## Learned Image Compression for Both Humans and Machines via Dynamic Adaptation

Lingyu Zhu<sup>1</sup>, Binzhe Li<sup>1</sup>, Riyu Lu<sup>1</sup>, Peilin Chen<sup>1</sup>, Qi Mao<sup>3</sup>, Zhao Wang<sup>4</sup>, Wenhan Yang<sup>5</sup> and Shiqi Wang<sup>1,2</sup>

- <sup>1</sup>City University of Hong Kong
- <sup>2</sup> Shenzhen Research Institute (CityU)
- <sup>3</sup> Communication University of China
- <sup>4</sup> Peking University
- <sup>5</sup>PengCheng Laboratory

Email: <a href="mailto:lingyzhu-c@my.cityu.edu.hk">lingyzhu-c@my.cityu.edu.hk</a>





## Introduction



### **Background**

- ☐ Increasing Data Volume
  - Rapid development of multimedia applications has led to a massive increase in image and video data.
  - Efficient compression of this data is a fundamental challenge in multimedia communication and processing.
- ☐ Human vs. Machine Vision
  - Human Vision: Requires realistic and visually pleasing signals with rich appearances and textures.
  - Machine Vision: Focuses on restoring rich semantic clues for analytics tasks.
  - The difference necessitates dedicated compression methods for each.

## Introduction



### **Motivation**

- ☐ Challenges in Optimization
  - Techniques optimized for human perception may reduce machine analysis performance.
  - Increasing focus on compression for machines to enhance performance in tasks like detection and segmentation.
  - Need for joint optimization of machine vision tasks under bitrate constraints.
- ☐ Innovative Approaches
  - Dynamic adaptation of representations to align with task-driven requirements.
  - Aim to achieve higher compression ratios without significant loss of semantic information, facilitating both image reconstruction and machine vision tasks.



## **Dynamic Adaptation for Humans and Machines**



Figure 1. Overall architecture of the proposed method.

## **Framework**



## **Human Perception Oriented Compression**



Figure 2. Overall architecture of the proposed method.



## **Machine Analysis Oriented Adaptation**



Figure 3. Overall architecture of the proposed method.

## Framework



## **Machine Analysis Oriented Adaptation**



Figure 4. Overall architecture of the proposed method.

## **Experimental Details**



### ☐ Training Dataset:

- COCO 2017 training set
- 118,287 natural images
- Commonly used for object detection and segmentation.

### ☐ Testing Data:

- Machine Vision: COCO 2017 Validation Dataset (5,000 images).
- Human Vision: Kodak Dataset (24 high-quality images).

#### ☐ Performance Evaluation:

- Machine Vision: Mean Average Precision (mAP) with IoU threshold from 0.5 to 0.95 (interval 0.05).
- Human Vision: BD-Rate savings based on PSNR.

## **Experimental Results**

• Achieve superior performance in both the detection and segmentation tasks

### **□** Segmentation performance



### **□** Detection performance



## **Experimental Results**

• Achieve promising performance in reconstruction

### **□** Human-vision performance



### **□** Overall performance

**Table 1**. BD-rate and BD-mAP of the proposed method for comparison. Herein, the HEVC is the anchor.

| Benchmarks       | COCO                  |                       | Kodak             |
|------------------|-----------------------|-----------------------|-------------------|
|                  | BD-mAP<br>(Detection) | BD-mAP (Segmentation) | BD-rate<br>(PSNR) |
| HEVC Intra [5]   | -                     | 12#1                  | -                 |
| VVC Intra [7]    | -23.78%               | -23.98%               | -25.20%           |
| Ball'e 2018 [14] | -19.08%               | -18.37%               | +7.68%            |
| Minnen 2018 [16] | -28.79%               | -27.89%               | -13.85%           |
| Cheng 2020 [2]   | -31.52%               | -30.77%               | -19.76%           |
| Ours             | -36.76%               | -36.79%               | -21.50%           |

### **Ablation Results**

• Achieve a positive impact at the low bitrate in experimental observation.

### **□** Segmentation performance



### **□** Detection performance



## **Conclusion**



- Dynamic Adaptation Approach: The proposed method successfully integrates human and machine vision through a dynamic transformation network that adjusts data distribution.
- Rate-Distortion Performance: Improved performance metrics are achieved for both human and machine vision, indicating a significant advancement in image processing.
- End-to-End Optimization: The optimization of the dynamic adaptation network enhances its applicability across various image datasets, showcasing the method's versatility.





# Thank you!

#### Link to Github



### Link to Paper

