

02

03

04

05

프로젝트 개요 및 팀 구성

- 프로젝트 주제

- 선정배경 문제정의 분석구조도
- 프로젝트수행절차 및경과 프로젝트팀구성

EDA (탐색적 데이터 분석)

- 데이터시각화
- 주요 변수 파악

데이터 전처리

- 데이터 현황 파악
- 데이터 명세서 (피생변수 생성) 결측치 제거

모델학습및탐색

모델학습및비교

과제 요약 및 결론 도출

프로젝트 주제 선정

프로젝트 주제 선정

문제 정의

분석구조도

탐색적 데이터 분석 시도 → 피처 엔지니어링 → 예측모델 생성

확보한 데이터를 통한 결측치 보간

각 데이터간의 상관성 분석

프로젝트수행절차및팀구성

프로젝트 수행 절차

6월 3일 - 6월 5일

프로젝트 주제 선정 및 데이터 분석

탐색적 분석 (EDA)

예측모델개발및 서비스제공

- · 프로젝트 주제 선정
- · 데이터 현황 파악

- · 데이터 시각화 (주요 변수 파악)
- · 불량 요인 탐색

- · 데이터 전처리
- · 예측 모델 개발
- · 향후 발전 방향 제시

팀구성

훈련생	주 역할	담당 업무
정하연 (팀장)	EDA, 데이터 시각화	EDA를 통한 불량요인 파악 및 발표
강하연	데이터 전처리, 모델링	최적의 모델 탐색을 통한 성능 개선 탐구
김지유	EDA, 데이터 시각화	데이터 시각화를 통한 데이터 탐구
박민서	EDA, PPT 제작	주제 선정 및 PPT 제작
이채은	EDA, 데이터 시각화	모델 평가 및 결론 도출
정재성	데이터 전처리, 모델링	결측치 처리, 최적의 모델 탐색 및 발표
김웅기, 박종률	멘토	질의응답 및 방향성 제시

CONTRACTOR OF THE PARTY OF THE

의 데이터 현황 파악

데이터 명세서

2,852,465개 Row 92,015개 Column 31개

속성(column)	설명
line	작업라인
name	제품명
mold_name	금형명
time	수집시간
date	수집일시
count	일자별 제품 생산 번호 •
working	가동여부
emergency_stop	비상정지
molten_temp	용탕온도
facility_operation_CycleTime	설비 작동 사이클 시간
proudction_CycleTime	제품생산 사이클 시간
low_section_speed	저속구간속도
high_section_speed	고속구간속도
molten_volume	용탕량
cast_pressure	주조압력
biscuit_thickness	비스킷 두께
upper_mold_temp1	상금형온도1
upper_mold_temp2	상금형온도2
upper_mold_temp3	상금형온도3
lower_mold_temp1	히금형온도1
lower_mold_temp2	히금형온도2
lower_mold_temp3	하금형온도3

속 성(column)	설명
sleeve_temperature	슬리브 온도
physical_strength	형체력
coolant_temperature	냉각수 온도
EMS_operation_time	전자교반 가동시간
registration_time	등록일시
passorfail	양품불량판정
tryshot_signal	사탕신호
mold_code	금형코드
heating_furnace	가열로

싸이클 분리 -----**> <u>'trial'</u>** 파생 변수 생성

mold_code	count	* trial
8722	1	3
8722	2	3
8722		3
8722	288	3
8722	289	3
8722	290	3
8722	1	4
8722	2	4
8722	3	4

이 데이터 현황 파악

속성(column)	설명
line	작업라인
name	제품명
mold_name	금형명
time	수집시간 •
date	수집일시
count	일자별 제품 생산 번호
working	가동여부
emergency_stop	비상정지
molten_temp	용탕온도
facility_operation_CycleTime	설비 작동 사이클 시간
proudction_CycleTime	제품생산 사이클 시간
low_section_speed	저속구간속도
high_section_speed	고속구간속도
molten_volume	용탕량
cast_pressure	주조압력
biscuit_thickness	비스킷 두께
upper_mold_temp1	상금형온도1
upper_mold_temp2	상금형온도2
upper_mold_temp3	상금형온도3
lower_mold_temp1	하금형온도1 ●
lower_mold_temp2	하금형온도2 •
lower_mold_temp3	하금형온도3

속성(column)	설명
sleeve_temperature	슬리브 온도
physical_strength	형체력
coolant_temperature	냉각수 온도
EMS_operation_time	전자교반 가동시간
registration_time	등록일시
passorfail	양품불량판정
tryshot_signal	사탕신호
$mold_code$	금형코드
heating_furnace	가열로

파생 변수	gap	약 2분 간격이 아닌 3~4분의 이상일 경우, <mark>온도가 떨어지는 경향</mark> 발견 시간간격을 기록하는 'gap'열 추가		
	gap_sign	3~4분 이상일 경우, 시간 차이가 170초 이상 시 1, 아니면 0을 기록		

○ count 변수를 이용한 *trial 파생 변수 생성

단위공정초반불량

cast_pressure 값이 작은 경우 불량 발생

count 변수의 초반 불량 발생 경향

0

cast_pressure하락이유

간헐적으로 lower_mold_temp1,2/upper_mold_temp2 의 온도가 급격히 하락 후 다시 서서히 상승하는 현상 발견

©

cast_pressure하락이유

2분 간격으로 count 값 연속적 생성 → 3분~4분 이상으로 벌어질 경우 lower_mold_temp1,2와 upper_mold_temp2 의 급격한 하락

©

cast_pressure하락이유

upper_mold_temp1 또한 온도가 급격히 떨어지지 않지만, 점진적인 하락이 관찰됨

* PV=nRT

이상기체상태방정식

P는 기체의 압력, V는 기체의 부피 n은 기체의 몰 수, R은 기체 상수로 [약 8.314 J/(mol·K)] T는 기체의 절대 온도(K)

온도인 T가 감소할 때, 압력인 P도 감소

압력인 P 가 감소할 때, 온도인 T도 감소

공정에서 온도의 감소가 압력의 감소를 초래하는지 혹은 압력의 감소가 온도의 감소를 유발하는지

명확하지 않으나, 두 변수 중 하나가 감소하면 다른 변수도 감소하는 상호 의존적 관계가 있다고 판단

♡시간간격을기록하는 *gap과 *gap_sign 파생 변수

제품 하나를 생산 시 평균적으로 <mark>2분 정도</mark> 소요되나, 가열로가 변경되거나 **싸이클(trial)이 변경되는 경우**에는 3~4분 이상의 시간이 소요 → 시간 차이가 170초 이상이면 gap_sign=1 입력

경우 1) 가열로 변경으로 인한 시간 소요 (3~4분)

경우 2) trial의 변경(mold 변경/재사용 및 가동 중지로 인한 시간 차이 발생)

time	passorfail	heating_furnace	gap	gap_sign
13:14:48	0	В	128	0
13:16:46	0	В	118	0
13:20:29	1	А	223	1
13:22:34	0	А	125	0
13:24:32	0	Α	118	0

time	passorfail	heating_furnace	trial	count	gap	gap_sign
18:58:29	0	В	0	274	108	0
19:00:32	0	В	0	275	123	0
20:02:23	1	В	1	1	3711	1
20:05:22	1	В	1	2	179	1
20:07:24	1	В	1	3	122	0

이 시간 간격을 기록하는 *gap과 *gap_sign 파생 변수

파생 변수

gap

약 2분 간격이 아닌 3~4분의 이상일 경우, <mark>온도가 떨어지는 경향</mark> 발견 시간간격을 기록하는 'gap'열 추가

gap_sign

400

350

300

3~4분 이상일 경우, 시간차이 170초 이상 시 1, 아니면 0을 기록

Trial 5 of mold 8917

passorfail 1

passorfail 0

gap_sign이 1일 때마다 세로선을 그었으며, gap_sign이 1일 때마다 온도가 감소하는 현상이 관찰

② 결측치확인

결측치 제거 근거

속성(column)	결측치 개수(개)
molten_temp	2261
molten_volume	45130
upper_mold_temp3	312
lower_mold_temp3	312
tryshot_signal	90095
heating_furnance	49145

거의 모든 열에서 공통적으로 결측치가 존재하는 행이 1개 존재 (19327번째 행) - 삭제

결측치 개수 확인 (표 참고)

결측치가 50% 혹은 그 이상인 열

['molten_volume', 'tryshot_signal', 'heating_furnace'] → 세 가지 열 제거

working		
가동	91963	
정지	51	

'working' = '가동' 값이 전체의 99.945% (하나의 동일한 값을 가지는 열 -제거)

. 결측치 제거 근거

데이터 타입이 object인 것들을 라벨 인코딩

변수 'line', 'name', 'mold_name', 'emergency_stop' 하나의 특정한 값만 가짐 – 해당 변수 제거

변수 'time' 과 'registration_time' 의 상관계수 : 1 **두 변수가 동일함** – 해당 변수 제거

결측치 제거 근거

수치형 변수 제외 나머지 변수 삭제

범주형 변수 'count' 삭제

🙄 모델학습 및 비교

데이터 불균형

양품개수

불량개수

4016

불량률 4.3644553

87998

개수 불균형 문제의 해결을 위한 StratifiedShuffleSplit

모델링을 위한 minmaxscaler 를 통한 정규화

사용 모델: 의사결정나무, 랜덤 포레스트, XGB, LGBM, ADA Boost

의사결정나무	랜덤포레스트	XGB	LGBM	ADA Boost
0.88987	0.91125	0.91870	0.91856	0.82989
		가장 높은 성능		

Permutation Importance

	세부내용		의사결정나무	랜덤포레스트	XGB	LGBM	ADA Boost
시도 1	이상치 제거	0					
	['EMS', 'mold_code'] 변수제거		0.84899	0.89084	0.90277	0.89354	0.80721
시도 4	이상치 제거	Х					
	['EMS', 'mold_code'] 변수제거		0.87634	0.90861	0.91099	0.91193	0.82170
시도 5	이상치 제거	0					
	['EMS', 'mold_code'] 변수제거		0.85038	0.89436	0.89450	0.88966	0.80798
시도 8	이상치 제거	X					
	['EMS', 'mold_code'] 변수제거		0.87293	0.90656	0.90718	0.90766	0.82352
	가장 중요도가 낮은 변수 2개 제거						
시도 10	이상치 제거	0					
	['EMS', 'mold_code'] 변수제거		0.84883	0.89124	0.89921	0.89413	0.80903
	가장 중요도가 낮은 변수 2개 제거						
시도 14	이상치 제거	X					
	['EMS', 'mold _ code'] 변수제거		0.88483	0.91923	0.92238	0.91601	0.83109
	가장 중요도가 낮은 변수 2개 제거						

○ XGBoost 모델에 따른 SHAP

① 이상치 정의: 변수의 분포상 비정상적으로 극단적인 값을 가져일반적으로 생각할 수 있는 범위를 벗어난 관측치

이상치는 이상치 일 뿐, 쓸모 없는 데이터가 아님 (실제로 이상치를 제거하지 않은 경우에 성능 향상)

② 다양한 데이터 전처리 시도 중요

③ 가이드라인에서는 mold_code 변수를 제거하였으나, EDA를 통해 해당 변수의 중요성을 발견하여 추가

이상치 처리 x + 결측치 제거 + 중요도가 낮은 변수 2가지 제거 + mode_code 추가 Xgboost 모델

→ F1 SCORE 0.92238

향후에 데이터가 많아지면 mold_code 별로 따로 모델링 제안

Dear. Factory Manager

공장장님께 드리는 편지…

① 공정 시작 초반에 불량이 발생하는 경향 발견. 이때, cast_pressure와 lower_mold_temp1,2와 upper_mold_temp2가 기준값 보다 낮은 경향 관찰.

솔루션:

공정을 시작할때, cast_pressure와 lower_mold_temp1,2와 upper_mold_temp2가 기준값에 도달하지 않아 발생하는 가능성이 있어보이므로, 환경을 충분히 세팅한 후에 공정을 시작해야합니다.

② 가열로를 변경하면서 시간 간격이 벌어질 때, 불량이 발생하는 경향이 있다.

솔루션:

- 1) 가열로를 변경할 때, 시간간격이 벌어지지않도록 공정 최적화
- 2) 가열로를 변경할 때 시간간격이 벌어지는 것이 필치 못하다면, cast_pressure와 lower_mold_temp1,2와 upper_mold_temp2가 기준 값에 도달할 수 있도록 환경을 충분히 세팅한 후에 공정을 시작해야합니다.

③ 가열로를 변경하지 않더라도 시간 간격이 벌어지면, 불량이 발생하는 경향이 있다. 요구사항: 필치 못한 경우가 아니라면 시간간격이 2분 정도를 유지할 수 있도록 해야합니다.

