

🥉 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No:CCIS15110087103

FCC REPORT

(WIFI)

Applicant: SHENZHEN HUAQIANG KUXIN COMMUNICATION

TECHNOLOGY CO., LTD.

Address of Applicant: No. 1-1Meixiu Road, MeiLin, Futian, Shenzhen, Guangdong,

P.R.China

Equipment Under Test (EUT)

Product Name: Tablet

Model No.: W10,IC-T01,IC-T02,IC-T03,IC-T04,IC-

T05,M701,M901,M101,M116

FCC ID: 2AGLD-W10

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 11 Nov., 2015

Date of Test: 12 Nov., to 04 Dec., 2015

Date of report issued: 07 Dec., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	07 Dec., 2015	Original

Reviewed by: Ones, Ones, Date: 07 Dec., 2015

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VEF	RSION	2
3		NTENTS	
4	IES	T SUMMARY	4
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	7
	5.6	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	18
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.		
	6.6.2		
	6.7	Spurious Emission	
	6.7.		
	6.7.2		
7	TES	ST SETUP PHOTO	67
8	EUT	CONSTRUCTIONAL DETAILS	68

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard. Remark: Test according to ANSI C63.4-2009 and ANSI C63.10:2009

5 General Information

5.1 Client Information

Applicant:	SHENZHEN HUAQIANG KUXIN COMMUNICATION TECHNOLOGY CO., LTD.
Address of Applicant:	No. 1-1Meixiu Road, MeiLin, Futian,Shenzhen, Guangdong, P.R.China
Manufacturer/ Factory:	SHENZHEN HUAQIANG KUXIN COMMUNICATION TECHNOLOGY CO., LTD.
Address of Manufacturer/ Factory:	No. 1-1Meixiu Road, MeiLin, Futian,Shenzhen, Guangdong, P.R.China

5.2 General Description of E.U.T.

5 1 111	Tables	
Product Name:	Tablet	
Model No.:	W10,IC-T01,IC-T02,IC-T03,IC-T04,IC-T05,M701,M901,M101,M116	
On a ration Francisco	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))	
Operation Frequency:	2422MHz~2452MHz (802.11n(H40))	
Oh ara a la arrach a rac	11 for 802.11b/802.11g/802.11n(H20)	
Channel numbers:	7 for 802.11n(H40)	
Channel separation:	5MHz	
Modulation technology:	Direct Sequence Spread Spectrum (DSSS)	
(IEEE 802.11b)	Direct Sequence opread Spectrum (DOSS)	
Modulation technology:	Orthogonal Frequency Division Multiplexing(OFDM)	
(IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)	
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps	
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps	
Data speed (IEEE 802.11n):	Up to 150Mbps	
Antenna Type:	Internal Antenna	
Antenna gain:	2.0dBi	
	Model: MX12X8-0502000UX	
AC adapter:	Input:100-240V AC,50/60Hz 0.35A	
	Output:5V DC MAX 2A	
Power supply:	Rechargeable Li-ion Battery DC3.7V-7800mAh	
Remark:	Item No.: W10,IC-T01,IC-T02,IC-T03,IC-T04,IC-T05, M701, M901, M101, M116 are electrically identical, only model name and exterior color is different.	

Operation Frequency each of channel For 802.11b/g/n(H20)								
Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz			

Operation Frequency each of channel For 802.11n(H40)									
Channel	Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
		4	2427MHz	7	2442MHz				
		5	2432MHz	8	2447MHz				
3	2422MHz	6	2437MHz	9	2452MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (H40)

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

Report No: CCIS15110087103

5.3 Test environment andmode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup"1Mbps for 802.11b,6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40).Duty cycle setting during the transmission is100% with maximum power setting for all modulations.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.6 Test Instruments list

Radia	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017		
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016		
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016		
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016		
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016		
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016		
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016		
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016		
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016		

Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively forfixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBiprovided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFiantenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 2.0dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.4: 2009					
TestFrequencyRange:	150kHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz					
Limit:	Limit (dBuV)					
	Frequency range (MHz) Quasi-peak Average					
	0.15-0.5 66 to 56* 56 to 46*					
	0.5-5 56 46					
	* Decreases with the logarithm of the frequency.					
Test procedure Test setup:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), whichprovides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 					
rest setup.	Reference Plane LISN 40cm 80cm Filter AC power Equipment E.U.T Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m					
Test Uncertainty:	±3.28 dB					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Neutral:

Trace: 11 Site Condition

: CCIS Shielding Room : EN 301489-QP LISN NEUTRAL : Tablet

EUT Test Mode : WIFI mode Power Rating : AC 230/50Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Viki Remark :

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark	
MHz	dBuV	₫B	₫B	dBu√	dBu∀	₫B		
0.154 0.158	18, 45 32, 18	0.25 0.25	10.78 10.78	29.48 43.21	65.56	-22.35	QP	
0.230	14.85	0.25	10.75	25.85	52.44	-26.59	Average	
0.307	17.32	0.26	10.74	28.32	50.06	-21.74	Average	
0.595	And the second second	The Property of the Control of the C	10.77	39.14 39.37	56.00	-16.86	QP	
0.686	15.01 10.58	0.19	10.77	25.97	46.00	-24.28	Average	
	MHz 0. 154 0. 158 0. 230 0. 230 0. 302 0. 307 0. 391 0. 595 0. 661 0. 686 1. 249	MHz dBuV 0.154 18.45 0.158 32.18 0.230 33.52 0.230 14.85 0.302 32.79 0.307 17.32 0.391 28.40 0.595 28.14 0.661 28.40 0.686 15.01	Freq Level Factor MHz dBuV dB 0.154 18.45 0.25 0.158 32.18 0.25 0.230 33.52 0.25 0.230 14.85 0.25 0.302 32.79 0.26 0.307 17.32 0.26 0.391 28.40 0.25 0.595 28.14 0.23 0.661 28.40 0.20 0.686 15.01 0.19 1.249 10.58 0.24	MHz dBuV dB dB 0.154 18.45 0.25 10.78 0.158 32.18 0.25 10.78 0.230 33.52 0.25 10.75 0.230 14.85 0.25 10.75 0.302 32.79 0.26 10.74 0.307 17.32 0.26 10.74 0.391 28.40 0.25 10.72 0.695 28.14 0.23 10.77 0.686 15.01 0.19 10.77 1.249 10.58 0.24 10.90	MHz dBuV dB dB dBuV 0.154 18.45 0.25 10.78 29.48 0.158 32.18 0.25 10.78 43.21 0.230 33.52 0.25 10.75 44.52 0.230 14.85 0.25 10.75 25.85 0.302 32.79 0.26 10.74 43.79 0.307 17.32 0.26 10.74 28.32 0.391 28.40 0.25 10.72 39.37 0.595 28.14 0.23 10.77 39.14 0.661 28.40 0.20 10.77 39.37 0.686 15.01 0.19 10.77 25.97 1.249 10.58 0.24 10.90 21.72	MHz dBuV dB dB dBuV dBuV 0.154 18.45 0.25 10.78 29.48 55.78 0.158 32.18 0.25 10.78 43.21 65.56 0.230 33.52 0.25 10.75 44.52 62.44 0.230 14.85 0.25 10.75 25.85 52.44 0.302 32.79 0.26 10.74 43.79 60.19 0.307 17.32 0.26 10.74 28.32 50.06 0.391 28.40 0.25 10.72 39.37 58.03 0.595 28.14 0.23 10.77 39.14 56.00 0.661 28.40 0.20 10.77 39.37 56.00 0.686 15.01 0.19 10.77 25.97 46.00 1.249 10.58 0.24 10.90 21.72 46.00	MHz dBuV dB dB dBuV dBuV dB 0.154 18.45 0.25 10.78 29.48 55.78 -26.30 0.158 32.18 0.25 10.78 43.21 65.56 -22.35 0.230 33.52 0.25 10.75 44.52 62.44 -17.92 0.230 14.85 0.25 10.75 25.85 52.44 -26.59 0.302 32.79 0.26 10.74 43.79 60.19 -16.40 0.307 17.32 0.26 10.74 28.32 50.06 -21.74 0.391 28.40 0.25 10.72 39.37 58.03 -18.66 0.595 28.14 0.23 10.77 39.14 56.00 -16.83 0.661 28.40 0.20 10.77 39.37 56.00 -16.63 0.686 15.01 0.19 10.77 25.97 46.00 -20.03 1.249 10.58 0.24	MHz dBuV dB dB dBuV dBuV dB 0.154 18.45 0.25 10.78 29.48 55.78 -26.30 Average 0.158 32.18 0.25 10.78 43.21 65.56 -22.35 QP 0.230 33.52 0.25 10.75 44.52 62.44 -17.92 QP 0.230 14.85 0.25 10.75 25.85 52.44 -26.59 Average 0.302 32.79 0.26 10.74 43.79 60.19 -16.40 QP 0.307 17.32 0.26 10.74 28.32 50.06 -21.74 Average 0.391 28.40 0.25 10.72 39.37 58.03 -18.66 QP 0.661 28.40 0.20 10.77 39.14 56.00 -16.63 QP 0.686 15.01 0.19 10.77 25.97 46.00 -20.03 Average 1.249 10.58

Line:

Trace: 9

: CCIS Shielding Room : EN 301489-QP LISN LINE Site Condition

EUT : Tablet Model : W10 Test Mode : WIFI mode

Power Rating : AC 230/50Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Viki

Kemaik	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	₫B	₫₿	dBu₹	dBu₹	₫₿	
1 2	0.154 0.158	20.43 39.16	0.27 0.27	10.78 10.78	31.48 50.21	65.56	-15.35	
1 2 3 4 5 6 7 8 9	0.227 0.230 0.302	17.28 36.50 34.79	0. 27 0. 27 0. 26		28.30 47.52 45.79	62.44	-14.92	Average QP QP
6 7	0.307 0.389	16.32 32.42	0.26 0.28	10.74 10.72	27.32 43.42	50.06 58.08	-22.74 -14.66	Average QP
9	0.595 0.668 0.751	12.44 12.17 32.47	0.23	10.77 10.77 10.79	23.46 23.17 43.49	46.00		Average Average
11 12	2.213	30.81 12.05		10.95 10.95	42. 02 23. 26	56.00	-13.98	

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peakemission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)			
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2			
Limit:	30dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data

Test CH	Ma	aximum Conduct	Limit(dBm)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(dBin)	Nesuit
Lowest	6.10	5.82	5.75	5.68		
Middle	6.20	6.05	5.96	5.73	30.00	Pass
Highest	5.51	5.31	5.57	4.98		

Test plot as follows:

Test mode:802.11b

Lowest channel

Highest channel

Lowest channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Highest channel

Test mode:802.11n(H40)

Lowest channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1		
Limit:	>500kHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Test CH		6dB Emission	Limit(kHz)	Result		
1631 011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii(Ki iZ)	rvesuit
Lowest	10.26	16.75	18.04	36.71		
Middle	10.26	16.75	17.96	36.71	>500	Pass
Highest	10.26	16.75	17.96	36.71		

Test CH		99%Occupy	Limit(kHz)	Result		
1030011	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Liiiii(Ki iZ)	rtesuit
Lowest	15.07	16.59	17.80	36.23		
Middle	15.07	16.59	17.80	36.23	N/A	N/A
Highest	15.07	16.51	17.80	36.23		

Test plot as follows:

6dB EBW

Test mode: 802.11b

Lowest channel

Highest channel

Lowest channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Highest channel

99% **OBW**

Test mode: 802.11b

Lowest channel

Highest channel

Lowest channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)			
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2			
Limit:	8dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data

Test CH		Power Spec	ctral Density (dBm)	Limit(dBm) R		
	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Ziiiii(dBiii)	Result	
Lowest	-4.58	-9.14	-9.58	-11.98			
Middle	-4.13	-8.64	-9.07	-11.88	8.00	Pass	
Highest	-4.79	-9.29	-10.02	-12.84			

Test plot as follows:

Test mode: 802.11b

Lowest channel

Highest channel

Lowest channel

Highest channel

Test mode: 802.11n(H20)

Lowest channel

Highest channel

Test mode: 802.11n(H40)

Lowest channel

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Spectrum Analyzer Non-Conducted Table		
Test setup:			
Test Instruments:	Ground Reference Plane		
	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Test plot as follows:

Lowest channel Highest channel

Lowest channel Highest channel

Lowest channel Highest channel

Lowest channel Highest channel

6.6.2 Radiated Emission Method

- Nadiated Lillission Metriod										
Test Requirement: FCC Part15 C Section 15.209 and 15	FCC Part15 C Section 15.209 and 15.205									
Test Method: ANSI C63.10: 2009and KDB 558074	ANSI C63.10: 2009and KDB 558074v03r03 section 12.1									
TestFrequencyRange: 2.3GHz to 2.5GHz	2.3GHz to 2.5GHz Measurement Distance: 3m									
Test site: Measurement Distance: 3m										
Receiver setup: Frequency Detector RE	Frequency Detector RBW VBW Remark									
	ИHz 3MHz									
Above IGHZ RMS 1M	MHz 3MHz	z Average Value								
Limit:	/ ID) // OO	\								
Frequency Limit ((dBuV/m @3m 54.00) Remark Average Value								
Above 1GHz	74.00	Peak Value								
todetermine the position of the h 2. The EUT was set 3 meters away antenna, whichwas mounted on tower. 3. The antenna height is varied from the ground to determine the max Both horizontal and vertical polar make the measurement. 4. For each suspected emission, the case and thenthe antenna was to meters and the rotatablewas turn to find the maximum reading. 5. The test-receiver system was seen SpecifiedBandwidth with Maximum for the emission level of the EUT in the limitspecified, then testing confide the EUT wouldbe reported. Of have 10dB margin would bere-test.	 antenna, whichwas mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasipeak or average method as specified andthen reported in a data 									
AE EUT (Turraside)	(Turntadole) Ground Selectors Phone									
Test Instruments: Refer to section 5.6 for details	Refer to section 5.6 for details									
Test mode: Refer to section 5.3 for details	Refer to section 5.3 for details									
	Passed									

802.11b

Test channel:Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet Condition

FUT : W10 Model Test mode : b-L mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: Viki

Remark

catat		10.000					1400		
	Freq	ReadAnte Level Fac	Antenna Factor	enna Cable ctor Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	d₿	dB	dBuV/m	dBuV/m	₫₿	
1	2390,000								

Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet Condition

EUT Model : W10 Test mode : b-L mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55W Test Engineer: Viki

Ren

mai	rk :	Read	Åntenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	₫₿	₫B	dBuV/n	dBuV/m	₫₿	
1	2390,000								

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:Highest

Horizontal:

Site

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT Tablet Model ₩10

Test mode : b-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki Remark :

emai		Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	dB/m	dB	₫₿	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500	18.86 7.74	27.52 27.52	6.85 6.85	0.00	53.23 42.11	74.00 54.00	-20.77 -11.89	Peak Average

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT Tablet : ¥10 Model Test mode : b-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki Remark

ıarı	K :								
	Freq	Read. Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line		
2	MHz	dBu₹	<u>dB</u> /m	dB	dB	dBuV/m	dBuV/m	dB	
	2483.500 2483.500				0.00				

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g

Test channel:Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Tablet EUT Model : W10 Test mode : g-L mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Viki

Remark

mar		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000								Peak Average

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet Condition

EUT : W10 Model Test mode : g-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki

Remark

	3274 142		Antenna Factor				Limit Line		Remark
	MHz	dBuV	dB/m	−−−dB	dB	dBuV/m	dBuV/m	−−−dB	
1 2	2390.000 2390.000								

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Tablet : W10 EUT Model Test mode : G-H mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55% Test Engineer: Viki

Remark

C	700	Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
900	2483.500 2483.500								

Remark:

2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet Condition

EUT : w10
Test mode : G-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
Remark :

mari		Read	Antenna	Cable	Presmn		Limit	Over	
	Freq						1000	200 17 17 17 17	Remark
	MHz	dBu∀	dB/m	dB	₫B	dBuV/m	dBuV/m	dB	
1	2483,500 2483,500			6.85				-20,66	Peak Average

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H20)

Test channel:Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT Tablet Model : W10 Test mode : N20-L mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki

Remark

	Freq	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
3	MHz	dBuV	dB/m	dB	₫B	dBuV/m	dBuV/m	₫B	
	2390.000 2390.000								

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Tablet EUT Model : W10 Test mode : N20-L mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki

Rena

la	rk :				-		THE ASSESSMENT		
	Freq	Level	Antenna Factor	Loss	Preamp Factor	Level	Limit	Over Limit	Remark
	MHz	dBu∛	dB7=	−−−dB	dB	dBu√/m	dBuV/m	dB	
	2390.000 2390.000		1000			52.74 41.81			Peak Average

Remark:

2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel:Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet Condition

EUT Model : W10 Test mode: N20-H mode
Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Viki
Remark

Remark

mar	1000	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/n	dB	
1 2	2483.500 2483.500								

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet Condition

EUT

: w10

lest mode : N20-H mode

Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki

Remark :

2.1	loh see	Pand	Ant enna	Cabla	Drasss		Timit	0	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB/m	₫B	d₿	dBuV/m	dBuV/m	d₿	
	2483, 500 2483, 500								

Remark:

2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n (H40)

Test channel:Lowest

Horizontal:

: 3m chamber Site

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT Tablet Model : W10 Test mode : N40-L mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki Remark :

na.	Freq		Antenna Factor					Over Limit	
	MHz	dBu∀	$-\overline{dB/m}$	dB	<u>d</u> B	dBuV/m	dBu√/m	dB	
2	2390.000 2390.000					51.14 42.22			Peak Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition EUT

: Tablet Model : N40-L mode Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki Remark :

ııa,	LK.								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∀	dB/m	₫₿	dB	dBuV/m	dBuV/m	dB	
1	2390.000	19.51	27.58	6.63	0.00	53.72	74.00	-20.28	Peak
2	2390,000	8.01	27.58	6.63	0.00	42.22	54.00	-11.78	Average

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test channel: Highest

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : Tablet
Model : W10
Test mode : N40-H mode
Power Rating : AC 120V/60H

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki

Remark

mai	K :	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∛	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1 2	2483.500 2483.500					54.40 42.29			

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Tablet Condition

EUT Model : W10 Test mode : N40-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki

Remark

F	rea		Antenna Factor					Over	
1140		CONTRACTO	-dB/m	-97.00.57.00		- MAN-00 15 40 C	20000	a downards	200000000000000000000000000000000000000
			27.52 27.52		0.00				Peak Average

Remark:

1 2

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2009 and KDB558074 section 11							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spreadspectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:								
	Spectrum Analyzer							
	Non-Conducted Table							
	Ground Reference Plane							
Test Instruments:	Refer to section 5.6 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Passed							

Test plot as follows:

Date: 29.NOV.2015 18:37:15

30MHz~25GHz

Middle channel

Date: 29.NOV.2015 18:38:13

Highest channel

Date: 29.NOV.2015 18:38:48

30MHz~25GHz

Test mode: 802.11g Lowest channel

Date: 29.NOV.2015 18:39:36

Middle channel

Date: 29.NOV.2015 18:40:14

30MHz~25GHz

Highest channel

Date: 29.NOV.2015 18:41:02

Date: 29.NOV.2015 18:43:54

30MHz~25GHz

Middle channel

Date: 29.NOV.2015 18:44:39

Highest channel

Date: 29.NOV.2015 18:43:15

30MHz~25GHz

Test mode: 802.11n(H40)

Lowest channel

Date: 29.NOV.2015 18:45:34

Middle channel

Date: 29.NOV.2015 18:46:05

30MHz~25GHz

Highest channel

Date: 29.NOV.2015 18:46:47

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C	Section 15.20	9 and 15.205				
Test Method:	ANSI C63.10:2009 9kHz to 25GHz						
TestFrequencyRange:	9kHz to 25GHz	·					
Test site:	Measurement [Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Remark		
·	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value		
	Above 1GHz	Peak	1MHz	3MHz	Peak Value		
	Above IGHZ	RMS	1MHz	3MHz	Average Value		
Limit:	Freque	ency	Limit (dBuV/	m @3m)	Remark		
	30MHz-8	8MHz	40.0)	Quasi-peak Value		
	88MHz-21	16MHz	43.5	5	Quasi-peak Value		
	216MHz-9	60MHz	46.0)	Quasi-peak Value		
	960MHz-	1GHz			Quasi-peak Value		
	Above 1	GHz			Average Value		
Test Procedure:	960MHz-1GHz 54.0 Quasi-peak Value						

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT Tablet : W10 Model : WIFI mode Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Viki

1000		Read	Antenna	Cable	Presmo		Limit	Over	
	Freq		Factor						
-5	MHz	dBu∀	dB/m	₫B	dB	dBuV/m	dBuV/m	d₿	
1	61.562	50.91	12.03	0.71	29.77	33.88	40.00	-6.12	QP
2	112.920	54.28	11.73	1.07	29.44	37.64	43.50	-5.86	QP
2	213.015	56.06	10.97	1.45	28.75	39.73	43.50	-3.77	QP
4	220.617	56.52	11.20	1.49	28.70	40.51	46.00	-5.49	QP
4 5 6	239.987	57.70	12.09	1.58	28.59	42.78	46.00	-3.22	QP
6	355.427	50.03	14.35	1.96	28.58	37.76	46.00	-8.24	QP

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

: Tablet EUT Model : W10 Test mode : WIFI mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Viki Remark :

emaik									
	Freq		Antenna Factor				Limit Line	Over Limit	
-	MHz	dBu∀	-dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1	59.649	48.39	12.73	0.69	29.77	32.04	40.00	-7.96	QP
2	119.856	53.41	10.48	1.12	29.39	35.62	43.50	-7.88	QP
	213.015	47.53	10.97	1.45	28.75	31.20	43.50	-12.30	QP
4	426.521	45.75	15.50	2.19	28.83	34.61	46.00	-11.39	QP
5	480.528	46.00	16.07	2.35	28.92	35.50	46.00	-10.50	QP
6	640.611	39.25	18.60	2.76	28.81	31.80	46.00	-14.20	QP

Above 1GHz

Test mode: 80	02.11b		Test char	Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
4824.00	48.15	31.54	10.58	40.22	50.05	74.00	-23.95	Vertical		
4824.00	48.33	31.54	10.58	40.22	50.23	74.00	-23.77	Horizontal		
Test mode: 80	02.11b		Test channel: Lowest		Remark: Ave	erage				
_	Read	At	0-1-1-)		l	_			
Frequency (MHz)	Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.		
	Level	Factor	Loss	Factor			Limit	Polar.		

Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.93	31.57	10.64	40.15	48.99	74.00	-25.01	Vertical	
4874.00	46.82	31.57	10.64	40.15	48.88	74.00	-25.12	Horizontal	
Test mode: 80	02.11b		Test channel: Middle			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	36.25	31.57	10.64	40.15	38.31	54.00	-15.69	Vertical	
4874.00	36.99	31.57	10.64	40.15	39.05	54.00	-14.95	Horizontal	

Test mode: 80	02.11b		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	47.58	31.61	10.70	40.08	49.81	74.00	-24.19	Vertical
4924.00	47.95	31.61	10.70	40.08	50.18	74.00	-23.82	Horizontal
Test mode: 80	02.11b		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	37.73	31.61	10.70	40.08	39.96	54.00	-14.04	Vertical
4924.00	37.40	31.61	10.70	40.08	39.63	54.00	-14.37	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Test mode: 80	02.11g		Test chan	nel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	48.29	31.54	10.58	40.22	50.19	74.00	-23.81	Vertical	
4824.00	47.82	31.54	10.58	40.22	49.72	74.00	-24.28	Horizontal	
Test mode: 80)2.11g		Test channel: Lowest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	38.33	31.54	10.58	40.22	40.23	54.00	-13.77	Vertical	
4824.00	37.52	31.54	10.58	40.22	39.42	54.00	-14.58	Horizontal	

Test mode: 80	02.11g		Test char	nel: Middle		Remark: Pea	k	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	50.18	31.57	10.64	40.15	52.24	74.00	-21.76	Vertical
4874.00	49.66	31.57	10.64	40.15	51.72	74.00	-22.28	Horizontal
Test mode: 80	02.11g		Test channel: Middle			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	40.15	31.57	10.64	40.15	42.21	54.00	-11.79	Vertical
	39.35	31.57	10.64	40.15	41.41	54.00	-12.59	Horizontal

Test mode: 802.11g			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	50.07	31.61	10.70	40.08	52.30	74.00	-21.70	Vertical	
4924.00	49.34	31.61	10.70	40.08	51.57	74.00	-22.43	Horizontal	
Test mode: 80	02.11g		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	40.11	31.61	10.70	40.08	42.34	54.00	-11.66	Vertical	
4924.00	40.06	31.61	10.70	40.08	42.29	54.00	-11.71	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	LimitLine (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	51.84	31.54	10.58	40.22	53.74	74.00	-20.26	Vertical	
4824.00	51.43	31.54	10.58	40.22	53.33	74.00	-20.67	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	42.02	31.54	10.58	40.22	43.92	54.00	-10.08	Vertical	
4824.00	41.28	31.54	10.58	40.22	43.18	54.00	-10.82	Horizontal	

Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	51.68	31.57	10.64	40.15	53.74	74.00	-20.26	Vertical	
4874.00	51.55	31.57	10.64	40.15	53.61	74.00	-20.39	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	42.01	31.57	10.64	40.15	44.07	54.00	-9.93	Vertical	
4874.00	41.83	31.57	10.64	40.15	43.89	54.00	-10.11	Horizontal	

Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	52.22	31.61	10.70	40.08	54.45	74.00	-19.55	Vertical	
4924.00	51.89	31.61	10.70	40.08	54.12	74.00	-19.88	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	42.21	31.61	10.70	40.08	44.44	54.00	-9.56	Vertical	
4924.00	41.97	31.61	10.70	40.08	44.20	54.00	-9.80	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	52.41	31.55	10.61	40.19	54.38	74.00	-19.62	Vertical	
4844.00	51.55	31.55	10.61	40.19	53.52	74.00	-20.48	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	42.11	31.55	10.61	40.19	44.08	54.00	-9.92	Vertical	
4844.00	41.89	31.55	10.61	40.19	43.86	54.00	-10.14	Horizontal	

Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	52.38	31.57	10.64	40.15	54.44	74.00	-19.56	Vertical	
4874.00	51.12	31.57	10.64	40.15	53.18	74.00	-20.82	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	42.19	31.57	10.64	40.15	44.25	54.00	-9.75	Vertical	
4874.00	41.84	31.57	10.64	40.15	43.90	54.00	-10.10	Horizontal	

Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	52.09	31.59	10.67	40.10	54.25	74.00	-19.75	Vertical	
4904.00	51.74	31.59	10.67	40.10	53.90	74.00	-20.10	Horizontal	
Test mode: 80	02.11n(H40)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	42.07	31.59	10.67	40.10	44.23	54.00	-9.77	Vertical	
4904.00	41.85	31.59	10.67	40.10	44.01	54.00	-9.99	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.