

Yoav Kallus

Santa Fe Institute

Stochastic Topology and Thermodynamic Limits ICERM, Providence
October 17, 2016

Clustering of the phase space $\sum_{\Sigma_{l}}$

Clustering of the phase space

2 / 18

Clustering of the phase space $\sum_{\Sigma_{|_{\sim}}}$

k-SAT clustering

Theorem

 β , γ , θ , δ and $\epsilon_k \to 0$ exist such that for a random k-SAT formula with n variables and $m = \alpha n$ clauses, where

$$(1+\epsilon_k)2^k\log(k)/k \le \alpha \le (1-\epsilon_k)2^k\log(2)$$

the solution can is partitioned w.h.p. into clusters, s.t.

- there are $\geq \exp(\beta n)$ clusters,
- any cluster has $\leq \exp(-\gamma n)$ of all solutions,
- ullet solutions in distinct clusters are $\geq \delta$ n apart, and
- any connecting path violates $\geq \theta$ n clauses along it.

Clustering phenomenology

FIGURE 14.30: A refined phase diagram of random k-SAT. Gray blobs represent frozen clusters, i.e., those where $\Theta(n)$ variables take fixed values. Above α_{rigid} , almost all clusters are frozen, and we believe that this is responsible for the average-case hardness of random k-SAT.

Clustering phenomenology

All about connected components of the configuration space. What about higher dimensional topological invariants?

Moore & Mertens, The Nature of Computation

5 disks in a square

Carlsson, Gorham, Kahle, & Mason, Phys. Rev. E 85, 011303 (2012)

The perceptron – Betti numbers

The perceptron – persistence homology

Stochastic topology, a different criticality

Stochastic topology, a different criticality

d fixed, $n \to \infty$: structure only at local scale $d, n \to \infty$, $d \sim exp(n^2)$: no spatial structure $d, n \to \infty$, $d \sim n$: structure at all scales

The sphere packing problem

Packing problem restricted to lattices

Restricted to lattices, what is the densest packing structure?

n	L	
2	A_2	Lagrange (1773)
3	$D_3 = A_3$	Gauss (1840)
4	D_4	Korkin & Zolotarev (1877)
5	D_5	Korkin & Zolotarev (1877)
6	E_6	Blichfeldt (1935)
7	E_7	Blichfeldt (1935)
8	E_8	Blichfeldt (1935)
24	Λ_{24}	Cohn & Kumar (2004)

 $L = A\mathbb{Z}^n$

$$L = A\mathbb{Z}^n$$
, so $\mathcal{L} = GL_n(\mathbb{R})$

$$L = A\mathbb{Z}^n$$
, so $\mathcal{L} = GL_n(\mathbb{R})$

But $A\mathbb{Z}^n$ and $RA\mathbb{Z}^n$ are isometric if R is a rotation.

 $L = A\mathbb{Z}^n$, so $\mathcal{L} = O(n) \backslash GL_n(\mathbb{R})$

But $A\mathbb{Z}^n$ and $RA\mathbb{Z}^n$ are isometric if R is a rotation.

 $L = A\mathbb{Z}^n$, so $\mathcal{L} = O(n) \backslash GL_n(\mathbb{R}) / GL_n(\mathbb{Z})$

But $A\mathbb{Z}^n$ and $RA\mathbb{Z}^n$ are isometric if R is a rotation.

But $A\mathbb{Z}^n$ and $AQ\mathbb{Z}^n$ are the same lattice if $Q\mathbb{Z}^n = \mathbb{Z}^n$.

 $L = A\mathbb{Z}^n$, so $\mathcal{L} = O(n) \backslash GL_n(\mathbb{R}) / GL_n(\mathbb{Z})$

But $A\mathbb{Z}^n$ and $RA\mathbb{Z}^n$ are isometric if R is a rotation.

But $A\mathbb{Z}^n$ and $AQ\mathbb{Z}^n$ are the same lattice if $Q\mathbb{Z}^n = \mathbb{Z}^n$.

 $O(n)\backslash GL_n(\mathbb{R}) = \mathcal{S}_{>0}^n \subset \operatorname{Sym}^n$, the space of symmetric, positive definite matrices: take $G = A^T A$.

We are interested in the lattices with packing radius ≥ 1 : $\{G \in \mathcal{S}_{>0}^n : \mathbf{n} \cdot G\mathbf{n} \geq 1 \text{ for all } \mathbf{n} \in \mathbb{Z}^n\}.$

We are interested in the lattices with packing radius ≥ 1 : $\{G \in \mathcal{S}_{>0}^n : \mathbf{n} \cdot G\mathbf{n} \geq 1 \text{ for all } \mathbf{n} \in \mathbb{Z}^n\}.$

We are interested in the lattices with packing radius ≥ 1 : $\{G \in \mathcal{S}_{>0}^n : \mathbf{n} \cdot G\mathbf{n} \geq 1 \text{ for all } \mathbf{n} \in \mathbb{Z}^n\}.$

The polytope is locally finite, and has finitely many faces modulo $GL_n(\mathbb{Z})$ action

We determinant (equivalently, density) gives a filtration of the space

Lattice RCP

K, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)

Pair correlations and quasicontacts

K, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)

Contact force distribution

K, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)

Topology of the space of lattices

PERFECT FORMS AND THE COHOMOLOGY OF MODULAR GROUPS

	n	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	$\Sigma_n^{\star}(GL_5(\mathbb{Z}))$	2	5	10	16	23	25	23	16	9	4	3						
	$\Sigma_n\left(GL_5(\mathbb{Z})\right)$					1	7	6	1	0	2	3						
ſ	$\Sigma_n^*(GL_6(\mathbb{Z}))$		3	10	28	71	162	329	589	874	1066	1039	775	425	181	57	18	7
ſ	$\Sigma_n (GL_6(\mathbb{Z}))$						3	46	163	340	544	636	469	200	49	5		
	$\Sigma_n^{\star}(SL_6(\mathbb{Z}))$		3	10	28	71	163	347	691	1152	1532	1551	1134	585	222	62	18	7
ſ	$\Sigma_n(SL_6(\mathbb{Z}))$			3	10	18	43	169	460	815	1132	1270	970	434	114	27	14	7

FIGURE 1. Cardinality of Σ_n and Σ_n^* for N=5,6 (empty slots denote zero).

	n	6	7	8	9	10	11	12	13	14	15	16
	Σ*	6	28	115	467	1882	7375	26885	87400	244029	569568	1089356
Г	Σ_n				1	60	1019	8899	47271	171375	460261	955128
	n	17	18	19	20	21	22	23	24	25	26	27
г	n Σ*	17 1683368	18 2075982	19 2017914	20 1523376	21 876385	22 374826	23 115411	24 24623	25 3518	26 352	27

Figure 2. Cardinality of Σ_n and Σ_n^* for $GL_7(\mathbb{Z})$.

Elbaz-Vincent, Gangl, & Soulé, Perfect forms and the cohomology of modular groups, arXiv:1001.0789

The perceptron – persistence homology

