NUMERICAL DIFFERENTIATION

Dr. Himanshu Pathak

himanshu@iitmandi.ac.in

Introduction

- Calculus is the mathematics of change. Because engineers must continuously deal with systems and processes that change, calculus is an essential tool of engineering.
- Standing in the heart of calculus are the mathematical concepts of differentiation and integration:

$$\frac{\Delta y}{\Delta x} = \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$

$$\frac{dy}{dx} = \lim_{\Delta x} \lim_{\delta x} \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$

$$I = \int_{a}^{b} f(x) dx$$

Introduction

- Integration and differentiation are closely linked processes. They are, in fact, inversely related.
- Types of functions to be differentiated or integrated:
 - 1. Simple polynomial, exponential, trigonometric → analytically
 - 2. Complex function → numerically
 - 3. Tabulated function of experimental data → numerically

Applications

- Differentiation has so many engineering applications (heat transfer, fluid dynamics, chemical reaction kinetics, etc...)
- Integration is equally used in engineering (compute work in ME, nonuniform force in SE, cross-sectional area of a river, etc...)

Differentiation

$$\frac{\Delta y}{\Delta x} = \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$

The finite difference becomes a derivative as Δx approaches zero.

Taylor Series Expansion

- Non-elementary functions such as trigonometric, exponential, and others are expressed in an approximate fashion using Taylor series when their values, derivatives, and integrals are computed.
- Any smooth function can be approximated as a polynomial. Taylor series provides a means to predict the value of a function at one point in terms of the function value and its derivatives at another point.

Numerical Application of Taylor Series

If f(x) and its first n+1 derivatives are continuous on an interval containing x_{i+1} and x_i , then:

$$f(x_{i+1}) \cong f(x_i) + f'(x_i)(x_{i+1} - x_i) + \frac{f''(x_i)}{2!}(x_{i+1} - x_i)^2 + \frac{f^{(3)}(x_i)}{3!}(x_{i+1} - x_i)^3 + \dots + \frac{f^{(n)}(x_i)}{n!}(x_{i+1} - x_i)^n + R_n$$

Where the remainder R_n is defined as:

$$R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x_{i+1} - x_i)^{n+1}$$

 ξ is a value of x that lies somewhere between x_i and x_{i+1} .

Taylor Series ξ in the Remainder Term

<u>Limitations</u>

- $\succ \xi$ is not exactly known but lies somewhere between x_i and x_{i+1}
- > To evaluate R_n , the (n+1) derivative of f(x) has to be determined. To do this f(x) must be known
- \rightarrow if f(x) was known there would be no need to perform the Taylor series expansion!!!

Modification

 $R_n = O(h^{n+1})$ the truncation error is of the order of h^{n+1} . $(h = x_{i+1} - x_i)$

- > If the error is O(h), halving the step size will halve the error.
- \triangleright If the error is O(h²), halving the step size will quarter the error.
- ➤ In general, the truncation error is decreased by addition of more terms in the Taylor series.

Numerical Application of Taylor Series

■ The series is built term by:

$$f(x_{i+1}) \cong f(x_i)$$
 zero order approximation

Continuing the addition of more terms to get better approximation we have:

$$f(x_{i+1}) \cong f(x_i) + f'(x_i)(x_{i+1} - x_i)$$
 1st order approximation

$$f(x_{i+1}) \cong f(x_i) + f'(x_i)(x_{i+1} - x_i) + \frac{f''(x_i)}{2!}(x_{i+1} - x_i)^2$$
 approximation

Forward Difference Formulas- 1st derivative

 \blacksquare 2nd order Taylor series expansion of f(x) can be written as:

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2}h^2 + O(h^3)$$
 (1)

■ Then, the first derivative can be expressed as:

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} - \frac{f''(x_i)}{2}h + O(h^2)$$
 (2)

 \blacksquare Given that f''(x) can be approximated by:

$$f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2} + O(h)$$
(3)

Forward Difference Formulas- 1st derivative

Substituting equation (3) into equation (2):

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} - \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{2h^2}h + O(h^2)$$

Collecting terms and simplifying, we have:

$$f'(x_i) = \frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h} + O(h^2)$$

■ Note that the inclusion of the second-derivative term has improved the accuracy to O(h²).

Forward Difference Formulas- 2nd derivative

- Start with Lagrange interpolation polynomial for f(x) based on the four points x_i , x_{i+1} , x_{i+2} and x_{i+3} .
- Differentiate the products in the numerators twice
- Substitute $x = x_i$ and consider the fact that $x_j x_i = (j-i)h$
- The expression of the second derivative is then:

$$f''(x_i) = \frac{-f(x_{i+3}) + 4f(x_{i+2}) - 5f(x_{i+1}) + 2f(x_i)}{h^2} + O(h^2)$$

Backward Difference Formulas- 1st derivative

Using backward difference in the Taylor series expansion,

$$f(x_{i-1}) = f(x_i) - f'(x_i)h + \frac{f''(x_i)}{2}h^2 - O(h^3)$$

 \blacksquare And given that f''(x) can be approximated by:

$$f''(x_i) = \frac{f(x_i) - 2f(x_{i-1}) + f(x_{i-2})}{h^2} + O(h)$$

• The second-order estimate of f'(x) can be obtained:

$$f'(x_i) = \frac{3f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{2h} + O(h^2)$$

Backward Difference Formulas- 2nd derivative

- Start with Lagrange interpolation polynomial for f(x) based on the four points x_i , x_{i-1} , x_{i-2} and x_{i-3} .
- Differentiate the products in the numerators twice
- Substitute $x = x_i$ and consider the fact that $x_j x_i = (j-i)h$
- The expression of the second derivative is then:

$$f''(x_i) = \frac{2f(x_i) - 5f(x_{i-1}) + 4f(x_{i-2}) - f(x_{i-3})}{h^2} + O(h^2)$$

Centered Difference Formulas- 1st derivative [O(h²)]

■ Start with the 2^{nd} degree Taylor expansions about x for f(x+h) and f(x-h):

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2}h^2 + O(h^3)$$
 (4)

$$f(x_{i-1}) = f(x_i) - f'(x_i)h + \frac{f''(x_i)}{2}h^2 - O(h^3)$$
 (5)

Subtract (5) from (4)

$$f(x_{i+1}) - f(x_{i-1}) = 2f'(x_i)h + O(h^3)$$

■ Hence $f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} + O(h^2)$

Centered Difference Formulas- 1st derivative [O(h⁴)]

■ Start with the difference between the 4^{th} degree Taylor expansions about x for f(x+h) and f(x-h):

$$f(x_{i+1}) - f(x_{i-1}) = 2f'(x_i)h + \frac{2f'''(x_i)}{3!}h^3 + O(h^5)$$
 (6)

Use the step size 2h, instead of h, in (6) $f(x_{i+2}) - f(x_{i-2}) = 4f'(x_i)h + \frac{16f'''(x_i)}{3!}h^3 + O(h^5)$ (7)

■ Multiply equation (6) by 8, subtract (7) from it, and solve for
$$f(x)$$

$$f'(x_i) = \frac{-f(x_{i+2}) + 8f(x_{i+1}) - 8f(x_{i-1}) + f(x_{i-2})}{12h} + O(h^4)$$

Centered Difference Formulas- 2nd derivative [O(h²)]

■ Start with the 3^{rd} degree Taylor expansions about x for f(x+h) and f(x-h):

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2}h^2 + \frac{f'''(x_i)}{3!}h^3 + O(h^4)$$
 (8)

$$f(x_{i-1}) = f(x_i) - f'(x_i)h + \frac{f''(x_i)}{2}h^2 - \frac{f'''(x_i)}{3!}h^3 + O(h^4)$$
 (9)

 \blacksquare Add equations (8) and (9), and solve for f'(x)

$$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2} + O(h^2)$$

Centered Difference Formulas- 2nd derivative [O(h⁴)]

■ Start with the addition between the 5^{th} degree Taylor expansions about x for f(x+h) and f(x-h):

$$f(x_{i+1}) + f(x_{i-1}) = 2f(x_i) + \frac{2f''(x_i)}{2!}h^2 + \frac{2f^{(4)}(x_i)}{4!}h^4 + O(h^6)$$
(10)

Use the step size 2h, instead of h, in (10)

$$f(x_{i+2}) + f(x_{i-2}) = 2f(x_i) + \frac{8f''(x_i)}{2!}h^2 + \frac{32f^{(4)}(x_i)}{4!}h^4 + O(h^6)$$
(11)

■ Multiply equation (10) by 16, subtract (11) from it, and solve for f'(x)

$$f''(x_i) = \frac{-f(x_{i+2}) + 16f(x_{i+1}) - 30f(x_i) + 16f(x_{i-1}) - f(x_{i-2})}{12h^2} + O(h^4)$$

Error Analysis

- Generally, if numerical differentiation is performed, only about half the accuracy of which the computer is capable is obtained unless we are fortunate to find an optimal step size.
- The total error has part due to round-off error plus a part due to truncation error.

Total Numerical Error

Total numerical error = truncation error + round-off error.

Trade-off between truncation and round-off errors

Example 1

Estimate the first and second derivatives of:

$$f(x) = 1.2 - 0.25x - 0.5x^2 - 0.15x^3 - 0.1x^4$$

at x = 0.5 and h = 0.25 using

- a) forward finite-divided difference
- b) Centered finite-divided difference
- backward finite-divided difference?

a) Forward difference

■ 1st derivative computation

The data needed is:

$$x_i = 0.5$$
 $f(x_i) = 0.925$ $x_{i+1} = 0.75$ $f(x_{i+1}) = 0.636328$ $x_{i+2} = 1$ $f(x_{i+2}) = 0.2$

First derivative:

$$f'(x_i) = \frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h}$$
$$f'(0.5) = \frac{-f(1) + 4f(0.75) - 3f(0.5)}{2(0.25)} = -0.859375$$

 $\epsilon t = 5.82\%$ True value=-0.9125

Second derivative computation

The data needed is:

$$x_i = 0.5$$
 $f(x_i) = 0.925$
 $x_{i+1} = 0.75$ $f(x_{i+1}) = 0.636328$
 $x_{i+2} = 1$ $f(x_{i+2}) = 0.2$
 $x_{i+3} = 1.25$ $f(x_{i+3}) = 1.94336$

Second derivative:

$$f''(x_i) = \frac{-f(x_{i+3}) + 4f(x_{i+2}) - 5f(x_{i+1}) + 2f(x_i)}{h^2}$$
$$f''(0.5) = \frac{-(1.94336) + 4(0.2) - 5(0.636328) + 2(0.925)}{(0.25)^2} = -39.6$$

- **b)** Centered finite-divided difference
- The data needed is:

$$x_{i-2} = 0$$
 $f(x_{i-2}) = 1.2$
 $x_{i-1} = 0.25$ $f(x_{i-1}) = 1.103516$
 $x_{i+1} = 0.75$ $f(x_{i-1}) = 0.636328$
 $x_{i+2} = 1$ $f(x_{i-2}) = 0.2$

■ First derivative:

$$f'(x_i) = \frac{-f(x_{i+2}) + 8f(x_{i+1}) - 8f(x_{i-1}) + f(x_{i-2})}{12h}$$

$$f'(x_i) = \frac{-(0.2) + 8(0.636328) - 8(1.103516) + (1.2)}{12(0.25)}$$

$$\text{et = 0\%}$$

$$f'(x_i) = -0.9125$$
 True value=-0.9125

- c) Backward finite-divided difference
- The data needed is:

$$x_{i-2} = 0$$
 $f(x_{i-2}) = 1.2$
 $x_{i-1} = 0.25$ $f(x_{i-1}) = 1.103516$
 $x_i = 0.5$ $f(x_i) = 0.925$

• First derivative :

$$f'(x_i) = \frac{3f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{2h}$$
$$f'(x_i) = \frac{3(0.925) - 4(1.103516) + (1.2)}{2(0.25)} = -0.878125$$

Richardson Extrapolation

- Numerical derivation can be accurate by (a) Increasing turncation order and (b) Decreasing step size.
- Richardson extrapolation uses two derivative estimates to compute a third, more accurate approximation

Richardson extrapolation
$$D \cong \frac{4}{3}D(h_2) - \frac{1}{3}D(h_1)$$

For centered difference approximations with $O(h^2)$, the application of this formula will yield a new derivative estimate of $O(h^4)$.

Example 2

Estimate the first and second derivatives of:

$$f(x) = 1.2 - 0.25x - 0.5x^2 - 0.15x^3 - 0.1x^4$$

at
$$x = 0.5$$
 and $h_1 = 0.5$; $h_2 = 0.25$ using

a) Centered finite-divided difference and Richardson extrapolation

Centered finite-divided difference

$$D(0.5) = \frac{0.2 - 1.2}{1} = -1.0 \qquad \varepsilon_t = -9.6\%$$

$$D(0.25) = \frac{0.6363281 - 1.1035156}{0.5} = -0.934375 \qquad \varepsilon_t = -2.4\%$$

■ Richardson extrapolation :
$$D = \frac{4}{3}(-0.934375) - \frac{1}{3}(-1) = -0.9125$$

Finite Divided Difference Method

- Divided differences is a recursive division process. The method can be used to calculate the coefficients in the interpolation polynomial in the Newton form.
- The Taylor series used to approximate divided differences.

Taylor Series

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \frac{f^{(3)}(x_i)}{3!}h^3 + \dots + \frac{f^n(x_i)}{n!}h^n + R_n$$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} + O(x_{i+1} - x_i)$$

$$f'(x_i) = \frac{\Delta f_i}{h} + O(h)$$
First Forward Difference

 Δf_i is referred to as the first forward difference and h is called the step size

Finite Divided Difference Table

i	Xį	f[x _i]		First order differences		Second order differences		Third order differences		Fourth order differences	Fifth order differences
0	x ₀	f [x ₀]	\	f[x ₀ , x ₁]	\	$f[x_0, x_1, x_2,]$	_			f[x ₀ ,x ₁ ,x ₂ ,x ₃ ,x ₄]	
1	X ₁	f[x ₁]	<	$f[x_1,x_2]$	/			$f[x_{0,}x_{1},x_{2},x_{3}]$		[1[^0,^1,^2,^3,^4]	$f[x_0, x_1, x_2, x_3, x_4, x_5]$
2	X ₂	f[x ₂]	<	$f[x_2,x_3]$		f[x ₁ ,x ₂ ,x ₃]		f[x ₁ ,x ₂ ,x ₃ ,x ₄]	/	ffy y y y y 1	/
3	X ₃	f[x ₃]	<			f[x ₂ ,x ₃ ,x ₄]	/	10-11-21-31-41		f[x ₁ ,x ₂ ,x ₃ ,x ₄ ,x ₅]	
4	X ₄	f[x ₄]	<	f[x ₃ ,x ₄]			/	$f[x_2,x_3,x_4,x_5]$			
5	X 5	f[x ₅]	f[x ₄ ,x ₅]		f[x ₃ ,x ₄ ,x ₅]						

i	X,	f[x _i]	1 st order differences	2 nd order differences	3 rd order differences	4 th order differences
0	0	0	1-0 _1			
1	1	1	8-1 =7	$ > \frac{7-1}{2-0} = 3 $	$\frac{6-3}{3-0}=1$	
2	2	8	2-1	$\frac{19-7}{3-1}=6$		$\frac{1-1}{4-0} = 0$
3	3	27 /	$\frac{27 - 8}{3 - 2} = 19$	37 - 19 =	9-6 4-1 9	
4	4	64	$\frac{64 - 27}{4 - 3} = 37$	4-2		

Example 3

Example: Compute f(0.3) for the data using Newton's divided difference formula.

)C	0	1	3	4	7
r <mark>f</mark> '	1	3	49	129	813

Divided difference table

$$f(x) = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0) (x - x_1) f[x_0, x_1, x_2] + (x - x_0) (x - x_1) (x - x_2) f[x_0, x_1, x_2, x_3]$$

$$f(0.3) = 1 + (0.3 - 0) 2 + (0.3)(0.3 - 1) 7 + (0.3) (0.3 - 1) (0.3 - 3) 3$$

=1.831

THANK YOU

Questions??