

Problem 8.4:

(a) The generator polynomial for the (15,11) Hamming code is given as $g(p) = p^4 + p + 1$. We will express the powers p^l as: $p^l = Q_l(p)g(p) + R_l(p)$ l = 4, 5, ... 14, and the polynomial $R_l(p)$ will give the parity matrix **P**, so that **G** will be $\mathbf{G} = [\mathbf{I}_{11}|\mathbf{P}]$. We have:

$$\begin{array}{lll} p^4 & = & g(p) + p + 1 \\ p^5 & = & pg(p) + p^2 + p \\ p^6 & = & p^2g(p) + p^3 + p^2 \\ p^7 & = & (p^3 + 1)g(p) + p^3 + p + 1 \\ p^8 & = & (p^4 + p + 1)g(p) + p^2 + 1 \\ p^9 & = & (p^5 + p^2 + p)g(p) + p^3 + p \\ p^{10} & = & (p^6 + p^3 + p^2 + 1)g(p) + p^2 + p + 1 \\ p^{11} & = & (p^7 + p^4 + p^3 + p)g(p) + p^3 + p^2 + p \\ p^{12} & = & (p^8 + p^5 + p^4 + p^2 + 1)g(p) + p^3 + p^2 + p + 1 \\ p^{13} & = & (p^9 + p^6 + p^5 + p^3 + p + 1)g(p) + p^3 + p^2 + 1 \\ p^{14} & = & (p^{10} + p^7 + p^6 + p^4 + p^2 + p + 1)g(p) + p^3 + 1 \end{array}$$

Using $R_l(p)$ (with l=4 corresponding to the last row of \mathbf{G} ,... l=14 corresponding to the first row) for the parity matrix \mathbf{P} we obtain:

(b) In order to obtain the generator polynomial for the dual code, we first factor $p^{15} + 1$ into: $p^{15+1} = g(p)h(p)$ to obtain the parity polynomial $h(p) = (p^{15} + 1)/g(p) = p^{11} + p^8 + p^7 + p^5 + p^3 + p^2 + p + 1$. Then, the generator polynomial for the dual code is given by:

