

HOME TOP CATALOG CONTESTS GYM PROBLEMSET GROUPS RATING EDU API CALENDAR HELP 0

PROBLEMS SUBMIT CODE MY SUBMISSIONS STATUS HACKS STANDINGS CUSTOM INVOCATION

F. Wildflower

time limit per test: 2 seconds memory limit per test: 256 megabytes

Yousef has a rooted tree * consisting of exactly n vertices, which is rooted at vertex 1. You would like to give Yousef an array a of length n, where each a_i $(1 \le i \le n)$ can either be 1 or 2.

Let s_u denote the sum of a_v where vertex v is in the subtree of vertex u. Yousef considers the tree special if all the values in s are pairwise distinct (i.e., all subtree sums are unique).

Your task is to help Yousef count the number of different arrays a that result in the tree being special. Two arrays b and c are different if there exists an index i such that $b_i \neq c_i$.

As the result can be very large, you should print it modulo $10^9 + 7$.

Input

The first line contains an integer t $(1 \le t \le 10^4)$ — the number of test cases.

Each test case consists of several lines. The first line of the test case contains an integer n $(2 \le n \le 2 \cdot 10^5)$ — the number of vertices in the tree.

Then n-1 lines follow, each of them contains two integers u and v ($1 \le u, v \le n, u \ne v$) which describe a pair of vertices connected by an edge. It is guaranteed that the given graph is a tree and has no loops or multiple edges.

It is guaranteed that the sum of n over all test cases doesn't exceed $2 \cdot 10^5$.

Output

For each test case, print one integer x — the number of different arrays a that result in the tree being special, modulo $10^9 + 7$.

Example

input	Сору
7	
2	
1 2	
8	
1 2 2 3 3 8	
2 3	
3 8	
2 4	
4 5 5 6 6 7	
5 6	
10	
1 2	
2 3	
3 4	
4 5	
5 6	
4 7	
7 8	
4 9	
9 10	
7	
1 4	
4 2	

Codeforces Round 1029 (Div. 3)

Finished

Practice

→ Virtual participation

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests. If you've seen these problems, a virtual contest is not for you solve these problems in the archive. If you just want to solve some problem from a contest, a virtual contest is not for you solve this problem in the archive. Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

Start virtual contest

→ Clone Contest to Mashup

You can clone this contest to a mashup.

Clone Contest

→ Submit?

Language: GNU G++23 14.2 (64 bit, ms ➤

Choose file:

Choose File No file chosen

Submit

→ Last submissions

Submission	Time	Verdict	
323842993	Jun/11/2025 06:39	Accepted	
323494490	Jun/08/2025 18:57	Memory limit exceeded on test 3	
<u>323451994</u>	Jun/08/2025 18:08	Wrong answer on test 1	

→ Problem tags

combinatorics dfs and similar trees

No tag edit access

→ Contest materials

- Announcement (en)
- Tutorial (en)

 $[\]overline{{}^*\text{A tree}}$ is a connected undirected graph with n-1 edges.

[†] The subtree of a vertex v is the set of all vertices that pass through v on a simple path to the root. Note that vertex v is also included in the set.

Note

The tree given in the fifth test case:

