Université d'Angers

MASTER DATA SCIENCE – STATISTIQUE ET SCIENCE DES DONNÉES POUR LA BIOLOGIE

Examen Final (2h)

Le barème est donné à titre indicatif. Les exercices sont indépendants.

Il sera tenu compte de la rédaction.

Introduction à l'Analyse de Survie

Exercice 1. (3 points)

Soient $X_1, X_2, ..., X_n$ des variables aléatoires indépendantes, continues et non-négatives de fonctions de risque $\lambda_1, \lambda_2, ..., \lambda_n$. Montrer que $X = \min\{X_1, X_2, ..., X_n\}$ a pour fonction de risque $\sum_{i=1}^n \lambda_i$.

Exercice 2. (5 points)

On suppose que le temps de survie X admet pour densité

$$f(t) := \begin{cases} 0 & \text{si } t > \tau, \\ \alpha \beta (\tau - t)^{\alpha - 1} \exp(-\beta (\tau - t)^{\alpha}) & \text{si } t \leqslant \tau, \end{cases}$$

où α, β et τ sont des paramètres strictement positifs.

On définit par C la censure aléatoire et on suppose que l'on travaille avec un modèle de censure à gauche, c'est-à-dire, que l'on observe les instants $T := \max(X, C)$ muni de l'indicateur de censure $\delta := \mathbb{1}_{\{X \geqslant C\}}$. On note aussi par la suite $(T_i, \delta_i)_{1 \leqslant i \leqslant n}$ un échantillon aléatoire i.i.d. issu de (T, δ) .

- 1. Calculer les fonctions de survie S et de risque instantané λ associées à X.
- 2. Montrer que la variable aléatoire X suit la même loi que τY où Y est une variable aléatoire dont on précisera la loi.

On suppose à présent que $C \leq \tau$ presque sûrement.

- 3. Proposer modèle de censure à droite à partir de T et δ .
- 4. Montrer que $\hat{\tau}_n := \max(T_i, i = 1, ..., n)$ est un estimateur consistant de τ .
- 5. Déduire des questions précédentes une procédure d'estimation pour les paramètres τ , α et β à partir de l'échantillon $(T_i, \delta_i)_{1 \le i \le n}$. On ne demande pas de montrer la consistance de chacun des estimateurs.

Exercice 3. (7 points)

On suppose que le temps de survie X admet pour densité

$$f(t) := \begin{cases} \beta \exp(-\beta(t-\tau)) & \text{si } t \geqslant \tau, \\ 0 & \text{si } t < \tau, \end{cases}$$
 (1)

où $\tau, \beta > 0$.

On définit par C la censure aléatoire et on suppose que l'on travaille avec un modèle de censure à droite, c'est-à-dire, que l'on observe les instants $T := \min(X, C)$ muni de l'indicateur de censure $\delta := \mathbb{1}_{\{X \leqslant C\}}$. On note aussi par la suite $(T_i, \delta_i)_{1 \leqslant i \leqslant n}$ un échantillon aléatoire i.i.d. issu de (T, δ) . On suppose enfin que $C \geqslant \tau$ presque sûrement.

Partie A. On cherche dans un premier temps à utiliser une approche graphique pour justifier l'adéquation du modèle aux données.

- 1. Montrer que la fonction de survie associée à X est donnée par $S(t) = \exp(-\beta(t-\tau))$ pour $t \ge \tau$ et 1 sinon.
- 2. Soit $\widehat{S}_n(t)$ l'estimateur de Kaplan-Meier pour la fonction de survie S. Justifier et montrer que

$$\arg\min_{t\in\mathbb{R}}\left\{\widehat{S}_n(t)<1\right\}$$

définit un estimateur consistant pour τ .

3. Proposer une transformation de \widehat{S}_n pour justifier l'adéquation de X à la distribution décrite par f dans (1).

Partie B. On se propose à présent d'estimer les paramètres par maximum de vraisemblance.

- 4. Calculer la fonction de log-vraisemblance pour la distribution (1).
- 5. En déduire les estimateurs de maximum de vraisemblance $\hat{\tau}_n$ et $\hat{\beta}_n$.

Plan d'expérience

Exercice 4. (5 points)

Les deux questions sont indépendantes.

- 1. Montrer que, dans un plan fractionnaire de résolution IV, il n'est pas possible de confondre un effet marginal avec une interaction double mais que deux interactions doubles peuvent être confondues.
- 2. Reprenons l'exemple traité dans la section 2.2 du cours, en changeant simplement la variable à expliquer : on veut étudier l'influence de la température du mélange (F_1) , de la quantité produite (F_2) , de la vitesse d'agitation (F_3) , de la durée de stockage (G_1) et de la nature du catalyseur (G_2) sur une certaine propriété chimique d'un produit synthétisé en laboratoire (Y), avec comme contrainte que 8 expériences au maximum peuvent être réalisées. Notre plan fractionnaire 2^{5-2} est cette fois muni des clés

$$G_1 = F_1 * F_2$$
 et $G_2 = F_2 * F_3$.

- a) Écrire les relations complètes. En déduire la résolution et l'aberration du plan.
- b) Le tableau ci-dessous donne les mesures obtenues pour Y.

Expérience	Température	Quantité	Vitesse	Stockage	Catalyseur	Propriété obtenue
	(F_1)	(F_2)	(F_3)	(G_1)	(G_2)	(Y)
1	-1	-1	-1			11.2
2	1	-1	-1			16.6
3	-1	1	-1			-1.0
4	1	1	-1			13.2
5	-1	-1	1			12.2
6	1	-1	1			16.8
7	-1	1	1			-2.8
8	1	1	1			14.6

- i) Indiquer les niveaux (± 1) à affecter aux facteurs additionnels (on recopiera simplement les deux colonnes sur la copie, pas le tableau complet).
- ii) Écrire le modèle liant Y aux facteurs avec ces nouvelles clés (sous la forme $Y \sim e_0 + \ldots$).
- iii) Donner l'alias de chaque facteur (de F_1 à G_2) en se limitant aux interactions doubles.
- iv) Le vecteur des solutions au système s'écrit

$$\begin{pmatrix} e_0 \\ e_1 \\ e_2 \\ e_3 \\ e_{12} \\ e_{13} \\ e_{23} \\ e_{123} \end{pmatrix} = \begin{pmatrix} 10.1 \\ 5.2 \\ -4.1 \\ 0.1 \\ 2.7 \\ 0.3 \\ -0.2 \\ 0.5 \end{pmatrix}.$$

Identifier les trois facteurs qu'il serait raisonnable de retenir dans le modèle. Peut-on déterminer les effets marginaux de ces trois facteurs ? Si oui, pourquoi ? Et si non, que préconiser au fabricant ?