ST5215 Advanced Statistical Theory, Lecture 3

HUANG Dongming

National University of Singapore

18 Aug 2020

Review

Last time

- Exchange limit with measure
- Properties of integrals
- Exchange limit with integration (MCT, Fatou's Lemma, DCT)
- Change of variable
- Fubini's theorem
- Absolute continuity and Radon-Nikodym theorem
- Moments

Let $f: \Omega \to \Lambda$ be a function and B be a subset of Λ . $f^{-1}(B)$ is called the inverse image of B and is defined as

$$f^{-1}(B) = \{ \omega \in \Omega : f(\omega) \in B \}$$

Let $f: \Omega \to \Lambda$ be a function and B be a subset of Λ . $f^{-1}(B)$ is called the inverse image of B and is defined as

$$f^{-1}(B) = \{ \omega \in \Omega : f(\omega) \in B \}$$

- $\bullet \ f^{-1}(\emptyset) = \emptyset$
- $f^{-1}(\Lambda) = \Omega$

Let $f: \Omega \to \Lambda$ be a function and B be a subset of Λ . $f^{-1}(B)$ is called the inverse image of B and is defined as

$$f^{-1}(B) = \{ \omega \in \Omega : f(\omega) \in B \}$$

- $f^{-1}(\emptyset) = \emptyset$
- $f^{-1}(\Lambda) = \Omega$

Example:

- $\Omega = \mathbb{Z}$, $\mathcal{F} = 2^{\Omega}$.
- Let g(x) = 0 for all $x \in \Omega$. Then

$$g^{-1}(A) = \begin{cases} \Omega, & \text{if } 0 \in A, \\ \emptyset, & \text{if } 0 \notin A. \end{cases}$$
 (1)

Let $f: \Omega \to \Lambda$ be a function and B be a subset of Λ . $f^{-1}(B)$ is called the inverse image of B and is defined as

$$f^{-1}(B) = \{ \omega \in \Omega : f(\omega) \in B \}$$

- $f^{-1}(\emptyset) = \emptyset$
- $f^{-1}(\Lambda) = \Omega$

Example:

- $\Omega = \mathbb{Z}$, $\mathcal{F} = 2^{\Omega}$.
- Let g(x) = 0 for all $x \in \Omega$. Then

$$g^{-1}(A) = \begin{cases} \Omega, & \text{if } 0 \in A, \\ \emptyset, & \text{if } 0 \notin A. \end{cases}$$
 (1)

Let f be a measurable function from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) . The σ -field generated by f is $\sigma(f) = \sigma(\{f^{-1}(B) : B \in \mathcal{G}\})$.

Let f be a measurable function from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) . The σ -field generated by f is $\sigma(f) = \sigma(\{f^{-1}(B) : B \in \mathcal{G}\})$. In probability, when X is a r.v., $\sigma(X)$ is usually interpreted as "the information in X", or "the events related to X"

Let f be a measurable function from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) . The σ -field generated by f is $\sigma(f) = \sigma(\{f^{-1}(B) : B \in \mathcal{G}\})$. In probability, when X is a r.v., $\sigma(X)$ is usually interpreted as "the information in X", or "the events related to X"

- Example:
 - $\Omega = \mathbb{Z}$, $\mathcal{F} = 2^{\Omega}$.
 - Let g(x) = 0 for all $x \in \Omega$. Then $\sigma(g) = \{\emptyset, \Omega\}$

Let f be a measurable function from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) . The σ -field generated by f is $\sigma(f) = \sigma(\{f^{-1}(B) : B \in \mathcal{G}\})$. In probability, when X is a r.v., $\sigma(X)$ is usually interpreted as "the information in X", or "the events related to X" Example:

- - Let g(x) = 0 for all $x \in \Omega$. Then $\sigma(g) = {\emptyset, \Omega}$
 - Let f(x) = |x| for all $x \in \Omega$. Then f is a Borel function on (Ω, \mathcal{F}) .
 - $f^{-1}(\{0\}) = \{0\}, f^{-1}(\{1\}) = \{-1, 1\}, \dots, f^{-1}(\{n\}) = \{-n, n\}, \dots$
 - $\sigma(f) = \sigma(\{\{0\}, \{-1, 1\}, \dots, \{-n, n\}, \dots\})$
 - Find an explicit expression of $\sigma(f)$

Let f be a measurable function from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) . The σ -field generated by f is $\sigma(f) = \sigma(\{f^{-1}(B) : B \in \mathcal{G}\})$. In probability, when X is a r.v., $\sigma(X)$ is usually interpreted as "the information in X", or "the events related to X" Example:

- $\Omega = \mathbb{Z}$. $\mathcal{F} = 2^{\Omega}$.
 - Let g(x) = 0 for all $x \in \Omega$. Then $\sigma(g) = \{\emptyset, \Omega\}$
 - Let f(x) = |x| for all $x \in \Omega$. Then f is a Borel function on (Ω, \mathcal{F}) .
 - $f^{-1}(\{0\}) = \{0\}, f^{-1}(\{1\}) = \{-1, 1\}, \dots, f^{-1}(\{n\}) = \{-n, n\}, \dots$
 - $\sigma(f) = \sigma(\{\{0\}, \{-1, 1\}, \dots, \{-n, n\}, \dots\})$
 - Find an explicit expression of $\sigma(f)$: the collection of sets of the form $\{\pm n : n \in A\}$ where $A \subset \mathbb{N}$, including \emptyset

Recap: Lebesgue integral and Riemann integral

• Notations: $\int f \, d\nu = \int f(\omega) \, d\nu(\omega) = \int f(\omega)\nu(\, d\omega)$

Recap: Lebesgue integral and Riemann integral

- Notations: $\int f \, d\nu = \int f(\omega) \, d\nu(\omega) = \int f(\omega)\nu(\, d\omega)$
- For Lebesgue measure m, $\int f dm = \int f(x)m(dx)$

Recap: Lebesgue integral and Riemann integral

- Notations: $\int f \, d\nu = \int f(\omega) \, d\nu(\omega) = \int f(\omega)\nu(\, d\omega)$
- For Lebesgue measure m, $\int f dm = \int f(x)m(dx)$
- You can write $\int_A f(x)m(\,\mathrm{d} x) = \int_A f(x)\,\mathrm{d} x$, (i.e., Lebesgue integral = Riemann integral), if A is a closed interval or finite unions of closed intervals, and f is Riemann integrable on A

Recap: Lebesgue probability density function

Suppose P is a probability measure on (Ω, \mathcal{F}) and X is a random variable.

- The induced measure $P_X = P \circ X^{-1}$ is also called the law of X or the distribution of X. It is a measure on $(\mathcal{R}, \mathcal{B})$.
- Give an example of P_X such that $P_X \ll m$
- Give an example of P_X such that P_X is not absolutely continuous w.r.t. m

Recap: convergence theorems

Exercise:

- Let $f_n(x) = nI_{(0,1/n)}$ be a sequence of functions on $(\mathcal{R}, \mathcal{B})$.
- Find f such that $f_n \to f$ m-a.e.
- Can you conclude that $\int f_n dm \to \int df dm$? Why?

Take the poll if you have finished.

Jensen's Inequality

• A set $A \subset \mathbb{R}^d$ is *convex* if for any $x, y \in A$, $tx + (1 - t)y \in A$.

Jensen's Inequality

- A set $A \subset \mathbb{R}^d$ is *convex* if for any $x, y \in A$, $tx + (1 t)y \in A$.
- A real function f is convex on A if

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2) \tag{2}$$

holds for any $x_1, x_2 \in A$ and $t \in [0, 1]$. If the inequality holds with \leq replaced by <, then f is *strictly convex*.

Jensen's Inequality

- A set $A \subset \mathbb{R}^d$ is *convex* if for any $x, y \in A$, $tx + (1 t)y \in A$.
- A real function f is convex on A if

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2) \tag{2}$$

holds for any $x_1, x_2 \in A$ and $t \in [0, 1]$. If the inequality holds with \leq replaced by <, then f is *strictly convex*.

Theorem

For a random vector and a convex function φ ,

$$\varphi(\mathbb{E}X) \le \mathbb{E}\varphi(X). \tag{3}$$

If φ is strictly convex and $\varphi(X)$ is not a constant, then $\varphi(\mathbb{E}X) < \mathbb{E}\varphi(X)$.

• If φ is twice differentiable, then the convexity of φ is implied by the positive semi-definiteness of its Hessian (or second derivative if φ is univariate) φ'' .

Proof:

ullet A well known fact: For any $z\in A$, there exists a vector $c_z\in \mathcal{R}^d$ such that

$$\varphi(x) \ge \varphi(z) + c_z^{\top}(x - z), \forall x \in A.$$
 (4)

Proof:

ullet A well known fact: For any $z\in A$, there exists a vector $c_z\in \mathcal{R}^d$ such that

$$\varphi(x) \ge \varphi(z) + c_z^{\top}(x - z), \forall x \in A.$$
 (4)

• Substitute $z = \mathbb{E}X$ and x = X, and then take expectation on both sides.

ST5215 (NUS) Lecture 3 18 Aug 2020 9/31

Proof:

ullet A well known fact: For any $z\in A$, there exists a vector $c_z\in \mathcal{R}^d$ such that

$$\varphi(x) \ge \varphi(z) + c_z^{\top}(x - z), \forall x \in A.$$
 (4)

• Substitute $z = \mathbb{E}X$ and x = X, and then take expectation on both sides.

Remark: c_z in the proof is called the sub-gradient of φ at z; when φ is differentiable at z, c_z is unique and equals to the derivative. The hyperplane defined by $(x,y=\varphi(z)+c_z^\top(x-z))$ is called the supporting hyperplane. It is tangent to the surface of φ (i.e., $(x,y=\varphi(x))$). They intersect at $(x=z,y=\varphi(z))$.

ST5215 (NUS) Lecture 3 18 Aug 2020 9/31

Suppose X is a nonconstant positive r.v., then

- $(\mathbb{E}X)^{-1} < \mathbb{E}(X^{-1})$ (since $f(x) = x^{-1}$ is convex for x > 0)
- $\mathbb{E}(\log X) < \log(\mathbb{E}X)$ (since $f(x) = \log(x)$ is concave, i.e. $-\log(x)$ is convex)

Suppose X is a nonconstant positive r.v., then

- $(\mathbb{E}X)^{-1} < \mathbb{E}(X^{-1})$ (since $f(x) = x^{-1}$ is convex for x > 0)
- $\mathbb{E}(\log X) < \log(\mathbb{E}X)$ (since $f(x) = \log(x)$ is concave, i.e. $-\log(x)$ is convex)
- Let f and g be positive integrable functions on a measure space with a σ -finite measure ν . If $\int f \, d\nu \ge \int g \, d\nu > 0$, we can show that

$$\int f \log \left(\frac{f}{g}\right) \, \mathrm{d}\nu \ge 0$$

Suppose X is a nonconstant positive r.v., then

- $(\mathbb{E}X)^{-1} < \mathbb{E}(X^{-1})$ (since $f(x) = x^{-1}$ is convex for x > 0)
- $\mathbb{E}(\log X) < \log(\mathbb{E}X)$ (since $f(x) = \log(x)$ is concave, i.e. $-\log(x)$ is convex)
- Let f and g be positive integrable functions on a measure space with a σ -finite measure ν . If $\int f \ d\nu \geq \int g \ d\nu > 0$, we can show that

$$\int f \log \left(\frac{f}{g}\right) \, \mathrm{d}\nu \geq 0$$

1 Let $h = f / \int f \, d\nu$, a p.d.f. w.r.t. ν . Let \mathbb{E} is the expectation w.r.t. h

ST5215 (NUS) Lecture 3 18 Aug 2020 10 / 31

Suppose X is a nonconstant positive r.v., then

- $(\mathbb{E}X)^{-1} < \mathbb{E}(X^{-1})$ (since $f(x) = x^{-1}$ is convex for x > 0)
- $\mathbb{E}(\log X) < \log(\mathbb{E}X)$ (since $f(x) = \log(x)$ is concave, i.e. $-\log(x)$ is convex)
- Let f and g be positive integrable functions on a measure space with a σ -finite measure ν . If $\int f \ d\nu \ge \int g \ d\nu > 0$, we can show that

$$\int f \log \left(\frac{f}{g}\right) \, \mathrm{d}\nu \geq 0$$

- **1** Let $h = f / \int f \, d\nu$, a p.d.f. w.r.t. ν . Let \mathbb{E} is the expectation w.r.t. h
- 2 By Jensen's inequality, $\mathbb{E} \log(g/f) \leq \log(\mathbb{E}(g/f))$

Suppose X is a nonconstant positive r.v., then

- $(\mathbb{E}X)^{-1} < \mathbb{E}(X^{-1})$ (since $f(x) = x^{-1}$ is convex for x > 0)
- $\mathbb{E}(\log X) < \log(\mathbb{E}X)$ (since $f(x) = \log(x)$ is concave, i.e. $-\log(x)$ is convex)
- Let f and g be positive integrable functions on a measure space with a σ -finite measure ν . If $\int f \, d\nu \ge \int g \, d\nu > 0$, we can show that

$$\int f \log \left(\frac{f}{g}\right) \, \mathrm{d}\nu \ge 0$$

- **1** Let $h = f / \int f \, d\nu$, a p.d.f. w.r.t. ν . Let $\mathbb E$ is the expectation w.r.t. h
- ② By Jensen's inequality, $\mathbb{E} \log(g/f) \leq \log(\mathbb{E}(g/f))$
- **3** LHS is $\mathbb{E} \log(g/f) = \int \log\left(\frac{g}{f}\right) h \, d\nu = \int \log\left(\frac{g}{f}\right) f \, d\nu / \int f \, d\nu$

ST5215 (NUS) Lecture 3 18 Aug 2020 10 / 31

Suppose X is a nonconstant positive r.v., then

- $(\mathbb{E}X)^{-1} < \mathbb{E}(X^{-1})$ (since $f(x) = x^{-1}$ is convex for x > 0)
- $\mathbb{E}(\log X) < \log(\mathbb{E}X)$ (since $f(x) = \log(x)$ is concave, i.e. $-\log(x)$ is convex)
- Let f and g be positive integrable functions on a measure space with a σ -finite measure ν . If $\int f \ d\nu \ge \int g \ d\nu > 0$, we can show that

$$\int f \log \left(\frac{f}{g}\right) \, \mathrm{d}\nu \geq 0$$

- **1** Let $h = f / \int f \, d\nu$, a p.d.f. w.r.t. ν . Let $\mathbb E$ is the expectation w.r.t. h
- ② By Jensen's inequality, $\mathbb{E}\log(g/f) \leq \log(\mathbb{E}(g/f))$
- **3** LHS is $\mathbb{E} \log(g/f) = \int \log\left(\frac{g}{f}\right) h \, d\nu = \int \log\left(\frac{g}{f}\right) f \, d\nu / \int f \, d\nu$
- RHS is $\log(\mathbb{E}(g/f)) = \log\left(\int \frac{g}{f} h \, d\nu\right) = \log\left(\frac{\int g \, d\nu}{\int f \, d\nu}\right) \le 0$

Let X be a random variable and φ be a nonnegative and nondecreasing function on $[0,\infty)$ and $\varphi(-t)=\varphi(t)$ for all real t. Then, for each constant $t\geq 0$,

$$\varphi(t)P(|X| \ge t) \le \int_{\{|X| > t\}} \varphi(X) dP \le \mathbb{E}\varphi(X).$$
 (5)

Let X be a random variable and φ be a nonnegative and nondecreasing function on $[0,\infty)$ and $\varphi(-t)=\varphi(t)$ for all real t. Then, for each constant $t\geq 0$,

$$\varphi(t)P(|X| \ge t) \le \int_{\{|X| \ge t\}} \varphi(X) dP \le \mathbb{E}\varphi(X).$$
 (5)

Proof: $\varphi(X) \ge \varphi(X) \mathbb{1}_{\{|X| \ge t\}} \ge \varphi(t) \mathbb{1}_{\{|X| \ge t\}}$

Let X be a random variable and φ be a nonnegative and nondecreasing function on $[0,\infty)$ and $\varphi(-t)=\varphi(t)$ for all real t. Then, for each constant $t\geq 0$,

$$\varphi(t)P(|X| \ge t) \le \int_{\{|X| \ge t\}} \varphi(X) dP \le \mathbb{E}\varphi(X).$$
 (5)

Proof: $\varphi(X) \ge \varphi(X) \mathbb{1}_{\{|X| \ge t\}} \ge \varphi(t) \mathbb{1}_{\{|X| \ge t\}}$

Examples:

• $\varphi(t) = |t|$, we have Markov's inequality

$$P(|X| \ge t) \le \frac{\mathbb{E}|X|}{t}, \quad \forall t > 0.$$
 (6)

Let X be a random variable and φ be a nonnegative and nondecreasing function on $[0,\infty)$ and $\varphi(-t)=\varphi(t)$ for all real t. Then, for each constant $t\geq 0$,

$$\varphi(t)P(|X| \ge t) \le \int_{\{|X| \ge t\}} \varphi(X) dP \le \mathbb{E}\varphi(X).$$
 (5)

Proof: $\varphi(X) \ge \varphi(X) 1_{\{|X| \ge t\}} \ge \varphi(t) 1_{\{|X| \ge t\}}$ Examples:

• $\varphi(t) = |t|$, we have Markov's inequality

$$P(|X| \ge t) \le \frac{\mathbb{E}|X|}{t}, \quad \forall t > 0.$$
 (6)

• $\varphi(t) = t^2$ and X is replaced with $X - \mu$ where $\mu = \mathbb{E}X$, we obtain the classic Chebyshev' inequality:

$$P(|X - \mu| \ge t) \le \frac{\sigma_X^2}{t^2}.$$
 (7)

ST5215 (NUS) Lecture 3 18 Aug 2020 11/31

- Let $X \in \{a_1, ..., a_n\}$ and $P(X = a_i) = 1/n$.
- Let $\varphi(x) = x^2$, convex.

- Let $X \in \{a_1, ..., a_n\}$ and $P(X = a_i) = 1/n$.
- Let $\varphi(x) = x^2$, convex.
- $\varphi(\mathbb{E}X) = \left(\frac{1}{n}\sum_{i=1}^n a_i\right)^2$ and $\mathbb{E}\varphi(X) = \frac{1}{n}\sum_{i=1}^n a_i^2$

Then Jensen's inequality implies that

$$\left(\frac{1}{n}\sum_{i=1}^{n}a_{i}\right)^{2}\leq\frac{1}{n}\sum_{i=1}^{n}a_{i}^{2}.$$
(8)

Hölder's inequality

Suppose 1/p + 1/q = 1 and X, Y are r.v.s

$$\mathbb{E}|XY| \le (\mathbb{E}|X|^p)^{1/p} (\mathbb{E}|Y|^q)^{1/q} \tag{9}$$

- If 1/p + 1/q = 1, then we say p and q are Hölder conjugate of each other.
- If both $\mathbb{E}|X|^p$ and $\mathbb{E}|Y|^q$ are finite, then the equality holds if and only if $|X|^p$ and $|Y|^q$ are linearly dependent (i.e., $a|X|^p = b|Y|^q$ a.s., for some $a, b \ge 0$ and not both zero)
- Sketch of proof:
 - ▶ Discuss: (1). If RHS = ∞ , (2). If $E|X|^p = 0$ or $E|Y|^q = 0$, (3). If both $E|X|^p$ and $E|Y|^q$ are in $(0,\infty)$
 - ► For (3), use Young's inequality:

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}$$

for all nonnegative a and b, where equality is achieved if and only if $a^p = b^q$.

Cauchy-Schwarz inequality: when p = q = 2, we have

$$\mathbb{E}|XY| \le \sqrt{\mathbb{E}X^2}\sqrt{\mathbb{E}Y^2}.$$
 (10)

Cauchy-Schwarz inequality: when p = q = 2, we have

$$\mathbb{E}|XY| \le \sqrt{\mathbb{E}X^2}\sqrt{\mathbb{E}Y^2}.$$
 (10)

- This also implies that $|Cov(XY)| \le \sigma_X \sigma_Y$ and hence the correlation between X and Y are between -1 and 1
 - ▶ Use the inequality for $X \mathbb{E}X$ and $Y \mathbb{E}Y$

Minkowski's inequality

$$(\mathbb{E}|X+Y|^p)^{1/p} \le (\mathbb{E}|X|^p)^{1/p} + (\mathbb{E}|Y|^p)^{1/p}, p \ge 1$$
 (11)

Proof:

- Let q = p/(p-1) so that 1/p + 1/q = 1.
- Decompose: $|X + Y|^p \le |X + Y|^{p-1}(|X| + |Y|)$
- ullet Use Hölder's inequality for |X| and $|X+Y|^{p-1}$ with p and q
- Divide both sides by $\left[\mathbb{E}|X+Y|^p\right]^{\frac{p-1}{p}}$.

Related inequalities

• (Generalization of Hölder's inequality). For 0 and <math>q = -p/(1-p)

$$E|XY| \ge (E|X|^p)^{1/p} (E|Y|^q)^{1/q}$$

• (Generalization of Minkowski's inequality).

$$\left(E\left(\sum_{j=1}^{n} |X_j| \right)^r \right)^{1/r} > \sum_{j=1}^{n} \left(E|X_j|^r \right)^{1/r} \quad \text{ for } 0 < r < 1$$

Left for the next tutorial. (Hint: Use Hölder's inequality)

Lyapunov's inequality

For
$$0 < s < t$$
, $(\mathbb{E}|X|^s)^{1/s} \le (\mathbb{E}|X|^t)^{1/t}$. (12)

Lyapunov's inequality

For
$$0 < s < t$$
,

$$(\mathbb{E}|X|^s)^{1/s} \le (\mathbb{E}|X|^t)^{1/t}.$$
 (12)

Proof:

Let $p = \frac{t}{s} > 1$. Let q = p/(p-1) so that 1/p + 1/q = 1. By Hölder's inequality,

$$\mathbb{E}[|X|^{s}] = \mathbb{E}[|X|^{s} \cdot 1]$$

$$\leq \mathbb{E}[|X|^{sp}]^{1/p} \mathbb{E}[1^{q}]^{1/q}$$

$$= \mathbb{E}[|X|^{t}]^{s/t},$$

i.e.,
$$(\mathbb{E}|X|^s)^{1/s} \leq (\mathbb{E}|X|^t)^{1/t}$$
.

ST5215 (NUS) Lecture 3 18 Aug 2020 17 / 31

Definition

Let X be a random d-vector.

• The characteristic function (ch.f.) φ of X of P_X is defined as

$$\phi_X(t) = \mathbb{E}e^{\sqrt{-1}t^\top X},$$

where $e^{it^{\top}X} = \cos(t^{\top}X) + \sqrt{-1}\sin(t^{\top}X)$.

• The moment generating function (MGF, m.g.f.) of X or P_X is defined as

$$\psi_X(t) = \mathbb{E}e^{t^\top X}.$$

• ϕ_X is complex-valued and always well defined. $|\phi_X| \leq 1$, and uniformly continuous

Definition

Let X be a random d-vector.

• The characteristic function (ch.f.) φ of X of P_X is defined as

$$\phi_X(t) = \mathbb{E}e^{\sqrt{-1}t^\top X},$$

where $e^{it^{\top}X} = \cos(t^{\top}X) + \sqrt{-1}\sin(t^{\top}X)$.

• The moment generating function (MGF, m.g.f.) of X or P_X is defined as

$$\psi_X(t) = \mathbb{E}e^{t^\top X}.$$

- ϕ_X is complex-valued and always well defined. $|\phi_X| \leq 1$, and uniformly continuous
- $\psi_X(t)$ is nonnegative, but may be infinite for some t

Definition

Let X be a random d-vector.

• The characteristic function (ch.f.) φ of X of P_X is defined as

$$\phi_X(t) = \mathbb{E}e^{\sqrt{-1}t^\top X},$$

where $e^{it^{\top}X} = \cos(t^{\top}X) + \sqrt{-1}\sin(t^{\top}X)$.

• The moment generating function (MGF, m.g.f.) of X or P_X is defined as

$$\psi_X(t) = \mathbb{E}e^{t^\top X}.$$

- ϕ_X is complex-valued and always well defined. $|\phi_X| \leq 1$, and uniformly continuous
- $\psi_X(t)$ is nonnegative, but may be infinite for some t
 - e.g., if P_X is the Cauchy distribution, then $\psi_X(t)=\infty$ for all $t\neq 0$

Definition

Let X be a random d-vector.

• The characteristic function (ch.f.) φ of X of P_X is defined as

$$\phi_X(t) = \mathbb{E}e^{\sqrt{-1}t^\top X},$$

where $e^{it^{\top}X} = \cos(t^{\top}X) + \sqrt{-1}\sin(t^{\top}X)$.

• The moment generating function (MGF, m.g.f.) of X or P_X is defined as

$$\psi_X(t) = \mathbb{E}e^{t^\top X}.$$

- ϕ_X is complex-valued and always well defined. $|\phi_X| \leq 1$, and uniformly continuous
- $\psi_X(t)$ is nonnegative, but may be infinite for some t• e.g., if P_X is the Cauchy distribution, then $\psi_X(t) = \infty$ for all $t \neq 0$
- $\phi_X(0) = \psi_X(0) = 1$, $\phi_{-X}(t) = \overline{\phi_X(t)}$, $\psi_{-X}(t) = \psi_X(-t)$.

Properties

If the m.g.f. is finite in a neighborhood of $0 \in \mathcal{R}^k$, then

- moments of X of any order are finite,
- $\phi_X(t)$ can be obtained by replacing t in $\psi_X(t)$ by $\sqrt{-1}t$.

Properties

If the m.g.f. is finite in a neighborhood of $0 \in \mathcal{R}^k$, then

- moments of X of any order are finite,
- $\phi_X(t)$ can be obtained by replacing t in $\psi_X(t)$ by $\sqrt{-1}t$.

ch.f. and m.g.f. determine distributions uniquely (Theorem 1.6 in JS)

- if $\phi_X(t) = \phi_Y(t)$ for all t, then $P_X = P_Y$
- if $\psi_X(t) = \psi_Y(t) < \infty$ for all t in a neighborhood of 0, then $P_X = P_Y$.

Claim: X is symmetric about 0 iff its ch.f. ϕ_X is real-valued.

• Symmetry: A random vector X is symmetric about 0 iff X and -X have the same distribution.

Claim: X is symmetric about 0 iff its ch.f. ϕ_X is real-valued.

• Symmetry: A random vector X is symmetric about 0 iff X and -X have the same distribution.

⇒:

• If X and -X have the same distribution, then $\phi_X(t) = \phi_{-X}(t)$.

Claim: X is symmetric about 0 iff its ch.f. ϕ_X is real-valued.

• Symmetry: A random vector X is symmetric about 0 iff X and -X have the same distribution.

 \Rightarrow :

- If X and -X have the same distribution, then $\phi_X(t) = \phi_{-X}(t)$.
- But $\phi_{-X}(t) = \phi_X(-t) = \overline{\phi_X(t)}$, so $\phi_X(t) = \overline{\phi_X(t)}$, thus, ϕ_X is real-valued.

Claim: X is symmetric about 0 iff its ch.f. ϕ_X is real-valued.

• Symmetry: A random vector X is symmetric about 0 iff X and -X have the same distribution.

 \Rightarrow :

- If X and -X have the same distribution, then $\phi_X(t) = \phi_{-X}(t)$.
- But $\phi_{-X}(t) = \phi_X(-t) = \overline{\phi_X(t)}$, so $\phi_X(t) = \overline{\phi_X(t)}$, thus, ϕ_X is real-valued.
- Here we used $\sin(-t^{\tau}X) = -\sin(t^{\tau}X)$ and $\cos(t^{\tau}X) = \cos(-t^{\tau}X)$.

Claim: X is symmetric about 0 iff its ch.f. ϕ_X is real-valued.

• Symmetry: A random vector X is symmetric about 0 iff X and -X have the same distribution.

 \Rightarrow :

- If X and -X have the same distribution, then $\phi_X(t) = \phi_{-X}(t)$.
- But $\phi_{-X}(t) = \phi_X(-t) = \overline{\phi_X(t)}$, so $\phi_X(t) = \overline{\phi_X(t)}$, thus, ϕ_X is real-valued.
- Here we used $\sin(-t^{\tau}X) = -\sin(t^{\tau}X)$ and $\cos(t^{\tau}X) = \cos(-t^{\tau}X)$.

⇐:

• If ϕ_X is real-valued, $\phi_X(t) = \overline{\phi_X(t)} = \phi_{-X}(t)$.

Claim: X is symmetric about 0 iff its ch.f. ϕ_X is real-valued.

• Symmetry: A random vector X is symmetric about 0 iff X and -Xhave the same distribution.

 \Rightarrow :

- If X and -X have the same distribution, then $\phi_X(t) = \phi_{-X}(t)$.
- But $\phi_{-x}(t) = \phi_{x}(-t) = \overline{\phi_{x}(t)}$, so $\phi_{x}(t) = \overline{\phi_{x}(t)}$, thus, ϕ_{x} is real-valued
- Here we used $\sin(-t^{\tau}X) = -\sin(t^{\tau}X)$ and $\cos(t^{\tau}X) = \cos(-t^{\tau}X).$

⇐:

- If ϕ_X is real-valued, $\phi_X(t) = \phi_X(t) = \phi_{-X}(t)$.
- Since a ch.f. uniquely determines a distribution (Theorem 1.6), X and -X must have the same distribution.

ST5215 (NUS) Lecture 3 18 Aug 2020 20 / 31

Independence

Definition

Let (Ω, \mathcal{E}, P) be a probability space.

• (Independent events) The events in a subset $C \subset \mathcal{E}$ are said to be *independent* iff for any positive n and distinct events $A_1, \ldots, A_n \in C$,

$$P(A_1 \cap \cdots \cap A_n) = P(A_1) \cdots P(A_n). \tag{13}$$

Independence

Definition

Let (Ω, \mathcal{E}, P) be a probability space.

• (Independent events) The events in a subset $\mathcal{C} \subset \mathcal{E}$ are said to be *independent* iff for any positive n and distinct events $A_1, \ldots, A_n \in \mathcal{C}$,

$$P(A_1 \cap \cdots \cap A_n) = P(A_1) \cdots P(A_n). \tag{13}$$

• (Independent collections) Collections $C_i \subset \mathcal{E}$, $i \in \mathcal{I}$ are independent iff events in a collection of the form $\{A_i \in C_i : i \in \mathcal{I}\}$ are independent.

Independence

Definition

Let (Ω, \mathcal{E}, P) be a probability space.

• (Independent events) The events in a subset $C \subset \mathcal{E}$ are said to be *independent* iff for any positive n and distinct events $A_1, \ldots, A_n \in C$,

$$P(A_1 \cap \cdots \cap A_n) = P(A_1) \cdots P(A_n). \tag{13}$$

- (Independent collections) Collections $C_i \subset \mathcal{E}$, $i \in \mathcal{I}$ are independent iff events in a collection of the form $\{A_i \in C_i : i \in \mathcal{I}\}$ are independent.
- (Independent random variables): random variables X_1, \ldots, X_n are said to be independent iff $\sigma(X_1), \ldots, \sigma(X_n)$ are independent.

Properties

• To check whether random variables X_1, \ldots, X_n are independent, only need to check whether for any real numbers a_i 's,

$$P(X_1 \le a_1, \dots, X_n \le a_n) = P(X_1 \le a_1) \dots P(X_n \le a_n).$$
 (14)

Properties

• To check whether random variables X_1, \ldots, X_n are independent, only need to check whether for any real numbers a_i 's,

$$P(X_1 \le a_1, \dots, X_n \le a_n) = P(X_1 \le a_1) \dots P(X_n \le a_n).$$
 (14)

• If (X_1, \ldots, X_n) has a joint p.d.f. f w.r.t. a product measure $\nu_1 \times \cdots \times \nu_n$ defined on \mathcal{B}^n , then X_1, \ldots, X_n are independent if and only if

$$f(x_1,\ldots,x_n)=f_1(x_1)\cdots f_n(x_n), \quad (x_1,\ldots,x_n)\in \mathcal{R}^n$$

where f_i is the p.d.f. of X_i w.r.t. ν_i , i = 1, ..., n.

• (Lemma 1.1 in JS). Let X_1, \ldots, X_n be independent random variables. Then random variables $g(X_1, \ldots, X_k)$ and $h(X_{k+1}, \ldots, X_n)$ are independent, where g and h are Borel functions and k is an integer between 1 and n.

- (Lemma 1.1 in JS). Let X_1, \ldots, X_n be independent random variables. Then random variables $g(X_1, \ldots, X_k)$ and $h(X_{k+1}, \ldots, X_n)$ are independent, where g and h are Borel functions and k is an integer between 1 and n.
- We usually use $X \perp Y$ to denote that X and Y are independent.

- (Lemma 1.1 in JS). Let X_1, \ldots, X_n be independent random variables. Then random variables $g(X_1, \ldots, X_k)$ and $h(X_{k+1}, \ldots, X_n)$ are independent, where g and h are Borel functions and k is an integer between 1 and n.
- We usually use $X \perp Y$ to denote that X and Y are independent.
- If $X \perp Y$, $\mathbb{E}(XY) = (\mathbb{E}X)(\mathbb{E}Y)$.

- (Lemma 1.1 in JS). Let X_1, \ldots, X_n be independent random variables. Then random variables $g(X_1, \ldots, X_k)$ and $h(X_{k+1}, \ldots, X_n)$ are independent, where g and h are Borel functions and k is an integer between 1 and n.
- We usually use $X \perp Y$ to denote that X and Y are independent.
- If $X \perp Y$, $\mathbb{E}(XY) = (\mathbb{E}X)(\mathbb{E}Y)$.

Exercises:

• Find an example that $\mathbb{E}(XY) = (\mathbb{E}X)(\mathbb{E}Y)$ but X and Y are not independent

- (Lemma 1.1 in JS). Let X_1, \ldots, X_n be independent random variables. Then random variables $g(X_1, \ldots, X_k)$ and $h(X_{k+1}, \ldots, X_n)$ are independent, where g and h are Borel functions and k is an integer between 1 and n.
- We usually use $X \perp Y$ to denote that X and Y are independent.
- If $X \perp Y$, $\mathbb{E}(XY) = (\mathbb{E}X)(\mathbb{E}Y)$.

Exercises:

- Find an example that $\mathbb{E}(XY) = (\mathbb{E}X)(\mathbb{E}Y)$ but X and Y are not independent
 - ▶ Let $X \sim Unif(-1,1)$ and $Y = X^2$.

- (Lemma 1.1 in JS). Let X_1, \ldots, X_n be independent random variables. Then random variables $g(X_1, \ldots, X_k)$ and $h(X_{k+1}, \ldots, X_n)$ are independent, where g and h are Borel functions and k is an integer between 1 and n.
- We usually use $X \perp Y$ to denote that X and Y are independent.
- If $X \perp Y$, $\mathbb{E}(XY) = (\mathbb{E}X)(\mathbb{E}Y)$.

Exercises:

- Find an example that $\mathbb{E}(XY) = (\mathbb{E}X)(\mathbb{E}Y)$ but X and Y are not independent
 - ▶ Let $X \sim Unif(-1,1)$ and $Y = X^2$.
- If X, Y, Z are r.v.'s such that $X \perp Y$, $X \perp Z$ and $Z \perp Y$, can we conclude that X, Y, Z are independent? Why?

- (Lemma 1.1 in JS). Let X_1, \ldots, X_n be independent random variables. Then random variables $g(X_1, \ldots, X_k)$ and $h(X_{k+1}, \ldots, X_n)$ are independent, where g and h are Borel functions and k is an integer between 1 and n.
- We usually use $X \perp Y$ to denote that X and Y are independent.
- If $X \perp Y$, $\mathbb{E}(XY) = (\mathbb{E}X)(\mathbb{E}Y)$.

Exercises:

- Find an example that $\mathbb{E}(XY) = (\mathbb{E}X)(\mathbb{E}Y)$ but X and Y are not independent
 - ▶ Let $X \sim Unif(-1,1)$ and $Y = X^2$.
- If X, Y, Z are r.v.'s such that $X \perp Y, X \perp Z$ and $Z \perp Y$, can we conclude that X, Y, Z are independent? Why?
 - ▶ Let P(X = 1) = P(X = -1) = 0.5, let Y be independent with X and have the same distribution. Let Z = XY.

ST5215 (NUS) Lecture 3 18 Aug 2020 23 / 31

- (Lemma 1.1 in JS). Let X_1, \ldots, X_n be independent random variables. Then random variables $g(X_1, \ldots, X_k)$ and $h(X_{k+1}, \ldots, X_n)$ are independent, where g and h are Borel functions and k is an integer between 1 and n.
- We usually use $X \perp Y$ to denote that X and Y are independent.
- If $X \perp Y$, $\mathbb{E}(XY) = (\mathbb{E}X)(\mathbb{E}Y)$.

Exercises:

- Find an example that $\mathbb{E}(XY) = (\mathbb{E}X)(\mathbb{E}Y)$ but X and Y are not independent
 - Let $X \sim Unif(-1,1)$ and $Y = X^2$.
- If X, Y, Z are r.v.'s such that $X \perp Y$, $X \perp Z$ and $Z \perp Y$, can we conclude that X, Y, Z are independent? Why?
 - ▶ Let P(X = 1) = P(X = -1) = 0.5, let Y be independent with X and have the same distribution. Let Z = XY.
 - Can check that $P(X = 1, Y = 1) = P(Y = 1, Z = 1) = P(X = 1, Z = 1) = 0.5^2$, but $P(X = 1, Y = 1, Z = 1) = 0.25 \neq 0.5^3$

Conditional Expectation

Definition

- Let X be an integrable random variable on (Ω, \mathcal{F}, P) .
- Let \mathcal{A} be a sub- σ -field of \mathcal{F} .

The *conditional expectation* of X given A, denoted by $E(X \mid A)$, is a random variable satisfying the following two conditions:

- **1** $E(X \mid A)$ is measurable from (Ω, A) to $(\mathcal{R}, \mathcal{B})$

Such $E(X \mid A)$ exists and is unique.

- Uniqueness: Suppose both f and g satisfies the conditions, then $\mathbb{P}(f \neq g) = 0$.
- Note that if f is measurable w.r.t. $\mathcal A$ then it is also measurable w.r.t. $\mathcal F$ since $\mathcal A\subset \mathcal F$

Proof

- Define $\lambda(A) = \int_A f \, dP$ for any $C \in A$.
- λ is a measure on (Ω, \mathcal{A}) and $\lambda \ll P|_{\mathcal{A}}$
 - ▶ $P|_{\mathcal{A}}$ is the *restriction of the measure* P *on* \mathcal{A} , meaning that it has the same image of P but is now only define on \mathcal{A} rather than Ω
- Then $E(X \mid \mathcal{A}) = \frac{\mathrm{d}\lambda}{\mathrm{d}P|_{\mathcal{A}}}$ exists and is unique

- The conditional probability of $B \in \mathcal{F}$ given \mathcal{A} is defined to be $P(B \mid \mathcal{A}) = E(I_B \mid \mathcal{A})$
- Let Y be measurable from (Ω, \mathcal{F}, P) to (Λ, \mathcal{G}) . The conditional expectation of X given Y is defined to be $E(X \mid Y) = E[X \mid \sigma(Y)]$

- The conditional probability of $B \in \mathcal{F}$ given \mathcal{A} is defined to be $P(B \mid \mathcal{A}) = E(I_B \mid \mathcal{A})$
- Let Y be measurable from (Ω, \mathcal{F}, P) to (Λ, \mathcal{G}) . The conditional expectation of X given Y is defined to be $E(X \mid Y) = E[X \mid \sigma(Y)]$

Remark: $E(X \mid Y)$ is the "expectation" of X given the information provided by $\sigma(Y)$

- The conditional probability of $B \in \mathcal{F}$ given \mathcal{A} is defined to be $P(B \mid \mathcal{A}) = E(I_B \mid \mathcal{A})$
- Let Y be measurable from (Ω, \mathcal{F}, P) to (Λ, \mathcal{G}) . The conditional expectation of X given Y is defined to be $E(X \mid Y) = E[X \mid \sigma(Y)]$

Remark: $E(X \mid Y)$ is the "expectation" of X given the information provided by $\sigma(Y)$

Lemma

Let Y be measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) and Z a function from (Ω, \mathcal{F}) to \mathcal{R}^k . If Z is Borel on $(\Omega, \sigma(Y))$, then there is a Borel function h from (Λ, \mathcal{G}) such that $Z = h \circ Y$

- The conditional probability of $B \in \mathcal{F}$ given \mathcal{A} is defined to be $P(B \mid \mathcal{A}) = E(I_B \mid \mathcal{A})$
- Let Y be measurable from (Ω, \mathcal{F}, P) to (Λ, \mathcal{G}) . The conditional expectation of X given Y is defined to be $E(X \mid Y) = E[X \mid \sigma(Y)]$

Remark: $E(X \mid Y)$ is the "expectation" of X given the information provided by $\sigma(Y)$

Lemma

Let Y be measurable from (Ω, \mathcal{F}) to (Λ, \mathcal{G}) and Z a function from (Ω, \mathcal{F}) to \mathcal{R}^k . If Z is Borel on $(\Omega, \sigma(Y))$, then there is a Borel function h from (Λ, \mathcal{G}) such that $Z = h \circ Y$

- We can write $E(X \mid Y) = h \circ Y$ where h is a Borel function on (Λ, \mathcal{G}) .
- Define h(y) to be the conditional expectation of X given Y = y, and is denoted by $E(X \mid Y = y)$.

Properties of conditional expectation

- linearity: $\mathbb{E}(aX + bY \mid \mathcal{G}) = a\mathbb{E}(X \mid \mathcal{G}) + b\mathbb{E}(X \mid \mathcal{G})$ a.s.
- If X = c a.s. for a constant c, then $\mathbb{E}(X \mid \mathcal{G}) = c$ a.s.
- monotonicity: if $X \leq Y$, then $\mathbb{E}(X \mid \mathcal{G}) \leq \mathbb{E}(Y \mid \mathcal{G})$ a.s.
- if $\mathcal{G} = \{\emptyset, \Omega\}$ (a trivial σ -field), then $\mathbb{E}(X \mid \mathcal{G}) = \mathbb{E}(X)$
- tower property: if $\mathcal{H} \subset \mathcal{G}$ is a σ -field, (so that $\mathcal{H} \subset \mathcal{G} \subset \mathcal{F}$), then

$$\mathbb{E}(X \mid \mathcal{H}) = \mathbb{E}\{\mathbb{E}(X \mid \mathcal{G}) \mid \mathcal{H}\}. \tag{15}$$

- if $\mathcal{H} = \{\emptyset, \Omega\}$, then $\mathbb{E}(X) = \mathbb{E}\{\mathbb{E}(X \mid \mathcal{G})\}$.
- if $\sigma(Y) \subset \mathcal{G}$ and $\mathbb{E}|XY| < \infty$, then $\mathbb{E}(XY \mid \mathcal{G}) = Y\mathbb{E}(X \mid \mathcal{G})$
 - ▶ since $\sigma(Y) \subset \mathcal{G}$, information about Y is contained in \mathcal{G} , and thus, Y is kind of "known" given the information \mathcal{G} .
- if $\mathbb{E}X^2 < \infty$, then $\{\mathbb{E}(X \mid \mathcal{G})\}^2 \leq \mathbb{E}(X^2 \mid \mathcal{G})$ a.s.

Tutorial

• Suppose that $\{f_n\}$ is a sequence of Borel functions on a measure space $(\Omega, \mathcal{F}, \nu)$ and $f_n(\omega) \to f(\omega)$ for $\omega \in \Omega$ with $\nu(\Omega) < \infty$. For any $\epsilon > 0$, define $A_k = \{x \in \Omega : |f_k(x) - f(x)| \ge \epsilon\}$, show that

$$\lim_{j \to \infty} \nu(\cup_{k=j}^{\infty} A_k) = 0. \tag{16}$$

- ② Prove the Egoroff's theorem: Suppose that $\{f_n\}$ is a sequence of Borel functions on a measure space $(\Omega, \mathcal{F}, \nu)$, $f_n(\omega) \to f(\omega)$ ν -a.e., and $\nu(\Omega) < \infty$. Show that for any $\eta > 0$, there is a $B \in \mathcal{F}$ with $\nu(B) < \eta$ such that $f_n(\omega) \to f(\omega)$ uniformly on B^c , i.e., for any small $\epsilon > 0$, one can find an $N_{\eta} \in \mathbb{N}$ such that $|f_n(\omega) f(\omega)| < \epsilon$, $\forall n \geq N_{\eta}$ and $\forall \omega \in B^c$. Io
- **3** Prove the monotone convergence theorem: If $0 \le f_1 \le \cdots$ and $\lim_n f_n = f$ a.e., then

$$\int \lim_{n} f_{n} \, d\nu = \lim_{n} \int f_{n} \, d\nu. \tag{17}$$

Suppose that $\{f_n\}$ is a sequence of Borel functions on a measure space $(\Omega, \mathcal{F}, \nu)$ and $f_n(\omega) \to f(\omega)$ for $\omega \in \Omega$ with $\nu(\Omega) < \infty$. For any $\epsilon > 0$, define $A_k = \{x \in \Omega : |f_k(x) - f(x)| \ge \epsilon\}$, show that

$$\lim_{j \to \infty} \nu(\cup_{k=j}^{\infty} A_k) = 0. \tag{18}$$

Suppose that $\{f_n\}$ is a sequence of Borel functions on a measure space $(\Omega, \mathcal{F}, \nu)$ and $f_n(\omega) \to f(\omega)$ for $\omega \in \Omega$ with $\nu(\Omega) < \infty$. For any $\epsilon > 0$, define $A_k = \{x \in \Omega : |f_k(x) - f(x)| \ge \epsilon\}$, show that

$$\lim_{j \to \infty} \nu(\cup_{k=j}^{\infty} A_k) = 0. \tag{18}$$

Proof: Note that $\bigcup_{k=j}^{\infty} A_k$ is decreasing (in j) and every $\omega \in \bigcap_{j=1}^{\infty} \bigcup_{k=j}^{\infty} A_k$, $f_n(\omega)$ does not converge to $f(\omega)$. So

$$\nu(\cap_{j=1}^{\infty} \cup_{k=j}^{\infty} A_k) = 0. \tag{19}$$

By monotonicity of measures and $\nu(\Omega) < \infty$, we have $\lim_{j\to\infty} \nu(\bigcup_{k=j}^{\infty} A_k) = 0$.

Suppose that $\{f_n\}$ is a sequence of Borel functions on a measure space $(\Omega, \mathcal{F}, \nu)$, $f_n(\omega) \to f(\omega)$ ν -a.e., and $\nu(\Omega) < \infty$. Show that for any $\eta > 0$, there is a $B \in \mathcal{F}$ with $\nu(B) < \eta$ such that $f_n(\omega) \to f(\omega)$ uniformly on B^c , i.e., for any small $\epsilon > 0$, one can find an $N_{\eta} \in \mathbb{N}$ such that $|f_n(\omega) - f(\omega)| < \epsilon$, $\forall n \geq N_{\eta}$ and $\forall \omega \in B^c$.

Fx 2

Suppose that $\{f_n\}$ is a sequence of Borel functions on a measure space $(\Omega, \mathcal{F}, \nu), f_n(\omega) \to f(\omega) \nu$ -a.e., and $\nu(\Omega) < \infty$. Show that for any $\eta > 0$, there is a $B \in \mathcal{F}$ with $\nu(B) < \eta$ such that $f_n(\omega) \to f(\omega)$ uniformly on B^c , i.e., for any small $\epsilon > 0$, one can find an $N_n \in \mathbb{N}$ such that $|f_n(\omega) - f(\omega)| < \epsilon, \ \forall n > N_n \ \text{and} \ \forall \omega \in B^c.$

Proof:

• We will use Ex 1 with $\epsilon = 1/i$ and denote the sequence of set by $A_k(\frac{1}{i}), k = 1, 2, \dots$

Suppose that $\{f_n\}$ is a sequence of Borel functions on a measure space $(\Omega, \mathcal{F}, \nu)$, $f_n(\omega) \to f(\omega)$ ν -a.e., and $\nu(\Omega) < \infty$. Show that for any $\eta > 0$, there is a $B \in \mathcal{F}$ with $\nu(B) < \eta$ such that $f_n(\omega) \to f(\omega)$ uniformly on B^c , i.e., for any small $\epsilon > 0$, one can find an $N_{\eta} \in \mathbb{N}$ such that $|f_n(\omega) - f(\omega)| < \epsilon$, $\forall n \geq N_{\eta}$ and $\forall \omega \in B^c$.

- We will use Ex 1 with $\epsilon = 1/i$ and denote the sequence of set by $A_k(\frac{1}{i}), k = 1, 2, \ldots$
- For any given $\eta > 0$, for each $i \in \mathbb{N}$, we can find a j_i such that

$$\nu\left(\cup_{k=j_i}^{\infty} A_k\left(\frac{1}{i}\right)\right) < \frac{\eta}{2^i}.\tag{20}$$

Suppose that $\{f_n\}$ is a sequence of Borel functions on a measure space $(\Omega, \mathcal{F}, \nu)$, $f_n(\omega) \to f(\omega)$ ν -a.e., and $\nu(\Omega) < \infty$. Show that for any $\eta > 0$, there is a $B \in \mathcal{F}$ with $\nu(B) < \eta$ such that $f_n(\omega) \to f(\omega)$ uniformly on B^c , i.e., for any small $\epsilon > 0$, one can find an $N_{\eta} \in \mathbb{N}$ such that $|f_n(\omega) - f(\omega)| < \epsilon$, $\forall n \geq N_{\eta}$ and $\forall \omega \in B^c$.

- Proof:
 - We will use Ex 1 with $\epsilon=1/i$ and denote the sequence of set by $A_k(\frac{1}{i}), k=1,2,\ldots$
 - For any given $\eta > 0$, for each $i \in \mathbb{N}$, we can find a j_i such that

$$\nu\left(\cup_{k=j_i}^{\infty} A_k(\frac{1}{i})\right) < \frac{\eta}{2^i}.$$
 (20)

• Let $B_{\eta} = \bigcup_{i=1}^{\infty} \bigcup_{k=j_i}^{\infty} A_k(\frac{1}{i})$, then

$$\nu(B_{\eta}) \leq \sum_{i=1}^{\infty} \frac{\eta}{2^{i}} = \eta$$

Suppose that $\{f_n\}$ is a sequence of Borel functions on a measure space $(\Omega, \mathcal{F}, \nu)$, $f_n(\omega) \to f(\omega)$ ν -a.e., and $\nu(\Omega) < \infty$. Show that for any $\eta > 0$, there is a $B \in \mathcal{F}$ with $\nu(B) < \eta$ such that $f_n(\omega) \to f(\omega)$ uniformly on B^c , i.e., for any small $\epsilon > 0$, one can find an $N_n \in \mathbb{N}$ such that $|f_n(\omega) - f(\omega)| < \epsilon, \ \forall n > N_n \ \text{and} \ \forall \omega \in B^c.$

Proof:

- We will use Ex 1 with $\epsilon = 1/i$ and denote the sequence of set by $A_k(\frac{1}{i}), k = 1, 2, \dots$
- For any given $\eta > 0$, for each $i \in \mathbb{N}$, we can find a j_i such that

$$\nu\left(\cup_{k=j_i}^{\infty} A_k(\frac{1}{i})\right) < \frac{\eta}{2^i}.$$
 (20)

• Let $B_{\eta} = \bigcup_{i=1}^{\infty} \bigcup_{k=i}^{\infty} A_k(\frac{1}{i})$, then

$$\nu(B_{\eta}) \leq \sum_{i=1}^{\infty} \frac{\eta}{2^{i}} = \eta$$

• We can check that f_n 's uniformly converges to f on B^c ST5215 (NUS)

18 Aug 2020

Prove the monotone convergence theorem:

If
$$0 \le f_1 \le \cdots$$
 and $\lim_n f_n = f$ a.e., then

$$\int \lim_{n} f_{n} \, d\nu = \lim_{n} \int f_{n} \, d\nu. \tag{21}$$

Prove the monotone convergence theorem:

If $0 \le f_1 \le \cdots$ and $\lim_n f_n = f$ a.e., then

$$\int \lim_{n} f_{n} \, d\nu = \lim_{n} \int f_{n} \, d\nu. \tag{21}$$

Proof: We can prove this result using the same argument in Ex 3 in Lecture 1's tutorial.