НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ "МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ"

Кафедра математического и компьютерного моделирования

Численные методы Отчет по лабораторной работе №5 "Численное интегрирование." Вариант 52

Студент: Волков Павел Евгеньевич Преподаватель: Амосова Ольга Алексеевна

Группа: А-14-19

Москва 2021

Задача 5.1

Постановка задачи

Вычислить значение интеграла $I = \int_{1}^{3} P_m(x) dx$, где $P_m(x) = \sum_{i=0}^{m} c_i x^i$, с помощью квадратурных формул левых прямоугольников, Гаусса и по формуле индивидуального варианта (правило 3/8).

№	c_0	c_1	c_2	c_3	c_4	c_5
5.1.52	5.4	2.1	0.3	2.1	1.6	1.4

Решение

Запишем формулу левых прямоугольников:

$$S = h \sum_{i=0}^{n-1} f(x_i)$$
$$R = \frac{M_1(b-a)}{2}h$$

Формула правила 3/8:

$$S = \frac{h}{8} \sum_{i=1}^{n} \left[f(x_{i-1}) + 3f\left(x_{i-1} + \frac{h}{3}\right) + 3f\left(x_i - \frac{h}{3}\right) + f(x_i) \right]$$
$$R = \frac{M_4(b-a)}{6480} h^4$$

Так как формула Гаусса точна для многочленов степени 2N+1 при N+1 узлах, а степень исходного многочлена 5, то для вычисления интеграла без погрешности достаточно взять 3 узла:

$$\int_{1}^{3} f(t)dt = A_0 f(t_0) + A_1 f(t_1) + A_2 f(t_2)$$

Так как у нас 6 неизвестных, то следует взять 6 первых базисных функций: $1, t, t^2, t^3, t^4, t^5$. Будем строить формулу для отрезка [-1, 1] а затем

выполним линейное преобразование.

$$\int_{-1}^{1} 1 dt = 2 = A_0 + A_1 + A_2$$

$$\int_{-1}^{1} t dt = 0 = A_0 t_0 + A_1 t_1 + A_2 t_2$$

$$\int_{-1}^{1} t^2 dt = 2/3 = A_0 t_0^2 + A_1 t_1^2 + A_2 t_2^2$$

$$\int_{-1}^{1} t^3 dt = 0 = A_0 t_0^3 + A_1 t_1^3 + A_2 t_2^3$$

$$\int_{-1}^{1} t^4 dt = 2/5 = A_0 t_0^4 + A_1 t_1^4 + A_2 t_2^4$$

$$\int_{-1}^{1} t^5 dt = 0 = A_0 t_0^5 + A_1 t_1^5 + A_2 t_2^5$$

Из получившейся системы имеем такие решения: $A_0=A_2=5/9,\ A_1=8/9,\ t_1=0,\ t_0=-t_2=-\sqrt{3/5}$

Окончательно, получили квадратурную формулу Гаусса с 3-мя узлами:

$$\int_{-1}^{1} f(t)dt = \frac{5}{9}f\left(-\sqrt{\frac{3}{5}}\right) + \frac{8}{9}f(0) + \frac{5}{9}f\left(\sqrt{\frac{3}{5}}\right)$$

После линейной замены формула примет вид:

$$\int_{1}^{3} f(t)dt = \frac{5}{9}f\left(2 - \sqrt{\frac{3}{5}}\right) + \frac{8}{9}f(2) + \frac{5}{9}f\left(2 + \sqrt{\frac{3}{5}}\right)$$

Таблица 5.1(Интеграл вычислялся с точностью $\varepsilon = 0.01$)

Найденное точное значение интеграла $I=311.1066666666666$	Число разбиений отрезка n Шаг интегрирования h	Значение интеграла, вычисленное по составной формуле I^h Величина погрешности интеграла, вычисленного по составной формуле R^h
Метод левых прямоуголь- ников	n = 160080 $h = 0.0000124937$	$I^h = 311.10336832596073$ $R^h = 0.01$
Правило 3/8	n = 5 $h = 0.4$	$I^h = 311.1096248888889$ $R^h = 0.004$
Метод Гаусса	Число узлов квадратуры $N=3$	$I^G = 311.106666666666666666666666666666666666$

Задача 5.2

Постановка задачи

Вычислить интеграл $\int\limits_a^b f(x) dx$ с точностью $\varepsilon = 10^{-12}.$

Nº	f(x)	[a,b]
5.2.52	$6e^{-x}\sin 2\pi x$	[0,3]

Решение

Для вычисления интеграла будем использовать правило 3/8. Запишем формулу оценки погрешности по правилу Рунге:

$$R^h = \frac{I^h - I^{2h}}{2^p - 1}$$

Приведем таблицу результатов для вычисления интеграла с точностью $\varepsilon < 10^{-12}$:

I = 0.8849699594107223	Правило 3/8	
Число разбиений отрезка	n = 2048	
Значение интеграла	$I^h = 0.8849699594116519$	
Погрешность	$R^h = 0.9295897385186436 \cdot 10^{-12}$	
Уточненное значение по правилу Рунге	I = 0.8849699594107236	
Погрешность уточненного значения	$R = 1.3322676295501878 \cdot 10^{-15}$	