LITERATURE SURVEY

SMART FARMER – IOT ENABLED SMART FARMING APPLICATION

Team Details

Team ID: PNT2022TMID15129

- 1. MANOJKUMAR
- 2. SWETHAA SHREE
- 3. VARSHENI
- 4. RAVIVARMA

Literature Survey on "Smart Farmer – IOT Enabled Smart Farming Application"

Reference	Technologies used	Ad	lvantages	Disadvantages
[1]	Microcontroller: CC3200 Chip, MCU Communication Technologies: MMS, Wi-Fi Module Sensors: Camera, Temperature Sensor, Humidity Sensor	inf hu ter G Us tec	nds the Formation about midity and nperature in air of ld to farmer. es MMS chnology to send ptured images.	 MMS adds extra cost No automatic support system
[2]	Microcontroller: ATMEGA328P Cloud server: Adafruit Server Communication Technologies: Wi-Fi Sensors: Soil Moisture Sensor	act pu bas	ontrolling the cions of motor mp (ON/OFF) sed on the reshold value.	No sprinklesNo smart drainsNo automatic support system
[3]	Microcontroller: Arduino Cloud server: ThingSpeak Sensors: Light Intensity, pH, Electrical Conductivity, Water Temperature, Relative Humidity	□ Ba Mo Sy	vdroponic System yesian Network odel stem has manual d automatic mode	☐ Extremely computationally expensive model
[4]	Microcontroller: Arduino UNO Cloud server: ThingSpeak Communication Technologies: Wi-Fi Sensors: Water Level Sensor, Moisture Sensor	□ the	rmers can monitor eir fields remotely igation control stem	☐ Lack of automated decision support system
[5]	Microcontroller: Arduino Sensors: Temperature Sensor, Humidity Sensor, Soil Moisture Sensor	sei sei vie	ata regarding nsors stored on ever and user can ew via GUI plication.	 Decision making is rely on user or farmer No automatic support system

REFERENCES:

- [1] Prathibha S., Hongal A., and Jyothi M. (2017). IOT Based Monitoring System in Smart Agriculture. 2017 International Conference on Recent Advances in Electronics And Communication Technology (ICRAECT). doi: 10.1109/icraect.2017.52.
- [2] Lahande P., and Mathpathi D. (2018). IOT Based Smart Irrigation System. International Journal of Trend in Scientific Research and Development Volume-2(Issue-5), pp. 359-362. doi: 10.31142/ijtsrd15827.
- [3] Alipio M., Dela Cruz A., Doria J., and Fruto R. (2019). On the design of Nutrient Film Technique hydroponics farm for smart agriculture. Engineering in Agriculture, Environment and Food, 12(3), pp.315-324. doi:
- 10.1016/j.eaef.2019.02.008.
- [4] Benyezza H., Bouhedda M., Djellout K., and Saidi A. (2018). Smart Irrigation System Based Thingspeak and Arduino. International Conference on Applied Smart Systems (ICASS). doi: 10.1109/icass.2018.8651993.
- [5] Kiani F., and Seyyedabbasi A. (2018). Wireless Sensor Network and Internet of Things in Precision Agriculture. International Journal of Advanced Computer Science and Applications, 9(6). doi: 10.14569/ijacsa.2018.090614.