

## 6222005 Học máy

Bài giảng: Xấp xỉ hàm

Chương 2: Xấp xỉ hàm và phân lớp

# Ôn lại bài học trước

• Bạn có nhớ? %?

## Nội dung chính

- 2.1 Khái niệm về xấp xỉ hàm và phân lớp
  - -2.1.1 Xấp xỉ hàm
  - -2.1.2 Phân lớp
- 2.2 Bài toán dùng xấp xỉ hàm
  - -2.2.1 Mô tả bài toán
  - -2.2.2 Hàm mục tiêu
  - -2.2.3 Các giải thuật hồi quy
  - -2.2.4 Ví dụ về bài toán xấp xỉ hàm

# 2.1 Khái niệm về xấp xỉ hàm và phân lớp

# 2.1.1 Xấp xỉ hàm

Xét 1 ví dụ đơn giản



Dữ liệu mới Một căn nhà **x**, (Vị trí, diện tích, số phòng, ..., 🍎)

Dự đoán Giá căn nhà **x**? Ví dụ là y (tỷ VND)

$$y \in \mathbb{R}$$

# 2.1.1 Xấp xỉ hàm

- Xấp xỉ hàm/hồi quy là quá trình tìm hàm số phù hợp nhất cho một tập dữ liệu, nhằm dự đoán mối quan hệ giữa các thuộc tính/biến đầu vào và các thuộc tính/biến đầu ra cần quan tâm
- Các thuộc tính đầu ra thường là số thực hoặc có giá trị liên tục

#### 2.1.2 Phân lớp

Xét 1 ví dụ đơn giản



Dữ liệu mới
Một bức thư mới
nhận được **x** (dữ
liệu mới)

Dự đoán (phân ra) Bức thư mới thuộc lớp y nào?  $y \in C\{C_0, C_1\}$ bình thường (0) hay là thư rác (1)

### 2.1.2 Phân lớp

- Phân lớp là quá trình phân loại dữ liệu đầu vào thành các lớp hoặc danh mục khác nhau dựa trên các thuộc tính của nó.
- Mục tiêu là tìm cách ánh xạ từ các thuộc tính/biến đầu vào đến các thuộc biến đầu ra rời rạc
  - Thuộc tính/biến đầu ra đại diện cho lớp hoặc danh mục

# 2.2 Bài toán dùng xấp xỉ hàm

#### 2.2.1 Mô tả bài toán

Có dữ liệu đầu vào, biểu diễn bởi vector đặc trưng X

Tìm hàm số f() có thể dự đoán được giá trị đầu ra (số vô hướng, có giá trị liên tục)

$$f()$$

$$\mathbf{x} \implies M\hat{o} \quad h \hat{o} \quad h \hat{o}$$

$$\mathbf{x} = \begin{bmatrix} x_1, x_2, \dots, x_M \end{bmatrix}^T$$

$$\chi_i : \text{Giá trị cụ thể của thuộc tính thứ } i$$

M đặc trưng (feature)

#### 2.2.2 Hàm mục tiêu

y : giá trị đúng (mong đợi)

 $\hat{y}$ : giá trị dự đoán

 $e=y-\hat{y}$ : sai số dự đoán, càng nhỏ càng tốt

Xét nhiều điểm/mẫu dữ liệu  $(\mathbf{X}_i, y_i)$  i = 1, 2, ..., N

N : số lượng điểm dữ liệu xem xét

$$MSE = \frac{1}{N} \sum_{i=1}^{N} e_i^2 = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

MSE: Mean squared error

Hàm mất mát => đạt giá trị nhỏ nhất

$$f^* = \arg\min_{f} L(f)$$

# 2.2.3 Các giải thuật hồi quy

Hồi quy tuyến tính ?

$$f: \mathbb{R}^M \to \mathbb{R}$$

Số khả năng của hàm f(.)?

Trong ML: thường chọn một dạng hàm cụ thể, dễ thao tác, hữu ích

$$f\left(\mathbf{x}\right) = \theta_0 + \theta_1 x_1$$

 $\theta_i$  : Hệ số/trọng số (weight)

$$f\left(\mathbf{x}\right) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

$$f(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \theta_4 x_4$$

hyperplane

 Quan hệ giữa đầu vào và đầu ra được mô tả bởi 1 hàm tuyến tính

$$\hat{y} = f(\mathbf{x}) = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_M x_M$$

 $\hat{\mathbf{y}}$  : giá trị dự đoán

M: số lượng đặc trưng

 $x_i$ : giá trị của đặc trưng thứ i  $\theta_i$ : hệ số thứ i của mô hình

$$\hat{y} = f\left(\mathbf{x}\right) = \theta_0^{'} + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_M x_M$$

Linear regression

$$\mathbf{x} = \begin{bmatrix} x_1, x_2, ..., x_M \end{bmatrix}^T$$

$$\mathbf{\theta} = \begin{bmatrix} \theta_1, \theta_2, ..., \theta_M \end{bmatrix}^T$$

$$\hat{\mathbf{y}} = f(\mathbf{x}) = \mathbf{\theta}^T \mathbf{x}$$

Xét nhiều điểm/mẫu dữ liệu  $(\mathbf{X}_i, y_i)$  i = 1, 2, ..., N  $MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \frac{1}{N} \sum_{i=1}^{N} (y_i - \mathbf{\theta}^T \mathbf{X}_i)^2$ 

$$\mathbf{\theta}^* = \arg\min_{\mathbf{\theta}} MSE(\mathbf{\theta}) \implies \mathbf{\theta}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

$$\mathbf{X}_{N \times M}$$

$$\mathbf{y} = [y_1, y_2, ..., y_N]^T$$

Chú ý:

$$\mathbf{\theta}^* = \arg\min_{\mathbf{\theta}} MSE(\mathbf{\theta}) \implies \mathbf{\theta}^* = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

$$oldsymbol{ heta}^* = \left( \mathbf{X}^T \mathbf{X} 
ight)^{ op} \mathbf{X}^T \mathbf{y}$$
  $\mathbf{X}^T \mathbf{X}$  khả nghịch

- giải phương trình đạo hàm theo hệ số  $\overline{
abla MSE(oldsymbol{ heta})}_{-0}$ 

$$X_{N\times M} = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_N^T \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1M} \\ x_{21} & x_{22} & \dots & x_{2M} \\ \vdots & \vdots & \dots & \vdots \\ x_{N1} & x_{N2} & \dots & x_{NM} \end{bmatrix}$$
- Tính toán ma trận nghịch đảo  $(\mathbf{X}^T\mathbf{X})^{-1}$  khi  $N$  lớn

phức tạp

$$\boldsymbol{\theta}^* = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

- Tính nghiệm cần tìm ~ thu được các hệ số mô hình (trọng số đặc trưng)
- Có thể thực hiện bằng cách sử dụng hàm có sẵn trong Python, Octave

Sử dụng Python, dùng normal equation

$$f\left(\mathbf{x}\right) = \theta_0 + \theta_1 x_1$$



$$f(x_1) = 1.45046565 + 2.0005925x_1$$



Dùng Scikit-Learn

LinearRegression().fit(X\_train, y\_train)

Xét lại một ví dụ cũ

| Mẫu | Khối lượng<br>(kg) | Chiều dài<br>(m) |
|-----|--------------------|------------------|
| 1   | 30                 | 70               |
| 2   | 40                 | 90               |
| 3   | 40                 | 100              |
| 4   | 50                 | 120              |
| 5   | 50                 | 130              |
| 6   | 50                 | 150              |
| 7   | 60                 | 160              |
| 8   | 70                 | 190              |
| 9   | 70                 | 200              |
| 10  | 80                 | 200              |
| 11  | 80                 | 220              |
| 12  | 80                 | 230              |

$$M = 1$$
  $N = 12$ 

Dữ liệu mới

$$x = 35$$

Dự đoán?

$$\hat{y} = f(x) = \theta_0 + \theta_1 x$$



• Tìm 2 hệ số

$$L(\mathbf{\theta}) = \frac{1}{N} \sum_{i} (y - \hat{y})^2 = \frac{1}{N} \sum_{i} (y - \theta_0 - \theta_1 x)^2$$

$$\frac{\nabla L(\mathbf{\theta})}{\mathbf{\theta}} = 0 \implies \begin{cases} \sum y - N\theta_0 - \theta_1 \sum x = 0\\ \sum xy - \theta_0 \sum x - \theta_1 \sum x^2 = 0 \end{cases}$$

$$\theta_{1} = \frac{\sum xy}{N} - \frac{\sum x}{N} \frac{\sum y}{N}$$

$$\frac{\sum x^{2}}{N} - \left(\frac{\sum x}{N}\right)^{2}$$

$$\theta_0 = \frac{\sum y}{N} - \theta_1 \frac{\sum x}{N}$$

Thay số và tính toán

$$y = -20 + 3x$$

- Biểu diễn cụ thể, đơn giản
  - => dễ dàng diễn giải, đánh giá

## **Polynomial Regression (PR)**

Khi dữ liệu phức tạp hơn?



## **Polynomial Regression (PR)**

 Có thể sử dụng hồi quy tuyến tính cho tập dữ liệu phi tuyến

 $\hat{\mathbf{y}} = \theta_0 + \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_1^2$ 

PolynomialFeature (Scikit-Learn)



## **Polynomial Regression (PR)**

- Hồi quy đa thức
  - Mô hình phức tạp hơn
  - Phù hợp với các tập dữ liệu phi tuyến
  - Mô hình PR có nhiều tham số hơn mô hình
     LR
    - Có xu hướng xảy ra overfitting (quá khớp/phù hợp) với dữ liệu huấn luyện
      - Sử dụng learning curve để kiểm tra xem có xảy ra overfitting không
      - Áp dụng một số kỹ thuật regularization để giảm nguy cơ xảy ra overfitting

### **Learning curve**

- Các đường biểu diễn quan hệ giữa
  - Hiệu quả của mô hình trên tập huấn luyện và tập xác thực
  - Với kích cỡ tập dữ liệu và tập xác thực (hoặc theo số bước lặp huấn luyện)

### **Learning curve**

- Ví dụ:
  - Quan sát các đường học tập và đánh giá mô hình sử dụng

Sử dụng mô hình LR



### **Learning curve**

- Ví dụ:
  - Quan sát các đường học tập và đánh giá mô hình sử dụng

Sử dụng mô hình PR với bậc 10



#### Bias/variance trade-off

generalization error = bias + variance + irreducible error

- bias: do những giả thuyết sai, ví dụ: mô hình
   với bias cao => gây ra underfitting
- variance: quá nhạy với những thay đối nhỏ trong dữ liệu huấn luyện, ví dụ: mô hình với nhiều bậc tự do thường có variance cao => gây ra ovetfitting

| Độ phức tạp của<br>mô hình | Variance | Bias |
|----------------------------|----------|------|
| Tăng                       | Tăng     | Giảm |
| Giảm                       | Giảm     | Tăng |

#### **Bias/variance trade-off**

- Ví dụ
  - Dùng mô hình PR có bậc cao cho bộ dữ liệu phi tuyến
    - Mức độ phức tạp của mô hình: tăng
    - Variance: tăng
    - Bias: giảm
    - Dẫn tới: overfitting



#### **Bias/variance trade-off**

- Ví dụ
  - Dùng mô hình LR cho bộ dữ liệu phi tuyến
    - Mức độ phức tạp của mô hình: giảm
    - Variance: giảm
    - Bias: tăng

• Dẫn tới: underfitting



#### Điều chuẩn mô hình

- Regularization: kỹ thuật làm giảm overfitting
  - Mô hình càng ít bậc tự do thì sẽ càng khó để làm phù hợp với dữ liệu huấn luyện
    - Ví dụ: giảm số bậc đa thức
  - Đối với mô hình tuyến tính: ràng buộc các trọng số của mô hình
    - Ví dụ: ridge regression, lasso regression, elastic net

## Ridge regularization

- Các hệ số mô hình được chọn không chỉ dự đoán tốt trên dữ liệu huấn luyện mà còn phù hợp với một ràng buộc bổ sung
- Độ lớn của các hệ số càng nhỏ càng tốt ~
   tất cả các hệ số phải gần = 0
  - Mỗi đặc trưng sẽ có ảnh hưởng ít nhất đến kết quả đầu ra

$$J(\mathbf{\theta}) = MSE(\mathbf{\theta}) + \frac{\alpha}{2} \sum_{i=1}^{N} \theta_i^2$$

$$\mathbf{\theta}^* = \left(\mathbf{X}^T \mathbf{X} + \alpha \mathbf{I}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

### Ridge regularization

 Tạo ra sự đánh đổi giữa tính đơn giản của mô hình (các hệ số gần = 0) và hiệu quả của mô hình trên tập huấn luyện



## **Lasso regression**

- Thêm một ràng buộc vào hàm mất mát
- Loại bỏ các trọng số của các đặc trưng ít quan trọng nhất bằng các gán chúng = 0
- Tự động thực hiện việc lựa chọn đặc trưng và đưa đến 1 mô hình thưa, sparse model (chỉ chứa 1 số ít các trọng số đặc trưng ≠ 0)

$$J(\mathbf{\theta}) = MSE(\mathbf{\theta}) + \alpha \sum_{i=1}^{N} |\theta_i|$$

## Lasso regression

- Có một số hệ số bằng 0 thường làm cho mô hình dễ diễn giải hơn
- Cho biết các đặc trưng quan trọng nhất của mô hình



#### **Elastic net**

Kết hợp giữa RR và LR

$$J(\mathbf{\theta}) = MSE(\mathbf{\theta}) + \frac{1-r}{2}\alpha\sum_{i=1}^{N}\theta_{i}^{2} + r\alpha\sum_{i=1}^{N}|\theta_{i}|$$

Ridge Regression

$$r = 0$$

r = 1

**Lasso Regression** 

Elastic Net

### Nhận xét

Ridge Regression - Tra chou

- Có nhiều
đặc trưng
nhưng mong
đợi chỉ một
vài đặc trưng
là quan trọng
- Muốn có
một mô hình
dễ diễn giải

- Được ưa chuộng hơn

## **Early stopping**

- Dừng việc huấn luyện ngay khi lỗi xác thực đạt tới một mức ngưỡng nhỏ nhất
  - Khi epoch tăng lên đến lúc lỗi xác thực dừng giảm và bắt đầu tăng lên => chỉ ra overfitting
- Một cách khác để điều chuẩn các thuật toán như GD



# Tổng kết

- Hiểu và phân loại được: xấp xỉ hàm, phân lớp
- Ý nghĩa của hàm mất mát trong việc tối ưu
- Vận dụng được hồi quy tuyến tính, chú ý tới regularization

# Hoạt động sau buổi học

Làm BTVN

# Chuẩn bị cho buổi học tiếp theo

- Tìm hiểu về Gradient Descent
- Tìm hiểu về Logistic Regression

#### Tài liệu tham khảo

- https://phamdinhkhanh.github.io/deepaibook/ch\_ml/prediction.html
- https://blog.econocom.com/en/blog/iiothow-cable-drums-are-becoming-smart/