ЛКШ.2015.Август.А.День 12 Судиславль, «Берендеевы поляны», 11 августа 2015 года

Задача А. Глобальный максимальный разрез

Имя входного файла: globalcut.in Имя выходного файла: globalcut.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайта

Дан неориентированный граф, каждое ребро имеет свою стоимость. Найдите величину глобального минимального разреза.

Формат входных данных

В первой строке входного файла находится два числа n и m — число вершин и ребер в графе ($2 \le n \le 1000, 1 \le m \le 30\,000$). Следующие m строк описывают ребра и содержат по три числа a, b, c, ребро между a и b пропускной способностью c $0 \le c \le 10^9$.

Формат выходных данных

Выведите величину глобального минимального разреза.

Примеры

globalcut.in	globalcut.out
4 5	3
1 2 1	
1 3 2	
3 2 1	
2 4 2	
3 4 1	

Задача В. В поисках невест

Имя входного файла: brides.in Имя выходного файла: brides.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Однажды король Флатландии решил отправить k своих сыновей на поиски невест. Всем известно, что во Флатландии n городов, некоторые из которых соединены дорогами. Король живет в столице, которая имеет номер 1, а город с номером n знаменит своими невестами.

Итак, король повелел, чтобы каждый из его сыновей добрался по дорогам из города 1 в город n. Поскольку, несмотря на обилие невест в городе n, красивых среди них не так много, сыновья опасаются друг друга. Поэтому они хотят добраться до цели таким образом, чтобы никакие два сына не проходили по одной и той же дороге (даже в разное время). Так как король любит своих сыновей, он хочет, чтобы среднее время сына в пути до города назначения было минимально.

Формат входных данных

В первой строке входного файла находятся числа n, m и k — количество городов и дорог во Флатландии и сыновей короля, соответственно ($2 \le n \le 200, 1 \le m \le 2000, 1 \le k \le 100$). Следующие m строк содержат по три целых положительных числа каждая — города, которые соединяет соответствующая дорога и время, которое требуется для ее прохождения (время не превышает 10^6). По дороге можно перемещаться в любом из двух направлений, два города могут быть соединены несколькими дорогами.

Формат выходных данных

Если выполнить повеление короля невозможно, выведите на первой строке число -1. В противном случае выведите на первой строке минимальное возможное среднее время (с точностью 5 знаков после десятичной точки), которое требуется сыновьям, чтобы добраться до города назначения, не менее чем с пятью знаками после десятичной точки. В следующих k строках выведите пути сыновей, сначала число дорог в пути и затем номера дорог в пути в том порядке, в котором их следует проходить. Дороги нумеруются, начиная с единицы, в том порядке, в котором они заданы во входном файле.

Примеры

brides.in	brides.out
5 8 2	3.00000
1 2 1	2 2 6
1 3 1	2 3 8
1 4 3	
2 5 5	
2 3 1	
3 5 1	
3 4 1	
5 4 1	

Задача С. Домино в казино

Имя входного файла: domino.in Имя выходного файла: domino.out Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Домино — хорошо известная игра, в которую люди играют на улицах, отдыхая после работы. Во всяком случае, так было до тех пор, пока недавно Джон организовал домино в своем казино.

Конечно, классическое домино плохо вписывается в казино, по этому Джон установил свои правила. Игра идет на прямоугольном поле $m \times n$. В каждой клетке написано целое число.

У игрока есть k доминошек — прямоугольников 2×1 . Игрок кладет доминошки на доску без перекрытий. После этого его очки считаются, как сумма произведений чисел под доминошками

Например, есть 2 способа положить 2 доминошки на поле 2×2 . Для доски ниже лучший способ показан слева в таком случае игрок получит $1 \times 3 + 4 \times 2 = 11$ очков. Если положить доминошки, так как показано на картинке справа игрок получит $1 \times 4 + 3 \times 2 = 10$ очков.

По доске и количеству доминошек найдите максимальное количество очков, которое можно получить.

Формат входных данных

Первая строка содержит три целых числа m, n and k ($1 \le m \le 16$, $1 \le n \le 100$, $1 \le k \le 200$). Следующие m строк содержат n целых чисел каждая и описывают игровое поле. Числа на доске не отрицательны и не превосходят 1000. Гарантируется, что есть хотя бы один способ разложить доминошки.

Формат выходных данных

Выведите одно число — максимальное количество очков, которые игрок может получить.

Примеры

domino.in	domino.out
2 2 2	11
1 4	
3 2	