Diagramme de Bode★

C2-02

Question 1 Tracer le diagramme de Bode de la fonction de transfert suivante : $F_1(p) = \frac{15}{1+10p}.$

Tracer asymptotique

	$\omega o 0$	$\omega = \frac{1}{10} \text{rad/s}$	$\omega o \infty$	
$H(p) = \frac{15}{1 + 10p}$	0 dB/décade	−20 dE	-20 dB/décade	
	0°	−90°	-90°	

Positionnement du diagramme de gain Lorsque que ω tend vers 0, le gain tend vers $20 \log 15 = 23,5 \, dB$.

Question 2 Le système est sollicité par une entrée sinusoïdale de période 6s et d'amplitude 10. Quel est le signal de sortie? Pour une période de 60 s, la pulsation est de $\frac{2\pi}{T}$ soit $\omega=0$,1 rad s $^{-1}$. Pour cette pulsation le gain est de 20 dB et le déphasage de $-\frac{\pi}{4}$.

On a donc $20\log(S/E)=20$ soit S=10E. Le signal d'entrée est donc $e(t)=10\sin(0,1t)$ et le signal de sortie $s(t)=100\sin\left(0,1t-\frac{\pi}{4}\right)$.

