Energy conversion I

Lecture 21:

Topic 6: DC Machines (S. Chapman ch. 8 &9)

- A Simple Rotating Loop between Curved Pole Faces.
- Structure of DC machines
- Commutation Problems in Real Machine.
- The Internal Voltage and Torque Equations of Real DC Machine.
- The Equivalent Circuit of a DC Motor.
- Power Flow and Losses in DC Machines.
- Separately Excited, Shunt, Permanent-Magnet and Series DC Motors
- DC Motor Starter
- Introduction to DC Generators

Simple DC Machine

N

 A uniform radial magnetic field supplied by Electromagnetic (/Permanent magnets) poles Stator.

a single rotating loop of wire (rotor).

EE Course No: 25741 Energy Conversion I Sharif University of Technology

(d)

Commutator Effect in DC Machine

Commutator behaves as a mechanical rectifier for induced voltage

EE Course No: 25741 Energy Conversion I

Sharif University of Technology

Induced Torque in Simple DC Machine

Induced Torque and voltage in DC Machine

Commutator action

• Feeding the DC input current to the proper winding to generate torque

- Changing the direction of the armature winding in proper times (armature current frequency proportional to rotor speed)
- Converting the AC induced voltage of the winding to DC output voltage

In a real machine all coils are connected in series or parallel properly

1

Torque ripple and voltage ripple will be negligible

EE Course No: 25741 Energy Conversion I Sharif University of Technology

Construction of DC Machine

Two main parts: Stator / Field / Excitation: generates air-gap flux.

Rotor / Armature: conducts main current for energy conversion.

Permanent Magnet DC Machine

Magnetic field is generated by PM materials Rotor is very similar to others

Sharif University of **Technology**

EE Course No: 25741

Structure of DC machines: rotor (Armature)

EE Course No: 25741 Energy Conversion I

Stator of a dc machine

Stator is usually salient pole with concentrated winding

Sharif University of Technology

Commutator and brushes of a dc machine

EE Course No: 25741 Energy Conversion I

Sharif University of Technology

EE Course No: 25741 Energy Conversion I

Sharif University of Technology

Structure of Larger dc Machines

Interpoles situated between poles.
Interpoles conducting Armature current.

Compensate effect or armature field. Less arc due to commutation

Compensating winding in the main poles.

Conducting Armature current.

Compensate for Armature MMF. Lower voltage drop

Commutating field

All to make machine to behave as an ideal dc machine!!