Name: Dhruv Bheda **SapID:** 60004200102

Batch: B1

ADBMS Experiment-3

	Dhavy Bheda 60004200102 B/B1
	Arm: To simulate query optimisation by performing sal
	Theory: Query optimization is of great importance for performance of a relational database, experience screally for excustion of complexed SQL statements. There are 2 ways:
	However Rosed: A query tree is a data structure that corresponds to a relational algebra expression. The same query could be correspond to many different relational expressions & hence many different query trees. The task of however optimization of query trees is to find a final query tree that is effecient to execute. The main however is to apply first the operations that reduce the size of intormediate results.
	Obst Bosed: Estimate and compare the costs of executing a query using different execution strategies and chose the strategy with lowest cost estimate. The cost of any strategy includes access cost to secondary storage, query includes access cost to secondary storage, storage cost, memory usage cost, no of memory buffer at time of execution, communication etc.
Sundaram	Conclusion: - Conclusion: - Thus, we performed table lovel & index level optimisation & compariso it to response optimisation

1) SELECT QUERY

BEFORE OPTIMIZING

AFTER OPTIMIZING

2) NESTED

BEFORE OPTIMIZING

AFTER OPTIMIZING

3) LEFT JOIN

BEFORE OPTIMIZING

AFTER OPTIMIZING

4) RIGHT JOIN

BEFORE OPTIMIZING

AFTER OPTIMIZING

5) INNER JOIN

BEFORE OPTIMIZING

AFTER OPTIMIZING

6) CROSS JOIN

BEFORE OPTIMIZING

AFTER OPTIMIZING

USING INDEXING

1)SIMPLE QUERY

BEFORE INDEXING

AFTER INDEXING

2) NESTED

BEFORE INDEXING

AFTER INDEXING

3) LEFT JOIN

BEFORE INDEXING

AFTER INDEXING

4) RIGHT JOIN

BEFORE INDEXING

AFTER INDEXING

