1 Les données

date: 2024-04-24 scanes: 89-97-102-108

 $Parametres: \ With 1\ , \ Deadtime DMD, \ With 1_bis, \ Deadtime DMD_bis$

FIGURE 1 – les profiles du 24-04-2024:

- a) "deformation bord $\tau = 1 \ ms$ (1): profile longitudinale des données 1 ms aprés la selection en x = 0
- b) "deformation bord $\tau=18~ms$ (1) : profile longitudinale des données après 18 ms de déformation du bord
- c) "expansion 1D $\tau = 1 \ ms$ "(1): profile longitudinale des données après 1 ms d'expansion.
- d) "expansion 1D $\tau = 30~ms$ " (1): profile longitudinale des données après 30 ms d'expansion.
- A) Système semi-infinie pour $x \ge 0$:
 - a) Système dans une potentiel quartique :
 - fréquence transverse : $\omega_{\perp}\stackrel{exp}{=}2\pi*2.56~KHz$
 - la densité spatial théorique : $n_0 = n_p$ sur les données "deformation bord $\tau = 1$ ms" (1), je mesure $n_p \stackrel{exp}{=} 56.6 \ \mu m^{-1}$.
 - b) Selection de $x \geq 0$:
 - la densité spatial théorique : $n_0 = n_p \Theta(x)$
 - garde le potentiel transverse
- B) Deformation du bord :
 - o "deformation bord $\tau = 1 \ ms$ (1): le profile longitudinale des données apres 1 ms de déformation du bord
 - o "deformation bord $\tau = 18~ms$ (1): le profile longitudinale des données apres 18 ms de déformation du bord
 - garde le potentiel transverse
 - temps de déformation du bord $\tau=18~ms$
- C) Mesure locale de distribution de rapidité, Expansion 1D:
 - a) Local : selection de la tranche $[x_0 \ell/2, x_0 + \ell/2]$:
 - $x_0 = 19.6 \ \mu m$ (trouvé avec un ajustement gaussien sur "expansion 1D $\tau = 1 \ ms$ " (1)
 - $\ell = 24.78 \ \mu m$ (trouvé en faisant la différence des positions des extremums du gradient de s données "expansion 1D $\tau = 1 \ ms$ " (1))

- b) Expansion:
 - \circ "expansion 1D $\tau=1~ms$ " : profile longitudinale des données après 1 ms d'expansion.
 - \circ "expansion 1D $\tau=30~ms$ " : profile longitudinale des données après 30 ms d'expansion.
 - $\bullet\,$ temps de déformation du bord $\tau=18~ms$
- garde le potentiel transverse

2 Simulation GHD

(a) les profiles du 24-04-2024

(b) expension : $\tau = 1ms$

(c) expension : $\tau = 30ms$

2.1 Méthode 1 :

A) On extrais la temperature T en faisant un ajustement sur le profil de bord

FIGURE 3 – Données du 24-04-2024 et simulation avec ajustement sur déformation du bord , où $\mu = f(T, n_p)$ avec n_p mesuré sur donné "déformation bord $\tau = 1ms$ 3

FIGURE 4 – Données du 24-04-2024 et simulation avec ajustement sur expension du bord , où $\mu=f(T,n_p)$ avec n_p mesuré sur donné "déformation bord $\tau=1ms$