Spam Classifier

```
In [1]: from src.homeworks.homework2.KNNClassifier import KNNClassifier
from src.homeworks.homework2.scalers import MinMaxScaler, MaxAbsScaler, S
from src.homeworks.homework2.score import MetricCalculator
from src.homeworks.homework2.train_test_split import train_test_split
import pandas as pd
import matplotlib.pyplot as plt
```

Read spam.csv:

```
In [2]: data = pd.read_csv("src/homeworks/homework2/notebooks/spam.csv")
    data.describe()
```

Out[2]:		word_freq_make	word_freq_address	word_freq_all	word_freq_3d	word_freq_ou
	count	4601.000000	4601.000000	4601.000000	4601.000000	4601.00000
	mean	0.104553	0.213015	0.280656	0.065425	0.31222
	std	0.305358	1.290575	0.504143	1.395151	0.67251
	min	0.000000	0.000000	0.000000	0.000000	0.00000
	25%	0.000000	0.000000	0.000000	0.000000	0.00000
	50%	0.000000	0.000000	0.000000	0.000000	0.00000
	75%	0.000000	0.000000	0.420000	0.000000	0.38000
	max	4.540000	14.280000	5.100000	42.810000	10.00000

8 rows × 58 columns

Divide the dataset into X and y:

Creat a function that performs normalization, splitting into train and test, and counts metrics.

MinMaxScaler

```
In [5]: accuracy, fl_score = get_score(X, y, test_size=0.15, shuffle=True, random
In [6]: k_values = range(1, 21)
    plt.plot(k_values, accuracy, label='Accuracy', linestyle='-')
    plt.plot(k_values, fl_score, label='F1 Score', linestyle='-')

    plt.xlabel('k')
    plt.ylabel('metric')
    plt.xticks(k_values)

plt.grid(True)
    plt.legend()

plt.show()
```


MaxAbsScaler

```
In [7]: accuracy, f1_score = get_score(X, y, test_size=0.15, shuffle=True, random
In [8]: k_values = range(1, 21)
    plt.plot(k_values, accuracy, label='Accuracy', linestyle='-')
    plt.plot(k_values, f1_score, label='F1 Score', linestyle='-')

    plt.xlabel('k')
    plt.ylabel('metric')
    plt.xticks(k_values)

plt.grid(True)
    plt.legend()

plt.show()
```


StandardScaler

```
In [9]: accuracy, fl_score = get_score(X, y, test_size=0.15, shuffle=True, random
In [10]: k_values = range(1, 21)
    plt.plot(k_values, accuracy, label='Accuracy', linestyle='-')
    plt.plot(k_values, fl_score, label='F1 Score', linestyle='-')

    plt.xlabel('k')
    plt.ylabel('metric')
    plt.xticks(k_values)

    plt.grid(True)
    plt.legend()

    plt.show()
```

