MODALITATEA DE DESFĂȘURARE A EXAMENULUI LA DISCIPLINA "PROGRAMAREA ALGORITMILOR"

- Examenul la disciplina "Programarea algoritmilor" se va desfășura în ziua de 20.01.2022, între orele 9⁰⁰ și 11³⁰, astfel:
 - 09⁰⁰ 09³⁰: efectuarea prezenței studenților
 - 09³⁰ 11³⁰: desfășurarea examenului
 - 11³⁰ 12⁰⁰: verificarea faptului că sursele trimise de către studenți au fost salvate pe platforma MS Teams
- Testul se va desfășura pe platforma MS Teams, iar pe tot parcursul desfășurării sale, de la ora 09⁰⁰ la ora 12⁰⁰, studenții trebuie să fie conectați pe canalul dedicat cursului de "Programarea algoritmilor" corespunzător seriei lor.
- În momentul efectuării prezenței, fiecare student trebuie să aibă pornită camera video în MS Teams și să prezinte buletinul sau cartea de identitate. Dacă dorește să-și protejeze datele personale, studentul poate să acopere codul numeric personal și/sau adresa!
- În timpul desfășurării testului studenții pot să închidă camera video, dar trebuie să o deschidă dacă li se solicită acest lucru de către un cadru didactic!
- Toate subjectele se vor rezolva folosind limbajul Python.
- Subiectul 1 este obligatoriu, iar dintre subiectele 2, 3 și 4 se vor rezolva CEL MULT DOUĂ, la alegere.
- Citirea datelor de intrare se va realiza de la tastatură, iar rezultatele vor fi afișate pe ecran.
- Se garantează faptul că datele de intrare sunt corecte.
- Operațiile de sortare se vor efectua folosind funcții sau metode predefinite din limbajul Python.
- Pentru subiectul 1 nu contează complexitatea soluției propuse.
- Rezolvările subiectelor alese dintre subiectele 2, 3 și 4 trebuie să conțină:
 - o scurtă descriere a algoritmului și o argumentare a faptului că acesta se încadrează într-o anumită tehnică de programare;
 - în cazul problemelor rezolvate folosind metoda Greedy sau metoda programării dinamice se va argumenta corectitudinea criteriului de selecție sau a relațiilor de calcul;
 - în cazul subiectelor unde se precizează complexitatea maximă pe care trebuie să o aibă soluția, se va argumenta complexitatea soluției propuse și vor primi punctaj maxim doar soluțiile corecte care se încadrează în complexitatea cerută;
 - în cazul problemei rezolvate folosind metoda backtracking nu contează complexitatea soluției propuse, dar se va ține cont de eficiența condițiilor de continuare;
 - în fiecare program Python se va preciza, pe scurt, sub forma unor comentarii, semnificația variabilelor utilizate.
- Rezolvările corecte care nu respectă restricțiile indicate vor primi punctaje parțiale.
- Se acordă 1 punct din oficiu.
- Rezolvările tuturor subiectelor se vor scrie de mână, folosind pix/stilou cu culoarea pastei/cernelii albastră sau neagră. Pe fiecare pagina studentul își va scrie numele și grupa, iar paginile trebuie să fie numerotate.
- Înainte de expirarea timpului alocat examenului, toate paginile vor fi fotografiate/scanate clar, în ordinea corectă, și transformate într-un singur fișier PDF care va fi încărcat în Google Drive folosind un anumit formular.
- Numele fișierului PDF trebuie să respecte șablonul *grupa_nume_prenume.pdf*. De exemplu, un student cu numele Popescu Ion Mihai din grupa 131 trebuie să denumească fișierul care conține rezolvările tuturor subiectelor astfel: *131 Popescu Ion Mihai.pdf*.

Subjectul 1 - limbajul Python - 3 p.

- a) Scrieți o funcție litere care primește un număr variabil de cuvinte formate din litere mici ale alfabetului englez și returnează un dicționar care conține pentru fiecare cuvânt primit ca parametru, un dicționar cu frecvența fiecărei litere distincte care apare în cuvânt. De exemplu, pentru apelul litere('teste', 'dictionar', 'ele') funcția trebuie să returneze dicționarul {'teste': {'e': 2, 's': 1, 't': 2}, 'dictionar': {'a': 1, 'c': 1, 'd': 1, 'i': 2, 'n': 1, 'o': 1, 'r': 1, 't': 1}, 'ele': {'e': 2, 'l': 1}}. (1.5 p.)
- b) Folosind un dicționar cu același format ca valorile dicționarului de la punctul a) (i.e., cheile sunt litere, iar valorile frecvența literei respective), să se scrie o secvență de inițializare (list comprehension) pentru o listă astfel încât aceasta să conțină perechile de forma (literă, frecvență) cu literele extrase din dicționar care au frecvența pară. De exemplu, pentru dicționarul {'e': 2, 's': 1, 't': 2} lista trebuie să fie [('e', 2), ('t', 2)]. (0.5 p.)
- c) Considerăm următoarea funcție recursivă:

```
def f(lista, p, u):
    if u-p <= 1:
        return sum(lista[p: u+1])
    k = (u-p+1) // 3
    aux_1 = f(lista, p, p+k)
    aux_2 = f(lista, p+k+1, p+2*k)
    aux_3 = f(lista, p+2*k+1, u)
    return aux_1 + aux_2 + aux_3</pre>
```

Determinați complexitatea funcției apelată pentru o listă L formată din n numere întregi astfel: f(L, 0, n-1). (1 p.)

Subjectul 2 – metoda Greedy (3 p.)

Complexitatea maximă a soluției: $O(n \log_2 n)$

La ora de sport, profesorul vrea să execute exerciții de gimnastică cu grupe de câte 2 elevi, dar pentru a putea realiza acest lucru trebuie ca valoarea absolută a diferenței dintre înălțimile celor 2 elevi dintr-o grupă să fie strict mai mică decât un număr natural h. Scrieți un program Python care citește de la tastatură două numere naturale n și h, precum și numele și înălțimile a n elevi, după care afișează pe ecran, în forma indicată în exemplu, numărul maxim de grupe formate din câte 2 elevi care se pot realiza respectând condiția indicată anterior, precum și numele elevilor din grupele respective. Evident, un elev poate să facă parte din cel mult o grupă! Înălțimile tuturor elevilor și diferența h sunt exprimate în centimetri. Nu contează ordinea în care se vor afișa grupele de elevi și nici ordinea numelor elevilor dintr-o grupă.

Exemplu:

Date de intrare	Date de ieșire
8	3
10	Popescu Ion, Georgescu Ioana
Popescu Ion 172	Mihai Ana, Constantinescu Radu
Mihai Ana 162	Ionescu Ion, Dumitrescu George
Popescu Dana 190	
Ionescu Ion 181	
Georgescu Ioana 170	
Dumitrescu George 188	
Constantinescu Radu 165	
Georgescu Anca 210	
_	

Explicații: Avem n = 8 și h = 10. Se pot forma maxim 3 grupe de câte 2 elevi cu proprietatea că valoarea absolută a diferenței dintre înălțimile lor este strict mai mică decât 10 centimetri. Soluția nu este unică, o altă soluție corectă obținându-se, de exemplu, înlocuind grupa *Ionescu Ion, Dumitrescu George* cu grupa *Ionescu Ion, Popescu Dana*.

Subiectul 3 – metoda Programării Dinamice (3 p.)

Complexitatea maximă a soluției: O(n²)

Alice ar vrea să își schimbe parola la contul de email și are un șir de caractere preferat (format din caractere ASCII) de lungime n și un număr preferat k. Ea se gândește la următorul algoritm de construcție a unei parole din șirul ei de caractere preferat: șterge caractere din șir astfel încât șirul obținut după ștergere verifică următoarea proprietate - pentru orice două caractere aflate pe poziții consecutive în șir diferența dintre codurile lor ASCII (în modul) este mai mare sau egală cu k. Alice ar vrea ca parola să fie cel mai lung șir care se poate obține astfel din șirul ei preferat și numărul ei preferat k și vă roagă pe voi să scrieți un program Python care să citească șirul ei preferat și numărul k și să afișeze o parolă de lungime maximă care să verifice cerințele ei. În plus vă mai roagă îi spuneți și dacă soluția afișată este unică sau există mai multe astfel de parole de lungime maximă, afișând un un mesaj corespunzător: solutia optima este unica/ solutia optima nu este unica

Intrare de la tastatură	Ieșire pe ecran - nu este unică
<pre>iepurasul_si_Alice_@.tara_minunilor 15</pre>	euas_s_Al@.tarau solutia optima nu este unica

Explicații: Codurile ASCII ale caracterelor din șir sunt

105 101 112 117 114 97 115 117 108 95 115 105 95 65 108 105 99 101 95 64 46 116 97 114 97 95 109 105 110 117 110 105 108 111 114

iar ale caracterelor din parolă sunt

101 117 97 115 95 115 95 65 108 64 46 116 97 114 97 117

Oricare două coduri consecutive din parolă diferă prin cel puțin 15 și nu există un alt șir de lungime mai mare cu această proprietate care se poate obține ștergând caractere din șirul inițial. Soluția optimă nu este unică, o altă soluție fiind de exemplu *euas_s_Al@.tar_u* (cu codurile 101 117 97 115 95 115 95 65 108 64 46 116 97 114 95 117)

Subjectul 4 – metoda Backtracking (3 p.)

a) O țeavă cu lungimea de p metri ($1 \le p \le 50$) trebuie să fie tăiată în cel puțin două bucăți ale căror lungimi să fie divizori ai lungimii sale. De exemplu, o țeavă cu lungimea de 4 metri poate fi tăiată în 4 bucăți de câte 1 metru, 2 bucăți de câte 2 metri sau 2 bucăți de câte 1 metru și 1 bucată de 2 metri, dar nu poate fi tăiată într-o bucată de 1 metru și o bucată de 3 metri (deoarece 3 nu este un divizor al lui 4). Scrieți un program Python care să citească de la tastatură numărul natural p și afișează toate modalitățile distincte în care poate fi tăiată corect o bară de lungime p metri, precum și numărul acestora. Două modalități de tăiere se consideră identice dacă sunt formate din aceleași bucăți de țeavă, dar în altă ordine. De exemplu, pentru o țeavă cu lungimea de 4 metri, modalitățile de tăiere 1+1+2, 1+2+1 și 2+1+1 sunt considerate identice. **(2.5 p.)**

Exemplu:

Pentru p=6 trebuie afișate următoarele 7 modalități de tăiere (nu neapărat în această ordine):

```
1+1+1+1+1
1+1+1+2
1+1+1+3
1+1+2+2
1+2+3
2+2+2
3+3
Nr. modalitati: 7
```

b) Precizați cum ar trebui adăugată o singură instrucțiune în program astfel încât să fie afișate doar modalitățile de tăiere în care au fost utilizate exact două tipuri distincte de bucăți de țeavă. Pentru exemplul anterior, aceste soluții sunt cele scrise cu roșu. **(0.5 p.)**