W V be a space and U be a subspace of V

Then $U^{+} = \{v^{!} \mid \langle u, v \rangle = 0 \mid \forall u \in U^{2}\}$ $V^{+} = \{v^{!} \mid \langle u, v \rangle = 0 \mid \forall u \in V^{2}\}$ $V^{+} = \{v^{!} \mid \langle u, v \rangle = 0 \mid \forall u \in V^{2}\}$ $V^{+} = \{v^{!} \mid \langle u, v \rangle = 0 \mid \forall u \in V^{2}\}$

Diagonalization of symmetric mateix.

Def An $n \times n$ maker A is said to be symmetre.

If $A^{T} = A$.

Overstron des A be a diagonalizable matern. Then

I intertible madeix P and diagonal material

St PAP = D

ls it possible trul P gethogonal? Suppose P is outhogonal, Fin PI=PT

 $P^{T}AP = D \Rightarrow A = PDP^{T}$ $A^{T} = (PDP^{T})^{T}$ $= (P^{T})^{T}D^{T}P^{T}$ $= PDP^{T}$

As symemetic.

--> If P is oethogonal, tem As symmt.

$$\mathcal{Z}_{A} = \begin{cases} 0 & 1 \\ 1 & 0 \end{cases}$$

$$\mathcal{X}_{A} = \begin{bmatrix} -A & 1 \\ 1 & -A \end{bmatrix} = \lambda^{2} - 1$$

$$\text{eigenvalues are } \lambda = \pm 1$$

Eigen vector for
$$N=1$$
, $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \\ 1$

We have seen trud eigen values en real are ofthogond

Then eigen values of A are real.

PS (a) 1 be an eyenvalue of A. we want to prove 1 is realgile., 1 = 1 (a) x be an eigen rectal case to 1.

Take teamspose $xA^{t} = Ax^{t}$ $\Rightarrow x^{t}A = Ax^{t}$

Take Complex Gye. $\chi^{t} A = \overline{A} \chi^{t}$ $\Rightarrow \chi^{t} A = \overline{A} \chi^{t}$ $\Rightarrow \chi^{t} A \chi = \overline{A} \chi^{t} \chi^{t}$ $\Rightarrow \chi^{t} A \chi = \overline{A} \chi^{t} \chi^{t} \chi$ $\Rightarrow \chi^{t} A \chi = \overline{A} \chi^{t} \chi^{t} \chi$ $\Rightarrow \chi^{t} A \chi = \overline{A} \chi^{t} \chi^{t} \chi$ $\Rightarrow \chi^{t} A \chi = \overline{A} \chi^{t} \chi^{t} \chi$ $\Rightarrow \chi^{t} A \chi = \overline{A} \chi^{t} \chi$ $\Rightarrow \chi^{t} \chi = \overline{A} \chi^{t} \chi$

Con see fut x y also real-

 $\langle Av_1, v_2 \rangle = \langle 1, v_1, v_2 \rangle$ $= 1 \langle v_1, v_2 \rangle$ $= \langle v_1, A^t v_2 \rangle$ $= \langle v_1, A v_2 \rangle$ $= \langle v_1, A v_2 \rangle$

from
$$O \times O$$
 $A_1 \times V_1, v_2 = A_2 \times V_1, v_2$
 $A_2 \times V_2 \times V_2$

$$v_{1} \stackrel{t}{A} v_{2} = v_{1} \stackrel{t}{A}_{2}v_{2} = \langle k_{2} v_{1} \stackrel{t}{V} v_{2} - 0 \rangle$$

$$v_{1} \stackrel{t}{A} v_{2} = v_{1} \stackrel{t}{A}_{2}v_{2} = \langle A v_{1} \rangle^{t} v_{2}$$

$$= A_{1} v_{1}^{t} v_{2} - D$$

$$= A_{1} v_{1}^{t} v_{2} - D$$

$$Pean O V D we get [v_{1}^{t} v_{2} = 0]$$

$$\begin{cases} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 1$$

The Les A be real symmetric matein.

Then A is ceethogonally diagonalizable.

Def A malen A so Said to be cutting onally

diagonalisable of I an oethogonal modernal diagonal matern D set PTAP = D

Out Suppose A & symmeter mater. and P & an invertible matern. S. + PTAP = D. I diagonal by mele trut P & cettregonal.