ESc201: Introduction to Electronics

Amplifiers

Amit Verma
Dept. of Electrical Engineering
IIT Kanpur

RECAP

Input resistance $R_i = V_i / I_i$

(Ideally large)

Trans conductance

(Ideally large)

$$\left. g_m = \frac{I_o}{V_i} \right|_{V_o = 0}$$

(Ideally small)

Output conductance: $g_o = 1 / r_o$

$$A_{V} = \frac{V_{O}}{V_{S}} = -g_{m}r_{O} \times \frac{R_{L}}{r_{O} + R_{L}} \times \frac{R_{i}}{R_{i} + R_{S}}$$

In the ideal case r_o is infinite

$$A_V = \frac{V_o}{V_S} = -g_m R_L \times \frac{R_i}{R_i + R_S}$$

We would ideally like input resistance R_i to be infinite as well!

$$A_V = -g_m R_L$$

RECAP

Ideal Transistor Characteristics

How do we use elements such as X, Y etc to make amplifiers?

When only a part of device characteristics is suitable for amplification, then we need to push the device into that region by applying suitable bias voltages.

This process is called **BIASING**

RECAP

How do we get rid of unwanted dc voltage at the output?

RECAP

Capacitor is chosen large enough so that at the signal frequency $1/j\omega C \approx 0$.

What happens if both dc voltage source and signal source have one terminal as ground?

Solution

$$v_i(total) = v_S + V_B$$

Note the role of $R_{B 11}$

Amplifier Schematic using Device X

How do we use element Y to make amplifiers?

Device Y

$$I_o = 0$$
 for $V_0 < V_{sat}$

$$I_o = 0$$
 for $V_i \le V_\alpha$ for $V_0 > V_{\text{sat}}$
= $g_m \times (V_i - V_\alpha)$ for $V_i > V_\alpha$

for
$$V_0 > V_{sat}$$

Ideal Characteristics

How do we use device Y to make an amplifier?

for
$$V_O < V_{sat} : I_O = 0$$

for $V_O \ge V_{sat}$:

$$I_o = 0$$

for
$$V_i \leq V_{\alpha}$$

$$= g_m \times (V_i - V_\alpha)$$
 for $V_i > V_\alpha$

Will the earlier solution work?

The purpose of biasing network is to operate the device in a region which resembles ideal transistor

 V_O = -ve which is not possible for device Y

Earlier Solution in terms of load line

Why is circuit working for Device X and not for Device Y?

Device Y being discussed in current lecture

 $R_L' = R_C$ for dc and $R_C || R_L$ for ac

Solution to get meaningful Q point

The purpose of biasing network is to operate the device in a region which resembles ideal transistor

Revised Amplifier Schematic for Device Y

Better representation of biasing

 C_C

Economising on power supplies

Can we implement an amplifying circuit using one dc voltage source only?

A single supply V_{CC} can be used to provide bias to both input and output

High response device

For
$$V_o < 0.2 \text{ V} \Rightarrow I_o = 0$$
 Output characteristics

For $V_o \ge 0.2 \text{ V}$
 $I_o = 0 \text{ for } V_i \le 1 \text{ V}$

Transfer characteristics

 $I_o = 10^3 \cdot (V_i - 1 \text{ V}) \text{ mA for } V_i > 1 \text{ V}$

- •The voltage gain circuit we designed will be very sensitive to:
 - variations in resistor values, power supply, device parameters such as V_{α} , etc.

Highly sensitive to resistor value

Assume $V_0 \ge 0.2 \text{ V}$ by choosing proper bias

$$I_o = 0 \text{ for } V_i \le 1 \text{ V}$$

$$I_o = 10^3 \cdot (V_i - 1 \text{ V}) \text{ mA for } V_i > 1 \text{ V}$$

Target Quiescent Current:

$$V_{CC} = 5 \text{ V}$$
; $R_2 = 1 \text{ k}\Omega$; $R_1 = 3.95 \text{ k}\Omega$
 $\Rightarrow V_1 = 1.01 \text{ V} \Rightarrow I_{OQ} = 10 \text{ mA}$

What if R₂ varies?

$$V_{CC} = 5 \text{ V}$$
; $R_2 = 0.99 \text{ k}\Omega$; $R_1 = 3.95 \text{ k}\Omega$
 $\Rightarrow V_i = 1.002 \text{ V} \Rightarrow I_{OQ} = 1.9 \text{ mA}$

$$V_{CC} = 5 \text{ V}$$
; $R_2 = 0.98 \text{ k}\Omega$; $R_1 = 3.95 \text{ k}\Omega$
 $\Rightarrow V_i = 0.994 \text{ V} \Rightarrow I_{OQ} = 0 \text{ mA}$

A 2% drop in R₂ value causes the circuit to become non-operational!

A solution

Original Circuit

Modified Circuit

DC analysis of modified circuit

DC analysis of modified circuit

the change in output current is proportional.

Circuit much less sensitive to variations in circuit parameters