Neural Coding

Computing and the Brain

How Is Information Coded in Networks of Spiking Neurons?

• Coding in spike (AP) sequences from individual neurons

• Coding in activity of a population of neurons

Dept. Computing Science & Mathematics Spring 2010

(Single Neuron Computation, pg 88)

Coding in Single Neurons

- · Binary coding
 - Presence or absence of spikes
 - Logical 1 if neuron fires an AP in a given time window; 0 otherwise
- · Rate coding
 - Average firing frequency over a given time
 - Analogue (number)
- Temporal coding
 - Interspike interval
 - Temporal sequence of spikes

Dept. Computing Science & Mathematics

(CS92 Fig 3.4)

Spring 2010

3

Rate Coding in Sensorimotor Systems

- Muscle stretch receptors fire in proportion to stretch (weight)
 - Experimental data from Adrian, 1928
- · Sensation of a stimulus is proportional to the firing rate
 - Hypothesis by Adrian

Excitatory process in receptor

Impulse discharge in nerve fiber

Sensation

Dept. Computing Science & Mathematics Spring 2010

Temporal Coding in Sensorimotor Systems

- H1 neuron in the fly visual system
- · Responds to movement of objects in the world
 - Angular velocity
- Movements can be reconstructed from measurements of the interspike intervals

(from Spikes, MIT Press, 1997)

Dept. Computing Science & Mathematics Spring 2010

5

Dynamic Range of Codes

- Suppose a neuron is capable of firing from 0 to 100 spikes per sec
- Neurons that receive inputs from this neuron have 200 msecs to "decode" the signal from the neuron
 - Information coded in spikes fired by neuron in a 200 msec time window
- · Given this scenario, what "code" is best?
 - Rate versus temporal coding

- Rate code
 - Rate is number of spikes divided by time interval
 - Roughly 0 to 20 spikes could occur in 200 msecs
 - Only 20 states can be distinguished
 - 0, 5, 10, 15, 20 Hz etc

Dept. Computing Science & Mathematics

Spring 2010

Dynamic Range (2)

- Temporal code
 - Measure interspike intervals with 10 msec precision
 - 20 time bins in which spikes can be detected
 - 20 element binary vector
 - Over one million (220) possible states
 - Different spike patterns giving different binary vectors

- 200 msecs is often too long in the real nervous system
 - House fly performs visual responses in 30 msecs
 - Human can recognise visual objects in 150 msecs
 - Time for only 1 or 2 spikes per neuron

Dept. Computing Science & Mathematics Spring 2010

7

Coding in Networks

- How are "features" of a stimulus encoded in a network of neurons?
 - Eg shape, colour, size etc
- Local coding: single neuron per feature
- Scalar coding: feature encoded by firing rate of a single neuron
- Vector coding: feature encoded by firing rates of a population of neurons that have overlapping tuning curves

Dept. Computing Science & Mathematics

Spring 2010

Temporal Binding How can the activity of neurons responding to different features of a single stimulus be combined? Cell assembly: group of neurons that fire at the same time Temporal binding - E.g red sphere and a blue cube sphere red Spike train from A cube blue Potential in C Coincidence detection Spike train from C • e.g. Cell C encodes a red sphere Dept. Computing Science & Mathematics Spring 2010 9

Vector Coding of Features

- Visual stimulus orientation encoding
- Example shows 3 neurons that respond maximally to different orientations of a bar of light
- How many neurons with different tuning curves are required to encode orientation?

(CS92 Fig 4.21)

Dept. Computing Science & Mathematics Spring 2010

11

Prediction of Hand Movements

- Recording from 100 neurons in groups of 20 from different areas of motor cortex
- Monkey moves joystick to track onscreen cursor
- Predictions of hand movements based on:
- 1. Average firing rate of each neuron in 100msec time bins
- 2. 10 bins per neuron, covering 1 second of activity immediately preceding movement

(Wessberg et al, Nature 408:361-365, 2000)

Dept. Computing Science & Mathematics Spring 2010

Prediction of Hand Movements (2)

- Linear and nonlinear (ANN) models
 - Inputs are neuronal firing rates
 - Output is predicted movement
- Initial model parameters derived from first minute of experimental data
- Parameters updated on each 10 minutes of data
- 60% accuracy
- Estimate 90% accuracy from 1000 neurons

(Wessberg et al, Nature 408:361-365, 2000)

Dept. Computing Science & Mathematics Spring 2010

13

Neural Control of Cursor Movement

- Again, monkeys use joystick to move onscreen cursor
- Recorded between 7 and 30 motor cortex neurons
- Hand movement predictions based on neuron firing rates measured in 50 msec time bins
- Linear models with parameters based on 3 minutes of data
- Once model was trained the joystick was disconnected from the computer...
 - Performance maintained
 - Sometimes monkeys stopped making hand movements!

(Serruya et al, Nature 416:141-142, 2002)

Dept. Computing Science & Mathematics Spring 2010