IK200 ARSITEKTUR DAN ORGANISASI KOMPUTER

Yudi Ahmad Hambali, M.T. yudi.a.hambali@upi.edu

System Interconnection dan Sistem Bus

Program Concept

- Hardwired systems are inflexible
- General purpose hardware can do different tasks, given correct control signals
- Instead of re-wiring, supply a new set of control signals

What is a program?

A sequence of steps

For each step, an arithmetic or logical operation is done

For each operation, a different set of control signals is needed

Function of Control Unit

For each operation a unique code is provided

e.g. ADD, MOVE

A hardware segment accepts the code and issues the control signals

We have a COMPUTER!

Components

- The Control Unit and the Arithmetic and Logic Unit constitute the Central Processing Unit
- Data and instructions need to get into the system and results out
 - Input/output
- Temporary storage of code and results is needed
 - Main memory

Computer
Components: Top
Level View

Instruction Cycle (Siklus Instruksi)

- Two steps:
 - Fetch
 - Execute

Fetch Cycle

- Program Counter (PC) holds address of next instruction to fetch
- Processor fetches instruction from memory location pointed to by PC
- Increment PC
 - Unless told otherwise
- Instruksi dimuat ke Instruction Register (IR)
- Prosesor menafsirkan (interprets) instruksi dan melakukan tindakan yang diperlukan

Execute Cycle

- Processor-memory
 - Data transfer between CPU and main memory
- Processor I/O
 - Data transfer between CPU and I/O module
- Data processing
 - Some arithmetic or logical operation on data
- Control
 - Alteration of sequence of operations (perubahan urutan operasi)
 - o e.g. jump
- Combination of above

Example of Program Execution

Instruction Cycle State Diagram

Interrupts

- Mechanism by which other modules (e.g. I/O) may interrupt normal sequence of processing
- Program
 - o e.g. overflow, division by zero
- Timer
 - Generated by internal processor timer
 - Used in pre-emptive multitasking
- I/O
 - from I/O controller
- Hardware failure
 - o e.g. memory parity error

Program Flow Control

14

Interrupt Cycle

- Added to instruction cycle
- Processor checks for interrupt
 - Indicated by an interrupt signal
- If no interrupt, fetch next instruction
- If interrupt pending:
 - Suspend execution of current program
 - Save context
 - Set PC to start address of interrupt handler routine
 - Process interrupt
 - Restore context and continue interrupted program

Instruction Cycle with Interrupts

17

Program Timing Short I/O Wait

(a) Without interrupts

Program Timing Long I/O Wait

(a) Without interrupts

Instruction Cycle (with Interrupts) - State Diagram

Multiple Interrupts

- Disable interrupts
 - Processor will ignore further interrupts whilst processing one interrupt
 - Interrupts remain pending and are checked after first interrupt has been processed
 - Interrupts handled in sequence as they occur
- Define priorities
 - Low priority interrupts can be interrupted by higher priority interrupts
 - When higher priority interrupt has been processed, processor returns to previous interrupt

Multiple Interrupts -Sequential

Multiple Interrupts – Nested

23

Time Sequence of Multiple Interrupts

Arskom

24

Connecting

- All the units must be connected
- Different type of connection for different type of unit
 - Memory
 - Input/Output
 - o CPU

Computer Modules

Memory Connection

- Receives and sends data
- Receives addresses (of locations)
- Receives control signals
 - Read
 - Write
 - Timing

Input/Output Connection

- Similar to memory from computer's viewpoint
- Output
 - Receive data from computer
 - Send data to peripheral
- Input
 - Receive data from peripheral
 - Send data to computer

Input/Output Connection (2)

- Receive control signals from computer
- Send control signals to peripherals
 - o e.g. spin disk
- Receive addresses from computer
 - o e.g. port number to identify peripheral
- Send interrupt signals (control)

CPU Connection

- Reads instruction and data
- Writes out data (after processing)
- Sends control signals to other units
- Receives (& acts on) interrupts

Buses

- There are a number of possible interconnection systems
- Single and multiple BUS structures are most common
- e.g. Control/Address/Data bus (PC)
- e.g. Unibus (DEC-PDP)

What is a Bus?

- A communication pathway connecting two or more devices
- Usually broadcast
- Often grouped
 - A number of channels in one bus
 - o e.g. 32 bit data bus is 32 separate single bit channels
- Power lines may not be shown

Data Bus

- Carries data
 - Remember that there is no difference between "data" and "instruction" at this level
- Width is a key determinant of performance
 - o 8, 16, 32, 64 bit

Address Bus

- Identify the source or destination of data
- e.g. CPU needs to read an instruction (data) from a given location in memory
- Bus width determines maximum memory capacity of system
 - o e.g. 8080 has 16 bit address bus giving 64k address space

Control Bus

- Control and timing information
 - Memory read/write signal
 - Interrupt request
 - Clock signals

Bus Interconnection Scheme

Reference

Stallings William, Computer Organization and Architecture 7th Edition.

Stallings William, Computer Organization and Architecture 11th Edition.

Randal E. Bryant, Computer System: A Programmer's Perspective.