

MCMC diagnostics in 1D

Metrics: R hat de Gelman-Rubin

Moyenne et variance de chaque chaîne

$$\vdots$$
 Chaîne $\mathbf{j}:X_1^{(j)},\dots,X_n^{(j)}\longrightarrow \overline{\mathbf{X}}^{(j)}$, $\sigma^{\mathbf{2}^{(j)}}$

Chaîne $1: X_1^{(1)}, \dots, X_n^{(1)} \longrightarrow \overline{\mathbf{X}}^{(1)}$, $\sigma^{\mathbf{2}^{(1)}}$

: $\text{Chaîne m}: X_1^{(m)}, \dots, X_n^{(m)} \longrightarrow \overline{\mathbf{X}}^{(m)} \quad , \quad \sigma^{\mathbf{2}^{(m)}}$

"Yoyenne des variances "within" $W=\frac{1}{m}\sum_{m}^{m}\sigma^{2}$

Variance des moyennes "between" $B=\frac{n}{m-1}\sum_{}^{n}(\overline{\mathbf{X}}^{(j)}-\overline{\overline{\mathbf{X}}})^2$

Si les chaînes convergent $- \rightarrow 0$ vers la même moyenne:

"R hat" de Gelman-Rubin (1992)

$$\widehat{R} \stackrel{\text{def}}{=} \sqrt{\frac{\frac{n-1}{n}W + \frac{1}{n}B}{\mathbf{W}}}$$

$$\begin{cases} -\frac{1}{2} & \text{if } \frac{B}{n} \to 0 \\ -\frac{1}{2} & \text{sinon} \end{cases}$$

Sinon
$$\frac{D}{a} \rightarrow b^* > 0$$

Détails en TD

$$\stackrel{\text{def}}{=} \sqrt{\frac{\frac{n-1}{n}\sigma_{within}^2 + \frac{1}{n}\sigma_{between}^2}{\sigma_{within}^2}}$$

En pratique on veut R < 1.01

 $\operatorname{ar} \ \mathbb{V}(\overline{\mathbf{X}}^{(j)}) = \overline{}$

MCMC diagnostics in 1D

Metrics: R hat de Gelman-Rubin

Moyenne et variance de chaque chaîne

Chaîne
$$1: X_1^{(1)}, \dots, X_n^{(1)} \longrightarrow \overline{\mathbf{X}}^{(1)}$$
 , $\sigma^{\mathbf{2}^{(1)}}$

Chaîne
$$\mathbf{j}: X_1^{(j)}, \dots, X_n^{(j)} \longrightarrow \overline{\mathbf{X}}^{(j)} , \quad \sigma^{\mathbf{2}^{(j)}}$$

Chaîne
$$\mathbf{m}: X_1^{(m)}, \dots, X_n^{(m)} \longrightarrow \overline{\mathbf{X}}^{(m)} \quad , \quad \sigma^{\mathbf{2}^{(m)}}$$

Moyenne des moyennes $\overline{\mathbf{X}}$

Variance des moyennes "between"
$$B=\frac{n}{m-1}\sum_{j}^{m}(\overline{\mathbf{X}}^{(j)}-\overline{\overline{\mathbf{X}}})^2$$
 Moyenne des variances "within" $W=\frac{1}{m}\sum_{j=1}^{m}\sigma^{\mathbf{2}^{(j)}}$

$$W = \frac{1}{m} \sum_{j=1}^{m} \sigma^{2(j)}$$

Pourquoi n ?
$$\operatorname{car} \, \mathbb{V}(\overline{\mathbf{X}}^{(j)}) = \tfrac{\sigma^2}{n}$$

$$\frac{B}{n} \to 0$$

Sinon
$$\frac{B}{n} \to b^* > 0$$

"R hat" de Gelman-Rubin (1992)

$$\widehat{R} \stackrel{\text{def}}{=} \sqrt{\frac{\frac{n-1}{n}W + \frac{1}{n}B}{W}} \rightarrow r \begin{cases} = 1 \text{ si } \frac{B}{n} \to 0 \\ > 1 \text{ sinon} \end{cases}$$

$$\begin{cases} = 1 \text{ si } \frac{B}{n} \to 0 \\ \widehat{R} \stackrel{\text{def}}{=} \sqrt{\frac{\frac{n-1}{n}\sigma_{within}^2 + \frac{1}{n}\sigma_{between}^2}{\sigma_{within}^2}} \end{cases}$$

En pratique on veut R < 1.01

- 1. Pourquoi Monte-Carlo ? (Exemple de modèle hiérarchique)
- 2. Introduction à la méthode Monte-Carlo (historique, PRNG)
- 3. Algorithmes de simulation i.i.d (PRNG, transformation, rejet)
- 4. Méthodes MCMC (Gibbs, Metropolis)
- 5. Diagonstics de convergence MCMC
- 6. Méthodes MCMC avancées (Langevin, HMC, NUTS)

MCMC diagnostics in 1D

Metrics

$$\hat{R} = 1.005$$

Converging

