Measurements and interpretation of the betatron tune spectra of high intensity bunched beam in the SIS18.

R. Singh^{1,2}, <u>O. Chorniy</u>¹, P. Forck¹, P. Kowina¹,
 O. Boine- Frankenheim^{1,2}, W. Kaufmann¹,
 K. Lang¹, R. Haseitl¹, T. Weiland²

¹GSI, Darmstadt, Germany ²TEMF, TU Darmstadt, Germany

Overview

- Motivation
- Introduction
- Tune measurement systems
- Theoretical description of betatron tune spectra
- Tune spectra at different intensities
- Chromaticity measurements
- Summary and Outlook

Motivation

Just one of many measurements...

Beam parameters in the measurement:

Beam type	Ar ¹⁸⁺	
Injection energy, E _{inj}	11.4 MeV/u	
Harmonic number, h	4	
Bunching factor, B _f	0.35	
Vertical tune (set), Q _y	3.29	

Spectra of signal from vertical BPM plates

Measurements were done at injection energy, no acceleration

How to obtain the bare betatrone tune from a such complicated spectrum?

Introduction

Principle of measurements

Expected spectrum of difference signal (low intensity)

Fractional betatron tune =

Typical parameters

Frequency of transverse oscillations

$$Q_y \cdot f_{rev}$$

Frequency of longitudinal oscillations (synchrotron motion)

 $Q_{s0} \cdot f_{rev}$

betatron tune synchrotron tune ->

	f_{rev}	214 MHz
\rightarrow	$Q_{\mathcal{Y}}$	3.29
	Q_{s0}	0.007

Narrow band noise excitation

Principle of measurements

Generator spectrum (short region around expected tune is excited)

Measurement systems. TOPOS

Principle of measurements

Main advantages of the TOPOS system:

- Record bunch signals from all plates (time domain information)
- Calculation of bunch position, tune, orbit.

Application results:

R. Singh et al., "Tune Measurements with High Intensity Beams at SIS-18", DIPAC'11,

Measurement systems. BBQ

Principle of measurements

Main advantages of the BBQ system:

- 10-15 dB higher sensitivity as compared to the TOPOS in present configuration
- much lower ADC are needed
- Common mode reduction via peak detection

Direct Diode Detection method described in:
M. Gasior, R. Jones, HIGH SENSITIVITY TUNE
MEASUREMENT BY DIRECT DIODE DETECTION, DIPAC 2005

"BaseBand Q" system

Spectrum analyzer

Position of peaks in tune spectra

Frequency of the head-tail modes without "intensity effects"

$$Q_k = Q_0 + kQ_s$$

head-tail mode number

$$k = ..., -2, -1, 0, 1, 2, ...$$

Direct space charge effect

$$\Delta Q_{sc} = \frac{q I_p R}{4\pi \epsilon_0 c E_0 \gamma_0^2 {\beta_0}^2 \epsilon_x}$$

Image fields effects

$$\Delta Q_{coh} = \frac{a^2}{b^2} \Delta Q_{sc}$$

The positions of the head-tail modes including "intensity effects"

$$Q_k = Q_0 + \Delta Q_k(Q_s, Q_{sc}, Q_{coh})$$

In order to get analytical expression a simplified modeling is shown on the next slide

Head-tail modes

Analytical model for head-tail modes

$$\Delta Q_k = -\frac{\Delta Q_{sc} + \Delta Q_{coh}}{2} \pm$$

$$\sqrt{\frac{(Q_{sc}-\Delta Q_{coh})^2}{4}+(kQ_{s0})^2}$$

M. Blazkiewicz, Fast head tail instability with space charge, Phys. Rev ST Accel. Beams 1, 044201, (1998)

O. Boine-Frankenheim and V. Kornilov, Transverse Schottky noise spectrum for bunches with space charge, Phys. Rev ST Accel. Beams 12, 114201, (2009)

24

Moving of head tail modes with intensity

Head-tail tune shift:

Positions of the head-tail modes as seen in beam spectra:

Fit of the peaks position by head-tail modes

Horizontal tune spectra with Uranium beam

Beam parameters in the measurements:

Beam/Machine parameters	Values
Atomic mass(A), Charge state(q)	238, 73
Q_x, Q_y	4.31, 3.27
ξ_x, ξ_y	-0.94, -1.85
Transverse emittances $(\epsilon_x, \epsilon_y)(2\sigma)$	45,22 mm-mrad
Slip factor(η)	0.94
Bunching factor (B_f)	0.4
Synchrotron tune (Q_{s0}, Q_{s1})	0.007, 0.0065

Longitudinal spectra -> syn. tune RGM -> Transverse emittance Pickup -> Bunching factor

Fit of the peaks position by head-tail modes

Horizontal tune spectra with Uranium beam

Head-tail tune shift:

- In order to excite particular modes we apply the frequency sweep.
- As soon as modulation frequency coincide with any mode frequency, the corresponding form of the mode was observed.

Bunch signal recorded by TOPOS (each curve is bunch signal)

Bunch Length (µs)

- In order to excite particular modes we apply the frequency sweep.
- As soon as modulation frequency coincide with any mode frequency, the corresponding form of the mode was observed.

Bunch signal recorded by TOPOS (each curve is bunch signal)

Bunch Length (µs)

- In order to excite particular modes we apply the frequency sweep.
- As soon as modulation frequency coincide with any mode frequency, the corresponding form of the mode was observed.

Bunch signal recorded by TOPOS (each curve is bunch signal)

- In order to excite particular modes we apply the frequency sweep.
- As soon as modulation frequency coincide with any mode frequency, the corresponding form of the mode was observed.

Bunch signal recorded by TOPOS (each curve is bunch signal)

Chromaticity calculation using head-tail function

Measured transverse signal, fitted by the analytic formula

Bunch by bunch each revolution

According to considered model, the corresponding mode function:

$$x_{kt}(t) \approx \lambda(t) \cdot a_k \cdot \cos k\pi \frac{t}{\tau_b} \cdot \cos \chi_b \frac{t}{\tau_b}$$

Chromatic phase shift over the bunch length

$$\chi_b = \omega_{rev} \tau_b \frac{Q_0 \xi}{\eta_0}$$

Measured chromaticity vs set chromaticity

Amplitude of head-tail mode

Bunch signal recorded by TOPOS (each curve is bunch signal)

S. Chattopadhyay, "Some fundamental aspects of fluctuations and coherence in charged particle beams in storagerings", Super Proton Synchrotron Division, CERN 84-11, (1984)

Assuming that mode amplitude has similar law that single particle amplitude has:

$$a_k \sim J_k(\frac{\chi_b}{2})$$

Amplitude of the modes compared with corresponding Bessel functions

Spectra at different chromaticities

Summary and Outlook

- Two complementary tune measurement systems TOPOS and BBQ are presently in operation in the SIS 18
- Both narrow-banded noise excitation and frequency sweep provide similar results. In general, for determination of the betatron tune the time structure has to be known.
- Within experimental range the measured mode positions, functions and amplitudes agrees well with values predicted by simple model
- Another method for determining the chromaticity was found
- Systems are ready for further detailed investigations (different rf forms, combination with longitudinal intensity effects, etc.)

THANK YOU FOR ATTENTION!

