Теоретический минимум по Математическому Анализу №2

Составитель: @vasyz

17 мая 2025 г.

Содержание

1	Пон	РИТКІ		
	1.1	Числовой ряд		
	1.2	Частичная сумма числового ряда		
	1.3	Сумма числового ряда		
	1.4	Сходящийся числовой ряд		
	1.5	Остаток числового ряда		
	1.6	Гармонический ряд и его поведение в смысле сходимости		
	1.7	Обобщённый гармонический ряд (ряд Дирихле) и его поведение в смысле схо-		
		димости		
	1.8	Абсолютная сходимость числового ряда		
	1.9	Условная сходимость числового ряда		
	1.10	Функциональная последовательность		
	1.11	Функциональный ряд		
		Поточечная сходимость функциональной последовательности, множество по-		
		точечной сходимости		
	1.13	Предел функциональной последовательности		
	1.14	Частичная сумма функционального ряда		
	1.15	Сходимость функционального ряда, множество поточечной сходимости		
	1.16	Равномерная сходимость функциональной последовательности		
	1.17	Равномерно сходящийся функциональный ряд		
	1.18	Степенной ряд		
	1.19	Радиус сходимости степенного ряда		
	1.20	Ряды Тейлора и Маклорена		
	1.21	Тригонометрический ряд		
	1.22	Тригонометрический ряд Фурье		
	1.23	Ряд Фурье в комплексной форме		
	1.24	Ядро Дирихле		
	1.25	Условия Дини		
	1.26	Ряд Фурье по произвольному промежутку длины $2L$		
2	Утверждения			
	2.1	Критерий Коши сходимости числового ряда		
	2.2	Отрицание критерия Коши сходимости числового ряда		
	2.3	Необходимое условие сходимости числового ряда		
	2.4	О сходимости числового ряда в терминах остатков		
	2.5	О стремлении остатка числового ряда к нулю		

2.6	Линейность суммирования для числового ряда	12
2.7	Монотонность суммирования для числового ряда	12
2.8	Критерий сходимости числового ряда с положительными членами	12
2.9	Признак сравнения (первый, с неравенством)	12
2.10	Признак сравнения (второй, предельный, с эквивалентом)	13
2.11	Радикальный признак Коши	13
2.12	Признак Даламбера	13
	Признак Раабе	13
	Схема Куммера	13
	Интегральный признак Коши	14
2.16	Асимптотика гармонического ряда	14
	О сходимости абсолютно сходящегося ряда	14
	Признак Лейбница	14
	Об остатке ряда лейбницевского типа	14
2.20	Критерий Коши равномерной сходимости функциональной последовательности	15
	Критерий Коши равномерной сходимости функционального ряда	15
	Необходимое условие равномерной сходимости функционального ряда	15
	Признак Вейерштрасса	15
	О перестановке предельных переходов	16
	О почленном переходе к пределу в функциональном ряде	16
	О непрерывности предельной функции для функциональной последовательности	
	О непрерывности суммы функционального ряда	17
	Интегрирование и предельный переход для функциональной последовательности	
	О почленном интегрировании функционального ряда	17
2.30	Дифференцирование и предельный переход для функциональной последова-	
	тельности	17
2.31	Теорема о почленном дифференцировании функционального ряда	18
	Первая теорема Абеля	18
	О виде множества сходимости степенного ряда	18
	Формула Коши-Адамара	18
	О равномерной сходимости степенного ряда	19
	Вторая теорема Абеля	19
	О непрерывности суммы степенного ряда	19
	Об интегрировании степенного ряда	19
	О радиусах сходимости степенного ряда, ряда из производных и первообразных	20
	О дифференцировании степенного ряда	20
	Интегральная форма остаточного члена	20
	Критерий представимости функции своим рядом Тейлора	20
	Достаточное условие представимости функции своим рядом Тейлора	21
	Единственность представления функции своим рядом Тейлора	21
	Ряд Маклорена для показательной функции	21
	Ряд Маклорена для синуса и косинуса	21
	Ряд Маклорена для логарифма (доказательство с помощью остатка в форме	21
2.11	Коши)	22
2 48	Ряд Маклорена для логарифма (доказательство при помощи интегрирования)	22
	Ряд Маклорена для логарифма (доказательство при помощи интегрирования)	$\frac{22}{22}$
	Ряд Маклорена для бинома (доказательство с помощью остатка в форме Коши)	$\frac{22}{22}$
	Ряд Маклорена для бинома (доказательство при помощи дифференцирования)	23
	Ряд Маклорена для арксинуса (доказательство при помощи интегрирования)	$\frac{23}{23}$
	Об ортогональности системы тригонометрических функций	$\frac{23}{23}$
00	of optotonominoth onotomin thin onomothin formit within	

2.54	Свойства ядра Дирихле	23
2.55	Лемма Римана	24
2.56	Лемма к достаточному условию сходимости ряда Фурье	24
2.57	Достаточное условие сходимости ряда Фурье	24

1 Понятия

1.1 Числовой ряд

■ Определение

Определение 132 (Понятие ряда). (Стр. 295) Пусть дана последовательность a_k . Символ

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + \dots + a_k + \dots$$

называется числовым рядом с общим членом a_k .

1.2 Частичная сумма числового ряда

■ Определение

Определение 133 (Понятие частичной суммы ряда). (Стр. 295) n-ой частичной суммой ряда с общим членом a_k называется величина

$$S_n = a_1 + a_2 + \dots + a_n = \sum_{k=1}^n a_k$$

1.3 Сумма числового ряда

Определение

Определение 134 (Понятие суммы ряда). (Стр. 295-296) Суммой ряда с общим членом a_k называют предел

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{k=1}^n a_k,$$

если он существует в \mathbb{R} .

1.4 Сходящийся числовой ряд

Определение

Определение 135 (Понятие сходящегося ряда). (Стр. 296) Ряд с общим членом a_k называется сходящимся, если его сумма существует в \mathbb{R} . Иначе ряд называется расходящимся.

4

1.5 Остаток числового ряда

■ Определение

Определение 136. (Стр. 302) Пусть дан ряд с общим членом a_k . Тогда

$$R_m = \sum_{k=m+1}^{\infty} a_k, \quad m \in \mathbb{N} \cup \{0\},$$

называется m-ым остатком ряда.

1.6 Гармонический ряд и его поведение в смысле сходимости

■ Определение

Пример 92 (Гармонический ряд). (Стр. 300) Исследовать на сходимость (гармонический) ряд

$$\sum_{k=1}^{\infty} \frac{1}{k}.$$

Поведение: Рассматриваемый ряд расходится.

1.7 Обобщённый гармонический ряд (ряд Дирихле) и его поведение в смысле сходимости

Определение

Пример 93 (Обобщенный гармонический ряд или ряд Дирихле). (Стр. 307) Исследовать на сходимость ряд (обобщенный гармонический ряд, ряд Дирихле):

$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}.$$

Поведение:

$$\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}} \longleftrightarrow \begin{cases} \text{сходится, если } \alpha > 1 \\ \text{расходится, если } \alpha \leq 1 \end{cases}.$$

1.8 Абсолютная сходимость числового ряда

■ Определение

Определение 137 (Понятие абсолютной сходимости). (Стр. 318) Говорят, что ряд с общим членом a_k сходится абсолютно, если сходится ряд с общим членом $|a_k|$.

5

1.9 Условная сходимость числового ряда

■ Определение

Определение 138 (Понятие условной сходимости). (Стр. 319) Если ряд с общим членом a_k сходится, но абсолютной сходимости нет, то говорят, что ряд с общим членом a_k сходится условно (или неабсолютно).

1.10 Функциональная последовательность

■ Определение

Определение 139 (Понятие функциональной последовательности). (Стр. 325) Последовательность $f_k: X \to \mathbb{R}, k \in \mathbb{N}$, называется функциональной последовательностью.

1.11 Функциональный ряд

■ Определение

Определение 140 (Понятие функционального ряда). (Стр. 325) Пусть дана функциональная последовательность $f_k: X \to \mathbb{R}$. Символ

$$\sum_{k=1}^{\infty} f_k = f_1 + f_2 + \dots + f_k + \dots$$

называется функциональным рядом с общим членом f_k .

1.12 Поточечная сходимость функциональной последовательности, множество поточечной сходимости

■ Определение

Определение 141 (Понятие поточечной сходимости функциональной последовательности). (Стр. 326) Говорят, что функциональная последовательность $f_k: X \to \mathbb{R}$ сходится поточечно (или просто сходится) на множестве $D \subset X$, если

$$\forall x \in D \quad \exists \lim_{k \to \infty} f_k(x) \in \mathbb{R}.$$

Множество D при этом называется множеством (поточечной) сходимости функциональной последовательности f_k .

1.13 Предел функциональной последовательности

Определение

Замечание 235. (Стр. 326) На множестве (поточечной) сходимости D возникает функция

$$f(x) = \lim_{k \to \infty} f_k(x), \quad x \in D.$$

Эта функция называется пределом функциональной последовательности (или поточечным пределом) f_k на множестве D.

1.14 Частичная сумма функционального ряда

■ Определение

Определение 142 (Понятие частичной суммы функционального ряда). (Стр. 326) n-ой частичной суммой функционального ряда с общим членом $f_k: X \to \mathbb{R}$ называется величина

$$S_n = \sum_{k=1}^n f_k.$$

1.15 Сходимость функционального ряда, множество поточечной сходимости

Определение

Определение 143 (Понятие сходимости функционального ряда). (Стр. 327) Говорят, что функциональный ряд с общим членом $f_k: X \to \mathbb{R}$ сходится поточечно (или просто сходится) на множестве $D \subset X$, если

$$\forall x \in D \quad \sum_{k=1}^{\infty} f_k(x) \text{ сходится.}$$

Множество D при этом называется множеством (поточечной) сходимости функционального ряда с общим членом f_k .

1.16 Равномерная сходимость функциональной последовательности

■ Определение

Определение 144 (Понятие равномерной сходимости функциональной последовательности). (Стр. 328) Говорят, что последовательность $f_k: X \to \mathbb{R}$ сходится к функции f на множестве $D \subset X$ равномерно, если

$$\forall \varepsilon > 0 \quad \exists k_0 \in \mathbb{N} : \forall k > k_0 \quad \forall x \in D \quad |f_k(x) - f(x)| < \varepsilon.$$

7

Обозначают это так: $f_k \rightrightarrows_D f$ при $k \to \infty$.

1.17 Равномерно сходящийся функциональный ряд

■ Определение

Определение 145 (Понятие равномерно сходящегося ряда). (Стр. 330) Говорят, что функциональный ряд с общим членом $f_k: X \to \mathbb{R}$ сходится равномерно на множестве $D \subset X$, если последовательность его частичных сумм сходится равномерно на D.

1.18 Степенной ряд

Определение

Определение 146. (Стр. 340) Степенным рядом называется функциональный ряд вида

$$\sum_{k=0}^{\infty} a_k (x - x_0)^k,$$

где $x_0 \in \mathbb{R}$ и $a_k \in \mathbb{R}$.

1.19 Радиус сходимости степенного ряда

Определение

Определение 147. (Стр. 342) Число R, существование которого доказано в предыдущем следствии (Следствие 31 о виде множества сходимости степенного ряда), называется радиусом сходимости степенного ряда с общим членом $a_k x^k$, а множество (-R,R) — интервалом сходимости соответствующего степенного ряда.

1.20 Ряды Тейлора и Маклорена

Определение

Определение 148 (Понятие ряда Тейлора). (Стр. 348) Пусть функция f бесконечное число раз дифференцируема в точке x_0 . Тогда ряд

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

называется рядом Тейлора, порожденным в точке x_0 функцией f. В случае $x_0=0$ ряд Тейлора часто называется рядом Маклорена.

8

1.21 Тригонометрический ряд

■ Определение

Определение 149 (Понятие тригонометрического ряда). (Стр. 356) Ряд

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx)$$

называется тригонометрическим рядом, построенным по функциям $\{1,\cos kx,\sin kx,k\in\mathbb{N}\}.$

1.22 Тригонометрический ряд Фурье

■ Определение

Определение 150. (Стр. 358) Если для функции f существуют числа $a_m(f)$ и $b_m(f)$, введенные как

$$a_m(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos mx dx, \quad m \in \mathbb{N} \cup \{0\},$$

$$b_m(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin mx dx, \quad m \in \mathbb{N},$$

то ряд

$$\frac{a_0(f)}{2} + \sum_{k=1}^{\infty} (a_k(f)\cos kx + b_k(f)\sin kx)$$

называется тригонометрическим рядом Фурье функции f, а числа $a_m(f)$ и $b_m(f)$ – коэффициентами Фурье функции f относительно системы функций $\{1,\cos kx,\sin kx,k\in\mathbb{N}\}$.

1.23 Ряд Фурье в комплексной форме

Определение

Определение 151 (Ряд Фурье в комплексной форме). (Стр. 360) Если для функции f существуют числа $c_k(f)$, введенные как

$$c_k(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx}dx, \quad k \in \mathbb{Z},$$

то ряд

$$\sum_{k=-\infty}^{\infty} c_k(f)e^{ikx}$$

называется рядом Фурье в комплексной форме функции f, а числа $c_k(f)$ – коэффициентами Фурье функции f относительно системы функций $\{e^{ikx}, k \in \mathbb{Z}\}$. (Под сходимостью понимается сходимость симметричных частичных сумм $S_n = \sum_{k=-n}^n c_k(f)e^{ikx}$).

1.24 Ядро Дирихле

■ Определение

Определение 152 (Ядро Дирихле). (Стр. 361) Функция $D_n(p)$ называется ядром Дирихле.

$$D_n(p) = \sum_{k=-n}^n e^{ikp} = \begin{cases} \frac{\sin\left((n+\frac{1}{2})p\right)}{\sin\frac{p}{2}}, & p \neq 2\pi m, m \in \mathbb{Z} \\ 2n+1, & \text{иначе} \end{cases}.$$

1.25 Условия Дини

■ Определение

Определение 153 (Условия Дини). (Стр. 365) Говорят, что функция $f: \mathring{U}(x) \to \mathbb{R}$ удовлетворяет в точке $x \in \mathbb{R}$ условиям Дини, если:

- 1. Существуют односторонние пределы $f(x \pm 0)$ функции f в точке x.
- 2. Интегралы

$$\int_0^\delta \left| \frac{f(x-t) - f(x-0)}{t} \right| dt, \quad \mathbf{M} \quad \int_0^\delta \left| \frac{f(x+t) - f(x+0)}{t} \right| dt$$

сходятся при некотором $\delta > 0$.

1.26 Ряд Фурье по произвольному промежутку длины 2L

П Определение

(Стр. 368-369) Пусть функция f задана на промежутке [-L,L] и периодически продолжена на \mathbb{R} . Ряд Фурье для f(x) на [-L,L]:

$$\frac{a_0(f)}{2} + \sum_{k=1}^{\infty} \left(a_k(f) \cos \frac{\pi kx}{L} + b_k(f) \sin \frac{\pi kx}{L} \right),$$

где

$$a_k(f) = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{\pi kx}{L} dx, \quad k \in \mathbb{N} \cup \{0\},$$

$$b_k(f) = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{\pi kx}{L} dx, \quad k \in \mathbb{N}.$$

2 Утверждения

2.1 Критерий Коши сходимости числового ряда

± Теорема

Теорема 127 (Критерий Коши). (Стр. 299) Ряд $\sum_{k=1}^{\infty} a_k$ сходится тогда и только тогда, когда

$$\forall \varepsilon > 0 \quad \exists n_0 = n_0(\varepsilon) \in \mathbb{N} : \forall n > n_0, \forall p \in \mathbb{N} \quad \left| \sum_{k=n+1}^{n+p} a_k \right| < \varepsilon.$$

2.2 Отрицание критерия Коши сходимости числового ряда

± Теорема

Замечание 220. (Стр. 299) Ряд $\sum_{k=1}^{\infty} a_k$ расходится тогда и только тогда, когда

$$\exists \varepsilon > 0 : \forall n_0 \in \mathbb{N} \quad \exists n > n_0, \exists p \in \mathbb{N} : \left| \sum_{k=n+1}^{n+p} a_k \right| \ge \varepsilon.$$

2.3 Необходимое условие сходимости числового ряда

± Теорема

Теорема 128 (Необходимое условие сходимости ряда). (Стр. 301) Пусть ряд с общим членом a_k сходится. Тогда

$$a_k \xrightarrow{k \to \infty} 0.$$

2.4 О сходимости числового ряда в терминах остатков

1 Лемма

Лемма 82 (О сходимости ряда в терминах остатков). (Стр. 302) Для сходимости ряда с общим членом a_k необходимо и достаточно, чтобы сходился любой его остаток R_m . В этом случае

$$\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{m} a_k + R_m = S_m + R_m.$$

2.5 О стремлении остатка числового ряда к нулю

1 Лемма

Лемма 83 (О стремлении остатка к нулю). (Стр. 303) Для сходимости ряда необходимо и достаточно, чтобы

$$\lim_{m\to\infty} R_m = 0.$$

2.6 Линейность суммирования для числового ряда

📜 Лемма

Лемма 84 (О линейности суммирования). (Стр. 303) Пусть сходятся ряды с общими членами a_k и b_k . Тогда при любых $\alpha, \beta \in \mathbb{R}$ сходится ряд с общим членом $\alpha a_k + \beta b_k$, причем

$$\sum_{k=1}^{\infty} (\alpha a_k + \beta b_k) = \alpha \sum_{k=1}^{\infty} a_k + \beta \sum_{k=1}^{\infty} b_k.$$

2.7 Монотонность суммирования для числового ряда

📜 Лемма

Лемма 85 (О монотонности суммирования). (Стр. 304) Пусть $a_k \leq b_k$ и ряды с общими членами a_k и b_k имеют суммы в $\overline{\mathbb{R}}$. Тогда

$$\sum_{k=1}^{\infty} a_k \le \sum_{k=1}^{\infty} b_k.$$

2.8 Критерий сходимости числового ряда с положительными членами

± Теорема

Теорема 129 (Критерий сходимости ряда с положительными членами). (Стр. 305) Пусть $a_k \geq 0$. Тогда последовательность частичных сумм ряда $S_n = \sum_{k=1}^n a_k$ возрастает и $\sum_{k=1}^\infty a_k = \sup_{n \in \mathbb{N}} S_n$. Тем самым, сходимость ряда равносильна ограниченности последовательности его частичных сумм.

2.9 Признак сравнения (первый, с неравенством)

п Теорема

Теорема 130 (Признаки сравнения). (Стр. 305) Пусть $0 \le a_k \le b_k$. Тогда:

- 1. Сходимость ряда с общим членом b_k влечет сходимость ряда с общим членом a_k , то есть $\sum_{k=1}^{\infty} b_k < +\infty \Rightarrow \sum_{k=1}^{\infty} a_k < +\infty$.
- 2. Расходимость ряда с общим членом a_k влечет расходимость ряда с общим членом b_k , то есть $\sum_{k=1}^{\infty} a_k = +\infty \Rightarrow \sum_{k=1}^{\infty} b_k = +\infty$.

2.10 Признак сравнения (второй, предельный, с эквивалентом)

± Теорема

Теорема 130 (Признаки сравнения). (Стр. 306) Пусть $0 \le a_k, 0 \le b_k$

3. Если $a_k \sim b_k$ при $k \to +\infty$, то ряды с общими членами a_k и b_k сходятся или расходятся одновременно.

2.11 Радикальный признак Коши

± Теорема

Теорема 131 (Радикальный признак Коши). (Стр. 308) Пусть $a_k > 0$ и $\overline{\lim}_{k \to \infty} \sqrt[k]{a_k} = l \in [0, +\infty]$. Тогда:

- 1. Если l > 1, то ряд с общим членом a_k расходится.
- 2. Если l < 1, то ряд с общим членом a_k сходится.

2.12 Признак Даламбера

± Теорема

Теорема 132 (Признак Даламбера). (Стр. 309) Пусть $a_k > 0$ и $\lim_{k\to\infty} \frac{a_{k+1}}{a_k} = l \in [0,+\infty]$. Тогда:

- 1. Если l > 1, то ряд с общим членом a_k расходится.
- 2. Если l < 1, то ряд с общим членом a_k сходится.

2.13 Признак Раабе

± Теорема

Теорема 133 (Признак Раабе). (Стр. 311) Пусть $a_k > 0$ и $\lim_{k \to \infty} k \left(\frac{a_k}{a_{k+1}} - 1 \right) = l \in \mathbb{R}$. Тогда:

- 1. Если l > 1, то ряд с общим членом a_k сходится.
- 2. Если l < 1, то ряд с общим членом a_k расходится.

2.14 Схема Куммера

± Теорема

Теорема 134 (Схема Куммера). (Стр. 311) Пусть $a_k, b_k > 0$, и ряд $\sum_{k=1}^{\infty} \frac{1}{b_k}$ расходится. Пусть, кроме того, $\lim_{k\to\infty} \left(b_k \frac{a_k}{a_{k+1}} - b_{k+1}\right) = l \in \mathbb{R}$. Тогда:

1. Если l > 0, то ряд с общим членом a_k сходится.

2. Если l < 0, то ряд с общим членом a_k расходится.

2.15 Интегральный признак Коши

± Теорема

Теорема 136 (Интегральный признак Коши). (Стр. 314) Пусть $f \in R_{loc}[1,\infty)$ и монотонна на $[1,+\infty)$. Тогда ряд с общим членом f(k) сходится тогда и только тогда, когда сходится интеграл $\int_1^\infty f(x)dx$.

2.16 Асимптотика гармонического ряда

Т Лемма

Лемма 86 и Пример 95. (Стр. 315-316) Для частичных сумм гармонического ряда $H_n = \sum_{k=1}^n \frac{1}{k}$ справедлива асимптотика:

$$H_n = \ln(n+1) + \gamma + \alpha_n = \ln n + \gamma + \tilde{\alpha}_n,$$

где $\gamma \approx 0.57721$ — постоянная Эйлера-Маскерони, а $\alpha_n \to 0$ и $\tilde{\alpha}_n \to 0$ при $n \to \infty$. Таким образом, $H_n \sim \ln n$ при $n \to \infty$.

2.17 О сходимости абсолютно сходящегося ряда

± Теорема

Теорема 137 (О сходимости абсолютно сходящегося ряда). (Стр. 318) Если ряд с общим членом a_k сходится абсолютно, то он сходится.

2.18 Признак Лейбница

± Теорема

Теорема 138 (Признак Лейбница). (Стр. 319) Ряд

$$\sum_{k=1}^{\infty} (-1)^{k-1} a_k,$$

где $a_k \ge 0$ и a_k монотонно стремится к нулю, сходится.

2.19 Об остатке ряда лейбницевского типа

1 Лемма

Лемма 87 (Об остатке ряда лейбницевского типа). (Стр. 320) Пусть рассматривается ряд $\sum_{k=1}^{\infty} (-1)^{k-1} a_k$, где $a_k \geq 0$ и a_k монотонно стремится к нулю. Тогда для n-го остатка $R_n = \sum_{j=n+1}^{\infty} (-1)^{j-1} a_j$ справедливы оценки: $|R_n| \leq a_{n+1}$, и R_n имеет тот

же знак, что и первый член остатка $(-1)^n a_{n+1}$. (В книге: $R_n(-1)^n \ge 0$).

2.20 Критерий Коши равномерной сходимости функциональной последовательности

± Теорема

Теорема 139 (Критерий Коши равномерной сходимости ф.п.). (Стр. 331) Для того чтобы функциональная последовательность $f_k: X \to \mathbb{R}$ сходилась равномерно на $D \subset X$ необходимо и достаточно, чтобы

$$\forall \varepsilon > 0 \quad \exists k_0 \in \mathbb{N} : \forall k > k_0 \quad \forall p \in \mathbb{N} \quad \forall x \in D \quad |f_{k+p}(x) - f_k(x)| < \varepsilon.$$

2.21 Критерий Коши равномерной сходимости функционального ряда

± Теорема

Теорема 140 (Критерий Коши равномерной сходимости ряда). (Стр. 332) Ряд с общим членом $f_k:X\to\mathbb{R}$ сходится равномерно на $D\subset X$ тогда и только тогда, когда

$$\forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} : \forall n > n_0 \quad \forall p \in \mathbb{N} \quad \forall x \in D \quad \left| \sum_{j=n+1}^{n+p} f_j(x) \right| < \varepsilon.$$

2.22 Необходимое условие равномерной сходимости функционального ряда

± Теорема

Теорема 141 (Необходимое условие равномерной сходимости ряда). (Стр. 332) Если ряд с общим членом $f_k: X \to \mathbb{R}$ сходится равномерно на $D \subset X$, то

$$f_k \underset{D}{\Longrightarrow} 0$$
 при $k \to \infty$.

2.23 Признак Вейерштрасса

± Теорема

Теорема 142 (Признак Вейерштрасса). (Стр. 332) Пусть $f_k: X \to \mathbb{R}, D \subset X$. Если существует последовательность a_k , что $|f_k(x)| \le a_k$ для всех $x \in D$, и ряд с общим членом a_k сходится, то функциональный ряд с общим членом f_k сходится равномерно (и абсолютно) на D.

2.24 О перестановке предельных переходов

± Теорема

Теорема 143 (О перестановке предельных переходов). (Стр. 334) Пусть $f, f_k : D \to \mathbb{R}$, причем:

- 1. Последовательность f_k равномерно сходится на D к функции f.
- 2. Для каждого $k \in \mathbb{N}$ существует предел $\lim_{x \to x_0} f_k(x) = a_k \in \mathbb{R}$, где x_0 предельная для D.

Тогда пределы $\lim_{k\to\infty} a_k$ и $\lim_{x\to x_0} f(x)$ существуют (в $\mathbb R$) и совпадают, то есть

$$\lim_{x \to x_0} \left(\lim_{k \to \infty} f_k(x) \right) = \lim_{k \to \infty} \left(\lim_{x \to x_0} f_k(x) \right).$$

2.25 О почленном переходе к пределу в функциональном ряде

± Теорема

Теорема 144 (О почленном переходе к пределу). (Стр. 335) Пусть $f_k: D \to \mathbb{R}$, причем:

- 1. Ряд с общим членом f_k равномерно сходится на D к сумме S.
- 2. Для каждого $k \in \mathbb{N}$ существует предел $\lim_{x \to x_0} f_k(x) = a_k \in \mathbb{R}$, где x_0 предельная для D.

Тогда ряд с общим членом a_k сходится к сумме A, причем $\lim_{x\to x_0} S(x) = A$, то есть

$$\lim_{x \to x_0} S(x) = \lim_{x \to x_0} \sum_{k=1}^{\infty} f_k(x) = \sum_{k=1}^{\infty} \lim_{x \to x_0} f_k(x).$$

2.26 О непрерывности предельной функции для функциональной последовательности

± Теорема

Теорема 145 (О непрерывности предельной функции). (Стр. 336) Пусть $f, f_k : D \to \mathbb{R}, x_0 \in D$, причем:

- 1. Последовательность f_k равномерно сходится на D к функции f.
- 2. Все члены последовательности f_k непрерывны в x_0 .

Тогда f непрерывна в x_0 . В частности, если все члены последовательности f_k непрерывны на D, то и f непрерывна на D.

2.27 О непрерывности суммы функционального ряда

± Теорема

Теорема 146 (О непрерывности суммы ряда). (Стр. 336) Пусть $f_k:D\to\mathbb{R},$ $x_0\in D,$ причем:

- 1. Ряд с общим членом f_k равномерно сходится на D к сумме S.
- 2. Все члены последовательности f_k непрерывны в x_0 .

Тогда сумма ряда S непрерывна в x_0 . В частности, если все члены последовательности f_k непрерывны на D, то и сумма ряда непрерывна на D.

2.28 Интегрирование и предельный переход для функциональной последовательности

± Теорема

Теорема 147 (Интегрирование и предельный переход). (Стр. 337) Пусть $f_k, f:[a,b] \to \mathbb{R}, f_k \in C[a,b],$ и $f_k \underset{[a,b]}{\Longrightarrow} f$ при $k \to \infty.$ Тогда $f \in C[a,b]$ и

$$\int_a^x f_k(t)dt \underset{[a,b]}{\Longrightarrow} \int_a^x f(t)dt$$
при $k \to \infty$.

2.29 О почленном интегрировании функционального ряда

± Теорема

Теорема 148 (О почленном интегрировании ряда). (Стр. 337) Пусть $f_k : [a,b] \to \mathbb{R}$, причем $f_k \in C[a,b]$. Если ряд с общим членом f_k сходится равномерно к функции S на [a,b], то $S \in C[a,b]$, причем

$$\int_{a}^{x} \left(\sum_{j=1}^{\infty} f_j(t) \right) dt = \sum_{j=1}^{\infty} \left(\int_{a}^{x} f_j(t) dt \right) \quad x \in [a, b].$$

(Заменил k на j в суммировании для ясности).

2.30 Дифференцирование и предельный переход для функциональной последовательности

± Теорема

Теорема 149 (Дифференцирование и предельный переход). (Стр. 337-338) Пусть $f_k:[a,b]\to\mathbb{R}$, причем $f_k\in C^1[a,b]$. Если

- 1. Существует $x_0 \in [a, b]$, что последовательность $f_k(x_0)$ сходится.
- 2. Последовательность производных f_k' сходится на [a,b] равномерно к функции g.

то $f_k \underset{[a,b]}{\Longrightarrow} f$ при $k \to \infty$, причем f' = g на [a,b]. В частности, $f \in C^1[a,b]$.

2.31 Теорема о почленном дифференцировании функционального ряда

± Теорема

Теорема 150 (О почленном дифференцировании ряда). (Стр. 338) Пусть $f_k:[a,b]\to\mathbb{R}$, причем $f_k\in C^1[a,b]$. Если

- 1. Существует $x_0 \in [a, b]$, что ряд с общим членом $f_k(x_0)$ сходится.
- 2. Ряд с общим членом f_k' сходится на [a,b] равномерно к сумме $\tilde{S},$

то ряд с общим членом f_k сходится на [a,b] равномерно к сумме S, причем $S'=\tilde{S}$ на [a,b]. В частности, $S\in C^1[a,b]$.

2.32 Первая теорема Абеля

± Теорема

Теорема 151 (Первая теорема Абеля). (Стр. 341) Пусть дан степенной ряд с общим членом $a_k x^k$.

- 1. Если существует x_1 , что ряд $\sum_{k=0}^{\infty} a_k x_1^k$ сходится, то ряд с общим членом $a_k x^k$ сходится абсолютно при всех x таких, что $|x| < |x_1|$.
- 2. Если существует x_1 , что ряд $\sum_{k=0}^{\infty} a_k x_1^k$ расходится, то ряд с общим членом $a_k x^k$ расходится при всех x таких, что $|x| > |x_1|$.

2.33 О виде множества сходимости степенного ряда

? Следствие

Следствие 31 (О виде множества сходимости степенного ряда). (Стр. 342) Пусть дан степенной ряд с общим членом $a_k x^k$. Тогда существует $R \in [0, +\infty]$, что при $x \in (-R, R)$ ряд сходится абсолютно, а при $x \in (-\infty, -R) \cup (R, +\infty)$ ряд расходится.

2.34 Формула Коши-Адамара

± Теорема

Теорема 152 (Формула Коши–Адамара). (Стр. 342-343) Пусть дан степенной ряд с общим членом $a_k x^k$. Тогда радиус сходимости R определяется формулой:

$$R = \frac{1}{\overline{\lim}_{k \to \infty} \sqrt[k]{|a_k|}}.$$

(C соглашениями $1/0 = +\infty$ и $1/+\infty = 0$).

2.35 О равномерной сходимости степенного ряда

± Теорема

Теорема 153 (О равномерной сходимости степенного ряда). (Стр. 343) Пусть дан ряд с общим членом $a_k x^k$ и пусть R — его радиус сходимости. Тогда для любого $r \in (0,R)$ рассматриваемый ряд сходится равномерно на [-r,r].

2.36 Вторая теорема Абеля

± Теорема

Теорема 154 (Вторая теорема Абеля). (Стр. 343) Пусть дан ряд с общим членом $a_k x^k$ и пусть R — его радиус сходимости. Если сходится ряд с общим членом $a_k R^k$, то исходный ряд сходится равномерно на [0,R]. (Аналогично для точки -R, если ряд $\sum a_k (-R)^k$ сходится, то равномерная сходимость на [-R,0]).

2.37 О непрерывности суммы степенного ряда

п Теорема

Теорема 155 (О непрерывности суммы степенного ряда). (Стр. 344) Пусть дан ряд с общим членом $a_k x^k$ и пусть R — его радиус сходимости. Тогда сумма ряда непрерывна на множестве сходимости $\langle -R, R \rangle$. (Здесь $\langle -R, R \rangle$ означает интервал (-R, R) и, возможно, его концы, если в них ряд сходится).

2.38 Об интегрировании степенного ряда

± Теорема

Теорема 156 (Об интегрировании степенного ряда). (Стр. 345) Пусть дан ряд с общим членом $a_k x^k$ и пусть R — его радиус сходимости. Тогда сумма ряда интегрируема по любому отрезку [a, b] внутри множества сходимости $\langle -R, R \rangle$, причем

$$\int_{a}^{b} \left(\sum_{j=0}^{\infty} a_{j} x^{j} \right) dx = \sum_{j=0}^{\infty} a_{j} \int_{a}^{b} x^{j} dx = \sum_{j=0}^{\infty} a_{j} \frac{b^{j+1} - a^{j+1}}{j+1}.$$

(Заменил k на j в суммировании для ясности).

2.39 О радиусах сходимости степенного ряда, ряда из производных и первообразных

📜 Лемма

Лемма 88. (Стр. 345) Радиусы сходимости рядов

$$\sum_{k=1}^{\infty} k a_k x^{k-1}, \quad \sum_{k=0}^{\infty} a_k x^k, \quad \sum_{k=0}^{\infty} a_k \frac{x^{k+1}}{k+1}$$

совпадают.

2.40 О дифференцировании степенного ряда

± Теорема

Теорема 157 (О дифференцировании степенного ряда). (Стр. 346) Пусть дан ряд с общим членом $a_k x^k$, R — его радиус сходимости, S — его сумма. Тогда $S \in C^{\infty}(-R,R)$, причем для $m \in \mathbb{N}$:

$$S^{(m)}(x) = \sum_{j=m}^{\infty} j(j-1)\dots(j-m+1)a_j x^{j-m}.$$

(Заменил k на j в суммировании для ясности).

2.41 Интегральная форма остаточного члена

± Теорема

Теорема 158 (Интегральная форма остаточного члена). (Стр. 347) Пусть функция f непрерывно дифференцируема (n+1) раз на отрезке с концами x_0 и x. Тогда остаточный член $r_n(x,x_0)$ в формуле Тейлора $f(x)=P_n(x,x_0)+r_n(x,x_0)$ может быть представлен в виде:

$$r_n(x, x_0) = \frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t)(x-t)^n dt.$$

2.42 Критерий представимости функции своим рядом Тейлора

± Теорема

Теорема 159 (Критерий представимости функции своим рядом Тейлора). (Стр. 349) Для того чтобы ряд Тейлора, построенный по функции f, сходился к этой функции в точке x необходимо и достаточно, чтобы

$$r_n(x, x_0) \xrightarrow{n \to \infty} 0.$$

2.43 Достаточное условие представимости функции своим рядом Тейлора

± Теорема

Теорема 160 (Достаточное условие представимости функции своим рядом Тейлора). (Стр. 349) Пусть функция f бесконечно дифференцируема на отрезке I с концами x_0 и x. Если на этом отрезке производные функции f равномерно ограничены, то есть $|f^{(n)}(t)| \leq M$ для всех $n \in \mathbb{N} \cup \{0\}$ и $t \in I$, то $r_n(x, x_0) \xrightarrow{n \to \infty} 0$, то есть ряд Тейлора, построенный по функции f, сходится к этой функции в точке x.

2.44 Единственность представления функции своим рядом Тейлора

1 Теорема

Теорема 161 (Теорема единственности). (Стр. 350) Пусть при $|x-x_0| < R$ справедливо равенство $f(x) = \sum_{k=0}^{\infty} a_k (x-x_0)^k$. Тогда

$$a_k = \frac{f^{(k)}(x_0)}{k!}, \quad k \in \mathbb{N} \cup \{0\}.$$

2.45 Ряд Маклорена для показательной функции

± Теорема

Теорема 162 (Ряд Маклорена для показательной функции). (Стр. 350)

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}, \quad x \in \mathbb{R},$$

$$a^x = \sum_{k=0}^{\infty} \frac{(\ln a)^k}{k!} x^k, \quad x \in \mathbb{R}.$$

2.46 Ряд Маклорена для синуса и косинуса

± Теорема

Теорема 163 (Ряд Маклорена для синуса и косинуса). (Стр. 351)

$$\sin x = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^{2k-1}}{(2k-1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots, \quad x \in \mathbb{R},$$

$$\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots, \quad x \in \mathbb{R}.$$

2.47 Ряд Маклорена для логарифма (доказательство с помощью остатка в форме Коши)

± Теорема

Теорема 164 (Ряд Маклорена для логарифма). (Стр. 351)

$$\ln(1+x) = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots, \quad x \in (-1,1].$$

2.48 Ряд Маклорена для логарифма (доказательство при помощи интегрирования)

± Теорема

Замечание 248 (Ряд Маклорена для логарифма через интегрирование). (Стр. 352) Разложение $\frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^k x^k$ для $x \in (-1,1)$ интегрируется почленно от 0 до x, что дает

$$\ln(1+x) = \sum_{k=0}^{\infty} (-1)^k \frac{x^{k+1}}{k+1} = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k}, \quad x \in (-1,1).$$

Для x=1 используется теорема Абеля.

2.49 Ряд Маклорена для арктангенса

п Теорема

Теорема 165 (Ряд Маклорена для арктангенса). (Стр. 352-353)

$$\arctan x = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^{2k-1}}{2k-1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots, \quad x \in [-1, 1].$$

2.50 Ряд Маклорена для бинома (доказательство с помощью остатка в форме Коши)

п Теорема

Теорема 166 (Ряд Маклорена для бинома). (Стр. 353)

$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{\infty} \frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!} x^k, \quad x \in (-1,1), \alpha \in \mathbb{R}.$$

2.51 Ряд Маклорена для бинома (доказательство при помощи дифференцирования)

± Теорема

Замечание 250 (Ряд Маклорена для бинома через дифференцирование). (Стр. 354) Пусть $S(x)=1+\sum_{k=1}^{\infty}\frac{\alpha(\alpha-1)...(\alpha-k+1)}{k!}x^k$. Показывается, что $(1+x)S'(x)=\alpha S(x)$, откуда $S(x)=(1+x)^{\alpha}$ для $x\in (-1,1)$.

2.52 Ряд Маклорена для арксинуса (доказательство при помощи интегрирования)

± Теорема

Теорема 167 (Ряд Маклорена для арксинуса). (Стр. 355)

$$\arcsin x = x + \sum_{k=1}^{\infty} \frac{(2k-1)!!}{(2k)!!} \frac{x^{2k+1}}{2k+1}, \quad x \in [-1, 1].$$

2.53 Об ортогональности системы тригонометрических функций

1 Лемма

Лемма 89 (Об ортогональности системы тригонометрических функций). (Стр. 356) Пусть $k, m \in \mathbb{N}$. Тогда справедливы следующие соотношения:

$$\int_{-\pi}^{\pi} \sin kx \cos mx dx = 0,$$

$$\int_{-\pi}^{\pi} 1 \cdot \cos kx dx = 0, \quad \int_{-\pi}^{\pi} 1 \cdot \sin kx dx = 0,$$

$$\int_{-\pi}^{\pi} \sin kx \sin mx dx = 0, \quad \int_{-\pi}^{\pi} \cos kx \cos mx dx = 0, \quad \text{если } k \neq m,$$

$$\int_{-\pi}^{\pi} \sin^2 kx dx = \pi, \quad \int_{-\pi}^{\pi} \cos^2 kx dx = \pi, \quad \int_{-\pi}^{\pi} 1^2 dx = 2\pi.$$

2.54 Свойства ядра Дирихле

📜 Лемма

Лемма 90 (Свойства ядра Дирихле). (Стр. 361) Ядро Дирихле $D_n(p) = \sum_{k=-n}^n e^{ikp}$ обладает следующими свойствами:

- 1. $D_n(p) 2\pi$ периодическая функция.
- 2. $D_n(p)$ четная функция.
- 3. Выполнено условие нормировки: $\frac{1}{2\pi} \int_{-\pi}^{\pi} D_n(p) dp = 1$.

2.55 Лемма Римана

1 Лемма

Лемма 91 (Лемма Римана). (Стр. 362) Пусть $f \in R_{loc}(a,b)$ и $\int_a^b |f(x)| dx < +\infty$. Тогда

$$\int_{a}^{b} f(x)e^{i\lambda x}dx \xrightarrow{|\lambda| \to +\infty} 0, \quad \lambda \in \mathbb{R}.$$

В частности (Замечание 256, стр. 364), коэффициенты Фурье $a_k(f), b_k(f) \to 0$ при $k \to \infty$.

2.56 Лемма к достаточному условию сходимости ряда Фурье

1 Лемма

Лемма 92. (Стр. 364) Пусть функция f является 2π -периодической на \mathbb{R} . Тогда частичная сумма ее ряда Фурье $T_n(x)$ может быть представлена в виде:

$$T_n(x) = \frac{1}{2\pi} \int_0^{\pi} (f(x-t) + f(x+t)) D_n(t) dt.$$

2.57 Достаточное условие сходимости ряда Фурье

± Теорема

Теорема 168 (Достаточное условие сходимости ряда Фурье). (Стр. 365) Пусть $f-2\pi$ -периодическая на $\mathbb R$ функция, причем $|f|\in R[-\pi,\pi]$. Если функция f удовлетворяет в точке $x\in\mathbb R$ условиям Дини, то

$$\frac{a_0(f)}{2} + \sum_{k=1}^{\infty} (a_k(f)\cos kx + b_k(f)\sin kx) = \frac{f(x+0) + f(x-0)}{2}.$$