

بهینهسازی محدب ۱

نيمسال دوم ۱۴۰۱-۱۴۰۲

مدرس: دكتر ياسايي

تمرین سری دوم

شماره دانشجویی: ۹۸۱۰۰۴۱۸

نام و نامخانوادگی: آیلار خرسندنیا

پرسش ۱ برآورد درست نمایی بیشینه

(بخش ۱) فرض کنید هر کدام از متغیرهای تصادفی N_t است و مشاهدات ما k_t ها بودند. در این صورت تابع لگاریتم likelihood فرض کنید مر

$$-\lambda_t + k_t log(\lambda_t) - log(k_t!)$$

توجه کنید که عبارت آخر با تغییر λ_t تغییری نمی کند پس تاثیری در بهینه سازی ندارد. پس مساله ی بهینه سازی این سوال به شكل زير خواهد بود.

$$\text{maximize} \quad -\lambda_t + k_t log(\lambda_t) \tag{1}$$

هر دو جمله ی بالا مقعر هستند (چون $k_t \geq 0$) پس نقطه ی بهینهاش باید مشتقش را صفر کند.

$$-1 + \frac{k_t}{\lambda_t} = 0 \Rightarrow \lambda_t = k_t$$

 $\lambda_t=0=k_t$ اگر $k_t=0$ است پس برای بیشینه شدنش باید هزینه برابر $\lambda_t=0$

طبق فرض سوال N_t ها مستقل هستند پس

$$log(\mathbb{P}(N_1 = k_1, N_2 = k_2 \dots N_{24} = k_{24})) = log(\mathbb{P}(N_1 = k_1) \dots \mathbb{P}(N_{24} = k_{24}))$$
$$= \sum_{t=0}^{24} log(\mathbb{P}(N_t = k_t)) = \sum_{t=0}^{24} (-\lambda_t + k_t log(\lambda_t) - log(k_t!))$$

که در عبارت بالا مشابه قسمت قبل حملهی آخر تاثیری روی بهینه سازی ندارد پس مساله ی بهینه سازی با در نظر گرفتن همواری با ضریب ρ به صورت زیر است،

maximize
$$\sum_{t=1}^{24} (-\lambda_t + k_t \log(\lambda_t)) - \rho((\sum_{t=1}^{23} (\lambda_{t+1} - \lambda_t)^2) + (\lambda_1 - \lambda_{24})^2)$$
 (Y)

که تمام توابع در آن مقعر هستند پس قرینهی تابع بالا را میتوان با بهینهسازی محدب کمینه کرد.

با هرچقدر بیشتر شدن ho وزن جمله هموارسازی بیشتر میشود و کمبنه کردن آن تاثیر بیشتری روی تابع هدف می گذارد. پس وقتی $ho \to \infty$ جملهی هموارسازی باید صفر شود و نتیجه میشود تمام λ_t ها باید برابر باشند. جملهی غیر ثابتی که در تابع

$$\lambda = \frac{\sum_{t=1}^{24} k_t}{24}$$
 هدف باقی می ماند $-24\lambda + (\sum_{t=1}^{24} k_t) log(\lambda)$ هدف باقی می ماند

پرسش ۲ سطوح فعالیت بهینه (بخش ۱)

(بخش ۱) خواسته ی سوال درواقع کمینه کردن تابع $\sum_{j=1}^n r_j(x_j)$ است.

$$p_j x_j \geq p_j q_j + p_j^{disc}(x_j - q_j) \Leftrightarrow p_j(x_j - q_j) \geq p_j^{disc}(x_j - q_j) \Leftrightarrow x_j \geq q_j$$

$$\Leftrightarrow -r_j(x_j) = -p_j q_j - p_j^{disc}(x_j - q_j) \geq -p_j x_j$$

$$\Longrightarrow -r_j(x_j) = \max\{-p_j x_j, -p_j q_j - p_j^{disc}(x_j - q_j)\}$$
 . ساله ی زیر معادل مساله ی خواسته شده است. LP

minimize
$$1^T s$$

subject to $-\operatorname{diag}(p)x \preceq s$
 $-\operatorname{diag}(p)q + \operatorname{diag}(p^{disc})(x-q) \preceq s$ (Υ)
 $Ax \preceq c^{max}$
 $x \succeq 0$

پرسش ۳ برنامه ریزی بهینه سرعت وسیله نقلیه

(بخش ۱) به وضوح $\frac{d_i}{s_i}$ نشان می دهد که هواپیما برای طی کردن بخش iام با سرعت s_i به چه زمانی نیاز دارد. اگر پارامترهای $t_i=\frac{d_i}{s_i}$ دیگر سوال را با این متغیر جدید بازنویسی کنیم داریم،

$$\sum_{i=1}^{n} \Phi(s_i) \frac{d_i}{s_i} = \sum_{i=1}^{n} \Phi(\frac{d_i}{t_i}) t_i$$

$$s_i^{min} \le s \le s_i^{max} \Leftrightarrow \frac{d_i}{s_i^{max}} \le t_i \le \frac{d_i}{s_i^{min}} \Leftrightarrow \frac{d}{s^{max}} \preceq t \preceq \frac{d}{s^{min}}$$

$$\tau_i^{min} \le \sum_{i=1}^{i} t_j \le \tau_i^{max} \Leftrightarrow \tau^{min} \preceq At \preceq \tau^{max}$$

که در آن ماتریس A ماتریسی است که سطر iام آن $\sum_{j=1}^i e_j$ میباشد. پس مساله به این صورت خواهد شد.

$$\begin{array}{ll} \text{minimize} & \displaystyle \sum_{i=1}^n \Phi(\frac{d_i}{t_i}) t_i \\ \text{subject to} & \displaystyle \frac{d}{s^{max}} \preceq t \preceq \frac{d}{s^{min}} \\ & \displaystyle \tau^{min} \preceq At \preceq \tau^{max} \end{array} \tag{\mathfrak{f}}$$

تابع هزینهی مساله محدب است چون جمع تعدادی تابع پرسپکتیو است. قیدهای مساله نیز همگی محدب میباشند. پس یک مساله بهینهسازی محدب داریم.