CODE

- $c_{a,max}$ = maximum distance from center of an anchor shaft to the edge of concrete, mm
- $c_{a,min}$ = minimum distance from center of an anchor shaft to the edge of concrete, mm
- c_{a1} = distance from the center of an anchor shaft to the edge of concrete in one direction, mm. If shear is applied to anchor, c_{a1} is taken in the direction of the applied shear. If tension is applied to the anchor, c_{a1} is the minimum edge distance. Where anchors subject to shear are located in narrow sections of limited thickness, see R17.7.2.1.2
- c_{a2} = distance from center of an anchor shaft to the edge of concrete in the direction perpendicular to c_{a1} , mm
- c_b = lesser of: (a) the distance from center of a bar or wire to nearest concrete surface, and (b) one-half the center-to-center spacing of bars or wires being developed, mm
- c_c = clear cover of reinforcement, mm
- c_{Na} = projected distance from center of an anchor shaft on one side of the anchor required to develop the full bond strength of a single adhesive anchor, mm
- c_{sl} = distance from the centerline of the row of anchors in tension nearest the shear lug to the centerline of the shear lug measured in the direction of shear, mm
- c_t = distance from the interior face of the column to the slab edge measured parallel to c_1 , but not exceeding c_1 , mm
- c₁ = dimension of rectangular or equivalent rectangular column, capital, or bracket measured in the direction of the span for which moments are being determined, mm
- c₂ = dimension of rectangular or equivalent rectangular
 column, capital, or bracket measured in the direction perpendicular to c₁, mm
- C_m = factor relating actual moment diagram to an equivalent uniform moment diagram
- d = distance from extreme compression fiber to centroid of longitudinal tension reinforcement, mm
- d' = distance from extreme compression fiber to centroid of longitudinal compression reinforcement, mm
- d_a = outside diameter of anchor or shaft diameter of headed stud, headed bolt, or hooked bolt, mm
- d_a' = value substituted for d_a if an oversized anchor is
- d_{agg} = nominal maximum size of coarse aggregate, mm d_b = nominal diameter of bar, wire, or prestressing
- d_p = distance from extreme compression fiber to centroid of prestressed reinforcement, mm

COMMENTARY

 c'_{a1} = limiting value of c_{a1} where anchors are located less than 1.5 c_{a1} from three or more edges, mm; see Fig. R17.7.2.1.2

C = compressive force acting on a nodal zone, N

 d_{burst} = distance from the anchorage device to the centroid of the bursting force, T_{burst} , mm

strand, mm