EECS 545: Machine Learning

Lecture 16. Unsupervised Learning: EM & PCA

Honglak Lee 3/12/2025

High-Dimensional Data

(above: images of digit "3" via translations and rotations)

• But there are only three degrees of freedom, so it lies on a 3-dimensional subspace (x, y, angle).

• ... may have low-dimensional structure.

The data is 100x100-dimensional.

- (on a non-linear manifold, in this case)

Principal Component Analysis (PCA)

Principal Component Analysis

- Given a set of $\{\mathbf{x}^{(n)}\}_{n=1,\dots,N}$ of observations
 - in a space of dimension D, i.e., $\mathbf{x}^{(n)} \in \mathbb{R}^D$
 - find a subspace of dimension M < D</p>
 - that captures most of its *variability*. (i.e., approximate $x^{(n)}$'s using principal components as basis vectors)

2nd principa component

1st principal component (largest variance)

componen

Image source: Wikipedia

Principal Component Analysis

- Given a set of $\{\mathbf{x}^{(n)}\}_{n=1,\dots,N}$ of observations
 - in a space of dimension D,
 - find a subspace of dimension M < D</p>
 - that captures most of its *variability*. (i.e., approximate $x^{(n)}$'s using principal components as basis vectors)
- PCA can be described as either:
 - maximizing the variance of the projection, or
 - minimizing the squared approximation error.
 - (both are equivalent; see the next slide)

Two Descriptions of PCA

Approximate the data with *projection*

(i.e., for each x⁽ⁿ⁾, find closest point on on the subspace spanned by principal components):

- Maximize variance, or
- Minimize squared error

Main idea: We want to find a basis vector (e.g. \mathbf{u}_1) (= principal component) that does the best approximation or best preserves the variance when projected

Equivalent Descriptions

- With mean at the origin $\,c_i^2=a_i^2+b_i^2\,$
- With constant $\sum_i c_i^2$
 - Minimizing $\sum_{i} b_i^2$
 - Maximizes $\sum_i a_i^2$

- ... and vice versa

Note: without loss of generality, here we assume that the input data x has zero mean.

First Principal Component

- Given data points $\{\mathbf{x}^{(n)}\}$ in a D-dim space,
 - Mean $\overline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{(n)}$
 - $\text{ Data covariance } \mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)} \overline{\mathbf{x}}) (\mathbf{x}^{(n)} \overline{\mathbf{x}})^{\top}$

53

First Principal Component

- Given data points $\{\mathbf{x}^{(n)}\}$ in a D-dim space,
- Let \mathbf{u}_1 be the PC maximizing variance of projection:
 - It should have length 1: $\mathbf{u}_1^{\mathsf{T}}\mathbf{u}_1 = 1$
 - Projection of $\mathbf{x}^{(n)}$ to \mathbf{u}_1 subspace: $(\mathbf{u}_1^{\top}\mathbf{x}^{(n)})\mathbf{u}_1$

Remark: More generally, projection of **x**⁽ⁿ⁾ to subspace spanned by $\mathbf{u}_1,...,\mathbf{u}_M$

$$\sum_{j=1}^{M} (\mathbf{u}_j^{ op} \mathbf{x}^{(n)}) \mathbf{u}_j$$
 54

First Principal Component

• Maximize the projection variance:

$$\frac{1}{N} \sum_{n=1}^{N} (\mathbf{u}_{1}^{\top} \mathbf{x}^{(n)} - \mathbf{u}_{1}^{\top} \overline{\mathbf{x}})^{2} = \mathbf{u}_{1}^{\top} \mathbf{S} \mathbf{u}_{1}$$

- Use a Lagrange multiplier to enforce $\mathbf{u}_1^{\mathsf{T}}\mathbf{u}_1 = 1$
- Maximize: $\mathbf{u}_1^{\top} \mathbf{S} \mathbf{u}_1 + \lambda_1 (1 \mathbf{u}_1^{\top} \mathbf{u}_1)$
- Derivative is zero when $\mathbf{S}\mathbf{u}_1 = \lambda_1\mathbf{u}_1$
 - That is, $\mathbf{u}_1^{\mathsf{T}}\mathbf{S}\mathbf{u}_1 = \lambda_1$
- So \mathbf{u}_1 is eigenvector with largest eigenvalue.

PCA by Maximizing Variance

- Repeat to find the M eigenvectors of the data covariance matrix S corresponding to the M largest eigenvalues.
 - The total variance is the sum of variances of all individual principal components
 - Principal components are orthogonal to each other
- We can also do the same thing from a "minimizing (projection) squared error" viewpoint.

Digit Image Example

The mean and first four PCA eigenvectors.

• The eigenvalue spectrum:

Reconstructing the Image

 Compress the image representation by using only first M eigenvectors, and discarding the less important information.

Learning features via PCA

Example: Eigenfaces

Training face images

Learned PCA bases

Test example

Limits to PCA

- Maximizing variance is not always the best way to make the structure visible.
- PCA vs Fisher's linear discriminant

Probabilistic PCA

- We can view PCA as solving a probabilistic latent variable problem.
- Describe a distribution $p(\mathbf{x})$ in *D*-dimensional space, in terms of a latent variable **z** in M-dimensional space.

 $\mathbf{x} = \mathbf{W}\mathbf{z} + \boldsymbol{\mu} + \boldsymbol{\epsilon}$

 $p(\mathbf{z}) = \mathcal{N}(\mathbf{z} \mid \mathbf{0}, \mathbf{I}) \quad \epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

• W is a D by M linear transformation from z to x

$$p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mathbf{x} \mid \mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$$

Probabilistic PCA

• Given the generative model

$$\mathbf{x} = \mathbf{W}\mathbf{z} + \boldsymbol{\mu} + \boldsymbol{\epsilon}$$

· we can infer

$$\mathbb{E}[\mathbf{x}] = \mathbb{E}[\mathbf{W}\mathbf{z} + \boldsymbol{\mu} + \boldsymbol{\epsilon}] = \boldsymbol{\mu}$$

$$cov[\mathbf{x}] = \mathbb{E}[(\mathbf{W}\mathbf{z} + \boldsymbol{\epsilon})(\mathbf{W}\mathbf{z} + \boldsymbol{\epsilon})^{\top}]$$
$$= \mathbb{E}[\mathbf{W}\mathbf{z}\mathbf{z}^{\top}\mathbf{W}^{\top}] + \mathbb{E}[\boldsymbol{\epsilon}\boldsymbol{\epsilon}^{\top}] = \mathbf{W}\mathbf{W}^{\top} + \sigma^{2}\mathbf{I}$$

Probabilistic PCA

• The generative model

$$\mathbf{x} = \mathbf{W}\mathbf{z} + \boldsymbol{\mu} + \boldsymbol{\epsilon}$$

can be illustrated as:

Likelihood of Probabilistic PCA

• (Marginal) likelihood:

$$\begin{split} &\log p(\mathbf{x} \mid \mathbf{W}, \boldsymbol{\mu}, \sigma^2) \\ &= \sum_i p(\mathbf{x}^{(i)} \mid \mathbf{W}, \boldsymbol{\mu}, \sigma^2) \\ &= -\frac{ND}{2} \log 2\pi - \frac{N}{2} \log |C| - \frac{1}{2} \sum_i (\mathbf{x}^{(i)} - \boldsymbol{\mu})^\top C^{-1} (\mathbf{x}^{(i)} - \boldsymbol{\mu}) \\ &\text{where} \quad C = \mathbf{W} \mathbf{W}^\top + \sigma^2 \mathbf{I} \end{split}$$

• We can simply maximize this likelihood function with respect to $\mathbf{W}, \boldsymbol{\mu}, \sigma^2$.

Maximum Likelihood Parameters

• Mean: $\mu = \overline{\mathbf{x}}$

• Noise: $\sigma_{\mathrm{ML}}^2 = \frac{1}{D-M} \sum_{i=M+1}^{D} \lambda_i$

• W: $\mathbf{W}_{\mathrm{ML}} = \mathbf{U}_{M} (\mathbf{L}_{M} - \sigma^{2} \mathbf{I})^{1/2} \mathbf{R}$

where

- $-\mathbf{L}_{M}$ is diag with the M largest eigenvalues
- U_M is the M corresponding eigenvectors
- R is an arbitrary M by M orthogonal matrix (rotation matrix) (i.e., z can be defined by rotating "back")

Maximum likelihood by EM

• Latent variable model

$$p(\mathbf{z}) = \mathcal{N}(\mathbf{z} \mid \mathbf{0}, \mathbf{I})$$
$$p(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mathbf{x} \mid \mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \sigma^2 \mathbf{I})$$

- E-step: Estimate the posterior $q(\mathbf{z}) = p(\mathbf{z} \mid \mathbf{x})$ Use linear Gaussian
- M-step: Maximize the data-completion likelihood given $q(\mathbf{z})$

$$\text{maximize}_{\theta = \{\mathbf{W}, \boldsymbol{\mu}, \sigma\}} \sum_{i} \sum_{\mathbf{z}^{(i)}} q(\mathbf{z}^{(i)}) \log p_{\theta}(\mathbf{x}^{(i)}, \mathbf{z}^{(i)})$$

Finding PCA params by EM

• Illustrating EM on simulated data

Kernel PCA

 Suppose the regularity that allows dimensionality reduction is non-linear.

Kernel PCA

• As with regression and classification, we can transform the raw input data $\{x^{(n)}\}$ to a set of feature values

$$\{\mathbf{x}^{(n)}\} \rightarrow \{\phi(\mathbf{x}^{(n)})\}$$

• Linear PCA (on the nonlinear feature space) gives us a linear subspace in the feature value space, corresponding to nonlinear structure in the data space.

Kernel PCA

· Define a kernel, to avoid having to evaluate the feature vectors explicitly.

$$k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^{\top} \phi(\mathbf{x}')$$

- Express PCA in terms of the kernel,
 - Some care is required to centralize the data.

$$K_{nm} = \phi(\mathbf{x}^{(n)})^{\top} \phi(\mathbf{x}^{(m)}) = k(\mathbf{x}^{(n)}, \mathbf{x}^{(m)})$$

Kernel PCA

- Assume that $\{\phi(\mathbf{x}^{(n)})\}$ have zero mean.
- Sample covariance matrix: $S = \frac{1}{N} \sum_{i=1}^{N} \phi(\mathbf{x}^{(n)}) \phi(\mathbf{x}^{(n)})^{\top} = \frac{1}{N} \mathbf{\Phi}^{\top} \mathbf{\Phi}$
- Let **v** be an eigenvector for S

$$S\mathbf{v} = \lambda \mathbf{v} \implies \lambda \mathbf{v} = \mathbf{\Phi}^{\top} \left(\frac{1}{N} \mathbf{\Phi} \mathbf{v} \right)$$

$$\therefore$$
 $\mathbf{v} = \mathbf{\Phi}^{\top} \boldsymbol{\alpha}$ for some $\boldsymbol{\alpha} \in \mathbb{R}^{N}$

• Thus,
$$S\mathbf{v} = \lambda \mathbf{v} \implies \lambda \mathbf{\Phi}^{\top} \boldsymbol{\alpha} = \frac{1}{N} \mathbf{\Phi}^{\top} \mathbf{\Phi} \mathbf{\Phi}^{\top} \boldsymbol{\alpha} = \frac{1}{N} \mathbf{\Phi}^{\top} K \boldsymbol{\alpha}$$

• Multiply Φ on both sides and cancel out $K = \Phi \Phi^{\top}$

$$\lambda N \alpha = K \alpha \implies \alpha$$
 is an eigenvector of K

Kernel PCA

- We thus have $\mathbf{v} = \mathbf{\Phi}^{\top} \boldsymbol{\alpha}$, where $\boldsymbol{\alpha}$ is eigenvector of the kernel matrix K.
- Now, $\|\mathbf{v}\| = 1 \implies \boldsymbol{\alpha}^{\top} K \boldsymbol{\alpha} = \boldsymbol{\alpha}^{\top} \lambda_K \boldsymbol{\alpha} = 1 \implies \|\boldsymbol{\alpha}\| = \lambda_K^{-1/2}$
- It is often infeasible to obtain v (depends on dim of Φ), but we can compute projections:

$$\mathbf{v}^\top \phi(\mathbf{x}) = \boldsymbol{\alpha}^\top \boldsymbol{\Phi} \phi(\mathbf{x}) = \boldsymbol{\alpha}^\top k(\mathbf{x}) \quad \text{where} \quad k(\mathbf{x}) = \left[k(\mathbf{x}^{(1)}, \mathbf{x}), \dots, k(\mathbf{x}^{(N)}, \mathbf{x}) \right]$$

• Finally, some care is required to centralize data (to ensure that features have zero mean):

$$K' = K - \mathbf{1}_N K - K \mathbf{1}_N + \mathbf{1}_N K \mathbf{1}_N$$
 where $\mathbf{1}_N \in \mathbb{R}^{N \times N}$ is a matrix of ones.

Kernel PCA

Linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable

Kernel PCA with

 $k(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^{\top} \mathbf{y} + 1)^2$

Kernel PCA

