Homework 2

Tianshuang (Ethan) Qiu September 12, 2021

1 Ross 4.15

For this we first prove that $\frac{1}{n} > 0 \forall n \in \mathbb{N}$. First we multiply both sides by n, since $n \in \mathbb{N}, n > 0$, the sign does not change.

We get LHS = 1 RHS = 0, since 1 > 0 is an axiom, therefore we know that 1/n > 0.

Now since we have proven $\frac{1}{n} \ge 0 \forall n \in \mathbb{N}$, by the ordered field axioms $a \le b$. Q.E.D.

2 Ross 4.16

Let the set in question be denoted by S. We will prove the claim via contradiction. We break its negative down into two cases: $\sup S < a$ or $\sup S > a$. For the former, let $x = \sup S | x \in \mathbb{R}$. By the denseness of rationals we see that there exists $q \in \mathbb{Q}s.t.x \leq q \leq a$. By the definition of this set we have $q \in S$. Therefore we have just found a member of this set that is greater than the supremum. This is a contradiction so x cannot be less than a. For the latter, we once again let $x = \sup S | x \in \mathbb{R}$. Consider a. a < x and by definition of S, $\forall s \in S, s < a$. We have found an upperbound that is less than our supremum. That is a contradiction so x cannot be greater than a. $\sup S = a$ Q.E.D.

3 Ross 8.2

3.1 a

Claim: $a_n \to 0$ $a_n = \frac{n}{n^2+1} \le \frac{n+1/n}{n^2+1} = \frac{1}{n}$ Let $\epsilon > 0$, we select our $N = \frac{1}{\epsilon}$. $\forall n > N, \frac{1}{n} < \epsilon$, thus the sequence converges.

- 3.2 c
- 3.3 c