Homework 6

Thomas Zhang

December 2023

Question 1

a)

Variables:
$$\mathbf{W} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \\ w_0 \end{bmatrix}$$

Where w_0 is some constant and w_j for $1 \leq j \leq n$ is the weight indicating the amount that G_j contributes to G_*

Inputs:

Inputs:
$$\mathbf{X} = \begin{bmatrix} G_{1,1} & G_{1,2} & \dots & G_{1,n} & 1 \\ G_{2,1} & G_{2,2} & \dots & G_{2,n} & 1 \\ \vdots & \vdots & \ddots & \vdots & 1 \\ G_{m,1} & G_{m,2} & \dots & G_{m,n} & 1 \end{bmatrix}$$
 where $G_{i,j} = G_j^{(i)}$ which is the steady state expression of gene j during in the i' th condition.
$$\mathbf{Y} = \begin{bmatrix} G_*^{(1)} \\ G_*^{(2)} \\ \vdots \\ G_*^{(m)} \end{bmatrix}$$

$$\mathbf{Y} = egin{bmatrix} G_*^{(1)} \ G_*^{(2)} \ \vdots \ G_*^{(m)} \end{bmatrix}$$

Where $G_*^{(i)}$ is the observed expression of G_* in the *i'*th condition.

$$\underset{\mathbf{W}}{argmin} \quad \|\mathbf{X}\mathbf{W} - \mathbf{Y}\|_2^2$$

b)

Variables:
$$\mathbf{W} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \\ w_0 \end{bmatrix}$$

Where w_0 is some constant and w_j for $1 \leq j \leq n$ is the weight indicating the amount that G_j contributes to $\frac{d}{dt}G_*$

Inputs:
$$\mathbf{X} = \begin{bmatrix} G_{1,1} & G_{1,2} & \dots & G_{1,n} & 1 \\ G_{2,1} & G_{2,2} & \dots & G_{2,n} & 1 \\ \vdots & \vdots & \ddots & \vdots & 1 \\ G_{m,1} & G_{m,2} & \dots & G_{m,n} & 1 \end{bmatrix}$$

where $G_{i,j} = G_j^{(i)}$ which is the steady state expression of gene j during i'th time point.

$$\mathbf{Y} = egin{bmatrix} G_{i,j}^{-1} & G_j^{-1} & \mathbf{Y} \\ G_*^{(1)} & G_*^{(2)} \\ \vdots & \vdots & \vdots \\ G_*^{(m+1)} \end{bmatrix}$$

Where $G_*^{(i)}$ is the observed expression of G_* at the i'th time point. Model Equations:

$$\frac{d}{dt}G_*^{(i)} = w_0 + w_1G_{i,1} + w_1G_{i,1} + \dots + w_nG_{i,n}$$

$$\frac{d}{dt}\mathbf{Y}_{1:m} = \begin{bmatrix} \frac{d}{dt}G_*^{(1)} \\ \frac{d}{dt}G_*^{(2)} \\ \vdots \\ \frac{d}{dt}G_*^{(m)} \end{bmatrix}$$
$$= X\mathbf{W}$$

Objective Function:

$$argmin \quad \|\hat{\mathbf{Y}}_{2:m+1} - \mathbf{Y}_{2:m+1}\|_2$$

$$argmin \quad \|(\mathbf{Y}_{1:m} + \Delta t \mathbf{X} \mathbf{W}) - \mathbf{Y}_{2:m+1}\|_2^2$$

Where Δt is the time difference for each time step. If Δt is not consistent between all time points then the objective has to be rewritten as:

$$\underset{\mathbf{W}}{argmin} \quad \sum_{i}^{m} (\mathbf{Y}_{i} + \Delta t_{i,i+1} \mathbf{X}_{i,:} \mathbf{W} - \mathbf{Y}_{i+1})^{2}$$

Where $\Delta t_{i,i+1}$ is the time difference between time point i and time point i+1.

Question 2

$$L(w) = w_1^2 + 2w_2^2 + w_3^2 - 2w_3w_4 + w_4^2 + 2w_1 - 4w_2 + 4$$

$$\nabla L(w) = [2w_1 + 2, 4w_2 - 4, 2w_3 - 2w_4, -2w_3 + 2w_4]$$

$$\nabla L(w) = [-\eta(2w_1 + 2), -\eta(4w_2 - 4), -\eta(2w_3 - 2w_4), -\eta(-2w_3 + 2w_4)]$$

c)

$$2w_1 + 2 = 0$$
 $4w_2 - 4 = 0$ $2w_3 - 2w_4$ $-2w_3 + 2w_4$ $w_1 = -1$ $w_2 = 1$ $w_3 = w_4$ $w_3 = w_4$

Since the only restriction on w_3 and w_4 is that they are equal we can choose any value for them. Thus to simplify the vector we will let them equal 0.

$$2w_1 + 2 = 0$$
 $4w_2 - 4 = 0$
 $w_1 = -1$ $w_2 = 1$

$$2w_3 - 2w_4 - 2w_3 + 2w_4$$
$$w_3 = 0 \quad w_4 = 0$$

d)

No there is more than one unique solution because w_3 and w_4 just have to be equal. Otherwise they can be any value.

Question 3

The probability of fixation is roughly the same when the graph is fully connected for the birth-death process and the death-birth process.

It appears that if the graph isn't fully connected then the chance of fixation decreases depending on s. When s is 0, there doesn't seem to be much correlation between fixation rate and the number of edges each node has. When s is larger the connectivity of the graph seems to have slightly more impact. When s is large, graphs with lower connectivity have slightly lower chance of reaching fixation.

Question 4

Given all of the data below. It appears that the probability of zombies growing exponentially at the start is most affected by β and the edge density of the graph. When these two values are high relative to α then the probability of short term exponential growth is higher.

Given:

- α = Rate at which susceptible individuals defeat zombies
- β = Rate at which susceptible individuals are infected when they come into contact with a zombie.
- γ =Rate at which susceptible individuals die due to non-zombie related reasons.
- ξ =Rate at which the removed are resurrected into zombies.

Fixation rate (the chance that zombies infect all susceptible) decreases when α increases. Fixation rate increases when β, γ, ξ or the edge density of the graph increases.

If exponential growth of zombies is the goal, then having small α , large β, γ, ξ and high edge density of the graph is ideal.

