CS 830 Intro to AI, Spring 2025

Written Assignments, Sushma Akoju

Assignment 4

 Describe any implementation choices you made that you felt were important. Clearly explain any aspects of your program that aren't working. Mention anything else that we should know when evaluating your work.

DFS with backtracking, fc and mcv:

Working fine. Runs on test*.col and queen*.col files. I did not get any error and all the datasets successfully ran on all of the examples on agate using color validator successfully.

Mcv only seems space efficient if I used an object to store the domain, variables and neighbors.

FC takes longer than 60 seconds with restarts on queen12_12.col and queen16_16.col

2. What is the size of the state space for this problem?

FC - due to the use of inference to reduce the domain of unassigned variables and therefore search space is reduced. With MCV heuristic, search fails fast. by selecting the most constrained variable which selects the smallest domain first. MCV helps reduce the size of the search tree.

State is the assignment of values to each variable.

State space is set of all possible variations for variable assignments, each variable has a domain size of d_i . If number of colors = k, then if number of variables = n. State space would be n^*k (for each variable (e), there are k possibilities). For this problem, k is finite.

3. What's the average speed-up you get for fc over dfs? For mcv over fc?

For MCV over FC 12ms and number of nodes in the state space significantly reduces for mcv in comparison to fc.

The following is the time in seconds for each algorithm in comparison to that of color reference solution:

The following is the time in seconds for each algorithm in comparison to that of color reference solution:

Color Validator: DFS and DFS with restart

with color reference solution

Colors = 5, Results from Color Validator

Colors = 5, Results from Color Validator	Colors = 5, Results from Color Validator	Colors = 5, Results from Color Validator	Colors = 5, Results from Color Validator
Input	Color Reference DFS	DFS	DFS with restart
test0.col	0.00345396995544 seconds 326 nodes	0.374341964722 seconds 2 nodes	0.384522914886 seconds and 2 nodes
test1.col	0.00348687171936 seconds 4 nodes	0.378524065018 seconds 4 nodes	0.3796210289 seconds and 4 nodes
test2.col	0.00347304344177 seconds 0 nodes	0.377842903137 seconds 0 nodes	0.381197929382 seconds and 5 nodes
Tiny0.col (example from assignment)	0.00351500511169 seconds 4 nodes	0.37916302681 seconds 4 nodes	0.382825136185 seconds and 4 nodes
quee5_5.c	0.00377106666565	0.385175943375 seconds	0.386924982071

ol	seconds 29 nodes	29 nodes	seconds and 29 nodes
quee8_8.c	0.0059859752655 seconds 326 nodes	0.379633188248 seconds 326 nodes	0.378844022751 seconds and 326 nodes
queen12_1 2.col	0.0095329284668 seconds 326 nodes	0.379698991776 seconds 326 nodes	0.380620002747 seconds and 325 nodes
queen16_1 6.col	0.0133719444275 seconds 326 nodes	0.0743238925934 seconds 325 nodes	0.0765061378479 seconds and 326 nodes
graph_100 _03.col			

Colors = 5, Results from			
Color	Color validator color		
Validator	reference	DFS	DFS with restart
test0.col	0.00	0.37	0.38
test1.col	0.00	0.38	0.38
test2.col	0.00	0.38	0.38
Tiny0.col (example from			
assignment)	0.00	0.38	0.38
quee5_5.col	0.00	0.39	0.39
quee8_8.col	0.01	0.38	0.38
queen12_12.c	0.01	0.38	0.38
queen16_16.c ol	0.01	0.07	0.08

	Colors = 10, Results from	Colors = 10,	Colors = 10, Results from	Colors = 10, Results from	,	Colors = 10, Results from Color Validator
from	Color Validator	Result	Color	Color Validator		

Color Validator		s from Color Validat or	Validator			
Input	Color Reference FC	FC	FC restart	Color Reference MCV	MCV	MCV restart
test0.col	0.00343108177 185 seconds and 2 nodes	0.3953 81927 49 secon ds and 2 nodes	0.396310091 019 seconds and 2 nodes	0.0034329891 2048 seconds and 2 nodes	0.386655092239 seconds and 11 nodes	0.405215978622 seconds and 2 nodes
test1.col	0.00352811813 354 seconds and 4 nodes	0.3763 010501 86 secon ds and 4 nodes	0.410300970 078 seconds and 4 nodes	0.0035099983 2153 and 4 nodes	0.391717910767 seconds and 47 nodes	0.401384115219 seconds and 2 nodes
test2.col	0.0035221576 6907 seconds and 0 nodes	0.3933 20798 874 secon ds and 0 nodes	0.38902807 2357 seconds and 0 nodes	0.0034949779 5105 seconds and 0 nodes	0.391717910767 seconds and 0 nodes	0.375793933868 seconds and 0 nodes
Tiny0.col (example from assignme nt)	0.003580808 63953 seconds and 4 nodes	0.3947 13878 632 secon ds and 4 nodes	0.383294105 53 seconds and 4 nodes	0.00561189651 489 seconds and 4 nodes	0.381789922714 seconds and 4 nodes	0.381531953812 seconds and 4 nodes
quee5_5. col	0.00394105911 255 seconds and 26 nodes	0.3942 98076 63 secon ds and 26 nodes	0.38679504 3945 seconds and 26 nodes	0.0038139820 0989 seconds and 25 nodes	0.387121915817 seconds and 25 nodes	0.397708892822 seconds and 25 nodes

quee8_8. col	0.00714612007 141 seconds and 90045 nodes	2.5543 01023 48 secon dseco nds and 133887 nodes	2.556411981 58 seconds and 133887 nodes	0.00561189651 489 seconds and 68 nodes	0.50656914711 seconds and 594 nodes	0.520363092422 seconds and 594 nodes
queen12_ 12.col	27.637454032 9 seconds and 6235301 nodes	59.976 76396 37 secon ds and termin ated by color validat or	0.51038599 0143 seconds and 1023 nodes	11.6062989235 seconds and 6235301 nodes	0.509354829788 seconds and 177 nodes	0.524905920029 seconds and 177 nodes
queen16_ 16.col	39.040981054 3 seconds and 6235301 nodes	59.625 50902 37 secon ds and 6235 nodes	0.29905390 7394 seconds and 176 nodes	15.624669075 seconds and 6235301 nodes	0.300813913345 and 176 nodes	0.320758104324 seconds
graph_10 0_03.col	0.4287362098 69 seconds and 659005 nodes	59.86 595511 44 secon ds and 66813 9 nodes	54.2476820 946 seconds and 668139 nodes	0.0034329891 2048 seconds and 659005 nodes	57.2554368973 seconds and 668139 nodes	57.3343610764 seconds and 668139 nodes
graph_10 00_001c ol	0.0102920532 227 seconds and 1000 nodes	1.0215 618610 4 secon ds and 1000 nodes	1.00896096 23 seconds and 1000 nodes	0.0102920532 227 seconds and 1000 nodes	0.523256778717 seconds and 1000 nodes	0.517082929611 seconds and 1000 nodes

graph_10 00_01co I	Agate - time out for color reference solution	Agate - time out for color refere nce solutio n	Agate - time out for color reference solution	Agate - time out for color reference solution	59.5555489063 seconds and	Agate - time out for color reference solution
le450_15 b.col	Agate - time out for color reference solution					

4. (830 only) Discuss the effectiveness of randomized restarting.

There is a chance that the right assignment is chosen by random tie breaking and with restart, there is a cutoff on the number of nodes in the state space. It esp. seems to be beneficial as the number of search steps before a restart occurs, increases geometrically at each restart. This controls longer searches which helps to exit the local minima.

5. What suggestions do you have for improving this assignment in the future? Textbook is helpful, but it would help if more edge cases were discussed.