

SEGMENTATION OF BREAST CANCER MASS USING TWO APPROACHES: CONNECTED UNITS AND MULTISCALE ADVERSARIAL NETWORK

Presented by:

Hanae TAFZA

Jury Members:

- President: Prof. Mounia MIKRAM
- Supervisor: Prof. Btihal EL GHALI
- Co-Supervisor: Prof. Najima DAOUDI
- Tutors: Prof & Consultant Naoual EL ABOUDI Prof & Dr. Nezha ELBAHAOUI

PLAN

O1 HOST ORGANIZATION

CONTEXT AND OBJECTIVES

03 LITERATURE REVIEW

METHODOLOGY AND CONCEPTUAL PHASE

05 IMPLEMENTATION

O6 SYNTHESIS AND PERSPECTIVES

⁰¹ Host Organization

National Institute of Oncology

- Founded: 1976
- Sector: Oncology and Cancer Treatment
- Services Offered: Diagnostic services, cancer treatment, patient monitoring, epidemiological studies, multidisciplinary research, medical and paramedical education
- Objective: To diagnose, treat, and monitor cancer patients, conduct cancer epidemiological studies, research diagnostic and treatment methods, and contribute to medical, paramedical, and scientific education.

SINONE is Specialized in information technology as part of the SINONE_ISICOD group since 2022

- Provides high-quality web and mobile solutions transforming ideas into successful digital projects
- Offers comprehensive services from strategic consulting to custom solution development, advanced training, and cutting-edge development tools
- Leaders with extensive experience in designing and implementing IT solutions
- Expertise and training services promoting leadership based on technological innovation
- Guarantees the security of IT solutions and facilitates knowledge transfer

⁰¹ Host Organization

Presentation of the Organizational Chart

Context and Objectives of the Research

AI in Medical Imaging

mammography screening

Problem Statement Objectives of the Research

- Significant increase in scan volume using AI from 2020 to 2040.
- Breast cancer scans show substantial growth, indicating rising reliance on AI for early detection and diagnosis.
- AI technology is improving diagnostic accuracy, leading to better outcomes in breast cancer treatment.
- The adoption of AI in medical imaging is also expanding across other diseases such as skin cancer, prostate cancer, and lung cancer.

AI in Medical Imaging

Mammography Screening

- Mammography is widely used in the Moroccan context because it is accessible and cost-effective.
- Provides early detection of breast cancer, improving treatment outcomes.
- Non-invasive procedure with minimal discomfort for patients.
- High accuracy in identifying breast abnormalities.
- Can be performed on both right and left breasts.
- Different imaging views (MLO, CC) provide comprehensive assessment.

Problem Statement Objectives of the Research

AI in Medical Imaging

Mammography Screening

Problem Statement

Objectives of the Research

How can we develop accurate and robust breast cancer mass segmentation models, fostering collaboration between IT specialists and radiologists to improve diagnosis and treatment?

AI in Medical Imaging

Mammography Screening

Problem Statement

Objectives of the Research

Early breast Cancer Detection for an Effective Follow-Up

Collaboration

Developing Automated Models for Breast **Cancer Mass** Segmentation

Ensuring Accuracy and Robustness

Principal Works

Comparative Table

Connected U-Nets

Multiscale Approach

2019

CU-Net: Cascaded U-Net with
Loss Weighted Sampling for Brain
Tumor Segmentation

2021

Connected-UNets: a deep learning architecture for breast mass segmentation

2023

Connected-SegNets: A Deep Learning Model for Breast Tumor Segmentation from X-ray Images

Principal Works

Comparative Table

Connected U-Nets

Multiscale approach

2020(Dec)

MA-Unet: An improved version of Unet based on multi-scale and attention mechanism for medical image segmentation 2020(JULY)

Cascade Residual Multiscale
Convolution and Mamba-Structured
UNet for Advanced Brain Tumor
Image Segmentation

2024

A deep learning based multiscale approach to segment cancer area in liver whole slide image

Principal Works

Comparative Tables

Connected U-Nets

Multiscale Approach

Article Title	Authors	Approach	Methods	Dataset	Key	Performanc
			Used	5	Metrics	e
CU-Net: Cascaded U- Net with Loss Weighted Sampling for Brain Tumor Segmentatio n (2019)	Hongying Liu, Xiongjie Shen, Fanhua Shang, Fei Wang	Cascaded U-Net, Loss Weighted Sampling	Residual blocks, auxiliary supervision, between-net connections	BraTS 2017	Dice score, Sensitivit y, Specificit y	Dice score 0.888, Sensitivity 0.903 for whole turnor, etc.
Connected- UNets: a deep learning architecture for breast mass segmentatio n (2021)	Asma Baccouche, Begonya Garcia- Zapirain, Cristian Castillo Olea, Adel S. Elmaghrab	Connected -UNets	Modified skip connections, ASPP, CycleGAN	CBIS- DDSM, INbreas t, private dataset	Dice score, IoU score	Dice score 89.52%, 95.28%, and 95.88% for CBIS- DDSM, INbreast, and private dataset, respectively
Connected- SegNets: A Deep Learning Model for Breast Tumor Segmentatio n from X- ray Images (2022)	Mohamma d Alkhaleefa h, Tan-Hsu Tan, Chuan- Hsun Chang, Tzu-Chuan Wang, Shang-Chin Ma, Lena Chang, Yang-Lang Chang	Connected -SegNets	Skip connections, IoU loss function, CLAHE, image augmentatio n	INbreas t, CBIS- DDSM, private dataset	Dice score, IoU score	Dice score 96.34%, 92.86%, and 92.25% on INbreast, CBIS- DDSM, and private dataset, respectively; IoU score 91.21%, 87.34%, and 83.71%

Principal Works

Comparative Tables

Connected U-nets

Multiscale Approach

Article Title	Approach	Methods	Datasets	Key Metrics	Performance
		Used			
"A Deep	Multi-scale	Gaussian	MICCAI	Jaccard	Best Jaccard
Learning Based	image	pyramid, U-	PAIP	Score, F1	Score: 0.7964
Multiscale	processing	Net,	Challenge	Score,	
Approach to		Attention U-		Directed	
Segment Cancer		Net, etc.		Hausdorff	
Area in Liver				Distance	
Whole Slide					
Image"					
"Cascade	Cascade	MambaBTS,	MICCAI	Dice	WT: 0.8450,
Residual	residual	CBAM,	BraTS	Coefficients,	TC: 0.8606,
Multiscale	multi-scale	hybrid loss	2019	PPV,	ET: 0.7796
Convolution and	convolution	function		Sensitivity	
Mamba-					
Structured UNet					
for Advanced					
Brain Tumour					
Image					
Segmentation"					
"MA-Unet: An	Multi-scale	MA-Unet,	LUNA,	MIOU,	Lung: MIOU:
Improved	and	Attention	Sun Yat-	MDC	95.76%,
Version of Unet	attention	Gates, Multi-	sen		MDC:
Based on Multi-	mechanism	scale	University		97.52%;
scale and		predictive			Esophageal:
Attention		fusion			MIOU:
Mechanism for					65.3%,
Medical Image					MDC:
Segmentation"					75.49%

Methodology

Functional Requirements

Conceptual Phase

Techniques and tools used

Using CRISP-DM to maximize accuracy and minimize cycle times in Breast Cancer Mass Segmentation

Methodology

Functional Requirements

Conceptual Phase

Techniques and tools used

We used Gantt chart to outline the timeline for our various project tasks

Methodology

Functional Requirements

Conceptual Phase

Methodology

Functional Requirements

Conceptual Phase

Techniques and tools used

Business Understanding Understanding CRISP-DM **Process** Data Preparation Diagram Deployment Modeling Data **Evaluation** Source: Kenneth Jensen

Methodology

Functional Requirements

Conceptual Phase

Methodology

Functional Requirements

Conceptual Phase

Attention U-Net

U-Net plus plus

Methodology

Functional Requirements

Conceptual Phase

Connected U-Nets

Methodology

Functional Requirements

Conceptual Phase

Multiscale Adversarial Network Architecture

Methodology

Functional Requirements

Conceptual Phase

Buisness Understanding

Objective

Constraints

Requirements

Develop a deep learning model for accurate segmentation of breast cancer masses in mammography images

Buisness Understanding

Objective

Constraints

Requirements

We found the main constraints in deep learning project:

- Budget
- Annoted data
- Time

Buisness Understanding

Computional ressources

Data Understanding

Data Collection

Data Exploration

Data source Verification

We utilized the CBIS-DDSM dataset formed by a total of 1,318 mammograms. This dataset is an updated and standardized version of the Digital Database for Screening Mammography (DDSM).

Attribute	Description		
Samples in dataset (total)	1318 mammograms		
Dimension	256 × 256 pixels		
Color Grading images	RGB		
Color Grading Masks	Gray scale		

Data Understanding

Data Collection

Data Exploration

data Source Verification

Advantages

- Detailed Annotations: Provides precise pixel-wise segmentation masks.
- Diverse Image Types: Includes both cropped masses and full mammograms.
- Open Source Accessibility: Publicly available and easy to access for research.
- Mammograms modality matching Moroccan context

Data Understanding

Data Collection

Data Exploration

data Source Verification

Challenges of the dataset

- Presence of Artifacts: Contains large texts and marks that interfere with analysis.
- Irregular Tumor Shapes: Malignant tumors have ambiguous and blurred edges.
- Surrounding Area Challenges: Difficulties in preserving surrounding tissue during segmentation.
- Poor Image Quality: Some images have low brightness and contrast.
- Structural Complexity: Complex structures and artifacts in breast ima

Data Understanding

Data Collection

Data Exploration

Data source verification

https://www.cancerimagingarchive.net/collection/cbis-ddsm/

Data Preparation

Data Cleaning

Data Transformation

Data splitting

Data management

Largest Contour

Data Preparation

Data Cleaning

Data Transformation

Data splitting

Data management

Algorithms	Functions	Values of Parameter
Binary masking	OpenCV rectangle()	Width = 5
Largest contour detectionOpenCV findContours()		Mode for contour approximation = CHAIN_APPROX_SIMPLE
		Retrieval mode of contour = RETR_EXTERNAL
	max()	Meassure key = contourArea
	OpenCV drawContours()	Index = largest contour, color of contour boarder = (255, 255,
Vertical line removal		255), width = 1
	OpenCV Canny()	Minimum Value = 50, maximum Value = 150 and Size of
		aparture = 3
	OpenCV HoughLines()	edges = Canny(), rho = 1, theta = numpy. pi/50,
		threshold = 50
	Line	Color value = $(0,0,0)$, Width = 5
Gamma correction	Numpy array()	Value of gamma = 2.0
CLAHE	OspenCV createCLAHE()	Clip Limit = 1.0, tile Grid Size = (8, 8)

Data Preparation

Data Cleaning

Data Transformation

Data splitting

Data management

Data Transformation for Full Mammography

Resizing to 256*256

Data Preparation

Data Cleaning

Data Transformation

Data splitting

Data management

Data Transformation for Cropped images

Cropping and resizing masks to match cropped images

Data Preparation

Data Cleaning

Data Transformation

Data Splitting

Data management

Number of training Images: 980 Number of validation Images: 123 Number of test Images: 123 Shape of training Image: (256, 256) Shape of validation Image: (256, 256) Shape of test Image: (256, 256)

Data Preparation

Modeling

Choice of Models

Models Training

Evaluation

Discussion

Connected U-Nets

- Fine Detail Preservation
- Accurate Shape Analysis
- Detailed and Contextual Information
- Sequential Refinement
- Skip Connection
- 2 encoders & 2 decoders

2

Multiscale Approach

- Enhanced Feature Representation
- Contextual Awareness
- Robustness
- Capturing Smaller Details
- GAN

Modeling

Choice of Models

Models Training

Epoch 27/58

Evaluation

Discussion

Connected Attention U-Net

Training techniques

- Early stopping
- Reduce Learning rate on plateu
- Model CheckPoint

Hyperparameters

- Filtres de convolution : 64 à 1024.
- Batch size: 8
- Nombre d'époques : 50

```
Epoch 1/58
Epoch 1: val_dice_coef improved from -inf to 0.01082, saving model to /content/drive/MyDrive/attconnemodel2.keras
Epoch 2/58
Epoch 2: val dice coef improved from 0.81862 to 0.01076, waving model to /content/drive/MyDrive/attconnemodel2.keras
132/132 [***************** - ETA: 0s - loss: 6.0998 - dice coef: 0.0337 - lou coef: 0.0168
Epoch 3; wal dice coef did not improve from 8,81876
Epoch 4/58
Epoch 4: val_dics_coef improved from 0.81076 to 8.81882, saving model to /content/drive/MyDrive/attcommemodel2.keras
132/132 [************************* | 55s 489ms/step = loss: 3.465t - dice coef: 8.888s - lou coef: 8.840t - val loss: 4.4845 - val dice coef: 8.8188 - val lou coef: 8.8298 - lo: 1.8800e-84
Epoch 5: val dice coef did not improve from 6.81802
Epoch 6/50
Epoch 6: val dice coef improved from 0.81891 to 0.12552, saving model to /content/drive/MyDrive/attcommemodel2.keras
Epoch 7/58
Epoch 7: val dics coef improved from 0.22552 to 0.37198, saving model to /content/drive/MyDrive/attcommondel2.xeras
Epoch 8/58
Epoch 8: val dice coef did not improve from 0.37198
Epoch 9/58
Epoch 18: wal dice coef did not improve from 8,86097
123/123 [**************** | 1185 956ms/step = loss: 8.8178 = dice coef: 8.8693 = low coef: 8.7669 = val loss: 8.8828 = val dice coef: 8.8593 = val low coef: 8.7518 = lr: 1.8806e-84
Epoch 19/50
Epoch 19: wal dice couf did not improve from 8.86897
Epoch 28: wal dice coef did not improve from 0.86007
123/123 [*****************] - 1186 957ms/stap - 1055; 8.7487 - dice_coef; 8.8894 - low_coef; 8.7889 - val_loss; 8.8411 - val_dice_coef; 8.8544 - val_low_coef; 8.7443 - lr: 1.8888e 84
Epoch 21/58
Epoch 21: wal dice coef improved from 0.86097 to 0.86546, saving model to /kagglu/working/awnet model2.keras
Epoch: 22/50
Epoch 22: wal dice coef did not improve from 8.86546
123/123 [************************* | ETAL 8s - loss: 8.8658 - dice coef: 8.8733 - low coef: 8.7729
Epoch 23: wal dice coef did not improve from 0.86546
123/123 [**************** - 1175 955ms/stap - 1055: 8.6658 - dice coef: 8.8733 - 100 coef: 8.7729 - wal loss: 8.7419 - wal dice coef: 8.8571 - val iou cmef: 8.7483 - lr: 1.8886e-84
Epoch 24/58
Epoch 24: wal dice coef did not improve from 0.86546
Epoch: 25/50
Epoch 25: wal dice coef did not improve from 8.86546
Epoch 26: wal dice coef did not improve from 0.86546
```

123/123 [****************] - 117s 954ms/stap - 10ss: 8.8860 - dice coef: 8.8779 - low coef: 8.7881 - wal loss: 8.8165 - wal dice coef: 8.8888 - wal low coef: 8.7393 - lr: 1.8886e 84

Modeling

Discussion

Modeling

Choice of Models

Model Training

Evaluation

Discussion

Test Metrics Only

Model	Loss	Dice Coefficient	IoU Coefficient
AUNet	0.6794	0.3630	0.2189
Dense UNet	0.6733	0.3665	0.2239
UNet++	0.7008	0.3406	0.2243
CDUNet	0.6890	0.3534	0.2239
CUNet++	0.7060	0.3234	0.3234
CAUNet	1.01	0.3789	0.2458
CDUNet (Cropped)	0.5271	0.8495	0.7360
Dense UNet (Cropped)	0.5904	0.8179	0.6901
CAUNet (Cropped)	0.6999	0.8663	0.7620
AUNet (Cropped)	0.6703	0.8484	0.7344
MSANet (Cropped)	0.4565	0.8556	0.7409
CUNet++ (Cropped)	0.4964	0.8344	0.7577

05

Implementation

Modeling

Choice of Models

Model Training

Evaulation

Discussion

The Previous table presents the test metrics for various segmentation models, highlighting loss, Dice Coefficient, and IoU Coefficient. Cropped models generally outperform their non-cropped counterparts, with CAUNet (Cropped) achieving the highest Dice Coefficient (0.8663) and IoU Coefficient (0.7620), indicating superior segmentation accuracy. The results suggest that cropping the input images significantly enhances model performance, likely by focusing the model on the relevant regions of interest

Conclusion and Perspectives

Merci pour votre attention!