Announcements — Exam 2: 03/11, PA2: 03/01, HW3: 03/04. Collision resolution —

Separate Chaining: (an example of open hashing)

$$S = \{16, 8, 4, 13, 29, 11, 22\}$$
 $|S| = n$ $h(k) = k\%7$

$$|S| = n$$
 $h(k) = k\%7$

	Worst case	Under SUHA
Insert		
Remove/find		

Collision Handling - Probe based hashing: (example of closed hashing)

$$S = \{16, 8, 4, 13, 29, 11, 22\}$$

$$|S| = n$$
 $h(k) = k\%7$

6

Try
$$h(k) = (k + 0) \% 7$$
. If full...
try $h(k) = (k + 1) \% 7$. If full...
try $h(k) = (k + 2) \% 7$. If full...
try...

Linear Probing — 2 problems...

Prir	mary c	lustering:	Removal:			
		Description:	Description	1:		
		Remedy:	Remedy:			

Probe based hashing: double hashing

$$S = \{16, 8, 4, 13, 29, 11, 22\}$$
 $|S| = n$ $H(k,i) = h_1(k) + ih_2(k)$

Try
$$h(k) = (k + 0*h_2(k)) \% 7$$
. If full...
try $h(k) = (k + 1*h_2(k)) \% 7$. If full...
try $h(k) = (k + 2*h_2(k)) \% 7$. If full...
try...

Hash table performance: expected # of probes for Find(key) under SUHA

Linear probing -

successful:
$$\frac{1}{2}(1 + \frac{1}{1-\alpha})$$

unsuccessful:
$$\frac{1}{2}(1 + \frac{1}{(1-\alpha)})^2$$

Double hashing -

$$1/\alpha \ln 1/(1-\alpha)$$

successful:

unsuccessful: $1/(1-\alpha)$

Separate chaining -

$$1 + \alpha/2$$
$$1 + \alpha$$

successful:

unsuccessful: $1 + \alpha$

Do not memorize these!

Observe:

- As α increases, running times increase!
- If α is held constant then running times are constant!

Hash table performance: expected # of probes for Find(key) under SUHA

Linear probing -

successful:

 $\frac{1}{2}(1 + \frac{1}{(1-\alpha)})^{2}$ $\frac{1}{2}(1 + \frac{1}{(1-\alpha)})^{2}$ unsuccessful:

Double hashing -

 $1/\alpha \ln 1/(1-\alpha)$ $1/(1-\alpha)$ successful:

unsuccessful:

ReHashing:

What if the array fills?

- 1			l			

Hashing Miscellaneous Discussion —

Which collision resolution strategy is better?

- Big records —
- Structure speed —

What structures do hash tables replace for us?

There is a constraint on Keyspaces for BST that does not affect hashing...

Why do we talk about balanced BST if hashing is so great?

More resources:

http://jeffe.cs.illinois.edu/teaching/algorithms/notes/05-hashing.pdf

http://en.wikipedia.org/wiki/Hash_function

Applications of hashing?

Area of active research in mathematics to develop general purpose hash functions.