Materi Tambahan terkait Struktur Aljabar.

Ingat kembali bahwa:

- Struktur aljabar (G, *) dikatakan *semigrup* jika:
 - 1. G merupakan himpunan tak kosong,
 - 2. G tertutup terhadap operasi biner *, dan
 - 3. operasi biner * bersifat asosiatif.
- Struktur aljabar (G, *) dikatakan *monoid* jika:
 - 1. (G, *) merupakan suatu semigrup, dan
 - 2. *G* memiliki elemen identitas.
- Struktur aljabar (G, *) dikatakan *grup* jika:
 - 1. (G, *) merupakan suatu monoid, dan
 - 2. setiap anggota di *G* memiliki invers masing-masing.
- Struktur aljabar (G, *) dikatakan *grup abelian* jika:
 - 1. (G, *) merupakan suatu grup, dan
 - 2. operasi biner * bersifat komutatif.

Struktur aljabar $(G, +, \times)$ dikatakan sebagai suatu *ring* (*gelanggang*) jika:

- 1. (G, +) merupakan suatu grup abelian,
- 2. G tertutup terhadap operasi biner \times ,
- 3. operasi biner \times bersifat asosiatif,
- 4. operasi biner + dan × bersifat distributif (kiri dan kanan), yakni:

untuk setiap
$$a,b,c \in G$$
, berlaku $a \times (b+c) = (a \times b) + (a \times c)$ [distributif kiri] $(b+c) \times a = (b \times a) + (c \times a)$ [distributif kanan]

Contoh 1:

Tunjukkan apakah himpunan $A = \{x \mid x = 5n, n \in \mathbb{Z}\}$ merupakan suatu ring terhadap penjumlahan dan perkalian pada bilangan bulat! (\mathbb{Z} bilangan bulat) Jawab:

Pertama, harus ditunjukkan bahwa A adalah suatu himpunan tak kosong. A adalah himpunan dengan $A = \{x \mid x = 5n, n \in \mathbb{Z}\}$. Jika kita ambil n = 1, maka $x = 5 \in A$. Ini berarti bahwa A merupakan himpunan tak kosong.

Kedua, harus ditunjukkan bahwa A tertutup terhadap operasi biner +. Ambil sebarang x_1 dan x_2 pada A, katakanlah $x_1, x_2 \in A$. Ini berarti,

$$x_1 = 5a \operatorname{dan} x_2 = 5b$$
, dengan $a, b \in \mathbb{Z}$.

Akan ditunjukkan bahwa A tertutup terhadap operasi biner +.

Dengan kata lain, akan ditunjukkan bahwa $x_1 + x_2$ juga anggota A.

$$x_1 + x_2 = 5a + 5b = 5(a+b) \in A$$

Jadi, A tertutup terhadap +.

Ketiga, harus ditunjukkan bahwa operasi biner + bersifat asosiatif.

Ambil sebarang x_1 , x_2 , dan x_3 pada A, katakanlah $x_1, x_2, x_3 \in A$. Ini berarti,

$$x_1 = 5a$$
, $x_2 = 5b$, dan $x_3 = 5c$ dengan $a, b, c \in \mathbb{Z}$.

Akan ditunjukkan bahwa operasi biner + bersifat asosiatif.

Dengan kata lain, akan ditunjukkan bahwa $(x_1 + x_2) + x_3 = x_1 + (x_2 + x_3)$.

$$(x_1 + x_2) + x_3 = (5a + 5b) + 5c = 5a + 5b + 5c = 5a + (5b + 5c) = x_1 + (x_2 + x_3)$$

Sampai pada tahap ini, telah dibuktikan bahwa (A, +) adalah suatu semigrup.

Keempat, harus ditunjukkan bahwa himpunan *A* memiliki elemen identitas terhadap +.

Ambil sebarang x_1 pada A, katakanlah $x_1 \in A$. Ini berarti, $x_1 = 5a$ dengan $a \in \mathbb{Z}$.

Lalu, misalkan ada suatu elemen *e*.

Karena operasi binernya adalah +, maka *e* harus memenuhi:

$$x_1 + e = e + x_1 = x_1$$

Cari nilai *e* yang memenuhi kondisi di atas.

$$x_1 + e = x_1 \rightarrow e = x_1 - x_1 = 0 \rightarrow e = 5a - 5a = 0$$

Setelah mendapatkan nilai e, pastikan apakah e terdapat dalam himpunan A.

A adalah himpunan dengan $A = \{x \mid x = 5n, n \in \mathbb{Z}\}$. Jika kita ambil n = 0, maka $x = 0 \in A$. Ini berarti bahwa A memiliki elemen identitas terhadap +.

Sampai pada tahap ini, telah dibuktikan bahwa (A, +) adalah suatu monoid.

Kelima, harus ditunjukkan bahwa setiap anggota di *A* memiliki invers masing-masing terhadap +.

Ambil sebarang x_1 pada A, katakanlah $x_1 \in A$. Ini berarti, $x_1 = 5a$ dengan $a \in \mathbb{Z}$.

Lalu, misalkan ada suatu elemen x_1^{-1} .

Karena operasi binernya adalah +, maka x_1^{-1} harus memenuhi:

$$x_1 + x_1^{-1} = x_1^{-1} + x_1 = 0$$

Cari nilai x_1^{-1} yang memenuhi kondisi di atas.

$$x_1 + x_1^{-1} = 0 \rightarrow x_1^{-1} = 0 - x_1 \rightarrow x_1^{-1} = 0 - 5a = -5a$$

Setelah mendapatkan nilai x_1^{-1} , pastikan apakah x_1^{-1} terdapat dalam himpunan A.

A adalah himpunan dengan $A = \{x \mid x = 5n, n \in \mathbb{Z}\}$. Maka,

$$x_1^{-1} = -5a = 5(-a) \in A$$

Ini berarti bahwa setiap anggota di A memiliki invers masing-masing terhadap +.

Sampai pada tahap ini, telah dibuktikan bahwa (A, +) adalah suatu grup.

Keenam, akan ditunjukkan bahwa operasi biner + bersifat komutatif.

Ambil sebarang x_1 dan x_2 pada A, katakanlah $x_1, x_2 \in A$. Ini berarti,

$$x_1 = 5a \operatorname{dan} x_2 = 5b$$
, dengan $a, b \in \mathbb{Z}$.

Akan ditunjukkan bahwa operasi biner + bersifat komutatif.

Dengan kata lain, akan ditunjukkan bahwa $x_1 + x_2 = x_2 + x_1$.

$$x_1 + x_2 = 5a + 5b = 5(a+b) = 5(b+a) = 5b + 5a = x_2 + x_1$$

Jadi, operasi biner + bersifat komutatif.

Sampai pada tahap ini, telah dibuktikan bahwa (A, +) adalah suatu grup abelian.

Ketujuh, harus ditunjukkan bahwa *A* tertutup terhadap operasi biner \times . Ambil sebarang x_1 dan x_2 pada *A*, katakanlah $x_1, x_2 \in A$. Ini berarti,

$$x_1 = 5a \text{ dan } x_2 = 5b$$
, dengan $a, b \in \mathbb{Z}$.

Akan ditunjukkan bahwa A tertutup terhadap operasi biner \times .

Dengan kata lain, akan ditunjukkan bahwa $x_1 \times x_2$ juga anggota A.

$$x_1 \times x_2 = 5a \times 5b = 5(a \times b) \in A$$

Jadi, A tertutup terhadap \times .

Kedelapan, harus ditunjukkan bahwa operasi biner × bersifat asosiatif.

Ambil sebarang x_1 , x_2 , dan x_3 pada A, katakanlah $x_1, x_2, x_3 \in A$. Ini berarti,

$$x_1 = 5a$$
, $x_2 = 5b$, dan $x_3 = 5c$ dengan $a, b, c \in \mathbb{Z}$.

Akan ditunjukkan bahwa operasi biner × bersifat asosiatif.

Dengan kata lain, akan ditunjukkan bahwa $(x_1 \times x_2) \times x_3 = x_1 \times (x_2 \times x_3)$.

$$(x_1 \times x_2) \times x_3 = (5a \times 5b) \times 5c = 5a \times 5b \times 5c = 5a \times (5b \times 5c) = x_1 \times (x_2 \times x_3)$$

Kesembilan, harus ditunjukkan bahwa operasi biner + dan × bersifat distributif kiri dan distributif kanan.

Ambil sebarang x_1 , x_2 , dan x_3 pada A, katakanlah $x_1, x_2, x_3 \in A$. Ini berarti,

$$x_1 = 5a$$
, $x_2 = 5b$, dan $x_3 = 5c$ dengan $a, b, c \in \mathbb{Z}$.

Akan ditunjukkan bahwa operasi biner + dan × bersifat distributif kiri dan distributif kanan. Dengan kata lain akan ditunjukkan bahwa:

$$x_1 \times (x_2 + x_3) = (x_1 \times x_2) + (x_1 \times x_3)$$
 [distributif kiri]
 $(x_2 + x_3) \times x_1 = (x_2 \times x_1) + (x_3 \times x_1)$ [distributif kanan]

$$x_1 \times (x_2 + x_3) = 5a \times (5b + 5c) = 5a \times 5(b + c) = 5[a \times (b + c)]$$
[karena $a, b, c \in \mathbb{Z}$, maka $a \times (b + c) = (a \times b) + (a \times c)$]
$$= 5[(a \times b) + (a \times c)] = 5(a \times b) + 5(a \times c)$$

$$= (x_1 \times x_2) + (x_1 \times x_3)$$
 [distributif kiri]

$$(x_2 + x_3) \times x_1 = (5b + 5c) \times 5a = 5(b + c) \times 5a = 5[(b + c) \times a]$$

$$[\text{ karena } a, b, c \in \mathbb{Z}, \text{ maka } (b + c) \times a = (b \times a) + (c \times a)]$$

$$= 5[(b \times a) + (c \times a)] = 5(b \times a) + 5(c \times a)$$

$$= (x_2 \times x_1) + (x_3 \times x_1)$$

$$[\text{distributif kanan}]$$

Dengan demikian, $(A, +, \times)$ adalah suatu ring. ■

Contoh 2:

Diketahui \mathbb{Z}_2 adalah himpunan bilangan bulat, dengan $\mathbb{Z}_2 = \{0,1\}$. Tunjukkan bahwa $(\mathbb{Z}_2, +, \times)$ adalah ring dengan + dan × merupakan penjumlahan dan perkalian modulo 2! Jawab:

$(\mathbb{Z}_2,+)$			
Tabel Cayley			
+	0	1	
0	0	1	
1	1	0	

 $>> Apakah \mathbb{Z}_2$ merupakan himpunan tak kosong?

 \mathbb{Z}_2 jelas merupakan himpunan tak kosong.

>> Apakah \mathbb{Z}_2 tertutup terhadap operasi biner +?

Karena semua hasil jumlahnya merupakan anggota dari \mathbb{Z}_2 , maka \mathbb{Z}_2 tertutup terhadap operasi biner +.

>> Apakah operasi biner + bersifat asosiatif?

Sebagai contoh,

$$1 + (0 + 1) = 1 + 1 = 0$$

$$(1+0)+1=1+1=0$$

Dengan memandang sifat operasi + pada bilangan bulat yang pasti bersifat asosiatif, maka operasi biner + pada \mathbb{Z}_2 juga bersifat asosiatif.

Sampai pada tahap ini, telah dibuktikan bahwa $(\mathbb{Z}_2, +)$ adalah suatu semigrup.

>> Apakah \mathbb{Z}_2 memiliki elemen identitas penjumlahan?

Perhatikan 'baris 0' dan 'kolom 0'.

+	0	1
0	0	1
1	1	0

Karena setelah proses penjumlahan, hasil yang diperoleh tidak ada yang berubah, maka 0 adalah elemen identitas dari \mathbb{Z}_2 terhadap operasi biner +.

Sampai pada tahap ini, telah dibuktikan bahwa (\mathbb{Z}_2 , +) adalah suatu monoid.

>> Apakah setiap anggota di \mathbb{Z}_4 memiliki invers masing-masing terhadap +?

Sekarang kita cek apakah setiap anggotanya memiliki invers masing-masing.

Karena 0 adalah elemen identitas, maka setiap baris dan setiap kolomnya haruslah mengandung '0' sebanyak tepat satu.

$$0^{-1} = 0$$
 : $1^{-1} = 1$

Jadi, setiap anggotanya memiliki invers masing-masing terhadap operasi biner +.

Sampai pada tahap ini, telah dibuktikan bahwa (\mathbb{Z}_2 , +) adalah suatu grup.

>> Apakah operasi biner + bersifat komutatif? Sebagai contoh,

$$0 + 1 = 1 = 1 + 0$$

Dengan memandang sifat operasi + pada bilangan bulat yang pasti bersifat komuttif, maka operasi biner + pada \mathbb{Z}_2 juga bersifat komutatif.

Sampai pada tahap ini, telah dibuktikan bahwa (\mathbb{Z}_2 , +) adalah suatu grup abelian.

$$\begin{array}{c|c} (\mathbb{Z}_2,\times) \\ \text{Tabel Cayley} \\ \times & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$$

>> Apakah \mathbb{Z}_2 tertutup terhadap operasi biner \times ?

Karena semua hasil kalinya merupakan anggota dari \mathbb{Z}_2 , maka \mathbb{Z}_2 tertutup terhadap operasi biner \times .

>> Apakah operasi biner × bersifat asosiatif? Sebagai contoh,

$$1 \times (0 \times 1) = 1 \times 0 = 0$$

$$(1 \times 0) \times 1 = 0 \times 1 = 0$$

Dengan memandang sifat operasi \times pada bilangan bulat yang pasti bersifat asosiatif, maka operasi biner \times pada \mathbb{Z}_2 juga bersifat asosiatif.

>> Apakah operasi biner + dan × bersifat distributif kiri dan distributif kanan? Sebagai contoh,

$$\begin{array}{c} 1 \times (0+1) = 1 \times 1 = 1 \\ (1 \times 0) + (1 \times 1) = 0 + 1 = 1 \end{array} \right\} \quad 1 \times (0+1) = (1 \times 0) + (1 \times 1)$$

$$\begin{array}{l} (0+1)\times 1 = 1\times 1 = 1 \\ (0\times 1) + (1\times 1) = 0 + 1 = 1 \end{array} \right\} \ \, (0+1)\times 1 = (0\times 1) + (1\times 1)$$

Dengan memandang sifat operasi + dan \times pada bilangan bulat yang pasti bersifat distributif, maka operasi biner + dan \times pada \mathbb{Z}_2 juga bersifat distributif (kiri dan kanan).

Dengan demikian, $(\mathbb{Z}_2, +, \times)$ adalah suatu ring.