矩阵论 第一次作业

第 1 章 线性空间和线性变换

1.1 线性空间

定义

- **定义** 1.1 设 V 是一个非空集合,它的元素用 x,y,z 等表示,并称之为向量;K 是一个数域,它的元素用 k,l,m 等表示. 如果 V 满足条件:
- (1) 在 V 中定义一个加法运算,即当 $x,y \in V$ 时,有唯一的和 $x+y \in V$ 且加法运算满足以下性质:
 - 1) 结合律 x + (y + z) = (x + y) + z;
 - 2) 交換律 x + y = y + x;
 - 3) 存在**零元素** 0, 使 x + 0 = x;
- 4) 存在**负元素**,即对任一向量 $x \in V$,存在向量 $y \in V$,使 x + y = 0,则称 y 为 x 的负元素,记为 -x ,于是有 x + (-x) = 0.
- (2) 在 V 中定义数乘 (数与向量的乘法) 运算,即当 $x \in V$, $k \in K$ 时,有唯一的乘积 $kx \in V$,且数乘运算满足以下性质:
 - 5) 数因子分配律 $k(\mathbf{x} + \mathbf{y} = k\mathbf{x} + k\mathbf{y})$;
 - 6) 分配律 (k+l)x = kx + lx;
 - 7) 结合律 k(lx) = (kl)x;
 - 8) $1 \cdot x = x$

则称 V 为数域 K 上的**线性空间**或**向量空间**.

V 中所定义的加法及数乘运算统称为 V 的线性运算. 在不致产生混淆时,将数域 K 上的线性空间简称为线性空间. 数 k 与向量 x 的乘积 kx 也可写成 xk.

需要指出,不管 V 的元素如何,当 K 为实数域 \mathbb{R} 时,则称 V 为实线性空间;当 K 为复数域 \mathbb{C} 时,就称 V 为复线性空间.

- **定义** 1.3 设 V 是数域 K 上的线性空间, $x_1, x_2, \dots, x_r (r \ge 1)$ 是属于 V 的任意 r 个向量, 如果它满足
- (1) x_1, x_2, \dots, x_r 线性无关;
 - (2) V 中任一向量 x 都是 x_1, x_2, \dots, x_r 的线性组合.

则称 x_1, x_2, \dots, x_r 为 V 的一个基或基底,并称 $x_i (i = 1, 2, \dots, r)$ 为基向量.

定义 1.4 称线性空间 V^n 的一个基 x_1, x_2, \dots, x_n 为 V^n 的一个**坐标系**. 设向量 $x \in V^n$, 它在该基下的线件表示式为

$$x = \xi_1 x_1 + \xi_2 x_2 + \dots + \xi_n x_n$$

则称 $\xi_1, \xi_2, \dots, \xi_n$ 为 x 在该坐标系中的**坐标**或**分**量,记为

$$(\xi_1,\xi_2,\cdots,\xi_n)^T$$

例题

- **例** 1.3 在集合 P_n 中,按照通常意义定义多项式加法及实数与多项式乘法,则 P_n 对这两种运算是封闭的,因为,如果 $f(t) \in P_n$, $g(t) \in P_n$,则 $f(t) + g(t) \in P_n$;若 $k \in \mathbb{R}$,则 $kf(t) \in P_n$,易验证对 P_n 的这两种运算,也满足交换律与结合律.
- **例** 1.4 在所有 n 阶实矩阵的集合 $\mathbf{R}^{n\times n}$ (或复矩阵的集合 $\mathbf{C}^{n\times n}$ 中,如果 $\mathbf{A} + \mathbf{B} \in \mathbf{R}^{n\times n}$ (或 $\mathbf{C}^{n\times n}$),则 $\mathbf{A} + \mathbf{B} \in \mathbf{R}^{n\times n}$ (或 $\mathbf{C}^{n\times n}$);如果 $k \in \mathbb{R}$ 或 \mathbb{C} ,则 $k\mathbf{A} \in \mathbf{R}^{n\times n}$ (或 $\mathbf{C}^{n\times n}$).即集合对于这两种运算是封闭的.加法与数乘矩阵也都满足诸算律.
 - **例** 1.5 设 \mathbb{R}^+ 为所有正实数组成的数集,其加法与数乘运算分别定义为

$$m \oplus n = mn$$
, $k \circ m = m^k$

证明 \mathbb{R}^+ 是 \mathbb{R} 是上的线性空间.

证 设 $m, n \in \mathbb{R}^+$, $k \in R$, 则有

$$m\oplus n=mn\in\mathbb{R}^+$$
 , $k\circ m=m^k\in\mathbb{R}^+$

即 ℝ+ 对所定义的加法运算 "⊕" 与数乘运算 "∘" 是封闭的, 且有

(1)
$$(m \oplus n) \oplus p = (mn) \oplus p = mnp = m \oplus (np) = m \oplus (n \oplus p)$$

- (2) $m \oplus n = mn = nm = n \oplus m$
- (3) 1 是零元素,因为 $m \oplus 1 = m \times 1 = m$

(4)
$$m$$
 的负元素是 $\frac{1}{m}$, 因为 $m \oplus \frac{1}{m} = m \oplus \frac{1}{m} = 1$

(5)
$$k \circ (m \oplus n) = k \circ (mn) = (mn)^k = m^k n^k = (k \circ m) \oplus (k \circ n)$$

- (6) $(k+l) \circ m = m^{k+l} = m^k m^l = (k \circ m) \oplus (l \circ m)$
- (7) $k \circ (l \circ m) = k \circ m^l = m^{lk} = m^{kl} = (kl) \circ m$
- (8) $1 \circ m = m^1 = m$

成立,故 ℝ+ 是实线性空间.

习题

习题 1.1.6 求 P_2 中向量 $1+t+t^2$ 对基: 1,t-1,(t-2)(t-1) 的坐标.

$$1 + t + t^{2} = a \cdot 1 + b(t - 1) + c(t - 1)(t - 2)$$

$$1 + t + t^{2} = (a - b + 2c) + (b - 3c)t + ct^{2}$$

$$\begin{cases} a - b + 2c = 1 \\ b - 3c = 1 \end{cases} \Rightarrow \begin{cases} a = 3 \\ b = 4 \\ c = 1 \end{cases}$$

因此, 向量 $1+t+t^2$ 对基: 1,t-1,(t-2)(t-1) 的坐标为 $(3,4,1)^T$.

习题 1.1.11 求 \mathbb{R}^4 的两个子空间

$$\begin{cases} V_1 = \{ (\xi_1, \xi_2, \xi_3, \xi_4) \mid \xi_1 - \xi_2 + \xi_3 - \xi_4 = 0 \} \\ V_2 = \{ (\xi_1, \xi_2, \xi_3, \xi_4) \mid \xi_1 + \xi_2 + \xi_3 + \xi_4 = 0 \} \end{cases}$$

的交 $V_1 \cap V_2$ 的基.

解

$$A = \begin{bmatrix} 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \quad r(A) = 2, \ n - r(A) = 2$$

因此, $V_1 \cap V_2$ 基的维数是 2.

$$\begin{cases} \xi_1 + \xi_3 = 0 \\ \xi_2 + \xi_4 = 0 \end{cases} \to (1, 0, -1, 0)^T, \quad (0, 1, 0, -1)^T$$

所以, $V_1 \cap V_2$ 的基为 $\{(1,0,-1,0)^T, (0,1,0,-1)^T\}$