Projet n°3

SANTÉ PUBLIQUE FRANCE

OPENCLASSROOMS

Préparation de données pour un organisme de santé publique

Sommaire

- Introduction
- Exploration des données
 - Suppression des doublons
 - Nettoyage des variables
- Sélection des données pertinentes
- Choix de la variable cible
 - Sélection des variables
- Nettoyage des données
 - o Réglage des valeurs aberrantes
 - o Imputation des valeurs manquantes
- Analyse de données
 - o Analyse univariée
 - o Analyse multivariée
- Analyse en composantes principales
- Conclusion

Mission et objectifs

Le projet de l'agence de Santé publique France est d'améliorer sa base de données **Open Food Facts**.

Notre objectif ici est la prise en main, le nettoyage et l'exploration des données en vue de la création d'un système d'auto-complétion.

PROCÉDURE:

- Exploration des données
- Sélection de la variable cible
- Nettoyage des données
- Analyse des données

État des lieux

Notre jeu de données est composé d'un fichier .csv, que l'on nommera data et dont les caractéristiques sont les suivantes :

Information	Valeur
Nombre de lignes	320 772
Nombre de colonnes	162
Nombre de colonnes float	106
Nombre de colonnes object	56

Table: Résumé descriptif de data

EXPLORATION DES DONNÉES

Description des données

- Chaque produit est identifié par son code barre.
- Variables catégorielles
 - o Informations générales : Nom, Catégorie, Type, URL ...
 - o Informations complémentaires : Allergènes, Additifs, Origine, Label ...
- Variables numériques
 - o Données nutritionnelles : Energie, Glucides, Graisses, Sel ...
 - o Données complémentaires : Nutriscore, Nombre d'additifs ...
- Aucun doublon détecté dans le jeu de données data

Valeurs manquantes

Valeurs manquantes par colonne des variables numériques (%)

SÉLECTION DES DONNÉES PERTINENTES

Choix de la variable cible

Critères de sélection de la variable cible :

- Plus de 50% de valeurs manquantes
- Moins de 80% de valeurs manquantes
- ullet Un nombre de valeurs uniques relativement petit (< 100)
- Doit pouvoir être déterminé en fonction des variables numériques

On a donc 2 variables catégorielles qui respectent ces conditions

Variable	pnns_groups_1	pnns_groups_2
Lignes	68889	71867
Taux lignes (%)	54	52
Valeurs uniques	9	36

Finalement, on choisira pnns_groups_1.

On ne garde que les lignes de data pour lesquelles la colonne pnns_groups_1 est renseignée.

Proportions des catégories PNNS GROUPS 1

Sélection des variables numériques

- Suppression de toutes les variables numériques ayant plus de 90% de valeurs manquantes
- Suppression des variables inutiles :
 - o additives_n
 - o ingredients_from_palm_oil_n
 - o ingredients_that_may_be_from_palm_oil_n

- On a donc 11 variables numériques.
- On supprime tous les produits pour lesquels aucune variable n'est renseignée. (13022 lignes)

Variable	Traduction	VM (%)
energy_100g	Énergie	1,50
fat_100g	Graisses	5,70
saturated-fat_100g	Acides gras saturés	7,55
carbohydrates_100g	Glucides	6, 44
sugars_100g	Sucres	7, 19
fiber_100g	Fibres	40,62
proteins_100g	Protéines	2, 35
salt_100g	Sel	6, 91
sodium_100g	Sodium	6, 91
ns-fr_100g	Nutriscore français	9, 43
ns-uk_100g	Nutriscore anglais	9, 43

NETTOYAGE DES DONNÉES

Réglage des valeurs aberrantes

Avant tout, on sépare notre data en deux à l'aide des colonnes quantity et product_name

- data_food qui contiendra les produits de type Nourriture
- data_drink qui contiendra les produits de type Boisson

Dataframe	Nombre de lignes
data_food	48068
data_drink	7799

Transformation des valeurs aberrantes en valeurs manquantes

- Pour energy_100g:
 - o Toutes les valeurs supérieures à 4000 pour data_food
 - o Toutes les valeurs supérieures à 1200 pour data_drink
- Pour ns-fr_100g et ns-uk_100g :
 - Aucune valeur aberrante
- Pour toutes les autres variables :
 - Toutes les valeurs supérieures à 100
 - Toutes les valeurs négatives (inférieures à 0)

Cohérence des données

• Si saturated-fat_100g > fat_100g alors,

$$\mathtt{saturated}\mathtt{-fat}\mathtt{_100g} = \mathtt{fat}\mathtt{_100g}$$

• Si sugars_100g > carbohydrates_100g alors,

$$sugars_100g = carbohydrates_100g$$

• Si sodium_100g > salt_100g alors,

```
sodium\_100g = salt\_100g
```

Remplissage des valeurs manquantes

- Pour la variable fiber_100g, les valeurs manquantes sont remplacées par o
- Pour les autres, 3 méthodes utilisées en fonction des distributions
 - o Imputation par la moyenne
 - o Imputation par la médiane
 - Méthode des k plus proches voisins (k—NN)

Création d'un score

Les scores correspondent à la différence absolue moyenne entre la corrélation d'une variable avec les autres, avant et après imputation.

	data	_food	data_	drink
Features	SCO MOY	SCO MED	SCO MOY	SCO MED
Energy	0, 0012	0,0013	0, 1706	0, 1850
Fat	0,0067	0,0062	0, 0118	0,0081
Saturated fat	0, 0065	0,0072	0,0069	0,0047
Carbohydrates	0, 0074	0,0090	0,0079	0,0081
Sugars	0,0055	0,0056	0,0081	0,0070
Proteins	0,0009	0,0011	0,0034	0,0035
Salt	0, 0177	0, 0178	0,0010	0,0016
Sodium	0, 0019	0, 0019	0,0010	0,0016

Nourritures

Fat - Imputations

Sugars – Imputations

Boissons

Carbohydrates - Imputations

Sugars – Imputations

Energy – Imputations

Méthode des plus proches voisins

Avant d'imputer, on recherche le nombre de voisins optimal à l'aide de la technique du coude.

Exemple avec la variable sugars_100g de data_food :

Tableau des imputations k—NN

Dataframe	Variable	Valeur de k
data_food	saturated-fat_100g	3
	sugars_100g	2
data_100d	ns-fr_100g	2
	ns-uk_100g	2
	saturated-fat_100g	3
data_drink	energy_100g	4
	ns-fr_100g	4
	ns-uk_100g	4

ANALYSE DE DONNÉES

Analyse univariée

Boîtes à moustache des variables nutritionnelles

Distribution des graisses

Distribution des glucides et sucres

Distribution des fibres et protéines

Distribution des sels et sodiums

Analyse multivariée

Heatmap de corrélation - Global

Corrélation entre Energie et Graisses

Corrélation entre Energie et Glucides

Corrélation entre Graisses et Acides gras saturés

Corrélation entre Glucides et Sucres

Corrélation entre Nutriscore FR et Nutriscore UK

Test de Kruskal-Wallis

Vu que les distributions des variables ne sont pas normales, l'ANOVA n'est pas appropriée.

On effectue donc à la place un test de Kruskal-Wallis.

 \hookrightarrow On découpe la variable ns-fr_100g en 4 sous-groupes.

	Intervalle		
Groupe 1	(-15.001, 1.0]		
Groupe 2	(1.0, 8.0]		
Groupe 3	(8.0, 15.0]		
Groupe 4	(15.0, 40.0]		

Distribution de Fat

Distribution de Carbohydrates

ANALYSE EN COMPOSANTES

PRINCIPALES

Avec F1 et F2, on a 57, 7% de la variance expliquée.

Composants de l'ACP

F1	F2	F3	F4
0,42	-o, 11	0, 12	0, 28
0,37	0,07	− 0, 35	0,14
0,39	0,04	-0,34	0,09
0, 17	− 0, 36	0, 53	0,06
0, 22	− 0,38	0, 35	-0, 29
0,01	-0,09	0, 29	0,68
0, 12	0,30	0,00	0,47
0,10	0, 55	0,36	-o, 13
0,10	0, 55	0,36	-o, 13
0,45	-0,01	-0,02	-o, 25
0,47	0, 03	-0,05	-o, 17
	0, 42 0, 37 0, 39 0, 17 0, 22 0, 01 0, 12 0, 10 0, 45	0,42	0,42 -0,11 0,12 0,37 0,07 -0,35 0,39 0,04 -0,34 0,17 -0,36 0,53 0,22 -0,38 0,35 0,01 -0,09 0,29 0,12 0,30 0,00 0,10 0,55 0,36 0,45 -0,01 -0,02

Cercle des corrélations (F1 et F2)

Conclusion

- Les valeurs aberrantes et manquantes ont été traitées.
- Les données ont été explorées et analysées de manière approfondie.
- ← Les traitements précédents permettront d'obtenir des résultats plus fiables et précis lors de la modélisation de la variable catégorielle cible pnns_groups_1

Règlement Général sur la Protection des Données

- \hookrightarrow Le RGPD est une réglementation européenne visant à renforcer la protection des données des citoyens de l'Union Européenne.
- \hookrightarrow Cette réglementation repose sur les 5 doctrines suivantes :
- 1 Légalité, loyauté et transparence
- **2** Limitation des finalités
- 3 Minimisation des données collectées
- **4** Exactitude des données collectées
- **5** Limitation de la conservation

