

Problem

Problem Statement: Define f(n,2) to be the maximal size of a subset $S \in K_n$, which $K_n = \{a | a \in \mathbb{N} \& a \leq n\}$ such that it follows the axiom that if $b \in S$, 2b is not in S. What is f(n,2)?

Cases:

- 1. f(1,2) = 1, only 1.
- 2. f(2,2) = 1, being 1 or 2.
- 3. f(3,2) = 2, either 1, 3 or 2, 3.
- 4. f(4,2) = 3, being 1, 3, 4.

Observation 1.1: $f(n,2) \ge \left\lceil \frac{n}{2} \right\rceil$

Proof: Trivial because all odd positive integers less than or equal to n would work. \square

Now, consider the power of 2 for each positive integers in the range, rewriting it in the form of $k = 2^n p_i$ for which $n = v_2(k)$, then when n = 0 would always work. Now, we define

$$G_k = \{2^k a \mid a \nmid 2 \& 2^k a < n\}$$

For n, the sets are defined as $G_0, G_1, ..., G_{\lfloor \log_2 n \rfloor}$, and define a set S_G that encompasses all of the above subsets.

Then clearly, we cannot take $2G_k$ if we take all the elements of G_k . Therefore, we either take $G_0, G_2, G_4, ..., G_{2s}$ or $G_1, G_3, ..., G_{2s+1}$. Now, it suffices to find the value of G_s .

Claim 1.2: $|G_s| = \left\lceil \frac{\left\lfloor \frac{n}{2^s} \right\rfloor}{2} \right\rceil$ which $\lfloor a \rfloor$ is defined as the largest integer less than or equal to a, and $\lceil a \rceil$ is defined as the smallest integer greater than or equal to a.

Proof: We divide this into two claims:

Subclaim 1: The number of positive integers k less than or equal to n such that $2^s \mid k$ is equal to $\left\lfloor \frac{n}{2^s} \right\rfloor$.

Proof: $2^s a \le n$ for some positive integer a, and from here, $a \le \frac{n}{2^s}$. If $\frac{n}{2^s}$ is not an integer, then the maximum pos.int a that is less than or equal to $\left|\frac{n}{2^s}\right|$ by definition. \square

Subclaim 2: The number of odd positive integers less than n is $\lceil \frac{n}{2} \rceil$

Proof: Followed by the prove of observation 1.1. \square

The claim follows by combining these two subclaims.

Q.E.D.

To create a single expression of claim 1.2, we want to find a simpler form of G_s .

Conjecture 1.3: $|G_s|$ can be written as $\lceil \frac{m}{2^{s+1}} \rceil$ for some positive integer m.

Now we define
$$p(x,y) = \left\lceil \frac{\left\lfloor \frac{x}{2^y} \right\rfloor}{2} \right\rceil$$
, then $p(a_1 2^m + b_1, m) = \left\lceil \frac{a_1}{2} \right\rceil$ such that $0 \le b_1 < 2^m$

From here, define n_s to be $n \pmod{2^s}$, then $f(n,s) = \left\lceil \frac{n-n_s}{2^{s+1}} \right\rceil$. Therefore, $m = n - n_s$. Then, we split into cases about the parity of a_1 :

- 1. If a_1 is even, then $a_1 2^m + b_1 \equiv b_1 \pmod{2^{m+1}}$
- 2. If a_1 is odd, then $a_1 2^m + b_1 = (a_1 1)2^m + 2^m + b_1 \equiv 2^m + b_1 \pmod{2^{m+1}}$

Assume that n = 50, then

1.
$$|G_0| = \left\lceil \frac{\lfloor \frac{50}{2^0} \rfloor}{2} \right\rceil = 25, 50 \equiv 0 \pmod{2}$$

2.
$$|G_1| = \left\lceil \frac{\left\lfloor \frac{50}{2^1} \right\rfloor}{2} \right\rceil = 13, 50 \equiv 2 \pmod{4}$$

3.
$$|G_2| = \left\lceil \frac{\lfloor \frac{50}{2^2} \rfloor}{2} \right\rceil = 6, 50 \equiv 2 \pmod{8}$$

4.
$$|G_3| = \left\lceil \frac{\lfloor \frac{50}{2^3} \rfloor}{2} \right\rceil = 3, 50 \equiv 2 \pmod{16}$$

5.
$$|G_4| = \left\lceil \frac{\left\lfloor \frac{50}{2^4} \right\rfloor}{2} \right\rceil = 2, 50 \equiv 18 \pmod{32}$$

6.
$$|G_5| = \left\lceil \frac{\left\lfloor \frac{50}{25} \right\rfloor}{2} \right\rceil = 1, 50 \equiv 50 \pmod{64}$$

Conjecture 1.4:

1.
$$|G_s| = \left\lceil \frac{n}{2^{s+1}} \right\rceil$$
 if $n \equiv a \pmod{2^{s+1}}$ and $a \ge 2^s$

2

Now, let
$$g(m,s) = \left\lceil \frac{m}{2^{s+1}} \right\rceil$$
, then $p(m,s) = g(m-2^s,s)$

Now let $m = a_1 2^s + b_1$, which by euclidean algorithm, this will always be possible. Then, $f(m, s) = \left\lceil \frac{a_1}{2} \right\rceil$.

$$g(m-2^s,s) = \left\lceil \frac{a_1 2^s + b_1}{2^{s+1}} \right\rceil$$

Which because of the bound that $0 \le b_1 < 2^s$, $\frac{b_1}{2^{s+1}} < \frac{2^s}{2^{s+1}} = \frac{1}{2}$. Therefore, b_1 will have no impact on the value of $g(m-2^s,s)$. \square

Therefore, $g(m-2^s,s) = \left\lceil \frac{a_1}{2} \right\rceil$, and the prove is complete.

In conclusion, $|G_m| = \lceil \frac{n-2^m}{2^{m+1}} \rceil$, and this allows us to massively simplify our expression. Before that, we need to prove that $|G_0| + |G_2| + ... > |G_1| + |G_3| + ...$ Consider the differences $|G_0| - |G_1|, |G_2| - |G_3|, ..., |G_{2n}| - |G_{2n+1}|$. For the remaining, consider $u = \lfloor \log_2 n \rfloor \equiv 1 \pmod{2}$. Now we separate the cases by parity:

1. if $u \equiv 1 \pmod{2}$, then we will be able to partition $G_0, ..., G_u$ into $\frac{u+1}{2}$ subsets of $\{G_{2n}, G_{2n+1}\}$ such that $0 \le n \le \frac{u-1}{2}$, and clearly $|G_{2n}| - |G_{2n+1}| > 0$, thus, the inequality

$$\sum_{m=0}^{\frac{u-1}{2}} |G_{2m}| - |G_{2m+1}| > 0$$

holds. \square

2. If $u \equiv 0 \pmod{2}$, then consider the set $S \setminus \{G_u\}$. Then, $|S \setminus \{G_u\}| \equiv 1 \pmod{2}$, which by subcase 1, the inequality holds. Now, this simply transforms to

$$\left(\sum_{m=0}^{\frac{u-2}{2}} |G_{2m}| - |G_{2m+1}|\right) + |G_u| > 0$$

Which is true since $|G_u|$ is always larger than 0 unless if $2^u > n$. \square

In conclusion, let
$$a=\lfloor \log_2 n \rfloor$$
, then
$$f(n,2)=\sum_{m=0}^{\left \lfloor \frac{a}{2} \right \rfloor} \left \lceil \frac{n-2^{2m}}{2^{2m+1}} \right \rceil$$

However, this will become much more complicated when k becomes large. Now, consider D_n to be the multiples of 2^n . Then, we can express all of these as $|D_{2n}| - |D_{2n-1}|$, and we can just combine as a single summation.

$$f(n,2) = \sum_{i=0}^{\lfloor \log_2 n \rfloor} \lfloor \frac{n}{2^i} \rfloor$$

And the idea is the same for all k other than 2 because we just want to take G_{2n} by subtracting

all the multiples of k^{2n} by all the multiples of k^{2n+1} . Then,

$$f(n,k) = \sum_{i=0}^{\lfloor \log_2 n \rfloor} \left\lfloor \frac{n}{k^i} \right\rfloor$$

With simulation, it's evident that $\lim_{n\to\infty}f(n,k)=\frac{kn}{k+1}$

The Extended Problem Statement: Define $f(n, k_1, k_2)$ to be the maximal size of a subset $S \in K_n$, which $K_n = \{a | a \in \mathbb{N} \& a \leq n\}$ such that it follows the axiom that if $b \in S$, kb is not in S for all k_1, k_2 . What is $f(n, k_1, k_2)$?

First of all, we can consider the multiples of k^0 with the previous strategy. Notice that for all $a \in K_n$, $a \equiv b \pmod{n}$ such that $b \in \frac{\mathbb{Z}}{k\mathbb{Z}}$, and I will first solve the problem when $\gcd(k_1, k_2) = 1$ and $k_1, k_2 \mid n$.

Observation 2.1: Assume that
$$gcd(k_1, k_2) = 1$$
, then $f(n, k) \ge (k_1 - 1)(k_2 - 1) \left| \frac{n}{k_1 k_2} \right|$

Proof: This is a result of the Chinese Remainder Theorem: We can take every positive integers a that aren't divisible by k_1 or k_2 , which by modular arithmetics,

- 1. $a \equiv 1, ..., k_1 1 \pmod{k_1}$
- 2. $a \equiv 1, ..., k_2 1 \pmod{k_2}$

Which since $\gcd(k_1, k_2) = 1$, then by Chinese Remainder Theorem, every pair of $a_1 \pmod{k_1}$ and $a_2 \pmod{k_2}$ will produce a unique residue modulo k_1k_2 . Therefore, there are a total $(k_1 - 1)(k_2 - 1)$ of residues in a cycle of length k_1k_2 that is divisible by neither k_1 nor k_2 . From here, we simply want to find the number of such cycles, which there are $\left|\frac{n}{k_1k_2}\right|$ of them. \square .

However, this is not the end. We will also have $k_1^{2m}(k_1x_1+1), k_1^{2m}(k_1x_1+2)...$ and $k_2^{2m}(k_2x_2+1), k_2^{2m}(k_2x_2+2),...$ Therefore, let $G_{k_1,m}$ be the set of all positive integers a such that $k_1^m a < n$ and $a \in \frac{\mathbb{Z}}{k_1\mathbb{Z}} - \{0\}.$

Conjecture 2.2: Define $G_{k_1,m}$ be the set of positive integers p less than or equal to n such that $v_{k_1}(p) = m$. $G_{k_2,m}$ is defined analogously. then, the sets

$$S_{k_1,m}\{a \mid a \in k_1^{2m} G_{k_1 k_2,0} \text{ and } a \leq n\}$$

$$S_{k_2,m}\{b\mid b\in k_2^{2m}G_{k_1k_2,0}\text{ and }b\leq n\}$$

will work.

Proof: Follow directly from the Chinese Remainder Theorem as a result of *Observation 2.1* and the extended version of *Conjecture 1.4.* \square .

Now, we simply want to find the set of quotients when a positive integer $a \in K_n$ is divided by powers of k_1 and k_2 . There yields $p_1 = \left\lfloor \frac{n}{k_1^m} \right\rfloor$ such positive integers, and analogous defined for p_2 , which the set will be in the form $\{1, ..., a_{p_1}\} \leftrightarrow \{k_1 m^i, ..., k_1^m a_{p_1}\}$ and the former set is simply K_{p_1} .

From here, use the Euclid's Algorithm by rewriting $p_1 = xk_1k_2 + r$, which there will simply be $x(k_1 - 1)(k_2 - 1) + r$ positive integers in the set $S_{k_1,m}$. From here, the answer is

$$x\left(\frac{p_1-r}{xk_1k_2}\right)\varphi(k_1k_2) + r = \frac{(p_1-r)\varphi(k_1k_2)}{k_1k_2} + r$$

To further simplify this, let's make clear of what $p_1 - r$ is. $p_1 - r$ is basically the largest multiple of k_1k_2 less than p_1 , and p_1 is the largest quotient when a positive integer less than or equal to n divided by k_1^m , from our conjecture. $p_1 = \left| \frac{n}{k_1^m} \right|$

$$p_1 - r$$
 is simply $k_1 k_2 \left\lfloor \frac{n \choose k_1^m}{k_1 k_2} \right\rfloor$. The conjecture so far is that this is equal to $\left\lfloor \frac{n}{k_1^{m+1} k_2} \right\rfloor$.

This conjecture is flawed because for f(6,2,3), you can take 1,4,5,6 which will yield a result of 4 instead of 2.

Salvaged Conjecture 2.3: Assume that $k_1 < k_2$, then

$$f(n, k_1, k_2) = \sum_{\zeta=0}^{\infty} \left(\left\lfloor \frac{n}{(k_1 k_2)^{\zeta}} \right\rfloor - \left\lfloor \frac{n}{k_1 (k_1 k_2)^{\zeta}} \right\rfloor \right)$$

Proof: It's always possible to partition K_n into various strings of $\{p, ..., pk_1^a k_2^b\}$ such that $\gcd(k_1, k_2, p) = 1$. First, pick out all positive integers $a \in (\frac{n}{k_1}, n]$. It's easy to prove that this construction works because the function $\frac{n}{x}$ is monotonically decreasing, and the maximum value of of such multiple chain will be extended from n, which is $\frac{n}{k_1}$ and this is excluded from the set. \square

Claim: that the next stage is between the set $\left(\left\lfloor \frac{n}{k_1^2 k_2} \right\rfloor, \frac{n}{k_1 k_2} \right]$

Proof: For the sake of contradiction, assume that there exists an integer between $\left[\frac{n}{k_1k_2}, \frac{n}{k_1}\right]$. This is equivalent to the statement that there exist a chain of multiples a_1, k_1a_1 or a_1, k_2a_1 for any integer $a_1 \in \left[\frac{n}{k_1k_2} + 1, \frac{n}{k_1} - 1\right]$.

Proceed with bounding: $\frac{n}{k_2} + k_1 \le a_1 k_1 \le n - k_1 < n$. \square

What if n is not divisible by k_1 , nor k_2 ? In this case, we simply just take the floor value.

Example: Consider f(1296, 2, 3), first we take all positive integers between [649, 1296], and then we take [109, 216], [19, 36], [4, 6], [1]. This yields $648 + 108 + 18 + 3 + 1 = \boxed{778}$

For f(1296, 3, 5) instead, we first take [433, 1296]. Then, the maximum value of $x \in [1, 432]$ is 86. Then, we take from 86 to $\lfloor \frac{86}{3} \rfloor + 1$, which is [29, 86]. Continue with this, we take [2, 5]. This gives $864 + 58 + 4 = \lceil 926 \rceil$

However, we see a counterexample that if $n=20, k_1=2, k_2=5$, then we can choose [11, 20] and [2] by our algorithm, but notice that 5 can also be taken because $5 \cdot 5 > n$. Therefore, we have to also take positive integers $a \in \left[\left|\frac{n}{k_1 k_2}\right|, \left|\frac{n}{k_1}\right|\right]$, such that $\frac{a}{k_1} > \frac{n}{k_1^2 k_2}$ and $k_2 a > n$ and $k_1 a < \frac{n}{k_1}$.

Therefore, we will Salvage our current conjecture again:

Salvaged Conjecture 2.4: Assume that $k_1 < k_2$, then

$$f(n, k_1, k_2) = \sum_{\zeta=0}^{\infty} \left(\left\lfloor \frac{n}{(k_1 k_2)^{\zeta}} \right\rfloor - \left\lfloor \frac{n}{k_1 (k_1 k_2)^{\zeta}} \right\rfloor \right) + S_n$$

Such that S_n is a set that contains all positive integers a such that

$$\begin{cases} \frac{a}{k_1} > \frac{n}{k_1^2 k_2} \\ k_2 a > n \\ k_1 a < \frac{n}{k_1} \end{cases}$$

We bound the possible values a: $\frac{n}{k_2} < a < \frac{n}{k_1^2}$. We can ignore the first bound of $a > \frac{n}{k_1 k_2}$ because $\frac{n}{k_1 k_2} < \frac{n}{k_2}$. From here, we deduce that $k_1^2 < k_2$ must be true for $|S_n| > 0$, and this will produce about $n \frac{k_2 - k_1^2}{k_1^2 k_2}$ values.

Now, we continue to approximate the maximal number of elements.

$$f(n, k_1, k_2) = \sum_{\zeta=0}^{\infty} \left(\left\lfloor \frac{n}{(k_1 k_2)^{\zeta}} \right\rfloor - \left\lfloor \frac{n}{k_1 (k_1 k_2)^{\zeta}} \right\rfloor \right) + S_n$$

Which when $k_1^2 < k_2$, $|S_n| \approx \frac{(k_2 - k_1^2)n}{k_1^2 k_2}$. For the sake of approximation, assume that the floor values vanish. Then,

$$f(n, k_1, k_2) \approx \sum_{\zeta=0}^{\infty} \frac{n}{(k_1 k_2)^{\zeta}} \left(\frac{k_1 - 1}{k_1} \right) = \frac{(k_1 - 1)n}{k_1} \left(\frac{k_1 k_2}{k_1 k_2 - 1} \right) = n \left(\frac{k_1 k_2 - k_2}{k_1 k_2 - 1} \right)$$

Conjecture 2.5:

1. If $k_1^2 > k_2$, then

$$f(n, k_1, k_2) \approx n \left(\frac{k_1 k_2 - k_2}{k_1 k_2 - 1} \right)$$

2. IF $k_1^2 < k_2$, then

$$f(n, k_1, k_2) \approx n \left(\frac{k_1 k_2 - k_2}{k_1 k_2 - 1} + \frac{k_2 - k_1^2}{k_1^2 k_2} \right)$$

Now, we will prove that this is indeed the maximal size.

Final Final final problem statement: Let P_n be the set of prime divisors of n(for example, $P_{50} = \{2, 5\}$ and $P_{30} = \{2, 3, 5\}$). Define $K_n = \{a \in \mathbb{N} | a \leq n\}$ What is the maximal size of a subset $S \in K_n$ such that it follows the axiom that if $b \in S$, $kb \notin S$ for all $k \in P_n$.