Can We Accurately Model Building Energy Usage?

By Justin Tyrrell

About me

- Outdoors
 - Kayaking
 - Hiking
 - o Biking
- Concerts
- Environmental Studies
- Career
 - Energy Efficiency
 - Environmental Health
 - Data Science

Why Should We Care?

- Current administration's focus on Climate Change
- Reducing energy consumption
- Energy efficiency
- Accurately modeling baseline usage

The Data

- Metadata
 - Includes unique building ID, site ID, primary use, and metered energy use type
- Energy usage and weather
 - Hour by hour for each building/ site ID for 1 year
- Kaggle Competition
 - 20,000,000+ rows in train
 - 40,000,000+ rows in test

The Data

Building the Model

- Random Forest Regressor
 - Root Mean Squared Log Error (RMSLE)
- Split data into:
 - Water Usage Types
 - Electricity
- My RMSLE: 0.855
- Kaggle Winning RMSLE: 0.931

Feature Importances

Conclusions

- Initial results from modeling train data are promising
 - My RMSLE: 0.855
 - Kaggle Winning RMSLE: 0.931
- Square footage and temperature important to water metered energy types
- Square footage most important for electricity
- AWS EC2 instance crucial for future work

Questions?

LinkedIn:/in/justin-tyrrell/

Github: /jtyrrell86

Appendices

- 1. Sources
- 2. Future Direction
- 3. Data Visualizations
- 4. Additional Feature Importance Plots

Sources

- Data https://www.kaggle.com/c/ashrae-energy-prediction/leaderboard
- Energy stats https://www.eia.gov/
- Biden admins climate goals https://www.nytimes.com/live/2021/04/22/us/biden-earth-day-climate-sum
 mit

Future Direction

- Run my cleaning script and model on the test dataset using an AWS EC2 instance and then submit the predictions to Kaggle
- Depending on how this model predicts on the test data it could be useful to use a Grid Search to try other models
- Look into imputing the missing values from one or more of the dropped columns in the weather data

Cleaning and Featurization

- Missing values
 - imputing missing temperatures
- Timestamp data, Primary usage, and meter columns
 - One hot encoding
- Usage conversion for site 0

Building Metadata

building_meta.csv									
Variable Name	Data Type	Description							
site_id int		Foreign key for the weather files.							
building_id	int	Foreign key for training.csv							
primary 1160	object	Indicator of the primary category of activities for the building based							
primary_use	(string)	on EnergyStar property type definitions							
square_feet	int	Gross floor area of the building							
year_built	float	Year building was opened							
floor_count	float	Number of floors of the building							

Primary uses included Education, Entertainment/public assembly, Food sales and service, Healthcare, Lodging/residential, Manufacturing/industrial, Office, Other, Parking, Public services, Retail, Services, Technology/science, Utility, and Warehouse/storage.

Energy Usage and Usage Type

train.csv									
Variable Name	Data Type	Description							
building_id	int	Foreign key for the building metadata.							
meter int		The meter id code. Read as {0: electricity, 1: chilledwater, 2: steam, 3: hotwater}. Not every building has all meter types.							
timestamp	object (string)	When the measurement was taken							
meter_reading	float	The target variable. Energy consumption in kWh (or equivalent). Note that this is real data with measurement error, which we expect will impose a baseline level of modeling error. UPDATE: as discussed here, the site 0 electric meter readings are in kBTU.							

Over 20 million rows of data

Weather Data

weather_[train/test].csv									
Variable Name	Data Type	Description							
site_id	int								
timestamp	object (string)	When the measurement was taken							
air_temperature	float	Degrees Celsius							
cloud_coverage	float	Portion of the sky covered in clouds, in oktas							
dew_temperature	float	Degrees Celsius							
precip_depth_1_hr	float	Millimeters							
sea_level_pressure	float	Millibar/hectopascals							
wind_direction	float	Compass direction (0-360)							
wind_speed	float	Meters per second							

Cleaned Data

	square_feet	meter_reading	air_temperature	q1	q2	q3	q4	afternoon	early_morning	evening	 Office	Other	Parking	Public services	Retail	Services
0	7432	0.0	25.0	1	0	0	0	0	1	0	 0	0	0	0	0	0
1	2720	0.0	25.0	1	0	0	0	0	1	0	 0	0	0	0	0	0
2	5376	0.0	25.0	1	0	0	0	0	1	0	 0	0	0	0	0	0
3	23685	0.0	25.0	1	0	0	0	0	1	0	 0	0	0	0	0	0
4	116607	0.0	25.0	1	0	0	0	0	1	0	 0	0	0	0	0	0