Metabolism

Catabolism:

Breaking down of molecules

- Food contains three nutrients that are used as energy sources
- These nutrients can be broken down into smaller molecules
 - Carbohydrates Glucose
 - Fats Glycerol and Fatty Acids
 - Proteins Amino Acids

Anabolism:

Building up of molecules

- Many of the building blocks of larger molecules come directly from our food.
 - Glucose Glycogen
 - Amino Acids Proteins

(ATP is the energy currency used by these reactions)

Metabolism

Cellular Respiration

 Release of energy from glucose (usually) coupled to ATP synthesis

An aerobic process that requires O₂ and releases
CO₂

Breakdown of glucose results in 36 or 38 ATP molecules

Overview of Cellular Respiration

NAD+ and FAD

- Two co-enzymes of oxidation and reduction that are active during cellular respiration
- They carry electrons from the cytoplasm or the mitochondrial matrix and carry them to the cristae of the mitochondria
- NAD+ and FAD each carry two electrons and two hydrogen atoms

The NAD+ Cycle

Phases of Cellular Respiration

- Glycolysis
- Preparatory Reaction
- Citric Acid Cycle
- Electron Transport Chain
- We will simplify: Glycolysis, Krebs cycle, electron transport

Phases of Glucose Breakdown

Fate of glucose in living systems

Glucose + $6O_2$ = $6CO_2$ + $6H_2O$ δG_0 = -2840 kJ/mol

Glucose + $2NAD_+$ = $2Pyruvate + 2NADH + <math>2H_+\delta Go = -146 \text{ kJ/mol}$

❖ 5.2% of total free energy that can be released by glucose is released in glycolysis.

Glycolysis

Glykys = Sweet, Lysis = splitting

❖ During this process one molecule of glucose (6 carbon molecule) is degraded into two molecules of pyruvate (three carbon molecule).

Free energy released in this process is stored as 2 molecules of ATP, and 2 molecules of NADH.

4.4C la 1/100 a

NADH

Glucose + 2NAD+ = 2Pyruvate + 2NADH + 2H+
$$\delta$$
G° = -146 kJ/mol 2ADP + 2Pi = 2ATP + 2H2O δ G° = 2X(30.5 kJ/mol) = 61 kJ/mol δ G° (overall) = -146+61 = -85 kJ/mol

• In standard condition glycolysis is an exergonic reaction which tends to be irreversible because of negative δG° .

Steps of Glycolysis

Preparatory Reaction

- Stage 1: (Reactions 1-5)
- A preparatory stage in which glucose is phosphorylated,
- Converted to fructose
- It is again phosphorylated and cleaved into two molecules of glyceraldehyde-3-phosphate.
- In this phase there is an investment of two molecules of ATP.

Payoff phase

- Stage 2: (Reactions 6-10)
- The two molecules of glyceraldehyde-3-phosphate are converted to pyruvate.
- Concomitant generation of four ATP molecules and two molecules of NADH.
- Thus, there is a net gain of two ATP molecules per molecule of Glucose in glycolysis.

(b) Glyceraldehyde 3-phosphate (2) oxidation and phosphorylation 1,3-Bisphosphoglycerate (2) first ATP-2ADP forming reaction (substrate-level phosphorylation) 3-Phosphoglycerate (2) 2-Phosphoglycerate (2) Phosphoenolpyruvate (2) second ATPforming reaction (substrate-level phosphorylation) Pyruvate (2)

Payoff phase

Oxidative conversion of glyceraldehyde 3-phosphate to pyruvate and the coupled formation of ATP and NADH

Glycolysis: Inputs and Outputs

The Krebs/ Citric Acid Cycle

Location: In the Mitochondrial Matrix

Main Goal:

- To Break down pyruvate (pyruvic acid) into carbon dioxide and Acetyl Co-A and release more energy
- The acetyl group is formed in stage II of metabolism from carbohydrate and amino acid metabolism
- Acetyl CoA is converted to citric acid and enters the cycle
- Citric acid cycle turns twice because 2 acetyl CoA's are produced per glucose
- 1GTP (ATP in bacteria) and 1 FADH₂ is produced during one turn of the cycle
- 3 NADH are produced during one turn of the cycle
- NADH and FADH₂ energize electron transport and oxidative phosphorylation
- Overall, eight reactions make up the Krebs cycle

Citric Acid Cycle: Inputs and Outputs

Pentose Phosphate Pathway

It's a shunt

Tissues wi	th active	pentose	phosphate	pathways
		THE RESERVE OF THE PROPERTY OF THE PROPERTY.		

Function		
Steroid synthesis		
Fatty acid and cholesterol synthesis		
Steroid synthesis		
Fatty acid synthesis		
Steroid synthesis		
Fatty acid synthesis		
Maintenance of reduced glutathione		

Regulation of the Pentose Pathway

- Glucose 6-phosphate DH is the regulatory enzyme.
- NADPH is a potent competitive inhibitor of the enzyme.
- Usually the ratio NADPH/NADP+ is high so the enzyme is inhibited.
- But, with increased demand for NADPH, the ratio decreases, and enzyme activity is stimulated.
- The reactions of the non-oxidative portion of the pentose pathway are readily reversible.
- The concentrations of the products and reactants can shift depending on the metabolic needs of a particular cell or tissue.