- Homework The Sudy Midnights

  Midterm This 2/9 in Gass

  1-sided cheat sheet / Study Guide.
  - · Study buile out Thurs.
- o Oviz 2 early rost week.

### Posterior predictive model checking

- Let  $y_{\text{obs}}$  represent the observe data  $y_1, \dots y_n$
- Yobs ~ P(y/0)
- Let  $\tilde{y}$  represent n replicated (e.g fake) observations generated from the model
- $p(\tilde{y} \mid y_{\text{obs}}) = \int p(\tilde{y} \mid \theta) p(\theta \mid y_{\text{obs}}) d\theta$
- Generate test quantity from t(v) (not be the choose t)
  Check if the simultaed test quantities are similar to the observed test quantity,  $t(y_{obs})$ Ster ( 5, 5)

Posterior Predictive Distrib Alon

### Posterior predictive model checking

- If the model fits the data, then fake data generated under the model should look similar to the observed data
- Discrepancies can be due to model misfit or chance (or both!)
- P(615) = (P(610)P(015)do • Monte Carlo approach: for S iterations,

1. sample 
$$\theta^{(s)} \sim p(\theta | \mathbf{Y} = \mathbf{y}_{obs})$$

2. sample  $\tilde{\mathbf{y}}^{(s)} = \left(\tilde{y}_1^{(s)}, ..., \tilde{y}_n^{(s)}\right) \sim \text{i.i.d. } p(y | \theta^{(s)})$ 

2. sample 
$$\tilde{y}^{(s)} = (\tilde{y}_1^{(s)}, ..., \tilde{y}_n^{(s)}) \sim \text{i.i.d. } p(y | \theta^{(s)})$$

•  $\tilde{y}$  has same number of observations as  $y_{obs}$ 

3. compute 
$$t^{(s)} = t(\tilde{y}^{(s)})$$
  $e. \gamma$ .

### Predictive Checks: an example

- In the 1990's there was a survey of 155 women, at least 40 years of age
- Recorded number of children and educational attainment
  - Bachelor's degree or higher  $(n_1 = 111)$
  - Less than bachelor's degree  $(n_2 = 44)$

The state of the degree 
$$(n_2 - 44)$$

$$Y_{1,1}..., Y_{n_1,1} | \theta_1 \sim \text{ i.i.d. Poisson } (\theta_1)$$

$$Y_{1,2}...,Y_{n_2,2}|\theta_2 \sim \text{i.i.d. Poisson}(\theta_2)$$
 / No bach



### A Bayesian Modeling Process (overview)

- 1. Propose a sampling model or DGP, here  $Y \sim \text{Pois}(\theta)$ . Chose a test statistic (e.g. variance, number of zeros, skew, etc) and compute it on observed data,  $T(y_{\text{obs}})$ .
- 2. Propose a prior distribution, here  $\theta \sim \text{Gamma}(a, b)$



3. Compute the posterior distribution, here  $p(\theta \mid Y = y) \sim \text{Gamma}(a + y, \beta + v)$ 

### A Bayesian Modeling Process (overview)

- 1. Propose a sampling model or DGP, here  $Y \sim \text{Pois}(\theta)$ . Chose a test statistic (e.g. variance, number of zeros, skew, etc) and compute it on observed data,  $T(y_{obs})$ .
- 2. Propose a prior distribution, here  $\theta \sim \text{Gamma}(a, b)$
- 3. Compute the posterior distribution, here  $p(\theta \mid Y = y) \sim \text{Gamma}(a + y, \beta + v)$
- 4. Simulate test statistics,  $T(\tilde{y})^{(s)}$  from the posterior predictive distribution P(T(y) | y ns)
  - o for s in 1:S

    - Sample  $\theta^{(s)} \sim Gamma(a+y,b+v)$  Sample  $\tilde{y}^{(s)} \sim \text{i.i.d Pois}(\theta^{(s)})$  (same sample size as  $y_{obs}$ )
    - Compute  $T(\tilde{v}^{(s)})$

### A Bayesian Modeling Process (overview)

- 1. Propose a sampling model or DGP, here  $Y \sim \text{Pois}(\theta)$ . Chose a test statistic (e.g. variance, number of zeros, skew, etc) and compute it on observed data,  $T(y_{obs})$ .
- 2. Propose a prior distribution, here  $\theta \sim \text{Gamma}(a, b)$
- 3. Compute the posterior distribution, here  $p(\theta \mid Y = y) \sim \text{Gamma}(a + y, \beta + v)$
- 4. Simulate test statistics,  $T(\tilde{y})^{(s)}$  from the posterior predictive distribution
  - o for s in 1:S
    - Sample  $\theta^{(s)} \sim Gamma(a+v, b+v)$
    - Sample  $\tilde{y}^{(s)} \sim \text{i.i.d Pois}(\theta^{(s)})$  (same sample size as  $y_{obs}$ )
    - Compute  $T(\tilde{v}^{(s)})$
- 5. Compare the samples  $T(\tilde{y}^{(s)})$  to  $T(y_{obs})$ . Identify any model misfit, go

- In the 1990's there was a survey of 155 women, at least 40 years of age
- Recorded number of children and educational attainment
  - Bachelor's degree or higher  $(n_1 = 111)$
  - Less than bachelor's degree  $(n_2 = 44)$

$$Y_{1,1}..., Y_{n_1,1} | \theta_1 \sim \text{ i.d. . Poisson } (\theta_1)$$

$$Y_{1,2}..., Y_{n_2,2} | \theta_2 \sim \text{i.d. Poisson}(\theta_2)$$



- Let's check the model fit for the "without Bachelor's" group first
- Do S times:
  - sample  $n_2 = 44$  observations  $\tilde{y}$  from the posterior predictive distribution  $(omple T(\mathcal{G}))$
- Let  $T(\tilde{y})$  be the fraction of women with no children

$$5''' = (2,3,1,1,0,2,0,1,0)$$

$$T = \frac{150'}{44} \approx \frac{1}{3}$$

- Let's check the model fit for the "without Bachelor's" group first
- Do S times:
  - sample  $n_2 = 44$  observations  $\tilde{y}$  from the posterior predictive distribution
- Let  $T(\tilde{y})$  be the fraction of women with no children

```
S <- 1000
t_s <- numeric(S)
for(s in 1:S){
  theta_s <- rgamma(1, a, b) # whatever a and b are for my posteri
  ytilde_s <- rpois(n=44, t) == theta_s)
  t_s[s] <- mean(ytilde_s == 0) # compute test stat
}
## then visualize histogram of t_s</pre>
```



$$Pr(T^{\text{rep}} > T^{\text{obs}}) = 0.002$$



ZIP: Zero-inflated Poisson. W/ prob P, y=0 W/ prob (1-P), y ~ Pois(9) Pois: ELN] = Va(N) = 1. Negative Bin. (2 parameter)

d: frac w/ experience.

- Model checking both groups
- Look at fit for two different test statistics:
  - Fraction with no children
  - Fraction with one child

### Poisson example



### All models are wrong



If the model is "wrong", how can we improve it?

#### **PPCs and Model Refinement**

- How might we refine the model?
- What might be a better data generating process?
- How do we choose test statistics to investigate? What other statistics might be worth checking?



# Sampling strategies

### **Example: non-conjugate Prior Distributions**

- Conjugate prior distributions make the math / concepts easy but no reason they should reflect our true prior belief
- In theory, want to build the best model possible, not one that is convenient
- If we choose a non-conjugate prior distribution, then the posterior distribution may have a "complicated" density. Need Monte Carlo to estimate posterior summaries.

Beh Prior + Bin -> Beh Poskrior.

### **Estimating Robert Covington's skill**

- Binomial likelihood is  $p(y \mid \theta) \propto \theta^{y} (1 \theta)^{n-y}$
- Assume I use a mixture normal prior is  $p(\theta) = 0.9f_1(\theta) + 0.1f_2(\theta)$

$$f_1$$
 is  $N(\mu = 0.35, \sigma = 0.04)$  and  $f_2$  is  $N(\mu = 0.5, \sigma = 0.08)$ 

Friend



 $P(\Theta | \eta)$ ?

### **Example: estimating shooting skill in basketball**



How can we compute the posterior mean and probability interval?

### Sampling strategies

- Monte Carlo methods assume that we have a method for easily generating a pseudo-random number!
- If the R includes the appropriate random number generating function, e.g. rnorm then Monte Carlo is easy

  (n orm, 16eta, 17005)
- If not, we need to be more clever about how we generate samples.
  - Inversion Sampling (works for univariate)
  - Grid sampling (works for low dimensional problems)
  - Rejection sampling (can be good for low dimensional problems)
  - Importance sampling (useful in some cases, hard in general)
  - Markov Chain Monte Carlo (MCMC)

### Sampling strategies

- Reminder: why sampling? We want to approximate difficult integrals.
  - We can represent expected values, probabilities, quantiles etc all as integrals
- In Bayesian stats we usually know how to write down the (proportional) posterior density:  $L(\theta)P(\theta)$
- Knowing the pdf does not mean by default we know to sample from that distribution!
- If we can devise a way to sample

## **Probability Integral Transform**



- Suppose that a random variable, Y has a continuous distribution for with CDF is  $F_Y$ .
- Then the random variable  $U = F_Y(Y)$  has a uniform distribution
  - This is known as the "probability integral transform PIT"
- By taking the inverse of  $F_Y$  we have  $F^{-1}(U) = Y$

### **Inversion Sampling**

The inverse transform sampling method works as follows:

- 1. Generate a random number *u* from Unif[0, 1]
- 2. Find the inverse of the desired CDF, e.g.  $F_Y^{-1}(u)$ .
- 3. Compute  $y = F_y^{-1}(u)$ . y is now a sample from the desired distribution.

# **Inversion Sampling**

**Animation Demo** 

Whater the CDF of a normal! CDF:  $\sqrt{1200}$   $\sqrt{200}$   $\sqrt{1}$ 

### **Inversion Sampling**

- Inversion sampling can be a fast and simple way to sample from a distribution
- Only effective if we know the inverse-CDF and can easily compute it
- This is a big challenge in practice. For example, even the normal distribution has a CDF,  $\Phi$ , which cannot be expressed analytically.
  - Shifts from one hard problem (sampling) to another (computing an integral)
  - Need alternatives!

## **Rejection Sampling**



## Rejection Sampling algorithm

- 1. Choose a proposal density,  $q(\theta)$  that we can easily sample from (e.g. uniform or normal) such that:
- 2. Find  $M = \max \frac{p(\theta|y)}{q(\theta)}$  Density of thing f hant to sample from f know to sample.
  - If  $M = \infty$  then q cannot be used as a proposal distribution
  - $\circ$  If M is finite,  $\underline{Mq(\theta)}$  "envelopes"  $p(\theta|y)$
- 3. Draw a sample,  $\theta^{(s)}$  from  $q(\theta)$
- 4. Accept  $\theta^{(s)}$  as a draw from  $p(\theta \mid y)$  with probability  $\frac{p(\theta^{(s)} \mid y)}{Mq(\theta^{(s)})}$

## **Rejection Sampling**

Demo
$$M = max \frac{P(O(5))}{Q(O)} \qquad M \text{ must } b = finite$$

$$1. O * \sim sample from  $g(O)$ 

$$2. Draw v \sim Unif.$$

$$Keep O * if v < \frac{P(O*19)}{Mg(O*)}$$$$

## Proposal most envelope target



### Markov Chain Monte Carlo

Midterm b Here

- Markov Chain Monte Carlo (MCMC
- More effective approach to sampling from multi-parameter distributions
- Samples in MCMC are **not** independent samples