Improving Inferences from Randomized Trials: Using per-protocol analyses obtain better estimated of HIV treatment effects.

by Timothy Feeney SFR June 19 2024

e: feeney@unc.edu, bsky: @tfeend.bsky.social

GILLINGS SCHOOL OF GLOBAL PUBLIC HEALTH

Outline

RCTs

Per-protocol effects

Example using ACTG 5202 Trial

Population

Analysis Plan

Results

Limitations and Future

Closing Remarks

Randomized Trials are a gold standard

- Require clear enrollment criteria
- Unabmiguous intervention protocol
- Exchangeability: $Y^a \perp \!\!\! \perp A$ for $A \in \{0,1\}$
- Consistency: $Y = Y^{a=1}A + Y^{a=0}(1 A)$
- Positivity¹: Pr(A = a) > 0, $\forall \ell$ where f(a) > 0
- This allows for unbiased estimation of treatment effects.

¹L is covariate vector

RCT estimands

- Intention-to-treat (ITT) effect: $E[Y^{r=1}] E[Y^{r=0}]$
- This is the effect of treatment assignment on outcomes
- Public health focused

- Typical Per-protocol (PP) effect: $E[Y^{r=1,\bar{a}=1}] E[Y^{r=0,\bar{a}=0}]$
- This is the effect of treatment assignment and adherence on outcomes
- Patient focused¹

r = randomization; \bar{a} = history of treatment adherence

¹Hernan and Robins, NEJM 2016

Per-protocol effects can be biased

- Frequently done by excluding those not adhering¹
- Susceptible to selection bias
- Can be addresed: e.g with inverse probability weighting (see next talk)

¹Cole et al. JAMA Net. Open 2023, Dodd et al. Trials 2012

 $^{{}^{0}\}mathbf{L}$: vector of covariates

There is no *one* per-protocol effect

- Accounts for adherence
- "Doc, what if I take all my doses like you tell me to?"
- There are at least 6 per-protocol parameters that can be estimated¹
- There are also $k \in \{1, ..., \infty\}$ protocols depending on how the investigator(s) define adherence.

¹Rudolph *et al.* Epidemiology 2020

Per Protocol Causal Identification

- Conditional Exchangeability: $Y^g \perp (A_t, C_{t+1}) \mid (\bar{A}_{t-1} = \bar{a}_{t-1}^g, \bar{L}_t = \bar{\ell}_t, C_t = Y_t = 0) \quad \forall t \in \mathcal{C}_t$
- Consistency: if \bar{A}_t = \bar{A}_t^g then \bar{Y}_t = \bar{Y}_t^g
- Positivity: $f(a_t^g, C_t = 0 \mid \bar{a}_t^g, \bar{\ell}_t, C_t = Y_t = 0) > 0$ where $f(\bar{a}_t^g, \bar{\ell}_t, C_t = Y_t = 0) > 0$ $\forall t$
- \bullet No interference: $\bar{A}^g_{it} \perp \!\!\! \perp \bar{Y}^g_{it}$ where $i \neq j$
- No missclassification and correct model specification

Y =outcome, C=censoring, A = treatment , L = covariates, t =time point from $0\ldots t,\ g$ is a deterministic treatment strategy, overbar denotes history of values

⁰Wen et al. Biometrics 2019

An example using an HIV Trial: AIDS Clinical Trial Group (ACTG) 5202

Role of adherence in HIV treatment efficacy

- Adherence needed for HIV viral suppression varies by treatment regimen.
- fail.
- Understanding of how is *critical*¹ for:

0.8

0.7

0.6

All regimen types

PDC*= 0.82

0.8

0.6

INSTI-based regimens^{‡,¶} Blanket recommendations 0.8 0.7 adherence impacts efficacy 0.6 NNRTI-based regimens^{§,¶} Developing new treatments. suppression r 80 Maximizing current 0.7 treatments. 0.6 0.2 Antiretroviral PDC* level

Adimora, Cole and Eron CID 2017

ACTG 5202 Study Population

Phase 3b RCT at 59 sites, US and Puerto Rico

	ABC/3TC	TDF/FTC
N	928	929
Male at birth %	81.4	84.0
Age Group %		
≤ 25	10.1	10.5
26-49	77.0	74.8
≥ 50	12.8	14.6
Baseline log_{10} RNA copies/mL(med [IQR])	4.66 [4.31, 5.06]	4.65 [4.34, 4.96]
Baseline CD4 count/mL (med [IQR])	229 [84, 338]	230 [97, 330]

Example: ACTG 5202 Reanalysis

Objective:

- Estimand: $E\left[Y^{r=1,\bar{a}=1}\right] E\left[Y^{r=0,\bar{a}=0}\right]$ at 48 weeks
- Per-protocol analyses modulating \bar{a} .
- Protocol will depend on number of doses missed

Outcomes: Composite virologic failure and all-cause mortality:

 $j\colon$ follow up time, $\mathbf{L_j}\colon$ vector of covariates at follow up time j $A_j\colon$ tx adherence at follow up time $j,\ R\colon$ randomization, $Y\colon$ viral failure or death

Adherence and Protocol

Adherence evaluated in-person at 8, 24, 48, 72, 96, then every 24 weeks and either at the final study evaluation or after virologic failure.

Last Time Medication	Missed	How Close Was Dose Schedule Followed		
Never >3 months ago 1-3 months ago 2-4 weeks ago 1-2 weeks ago Within the past v	wook	Never Some of the time About half the time Most of the time All the time		

Protocol Definition	Description of Protocol
0 dose missed OK	•
	No report of missed medication doses
1 dose missed OK	Participant with only one report of missed medication doses
:	
4 doses missed OK	Participant with ≥ 10 reported missed medication doses without overlap in reported timing

Deviation from Defined Protocols

Treatment Group	Censored	1 Dose	2 Dose	3 Dose	4 Dose	5 Dose	Total
ABC/3TC	234	276	110	57	18	7	928
TDF/FTC	211	263	79	38	23	7	929

Limitations and Future Plans

- 1. Completed with public access data¹
- 2. Reliance on coarse, self-reported medication adherence
- 3. Assume identification conditions met.²
- 4. Future directions include repeating analysis with g-formula, considering additional protocols.

¹Approved for more granular data from ACTG, awaiting dataset

 $^{^2\}mbox{NB}$: not guaranteed in per-protocol setting even though it is a trial

Takeaways

- Per protocol analysis should be treated like an observational analysis.
- Time varying analysis needs to be accounted for.
- There are many ways protocols can be defined.
- The way protocol is defined can have meaningful impacts on estimates.

Thank you!

GILLINGS SCHOOL OF GLOBAL PUBLIC HEALTH

I'd like to acknowledge:

- Steve Cole
- Paul Zivich
- Catherine Li
- ACTG 5202
- ACTG 5202 Particpants
- Cole Lab Members

My website where you can find a link to my github.

Outcome Definition

- plasma HIV-1 RNA level ≥1000 copies /mL between 16 weeks and 24 weeks
- or ≥200 copies/mL at or after 24 weeks
- all cause mortality

Censoring Risk

