北京师范大学 2022 ~ 2023 学年第一学期期末考试试卷(A卷)

课程名称:	概率论		任课老师姓名:				
卷面总分:	<u>100</u> 分	考试时长	:: <u>120</u> 分	钟 考试	类别: [刑卷 図 开	- 卷□ 其他□
院(系): _	系): 专业:					F级 :	
姓名:		:	学号:				
题号	_		三	四	五	六	总分
得分							

1. (1) (5分) 叙述随机变量的定义.

阅卷老师(签字):

- (2) (5分) 叙述随机变量分布函数的定义和性质.
- (3) (10分) 已知 F(x), G(x) 都是随机变量的分布函数. 下面的函数: F(x) + G(x), $1 (1 F(x))^2$, $F(x^3)$, $\frac{1}{2}(F(x) + G(x))$, F(x)G(x) 是否可以做某个随机变量的分布函数, 简要说明理由.
- 2. 设 ξ 是一个非负随机变量. 当 $\alpha > 0$ 时,
 - (1) (5分) 证明: $\mathbb{E}\xi^{\alpha} = \int_0^{+\infty} \alpha x^{\alpha-1} P\{\xi > x\} dx$.
 - (2) (10分) 当 $x \to +\infty$, 有 $P\{\xi > x\} \sim C \frac{\ln x}{x^{\beta}}$ ($\beta > 0$), C 是正常数. 证明: $\mathbb{E}\xi^{\alpha} < +\infty$ 当且仅当 $\beta > \alpha$.
- 3. (1) (10分) 叙述依概率收敛, 弱收敛的定义.
 - (2) (5分) 已知当 $n \to \infty$ 时, $\xi_n \stackrel{P}{\to} 0$, $\eta_n \stackrel{w}{\to} \eta$, 证明: $\xi_n + \eta_n \stackrel{w}{\to} \eta$.
- 4. $\{\xi_n\}$ 是一列独立同分布的随机变量, 且 ξ_1 服从 参数为 1 的指数分布.
 - (1) (10) $\vec{x} X_n := \min\{\xi_1, \xi_2, \cdots, \xi_n\}$ 的概率密度;
 - (2) (10分) 证明: $X_n \xrightarrow{\text{a.s.}} 0$. (仅证明出 $X_n \xrightarrow{\text{P}} 0$ 可得5分)
- 5. 随机变量 X_n 服从参数为 n 的Poisson 分布.
 - (1) (10分) 写出特征函数的定义,并求 X_n 的特征函数;
 - (2) (10分) 证明: 当 $n \to \infty$ 时, $\frac{X_n-n}{\sqrt{n}}$ 依分布收敛于标准正态分布的随机变量.

- 6. 用 ξ 表示在一定时间内某种仪器发射出的粒子数, 假定发射出的每个粒子被记录下来的概率为 p (0), 没有被记录的概率为 <math>q := 1 p, 且各个粒子是否被记录相互独立. 令被记录下的粒子数为 X, 未被记录下的粒子数为 Y. 假设 X 与 Y 相互独立, 且 ξ 的母函数 G(s) 在 s = 1 的某邻域有定义.
 - (1) (5分) 证明: $X = \sum_{i=1}^{\xi} \eta_i$, $Y = \sum_{i=1}^{\xi} (1 \eta_i)$, 这里 $\{\eta_i\}$ 是独立同分布的随机变量列, 且 $\eta_1 \sim B(1, p)$;
 - (2) (5分) 证明: G(p+qs)G(q+ps) = G(s);
 - (3) (附加题: 5分) 证明: ξ 服从 Poisson 分布.