5-V Low Drop Voltage Regulator

TLE 4262

Bipolar IC

Features

- Output voltage tolerance ≤ ± 2 %
- Low-drop voltage
- Very low standby current consumption
- Overtemperature protection
- Reverse polarity protection
- Short-circuit proof
- Settable reset threshold
- Wide temperature range
- Suitable for use in automotive electronics

Туре	Ordering Code	Package
TLE 4262 G	Q67006-A9068	P-DSO-20-6 (SMD)
TLE 4262 GM	Q67006-A9356	P-DSO-14-4 (SMD)

Functional Description

TLE 4262 G is a 5-V low-drop voltage regulator in a P-DSO-20-6 SMD package. The maximum input voltage is 45 V. The maximum output current is more than 200 mA. The IC is short-circuit proof and incorporates temperature protection that disables the IC at overtemperature.

The IC regulates an input voltage $V_{\rm I}$ in the range of 6 V < $V_{\rm I}$ < 45 V to $V_{\rm Qrated}$ = 5.0 V. A reset signal is generated for an output voltage of $V_{\rm Q}$ < 4.5 V. This voltage threshold can be decreased to 3.5 V by external connection. The reset delay can be set externally with a capacitor. The IC can be switched off via the inhibit input, which causes the current consumption to drop from 720 μ A to < 50 μ A.

Dimensioning Information on External Components

The input capacitor $C_{\rm l}$ is necessary for compensating line influences. Using a resistor of approx. 1 Ω in series with $C_{\rm l}$, the oscillating circuit consisting of input inductivity and input capacitance can be damped. The output capacitor is necessary for the stability of the regulating circuit. Stability is guaranteed at values $\geq 22~\mu F$ and an ESR of $\leq 3~\Omega$ within the operating temperature range. For small tolerances of the reset delay, the spread of the capacitance of the dalay capacitor and its temperature coefficient should be noted.

Pin Configuration (top view)

Pin Definitions and Functions

Pin	Symbol	Function						
1	INH	Inhibit; TTL-compatible, low-active input						
2	QRES	Reset output; open-collector output internally connected to the output via a resistor of 30 k Ω .						
4-7, 14-17	GND	Ground						
9	DRES	Reset delay; connected to ground by a capacitor						
10	SRES	Reset threshold ; for setting the switching threshold connect by a voltage divider from output to ground. If this input is connected to GND, reset is triggered at an output voltage of 4.5 V.						
11	V_{Q}	5-V output voltage ; block to ground by a 22–μF capacitor.						
20	V _I	Input voltage ; block to ground directly at the IC by a ceramic capacitor.						
3, 8, 12, 13, 18, 19	N.C.	Not connected						

Circuit Description

The control amplifier compares a reference voltage, which is kept highly accurate by resistance adjustment, to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control as a function of the load current prevents any over-saturation of the power element. If the externally scaled down output voltage at the reset threshold input drops below 1.35 V, the external reset delay capacitor is discharged by the reset generator. If the voltage on the capacitor reaches the lower threshold $V_{\rm ST}$, a reset signal is issued on the reset output and not cancelled again until the upper threshold $V_{\rm dT}$ is exceeded. If the reset threshold input is connected to GND, reset is triggered at an output voltage of 4.5 V. The IC can be switched at the TTL-compatible, low-active inhibit input. It also incorporates a number of internal circuits for protection against:

- Overload
- Overtemperature
- Reverse polarity

Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		

Input

Input voltage	V_1	- 42	45	V	_
Input current	I_{I}	_	_	_	internally limited

Reset Output

Voltage	V_{R}	- 0.3	42	V	_
Current	I_{R}	_	_	_	internally limited

Reset Input

Reset threshold $V_{RE} = -0$	3 6 V	_
-------------------------------	-------	---

Reset Delay

Voltage	$V_{\sf d}$	- 0.3	42	V	
Current	I_{d}	_	_	_	internally limited

Output

Voltage	V_{Q}	- 5.25	V_{I}	V	_
Current	I_{Q}	_	_	_	internally limited

Inhibit

Voltage $V_{\rm e}$	- 42	45	V	
---------------------	------	----	---	--

Ground

Current	I_{GND}	- 0.5	_	Α	_

Absolute Maximum Ratings (cont'd)

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		

Temperature

Junction temperature	T_{i}	_	150	°C	_
Storage temperature	T_{stg}	– 50	150	°C	_

Operating Range

Input voltage	V_{I}	5.2	45	V	*)
Junction temperature	T_{j}	- 40	150	°C	_
Thermal resistance junction-ambient junction-case	$R_{th\;JA} \ R_{th\;JC}$	_ _	70 25	K/W K/W	soldered -

^{*)} Corresponds with characteristics of drop voltage, output current and power description (see diagrams).

Characteristics

 V_1 = 13.5 V; T_j = 25 °C; V_e > 3.5 V; (unless specified otherwise)

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Normal Operation						
Output voltage	V_{Q}	4.9	5.00	5.10	V	$5 \text{ mA} \le I_{\text{Q}} \le 150 \text{ mA};$ $6 \text{ V} \le V_{\text{I}} \le 28 \text{ V};$ $-40 \text{ °C} \le T_{\text{J}} \le 125 \text{ °C}$
Output voltage	V_{Q}	4.95	5.00	5.05	V	6 V $\leq V_{\rm i} \leq$ 32 V; $I_{\rm Q} = 100 \text{ mA}$ $T_{\rm j} > 100 ^{\circ}\text{C}$
Output current limiting	I_{Q}	200	250		mA	_
Current consumption; $I_{q} = I_{i} - I_{Q}$	I_{q}	_	_	50	μΑ	V _e < 0.8 V
•	I_{q}	_	720	_	μΑ	$I_{Q} = 0 \text{ mA}$
	I_{q}	_	10	15	mA	$I_{\rm Q}$ = 150 mA
	I_{q}	_	15	20	mA	$I_{\rm Q}$ = 150 mA; $V_{\rm i}$ = 4.5 V
Drop voltage	V_{Dr}	_	0.35	0.6	V	$I_{\rm Q}$ = 150 mA $^{*)}$
Load regulation	ΔV_{Q}	_	_	25	mV	$I_{\rm Q}$ = 5 mA to 150 mA
Supply-voltage regulation	ΔV_{Q}	_	15	25	mV	$V_{\rm I}$ = 6 V to 28 V; $I_{\rm Q}$ = 150 mA
Ripple rejection	SVR	_	54	_	dB	$f_{\rm r}$ = 100 Hz; $V_{\rm r}$ = 0.5 Vpp
Reset Generator	,			1		

Switching threshold	V_{RT}	4.2	4.5	4.8	V	V_{RE} = 0 V
Switching voltage	V_{RE}	1.28	1.35	1.42	V	V _Q > 3.5 V
Saturation voltage	V_{R}	1	0.10	0.40	٧	$I_{\rm R}$ = 1 mA

^{*)} Drop voltage $V_{\rm l} \ge$ 4.5 V; drop voltage = $V_{\rm l} - V_{\rm Q}$ (below regulating range)

Note: The reset output is low within the range $V_{\rm Q}$ = 1 V to $V_{\rm RT}.$

Characteristics (cont'd)

 $V_{\rm I}$ = 13.5 V; $T_{\rm j}$ = 25 °C; $V_{\rm e}$ > 3.5 V; (unless specified otherwise)

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Saturation voltage	V_{C}	_	50	100	mV	$V_{\rm Q} < V_{\rm RT}$
Charge current	$I_{\sf d}$	7	10	14	μΑ	-
Delay switching threshold	V_{dT}	1.5	1.7	2.1	V	_
Switching threshold	V_{ST}	0.2	0.35	0.55	V	_
Delay time	t_{D}	_	17	_	ms	$C_{\rm d}$ = 100 nF
Delay time	t _t	_	2	_	μs	$C_{\rm d}$ = 100 nF

Inhibit

Switch-ON voltage	$V_{ m eON}$	3.5	_	_	V	IC turned on
Switch-OFF voltage	$V_{ m eOFF}$	_	_	8.0	V	IC turned off
Input current	I_{e}	5	10	15	μΑ	$V_{\rm e}$ = 5 V

Note: The reset output is low within the range $V_{\rm Q}$ = 1 V to $V_{\rm RT}$.

Application Circuit

Test Circuit

Time Response

Charge Current versus Temperature

Switching Voltage $V_{\rm dT}$ and $V_{\rm ST}$ versus Temperature

Reset Switching Threshold versus Temperature

Current Consumption of Inhibit versus Temperature Output Current

Output Voltage versus Temperature

Output Current versus Input Voltage

Input Response

Load Response

Drop Voltage versus Output Current

Current Consumption versus Output Current

Current Consumption versus Input Voltage

Output Voltage versus Input Voltage

SIEMENS TLE 4262

Package Outlines

P-DSO-20-6

(Plastic Dual Small Outline)

- 1) Does not include plastic or metal protrusions of 0.15 max per side
- 2) Does not include dambar protrusion of 0.05 max per side

Weight approx. 0.6 g

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

Dimensions in mm

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

Dimensions in mm