SECONDO ESONERO FISICA II - AA 2020/2021 - 23/12/2020

- Avete **due ore** per svolgere gli esercizi
- Scrivete nome, cognome, matricola e ID del compito su ogni foglio che scansionate

Primo esercizio

Un selettore di velocità in cui sono presenti un campo elettrico e un campo magnetico di moduli $E_s=1.92\times 10^4$ V/m e $B_s=2\times 10^{-4}$ T è posto all'ingresso di una regione (colorata in grigio in figura) in cui è presente un campo magnetico \vec{B} uscente dal foglio e di modulo B=1 T. Un fascio di particelle di eguale massa m ma carica diversa attraversa il selettore di velocità, entra nella regione di campo con energia cinetica $U_k=7.69\times 10^{-12}$ J e si divide in due. I due sotto-fasci colpiscono le pareti della regione di campo nei punti A_1 e A_2 . Quest'ultimo punto dista $d_2=\sqrt{2}$ m dal punto di entrata. Inoltre, le particelle del fascio di sinistra impiegano un tempo t_1 per arrivare in A_1 , mentre quelle del fascio di destra impiegano un tempo $t_2=\frac{3}{2}t_1$.

Nota Bene: le distanze tra il punto di entrata e lo spigolo S e tra quest'ultimo e il punto A_2 sono uguali. Inoltre, il valore numerico di t_1 non è necessario per svolgere l'esercizio.

- 1. Determinare il valore (compreso di segno) della carica dei due tipi di particelle, q_1 e q_2 (10 punti).
 - o La velocità di entrambi i tipi di particelle è la stessa ed è pari a $v=E_s/B_s=9.6\times 10^7$ m/s. Poiché $U_k=\frac{1}{2}mv^2$ possiamo ricavarci anche la massa, che vale $m=2Uk/v^2=1.67\times 10^{-27}$ Kg. Poiché $t_1=\pi m/|q_1|B$ e $t_2=3\pi m/2|q_2|B$, ma $t_2=\frac{3}{2}t_1$, ne deduciamo che $|q_1|=|q_2|$. I segni si trovano invece considerando le traiettorie: si deve avere $q_1>0$ e $q_2<0$. Inoltre, se $r_2=mv/|q_2|B$ è il raggio di curvatura della traiettoria delle particelle che colpiscono A_2 , geometricamente si trova che $d_2=\sqrt{2}r_2$ e quindi che $r_2=1$ m. Utilizzando questo valore si trova

$$|q_2| = rac{mv}{r_2 B} = 1.60 imes 10^{-19} \ {
m C}$$

2. La regione di spazio in cui è presente il campo viene riempita di un materiale di permeabilità magnetica relativa k_m . In queste condizioni il fascio di destra colpisce lo spigolo S. Determinare il valore di k_m (6 punti).

o Se chiamiamo r il nuovo raggio di curvatura e d la distanza tra il punto di entrata e lo spigolo S, nelle condizioni descritte si avrà $d=2r=2mv/q_2k_mB$. Utilizzando le relazioni dei punti precedenti sappiamo anche che d è anche il raggio di curvatura della traiettoria in assenza del materiale magnetico, cioè $d=mv/|q_2|B$. Eguagliando queste due relazioni troviamo

$$k_{m} = 2.$$

Secondo esercizio

Un spira conduttrice di resistenza R = $1\,\Omega$ avente la forma di un triangolo rettangolo isoscele di lato l=1 m, giace sul piano xy e si muove lungo l'asse x con velocità **costante** v=0.1 m/s, come mostrato in figura. All'istante $t_0=0$ entra in una zona di spazio in cui è presente un campo magnetico B=1 T, uniforme e ortogonale al piano della spira.

Nota Bene: l'area di un triangolo è ab/2, dove a e b sono la base e l'altezza, ma nel caso di un triangolo rettangolo isoscele come quello in figura si ha sempre a=b.

- 1. Determinare l'espressione del flusso del campo magnetico che attraversa la spira in funzione del tempo **(6 punti)**.
 - \circ Se la punta della spira ha posizione x(t), allora l'area della spira che si trova all'interno della regione di campo vale $\Sigma(t)=x(t)^2/2$, e quindi, se scegliamo di calcolare il flusso sul percorso che coincide con la spira e ha normale parallela al campo si trova

$$\Phi(\vec{B}) = \frac{x(t)^2 B}{2} = \frac{B(vt)^2}{2} = \frac{Bv^2 t^2}{2}$$

- Determinare verso e intensità della corrente che fluisce nella spira in funzione del tempo (4 punti).
 - La corrente si trova applicando la legge di Faraday:

$$i(t) = -rac{1}{R}rac{d\Phi(ec{B})}{dt} = -rac{Bv^2t}{R}$$

dove il segno meno indica che la corrente scorre in verso orario.

- 3. Calcolare il tempo t_f necessario affinché la spira entri completamente nella regione di campo e la carica totale che fluisce attraverso la spira nell'intervallo di tempo t_f-t_0 (6 punti).
 - o Poiché la spira si muove a velocità costante e ha lato ha lunghezza l si trova subito $t_f=l/v=10$ s. La carica si può trovare utilizzando, ad esempio, la legge di Felici:

$$q_f = \frac{\Phi_1 - \Phi_2}{R} = -\frac{\Phi_2}{R} = -\frac{l^2 B}{2R} = -0.5 \,\mathrm{C}.$$