

Department of Mathematics, School of advanced sciences Winter Semester (2022-23) Instructor: Dr.Raghavendar K

Applications of Differential and Difference Equations (MAT2002)

Worksheet-II

- 1. Find the Fourier series expansion for the following functions.
 - (a) The clipped response of a half-wave rectifier is the periodic function f(t) of period 2π defined over the period $0 \le t \le 2\pi$ by $f(t) = \begin{cases} 5\sin t, & 0 \le t \le \pi, \\ 0, & \pi \le t \le 2\pi. \end{cases}$
 - (b) The charge q(t) with periodicity 2π on the plates of a capacitor at time t is shown in the following figure. Express q(t) as a Fourier series expansion in the interval $[0, 2\pi]$

- (c) $f(t) = \begin{cases} \pi^2, & -\pi < t < 0, \\ (t \pi)^2, & 0 < t < \pi. \end{cases}$ Using this result evaluate the following sums.
 - i. $\sum_{n=1}^{\infty} \frac{1}{n^2}$
 - ii. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$
- (d) $f(t) = \pi + t, -\pi < t < \pi$, Hence show that $\frac{\pi}{4} = 1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \dots$
- 2. Find half range Fourier Cosine and Sine expansion.
 - (a) $f(t) = \sin 3t, 0 < t < \pi$
 - (b) $f(t) = e^{-t}, 0 < t < 2$
- 3. Using the Parseval's identity prove the following
 - (a) $\int_{-\pi}^{\pi} \cos^4 x dx = \frac{3\pi}{4}$
 - (b) $f(t) = \begin{cases} 1, & -\pi/2 < t < \pi/2, \\ -1, & \pi/2 < t < 3\pi/2. \end{cases}$ Deduce that $1 + \frac{1}{9} + \frac{1}{25} + \dots = \frac{\pi^2}{8}$

4. Find the first two harmonics for the following data

(a)	t	0	$\pi/2$	π	$3\pi/2$
	f(t)	1	2	3	4

(b)	t	0	$\pi/3$	$2\pi/3$	π	$4\pi/3$	$5\pi/3$
	f(t)	3	4	5	3	-4	-12