Assignment 1 MATH 3090U

This homework is due Tuesday 19th September at 11:59pm. Answers without appropriate justification will receive no points.

- 1. For any undirected graph G, the **complement** of G, denoted G^C , is the graph consisting of the same set of nodes as G, such that two distinct nodes in G^C are adjacent in G^C if and only if they are *not* connected in G. That is, $V(G^C) = V(G)$, and for every $u, v \in V(G^C)$, $\{u, v\} \in E(G^C)$ if and only if $\{u, v\} \notin E(G)$.
 - (a) Let G be the following graph. Draw G^C and write down its adjacency matrix.

- (b) Let G be any graph. If ρ is the density of G, what is the density for G^C in terms of ρ ? Explain your answer.
- 2. Consider the following adjacency matrix:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 2 & 1 & 3 & 1 & 1 & 0 \end{bmatrix}.$$

Let G be the network with this adjacency matrix. Note that G is a weighted directed network.

- (a) Draw G. Note: to indicate the weight of an arc (directed edge), just write the weight next to the respective edge.
- (b) A sink node is defined as a node with in-arcs, but no out-arcs. Which nodes in G, if any, have this property?
- (c) The *in-strength* of a node i, denoted s_i^{in} , is the sum of the weights of all links from other vertices to i and the *out-strength* of a node i, denoted s_i^{out} is the sum of the weights of all links from i to other nodes. Find the in-strength and out-strength for each of the nodes in G.

- (d) Convert this adjacency matrix to an undirected, unweighted network H by doing the following:
 - Let V(H) = V(G).
 - Let $\{u,v\} \in E(H)$ if $(u,v) \in E(G)$ or if $(v,u) \in E(G)$ (or both!).

Write the adjacency matrix for H.

- (e) Calculate the average degree of H.
- (f) What is the density of H?
- (g) Draw H^C .
- 3. For each of the following statements, determine whether it is true or false. Justify your answers fully, with a proof or counterexample* as necessary.
 - (a) Definitions: A dominating vertex in a graph with n vertices is a vertex v with deg(v) = n 1. A pendent vertex is a vertex which is only adjacent to one other vertex.

True or false? It is impossible for a graph to have two dominating vertices and a pendent vertex.

- (b) **True or false?** It is impossible to draw a 4-regular graph on seven vertices.
- (c) Let G be a directed network. Consider the *total in-degree* (i.e. the sum of the in-degrees of every node in the network), and the *total out-degree* (defined analogously). Which of the following statements is **true**?
 - Total in-degree must be less than total out-degree
 - Total in-degree must be greater than total out-degree
 - Total in-degree must be equal to total out-degree
 - None of these hold true in all instances

^{*}A counterexample is an example that demonstrates something is false. For example, if I said "A network has to have at least one edge," you could say, "False. A network that's just an isolated node does not have any links." The nice thing about counterexamples is that you don't need to formally argue why something is false or provide a ton of examples; instead, you can just show one instance of the statement being false.

b) If p is the deasity of G then the classity of G^c must be 1-p. This is because the amount of nodes remains constant in both graphs but $E(G^c)$ contains all those edges not in E(G).

Let n=|V(G)|, we know also $n=|V(G^c)|$ and so |E(kn)|Can be the denominator for both p=|E(G)| and $p^c=|E(G)|$. |E(kn)|

Thus if $E(G^c)$ are all those edges not in E(G), then $E(Kn) = E(G) + E(G^c)$.

$$S_{a} = \frac{|E(k_{0})|}{|E(k_{0})|} = \frac{|E(G)|}{|E(k_{0})|}$$

$$\frac{|E(k_{0})|}{|E(k_{0})|} = \frac{|E(G)|}{|E(k_{0})|} + \frac{|E(G^{c})|}{|E(k_{0})|}$$

 $P^{c} = 1 - p$ $\therefore \text{ Density of } = 1 - p$ G^{c}

b) Node 3 qualifies as a sink mode.

c)
$$S_1^{in} = 2$$
 $S_2^{in} = 3$ $8_3^{in} = 5$ $S_4^{in} = 1$ $S_5^{in} = 2$ $8_6^{in} = 1$ $S_1^{out} = 1$ $S_2^{out} = 2$ $S_8^{out} = 0$ $S_4^{out} = 2$ $S_8^{out} = 1$ $S_6^{out} = 8$

Adjacency Matrix for H:

	_ 1	2	3	4	5	6	
1	0	1	0	0	0	1	
2	1	0	1	ı	0	1	
3	0	1	0		0	1	
4	0		0	Q	1	t	
5	0	Q	0	1	C)	1	
6	1	1	1	1	1	()	

e) Average degree of H:
$$c = \frac{2n}{n} = \frac{2(a)}{6} = \frac{18}{6} = \boxed{3}$$

f) Density of H:
$$p = \frac{2m}{n(a-1)} = \frac{2(a)}{6(5)} = \frac{18}{30} = 0.6$$

9) Hc:

Adjacency Matrix of Hc:

- 1 2 3 4 5 6

 1 0 0 1 1 0

 2 0 0 0 0 1 0

 3 1 0 0 1 1 0

 4 1 0 1 0 0 0

 5 1 1 1 0 0 0
- a) True. If a graph has 2 dominant vertices then every other vertex in the graph must have at the very least 2 adjacent vertices, namely, the two dominant vertices.
- b) False. A 4-regular graph nears k = 4 and we know there are 7 vertices meaning the amount of edges will be 4(7)/2 = 28/2 = 14 which is a whole number of edges and so such a graph can exist, here is an example:

c) Total in-degree must be equal to total out-degree because every
directed arch counts simulteneously as an additional in-degree
for one nocle and out-degree for another nocle. Thus, for
each in-degree there is an out-degree and vice -versa
resulting in counts always being equal for both attributes.