

Tentamen med lösningsförslag

EDA451 Digital- och datorteknik, D EDA215 Digital- och datorteknik, Z DIT790 Digital- och datorteknik, GU

Måndag 13 december 2010, kl. 8.30 - 12.30

Examinatorer

Roger Johansson, tel 772 57 29 Rolf Snedsböl, tel 772 16 65

Kontaktperson under tentamen

Roger Johansson, tel 772 57 29 Rolf Snedsböl, tel 772 16 65

Tillåtna hjälpmedel

Häften

Instruktionslista för FLEX
Instruktionslista för CPU12

I dessa får rättelser och understrykningar vara införda, inget annat.

Tabellverk och miniräknare får ej användas!

Lösningar

se kursens hemsida.

Granskning

Tid och plats anges på kursens hemsida.

Allmänt

Tentamen är uppdelad i del A och del B. På del A kan 30 poäng uppnås och på del B 20 poäng. Totalt 50 poäng på del A och del B tillsammans. För att del B av tentamen skall granskas och rättas krävs minst 20 poäng på del A.

Del A bedöms och betygssätts utifrån bifogat svarsblankett. Poängsättning på del A anges vid varje uppgift. Siffror inom parentes anger poängintervallet på uppgiften. Fel svar kan ge poängavdrag. En obesvarad uppgift ger inte poängavdrag.

De olika svarsalternativen a, b, c etc. kan innehålla

- korrekt svar
- nästan korrekt svar
- mer eller mindre fel svar
- helt fel svar
- inget korrekt svarsalternativ

Svara med endast ett kryss på varje uppgift

Poängsättning på del B anges vid varje uppgift. Siffror inom parentes anger maximal poäng på uppgiften. **För full poäng krävs att**:

- redovisningen av svar och lösningar är läslig och tydlig.
- ett lösningsblad får endast innehålla redovisningsdelar som hör ihop med en uppgift.
- lösningen ej är onödigt komplicerad.
- du har motiverat dina val och ställningstaganden
- redovisningen av hårdvarukonstruktioner innehåller funktionsbeskrivning, lösning och realisering.
- redovisningen av mjukvarukonstruktioner i assembler är dokumenterade.

Betygsättning

För godkänt slutbetyg på kursen fordras att både tentamen och laborationer är godkända. Tentamen ger slutbetyget:

 $20p \le betyg 3 < 30p \le betyg 4 < 40p \le betyg 5$

DEL A – fyll i svarsblanketten sist i tesen och lämna in denna

Uppgift 1 Talomvandling, aritmetik, flaggor och koder.

I uppgifter 1.1 t.o.m 1.4 används 5-bitars tal där $X = (11110)_2$ och $Y = (01011)_2$

Uppgift 1.1

Tolka X och Y som tal *utan* tecken. Vilket av alternativen anger dess decimala motsvarighet?

a	X=-14, Y=19
b	X=30, Y=19
c	X=29, Y=11
d	X=28, Y=19
e	X=28,Y=18
f	X=-2, Y=18
g	X=30, Y=9
h	X=30 Y=11

Poäng på uppgiften: [-1, 1]

Uppgift 1.2

Tolka X och Y som tal med tecken. Vilket av alternativen anger dess decimala motsvarighet?

a	X=30, Y=-11
b	X=30, Y=-18
c	X =-1, Y=18
d	X = -2, Y = 18
e	X = -3, $Y = 11$
f	X = -1, Y = 11
g	X = -2, Y = 9
h	X = -3, Y = 9

Poäng på uppgiften: [-1, 1]

Uppgift 1.3

Utför operationen R = X - Y som binär addition av Y's 2-komplement Vilket av alternativen anger R? Tolka X, Y och R som tal med tecken.

a	R=19
b	R=9
c	R=-12
d	R=-13
e	R=17
f	R=-9
g	R=18
h	R=-14

Poäng på uppgiften: [-1, 1]

Uppgift 1.4

Utför operationen R=X - Y som binär addition av Y's 2-komplement. Vad blir flaggbitarna NZVC efter räkneoperationen?

a	NZVC=0011
b	NZVC=1010
c	NZVC=1110
d	NZVC=0111
e	NZVC=1100
f	NZVC=1000
g	NZVC=0100
h	NZVC=1001

Poäng på uppgiften: [-1, 1]

Uppgift 1.5

Bitmönstret 01011010 kan representera:

	ASCIIkod för	Negativt	Positivt	Ett naturligt	Förskjuten	Två NBCD-
	en versal (stor	2k-tal	tecken	binärtal T. Där	gray-kod	siffror
	bokstav)		belopps tal	T>128 ₁₀		
a	Ja	Nej	Ja	Nej	Nej	Nej
b	Nej	Nej	Ja	Ja	Nej	Ja
c	Ja	Nej	Nej	Ja	Nej	Ja
d	Nej	Nej	Ja	Nej	Ja	Nej
e	Ja	Ja	Nej	Ja	Ja	Ja
f	Nej	Ja	Ja	Nej	Ja	Nej
g	Ja	Nej	Ja	Nej	Ja	Nej
h	Ja	Ja	Nej	Ja	Nej	Ja

Poäng på uppgiften: [-1, 2]

Uppgift 2 Kombinatorik, switchnätalgebra

Uppgift 2.1

Följande funktion är given, $(x, y, z) = xz + \bar{y}z + x\bar{y}$

Ange vilket av följande alternativ som utgör funktionen på konjunktiv normalform.

a	$f(x,y,z) = (x+y+z)\cdot(x+\bar{y}+z)\cdot(x+\bar{y}+\bar{z})\cdot(\bar{x}+\bar{y}+z)$
b	$f(x,y,z) = (\bar{x} + \bar{y} + \bar{z}) \cdot (\bar{x} + y + \bar{z}) \cdot (\bar{x} + y + z) \cdot (x + y + \bar{z})$
c	$f(x,y,z) = (\bar{x}+y)\cdot(\bar{x}+\bar{z})\cdot(y+\bar{z})$
d	$f(x,y,z) = (x+\bar{y})\cdot(x+z)\cdot(\bar{y}+z)$
e	$f(x,y,z) = (x+y+\bar{z}) \cdot (\bar{x}+y+z) \cdot (\bar{x}+y+\bar{z}) \cdot (\bar{x}+\bar{y}+\bar{z})$
f	$f(x,y,z) = (\bar{x} + \bar{y} + z) \cdot (x + \bar{y} + \bar{z}) \cdot (x + \bar{y} + z) \cdot (x + y + z)$
g	$f(x,y,z) = \bar{x}\bar{y}z + x\bar{y}\bar{z} + x\bar{y}z + xyz$
h	$f(x, y, z) = xyz + \bar{x}yz + \bar{x}y\bar{z} + \bar{x}\bar{y}\bar{z}$
i	$f(x,y,z) = x\bar{y} + xz + \bar{y}z$
j	$f(x,y,z) = \bar{x}y + \bar{x}\bar{z} + y\bar{z}$

Poäng på uppgiften: [-1, 2]

Uppgift 2.2

Följande Karnaughdiagram för en boolesk funktion är givet.

Vilket av följande alternativ utgör funktionens disjunktiva normalform?

		yz				
		00 01 11 10				
	0	1	0	1	0	
X	1	1	0	0	1	

a $f(x, y, z) = (x + y + \bar{z}) \cdot (x + \bar{y} + z) \cdot (\bar{x} + y + \bar{z}) \cdot (\bar{x} + \bar{y} + \bar{z})$
b $f(x, y, z) = (\bar{x} + \bar{y} + z) \cdot (\bar{x} + y + \bar{z}) \cdot (x + \bar{y} + z) \cdot (x + y + z)$
c $f(x, y, z) = (y + \bar{z})(\bar{x} + \bar{z})(x + \bar{y} + z)$
$d f(x,y,z) = (\bar{y}+z)(x+z)(\bar{x}+y+\bar{z})$
$e f(x, y, z) = (\bar{y}\bar{z}) + (x\bar{z}) + (\bar{x}yz)$
$f f(x, y, z) = yz + \bar{x}z + x\bar{y}\bar{z}$
$g f(x, y, z) = (\bar{x}\bar{y}\bar{z}) + (\bar{x}yz) + (x\bar{y}\bar{z}) + (xy\bar{z})$
$h f(x, y, z) = xyz + \bar{x}yz + x\bar{y}\bar{z} + \bar{x}\bar{y}z$
$i f(x,y,z) = (x+y+z) \cdot (x+\bar{y}+\bar{z}) \cdot (\bar{x}+y+z) \cdot (\bar{x}+\bar{y}+z)$
$j f(x,y,z) = (\bar{x} + \bar{y} + \bar{z}) \cdot (\bar{x} + y + z) \cdot (x + \bar{y} + \bar{z}) \cdot (x + y + \bar{z})$

Poäng på uppgiften: [-1, 2]

Uppgift 2.3

Ett kombinatoriskt nät med nedanstående funktionstabell skall konstrueras.

Vilket av Karnaugh-diagrammen till höger skall då användas?

Du kan bortse från odefinierade kombinationer av indata i funktionstabellen.

X	у	Z	W	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

	a)	ZW			
		00	01	11	10
	00	0	0	0	1
	01	0	0	0	0
ху	11	0	0	0	1
	10	0	0	1	0

	c)	ZW				
		00	01	11	10	
	00	0	0	-	1	
	01	0	0	-	0	
ху	11	-	0	0	1	
	10	0	-	-	1	

	e)	ZW			
		00	01	11	10
	00	1	1	0	0
	01	1	1	1	1
ху	11	1	1	0	0
	10	1	1	0	0

	g)		Z	W	
		00	01	11	10
	00	0	0	1	-
****	01	0	-	0	0
ху	11	0	0	0	1
	10	-	1	-	-

	b)	ZW				
		00	01	11	10	
	00	0	0	1	1	
	01	0	0	1	0	
ху	11	1	0	0	1	
	10	0	1	1	1	

	d)	ZW				
		00	01	11	10	
	00	0	0	ı	1	
	01	0	0	-	0	
хy	11	-	0	0	1	
	10	0	-	1	-	

f)		Z	W	
	00	01	11	10
00	0	0	-	1
01	0	-	0	0
11	ı	0	0	1
10	0	-	1	-
	01 11	00 0 01 0 11 -	00 01 00 0 01 0 11 - 0 0	00 0 0 - 01 0 - 0 11 - 0 0

	h)	ZW				
		00	01	11	10	
	00	0	0	1	-	
****	01	0	-	0	0	
ху	11	0	0	0	1	
	10	-	-	1	-	

Poäng på uppgiften: [-1, 2]

Uppgift 3 Sekvensnät

Uppgift 3.1

Ange funktionstabellen för en JK vippa.

a)	b)	c)	d)	e)	f)
$QQ^+ \mid J \mid K$	QQ^+ J K	$QQ^+ \mid J \mid K$	$JK \mid Q^{+}$	$JK Q^{+}$	$JK \mid Q^+$
00 0-	0 0 - 1	00 0-	0 0 Q	0 0 Q	0 0 0
0 1 1 -	0 1 - 1	0 1 - 1	0 1 0	0 1 1	0 1 1
10 - 1	10 1-	10 1-	10 1	10 0	10 1
11 - 0	11 1-	11 - 0	1 1 *	1 1 Q'	1 1 Q
				Poäng	på uppgiften: [-1, 1]

Uppgift 3.2

Ange exitationstabellen för en SR vippa.

Poäng på uppgiften: [-1, 1]

Uppgift 3.3 Analysera räknaren nedan. Vilken tabell motsvarar räknaren?

Poäng på uppgiften: [-1, 3]

Uppgift 4 FLEX styrenhet

Uppgift 4.1

I tabellen intill visas styrsignalerna för EXECUTE-sekvensen för en **instruktion** för FLEX-processorn. NF i tabellens sista rad anger att nästa tillstånd (state) skall vara det första i FETCH-sekvensen. Vilken instruktion är det?

S	Styrsignaler (= 1)
5	OE _{PC} , LD _{MA} , IncPC
6	$MR, LD_{MA},$
7	$MR, f_3, f_0, LD_{CC}, LD_R$
8	OE _R , MW, NF

a	NEG Adr	b	ASL Adr	c	DEC Adr
d	COM Adr	e	CLR Adr	f	INC Adr

Poäng på uppgiften: [-1, 1]

Uppgift 4.2

Ange vilken tabell som beskriver utförandet av operationen enligt nedanstående RTN-beskrivning:

RTN-beskrivning:
$$3A + 2B + 4 \rightarrow B$$

Förutsätt att register A och B i datavägen till höger innehåller de data som skall beräknas. Register A får inte ändras. Använd så få tillstånd som möjligt.

Vilket svarsalternativ väljer du? (Se nästa sida)

a	b	c
S RTN-beskrivning	S RTN-beskrivning	S RTN-beskrivning
$1 \text{ A+1} \rightarrow \text{R, A} \rightarrow \text{T}$	1 R+1→R	1 A→T
2 R+1→R	2 2R→R	2 B+T+1→R
3 R→T	$3 R \rightarrow T$	3 2R+1→R
4 B+T→R	4 B+T→R	4 R+T+1→R
5 2R→R	$5 R+A \rightarrow R$	5 R→B
6 R→T	6 2R→R	
$7 A+T \rightarrow R$	7 R→T	
8 R→B	$8 A+T \rightarrow R$	
	9 R→B	
d	e	f
d S RTN-beskrivning	S RTN-beskrivning	f S RTN-beskrivning
		f S RTN-beskrivning 1 A→T
S RTN-beskrivning	S RTN-beskrivning	
S RTN-beskrivning 1 B+1→R	S RTN-beskrivning 1 0→R, A→T	1 A→T
S RTN-beskrivning $ \begin{array}{ccc} 1 & B+1 \rightarrow R \\ 2 & R+1 \rightarrow R \end{array} $	S RTN-beskrivning $1 0 \rightarrow \text{R}, A \rightarrow \text{T}$ $2 2\text{R} + 1 \rightarrow \text{R}$	$ \begin{array}{c c} 1 & A \rightarrow T \\ 2 & B+T+1 \rightarrow R \end{array} $
S RTN-beskrivning 1 B+1→R 2 R+1→R 3 A→T	S RTN-beskrivning $1 0 \rightarrow R, A \rightarrow T$ $2 2R+1 \rightarrow R$ $3 R+T \rightarrow R$	$ \begin{array}{c c} 1 & A \rightarrow T \\ 2 & B+T+1 \rightarrow R \\ 3 & R+T+1 \rightarrow R \end{array} $
S RTN-beskrivning 1 B+1 \rightarrow R 2 R+1 \rightarrow R 3 A \rightarrow T 4 R+T \rightarrow R	S RTN-beskrivning $1 0 \rightarrow \text{R}, A \rightarrow \text{T}$ $2 2\text{R}+1 \rightarrow \text{R}$ $3 \text{R}+T \rightarrow \text{R}$ $4 \text{B}+T \rightarrow \text{R}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
S RTN-beskrivning 1 B+1 \rightarrow R 2 R+1 \rightarrow R 3 A \rightarrow T 4 R+T \rightarrow R 5 2R \rightarrow R	S RTN-beskrivning 1 $0 \rightarrow R$, $A \rightarrow T$ 2 $2R+1 \rightarrow R$ 3 $R+T \rightarrow R$ 4 $B+T \rightarrow R$ 5 $R+A \rightarrow R$	$ \begin{array}{c c} 1 & A \rightarrow T \\ 2 & B + T + 1 \rightarrow R \\ 3 & R + T + 1 \rightarrow R \\ 4 & R + A \rightarrow R \\ 5 & R + T \rightarrow R \end{array} $
S RTN-beskrivning 1 B+1 \rightarrow R 2 R+1 \rightarrow R 3 A \rightarrow T 4 R+T \rightarrow R 5 2R \rightarrow R 6 R+T \rightarrow R	S RTN-beskrivning $1 0 \rightarrow R, A \rightarrow T$ $2 2R+1 \rightarrow R$ $3 R+T \rightarrow R$ $4 B+T \rightarrow R$ $5 R+A \rightarrow R$ $6 2R \rightarrow R$	$ \begin{array}{c c} 1 & A \rightarrow T \\ 2 & B + T + 1 \rightarrow R \\ 3 & R + T + 1 \rightarrow R \\ 4 & R + A \rightarrow R \\ 5 & R + T \rightarrow R \end{array} $

Poäng på uppgiften: [-1, 3]

Uppgift 4.3

En instruktion för FLEX-processorn är **JSR n,X**. Se instruktionslistan för FLEX. Ange RTN-beskrivningen för utförandefasen för denna instruktion. (S anger aktuellt State)

a	b	c
S RTN-beskrivning	S RTN-beskrivning	S RTN-beskrivning
$5 \text{ PC} \rightarrow \text{MA}, \text{PC+1} \rightarrow \text{PC}$	5 $PC \rightarrow MA, PC+1 \rightarrow PC$	$5 \text{ PC} \rightarrow \text{MA, PC+1} \rightarrow \text{PC, S-1} \rightarrow \text{S}$
$6 \text{ M} \rightarrow \text{T, S-1} \rightarrow \text{S}$	6 M→T,	6 M→T
$7X + T \rightarrow R$	$7 \text{ S} \rightarrow \text{MA}, \text{ S-1} \rightarrow \text{S}$	7 S→MA
8 R→S	$8X + T \rightarrow R$	8 PC→S
9 PC→MA	9 R→S	$9X + T \rightarrow R$
10 S→PC	10M→PC	10R→PC
d	e	f
d S RTN-beskrivning	e S RTN-beskrivning	f S RTN-beskrivning
**	- 	f S RTN-beskrivning 5 PC→MA, PC+1→PC
S RTN-beskrivning	S RTN-beskrivning	
S RTN-beskrivning 5 PC→MA, PC+1→PC	S RTN-beskrivning 5 PC→MA, PC+1→PC	5 PC→MA, PC+1→PC
S RTN-beskrivning 5 PC→MA, PC+1→PC 6 M→T, S-1→S	S RTN-beskrivning 5 PC→MA, PC+1→PC 6 M→T	5 PC→MA, PC+1→PC 6 M→T
S RTN-beskrivning 5 PC→MA, PC+1→PC 6 M→T, S-1→S 7 S→MA	S RTN-beskrivning 5 PC→MA, PC+1→PC 6 M→T 7 S→MA, S-1→S	5 PC→MA, PC+1→PC 6 M→T 7 S→MA, S-1→S
S RTN-beskrivning 5 PC→MA, PC+1→PC 6 M→T, S-1→S 7 S→MA 8 PC→M	S RTN-beskrivning 5 PC→MA, PC+1→PC 6 M→T 7 S→MA, S-1→S 8 PC→M	5 PC→MA, PC+1→PC 6 M→T 7 S→MA, S-1→S 8 PC→S

Poäng på uppgiften: [-1, 3]

Uppgift 5 FLEX programmering

Uppgift 5.1

Vad blir maskinkoden för instruktionerna BCC och BHI?

BCC är placerad på (har sin OP-kod på) adress 38₁₆ och BHI på adress 99₁₆.

Loop är placerad på adress 02₁₆ och End på adress 71₁₆.

a
BCC: 62 37
BHI: 63 67
d
BCC: 62 32
BHI: 63 03

U
BCC: 62 33
BHI: 63 69
e
BCC: 62 39
BHI: 63 67

C
BCC: 62 39
BHI: 63 63
f
BCC: 62 37
BHI: 63 69

Poäng på uppgiften: [-1, 2]

Uppgift 5.2

Tvåkomplementera det 24-bitars talet som är placerad på adress 41₁₆. Vilket alternativ väljer du?

COM	\$41
COM	\$42
COM	\$43
INC	\$41
INC	\$42
INC	\$43

b		c	
NEG	\$41	COM	\$41
NEG	\$42	INC	\$41
NEG	\$43	COM	\$42
		INC	\$42
		COM	\$43
		INC	\$43
		•	

d	
COM	\$41
COM	\$42
COM	\$43
INC	\$43
LDAA	\$42
ADCA	#0
STAA	\$42
LDAA	\$41
ADCA	#0
STAA	\$41

e	
COM	\$41
COM	\$42
NEG	\$43
CLRA	
ADCA	\$42
STAA	\$42
CLRA	
ADCA	\$41
STAA	\$41

	f	
	COM	\$41
	COM	\$42
	COM	\$43
	INC	\$43
	BCC	EE
	INC	\$42
	BCC	EE
	INC	\$41
EE		

Poäng på uppgiften: [-1, 2]

Uppgift 5.3

Ange maskinkoden för FLEX-processorn för instruktionssekvensen till höger.

a		
Adr	Maskin -kod	
E4	0F	
E5	E8	
E6	0C	
E7	10	
E8	02	
E9	02	
EA	22	
EB	10	
EC		

b	
Adr	Maskin -kod
E4	0B
E5	E8
E6	0C
E7	0A
E8	??
E9	??
EA	02
EB	16
EC	

c	
Adr	Maskin- kod
E4	0F
E5	E8
E6	0C
E7	10
E8	??
E9	??
EA	02
EB	22
EC	10

d	
Adr	Maskin- kod
E4	0F
E5	E8
E6	0C
E7	EB
E8	02
E9	02
EA	16
EB	0A
EC	

	ORG	\$E4
	LDAA	Data
	LDAB	Adr
Data	RMB	2
	FCB	2,22
Adr	EQU	10

e		f	
Adr	Maskin- kod	Adr	Maskin- kod
E4	0B	E4	0B
E5	E8	E5	E8
E6	0C	E6	0C
E7	0A	E7	10
E8	02	E8	02
E9	02	E9	02
EA	22	EA	22

Poäng på uppgiften: [-1, 2]

DEL B – Svara på separata ark. Blanda inte uppgifter på samma ark.

Uppgift 6 (8p)

Två strömbrytare, "DIP-SWITCH INPUT" är anslutna till adress \$600 respektive \$601 och en displayenhet "HEXDISPLAY" som visar en byte i form av två hexadecimala siffror är ansluten till adress \$400 i ett MC12 mikrodatorsystem.

Konstruera en subrutin "NBCDmul" som multiplicerar de två värdena som läses från strömbrytarna. Värden större än 9 (ej NBCD-tal) ska ignoreras.

Efter inläsning av två giltiga tal och utförd multiplikation ska resultatet visas, som två NBCD-siffror på displayenheten, se exempelvis figuren (9 * 6 = 54).

Subrutinen ska utformas så att avläsningen och indikering görs en gång. Kontinuerlig funktion fås genom att subrutinen, oupphörligt anropas från ett huvudprogram "main".

- a) Beskriv subrutinen "NBCDmul" i form av en flödesplan.
- b) Implementera huvudprogrammet "main" och subrutinen "NBCDmul" i assemblerspråk.

Uppgift 7 (7p)

Följande räknare, uppbyggd av T-vippor och med en styrsignal x, är given. Analysera räknaren och beskriv (rita) dess tillståndsgraf. Räknarens tillstånd kodas q_1 q_0 , dvs. $(00,01,10,11)_2 = (0,1,2,3)_{10}$.

Uppgift 8 (5p)

Vi har ett synkront system med 20 bitars adressbuss och 8 bitars databuss. Data klockas i systemet vid negativ flank hos signalen E.

Till centralenheten ska följande moduler anslutas:

- 64 kbyte RWM med start på adress 0
- 32 kbyte ROM1 med start på adress \$20000
- 16 kbyte ROM2 med start på adress \$80000
- 4 kbyte I/O, med **slut** på adress \$FFFFF

- a) Konstruera *fullständig adressavkodningslogik*, dvs. ange booleska uttryck för "chip select"-signalerna. Alla CS-signaler (CS_{RWM}, CS_{ROM1}, CS_{ROM2} och CS_{IO}) är aktiva låga.
- b) Konstruera en ofullständig adressavkodningslogik (så få grindar som möjligt).
- c) Ange, för din lösning i b) speciellt adressintervall där RWM-modulen respektive ROM1-modulen kommer att speglas.

Observera att en CS-signal ej får aktiveras då adressbussens värde är ogiltigt.

Poäng totalt

SVAR OCH LÖSNINGAR

Uppg 1	uppgiften besvaras inte	inget rätt svars- alternativ	a	b	c	d	e	f	g	h
1.1										X
1.2		X								
1.3						X				
1.4								X		
1.5									X	

Uppg 2	uppgiften besvaras inte	inget rätt svars- alternativ	a	b	c	d	e	f	g	h	i	j
2.1			X					X				
2.2									X			
2.3						X						

Uppg 3	uppgiften besvaras inte	inget rätt svars- alternativ	a	b	c	d	e	f	g	h
3.1		X								
3.2							X			
3.3		X								

Uppg 4	uppgiften besvaras inte	inget rätt svars- alternativ	a	b	c	d	e	f
4.1					X			
4.2					X			
4.3						X		

Uppg 5	uppgiften besvaras inte	inget rätt svars- alternativ	a	b	c	d	e	f
5.1			X					
5.2								X
5.3				X				

Uppgift 6

```
NBCDmul.s12
          ORG
                 $1000
          JSR
                 NBCDmul
main:
          BRA
                 main
; Läs in P till ack A, ignorera värden > 9
NBCDmul:
          LDAA
                 $600
          \mathtt{CMPA}
                 #9
                 NBCDmul
          BHI
; Läs in Q till ack B, ignorera värden > 9
NBCDmul2: LDAB
                 $601
          CMPB
                 #9
          BHI
                 NBCDmul2
          MUL
; max resultat är 81, omvandla till 2 NBCD-siffror
          CLRA
                 #10
NBCDmul3: CMPB
                 NBCDmul4
          BLO
          SUBB
                 #10
          INCA
          BRA
                 NBCDmul3
NBCDmul4:
; Mest signifikanta siffra nu i A
; minst signifikanta siffra i B,
; kombinera dessa i en byte...
          ASLA
          ASLA
          ASLA
          ASLA
          PSHB
          ORAA
                 1,SP+
; skriv ut resultatet
          STAA
                 $400
          RTS
```


Uppgift 7 Ställ upp en funktionstabell och bestäm insignalerna till de båda T-vipporna, bestäm därefter "nästatillstånden" q_1 + och q_0 +, rita slutligen tillståndsgrafen:

х	q_1	q_0	T_1	T_0	q_1^+	q_0^+
0	0	0	1	1	1	1
0	0	1	0	1	0	0
0	1	0	1	0	0	0
0	1	1	0	0	1	1
1	0	0	0	0	0	0
1	0	1	0	1	0	0
1	1	0	1	0	0	0
1	1	1	1	1	0	0

Uppgift 8

64 kbyte = $64 \bullet 2^{10} = 2^6 \bullet 2^{10} = 2^{16}$, dvs. 16 adressledningar kopplas direkt till modulen. 32 kbyte = $32 \bullet 2^{10} = 2^5 \bullet 2^{10} = 2^{15}$, dvs. 15 adressledningar kopplas direkt till modulen. 16 kbyte = $16 \bullet 2^{10} = 2^4 \bullet 2^{10} = 2^{14}$, dvs. 14 adressledningar kopplas direkt till modulen. 4 kbyte = $4 \bullet 2^{10} = 2^2 \bullet 2^{10} = 2^{12}$, dvs. 12 adressledningar kopplas direkt till modulen.

Modul		Adressbuss																			
		A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	Α9	A8	Α7	A6	A5	A4	А3	A2	A1	A0
D) 4 / h /	\$00000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RWM	\$0FFFF	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
DON 44	\$20000	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROM1	\$27FFF	0	0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
DOM 43	\$80000	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROM2	\$83FFF	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1/0	\$FF000	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1/0	\$FFFFF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Fullständig avkodning därför:

 $\overline{CS_{RWM}} = \overline{A19} \cdot \overline{A18} \cdot \overline{A17} \cdot \overline{A16} \cdot E$

 $\overline{CS_{ROM1}} = \overline{\overline{A19} \cdot \overline{A18} \cdot A17 \cdot \overline{A16} \cdot \overline{A15} \cdot E}$

 $\overline{CS_{ROM2}} = \overline{A19 \cdot \overline{A18} \cdot \overline{A17} \cdot \overline{A16} \cdot \overline{A15} \cdot \overline{A14} \cdot E}$

 $\overline{CS_{IO}} = \overline{A19 \cdot A18 \cdot A17 \cdot A16 \cdot A15 \cdot A14 \cdot A13 \cdot A12 \cdot E}$

b)

Modul											Adre	ssbus	S								
		A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6													A6	A5	A4	А3	A2	A1	A0
DIA/A	\$00000	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RWM	\$0FFFF	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
DON 41	\$20000	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROM1	\$27FFF	0	0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
DOM 43	\$80000	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ROM2	\$83FFF	1	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1/0	\$FF000	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
1/0	\$FFFFF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Ofullständig avkodning med minimalt grindnät blir därför:

 $\overline{CS_{RWM}} = \overline{\overline{A19} \cdot \overline{A17} \cdot E}$

 $\overline{CS_{ROM1}} = \overline{\overline{A19} \cdot A17 \cdot E}$

 $\overline{CS_{ROM2}} = \overline{A19 \cdot \overline{A18} \cdot E}$

 $\overline{CS_{IO}} = \overline{A18 \cdot E}$

Anm: Ev. kan också R/W-signalen användas för ROM-kapslarna

c) I avkodningen för RWM-modulen ser vi att A₁₈ och A₁₆ lämnats som don't care. Modulen aktiveras därför i minnesintervallen 00000 - 0FFFF, 10000 - 1FFFF, 40000-4FFFF och 50000-5FFF.

RWM-modulen speglas alltså i intervallen 10000 - 1FFFF, 40000-4FFFF och 50000-5FFF.

I avkodningen för ROM1-modulen har A₁₈, A₁₆ och A₁₅ lämnats som don't care. Modulen aktiveras därför i minnesintervallen:

20000 - 27FFF, 28000 - 2FFFF, 30000 - 37FFF, 38000 - 3FFFF, 60000 - 67FFF, 68000 - 6FFFF, 70000 -77FFF, 78000 - 7FFFF

Modulen speglas alltså i intervallen 28000 - 2FFFF, 30000 - 37FFF, 38000 - 3FFFF, 60000 - 67FFF, 68000 -6FFFF, 70000 - 77FFF, 78000 - 7FFFF.