(19)日本国特許庁(JP)

Ţ

(12) 公表特許公報(A)

(11)特許出願公表番号 特表2000-503037 (P2000-503037A)

(43)公表日 平成12年3月14日(2000.3.14)

(51) Int.Cl. ⁷ C 0 7 D 233/60 A 6 1 K 7/13 C 0 7 D 233/56 233/60 233/61	設別記号 103 101 101 審査請求	FI C07D 233/60 A61K 7/13 C07D 233/56 233/60 233/61 有 予備審査請求	テーマコート*(参考) 103 101 101 未請求(全62頁) 最終頁に続く
(21) 出願番号 (86) (22) 出願日 (85) 翻訳文提出日 (86) 国際出願番号 (87) 国際公開番号 (87) 国際公開日 (31) 優先権主張番号 (32) 優先日 (33) 優先権主張国	特願平11-506576 平成10年7月13日(1998.7.13) 平成11年3月16日(1999.3.16) PCT/FR98/01535 WO99/03836 平成11年1月28日(1999.1.28) 97/09028 平成9年7月16日(1997.7.16) フランス(FR)	ヤル 1 (72)発明者 ジュネ, フラン: リュ : (72)発明者 ラグラ: フラン:	ス国 75008 パリ リュ ロワイ
			最終頁に続く

(54) 【発明の名称】 新規なカチオン性酸化ペース、ケラチン繊維の酸化染色のためのその使用、染色組成物及び染色 方法

(57)【要約】

本発明は、少なくとも一のカチオン基2を有する新規なモノベンゼン酸化ベースに関し、2が少なくとも一の第四級不飽和環を含む脂肪鎖より選択されてなり、ケラチン繊維の酸化染色のためのその使用、これを含有する染色組成物及びこれを使用する酸化染色方法に関する。

【特許請求の範囲】

1. 下記の化学式(I):

[上記式中、

・R、R2及びR3は、同一でも相違してもよく、水素原子;ハロゲン原子;Z 基: (C」- C。) アルキルカルボニル基;アミノ (C」- C。) アルキルカルボニ ル基; N-Z-アミノ (C₁-C₆) アルキルカルボニル基; N-(C₁-C₆) アル キルアミノ (C₁-C₆) アルキルカルボニル基; N, N-ジ(C₁-C₆) アルキ ルアミノ (C,-C。) アルキルカルボニル基;アミノ (C,-C。) アルキルカル ボニル (C,-C。) アルキル基; N-Z-アミノ (C,-C。) アルキルカルボニル (C₁-C₆) アルキル基; N-(C₁-C₆) アルキルアミノ (C₁-C₆) アルキ ルカルボニル (C,-C。) アルキル基; N, N-ジ (C,-C。) アルキルアミノ (C₁-C₆) アルキルカルボニル (C₁-C₆) アルキル基;カルボキシル基; (C₁-C₆) アルキルカルボキシル基; C₁-C₆アルキルスルホニル基; アミノス ルホニル基; N-Z-アミノスルホニル基; C₁-C₆N-アルキルアミノスルホニ ル基;N, N-ジ(C,-C。) アルキルアミノスルホニル基;C,-C。アミノス ルホニルアルキル基; C,-C。N-Z-アミノスルホニルアルキル基; N-(C,- C_{ϵ}) アルキルアミノスルホニル (C_1-C_{ϵ}) アルキル基; N, N-ジ (C_1-C_{ϵ})アルキルアミノスルホニル (C₁-Cε) アルキル基;カルバミル基;N-(C₁ - C₆) アルキルカルバミル基; N, N-ジ(C₁- C₆) アルキルカルバミル基; カルバミル (C,-C,) アルキル基; N-(C,-C,) アルキルカルバミル (C, - C。) アルキル基; N, N-ジ (C, - C。) アルキルカルバミル (C, - C。) ア ルキル基; C, - C。アルキル基; C, - C。モノヒドロキシアルキル基; C2 - C。 ポリヒドロキシアル

キル基; (C,-C。) アルコキシ (C,-C。) アルキル基; C,-C。トリフルオ ロアルキル基;シアノ基;OR。またはSR。基;(C」-C。)アルキルカルボニ ル、(C」- C。)アルキルカルボキシル、トリフルオロ(C」- C。)アルキルカ ルボニル、アミノ (C,-C。) アルキルカルボニル、N-Z-アミノ (C,-C。) アルキルカルボニル、N-(C」-C。)アルキルアミノ(C」-C。)アルキルカ ルボニル、N, N-ジ (C,-C。) アルキルアミノ (C,-C。) アルキルカルボ ニル、(C」- C。) アルキルカルボキシル、カルバミル、N-(C」- C。) アル キルカルバミル、N, N-ジ (C₁-C₆) アルキルカルバミル、C₁-C₆アルキ ルスルホニル、アミノスルホニル、N-Z-アミノスルホニル、C₁-C₆N-アル キルアミノスルホニル、N, N-ジ(C,-C₆)アルキルアミノスルホニル、チ オカルバミルまたはホルミル基、または2基で保護されたアミノ基;あるいはC ı - C。アミノアルキル基において、アミンが Cı - C。アルキル、Cı - C。モノヒ ドロキシアルキル、C₂-C₆ポリヒドロキシアルキル、C₁-C₆アルキルカルボ - ル、カルバミル、 $N-(C_1-C_6)$ アルキルカルバミル、N, N-ジ (C_1-C_6) アルキルカルバミル、 (C₁-C₅) アルキルスルホニル、ホルミル、トリフル オロ (C₁-C₆) アルキルカルボニル、 (C₁-C₆) アルキルカルボキシル及び チオカルバミル基から選択される1または2の同一または相違する基、または2 基で置換されてなるものを表し;

・R。が、C」-C。アルキル甚; C」-C。モノヒドロキシアルキル甚; C2-C。ポリヒドロキシアルキル甚; Z基; (C」-C。) アルコキシ (C」-C。) アルキル甚; Z基; (C」-C。) アルコキシ (C」-C。) アルキル甚; (C」-C。) アルキル甚; (C」-C。) アルキル甚; (C」-C。) アルキルカルボキシ (C」-C。) アルキル甚; シアノ (C」-C。) アルキルカルバミル (C」-C。) アルキル甚; N-(C」-C。) アルキルカルバミル (C」-C。) アルキルカルバミル (C」-C。) アルキルカルバミル (C」-C。) アルキル甚; C」-C。アルキルカルバミル (C」-C。) アルキル甚; C」-C。アルキルホニルアルキル甚; C」-C。アミノスルホニルアルキル甚; C」-C。アミノスルホニルアルキル甚; N-(C」-C。) アルキルアミノスルホニル (C」-C。) アルキル甚; N-(C」-C。) アルキルスルコスルホニル (C」-C。) アルキルスルホニル (C」-C。)

)アルキル基

;(C」-C。)アルキルカルボニル(C」-C。)アルキル基;C」-C。アミノアルキル基;C」-C。アミノアルキル基において、アミンがC」-C。アルキル、C」-C。モノヒドロキシアルキル、CューC。ポリヒドロキシアルキル、(C」-C。)アルキルカルボニル、ホルミル、トリフルオロ(C」-C。)アルキルカルボニル、(C」-C。)アルキルカルボニル、(C」-C。)アルキルカルボミル、 N-(C」-C。)アルキルカルバミル、N-(C」-C。)アルキルカルバミル、チオカルバミル及びC」-C。アルキルスルホニル基から選択される1または2の同一または相違する基、または2基で置換されてなるものを表し;

・Aは、-NR,R,またはヒドロキシル基を表し;

・R4及びRsは、同一でも相違しても良く、水素原子;Z基;C1-C6アルキル 基; C1-C6モノヒドロキシアルキル基; C2-C6ポリヒドロキシアルキル基; (C, - C,) アルコキシ (C, - C,) アルキル基;アリール基;ベンジル基;シ アノ (C,-C,) アルキル基;カルバミル (C,-C,) アルキル基;N-(C,- C_6) アルキルカルバミル $(C_1 - C_6)$ アルキル基; N, N-ジ $(C_1 - C_6)$ アル キルカルバミル(C」- C。)アルキル基;チオカルバミル(C」- C。)アルキル 基; C,-C。トリフルオロアルキル基; C,-C。スルホアルキル基; (C,-C。) アルキルカルボキシ (C₁ - C₆) アルキル基; (C₁ - C₆) アルキルスルフィ ニル(C」- C。)アルキル基; C」- C。アミノスルホニルアルキル基; C」- C。 N-Z-アミノスルホニルアルキル基; N-(C1-C6) アルキルアミノスルホニ ル $(C_1 - C_6)$ アルキル基; N, N-ジ $(C_1 - C_6)$ アルキルアミノスルホニル (C,-C。) アルキル基;(C,-C。) アルキルカルボニル(C,-C。) アルキ ル基; C, - C, アミノアルキル基; C, - C, アミノアルキル基において、アミン がC,-C。アルキル、C,-C。モノヒドロキシアルキル、C2-C。ポリヒドロキ シアルキル、(C,-C。)アルキルカルボニル、カルバミル、N-(C,-C。) アルキルカルバミル、N,N-ジ(C,-C。)アルキルカルバミル、C,-C。ア ルキルスルホニル、ホルミル、トリフルオロ(C, - C。)アルキルカルボニル、 (C, - C。) アルキルカルボキシル及びチオカルバミル基から選択される1また は2の同一または相違する基、または2基で置換されてなるものを表し;

・ Z は、下記の化学式(II)及び(III)の不飽和カチオン基、及び下記の化学式

(IV) の飽和カチオン基:

【・Dは、好ましくは1から14の炭素原子を含む直鎖状または分枝状のアルキル鎖を表し、これは一以上の異種原子、例えば酸素、硫黄または窒素原子によって断裂可能であり、またこれは一以上のヒドロキシルまたは C₁ - C ∘ アルコキシ基によって置換可能であり、さらに一以上のケトン官能基を坦持可能な結合鎖であり;

・環を成すE、G、J、L及びMは、同一でも相違しても良く、炭素、酸素、硫黄または窒素原子を表し;

・nは、0から4の整数を表し:

·mは、0から5の整数を表し:

・Rは、同一でも相違しても良く、Z基、ハロゲン原子、ヒドロキシル基、C₁ - C₆アルキル基、C₁ - C₆モノヒドロキシアルキル基、C₂ - C₆ポリヒドロキシアルキル基、ニトロ基、シアノ基、シアノ(C₁ - C₆)アルキル基、C₁ - C₆アルコキシ基、トリ(C₁ - C₆)アルキルシラン(C₁ - C₆)アルキル基、アミ

ド基、アルデヒド基、カルボキシル基、(C,-C。)アルキルカルボニル基、チオ基、C,-C。チオアルキル基、C,-C。アルキルチオ基、アミノ基、(C,-C。)

アルキルカルボニル、カルバミルまたは C₁ - C₆アルキルスルホニル基で保護されたアミノ基を表し; NHR"基または NR"R'''基において、R"及びR'''が、同一でも相違しても良く、C₁ - C₆アルキル基、C₁ - C₆モノヒドロキシアルキル基または C₂ - C₆ポリヒドロキシアルキル基を表し;

・R,は、C,-C₆アルキル基、C,-C₆モノヒドロキシアルキル基、C₂-C₆ ポリヒドロキシアルキル基、シアノ(C,-C₆)アルキル基、トリ(C,-C₆) アルキルシラン(C,-C₆)アルキル基、(C,-C₆)アルコキシ(C,-C₆) アルキル基、カルバミル(C,-C₆)アルキル基、(C,-C₆)アルキルカルボ キシ(C,-C₆)アルキル基、ベンジル基または上記化学式(II)、(III)ま たは(IV)の Z 基を表し;

・R。、R。及びR」。は、同一または相違し、C」ーC。アルキル基、C」ーC。モノヒドロキシアルキル基、C2ーC。ポリヒドロキシアルキル基、(C」ーC。)アルコキシ(C1ーC。)アルキル基、シアノ(C1ーC。)アルキル基、アリール基、ベンジル基、C1ーC。アミドアルキル基、トリ(C1ーC。)アルキルシラン(C1ーC。)アルキルがエル、カルがミルまたはC1ーC。アルキルスルホニル基によって保護され;R1、R2及びR。のうち二つの基が、その結合する窒素原子と共に飽和の5員または6員の炭素環または一以上の異種原子を含む環を形成可能であり、前記環は、無置換またはハロゲン原子、ヒドロキシル基、C1ーC。アルキル基、C1ーC。アルキル基、C1ーC。アルコキル基、トリ(C1ーC2)アルキルシラン(C1ーC3)アルキル基、C1ーC3アルコキシ基、トリ(C1ーC3)アルキルシラン(C1ーC4)アルキル基、アミド基、アルデヒド基、カルボキシル基、ケト(C1ーC6)アルキル基、チオ基、C1ーC6)アルキル基、チオ基、C1ーC6

アミノ基を表し; R。、R。及びR」。のうち一つが、第一の基2と同一または相違してなる第二の基2を表すことができ;

・R,,が、C,-C。アルキル基; C,-C。モノヒドロキシアルキル基; C2-C。 ポリヒドロキシアルキル基; アリール基; ベンジル基; C1-C。アミノアルキル

基、C1-C6アミノアルキル基において、アミンが(C1-C6)アルキルカルボニル、カルバミルまたはC1-C6アルキルスルホニル基によって保護されてなるもの;カルボキシ(C1-C6)アルキル基;シアノ(C1-C6)アルキル基;カルバミル(C1-C6)アルキル基;C1-C6トリフルオロアルキル基;トリ(C1-C6)アルキルシラン(C1-C6)アルキル基;C1-C6スルホンアミドアルキル基;(C1-C6)アルキルカルボキシ(C1-C6)アルキル基;(C1-C6)アルキルスルホニル(C1-C6)アルキル基;(C1-C6)アルキルスルホニル(C1-C6)アルキル基;(C1-C6)アルキルスルホニル(C1-C6)アルキルカルバミル(C1-C6)アルキル基;N-(C1-C6)アルキルスルホンアミド(C1-C6)アルキル基を表し;

- · x 及び y が、 0 または 1 の整数であって、下記の条件に従い:
 - ・化学式(II)の不飽和カチオン基において:
 - ・x = 0 の場合、結合鎖Dは窒素原子に結合し、
- ・x=1 の場合、結合鎖 D は環を成す E 、 G 、 J または L のーに結合し、
 - · y は 1 の値のみをとり得る:
- 1) 環を成すE、G、J及びLが、同時に炭素原子を表し、R ,が不飽和環の窒素原子に坦持されている場合;あるいはまた、
- 2)環を成すE、G、J及びLの少なくとも一が、R,に結合 した窒素原子を表す場合;
 - ・化学式(III)の不飽和カチオン基において:
 - ・x=0の場合、結合鎖Dは窒素原子に結合し、
- ・ x=1 の場合、結合鎖 D は環を成す E 、 G 、 J 、 L または M のーに結合し、

- ・環を成す E、 G、 J、 L及び M の少なくとも一が二価の原子を表す場合及び R, が不飽和環の窒素原子に坦持されている場合にのみ、 y は 1 の値をとり得る:
 - ・化学式 (IV) のカチオン基において:
- ・x = 0 の場合、結合鎖はR。からR」。の基を坦持する窒素原

に結合し、

- ・ X が、単価または二価のアニオンを表し;
- ・化学式 (II) または (III) の不飽和カチオン基 Z の数が、少なくとも 1 に等しく;
- ・Aが、-NR、R、を表し、R、またはR。が結合鎖Bがケトン基を含む アルキル鎖を表す Z 基を表し、前記ケトン基は-NR、R、基の窒素原子に直接結合しておらず;
- 4-アミノ-3-メチル-N-エチル-N-β-(1-ピリジニウム)エチルアニリンクロライド、及びこれらの酸との付加塩を除外する]の化合物及びその酸との付加塩。
- 2. 化学式 (II) の不飽和甚 Z の環が、ピロール、イミダゾール、ピラゾール、オキサゾール、チアゾール及びトリアゾール環より選択されることを特徴とする 請求項 1 に記載の化合物。
- 3. 化学式 (III) の不飽和基 Z の環が、ピリジン、ピリミジン、ピラジン、オキサジン及びトリアジン環より選択されることを特徴とする請求項 1 または 2 に記載の化合物。
- 4. R₈、R₉及びR₁。のうち二つの基が、ピロリジン環、ピペリジン環、ピペラジン環またはモルホリン環を形成することを特徴とする請求項1から3のいずれか一項に記載の化合物。

- 5. X が、ハロゲン原子、水酸化物塩、硫酸水素塩及び C, C。アルキルスルファートより選択されることを特徴とする請求項 1 から 4 のいずれかー項に記載の化合物。
- 6. $\cdot 1 [2 (4 7)] 3 2] 3 2] 3 2] 3 2] 4 4] -$
- ・1-[3-(2, 5-ジアミノフェノキシ) プロピル]-3-メチル-3H-イミダゾ ール-1-イウム=クロライド;
- ・3-[3-(4-アミノフェニルアミノ) プロピル]-1-メチル-3 H-イミダゾール

- ・3-[3-(4-アミノ-2-メチルフェニルアミノ) プロピル]-1-メチル-3 H-イミダゾール-1-イウム=クロライド;
- ・3-[3-(4-アミノ-2-フルオロフェニルアミノ) プロピル]-1-メチル-3 H -イミダゾール-1-イウム=クロライド=モノハイドラート:
- ・3-[3-(4-アミノ-2-シアノフェニルアミノ) プロピル]-1-メチル-3H-イミダゾール-1-イウム=クロライド;
- ・1-[2-(4-アミノ-2-メトキシフェニルアミノ) エチル]-3-メチル-3 H-イミダゾール-1-イウム=クロライド;
- ・1-(5-アミノ-2-ヒドロキシベンジル)-3-メチル-3H-イミダゾール-1-イウム=クロライド;
- ・1-(5-アミノ-2-ヒドロキシベンジル)-2-メチル-2H-ピラゾール-1-イウム=クロライド;
- ・1-[2-(2, 5-ジアミノフェニル) エチル]-3-メチル-3 H-イミダゾール-1-イウム=クロライド:
- ・3-[2-(2, 5-ジアミノフェニル) エチル]-1-メチル-3 H-イミダソール-1-イウム=クロライド;

- ・1-{2-[(4-アミノフェニル) エチルアミノ]エチル}-3-メチル-3H-イミダゾール-1-イウム=クロライド;
- ・N, N-ビス[2-(3-メチル-3H-イミダゾール-1-イウム) エチル]-4-ア ミノアニリン=ジクロライド;
- ・3-[2-(4-アミノフェニルアミノ) ブチル]-1-メチル-3 H-イミダゾール-1-イウム=クロライド;
- ・1 {[5-アミノ-2-(2-ヒドロキシエチルアミノ) フェニルカルバモイル] メチル} -3-メチル-3 H-イミダゾール-1-イウム=クロライド;
- ・4-[2-(2, 5-ジアミノフェノキシ) エチル]-1, 3-ジメチル-3 H-イミ ダゾール-1-イウム=ブロミド;
- ・2-(2, 5-ジアミノフェノキシメチル)-1, 3-ジメチル-3 H-イミダゾール-1-イウム=クロライド:
- ・4-[3-(4-アミノフェニルアミノ) プロピル]-1, 3-ジメチル-3 H-イミ ダゾール-1-イウム=クロライド;
- ・4-[3-(4-アミノ-3-メチルフェニルアミノ) プロピル]-1, 3-ジメチル-3H-イミダゾール-1-イウム=クロライド;
- ・4-[(2, 5-ジアミノフェニルカルバモイル) メチル]-1, 3-ジメチル-3 H-イミダゾール-1-イウム=クロライド;
- ・4-{2[2-(2-アミノ-5-ヒドロキシフェニル) アセチルアミノ]エチル}-1, 3-ジメチル-3 H-イミダゾール-1-イウム=クロライド;
- ・4-[(5-アミノ-2-ヒドロキシベンジルカルバモイル)メチル]-1,3-ジメチル-3H-イミダゾール-1-イウム=クロライド;

及びこれらの酸との付加塩より選択されることを特徴とする請求項 1 から 5 のいずれか一項に記載の化合物。

- 7. 請求項1から6のいずれか一項に定義される化学式(I)の化合物の、ケラチン繊維、特にヒトの髪などのケラチン繊維の酸化染色のための酸化ベースとしての使用。
- 8. ケラチン繊維、特にヒトの髮などのケラチン繊維の酸化染色のための組成物

であって、染色に適した媒体中に請求項1から6のいずれか一項に定義される少なくとも一の化合物を酸化ベースとして含むことを特徴とする組成物。

- 9. 化学式 (I) の化合物が、染色組成物全重量に対して 0. 0005から12 重 量 % を占めることを特徴とする請求項 8 に記載の組成物。
- 10. 化学式(I)の化合物が、染色組成物全重型に対して約0.005から6 重量%を占めることを特徴とする請求項9に記載の組成物。
- 11. 染色に適した媒体(または支持体)が、水または、C1-C4低級アルコール、グリセリン、グリコール及びグリコールエーテル、芳香族アルコール、類似生成物及びこれらの混合物より選択される少なくとも一の有機溶媒と水との混合物からなることを特徴とする請求項8から10のいずれか一項に記載の組成物。

12. p H が、3から12であることを特徴とする請求項8から11のいずれか

- 一項に記載の組成物。
- 13. 化学式(I) の化合物以外のパラフェニレンジアミン、ビス(フェニル) アルキレンジアミン、化学式(I) の化合物以外のパラアミノフェノール、オルトアミノフェノール及び複素環ベースより選択される少なくとも一の付加的酸化ベースを含有することを特徴とする請求項8から12のいずれか一項に記載の組成物。
- 14. 付加的な酸化ベースが、染色組成物全重量に対して 0. 0005 から12 重量%を占めることを特徴とする請求項13に記載の組成物。
- 15. 少なくとも一のカプラー及び/または少なくとも一の直接染料を含有することを特徴とする請求項8から14のいずれか一項に記載の組成物。
- 16.カプラーが、メタ-フェニレンジアミン、メタ-アミノフェノール、メタ-ジフェノール及び複素環カプラー、及びこれらの酸との付加塩より選択されることを特徴とする請求項15に記載の組成物。
- 17. カプラーが、染色組成物全重畳に対して 0. 0001 から 10重畳%を占めることを特徴とする請求項請求項 15 または 16 に記載の組成物。
- 18.酸との付加塩が、塩酸塩、臭素酸塩、硫酸塩、クエン酸塩、コハク酸塩、酒石酸塩、乳酸塩及び酢酸塩より選択されることを特徴とする請求項8から17

のいずれか一項に記載の組成物。

19. ケラチン繊維、特に髮などのヒトのケラチン繊維の酸化染色のための方法において、請求項8から18のいずれか一項に定義される少なくとも一の酸化染色組成物をこれら繊維に適用し、酸性、中性またはアルカリ性のpHにて、使用時に初めて染色組成物に添加される酸化剤または、分離方法で同時または連続的に適用される酸化組成物中に存在する酸化剤を使用して色を発色させることを特徴とする方法。

20.酸化剤が、過酸化水素、過酸化尿素、アルカリ金属の臭素酸塩及びペル塩、例えばペルボラート及びペルスルファートより選択されることを特徴とする請求項19に記載の方法。

21. 第一の区画には請求項 8 から 1 8 のいずれか一項に定義される染色組成物を収容し、第二の区画には酸化組成物を収容してなる多区画染色キットまたは多

区画染色装置。

【発明の詳細な説明】

新規なカチオン性酸化ベース、

ケラチン繊維の酸化染色のためのその使用、染色組成物及び染色方法 明細書

本発明は、少なくとも一のカチオン基 Z を有する新規なモノベンゼン酸化ベースに関し、 Z は、少なくとも一の第四級不飽和環を有する脂肪鎖より選択されるものであって、また、ケラチン繊維の酸化染色のためのその使用、これを含有す

る染色組成物及びこれを使用する酸化染色方法に関する。

ケラチン繊維、特にヒトの髪を、酸化染色前駆体、特に、オルト-またはパラ-フェニレンジアミン、オルト-またはパラ-アミノフェノール及び複素環化合物、例えばジアミノピラゾール誘導体等の一般的に酸化ベースと呼称される化合物を用いて染色することは既知の操作である。酸化染色前駆体、または酸化ベースは、無色または淡色の化合物であって、酸化生成物と混合されると酸化縮合の行程によって着色化合物及び染料を生成可能である。

これらの酸化ベースによって得られる色合いが、カプラーまたは着色調整剤と 混合されることによって異なることもまた既知であり、着色調整剤は、特に芳香 族メタージアミン、メターアミノフェノール、メタージフェノール及び所定の複素 環化合物より選択される。

酸化ベース及びカプラーに使用される分子が多様であることも、得られる着色の多様性の一因である。

これらの酸化染料を用いて得られる、いわゆる"パーマネント"染色は、さらに一定数の要求を満たさねばならない。したがって、毒物学的欠点を持たず、色合いが望ましい強さで得られ、外的作用(光、悪天候、洗浄、パーマネント・ウェーブ、発汗、摩擦)に対して優れた耐性を示さねばならない。

染料はまた、白髪を被覆でき、最終的には出来る限り非選択的なものでなければならない。すなわち、実際のところ、毛先と毛根部では敏感化の程度(傷み具合)の異なる同一のケラチン繊維の全長に渡って、得られる色の違いをできる限り小さくしなければならない。

特に、米国特許5,139,532号において、ケラチン繊維を、通常標準的

なパラフェニレンジアミン、すなわちカチオン基を有しない化合物を使用して得られるものよりも赤みの強い濃い色合いに酸化染色するために、所定のカチオンパラ-フェニレンジアミン誘導体、すなわち、より正確には、アミノ基の一つが第四級脂肪鎖によってモノ置換されてなるパラフェニレンジアミンを使用することが既に提案されている。しかしながら、先行特許に記載のパラフェニレンジアミンを使用しても、広範な色は得られず、さらにまた、得られる着色は、髪がさらされうる様々な形態の攻撃(光の作用、発汗、シャンプー等)に対する耐性の観点から必ずしも十分なものではない。

ここに、出願人は、全く驚くべき、また予期せぬことに、下記の化学式(I)の所定の新規なモノベンゼン酸化ベースであって、少なくとも一のカチオン基 2を有し、 Z が少なくとも一の第四級不飽和環を有する脂肪鎖より選択されてなる化合物が、酸化染色前駆体としての使用に好適であるのみならず、 広範な色を網羅し、ケラチン繊維がさらされうる様々な処理に対抗する優れた特性を有する強い発色を生じる染色組成物を得ることも可能にすることを見いだした。 最後に、これらの組成物は、容易に合成可能であることが判っている。

これらの発見が、本発明の基礎を成す。

本発明の第一の主題は、下記化学式(I)の新規な化合物及びその酸との付加塩である。

$$R_3$$
 R_1
 R_1
 R_3
 R_1

上記式中、

・R₁、R₂及びR₃は、同一でも相違してもよく、水素原子;ハロゲン原子; Z 基; (C₁-C₆) アルキルカルボニル基;アミノ (C₁-C₆) アルキルカルボニル基; N-Z-アミノ (C₁-C₆) アルキルカルボニル基; N-(C₁-C₆) アル

アミノ (C,-C。) アルキルカルボニル基; N, N-ジ (C,-C。) アルキルア ミノ(C,-C。) アルキルカルボニル基; アミノ (C,-C。) アルキルカルボニ ν (C_1 - C_6) アルキル基; N - Z - γ ミノ (C_1 - C_6) アルキルカルボニル (C_1 ı - C ε)アルキル基;N-(C ι - C ε)アルキルアミノ(C ι - C ε)アルキルカ ルボニル (C₁-C₆) アルキル基; N, N-ジ (C₁-C₆) アルキルアミノ (C₁ - C。) アルキルカルボニル (C₁ - C₆) アルキル基;カルボキシル基; (C₁ -C。) アルキルカルボキシル基; C. - C。アルキルスルホニル基; アミノスルホ ニル基; N-Z-アミノスルホニル基; C,-C,N-アルキルアミノスルホニル基 ;N, N-ジ(C,-C。)アルキルアミノスルホニル基;C,-C。アミノスルホ ニルアルキル基; C₁-C₆N-Z-アミノスルホニルアルキル基; N-(C₁-C₆) アルキルアミノスルホニル (C₁-C₁) アルキル基; N, N-ジ (C₁-C₁) アルキルアミノスルホニル (C , - C 。) アルキル基;カルバミル基; N - (C , -C。) アルキルカルバミル基; N, N-ジ (C, - C。) アルキルカルバミル基;カ ルバミル (C₁-C₆) アルキル基; N-(C₁-C₆) アルキルカルバミル (C₁-C。) アルキル基; N, N-ジ (C,-C。) アルキルカルバミル (C,-C。) アル キル基; C, - C, アルキル基; C, - C, モノヒドロキシアルキル基; C, - C,ポ リヒドロキシアルキル基; (C,-C。) アルコキシ (C,-C。) アルキル基; C ı - C ₆トリフルオロアルキル基;シアノ基;OR ₆またはSR ₆基; (C ₁ - C ₆) アルキルカルボニル、(C. - C。) アルキルカルボキシル、トリフルオロ(C. - C。) アルキルカルボニル、アミノ (C,-C。) アルキルカルボニル、N-Z-アミノ (C , - C 。) アルキルカルボニル、N-(C , - C 。) アルキルアミノ (C , - С ₆) アルキルカルボニル、N , N-ジ (С , - С ₆) アルキルアミノ (С , - С ₆)アルキルカルボニル、 (C₁-C_ε) アルキルカルボキシル、カルバミル、N-(C₁-Cε) アルキルカルバミル、N, N-ジ (C₁-Cε) アルキルカルバミル 、C₁-C₆アルキルスルホニル、アミノスルホニル、N-Z-アミノスルホニル、 C, - C。N-アルキルアミノスルホニル、N, N-ジ (C, - C。) アルキルアミノ スルホニル、チオカルバミルまたはホルミル基、または2基で保護されたアミノ 基;あるいはC、-C。アミノアルキル基において、アミンがC、-C。アルキル、 C,-C。モノヒドロキシアルキル、C₂-C。ポリヒドロキシアルキル、C₁-C。

アルキルカルボニル、カルバ

ミル、N-(C₁-C₆) アルキルカルバミル、N, N-ジ(C₁-C₆) アルキルカルバミル、(C₁-C₆) アルキルスルホニル、ホルミル、トリフルオロ(C₁-C₆) アルキルカルボニル、(C₁-C₆) アルキルカルボキシル及びチオカルバミル基から選択される1または2の同一または相違する基、または2基で置換されてなるものを表し;

·R。が、C」-C。アルキル基;C」-C。モノヒドロキシアルキル基;C2-C。 ポリヒドロキシアルキル基; Z基; (C₁-C₆) アルコキシ (C₁-C₆) アルキ ル基;アリール基;ベンジル基:カルボキシ (C, - C。) アルキル基; (C, -C。) アルキルカルボキシ (C, - C。) アルキル基: シアノ (C, - C。) アルキ ル基;カルバミル (C」- C。) アルキル基; N- (C」- C。) アルキルカルバミ ル (C₁-C₆) アルキル基;、N,N-ジ(C₁-C₆) アルキルカルバミル (C₁ - C。) アルキル基:C.--C。トリフルオロアルキル基;C.--C。アミノスルホ ニルアルキル基; C₁-C₆N-Z-アミノスルホニルアルキル基; N-(C₁-C₆) アルキルアミノスルホニル (C₁-C₆) アルキル基: N, N-ジ(C₁-C₆) アルキルアミノスルホニル (C,-C₆) アルキル基; (C,-C₆) アルキルスル フィニル (C₁-C₆) アルキル基; (C₁-C₆) アルキルスルホニル (C₁-C₆)アルキル甚;(C₁-C_ε)アルキルカルボニル(C₁-C_ε)アルキル基;C₁ - C 。アミノアルキル基; C ₁ - C 。アミノアルキル基において、アミンが C ₁ - C 。アルキル、C,-C。モノヒドロキシアルキル、C。-C。ボリヒドロキシアルキ ル、 (C,-C。) アルキルカルボニル、ホルミル、トリフルオロ (C,-C。) ア ルキルカルボニル、(C, - C。) アルキルカルボキシル、カルバミル、N-(C, - C。) アルキルカルバミル、N, N-ジ (C, - C。) アルキルカルバミル、チオ カルバミル及びC, - C。アルキルスルホニル基から選択される1または2の同一 または相違する基、または乙基で置換されてなるものを表し:

・Aは、-NR,R。またはヒドロキシル基を表し;

・R,及びR。は、同一でも相違しても良く、水素原子; Z 基; C, - C。アルキル・ 基; C, - C。モノヒドロキシアルキル基; C, - C。ポリヒドロキシアルキル基; (C₁ - C₆) アルコキシ (C₁ - C₆) アルキル基; アリール基; ベンジル基; シアノ (C₁ - C₆) アルキル基; N-(C₁ -

C。) アルキルカルバミル (C,-C。) アルキル基; N, N-ジ (C,-C。) アル キルカルバミル (C,-C。) アルキル基;チオカルバミル (C,-C。) アルキル 基; C, - C。トリフルオロアルキル基; C, - C。スルホアルキル基; (C, - C。) アルキルカルボキシ (C₁ - C_ε) アルキル基; (C₁ - C_ε) アルキルスルフィ ニル (C,-C。) アルキル基; C,-C。アミノスルホニルアルキル基; C,-C。 N-Z-T ミノスルホニルアルキル基; $N-(C_1-C_6)$ アルキルアミノスルホニ ν (C₁-C₆) アルキル基: N, N-ジ (C₁-C₆) アルキルアミノスルホニル (C₁-C₆) アルキル基; (C₁-C₆) アルキルカルボニル (C₁-C₆) アルキ ル基:C₁-C₆アミノアルキル基;C₁-C₆アミノアルキル基において、アミン がC₁-C₆アルキル、C₁-C₆モノヒドロキシアルキル、C₂-C₆ポリヒドロキ シアルキル、(C」- C。)アルキルカルボニル、カルバミル、N-(C」- C。) アルキルカルバミル、N, N-ジ (C₁-C₆) アルキルカルバミル、C₁-C₆ア ルキルスルホニル、ホルミル、トリフルオロ (C,-C。) アルキルカルボニル、 (C, - C。) アルキルカルボキシル及びチオカルバミル基から選択される1また は2の同一または相違する基、または2基で置換されてなるものを表し; ・Zは、下記の化学式(II)及び(III)の不飽和カチオン基、及び下記の化学 式(IV)の飽和カチオン基:

[・Dは、好ましくは 1 から 1 4 の炭素原子を含む直鎖状または分枝状のアルキル鎖を表し、これは一以上の異種原子、例えば酸素、硫黄または窒素原子によって断裂可能であり、またこれは一以上のヒドロキシルまたは C₁ - C₆ アルコキシ基によって置換可能であり、さらに一以上のケトン官能基を坦持可能な結合鎖であり;

・環を成す E、 G、 J、 L 及び M は、同一でも相違しても良く、炭素、酸素、硫黄または窒素原子を表し;

・nは、0から4の整数を表し;

・mは、0から5の整数を表し;

・R は、同一でも相違しても良く、 Z 基、ハロゲン原子、ヒドロキシル基、 C₁ - C₆アルキル基、 C₁ - C₆モノヒドロキシアルキル基、 C₂ - C₆ポリヒドロキシアルキル基、 C₁ - C₆ ポリヒドロキシアルキル基、 ニトロ基、シアノ基、シアノ (C₁ - C₆) アルキル基、 C₁ - C₆ アルコキシ基、トリ (C₁ - C₆) アルキルシラン (C₁ - C₆) アルキル基、アミド基、アルデヒド基、カルボキシル基、 (C₁ - C₆) アルキルカルボニル基、チオ基、 C₁ - C₆チオアルキル基、 C₁ - C₆アルキルチオ基、アミノ基、 (C₁ - C₆) アルキルカルボニル、カルバミルまたは C₁ - C₆アルキルスルホニル基で保護されたアミノ基を表し; NHR"基または NR"R" 基において、R"及びR""が、同一でも相違しても良く、C₁ - C₆アルキル基、C₁ - C₆モノヒド

ロキシアルキル基または C₂-C゚ポリヒドロキシアルキル基を表し;

・R,は、C,-C。アルキル基、C,-C。モノヒドロキシアルキル基、C,-C。ポリヒドロキシアルキル基、シアノ(C,-C。)アルキル基、トリ(C,-C。)アルキル基、トリ(C,-C。)アルキルシラン(C,-C。)アルキル基、(C,-C。)アルコキシ(C,-C。)アルキル基、カルバミル(C,-C。)アルキル基、(C,-C。)アルキルカルボキシ(C,-C。)アルキル基、ベンジル基または上記化学式(II)、(III)または(IV)の Z 基を表し:

・R。、R。及びR」。は、同一または相違し、C」-C。アルキル基、C」-C。モノヒドロキシアルキル基、C2-C6ポリヒドロキシアルキル基、(C1-C6)アル
コキシ(C1-C6)アルキル基、シアノ(C1-C6)アルキル基、アリール基、

ベンジル基、 C₁ ー C₆アミドアルキル基、トリ(C₁ ー C₆)アルキルシラン(C₁ ー C₆)アルキル基または C₁ ー C₆アミノアルキル基において、アミンが(C₁ ー C₆)アルキルカルボニル、カルバミルまたは C₁ ー C₆アルキルスルホニル基によって保護され; R₁、 R₆及び R₆のうち二つの基が、その結合する窒素原子と共に飽和の 5 員または 6 員の炭素環または一以上の異種原子を含む環、例えば、ピロリジン環、ピペリジン環、ピペラジン環またはモルホリン環を形成可能であり、前記環は、無置換またはハロゲン原子、ヒドロキシル基、C₁ ー C₆アルキル基、C₁ ー C₆アルキル基、C₁ ー C₆アルキル基、 C₁ ー C₆アルキル基、 C₁ ー C₆アルキル基、 C₁ ー C₆アルキル基、 C₁ ー C₆アルコキシ基、トリ(C₁ ー C₆)アルキルシラン(C₁ ー C₆)アルキル基、アミド基、アルデヒド基、カルボキシル基、ケト(C₁ ー C₆)アルキル基、チオ基、C₁ ー C₆チオアルキル基、C₁ ー C₆アルキルチオ基、アミノ基または、(C₁ ー C₆チオアルキル基、 C₁ ー C₆アルキルチオ基、アミノ基または、(C₁ ー C₆)アルキルカルボニル、カルバミルまたは C₁ ー C₆アルキルスルホニル基で保護されたアミノ基を表し; R₈、 R₆及び R₁。のうちーつが、第一の基 Z と同一または相違してなる第二の基 Z を表すことができ;

・R₁₁が、C₁-C₆アルキル基;C₁-C₆モノヒドロキシアルキル基;C₂-C₆ ポリヒドロキシアルキル基;アリール基;ベンジル基;C₁-C₆アミノアルキル 基、C₁-C₆アミノアルキル基において、アミンが(C₁-C₆)アルキルカルボ ニル、カルバミルまたはC₁ - C₆アルキルスルホニル基によって保護されてなるもの;カルボキシ(C₁ - C₆)アルキル基;シアノ(C₁ - C₆)アルキル基;カルバミル(C₁ - C₆)アルキル基;C₁ - C₆トリフルオロアルキル基;トリ(C₁ - C₆)アルキルシラン(C₁ - C₆)アルキル基;C₁ - C₆スルホンアミドアルキル基;(C₁ - C₆)アルキルカルボキシ(C₁ - C₆)アルキル基;(C₁ - C₆)アルキルスルホニル(C₁ - C₆)アルキル基;(C₁ - C₆)アルキルスルホニル(C₁ - C₆)アルキルカルバミル(C₁ - C₆)アルキル基;N-(C₁ - C₆)アルキル基;N-(C₁ - C₆)アルキルスルホンアミド(C₁ - C₆)アルキル基を表し;

- ・x及びyが、0または1の整数であって、下記の条件に従い:
 - ・化学式(II)の不飽和カチオン基において:
 - x = 0 の場合、結合鎖Dは窒素原子に結合し、
- ・ x=1 の場合、結合鎖 D は環を成す E 、 G 、 J または L のーに結合し、
 - ・ y は 1 の 値 の み を と り 得 る :
- 1) 環を成すE、G、J及びLが、同時に炭素原子を表し、R ,が不飽和環の窒素原子に坦持されている場合;あるいはまた、
- 2) 環を成すE、G、J及びLの少なくとも一が、R,に結合した窒素原子を表す場合;
 - ・化学式(III)の不飽和カチオン基において:
 - x = 0 の場合、結合鎖Dは窒素原子に結合し、
- ・ x=1 の場合、結合鎖 D は環を成す E 、 G 、 J 、 L または M のーに結合し、
- ・環を成す E、 G、 J、 L 及び M の少なくとも一が二価の原子を表す場合及び R, が不飽和環の窒素原子に坦持されている場合にのみ、 y は 1 の値をとり得る:
 - ・化学式(IV)のカチオン基において:
 - ・x = 0 の場合、結合鎖はR₈からR₁。の基を坦持する窒素原

子に結合し、

・x = 1 の場合、R。からR」。の二つの基が、その結合する窒素原子と共に上記の飽和 5 員または 6 員環を形成し、結合鎖 B が前記飽和環の炭素原子に坦持されてなる]を表し:

・X が、単価または二価のアニオンを表し、好ましくはハロゲン原子、例えば塩素、臭素、フッ素またはヨウ素、水酸化物塩、硫酸水素塩またはC, - C。アルキルスルファート、例えばメチルスルファートまたはエチルスルファートより選択され;

・化学式 (II) または (III) の不飽和カチオン基 Z の数が、少なくとも 1 に等しく:

・Aが、-NR,R。を表し、R,またはR。が結合鎖Bがケトン基を含むアルキル鎖を表すZ基を表し、前記ケトン基は-NR,R。基の窒素原子に直接結合し

ておらず;

4-アミノ-3-メチル-N-エチル-N-β- (1-ピリジニウム) エチルアニリンクロライド、及びこれらの酸との付加塩を除外する。

上記の通り、本発明による酸化染色組成物によって得られる着色は、強く、広範な色を網羅する。これらはさらにまた、様々な外部要因(光、悪天候、洗浄、パーマネント・ウェーブ、発汗、摩擦)の作用に対抗するこの上ない特性を有する。これらの特性は、光、洗浄、パーマネント・ウェーブ及び発汗の作用に対する、得られる色の耐性に関して特に著しい。

上記化学式(I)において、アルキル基及びアルコキシ基は直鎖状でも分枝状でも良い。

上記化学式(II)の不飽和基乙の環の中では、例えば、ピロール、イミダゾール、ピラゾール、オキサゾール、チアゾール及びトリアゾール環を挙げることができる。

上記化学式(III)の不飽和基乙の環の中では、例えば、ピリジン、ピリミジン、ピラジン、オキサジン及びトリアジン環を挙げることができる。

上記化学式(I)の化合物の中では、特に、

- ・1-[2-(4-アミノフェニルアミノ) エチル]-3-メチル-3 H-イミダゾール-1-イウム=プロミド:
- ・1-[3-(2, 5-ジアミノフェノキシ) プロピル]-3-メチル-3 H-イミダゾ ール-1-イウム=クロライド;
- ・3-[3-(4-アミノフェニルアミノ) プロピル]-1-メチル-3 H-イミダゾール-1-イウム=クロライド;
- ・3-[3-(4-アミノ-3-メチルフェニルアミノ) プロピル]-1-メチル-3 H-イミダゾール-1-イウム=クロライド;
- ・3-[3-(4-アミノ-2-メチルフェニルアミノ) プロピル]-1-メチル-3 H-イミダゾール-1-イウム=クロライド;
- ・3-[3-(4-アミノ-2-フルオロフェニルアミノ) プロピル]-1-メチル-3 H -イミダゾール-1-イウム=クロライド=モノハイドラート;
- ・3-[3-(4-アミノ-2-シアノフェニルアミノ) プロピル]-1-メチル-3 H-

ミダゾール-1-イウム=クロライド;

- ・1-[2-(4-アミノ-2-メトキシフェニルアミノ) エチル]-3-メチル-3 H-イミダゾール-1-イウム=クロライド;
- ・1-(5-アミノ-2-ヒドロキシベンジル)-3-メチル-3H-イミダゾール-1-イウム=クロライド;
- ・1-(5-アミノ-2-ヒドロキシベンジル)-2-メ・チル-2 H-ピラゾール-1-イウム=クロライド;
- ・1-[2-(2, 5-ジアミノフェニル) エチル]-3-メチル-3 H-イミダソール-1-イウム=クロライド;
- ・3-[2-(2, 5-ジアミノフェニル) エチル]-1-メチル-3 H-イミダソール-1-イウム=クロライド;
- ・1-{2-[(4-アミノフェニル) エチルアミノ]エチル}-3-メチル-3H-イ ミダゾール-1-イウム=クロライド;

- ・N, N-ビス[2-(3-メチル-3H-イミダソール-1-イウム) エチル]-4-ア ミノアニリン=ジクロライド;
- ・3-[2-(4-アミノフェニルアミノ) ブチル]-1-メチル-3 H-イミダソール-1-イウム=クロライド;
- ・1 {[5-アミノ-2-(2-ヒドロキシエチルアミノ) フェニルカルバモイル] メチル} -3-メチル-3 H-イミダゾール-1-イウム=クロライド;
- ・4-[2-(2, 5-ジアミノフェノキシ) エチル]-1, 3-ジメチル-3 H-イミ ダゾール-1-イウム=ブロミド;
- ・2-(2, 5-ジアミノフェノキシメチル)-1, 3-ジメチル-3 H-イミダゾール-1-イウム=クロライド;
- ・4-[3-(4-アミノフェニルアミノ) プロピル]-1, 3-ジメチル-3 H-イミ ダゾール-1-イウム=クロライド;
- ・4-[3-(4-アミノ-3-メチルフェニルアミノ) プロピル]-1, 3-ジメチル-3 H-イミダゾール-1-イウム=クロライド;
- ・4-[(2,5-ジアミノフェニルカルバモイル)メチル]-1,3-ジメチル-3H-イミダゾール-1-イウム=クロライド;
- ・4-{2[2-(2-アミノ-5-ヒドロキシフェニル) アセチルアミノ]エチル}-1, 3-ジメチル-3 H-イミダゾール-1-イウム=クロライド;
- ・4-[(5-アミノ-2-ヒドロキシベンジルカルバモイル)メチル]-1, 3-ジメ チル-3 H-イミダゾール-1-イウム=クロライド;

及びこれらの酸との付加塩を挙げることができる。

本発明による化学式(I)の化合物は、当業者には良く知られた方法:

- ・対応するカチオン性ニトロ化合物 (カチオン性パラ-ニトロアニリンまたはカ チオン性パラ-ニトロフェノール) の還元により、または
- ・対応するカチオン性ニトロソ化合物 (例えば、第三級アニリンまたは対応する フェノールのニトロソ化によって得られるもの) の還元により、または
- ・対応するカチオン性アゾ化合物の還元 (還元断裂) により 容易に入手可能である。

酸化可能化合物(酸化ベース)としての性質を合成化合物に与えるこの還元段階(第一級芳香族アミンの生成)は、続けて塩化を行っても行わなくともよいが、便宜上、合成の最終段階とするのが一般的である。

この還元は、化学式(I)の化合物の調製につながる反応経路においてより早く実行可能であり、良く知られた方法によれば、(例えばアセチル化、ベンゼンスルホン化等の段階により)生成する第一級アミンを"保護"し、望ましい置換または変性(第四級化を含む)を行い、"脱保護(deprotecting)"(通常は酸性媒体中)によって終了することが必要である。

同様に、フェノール官能基は、良く知られた方法によってベンジル基で(触媒 還元による"脱保護")、あるいはアセチルまたはメチル基で(酸性媒体中での "脱保護")保護可能である。

合成が終了した際、本発明の化学式(I)の化合物は、必要に応じて当業者には良く知られた、例えば結晶化または蒸留によって回収可能である。

本発明はまた、ケラチン繊維、特にヒトの髪などのケラチン繊維の酸化染色のための組成物に関し、これは酸化ベースとして染色に適当な媒体中に本発明によ

る化学式(I)の少なくとも一の化合物を含むことを特徴とする。

本発明の化学式(I)の化合物は、染色組成物全重量に対して約0.0005 から12重量%を占めることが好ましく、約0.005から6重量%を占めることが更に好ましい。

染色に適した媒体(または支持体)は、一般的に、水または、水と、水には十分溶解性でない化合物を溶解するための少なくとも一の有機溶媒からなる。有機溶媒としては、例えば、エタノール及びイソプロパノール等の C, - C, 低級アルコール; グリセリン; グリコール及びグリコールエーテル、例えば 2-ブトキシエタノール、プロピレングリコール・プロピレングリコール・ナルエーテル、ジエチレングリコールモノエチルエーテル及びモノエチルエーテル、並びにベ

ンジルアルコールまたはフェノキシエタノール等の芳香族アルコール、類似生成物及びこれらの混合物を挙げることができる。

溶媒は、染色組成物全重畳に対して約1から40重量%を占めることが好ましく、更に好ましくは、約5から30重量%を占める。

本発明の染色組成物のpHは、一般的に3から12である。これは、ケラチン繊維の染色において従来より用いられる酸性化もしくはアルカリ性化剤を使用して、望ましい値に調整することができる。

酸性化剤の中では、例として、塩酸、オルトリン酸、硫酸等の無機もしくは有機酸、酢酸、酒石酸、クエン酸及び乳酸等のカルボン酸、及びスルホン酸を挙げることができる。

塩基性化剤の中では、例として、アンモニア水溶液、アルカリ性カーボナート、モノ-、ジ-及びトリエタノールアミン等のアルカノールアミン並びにその誘導体、水酸化ナトリウム、水酸化カリウム及び下記の化学式 (V) の化合物を挙げることができる。

$$R_{12}$$
 N-W-N R_{14} (V) R_{13}

上記式中、Wは、任意でヒドロキシル基もしくはC₁-C₄アルキル基で置換されたプロピレン残基であり;R₁₂、R₁₃、R₁₄及びR₁₅は、同一でも相違してもよく、水素原子、C₁-C₆アルキル基もしくはC₁-C₆ヒドロキシアルキル基を表す。

本発明による染料組成物はまた、上記染料に加え、酸化染色において通常使用されているカプラーから選択可能な少なくとも一の付加的酸化ベースを含有可能であり、特に本発明の化学式 (I) の化合物以外のパラフェニレンジアミン、ビス (フェニル) アルキレンジアミン、本発明の化学式 (I) の化合物以外のパラーアミノフェノール、オルト-アミノフェノール及び複素環ベースを挙げることができる。

パラ-フェニレンジアミンの中では、例えば、パラフェニレンジアミン、パラ-

トルイレンジアミン、 2 , 6 -ジメチル-パラ-フェニレンジアミン、 2 - β - ヒドロキシエチルオキシ-パラ-フェニレンジアミン、 2 - n - プロピル-パラ-フェニレンジアミン、 N - (β - ヒドロキシプロピル) - パラ-フェニレンジアミン、 N , N - ビス (β - ヒドロキシオロピル) - パラ-フェニレンジアミン、 N , N - ビス (β - ヒドロキシエチル) - パラ-フェニレンジアミン、 4 - アミノ-N - (β - メトキシエチル) アニリン及び仏国特許出願 2 , 6 3 0 , 4 3 8 号に記載のパラ-フェニレンジアミン及びこれらの酸との付加塩を特に挙げることができる。

ビス(フェニル)アルキレンジアミンの中では、例えば、N, N'-ビス(β -ヒドロキシエチル)-N, N'-ビス(4'-アミノフェニル)-1, 3-ジアミノプロパノール、N, N'-ビス(β -ヒドロキシエチル)-N, N'-ビス(4'-アミノフェニル)エチレンジアミン、N, N'-ビス(4-アミノフェニル)テトラメチレンジアミン、N, N'-ビス(β -ヒドロキシエチル)-N, N'-ビス(4-アミノフェニル)テトラメチレンジアミン、N, N'-ビス(4-アミノフェニル)テトラメチレンジアミン、N, N'-ビス(4-メチルアミノフェニル)テトラメチレンジアミン及びN, N'-ビス(4-メチルアミビス(4'-アミノ-3'-メチルフェニル)エチレンジアミン、及びこれらの酸との付加塩を特に挙げることができる。

パラ-アミノフェノールの中では、例えば、パラ-アミノフェノール、4-アミノ-3-メチルフェノール、4-アミノ-3-フルオロフェノール、4-アミノ-3-ヒド

ロキシメチルフェノール、4-アミノ-2-メチルフェノール、4-アミノ-2-ヒドロキシメチルフェノール、4-アミノ-2-メトキシメチルフェノール、4-アミノ-2-アミノメチルフェノール及び4-アミノ-2-(β-ヒドロキシエチルアミノメチル)フェノール、及びこれらの酸との付加塩を特に挙げることができる。

オルト-アミノフェノールの中では、例えば、2-アミノフェノール、2-アミノ-5-メチルフェノール、2-アミノ-6-メチルフェノール及び5-アセタミド-2-アミノフェノール、及びこれらの酸との付加塩を特に挙げることができる。

複素環ベースの中では、例えば、ピリジン誘導体、ピリミジン誘導体及びピラ ゾール誘導体を特に挙げることができる。 これらの付加的な酸化ベースを使用する場合は、染料組成物全重量に対して、約0.005から12重量%を占めることが好ましく、約0.005から6重量%を占めることが更に好ましい。

本発明の酸化染色組成物はまた、少なくとも一のカプラー及び/または少なくとも一の直接染料を含有可能であり、特に色合いに変化を出すまたは、輝きを添えて色合いを豊かにする。

本発明の酸化染色組成物において使用可能な付加的なカプラーは、酸化染色において通常使用されているカプラーから選択可能であり、これらの中では特に、メタ-フェニレンジアミン、メタ-アミノフェノール、メタ-ジフェノール及び複素環カプラー、例えば、インドール誘導体及びインドレン誘導体、ピリジン誘導体及びピラゾロン及びこれらの酸との付加塩を挙げることができる。

これらのカプラーは、特に、 2-メチル-5-アミノフェノール、 5-N-(β -ヒドロキシエチル)アミノ-2-メチルフェノール、 3-アミノフェノール、 1 , 3-ジヒドロキシベンゼン、 1 , 3-ジヒドロキシ-2-メチルベンゼン、 4-クロロー 1 , 3-ジヒドロキシベンゼン、 2 , 4-ジアミノ-1-(β -ヒドロキシエチルオキシ)ベンゼン、 2-アミノ-4-(β -ヒドロキシエチルアミノ)-1-メトキシベンゼン、 1 , 3-ジアミノベンゼン、 1 , 3-ビス(2 , 4-ジアミノフェノキシ)プロパン、セサモル、 α -ナフトール、 6-ヒドロキシインドール、 4-ヒドロキシインドリン、 2 , 6-ジヒドロキシ-4-メチルインドール、 6-ヒドロキシインドリンン 、 2 , 6-ジヒドロキシ-4-メチルピリジン、 1 H-3-メチルピラゾール-5-オン及び 1-

フェニル-3-メチルピラゾール-5-オン、及びこれらの酸との付加塩より選択可能である。

これらのカプラーが存在する場合は、染色組成物全重量に対して、約0.00 01から10重量%を占めることが好ましく、約0.005から5重量%を占め ることが更に好ましい。

一般的に、本発明の染色組成物において使用可能な酸との付加塩 (化学式 (I) の化合物、付加的酸化ベース及びカプラー)は、特に、塩酸塩、臭素酸塩、硫

酸塩、クエン酸塩、ケイ皮酸塩、酒石酸塩、乳酸塩及び酢酸塩より選択される。

本発明の染色組成物はまた、アニオン性、カチオン性、非イオン性、両性もしくは双性イオン性界面活性剤もしくはこれらの混合物、アニオン性、カチオン性、非イオン性、両性もしくは双性イオン性ポリマーもしくはこれらの混合物、無機もしくは有機増粘剤、抗酸化剤、浸透剤、金属イオン封鎖剤、香料、緩衝剤、分散剤、例えばシリコーンなどの調整剤、フィルム形成剤、防腐剤及びパール剤等の、従来より髪の染色のための組成物中に使用される様々な補助剤を含有可能である。

言うまでもないが、当業者であれば、本発明の染色組成物に本来備わった有利な特性が、予期される添加によって損なわれることのないように、または本質的に損なわれることのないようにこれらの補足的な化合物を選択することができるであろう。

本発明の染色組成物は、様々な形態、例えば液体、クリームもしくはゲルの形態、あるいは特に髪等のヒトのケラチン繊維の染色を行うのに適した他のあらゆる形態をとることができる。

本発明はまた、ケラチン繊維、特に髪などのヒトのケラチン繊維の染色のための方法である。

この方法によれば、少なくとも一の上記の染色組成物を繊維に適用し、酸性、中性またはアルカリ性の p H にて、使用時に初めて染色組成物に添加される酸化剤または、分離方法で同時または連続的に適用される酸化組成物中に存在する酸化剤を使用して色が発色する。

本発明の染色方法の特に好ましい実施態様によれば、上記染色組成物は、染色

に適した媒体中に着色を行うに十分な量で存在する少なくとも一の酸化剤を含有する酸化組成物と、使用時に混合される。得られた混合物をケラチン繊維に適用し、約3から50分間、好ましくは約5から30分間そのままおいた後、繊維を濯ぎ、シャンプーで洗浄し、再度濯いで乾燥させる。

酸化剤は、ケラチン繊維の酸化染色に従来より使用されている酸化剤より選択可能であり、これらの中では、過酸化水素、過酸化尿素、アルカリ金属の臭素酸

塩及びペル塩、例えばペルボラート及びペルスルファートを挙げることができる 。過酸化水素が特に好ましい。

上記の酸化剤を含有する酸化組成物の p H は、染色組成物と混合した後に、ケラチン繊維に適用使用とする生じた組成物の p H が、約3から12、さらに好ましくは5から11となるような値である。これは通常ケラチン繊維の染色に使用される酸性化剤または塩基性化剤を上記のように使用して望ましい値に調節される。

上記酸化組成物はまた、髪の染色のための組成物に従来より使用される上記の ・ ような様々な補助剤を含有可能である。

ケラチン繊維に最終的に適用される組成物は、多様な形態、例えば、液体、クリームもしくはゲルの形態、あるいは特に髪等のヒトのケラチン繊維の染色に適 した他の形態等の、様々な形態をとることができる。

本発明の別の主題は、第一の区画に上述の染色組成物を収容し、第二の区画に上述の酸化組成物を収容する、多区画装置もしくは多区画 "キット" もしくは他のあらゆる多区画実装装置である。

これらの装置には、髪への分配に望ましい混合状態を与える手段を装備可能であり、本出願人名義の仏国特許 2, 5 8 6, 9 1 3 号に記載の装置等が可能である。

以下の実施例は、本発明を限定することなく詳説することを目的とする。

調製実施例

(調製実施例1:1-[2-(4-アミノ-フェニルアミノ) エチル]-3-メチル-3 H-イミダゾール-1-イウム=ジヒドロクロライド=モノブロミドの合成)

a) 3-メチル-1-[2-(4-ニトロフェニルアミノ) エチル] -3 H-イミダゾール-1-イウム=ブロミドの調製

(2-プロモエチル) (4-ニトロフェニル) アミン49.0g(0.2mol)及 び1-メチル-1H-イミダゾールの19.8g(0.24mol)のトルエン200m 1中の懸濁液を調製した。混合物をトルエンの還流点にて攪拌しつつ4時間加熱 し、熱時濾過し、酢酸エチルで二度、次いで無水エタノールでペースト状にした (reimpasted)。

%	С	Н	N	0	Вr
理論値	44.05	4.62	17.12	9.78	24.42
実 測 値	44.14	4.57	17.03	9.78	24.37

b) 3-メチル-1-[2-(4-ニトロフェニルアミノ) エチル] -3 H-イミダソー ル-1-イウム=ブロミドの還元

96° エタノール 50 ml、水 5 ml、亜鉛の微小粉末 25 g 及び塩化アンモニウム 0.5 g の混合物を、アルコールの還流点に加熱した。前段階で調製された 3-メチル-1-[2-(4-ニトロフェニルアミノ) エチル] -3 H-イミダゾール-1-イウム=ブロミド 16.4 g (0.05 mol) を、加熱せずに還流を維持するように少量

ずつ添加した。反応は発熱性であった。

添加の最後に、さらに10分間還流を続けた。

混合物を熱時濾過する一方で、約5Nの無水塩化水素エタノール(氷温)22 mlを注いだ。

結晶化した沈殿物を濾過し、無水エタノールで洗浄し、水酸化カリウムを用いて真空中 4 0 ℃にて乾燥させた。

水とエタノールとの混合物から、還流点にて再結晶し、融点195−200℃

(Kofler)の白色結晶が得られ、その構造は'H NMRに合致していた。

(調製実施例2:1-[3-(2,5-ジアミノフェノキシ)プロピル]-3-メチル-3H-イミダゾールー1-イウム:ジヒドロクロライド=モノクロライドの合成)

a) N-[2-(3-クロロプロポキシ)-4-ニトロフェニル] アセタミドの調製ジメチルホルムアミド 5 0 0 m1中、N-(2-ヒドロキシ-4-ニトロフェニル) アセタミド 9 8 . 1 g (0 . 5 mo1) 及び炭酸カリウム 6 9 . 2 g (0 . 5 mo1) の混合物を撹拌しつつ 5 0 ℃に加熱し、1 , 3-ジクロロプロパン 1 1 3 . 0 g (1 mo1) を添加し、加熱を 5 0 ℃にて 1 時間継続させた。

反応混合物を氷温水 4 リットルに注ぎ、結晶化沈殿物を濾過し、水で、次いでイソプロピルアルコールでペースト状にし、五酸化リンを用いて真空中 4 0 ℃にて乾燥させた。

還流酢酸イソプロピルからの再結晶の後、融点121℃の淡褐色の結晶113 . 5gが得られた。元素分析の結果はC₋₁ H₋₃ N₂O₄ C l と算出した値に合致していた。

b) 1-[3-(2-アセチルアミノ-5-ニトロフェノキシ) プロピル] -3-メ チル-3 H-イミダゾール-1-イウム=クロライドの調製

実施例1、a)に記載の操作を利用した。

トルエン120ml中、前段階で得られたN-[2-(3-クロロプロポキシ)-4-ニトロフェニル] アセタミド27.2g(0.1mol) 及び1-メチル-1 H-イミ ダゾール9.9g(0.12mol) から出発し、融点227℃ (Kefler) の1-[3-(2-アセチルアミノ-5-ニトロフェノキシ) プロピル]-3-メチル-3 H-イ ミダゾール-1-イウム=クロライド暗黄色結晶(21.5g)が得られ、C₁₆ H₁ ,N,O,C I と算出した元素分析の結果は下記の通りであった。

%	C	Н	N	0	C 1
理論値	50.78	5.40	15.79	18.04	9.99
実 測 値	50.69	5.36	15.74	18.23	9.79

c) 1-[3-(2-アセチルアミノ-5-ニトロフェノキシ) プロピル] -3-メチル-3 H-イミダゾール-1-イウム=クロライドの脱アセチル化

実施例1、段階b)に記載の操作により、還元を実行した。

1-[3-(2-アセチルアミノ-5-ニトロフェノキシ)プロピル]-3-メチル-3H-イミダゾール-1-イウム=クロライド21.3g(0.06mol)から出発し、濾過の後、減圧下で蒸発させ乾燥させ、1-[3-(2-アセチルアミノ-5-アミノフェノキシ)プロピル]-3-メチル-3H-イミダゾール-1-イウム=クロライドの褐色オイル19.0gが得られた。

d) 1-[3-(2-アセチルアミノ-5-アミノフェノキシ) プロピル] -3-メチル -3 H-イミダゾール-1-イウム=クロライドの脱アセチル化

前段階で得られた 1 - [3 - (2 - アセチルアミノ - 5 - アミノフェノキシ) プロピル] - 3 - メチル - 3 H - イミダゾール - 1 - イウム = クロライド (19.0g) を、約5 N の無水塩化水素エタノール 9 Om I に室温にて撹拌しつつ溶解させた。 半時間の後、白色結晶が出現した。

懸濁液をアルコールの還流点に1時間加熱した。

粗製の生成物を冷却し、濾過し、無水エタノールを洗浄し、水酸化カリウムを 用いて真空中 5 0 ℃にて乾燥させた。

融点 2 1 6 − 2 2 0 ℃のオフホワイトの結晶 1 4 . 9 g (Kofler) が得られ、
C _{1 3} H _{2 1} N ₄ O C l ₃ と算出した元素分析の結果は下記の通りであった。

%	С	Н	N	0	C 1
理論値	43.90	5.95	15.75	4.50	29.90
実 測 値	43.83	6.01	15.62	5.09	29.90

(実施例3:3-[3-(4-アミノ-フェニルアミノ)プロピル]-1-メチル-3H-イミダゾール-1-イウム=ジヒドロクロライド=モノクロライドの合成)

a) (3-イミダゾール-1-イルプロピル) - (4-ニトロフェニル) アミンの調製 1-フルオロ-4-ニトロベンゼン28.2g (0.2mol)、3-イミダゾール-1-イルプロピルアミン31.3g (0.25mol) 及びトリエチルアミン34.8m1の混合物を、1,2-ジメトキシエタン30ml中で1時間提拌しつつ加熱した。混合物を氷温水に注ぎ、結晶化沈殿物を濾過し、水で、次いでイソプロピルアルコールでペースト状にし、五酸化リンを用いて真空中40℃にて乾燥させた。還流06°エタノールからの再結晶により精製し、融点124°Cの黄色結晶が得られ、C12H14N4O2と算出した元素分析の結果は下記の通りであった。

%	С	H	N	0
理論値	58.53	5.73	22.75	12.99
実 測 値	58.17	5.75	22.67	13.45

b) (3-イミダソール-1-イルプロピル) - (4-ニトロフェニル) アミンの第 四級化

前段階で得られた (3-イミダゾール-1-イルプロピル) - (4-ニトロフェニル) アミン3 0 . 4 g (0 . 1 2 3 mol) 及びジメチルスルファート 1 2 . 9 mlを酢酸エチル 6 0 0 ml中に懸濁させ、室温にて 2 時間攪拌し続けた。

結晶化沈殿物を濾過紙、酢酸エチルで数回洗浄し、無水エタノール最小畳でペースト状にし、真空中、50℃にて乾燥させた。

融点 7.4 ℃ (Kofler) の黄色結晶 3.7.6 g が得られ、 C_{1.4} H_{2.0} N₄O₆ S と算出した元素分析の結果は下記の通りであった。

%	С	Н	N	0	S
理論値	45.15	5.41	I5.04	25.78	8.61
実 測 値	44.85	5.50	14.91	25.97	8.49

c) 1-メチル-3-[3-(4-ニトロフェニルルアミノ) プロピル] -3-イミダソ ール-1-イウム=メチルスルファートの還元

実施例1、段階b)に記載の操作に従って、還元を実行した。

%	С	Н	N	0	C 1
理論値	45.17	6.32	16.21	1.54	30.77
実 測 値	44.98	6.22	16.05	1.57	30.78

(調製実施例4:3-[3-(4-アミノ-3-メチルフェニルアミノ)プロピル]-1-メチル-3H-イミダゾール-1-イウム=モノクロライド=ジヒドロクロライド の合成)

a) (3-イミダゾール-1-イルプロピル)-(3-メチル-4-ニトロフェニル) アミンの調製

1, 2-ジメトキシエタン 3 0 ml中の 4-フルオロ-2-メチル-1-ニトロベンゼン 3 1. 2 g (0. 2 mol)、3-イミダゾール-1-イルプロピルアミン 3 7. 5 g (0. 3 mol)及びトリエチルアミン 3 4. 8 ml (0. 2 5 mol)の混合物を、沸騰した水浴中で攪拌しつつ 3 時間加熱した。

混合物を氷温水 O . 5 1 に注ぎ、生じた結晶化沈殿物を濾過し、水で、次いでイソプロピルアルコールでペースト状にし、五酸化リンを用いて真空中 4 0 ℃にて乾燥させた。

還流 9 6° エタノールからの再結晶により精製し、融点 1 3 3 ℃ (Kofler) の 橙黄色オイル 1 7 . 0 g が得られ、 C ₁₃ H ₁₆ N ₄ O ₂ と算出した元素分析の結果は 下記の通りであった。

%	С	Н	N	0
理論値	59.99	6.20	21.52	12.29
実 測 値	59.55	6.22	21.43	12.88

b) 1-メチル-3-[3- (3-メチル-4-ニトロフェニルアミノ) プロピル] -3 H -イミダゾール-1-イウム=メチルスルファートの調製

前段階で得られた(3-イミダゾール-1-イルプロピル)- (3-メチル-4-ニトロフェニル)アミン16.5g(0.063mol)を酢酸エチル165ml中に溶解させ、室温にて攪拌しつつ1時間に渡ってジエチルスルファート6.7ml(0.07mol)を添加することによって第四級化を実行した。

1-メチル-3-[3-(3-メチル-4-ニトロフェニルアミノ) プロピル] -3 H-イミダゾール-1-イウム=メチルスルファートの黄色オイル 2 O . 8 g が得られた。

c) 1-メチル-3-[3-(3-メチル-4-ニトロフェニルルアミノ) プロピル] -3 H-イミダゾール-1-イウム=メチルスルファートの還元

実施例1、段階b)に記載の操作に従って、還元を実行した。

前段階で得られた 1-メチル-3-[3-(3-メチル-4-ニトロフェニルアミノ) プロピル] -3 H-イミダゾール-1-イウム=メチルスルファート 2 O. Og (0.051 mol) から出発し、約5 Nの無水塩化水素エタノール中で加熱し、陰イオン交換を完了させ、融点 210-220 C (Kofler) の白色結晶 12.5 gが得られ、 C_{14} H $_{23}$ N $_{4}$ C 1_{3} \cdot 1/2 H $_{2}$ O と算出した元素分析の結果は下記の通りであった。

%	С	Н	N	0	C 1
理論値	46.36	6.67	15.45	2.21	29.32
実 測 値	46.21	6.40	15.33	2.37	29.69

(調製実施例5:3-[3-(4-アミノ-2-メチルフェニルアミノ)プロピル]-

1-メチル-3H-イミダゾール-1-イウム=モノクロライド=ジヒドロクロライド の合

成)

a) (3-イミダゾール-1-イルプロピル) - (2-メチル-4-ニトロフェニル) ア ミンの調製

実施例4、段階a)の操作を利用した。

1-フルオロ-2-メチル-4-ニトロベンゼン31.2g(0.2mol)、3-イミダゾール-1-イルプロピルアミン37.5g(0.3mol)から出発し、還流96°エタノールからの再結晶により精製の後、融点163℃(Kofler)の橙黄色結晶23.0gが得られ、C13H16N4O2・1/4H2Oと算出した元素分析の結果は下記の通りであった。

%	С	Н	N	0
理論値	58.97	6.28	21.16	13.59.
実 測 値	·59.10	6.22	21.09	12.85

b) 1-メチル-3-[3-(2-メチル-4-ニトロフェニルアミノ)プロピル] -3 H -イミダゾール-1-イウム=メチルスルファートの調製

実施例4の段階b)の操作を利用した。・

前段階で得られた(3-イミダゾール-1-イルプロピル)-(2-メチル-4-ニトロフェニル)アミン 2 2 . 5 g (0 . 0 8 6 mol) 及びメチルスルファート9 . 0 ml (0 . 0 9 5 mol) から出発し、融点 7 0 ℃ (Kofler) の 1 -メチルー 3 - [3-(2-メチル-4-ニトロフェニルアミノ) プロピル] - 3 H - イミダゾール-1 - イウム=メチルスルフファートの黄色結晶 1 9 . 5 g が得られ、 C₁₄ H₁₉ N₄O₂ と算出し

た元素分析の結果は下記の通りであった。

%	С	Н	N	0	S
理論値	46.62	5.74	14.50	24.84	8.30
実 測 値	46.66	5.80	14.50	24.90	8.27

c) 1-メチル-3-[3-(2-メチル-4-ニトロフェニルルアミノ) プロピル] -3 H-イミダゾール-1-イウム=メチルスルファートの還元

実施例1、段階b)に記載の操作に従って、還元を実行した。

前段階で得られた 1-メチル-3-[3-(2-メチル-4-ニトロフェニルアミノ)プロピル] -3 H-イミダゾール-1 -イウム=メチルスルファート 1 9 . 0 g (0 . 0 5 mol) から出発し、約5 Nの無水塩化水素エタノール中で加熱し、陰イオン交換を完了させ、融点 2 5 5 - 2 6 0 $\mathbb C$ (Kofler) の白色結晶 1 4 . 6 g が得られ、 C_{14} H $_{23}$ N $_{4}$ C 1 $_{3}$ \cdot 1/2 H $_{2}$ O と算出した元素分析の結果は下記の通りであった。

%	С	Н	N	0	C 1
理論値	46.36	6.67	15.45	2.21	29.32
実 測 値	45.84	6.63	15.35	2.09	29.67

(調製実施例6:3-[3-(4-アミノ-2-フルオロフェニルアミノ)プロピル]-1-メチル-3H-イミダゾール-1-イウム=モノクロライド=ジヒドロクロライド= モノハイドラートの合成)

a) (2-フルオロ-4-ニトロフェニル) - (3-イミダゾール-1-イルプロピル) アミンの調製

実施例4、段階a)の操作を利用した。

1, 2-ジフルオロ-4-ニトロベンゼン31.8g(0.2mol)及び3-イミダゾール-1-イルプロピアミン37.5g(0.3mol)から出発し、還流96

エタノールからの再結晶により精製の後、融点144℃ (Kofler) の橙黄色結晶36.0gが得られ、C_{1.2}H_{1.3}N₄O₂Fと算出した元素分析の結果は下記の通りであった。

%	С	Н	Ņ	0	F
理論値	54.54	4.96	21.20	12.11	7.19
実 測 値	54.25	4.99	21.14	_	6.97

b) 3-[3-(2-フルオロ-4-ニトロフェニルアミノ) プロピル] -1-メチル-3 H-イミダゾール-1-イウム=メチルスルファートの調製

実施例4の段階b)の操作を利用した。

前段階で得られた(2-フルオロ-4-ニトロフェニル)-(3-イミダゾール-1-イルプロピル)アミン36.0g(0.136mol)及びメチルスルファート14.3ml(0.15mol)から出発し、110℃にて分解(Kofler)する3-[3-(2-フルオロ-4-ニトロフェニルアミノ)プロピル]-1-メチル-3H-イミダゾール-1-イウム=メチルスルファートの黄色結晶46.0gが得られ、C₁₄H₁。N₄O₆

SFと算出した元素分析の結果は下記の通りであった。

%	С	Н	N	0	S	F
理論値	43.07	4.91	14.35	24.59	4.87	8.21
実測値	43.00	5.00	14.37	_	4.87	8.12

c) 3-[3-(2-フルオロ-4-ニトロフェニルルアミノ) プロピル] -1-メチル -3 H-イミダゾール-1-イウム=メチルスルファートの還元

実施例1、段階b)に記載の操作に従って、還元を実行した。

3-[3-(2-7) ルオロ-4-2 トロフェニルアミノ)プロピル]-1-メチル-3 H-イミダゾール-1-イウム=メチルスルファート41.0g(0.105 mol) から出発し、約5Nの無水塩化水素エタノール中で加熱し、陰イオン交換を完了させ、融点165-170℃(Kofler)の白色結晶14.6gが得られ、 C_1 3H $_2$ 0N4Cl3F・ H_2 Oと算出した元素分析の結果は下記の通りであった。

% C H N O C1 F

理論値 41.56 5.90 14.91 4.26 28.31 5.06

実測値 41.59 5.41 14.88 - 29.13 5.32

(調製実施例7:3-[3-(4-アミノ-2-シアノフェニルアミノ)プロピル]-1-メチル-3H-イミダゾール-1-イウム=モノクロライド=ヒドロクロライドの 合成)

a) 2-(3-イミダゾール-1-イルプロピルアミノ)-5-ニトロベンゼンニトリルの調製

実施例 4 、段階 a)に記載の操作を利用したが、 1 , 2 - ジメトキシエタンに換えて N - メチルピロリドンを使用した。

2-クロロ-5-ニトロベンゾニトリル36.5g(0.2mol)及び3-イミダ ゾール-1-イルプロピルアミン31.3g(0.25mol)から出発し、還流9 6°エタノールからの再結晶により精製の後、融点177℃(Kofler)の黄色結晶28.2gが得られ、C₁, H₁, N₅O₂と算出した元素分析の結果は下記の通りであった。

%	С	Н	N	0
理論値	57.56	4.83	25.82	11.80
実 測 値	57.69	4.86	25.65	11.94

b) 3-[3-(2-シアノ-4-ニトロフェニルアミノ) プロピル] -1-メチル-3 H-イミダゾール-1-イウム=メチルスルファートの調製

実施例4の段階b)の操作を利用した。

前段階で得られた 2 - (3 - イミダゾール- 1 - イルプロピルアミノ) - 5 - 二トロベンゼンニトリル 2 7. 7 g (0. 1 0 2 mol)及びメチルスルファート 1 0. 8 ml(0. 1 1 4 mol)から出発し、融点 1 1 0 − 1 1 5 ℃(Kofler)の 3 - [3-

(2-シアノ-4-ニトロフェニルアミノ) プロピル] -1-メチル-3 H-イミダゾ ール-1-イウム=メチルスルファートの黄色結晶 3 O . O g が得られ、C₁, H₁, N₅O₆S と算出した元素分析の結果は下記の通りであつた。

 %
 C
 H
 N
 O
 S

 理論値
 45.34
 4.82
 17.62
 24.16
 8.07

 実測値
 45.31
 4.82
 17.73
 24.21
 8.15

c) 3-[3-(2-シアノ-4-ニトロフェニルアミノ) プロピル] -1-メチル-3 H -イミダゾール-1-イウム=メチルスルファートの還元

実施例1、段階b)に記載の操作に従って、還元を実行した。

3-[3-(2-シアノ-4-ニトロフェニルアミノ) プロピル] -1-メチル-3 H -イミダゾール-1-イウム=メチルスルファート25.0g(0.063 mol) から出発し、約5Nの無水塩化水素エタノール中で加熱し、陰イオン交換を完了させ、融点220 $^{\circ}$ C(Kofler)の白色結晶16.2gが得られ、'HNMR分析は所望の生成物(非塩化NH)と合致していた。

(調製実施例8:1-[2-(4-アミノ-2-メトキシフェニルアミノ)エチル]-3-メチル-3H-イミダゾール-1-イウム=モノクロライド=ジヒドロクロライドの合成)

a) 1-[2-(2-メトキシ-4-ニトロフェニルアミノ) エチル] -3-メチル-3 H -イミダゾール-1-イウム=ブロミドの調製

(2-ブロモエチル) - (2-メトキシ-4-ニトロフェニル) アミン46.8g
 (0.17mol)及び1-メチル-1H-イミダゾール20.5g(0.25mmol)
 をトルエン170ml中で7時間還流した。

結晶化沈殿を濾過し、無水エタノールでペースト状にし、真空中50℃で乾燥させた。

融点184℃ (Kofler) の黄色結晶50.2gが得られ、C,,H,,N,O,Br と算出した元素分析の結果は下記の通りであった。

%	С	Н	N	0	Br
理論値	43.71	4.80	15.68	13.44	22.37
実 測 値	43.59	4.85	15.66	14.25	22.03

b) 1-[2-(2-メトキシ-4-ニトロフェニルアミノ) エチル] -3-メチル-3 H-イミダゾール-1-イウム=ブロミドの還元

実施例1の段階b)に記載の操作に従い還元を実行した。

1-[2-(2-メトキシ-4-ニトロフェニルア_.ミノ) エチル]-3-メチル-3 H
-イミダゾール-1-イウム=ブロミド39.5ml(0.11mol)から出発し、約
5 N

の無水塩化水素エタノール中で加熱し、陰イオン交換を完了させ、融点 2 1 0 − 2 1 8 ℃ (Kofler) の淡灰色結晶 1 2 . 5 g が得られ、C₁₃ H₂₁ N₄ O C l₃・1/2H₂ O と算出した元素分析の結果は下記の通りであった。

%	С	Н	N	0	C 1
理論値	42.81	6.08	15.36	6.58	29.16
実 測 値	42.42	5.99	14.88	6.14	29.55

(調製実施例9:1-(5-アミノ-2-ヒドロキシベンジル)-3-メチル-3H-イミダゾール-1-イウム=モノクロライド=ヒドロクロライドの合成)

a) 1-(2-ヒドロキシ-5-ニトロベンジル)-3-メチル-3 H-イミダゾール -1-イウム=クロライドの調製 実施例8、段階a)に記載の操作を利用した。

2-クロロメチル-4-ニトロフェノール 5 6.3 g (0.3 mol) 及び 1-メチル-1 H-イミダゾール 2 9.6 g (0.3 6 mol) から出発し、 2 5 0 - 2 6 0 ℃で分解(Kefler)する黄色結晶 6 5.1 g が得られ、 C₁₁ H₁₂ N₃O₃C 1 と算出した元素分析の結果は下記の通りであつた。

%	С	Н	N	0	C1
理論値	48.99	4.49	15.58	17.80	13.15
実 測 値	48.74	4.58	15.72	17.62	13.27

b) 1 - (2 - ヒドロキシ-5 - ニトロベンジル) - 3 - メチル- 3 H - イミダゾール-1 - イウム=クロライドの還元

前段階で得られた 1 - (2 - ヒドロキシ- 5 - ニトロベンジル) - 3 - メチル- 3 H - イミダゾール-1-イウム=クロライド 2 7. 5 g (0. 1 0 2 mol)、 5 % パラジウムを坦持した活性炭(水 5 0 % 含有) 1 0 g、イソプロパノール 2 5 0 ml及び水 4 0 0 mlをハイドロゲネーターに入れた。

水素圧約4バールにて、温度は徐々に35℃まで上昇させつつ還元を1時間行った。窒素雰囲気下で触媒を濾過して除き、塩酸水溶液を注いだ。

濾液を減圧下で蒸発させて乾燥させ、粗製の生成物を無水エタノール中に取り出し、濾過した。

真空中40℃にて、水酸化カリウムを用いて乾燥させた後、融点170-175℃ (Kofler) の白色結晶23.5gが得られ、元素分析の結果はC_{1.1}H_{1.5}N₃OC1₂のものと合致していた。

構造は'H NMRと合致していた。

(実施例10:3-[2-(2,5-ジアミノフェニル)エチル]-1-メチル-3H-イミダゾール-1-イウム=クロライド=ジヒドロクロライドの合成)

a) N-[4-アセチルアミノ-2-(2-クロロエチル) -フェニル] アセタミドの 調製

2-(2, 5-ジアミノフェニル) エタノール=ジヒドロクロライド135.0g (0.6 mol) を室温にて水700mlに溶解させ、水166ml中亜硫酸ナトリウム83.2g (0.66 mol) の溶液を添加した。

無水酢酸 1 4 0. 8 ml (1. 5 mol) を迅速に注入し(発熱反応)、懸濁液を 2 時間攪拌した。

粗製の生成物を濾過し、水で洗浄し、五酸化リンを使用して真空中45℃にて 乾燥させた。

融点202℃のN-[4-アセチルアミノ-2-(2-ヒドロキシエチル)フェニル]

アセタミドの白色結晶115、1gが得られた。

この化合物 6 4 . 1 g (0 . 2 7 2 mol) をジメチルホルムアミド 5 0 0 ml及びトリエチルアミン 5 3 . 0 ml (0 . 3 8 mol) に室温にて溶解させた。

塩化メシル 2 5 . 3 ml (0 . 3 2 6 mol) を約 0 ℃に冷却して攪拌しつつ滴々と添加する一方、温度を 0 から 5 ° C に維持した。

生じた塩酸トリエチルアミンを濾過し、塩化リチウム90.0g(2.12mo 1)を濾液に添加した。この混合物を110−115℃にて攪拌しつつ15分間加熱した。

混合物を氷温水1kgに注ぎ、結晶化沈殿物を濾過し、水で洗浄し、還流イソプロパノールから再結晶した。

融点214-216℃のN-[4-アセチルアミノ-2-(2-クロロエチル)-フェニル] アセタミドの白色結晶53.4gが得られ、C₁₂H₁₆N₂O₂C I と算出

した元素分析の結果は下記の通りであった。

%	С	Н	N	0	C 1
理論値	56.59	5.94	11.00	12.56	13.92
実 測 値	56.31	6.05	11.10	12.95	13.92

b) 第四級化及び脱アセチル化

前段階で得られた N-[4-アセチルアミノ-2-(2ークロロエチル)-フェニル] アセタミド 2 5 . 5 g (0 . 1 mol) 及び 1 -メチル-1 H -イミダソール 1 7 . 5 m1 (0 . 2 2 mol) をトルエン 1 5 0 ml及びイソブタノール 2 1 0 ml中で 1 8 時間 還流した。

混合物を、減圧下で蒸発乾燥させた。

得られた3-[2-(2-, 5-ビス (アセチルアミノ) フェニル) エチル] -1-メチル-3 H-イミダゾール-1-イウム=ゴムを、36%塩酸水溶液100ml中で 6時間還流した。

混合物を減圧下で蒸発させ、結晶化沈殿をイソプロパノール中に取り出し、濾過した。

五酸化リンを使用し、真空中 4 0 \mathbb{C} にて乾燥させた後、 2 6 0 \mathbb{C} より高温で分解(Kofler)する 3 - [2 - (2, 5 - ジアミノフェニル)エチル] - 1 - メチル - 3 H - イミダゾール - 1 - イウム = クロライド=ジヒドロクロライドのクリーム色の結晶 2 4. 7 g が得られ、 \mathbb{C}_{12} H₁, N₄ \mathbb{C}_{13} ・ 1/2 H₂ O と算出した元素分析の結果は下記の通りであった。

%	С	Н	N	0	C 1
理論値	43.07	6.02	16.74	2.39	31.78
実 測 値	43.29	6.25	16.62	2.21	32.06

(実施例11:1-{2-[(4-アミノフェニル)エチルアミノ] エチル}-3-メ チル-3H-イミダゾール-1-イウム=クロライド=ジヒドロクロライドの合成)

a) N-{4-[(2-クロロエチル) エチルアミノ] フェニル} アセタミドの調製N-{4-[エチル-(2-ヒドロキシエチル) アミノ] フェニル} アセタミド66
 . 7g(0.3mol) を室温にてジメチルホルムアミド500ml及びトリエチルアミン58.5ml(0.42mol) に溶解させた。

塩化メシル 2 8 . 0 ml (0 . 3 6 mol) を約 0 ℃ に冷却して攪拌しつつ滴々と

加する一方、温度を0から5℃に維持した。

生じた塩酸トリエチルアミンを濾過し、塩化リチウム38.2g(0.9mol)を濾液に添加した。この混合物を100-108℃にて攪拌しつつ15分間加熱した。

混合物を氷温水1kgに注ぎ、結晶化沈殿物を濾過し、水で洗浄し、還流イソプロパノールから再結晶した。

%	С	Н	N	0	C 1
理論値	59.87	7.12	11.64	6.65	14.73
実 測 値	59.42	7.10	11.33	7.54	14.42

b) N-{4-[(2-クロロエチル) エチルアミノ] フェニル} アセタミドの第 四級化

(O.22 mol) をイソブタノール70 ml中で4時間還流した。

混合物を約0℃に冷却し、トルエン140mlを添加した。

結晶化沈殿物を濾過し、トルエンで、次いで石油エーテルで洗浄し、五酸化リンを使用して、真空中 4 5 ℃にて乾燥させた。

融点 $2\ 0\ 6\ ^{\circ}$ (Kofler) の $3\ ^{\circ}$ ($2\ ^{\circ}$ [($4\ ^{\circ}$ アセチルアミノフェニル) エチルアミノ] エチル} $-1\ ^{\circ}$ メチル $-3\ H\ ^{\circ}$ $-1\ ^{\circ}$ メチル $-1\ ^{\circ}$ $-1\ ^{\circ$

%	С	Н	N	0	C 1
理論値	58.71	7.24	17.12	6.11	10.83
実 測 値	58.77	7.18	17.25	6.05	10.68

c) 3 - {2-[(4-アセチルアミノフェニル) エチルアミノ] エチル} -1-メチル-3 H-イミダゾール-1-イウム=クロライドの脱アセチル化

前段階で得られた 3 - {2-[(4-アセチルアミノフェニル) エチルアミノ] エチル} -1-メチル-3 H-イミダゾール-1-イウム=クロライド 2 9 g (0.09 m ol)を 3 6 %塩酸 3 0 ml中で 1 時間還流した。混合物を減圧下で蒸発乾燥させ、結晶化沈殿物を無水エタノール中に取り出し、エチルエーテルで希釈して沈殿させ、濾過して乾燥させた。2 1 2 - 2 1 4 ℃にて分解(Kofler)する 1 - {2-[(4-アミノフェニル) エチルアミノ] エチル} -3-メチル-3 H-イミダゾール-1-イウム=クロライド=ジヒドロクロライドの白色結晶 1.4 g が得られ、「H N M R は所望の生成物のものと合致していた

(調製実施例12:N, N-ビス [2-(3-メチル-3H-イミダゾール-1-イウム) エチル] -4-アミノアニリン=ジクロライド=モノヒドロクロライド=モノハイドラートの合成)

a) N, N-ビス [2-(3-メチル-3 H-イミダゾール-1-イウム) エチル] -4-アミノアニリン=ジクロライド=ジハイドラートの調製

トルエン 6 0 ml中、ビス (2-クロロエチル) (4-ニトロフェニル) アミン 3

1 . 5 g (0 . 1 2 mol) 及び1-メチル-1 H-イミダゾール59.1 g (0 . 7 2 mol) の混合物を6時間還流した。

生じた結晶化沈殿物を熱時濾過し、トルエンで洗浄し、水とエタノールの還流混合物から再結晶した。

2 6 0 ℃で分解(Kefler)する N, N-ビス [2 - (3 - メチル- 3 H - イミダゾール- 1 - イウム)エチル] - 4 - ニトロアニリン=ジクロライド=ジハイドラートの 黄色結晶 4 5 . 0 g が得られ、 C_{1 8} H_{2 4} N₈ O₂ C_{1 2} · 2 H₂ O と算出した元素分析の結果は下記の通りであった。

%	С	Н	N	0	C 1
理論値	46.66	6.09	18.14	13.81	15.30
実 測 値	46 72	6 20	18 12	13 85	15 25

b) N, N-ビス [2-(3-メチル-3H-イミダゾール-1-イウム) エチル] - 4 -ニトロアニリン=ジクロライド=ジハイドラートの還元

前段階で得られた N, N-ビス[2-(3-メチル-3H-イミダゾール-1-イウム) エチル] -4-ニトロアニリン=ジクロライド=ジハイドラート 4 5. 0 g (0.105mol)、5%パラジウムを坦持した活性炭(水 5 0%含有) 1 6 g、エタノール 3 0 0 ml及 び水 3 0 0 mlをハイドロゲネーターに入れた。

水素圧約8バールにて、温度は徐々に80℃まで上昇させつつ還元を1時間行った。窒素雰囲気下で触媒を濾過して除いた後、混合物を36%塩酸水溶液に注

いだ。

混合物を減圧下で蒸発させて乾燥させ、粗製の生成物を無水エタノール中に取り出し、濾過した。

還流 9.6 ° $x \neq 2$ 1 + 2 で 1 + 3 で 1 + 4 で 1 +

%	С	Н	N	0	C 1
理論値	47.85	6.47	18.60	3.54	2.54
実 測 値	46.93	6.55	18.03		23.72

(調製実施例13:3-[2-(4-アミノフェニルアミノ) ブチル]-1-メチル-3H-イミダゾール-1-イウム=クロライド=ジヒドロクロライドの合成)

a) 2-(4-ニトロフェニルアミノ) ブタン-1-オールの調製

水 6 3 0 m 1 中、 1 - フルオロ - 4 - 二トロベンゼン 2 2 3 . 0 g (1 . 5 8 mol) 、 2 - アミノ - 1 - ブタノール 1 6 8 . 5 g (1 . 8 9 mol) 及び炭酸カリウム 1 4 6 . 8 g (1 . 0 6 mol) の混合物を 2 時間還流した。

混合物を室温に冷却し、水相を除去し、酔酸エチル中に橙色のオイルを取り出 した。

酢酸エチル相を水で洗浄した後、硫酸ナトリウムで乾燥させ、濾過し、減圧下で蒸発乾燥させ、還流 9 6 ° エタノールから再結晶し、融点 9 0 ℃ (Kofler) の2 - (4 - ニトロフェニルアミノ) ブタン-1-オールの橙色結晶 8 4 . 4 g が得ら

れ、 C , 。 H , , N , O , と 算 出 した 元 素 分 析 の 結 果 は 下 記 の 通 り で あ っ た 。

 %
 C
 H
 N
 O

 理論値
 57.13
 6.71
 13.32
 22.83

 実測値
 57.17
 6.73
 13.36
 22.75

b) (1-クロロメチルプロピル) - (4-ニトロフェニル) アミンの調製

実施例11、段階a)に記載の操作を利用した。

 %
 C
 H
 N
 0
 C1

 理論値
 52.52
 5.73
 12.25
 13.99
 15.50

 実測値
 52.46
 5.89
 12.14
 13.91
 15.55

c) 1-メチル-3-[2-(4-ニトロフェニルアミノ) ブチル] -3 H-イミダゾール-1-イウム=クロライドの調製

トルエン 7 0 m1中、前段階で得られた (1-クロロメチルプロピル) - (4-ニトロフェニル) アミン 2 2 . 9 g と 1-メチル-1 H-イミダゾール 1 7 . 5 ml (0 . 2 2 mol) の混合物を 9 時間還流した。

結晶化沈殿物を濾過し、トルエンで、次いで石油エーテルで洗浄し、還流イソ プロパノールから再結晶した。

融点191℃の1-メチル-3-[2-(4-ニトロフェニルアミノ) ブチル]-3 H-イミダゾール-1-イウム=クロライド16.0gが得られ、C,,H,,N,O。C l・1/2H。Oと算出した元素分析の結果は下記の通りであった。

 %
 C
 H
 N
 O
 C

 理論値
 52.58
 6.30
 17.52
 12.51
 11.09

 実測値
 52.03
 6.23
 17.01
 12.76
 10.94

d) 1-メチル-3-[2-(4-ニトロフェニルアミノ) ブチル] -3 H-イミダソー

ル-1-イウム=クロライドの還元

実施例12、段階b)に記載の操作により、還元を実行した。

96° エタノールと36%塩酸の還流混合物から再結晶した後、融点214-216℃の1-メチル-3-[2-(4-ニトロフェニルアミノ) ブチル] -3H-イミダゾール-1-イウム=クロライド=ジヒドロクロライドの白色結晶18.6gが得られ、C14H23N4C13と算出した元素分析の結果は下記の通りであった。

% C H N C1 理論値 47.54 6.55 15.84 30.07 実測値 47.02 6.69 15.71 29.50

(調製実施例14:1-{[5-アミノ-2-(2-ヒドロキシエチルアミノ) フェニルカルバモイル] メチル} -3-メチル-3 H-イミダゾール-1-イウム=クロライド=ジヒドロクロライドの合成)

a) 2-クロロ-N-[2-(2-ヒドロキシエチルアミノ) -5-ニトロフェニル] アセタミドの調製

ジメチルホルムアミド400ml中、2-(2-アミノ-4-ニトロフェニルアミノ)エタノール82.5g(0.418mol)及び炭酸カリウム34.6g(0. 25mol)の混合物を5℃に冷却した。

クロロアセチルクロライド34.7mlを滴々と添加する一方、温度を5から 12℃に維持した。

混合物を更に1時間撹拌した。

得られた混合物を氷温水 2 リットルと 3 6 % 塩酸 1 0 0 m l との混合物に注いだ。

結晶化沈殿物を濾過し、水で洗浄し、乾燥させ、還流アセトアニリドから再結晶した。

融点 $2 \ 0 \ 6 \ ^{\circ}$ の $2 \ ^{\circ}$ クロロ $-N \ ^{\circ}$ $[2 \ ^{\circ}$ $(2 \ ^{\circ}$ ヒドロキシエチルアミノ) $-5 \ ^{\circ}$ ニトロフェニル] アセタミドの黄色結晶 $7 \ 4$. $2 \ g$ が得られ、 $C_{10} \ H_{12} \ N_{3} \ O_{4} \ C_{1}$ と算出した元素分析の結果は下記の通りであった。

 %
 C
 H
 N
 0
 C1

 理論値
 43.89
 4.42
 15.35
 23.38
 12.95

 実測値
 43.83
 4.63
 15.23
 22.87
 13.00

- b) 1-{[2-(2-ヒドロキシエチルアミノ)-5-ニトロフェニルカルバモイル
-] メチル} 3 メチル- 3 H イミダゾール- 1 イウム=クロライドの調製

トルエン 1 5 0 ml 中、前段階で得られた 2 - クロロ-N- [2-(2-ヒドロキシエチルアミノ) - 5 - ニトロフェニル] アセタミド 4 2 . 0 g (0 . 1 5 mol) と 1 - メチル- 1 H - イミダゾール 2 4 . 6 g (0 . 3 mol) の混合物を 1 時間還流した。

イソブタノール30mlを添加し、還流を2時間継続した。

混合物を室温に冷却し、粗製の生成物を濾過し、トルエンで洗浄し、エタノールと水との環流混合物より再結晶した。

% C H N 0 C1 理論値 47.26 5.10 19.68 17.99 9.96 実測値 48.04 5.20 19.87 17.03 10.28

- c) 1 { [2 (2 ヒドロキシエチルアミノ) 5 ニトロフェニルカルバモイル] メチル} - 3 - メチル- 3 H - イミダゾール- 1 - イウム=クロライドの還元
 - 実施例12、段階b)に記載の操作により、還元を実行した。

前段階で得られた1-{ [2-(2-ヒドロキシエチルアミノ) -5-ニトロフェニ

ルカルバモイル] メチル - 3 - メチル - 3 H - イミダゾール - 1 - イウム = クロライド 3 7 . 9 g から出発し、約 2 4 0 ℃で分解する 1 - {[5 - アミノ - 2 - (2 - ヒドロキシエチルアミノ) フェニルカルバモイル] メチル } - 3 - メチル - 3 H - イミダゾール - 1 - イウム = クロライド=ジヒドロクロライドが得られ、 ' H NMRは所望の生成物と合致していた。

応用実施例

(実施例1-13:塩基性媒体中での染色)

下記の染色組成物を調製した(含量はグラム)。

実施例	1	2	3	4	2	9	2	8	a	10	11	12	13
3-[3-(4-アミノフエニルアミノ)7°ロピール]-1-メチル-				_									
3H-459"V"-1-1-401=2100541"=	1.036	1.036	•	•	•	•	•	•	•	•	•	;	•
ジトドロクロライド(化学式(1)の化合物)			,							·			
1-[3-(2,5-ジアミノエノキシ)7°ロピル]- 3-メチルー3H-イミダゾールー1-イウム= モノクロライド=ジヒピロクロライド (イヒ学式(1)のイヒ合物)	,	•	1,066	1.066	•	1	ı	•	•	1	•	1	
3-[3-(4-アミノ-3-メチルフェニルアミノ)- プロピル]-1-メチル-3H-イミダソ゚ール-1- イウム=モノクロライド=ジヒドロクロライド (化学式(1)の化合物)	١	•	,	ı	1.061	1.061	1.061	1.061	ι			,	ı
3-[3-(4-アミノ-2-メチルフェニルアミノ)- プロピル]-1-メチルー3Hーイミダゾール-1- イウム=モノクロライド=ジヒドロクロライド (化学式(I)の化合物)	1	,	•	,	,	•	,	•	1.087	1.087	•	•	,
1-[2-(4-アミノ-2-メトキシフエニルアミノ)- 、エチル]-3-メチル-3H-イミダゾールー1- 、イウム=モノクロライド=ジヒドロクロライド 、(化学式(1)の化合物)	,	1		,		•	•	•	` 1	1	1.094	1	1
3-[3-(4-アミノ-2-7ルオロフェニルアミノ)- プロピル]-1-メチル-3H-イミダソ゚ール-1- イウム=モノクロライド=ジヒドロクロライド (化学式(1)の化合物)	•	•	,	,	•	•	ı	,	. 1	٠.	;	1.126	ı

実施例:	1	2	3	4	S	و	7	8	6	10	11	12	13
3-[3-(4-アミノ-2-シアノフェニレアミノ)- プロピッ}-1-メチム-3H-イミダツ゚ール-1- イウム=モノクロライド=ジヒドロクロライド (化学式(1)の化合物)	ı		•	-	,	1	ı	1	•	•	,	(0.985
レンルシノール (カブラー)	•			0.33		0.33		•	•	0.33		•	•
メターアミノフェノール(カフ・ラー)	•		,	1	,	_	0.327	-	•	1	•	•	•
2-1+1-5-N(A-th-0+21+1)-7:1711-1 (17-7-)	0.543			i	,	1	•	•	•	ŧ	•	,	•
2,4-ジアミノフェノキシエタノ-ル=ジヒドロクロライド (カプラー)	,	0.675	,		•	1	.•	0.675	-	ŧ	0.675	•	,
共通染色支持体	÷	(*)	(*)	(*)	(+)	(*)	(*)	(*)	*	*	Ē	•	(*)
脱イオン水	·			₩	体を1	008	全体を100gとする畠						

・96° エタノール

20.0g

・Protex社により

"Masquol DTPA"の名で市販の、

ジエチレントリアミン五酢酸の五ナトリウム塩

1.08g

· 3 5 % の A. M. を含有する水溶液としての

メタ亜硫酸水素ナトリウム

0. 58gA.M.

・20%アンモニア水溶液

1 0 g

使用時に、上記の各染色組成物を、pH3の20体積過酸化水素水溶液(6重 ・ 量%)と等量で混合した。

得られた各混合物を、90%の白髮を含有する、パーマネントウェーブのかかったまたはかかっていない白髮混じりの髮の房に30分間適用した。その後毛房を濯ぎ、標準的シャンプー洗浄し、濯ぎ及び乾燥させた。

得られた色合いを下記の表に示した。

実施例	染色pH	ハ°ーマネントウェーフ゛の かかっていない髪に得られた色合い	ハ°ーマネントウェーフ、を かけた髪に得られた色合い
. 1	10 ± 0.2	灰紫色	濃紫色
2	10 ± 0.2	溫青	禮青
3	10 ± 0.2	金色ページュ	金灰色
4	10 ± 0.2	虹色を帯びた金灰色	自然な菫色
5	10 ± 0.2	マットな金色	マットな金色
6	10 ± 0.2	マットな金灰色	マットな金灰色
7	10 ± 0.2	灰色	灰色
8	10 ± 0.2	緑青	緑青
9	10 ± 0.2	やや虹色を帯びた マホガニー	やや虹色を帯びた マホガニー
10	10 ± 0.2	マホガニー灰色	董灰色
11	10 ± .0.2	灰色	灰色
12	10 ± 0.2	虹色紫	虹色紫
13	10 ± 0.2	虹色マホガニー	虹色マホガニー

(実施例14-17:塩基性媒体中での染色)

下記の染色組成物を調製した(含量はグラム)。

実施例	14	15	16	17
3-[2-(2,5-ジアミノフュニル)エチル]-1-メチル-3H-	0.98	-	-	-
イミタ゛ソ゛ールー1ーイウム=クロライト゛=シ゛ヒト゛ロクロライト゛				
(化学式(1)の化合物)				
1-{2-[(4-アミノフェニル)エチルアミノ]エチル}-3~メチルー	-	1.06	-	-
3H-イミタ゛ソ゛ールー1-イウム=クロライト゛=シ゛ヒト゛ロクロライト゛				
(化学式(1)の化合物)				
N, N-L"ス[2-(3-メチル-3H-イミタ"ソ"ール-1-イウム)-	-	-	1.41	-
エチル]-4-アミノアニリン=シ゛クロライト゛=モノヒト゛ロクロライト゛=				
<i>もノハイト</i> *ラート	,			
(化学式(1)の化合物)				1 06
3-[2-(4-アミノフェニルアミノ)フ゛チル]-1-メチル-3H-	_	-	-	1.06
イミタ*ソ*ールー1ーイウム=クロライト*=シ*ヒト*ロクロライト*				
(化学式(I)の化合物)				:
0 4 3273 1 1 (4 4) * 7743 * 4*3 \ _ ^ \\ /*	0.723			
2,4-9* アミノ-1-(β-ヒト* ロキシエチルオキシ)-ヘ*ソセ*ソ=				
シャとト、ロクロライト、(カフ・ラー)	-	0.327		
3-アミノフェノール (カプラー)			0.399	ļ
6-ヒト*ロキシイント*-ル(カフ°ラー)				
5-N-(β-ヒト*ロキシエチル)アミノ-2-メチルフェノール	-	-	-	0.498
(カフ°ラー)				
共通染色支持体	(*)	(*)	(*)	(*)
脱イオン水	全体を	100	gとする	量

(*)共通染色支持体:

これは、上記染色実施例1から13に使用したものと同様である。

使用時に、上記の各染色組成物を、 p H 3 の 2 0 体積過酸化水素水溶液 (6 重 量%) と等量で混合した。

得られた各混合物を、90%の白髪を含有する、パーマネントウェーブのかか

ったまたはかかっていない白髪混じりの髪の房に30分間適用した。その後毛房 を濯ぎ、標準的シャンプー洗浄し、濯ぎ及び乾燥させた。

得られた色合いを下記の表に示した。

実施例	染色pH	得られた色合い
14	10 ± 0.2	董 青色
15	10 ± 0.2	菫灰色を帯びた栗色
16	10 ± 0.2	銅金色を帯びた明るい栗色
17	10 ± 0.2	紫色

【国際調査報告】

INTERNATIONAL SEARCH REPORT Inter inal Application No PCT/FR 98/01535 A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C070233/54 A61K7/13 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C070 A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to cam No. Citation of document, with indication, where appropriate, of the relevant passages BE 616 439 A (BADISCHE ANILIN-& 1,2,5 X SODA-FARBRIK AKTIENGESELLSCHAFT) 15 October 1962 see page 23 - page 24; example 15 see page 20 - page 22; example 13 see page 14 - page 16; example 9 1,3,5 X DE 11 35 589 B (BADISCHE ANILIN- & SODA-FABRIK AKTIENGESELLSCHAFT) 30 August 1962 see column 4 - column 5: example 1 Further documents are listed in the continuation of box C. Patent family members are listed in annex * Special categories of cited documents : "T" aler document published after the international filing date or priority date and not in conflict with the application but offed to understand the principle or theory underlying the invention. "A" document defining the general state of the art which is not considered to be of particular relevance. 'X" cocument of particular relevance; the claimed invention cannot be considered novel or cannot be considered to throw an inventive dep when the document is taken alone "E" earlier document but published on or after the International "L" document which may throw doubts on priority cialm(s) or which is cited to establish the publicalian date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "O" document referring to an oral disclosure, use, exhibition or other means. "P" document published prior to the international filling date but later than the priority date claimed. "&" document member of the same patent family Date of mailting of the international search report Date of the actual completion of theinternational search 08/10/1998 29 September 1998 Name and mailing accress of the ISA Authorized officer European Patent Office, P.S. 5818 Patentlaan 2 NL - 2290 HV Filipwijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016

Chouly, J

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Inte shall Application No
PCT/FR 98/01535

tedory '	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where expropriate, of the relevant passages	Relevant to claim No.
aredon's	Onesani oi avonitietti asti indicamini armo debiobidia. Oi ne teasani becagas	
	TONG L K J ET AL: "The Mechanism of Dye Formation in Color Photography. VII. Intermediate Bases in the Deamination of Quinonediimines" JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 82, no. 8, 25 April 1960, pages 1988-1996, XP002060566 DC US * page 1988; table 1, coumpound n°.1* see page 1994, column 1, paragraph 5	1,3,5
4	EP 0 544 400 A (BRISTOL MYERS CO) 2 June 1993 cited in the application see the whole document	1-21
4	DE 12 92 784 B (HENKEL & CIE GMBH) 17 April 1969 * the whole document; in particular, column 7 - column_8, example 2*	1-7
A	WO 95 01772 A (CIBA GEIGY AG ;MOECKLI PETER (CH)) 19 January 1995 see the whole document	1-7
A	FR 1 391 675 A (L'ORÉAL) 1 February 1965 see the whole document	1-7
		:

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte snai Application No PCT/FR 98/01535

	tent document in search report		Publication date		latent (amily member(s)	Publication date
BE	616439	Α	·	NONE		
DE	1135589	В		NONE		
EP	0544400	A	02-06-1993	บร	5139532 A	18-08-1992
				CA	2080412 A	28-05-1993
				DE	69209011 D	18-04-1996
				DE	69209011 T	07-11-1996
				ES	2085574 T	01-06-1996 30-03-1993
				US	5198584 A	20-02-1443
DΕ	1292784	8		GB	909700 A	
				LU	36853 A	
				NL	122875 C	
				NL	236431 A 3100739 A	13-08-1963
				us ~~~~		13-06-1703
WO	9501772	Α	19-01-1995	AU	687849 B	05-03-1998
				AU	7344894 A	06-02-1995
				CA	2142091 A	19-01-1995
				CN	1111444 A	08-11-1995
				EP	0658095 A	21-06-1995
				JP	8501322 T	13-02-1996
				MX	9405076 A	31-01-1995 31-03-1998
				US	5733343 A	31-03-1998
FR	1391675	Α	23-06-1965	BE	642008 A	30-06-1964
				CH	426876 A	
				CH	427150 A	00 07 107
				DE	1492066 A	23-07-1970
				DE	1794332 A	10-02-1972
				FR	87902 E	20-01-1967
				GB	1053535 A	
				NL	126022 C	
				NL	302452 A 3442895 A	06-05-1969
				US US	3442895 A 3467483 A	16-09-196
				US	3528972 A	15-09-197

Form PCT/ISA/210 (patent lamily annies) (July 1992)

フロントページの続き

EP(AT, BE, CH, CY, (81)指定国 DE, DK, ES, FI, FR, GB, GR, IE, I T, LU, MC, NL, PT, SE), OA(BF, BJ , CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), AP(GH, GM, KE, L S, MW, SD, SZ, UG, ZW), UA(AM, AZ , BY, KG, KZ, MD, RU, TJ, TM), AL , AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, E E, ES, FI, GB, GE, GH, GM, HR, HU , ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, M D, MG, MK, MN, MW, MX, NO, NZ, PL , PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, U Z, VN, YU, ZW