频率与概率

频率

频率的定义 设 Ω 为随机试验E的样本空间,事件 $A \subset \Omega$.

在相同条件下将试验E重复做n次,以m表示事件A在这

n次试验中发生的次数, $n = \frac{m}{n}$ 为A在这n次试验中的频率,

记为
$$f_n(A)$$
,即 $f_n(A) = \frac{m}{n}$

频率的稳定性

试验	(n=5)		(n=50)		(n=500)	
序号	n_H	f	n_H	f	n_H	f
/î\	2	/0.4	22	0.44	251	0.502
2	3	0.6	25	0.50	249	0.498
3	1	0.2	21	0.42	256	0.512
4	5	1.0	25	0.50	247	0.494
5	1	0.2	24	0.48	251	0.502
6	2	0.4	18	0.36	262	0.524
7/	4	0.8	27	0.54	258	0.516

频率有随机波动性但随 n 的增大, 频率呈现出稳定性

频 溪

非负性
$$0 \le f_n(A) \le 1$$

频率的性质

规范性
$$f(\Omega) = 1, f(\phi) = 0$$

可列可加性

 $A_1, \cdots A_n, \dots$ 是可列无穷

多个互不相容的事件

$$f(\sum_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} f(A_k)$$

概率的公理化定义

设 Ω 为随机试验E的样本空间, \mathcal{F} 为 Ω 上的事件域,

P为定义在F上的实值函数. 如果P满足

- 1) 非负性 $\forall A \in \mathcal{F}, P(A) \geq 0$;
- $P(\Omega) = 1;$
- 3) 可列可加性 对 \mathcal{F} 中任何可列无穷多个互斥的事件 A_1, A_2, \cdots

$$P\left(\sum_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} P(A_k)$$

则称P为F上的概率测度,简称概率;称 (Ω, \mathcal{F}, P) 为概率空间.

不可能事件概率为
$$P(\emptyset) = 0$$

$$P(\emptyset) = 0$$

证明提示
$$\Omega = \Omega + \emptyset + \emptyset + \cdots + \emptyset + \cdots$$
 可列可加 $\Omega = \emptyset = \emptyset$ $\Omega = \emptyset$

$$\mathbf{\Omega} \emptyset = \emptyset \quad \emptyset \emptyset = \emptyset$$

$$A = \emptyset \longrightarrow P(A) = 0$$

$$P(A) > 0 \implies A \neq \emptyset$$

思考

$$P(A) = 0 \implies A = \emptyset$$

有限可加性 $A_1, \cdots A_n$ 是 \mathcal{F} 中n 个两两互不相容的事件

两个事件的情形

$$AB = \emptyset \longrightarrow P(A + B) = P(A) + P(B)$$

可减性
$$A,B \in \mathcal{F}$$
, $A \subset B$ \longrightarrow $P(B-A) = P(B) - P(A) \ge 0$

证明提示

$$-A(B-A)=\emptyset$$

单调性
$$A,B \in \mathcal{F}, A \subset B \Longrightarrow P(A) \leq P(B)$$

$$P(A) \leq P(\Omega) = 1$$
 $0 \leq P(A) \leq 1$

$$\Omega = A + \overline{A}$$
 $P(\Omega) = 1$

逆事件的概率 $A \in \mathcal{F} \longrightarrow P(\overline{A}) = 1 - P(A)$

加法公式
$$A,B \in \mathcal{F} \longrightarrow P(A+B) = P(A) + P(B) - P(AB)$$

A AB

$$A + B = A + (B - A)$$

$$-A + B = A + (B - AB)$$

$$A(B-AB)=\emptyset$$

$$P(A+B)=P(A)+P(B-AB)$$

$$P(B-AB) = P(B) - P(AB)$$

$$P(A+B) = P(A) + P(B) - P(AB) \leftarrow$$

加法公式
$$A, B \in \mathcal{F} \longrightarrow P(A+B) = P(A) + P(B) - P(AB)$$

$$AB = \emptyset$$

$$P(A+B)=P(A)+P(B)$$

$$A_1, \dots A_n \in \mathcal{F} \implies P(\sum_{k=1}^n A_k) = \sum_{k=1}^n P(A_k) - \sum_{1 \le i < j \le n} P(A_i A_j)$$

$$+\sum_{1\leq i\leq j\leq k\leq n}P(A_{i}A_{j}A_{k})-\cdots+(-1)^{n-1}P(A_{1}A_{2}...A_{n})$$

例 设事件A,B的概率分别为 $\frac{1}{3}$ 和 $\frac{1}{2}$,求在下列三种情况下 $P(\overline{A}B)$ 的值

(2)
$$A \subset B$$

(3)
$$P(AB) = \frac{1}{8} > 0$$

$$A$$
 B Ω

$$B$$
 A Ω

$$\overline{A}B = B$$

$$\overline{A}B = B - A$$

$$\overline{A}B = B - AB$$

$$P(AB) = P(B)$$

$$P(\overline{A}B) = P(B) - P(A)$$

$$P(\overline{A}B) = P(B)$$
 $P(\overline{A}B) = P(B) - P(A)$ $P(\overline{A}B) = P(B) - P(AB)$

小 结

