Curs 7

Sisteme de ecuații diferențiale de ordinul întâi

Forma generală a sistemelor de ecuații diferențiale de ordinul întâi este

$$\begin{cases}
 x'_1 &= f_1(t, x_1, x_2, ..., x_n) \\
 x'_2 &= f_2(t, x_1, x_2, ..., x_n) \\
 ... &... &... \\
 x'_n &= f_n(t, x_1, x_2, ..., x_n),
\end{cases}$$
(1)

unde t este variabilă independentă, iar funcțiile $x_1, x_2, ..., x_n$ sunt funcții necunoscute. Funcțiile $x_1, x_2, ..., x_n$ sunt funcții de t, continue pe domeniul de definicție $I \subseteq \mathbb{R}$, iar funcțiile $f_i : D \subseteq \mathbb{R}^n \to \mathbb{R}$ sunt de asemenea continue pe domeniul de definiție.

Sisteme de ecuații diferențiale liniare de ordinul întâi

Forma generală a sistemelor de ecuații diferențiale liniare de ordinul întâi este

$$\begin{cases}
 x'_1 &= a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n + f_1(t) \\
 x'_2 &= a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n + f_2(t) \\
 \dots &\dots \\
 x'_n &= a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n + f_n(t),
\end{cases} (2)$$

 a_{ij} şi f_i sunt funcții definite şi continue pe un interval $I \subseteq \mathbb{R}$, cu $i = \overline{1, n}, \ j = \overline{1, n}$. Dacă folosim notațiile

$$A(t) = \begin{pmatrix} a_{11}(t) & a_{12}(t) & \dots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \dots & a_{2n}(t) \\ \dots & \dots & \dots & \dots \\ a_{n1}(t) & a_{n2}(t) & \dots & a_{nn}(t) \end{pmatrix}, \quad X' = \begin{pmatrix} x'_1 \\ x'_2 \\ \dots \\ x'_n \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}, \quad f(t) = \begin{pmatrix} f_1(t) \\ f_2(t) \\ \dots \\ f_n(t) \end{pmatrix},$$

atunci sistemul (2) devine

$$\begin{pmatrix} x_1' \\ x_2' \\ \dots \\ x_n' \end{pmatrix} = \begin{pmatrix} a_{11}(t) & a_{12}(t) & \dots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \dots & a_{2n}(t) \\ \dots & \dots & \dots & \dots \\ a_{n1}(t) & a_{n2}(t) & \dots & a_{nn}(t) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} + \begin{pmatrix} f_1(t) \\ f_2(t) \\ \dots \\ f_n(t) \end{pmatrix},$$

sistem echivalent cu

$$X' = A(t)X + f(t). (3)$$

Dacă f(t) = 0, adică $f_1(t) = f_2(t) = \dots = f_n(t) = 0$, atunci sistemul (3) devine

$$X' = A(t)X \tag{4}$$

și se numește sistem omogen de ecuații diferențiale liniare de ordinul întâi.

Sisteme de ecuații diferențiale omogene, liniare, de ordinul întâi, cu coeficienți constanți

Forma generală a sistemelor de ecuații diferențiale omogene, liniare, de ordinul întâi, cu coeficienți constanți este

unde $x_1, x_2, ..., x_n$ sunt funcții necunoscute care depind de t, iar $a_{ij}, i = \overline{1, n}, j = \overline{1, n}$ sunt constante reale.

Pentru a rezolva sistemul (5) se caută soluții de forma

$$x_1 = \alpha_1 e^{rt}, \ x_2 = \alpha_2 e^{rt}, ..., x_n = \alpha_n e^{rt},$$

unde $\alpha_1, \ \alpha_2, ..., \alpha_n$ și r sunt constante ce trebuie determinate.

Înlocuind în sistemul (5) obținem

$$\begin{cases} r\alpha_1 e^{rt} &= a_{11}\alpha_1 e^{rt} + a_{12}\alpha_2 e^{rt} + \dots + a_{1n}\alpha_n e^{rt} \\ r\alpha_2 e^{rt} &= a_{21}\alpha_1 e^{rt} + a_{22}\alpha_2 e^{rt} 2 + \dots + a_{2n}\alpha_n e^{rt} \\ \dots & \dots & \dots \\ r\alpha_n e^{rt} &= a_{n1}\alpha_1 e^{rt} + a_{n2}\alpha_2 e^{rt} + \dots + a_{nn}\alpha_n e^{rt} \end{cases}$$

Împărțind fiecare ecuație prin e^{rt} și trecând totul într-o parte, obținem sistemul omogen de ecuații liniare

Ne interesează soluția nenulă a sistemului (6), deci cazul $\Delta=0$, unde Δ reprezintă determinantul matricei sistemului. Avem

$$\Delta = \begin{vmatrix} a_{11} - r & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - r & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - r \end{vmatrix} = 0.$$

Se obține o ecuație de gradul n în r, ecuație ce se numește ecuație caracteristică. Din ecuația caracteristică se obțin n valori ale lui r, care pot fi reale sau complexe, egale sau diferite. Pentru fiecare r aflat ne întoarcem în sistemul (6) și aflăm constantele $\alpha_1, \alpha_2, ..., \alpha_n$.

In continuare vom studia forma soluției sistemului de ecuații diferențiale liniare de ordinul întâi în funcție de tipul rădăcinilor ecuației caracteristice.

1. Ecuația caracteristică are toate rădăcinile reale și distincte

În această situație se înlocuiește, pe rând, fiecare r în sistemul (6) și se află α_i corespunzători. Atunci

$$X_{r_1} = \begin{pmatrix} \alpha_{11}e^{r_1t} \\ \alpha_{12}e^{r_1t} \\ \dots \\ \alpha_{1n}e^{r_1t} \end{pmatrix}, \quad X_{r_2} = \begin{pmatrix} \alpha_{21}e^{r_1t} \\ \alpha_{22}e^{r_1t} \\ \dots \\ \alpha_{2n}e^{r_1t} \end{pmatrix}, \quad X_{r_n} = \begin{pmatrix} \alpha_{n1}e^{r_1t} \\ \alpha_{n2}e^{r_1t} \\ \dots \\ \alpha_{nn}e^{r_1t} \end{pmatrix}$$

formează un sistem fundamental de soluții pentru sistemul (6). Deci soluția generală a sistemului (6) este

$$X = c_1 X_{r_1} + c_2 X_{r_2} + \dots + c_n X_{r_n}.$$

Exemplu

Să se rezolve sistemul de ecuații diferențiale

$$\begin{cases} x_1' = 3x_1 - x_2 + x_3 \\ x_2' = -x_1 + 5x_2 - x_3 \\ x_3' = x_1 - x_2 + 3x_3 \end{cases}$$

Rezolvare

Căutăm soluții de forma

$$x_1 = \alpha_1 e^{rt}, \ x_2 = \alpha_2 e^{rt}, \ x_3 = \alpha_3 e^{rt}.$$

Atunci sistemul (6) devine

$$\begin{cases} (3-r)\alpha_1 - \alpha_2 + \alpha_3 &= 0\\ -\alpha_1 + (5-r)\alpha_2 - \alpha_3 &= 0\\ \alpha_1 - \alpha_2 + (3-r)\alpha_3 &= 0 \end{cases}$$

Rezultă că ecuația caracteristică este

$$\Delta = \begin{vmatrix} 3-r & -1 & 1 \\ -1 & 5-r & -1 \\ 1 & -1 & 3-r \end{vmatrix} = (r-2)(r-3)(r-6) = 0,$$

ale cărei rădăcini sunt

$$r_1 = 2$$
, $r_2 = 3$, $r_3 = 6$.

Acum, pentru fiecare r calculăm α_i corespunzători.

Pentru $r_1 = 2$, sistemul (6) devine

$$\begin{cases} \alpha_1 - \alpha_2 + \alpha_3 &= 0 \\ -\alpha_1 + 3\alpha_2 - \alpha_3 &= 0 \\ \alpha_1 - \alpha_2 + \alpha_3 &= 0 \end{cases},$$

cu soluția $\alpha_1 \in \mathbb{R}$, $\alpha_2 = 0$, $\alpha_3 = -\alpha_1$. Considerând $\alpha_1 = 1$, obținem $\alpha_{r_1} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, deci

$$X_{r_1} = \begin{pmatrix} 1 \cdot e^{2t} \\ 0 \cdot e^{2t} \\ -1 \cdot e^{2t} \end{pmatrix} = \begin{pmatrix} e^{2t} \\ 0 \\ -e^{2t} \end{pmatrix}.$$

Pentru $r_2 = 3$, sistemul (6) devine

$$\begin{cases}
-\alpha_2 + \alpha_3 &= 0 \\
-\alpha_1 + 2\alpha_2 - \alpha_3 &= 0 \\
\alpha_1 - \alpha_2 &= 0
\end{cases}$$

cu soluția $\alpha_1 = \alpha_2 = \alpha_3 \in \mathbb{R}$. Considerând $\alpha_1 = 1$, obținem $\alpha_{r_2} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, deci

$$X_{r_2} = \begin{pmatrix} 1 \cdot e^{3t} \\ 1 \cdot e^{3t} \\ 1 \cdot e^{3t} \end{pmatrix} = \begin{pmatrix} e^{3t} \\ e^{3t} \\ e^{3t} \end{pmatrix}.$$

Pentru $r_2 = 6$, sistemul (6) devine

$$\begin{cases}
-3\alpha_1 - \alpha_2 + \alpha_3 &= 0 \\
-\alpha_1 - \alpha_2 - \alpha_3 &= 0 \\
\alpha_1 - \alpha_2 - 3\alpha_3 &= 0
\end{cases}$$

cu soluția $\alpha_1 \in \mathbb{R}$, $\alpha_2 = -2\alpha_1$, $\alpha_3 = \alpha_1$. Considerând $\alpha_1 = 1$, obținem $\alpha_{r_3} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, deci

$$X_{r_3} = \begin{pmatrix} 1 \cdot e^{6t} \\ -2 \cdot e^{6t} \\ 1 \cdot e^{6t} \end{pmatrix} = \begin{pmatrix} e^{6t} \\ -2e^{6t} \\ e^{6t} \end{pmatrix}.$$

Astfel, soluția generală a sistemului este

$$X = c_1 X_{r_1} + c_2 X_{r_2} + c_3 X_{r_3} = c_1 \begin{pmatrix} e^{2t} \\ 0 \\ -e^{2t} \end{pmatrix} + c_2 \begin{pmatrix} e^{3t} \\ e^{3t} \\ e^{3t} \end{pmatrix} + c_3 \begin{pmatrix} e^{6t} \\ -2e^{6t} \\ e^{6t} \end{pmatrix}$$

$$= \begin{pmatrix} c_1 e^{2t} + c_2 e^{3t} + c_3 e^{6t} \\ c_2 e^{3t} - 2c_3 e^{6t} \\ -c_1 e^{2t} + c_2 e^{3t} + c_3 e^{6t} \end{pmatrix},$$

de unde obţinem

$$x_1 = c_1 e^{2t} + c_2 e^{3t} + c_3 e^{6t}$$

$$x_2 = c_2 e^{3t} - 2c_3 e^{6t}$$

$$x_3 = -c_1 e^{2t} + c_2 e^{3t} + c_3 e^{6t}$$

2. Ecuația caracteristică are toate rădăcinile complexe și distincte

Considerăm că rădăcinile ecuației caracteristice sunt de forma $r_k = \alpha_k + i\beta_k$.

În această situație se înlocuiește, pe rând, fiecare r_k cu $\beta_k > 0$ în sistemul (6) și se află α_k corespunzători. Atunci

$$X_{r_k} = \begin{pmatrix} \alpha_{k1} e^{\gamma_k t} (\cos \beta_k t + i \sin \beta_k t) \\ \alpha_{k2} e^{\gamma_k t} (\cos \beta_k t + i \sin \beta_k t) \\ \dots \\ \alpha_{kn} e^{\gamma_k t} (\cos \beta_k t + i \sin \beta_k t) \end{pmatrix}, \ k = \overline{1, \frac{n}{2}}$$

şi

$$\widetilde{X}_{r_k} = \begin{pmatrix} \alpha_{k1} e^{\gamma_k t} \cos \beta_k t \\ \alpha_{k2} e^{\gamma_k t} \cos \beta_k t \\ \dots \\ \alpha_{kn} e^{\gamma_k t} \cos \beta_k t \end{pmatrix}, \ \widetilde{\widetilde{X}}_{r_k} = \begin{pmatrix} \alpha_{k1} e^{\gamma_k t} \sin \beta_k t \\ \alpha_{k2} e^{\gamma_k t} \sin \beta_k t \\ \dots \\ \alpha_{kn} e^{\gamma_k t} \sin \beta_k t \end{pmatrix}, \ k = \overline{1, \frac{n}{2}}$$

formează un sistem fundamental de soluții pentru sistemul (6). Soluția generală a sistemului (6) este

$$X = c_1 \widetilde{X}_{r_1} + c_2 \widetilde{\widetilde{X}}_{r_1} + c_3 \widetilde{X}_{r_2} + c_4 \widetilde{\widetilde{X}}_{r_2} + \dots + c_{n-1} \widetilde{X}_{r_{\frac{n}{2}}} + c_n \widetilde{\widetilde{X}}_{r_{\frac{n}{2}}}.$$

Exemplu

Să se rezolve sistemul de ecuații diferențiale

$$\begin{cases} x' = -9y \\ y' = 4x \end{cases}$$

Rezolvare

Căutăm soluții de forma

$$x = \alpha_1 e^{rt}, \ y = \alpha_2 e^{rt}.$$

Atunci sistemul (6) devine

$$\begin{cases} r\alpha_1 - 9\alpha_2 &= 0\\ 4\alpha_1 - r\alpha_2 &= 0 \end{cases}$$

Rezultă că ecuația caracteristică este

$$\Delta = \begin{vmatrix} -r & -9 \\ 4 & -r \end{vmatrix} = r^2 + 36 = 0,$$

ale cărei rădăcini sunt $r = \pm 6i$.

Avem r de forma $\alpha + i\beta$ cu $\alpha = 0$ şi $\beta = 6$. Înlocuind pe r în sistemul (6) obţinem

$$\begin{cases} -6i\alpha_1 - 9\alpha_2 &= 0\\ 4\alpha_1 - 6i\alpha_2 &= 0 \end{cases} \Leftrightarrow -2i\alpha_1 - 3\alpha_2 = 0,$$

de unde rezultă $\alpha_2 = \frac{-2i\alpha_1}{3}$.

Dacă luăm $\alpha_1 = 3$, atunci $\alpha_2 = -2i$, deci

$$X_r = \begin{pmatrix} 3 \\ -2i \end{pmatrix} \cdot e^{0 \cdot t} \left(\cos 6t + i \sin 6t\right) = \begin{pmatrix} 3 \left(\cos 6t + i \sin 6t\right) \\ -2i \left(\cos 6t + i \sin 6t\right) \end{pmatrix}$$

$$= \left(\begin{array}{c} 3\cos 6t \\ 2\sin 6t \end{array}\right) + i \left(\begin{array}{c} 3\sin 6t \\ -2\cos 6t \end{array}\right),$$

de unde rezultă $\widetilde{X}_r=\left(\begin{array}{c} 3\cos 6t\\ 2\sin 6t \end{array}\right)$ și $\widetilde{\widetilde{X}}_r=\left(\begin{array}{c} 3\sin 6t\\ -2\cos 6t \end{array}\right)$, deci

$$\begin{pmatrix} x \\ y \end{pmatrix} = c_1 \widetilde{X}_r + c_2 \widetilde{\widetilde{X}}_r = c_1 \begin{pmatrix} 3\cos 6t \\ 2\sin 6t \end{pmatrix} + c_2 \begin{pmatrix} 3\sin 6t \\ -2\cos 6t \end{pmatrix}$$

$$= \begin{pmatrix} 3c_1 \cos 6t + 3c_2 \sin 6t \\ 2c_1 \sin 6t - 2c_2 \cos 6t \end{pmatrix},$$

deci soluţia sistemului este

$$x = 3c_1 \cos 6t + 3c_2 \sin 6t y = 2c_1 \sin 6t - 2c_2 \cos 6t$$