DETECCIÓN DE TAPABOCAS EN TIEMPO REAL CON SSD

LOZANO. E, URREA. J UNIVERSIDAD DE LOS ANDES | FACULTAD DE INGENIERÍA | DEPARTAMENTO DE INGENIERÍA BIOMÉDICA

MOTIVACIÓN

El uso de tapabocas se ha vuelto parte de la vida cotidiana.

Es la principal medida de adaptación que se ha tomado a nivel mundial para impedir la transmisión de COVID-19

La consciencia social respecto al uso del tapabocas no se ha desarrollado plenamente, pues es común encontrar en sitios públicos personas con el tapabocas mal puesto o incluso sin este.

Se hace necesario automatizar el proceso de revisión del uso adecuado del tapabocas para evitar posibles contagios.

Dataset

Categorías:

- Con tapabocas (80%)
- Sin tapabocas (17%)
- Puesto incorrectamente (3%)

División:

- Entrenamiento (70%)
- Validación (15%)
- Prueba (15%)

ARQUITECTURA SINGLE SHOT DETECTOR

FUNCIONAMIENTO SINGLE SHOT DETECTOR

Grid cell

Anchor box Respective field

VENTAJAS DE SSD

Es una red neuronal end-to-end: todos los parámetros son ajustados por los procesos de optimización

Tiene mejor rendimiento que otras arquitecturas como YOLO y RCNN para la misma tarea (PASCAL VOC 2007)

Debido a su arquitectura es un método que tiene un procesamiento más rápido que otros algoritmos. Por esta razón es útil para la detección en tiempo real

Tiene un buen funcionamiento con datasets pequeños y con clases desbalanceadas

Se probaron parámetros de aprendizaje y de la función de pérdida del modelo (MultiBox Loss):

- Negative/Positive Ratio
- Learning Rate
- Cross Entropy Weights
- Alpha
- Optimizador

Se usa como criterio el mAP

Experimentos de validación

Parameter	mAP	WOM	MWI	WM
Baseline	55.6	54.4	42.6	69.8
Neg/Pos Ratio	57.5	54.3	47.3	70.9
Learning Rate	63.9	57.1	56.0	78.4
Cross Entropy W	68.0	63.1	64.3	76.5
Alpha	70.2	62.4	71.4	76.8
Optimizador*	61.1	54.2	53.6	75.4

Resultados finales

Se obtuvo un mAP de **66.7** en el conjunto de prueba:

• Con tapabocas: **69.2**

• Sin tapabocas: **67.2**

• Puesto incorrect..: 63.6

Problema 1

El modelo detecta demasiados positivos de caras pequeñas

Problema 2

El modelo se basa en la nariz y en la boca para clasificar, por lo que puede ser fácilmente engañado, por ejemplo, por una persona que se cubra con la mano

Por mejorar

Eficacia de Supresión de No Máximos, ya que a veces se detectan varias categorías en una misma cara.

Por mejorar

Conseguir una mayor variedad de datos

Conso

Prototipo en tiempo en real

Presentado por:

Juan Sebastian Urrea López

Estudiante de Ingeniería Biomédica e Ingeniería Industrial

Erick Sebastián Lozano Roa

Estudiante de Ingeniería Biomédica e Ingeniería Electrónica

