\star Spé - St
 Joseph/ICAM Toulouse \star

Math. - CC 1 - S2 - Algèbre - Géométrie

vendredi 15 février 2019 - Durée 2 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

Exercice 1

On se place dans le plan affine euclidien \mathscr{P} muni d'un repère orthonormé $(0, \vec{\imath}, \vec{\jmath})$.

Soit $\mathscr C$ la conique d'équation cartésienne

$$y^{2} - \sqrt{3}xy - 2\sqrt{3}x + \left(4 - 3\sqrt{3}\right)y + 6 - 6\sqrt{3} = 0$$

- 1. Soit la matrice $A = \begin{pmatrix} 0 & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & 1 \end{pmatrix}$.
 - a. Calculer les valeurs propres de A. Trouver deux vecteurs propres \vec{u} et \vec{v} tels que (\vec{u}, \vec{v}) soit une base orthonormée directe de \mathbb{R}^2 .
 - **b.** Quelle isométrie de \mathbb{R}^2 transforme le base (\vec{i}, \vec{j}) en la base (\vec{u}, \vec{v}) ?
- 2. Déterminer la nature de la conique ainsi que ses éléments caractéristiques.
- 3. Tracer la conique $\mathscr C$ dans le repère $(0,\vec\imath,\vec\jmath)$. On prendra $\sqrt{3}\approx 1,\ 732.$

Exercice 2

Soit E un espace euclidien. On suppose $\dim(E) > 2$.

On note (u|v) le produit scalaire des vecteurs u et v, et ||u|| la norme du vecteur u.

On se donne un vecteur w de E de norme 1 et, pour tout réel $\alpha \neq 0$, on pose , pour tout $x \in E$:

$$f_{\alpha}(x) = x + \alpha(x|w)w$$

- 1. Vérifier que f_{α} est un endomorphisme de E.
- **2.** Montrer que pour tous réels non nuls α, β , on a :

$$f_{\alpha} \circ f_{\beta} = f_{\beta} \circ f_{\alpha}$$

3. Montrer que pour tous vecteurs x et y, on a

$$(x|f_{\alpha}(y)) = (f_{\alpha}(x)|y)$$

- 4. Vérifier que w est un vecteur propre de f_{α} .
- **5. a.** Montrer que 1 est valeur propre de f_{α} .
 - **b.** Quel est le sous-espace propre associé à la valeur propre 1?
 - **c.** L'endomorphisme f_{α} est-il diagonalisable?
- 6. Pour quelles valeurs de α l'endomorphisme f_{α} est-il inversible? Calculer dans ce cas son inverse.
- 7. Pour quelles valeurs de α l'endomorphisme f_{α} est-il une isométrie? Caractériser dans ce cas cet endomorphisme.
- 8. En utilisant la question 3, montrer que si F est un sous-espace vectoriel stable par f_{α} , alors F^{\perp} est également stable par f_{α} .

Exercice 3

On considère la courbe paramétrée Γ admettant pour représentation paramétrique :

$$\varphi: t \mapsto \begin{cases} x(t) = t + \frac{1}{2t^2} \\ y(t) = \frac{t^2}{2} + \frac{1}{t} \end{cases}, t \in \mathbb{R}^*$$

1. Déterminer $\varphi\left(\frac{1}{t}\right)$ en fonction de $\varphi(t)$, et en déduire que l'on peut réduire le domaine d'étude de l'arc paramétré à $[-1,0[\cup]0,1]$.

On précisera quelle transformation permet d'obtenir la courbe en entier.

2. Etudier φ et tracer Γ dans un repère orthonormé.

Exercice 4

On munit le plan d'un repère orthonormé (O, \vec{i}, \vec{j}) .

On considère la courbe paramétrée $\mathscr C$ admettant pour représentation paramétrique :

$$\begin{cases} x(t) = a \sin t \\ y(t) = a \frac{\sin^2 t}{\cos t} \end{cases}, \text{ où } a \in \mathbb{R}_+^*$$

- **1. a.** Justifier que l'on peut réduire le domaine d'étude de l'arc paramétré à $\left[0, \frac{\pi}{2}\right[$.
 - $\mathbf{b.} \ \ \text{Etudier l'arc paramétré, puis tracer} \ \mathscr{C} \ \text{pour} \ a=2.$
- **2.** Pour $t \in \left[0, \frac{\pi}{2}\right]$, on note M(t) le point de $\mathscr C$ de coordonnées (x(t), y(t)).
 - a. Exprimer OM(t) à l'aide de a et de t.
 - **b.** La perpendiculaire à (OM(t)) en M(t) coupe (0y) en N. Montrer que MN=a.
 - **c.** Montrer que la perpendiculaire en O à (OM(t)), la parallèle à (Ox) en N et la normale à $\mathscr C$ en M(t) sont concourantes.

Fin de l'énoncé