PROCESADORES DE LENGUAJES TEMA V: ANÁLISIS ASCENDENTE

Prof. Dr. Nicolás Luis Fernández García

Departamento de Informática y Análisis Numérico Escuela Politécnica Superior de Córdoba Universidad de Córdoba

- Tema I.- Introducción
- Tema II.- Análisis Lexicográfico
- Tema III.- Fundamentos Teóricos del Análisis Sintáctico
- Tema IV.- Análisis Sintáctico Descendente
- Tema V.- Análisis Sintáctico Ascendente

- Introducción
- 2 Análisis sintáctico ascendente SLR
- 3 Análisis sintáctico ascendente LR-canónico
- 4 Análisis sintáctico ascendente LALR
- Métodos de recuperación de errores

- Introducción
- Análisis sintáctico ascendente SLR
- 3 Análisis sintáctico ascendente LR-canónico
- Análisis sintáctico ascendente LALR
- Métodos de recuperación de errores

- Introducción
- 2 Análisis sintáctico ascendente SLR
- 3 Análisis sintáctico ascendente LR-canónico
- 4 Análisis sintáctico ascendente LALR
- Métodos de recuperación de errores

- Introducción
- 2 Análisis sintáctico ascendente SLR
- 3 Análisis sintáctico ascendente LR-canónico
- 4 Análisis sintáctico ascendente LALR
- Métodos de recuperación de errores

- Introducción
- 2 Análisis sintáctico ascendente SLR
- 3 Análisis sintáctico ascendente LR-canónico
- 4 Análisis sintáctico ascendente LALR
- 5 Métodos de recuperación de errores

Sección actual

- Introducción
- 2 Análisis sintáctico ascendente SLF
- 3 Análisis sintáctico ascendente LR-canónico
- 4 Análisis sintáctico ascendente LALR
- Métodos de recuperación de errores

Subsección actual

- Introducción
 - Descripción general
 - Concepto de pivote
 - Conflictos
 - Tipos de análisis sintáctico ascendente
 - Gramáticas LR
 - Tabla de análisis sintáctico ascendente LR

Descripción general

Análisis sintáctico ascendente

- Objetivo
 - Construir de forma ascendente un árbol sintáctico asociado a la cadena de entrada.
 - Comienza por las hojas y termina en la raíz.
- Objetivo equivalente
 - Obtener una derivación por la derecha en orden inverso.
- Se fundamenta en los conceptos de desplazamiento y reducción.

Descripción general

```
Ejemplo (Análisis sintáctico ascendente 1/4)
P = \{ (1) \ S \longrightarrow T \ \text{id} \ (L); (2) \ T \longrightarrow T * (3) \ T \longrightarrow \text{int} (4) \ L \longrightarrow L, T (5) \ L \longrightarrow T \}
```

Nota

Esta gramática genera algunos prototipos de funciones del lenguaje de programación C.

Ejemplo (Análisi	ijemplo (Análisis sintáctico ascendente 2 / 4		
Pila	Entrada	Acción	
	int * id (int); \$	desplazar int	
int	* id (int) ; \$	reducir (3) $T \longrightarrow \mathbf{int}$	
T	* id (int) ; \$	desplazar *	
T *	id (int) ; \$	reducir (2) $T \longrightarrow T *$	
T	id (int) ; \$	desplazar id	
${\mathcal T}$ id	(int); \$	desplazar (
${\mathcal T}$ id (int); \$	desplazar int	
T id (int);\$	reducir (3) $T \longrightarrow \mathbf{int}$	

Ejemplo (Análisis sintáctico ascendente		3 / 4)	
Pila	Entrada	Acción	
T id (int);\$	reducir (3) $T \longrightarrow \mathbf{int}$	
<i>T</i> id (<i>T</i>);\$	reducir (5) $L \longrightarrow T$	
T id (L);\$	desplazar)	
T id (L)	; \$	desplazar ;	
T id (L) ;	\$	reducir (1) $S \longrightarrow T$ id (L);	
<u>S</u>	\$	Aceptar	

Descripción general

Ejemplo (Análisis sintáctico ascendente

4 / 4)

Derivación por la derecha

```
S \underset{1}{\Rightarrow} \frac{T \text{ id } (L);}{T \text{ id } (\underline{T});}
\underset{5}{\Rightarrow} T \text{ id } (\underline{\text{int}});
\underset{2}{\Rightarrow} \frac{T *}{3} \text{ id } (\text{ int });
\underset{2}{\Rightarrow} \frac{T *}{3} \text{ id } (\text{ int });
\underset{3}{\Rightarrow} \frac{\text{int } *}{3} \text{ id } (\text{ int });
```

Nota

La derivación por la derecha se ha obtenido en orden inverso.

```
Ejemplo (Árbol sintáctico asociado a la derivación 1/6)

int * id ( int ) ;
```

```
Ejemplo (Árbol sintáctico asociado a la derivación 2 / 6)

T

int * id ( int ) ;
```


Descripción general

Nota (Acciones del análisis ascendente)

- 1.- Desplazar: traslada el primer símbolo de la entrada a la pila.
- 2.- Reducir:
 - sustituye, en la pila, los símbolos de la alternativa de una regla por el símbolo de su parte izquierda;
 - se utiliza el concepto de pivote.
- 3.- Aceptar: la cadena de entrada es reconocida.
- 4.- Error: la cadena de entrada es rechazada.

Subsección actual

- Introducción
 - Descripción general
 - Concepto de pivote
 - Conflictos
 - Tipos de análisis sintáctico ascendente
 - Gramáticas LR
 - Tabla de análisis sintáctico ascendente LR

Concepto de pivote

Definición (Concepto de pivote

. / 2)

Si $G = (V_N, V_T, P, S)$ es gramática de contexto libre y

$$S \; \overset{k}{\underset{D}{\Rightarrow}} \; \; \gamma$$

entonces

- un pivote se define como
 - una regla de producción de la forma $A \rightarrow \beta$
 - y una **posición** en γ , en la cual se encuentra β .

de forma que,

- al sustituir β por A en γ ,
- se obtiene el paso anterior de una derivación por la derecha.

Concepto de pivote

Definición (Concepto de pivote

2 / 2)

$$Si \gamma = \alpha \beta z$$
 entonces

$$S \overset{*}{\underset{D}{\Rightarrow}} \alpha A z \underset{A \to \beta}{\Rightarrow} \alpha \beta z = \gamma$$

Pila	Entrada	Acción
$\alpha \beta$	z \$	reducir $A \longrightarrow \beta$
α A	z \$	

donde
$$\alpha$$
, $\beta \in V^* = (V_N \cup V_T)^*$, $z \in V_T^*$

Concepto de pivote

Concepto de pivote

Nota (Análisis sintáctico ascendente)

- El análisis ascendente intenta obtener una derivación por la derecha en orden inverso.
- Un pivote es una regla de producción y una posición.
- El pivote siempre debe aparecer en la cima de la pila.
- Se realizará una reducción cuando se encuentre un pivote.
- Al realizar la reducción, se genera el paso anterior de una derivación por la derecha.
- Al aplicar las reducciones, se alcanza el símbolo inicial de la gramática (raíz del árbol sintáctico) y la cadena de entrada es reconocida.

Concepto de pivote

Ejemplo (Pivote en la cima de la pila

1 / 2)

En este caso, la elección del pivote es correcta.

Pila	Entrada	Acción
αβδ	y z \$	reducir $B o \delta$
α β <u>B</u>	y z \$	desplazar y
$\alpha \beta B y$	z \$	reducir $A \rightarrow \beta By$
<u>α A</u>	z \$	• • •

$$S \overset{*}{\underset{D}{\Rightarrow}} \alpha \underline{A} \overset{\mathbf{Z}}{\underset{A \longrightarrow \beta By}{\Rightarrow}} \alpha \beta \underline{B} y \overset{\mathbf{Z}}{\underset{B \longrightarrow \delta}{\Rightarrow}} \alpha \beta \delta y \overset{\mathbf{Z}}{\underset{B \longrightarrow \delta}{\Rightarrow}}$$

Concepto de pivote

Ejemplo (Pivote en el interior de la pila

2 / 2)

La elección del pivote no es correcta: no se genera una derivación por la derecha en orden inverso

Pila	Entrada	Acción
αβγδ	y z \$	reducir $B o \delta$
$\alpha \beta \gamma \underline{B}$	y z \$	se busca en el interior
$\alpha \beta \gamma B$	y z \$	reducir $C \rightarrow \beta$
<u>α <u>C</u> γ B</u>	y z \$	

$$S \overset{*}{\underset{D}{\Rightarrow}} \alpha \overset{\mathbf{C}}{\underline{\mathbf{C}}} \gamma B y z \underset{\mathbf{C} \longrightarrow \beta}{\Rightarrow} \alpha \beta \gamma \underline{B} y z \underset{B \longrightarrow \delta}{\Rightarrow} \alpha \beta \gamma \delta y z$$

Subsección actual

- Introducción
 - Descripción general
 - Concepto de pivote
 - Conflictos
 - Tipos de análisis sintáctico ascendente
 - Gramáticas LR
 - Tabla de análisis sintáctico ascendente LR

Contenido de la subsección

- Introducción
 - Descripción general
 - Concepto de pivote
 - Conflictos
 - Tipos de conflictos
 - Conflicto desplazamiento-reducción
 - Conflicto reducción-reducción
 - Tipos de análisis sintáctico ascendente
 - Gramáticas I R
 - Tabla de análisis sintáctico ascendente LR

Conflictos

Definición (Conflictos en el Análisis Sintáctico Ascendente)

Un conflicto representa una situación en la cual el análisis sintáctico ascendente puede elegir entre acciones diferentes

Conflictos

Definición (Tipos de conflictos)

- Desplazamiento-reducción:
 - Se puede desplazar un símbolo a la pila o reducir con una regla de producción.
- Reducción-reducción:
 - Se puede elegir una regla de producción entre varias para hacer la reducción.

Conflictos

Nota (Tipos de conflictos)

- En el caso de conflicto de desplazamiento-reducción, se suele elegir el desplazamiento.
- Los conflictos reducción-reducción
 - Son mucho más graves y no se suelen permitir.
 - Se debe reescribir la gramática para eliminar el conflicto.

Contenido de la subsección

- 1 Introducción
 - Descripción general
 - Concepto de pivote
 - Conflictos
 - Tipos de conflictos
 - Conflicto desplazamiento-reducción
 - Conflicto reducción-reducción
 - Tipos de análisis sintáctico ascendente
 - Gramáticas I R
 - Tabla de análisis sintáctico ascendente LR

Conflictos

Ejemplo (Conflicto desplazamiento-reducción 1/9) $P = \{ (1) \ E \longrightarrow E + E$ $(2) \ E \longrightarrow E * E$ $(3) \ E \longrightarrow (E)$ $(4) \ E \longrightarrow \text{id}$ $(5) \ E \longrightarrow \text{número}$ $\}$

Nota

Esta gramática genera algunas expresiones aritméticas.

Conflictos

Ejemplo (Conflicto desplazamiento-reducción

2 / 9) ີ

 La expresión id + id * id provoca un conflicto de desplazamiento-reducción

Ejemplo (Conflicto desplazamiento-reducción 3			3 / 9)
Pila	Entrada	Acción	=
	id + id * id \$	desplazar id	_
id	+ id * id \$	reducir (4) $E \longrightarrow id$	
Ε	+ id * id \$	desplazar +	
E +	id * id \$	desplazar id	
E + id	* id \$	reducir (4) $E \longrightarrow id$	
E + E	* id \$	Conflicto:	
		desplazar *	
		reducir (1) $E \longrightarrow E + E$	

Conflictos

Ejemplo (Conflicto desplazamiento-reducción

4 / 9)

Si se elige la reducción, el análisis continúa de la siguiente forma:

Pila	Entrada	Acción
E + E	* id \$	reducir (1) $E \longrightarrow E + E$
Ε	* id \$	desplazar *
E *	id \$	desplazar id
<i>E</i> * id	\$	reducir (4) $E \longrightarrow id$
E* E	\$	reducir (2) $E \longrightarrow E * E$
Е	\$	ACEPTAR

Conflictos

Nota

La expresión es reconocida, pero el árbol sintáctico asociado a la derivación no respeta la precedencia de los operadores aritméticos

Conflictos

Ejemplo (Conflicto desplazamiento-reducción

6 / 9)

Si se elige el desplazamiento, el análisis continúa de la siguiente forma:

Pila	Entrada	Acción
E + E	* id \$	desplazar *
$E + E^*$	id \$	desplazar id
E + E * id	\$	reducir (4) $E \longrightarrow id$
E + E * E	\$	reducir (2) $E \longrightarrow E * E$
E + E	\$	reducir (1) $E \longrightarrow E + E$
E	\$	ACEPTAR

Conflictos

Nota

Si se elige el desplazamiento entonces el árbol sintáctico sí respeta la precedencia de los operadores aritméticos

Conflictos

Ejemplo (Conflicto desplazamiento-reducción

8 / 9)

Ambigüedad: dos derivaciones por la derecha diferentes.

Primera derivación

$$S \underset{2}{\Rightarrow} \underbrace{E * E}$$

$$\underset{4}{\Rightarrow} E * \underline{id}$$

$$\underset{1}{\Rightarrow} \underbrace{E + E} * \underline{id}$$

$$\underset{4}{\Rightarrow} E + \underline{id} * \underline{id}$$

$$\underset{2}{\Rightarrow} \underline{id} + \underline{id} * \underline{id}$$

• Segunda derivación

$$S \Rightarrow \underbrace{E + E}_{1} \Rightarrow E + \underbrace{E * E}_{2}$$

$$\Rightarrow E + E * \underline{id}$$

$$\Rightarrow E + \underline{id} * \underline{id}$$

$$\Rightarrow \underline{id} + \underline{id} * \underline{id}$$

Conflictos

Ejemplo (Conflicto desplazamiento-reducción

9 / 9)

- La gramática utilizada es ambigua y no admite un análisis sintáctico ascendente.
- Se pueden utilizar otras gramáticas que no sean ambiguas y que sí admiten un análisis sintáctico ascendente.

Conflictos

```
Ejemplo (Gramática sin conflictos
       P = {
        (1) E \longrightarrow T + E
        (2) E \longrightarrow T
        (3) T \longrightarrow F * T
        (4) T \longrightarrow F
        (5) F \longrightarrow (E)
        (6) F \longrightarrow id
        (7) F \longrightarrow \text{número}
```

Nota

Esta gramática no es ambigua.

Ejemplo (Gramática sin conflictos			2 / 4)	
Pi	la Entr	ada	Acción	
	id +	- id * id \$	desplazar id	
id	+ ic	l * id \$	reducir (6) $F \longrightarrow id$	
F	+ id	l * id \$	reducir (4) $T \longrightarrow F$	
T	+ id	l * id \$	desplazar +	
T	+ id *	id \$	desplazar id	
T	+ id * id	\$	reducir (6) $F \longrightarrow id$	
	+ <i>F</i> * id	\$	desplazar *	

Ejemplo (Gramática sin conflictos			3 / 4)
Pila	Entrada	Acción	=
T+F*	id \$	desplazar id	_
T + F * id	\$	reducir (6) $F \longrightarrow id$	
T + F * F	\$	reducir (4) $T \longrightarrow F$	
T + F * T	\$	reducir (3) $T \longrightarrow F * T$	
T + T	\$	reducir (2) $E \longrightarrow T$	
T + E	\$	reducir (1) $E \longrightarrow T + E$	
E	\$	ACEPTAR	-

Conflictos

Ejemplo (Derivación por la derecha $E \underset{1}{\Rightarrow} \frac{T+E}{1}$ $\underset{2}{\Rightarrow} T+\underline{T}$ $\underset{3}{\Rightarrow} T+\underline{F*T}$ $\underset{4}{\Rightarrow} T+F*\underline{F}$

 $\Rightarrow T + F * \underline{id}$

 $\Rightarrow T + \underline{id} * id$

 $\Rightarrow \underline{F} + id * id$ $\Rightarrow \underline{id} + id * id$

Conflictos

Ejemplo (Creación ascendente del árbol sintáctico 1/9) id + id * id

Conflictos

Nota (Conflicto desplazamiento-reducción: else danzante)

• Otro ejemplo clásico que genera un conflicto es el denominado problema del else danzante (V. Aho, A. et al, 2008).

Contenido de la subsección

- 1 Introducción
 - Descripción general
 - Concepto de pivote
 - Conflictos
 - Tipos de conflictos
 - Conflicto desplazamiento-reducción
 - Conflicto reducción-reducción
 - Tipos de análisis sintáctico ascendente
 - Gramáticas I R
 - Tabla de análisis sintáctico ascendente LR

Conflictos

Ejemplo (Conflicto reducción-reducción1 / 2)PilaEntradaAcción $\alpha \beta$ z \$reducir $A \longrightarrow \beta$ o $B \longrightarrow \beta$

Conflictos

Ejemplo (Conflicto reducción-reducción

(2/2)

En Fortran, una gramática mal diseñada puede generar el siguiente conflicto

Pila	Entrada	Acción
· · · id(E)	··· \$	reducir $F \longrightarrow id(E)$ o $A \longrightarrow id(E)$

donde F genera funciones y A, componentes de "array".

Nota

La solución es reescribir la gramática que genera el lenguaje Fortran para que tenga en cuenta el tipo del identificador

Subsección actual

- Introducción
 - Descripción general
 - Concepto de pivote
 - Conflictos
 - Tipos de análisis sintáctico ascendente
 - Gramáticas LR
 - Tabla de análisis sintáctico ascendente LR

Contenido de la subsección

- Introducción
 - Descripción general
 - Concepto de pivote
 - Conflictos
 - Tipos de análisis sintáctico ascendente
 - Métodos basados en reglas de precedencia
 - Métodos de análisis LR
 - Justificación de los métodos I R
 - Gramáticas I R
 - Tabla de análisis sintáctico ascendente LR

Procesadores de Lenguajes Tema V.- Análisis Sintáctico Ascendente

Introducción

Tipos de análisis sintáctico ascendente

Métodos basados en reglas de precedencia

Establecen reglas de precedencia entre los símbolos de la gramática.

Tipos de análisis sintáctico ascendente

Métodos basados en reglas de precedencia

- Métodos de precedencia simple.
- Métodos de precedencia débil.
- Métodos de precedencia extendida.
- Métodos de precedencia de estrategia mixta.
- Métodos de precedencia de operadores.

Contenido de la subsección

- 1 Introducción
 - Descripción general
 - Concepto de pivote
 - Conflictos
 - Tipos de análisis sintáctico ascendente
 - Métodos basados en reglas de precedencia
 - Métodos de análisis I R
 - Justificación de los métodos I R
 - Gramáticas I R
 - Tabla de análisis sintáctico ascendente LR

Tipos de análisis sintáctico ascendente

Métodos de análisis LR

El significado de LR es el siguiente

- L (*left*): se lee la cadena de entrada de **izquierda** a derecha.
- R (right): se obtiene la derivación por la derecha en orden inverso.

Tipos de análisis sintáctico ascendente

Métodos de análisis LR

- Método SLR.
- Método LR-canónico.
- Método LALR.

Contenido de la subsección

- 1 Introducción
 - Descripción general
 - Concepto de pivote
 - Conflictos
 - Tipos de análisis sintáctico ascendente
 - Métodos basados en reglas de precedencia
 - Métodos de análisis LR
 - Justificación de los métodos I R
 - Gramáticas I R
 - Tabla de análisis sintáctico ascendente I R

Tipos de análisis sintáctico ascendente

Justificación de los métodos LR

- 1.- Se pueden construir analizadores sintácticos **LR** para la mayoría de las gramáticas.
- 2.- El análisis LR es el método de desplazamiento-reducción más eficiente.
- 3.- Si una gramática admite un análisis descendente predictivo, también admite un análisis LR (lo contrario no es cierto).
- 4.- El análisis LR puede detectar un error tan pronto como sea posible, analizando la cadena de izquierda a derecha.
- 5.- Existen generadores automáticos de analizadores sintácticos LR (v.gr.: Yacc o Bison).

Subsección actual

- Introducción
 - Descripción general
 - Concepto de pivote
 - Conflictos
 - Tipos de análisis sintáctico ascendente
 - Gramáticas LR
 - Tabla de análisis sintáctico ascendente LR

Gramáticas LR

Definición (Gramática LR

. / 3)

- $G = (V_N, V_T, P, S)$ es una gramática LR(k) si se verifica;
- 1.- Se amplía G de forma que el símbolo inicial no esté en la parte derecha de ninguna regla de producción

$$G' = (V'_N, V'_T, P', S')$$

$$S' \in V'_N - V_N$$

$$V'_N = V_N \cup \{S'\}$$

$$P' = P \cup \{S' \longrightarrow S\}$$

Gramáticas LR

Definición (Gramática LR

2 / 3)

2.- si existen dos derivaciones por la derecha

$$S' \stackrel{*}{\underset{D}{\Rightarrow}} \alpha \underline{A} w \underset{A \to \beta}{\Rightarrow} \alpha \beta w$$

$$S' \stackrel{*}{\underset{D}{\Rightarrow}} \gamma \underline{B} x \underset{B \to \beta}{\Rightarrow} \alpha \beta y$$

3.- donde los primeros k símbolos de w e y son iguales.

$$w = \sigma_{i1} \dots \sigma_{ik} \gamma_1 \dots \gamma_p$$

$$y = \sigma_{i1} \dots \sigma_{ik} \eta'_1 \dots \eta'_q$$

Gramáticas LR

Definición (Gramática LR

3 / 3)

entonces se verifica que

$$\alpha A y = \gamma B x$$

es decir

$$\alpha = \gamma$$

$$A = F$$

$$y = \lambda$$

Gramáticas LR

Nota (Gramática LR)

Configuración correspondiente a S' $\stackrel{*}{\underset{D}{\longrightarrow}} \alpha Aw \underset{A \to \beta}{\Rightarrow} \alpha \beta w$

Pila	Entrada	Acción
 αβ αΑ	w \$ w \$	reducir A $\longrightarrow \beta$

Gramáticas LR

Nota (Gramática LR)

Configuración correspondiente a $S' \overset{*}{\underset{D}{\Rightarrow}} \gamma Bx \underset{B \to \beta}{\Rightarrow} \alpha \beta y$

Pila	Entrada	Acción
 γβ γΒ	y \$ y \$	reducir $B \longrightarrow \beta$

Gramáticas LR

Nota (Gramática LR)

- LR(k): utiliza los k primeros símbolos de la entrada para determinar qué acción se debe realizar.
- Generalmente k = 1 y se utiliza una tabla de análisis sintáctico LR.

Subsección actual

- Introducción
 - Descripción general
 - Concepto de pivote
 - Conflictos
 - Tipos de análisis sintáctico ascendente
 - Gramáticas LR
 - Tabla de análisis sintáctico ascendente LR

Tabla de análisis sintáctico ascendente I R

Definición (Tabla de análisis LR

(1/2)

- Permite comprobar si una gramática de contexto libre admite un análisis sintáctico ascendente LR.
- Consta de dos partes:
 - Parte acción.
 - Parte ir_a.

Tabla de análisis sintáctico ascendente I R

Definición (Tabla de análisis LR

/ 2)

		acción					ir₋a		
	σ_1	σ_2		σ_n	\$	A_1		A_m	
<i>s</i> ₀									
s ₁									
Sk									

donde

- $\forall i \in \{1, ..., k\}$ s_i es un estado del analizador sintáctico
- $\forall i \in \{1, \ldots, n\} \ \sigma_i \in V_T$
- $\forall i \in \{1, \ldots, m\} A_i \in V_N$

Tabla de análisis sintáctico ascendente I R

Definición (Tabla Acción: estructura

. / 2)

- Columnas
 - Símbolos terminales y \$ (final de cadena).
- Filas
 - Estados generados a partir de la colección de elementos LR
- Celdas: acciones que se pueden realizar
 - Desplazar
 - Reducir
 - Aceptar
 - Error

Tabla de análisis sintáctico ascendente LR

Definición (Tabla Acción: acciones

(2/2)

- 1.- Desplazar:
 - Se desplaza el primer símbolo de la entrada a la cima de la pila
 - y se indica a qué estado pasa el analizador.
- 2.- Reducir:
 - Se basa en el concepto de pivote
 - Utiliza una regla de producción para sustituir, en la pila, la alternativa de la regla por el símbolo de su parte izquierda
- 3.- Aceptar: la cadena de entrada es reconocida.
- 4.- Error: se llama a una función de control de errores.

Tabla de análisis sintáctico ascendente LR

Ejemplo (Gramática de prototipos de funciones en C)

```
P' = \{ (1') \ S' \longrightarrow S \\ (1) \ S \longrightarrow T \text{ id } (L) ; \\ (2) \ T \longrightarrow T * \\ (3) \ T \longrightarrow \text{int} \\ (4) \ L \longrightarrow L, T \\ (5) \ L \longrightarrow T \}
```

Tabla de análisis sintáctico ascendente LR

Ejemplo (Tabla LR)

	Acción								Ir-a		
	id	()	;	*	int	,	\$	S	Т	L
0						d3			1	2	
1								Aceptar			
2	d4				d5						
3	r3		r3		r3		r3				
4		d6									
5	r2		r2		r2		r2				
6						d3				8	7
7			d9				d10				
8			r5		d5		r5				
9				d11							
10						d3				12	
11								r1			
12			r4		d5		r4				

Tabla de análisis sintáctico ascendente LR

Nota (Tabla Acción: abreviaturas)

- d n
 - Se desplaza el primer símbolo σ de la entrada a la pila y se pasa al estado ${\bf n}$
- \bullet rk
 - Se reduce con la regla de producción número k

Tabla de análisis sintáctico ascendente I R

Definición (Tabla Ir-a: estructura)

- Columnas:
 - Símbolos no terminales de la gramática.
- Filas
 - Estados generados a partir de la colección de elementos LR
- Celdas
 - Indican las transiciones entre estados

Tabla de análisis sintáctico ascendente I R

Nota (Ir-a)

- La parte lr-a sólo se consultará cuando se produzca una reducción.
- Las celdas vacías nunca se consultarán.

Tabla de análisis sintáctico ascendente LR

Ejercicio (Ir-a)

 Demostrar que las celdas vacías de la tabla Ir-a nunca se consultarán.

Tabla de análisis sintáctico ascendente I R

Funcionamiento del análisis sintáctico LR

. / 4

- 1- Si $acción[s, \sigma] = d j$ entonces
 - se desplaza el primer símbolo de la entrada a la pila
 - y se pasa al estado j

Pila	Entrada	Acción		
S	$\sigma \sigma' \dots \$$	desplazar j		
\dots s σ j	$\sigma' \dots \$$			

Tabla de análisis sintáctico ascendente I R

Funcionamiento del análisis sintáctico LR

2 / 4

- 2.- Si $acción[s, \sigma] = r k$ entonces
 - se reduce con la regla número k: A $\longrightarrow \beta$, donde $\beta = X_{i_1} \dots X_{i_b}$
 - y se pasa al estado indicado por ir-a[s', A] = j

Pila	Entrada	Acción
\ldots s' $X_{i_1}s_{j_1}\ldots X_{i_{h-1}}s_{j_{h-1}}X_{i_h}s$	$\sigma \dots \$$	reducir (k) A $\longrightarrow \beta$
β		
s' A j	$\sigma \dots \$$	

Tabla de análisis sintáctico ascendente I R

Funcionamiento del análisis sintáctico LR

3 / 4

- 3.- Si acción[s, \$] = Aceptar entonces
 - la cadena de entrada es reconocida
 - y el análisis sintáctico ascendente finaliza.

Pila	Entrada	Acción
S	\$	Aceptar

Tabla de análisis sintáctico ascendente I R

Funcionamiento del análisis sintáctico LR

1 / 4

4.- Si **acción**[s, σ] = **E** n entonces llama a la función de control de errores número n

Pila	Entrada	Acción
S	$\sigma \dots \$$	Εn

Nota

Los métodos de recuperación de errores se describirán al final del tema.

Tabla de análisis sintáctico ascendente I R

Comparación de los métodos de análisis LR

Método	Potencia	Tamaño de tabla
SLR	3°	1°
LR-canónico	1°	2°
LALR	2°	1°

Eje	mplo	(Ta	bla	LR								2 /	4)
	Acción										Ir-a		
		id	()	;	*	int	,	\$	S	T	L	
	0						d3			1	2		
	1								Aceptar				
	2	d4				d5							
	3	r3		r3		r3		r3					
	4		d6										
	5	r2		r2		r2		r2					
	6						d3				8	7	
	7			d9				d10					
	8			r5		d5		r5					
	9				d11								
	10						d3				12		
	11								r1				
	12			r4		d5		r4					

jemplo (Análisis sintáctico ascendente LR 3 / 4)						
Pila	Entrada	Acción				
0	int * id (int) ; \$	desplazar 3				
0 <u>int</u> 3	* id (int) ; \$	reducir 3 $T \rightarrow int$				
0 T 2	* id (int) ; \$	desplazar 5				
0 <u>T 2 * 5</u>	id (int) ; \$	reducir 2 $T \rightarrow T *$				
0 T 2	id (int); \$	desplazar 4				
0 T 2 id 4	(int); \$	desplazar 6				
0 T 2 id 4 (6	int); \$	desplazar 3				
0 T 2 id 4 (6 int 3);\$	reducir 3 $T \rightarrow \mathbf{int}$				

Ejemplo (Análisis sintáctico ascendente LR 4 /					
Pila	Entrada	Acción			
0 T 2 id 4 (6 int 3);\$	reducir 3 $T \rightarrow \mathbf{int}$			
0 T 2 id 4 (6 <u>T 8</u>);\$	reducir 5 L \rightarrow T			
0 T 2 id 4 (6 L 7);\$	desplazar 9			
0 T 2 id 4 (6 L 7) 9	; \$	desplazar 11			
0 T 2 id 4 (6 L 7) 9; 11	\$	reducir $1 S \rightarrow T id (L)$;			
0 5 1	\$	Aceptar			

Tabla de análisis sintáctico ascendente I R

Ejemplo (Derivación por la derecha)

```
S \Rightarrow \frac{T \text{ id } (L);}{T \text{ id } (\underline{T});}
\Rightarrow \frac{T \text{ id } (\underline{T});}{3};
\Rightarrow \frac{T \text{ id } (\underline{\text{int }});}{3};
\Rightarrow \frac{T^* \text{ id } (\underline{\text{int }});}{3};
\Rightarrow \frac{\underline{\text{int }}^* \text{ id } (\underline{\text{int }});}{3};
```

Nota

La derivación por la derecha se ha obtenido en orden inverso.

```
Ejemplo (Árbol sintáctico asociado a la derivación 1/6)

int * id ( int ) ;
```

```
Ejemplo (Árbol sintáctico asociado a la derivación 2 / 6)

T

int * id ( int ) ;
```


Sección actual

- Introducción
- Análisis sintáctico ascendente SLR
- 3 Análisis sintáctico ascendente LR-canónico
- 4 Análisis sintáctico ascendente LALR
- 5 Métodos de recuperación de errores

Subsección actual

- 2 Análisis sintáctico ascendente SLR
 - Introducción
 - Colección canónica de elementos-LR(0)
 - Algoritmo de construcción de la tabla de análisis SLR
 - Ejemplos de análisis sintáctico ascendente SLR
 - Conflictos en el análisis sintáctico ascendente SLR

Contenido de la subsección

- Análisis sintáctico ascendente SLR
 - Introducción
 - Características
 - Elemento-LR(0)
 - Prefijo viable
 - Elemento-LR(0) válido para un prefijo viable
 - Colección canónica de elementos-LR(0)
 - Algoritmo de construcción de la tabla de análisis SLR
 - Ejemplos de análisis sintáctico ascendente SLR
 - Conflictos en el análisis sintáctico ascendente SLR

Análisis sintáctico ascendente SLR

Introducción

Método SLR

- SLR: simple L R
- Método basado en la estrategia de desplazamiento-reducción
 - Es el más sencillo.
 - Es el **menos potente**: se puede aplicar a menos gramáticas que los métodos LR-canónico o LALR.
 - Su tabla de análisis sintáctico es la más pequeña.

Análisis sintáctico ascendente SLR

Introducción

Método SLR

- Utiliza una colección canónica de elementos-LR(0) para construir una tabla de análisis sintáctico SLR.
- La colección canónica de elementos-LR(0) se construye utilizando dos funciones auxiliares:
 - Función clausura
 - Función Ir_a

Contenido de la subsección

- Análisis sintáctico ascendente SLR
 - Introducción
 - Características
 - Elemento-LR(0)
 - Prefijo viable
 - Elemento-LR(0) válido para un prefijo viable
 - Colección canónica de elementos-LR(0)
 - Algoritmo de construcción de la tabla de análisis SLR
 - Ejemplos de análisis sintáctico ascendente SLR
 - Conflictos en el análisis sintáctico ascendente SLR

Introducción

Definición (Elemento-LR(0))

• Si $A \rightarrow X_1 \ X_2 \cdots \ X_n \in P$, sus elementos-LR(0) son:

$$A \rightarrow \bullet X_1 X_2 \cdots X_n$$

$$A \rightarrow X_1 \bullet X_2 \cdots X_n$$

$$A \rightarrow X_1 X_2 \cdots \bullet X_n$$

$$A \rightarrow X_1 X_2 \cdots X_n \bullet$$

• Si $A \rightarrow \epsilon \in P$ entonces su elemento-LR(0) es:

$$A \rightarrow \bullet$$

Introducción

```
Ejemplo (Elemento-LR(0))

• Si S \rightarrow T id (L); \in P, sus elementos-LR(0) son:

S \rightarrow \bullet T id (L);
S \rightarrow T \bullet id (L);
S \rightarrow T id \bullet (L);
S \rightarrow T id (L);
```

Introducción

Significado de un LR(0) - elemento

$$A o \underbrace{X_1 X_2 \cdots X_{i-1}}_{\beta_1} ullet \underbrace{X_i \cdots X_n}_{\beta_2}$$

- β_1 : parte ya analizada.
- β_2 : parte pendiente de analizar.

Introducción

Acciones de análisis sintáctico

- La posición del punto determina la acción que se debe realizar
 - Si el punto está al final, A $\longrightarrow X_1 X_2 \cdots X_n$ •. entonces se producirá una reducción.
 - $X_1 X_2 \cdots X_n$ es el pivote que estará en la cima de la pila
 - El pivote será sustituido por el símbolo A
 - Si no está al final, $A \to X_1 \cdots X_{i-1} \bullet X_i \cdots X_n$, entonces
 - todavía no se habrá localizado el pivote
 - y habrá que realizar desplazamientos

Contenido de la subsección

- Análisis sintáctico ascendente SLR
 - Introducción
 - Características
 - Elemento-LR(0)
 - Prefijo viable
 - Elemento-LR(0) válido para un prefijo viable
 - Colección canónica de elementos-LR(0)
 - Algoritmo de construcción de la tabla de análisis SLR
 - Ejemplos de análisis sintáctico ascendente SLR
 - Conflictos en el análisis sintáctico ascendente SLR

Introducción

Definición (Prefijo viable)

• La cadena de símbolos $\alpha\beta\in V^+=(V_N\cup V_T)^+$ es un prefijo viable si

$$S \underset{D}{\overset{*}{\Rightarrow}} \alpha \beta \gamma \underset{D}{\overset{*}{\Rightarrow}} x \in V_T^*$$

donde D indica que la derivación es por la derecha.

Nota

Un prefijo viable aparece al principio de una derivación por la derecha que genera una cadena de terminales.

Introducción

```
Ejemplo (Prefijos viables P = \{ \\ (1') \ S' \rightarrow S \\ (1) \ S \rightarrow T \ \text{id} \ (L) \ ; \\ (2) \ T \rightarrow T \ * \\ (3) \ T \rightarrow \text{int} \\ (4) \ L \rightarrow L \ , T \\ (5) \ L \rightarrow T \\ \}
```

Introducción

Ejemplo (Prefijos viables

(1/2)

• Derivación por la derecha:

```
S' \Rightarrow \underbrace{S}_{1'} \Rightarrow \underbrace{T \text{ id } (L);}_{1} \Rightarrow \underbrace{T \text{ id } (\underline{T});}_{5} \Rightarrow \underbrace{T \text{ id } (\underline{T});}_{2} \Rightarrow \underbrace{T \text{ id } (\underline{\text{int }});}_{3} \Rightarrow \underbrace{\text{int } \text{ id } (\text{ int });}_{3}
```

- Prefijos viables:
 - T, Tid, Tid (, Tid (L, Tid (L), Tid (L);, etc.

Contenido de la subsección

- Análisis sintáctico ascendente SLR
 - Introducción
 - Características
 - Elemento-LR(0)
 - Prefijo viable
 - Elemento-LR(0) válido para un prefijo viable
 - Colección canónica de elementos-LR(0)
 - Algoritmo de construcción de la tabla de análisis SLR
 - Ejemplos de análisis sintáctico ascendente SLR
 - Conflictos en el análisis sintáctico ascendente SLR

Introducción

Definición (Elemento-LR(0) válido para un prefijo viable)

• $A \rightarrow \beta_1$ • β_2 es válido para el prefijo viable $\alpha\beta_1$ si

$$S \stackrel{*}{\underset{D}{\Rightarrow}} \alpha A w \underset{A \to \beta_1 \beta_2}{\Rightarrow} \alpha \beta_1 \beta_2 w$$

Introducción

Ejemplos (Elemento-LR(0) válido para un prefijo viable 1/4)

Primer ejemplo

```
\begin{array}{l} P' = \{ \\ (1') \ S' \to S \\ (1) \ S \to T \ \text{id} \ (L) \ ; \\ (2) \ T \to T \ * \\ (3) \ T \to \text{int} \\ (4) \ L \to L \ , T \\ (5) \ L \to T \end{array}
```

Introducción

Ejemplos (Elemento-LR(0) válido para un prefijo viable 2 / 4)

- Primer ejemplo
 - Prefijo viable: $\alpha \ \beta_1 = \underbrace{T \ id}_{\alpha} \underbrace{T}_{\beta_1}$
 - elemento-LR(0) válido para el prefijo viable:

$$\underbrace{T}_{A} \rightarrow \underbrace{T}_{\beta_{1}} \bullet \underbrace{*}_{\beta_{2}}$$

Derivación por la derecha

$$S' \stackrel{+}{\Rightarrow} \underbrace{T \operatorname{id} \left(\underbrace{T}_{\alpha} \underbrace{J}_{w} \underbrace{T}_{w} \right);}_{T} \xrightarrow{T} T \operatorname{id} \left(\underbrace{T}_{\alpha} \underbrace{T}_{\beta_{1}} \underbrace{*}_{\beta_{2}} \underbrace{J}_{w} \right);}_{T}$$

Introducción

Ejemplos (Elemento-LR(0) válido para un prefijo viable 3/4)

Segundo ejemplo

```
P' = \{
(1') E' \to E
(1) E \to E + E
(2) E \to E + E
(3) E \to (E)
(4) E \to \text{identificador}
(5) E \to \text{número}
```

Introducción

Ejemplos (Elemento-LR(0) válido para un prefijo viable 4 / 4)

- Segundo ejemplo
 - Prefijo viable: $\alpha \ \beta_1 = \underbrace{\bigcup_{\alpha} \ E_{\beta_1}}$
 - elemento-LR(0) válido para el prefijo viable:

$$\underbrace{E}_{A} \to \underbrace{E}_{\beta_1} \bullet \underbrace{+E}_{\beta_2}$$

• Derivación por la derecha

$$E' \underset{1'}{\Rightarrow} E \underset{3}{\Rightarrow} \underbrace{\left(\begin{array}{c} E \\ \alpha \end{array}\right)}_{\alpha} \underbrace{\left(\begin{array}{c} E \\ A \end{array}\right)}_{W} \underbrace{\left(\begin{array}{c} E \\ E \end{array}\right)}_{E \to E + E} \underbrace{\left(\begin{array}{c} E \\ \beta_1 \end{array}\right)}_{\beta_2} \underbrace{\left(\begin{array}{c} E \\ \beta_2 \end{array}\right)}_{W}$$

Introducción

Nota

• Un elemento-LR(0) puede ser válido para varios prefijos viables: solamente se debe modificar α .

Subsección actual

- 2 Análisis sintáctico ascendente SLR
 - Introducción
 - Colección canónica de elementos-LR(0)
 - Algoritmo de construcción de la tabla de análisis SLR
 - Ejemplos de análisis sintáctico ascendente SLR
 - Conflictos en el análisis sintáctico ascendente SLR

Contenido de la subsección

- 2 Análisis sintáctico ascendente SLR
 - Introducción
 - Colección canónica de elementos-LR(0)
 - Definición
 - Función clausura
 - Función Ir_a
 - Algoritmo de construcción de la colección canónica de elementos-LR(0)
 - Ejemplo de construcción de la colección canónica de elementos-LR(0)
 - Algoritmo de construcción de la tabla de análisis SLR
 - Ejemplos de análisis sintáctico ascendente SLR
 - Conflictos en el análisis sintáctico ascendente SLR

Colección canónica de elementos-LR(0)

Definición (Colección canónica de elementos-LR(0))

• Está compuesta por los conjuntos de elementos-LR(0) que son válidos para los prefijos viables de la gramática.

Colección canónica de elementos-LR(0)

Colección canónica de elementos-LR(0)

- Permite generar un autómata finito determinista (AFD) que reconoce los prefijos viables de la gramática.
- Funciones auxiliares para construir la colección canónica.
 - Función clausura.
 - Función Ir_a.

Contenido de la subsección

- 2 Análisis sintáctico ascendente SLR
 - Introducción
 - Colección canónica de elementos-LR(0)
 - Definición
 - Función clausura
 - Función Ir_a
 - Algoritmo de construcción de la colección canónica de elementos-LR(0)
 - Ejemplo de construcción de la colección canónica de elementos-LR(0)
 - Algoritmo de construcción de la tabla de análisis SLR
 - Ejemplos de análisis sintáctico ascendente SLR
 - Conflictos en el análisis sintáctico ascendente SLR

Colección canónica de elementos-LR(0)

Definición (Función clausura)

- Sea I un conjunto elementos-LR(0):
 - 1.- $I \subseteq clausura(I)$
 - 2.- $Si A \rightarrow \alpha \bullet B \beta \in clausura(I) \ y \ B \rightarrow \gamma \in P$ entonces $B \rightarrow \bullet \gamma \in clausura(I)$

Colección canónica de elementos-LR(0)

```
Ejemplos (Función clausura

    Primer ejemplo

       P' = \{
       (1') S' \rightarrow S
        (1) S \rightarrow T \text{ id } (L);
        (2) T \rightarrow T^*
        (3) T \rightarrow \text{int}
        (4) L \rightarrow L, T
        (5) L \rightarrow T
```

Colección canónica de elementos-LR(0)

Ejemplos (Función clausura Primer ejemplo $clausura(\{S' \rightarrow \bullet S\}) =$ $S' \rightarrow \bullet S$. $S \rightarrow \bullet T id (L);$ $T \rightarrow \bullet T *$. $T \rightarrow \bullet \text{ int.}$

Colección canónica de elementos-LR(0)

Ejemplos (Función clausura Segundo ejemplo $P' = \{$ (1') $E' \rightarrow E$ (1) $E \rightarrow E + E$ (2) $E \rightarrow E + E$ (3) $E \rightarrow (E)$ (4) $E \rightarrow identificador$ (5) $E \rightarrow \text{número}$

Colección canónica de elementos-LR(0)

```
Ejemplos (Función clausura

    Segundo ejemplo

         clausura(\{E' \rightarrow \bullet E\}) =
                                                       E' \rightarrow \bullet E.
                                                       E \rightarrow \bullet E + E.
                                                       E \rightarrow \bullet E * E.
                                                       E \rightarrow \bullet ( E ),
                                                       E \rightarrow \bullet identificador.
                                                       E \rightarrow \bullet número
```

Contenido de la subsección

- 2 Análisis sintáctico ascendente SLR
 - Introducción
 - Colección canónica de elementos-LR(0)
 - Definición
 - Función clausura
 - Función Ir_a
 - Algoritmo de construcción de la colección canónica de elementos-LR(0)
 - Ejemplo de construcción de la colección canónica de elementos-LR(0)
 - Algoritmo de construcción de la tabla de análisis SLR
 - Ejemplos de análisis sintáctico ascendente SLR
 - Conflictos en el análisis sintáctico ascendente SLR

Colección canónica de elementos-LR(0)

Definición (Función Ir_a)

• Sea I un conjunto elementos-LR(0) y $X \in V = V_N \cup V_T$

$$Ir_a(I, X) = clausura(\{A \rightarrow \alpha X \bullet \beta \mid A \rightarrow \alpha \bullet X \beta \in I\})$$

Colección canónica de elementos-LR(0)

```
Ejemplos (Función Ir_a

    Primer ejemplo

       I_0 = \{ S' \rightarrow \bullet S,
                        S \rightarrow \bullet \ T \ id \ (L);
                         T → • T *
                         T \rightarrow \bullet \text{ int}
```

Colección canónica de elementos-LR(0)

Ejemplos (Función Ir_a

(2 / 9)

Primer ejemplo

$$Ir_a(I_0,S) = clausura(\{S' \rightarrow S \bullet\})$$

= $\{S' \rightarrow S \bullet\}$
= I_1

Colección canónica de elementos-LR(0)

Ejemplos (Función Ir_a 3 / 9) • Primer ejemplo $Ir_{-a}(I_0,T) = clausura(\{S \to T \bullet id (L);, T \to T \bullet * \})$ $= \{S \to T \bullet id (L);, T \to T \bullet * \}$ $= I_2$

Colección canónica de elementos-LR(0)

Ejemplos (Función Ir_a 4 / 9) • Primer ejemplo $Ir_a(I_0, int) = clausura(\{T \rightarrow int \bullet \})$ $= \{T \rightarrow int \bullet \}$ $= I_3$

Colección canónica de elementos-LR(0)

```
Ejemplos (Función Ir_a

    Segundo ejemplo

                          E' \rightarrow \bullet E
                          E \rightarrow \bullet E + E
                          E \rightarrow \bullet E * E.
                          E \rightarrow \bullet ( E ),
                          E \rightarrow \bullet identificador.
                          E \rightarrow \bullet número
```

Colección canónica de elementos-LR(0)

Ejemplos (Función Ir_a 6 / 9) • Segundo ejemplo $Ir_{-a}(I_0, E) = clausura(\{E' \rightarrow E \bullet, E \rightarrow E \bullet + E, E \rightarrow E \bullet * E\})$ $= \{E' \rightarrow E \bullet, E \rightarrow E \bullet + E, E \rightarrow E \bullet * E\}$ $= I_1$

Colección canónica de elementos-LR(0)

```
Ejemplos (Función Ir_a

    Segundo ejemplo

         Ir_a(I_0, "(")) = clausura(\{E' \rightarrow (\bullet E)\})
                                     E' \rightarrow (\bullet E),
                                     E \rightarrow \bullet E + E.
                                     E \rightarrow \bullet E * E.
                                     E \rightarrow \bullet ( E ),
                                     E \rightarrow \bullet identificador.
                                     E \rightarrow \bullet número
```

Colección canónica de elementos-LR(0)

Ejemplos (Función Ir_a 8/9) • Segundo ejemplo $Ir_a(I_0, id) = clausura(\{E \rightarrow id \bullet \})$ $= \{E \rightarrow id \bullet \}$ $= I_3$

Colección canónica de elementos-LR(0)

```
Ejemplos (Función Ir_a 9 / 9)

• Segundo ejemplo

Ir_a(l_0, \text{número}) = clausura(\{E \rightarrow \text{número} \bullet \})
= \{E \rightarrow \text{número} \bullet \}
= l_4
```

Contenido de la subsección

- 2 Análisis sintáctico ascendente SLR
 - Introducción
 - Colección canónica de elementos-LR(0)
 - Definición
 - Función clausura
 - Función Ir_a
 - Algoritmo de construcción de la colección canónica de elementos-LR(0)
 - Ejemplo de construcción de la colección canónica de elementos-LR(0)
 - Algoritmo de construcción de la tabla de análisis SLR
 - Ejemplos de análisis sintáctico ascendente SLR
 - Conflictos en el análisis sintáctico ascendente SLR

Colección canónica de elementos-LR(0)

Algoritmo (Construcción de la colección canónica)

```
Inicio
   I_0 \leftarrow clausura(\{S' \rightarrow \bullet S\})
   C \leftarrow \{l_0\} \land l_0 no marcado
   para cada I \in C \land I no marcado hacer
      marcar I
      para cada X \in V hacer
        I' \leftarrow Ir_a(I, X)
        si ((I' \neq \emptyset) \land (I' \notin C))
          entonces C \leftarrow C \cup \{I'\} \land I' no marcado
        fin si
      fin para
   fin para
fin
```

Colección canónica de elementos-LR(0)

Notas (Construcción de la colección canónica)

- Genera un autómata finito determinista (AFD) que reconoce los prefijos viables de la gramática.
 - Los elementos-LR(0) se agrupan en conjuntos que se corresponden con los estados del autómata.
 - Todos los estados del autómata son finales.
 - Los estados del autómata se corresponderán con los estados de la tabla de análisis sintáctico SLR.

Contenido de la subsección

- 2 Análisis sintáctico ascendente SLR
 - Introducción
 - Colección canónica de elementos-LR(0)
 - Definición
 - Función clausura
 - Función Ir_a
 - Algoritmo de construcción de la colección canónica de elementos-LR(0)
 - Ejemplo de construcción de la colección canónica de elementos-LR(0)
 - Algoritmo de construcción de la tabla de análisis SLR
 - Ejemplos de análisis sintáctico ascendente SLR
 - Conflictos en el análisis sintáctico ascendente SLR

Colección canónica de elementos-LR(0)

```
Ejemplo (Gramática de los prototipos P' = \{ \\ (1') \ S' \to S \\ (1) \ S \to T \ \text{id} \ (L) ; \\ (2) \ T \to T * \\ (3) \ T \to \text{int} \\ (4) \ L \to L \ , T \\ (5) \ L \to T \\ \}
```

Colección canónica de elementos-LR(0)

Ejemplo (Gramática de los prototipos

/ 20)

• Construcción del conjunto 10

```
l_0 = clausura(\{S' \rightarrow \bullet S\})
= \{ S' \rightarrow \bullet S, \\ S \rightarrow \bullet T \text{ id } (L);, \\ T \rightarrow \bullet T^*, \\ T \rightarrow \bullet \text{ int } \}
```

l₀ tendrá transiciones l_{r_a} con S, T e int

Colección canónica de elementos-LR(0)

Ejemplo (Gramática de los prototipos

3 / 20)

• Transiciones del conjunto I_0

```
Ir_{-a}(I_0,S) = clausura(\{ S' \rightarrow S \bullet \})
= \{S' \rightarrow S \bullet \}
= I_1
Ir_{-a}(I_0,T) = clausura(\{S \rightarrow T \bullet id (L);, T \rightarrow T \bullet * \})
= \{ S \rightarrow T \bullet id (L);, T \rightarrow T \bullet * \}
= I_2
Ir_{-a}(I_0,int) = clausura(\{T \rightarrow int \bullet \})
= \{T \rightarrow int \bullet \}
= I_3
```

Colección canónica de elementos-LR(0)

Ejemplo (Gramática de los prototipos

/ 20)

• Transiciones del conjunto $I_1 = \{S' \rightarrow S \bullet \}$

$$Ir_{-a}(I_1, X) = \emptyset \quad \forall X \in V$$

El conjunto l_1 no tiene transiciones.

Colección canónica de elementos-LR(0)

Ejemplo (Gramática de los prototipos

5 / 20)

• Transiciones del conjunto 12

$$I_{2} = \{ S \rightarrow T \bullet id (L);, T \rightarrow T \bullet * \}$$

$$I_{r_{-a}(l_{2},id)} = clausura(\{S \rightarrow T id \bullet (L); \})$$

$$= \{S \rightarrow T id \bullet (L); \}$$

$$= l_{4}$$

$$I_{r_{-a}(l_{2},*)} = clausura(\{T \rightarrow T * \bullet \})$$

$$= \{T \rightarrow T * \bullet \}$$

$$= l_{5}$$

Colección canónica de elementos-LR(0)

Ejemplo (Gramática de los prototipos

5 / 20)

• Transiciones del conjunto $I_3 = \{ T \rightarrow \text{int } \bullet \}$

$$Ir_{-a}(I_3, X) = \emptyset \quad \forall X \in V$$

El conjunto l_3 no tiene transiciones.

Colección canónica de elementos-LR(0)

```
Ejemplo (Gramática de los prototipos
    • Transiciones del conjunto I_4 = \{S \rightarrow T \text{ id } \bullet (L) ; \}
         Ir_a(I_4, "(")) = clausura(\{S \rightarrow T id ( \bullet L );\})
                                       S \rightarrow T \operatorname{id} (\bullet L);
                                        L \rightarrow \bullet L \cdot T.
                                        L \rightarrow \bullet T.
                                        T \rightarrow \bullet T *.
                                        T \rightarrow \bullet \text{ int.}
```

Colección canónica de elementos-LR(0)

Ejemplo (Gramática de los prototipos

/ 20)

• Transiciones del conjunto $I_5 = \{T \rightarrow T * \bullet \}$

$$Ir_{-a}(I_5, X) = \emptyset \quad \forall X \in V$$

El conjunto l₅ no tiene transiciones.

Colección canónica de elementos-LR(0)

Ejemplo (Gramática de los prototipos 9 / 20) • Transiciones del conjunto I_6 $I_6 = \{ S \rightarrow T \text{ id } (\bullet L); L \rightarrow \bullet L, T, L \rightarrow \bullet T, T \rightarrow \bullet \text{ int} \}$ $I_6 \text{ tendrá transiciones } I_{r_a} \text{ con } L, T \text{ e int}$

Colección canónica de elementos-LR(0)

Ejemplo (Gramática de los prototipos

10 / 20)

• Transiciones del conjunto l₆

```
Ir_{-a}(I_6,L) = clausura(\{S \rightarrow T \text{ id } (L \bullet);, L \rightarrow L \bullet, T\})
= \{S \rightarrow T \text{ id } (L \bullet);, L \rightarrow L \bullet, T\}
= I_7
Ir_{-a}(I_6,T) = clausura(\{L \rightarrow T \bullet, T \rightarrow T \bullet *\})
= \{L \rightarrow T \bullet, T \rightarrow T \bullet *\}
= I_8
Ir_{-a}(I_6,\text{int}) = clausura(\{T \rightarrow \text{int } \bullet\})
= \{T \rightarrow \text{int } \bullet\}
= I_3
```

Colección canónica de elementos-LR(0)

Ejemplo (Gramática de los prototipos

11 / 20)

• Transiciones del conjunto /7

```
I_{7} = \{S \rightarrow T \text{ id } (L \bullet); L \rightarrow L \bullet, T \}
I_{7} = \{I_{7}, "\}"\} = clausura(\{S \rightarrow T \text{ id } (L) \bullet; \})
= \{S \rightarrow T \text{ id } (L) \bullet; \}
= I_{9}
I_{7} = \{I_{7}, ", "\} = clausura(\{L \rightarrow L, \bullet T\})
= \{L \rightarrow L, \bullet T, T \rightarrow \bullet \text{ int } \}
= I_{10}
```

Colección canónica de elementos-LR(0)

Ejemplo (Gramática de los prototipos

12 / 20)

• Transiciones del conjunto I₈

$$I_8 = \{ L \rightarrow T \bullet, T \rightarrow T \bullet * \}$$

$$Ir_{-a}(I_8,*) = clausura(\{T \rightarrow T * \bullet \})$$

= $\{T \rightarrow T * \bullet \}$
= I_5

Colección canónica de elementos-LR(0)

Ejemplo (Gramática de los prototipos

13 / 20)

• Transiciones del conjunto I₉

$$I_9 = \{S \rightarrow T \text{ id (} L \text{)} \bullet; \}$$

$$Ir_{-a}(I_9, ";") = clausura(\{S \rightarrow T \text{ id } (L); \bullet \})$$

= $\{S \rightarrow T \text{ id } (L); \bullet \}$
= I_{11}

Colección canónica de elementos-LR(0)

Ejemplo (Gramática de los prototipos

14 / 20)

• Transiciones del conjunto l₁₀

```
I_{10} = \{L \rightarrow L, \bullet, T, T \rightarrow \bullet, T^*, T \rightarrow \bullet \text{ int }\}
I_{r_{-a}}(I_{10}, T) = \underset{=}{clausura}(\{L \rightarrow L, T \bullet, T \rightarrow, T \rightarrow^*\})
= \{L \rightarrow L, T \bullet, T \rightarrow, T \rightarrow^*\}
= I_{12}
I_{r_{-a}}(I_{10}, \text{int}) = \underset{=}{clausura}(\{T \rightarrow \text{ int } \bullet\})
= \{T \rightarrow \text{ int } \bullet\}
= I_{3}
```

Colección canónica de elementos-LR(0)

Ejemplo (Gramática de los prototipos

15 / 20)

• Transiciones del conjunto $I_{11} = \{S \rightarrow T \text{ id (} L \text{) ; • } \}$

$$Ir_{-a}(I_{11}, X) = \emptyset \quad \forall X \in V$$

El conjunto l_{11} no tiene transiciones.

Colección canónica de elementos-LR(0)

Ejemplo (Gramática de los prototipos

16 / 20)

• Transiciones del conjunto l₁₂

$$I_{12} = \{L \rightarrow L, T \bullet, T \rightarrow T \bullet *\}$$

$$Ir_{-a}(I_{12}, *) = clausura(\{T \rightarrow T * \bullet \})$$

= $\{T \rightarrow T * \bullet \}$
= I_5

Colección canónica de elementos-LR(0)

Ejemplo (Gramática de los prototipos

17 / 20)

• Colección canónica: primera parte

$$I_{0} = \{ S' \rightarrow \bullet S, S \rightarrow \bullet T \text{ id } (L);, T \rightarrow \bullet T^{*}, T \rightarrow \bullet \text{ int } \}$$

$$I_{1} = \{ S' \rightarrow S \bullet \}$$

$$I_{2} = \{ S \rightarrow T \bullet \text{ id } (L);, T \rightarrow T \bullet^{*} \}$$

$$I_{3} = \{ T \rightarrow \text{ int } \bullet \}$$

$$I_{4} = \{ S \rightarrow T \text{ id } \bullet (L); \}$$

$$I_{5} = \{ T \rightarrow T^{*} \bullet \}$$

$$I_{6} = \{ S \rightarrow T \text{ id } (\bullet L);, L \rightarrow \bullet L, T, L \rightarrow \bullet T, T \rightarrow \bullet T^{*}, T \rightarrow \bullet \text{ int } \}$$

Colección canónica de elementos-LR(0)

Ejemplo (Gramática de los prototipos

18 / 20)

• Colección canónica: segunda parte

```
I_{7} = \{S \rightarrow T \text{ id } (L \bullet);, L \rightarrow L \bullet, T\}
I_{8} = \{L \rightarrow T \bullet, T \rightarrow T \bullet *\}
I_{9} = \{S \rightarrow T \text{ id } (L) \bullet;\}
I_{10} = \{L \rightarrow L, \bullet T, T \rightarrow \bullet T *, T \rightarrow \bullet \text{ int }\}
I_{11} = \{S \rightarrow T \text{ id } (L); \bullet\}
I_{12} = \{L \rightarrow L, T \bullet, T \rightarrow T \bullet *\}
```

Colección canónica de elementos-LR(0)

Nota (Autómata que reconoce prefijos viables)

- Las transiciones entre los conjuntos de elementos-LR(0)
 permiten construir el autómata finito determinista que
 reconoce los prefijos viables de la gramática.
- Todos los estados del autómata son finales.

Procesadores de Lenguajes

Análisis sintáctico ascendente SLR

Colección canónica de elementos-LR(0)

Colección canónica de elementos-LR(0)

Ejemplo (Autómata que reconoce prefijos viables 20 / 20

Representación tabular

	Representación tabular									
	id	()	;	*	int	,	S	T	Ĺ
0						3		1	2	
1										
2	4				5					
3										
4		6								
5										
6						3			8	7
7			9				10			
8					5					
9				11						
10						3			12	
11										
12					5					

Colección canónica de elementos-LR(0)

Ejercicio (Gramática de las expresiones aritméticas)

• Construcción de la colección canónica de elementos-LR(0) de la gramática:

```
P' = \{
(1') \ E' \to E
(1) \ E \to E + E
(2) \ E \to E * E
(3) \ E \to (E)
(4) \ E \to identificador
(5) \ E \to número
\}
```

Subsección actual

- 2 Análisis sintáctico ascendente SLR
 - Introducción
 - Colección canónica de elementos-LR(0)
 - Algoritmo de construcción de la tabla de análisis SLR
 - Ejemplos de análisis sintáctico ascendente SLR
 - Conflictos en el análisis sintáctico ascendente SLR

Algoritmo de construcción de la tabla de análisis SLR

Definición (Tabla de análisis sintáctico SLR)

		acc	ción	ir_a				
	σ_1	σ_2		σ_n	\$	A_1		A_m
<i>s</i> ₀								
s ₁								
Sk								

- $\forall i \in \{1, ..., k\}$ s_i es un estado del analizador sintáctico
- $\forall i \in \{1, \ldots, n\} \ \sigma_i \in V_T$
- $\forall i \in \{1, \ldots, m\} A_i \in V_N$

Algoritmo de construcción de la tabla de análisis SLR

Ejemplo (Tabla de análisis sintáctico SLR Gramática de prototipos de funciones en C $P' = \{$ (1') $S' \rightarrow S$ (1) $S \rightarrow T \text{ id } (L)$; (2) $T \rightarrow T *$ (3) $T \rightarrow \text{int}$ (4) $L \rightarrow L$, T(5) $L \rightarrow T$

Algoritmo de construcción de la tabla de análisis SLR

Ej	Ejemplo (Tabla de análisis sintáctico SLR											2 / 2)		
Γ	Acción										Ir-a			
		id	()	;	*	int	,	\$	S	Т	L		
Γ	0						d 3			1	2			
	1								Aceptar					
Γ	2	d 4				d 5								
Γ	3	r 3		r 3		r 3		r 3						
	4		d 6											
	5	r 2		r 2		r 2		r 2						
	6						d 3				8	7		
	7			d 9				d 10						
	8			r 5		d 5		r 5						
	9				d 11									
	10						d 3				12			
	11								r 1					
Γ	12			r 4		d 5		r 4						

Algoritmo de construcción de la tabla de análisis SLR

Algoritmo (Construcción de la tabla SLR

. / 10)

- 1.- Ampliar la gramática con la regla de producción $S' \rightarrow S$.
- 2.- Construir la colección canónica de Elementos-LR(0).
- 3.- Generar el autómata que reconoce los prefijos viables.
- 4.- Completar la parte acción.
- 5.- Completar la parte ir_a.

Algoritmo de construcción de la tabla de análisis SLR

Algoritmo (Construcción de la tabla SLR

- 1.- Ampliar la gramática con la regla de producción $S' \rightarrow S$.
 - Evita que el **símbolo inicial** aparezca en la parte derecha de una regla de producción.

Algoritmo de construcción de la tabla de análisis SLR

Algoritmo (Construcción de la tabla SLR

- 2.- Construir la colección canónica de Elementos-LR(0).
 - Se debe comenzar por $I_0 = clausura (\{S' \rightarrow \bullet S\})$

Algoritmo de construcción de la tabla de análisis SLR

Algoritmo (Construcción de la tabla SLR

- 3.- Generar el autómata que reconoce los prefijos viables.
 - Los conjuntos de elementos-LR(0) se corresponden con los estados del autómata.
 - Todos los estados del autómata son finales.
 - El estado inicial se corresponde con el conjunto de elementos que contenga a $S' \rightarrow \bullet S$, que generalmente es I_0

Algoritmo de construcción de la tabla de análisis SLR

Algoritmo (Construcción de la tabla SLR

- 4.- Completar la parte acción
 - 4.1 Desplazar
 - 4.2 Reducir
 - 4.3 Aceptar
 - 4.4 Función de error

Algoritmo de construcción de la tabla de análisis SLR

Algoritmo (Construcción de la tabla SLR

- 4.- Completar la parte acción:
 - 4.1 Desplazar
 - Si $A \to \alpha \bullet \sigma \beta \in I_i \land \sigma \in V_T \land I_{r-a}(I_i, \sigma) = I_j$ entonces $acción[i, \sigma] = d$
 - 1.- se desplaza el símbolo σ desde la entrada a la pila
 - 2.- y se pasa al estado j.

Algoritmo de construcción de la tabla de análisis SLR

Algoritmo (Construcción de la tabla SLR

7 / 10)

- 4.- Completar la parte acción:
 - 4.2.- Reducir.
 - Si $A \rightarrow \alpha \bullet \in I_i$ entonces acción[i, σ] = r k donde
 - $\sigma \in Siguiente(A)$
 - $y \ k$ representa la regla de producción $k: A \rightarrow \alpha \in P$

Nota

- Se requiere el cálculo del conjunto Siguiente(A) $\forall A \in V_N$
- También se requiere calcular el conjunto $Primero(A) \ \forall A \in V_N$

Algoritmo de construcción de la tabla de análisis SLR

Algoritmo (Construcción de la tabla SLR

- 4.- Completar la parte acción:
 - 4.3.- Aceptar
 - $Si S' \rightarrow S \bullet \in I_i$ entonces acción[i, \$] = Aceptar

Tema V.- Análisis Sintáctico Ascendente

Análisis sintáctico ascendente SLR

Procesadores de Lenguajes

Algoritmo de construcción de la tabla de análisis SLR

Algoritmo (Construcción de la tabla SLR

- 4.- Completar la parte acción:
 - 4.4.- Función de error

 Las celdas vacías de la parte acción se completarán con funciones de tratamiento de error.

Algoritmo de construcción de la tabla de análisis SLR

Algoritmo (Construcción de la tabla SLR

- 5.- Completar la parte ir_a
 - Si $I_{r-a}(I_i, A) = I_i \land A \in V_N$ entonces $I_{r-a}[i, A] = j$

Algoritmo de construcción de la tabla de análisis SLR

Ejercicio (Construcción de la tabla SLR)

Las celdas vacías de la parte ir_a nunca se consultarán: ¡demuéstralo!.

Subsección actual

- 2 Análisis sintáctico ascendente SLR
 - Introducción
 - Colección canónica de elementos-LR(0)
 - Algoritmo de construcción de la tabla de análisis SLR
 - Ejemplos de análisis sintáctico ascendente SLR
 - Conflictos en el análisis sintáctico ascendente SLR

Contenido de la subsección

- 2 Análisis sintáctico ascendente SLR
 - Introducción
 - Colección canónica de elementos-LR(0)
 - Algoritmo de construcción de la tabla de análisis SLR
 - Ejemplos de análisis sintáctico ascendente SLR
 - Gramática de los prototipos de funciones
 - Gramática de las enumeraciones
 - Conflictos en el análisis sintáctico ascendente SLR

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de los prototipos de funciones 1/12)

```
P = \{
(1) S \to T \text{ id ( } L \text{ ) };
(2) T \to T *
(3) T \to \text{int}
(4) L \to L, T
(5) L \to T
```

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de los prototipos de funciones 2 / 12)

1.- Ampliación de la gramática

```
P' = \{ (1') \ S' \rightarrow S \\ (1) \ S \rightarrow T \text{ id } (L); \\ (2) \ T \rightarrow T * \\ (3) \ T \rightarrow \text{int} \\ (4) \ L \rightarrow L, T \\ (5) \ L \rightarrow T \}
```

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de los prototipos de funciones 3 / 12)

2.- Colección canónica: primera parte

$$I_{0} = \{ S' \rightarrow \bullet S, S \rightarrow \bullet T \text{ id } (L);, T \rightarrow \bullet T^{*}, T \rightarrow \bullet \text{ int } \}$$

$$I_{1} = \{ S' \rightarrow S \bullet \}$$

$$I_{2} = \{ S \rightarrow T \bullet \text{ id } (L);, T \rightarrow T \bullet * \}$$

$$I_{3} = \{ T \rightarrow \text{ int } \bullet \}$$

$$I_{4} = \{ S \rightarrow T \text{ id } \bullet (L); \}$$

$$I_{5} = \{ T \rightarrow T^{*} \bullet \}$$

$$I_{6} = \{ S \rightarrow T \text{ id } (\bullet L);, L \rightarrow \bullet L, T, L \rightarrow \bullet T, T \rightarrow \bullet T^{*}, T \rightarrow \bullet \text{ int } \}$$

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de los prototipos de funciones 4 / 12)

2.- Colección canónica: segunda parte $I_7 = \{S \rightarrow T \text{ id } (L \bullet); L \rightarrow L \bullet, T\}$ $I_8 = \{L \rightarrow T \bullet, T \rightarrow T \bullet *\}$ $I_9 = \{S \rightarrow T \text{ id } (L) \bullet; \}$ $I_{10} = \{L \rightarrow L, \bullet T, T \rightarrow \bullet T *, T \rightarrow \bullet \text{ int } \}$ $I_{11} = \{S \rightarrow T \text{ id } (L); \bullet\}$ $I_{12} = \{L \rightarrow L, T \bullet, T \rightarrow T \bullet *\}$

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de los prototipos de funciones 5 / 12)

3.- Autómata que reconoce los prefijos viables

Representación gráfica

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de los prototipos de funciones 6 / 12)

3.- Autómata que reconoce los prefijos viables

	Representación tabular									
	id	()	;	*	int	,	S	T	L
0						3		1	2	
1										
2	4				5					
3										
4		6								
5										
6						3			8	7
7			9				10			
8					5					
9				11						
10						3			12	
11										
12					5					

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de los prototipos de funciones 7 / 12)

4.- Completar la parte acción: conjuntos auxiliares

	Primero	Siguiente
S'	int	\$
S	int	\$
T	int	id, *, ")", ","
L	int	")", ","

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de los prototipos de funciones 8 / 12)

4.- Completar la parte acción

acción									ir_a		
	id	()	;	*	int	,	\$	S	Т	L
0						d 3					
1								Aceptar			
2	d 4				d 5						
3	r 3		r 3		r 3		r 3				
4		d 6									
5	r 2		r 2		r 2		r 2				
6						d 3					
7			d 9				d 10				
8			r 5		d 5		r 5				
9				d 11							
10						d 3					
11								r 1			
12			r 4		d 5		r 4				

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de los prototipos de funciones 9 / 12)

5 C	5 Completar la parte <mark>ir_a</mark>										
acción								ir-a			
	id	()	;	*	int	,	\$	S	T	L
0						d 3			1	2	\Box
1								Aceptar			
2	d 4				d 5						
3	r 3		r 3		r 3		r 3				
4		d 6									
5	r 2		r 2		r 2		r 2				
6						d 3				8	7
7			d 9				d 10				
8			r 5		d 5		r 5				
9				d 11							
10						d 3				12	
11								r 1			
12			r 4		d 5		r 4				

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de los prototipos de funciones 10 / 12)

• Análisis sintáctico ascendente SLR: primera parte

Pila	Entrada	Acción
0	<pre>int id (int); \$</pre>	desplazar 3
0 <u>int 3</u>	id (int) ; \$	reducir 3 $T \rightarrow int$
0 T 2	id (int) ; \$	desplazar 4
0 T 2 id 4	(int) ; \$	desplazar 6
0 T 2 id 4 (6	int); \$	desplazar 3
0 T 2 id 4 (6 int 3);\$	reducir 3 $T \rightarrow int$

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de los prototipos de funciones 11 / 12)

• Análisis sintáctico ascendente SLR: segunda parte

Pila	Entrada	Acción
0 T 2 id 4 (6 int 3);\$	reducir 3 $T \rightarrow \mathbf{int}$
0 T 2 id 4 (6 <u>T 8</u>);\$	reducir 5 L \rightarrow T
0 T 2 id 4 (6 L 7);\$	desplazar 9
0 T 2 id 4 (6 L 7) 9	; \$	desplazar 11
0 T 2 id 4 (6 L 7) 9; 11	\$	reducir $1 S \rightarrow T$ id (L);
0 5 1	\$	Aceptar

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de los prototipos de funciones 12 / 12)

• Derivación por la derecha obtenida en orden inverso

```
\begin{array}{ccc}
S & \Rightarrow & \underline{T} \text{ id } (\underline{L}); \\
\Rightarrow & \underline{T} \text{ id } (\underline{T}); \\
\Rightarrow & \underline{T} \text{ id } (\underline{\text{int}}); \\
\Rightarrow & \underline{T} \text{ id } (\underline{\text{int}}); \\
\Rightarrow & \underline{\text{int}} * \text{ id } (\underline{\text{int}});
\end{array}
```

Ejemplos de análisis sintáctico ascendente SLR

Ejercicio

• Dibuja el árbol sintáctico de forma ascendente a partir de la derivación por la derecha obtenida en orden inverso.

Contenido de la subsección

- 2 Análisis sintáctico ascendente SLR
 - Introducción
 - Colección canónica de elementos-LR(0)
 - Algoritmo de construcción de la tabla de análisis SLR
 - Ejemplos de análisis sintáctico ascendente SLR
 - Gramática de los prototipos de funciones
 - Gramática de las enumeraciones
 - Conflictos en el análisis sintáctico ascendente SLR

Ejemplos de análisis sintáctico ascendente SLR

```
P = \{ \\ (1) \ S \rightarrow S \ D \\ (2) \ S \rightarrow \epsilon \\ (3) \ D \rightarrow \text{enum identificador} \ \{ \ L \ \} \ ; \\ (4) \ L \rightarrow \text{identificador} \\ (5) \ L \rightarrow L \ , \text{identificador} \\ \}
```

Ejemplos de análisis sintáctico ascendente SLR

```
Ejemplo (2.- Gramática de las enumeraciones
 1.- Ampliación de la gramática
      P' = \{
      (1') S' \rightarrow S
       (1) S \rightarrow SD
       (2) S \rightarrow \epsilon
       (3) D \rightarrow enum identificador { L } ;
       (4) L \rightarrow identificador
       (5) L \rightarrow L, identificador
```

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

3 / 24)

- 2.- Construcción de la colección canónica
 - Construcción del conjunto lo

$$I_{0} = clausura(\{S' \rightarrow \bullet S\})$$

$$= \{ S' \rightarrow \bullet S, S \rightarrow \bullet SD, S \rightarrow \bullet SD, S \rightarrow \bullet SD, S \rightarrow \bullet SD$$

lo tendrá una transición Ir_a con S.

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l_0

```
Ir\_a(I_0,S) = clausura(\{ S' \rightarrow S \bullet, S \rightarrow S \bullet D\})
= \{
S' \rightarrow S \bullet,
S \rightarrow S \bullet D,
D \rightarrow \bullet \text{ enum identificador } \{ L \};
\}
= I_0
```

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₁

$$I_1 = \{ S' \rightarrow S \bullet, S \rightarrow S \bullet D, D \rightarrow \bullet \text{ enum id } \{ L \}; \}$$

$$Ir_{-a}(I_1,D) = clausura(\{S \rightarrow S D \bullet\})$$

$$= \{S \rightarrow S D \bullet\}$$

$$= I_2$$

$$Ir_{-a}(I_1,\text{enum}) = clausura(\{D \rightarrow \text{enum } \bullet \text{ id } \{ L \} ; \})$$

$$= \{D \rightarrow \text{enum } \bullet \text{ id } \{ L \} ; \}$$

$$= I_2$$

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

5 / 24)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_2 = \{S \rightarrow S \ D \ \bullet\}$

$$Ir_{-a}(I_2, X) = \emptyset \quad \forall X \in V$$

El conjunto l_2 no tiene transiciones.

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

- 2.- Construcción de la colección canónica
 - \bullet Transiciones del conjunto $\mathit{I}_3 = \{\mathit{D} \rightarrow \mathsf{enum} \bullet \mathsf{id} \ \{ \ \mathit{L} \ \} \ \mathsf{;} \ \}$

```
Ir_a(I_3, id) = clausura(\{D \rightarrow enum id \bullet \{L\};\})
= \{D \rightarrow enum id \bullet \{L\};\}
= I_4
```

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_4 = \{D \rightarrow \text{enum id} \bullet \{L\}\}$;

```
Ir_{-a}(I_4,\{) = clausura(\{D \rightarrow enum id \{ \bullet L \} ; \})
= \{ D \rightarrow enum id \{ \bullet L \} ;, 
L \rightarrow \bullet id, 
L \rightarrow \bullet L , id 
\}
= I_5
```

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto 15

```
\begin{array}{ll} \textit{I}_{5} = \{ \ D \rightarrow \text{enum id} \ \{ \bullet \ L \} \ \text{;, } L \rightarrow \bullet \text{ id, } L \rightarrow \bullet \ L \text{ , id} \ \} \\ \textit{Ir\_a(I_{5},L)} &= \textit{clausura}(\{ \ D \rightarrow \text{enum id} \ \{ \ L \bullet \ \} \ \text{;, } L \rightarrow L \bullet \text{ , id} \ \} \ ) \\ &= \{ \ D \rightarrow \text{enum id} \ \{ \ L \bullet \ \} \ \text{;, } L \rightarrow L \bullet \text{ , id} \ \} \\ &= I_{6} \\ \textit{Ir\_a(I_{5},id)} &= \textit{clausura}(\{ L \rightarrow \text{id} \bullet \ \}) \\ &= \{ L \rightarrow \text{id} \bullet \ \} \\ &= I_{7} \end{array}
```

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto 16

```
I_6 = \{ D \rightarrow \text{enum id } \{ L \bullet \} ;, L \rightarrow L \bullet , \text{id } \}
Ir\_a(I_6, \}) = \underset{\{D \rightarrow \text{enum id } \{ L \} \bullet ; \})}{\text{clausura}(\{D \rightarrow \text{enum id } \{ L \} \bullet ; \})}
= \{D \rightarrow \text{enum id } \{ L \} \bullet ; \}
= I_8
Ir\_a(I_6, ",") = \underset{\{L \rightarrow L , \bullet \text{ id } \}}{\text{clausura}(\{L \rightarrow L , \bullet \text{ id } \})}
= \{L \rightarrow L , \bullet \text{ id } \}
= I_9
```

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

11 / 24)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_7 = \{L \rightarrow \text{identificador} \bullet \}$

$$Ir_{-a}(I_7, X) = \emptyset \quad \forall X \in V$$

El conjunto l_7 no tiene transiciones.

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

- 2.- Construcción de la colección canónica
 - \bullet Transiciones del conjunto $\mathit{I}_8 = \{\mathit{D} \rightarrow \mathsf{enum} \; \mathsf{id} \; \{\; \mathit{L} \; \} \; \bullet \; \mathsf{;} \; \}$

```
Ir_{-a}(I_8, ";") = clausura(\{D \rightarrow \text{enum id } \{L\}; \bullet\})
= \{D \rightarrow \text{enum id } \{L\}; \bullet\}
= I_{10}
```

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_9 = \{L \rightarrow L \text{ , } \bullet \text{ id } \}$

$$Ir_{-a}(I_9, id) = clausura(\{L \rightarrow L, id \bullet \})$$

= $\{L \rightarrow L, id \bullet \}$
= I_{11}

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

14 / 24)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₁₀

$$\emph{I}_{10} = \{ \emph{D}
ightarrow ext{enum id } \{ \emph{L} \ \} \ ext{; } ullet \ \}$$

$$Ir_{-a}(I_{10}, X) = \emptyset \quad \forall X \in V$$

El conjunto l_{10} no tiene transiciones.

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

15 / 24)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l_{11}

$$\emph{I}_{11} = \{\emph{L}
ightarrow \emph{L} \text{ , id } ullet$$

$$Ir_{-a}(I_{11}, X) = \emptyset \quad \forall X \in V$$

El conjunto l_{11} no tiene transiciones.

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

16 / 24)

- 2.- Construcción de la colección canónica
 - Colección canónica: primera parte

$$I_{0} = \{ S' \rightarrow \bullet S, S \rightarrow \bullet SD, S \rightarrow \bullet \}$$

$$I_{1} = \{ S' \rightarrow S \bullet, S \rightarrow S \bullet D, D \rightarrow \bullet \text{ enum id } \{ L \}; \}$$

$$I_{2} = \{ S \rightarrow SD \bullet \}$$

$$I_{3} = \{ D \rightarrow \text{ enum } \bullet \text{ id } \{ L \}; \}$$

$$I_{4} = \{ D \rightarrow \text{ enum id } \bullet \{ L \}; \}$$

$$I_{5} = \{ D \rightarrow \text{ enum id } \{ \bullet L \}; L \rightarrow \bullet \text{ id, } L \rightarrow \bullet L \text{ , id } \}$$

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

17 / 24)

- 2.- Construcción de la colección canónica
 - Colección canónica: segunda parte

```
I_6 = \{ D \rightarrow \text{enum id } \{ L \bullet \} \text{ ;, } L \rightarrow L \bullet \text{ , id } \}
I_7 = \{ L \rightarrow \text{id } \bullet \}
I_8 = \{ D \rightarrow \text{enum id } \{ L \} \bullet \text{ ; } \}
I_9 = \{ L \rightarrow L \text{ , } \bullet \text{ id } \}
I_{10} = \{ D \rightarrow \text{enum id } \{ L \} \text{ ; } \bullet \}
I_{11} = \{ L \rightarrow L \text{ , id } \bullet \}
```

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

9 / 24)

3.-Autómata que reconoce los prefijos viables

Estado	enum	id	{	}	;	,	\$ S	D	L
0							1		
1	3							2	
2									
3		4							
4			5						
5		7							6
6				8		9			
7									
8					10				
9		11							
10									
11									

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

18 / 24)

4.- Completar la parte acción: conjuntos auxiliares

	Primero	Siguiente
S'	enum, ϵ	\$
S	enum, ϵ	\$, enum
D	enum	\$, enum
L	identificador	}, ","

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

20 / 24)

4.- Completar la parte acción

	Acción								Ir-a		
Estado	enum	id	{	}	;	,	\$	S	D	L	
0	r 2						r 2				
1	d 3						ACEPTAR				
2	r 1						r 1				
3		d 4									
4			d 5								
5		d 7									
6				d 8		d 9					
7				r 4		r 4					
8					d 10						
9		d 11									
10	r 3						r 3				
11				r 5		r 5					

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

21 / 24)

5.- Completar la parte ir_a

	Acción								Ir-a		
Estado	enum	id	{	}	;	,	\$	S	D	L	
0	r 2						r 2	1			
1	d 3						ACEPTAR		2		
2	r 1						r 1				
3		d 4									
4			d 5								
5		d 7								6	
6				d 8		d 9					
7				r 4		r 4					
8					d 10						
9		d 11									
10	r 3						r 3				
11				r 5		r 5					

Ejemplos de análisis sintáctico ascendente SLR

```
P' = \{ \\ (1') \ S' \rightarrow S \\ (1) \ S \rightarrow S \ D \\ (2) \ S \rightarrow \epsilon \\ (3) \ D \rightarrow \text{enum identificador} \ \{ \ L \ \} \ ; \\ (4) \ L \rightarrow \text{identificador} \\ (5) \ L \rightarrow L \ , \text{identificador} \\ \}
```

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones <u>23</u> / 24) Análisis sintáctico SLR: primera parte Pila Entrada Acción enum id { id , id } ; \$ $r 2 S \rightarrow \epsilon$ 051 **enum** id { id , id } ; \$ d 3 0 S 1 enum 3 id { id , id } ; \$ d 4 0 S 1 enum 3 id 4 id , id } ; \$ d 5

id , id } ; \$

, id } ; \$

, id } ; \$

0 S 1 enum 3 id 4 { 5

0 S 1 enum 3 id 4 { 5 id 7

0 S 1 enum 3 id 4 { 5 L 6

d 7

d 9

 $r 4 L \rightarrow id$

Ejemplos de análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de las enumeraciones

Análisis sintáctico SLR: segunda parte Pila $0 \le 1 \text{ enum } 3 \text{ id } 4 \{ 5 \ L 6 , 9 \text{ id } \}; \$ d 11$ $0 \le 1 \text{ enum } 3 \text{ id } 4 \{ 5 \ L 6 , 9 \text{ id } 11 \}; \$ r 5 \ L \rightarrow L, \text{ id}$ $0 \le 1 \text{ enum } 3 \text{ id } 4 \{ 5 \ L 6 \}; \$ d 8$

: \$

\$

\$

0 S 1 D 2

0 S 1

0 S 1 enum 3 id 4 { 5 L 6 } 8

0 S 1 enum 3 id 4 { 5 L 6 } 8; 10

d 10

 $r 1 S \rightarrow S D$

Aceptar

 $r \ 3 \ D \rightarrow \mathbf{enum id} \ \{L\}$;

Ejemplos de análisis sintáctico ascendente SLR

Ejercicios (2.- Gramática de las enumeraciones)

- Construcción del autómata que reconoce prefijos viables
 - Representación gráfica.
- Construcción de la derivación por la derecha
- Construcción del árbol sintáctico de forma ascendente.

Subsección actual

- 2 Análisis sintáctico ascendente SLR
 - Introducción
 - Colección canónica de elementos-LR(0)
 - Algoritmo de construcción de la tabla de análisis SLR
 - Ejemplos de análisis sintáctico ascendente SLR
 - Conflictos en el análisis sintáctico ascendente SLR

Contenido de la subsección

- 2 Análisis sintáctico ascendente SLR
 - Introducción
 - Colección canónica de elementos-LR(0)
 - Algoritmo de construcción de la tabla de análisis SLR
 - Ejemplos de análisis sintáctico ascendente SLR
 - Conflictos en el análisis sintáctico ascendente SLR
 - Definición
 - Ejemplos

Conflictos en el análisis sintáctico ascendente SLR

Definición (Conflicto en la tabla SLR)

 Se presenta un conflicto en la tabla SLR cuando hay al menos una celda de la parte acción con dos o más acciones diferentes.

Conflictos en el análisis sintáctico ascendente SLR

Tipos de conflictos

- Desplazamiento-reducción.
- Reducción-reducción.

Conflictos en el análisis sintáctico ascendente SLR

Conflicto de desplazamiento-reducción

• Al menos una celda de la tabla acción tiene las opciones de desplazar y reducir simultáneamente:

$$\text{acción[i, } \boldsymbol{\sigma}] = \left\{ \begin{array}{l} \mathsf{d} \; \mathsf{j} \\ \mathsf{r} \; \mathsf{k} \end{array} \right.$$

• La opción por defecto suele ser realizar el desplazamiento.

Conflictos en el análisis sintáctico ascendente SLR

Conflicto de desplazamiento-reducción

- Este conflicto se genera si se cumplen las siguientes condiciones:
 - 1.- Si $\exists A \to \alpha \bullet \sigma \beta \in I_i \land \operatorname{Ir_a}(I_i, \sigma) = I_j$ entonces acción $[i, \sigma] = d$ j
 - 2.- Si $\exists B \to \gamma \bullet \in I_i \land \sigma \in siguiente(B)$ entonces acción[i, σ] = r k donde k es la regla $B \to \gamma \in P$

Conflictos en el análisis sintáctico ascendente SLR

Conflicto de reducción-reducción

- Al menos una celda de la tabla acción tiene la opción de reducir con dos o más reglas simultáneamente:
 - $acción[i, \sigma] = \begin{cases} rh \\ rk \end{cases}$
- Para evitar este conflicto del análisis SLR, hay dos opciones:
 - 1.- Diseñar una nueva gramática
 - 2.- Comprobar si el método LR-canónico no genera el conflicto.

Conflictos en el análisis sintáctico ascendente SLR

Conflicto de reducción-reducción

- Este conflicto se genera si se cumplen las siguientes condiciones:
 - 1.- Si $\exists A \to \alpha \bullet \in I_i \land \sigma \in siguiente(A)$ entonces $acción[i,\sigma] = r h$ donde h es la regla $A \to \alpha \in P$
 - 2.- Si $\exists B \to \alpha \bullet \in I_i \land \sigma \in siguiente(B)$ entonces acción $[i,\sigma] = r k$ donde k es la regla $B \to \alpha \in P$

Contenido de la subsección

- 2 Análisis sintáctico ascendente SLR
 - Introducción
 - Colección canónica de elementos-LR(0)
 - Algoritmo de construcción de la tabla de análisis SLR
 - Ejemplos de análisis sintáctico ascendente SLR
 - Conflictos en el análisis sintáctico ascendente SLR
 - Definición
 - Ejemplos

Conflictos en el análisis sintáctico ascendente SLR

Ejemplos (Conflictos en el análisis sintáctico SLR)

- Ejemplos de conflicto de desplazamiento reducción.
 - 1.- Gramática de las expresiones aritméticas
 - 2.- Gramática de sentencia de asignación

Conflictos en el análisis sintáctico ascendente SLR

Ejemplos (Conflictos en el análisis sintáctico SLR)

- Ejemplos de conflicto de desplazamiento reducción.
 - 1.- Gramática de las expresiones aritméticas
 - 2.- Gramática de sentencia de asignación

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 1/39)

```
P = \{
(1) E \rightarrow E + E
(2) E \rightarrow E * E
(3) E \rightarrow (E)
(4) E \rightarrow id
(5) E \rightarrow número
```

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 2/39)

1.- Ampliación de la gramática

```
P = \{ \\ (1') \ E' \to E \\ (1) \ E \to E + E \\ (2) \ E \to E * E \\ (3) \ E \to (E) \\ (4) \ E \to id \\ (5) \ E \to número \\ \}
```

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 3/39)

- 2.- Construcción de la colección canónica
 - Conjunto lo: primera parte

```
I_0 = clausura(\{ E' \rightarrow \bullet E \})
\{ E' \rightarrow \bullet E, \\ E \rightarrow \bullet E + E, E \rightarrow \bullet E * E, \\ E \rightarrow \bullet (E), E \rightarrow \bullet id, E \rightarrow \bullet número \}
```

l₀ tendrá transiciones lr_a con E, (, id y número

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 4 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₀: segunda parte

```
Ir_{-a}(I_0,E) = clausura(\{ E' \rightarrow E \bullet, E \rightarrow E \bullet + E, E \rightarrow E \bullet * E \})
= \{ E' \rightarrow E \bullet, E \rightarrow E \bullet + E, E \rightarrow E \bullet * E \}
= I_1
Ir_{-a}(I_0,"(")) = clausura(\{ E \rightarrow (\bullet E) \} )
= \{ E \rightarrow (\bullet E), E \rightarrow \bullet E + E, E \rightarrow \bullet E * E, E \rightarrow \bullet (E), E \rightarrow \bullet id, E \rightarrow \bullet número \}
= I_2
```

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 5 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto lo: tercera parte

```
Ir_{-a}(I_0, id) = clausura(\{ E \rightarrow id \bullet \})
= \{ E \rightarrow id \bullet \}
= I_3
Ir_{-a}(I_0, número) = clausura(\{ E \rightarrow número \bullet \})
= \{ E \rightarrow número \bullet \}
= I_0
```

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 6 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l_1 : primera parte

$$I_1 = \{ E' \rightarrow E \bullet, E \rightarrow E \bullet + E, E \rightarrow E \bullet * E \}$$

 l_1 tendrá transiciones l_{r_a} con + y *.

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 7/39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto 1: segunda parte

```
\begin{array}{ll} \textit{Ir\_a}(\textit{I}_1, +) & = & \textit{clausura}(\{\ E \rightarrow E + \bullet E\ \}) \\ & = & \{ \\ & E \rightarrow E + \bullet E, E \rightarrow \bullet E + E, E \rightarrow \bullet E * E, \\ & E \rightarrow \bullet (\ E\ ), E \rightarrow \bullet \text{ id}, E \rightarrow \bullet \text{ número} \\ & \} \\ & = & \textit{Is} \end{array}
```

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 8 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l_1 : tercera parte

```
Ir_{-a}(I_1, *) = clausura(\{ E \rightarrow E * \bullet E \})
= \{
E \rightarrow E * \bullet E, E \rightarrow \bullet E + E, E \rightarrow \bullet E * E,
E \rightarrow \bullet (E), E \rightarrow \bullet id, E \rightarrow \bullet número
\}
- I_{a}
```

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 9 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₂: primera parte

$$I_2 = \{ E \rightarrow (\bullet E), E \rightarrow \bullet E + E, E \rightarrow \bullet E * E, E \rightarrow \bullet (E), E \rightarrow \bullet id, E \rightarrow \bullet número \}$$

l₂ tendrá transiciones l_{r_a} con E, (, id y número.

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 10 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto 12: segunda parte

$$Ir_{-a}(I_{2},E) = clausura(\{ E \rightarrow (E \bullet), E \rightarrow E \bullet + E, E \rightarrow E \bullet * E \})$$

$$\{ E \rightarrow (E \bullet), E \rightarrow E \bullet + E, E \rightarrow E \bullet * E \}$$

$$= I_{7}$$

$$Ir_{-a}(I_{2},"(")) = clausura(\{ E \rightarrow (\bullet E) \})$$

$$= \{ E \rightarrow (\bullet E), E \rightarrow \bullet E + E, E \rightarrow \bullet E * E, E \rightarrow \bullet (E), E \rightarrow \bullet id, E \rightarrow \bullet número \}$$

$$= I_{2}$$

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 11 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto 12: tercera parte

$$Ir_{-a}(I_2, id) = clausura(\{E \rightarrow id \bullet \})$$

 $= \{E \rightarrow id \bullet \}$
 $= I_3$
 $Ir_{-a}(I_2, número) = clausura(\{E \rightarrow número \bullet \})$
 $= \{E \rightarrow número \bullet \}$
 $= I_4$

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 12 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_3 = \{E \rightarrow id \bullet \}$

$$Ir_{-a}(I_3, X) = \emptyset \quad \forall X \in V$$

El conjunto l_3 no tiene transiciones.

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 13 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_4 = \{E \rightarrow \text{número} \bullet \}$

$$Ir_{-a}(I_4, X) = \emptyset \quad \forall X \in V$$

El conjunto l_4 no tiene transiciones.

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 14 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto *l*₅: primera parte

$$I_5 = \{ E \rightarrow E + \bullet E, E \rightarrow \bullet E + E, E \rightarrow \bullet E * E, E \rightarrow \bullet (E), E \rightarrow \bullet id, E \rightarrow \bullet número \}$$

l₅ tendrá transiciones l_{r_a} con E, (, id y número.

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 15 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto 15: segunda parte

$$Ir_{-a}(I_5,E) = clausura(\{E \rightarrow E + E \bullet, E \rightarrow E \bullet + E, E \rightarrow E \bullet * E\})$$

= $\{E \rightarrow E + E \bullet, E \rightarrow E \bullet + E, E \rightarrow E \bullet * E\}$
= I_8

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 16 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₅: tercera parte

```
Ir_{-a}(l_5, "(")) = clausura({E \rightarrow ( \bullet E ) })
= {
E \rightarrow ( \bullet E ), E \rightarrow \bullet E + E,
E \rightarrow \bullet E * E, E \rightarrow \bullet ( E ),
E \rightarrow \bullet id, E \rightarrow \bullet número
}
= l_2
```

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 17 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto 15: cuarta parte

$$Ir_{-a}(I_5, id) = clausura(\{E \rightarrow id \bullet\})$$

 $\{E \rightarrow id \bullet\}$
 $= I_3$
 $Ir_{-a}(I_5, número) = clausura(\{E \rightarrow número \bullet\})$
 $\{E \rightarrow número \bullet\}$
 $= I_4$

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 18 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₆: primera parte

$$I_6 = \{ E \rightarrow E * \bullet E, E \rightarrow \bullet E + E, E \rightarrow \bullet E * E, E \rightarrow \bullet (E), E \rightarrow \bullet id, E \rightarrow \bullet número \}$$

l₆ tendrá transiciones l_{r_a} con E, (, id y número.

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 19 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₆: segunda parte

$$Ir_{-a}(I_6,E) = clausura(\{E \rightarrow E * E \bullet, E \rightarrow E \bullet * E, E \rightarrow E \bullet * E\})$$

= $\{E \rightarrow E + E \bullet, E \rightarrow E \bullet + E, E \rightarrow E \bullet * E\}$
= I_9

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 20 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₆: tercera parte

```
Ir_{-a}(I_6, "(")) = clausura({E \rightarrow ( \bullet E ) })
= {E \rightarrow ( \bullet E ), E \rightarrow \bullet E + E, E \rightarrow \bullet ( E ), E \rightarrow \bullet id, E \rightarrow \bullet número}
= I_2
```

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 21 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₆: cuarta parte

$$Ir_{-a}(I_6, id) = clausura(\{E \rightarrow id \bullet\})$$
 $\{E \rightarrow id \bullet\}$
 $= I_3$

$$Ir_{-a}(I_6, número) = clausura(\{E \rightarrow número \bullet\})$$
 $\{E \rightarrow número \bullet\}$
 $= I_4$

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 22 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto 17: primera parte

$$I_7 = \{ E \rightarrow (E \bullet), E \rightarrow E \bullet + E, E \rightarrow E \bullet * E \}$$

 l_7 tendrá transiciones l_{r_a} con), + y *.

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 23 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto 17: segunda parte

$$Ir_a(I_7, ")") = clausura({E \rightarrow (E) \bullet})$$

= ${E \rightarrow (E) \bullet}$
= I_{10}

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 24 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto 17: tercera parte

```
Ir_{-a}(I_7,+) = clausura(\{E \rightarrow E + \bullet E\})
= \{
E \rightarrow E + \bullet E,
E \rightarrow \bullet E + E, E \rightarrow \bullet E * E,
E \rightarrow \bullet (E), E \rightarrow \bullet id, E \rightarrow \bullet número
\}
= I_5
```

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 25 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto 17: quinta parte

```
Ir_{-a}(I_7,*) = clausura(\{E \rightarrow E * \bullet E\})
= \{
E \rightarrow E * \bullet E,
E \rightarrow \bullet E + E, E \rightarrow \bullet E * E,
E \rightarrow \bullet (E), E \rightarrow \bullet id, E \rightarrow \bullet número
\}
= I_6
```

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 26 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₈: primera parte

$$I_8 = \{ E \rightarrow E + E \bullet, E \rightarrow E \bullet + E, E \rightarrow E \bullet * E \}$$

 l_8 tendrá transiciones l_{r_a} con + y *.

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 27 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₈: segunda parte

```
Ir_{-a}(I_8,+) = clausura(\{E \rightarrow E + \bullet E\})
= \{
E \rightarrow E + \bullet E,
E \rightarrow \bullet E + E, E \rightarrow \bullet E * E,
E \rightarrow \bullet (E), E \rightarrow \bullet id, E \rightarrow \bullet número
\}
= I_5
```

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 28 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₈: tercera parte

$$Ir_{-a}(I_8,*) = clausura(\{E \rightarrow E * \bullet E\})$$

$$= \{$$

$$E \rightarrow E * \bullet E,$$

$$E \rightarrow \bullet E + E, E \rightarrow \bullet E * E,$$

$$E \rightarrow \bullet (E), E \rightarrow \bullet id, E \rightarrow \bullet número$$

$$\}$$

$$= I_6$$

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 29 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto 19: primera parte

$$I_9 = \{ E \rightarrow E * E \bullet, E \rightarrow E \bullet + E, E \rightarrow E \bullet * E \}$$

 l_9 tendrá transiciones l_{r_a} con + y *.

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 30 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₉: segunda parte

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 31/39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₉: tercera parte

```
Ir_{-a}(I_9,*) = clausura(\{E \rightarrow E * \bullet E \})

E \rightarrow E * \bullet E), E \rightarrow \bullet E + E,

E \rightarrow \bullet E * E, E \rightarrow \bullet (E),

E \rightarrow \bullet id, E \rightarrow \bullet número

\begin{cases} E \rightarrow E * \bullet E \\ E \rightarrow E * E \rightarrow E \\ E \rightarrow E * E \rightarrow
```

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 32 / 39)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_{10} = \{E \rightarrow (E) \bullet \}$

$$Ir_{-a}(I_{10}, X) = \emptyset \quad \forall X \in V$$

El conjunto l_{10} no tiene transiciones.

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 33 / 39)

- 2.- Construcción de la colección canónica
 - Colección canónica de elementos-LR(0): primera parte

$$I_{0} = \{ E' \rightarrow \bullet E, E \rightarrow \bullet E + E, E \rightarrow \bullet E * E, \\ E \rightarrow \bullet (E), E \rightarrow \bullet id, E \rightarrow \bullet número \}$$

$$I_{1} = \{ E' \rightarrow E \bullet, E \rightarrow E \bullet + E, E \rightarrow E \bullet * E \}$$

$$I_{2} = \{ E \rightarrow (\bullet E), E \rightarrow \bullet E + E, E \rightarrow \bullet E * E, \\ E \rightarrow \bullet (E), E \rightarrow \bullet id, E \rightarrow \bullet número \}$$

$$I_{3} = \{ E \rightarrow id \bullet \}$$

$$I_{4} = \{ E \rightarrow número \bullet \}$$

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 34 / 39)

- 2.- Construcción de la colección canónica
 - Colección canónica de elementos-LR(0): segunda parte

$$I_{5} = \{ E \rightarrow E + \bullet E, E \rightarrow \bullet E + E, E \rightarrow \bullet E * E, \\ E \rightarrow \bullet (E), E \rightarrow \bullet id, E \rightarrow \bullet número \}$$

$$I_{6} = \{ E \rightarrow E * \bullet E, E \rightarrow \bullet E + E, E \rightarrow \bullet E * E, \\ E \rightarrow \bullet (E), E \rightarrow \bullet id, E \rightarrow \bullet número \}$$

$$I_{7} = \{ E \rightarrow (E \bullet), E \rightarrow E \bullet + E, E \rightarrow E \bullet * E \}$$

$$I_{8} = \{ E \rightarrow E + E \bullet, E \rightarrow E \bullet + E, E \rightarrow E \bullet * E \}$$

$$I_{9} = \{ E \rightarrow E * E \bullet, E \rightarrow E \bullet + E, E \rightarrow E \bullet * E \}$$

$$I_{10} = \{ E \rightarrow (E) \bullet \}$$

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 35 / 39)

3.- Autómata que reconoce los prefijos viables

Estado	+	*	()	id	número	E
0			2		3	4	1
1	5	6					
2			2		3	4	7
3							
4							
5			2		3	4	8
6			2		3	4	9
7	5	6		10			
8	5	6					
9	5	6					
10							

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 36 / 39)

4.- Completar la parte acción: conjuntos auxiliares

	Primero	Siguiente		
E'	"(", id, número	\$		
Ε	"(", id, número	\$, ")" , +, *,		

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 37 / 39)

4.- Completar la parte acción

	acción						ir₋a	
Estado	+	*	()	id	número	\$	E
0			d 2		d 3	d 4		
1	d 5	d 6					ACEPTAR	
2			d 2		d 3	d 4		
3	r 4	r 4		r 4			r 4	
4	r 5	r 5		r 5			r 5	
5			d 2		d 3	d 4		
6			d 2		d 3	d 4		
7	d 5	d 6		d 10				
8	d 5, r 1	d 6, r 1		r 1			r 1	
9	d 5, r 2	d 6, r 2		r 2			r 2	
10	r 3	r 3		r 3			r 3	

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 38 / 39)

4.- Completar la parte ir_a

	acción						ir₋a	
Estado	+	*	()	id	número	\$	E
0			d 2		d 3	d 4		1
1	d 5	d 6					ACEPTAR	
2			d 2		d 3	d 4		7
3	r 4	r 4		r 4			r 4	
4	r 5	r 5		r 5			r 5	
5			d 2		d 3	d 4		8
6			d 2		d 3	d 4		9
7	d 5	d 6		d 10				
8	d 5, r 1	d 6, r 1		r 1			r 1	
9	d 5, r 2	d 6, r 2		r 2			r 2	
10	r 3	r 3		r 3			r 3	

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (1.- Gramática de las expresiones aritméticas. 39 / 39)

- La gramática genera conflictos de desplazamiento-reducción en los estados 8 y 9.
- Los métodos LR-canónico y LALR evitan que se generen estos conflictos.
- También se puede diseñar otra gramática que tenga en cuenta la mayor precedencia de la multiplicación (*) sobre la suma (+).

Conflictos en el análisis sintáctico ascendente SLR

Ejercicio (Nueva gramática de las expresiones aritméticas)

• Dada la siguiente gramática

```
P = \{ \\ (1) \ E \rightarrow E + T \\ (2) \ E \rightarrow T \\ (3) \ T \rightarrow T * F \\ (4) \ T \rightarrow F \\ (5) \ F \rightarrow (E) \\ (6) \ F \rightarrow identificador \\ (7) \ F \rightarrow número \\ \}
```

comprueba que su tabla de análisis SLR no tiene conflictos

Conflictos en el análisis sintáctico ascendente SLR

Ejemplos (Conflictos en el análisis sintáctico SLR)

- Ejemplos de conflicto de desplazamiento reducción.
 - 1.- Gramática de las expresiones aritméticas
 - 2.- Gramática de sentencia de asignación

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 1/30)

```
P = \{ \\ (1) S \rightarrow L = R \\ (2) S \rightarrow R \\ (3) L \rightarrow R \\ (4) L \rightarrow identificador \\ (5) R \rightarrow L
```

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (Prefijos viables

2 / 30)

Derivación por la derecha

$$S \Rightarrow \underbrace{L = R}_{1}$$

$$\Rightarrow L = \underline{L}$$

$$\Rightarrow L = *R$$

$$\Rightarrow L = *L$$

$$\Rightarrow L = *\underline{id}$$

$$\Rightarrow L = *\underline{id}$$

$$\Rightarrow \underline{id} = *\underline{id}$$

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 3 / 30)

- Significado
 - L: I-value, representa una ubicación.
 - R: r-value, representa un valor que puede almacenarse en una ubicación.
 - *: "contenido de".

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 4 / 30)

1.- Ampliación de la gramática

```
P = \{ \\ (1') \ S' \rightarrow S \\ (1) \ S \rightarrow L = R \\ (2) \ S \rightarrow R \\ (3) \ L \rightarrow R \\ (4) \ L \rightarrow identificador \\ (5) \ R \rightarrow L \}
```

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 5 / 30)

- 2.- Construcción de la colección canónica
 - Conjunto lo: primera parte

$$I_{0} = clausura(\{S' \rightarrow \bullet S\})$$

$$= \{ S' \rightarrow \bullet S, \\ S \rightarrow \bullet L = R, S \rightarrow \bullet R, \\ L \rightarrow \bullet * R, L \rightarrow \bullet \text{ identificador}, \\ R \rightarrow \bullet L \}$$

• El conjunto I_0 tiene transiciones con S, L, R, * e identificador

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 6 / 30)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₀: segunda parte

$$Ir_{-a}(I_0, S) = clausura(\{S' \rightarrow S \bullet \})$$

 $= \{S' \rightarrow S \bullet \}$
 $= I_1$
 $Ir_{-a}(I_0, L) = clausura(\{S \rightarrow L \bullet = R, R \rightarrow L \bullet \})$
 $= \{S \rightarrow L \bullet = R, R \rightarrow L \bullet \}$
 $= I_2$
 $Ir_{-a}(I_0, R) = clausura(\{S \rightarrow R \bullet \})$
 $= \{S \rightarrow R \bullet \}$
 $= I_3$

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₀: tercera parte

```
Ir_{-a}(I_0, *) = clausura(\{L \rightarrow * \bullet R \})
= \{
L \rightarrow * \bullet R, R \rightarrow \bullet L,
L \rightarrow \bullet * R, L \rightarrow \bullet id
\}
= I_4
Ir_{-a}(I_0, id) = clausura(\{L \rightarrow id \bullet \})
= \{L \rightarrow id \bullet \}
= I_5
```

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación

/ 30)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_1 = \{S' \to S \bullet \}$

$$Ir_{-a}(I_1, X) = \emptyset \quad \forall X \in V$$

El conjunto l_1 no tiene transiciones.

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 9 / 30)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_2 = \{S \rightarrow L \bullet = R, R \rightarrow L \bullet \}$

$$Ir_a(I_2, \text{ "="}) = clausura(\{S \rightarrow L = \bullet R \})$$

= $\{$
 $S \rightarrow L = \bullet R, R \rightarrow \bullet L,$
 $L \rightarrow \bullet * R, L \rightarrow \bullet id$
 $\}$
= I_6

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 10 / 30)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_3 = \{S \rightarrow R \bullet \}$

$$Ir_{-a}(I_3, X) = \emptyset \quad \forall X \in V$$

El conjunto l_3 no tiene transiciones.

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 11 / 30)

 $I_4 = \{L \rightarrow * \bullet R, R \rightarrow \bullet L, L \rightarrow \bullet * R, L \rightarrow \bullet \text{ id } \}$

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto 14: primera parte

$$Ir_a(I_4, R) = clausura(\{L \rightarrow *R \bullet \})$$

= $\{L \rightarrow *R \bullet \}$
= I_7
 $Ir_a(I_4, L) = clausura(\{R \rightarrow L \bullet \})$

 $= \{R \rightarrow L \bullet \}$

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 12 / 30)

2.- Construcción de la colección canónica

 $= l_5$

• Transiciones del conjunto 14: segunda parte

$$I_4 = \{L \rightarrow * \bullet R, R \rightarrow \bullet L, L \rightarrow \bullet * R, L \rightarrow \bullet \text{ id } \}$$

$$Ir_{-a}(I_4, *) = clausura(\{L \rightarrow * \bullet R\})$$

$$= I_4$$

$$Ir_{-a}(I_4, \text{id}) = clausura(\{L \rightarrow \text{id} \bullet \})$$

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 13 / 30)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_5 = \{L \rightarrow id \bullet \}$

$$Ir_{-a}(I_5, X) = \emptyset \quad \forall X \in V$$

El conjunto l_5 no tiene transiciones.

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 14 / 30)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₆: primera parte

$$I_6 = \{ S \rightarrow L = \bullet R, R \rightarrow \bullet L, L \rightarrow \bullet * R, L \rightarrow \bullet id \}$$

$$Ir_a(I_6, R) = clausura(\{S \rightarrow L = R \bullet \})$$

= $\{S \rightarrow L = R \bullet \}$
= I_9

$$Ir_{-a}(I_6, L) = clausura(\{R \rightarrow L \bullet \})$$

= I_8

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 15 / 30)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₆: segunda parte

$$I_6 = \{ S \rightarrow L = \bullet R, R \rightarrow \bullet L, L \rightarrow \bullet * R, L \rightarrow \bullet id \}$$

$$Ir_a(I_6, *) = clausura(\{L \rightarrow * \bullet R\})$$

$$= I_4$$

$$Ir_a(I_6, id) = clausura(\{L \rightarrow id \bullet \})$$

$$= I_5$$

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 16 / 30)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_7 = \{L \rightarrow * R \bullet \}$

$$Ir_{-a}(I_7, X) = \emptyset \quad \forall X \in V$$

El conjunto l_7 no tiene transiciones.

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 17 / 30)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_8 = \{R \rightarrow L \bullet \}$

$$Ir_{-a}(I_8, X) = \emptyset \quad \forall X \in V$$

El conjunto l_8 no tiene transiciones.

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 18 / 30)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_9 = \{S \rightarrow L = R \bullet \}$

$$Ir_a(I_9, X) = \emptyset \quad \forall X \in V$$

El conjunto l₉ no tiene transiciones.

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 19 / 30)

- 2.- Construcción de la colección canónica
 - Colección canónica de elementos LR(0): primera parte

$$I_{0} = \{ S' \rightarrow \bullet S, S \rightarrow \bullet L = R, S \rightarrow \bullet R, \\ L \rightarrow \bullet * R, L \rightarrow \bullet \text{ identificador}, R \rightarrow \bullet L \}$$

$$I_{1} = \{ S' \rightarrow S \bullet \}$$

$$I_{2} = \{ S \rightarrow L \bullet = R, R \rightarrow L \bullet \}$$

$$I_{3} = \{ S \rightarrow R \bullet \}$$

$$I_{4} = \{ L \rightarrow * \bullet R, R \rightarrow \bullet L, L \rightarrow \bullet * R, L \rightarrow \bullet \text{ id} \}$$

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 20 / 30)

- 2.- Construcción de la colección canónica
 - Colección canónica de elementos LR(0): segunda parte

$$I_{5} = \{L \rightarrow id \bullet \}$$

$$I_{6} = \{S \rightarrow L = \bullet R, R \rightarrow \bullet L, L \rightarrow \bullet * R, L \rightarrow \bullet id \}$$

$$I_{7} = \{L \rightarrow * R \bullet \}$$

$$I_{8} = \{R \rightarrow L \bullet \}$$

$$I_{9} = \{S \rightarrow L = R \bullet \}$$

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 21 / 30

3.- Autómata que reconoce los prefijos viables

Estado	=	*	id	S	L	R
0		4	5	1	2	3
1						
2	6					
3						
4		4	5		8	7
5						
6		4	5		8	9
7						
8						
9						

Conflictos en el análisis sintáctico ascendente SLR

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 23 / 30)

4.- Completar la parte acción: conjuntos auxiliares

	PRIMERO	SIGUIENTE
S	*, identificador	\$
L	*, identificador	<i>\$,</i> =
R	*, identificador	<i>\$,</i> =

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 24 / 30)

4.- Completar la parte acción

	Acción				Ir-a		
Estado	=	*	id	\$	S	L	R
0		d 4	d 5		1	2	3
1				ACEPTAR			
2	d 6 r 5			r 5			
3				r 2			
4		d 4	d 5			8	7
5	r 4			r 4			
6		d 4	d 5			8	9
7	r 3			r 3			
8	r 5			r 5			
9				r 1			

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 25 / 30)

Pila	Entrada	Acción
0	id = * id \$	d 5
0 <u>id</u> 5	= * id \$	$r 4 L \rightarrow id$
0 L 2	= * id\$	Conflicto: d 6, r 5

Nota

En este caso, lo correcto es desplazar.

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 26 / 30)

Si se desplaza: primera parte

Pila	Entrada	Acción
0	id = * id \$	d 5
0 <u>id 5</u>	= * id \$	$r \not A L \rightarrow id$
0 L 2	= * id \$	d 6
0 L 2 = 6	* id \$	d 4
0 L 2 = 6 * 4	id \$	d 5
0 L 2 = 6 * 4 id 5	\$	$r \not A L \rightarrow id$
0 L 2 = 6 * 4 <u>L 8</u>	\$	$r 5 R \rightarrow L$
0 L 2 = 6 * 4 R 7	\$	$r 3 L \rightarrow R$

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 27 / 30)

Si se desplaza: segunda parte

Pila	Entrada	Acción
0 L 2 = 6 <u>L 8</u>	\$	$r 5 R \rightarrow L$
0 L 2 = 6 R 9	\$	$r 1 S \rightarrow L = R$
0 S 1	\$	Aceptar

El análisis termina satisfactoriamente.

Conflictos en el análisis sintáctico ascendente SLR

Ejemplo (2.- Gramática de sentencia de asignación 28 / 30)

Si se reduce

Pila	Entrada	Acción
0	id = * id \$	d 5
0 <u>id 5</u>	= * id \$	$r \not A L \rightarrow id$
0 <u>L 2</u>	= * id \$	$r 5 R \rightarrow L$
0 <u>R 3</u>	= * id \$	Error

Conflictos en el análisis sintáctico ascendente SLR

Notas (2.- Gramática de sentencia de asignación

29 / 30)

- Se intenta reducir
 - con la regla $R \rightarrow L$ en el estado 2
 - $y con todos los símbolos de siguiente(R) = \{=, \$\},$

pero solamente debería reducir con el símbolo \$.

- Se está intentando una derivación por la derecha que la gramática no puede generar.
- No existe ningún prefijo viable que empiece por R =.
 (Véase el autómata que reconoce los prefijos viables.)

Tema V.- Análisis Sintáctico Ascendente

Procesadores de Lenguajes

Análisis sintáctico ascendente SLR

Conflictos en el análisis sintáctico ascendente SLR

Notas (2.- Gramática de sentencia de asignación

) / 30)

- La gramática no es ambigua.
- El análisis sintáctico SLR no es lo bastante potente
- Los métodos LR-canónico y LALR evitan que aparezca este conflicto.

Sección actual

- Introducción
- 2 Análisis sintáctico ascendente SLR
- 3 Análisis sintáctico ascendente LR-canónico
- 4 Análisis sintáctico ascendente LALR
- 5 Métodos de recuperación de errores

Subsección actual

- 3 Análisis sintáctico ascendente LR-canónico
 - Introducción
 - Colección canónica de elementos LR(1)
 - Algoritmo de construcción de la tabla de análisis LR-canónico
 - Ejemplos de análisis LR-canónico
 - Inconvenientes del método LR-canónico

Contenido de la subsección

- 3 Análisis sintáctico ascendente LR-canónico
 - Introducción
 - Descripción
 - Elemento-LR(1)
 - Elemento-LR(1) válido para un prefijo viable
 - Colección canónica de elementos LR(1)
 - Algoritmo de construcción de la tabla de análisis LR-canónico
 - Ejemplos de análisis LR-canónico
 - Inconvenientes del método LR-canónico

Introducción

Método LR-canónico

- Es el método de análisis más preciso de los tres métodos LR
- Mucho más complejo debido a la construcción de su colección canónica.

Contenido de la subsección

- Análisis sintáctico ascendente LR-canónico
 - Introducción
 - Descripción
 - Elemento-LR(1)
 - Elemento-LR(1) válido para un prefijo viable
 - Colección canónica de elementos LR(1)
 - Algoritmo de construcción de la tabla de análisis LR-canónico
 - Ejemplos de análisis LR-canónico
 - Inconvenientes del método LR-canónico

Introducción

Definición (Elemento-LR(1))

• $Si A \rightarrow X_1 X_2 \cdots X_n \in P \ y \ \sigma \in V_T \cup \{\$\}$, sus elementos-LR(1) son:

$$[A \rightarrow \bullet \ X_1 \ X_2 \cdots \ X_n, \ \sigma]$$

$$[A \rightarrow X_1 \bullet X_2 \cdots \ X_n, \ \sigma]$$

$$[A \rightarrow X_1 \ X_2 \cdots \bullet \ X_n, \ \sigma]$$

$$[A \rightarrow X_1 \ X_2 \cdots \ X_n \bullet, \ \sigma]$$

• $Si A \rightarrow \epsilon \in P \ y \ \sigma \in V_T \cup \{\$\}$, su elemento-LR(1) es: $[A \rightarrow \bullet, \ \sigma]$

Introducción

Definición (Partes de un elemento-LR(1))

$$[\underbrace{A \rightarrow \beta_1 \bullet \beta_2}_{(1)}, \underbrace{\sigma}_{(2)}]$$

- 1.- Centro o corazón
- 2.- Símbolo de anticipación o lookahead

Introducción

Nota (Agrupación de elementos-LR(1))

• Si los elementos-LR(1) tiene el mismo centro entonces se pueden agrupar:

$$[A \rightarrow \beta_1 \bullet \beta_2, \sigma_1]$$
$$[A \rightarrow \beta_1 \bullet \beta_2, \sigma_2]$$

[
$$A \rightarrow \beta_1 \bullet \beta_2$$
, σ_1 , σ_2]

Contenido de la subsección

- 3 Análisis sintáctico ascendente LR-canónico
 - Introducción
 - Descripción
 - Elemento-LR(1)
 - Elemento-LR(1) válido para un prefijo viable
 - Colección canónica de elementos LR(1)
 - Algoritmo de construcción de la tabla de análisis LR-canónico
 - Ejemplos de análisis LR-canónico
 - Inconvenientes del método LR-canónico

Introducción

Definición (Elemento-LR(1) válido para un prefijo viable)

• $[A \rightarrow \beta_1 \bullet \beta_2, \sigma]$ es válido para el prefijo viable $\alpha\beta_1$ si

$$S \overset{*}{\underset{D}{\Rightarrow}} \alpha A w \underset{A \to \beta_1 \beta_2}{\Rightarrow} \alpha \beta_1 \beta_2 w$$

donde

$$w = \sigma w'$$

Introducción

Ejemplo (Elemento-LR(1) válido para un prefijo viable

$$P = \{ (1') \ S' \longrightarrow S \\ (1) \ S \longrightarrow C \ C \\ (2) \ C \longrightarrow a \ C \\ (3) \ C \longrightarrow d \\ \}$$

Derivación por la derecha

$$S' \Rightarrow \underline{S}$$

$$\Rightarrow \underline{C} C$$

$$\Rightarrow C \underline{a} C$$

$$\Rightarrow \underline{a} C \underline{a} C$$

Introducción

Ejemplo (Elemento-LR(1) válido para un prefijo viable 2 / 2)

- Prefijo viable: $\alpha \ \beta_1 = \underbrace{\mathbf{a}}_{\alpha} \underbrace{\mathbf{a}}_{\beta_1}$
- Elemento-LR(1) válido para el prefijo viable:

$$[\underbrace{C}_{A} \to \underbrace{\mathbf{a}}_{\beta_{1}} \bullet \underbrace{C}_{\beta_{2}}, \underbrace{\mathbf{a}}_{\sigma}]$$

Derivación por la derecha

$$S' \stackrel{+}{\Rightarrow} \underbrace{\mathbf{a}}_{\alpha} \underbrace{C}_{A} \underbrace{\mathbf{a} \, \mathbf{d}}_{w} \underset{C \longrightarrow \mathbf{a}C}{\Rightarrow} \underbrace{\mathbf{a}}_{\alpha} \underbrace{\mathbf{a}}_{\beta_{1}} \underbrace{C}_{\beta_{2}} \underbrace{\mathbf{a} \, \mathbf{d}}_{w}$$

Subsección actual

- 3 Análisis sintáctico ascendente LR-canónico
 - Introducción
 - Colección canónica de elementos LR(1)
 - Algoritmo de construcción de la tabla de análisis LR-canónico
 - Ejemplos de análisis LR-canónico
 - Inconvenientes del método LR-canónico

Contenido de la subsección

- 3 Análisis sintáctico ascendente LR-canónico
 - Introducción
 - Colección canónica de elementos LR(1)
 - Definición
 - Función clausura
 - Función ir a
 - Algoritmo de construcción de la colección canónica
 - Ejemplo de construcción de la colección canónica
 - Algoritmo de construcción de la tabla de análisis LR-canónico
 - Ejemplos de análisis LR-canónico
 - Inconvenientes del método LR-canónico

Colección canónica de elementos - LR(1)

Definición (Colección canónica de elementos-LR(1))

• Está compuesta por los conjuntos de elementos-LR(1) que son válidos para los prefijos viables de la gramática.

Colección canónica de elementos - LR(1)

Colección canónica de elementos-LR(1)

- Permite generar un autómata finito determinista (AFD) que reconoce los prefijos viables de la gramática.
- Funciones auxiliares para construir la colección canónica.
 - Función clausura.
 - Función Ir_a.

Contenido de la subsección

- 3 Análisis sintáctico ascendente LR-canónico
 - Introducción
 - Colección canónica de elementos LR(1)
 - Definición
 - Función clausura
 - Función ir a
 - Algoritmo de construcción de la colección canónica
 - Ejemplo de construcción de la colección canónica
 - Algoritmo de construcción de la tabla de análisis LR-canónico
 - Ejemplos de análisis LR-canónico
 - Inconvenientes del método LR-canónico

Colección canónica de elementos - LR(1)

Definición (Función clausura)

- Sea I un conjunto elementos-LR(1):
 - 1.- $I \subseteq clausura(I)$
 - 2.- $Si [A \rightarrow \alpha \bullet B \beta, \sigma] \in clausura(I) \ y \ B \rightarrow \gamma \in P$ entonces $[B \rightarrow \bullet \gamma, \sigma'] \in clausura(I)$ donde

$$\sigma' \in \mathit{primero}(\beta\sigma)$$
- $\{\epsilon\}$

Nota

Si
$$\beta = \epsilon$$
 entonces $\sigma' = \sigma$.

Colección canónica de elementos - LR(1)

```
Ejemplo (Función clausura 1/2)
P = \{ (1') \ S' \longrightarrow S \\ (1) \ S \longrightarrow C \ C \\ (2) \ C \longrightarrow a \ C \\ (3) \ C \longrightarrow d  \}
```

Colección canónica de elementos - LR(1)

```
Ejemplo (Función clausura 2/2)

clausura({ [S' \rightarrow \bullet S, \$] }) = { [S' \rightarrow \bullet S, \$], [S \rightarrow \bullet C C, \$], [C \rightarrow \bullet a C, a, d], [C \rightarrow \bullet d, a, d] } = I_0
```

Contenido de la subsección

- 3 Análisis sintáctico ascendente LR-canónico
 - Introducción
 - Colección canónica de elementos LR(1)
 - Definición
 - Función clausura
 - Función ir_a
 - Algoritmo de construcción de la colección canónica
 - Ejemplo de construcción de la colección canónica
 - Algoritmo de construcción de la tabla de análisis LR-canónico
 - Ejemplos de análisis LR-canónico
 - Inconvenientes del método LR-canónico

Colección canónica de elementos - LR(1)

Definición (Función Ir_a)

• Sea I un conjunto elementos-LR(1) y $X \in V = V_N \cup V_T$

$$Ir_a(I, X) = clausura(\{ [A \rightarrow \alpha X \bullet \beta, \sigma] \mid [A \rightarrow \alpha \bullet X \beta, \sigma] \in I\})$$

Colección canónica de elementos - LR(1)

```
Ejemplo (Función Ir_a 1/4)
P = \{ (1') \ S' \longrightarrow S \\ (1) \ S \longrightarrow C \ C \\ (2) \ C \longrightarrow a \ C \\ (3) \ C \longrightarrow d 
\}
```

Colección canónica de elementos - LR(1)

Ejemplo (Función Ir_a

(2/4)

```
I_{0} = clausura(\{ [S' \rightarrow \bullet S, \$] \})
= \{ [S' \rightarrow \bullet S, \$], [S \rightarrow \bullet C C, \$], [C \rightarrow \bullet a C, a, d], [C \rightarrow \bullet d, a, d] \}
```

El conjunto l_0 tiene transiciones l_{r-a} con S, C, a y d.

Colección canónica de elementos - LR(1)

Ejemplo (Función Ir_a

3 / 4)

• Transiciones del conjunto l₀: primera parte

$$Ir_{-a}(I_0, S) = clausura(\{ [S' \rightarrow S \bullet, \$] \})$$

= $\{ [S' \rightarrow S \bullet, \$] \}$
= I_1

$$Ir_{-a}(I_0, C) = clausura(\{ [S \rightarrow C \bullet C, \$] \})$$

$$= \{ [S \rightarrow C \bullet C, \$],$$

$$[C \rightarrow \bullet a C, \$], [C \rightarrow \bullet d, \$] \}$$

$$= I_2$$

Colección canónica de elementos - LR(1)

Ejemplo (Función Ir_a

4 / 4)

• Transiciones del conjunto l₀: segunda parte

```
\begin{array}{lll} \textit{Ir\_a}(\textit{I}_0,\,\mathbf{a}) & = & \textit{clausura}(\{\,\,[\textit{C}\rightarrow\textit{a}\,\bullet\,\textit{C},\,\mathbf{a},\,\mathbf{d}]\,\}) \\ & = & \{ \\ & \quad [\textit{C}\rightarrow\textit{a}\,\bullet\,\textit{C},\,\mathbf{a},\,\mathbf{d}], \\ & \quad [\textit{C}\rightarrow\bullet\,\mathbf{a}\,\textit{C},\,\mathbf{a},\,\mathbf{d}], \,[\textit{C}\rightarrow\bullet\,\textit{d},\,\mathbf{a},\,\mathbf{d}] \\ & \\ & = & \textit{I}_3 \\ \\ \textit{Ir\_a}(\textit{I}_0,\,\mathbf{d}) & = & \textit{clausura}(\{\,\,[\textit{C}\rightarrow\textit{d}\,\bullet,\,\mathbf{a},\,\mathbf{d}]\,\}) \\ & = & \{\,\,[\textit{C}\rightarrow\textit{d}\,\bullet,\,\mathbf{a},\,\mathbf{d}]\,\} \\ & = & \textit{I}_4 \\ \end{array}
```

Contenido de la subsección

- 3 Análisis sintáctico ascendente LR-canónico
 - Introducción
 - Colección canónica de elementos LR(1)
 - Definición
 - Función clausura
 - Función ir a
 - Algoritmo de construcción de la colección canónica
 - Ejemplo de construcción de la colección canónica
 - Algoritmo de construcción de la tabla de análisis LR-canónico
 - Ejemplos de análisis LR-canónico
 - Inconvenientes del método LR-canónico

Colección canónica de elementos - LR(1)

Algoritmo (Construcción de la colección canónica)

```
Inicio
   I_0 \leftarrow clausura(\{ [S' \rightarrow \bullet S, \$] \})
   C \leftarrow \{l_0\} \land l_0 no marcado
   para cada I \in C \land I no marcado hacer
      marcar I
      para cada X \in V hacer
        I' \leftarrow Ir_a(I, X)
        si ((I' \neq \emptyset) \land (I' \notin C))
          entonces C \leftarrow C \cup \{I'\} \land I' no marcado
        fin si
      fin para
   fin para
fin
```

Colección canónica de elementos - LR(1)

Notas (Construcción de la colección canónica)

- Genera un autómata finito determinista (AFD) que reconoce los prefijos viables de la gramática.
 - Los elementos-LR(1) se agrupan en conjuntos que se corresponden con los estados del autómata.
 - Todos los estados del autómata son finales.
 - Los estados del autómata se corresponderán con los estados de la tabla de análisis sintáctico LR-canónico.

Contenido de la subsección

- 3 Análisis sintáctico ascendente LR-canónico
 - Introducción
 - Colección canónica de elementos LR(1)
 - Definición
 - Función clausura
 - Función ir_a
 - Algoritmo de construcción de la colección canónica
 - Ejemplo de construcción de la colección canónica
 - Algoritmo de construcción de la tabla de análisis LR-canónico
 - Ejemplos de análisis LR-canónico
 - Inconvenientes del método LR-canónico

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

Gramática de contexto libre

```
P = \{
 (1) S \longrightarrow C C
 (2) C \longrightarrow a C
```

(3) $C \longrightarrow \mathbf{d}$

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

/ 23)

• Amplicación de la gramática de contexto libre

```
P' = \{ (1') \ S' \longrightarrow S \\ (1) \ S \longrightarrow C C \\ (2) \ C \longrightarrow a C \\ (3) \ C \longrightarrow d \\ \}
```

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

3 / 23)

• Construcción del conjunto l₀

```
I_{0} = clausura(\{ [S' \rightarrow \bullet S, \$] \})
= \{ [S' \rightarrow \bullet S, \$], [S \rightarrow \bullet C C, \$], [C \rightarrow \bullet a C, a, d], [C \rightarrow \bullet d, a, d] \}
```

 l_0 tiene transiciones con S, C, a y d.

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

/ 23)

• Transiciones del conjunto l₀: primera parte

$$Ir_{-a}(I_0, S) = clausura(\{ [S' \rightarrow S \bullet, \$] \})$$

$$= \{ [S' \rightarrow S \bullet, \$] \}$$

$$= I_1$$

$$Ir_{-a}(I_0, C) = clausura(\{ [S \rightarrow C \bullet C, \$] \})$$

$$= \{ [S \rightarrow C \bullet C, \$], [C \rightarrow \bullet d, \$]$$

$$= I_2$$

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

/ 23)

• Transiciones del conjunto l₀: segunda parte

```
Ir_a(I_0, \mathbf{a}) = clausura(\{ [C \rightarrow a \bullet C, \mathbf{a}, \mathbf{d}] \})
                                          [C \rightarrow a \bullet C, a, d]
                                          [C \rightarrow \bullet \ \mathbf{a} \ C, \ \mathbf{a}, \ \mathbf{d}], \ [C \rightarrow \bullet \ \mathbf{d}, \ \mathbf{a}, \ \mathbf{d}]
Ir_a(I_0, \mathbf{d}) = clausura(\{ [C \rightarrow \mathbf{d} \bullet, \mathbf{a}, \mathbf{d}] \})
                            = \{ (C \rightarrow d \bullet, a, d) \}
```

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

6 / 23)

• Autómata que reconoce los prefijos viables Transiciones de l₀

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

7 / 23)

• Transiciones del conjunto $I_1 = \{ [S' \rightarrow S \bullet, \$] \}$

$$Ir_a(I_1, X) = \emptyset \quad \forall X \in V$$

El conjunto l_1 no tiene transiciones.

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

/ 23)

• Transiciones del conjunto 12: primera parte

$$I_2 = \{ [S \rightarrow C \bullet C, \$], [C \rightarrow \bullet a C, \$], [C \rightarrow \bullet d, \$] \}$$

$$Ir_{-a}(I_2, C) = clausura(\{ [S \rightarrow C C \bullet, \$] \})$$

= $\{ [S \rightarrow C C \bullet, \$] \}$
= I_5

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

9 / 23)

• Transiciones del conjunto l₂: segunda parte

```
I_2 = \{ [S \rightarrow C \bullet C, \$], [C \rightarrow \bullet a C, \$], [C \rightarrow \bullet d, \$] \}
  Ir_a(l_2, \mathbf{a}) = clausura(\{ [C \rightarrow \mathbf{a} \bullet C, \$] \})
                                        [C \rightarrow \mathbf{a} \bullet C, \$],
                                        [C \rightarrow \bullet \ \mathbf{a} \ C, \$], [C \rightarrow \bullet \ \mathbf{d}, \$]
  Ir_a(l_2, \mathbf{d}) = clausura(\{ [C \rightarrow \mathbf{d} \bullet, \$] \})
                           = \{ [C \rightarrow d \bullet, \$] \}
```

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

10 / 23)

• Autómata que reconoce los prefijos viables Transiciones de l₂

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica 11 / 23)

• Transiciones del conjunto /3

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

• Autómata que reconoce los prefijos viables Transiciones de l₃

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

13 / 23)

• Transiciones del conjunto $I_4 = \{ [C \rightarrow d \bullet, a, d] \}$

$$Ir_{-a}(I_4, X) = \emptyset \quad \forall X \in V$$

El conjunto l₄ no tiene transiciones.

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

14 / 23)

• Transiciones del conjunto $I_5 = \{ [S \rightarrow C C \bullet, \$] \}$

$$Ir_{-a}(I_5, X) = \emptyset \quad \forall X \in V$$

El conjunto l₅ no tiene transiciones.

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

15 / 23)

• Transiciones del conjunto 16

$$I_{6} = \{ [C \rightarrow \mathbf{a} \bullet C, \$], [C \rightarrow \bullet \mathbf{a} C, \$], [C \rightarrow \bullet d, \$] \}$$

$$I_{r_{a}}(I_{6}, C) = clausura(\{ [C \rightarrow \mathbf{a} C \bullet, \$]\})$$

$$= \{ [C \rightarrow \mathbf{a} C \bullet, \$] \}$$

$$= I_{9}$$

$$I_{r_{a}}(I_{6}, \mathbf{a}) = clausura(\{ [C \rightarrow \mathbf{a} \bullet C, \$] \})$$

$$= I_{6}$$

$$I_{r_{a}}(I_{6}, \mathbf{d}) = clausura(\{ [C \rightarrow \mathbf{d} \bullet, \mathbf{a}] \})$$

$$= I_{7}$$

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

16 / 23)

• Autómata que reconoce los prefijos viables Transiciones de l₆

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

17 / 23)

• Transiciones del conjunto $I_7 = \{ [C \rightarrow d \bullet, \$] \}$

$$Ir_a(I_7, X) = \emptyset \quad \forall X \in V$$

El conjunto l₇ no tiene transiciones.

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

18 / 23)

• Transiciones del conjunto $I_8 = \{ [C \rightarrow a \ C \bullet, a, d] \}$

$$Ir_{-a}(I_8, X) = \emptyset \quad \forall X \in V$$

El conjunto l₈ no tiene transiciones.

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

7 (23)

• Transiciones del conjunto $l_9 = \{ [S \rightarrow C C \bullet, \$] \}$

$$Ir_a(I_9, X) = \emptyset \quad \forall X \in V$$

El conjunto l₉ no tiene transiciones.

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

20 / 23)

• Colección canónica de elementos - LR(1): primera parte

$$I_{0} = \{ [S' \rightarrow \bullet S, \$], [S \rightarrow \bullet C C, \$],$$

$$[C \rightarrow \bullet a C, a, d], [C \rightarrow \bullet d, a, d] \}$$

$$I_{1} = \{ [S' \rightarrow S \bullet, \$] \}$$

$$I_{2} = \{ [S \rightarrow C \bullet C, \$], [C \rightarrow \bullet a C, \$], [C \rightarrow \bullet d, \$] \}$$

$$I_{3} = \{ [C \rightarrow a \bullet C, a, d], [C \rightarrow \bullet a C, a, d], [C \rightarrow \bullet d, a, d] \}$$

$$I_{4} = \{ [C \rightarrow d \bullet, a, d] \}$$

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica 21 / 23)

• Colección canónica de elementos - LR(1): segunda parte

$$I_{5} = \{ [S \rightarrow C \ C \bullet, \$] \}$$

$$I_{6} = \{ [C \rightarrow \mathbf{a} \bullet C, \$], [C \rightarrow \bullet \mathbf{a} \ C, \$], [C \rightarrow \bullet \mathbf{d}, \$] \}$$

$$I_{7} = \{ [C \rightarrow \mathbf{d} \bullet, \$] \}$$

$$I_{8} = \{ [C \rightarrow \mathbf{a} \ C \bullet, \mathbf{a}, \mathbf{d}] \}$$

$$I_{9} = \{ [C \rightarrow \mathbf{a} \ C \bullet, \$] \}$$

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

22 / 23)

Autómata que reconoce los prefijos viables

Estado	a	d	5	С
0	3	4	1	2
1				
3	<i>6</i>	7		5 8
3	3	4		8
4				
5				
6	6	7		9
7				
8				
9				

Colección canónica de elementos - LR(1)

Ejemplo (Construcción de la colección canónica

23 / 23)

Autómata que reconoce los prefijos viables

Subsección actual

- 3 Análisis sintáctico ascendente LR-canónico
 - Introducción
 - Colección canónica de elementos LR(1)
 - Algoritmo de construcción de la tabla de análisis LR-canónico
 - Ejemplos de análisis LR-canónico
 - Inconvenientes del método LR-canónico

Algoritmo de construcción de la tabla de análisis LR-canónico

Algoritmo (Construcción de la tabla LR-canónica 1/10)

- 1.- Ampliar la gramática con la regla de producción S' o S.
- 2.- Construir la colección canónica de Elementos-LR(1).
- 3.- Generar el autómata que reconoce los prefijos viables.
- 4.- Completar la parte acción.
- 5.- Completar la parte ir_a.

Algoritmo de construcción de la tabla de análisis LR-canónico

Algoritmo (Construcción de la tabla LR-canónica 2 / 10)

- 1.- Ampliar la gramática con la regla de producción $S' \rightarrow S$.
 - Evita que el **símbolo inicial** aparezca en la parte derecha de una regla de producción.

Algoritmo de construcción de la tabla de análisis LR-canónico

Algoritmo (Construcción de la tabla LR-canónica 3 / 10)

- 2.- Construir la colección canónica de Elementos-LR(1).
 - Se debe comenzar por $I_0 = clausura$ ({ $[S' \rightarrow \bullet S, \$]$ })

Algoritmo de construcción de la tabla de análisis LR-canónico

Algoritmo (Construcción de la tabla LR-canónica 4 / 10)

- 3.- Generar el autómata que reconoce los prefijos viables.
 - Los conjuntos de elementos-LR(1) se corresponden con los estados del autómata.
 - Todos los estados del autómata son finales.
 - El estado inicial se corresponde con el conjunto de elementos que contenga a $[S' \rightarrow \bullet S, \$]$, que generalmente es I_0

Algoritmo de construcción de la tabla de análisis LR-canónico

Algoritmo (Construcción de la tabla LR-canónica

- 4.- Completar la parte acción
 - 4.1 Desplazar
 - 4.2 Reducir
 - 4.3 Aceptar
 - 4.4 Función de error

Algoritmo de construcción de la tabla de análisis LR-canónico

Algoritmo (Construcción de la tabla LR-canónica 6 / 10)

- 4.- Completar la parte acción:
 - 4.1 Desplazar
 - Si $[A \to \alpha \bullet \sigma \beta, \sigma'] \in I_i \land \sigma \in V_T \land Ir_a(I_i, \sigma) = I_j$ entonces acción $[i, \sigma] = d$
 - 1.- se desplaza el símbolo σ desde la entrada a la pila
 - 2.- y se pasa al estado j.

Algoritmo de construcción de la tabla de análisis LR-canónico

Algoritmo (Construcción de la tabla LR-canónica

/ 10)

- 4.- Completar la parte acción:
 - 4.2.- Reducir.
 - $Si[A \to \alpha \bullet, \sigma] \in I_i$ entonces $acción[i, \sigma] = r k$ donde
 - k representa la regla de producción k: $A \rightarrow \alpha \in P$

Nota

No es necesario calcular el conjunto Siguiente(A)

Algoritmo de construcción de la tabla de análisis LR-canónico

Algoritmo (Construcción de la tabla LR-canónica

- 4.- Completar la parte acción:
 - 4.3.- Aceptar
 - $Si [S' \rightarrow S \bullet, \$] \in I_i$ entonces acción[i, \$] = Aceptar

Algoritmo de construcción de la tabla de análisis LR-canónico

Algoritmo (Construcción de la tabla LR-canónica

- 4.- Completar la parte acción:
 - 4.4.- Función de error

 Las celdas vacías de la parte acción se completarán con funciones de tratamiento de error.

Algoritmo de construcción de la tabla de análisis LR-canónico

Algoritmo (Construcción de la tabla LR-canónica

- 5.- Completar la parte ir_a
 - Si $I_{r-a}(I_i, A) = I_i \land A \in V_N$ entonces $I_{r-a}[i, A] = i$

Algoritmo de construcción de la tabla de análisis LR-canónico

Ejercicio (Construcción de la tabla LR-canónica)

Las celdas vacías de la parte ir_a nunca se consultarán: ¡demuéstralo!.

Subsección actual

- 3 Análisis sintáctico ascendente LR-canónico
 - Introducción
 - Colección canónica de elementos LR(1)
 - Algoritmo de construcción de la tabla de análisis LR-canónico
 - Ejemplos de análisis LR-canónico
 - Inconvenientes del método LR-canónico

Contenido de la subsección

- 3 Análisis sintáctico ascendente LR-canónico
 - Introducción
 - Colección canónica de elementos LR(1)
 - Algoritmo de construcción de la tabla de análisis LR-canónico
 - Ejemplos de análisis LR-canónico
 - Gramática que reconoce $L(a^*da^*d)$
 - Gramática de sentencia de asignación
 - Gramática de las enumeraciones
 - Inconvenientes del método LR-canónico

Ejemplos de análisis LR-canónico

```
Ejemplo (Gramática que reconoce L(a^*da^*d) 1 / 10)
P = \{ (1) \ S \longrightarrow C \ C (2) \ C \longrightarrow a \ C (3) \ C \longrightarrow d \}
```

Ejemplos de análisis LR-canónico

```
Ejemplo (Gramática que reconoce L(a^*da^*d) 2 / 10)

1.- Ampliación de la gramática

P' = \{
(1') \ S' \longrightarrow S
(1) \ S \longrightarrow C \ C
(2) \ C \longrightarrow a \ C
(3) \ C \longrightarrow d
\}
```

Ejemplos de análisis LR-canónico

Ejemplo (Gramática que reconoce L(a^*da^*d) 3 / 10) 2.- Colección canónica: primera parte $I_0 = \{ [S' \rightarrow \bullet S, \$], [S \rightarrow \bullet C C, \$], [C \rightarrow \bullet a C, a, d], [C \rightarrow \bullet d, a, d] \}$ $I_1 = \{ [S' \rightarrow S \bullet, \$] \}$

 $I_2 = \{ [S \rightarrow C \bullet C, \$], [C \rightarrow \bullet a C, \$], [C \rightarrow \bullet d, \$] \}$

 $I_3 = \{ [C \rightarrow a \bullet C, a, d], [C \rightarrow \bullet a C, a, d], [C \rightarrow \bullet d, a, d] \}$

 $I_4 = \{ [C \rightarrow \mathbf{d} \bullet, \mathbf{a}, \mathbf{d}] \}$

Ejemplos de análisis LR-canónico

Ejemplo (Gramática que reconoce $L(a^*da^*d)$ 4 / 10)

2.- Colección canónica: segunda parte

$$I_{5} = \{ [S \rightarrow C \ C \bullet, \$] \}$$

$$I_{6} = \{ [C \rightarrow a \bullet C, \$], [C \rightarrow \bullet a \ C, \$], [C \rightarrow \bullet d, \$] \}$$

$$I_{7} = \{ [C \rightarrow d \bullet, \$] \}$$

$$I_{8} = \{ [C \rightarrow a \ C \bullet, a, d] \}$$

$$I_{9} = \{ [C \rightarrow a \ C \bullet, \$] \}$$

Procesadores de Lenguajes

Análisis sintáctico ascendente LR-canónico

Ejemplos de análisis LR-canónico

Ejemplo (Gramática que reconoce $L(a^*da^*d)$ 5 / 10)

3.- Autómata que reconoce los prefijos viables

Representación gráfica

Ejemplos de análisis LR-canónico

Ejemplo (Gramática que reconoce $L(a^*da^*d)$

6 / 10)

3.- Autómata que reconoce los prefijos viables

Representación tabular

Estado	a	d	S	С
0	3	4	1	2
1				
2	6	7		5
3	3	4		8
4				
5				
6	6	7		9
7				
8				
9				

Ejemplos de análisis LR-canónico

Ejemplo (Gramática que reconoce $L(a^*da^*d)$

7 / 10)

4.- Completar la parte acción

	Acción			Ir-a	
Estado	a	d	\$	S	С
0	d 3	d 4			
1			ACEPTAR		
2	d 6	d 7			
3	d 3	d 4			
4	r 3	r 3			
5			r 1		
6	d 6	d 7			
7			r 3		
8	r 2	r 2			
9			r 2		

Ejemplos de análisis LR-canónico

Ejemplo (Gramática que reconoce $L(a^*da^*d)$

8 / 10)

5.- Completar la parte ir_a

	Acción			Ir-a	
Estado	a	d	\$	S	С
0	d 3	d 4		1	2
1			ACEPTAR		
2	d 6	d 7			5
3	d 3	d 4			8
4	r 3	r 3			
5			r 1		
6	d 6	d 7			9
7			r 3		
8	r 2	r 2			
9			r 2		

Ejemplos de análisis LR-canónico

Ejemplo (Gramática que reconoce $L(a^*da^*d)$

/ 10)

• Análisis sintáctico ascendente LR-canónico: primera parte

Pila	Entrada	Acción
0	adaad\$	d 3
0 a 3	daad\$	d 4
0 a 3 <u>d 4</u>	aad\$	<i>r 3 C</i> → d
0 <u>a 3 C 8</u>	aad\$	$r 2 C \rightarrow \mathbf{a} C$
0 C 2	aad\$	d 6
0 C 2 a 6	a d \$	d 6
0 C 2 a 6 a 6	d \$	d 7

Ejemplos de análisis LR-canónico

Ejemplo (Gramática que reconoce $L(a^*da^*d)$

10 / 10)

Análisis sintáctico ascendente LR-canónico: segunda parte

Pila	Entrada	Acción
0 C 2 a 6 a 6 <u>d 7</u>	\$	<i>r 3 C</i> → d
0 C 2 a 6 <u>a 6 C 9</u>	\$	$r 2 C \rightarrow a C$
0 C 2 <u>a 6 C 9</u>	\$	$r 2 C \rightarrow a C$
0 <u>C 2 C 5</u>	\$	<i>r</i> 1 <i>S</i> → <i>C C</i>
0 S 1	\$	Aceptar

Contenido de la subsección

- 3 Análisis sintáctico ascendente LR-canónico
 - Introducción
 - Colección canónica de elementos LR(1)
 - Algoritmo de construcción de la tabla de análisis LR-canónico
 - Ejemplos de análisis LR-canónico
 - Gramática que reconoce L(a*da*d)
 - Gramática de sentencia de asignación
 - Gramática de las enumeraciones
 - Inconvenientes del método LR-canónico

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 1/40)

```
P = \{ \\ (1) \ S \longrightarrow L = R \\ (2) \ S \longrightarrow R \\ (3) \ L \longrightarrow R \\ (4) \ L \longrightarrow \text{identificador} \\ (5) \ R \longrightarrow L
```

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 2/40)

1.- Ampliación de la gramática

```
P' = \{ \\ (1') \ S' \longrightarrow S \\ (1) \ S \longrightarrow L = R \\ (2) \ S \longrightarrow R \\ (3) \ L \longrightarrow R \\ (4) \ L \longrightarrow identificador \\ (5) \ R \longrightarrow L \}
```

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 3 / 40)

- 2.- Construcción de la colección canónica
 - Conjunto 1₀

```
I_0 = clausura(\{ [S' \rightarrow \bullet S, \$] \})
= \{
[S' \rightarrow \bullet S, \$],
[S \rightarrow \bullet L = R, \$], [S \rightarrow \bullet R, \$],
[L \rightarrow \bullet * R, =, \$], [L \rightarrow \bullet \text{ identificador}, =, \$],
[R \rightarrow \bullet L, \$]
\}
```

 I_0 tiene transiciones con S, L, R, * e identificador.

Ejemplos de análisis LR-canónico

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 5 / 40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto *l*₀: primera parte

$$\begin{array}{lll} Ir_{-a}(I_{0},\,S) & = & clausura(\{\,\,[S'\to S\,\,\bullet,\,\$]\,\}) \\ & = & \{\,\,[S'\to S\,\,\bullet,\,\$]\,\} \\ & = & I_{1} \\ Ir_{-a}(I_{0},\,L) & = & clausura(\{\,\,[S\to L\,\,\bullet\,=\,R,\,\$],\,[R\to L\,\,\bullet,\,\$]\,\}) \\ & = & \{\,\,[S\to L\,\,\bullet\,=\,R,\,\$],\,[R\to L\,\,\bullet,\,\$]\,\} \\ & = & I_{2} \\ Ir_{-a}(I_{0},\,R) & = & clausura(\{\,\,[S\to R\,\,\bullet,\,\$]\,\}) \\ & = & \{\,\,[S\to R\,\,\bullet,\,\$]\,\} \\ & = & I_{3} \end{array}$$

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 6 / 40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₀: segunda parte

```
\begin{array}{lll} \textit{Ir}\_a(\textit{I}_0, \, ^*) & = & \textit{clausura}(\{\,\,[L \to ^* \bullet R, \, =, \, ^\$]\,\}) \\ & = & \{ \\ & \quad [L \to ^* \bullet R, \, =, \, ^\$], \, [R \to \bullet \, L, \, =, \, ^\$], \\ & \quad [L \to \bullet ^* R, \, =, \, ^\$], \, [L \to \bullet \, \text{id}, \, =, \, ^\$] \, \} \\ & = & \quad I_4 \\ \textit{Ir}\_a(\textit{I}_0, \, \text{id}) & = & \textit{clausura}(\{\,\,[L \to \text{id} \, \bullet, \, =, \, ^\$]\,\}) \\ & = & \quad \{\,\,[L \to \text{id} \, \bullet, \, =, \, ^\$]\,\} \\ & = & \quad I_5 \end{array}
```

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 7 / 40)

- 2.- Construcción de la colección canónica
 - 2.- Construcción de la colección canónica: transiciones de l₀

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 8 / 40

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_1 = \{ [S' \rightarrow S \bullet, \$] \}$

$$Ir_a(I_1, X) = \emptyset \quad \forall X \in V$$

El conjunto l_1 no tiene transiciones.

 $I_2 = \{ [S \rightarrow L \bullet = R, \$], [R \rightarrow L \bullet, \$] \}$

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 9/40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₂

$$Ir_{-a}(I_{2}, =) = clausura(\{ [S \rightarrow L = \bullet R, \$] \})$$

$$= \{ [S \rightarrow L = \bullet R, \$], [R \rightarrow \bullet L, \$], [L \rightarrow \bullet id, \$]$$

$$= I_{6}$$

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación <u>10</u> / 40)

2.- Construcción de la colección canónica: transición de l2

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 11 / 40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_3 = \{ [S \rightarrow R \bullet, \$] \}$

$$Ir_a(I_3, X) = \emptyset \quad \forall X \in V$$

El conjunto l_3 no tiene transiciones.

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 12 / 40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₄: primera parte

$$[L \rightarrow * \bullet R, =, \$],$$

$$[R \rightarrow \bullet L, =, \$],$$

$$[L \rightarrow \bullet * R, =, \$], [L \rightarrow \bullet id, =, \$]$$

$$\}$$

l₄ tiene transiciones con R, L, * e id

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 13 / 40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto 14: segunda parte

$$Ir_a(I_4, R) = clausura(\{[L \rightarrow *R \bullet, =, \$]\})$$

= $\{[L \rightarrow *R \bullet, =, \$]\}$
= I_7

$$Ir_{-a}(I_4, L) = clausura(\{ [R \rightarrow L \bullet, =, \$] \})$$

= $\{ [R \rightarrow L \bullet, =, \$] \}$
= I_8

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 14 / 40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto 14: tercera parte

$$Ir_{-a}(I_4, *) = clausura(\{ [L \rightarrow * \bullet R, =, \$] \})$$

= I_4

$$Ir_a(I_4, id) = clausura(\{ [L \rightarrow id \bullet, =, \$] \}$$

= I_5

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación

2.- Construcción de la colección canónica transiciones de la

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 16 / 40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_5 = \{ [L \rightarrow id \bullet, =, \$] \}$

$$Ir_{-a}(I_5, X) = \emptyset \quad \forall X \in V$$

El conjunto l_5 no tiene transiciones.

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 17 / 40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₆: primera parte

$$I_{6} = \{ [S \rightarrow L = \bullet R, \$], \\ [R \rightarrow \bullet L, \$], \\ [L \rightarrow \bullet * R, \$], [L \rightarrow \bullet id, \$] \}$$

16 tiene transiciones con R, L, * e id

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 18 / 40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₆: segunda parte

$$Ir_{-a}(I_6, R) = clausura(\{ [S \rightarrow L = R \bullet, \$] \})$$

= $\{ [S \rightarrow L = R \bullet, \$] \}$
= Ig
 $Ir_{-a}(I_6, L) = clausura(\{ [R \rightarrow L \bullet, \$] \})$
= $\{ [R \rightarrow L \bullet, \$] \}$
= I_{10}

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 19 / 40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₆: tercera parte

```
Ir_{-a}(l_{6}, *) = clausura(\{ [L \rightarrow * \bullet R, \$] \} )
= \{ [L \rightarrow * \bullet R, \$], [R \rightarrow \bullet L, \$], [L \rightarrow \bullet * R, \$], [L \rightarrow \bullet * * R, \$], [L \rightarrow \bullet * * R, \$] \}
= l_{11}
Ir_{-a}(l_{6}, id) = clausura(\{ [L \rightarrow * id \bullet, \$] \} )
= \{ [L \rightarrow * id \bullet, \$] \} \}
= l_{12}
```

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 20 / 40)

2.- Construcción de la colección canónica

Autómata que reconoce prefijos viables: transiciones de l₆

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 21 / 40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_7 = \{ [L \rightarrow *R \bullet, =, \$] \}$

$$Ir_{-a}(I_7, X) = \emptyset \quad \forall X \in V$$

El conjunto l_7 no tiene transiciones.

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 22 / 40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_8 = \{ [R \rightarrow L \bullet, =, \$] \}$

$$Ir_{-a}(I_8, X) = \emptyset \quad \forall X \in V$$

El conjunto l₈ no tiene transiciones.

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 23 / 40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_9 = \{ [S \rightarrow L = R \bullet, \$] \}$

$$Ir_a(I_9, X) = \emptyset \quad \forall X \in V$$

El conjunto l₉ no tiene transiciones.

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 24 / 40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_{10} = \{ [R \rightarrow L \bullet, \$] \}$

$$Ir_{-a}(I_{10}, X) = \emptyset \quad \forall X \in V$$

El conjunto l_{10} no tiene transiciones.

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 25 / 40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l_{11} : primera parte

```
I_{11} = \{ [L \rightarrow * \bullet R, \$], \\ [R \rightarrow \bullet L, \$], \\ [L \rightarrow \bullet * R, \$], [L \rightarrow \bullet \text{ id}, \$] \}
```

 I_{11} tiene transiciones con R, L, * e id

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 26 / 40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₁₁: segunda parte

 $= I_{10}$

$$Ir_{-a}(I_{11}, R) = clausura(\{ [L \rightarrow *R \bullet, \$] \})$$

$$= \{ [L \rightarrow *R \bullet, \$] \}$$

$$= I_{13}$$

$$Ir_{-a}(I_{11}, L) = clausura(\{ [R \rightarrow L \bullet, \$] \})$$

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 27 / 40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₁₁: tercera parte

$$Ir_a(I_{11}, *) = clausura(\{ [L \rightarrow * \bullet R, \$] \})$$

$$= I_{11}$$
 $Ir_a(I_{11}, id) = clausura(\{ [L \rightarrow identificador \bullet, \$] \}$

$$= I_{12}$$

Ejemplos de análisis LR-canónico

2.- Construcción de la colección canónica

Autómata que reconoce prefijos viables: transiciones de l_{11}

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 29 / 40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_{12} = \{ [L \rightarrow id \bullet, \$] \}$

$$Ir_{-a}(I_{12}, X) = \emptyset \quad \forall X \in V$$

El conjunto l_{12} no tiene transiciones.

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 30 / 40)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_{13} = \{ [L \rightarrow *R \bullet, \$] \}$

$$Ir_{-a}(I_{13}, X) = \emptyset \quad \forall X \in V$$

El conjunto l_{13} no tiene transiciones.

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 31 / 40)

- 2.- Construcción de la colección canónica
 - Colección canónica de elementos LR(1): primera parte

$$I_{0} = \{ [S' \to \bullet S, \$], [S \to \bullet L = R, \$], [S \to \bullet R, \$], \\ [L \to \bullet * R, =, \$], [L \to \bullet id, =, \$], [R \to \bullet L, \$] \}$$

$$I_{1} = \{ [S' \to S \bullet, \$] \}$$

$$I_{2} = \{ [S \to L \bullet = R, \$], [R \to L \bullet, \$] \}$$

$$I_{3} = \{ [S \to R \bullet, \$] \}$$

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 32 / 40)

- 2.- Construcción de la colección canónica
 - Colección canónica de elementos LR(1): segunda parte

$$I_{4} = \{ [L \to * \bullet R, =, \$], [R \to \bullet L, =, \$], \\ [L \to \bullet * R, =, \$], [L \to \bullet id, =, \$] \}$$

$$I_{5} = \{ [L \to id \bullet, =, \$] \}$$

$$I_{6} = \{ [S \to L = \bullet R, \$], [R \to \bullet L, \$], \\ [L \to \bullet * R, \$], [L \to \bullet id, \$] \}$$

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 33 / 40)

- 2.- Construcción de la colección canónica
 - Colección canónica de elementos LR(1): tercera parte

$$I_7 = \{ [L \to *R \bullet, =, \$] \}$$
 $I_8 = \{ [R \to L \bullet, =, \$] \}$
 $I_9 = \{ [S \to L = R \bullet, \$] \}$
 $I_{10} = \{ [R \to L \bullet, \$] \}$

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 34 / 40)

- 2.- Construcción de la colección canónica
 - Colección canónica de elementos LR(1): cuarta parte

$$I_{11} = \{ [L \to * \bullet R, \$], [R \to \bullet L, \$], \\ [L \to \bullet * R, \$], [L \to \bullet id, \$] \}$$

$$I_{12} = \{ [L \to id \bullet, \$] \}$$

$$I_{13} = \{ [L \to * R \bullet, \$] \}$$

Ejemplos de análisis LR-canónico

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 36 / 40)

3.- Autómata que reconoce los prefijos viables

Estado	=	*	id	S	L	R
0		4	5	1	2	3
1						
2	6					
3						
4		4	5		8	7
5						
6		11	12		10	9
7						
8						
9						
10						
11		11	12		10	13
12						
13						

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 37 / 40)

4.- Completar la parte acción

	Acción			lr-a			
Estado	=	*	id	\$	S	L	R
0		d 4	d 5				
1				ACEPTAR			
2	d 6			r 5			
3				r 2			
4		d 4	d 5				
5	r 4			r 4			
6		d 11	d 12				
7	r 3			r 3			
8	r 5			r 5			
9				r 1			
10				r 5			
11		d 11	d 12				
12				r 4			
13				r 3			

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 38 / 40)

5.- Completar la parte ir_a

	Acción			lr-a			
Estado	=	*	id	\$	S	L	R
0		d 4	d 5		1	2	3
1				ACEPTAR			
2	d 6			r 5			
3				r 2			
4		d 4	d 5			8	7
5	r 4			r 4			
6		d 11	d 12			10	9
7	r 3			r 3			
8	r 5			r 5			
9				r 1			
10				r 5			
11		d 11	d 12			10	13
12				r 4			
13				r 3			

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 39 / 40)

Análisis sintáctico LR-canónico: primera parte

Pila	Entrada	Acción
0	id = * id \$	d 5
0 <u>id 5</u>	= * id \$	$r extit{4} extit{L} o extit{id}$
0 L 2	= * id \$	d 6
0 L 2 = 6	* id \$	d 11
0 L 2 = 6 * 11	id \$	d 12
0 L 2 = 6 * 11 id 12	\$	$r 4 L \rightarrow id$
0 L 2 = 6 * 11 L 10	\$	$r 5 R \rightarrow L$

Ejemplos de análisis LR-canónico

Ejemplo (2.- Gramática de sentencia de asignación 40 / 40)

Análisis sintáctico LR-canónico: segunda parte

Pila	Entrada	Acción
0 L 2 = 6 * 11 R 13	\$	$r 3 L \rightarrow * R$
0 L 2 = 6 L 10	\$	$r 5 R \rightarrow L$
0 <u>L 2 = 6 R 9</u>	\$	$r 1 S \rightarrow L = R$
0 S 1	\$	Aceptar

Contenido de la subsección

- Análisis sintáctico ascendente LR-canónico
 - Introducción
 - Colección canónica de elementos LR(1)
 - Algoritmo de construcción de la tabla de análisis LR-canónico
 - Ejemplos de análisis LR-canónico
 - Gramática que reconoce $L(a^*da^*d)$
 - Gramática de sentencia de asignación
 - Gramática de las enumeraciones
 - Inconvenientes del método LR-canónico

Ejemplos de análisis LR-canónico

```
Ejemplo (3.- Gramática de las enumeraciones 1/25)
P = \{ (1) S \rightarrow S D \\ (2) S \rightarrow \epsilon \\ (3) D \rightarrow \text{enum identificador } \{L\}; \\ (4) L \rightarrow \text{identificador} \\ (5) L \rightarrow L \text{, identificador} \}
```

Ejemplos de análisis LR-canónico

```
Ejemplo (3.- Gramática de las enumeraciones
 1.- Ampliación de la gramática
      P' = \{
      (1') S' \rightarrow S
       (1) S \rightarrow SD
       (2) S \rightarrow \epsilon
       (3) D \rightarrow enum identificador { L };
       (4) L \rightarrow identificador
       (5) L \rightarrow L, identificador
```

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

3 / 25)

- 2.- Construcción de la colección canónica
 - Construcción del conjunto l_0

$$I_0 = clausura(\{[S' \rightarrow \bullet S, \$] \})$$

$$= \{ [S' \rightarrow \bullet S, \$], [S \rightarrow \bullet S, D, \$, enum] [S \rightarrow \bullet, \$, enum] \}$$

lo tendrá una transición lr_a con S.

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

l / 25)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto I_0

```
Ir_{-a}(I_0,S) = clausura(\{ [S' \rightarrow S \bullet, \$], [S \rightarrow S \bullet D, \$, enum]\})
= \{ [S' \rightarrow S \bullet, \$], [S \rightarrow S \bullet D, \$, enum], [D \rightarrow \bullet enum id \{ L \} ;, \$, enum] \}
= I_1
```

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto /1

$$I_1 = \{ [S' \rightarrow S \bullet, \$], [S \rightarrow S \bullet D, \$, enum], [D \rightarrow \bullet enum id \{ L \} ;, \$, enum] \}$$

```
\begin{array}{lll} \textit{Ir\_a}(\textit{I}_1,\textit{D}) & = & \textit{clausura}(\{[S \rightarrow S \ D \bullet, \$, \, \text{enum}]\}) \\ & = & \{[S \rightarrow S \ D \bullet, \$, \, \text{enum}] \ \} \\ & = & \textit{I}_2 \\ \\ \textit{Ir\_a}(\textit{I}_1, \text{enum}) & = & \textit{clausura}(\{[D \rightarrow \text{enum} \bullet \text{id} \ \{L\} \ ;, \$, \, \text{enum}] \ \}) \\ & = & \{[D \rightarrow \text{enum} \bullet \text{id} \ \{L\} \ ;, \$, \, \text{enum}] \ \} \\ & = & \textit{I}_3 \end{array}
```

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

/ 25)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_2 = \{[S \rightarrow S \ D \bullet, \$, enum]\}$

$$Ir_{-a}(I_2, X) = \emptyset \quad \forall X \in V$$

El conjunto l_2 no tiene transiciones.

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto /3

$$I_3 = \{[D \rightarrow \mathbf{enum} \bullet \mathbf{id} \{ L \} ;, \$, \mathbf{enum}] \}$$

$$Ir_{-a}(I_3, id) = clausura(\{[D \rightarrow enum id \bullet \{ L \} ;, \$, enum]\})$$

= $\{[D \rightarrow enum id \bullet \{ L \} ;, \$, enum] \}$

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto 14

```
I_{4} = \{[D \rightarrow \mathbf{enum} \ \mathbf{id} \bullet \{ \ L \ \} \ ;, \ \$, \ \mathbf{enum}] \}
I_{L} = \{[D \rightarrow \mathbf{enum} \ \mathbf{id} \{ \ \bullet \ L \ \} \ ;, \ \$, \ \mathbf{enum}] \})
= \{ [D \rightarrow \mathbf{enum} \ \mathbf{id} \{ \ \bullet \ L \ \} \ ;, \ \$, \ \mathbf{enum}], \ [L \rightarrow \bullet \ \mathbf{id}, \ \}, \ ","]
= [L \rightarrow \bullet \ L \ , \ \mathbf{id}, \ \}, \ ","]
= I_{5}
```

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

7 (25)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto *l*₅: primera parte

$$I_{5} = \{ [D \rightarrow \text{enum id } \{ \bullet L \} ;, \$, \text{enum}], \\ [L \rightarrow \bullet \text{ id}, \}, \text{","}], [L \rightarrow \bullet L, \text{ id}, \}, \text{","}] \}$$

$$I_{r_a}(I_{5},L) = \underset{[L \rightarrow L \bullet, \text{ id}, \}, \text{","}] \})$$

$$= \{ [D \rightarrow \text{enum id } \{ L \bullet \};, \$, \text{enum}], \\ [L \rightarrow L \bullet, \text{ id}, \}, \text{","}] \}$$

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto 15: segunda parte

$$I_{5} = \{ [D \rightarrow \text{enum id } \{ \bullet L \} ;, \$, \text{enum}],$$

$$[L \rightarrow \bullet \text{ id, } \}, \text{","}], [L \rightarrow L \bullet , \text{id, } \}, \text{","}] \}$$

$$I_{L} = \text{local} \{ [L \rightarrow \text{id } \bullet, \}, \text{","}] \}$$

$$= \{ [L \rightarrow \text{id } \bullet, \}, \text{","}] \}$$

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto 16

```
I_{6} = \{ [D \rightarrow \text{enum id } \{ L \bullet \} ;, \$, \text{enum}],
[L \rightarrow L \bullet , \text{id}, \}, \text{","}] \}
Ir_{-a}(I_{6}, \}) = \underset{\text{clausura}}{\text{clausura}}(\{[D \rightarrow \text{enum id } \{L\} \bullet ;, \$, \text{enum}]\})
= \{[D \rightarrow \text{enum id } \{L\} \bullet ;, \$, \text{enum}]\}
= I_{8}
Ir_{-a}(I_{6}, \text{","}) = \underset{\text{clausura}}{\text{clausura}}(\{[L \rightarrow L, \bullet \text{id}, \}, \text{","}]\})
= \{[L \rightarrow L, \bullet \text{id}, \}, \text{","}]\}
= I_{9}
```

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

12 / 25)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto $I_7 = \{ [L \rightarrow id \bullet,], ","] \}$

$$Ir_{-a}(I_7, X) = \emptyset \quad \forall X \in V$$

El conjunto l_7 no tiene transiciones.

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto 18

```
I_8 = \{[D \rightarrow \text{enum id } \{L\} \bullet;, \$, \text{enum}]\}
Ir_a(I_8, ";") = clausura(\{[D \rightarrow \text{enum id } \{L\}; \bullet, \$, \text{enum}]\})
= \{[D \rightarrow \text{enum id } \{L\}; \bullet, \$, \text{enum}]\}
= I_{10}
```

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto /9

$$I_9 = \{ [L \rightarrow L \text{ , } \bullet \text{ id , }], \text{ ","}] \}$$

$$Ir_a(I_9, \mathbf{id}) = clausura(\{[L \rightarrow L, \mathbf{id} \bullet, \}, ","]\})$$

= $\{[L \rightarrow L, \mathbf{id} \bullet, \}, ","]\}$
= I_{11}

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

<u>15</u> / 25)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₁₀

$$\textit{I}_{10} = \{ \textit{[D} \rightarrow \text{enum id } \{ \ \textit{L} \ \} \text{ ; } \bullet \text{ , } \$ \text{, enum]} \}$$

$$Ir_{a}(I_{10}, X) = \emptyset \quad \forall X \in V$$

El conjunto l_{10} no tiene transiciones.

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

16 / 25)

- 2.- Construcción de la colección canónica
 - Transiciones del conjunto l₁₁

$$I_{11} = \{ [L \rightarrow L \text{ , id } \bullet, \ \}, \text{ ","}] \}$$

$$Ir_a(I_{11}, X) = \emptyset \quad \forall X \in V$$

El conjunto l_{11} no tiene transiciones.

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

- 2.- Construcción de la colección canónica
 - Colección canónica: primera parte

$$I_0 = \{ [S' \rightarrow \bullet S, \$],$$

$$[S \rightarrow \bullet S D, \$, enum] [S \rightarrow \bullet, \$, enum] \}$$

$$I_1 = \{ [S' \rightarrow S \bullet, \$], [S \rightarrow S \bullet D, \$, enum],$$

$$[D \rightarrow \bullet enum id \{ L \} ;, \$, enum] \}$$

$$I_2 = \{ [S \rightarrow S D \bullet, \$, enum] \}$$

$$I_3 = \{ [D \rightarrow enum \bullet id \{ L \} ;, \$, enum] \}$$

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

- 2.- Construcción de la colección canónica
 - Colección canónica: segunda parte

```
 I_{4} = \{ [D \to \text{enum id} \bullet \{ L \} ;, \$, \text{enum} ] \} 
 I_{5} = \{ [D \to \text{enum id} \{ \bullet L \} ;, \$, \text{enum} ], 
 [L \to \bullet \text{ id}, \}, \text{","}], [L \to L \bullet, \text{id}, \}, \text{","} ] \} 
 I_{6} = \{ [D \to \text{enum id} \{ L \bullet \} ;, \$, \text{enum} ], 
 [L \to L \bullet, \text{id}, \}, \text{","} ] \} 
 I_{7} = \{ [L \to \text{id} \bullet, \}, \text{","} ] \}
```

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

- 2.- Construcción de la colección canónica
 - Colección canónica: tercera parte

$$I_8 = \{[D \to \text{enum id } \{ L \} \bullet ;, \$, \text{enum}]\}$$
 $I_9 = \{[L \to L, \bullet \text{id}, \}, ","]\}$
 $I_{10} = \{[D \to \text{enum id } \{ L \} ; \bullet , \$, \text{enum}]\}$
 $I_{11} = \{[L \to L, \text{id } \bullet, \}, ","]\}$

Ejemplos de análisis LR-canónico

```
P' = \{ \\ (1') \ S' \to S \\ (1) \ S \to S D \\ (2) \ S \to \epsilon \\ (3) \ D \to \text{enum identificador} \ \{ \ L \ \} \ ; \\ (4) \ L \to \text{identificador} \\ (5) \ L \to L \ , \text{identificador} \\ \}
```

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

1 / 25)

3.-Autómata que reconoce los prefijos viables

Estado	enum	id	{	}	;	,	S	D	L
0							1		
1	3							2	
2									
3		4							
4			5						
5		7							6
6				8		9			
7									
8					10				
9		11							
10									
11									

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

22 / 25)

4.- Completar la parte acción

	Acción								Ir-a		
Estado	enum	id	{	}	;	,	\$	S	D	L	
0	r 2						r 2				
1	d 3						ACEPTAR				
2	r 1						r 1				
3		d 4									
4			d 5								
5		d 7									
6				d 8		d 9					
7				r 4		r 4					
8					d 10						
9		d 11									
10	r 3						r 3				
11				r 5		r 5					

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

5.- Completar la parte ir_a

	Acción							Ir-a		
Estado	enum	id	{	}	;	,	\$	S	D	L
0	r 2						r 2	1		
1	d 3						ACEPTAR		2	
2	r 1						r 1			
3		d 4								
4			d 5							
5		d 7								6
6				d 8		d 9				
7				r 4		r 4				
8					d 10					
9		d 11								
10	r 3						r 3			
11				r 5		r 5				

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones 24 / 25 Análisis sintáctico LR-canónico: primera parte Pila Entrada Acción enum id { id , id } ; \$ $r 2 S \rightarrow \epsilon$ 051 **enum** id { id , id } ; **\$** d 3 0 S 1 enum 3 id { id , id } ; \$ d 4 0 S 1 enum 3 id 4 id , id } ; \$ d 5

id , id } ; \$

, id } ; \$

, id } ; \$

0 S 1 enum 3 id 4 { 5

0 S 1 enum 3 id 4 { 5 id 7

0 S 1 enum 3 id 4 { 5 L 6

d 7

d 9

 $r 4 L \rightarrow id$

Ejemplos de análisis LR-canónico

Ejemplo (3.- Gramática de las enumeraciones

5 / 25)

Análisis sintáctico LR-canónico: segunda parte

Pila	Entrada	Acción
0 S 1 enum 3 id 4 { 5 L 6, 9	id } ; \$	d 11
0 S 1 enum 3 id 4 { 5 L 6, 9 id 11	};\$	$r \ 5 \ L ightarrow L$, id
0 S 1 enum 3 id 4 { 5 L 6	};\$	d 8
0 S 1 enum 3 id 4 { 5 L 6 } 8	; \$	d 10
0 S 1 enum 3 id 4 { 5 L 6 } 8 ; 10	\$	$r 3 D \rightarrow$ enum id $\{L\}$;
0 S 1 D 2	\$	$r 1 S \rightarrow S D$
051	\$	Aceptar

Subsección actual

- 3 Análisis sintáctico ascendente LR-canónico
 - Introducción
 - Colección canónica de elementos LR(1)
 - Algoritmo de construcción de la tabla de análisis LR-canónico
 - Ejemplos de análisis LR-canónico
 - Inconvenientes del método LR-canónico

Inconvenientes del método LR-canónico

Inconvenientes del método LR-canónico

- La **construcción** de la colección canónica de elementos LR(1) es un proceso largo y tedioso.
- La tabla de análisis LR-canónico tiene muchos estados.

Sección actual

- Introducción
- 2 Análisis sintáctico ascendente SLF
- 3 Análisis sintáctico ascendente LR-canónico
- 4 Análisis sintáctico ascendente LALR
- 5 Métodos de recuperación de errores

Subsección actual

- 4 Análisis sintáctico ascendente LALR
 - Descripción
 - Colección canónica de elementos-LALR(1)
 - Conflictos

Descripción

Método LALR

- LALR: Look Ahead Left to Right
 - Análisis sintáctico con símbolo de anticipación.
- Estrategia
 - Se basa en la unificación de conjuntos de elementos-LR(1) que tienen los mismos centros.
- Potencia
 - Más potente que el método de análisis SLR
 - Menos potente que el método de análisis LR-canónico
- Tamaño de la tabla
 - La tabla LALR tiene el mismo tamaño que la tabla SLR.

Descripción

Método LALR: estrategia

 Unificación de conjuntos de elementos-LR(1) con los mismos centros

$$I_{i} = \{ [A_{1} \rightarrow \alpha_{1} \bullet \beta_{1}, \sigma_{1}], \cdots, [A_{N} \rightarrow \alpha_{N} \bullet \beta_{N}, \sigma_{N}] \}$$

$$I_{j} = \{ [A_{1} \rightarrow \alpha_{1} \bullet \beta_{1}, \sigma'_{1}], \cdots, [A_{N} \rightarrow \alpha_{N} \bullet \beta_{N}, \sigma'_{N}] \}$$

$$I_{i-j} = \{ [A_1 \rightarrow \alpha_1 \bullet \beta_1, \sigma_1, \sigma'_1], \cdots, [A_N \rightarrow \alpha_N \bullet \beta_N, \sigma_N, \sigma'_N] \}$$

Descripción

Nota (Método LALR: estrategia)

Si dos estados se unifican entonces

- también se unifican los estados que se alcanzan con las transiciones de la función lr_a,
- porque dicha función solamente depende de los centros.

Descripción

Método LALR: estrategia

- La unificación de conjuntos de elementos LR(1) provoca
 - la unificación de estados del autómata que reconoce los prefijos viables
 - y la unificación de estados de la tabla de análisis LR.

Subsección actual

- Análisis sintáctico ascendente LALR
 - Descripción
 - Colección canónica de elementos-LALR(1)
 - Conflictos

Contenido de la subsección

- 4 Análisis sintáctico ascendente LALR
 - Descripción
 - Colección canónica de elementos-LALR(1)
 - Definición
 - Métodos de construcción
 - Ejemplos de análisis sintáctico LALR
 - Conflictos

Colección canónica de elementos-LALR(1)

Definición (Colección canónica de elementos-LALR(1))

Está compuesta por la unificación de los conjuntos de elementos LR(1) que tiene los mismos centros.

Contenido de la subsección

- Análisis sintáctico ascendente LALR
 - Descripción
 - Colección canónica de elementos-LALR(1)
 - Definición
 - Métodos de construcción
 - Ejemplos de análisis sintáctico LALR
 - Conflictos

Colección canónica de elementos-LALR(1)

Métodos de construcción

- Construcción completa de la colección canónica LR(1) y unificación final de los conjuntos de elementos-LR(1) con los mismos centros.
- 2.- Construcción paulatina de la colección canónica LR(1) y unificación en cada paso de los conjuntos de elementos-LR(1) con los mismos centros (*).
- 3.- Construcción de los núcleos de los conjuntos de elementos -LR(0) y posterior propagación de los símbolos de anticipación (*).

Colección canónica de elementos-LALR(1)

Nota (Métodos de construcción)

- 1.- Solamente se van a mostrar ejemplos del primero método.
- 2.- La descripción del segundo método se puede consultar en el libro de A. B. Pyster.
- 3.- La descripción del tercer método se puede consultar en el libro de A. V. Aho.

Contenido de la subsección

- 4 Análisis sintáctico ascendente LALR
 - Descripción
 - Colección canónica de elementos-LALR(1)
 - Definición
 - Métodos de construcción
 - Ejemplos de análisis sintáctico LALR
 - Conflictos

Colección canónica de elementos-LALR(1)

Ejemplos (Análisis sintáctico LALR)

- 1.- Gramática que genera el lenguaje L(a* d a* d)
- 2.- Gramática de la sentencia de asignación

Colección canónica de elementos-LALR(1)

Ejemplos (Análisis sintáctico LALR)

- 1.- Gramática que genera el lenguaje L(a* d a* d)
- 2.- Gramática de la sentencia de asignación

Colección canónica de elementos-LALR(1)

```
Ejemplo (1.- Gramática que genera L(a^*da^*d) 1 / 19)
P = \{ (1') \ S' \longrightarrow S 
(1) \ S \longrightarrow C \ C 
(2) \ C \longrightarrow a \ C 
(3) \ C \longrightarrow d 
\}
```

Colección canónica de elementos-LALR(1)

Ejemplo (1.- Gramática que genera L (a^*da^*d) 2 / 19)

• Colección canónica de elementos LR(1): primera parte

$$I_{0} = \{ [S' \rightarrow \bullet S, \$], [S \rightarrow \bullet C C, \$],$$

$$[C \rightarrow \bullet a C, a, d], [C \rightarrow \bullet d, a, d] \}$$

$$I_{1} = \{ [S' \rightarrow S \bullet, \$] \}$$

$$I_{2} = \{ [S \rightarrow C \bullet C, \$], [C \rightarrow \bullet a C, \$], [C \rightarrow \bullet d, \$] \}$$

$$I_{3} = \{ [C \rightarrow a \bullet C, a, d], [C \rightarrow \bullet a C, a, d],$$

$$[C \rightarrow \bullet d, a, d] \}$$

$$I_{4} = \{ [C \rightarrow d \bullet, a, d] \}$$

Colección canónica de elementos-LALR(1)

Ejemplo (1.- Gramática que genera $L(a^*da^*d)$ 3 / 19)

• Colección canónica de elementos LR(1): segunda parte

$$I_{5} = \{[S \rightarrow C \ C \bullet, \$]\}$$

$$I_{6} = \{[C \rightarrow \mathbf{a} \bullet C, \$], [C \rightarrow \bullet \mathbf{a} \ C, \$], [C \rightarrow \bullet \mathbf{d}, \$]\}$$

$$I_{7} = \{[C \rightarrow \mathbf{d} \bullet, \$]\}$$

$$I_{8} = \{[C \rightarrow \mathbf{a} \ C \bullet, \mathbf{a}, \mathbf{d}]\}$$

$$I_{9} = \{[C \rightarrow \mathbf{a} \ C \bullet, \$]\}$$

Colección canónica de elementos-LALR(1)

Ejemplo (1.- Gramática que genera $L(a^*da^*d)$ 4 / 3

- Se unifican los conjuntos de elementos LR(1) que tengan los mismos centros
- Al unificar los estados, también se unifican los estados que se alcancen mediante transiciones con la función lr_a.

Colección canónica de elementos-LALR(1)

Ejemplo (1.- Gramática que genera L (a^*da^*d) 5 / 19)

Unificación de los conjuntos l₃ e l₆

$$I_{3} = \{ [C \rightarrow \mathbf{a} \bullet C, \mathbf{a}, \mathbf{d}], [C \rightarrow \bullet \mathbf{a} C, \mathbf{a}, \mathbf{d}], \\ [C \rightarrow \bullet \mathbf{d}, \mathbf{a}, \mathbf{d}] \}$$

$$I_{6} = \{ [C \rightarrow \mathbf{a} \bullet C, \$], [C \rightarrow \bullet \mathbf{a} C, \$], \\ [C \rightarrow \bullet \mathbf{d}, \$] \}$$

$$I_{6} = \{ [C \rightarrow \mathbf{a} \bullet C, \mathbf{a}, \mathbf{d}, \$], [C \rightarrow \bullet \mathbf{a} C, \mathbf{a}, \mathbf{d}, \$], \\ [C \rightarrow \bullet \mathbf{d}, \mathbf{a}, \mathbf{d}, \$] \}$$

Colección canónica de elementos-LALR(1)

Ejemplo (1.- Gramática que genera L (a^*da^*d) 6 / 19)

• Unificación de los conjuntos l₄ e l₇

$$I_4 = \{[C \rightarrow \mathbf{d} \bullet, \mathbf{a}, \mathbf{d}]\}\$$
 $I_7 = \{[C \rightarrow \mathbf{d} \bullet, \$]\}$

$$I_{4-7} = \{[C \rightarrow \mathbf{d} \bullet, \mathbf{a}, \mathbf{d}, \$]\}$$

Colección canónica de elementos-LALR(1)

Ejemplo (1.- Gramática que genera L (a^*da^*d) 7 / 19

• Unificación de los conjuntos l₈ e l₉

$$I_8 = \{[C \rightarrow \mathbf{a} \ C \bullet, \mathbf{a}, \mathbf{d}]\}$$
 $I_9 = \{[C \rightarrow \mathbf{a} \ C \bullet, \$]\}$

$$I_{8-9} = \{[C \rightarrow \mathbf{a} \ C \bullet, \mathbf{a}, \mathbf{d}, \$]\}$$

Colección canónica de elementos-LALR(1)

Ejemplo (1.- Gramática que genera L (a^*da^*d) 8 / 19)

• Colección canónica LALR(1): primera parte

$$I_{0} = \{[S' \rightarrow \bullet S, \$], [S \rightarrow \bullet C C, \$],$$

$$[C \rightarrow \bullet a C, a, d], [C \rightarrow \bullet d, a, d]\}$$

$$I_{1} = \{[S' \rightarrow S \bullet, \$]\}$$

$$I_{2} = \{[S \rightarrow C \bullet C, \$], [C \rightarrow \bullet a C, \$], [C \rightarrow \bullet d, \$]\}$$

$$I_{3-6} = \{[C \rightarrow \mathbf{a} \bullet C, \mathbf{a}, \mathbf{d}, \$], [C \rightarrow \bullet \mathbf{a}, C, \mathbf{a}, \mathbf{d}, \$],$$

Colección canónica de elementos-LALR(1)

Ejemplo (1.- Gramática que genera L (a^*da^*d) 9 / 19)

• Colección canónica LALR(1): segunda parte

$$I_{4-7} = \{[C \rightarrow d \bullet, a, d, \$]\}$$

$$I_5 = \{[S \rightarrow C C \bullet, \$]\}$$

$$I_{8-9} = \{[C \rightarrow \mathbf{a} \ C \bullet, \mathbf{a}, \mathbf{d}, \$]\}$$

Colección canónica de elementos-LALR(1)

Ejemplo (1.- Gramática que genera $L(a^*da^*d)$

10 / 19)

Autómata que reconoce los prefijos viables
 Antes de la unificación

Estado	а	d	S	С
0	3	4	1	2
1				
3	6	7		5 8
3	3	4		8
4				
5				
6	6	7		9
7				
8				
9				

Colección canónica de elementos-LALR(1)

Ejemplo (1.- Gramática que genera $L(a^*da^*d)$ 11 / 19)

Autómata que reconoce los prefijos viables
 Después de la unificación

Estado	a	d	S	С	
0	3-6	4-7	1	2	
1					
2	3-6	4-7		5	
3-6	3-6	4-7		8-9	
4-7					
5					
8-9					

Colección canónica de elementos-LALR(1)

Ejemplo (1.- Gramática que genera L (a^*da^*d) 12 / 19)

• La unificación ha permitido reducir el número de estados de 10 a 7.

Colección canónica de elementos-LALR(1)

Ejemplo (1.- Gramática que genera $L(a^*da^*d)$

3 / 19)

 Autómata que reconoce los prefijos viables Antes de la unificación.

Colección canónica de elementos-LALR(1)

Ejemplo (1.- Gramática que genera $L(a^*da^*d)$

14 / 19)

Autómata que reconoce los prefijos viables
 Después de la unificación.

Colección canónica de elementos-LALR(1)

Ejemplo (1.- Gramática que genera L (a^*da^*d) 15 / 19

• Tabla de análisis sintáctico LALR

	Acción			Ir-a	
Estado	a	d	\$	S	С
0	d 3-6	d 4-7		1	2
1			Aceptar		
2	d 3-6	d 4-7			5
3-6	d 3-6	d 4-7			8-9
4-7	r 4	r 4	r 4		
5			r 2		
8-9	r 3	r 3	r 3		

Colección canónica de elementos-LALR(1)

Ejemplo (1.- Gramática que genera $L(a^*da^*d)$ 16 / 19

• Tabla de análisis sintáctico LALR: estados renombrados

	Acción			Ir-a	
Estado	a	d	\$	S	С
0	d 3	d 4		1	2
1			Aceptar		
2	d 3	d 4			5
3	d 3	d 4			6
4	r 4	r 4	r 4		
5			r 2		
6	r 3	r 3	r 3		

Colección canónica de elementos-LALR(1)

Ejemplo (1.- Gramática que genera L (a^*da^*d) 17 / 19)

 Autómata que reconoce los prefijos viables Estados renombrados.

Colección canónica de elementos-LALR(1)

Ejemplo (1.- Gramática que genera L (a^*da^*d) 18 / 19)

• Análisis sintáctico usando la tabla LALR: primera parte.

Pila	Entrada	Acción
0	adaad\$	d 3
0 a 3	daad\$	d 4
0 a 3 <u>d 4</u>	a a d \$	<i>r 3 C</i> → d
0 a 3 <u>C 6</u>	aad\$	<i>r 3 C</i> → a <i>C</i>
0 C 2	aad\$	d 3
0 C 2 a 3	a d \$	d 3
0 C 2 a 3 a 3	d \$	d 4

Colección canónica de elementos-LALR(1)

Ejemplo (1.- Gramática que genera L (a^*da^*d)

19 / 19)

• Análisis sintáctico usando la tabla LALR: segunda parte.

Pila	Entrada	Acción
0 C 2 a 3 a 3 <u>d 4</u>	\$	<i>r 3 C</i> → d
0 C 2 a 3 <u>a 3 C 6</u>	\$	$r 2 C \rightarrow \mathbf{a} C$
0 C 2 <u>a 3 C 6</u>	\$	$r 2 C \rightarrow \mathbf{a} C$
0 <u>C 2 C 5</u>	\$	<i>r</i> 1 <i>S</i> → <i>C C</i>
0 S 1	\$	Aceptar

Colección canónica de elementos-LALR(1)

Ejemplos (Análisis sintáctico LALR)

- 1.- Gramática que genera el lenguaje L(a* d a* d)
- 2.- Gramática de la sentencia de asignación

Colección canónica de elementos-LALR(1)

Ejemplo (2.- Gramática de la sentencia de asignación 1 / 10)

```
P = \{ \\ (1') \ S' \longrightarrow S \\ (1) \ S \longrightarrow L = R \\ (2) \ S \longrightarrow R \\ (3) \ L \longrightarrow *R \\ (4) \ L \longrightarrow identificador \\ (5) \ R \longrightarrow L  }
```

Colección canónica de elementos-LALR(1)

Ejemplo (2.- Gramática de la sentencia de asignación 2 / 10)

• Colección canónica de elementos - LR(1): primera parte $I_0 = \{ [S' \to \bullet S, \$], [S \to \bullet L = R, \$], [S \to \bullet R, \$], [L \to \bullet * R, =, \$], [L \to \bullet \text{id}, =, \$], [R \to \bullet L, \$] \}$ $I_1 = \{ [S' \to S \bullet, \$] \}$ $I_2 = \{ [S \to L \bullet = R, \$], [R \to L \bullet, \$] \}$ $I_3 = \{ [S \to R \bullet, \$] \}$ $I_4 = \{ [L \to * \bullet R, =, \$], [R \to \bullet L, =, \$], [L \to \bullet * R, =, \$], [L \to \bullet \text{id}, =, \$] \}$

Colección canónica de elementos-LALR(1)

Ejemplo (2.- Gramática de la sentencia de asignación 3 / 10)

• Colección canónica de elementos - LR(1): segunda parte

$$I_{5} = \{[L \to id \bullet, =, \$]\}$$

$$I_{6} = \{[S \to L = \bullet R, \$], [R \to \bullet L, \$],$$

$$[L \to \bullet * R, \$], [L \to \bullet id, \$]\}$$

$$I_{7} = \{[L \to * R \bullet, =, \$]\}$$

$$I_{8} = \{[R \to L \bullet, =, \$]\}$$

$$I_{9} = \{[S \to L = R \bullet, \$]\}$$

Colección canónica de elementos-LALR(1)

Ejemplo (2.- Gramática de la sentencia de asignación 4 / 10)

• Colección canónica de elementos - LR(1): tercera parte

$$I_{10} = \{ [R \to L \bullet, \$] \}$$

$$I_{11} = \{ [L \to * \bullet R, \$], [R \to \bullet L, \$], [L \to \bullet * R, \$], [L \to \bullet * * R, \$] \}$$

$$I_{12} = \{ [L \to * * * A, \$] \}$$

$$I_{13} = \{ [L \to * * R, \$] \}$$

Colección canónica de elementos-LALR(1)

Ejemplo (2.- Gramática de la sentencia de asignación 5 / 10)

• Unificación de los conjuntos l₄ e l₁₁

$$I_{4} = \{ [L \to * \bullet R, =, \$], [R \to \bullet L, =, \$] \\ [L \to \bullet * R, =, \$], [L \to \bullet id, =, \$] \}$$

$$I_{11} = \{ [L \to * \bullet R, \$], [R \to \bullet L, \$], \\ [L \to \bullet * R, \$], [L \to \bullet id, \$] \}$$

$$I_{4-11} = \{ [L \to * \bullet R, =, \$], [R \to \bullet L, =, \$], \\ [L \to \bullet * R, =, \$], [L \to \bullet id, =, \$] \}$$

Colección canónica de elementos-LALR(1)

Ejemplo (2.- Gramática de la sentencia de asignación 6 / 10)

• Unificación de los conjuntos l₅ e l₁₂

$$I_5 = \{[L \rightarrow id \bullet, =, \$]\}$$

 $I_{12} = \{[L \rightarrow id \bullet, \$]\}$

$$I_{5-12} = \{[L \rightarrow id \bullet, =, \$]\}$$

Colección canónica de elementos-LALR(1)

Ejemplo (2.- Gramática de la sentencia de asignación 7 / 10)

• Unificación de los conjuntos l₇ e l₁₃

$$I_7 = \{[L \to * R \bullet, =, \$]\}$$

 $I_{13} = \{[L \to * R \bullet, \$]\}$

$$I_{7-13} = \{[L \rightarrow * R \bullet, =, \$]\}$$

Colección canónica de elementos-LALR(1)

Ejemplo (2.- Gramática de la sentencia de asignación 8 / 10)

• Unificación de los conjuntos l₈ e l₁₀

$$I_8 = \{[R \rightarrow L \bullet, =, \$]\}$$

 $I_{10} = \{[R \rightarrow L \bullet, \$]\}$

$$I_{8-10} = \{[R \rightarrow L \bullet, =, \$]\}$$

Colección canónica de elementos-LALR(1)

Ejemplo (2.- Gramática de la sentencia de asignación 9 / 10

• Tabla de análisis sintáctico LALR

	Acción					Ir-a	
Estado	=	*	id	\$	S	L	R
0		d 4-11	d 5-12		1	2	3
1				Aceptar			
2	d 6			r 5	1	2	3
3				r 2			
4-11		d 4-11	d 5-12			8-10	7-13
5-12	r 4			r 4			
6		d 4-11	d 5-12			8-10	9
7-13	r 3			r 3			
8-10	r 5			r 5			
9				r 1			

Colección canónica de elementos-LALR(1)

Ejemplo (2.- Gramática de la sentencia de asignación 9 / 10)

Tabla de análisis sintáctico LALR: estados renombrados.

	Acción				Ir-a		
Estado	=	*	id	\$	S	L	R
0		d 4	d 5		1	2	3
1				Aceptar			
2	d 6			r 5	1	2	3
3				r 2			
4		d 4	d 5			8	7
5	r 4			r 4			
6		d 4	d 5			8	9
7	r 3			r 3			
8	r 5			r 5			
9				r 1			

Colección canónica de elementos-LALR(1)

Nota (2.- Gramática de la sentencia de asignación 10 / 10)

- La tabla LALR tiene el mismo tamaño que la tabla SLR.
- Sin embargo, la tabla LALR no presenta el conflicto de desplazamiento reducción que posee la tabla SLR.

Subsección actual

- 4 Análisis sintáctico ascendente LALR
 - Descripción
 - Colección canónica de elementos-LALR(1)
 - Conflictos

Conflictos

Conflictos en el método LALR

- Conflicto de desplazamiento-reducción
- Conflicto de reducción-reducción

Conflictos

Conflictos en el método LALR

- Conflicto de desplazamiento-reducción
 - El métoco LALR no genera nuevos conflictos de desplazamiento-reducción.
 - Si aparece este tipo de conflicto entonces también era generado por el método LR-canónico.

Conflictos

Teorema (Conflicto de desplazamiento-reducción)

 Si el método LALR genera un conflicto de desplazamiento-reducción entonces el método LR-canónico también lo generaba.

Conflictos

Demostración (Conflicto de desplazamiento-reducción 1 / 2)

• Supóngase que la tabla LALR presenta un conflicto:

$$acción[i, \sigma] = \begin{cases} dj \\ rk \end{cases}$$

• El desplazamiento d j se genera porque

1.-
$$[A \rightarrow \alpha \bullet \sigma \beta, \sigma'] \in I_i$$

2.- $Ir_{-a}(I_i, \sigma) = I_i$

1.-
$$[B \rightarrow \gamma \bullet, \sigma] \in I_i$$

2.-
$$k$$
 es la regla $B \rightarrow \gamma \in P$

Conflictos

Demostración (Conflicto de desplazamiento-reducción 2 / 2)

Origen de li

- Caso 1
 - l_i pertenecía a la colección canónica de elementos LR(1)
 - Por tanto, el método LR-canónico también tenía el conflicto de desplazamiento-reducción.
- Caso 2
 - $I_i = I_p \cup I_q$, donde I_p e I_q son conjuntos elementos LR(1) con los mismos centros
 - Se verifica que $[A \to \alpha \bullet \sigma \beta, \sigma']$, $[B \to \gamma \bullet, \sigma] \in I_p$ (o I_q)
 - Por tanto, el método LR-canónico también tenía el conflicto de desplazamiento-reducción en el estado p (o en q).

Conflictos

Conflictos en el método LALR

- Conflicto de reducción-reducción
 - El método LALR puede provocar nuevos conflictos de reducción-reducción que no eran generados por el método LR-canónico.

Conflictos

Conflicto de reducción-reducción

. / 2

Supóngase que la colección canónica LR(1) contiene a:

$$\begin{split} I_p &= \{ [\mathsf{A} \to \alpha \bullet, \, \pmb{\sigma}], \, [\mathsf{B} \to \beta \bullet, \, \pmb{\sigma}'] \} \\ I_q &= \{ [\mathsf{A} \to \alpha \bullet, \, \pmb{\sigma}'], \, [\mathsf{B} \to \beta \bullet, \, \pmb{\sigma}] \} \end{split}$$

• que generan las siguientes acciones:

acción[p,
$$\sigma$$
] = reducir con A $\rightarrow \alpha$
acción[p, σ'] = reducir con B $\rightarrow \beta$

acción[q,
$$\sigma'$$
] = reducir con A $\rightarrow \alpha$
acción[q, σ] = reducir con B $\rightarrow \beta$

Conflictos

Conflicto de reducción-reducción

2 / 2

• Al unificar l_p e l_q que se verifica que

$$I_{p-q} = \{ [A \to \alpha \bullet, \sigma, \sigma'], [B \to \beta \bullet, \sigma, \sigma'] \}$$

• que generan los siguientes conflictos de reducción-reducción

acción[p-q,
$$\sigma$$
] = reducir con A $\rightarrow \alpha$
acción[p-q, σ] = reducir con B $\rightarrow \beta$

acción[p-q,
$$\sigma'$$
] = reducir con A $\rightarrow \alpha$ acción[p-q, σ'] = reducir con B $\rightarrow \beta$

Conflictos

```
Ejemplo (Conflicto de reducción-reducción
         P = \{
         (1') S' \longrightarrow S
          (1) S \longrightarrow a A d
           (2) S \longrightarrow \mathbf{b} B \mathbf{d}
           (3) S \longrightarrow \mathbf{a} B \mathbf{e}
           (4) S \longrightarrow \mathbf{b} A \mathbf{e}
           (5) A \longrightarrow \mathbf{c}
           (6) B \longrightarrow \mathbf{c}
```

Conflictos

Conflictos

Ejemplo (Conflicto de reducción-reducción

3 / 23)

• Transiciones del conjunto l₀: primera parte

```
Ir_{-a}(I_0, S) = clausura(\{[S' \rightarrow S \bullet, \$]\})
= \{[S' \rightarrow S \bullet, \$]\}
= I_1
Ir_{-a}(I_0, \mathbf{a}) = clausura(\{[S \rightarrow \mathbf{a} \bullet A \mathbf{d}, \$], [S \rightarrow \mathbf{a} \bullet B \mathbf{e}, \$]\})
= \{[S \rightarrow \mathbf{a} \bullet A \mathbf{d}, \$], [S \rightarrow \mathbf{a} \bullet B \mathbf{e}, \$],
[A \rightarrow \bullet \mathbf{c}, \mathbf{d}], [B \rightarrow \bullet \mathbf{c}, \mathbf{e}]
= I_2
```

Conflictos

Ejemplo (Conflicto de reducción-reducción

/ 23)

• Transiciones del conjunto l₀: segunda parte

```
Ir_{-a}(I_0, \mathbf{b}) = clausura(\{[S \rightarrow \mathbf{b} \bullet B \mathbf{d}, \$], [S \rightarrow \mathbf{b} \bullet A \mathbf{e}, \$]\})
= \{
[S \rightarrow \mathbf{b} \bullet B \mathbf{d}, \$], [S \rightarrow \mathbf{b} \bullet A \mathbf{e}, \$],
[B \rightarrow \bullet \mathbf{c}, \mathbf{d}], [A \rightarrow \bullet \mathbf{c}, \mathbf{e}]
\}
= I_3
```

Conflictos

Ejemplo (Conflicto de reducción-reducción

5 / 23)

• Transiciones del conjunto $I_1 = \{[S' \rightarrow S \bullet, \$]\}$

$$\forall X \in V I_{r_a}(I_1, X) = \emptyset$$

El conjunto l_1 no tiene transiciones.

Conflictos

Ejemplo (Conflicto de reducción-reducción

/ 23)

• Transiciones del conjunto 1/2

$$Ir_{-a}(I_2, A) = clausura(\{[S \rightarrow a \ A \bullet d, \$]\})$$

$$= \{[S \rightarrow a \ A \bullet d, \$]\}$$

$$= I_4$$

$$Ir_{-a}(I_2, B) = clausura(\{[S \rightarrow a \ B \bullet e, \$]\})$$

$$= \{[S \rightarrow a \ B \bullet e, \$]\}$$

$$= I_5$$

$$Ir_{-a}(I_2, c) = clausura(\{[A \rightarrow c \bullet, d], [B \rightarrow c \bullet, e]\})$$

$$= \{[A \rightarrow c \bullet, d], [B \rightarrow c \bullet, e]\}$$

$$= I_6$$

Conflictos

Ejemplo (Conflicto de reducción-reducción

/ 23)

• Transiciones del conjunto /3

$$Ir_{-a}(I_3, A) = clausura(\{[S \rightarrow \mathbf{b} \ A \bullet \mathbf{e}, \$]])$$

$$= \{[S \rightarrow \mathbf{b} \ A \bullet \mathbf{e}, \$]\}$$

$$= I_7$$

$$Ir_{-a}(I_3, B) = clausura(\{[S \rightarrow \mathbf{b} \ B \bullet \mathbf{d}, \$]\})$$

$$= \{[S \rightarrow \mathbf{b} \ B \bullet \mathbf{d}, \$]\}$$

$$= I_8$$

$$Ir_{-a}(I_3, \mathbf{c}) = clausura(\{[B \rightarrow \mathbf{c} \bullet, \mathbf{d}], [A \rightarrow \mathbf{c} \bullet, \mathbf{e}]\})$$

$$= \{[B \rightarrow \mathbf{c} \bullet, \mathbf{d}], [A \rightarrow \mathbf{c} \bullet, \mathbf{e}]\}$$

$$= I_9$$

Conflictos

Ejemplo (Conflicto de reducción-reducción

3 / 23)

• Transiciones del conjunto $I_4 = \{[S \rightarrow a \ A \bullet d, \ \$]\}$

$$Ir_a(I_4, \mathbf{d}) = clausura(\{[S \rightarrow \mathbf{a} \ A \ \mathbf{d} \bullet, \$]\})$$

= $\{[S \rightarrow \mathbf{a} \ A \ \mathbf{d} \bullet, \$]\}$
= I_{10}

Conflictos

Ejemplo (Conflicto de reducción-reducción

9 / 23)

• Transiciones del conjunto $I_5 = \{[S \rightarrow a \ B \bullet e, \$]\}$

$$Ir_a(I_5, \mathbf{e}) = clausura(\{[S \rightarrow \mathbf{a} \ B \ \mathbf{e} \bullet, \$]\})$$

= $\{[S \rightarrow \mathbf{a} \ B \ \mathbf{e} \bullet, \$]\}$
= I_{11}

Conflictos

Ejemplo (Conflicto de reducción-reducción

10 / 23)

• Transiciones del conjunto $I_6 = \{[A \rightarrow c \bullet, d], [B \rightarrow c \bullet, e]\}$

$$\forall X \in V I_{r_a}(I_6, X) = \emptyset$$

El conjunto l₆ no tiene transiciones

Conflictos

Ejemplo (Conflicto de reducción-reducción

11 / 23)

• Transiciones del conjunto $I_7 = \{[S \rightarrow \mathbf{b} \ A \bullet \mathbf{e}, \$]\}$

$$Ir_a(I_7, \mathbf{d}) = clausura(\{[S \rightarrow \mathbf{b} \ A \ \mathbf{e} \bullet, \$]\})$$

= $\{[S \rightarrow \mathbf{b} \ A \ \mathbf{e} \bullet, \$]\}$
= I_{12}

Conflictos

Ejemplo (Conflicto de reducción-reducción

12 / 23)

• Transiciones del conjunto $I_8 = \{[S \rightarrow \mathbf{b} \ B \bullet \mathbf{d}, \$]\}$

$$Ir_a(I_8, \mathbf{e}) = clausura(\{[S \rightarrow \mathbf{b} \ B \ \mathbf{d} \bullet, \$]\})$$

= $\{[S \rightarrow \mathbf{b} \ B \ \mathbf{d} \bullet, \$]\}$
= I_{13}

Conflictos

Ejemplo (Conflicto de reducción-reducción

13 / 23)

• Transiciones del conjunto $I_9 = \{[B \rightarrow \mathbf{c} \bullet, \mathbf{d}], [A \rightarrow \mathbf{c} \bullet, \mathbf{e}]\}$

$$\forall X \in V I_{r_a}(I_9, X) = \emptyset$$

El conjunto l₉ no tiene transiciones

Conflictos

Ejemplo (Conflicto de reducción-reducción

14 / 23)

• Transiciones del conjunto $I_{10} = \{ [S \rightarrow a \ A \ d \ \bullet, \ \$] \}$

$$\forall X \in V I_{r_a}(I_{10}, X) = \emptyset$$

El conjunto l_{10} no tiene transiciones

Conflictos

Ejemplo (Conflicto de reducción-reducción

15 / 23)

• Transiciones del conjunto $I_{11} = \{[S \rightarrow a \ B \ e \ \bullet, \ \$]\}$

$$\forall X \in V Ir_a(I_{11}, X) = \emptyset$$

El conjunto l_{11} no tiene transiciones

Conflictos

Ejemplo (Conflicto de reducción-reducción

16 / 23)

• Transiciones del conjunto $I_{12} = \{[S \rightarrow \mathbf{b} \ A \ \mathbf{e} \ \bullet, \ \$]\}$

$$\forall X \in V I_{r_a}(I_{12}, X) = \emptyset$$

El conjunto l_{12} no tiene transiciones

Conflictos

Ejemplo (Conflicto de reducción-reducción

17 / 23)

• Transiciones del conjunto $I_{13} = \{ [S \rightarrow \mathbf{b} \ B \ \mathbf{d} \ \bullet, \ \$] \}$

$$\forall X \in V Ir_a(I_{13}, X) = \emptyset$$

El conjunto l_{13} no tiene transiciones

Conflictos

Ejemplo (Conflicto de reducción-reducción

18 / 23)

• Colección canónica de elementos-LR(1): primera parte $I_0 = \{ [S' \rightarrow \bullet S, \$], [S \rightarrow \bullet a \land d, \$] [S \rightarrow \bullet b \land B, \$],$ $[S \rightarrow \bullet \ \mathbf{a} \ B \ \mathbf{e}, \$], [S \rightarrow \bullet \ \mathbf{b} \ A \ \mathbf{e}, \$] \}$ $I_1 = \{ [S' \rightarrow S \bullet, \$] \}$ $I_2 = \{ (S \rightarrow a \bullet A d, \$), (S \rightarrow a \bullet B e, \$),$ $[A \rightarrow \bullet \mathbf{c}, \mathbf{d}], [B \rightarrow \bullet \mathbf{c}, \mathbf{e}] \}$ $I_3 = \{ (S \rightarrow \mathbf{b} \bullet B \mathbf{d}, \$), (S \rightarrow \mathbf{b} \bullet A \mathbf{e}, \$), (S \rightarrow \mathbf{b} \bullet A \mathbf{e},$ $[B \rightarrow \bullet \mathbf{c}, \mathbf{d}], [A \rightarrow \bullet \mathbf{c}, \mathbf{e}] \}$ $I_4 = \{ [S \to a \ A \bullet d, \$] \}$

Conflictos

Ejemplo (Conflicto de reducción-reducción

9 / 23)

• Colección canónica de elementos-LR(1): segunda parte

$$I_5 = \{[S \rightarrow \mathbf{a} \ B \bullet \mathbf{e}, \$]\}$$

$$I_6 = \{ [A \rightarrow \mathbf{c} \bullet, \mathbf{d}], [B \rightarrow \mathbf{c} \bullet, \mathbf{e}] \}$$

$$I_7 = \{[S \rightarrow \mathbf{b} \ A \bullet \mathbf{e}, \$]\}$$

$$I_8 = \{ [S \to \mathbf{b} \ B \bullet \mathbf{d}, \ \$] \}$$

$$I_9 = \{ [B \rightarrow \mathbf{c} \bullet, \mathbf{d}], [A \rightarrow \mathbf{c} \bullet, \mathbf{e}] \}$$

Conflictos

Ejemplo (Conflicto de reducción-reducción

20 / 23)

• Colección canónica de elementos-LR(1): tercera parte

$$I_{10} = \{[S \rightarrow \mathbf{a} \ A \ \mathbf{d} \bullet, \$]\}$$

$$I_{11} = \{[S \rightarrow \mathbf{a} \ B \ \mathbf{e} \bullet, \$]\}$$

$$I_{12} = \{[S \rightarrow \mathbf{b} \ A \ \mathbf{e} \bullet, \$]\}$$

$$I_{13} = \{[S \rightarrow \mathbf{b} \ B \ \mathbf{d} \bullet, \$]\}$$

Conflictos

Ejemplo (Conflicto de reducción-reducción

21 / 23)

 Unificación de los conjuntos de elementos LR(1) con los mismos centros

Solamente se pueden unificar los conjuntos l₆ e l₉

$$\begin{array}{rcl}
I_6 & = & \{[A \rightarrow \mathbf{c} \bullet, \mathbf{d}], [B \rightarrow \mathbf{c} \bullet, \mathbf{e}]\} \\
I_9 & = & \{[B \rightarrow \mathbf{c} \bullet, \mathbf{d}], [A \rightarrow \mathbf{c} \bullet, \mathbf{e}]\}
\end{array}$$

$$I_{6-9} = \{[A \rightarrow \mathbf{c} \bullet, \mathbf{d}, \mathbf{e}], [B \rightarrow \mathbf{c} \bullet, \mathbf{d}, \mathbf{e}]\}$$

Conflictos

Ejemplo (Conflicto de reducción-reducción

22 / 23)

• Tabla de análisis sintáctico LALR

	Acción						lr-a		
Estado	a	b	С	d	е	\$	S	Α	В
0	d 2	d 3					1		
1						Aceptar			
2			d 6					4	5
3			d 9					7	8
4				d 10					
5					d 11				
6-9				r 5, r 6	r 5, r6				
7				d 12					
8					d 13				
10						r 1			
11						r 3			
12						r 4			
13						r 2			

Nota (Conflicto de reducción-reducción

3 / 23)

 Conclusión: el método LALR puede generar nuevos conflictos de reducción - reducción

Sección actual

- Introducción
- Análisis sintáctico ascendente SLR
- 3 Análisis sintáctico ascendente LR-canónico
- 4 Análisis sintáctico ascendente LALR
- 5 Métodos de recuperación de errores

Subsección actual

- 5 Métodos de recuperación de errores
 - Introducción
 - Método de pánico
 - Método de nivel de frase
 - Simplificación del método de nivel de frase

Introducción

Detección del error

- Solamente se detecta un error cuando se consulta una celda vacía de la parte acción de la tabla LR.
- ¡Las celdas vacías de la parte lr-a nunca se consultarán!

Introducción

Métodos de recuperación de errores

- Método de pánico.
- Método de nivel de frase.

Introducción

Nota (Métodos de recuperación de errores)

- Estos métodos se pueden aplicar a los tres tipos de análisis sintáctico LR:
 - SLR
 - LR-canónico
 - LALR

Subsección actual

- 5 Métodos de recuperación de errores
 - Introducción
 - Método de pánico
 - Método de nivel de frase
 - Simplificación del método de nivel de frase

Método de pánico

Método de pánico: pasos

- 1.- Se **busca** en la pila algún estado s que tenga alguna transición ir_a con algún *símbolo no terminal*.
 - Por ejemplo: $ir_a[s,A] = s'$
- 2.- Se **eliminan** todos los *símbolos* y *estados* que estén por encima del estado s.
- 3.- Se introduce en la pila el símbolo A
- 4.- Se introduce en la pila el estado s'
- 5.- Se **eliminan** símbolos de la entrada hasta que se encuentre un símbolo $\sigma \in siguiente(A)$.
- 6.- Continúa el análisis.

```
Ejemplo (Método de pánico
       P = \{
       (1') E' \longrightarrow E
        (1) E \longrightarrow E + T
        (2) E \longrightarrow T
         (3) T \longrightarrow T * F
         (4) T \longrightarrow F
        (5) F \longrightarrow (E)
         (6) F \longrightarrow identificador
         (7) F \longrightarrow \text{número}
```

Método de pánico

Ejemplo (Método de pánico

2 / 8)

• Conjunto canónica de elementos LR(0): primera parte

$$I_{0} = \{ E' \rightarrow \bullet E, E \rightarrow \bullet E + T, E \rightarrow \bullet T, \\ T \rightarrow \bullet T * F, T \rightarrow \bullet F, \\ F \rightarrow \bullet (E), F \rightarrow \bullet id, F \rightarrow \bullet número \}$$

$$I_{1} = \{ E' \rightarrow E \bullet, E \rightarrow E \bullet + T \}$$

$$I_{2} = \{ E \rightarrow T \bullet, T \rightarrow T \bullet * F \}$$

$$I_{3} = \{ T \rightarrow F \bullet \}$$

Método de pánico

Ejemplo (Método de pánico

3 / 8)

• Conjunto canónica de elementos LR(0): segunda parte

$$I_{4} = \{ F \rightarrow (\bullet E), E \rightarrow \bullet E + T, \\ E \rightarrow \bullet, T, T \rightarrow \bullet T * F, T \rightarrow \bullet F, \\ F \rightarrow \bullet (E), F \rightarrow \bullet id, F \rightarrow \bullet número \}$$

$$I_{5} = \{ F \rightarrow id \bullet \}$$

$$I_{6} = \{ F \rightarrow número \bullet \}$$

$$I_{7} = \{ E \rightarrow E + \bullet T, T \rightarrow \bullet T * F, T \rightarrow \bullet F, \\ F \rightarrow \bullet (E), F \rightarrow \bullet id, F \rightarrow \bullet número \}$$

Método de pánico

Ejemplo (Método de pánico

/ 8)

• Conjunto canónica de elementos LR(0): tercera parte

$$I_{8} = \{T \rightarrow T * \bullet F, F \rightarrow \bullet (E), F \rightarrow \bullet \text{ id}, F \rightarrow \bullet \text{ número}\}$$

$$I_{9} = \{F \rightarrow (E \bullet), E \rightarrow E \bullet + T\}$$

$$I_{10} = \{E \rightarrow E + T \bullet, T \rightarrow T \bullet * F\}$$

$$I_{11} = \{T \rightarrow T * F \bullet\}$$

$$I_{12} = \{F \rightarrow (E) \bullet\}$$

Método de pánico

Ejemplo (Método de pánico

5 / 8)

Autómata que reconoce los prefijos viables

Estado	+	*	()	id	num	E	Т	F
0			4		5	6	1	2	3
1	7								
2		8							
3									
4			4		5	6	9	2	3
5									
6									
7			4		5	6		10	3
8			4		5	6			11
9	7			12					
10		8							
11									
12									

Ejemplo	(Método de pánico									6 / 8
				Acci	ón				Ir-a	
Estado	+	*	()	id	num	\$	E	Т	F
0			d 4		d 5	d 6		1	2	3
1	d 7						Aceptar			
2	r 2	d 8		r 2			r 2			
3	r 4	r 4		r 4			r 4			
4			d 4		d 5	d 6		9	2	3
5	r 6	r 6		r 6			r 6			
6	r 7	r 7		r 7			r 7			
7			d 4		d 5	d 6			10	3
8			d 4		d 5	d 6				11
9	d 7			d 12						
10	r 1	d 8		r 1			r 1			
11	r 3	r 3		r 3			r 3			
12	r 5	r 5		r 4			r 4			

Ejemplo (Método de pá	nico	7 / 8)
Pila	Entrada	Acción
0	<u>+</u> id * + n id) \$	Error: insertar E
		y el estado <mark>1</mark> en la pila
0 E 1	+ id * + n id) \$	d 7
0 E 1 + 7	id * + n id) \$	d 5
0 <mark>E 1</mark> + 7 <u>id 5</u>	* + n id) \$	r 6 $F \rightarrow id$
0 <mark>E 1</mark> + 7 <u>F 3</u>	* + n id) \$	$r 4 T \rightarrow F$
0 E 1 + 7 T 10	* + n id) \$	d 8
0 E 1 + 7 T 10 * 8	+ n id) \$	Error: insertar F
		y el estado <mark>11</mark> en la pila
0 E 1 + 7 <u>T 10 * 8 F 11</u>	+ n id) \$	$r 3 T \rightarrow T * F$
0 <u>E 1 + 7 T 10</u>	+ n id) \$	$r 1 E \rightarrow E + T$

Ejemplo (Método de	Ejemplo (Método de pánico 8 /							
Pila	Entrada	Acción						
0 E 1	+ n id) \$	d 7						
0 E 1 + 7	n id) \$	d 6						
0 E 1 + 7 n 6	id) \$	Error: eliminar n y el estado 6						
		de la pila						
		Introducir F y el estado 3						
		en la pila						
		Eliminar id de la entrada						
0 E 1 + 7 <u>F 3</u>) \$	$r 4 T \rightarrow F$						
0 E 1 + 7 T 10) \$	$r 1 E \rightarrow E + T$						
0 E 1) \$	Error: eliminar) de la entrada						
0 E 1	\$	Aceptar						

Método de pánico

Método de pánico: ventajas e inconvenientes

- Ventajas
 - Es fácil de aplicar.
 - Aísla el error detectado
 - Permite que continúe el análisis.
- Inconvenientes
 - No es capaz de detectar todos los errores sintácticos existentes.
 - Puede eliminar símbolos incorrectos de la entrada que no serían detectados

Subsección actual

- 5 Métodos de recuperación de errores
 - Introducción
 - Método de pánico
 - Método de nivel de frase
 - Simplificación del método de nivel de frase

Método de nivel de frase

Método de nivel de frase: descripción

• Las celdas vacías de la parte acción son completadas con funciones **específicas** de tratamiento de **errores**.

```
Ejemplo (Recuperación de errores de nivel de frase
       P = \{
       (1') E' \longrightarrow E
        (1) E \longrightarrow E + T
        (2) E \longrightarrow T
        (3) T \longrightarrow T * F
        (4) T \longrightarrow F
        (5) F \longrightarrow (E)
        (6) F \longrightarrow identificador
        (7) F \longrightarrow \text{número}
```

Método de nivel de frase

Ejemplo (Recuperación de errores de nivel de frase 2 / 9)

	Acción								lr-a	
Estado	+	*	()	id	num	\$	E	Т	F
0			d 4		d 5	d 6		1	2	3
1	d 7						Aceptar			
2	r 2	d 8		r 2			r 2			
3	r 4	r 4		r 4			r 4			
4			d 4		d 5	d 6		9	2	3
5	r 6	r 6		r 6			r 6			
6	r 7	r 7		r 7			r 7			
7			d 4		d 5	d 6			10	3
8			d 4		d 5	d 6				11
9	d 7			d 12						
10	r 1	d 8		r 1			r 1			
11	r 3	r 3		r 3			r 3			
12	r 5	r 5		r 4			r 4			

Método de nivel de frase

Ejemplo (Recuperación de errores de nivel de frase 3 / 9

- Se completan las celdas vacías de la parte acción con funciones de tratamiento de error.
- Las funciones de error dependen de cada gramática.

Método de nivel de frase

Ejemplo (Recuperación de errores de nivel de frase

l / 9)

Funciones de tratamiento de error

- E 1:
 - Símbolo inesperado.
 - Falta identificador, número o paréntesis izquierdo.
 - Acción: insertar un identificador en la entrada.
- E 2:
 - Paréntesis derecho inesperado.
 - Acción: eliminar el paréntesis derecho de la entrada.

Método de nivel de frase

Ejemplo (Recuperación de errores de nivel de frase 5 /

Funciones de tratamiento de error

- E 3:
 - Final inesperado de la cadena de entrada.
 - Acción: el análisis finaliza.
- E 4:
 - Símbolo inesperado.
 - Se esperaba + o el final de la entrada.
 - Acción: eliminar símbolo de la entrada.
- E 5:
 - Símbolo inesperado.
 - Se esperaba +, *,) o el final de la entrada.
 - Acción: eliminar símbolo de la entrada.

Método de nivel de frase

Ejemplo (Recuperación de errores de nivel de frase 6 / 9)

		Acción								
Estado	+	*	()	id	num	\$	E	Т	F
0	E 1	E 1	d 4	E 2	d 5	d 6	E 3	1	2	3
1	d 7	E 4	E 4	E 2	E 4	E 4	Aceptar			
2	r 2	d 8	E 5	r 2	E 5	E 5	r 2			
3	r 4	r 4	E 5	r 4	E 5	E 5	r 4			
4	E 1	E 1	d 4	E 2	d 5	d 6	E 3	9	2	3
5	r 6	r 6	E 5	r 6	E 5	E 5	r 6			
6	r 7	r 7	E 5	r 7	E 5	E 5	r 7			
7	E 1	E 1	d 4	E 2	d 5	d 6	E 3		10	3
8	E 1	E 1	d 4	E 2	d 5	d 6	E 3			11
9	d 7	E 4	E 4	d 12	E 4	E 4	E 3			
10	r 1	d 8	E 5	r 1	E 5	E 5	r 1			
11	r 3	r 3	E 5	r 3	E 5	E 5	r 3			
12	r 5	r 5	E 5	r 5	E 5	E 5	r 5			

Ejemplo (Recuperació	jemplo (Recuperación de errores de nivel de frase 7 / 9)								
Pila	Entrada	Acción							
0	+ id * + n id) \$	E 1: insertar id							
0	id + id * + n id) \$	d 5							
0 <u>id 5</u>	+ id * + n id) \$	$r 6 F \rightarrow id$							
0 <u>F 3</u>	+ id * + n id) \$	r 4 <i>T</i> → <i>F</i>							
0 <u>T 2</u>	+ id * + n id) \$	r 2 <i>E</i> → <i>T</i>							
0 E 1	+ id * + n id) \$	d 7							
0 E 1 + 7	id * + n id) \$	d 5							
0 E 1 + 7 id 5	* + n id) \$	$r 6 F \rightarrow id$							
0 E 1 + 7 <u>F 3</u>	* + n id) \$	r 4 <i>T</i> → <i>F</i>							
0 E 1 + 7 T 10	* + n id) \$	d 8							

Ejemplo (Recuperación de er	Ejemplo (Recuperación de errores de nivel de frase 8 / 9							
Pila	Entrada	Acción						
0 E 1 + 7 T 10 * 8	+ n id) \$	E 1: insertar id						
0 E 1 + 7 T 10 * 8	id + n id)\$	d 5						
0 E 1 + 7 T 10 * 8 <u>id 5</u>	+ n id) \$	$r 6 F \rightarrow id$						
0 E 1 + 7 <u>T 10 * 8 F 11</u>	+ n id) \$	r 3 <i>T</i> → <i>T</i> * <i>F</i>						
<u>0 E 1 + 7 T 10</u>	+ n id) \$	$r 1 \rightarrow E + T$						
0 E 1	+ n id) \$	d 7						
0 E 1 + 7	n id) \$	d 6						
0 E 1 + 7 n 6	id) \$	E 5: eliminar id						

Ejemplo (Recuperación de errores de nivel de frase							
-	Pila	Entrada	Acción				
-	0 E 1 + 7 <u>n 6</u>) \$	r 7 <i>F</i> → <i>n</i>				
	0 E 1 + 7 <u>F 3</u>) \$	r 4 <i>T</i> → <i>F</i>				
	<u>0 E 1 + 7 T 10</u>) \$	$r 1 E \rightarrow E + T$				
	0 E 1) \$	E 2: eliminar)				
_	0 E 1	\$	Aceptar				

Subsección actual

- 5 Métodos de recuperación de errores
 - Introducción
 - Método de pánico
 - Método de nivel de frase
 - Simplificación del método de nivel de frase

Simplificación del método de nivel de frase

Método de nivel de frase: simplificación

- Si un estado realiza al menos un reducción entonces se pueden completar todas sus celdas vacías con una de sus reducciones.
 - Nunca se desplazará un símbolo incorrecto desde la entrada a la pila.
 - Puede que sí se realicen más reducciones antes de detectar el error.
 - Se pospone la detección del error: el error será detectado por otro estado.

Simplificación del método de nivel de frase

Ejemplo (Método de nivel de frase: simplificación 1 / 4)

				Acci	ón				Ir-a	
Estado	+	*	()	id	num	\$	E	Т	F
0	E 1	E 1	d 4	E 2	d 5	d 6	E 3	1	2	3
1	d 7	E 4	E 4	E 2	E 4	E 4	Aceptar			
2	r 2	d 8	r 2	r 2	r 2	r 2	r 2			
3	r 4	r 4	r 4	r 4	r 4	r 4	r 4			
4	E 1	E 1	d 4	E 2	d 5	d 6	E 3	9	2	3
5	r 6	r 6	r 6	r 6	r 6	r 6	r 6			
6	r 7	r 7	r 7	r 7	r 7	r 7	r 7			
7	E 1	E 1	d 4	E 2	d 5	d 6	E 3		10	3
8	E 1	E 1	d 4	E 2	d 5	d 6	E 3			11
9	d 7	E 4	E 4	d 12	E 4	E 4	E 3			
10	r 1	d 8	r 1	r 1	r 1	r 1	r 1			
11	r 3	r 3	r 3	r 3	r 3	r 3	r 3			
12	r 5	r 5	r 5	r 5	r 5	r 5	r 5			

Simplificación del método de nivel de frase

Ejemplo (Método de nivel de frase: simplificación 2							
Pila	Entrada	Acción					
0	+ id * + n id) \$	E 1: insertar id					
0	id + id * + n id) \$	d 5					
0 <u>id 5</u>	+ id * + n id) \$	r 6 $F \rightarrow id$					
0 <u>F 3</u>	+ id * + n id) \$	r 4 <i>T</i> → <i>F</i>					
0 <u>T 2</u>	+ id * + n id) \$	r 2 <i>E</i> → <i>T</i>					
0 E 1	+ id * + n id) \$	d 7					
0 E 1 + 7	id * + n id) \$	d 5					
0 E 1 + 7 <u>id 5</u>	* + n id) \$	r 6 $F \rightarrow id$					
0 E 1 + 7 <u>F 3</u>	* + n id) \$	r 4 <i>T</i> → <i>F</i>					
0 E 1 + 7 T 10	* + n id) \$	d 8					

Simplificación del método de nivel de frase

Ejemplo (Método de nivel de frase: simplificación 3 / 4)								
Pila	Entrada	Acción						
0 E 1 + 7 T 10 * 8	+ n id) \$	E 1: insertar id						
0 E 1 + 7 T 10 * 8	id + n id)\$	d 5						
0 E 1 + 7 T 10 * 8 <u>id 5</u>	+ n id) \$	$r 6 F \rightarrow id$						
0 E 1 + 7 <u>T 10 * 8 F 11</u>	+ n id) \$	r 3 T → T * F						
<u>0 E 1 + 7 T 10</u>	+ n id) \$	$r 1 E \rightarrow E + T$						
0 E 1	+ n id) \$	d 7						
0 E 1 + 7	n id) \$	d 6						
0 E 1 + 7 n 6	id) \$	$r 7 F \rightarrow n$						

Simplificación del método de nivel de frase

Ejemplo (Método de nivel de frase: simplificación			4 / 4)
Pila	Entrada	Acción	
0 E 1 + 7 <u>F 3</u>	id) \$	$r 4 T \rightarrow F$	
0 E 1 + 7 T 10	id) \$	$r 1 E \rightarrow E + T$	
0 E 1	id) \$	E 4: eliminar id	
0 E 1) \$	E 2 : eliminar)	
0 E 1	\$	Aceptar	

PROCESADORES DE LENGUAJES

Prof. Dr. Nicolás Luis Fernández García

Departamento de Informática y Análisis Numérico Escuela Politécnica Superior de Córdoba Universidad de Córdoba