STT6700, année 2024, Devoir 1, à remettre pour le 15 février

1 Soit X_1, \ldots, X_n des variables aléatoires indépendantes de densité $f(\cdot \mid \theta), \theta \in [-1, 1]$ avec

$$f(x \mid \theta) = (1 + \theta x)/2, \quad x \in [-1, 1].$$

On pose

$$Y_i = \mathbb{1}_{[0,1]}(X_i), \quad i = 1, \dots, n.$$

- 1. Trouvez l'estimateur de θ par la méthode des moments lorsque qu'on observe X_1, \dots, X_n .
- 2. Trouvez l'estimateur de θ par la méthode des moments lorsque qu'on observe Y_1, \dots, Y_n .
- 3. Calculez les équarts quadratique moyens pour chacun des estimateurs.
- 4. Proposez une méthode élémentaire pour améliorer les écarts quadratique moyens. (Indication: comparer les espaces image des estimateurs avec l'espace paramétrique.)

2 Soit X_1, X_2 des variables aléatoires indépendantes de loi de Cauchy $(\theta, 1)$. La densité est donnée par

$$f(x \mid \theta) = \frac{1}{\pi} \frac{1}{1 + (x - \theta)^2}.$$

Trouvez l'extimateur de θ par la méthode des moments.

(Indication: reparamétrisez en $\eta = \theta - (x_1 + x_2)/2$).

3 Soit $f(\cdot \mid \theta)$ une densité de la forme

$$f(x \mid \theta) = g(\mid x - \theta \mid)$$

avec g une fonction continue et décroissante. Soit x_1, \ldots, x_n les observations et $x_{(1)}, \ldots, x_{(n)}$ les statistiques d'ordre. Montrez que l'estimateur de θ par la méthode du maximum de vraisemblance existe et qu'il se trouve dans l'intervalle $[x_{(1)}, x_{(n)}]$.