Note for Fourier Multipliers

S. William

1 Lemmata of Inequality

Lemma 1.1 Assume $f \in \dot{H}^{m,p}(\mathbb{R}^n)$,

$$\| \triangle_h^m f \|_{L^p} \lesssim |h|^m \|f\|_{\dot{H}^{m,p}}.$$

Proof. Take case m = 1 for example. Set an auxiliary function

$$F(t) = \frac{\mathrm{d}f(x+th)}{\mathrm{d}t} = \nabla f(x+th) \cdot h$$

for any $x, h \in \mathbb{R}^n$. We complete the proof, integrating F form 0 to 1. \square The lemma bridges difference and differential calculus (see Miao's book and [3]). It appears in the proof of the equivalency of the norms of the function spaces.

Sequence space $\ell^{s,q}$ is defined as $\{\|a\| = (\sum_k \langle k \rangle^{sq} |a_k|^q)^{\frac{1}{q}} < \infty\}$ in the context of modulation spaces.

Lemma 1.2 (see [2]) for any R > 0,

$$\left(\int_{|x|>R} |K|^p\right)^{\frac{1}{p}} \lesssim \langle R \rangle^{-s} ||K||_{W(L^p,\ell^{s,1})}, s \ge 0.$$

Proof. Let $\Delta_k = \operatorname{supp} \phi_k$ and B_R is the ball with radius R about the origin. Obviously $\Delta_k \cap B_R \neq \emptyset$ implies $|k| > \frac{R}{2}$ for large R. Thus

$$\left(\int_{|x|>R} |K|^{p} dx\right)^{\frac{1}{p}} \leq \sum_{k} \left(\int_{|x|>R} |\phi(x-k)K(x)|^{p} dx\right)^{\frac{1}{p}}
\lesssim \sum_{|k|>R/2} \|\phi_{k}(x)K(x)\|_{p}
= \sum_{|k|>R/2} \langle k \rangle^{-s} \langle k \rangle^{s} \|\phi_{k}(x)K(x)\|_{p}
\lesssim \langle R \rangle^{-s} \sum_{k} \langle k \rangle^{s} \|\phi_{k}(x)K(x)\|_{p}
= \langle R \rangle^{-s} \|K\|_{W(L^{p}\ell^{s,1})}.$$
(1)

Since

$$W(L^p, \ell^1) \hookrightarrow L^p,$$
 (2)

for finite R bounded by a certain constant,

$$\left(\int_{|x|>R} |K|^p dx \right)^{\frac{1}{p}} \le \|K\|_p$$

\$\leq \|K\|_{W(L^p, \ell^1)}.\$

Since $W(L^p, \ell^{s,1}) \hookrightarrow W(L^p, \ell^1)$, we complete the proof. \square

Remark 1.1 One of more general forms of (2) is

$$W(X, \ell^1) \hookrightarrow X$$
,

where X is Banach function space.

Remark 1.2 $X^{s,p}$ denotes the function space with the norm

$$\sup_{R>0} \langle R \rangle^s (\int_{|x|>R} |K|^p)^{\frac{1}{p}}, s \geq 0,$$

that is extremely like Murrey spaces. We have

$$W(L^p, \ell^{s,1}) \hookrightarrow X^{s,p}$$
.

Remark 1.3 The key of the proof is (1). It is true for any unitary partition consisting of compactly supported functions $\{\psi_k\}$ and the distances between supports $\Delta_k = \operatorname{supp} \psi_k$ and the origin tents to infinity as $|k| \to \infty$.

Corollary 1.1

$$M_{2,1}^s \hookrightarrow \mathscr{F}X^{s,1}$$
.

With same method, for diadic decomposition (see [3]) we have

Lemma 1.3 for any r > 0,

$$\left(\int_{|x|>2^r} |K|^p\right)^{\frac{1}{p}} \lesssim 2^{-rs} ||K||_{W(L^p,\ell^{s,1})}, s \ge 0.$$

Remark 1.4 In the fact, it is just

$$W(L^p, \ell^{s,1}) \hookrightarrow X^{s,p},$$

where $\ell^{s,q}$ is the sequence space with norm $(\sum_k 2^{ksq} |a_k|^q)^{\frac{1}{q}}$.

Corollary 1.2

$$\dot{B}_{2,1}^s \hookrightarrow \mathscr{F}X^{s,1}.$$

Fact 1.1
$$\mathfrak{M}^1 = \mathscr{F}M_{1,\infty} \hookrightarrow \mathfrak{M}^p \hookrightarrow \mathscr{F}M_{p,\infty}$$
.

Notice
$$\mathfrak{M}^p = W(\mathcal{M}^p, \ell^{\infty})$$
. (see [1])

Fact 1.2
$$1 \in M^s_{\infty,1}, \mathscr{F}M_{1,\infty}$$
.

2 representation of Multipliers

 $\mathcal{D}(X,Y)$ represents the spaces of bounded operators $Tf(x)=d(x)f(x):X\to Y$, so $\mathcal{D}(X,Y)=\mathcal{M}(\mathscr{F}X,\mathscr{F}Y).$

Theorem 2.1 If $q_1 \leq q_2$, then

$$\mathcal{M}(M(X_1, \ell^{s_1, q_1}), M(X_2, \ell^{s_2, q_2})) = W(\mathcal{M}(X_1, X_2), \ell^{s_2 - s_1, \infty})$$

where $\|\psi_k f\|_{X_i} \lesssim \|f\|_{X_i}$. Similarly,

$$\mathcal{D}(W(X_1, \ell^{s_1, q_1}), W(X_2, \ell^{s_2, q_2})) = W(\mathcal{D}(X_1, X_2), \ell^{s_2 - s_1, \infty}),$$

where X_1, X_2 are solid.

References

- [1] A. Miyachi, F. Nicloa, S. Rivetti, A. Tabacco, and N. Tomita. Estimates for unimodular fourier multipliers on modulation space. *Proc. Amer. Math. Soc.*, 137, 2009.
- [2] Naohito Tomita. On the hormander multipier theorem and modulation spaces. *Appl. Comput. Harmon. Anal.*, 26:408–415, 2009.
- [3] Hans Triebel. Theory of Function Spaces. Birkhauser Verlag, 1983.