

Adversarial Network in the search for SUSY in events with one lepton and multiple jets in proton-proton collisions

5th September 2019

Summer Student: Farouk Mokhtar

Zewail City of Science and Technology, Egypt

Supervised by: Ashraf Mohamed, Dirk Kruecker, Isabell Melzer-Pellmann

Supersymmetry (SUSY)

- New space-time symmetry
- Extension to SM which add extra degrees of freedom
- Each fermion have supersymmetric partner~ boson (and vice-versa)
- Some hypothetical particles provide solution to (1)
- LSP $(\tilde{\chi}_0)$ is a candidate for (2)

Physics Problem: SUSY 1-Lepton

tt - dileptonic:

Main Search Variable: $\Delta \phi$

Target → Improve on the old analysis by using a Deep Neural Network (DNN) classifier

What is a Neural Network?

- Composed of layers of neurons
- One layer takes input x_i and produces output using activation function f

- Loss function: translates the output → scalar (called loss) ~ which represents how far is the predicted result from the true one
- For sig/bkg classification, we use Binary Cross Entropy (BCE) as Loss function
- Goal of training → minimize the loss by adjusting all the weights and biases

DNN classifier performance

- ✓ Large area under the ROC curve
- \checkmark Most events (especially small $\Delta \phi$ events) are classified as bkg
- Note: all events are weighted by their cross-section weight

Project Description

AIM: to use *Data-Driven Background Estimation (ABCD)* method to extrapolate and predict the background in the signal region

If variables $var_1 \& var_2$ are uncorrelated \rightarrow background in signal region is predicted by the ratio: $N_D = N_C * (N_A / N_B)$

var ₂	A = bkg dominated	D = signal region	
	B = bkg dominated	C = bkg dominated	
		var ₁	

- \triangleright KEY: Decorrelating the relation between the classifier output and $\Delta \phi$
- > HOW? Using Adversarial Network to classify sig/bkg events

What is an Adversarial Network?

https://arxiv.org/abs/1611.01046 ~ Uses Adversarial Network in LHC analysis

- **Adversarial Network** consists of 2 NN(s) ~ an Adversary which competes with the Classifier
- Training is done simultaneously
- **Goal of Adversary** → confuse the classifier and provide feedback until the classifier output is independent of $\Delta \phi$
- This decorrelation comes at the expense of classification efficiency X

$$loss = clf_{loss} - \lambda * adv_{loss}$$

AIM:

Find the optimal value of λ which makes:

- Remember that:
- We only use bkg events to get the ratio
- We weight each event by the cross-section weight

- ✓ Still: Large area under the ROC curve
- \checkmark Still: Most events (especially small $\Delta \phi$ events) are classified as bkg
- \checkmark Clf output is getting **more independent** of $\Delta \phi$
- Small kink in ROC curve indicates small confusion

Ratio is close to 1

For Comparison

Conclusion: Adversarial is successful in decorrelating $\Delta \phi$ from the classifier output

The Stability of Adversarial Training

Sometimes we find kinks in the *clf* output distribution

 \mathbf{x} Ratio fluctuates for the same λ

Summary

Achieved so far

- Constructed an Adversarial Network
- Studied Adversarial Training
- Successful decorrelation of Δφ from the clf output at the expense of small efficiency loss

Next step

- Study the stability of the Adversarial Training
- Optimize the hyper-parameter space of both the classifier and the adversary
- Use the Adversarial Network on real data to predict bkg in signal region

Thank you Danke

Backup

Results for different values of λ

λ	Ratio	AUC	Time	# of epochs
0 (normal classifier)	0.07944514	0.99	9 min	300
0.5	2.60919688	0.99	32 min	300
0.75	1.4703602	0.98	32 min	300
0.8	1.83401852	0.98	32 min	300
<mark>0.85</mark>	<mark>0.88716993</mark>	<mark>0.98</mark>	<mark>37 min</mark>	<mark>300</mark>
0.9	0.68016004	0.97	32 min	300
1	0.62123818	0.97	32 min	300
10	0.06472567	0.99	32 min	300

My Network's Architecture

Network	Classifier	Adversary	
# of inputs	17	1	
# of outputs	1	1	
Hidden Layers (2)	125 neurons each	50 neurons each	
Activation Function	reLu		
Output Activation Function	sigmoid	none	
Loss	Binary Cross Entropy	Mean Squared Error	
Learning Rate	0.001	0.005	
Optimizer	Adam		

- Still: Large area under the ROC curve
- \checkmark Still: Most events (especially small $\Delta \phi$ events) are classified as bkg
- \checkmark Clf output is getting **more independent** of $\Delta \phi$
- x Small kink in ROC curve indicates small confusion

Ratio is close to 1

- Still: Large area under the ROC curve
- \checkmark Still: Most events (especially small $\Delta \phi$ events) are classified as bkg
- \checkmark Clf output is getting more independent of $\Delta \varphi$
- x Small kink in ROC curve indicates small confusion

Training for λ=0.9

Ratio is close to 1

Training for λ=0.85

- Still: Large area under the ROC curve
- \checkmark Still: Most events (especially small $\Delta \phi$ events) are classified as bkg
- \checkmark Clf output is getting **more independent** of $\Delta \phi$
- Small kinks in ROC curve and clf output indicate small confusion

✓ Ratio is close to 1

Training for λ=0.85

- Still: Large area under the ROC curve
- \checkmark Still: Most events (especially small $\Delta \phi$ events) are classified as bkg
- \checkmark Clf output is getting **more independent** of $\Delta \phi$
- x Small kink in ROC curve indicates small confusion

Ratio is close to 1

