

Definições

Um circuito de **primeira ordem** é caracterizado por uma **equação diferencial de primeira ordem**

As análises realizadas em circuitos puramente resistivos (R) resultavam apenas em equações algébricas. A partir desta aula iremos incorporar indutores (L) e capacitores (C) nas análises, estes componentes associados a resistores (RC ou RL) resultaram em equações diferenciais

Tipos de resposta RC

Resposta Natural (descarga)

Resposta Forçada (carga)

Resposta natural ou carga ou resposta sem fonte, se refere ao comportamento de corrente ou tensão do circuito, sem a presença de uma fonte

Resposta forçada ou carga ou resposta ao degrau, se refere ao comportamento de corrente ou tensão do circuito, com a presença de uma fonte

A tensão do capacitor não muda de forma abrupta

 $\mathbf{0}^- \to representa$ o instante anterior ao chaveamento $\mathbf{0}^+ \to representa$ o instante postareior ao chaveamento

$$v_c(0^+) = v_c(0^-) = V_0$$

Análise dos nós (nó superior capacitor)

$$i_c + i_R = 0$$

$$C \frac{dv_c}{dt} + \frac{v_c - v_s}{R} = 0$$

$$\frac{dv_c}{dt} = -\frac{v_c - v_s}{RC}$$

Diferenciando em relação ao tempo

$$dv_c = -\frac{v_c - v_s}{RC}dt$$

$$\frac{1}{v_c - v_s}dv_c = -\frac{1}{RC}dt$$

Integrando ambos os lados

$$\frac{1}{v_c - v_s} dv_c = -\frac{1}{RC} dt$$

$$\int_{V_0}^{v_c(t)} \frac{1}{v_c - v_s} dv_c = \int_0^t -\frac{1}{RC} dt$$

$$\ln(v_c - v_s) \begin{vmatrix} v_c(t) \\ V_0 \end{vmatrix} = -\frac{t}{RC} \begin{vmatrix} t \\ 0 \end{vmatrix}$$

$$\ln(v_c(t) - v_s) - \ln(V_0 - v_s) = -\frac{t}{RC}$$

$$\ln\left(\frac{v_c(t) - v_s}{V_0 - v_s}\right) = -\frac{t}{RC}$$

$$\frac{v_c(t) - v_s}{V_0 - v_s} = e^{-\frac{t}{RC}}$$

$$v_c(t) - v_s = (V_0 - v_s)e^{-\frac{t}{RC}}$$

$$v_c(t) = V_S + (V_0 - V_s)e^{-\frac{t}{RC}}$$

$$v_c(t) = V_S + (V_0 - V_s)e^{-\frac{t}{RC}}$$

Caso o capacitor não possua uma tensão inicial:

$$V_0 = 0$$

$$v_c(t) = V_S \cdot (1 - e^{-\frac{t}{RC}})$$

Para calcularmos a corrente no capacitor, basta derivarmos a tensão. Sabemos que:

$$i_c(t) = C \frac{dv_c}{dt} \qquad v_c(t) = V_S + (V_0 - V_S)e^{-\frac{t}{RC}}$$

$$i_c(t) = \frac{(V_S - V_0)}{R} e^{-\frac{t}{RC}}$$

$$i_c(t) = \frac{V_s}{R} e^{-\frac{t}{RC}} \rightarrow se V_0 = 0$$

Como observado nos gráficos anteriores, a constante...

$$\frac{1}{RC}$$
 ou $\frac{1}{\tau}$ onde $\tau = RC$

...faz referência ao tempo de carga (ou descarga) do capacitor (S.I. tempo=seg.). Quando o argumento da exponencial tende a menos infinito, a exponencial tende a zero. Como RC está relacionado ao tempo, essa constante recebeu a nomenclatura de **constante de tempo** ($\tau = RC$).

Neste exemplo a constante de tempo (tau) é igual a:

$$au = RC = 1m \cdot 1K = 1s$$
 ** A unidade de tal é o segundo

Tempo	$e^{-rac{t}{ au}}$	Tensão	Corrente	%
$t = 1\tau$	0,36788	6,3212V	0,36788mA	63,212%
$t=2\tau$	0,13534	8,6466V	0,13534mA	86,466%
$t = 3\tau$	0,04979	9,5021V	0,04979mA	95,021%
$t = 4\tau$	0,01832	9,8168V	0,01832mA	98,168%
$t = 5\tau$	0,00674	9,9326V	0,00674mA	99,326%

$$v_c(5\tau) = 10 \cdot (1 - e^{-\frac{5\tau}{\tau}})$$

$$v_c(t) = 10 \cdot (1 - e^{-\frac{t}{\tau}})$$

$$i_c(t) = \frac{V_s}{R} e^{-\frac{t}{\tau}}$$

Resposta transiente: resposta temporária do circuito que se extinguirá com o tempo

$$v_{completa} = v_{estac} + v_{trans}$$

$$v(t) = v(\infty) + (v(0) - v(\infty)) \cdot e^{-\frac{(t-t_0)}{\tau}}$$

Resposta em regime estacionário: comportamento um longo tempo após excitação

A resposta natural de um circuito RC avalia a descarga do capacitor.

Uma vez que o capacitor possua energia armazenada ($V_0 \neq 0$) e a diferença de potencial do circuito seja menor que a diferença de potencial do capacitor, o capacitor passará, durante um período transiente, a fornecer energia ao sistema, por meio de um contra fluxo de cargas

Para "economizarmos" a dedução da resposta natural do circuito RC, vamos utilizar o mesmo circuito da dedução da resposta forçada, porém considerando que: $V_s = 0$ e $V_0 \neq 0$

Resposta forçada:

$$v_c(t) = V_S + (V_0 - V_s)e^{-\frac{t}{\tau}} \qquad \tau = RC$$

Resposta natural: $(V_0 \neq 0 \ e \ V_S = 0)$

Resposta natural:
$$(V_0 \neq 0 \ e \ V_S = \frac{1}{C} C$$
 $v_c(t) = V_0 \cdot e^{-\frac{t}{\tau}} \quad \tau = RC$

Por que a corrente é negativa?

Porque deduzimos a relação de corrente baseado nos parâmetros do circuito anterior (resposta forçada)

Quando carregamos o capacitor, a corrente está na direção da queda de tensão, entretanto, quando o capacitor descarrega, a corrente muda de direção e passa a fluir na elevação de tensão (similar a uma fonte geradora). Diferente da tensão (integral) que não pode variar de forma brusca, a corrente (derivada) pode variar de forma brusca.

Exemplo: Qual o tempo para alcançar aproximadamente 99% da carga (5τ) do capacitor, qual o tempo para descarregar aproximadamente 99%, como serão os gráficos da tensão e da corrente do capacitor?

Exemplo: A chave do circuito permaneceu na posição 1 por um longo período, instantaneamente passou para a posição 2 (t=0), encontre as equações que expressão o comportamento de v e i. Analise os instantes 0^-e 0^+ .

Exemplo: A chave do circuito permaneceu na posição 1 por um longo período, em t=0 a chave muda instantaneamente para a posição 2, encontre as equações que expressam o comportamento de v e i. Analise os instantes $0^-e 0^+$.

$$v(0^-) = v(0^+) = V_0$$

 $V_0 = 10V$ Comportamento em regime estacionário Circuito aberto

$$i(0^-) = 0$$

$$i(0^+) = -\frac{V_0}{200} = -\frac{10}{200} = -50mA$$

$$au=0$$
, 2 $e^{\frac{1}{ au}}=5$

$$\tau = 0, 2 \ e^{\frac{1}{\tau}} = 5$$
 $v(t) = 10 \cdot e^{-5t}V$

$$i(t) = -50 \cdot e^{-5t} mA$$

Exercício: A chave da figura abaixo se encontra na posição A há um longo tempo. Em t=0, a chave muda instantaneamente para a posição B. Determine v(t) pata t>0.

$$v_c(t) = 30 - 15 \cdot e^{-0.5t}V$$

Exemplo: A chave da figura abaixo se encontra na posição A há um longo tempo. Em t=0, a chave muda instantaneamente para a posição B. Determine v(t) pata t>0.

$$V_0 = 24 \cdot \frac{5K}{3K + 5K} = 15V$$

$$\tau = 4K \cdot 0.5m = 2s \quad \frac{1}{\tau} = 0.5$$

$$v_c(t) = V_S + (V_0 - V_S)e^{-\frac{t}{RC}}$$

$$v_c(t) = 30 + (15 - 30)e^{-0.5t}$$

$$v_c(t) = 30 - 15 \cdot e^{-0.5t}V$$

Exemplo: A chave da figura abaixo se encontra na posição A há um longo tempo. Em t=0, a chave muda instantaneamente para a posição B. Determine v(t) pata t>0.

* Considerando o tempo da carga

$$v_c(t) = 30 - 15 \cdot e^{-0.5t}V$$

Exercício: Quando t=0 a chave é posicionada em A, calcule o tempo necessário para que o capacitor atinja aproximadamente 86% da sua carga (2τ) e a tensão neste instante . Considere que o capacitor não possui carga inicial.

$$2\tau = 1,875s$$
 $v(2\tau) = 12,97V$

Exercício: Quando t=0 a chave é posicionada em A, calcule o tempo necessário para que o capacitor atinja aproximadamente 86% da sua carga (2τ) e a tensão neste instante . Considere que o capacitor não possui carga inicial.

Primeiro calculamos o equivalente de Thévenin em relação aos terminais do capacitor

$$V_{th} = 24 \cdot \frac{5K}{3K + 5K} = 15V$$

$$R_{th} = 3K \mid |5K = 1,875K\Omega|$$

$$\tau = R_{th}C = 1,875K \cdot 0,5m = 0,9375s$$

$$2\tau = 2 \cdot 0.9375 = 1.875s$$

$$v_c(t) = V_{th} \cdot (1 - e^{-\frac{t}{\tau}})$$

$$v_c(t) = 15 \cdot (1 - e^{-\frac{t}{0.9375}})$$

$$v(2\tau)=12,97V$$

$$v_c(2\tau) = 15 \cdot (1 - e^{-2})$$

Exercício: Quando t=0 a chave é posicionada em A, calcule o tempo necessário para que o capacitor atinja aproximadamente 86% da sua carga (2τ) e a tensão neste instante . Considere que o capacitor não possui carga inicial.

PROF. HENRIQUE AMORIM

Exercício: Considere o mesmo circuito. Analise $i(0^-)$ e $i(0^+)$ no instante que a chave muda para B. Caso a fonte de 30 seja substituída por uma fonte de 5V, como ficariam os novos $i(0^-)$ e $i(0^+)$

Comportamento da corrente no capacitor

Comportamento da tensão no capacitor

165

145

10s

Time

125

85

25

0 V(C1:2,0)

45

6s

205

185