

Doc. Number:

Tentative Specification
Preliminary Specification
Approval Specification

MODEL NO.: G104ACJ SUFFIX: L01

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for y signature and comments.	your confirmation with your

 Approved By	Checked By	Prepared By
陳立錚	林秋森	黃致偉

Version 0.0 19 Set. 2018 1 / 30

- CONTENTS -

1.	G	GENERAL DESCRIPTION	4
	1.1	OVERVIEW	4
	1.2	FEATURES	4
	1.3	APPLICATION	4
	1.4	GENERAL SPECIFICATIONS	4
	1.5	MECHANICAL SPECIFICATIONS	5
2.	A	ABSOLUTE MAXIMUM RATINGS	6
	2.1	ABSOLUTE RATINGS OF ENVIRONMENT	6
	2.2	ELECTRICAL ABSOLUTE RATINGS	7
3.	E	LECTRICAL CHARACTERISTICS	8
	3.1	TFT LCD MODULE	8
	3.2	BACKLIGHT UNIT	. 10
	3.3	LIGHTBAR CONNECTOR PIN ASSIGNMENT	. 12
4.	В	BLOCK DIAGRAM	13
	4.1	TFT LCD MODULE	. 13
5.	II	NPUT TERMINAL PIN ASSIGNMENT	14
	5.1	TFT LCD MODULE	. 14
	5.2	COLOR DATA INPUT ASSIGNMENT	. 16
6.	II	NTERFACE TIMING	. 17
	6.1	INPUT SIGNAL TIMING SPECIFICATIONS	. 17
	6.2	POWER AND SIGNAL ON/OFF SEQUENCE	. 18
	6.3	POWER AND CONTROL PINS ON/OFF SEQUENCE	. 19
	6.4	THE INPUT DATA FORMAT	. 20
7.	O	DPTICAL CHARACTERISTICS	21
	7.1	TEST CONDITIONS	. 21
	7.2	OPTICAL SPECIFICATIONS	. 21
8.	R	RELIABILITY TEST CRITERIA	25
9.	P	ACKAGING	26
	9.1	PACKING SPECIFICATIONS	. 26
	9.2	ACKING METHOD	. 26
	9.3	UN-PACKING METHOD	. 27
10	. D	DEFINITION OF LABELS	28
	10.	1 MODULE LABEL	. 28
11	. Р	PRECAUTIONS	29
12		AECHANICAL CHADACTEDISTICS	20

REVISION HISTORY

Version	Date	Section	Description
0.0	Set 19,2018	All	G104ACJ-L01 Tentative Spec. was first issued.

Version 0.0 19 Set. 2018 3 / 30

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The G104ACJ-L01 model is a 10.4" TFT-LCD IAV module with a white LED Backlight Unit and a 50-pin 1ch-LVDS interface. This module supports 960 x 1280 mode and displays 16.7M colors.

1.2 FEATURES

- Wide viewing angle
- High contrast ratio
- Fast response time
- -960 x 1280 pixels resolution
- Wide operating temperature
- DE (Data Enable) mode
- LVDS (Low Voltage Differential Signaling) interface
- Reversible-scan direction
- RoHS Compliance

_

1.3 APPLICATION

- TFT LCD Monitor
- Industrial Application
- Amusement

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Diagonal Size	10.4	inch	
Active Area	158.4x (H) x 211.2 (V)	mm	(1)
Bezel Opening Area	160.6 x 213.9	mm	
Driver Element	a-si TFT active matrix	-	-
Pixel Number	960 x R.G.B. x 1280	pixel	-
Pixel Pitch	0.165(H) x 0.165(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16.7M	color	-
Transmissive Mode	Normally black	-	-
Surface Treatment	Hard coating (3H), Anti-Glare	-	-
Module Power Consumption	(9.64) (white pattern)	W	Typ. (2)

1.5 MECHANICAL SPECIFICATIONS

Ite	Item		Тур.	Max.	Unit	Note
	Horizontal (H)	172.9	173.4	173.9	mm	
Module Size	Vertical (V)	228.2	228.7	229.2	mm	(1)
	Depth (D)	13.27	13.77	14.27	mm	
We	eight	-	(450)	(470)	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) The Module Power Consumption is specified at 3.3V, white pattern and 100% duty for LED backlight.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Itom	Svmbol	Va	lue	Unit	Note	
Item	Symbol	Min.	Max.	Offic	Note	
Operating Ambient Temperature	T _{OP}	-40	+85	°C	(1)(2)	
Storage Temperature	T _{ST}	-40	+90	°C	(1)(2)	

Note (1) Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta \leq 40 $^{\circ}$ C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
- (c) No condensation.

Note (2) The absolute maximum rating values of this product are not allowed to be exceeded at any times.

The module should not be used over the absolute maximum rating value. It will cause permanently unrecoverable function fail in such an condition

Version 0.0 19 Set. 2018 6 / 30

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Itom	Symbol	Value		Unit	Note	
Item	Symbol	Min.	Max.	Offic	Note	
Power Supply Voltage	VCC	-0.3	4	V	(1)	

2.2.2 BACKLIGHT UNIT

Item	Symbol		Value		Unit	Note	
item	Symbol	Min.	Тур	Max.	Offic		
LED Forward Current Per Input Pin	I _F	-	(95)	(100)	mA	(1), (2)	
LED Reverse Voltage Per Input Pin	V_R	-	-	(50)	V	Duty=100%	
LED Pulse Forward Current Per Input Pin	l _P	-	-	(300)	mA	(1), (2) Pulse Width≦10msec. and Duty≦10%	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for input pin of LED light bar at Ta=25±2 $^{\circ}$ C (Refer to 3.2 for further information).

Version 0.0 19 Set. 2018 7 / 30

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Ta = 25 ± 2 °C

Parameter		Symbol	Value			Unit	Note	
		Symbol	Min.	Тур.	Max.	Oill	Note	
Power Supply Voltage		V _{cc}	3.0	3.3	3.6	V	(1) at Vcc=3.3V	
Ripple Voltage		V_{RP}	•	-	300	mV	-	
Power Supply Current	White		1	(400)	(480)	mΑ	(3)a, at Vcc=3.3V	
Power Supply Current	Black	•	1	(300)	(380)	mΑ	(3)b, at Vcc=3.3V	
Power Consumption		P_{L}	-	(1.32)	(1.58)	W	(4)	
LVDS differential input	voltage	Vid	100		600	mV	(5)	
LVDS common input voltage		Vic	1.0	1.2	1.4	V	(5)	
Logic High Input Voltage		V_{TH}	1	-	100	mV	(5)	
Logic Low Input Vo	ltage	V_{TL}	-100	-	•	mV	(5)	

Note (1) The assembly should be always operated within above ranges.

Note (2) Measurement Conditions:

Vcc rising time is 470µs

Version 0.0 19 Set. 2018 **8 / 30**

Note (3) The specified power supply current is under the conditions at Vcc = 3.3V, Ta = 25 \pm 2 °C, f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

Note (4) The power consumption is specified at the pattern with the maximum current.

Note (5) Vid waveform condition.

Version 0.0 19 Set. 2018 9 / 30

3.2 BACKLIGHT UNIT

 $Ta = 25 \pm 2 \, {}^{\circ}C$

Parameter	Symbol	Value			Unit	Note
Parameter	Symbol	Min. Typ. Max.		Max.	Offic	Note
LED Light Bar Input Voltage Per Input Pin	VPIN	(26.5)	(29.2)	(32.9)	V	(1), Duty=100%, IPIN=95mA
LED Light Bar Current Per Input Pin	IPIN	-	(95)	(100)	mA	(1), (2) Duty=100%
LED Life Time	LLED	50,000	-	-	Hrs	(3)
Power Consumption	PBL	-	(8.32)	(9.38)	W	(1) Duty=100%, IPIN=95mA

Note (1) LED light bar input voltage and current are measured by utilizing a true RMS multimeter as shown below:

Note (2) $PBL = IPIN \times VPIN \times (3)$ input pins,

Note (3) The lifetime of LED is estimated data and defined as the time when LED packages continue to operate under the conditions at Ta = 25 ± 2 $^{\circ}$ C and I= (95)mA (per chip) until the brightness becomes \leq 50% of its original value.

Note (4) The module must be operated with constant driving current.

Version 0.0 19 Set. 2018 10 / 30

Note (5) De-rating curve (For reference)

Suggest that de-rating the BLU from 70°C and 45% PWM at 85 °C to avoid damaging the module.

Version 0.0 19 Set. 2018 11 / 30

3.3 LIGHTBAR CONNECTOR PIN ASSIGNMENT

CN1 (LED backlight)

Pin number	Description
1	VLED
2	VLED
3	VLED
4	No Connection
5	NTC Thermistor +
6	NTC Thermistor -
7	No Connection
8	Cathode of LED string
9	Cathode of LED string
10	Cathode of LED string

Note(1) Connector type: FH52-10S-0.5SH (HIROSE) or equivalent.

Note(2) NTC Thermistor type: Murata NCU15XH103F6SRC.

Note(3) To prevent self-heating of the NTC and improve the measurement accuracy, recommend operating current of the NTC is less than 0.031mA.

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

Version 0.0 19 Set. 2018 13 / 30

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin	Name	Description	Remark
1	NC	For test, please keep it floating.	Roman
2	TP_SYNC	Output V_sync signal for touch	
3	GND	Analog ground	
4	GND	Analog ground	
5	NC	For test, please keep it floating.	
6	NC	Not Connect	
7	NC	Not Connect	
8	NC	Not Connect	
9	NC	For test, please keep it floating.	
10	NC	Not Connect	
11	NC	Not Connect	
12	NC	Not Connect	
13	NC	For test, please keep it floating.	
14	VCC	Digital power (typ. 3.3V)	
15	VCC	Digital power (typ. 3.3V)	
16	NC	Not Connect	
17	GND	Analog ground	
18	GND	Analog ground	
19	GND	Analog ground	
20	GND	Analog ground	
21	NIND0	LVDS signal data line 0 negative	
22	PIND0	LVDS signal data line 0 positive	
23	GND	Analog ground	
24	NIND1	LVDS signal data line 1 negative	
25	PIND1	LVDS signal data line 1 positive	
26	GND	Analog ground	
27	NIND2	LVDS signal data line 2 negative	
28	PIND2	LVDS signal data line 2 positive	
29	GND	Analog ground	
30	NINC	LVDS signal clock line negative	
31	PINC	LVDS signal clock line positive	
32	GND	Analog ground	
33	NIND3	LVDS signal data line 3 negative	
34	PIND3	LVDS signal data line 3 positive	
35	GND	Analog ground	
36	GRB	Reset pin, low active	
37	STBYB	Standby pin, low active	
38	RL	Left/right scan control, internal pull high	Note 3
39	VCC	Digital power (3.3V)	
40	TB	Up/down scan control, internal pull high	Note 3
41	NC	For test, please keep it floating.	
42	NC	For test, please keep it floating.	
43	NC	For test, please keep it floating.	
44	GND	Analog ground	
45	NC	For test, please keep it floating.	
46	NC	Not Connect	
47	NC	For test, please keep it floating.	
48	NC	Not Connect	
49	NC	Not Connect	

Version 0.0 19 Set. 2018 14 / 30

50	GND /	Analog ground
----	-------	---------------

Note (1) User's connector Part No.: FH52-50S-0.5SH(HIROSE) or equivalent.

Note (2) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connected"

Note (3): RL and TB control function.

RL	ТВ	Data shifting
GND	GND	Right → Left, Down → Up
VDD	GND	Left → Right, Down → Up
GND	VDD	Right → Left, Up → Down
VDD	VDD	Left → Right, Up → Down (default)

5.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

													Data	Siç	gnal										
	Color			1	R	ed							Gı	reen							BI	ue			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	B6	B5	B4	ВЗ	B2	В1	В0
Basic Colors	Black Red Green Blue Cyan Magenta Yellow White	0 1 0 0 0 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 0 1 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 1 1 0	0 0 0 1 1 1 0 1	0 0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 1 1 1 0	0 0 1 1 1 0	0 0 0 1 1 1 0 1	0 0 1 1 1 0
Gray Scale Of Red	Red(0) / Dark Red(1) Red(2) : : Red(253) Red(254) Red(255)	0 0 0 1 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1	0 0 1 : 0 1 1	0 1 0 : : 1 0 1	0 0 0 : : 0 0 0	0 0 0 : : : 0 0 0	000000	000:::000	0 0 0 : : 0 0 0	000000	0 0 0 0 0 0	0 0 0 0 0	0 0 0 : : : 0 0 0	000000	0 0 0 : : 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0 0	0 0 0 0 0 0	000000	0 0 0 : : 0 0 0
Gray Scale Of Green	Green(0)/ Dark Green(1) Green(2) : : Green(253) Green(254) Green(255)	0 0 0 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1 1	0 0 1 : 0 1	0 1 0 : : 1 0	0 0 0 : : 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0 0	000000	0 0 0 : : 0 0
Gray Scale Of Blue	Blue(0) / Dark Blue(1) Blue(2) : : : Blue(253) Blue(254) Blue(255)	0 0 0 : . : 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 1 : : 0 1 1	0 1 0 : : 1 0 1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Version 0.0 19 Set. 2018 16 / 30

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	Fc	78.1	79.1	82.9	MHz	
	Total	Tv	1020	1024	1072	Th	Tv=Tvd+Tvb
Vertical Active Display Term	Display	Tvd	-	960	-	Th	-
	Blank	Tvb	60	64	112	Th	-
	Total	Th	1286	1288	1290	Tc	Th=Thd+Thb
Horizontal Active Display Terr	Display	Thd	-	1280	-	Tc	-
	Blank	Thb	6	8	10	Tc	-

Note (1) Since this assembly is operated in DE only mode, Hsync and Vsync input signals should be set to low logic level. Otherwise, this assembly would operate abnormally.

Note (2) Frame rate is 60Hz

Note (3) The Tv(Tvd+Tvb) must be integer, otherwise, this module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

Version 0.0 19 Set. 2018 17 / 30

6.2 POWER AND SIGNAL ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Power ON/OFF sequence

- Note (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- Note (2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- Note (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.
- Note (6) INX won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.
- Note (7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "T7 spec".

Doromotor		Unito		
Parameter	Min	Тур	Max	Units
T1	0.5	-	10	ms
T2	0	-	50	ms
Т3	0	-	50	ms

Version 0.0 19 Set. 2018 18 / 30

T4	500	-	-	ms
T5	200	1	-	ms
T6	200	1	-	ms
T7	10	-	100	ms
Т8	10	1	-	ms
Т9	10	-	-	ms
T10	20	-	50	ms

6.3 POWER AND CONTROL PINS ON/OFF SEQUENCE

Power on sequence:

Power off sequence:

Version 0.0 19 Set. 2018 19 / 30

6.4 THE INPUT DATA FORMAT

Note (1) R/G/B data 7: MSB, R/G/B data 0: LSB

Note (2) Please follow PSWG

Signal Name	Description	Remark
R7	Red Data 7 (MSB)	Red-pixel Data
R6	Red Data 6	Each red pixel's brightness data consists of these
R5	Red Data 5	8 bits pixel data.
R4	Red Data 4	
R3	Red Data 3	
R2	Red Data 2	
R1	Red Data 1	
R0	Red Data 0 (LSB)	
G7	Green Data 7 (MSB)	Green-pixel Data
G6	GreenData 6	Each green pixel's brightness data consists of these
G5	GreenData 5	8 bits pixel data.
G4	GreenData 4	
G3	GreenData 3	
G2	GreenData 2	
G1	GreenData 1	
G0	GreenData 0 (LSB)	
B7	Blue Data 7 (MSB)	Blue-pixel Data
B6	Blue Data 6	Each blue pixel's brightness data consists of these
B5	Blue Data 5	8 bits pixel data.
B4	Blue Data 4	
B3	Blue Data 3	
B2	Blue Data 2	
B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
RXCLKIN+	LVDS Clock Input	
RXCLKIN-	AND	
DE	Display Enable	
VS	Vertical Sync	
HS	Horizontal Sync	

Note (3) Output signals from any system shall be low or Hi-Z state when VCC is off.

Version 0.0 19 Set. 2018 **20 / 30**

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	Δ.	P (UEL ECTRICAL
Input Signal	Acc	cording to typical value in CHARACTERIS	
LED Light Bar Input Current Per Input Pin		OHARAOTERR	31100

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2 and all items are measured at the center point of screen except white variation. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

Item	า	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx			(0.652)		-	
	Reu	Ry			(0.338)		-	
	0	Gx			(0.333)		-	
Color	Green	Gy		Тур	(0.613)	Тур	-	(1) (5)
Chromaticity	Blue	Bx	$\theta_x=0^\circ, \ \theta_Y=0^\circ$	- 0.05	(0.150)	+ 0.05	-	(1), (5)
	blue	Ву	CS-1000		(0.050)		-	
	White	Wx			0.313		-	
		Wy			0.329		-	
Center Luminan	ce of White	L _C		720	900	-		(4), (5)
Contrast Ratio		CR		800	1000	-	-	(2), (5)
Response Time		T_R	0 00 0 00	-	13	18	ms	(2)
Response Time		T_F	$\theta_{x}=0^{\circ}, \ \theta_{Y}=0^{\circ}$	-	12	17	ms	(3)
White Variation		δW_9	$\theta_x=0^\circ, \ \theta_Y=0^\circ$			1.42	-	(5), (6).
	Horizontal	θ_x +		80	85	-		
Viewing Angle	Honzoniai	θ_{x} -	OD: 40	80	85	-	Dog	(1) (5)
Viewing Angle	Vortical	θ_{Y} +	CR≥10	80	85	-	Deg.	(1), (5)
	Vertical	θ _Y -		80	85			

Version 0.0 19 Set. 2018 21 / 30

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (TR, TF) and measurement method:

Version 0.0 19 Set. 2018 22 / 30

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point

$$L_{C} = L (5)$$

L(x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Version 0.0 19 Set. 2018 23 / 30

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 9 points

$$\delta W = \frac{\text{Maximum [L (1), L (2),, L (8), L (9)]}}{\text{Minimum [L (1), L (2),, L (8), L (9)]}}$$

圖a. 9-point Positions

Version 0.0 19 Set. 2018 24 / 30

8. RELIABILITY TEST CRITERIA

Test Item	Test Condition	Note
High Temperature Storage Test	90°C, 504 hours	
Low Temperature Storage Test	-40°C, 504 hours	
Thermal Shock Storage Test	-40°C, 0.5 hour ←→85°C, 0.5 hour; 1hour/cycle,100cycles	(1)(2) (4)(5)
High Temperature Operation Test	85°C, 504 hours	(1)(0)
Low Temperature Operation Test	-40°C, 504 hours	
High Temperature & High Humidity Operation Test	60°C, 90%RH, 504 hours	(1)(2) (4)(6)
Shock (Non-Operating)	50G, 11ms, half sine wave, 1 time for ± X, ± Y, ± Z.	(2)(3)
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z	(2)(3)

- Note (1) There should be no condensation on the surface of panel during test.
- Note (2) Temperature of panel display surface area should be 100 °C Max.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.
- Note (6) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

Version 0.0 19 Set. 2018 25 / 30

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 18pcs LCD modules / 1 Box
- (2) Box dimensions: 490 (L) X 350 (W) X 320 (H) mm
- (3) Weight: approximately 10.1Kg (18 modules per box)

9.2 PACKING METHOD

Version 0.0 19 Set. 2018 26 / 30

Sea & Land Transportation

Air Transportation

PE Sheet

Corner Protector
(50*50*1000mm)

PP Belt

Corner Protector
(50*50*1000mm)

Film

Corner Protector
(50*50*1780mm)

Film

Pollet Borcode Lobel

Pollet Borcode Lobel

9.3 UN-packing METHOD

Version 0.0 19 Set. 2018 **27 / 30**

DEFINITION OF LABELS

9.4 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: G104ACJ-L01
- (b) Revision: Rev. XX, for example: A1, ...C1, C2 ...etc.
- (c) Serial ID: X X X X X X X Y M D X N N N N

 Serial No.
 INX Internal Use
 Year, Month, Date
 INX Internal Use
 Revision
 INX Internal Use
- (d) * * * * : Factory ID

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2011~2019

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product

10. PRECAUTIONS

10.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.
- (11) Do not keep same pattern in a long period of time. It may cause image sticking on LCD. normal operation and storage.

11. MECHANICAL CHARACTERISTICS

Version 0.0 19 Set. 2018 **30 / 30**