Local SGD for non-i.i.d. data

Konstantin Mishchenko
Work done together with
Ahmed Khaled and Peter Richtárik

Problem

Problem

$$\min_{x} \frac{1}{M} \sum_{m=1}^{M} f_{m}(x)$$

$$Convex$$

In practice, usually a neural network

Problem

$$\min_{x} \frac{1}{M} \sum_{m=1}^{M} f_m(x)$$

$$f_m(x) = \mathbb{E}_{\xi} f_m(x; \xi)$$

$$\min_{x} \frac{1}{M} \sum_{m=1}^{M} f_m(x)$$

$$x_{t+1}^m = \begin{cases} \hat{x}_{t+1}, & \text{if } t \bmod H = 0\\ x_t^m - \gamma \nabla f_m(x_t^m; \xi_t^m), & \text{otherwise} \end{cases}$$

$$\min_{x} \frac{1}{M} \sum_{m=1}^{M} f_m(x)$$

$$x_{t+1}^m = \begin{cases} \frac{1}{M} \sum_{j=1}^M (x_t^j - \gamma \nabla f_j(x_t^j; \xi_t^j)), & \text{if } t \mod H = 0\\ x_t^m - \gamma \nabla f_m(x_t^m; \xi_t^m), & \text{otherwise} \end{cases}$$

$$\min_{x} \frac{1}{M} \sum_{m=1}^{M} f_m(x)$$

$$x_{t+1}^m = \begin{cases} \hat{x}_{t+1}, & \text{if } t \text{ mod } H = 0 \\ x_t^m - \gamma \nabla f_m(x_t^m; \xi_t^m), & \text{otherwise} \end{cases}$$

$$H=1\longrightarrow \text{minibatch SGD}$$

 $H=T\longrightarrow \text{one-shot averaging}$

$$x_{t+1}^m = x_t^m - \gamma \nabla f_m(x_t^m)$$

The Variance of Local GD

$$x_{t+1}^m = x_t^m - \gamma \nabla f_m(x_t^m)$$

$$\sigma_f^2 \stackrel{\text{def}}{=} \frac{1}{M} \sum_{m=1}^M \|\nabla f_m(x_*)\|^2$$

Analysis difficulties in local GD

$$x_{t+1}^m = x_t^m - \gamma \nabla f_m(x_t^m)$$

$$\hat{x}_t \stackrel{\text{def}}{=} \frac{1}{M} \sum_{m=1}^{M} x_t^m$$

Analysis difficulties in local GD

$$x_{t+1}^m = x_t^m - \gamma \nabla f_m(x_t^m)$$

$$\hat{x}_t \stackrel{\text{def}}{=} \frac{1}{M} \sum_{m=1}^{M} x_t^m$$

$$g_t \stackrel{\text{def}}{=} \frac{1}{M} \sum_{m=1}^{M} \nabla f_m(x_t^m)$$

$$V_t \stackrel{\text{def}}{=} \frac{1}{M} \sum_{m=1}^{M} \|x_t^m - \hat{x}_t\|^2$$

Choose H such that $H \leq \frac{\sqrt{T}}{\sqrt{M}}$, then $\gamma = \frac{\sqrt{M}}{4L\sqrt{T}} \leq \frac{1}{4HL}$, and hence

$$f(\hat{x}_T) - f(x_*) \le \frac{8L||x_0 - x_*||^2}{\sqrt{MT}} + \frac{3M\sigma_f^2 H^2}{2LT}.$$

To get a convergence rate of $1/\sqrt{MT}$ we can choose $H=O(T^{1/4}M^{-3/4})$, which implies a total number of $\Omega(T^{3/4}M^{3/4})$ communication steps. If a rate of $1/\sqrt{T}$ is desired instead, we can choose a larger $H=O(T^{1/4})$.

Plots

Plots

$$x_{t+1}^{m} = x_{t}^{m} - \gamma \nabla f_{m}(x_{t}^{m}; \xi_{t}^{m})$$

$$\mathbb{E}_{\xi} \|\nabla f_m(x;\xi) - \nabla f_m(x)\|^2 \le \sigma^2$$

$$\mathbb{E}_{\xi} \|\nabla f_m(x;\xi) - \nabla f_m(x)\|^2 \le 4LD_{f_m}(x,x_*) + 2\sigma^2$$

$$x_{t+1}^{m} = x_{t}^{m} - \gamma \nabla f_{m}(x_{t}^{m}; \xi_{t}^{m})$$

$$\mathbb{E}_{\xi} \|\nabla f_m(x;\xi) - \nabla f_m(x)\|^2 \le 4LD_{f_m}(x,x_*) + 2\sigma^2$$

$$\sigma_{\text{dif}} \stackrel{\text{def}}{=} \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{\xi} \|\nabla f_m(x_*, \xi)\|^2$$

$$x_{t+1}^{m} = x_{t}^{m} - \gamma \nabla f_{m}(x_{t}^{m}; \xi_{t}^{m})$$

$$\mathbb{E}_{\xi} \|\nabla f_m(x;\xi) - \nabla f_m(x)\|^2 \le 4L D_{f_m}(x,x_*) + 2\sigma^2$$

$$\sigma_{\text{dif}} \stackrel{\text{def}}{=} \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{\xi} \|\nabla f_m(x_*, \xi)\|^2$$

$$D_f(x,y) = f(x) - f(y) - \langle \nabla f(y), x - y \rangle$$

Choose
$$H$$
 such that $H \leq \frac{\sqrt{T}}{\sqrt{M}}$, then $\gamma = \frac{\sqrt{M}}{8L\sqrt{T}} \leq \frac{1}{8HL}$ and $\mathbb{E}f(\hat{x}_T) - f(x_*) \leq \frac{32L\|\hat{x}_0 - x_*\|^2}{\sqrt{MT}} + \frac{5\sigma_{\text{dif}}^2}{2L\sqrt{MT}} + \frac{\sigma_{\text{dif}}^2M(H-1)^2}{4LT}$.

Choose
$$H$$
 such that $H \leq \frac{\sqrt{T}}{\sqrt{M}}$, then $\gamma = \frac{\sqrt{M}}{8L\sqrt{T}} \leq \frac{1}{8HL}$ and $\mathbb{E}f(\hat{x}_T) - f(x_*) \leq \frac{32L\|\hat{x}_0 - x_*\|^2}{\sqrt{MT}} + \frac{5\sigma_{\text{dif}}^2}{2L\sqrt{MT}} + \frac{\sigma_{\text{dif}}^2M(H-1)^2}{4LT}$.

Optimal
$$H$$
 is $H = 1 + \lfloor T^{1/4}M^{-3/2} \rfloor$

Choose
$$H$$
 such that $H \leq \frac{\sqrt{T}}{\sqrt{M}}$, then $\gamma = \frac{\sqrt{M}}{8L\sqrt{T}} \leq \frac{1}{8HL}$ and $\mathbb{E}f(\hat{x}_T) - f(x_*) \leq \frac{32L\|\hat{x}_0 - x_*\|^2}{\sqrt{MT}} + \frac{5\sigma_{\text{dif}}^2}{2L\sqrt{MT}} + \frac{\sigma_{\text{dif}}^2M(H-1)^2}{4LT}$.

Optimal
$$H$$
 is $H = 1 + \lfloor T^{1/4}M^{-3/2} \rfloor$
Improves to $H = 1 + \lfloor T^{1/2}M^{-3/2} \rfloor$
if $\mathbb{E}\|\nabla f_m(x;\xi) - \nabla f_m(x)\|^2 \le \sigma^2$

Plot

Open questions

Meta-Learning

We can learn an "improvable" model

Open questions

Meta-Learning

We can learn an "improvable" model

$$\min_{x} \frac{1}{m} \sum_{m=1}^{M} f_m(x - \gamma \nabla f_m(x))$$

Reference

Better Communication Complexity for Local SGD arXiv:1909.04746

First Analysis of Local GD on Heterogeneous Data arXiv:1909.04715

NeurIPS workshop on Federated Learning http://federated-learning.org/fl-neurips-2019/