西安交通大学考试题

成绩

课 程 计算方法 A

系 别 _____ 考试日期 2010年1月20日

专业班号

姓 名 ______ 学 号 ______ 期中 期末

题号	_	<u> </u>	三	四	五.	六	七	八	九	+
得分										

一. (8分) 用 $A = GG^T$ 分解求解方程组 Ax = b, 其中

$$A = \begin{pmatrix} 1 & 2 & 1 & -3 \\ 2 & 5 & 0 & -5 \\ 1 & 0 & 14 & 1 \\ -3 & -5 & 1 & 15 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 2 \\ 16 \\ 8 \end{pmatrix}$$

解:

$$G = \left(\begin{array}{c} \\ \\ \end{array}\right), \qquad y = \left(\begin{array}{c} \\ \\ \end{array}\right), \qquad x = \left(\begin{array}{c} \\ \\ \end{array}\right)$$

二.(8分)欲用迭代法求解如下方程组:

$$x_1 - 4x_2 - 2x_4 = 11$$

$$4x_1 + 8x_3 + 3x_4 = 6$$

$$3x_2 + x_3 + 5x_4 = 2$$

$$5x_1 - x_2 + x_3 + 2x_4 = 5$$

(1) 写出高斯-赛德尔迭代法、超松弛迭代法($\omega = 0.5$)的迭代格式;解:

(2) 给定初始点 $x^{(0)} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}^T$,用高斯-赛德尔迭代法计算 $x^{(1)}$ 。解:

(3) 对任意的初始值 $x^{(0)}$,以上两迭代法是否收敛?为什么?解:

三. (8分) 已知函数 y = f(x) 在点 x_i 处的函数值及其导数值如下表所示:

х	0	1	2
f(x)	-1	0	1
f'(x)	1		-1

求其 Hermit(带导数)插值多项式及其误差估计式。

解:

1. 差商表

- 2. Hermit 插值多项式
- 3. 误差估计式

四. (8 分) 求函数 $y = \ln(x)$ 在区间[1,2]上的最优平方逼近一次式。

解:

正规方程组如下:

p(x) =

五. (8 分) 求函数 $f(x) = \frac{1}{1+x}$ 在区间[0,1]上的最优一致逼近一次式及最大偏差。解:

六. (8分)

- (1) 试导出在区间 [-1,1] 上关于权函数 $\omega(x)=1+x^2$ 的正交多项式 $g_0(x),g_1(x),g_2(x)\ .$
- (2) 试确定如下的高斯型求积公式和误差估计式。

$$\int_{-1}^{1} (1+x^2) f(x) dx \approx A_0 f(x_0) + A_1 f(x_1)$$

解:

(1)
$$g_0(x) =$$

$$g_1(x) =$$

$$g_2(x) =$$

(2)

七. (8分)构造一个迭代方法,用以证明

$$\lim_{k \to \infty} \underbrace{\sqrt{6 + \sqrt{6 + \dots + \sqrt{6}}}}_{k \uparrow \text{RF}} = 3$$

解:

八.	(8分)	已知 /	阶矩阵	A的一·	个特征	值的近	似值瓦	,欲	用反幂	法求	该特征	值
	更精确 幂法的		值和相应 程。	豆的特征	向量,	用半次	送代法	达 基斯	双初始向	可量,	请写出。	反

解:

九. (8分) 对于常微分方程初值问题

$$\begin{cases} y' = f(x, y(x)), & a \le x \le b \\ y(a) = y_0 \end{cases}$$

给定阿达姆斯显示公式、阿达姆斯隐式公式及其误差项如下:

$$y_{i+1} = y_i + \frac{h}{24} \left(55f_i - 59f_{i-1} + 37f_{i-2} - 9f_{i-3} \right), \qquad R[y] = \frac{251}{720} h^5 y^{(5)}(\xi_i)$$

$$y_{i+1} = y_i + \frac{h}{24} \left(9f_{i+1} + 19f_i - 5f_{i-1} + f_{i-2} \right), \qquad R[y] = -\frac{19}{720} h^5 y^{(5)}(\overline{\xi_i})$$

试用以上两个公式推导出预测—修正—校正—修正公式。

解:

十. (8分) 对于方程组 Ax = b, 其中

$$A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}, \quad b = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

若用迭代法

$$x^{(k+1)} = x^{(k)} - \omega(Ax^{(k)} - b)$$

求以上方程组的解,试确定使迭代法收敛的 ω 的取值范围,并求出使迭代法收敛速度最快的最优 ω 之值 ω_{opt} 。