Markov Chains

Dhruva Sambrani

25 August, 2022

Contents

finition
Proof of equivalence
Showing $3 \implies 1 \dots \dots$
Showing $1 \implies 3 \dots \dots$
ansition Matrix
Properties of the Transition Matrix
Stochasticity
Stationarity
Example
Chapman Kolmogorov equation / Semigroup Property

Definition

Equi 1: $X_{nn\geq 1}$ is a Markov Chain on a state space S (countable) with an initial distribution λ and transition matrix P if

- 1. $P(x_0 = i) = \lambda_i$
- 2. Markov property: $P(x_{m+1} = i_{m+1} | PAST) = P(x_{m+1} = i_{m+1} | x_m = i_m) = p_{i_m i_{m+1}}$

Equi 2: Given x_m the future $\{x_n : n > m\}$ and the past $\{x_n : n < m\}$ are independent.

Equi 3: $\{x_n\}$ is a $MC(\lambda, P)$ if $P(x_0 = i_0, \dots x_m = i_m) = \lambda p_{i_0 i_1} p_{i_1 i_2} \dots$

Proof of equivalence

Showing $3 \implies 1$

Equi $3 \implies$ Equi 1.1 is obvious.

$$P(x_m = i_m | \text{PAST}) = P(x_m = i_m, \text{PAST}) / P(\text{PAST})$$

From Equi 3,

$$P(x_m = i_m | \text{PAST}) = \frac{\lambda_{i_0} \prod_{k=1}^m p_{i_{k-1}, i_k}}{\lambda \prod_{k=1}^{m-1} p_{i_{k-1}, i_k}} = p_{i_{m-1}, i_m}$$

which is Equi 1.2.

Hence Equi $3 \implies$ Equi 1

Showing $1 \implies 3$

$$P(x_m = i_m, PAST) = P(x_m = i_m | PAST) P(PAST)$$

From **Equi 1.2**:

$$\begin{split} P(x_m = i_m | \text{PAST}) &= p_{i_{m-1}, i_m} \\ \implies P(x_m = i_m, \text{PAST}) &= p_{i_{m-1}, i_m} P(\text{PAST}) \end{split}$$

Now similarly pulling out each step from the past into the product, we get

$$P(x_0 = i_0, \dots x_m = i_m) = P(x_0 = i_0) \prod_{\substack{k=m \\ \Delta k = -1}}^{1} p_{i_{k-1}, i_k}$$

Finally, using **Equi 1.1**, we get **Equi 3**.

Transition Matrix

$$P = ((p_{ij}))_{i,j \in S}$$

where p_{ij} = probability that the chain jumps to state j if it is in state i.

Properties of the Transition Matrix

Stochasticity

Row-wise sum is 1. $\sum_{j} p_{ij}$ is the sum of the probability that given we are at i, we jump to any possible j. Since we must be *somewhere* every step, this sum must be 1.

Stationarity

Defn: A stationary distribution on the nodes of the MC is such that $(x_0, ... x_n)$ has the same distribution as $(x_m, ..., x_{m+n})$ for all m. That is, $X_m \sim X_l$ for any m and l.

$$\mu_0(i) = P(x_0 = i) \forall i \in S$$

$$\mu_n(i) = P(x_n = i)$$

$$mu_1(i) = mu_0(i) * p_j i$$

Which is $mu_i = mu_0P^i$

A distribution π on S is called Stationary / invariant distribution of the chain MC(P) is $\pi = \pi P$ That is, π is a left eigenvector of P with eigenvalue 1.

Exercise: Ehrenfest chain

Chain of length N.

$$P(X_{n+1} = i + 1 | X_n = i) = (N - i)/N; P(X_{n+1} = i - 1 | X_n = i) = i/N$$

Find π .

Example

For $P = \begin{bmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{bmatrix}$, what is the stationary distribution? What are the entries of P^n ?

Chapman Kolmogorov equation / Semigroup Property

$$P^(n+m) = P^n P^m \forall n, m >= 0$$

$$\begin{split} p_{ij}^{(n+m)} &= P(X_{n+m} = j | X_0 = i) \\ &= \sum_k P(X_{n+m} = j, X_m = k | X_0 = i) \\ &= \sum_k P(X_{n+m} = j | X_m = k, X_0 = i) P(X_m = k | X_0 = 1) \\ &= \sum_k P(X_{n+m} = j | X_m = k) P(X_m = k | X_0 = 1) \\ &= \sum_k p_{ik}^m p_{kj}^n \\ \Longrightarrow P^{n+m} &= P^n P^m \end{split}$$

Going back to the example,

$$P = (1 - \alpha, \alpha; \beta, 1 - \beta)$$

$$p_{11}^{(n)} = \sum_{j} p_{1j}^{n-1} p_{j1}$$

$$= p_{11}^{n-1} p_{11} + p_{12}^{n-1} p_{21}$$

$$= p_{11}^{n-1} (1 - \alpha) + \beta (1 - p_{11}^{n-1})$$

Exercise:

Similarly solve for other terms and find the values