Definition of Poisson Process

A counting process $\{N_t, t \geq\}$ is called a Poisson Process with parameter λ if it satisfies the following conditions:

- 1. $N_0 = 0$;
- 2. For any $0 \le s < t < +\infty$, the increment $N_t N_s$ is a Poisson random variable with parameter $\lambda(t-s)$;
- 3. $\{N_t, t \geq 0\}$ is an independent increment process.

Six properties of Poisson Processes

- 1. $\forall t > 0, N_t$ is a Poisson random variable with parameter λt ;
- 2. $\mathbf{E}(N_t) = \lambda t$, $\mathbf{Var}(N_t) = \lambda t$, $\mathbf{E}(N_t^2) = \mathbf{Var}(N_t) + \mathbf{E}(N_t)^2 = \lambda t + (\lambda t)^2$
- 3. Consider $N_{t+\delta} N_t$ where $\delta > 0$ is very small.

$$P(N_{t+\delta} - N_t = 0) = e^{-\lambda \delta} = 1 - \lambda \delta + o(\delta)$$

$$P(N_{t+\delta} - N_t = 1) = \lambda \delta e^{-\lambda \delta} = \lambda \delta + o(\delta)$$

$$P(N_{t+\delta} - N_t \ge 2) = 1 - P(N_{t+\delta} - N_t = 0) - P(N_{t+\delta} - N_t = 1) = o(\delta)$$

- 4. Let $T_n := \min\{t > 0 : N_t = 0\}$, then $\{T_n > t\} = \{N_t < n\}$. (Applies to all counting processes)
- 5. Let $S_n := T_n T_{n-1}, S_1, S_2, \ldots, S_n$ are i.i.d. and exponentially distributed with parameter λ . Also note that they obey memoryless property.
- 6. The inter-arrival of a Poisson process are i.i.d exponential random variables with parameter λ and have momoryless property.

State and prove that the countable infinite sum of independent Poisson Processes is a Poisson Process

Sum of independent Poisson Processes:

Let $\{N_i, i = 1, 2, ...\}$ be a family of independent Poisson Processes with respective parameters $\lambda_i \geq 0, i = 1, 2, ...,$ Then

- 1. If $\lambda := \sum_{i=1}^{+\infty} \lambda_i < +\infty$, then $\{N_t = \sum_{i=1}^{+\infty} N_t^i, t \geq 0\}$ is a Poisson Process with parameter λ .
- 2. Any two distinct Poisson Process from this family have no points in common.

Refs: For proof, please refer to notes on EECS 502

State and prove Competition Theorem for Poisson Processes

Competition Theorem:

Let $\{N_i, i = 1, 2, ...\}$ be a family of independent Poisson Processes with parameters $\lambda_i, i = 1, 2, ...$ respectively. Assume $\lambda := \sum_{1}^{+\infty} \lambda_i < +\infty$, define $N := \sum_{1}^{+\infty} N_i$ and let τ be the first event time of Poisson process N and Z be the index of the Poisson process responsible for it, that is τ is the first event time of N_Z , then

$$P(Z = i, \tau \ge t) = P(Z = i)P(\tau \ge t) = \frac{\lambda_i}{\lambda}e^{-\lambda t}$$

Refs: For proof, please refer to notes on EECS 502