2017-02-27-lec04

 $\forall a \in \mathbb{R}, \forall \epsilon > 0, \exists \delta > 0 \text{ such that } |x - a| < \delta \implies |f(x) - f(a)| < \epsilon$ Note that $f : \mathbb{R} \to \mathbb{R}$.

Well-defined mathematical statement: something that is clearly true or false, e.g., 1 + 1 = 3, 1 + 1 < 3, 1 = 5.

Something like x+1>3 is a well-defined statement for any particular choice of $x\in\mathbb{R}$.

Generally, suppose P(x) is a statement which has a well-defined truth value for all choices of $x \in S$.

Then we define

- $\exists x, P(x)$ to mean P(x) is true for at least one $x \in S$.
- $\forall x, P(x)$ to mean P(x) is true for all $x \in S$.
- $\exists x, (x+1>3)$ TRUE
- $\forall x, (x+1>3)$ FALSE

More generally, if you have a statement with many free variables, you can get well-defined mathematical statements by **quantifying** all the free variables.

$$P(x,y) := (y = x^3), x, y \in \mathbb{R}$$

- $\forall y, \exists x(y=x^3)$ means every real number has a cube root. (TRUE)
- $\exists x, \forall y (y = x^3)$. It's asserting the existence of a single real number x which is the cube root of all real numbers at once. (FALSE)

In English,

 $\forall y, \exists x, y = x^3$ is true for some real number x. (TRUE) $\exists x$, such that $y = x^3$ is true for all y. (FALSE) $\exists y, \forall x(y = x^3)$ – (FALSE) for the same reason $\forall, \exists y(Y = x^3)$ – (TRUE) Every real number has a cube. $\exists x, \exists y(y = x^3)$ – (TRUE) $\forall x, \forall y(y = x^3)$ – (FALSE)

Problem: Let a, b be real numbers. $(a, b \in \mathbb{R})$ Prove that the equation $ax^2 + bx = a$ has a real solution.

- 1. Translate this statement into formal logic.
- 2. Prove it.

Solution

- 1. $\forall a \in \mathbb{R}, \forall b \in \mathbb{R}, \exists x \in \mathbb{R}(ax^2 + bx = a)$
- 2. Want to solve $ax^2 + bx a = 0$.

Case 1:

$$x = \frac{-b \pm \sqrt{b^2 - 4a(-a)}}{2a} = \frac{-b \pm \sqrt{b^2 + 4a^2}}{2a}$$

Case 2: If a = 0, then this equation is bx = 0, so x = 0 is a solution.

What did a strawberry say to another strawberry? HOW DID WE GET INTO HIS JAM?

What did a wall say to a ceiling? I'LL MEET YOU AT THE CORNER. What does $\forall \forall \exists \exists$ mean? For all upside-down A, there exists a backward E.

Logical Connectives: Suppose P,Q well-defined mathematical statements,

- $\neg P$ means not P.
- $P \wedge Q$ means P and Q.
- $P \vee Q$ means P or Q.
- $P \implies Q$ means P implies Q.
- $P \iff Q$ means P if and only if Q.

P	Q	$P \wedge Q$	$P \lor Q$	$P \Longrightarrow Q$	$P \iff Q$
T	Т	Т	T	T	T
T	F	F	Т	F	F
F	Т	F	Т	Т	F
F	F	F	F	Т	Т

Claim: $\neg(P \land Q)$) is logically equivalent to $(\neg P) \lor (\neg Q)$.

For observation $P \Longrightarrow Q$ is not logically equivalent to $Q \Longrightarrow P$ which is the converse, but equivalent to $\neg Q \Longrightarrow \neg P$ which is the contrapositive.