MATH 235 Theorems

Sachin Kumar* University of Waterloo

Winter 2023^{\dagger}

^{*}skmuthuk@uwaterloo.ca † Last updated: February 26, 2023

Contents

1	Abstract Vector Spaces	3
2	Linear Transformations	4
	2.1 Rank and Nullity	4
	2.2 Linear Maps as Matrices	4

1 Abstract Vector Spaces

2 Linear Transformations

2.1 Rank and Nullity

Theorem 2.1.1

Let V and W be vector space over \mathbb{F} , and let $L:V\to W$ be a linear map. Then

- 1. $L(\vec{0}) = \vec{0}$
- 2. range(L) is a subspace of W
- 3. ker(L) is a subspace of V

Theorem 2.1.2 (Rank-Nullity Theorem)

Let V and W be vector spaces over \mathbb{F} with $\dim(V) = n$. Let $L: V \to W$ be a linear map.

$$\operatorname{rank}(L) + \operatorname{nullity}(L) = n$$

2.2 Linear Maps as Matrices

Theorem 2.2.1

Let V be an n-dimensional vector space with ordered basis \mathcal{B} . Let W be an m-dimensional vector space with ordered basis \mathcal{C} . Then, for every linear map $L:V\to W$, there exists $A\in M_{m\times n}(\mathbb{F})$ such that $[L(\vec{v})]_{\mathcal{C}}=A[\vec{v}]_{\mathcal{B}}$ for all $\vec{v}\in V$, which we denote $_{\mathcal{C}}[L]_{\mathcal{B}}$ is given by

$$_{\mathcal{C}}[L]_{\mathcal{B}} = \left[[L(\vec{b}_1)]_{\mathcal{C}} \dots [L(\vec{b}_n)]_{\mathcal{C}} \right]$$