1

 \mathbf{a}

[[every wizard but Harry]]^M = {
$$P \subseteq U_M | [[wizard]] \subseteq P \land [[harry]] \not\subset P$$
}
[[fear Voldemort]]^M $\in [[every wizard but Harry]]^M$

b

[some but not all muggles]]^M = {
$$P \subseteq U_M | \operatorname{card}([[\operatorname{muggle}]] \cap P) > 0 \land [[\operatorname{muggle}]] \cap P \neq [[\operatorname{muggle}]]$$
}
[afraid of magic]]^M \in [some but all not muggles]]^M \Leftrightarrow

 \mathbf{c}

$$\text{[[at most five girls]]}^M = \{ P \subseteq U_M | \operatorname{card}(\text{[[girl]]} \cap P) \leq 5 \}$$

$$\text{[[play quidditch]]}^M \in \text{[[at most five girls]]}^M$$

 \mathbf{d}

 $[\![\text{five Gryffindor}]\!]^M = \{ P \subseteq U_M | \leq \text{lower_boundary_few}(C) \leq \text{card}([\![\text{Gryffindor member}]\!] \cap P) \leq \text{upper_boundary_few}(C) \}$ $[\![\text{is lazy}]\!]^M \in [\![\text{five Gryffindor}]\!]^M$

 $\mathbf{2}$

a

Some but not all men walked rapidly. \Rightarrow Some but not all men walked. \Rightarrow Left upward Some but not all men walked. \Rightarrow Right upward (persistent)

 \mathbf{b}

At most five men walked. \Rightarrow At most five men walked rapidly. \Rightarrow Left downward At most five humans walked. \Rightarrow At most five men walked. \Rightarrow Right downward (antipersistent)

 \mathbf{c}

Exactly five men walked. \Rightarrow Exactly five men walked rapidly. \Rightarrow Left downward (Exactly five men walked. \Rightarrow Exactly five humans walked.) \land (Exactly five humans walked. \Rightarrow Exactly five men walked.) \Rightarrow Right non-monotonous

3

Let Q be an upward monotonous quantifier. Therefore:

$$\forall X, Y : X \in Q \land X \subseteq Y \Rightarrow Y \in Q$$

Then the following P: holds:

$$\forall X', Y' : X' \notin Q \land X' \subseteq Y' \Rightarrow Y' \notin Q$$

For contradiction assume that it is not the case, therefore:

$$\forall X', Y' : X' \notin Q \land X' \subseteq Y' \land Y' \in Q$$

Which is in contradiction with the premise if we substitute X = Y' and Y' = X. Since $Y \in Q \Leftrightarrow Y \notin \neg Q$. The statement P can therefore be rewritten as:

$$\forall X',Y':X'\in \neg Q\wedge X'\subseteq Y'\wedge Y'\in \neg Q$$

Which describes the downward monotonicity of $\neg Q$