Departamento de Matemática

Universidade do Minho

Tópicos de Matemática

 3° teste – 13 jan 2023

Lic. em Ciências de Computação - $1^{\underline{o}}$ ano

duração: duas horas

Nome RESOLUGA

Número _____

GRUPO I. Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a proposição, assinalando a opção conveniente:

1. Para todo o conjunto A, existe uma relação binária definida em A que é simétrica mas não é transitiva.

V□ F<mark></mark>

2. Para qualquer relação de equivalência R em $A=\{1,2,3,4\}$, se $3\in[2]_R\cap[1]_R$, então, $(1,2)\in R$.

V**X** F□

3. O conjunto $\{\{1,2\},\{3,4\},5\}$ é uma partição de $B=\{1,2,3,4,5\}$.

V□ F¤

4. Para quaisquer dois conjuntos não vazios e disjuntos A e B, $\omega_A \cup \omega_B$ é uma relação de equivalência em $A \cup B$.

V**⋈** F□

5. A relação binária $\theta = \{(1,2),(3,1),(2,2)\}$ em $A = \{1,2,3,4\}$ é uma relação antissimétrica.

V**X** F□

6. A relação $R = \{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ é uma relação de ordem total em $A = \{1,2,3\}$.

V□ F¤

7. Para qualquer c.p.o. (A, \leq) e qualquer subconjunto não vazio X de A, se X admite elemento mínimo, então, $A \setminus X$ admite elemento máximo.

V□ F⊠

8. Para quaisquer c.p.o.'s A e B e qualquer função isótona $f:A\to B$, se m é elemento máximo de A então f(m) é elemento máximo de B.

V□ FX

GRUPO II. Considere o conjunto $A = \{1, 2, 3\}$. Dê exemplo, ou justifique que não existe, de:

1. Uma relação binária θ em A que seja simétrica mas não transitiva;

 $\theta = \left\{ (1,2), (2,1) \right\}$

e' sime ho pois $\theta' = \theta$ no e' haustine pois

(1,2), (2,7) $(\theta) \wedge (1,1) d\theta$

2. Uma relação de equivalência $\mathcal R$ em A com 6 elementos;

No existe. So Ro' de equivetencia, A/R é como partio de A: 112136, ou siga. A/R = 114,124,136 fou A/R = 11124,136 fou A/R = 11136,126 fou A/R = 11

3. Uma relação de ordem parcial \leq em A tal que $\leq = \leq_d$;

4. Uma relação de ordem parcial \leq em A tal que no c.p.o. A não existe $\inf \varnothing$ nem $\sup \varnothing$.

$$\sin \int \phi = \max A$$

Sup $\phi = \min A$
 $\cos \phi = \min A$
 $\cos \phi = \min A$

GRUPO III. Sejam A um conjunto e θ a relação binária definida em $A \times \mathcal{P}(A)$ por

$$(a, X) \theta (b, Y) \Leftrightarrow X \cup \{a\} = Y \cup \{b\}$$
 $(a, b \in A, X, Y \subseteq A).$

1. Mostre que θ é uma relação de equivalência em $A \times \mathcal{P}(A)$.

- 2. Dado $a \in A$, determine as classes $[(a, \emptyset)]_{\theta} \in [(a, A)]_{\theta}$. $(b, Y) \oplus (a, \emptyset) (=) \quad Y \cup A \cup b = \emptyset \cup A \cup b = A \cup b =$
- $= d(b,A): b\in A \neq \bigcup d(b,A)db = b\in A$ 3. Determine em que condições se tem $[(a,\emptyset)]_{\theta} \cap [(a,A)]_{\theta} \neq \emptyset$. $[(a,\emptyset)_{\theta} \cap [(a,A)]_{\theta} \neq \emptyset \quad (=) \quad (O,\emptyset) \Theta \quad (A,A)$

(=) Outage = Audage (=) A=OV A=dage

(=) A = day

tois nete 6w, a not
existe

4. Para $A = \{1, 2\}$, indique o conjunto quociente definido por θ .

 $A = \frac{1}{124}$ $\Phi(A) = \frac{1}{4}$ $\Phi(A)$

(1,A), (2,A) }

 $[(1,0)]_{\theta} = [(1,1)]_{\theta}$

• $[(a, \phi)] = \{(a, \phi), (a, \lambda a 4)\} = [(a, \lambda a 4)] = [(a, \lambda a 4)]$

• $[(1,124)]_{0} = \frac{1}{2}(1,124),(2,114),(1,11),(2,114)$ = $[(2,114)]_{0} = [(2,114)]_{0} = [(2,114)]_{0}$

[[(1,0)] 0 , [(2,0)] 0 , [(1,0)] 0 }

GRUPO IV. Considere o c.p.o. (A, \leq) definido pelo diagrama de Hasse apresentado.

Indique, caso exista:

714

1. Maj $\{2, 4, 5, 7\}$;

2. inf{2,6}: n\$\times\$ exist

3. $\inf \emptyset \in \sup \emptyset$;

inf
$$\phi = \max A \rightarrow nd \text{ existe}$$

 $\operatorname{Sup} \phi = \min A = 9$

5. Um subconjunto X de A com 3 elementos maximais e 3 elementos minimais;

6. um elemento x de A tal que $\{3,5,9,x\}$ seja um reticulado para a ordem parcial induzida pela ordem do c.p.o. A.

3

10

5