Линейное уравнение первого порядка

Дифференциальное уравнение

$$y' + p(x)y = q(x) \tag{1}$$

называется линейным дифференциальным уравнением первого порядка. Делаем замену y=uv, где u=u(x), v=v(x) — функции от x. Так как y'=u'v+uv', то после подстановки y и y' в уравнение (1), получаем u'v+uv'+p(x)uv=q(x) или, группируя члены,

$$u'v + u(v' + p(x)v) = q(x)$$
 (2)

Функцию ν выберем так, чтобы выполнялось равенство

v' + p(x)v = 0, или $\frac{dv}{v} = -p(x)dx$. Пусть решением этого дифференциального уравнения с разделенными переменными v = x является функция v = f(x), тогда при таком выборе функции v из уравнения (6.2) получаем дифференциальное уравнение с разделяющимися переменными u = x u'v = q(x) или u'f(x) = q(x),

 $du = \frac{q(x)}{f(x)} dx$. Пусть общим решением этого уравнения является функция $u = \varphi(x,c)$, тогда функция $y = uv = f(x)\varphi(x,c)$ - общее решение уравнения (1).

Рассмотрим применение этого метода на следующем примере. **Пример4.1** Решить дифференциальное уравнение $\frac{dy}{dx} - \frac{2y}{x+1} = (x+1)^3.$

Решение. Будем искать решение в виде: $y = u \cdot v$;

Тогда $y' = \frac{dy}{dx} = u'v + uv'$; Подставляя выражения для искомой функции и ее производной в рассматриваемое дифференциальное уравнение, получим:

$$u'v + uv' - \frac{2uv}{x+1} = (x+1)^3, \text{ или}$$

$$u'v + (v' - \frac{2v}{x+1})u = (x+1)^3. \tag{3}$$

Поскольку одну из функций u и v мы вправе выбрать произвольно, выберем ее так, чтобы выполнялось условие: $v'-\frac{2v}{x+1}=0$. Тогда уравнение (3) запишется в виде: $\frac{dv}{v}=\frac{2dx}{x+1}$. Это уравнение легко интегрируется: $\int \frac{dv}{v} = 2\int \frac{dx}{x+1}$; $\ln |v| = 2\ln |x+1|$. Произвольную постоянную здесь можно положить равной нулю, так как мы выбираем частное решение. Тогда $v=(x+1)^2$.

После подстановки v в исходное уравнение получим (при $x \neq -1$):

$$u'(x+1)^2 = (x+1)^3$$
; $u' = x+1$; $u = \frac{x^2}{2} + x + C$.

Таким образом, $y = u \cdot v = (x+1)^2 (\frac{x^2}{2} + x + C) -$ искомое общее решение.

Пример 4.2

$$v' + 2xv = xe^{-x^2}$$

Убеждаемся, что уравнение линейное первого порядка относительно искомой функции y(x), причем p(x)=2x, $q(x)=e^{-x^2}$. Делаем замену y=uv, тогда y'=u'v+uv'. Подставляем y и y' в последнее уравнение: $u'v+uv'+2xuv=xe^{-x^2}$. Группируем $u'v+u(v'+2xv)=xe^{-x^2}$ Функцию v находим из условия v'+2xv=0. Разделяем переменные v и x:

$$\frac{v'}{v} = -2x$$
 или $\frac{v'}{v}dx = -2xdx$, $\frac{dv}{v} = -2xdx$. Интегрируя последнее уравнение, находим
$$\int \frac{dv}{v} = -\int 2xdx$$
, $\ln v = -x^2$, $v = f(x) = e^{-x^2}$.

При $v = f(x) = e^{-x^2}$ получаем из сгруппированного уравнения, что $u'v = xe^{-x^2}$ или $u'e^{-x^2} = xe^{-x^2}$.

Сокращаем на e^{-x^2} : u'=x, $u=\varphi(x)=\frac{1}{2}x^2+c$. Таким образом, общим решением заданного уравнения является функция $y=uv=(\frac{1}{2}x^2+c)e^{-x^2}$.

Пример 4.3

Найти частное решение уравнения, удовлетворяющее начальным данным

$$y'-ytgx = \frac{1}{\cos x}\,, \quad y(0) = 0\,.$$
 Делаем замену $y = uv$, тогда
$$u'v + uv' - uvtgx = \frac{1}{\cos x}\,; \quad \text{далее, по}$$
 шаблону находим u и v $v' - vtgx = 0\,, \quad \int \frac{dv}{v} = \int \frac{\sin x}{\cos x} dx\,$, т.к.

$$\sin x dx = -d \cos x$$
, To $\ln v = \ln \frac{1}{\cos x}$, $v = \frac{1}{\cos x} \implies u' \frac{1}{\cos x} = \frac{1}{\cos x}$,

$$u'=1$$
, $u=x+c$, $y=uv=\frac{x+c}{\cos x}$ - общее решение.

Используя начальные данные, находим частное решение:

$$y(0) = 0 = \frac{0+c}{\cos 0}, \quad c = 0, \quad y = \frac{x}{\cos x}$$
 - частное решение.

Пример 4.4

$$y' = \frac{1}{2x - y}$$

Уравнение не является линейным относительно функции Y(x). Однако его можно привести к линейному относительно функции X(y).

$$y' = \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{x'}$$
 Т.к. $y' = \frac{dy}{dx} = \frac{1}{\frac{dx}{dy}} = \frac{1}{x'}$; тогда $y' = \frac{1}{x'} = \frac{1}{2x - y}$

ИЛИ

x' - 2x = -y - линейное уравнение относительно функции X(y).

Решаем его по шаблону: x = uv; находим и и v; v' - 2v = 0,

$$\int \frac{dv}{v} = \int 2dy$$

$$\ln v = 2y, \ v = e^{2y}; \ u'v = -y$$
, $u'e^{2y} = -y, \ u = -\int ye^{-2y}dy$. Берем

интеграл по частям: $u = \frac{1}{4}e^{2y}(2y+1)+c$, $x = uv = \frac{1}{4}(2y+1)+ce^{-2y}$ - - общее решение.

Уравнение Бернулли

Уравнением Бернулли называется уравнение следующего вида:

$$y' + a_1(x)y = f(x)y^n$$
. (4)

Здесь $n \neq 0$ и $n \neq 1$, так как в этих случаях уравнение (4) превращается в линейное уравнение.

Уравнение Бернулли, как и линейное уравнение, решается с помощью представления этой функции в виде $y(x) = u(x) \cdot v(x)$.

Пример5. Решить уравнение:

$$y' + tgx \cdot y = y^2 \cdot \sin x. \tag{5}$$

Решение. Это уравнение Бернулли и n = 2. Положим $y = u \cdot v$. Тогда уравнение (5) запишется в виде:

$$u'v + u(v' + v \cdot tgx) = u^2v^2 \sin x$$
. (6)

Будем искать функцию v(x) как решение уравнения:

$$v' + v \cdot tgx = 0.$$

Тогда $\frac{dv}{dx} = -v \cdot tgx$ и $\int \frac{dv}{v} = -\int tgx \cdot dx$. Вычисляя интегралы, получим:

Подставляя полученное выражение в (6), получим:

$$u' = u^2 \cos x \cdot \sin x .$$

Разделяя переменные и интегрируя, получим:

$$\int \frac{du}{u^2} = \int \cos x \cdot \sin x \cdot dx.$$

Выполняя интегрирование, приходим к выражению:

$$-\frac{1}{u} = \frac{\sin^2 x}{2} + C, \text{ или } u = \frac{2}{-\sin^2 x - 2C}.$$

Окончательно получаем: $y = \frac{2\cos x}{-\sin^2 x - 2C}$.