Puzzler

Two missiles speed directly toward each other, one at 9,000 miles per hour and the other at 21,000 miles per hour. They start 1,317 miles apart. Without using pencil and paper calculate how far apart they are one minute before they collide.

Solution: 500 miles

The two missiles approach each other at a combined speed of 30,000 miles per hour or 30,000/60 = 500 miles per minute.

So one minute before impact they are 500 miles apart.

Introduction to Audio and Music Engineering Lecture 8

- Fletcher Munson curves
- Auditory masking
- Perceived loudness
- Acoustic waves in tubes
- Modes of tubes with various boundary conditions

Range of hearing

Listen to the sound file and determine how many "beeps" you can hear at each frequency.

Test

Fletcher Munson Curves

3-6 Equal-loudness contours of the human ear. These contours reveal the relative lack of sensitivity of the ear to bass tones, especially at lower sound levels. Inverting these curves give the frequency response of the ear in terms of loudness level. (After Robinson and Dadson.⁸)

Auditory Masking

Unmasked Tone

Broadband Noise Masked

1000 Hz BW Noise

250 Hz BW Noise

10 Hz BW Noise

Bark Scale

Critical bands of Human Hearing

TABLE I.

Number	Center frequencies Hz	Cut-off frequencies Hz	Bandwidth Hz
		20	
1	50	100	80
2	150	200	100
3	250	300	100
1 2 3 4 5 6 7 8	350	400	100
5	450	510	110
6	570	630	120
7	700	770	140
8	840	920	150
9	1000	1080	160
10	1170	1270	190
11	1370	1480	210
12	1600	1720	240
13	1850	2000	280
14	2150	2320	320
15	2500	2700	380
16	2900	3150	450
17	3400	3700	550
18	4000	4400	700
19	4800	5300	900
20	5800	6400	1100
21	7000	7700	1300
22	8500	9500	1800
23	10 500	12 000	2500
24	13 500	15 500	3500

Critical Bands

Perceived Loudness

For each sample write down a number reflecting its loudness relative to the reference. Scale the reference as 100.

Explanation

Samples

There are 20 samples of two noise bursts.

The reference is defined to be 0 dB.

The others are each one of these 9 values:

± 20 dB, ± 15 dB, ±10 dB, ±5 dB, 0 dB

Analysis

Rating vs. SPL

$$2x \rightarrow log_{10}(2) = 0.30$$

0.30/0.022 = 13.6 dB increase

to double the perceived loudness

Acoustic Modes

Acoustic waves obey the same wave equation as a string – just change the variables.

$$\frac{d^2 p(x,t)}{dt^2} = c^2 \frac{d^2 p(x,t)}{dx^2}$$

Boundary conditions: open end \rightarrow p = 0 closed end \rightarrow p = maximum

Solutions of 1-d Acoustic wave equation

$$p(x,t) = \cos(n\omega_0 t) \left[\sin(n\pi \frac{x}{L}) \text{ or } \cos(n\pi \frac{x}{L}) \right]$$
Oscillation
in time
Both sine and cosine satisfy the wave equation.

How do we know which solution to choose?

Choose the one that satisfies the boundary conditions.

Higher modes

$$n = 2$$

$$f_2 = 2\frac{c}{2l} = \frac{c}{l} = 2f_1$$

$$n = 3$$

$$f_3 = 3\frac{c}{2l} = \frac{3}{2}\frac{c}{l} = 3f_1$$

Mode frequencies of open-open tube are the same as those for a fixed-fixed string.

Modes of open-open tube are multiples of one-half of a sine wave.

Closed-Open Boundary Condition

Clarinet

n = 1 + 1/4 cycle of cosine

$$\lambda_{1} = 4L$$

$$L = \frac{\lambda}{4}$$

$$f\lambda = c \text{ so } f_{1} = \frac{c}{\lambda_{1}} = \frac{c}{4L}$$

3/4 cycle of cosine

$$f_3 = \frac{3}{4}\lambda$$

ycle of cosine
$$\lambda_3 = \frac{4\ell}{3}$$

$$\ell = \frac{3}{4}\lambda$$

$$f_3 = \frac{c}{\lambda_3} = 3\frac{c}{4\ell} = 3f_1$$

5/4 cycle of cosine

$$\angle = \frac{5}{4}\lambda$$

ycle of cosine
$$\lambda_{5} = \frac{42}{5}$$

$$\lambda_{5} = \frac{6}{5}$$

$$\lambda_{5} = \frac{6}{5}$$

$$\lambda_{5} = \frac{6}{5}$$

$$\lambda_{5} = \frac{6}{5}$$

Summary

open-open

L ≈ 66 cm

C4

261.6 Hz

$$f_n = n \frac{c}{2l}$$

n = 1,2,3 ...

All harmonics

closed-open

L ≈ 60 cm

 $f_1 = \frac{c}{4l}$

D3 "concert"

146.8 Hz

$$f_{n} = (2n-1)\frac{c}{4l}$$

n = 1,2,3 ...

Only odd harmonics

closed-closed

That's just dumb ...