LICENCE 3 – ALGÈBRE LINÉAIRE AVANCÉE

R. Abdellatif et O. Garnier

TD 2 – Produit tensoriel d'espaces vectoriels et de modules

I) Produit tensoriel d'espaces vectoriels

Dans toute cette section, on désigne par \mathbb{K} un corps.

Exercice 1. —

Soit \mathbb{L}/\mathbb{K} une extension finie de corps et $n \geq 1$ un entier.

1. (a) Montrer que l'on a un isomorphisme naturel de K-espaces vectoriels de la forme

$$\mathbb{L} \otimes_{\mathbb{K}} \mathbb{K}[X] \simeq \mathbb{L}[X] \ .$$

- (b) Est-ce aussi un isomorphisme d'anneaux? De K-algèbres?
- 2. (a) Montrer que l'on a un isomorphisme naturel de K-espaces vectoriels de la forme

$$\mathbb{L} \otimes_{\mathbb{K}} \mathbb{K}^n \simeq \mathbb{L}^n$$
.

(b) Montrer que l'on peut naturellement étendre cet isomorphisme en un isomorphisme de \mathbb{L} -espaces vectoriels.

Exercice 2. —

Soit A un anneau intègre de corps des fractions K.

- 1. Montrer que pour tout K-espace vectoriel V, le A-module $K \otimes_A V$ est isomorphe à V.
- 2. Soient V et W deux espaces vectoriels sur K.
 - (a) Montrer que les structures de K-espace vectoriel sur $V \otimes_A W$ respectivement définies par la multiplication sur V et par la multiplication sur W sont les mêmes.
 - (b) En déduire que le K-espace vectoriel $V \otimes_A W$ est naturellement isomorphe à $V \otimes_K W$.
 - (c) Ces assertions restent-elles valables si K est un corps arbitraire contenant A?

Exercice 3. —

Soit A un anneau intègre de corps des fractions K.

- 1. Soient V et W deux K-espaces vectoriels. Montrer que pour tous éléments non nuls $v \in V$ et $w \in W$, on a $v \otimes w \neq 0$.
- 2. Soit M un A-module. On rappelle que M_{tor} désigne l'ensemble des éléments de A-torsion de M. Montrer que l'on dispose d'un isomorphisme de A-modules de la forme

$$K \otimes_A M \simeq K \otimes_A (M/M_{tor})$$
.

Exercice 4. —

1. Démontrer que l'on a un isomorphisme naturel de K-espaces vectoriels de la forme

$$\mathbb{K}[X] \otimes_K \mathbb{K}[Y] \simeq \mathbb{K}[X,Y]$$
.

- 2. Quel est l'image sous cet isomorphisme d'un tenseur élémentaire?
- 3. L'isomorphisme qui précède est-il aussi un isomorphisme d'anneaux?

R. Abdellatif et O. Garnier

TD 2 – Produit tensoriel d'espaces vectoriels et de modules

Exercice 5. —

A quel \mathbb{Q} -espace vectoriel est isomorphe $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$?

Exercice 6. —

Soient V et W deux \mathbb{K} -espaces vectoriels de dimension finie dont on fixe des bases respectives $\mathcal{V} = \{v_i\}_{1 \leq i \leq r}$ et $\mathcal{W} = \{w_i\}_{1 \leq i \leq s}$.

- 1. Rappeler pour quoi $V \otimes_{\mathbb{K}} W$ est un \mathbb{K} -espace vectoriel de dimension finie et en donner une base.
- 2. Montrer que pour toutes applications \mathbb{K} -linéaires $(f,g) \in \operatorname{End}_{\mathbb{K}}(V) \times \operatorname{End}_{\mathbb{K}}(W)$, il existe une unique application \mathbb{K} -linéaire $f \otimes g \in \operatorname{End}_{\mathbb{K}}(V \otimes_{\mathbb{K}} W)$ telle que :

$$\forall (v, w) \in V \times W, (f \otimes g)(v \otimes w) = f(v) \otimes g(w) .$$

- 3. Déterminer la matrice de $f \otimes g$ dans la base $(v_i \otimes w_j)_{1 \leq i \leq r, 1 \leq j \leq s}$ à l'aide des matrices $A = \operatorname{Mat}_{\mathcal{V}}(f)$ et $B = \operatorname{Mat}_{\mathcal{W}}(g)$.
- 4. En déduire la valeur de $Tr(f \otimes g)$ en fonction de Tr(f) et Tr(g).

Exercice 7. —

On suppose que \mathbb{K} est un corps de caractéristique différente de 2 et l'on considère un \mathbb{K} -espace vectoriel de dimension finie V dont on fixe une base $\mathcal{V} = \{v_i\}_{1 \leq i \leq r}$.

- 1. Démontrer que la formule suivante définit une action du groupe $\mathbb{Z}/2\mathbb{Z}=\{1,-1\}$ sur le \mathbb{K} -espace vectoriel $V\otimes_{\mathbb{K}}V: \forall\ 1\leq i,j\leq r,\ (-1)\cdot(v_i\otimes v_j)=v_j\otimes v_i.$
- 2. Notons $\operatorname{Sym}^2(V)$ l'ensemble des points fixes pour cette action, et $\Lambda^2(V)$ l'ensemble des vecteurs envoyés sur leur opposé par l'action de -1. Etant donnés deux indices i, j, on pose

$$v_i v_j := \frac{1}{2} (v_i \otimes v_j + v_j \otimes v_i)$$
 et $v_i \wedge v_j := \frac{1}{2} (v_i \otimes v_j - v_j \otimes v_i)$.

3. Démontrer que l'on a une décomposition en somme directe de la forme

$$V \otimes_{\mathbb{K}} V = \operatorname{Sym}^2(V) \oplus \Lambda^2(V)$$
.

4. Démontrer que $\operatorname{Sym}^2(V)$ est un \mathbb{K} -espace vectoriel de dimension $\frac{r(r+1)}{2}$ engendré par la famille $(v_iv_j)_{1\leq i,j\leq r}$ et que $\Lambda^2(V)$ est un \mathbb{K} -espace vectoriel de dimension $\frac{r(r+1)}{2}$ engendré par la famille $(v_i \wedge v_j)_{1\leq i,j\leq r}$.

II) Produit tensoriel de modules : quelques calculs classiques

Exercice 8. —

- 1. Pour tous entiers premiers distincts p, q, montrer que le \mathbb{Z} -module $\mathbb{Z}/p\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/q\mathbb{Z}$ est nul.
- 2. Démontrer que pour tous entiers naturels non nuls m,n, on a un isomorphisme de \mathbb{Z} -modules

$$\mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/m\mathbb{Z} \simeq \mathbb{Z}/\operatorname{pgcd}(m,n)\mathbb{Z}$$
.

LICENCE 3 – ALGÈBRE LINÉAIRE AVANCÉE

R. Abdellatif et O. Garnier

TD 2 - Produit tensoriel d'espaces vectoriels et de modules

Exercice 9. —

- 1. Montrer que $M := \mathbb{Q}/\mathbb{Z}$ est naturellement muni d'une structure de \mathbb{Z} -module.
- 2. Montrer que pour tout entier naturel $n \geq 1$, l'application de multiplication par n définit un élement surjectif de $\operatorname{End}_{\mathbb{Z}}(M)$.
- 3. Montrer la nullité du \mathbb{Z} -module $M \otimes_{\mathbb{Z}} \mathbb{Q}$.
- 4. Montrer que pour tout entier $n \geq 1$, le \mathbb{Z} -module $M \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z}$ est nul.
- 5. A quel \mathbb{Z} -module bien connu est isomorphe $M \otimes_{\mathbb{Z}} M$?

Exercice 10. —

Soit I l'idéal de $A = \mathbb{Z}[X]$ engendré par 2 et par X. Autrement dit, on pose $I := (2, X) \subset A$. On note $a := 2 \otimes_A X - X \otimes_A 2$.

- 1. Montrer que a est un élement non nul de $I \otimes_A I$.
- 2. Montrer que a est à la fois un élément de 2-torsion et de X-torsion dans $I \otimes_A I$.
- 3. Montrer que le sous-A-module de $I \otimes_A I$ engendré par a est isomorphe à A/I.

III) Produit tensoriel de modules : quelques propriétés supplémentaires

Dans toute cette section, on désigne par A un anneau commutatif non nul.

Exercice 11. —

Démontrer que pour tous entiers naturels non nuls m, n, on a un isomorphisme de A-modules

$$A^n \otimes A^m \simeq A^{n+m} .$$

Exercice 12. —

Montrer que si M est un A-module libre de rang $n \geq 2$ et de base $\{e_1, \ldots, e_n\}$, alors l'élément $e_1 \otimes e_1 + e_2 \otimes e_2 \in M \otimes_A M$ n'est pas un tenseur simple.

Exercice 13. —

1. Soient M, N et P des A-modules. Montrer qu'il existe un isomorphisme canonique de A-modules

$$M \otimes_A (N \otimes_A P) \simeq (M \otimes_A N) \otimes_A P$$
.

2. Soient M un A-module et I un idéal de A. Montrer qu'il existe un isomorphisme canonique de A-modules

$$M/IM \simeq M \otimes_A A/I$$
.

- 3. Soient I et J deux idéaux de A.
 - (a) Montrer qu'il existe un isomorphisme canonique de A-modules

$$(A/I) \otimes_A (A/J) \simeq A/(I+J)$$
.

(b) Montrer que si I et J sont des idéaux premiers entre eux, on a $(A/I) \otimes_A (A/J) = \{0\}$.

TD 2 – Produit tensoriel d'espaces vectoriels et de modules

Exercice 14. —

Soit $A \to R$ un morphisme d'anneaux commutatifs. Montrer que pour tous A-modules M et N, il existe un unique isomorphisme de R-modules

$$R \otimes_A (M \otimes_A N) \simeq (R \otimes_A M) \otimes_R (R \otimes_A N)$$

envoyant $r \otimes (m \otimes n)$ sur $r((1 \otimes m) \otimes (1 \otimes n))$.

Exercice 15. —

Soient M_1, N_1, M_2, N_2 des A-modules et soient $u_1 : M_1 \to N_1$ et $u_2 : M_2 \to N_2$ des applications A-linéaires.

1. Montrer qu'il existe une unique application A-linéaire $u_1 \otimes u_2 : M_1 \otimes_A M_2 \to N_1 \otimes_A N_2$ vérifiant :

$$\forall (m_1, m_2) \in M_1 \times M_2, (u_1 \otimes u_2)(m_1 \otimes m_2) = u_1(m_1) \otimes u_2(m_2).$$

2. Montrer que pour toutes applications A-linéaires $w_1: N_1 \to P_1$ et $w_2: N_2 \to P_2$, on a

$$(w_1 \circ u_1) \otimes (w_2 \circ u_2) = (w_1 \otimes w_2) \circ (u_1 \otimes u_2) .$$

- 3. Démontrer que si u_1 et u_2 sont surjectives, alors $u_1 \otimes u_2$ est elle aussi surjective.
- 4. Dispose-t-on d'une propriété analogue pour l'injectivité?

Exercice 16. —

Etant donnés deux entiers naturel non nuls m,n, à quelle A-algèbre de polynômes est isomorphe $A[X_1,\ldots,X_n]\otimes_A A[Y_1,\ldots,Y_m]$?

Exercice 17. —

Etant donnés une A-algèbre B, un entier naturel $r \geq 1$ et un idéal I de $A[X_1, \ldots, X_r]$, à quelle B-algèbre est isomorphe $(A[X_1, \ldots, X_r]/I) \otimes_A B$?

Exercice 18. —

A quel anneau est isomorphe $\mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R}$?

Exercice 19. —

A quelle \mathbb{Q} -algèbre est isomorphe $\mathbb{Q}(\sqrt{2}) \otimes_{\mathbb{Q}} \mathbb{R}$?

Exercice 20. —

A quelle \mathbb{Q} -algèbre est isomorphe $\mathbb{Q}(i) \otimes_{\mathbb{Q}} \mathbb{Q}(i)$?