MPI-QUICK

Yipu Miao University of Florida

WHAT IS QUICK?

- Quick is a linear scaling ab initio and density functional theory program. Featured with:
 - Linear scaling Divide and Conquer (D&C)
 - Single point ab initio and DFT
 - Geometry Optimization

energies, charges and geometries of systems up to ~3,000 atoms. Available features include

for calculation of

Development history: Ed Brothers: Basic

Ken Ayers and Xiao He: optimized the code.

MPI

- · MPI Message Passing Interface
- ·C/C++/F77/F90 Bindings
- Distributed Memory Programming
- Series of Function

Single Node

A.HARTREE-FOCK

$$\langle i|h|j\rangle = \int d\mathbf{x}_1 \chi_i^*(\mathbf{x}_1) h(\mathbf{r}_1) \chi_j(\mathbf{x}_1)$$
$$[ij|kl] = \int d\mathbf{x}_1 d\mathbf{x}_2 \chi_i^*(\mathbf{x}_1) \chi_j(\mathbf{x}_1) \frac{1}{r_{12}} \chi_k^*(\mathbf{x}_2) \chi_l(\mathbf{x}_2).$$

$$FC = SC\epsilon$$

$$E_{HF} = \sum_{i} \langle i|h|i\rangle + \frac{1}{2} \sum_{ij} [ii|jj] - [ij|ji],$$

FLOWCHART FOR HF

HF PARALLEL

Acetic-Glycine6

ACE-GLY6-NME 6-31g* (485)

BREAK DOWN

	П	2	4	8
le	4.14	2.11 (51%)	1.09 (26%)	0.51 (12%)
2e	1171	588 (50%)	267 (23%)	143 (12%)
Operator	1202	620 (52%)	309 (26%)	194 (16%)
Total CPU time &	1213	1217 (99.6)	1244 (97.5%)	1220 (99.4%)

B.HF OPT PARALLEL

OPT ACE-GLY6-NME 6-31g* (485)

BREAK DOWN

	ı	2	4	8
le	723	365 (51%)	187 (26%)	90.6 (12.5%)
2e	125812	62384 (50%)	28524 (23%)	15651 (12.4%)
Operator	126812	63630 (50%)	33621 (26%)	17801 (14%)
Gradient	183863	90916 (49%)	41582 (23%)	22930 (12.5%)
Total CPU time & Eff	313234	316645 (98.9%)	331017 (94.6%)	317692 (98.6%)

C.DIVIDE-AND-CONQUER HF

$$F^{\alpha}C^{\alpha} = S^{\alpha}C^{\alpha}E^{\alpha}$$

$$F_{\mu\nu}^{\alpha} = \begin{cases} F_{\mu\nu} & \text{if } \chi_{\mu} \in R^{\alpha} \text{ and } \chi_{\nu} \in R^{\alpha} \\ 0 & \text{elsewhere} \end{cases}$$

$$P_{\mu
u}=\sum_{lpha=1}^{N_{
m sub}}P^{lpha}_{\mu
u}=\sum_{lpha=1}^{N_{
m sub}}D^{lpha}_{\mu
u}p^{lpha}_{\mu
u}$$

$$D_{\mu\nu}^{\alpha} = \begin{cases} 1 & \phi_{\mu} \in \operatorname{Core}^{\alpha} \text{ and } \phi_{\nu} \in \operatorname{Core}^{\alpha} \\ {}^{1}/_{2} & \phi_{\mu} \in \operatorname{Core}^{\alpha} \text{ and } \phi_{\nu} \in \operatorname{Buffer}^{\alpha} \text{ or } \\ & \phi_{\mu} \in \operatorname{Buffer}^{\alpha} \text{ and } \phi_{\nu} \in \operatorname{Core}^{\alpha} \\ 0 & \phi_{\mu} \notin \operatorname{Core}^{\alpha} \text{ and } \phi_{\nu} \notin \operatorname{Core}^{\alpha} \end{cases}$$

Evaluate Operator

DC-Diag

DIVIDE-AND-CONQUER HF PARALLEL

ACE-GLY6-NME 6-31g* (485), 25 subsystems

BREAK DOWN

		2	4	8
le	4.11	2.08 (51%)	1.08 (26%)	0.51 (12.5%)
2e	4136	2033 (49%)	935 (23%)	590 (14%)
Operator	4140	226 l (55%)	1184 (28%)	715 (17%)
Diag	33.6	16.27 (48%)	9.16 (27%)	4.48 (13%)
Total CPU time & Eff	4458	4596 (97.0%)	4627 (96.5%)	5318 (83.8%)

D. MP2 PARALLEL

$$E^{(2)} = \sum_{ijab} \frac{(ia|jb)^2 + \frac{1}{2}[(ia|jb) - (ib|ja)]^2}{\varepsilon_i + \varepsilon_j - \varepsilon_a - \varepsilon_b}$$

MP2 HF **E(2)**=sum Generate E(2) for i=1,n+1, Setup over E(2) for every node **Operator** le,2e 2n+1 SCF Master job Master Node Master Node Master **Master** Node node Node E(2) for i=2,n+2, le,2e 2n+2 slave slave nodel nodel le,2e slave slave node i node i E(2) for i=n,2n, le,2e 2n slave slave node N node N

MP2 PARALLEL

FUTURE

- · DC-MP2
- Frequency
- DFT
- Integration with AMBER

ACKNOWLEDGE

- Merz group
- Ed Brother, Ken Ayers, Xiao He and other QUICK contributor

THANKYOU