TD : Metaheuristic optimization : optimisation multi-objectifs

EISTI

November 25, 2021

1 Dominance

On considère l'exemple suivant [2] :

Considérant un problème à deux objectifs f_1, f_2 , on souhaite maximiser f_1 et minimiser f_2 .

Pour ce problème, nous obtenons les solutions suivantes :

Point	Objectif f_1	Objectif f_2
A	8	5
В	9	2
С	12	1
D	11	2
E	16	2
F	18	7

- Représenter, sur une feuille, ces points dans l'espace des images.
- Réaliser un tableau croisé de dominance qui compare les points 2 à deux. Chaque case contient un couple de comparaison selon f_1 et f_2 . Les valeurs de comparaison prennent +, ou = selon si le point en ligne est meilleur, moins bon ou aussi bon que celui en colonne. **Attention**: nous cherchons à maximiser f_1 et minimiser f_2 .
- Déterminer les points de rang 1 de domination.
- Tracer le front de Pareto
- $\bullet\,$ Classer les points restants par ordre de rang de domination.

Figure 1: Illustration du problème.

2 La poutre

Le problème [1] est de minimiser le poids d'une section de poutre d'un mètre de longueur, ainsi que sa déformation lorsqu'elle est soumise à une pression de 1000 N (Figure 2).

On considère la poutre comme un pavé droit de base un carré de côté a m. On a S(a) la surface de la base et d(a) la déformation de la poutre, en fonction de la longueur du côté.

Les conditions s'expriment alors comme suit :

$$\begin{cases}
S(a) = a^2, \\
d(a) = 1000 + \frac{10^{-3}}{192 + 2.10^5 + \frac{a^4}{12}}, \\
a \le 0.1
\end{cases} (2.1)$$

• Générer un ensemble de valeurs a et tracer les points dans l'espace des images (S,d); que constatez-vous ?

On complique légèrement le problème en considérant la poutre comme un pavé droit de base un carré de côté a m dont l'intérieur est vide. Le carré vide a un côté de longueur b m (Figure 2).

La surface de la base S(a,b) et la déformation de la poutre d(a,b) deviennent

$$\begin{cases}
S(a,b) = a^{2} - b^{2}, \\
d(a,b) = 1000 + \frac{10^{-3}}{192 + 2 \cdot 10^{5} + \frac{a^{4} - b^{4}}{12}}, \\
a \le 0.1 \\
b + 0.04 \le a
\end{cases} (2.2)$$

• Générer un ensemble de valeurs a, b et tracer les points dans l'espace des images (S, d); que constatez-vous ?

• Extraire les points de rang 1 afin de n'afficher que le front de Pareto.

3 Problème Shaffer's F2

Le problème est le suivant :

$$\begin{cases}
\text{minimiser} & f_1(x) = x^2, \\
\text{minimiser} & f_2(x) = (x-2)^2, \\
\text{avec} & x \in [0, 2]
\end{cases}$$
(3.3)

Nous allons utiliser la méthode de pondération des objectifs.

- Exprimer la fonction F, fonction pondérée avec deux poids tels que $\omega_1 + \omega_2 = 1$.
- Nous allons déterminer que la fonction possède un minimum. Calculer la dérivée de la fonction, puis vérifier la convexité du problème (dérivée seconde > 0).
- Trouver le minium de F en fonction de ω_1, ω_2 .
- Tracer plusieurs valeurs pour représenter le front de Pareto.

Nous allons maintenant utiliser la méthode de ε -contrainte.

- Exprimer le problème en contraignant la fonction f2.
- Redéfinir, en fonction de ε , l'intervalle de variation de x.
- Pour $\varepsilon = 0, 1, 2, 3$, déterminer l'optimum x^* et calculer ses valeurs pour f_1 et f_2 .
- Tracer les valeurs pour représenter le front de Pareto.

4 Problème de Binh

Le problème est le suivant :

$$\begin{cases}
 \text{minimiser} & f_1(x_1, x_2) = x_1^2 + x_2^2, \\
 \text{minimiser} & f_2(x) = (x_1 - 5)^2 + (x_2 - 5)^2, \\
 \text{avec} & (x_1, x_2) \in [-5, 10]^2
\end{cases}$$
(4.4)

Nous souhaitons utiliser la méthode de pondération des objectifs.

- Exprimer la fonction F, fonction pondérée avec deux poids tels que $\omega_1 + \omega_2 = 1$.
- Calculer la dérivée de la fonction, puis vérifier la convexité du problème (déterminant du hessien > 0, premier coef > 0).
- Trouver le minium de F en fonction de ω_1, ω_2 .
- Tracer plusieurs valeurs pour représenter le front de Pareto.

References

- [1] Yann Collette and Patrick Siarry. Multiobjective Optimization. Principles and Case Studies. 01 2003.
- [2] Kalyanmoy Deb. *Multi-Objective Optimization Using Evolutionary Algorithms*. John Wiley & Sons, Inc., New York, NY, USA, 2001.