Algebra and geometry

31 серпня 2022 р.

Зміст

1	Векторна алгебра		3
	1.1	Вектори на прямій, на площині, у просторі	3
	1.2	Лінійні операції над векторами	4
	1.3	Властивості лінійних операцій, аксіоми векторної алгебри	5
	1.4	Базис на прямій, на площині, у просторі	5
	1.5	Декартів прямокутний базис	7
	1.6	Проекція вектора на вектор (або на вісь)	7
	1.7	Множення векторів. Скалярний добуток двох векторів	8
	1.8	Скалярний добуток в координатах	8
	1.9	Нормування вектора	9
	1.10	Векторний добуток двох векторів	10
	1.11	Векторний добуток в координатах	11
	1.12	Мішаний добуток трьох векторів	12
	1.13	Мішаний добуток в координатах	13
2 Визначники і лінійна залежність		начники і лінійна залежність	14
	2.1	Визначники другого і третього порядків	14
	2.2	Властивості визначників	15
	2.3	Лінійна залежність векторів	17

Розділ 1

Векторна алгебра

1.1 Вектори на прямій, на площині, у просторі

Означення 1.1. Вектор — це направлений відрізок прямої.

Вектор повністю задається довжиною та напрямком. Також вектор можна задати, вказавши його початок і кінець.

$$\overline{q}_{A}^{f}$$
В Вектори позначаються: $\overline{AB}, \overline{a},$ а їх довжини $-|\overline{AB}|, |\overline{a}|.$

Означення 1.2. Два **вектори рівні**, якщо їх довжини і напрямки співпадають.

$$\overline{a}$$
/ \overline{b} / $\overline{a}=\overline{b}\Leftrightarrow \overline{a}\uparrow\uparrow \overline{b}$ (напрямки співпадають) та $|\overline{a}|=|\overline{b}|$ (довжини співпадають).

Означення 1.3. Колінеарні вектори (паралельні вектори) $(\overline{a} \parallel \overline{b})$ — це вектори \overline{a} і \overline{b} , які лежать на одній прямій або на паралельних прямих.

Серед них будемо розрізняти вектори одного напрямку: $\overline{a}\uparrow\uparrow \overline{b},$ та протилежного напрямку: $\overline{a}\uparrow\downarrow \overline{b}.$

Означення 1.4. Нульовий вектор (нуль - вектор) — це вектор нульової довжини, тобто вектор, кінець і початок якого співпадають, $|\overline{0}|=0$. Буде зручно вважати нульовий вектор вектором довільного напрямку, тобто нульовий вектор є колінеарним будь-якому вектору.

Означення 1.5. Вектор \overline{a}' — протилежний вектор до вектора \overline{a} , якщо $\overline{a}'\uparrow\downarrow\overline{a}$ і $|\overline{a}'|=|\overline{a}|$, тобто $\overline{a}'=-\overline{a}$.

Означення 1.6. Вектори $\overline{a}, \overline{b}, \overline{c}, \dots$ це **компланарні вектори**, якщо вони лежать в одній площині або паралельні одній площині.

1.2 Лінійні операції над векторами

Множення вектора на скаляр

Означення 1.7. Добуток вектора $\overline{a} \neq \overline{0}$ і числа $\alpha \in \mathbb{R}, \ (\alpha \overline{a})$ — це вектор $\overline{b} = \alpha \overline{a},$ який задовольняє такі умови:

- 1) \overline{b} колінеарний вектору \overline{a}
- $2) |\overline{b}| = |\alpha||\overline{a}|$
- 3) $\bar{b} \uparrow \uparrow \bar{a}$ однаково направлені, якщо $\alpha>0$, і $\bar{b} \uparrow \downarrow \bar{a}$ протилежно направлені, якщо $\alpha<0$.

Додавання векторів

Означення 1.8. Сума векторів \overline{a} і \overline{b} , $(\overline{a}+\overline{b})$ — це вектор, який з'єднує початок вектора \overline{a} з кінцем вектора \overline{b} за умови, що вектор \overline{b} відкладено від кінця вектора \overline{a} .

Цей спосіб додавання векторів — це **правило трикутника**.

Два вектори можна додати і за іншим правилом, яке має назву — **правило паралелограма**: сумою двох векторів \bar{a} і \bar{b} , відкладених від спільного початку, є вектор, який збігається з діагоналлю паралелограма, побудованого на векторах \bar{a} і \bar{b} як на сторонах. Початки векторів \bar{a} , \bar{b} та $\bar{a}+\bar{b}$ співпадають.

Використовуючи послідовно правило трикутника, можна побудувати суму скінченної кількості довільних векторів. Якщо кінець останнього вектора співпадає з початком першого, то сумою векторів є нульовий вектор: $\overline{0}$.

Віднімання векторів

Означення 1.9. Різниця векторів \overline{a} і \overline{b} , $(\overline{a}-\overline{b})$ — це вектор \overline{c} , який в сумі з вектором \overline{b} дає вектор \overline{a} , тобто $\overline{b}+\overline{c}=\overline{a}$.

Очевидно, що $\overline{c} = \overline{a} + (-\overline{b})$.

$$\overline{a} - \overline{b}$$

$$\overline{c} = \overline{a} - \overline{b}$$

1.3 Властивості лінійних операцій, аксіоми векторної алгебри

- 1. $(\alpha\beta)\bar{a} = \alpha(\beta\bar{a})$ асоціативність відносно множення на скаляр.
- 2. $\overline{a} + \overline{b} = \overline{b} + \overline{a}$ комутативність додавання.
- 3. $(\overline{a}+\overline{b})+\overline{c}=\overline{a}+(\overline{b}+\overline{c})$ асоціативність додавання.
- $4. \quad \frac{(\alpha+\beta)\overline{a}=\alpha\overline{a}+\beta\overline{a}}{\overline{a}(\alpha+\beta)=\overline{a}\alpha+\overline{a}\beta} \ \bigg\} \text{дистрибутивність}.$
- 5. $\exists !\overline{0} : \forall \overline{a} : \overline{a} + \overline{0} = \overline{a}$ існування єдиного нуля.
- 6. $\forall \overline{a} \exists ! \overline{a}' : \overline{a}' + \overline{a} = \overline{0}$ існування протилежного вектора.
- 7. $1 \cdot \overline{a} = \overline{a}$

1.4 Базис на прямій, на площині, у просторі

Розглянемо множину векторів, колінеарних вектору $\overline{a} \neq \overline{0}$. Позначимо її E^1 . Нехай $\overline{a}, \overline{b}, \overline{c} \in E^1$.

Теорема 1.1. $\forall \overline{b} \in E^1 \exists$ дійсне число α таке, що $\overline{b} = \alpha \overline{a}$, причому це представлення едине.

▶ Доведемо єдиність даного представлення методом від супротивного.

Нехай
$$\overline{b} = \tilde{\alpha} \overline{a}$$

Тоді
$$\overline{0}=\overline{b}-\overline{b}=\tilde{\alpha}\overline{a}-\alpha\overline{a}=(\tilde{\alpha}-\alpha)\overline{a}\Rightarrow \tilde{\alpha}-\alpha=0\Rightarrow \tilde{\alpha}=\alpha$$

Вкажемо значення коефіцієнта α .

Якщо
$$\overline{a} \uparrow \uparrow \overline{b}$$
, то $\alpha = \frac{|\overline{b}|}{|\overline{a}|}$.

Дійсно:
$$|\alpha \overline{a}| = \left| \frac{|\overline{b}|}{|\overline{a}|} \right| |\overline{a}| = \frac{|\overline{b}|}{|\overline{a}|} |\overline{a}| = |\overline{b}|, \ \alpha \overline{a} \uparrow \uparrow \overline{b}.$$

Якщо ж $\bar{a} \uparrow \downarrow \bar{b}$, то $\alpha = -\frac{|\bar{b}|}{|\bar{a}|}$ (доведення аналогічне).

Нехай $\overline{a} \not | \overline{b}$ (тому $\overline{a} \neq \overline{0}$, $\overline{b} \neq \overline{0}$). Розглянемо множину векторів, компланарних векторам \overline{a} та \overline{b} , позначимо її E^2 . Нехай \overline{a} , \overline{b} , $\overline{c} \in E^2$.

Теорема 1.2. $\forall \overline{c} \in E^2 \exists ! \ \partial i \ u c h i \ \alpha, \beta, \ maki, \ u o \ \overline{c} = \alpha \overline{a} + \beta \overline{b}.$

▶ Проведемо доведення графічно.

З кінця вектору \bar{c} проведемо дві прямі паралельно векторам \bar{a} і \bar{b} відповідно до перетину з цими векторами чи прямими, на яких вони лежать. Отримали паралелограм, дві сторони якого дорівнюють відповідно $\alpha \bar{a}$ і $\beta \bar{b}$ (за теоремою 1.1). Діагоналлю цього паралелограма є вектор \bar{c} , тобто $\bar{c} = \alpha \bar{a} + \beta \bar{b}$. Єдиність коефіцієнтів α та β випливає з двох умов:

- 1) існує лише одна точка перетину непаралельних прямих,
 - 2) за теоремою 1.1 константи α і β визначаються однозначно.

Нехай E^3 — множина всіх векторів у просторі, причому $\overline{a},\overline{b},\overline{c}$ — некомпланарні $(\overline{a}\neq\overline{0},\overline{b}\neq\overline{0},\overline{c}\neq\overline{0}).$

Теорема 1.3. $\forall \overline{d} \in E^3, \exists ! \ \alpha, \beta, \gamma : \overline{d} = \alpha \overline{a} + \beta \overline{b} + \gamma \overline{c}.$

Із кінця вектора \overline{d} проведемо три площини, паралельні парам векторів $(\overline{b},\overline{c}),\ (\overline{a},\overline{c}),\ (\overline{a},\overline{b}).$ Ці площини перетнуть прямі, на яких лежать $\overline{a},\overline{b},\overline{c}$ в єдиних точках. За теоремою 1.1 отримаємо нові вектори $\alpha\overline{a},\beta\overline{b},\gamma\overline{c},$ а вектор \overline{d} — це діагональ паралелепіпеда, на них побудованого, тобто $\overline{d}=\alpha\overline{a}+\beta\overline{b}+\gamma\overline{c},$ що і треба було довести.

Зауваження. Базисом у множині E^1 може слугувати довільний ненульовий вектор, базисом у E^2 – впорядкована пара неколінеарних векторів, а в E^3 — впорядкована трійка некомпланарних векторів. Вектору \overline{b} було поставлено у відповідність число α ; вектору \overline{c} – числа α і β ; вектору \overline{d} – числа α,β,γ . Ці числа називаються — коефіцієнти розкладу векторів $\overline{b},\overline{c},\overline{d}$ за базисами $\overline{a};\ \overline{a},\overline{b};\ \overline{a},\overline{b},\overline{c}$ просторів E^1,E^2 і E^3 відповідно.

Означення 1.10. Коефіцієнти розкладу вектора \overline{a} за базисом $\overline{a}_1, \overline{a}_2, \dots$ — це числа $\alpha_1, \alpha_2, \dots \in \mathbb{R}$, такі, що $\overline{a} = \alpha_1 \overline{a}_1 + \alpha_2 \overline{a}_2 + \dots$

1.5 Декартів прямокутний базис

Означення 1.11. Впорядкована трійка некомпланарних векторів $(\bar{a}, \bar{b}, \bar{c})$ називається правою (**права трійка векторів**), якщо з кінця вектора \bar{c} поворот від \bar{a} до \bar{b} , менший за 180° , тобто відбувається проти годинникової стрілки.

Означення 1.12. Трійка векторів $\bar{i}, \bar{j}, \bar{k}$ утворює декартів правий прямокутний базис, якщо:

- 1. $\overline{i} \perp \overline{j}, \overline{j} \perp \overline{k}, \overline{k} \perp \overline{i}$
- $2. |\bar{i}| = |\bar{j}| = |\bar{k}| = 1$
- $3. \ \overline{i}, \overline{j}, \overline{k}$ права трійка

1.6 Проекція вектора на вектор (або на вісь)

Нехай задано $\overline{a} \neq \overline{0}$.

Означення 1.13. Проекція вектора \overline{AB} на вектор \overline{a} називається довжина відрізка A'B' між основами перпендикулярів, опущених з точок A та B на вектор \overline{a} (або напряму, на якій він лежить):

$$\mathrm{пр}_{\overline{a}}\overline{AB} = \left\{ \begin{array}{l} |\overline{A'B'}|, \text{ якщо } \overline{A'B'} \uparrow \uparrow \overline{a} \\ -|\overline{A'B'}|, \text{ якщо } \overline{A'B'} \uparrow \downarrow \overline{a} \end{array} \right.$$

Властивості проекції:

- 1. $\pi p_{\overline{a}} \alpha \overline{b} = \alpha \pi p_{\overline{a}} \overline{b}$
- 2. $\operatorname{пp}_{\overline{a}}(\overline{a} + \overline{b}) = \operatorname{пp}_{\overline{a}}\overline{a} + \operatorname{пp}_{\overline{a}}\overline{b}$

1.7 Множення векторів. Скалярний добуток двох векторів

Означення 1.14. Скалярний добуток векторів \overline{a} і \overline{b} (позначається $\overline{a} \cdot \overline{b}$, $\overline{a}\overline{b}$ чи $(\overline{a},\overline{b}))$ — це число, яке дорівнює добутку довжин цих векторів на косинус кута між ними: $(\overline{a},\overline{b})=|\overline{a}||\overline{b}|\cos\varphi$, де $\varphi=\widehat{(\overline{a},\overline{b})}$.

Алгебраїчні властивості скалярного добутку:

1. $(\overline{a}, \overline{b}) = (\overline{b}, \overline{a})$ — комутативність.

$$\left. \begin{array}{l} (\alpha \overline{a}, \overline{b}) = \alpha(\overline{a}, \overline{b}) = (\overline{a}, \alpha \overline{b}) \\ 2. \quad (\overline{a} + \overline{a}', \overline{b}) = (\overline{a}, \overline{b}) + (\overline{a}', \overline{b}) \\ (\overline{a}, \overline{b} + \overline{b}') = (\overline{a}, \overline{b}) + (\overline{a}, \overline{b}') \end{array} \right\} - \text{лінійність}.$$

Геометричні властивості скалярного добутку:

- 1. $(\overline{a}, \overline{b}) = 0 \Leftrightarrow \overline{a} \perp \overline{b}$.
- 2. $(\overline{a}, \overline{a}) = |\overline{a}|^2 \Rightarrow |\overline{a}| = \sqrt{(\overline{a}, \overline{a})}$.

1.8 Скалярний добуток в координатах

Нехай $\{\overline{e}_1,\overline{e}_2,\overline{e}_3\}$ – це фіксований базис в просторі $E^3,\,\overline{x},\overline{y}\in E^3.$ Тоді:

$$\overline{x} = x_1 \overline{e}_1 + x_2 \overline{e}_2 + x_3 \overline{e}_3$$
$$\overline{y} = y_1 \overline{e}_1 + y_2 \overline{e}_2 + y_3 \overline{e}_3$$

Обчислимо скалярний добуток цих векторів:

$$\begin{split} &(\overline{x},\overline{y}) = (x_1\overline{e}_1 + x_2\overline{e}_2 + x_3\overline{e}_3,\overline{y}) = (x_1\overline{e}_1,\overline{y}) + (x_2\overline{e}_2,\overline{y}) + (x_3\overline{e}_3,\overline{y}) = \\ &x_1(\overline{e}_1,y_1\overline{e}_1 + y_2\overline{e}_2 + y_3\overline{e}_3) + x_2(\overline{e}_2,y_1\overline{e}_1 + y_2\overline{e}_2 + y_3\overline{e}_3) + x_3(\overline{e}_3,y_1\overline{e}_1 + y_2\overline{e}_2 + y_3\overline{e}_3) = \\ &x_1y_1(\overline{e}_1,\overline{e}_1) + x_1y_2(\overline{e}_1,\overline{e}_2) + x_1y_3(\overline{e}_1,\overline{e}_3) + x_2y_1(\overline{e}_2,\overline{e}_1) + x_2y_2(\overline{e}_2,\overline{e}_2) + x_2y_3(\overline{e}_2,\overline{e}_3) + \\ &x_3y_1(\overline{e}_3,\overline{e}_1) + x_3y_2(\overline{e}_3,\overline{e}_2) + x_3y_3(\overline{e}_3,\overline{e}_3) = x_1y_1(\overline{e}_1,\overline{e}_1) + (x_1y_2 + x_2y_1)(\overline{e}_1,\overline{e}_2) + \\ &(x_1y_3 + x_3y_1)(\overline{e}_1,\overline{e}_3) + x_2y_2(\overline{e}_2,\overline{e}_2) + (x_2y_3 + x_3y_2)(\overline{e}_2,\overline{e}_3) + x_3y_3(\overline{e}_3,\overline{e}_3). \end{split}$$

У частковому випадку, коли $\overline{e}_1=\overline{i}, \overline{e}_2=\overline{j}, \overline{e}_3=\overline{k}$, маємо: $(\overline{e}_1,\overline{e}_2)=(\overline{e}_2,\overline{e}_3)=(\overline{e}_3,\overline{e}_1), (\overline{e}_i,\overline{e}_j)=1$, де i=1,2,3.

$$(\overline{x},\overline{y})=x_1y_1+x_2y_2+x_3y_3$$
 Якщо $\overline{a}=(x,y,z),$ то $|\overline{a}|=\sqrt{(\overline{a},\overline{a})}=\sqrt{x^2+y^2+z^2}.$

1.9 Нормування вектора

Означення 1.15. Нехай $\overline{a} \neq \overline{0}$. **Орт-вектор** вектора \overline{a} — це вектор \overline{a}_o , такий, що $\overline{a}_o \uparrow \uparrow \overline{a}$ і $|\overline{a}_o| = 1$.

Означення 1.16. Нормування вектора \overline{a} — це процес отримання ортвектора $\overline{a}_o, \ \overline{a}_o = \frac{1}{|\overline{a}|}\overline{a}$

Якщо $\overline{a} = (x, y, z)$, то

$$\overline{a}_o = \left(\frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}}\right).$$

Геометричний сенс координат орт-вектора \overline{a}_o у декартовій системі координат: $\overline{a}_o = (\cos \alpha, \cos \beta, \cos \gamma)$ де, $\alpha = (\overline{a}, \overrightarrow{OX}) = (\overline{a}_o, \overrightarrow{OX}), \beta = (\overline{a}, \overrightarrow{OY}) = (\overline{a}_o, \overrightarrow{OY}), \gamma = (\overline{a}_o, \overrightarrow{OZ}) = (\overline{a}_o, \overrightarrow{OZ}).$

Означення 1.17. Косинуси кутів, які утворює вектор (або його орт) з осями координат — це **напрямні косинуси**.

Знайдемо косинус кута α :

$$\cos \alpha = \frac{(\overline{a}, \overline{i})}{|\overline{a}||\overline{i}|} = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$

Твердження 1.1. $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.

Формула для довжини проекції вектора:

$$x = |\overline{a}| \cos \alpha = \pi p_{\overline{i}} \overline{a}$$

1.10 Векторний добуток двох векторів

Означення 1.18. Векторний добуток векторів \overline{a} і \overline{b} $[\overline{a},\overline{b}]$ — це вектор \overline{c} , що задовольняє умови:

- 1. $\overline{c} \perp \overline{a}$, $\overline{c} \perp \overline{b}$
- 2. $|\overline{a}| = |\overline{a}||\overline{b}|\sin\varphi, \ \varphi = (\widehat{\overline{a}}, \overline{b})$
- $3. \ \overline{a}, \overline{b}, \overline{c}$ права трійка

Зауваження. Оскільки $\overline{c} \perp \overline{a}, \ \overline{c} \perp \overline{b}, \ \text{то} \ \overline{c}$ перпендикулярний площині векторів \overline{a} і \overline{b} .

Алгебраїчні властивості векторного добутку:

- 1) $[\overline{a}, \overline{b}] = -[\overline{b}, \overline{a}]$
 - 2) $[\alpha \overline{a}, \overline{b}] = \alpha [\overline{a}, \overline{b}] = [\overline{a}, \alpha \overline{b}]$
 - 3) $[\overline{a} + \overline{b}, \overline{c}] = [\overline{a}, \overline{c}] + [\overline{b}, \overline{c}]$
 - 4) $[\overline{a}, \overline{b} + \overline{c}] = [\overline{a}, \overline{b}] + [\overline{a}, \overline{c}]$

Доведення:

▶ 1) Нехай $[\overline{a},\overline{b}]=\overline{c},\ [\overline{b},\overline{a}]=\overline{d}.$ Тоді: $\overline{c}\perp\overline{a}$ і $\overline{c}\perp\overline{b},\ \overline{d}\perp\overline{b}$ і $\overline{d}\perp\overline{a}$, тобто вектори \overline{c} і \overline{d} перпендикулярні до площини, в якій лежать вектори \overline{a} і \overline{b} , отже, $\overline{c}\parallel\overline{d}$.

$$|\overline{c}|=|\overline{a}||\overline{b}|\sinarphi=|\overline{d}|,$$
 де $arphi=(\overline{a},\overline{b}).$

 $\overline{a},\,\overline{b},\,\overline{c}$ — права трійка; $\overline{b},\,\overline{a},\,\overline{d}$ — також права трійка $\Rightarrow \overline{a},\,\overline{b},\,\overline{d}$ — ліва трійка, тому вектори \overline{c} та \overline{d} протилежно направлені.

Отже, вектори \bar{c} та \bar{d} колінеарні, мають однакову довжину та протилежно направлені. Тому $\bar{c}=-\bar{d}$.

2) Якщо $\alpha=0$ або $\overline{a}\parallel \overline{b}$, то рівності очевидні: $[\alpha \overline{a},\overline{b}]=\alpha[\overline{a},\overline{b}]=\overline{0}$. Нехай $\alpha<0,\,[\overline{a},\overline{b}]=\overline{c},\,\varphi=(\widehat{a},\overline{b}),\,[\alpha\overline{a},\overline{b}]=\overline{d}$. Тоді:

$$|\alpha \overline{c}| = |\alpha[\overline{a}, \overline{b}]| = |\alpha||[\overline{a}, \overline{b}]| = -\alpha|\overline{a}||\overline{b}|\sin\varphi.$$

$$|[\alpha \overline{a}, \overline{b}]| = |\alpha \overline{a}||\overline{b}||\sin(\alpha \overline{a}, \overline{b}) = |\alpha||\overline{a}||\overline{b}||\sin(\pi - \varphi) = -\alpha|\overline{a}||\overline{b}||\sin\varphi.$$

 $\bar{c}\perp$ площині, в якій лежать \bar{a} і $\bar{b}\Rightarrow \bar{c}\perp$ площині, в якій лежать $\alpha \bar{a}$ і \bar{b} .

 \overline{d} \perp площині, в якій лежать $\alpha \overline{a}$ і \overline{b} , отже, $\overline{c} \parallel \overline{d}$.

 $\overline{a}, \overline{b}, \overline{c}$ — права трійка $\alpha \overline{a}, \overline{b}, \overline{c}$ — ліва трійка, $\overline{a}, \overline{b}, \alpha \overline{c}$ — ліва трійка.

 $\alpha\overline{a},\,\overline{b},\,\overline{d}$ — права трійка $\overline{a},\,\overline{b},\,\overline{d}$ — ліва трійка; отже, вектори $\alpha\overline{c}$ та \overline{d} . однаково направлені.

Враховуючи однакову довжину векторів $\alpha \overline{c}$ та \overline{d} , маємо $\alpha \overline{c} = \overline{d}$ або $[\alpha \overline{a}, \overline{b}] = \alpha [\overline{a}, \overline{b}].$

3), 4) — очевидно.

Геометричні властивості векторного добутку:

- 1) $[\overline{a}, \overline{b}] = \overline{0} \Leftrightarrow \overline{a} \parallel \overline{b}$
- 2) $|[\overline{a},\overline{b}]|=S_{\sqrt[]{a}\overline{b}},$ де $S_{\sqrt[]{a}\overline{b}}$ площа паралелограма, побудованого на векторах \overline{a} та \overline{b} , як на сторонах

Доведення:

- ▶ 1) $|[\overline{a}, \overline{b}]| = |\overline{a}||\overline{b}|\sin \varphi = 0 \Rightarrow \overline{a} = \overline{0}$ або $\overline{b} = \overline{0}$, або $\sin \varphi = 0 \Rightarrow \overline{a} \parallel \overline{b}$. Якщо $\overline{a} \parallel \overline{b}$, то $\sin \varphi = 0$, і $|[\overline{a}, \overline{b}]| = 0 \Rightarrow [\overline{a}, \overline{b}] = \overline{0}$.
 - $2)\ |[\overline{a},\overline{b}]|=|\overline{a}||\overline{b}|\sin\varphi=|\overline{a}|h=S_{\lozenge\overline{a}\overline{b}}.$

Твердження 1.2. $[\overline{a}, \overline{a}] = 0.$

1.11 Векторний добуток в координатах

Нехай в просторі E^3 зафіксовано базис $\{\bar{i},\bar{j},\bar{k}\},\,\bar{x},\bar{y}\in E^3,$ тоді

$$\overline{x} = x_1 \overline{i} + y_1 \overline{j} + z_1 \overline{k}$$

$$\overline{y} = x_2\overline{i} + y_2\overline{j} + z_2\overline{k}$$

Знайдемо координати вектору $[\overline{x}, \overline{y}]$.

Зауважимо, що $[\overline{i},\overline{j}]=\overline{k},$ $[\overline{j},\overline{k}]=\overline{i},$ $[\overline{k},\overline{i}]=\overline{j}.$ Тоді: $[\overline{i},\overline{j}]=[x_1\overline{i}+y_1\overline{j}+z_1\overline{k},x_2\overline{i}+y_2\overline{j}+z_2\overline{k}]=x_1x_2[\overline{i},\overline{i}]+x_1y_2[\overline{i},\overline{j}]+x_1z_2[\overline{i},\overline{k}]+y_1x_2[\overline{j},\overline{i}]+y_1y_2[\overline{j},\overline{j}]+y_1z_2[\overline{j},\overline{k}]+z_1x_2[\overline{k},\overline{i}]+z_1y_2[\overline{k},\overline{j}]+z_1z_2[\overline{k},\overline{k}]=(x_1y_2-x_2y_1)[\overline{i},\overline{j}]+(x_1z_2-x_2z_1)[\overline{i},\overline{k}]+(y_1z_2-y_2z_1)\overline{j}+(x_1y_2-x_2y_1)\overline{k}+(x_1z_2-x_2z_1)\overline{j}+(y_1z_2-y_2z_1)\overline{i}=(y_1z_2-y_2z_1)\overline{i}+(x_1y_2-x_2y_1)\overline{k}.$

Задача 1.1. Знайти площу трикутника з вершинами A(3,0,-1), B(-2,4,1), C(2,1,-3).

$$P$$
озв'язання. $S=\frac{1}{2}|[\overline{AB},\overline{AC}]|.$ Оскільки $\overline{AB}=(-5,4,2),\overline{AC}=(-1,1,-2),$ то $[\overline{AB},\overline{AC}]=-10\overline{i}-12\overline{j}-\overline{k}.$ Тоді $|[\overline{AB},\overline{AC}]|=\sqrt{(-10)^2+(-12)^2+(-1)^2}=\sqrt{100+144+1}=\sqrt{245},$ і $S=\frac{1}{2}\sqrt{245}$

1.12 Мішаний добуток трьох векторів

Означення 1.19. Мішаний добуток векторів $\overline{a}, \overline{b}, \overline{c}$ — це скалярний добуток \overline{a} з векторним добутком векторів \overline{b} і \overline{c} , тобто $\overline{a}\overline{b}\overline{c}=(\overline{a}, [\overline{b}, \overline{c}]).$

Теорема 1.4. Мішаний добуток векторів $\bar{a}, \bar{b}, \bar{c}$ дорівнює об'єму паралелепіпе-да V_{nap} , побудованого на цих векторах, якщо вони складають праву трійку і дорівнює $-V_{nap}$, якщо $\bar{a}, \bar{b}, \bar{c}$ — ліва трійка:

$$\overline{a}\overline{b}\overline{c}=\left\{egin{array}{ll} V_{nap}, & \mbox{ якщо }\overline{a},\overline{b},\overline{c}-\mbox{ права трійка} \ -V_{nap}, & \mbox{ якщо }\overline{a},\overline{b},\overline{c}-\mbox{ ліва трійка} \end{array}
ight.$$

ightharpoonup Розглянемо випадок, коли $\overline{a}, \overline{b}, \overline{c}$ — права трійка.

Нехай $[\overline{b},\overline{c}]=\overline{d}.$ Тоді $\overline{b},$ $\overline{c},$ \overline{d} – права трійка. Позначимо $\varphi=\widehat{(\overline{a},\overline{d})}.$

Тоді $\overline{a}\overline{b}\overline{c}=(\overline{a},[\overline{b},\overline{c}])=(\overline{a},\overline{d})=|\overline{a}||\overline{d}|\cos\varphi=S_{\sqrt{c}\overline{b}}|\overline{a}|\cos\varphi=S_{\sqrt{c}\overline{b}}h=V_{\text{пар}},$ оскільки висота паралелепіпеда $h=|\overline{a}|\sin\left(\frac{\pi}{2}-\varphi\right)=|\overline{a}|\cos\varphi$. У випадку, коли $\overline{a},\overline{b},\overline{c}$ — ліва трійка, доведення аналогічне.

Алгебраїчні властивості:

1.
$$\overline{a}\overline{b}\overline{c} = \overline{c}\overline{a}\overline{b} = \overline{b}\overline{c}\overline{a} = -\overline{b}\overline{a}\overline{c} = -\overline{c}\overline{b}\overline{a} = -\overline{a}\overline{c}\overline{b}$$

2.
$$(\alpha \overline{a})\overline{b}\overline{c} = \alpha \overline{a}\overline{b}\overline{c} = \overline{a}(\alpha \overline{b})\overline{c} = \overline{a}\overline{b}(\alpha \overline{c})$$

 $(\overline{a} + \overline{a}')\overline{b}\overline{c} = \overline{a}\overline{b}\overline{c} + \overline{a}'\overline{b}\overline{c}$

3.
$$\overline{a}(\overline{b} + \overline{b}')\overline{c} = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}'\overline{c}$$

 $\overline{a}\overline{b}(\overline{c} + \overline{c}') = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}\overline{c}'$

Доведення:

- \blacktriangleright 1) випливає з того факту, що при циклічній перестановці векторів їх орієнтація не змінюється. А якщо в трійці векторів деякі два з них поміняти місцями, то її орієнтація змінюється.
- 2) випливає з лінійності скалярного і векторного добутків відносно множення на скаляр.

3)
$$(\overline{a} + \overline{a}')\overline{b}\overline{c} = (\overline{a} + \overline{a}', [\overline{b}, \overline{c}]) = (\overline{a}, [\overline{b}, \overline{c}]) + (\overline{a}', [\overline{b}, \overline{c}]) = \overline{a}\overline{b}\overline{c} + \overline{a}'\overline{b}\overline{c}$$

$$\overline{a}(\overline{b} + \overline{b}')\overline{c} = (\overline{b} + \overline{b}')\overline{c}\overline{a} = \overline{b}\overline{c}\overline{a} + \overline{b}'\overline{c}\overline{a} = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}'\overline{c}.$$
And $\overline{a}(\overline{b} + \overline{b}')\overline{a} = (\overline{a}, [\overline{b} + \overline{b}', \overline{c}]) = (\overline{a}, [\overline{b}, \overline{c}] + [\overline{b}', \overline{c}]).$

Ця рівність справедлива $\forall \overline{a}$. Тому $[\overline{b} + \overline{b}', \overline{c}] = [\overline{b}, \overline{c}] + [\overline{b}', \overline{c}]$, що доводить властивість 3 векторного добутку.

Твердження 1.3. $\overline{a}\overline{b}\overline{c}=(\overline{a},[\overline{b},\overline{c}])=([\overline{a},\overline{b}],\overline{c}).$

1.13 Мішаний добуток в координатах

Нехай в просторі E^3 зафіксовано базис $\{\overline{i},\overline{j},\overline{k}\}$ і задано три вектори:

$$\overline{a} = (a_1, a_2, a_3), \ \overline{b} = (b_1, b_2, b_3), \ \overline{c} = (c_1, c_2, c_3).$$

Тоді $[\overline{b},\overline{c}]=(b_2c_3-b_3c_2)\overline{i}-(b_1c_3-b_3c_1)\overline{j}+(b_1c_2-b_2c_1)\overline{k}$ та $\overline{a}\overline{b}\overline{c}=(\overline{a},[\overline{b},\overline{c}])=a_1(b_2c_3-b_3c_2)-a_2(b_1c_3-b_3c_1)+a_3(b_1c_2-b_2c_1)=a_1b_2c_3-a_1b_3c_2-a_2b_1c_3+a_2b_3c_1+a_3b_1c_2-a_3b_2c_1.$

Задача 1.2. Чи можуть вектори $\overline{e}_1=(1,-1,0),$ $\overline{e}_2=(2,0,-2),$ $\overline{e}_3=(3,1,6)$ слугувати базисом в просторі E^3 ?

Pозв'язання. Якщо $\overline{e}_1,\overline{e}_2,\overline{e}_3$ — базис, то вони некомпланарні і об'єм паралелепіпеда, на них побудованого, не дорівнює нулю. Тобто, $\overline{e}_1\overline{e}_2\overline{e}_3 \neq 0$. Знайдемо мішаний добуток $\overline{e}_1\overline{e}_2\overline{e}_3$: $\overline{e}_1\overline{e}_2\overline{e}_3=0+0+6+0+2+12=20\neq 0$. Це означає, що дані вектори можуть слугувати базисом в E^3 .

Розділ 2

Визначники і лінійна залежність

2.1 Визначники другого і третього порядків

Означення 2.1. Матриця A, **розміром** $m \times n$ — це прямокутна таблицю чисел з m рядків та n стовпчиків:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

Позначають матриці і в такий спосіб: $A = (a_{ij})_{i=1,\dots,m,\ j=1,\dots,n},$ де a_{ij} — це елемент матриці, що стоїть в i-му рядку та j-му стовпчику.

Нехай A – квадратна матриця другого порядку (тобто 2×2).

Означення 2.2. Визначник матриці (детермінант матриці) A другого порядку — це число, яке знаходиться за формулою:

$$\det A = |A| = \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} = x_1 y_2 - x_2 y_1$$

Означення **2.3.** Визначник матриці (детермінант матриці) *А* третього порядку — це число, яке знаходиться за формулою (правило "зірочки"):

$$\det A = |A| = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = x_1 y_2 z_3 + x_3 y_1 z_2 + x_2 y_3 z_1 - x_3 y_2 z_1 - x_2 y_1 z_3 - x_1 y_3 z_2$$

Ця формула нам вже відома, адже саме так ми шукали мішаний добуток векторів $\overline{a}, \overline{b}, \overline{c}$, які в базисі $\{\overline{i}, \overline{j}, \overline{k}\}$ мають координати $\overline{a} = (x_1, y_1, z_1), \overline{b} = (x_2, y_2, z_2), \overline{c} = (x_3, y_3, z_3)$

2.2 Властивості визначників

Усі властивості будемо формулювати і доводити для визначників 3-го порядку. Але, як ми побачимо пізніше, усі наведені властивості будуть виконуватися і для визначників довільного порядку.

Нехай A квадратна матриця третього порядку, тоді $\det A = \overline{a}\overline{b}\overline{c}$, де $\overline{a} = (x_1,y_1,z_1), \overline{b} = (x_2,y_2,z_2), \overline{c} = (x_3,y_3,z_3).$

Означення 2.4. Транспонована матриця — це матриця A^T , отримана шляхом транспонування (транспоновки) елементів матриці A, тобто стовпчики і рядки, міняються місцями: $A^T = (a_{ij}^T)$, де $a_{ij}^T = a_{ji}$.

Нехай
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
.

Означення 2.5. Мінор M_{ij} , **елемента** a_{ij} — це визначник матриці, яка отримана з матриці А викреслюванням i-го рядка та j-го стовичика.

Наприклад:
$$M_{23}=\begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}=a_{11}a_{32}-a_{12}a_{31}.$$

Означення 2.6. Алгебраїчне доповнення елемента a_{ij} — це добуток $A_{ij}=(-1)^{i+j}M_{ij}.$

Властивості визначників:

1) При транспонуванні матриці значення її визначника не зміниться:

$$\det A = \det A^T$$

▶ Доведення випливає безпосередньо з правила "зірочки"

$$\det A^T = \begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} = x_1 y_2 z_3 + x_3 y_1 z_2 + x_2 y_3 z_1 - x_3 y_2 z_1 - x_2 y_1 z_3 - x_1 y_3 z_2 = x_1 y_2 z_3 + x_2 y_3 z_1 - x_2 y_1 z_3 - x_1 y_3 z_2 = x_1 y_2 z_3 + x_2 y_3 z_1 - x_2 y_1 z_3 - x_1 y_3 z_2 = x_1 y_2 z_3 + x_2 y_3 z_1 - x_2 y_1 z_3 - x_1 y_3 z_2 = x_1 y_2 z_3 + x_2 y_3 z_1 - x_2 y_1 z_3 - x_1 y_3 z_2 = x_1 y_2 z_3 + x_2 y_1 z_3 - x_1 y_3 z_1 - x_2 y_1 z_3 - x_1 y_3 z_2 = x_1 y_2 z_3 + x_2 y_1 z_3 - x_1 y_3 z_2 = x_1 y_2 z_3 + x_2 y_1 z_3 - x_1 y_3 z_2 = x_1 y_1 z_3 - x_1 y_2 z_3 + x_2 y_1 z_3 - x_1 y_2 z_3 + x_1 y_1 z_3 - x_1 y_2 z_3 + x_1 y_1 z_3 - x_1$$

 $\det A$

Ця властивість урівнює в "правах" стовпчики і рядки. Тому далі всі властивості будемо формулювати для рядків.

2) Знак визначника змінюється, якщо будь-які два рядки поміняти місцями:

$$D(\overline{a},\overline{b},\overline{c}) = -D(\overline{b},\overline{a},\overline{c}) = -D(\overline{a},\overline{c},\overline{b}) = -D(\overline{c},\overline{b},\overline{a})$$

3) Спільний множник можна винести з довільного рядка за визначник:

$$D(\alpha \overline{a}, \overline{b}, \overline{c}) = D(\overline{a}, \alpha \overline{b}, \overline{c}) = D(\overline{a}, \overline{b}, \alpha \overline{c}) = \alpha D(\overline{a}, \overline{b}, \overline{c})$$

- 4) $D(\overline{a} + \overline{a}', \overline{b}, \overline{c}) = D(\alpha \overline{a}, \overline{b}, \overline{c}) + D(\alpha \overline{a}', \overline{b}, \overline{c})$
- 5) Визначник, рядки якого пропорційні, дорівнює нулю:

$$D(\overline{a}, \alpha \overline{a}, \overline{c}) = 0$$

6) Визначник, який має два однакових рядки, дорівнює нулю:

$$D(\overline{a}, \overline{a}, \overline{c}) = 0$$

7) Визначник матриці з нульовим рядком дорівнює нулю:

$$D(\overline{a}, \overline{0}, \overline{c}) = 0$$

8) Визначник не змінюється, якщо до якогось його рядка додати лінійну комбінацію інших рядків:

$$D(\overline{a}, \overline{b}, \overline{c} + \alpha \overline{a} + \beta \overline{b}) = D(\overline{a}, \overline{b}, \overline{c})$$

9) Визначник матриці A дорівнює сумі добутків елементів будь-якого рядка на їх алгебраїчні доповнення.

Наприклад: $\det A = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$.

Будемо казати, що в цьому прикладі ми розклали визначник за першим рядком.

 $\sum_{i=1}^{3} a_{1i} A_{1i} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} = a_{11} (a_{22} a_{33} - a_{23} a_{32}) - a_{12} (a_{21} a_{33} - a_{23} a_{31}) + a_{13} (a_{21} a_{32} - a_{22} a_{31}) = a_{11} a_{22} a_{33} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{11} a_{22} a_{31} = \det A.$

Задача 2.1. З'ясувати, чи можуть вектори $\overline{a}=(2,-1,2), \overline{b}=(1,2,-3), \overline{c}=(3,-4,7)$ утворювати базис у просторі E^3 ?

Pозв'язання. Вектори $\bar{a}, \bar{b}, \bar{c}$ будуть утворювати базис, якщо вони некомпланарні. Тобто об'єм паралелепіпеда, на них побудованого, не повинен дорівнювати нулю. Знайдемо мішаний добуток даних векторів:

$$\overline{a}, \overline{b}, \overline{c} = d(\overline{a}, \overline{b}, \overline{c}) = \begin{vmatrix} 2 & -1 & 2 \\ 1 & 2 & -3 \\ 3 & -4 & 7 \end{vmatrix} = \begin{vmatrix} 0 & -1 & 0 \\ 5 & 2 & 1 \\ -5 & -4 & -1 \end{vmatrix} = -(-1) \begin{vmatrix} 5 & 1 \\ -5 & -1 \end{vmatrix} = 0$$

Для обчислення цього визначника ми спочатку 2-й стовпчик помножили на 2 і додали його до 1-го та 3-го стовпчиків, а потім скористались властивістю 9. Таким чином, об'єм паралелепіпеда, побудованого на векторах \bar{a}, \bar{b} і \bar{c} дорівнює нулю, тобто ці вектори лежать в одній площині і слугувати базисом не можуть.

2.3 Лінійна залежність векторів

Розглянемо систему векторів $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$.

Означення 2.7. Лінійна комбінація векторів — це вираз $\alpha_1 \overline{a}_1 + \alpha_2 \overline{a}_1 + \dots + \alpha_n \overline{a}_n$, де $\alpha_i \in \mathbb{R}$.

Означення 2.8. Лінійна комбінація векторів $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$ — це тривіальна лінійна комбінація, якщо всі $\alpha_i = 0$, і це нетривіальна лінійна комбінація, в протилежному випадку.

Означення 2.9. Лінійно залежні вектори $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$ є такими ,якщо існують такі числа $\alpha_1, \alpha_2, ..., \alpha_n$ що виконується рівність $\alpha_1 \overline{a}_1 + \alpha_2 \overline{a}_2 + ... + \alpha_n \overline{a}_n = \overline{0}$, причому $|\alpha_1| + |\alpha_2| + ... + |\alpha_n| \neq 0$.

Означення 2.10. Лінійно незалежні вектори — це вектори $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n,$ такі, що їх лінійна комбінація дорівнює нулю лише за умови, коли всі $\alpha_i = 0$.

Інакше кажучи, вектори $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$ є лінійно незалежними, якщо ніяка їх нетривіальна лінійна комбінація не дорівнює нульовому вектору.

Властивості:

Твердження 2.1. Вектори $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$ – лінійно залежні тоді і тільки тоді, коли хоча б один з них лінійно виражається через інші.

▶ 1) Нехай $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$ — це лінійно залежні вектори. Тоді $\alpha_1 \overline{a}_1 + ... + \alpha_i \overline{a}_i + ... + \alpha_n \overline{a}_n = \overline{0}$ та $\alpha_i \neq 0$ для деякого i . Звідси випливає, що $\overline{a}_i = -\frac{1}{\alpha_i}(\alpha_1 \overline{a}_1 + ... + \alpha_n \overline{a}_n)$

 $\ldots + \alpha_{i-1}\overline{a}_{i-1} + \alpha_{i+1}\overline{a}_{i+1} + \ldots + \alpha_n\overline{a}_n$), тобто вектор \overline{a}_i лінійно виражається через інші вектори системи.

2) Нехай $\overline{a}_i = \beta_1 \overline{a}_1 + ... + \beta i - 1 \overline{a}_{i-1} + \beta i + 1 \overline{a}_{i+1} + ... + \beta_n \overline{a}_n$) для деякого i. Тоді $\beta_1 \overline{a}_1 + ... + \beta_{i-1} \overline{a}_{i-1} + (-1) \overline{a}_i + \beta_{i+1} \overline{a}_{i+1} + ... + \beta_n \overline{a}_n = \overline{0}$, тобто отримано нульову лінійну комбінацію, в якій коефіцієнт при векторі і а є ненульовим.

Твердження 2.2. Якщо один з векторів $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$ є нульовим, то система цих векторів є лінійно залежною.

▶ Припустимо, що $\overline{a}_1 = \overline{0}$. Тоді очевидно, що $1\overline{a}_1 + 0\overline{a}_2 + ... + 0\overline{a}_n = \overline{0}$, тобто за означенням дана система векторів є лінійно залежною ($\alpha_1 = 1 \neq 0$).

Твердження 2.3. Якщо серед векторів $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$ є два однакових, то система векторів є лінійно залежною.

▶ Доведення є очевидним.

Твердження 2.4. Якщо серед n векторів існує k лінійно залежних векторів, то і всі n векторів e лінійно залежними.

▶ Розглянемо лінійну комбінацію даних n векторів $\alpha_1 \overline{a}_1 + ... + \alpha_k \overline{a}_k + 0 \overline{a}_{k+1} + ... + 0 \overline{a}_n = \overline{0}$, при умові, що $\alpha_1 \overline{a}_1 + ... + \alpha_k \overline{a}_k = \overline{0}$ і константи $\alpha_1, \alpha_2, ..., \alpha_{n-1}$ не всі рівні нулю. Ця комбінація є нетривіальною, що і доводить потрібний факт.

Твердження 2.5. Якщо вектор \bar{a} лінійно виражається через лінійно незалежні вектори $\bar{a}_1, \bar{a}_2, ..., \bar{a}_n$, то таке представлення єдине.

• (від супротивного). Припустимо, що вектор \overline{a} лінійно виражається через дані вектори не єдиним чином, тобто $\overline{a} = \alpha_1 \overline{a}_1 + \alpha_2 \overline{a}_2 + ... + \alpha_n \overline{a}_n$ і $\overline{a} = \beta_1 \overline{a}_1 + \beta_2 \overline{a}_2 + ... + \beta_n \overline{a}_n$. Віднявши другу рівність від першої, маємо: $\overline{0} = (\alpha_1 - \beta_1) \overline{a}_1 + (\alpha_2 - \beta_2) \overline{a}_2 + ... + (\alpha_n - \beta_n) \overline{a}_n$. Оскільки $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$ є лінійно незалежними, то $\alpha_1 = \beta_1, \alpha_2 = \beta_2, ..., \alpha_n = \beta_n$, що суперечить припущенню про неєдиність представлення вектора \overline{a} .

Твердження 2.6. Довільна підсистема лінійно незалежних векторів \bar{a}_1 , \bar{a}_2 , ..., \bar{a}_n є лінійно незалежною.

▶ Застосуємо метод від супротивного. Нехай існує підсистема $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n, k < n$, лінійно залежних векторів. Це означає, що $\alpha_1\overline{a}_1 + \alpha_2\overline{a}_2 + ... + \alpha_k\overline{a}_k = \overline{0}$, причому $|\alpha_1| + |\alpha_2| + ... + |\alpha_k| \neq 0$. Додамо до обох частин рівності нуль-вектор: $0\overline{a}_{k+1} + ... + 0\overline{a}_n$. В результаті отримаємо: $\alpha_1\overline{a}_1 + \alpha_2\overline{a}_2 + ... + \alpha_k\overline{a}_k + 0\overline{a}_{k+1} + ... + 0\overline{a}_n = \overline{0}$ і $|\alpha_1| + |\alpha_2| + ... + |\alpha_k| \neq 0$. Це означає лінійну залежність векторів $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$, що протирічить припущенню. Отже, підсистема $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$, є лінійно незалежною.

Твердження 2.7. Якщо після доповнення системи $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$ лінійно незалежних векторів вектором \overline{a} , отримали лінійно залежну систему, то вектор \overline{a} лінійно виражається через вектори $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n$.

▶ Оскільки вектори $\overline{a}_1, \overline{a}_2, ..., \overline{a}_n, \overline{a}$ є лінійно залежними, то існують такі константи $\alpha_1, \alpha_2, ..., \alpha_n, \alpha_{n+1}$, не всі рівні нулю, що

$$\alpha_1 \overline{a}_1 + \alpha_2 \overline{a}_2 + \dots + \alpha_n \overline{a}_n + \alpha_{n+1} \overline{a} = \overline{0}.$$
 (*)

При цьому саме $\alpha_{n+1}\neq 0$. Доведемо цей факт методом від супротивного. Якщо $\alpha_{n+1}=0$, то $\alpha_{n+1}\overline{a}=\overline{0}$ і $\alpha_1\overline{a}_1+\alpha_2\overline{a}_2+...+\alpha_n\overline{a}_n=\overline{0}$, причому серед чисел $\alpha_1,\alpha_2,...,\alpha_n$ існують ненульові. Але в цьому випадку вектори $\overline{a}_1,\overline{a}_2,...,\overline{a}_n$ є лінійно залежними, що суперечить умові твердження. Отже, $\alpha_{n+1}\neq 0$, тому з рівності (*) випливає, що $\overline{a}=\left(-\frac{\alpha_1}{\alpha_{n+1}}\right)\overline{a}_1+...+\left(-\frac{\alpha_n}{\alpha_{n+1}}\right)\overline{a}_n$.

Геометричний сенс лінійної залежності

Твердження 2.8. Два вектори \bar{a} і \bar{b} є лінійно залежними тоді і тільки тоді, коли $\bar{a} \parallel \bar{b}$.

Твердження 2.9. Три вектори $\overline{a}, \overline{b}, \overline{c}$ є лінійно залежними тоді і тільки тоді, коли $\overline{a}, \overline{b}, \overline{c}$ є компланарними.

Твердження 2.10. Довільні чотири вектори $\bar{a}, \bar{b}, \bar{c}, \bar{d} \in E^3$ є завжди лінійно залежними.