FIRST STEP TO PRACTICAL MACHINE LEARNING

KNOWLEDGE SHARING FOR CPE/SKE STUDENTS

SIRAKORN LAMYAI

STUDENT, KASETSART U.

OCTOBER 30, 2018

BEFORE WE START...

Make sure these are installed on your computer.

This page is a guide for installing on Windows

- Python 3.6: Download and install at https://www.python.org
- NumPy, Scipy, Matplotlib, Scikit-learn, MLxtend: Run pip install numpy scipy matplotlib sklearn mlxtend

OUTLINE

- 1 Introduction to Machine Learning
 - What is Machine Learning? Traditional programming approach Machine learning approach
- 2 Machine Learning Problems
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning
- 3 Model
- 4 Machine Learning Process
- 5 Algorithms for Machine Learning Classification Problem
- 6 Problems for Machine Learning
 - Handwriting recognition
- 7 Neural Networks

INTRODUCTION TO MACHINE LEARNING

■ This is Recaptcha.

3 | 34

- This is Recaptcha.
 - ► Recaptcha helps stop millions of spam a day.

- This is Recaptcha.
 - Recaptcha helps stop millions of spam a day.
 - ▶ In some old days, we have to type Captcha texts to distinguish ourself from bots.

- This is Recaptcha.
 - ► Recaptcha helps stop millions of spam a day.
 - ▶ In some old days, we have to type Captcha texts to distinguish ourself from bots.
 - ► How is it possible that with a single click, an automated system can distinguish bots from humans?

TRADITIONAL PROGRAMMING APPROACH

MACHINE LEARNING APPROACH

IN OTHER WORDS...

Machine Learning

Machine Learning

= Data + Data analysis algorithm

Machine Learning

Data + Data analysis algorithmAdapt to change

MACHINE LEARNING PROBLEMS

Types of Machine Learning Problems

Types of Machine Learning problems

1. Supervised learning

Types of Machine Learning Problems

- 1. Supervised learning
- 2. Unsupervised learning

Types of Machine Learning problems

- 1. Supervised learning
- 2. Unsupervised learning
- 3. Reinforcement learning

■ Given a **training set** for the data, find a **model** to **generalise** well to **unseen** data.

- Given a training set for the data, find a model to generalise well to unseen data.
- Two main supervised learning problems

- Given a training set for the data, find a model to generalise well to unseen data.
- Two main supervised learning problems
 - ► Classification: On the discrete data

- Given a training set for the data, find a model to generalise well to unseen data.
- Two main supervised learning problems
 - ► Classification: On the discrete data
 - ► Regression: On the continuous data

- Given a **training set** for the data, find a **model** to **generalise** well to **unseen** data.
- Two main supervised learning problems
 - ► Classification: On the discrete data
 - ► Regression: On the continuous data
- Example problems: Spam E-mail detection, Facial recognition

Unsupervised Learning

■ Discover hidden structure in non-labelled data.

Unsupervised Learning

- Discover **hidden** structure in **non-labelled** data.
- Example: Clustering, Generative models

REINFORCEMENT LEARNING

MODEL

MODEL

Model

■ A result of the combination between...

Model

- A result of the combination between...
 - ► a **method** to recognise the data, and

MODEL

- A result of the combination between...
 - ► a **method** to recognise the data, and
 - ► sample datas for such the method

Model

- A result of the combination between...
 - ▶ a **method** to recognise the data, and
 - ► sample datas for such the method

Data

MODEL

- A result of the combination between...
 - a method to recognise the data, and
 - sample datas for such the method

Determine which group should the purple dot be in (red/green/blue) by checking the colour of its nearest dot.

Data

Method

■ We're going to write our **first own** machine learning algorithm called **k-Nearest Neighbour** (k-NN)

- We're going to write our **first own** machine learning algorithm called **k-Nearest Neighbour** (k-NN)
 - ► k-NN is known to be very simple, with its concept as

- We're going to write our **first own** machine learning algorithm called **k-Nearest Neighbour** (k-NN)
 - \blacktriangleright k-NN is known to be very simple, with its concept as

k-NN algorithm

To classify label of a data point, get *k* nearest data points to the data point, and select the major label among those data points.

Coding time!

■ Train

- Train
- Test

- Train
- Test

(There'll be more of this, trust me.)

What is the bad way to choose k?

What is the bad way to choose *k*?

■ What if we choose k = # of all points?

What is the bad way to choose *k*?

- What if we choose k = # of all points?
 - ► What will happen if our dataset's got 3 labels of A, B, C with 10, 20, and 30 data points of each?

What is the bad way to choose *k*?

- What if we choose k = # of all points?
 - ► What will happen if our dataset's got 3 labels of A, B, C with 10, 20, and 30 data points of each?
 - Answer: Our model will always answer the labels with the highest data point count.

What is the bad way to choose *k*?

- What if we choose k = # of all points?
 - ► What will happen if our dataset's got 3 labels of A, B, C with 10, 20, and 30 data points of each?
 - Answer: Our model will always answer the labels with the highest data point count.
- What if we choose k = 1?

What is the bad way to choose *k*?

- What if we choose k = # of all points?
 - ► What will happen if our dataset's got 3 labels of A, B, C with 10, 20, and 30 data points of each?
 - Answer: Our model will always answer the labels with the highest data point count.
- What if we choose k = 1?
 - ► Let's try!

Coding time!

■ We separate our dataset into 2 parts: the **training set** and **testing set**

- We separate our dataset into 2 parts: the training set and testing set
 - ▶ Most of the time, the testing set will be around 10-25% of the entire dataset

- We separate our dataset into 2 parts: the training set and testing set
 - ▶ Most of the time, the testing set will be around 10-25% of the entire dataset
 - ► What will happen if we train on the testing set?

- We separate our dataset into 2 parts: the training set and testing set
 - ▶ Most of the time, the testing set will be around 10-25% of the entire dataset
 - ► What will happen if we train on the testing set?
 - What will happen if we test on the training set?

- We separate our dataset into 2 parts: the **training set** and **testing set**
 - ▶ Most of the time, the testing set will be around 10-25% of the entire dataset
 - ► What will happen if we train on the testing set?
 - What will happen if we test on the training set?
 - Cheating! Like letting the model remembers the answer instead of generalising the data pattern.

- We separate our dataset into 2 parts: the **training set** and **testing set**
 - ▶ Most of the time, the testing set will be around 10-25% of the entire dataset
 - ► What will happen if we train on the testing set?
 - ► What will happen if we test on the training set?
 - Cheating! Like letting the model remembers the answer instead of generalising the data pattern.
 - ► In other words, don't test and train model on the same set of data.

CHOOSING THE BEST k

CHOOSING THE BEST k

■ Train with the training set, to let our model know how will the data looks like.

Choosing the best k

- Train with the training set, to let our model know how will the data looks like.
- **Test** with the testing set, to see on how our model performs.

Choosing the best k

- Train with the training set, to let our model know how will the data looks like.
- **Test** with the testing set, to see on how our model performs.

Warning! This is a simplified Machine Learning model training process, there are more to concerns!

Which decision region is good?

Which decision region is good?

Underfit: The model fails to recognise data pattern

Which decision region is good?

Underfit: The model fails to recognise data pattern

Overfit: The model remembers data pattern instead of generalising.

Which decision region is good?

Underfit: The model fails to recognise data pattern

Good fit: The model recognises data pattern **generally**

Overfit: The model **remembers** data pattern instead of generalising.

Good model must generalise

PARAMETER OPTIMISATION

- Actually, the key point in *k*-NN algorithm is choosing *k* points with the least **distant**.
- What is **distant**?

NORM FOR k-NN ALGORITHM

Norm

In linear algebra, a **norm** is a function that assigns a strictly positive length or size to each vector in a vector space - except for the zero vector, which is assigned a length of zero.

Given \vec{x} as an N-dimension vector of $\begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}$

- \blacksquare l_1 Norm: $|x|_1 = \sum_{i=0}^N |x_i|$ (Manhattan)
- l_2 Norm: $|\mathbf{x}|_2 = \sqrt{\sum_{i=0}^N x_i^2}$ (Euclidian)
- l_p Norm: $|x|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$ (Minkowski)

ALGORITHMS FOR MACHINE LEARNING CLASSIFI-

CATION PROBLEM

ALGORITHMS FOR MACHINE LEARNING CLASSIFICATION PROBLEM

k-NN is a very simple intuition for machine learning algorithms. However, there exists more algorithm that performs well to other problems. Example algorithms:

- Naïve Bayes
- SVM
- Decision Tree
- Logistic Regression

Naïve Bayes

	Gender	Hair
1	М	Long
2	M	Short
3	F	Long
4	F	Long
5	F	Short

Bayes Theorem

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A) \times P(A)}{P(B)}$$

Can we guess the gender from hair's length?

- $P(\text{Male}|\text{Long hair}) = \frac{1}{3}$
- $P(\text{Female}|\text{Long hair}) = \frac{2}{3}$

Therefore, we guess that the long-haired person is more likely to be a female.

SUPPORT VECTOR MACHINES (SVM)

- Goal: to draw a line to separate groups of data
- Ideal good line: maximising the distant between the line and classes of data points
- What if the data is not linearly separable? Kernel tricks

DECISION TREE

- Creating an if-else conditions automatically
- Nested conditions with a parameter to determine how does the separating of the "tree" performs.

Figure: xkcd - Compiling

Figure: xkcd - Compiling

PROBLEMS FOR MACHINE LEARNING

■ This is a 7-segment display.

- This is a 7-segment display.
- It consists of a bulb labelled from A-G that could form a number.

- This is a 7-segment display.
- It consists of a bulb labelled from A-G that could form a number.

Problem

When the list of the bulb that went on were given, can we determine the number?

Problem

When the list of the bulb that went on were given, can we determine the number?

Problem

When the list of the bulb that went on were given, can we determine the number?

Not only yes, but easily yes!

```
if led_on == (b, c):
    return 1
elif led_on == (a, b, g, e, d):
    return 2
```

. . .

HANDWRITING

Problem

When the image of the handwriting were given, can we determine the number?

HANDWRITING

Problem

When the image of the handwriting were given, can we determine the number?

With an **explicit algorithm**? Obviously no! There are too many ways of drawing the number!

■ 28*28 pixel images of handwritten numbers (0-9)

- 28*28 pixel images of handwritten numbers (0-9)
- 60,000 training images

- 28*28 pixel images of handwritten numbers (0-9)
- 60,000 training images
- 10,000 testing images

k-NN WITH MNIST

- Training: Pretty fast, no calculations on training phase
- Testing: *thinking*
 - ▶ 60,000 data points to calculate the distant + 10,000 data points to test
 - ► = 600.000,000 calculations to be made (this excludes sorting, of which is a $\mathcal{O}(n)$ process)
 - ► = (relatively) slow