

Subject: Mathematics - II (303191151)

Semester: 2nd Sem. B.Tech Programme (All Branches)

Lecture Notes: Unit – 4, Fourier Integral

Introduction:

We have learnt Fourier series for periodic functions. There exist many practical problem in engineering which involve non-periodic functions. We can solve such problems on the basis of Fourier series technique by converting non-periodic functions in terms of sine and cosine functions. This conversion will lead to the extension of Fourier series to Fourier integral.

Fourier Integral:

Let f(x) be a function which is piecewise continuous in every finite interval $(-\infty, \infty)$ and absolutely integrable in $(-\infty, \infty)$, then Fourier integral is given by following formula.

Formula:

***** Fourier Integral:

$$f(x) = \int_0^\infty [A(\lambda)\cos\lambda x + B(\lambda)\sin\lambda x] d\lambda$$
where $A(\lambda) = \frac{1}{\pi} \int_0^\infty f(v)\cos\lambda v \, dv$, $B(\lambda) = \frac{1}{\pi} \int_0^\infty f(v)\sin\lambda v \, dv$

❖ Fourier Cosine Integral :

$$f(x) = \int_{0}^{\infty} A(\lambda) \cos \lambda x \, d\lambda, \quad \text{where } A(\lambda) = \frac{2}{\pi} \int_{0}^{\infty} f(v) \cos \lambda v \, dv$$

❖ Fourier Sine Integral:

$$f(x) = \int_0^\infty B(\lambda) \sin \lambda x \, d\lambda, \qquad \text{where } B(\lambda) = \frac{2}{\pi} \int_0^\infty f(v) \sin \lambda v \, dv$$

***** Existence of Fourier Integral:

The Fourier Integral of f(x) exists whenever x is a point of continuity of f(x).

Otherwise when x is a point of discontinuity then f(x) is replaced by $\frac{f(x+0)+f(x-0)}{2}$.

Examples

1. Find the Fourier Integral representation of the function
$$f(x) = \begin{cases} 1 - x^2 & \text{if } |x| \le 1 \\ 0 & \text{if } |x| > 1 \end{cases}$$

Solution:

$$f(x) = \int_0^\infty A(\lambda) \cos \lambda x \, d\lambda$$

$$A(\lambda) = \frac{2}{\pi} \int_0^\infty f(v) \cos \lambda v \, dv$$

$$= \frac{2}{\pi} \int_0^\infty (1 - v^2) \cos \lambda v \, dv$$

$$= \frac{2}{\pi} \left| (1 - v^2) \frac{\sin \lambda v}{\lambda} - (-2t) \left(-\frac{\cos \lambda v}{\lambda^2} \right) + (-2) \left(-\frac{\sin \lambda v}{\lambda^3} \right) \right|_0^1$$

$$= \frac{2}{\pi} \left(-\frac{2\cos \lambda}{\lambda^2} + \frac{2\sin \lambda}{\lambda^3} \right) \quad [\because \sin 0 = 0]$$

$$= \frac{4}{\pi} \left(\frac{\sin \lambda - \lambda \cos \lambda}{\lambda^3} \right)$$

$$f(x) = \frac{4}{\pi} \int_0^\infty \left(\frac{\sin \lambda - \lambda \cos \lambda}{\lambda^3} \right) \cos \lambda x \, d\lambda$$

2. Find the Fourier cosine and sine Integral of $f(x) = e^{-kx}$, (x > 0, k > 0)

Solution: (a)

$$A(\lambda) = \frac{2}{\pi} \int_0^\infty f(v) \cos \lambda v \, dv$$

$$= \frac{2}{\pi} \int_0^\infty e^{-kv} \cos \lambda v \, dv$$

$$= \frac{2}{\pi} \left[\frac{e^{-kv}}{k^2 + \lambda^2} \left(-\frac{\lambda}{k} \sin \lambda v + \cos \lambda v \right) \right]_0^\infty$$

$$= \frac{2}{\pi} \left[0 + \frac{k}{k^2 + \lambda^2} \right]$$

$$= \frac{2k}{\pi (k^2 + \lambda^2)}$$

We obtain the Fourier cosine integral representation

$$i.e. f(x) = \int_0^\infty A(\lambda) \cos \lambda x \ d\lambda$$

$$f(x) = e^{-kx} = \frac{2k}{\pi} \int_0^\infty \frac{\cos \lambda x}{(k^2 + \lambda^2)} d\lambda, \quad (x > 0, k > 0)$$

From this, we see that

$$\int_0^\infty \frac{\cos \lambda x}{(k^2 + \lambda^2)} d\lambda = \frac{\pi}{2k} e^{-kx}, \quad (x > 0, k > 0)$$

(b) Similarly we have,

$$B(\lambda) = \frac{2}{\pi} \int_0^\infty f(v) \sin \lambda v \ dv$$

$$= \frac{2}{\pi} \int_0^\infty e^{-kv} \sin \lambda v \, dv$$

$$= \frac{2}{\pi} \left[\frac{-\lambda}{k^2 + \lambda^2} e^{-kv} \left(-\frac{k}{\lambda} \sin \lambda v + \cos \lambda v \right) \right]_0^\infty$$

$$= \frac{2\lambda}{\pi (k^2 + \lambda^2)}$$

We obtain the Fourier sine integral representation

$$i. e. f(x) = \int_0^\infty B(\lambda) \sin \lambda x \ d\lambda$$

$$f(x) = e^{-kx} = \frac{2k}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{(k^2 + \lambda^2)} \ d\lambda, \quad (x > 0, k > 0)$$

$$\therefore \int_0^\infty \frac{\lambda \sin \lambda x}{(k^2 + \lambda^2)} \ d\lambda = \frac{\pi}{2} e^{-kx}, \quad (x > 0, k > 0)$$

3. Find the Fourier Integral representation of the function $f(x) = \begin{cases} 2 & \text{if } |x| < 2 \\ 0 & \text{if } |x| > 2 \end{cases}$

Solution: Here

$$f(x) = \begin{cases} 2 & \text{if } |x| < 2 \\ 0 & \text{if } |x| > 2 \end{cases} \text{ and } f(x) = \begin{cases} 2 & \text{if } |-x| < 2 \\ 0 & \text{if } |-x| > 2 \end{cases}$$

$$f(-x) = f(x)$$
 f is an even function.

 \therefore Fourier integral reduces to Fourier cosine integral of f(x) i. e. $f(x) = \int_0^\infty A(\lambda) \cos \lambda x \ d\lambda$.

$$A(\lambda) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \cos \lambda v \, dv = A(\lambda)$$

$$= \frac{2}{\pi} \int_{0}^{\infty} f(v) \cos \lambda v \, dv \,, \quad (\because f(x) \text{ is an even function})$$

$$= \frac{2}{\pi} \int_{0}^{2} 2 \cos \lambda v \, dv + \int_{2}^{\infty} 0 \cdot \cos \lambda v \, dv$$

$$= \frac{4}{\pi} \left[\frac{\sin 2\lambda}{\lambda} - 0 \right]$$

$$\therefore A(\lambda) = \frac{4 \sin 2\lambda}{\lambda \pi}$$

$$\text{Now } f(x) = \int_{0}^{\infty} A(\lambda) \cos \lambda x \, d\lambda = \int_{0}^{\infty} \frac{4 \sin 2\lambda}{\lambda \pi} \cos \lambda x \, d\lambda$$

4. Find the Fourier Integral representation of the function $f(x) = \begin{cases} 1 & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$

Hence evaluate (1)
$$\int_0^\infty \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda$$
,

$$(2) \int_0^\infty \frac{\sin \lambda}{\lambda} \ d\lambda.$$

Solution:

$$f(x) = \int_0^\infty A(\lambda) \cos \lambda x \, d\lambda$$

$$A(\lambda) = \frac{2}{\pi} \int_0^\infty f(v) \cos \lambda v \, dv = \frac{2}{\pi} \int_0^1 \cos \lambda v \, dv = \left[\frac{\sin \lambda v}{\lambda \pi} \right]_{-1}^1 = \frac{2 \sin \lambda}{\pi \lambda}$$

$$B(\lambda) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \sin \lambda v \, dv = \frac{1}{\pi} \int_{-1}^{1} \sin \lambda v \, dv = 0$$

$$(i) \int_0^\infty \frac{\sin \lambda \cos \lambda x}{\lambda} \ d\lambda = \frac{\pi}{2} f(x) = \begin{cases} \frac{\pi}{2} & |x| < 1\\ 0 & |x| > 1 \end{cases}$$

At |x| = 1, $i.e. x = \pm 1$, f(x) is discontinuous.

At
$$x = 1$$
, $f(x) = \frac{1}{2} \left[\lim_{x \to 1^{-}} f(x) + \lim_{x \to 1^{+}} f(x) \right]$
$$= \frac{1}{2} (1+0)$$
$$= \frac{1}{2}$$

At
$$x = -1$$
, $f(x) = \frac{1}{2} \left[\lim_{x \to 1^{-}} f(x) + \lim_{x \to 1^{+}} f(x) \right]$
$$= \frac{1}{2} (0+1)$$
$$= \frac{1}{2}$$

Hence from Eq. (1),
$$\int_0^\infty \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda = \begin{cases} \frac{\pi}{2} & \text{if } |x| < 1 \\ \frac{\pi}{4} & \text{if } x = 1 \\ 0 & \text{if } x > 1 \end{cases}$$

(ii) putting
$$x = 0$$
 in Eq. (1) in $\int_0^\infty \frac{\sin \lambda}{\lambda} d\lambda = \frac{\pi}{2} f(0) = \frac{\pi}{2}$; $[\because f(0) = 1]$

5. Using the Fourier Integral representation prove that $\int_0^\infty \frac{\cos \lambda x + \lambda \sin \lambda}{1 + \lambda^2} d\lambda = \begin{cases} 0 & \text{if } x < 0 \\ \frac{\pi}{2} & \text{if } x = 0 \\ \pi e^{-x} & \text{if } x > 0 \end{cases}$

Solution:

Let
$$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ e^{-x} & \text{if } x > 0 \end{cases}$$
 at $x = 0$, $f(0) = \frac{f(0-0) + f(0+0)}{2} = \frac{0+1}{2} = \frac{1}{2}$

$$f(x) = \int_0^{-\infty} [A(\lambda)\cos\lambda x + B(\lambda)\sin\lambda x] d\lambda.$$

$$A(\lambda) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \cos \lambda v \, dv$$

$$= \frac{1}{\pi} \left[\int_{-\infty}^{0} 0 \cos \lambda v \, dv + \int_{0}^{\infty} e^{-v} \cos \lambda v \, dv \right]$$

$$= \frac{1}{\pi} \int_{0}^{\infty} e^{-v} \cos \lambda v \, dv$$

$$= \frac{1}{\pi} \left[\frac{e^{-v}}{1 + \lambda^{2}} \left(-\cos \lambda v + \lambda \sin \lambda v \right) \right]_{0}^{\infty}$$

$$B(\lambda) = \frac{1}{\pi} \int_0^\infty f(v) \sin \lambda v \ dv$$
$$= \frac{1}{\pi} \int_0^\infty e^{-v} \sin \lambda v \ dv$$
$$= \frac{1}{\pi} \left[\frac{e^{-v}}{1 + \lambda^2} \left(-\sin \lambda v + \lambda \cos \lambda v \right) \right]_0^\infty$$
$$= \frac{\lambda}{\pi (1 + \lambda^2)}$$

Hence

 $=\frac{1}{\pi(1+\lambda^2)}$

$$\therefore \frac{1}{\pi} \int_0^\infty \frac{\cos \lambda x + \lambda \sin \lambda x}{\pi (1 + \lambda^2)} d\lambda = f(x) = \begin{cases} 0 & \text{if } x < 0 \\ \frac{\pi}{2} & \text{if } x = 0 \\ \pi e^{-x} & \text{if } x > 0 \end{cases}$$

$$\therefore \frac{1}{\pi} \int_0^\infty \frac{\cos \lambda x + \lambda \sin \lambda x}{\pi (1 + \lambda^2)} d\lambda = \begin{cases} 0 & \text{if } x < 0 \\ \frac{\pi}{2} & \text{if } x = 0 \\ \pi e^{-x} & \text{if } x > 0 \end{cases}$$

To find f(0) directly put x = 0 in (1)

$$f(0) = \frac{1}{\pi} \int_0^\infty \frac{1}{(1+\lambda^2)} d\lambda = \frac{1}{\pi} [\tan^{-1} \lambda]_0^\infty = \frac{1}{\pi} (\frac{\pi}{2}) = \frac{1}{2}.$$

6. Using Fourier sin integral show that,

$$\int_0^\infty \frac{1 - \cos \lambda \pi}{\lambda} \sin x \lambda \, d\lambda = \begin{cases} \frac{\pi}{2} & \text{if } 0 < x < \pi \\ 0 & \text{if } x > \pi \end{cases}$$

Solution:

We have to obtain sin integral

$$i.e.f(x) = \int_0^\infty B(\lambda) \sin \lambda x \, d\lambda$$

where
$$B(\lambda) = \frac{2}{\pi} \int_0^\infty f(v) \sin \lambda v \, dv$$

$$= \frac{2}{\pi} \left[\int_0^\pi \sin \lambda v \, dv + \int_{\pi}^\infty 0 \cdot \sin \lambda v \, dv \right]$$

$$= \frac{2}{\pi} \left| -\frac{\cos \lambda v}{\lambda} \right|_0^{\pi}$$

$$= \frac{2}{\pi} \left(\frac{-\cos \lambda \pi + 1}{\lambda} \right) = \frac{2}{\pi} \left(\frac{1 - \cos \lambda \pi}{\lambda} \right)$$

Hence
$$f(x) = \frac{2}{\pi} \int_0^\infty \frac{1 - \cos \lambda \pi}{\lambda} \sin \lambda v \, d\lambda$$

$$\therefore \int_0^\infty \frac{1 - \cos \lambda \pi}{\lambda} \sin \lambda v \, d\lambda = \frac{\pi}{2} f(x) = \begin{cases} \frac{\pi}{2} & if 0 < x < \pi \\ 0 & if x > \pi \end{cases}$$

At $x = \pi$, f(x) is discontinuous.

$$f(x) = \frac{1}{2} \left[\lim_{x \to \pi^{-}} f(x) + \lim_{x \to \pi^{+}} f(x) \right]$$
$$= \frac{1}{2} (1+0)$$
$$= \frac{1}{2}$$

H.W. Ex.

- 7. Find the Fourier Integral representation of the function $f(x) = \begin{cases} x & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases}$
- 8. Find the Fourier Integral representation of the function $f(x) = \begin{cases} -e^{ax} & \text{if } x < 0 \\ e^{ax} & \text{if } x > 0 \end{cases}$