11. BOUNDARY LAYER THEORY

EXTERNAL FLOW

BOUNDARY LAYER THEORY

FLOW OVER SUBMERGE BODY

As we go away from the wall the shear stress decreases because of increasing the slope of velocity profile.

- 1. When a real fluid flows and Passes a solid boundary, viscous effects get concentrated in a very thin region adjacent to the surface.
- 2. The flow in this thin region is known as boundary layer flow. (Real, Rotational, No slip condition)
- The flow beyond the boundary layer. (Ideal, Irrotational, with almost uniform velocity profile.)

BOUNDARY LAYER THEORY ON FLAT PLATES:

U_{∞} = Free stream Velocity	x = 0 =Leading Edge	x = L =Trailing Edge
u = Local Velocity	B = Width of the plate	
δ = Boundary Layer/ Nom. thickness	x = Dist. Measured Along the plate from LE	
$Re_{x} = \frac{\rho U_{\infty} x}{\mu} = \frac{U_{\infty} x}{\vartheta}$	$Re_L = \frac{\rho U_{\infty} L}{\mu} = \frac{U_{\infty} L}{\vartheta}$	

CLASSIFICATION OF FLOW INSIDE BOUNDARY LAYER				
LAMINAR	TRANSITIONAL		TURBULENT	
	HLBL	LTBL		
$Re_x \le 2 * 10^5$	$Re_x \le 5 * 10^5$	$Re_x > 5 * 10^5$	$Re_x > 6 * 10^5$	

LAMINAR BOUNDARY LAYER (LBL):

1. BOUNDARY LAYER THICKNESS/ NOMINAL THICKNESS (δ):

The distance measured perpendicular or normal from the wall of a plate till the point velocity is almost U_{∞} .

$$\frac{\delta}{x} = \frac{K}{\sqrt{Re_x}}, Where K = Constant$$

- 1. K Depends on the velocity profile inside the BL
- 2. K = 5 (if not given)

VELOCITY PROFILE:

EXACT VELOCITY PROFILE	APPROXIMATE VELOCITY PROFILE		
Blasius Velocity profile.	E.g. Linear, Parabolic, Cubic, sinusoidal Velocity Profile		
K = 5 (Blasius Constant)	Linear VP: $\frac{u}{U_{\infty}} = \frac{y}{\delta}$, $K = 3.46$	Sinusoidal VP: $\frac{u}{U_{\infty}} = \sin\left(\frac{\pi}{2}\frac{y}{\delta}\right)$, $K = 4.79$	

WALL SHEAR STRESS (τ_0) :

WALL SHEAR STRESS (
$$\tau_0$$
):

Friction Coeff. = $\frac{Wall\ Shear\ Stress}{Dynamic\ Pressure} = \frac{\tau_0}{\frac{1}{2}\rho U_\infty^2} = C_f = Local\ Skin\ Friction$

$$\lim_{x \to \infty} LBL C_f = (Re_x)^{-0.5}$$

$$\therefore \tau_0 \propto (x)^{-0.5}$$

CASE-I: Exact Velocity Profile	CASE-II: Approximate Velocity Profile
$C_f = \frac{0.664}{\sqrt{Re_x}} \Rightarrow \tau_0 = \frac{0.664}{\sqrt{Re_x}} * \frac{1}{2} \rho U_{\infty}^2$	$\tau_0 = \mu \frac{du}{dv}$
$\sqrt{\text{Ne}_{\chi}}$ $\sqrt{\text{Ne}_{\chi}}$ -	y = 0

4. DRAG FORCE (F_D) :

SUMMARY

$\frac{\delta}{x} = \frac{K}{\sqrt{Re_x}}$	$\frac{\tau_0}{\frac{1}{2}\rho U_\infty^2} = C_f \propto \frac{1}{\sqrt{Re_x}}$	$\tau_0 = C_f \frac{1}{2} \rho U_\infty^2 = \left. \mu \frac{du}{dy} \right _{y=0}$	$C_f = \frac{0.664}{\sqrt{Re_x}}$
$F_D = \int$	$\int \tau_0 dA = \frac{1}{2} \rho U_\infty^2 C_D(LB)$	$C_D = \frac{1}{L} \int_0^L C_f * dx$	

TURBULENT BOUNDARY LAYERS ON FLAT PLATES: $Re_x > 5 * 10^5$

BOUNDARY LAYER THICKNESS/ NOMINAL THICKNESS (δ):

	0.371x	4/5
o =	$\overline{(Re_r)^{1/5}}$	$\propto x^{4/5}$

NOTE: Turbulent Boundary layer grows faster along a plate compared to laminar boundary layer.

VELOCITY PROFILE:

$n^{th}POWER\ LAW: \frac{u}{U_{\infty}} = \left(\frac{y}{\delta}\right)^{1/n}$	Std. Value, $n = 7$
--	---------------------

WALL SHEAR STRESS (τ_0) :

$$\tau_0 = C_f \frac{1}{2} \rho U_\infty^2$$

$$C_f = \frac{0.0579}{(Re_x)^{1/5}} (For 7^{th} Power Law)$$

4. DRAG FORCE (F_D) :

$$F_D = \frac{1}{2} \rho U_{\infty}^2 C_D A$$
, Where $A = BL$

$$C_D = \frac{0.072}{(Re_x)^{1/5}}$$

$$(For 5 * 10^5 \le Re_x \le 10^7)$$

$$C_D = \frac{0.455}{(\log_{10} Re_x)^{2.58}}$$

$$(For \ 10^7 \le Re_x \le 10^9)$$

BOUNDARY CONDITIONS:

- No Slip Condition: At y = 0, $u = 0 \Rightarrow \tau = du/dy = 0$
- 2. Definition of Boundary Layer: At $y = \delta$, $u \approx U_{\infty} \Rightarrow \tau = du/dy = 0$
- 3. No Variation in velocity outside boundary Layer: At $y \ge \delta$, $u \approx U_{\infty} \Rightarrow \tau = du/dy = 0$
- 4. Linear Velocity Profile or Constant shear stress neat to the surface:

At
$$y \approx 0$$
, $\tau = du/dy = C \Rightarrow d\tau/dy = d^2u/dy^2 = 0$

5. At $y = \delta$, $u \approx U_{\infty} \Rightarrow d\tau/dy = d^2u/dy^2 = 0$

Note: Boundary Conditions must be used in same sequence as given because initial boundary conditions are more fundamental in nature.

DEVELOPMENT OF FLOW:

As shown in the graphs,

- Wall shear stress decreases during entrance length. And in the turbulent region wall shear stress remains constant.
- Pressure or Head decreases throughout the length of the pipe. And in the turbulent region Pressure dopes linearly decreasing.
- 3. u_{max} increasing in the entrance length and it remains maximum in the turbulent region.

In the turbulent region,

$$u_{max} = 2u_{avg} = 2U_{\infty}$$
Entrance Length

Max. for Laminar | Min. for Turbulent

DISPLACEMENT THICKNESS (δ^*): The distance measured perpendicular or normal to the wall, by which a stream line following adjacent to boundary layer gets displaced in order to compensate reduced mass flux.

 \dot{m}_1 = Issued Mass Flux,

 \dot{m}_2 = Mass Flux Allowed to Flow through BL,

 $\dot{m}_3 = \text{Mass Flux Reduced/ Not Allowed to Flow through BL},$

From continuity equation,
$$\dot{m}_3 = \dot{m}_1 - \dot{m}_2$$

$$(\delta^* B) U_{\infty} = \int_0^{\delta} U_{\infty} B \ dy - \int_0^{\delta} u B \ dy = \int_0^{\delta} B (U_{\infty} - u) \ dy$$

$$\delta^* = \int_0^{\delta} \left(1 - \frac{u}{U_{\infty}} \right) \ dy$$

Ideal Fluid Velocity Flow Defect Solid Boundary Velocity Defect Equivalent Flow Rate

Note: For power law profile, $\delta^* = \delta/(n+1)$

CONCLUSION: 2. For linear Velocity profile, $\delta^* = 0.5 \, \delta$

Alternative Definition of δ^* : The distance measured perpendicular to the surface by which the surface should be displaced to compensate the reduction in mass flux inside the boundary layer.

MOMENTUM THICKNESS (0): It's the distance measured perpendicular or normal to the wall of a plate by which it should be displaced in order to compensate the reduction in momentum flux inside the boundary layer.

$$\Theta = \int_{0}^{\delta} \frac{u}{U_{\infty}} \left(1 - \frac{u}{U_{\infty}} \right) dy$$

$$SHAPE FACTOR = H = \frac{\delta^{*}}{\Theta} (Always > 1)$$
For LBL, $H \in (2.5 - 3)$
For Blasius Velocity Profile $H = 2.59$
For TBL, $H \in (1.3 - 1.4)$

NOTE: Higher the shape factor, higher the chances of adverse pressure gradient. Therefore, higher chances of boundary layer separation.

KARMAN MOMENTUM INTEGRAL EQUATION:

From Momentum Equation

$$\sum_{i} F_{x} = -\tau_{0} dx = \Delta (\dot{m}V)_{x} = (\dot{m}V)_{CD} - (\dot{m}V)_{AB} - (\dot{m}V)_{BC} = \frac{\partial}{\partial x} \int_{0}^{\delta} \rho (u^{2} - uU_{\infty}) dy dx$$

$$\frac{\tau_{0}}{\rho U_{\infty}^{2}} = \rho \frac{\partial}{\partial x} \int_{0}^{\delta} \left(\frac{u}{U_{\infty}} - \frac{u^{2}}{U_{\infty}^{2}} \right) dy = \frac{\partial \mathbf{\Theta}}{\partial x} = \frac{1}{2} \mathbf{C}_{f} (Karman Momentum Integral Equation)$$

$$\frac{\tau_0}{\rho U_{\infty}^2} = \rho \frac{\partial}{\partial x} \int_0^{\delta} \left(\frac{u}{U_{\infty}} - \frac{u^2}{U_{\infty}^2} \right) dy = \frac{\partial \Theta}{\partial x} = \frac{1}{2} C_f(Karman \, Momentum \, Integral \, Equation)$$

The flow is incompressible. Applicable for 2D flow.	dP/dx = 0
---	-----------

ENERGY THICKNESS (δ_E or δ^{**}): The distance measured perpendicular or normal to the wall of a plate by which it should be displaced in order to compensate the reduction in kinetic energy flux.

$\int_{0}^{\delta} u \left[(u)^{2} \right]$	For Linear Velocity Profile,			
$\delta_E = \int_0^\infty \frac{\overline{U_\infty}}{U_\infty} \left 1 - \left(\frac{\overline{U_\infty}}{U_\infty} \right) \right dy$	$\delta^* = \delta/2$	$\Theta = \delta/6$	H=3	$\delta_E = \delta/4$

BOUNDARY LAYER SEPARATION:

 F_I = Inertia Force

Forces Consideration in the Boundary layer Separation, $F_V = Viscous Force$

Conditions in the flows,						
1		dP	Accelerated Flow	$F_I \& F_P$ Opposing F_V		
	$\frac{1}{dx} < 0$ (Favorable Pressure)		In this Flow Condition, no eddy formations taking place. (Low loss, high η)			
		dD	Decelerated Flow	$F_V \& F_P$ Opposing F_I		
			In this Flow Condition, eddy formations/ Flow reversal taking place. (Higher			
		ax	loss, lower η)			

- When a BL encounters adverse Pressure Gradient, flow experiences deceleration.
- The BL thickness drastically increases.
- 3. A portion of BL near the surface separates from the wall. This region is characterised formation of eddies and known as wake region.
- This leads to increase in loss and decrease in efficiency.

 F_P = Pressure Force

Factor influencing BL separation,

- 1. Curvature of the surface.
- Re
- Roughness (TBL) or Smoothness (LBL) of the surface.
- Turbulent flow has lesser boundary layer separation.