

Switching Threshold as a function of Transistor Ratio

Determining V_{IH} and V_{IL}

Gate Capacitance

Capacitance as a function of VGS (with VDS = 0)

Capacitance as a function of the degree of saturation

Digital Integrated Circuits

Inverter

© Prentice Hall 1999

Diffusion Capacitance

$$\begin{split} &C_{diff} = & \ C_{bottom} + C_{sw} = C_{j} \times AREA + C_{jsw} \times PERIMETER \\ &= & \ C_{j} L_{S}W + C_{jsw} (2L_{S} + W) \end{split}$$

Digital Integrated Circuits

Inverter

© Prentice Hall 1999

 $C_j = \frac{C_{j0}}{(1 - V_D I \phi_0)^m}$

m = 0.5: abrupt junction m = 0.33: linear junction

Digital Integrated Circuits

Inverter

© Prentice Hall 1999

Linearizing the Junction Capacitance

Replace non-linear capacitance by large-signal equivalent linear capacitance which displaces equal charge over voltage swing of interest

$$C_{eq} = \frac{\Delta Q_{f}}{\Delta V_{D}} = \frac{Q_{f}(V_{high}) - Q_{f}(V_{low})}{V_{high} - V_{low}} = K_{eq}C_{f0}$$

$$K_{eq} = \frac{-\phi_0^m}{(V_{high} - V_{low})(1-m)} [(\phi_0 - V_{high})^{1-m} - (\phi_0 - V_{low})^{1-m}]$$

Digital Integrated Circuits

Inverter

© Prentice Hall 1999

Capacitances in 0.25 μm CMOS process

	$C_{\rm ox}$ (fF/µm ²)	С _О (fF/µm)	C _j (fF/µm²)	m,	$\phi_b = (V)$	C _{/su} (fF/jum)	m _{/su}	φ _{διω} (V)
NMOS	6	0.31	2	0.5	0.9	0.28	0.44	0.9
PMOS	6	0.27	1.9	0.48	0.9	0.22	0.32	0.9

Digital Integrated Circuits

Inverter

© Prentice Hall 1999

Computing the Capacitances

11

Computing the Capacitances

Digital Integrated Circuits

Inverter

© Prentice Hall 1999