目录

- 1.激活函数的作用,常用的激活函数有哪些
- 2.什么是GELU激活函数?
- 3.什么是SiLU激活函数?
- 4.什么是NewGELU激活函数?
- 5.介绍一下 GeLU 计算公式?
- 6.介绍一下 Swish 计算公式?

1.激活函数的作用,常用的激活函数有哪些

激活函数的作用

激活函数可以引入非线性因素,提升网络的学习表达能力。

常用的激活函数

Sigmoid 激活函数

函数的定义为:

$$f(x) = \frac{1}{1 + e^{-x}}$$

如下图所示,其值域为 (0,1) 。也就是说,输入的每个神经元、节点都会被缩放到一个介于 0 和 1 之间的值。 当 x 大于零时输出结果会趋近于 1 ,而当 x 小于零时,输出结果趋向于 0 ,由于函数的特性,经常被用作二分类的输出端激活函数。

Sigmoid的导数:

$$f^{'}(x)=(rac{1}{1+e^{-x}})^{'}=rac{1}{1+e^{-x}}igg(1-rac{1}{1+e^{-x}}igg)=f(x)(1-f(x))$$

当 x = 0 时, f(x)' = 0.25 。

Sigmoid的优点:

- 1. 平滑
- 2. 易于求导
- 3. 可以作为概率,辅助解释模型的输出结果

Sigmoid的缺陷:

- 1. 当输入数据很大或者很小时,函数的梯度几乎接近于0, 这对神经网络在反向传播中的学习非常不利。
- 2. Sigmoid函数的均值不是0,这使得神经网络的训练过程中只会产生全正或全负的反馈。
- 3. 导数值恒小于1, 反向传播易导致梯度消失。

Tanh激活函数

Tanh函数的定义为:

$$f(x) = Tanh(x) = rac{e^x - e^{-x}}{e^x + e^{-x}}$$

如下图所示,值域为(-1,1)。

Tanh的优势:

- 1. Tanh函数把数据压缩到-1到1的范围,解决了Sigmoid函数均值不为0的问题,所以在实践中通常Tanh函数比Sigmoid函数更容易收敛。在数学形式上其实Tanh只是对Sigmoid的一个缩放形式,公式为 tanh(x)=2f(2x)-1 (f(x) 是Sigmoid的函数)。
- 2. 平滑
- 3. 易于求导

Tanh的导数:

$$f^{'}(x)=(rac{e^{x}-e^{-x}}{e^{x}+e^{-x}})^{'}=1-(tanh(x))^{2}$$

当 x = 0 时, f(x)' = 1 。

由Tanh和Sigmoid的导数也可以看出Tanh导数更陡,收敛速度比Sigmoid快。

Tanh的缺点:

导数值恒小于1,反向传播易导致梯度消失。

Relu激活函数

Relu激活函数的定义为:

$$f(x) = \max(0, x)$$

如下图所示,值域为 $[0,+\infty)$ 。

Relu Function

ReLU的优势:

- 1. 计算公式非常简单,不像上面介绍的两个激活函数那样涉及成本更高的指数运算,大量节约了计算时间。
- 2. 在随机梯度下降中比Sigmoid和Tanh更加容易使得网络收敛。
- 3. ReLU进入负半区的时候,梯度为0,神经元此时会训练形成单侧抑制,产生稀疏性,能更好更快地提取稀疏特征。
- 4. Sigmoid和Tanh激活函数的导数在正负饱和区的梯度都会接近于0,这会造成梯度消失,而ReLU函数大于 0部分都为常数保持梯度不衰减,不会产生梯度消失现象。

稀疏:在神经网络中,这意味着激活的矩阵含有许多0。这种稀疏性能让我们得到什么?这能提升时间和空间复杂度方面的效率,常数值所需空间更少,计算成本也更低。

ReLU的导数:

$$c(u) = \{ 0, x < 0 \ 1, x > 0 \ undefined, x = 0 \}$$

通常 x=0 时,给定其导数为 1 和 0。

ReLU的不足:

- 1. 训练中可能会导致出现某些神经元永远无法更新的情况。其中一种对ReLU函数的改进方式是 LeakyReLU。
- 2. ReLU不能避免梯度爆炸问题。

LeakyReLU激活函数

LeakyReLU激活函数定义为:

f(x) = \left{
\begin{aligned}
ax, \quad x<0 \
x, \quad x\ge0
\end{aligned}
\right.</pre>

如下图所示 (a=0.5) ,值域为 $(-\infty,+\infty)$ 。

Leaky ReLu Function

LeakyReLU的优势:

该方法与ReLU不同的是在x小于0的时候取 f(x)=ax,其中a是一个非常小的斜率(比如0.01)。这样的改进可以使得当 x 小于0的时候也不会导致反向传播时的梯度消失现象。

LeakyReLU的不足:

- 1. 无法避免梯度爆炸的问题。
- 2. 神经网络不学习 α 值。
- 3. 在求导的时候,两部分都是线性的。

SoftPlus激活函数

SoftPlus激活函数的定义为:

$$f(x) = ln(1 + e^x)$$

值域为 $(0,+\infty)$ 。

函数图像如下:

可以把SoftPlus看作是ReLU的平滑。

ELU激活函数

ELU激活函数解决了ReLU的一些问题,同时也保留了一些好的方面。这种激活函数要选取一个 α 值,其常见的取值是在0.1到0.3之间。

函数定义如下所示:

f(x) = \left{ \begin{aligned} a(e^x -1), \quad x<0 \ x, \quad x\ge0 \end{aligned} \right.

如果我们输入的 x 值大于 0 ,则结果与ReLU一样,即 y 值等于 x 值;但如果输入的 x 值小于 0 ,则我们会得到一个稍微小于 0 的值,所得到的 y 值取决于输入的 x 值,但还要兼顾参数 α ——可以根据需要来调整这个参数。公式进一步引入了指数运算 e^x ,因此ELU的计算成本比ReLU高。

下面给出了 α 值为0.2时的ELU函数图:

ELU的导数:

$$\mathrm{ELU}'(x) = egin{cases} 1 & ext{if } x > 0 \ \mathrm{ELU}(x) + lpha & ext{if } x \leq 0 \end{cases}$$

导数图如下所示:

ELU的优势:

- 1. 能避免ReLU中一些神经元无法更新的情况。
- 2. 能得到负值输出。

ELU的不足:

- 1. 包含指数运算, 计算时间长。
- 2. 无法避免梯度爆炸问题。
- 3. 神经网络无法学习 α 值。

2.什么是GELU激活函数?

首先我们看一下GELU激活函数的公式:

$$GELU(x) = 0.5 imes x imes \left(1 + anhigg(\sqrt{rac{2}{\pi}} imes ig(x + 0.044715 imes x^3ig)
ight)
ight)$$

了解了GELU激活函数的计算机制后,我们再将其与经典的ReLU激活函数、Sigmoid激活函数进行比较,能够更好的理解GELU激活函数的优势,下面是三者的对比图:

其中 x 代表输入的网络权重参数。

假设我们设置输入值为 x=1.0, 最终可以得到GELU激活函数的输出值为:

激活函数层知识点.md 2024-12-27

$$GELU(1.0) = 0.5 \times 1.0 \times (1 + 0.683675) = 0.5 \times 1.0 \times 1.683675 \approx 0.8418375$$

了解了GELU激活函数的计算机制后,我们再将其与经典的ReLU激活函数、Sigmoid激活函数进行比较,能够更好的理解GELU激活函数的优势,下面是三者的对比图:

从上图可以看出:

- 1. ReLU激活函数在输入为正数时,输出与输入相同;在输入为负数时,输出为0。它非常简单但会完全忽略负值的输入。
- 2. Sigmoid激活函数输出在 0 到 1 之间平滑过渡,适合在某些分类任务中使用,但可能会导致梯度消失问题。
- 3. GELU激活函数比 ReLU 更平滑,并且在负值附近不会直接剪切到 0。它让负值小幅保留,避免了完全忽略负输入,同时保留了 ReLU 在正值区间的主要优点。

总的来说,GELU是一种更平滑的激活函数,能更好地保留输入的细微信息,尤其是在处理负值时。通过结合多种非线性运算(如 tanh 和多项式),GELU 提供了比 ReLU 更平滑和复杂的输出,有助于AI模型在训练过程中更好地捕捉数据中的复杂特征与模式。

3.什么是SiLU激活函数?

SiLU激活函数全称为 Sigmoid Linear Unit,是一种结合了线性和非线性特性的激活函数,也是Swish激活函数的一种特殊形式。它是一种非线性激活函数,用于神经网络的各层之间,以引入非线性,从而使神经网络能够学习更复杂的模式和特征。

SiLU 激活函数的定义

SiLU 函数的数学定义如下:

$$SiLU(x) = x \cdot \sigma(x)$$

其中:

- x 是輸入张量。
- $\sigma(x)$ 是输入的 Sigmoid 函数, 即:

$$\sigma(x) = rac{1}{1+e^{-x}}$$

因此, SiLU 函数可以被表达为:

$$\mathrm{SiLU}(x) = rac{x}{1 + e^{-x}}$$

下面是SiLU激活函数的示意图:

SiLU 函数的特性

- 1. **平滑性**: SiLU 是一个平滑的函数,它不像 ReLU 那样在原点处有一个"拐角",而是具有光滑的过渡,这对优化过程可能更有利。
- 2. **非线性**: SiLU 是非线性的,允许模型学习复杂的模式。这也是所有激活函数的核心属性。
- 3. **无界性**: SiLU 是无界的 (即它的输出可以任意大) ,这与 ReLU 类似,但不同于 Sigmoid 或 Tanh 这类函数 (它们的输出是有界的)。

激活函数层知识点.md 2024-12-27

4. **有梯度消失的风险**: 虽然 SiLU 的输出范围是无界的,但对于负值输入,其输出接近零,因此在深度网络的训练中可能存在类似于 ReLU 的梯度消失问题,但通常比 ReLU 要好一些,因为它的负值部分并不是完全归零,而是有少量的负梯度。

SiLU 与其他激活函数相比的优势

- **与 ReLU 的比较**: ReLU 函数 (即 ReLU(x) = max(0,x)) 在负值时输出为零,而 SiLU 在负值时输出为负,但仍保留了一定的梯度,这在某些情况下可以改进梯度流动的问题。
- 与 Sigmoid 的比较: Sigmoid 函数输出值在 0 到 1 之间,而 SiLU 保持了输入的线性部分,因此在正值范围内表现出更大的动态范围。
- **与 Swish 的关系**: SiLU 实际上就是 Swish 函数的一个特殊形式。 Swish 函数通常被定义为 $Swish(x) = x \cdot \sigma(\beta x)$,其中 β 是一个可调参数。当 $\beta = 1$ 时, Swish 就变成了 SiLU。

4.什么是NewGELU激活函数?

NewGELU 是对传统 GELU (Gaussian Error Linear Unit) 的一种改进。GELU 本身在许多AI模型中表现优异 (如 Transformer 系列模型) ,而 NewGELU 在保留 GELU 平滑特性的同时,进一步优化了计算效率和非线性特性,从而可以在一些AI任务中获得更好的表现。

一、GELU 激活函数的回顾

在了解 NewGELU 之前,我们先回顾一下 GELU 激活函数的定义和特点,以便更好地理解 NewGELU 的改进之处。

1. GELU 的数学定义

GELU 激活函数的数学表达式为:

$$GELU(x) = x \cdot \Phi(x)$$

其中, $\Phi(x)$ 是标准正态分布的累积分布函数 (CDF) ,定义为:

$$\Phi(x) = rac{1}{2}igg(1+ ext{erf}igg(rac{x}{\sqrt{2}}igg)igg)$$

由于累积分布函数的计算较为复杂,GELU 常使用以下近似表达式来加速计算:

$$ext{GELU}(x) pprox 0.5 \cdot x \cdot \left(1 + anhigg(\sqrt{rac{2}{\pi}} \left(x + 0.044715 \cdot x^3
ight)igg)
ight)$$

2. GELU 的特点

- 平滑性: GELU 是连续可导的函数, 使得梯度流动更加顺畅。
- 概率性: GELU 基于输入值的大小概率性地保留或抑制输入,从而实现了平滑的门控效果。
- 性能: 在许多AI模型中, 如 BERT、GPT等, GELU 显著优于 ReLU、Tanh 等传统激活函数。

二、NewGELU 的引入

NewGELU 是一种对 GELU 的改进,其目标是:

激活函数层知识点.md 2024-12-27

1. 优化计算效率: 通过更简洁的公式减少计算量。

2. **改善模型性能**: 在保持 GELU 平滑特性的同时,进一步提升深度学习模型的表现。

三、NewGELU 激活函数的定义

1. 数学表达式

NewGELU 激活函数的近似表达式为:

$$ext{NewGELU}(x) = 0.5 \cdot x \cdot \left(1 + anhigg(\sqrt{rac{2}{\pi}} \cdot (x + 0.0356774 \cdot x^3)igg)
ight)$$

与 GELU 的近似表达式对比:

$$ext{GELU}(x) pprox 0.5 \cdot x \cdot \left(1 + anh \left(\sqrt{rac{2}{\pi}} \left(x + 0.044715 \cdot x^3
ight)
ight)
ight)$$

2. 公式的简化

NewGELU 的公式与 GELU 非常相似,但将常数 0.044715 改为 0.0356774。这一小小的改动,使得 NewGELU 在计算上更加高效,且在某些任务中表现略优于标准 GELU。

四、NewGELU 的特性

1. 更高的计算效率

- NewGELU 通过调整公式中的系数,减少了计算复杂度,特别是在模型推理时表现出色。
- 虽然调整系数的幅度很小,但这对计算量较大的深度学习模型来说可以带来实际的性能提升。

2. 平滑的非线性

- 与 GELU 一样, NewGELU 也是连续可导的,并且具有平滑的曲线。这样的非线性特性对深层网络中的梯度流动非常友好。
- **负值区域**:在负值区域, NewGELU 的输出逐渐接近于零,但并不会像 ReLU 那样直接截断为零,因此可以保留一部分负值信息。

3. **自适应性**

- NewGELU 的自适应性体现在它对不同大小的输入值可以进行"自门控"。大输入值的激活值接近于输入值,而小输入值的激活值则接近于零。
- 这种特性类似于"概率门控",能够在保持输入特征完整性的同时,抑制噪声和无关信息。

五、总结

- NewGELU 是对 GELU 激活函数的改进,通过简化公式并优化常数项,使得计算效率更高。
- 特点: 具有平滑过渡、负值信息保留、自门控等特性,适用于各种深度学习模型。
- **应用场景**: Transformer、CNN、强化学习等任务中,NewGELU 提供了更好的梯度流动和模型收敛性能
- 实验结果:在 NLP 和图像任务中,新型模型往往采用 NewGELU,以提升模型的训练速度和准确率。

5.介绍一下 GeLU 计算公式?

计算公式: GeLU(x) = x Φ(x)

这里Φ (x) 是标准正态分布的累积分布函数,可以简单采用正态分布N (0,1),当然可以使用参数化的正态分布N (μ,σ) ,然后通过训练得到 μ,σ 。

假设输入是一个标量 x, 假设为标准正态分布的GELU(x), 近似计算的数学公式:

 $GeLU(x) = 0.5 * x * (1 + tanh(sqrt(2 / pi) * (x + 0.044715 * x^3)))$

其中, tanh()是双曲正切函数, sqrt()是平方根函数, pi是圆周率。

非线形激活函数,应用于 FFN块。实现了非线性加上泛化,特别占内存,计算量很大

特点:在小于0的输入接近0(非线性),在大于0的输入上接近线性函数

优点:相比ReLU,更平滑,更快的收敛速度。(依赖于正态分布的性质)

缺点: 计算复杂度较高, 可能会增加模型的计算开销。

6.介绍一下 Swish 计算公式?

计算公式: Swish(x) = x * sigmoid(betax)

其中, sigmoid() 是Sigmoid函数, x 是输入, beta 是一个可调节的超参数。当beta为0时, Swish函数退化为线性函数; 当beta趋近于无穷大时, Swish函数趋近于ReLU函数。

非线形激活函数,应用于 FFN块。在ReLU的优势基础上强化了门控机制,超参数β的加入使得函数可以调整门控的开关状态来近似于不同的ReLU函数。

- 继承了ReLU的优势,在X>0时依然不存在梯度消失问题。
- 同时<0的部分也不会轻易的死亡, 门控机制的加入使得灵活性变强。
- β参数可以唯一也可以该层每个神经元各对应一个。 (一对一学习,一对多进行固定)

特点:在小于0的输入接近0(非线性),在大于0的输入上接近线性函数

优点:相比ReLU,更平滑,更快的收敛速度。(依赖于正态分布的性质)

缺点: 计算开销较大, 因为它需要进行Sigmoid运算。