## ParMOO: A Python library for parallel multiobjective simulation optimization

## **Scientific Achievement**

A parallel Python library for customizing and deploying solvers for the optimization of expensive scientific and engineering processes involving multiple conflicting objectives, such as computer simulations and laboratory experiments.

## Significance and Impact

- Easy to deploy in workflows such as HPC systems and self-driving labs
- Combines state-of-the-art techniques from nonlinear optimization, surrogate modeling, data acquisition, design-of-experiments, and representation learning
- Supports complex problem types, including mixed variables and black-box constraints
- Allows scientists to take advantage of domain knowledge and exploit problem structures

## **Technical Approach**

- Combines several existing and novel methodologies for reducing diverse problems to a common form
- Uses modular design and agile methodology for maintainability and extensibility
- Software is open-source and documented with an automated CI/CD pipeline
- Demonstrated the effectiveness of techniques on multiple real-world problems
- Layers over existing ECP software libEnsemble to achieve parallelism on HPCs

PI(s)/Facility Lead(s): Tyler Chang (ANL) and Stefan Wild (LBL)

Collaborating Institutions: Argonne, Lawrence Berkeley

ASCR Program: FASTMath SciDAC Institute

ASCR PM: Lali Chatterjee

Publication(s) for this work: Chang and Wild, "ParMOO: A Python library for parallel multiobjective simulation optimization," Journal of Open Source Software 8(82):4468, 2023.



A diagram of ParMOO's approach for steering experiments, involving surrogate modeling, multiobjective optimization, and data acquisition in a closed loop.



ParMOO's customized structure-exploiting solvers outperform a typical black-box solver on a material design problem.



