ABSTRACT OF THE DISCLOSURE

In a secret-key cryptographic device, there are cascadeconnected a plurality of round processing parts and the round processing part of each i-th round is supplied with input data L_i and R_i, nonlinearly transforms the input data R_i in a nonlinear function part on the basis of extended key, then provides the exclusive OR between the nonlinearly transformed output and the input data Li as data R_{i+1} for input into the next round and outputs the input data \boldsymbol{R}_i as data \boldsymbol{L}_{i+1} for input into the next round. The nonlinear function part of each round comprises: a key-dependent linear transformation part which performs a key-dependent linear transformation of the input R_i; a splitting part which splits the linearly transformed output to four pieces of data in_0 , in_1 , in_2 and in3; first nonlinear transformation parts which nonlinearly transform the four split pieces of data and output nonlinearly transformed data mid_{00} , mid_{01} , mid_{02} and mid_{03} , respectively; a key-dependent linear transformation part which associates these transformed outputs with each other and, at the same time, linearly transforms them based on extended key to output data mid_{10} , mid_{11} , mid_{12} and mid₁₃; second nonlinear transformation parts which nonlinearly transform these transformed outputs, respectively, and output data out₀, out₁, out₂ and out₃; and a combining part which combines these transformed outputs into output data Y.