

PARUL UNIVERSITY
FACULTY OF ENGINEERING AND
TECHNOLOGY
DEPARTMENT OF APPLIED SCIENCE
AND
HUMANITIES
4th SEMESTER B. TECH PROGRAMME
PROBABILITY, STATISTICS AND
NUMERICAL METHODS (303191251)

Tutorial: Numerical Integration

	1
Q.1	$\int e^{-x^2} dx$
	Evaluate by Trapezoidal rule with n=10.
	$\int_{1}^{3} dx$
Q.2	Evaluate $\int_{0}^{3} \frac{dx}{1+x}$ with n=6 by using Simpson's $\frac{3}{8}$ rule and hence calculate log2.
	Evaluate 0 with n=6 by using Simpson's 8 rule and hence calculate log2.
0.2	Consider following tabular values. Determine the area bounded by the given curve &
Q.3	X-axis between x=25 to x=25.6 by Trapezoidal rule.
	x 25 25.1 25.2 25.3 25.4 25.5 25.6
	y 3.205 3.217 3.232 3.245 3.256 3.268 3.280
	16
Q.4	$\int y \ dx$
	Find 10 by Simpson's 1/3 rule.
	x 10 11 12 13 14 15 16
	y 1.02 0.94 0.89 0.79 0.71 0.62 0.55
	1.4
Q.5	$\int_{0}^{1.4} (\sin x - \log x + e^x) dx$
	Compute the value of 0.2 with $n = 6$, using (a) Simpson's 1/3rd rule
	(b) Simpson's 3/8 th rule.
Q.6	$\int_{0}^{1} \sin x dx$
	Using Gaussian two point formula compute 0
Q.7	A river is 80 meters wide. The depth 'd' in meters at a distance x meters from one bank is
	given by the following table calculate the area of cross-section of the river using
	Simpson's 1/3 rule.
	x 0 10 20 30 40 50 60 70 80
	<u>u 0 7 7 7 12 13 17 8 3 </u>
0.8	$\int_{1}^{1} dt$
Q.8	
0.0	Evaluate $\frac{1}{0}$ 1 + t by the Gaussian formula with one point, two points.
Q.9	$\int_{0}^{6} (1+x^2)^{3/2} dx$
	Evaluate the integral -2 by Simpson's 1/3 rule with 6 subintervals.

Numerical Solution of Ordinary Differential Equation

	dy
1	$\frac{dy}{dt} = 3 + 2xy$
	$\frac{dy}{\text{Solve } dx} = 3 + 2xy$, where y(0)=1 for x=0.1 by Taylor's series method.
2	
	Using Taylor's series method solve $\frac{dy}{dx} = x^2 - y$, $y(0) = 1$ at $0.1 \le x \le 0.4$. Compare the
	values with the exact solution.
3	$dy + 2m^2 = 0$
	Using Modified Euler's method, solve $\frac{dy}{dx} + 2xy^2 = 0$ with the initial condition $y(0) = 1$
	and compute $y(1)$ taking h=0.2. Compare the answer with exact solution.
4	$dv v^2 - x^2$
	Using Runge – Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, $y(0) = 1$ at $x = 0.2$ &
	0.4.
<u>5</u>	Apply Runge – Kutta method to find an approximate value of y when $x = 0.2$ with $h = 0.2$
	$\frac{dy}{dx} = 3x + \frac{y}{2}, y(0) = 1$ with the numerical solution.
	O.1 for the TVP ax 2 . Also find the Analytical solution and compare
<u>6</u>	$dy = \frac{1}{2}$
	Using Euler's method to find y(1.4) given that $\frac{}{dx} = xy^2$, y(1)=1.
	Use Runge-Kutta Second order method to find the approximate value of y(0.2) given
7	$\frac{dy}{dx} = x - y^2$
	$\frac{dy}{dx} = x - y^2$ that $\frac{dy}{dx} = x - y^2$ and $y(0)=1$ and $y(0)=1$
8	Using Runge – Kutta method, find an approximate value of y for $x = 0.2$ in steps of
	$\frac{dy}{dt} = x + y^2$
	$\frac{dy}{0.1 \text{ if } \frac{dy}{dx}} = x + y^2$, given that $y = 1$ when $x = 0$,
9	$dy = \log(x + y)$
	Solve $\frac{dy}{dx} = \log(x + y)$, y(0)=2 at x=1.2 and x=1.4 with h=0.2, by Euler's modified
	method: