Assignment -2

Assignment Date	21 October 2022
Student Name	YUVARAJ SAI S
Student Roll Number	210519205060
Maximum Marks	2 Marks

Data Visualization and Pre-processing

1. Perform Below Visualizations.

Univariate Analysis

1.Summary Statistics

```
In [6]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
In [7]: file_data = pd.read_csv(r'/content/Churn_Modelling (1).csv')
```

In [8]: file_data

Out[8]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Bala
0	1	15634602	Hargrave	619	France	Female	42	2	0
1	2	15647311	Hill	608	Spain	Female	41	1	83807
2	3	15619304	Onio	502	France	Female	42	8	159660
3	4	15701354	Boni	699	France	Female	39	1	0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369
9997	9998	15584532	Liu	709	France	Female	36	7	0
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075
9999	10000	15628319	Walker	792	France	Female	28	4	130142

10000 rows x 14 columns

```
In [10]: file_data['Balance'].mean()
```

Out[10]: 76485.889288

```
In [11]: file_data['Balance'].median()
Out[11]: 97198.54000000001
In [12]: file_data['Balance'].std()
Out[12]: 62397.405202385955
```

1. Frequency Table

```
file_data['Surname'].value_counts()
In [13]:
Out[13]:
          Smith
                       32
          Scott
                       29
          Martin
                       29
          Walker
                       28
          Brown
                       26
          Izmailov
          Bold
                        1
          Bonham
                        1
          Poninski
                        1
          Burbidge
                        1
          Name: Surname, Length: 2932, dtype: int64
```

3. Create Charts

Balance

```
In [15]: file_data.hist(column='Balance', grid=False, edgecolor='black')
```


In [16]: sns.kdeplot(file_data['Balance'])

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x7f92673be410>

Bi - Variate Analysis

1. Scatterplots

```
In [17]: plt.scatter(file_data.CreditScore.head(100), file_data.Age.head(100))
    plt.title('Scatter')
    plt.xlabel('CreditScore')
    plt.ylabel('Age')
```

Out[17]: Text(0, 0.5, 'Age')

1. Correlation Coefficients

```
In [18]: file_data.corr()
```

Out[18]:

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfPr
RowNumber	1.000000	0.004202	0.005840	0.000783	-0.006495	-0.009067	0.0
CustomerId	0.004202	1.000000	0.005308	0.009497	-0.014883	-0.012419	0.0
CreditScore	0.005840	0.005308	1.000000	-0.003965	0.000842	0.006268	0.0
Age	0.000783	0.009497	-0.003965	1.000000	-0.009997	0.028308	-0.0
Tenure	-0.006495	-0.014883	0.000842	-0.009997	1.000000	-0.012254	0.0
Balance	-0.009067	-0.012419	0.006268	0.028308	-0.012254	1.000000	-0.3
NumOfProducts	0.007246	0.016972	0.012238	-0.030680	0.013444	-0.304180	1.0
HasCrCard	0.000599	-0.014025	-0.005458	-0.011721	0.022583	-0.014858	0.0
IsActiveMember	0.012044	0.001665	0.025651	0.085472	-0.028362	-0.010084	0.0
EstimatedSalary	-0.005988	0.015271	-0.001384	-0.007201	0.007784	0.012797	0.0
Exited	-0.016571	-0.006248	-0.027094	0.285323	-0.014001	0.118533	-0.0

1. Simple Linear Regression

```
In [19]: y = file_data['CustomerId']
x = file_data['HasCrCard']
x = sm.add_constant(x)
model = sm.OLS(y,x).fit()
model.summary()
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:142: Fut ureWarning: In a future version of pandas all arguments of concat except fo r the argument 'objs' will be keyword-only

x = pd.concat(x[::order], 1)

Out[19]:

OLS Regression Results

CustomerId 0.000 Dep. Variable: R-squared: Model: OLS Adj. R-squared: 0.000 Method: Least Squares F-statistic: 1.967 **Date:** Sun, 02 Oct 2022 Prob (F-statistic): 0.161 Log-Likelihood: -1.2602e+05 Time: 12:47:16 No. Observations: 10000 AIC: 2.521e+05

Df Residuals: 9998 **BIC:** 2.521e+05

Df Model: 1

Covariance Type: nonrobust

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 const
 1.569e+07
 1325.512
 1.18e+04
 0.000
 1.57e+07
 1.57e+07

 HasCrCard
 -2213.3059
 1578.103
 -1.403
 0.161
 -5306.705
 880.093

Omnibus: 8394.858 **Durbin-Watson:** 2.019

Prob(Omnibus): 0.000 Jarque-Bera (JB): 596.113

 Skew:
 0.001
 Prob(JB):
 3.60e-130

 Kurtosis:
 1.804
 Cond. No.
 3.45

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [20]: plt.plot(file_data['RowNumber'].head() ,file_data['CreditScore'].head(), )
    plt.title('Line plot')
    plt.xlabel('RowNumber')
    plt.ylabel('CreditScore')
```

Out[20]: Text(0, 0.5, 'CreditScore')

Multi - Variate Analysis

```
In [21]: f = plt.subplots(figsize=(12,10))
sns.heatmap(file_data.head().corr(), cmap="YlGnBu")
```

Out[21]: <matplotlib.axes._subplots.AxesSubplot at 0x7f926722f550>


```
In [22]: corrmat = file_data.corr(method='spearman')
    cg = sns.clustermap(corrmat, cmap="YlGnBu", linewidths=0.1);
    plt.setp(cg.ax_heatmap.yaxis.get_majorticklabels(), rotation=0)
    cg
```

Out[22]: <seaborn.matrix.ClusterGrid at 0x7f9264904d90>

1. Perform descriptive statistics on the dataset.

```
In [23]: file_data.shape
Out[23]: (10000, 14)
```

In [24]: file_data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 14 columns):

#	Column	Non-Nu	ıll Count	Dtype
0	RowNumber	10000	non-null	int64
1	CustomerId	10000	non-null	int64
2	Surname	10000	non-null	object
3	CreditScore	10000	non-null	int64
4	Geography	10000	non-null	object
5	Gender	10000	non-null	object
6	Age	10000	non-null	int64
7	Tenure	10000	non-null	int64
8	Balance	10000	non-null	float64
9	NumOfProducts	10000	non-null	int64
10	HasCrCard	10000	non-null	int64
11	IsActiveMember	10000	non-null	int64
12	EstimatedSalary	10000	non-null	float64
13	Exited	10000	non-null	int64
dtype	es: float64(2), in	nt64(9)	<pre>, object()</pre>	3)

memory usage: 1.1+ MB

In [25]: file_data.describe()

Out[25]:

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	N
count	unt 10000.00000 1.000000e-		10000.000000	10000.000000	10000.000000	10000.000000	
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	

Assignment 2 10/22/22, 1:06 PM

file_data.head() In [26]:

Out[26]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance
0	1	15634602	Hargrave	619	France	Female	42	2	0.00
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86
2	3	15619304	Onio	502	France	Female	42	8	159660.80
3	4	15701354	Boni	699	France	Female	39	1	0.00
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82

file_data.tail() In [27]:

Out[27]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Bala
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369
9997	9998	15584532	Liu	709	France	Female	36	7	0
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075
9999	10000	15628319	Walker	792	France	Female	28	4	130142

file_data.mean(numeric_only=True) In [28]:

Out[28]: RowNumber 5.000500e+03 CustomerId 1.569094e+07 CreditScore 6.505288e+02 Age 3.892180e+01 Tenure 5.012800e+00 Balance 7.648589e+04 NumOfProducts 1.530200e+00 HasCrCard 7.055000e-01 IsActiveMember 5.151000e-01 EstimatedSalary 1.000902e+05 Exited 2.037000e-01 dtype: float64

```
In [29]: file_data.median(numeric_only=True)
```

Out[29]: RowNumber 5.000500e+03 CustomerId 1.569074e+07 CreditScore 6.520000e+02 Age 3.700000e+01 Tenure 5.000000e+00 Balance 9.719854e+04 NumOfProducts 1.000000e+00 HasCrCard 1.000000e+00 IsActiveMember 1.000000e+00 1.001939e+05 EstimatedSalary Exited 0.000000e+00

dtype: float64

In [30]: file_data.mode()

Out[30]:

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance
0	1	15565701	Smith	850.0	France	Male	37.0	2.0	0.0
1	2	15565706	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	3	15565714	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	4	15565779	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	5	15565796	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9995	9996	15815628	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9996	9997	15815645	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9997	9998	15815656	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9998	9999	15815660	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9999	10000	15815690	NaN	NaN	NaN	NaN	NaN	NaN	NaN

10000 rows x 14 columns

In [31]: file_data.var(numeric_only=True)

Out[31]: RowNumber 8.334167e+06 CustomerId 5.174815e+09 CreditScore 9.341860e+03 Age 1.099941e+02 Tenure 8.364673e+00 Balance 3.893436e+09 NumOfProducts 3.383218e-01 HasCrCard 2.077905e-01 IsActiveMember 2.497970e-01

> EstimatedSalary 3.307457e+09 Exited 1.622225e-01

dtype: float64

```
file_data.std(numeric_only=True)
In [32]:
Out[32]: RowNumber
                                2886.895680
          CustomerId
                               71936.186123
          CreditScore
                                  96.653299
                                  10.487806
          Age
          Tenure
                                   2.892174
          Balance
                               62397.405202
          NumOfProducts
                                   0.581654
          HasCrCard
                                   0.455840
          IsActiveMember
                                   0.499797
          EstimatedSalary
                               57510.492818
          Exited
                                   0.402769
          dtype: float64
In [33]:
          file data.skew(numeric only=True)
Out[33]:
          RowNumber
                               0.000000
          CustomerId
                               0.001149
          CreditScore
                              -0.071607
          Age
                               1.011320
          Tenure
                               0.010991
          Balance
                              -0.141109
          NumOfProducts
                               0.745568
          HasCrCard
                              -0.901812
          IsActiveMember
                              -0.060437
          EstimatedSalary
                               0.002085
          Exited
                               1.471611
          dtype: float64
          file data.kurt(numeric only=True)
In [34]:
Out[34]:
          RowNumber
                              -1.200000
          CustomerId
                              -1.196113
          CreditScore
                              -0.425726
          Age
                               1.395347
          Tenure
                              -1.165225
          Balance
                              -1.489412
          NumOfProducts
                               0.582981
          HasCrCard
                              -1.186973
          IsActiveMember
                              -1.996747
          EstimatedSalary
                              -1.181518
          Exited
                               0.165671
          dtype: float64
          quantile = file_data['Balance'].quantile(q=[0.75, 0.25])
In [35]:
          quantile
                   127644.24
Out[35]: 0.75
          0.25
                        0.00
          Name: Balance, dtype: float64
```

```
In [36]: x = file_data.Balance
sns.boxplot(x=x)
```

Out[36]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9264746b10>

1. Handle the Missing values.

In [37]: print(file_data.isnull())

\	RowNumb	er Custo	omerId	Surname	CreditScor	re Geography	Gender	Age
0	Fal	Se	False	False	Fals	se False	False	False
1	Fal		False	False	Fals		False	False
2	Fal		False	False	Fals		False	False
3	Fal		False	False	Fals		False	False
4	Fal		False	False	Fals		False	False
	• • •		• • •	• • •			• • •	
9995	Fal		False	False	Fals		False	False
9996	Fal	se	False	False	Fals	se False	False	False
9997	Fal	se	False	False	Fals	se False	False	False
9998	Fal	se	False	False	Fals	False False Fal		False
9999	Fal	se	False	False	Fals	se False	False	False
	Tenure	Balance	Num∩£D	roducts	HasCrCard	IsActiveMemb	er \	
0	False	False	NullOTF	False	False	Fa]		
1	False	False		False	False	Fa]		
2	False	False		False	False	Fa]		
3	False	False		False	False	Fa]		
4	False	False		False	False	Fa]		
•					•••			
9995	False	False		False	False	Fa]		
9996	False	False		False	False	Fa]		
9997	False	False		False	False	Fa]		
9998	False	False		False	False	Fa]	lse	
9999	False	False		False	False	Fa]	lse	
	Estimat	edSalary	Exited					
0	ESCIIIaci	False	False					
0 1		False	False					
2		False	False					
3		False	False					
4		False	False					
· · · 9995		··· False	False					
9996		False	False					
9997		False	False					
9998		False	False					
9999		False	False					

[10000 rows x 14 columns]

```
In [38]:
          print(file_data.isnull().sum())
                               0
          RowNumber
          CustomerId
                               0
          Surname
                               0
                               0
          CreditScore
                               0
          Geography
          Gender
                               0
          Age
                               0
          Tenure
                               0
          Balance
                               0
          NumOfProducts
                               0
                               0
          HasCrCard
                               0
          IsActiveMember
          EstimatedSalary
                               0
          Exited
                               0
          dtype: int64
In [39]:
          file_data.isna().any()
Out[39]: RowNumber
                               False
          CustomerId
                               False
          Surname
                               False
          CreditScore
                               False
          Geography
                               False
          Gender
                               False
          Age
                               False
          Tenure
                               False
          Balance
                               False
          NumOfProducts
                               False
          HasCrCard
                               False
          IsActiveMember
                               False
          EstimatedSalary
                               False
          Exited
                               False
          dtype: bool
```

1. Find the outliers and replace the outliers

```
In [40]: x = sns.boxplot(x=file_data["Age"])
x
```

Out[40]: <matplotlib.axes._subplots.AxesSubplot at 0x7f92646aea50>


```
In [41]: x = file_data.Age
sns.boxplot(x=x)
```

Out[41]: <matplotlib.axes._subplots.AxesSubplot at 0x7f92646864d0>


```
In [42]: x = np.where(file_data['Age']>57,39, file_data['Age'])
```

```
In [43]: sns.boxplot(x=x)
```

Out[43]: <matplotlib.axes._subplots.AxesSubplot at 0x7f92646147d0>

1. Check for Categorical columns and perform encoding.

Out[45]:

	France	Germany	Spain
0	1	0	0
1	0	0	1
2	1	0	0
3	1	0	0
4	0	0	1
5	0	0	1
6	1	0	0
7	0	1	0
8	1	0	0
9	1	0	0

```
In [46]: pd.get_dummies(file_data).head(10)
```

Out[46]:

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	Is
(1	15634602	619	42	2	0.00	1	1	
	1 2	15647311	608	41	1	83807.86	1	0	
:	2 3	15619304	502	42	8	159660.80	3	1	
;	3 4	15701354	699	39	1	0.00	2	0	
	4 5	15737888	850	43	2	125510.82	1	1	
	5 6	15574012	645	44	8	113755.78	2	1	
(7	15592531	822	50	7	0.00	2	1	
•	7 8	15656148	376	29	4	115046.74	4	1	
;	9	15792365	501	44	4	142051.07	2	0	
9	10	15592389	684	27	2	134603.88	1	1	

10 rows x 2948 columns

1. Split the data into dependent and independent variables.

```
In [47]: X = file_data.iloc[:, :-1].values
    print(X)

[[1 15634602 'Hargrave' ... 1 1 101348.88]
        [2 15647311 'Hill' ... 0 1 112542.58]
        [3 15619304 'Onio' ... 1 0 113931.57]
        ...
        [9998 15584532 'Liu' ... 0 1 42085.58]
        [9999 15682355 'Sabbatini' ... 1 0 92888.52]
        [10000 15628319 'Walker' ... 1 0 38190.78]]

In [48]: Y = file_data.iloc[:, -1].values
    print(Y)

[1 0 1 ... 1 1 0]
```

1. Scale the independent variables

```
In [51]: | y = file_data.EstimatedSalary
          У
Out[51]:
         0
                  101348.88
          1
                  112542.58
          2
                  113931.57
          3
                   93826.63
                   79084.10
                    . . .
          9995
                   96270.64
          9996
                  101699.77
          9997
                   42085.58
          9998
                   92888.52
          9999
                   38190.78
          Name: EstimatedSalary, Length: 10000, dtype: float64
In [54]:
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
                                                      Traceback (most recent call last)
          NameError
          <ipython-input-54-a058a839cfb2> in <module>
          ----> 1 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
          NameError: name 'train_test_split' is not defined
```