,
 - estimation of source images via binary masking: $\mathbf{y}_k(f,n) = \mathbf{x}(f,n) \ \forall \ (f,n)$ such that $k_{(f,n)} = k$ and $\mathbf{y}_k(f,n) = 0$ for the other time-frequency bins (f,n)
 - MMSE estimation of the sources: $y_k(f, n) = \hat{\mathbf{a}}_k(f)^{\dagger} \mathbf{y}_k(f, n)$
- 4. TF synthesis of the sources:

$$y_k(t) = \sum_{f=1}^F \sum_{n \in \mathbb{Z}} g_f(t - nT) y_k(f, n)$$

5/48 Une école de l'IMT

Audio source separation

Une école de l'IMT

Audio source separation

Part IX

Conclusion

Conclusion

Summary

- Source separation requires to make assumptions about the mixture and sources
- ► For an (over-)determined instantaneous linear mixture, the assumption of independent sources is sufficient
- ► In all other cases, we need to model the mixture and/or the sources
- Perspectives
 - Non-stationary mixtures (adaptive algorithms)
 - ▶ Informed source separation (e.g. from music score)
 - ► Deep learning techniques
 - ▶ Objective assessment of audio source separation

47/48

Audio source separation

Une école de l'IMT

Audio source separation