Tabăra de pregătire a lotului național de informatică

Alexandria, 20 - 27 mai 2017

Baraj 3 - Juniori

Problema - piese

Autor: Constantin Gălățan

Colegiul Național "Liviu Rebreanu" Bistrița

Soluția 1 (50 puncte)

Se generează toate submulțimile mulțimii $\mathbf{t} = \{\mathbf{t}_1, \mathbf{t}_2, ..., \mathbf{t}_n\}$ cu bactracking și se compară sumele elementelor acestor submulțimi cu \mathbf{T} . Complexitatea soluției este $O(2^n)$.

Soluția 2 (100 puncte)

Se împarte mulțimea \mathbf{t} în două submulțimi: $\mathbf{tx} = \{\mathbf{t}_1, \mathbf{t}_2, ..., \mathbf{t}_{n/2}\}$ și $\mathbf{ty} = \{\mathbf{t}_{n/2+1}, ..., \mathbf{t}_n\}$. Se generează în mod separat toate submulțimile mulțimii \mathbf{tx} și toate submulțimile mulțimii \mathbf{ty} , reținându-se sumele acestora în șirurile \mathbf{sx} și \mathbf{sy} . Se ordonează șirurile \mathbf{sx} și \mathbf{sy} . Pentru fiecare sumă $\mathbf{sx}[\mathbf{i}]$ se caută în \mathbf{sy} cea mai mare valoare \mathbf{j} , astfel încât $\mathbf{sx}[\mathbf{i}] + \mathbf{sy}[\mathbf{j}] \leq \mathbf{T}$. Mulțimea corespunzătoare sumei $\mathbf{sx}[\mathbf{i}]$ reunită pe rând cu toate mulțimile $\mathbf{sy}[\mathbf{k}]$ $(0 \leq k \leq j)$ formează de asemenea submulțimi (variante) ale mulțimii pieselor. Această abordare reduce complexitatea la $O(2^{n/2})$ și este cunoscută sub numele Meet in the Middle.