VECTREX

PROGRAMMER'S

MANUAL

VOLUME I

GENERAL INFORMATION

EXECUTIVE STOREAGE UTILIZATION

REV DATE PROG COMMENT(S)
- MM/DD/YY JJH Initial Release

[FDT: Revision 1.1 - 12/6/99]

VECTREX HARDWARE DESCRIPTION	. 6
VECTREX MEMORY MAP	. 6
6522 INTERFACE ADAPTER	. 7
REGISTER ACCESS MAP	
PORT 'A' / 'B' DIRECTION REGISTERS [DDAC & DCNTRL]	
PORT 'A' DATA – DAC AND PSG DATA [DAC]	
PORT 'B' DATA – VECTREX HARDWARE CONTROL [CNTRL]	
AUXILIARY CONTROL REGISTER [ACRTRL]	
PERIPHERAL CONTROL REGISTER [PCNTRL]	
PORT 'A' HANDSHAKE CONTROLS (CA1 / 2)	
PORT 'B' HANDSHAKE CONTROLS (CA1 / 2)	
TIMER #1	
TIMER #1	
SHIFT REGISTER [SHIFT]	
INTERRUPT ENABLE REGISTER [IENABL]	
INTERRUPT FLAG REGISTER [IEI/ABL]	
PROGRAMMABLE SOUND GENERATOR	14
REGISTER ACCESS MAP	14
Tone / Noise Enables	
Course / Fine Tone Period	
CHANNEL AMPLITUDE	
Noise Period.	
ENVELOPE PERIOD.	
ENVELOPE SHAPE / CYCLE	
I/O Port	
GENERAL EXECUTIVE DESCRIPTION	
DRAWING FORMAT DESCRIPTIONS	
'Diffy' Description	
'Duffy' Description	
'Packet' Description	
POWER-UP / RESET CHARACTERISTICS	17
EXECUTIVE STORAGE DESCRIPTION	18
ABSX	18
ABSY	
ACTPLY	18
ANGLE	18
BACON	19
B1FREQ.	19
B2FREQ.	
DASH	
DOREMI	
DWELL	
EDGE (HEDGES)	
EPOT0 (DPOT0)	
EPOT1 (DPOT1)	
EPOT2 (DPOT2)	
EPOT3 (DPOT3)	
· /	22

ETMP2	
ETMP3	
ETMP4	
ETMP5	
ETMP6	
ETMP7	
ETMP8	
ETMP9	
ETMP10	
FADE	
FADEA	
FADEB	26
FADEC	26
FEAST	26
FRAME	27
FRMTIM (XMSEC)	27
F1FREQ	27
GAP	28
HISCOR (HEIGH)	28
KEY0	28
KEY1	
KEY2	29
KEY3	29
KEY4	
KEY5	30
KEY6	
KEY7	
K1FREQ	
LAG	
LASRAM	
LATUS	
LEG	
LIST	
MESAGE	
NEDGE	
NEWGEN	
OPTION (GAMZ)	
PEDGE	
PLAYRS (PLAYRZ)	
POT0	
POT1	
POT2	
POT3	
POTRES	
RAMMES	
RANCID	
RATED	
RATES	
RATEC	
REG0	
REG1	
REG2	
REG3	
REG4	
REG5	
REG6	39

REG7	
REG8	
REG9	
REGA	
REGB	
REGC	
REGD	
REGE	
REQ0	
REQ1	
REQ2	
REQ3	
REQ4	
REQ5	
REQ6	44
REQ7	45
REQ8	
REQ9	
REQA	
REQB	46
REQC	
REQD	47
RESTC	47
SATUS	48
SBTN	48
SCOR1	48
SCOR2	49
SEED	49
SIZRAS	49
SJOY	50
SPEKT	50
TENSTY	50
TEMP1	50
TEMP2	51
TEMP3	51
TEMP4	51
TEMP5	51
TEMP6	
TEMP7	
TEMP8	52
TEMP9	
TEMP10	
TMR1	53
TMR2	
TMR3	
TMR4	
TONEA	
TONEB	
TONEC	
TRIGGR	
TSTAT	
TUNE	
VIBA	
VIBB	
VIBC	
VIBE	
Y IDE	5 /

WCSINE (COSINE)	58
WSINE (SINE)	
XACON	59
XATUS	59
XTMR0 (X0)	59
XTMR1 (X1)	59
XTMR2 (X2)	60
XTMR3 (X3)	60
XTMR4 (X4)	60
XTMR5 (X5)	60
ZSKIP (ZGO)	61
CONDENSED EXECUTIVE PARAMETER REQUIREMENTS	62
RAM AND FUNCTION CLASSIFICATIONS	66

Vectrex Hardware Description

The Vectrex consists of a 6809 microprocessor, $1k \times 8$ RAM, $8k \times 8$ resident ROM, 6522 interface adapter, D / A converter (+2.5 to -2.5 volts), 3 sample / holds (active ground, 'Z' and 'Y' axises), a programmable sound generator and 2 player controllers (one joystick and 4 buttons each).

The ROM contains the resident game 'Mine Storm' and the Executive. The Executive consists of power-up / reset handler and a large selection of subroutines for drawing, calculation, game logic and / or hardware maintenance.

The 6522 interface adapter provides all the interface necessary between the microprocessor and the analog electronics (joysticks, D / A converter, sample / holds and programmable sound generator). The interface adapter provides two 8-bit parallel ports, two 16-bit counters (timers) and an 8-bit shift register.

The 6522's shift register is used by the dashing and raster drawing routines.

Vectrex Memory Map

Address	Range	Description

\$000 - \$7FFF Open for game ROM

\$DXX0 – \$DXXF Vectrex control registers (6522)

\$E000 - \$EFFF Mine storm

\$F000 - \$FFFF Executive

6522 Interface Adapter

Register Access Map

<u>Addr</u>	Description
\$D000	8-bit port 'B' (Control bits) [CNTRL]
\$D001	8-bit port 'A' (DAC and PSC data) [DAC]
\$D002	Port 'B' direction control [DCNTRL]
\$D003	Port 'A' direction control [DDAC]
\$D004-7	Timer #1 [T1LOLC, T1HOC, T1LOL, T1HOL]
\$D008-9	Timer #2 [T2LOLC, T2HOC]
\$D00A	Shift register [SHIFT]
\$D00B	Auxiliary control register [ACNTRL]
\$D00C	Peripheral control register [PCNTRL]
\$D00D	Interrupt flag register [IFLAG]
\$D00E	Interrupt enable register [IENABL]
\$D00F	ORA

Port 'A' / 'B' Direction Registers [DDAC & DCNTRL]

The 'A' direction register [DDAC] controls the direction of data flow for the 'A' data port [DAC].

The 'B' direction register [DCNTRL] controls the direction of data flow for the 'B' data port [CNTRL].

Data flow direction is determined on a bit-by-bit basis. A 0 in a bit of the data direction register causes the corresponding data port pin to act as an input. A 1 causes the pin to act as an output.

Port 'A' Data - DAC and PSG data [DAC]

When outputting data to the DAC, the data byte place in the port 'A' data register is in a two's complement format (bit 6 of the data byte is the high order bit with bit 0 being the lowest. Bit 7 of the data byte is used for the sign). Therefore, the minimum hex value to the DAC is \$80; \$00 is the center point and \$7F is the maximum.

When passing data with the programmable sound generator, the data direction will have to be set according to the type of transfer.

Port 'B' Data - Vectrex Hardware Control [CNTRL]

<u>Bit</u>	<u>Description</u>
0	Sample / Hold strobe
1	Analog multiplexer select, bit 0
2	Analog multiplexer select, bit 1
3	Sound generator, term 'BC1'
4	Sound generator, term 'DBIR'
5	Analog compare term (Input to 6522)
6	
7	Integrator ramp

Auxiliary Control Register [ACRTRL]

<u>Bit</u>	<u>Description</u>
0	Refer to Port 'A' description
1	Refer to Port 'B' description
4-2	Refer to Shift register description
5	Refer to Timer #2 description
7-6	Refer to Timer #1 description

Peripheral Control Register [PCNTRL]

<u>Bit</u>	<u>Description</u>
3-0	Refer to Port 'A' handshake controls
7-4	Refer to Port 'B' handshake controls

Port 'A' Handshake Controls (CA1 / 2)

PCNTRL

Bit 0 0	<u>Description</u> The CA1 interupt flag (IFR1) will be set on a negative transition of the CA1 input pin.
1	The CA1 interrupt flag (IFR1) will be set on a positive transition of the CA1 input pin.
	The CA1 interrupt flag (IFR1) will be cleared on a read or write of the Port 'A' data register.
PCNTRL bits 3 2 1 0 0 0	<u>Description</u> Interrupt input mode – Set CA2 interrupt flag (IFR0) on a negative transition of the CA2 input pin. Clear the interrupt flag (IFR0) on a read or write of the Port 'A' data register.
0 0 1	Independent interrupt input mode – Set CA2 interrupt flag (IFR0) on a negative

transition of the CA2 input pin. Reading or writing of the Port 'A' data register

does not affect the status of the interrupt flag (IFR0).

0 1 0	Interrupt input mode – Set CA2 interrupt flag (IFR0) on a positive transition of the CA2 input pin. Clear the interrupt flag (IFR0) on a read or write of the Port 'A' data register.
0 1 1	Independent interrupt input mode – Set CA2 interrupt flag (IFR0) on a positive transition of the CA2 input pin. Reading or writing of the Port 'A' data register does not affect the status of the interrupt flag (IFR0).
1 0 0	Handshake output mode – Set CA2 output pin low on a read or write of the Port 'A' data register. Reset CA2 pin to high with an active transition of the CA1 input pin.
101	Pulse output mode – CA2 goes low for one cycle following a read or write of the Port 'A' data register.
1 1 0	Manual output mode – The CA2 output is held low in this mode.
111	Manual output mode – The CA2 output is held high in this mode.

Port 'B' Handshake Controls (CB1 / 2)

PCNTRL Bit 4 0	Description The CB1 interrupt flag (IFR4) will be set on a negative transition of the CB1 input pin.
1	The CB1 interrupt flag (IFR4) will be set on a positive transition of the CB1 input pin.
	The CA1 interrupt flag (IFR1) will be cleared on a read or write of the Port 'A' data register.
PCNTRL bits 7 6 5 0 0 0	<u>Description</u> Interrupt input mode – Set CB2 interrupt flag (IFR3) on a negative transition of the CB2 input pin. Clear the interrupt flag (IFR3) on a read or write of the Port 'B' data register.
0 0 1	Independent interrupt input mode – Set CB2 interrupt flag (IFR3) on a negative transition of the CB2 input pin. Reading or writing of the Port 'B' data register does not affect the status of the interrupt flag (IFR3).
0 1 0	Interrupt input mode – Set CB2 interrupt flag (IFR3) on a positive transition of the CB2 input pin. Clear the interrupt flag (IFR3) on a read or write of the Port 'B' data register.
0 1 1	Independent interrupt input mode – Set CB2 interrupt flag (IFR3) on a positive transition of the CB2 input pin. Reading or writing of the Port 'B' data register does not affect the status of the interrupt flag (IFR3).
100	Handshake output mode – Set CB2 output pin low on a read or write of the Port 'B' data register. Reset CB2 pin to high with an active transition of the CB1 input pin.

101	Pulse output mode – CB2 goes low for one cycle following a read or write of the Port 'B' data register.
110	Manual output mode – The CB2 output is held low in this mode.
111	Manual output mode – The CB2 output is held high in this mode.

Timer #1

<u>Addr</u> \$D004	<u>Label</u> T1LOL	C	Description Write into low order latch
			Read from low-order counter and reset interrupt
\$D005	T1HOC	2	Write into high-order latch, transfer latches to counter and reset interrupt
			Read from high-order counter
\$D006	T1LOL	,	Write into low-order latch
			Read from low-order latch
\$D007	T1HOL	1	Write into high-order latch and reset timer #1 interrupt
			Read from high-order latch
ACNTRL bits			otion te a single time-out interrupt each time timer #1 is loaded. pin PB7 is disabled.
0 1		Genera	te continuous interrupts. Output pin PB7 is disabled.
1 0		General load op	te a single interrupt and an output pulse on pin PB7 for timer #1 eration.
11		Genera	te continuous interrupts and a square wave output on pin PB7.

One-shot Mode

The one-shot mode allows generation of a single interrupt each time a load operation occurs. In addition to generating a single interrupt, Timer #1 can be programmed to produce a single negative pulse on the PB7 peripheral pin. With the output enabled (ACNTRL7 = 1), a write to location \$D005 [T1HOC] will cause PB7 to go low. PB7 will return high when Timer #a counts down to zero. For PB7 to act as the output of Timer #1, both the direction register for Port 'B' (bit 7) and the auxiliary control register (bit 7) must be set (e.g. – DCNTRL7 = 1 and ACNTRL7 = 1).

It is necessary to assure that the low order latch contains the proper data before initiating the count-down by writing to location \$D005 [T1HOC]. When starting the down-count, the interrupt flag is cleared, the contents of the low-order latch will be transferred into the

low-order counter and the timer will begin to decrement at the system clock rate. If the PB7 output is enabled, this signal will go low on the phase two following the write operation.

When the counter reaches zero, the timer #1 interrupt flag will be set, the IRQ pin will go low and the signal on PB7 will go high. The counter will still continue to decrement, this will allow the time since the interrupt to be determined (note: the timer #1 interrupt will not be set again unless it has previously cleared).

Free-running Mode

The most important advantages associated with the latches are the ability to produce a continuous series of evenly spaced interrupts and the ability to produce a square wave on PB7 whose frequency is not affected by variations in the processor interrupt response time.

In the free-running mode (ACNTRL6 = 1), the interrupt flag is set and the signal on PB7 is inverted each time the counter reaches zero. However, instead of continuing to decrement from zero after a time-out, the timer automatically transfers the contents of the latch into the counter and continues to decrement from there.

Timer #2

<u>Addr</u> \$D008	<u>Label</u> T1LOLC	Description Write into low order latch
		Read from low-order counter and reset interrupt
\$D009	T1HOC	Write into high-order latch, transfer latches to counter and reset interrupt
		Read from high-order counter

ACNTRL Bit 5	Description
0	
1	

Interval Timer Mode

In interval timer mode, Timer #2 operates in the 'one-shot' mode similar to timer #1. Timer #2 issues an interrupt for each timer load operation. After timing out, the counter will continue to decrement.

Pulse-counting Mode

In the pulse counting mode, Timer #2 serves primarily to count a predetermined number of negative transitions on PB6. Writing into \$D009 [T2HOC] clears the interrupt flag and allows the counter to decrement for each negative transition applied to PB6. The interrupt flag will be set when Timer #2 reaches zero.

At this time the counter will continue to decrement with each negative transition on PB6. The pulse must be low on the leading edge of phase two.

Shift Register [SHIFT]

The shift register performs serial data transfers into and out of the CB2 pin under control of an internal modulo-8 counter. Shift pulses can be applied to the CB1 pin from an external source or, with the proper mode selection, shift pulses generated internally will appear on the CB1 pin for controlling shifting in external devices.

The control bits which allow control of the various shift register operating modes are located in the Auxiliary control register [ACNTRL]:

ACNTRL bits	
4 3 2	<u>Descriptions</u>
0 0 0	Shift register disabled
0 0 1	Shift-in under control of Timer #2
010	Shift-in at system clock rate
0 1 1	Shift-in under control of external pulses
100	Shift-out under control of Timer #2
1 0 1	Shift out under control of Timer #1
110	Shift out at system clock rate
1 1 1	Shift-out under control of external pulses

The data shifted-out of the shift register appears from bit 7 (note: at the same time, bit 7 is shifted-in at bit 0).

The first two shift-out modes differ in that the second mode (1 0 1) places the shift pulses on the CB1 pin.

The shift-in modes are not used with the standard Vectrex hardware and are described only for reference.

Interrupt enable register [IENABL]

Enabling flags – When writing to the Interrupt enable register (\$D00E) and bit 7 is set, then each 1 in bits 6 through 0 sets the corresponding bit in the Interrupt enable register.

Disabling flags – When writing to the Interrupt enable register (\$D00E) and bit 7 is cleared, then each 1 in bits 6 through 0 clears the corresponding bit in the Interrupt enable register.

<u>Bit</u>	<u>Description</u>
0	Enable / disable 'CA2' flag
1	Enable / disable 'CA1' flag
2	Enable / disable Shift register done flag
3	Enable / disable 'CB2' flag
4	Enable / disable 'CB1' flag
5	Enable / disable Timer #2 flag
6	Enable / disable Timer #1 flag
7	Set / clear control

Interrupt flag register [IFLAG]

Bit Description

0 Set by an active transition of 'CA2' signal

Cleared by the reading or writing of the Port 'A' data register (register address \$D001). Reading or writing the Port 'A' data at register address \$D00F does not affect the setting of this bit.

1 Set by an active transition of 'CA1' signal

Cleared by the reading or writing of the Port 'A' data register (register address \$D001). Reading or wriging the Port 'A' data at register address \$D00F does not affect the setting of this bit.

2 Shift register done

Cleared by the reading or writing of the shift register (register address \$D00A).

3 Set by an active transition of 'CB2' signal

Cleared by the reading or writing of the Port 'B' data register (register address \$D000).

4 Set by an active transition of 'CB1' signal

Cleared by the reading or writing of the Port 'B' data register (register address \$D000).

5 Timer #2 has down-counted to zero

Cleared by reading Timer #2's low-order counter (register address \$D008) or writing Timer #2's high-order counter (register address \$D009).

6 Timer #1 has down-counted to zero

Cleared by reading Timer #1's low-order counter (register address \$D004) or writing Timer #1's high-order counter (register address \$D005).

Logic expression of (IFR6 and IER6) or (IFR5 and IER5) or (IFR4 and IER4) or (IFR3 and IER3) or (IFR2 and IER2) or (IFR1 and IER1) or (IFR0 and IER0)

Programmable Sound Generator

Register Access Map

Reg	<u>Description</u>
\$00	Channel A: Fine tone period
\$01	Channel A: Course tone period
\$02	Channel B: Fine tone period
\$03	Channel B: Course tone period
\$04	Channel C: Fine tone period
\$05	Channel C: Course tone period
\$06	Noise period
\$07	Tone / Noise enables
\$08	Channel A: Amplitude
\$09	Channel B: Amplitude
\$0A	Channel C: Amplitude
\$0B	Fine envelope period
\$0C	Course envelope period
\$0D	Envelope shape / cycle
\$0E	I/O Port

Tone / Noise Enables

<This area was empty>

Course / Fine Tone Period

The frequency of each square wave generated by the three Tone generators is obtained in the PSG by first counting down the input clock by 16, then by further counting down the result by the programmed 12-bit tone period value. The 12-bit tone period is formed by the lower 4-bits of the course tone period (the upper 4-bits of the course tone period are not used) and the full byte of the fine tone period.

Note that the 12-bit value programmed in the combined course and fine tone registers is a 'period' value – the higher the value in the registers, the lower the resultant tone frequency. (The lowest period value is \$001).

Channel Amplitude

The amplitudes of the signals generated by the three D/A converters (one for each channel) is determined by the contents of the lower 5 bits (B4 - B0) of register \$08, \$09 and \$0A.

The amplitude mode (bit 4) selects either fixed level amplitude (M=0) or variable level amplitude (M=1). It follows then that bit 3 thru 0 are only active when M=0. When fixed level amplitude is selected, it is 'fixed' only in the sense that the amplitude level is under the direct control of the system processor. Varying the amplitude when in this 'fixed' amplitude mode requires in each instance the direct intervention of the system processor via an address latch / write data sequence to modify the amplitude setting.

When M = 1, the amplitude of each channel is determined by the envelope pattern as defined by the envelope generator's 4-bit output. The amplitude mode (bit 'M') should be thought of as an envelope enable bit.

Noise Period

The frequency of the noise source is obtained in the PSG by first counting down the input clock by 16, then by further counting down the result by the programmed 5-bit noise period value. This 5-bit value consists of the lower 5 bits of register \$06.

Note that the 5-bit value in register \$06 is a period value – the higher the value in the register, the lower the resultant noise frequency (the lowest period is \$01).

Envelope Period

The frequency of the envelope is obtained in the PSG by first counting down the input clock by 256, then by further counting down the result by the programmed 16-bit envelope period value. This 16-bit value is formed by the course and fine envelope period registers. Note that the 16-bit value formed by the course and fine envelope period registers is a period value – the higher the value in the registers, the lower the resultant envelope frequency (the lowest period is \$0001).

Envelope Shape / Cycle

<This area was empty>

I/O Port

<This area was empty>

General executive description

Drawing format descriptions

'Diffy' Description

A 'Diffy' style list contains a counted collection of relative (Y:X) coordinate pairs. When processing one of these, the drawing functions will **draw** a line from the current pen position to the first point in the list. A line is then drawn to the next relative coordinate, until no more points remain.

Depending upon the function processing the list, the first byte may be expected to contain the 'Vector count -1', or this value may need to be stored into RAM.

Depending upon the function processing the list, the second byte may be expected to contain the scale factor to be used when processing the list, or this value may need to be stored into RAM.

A sample 'Diffy' list might look like the following:

```
byte 0 - Vector count – 1 [optional]
byte 1 - Scale factor [optional]
bytes 2 / 3 - 'Y:X' for coordinate 1
bytes n / n+1 - 'Y:X' for coordinate 'n'
```

'Duffy' Description

A 'Duffy' style list is identical to a 'Diffy' style list. The only difference appears to be in the way that it is processed. When processing one of these, the drawing functions will **move** to the first point in the list. It will then draw a line to the next relative coordinate, until no more points remain.

'Packet' Description

A 'Packet' style list is an uncounted list of (mode:Y:X) triplets. This type of packet is useful if you need to mix **move** and **draw** requests within the same list. The end of the list is indicated by the presence of a list terminator (\$01).

Depending upon the function processing the list, the first byte may be expected to contain the scale factor to be used when processing tlist, or this value may need to be stored into RAM.

A sample 'Packet' list might look like the following:

```
byte 0 - Scale factor
bytes 1 / 2 / 3 - 'mode:Y:X' for coordinate 1
bytes n / n+1 / n+2 - 'mode:Y:X' for coordinate 'n'
$01 - packet terminator
```

where 'mode' can assume one of the following values:

```
$00 - Move to the specified point
```

Power-up / reset characteristics

<This area was empty>

Executive storage description

ABSX

Location: \$C835

Description:

Working storage for 'CMPASS'

Modified by:

CLREX, CMPASS INTALL, INTMSC

ABSY

Location: \$C834

Description:

Working storage for 'CMPASS'

Modified by:

CLREX, CMPASS INTALL, INTMSC

ACTPLY

Location: \$C89B

Description:

Mine Storm: Currently active player (\$00 or \$02)

Modified by:

CLREX

Accessed by:

SCRMES WAIT

ANGLE

Location: \$C836

Description:

Location for parameter passing

Modified by:

CLREX, CMPASS

DROT

INTALL, INTMSC LNROT, LROT90 MLTY8, MLTY16

PROT

Accessed by:

ADROT, ALNROT, APROT

BDROT SINCOS

BACON

Location: \$C876

Description:

Allocated but not used by Mine Storm or Executive

Modified by:

CLREX

INTALL, INTMSC

B1FREQ

Location: \$C86B - \$C86C (2 bytes)

Description:

Allocated but not used by Mine Storm or Executive

Modified by:

CLREX

INTALL, INTMSC

B2FREQ

Location: \$C86D - \$C86E (2 bytes)

Description:

Allocated but not used by Mine Store or Executive

Modified by:

CLREX INTALL, INTMSC

DASH

Location: \$C829

Description:

Dash pattern for drawing routines

Modified by:

CLREX

INTALL, INTMSC

Accessed by:

DASHDF, DASHPK, DSHDF, DSHDF1

DOREMI

Location: \$C84D - \$C84E (2 bytes)

Description:

Note table pointer

Modified by:

AŠPLAY CLREX

INTALL, INTMSC

SPLAY

Accessed by:

REPLAY TPLAY

DWELL

Location: \$C828

Description:

Dot 'ON' time

Modified by:

CLREX DOTTIM

INTALL, INTMSC

Accessed by:

ADOT

DDOT, DIFDOT, DOT, DOTAB, DOTPCK, DOTX

EDGE (HEDGES)

Location: \$C811

Description:

Used by button handlers

Modified by:

CLREX DBNCE

INPUT, INTALL, INTMSC

SELOPT WAIT

EPOTO (DPOTO)

Location: \$C81F

Description:

Controller #1: Right / left joystick pot enable (must be \$00 or \$01)

Modified by:

CLREX

INTALL, INTMSC

WAIT

Accessed by:

JOYBIT, JOYSTK

EPOT1 (DPOT1)

Location: \$C820

Description:

Controller #1: Up / down joystick pot enable (must be \$00 or \$03)

Modified by:

CLREX

INTALL, INTMSC

WAIT

Accessed by: JOYBIT, JOYSTK

EPOT2 (DPOT2)

Location: \$C821

Description:

Controller #2: Right / left joystick #2 enable (must be \$00 or \$05)

Modified by:

CLREX

INTALL, INTMSC

WAIT

Accessed by:

JOYBIT, JOYSTK

EPOT3 (DPOT3)

Location: \$C822

Description:

Controller #2: Up / down joystick #2 enable (must be \$00 or \$07)

Modified by:

CLREX

INTALL, INTMSC

WAIT

Accessed by:

JOYBIT, JOYSTK

ETMP1

Location: \$C883

Description:

Mine Storm: Temporary working storage

Modified by:

CLREX

ETMP2

Location: \$C884

Description:

Mine Storm: Temporary working storage

Modified by: CLREX

ETMP3

Location: \$C885

Description:

Mine Storm: Temporary working storage

Modified by: CLREX

ETMP4

Location: \$C886

Description:

Mine Storm: Temporary working storage

Modified by: CLREX

ETMP5

Location: \$C887

Description:

Mine Storm: Temporary working storage

Modified by: CLREX

ETMP6

Location: \$C888

Description:
Mine Storm: Temporary working storage

Modified by: CLREX

ETMP7

\$C889 Location:

Description:

Mine Storm: Temporary working storage

Modified by: CLREX

ETMP8

\$C88A Location:

Description:

Mine Storm: Temporary working storage

Modified by:

CLREX

ETMP9

Location: \$C88B

Description:

Mine Storm: Temporary working storage

Modified by:

CLREX

ETMP10

Accessed by:

XPLAY

```
Location:
                       $C88c - C88E (3 bytes)
       Description:
               Mine Storm: Temporary working storage
               The last two bytes ($C88D - $C88E) serve as a guard against the sloppy programmer and
               are not used by existing software.
       Modified by:
               CLREX
FADE
       Location:
                       $C84F - $C850 (2 bytes)
       Description:
               Working storage for 'SELOPT' and tune player subroutines
       Modified by:
               AŠPLAY
               CLREX
               INTALL, INTMSC
               REPLAY
               SELOPT, SPLAY
               TPLAY
       Accessed by:
               XPLAY
FADEA
                       $C85E
       Location:
       Description:
               Working storage for 'SELOPT' and tune player subroutines
       Modified by:
               ASPLAY
               CLREX
               INTALL, INTMSC
               REPLAY
               SELOPT, SPLAY
               TPLAY
```

FADEB

Location:

\$C85F

Description: Working storage for 'SELOPT' and tune player subroutines Modified by: AŠPLAY CLREX INTALL, INTMSC **REPLAY** SELOPT, SPLAY **TPLAY** Accessed by: XPLAY **FADEC** Location: \$C860 Description: Working storage for 'SELOPT' and tune player subroutines Modified by: ASPLAY **CLREX**

FEAST

Location: \$C871

INTALL, INTMSC

SELOPT, SPLAY

REPLAY

TPLAY

XPLAY

Description:

Accessed by:

Allocated but not used by Mine Storm or Executive

Modified by:

CLREX INTALL, INTMSC

FRAME

Location: \$C825 - \$C826 (2 bytes)

Description:

Frame counter

Modified by:

CLREX FRWAIT

INTALL, INTMSC

SELOPT WAIT

FRMTIM (XMSEC)

Location: \$C83D - C83E (2 bytes)

Description:

Frame rate

Modified by:

CLREX

INTALL, INTMSC

Accessed by:

FRWAIT

INTALL, INTPIA

SELOPT WAIT

F1FREQ

Location: \$C86F - \$C870 (2 bytes)

Description:

Allocated but not used by Mine Store or Executive

Modified by:

CLREX

INTALL, INTMSC

GAP

Location: \$C86A

Description:

Allocated but not used by Mine Storm or Executive

Modified by:

CLREX

INTALL, INTMSC

HISCOR (HEIGH)

Location: \$C8EB - \$C8F1 (7 bytes)

Description:

Contains ASCII high score

KEY0

Location: \$C812

Description:

Controller #1 - Key #1: De-bounced key depressed flag

Modified by:

CLREX DBNCE

INPUT, INTALL, INTMSC

SELOPT WAIT

KEY1

Location: \$C813

Description:

Controller #1 - Key #2: De-bounced key depressed flag

Modified by:

CLREX DBNCE

```
INPUT, INTALL, INTMSC SELOPT WAIT
```

KEY2

Location: \$C814

Description:

Controller #1 – Key #3: De-bounced key depressed flag

Modified by:

CLREX DBNCE

INPUT, INTALL, INTMSC

SELOPT WAIT

KEY3

Location: \$C815

Description:

Controller #1 – Key #4: De-bounced key depressed flag

Modified by:

CLREX DBNCE

INPUT, INTALL, INTMSC

SELOPT WAIT

KEY4

Location: \$C816

Description:

Controller #2 – Key #1: De-bounced key depressed flag

Modified by:

CLREX DBNCE

INPUT, INTALL, INTMSC

SELOPT WAIT

KEY5

Location: \$C817

Description:
Controller #2 – Key #2: De-bounced key depressed flag

Modified by:
CLREX
DBNCE
INPUT, INTALL, INTMSC
SELOPT
WAIT

KEY6

Location: \$C818

Description:

Controller #2 – Key #3: De-bounced key depressed flag

Modified by:

CLREX DBNCE

INPUT, INTALL, INTMSC

SELOPT WAIT

KEY7

Location: \$C819

Description:

Controller #2 – Key #4: De-bounced key depressed flag

Modified by:

CLREX DBNCE

INPUT, INTALL, INTMSC

SELOPT WAIT

K1FREQ

Location: \$C874 – \$C875 (2 bytes)

Description:

Allocated but not used by Mine Storm or Executive

Modified by:

CLREX

INTALL, INTMSC

LAG

Location: \$C83C

Description:

Used by transformation functions

Modified by:

ADROT, ALNROT, APROT

BDROT CLREX DROT

INTALL, INTMSC

LCSINE, LNROT, LROT90, LSINE MCSINE, MLTY8, MLTY16, MSINE

PROT SELOPT

LASRAM

Location: \$C880

Description:

First memory location available for use by a game

LATUS

Location: \$C868

Description:

Allocated but not used by Mine Storm or Executive

Modified by:

CLREX INTALL, INTMSC

LEG

Location: \$C83B Description: Used by transformation functions During startup, or after a reboot, controls whether a high score is displayed: = \$00 – Display high score != \$00 – Don't display high score Modified by: ADROT, ALNROT, APROT **BDROT CLREX** DROT INTALL, INTMSC LNROT, LROT90 MCSINE, MLTY8, MLTY16, MSINE **PROT** Accessed by: LCSINE, LSINE LIST \$C823 Location: Description: Number of vectors to be drawn Modified by: ADROT, APROT BDROT, BYTADD **CLREX** DASHDF, DASHPK, DIFDOT, DIFFAB, DIFFAX, DIFFY, DIFLST, DIFTIM, DROT, DSHDF, DSHDF1, DUFFAB, DUFFAX, DUFFY, DUFLST, DUFTIM INTALL, INTMSC JOYBIT, JOYSTK LDIFFY, LDUFFY **PROT** SCRADD, SELOPT, STKADD TDIFFY, TDUFFY

WAIT

MESAGE

Location: \$C82C - \$C82D (2 bytes)

Description:

Used by string display functions to hold pointer to message to be displayed.

Modified by:

ASMESS CLREX DSHIP

INTALL, INTMSC

MSSPOS

RASTER, RSTPOS, RSTSIZ

SCRBTH, SCRMES, SELOPT, SHIPX, SMESS

TXTPOS, TXTSIZ

WAIT

Accessed by:

MRASTR

NEDGE

Location: \$C873

Description:

Allocated but not used by Mine Storm or Executive

Modified by:

CLREX

INTALL, INTMSC

NEWGEN

Location: \$C855

Description:

Working storage for tune player subroutines

Modified by:

AŠPLAY CLREX

INTALL, INTMSC

REPLAY SPLAY

TPLAY

OPTION (GAMZ)

Location: \$C87A

Description:

Number of player options (\$01 - \$09)

Modified by:

CLREX

INTALL, INTMSC

SELOPT

PEDGE

Location: \$C872

Description:

Allocated but not used by Mine Storm or Executive

Modified by:

CLREX

INTALL, INTMSC

PLAYRS (PLAYRZ)

Location: \$C879

Description:

Number of players (\$01 - \$09)

Modified by:

CLREX

INTALL, INTMSC

SELOPT

Accessed by:

SCRBTH

POT0

Location: \$C81B

Description:

Controller #1: Right / left joystick pot value

Modified by:

CLREX

INTALL, INTMSC JOYBIT, JOYSTK

WAIT

POT1

Location: \$C81C

Description:

Controller #1: Up / down joystick pot value

Modified by:

CLREX

INTALL, INTMSC JOYBIT, JOYSTK

WAIT

POT2

Location: \$C81D

Description:

Controller #2: Right / left joystick pot value

Modified by:

CLREX

INTALL, INTMSC JOYBIT, JOYSTK

WAIT

POT3

Location: \$C81E

Description:

Controller #2: Up / down joystick pot value

Modified by:

CLREX INTALL, INTMSC JOYBIT, JOYSTK WAIT

POTRES

Location: \$C81A

Description:

Joystick resolution limit

Modified by:

CLREX

INTALL, INTMSC

Accessed by:

JOYBIT, JOYSTK

WAIT

RAMMES

Location: \$CA00

Description:

xxxxxx

RANCID

Location: \$C87D – C87F (3 bytes)

Description:

Working storage for random number generators

Modified by:

CLREX, CONE INTALL, INTMSC

RAND3, RANDOM, RANPOS

RATEA

Location: \$C858

Description:
Working storage for 'EXPLOD'

Modified by: CLREX

EXPLOD

INTALL, INTMSC

RATEB

Location: \$C85A

Description:

Working storage for 'EXPLOD'

Modified by:

CLREX **EXPLOD**

INTALL, INTMSC

RATEC

Location: \$C85C

Description:

Working storage for 'EXPLOD'

Modified by:

CLREX **EXPLOD**

INTALL, INTMSC

REG0

Location: \$C800

Description:

Channel A: Fine tone period

Modified by:

CLREX

INTALL, INTMSC, INTPSG

REQOUT WRREG

REG1

Location: \$C801

Description:

Channel A: Course tone period

Modified by:

CLREX

INTALL, INTMSC, INTPSG

REQOUT WRREG

REG2

Location: \$C802

Description:

Channel B: Fine tone period

Modified by:

CLREX

INTALL, INTMSC, INTPSG

REQOUT WRREG

REG3

Location: \$C803

Description:

Channel B: Course tone period

Modified by:

CLREX

INTALL, INTMSC, INTPSG

REQOUT WRREG

REG4

Location: \$C804

Description:

Channel C: Fine tone period

Modified by:

CLREX

INTALL, INTMSC, INTPSG

REQOUT WRREG

REG5

Location: \$C805

Description:

Channel C: Course tone period

Modified by:

CLREX

INTALL, INTMSC, INTPSG

REQOUT WRREG

REG6

Location: \$C806

Description:

Noise period

Modified by:

CLREX

INTALL, INTMSC, INTPSG

REQOUT WRREG

REG7

Location: \$C807

Description:

Tone / Noise enables

Modified by:

CLREX INTALL, INTMSC, INTPSG REQOUT WRREG

REG8

Location: \$C808

Description:

Channel A: Amplitude

Modified by:

CLREX

INTALL, INTMSC, INTPSG REQOUT

REQOUT WRREG

REG9

Location: \$C809

Description:

Channel B: Amplitude

Modified by:

CLREX

INTALL, INTMSC, INTPSG

REQOUT WRREG

REGA

Location: \$C80A

Description:

Channel C: Amplitude

Modified by:

CLREX

INTALL, INTMSC, INTPSG

REQOUT WRREG

REGB

Location: \$C80B

Description:

Fine envelope period

Modified by:

CLREX

INTALL, INTMSC, INTPSG

REQOUT WRREG

REGC

Location: \$C80C

Description:

Course envelope period

Modified by:

CLREX

INTALL, INTMSC, INTPSG

REQOUT WRREG

REGD

Location: \$C80D

Description:

Envelope shape / cycle

Modified by:

CLREX

INTALL, INTMSC, INTPSG

REQOUT WRREG

REGE

Location: \$C80E

```
Description:
I/O port data register
```

Modified by: CLREX

INTALL, INTMSC, INTPSG

REQOUT WRREG

REQ0

Location: \$C83F

Description:

Envelope shape / cycle

Modified by:

ASPLAY CLREX

INTALL, INTMSC, INTPSG, INTREQ

REPLAY SPLAY TPLAY XPLAY

Accessed by:

REQOUT

REQ1

Location: \$C840

Description:

Course envelope period

Modified by:

ASPLAY CLREX

INTALL, INTMSC, INTPSG, INTREQ

REPLAY SPLAY TPLAY XPLAY

Accessed by:

REQOUT

REQ2

Location: \$C841 Description: Fine envelope period Modified by: **ASPLAY** CLREX INTALL, INTMSC, INTPSG, INTREQ **REPLAY SPLAY TPLAY XPLAY** Accessed by: **REQOUT** REQ3 Location: \$C842 Description: Channel C: Amplitude Modified by: **ASPLAY** CLREX **EXPLOD** INTALL, INTMSC, INTPSG, INTREQ **REPLAY** SETAMP, SPLAY **TPLAY XPLAY** Accessed by: **REQOUT** REQ4 Location: \$C843 Description: Channel B: Amplitude Modified by: **ASPLAY**

```
CLREX
EXPLOD
INTALL, INTMSC, INTPSG, INTREQ
REPLAY
SETAMP, SPLAY
TPLAY
XPLAY
Accessed by:
REQOUT
```

REQ5

Location: \$C844

Description:
Channel A: Amplitude

Modified by:
ASPLAY
CLREX
EXPLOD
INTALL, INTMSC, INTPSG, INTREQ
REPLAY
SETAMP, SPLAY
TPLAY
XPLAY

Accessed by:
REQOUT

REQ6

Location: \$C845

Description:
Tone / noise enables

Modified by:
ASPLAY
CLREX
EXPLOD
INTALL, INTMSC, INTPSG, INTREQ
REPLAY
SPLAY
TPLAY
XPLAY

Accessed by:

REQOUT

REQ7

Location: \$C846

Description:
Noise period

Modified by:
ASPLAY
CLREX
EXPLOD
INTALL, INTMSC, INTPSG, INTREQ
REPLAY
SPLAY
TPLAY
XPLAY

Accessed by:
REQOUT

REQ8

Location: \$C847

Description:

Channel C: Course tone period

Modified by:

ASPLAY CLREX

INTALL, INTMSC, INTPSG, INTREQ

REPLAY SPLAY TPLAY XPLAY

Accessed by:

RÉQOUT

REQ9

Location: \$C848

REQA

Location: \$C849

Description:
Channel B: Course tone period

Modified by:
ASPLAY
CLREX
INTALL, INTMSC, INTPSG, INTREQ
REPLAY
SPLAY
TPLAY
TPLAY
XPLAY

Accessed by:

REQOUT

REQB

Location: \$C84A

Description:
Channel B: Fine tone period

Modified by:
ASPLAY
CLREX
INTALL, INTMSC, INTPSG, INTREQ
REPLAY
SPLAY
TPLAY
XPLAY

Accessed by: REQOUT

REQC

\$C84B Location:

Description:

Channel A: Course tone period

Modified by:

AŠPLAY **CLREX**

INTALL, INTMSC, INTPSG, INTREQ

REPLAY SPLAY TPLAY XPLAY

Accessed by:

REQOUT

REQD

\$C84C Location:

Description:

Channel A: Fine tone period

Modified by:

AŠPLAY **CLREX**

INTALL, INTMSC, INTPSG, INTREQ

REPLAY SPLAY TPLAY XPLAY

Accessed by: REQOUT

RESTC

\$C857 Location:

Description:
Working storage for tune player subroutines

Modified by:

ASPLAY CLREX

INTALL, INTMSC

REPLAY **SPLAY TPLAY XPLAY**

SATUS

Location: \$C867

Description:

Working storage for 'EXPLOD'

Modified by:

CLREX **EXPLOD**

INTALL, INTMSC

SBTN

\$C880 Location:

Description:

xxxxxx

Modified by:

CLREX

Accessed by:

WAIT

SCOR1

Location: \$C8A8 - \$C8AE (7 bytes)

Description:

Holds player 1's score

Modified by: CLREX

SCOR2

Location: \$C8AF – C8B5 (7 bytes)

Description:

Holds player 2's score

Modified by:

CLREX

SEED

Location: \$C87B - \$C87C (2 bytes)

Description:

Seed used by the random number generator

Modified by:

CLREX

INTALL, INTMSC

SIZRAS

Location: \$C82A - \$C82B (2 bytes)

Description:

Used by the string display functions to hold the height and width to be used when displaying the string

Modified by:

CLREX

INTALL, INTMSC

RSTSIZ

SCRBTH, SCRMES, SELOPT, SMESS

WAIT

Accessed by:

ASMESS DSHIP

MRASTR, MSSPOS RASTER, RSTPOS

SHIPX

TXTPOS

SJOY

Location: \$C881

Description:

Joystick mask (used by MineStorm)

Modified by:

CLREX

Accessed by:

WAIT

SPEKT

Location: \$C878

Description:

Allocated but not used by Mine Store or Executive

Modified by:

CLREX

INTALL, INTMSC

TENSTY

Location: \$C827

Description:

Contains the last value used for the intensity setting

Modified by:

CLREX

INT1Q, INT2Q, INT3Q, INTALL, INTENS, INTMAX, INTMSC

SCRBTH, SCRMES, SELOPT

WAIT

TEMP1

Location: \$C88F

Description:

Mine Storm: Temporary working storage

Modified by: CLREX

TEMP2

\$C890 Location:

Description:

Mine Storm: Temporary working storage

Modified by: CLREX

TEMP3

\$C891 Location:

Description:

Mine Storm: Temporary working storage

Modified by:

CLREX

TEMP4

Location: \$C892

Description:

Mine Storm: Temporary working storage

Modified by:

CLREX

TEMP5

Location: \$C893

Description:

Mine Storm: Temporary working storage

Modified by:

CLREX

TEMP6

Location: \$C894

Description:

Mine Storm: Temporary working storage

Modified by:

CLREX

TEMP7

Location: \$C895

Description:

Mine Storm: Temporary working storage

Modified by:

CLREX

TEMP8

Location: \$C896

Description:

Mine Storm: Temporary working storage

Modified by:

CLREX

TEMP9

Location: \$C897

Description:

Mine Storm: Temporary working storage

Modified by:

CLREX

TEMP10

Location: \$C898 - \$C89A (3 bytes)

Description:

Mine Storm: Temporary working storage

The last two bytes *\$C899 - \$C89A) serve as a guard against the sloppy programmer and are not used by existing software.

Modified by:

CLREX

TMR1

Location: \$C89C - \$C89E (3 bytes)

Description:

This is a 1-byte countdown counter followed by a 2-byte function address. When the counter counts down to zero, the function is called. This is used by MineStorm; the counter is decremented each pass through the main loop.

Modified by:

CLREX WAIT

TMR2

Location: \$C89F - \$C8A1 (3 bytes)

Description:

This is a 1-byte countdown counter followed by a 2-byte function address. When the counter counts down to zero, the function is called. This is used by MineStorm; the counter is decremented each pass through the main loop.

Modified by:

CLREX WAIT

TMR3

Location: \$C8A2 – C8A4 (3 bytes)

Description:

This is a 1-byte countdown counter followed by a 2-byte function address. When the counter counts down to zero, the function is called. This is used by MineStorm; the counter is decremented each pass through the main loop.

Modified by:

CLREX WAIT

TMR4

Location: \$C8A5 - \$ C8A7 (3 bytes)

Description:

This is a 1-byte countdown counter followed by a 2-byte function address. When the counter counts down to zero, the function is called. This is used by MineStorm; the counter is decremented each pass through the main loop.

Modified by:

CLREX WAIT

TONEA

Location: \$C861 - \$C862 (2 bytes)

Description:

Working storage for 'SELOPT' and tune player subroutines

Modified by:

CLREX

INTALL, INTMSC

SELOPT

Accessed by:

ASPLAY REPLAY

SPLAY

TPLAY

XPLAY

TONEB

Location: \$C863 - \$C864 (2 bytes) Description: Working storage for 'SELOPT' and tune player subroutines Modified by: **ASPLAY** CLREX INTALL, INTMSC SELOPT, SPLAY **TPLAY** Accessed by: **REPLAY XPLAY TONEC** Location: \$C865 - \$C866 (2 bytes) Description: Working storage for tune player subroutines Modified by: AŠPLAY **CLREX** INTALL, INTMSC **SPLAY TPLAY** Accessed by: RÉPLAY **XPLAY TRIGGR** Location: \$C80F - \$C810 (2 bytes) Description: Current controller button status. ('TRIGGR + 1' contains an image of 'TRIGGR' from the last time that the buttons were read). Modified by: **CLREX DBNCE** INPUT, INTALL, INTMSC

SELOPT WAIT

TSTAT

Location: \$C856

Description:

Working storage for tune player subroutines

Modified by:

ASPLAY CLREX

INTALL, INTMSC

REPLAY SPLAY TPLAY XPLAY

TUNE

Location: \$C853 - \$C854 (2 bytes)

Description:

xxxxxx

Modified by:

ASPLAY CLREX EXPLOD

INTALL, INTMSC

REPLAY SPLAY TPLAY XPLAY

VIBA

Location: \$C859

Description:

Working storage for 'EXPLOD'

Modified by:

CLREX

EXPLOD INTALL, INTMSC

VIBB

Location: \$C85B

Description:

Working storage for 'EXPLOD'

Modified by:

CLREX **EXPLOD**

INTALL, INTMSC

VIBC

Location: \$C85D

Description:

Working storage for 'EXPLOD'

Modified by:

CLREX **EXPLOD**

INTALL, INTMSC

Accessed by:

VIBE

Location: \$C851

Description:

Working storage for tune player subroutines

Modified by:

AŠPLAY CLREX

INTALL, INTMSC

SPLAY

TPLAY

Accessed by:

REPLAY

\$C839 - C83A (2 bytes)

WCSINE (COSINE)

Location:

```
Description:
              Location for parameter passing. Generally contains the last cosine value calculated.
       Modified by:
               ADROT, ALNROT, APROT
               BDROT
               CLREX
              DROT
               INTALL, INTMSC
               LNROT, LROT90
              MLTY8, MLTY16
              PROT
              SINCOS
       Accessed by:
              LCSINE
              MCSINE
WSINE (SINE)
       Location:
                      $C837 - $C838 (2 bytes)
       Description:
              Location for parameter passing. Generally contains the last sine value calculated
       Modified by:
               ADROT, ALNROT, APROT
               BDROT
               CLREX
```

DROT

PROT SINCOS

LSINE MSINE

Accessed by:

INTALL, INTMSC LNROT, LROT90 MLTY8, MLTY16

XACON

Location: \$C877

Description:
Working storage for 'EXPLOD'

Modified by:CLREX

EXPLOD

INTALL, INTMSC

XATUS

Location: \$C869

Description:

Allocated but not used by Mine Storm or Executive

Modified by:

CLREX

INTALL, INTMSC

XTMR0 (X0)

Location: \$C82E

Description:

xxxxxx

Modified by:

CLREX

D3TMR, DECTMR INTALL, INTMSC

SELOPT

XTMR1 (X1)

Location: \$C82F

Description:

Countdown timer

Modified by:

CLREX

D3TMR, DECTMR

INTALL, INTMSC SELOPT

XTMR2 (X2)

Location: \$C830

Description:

Countdown timer

Modified by:

CLREX

D3TMR, DECTMR INTALL, INTMSC

SELOPT

XTMR3 (X3)

Location: \$C831

Description:

Countdown timer

Modified by:

CLREX DECTMR

INTALL, INTMSC

XTMR4 (X4)

Location: \$C832

Description:

Countdown timer

Modified by:

CLREX DECTMR

INTALL, INTMSC

XTMR5 (X5)

Location: \$C833

Description:

Countdown timer

Modified by:

CLREX DECTMR

INTALL, INTMSC

ZSKIP (ZGO)

Location: \$C824

Description:

Flag controlling whether integrators will be zeroed:

= \$00 = Skip integrator zeroing != \$00 - Zero integrators

Modified by:

CLREX

INTALL, INTMSC

Accessed by:

APACK

CZERO

DASHDF, DASHPK, DIFFAB, DIFFAX, DIFFY, DIFLST, DIFTIM, DPACK, DSHDF,

DSHDF1, DUFFAB, DUFFAX, DUFFY, DUFLST, DUFTIM

LDIFFY, LDUFFY, LPACK

PACK1X, PACK2X, PACKET

TDIFFY, TDUFFY, TPACK

Condensed Executive Parameter Requirements

Subroutine	Entry Values	Return Values
ABSAB	A, B	A, B
ABSB	В	В
ACTGND	DP	A, B
ADOT	Y, DP, DWELL	Same as entry values
ADROT	X, U, ANGLE, LIST	A, B, X, U, LIST
ALNROT	A, DP, ANGLE	A, B
APACK	B, X, Y, DP, ZSKIP	Same as entry values
APROT	X, U, ANGLE	A, B, X, U, LIST
ASMESS	Y, U, DP, SIZRAS	Same as entry values
ASPLAY	X, U, DP	A, B, X, Y, Ü
BCLR	B, X	A, B
BDROT	B, X, U, ANGLE	A, B, X, U
BLKFIL	A, B, X	В
BLKMOV	A, X, U	A, B
BLKMV1	A, X, U	A, B
BXTEST	A, B, X, Y	CC
BYTADD	A, X, LIST	A, B, U
CLRBLK	A, B, X	A, B
CLREX	None required	A, B, X
CLR80	B, X	A, B
CLR256	X	A, B
CMPASS	A, B, DP	A, B, ANGLE
CONE	SEED	В
COSINE	A	A, B, X
CZERO	DP, ZSKIP	A, B
D3TMR	None required	B, X
DASHDF	X, DP, DASH, LIST	A, B, X, LIST, T1LOLC, ZSKIP
DASHPK	X, DP, DASH, T1LOLC, ZSKIP	A, B, X, LIST
DBNCE	A, DP	A, B, X, EDGE, KEY0 – KEY7, TRIGGR, TRIGGR + 1
DDOT	Y, DP, DWELL	Same as entry values
DECBIT	A	A, X
DECTMR	None required	B, X
DEFLOK	DP	A, B, X
DEL	В	В
DEL13	None required	Same as entry values
DEL20	None required	В
DEL28	None required	В
DEL33	None required	В
DEL38	None required	В
DIFDOT	X, DP, DWELL, LIST, T1LOLC	A, B, X, LIST
DIFFAB	A, B, DP, LIST, T1LOLC, ZSKIP	A, B, X
DIFFAX	X, DP, T1LOLC, ZSKIP	A, B, X, LIST

DIFFY	X, DP, LIST,	A, B, X, LIST
	T1LOLC, ZSKIP	, -,,
DIFLST	X, DP, ZSKIP	A, B, X, LIST
DIFTIM	B, X, DP, LIST,	A, B, X, LIST
	ZSKIP	
DOT	DP, DWELL	A, B
DOTAB	A, B, DP, DWELL,	A, B
	T1LOLC	
DOTPCK	X, DP, DWELL,	A, B, X
D OFFINA	T1LOLC	4 P W
DOTTIM	B, X, DP, T1LOLC	A, B, X
DOTX	X, DP, DWELL,	A, B, X
DDACK	T1LOLC	Community of the
DPACK	B, X, Y, DP	Same as entry values
DPIO	None required	A, DP
DPRAM	None required	A, DP
DROT	A, B, X, U	A, B, X, U, LIST A, B, X, LIST
DSHDF	A, X, DP, DASH, T1LOLC, ZSKIP	A, B, X, LIST
DSHDF1	A, X, DP, DASH,	A, B, X, LIST
ואסחטרו	T1LOLC, ZSKIP	A, D, A, LIST
DSHIP	A, B, X, DP, SIZRAS	A, B, X, U
DUFFAB	A, B, DP, LIST,	A, B, X
DOTTAB	T1LOLC, ZSKIP	A, B, A
DUFFAX	X, DP, T1LOLC,	A, B, X, LIST
DOTTIM	ZSKIP	11, 13, 14, 1101
DUFFY	X, DP, LIST,	A, B, X, LIST
	T1LOLC, ZSKIP	
DUFLST	X, DP, ZSKIP	A, B, X, LIST
DUFTIM	B, X, DP, ZSKIP	A, B, X, LIST
DZERO	None required	A, B, DP
EXPLOD	U, DP	A, B, X, XACON
FRWAIT	FRMTIM	A, B, X, DP`
HISCR	X, U	A, B, X, U
INPUT	DP	A, B, X
INT1Q	DP	A, B
INT2Q	DP	A, B
INT3Q	DP	A, B
INTALL	None required	A, B, X, DP
INTENS	A, DP	A, B
INTMAX	DP	A, B
INTMSC	None required	A, B, X, DP
INTPIA	FRMTIM	A, B, X, DP
INTPSG	DP	A, B, X
INTREQ	None required	A, B, X
JOYBIT	DP, EPOTx, LIST, POTRES	A, B, X, LIST, POTx
JOYSTK	DP, EPOTx, POTRES	A, B, X, LIST, POTx
LCSINE	DP, LEG, WCSINE	A, B
LDIFFY	A, X, DP, T1LOLC,	A, B, X, LIST
	ZSKIP	
LDUFFY	A, X, DP, T1LOLC,	A, B, X, LIST
	ZSKIP	

LNROT	A, B, DP	A, B
LPACK	X, DP, ZSKIP	A, B, X
LROT90	A, B, DP	A, B
LSINE	DP, LEG, WSINE	A, B
MCSINE	A, DP, WCSINE	A, B, LEG
MLTY8	A, B, DP	X, Y
MLTY16	A, B, DP	X, Y
MRASTR	DP, MESAGE,	A, B, X, U`
MICASTIC	SIZRAS	11, 13, 14, 0
MSINE	A, DP	A, B, LEG
MSSPOS	A, B, U, DP, SIZRAS	A, B, X, U
OFF1BX	A, B, X, Y, U	CC
OFF2BX	A, B, X, Y, U	CC
PACKET	X, DP, T1LOLC,	A, B, X
	ZSKIP	, ,
PACK1X	X, DP, ZSKIP	A, B, X
PACK2X	X, DP, ZSKIP	A, B, X
POSIT1	X, DP	A, B, X
POSIT2	X, DP	A, B, X
POSITB	B, X, DP	A, B, X
POSITD	A, B, DP	A, B
POSITN	A, B, DP, T1LOLC	A, B
POSITX	X, DP, T1LOLC	A, B, X
POSWID	X, DP	A, B
PROT	A, X, U	A, B, X, U, LIST
PSGLST	U, DP	A, B, X, U
PSGMIR	X, U, DP	A, B, U
RAND3	SEED	A
RANDOM	SEED	A
RANPOS	SEED	A, B
RASTER	U, DP, SIZRAS	A, B, X, U
REQOUT	DP, REQ0 – REQD	A, B, X, U
REPLAY	U, DP	A, B, X, Y, U
RSTPOS	U, DP, SIZRAS	A, B, X, U
RSTSIZ	U, DP	A, B, X, U
SCLR	X	A, B
SCRADD	A, B, X, LIST	A, B
SCRBTH	DP, PLAYRS,	A, B, Y, U
	SCOR1, SCOR2	
SCRMES	DP, ACTPLY,	A, B, Y, U
	SCOR1, SCOR2	
SELOPT	A, B	PLAYRS, OPTION
SETAMP	B, DP	A, X
SHIPX	A, B, X, DP, SIZRAS	A, B, X, U
SINCOS	DP, ANGLE	A, B, WCSINE, WSINE
SINE	A	A, B, X
SMESS	U, DP	Same as entry values
SPLAY	U, DP	A, B, X, Y, U
STKADD	S, LIST	A, B, S
TDIFFY	A, B, X, DP, ZSKIP	A, B, X, LIST
TDUFFY	A, B, X, DP, ZSKIP	A, B, X, LIST
TIMER		
TPACK	B, X, DP, ZSKIP	A, B, X

TPLAY	U, DP	A, B, X, Y, U
TXTPOS	U, DP, SIZRAS	A, B, X, U
TXTSIZ	U, DP	A, B, X, U
WAIT	None required	
WINNER	X, U	A, B, X, U
WRPSG	A, B, X, DP	В
WRREG	A, B, DP	B, X
XPLAY	DP	A, B, X, TSTAT
ZERGND	DP	A, B
ZERO	DP	A, B

Ram And Function Classifications

ASPLAY, Working storage, FADE ASPLAY, Working storage, FADEA ASPLAY, Working storage, FADEB ASPLAY, Working storage, FADEC ASPLAY, Working storage, NEWGEN

ASPLAY, Working storage, RESTC

ASPLAY, Working storage, TONEA

ASPLAY, Working storage, TONEB

ASPLAY, Working storage, TONEC

ASPLAY, Working storage, TSTAT

ASPLAY, Working storage, VIBE

Absolute value ABSAB (ABSVAL) Absolute value, ABSB (AOK)

Active-ground, ACTGND (ZEREF)

Active-ground, CZERO (ZEGO)

Active-ground, DEFLOK

Active-ground, DZERO (ZERO.DP)

Active-ground, FRWAIT (FRAM20)

Active-ground, WAIT

Active-ground, ZERGND (ZEROIT)

Active-ground, ZERO (ZERO.)

Arithmetic subroutines, General, ABSAB (ABSVAL)

Arithmetic subroutines, General, ABSB (AOK)

Arithmetic subroutines, General, DECBIT (BITE)

Arithmetic subroutines, Random number, CONE

Arithmetic subroutines, Random number, RAND3

Arithmetic subroutines, Random number, RANDOM

Arithmetic subroutines, Random number, RANPOS

Arithmetic subroutines, Raster Score, BYTADD (SHADD)

Arithmetic subroutines, Raster Score, HISCR (HIGHSCR)

Arithmetic subroutines, Raster Score, SCLR

Arithmetic subroutines, Raster Score, SCRADD (SADD)

Arithmetic subroutines, Raster Score, STKADD (SADD2)

Arithmetic subroutines, Raster Score, WINNER

Arithmetic subroutines, Rotation, DIFFY, ADROT (DIFROT)

Arithmetic subroutines, Rotation, DIFFY, BDROT (DISROT)

Arithmetic subroutines, Rotation, DIFFY, DROT (DANROT)

Arithmetic subroutines, Rotation, DUFFY, ADROT (DIFROT)

Arithmetic subroutines, Rotation, DUFFY, BDROT (DISROT)

Arithmetic subroutines, Rotation, DUFFY, DROT (DANROT)

Arithmetic subroutines, Rotation, LINE, ALNROT (ROTAR)

Arithmetic subroutines, Rotation, LINE, LNROT (ROTOR)

Arithmetic subroutines, Rotation, LINE, LROT90 (RATOR)

Arithmetic subroutines, Rotation, LINE, MLTY16

Arithmetic subroutines, Rotation, LINE, MLTY8

Arithmetic subroutines, Rotation, PACKET, APROT (POTATE) Arithmetic subroutines, Rotation, PACKET, PROT (POTATA)

Arithmetic subroutines, Trigonometric, ALNROT (ROTAR)

Arithmetic subroutines, Trigonometric, CMPASS (COMPAS)

Arithmetic subroutines, Trigonometric, COSINE (COSGET)

Arithmetic subroutines, Trigonometric, LCSINE (RCOS)

Arithmetic subroutines, Trigonometric, LNROT (ROTOR)

Arithmetic subroutines, Trigonometric, LROT90 (RATOR)

Arithmetic subroutines, Trigonometric, LSINE (RSIN)

Arithmetic subroutines, Trigonometric, MCSINE (RCOSA)

Arithmetic subroutines, Trigonometric, MLTY16

Arithmetic subroutines, Trigonometric, MLTY8

Arithmetic subroutines, Trigonometric, MSINE (RSINA)

Arithmetic subroutines, Trigonometric, SINCOS

Arithmetic subroutines, Trigonometric, SINE (SINGET)

Block initialization, BCLR (CLRSOM)

Block initialization, BLKFIL (FILL)

Block initialization, CLR256

Block initialization, CLR80 (NEGSOM)

Block initialization, CLRBLK (GILL)

Block initialization, CLREX (CLRMEM)

Block transfer, BLKMOV (STFAUX)

Block transfer, BLKMV1 (BAGAUX)

Button related RAM, EDGE (HEDGES)

Button related RAM, KEY0

Button related RAM, KEY1

Button related RAM, KEY2

Button related RAM, KEY3

Button related RAM, KEY4

Button related RAM, KEY5

Button related RAM, KEY6 Button related RAM, KEY7

bullon related KAIVI, KE I /

Button related RAM, SBTN

Button related RAM, TRIGGR

Button related subroutines, DBNCE (ENPUT)

Button related subroutines, INPUT

Button related subroutines, SELOPT (OPTION)

Button related subroutines, WAIT

CMPASS, Working Storage, ABSY

CMPASS, Working Storage, ABSX

CONE, Working storage, RANCID

Collision subroutines, BXTEST (FINEBOX)

Collision subroutines, OFF1BX (OFF1BOX)

Collision subroutines, OFF2BX (OFF2BOX)

Controller related RAM, EDGE (HEDGES)

Controller related RAM, EPOT0 (DPOT0)

Controller related RAM, EPOT1 (DPOT1)

Controller related RAM, EPOT2 (DPOT2)

Controller related RAM, EPOT3 (DPOT3)

Controller related RAM, KEY0

Controller related RAM, KEY1

Controller related RAM, KEY2

Controller related RAM, KEY3

Controller related RAM, KEY4

Controller related RAM, KEY5

Controller related RAM, KEY6

Controller related RAM, KEY7

Controller related RAM, POT0

Controller related RAM, POT1

Controller related RAM, POT2

Controller related RAM, POT3

Controller related RAM, POTRES

Controller related RAM, SBTN Controller related RAM, SJOY

Controller related RAM, TRIGGR

Controller related subroutines, DBNCE (ENPUT)

Controller related subroutines, INPUT

Controller related subroutines, JOYBIT (PBANG4)

Controller related subroutines, JOYSTK (POTS4)

Controller related subroutines, WAIT

Cosine subroutines, COSINE (COSGET)

Cosine subroutines, LCSINE (RCOS)

Cosine subroutines, MCSINE (RCOSA)

Cosine subroutines, SINCOS

DASH format, DASHDF (DASHY)

DASH format, DASHPK (DASHY3)

DASH format, DSHDF (DASHEL)

DASH format, DSHDF1 (DASHE)

DIFFY format, ADROT (DIFROT)

DIFFY format, BDROT (DISROT)

DIFFY format, DASHDF (DASHY)

DIFFY format, DIFDOT

DIFFY format, DIFFAX

DIFFY format, DIFFY

DIFFY format, DIFLST (DIFFX)

DIFFY format, DIFTIM

DIFFY format, DROT (DANROT)

DIFFY format, DSHDF (DASHEL)

DIFFY format, DSHDF1 (DASHE)

DIFFY format, LDIFFY (DIFLST)

DIFFY format, TDIFFY (DIFTLS)

DOT format, ADOT

DOT format, DDOT

DOT format, DIFDOT

DOT format, DOT

DOT format, DOTAB

DOT format, DOTPCK (DOTPAK)

DOT format, DOTTIM DOT format, DOTX

DUFFY format, ADROT (DIFROT)

DUFFY format, BDROT (DISROT)

DUFFY format, DIFDOT

DUFFY format, DROT (DANROT)

DUFFY format, **DUFFAX**

DUFFY format, DUFFY

DUFFY format, DUFLST

DUFFY format, DUFTIM

DUFFY format, LDUFFY (DUFLST)

DUFFY format, TDUFFY (DUFTLS)

Delay subroutines, DEL

Delay subroutines, DEL13

Delay subroutines, DEL20

Delay subroutines, DEL28,

Delay subroutines, DEL33

Delay subroutines, DEL38

Drawing formats, 'Diffy'

Drawing formats, 'Duffy'

Drawing formats, 'Packet'

Drawing subroutines, DASHED, DIFFY format, DASHDF (DASHY)

Drawing subroutines, DASHED, DIFFY format, DSHDF (DASHEL)

Drawing subroutines, DASHED, DIFFY format, DSHDF1 (DASHE)

Drawing subroutines, DASHED, DUFFY format, DASHDF (DASHY)

Drawing subroutines, DASHED, DUFFY format, DSHDF (DASHEL)

Drawing subroutines, DASHED, DUFFY format, DSHDF1 (DASHE)

Drawing subroutines, DASHED, PACKET format, DASHPK (DASHY3)

Drawing subroutines, DIFFY DOT format, DIFDOT

Drawing subroutines, DIFFY DOT format, DOTTIM

Drawing subroutines, DIFFY DOT format, DOTX

Drawing subroutines, DIFFY format, DIFFAX

Drawing subroutines, DIFFY format, DIFFY

Drawing subroutines, DIFFY format, DIFLST (DIFFX)

Drawing subroutines, DIFFY format, DIFTIM

Drawing subroutines, DIFFY format, LDIFFY (DIFLST)

Drawing subroutines, DIFFY format, TDIFFY (DIFTLS)

Drawing subroutines, DOT format, ADOT

Drawing subroutines, DOT format, DDOT

Drawing subroutines, DOT format, DOT

Drawing subroutines, DOT format, DOTAB

Drawing subroutines, DUFFY format, DUFFAX

Drawing subroutines, DUFFY format, DUFFY

Drawing subroutines, DUFFY format, DUFLST (DUFFX)

Drawing subroutines, DUFFY format, DUFTIM

Drawing subroutines, DUFFY format, LDUFFY (DUFLST) Drawing subroutines, DUFFY format, TDUFFY (DUFTLS)

Drawing subroutines, MARKER format, DSHIP (SHIPSHO) Drawing subroutines, MARKER format, SHIPX (SHIPSAT)

Drawing subroutines, PACKET DOT format, DOTPCK (DOTPAK)

Drawing subroutines, PACKET format, APACK

Drawing subroutines, PACKET format, DPACK

Drawing subroutines, PACKET format, LPACK (PACXX)

Drawing subroutines, PACKET format, PACK1X (PAC1X)

Drawing subroutines, PACKET format, PACK2X (PAC2X)

Drawing subroutines, PACKET format, PACKET

Drawing subroutines, PACKET format, TPACK (PACB)

Drawing subroutines, RASTER format, ASMESS

Drawing subroutines, RASTER format, DSHIP (SHIPSHO)

Drawing subroutines, RASTER format, MRASTR (RASTER)

Drawing subroutines, RASTER format, MSSPOS (POSDRAS)

Drawing subroutines, RASTER format, RASTER (RASTUR)

Drawing subroutines, RASTER format, RSTPOS (POSNRAS)

Drawing subroutines, RASTER format, RSTSIZ (SIZPRAS)

Drawing subroutines, RASTER format, SCRBTH

Drawing subroutines, RASTER format, SCRMES

Drawing subroutines, RASTER format, SELOPT (OPTION)

Drawing subroutines, RASTER format, SHIPX (SHIPSAT)

Drawing subroutines, RASTER format, TXTPOS (TEXPOS)

Drawing subroutines, RASTER format, TXTSIZ (TEXSIZ)

Drawing subroutines, SCORE format, SCRBTH

Drawing subroutines, SCORE format, SCRMES

Drawing subroutines, SCORE format, WAIT

EXPLOD, Working storage, RATEA

EXPLOD, Working storage, RATEB

EXPLOD, Working storage, RATEC

EXPLOD, Working storage, SATUS

EXPLOD, Working storage, VIBA

EXPLOD, Working storage, VIBB

EXPLOD, Working storage, VIBC

EXPLOD, Working storage, XACON

Hardware related subroutines, ACTGND (ZEREF)

Hardware related subroutines, CZERO (ZEGO)

Hardware related subroutines, DBNCE (ENPUT)

Hardware related subroutines, DEFLOK

Hardware related subroutines, DEL

Hardware related subroutines, DEL13

Hardware related subroutines, DEL20

Hardware related subroutines, DEL28

Hardware related subroutines, DEL33

Hardware related subroutines, DEL38

Hardware related subroutines, DPIO

Hardware related subroutines, DPRAM

Hardware related subroutines, DZERO (ZERO.DP)

Hardware related subroutines, FRWAIT (FRAM20)

Hardware related subroutines, INPUT

Hardware related subroutines, INT10

Hardware related subroutines, INT2Q (INTMID)

Hardware related subroutines, INT3Q

Hardware related subroutines, INTENS

Hardware related subroutines, INTMAX

Hardware related subroutines, INTPIA (INITPIA)

Hardware related subroutines, INTPSG (INITPSG)

Hardware related subroutines, JOYBIT (PBANG4)

Hardware related subroutines, JOYSTK (POTS4)

Hardware related subroutines, PSGLST (PSGLUP)

Hardware related subroutines, PSGMIR (PSGULP)

Hardware related subroutines, REQOUT

Hardware related subroutines, WAIT

Hardware related subroutines, WRPSG (PSG)

Hardware related subroutines, WRREG (PSGX)

Hardware related subroutines, ZERGND (ZEROIT)

Hardware related subroutines, ZERO (ZERO.)

Initialization subroutines, BCLR (CLRSOM)

Initialization subroutines, BLKFIL (FILL)

Initialization subroutines, CLR256

Initialization subroutines, CLR80 (NEGSOM)

Initialization subroutines, CLRBLK (CILL)

Initialization subroutines, CLREX (CLRMEM)

Initialization subroutines, INTALL (INITALL)

Initialization subroutines, INTMSC (INITMSC)

Initialization subroutines, INTPIA (INITPIA)

Initialization subroutines, INTPSG (INITPSG)

Initialization subroutines, INTREQ (IREQ)

Initialization subroutines, SCLR

Intensity control, INT1Q

Intensity control, INT2O (INTMID)

Intensity control, INT30

Intensity control, INTENS

Intensity control, INTMAX

Interface adapter, Auxiliary control register

Interface adapter, Peripheral control register

Interface adapter, Port 'A' data register

Interface adapter, Port 'A' handshake controls (CA1 / 2)

Interface adapter, Port 'B' data register

Interface adapter, Port direction register

Interface adapter, interrupt enable register (IER)

Interface adapter, interrupt flag register (IFR)

Interface adapter, register access map

Interface adapter, shift register

Interface adapter, timer #1

Interface adapter, timer #2

Joystick enable, EPOT0 (DPOT0)

Joystick enable, EPOT1 (DPOT1)

Joystick enable, EPOT2 (DPOT2)

Joystick enable, EPOT3 (DPOT3)

Joystick related RAM, EPOT0 (DPOT0)

Joystick related RAM, EPOT1 (DPOT1)

Joystick related RAM, EPOT2 (DPOT2)

Joystick related RAM, EPOT3 (DPOT3)

Joystick related RAM, POT0

Joystick related RAM, POT1

Joystick related RAM, POT2

Joystick related RAM, POT3

Joystick related RAM, POTRES

Joystick related RAM, SJOY

Joystick related subroutines, JOYBIT (PBANG4)

Joystick related subroutines, JOYSTK (POTS4)

Joystick related subroutines, WAIT

MARKER format, DSHIP (SHIPSHO)

MARKER format, SHIPX (SHIPSAT)

Memory block subroutines, ADROT (DIFROT)

Memory block subroutines, APROT (POTATE)

Memory block subroutines, BCLR (CLRSOM)

Memory block subroutines, BDROT (DISROT)

Memory block subroutines, BLKFIL (FILL)

Memory block subroutines, BLKMOV (STFAUX)

Memory block subroutines, BLKMV1 (BAGAUX)

Memory block subroutines, CLR256

Memory block subroutines, CLR80 (NEGSOM)

Memory block subroutines, CLRBLK (GILL)

Memory block subroutines, CLREX (CLRMEM)

Memory block subroutines, DROT (DANROT)

Memory block subroutines, PROT (POTATA)

PACKET format, APACK

PACKET format, APROT (POTATE)

PACKET format, DASHPK (DASHY3)

PACKET format, DOTPCK (DOTPAK)

PACKET format, DPACK

PACKET format, LPACK (PACXX)

PACKET format, PACK1X (PAC1X)

PACKET format, PACK2X (PAC2X)

PACKET format, PACKET

PACKET format, PROT (POTATA)

PACKET format, TPACK (PACB)

PIA initialization, INTALL (INITALL)

PIA initialization, INTPIA (INITPIA)

PSG Sound mirror, REG0

PSG Sound mirror, REG1

PSG Sound mirror, REG2

PSG Sound mirror, REG3

PSG Sound mirror, REG4

PSG Sound mirror, REG5

PSG Sound mirror, REG6

PSG Sound mirror, REG7

PSG Sound mirror, REG8

PSG Sound mirror, REG9

PSG Sound mirror, REGA

PSG Sound mirror, REGB

PSG Sound mirror, REGC

PSG Sound mirror, REGD

PSG Sound mirror, REGE

PSG Working Storage, REQ0

PSG Working Storage, REQ1

PSG Working Storage, REQ2

PSG Working Storage, REQ3

PSG Working Storage, REQ4

PSG Working Storage, REQ5

PSG Working Storage, REQ6

PSG Working Storage, REQ7

PSG Working Storage, REQ8

PSG Working Storage, REQ9

PSG Working Storage, REQA

PSG Working Storage, REQB

PSG Working Storage, REQC

PSG Working Storage, REQD

PSG initialization, INTALL (INITALL)

PSG initialization, INTPSG (INITPSG)

Positioning subroutines, POSIT1

Positioning subroutines, POSIT2

Positioning subroutines, POSITB

Positioning subroutines, POSITD

Positioning subroutines, POSITN

Positioning subroutines, POSITX

Positioning subroutines, POSWID

Programmable Timers, D2TMR (DEKR3)

Programmable Timers, DECTMR (DEKR)

Programmable Timers, WAIT

Programmable Timers, Executive, XTMR0 (X0)

Programmable Timers, Executive, XTMR1 (X1)

Programmable Timers, Executive, XTMR2 (X2)

Programmable Timers, Executive, XTMR3 (X3)

Programmable Timers, Executive, XTMR4 (X4)

Programmable Timers, Executive, XTMR5 (X5)

Programmable Timers, Mine Storm, TMR1

Programmable Timers, Mine Storm, TMR2

Programmable Timers, Mine Storm, TMR3

Programmable Timers, Mine Storm TMR4

RAM initialization, BCLR (CLRSOM)

RAM initialization, BLKFIL (FILL)

RAM initialization, CLR256

RAM initialization, CLR80 (NEGSOM)

RAM initialization, CLRBLK (GILL)

RAM initialization, CLREX (CLRMEM)

RAM initialization, INTALL (INITALL)

RAM initialization, SCLR

RASTER format, ASMESS

RASTER format, DSHIP (SHIPSHO)

RASTER format, MRASTR (RASTER)

RASTER format, MSSPOS (POSDRAS)

RASTER format, RASTER (RASTUR)

RASTER format, RSTPOS (POSNRAS)

RASTER format, RSTSIZ (SIZPRAS)

RASTER format, SCRBTH

RASTER format, SCRMES

RASTER format, SELOPT (OPTION)

RASTER format, SHIPX (SHIPSAT)

RASTER format, TXTPOS (TEXPOS)

RASTER format, TXTSIZ (TEXSIZ)

REPLAY, Working storage, FADE

REPLAY, Working storage, FADEA

REPLAY, Working storage, FADEB

REPLAY, Working storage, FADEC

REPLAY, Working storage, NEWGEN

REPLAY, Working storage, RESTC

REPLAY, Working storage, TONEA

REPLAY, Working storage, TONEB

REPLAY, Working storage, TONEC

REPLAY, Working storage, TSTAT

REPLAY, Working storage, VIBE

REQ initialization, INTALL (INITALL)

REQ initialization, INTPSG (INITPSG)

REQ initialization, INTREQ (IREQ)

Random Number Generators, CONE

Random Number Generators, RAND3

Random Number Generators, RANDOM Random Number Generators, RANPOS

Rotation subroutines, DIFFY format, ADROT (DIFROT)

Rotation subroutines, DIFFY format, BDROT (DISROT)

Rotation subroutines, DIFFY format, DROT (DANROT)

Rotation subroutines, DUFFY format, ADROT (DIFROT)

Rotation subroutines, DUFFY format, BDROT (DISROT)

Rotation subroutines, DUFFY format, DROT (DANROT)

Rotation subroutines, LINE format, ALNROT (ROTAR)

Rotation subroutines, LINE format, LNROT (ROTOR)

Rotation subroutines, LINE format, LROT90 (RATOR)

Rotation subroutines, LINE format, MLTY16

Rotation subroutines, LINE format, MLTY8

Rotation subroutines, PACKET format, APROT (POTATE)

Rotation subroutines, PACKET format, PROT (POTATA)

SELOPT, Working storage, FADE

SELOPT, Working storage, FADEA

SELOPT, Working storage, FADEB

SELOPT, Working storage, FADEC

SELOPT, Working storage, TONEA

SELOPT, Working storage, TONEB

SPLAY, Working storage, FADE

SPLAY, Working storage, FADEA

SPLAY, Working storage, FADEB

SPLAY, Working storage, FADEC

SPLAY, Working storage, NEWGEN

SPLAY, Working storage, RESTC

SPLAY, Working storage, TONEA

SPLAY, Working storage, TONEB

SPLAY, Working storage, TONEC

SPLAY, Working storage, TSTAT

SPLAY, Working storage, VIBE

Sine subroutines, LSINE (RSIN)

Sine subroutines, MSINE (RSINA)

Sine subroutines, SINCOS

Sine subroutines, SINE (SINGET)

Sound related subroutines, EXPLOD (AXE)

Sound related subroutines, INTPSG (INITPSG)

Sound related subroutines, INTREQ (IREQ)

Sound related subroutines, PSGLST (PSGLUP)

Sound related subroutines, PSGMIR (PSGULP)

Sound related subroutines, REQOUT

Sound related subroutines, SETAMP (LOUDIN)

Sound related subroutines, WRPSG (PSG)

Sound related subroutines, WRREG (PSGX)

TPLAY, Working storage, FADE

TPLAY, Working storage, FADEA

TPLAY, Working storage, FADEB

TPLAY, Working storage, FADEC

TPLAY, Working storage, NEWGEN

TPLAY, Working storage, RESTC

TPLAY, Working storage, TONEA

TPLAY, Working storage, TONEB

TPLAY, Working storage, TONEC

TPLAY, Working storage, TSTAT

TPLAY, Working storage, VIBE

Temporary Storage, Mine Storm, ETMP1

Temporary Storage, Mine Storm, ETMP2

Temporary Storage, Mine Storm, ETMP3

Temporary Storage, Mine Storm, ETMP4

Temporary Storage, Mine Storm, ETMP5

Temporary Storage, Mine Storm, ETMP6

Temporary Storage, Mine Storm, ETMP7

Temporary Storage, Mine Storm, ETMP8

Temporary Storage, Mine Storm, ETMP9

Temporary Storage, Mine Storm, ETMP10

Temporary Storage, Mine Storm, TEMP1

Temporary Storage, Mine Storm, TEMP2

Temporary Storage, Mine Storm, TEMP3

Temporary Storage, Mine Storm, TEMP4

Temporary Storage, Mine Storm, TEMP5

Temporary Storage, Mine Storm, TEMP6

Temporary Storage, Mine Storm, TEMP7

Temporary Storage, Mine Storm, TEMP8

Temporary Storage, Mine Storm, TEMP9

Temporary Storage, Mine Storm, TEMP10

Tune player subroutines, ASPLAY (SOPLAY)

Tune player subroutines, REPLAY

Tune player subroutines, REQOUT

Tune player subroutines, SPLAY

Tune player subroutines, TPLAY(YOPLAY)

Tune player subroutines, XPLAY

XPLAY, Working storage, FADE

XPLAY, Working storage, FADEA

XPLAY, Working storage, FADEB

XPLAY, Working storage, FADEC

XPLAY, Working storage, RESTC

XPLAY, Working storage, TONEA

XPLAY, Working storage, TONEB

XPLAY, Working storage, TONEC

XPLAY, Working storage, TSTAT