Question 1. Let A be a nonempty set. Prove that $\dim(c_{00}(A)) = \#A$.

Question 2. Give an example of an infinite-dimensional vector space X and a proper subspace Y of X such that $\dim(X) = \dim(Y)$.

Question 3. Let X be a vector space and let $\{Y_n\}_{n=1}^{\infty}$ be a sequence of subspace of X such that each Y_n is finite-dimensional and $Y_1 \subset Y_2 \subset \cdots$. Show that $Y = \bigcup_{n=1}^{\infty} Y_n$ is a subspace of X and that Y has countable dimension.

Question 4. Prove that the following statements are true:

- (a) If X is a vector space, the identity operator $id: X \to X$ given by id x = x for all $x \in X$ is a linear operator.
- (b) If X and Y are vector spaces, the zero operator $O: X \to Y$ given by $Ox = 0_Y$ for all $x \in X$ is a linear operator.
- (c) If $m, n \in \mathbb{N}$, $X = \mathbb{R}^n$, $Y = \mathbb{R}^m$, and $A = [a_{i,j}]$ is an $n \times m$ matrix, then $T_A : \mathbb{R}^m \to \mathbb{R}^n$ given by

$$T_A x = \left(\sum_{j=1}^m a_{1,j} x_j \quad \sum_{j=1}^m a_{2,j} x_j \quad \cdots \quad \sum_{j=1}^m a_{n,j} x_j\right)$$

for $x = (x_1, ..., x_m) \in \mathbb{R}^m$ is a linear operator.

(d) If $X = \mathcal{C}([0,1])$ and $Y = \mathbb{R}$, the expectation operator $\mathbb{E}: \mathcal{C}([0,1]) \to \mathbb{R}$ given by

$$\mathbb{E}f = \int_0^1 f(x)dx$$

for all $f \in \mathcal{C}([0,1])$ is a linear operator.

(e) If $X = \mathcal{C}([0,1])$ and $Y = \mathbb{R}$, for $x_0 \in [0,1]$, the dirac functional at x_0 , $\delta_{x_0} : \mathcal{C}([0,1]) \to \mathbb{R}$ given by

$$\delta_{x_0}(f) = f(x_0)$$

for all $f \in \mathcal{C}([0,1])$ is a linear operator.

- (f) If $X = \mathcal{C}^1([0,1])$ and $Y = \mathcal{C}([0,1])$, the differential operator $D: \mathcal{C}^1([0,1]) \to \mathcal{C}([0,1])$ given by Df = f' is a linear operator.
- (g) If $X = \mathcal{C}([0,1])$ and $Y = \mathcal{C}^1([0,1])$, the Volterra operator $V : \mathcal{C}([0,1]) \to \mathcal{C}^1([0,1])$ is a linear operator described as follows: for $f \in \mathcal{C}([0,1])$, $Vf : [0,1] \to \mathbb{R}$ is given by

$$(Vf)(x) = \int_0^x f(t)dt$$

for $x \in [0, 1]$.

Question 5. Let X, Y and Z be vector spaces and $T: X \to Y$, $S: Y \to Z$ be linear operators. Show that their composition $ST: X \to Z$ is a linear operator.

Question 6. Let X and Y be vector spaces and $T: X \to Y$ be a linear operator. Let B be a Hamel basis of Y. The following statements are equivalent:

- (a) T is onto.
- (b) $B \subset T[X]$

Question 7. Let X and Y be vector spaces.

- (i) Let $T: X \to Y$ be a linear operator and $A \subset X$ such that $T|_A$ is one-to-one, and T[A] is linearly independent. Prove that A is a linearly independent subset of X.
- (ii) Give an example of vector spaces X and Y, a linear operator $T: X \to Y$ and a linearly dependent subset A of X such that T[A] is linearly independent.

Question 8. Let X and Y be vector spaces, and Z be a subspace of X, and $T: Z \to Y$ be a linear operator. Show that there exists a linear operator $\hat{T}: X \to Y$ such that $\hat{T}|_Z = T$.

Question 9. Let X be a vector space and $T: X \to X$ be a linear operator. Then, T is a linear projection if and only if $T|_{T[X]} = \mathrm{id}$.

Question 10. Let X be a vector space with a Hamel basis B. Prove that X is algebraically isomorphic to $c_{00}(B)$.