Reykjavík University			1
		5.3. Binomial Coefficients	18
		5.4. Euclidean algorithm	18
		5.5. Trial Division Primality Testing	18
m viRUs		5.6. Miller-Rabin Primality Test	18
Team Reference Document		5.7. Sieve of Eratosthenes	18
Team Reference Document		5.8. Modular Multiplicative Inverse	18
		5.9. Modular Exponentiation	19
96 /11 /9014		5.10. Chinese Remainder Theorem	19
26/11/2014		5.11. Linear Congruence Solver	19
		5.12. Numeric Integration	19
Contents		5.13. Fast Fourier Transform	19
	0	5.14. Formulas	19
1. Code Templates	2	5.15. Numbers and Sequences	20
1.1. Basic Configuration	2	6. Geometry	20
1.2. C++ Header	2	6.1. Primitives	20
1.3. Java Template	2	6.2. Polygon	21
2. Data Structures	2	6.3. Convex Hull	21
2.1. Union-Find	2	6.4. Line Segment Intersection	21
2.2. Segment Tree	2	6.5. Great-Circle Distance	21
2.3. Fenwick Tree	3	6.6. Triangle Circumcenter	22
2.4. Matrix	3	6.7. Closest Pair of Points	22
2.5. AVL Tree	4	6.8. 3D Primitives	22
2.6. Heap	5	6.9. Polygon Centroid	23
2.7. Skiplist	6	6.10. Formulas	23
2.8. Dancing Links 2.9. Misof Tree	$\frac{6}{7}$	7. Other Algorithms	23
	$\frac{7}{7}$	7.1. Binary Search	23
		7.2. Ternary Search	23
2.11. Sqrt Decomposition 3. Graphs	8 8	7.3. 2SAT	23
3.1. Breadth-First Search	8	7.4. Stable Marriage	24
3.2. Single-Source Shortest Paths	8	7.5. Algorithm X	24
3.3. All-Pairs Shortest Paths	9	7.6. nth Permutation	25
3.4. Strongly Connected Components	9	7.7. Cycle-Finding 7.8. Dates	25 25
3.5. Cut Points and Bridges	9		
3.6. Minimum Spanning Tree	10	8. Useful Information	25 25
3.7. Topological Sort	10	8.1. Tips & Tricks 8.2. Fast Input Reading	$\begin{array}{c} 25 \\ 25 \end{array}$
3.8. Euler Path	10	8.3. 128-bit Integer	26 26
3.9. Bipartite Matching	10	8.4. Worst Time Complexity	26
3.10. Maximum Flow	11	8.5. Bit Hacks	26
3.11. Minimum Cost Maximum Flow	12	0.0. Dit Hacks	20
3.12. All Pairs Maximum Flow	13		
3.13. Heavy-Light Decomposition	13		
3.14. Tarjan's Off-line Lowest Common Ancestors Algorithm	14		
4. Strings	14		
4.1. Trie	14		
4.2. Suffix Array	14		
4.3. Aho-Corasick Algorithm	15		
4.4. The Z algorithm	15		
4.5. Palindromic Tree	15		
5. Mathematics	16		
5.1. Fraction	16		
5.2. Big Integer	16		

```
Reykjavík University
          1. Code Templates
                            ----public static void main(String[] args) throws Exception {-------// 02
                            -----Scanner in = new Scanner(System.in):-----// ef
1.1. Basic Configuration. Vim and (Caps Lock = Escape) configuration.
                            ------PrintWriter out = new PrintWriter(System.out, false);------// 62
o.ygtxmal ekrpat # setxkbmap dvorak for dvorak on gwerty
                            -----// code-----// e6
setxkbmap -option caps:escape
                            -----out.flush():-----// 56
set -o vi
                            xset r rate 150 100
                            }-----// 00
cat > ~/.vimrc
set nocp et sw=4 ts=4 sts=4 si cindent hi=1000 nu ru noeb showcmd showmode
                                      2. Data Structures
syn on | colorscheme slate
                           2.1. Union-Find. An implementation of the Union-Find disjoint sets data structure.
1.2. C++ Header. A C++ header.
                            struct union find {-----// 42
#include <cassert>-----------------// 65 ----int find(int x) { return p[x] < 0 ? x : p[x] = find(p[x]); }-------// ba
#include <cmath>-----// 7d ----bool unite(int x, int y) {-------// 6c
#include <cstdio>------// 2e ------int xp = find(x), yp = find(y);------// 64
#include <cstdlib>------// 11 ------if (xp == yp) return false;------// 0b
#include <cstring>------// d0 -------if (p[xp] < p[yp]) p[xp] += p[yp], p[yp] = xp;------// 3a
#include <ctime>------// 28 -------| p[xp] += p[xp], p[xp] = yp;------// 3e
#include <iostream>------// ec ----int size(int x) { return -p[find(x)]; } };------// 28
#include <map>-----// 02
#include <stack>------// cf int f(int a, int b) { return min(a, b); }-------// 4f
#include <vector>-----// 4f int f(int a, int b) { return a + b; }-----// dd
using namespace std;------// 7b #endif-----// 7b #endif------// 7b
-----// 7e struct segment_tree {-------------------------// ab
const double pi = acos(-1);-----// 49 ----int mk(const vi &arr, int l, int r, int i) {------// 12
typedef unsigned long long ull;------// 81 -----int m = (l + r) / 2;-----// de
typedef vector<vi>vvi;------// 31 ------propagate(l, r, i);-------// 12
typedef vector<vii>vvii;-------// 4b ------if (r < a || b < l) return ID;------// c7
template <class T> T mod(T a, T b) { return (a % b + b) % b; }------// 70 -----if (a <= l && r <= b) return data[i];----------// ce
template <class T> int size(const T &x) { return x.size(); }-----// 68 -----int m = (l + r) / 2;------// 7a
                            -----return f(q(a, b, l, m, 2*i+1), q(a, b, m+1, r, 2*i+2)); }------// 5c
1.3. Java Template. A Java template.
                            ----void update(int i, int v) { u(i, v, 0, n-1, 0); }-----// 90
-----// a3 ------if (l == i && r == i) return data[j] = v;--------// 4a
```

```
2.4. Matrix. A Matrix class.
```

```
Reykjavík University
----return data[j] = f(u(i, v, l, m, 2*j+1), u(i, v, m+1, r, 2*j+2)); \}----// 34
----void range_update(int a, int b, int v) { ru(a, b, v, 0, n-1, 0); }------// 71
----int ru(int a, int b, int v, int l, int r, int i) {-------// e0
-----propagate(l, r, i);-----// 19
-----if (l > r) return ID;------// cc
-----if (r < a || b < l) return data[i];-----// d9
-----if (l == r) return data[i] += v;-----// 5f
-----if (a <= l \& r <= b) return (lazy[i] = v) * (r - l + 1) + data[i]:----// 76
-----int m = (l + r) / 2;-----// e7
-----return data[i] = f(ru(a, b, v, l, m, 2*i+1),-----// θe
----}------// 47
----void propagate(int l, int r, int i) {-----// b5
-----if (l > r || lazy[i] == INF) return;-----// 83
-----data[i] += lazy[i] * (r - l + 1);-----// 99
-----if (l < r) {------// dd
------else lazy[2*i+1] += lazy[i];-----// 72
------if (lazy[2*i+2] == INF) lazy[2*i+2] = lazy[i];-----// dd
------else lazy[2*i+2] += lazy[i];-----// a4
-----lazv[i] = INF:-----// c4
}:-----// 17
2.3. Fenwick Tree. A Fenwick Tree is a data structure that represents an array of n numbers. It
supports adjusting the i-th element in O(\log n) time, and computing the sum of numbers in the range
i...j in O(\log n) time. It only needs O(n) space.
struct fenwick_tree {------// 98
----int n; vi data;------// d3 ------return res; }-----
----fenwick_tree(int _n) : n(_n), data(vi(n)) { }-------// db ----matrix<T> transpose() {--------// dd
----void update(int at, int by) {------// 76 -----matrix<T> res(cols, rows);-----// b5
-------while (at < n) data[at] += by, at |= at + 1; }-------// fb -------for (int i = 0; i < rows; i++)------// 9c
------int res = 0;-------// c3 -----return res; }------// c3
-----return res; }------// e4 -----matrix<T> res(rows, cols), sq(*this);------// 4d
----int rsq(int a, int b) { return query(b) - query(a - 1); }-------// be -------for (int i = 0; i < rows; i++) res(i, i) = T(1);------// bf
```

```
template <> bool eq<double>(double a, double b) { return abs(a - b) < EPS; }---// a7
                                                template <class T>-----// 53
                                                class matrix {------// 85
                                                public:----// be
                                                ----int rows, cols;------// d3
                                                ----matrix(int r, int c) : rows(r), cols(c), cnt(r * c) {------// 34
                                                -----data.assign(cnt, T(0)); }-----// d0
                                                ----matrix(const matrix& other) : rows(other.rows), cols(other.cols),-----// fe
                                                -----cnt(other.cnt), data(other.data) { }-----// ed
                                                ----T& operator()(int i, int j) { return at(i, j); }------// e0
                                                ----void operator +=(const matrix& other) {------// c9
                                                ------for (int i = 0; i < cnt; i++) data[i] += other.data[i]; }------// e5
                                                ----void operator -=(const matrix& other) {------// 68
                                                ------for (int i = 0: i < cnt: i++) data[i] -= other.data[i]: }------// 88
                                                ----void operator *=(T other) {------// ba
                                                ------for (int i = 0; i < cnt; i++) data[i] *= other; }------// 40
                                                ----matrix<T> operator +(const matrix& other) {------// ee
                                                ------matrix<T> res(*this); res += other; return res; }------// 5d
                                                ----matrix<T> operator -(const matrix& other) {------// 8f
                                                ------matrix<T> res(*this); res -= other; return res; }------// cf
                                                ----matrix<T> operator *(T other) {------// be
                                                ------matrix<T> res(*this); res *= other; return res; }------// 37
                                                ----matrix<T> operator *(const matrix& other) {------// 95
                                                ------matrix<T> res(rows, other.cols);------// 57
                                                -----for (int i = 0; i < rows; i++) for (int j = 0; j < other.cols; j++)----// 7a
                                                -----for (int k = 0; k < cols; k++)-----// fc
                                                -----res(i, j) += at(i, k) * other.data[k * other.cols + j];-----// eb
};------// 57 -----while (p) {------// cb
struct fenwick_tree_sq {------// d4 -----if (p & 1) res = res * sq;-----// c1
----<mark>int</mark> n; fenwick_tree x1, x0;------// 18 -----p >>= 1;------// 68
----fenwick_tree_sq(int _n) : n(_n), x1(fenwick_tree(n)),------// 2e ------if (p) sq = sq * sq;------// 9c
-----x0(fenwick_tree(n)) { }------// 7c -----} return res; }-------
----// insert f(y) = my + c if x <= y------// 17 ----matrix<T> rref(T &det) {-------// 89
----void update(int x, int m, int c) { x1.update(x, m); x0.update(x, c); }-----// 45 ------matrix<T> mat(*this); det = T(1);------------------// 21
};-----// 13 ------// e5
void range_update(fenwick_tree_sq &s, int a, int b, int k) {-------// 89 ------while (k < rows && eq<T>(mat(k, c), T(0))) k++;-----// f9
----s.update(a, k, k * (1 - a)); s.update(b+1, -k, k * b); }------// 7f ------if (k >= rows) continue;-------// 3f
----return s.query(b) - s.query(a-1); }-----// f3 ------det *= T(-1);--------------------// 7a
```

```
template <class K> bool eq(K a, K b) { return a == b; }-----// 2a
```

```
Reykjavík University
------for (int i = 0; i < cols; i++)-------// ab ----void erase(node *n, bool free = true) {-------// 58
-----if (!eq<T>(mat(r, c), T(1)))------// 2c -----else if (n->l && !n->r) parent_leq(n) = n->l, n->l->p = n->p;-----// 6b
------for (int i = cols-1; i >= c; i--) mat(r, i) /= mat(r, c);-----// 5d ------else if (n->l && n->r) {----------------------------// 6c
------for (int i = 0; i < rows; i++) {----------// 3d ------node *s = successor(n);--------// e5
------T m = mat(i, c);--------// e8 ------erase(s, false);---------// 0a
------if (i != r && !eq<T>(m, T(0)))-------// 33 ------s->p = n->p, s->l = n->l, s->r = n->r;------// 5a
------} return mat; }-------// 8f ------parent_leg(n) = s, fix(s);-------// 82
private:-----// e0 -----return;-------// e5
----vector<T> data;------// 41 ------fix(n->p), n->p = n->l = n->r = NULL;-------// 43
-----if (!n) return NULL;-----// 37
2.5. AVL Tree. A fast, easily augmentable, balanced binary search tree.
                            -----if (n->r) return nth(0, n->r);------// 23
#define AVL_MULTISET 0------// b5 -----node *p = n->p;------// a7
template <class T>-----// 22 -----return p; }-----// c7
class avl_tree {------// ff ----node* predecessor(node *n) const {------// b4
public:-----// f6 ------if (!n) return NULL;-------// dd
----struct node {-------// 45 -----if (n->l) return nth(n->l->size-1, n->l);------// 10
------int size, height;------// 33 -------while (p && p->l == n) n = p, p = p->p;------// 6d
------node(const T \&_item, node *_p = NULL) : item(_item), p(_p),-------// 4f ------return p; }------
------l(NULL), r(NULL), size(1), height(0) { } };-------// @d ----inline int size() const { return sz(root); }------// ef
----node *root;------// 91 ----node* nth(int n, node *cur = NULL) const {------// e4
-----node *cur = root;------// b4 ------while (cur) {------// 29
------while (cur) {-------// 8b ------if (n < sz(cur->l)) cur = cur->l;------// 75
-----if (cur->item < item) cur = cur->r;------// 71 -----else if (n > sz(cur->l)) n -= sz(cur->l) + 1, cur = cur->r;-----// cd
------else if (item < cur->item) cur = cur->l;------// cd -----else break;-----
------else break; }------// 4f ------} return cur; }------// ed
------return cur; }-------// 84 ----int count_less(node *cur) {-------// ec
----node* insert(const T &item) {-------// 4e -----int sum = sz(cur->l);------// bf
-----prev = *cur;-----// f0 -----cur = cur->p;-----// eb
#if AVL_MULTISET-----// 0a private:----// d5
#else------// ff ----inline int height(node *n) const { return n ? n->height : -1; }------// a6
------else return *cur;------// 54 -----return n && height(n->r); }------// a8
-----node *n = new node(item, prev);-------// eb ----inline bool too_heavy(node *n) const {------// @b
-----*cur = n, fix(n); return n; }-----// 29
                            -----return n && abs(height(n->l) - height(n->r)) > 1; }-----// f8
----void erase(const T &item) { erase(find(item)); }-----// 67
```

```
Reykjavík University
------if (n) { delete_tree(n->l), delete_tree(n->r); delete n; } }------// ef #define SWP(x,y) tmp = x, x = y, y = tmp------// fb
------if (n->p->l == n) return n->p->l;-------// 83 ----bool operator ()(const int &a, const int &b) { return a < b; } };------// e9
------if (n->p->r == n) return n->p->r;-------// cc template <class Compare = default_int_cmp>------// 30
------n->height = 1 + max(height(n->l), height(n->r)); }-------// 41 ----inline bool cmp(int i, int j) { return _cmp(q[i], q[j]); }------// a0
------while (i > 0) {------// 1a
-----parent_leg(n) = l; \[ \]-----// fc
                               -----int p = (i - 1) / 2;-----// 77
-----augment(n), augment(l)-------// 81 ------while (true) {---------------------// 3c
----void fix(node *n) {-------// 0d -------int m = r >= count || cmp(l, r) ? l : r;------// cc
------while (n) { augment(n);-------// 69 ------if (!cmp(m, i)) break;------// 42
------if (too_heavy(n)) {-------// 4c -----swp(m, i), i = m; } }-----// 1d
------if (left_heavy(n) && right_heavy(n->l)) left_rotate(n->l);-----// a9 public;------
------else if (right_heavy(n) && left_heavy(n->r))-------// b9 ----heap(int init_len = 128) : count(0), len(init_len), _cmp(Compare()) {------// b9
-----right_rotate(n->r);------// 08 -----q = new int[len], loc = new int[len];------// f8
------if (left_heavy(n)) right_rotate(n);------// 93 ------memset(loc, 255, len << 2); }-----// f7
------else left_rotate(n);------// d5 ----~heap() { delete[] q; delete[] loc; }------// 09
------n = n->p; }-------// 28 ----void push(int n, bool fix = true) {-------// b7
#ifdef RFSI7F-----// a9
Also a very simple wrapper over the AVL tree that implements a map interface.
                               -----int newlen = 2 * len;-----// 22
#include "avl_tree.cpp"-----// 01
                               -----while (n >= newlen) newlen *= 2;------// 2f
-----// ba
                               -----int *newq = new int[newlen], *newloc = new int[newlen];-----// e3
template <class K, class V>-----// da
                               -----for (int i = 0; i < len; i++) newq[i] = q[i], newloc[i] = loc[i]; --//94
class avl_map {------// 3f
                               -----memset(newloc + len, 255, (newlen - len) << 2);-----// 18
public:----// 5d
                               -----delete[] q, delete[] loc;-----// 74
----struct node {------// 2f
                               -----loc = newloc, q = newq, len = newlen;-----// 61
------K key; V value;------// 32
                               #else-----// 54
-----node(K k, V v) : key(k), value(v) { }-----// 29
                               -----assert(false):-----// 84
-----bool operator < (const node &other) const { return key < other.key; } };// 92
                               #endif------// 64
----avl_tree<node> tree:-----// b1
                               ----V& operator [](K key) {------// 7c
                               -----assert(loc[n] == -1);-----// 8f
-----typename avl_tree<node>::node *n = tree.find(node(key, V(0)));-----// ba
                               -----loc[n] = count, q[count++] = n;-----// 6b
------if (!n) n = tree.insert(node(key, V(0)));------// cb
                               ------if (fix) swim(count-1); }------// bf
-----return n->item.value;------// ec
                               ----}------// 2e
                               -----assert(count > 0):-----// eb
}:-----// af
                               ------loc[q[0]] = -1, q[0] = q[--count], loc[q[0]] = 0;------// 50
                               -----if (fix) sink(0);-----// 80
2.6. Heap. An implementation of a binary heap.
```

```
Reykjavík University
----void heapify() { for (int i = count - 1; i > 0; i--)----------// 39 ------int lvl = bernoulli(MAX_LEVEL);----------------------// 7a
------if (cmp(i, (i - 1) / 2)) swp(i, (i - 1) / 2); }--------// 0b ------if(lvl > current_level) current_level = lvl;-----------------------// 8a
----void update_key(int n) {-------------------------// 26 -----x = new node(lvl, target);-------------------// 36
----void clear() { count = 0, memset(loc, 255, len << 2); } };-------// 58 ------update[i] = x;-----------// 20
                                     -----update[i]->lens[i] = pos[0] + 1 - pos[i];------// 42
2.7. Skiplist. An implementation of a skiplist.
                                     ------for(int i = lvl + 1; i <= MAX_LEVEL; i++) update[i]->lens[i]++;------// 07
#define BP 0.20-----// aa
                                     -----size++;-----// 19
#define MAX_LEVEL 10------// 56
                                     -----return x; }-----// c9
unsigned int bernoulli(unsigned int MAX) {------// 7b
                                     ----void erase(T target) {------// 4d
----unsigned int cnt = 0;-----// 28
----while(((float) rand() / RAND_MAX) < BP \&\& cnt < MAX) cnt++;-----// d1
                                     ------FIND_UPDATE(x->next[i]->item, target);-------// 6b
                                     -----if(x && x->item == target) {-----// 76
----return cnt; }-----// a1
template<class T> struct skiplist {------// 34
                                     ------for(int i = 0; i <= current_level; i++) {-------// 97
                                     -----if(update[i]->next[i] == x) {------// b1
----struct node {------// 53
                                     -----update[i]->next[i] = x->next[i];------// 59
                                     -----update[i]->lens[i] = update[i]->lens[i] + x->lens[i] - 1;--// b1
-----int *lens:-----// 07
                                     -----} else update[i]->lens[i] = update[i]->lens[i] - 1;-----// 88
                                     ------#define CA(v, t) v((t*)calloc(level+1, sizeof(t)))-------// 25
                                     -----delete x; _size--;------// 81
-----node(int level, T i) : item(i), CA(lens, int), CA(next, node*) {}-----// 7c
                                     ------while(current_level > 0 && head->next[current_level] == NULL)-----// 7f
-----/node() { free(lens); free(next); }; };-----// aa
                                     -----current_level--; } } };-----// 59
----int current_level, _size;------// 61
----node *head;------// b7
                                     2.8. Dancing Links. An implementation of Donald Knuth's Dancing Links data structure. A linked
----skiplist() : current_level(0), _size(0), head(new node(MAX_LEVEL, 0)) { };-// 7a
                                     list supporting deletion and restoration of elements.
-----skiplist() { clear(); delete head; head = NULL; }------// aa
                                     template <class T>-----// 82
----#define FIND_UPDATE(cmp, target) \|-----// c3
                                     struct dancing_links {-----// 9e
------int pos[MAX_LEVEL + 2]; \[\[\]\------// 18
                                     ----struct node {------// 62
-----memset(pos, 0, sizeof(pos)); \-----// f2
                                     -----T item:-----// dd
-----node *update[MAX_LEVEL + 1]; \| ------// 01
                                     -----node(const T &_item, node *_l = NULL, node *_r = NULL)------// 6d
-----memset(update, 0, MAX_LEVEL + 1); \[\bar{\}\]------// 38
                                     -----: item(_item), l(_l), r(_r) {------// 6d
                                     -----if (l) l->r = this;-----// 97
-----for(int i = MAX\_LEVEL; i >= 0; i--) { \sqrt{\phantom{a}}
                                     -----if (r) r->l = this;-----// 81
-----pos[i] = pos[i + 1]; \\------// 68
                                     ----};------// d3
------update[i] = x; N-----------// dd ----dancing_links() { front = back = NULL; }------// 72
----void clear() { while(head->next && head->next[0])-------// 91 -----if (!front) front = back;-------------// d2
------erase(head->next[0]->item); }-------// e6 ------return back;--------------------------// cθ
------return x && x->item == target ? x : NULL; }-------// 50 ----node *push_front(const T &item) {--------// 4a
----int count_less(T target) { FIND_UPDATE(x->next[i]->item, target);------// 80 ------if (!back) back = front;--------------------// 10
-----return pos[0]; }------// 19 -----return front;------// cf
```

```
Reykjavík University
------if (!n->l) front = n->r; else n->l->r = n->r;-------// ab -------bb(pt _from, pt _to) : from(_from), to(_to) {}------// 57
------if (!n->l) front = n; else n->l->r = n;--------// a5 ------if (p.coord[i] < from.coord[i])------// a0
}:------sum += pow(p.coord[i] - to.coord[i], 2.0);------// 8c
                                   2.9. Misof Tree. A simple tree data structure for inserting, erasing, and querying the nth largest
                                   -----return sqrt(sum); }-----// ef
element.
                                   ------bb bound(double l, int c, bool left) {------// b6
#define BITS 15------pt nf(from.coord), nt(to.coord);------// 5c
----int cnt[BITS][1<<BITS];------// aa ------else nf.coord[c] = max(nf.coord[c], l);------// 71
----misof_tree() { memset(cnt, 0, sizeof(cnt)); }------// b0 -----return bb(nf, nt); } };------// 3b
----void erase(int x) { for (int i = 0; i < BITS; cnt[i++][x]--, x >>= 1); }---// 49 ------pt p; node *\, *r;-----------------------------// 46
----int nth(int n) {-------// 8a ------node(pt _p, node *_l, node *_r) : p(_p), l(_l), r(_r) { } };------// 23
------int res = 0;-------// a4 ----node *root;------// 30
------for (int i = BITS-1; i >= 0; i--)------// 99 ----// kd_tree() : root(NULL) { }------// 97
------if (cnt[i][res <<= 1] <= n) n -= cnt[i][res], res |= 1;------// f4 ----kd_tree(vector<pt> pts) { root = construct(pts, 0, size(pts) - 1, 0); }----// 19
-----return res:------// 3a ----node* construct(vector<pt> &pts, int from, int to, int c) {------// 4e
----}-----if (from > to) return NULL;------// af
}:------// 0a ------int mid = from + (to - from) / 2;-----// 7d
                                   -----nth_element(pts.begin() + from, pts.begin() + mid,-----// d8
2.10. k-d Tree. A k-dimensional tree supporting fast construction, adding points, and nearest neigh-
                                   -----pts.begin() + to + 1, cmp(c));-----// 84
bor queries.
                                   -----return new node(pts[mid], construct(pts, from, mid - 1, INC(c)),-----// f1
#define INC(c) ((c) == K - 1 ? 0 : (c) + 1) - \cdots / 77
                                   ------construct(pts, mid + 1, to, INC(c))); }-----// 50
template <int K>-----// cd ----bool contains(const pt &p) { return _con(p, root, 0); }------// 8a
class kd_tree {------// 7e ----bool _con(const pt &p, node *n, int c) {------// ff
-------double coord[K];-------// d6 ------if (cmp(c)(n->p, p)) return _con(p, n->r, INC(c));------// ae
-----pt() {}------// c1 -----return true; }------// 8e
-----pt(double c[K]) { for (int i = 0; i < K; i++) coord[i] = c[i]; }-----// 4c ----void insert(const pt &p) { _ins(p, root, 0); }------// e9
------double dist(const pt &other) const {--------// 6c ----void _ins(const pt &p, node* &n, int c) {------// 7d
-----double sum = 0.0;------// c4 -----if (!n) n = new node(p, NULL, NULL);------// 29
------for (int i = 0; i < K; i++)-------// 23 ------else if (cmp(c)(p, n->p)) _ins(p, n->l, INC(c));------// 13
-----sum += pow(coord[i] - other.coord[i], 2.0);------// 46 -----else if (cmp(c)(n->p, p)) _ins(p, n->r, INC(c)); }------// f8
------return sqrt(sum); } };------// ad ----void clear() { _clr(root); root = NULL; }-----// 15
----struct cmp {------// 8f ----void _clr(n->l), _clr(n->r), delete n; }-----// 92
-----cmp(int _c) : c(_c) {}------// a5 -----assert(root);----------// 24
------bool operator ()(const pt &a, const pt &b) {-------// 26 -----double mn = INFINITY, cs[K];------// 0d
-----cc = i == 0 ? c : i - 1;------// bc -----pt from(cs);------// af
-----return a.coord[cc] < b.coord[cc];------// b7 -----pt to(cs);------
-----return false; } };------// e2 ____}
----struct bb {------// 30
```

```
Reykjavík University
----pair<pt, bool> _nn(-------// cd ----T.erase(T.begin() + i);----------// ca
-----// 1d same) {-----// 1d
                                                }-----// 9a
-----if (!n || b.dist(p) > mn) return make_pair(pt(), false);------// c5
------bool found = same || p.dist(n->p) > EPS, l1 = true, l2 = false;------// 6d
                                                                     3. Graphs
-----pt resp = n->p;------// 3d
-----if (found) mn = min(mn, p.dist(resp));------// c9
                                                3.1. Breadth-First Search. An implementation of a breadth-first search that counts the number of
-----node *n1 = n->l, *n2 = n->r;-----// dc
                                                edges on the shortest path from the starting vertex to the ending vertex in the specified unweighted
------for (int i = 0; i < 2; i++) {------// 74
                                                graph (which is represented with an adjacency list). Note that it assumes that the two vertices are
------if (i == 1 || cmp(c)(n->p, p)) swap(n1, n2), swap(l1, l2);------// ab
                                                connected. It runs in O(|V| + |E|) time.
-----pair<pt, bool> res =-----// f0
                                                int bfs(int start, int end, vvi& adj_list) {------// d7
-----nn(p, n1, b.bound(n->p.coord[c], c, l1), mn, INC(c), same);---// ad
                                                ----queue<ii> Q;------// 75
-----if (res.second && (!found || p.dist(res.first) < p.dist(resp)))----// 17
                                                ----Q.push(ii(start, 0));------// 49
-----resp = res.first, found = true;------// 62
-----return make_pair(resp, found); } };------// c8
                                                -----ii cur = Q.front(); Q.pop();-----// e8
2.11. Sqrt Decomposition. Design principle that supports many operations in amortized \sqrt{n} per
                                                    -----// 06
operation.
                                                ------if (cur.first == end)------// 6f
struct segment {-----// b2
                                                -----return cur.second;------// 8a
----vi arr:-----// 8c
----segment(vi _arr) : arr(_arr) { } };------// 11
                                                -----vi& adj = adj_list[cur.first];-----// 3f
vector<segment> T:-----// a1
                                                ------for (vi::iterator it = adj.beqin(); it != adj.end(); it++)-----// bb
int K;-----// dc
                                                -----Q.push(ii(*it, cur.second + 1));------// b7
                                                }-----// 7d
----int cnt = 0:-----// 14
----for (int i = 0; i < size(T); i++)-----// 7d
                                                  Another implementation that doesn't assume the two vertices are connected. If there is no path
-----cnt += size(T[i].arr);-----// 1e
                                                from the starting vertex to the ending vertex, a-1 is returned.
----K = static_cast<int>(ceil(sqrt(cnt)) + 1e-9);------// 76
                                                int bfs(int start, int end, vvi& adj_list) {------// d7
----vi arr(cnt):-----// 41
                                                ----set<<u>int</u>> visited;-----// b3
----for (int i = 0, at = 0; i < size(T); i++)-----// 24
                                                ----queue<ii>> Q;------// bb
------for (int j = 0; j < size(T[i].arr); j++)------// 76
                                                ----Q.push(ii(start, 0));------// 3a
-----arr[at++] = T[i].arr[j];------// 89
                                                ----visited.insert(start):-----// b2
----T.clear();------// b5
----for (int i = 0; i < cnt; i += K)------// 9f
                                                ----while (!0.empty()) {------// f7
-----T.push_back(segment(vi(arr.begin()+i, arr.begin()+min(i+K, cnt))));----// 77
                                                -----ii cur = Q.front(); Q.pop();------// 03
int split(int at) {------// 64
----int i = 0;-----// f7
                                                  -----return cur.second;-----// b9
----while (i < size(T) && at >= size(T[i].arr))------// a7
-----at -= size(T[i].arr), i++;-----// 38
                                                -----vi& adj = adj_list[cur.first];-----// f9
----if (i >= size(T)) return size(T);------// 89
                                                ------for (vi::iterator it = adj.begin(); it != adj.end(); it++)------// 44
----if (at == 0) return i;------// 05
                                                ------if (visited.find(*it) == visited.end()) {-------// 8d
----T.insert(T.begin() + i + 1, segment(vi(T[i].arr.begin() + at, T[i].arr.end())));
                                                -----Q.push(ii(*it, cur.second + 1));-----// ab
----T[i] = segment(vi(T[i].arr.begin(), T[i].arr.begin() + at));------// 60
                                                   -----visited.insert(*it);-----// cb
}-----// 00
void insert(int at, int v) {-----// 87
----vi arr; arr.push_back(v);------// 30
----T.insert(T.begin() + split(at), segment(arr));------// 2a
}-----// bd
void erase(int at) {------// f4
----int i = split(at); split(at + 1);-----// 48
                                                3.2. Single-Source Shortest Paths.
```

```
Reykjavík University
3.2.1. Dijkstra's algorithm. An implementation of Dijkstra's algorithm. It runs in \Theta(|E|\log|V|) time.
                                                 -----for (int j = 0; j < n; j++)-----// 77
                                                 -----if (arr[i][k] != INF && arr[k][j] != INF)------// b1
int *dist, *dad;-----// 46
                                                    ------arr[i][j] = min(arr[i][j], arr[i][k] + arr[k][j]);------// e1
struct cmp {-----// a5
----bool operator()(int a, int b) {------// bb
-----return dist[a] != dist[b] ? dist[a] < dist[b] : a < b; }------// e6
                                                 3.4. Strongly Connected Components.
pair<int*, int*> dijkstra(int n, int s, vii *adj) {-----// 53
                                                 3.4.1. Kosaraju's algorithm. Kosarajus's algorithm finds strongly connected components of a directed
                                                 graph in O(|V| + |E|) time.
----dad = new int[n];-----// 05
                                                 #include "../data-structures/union_find.cpp"-----------------------------// 5e
----for (int i = 0; i < n; i++) dist[i] = INF, dad[i] = -1;------// d6
                                                       -----// 11
----set<<u>int</u>, cmp> pq;-----// 04
                                                 vector<br/>bool> visited;------// 66
----dist[s] = 0, pq.insert(s);------// 1b
                                                 vi order;-----// 9b
----while (!pq.empty()) {------// 57
                                                         -----// a5
------int cur = *pq.beqin(); pq.erase(pq.beqin());------// 7d
                                                 -----for (int i = 0; i < size(adj[cur]); i++) {------// 9e
                                                 ----int v: visited[u] = true:-----// e3
-----int nxt = adj[cur][i].first,-----// b8
                                                 ----for (int i = 0; i < size(adj[u]); i++)-----// c5
-----ndist = dist[cur] + adj[cur][i].second;-----// 0c
                                                 ------if (!visited[v = adj[u][i]]) scc_dfs(adj, v);-------// 6e
-----if (ndist < dist[nxt]) pq.erase(nxt),-----// e4
                                                 ----order.push_back(u);------// 19
-----dist[nxt] = ndist, dad[nxt] = cur, pq.insert(nxt);-----// 0f
-----}------// 75
   -----// e8
                                                 pair<union_find, vi> scc(const vvi &adj) {------// 3e
----return pair<int*, int*>(dist, dad);-----// cc
                                                 ----int n = size(adj), u, v;-----// bd
}-----// af
                                                 ----union_find uf(n);------// 6d
3.2.2. Bellman-Ford algorithm. The Bellman-Ford algorithm solves the single-source shortest paths
problem in O(|V||E|) time. It is slower than Dijkstra's algorithm, but it works on graphs with
negative edges and has the ability to detect negative cycles, neither of which Dijkstra's algorithm can
                                                 ----for (int i = 0; i < n; i++) for (int j = 0; j < size(adj[i]); j++)------// b9
                                                 -----rev[adj[i][j]].push_back(i);-----// 77
int* bellman_ford(int n, int s, vii* adj, bool& has_negative_cycle) {------// cf
                                                 ----visited.resize(n), fill(visited.begin(), visited.end(), false);------// 04
----has_negative_cycle = false;------// 47
                                                 ----for (int i = 0; i < n; i++) if (!visited[i]) scc_dfs(rev, i);------// e4
----int* dist = new int[n];------// 7f
                                                 ----fill(visited.begin(), visited.end(), false);------// c2
----for (int i = 0; i < n; i++) dist[i] = i == s ? 0 : INF;-----// 10
                                                 ----stack<int> S;-----// 04
----for (int i = 0; i < n - 1; i++)-----// a1
                                                 ----for (int i = n-1; i >= 0; i--) {------// 3f
-----for (int j = 0; j < n; j++)-----// c4
                                                 -----if (visited[order[i]]) continue;------// 94
-----if (dist[j] != INF)-----// 4e
                                                 -----S.push(order[i]), dag.push_back(order[i]);-----// 40
-----for (int k = 0; k < size(adj[j]); k++)-----// 3f
                                                 ------while (!S.empty()) {------// 03
-----dist[adj[j][k].first] = min(dist[adj[j][k].first],-----// 61
                                                 -----visited[u = S.top()] = true, S.pop(), uf.unite(u, order[i]);-----// 1b
-----/dist[j] + adj[j][k].second);-----// 47
                                                 ------for (int j = 0; j < size(adj[u]); j++)------// 21
----for (int j = 0; j < n; j++)-----// 13
                                                 ------if (!visited[v = adj[u][j]]) S.push(v);------// e7
------for (int k = 0; k < size(adj[j]); k++)------// a0
-----if (dist[i] + adi[i][k].second < dist[adi[i][k].first])-----// ef
-----has_negative_cycle = true;------// 2a
                                                 ----return pair<union_find, vi>(uf, dag);-----// f2
----return dist;------// 2e
}-----// c2
                                                 3.5. Cut Points and Bridges.
3.3. All-Pairs Shortest Paths.
                                                 #define MAXN 5000-----// f7
3.3.1. Floyd-Warshall algorithm. The Floyd-Warshall algorithm solves the all-pairs shortest paths
                                                 int low[MAXN], num[MAXN], curnum;-----// d7
problem in O(|V|^3) time.
                                                 void dfs(const vvi &adj, vi &cp, vii &bri, int u, int p) {------// 22
```

```
Reykjavík University
                                                                                                        10
-----if (num[v] == -1) {-------// f9 }------// 9e
-----if (low[v] > num[u]) bri.push_back(ii(u, v));--------// 52 ----vi res;------indicated response to the contraction of the c
------} else if (p != v) low[u] = min(low[u], num[v]); }---------// c4 ----char* color = new char[n];----------------------------// b1
----curnum = 0:------// 43 -----}-----// 70
----return res;------// 07
3.6. Minimum Spanning Tree.
3.6.1. Kruskal's algorithm.
                                                     3.8. Euler Path. Finds an euler path (or circuit) in a directed graph, or reports that none exist.
#include "../data-structures/union_find.cpp"-----------------------------// 5e
                                                     #define MAXV 1000-----// 2f
-----// 11
                                                     #define MAXE 5000-----// 87
// n is the number of vertices-----// 18
                                                     vi adj[MAXV];-----// ff
// edges is a list of edges of the form (weight, (a, b))-----// c6
                                                     // the edges in the minimum spanning tree are returned on the same form-----// 4d
                                                     ii start_end() {-----// 30
vector<pair<int, ii> > mst(int n, vector<pair<int, ii> > edges) {------// a7
                                                     ----int start = -1, end = -1, any = 0, c = 0;-----// 74
----union_find uf(n);-----// 04
                                                     ----for (int i = 0; i < n; i++) {------// 96
----sort(edges.begin(), edges.end());-----// 51
                                                     -----if (outdeg[i] > 0) any = i;-----// f2
----vector<pair<int, ii> > res;------// 71
                                                     -----if (indeg[i] + 1 == outdeg[i]) start = i, c++;------// 98
----for (int i = 0; i < size(edges); i++)-----// ce
                                                      ------else if (indeg[i] == outdeg[i] + 1) end = i, c++;------------------------// 4f
-----if (uf.find(edges[i].second.first) !=-----// d5
                                                     ------else if (indeg[i] != outdeg[i]) return ii(-1,-1);------// fa
-----uf.find(edges[i].second.second)) {-----// 8c
                                                     ----}--------// ef
-----res.push_back(edges[i]);-----// d1
                                                     ----if ((start == -1) != (end == -1) || (c != 2 && c != 0)) return ii(-1,-1);--// 6e
-----uf.unite(edges[i].second.first, edges[i].second.second);-----// a2
                                                     ----if (start == -1) start = end = any;-----// db
----return ii(start, end):-----// 9e
----return res;------// 46
                                                     }-----// 35
}-----// 88
                                                     bool euler_path() {-----// d7
                                                     ---ii se = start_end():-----// 45
3.7. Topological Sort.
                                                     ----int cur = se.first, at = m + 1;------// 8c
3.7.1. Modified Depth-First Search.
                                                     ----if (cur == -1) return false;------// 45
void tsort_dfs(int cur, char* color, const vvi& adj, stack<int>& res,-----// ca
                                                     ----stack<int> s;-----// f6
------bool& has_cycle) {------// a8
                                                     ----while (true) {------// 04
----color[cur] = 1:-----// 5b
                                                     -----if (outdeg[cur] == 0) {------// 32
----for (int i = 0; i < size(adj[cur]); i++) {-------// 96
                                                     -----res[--at] = cur;-----// a6
-----int nxt = adi[cur][i]:-----// 53
                                                     ------if (s.empty()) break;-----// ee
-----if (color[nxt] == 0)------// 00
                                                     -----cur = s.top(); s.pop();-----// d7
-----tsort_dfs(nxt, color, adj, res, has_cycle);------// 5b
                                                     ------} else s.push(cur), cur = adj[cur][--outdeg[cur]];------// d8
-----else if (color[nxt] == 1)------// 53
                                                     ----}-----// ba
-----has_cycle = true;-----// c8
                                                     ----return at == 0:-----// c8
-----if (has_cycle) return;-----// 7e
                                                     1.....// aa
----}------// 3d
----color[cur] = 2;------// 16 3.9. Bipartite Matching.
```

```
Reykjavík University
                                            11
3.9.1. Alternating Paths algorithm. The alternating paths algorithm solves bipartite matching in
                      -----return true;-----// c6
                      ----}-----// f7
O(mn^2) time, where m, n are the number of vertices on the left and right side of the bipartite
                      ----void add_edge(int i, int j) { adj[i].push_back(j); }-----// 11
graph, respectively.
                      ----int maximum_matching() {------// 2d
vi* adi:----// cc
                      ------int matching = 0;-----// f5
bool* done:----// b1
                      -----memset(L, -1, sizeof(int) * N);------// 8f
int* owner:-----// 26
                      -----memset(R, -1, sizeof(int) * M);------// 39
int alternating_path(int left) {------// da
                      ------while(bfs()) for(int i = 0; i < N; ++i)-------// 77
----if (done[left]) return 0;------// 08
                      -----matching += L[i] == -1 && dfs(i);-----// f1
----done[left] = true;-----// f2
                      -----return matching;-----// fc
----for (int i = 0; i < size(adj[left]); i++) {-------// 34
                      ------int right = adj[left][i];------// b6
                      };-----// d3
-----if (owner[right] == -1 || alternating_path(owner[right])) {-------// d2
-----owner[right] = left; return 1;-----// 26
                      3.10. Maximum Flow.
-----} }------// 7a
----return 0; }-----// 83
                      3.10.1. Dinic's algorithm. An implementation of Dinic's algorithm that runs in O(|V|^2|E|). It com-
                      putes the maximum flow of a flow network.
3.9.2. Hopcroft-Karp algorithm. An implementation of Hopcroft-Karp algorithm for bipartite match-
                      #define MAXV 2000-----// ba
ing. Running time is O(|E|\sqrt{|V|}).
                      int q[MAXV], d[MAXV];-----// e6
struct bipartite_graph {------// 2b -----edge() { }-----// 38
------L(new int[N]), R(new int[M]), adj(new vi[N]) {}----------// cd ----int n, ecnt, *head, *curh;------------------------------// 46
-----else dist(v) = INF;-------// b3 -----memset(head, -1, n * sizeof(int));------// 56
-----dist(-1) = INF;------// 96 ---}-----// 77
------while(l < r) {-------// 69 ----void destroy() { delete[] head; delete[] curh; }-------// f6
-----int v = q[l++];------// 0c ----void reset() { e = e_store; }------// 87
-----dist(R[*u]) = dist(v) + 1, q[r++] = R[*u];------// 60 -----e.push_back(edge(u, vu, head(v)); head(v) = ecnt++;-------// 89
------}-----memset(d, -1, n * sizeof(int));-------// a8
```

```
Reykjavík University
------while (l < r)-------// 7a -------e[at].cap -= x, e[at^1].cap += x, at = p[e[at^1].v];------// 2e
------if (e[i^1].cap > 0 && d[e[i].v] == -1)-------// 29 -----if (res) reset();--------// 3b
-----memcpy(curh, head, n * sizeof(int));------// 10 };-----// 75
------while ((x = augment(s, t, INF)) != 0) f += x:-----// a6
                    3.11. Minimum Cost Maximum Flow. An implementation of Edmonds Karp's algorithm, modi-
fied to find shortest path to augment each time (instead of just any path). It computes the maximum
-----if (res) reset();------// 21
                    flow of a flow network, and when there are multiple maximum flows, finds the maximum flow with
-----return f;-----// b6
                    minimum cost. Running time is O(|V|^2|E|\log|V|).
----}------// 1b
                    #define MAXV 2000-----// ba
};-----// 3b
                    int d[MAXV], p[MAXV], pot[MAXV];-----// 80
3.10.2. Edmonds Karp's algorithm. An implementation of Edmonds Karp's algorithm that runs in
                    struct cmp {-----// d1
O(|V||E|^2). It computes the maximum flow of a flow network.
                    ----bool operator ()(int i, int j) {-----// 8a
------<mark>int</mark> v, cap, nxt;--------// cb ----struct edge {--------// ga
------edge(int _v, int _cap, int _nxt) : v(_v), cap(_cap), nxt(_nxt) { }----// 7a ------int v, cap, cost, nxt;-----------------------// ad
----};------edge(int _v, int _cap, int _cost, int _nxt)-----------// ec
----int n, ecnt, *head;------: v(_v), cap(_cap), cost(_cost), nxt(_nxt) { }-------// c4
------e.reserve(2 * (m == -1 ? n : m));--------// 92 ----vector<edge> e, e_store;-------// 4b
------memset(head = new int[n], -1, n << 2);-------// 58 ----flow_network(int _n, int m = -1) : n(_n), ecnt(0) {-------// dd
----}-----e.reserve(2 * (m == -1 ? n : m));------// e6
-----if (s == t) return 0:-------// d6 ---}------// 16
-----while (l < r)-----// 2c -----memset(d, -1, n << 2);------// fd
-----for (int u = g[l++], i = head[u]; i != -1; i = e[i].nxt)-----// c6 ------memset(p, -1, n << 2);-----------------------------// b7
------if (e[i].cap > 0 &&------// 8a ------set<int, cmp> q;--------// d8
```

```
Reykjavík University
                                                           13
------if (q.find(v) != q.end()) q.erase(q.find(v));------// e2 -----mn = min(mn, par[cur].second), cur = par[cur].first;-------// 28
-----int x = INF, at = p[t];-------// e8 ---int cur = INF, at = s;-------// 65
-----at = p[t], f += x; ------// d3 ------cur = min(cur, gh.first[at].second), at = gh.first[at].first; -----// bd
------while (at != -1)------// 53 ----return min(cur, gh.second[at][t]);------// 6d
-----c += x * (d[t] + pot[t] - pot[s]);------// 44
                              3.13. Heavy-Light Decomposition.
------for (int i = 0; i < n; i++) if (p[i] != -1) pot[i] += d[i];------// ff
#include "../data-structures/segment_tree.cpp"-----// 16
                              struct HLD {-----// 25
-----if (res) reset():-----// 5e
                              ----int n, curhead, curloc;------// d9
-----return ii(f, c);-----// e7
                              ----vi sz, head, parent, loc;------// 81
----}-----------// 11
                              ----vvi below; segment_tree values;------// 96
};-----// d7
                              ----HLD(int_n): n(n), sz(n, 1), head(n), parent(n, -1), loc(n), below(n) {--// 4f
3.12. All Pairs Maximum Flow.
                              -----vi tmp(n, ID); values = segment_tree(tmp); }------// a7
                              ----void add_edge(int u, int v) { below[parent[v] = u].push_back(v); }------// f8
3.12.1. Gomory-Hu Tree. An implementation of the Gomory-Hu Tree. The spanning tree is con-
                              ----void update_cost(int u, int v, int c) {------// 12
structed using Gusfield's algorithm in O(|V|^2) plus |V|-1 times the time it takes to calculate the
                              -----if (parent[v] == u) swap(u, v); assert(parent[u] == v);------// 9f
maximum flow. If Dinic's algorithm is used to calculate the max flow, the running time is O(|V|^3|E|).
                              -----values.update(loc[u], c); }------// 9a
#include "dinic.cpp"-----// 58
                              ----void csz(int u) { for (int i = 0; i < size(below[u]); i++)------// 63
------csz(below[u][i]), sz[u] += sz[below[u][i]]; }------// 84
pair<vii, vvi> construct_gh_tree(flow_network &g) {-------// 77 -----head[u] = curhead; loc[u] = curloc++;------// 25
------int l = 0, r = 0;-------// 9d ------if (best != -1) part(best);-------// 19
------for (int i = 0; i < size(below[u]); i++)-------// 7d
------if (below[u][i] != best) part(curhead = below[u][i]); }------// 30
------memset(same, 0, n * sizeof(int));------// b0 ----void build() { int u = curloc = 0;------// 06
------while (l < r) {-------// 45 -----csz(u); part(curhead = u); }------// 5e
-----same[v = q[l++]] = true;------// c8 ----int lca(int u, int v) {-------// c1
------if (q.e[i].cap > 0 \& d[q.e[i].v] == 0)------// 3f ------while (u != -1) uat.push_back(u), u = parent[head[u]];------// e6
-----d[q[r++] = q.e[i].v] = 1;------// f8 ------while (v != -1) vat.push_back(v), v = parent[head[v]];------// 5b
------}-----u = size(uat) - 1, v = size(vat) - 1;-------// ad
-----if (par[i].first == par[s].first && same[i]) par[i].first = s;----// ea ------res = (loc[vat[v]] < loc[vat[v]] ? uat[v] : vat[v]), u--, v--;----// 13
------int mn = INF, cur = i;-------// 19 -----res = f(res, values.query(loc[head[u]], loc[u])),-----// 7c
------while (true) {-------// 3a ------u = parent[head[u]];------// 4b
```

```
Reykjavík University
                                            14
-----return f(res, values.query(loc[v] + 1, loc[u])); }-------// 47 ----node* root;-----
-----return f(query_upto(u, l), query_upto(v, l)); } };-------// 52 ----template <class I>-------// 89
                      ----void insert(I begin, I end) {------// 3c
3.14. Tarjan's Off-line Lowest Common Ancestors Algorithm.
                      -----node* cur = root:-----// 82
----vii *queries;-------T head = *beqin;--------// fb
----bool *colored:------typename map<T, node*>::const_iterator it;-------// 01
----union_find uf;-----it = cur->children.find(head);------// 77
-----colored = new bool[n]:------// 8d ------pair<T, node*> nw(head, new node());------// cd
------it = cur->children.insert(nw).first;-------// ae
------queries[x].push_back(ii(y, size(answers)));-------// a0 ------while (true) {---------------------------// bb
------gueries[v].push_back(ii(x, size(answers))):-------// 14 ------if (begin == end) return cur->words:------// a4
------it = cur->children.find(head);-------// d9
-----int v = adj[u][i];-------// 38 ------begin++, cur = it->second; } } }-----// 7c
-----process(v);------// 41 ----template<class I>------// 9c
------int v = queries[u][i].first:-------// 38 -------T head = *beqin:----------------// 43
-----if (colored[v]) {------// c5 ------typename map<T, node*>::const_iterator it;-----// 7a
----}------// ad
                      4.2. Suffix Array. An O(n \log^2 n) construction of a Suffix Tree.
};-----// 5f
                      struct entry { ii nr; int p; };-----// f9
                      bool operator <(const entry &a, const entry &b) { return a.nr < b.nr; }-----// 77
         4. Strings
                      struct suffix_array {------// 87
4.1. Trie. A Trie class.
                      ----string s; int n; vvi P; vector<entry> L; vi idx;-----// b6
class trie {------// 9a ----suffix_array(string _s) : s(_s), n(size(s)) {------// e5
private:-----L = vector<entry>(n), P.push_back(vi(n)), idx = vi(n);-------// 8a
----struct node {-------// ae ------for (int i = 0; i < n; i++) P[0][i] = s[i] - 'a';------// 8d
------for (int stp = 1, cnt = 1; cnt >> 1 < n; stp++, cnt <<= 1) {------// 46
------int prefixes, words;---------// e2 ------P.push_back(vi(n));----------// 30
------for (int i = 0; i < n; i++)-------// d5
public:------L[L[i].p = i].nr = ii(P[stp - 1][i],------// fc
```

```
Reykjavík University
                                                15
-----i + cnt < n ? P[stp - 1][i + cnt] : -1);------// e5 -------if (!s->out) s->out = s->fail->out;------// 80
------for (int i = 0; i < n; i++)--------// 85 -------out_node* out = s->out;------// bf
------L[i].nr == L[i - 1].nr ? P[stp][L[i - 1].p] : i;------// fd ------out->next = s->fail->out;-------// 65
----int lcp(int x, int y) {-------// 05 -----}----
-----int res = 0;-------// 20 ---}------// 91
-----if (!cur) cur = go;-----// 2f
4.3. Aho-Corasick Algorithm. An implementation of the Aho-Corasick algorithm. Constructs a
                        -----cur = cur->next[*c]:-----// 58
state machine from a set of keywords which can be used to search a string for any of the keywords.
                        ------if (!cur) cur = qo;-----// 3f
struct aho_corasick {------// 78
                        ------for (out_node *out = cur->out; out = out->next)------// e0
----struct out_node {------// 3e
                        -----/ 0d
-----string keyword; out_node *next;-----// f0
                        ------}-----// fd
-----out_node(string k, out_node *n) : keyword(k), next(n) { }-----// 26
                        -----return res:-----// c1
----}-----// e4
----struct qo_node {------// 40
                        }:-----// 32
-----map<char, go_node*> next;------// 6b
-----go_node() { out = NULL; fail = NULL; }-----// Of
                        also a prefix of S. The Z algorithm computes these Z values in O(n) time, where n = |S|. Z values
----}:------// c0
                        can, for example, be used to find all occurrences of a pattern P in a string T in linear time. This is
----qo_node *qo;------// b8
                        accomplished by computing Z values of S = TP, and looking for all i such that Z_i \geq |T|.
-----qo = new qo_node();------// 77 ----int n = size(s);------// 97
------foreach(k, keywords) {-------// e4 ----int* z = new int[n];-------// c4
-----qo_node *cur = go;-----// 9d ----int l = 0, r = 0;-----// 1c
------foreach(c, *k)--------// 38 ----z[0] = n;-------// 98
-----cur = cur->next.find(*c) != cur->next.end() ? cur->next[*c] :--// 3d ----for (int i = 1; i < n; i++) {---------// 7e
-----(cur->next[*c] = new go_node());-----// 75 ----z[i] = 0;-------
-----queue<go_node*> q;------// 8a --------while (r < n && s[r - l] == s[r]) r++;------// ff
------foreach(a, go->next) q.push(a->second);------// a3 -----z[i] = r - l; r--;--------// fc
------qo_node *s = a->second;------// cb -------while (r < n && s[r - l] == s[r]) r++;-----// b3
-----z[i] = r - l; r--; } }------// 8d
------while (st && st->next.find(a->first) == st->next.end())------// d7 }-------
-----st = st->fail;-----// 3f
-----if (s->fail) {-------// 3b #define SIGMA 26-----// 26
```

```
16
Reykjavík University
-----st[1].len = st[1].link = 0; }-------// 35 ----bool operator !=(const fraction<T>& other) const {-------// ec
------char c = s[n++]; int p = last;------// a3 };------// 12
-----while (n - st[p].len - 2 < 0 \mid | c \mid = s[n - st[p].len - 2]) p = st[p].link;
                         5.2. Big Integer. A big integer class.
-----if (!st[p].to[c-BASE]) {------// 05
                         struct intx {-----// cf
-----int q = last = sz++;-----// ad
                         ----intx() { normalize(1); }------// 6c
-----st[p].to[c-BASE] = q;-----// bb
                         ----intx(string n) { init(n); }-------// b9
-----st[q].len = st[p].len + 2;-----// 86
                         ----intx(int n) { stringstream ss; ss << n; init(ss.str()); }------// 36
-----do { p = st[p].link;-----// c8
                         ----intx(const intx& other) : sign(other.sign), data(other.data) { }------// 3b
-----} while (p != -1 \& (n < st[p].len + 2 || c != s[n - st[p].len - 2]));
                         ----int sign;-------// 26
-----if (p == -1) st[q].link = 1;------// 02
                         ----vector<unsigned int> data;-----// 19
------else st[q].link = st[p].to[c-BASE];------// e6
                         ----static const int dcnt = 9;-----// 12
-----return 1; }-----// bc
-----last = st[p].to[c-BASE];-----// 30
                         ----static const unsigned int radix = 1000000000U;-----// f0
                         ----int size() const { return data.size(); }------// 29
-----return 0; } };-----// da
                         ----void init(string n) {------// 13
                         -----intx res; res.data.clear();-----// 4e
          5. Mathematics
                         -----if (n.empty()) n = "0";------// 99
5.1. Fraction. A fraction (rational number) class. Note that numbers are stored in lowest common
                         ------if (n[0] == '-') res.sign = -1, n = n.substr(1);------// 3b
                         ------for (int i = n.size() - 1; i >= 0; i -= intx::dcnt) {------// e7
private:------int idx = i - j;------------// cd
public:-----digit = digit * 10 + (n[idx] - '0');------// 1f
-----assert(d_ != 0);-----// 3d -----}----// fb
-----n = n_, d = d_;-------// 06 ------data = res.data;-------// 7d
-----T q = qcd(abs(n), abs(d));--------// fc ---}------// fc
------n /= g, d /= g; }-------// al ----intx& normalize(int nsign) {-------// 3b
----fraction(const fraction<T>& other): n(other.n), d(other.d) { }-------// 01 -------for (int i = data.size() - 1; i > 0 && data[i] == 0; i--)-------// 27
------return fraction<T>(n * other.d + other.n * d, d * other.d);}------// 3b ------sign = data.size() == 1 \&\& data[0] == 0 ? 1 : nsign;------// ff
----fraction<T> operator /(const fraction<T>& other) const {-------// ca ------bool first = true;-----------------// 33
------for (int i = n.size() - 1; i >= 0; i--) {-------// 63
```

```
Reykjavík University
                                                          17
-----stringstream ss; ss << cur;------// 8c ------long long carry = 0;-----------// 20
-----string s = ss.str();------// 64 ------for (int j = 0; j < b.size() || carry; j++) {-------// cθ
------int len = s.size();------// 0d ------if (j < b.size()) carry += (long long)data[i] * b.data[j];----// af
-----outs << s;-----% intx::radix;------// 86
------return outs;-------// cf -----}------// ge
------if (sign != b.sign) return sign < b.sign;--------// cf ------assert(!(d.size() == 1 && d.data[0] == 0));-------// e9
------if (size() != b.size())--------// 4d ------intx q, r; q.data.assign(n.size(), θ);-------// ca
-----return sign == 1 ? size() < b.size() : size() > b.size();------// 4d ------for (int i = n.size() - 1; i >= 0; i--) {--------// 1a
------for (int i = size() - 1; i >= 0; i--) if (data[i] != b.data[i])------// 35 ------r.data.insert(r.data.begin(), 0);---------// c7
------return false;--------// ca -------long long k = θ;--------// cc
------<mark>unsigned long long carry = 0;--------// 5c -------return pair</mark><intx, intx>(q.normalize(n.sign * d.sign), r);-------// a1
-----carry += (i < size() ? data[i] : 0ULL) +------// 91 ----intx operator /(const intx& d) const {------// a2
-----c.data.push_back(carry % intx::radix);-------// 86 ----intx operator %(const intx& d) const {--------// 07
-----carry /= intx::radix;------// fd -----return divmod(*this,d).second * sign; }-----// 5a
-----return c.normalize(sign);------// 20
                              5.2.1. Fast Multiplication. Fast multiplication for the big integer using Fast Fourier Transform.
#include "intx.cpp"-----// 83
----intx operator -(const intx& b) const {------// 53
                              #include "fft.cpp"-----// 13
-----if (sign > 0 && b.sign < 0) return *this + (-b);-----// 8f
                              -----// e0
------if (sign < 0 && b.sign > 0) return -(-*this + b);-----// 1b
                              intx fastmul(const intx &an, const intx &bn) {-----// ab
------if (sign < 0 && b.sign < 0) return (-b) - (-*this);-------// a1
                              ----string as = an.to_string(), bs = bn.to_string();-----// 32
-----if (*this < b) return -(b - *this);------// 36
                              ----int n = size(as), m = size(bs), l = 1,-----// dc
-----intx c; c.data.clear();-----// 6b
                              -----len = 5, radix = 100000,-----// 4f
-----long long borrow = 0;-----// f8
                              -----*a = new int[n], alen = 0,-----// b8
------for (int i = 0: i < size(): i++) {------// a7
                              -----*b = new int[m], blen = 0;------// 0a
-----borrow = data[i] - borrow - (i < b.size() ? b.data[i] : 0ULL);----// a9
                              ----memset(a, 0, n << 2);-----// 1d
-----c.data.push_back(borrow < 0 ? intx::radix + borrow : borrow);-----// ed
                              ----memset(b, 0, m << 2);-----// 01
-----borrow = borrow < 0 ? 1 : 0;-----// 0d
                              ----for (int i = n - 1; i >= 0; i -= len, alen++)-----// 6e
------for (int j = min(len - 1, i); j >= 0; j--)------// 43
-----return c.normalize(sign);------// 35
                              -----a[alen] = a[alen] * 10 + as[i - j] - '0';------// 14
----intx operator *(const intx& b) const {------// bd
                             ----for (int i = m - 1; i >= 0; i -= len, blen++)------// b6
                              ------for (int j = min(len - 1, i); j >= 0; j--)-----// ae
```

```
-----b[blen] = b[blen] * 10 + bs[i - j] - '0'; -----// 9b
                                             5.5. Trial Division Primality Testing. An optimized trial division to check whether an integer is
----while (l < 2*max(alen,blen)) l <<= 1;-------// 51
----cpx *A = new cpx[l], *B = new cpx[l];------// 0d
                                             bool is_prime(int n) {------// 6c
----for (int i = 0; i < l; i++) A[i] = cpx(i < alen ? <math>a[i] : 0, 0);-----// 35
                                             ----if (n < 2) return false;-----// c9
----for (int i = 0; i < l; i++) B[i] = cpx(i < blen ? <math>b[i] : 0, 0);------// 66
                                             ----if (n < 4) return true;-----// d9
----fft(A, l); fft(B, l);-----// f9
                                             ----if (n % 2 == 0 || n % 3 == 0) return false;-----// 0f
----for (int i = 0; i < l; i++) A[i] *= B[i];-----// e7
                                             ----if (n < 25) return true;-----// ef
----fft(A, l, true):-----// d3
                                             ----int s = static_cast<int>(sqrt(static_cast<double>(n)));------// 64
----ull *data = new ull[l];-----// e7
                                             ----for (int i = 5; i <= s; i += 6)------// 6c
----for (int i = 0; i < l; i++) data[i] = (ull)(round(real(A[i])));------// 06
                                             ----for (int i = 0; i < l - 1; i++)------// 90
                                             ----return true: }-----// 43
------if (data[i] >= (unsigned int)(radix)) {-------// 44
-----data[i+1] += data[i] / radix;-----// e4
                                             5.6. Miller-Rabin Primality Test. The Miller-Rabin probabilistic primality test.
-----data[i] %= radix;-----// bd
                                             #include "mod_pow.cpp"-----// c7
----int stop = l-1;-----------// cb ----if (~n & 1) return n == 2;----------// d1
----stringstream ss;------// 42 ----int s = 0; ll d = n - 1;-------// 37
----ss << data[stop];------// 96 ----while (~d & 1) d >>= 1, s++;------// 35
-----ss << setfill('0') << setw(len) << data[i];------// b6 ------ll a = (n - 3) * rand() / RAND_MAX + 2;------// 06
----delete[] A; delete[] B;------// f7 ------ll x = mod_pow(a, d, n);------// 64
----delete[] a; delete[] b;------// 7e -----if (x == 1 || x == n - 1) continue;-----// 9b
----delete[] data;------// 6a ------bool ok = false;------// 03
----return intx(ss.str());------// 38 ------for (int i = 0; i < s - 1; i++) {-------// 6b
}------x = (x * x) % n; ------// e1
                                             ------if (x == 1) return false;-----// 4f
                                             ------if (x == n - 1) { ok = true; break; }-----// 74
5.3. Binomial Coefficients. The binomial coefficient \binom{n}{k} = \frac{n!}{k!(n-k)!} is the number of ways to choose
                                             k items out of a total of n items.
                                             -----if (!ok) return false;-----// 00
int nck(int n, int k) {------// f6
                                             ----} return true; }------// bc
----if (n - k < k) k = n - k;------// 18
----int res = 1;------// cb
                                             5.7. Sieve of Eratosthenes. An optimized implementation of Eratosthenes' Sieve.
----for (int i = 1; i <= k; i++) res = res * (n - (k - i)) / i;-----// bd
                                             vi prime_sieve(int n) {-----// 40
----return res:-----// e4
                                             ----int mx = (n - 3) >> 1. sq. v. i = -1:------// 27
}-----// 03
                                             ----vi primes;------// 8f
                                             ----bool* prime = new bool[mx + 1];-----// ef
5.4. Euclidean algorithm. The Euclidean algorithm computes the greatest common divisor of two
                                             ----memset(prime, 1, mx + 1);------// 28
integers a, b.
                                             ----if (n >= 2) primes.push_back(2);-----// f4
                                             ----while (++i <= mx) if (prime[i]) {------// 73
int qcd(int a, int b) { return b == 0 ? a : qcd(b, a % b); }-----// d9
                                             ------primes.push_back(v = (i << 1) + 3);------// be
 The extended Euclidean algorithm computes the greatest common divisor d of two integers a, b
                                             -----if ((sq = i * ((i << 1) + 6) + 3) > mx) break;-----// 2d
and also finds two integers x, y such that a \times x + b \times y = d.
                                             ------for (int j = sq; j <= mx; j += v) prime[j] = false; }------// 2e
int egcd(int a, int b, int& x, int& y) {------// 85
                                             ----while (++i <= mx) if (prime[i]) primes.push_back((i << 1) + 3);-----// 29
----if (b == 0) { x = 1; y = 0; return a; }------// 7b
                                             ----delete() prime: // can be used for O(1) lookup-----// 36
----else {------// 00
                                             ----return primes; }-----// 72
-----int d = eqcd(b, a % b, x, y);------// 34
-----x -= a / b * y;------// 4a
                                             5.8. Modular Multiplicative Inverse. A function to find a modular multiplicative inverse.
-----Swap(x, y):-----// 26
                                             #include "egcd.cpp"-----// 55
                                             _____// e8
                                             int mod_inv(int a, int m) {------// 49
}-----// 40
                                            ----int x, y, d = egcd(a, m, x, y);-----// 3e
```

```
5.9. Modular Exponentiation. A function to perform fast modular exponentiation.
template <class T>-----// 82
T mod_pow(T b, T e, T m) {------// aa
----T res = T(1):-----// 85
----while (e) {------// b7
-----if (e & T(1)) res = mod(res * b, m);------// 41
-----b = mod(b * b, m), e >>= T(1); }------// b3
----return res:-----// eb
5.10. Chinese Remainder Theorem. An implementation of the Chinese Remainder Theorem.
#include "egcd.cpp"-----// 55
int crt(const vi& as, const vi& ns) {-----// c3
----int cnt = size(as), N = 1, x = 0, r, s, l;------// 55
----for (int i = 0; i < cnt; i++) N *= ns[i]; ------// 88
----for (int i = 0; i < cnt; i++)-----// f9
----return mod(x, N); }-----// 9e
5.11. Linear Congruence Solver. A function that returns all solutions to ax \equiv b \pmod{n}, modulo
#include "egcd.cpp"-----// 55
vi linear_congruence(int a, int b, int n) {------// c8
----int x, y, d = egcd(a, n, x, y);-----// 7a
----vi res:-----// f5
----if (b % d != 0) return res:-----// 30
----int x0 = mod(b / d * x, n);------// 48
----for (int k = 0; k < d; k++) res.push_back(mod(x0 + k * n / d, n));------// 21
----return res:------// 03
}-----// 1c
5.12. Numeric Integration. Numeric integration using Simpson's rule.
double integrate(double (*f)(double), double a, double b,-----// 76
-----double delta = 1e-6) {------// c0
----if (abs(a - b) < delta)------// 38
-----return (b-a)/8 *-----// 56
-----(f(a) + 3*f((2*a+b)/3) + 3*f((a+2*b)/3) + f(b));-----// e1
----return integrate(f, a,-----// 64
-----(a+b)/2, delta) + integrate(f, (a+b)/2, b, delta);-----// \theta c
5.13. Fast Fourier Transform. The Cooley-Tukey algorithm for quickly computing the discrete
Fourier transform. Note that this implementation only handles powers of two, make sure to pad with
zeros.
#include <complex>-----// 8e
typedef complex<long double> cpx;------// 25
void fft(cpx *x, int n, bool inv=false) {------// 23
----for (int i = 0, j = 0; i < n; i++) {-------// f2
-----if (i < j) swap(x[i], x[j]);-----// 5c
```

Reykjavík University

```
----for (int mx = 1; mx < n; mx <<= 1) {------// 9d
                           -----cpx wp = \exp(\text{cpx}(0, (\text{inv }? -1 : 1) * \text{pi }/\text{mx})), \text{ w} = 1;
                           ------for (int i = m; i < n; i += mx << 1) {------// 33
                           -----cpx t = x[i + mx] * w;
                           -----x[i + mx] = x[i] - t;-----// ac
                           -----x[i] += t:-----// c7
                           ------}-----// 6d
                           ------}------// c2
                           ----if (inv) for (int i = 0; i < n; i++) x[i] /= cpx(n);------// 3e
                           }-----// 7d
```

5.14. Formulas.

- Number of ways to choose k objects from a total of n objects where order matters and each item can only be chosen once: $P_k^n = \frac{n!}{(n-k)!}$ • Number of ways to choose k objects from a total of n objects where order matters and each
- item can be chosen multiple times: n^k • Number of permutations of n objects, where there are n_1 objects of type 1, n_2 objects of type
- 2, ..., n_k objects of type k: $\binom{n}{n_1, n_2, ..., n_k} = \frac{n!}{n_1! \times n_2! \times \cdots \times n_k!}$ • Number of ways to choose k objects from a total of n objects where order does not matter
- and each item can only be chosen once: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{n-k} = \prod_{i=1}^k \frac{n-(k-i)}{i} = \frac{n!}{k!(n-k)!}, \binom{n}{0} = 1, \binom{0}{k} = 0$
- Number of ways to choose k objects from a total of n objects where order does not matter and each item can be chosen multiple times: $f_k^n = \binom{n+k-1}{k} = \frac{(n+k-1)!}{k!(n-1)!}$
- Number of integer solutions to $x_1 + x_2 + \cdots + x_n = k$ where $x_i \geq 0$: f_k^n
- Number of subsets of a set with n elements: 2^n
- $|A \cup B| = |A| + |B| |A \cap B|$
- $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$
- Number of ways to walk from the lower-left corner to the upper-right corner of an $n \times m$ grid by walking only up and to the right: $\binom{n+m}{m}$
- \bullet Number of strings with n sets of brackets such that the brackets are balanced: $C_n = \sum_{k=0}^{n-1} C_k \bar{C}_{n-1-k} = \frac{1}{n+1} {2n \choose n}$
- Number of triangulations of a convex polygon with n points, number of rooted binary trees with n+1 vertices, number of paths across an $n \times n$ lattice which do not rise above the main diagonal: C_n
- Number of permutations of n objects with exactly k ascending sequences or runs: $\left\langle {n\atop k}\right\rangle = \left\langle {n\atop n-k-1}\right\rangle = k\left\langle {n-1\atop k}\right\rangle + (n-k+1)\left\langle {n-1\atop k-1}\right\rangle = \sum_{i=0}^k (-1)^i {n+1\choose i}(k+1-i)^n, \left\langle {n\atop 0}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \left\langle {n\atop n-1}\right\rangle = \left\langle {n\atop n-k-1}\right\rangle = \left\langle {n\atop n-k-1}\right\rangle$
- Number of permutations of n objects with exactly k cycles: $\binom{n}{k} = \binom{n-1}{k-1} + (n-1) \binom{n-1}{k}$
- Number of ways to partition n objects into k sets: $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}, \binom{n}{0} = \binom{n}{n} = 1$
- Number of permutations of length n that have no fixed points (derangements): $D_0 = 1, D_1 =$ $0, D_n = (n-1)(D_{n-1} + D_{n-2})$
- Number of permutations of length n that have exactly k fixed points: $\binom{n}{k}D_{n-k}$
- Jacobi symbol: $\left(\frac{a}{b}\right) = a^{(b-1)/2} \pmod{b}$

- Pick's theorem: A polygon on an integer grid containing i lattice points and having b lattice points on the boundary has area $i + \frac{b}{2} - 1$.
- Divisor sigma: The sum of divisors of n to the xth power is $\sigma_x(n) = \prod_{i=0}^r \frac{p_i^{(a_i+1)x}-1}{p_i^x-1}$ where $n = \prod_{i=0}^{r} p_i^{a_i}$ is the prime factorization.
- Divisor count: A special case of the above is $\sigma_0(n) = \prod_{i=0}^r (a_i + 1)$.
- Euler's totient: The number of integers less than n that are comprime to n are $n \prod_{n|n} \left(1 \frac{1}{n}\right)$ where each p is a distinct prime factor of n.
- König's theorem: In any bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in a minimum vertex cover.
- The number of vertices of a graph is equal to its minimum vertex cover number plus the size of a maximum independent set. • $\gcd(2^a - 1, 2^b - 1) = 2^{\gcd(a,b)} - 1$

5.15. Numbers and Sequences. Some random prime numbers: 1031, 32771, 1048583, 33554467, 1073741827, 34359738421, 1099511627791, 35184372088891, 1125899906842679, 36028797018963971.

6. Geometry

6.1. **Primitives.** Geometry primitives. #include <complex>-----// 8e

```
#define P(p) const point &p-----// b8
#define L(p0, p1) P(p0), P(p1)-----// 30
#define C(p0, r) P(p0), double r-----// 08 ---else {------// 5b
#define PP(pp) pair<point, point> &pp------// al -----x = min(x, abs(a - closest_point(c,d, a, true)));-----// 07
double dot(P(a), P(b)) { return real(conj(a) * b); }-----// 4a -----x = min(x, abs(c - closest_point(a,b, c, true)));-----// 48
double cross(P(a), P(b)) { return imag(conj(a) * b); }-----// f3 -----x = min(x, abs(d - closest_point(a,b, d, true)));-----// 75
point rotate(P(p), double radians = pi / 2, P(about) = point(0,0)) { ------// \theta b ___}
point reflect(P(p), L(about1, about2)) {------// 45 }-----
----point z = p - about1, w = about2 - about1;------// 74 int intersect(C(A, rA), C(B, rB), point & res1, point & res2) { ------// ca
----return coni(z / w) * w + about1; }-----// d1
point proi(P(u), P(v)) { return dot(u, v) / dot(u, u) * u; }------// 98 ----if ( rA + rB < d - EPS || d < abs(rA - rB) - EPS) return 0;------// 8c
point normalize(P(p), double k = 1.0) { -----// a9
----return abs(p) == 0 ? point(0,0) : p / abs(p) * k; } //TODO: TEST------// 1c ----point v = normalize(B - A, a), u = normalize(rotate(B-A), h);------// dd
double ccw(P(a), P(b), P(c)) { return cross(b - a, c - b); }-----// ab
bool collinear(P(a), P(b), P(c)) { return abs(ccw(a, b, c)) < EPS; }------// 95 }</pre>
bool collinear(L(a, b), L(p, q)) {-----// de
----return abs(ccw(a, b, p)) < EPS && abs(ccw(a, b, q)) < EPS; }-----// 27
----return acos(dot(b - a, c - b) / abs(b - a) / abs(c - b)); }------// a2
double signed_angle(P(a), P(b), P(c)) {------// 46
----return asin(cross(b - a, c - b) / abs(b - a) / abs(c - b)); }------// 80
double angle(P(p)) { return atan2(imag(p), real(p)); }-----// c0
point perp(P(p)) { return point(-imag(p), real(p)); }-----// 3c int tangent(P(A), C(0, r), point & res1, point & res2) {-----// f0
double progress(P(p), L(a, b)) {-----// c7
----if (abs(real(a) - real(b)) < EPS)------// 7d
-----return (imag(p) - imag(a)) / (imag(b) - imag(a));-----// b7
```

```
----// NOTE: check for parallel/collinear lines before calling this function---// 88
                                            ----point r = b - a, s = q - p;------// 54
                                            ----double c = cross(r, s), t = cross(p - a, s) / c, u = cross(p - a, r) / c;--// 29
                                            ----if (segment && (t < 0-EPS || t > 1+EPS || u < 0-EPS || u > 1+EPS))------// 30
                                            -----return false:-----// cθ
                                            ----res = a + t * r:-----// 88
                                            ----return true:-----// 03
                                           point closest_point(L(a, b), P(c), bool segment = false) {------// 06
                                            ----if (segment) {-------// 90
                                            -----if (dot(b - a, c - b) > 0) return b;------// 93
                                            -----if (dot(a - b, c - a) > 0) return a;-----// bb
                                            ----}------// d5
                                            ----double t = dot(c - a, b - a) / norm(b - a);------// 61
                                           ----return a + t * (b - a);-----// 4f
                                              -----// 19
                                            double line_segment_distance(L(a,b), L(c,d)) {------// f6
                                            ----double x = INFINITY:-----// 8c
                                            ----if (abs(a - b) < EPS && abs(c - d) < EPS) x = abs(a - c):-----// 5f
                                            ----else if (abs(a - b) < EPS) x = abs(a - closest_point(c, d, a, true)); ------// 97
                                           ----else if (abs(c - d) < EPS) x = abs(c - closest_point(a, b, c, true)); -----// 68
                                           ----else if ((ccw(a, b, c) < 0) != (ccw(a, b, d) < 0) &&-----// fa
                                           ----- (ccw(c, d, a) < 0) != (ccw(c, d, b) < 0)) x = 0;-----// bb
                                           ----double d = abs(B - A);-----// 06
                                           ----if (abs(u) < EPS) return 1; return 2;------// 6c
                                           int intersect(L(A, B), C(0, r), point & res1, point & res2) {------// ab
                                           ---- double h = abs(0 - closest_point(A, B, 0));-----// a6
                                           ---- point H = proj(0 - A, B - A) + A, v = normalize((B - A), sqrt(r*r - h*h)); // <math>7e
                                           --- res1 = H + v; res2 = H - v;-----// 60
                                           ---- if(abs(v) < EPS) return 1: return 2:-----// 9f
                                            }-----// 09
                                           ----point v = 0 - A; double d = abs(v);-----// 07
                                           ----if (d < r - EPS) return 0;------// b3
```

```
Reykjavík University
                                                             21
----double alpha = asin(r / d), L = sqrt(d*d - r*r);------// 64 #include "polygon.cpp"-----// 58
----v = normalize(v, L);------// 37 #define MAXN 1000-----// 09
----res1 = A + rotate(v, alpha); res2 = A + rotate(v, -alpha);------// 58 point hull[MAXN];------// 43
----return 2;------// a3 ----return abs(real(a) - real(b)) > EPS ?------// 44
----double theta = asin((rB - rA)/abs(A - B));-------// 09 ----sort(p.beqin(), p.end(), cmp);-------// 3d
----P.first = A + normalize(v, rA); P.second = B + normalize(v, rB); -------// 94 ------while (1 > 2 \& ccw(hull[1 - 2], hull[1 - 1], p[i]) >= 0) l--; ------// <math>20
----Q.first = A + normalize(u, rA); Q.second = B + normalize(u, rB);------// 8e ------hull[l++] = p[i];-------------------------// f7
}------// e6 ---}------// e7
                               ----int r = 1:-----// 59
6.2. Polygon. Polygon primitives.
                               ----for (int i = n - 2; i >= 0; i--) {------// 16
#include "primitives.cpp"-----// e0 -----if (p[i] == p[i + 1]) continue;------// c7
-----area += cross(p[i] - p[0], p[i + 1] - p[0]);-------// 7e }-------// 7e
----return area / 2; }-----// e1
double polygon_area(polygon p) { return abs(polygon_area_signed(p)); }------// 25 6.4. Line Segment Intersection. Computes the intersection between two line segments.
----for (int i = 0, j = n - 1; i < n; j = i++)------// 77 ------A = B = a; return abs(a - d) < EPS; }------// ee
-----return 0;------// cc -----return 0.0 <= p && p <= 1.0------// 8a
------if (CHK(real, p[i], q, p[j]) || CHK(real, p[j], q, p[i]))-------// 1f ----else if (abs(c - d) < EPS) {-------// 26
-----in = !in;------// b2 ------A = B = c; double p = progress(c, a,b);------// d9
----return in ? -1 : 1: }------------------------// 77 -------return 0.0 <= p && p <= 1.0---------------------// 8e
//--- polygon left, right;-----// 6b ---else if (collinear(a,b, c,d)) {------------// bc
//--- point it(-100, -100);------// c9 ------double ap = progress(a, c,d), bp = progress(b, c,d);-----// a7
//---- for (int i = 0, cnt = poly.size(); i < cnt; i++) {-------// 28 -------if (ap > bp) swap(ap, bp);-------// b1
//------ point p = poly[i], q = poly[i];------// 19 ------A = c + max(ap, 0.0) * (d - c);------// f6
//------ if (ccw(a, b, p) \le 0) left.push_back(p);------// 12 ------B = c + min(bp, 1.0) * (d - c);-------// 5c
//----- if (ccw(a, b, p) >= 0) right.push_back(p);------// e3 -----return true; }-----
//-----// myintersect = intersect where-----// 24 ----else if (parallel(a,b, c,d)) return false;-------// ca
//-----// (a,b) is a line, (p,q) is a line segment------// f2 ----else if (intersect(a,b, c,d, A, true)) {--------// 10
//----- if (myintersect(a, b, p, q, it))------// f0 -----B = A; return true; }------------------// bf
//-----------left.push_back(it), right.push_back(it);------// 21 ----return false;-------------------------// b7
//--- }------// 5e }------// 8b
// }-----// 37
                               6.5. Great-Circle Distance. Computes the distance between two points (given as latitude/longitude
6.3. Convex Hull. An algorithm that finds the Convex Hull of a set of points.
                               coordinates) on a sphere of radius r.
```

```
Reykjavík University
double gc_distance(double pLat, double pLong,------// 7b -----return point3d(x - p.x, y - p.y, z - p.z); }------// cc
-----// a4 ----point3d operator-() const {------// 2e
----pLat *= pi / 180; pLong *= pi / 180;-------// ee ------return point3d(-x, -y, -z); }-------// 77
----return r * acos(cos(pLat) * cos(pLong - qLong) +------// e3 ------return point3d(x * k, y * k, z * k); }------// 1f
-----sin(pLat) * sin(qLat));------// 1e ----point3d operator/(double k) const {------// dc
-----/<sub>60</sub> -----return point3d(x / k, y / k, z / k); }------//<sub>f0</sub>
-----return x * p.x + y * p.y + z * p.z; }-----// e6
6.6. Triangle Circumcenter. Returns the unique point that is the same distance from all three
                                             ----point3d operator*(P(p)) const {------// 96
points. It is also the center of the unique circle that goes through all three points.
                                             -----return point3d(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x); }------// 02
#include "primitives.cpp"-----// e0
                                            ----double length() const {------// 5c
point circumcenter(point a, point b, point c) {-----// 76
                                            -----return sqrt(*this % *this); }-----// c9
}-----// c3 ----double distTo(P(A), P(B)) const {------// d8
                                             -----// A and B must be two different points-----// 93
6.7. Closest Pair of Points. A sweep line algorithm for computing the distance between the closest
                                             -----return ((*this - A) * (*this - B)).length() / A.distTo(B); }------// 38
pair of points.
                                             ----point3d normalize(double k = 1) const {------// f0
#include "primitives.cpp"-----// e0
                                            -----// length() must not return 0-----// b8
-----// 85 -----return (*this) * (k / length()); }------// 46
------return abs(real(a) - real(b)) > EPS ?------// e9 -----point3d v = B - A;------// d9
-----real(a) < real(b) : imag(a) < imag(b); } };------// 53 -----return A + v.normalize((v % (*this - A)) / v.length()); }-----// 0c
struct cmpy { bool operator ()(const point &a, const point &b) {------// 6f ----point3d rotate(P(normal)) const {------// 15
----return abs(imaq(a) - imaq(b)) > EPS ?------// 0b -----// normal must have length 1 and be orthogonal to the vector-----// 0b
-----imag(a) < imag(b) : real(a) < real(b); } };------// a4 ---- return (*this) * normal; }-----// 35
double closest_pair(vector<point> pts) {------// f1 ----point3d rotate(double alpha, P(normal)) const {------// ee
----sort(pts.beqin(), pts.end(), cmpx());------// 0c -----return (*this) * cos(alpha) + rotate(normal) * sin(alpha); }-----// a8
----set<point, cmpy> cur;------// bd ----point3d rotatePoint(P(0), P(axe), double alpha) const{-------// f0
----set<point, cmpv>::const_iterator it, jt;------// a6 ------point3d Z = axe.normalize(axe % (*this - 0));------// 89
----double mn = INFINITY;------// f9 ------return 0 + Z + (*this - 0 - Z).rotate(alpha, 0); }------// 43
------while (real(pts[i]) - real(pts[l]) > mn) cur.erase(pts[l++]);------// 8b ------return abs(x) < EPS && abs(y) < EPS && abs(z) < EPS; }------// 64
-----jt = cur.upper_bound(point(INFINITY, imag(pts[i]) + mn));------// 39 -----return ((A - *this) * (B - *this)).isZero(); }------// 8c
-----cur.insert(pts[i]); }------// 82 -----return isOnLine(A, B) && ((A - *this) % (B - *this)) < EPS; }-----// 52
----return mn; }------// 4c ----bool isInSeqmentStrictly(L(A, B)) const {------// 73
                                             -----return isOnLine(A, B) && ((A - *this) % (B - *this)) < -EPS; }------// 1c
6.8. 3D Primitives. Three-dimensional geometry primitives.
                                             ----double getAngle() const {------// 20
#include <cmath>------// e5
                                             -----return atan2(y, x); }-----// 2a
#define P(p) const point3d &p-----// e5
                                            ----double getAngle(P(u)) const {-----// 19
#define L(p0, p1) P(p0), P(p1)------// 3c -----return atan2((*this * u).length(), *this % u); }-----// 2f
#define PL(p0, p1, p2) P(p0), P(p1), P(p2)------// 2d ----bool isOnPlane(PL(A, B, C)) const {------// c8
struct point3d {------return abs((A - *this) * (B - *this) * (C - *this)) < EPS; } };-----// 16
----point3d() : x(0), y(0), z(0) {}------// 8a ----if (abs((B - A) * (C - A) % (D - A)) > EPS) return 0;------// 3b
----point3d(double _x, double _y, double _z) : x(_x), y(_y), z(_z) {}------// 1c ----if (((A - B) * (C - D)).length() < EPS)------// 6c
----point3d operator+(P(p)) const {-------// dc -----return A.isOnLine(C, D) ? 2 : 0;------// 3d
------return point3d(x + p.x, y + p.y, z + p.z); }------// d4 ----point3d normal = ((A - B) * (C - B)).normalize();-----// 9b
----point3d operator-(P(p)) const {------// a7
```

```
Reykjavík University
                                                 ----}-----// b5
----double s1 = (C - A) * (D - A) % normal;-----// 1e
---0 = A + ((B - A) / (s1 + ((D - B) * (C - B) * normal))) * s1; ------// 6e
                                                   Another implementation that takes a binary predicate f, and finds an integer value x on the integer
int intersect(L(A, B), PL(C, D, E), point3d & 0) {------// ce
                                                 interval [a,b] such that f(x) \wedge \neg f(x-1).
----double V1 = (C - A) * (D - A) % (E - A);-----// 3c
                                                 ----double V2 = (D - B) * (C - B) % (E - B);-----// c8
                                                 ----assert(low <= high);-----// 19
----if (abs(V1 + V2) < EPS)-------// 26
                                                 ----while (low < high) {------// a3
-----return A.isOnPlane(C, D, E) ? 2 : 0;-----// cc
                                                 ------int mid = low + (high - low) / 2;-----// 04
---0 = A + ((B - A) / (V1 + V2)) * V1;
                                                 ------if (f(mid)) high = mid;-----// ca
                                                 -----else low = mid + 1;-----// 03
bool intersect(P(A), P(nA), P(B), P(nB), point3d &P, point3d &Q) {------// 24
----point3d n = nA * nB;-----// d3
                                                 ----assert(f(low));------// 42
----if (n.isZero()) return false;------// b2
                                                 ----return low;------// a6
----point3d v = n * nA;------// c7
                                                 }-----// d3
----P = A + (n * nA) * ((B - A) % nB / (v % nB));
---0 = P + n:
                                                 7.2. Ternary Search. Given a function f that is first monotonically increasing and then monotonic
----return true; }------// 1f
                                                 cally decreasing, ternary search finds the x such that f(x) is maximized.
                                                 template <class F>-----// d1
6.9. Polygon Centroid.
                                                 double ternary_search_continuous(double lo, double hi, double eps, F f) {-----// e7
#include "polygon.cpp"-----// 58
                                                 ----while (hi - lo > eps) {------// 3e
point polygon_centroid(polygon p) {-----// 79
                                                 ------double m1 = lo + (hi - lo) / 3, m2 = hi - (hi - lo) / 3;-----// e8
----double cx = 0.0, cy = 0.0;-----// d5
                                                 -----if (f(m1) < f(m2)) lo = m1;------// 1d
----double mnx = 0.0, mny = 0.0;-----// 22
                                                 -----else hi = m2:-----// b3
----int n = size(p);-----// 2d
----for (int i = 0; i < n; i++)------// 24
                                                 ----return hi;------// fa
-----/mnx = min(mnx, real(p[i])),-----// 6d
-----mny = min(mny, imag(p[i]));-----// 95
----for (int i = 0; i < n; i++)-----// df
                                                 7.3. 2SAT. A fast 2SAT solver.
-----p[i] = point(real(p[i]) - mnx, imag(p[i]) - mny);-----// c2
                                                 #include "../graph/scc.cpp"-----// c3
----for (int i = 0; i < n; i++) {------// 06
------int j = (i + 1) % n;------// d1
                                                 bool two_sat(int n, const vii& clauses, vi& all_truthy) {------// f4
-----cx += (real(p[i]) + real(p[j])) * cross(p[i], p[j]);-----// d5
                                                 ----all_truthy.clear();------// 31
-----cy += (imag(p[i]) + imag(p[j])) * cross(p[i], p[j]); }-----// 5a
                                                 ----vvi adj(2*n+1);-----// 7b
----return point(cx, cy) / 6.0 / polygon_area_signed(p) + point(mnx, mny); }---// 2f
                                                 ----for (int i = 0; i < size(clauses); i++) {-------// 9b
6.10. Formulas. Let a = (a_x, a_y) and b = (b_x, b_y) be two-dimensional vectors.
                                                 -----adj[-clauses[i].first + n].push_back(clauses[i].second + n);------// 17
                                                 -----if (clauses[i].first != clauses[i].second)------// 87
  • a \cdot b = |a||b|\cos\theta, where \theta is the angle between a and b.
                                                 -----adj[-clauses[i].second + n].push_back(clauses[i].first + n);-----// 93
  • a \times b = |a||b|\sin\theta, where \theta is the signed angle between a and b.
                                                 ----}------// d8
  • a \times b is equal to the area of the parallelogram with two of its sides formed by a and b. Half
                                                 ----pair<union_find, vi> res = scc(adj);------// 9f
   of that is the area of the triangle formed by a and b.
                                                 ----union_find scc = res.first;------// 42
                                                 ----vi dag = res.second;------// 58
                  7. Other Algorithms
                                                 ----vi truth(2*n+1, -1);------// 00
7.1. Binary Search. An implementation of binary search that finds a real valued root of the continuous
                                                 ----for (int i = 2*n; i >= 0; i--) {-------// f4
function f on the interval [a, b], with a maximum error of \varepsilon.
                                                 -----int cur = order[i] - n, p = scc.find(cur + n), o = scc.find(-cur + n); -\frac{1}{5}
-------double eps, double (*f)(double)) {---------// c0 ------if (p == o) return false;----------------------// 33
-------double mid = (low + high) / 2, cur = f(mid);-------// 75 -----truth[cur + n] = truth[p];--------// b3
------else if (0 < cur) high = mid;--------// e5 ------if (truth[p] == 1) all_truthy.push_back(cur);-------// 5c
```

```
Reykjavík University
------if (!ptr[i][j]) continue;-----// 35
7.4. Stable Marriage. The Gale-Shapley algorithm for solving the stable marriage problem.
                               -----int ni = i + 1, nj = j + 1;-----// b7
----queue<int> q;------// f6 ------// f6 ------// 81
----for (int i = 0; i < n; i++) q.push(i);------// fe ------ptr[i][j]->d = ptr[ni][j];-----// 71
----while (!q.empty()) {------// 55 ------ptr[ni][j]->u = ptr[i][j];-----// c4
------int curm = q.front(); q.pop();------// ab -------while (true) {------// c6
------int curw = m[curm][i];-------// cf ------if (i == rows || arr[i][nj]) break;------// 8d
-----q.push(eng[curw]);------// 8c -----ptr[i][j]->r = ptr[i][nj];-----// d5
-----else continue;-----// b4 ------ptr[i][nj]->l = ptr[i][j];------// 72
----}------head = new node(rows, -1);-------// 80
----return res;------head->r = ptr[rows][0];-------// 73
}------ptr[rows][0]->l = head;------// 3b
                               ------head->l = ptr[rows][cols - 1];-----// da
7.5. Algorithm X. An implementation of Knuth's Algorithm X, using dancing links. Solves the
                               -----ptr[rows][cols - 1]->r = head;------// 6b
Exact Cover problem.
                               ------for (int j = 0; j < cols; j++) {------// 97
bool handle_solution(vi rows) { return false; }------// 63
                              ------int cnt = -1;------// 84
struct exact_cover {------// 95
                              ------for (int i = 0; i <= rows; i++)-----// 96
----struct node {------// 7e
                              ------if (ptr[i][j]) cnt++, ptr[i][j]->p = ptr[rows][j];-----// cb
-----node *l. *r. *u. *d. *p:-----// 19
                              -----ptr[rows][j]->size = cnt;------// 59
------int row, col, size;-----// ae
                              ·····}
-----node(int _row, int _col) : row(_row), col(_col) {------// c9
                              ------for (int i = 0; i <= rows; i++) delete[] ptr[i];------// bf
------size = 0; l = r = u = d = p = NULL; }-----// c3
                              -----delete[] ptr;-----// 99
----}:-----// c1
                              ----}------------// c0
----int rows. cols. *sol:-----// 7b
                              ----#define COVER(c, i, j) \sqrt{\phantom{a}}-----// 6a
----bool **arr;-----// e6
                              ----node *head:-----// fe
                               ------for (node *i = c->d; i != c; i = i->d) \[\bigvert \]
----exact_cover(int _rows, int _cols) : rows(_rows), cols(_cols), head(NULL) {-// b6
                               -----arr = new bool*[rows];-----// cf
                               -----j->d->u = j->u, j->u->d = j->d, j->p->size--;-----// 16
-----sol = new int[rows];-----// 5f
                               ------for (int i = 0; i < rows; i++)------// 89
------arr[i] = new bool[cols], memset(arr[i], 0, cols);-----// 75
                               ----}------// 91
                              ----void set_value(int row, int col, bool val = true) { arr[row][col] = val; }-// 03
                              -----j->p->size++, j->d->u = j->u->d = j; \\\-----// b6
----void setup() {-------// 17 -----c->r->l = c->l->r = c;------// 91
-----node ***ptr = new node**[rows + 1];------// 35 ----bool search(int k = 0) {-------// bb
-----ptr[i] = new node*[cols];------// 0b -----vi res(k);------
------for (int j = 0; j < cols; j++)-------// f5 ------for (int i = 0; i < k; i++) res[i] = sol[i];-----// 75
-----sort(res.begin(), res.end());------// 89 -----sort(res.begin(), res.end());------// 87
------else ptr[i][j] = NULL;------// 32 -----return handle_solution(res);-----// 51
-----}------// 98
```

```
-----node *c = head->r. *tmp = head->r:------// 8e ---x -= 1461 * i / 4 - 31:--------// 09
------for (; tmp != head; tmp = tmp->r) if (tmp->size < c->size) c = tmp;---// 00 ---- j = 80 * x / 2447;------------------------// 3d
------for (node *r = c->d; !found && r != c; r = r->d) {--------// 88 ----y = 100 * (n - 49) + i + x;-----------// 70
------for (node *j = r->r; j != r; j = j->r) { COVER(j->p, a, b); }-----// 6f
-----found = search(k + 1);-----// f1
                                                                   8. Useful Information
------for (node *j = r->l; j != r; j = j->l) { UNCOVER(j->p, a, b); }----// ab
8.1. Tips & Tricks.
-----UNCOVER(c, i, j);-----// 3a
                                                   • How fast does our algorithm have to be? Can we use brute-force?
-----return found:------// 80
                                                   • Does order matter?
• Is it better to look at the problem in another way? Maybe backwards?
                                                   • Are there subproblems that are recomputed? Can we cache them?
                                                   • Do we need to remember everything we compute, or just the last few iterations of computation?
7.6. nth Permutation. A very fast algorithm for computing the nth permutation of the list \{0, 1, \dots, k-1\}
                                                   • Does it help to sort the data?
1}.
                                                   • Can we speed up lookup by using a map (tree or hash) or an array?
vector<int> nth_permutation(int cnt, int n) {------// 78
                                                   • Can we binary search the answer?
----vector<int> idx(cnt), per(cnt), fac(cnt);------// 9e
                                                   • Can we add vertices/edges to the graph to make the problem easier? Can we turn the graph
----for (int i = 0; i < cnt; i++) idx[i] = i;------// 80
                                                     into some other kind of a graph (perhaps a DAG, or a flow network)?
----for (int i = 1; i <= cnt; i++) fac[i - 1] = n % i, n /= i;-----// 04
                                                   • Make sure integers are not overflowing.
----for (int i = cnt - 1; i >= 0; i--)-----// 52
                                                   • Is it better to compute the answer modulo n? Perhaps we can compute the answer modulo
-----per[cnt - i - 1] = idx[fac[i]], idx.erase(idx.begin() + fac[i]);-----// 41
                                                     m_1, m_2, \ldots, m_k, where m_1, m_2, \ldots, m_k are pairwise coprime integers, and find the real answer
----return per:-----// 84
                                                     using CRT?
}-----// 97
                                                   • Are there any edge cases? When n = 0, n = -1, n = 1, n = 2^{31} - 1 or n = -2^{31}? When
                                                     the list is empty, or contains a single element? When the graph is empty, or contains a single
7.7. Cycle-Finding. An implementation of Floyd's Cycle-Finding algorithm.
                                                     vertex? When the graph contains self-loops? When the polygon is concave or non-simple?
ii find_cycle(int x0, int (*f)(int)) {------// a5
                                                   • Can we use exponentiation by squaring?
----while (t != h) t = f(t), h = f(f(h));
                                                 8.2. Fast Input Reading. If input or output is huge, sometimes it is beneficial to optimize the input
----h = x0:
                                                 reading/output writing. This can be achieved by reading all input in at once (using fread), and then
----while (t != h) t = f(t), h = f(h), mu++;------// 9d
                                                 parsing it manually. Output can also be stored in an output buffer and then dumped once in the end
----h = f(t);-----// 00
                                                 (using fwrite). A simpler, but still effective, way to achieve speed is to use the following input reading
----while (t != h) h = f(h), lam++;-----// 5e
                                                 method.
----return ii(mu, lam);-----// b4
                                                 void readn(register int *n) {------// dc
}------// 42
                                                 ----int sign = 1;------// 32
7.8. Dates. Functions to simplify date calculations.
                                                 ----register char c;------// a5
                                                ---*n = 0:-----// 35
int intToDay(int jd) { return jd % 7; }-----// 89
int dateToInt(int y, int m, int d) {------// 96
                                                 ----while((c = getc_unlocked(stdin)) != '\n') {------// f3
----return 1461 * (y + 4800 + (m - 14) / 12) / 4 +-----// a8
                                                -----switch(c) {------// θc
                                                ------case '-': sign = -1; break;------// 28
-----367 * (m - 2 - (m - 14) / 12 * 12) / 12 ------// d1
                                                -----/case ' ': goto hell;-----// fd
-----3 * ((y + 4900 + (m - 14) / 12) / 100) / 4 +------// be
                                                -----/case '\n': goto hell;-----// 79
-----d - 32075:-----// e0
                                                -----default: *n *= 10; *n += c - '0'; break;-----// c0
}-----// fa
                                                 ------}------// 2d
void intToDate(int jd, int &y, int &m, int &d) {------// a1
                                                ----}------// c3
----int x, n, i, i;-------// 00
----x = jd + 68569;-----// 11 hell:-----// ba
                                                ----*n *= sign:-----// a0
----n = 4 * x / 146097;-----// 2f
----x -= (146097 * n + 3) / 4;------// 58 }-----// 67
```

Reykjavík University

Reykjavík University 26

8.3. **128-bit Integer.** GCC has a 128-bit integer data type named __int128. Useful if doing multiplication of 64-bit integers, or something needing a little more than 64-bits to represent.

8.4. Worst Time Complexity.

n	Worst AC Algorithm	Comment
≤ 10	$O(n!), O(n^6)$	e.g. Enumerating a permutation
≤ 15	$O(2^n \times n^2)$	e.g. DP TSP
≤ 20	$O(2^{n}), O(n^{5})$	e.g. $DP + bitmask technique$
≤ 50	$O(n^4)$	e.g. DP with 3 dimensions $+ O(n)$ loop, choosing ${}_{n}C_{k} = 4$
$\leq 10^{2}$	$O(n^3)$	e.g. Floyd Warshall's
$\leq 10^{3}$	$O(n^2)$	e.g. Bubble/Selection/Insertion sort
$\leq 10^{5}$	$O(n \log_2 n)$	e.g. Merge sort, building a Segment tree
$\leq 10^{6}$	$O(n), O(\log_2 n), O(1)$	Usually, contest problems have $n \leq 10^6$ (e.g. to read input)

8.5. Bit Hacks.

- n & -n returns the first set bit in n.
- n & (n 1) is 0 only if n is a power of two.
- snoob(x) returns the next integer that has the same amount of bits set as x. Useful for iterating through subsets of some specified size.