#### Machine Learning (H)

Southern University of Science and Technology Mengxuan Wu 12212006

# Assignment 4

Mengxuan Wu

# Question 1

The function with Lagrange multiplier is

$$C(w, \lambda) = w^{T}(\mathbf{m_2} - \mathbf{m_1}) + \lambda(w^{T}w - 1)$$

Take the derivative with respect to w and set it to zero, we have

$$\frac{\partial C}{\partial w} = \mathbf{m_2} - \mathbf{m_1} + 2\lambda w = 0$$

Solve the equation, we have

$$w = \frac{\mathbf{m_1} - \mathbf{m_2}}{2\lambda}$$

Thus, we have  $w \propto \mathbf{m_1} - \mathbf{m_2}$ .

# Question 2

$$\begin{split} J(w) &= \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2} \\ &= \frac{w^T (\mathbf{m_2} - \mathbf{m_1}) (\mathbf{m_2} - \mathbf{m_1})^T w}{\sum_{n \in C_1} (w^T (\mathbf{x_n} - \mathbf{m_1}))^2 + \sum_{n \in C_2} (w^T (\mathbf{x_n} - \mathbf{m_2}))^2} \\ &= \frac{w^T (\mathbf{m_2} - \mathbf{m_1}) (\mathbf{m_2} - \mathbf{m_1})^T w}{w^T \left(\sum_{n \in C_1} (\mathbf{x_n} - \mathbf{m_1}) (\mathbf{x_n} - \mathbf{m_1})^T + \sum_{n \in C_2} (\mathbf{x_n} - \mathbf{m_2}) (\mathbf{x_n} - \mathbf{m_2})^T \right) w} \end{split}$$

Since we know

$$S_B = (\mathbf{m_2} - \mathbf{m_1})(\mathbf{m_2} - \mathbf{m_1})^T$$

$$S_W = \sum_{n \in C_1} (\mathbf{x_n} - \mathbf{m_1})(\mathbf{x_n} - \mathbf{m_1})^T + \sum_{n \in C_2} (\mathbf{x_n} - \mathbf{m_2})(\mathbf{x_n} - \mathbf{m_2})^T$$

Thus, we have

$$J(w) = \frac{w^T S_B w}{w^T S_W w}$$

For each data point, we have

$$p(\{\phi, t\}) = \prod_{k=1}^{K} p(\phi|C_k)p(C_k) = \prod_{k=1}^{K} [\pi_k p(\phi|C_k)]^{t_k}$$

Thus, for the whole data set, we have

$$p(\{\phi_n, t_n\}) = \prod_{n=1}^{N} \prod_{k=1}^{K} [\pi_k p(\phi_n | C_k)]^{t_{nk}}$$

Take the log of the likelihood, we have

$$\log p(\{\phi_n, t_n\}) = \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \log \pi_k + t_{nk} \log p(\phi_n | C_k)$$

The extra constraint is

$$\sum_{k=1}^{K} \pi_k = 1$$

Thus, the Lagrange function is

$$L(\pi, \lambda) = \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \log \pi_k + t_{nk} \log p(\phi_n | C_k) + \lambda \left( \sum_{k=1}^{K} \pi_k - 1 \right)$$

Take the derivative with respect to  $\pi_k$  and set it to zero, we have

$$\frac{\partial L}{\partial \pi_k} = \sum_{n=1}^{N} \frac{t_{nk}}{\pi_k} + \lambda = 0$$

Solve the equation, we have

$$\pi_k = -\frac{1}{\lambda} \sum_{n=1}^{N} t_{nk}$$

Since  $\sum_{k=1}^{K} \pi_k = 1$ , we have

$$\sum_{k=1}^{K} \pi_k = -\frac{1}{\lambda} \sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} = 1$$

Thus, we have

$$\lambda = -N$$

$$\pi_k = \frac{1}{N} \sum_{n=1}^{N} t_{nk} = \frac{N_k}{N}$$

where  $N_k$  is the number of data points in class  $C_k$ .

Taking the derivative of the sigmoid function, we have

$$\frac{\partial \sigma(a)}{\partial a} = \frac{\partial}{\partial a} \frac{1}{1 + e^{-a}}$$

$$= \frac{e^{-a}}{(1 + e^{-a})^2}$$

$$= \frac{1}{1 + e^{-a}} \frac{e^{-a}}{1 + e^{-a}}$$

$$= \sigma(a)(1 - \sigma(a))$$

# Question 5

$$\frac{\partial E(w)}{\partial w} = \frac{\partial}{\partial w} - \sum_{n=1}^{N} \left[ t_n \log y_n + (1 - t_n) \log(1 - y_n) \right]$$

Since  $y_n = \sigma(w^T \phi_n)$ , combining with the result in Question 4, we have

$$\frac{\partial y_n}{\partial w} = \frac{\partial}{\partial w} \sigma(w^T \phi_n)$$

$$= \sigma(w^T \phi_n) (1 - \sigma(w^T \phi_n)) \frac{\partial}{\partial w} w^T \phi_n$$

$$= y_n (1 - y_n) \phi_n$$

Thus, we have

$$\frac{\partial E(w)}{\partial w} = -\sum_{n=1}^{N} \left[ t_n \frac{1}{y_n} y_n (1 - y_n) \phi_n - (1 - t_n) \frac{1}{1 - y_n} y_n (1 - y_n) \phi_n \right]$$

$$= -\sum_{n=1}^{N} \left[ t_n (1 - y_n) \phi_n - (1 - t_n) y_n \phi_n \right]$$

$$= -\sum_{n=1}^{N} \left[ t_n - y_n \right] \phi_n$$

$$= \sum_{n=1}^{N} \left[ y_n - t_n \right] \phi_n$$

For the first approach, we have



For the second approach, we have



#### Convex hulls intersect $\Rightarrow$ Sets are not linearly separable

If two convex hulls intersect, then there must be at least a point that is in both convex hulls. Let the point be  $\mathbf{x}$ , then we have

$$\mathbf{x} = \sum_{n=1}^{N} \alpha_n \mathbf{x}^n = \sum_{m=1}^{M} \beta_m \mathbf{z}^m$$

where  $\alpha_n \geq 0$ ,  $\sum_{n=1}^N \alpha_n = 1$ ,  $\beta_m \geq 0$ ,  $\sum_{m=1}^M \beta_m = 1$ . Suppose there exists a vector  $\hat{w}$  and a scalar  $w_0$  that can linearly separate the two convex hulls, then we have

$$\hat{w}^T \mathbf{x}^n + w_0 > 0 \quad \forall n$$

$$\hat{w}^T \mathbf{z}^m + w_0 < 0 \quad \forall m$$

Thus, we have

$$\hat{w}^T \mathbf{x} = \hat{w}^T \sum_{n=1}^N \alpha_n \mathbf{x}^n = \sum_{n=1}^N \alpha_n \hat{w}^T \mathbf{x}^n > 0$$

$$\hat{w}^T \mathbf{x} = \hat{w}^T \sum_{m=1}^M \beta_m \mathbf{z}^m = \sum_{m=1}^M \beta_m \hat{w}^T \mathbf{z}^m < 0$$

There is a contradiction, thus the two convex hulls cannot be linearly separated.

#### Sets are linearly separable $\Rightarrow$ Convex hulls do not intersect

This is the contrapositive of the first part, thus it has the same truth value, which is true.