Confidence Intervals

Part 3.2 Confidence Intervals and Hypothesis Testing

Be very careful!!!

But how do we learn about the population?

If Population Mean is Unknown

If Population Mean is Unknown

Only one sample is available.

But we need to estimate the population parameter somehow.

Ask instead: how far is the population mean from the observed sample mean?

$$\mu$$
 μ μ μ μ μ μ μ

Point Estimates vs Interval Estimates

Point estimate: a single number

• This is the estimation we have done so far

Interval estimate: an interval to provide additional info on the variability of the estimate.

- How precise is it (width of the interval)?
- How confident you are (chances the interval is "correct")?

For a period of 144 days, daily observations have been conducted about the number of candy bars sold from a vending machine. Using these observations:

- Mean of the sample = 258
- Standard deviation of the sample = 60

Q. For a 144-day period, find:

P(average number of candy bars sold > 263) =

$$\bar{X} \sim N(\mu_{\bar{X}}, \sigma_{\bar{X}}^2) = N(260, (5)^2)$$

We said 95% of all values of \overline{X} were within $2\sigma_{\overline{X}}$ of its center, which we claimed was centered on the population mean μ .

$$95\% = P(\mu - 2\sigma_{\overline{X}} < \overline{X} < \mu + 2\sigma_{\overline{X}})$$

If population mean μ is unknown, guess μ using what you know, the value of sample mean X.

Suppose for a random sample, $\bar{X} = 258$:

$$95\% = P(\mu - 2\sigma_{\overline{X}} < \overline{X} < \mu + 2\sigma_{\overline{X}})$$

If population mean μ is unknown, guess μ using what you know, the value of sample mean X.

Suppose for a random sample, $\bar{X} = 258$:

95% =
$$P(258 - 2 \times 5 < \bar{X} < 258 + 2 \times 5) = P(248 < \bar{X} < 268)$$

Is This Interval a Good Guess of μ ?

Two challenges in practice:

- 1. You only take one sample of size *n*
 - → have only one interval
- 2. You do not know population mean μ
 - \rightarrow don't know if the interval actually contains μ

But! You do know that 95% of the intervals formed in this manner will contain μ .

Based on this one sample, you *actually selected* your interval such that you can be 95% confident it will contain μ .

→ 95% Confidence Interval

The Center Point Has Changed

Sampling

Is This Interval a Good Guess of μ ?

Sample	Sample Mean	Lower Limit	Lower Limit	Contain Pop Mean
(n = 144)	$ar{X}$	$\bar{X} - 2\sigma_{\bar{X}}$	$\bar{X} + 2\sigma_{\bar{X}}$	$\mu = 260$?
1	258	248	268	Yes
2	252	242	262	Yes
3	267	257	277	Yes
4	245	235	255	No!
5	263	253	273	Yes

Is This Interval a Good Guess of μ ?

The Center Point Has Changed

Separation Between Sample Mean and Population Mean (Red bars indicate more than 2 sigma separation) CI Around True Mean $True\ Mean = 50$ CI Around Sample Mean Sample Number

Estimating the Population Mean

Interval Estimate
$$= \bar{X} \pm \text{Critical Value} \cdot \sigma_{\bar{X}}$$

$$= \bar{X} \pm \frac{\text{Critical Value}}{\gamma_{\bar{N}}} \cdot \frac{\sigma_{\bar{N}}}{\gamma_{\bar{N}}}$$
Point Estimate Margin of Error

```
Critical Value: = 1 if looking for 68% confidence interval
= 2 if looking for 95% confidence interval
= 3 if looking for 99.7% confidence interval
```

Estimating the Population Mean

Interval Estimate =
$$(\bar{X})$$
 + Critical Value (\bar{X})

Example 1: Find Confidence Interval for μ

Working at Avis, you oversee buying mid-size cars and are considering proposals from Ford, GM and Chrysler (each offering one car model). Your key consideration: miles per gallon (mpg). You test drive 10 Ford vehicles:

- Sample mean of mpg: 31.8
- Sample variance of mpg: 2

$$n = 10$$

$$\bar{X} = 31.8$$

$$S = \sqrt{2}$$

Q. Based on this sample, what is the 95% confidence interval for the average mpg for a Ford fleet.

95% C.I of
$$\mu = [?,?]$$

Example 1: Find Confidence Interval for μ

Working at Avis, you oversee buying mid-size cars and are considering proposals from Ford, GM and Chrysler (each offering one car model). Your key consideration: miles per gallon (mpg). You test drive 10 Ford vehicles:

- Sample mean of mpg: 31.8
- Sample variance of mpg: 2

$$n = 10$$

$$\bar{X} = 31.8$$

$$S = \sqrt{2}$$

Q. Based on this sample, what is the 95% confidence interval for the average mpg for a Ford fleet.

Is the distribution (*X*) normal? Yes.

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} \approx \frac{S}{\sqrt{n}} = \frac{\sqrt{2}}{\sqrt{10}} = 0.447$$

$$\bar{X} \pm 2\sigma_{\bar{X}} = 31.8 \pm 2$$

$$= 31.8 \oplus 494994$$

$$= [30.91, 32.69]$$

What Does \overline{X} Suggest About μ ?

Estimating the population mean

After data is collected from a sample of size n,

Point estimate

• \bar{X} is the most likely value for μ

Interval estimate

• 68% confidence interval: $\bar{X} \pm 1 \cdot \sigma_{\bar{X}} \approx \bar{X} \pm 1 \cdot \frac{s}{\sqrt{n}}$

• 95% confidence interval: $\bar{X} \pm 2 \cdot \sigma_{\bar{X}} \approx \bar{X} \pm 2 \cdot \frac{s}{\sqrt{n}}$

• 99.7% confidence interval: $\bar{X} \pm 3 \cdot \sigma_{\bar{X}} \approx \bar{X} \pm 3 \cdot \frac{s}{\sqrt{n}}$

Example 2: Evaluate a Candidate of μ

Working at Avis, you oversee buying mid-size cars and are considering proposals from Ford, GM and Chrysler (each offering one car model). Your key consideration: miles per gallon (mpg). You test drive 10 Ford vehicles:

- Sample mean of mpg: 31.8
- Sample variance of mpg: 2

$$n = 10$$

$$\bar{X} = 31.8$$

$$S = \sqrt{2}$$

Q. If your manager requires the fleet to have a mpg of at least 30, will the Ford vehicles meet this requirement? Is $\mu \ge 30$?

Example 2: Evaluate a Candidate of μ

Example 2: Evaluate a Candidate of μ

Q. Will the Ford vehicles meet the requirement: $\mu \ge 30$?

$$\begin{array}{c}
n = 10 \\
\bar{X} = 31.8 \\
S = \sqrt{2}
\end{array}$$

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}} \approx \frac{S}{\sqrt{n}} = \frac{\sqrt{2}}{\sqrt{10}} = 0.447$$

$$\Rightarrow |30 - \bar{X}| = |30 - 31.8| = 1.8 > 2\sigma_{\bar{X}}$$

Distribution of Sample Proportion (\hat{p}) ... works exactly the same.

When sample is large enough
$$\hat{p} \sim N(\mu_{\hat{p}}, \ \sigma_{\hat{p}}^2) = N(p, \frac{p(1-p)}{n})$$

Empirical (1-2-3) Rule for (\hat{p})

68% chance of being within one standard deviation of the mean

$$P(\mu_{\hat{p}} - \sigma_{\hat{p}} < \hat{p} < \mu_{\hat{p}} + \sigma_{\hat{p}}) = 0.68$$

95% chance of being within **two** standard deviations of the mean

$$P(\mu_{\hat{p}} - 2\sigma_{\hat{p}} < \hat{p} < \mu_{\hat{p}} + 2\sigma_{\hat{p}}) = 0.95$$

Empirical (1-2-3) Rule for (\hat{p})

99.7% chance of being within three standard deviation of the mean

$$P(\mu_{\hat{p}} - 3\sigma_{\hat{p}} < \hat{p} < \mu_{\hat{p}} + 3\sigma_{\hat{p}}) = 0.997$$

Estimating a Population Proportion (\hat{p})

Point estimate

• \hat{p} is the most likely value for p

Interval estimate

• A confidence interval around \hat{p} where p is likely to be:

$$= \hat{p} \pm \text{Critical Value} \cdot \sigma_{\hat{p}}$$

$$= \hat{p} \pm \text{Critical Value} \cdot \sqrt{\frac{p(1-p)}{n}}$$

$$= [\hat{p} - \text{Critical Value} \cdot \sqrt{\frac{p(1-p)}{n}}, \hat{p} + \text{Critical Value} \cdot \sqrt{\frac{p(1-p)}{n}}]$$

Example 3: Find the CI for p

Q. What is a 95% confidence interval estimate for the population proportion of social media users who have purchased an item promoted by a celebrity on a social media?

n = 1000 $\hat{p} = 0.26$

$$\hat{p} \pm 2\sigma_{\hat{p}}$$
= 0.26 \pm 2 \times 0.014
= 0.26 \pm 0.028
= [0.232, 0.288]

95% C.I of p = [?, ?]

Example 4: Evaluate a Candidate of p

Q. Are you likely to purchase an item promoted by a celebrity on social media?

$$ls p > 0.25$$
?

$$n = 1000$$

$$\hat{p} = 0.26$$

Is p > 0.25? n = 1000 $\hat{p} = 0.26$ 95% C.I of p = [0.232, 0.288]

No, because the 95% interval estimate contains 0.25

Example 4: Evaluate a Candidate of p

Q. Are you likely to purchase an item promoted by a celebrity on social media?

Is
$$p < 0.3$$
?

$$n = 1000$$

$$\hat{p} = 0.26$$

n = 1000 $\hat{p} = 0.26$ 95% C.I of p = [0.232, 0.288]

Yes, because 0.3 is outside the 95% C.I. to the right

Hypothesis Testing

... a hypothesis is a claim (assertion) about a population parameter.

Population mean

The mean monthly cellphone bill in this city is $\mu = 42

Population proportion

The proportion of adults in this city with cellphones is p = 0.68

Hypothesis Testing: The Null Hypothesis (H_0)

... the baseline assumption about what is true.

Example: The mean diameter of a manufactured bolt is 30mm H_0 : $\mu = 30$

$$H_0: \mu = 30$$

$$(H_0: \overline{X} = 30)$$

Hypothesis Testing: The Null Hypothesis (H_0)

... some examples.

The accused is innocent

New product is no different from old one

Average salary after graduation = \$46,000

Average wealth is at least \$100,000

(until proven guilty)

(until proven better)

(until proven different)

(until proven < \$100,000)

Hypothesis Testing: The Null Hypothesis (H_0)

... some examples.

Null

Null Hypothesis: H_0

Examples

- H_0 : $\mu = \mu_0$
- H_0 : $\mu \ge \mu_0$ H_0 : $\mu \le \mu_0$

Alternative

Alternative Hypothesis: H_1 or H_A

Examples

- H_A : $\mu \neq \mu_0$
- H_A : $\mu < \mu_0$ H_A : $\mu > \mu_0$
- H_A is the hypothesis you are gathering evidence in support of.
- H_0 is the hypothesis you would like to reject.
 - The idea: Reject H_0 only when there are lots of evidence against it.
 - A technicality: always include "=" in H_0 (=, \geq , \leq)

Hypothesis Testing

... how does it work in practice?

If population mean is not different from the desired level of 4

→ Happy for production to go on undisturbed.

If population mean is different from the desired level of 4

→ Needs to stop production and adjust the production line.

Hypothesis Testing

... how does it work in practice?

A M&M plant operation manager is looking at the efficiency of their automated production lines. According to company specification, average #(green beans) in a bag should be 4.

- **Q.** How to test the null hypothesis H_0 ?
 - Randomly sample bags.
 - Calculate the average number of green beans per sampled bag (\bar{X}) .
 - Compare that \bar{X} to what you would expect if the null hypothesis was true.

Hypothesis Testing

... how does it work in practice?

 $H_0: \mu = 4$

 H_A : $\mu \neq 4$

Suppose $\bar{X} = 2.8$, significantly lower than 4.

If the null hypothesis were true:

- → Prob(get such a value as the sample mean) would be very small
- → Reject the null hypothesis

In other words, if the population mean were 4:

- → Getting a sample mean 2.8 is very unlikely.
- \rightarrow Conclude that the population mean μ must not be 4.

Hypothesis Testing

... how does it work in practice?

... Confidence intervals!

$$H_0: \mu = 4$$

 H_A : $\mu \neq 4$

Unlikely for μ to be here. So reject the null hypothesis.

Hypothesis Testing

... how does it work in practice?

... Confidence intervals!

$$H_0: \mu = 4$$

$$H_A$$
: $\mu \neq 4$

General Example

 H_0 : Pop. Mean = μ

5% = Size (Red Region)

- = P(Observe \bar{X} in Red, when \bar{X} follows this distribution with mean μ)
- = P(Observe \overline{X} in Red, given that H_0 is true)
- = P(Observe \bar{X} in Red | H_0 is true)
- = $P(\bar{X} \text{ is too "extreme" to occur } | H_0 \text{ is true})$
- = P(We find evidence to reject $H_0 \mid \underline{H_0}$ is true)
- = P(Observe \bar{X} in Rejection Region | $\underline{H_0}$ is true)

More General Example

 $\alpha = P(Observe \overline{X} \text{ in Rejection Region} \mid H_0 \text{ is true})$

- = $P(\text{Reject } H_0 \mid H_0 \text{ is true})$
- = P(Incorrectly rejecting H_0 aka Type I error)
- = Significance level of the hypothesis test

A situation that we dislike

 H_0 : pop. mean = μ

More General Example

 $1 - \alpha = P(\text{observe } \bar{X} \text{ outside the Rejection Region } | H_0 \text{ is true})$

 H_0 : pop. mean = μ

- = $P(do not reject H_0 | H_0 is true)$
- = P(do not having a false alarm)
- = confidence level of the hypothesis test

A situation that we like

$$1 - \alpha = 68\%$$

 $1 - \alpha = 95\%$
 $1 - \alpha = 99.7\%$

If \bar{X} falls in the rejection region, we can reject H_0 with $100 \cdot (1 - \alpha)\%$ confidence.

 $\alpha = 0.32, \dots 68\%$ confidence

 $\alpha = 0.05, \dots, 95\%$ confidence

 $\alpha = 0.003, 99.7\%$ confidence

If \bar{X} falls outside the rejection region, H_0 can't be rejected with $100 \cdot (1 - \alpha)\%$ confidence.

The Intuition

If \overline{X} is close to the stated μ , H_0 is not rejected.

If \overline{X} is far away from the stated μ , H_0 is rejected.

 \rightarrow How far is "far enough" to reject H_0 ?

How Far Is Far Enough?

- 1. Critical Value Approach
- 2. p-Value Approach

Example 1: Critical Value Approach

... in 5 steps.

- 1. Set H_0 and H_A .
- 2. Identify significant level α and sample size n.
- 3. Use α to determine the critical values that divide the rejection and nonrejection regions.
- 4. Compute the test statistic (Z value).
- 5. Conclude:

If |test statistic| > |critical value|

 $\rightarrow \bar{X}$ in the rejection region

If |test statistic| < |critical value|

 $\rightarrow \bar{X}$ in the nonrejection region

 \rightarrow Reject H_0

 \rightarrow Can't reject H_0

Example 1: Critical Value Approach

Hawaii Tourism Authority had estimated that the average stay of Pro Bowl visitors is 10.1 days.

$$H_0$$
: $\mu = 10.1$

 $H_A: \mu \neq 10.1$

In 2003, they surveyed 260 Pro Bowl visitors, with an average stay of 9.1 days, and a standard deviation of 5.7 days.

Q. Can you reject their claim with 95% confidence?

Example 1: Critical Value Approach (95%)

1.
$$H_0: \mu = 10.1$$
 $H_A: \mu \neq 10.1$
2. $\alpha = 0.05$ $n = 260$

- 3. For $\alpha = 0.05$, the critical values are ± 2 .
- 4. Compute the test statistics (Z value of \bar{X}):

$$Z = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}} = \frac{9.1 - 10.1}{0.35} = -2.86$$

5. Compare test statistics and critical value:

$$|Z| = 2.86 > |Critical Value| = 2$$

Can reject the null hypothesis with 95% confidence.

$$\bar{X} = 9.1$$
$$S = 5.7$$

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

$$\approx \frac{S}{\sqrt{n}}$$

$$= \frac{5.7}{\sqrt{260}}$$

$$= 0.35$$

Example 1: Critical Value Approach (99.7%)

1.
$$H_0$$
: $\mu = 10.1$ H_A : $\mu \neq 10.1$
2. $\alpha = 0.003$ $n = 260$

- 3. For $\alpha = 0.003$, the critical values are ± 3 .
- 4. Compute the test statistics (Z value of \bar{X}):

$$Z = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}} = \frac{9.1 - 10.1}{0.35} = -2.86$$

5. Compare test statistics and critical value:

$$|Z| = 2.86 < |Critical Value| = 3$$

Cannot reject the null hypothesis with 99.7% confidence.

$$\bar{X} = 9.1$$
 $S = 5.7$

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

$$\approx \frac{S}{\sqrt{n}}$$

$$= \frac{5.7}{\sqrt{260}}$$

$$= 0.35$$

Example 1: Critical Value Approach (99.7%)

If $\bar{X} = 8.6$, what do you think of the Hawaii Tourism Authority's claim?

Observation

If we can reject H_0 at a certain confidence level, then we can reject H_0 at any confidence level lower than that.

The opposite does not hold.

Why? Can you show it in the graph?

Useful Facts: Hypothesis Testing

- 1. We need a sample mean and standard deviation of the sample mean.
- 2. We construct a null and alternative hypothesis:

$$H_0$$
: $\mu = \mu_0 \text{ vs. } H_A$: $\mu \neq \mu_0$

- 3. Using the critical value approach:
- If |test statistic Z = $\frac{\bar{X} \mu}{\sigma_{\bar{X}}}$ | > |critical value| \rightarrow Reject H_0
- If $|\text{test statistic Z} = \frac{\bar{X} \mu}{\sigma_{\bar{X}}}| \leq |\text{critical value}| \rightarrow \text{Can't reject } H_0$

p-value =Size ofBlue Region

 α = Size of Red Region

Critical Value vs p-Value

- ... in 4 steps.
- 1. Set H_0 and H_A
- 2. Identify significant level α and sample size n
- 3. Compute the test statistic (z value) and p-value
- 4. Conclude:
 - $\rightarrow \bar{X}$ in the rejection region

If p-value $< \alpha$

- \rightarrow Reject H_0
- $\rightarrow \bar{X}$ in the nonrejection region

If p-value $\geq \alpha$

 \rightarrow Can't reject H_0

Hawaii Tourism Authority had estimated that the average stay of Pro Bowl visitors is 10.1 days.

$$H_0$$
: $\mu = 10.1$

 $H_A: \mu \neq 10.1$

In 2003, they surveyed 260 Pro Bowl visitors, with an average stay of 9.1 days, and a standard deviation of 5.7 days.

Q. Can you reject their claim with 95% confidence?

1.
$$H_0: \mu = 10.1$$
 $H_A: \mu \neq 10.1$
2. $\alpha = 0.05$ $n = 260$

- 3. For $\alpha = 0.05$, the critical values are ± 2 .
- 4. Compute the test statistics (Z value of \bar{X}):

$$Z = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}} = \frac{9.1 - 10.1}{0.35} = -2.86$$

and the p-value.

$$\bar{X} = 9.1$$

 $S = 5.7$

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

$$\approx \frac{S}{\sqrt{n}}$$

$$= \frac{5.7}{\sqrt{260}}$$

$$= 0.35$$

- Q. Which region represents the p-value of the test statistic -2.86?
 - (A) Region 1
 - (B) Region 4
 - (C) Region 1 + Region 4
 - (D) Region 2 + Region 3

- Q. Which region represents the p-value of the test statistic -2.86?
 - (A) Region 1
 - (B) Region 4
 - (C) Region $1 + \text{Region 4} = 2 \times \text{Region } 1 = 2 \times P(Z < -2.86)$
 - (D) Region 2 + Region 3

Q. Use python to find P(Z < -2.86).

1.
$$H_0$$
: $\mu = 10.1$ H_A : $\mu \neq 10.1$
2. $\alpha = 0.05$ $n = 260$

- 3. For $\alpha = 0.05$, the critical values are ± 2 .
- 4. Compute the test statistics (Z value of \bar{X}):

$$Z = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}} = \frac{9.1 - 10.1}{0.35} = -2.86$$

and the p-value.

5. Compare the test statistics and α :

p-value =
$$2 \times P(Z < -2.86) = 2 \times 0.002$$

= $0.004 < \alpha = 0.05$

Can reject the null hypothesis with 95% confidence

$$\bar{X} = 9.1$$
$$S = 5.7$$

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

$$\approx \frac{S}{\sqrt{n}}$$

$$= \frac{5.7}{\sqrt{260}}$$

$$= 0.35$$

How to Conclude

$$H_0$$
: $\mu = 10.1$

$$H_A: \mu \neq 10.1$$

Statistical conclusion:

- Can't reject H_0 with 95% confidence.
- Can't reject H_0 .

Practical conclusion:

- Can't reject the hypothesis that the average stay is 10.1 days
- The average stay is not significantly different from 10.1 days

All statements work!

Useful Facts: Hypothesis Testing

- 1. We need a sample mean and standard deviation of the sample mean.
- 2. We construct a null and alternative hypothesis:

$$H_0$$
: $\mu = \mu_0$ vs. H_A : $\mu \neq \mu_0$

- 3. Using the critical value approach:
 - If |test statistic Z = $\frac{\bar{X} \mu}{\sigma_{\bar{X}}}$ | > |critical value| \rightarrow Reject H_0
 - If |test statistic $Z = \frac{\bar{X} \mu}{\sigma_{\bar{X}}}$ | \le |critical value| \rightarrow Can't reject H_0
- 4. Using the p-value approach:
 - If p-value $< \alpha \rightarrow \text{Reject } H_0$
 - If p-value $\geq \alpha$ \rightarrow Can't reject H_0

1.
$$H_0$$
: $\mu = 10.1$ H_A : $\mu \neq 10.1$
2. $\alpha = 0.05$ $n = 260$

- 3. For $\alpha = 0.05$, the critical values are ± 2 .
- 4. Compute the test statistics (Z value of \bar{X}):

$$Z = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}} = \frac{9.1 - 10.1}{0.35} = -2.86$$

and the p-value.

5. Compare the test statistics and α :

p-value =
$$2 \times P(Z < -2.86) = 2 \times 0.002$$

= $0.004 < \alpha = 0.05$

Can reject the null hypothesis with 95% confidence

$$\bar{X} = 9.1$$
$$S = 5.7$$

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

$$\approx \frac{S}{\sqrt{n}}$$

$$= \frac{5.7}{\sqrt{260}}$$

$$= 0.35$$

Example 2: p-Value Approach (extension)

1.
$$H_0: \mu = 10.1$$
 $H_A: \mu \neq 10.1$
2. $\alpha = 0.05$ $n = 260$

- 3. For $\alpha = 0.05$, the critical values are ± 2 .
- 4. Compute the test statistics (Z value of \bar{X}):

$$Z = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{\bar{X} - \mu}{\sigma_{\bar{X}}} = \frac{10.5 - 10.1}{0.35} = 1.14$$

and the p-value.

5. Compare the test statistics and α :

p-value =
$$2 \times P(Z > 1.14) = 2 \times (1 - 0.87) = 2 \times 0.13$$

= $0.26 > \alpha = 0.05$

Cannot reject the null hypothesis with 95% confidence

$$\bar{X} = 10.5$$
$$S = 5.7$$

$$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$$

$$\approx \frac{S}{\sqrt{n}}$$

$$= \frac{5.7}{\sqrt{260}}$$

$$= 0.35$$

Rule of Thumb in Practice

Most Commonly Used confidence level

$$1-\alpha=95\%$$

Most Commonly Used significance level

$$\alpha = 0.05$$

Reject the null (H_0) in favor of H_A if

p-value
$$< \alpha = 0.05$$

p-Value: What it is and what it is not

One rejects the null hypothesis H_0 when

Hypothesis Testing

Prob
$$\begin{pmatrix} \text{Sampling data is more extreme} & H_0 \\ \text{than the data you have observed} & \text{is true} \end{pmatrix} \leq \alpha$$

This is <u>not</u> $\operatorname{Prob}\left(\begin{array}{c|c} \operatorname{Confidence\ Interval} \\ \operatorname{Null\ hypothesis\ } H_0 \\ \operatorname{is\ true} \end{array}\right) \xrightarrow{\operatorname{Confidence\ Interval}} \Delta \alpha$

We cannot interpret the p-value as the probability that the Null Hypothesis is true given our data!