Fundamentals of Cryptography Homework 4

周书予

2000013060@stu.pku.edu.cn

October 25, 2022

Problem 1

Part A

Obviously E is poly-time computable.

An decoding algorithm counts the number of leading zeros and learns the length of x, and finally outputs the last n bits as x.

For any $x, x' \in \mathcal{X}^*$,

- if |x| = |x'|, because $E(x) \neq E(x')$ and |E(x)| = |E(x')|, they are not prefix of each other.
- if |x| < |x'| then |E(x)| < |E(x')|, notice that the |x| + 1 bit in E(x) is 1 while the counterpart is 0 in E(x'), thus E(x) is not a prefix of E(x').

Part B

Write |x| as a binary string of length $\log(|x|)$, then insert a 1 between each adjacent bits, and concatenate with 0||x. That is,

$$E(x) = \mathsf{insert-one}(x) ||0|| x$$

for example, we have E(x) = 11010||0||x for |x| = 4 and E(x) = 11011111||0||x for |x| = 11.

Obviously E is poly-time computable.

An decoding algorithm can learn from the insert-one part (which ends by a 0 on even bits) the length of x, and output the last n bits as x.

Apparently $E(x) \neq E(x')$ holds for any $x \neq x'$ with the same length. As for |x| < |x'|, the insert-one part of encoding makes E(x) and E(x') different in the first $2\log(|x|)$ bits, and thus E(x) is not a prefix of E(x').

Part D

$$E(x) = \begin{cases} \inf 2 \operatorname{str}(|x|, n) \|0^{-|x| \bmod n} \|x, & |x| < 2^n - 1 \\ 1^n \|0^{|x|} \|1\|x, & |x| \geqslant 2^n - 1 \end{cases}$$

where function int2str(m, n) converts integer m into a binary string of length n.

It's not hard to see that E is a prefix-free encoding, and it suffices |E(x)| < |x| + 2n and $n \mid |E(x)|$ for every $x \in \mathcal{X}^{<2^n-1}$.

Problem 2

Part A

Since F_{CBC} is parameterized with a keyed secure PRF F, it is not hard to see (we have proven it multiple times) that

$$\left|\Pr\left[\mathcal{D}^{F_{CBC}}(1^n) = 1\right] - \Pr\left[\mathcal{D}^{G_{CBC}}(1^n) = 1\right]\right| < \mathsf{negl}(n)$$

where G_{CBC} is exactly the same as F_{CBC} , except a trult random function $g: \{0,1\}^n \to \{0,1\}^n$ is used instead of the PRF F_k .

Then we're going to show that

$$\left|\Pr\left[\mathcal{D}^{G_{CBC}}(1^n) = 1\right] - \Pr\left[\mathcal{D}^f(1^n) = 1\right]\right| < \mathsf{negl}(n)$$

(where f is a truly random function which maps $(\{0,1\}^n)^*$ to $\{0,1\}^n$) For any prefix-free set $X_1, \dots, X_q \in (\{0,1\}^n)^*$ queried by the distinguisher and $t_1, \dots, t_n \in \{0,1\}^n$ the output of the oracle (which is G_{CBC} or f), we want to show that

$$\Pr\left[\forall i, G_{CBC}(X_i) = t_i\right] \geqslant (1 - \mathsf{negl}(n)) \Pr\left[\forall i, f(X_i) = t_i\right] \tag{1}$$

If so, for any case where \mathcal{D}^f outputs 1, $\mathcal{D}^{G_{CBC}}$ outputs 1 with probability at least $1-\mathsf{negl}(n)$, and the same when outputing 0. Which means that $\mathcal{D}^{G_{CBC}}$ outputs the same as \mathcal{D}^f with probability at least $1-\mathsf{negl}(n)$, so they are indistinguishable.

Now we prove eq. (1). For $X_i \in (\{0,1\}^n)^\ell$, we denote $(I_1, I_2, \dots, I_\ell)$ as $(x_{i,1}, G_{CBC}(x_{i,1}) \oplus x_{i_2}, \dots, G_{CBC}(x_{i,1}, \dots, x_{i,\ell-1}) \oplus x_{i,\ell})$, which is all the input to G_{CBC} . If there is an I_i in X coincides with another I'_j in X' with different prefix $(x_1, \dots, x_i) \neq (x'_1, \dots, x'_j)$, we say it is a **collision**.

It can be proved that

• if there is no collision occurred, then

$$\Pr\left[\forall i, G_{CBC}(X_i) = t_i\right] = \Pr\left[\forall i, f(X_i) = t_i\right]$$

• collision only occurred with negligible probability

These two conclusions are quite intuitive. The first one holds because g is a truly random function, so it outputs identical independent distribution on different inputs. The second one holds because for each pair of (I_i, I'_j) , they coincides with negligible probability, which the length and number of X and both polynomial, by union bound we know that even one collision happens with negligible probability.

Part B

 F_{CBC} is a secure prefix-free PRF, which means that

$$|\Pr[\mathsf{Mac ext{-}forge}_{\mathcal{A}.\Pi}(n) = 1] - \Pr[\mathsf{Mac ext{-}forge}_{\mathcal{A}.\Pi'}(n) = 1]| < \mathsf{negl}(n)$$

where $\Pi = (\mathsf{Gen}, \mathsf{Mac}, \mathsf{Vrf})$ is the MAC mentioned in the problem, and Π' exactly the same as Π , except a truly random function $f(\cdot)$ is used instead of $F_{CBC}(k, \cdot)$.

we also have

$$\Pr\left[\mathsf{Mac}\text{-}\mathsf{forge}_{\mathcal{A},\Pi'}(n) = 1\right] = 2^{-n}$$

which is clear since $E(\cdot)$ outputs different E(x) for different x, and any adversary can only make random guessing and has success probability at most 2^{-n} in front of the truly random function f.

Problem 3

We define that all operations are over the \mathbb{F}_{2^n} field.

Part A

- If $i \neq i'$, $m_{j,i} + ik_1 \neq m_{j',i'} + i'k_1$ is equivalent to $k_1 \neq (m_{j,i} m_{j',i'}) \cdot (i' i)^{-1}$, which is of probability $1 \mathsf{negl}(n)$ since k_1 is chosen at uniformly random.
- If i = i' then $m_{j,i} \neq m_{j',i'}$, thus $m_{j,i} + ik_1 \neq m_{j',i'} + i'k_1$ must holds.

Part B

Consider a distinguisher \mathcal{D} which compares $\sum_{i=1}^{\ell_j} \mathcal{O}(m_{j,i} + ik_1)$ with $\sum_{i'=1}^{\ell_{j'}} \mathcal{O}(m_{j',i'} + i'k_1)$, and outputs 1 if equal and 0 otherwise.

For truly random function f, it can be seen that $\Pr[\mathcal{D}^{f(\cdot)}(1^n) = 1] = 1 - \mathsf{negl}(n)$ since with probability at least $1 - \mathsf{negl}(n)$, the set $\{m_{j,i} + ik_1\}$ is not equal to $\{m_{j',i'} + i'k_1\}$.

Notice that $F(k_2, \cdot)$ is a PRF, so we also have $\Pr[\mathcal{D}^{F(k_2, \cdot)}(1^n) = 1] = 1 - \mathsf{negl}(n)$, which means that with probability $1 - \mathsf{negl}(n)$,

$$(m_{j,1}, \cdots, m_{j,\ell_j}) \neq (m_{j',1}, \cdots, m_{j',\ell_{j'}}) \Rightarrow \sum_{i=1}^{\ell_j} F(k_2, m_{j,i} + ik_1) \neq \sum_{i'=1}^{\ell_{j'}} F(k_2, m_{j',i'} + i'k_1)$$

Part C

By replacing $F(k_3, \cdot)$ in F_{PMAC} with a truly random function f, we obtain another function $G_{\text{PMAC}} = g\left(\sum_{i=1}^{\ell} F(k_2, m_i + ik_1)\right)$.

Since $F(k_3, \cdot)$ is a secure PRF, it can be shown that

$$\left|\Pr\left[\mathcal{D}^{F_{\mathrm{PMAX}}}(1^n) = 1\right] - \Pr\left[\mathcal{D}^{G_{\mathrm{PMAC}}}(1^n) = 1\right]\right| < \mathsf{negl}(n)$$

With probability $1 - \mathsf{negl}(n)$, the outputs of $F(k_2, \cdot)$ are all distinct, which means G_{PMAC} indistinguishable from a truly random function g.

Thus, F_{PMAC} is a secure PRF.

Problem 4

Part A

Regard $H(k, (m_1, \dots, m_\ell))$ as a degree- ℓ polynomial of k over \mathbb{F}_{2^n} field.

For distinct messages m, m' with length $\leq \ell n$, H(k, m) - H(k, m') is a nonzero polynomial of degree at most ℓ , which has at most ℓ zero points over \mathbb{F}_{2^n} .

 ℓ is polynomial on n, which draws the conclusion that

$$\Pr_{k \leftarrow \{0,1\}^n} \left[H(k,m) = H(k,m') \right] \leqslant \frac{\ell}{2^n} = \mathsf{negl}(n)$$

Part B

Let $\Pi = (\mathsf{Gen}, \mathsf{Mac}, \mathsf{Vrfy})$ be the MAC mentioned in the problem, and $\Pi' = (\mathsf{Gen}', \mathsf{Mac}', \mathsf{Vrfy}')$ exactly the same as Π , except that a truly random function f is used instead of the pseudorandom function F_{k_2} . Consider that

$$\Pr\left[\mathsf{Mac\text{-}forge}_{\mathcal{A}.\Pi'}(n) = 1\right] \leqslant p(n)\mathsf{negl}(n) + \left(1 - p(n)\mathsf{negl}(n)\right)2^{-n}$$

for some polynomial p(n).

This is because when adversary \mathcal{A} gives m', there is probability at most $p(n) \operatorname{negl}(n)$ such that H(k, m') coincides with some $H(k, m^{(i)})$ asked before, and if there is not, the adversary can only make random guessing and has success probability at most 2^{-n} .

We can further prove that

$$|\Pr[\mathsf{Mac}\text{-forge}_{A,\Pi}(n) = 1] - \Pr[\mathsf{Mac}\text{-forge}_{A,\Pi'}(n) = 1]| < \mathsf{negl}(n)$$

Consider a distinguisher \mathcal{D} which emulates the message authentication experiment for \mathcal{A} and observes whether \mathcal{A} succeeds in outputting a valid tag on a "new" message. If so, \mathcal{D} guesses that its oracle is a pseudorandom function; otherwise, it guesses that its oracle is a truly random function.

We have

$$\begin{split} \Pr\left[\mathcal{D}^{F_{k_2}}(1^n) = 1\right] &= \Pr\left[\mathsf{Mac\text{-}forge}_{\mathcal{A}.\Pi}(n) = 1\right] \\ \Pr\left[\mathcal{D}^f(1^n) = 1\right] &= \Pr\left[\mathsf{Mac\text{-}forge}_{\mathcal{A}.\Pi'}(n) = 1\right] \end{split}$$

and since F is a secure PRF and \mathcal{D} runs in polynomial time, we also have

$$\left|\Pr\left[\mathcal{D}^{F_{k_2}}(1^n)=1\right]-\Pr\left[\mathcal{D}^f(1^n)=1\right]\right|<\mathsf{negl}(n)$$

So finally we draw the conclu that

$$\Pr\left[\mathsf{Mac}\text{-}\mathsf{forge}_{A\Pi}(n)=1\right]\leqslant \mathsf{negl}(n)$$

which means that Π is a (strongly) secure MAC.

Part C

If the item k^{ℓ} in H(k, m) is lost, then $H(k, m) = H(k, 0^n || m)$ holds for all m, which easily makes this MAC insecure.

Problem 5

Part A

Suppose F' is a PRF, then $F(k,x) = \begin{cases} F'(x,0), & k=0^n \\ F'(k,x), & k \neq 0^n \end{cases}$ is also a PRF since it performs differently with F' with only negligible probability.

Thus we have $\hat{F}(k, 0^n) = F(k, 0^n) \oplus F(0^n, k) = \begin{cases} F'(0^n, 0^n) \oplus F'(0^n, 0^n) & k = 0^n \\ F'(k, 0^n) \oplus F'(k, 0^n) & k \neq 0^n \end{cases} = 0^n \text{ to}$

be a deterministic value, which makes \hat{F} obviously not a PRF.

Part B

 $\hat{F}(x,y)$ is obviously symmetric, so it is sufficed to prove that $\hat{F}(k,\cdot)$ is a PRF.

For any distinguisher which queries encryption for message $m_1, \dots, m_{p(n)}$ towards its oracle, there is $1 - \mathsf{negl}(n)$ probability that all $g_1(m_i)$ -s are distinct since we assume g_1 to be collision resistant. And also $F(g_0(k), g_1(m_i))$ -s are distinct with $1 - \mathsf{negl}(n)$ probability, since F itself is a PRF.

Since g is a PRG, we know that $g_0(k), g_1(m_i)$ should be nearly independent with $g_1(k), g_0(m_i)$, which makes $F(g_0(k), g_1(m_i))$ nearly independent with $F(g_0(m_i), g_1(k))$. In summary, with probability $1 - \mathsf{negl}(n)$, all $\hat{F}(k, m_i)$ -s are distinct, which gives no information to the distinguisher, and thus it can not distinguish $\hat{F}(k, \cdot)$ from a truly random function.

Problem 6

Part A

We prove that Enc_1 is DKMA-secure when F is modeled as an ideal cipher.

For any PPT adversary \mathcal{A} , a PPT distinguisher \mathcal{D} can be built, which simulates the interaction between \mathcal{A} and the challenger, except that when $c_i = \mathsf{Enc}(k, x_i)$ is returned, it uses an oracle \mathcal{O} and returns $c_i = (r, \mathcal{O}(r \oplus m))$. Finally, \mathcal{D} outputs 1 if \mathcal{A} wins, and 0 otherwise.

On the one hand, we have the equlity that

$$\Pr\left[\mathsf{DKMA}_{\mathcal{A},\mathsf{Enc}_1}(n) = 1\right] = \Pr\left[\mathcal{D}^{F(k,\cdot)}(1^n) = 1\right]$$

on the other hand, we denote Enc_1' exactly the same as Enc_1 , except a truly random permutation $f(\cdot)$ is in place of $F(k,\cdot)$. When adversary plays DKMA security game under this encryption scheme, the distribution of $\mathsf{Enc}_1'(k,f_{i,0}(k))$ and $\mathsf{Enc}_1'(k,f_{i,1}(k))$ are totally the same, which makes them indistinguishable, so we have

$$\Pr\left[\mathsf{DKMA}_{\mathcal{A},\mathsf{Enc}_1'}(n) = 1\right] = \Pr\left[\mathcal{D}^{f(\cdot)}(1^n) = 1\right] = \frac{1}{2}$$

Since $F(k,\cdot)$ is a ideal cipher, \mathcal{A} can have at most negligible advantage to win this game.

Part B

For fixed k_1, k_2 , there is a bijection between permutation P(m) and $Q(m) := F((k_1, k_2), m) = P(m \oplus k_1) \oplus k_2$, which means that the distribution of $P(\cdot)$ and $F((k_1, k_2), \cdot)$ are totally the same, making them indistinguishable.

So P is random permutation implies that F is a strong PRP.

Part C

We prove that Enc_1 is not DKMA-secure as F defined in $\mathsf{Part}\ \mathbf{B}$, which is, $\mathsf{Enc}_1(k,x) = (r, P(r \oplus x \oplus k_1) \oplus k_2)$.

First adversary chooses function $f_{1,0}$, $f_{1,1}$ such that for all $k = k_1 || k_2$, $f_{1,0}(k) = f_{1,1}(k) = k_1$, which makes $c_1 = (r, P(r \oplus k_1 \oplus k_1) \oplus k_2) := (c_{1,0}, c_{1,1})$, and adversary can learn k_2 by calculating $k_2 = c_{1,1} \oplus P(c_{1,0})$.

Secondly it chooses $f_{2,0}(k) = f_{2,1}(k) = 0^n$, which makes $c_2 = (r, P(r \oplus k_1) \oplus k_2) := (c_{2,0}, c_{2,1})$, and can learn k_1 by calculating $k_1 = P^{-1}(c_{2,1} \oplus k_2) \oplus c_{2,0}$.

By now adversary has already learned all information about the key, thus it can easily wins the security game, which means that Enc_1 here is not DKMA-secure.