# **Description du chiffrement DES**

# Schéma général – Schéma de Feistel & Fonction F :

- L'algorithme DES chiffre des blocs de 64 bits
- Il utilise une clé K de 56+8 bits (8 groupes de 7 bits + 1 bit de parité).
- Il exécute sur chacun des blocs de 64 bits, 16 rondes d'un schéma de Feistel.
- Chaque ronde utilise une clé K; partielle de 48 bits calculée à partir de la clé principale K.

### Rappel: une ronde du schéma de Feistel



Avant le schéma de Feistel, une permutation IP est appliquée sur le bloc de 64 bits :

Après le schéma de Feistel, la permutation IP<sup>-1</sup> est appliquée sur le bloc de 64 bits :

```
IP^{1} = 40 8 48 16 56 24 64 32 39 7 47 15 55 23 63 31 38 6 46 14 54 22 62 30 37 5 45 13 53 21 61 29 36 4 44 12 52 20 60 28 35 3 43 11 51 19 59 27 34 2 42 10 50 18 58 26 33 1 41 9 49 17 57 25
```

Description de la fonction F qui traite un demi bloc de 32 bits avec une clé de 48 bits :



• E est une fonction d'expansion (faisant passer le bloc de 32 bits à 48 bits). Les 32 bits b<sub>1</sub> . . . b<sub>32</sub> sont répétés de la manière suivante :

### Les boites de substitution - S-box :

Les boites S<sub>1</sub> à S<sub>8</sub> sont des boites de substitution.

Les bits sont pris par groupe de 6 :  $b_1b_2b_3b_4b_5b_6$ .

Pour chaque S-box, il existe un tableau à 4 lignes et 16 colonnes que l'on lit ainsi : à chaque entrée  $b_1b_2b_3b_4b_5b_6$ , on associe la valeur contenue dans la case de la ligne  $b_1b_6$  et de la colonne  $b_2b_3b_4b_5$ .

Par exemple, pour déterminer  $S_1(011011)$  il faut lire la ligne 01 et la colonne 1101 du tableau S-box 1 ; c'est-à-dire 0101.

### S-box 1 :

|    | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 00 | 1110 | 0100 | 1101 | 0001 | 0010 | 1111 | 1011 | 1000 | 0011 | 1010 | 0110 | 1100 | 0101 | 1001 | 0000 | 0111 |
| 01 | 0000 | 1111 | 0111 | 0100 | 1110 | 0010 | 1101 | 0001 | 1010 | 0110 | 1100 | 1011 | 1001 | 0101 | 0011 | 1000 |
| 10 | 0100 | 0001 | 1110 | 1000 | 1101 | 0110 | 0010 | 1011 | 1111 | 1100 | 1001 | 0111 | 0011 | 1010 | 0101 | 0000 |
| 11 | 1111 | 1100 | 1000 | 0010 | 0100 | 1001 | 0001 | 0111 | 0101 | 1011 | 0011 | 1110 | 1010 | 0000 | 0110 | 1101 |

#### S-box 2 :

|    | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 00 | 1111 | 0001 | 1000 | 1110 | 0110 | 1011 | 0011 | 0100 | 1001 | 0111 | 0010 | 1101 | 1100 | 0000 | 0101 | 1010 |
| 01 | 0011 | 1101 | 0100 | 0111 | 1111 | 0010 | 1000 | 1110 | 1100 | 0000 | 0001 | 1010 | 0110 | 1001 | 1011 | 0101 |
| 10 | 0000 | 1110 | 0111 | 1011 | 1010 | 0100 | 1101 | 0001 | 0101 | 1000 | 1100 | 0110 | 1001 | 0011 | 0010 | 1111 |
| 11 | 1101 | 1000 | 1010 | 0001 | 0011 | 1111 | 0100 | 0010 | 1011 | 0110 | 0111 | 1100 | 0000 | 0101 | 1110 | 1001 |

S-box 3 :

|    | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 00 | 1010 | 0000 | 1001 | 1110 | 0110 | 0011 | 1111 | 0101 | 0001 | 1101 | 1100 | 0111 | 1011 | 0100 | 0010 | 1000 |
| 01 | 1101 | 0111 | 0000 | 1001 | 0011 | 0100 | 0110 | 1010 | 0010 | 1000 | 0101 | 1110 | 1100 | 1011 | 1111 | 0001 |
| 10 | 1101 | 0110 | 0100 | 1001 | 1000 | 1111 | 0011 | 0000 | 1011 | 0001 | 0010 | 1100 | 0101 | 1010 | 1110 | 0111 |
| 11 | 0001 | 1010 | 1101 | 0000 | 0110 | 1001 | 1000 | 0111 | 0100 | 1111 | 1110 | 0011 | 1011 | 0101 | 0010 | 1100 |

• S-box 4:

|    | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 00 | 0111 | 1101 | 1110 | 0011 | 0000 | 0110 | 1001 | 1010 | 0001 | 0010 | 1000 | 0101 | 1011 | 1100 | 0100 | 1111 |
| 01 | 1101 | 1000 | 1011 | 0101 | 0110 | 1111 | 0000 | 0011 | 0100 | 0111 | 0010 | 1100 | 0001 | 1010 | 1110 | 1001 |
| 10 | 1010 | 0110 | 1001 | 0000 | 1100 | 1011 | 0111 | 1101 | 1111 | 0001 | 0011 | 1110 | 0101 | 0010 | 1000 | 0100 |
| 11 | 0011 | 1111 | 0000 | 0110 | 1010 | 0001 | 1101 | 1000 | 1001 | 0100 | 0101 | 1011 | 1100 | 0111 | 0010 | 1110 |

• S-box 5:

|    | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 00 | 0010 | 1100 | 0100 | 0001 | 0111 | 1010 | 1011 | 0110 | 1000 | 0101 | 0011 | 1111 | 1101 | 0000 | 1110 | 1001 |
| 01 | 1110 | 1011 | 0010 | 1100 | 0100 | 0111 | 1101 | 0001 | 0101 | 0000 | 1111 | 1010 | 0011 | 1001 | 1000 | 0110 |
| 10 | 0100 | 0010 | 0001 | 1011 | 1010 | 1101 | 0111 | 1000 | 1111 | 1001 | 1100 | 0101 | 0110 | 0011 | 0000 | 1110 |
| 11 | 1011 | 1000 | 1100 | 0111 | 0001 | 1110 | 0010 | 1101 | 0110 | 1111 | 0000 | 1001 | 1010 | 0100 | 0101 | 0011 |

S-box 6:

|    | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 00 | 1100 | 0001 | 1010 | 1111 | 1001 | 0010 | 0110 | 1000 | 0000 | 1101 | 0011 | 0100 | 1110 | 0111 | 0101 | 1011 |
| 01 | 1010 | 1111 | 0100 | 0010 | 0111 | 1100 | 1001 | 0101 | 0110 | 0001 | 1101 | 1110 | 0000 | 1011 | 0011 | 1000 |
| 10 | 1001 | 1110 | 1111 | 0101 | 0010 | 1000 | 1100 | 0011 | 0111 | 0000 | 0100 | 1010 | 0001 | 1101 | 1011 | 0110 |
| 11 | 0100 | 0011 | 0010 | 1100 | 1001 | 0101 | 1111 | 1010 | 1011 | 1110 | 0001 | 0111 | 0110 | 0000 | 1000 | 1101 |

S-box 7:

|    | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 00 | 0100 | 1011 | 0010 | 1110 | 1111 | 0000 | 1000 | 1101 | 0011 | 1100 | 1001 | 0111 | 0101 | 1010 | 0110 | 0001 |
| 01 | 1101 | 0000 | 1011 | 0111 | 0100 | 1001 | 0001 | 1010 | 1110 | 0011 | 0101 | 1100 | 0010 | 1111 | 1000 | 0110 |
| 10 | 0001 | 0100 | 1011 | 1101 | 1100 | 0011 | 0111 | 1110 | 1010 | 1111 | 0110 | 1000 | 0000 | 0101 | 1001 | 0010 |
| 11 | 0110 | 1011 | 1101 | 1000 | 0001 | 0100 | 1010 | 0111 | 1001 | 0101 | 0000 | 1111 | 1110 | 0010 | 0011 | 1100 |

S-box 8 :

|    | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
|----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 00 | 1101 | 0010 | 1000 | 0100 | 0110 | 1111 | 1011 | 0001 | 1010 | 1001 | 0011 | 1110 | 0101 | 0000 | 1100 | 0111 |
| 01 | 0001 | 1111 | 1101 | 1000 | 1010 | 0011 | 0111 | 0100 | 1100 | 0101 | 0110 | 1011 | 0000 | 1110 | 1001 | 0010 |
| 10 | 0111 | 1011 | 0100 | 0001 | 1001 | 1100 | 1110 | 0010 | 0000 | 0110 | 1010 | 1101 | 1111 | 0011 | 0101 | 1000 |
| 11 | 0010 | 0001 | 1110 | 0111 | 0100 | 1010 | 1000 | 1101 | 1111 | 1100 | 1001 | 0000 | 0011 | 0101 | 0110 | 1011 |

P est la permutation suivante :

```
P= 16 7 20 21 29 12 28 17 1 15 23 26 5 18 31 10 2 8 24 14 32 27 3 9 19 13 30 6 22 11 4 25
```

# Générateur des clés partielles :

 Chaque ronde du réseau de Feistel utilise une clé K<sub>i</sub> calculée à partir d'une clé utilisateur de 56 bits + 8 bits de parité. Pour construire ces clés partielles, deux permutations sont nécessaires ainsi que des rotations de un ou deux bits vers la gauche :

PC-1 est une permutation/compression sur 64 bits qui retourne 56 bits :

Les positions 8, 16, 24, 32, 40, 48, 56 et 64 sont ignorés (ce sont les bits de parité).

PC-2 est une permutation/compression sur 56 bits qui retourne 48 bits :

Les positions 9, 18, 22, 25, 35, 38, 43 et 54 sont ignorés.

 $R_1$ ,  $R_2$ ,  $R_9$  et  $R_{16}$  sont des rotations de un bit vers la gauche (*left shift x1*) sur des vecteurs de 28 bits.

 $R_3$ ,  $R_4$ ,  $R_5$ ,  $R_6$ ,  $R_7$ ,  $R_8$ ,  $R_{10}$ ,  $R_{11}$ ,  $R_{12}$ ,  $R_{13}$ ,  $R_{14}$  et  $R_{15}$  sont des rotations de deux bits vers la gauche (*left shift x2*) sur des vecteurs de 28 bits.

• Finalement, le schéma suivant décrit la génération des clés partielles  $K_i$ :

