Fachbereich Mathematik und Informatik Freie Universität Berlin

Prof. Dr. Ralf Kornhuber, Maren-Wanda Wolf

3. Übung zur Vorlesung $\begin{tabular}{l} \textbf{Computerorientierte Mathematik I} \\ \textbf{WS 2015/2016} \end{tabular}$

Abgabe: 19.11.2015

1. Aufgabe (4 TP)

An einer deutschen Universität wurde im Sommersemester 2001 folgende Aufgabe gestellt:

An n=8 Erwachsenen wurde das Körpergewicht (y) in Abhängigkeit von der Körpergröße (x_1) und dem Alter (x_2) bestimmt. Die Werte sind in der folgenden Tabelle zusammengestellt.

y	(in kg)	80	72	83	65	$\gamma\gamma$	78	90	85
x_1	$(in \ cm)$	181	175	180	170	178	182	185	170
x_2	(in Jahren)	40	65	50	25	48	52	36	60

Bestimmen Sie die Schätzung des Parametervektors β nach der MKQ. Hinweis:

$$(X'X)^{-1} = \begin{pmatrix} 154.86 & -0.85 & -0.08 \\ -0.85 & 0.005 & 0.0002 \\ -0.08 & 0.0002 & 0.0008 \end{pmatrix},$$

$$X'y = \begin{pmatrix} 630 \\ 112072 \\ 29747 \end{pmatrix}.$$

Zur Lösung dieser Aufgabe sollten die Studenten folgendermaßen vorgehen: Anhand der Meßergebnisse definiert man X und y als

$$X = \begin{pmatrix} 1 & 181 & 40 \\ 1 & 175 & 65 \\ \vdots & \vdots & \vdots \\ 1 & 170 & 60 \end{pmatrix}, \ y = \begin{pmatrix} 80 \\ 72 \\ \vdots \\ 85 \end{pmatrix}$$

und berechnet dann den Parametervektor β durch

$$\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} = (X'X)^{-1}X'y,$$

wobei X' die Transponierte der Matrix X und Y^{-1} die Inverse der Matrix Y (d.h. $Y^{-1}Y=YY^{-1}=\mathrm{Id}$) bezeichnet. Unter Beachtung des Hinweises war also nur eine einfache Matrix-Vektor-Multiplikation auszuführen.

Überraschenderweise entspann sich dann bei der Besprechung der Aufgabe ein handfester Disput, da der Professor und einige Studenten die Lösung als

$$\beta_{\rm P} = \begin{pmatrix} -75.0923 \\ 0.82546 \\ 0.153617 \end{pmatrix}$$

angaben, während die Studenten, die den Hinweis genutzt hatten, auf

$$\beta_{\rm S} = \begin{pmatrix} -79.16\\ 30.8094\\ -4.188 \end{pmatrix}$$

gekommen waren. Wer hatte recht, und wie konnte der Streit geschlichtet werden?

2. Aufgabe (2 + 5 PP)

- a) Schreiben Sie ein MATLAB-Programm runden(x,L), das die Zahl x auf L Stellen rundet (das entspricht der Abbildung rd nach G(10,L)).
- b) Implementieren Sie ein Matlab-Programm taschenrechner (L,x,y,op), das einen einfachen Taschenrechner, der mit L Stellen rechnen kann, simuliert. Man soll innerhalb des Programms durch Eingabe zweier Zahlen und einer Grundrechenoperation $\circ \in \{+,-,\times,\div\}$ das Ergebnis der Operation

$$\tilde{x} \circ \tilde{y} = \operatorname{rd}(\tilde{x} \circ \tilde{y})$$

als Ausgabe erhalten.

Sei a=0,12345 und b=-0.1234. Überlegen Sie sich mit Hilfe Ihres Programmes, welche der beiden Darstellungen der binomischen Formel $(a+b)^2=a^2+2ab+b^2$ die bessere ist.

3. Aufgabe (2 + 3 TP)

Für $x, y, s \in \mathbb{R}$ mit x, y, s > 0 soll mit dem Rechner überprüft werden, ob

$$x + y = s \tag{1}$$

gilt. Dabei ist zu beachten, daß im Rechner nur $\mathrm{rd}(x)$, $\mathrm{rd}(y)$, $\mathrm{rd}(s)$ darstellbar sind und eps ≤ 0.5 gilt.

a) Zeigen Sie durch ein Beispiel, daß die Prüfung von

$$rd(x) + rd(y) = rd(s)$$
 (2)

nicht sinnvoll ist, d.h. im allgemeinen nicht "(1) \Rightarrow (2)" gilt.

b) Zeigen Sie, daß "(1) \Rightarrow (3)" gilt, daß also die Abfrage

$$|\operatorname{rd}(x) + \operatorname{rd}(y) - \operatorname{rd}(s)| \le 4|\operatorname{rd}(s)|eps \tag{3}$$

sinnvoll ist.