Step-1

Given that the sum of the vectors f(x) and g(x) in **F** is defined to be f(g(x)).

Then the zero vector is g(x) = x

Keeping the usual scalar multiplication,

Then $(f+g)(x)_{is the usual} f(g(x))$

And $(g+f)(x)_{is} g(f(x))$

But $g(f(x)) \neq f(g(x))$

For example $f(x) = x^2$, g(x) = x + 3

Step-2

Now

$$f(g(x)) = f(x+3)$$

$$= (x+3)^{2}$$

$$= x^{2} + 3x + 9$$

$$g(f(x)) = g(x^{2})$$

$$= x^{2} + 3$$

Therefore, $f(g(x)) \neq g(f(x))$

So the rule f + g = g + f is broken.

Rule 4 is also broken, because there must be no inverse function $f^{-1}(x)$ such that $f(f^{-1}(x)) = x$.

If the inverse function exists, it will be the vector -f

For example:

Suppose $f(x) = x^2 + 3$, there is no function f^{-1}

$$f(f^{-1}(x)) = x$$

Therefore rule 4 is also broken.