Nhóm 1

BẢN BÁO CÁO

Trần Hoàng Quân

Bài 5. Máy phát âm tần RC điều hòa tự kích dùng cầu wien

I. Mục đích: Khảo sát tín hiệu dao động của máy phát âm tần RC điều hòa tự kích sử dụng cầu Wien làm khối hồi tiếp tín hiệu.

II. Sơ đồ nguyên lý – Giá trị linh kiện:

Hình 5.2. Sơ đồ nguyên lý mạch thực nghiệm máy phát âm tần RC dùng cầu Wien

➤ Giá trị linh kiện:

$$C_1 = C_3 = 22.10^3 pF$$

$$C_2 = C_4 = 10.10^3 pF$$

$$C_5 = C_6 = C_7 = 10 \mu F$$

 T_1, T_2 : Transistor C828

$$R_1 = 56k\Omega \pm 5\%$$

$$R_2 = R_6 = R_9 = R_{10} = 10k\Omega \pm 5\%$$

$$R_3 = R_8 = R_{11} = 470\Omega \pm 5\%$$

$$R_4 = R_7 = 2.2k\Omega \pm 5\%$$

 $R_5 = 100k\Omega \pm 5\%$

III. Kết quả thực hành:

Thay đổi vị trí khóa K để đổi khối hồi tiếp bằng khảo sát tín hiệu V_{out} trong từng trường hợp: chu kỳ, điện áp đỉnh – đỉnh bằng máy dao động ký.

ightharpoonup Trường hợp 1: K_1 tắt, K_2 tắt

F	T	V_p
917,8 <i>Hz</i>	1,090 <i>ms</i>	2,960v

ightharpoonup Trường hợp 2: K_1 bật, K_2 bật

F	T	V_p
1,934 <i>kHz</i>	0,517 <i>ms</i>	3,280v

Sử dụng phương pháp Lixazu xác định tần số:

ightharpoonup Trường hợp 1: K_1 tắt, K_2 tắt

1 đỉnh	2 đỉnh	3 đỉnh
917,2 <i>Hz</i>	1834,3 <i>Hz</i>	2751,5 <i>Hz</i>

ightharpoonup Trường hợp 1: K_1 bật , K_2 bật

1 đỉnh	2 đỉnh	3 đỉnh
1935,9 <i>Hz</i>	3872 <i>Hz</i>	5808,3 <i>Hz</i>

So sánh kết quả khi đo bằng phương pháp Lixazu và khi đo trực tiếp bằng máy dao động ký:

	Lixazu	Máy dao động ký
K_1 tắt , K_2 tắt	917,2 <i>Hz</i>	917,8 <i>Hz</i>
$\pmb{K_1}$ \pmb{b} ậ \pmb{t} , $\pmb{K_2}$ \pmb{b} ậ \pmb{t}	1935,9 <i>Hz</i>	1934 <i>Hz</i>

- \Rightarrow Dựa vào hai kết quả trên ta thấy hai phương pháp có kết quả xấp xỉ nhau.
- So sánh kết quả tính toán bằng thực tế và tính toán bằng lý thuyết:
 - ightharpoonup Trường hợp 1: K_1 tắt, K_2 tắt

$$f = \frac{1}{T} = \frac{1}{1,090,10^{-3}} = 917,4(Hz)$$

 \succ Trường hợp 1: K_1 bật, K_2 bật

$$f = \frac{1}{T} = \frac{1}{0.517.10^{-3}} = 1934,2(Hz)$$

	Tính toán	Thực tế
K_1 tắt , K_2 tắt	917,4 <i>Hz</i>	917,2 <i>Hz</i>
$\pmb{K_1}$ \pmb{b} ậ \pmb{t} , $\pmb{K_2}$ \pmb{b} ậ \pmb{t}	1934,2 <i>Hz</i>	1935,9 <i>Hz</i>

⇒ Ta thấy kết quả giữa tính toán và thực tế là xấp xỉ nhau.