

Name	Matric. No.
Kristian Surya Dinata	S2043845
Tey Yi Jie	17081752
Ani Yeap	17218658
Chan Jie Min	S2141167

Problem Statement

A business currently produces and sells three types of homemade snacks:

Given their existing resources, they wonder what quantity they should produce of each product to **maximize profits**.

Existing Resources

	Input Factor	Resource Availability	Unit		
0	Flour	350	kg		
1	Sugar	250	kg		
2	Vegetable Oil	50	kg		
3	Salt	15	kg		
4	Cheese	100	kg		
5	Spices	50	kg		
6	Baking Powder	Powder 30			
7	Yeast	2	kg		
8	Butter	100			
9	Flour	300	kg		
10	Mixer	10	Hour		
11	Oven	5	Hour		
12	Packaging Machine	15	Hour		
13	Labor Hours	60	Hour		

These are all the available resources that the business has. `

Additionally, the business has also found that to be profitable, they must produce a minimum quantity for each of their products:

Products	Minimum Qty (packs)
Cheese Puffs	800
Potato Chips	350
Pretzels	250

Objective Function

 Using the Simplex method of optimization, the following objective function to maximize profit is formed:

Constraint Equations

These are the resources needed to produce each snack. These represent the constraint equations.

	Input Factor	Cheese Puffs	Potato Chips	Pretzels	Equation
0	Flour (grams)	150	200	250	150x1 + 200x2 + 250x3 ≤ 350000
1	Cheese (grams)	50	5	7	50x1 + 5x2 + 7x3 ≤ 250000
2	Potatoes (grams)	-	50	-	50x2 ≤ 60000
3	Salt (grams)	5	7	8	5x1 + 7x2 + 8x3 ≤ 10000
4	Vegetable Oil (grams)	15	25	20	15x1 + 25x2 + 20x3 ≤ 100000
5	Baking Powder (grams)	5	•	-	5x1 ≤ 50000
6	Sugar (grams)	12	8	15	12x1 + 8x2 + 15x3 ≤ 30000
7	Egg (grams)	200	300	250	200x1 + 300x2 + 250x3 ≤ 500000
8	Yeast (grams)	-	-	5	5x3 ≤ 2000
9	Spices (grams)	5	10	5	5x1 + 10x2 + 5x3 ≤ 10000
10	Butter (grams)	4	6	8	4x1 + 6x2 + 8x3 ≤ 30000
11	Machine Working Hours (s)	60	90	75	$60x1 + 90x2 + 75x3 \le 108000$
12	Labor Hours (s)	45	75	60	45x1 + 75x2 + 60x3 ≤ 216000

Also, here are the constraints for minimum production quantity of the snacks.

x1 ≥ 800					
x2 ≥ 3	350				
x3 ≥ 2	250				

Total = 16 c

Simplex Optimization

- Octave
- MATLAB
- Python

Status:
0
Optimal solution:
962.50
350.00
250.00
Maximum profit:
8762.5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Sol
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -2.5 0 0 -25 62	
	8762.5
	73125
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -0.83333 0 0 -70 -55	1.9838e+05
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 50 4.4409e-	42500
0 0 0 0 0 1 0 0 0 5.5511e-17 0 0 -0.083333 0 0 -0.5 1.	737.5
0 0 0 0 0 0 1 0 0 0 0 0 0 -0.25 0 0 2.5 1.	71812
0 0 0 0 0 0 0 1 0 0 0 0 0 -0.083333 0 0 -7.5 -6.3	45188
0 0 0 0 0 0 0 0 1 0 0 0 0 -0.2 0 0 -10	11900
0 0 0 0 0 0 0 0 0 1 0 0 0 -3.3333 0 0 8.8818e-15 1.3323e-	1.4e+05
	. 250
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4.6259e-18 0 0 -1	350
0 0 0 0 0 0 0 0 0 0 0 0 1 -0.066667 0 0	22050
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.016667 0 0 1.5 1.5	962.5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.75 1 0 7.5 3.	1.3144e+05
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.016667 0 1 1.5 1.3	162.5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -0.083333 0 0 2.5 -1.3	437.5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	750

x_1	x_2	x_3	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8	s_9	s_10	s_11	s_12	s_13	s_14
—		—	—													
				1.9838e+05												

Results

Python

Results:

	Snack	Selling Price (RM)	Initial Value	Optimized Value	Initial Profit (RM)	Optimized Profit (RM)
0	x1	5	800	962.5	4000	4812.5
1	x2	7	350	350	2450	2450
2	x3	6	250	250	1500	1500
3	Total		1400	1562.5	7950	8762.5

Total Initial Profit (RM) = 7950
Total Optimized Profit (RM) = 8762.5

