T: Wyższe kwasy karboksylowe.

Podział kwasów karboksylowych ze względu na długość łańcucha węglowego.

- Wyższe kwasy karboksylowe to kwasy, których cząsteczki zawierają długie łańcuchy węglowe.
- Te wyższe kwasy karboksylowe, które mają parzystą liczbę atomów węgla i naturalnie występują w tłuszczach są nazywane kwasami tłuszczowymi.
- Do kwasów tłuszczowych zaliczamy m.in.:

Kwas palmitynowy C₁₅H₃₁COOH

Kwas palmitynowy o wzorze sumarycznym $C_{15}H_{31}COOH$ i skróconym wzorze półstrukturalnym: $CH_3(CH_2)_{14}COOH$

Budowę cząsteczki kwasu palmitynowego można pokazać za pomocą wzoru:

Kwas palmitynowy można wyodrębnić z oleju palmowego, a także z innych tłuszczów roślinnych i zwierzęcych.

Kwas stearynowy C₁₇H₃₅COOH

Kwas stearynowy o wzorze sumarycznym C₁₇H₃₅COOH i skróconym wzorze półstrukturalnym: CH₃(CH₂)₁₆COOH

Budowę cząsteczki kwasu stearynowego można pokazać za pomocą wzoru:

Kwas oleinowy C₁₇H₃₃COOH

Z analizy tego wzoru wynika, że kwas oleinowy ma w cząsteczce tyle samo atomów węgla, co kwas stearynowy, ale o dwa atomy wodoru mniej. Związek ten musi zatem mieć jedno wiązanie podwójne między atomami węgla w cząsteczce. Znajduje się ono między 9. A 10. Atomem węgla, co zapisujemy za pomocą skróconego wzoru półstrukturalnego:

Budowę cząsteczki kwasu oleinowego można pokazać za pomocą wzoru:

Kwas stearynowy

Kwas oleinowy

Właściwości wyższych kwasów karboksylowych:

Dośw.

Badanie właściwości kwasu stearynowego, palmitynowego i oleinowego.

właściwość	Kwas stearynowy	Kwas palmitynowy	Kwas oleinowy
Stan skupienia			
Zanach			
Zapach			
Barwa			
Rozpuszczalność w			
wodzie			
Odczyn			
•			
Zdolność do			
dysocjacji			
Palność			
Tamosc			

Odróżnianie kwasów nasyconych od nienasyconych.

kwas palmitynowy kwas stearynowy kwas oleinowy

Należy użyć wodnego roztworu manganianu(VII) potasu lub wody bromowej.

Obserwacje:

1 –

2-

3 –

Wnioski:

Reakcje, którym ulegają wyższe kwasy karboksylowe:

1. Reagują z zasadami. DOŚWIADCZENIE

 $C_{15}H_{31}COO_{\hbox{\scriptsize H}} + Na_{\hbox{\scriptsize OH}} \stackrel{\it temp.}{\rightarrow} C_{15}H_{31}COONa + H_{2}O$ palmitynian sodu

$$C_{17}H_{35}COO_{\mathbf{H}} + K_{\mathbf{OH}} \stackrel{temp.}{\longrightarrow}$$

$$C_{17}H_{33}COO_{\mathbf{H}} + Li_{\mathbf{OH}} \stackrel{temp.}{\longrightarrow}$$

Wyższe kwasy karboksylowe w przeciwieństwie do niższych kwasów karboksylowych nie reagują z metalami i tlenkami metali. Ulegają reakcji z zasadami tworząc mydła.

Mydła to sole wyższych kwasów karboksylowych.

Podział mydeł

Rodzaje mydeł		
Rozpuszczalne	Np. sodowe, potasowe	
Trudno rozpuszczalne lub nierozpuszczaln e	Np. litowe, magnezowe, glinowe, wapniowe	
Stałe	Twarde	Np. sodowe, wapniowe
	Miękkie	Np. potasowe, glinowe
	Rozpuszczalne Trudno rozpuszczalne lub nierozpuszczaln e	Rozpuszczalne Np. sodowe, Trudno Np. litowe, m wapniowe wapniowe Stałe Twarde

Mydła posiadają odczyn zasadowy:

$$C_{17}H_{35}COONa + H_2O \rightarrow C_{17}H_{35}COOH + NaOH$$

$$C_{17}H_{35}COO^{-} + Na^{+} + H_{2}O \rightarrow C_{17}H_{35}COOH + Na^{+} + OH^{-}$$

$$C_{17}H_{35}COO^- + H_2O \rightarrow C_{17}H_{35}COOH + OH^-$$

 $C_{15}H_{31}COOK + H_2O \rightarrow C15H31COOH + KOH$

 $C_{15}H_{31}COO^{\scriptscriptstyle -} \quad + \quad H_2O \quad {\color{red} \rightarrow} \quad C_{15}H_{31}COOH \quad + \quad OH^{\scriptscriptstyle -}$