Lab 12

Implement 3 different hash functions explained in the lecture:

- 1. Selecting digits
- 2. Folding
- Modular Arithmetic

Write a main method to test each version of hash function with HashTable class.

- Insert random data into your table.
- Then insert non-random data into your table. (Try to come up with data that breaks even distribution for each version of hash function.)
 - Then answer the following questions for each version of hash function.
- Does hash function scatter data evenly throughout hash table?
- How well does hash function scatter random data?
- How well does hash function scatter non-random data?

Hash Functions -- Selecting Digits

- Select certain digits and combine to create the address.
- For example, suppose 9-digit numbers
 - Define a hash function that selects the 2nd and 5th most significant digits

$$h(033475678) = 37$$

 $h(023455678) = 25$

 Define the table size as 100 (2 digits can take 100 different values)

Hash Functions -- Folding

- Folding selecting all digits and adding them.
- For example, suppose 9-digit numbers
 - Define a hash function that selects all digits and adds them

$$h(033475678) = 0 + 3 + 3 + 4 + 7 + 5 + 6 + 7 + 8 = 43$$

 $h(023455678) = 0 + 2 + 3 + 4 + 5 + 5 + 6 + 7 + 8 = 40$

Define the table size as 82 (sum of 9 digits can take 82 different values 0, 1, ..., 81)

Hash Functions -- Modular Arithmetic

 Modular arithmetic – provides a simple and effective hash function.

$$h(x) = x \mod tableSize$$

The table size should be a prime number.