

2 Analyse von Algorithmen

Lernziele

- Wie zeigt man die Korrektheit eines Algorithmus?
- Wie kann man die Laufzeit abschätzen?
- Wie kann man den Speicherbedarf <u>abschätzen?</u>
- Asymptotische Laufzeit und Wachstum von Funktionen

Untersuchung am Beispiel eines Suchalgorithmus

Das Abstrakte Sortierproblem wird beschrieben durch

- Eingabe: Eine Folge von n ganzen Zahlen (a₁, a₂, ... a_n)
- Ausgabe: Eine Permutation (a¹₁, a¹₂, ... a¹_n) mit a¹₁ ≤ a¹₂ ≤ ... ≤ a¹_n

Beispiel:

- Eingabe: (31, 41, 59, 26, 41,58)
- Ausgabe: (26, 31, 41, 41, 58, 59)

Anwendungen

- Teilproblem vieler Anwendungen
- Viele Lösungen (Algorithmen) vorhanden
- Lösungen basieren z.T. auf unterschiedlichen Entwurfstechniken
- Problem ist gut verstanden, d.h. eine untere Schranke für die Laufzeit ist bekannt.
- Optimal lösbar, d.h. die besten Algorithmen haben eine Laufzeit in der Größenordnung der unteren Schranke

Eine Lösung: Insertion-Sort

- Einfach zu verstehen
- Wenig effizient
- Dennoch gut bei kleinen oder vorsortierten Folgen
- Leicht zu implementieren
- Entspricht dem Vorgehen beim Einsortieren von Karten

Achtung

- Wir benutzen hier Arrays
- Wir indizieren Arrays mit Indizes 1 ... n
- In vielen Programmiersprachen werden Indizes 0 ... n-1 verwendet

Beispiel Insertion-Sort

```
1: function INSERTION-SORT(A)
        for j from 2 to length[A] do
2:
           \text{key} \leftarrow A[j]
3:
        i \leftarrow j - 1
4:
           while i > 0 \wedge A[i] > \text{key do}
5:
              A[i+1] \leftarrow \overline{A[i]}
6:
       i \leftarrow i - 1;
7:
           end while
8:
           A[i+1] \leftarrow key
9:
        end for
10:
11: end function
```


Beispiel Insertion-Sort

1: function INSERTION-SORT(A) for j from 2 to length[A] do 2: $key \leftarrow A[j]$ 3: i ← j – 1 4: while $i > 0 \land A[i] > key do$ 5: $A[i+1] \leftarrow \overline{A[i]}$ 6: i ← i − 1; 7: end while 8: $A[i+1] \leftarrow key$ 9: end for 10: 11: end function

5	2	4	6	1	3
2	5				
2	4	5			

Analyse

Wichtig und interessant sind:

- Korrektheit des Algorithmus
 Es ist zu zeigen, dass der Algorithmus für alle Instanzen des Problems eine korrekte Lösung berechnet
- Komplexität des Algorithmus
- Der Ressourcenbedarf des Algorithmus an Laufzeit und Speicher wird untersucht. In der Praxis relevant ist vor allem die Laufzeit.
- Wichtig ist ein aussagekräftiges Maß für diese Größen.

Analyse der Korrektheit

In Analogie zur Beweistechnik der vollständigen Induktion wird mit Invarianten (Schleifeninvarianten) gearbeitet

Man zeigt folgende Punkte:

- Initialisierung
 Die Invariante ist vor der ersten Iteration der Schleife wahr.
- Aufrechterhaltung
 Wenn die Invariante vor einer Iteration der Schleife erfüllt ist, dann ist sie auch vor Beginn der nächsten Iteration erfüllt.
- Terminierung
 Wenn die Schleife endet, dann ist die Invariante auch wahr. Sie liefert einen nützlichen Hinweis, um die Korrektheit des Algorithmus zu beweisen.

Schleifeninvariante

Die Teilfolge a₁, ... a_{i-1} ist sortiert.

Initialisierung

Vor Beginn des ersten Durchlaufs (Z. 2) wird j auf 2 gesetzt.

Die Teilfolge $(a_1, \dots a_{i-1})$ ist dann (a_1)

Eine 1-elementige Folge ist trivialerweise sortiert

Beispiel Insertion-Sort

```
1: function INSERTION-SORT(A)
       for j from 2 to length[A] do
2:
         key \leftarrow A[j]
3:
4:
     i ← j − 1
         while i > 0 \land A[i] > key do
5:
6:
            A[i+1] \leftarrow A[i]
      i \leftarrow i - 1;
7:
         end while
8:
9:
          A[i+1] \leftarrow key
10:
       end for
11: end function
```


Aufrechterhaltung

Funktion der Schleife

- Die for-Schleife bewegt die Elemente a_{j-1}, a_{j-2}, ... jeweils eine Position nach rechts (Z. 5-8), bis der richtige Einfügeplatz für a_i gefunden ist.
- Dann wird a_i an diese Stelle geschrieben (Z. 9)

Aufrechterhaltung

Betrachtung der Schleife

- Der Schlüssel von a_i wird gemerkt.
- In der vorherigen Iteration wurde eine sortierte Teilfolge (a₁, ... a_{j-1})
 hergestellt.
- In der while-Schleife wird das erste Element a_i gesucht mit a_i ≤ a_j < a_{i+1}
- a_j wird durch Verschieben der größeren Elemente zwischen a_i und a_{i+1} einsortiert.
- Danach sind die Elemente a_i, ... a_i sortiert.
- Somit ist die Schleifeninvariante zum Start der n\u00e4chsten Iteration wieder erf\u00fcllt.

Beendigung/Terminierung

Die Schleife endet mit j = n + 1.

Es wird mit diesem Wert von j kein Schleifendurchlauf mehr durchgeführt.

Da die Invariante für $(a_1, ... a_{j-1})$ gilt und da j = n + 1, gilt folglich $(a_1, ... a_n)$ ist sortiert.

Analyse der Komplexität

- Analyse erlaubt den "besten" Algorithmus auszusuchen oder die ungünstigeren auszusortieren
- Analyse ist Vorhersage des Ressourcenverbrauchs eines Algorithmus
 - Rechenzeit
 - Speicher
 - Kommunikationsbandbreite
- Meist ist Rechenzeit wichtig

Analyse der Komplexität

Rechenzeit hängt ab von

- Probleminstanz, d.h. Eingabe
- Eingabelänge (problemabhängig)
 - Bei vielen Algorithmen Anzahl der Elemente der Eingabe (Sortieren, Fouriertransformation, ...)
 - Bei manchen Algorithmen Anzahl der Bits der Eingabe (Binäre Addition, Multiplikation, ...)

Analyse der Komplexität

Analyse benötigt

- Modell der Implementierung auf einem Rechner
- Modell der Ressourcen
- Kostenmodell f
 ür die Benutzung der Ressourcen

Oft benutzt

Random Access Machine (RAM), spezielle Art von Registermaschine

- Befehle werden sequentiell abgearbeitet
- Einfache, praxisgerechte Elementarbefehle und Datenstrukturen

Analyse des Ressourcenverbrauchs

Rechenzeit kann beschrieben werden

- Durch Anzahl der einfachen Operationen, durch einfaches Zählen von Schritten
- Durch Zuweisen von Rechenzeitbedarf für bestimmte Operationen


```
1: function INSERTION-SORT(A)
       for j from 2 to length[A] do
2:
                                                                 n
3:
          key \leftarrow A[i]
                                                                 n-1
     i \leftarrow j - 1
4:
                                                                 n-1
     while i > 0 \wedge A[i] > key do
                                                                 \sum_{j=2}^{n} \overline{t_j}
5:
                                                                 \sum_{j=2}^{n} (t_j - 1)
6:
            A[i+1] \leftarrow A[i]
     i \leftarrow i - 1;
                                                                 \sum_{j=2}^{n} (tj-1)
7:
      end while
8:
9:
          A[i+1] ← key
                                                                 n-1
        end for
10:
11: end function
```

Problem ist die while-Schleife:

t_i steht für die Anzahl von Durchläufen der jeweiligen Zeile für ein bestimmtes j.


```
1: function INSERTION-SORT(A)
       for j from 2 to length[A] do
2:
                                                               n
3:
       key ← A[i]
                                                               n-1
     i \leftarrow j - 1
4:
                                                               n-1
     while i > 0 \land A[i] > key do
                                                               \sum_{i=2}^{n} t_i
5:
                                                               \sum_{j=2}^{n} (t_j - 1)
6:
             A[i+1] \leftarrow A[i]
     i \leftarrow i - 1;
                                                               \sum_{j=2}^{n} (tj-1)
7:
          end while
8:
          A[i+1] \leftarrow key
9:
                                                               n-1
       end for
10:
11: end function
```

Gesamtlaufzeit:

$$T(n) = 4n - 3 + \sum_{j=2}^{n} (3t_j - 2)$$

Beobachtung

- Wir zählen einfach Operationen
- Laufzeit ist von Problemgröße n abhängig
- Bei gegebener Problemgröße ist die Laufzeit noch von der Art des Problems abhängig
- Laufzeit ist abhängig davon, wie oft die innere Schleife durchlaufen wird
- Dies ist vorab nicht ohne weiteres zu bestimmen

Analyse von Algorithmen

Arten der Analyse

Best case: Mindestlaufzeit bei günstiger Art des Problems.

Worst case: Maximallaufzeit bei ungünstiger Art des Problems.

Average case: Laufzeit im Mittel


```
1: function INSERTION-SORT(A)
       for j from 2 to length[A] do
2:
                                                               n
3:
       key ← A[i]
                                                               n-1
     i \leftarrow j - 1
4:
                                                               n-1
     while i > 0 \land A[i] > key do
                                                               \sum_{i=2}^{n} t_i
5:
                                                               \sum_{j=2}^{n} (t_j - 1)
6:
             A[i+1] \leftarrow A[i]
     i \leftarrow i - 1;
                                                               \sum_{j=2}^{n} (tj-1)
7:
          end while
8:
          A[i+1] \leftarrow key
9:
                                                               n-1
       end for
10:
11: end function
```

Gesamtlaufzeit:

$$T(n) = 4n - 3 + \sum_{j=2}^{n} (3t_j - 2)$$

Best case

Günstig, falls in Zeile 5 die korrekte Einfügestelle sofort gefunden ist, d.h. $t_i = 1$ für alle j.

Dann werden Zeile 6 und 7 nicht ausgeführt

Dann: $T_{BC}(n) = 4n - 3 + (n - 1) = 5n - 4$

Gilt, falls die Folge bereits sortiert ist

Laufzeit ist lineare Funktion $T_{BC}(n) = a * n + b$


```
1: function INSERTION-SORT(A)
       for j from 2 to length[A] do
2:
                                                               n
3:
       key ← A[i]
                                                               n-1
     i \leftarrow j - 1
4:
                                                               n-1
     while i > 0 \land A[i] > key do
                                                               \sum_{i=2}^{n} t_i
5:
                                                               \sum_{j=2}^{n} (t_j - 1)
6:
             A[i+1] \leftarrow A[i]
     i \leftarrow i - 1;
                                                               \sum_{j=2}^{n} (tj-1)
7:
          end while
8:
          A[i+1] \leftarrow key
9:
                                                               n-1
       end for
10:
11: end function
```

Gesamtlaufzeit:

$$T(n) = 4n - 3 + \sum_{j=2}^{n} (3t_j - 2)$$

Worst case

- Ungünstig, falls Zeilen 5-8 immer ganz durchlaufen werden bis Anfang der Folge.
- Es gilt:
- Dann: $T_{WC(n)} = 4n 3 + \left(\frac{n(n-1)}{2} 1\right) + n(n-1) = \frac{3}{2}n^2 + \frac{7}{2}n 4$
- Laufzeit ist quadratische Funktion T_{WC}(n) = an² + bn + c

Average case

- Worst case ist obere Schranke f
 ür die Laufzeit
- Schlechtester Fall kommt für manche Algorithmen häufig vor.
 Bsp. Suche in Datenbanken: Schlechtester Fall ist, falls gesuchtes Element nicht gefunden wird.
- Oft ist mittlerer Fall ähnlich schlecht wie schlechtester Fall. Bei Insertion Sort ergibt sich auch im mittleren Fall eine quadratische Laufzeit.

Motivation

- Man untersucht die Laufzeit von Algorithmen für große Eingabelängen
- Dann ist im Wesentlichen der Wachstumsgrad der Laufzeiten relevant
- Man nennt dies die Untersuchung der asymptotischen Effizienz von Algorithmen
- Problem: Die Aussage gilt dann nicht (exakt) für kleine Eingabelängen.
- Anders formuliert: Ein Algorithmus A mit besserer asymptotischer Effizienz ist u.U. für geringe Eingabegrößen die ungünstigere Wahl.

Aysmptotische Notation

Die O-Notation beschreibt obere Schranken für das Wachstum von Funktionen (Groß-O).

Die Ω -Notation beschreibt untere Schranken für das Wachstum von Funktionen (Groß- Ω bzw. Groß-Omega)

Die θ -Notation beschreibt exakte Schranken für das Wachstum von Funktionen (Groß- θ bzw. Groß-Theta)

Vernachlässigbare Anteile dürfen weggelassen werden:

Genauere Analyse ist oft schwierig oder gar unmöglich.

Konstante Summanden und Faktoren

Lineare Beschleunigung ist leicht möglich (schnellerer Rechner ...)

Die O-Notation

Für eine gegebene Funktion g(n) ist O(g(n)) die folgende Menge von Funktionen

$$O(g(n)) = \{f(n) : \text{es ex. positive Konstanten } c_1, n_0 \text{ mit } 0 \le f(n) \le c_1 g(n) \text{ für alle } n \ge n_0 \}$$

Man schreibt: $f \in O(g)$ oder auch f = O(g). g(n) ist eine asymptotische obere Schranke für f(n)

Beispiel zur O-Notation

Es soll gezeigt werden, dass $\frac{1}{2}$ n² + 3n \in O(n²)

$$0 \le \frac{1}{2} n^2 + 3n \le c_1 n^2$$

$$0 \le \frac{1}{2} + \frac{3}{n} \le c_1$$

Wähle $c_1 = \frac{3}{2}$, ab $n_0 = 3$ erfüllt.

Beispiel

Beispiel zur O-Notation (2)

Es soll gezeigt werden, dass $2n^2 + 3n \in O(n^2)$

$$2n^2 + 3n \le 2n^2 + 3n^2 = 5n^2 \le c_1 n^2$$

Wähle: $c_1 = 5$, ab $n_0 = 1$ erfüllt.

Beispiel (2)

Die Ω -Notation

Für eine gegebene Funktion g(n) ist

$$\Omega(g(n)) = \{f(n) : \text{ es ex. positive Konstanten } c_1, n_0 \text{ mit}$$

$$0 \le c_1 g(n) \le f(n) \text{ für alle } n \ge n_0\}$$

Man schreibt: $f \in \Omega(g)$ oder auch $f = \Omega(g)$. g(n) ist eine asymptotische untere Schranke für f(n)

Veranschaulichung der Ω -Notation

Beispiel zur Ω -Notation

Es soll gezeigt werden, dass $\frac{1}{2}$ n^2 + $3n \in \Omega(n^2)$

$$0 \le c_1 n^2 \le \frac{1}{2} n^2 + 3n$$

$$0 \le c_1 \le \frac{1}{2} + \frac{3}{n}$$

Wähle $c_1 = \frac{1}{2}$, ab $n_0 = 1$ erfüllt.

Beispiel zur Ω -Notation

Die θ -Notation

Für eine gegebene Funktion g(n) ist

$$\theta(g(n)) = \{f(n) : \text{ es ex. positive Konstanten } c_1, c_2, n_0 \text{ mit}$$

$$0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ für alle } n \ge n_0 \}$$

Man schreibt: $f \in \theta(g)$ oder auch $f = \theta(g)$. g(n) ist eine asymptotische exakte Schranke für f(n)

Veranschaulichung der θ -Notation

Beispiel zur θ -Notation

Es soll gezeigt werden, dass $\frac{1}{2}$ n² + 3n $\in \theta$ (n²)

$$0 \le c_1 n^2 \le \frac{1}{2} n^2 + 3n \le c_2 n^2$$
$$0 \le c_1 \le \frac{1}{2} + \frac{3}{n} \le c_2$$

Wähle $c_1 = \frac{1}{2}$, $c_2 = \frac{3}{2}$, ab $n_0 = 3$ erfüllt.

Beispiel zur θ -Notation

Symbol	$\exists c_1, c_2 > 0 \ \exists \ n_0 > 0 : \forall \ n \geq n_0$	Analogie
	$0 \leq f(n) \leq c_1 \cdot g(n)$ $0 \leq c_1 \cdot g(n) \leq f(n)$	$a \leq b$ $a \geq b$
$f\in\Theta(g)$	$0 \leq c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)$	a = b

Hierarchie von Größenordnungen

Notation	Name	Beispiel
<i>O</i> (1)	konstant	Ist eine Binärzahl gerade?
$O(\log n)$	logarithmisch	Binäre Suche im sortierten Array
$O(\sqrt{n})$	Wurzelfunktion	Divisionen beim naiven Primzahltest
O(n)	linear	Lineare Suche im unsortierten Array
$O(n \log n)$	loglinear, super-linear	Gute vergleichsbasierte Sortieralgorithmen
$O(n^2)$	quadratisch	Einfache Sortieralgorithmen
$O(n^3)$	kubisch	
$O(n^k)$	polynomiell	Viele "einfache" Algorithmen
$O(k^n)$	exponentiell	Erfüllbarkeitsproblem der Aussagenlogik (SAT)
		mit erschöpfender Suche
<i>O</i> (<i>n</i> !)	faktoriell	Traveling Salesman mit erschöpfender Suche

Hierarchie von Größenordnungen

Anteil von Termen niedriger Ordnung

Beispiel: Anteil von "5n + 10" an " $3n^2 + 5n + 10$ "

Skalierbarkeit

Annahme: 1 Rechenschritt benötigt 1ms

Maximale Problemgröße bei gegebener Rechenzeit:

T(n)	1 s	1 min	1 h
O(n)	1.000	60.000	3.600.000
$O(n \log n)$	140	4.895	204.094
$O(n^2)$	31	244	1.897
$O(n^3)$	10	39	153
$O(2^{n})$	9	15	21

Skalierbarkeit

Annahme: Es wird auf einen 1000-mal so schnellen Rechner gewechselt. Welche Problemgröße kann jetzt in gleicher Zeit berechnet werden? Alte Problemgröße sei p.

T(n)	Neue Problemgröße
<i>O</i> (<i>n</i>)	1000 <i>p</i>
$O(n \log n)$	fast 1000 <i>p</i>
$O(n^2)$	$\sqrt{1000}p = 31.6p$
$O(n^3)$	$\sqrt[3]{1000}p = 10p$
$O(2^n)$	$\log_2 1000 + p = 10 + p$

Wichtige Eigenschaften und Rechenregeln

Rechenregeln

```
f(n) \in O(g(n)) und c konstant c \cdot f(n) \in O(g(n))

f(n) \in O(g(n)) und c konstant f(n) + c \in O(g(n))

O(f(n) + g(n)) \in O(max(f(n),g(n)))

O(f(n)) \cdot O(g(n)) \in O(f(n) \cdot g(n))
```

Anwendung

O(f+g): Hintereinanderausführung von Programmteilen (Sequenzen)

O(f) · O(g) Schachtelung von Programmteilen