Détection d'erreur de transmission

M. Combacau - combacau@laas.fr

Université Paul Sabatier LAAS-CNRS

10 novembre 2024

Objectif

Transmission d'information en informatique Détection et correction d'erreur : codes de Hamming

Distance de Hamming - Adjacence de deux codes

Définie par

$$\begin{cases} (F_2^n)^2 \xrightarrow{dh} \mathbb{N} \\ (m_1, m_2) \in (F_2^n)^2 : dh(m_1, m_2) = \text{ nombre de bits à 1 dans } m_1 \oplus m_2 \end{cases}$$

- Nombre de bits de même rang ayant des valeurs différentes
- Exemple illustratif

$$\begin{cases}
 m_1 &= [01101] \\
 m_2 &= [10110] \\
 m_1 \oplus m_2 &= [11011]
\end{cases}
\Rightarrow d_h(m_1, m_2) = 4$$

- 2 mots m_1 et m_2 sont dits adjacents ssi $d_h(m_1, m_2) = 1$
- Un mot de n bits possède n mot adjacents m = [101] mots adjacents [001] [111] [100]

Principe d'un code de Hamming

- Soit la fonction codage $C_h: F_2^p \xrightarrow{c_h} F_2^n$
- Corriger une erreur, $\forall (m_1, m_2) \in Im(C_h)^2, m_1 \neq m_2 \Rightarrow d_h(m_1, m_2) \geq 3$
- Ainsi, le sous ensemble des codes adjacents à m_1 est disjoint du sous ensemble de codes adjacents à m_2
- La fonction décodage du récepteur est telle que tous les codes adjacents à un mot *m* ont pour image le code du mot *m*
- Ainsi, une erreur unique sur un code se traduira par un code adjacent à ce code, que la fonction décodage désigne par construction

Illustration du principe du code de Hamming

Principe des codes linéaires

Nombre minimal de bits de contrôle

- Mots de p bits à transmettre : 2^p code sans erreurs et $2^p \times n$ codes adjacents (avec une erreur) nécessaires sur n bits
- Sur n bits, le mot codé à n+1 mots adjacents
- $2^p \times (n+1) \le 2^n \Rightarrow$ le code correcteur existe
- $2^p \times (n+1) = 2^n \Rightarrow \text{code parfait}$
- Les codes parfaits sont des codes de Hamming
- $2^p \times (n+1) = 2^n$
- Dans \mathbb{N} cette égalité est possible pour $n+1=2^k$ dans ce cas, $n=2^k-1$ et p=n-k.

Liste des premiers codes parfaits

k	$n=2^k-1$	p = n - k	info	contrôle	nom du code
1	1	0	0	1	sans intérêt!
2	3	1	1	2	Code de répétition ou H(3,1)
3	7	3	4	3	code de Hamming : H(7,4)
4	15	11	11	4	code de Hamming : H(15,11)
5	31	26	26	5	code de Hamming : H(31,26)
:	:	:	:	:	:

Remarque:

- Parité croisée 4 × 4 : 16 bit d'info + 8 bits de contrôle
- H(31,26) : 26 bits d'information, 5 bits de contrôle

Fonctionnement du code de Hamming H(3,1)

- Le seul pour lequel on peut donner une liste des codes utilisés!
- $\begin{cases} C_h(3,1)[0] = [000] \\ C_h(3,1)[1] = [111] \end{cases}$ d'où le nom "code de répétition"
- Décodage

$$\begin{cases} D_h(3,1)[000] = D_h(3,1)[100] = D_h(3,1)[010] = D_h(3,1)[001] = [0] \\ D_h(3,1)[111] = D_h(3,1)[011] = D_h(3,1)[101] = D_h(3,1)[110] = [1] \end{cases}$$

Coûteux : 2 bits de contrôle pour un bit d'information!!!

Fonctionnement du code de Hamming H(3,1)

Fonctionnement du code h(7,4) (1)

- 4 bit d'information et 3 bits de contrôle
- Génération des bits de contrôle

d_3	d_2	d_1	d_0	<i>c</i> ₂	c_1	<i>c</i> ₀
×	×	×		$d_3 \oplus d_2 \oplus d_1$		
×	×		×		$d_3 \oplus d_2 \oplus d_0$	
×		×	×			$d_3 \oplus d_1 \oplus d_0$

- Changement d'un bit d_i changement d'au moins 2 bits c_i $\Rightarrow d_h$ entre deux codes est toujours au moins égale à 3
- **Emetteur**
 - 1 calcul des bits de contrôle [c2c1c0]
 - émission des septs bits $[d_ic_i]$ dans un ordre connu du récepteur

Fonctionnement du code h(7,4) (2)

Récepteur : calcule le **syndrome**= $[p_2p_1p_0]$

avec
$$\begin{cases} p_2 = c_2 \oplus d_3 \oplus d_2 \oplus d_1 & (c_2 = d_3 \oplus d_2 \oplus d_1) \\ p_1 = c_1 \oplus d_3 \oplus d_2 \oplus d_0 & (c_1 = d_3 \oplus d_2 \oplus d_0) \\ p_0 = c_0 \oplus d_3 \oplus d_1 \oplus d_0 & (c_0 = d_3 \oplus d_1 \oplus d_0) \end{cases}$$

- Absence d'erreur de transmission Syndrome [000]
- Une erreur sur un des 7 bits transmis

$$\begin{cases} d_3 \text{ faux} & \Rightarrow (p_2, p_1, p_0) &= (1, 1, 1) \\ d_2 \text{ faux} & \Rightarrow (p_2, p_1, p_0) &= (1, 1, 0) \\ d_1 \text{ faux} & \Rightarrow (p_2, p_1, p_0) &= (1, 0, 1) \\ d_0 \text{ faux} & \Rightarrow (p_2, p_1, p_0) &= (0, 1, 1) \\ c_2 \text{ faux} & \Rightarrow (p_2, p_1, p_0) &= (1, 0, 0) \\ c_1 \text{ faux} & \Rightarrow (p_2, p_1, p_0) &= (0, 1, 0) \\ c_0 \text{ faux} & \Rightarrow (p_2, p_1, p_0) &= (0, 0, 1) \end{cases}$$

Syndrome différent pour chaque erreur

- Rappel $\| x = a \oplus b \oplus c = a.b.c + \overline{a}.\overline{b}.c + \overline{a}.b.\overline{c} + a.\overline{b}.\overline{c}$
- Emetteur : calcul des trois bits de contrôle

$$\begin{cases} c_2 &= d_3.d_2.d_1 + \overline{d_3}.\overline{d_2}.d_1 + \overline{d_3}.d_2.\overline{d_1} + d_3.\overline{d_2}.\overline{d_1} \\ c_1 &= d_3.d_2.d_0 + \overline{d_3}.\overline{d_2}.d_0 + \overline{d_3}.d_2.\overline{d_0} + d_3.\overline{d_2}.\overline{d_0} \\ c_0 &= d_3.d_1.d_0 + \overline{d_3}.\overline{d_1}.d_0 + \overline{d_3}.d_1.\overline{d_0} + d_3.\overline{d_1}.\overline{d_0} \end{cases}$$

- D'où le calcul du syndrome

$$\begin{cases} p_2 &= c_2 \oplus d_3 \oplus d_2 \oplus d_1 \\ &= \overline{c_2}.\overline{d_3}.\overline{d_2}.d_1 + \overline{c_2}.\overline{d_3}.d_2.\overline{d_1} + \overline{c_2}.d_3.\overline{d_2}.\overline{d_1} + c_2.\overline{d_3}.\overline{d_2}.\overline{d_1} \\ &+ \overline{c_2}.d_3.d_2.d_1 + c_2.\overline{d_3}.d_2.d_1 + c_2.d_3.\overline{d_2}.d_1 + c_2.d_3.d_2.\overline{d_1} \\ p_1 &= c_1 \oplus d_3 \oplus d_2 \oplus d_0 \\ &= \overline{c_1}.\overline{d_3}.\overline{d_2}.d_0 + \overline{c_1}.\overline{d_3}.d_2.\overline{d_0} + \overline{c_1}.d_3.\overline{d_2}.\overline{d_0} + c_1\overline{d_3}.\overline{d_2}.\overline{d_0} \\ &+ \overline{c_1}.d_3.d_2.d_0 + c_1\overline{d_3}.d_2.d_0 + c_1d_3.\overline{d_2}.d_0 + c_1d_3.d_2.\overline{d_0} \\ p_0 &= c_0 \oplus d_3 \oplus d_1 \oplus d_0 \\ &= \overline{c_0}.\overline{d_3}.\overline{d_1}.d_0 + \overline{c_0}.\overline{d_3}.d_1.\overline{d_0} + \overline{c_0}.d_3.\overline{d_1}.\overline{d_0} + c_0.\overline{d_3}.\overline{d_1}.\overline{d_0} \end{cases}$$

Mise en œuvre électronique (2)

■ Calcul des 4 mintermes *cor*; pour corriger les bits *d*;

$$\begin{cases} cor_3 &= p_2.p_1.p_0 \\ cor_2 &= p_2.p_1.\overline{p_0} \\ cor_1 &= p_2.\overline{p_1}.p_0 \\ cor_0 &= \overline{p_2}.p_1.p_0 \end{cases}$$

- Correction de $d_i \iff cor_i = 1$
- Et finalement le mot corrigé de son erreur

$$[\textit{d}_3 \; \textit{d}_2 \; \textit{d}_1 \; \textit{d}_0] = [(\textit{cor}_3 \oplus \textit{d}_3) \; (\textit{cor}_2 \oplus \textit{d}_2) \; (\textit{cor}_1 \oplus \textit{d}_1) \; (\textit{cor}_0 \oplus \textit{d}_0)]$$

- Outil de simplification algébrique : forme somme de produits pour chacun des bits d'information corrigé

Mise en œuvre informatique (1)

- $[p_2p_1p_0]$ coefficients du polynôme $S=p_2.2^2+p_1.2+p_0$
- Valeur de S en fonction du bit d'information erroné

bit erroné	valeur de S	
<i>d</i> ₃	7	
d_2	6	
d_1	5	
d_0	3	

- Emetteur : ordre des bits $[d_3d_2d_1c_2d_0c_1c_0]$
- Récepteur : $valeur(S) \neq 0 \Rightarrow$ complémenter le bit de rang (valeur(S) 1)

L'ordre d'émission $[d_3d_2d_1c_2d_0c_1c_0]$ est toujours respecté dans H(7,4)

Cas de deux erreurs

- Le code erroné dh = 1 avec un autre mot du code Cet autre mot sera choisi par le décodage!
- Exemple, bits d_2 et d_1 erronés $p_1 = p_0 = 1$, valeur(S) = 3 correction du bit d_0 !
- Solution
 - **I** Emetteur : calculer la parite p du mot $[d_3d_2d_1c_2d_0c_1c_0]$
 - 2 Emetteur : émettre le mot $[d_3d_2d_1c_2d_0c_1c_0p]$
 - 3 Récepteur :
 - a. une erreur : parité globale des 8 bits =1 valeur(S) désigne le rang du bit à corriger
 - b. parité globale des 8 bits = 0 et $valeur(S) \neq 0$ 2 erreurs : demander retransmission du mot

Réalisable en informatique et en électronique

—fin de cet enseignement Digital Data Processing—

