Sursa:eoliene.c / eoliene.cpp / eoliene.pas

Problema 2 – eoliene 100 puncte

autor prof. Carmen Mincă Colegiul Național de Informatică "Tudir Vianu" București

Descrierea soluției

O soluție se poate obține prin reducerea turbinelor la intervale închise situate pe aceeași axă. Se construiesc doi vectori d (memorează capetele din stânga a intervalelor) și df (memorează capetele din dreapta a intervalelor): $d[i]=D_i-L_i$ și $df[i]=D_i+L_i$.

Se aranjează turbinele (intervalele) crescător după valorile din df. Se rearanjează simultan și valorile din vectorul d în funcție de interschimbările din vectorul df în timpul sortării.

Se vor alege turbinele (intervalele) care vor fi instalate:

- Prima turbină instalată este cea corespunzătoare valorii d[1].
- A doua turbină instalată este cea corespunzătoare primei valori $d[k_1]$ strict mai mare ca df[1]. Atunci $df[1] < d[k_1]$.
- A treia turbină instalată este cea corespunzătoare valorii din vectorul d cu indicele k_2 minim $(k_1 \le k_2 \le n)$ și cu proprietatea că $df[k_1] \le d[k_2]$.
-
- La fiecare pas se alege pentru a fi instalată prima turbină din cele nealese corespunzătoare valorilor din vectorul d strict mai mari ca cea corespunzătoare ultimei turbine alese pentru a fi instalată.
- Se numără toate turbinele alese pentru a fi instalate.

Numărul minim de turbine ce vor fi eliminate este egal cu diferența dintre numărul N și numărul de turbine alese pentru a fi instalate.

Complexitatea algoritmului propus este O(n²) sau O(n log n) în funcție de complexitatea algoritmului de sortare utilizat.