

Representation Theory Lecture 12 (13/05)

√ak:	Naam:
Datum:	Studierichting:
Docent:	Collegekaartnummer:
	Frobenius's Theorem (reformulation)
	Let G be a finite group and MCG a subgroup such that for all gEG,
	$H \cap gHg^{-1} = \begin{cases} H & \text{if } g \in H \\ \{1\} & \text{if } g \notin H \end{cases}$
	Then the set $N = (G \setminus UgHg^{-1}) \cup \{1\}$ is a named subgroup of G of arder $(G:H)$, and $G = N \times H$.
	Idea: Construct a representation of a with kernel N. We will first define
	V: Ci/~ -> H/~ (~c.~n: consugary)
	or neg (of sets) $ \Psi: G/_{\sim G} \longrightarrow H/_{\sim H} (\sim_{G}, \sim_{H}: conjugacy) $ Lemma: Let $g \in G \setminus N$. Then the set $[g]_{G} \cap H$ is a conjugacy class of H .
	Proof: By assumption, g is in some carryage of H , so $[g]_a = [h]_a$ for some $h \in H$. Suppose $x \in G$ is such that $xhx^{-1} \in H$, i.e. claim that h , xhx^{-1}
	are caryusate in H. Note: hEHAX HX, so xEH since HAX-HX = [1]
	for x € H. □
	Define v. Ci/va -> H/~n
	$[g]_a \longmapsto \{[g]_a \cap \mathcal{H} \mid f \notin \mathcal{N}$ $[1]_n f \in \mathcal{N}$
	(wall del at land lance) Note that we also have a soul
	(well defined by the lemma). Note that we also have a map $i: H/\sim_H \longrightarrow G/\sim_a \text{induces} C_{\text{uass}}(G) \xrightarrow{i^*} C_{\text{uass}}(H)$
	$[h]_{\mu} \longrightarrow [h]_{a}$
	and one checks that Yoi = id H/m. In particular, i in injective, Y is
	suyechre.
	We obtain an induced map fill for
	Y* CHINH -> Calm
	115 115
	Cclass(H) Cclass(G) of C-algebras.

Lenna: Let E \(\xi\). Wrife \(\psi^*\)\(\xi\) = \(\frac{\xi}{\chi\) \(\chi\) \(\chi\ (X(G) is a Massace C-basis of Citass (G)). Then $\forall x \in X(G): Cx \in \mathbb{Z}$. Proofe Cx = (x, 4* E)a Write E as E'+ d In, where In(h) = 1, The Invial character of 1, and d = E(1H), so E'(1) = O. Then $C_X = \langle X, \Psi^* \xi' \rangle_{\alpha} + d \langle X, Y^* 1_H \rangle = \frac{\langle i^* X, \xi' \rangle_{H}}{\epsilon_{emma}} \langle i^* X, \xi' \rangle_{H} + d \langle X, 1_{\alpha} \rangle_{\alpha}$ = $\langle i*x, \xi \rangle_n - d \langle i*x, I_n \rangle_n + d \langle x, I_a \rangle_a$ Note: if $f: G \longrightarrow V_X$ is the irreducible representation of G then $j^* X$ is the character of $f|_H: H \longrightarrow Aut_G V_X$; if this is isomorphic to $\bigoplus_{E \in X(H)} V_{E'}^{m_E}$, then $\langle i^* X, E \rangle_H = m_E$ and $\langle i^* X, 1_H \rangle_H = m_{1_H}$. Hence $C_X \in \mathbb{Z}_{-\square}$ Corollary: for all EEX(H) we have Y*EEX(G). Proof By the lemma, Y*E = \(\times \tau_{\times \chi(\alpha)} \tau_{\chi(\alpha)} \ta Then $1 = \langle \xi, \xi \rangle_{H} = \langle i * \psi * \xi, \xi \rangle_{H} \stackrel{\text{lemmal}}{=} \langle \psi * \xi, \psi * \xi \rangle_{G} = \sum_{\chi \in \chi(G)} \eta_{\chi}^{\perp}$ Hence are of the Mx & # I and all the others are O; we get $Y^*\xi = \pm \chi$ with $\chi \in \chi(G)$. Note: $\xi(1_H) = (Y^*\xi)(1_G) = \pm \chi(1_G)$. But $\xi(1_H)$, $\chi(1_A)$ are positive, so $\psi^*\xi = \chi$. $\forall: G/_{\sim_{\mathsf{A}}} \longrightarrow \mathcal{H}/_{\sim_{\mathsf{H}}}$ $[g]_a \longmapsto [1]_H \quad \text{for } g \in N$ $(\Upsilon^*E)([g]_a) = E(\Upsilon G)_a) = E([1]_u)$ for all $g \in N$

Corollary: If E E Creas (H) is the character of some finite dimensional representation V of H, then Y*E is the character of some finite dimensional representation of a whose restriction to H is isomorphic to V.

Proof of brobenius's herens: Representation $f: \mathcal{H} \longrightarrow \operatorname{Aut}_{\mathbb{C}}(V)$ such that f is injective, e.g. $V = \mathbb{C}[H]$. Let \mathcal{E} be the character of f, then $V^*\mathcal{E}$ is the character of some implication representation $\tilde{f}: \mathcal{G} \longrightarrow \operatorname{Aut}_{\mathbb{C}}(V)$. For all $g \in \mathcal{G}$, $(V^*\mathcal{E})(g) = \mathcal{E}(h)$ if $[g]_a = [h]_a$ with $h \in \mathcal{H} \setminus \{1\}$ $\mathcal{E}(1) = \operatorname{dim} V$ if $g \in \mathbb{N}$.

So gacks brually an W ⇒ g∈N i.e. N= ker P.
Induced representations
If MCCr are finite groups, we can restrict representations of G to M. In general, a representation of M cannot be extended to a representa-
In general, a representation of Il cannot be extended to a representa-
for y (2 of the same almeration
Nowever, There is a very useful functor Indin: GIHS Mod -> CKGS Mod
That nutreplies dimensions by (G:H)
Exercise 8 of problem sheet 9g: V a C[H]-module. Define
$W = \{f: G \longrightarrow V \mid \forall x \in G, h \in H: f(hx) = hf(x)\} $ with left G-action
(9f)(x) = f(xg); This is a p. (left) ClCe)-module. There are cononical
Nonryphisms C[G] ⊗CIN] V ~ > W ~ > CIN] Hom (C[G], V) of left
C(H)-modules.
Notahan: Wu denoted by IndaV, the induced representation of
V to Cr.
Exercise: ce: V-> V' C[H]-linear map -> There is a rapid C[G]-lin-
ear map $\alpha_* = \operatorname{Ind}_n^a \alpha : \operatorname{Ind}_n^a \vee \longrightarrow \operatorname{Ind}_n^a \vee'$
Exercise: $\alpha: V \longrightarrow V'$ $C[H]$ -linear map \Rightarrow there is a natural $C[G]$ -linear map $\alpha_* = \operatorname{Ind}_H^G \alpha: \operatorname{Ind}_H^G V \longrightarrow \operatorname{Ind}_H^G V'.$ This makes Ind_H^G into an exact functor $\operatorname{CH} \operatorname{Mod} \longrightarrow \operatorname{CGJ} \operatorname{Mod}$
We have seen: if Y: R->S & a ring hamomorphism, Man R-module,
N as S-module, Then there is a constitute group isomorphism sHom (S&RM,N) ~~> RHom (M, Y*N)
sHom (S&RM,N) ~~> RHam (M, Y*N)
(Exercise 5 of sheet 6)
Exercise: RMom(S,M) is a left S-module and there is a constrict gray
is omaphion RMom (4*N,M) -> sHom (N, RMom (S,M))
Theren (brobenus reciprocity): Let G be a finile group. MCG a sub-
Theren (brobenius reciprocity): Let G be a finite group. MCG a sub- group. For any C[G]-module Wirnte Res" W= (W mewed as a City-mod.
ule). Then there are commical isomorphisms
CIGIHam(IndaV, W) ~> CINIHam(V, ResaW)
CINTHON (Res, W, V) ~ CIGT Hom (W, Inda V)
∀ C[4]-nodules V, C[G]-nodules W.

Representation Theory. Lecture 13 (20/05)

Vak:	Naam:
Datum:	Studierichting:
Docent:	Collegekaartnummer:
B	Induced representations (continued)
16	,
11	<u> </u>
18	
H.	1
10	1
21	
X	Corollary: V finite diversional representation of M, W= IndnV, Xv: H -> C, Xw: G -> C Their characters. Then V f & Coloss (G):
25	Xv: H → C, Xw: G → C Then characters. Then & f∈ Cclass (G):
24 25	$\langle f_i \times_{w} \rangle_{a} = \langle f_{H_i} \times_{v} \rangle$
J.	We can also define induction directly on characters:
21	We can also define induction directly on characters: Deft indu: Cass (H) -> Cass (G) $f \mapsto \left(g \mapsto \sum_{\substack{t \in G/H \\ t \text{ "gt en}}} f(t \text{ "gt})\right)$
28	$f \longmapsto (g \longmapsto \sum f(t'gt))$
29	E'gten
31	
31	Brof: V finik diversional representation of H, W= India (V). Then
32	VgE G: Xw(g) = (indnXv)(g) (ie. XIndnv = indnXv)
3/5	Proof Use IndaV = Cla] Ocin V
	Let T be a set of coret representatives for G/H. Then G= tet tH and C[G] = DC(tH)
	right C[H]-module.
	W = C[G] OCHV = DC(H) OCH)
	WEGW
	Let g & Ca. For all t & T There is a inique t'&T (depending on g)
,	such that gtH = t'H; in parpeular, gt = t'ht with ht EH. Consider
1	an element of W, say $\omega = \sum_{t \in T} t \otimes V_t$ with $V_t \in V$ (Note: $\mathbb{C}\{tH\} = t\mathbb{C}[H]$ $\subseteq \mathbb{C}[G]$). Then $gw = \sum_{t \in T} gt \otimes V_t = \sum_{t \in T} t'h_t \otimes V_t = \sum_{t \in T} t' \otimes h_t V_t$
	(P. T. O)

Prefer
$$g: V_{t}$$

We $O - V_{t}$

Note: $O - V_{t}$

When implies $V_{t}(g) = tr(g: W \rightarrow W) = V_{t}$
 $V_{t}(g) = tr(g: W \rightarrow W) = V_{t}$
 $V_{t}(g) = tr(g: W \rightarrow W) = V_{t}$
 $V_{t}(g) = V_{t}(g: W \rightarrow W) = V_{t}(g)$

Microbine proof: $V_{t}(g) = V_{t}(g)$

Then $V_{t}(g) = V_{t}(g) = V_{t}(g)$
 $V_{t}(g) = V_{t}(g)$
 V_{t

Carollary: Vfn & Cuass (H), fa & Cuass (Ce):

(Indufu, fa) = (fu, resulta) u = falu

(1,2)

$$8+6+2$$
 $X^{3}+3x+2$
 $8+6+2$
 $8+6+2$

8 + 4×+8

$$(1) H = \{(1), (12)\} \qquad (13)(12) = (123)$$

$$(13)H = \{(13), (123)\}$$

 $T = \{(1), (13), (23)\}$

 $(23)H = \{(23), (132)\}$

(: Coset represent

For which tET does togt EH hold?

$$g=(1)$$
 all $t \in T$

$$\frac{g \left(\text{ind}_{H}^{4} \chi \right) (g)}{(1) 1+1+1=3}$$

$$(1) | 1+1+1=$$

$$g = (123)$$
: no $t \in T$.

$$(12)$$
 -1 (123) C

The method: ind " E = \(\sum_{x \in x(\alpha)} m_x \chi \) where $m_{\chi} = \langle \chi, \frac{\sum}{\chi \in \chi(G)} m_{\chi'} \chi' \rangle_{G}$ = (xindaE)

$$=\langle \chi|_{H}, \xi\rangle_{H}$$

e.g. if
$$\chi_{ln} = \xi : m_{\chi} = (\xi, \xi)_{n} = 1$$
 (\xi irreducible).