Национальный Исследовательский Университет ИТМО

Факультет Программной Инженерии и Компьютерной Техники Программная инженерия

Курсовая работа

по дисциплине «Дискретная математика»

Вариант -25

Выполнил: Хатиб Ватан, Р3113

Преподаватель: Поляков Владимир Иванович

Санкт-Петербург 2021 г

f=d при |x1x2x5-x3x4|=2 , f=1 при 1<| x1x2x5-x3x4|≤4,

Column1	X1X2X3X4X5	X1X2X5	X1X2X5(10)	X3X4	X3X4(10)	x1x2x5-x3x4	f
0	00000	000	0	00	0	0	0
1	00001	001	1	00	0	1	0
2	00010	000	0	01	1	1	0
3	00011	001	1	01	1	0	0
4	00100	000	0	10	2	2	d
5	00101	001	1	10	2	1	0
6	00110	000	0	11	3	3	1
7	00111	001	1	11	3	2	d
8	01000	010	2	00	0	2	d
9	01001	011	3	00	0	3	1
10	01010	010	2	01	1	1	0
11	01011	011	3	01	1	2	d
12	01100	010	2	10	2	0	0
13	01101	011	3	10	2	1	0
14	01110	010	2	11	3	1	0
15	01111	011	3	11	3	0	0
16	10000	100	4	00	0	4	1
17	10001	101	5	00	0	5	0
18	10010	100	4	01	1	3	1
19	10011	101	5	01	1	4	1
20	10100	100	4	10	2	2	d
21	10101	101	5	10	2	3	1
22	10110	100	4	11	3	1	0
23	10111	101	5	11	3	2	d
24	11000	110	6	00	0	6	0
25	11001	111	7	00	0	7	0
26	11010	110	6	01	1	5	0
27	11011	111	7	01	1	6	0
28	11100	110	6	10	2	4	1
29	11101	111	7	10	2	5	0
30	11110	110	6	11	3	3	1
31	11111	111	7	11	3	4	1

919 KaHOP; VXIX2X3 XXXS VXIX2XXXXXX VXIX2XXXXXX ONKYHO: (X, VX, VX3 V X Y VX3) (X, VX3 V X, VX3 (XIVXZVX3VXGVX) (XIVXZVX3VXUVXS) (XIVXZVX3VXGVXS) (XVX2VX3VXaVXS) (XIVX2VX3VXhVXS) (XIVX2VX3VXhVXS) (XIVX_VX>VX+VXS) (XIVX>VX+VX)(VIVX>VX+VX>VX+VX) (VIVX2 V X3VX4VX5)(XI VX2VX3VX4VX5)(VI VX2V X3VX4VX5) (V, V X2 V X3 V X4 V X5) (X1 V X -V X3 V X4 V X5)

no	KOUf	no	K1f		k2f	NO	Zf
1	00100	1	001X0	14		1	001X0
2	01000	2	X0100	17		2	X0100
3	10000	3	0100X	25		3	0100X
		4	100X0	36		4	100X0
4	00110	5	10X00	37		5	10X00
5	01001					6	0011X
6	10010	6	0011X	48		7	010X1
7	10100	7	010X1	59		8	1001X
		8	1001X	610		9	1010X
8	00111	9	1010X	711		10	1X100
9	01011	10	1X100	713		11	111X0
10	10011					12	1111X
11	10101	11	111X0	1314		13	10111
12	10111						
13	11100	12	1111X	1415			
14	11110						
15	11111						

	(AB)		0011X 0010X 1010X 1010X	Sa=28 Sb=35	
(₂ =	A	\$a \$a	=35		
Cmin	() = (1)	DOXO	Sa-28 8b-35	Lut's	
10	0001	1110 100 100 100 100 100 100 100 100 10	X 0000		
Er	in (t) =			86-35	
(=)	X1 X 1 X 3	XyV Xi	X_X3X5V) / X, X2 X3 X3	X, X, X, X, Y, X,	Xu Xs

 $Sq(\phi)=2$, $Sq(f)=29 \rightarrow Sq=31$

Факторное преобразование для МКНФ:

Sq(φ)=2, Sq(f)=25 \rightarrow s(q)=27

Схема по преобразованной е МКН Φ в универсальном базисе с ограничением на число входов. Число входов равно 2 (или-не)

Sq=36,T=6t

преобразованной МДНФ в универсальном базисе (и-не)

Схема по преобразованной МДН Φ в универсальном базисе с ограничением на число входов. Число входов равно 2 (и-не)

Sq=42 ,T=7t

Выбираю набор для Анализ схем

- 1) 00101 → f=0
- 2) 00110 → f=1

X1=00

X2=00

X3=11

X4=01

X5=10

преобразованной МДНФ в сокращенных булевых базисах (или,не)

Схема по преобразованной МДНФ в сокращенных булевых базисах

Sq=38,T=8t

Схема по преобразованной МДНФ с однофазными входами

Sq=34,T=6t

преобразованной МДНФ в базисе Жегалкина

Схема по преобразованной МДНФ в базисе Жегалкина

Sq=32,T=6t

