Lecture 2: Machine Learning and Deep Learning Basics

+ •

> Arsalan Mosenia Chinmay Hegde

Linear Regression

• Now consider input: $x \in R^d$ and output $y \in R$ the goal is to learn

$$y = f(x) = w_d x_d + \dots + w_1 x_1 + w_0$$

Linear Regression

Given training dataset $X \in \mathbb{R}^{N \times d}$ and $Y \in \mathbb{R}^{N}$

Note: for simplicity we will assume that X includes a column of 1s

Linear Regression

$$MSE = \sum_{i=1}^{2} (y - \hat{y})^{2} = (Y - \hat{Y})^{T} \cdot (Y - \hat{Y}) = (Y - XW)^{T} \cdot (Y - XW)$$

Objective:

$$\min_{W}(Y-XW)^{T}.(Y-XW)$$

Set derivate with respect to W to zero!

$$W^* = (X^T X)^{-1} X^T Y$$

"Connectionist" Perspective

- Each input is connected to the output node via an edge
- Output node sums inputs multiplied with their respective weights

A Biological Perspective

- Dendrites: accumulate inputs from neighboring neurons (inputs)
- Nucleus: performs a weighted sum of inputs, based on strengths of "synapses" + some non-linear activation
- Axon: output

$$y = f(x) = w_d x_d + \dots + w_1 x_1 + w_0$$

Activation Functions

$$o = \sigma(y)$$

Non-linear "activation" function (example: "threshold")

For regression, the activation function is just the identity fn.

$$y = f(x) = w_d x_d + \dots + w_1 x_1 + w_0$$

• Non-linear "activation" function (example: "threshold")

Classification

Task (**T**):

• Emails $x \in \text{all possible emails and } y \in \{spam, non_spam\}$ find

Training Data:

A "training dataset" emails marked as "spam" or "non-spam"

"Supervised Learning (Classification)"

Binary Classification

• Simplest example where

 $x \in R$ and

 $y \in \{0,1\}$

"Categorical variable"

• Dataset of ICLR'18 review scores vs. accept/reject decisions

titl	review_3	review_2	eview_1	review	decision	conf_3	conf_2	conf_1	authors	authorids	abstract	_bibtex	TL;DR
Hyperedge2ved Distribute Representation for.	5.0	5.0	5.0	5.000000	Reject	4.0	3.0	3.0	[Ankit Sharma, Shafiq Joty, Himanshu Kharkwal,	[sharm170@umn.edu, srjoty@ntu.edu.sg, himanshu	Data structured in form of overlapping or non	@article{\nsharma2018hyperedge2vec:,\ntitle= {H	None
Exploring th Space of Black-bo Attacks on De.	7.0	6.0	5.0	6.000000	Reject	4.0	3.0	4.0	[Arjun Nitin Bhagoji, Warren He, Bo Li, Dawn S	[abhagoji@princeton.edu, _w@eecs.berkeley.edu,	Existing black-box attacks on deep neural netw	@article{\nnitin2018exploring,\ntitle={Explori	Query-based black-box attacks on deep neural n
Learning Weighte Representation for Generali.	7.0	8.0	5.0	6.666667	Reject	4.0	3.0	3.0	[Fredrik D. Johansson, Nathan Kallus, Uri Shal	[fredrikj@mit.edu, kallus@cornell.edu, urish22	Predictive models that generalize well under d	@article{\nd.2018learning,\ntitle={Learning We	A theory and algorithmic framework for predict
Understandin Deep Learnin Generalization b	6.0	3.0	2.0	3.666667	Reject	2.	3.0	3.0	[Guanhua Zheng, Jitao Sang, Changsheng Xu]	[zhenggh@mail.ustc.edu.cn, jtsang@bjtu.edu.cn,	Deep learning achieves remarkable generalizati	@article{\nzheng2018understanding,\ntitle= {Und	We prove that DNN is a recursively approximate

Binary Classification

Can you fit a linear model to this data?

title	review_3	review_2	eview_1	review	decision	conf_3	conf_2	conf_1	authors	authorids	abstract	_bibtex	TL;DR
Hyperedge2vec: Distributed Representations for	5.0	5.0	5.0	5.000000	Reject	4.0	3.0	3.0	[Ankit Sharma, Shafiq Joty, Himanshu Kharkwal,	[sharm170@umn.edu, srjoty@ntu.edu.sg, himanshu	Data structured in form of overlapping or non	@article{\nsharma2018hyperedge2vec:,\ntitle= {H	None
Exploring the Space of Black-box Attacks on De	7.0	6.0	5.0	6.000000	Reject	4.0	3.0	4.0	[Arjun Nitin Bhagoji, Warren He, Bo Li, Dawn S	[abhagoji@princeton.edu, _w@eecs.berkeley.edu,	Existing black-box attacks on deep neural netw	@article{\nnitin2018exploring,\ntitle={Explori	Query-based black-box attacks on deep neural n
Learning Weighted Representations for Generali	7.0	8.0	5.0	6.666667	Reject	4.0	3.0	3.0	[Fredrik D. Johansson, Nathan Kallus, Uri Shal	[fredrikj@mit.edu, kallus@cornell.edu, urish22	Predictive models that generalize well under d	@article{\nd.2018learning,\ntitle={Learning We	A theory and algorithmic framework for predict
Understanding Deep Learning Generalization by	6.0	3.0	2.0	3.666667	Reject	2.0	3.0	3.0	[Guanhua Zheng, Jitao Sang, Changsheng Xu]	[zhenggh@mail.ustc.edu.cn, jtsang@bjtu.edu.cn,	Deep learning achieves remarkable generalizati	@article{\nzheng2018understanding,\ntitle= {Und	We prove that DNN is a recursively approximate

Logistic Regression

- First, let $p = Pr\{y = 1|x\}$ Pr{Decision=Accept|Score}
- Consider the following function: $g = \log(\frac{p}{1-p})$
 - g is called the "logits" function
 - Logistic Regression: fit logits function using a linear model!

$$g = \log(\frac{p}{1-p}) = w_1 x + w_0$$

Logistic Regression

$$g = \log(\frac{p}{1-p}) = w_1 x + w_0$$

- Pr{Decision=Accept|Score}
- What is Pr{Decision=RejectlScore}

$$p = \frac{1}{1 + e^{-(w_1 x + w_0)}}$$

$$1 - p = \frac{e^{-(w_1 x + w_0)}}{1 + e^{-(w_1 x + w_0)}}$$

Decision Boundary?

How to Find Parameters? W1, W0

- What is Maximum Likelihood Estimation (MLE)?
 - Estimating the parameters of an assumed probability distribution
 - Given some observed data.

This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.

• Goal: Determine parameters for which the observed data have the highest joint probability.

•
$$L_n(w) = L_n(w; y) = f_n(y; w)$$
 where $Y = (y_1, y_2, y_3, ..., y_n)$

• $Find w \rightarrow argmaxL_n(w; Y)$

For Independent and identically distributed random (iid) variables:

$$f_n(\mathbf{y}; heta) = \prod_{k=1}^n \, f_k^{\mathsf{univar}}(y_k; heta) \; .$$

• What is the likelihood that the dataset came from our model?

$$p = \frac{1}{1 + e^{-(w_1 x + w_0)}}$$

$$1 - p = \frac{e^{-(w_1 x + w_0)}}{1 + e^{-(w_1 x + w_0)}}$$

#	X	Y	$Likelihood = \frac{e^{-(3w_1 + w_0)}}{1 + e^{-(3w_1 + w_0)}} * \frac{1}{1 + e^{-(8w_1 + w_0)}} * \dots \frac{1}{1 + e^{-(6w_1 + w_0)}}$
1	$x_1 = 3$	$y_1 = 0$	
2	$x_2 = 8$	$y_2 = 1_{<}$	
N	$x_N = 6$	$y_N = 1$	

- $\bullet \ \widehat{Y}_i = P(X_i) = P(Y_i = 1 \mid X_i)$
- Likelihood = $\prod_{Y_i=1} P(X_i) * \prod_{Y_i=0} (1 P(X_i))$

$$= \prod_{for\ all\ samples} P(X_i)^{y_i} * \left(1 - P(X_i)\right)^{1 - y_i}$$

 $MLE \equiv Maximizing Log of L$

Log of Likelihood =
$$\sum_{i=1}^{n} [y_i * Log(P(x_i)) + (1 - y_i) * Log(1 - P(x_i))]$$

Log of Likelihood =
$$\sum_{i=1}^{n} [y_i * Log(\hat{Y}_i) + (1 - y_i) * Log(1 - \hat{Y}_i)]$$

 $MLE \equiv Maximizing (Log of L) \equiv Minimizing (-Log of L)$

$$-\text{Log}(\text{Likelihood}) = -\sum_{i=1}^{n} [y_i * Log(\hat{Y}_i) + (1 - y_i) * Log(1 - \hat{Y}_i)]$$

Cost function? -Log(Likelihood)

Loss function?
$$-[y_i * Log(\hat{Y}_i) + (1 - y_i) * Log(1 - \hat{Y}_i)]$$

Binary Cross-entropy Loss = Log-Loss = Logistic Regression Loss

• What is the likelihood that the dataset came from our model?

#	X	Y
1	$x_1 = 3$	$y_1 = 0$
2	$x_2 = 8$	$y_2 = 1$
••		
N	$x_N = 6$	$y_N = 1$

$$Likelihood = \frac{e^{-(3w_1 + w_0)}}{1 + e^{-(3w_1 + w_0)}} * \frac{1}{1 + e^{-(8w_1 + w_0)}} * \dots \frac{1}{1 + e^{-(6w_1 + w_0)}}$$

Maximize Likelihood

- = Maximize Log-Likelihood
- = Minimize (-Log-Likelihood)

"Cost"

How to Minimize the Cost Function?

- Sometimes, we cannot derive a formula to minimize loss. (For which model and loss function were we able to do this? _____)
- Using Gradient Descent
- Repeated steps in the opposite direction of the gradient at the current point, because this is the direction of steepest descent.

Gradient Descent for Minimizing Cost

$$J(\mathbf{w},b) = \sum_{i=1}^{N} l_i(\mathbf{w},b)$$

Gradient Update:

Computing the Partial Derivative

 $(\mathbf{w},b) \leftarrow (\mathbf{w},b)$

 $\partial_{(\boldsymbol{w},b)} l_i(\boldsymbol{w},b)$

 $=\partial_{(\boldsymbol{w},b)}[-y_i \log$

 $\sigma(\mathbf{w}^T \mathbf{x}_i + b)]$

Back Propagation: Computational Graph

Back Propagation: Forward ()

Back Propagation: Backward()

Back Propagation: Example

$$z = xw + b$$

$$u = \sigma(z)$$

$$Loss = -y \log(u) - (1 - y)\log(1 - u)$$

- $(\partial l)/\partial l = 1$
- $(\partial l)/\partial u = [(\partial l)/\partial l] * [(\partial l)/\partial u] = -y * \left(\frac{1}{u}\right) + (1-y) * \frac{1}{1-u}$
- $(\partial l)/\partial z = [(\partial l)/\partial u] * [(\partial u)/\partial z]$ Note $\sigma'(z) = \sigma(z) * (1 - \sigma(z))$ $(\partial l)/\partial z = \left[-y * \left(\frac{1}{u}\right) + (1 - y) * \frac{1}{1 - u}\right] * u(1 - u)$
- $(\partial l)/\partial w = (\partial l)/\partial z * (\partial z)/\partial w$ = $\left[-y * \left(\frac{1}{u} \right) + (1 - y) * \frac{1}{1 - u} \right] * u(1 - u) * (\partial z)/\partial w$ = $\left[-y * \left(\frac{1}{u} \right) + (1 - y) * \frac{1}{1 - u} \right] * u(1 - u) * x$
- $(\partial l)/\partial b = (\partial l)/\partial z * (\partial z)/\partial b$ = $\left[-y * \left(\frac{1}{u}\right) + (1-y) * \frac{1}{1-u}\right] * u(1-u) * 1$

Neural Networks

- 2-hidden layer network or 3-layer network
- Params: Weights/Biases
- Non-linearity? Activation functions
 - Relu, Leaky Relu, Tanh, Sigmoid

Revisiting Back Propagation

- Every partial derivative depends cleanly on partial derivatives of child nodes
- The computation is very structured, and everything can be calculated by traversing once through the graph.
 - Gradients can be computed efficiently.

Gradient Descent with Back Propagation

- GD is a generic way to find the local minimum
- Back propagation provides an efficient way to compute derivatives
- GD takes average of the weights suggested by examples for each step

	2	5	0	4	/	9	l	age over ning data
w_0	-0.08	+0.02	-0.02	+0.11	-0.05	-0.14	··· →	-0.08
w_1	-0.11	+0.11	+0.07	+0.02	+0.09	+0.05	··· →	+0.12
w_2	-0.07	-0.04	-0.01	+0.02	+0.13	-0.15	··· →	-0.06
:	:	:	:	:	:	:	٠.	
$\overline{w_{13,001}}$	+0.13	+0.08	-0.06	-0.09	-0.02	+0.04	··· →	+0.04
								·

Revisiting Activation Functions

Non-linearity? Activation functions

• Sigmoid

• Tanh

• Rectified Linear Unit (Relu)

Multi-Class Classification

Understanding Softmax

$$y_i = \frac{e^{z_i}}{\sum_{i=1}^K e^{z_i}}$$

The z vector has real-valued entries, including both positive and negative values

- Positive real-valued entries
- Values sum to 1
- Preserves ordering of z

Can be viewed as a probability distribution over y!

Cross-entropy Loss

Labels: $[y_1 \dots y_k]$

"One-hot Coded"

Example: [0 0 .. 1...0]

k Classe

Cross-Entropy Loss

$$-y_i log(1-\widehat{y_i})$$

Summary

- Linear Regression
- Logistic Regression
 - MLE
 - Cross Entropy Loss
- Gradient Descent
- Backpropagation
- Neural Networks
 - Activation functions
- Multi-class Neural Networks
 - Softmax
 - One-hot encoding

Some Questions

- What happens if we initialize all params to 1?
- What happens if we initialize all params to 0?
- Why do we need non-linearity?
- Why does Relu make training faster?