# Aprendizaje por Refuerzo

- Nombres:
- Jhoan Sebastian Almeida Caicedo
- Daisy Alejandra Ayala
- Santiago Arredondo

# ¿Qué es aprendizaje por refuerzo?

Es una rama del aprendizaje automático inspirada en la psicología conductista. El aprendizaje por refuerzo involucra uno o más agentes que tienen estados y acciones que pueden realizar en un ambiente dado con el fin de obtener recompensas.



# ¿En qué consiste el aprendizaje por refuerzo?

Es una área de la inteligencia artificial que está centrada en descubrir qué acciones se debe tomar para maximizar la señal de recompensa.





### Elementos del Aprendizaje por refuerzo

- Política: es una regla utilizada por el agente para tomar decisiones.
- Estados: instancia o descripción completa del ambiente en el que se desenvuelve el agente.
- Medio ambiente: es el contexto donde se desenvuelve el agente, este tiene las reglas de juego también.

- Acciones: son distintas interacciones que tiene el agente con su entorno; diferentes entornos conducen distintas acciones basadas en el agente y estas tienden a ser finitas.
- Recompensas: son estímulos que recibe el agente, es un valor numérico que mide que tanto el agente se acerca o aleja de la solución ideal.

# Fórmula matemática explicación

$$V^*(s) = \max_{a \in \mathcal{A}} \mathbb{E}_{s'} \left\{ r(s, a) + \gamma V^*(s') \right\}$$

#### Procesos de Markov



$$P_{ss'} = \begin{pmatrix} P_{11} & P_{12} & \cdots & P_{1n} \\ P_{21} & P_{22} & \cdots & P_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ P_{n1} & P_{n2} & \cdots & P_{nn} \end{pmatrix}$$

$$S_t$$
 = "Estado en tiempo  $t$ "  

$$\mathbb{P}[S_{t+1}|S_t, S_{t-1}, ..., S_0] = \mathbb{P}[S_{t+1}|S_t]$$

# **Origen Algoritmo**

#### Markov Decision Processes (MDPs)



$$a_t \in \mathcal{A} = \{\text{``Arriba''} , \text{``Abajo''}, ...\}$$
   
  $r_t = \text{``Recompensa en tiempo } t''$ 

$$P_{ss'}^{a} = \begin{pmatrix} P_{11}^{a} & P_{12}^{a} & \cdots & P_{1n}^{a} \\ P_{21}^{a} & P_{22} & \cdots & P_{2n}^{a} \\ \vdots & \vdots & \ddots & \vdots \\ P_{n1}^{a} & P_{n2}^{a} & \cdots & P_{nn}^{a} \end{pmatrix}$$

#### Encontrar la politica pi que maximice el valor para cada estado

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

#### Política de Control

Elegimos en cada momento una acción en función del estado

$$a_t = \pi(s_t)$$

#### Valor de un estado

Recompensa a largo plazo si empezamos en s y seguimos la política pi

$$V^{\pi}(s) = \mathbb{E}\left\{\sum_{t=0}^{\infty} \gamma^{t} r_{t} | s_{0} = s\right\}$$

# **Q-Learning**

- Q-Learning es un algoritmo de aprendizaje de refuerzo basado en valores que se utiliza para encontrar la política óptima de selección de acciones mediante una función Q.
- Nuestro objetivo es maximizar la función de valor Q.
- La tabla Q nos ayuda a encontrar la mejor acción para cada estado.
- Ayuda a maximizar la recompensa esperada seleccionando la mejor de todas las acciones posibles.
- Q (estado, acción) devuelve la recompensa futura esperada de esa acción en ese estado.
- Esta función se puede estimar usando Q-Learning, que actualiza iterativamente Q (s, a) usando la ecuación de Bellman.
- Inicialmente exploramos el entorno y actualizamos la Q-Table. Cuando la Q-Table esté lista, el agente comenzará a explotar el entorno y comenzará a tomar mejores medidas.

# **Q-Learning**



# **OPENAL** y Unity

El objetivo de este sistema es demostrar usos prácticos del q-learning en juegos y simulaciones.



Vídeo juegos

### Open AI desarrolló un sistema llamado Dactyl

El objetivo de este sistema es demostrar que el entrenamiento por refuerzo en simulaciones puede lograr un gran impacto en la vida real.



**Dexterity** 

# **Conclusión**



# **Ejercicio Demostrativo**

**EjemploOPENAI** 

## Bibliografía

[1] M. Silva, «medium,» [En línea]. Available: https://medium.com/aprendizaje-por-refuerzo-introducci%C3%B3n-al-mundo-del/aprendizaje-por-refuerzo-introducci%C3%B3n-al-mundo-del-rl-1fcfbaa1c8 7. [Último acceso: 15 03 2020].

[2] M. Silva, «medium,» [En línea]. Available: https://medium.com/aprendizaje-por-refuerzo-introducci%C3%B3n-al-mundo-del/aprendizaje-por-refuerzo-procesos-de-decisi%C3%B3n-de-markov-parte-1-8a0aed1e6c59. [Último acceso: 15 03 2020].

[3]https://www.freecodecamp.org/news/an-introduction-to-q-learning-reinforcement-learning-14ac0b4493cc/

[4] https://www.youtube.com/watch?v=GtOsQCCVJDA