数值解析法 第1回課題

九州工業大学 機械知能工学科 機械知能コース 坂本 悠作 連絡先: n104069y@mail.kyutech.jp 提出日 2015 年 4 月 14 日

0.1 問題1

 $f(x) = x^3 - 2x^2 - x + 2 = 0$ の他の 2 解を、適当に区間を定めて、2 分法により 求めよ

解答

収束判定条件

$$|f(x_i)| < \epsilon$$

ただし、 ϵ =0.05とする

表 1: 区間 [a,b]=[-1.2,-0.9]

i	x_l	x_i	x_r	$x_r - x_l$	$f(x_i)$
1	-1.2	-1.05	-0.9	0.3	-0.312625
2	-1.05	-0.975	-0.9	0.15	0.14689
3	-1.05	-1.0125	-0.975	0.075	-0.075783
4	-1.0125	-0.99375	-0.975	0.0375	0.03730

表 2: 区間 [a,b]=[1.9,2.2]

i	x_l	x_i	x_r	$x_r - x_l$	$f(x_i)$
1	1.9	2.05	2.2	0.3	0.160125
2	1.9	1.975	2.05	0.15	-0.072517
3	1.975	2.0125	2.05	0.075	0.03812

よって、その他の解は-0.99375,2.0125

0.2 問題2

³√7を、Newton-Rophson 法を用いて求めよ 解

$$f(x) = x^3 - 7$$
$$= 0$$

表 3: 初期値を x₀=2とする

i	x_i	$f(x_i)$	$f(x_i)'$
0	2	1	3×2^2
1	1.9166	0.04108	3×1.9166^2
2	1.9129	-3.423×10^{-4}	3×1.9129^2

上のように f(x) を設定して、x について解く。 十分小さい値まで収束したので、これを答えとする。 解は、1.9129

0.3 問題3

超越方程式 $f(x) = x^2 - \cos x = 0$ の解を求めよ Newton-Rophson 法を用いる。

表 4: 初期値を x₀=2とする

i	x_i	$f(x_i)$	$f(x_i)'$
0	2	3.000	$2 \times 2 + \sin 2 = 4.035$
1	1.2565	0.5790	$2 \times 1.2565 + \sin 1.2565 = 2.5349$
2	1.0281	0.05715	$2 \times 1.0281 + \sin 1.0281 = 2.07414$
3	1.0005	0.001153	$2 \times 1.0005 + \sin 1.0005 = 2.01846$

 $x^2 - \cos x$ は偶関数であるので、y 軸に対して対象な挙動を示すので、解は、 ± 1.0005