

La figure ci-contre, montre la densité électronique en SI en fonction de is température pour une concentration en donneur de N st 10^{15} cm $^{3}.$ Å hacte température, l'énergie thermique dans le cristal n'est pas sufficiente pour loniser toutes les impuretés donneurs présentes. Certains électrons sont «congelés» au niveau du donneur et la densité électronique est inférieure à la concentration du donneur. Lorsque la température augmente, la condition d'ionisation complète est atteinte (c'est à d're, n. = No). Lorsque la température augmenté encore, la concentration en électrons reste essentiellement la même sur une large plage de températures. C'est la région extrinsèque. Cependant, à mesure que la température augmente encore, nous atteignons un point où la concentration intrinsèque en porteurs devient comparable à la concentration en donneur. Au-delà de ce point, le semi-conducteur devient intrinsèque. La température à laquelle le semi-conducteur devient intrinsèque dépend des concentrations d'impuretés et de la valeur de la bande interdite et peut être obtenue à partir de la figure 18 en réglant la concentration en impuretés égale à

La figure ci-dessous illustre la procédure d'obtention des concentrations en porteurs pour un semi-conducteur de type n. Cette figure est similaire à celle représentée à la Fig vue précédemment pour un sc intrinsèque..

Cependant, le niveau de Fermi est plus proche du bas de la bande de conduction et la concentration en électrons (zone ombrée supérieure) est beaucoup plus grande que la concentration en trous (zone ombrée inférieure).

IV-3 Semiconducteur de type p:

Lorsqu'un sc de la colonne IV soit par ex Si se dope par une impureté de la colonne III, soit par exemple le B (Bore) qui est donc un atome trivalent. Le B prend la place d'un Si dans le cristal et se trouve au voisinage direct de 4 Si. Il va participer avec ses trois électrons périphériques dans trois liaisons covalentes et il se trouve dans une situation où il accepte facilement un électron libre qui va compléter son édifice électronique tout en laissant un trou dans l'atome voisin qui a libéré l'électron.

Le hors set pane acos appeal diante accriptent et le se est dit de type pout dopé p.

In internation de la paragraphia précédent, Nantaine accepteurs forment le la contraction de la paragraphia précédent, Nantaine accepteurs forment le la contraction de la paragraphia précédent, Nantaine accepteurs forment le la contraction de la paragraphia précédent, Nantaine accepteurs forment le la contraction de la paragraphia précédent, Nantaine accepteurs forment le la contraction de la paragraphia précédent, Nantaine acceptaine de la paragraphia précédent de la paragraphi

	Comme pour le cas de sc de type n, on a aussi le fait que le cas d'utilisation pratique des sc on a NA>>ni
	Ce qui permet d'écrire que py=
	NA
	Cherchons, matritenant la position du niveau de Fermi noté Ery.
	Ex: Montrer que:Exp EV=kT.Ln(Nu/Nk) cel per correspicary
	No : No exp - (Fo - EV) (No (EFo - EV) NA / - NA / - NA / NA / - NA / NA /
	The All the Cal My
	NA : No exp- (Co Cu) . No Co Co Cu (Nu) .
	On peut voir que plus le sc est dopé p (Na) plus le niveau de Fermi se de Ey.
	Out beet ton doe has is se est oche b list. I have a unest och in the
	Remarque: 4'As et le 8 sont les plus utilisés pour le dopage du Si.
	4'As et le B sont les plus utilisés pour le dopage du Si.
	-Pour l'AsGa, les éléments de la colonne VI (ex : Te) dopent N en se substituant à As et les éléments de la colonne II (ex:
	Zn) dopent P en se substituant à Ga. Mais il y a aussi les éléments de la colonne IV qui se substituent à Ga pour doper N
	et à As pour doper P. Ext
	Supposons que le niveau d'énergie de Fermi est de 0,30 eV en dessous de l'énergie de la bande de conduction Ec.
	Supposons T= 300 K. (a) Déterminez la probabilité qu'un état soit occupé par un électron à E=Ec+kT/4. (b) Répétez la
	partie (a) pour un état énergétique à E= Ec +kT.
	Ex2 Ex2 $ \frac{1}{1+e(e-e_F)} $ $ \frac{1}{1+e(e-e_F)} $
	Déterminez la température à laquelle il y a 1% de probabilité qu'un état énergétique soit vide.
	Supposons que le niveau d'énergie de Fermi pour un matériau particulier est de 6,25 eV et que les électrons de ce
	matériau suivent la fonction de distribution de Fermi-Dirac. Calculez la température à laquelle il y a une probabilité de
	1 pour cent qu'un état à 0,30 eV én dessous du niveau d'énergie de Fermi ne contienne pas d'électron.
	E-F=-0,5 me continue pas Fo=1-Fm=golContieume Fm(F)? 9) 1+e(Ec-EF)
	Calculez la probabilité qu'un état quantique dans la bande de conduction à E =Ec+ kT/ 2 soit occupé par un électron et
	calculez la concentration d'électrons à l'équilibre thermique dans le silicium à T 300 K.
	Supposons que l'énergie de Fermi est de 0,25 eV en dessous de la bande de conduction. La valeur de Nc pour le
4	silicium à T 300 K est Nc =2,8 10 ¹⁹ cm-3
-	Ex4 Fm = 1+0,01 = 1,01
- EC	Calculer la concentration de trous d'équilibre thermique dans le silicium à T= 400 K.
F	Sunnosons que l'énergie de Fermi est de 0.27 eVau-dessus de l'énergie de la bande de vaience. La valeur de Ny nour
	le silicium à T= 300 K est Nv=1,04 1019 cm-3 121 = 18,0 lb (F-E) = 1 (F-GW) = 3143 (E-EF) Ex5 $0 \times 0 $
EF/	ENS D) M = Nc x exp(50) = 1 (ef - 10) = 1
25/	Calculer la concentration intrinsèque des porteurs dans le silicium à T= 250 K et à T=400 K. Fm + Fm & Fm = 1
1/	Les valeurs de Nc et Nv pour le silicium à T= 300 K sont respectivement de 2,8 10 ¹⁹ cm ³ et 1,04.10 ¹⁹ cm ³ . Nc et Nv
1	Les valeurs de No et Ny pour le silicium à 1= 300 k sont respectivement en 2,8 10-5 cm 3 et 1,04.10-5 cm 7. No et Ny
796	FOR THE PARTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE PART
- ال	of AeV
-en	
100	masses effectives de porceurs dans le sili Jum es, mn = 1.148m, et m = 0,56m, = 0,56m.
	$\frac{c}{2} = -\frac{c}{2}$
	Calculez les concentrations d'équilibre thermique des électrons et des trous pour une énergie de Fermi donnée.
	Considérons le silicium à T= 300 K de sorte que Nc= 2,8 10 ¹⁹ cm ⁻³ et Nv= 1,04 10 ¹⁹ cm ⁻³ .
	Supposons que l'énergie de Fermi est de 0,25 eV en dessous de la bande de conduction. Si nous supposons que
	l'énergie de la bande interdite du silicium est de 1,12 eV, alors l'énergie de Fermi sera de 0,87 eV au-dessus de la
	bande de valence.
V	1= 6,43 B 0- E-FE.
, -	bande de valence.
	T - 753,
	Page 2

w = NC exb. (EC-Et) & P-Nuexp-(G-E) ? EF- FY = 01207 2197.65 (XT=0,029 -1300 400×0.026 = 3.48.62 = 3.99.64 $N_{V} = C(500)^{\frac{3}{2}} = 1,04.60^{\frac{19}{3}}$ $N_{V} = C(400)^{\frac{3}{2}} = 4$ $C(1)^{\frac{3}{2}}$ $N_{V} = C(400)^{\frac{3}{2}} = 4$ $C(1)^{\frac{3}{2}}$ $N_{V} = C(400)^{\frac{3}{2}} = 4$ $N_{V} = C$ C(T) 2 1,6.69
(300) 2
109 (1960) 32
d) 6,39.6 2 . (300) = 2.8.69 (QQD) = 2= 2.8.69 (26) 32 (30) 32 MI = 1,321019 Nc = 2,13.6/19 2,16.62 2108.62 Nu = 1104. 619 (26)2 = 7,91 1/8 (500) 2 19.03.1612

CHAP II PHENOMENES DE TRANSPORT

Dans ce chapitre, nous couvrons les sujets suivants:

- L'équation de la densité de courant et ses composantes de dérive et de diffusion.
- «L'équation de continuité et ses composants de génération et de recombinaison.

I DERIVE DES PORTEURS

L1 Mobilité

Dans un échantillon de semi-conducteur de type n avec une concentration uniforme de donneurs en équilibre thermique, les électrons de conduction dans la bande de conduction sont essentiellement des particules libres, n'étant associés à aucun réseau cristallin spécifique ni à aucun site donneur particulier, comme expliqué dans le chapitre 1. La masse effective des électrons de conduction, influencée par la structure cristalline, diffère légèrement de la masse des électrons libres. À l'équilibre thermique, l'énergie thermique moyenne d'un électron de conduction peut être calculée à partir du théorème de la répartition de l'énergie, c'est-à-dire 1/2 kT d'énergie par degré de liberté, où k représente la constante de Boltzmann et T la température absolue. Dans un semi-conducteur, les électrons ont trois degrés de liberté car ils

 $\mathcal{L}_{n} = \frac{1}{2} m_{n} v_{th}^{2} = \frac{3}{2} kT, \text{ the new of repart } J. \text{ (1)}$

peuvent se déplacer dans un espace en trois dimensions. Ainsi, l'énergie cinétique des électrons est déterminée par ces principes. où m_n est la masse effective des électrons et v_{th_n} la vitesse thermique moyenne. À la température ambiante (300 K), la vitesse thermique des électrons dans l'équation (1) correspond à environ 10^7 cm/s pour le silicium et l'arséniure de gallium.

Ainsi, dans le semi-conducteur, les électrons se déplacent rapidement dans toutes les directions en raison de leur mouvement thermique. Le déplacement individuel d'un électron peut être envisagé comme une série de diffusions aléatoires résultant des collisions avec les atomes du réseau, les atomes d'impuretés et d'autres centres de diffusion, comme illustré dans la figure 1a. Ce mouvement aléatoire entraîne un déplacement net nul pour un électron sur une période de temps suffisamment longue. La distance moyenne entre ces collisions l_n est appelée le libre parcours moyen, tandis que le temps moyen entre ces collisions est appelé le temps de libre parcours moyen τ_n . Ainsi on a : $\ell_n = v_{th_n}$ τ_n Pour une valeur typique de 10^{-5}

cm pour le libre parcours moyen, τ_n est d'environ 1 ps (i.e., $10^{-5}/v_{th} \approx 10^{-12}$ s).

Lorsqu'un petit champ électrique \vec{E} est appliqué à l'échantillon de semi-conducteur, chaque électron subira une force $-q\vec{E}$ du champ et sera accéléré le long du champ (dans la direction opposée au champ) pendant la période entre les collisions. Par conséquent, une composante de vitesse supplémentaire sera superposée au mouvement thermique des électrons. Cette composante supplémentaire s'appelle la vitesse de dérive. Le déplacement combiné d'un électron dû au mouvement thermique aléatoire et à la composante de dérive est illustré à la Fig. 1b. Notez qu'il existe un déplacement net de l'électron dans la direction opposée au champ appliqué.

Fig. 1 Chemin schématique d'un électron dans un semi-conducteur. (a) Mouvement thermique aléatoire. (b) Mouvement combiné dû à un mouvement thermique aléatoire et à un champ électrique appliqué. On peut obtenir la vitesse de dérive \vec{v}_{d_n} en comparant la quantité de mouvement (force × temps)

 $\nabla_{n} = -\frac{q}{mn} + \varepsilon_{\perp} \nabla_{n} | v_{y} = v_{0y}$ $\nabla_{n} = -\frac{q}{mn} \varepsilon_{0} dt$ $\nabla_{n} = -\frac{q}{mn} \varepsilon_{0} dt$ $\nabla_{n} = -\frac{q}{mn} \varepsilon_{0} dt$

appliquée à un électron au cours du trajet libre entre les collisions à l'élan gagné par l'électron dans la même période. L'égalité est valide parce que dans un état stable, tout le moment gagné entre les collisions est perdu pour le réseau dans la collision. La quantité de mouvement appliquée à un électron est donnée par -q \vec{E} τ_n , et la quantité de mouvement gagnée est $m_n \vec{v}_{d_n}$. On a

$$-q\vec{E}\tau_{n=} m_n \vec{v}_{d_n}. \quad (2) \implies \vec{v}_{d_n}. = -\frac{q\tau_n}{m_n} \vec{E} \quad (2a)$$

L'équation 2a indique que la vitesse de dérive des électrons \vec{v}_{d_n} est proportionnelle au champ électrique appliqué. Le facteur de proportionnalité est appelé mobilité électronique μn avec des unités de cm² / V-s, où $\mu_n = \frac{q\tau_n}{m_n}$ (3) Ainsi : $\vec{v}_{dn} = -\mu_n \vec{E}$ (4)

La mobilité est un paramètre important pour le transport car elle décrit l'importance du mouvement d'un électron sous l'influence d'un champ électrique appliqué. Une expression similaire peut être écrite pour les trous dans la bande de valence:

On peut écrire alors dans ce cas:

$$\ell_p = v_{th_p} \tau_p$$
; $\vec{v}_{d_p} = \mu_p \vec{E}$; (5)
où \vec{v}_{d_p} est la vitesse de dérive du trou et μ_p la mobilité du trou : $\mu_p = \frac{q\tau_p}{m_p}$

Le signe négatif est supprimé dans Eq. 5, car les trous dérivent dans le même sens que le champ électrique. 10 Pm = 9Em mm

EX 1

Calculer le temps libre moyen d'un électron ayant une mobilité de 1000 cm²/V-s à 300 K; calculer également la vitesse thermique et le libre parcours moyen. On supposera que m_n = 0,26 m₀ dans on dans ces calculs.

SOLUTION A partir de l' Eq., le temps libre moyen est donné par: a)4.81×10⁻¹² s(b)1.48×10⁻¹³ s; c)3.21×10⁻¹¹ s; d) 1.23×10⁻¹² s;e)0

 $vt_{hn} = est(a)2.28 \times 10^7 cm/s$ b) $8.22 \times 10^6 cm/s$; c) $5.33 \times 10^7 cm/s$ d) $3.53 \times 10^6 cm/s$ e) 0

Fig. 3 Mobilités et diffusivités en Si et GaAs à 300 K en fonction de la concentration en impuretés3.

Nous considérons maintenant la conduction dans un matériau semi-conducteur homogène.(fig4)

qui a une aire en coupe transversale A, une longueur dx et une concentration de n électrons/cm³.de mobilité un et de p trous/ cm³ de mobilité μ_p Pendant dt le nombre d'électrons qui ont traversé la surface A est :

 $dN_n=ndV_n=n...Adx_n$; $(dx_n=...tdn.dt)$ (6a)

et le nombre de trous est:

dNp=p.dy.= pA...v3dp.dt; (6b)

 $(dx_p = 0.4 p. slt..)$ Le déplacement de porteurs crée donc un courant dont la

Avec $\sigma = q(\Pi \mu_{k} + \Pi \mu_{k})$ la conductivité du semiconducteur exprimée en Ω^{-1} m⁻¹(9)

Dans le cas d'un sc intrinsèque, on a n=p=ni donc $\sigma = q(.....+\mu)$ ni

Remarque:

Lorsque Talors of donc la résistance d'un sc Remarque rappelons que R est proportionnelle à la resistivité p=1/o.

Ex : Comment va-t-on simplifier l'expression de σ dans le cas :

Que peut-on dire lorsque: m= ND les part mojacilias, les tras Sont mégligos bes J= 9 ND NW **₽** ≺≺

b) d'un sc de type p.

Que peut-on dire lorsque : J= 9 PPNA D= NA

2.2 DIFFUSION DE PORTEURS

2.2.1 Processus de diffusion

Dans la section précédente, nous avons considéré le courant de dérive, c'est-à-dire le transport de porteurs lorsqu'un champ électrique est appliqué. Un autre composant de courant important peut exister s'il existe une variation spatiale de la concentration en porteurs dans un matériau semi-conducteur. Les porteurs ont tendance à passer d'une région à forte concentration à une région à faible concentration. Ce composant de courant s'appelle le courant de diffusion.

Pour comprendre le processus de diffusion, supposons une densité électronique qui varie dans la direction x, comme le montre la Fig. 5. Le semi-conducteur est à température uniforme, de sorte que l'énergie thermique moyenne des électrons ne varie pas avec x; seule la densité n (x) varie. Considérons le nombre d'électrons traversant le plan à x = 0 par unité de temps et par unité de surface. En raison de la température finie, les électrons ont des mouvements thermiques aléatoires avec une vitesse thermique v_{th_n} et un libre parcours moyen ℓ_n . Les électrons en x= -ln, un libre parcours moyen du côté gauche, ont des chances égales de se déplacer à gauche ou à droite; et dans un temps libre moyen τn, une moitié d'entre eux se déplacera vers le plan x=0. Le taux moyen de flux d'électrons par unité de surface fn1 d'électrons

traversant le plan x=0 à partir de la gauche est alors : $f_{n1} = \frac{1}{2} \frac{1}{4} \frac{n(-l_n) \times 4 \cdot l_n}{1 + 2 \cdot l_n} = \frac{1}{2} \dots n(-l_n) \dots \frac{l_m}{1 + 2 \cdot l_n} \dots \quad (10) = \frac{1}{2} m \left(-l_m\right) \text{ Whim}$

De même, le taux moyen de flux d'électrons par unité de surface fn2 d'électrons en x = I allant vers le plan x = 0 à partir de la droite est Buz = I m (+Pm) Wthm

$$f_{n2} = \cdots \dots \frac{n(+l_n)\dots}{n} = \cdots \dots n(+l_n) \dots \dots$$
 (11)

$$m(-lu) = n(0) - lu \frac{dn(0)}{dx}$$

 $m(+lu) = n(0) + lu \frac{dn(0)}{dx}$

Fig. 5 Concentration en électrons en fonction de la distance;

Le taux net de flux de porteurs est : le sous possilif en le News Jes x 1

$$f_{n} = \frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac{1}{2} \left(n(-l_{n}) - n(+l_{n}) \right) ... + \lim_{n \to \infty} \left(\frac$$

En approximant les densités à $x = \pm l_n$ par les deux premiers termes d'un développement en série de Taylor, on obtient

$$f_n = \frac{1}{2} v_{th_n} \{ [n(0) - \frac{dn}{dx}] - [n(0) + \frac{dn}{dx}] \} = \frac{1}{2} v_{th_n} (-2) ... \frac{dn}{dx} = -D_n \frac{dn}{dx} (14)$$

C'est la première loi de Fick ; le coefficient D_n s'appelle la diffusivité ou coefficient de diffusion des électrons et on a $D_n = l_n v_{th_n}$. (15)

Le signe négatif indique que les électrons se déplacent des régions de fortes concentrations vers les régions de faibles concentrations

Parce que chaque électron porte une charge - q, le flux de porteurs donne lieu à un courant Le courant de diffusion est proportionnel à la dérivée spatiale de la densité électronique. Le courant de diffusion résulte du mouvement thermique aléatoire des porteurs dans un gradient de concentration.

$$J_{n,diff}=-qf_n=qD_n\frac{dn}{dx}...(16)$$

En généralisant à 3 D, on aura : $\vec{J}_{n,diff} = qD_n \frac{grad(n)}{grad(n)}$ (17a) et $\vec{J}_{p,diff} = -qD_p \frac{grad(p)}{grad(p)}$ (17b) 2.2.2 Relation d'Einstein- Cas général :

On montre que:

$$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = \frac{kT}{q}$$
 (18) cette relation s'appelle relation d'Einstein

Dans le cas général on a :

$$\vec{J} = \vec{J}_n + \vec{J}_p$$
 (19)avec $\vec{J}_n = qn \ \mu_n \vec{E} + qD_n \overline{grad}(n)$ (20a)et $\vec{J}_p = qp \ \mu_p \vec{E} - qD_p \overline{grad}(p)$ (20b)
Qu'on peut réecrire en tenant compte de l'équation (18)

 $\vec{J}_{p} = \mu_{p} (q p \vec{E} + kT \overline{grad}(p)) (21a) \text{ et } \vec{J}_{p} = \mu_{p} (q p \vec{E} - kT \overline{grad}(p)) (21b).$

$$\partial = \frac{\pi}{A} = \frac{1}{A} \frac{d\theta}{dt} = \frac{1}{A} \frac{d\theta}{dt}$$