

EFFICIENT ALGORITHMS FOR SMOOTH MINIMAX OPTIMIZATION

https://github.com/POLane16/DIAG

Kiran Thekumparampil[†] Prateek Jain[‡] Praneeth Netrapalli[‡] Sewoong Oh[±] [†]University of Illinois at Urbana-Champaign [‡]Microsoft Research, India [±]University of Washington, Seattle

SMOOTH MINIMAX PROBLEM

 $\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} g(x, y)$

where g is L-smooth

$$\|\nabla_x g(x,y) - \nabla_x g(x',y')\| \le L_{xx} \|x - x'\| + L_{xy} \|y - y'\|$$

$$\|\nabla_y g(x,y) - \nabla_y g(x',y')\| \le L_{yx} \|x - x'\| + L_{yy} \|y - y'\|$$

CONVEX-CONCAVE MINIMAX PROBLEM

- ullet $g(\cdot,y)$ is convex in x and $g(x,\cdot)$ is concave in y
- ullet Minimax Theorem: if \mathcal{X}/\mathcal{Y} is compact or if $g(\cdot,y)/g(x,\cdot)$ is stronglyconvex/concave:

$$\min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} g(x, y) = g(x^*, y^*) = \max_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} g(x, y)$$

• ε -primal dual pair (\tilde{x}, \tilde{y})

$$\max_{y \in \mathcal{Y}} g(\tilde{x}, y) - \min_{x \in \mathcal{X}} g(x, \tilde{y}) \le \varepsilon$$

- For a L-smooth convex function f(x)
 - Gradient Descent (GD): $x_{k+1} = \mathcal{P}_{\mathcal{X}}(x_k \eta \nabla f(x_k))$
 - Proximal Point Method (PPM): $x_{k+1} = \mathcal{P}_{\mathcal{X}}(x_k \eta \nabla f(x_{k+1}))$

Algo.	Update	Step	Rate
Mirror Descent	$x_k - \eta \nabla_x g(x_k, y_k)$	GD on $g(\cdot,y_k)$	$O\left(k^{-1/2}\right)$
Mirror-Prox [3]	$x_k - \eta \nabla_x g(x_{k+1}, y_{k+1})$	PPM on $g(\cdot, y_{k+1})$	$\widetilde{O}\left(k^{-1}\right)$
C-MD	$x_k - \eta \nabla_x g(x_k, y_{k+1})$	GD on $g(\cdot, y_{k+1})$	$\widetilde{O}\left(k^{-1}\right)$

Looking ahead in the other variable accelerates the minimax optimization

STRONGLYCONVEX-CONCAVE MINIMAX PROBLEM

• $g(\cdot,y)$ is σ_x -strongly convex in x

$$g(x,y) + \langle \nabla_x g(x,y), x' - x \rangle + \frac{\sigma_x}{2} ||x' - x||^2 \le g(x',y)$$

- Dual $h(y) = \min_{x \in \mathcal{X}} g(x,y)$ a $L_{xx} + L_{xy}^2/\sigma_x$ -smooth concave function
- ullet Apply Accelerated Gradient Ascent (AGA) on the dual function h(y)

DIAG (DUAL IMPLICIT ACCELERATED GRADIENT)

DIAG (Dual Implicit Accel. Gradient) DAG (Dual Accel. Gradient) $au_k=rac{2}{(k+2)}$, $au_k=rac{(k+1)\eta}{2}$ $w_k = (1 - \tau_k)y_k + \tau_k v_k$ $x_k = \min_{x \in \mathcal{X}} g(x, w_k)$, and $x_{k+1} = \min_{x \in \mathcal{X}} g(x, y_{k+1})$, and $y_{k+1} = \mathcal{P}_{\mathcal{Y}}\left(w_k + \eta \nabla_y g\left(x_k, w_k\right)\right) \quad | \quad y_{k+1} = \mathcal{P}_{\mathcal{Y}}\left(w_k + \eta \nabla_y g\left(x_{k+1}, w_k\right)\right)$

 $v_{k+1} = \mathcal{P}_{\mathcal{Y}}\left(v_k + \eta_k \nabla_y g\left(x_k, w_k\right)\right) \mid v_{k+1} = \mathcal{P}_{\mathcal{Y}}\left(v_k + \eta_k \nabla_y g\left(\frac{x_{k+1}}{x_k}, w_k\right)\right)$

Algo.	Algo. Gradient	Step	Dual Optimality	Primal Dual Gap
J	used		$h(y_k) - h(y^*)$	$f(x_k) - h(y_k)$
DAG	$\nabla_y g(x_k, w_k)$	AGA on $g(x_k,\cdot)$	$O\left(k^{-2}\right)$	$O\left(k^{-1}\right)$
DIAG	$\nabla_x g(x_{k+1}, w_k)$	AGA on $g(x_{k+1}, \cdot)$	$\widetilde{O}\left(k^{-2}\right)$	$\widetilde{O}\left(k^{-2}\right)$

IMPLEMENTATBLE DIAG

- Mirror-Prox: $(x_{k+1}, y_{k+1}) = (x_k, y_k) \eta(\nabla_x g(x_k, y_k), -\nabla_y g(x_{k+1}, y_{k+1}))$
 - $\mathcal{O}(x,y) = (x_k,y_k) \eta(\nabla_x g(x,y), -\nabla_y g(x,y))$ is contraction if $\eta L < 1$
 - Fixed point of \mathcal{O} , (x_{k+1},y_{k+1}) can be found in $O(\log 1/\varepsilon)$ steps
- DIAG: $x_{k+1} = \arg\min_{x \in \mathcal{X}} g(x, y_{k+1}), y_{k+1} = w_k + \eta \nabla_y g(x_{k+1}, w_k)$
 - $\mathcal{O}(y) = \mathcal{P}_{\mathcal{Y}}(w_k + \eta \nabla_y g(x^*(y), w_k))$ is contraction if $2 \eta L_{xy}^2 / \sigma_x < 1$, where $x^*(y) = \min_{x \in \mathcal{X}} g(x, y)$
 - $x^*(y)$ can be found in $O\left(\sqrt{L_{xx}/\sigma_x}\log 1/\varepsilon\right)$ steps using AGD
 - Fixed point of \mathcal{O} , y_{k+1} can be found in $O\left(\sqrt{L_{xx}/\sigma_x}\log^2 1/\varepsilon\right)$ steps

 $\left(\frac{1}{K} \sum_{k=1}^{K} x_k, y_K\right) s.t.$:

$$\max_{\tilde{y} \in \mathcal{Y}} g(\frac{1}{K} \sum_{k=1}^{K} x_k, \tilde{y}) - \min_{\tilde{x} \in \mathcal{X}} g(\tilde{x}, y_K) \stackrel{\sim}{\leq} \frac{4 \max\{L_{yy}, 2\frac{L_{xy}^2}{\sigma}\}D_{\mathcal{Y}}^2}{K(K+1)},$$

and these K iterations require $O(\sqrt{\frac{L_{xx}}{\sigma_x}}K\log^2(K))$ first order gradient oracle calls.

- Total complexity $\widetilde{O}\left(\sqrt{\frac{L_{xx}}{\sigma_x}}\sqrt{L_{yy}+\frac{L_{xy}^2}{\sigma_x}}\frac{1}{\sqrt{\varepsilon}}\right)$, matches lower bound $O\left(\frac{1}{\sqrt{\varepsilon}}\right)$ [4]
- Our rate can also be obtained by a simpler smoothing technique [5]

NONCONVEX-CONCAVE MINIMAX PROBLEM

- $g(\cdot,y)$ is nonconvex, but $g(\cdot,y)$ is concave.
- ullet We focus on the primal problem $f(x) = \max_{y \in \mathcal{Y}} g(x,y)$, and not the dual $\min_{x \in \mathcal{X}} g(x, y)$
- ullet As f is nonsmooth, optimality defined using L-smoothness of g, which implies L_{xx} -weak convexity of f

$$L_{xx}$$
-smoothness of $g(\cdot) \implies f(x) + \langle \partial f(x), x' - x \rangle - \frac{L_{xx}}{2} ||x' - x||^2 \le f(x')$

• ε -FOSP (First Order Stationary Point)

$$\|\nabla f_{\frac{1}{2L_{xx}}}(x)\| \le \varepsilon$$
, where, $f_{\frac{1}{2L_{xx}}}(x) = \min_{x'} f(x') + L_{xx} \|x' - x\|^2$

PROX-DIAG (PROXIMAL DIAG)

	Subgrad method [1, 2]	Proximal point method
Exact	$x_{k+1} = x_k - \eta \partial f(x_k)$	$x_{k+1} = x_k - \eta \partial f(x_{k+1})$
Approx.	$\max_{y} g(x_k, y) - O(\varepsilon^2) \le g(x_k, y_k)$	$f_k(x) = \max_y g(x, y) + L_{xx} x - x_k $
	$x_{k+1} = x_k - \eta \nabla g(x_k, y_k)$	$f_k(x_{k+1}) \le \min_x f_k(x) + O\left(\varepsilon^2\right)$
#iter.	$O\left(1/\varepsilon^4\right)$	$O\left(1/\varepsilon^2\right)$
per-step	$O(1/\varepsilon)$ [AGD]	$O\left(1/arepsilon ight)$ [DIAG]
total	$O\left(1/\varepsilon^5\right)$	$O\left(1/\varepsilon^3\right)$

IMPLEMENTING PROX-DIAG

• Prox-DIAG step finds x_{k+1} such that,

Theorem 1 (Convergence rate of DIAG). After
$$K$$
 iterations, DIAG finds
$$\max_{y \in \mathcal{Y}} g(x_{k+1}, y) + L_{xx} ||x_{k+1} - x_k||^2 \le \min_{x} \max_{y \in \mathcal{Y}} g(x_{k+1}, y) + L_{xx} ||x_k - x_k||^2 + O\left(\varepsilon^2\right)$$

- \bullet L_{xx} -weak convexity of $g(\cdot,y) \implies L_{xx}$ -strong convexity of $g(\cdot,y) + L_{xx} \|\cdot -x_k\|^2$
- ullet DIAG solves L-smooth, L_{xx} -strongly-convex–concave problem in $O\left(1/arepsilon
 ight)$ steps
- By weak-convexity outer loop find a ε -FOSP in $O\left(1/\varepsilon^2\right)$ steps.

$$x_{k+1} = x_k - L_{xx} \partial f(x_{k+1}) \overset{L_{xx}\text{-weakly convex}}{\Longrightarrow} f(x_{k+1}) \leq f(x_k) - 3L_{xx}/2 \|\partial f(x_{k+1})\|^2$$

- Total first order (gradient) oracle complexity is $O(1/\varepsilon^3)$
- Similar rate obtained using smoothing technique [6]

EXPERIMENTS: NONCONVEX-CONCAVE

REFERENCES

[1] Jin, C., Netrapalli, P., & Jordan, M. I. (2019). Minmax optimization: Stable limit points of gradient descent ascent are locally optimal. arXiv preprint arXiv:1902.00618. [2] Davis, D., & Drusvyatskiy, D. (2018). Stochastic subgradient method converges at the rate $O(k^{-1/4})$ on weakly convex functions. arXiv preprint arXiv:1802.02988. [3] A. Nemirovski. "Prox-method with rate of convergence O $(1/{
m t})$ for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems". In: SIAM Journal on Optimization 15.1 (2004), pp. 229–251. [4] Y. Ouyang, & Y. Xu (2018). Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems. arXiv preprint arXiv:1808.02901. [5] M. Alkousa, D. Dvinskikh, F. Stonyakin, and A. Gasnikov, 2019. Accelerated methods for composite non-bilinear saddle point problem. arXiv preprint arXiv:1906.03620. [6] W. Kong & R. Monteiro. "An accelerated inexact proximal point method for solving nonconvex-concave min-max problems." arXiv preprint arXiv:1905.13433 (2019).