COSE312: Compilers

Lecture 2 — Lexical Analysis

Hakjoo Oh 2023 Spring

Lexical Analysis

ex) Given a C program

```
float match0 (char *s) /* find a zero */
{if (!strncmp(s, "0.0", 3))
  return 0.0;
}
```

the lexical analyzer returns the stream of tokens:

FLOAT ID(match0) LPAREN CHAR STAR ID(s) RPAREN LBRACE IF LPAREN BANG ID(strncmp) LPAREN ID(s) COMMA STRING(0.0) COMMA NUM(3) RPAREN RPAREN RETURN REAL(0.0) SEMI RBRACE EOF

Specification, Recognition, and Automation

- Specification: how to specify lexical patterns?
 - ▶ In C, identifiers are strings like x, xy, match0, and _abc.
 - ▶ Numbers are strings like 3, 12, 0.012, and 3.5E4.
 - ⇒ regular expressions
- Recognition: how to recognize the lexical patterns?
 - Recognize match0 as an identifier.
 - Recognize 512 as a number.
 - ⇒ deterministic finite automata.
- Automation: how to automatically generate string recognizers from specifications?
 - ⇒ Thompson's construction and subset construction

cf) Lexical Analyzer Generator

- lex: a lexical analyzer generator for C
- jlex: a lexical analyzer generator for Java
- ocamllex: a lexical analyzer generator for OCaml

Part 1: Specification

- Preliminaries: alphabets, strings, languages
- Syntax and semantics of regular expressions
- Extensions of regular expressions

Alphabet

An alphabet Σ is a finite, non-empty set of symbols. E.g,

- $\bullet \ \Sigma = \{0,1\}$
- $\bullet \ \Sigma = \{a,b,\ldots,z\}$

Strings

A string is a finite sequence of symbols chosen from an alphabet, e.g., 1, 01, 10110 are strings over $\Sigma=\{0,1\}$. Notations:

- \bullet ϵ : the empty string.
- wv: the concatenation of w and v.
- w^R : the reverse of w.
- |w|: the length of string w:

$$egin{array}{ll} |\epsilon| &= 0 \ |va| &= |v|+1 \end{array}$$

- If w = vu, then v is a prefix of w, and u is a suffix of w.
- ullet Σ^k : the set of strings over Σ of length k
- Σ^* : the set of all strings over alphabet Σ :

$$\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots = igcup_{i \in \mathbb{N}} \Sigma^i$$

 $\bullet \ \Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \dots = \Sigma^* \setminus \{\epsilon\}$

Languages

A language L is a subset of Σ^* : $L \subseteq \Sigma^*$.

- $ullet L_1 \cup L_2, \quad L_1 \cap L_2, \quad L_1 L_2$
- $\bullet \ L^R = \{w^R \mid w \in L\}$
- ullet $\overline{L}=\Sigma^*-L$
- $L_1L_2 = \{xy \mid x \in L_1 \land y \in L_2\}$
- ullet The *power* of a language, L^n :

$$\begin{array}{rcl} L^0 & = & \{\epsilon\} \\ L^n & = & L^{n-1}L \end{array}$$

ullet The star-closure (or Kleene closure) of a language, L^* :

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots = \bigcup_{i > 0} L^i$$

• The positive closure of a language, L^+ :

$$L^+ = L^1 \cup L^2 \cup L^3 \cup \dots = \bigcup_{i > 1} L^i$$

Regular Expressions

A regular expression is a notation to denote a language.

Syntax

$$\begin{array}{cccc} R & \to & \emptyset \\ & | & \epsilon \\ & | & a \in \Sigma \\ & | & R_1 \mid R_2 \\ & | & R_1 \cdot R_2 \\ & | & R_1^* \\ & | & (R) \end{array}$$

Semantics

$$\begin{array}{rcl} L(\emptyset) & = & \emptyset \\ L(\epsilon) & = & \{\epsilon\} \\ L(a) & = & \{a\} \\ L(R_1 \mid R_2) & = & L(R_1) \cup L(R_2) \\ L(R_1 \cdot R_2) & = & L(R_1) L(R_2) \\ L(R^*) & = & (L(R))^* \\ L((R)) & = & L(R) \end{array}$$

Example

$$\begin{split} L(a^* \cdot (a \mid b)) &= L(a^*)L(a \mid b) \\ &= (L(a))^*(L(a) \cup L(b)) \\ &= (\{a\})^*(\{a\} \cup \{b\}) \\ &= \{\epsilon, a, aa, aaa, \ldots\}(\{a, b\}) \\ &= \{a, aa, aaa, \ldots, b, ab, aab, \ldots\} \end{split}$$

Exercises

Write regular expressions for the following languages:

- ullet The set of all strings over $\Sigma=\{a,b\}.$
- ullet The set of strings of a's and b's, terminated by ab.
- The set of strings with an even number of a's followed by an odd number of b's.
- The set of C identifiers.

Regular Definitions

Give names to regular expressions and use the names in subsequent expressions, e.g., the set of C identifiers:

Formally, a *regular definition* is a sequence of definitions of the form:

$$\begin{array}{cccc} d_1 & \rightarrow & r_1 \\ d_2 & \rightarrow & r_2 \\ & \cdots \\ d_n & \rightarrow & r_n \end{array}$$

- **1** Each d_i is a new name such that $d_i \not\in \Sigma$.
- **2** Each r_i is a regular expression over $\Sigma \cup \{d_1, d_2, \ldots, d_{i-1}\}$.

Example

Unsigned numbers (integers or floating point), e.g., 5280, 0.01234, 6.336E4, or 1.89E-4:

```
\begin{array}{cccc} digit & \rightarrow & 0 \mid 1 \mid \cdots \mid 9 \\ digits & \rightarrow & digit \ digit^* \\ optionalFraction & \rightarrow & . \ digits \mid \epsilon \\ optionalExponent & \rightarrow & (\texttt{E} \ (+ \mid - \mid \epsilon) \ digits) \mid \epsilon \\ number & \rightarrow & digits \ optionalFraction \ optionalExponent \end{array}
```

Extensions of Regular Expressions

- $lacksquare R^+$: the positive closure of R, i.e., $L(R^+)=L(R)^+$.
- ② R?: zero or one instance of R, i.e., $L(R) = L(R) \cup \{\epsilon\}$.
- $lacksquare{1}{3} [a_1a_2\cdots a_n]$: the shorthand for $a_1\mid a_2\mid \cdots \mid a_n$.
- **1** $[a_1 a_n]$: the shorthand for $[a_1 a_2 \cdots a_n]$, where a_1, \ldots, a_n are consecutive symbols.
 - $\blacktriangleright \ [abc] = a \mid b \mid c$
 - $[a-z] = a \mid b \mid \cdots \mid z.$

Examples

C identifiers:

$$\begin{array}{ccc} letter & \rightarrow & [\texttt{A-Za-z_}] \\ digit & \rightarrow & [\texttt{0-9}] \\ id & \rightarrow & letter \ (letter|digit)^* \end{array}$$

Unsigned numbers:

Summary

- Specification: how to specify lexical patterns?
 - ▶ In C, identifiers are strings like x, xy, match0, and _abc.
 - ▶ Numbers are strings like 3, 12, 0.012, and 3.5E4.
 - ⇒ regular expressions
- Recognition: how to recognize the lexical patterns?
 - ► Recognize match0 as an identifier.
 - ► Recognize 512 as a number.
 - ⇒ deterministic finite automata.
- Automation: how to automatically generate string recognizers from specifications?
 - ⇒ Thompson's construction and subset construction

Part 2: String Recognition by Finite Automata

- Non-deterministic finite automata
- Deterministic finite automata

String Recognizer in NFA

An NFA that recognizes strings (a|b)*abb:

Non-deterministic Finite Automata

Definition (NFA)

A nondeterministic finite automaton (or NFA) is defined as,

$$M = (Q, \Sigma, \delta, q_0, F)$$

where

- Q: a finite set of states
- Σ : a finite set of *input symbols* (or input alphabet). We assume that $\epsilon \not\in \Sigma$.
- $q_0 \in Q$: the initial state
- ullet $F\subseteq Q$: a set of final states (or accepting states)
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \to 2^Q$: transition function

Example

Definition of an NFA:

$$\begin{split} &(\{0,1,2,3\},\{a,b\},\delta,0,\{3\}) \\ &\delta(0,a) = \{0,1\} & \delta(0,b) = \{0\} \\ &\delta(1,a) = \emptyset & \delta(1,b) = \{2\} \\ &\delta(2,a) = \emptyset & \delta(2,b) = \{3\} \\ &\delta(3,a) = \emptyset & \delta(3,b) = \emptyset \end{split}$$

The transition graph:

Example

The transition table:

State	a	b	ϵ
0	$\{0, 1\}$	{0}	Ø
1	Ø	$\{2\}$	Ø
2	Ø	$\{3\}$	Ø
3	Ø	Ø	Ø

String Recognition

ullet An NFA recognizes a string $oldsymbol{w}$ if there is a path in the transition graph labeled by $oldsymbol{w}$.

String aabb is accepted because

$$0\stackrel{a}{\rightarrow}0\stackrel{a}{\rightarrow}1\stackrel{b}{\rightarrow}2\stackrel{b}{\rightarrow}3$$

In general, the automaton recognizes any strings that end with abb:

$$L = \{wabb \mid w \in \{a,b\}^*\}$$

• The language of an NFA is the set of recognizable strings.

Exercises

Find the languages of the NFAs:

•

•

Exercises

Deterministic Finite Automata (DFA)

A DFA is a special case of an NFA, where

- $oldsymbol{0}$ there are no moves on $oldsymbol{\epsilon}$, and
- 2 for each state and input symbol, the next state is unique.

Definition (DFA)

A *deterministic finite automaton* (or *DFA*) is defined by a tuple of five components:

$$M = (Q, \Sigma, \delta, q_0, F)$$

where

- Q: a finite set of states
- ullet Σ : a finite set of *input symbols* (or input alphabet)
- ullet $\delta:Q imes\Sigma o Q$: a total function called transition function
- $q_0 \in Q$: the initial state
- $F \subseteq Q$: a set of final states

Example

A DFA that accepts $(a \mid b)^*abb$:

Exercise 1

What is the language of the DFA?

Exercise 2

What is the language of the DFA?

Summary

NFAs and DFAs are string recognizers.

- DFAs provide a concrete algorithm for recognizing strings.
- NFAs bridge the gap between REs and DFAs:
 - REs are descriptive but not executable.
 - ▶ DFAs are executable but not descriptive.
 - NFAs are in-between the REs and DFAs.

Part 3: Automation

Transform the lexical specification into an executable string recognizers:

From REs to NFAs

Transform a given regular expression into a semantically equivalent NFAs:

An instance of "compilation":

- The source language is regular expressions and the target language is NFAs.
- The correctness is defined by the equivalence of the denoted languages.

Principles of Compilation

Every automatic compilation

- 1 is done "compositionally", and
- 2 maintains some "invariants" during compilation.

Compilation of regular expressions, e.g., $R_1|R_2$:

- The compilation of $R_1|R_2$ is defined in terms of the compilation of R_1 and R_2 .
- **②** Compiled NFAs for R_1 and R_2 satisfy the invariants:
 - an NFA has exactly one accepting state,
 - no arcs into the initial state, and
 - no arcs out of the accepting state.

The Source Language

Compilation

Base cases:

$$\bullet$$
 $R = \epsilon$:

$$\bullet$$
 $R = \emptyset$

•
$$R = a \ (\in \Sigma)$$

Compilation

Inductive cases:

- $R = R_1 | R_2$:
 - ① Compile R_1 and R_2 :

② Compile $R_1|R_2$ using the results:

Compilation

- $R = R_1 \cdot R_2$:
 - **1** Compile R_1 and R_2 :

2 Compile $R_1 \cdot R_2$ using the results:

Compilation

- $R = R_1^*$:
 - lacktriangledown Compile R_1 :

2 Compile R_1^* using the results:

Examples

- 0 · 1*:
- $(0|1) \cdot 0 \cdot 1$:
- $(0|1)^* \cdot 1 \cdot (0|1)$:

From NFA to DFA

Transform an NFA

$$(N,\Sigma,\delta_N,n_0,N_A)$$

into an equivalent DFA

$$(D, \Sigma, \delta_D, d_0, D_A).$$

Running example:

ϵ -Closures

 $\epsilon ext{-closure}(I)$: the set of states reachable from I without consuming any symbols.

$$\begin{array}{lll} \epsilon\text{-closure}(\{1\}) &=& \{1,2,3,4,6,9\} \\ \epsilon\text{-closure}(\{1,5\}) &=& \{1,2,3,4,6,9\} \cup \{3,4,5,6,8,9\} \end{array}$$

Subset Construction

- ullet Input: an NFA $(N,\Sigma,\delta_N,n_0,N_A)$.
- Output: a DFA $(D, \Sigma, \delta_D, d_0, D_A)$.
- ullet Key Idea: the DFA simulates the NFA by considering every possibility at once. A DFA state $d\in D$ is a set of NFA state, i.e., $d\subseteq N$.

Running Example (1/5)

The initial DFA state $d_0 = \epsilon$ -closure $(\{0\}) = \{0\}$.

Running Example (2/5)

For the initial state S, consider every $x \in \Sigma$ and compute the corresponding next states:

$$\epsilon ext{-closure}(igcup_{s\in S}\delta(s,a)).$$

$$\begin{array}{lcl} \epsilon\text{-closure}(\bigcup_{s\in\{0\}}\delta(s,a)) &=& \{1,2,3,4,6,9\}\\ \epsilon\text{-closure}(\bigcup_{s\in\{0\}}\delta(s,b)) &=& \emptyset\\ \epsilon\text{-closure}(\bigcup_{s\in\{0\}}\delta(s,c)) &=& \emptyset \end{array}$$

Running Example (3/5)

For the state $\{1, 2, 3, 4, 6, 9\}$, compute the next states:

$$\begin{array}{l} \epsilon\text{-closure}(\bigcup_{s \in \{1,2,3,4,6,9\}} \delta(s,a)) = \emptyset \\ \epsilon\text{-closure}(\bigcup_{s \in \{1,2,3,4,6,9\}} \delta(s,b)) = \{3,4,5,6,8,9\} \\ \epsilon\text{-closure}(\bigcup_{s \in \{1,2,3,4,6,9\}} \delta(s,c)) = \{3,4,6,7,8,9\} \end{array}$$

Running Example (4/5)

Compute the next states of $\{3, 4, 5, 6, 8, 9\}$:

$$\begin{array}{l} \epsilon\text{-closure}(\bigcup_{s \in \{3,4,5,6,8,9\}} \delta(s,a)) = \emptyset \\ \epsilon\text{-closure}(\bigcup_{s \in \{3,4,5,6,8,9\}} \delta(s,b)) = \{3,4,5,6,8,9\} \\ \epsilon\text{-closure}(\bigcup_{s \in \{3,4,5,6,8,9\}} \delta(s,c)) = \{3,4,6,7,8,9\} \end{array}$$

Running Example (5/5)

Compute the next states of $\{3, 4, 6, 7, 8, 9\}$:

$$\begin{array}{l} \epsilon\text{-closure}(\bigcup_{s \in \{3,4,6,7,8,9\}} \delta(s,a)) = \emptyset \\ \epsilon\text{-closure}(\bigcup_{s \in \{3,4,6,7,8,9\}} \delta(s,b)) = \{3,4,5,6,8,9\} \\ \epsilon\text{-closure}(\bigcup_{s \in \{3,4,6,7,8,9\}} \delta(s,c)) = \{3,4,6,7,8,9\} \end{array}$$

Subset Construction Algorithm

Algorithm 1 Subset construction

```
Input: An NFA (N, \Sigma, \delta_N, n_0, N_A)
Output: An equivalent DFA (D, \Sigma, \delta_D, d_0, D_A)
d_0 = \epsilon-closure(\{n_0\})
D = \{d_0\}
W = \{d_0\}
while W \neq \emptyset do
   remove q from W
   for c \in \Sigma do
      t = \epsilon-closure(\bigcup_{s \in a} \delta(s, c))
      D = D \cup \{t\}
      \delta_D(q,c)=t
      if t was newly added to D then
          W = W \cup \{t\}
      end if
   end for
end while
D_A = \{ q \in D \mid q \cap N_A \neq \emptyset \}
```

Running Example (1/5)

The initial state $d_0 = \epsilon\text{-closure}(\{0\}) = \{0\}$. Initialize D and W:

$$D = \{\{0\}\}, \qquad W = \{\{0\}\}$$

Running Example (2/5)

Choose $q=\{0\}$ from W. For all $c\in \Sigma$, update δ_D :

	a	b	\overline{c}
{0}	$\{1,2,3,4,6,9\}$	Ø	Ø

Update $oldsymbol{D}$ and $oldsymbol{W}$:

$$D = \{\{0\}, \{1, 2, 3, 4, 6, 9\}\}, \qquad W = \{\{1, 2, 3, 4, 6, 9\}\}$$

Running Example (3/5)

Choose $q=\{1,2,3,4,6,9\}$ from W. For all $c\in \Sigma$, update δ_D :

	a	b	c
$\overline{\{0\}}$	$\{1, 2, 3, 4, 6, 9\}$	Ø	Ø
$\{1,2,3,4,6,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$

Update $oldsymbol{D}$ and $oldsymbol{W}$:

$$D = \{\{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$$

$$W = \{\{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$$

Running Example (4/5)

Choose $q=\{3,4,5,6,8,9\}$ from W. For all $c\in \Sigma$, update δ_D :

-	a	b	\overline{c}
$\overline{\{0\}}$	$\{1,2,3,4,6,9\}$	Ø	Ø
$\{1,2,3,4,6,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$
$\{3,4,5,6,8,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$

$oldsymbol{D}$ and $oldsymbol{W}$:

$$D = \{\{0\}, \{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$$

$$W = \{\{3, 4, 6, 7, 8, 9\}\}$$

Running Example (5/5)

Choose $q=\{3,4,6,7,8,9\}$ from W. For all $c\in \Sigma$, update δ_D :

	a	b	c
$\overline{\{0\}}$	$\{1,2,3,4,6,9\}$	Ø	Ø
$\{1,2,3,4,6,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$
$\{3,4,5,6,8,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$
$\{3,4,6,7,8,9\}$	Ø	$\{3,4,5,6,8,9\}$	$\{3,4,6,7,8,9\}$

 $oldsymbol{D}$ and $oldsymbol{W}$:

$$\begin{array}{rcl} D &=& \{\{0\},\{1,2,3,4,6,9\},\{3,4,5,6,8,9\},\{3,4,6,7,8,9\}\} \\ W &=& \emptyset \end{array}$$

The while loop terminates. The accepting states:

$$D_A = \{\{1, 2, 3, 4, 6, 9\}, \{3, 4, 5, 6, 8, 9\}, \{3, 4, 6, 7, 8, 9\}\}$$

Algorithm for computing ϵ -Closures

The definition

 $\epsilon ext{-closure}(I)$ is the set of states reachable from I without consuming any symbols.

is neither formal nor constructive.

A formal definition:

 $T=\epsilon ext{-closure}(I)$ is the smallest set such that

$$I \cup \bigcup_{s \in T} \delta(s, \epsilon) \subseteq T.$$

ullet Alternatively, T is the smallest solution of the equation

$$F(X) \subseteq (X)$$

where

$$F(X) = I \cup \bigcup_{s \in X} \delta(s, \epsilon).$$

Such a solution is called the least fixed point of F.

Fixed Point Iteration

The least fixed point of a function can be computed by the *fixed point iteration*:

$$T = \emptyset$$
 repeat
$$T' = T$$

$$T = T' \cup F(T')$$
 until $T = T'$

Example

ϵ -closure($\{1\}$):

Iteration	T'	T
1	Ø	{1}
2	$\{1\}$	$\{1,2\}$
3	$\{1,2\}$	$\{1,2,3,9\}$
4	$\{1,2,3,9\}$	$\{1,2,3,4,6,9\}$
5	$\{1,2,3,4,6,9\}$	$\{1,2,3,4,6,9\}$

Summary

Key concepts in lexical analsis:

- Specification: Regular expressions
- Implementation: Deterministic Finite Automata