

Viewport und Clipping

COMPUTERGRAPHIK

Inhaltsverzeichnis

- 7 Viewport und Clipping
 - 7.1 Viewport
 - 7.2 Clipping

- Window:
 - Definiert Sichtfenster in der Bildebene
 - Definiert, welcher Teilbereich der Szene abgebildet werden soll
 - Auch "View Window" genannt

- Viewport:
 - Definiert Bildschirmbereich in dem der Inhalt eines Windows dargestellt werden soll

 In der Regel sind sowohl Window als auch Viewport an den Koordinatenachsen ausgerichtete rechteckige Gebiete

- Window-Viewport-Transformation (Windowing Operation):
 - elementare Verschiebungen und Skalierungen

Verschiedene Fenster, dieselben Viewports

Dieselben Fenster, verschiedene Viewports

- Koordinaten des Windows: W_{xl} , W_{xr} , W_{yb} , W_{yt}
- Punktkoordinaten im Fenster (window):

 x_W, y_W

- Koordinaten des Viewports im Bildschirmkoordinatensystem V_{xl} , V_{xr} , V_{yb} , V_{yt}
- Punktkoordinaten auf dem Bildschirm (screen): x_S , y_S

Transformation

- 1) Verschiebung in den Koordinatenursprung
- 2) Skalierung auf die gewünschte Größe

3) Verschiebung an die gewünschte Stelle

$$\begin{array}{rcl}
x & = & x_W - W_{xl} \\
y & = & y_W - W_{yb}
\end{array}$$

$$x' = \frac{V_{xr} - V_{xl}}{W_{xr} - W_{xl}} \cdot x$$
$$y' = \frac{V_{yt} - V_{xyb}}{W_{yt} - W_{yb}} \cdot y$$

$$\begin{array}{rcl} x_S & = & x' + V_{xl} \\ y_S & = & y' + V_{yb} \end{array}$$

Transformation

Zusammenfassung zu

$$\begin{array}{rcl}
x_S & = & a \cdot x_W + b \\
y_S & = & c \cdot y_W + d
\end{array}$$

⇒ Punkttransformation durch zwei Multiplikationen und zwei Additionen

a, b, c, d fest für alle Punkttransformationen

$$a := \frac{V_{xr} - V_{xl}}{W_{xr} - W_{xl}}$$
$$c := \frac{V_{yt} - V_{xyb}}{W_{yt} - W_{yb}}$$

$$b = V_{xl} - a \cdot W_{xl}$$

$$d = V_{yb} - c \cdot W_{yb}$$

Clip-Polygon

- Objekte in der Bildebene werden innerhalb eines Fensters dargestellt
- Alle außerhalb des Fensters liegenden Objektteile werden abgeschnitten: Clipping am Fensterrand

- Das Fenster wird Clip-Polygon genannt
 - typischerweise Rechtecke
 - andere Geometrie möglich
 - Nichtkonvexe oder nicht einfache Polygone sind problematisch

Linien

- Clip-Polygon
 - rechteckig
 - achsenparallel
- Fallunterscheidung
 - beide Endpunkte innerhalb des Fensters
 - ⇒ Linie zeichnen
 - beide Endpunkte oberhalb oder unterhalb oder links oder rechts des Fensters
 - ⇒ Linie nicht zeichnen

Linien

3. Sonst

- Berechne die Schnittpunkte der Linie mit dem Fensterrand anhand der Geradengleichungen
- Bestimme daraus die sichtbare Strecke

Liang-Barsky-Algorithmus

Fensterkanten als implizite Gerade

$$Q_1 = (x_1, y_1), Q_2 = (x_2, y_2)$$

$$n = (\Delta y, -\Delta x) = ((y_2 - y_1), -(x_2 - x_1))$$

$$P = (x, y)$$

$$E(P) = n \circ (P - Q_1) = n \circ P - n \circ Q_1$$

- Normale n zeigt ins Innere
- Parametrische Darstellung der Liniensegmente

$$l(t) = P_1 + t \cdot (P_2 - P_1)$$

Liang-Barsky-Algorithmus

- Fallunterscheidung:
 - 1) P_1 und P_2 liegen außen $E(P_1) \le 0, E(P_2) \le 0$
 - 2) P_1 und P_2 liegen innen $E(P_1) \ge 0, E(P_2) \ge 0$
 - 3) P_1 und P_2 liegen auf verschiedenen Seiten

$$E(P_1) < 0, E(P_2) > 0$$

 $E(P_1) > 0, E(P_2) < 0$

Liang-Barsky-Algorithmus

- Fall 3: Schnittpunkt P muss berechnet werden
- Parametrische Gleichung in implizite Gleichung einsetzen:

$$E(P_1 + t \cdot (P_2 - P_1)) = 0$$

$$\Leftrightarrow$$

$$(P_1 + t \cdot (P_2 - P_1)) \circ n - Q_1 \circ n = 0$$

$$\Leftrightarrow$$

$$t = \frac{Q_1 \circ n - P_1 \circ n}{(P_2 - P_1) \circ n}$$

$$\Leftrightarrow$$

$$P = P_1 + \frac{Q_1 \circ n - P_1 \circ n}{(P_2 - P_1) \circ n} \cdot (P_2 - P_1)$$

Cohen-Sutherland Line-Clipping Algorithmus

- Kern des Algorithmus ist ein schnelles Verfahren zur Bestimmung der Kategorie einer Linie
 - innerhalb
 - außerhalb
 - schneidend

- Gegeben:
 - Ein Fenster: (x_{min}, y_{min}, x_{max}, y_{max})
 dessen begrenzende Geraden
 (Halbebenen) die Bildebene in neun
 Regionen unterteilen
- Jeder Region ist ein eindeutiger 4-Bit-Code (Outcode) zugeordnet, der Auskunft über deren Lage in Bezug auf das Fenster gibt
- Im 3D sind es 27 Regionen (3³)
 und ein 6-Bit-Outcode

Cohen-Sutherland Line-Clipping Algorithmus

Bit	Ort	Bedingung
0	links des Fensters	$x < x_{\min}$
1	rechts des Fensters	$x > x_{\text{max}}$
2	unterhalb des Fensters	$y < y_{\min}$
3	oberhalb des Fensters	$y > y_{\text{max}}$

x_n	x_n	nax	
1001	1000	1010	y_{max}
0001	0000	0010	
0101	0100	0110	$-y_{min}$

Cohen-Sutherland Line-Clipping Algorithmus

Bit	Ort	Bedingung
0	links des Fensters	$x < x_{\min}$
1	rechts des Fensters	$x > x_{\text{max}}$
2	unterhalb des Fensters	$y < y_{\min}$
3	oberhalb des Fensters	$y > y_{\text{max}}$

Cohen-Sutherland Line-Clipping Algorithmus

Bit	Ort	Bedingung
0	links des Fensters	$x < x_{\min}$
1	rechts des Fensters	$x > x_{\text{max}}$
2	unterhalb des Fensters	$y < y_{\min}$
3	oberhalb des Fensters	$y > y_{\text{max}}$

Cohen-Sutherland Line-Clipping Algorithmus

Bit	Ort	Bedingung
0	links des Fensters	$x < x_{\min}$
1	rechts des Fensters	$x > x_{\text{max}}$
2	unterhalb des Fensters	$y < y_{\min}$
3	oberhalb des Fensters	$y > y_{\text{max}}$

x_n	x_1	max	
1001	1000	1010	17
0001	0000	0010	— <i>Ymax</i>
0101	0100	0110	— Ymin

Cohen-Sutherland Line-Clipping Algorithmus

Bit	Ort	Bedingung
0	links des Fensters	$x < x_{\min}$
1	rechts des Fensters	$x > x_{\text{max}}$
2	unterhalb des Fensters	$y < y_{min}$
3	oberhalb des Fensters	$y > y_{\text{max}}$

x_n	x_1	max	
1001	1000	1010	$-y_{max}$
0001	0000	0010	
0101	0100	0110	— Ymin

Cohen-Sutherland Line-Clipping Algorithmus

- Bestimme Outcodes für Endpunkte einer Linie
 - Linie liegt vollständig außerhalb des Fensters (Trivial Reject):
 Durchschnitt der Codes beider Endpunkte ist von 0 verschieden (AND-Verknüpfung ≠ 0)
 - Linie liegt komplett im Fenster (Trivial Accept):
 Beide Endpunkte besitzen den 4-Bit-Code 0000 (OR-Verknüpfung = 0)

– Sonst:

- Schneide die Linie nacheinander mit den das Fenster begrenzenden Geraden
 - → es entstehen zwei Linien
- Außerhalb des Fensters liegende
 Teile können sofort entfernt werden

Cohen-Sutherland Line-Clipping Algorithmus

Linie AD

- Codes 0001 und 1000
 - Schnitt mit linker Fenstergrenze liefert
 - Punkte A und C liegen links: eliminiere AC
 - Punkte C und D liegen oberhalb: eliminiere CD

Cohen-Sutherland Line-Clipping Algorithmus

Linie EH

- Codes 0001 und 0010
 - Schnitt mit linker Fenstergrenze liefert F
 - eliminiere EF
 - behalte FH
 - Schnitt von FH mit der rechten Fenstergrenze liefert G
 - eliminiere GH
 - Punkte F und G liegen innerhalb des Fensters
 - FG wird gezeichnet

Cohen-Sutherland Line-Clipping Algorithmus: Spezialfälle & Beschleunigungen

- Bei senkrecht oder waagrecht verlaufenden Linien muss nur gegen die y- bzw. x-Grenzen getestet und geschnitten werden
- Falls genau ein Endpunkt innerhalb des Fensters liegt, gibt es nur einen Schnitt mit dem Fensterrand

- Einige Schnittoperationen führen nicht zu Schnittpunkten am Fensterrand
 - Jedes Bit korrespondiert genau zu einem der Fensterränder
 - Betrachte nur Fensterränder deren zugehöriges Bit in den zwei Endpunkt-Codes unterschiedlich gesetzt ist

Cohen-Sutherland Line-Clipping Algorithmus: Spezialfälle & Beschleunigungen

- Vermeidung der aufwändigen Schnittpunktberechnung durch Bisektionsmethode
 - Linien, die weder ganz außerhalb, noch ganz innerhalb des Fensters liegen, werden so lange unterteilt, bis ihre Länge kleiner als ein Pixel ist
 - Bei 210=1024 Pixel in einer Zeile bzw. Spalte erfordert dies maximal 10 Unterteilungen (⇒ Mittelpunktalgorithmus)

- In Hardware ist diese Variante schneller als eine direkte Schnittberechnung
 - schnelle Division durch 2 (Bitshift)
 - Parallelisierbarkeit

Polygone

- Polygone begrenzen Flächen
 - Polygon-Clipping muss wieder geschlossene Polygone liefern
 - Teile des Fensterrandes müssen eingebaut werden

- Ein einfacher Algorithmus würde jede
 Seite gegen die Fenster clippen
 - Wenn eine Seite das Fenster verlässt, wird der Austrittspunkt mit dem Wiedereintritt verbunden
 - Ecken können zu Problemen führen

Sutherland-Hodgman Polygon-Clipping Algorithmus

 Problem:
 Clippen jeder Polygonseite gegen alle 4 Fensterseiten

- Vollständiges Clippen des
 Polygons gegen eine Fensterseite
 nach der anderen führt zum Ziel
- Die Zwischenergebnisse müssen gespeichert werden

Sutherland-Hodgman Polygon-Clipping Algorithmus

– Ausgangssituation: aktuelles Polygon $\{v_0, v_1, v_2\}$

Sutherland-Hodgman Polygon-Clipping Algorithmus

– Clip oben: aktuelles Polygon $\{s_1, v_1, v_2, s_2\}$

Sutherland-Hodgman Polygon-Clipping Algorithmus

- Clip rechts: aktuelles Polygon $\{s_1, s_3, s_4, v_2, s_2\}$

Sutherland-Hodgman Polygon-Clipping Algorithmus

– Clip unten: aktuelles Polygon $\{s_1, s_3, s_5, s_6, s_2\}$

Sutherland-Hodgman Polygon-Clipping Algorithmus

– Clip links: aktuelles Polygon $\{s_8, s_3, s_5, s_6, s_7\}$

Sutherland-Hodgman Polygon-Clipping Algorithmus

- Ergebnis-Polygon $\{s_8, s_3, s_5, s_6, s_7\}$

Sutherland-Hodgman Polygon-Clipping Algorithmus

UNIVERSITÄT Computergraphik 35

Sutherland-Hodgman Polygon-Clipping Algorithmus

Sutherland-Hodgman Polygon-Clipping Algorithmus

- Fenster konvexes Polygon und
- Kandidat einfaches Polygon
- ⇒ Ergebnis ist immer ein geschlossener Kantenzug

Andere Polygon-Clipping-Verfahren

Vatti-AlgorithmusScan-Line[CACM 35 1992]

Greiner/Hormann[ACM TOG 17(2),1998]

Clipping in 3D

 Clipping nach Transformation in das normalisierte Sichtvolumen (NDC)

- Clippingverfahren lassen sich einfach in 3D übertragen: Clippen an sechs Halbebenen statt vier
- Alternativ:
 Clipping nach Projektion in die zweidimensionale Bildebene
 w-Clipping