

KIT-Fakultät für Informatik

Prof. Dr.-Ing. Tamim Asfour

Musterlösungen zur Klausur

Robotik I: Einführung in die Robotik

am 12. Juli 2024

Name:	Vorname:		Matrikelnumm	er:
Denavit	Hartenberg	5	$\frac{\pi}{2}$	
Aufgabe 1			7 von	7 Punkten
Aufgabe 2			8 von	8 Punkten
Aufgabe 3			8 von	8 Punkten
Aufgabe 4			8 von	8 Punkten
Aufgabe 5			8 von	8 Punkten
Aufgabe 6			7 von	7 Punkten
Gesamtpunktzahl:			46 von	46 Punkten
		Note:	1,0	

Aufgabe 1 Transformationen

- 1. Eigenschaften: 2 P.
 - Distanz zwischen zwei Punkten bleibt konstant
 - Orientierungen im Körper bleiben erhalten (d.h., ein rechtsdrehendes Koordinatensystem bleibt rechtsdrehend)
- 2. Anzahl der Freiheitsgrade: 6

1 P.

- (3 Freiheitsgrade für Position in \mathbb{R}^3 und 3 Freiheitsgrade für Orientierung in SO(3). Elemente aus SO(3) können zwar eingebettet werden in $\mathbb{R}^{3\times 3}$, aber beschreiben nur 3 und nicht 9 Freiheitsgrade!)
- 3. Verkettete Lagebeschreibung
 - (a) Im globalen Koordinatensystem:

1.5 P.

$$^{\text{Global}}T_{\text{Objekt}} = ^{\text{Global}}T_{\text{Roboter}} \cdot ^{\text{Roboter}}T_{\text{Objekt}}$$

d.h.:

$$T_1 = T_B \cdot T_A$$

$$T_1 = \begin{pmatrix} 0 & 1 & 0 & 4 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 1 & 3 \\ -1 & 0 & 0 & 2 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 & 6 \\ 0 & 0 & -1 & -2 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(b) Im Kamerakoordinatensystem:

2.5 P.

$$\begin{array}{l} {}^{\rm Roboter}T_{\rm Objekt} = {}^{\rm Roboter}T_{\rm Kamera} \cdot {}^{\rm Kamera}T_{\rm Objekt} \\ \Leftrightarrow {}^{\rm Kamera}T_{\rm Objekt} = \left({}^{\rm Roboter}T_{\rm Kamera}\right)^{-1} \cdot {}^{\rm Roboter}T_{\rm Objekt} \end{array}$$

d.h.

$$T_2 = (T_C)^{-1} \cdot T_A$$

Für die Inverse gilt:

$$\begin{pmatrix} R & \mathbf{t} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{pmatrix}^{-1} = \begin{pmatrix} R^{-1} & -R^{-1}\mathbf{t} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{pmatrix} = \begin{pmatrix} R^{\mathsf{T}} & -R^{\mathsf{T}}\mathbf{t} \\ \mathbf{0}^{\mathsf{T}} & 1 \end{pmatrix}$$
$$T_C^{-1} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$T_2 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 1 & 3 \\ -1 & 0 & 0 & 2 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 & 2 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Aufgabe 2 Kinematik und Dynamik

1. Jacobi-Matrix: 3 P.

$$J = \left(\frac{\partial f}{\partial \theta_1}, \frac{\partial f}{\partial d_2}\right) = \begin{pmatrix} -10 \cdot \sin(\theta_1) & 0\\ 10 \cdot \cos(\theta_1) & 0\\ 0 & 1\\ 0 & 0\\ 0 & 0\\ 1 & 0 \end{pmatrix}$$

- 2. Dynamik
 - (a) Kinetische und potentielle Energie:

2 P.

$$E_{kin,1} = \frac{1}{2} m v^2 = \frac{1}{2} m l^2 \dot{q}_1^2 = \frac{1}{2} \cdot 2 \cdot 5^2 \cdot \dot{q}_1^2 = 25 \cdot \dot{q}_1^2$$

$$E_{pot,1} = m g h = m g l \cdot \sin(q_1) = 2 \cdot 10 \cdot 5 \cdot \sin(q_1) = 100 \cdot \sin(q_1)$$

(b) Lagrange-Funktion (allgemein und eingesetzt für den Roboter):

1 P.

$$L(q, \dot{q}) = E_{kin} - E_{pot}$$

$$L(q_1, \dot{q}_1) = E_{kin,1} - E_{pot,1} = 25 \cdot \dot{q}_1^2 - 100 \cdot \sin(q_1)$$

(c) Bewegungsgleichung:

2 P.

$$\frac{\partial L}{\partial \dot{q}_1} = 50 \cdot \dot{q}_1$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_1} \right) = 50 \cdot \ddot{q}_1$$

$$\frac{\partial L}{\partial q_1} = -100 \cdot \cos(q_1)$$

$$\tau_1 = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_1} \right) - \frac{\partial L}{\partial q_1} = 50 \cdot \ddot{q}_1 + 100 \cdot \cos(q_1)$$

Aufgabe 3 Bewegungsplanung

1. (a) Definition: Der Konfigurationsraum C eines Roboters R ist der Raum aller möglicher Konfigurationen der Gelenkwinkel von R.

(b) Dimension: 8 (oder \mathbb{R}^8) Wertebereich: $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]^8$ 1 P.

2. Planungsalgorithmen

2 P.

Szenario	a)	b)	c)
Algorithmus	A*-Algorithmus	Potentialfeldmethode	RRT

3. (a) Kraft in Punkt $\mathbf{q}_s = (2,1)^{\top}$:

2.5 P.

- $\mathbf{F}_{an} = \nabla U_{an}(\mathbf{q}_s) = -\frac{\mathbf{q}_s \mathbf{q}_z}{||\mathbf{q}_s \mathbf{q}_z||} = -\frac{(2,1)^{\top} (5,5)^{\top}}{5} = \frac{1}{5}(3,4)^{\top}$
- $\mathbf{F}_{ab} = \nabla U_{ab}(\mathbf{q}_s) = \frac{\mathbf{q}_s \mathbf{H}}{||\mathbf{q}_s \mathbf{H}||^3} = \frac{(2,1)^\top (2,2)^\top}{1} = (0,-1)^\top$
- Gesamtkraft $\mathbf{F} = \mathbf{F}_{an} + \mathbf{F}_{ab} = (\frac{3}{5}, -\frac{1}{5})$
- (b) Problem:

1.5 P.

Durch Summation von anziehenden Potentialen U_{an} und abstoßenden Potentialen U_{ab} kann das resultierende Potentialfeld U lokale Minima besitzen. Wenn der Roboter sich in Richtung des negativen Gradienten des Potentialfeldes bewegt, kann er in einem solchen lokalen Minimum "steckenbleiben".

- Maßnahmen: (eine genügt)
 - Anziehende Potentiale U_{an} und abstoßende Potentiale U_{ab} so definieren, dass U kein lokales Minimum hat, außer im Ziel \mathbf{q}_{a} .
 - Im Suchalgorithmus Techniken zur "Flucht" aus lokalen Minima anwenden

Aufgabe 4 Greifen

- 1. (a) Faktoren: 1 P.
 - Handkinematik
 - Griffrepräsentation
 - Vorwissen über das Objekt
 - Griffsynthese: analytisch, datengetrieben
 - Verfügbare Merkmale: 2D, 2.5D 3D, visuell, haptisch, ...
 - Aufgabe
 - (b) Griffanalyse vs. Griffsynthese:

2 P.

- i. Griffanalyse:
 - A. Gegeben: Objekt und ein Griff (als Menge von Kontaktpunkten)
 - B. Gesucht: Aussagen zur Stabilität des Griffs unter Berücksichtigung von Nebenbedingungen
- ii. Griffsynthese:
 - A. Gegeben: Objekt und eine Menge von Nebenbedingungen
 - B. Gesucht: Eine Menge von Kontaktpunkten (Griff)
- 2. (a) Definition: Ein Wrench ist die Verallgemeinerung von Kräften und Drehmomenten, die in einem Kontaktpunkt wirken
 - (b) Wrenches: 2 P.

Normalkraft \mathbf{f}_1 wirkt in Richtung $(-1,1)^{\top}$ mit $|\mathbf{f}_1|=1$

$$\implies \mathbf{f}_1 = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^{\top}$$
 (nicht gefragt)

Mit Reibung \implies GWS von C_1 wird von 2 Wrenches $\mathbf{w}_{1,1}, \mathbf{w}_{1,2}$ aufgespannt. Reibungskoeffizient $\mu = 1 \implies$ Öffnung der Reibungskegel = 45°, $|\mathbf{f}_t| = |\mathbf{f}_n|$

$$\implies$$
 Kräfte $\mathbf{f}_{1,1} = \left(-\sqrt{2}, 0\right)^{\top}, \quad \mathbf{f}_{1,2} = \left(0, \sqrt{2}\right)^{\top}$

Damit ergeben sich die Drehmomente $\tau_{1,1}, \tau_{1,2}$ zu:

$$\tau_{1,1} = \mathbf{d}_1 \times \mathbf{f}_{1,1} = \begin{pmatrix} 3 \\ -1 \end{pmatrix} \times \begin{pmatrix} -\sqrt{2} \\ 0 \end{pmatrix} = 2 \cdot 0 - (-1) \cdot (-\sqrt{2}) = -\sqrt{2}$$

$$\tau_{1,2} = \mathbf{d}_1 \times \mathbf{f}_{1,1} = \begin{pmatrix} 3 \\ -1 \end{pmatrix} \times \begin{pmatrix} 0 \\ \sqrt{2} \end{pmatrix} = 3 \cdot \sqrt{2} - (-1) \cdot 0 = 3\sqrt{2}$$

$$\implies \mathbf{w}_{1,1} = \begin{pmatrix} -\sqrt{2}, \ 0, \ -\sqrt{2} \end{pmatrix}^{\mathsf{T}}, \quad \mathbf{w}_{1,2} = \begin{pmatrix} 0, \ \sqrt{2}, \ 3\sqrt{2} \end{pmatrix}^{\mathsf{T}}$$

3. (a) Definition: Die mediale Achse ist die Vereinigung der Zentren der maximalen 0.5 P. Kugeln in H.

(b) Objekthülle: 2 P.

Abbildung 1: Mediale Achse der Objekthüle

Aufgabe 5 Bildverarbeitung

1. Kameraparameter

1 P.

- (a) Intrinsische Parameter: K
 - Extrinsische Parameter: (R|t)
- (b) Unterschied:

1 P.

Das erweiterte Kameramodell verwendet unabhängige Brennweiten f_x und f_y in u und v Richtung (rechteckige Pixel) und der Hauptpunkt $(c_x, c_y)^{\top}$, ist nicht identisch mit dem Ursprung des Kamerakoordinatensystems .

(c) K-Matrix:

1 P.

$$\begin{pmatrix} f_x & 0 & c_x \\ 0 & f_y & c_Y \\ 0 & 0 & 1 \end{pmatrix}$$

2. Filteroperationen:

1 P.

- Name eines Hochpass-Filter:
 - Prewitt
 - Sobel
 - Laplace
- Anwendung von Hochpass-Filtern: Kantendetektion

3. ICP:

1 P.

- Vorteil:
 - Algorithmus für Punkte, Normalenvektoren und andere Darstellungsformen anwendbar
 - Nur einfache mathematische Operationen notwendig
 - Schnelles Registrierungsergebnis
- Nachteil:
 - Überlappung der Punktwolken erforderlich
 - Symmetrische Objekte können nicht ohne weiteres registriert werden
 - Konvergenz in ein lokales Minimum möglich

4. RANSAC:

(a) Algorithmus:

2 P.

- Wähle zufällig die minimale Anzahl an Punkten aus, die nötig ist um die Modellparameter zu berechnen.
- Schätze ein Modell aus dem ausgewählten Datensatz
- Bewertung der Modellschätzung
- Wiederhole 1–3 bis das Modell mit den meisten Inliers gefunden wird

1 P.

(b) • Vorteil:

- Allgemein und einfach zu implementieren
- Robuste Modellschätzung für Daten mit wenigen Ausreißern
- Vielseitig anwendbar
- Nachteil:
 - Nicht-deterministisch
 - Trade-off zwischen Genauigkeit und Laufzeit (benötigt viele Iterationen)
 - Nicht anwendbar wenn das Verhältnis Inliers/Outliers zu klein ist

Aufgabe 6 Programmieren durch Vormachen

1. Gründe (Vorteile):

- Komplexitätsreduktion des Suchraums
- Implizite Programmierung (weniger mühsam als händisches Programmieren)
- Verständnis des Verhältnisses von Perzeption und Aktion

2. Möglichkeiten:

- Passive Marker am menschlichen Körper
- Aktive Marker am menschlichen Körper
- IMUs am menschlichen Körper
- Mechanische Bewegungserfassung (Sensoren an Exoskelett)
- Kameradaten (Stereokamera oder RGB-D Kamera)

3. Aspekte:

Zu nennen sind zwei Aspekte pro Spalte.

Relevant	Irrelevant	
Die Person steht 1 m von der Tischmitte entfernt	Die Person steht an der Nordseite des Tischs	
Auf dem Tisch befindet sich ein Schwamm	Auf dem Tisch befindet sich auch ein Handtuch	
Die Person greift den Schwamm	Zum Greifen wird die linke Hand verwendet	

4. Segmentierungspunkte:

Zeitstempel: 4, 7, 11, 12

(auch zulässig, aber ohne Punkte: zusätzliche Nennung von 0, 17)