Processos e threads

Guilherme Henrique de Souza Nakahata

Universidade Estadual do Paraná - Unespar

31 de Março de 2023

Processos

- O conceito mais central em qualquer sistema operacional é o processo: uma abstração de um programa em execução.
- Um processo é apenas uma instância de um programa em execução, incluindo os valores atuais do contador do programa, registradores e variáveis.
- Processos podem ser criados e terminados dinamicamente.
- Cada processo tem seu próprio espaço de endereçamento.

O modelo de processo

 Na figura (a) vemos um computador multiprogramando quatro programas na memória.

O modelo de processo

 Na figura (b) vemos quatro processos, cada um com seu próprio fluxo de controle e sendo executado independente dos outros

O modelo de processo

 Na figura (c) vemos que, analisados durante um intervalo longo o suficiente, todos os processos tiveram progresso, mas a qualquer dado instante apenas um está sendo de fato executado.

Criação de processos

- Sistemas operacionais precisam de alguma maneira criar processos.
- Quatro eventos principais fazem com que os processos sejam criados:
 - Inicialização do sistema.
 - Execução de uma chamada de sistema de criação de processo por um processo em execução.
 - 3 Solicitação de um usuário para criar um novo processo.
 - Início de uma tarefa em lote.

- Após um processo ter sido criado, ele começa a ser executado e realiza qualquer que seja o seu trabalho;
- Cedo ou tarde, o novo processo terminará, normalmente devido a uma das condições a seguir:
 - Saída normal (voluntária).
 - Erro fatal (involuntário).
 - Saída por erro (voluntária).
 - Morto por outro processo (involuntário).

```
34.4%
                                                                     Load average: 0.70 0.77 0.75
              PRI NI VIRT RES SHR S CPU%\(\text{MEMN}\)
                   0 1450M 109M 70284 S 12.8 0.7 1:58.01 /usr/lib/xorg/Xorg vt2 -displayfd 3 -auth /run/user/1000/gdm/Xauthority -nolisten to
                   0 5304M 255M 119M S 11.1 1.6 1:36.98 /usr/bin/gnome-shell
                                          9.9 0.3 0:00.72 /usr/libexec/gnome-terminal-server
                    0 878M 54380 41400 S
                                          7.6 2.9 6:45.10 /snap/firefox/2487/usr/lib/firefox/firefox
1813 ouilherne 20
                    6 1450M 109M 70284 S
                                                    0:08.88 /usr/lib/xorg/Xorg vt2 -displayfd 3 -auth /run/user/1000/gdm/Xauthority -nolisten tcg
7928 quilherne 20
                    0 20820 5952
                                               0.0 0:00.32 htop
                                                    0:28.60 /snap/firefox/2487/usr/lib/firefox/firefox -contentproc -childID 3 -isForBrowser -pro
                                                    0:03.88 /lib/systemd/systemd-oomd
                                                    0:31.98 avahi-daemon: running [XS18UAR.local]
1330 root
                                                    0:03.73 /opt/teamviewer/tv_bin/teamviewerd -d
2334 auilherne
                                                    0:24.82 /home/guilherme/.dropbox-dist/dropbox-lnx.x86 64-170.4.5895/dropbox
                                                    0:00.32 /snap/firefox/2487/usr/lib/firefox/firefox
3662 quilherne
                                               2.9 0:10.40 /snap/firefox/2487/usr/lib/firefox/firefox
3927 quilherme 20
                            188M 76824 S
                                               1.2 0:39.80 /snap/firefox/2487/usr/lib/firefox/firefox -contentproc -childID 2 -isForBrowser -pre
4263 guilherme 20
                                                    0:01.01 /snap/firefox/2487/usr/lib/firefox/firefox -contentproc -childID 3 -isForBrowser
4284 guilherme 20
                                                    0:00.55 /snap/firefox/2487/usr/lib/firefox/firefox -contentproc -childID 3 -isForBrowser
                                                    0:02.29 /sbin/init splash
 308 root
                                                    0:00.92 /lib/systemd/systemd-journald
                   6 27488 7736
                                                    0:00.78 /lib/systend/systend-udevd
                   0 25524 13892
                                  9552 S
                                          0.0 0.1 0:01.41 /lib/systemd/systemd-resolved
                   0 89380 6652
                                  5796 S
                                          0.0 0.0 0:00.15 /lib/systemd/systemd-timesyncd
789 systemd-t
                    6 89386 6652
                                  5796 S
                                          0.0 0.0 0:00.00 /lib/systemd/systemd-timesyncd
                   6 243M 7968
                                          0.0 0.0 0:00.20 /usr/libexec/accounts-daemon
                                  6820 S
818 root
                   0 2812 1132
                                          0.0 0.0 0:00.14 /usr/sbin/acpid
                   0 10624 5088
                                          0.0 0.0 0:00.12 /usr/lib/bluetooth/bluetoothd
               20 0 18148 3024
                                  2768 S 0.0 0.0 0:00.00 /usr/sbin/cron -f -P
824 messagebu 20 0 11292 7084 4132 S 0.0 0.0 0:03.94 0dbus-daenon --system --address=systemd: --nofork --nopidfile --systemd-activation -
                                   F6SortByF7Nice -F8Nice +F9Kill F10Out
```

```
Load average: 0.54 0.74 0.73
                                              4996 3692 S 3.4 0.0 0:32.32 avahi-daemon: running [X510UAR.local]
 1 SIGHUP
                 1737 quilherme
                                              109M 70284 S 5.6 0.7 1:59.36 /usr/lib/xorg/Xorg vt2 -displayfd 3 -auth /run/user/1000/gdm/Xauthorit
                                                    190M S 1.5 2.9 6:45.43 /snap/firefox/2487/usr/lib/firefox/firefox
 3 SIGQUIT
                                                     99M S 2.6 1.7 0:28.98 /snap/firefox/2487/usr/lib/firefox/firefox -contentproc -childID 3 -is
                                     0 20820 5952 3664 R 1.9 0.0 0:00.76 http
6 SIGABRT
                 3596 guilherme
                                              457M 198M S 8.8
                                                                 2.9 0:11.96 /snap/firefox/2487/usr/lib/firefox/firefox
                                                            4.1 0.3 0:01.26 /usr/libexec/gnome-terminal-server
7 SIGBUS
                                                            8.4 8.8
                                                                     0:03.91 /lib/systemd/systemd-oomd
8 SIGFPE
                 1813 guilherme
                                               109M 70284 S
                                                                     0:09.10 /usr/lib/xorg/Xorg vt2 -displayfd 3 -auth /run/user/1000/gdm/Xauthorit
                 2334 guilherme
                                               316M 89704 S
                                                                     0:24.89 /home/guilherme/.dropbox-dist/dropbox-lnx.x86_64-170.4.5895/dropbox
10 SIGUSR1
                 2361 gullherme
                                              316M 89764 S
11 SIGSEGV
                 3662 guilherme
                                                            1.1 2.9
12 SIGUSR2
                 4263 guilherme
                                                            0.4
13 SIGPIPE
                                                                     0:02.30 /sbin/init splash
                                                            8.6
14 SIGALRM
                  308 root
                                                                      0:00.92 /lib/systemd/systemd-journald
                                                            8.6
15 SIGTERM
                                                                      0:00.78 /lib/systemd/systemd-udevd
16 SIGSTKELT
                                     0 25524 13892
                                                                      0:01.41 /lib/systemd/systemd-resolved
                                28
                                                     9552 S
                                                            0.0
17 SIGCHLD
                                     0 89380 6652
                                                            0.0
                                                                      0:00.15 /lib/systemd/systemd-timesyncd
18 SIGCONT
                                     0 89380 6652
                                                            0.0
                                                                      0:00.00 /lib/systemd/systemd-timesyncd
19 SIGSTOP
                                                            0.0 0.0
                                                                     0:00.20 /usr/libexec/accounts-daemon
20 SIGTSTP
                                     0 2812
                                                            8.8 8.8
                                                                     0:00.14 /usr/sbin/acpid
21 SIGTTIN
                                     0 10624 5088
                                                            8.0 0.0 0:00.12 /usr/lib/bluetooth/bluetoothd
22 SIGTTOU
                                28 8 18148 3024
                                                    2768 S
                                                            8.8 0.8 8:80.88 /usr/sbin/cron -f -P
23 SIGURG
                  824 messagebu 28
                                                            0.0 0.0 0:03.95 @dbus-daenon --system --address=systemd: --nofork --nopidfile --system
24 SIGXCPU
                                28 0 263N 19248 15948 S 0.0 0.1 0:04.85 /usr/sbin/NetworkManager --no-daemon
25 SIGXESZ
                                20 0 82768 3844 3484 S 0.0 0.0 0:00.27 /usr/sbin/irqbalance --foreground
Enter Send
```

Send signal: 0 Cancel SIGHUP 2 SIGINT 3 SIGQUIT SIGILL 5 SIGTRAP 6 SIGABRT 6 SIGIOT SIGBUS 8 SIGFPE 9 SIGKILL 10 SIGUSR1 11 SIGSEGV 12 SIGUSR2 13 SIGPIPE 14 SIGALRM 15 SIGTERM 16 SIGSTKFLT SIGCHLD 18 SIGCONT 19 SIGSTOP 20 SIGTSTP

Hierarquias de processos

- Quando um processo cria outro, o processo pai e o processo filho continuam a ser associados de certas maneiras.
- O processo filho pode em si criar mais processos, formando uma hierarquia de processos.

Estados de processos

- Embora cada processo seja uma entidade independente, com seu próprio contador de programa e estado interno, processos muitas vezes precisam interagir entre si.
- Um processo pode gerar alguma saída que outro processo usa como entrada.

Estados de processos

- Três estados de um processo:
 - 1. Em execução.
 - 2. Pronto.
 - 3. Bloqueado.

Estados de processos

- O nível mais baixo de um sistema operacional estruturado em processos controla interrupções e escalonamento.
- Acima desse nível estão processos sequenciais.
- Todo o tratamento de interrupções e detalhes sobre o início e parada de processos estão ocultos no escalonador.

Implementação de processos

- Para implementar o modelo de processos, o sistema operacional mantém uma tabela chamada de tabela de processos, com uma entrada para cada um deles.
- Um processo pode ser interrompido milhares de vezes durante sua execução.
- Sempre retornando para o estado em que se encontrava antes de ser interrompido.

Modelando a multiprogramação

- Quando a multiprogramação é usada.
- A utilização da CPU pode ser aperfeiçoada.

Modelando a multiprogramação

Exemplo

Threads

- Para algumas aplicações é útil ter múltiplos threads de controle dentro de um único processo.
- Esses threads são escalonados independentemente e cada um tem sua própria pilha.
- Todas as threads em um processo compartilham de um espaço de endereçamento comum.
- Threads podem ser implementados no espaço do usuário ou no núcleo.

Threads

Modelos para construir um servidor

Modelo	Características
Threads	Paralelismo, chamadas de sistema bloqueantes
Processo monothread	Não paralelismo, chamadas de sistema bloqueantes
Máquina de estados finitos	Paralelismo, chamadas não bloqueantes, interrupções

Um processador de texto com três threads

Um servidor web multithread

O modelo de thread clássico

Implementando threads no espaço e no núcleo

Implementações híbridas

Threads pop-up

- Threads costumam ser úteis em sistemas distribuídos.
- A abordagem tradicional é ter um processo ou thread que esteja bloqueado em uma chamada de sistema receive esperando pela mensagem que chega.
- Quando uma mensagem chega, ela é aceita, aberta, seu conteúdo examinado e processada.
- Com a chegada de uma mensagem o sistema cria uma nova thread para lidar com a mensagem. Essa thread é chamado de thread pop-up.

Convertendo código de um thread em código multithread

- Muitos programas existentes foram escritos para processos monothread. Convertê-los para multithreading é muito mais complicado do que pode parecer em um primeiro momento.
- O código de um thread em geral consiste em múltiplas rotinas, exatamente como um processo.
- Essas rotinas podem ter variáveis locais, variáveis globais e parâmetros.
- Variáveis locais e de parâmetros não causam problema algum, mas variáveis que são globais para um thread, mas não globais para o programa inteiro, são um problema.

Threads podem ter variáveis globais individuais

Comunicação entre processos

- Processos podem comunicar-se uns com os outros usando primitivas de comunicação entre processos.
- Por exemplo: semáforos, monitores ou mensagens.
- Essas primitivas são usadas para assegurar que jamais dois processos estejam em suas regiões críticas ao mesmo tempo.

Condições de corrida

 Em alguns sistemas operacionais, processos que estão trabalhando juntos podem compartilhar de alguma memória comum que cada um pode ler e escrever.

Regiões críticas

- Como evitar as condições de corrida?
- A chave para evitar problemas é encontrar alguma maneira de proibir mais de um processo de ler e escrever os dados compartilhados ao mesmo tempo.
- O que precisamos é de exclusão mútua, isto é, alguma maneira de se certificar de que se um processo está usando um arquivo ou variável compartilhados, os outros serão impedidos de realizar a mesma coisa.

Escalonamento

- Quando um computador é multiprogramado, ele frequentemente tem múltiplos processos ou threads competindo pela CPU ao mesmo tempo.
- Essa situação ocorre sempre que dois ou mais deles estão simultaneamente no estado pronto.
- Se apenas uma CPU está disponível, uma escolha precisa ser feita sobre qual processo será executado em seguida.
- A parte do sistema operacional que faz a escolha é chamada de escalonador, e o algoritmo que ele usa é chamado de algoritmo de escalonamento.

Problemas clássicos de IPC

- O problema do jantar dos filósofos
- Cinco filósofos estão sentados em torno de uma mesa circular.
 Cada filósofo tem um prato de espaguete. O espaguete é tão escorregadio que um filósofo precisa de dois garfos para comê-lo. Entre cada par de pratos há um garfo.
- Quando um filósofo fica suficientemente faminto, ele tenta pegar seus garfos à esquerda e à direita, um de cada vez, não importa a ordem. Se for bem-sucedido em pegar dois garfos, ele come por um tempo, então larga os garfos e continua a pensar.

Problemas clássicos de IPC

 A questão fundamental é: você consegue escrever um programa para cada filósofo que faça o que deve fazer e jamais fique travado?

Problemas clássicos de IPC

- O problema dos leitores e escritores
- Imagine, por exemplo, um sistema de reservas de uma companhia aérea, com muitos processos competindo entre si desejando ler e escrever.
- É aceitável ter múltiplos processos lendo o banco de dados ao mesmo tempo, mas se um processo está atualizando o banco de dados, nenhum outro pode ter acesso, nem mesmo os leitores.

Pesquisas sobre processos e threads

 Processos, threads e escalonamento, não são mais os tópicos quentes de pesquisa que já foram um dia. A pesquisa seguiu para tópicos como gerenciamento de energia, virtualização, nuvens e segurança.

Pesquisas sobre processos e threads

- O escalonamento de dispositivos móveis em busca da eficiência energética (YUAN e NAHRSTEDT, 2006), escalonamento com tecnologia hyperthreading (BULPIN e PRATT, 2005) e escalonamento bias-aware (KOUFATY, 2010).
- Com cada vez mais computação em smartphones com restrições de energia, alguns pesquisadores propõem migrar o processo para um servidor mais potente na nuvem, quando isso for útil (GORDON et al, 2012).
- No entanto, poucos projetistas de sistemas andam preocupados com a falta de um algoritmo de escalonamento de threads decente, então esse tipo de pesquisa parece ser mais um interesse de pesquisadores do que uma demanda de projetistas.

Obrigado! Dúvidas?

Guilherme Henrique de Souza Nakahata

guilhermenakahata@gmail.com

https://github.com/GuilhermeNakahata/UNESPAR-2023