Institutional Trading around Corporate News: Evidence from Textual Analysis

Alan Guoming Huang, Hongping Tan, Russ Wermers

RFS 2020

Long Zhen

Contents

- Introduction
 - Background/Related Literature
 - Motivation
 - Research problem
 - Contribution
- Research Design
 - Data
 - Method
- Empirical Results
- Conclusion

Introduction – Backgrounds

- Institutional investors play a great role in the incorporation of new information into market prices.
- A number of studies proved institutions' superior trading skills.

Introduction – Motivation

 However, the mechanism of how institutional investors use information to trade, and how quickly their information-motivation trades are reflected in stock prices, is far from clear.

Introduction – Research Problem

 Whether institutional investors chiefly predict or chiefly respond to news releases?

Long Zhen

Whether institutional trading predicts returns?

Introduction — Contribution

- Our news data set captures the timeliness of the initial news release on a corporate topic more accurately than data used by prior researchers.
- Provide evidence of a substantial link among news tone, institutional trading, and the price reaction of stocks for unanticipated news releases
- Show that institutions' prompt processing and interpretation of unanticipated public news contributes to the **price discovery process** for stocks to a greater degree than their ability to predict such news.

Research Design – Data

News sample:

- Factiva database (large breadth of news) 2000.1.1 ~ 2010.12.31
- each contain at least 50 words and for which the first 25 words contain a company identity. \rightarrow 1,714,336 matched to Compustat
- Remove articles from newspapers and magazines, only focus on bulletin and [-3,3] trading days around earnings announcements
 → only focus on unanticipated news
- News content measures
 - Neg_net = (#neg words #posi words)/#total words
 - Neg = #neg words /#total words

• News cluster:

- keep the timestamp of the first news, until the coverage stops for at least a day
- take the average tone within the cluster

Research Design——Data

- Institutional trading data
 - ANcerno Ltd
 - Measure: (rescale by SHROUT)
 - Total of numbers of shares traded, regardless of directions
 - Net shares traded (trading imbalance)
 - Abt: normalize trading imbalance at the firm level by subtracting a firm's trading imbalance by its historical trading imbalance during days [-250, -20]

→During 2000 and 2010, ANcerno covers a total of 1,072 institutions, with 386 money managers, 686 plan sponsors, and a total of \$40.2 trillion in trading volume

Research Design

- Institutional trading around news releases
 - Portfolio analysis: form quintile portfolios based on Neg_net and examine the abnormal trading imbalance
 - Regression analysis

$$Abt_{i,t} = \alpha + \beta \ Neg_net_{i,t} + \theta \ Controls_{i,t-1} + \varepsilon_{i,t},$$

Intraday results of trading reaction to news

Research Design

- Return predictability of institutional trading
 - News tone predict returns? $adjR_{i,t+1} = \alpha + \beta Neg_net_{i,t} + controls_{i,t} + \epsilon$
 - whether institutional trading predicts returns over and above the predictability of news tone? $adjR_{i.t+1} = \alpha + \beta Neg_net_{i.t} + Abt[0]_{i.t} + controls_{i.t} + \epsilon$

Research Design

whether these effects reinforce each other?

	Institutions buy	Institutions sell
Negative news	Quadrant 1: Contrarian trades	Quadrant 2: Reinforcing trades
Positive news	Quadrant 3: Reinforcing trades	Quadrant 4: Contrarian trades

- Run the return prediction regressions separately for contrarian and reinforcing trades.
- Test the reinforcement effect by creating a dummy variable, Q23_dummy

Empirical Results

Table 4
Institutional trading and negative tone: Portfolio analysis

A. Abnormal trading imbalance (% of abnormal share turnover) around news announcement

				Diffe	rence		
Day	1	2	3	4	5	5-1	t-stat.
-1	-0.0043	-0.0038	-0.0025	-0.0039	-0.0064	-0.0021	(-1.35)
0	-0.0053	-0.0049	-0.0037	-0.0060	-0.0125	-0.0072	(-4.36)
1	-0.0033	-0.0040	-0.0032	-0.0034	-0.0056	-0.0022	(-1.50)
^	0.0000	0.000	0.0000	0.0001	0.0047	0.0000	/ O FA

B. Abnormal trading imbalance on day 0 of portfolios first sorted on a firm trait, then on Neg_net

Neg_net		Market cap			ledia covera	ige	Past-month ret. momentum			
quintile	Large	Medium	Small	High	Medium	Low	High	Medium	Low	
1	-0.0021	-0.0046	-0.0086	-0.0047	-0.0054	-0.0050	-0.0031	-0.0031	-0.0087	
5	-0.0022	-0.0134	-0.0225	-0.0056	-0.0118	-0.0184	-0.0115	-0.0086	-0.0156	
5-1	-0.0001	-0.0088		-0.0009		-0.0134		-0.0055	-0.0069	
	(-1.49)	(-3.12)	(-4.48)	(-0.30)	(-2.31)	(-5.04)	(-3.14)	(-2.48)	(-2.46)	

- More negative news is associated with a higher amount of net-selling, but only significant in day 0
- the magnitude of the difference is the largest for firms with the smallest size, the lowest media coverage, and the largest momentum

Empirical Results

Table 5
Institutional trading and news tone: Regression analysis

Abt	at	day	i(s))
1101	$u\iota$	uu	, ()	,

[-5, -3]	[-2, -1]	0	[1, 2]	[3, 5]
0.055	-0.036 (-0.79)	-0.103*** (-3.25)	-0.043 (-0.92)	0.017 (0.28)
-0.007*	-0.008**	-0.007***	-0.008**	-0.013***
(-1.71) 0.002	(-2.18) -0.007	(-2.90) -0.001	(-2.23) 0.001	(-2.75) -0.006
(0.18) 0.167	(-0.97) 0.188	(-0.13) 0.006	(0.13) -0.053	(-0.63) -0.105
(0.98) -3.228	(1.37) -4.162	(0.09)	(-0.40)	(-0.60) -2.980
	0.055 (0.93) -0.007* (-1.71) 0.002 (0.18) 0.167	$\begin{array}{cccc} 0.055 & -0.036 \\ (0.93) & (-0.79) \\ -0.007* & -0.008** \\ (-1.71) & (-2.18) \\ 0.002 & -0.007 \\ (0.18) & (-0.97) \\ 0.167 & 0.188 \\ (0.98) & (1.37) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 6
Effect of news clustering and alternative news samplings

A. Regressions without news clustering

		Using all news days Abt at day(s)		Using only consecutive-day news <i>Abt</i> at day(s)			
	[-2, -1]	0	[1, 2]	[-2, -1]	0	[1, 2]	
Neg_net	-0.104** (-2.39)	-0.108*** (-3.64)	-0.076* (-1.75)	-0.239*** (-3.41)	-0.163*** (-3.38)	-0.116* (-1.65)	
Observations R^2	317,686	327,064 .036	317,491 .038	115,748 .097	117,835 .090	115,308	

B. Single-day versus consecutive-day news clusters

	Single	e-day news clu	ısters	(Consecutive-day news clusters			Using only the initial day of consecutive-day news clusters			
	Abt at day(s)			Abt at day(s)			Abt at day(s)				
	[-2, -1]	0	[1, 2]	[-2, -1]	0	[1, 2]	[-2, -1]	0	[1, 2]		
Neg_net	-0.005 (-0.10)	-0.061* (-1.91)	-0.027 (-0.53)	-0.129 (-1.17)	-0.278*** (-3.58)	-0.042 (-0.38)	-0.154 (-1.53)	-0.225*** (-3.12)	-0.208* (-1.95)		
Observations R^2	205,694	213,141	205,844	52,216 .093	54,099	52,103 .093	52,216 .114	54,099 .125	52,103 .120		

- Without clustering, it seems institutions predict news tone.
- consecutive-day news has a much larger impact on day 0 Abt

C. Using all initial-day news or the very first news in a news cluster

Using only the initial
day of all news clusters

Using only the very first news of all news clusters

		Abt at day(s)		Abt at day(s)			
	[-2, -1]	0	[1, 2]	[-2, -1]	0	[1, 2]	
Neg_net	-0.039	-0.128***	-0.069	-0.023	-0.053**	0.002	
	(-0.91)	(-4.12)	(-1.56)	(-0.57)	(-1.98)	(0.06)	
Observations R^2	258,658	268,028	258,706	258,658	268,028	258,706	
	.039	.039	.039	.038	.038	.038	

D. Alternative news-clustering schemes

		tering of consecutive nat are within 3 days apa		Clustering of consecutive news that are within 5 days apart Abt at day(s)			
		Abt at day(s)					
	[-2, -1]	0	[1, 2]	[-2, -1]	0	[1, 2]	
Neg_net	-0.054 (-1.00)	-0.095*** (-2.61)	-0.053 (-1.03)	-0.070 (-1.19)	-0.089** (-2.16)	-0.028 (-0.49)	
Observations R^2	204,250 .040	213,615 .042	204,006	169,825 .041	178,573 .044	169,610 .040	

Table 7
Institutional heterogeneity and news trading

A. Known inst	A. Known institutional types											
		lan sponsors Abt at day(s)		Mutual funds <i>Abt</i> at day(s)			82 hedge funds Abt at day(s)					
	[-2, -1]	0	[1, 2]	[-2, -1]	0	[1, 2]	[-2, -1]	0	[1, 2]			
Neg_net	0.021 (1.01)	-0.032** (-2.26)	0.003 (0.16)	-0.038 (-0.85)	-0.071** (-2.24)	-0.011 (-0.25)	0.392 (0.90)	-0.194 (-0.41)	0.008 (0.02)			
Observations R^2	223,426	210,370	223,166	248,829 .040	249,722 .040	248,385	22,936 .110	16,927 .136	22,407			

 The investment horizons of plan sponsors tend to be longer than those of mutual funds Speedy reaction to intraday news (uncluster)

Table 10
Trading 3 hours before and 3 hours after the news announcement

		N		Diffe	erence		
15-min bin	1	2	3	4	5	5-1	t-stat.
-2	0.0006	-0.0027	-0.0036	-0.0032	-0.0022	-0.0048	(-1.50)
-1	-0.0011	-0.0026	-0.0023	-0.0034	-0.0020	-0.0008	(-0.40)
0	-0.0117	-0.0213	-0.0260	-0.0292	-0.0262	-0.0145	(-3.30)
1	-0.0093	-0.0120	-0.0169	-0.0204	-0.0183	-0.009	(-2.05)
2	-0.0028	-0.0038	-0.0043	-0.0086	-0.0061	-0.0033	(-1.14)

Institutes react to news speedily, with trading concentrated in the first
 30 minutes after the news release

Twenty-four-hour periodicity

- The majority of news stories take place before- and after-market, as we have documented earlier; hence, if two news articles are 1 day apart, it is most likely that their time distance is 390 (trading) minutes.
- for consecutive-day news events, institutions react to contemporaneous news, but also to 1-day-apart news

 without clustering, consecutive-day news has confounding effects on trading prediction, at a periodicity of 24 hours.

Empirical Results

Table 11 News tone, institutional trading, and return prediction

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
		DGTW return over										
	[1]	[1, 5]	[1, 10]	[1, 20]	[1]	[1, 5]	[1, 10]	[1, 20]				
Neg_net	-2.077***	-1.344***	-0.991***	-0.723***	-2.081***	-1.376***	-1.008***	-0.738***				
	(-5.19)	(-6.68)	(-5.58)	(-4.91)	(-5.07)	(-6.69)	(-5.59)	(-4.97)				
Abt[0]					0.106***	0.042**	0.031**	0.009				
					(3.00)	(2.35)	(2.04)	(0.69)				
ff4abret[0]	-1.193***	-0.473***	-0.397***	-0.289***	-1.267***	-0.487***	-0.400***	-0.277***				
	(4.63)	(3.80)	(3.00)	(3.73)	(188)	(3.07)	(3.00)	(3.57)				

- The relation between news tone and returns extends to longer time periods
- Institutional trading predicts returns in addition to news tone for up to 10 days, post news release.
- institutional trading is an important short-term source of institutional returns that directly follows news bulletins.

Empirical Results

Table 12
Impact of news-driven institutional trading on returns

A. Returns of contrarian trades versus reinforcing trades

	DGTW return over								
	[1]	[1, 5]	[1, 10]	[1, 20]	[1]	[1, 5]	[1, 10]	[1, 20]	
	Contrarian trades (Q14)				Reinforcing trades (Q23)				
Neg_net	-0.731	-0.626**	-0.452*	-0.288	-2.675***	-1.765***	-1.304***	-1.050***	
	(-1.22)	(-2.07)	(-1.71)	(-1.34)	(-4.41)	(-5.68)	(-4.83)	(-4.81)	
Abt[0]	0.019	-0.022	-0.017	-0.018	0.141***	0.084***	0.066***	0.020	
	(0.35)	(-0.80)	(-0.73)	(-1.02)	(2.63)	(3.15)	(2.91)	(1.10)	
Observations	125,982	126,015	126,044	126,107	125,451	125,481	125,501	125,582	
R^2	.057	.054	.053	.056	.054	.055	.052	.055	

 For contrarian trades, Abt[0] no longer predicts returns; and for reinforcing trades, Abt[0] predicts returns up to 10 days after controlling for the effect of Neg_net.

		DGTW return over					
	[1]	[1, 5]	[1, 10]	[1, 20]			
$Q23_dummy \times Abt[0]$	0.140*	0.109***	0.084***	0.038			
Q23_dummy×Neg_net	(1.90) -1.635**	(2.92) -1.067***	(2.70) -0.830**	(1.63) -0.727***			
Neg_net	(-2.10) -1.010*	(-2.69) -0.641**	(-2.40) -0.439*	(-2.58) -0.306			
5_	(-1.77)	(-2.26)	(-1.75)	(-1.48)			
Q23_dummy	-0.016 (-1.48)	0.000 (0.05)	-0.002 (-0.44)	-0.002 (-0.56)			
Abt[0]	0.012 (0.23)	-0.028 (-1.05)	-0.023 (-1.01)	-0.020 (-1.17)			
Observations	252,098	252,160	252,209	252,352			
R^2	.033	.034	.033	.038			

- news-stimulated trading has the more impactful predictive power for future returns.
- The unconditional impact of Abt[0] on returns is subsumed by the conditional impact of news-driven trading
- →institutional trading and news reinforce each other in driving stock returns in the following weeks
- →the reinforcement effect has a more substantive return-predictive power than just news or institutional trading.

Conclusion

- Institutions react speedily to but do not predictively trade on news clusters, whether the clusters consist of single day or consecutive day news.
- News-driven institutional trades result in economically significant abnormal returns