COVID-19 Global Data Analysis

Data Visualization and Storytelling Through Statistical Analysis

Student: Dumindu Thushan Abhayawickrama

Student ID: CL/BSCDS/CMU/09/79

Module: CIS5022 - Data Visualization and Storytelling

Programme: B.Sc. (Hons) in Data Science

Institution: ICBT Campus, Sri Lanka

Presentation Agenda

Introduction (3 mins)

- → Dataset background and context
- → Main research questions
- → Analysis objectives

Data & Methods (3 mins)

- → Data source and structure
- → Preprocessing approach
- → Tools and technologies

Key Insights (6 mins)

- → Pandemic wave patterns
- → Seasonal and geographic trends
- → Correlation analysis
- → Outlier impact assessment

Recommendations (3 mins)

- → Strategic takeaways
- → Actionable insights
- → Future implications

Research Questions & Theme

Main Research Question

"How do COVID-19 transmission patterns vary across countries and time, and what factors drive these differences?"

Sub-Questions for Analysis

- → What seasonal and temporal patterns emerge across different regions?
- → How strong is the relationship between cases and deaths across countries?
- → What role do outliers play in understanding pandemic dynamics?
- → Which variables most influence transmission patterns?

Transforming raw COVID-19 data into actionable insights for public health decision-making through statistical analysis and pattern recognition.

Dataset Overview

Countries in Analysis

Key Variables

- → Daily new cases and cumulative totals
- → Daily deaths and cumulative mortality
- → Population and temporal features
- → Derived metrics: growth rates, seasonality indicators

Data Processing & Methodology

♦ Data Cleaning

0% missing data validation, date formatting, duplicate removal

Statistical Analysis

IQR outlier detection, correlation analysis, Z-score normalization

Trend Analysis

7-day moving averages, seasonal decomposition, wave detection

Tools & Technologies

Python Libraries Used:

- → Pandas & NumPy for data manipulation
- → Matplotlib & Seaborn for visualization
- → SciPy for statistical testing
- → Plotly for interactive charts

Key Insight 1: Multiple Pandemic Waves

Wave Characteristics

- → 4 distinct global waves detected (2020-2023)
- → Peak timing varies by country and variant
- → Exponential growth followed by decline phases
- → Later waves show reduced mortality rates

Strategic Insight

Wave patterns correspond to:

- Variant emergence (Alpha, Delta, Omicron)
- Policy intervention effectiveness
- Seasonal amplification factors
- Vaccination rollout timelines

Key Insight 2: Clear Seasonal Patterns

Seasonal Findings

- → Winter peaks (Nov-Feb) across Northern Hemisphere
- → Summer troughs (Jun-Aug) in most regions
- → Southern Hemisphere shows opposite patterns
- → Weekly cycles show weekend reporting dips

Actionable Insight: Predictable seasonal surges enable proactive resource planning and staff allocation

Key Insight 3: Country Performance Analysis

Burden Distribution

- → USA leads in absolute numbers
- → Per-capita: smaller European nations higher
- → Asia-Pacific shows varied patterns
- → Policy timing influenced outcomes

Performance Categories

High Volatility: Countries with significant case variations

Spike Pattern: Nations experiencing sudden surges

Steady Pattern: Countries with consistent, controlled transmission

Key Insight 4: Strong Cases-Deaths Correlation

Correlation Findings

- → New cases \leftrightarrow New deaths: r = 0.65-0.70
- → 7-14 day lag between cases and deaths
- → Country-specific correlation patterns
- → Strong predictive capability

Early Warning System: New cases serve as a 1-2 week advance indicator for hospital capacity planning

Outlier Impact Assessment

Outlier Characteristics

- → ~15% of data points are statistical outliers
- → Often represent backlog reporting
- → Inflate arithmetic means by ~5%
- → Distort week-over-week comparisons

Treatment Strategy

- → Retain for total accuracy
- → Annotate with context
- → Use 7-day moving averages
- → Apply robust statistics

Key Lesson

Raw daily data can mislead decision-makers. Rolling averages provide clearer trend signals while preserving data integrity.

Interactive Dashboard Development

Dashboard Features

Time Series

Interactive trend analysis with wave annotations

M Geographic Map

Global case distribution with country filtering

Tomparisons

Country rankings and performance metrics

Interactive Elements:

- → Date range filtering
- → Country selection
- → Metric switching
- → Cross-chart highlighting

Executive Features:

- → 7-day moving averages
- → Per-capita normalization
- → Outlier annotations
- → Mobile optimization

Strategic Recommendations

o Immediate Actions (0-3 months)

- → Implement weekly dashboard reviews using 7-day averages
- → Establish case-based early warning thresholds
- → Create anomaly annotation protocols
- → Train leadership on data interpretation

Medium-term (3-12 months)

- → Develop seasonal surge playbooks
- → Integrate per-capita equity metrics
- → Establish data governance standards

Long-term (12+ months)

- → Build predictive modeling capabilities
- → Integrate multiple data sources
- → Develop scenario planning tools

Limitations & Future Research

Current Limitations

- → Under-ascertainment in case reporting
- → Varying testing policies across countries
- → Static population assumptions
- → Limited to national-level aggregation

Assumptions Made

- → Consistent reporting definitions
- → Random missing data patterns
- → Temporal continuity in trends

Future Enhancement Opportunities

- → Include vaccination and mobility data
- → Add sub-national geographic analysis
- → Incorporate economic impact metrics
- → Real-time data integration
- → Machine learning prediction models
- → Policy intervention impact analysis

Next Steps

Expand analysis to include demographic factors, healthcare capacity, and policy response effectiveness.

Key Takeaways

4.
Major Pandemic Waves

7-14

Day Case-Death Lag

70%

Cases-Deaths Correlation

15%

Data Points are Outliers

Celitial Message

"New cases today are the hospital pressure of next week - but only if we look beyond daily noise to identify true trends"

For Decision Makers:

- → Use 7-day averages, not daily numbers
- → Plan seasonally for predictable surges
- → Treat cases as early warning signals

For Data Scientists:

- → Context matters more than complexity
- → Robust methods handle real-world data
- → Visualization drives understanding

Thank You

Questions & Discussion

Contact Information

Student: Dumindu Thushan Abhayawickrama

ID: CL/BSCDS/CMU/09/79

Programme: B.Sc. Data Science

Institution: ICBT Campus

Resources

Data Source: Our World in Data

Analysis Period: 2020-2023

Dashboard: Click Here

© Ready for Questions on:

- Statistical methodology and analysis choices
- Dashboard design and interactive features
- Business implications and recommendations
- Technical implementation details
- Future research opportunities