Analyse

Félix Yvonnet

5 octobre 2023

1 Compacité

1.1 Caractérisation topologique

Définition 1 (Axiome de Borel-Lebesgue). Un espace topologique (X, \mathbb{U}) est dit compact si il est <u>séparé</u> et pour tout $\mathcal{U} \subset \mathbb{U}$ ensemble d'ouverts tel que $\bigcup \mathcal{U} = X$, il existe $\overline{\mathcal{U}_0} \subset \mathcal{U}$ fini tel que $\bigcup \mathcal{U}_0 = X$. (De toute couverture de X par des ouverts, on peut extraire une sous couverture finie).

Remarque.

$$\bigcup \mathcal{U} = \{ x \in X \mid \exists A \in \mathcal{U}, \ x \in A \}$$
$$= \bigcup_{A \in \mathcal{U}} A$$

Remarque. On pouvait considérer les familles d'ouverts. Si $X=\bigcup_{i\in I}U_i$ avec U_i ouvert alors $\exists I_0\subset I,\ I_0$ fini et tq $\bigcup_{i\in I_0}U_i=X.$

Remarque (Intersection de fermés). Soit (X, \mathbb{U}) compact. Si $(F_i)_{i \in I}$ est une famille de fermés de X tq $\bigcap_{i \in I} F_i = \emptyset$, alors $\exists I_0 \subset I$, I_0 fini et $\bigcap_{i \in I_0} F_i = \emptyset$. En particulier, si (F_n) est une suite de fermés emboités non vides alors $\bigcap_{n \in \mathbb{N}} F_n \neq \emptyset$.

Lemme 1. Soit (X, \mathbb{U}) espace topologique séparé et $F \subset X$ complet. Alors F est fermé.

Preuve. Par contraposée, on suppose F non fermé et on va montrer qu'il n'est pas compact.

Comme F non fermé, il existe $x \in \overline{F} \backslash F$. Soit $y \in F$, V_y et W_y des ouverts disjoints tq $x \in V_y$ et $y \in W_y$. On a $F = \bigcup_{y \in F} W_y$. Si par l'absurde il existe $F_0 \subset F$ fini tel que $F = \bigcup_{y \in F_0} W_y$, alors l'ensemble $V_* = \bigcap_{y \in F_0} V_y$ est un ouvert (comme intersection **finie** d'ouverts) qui continent x et n'intersecte

aucun W_y pour $y \in F_0$.

On a donc trouvé V ouvert tq $x \in V$ et $V \cap F = \emptyset$. Cela contredit l'hypothèse que $x \in \overline{F} \backslash F$ (tout ouvert contenant x doit rencontrer F). \square

Corollaire. Soit (X, \mathbb{U}) compact et $F \subset X$. F fermé $\Leftrightarrow F$ compact.

Preuve. \Leftarrow Voir la preuve précédente (note que compact \Rightarrow séparé).

 \Rightarrow Soit $(U_i)_{i\in I}$ une couverture de F par des ouverts. Alors $X = \left(\bigcup_{i\in I} U_i\right) \cup$

$$\left(\underbrace{X\backslash F}_{\text{ouvert}}\right). \text{ Donc } \exists I_0 \subset I, \ I_0 \text{ fini et } X = \left(\bigcup_{i \in I_0} U_i\right) \cup (X\backslash F). \text{ Donc } F \subset \bigcup_{i \in I_0} U_i.$$

Lemme 2. Soit (X, \mathbb{U}) , $(Y\mathbb{V})$ des espaces topologiques séparés. Alors $\forall K \subset_C$ X, f(K) est un complet.

Preuve. Soit (U_i) tq $f(K) \subset U_{i \in I}U_i$. Alors $K \subset \bigcup_{\text{out}} \underbrace{f^{-1}(U_i)}$. Donc $K \subset \bigcup_{\text{out}} f^{-1}(U_i)$ avec I_0 fini. Donc $f(K) \subset \bigcup_{i \in I_0} f(U_i)$, donc K est compact $(K \cap I_0)$

est séparé car Y l'est).

Corollaire. Soit $(X, \mathbb{U}), (Y\mathbb{V})$ des compacts et $f: X \to Y$ continue bijective. Alors f^{-1} est continue.

Preuve. Soit $F \subset X$ fermé. Alors F est compact, donc f(F) et compact puis f(F) est fermé. Ainsi $(f^{-1})^{-1}(F)$ est fermé. Ainsi l'image réciproque d'un fermé par f^{-1} est un fermé donc f^{-1} est continue.

Définition 2 (Espace localement compact). (X, \mathbb{U}) un espace topologique séparé est dit localement compact ssi

- 1. tout point admet un voisinage compact
- 2. tout point admet une base de voisinages compact

(Ces conditions sont équivalentes)

Preuve. .

- $-2 \Rightarrow 1$ est clair
- Supposons 1, soit $x \in X, K \subset X$ un voisinage compact de x et $V \subset X$ un voisinage ouvert de x.

Posons $\forall y \in K \setminus \{x\}, \ V_y$ et W_y ouverts disjoint to $x \in V_y$ et $y \in W_y$.

Alors
$$K \subset \left(\bigcup_{y \in K \setminus \{x\}} W_y\right) \cup V$$
. Par compacité $\exists K_0 \subset K \setminus \{x\}, \ K \subset \left(\bigcup_{y \in K_0} W_y\right) \cup V$. Alors $K_* := K \setminus \left(\bigcup_{y \in K_0} W_y\right)$ est un fermé de K ,

$$\left(\bigcup_{y\in K_0}W_y\right)\cup V$$
. Alors $K_*:=K\backslash \left(\bigcup_{y\in K_0}W_y\right)$ est un fermé de $K,$

donc un compact. De plus $K_* \subset V$ et $\bigcap_{y \in K_0} V_y \subset K_*$

Définition 3 (Compactifié d'Alexandroff). Soit (X, \mathbb{U}) un espace localement compact séparé. On pose $\hat{X} := X \sqcup \{\infty\}$, où ∞ est un symbole supplémentaire arbitraire. $\hat{\mathbb{U}} := \mathbb{U} \cup \{\hat{X} \setminus K \mid K \subset_C X\}$. Alors $(\hat{X}, \hat{\mathbb{U}})$ est un espace topologique compact qui induit la topologie sur \mathbb{U} . (Idée : X un segment ouvert qu'on relie sur lui même pour former un cercle).

1.2Compacts métriques

Définition 4. (X,d) est précompact $\Leftrightarrow \forall \varepsilon > 0, \exists X_0 \subset X \text{ fini}, X =$ $B(x,\varepsilon)$.

Théorème 1. Soit (X, d) un espace métrique. Sont équivalent :

- 1. X est un compact (au sens de l'axiome de Borel-Lebesgue)
- 2. Toute suite à valeur dans X admet une sous suite convergente (Axiome de Bolzano-Weiestrass)
- 3. X est précompact et complet.

Preuve. On note que X est métrique donc séparé.

- $1 \Rightarrow 2$ Soit (x_n) une suite à valeur dans X. On note $F_n := \overline{\{x_n \mid n \geq N\}}$. Alors $Adh((x_n)) = \bigcap_{n \in \mathbb{N}} F_n$ est une intersection \searrow de fermés non vides donc est non vide. Donc (x_n) edmet une valeur d'adhérence. Comme (X,d) est métrique, c'est la limite d'une suite extraite.
- $2\Rightarrow 3\,$ Preuve de la complétude. Soit (x_n) une suite de Cauchy. Par Bolzano-Weierstrass, elle admet une sous suite convergente. Comme elle est de Cauchy, elle converge.

Preuve de la précompacité. Soit $x_0 \in X$, on construit par récurrence tant que c'est possible, $x_n \in X \setminus \bigcup_{k < n} B(x_n, \varepsilon)$. Si la construction s'arrête

à l'indice N alors $X = \bigcup_{n < N} B(x_n, \varepsilon)$ comme souhaité. Sinon, on

remarque que $\forall m < n, \ x_n \notin B(x_m, \varepsilon), \ \text{donc} \ d(x_n, x_m) \geq \varepsilon.$ Alors la suite (x_n) ne peut pas avoir de sous suite convergente (sinon $d(x_{\varphi(n)}, x_{\varphi(m)}) \to 0$.) Contradiction avec la précompacité.

 $3 \Rightarrow 1$ Soit (x_n) une suite de points de X et $A = \{x_n\}$. On construit pour $k \in \mathbb{N}, X = \bigcup_{r \leq R(k)} B(y_r^k, 2^{-k} \text{ une converture de } X \text{ par } R(k) \text{ boules}$

de diamètre 2^{-k} et $\sigma(k) \in \llbracket 1, ; R(k) \rrbracket$ tq $A_k = A \cap B(y^0_{\sigma(0)}, 2) \cap \cdots \cap B(y^k_{\sigma(k)}, 2^{-k})$ est infini. (Note : $\underbrace{A_{k+1}}_{r \leq R(k)} = A_{k-1} \cap \bigcup_{r \leq R(k)} B(y^k_r, 2^{-k}) = \underbrace{A_{k-1} \cap B(y^k_r, 2^{-k})}_{r \leq R(k)}$.

$$\underbrace{\bigcup_{r \leq R(k)}}_{\text{true loc}} \underbrace{\underbrace{A_{k-1} \cap B(y_r^k, 2^{-k})}_{\text{l'un doit être infini d'indice } r = \sigma(k)}}_{\text{d'indice } r = \sigma(k)}$$

 $\underbrace{\bigcup_{\substack{r \leq R(k) \\ \text{réunion finie}}} A_{k-1} \cap B(y_r^k, 2^{-k})}_{\text{l'un doit être infini}} \underbrace{\bigcap_{\substack{\text{l'un doit être infini d'indice } r = \sigma(k)}}}_{\text{l'un doit être infini}} A_{k-1} \cap B(y_r^k, 2^{-k}).$

$$d(x_{\varphi(p)}, x_{\varphi(q)}) \le diam(A_N)$$

$$\le 2 \times 2^N.$$

Donc $x_{\varphi(n)}$ converge par complétude.

 $2\Rightarrow 1$ Soit $X \ = \ \bigcup U_i$ une couverture par des ouverts. On affirme qu'il

existe r > 0 tq $\forall x \in X, \ \exists i \in I, \ B(x,r) \subset U_i$ (nombre de Lebesgue). Par l'absurde, soit (x_n) tq $B(x_n, 2^n) \not\subset U_i$ pour tout $i \in I$. Par Bolzano-Weiestrass, $\exists \varphi + \nearrow$, $x_{\varphi(n)} \to x_* \in X$.

Soit $i \in I$ tq $x \in U_i$, et r > 0 tq $B(x, r) \subset U_i$. Alors en se rapprochant assez de x avec φ on entre dans la boule et donc dans U_i absurde! Soit (U_i) une couverture d'ouverts et r > 0 le nombre de Lebesgue associé. Soit $X = \bigcup_{x \in X_0} B(x,r)$ avec X_0 fini, par précompacité. Pour

tout $x \in X_0$, soit $i(x) \in I$ tq $B(x,r) \subset U_{i(x)}$. Alors $X = \bigcup_{x \in X_0} B(x,r) \subset I$

 $\bigcup U_{i(x)}$ réunion finie comme annoncé!