Types of data

Types of data, data objects, and attribute types

Types of Data Sets: (1) Record Data

- Relational records
 - Relational tables, highly structured
- Data matrix, e.g., numerical matrix, crosstabs
- Transaction data
- Document data: Term-frequency vector (matrix) of text documents

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

	China	England	France	Japan	USA	Total
Active Outdoors Crochet Glove		12.00	4.00	1.00	240.00	257.00
Active Outdoors Lycra Glove		10.00	6.00		323.00	339.00
InFlux Crochet Glove	3.00	6.00	8.00	·	132.00	149.00
InFlux Lycra Glove		2.00		·	143.00	145.00
Triumph Pro Helmet	3.00	1.00	7.00		333.00	344.00
Triumph Vertigo Helmet		3.00	22.00		474.00	499.00
Xtreme Adult Helmet	8.00	8.00	7.00	2.00	251.00	276.00
Xtreme Youth Helmet		1.00			76.00	77.00
Total	14.00	43.00	54.00	3.00	1,972.00	2,086.00

Person:						
Pers_ID	Surname	First_Name	City			
0	Miller	Paul	London			
1	Ortega	Alvaro	Valencia -	— no relation		
2	Huber	Urs	Zurich			1
3	Blanc	Gaston	Paris			
4	Bertolini	Fabrizio	Rom		—, I	
Car:					_	
Car_ID	Model	Year	Value	Pers_ID		
101	Bentley	1973	100000	0		+
102	Rolls Royce	1965	330000	0		+
103	Peugeot	1993	500	3		
104	Ferrari	2005	150000	4		
105	Renault	1998	2000	3		
106	Renault	2001	7000	3		
=					•	

	team	coach	pla y	ball	score	game	n Wi	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Types of Data Sets: (2) Graphs and Networks

- Transportation network
- World Wide Web

Molecular Structures

Social or information networks

Types of Data Sets: (3) Ordered Data

- Video data: sequence of images
- Temporal data: time-series

 Sequential Data: transaction sequences

Genetic sequence data

Types of Data Sets: (4) Spatial, image and multimedia Data

Spatial data: maps

- Image data:
- Video data:

Data Objects

- Data sets are made up of data objects
- A data object represents an entity
- Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Also called samples , examples, instances, data points, objects, tuples
- Data objects are described by attributes
- Database rows \rightarrow data objects; columns \rightarrow attributes

Attributes

- Attribute (or dimensions, features, variables)
 - A data field, representing a characteristic or feature of a data object.
 - E.g., customer_ID, name, address
- Types:
 - Nominal (e.g., red, blue)
 - Binary (e.g., {true, false})
 - Ordinal (e.g., {freshman, sophomore, junior, senior})
 - Numeric: quantitative
 - Interval-scaled: 100°C is interval scales
 - Ratio-scaled: 100° K is ratio scaled since it is twice as high as 50° K
 - Discrete vs. Continuous Attributes

Attribute Types

- Nominal: categories, states, or "names of things"
 - Hair_color = {auburn, black, blond, brown, grey, red, white}
 - marital status, occupation, ID numbers, zip codes

Binary

- Nominal attribute with only 2 states (0 and 1)
- Symmetric binary: both outcomes equally important
 - e.g., gender
- Asymmetric binary: outcomes not equally important.
 - e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal

- Values have a meaningful order (ranking) but magnitude between successive values is not known
- Size = {small, medium, large}, grades, army rankings

Numeric Attribute Types

- Quantity (integer or real-valued)
- Interval
 - Measured on a scale of equal-sized units
 - Values have order
 - E.g., temperature in C° or F°, calendar dates
 - No true zero-point
- Ratio
 - Inherent zero-point
 - We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
 - e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
- Sometimes, represented as integer variables
- Note: Binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits
- Continuous attributes are typically represented as floating-point variables