Blockchain & Business Application

Lecture:

Alternative Mining Puzzles

Chapter 8

- Mining Puzzles
- Control the Consensus Process
- Profit
 - Help solving, not only network maintenance
- Modifying/Designing puzzles!

Puzzle Requirements

- Secure?
- Difficult to solve, easy to verify
- Adjustable difficulty

(From Mining Chapter)

Network grows, hardware faster, but difficulty increases → Next block always in 10 mins

Figure 5.3: Mining difficulty over time (mid-2014). Note that the y-axis begins at 80,000 TH/s.

What is Bitcoin Puzzle?

- "Partial hash-preimage puzzle"
- Goal:
 - to find preimgs for partially specified hash output
 - namely, an output below a certain target value
- SHA-256 hash based puzzle satisfies both
 - Adjustable difficulty
 - Verification (checking solutions) trivial

Additional Requirement

- Progress-freeness:
 - Chance of winning: Only roughly proportional to hash-power
 - Small miners also should have some chance (r.p.)
 - Otherwise, no small/starters would join
 - Trial&Error
 - No reward for past efforts (don't confuse pools)
 - Mathematically: Memoryless

- SHA-256 hash based puzzle satisfies all three
 - Adjustable difficulty
 - Fast verification
 - Progress-free
- Transition
 - From "one-CPU-one-vote"
 - To powerful minority

ASIC Resistance

Ideal Case

- Each "computer" shall have equal power
- Even recent CPU's are optimized for cryptography
- Can require to be a traditional computer? NO.

Modest Case

- Reduce the ASIC-CPU gap
- Allow ASICs be more efficient only one order
- Let everyone join the game

"But the Memory Remains"

- Processor technology
 - Improving fast
 - Costly
- Memory: slow progres, cheap
- Memory-bound
 - Memory access time dominates the total time
- Memory-hard
 - Require large memories
- We would require both memory-bound&hard

• SHA-256

Requires only 256 bits (fits to CPU registers)

Scrypt

- The most popular memory-hard puzzle
- Used in Litecoin and some other altcoins
- Already used for password-hashing; why?

Memory turns $O(N^2)$ to O(N)

```
Figure 8.1: Scrypt pseudocode
1 def scrypt(N, seed):
    V = [0] * N // initialize memory buffer of length N
  // Fill up memory buffer with pseudorandom data
3 V[0] = seed
  for i = 1 to N:
     V[i] = SHA-256(V[i-1])
   // Access memory buffer in a pseudorandom order
  X = SHA-256(V[N-1])
  for i = 1 to N:
     j = X % N // Choose a random index based on X
   X = SHA-256(X ^ V[j]) // Update X based on this index
   return X
```

- Having a memory of N/k
- Compute (k+3) N/2
- Halving memory requirement:
 - $-k \rightarrow 2k$
 - Computations: $4N/2 \rightarrow 5N/2$
- Memory \rightarrow Zero, if $k \rightarrow N$
 - Computations: $2N \rightarrow (N+3) N/2 = O(N^2)$

Additional Limitation of Scrypt

- Verification Cost
 - Requires as much memory to verify as to compute

Drawback:

- Verifiers require large memory
- Takes long time to verify&propogate
- Forking more likely

- Until recently no puzzle known to be
 - Solving: Memory hard/bound
 - Verifying: Memory easy
- Based on Cuckoo Hash Table (2001)
- A new puzzle Cuckoo Cycle proposed (2014)
 - No known way to compute without a large table
 - Easy to verify
- However no proof yet if solved without memory
- It takes time to be trusted & become common

Scrypt in Practice

- ASICs already appeared for efficient Scrypt
- Revealed that it is not ASIC-resistant (LiteCoin)
- No (A.R.) advantage over Bitcoin anymore

- Reason: Scrypt required only 128kB
- Exploit the tradeoff between memory & PU
- ASICs designed/optimized

Other Approaches for ASIC-R

- In addition to memory hard/bound?
- Design puzzle that makes hard to design ASIC
- X11. Used in DarkCoin (DASH)
 - Uses 11 different hash functions
 - So that it is inconvenient for ASIC designers
 - But once designed.. Oops!

11 Hashes?

- US National Inst. of Standards ran competition
- Design and submit
 - Design document
 - Source code
- Many candidates
- 24-winners
 - No known cryptographic attack

Another Approach

- "Moving Target" (not implemented yet)
- Not only the difficulty level but also
- Change the puzzle!
- e.g. *Pick* one among 24-winners
- How?
 - Centralized authority?
 - Periodically change with a schedule?

ASIC Honeymoon

- Despite potential market for X11
- No ASIC for X11 yet
- A new ASIC:
 - High cost & long time to design
 - Low cost to produce
- Eventually there will be ASICs for each C.C.
- A honeymoon for each ASIC

Arguments against ASIC-R

- It may be impossible
- It may be risky (already proven SHA256)
- Security vs. value
 - If attackers hack the CC, its value drops ©
- ASIC-friendly puzzles
 - ASICs efficient only for mining

Proof-of-*Useful*-Work

- Current CCs terrible for the environment
- Any puzzle allows recycling, appreciated
- Use idle computers (spare-cycles) older idea
- Volunteering for society
- Design new such puzzles

Project	Founded	Goal	Impact
Great Internet Mersenne Prime Search	1996	Finding large Mersenne primes	Found the new "largest prime number" twelve straight times, including 2 ⁵⁷⁸⁸⁵¹⁶¹ – 1
distributed.net	1997	Cryptographic brute-force demos	First successful public brute-force of a 64-bit cryptographic key
SETI@home	1999	Identifying signs of extraterrestrial life	Largest project to date with over 5 million participants
Folding@home	2000	Atomic-level simulations of protein folding	Greatest computing capacity of any volunteer computing project. More than 118 scientific papers.

Table 8.3: Popular "Volunteer computing" projects

SETI@home, candidate?

- Huge computational power by people
- Statistical anomalies, difficult to find
- Drawbacks:
 - SETI has a fixed raw data (by radio telescopes)
 - Some segments may be more likely
 - Not "progress-free"
 - "Central" & "trusted" administration
- Prime numbers?

Great Internet Mersenne Prime Search

- Infinite numbers, primes, Mersenne numbers
 - Puzzle space is inexhaustable
- Drawbacks
 - Rare
 - Loong time to find
 - GIMPS found only 14 Mn in 18 years!

Primecoin

- Challenge: Find a Cunningham chain
- A sequence of k prime numbers p₁, p₂ .. p_k
- $p_i = 2p_{i-1} + 1$
- 2, ... ?
 - Length: k=5
 - Next number: 95, not a prime, end of the chain
- Longest known: k=19, starts at
 - -79910197721667870187016101

- Not proven but believed that infinite chains
- Been used in Primecoin since 2014
- Most Cunningham chains found since then
- Variations emerged:

$$p_i = 2p_{i-1} - 1$$

- Maybe used widely in future
- !! No known practical applications

Permacoin and proof-of-storage

- What if we could design a puzzle that required storing a large amount of data to compute?
- A large file F
 - Public
 - LHC's PB-large experimental data?
- Difficult to store F
 - Store H(F)
 - Or even store F as a Merkle tree & store root
- And some technical cryptographic details..

Public Good (PG)

Any proof-of-useful-work should be pure PG

- Non-excludable
 - Nobody can be prevented from using it
- Non-rivalrous
 - Good's use by others does not affect its value
- Lighthouse ©
- Is "protein folding" a pure PG?

Long Term Challenges & Economics

- Proof-of-useful-work
 - Natural goal
 - But challenging as different requirements
- Primecoin & Permacoin, candidates
 - Technical drawbacks (primes, rare)
 - Too minor public benefits (where is PG?)

Nonoutsourceable Puzzles

- Preventing the formation of mining pools
 - Most miners tend to join pools
 - Dangerous trend; threat to Bitcoin's philosophy
- A large pool
 - Can attack the network (implementing strategies)
 - Pool operators may cheat
 - Target for hackers
 - Selling your vote?
- How to prevent the pools?

(Revisiting Mining Pools)

- A pool operator
- Members mine
- Send their partial solutions (proof)
- When one participant finds valid block
- Revenue distributed among members

Existence of Pools

- Two technical properties of Bitcoin
- Members can easily prove
 - their efforts
 - that the efforts are for the blocks of the pool

- Sabotage?
 - Member always send the shares, never valid block
 - Loss of the whole pool

- Sabotage, vandalism?
 - Loss to the pool, loss to himself/herself
 - Really?
- Surprisingly, it can be profitable!
 - Consider two pools, A & B, each with 50% power
 - A dedicates its 25% power to B (discarding blocks)
 - -A makes profit: 5/9
 - More than half: 4.5/9

A new puzzle design

- Members mine in pool but not submit valid blocks
- Manager knows the secret key, and distributes
- Puzzle requires/lets members know the secret key
- Change the puzzle from
 - "find a block with hash is below a certain target"
- To
 - "find a block for which the hash of a signature on the block is below a certain target."

- Manager can
- a) Distribute the key:
 - Members can steal coins!
- b) Perform signature calc's for members
 - Too much effort, better to mine solely
- This "non-outsourceable" prevent pools with untrusted members

- In current situation, this may cause opposite:
 - Individual miners don't join pools, don't mine
 - Only few & large pools can survive
 - Centralization!

We do not know the solution yet

Proof-of-Stake and Virtual Mining

Figure 8.5: The cycle of Bitcoin mining

 Why not simply allocate mining "power" directly to all currency holders in proportion to how much currency they actually hold?

Figure 8.6: The virtual mining cycle

Advantages

- Remove wasteful right half → Environment
- No ASIC, No AR → Centralization
- CC's value

 Miners tend to behave good

Implementing Virtual Mining

- Not
 - researched scientifically
 - analyzed practically
 - (Bitcoin is too dominant)
- Peercoin (2012)
 - Hybrid: proof-of-work & proof-of-stake
 - Coin-age, coin-stake: solving & adjusting difficulty

Alternative forms of stake

- Proof-of-Stake
 - Similar to Peercoin but no coin-age
 - The richer, the easier to solve (become richer)
- Proof-of-deposit
 - When coins are used for a block, become frozen for some time
 - Reward miners who are willing to keep coins unmoved

Drawbacks of Virtual Mining

- Nothing-at-stake
 - Always attempt to fork
 - Low probability to gain
 - Nothing to lose
 - (no opt.cost as in traditional mining)
- Save-up to burst power
- Once 51%, keep it forever

Can V.M. work?

- Some believe real resources pay for security
 - − Not proved ☺