Spatial Social Community

Lu Chen

Swinburne University of Technology

luchen@swin.edu.au

June 28, 2016

Lu Chen (FSET) S.S.C June 28, 2016 1 / 6

Overview

- Listing all triangles in a Graph
- Time Complexity
- Truss Decomposition
- Time Complexity

Lu Chen (FSET) S.S.C June 28, 2016 2 / 6

Listing triangles

Procedure Tree()

Find a rooted spanning tree for each nontrivial connected component of G;

If any tree edge is contained in a triangle the procedure terminates(Problem);

Delete the tree edges from G;

Algorithm Triangle()

Repeat Tree until all edges of G are deleted

3 / 6

Time Complexity

- Let c denote the number of connected components. During the execution of Triangle, the value of c increases (c=1 at the initialization).
- If $c \le n e^{\frac{1}{2}}$: each iteration of Tree causes the deletion of n c; $n c \ge n (n e^{\frac{1}{2}}) = e^{\frac{1}{2}}$ edges; since there are total e edges in G, the Triangle may at most call $\frac{e}{e^{\frac{1}{2}}}$ times of Tree.
- If $c > n e^{\frac{1}{2}}$: the degree of each vertex is at n c; $n c \le n e^{\frac{1}{2}} = e^{\frac{1}{2}}$; since each iteration of Tree decreases the degree of each non-isolated vertex, there may be at most $e^{\frac{1}{2}}$ such iterations.

Lu Chen (FSET) S.S.C June 28, 2016 4 / 6

Truss Decomposition

```
k \leftarrow 2:
compute sup(e) for each edge e \in E_G;
sort all the edges in ascending order of their support;
while \exists e \text{ such that } \sup(e) \leq (k-2) \text{ do}
    let e = (u, v) be the edge with lowest support;
    assume, w.l.o.g., deg(u) \leq deg(v); for each w \in nb(u) do
        if (u, w) \in E_G then
           decrease sup((u, w)) by 1;
           decrease sup((v, w)) by 1;
            reorder (u, w) and (v, w) according to their new support;
       end
    end
   \tau(e) = \sup(e);
    remove e from G:
end
if not all edges in G are removed then
```

Lu Chen (FSET) S.S.C

Time Complexity

- Let $nb_{\geq u}(u)$ be the neighbors of u that have degrees no less than degree of u
- Prove that for any $u \in V_G$, $|nb_{\geq}(u)| \leq 2\sqrt{m}$
- If $deg(u) \le \sqrt{m}$, then $|nb \ge (u)| \le 2\sqrt{m}$
- If $deg(u) > \sqrt{m}$ and suppose $|nb_{\geq}(u)| > 2\sqrt{m}$, then $\sum_{u \in V_G} deg(u) > 2E$, which is impossible $(\sum_{v \in nb_{\geq}(u)} \geq |nb_{ge}(u)| \times deg(u))$.

6 / 6

Lu Chen (FSET) S.S.C June 28, 2016