ARM Status Flags Cheat Sheet (Cortex-M3 / Thumb)

Flag পূৰ্ণ নাম কথন 1 হয় কথন 0 হয় উদাহরণ

| N | Negative Flag | রেজাল্টের MSB (Most Significant Bit) = 1 → মানে ফলাফল Negative | রেজাল্টের MSB = 0 → মানে Positive | MOVS R0, #-5 → R0 = 0xFFFFFFB → N=1 |

| **Z** | **Zero Flag** | অপারেশনের ফলাফল = 0 | ফলাফল ≠ 0 | SUBS R1 , R1 , #1 \rightarrow যথন R1=1 (থকে 0 হয়, Z=1 |

| C | Carry Flag | Unsigned addition এ Carry হলে, বা subtraction এ Borrow না হলে | Unsigned addition এ Carry না হলে, বা subtraction এ Borrow হলে | ADDS R0, R1, #1 → যদি Carry হয়, C=1 |

| **V** | **Overflow Flag** | Signed addition/subtraction এ overflow হলে (মানে ফলাফল sign change হয়ে গেছে) | Overflow না হলে | ADDS R0, R1, #1 → যদি দুইটা positive যোগে negative হয়, V=1 |

এখন দেখি — কোন ইনস্ট্রাকশন কোন স্ল্যাগে প্রভাব ফেলে

Instruction	N	Z	С	V	মন্তব্য
ADDS	V	V	V	V	সব স্ল্যাগ সেট হয়
SUBS	V	V	V	V	সব স্ল্যাগ সেট হ্য
RSBS	V	V	V	V	Reverse subtract (0 - Rn)
ANDS, ORRS, EORS	V	V	×	×	লজিকাল অপারেশন — Carry/Overflow হয় না
MOVS, MVNS	V	V	×	X	কেবল N এবং Z
CMP	V	V	V	V	Compare = Subtract কিন্ত ফলাফল সংরক্ষণ হয় না
CMN	V	V	V	V	Compare Negative = Add কিন্ত ফলাফল সংরক্ষণ হয় না

LSLS, LSRS 🗸 🗸 🗙 Shift এর সম্য carry last bit এ যায়

RORS 🗸 🗸 🗙 Rotate এর সম্ম carry last bit এ যায়

🔹 উদাহরণগুলো সহ ব্যাখ্যা 🧩

1 Zero Flag (Z)

MOVS R0, #5

SUBS R0, R0, #5 ; R0 = $0 \rightarrow Z=1$

🔽 Z = 1 কারণ ফলাফল 0

X N=0 কারণ রেজাল্ট নেগেটিভ না

2 Negative Flag (N)

MOVS R0, #-1; R0 = 0xFFFFFFF

✓ N=1 কারণ MSB=1

🔽 Z=0 কারণ রেজাল্ট 0 না

3 Carry Flag (C)

MOVS R0, #0xFF

ADDS R0, R0, #1 ; $0xFF + 1 = 0x100 \rightarrow Carry = 1$

C=1 (Unsigned overflow)

💢 Z=0 (রেজাল্ট 0 না)

4 Overflow Flag (V)

MOVS R0, #127 ; 0x7F (signed +127)

ADDS R0, R0, #1 ; ফলাফল = 0x80 (signed -128)

লজিক্যাল অপারেশনে Carry/Overflow হ্য় না

```
MOVS R0, #0xAA ANDS R0, R0, #0x55 ; ফলাফল 0x00 \rightarrow Z=1, C/V অপরিবর্তিত
```

শিফট অপারেশনে Carry = শেষ শিফট হওয়া বিট

```
MOVS R0, #0x01
LSRS R0, R0, #1 ; ফলাফল = 0x00, Carry = 1 (শেষে শিফট হওয়া বিট)
```

Compare (CMP) শুধুমাত্র ফ্ল্যাগ আপডেট করে

```
MOVS R1, #5 

CMP R1, #5 ; R1 == 5 \rightarrow Z=1 

CMP R1, #10 ; R1 < 10 \rightarrow C=1 (no borrow) 

CMP R1, #2 ; R1 > 2 \rightarrow C=0 (borrow)
```

Summary Table (Quick Memory)

Flag	Meaning	Set (1) When	Example
N	Negative	MSB=1	-1 = 0xFFFFFFF
Z	Zero	Result=0	5-5=0
С	Carry	Unsigned overflow/borrow none	0xFF+1
V	Overflow	Signed overflow	127+1

How to Check Which Flag is Set (ARM Cortex-M)

ARM এ CPSR (Current Program Status Register) লামে একটা রেজিস্টার আছে — এখালেই সব NZCV flags সেভ থাকে 👇

Bit	Name	কাজ
31	N	Negative
30	Z	Zero
29	С	Carry
28	V	Overflow

SFlags পড়া (Check করা)

তুমি নিচের মতো করে CPSR (বা Cortex-M এ APSR) পড়তে পারো:

```
MRS RO, APSR ; APSR → RO তে কপি
```

এথন R0 তে NZCV bits থাকবে:

```
R0[31] = N

R0[30] = Z

R0[29] = C

R0[28] = V
```

• ্রানির্দিষ্ট স্ল্যাগ চেক করা (Bitwise Test)

```
MRS R0, APSR ; সব স্থ্যাগ পড়ো
TST R0, #(1 << 30) ; Z স্থ্যাগ চেক (Zero flag)
BNE flag_is_set ; যদি Z স্থ্যাগ 1 হয়, তাহলে জাম্প করো
```

- এথানে TST মানে ightarrow AND করে শুধু ফ্ল্যাগ bit চেক করা
- (1 << 30) = Z flag position

ভাপ্রত্যেকটা Flag চেক উদাহরণ

Flag	Bit	Check Instruction	মা(ন
N	31	TST R0, #(1 << 31)	Negative হলে
Z	30	TST R0, #(1 << 30)	Result = 0 হলে
С	29	TST R0, #(1 << 29)	Carry হলে
V	28	TST R0, #(1 << 28)	Overflow হলে

• 🔞 Conditional Branch দিয়ে স্ল্যাগ চেক (সবচেয়ে সহজ উপায়)

ARM এ প্রতিটি ব্রাঞ্চ/ইনস্ট্রাকশনে **condition suffix** আছে (eq, ne, mi, pl, cs, cc, vs, vc) এগুলো সরাসরি স্ক্র্যাগের উপর ভিত্তি করে কাজ করে 👇

Condition	চেক করে	মানে	উদাহরণ
EQ	Z=1	Equal (Result = 0)	BEQ label
NE	Z=0	Not Equal	BNE label
MI	N=1	Negative	BMI label
PL	N=0	Positive	BPL label

CS / HS	C=1	Carry set / Higher or Same	BCS label
CC / LO	C=0	Carry clear / Lower	BCC label
VS	V=1	Overflow set	BVS label
VC	V=0	Overflow clear	BVC label

🔹 🕜 Practical উদাহরণ 🔧

➤ Example: Compare দিয়ে Flag Check

MOVS R1, #5 CMP R1, #5

BEQ equal_case ; यपि Z=1 \rightarrow equal BNE not_equal_case ; यपि Z=0 \rightarrow not equal

➤ Example: Subtraction → Negative Check

MOVS R0, #3

SUBS R0, R0, #5 ; R0 = $-2 \rightarrow N=1$ BMI negative_case ; यि Negative $\rightarrow N=1$ BPL positive_case ; यि Positive $\rightarrow N=0$

➤ Example: Overflow Check

MOVS R0, #127

ADDS R0, R0, #1 ; signed overflow \rightarrow V=1

BVS overflow_case ; यपि Overflow इऱ

BVC ok_case ; यपि ना इय

♦ ৬ সব একসাথে (Diagnostic Print Example)

MRS R0, APSR

TST R0, #(1 << 31)

BNE NegSet

TST R0, #(1 << 30)

BNE ZeroSet

TST R0, #(1 << 29)

BNE CarrySet

TST R0, #(1 << 28)

BNE OverflowSet

* Summary Shortcut

Flag	Bit	Conditional Mnemonic	Example
N	31	MI / PL	BMI/ BPL
Z	30	EQ/NE	BEQ / BNE
С	29	CS / CC	BCS / BCC
V	28	VS / VC	BVS / BVC