Exercice 1 : Quelques rappels d'arithmétiques

- **1.a**] Montrer que si a diviser bc, et si pgcd(a, b) = 1 alors a divise c.
- **1.b**] En déduire que si $c \equiv d$ [a], $c \equiv d$ [b] et $\operatorname{pgcd}(a, b) = 1$ alors $c \equiv d$ [ab]. Qu'en est-il si a et b ne sont pas premiers entre eux?
- **1.c**] Montrer que l'ensemble des nombres premiers est infini. On pourra raisonner par l'absurde en supposant que l'ensemble des nombres premiers est un ensemble fini $P = \{p_1, p_2, \dots, p_k\}$.

Indication: construire un nouveau nombre premier à partir du produit de ces nombres.

- **1.d**] Si $a \equiv b$ [n] et $c \equiv d$ [n], peut-on affirmer que :
 - 1. $a + c \equiv b + d [n]$?
 - 2. $ac \equiv bd [n]$?
 - 3. $a^k \equiv b^k [n]$? (où k est un entier positif quelconque)
- **1.e**] Si $ac \equiv bc$ [n], peut-on affirmer que $a \equiv b$ [n]? Si oui le prouver, si non donner un contre-exemple puis une condition sur c et n pour que cela soit vrai.

Exercice 2 : Identité de Bézout

- 2.a] Déterminer deux entiers u et v pour chaque identité de Bézout suivante :
 - 1. 714u + 340v = pgcd(714, 340);
 - 2. 255u + 141v = pgcd(255, 141).

Exercice 3 : Certificats de primalité de Pratt (cf première partie du cours)

- **3.a**] En admettant qu'un entier n est premier si et seulement si le groupe $(\mathbb{Z}/n\mathbb{Z})^*$ est cyclique d'ordre premier n-1, montrer le théorème de Lucas qui affirme qu'un entier n est premier si et seulement s'il existe un entier $a \in \mathbb{Z}$ tel que $a^{n-1} \equiv 1 \mod n$ mais $a^{(n-1)/q} \not\equiv 1 \mod n$ pour tout diviseur premier q de n-1.
- **3.b**] En déduire que tout nombre premier admet un certificat de primalité polynomial (en sa longueur binaire) et que la primalité est dans \mathcal{NP} .

Indication : On pourra montrer par récurrence qu'un certificat (récursif) démontrant la propriété de la question précédente nécessite moins de $(6 \log n - 4)$ entiers inférieurs à n.

Exercice 4: Nombres de Carmichael

Un nombre de Carmichael est un entier composé tel que $a^n \equiv a \mod n$ pour tout entier $a \geq 1$.

- **4.a** Montrer qu'un nombre de Carmichael est nécessairement impair.
- **4.b**] Soient n un nombre de Carmichael et p un facteur premier (impair) de n. Montrer que p^2 ne divise pas n et que p-1 divise n-1.
- **4.c**] Réciproquement, montrer que si n est un entier composé impair sans facteur carré, et tel que pour tout entier p divisant n, p-1 divise n-1 alors n est un nombre de Carmichael.

Exercice 5 : Vérification de produits matriciels

Nous considérons le problème suivant :

- Entrée : trois matrices A, B et C de taille $n \times n$ à coefficients dans \mathbb{R} .
- **Question**: vérifier si $A \cdot B = C$.

Pour mémoire, nous avons :

$$(AB)_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}, \forall i, j, 1 \le i, j \le n.$$

5.a] Proposer un algorithme déterministe simple permettant de résoudre ce problème et donner sa complexité.

On considère maintenant sur l'algorithme probabiliste suivant :

Entrée : un entier D > 1, 3 matrices A, B et C dans de taille $n \times n$ à coefficients dans \mathbb{R} .

Sortie: Oui si $A \times B = C$ et **Non** autrement.

- 1. Choisir aléatoirement un vecteur colonne $\mathbf{x} \in \{0, \dots, D-1\}^n$.
- 2. $\mathbf{res} \leftarrow A(B \cdot \mathbf{x}) C \cdot \mathbf{x}$.
- 3. Si res est nul alors retourner Oui, sinon retourner Non.
- **5.b**] Donner la complexité de calculer un produit matrice-vecteur.
- **5.c** En déduire la complexité de l'algorithme ci-dessus.
- **5.d**] Montrer que si $A \times B = C$, alors l'algorithme retourne toujours Oui.

On note $\mathbf{X} = (X_1, \dots, X_n)^{\mathrm{T}}$ un vecteur (colonne) de variables, et $\mathbf{RES}(\mathbf{X}) = (A \times B - C)\mathbf{X} = (\mathrm{RES}_1(\mathbf{X}), \dots, \mathrm{RES}_n(\mathbf{X}).$

2

5.e] Soit $i, 1 \le i \le n$. Montrer que si $RES_i(\mathbf{X})$ est non nul, alors :

$$\Pr_{\mathbf{x} \in \{0,\dots,D-1\}^n} \left(\operatorname{RES}_i(\mathbf{x}) = 0 \right) \le \frac{1}{D}.$$

5.f] En déduire :

$$\Pr(\text{Algo retourne Oui} \mid AB \neq C) \leq \frac{1}{D}.$$

Compléments

Exercice 6 : Test de primalité de Miller-Rabin

Soit $n \geq 3$ un entier composé impair. Notons $n = m2^h + 1$ avec m impair et soit $a \in \mathbb{Z}$ un entier premier à n. Considèrons la suite (b_0, b_1, \ldots, b_h) d'entiers définie par :

$$b_0 \equiv a^m \mod n$$
, $b_1 \equiv b_0^2 \mod n$, ..., $b_h \equiv b_{h-1}^2 \mod n$.

- **6.a**] Considérons l'ensemble $\Upsilon_n = \{a \in \mathbb{Z}_n^*, \alpha^n \equiv 1 \bmod n\}$. Montrer que Υ_n est un sous-groupe de \mathbb{Z}_n^* qui contient tous les entiers $a \in \mathbb{Z}_n^*$ pour lesquels la suite (b_0, b_1, \ldots, b_h) vérifie les deux conditions du test de Miller-Rabin $(i.e.\ b_h = 1.\ \text{et si}\ b_0 \neq 1,\ \text{il existe un indice}\ i \in \{0, \ldots, h-1\}$ tel que $b_i \equiv -1 \bmod n$).
- **6.b**] Montrer que si $\Upsilon_n \neq \mathbb{Z}_n^*$ alors le nombre d'entiers $a \in \mathbb{Z}_n^*$, pour lesquels la suite (b_0, b_1, \ldots, b_h) vérifie les deux conditions précédentes, est inférieur à (n-1)/2.

Nous supposons désormais que $\Upsilon_n = \mathbb{Z}_n^*$.

- **6.c**] Montrer que n peut s'écrire $n=n_1n_2$ où $n_1,n_2\geq 2$ sont deux entiers premiers entre eux.
- **6.d**] Considérons j l'entier maximal pour lequel il existe un élément v de \mathbb{Z}_n^* tel que $v^{2^jm} = -1 \mod n$ et l'ensemble $\Psi_n = \{a \in \mathbb{Z}_n^*, \alpha^{2^jm} \equiv \pm 1 \mod n\}$. Montrer que Ψ_n est un sous-groupe de $(\mathbb{Z}/n\mathbb{Z})^*$ et notons $v \in \Psi_n$ tel que $v^{2^jm} \equiv -1 \mod n$.
- **6.e**] Montrer qu'il existe un élément $w \in (\mathbb{Z}/n\mathbb{Z})^*$ tel que $w \equiv v \mod n_1$ et $w \equiv 1 \mod n_2$.
- **6.f**] Montrer que $w^{2^{j}m} \not\equiv \pm 1 \mod n$ et que $w^{2^{j+1}m} \equiv 1 \mod n$.
- **6.g**] Conclure

Exercice 7 : Extraction de racine carrée modulo p

Sit p un nombre premier impair.

- **7.a**] Montrer que si a est un entier non divisible par p, alors $a^{(p-1)/2} \equiv 1 \mod p$ si a est un carré modulo p et $a^{(p-1)/2} \equiv -1 \mod p$ sinon.
- **7.b**] Nous supposons que $p \equiv 3 \mod 4$. Donner un algorithme déterministe de complexité $O(\log^3 p)$ opérations binaires qui, étant donné $a \in \{1, \ldots, p-1\}$ tel que $a^{(p-1)/2} \equiv 1 \mod p$ retourne $b \in \{1, \ldots, p-1\}$ tel que $b^2 \equiv \alpha \mod p$.

Indication: On pourra calculer $a^{(p+1)/4} \mod p$.

Nous supposons désormais que $p \equiv 1 \mod 4$. Posons $p = 2^h m + 1$ avec m impair.

- **7.c**] Donner un algorithme probabiliste qui, étant donné p, retourne un entier $\gamma \in \{1, \ldots, p-1\}$ tel que $\gamma^{(p-1)/2} \equiv -1 \mod p$ en temps espéré $O(\log^3 p)$ opérations binaires.
- **7.d**] Montrer que pour un tel γ , $\delta=\gamma^m$ engendre l'unique sous-groupe d'ordre 2^h de $(\mathbb{Z}/p\mathbb{Z})^*$.
- **7.e**] Soit $a \in \{1, \dots, p-1\}$ tel que $a^{(p-1)/2} \equiv 1 \mod p$. Montrer que α^m appartient au sous-groupe engendré par δ
- **7.f**] (*) Proposer un algorithme qui retourne l'entier $i \in \{0, \ldots, 2^h 1\}$ tel que $\alpha^m = \delta^x$.
- **7.g**] En déduire un algorithme pour calculer une racine carré de α^m modulo p.
- **7.h**] Conclure en donnant un algorithme permettant de calculer les racines carrés de α en temps $O((\log p)^3)$.

Exercice 8 : Test de primalité de Agrawal-Biswas

- **8.a**] Montrer que n est un nombre premier si et seulement si n divise tous les coefficients binomiaux $\binom{n}{i}$ pour $i \in \{2, \dots, n-1\}$.
- 8.b] En déduire que n est un nombre premier si et seulement si

$$(X+1)^n \equiv X^n + 1 \bmod n. \tag{1}$$

8.c] Expliquer pourquoi il n'est pas possible d'appliquer le lemme de Schwartz-Zippel à l'équation (1) pour obtenir un test de composition/primalité probabiliste avec des propriétés similaires au test de Miller-Rabin. Dire quel test on obtiendrait si on le faisait cependant.

8.d] Nous supposons dans toute la suite que n est un nombre composé qui n'est pas une puissance d'un nombre premier. Soient p un diviseur premier de n et $a \ge 1$ un entier tel que p^a divise n mais p^{a+1} ne divise pas n. Montrer que $\binom{n}{p^a}$ n'est pas divisible par p et en déduire que

$$(X+1)^n \not\equiv X^n + 1 \bmod p. \tag{2}$$

- **8.e**] Soit $\ell \geq 1$ un entier. Montrer que le polynôme $P_p(X) = ((X+1)^n X^n 1) \mod p$ a au plus $\lfloor n/\ell \rfloor$ diviseurs irréductibles de degré ℓ dans $(\mathbb{Z}/p\mathbb{Z})[X]$.
- **8.f**] Soit $\ell \geq 1$ un entier. Nous admettons que pour n > p > 16, le nombre I_{ℓ} de polynômes irréductibles unitaires (*i.e.* de coefficient dominant égal à 1) de degré ℓ dans $(\mathbb{Z}/p\mathbb{Z})[X]$ vérifie $I_{\ell} \geq p^{\ell}/(2\ell)$.

Montrer que pour n > p > 16 et $\ell = \lceil \log_2 n \rceil$, la probabilité qu'un polynôme unitaire $Q_p(X)$ de degré ℓ tiré uniformément aléatoirement dans $(\mathbb{Z}/p\mathbb{Z})[X]$ soit irréductible et ne divise pas $P_p(X)$ est supérieure ou égale à $1/4\ell$.

- **8.g**] Montrer que pour n > p > 16 et $\ell = \lceil \log_2 n \rceil$, la probabilité qu'un polynôme unitaire $Q_n(X)$ de degré ℓ tiré uniformément aléatoirement dans $(\mathbb{Z}/n\mathbb{Z})[X]$ ne divise pas $P_n(X) = ((X+1)^n X^n 1) \mod n$ est supérieure ou égale à $1/4\ell$.
- **8.h**] En déduire un nouveau test de primalité/composition et une nouvelle démonstration que le langage des nombres premiers appartient à \mathcal{BPP} .

Exercice 9 : Isomorphisme Simultané de Matrices

Soit n>1 un entier et p un nombre premier. On considère le problème d'Isomorphisme Simultan'e de Matrices (IsoMat) :

Entrée: $m \geq 1$, des matrices $M_1, \ldots, M_m \in (\mathbb{Z}/p\mathbb{Z})^{n \times n}$ et $M'_1, \ldots, M'_m \in (\mathbb{Z}/p\mathbb{Z})^{n \times n}$.

Question: Trouver une matrice inversible $S \in (\mathbb{Z}/p\mathbb{Z})^{n \times n}$ telle que

$$S \cdot M_i \cdot S^{-1} = M_i', \forall i \in \{1, \dots, m\}$$

- **9.a**] Expliquer comment vérifier qu'une matrice $S \in (\mathbb{Z}/p\mathbb{Z})^{n \times n}$ est solution de IsoMat en temps polynomial et de manière déterministe.
- **9.b**] Soient $M_1, \ldots, M_m \in (\mathbb{Z}/p\mathbb{Z})^{n \times n}$ et $M'_1, \ldots, M'_m \in (\mathbb{Z}/p\mathbb{Z})^{n \times n}$ des matrices. Montrer que si $S \in \mathbb{Z}_N^{n \times n}$ est inversible alors :

$$S \cdot M_i = M_i' \cdot S, \forall i \in \{1, \dots, m\} \iff S \cdot M_i \cdot S^{-1} = M_i', \forall i \in \{1, \dots, m\}.$$

9.c] En utilisant la question précédente, montrer que trouver une matrice $S \in (\mathbb{Z}/p\mathbb{Z})^{n \times n}$ telle que $S \cdot M_i \cdot S^{-1} = M_i', \forall i \in \{1, \dots, m\}$ se réduit à résoudre un système linéaire de $m \cdot n^2$ équations et n^2 variables.

La question précédente permet de trouver un entier d et des matrices $B_1, \ldots, B_d \in (\mathbb{Z}/p\mathbb{Z})^{n \times n}$ telles que pour tout $\lambda_1, \ldots, \lambda_m \in (\mathbb{Z}/p\mathbb{Z})$, la matrice $S = \sum_{i=1}^d \lambda_i \cdot B_d$ vérifie

$$S \cdot M_i \cdot S^{-1} = M'_i, \forall i \in \{1, \dots, m\}.$$

Dans la suite, on suppose que l'ensemble $S = \left\{ \sum_{i=1}^d \lambda_i \cdot B_d \mid \lambda_1, \dots, \lambda_d \in (\mathbb{Z}/p\mathbb{Z}) \right\}$ contient au moins une matrice inversible.

- **9.d**] Donner la probabilité que $\sum_{i=1}^{d} \lambda_i \cdot B_d$ soit inversible pour des $\lambda_1, \ldots, \lambda_m \in (\mathbb{Z}/p\mathbb{Z})$ tirés aléatoirement.
- **9.e**] Proposer un algorithme polynomial probabiliste permettant de résoudre IsoMat. Vous donnerez la probabilité de succès de votre algorithme.

Exercice 10: Couplages parfaits

Soit G = (V, E) un graphe avec n sommets (|V| = n).

- Un ensemble d'arêtes $M \subseteq E$ est un **couplage** si on ne peut trouver deux arêtes e' et e dans M incidentes à un même sommet.
- Un **couplage parfait** est un couplage $M \subseteq E$ tel que pour chaque sommet $v \in V$ il existe une unique arête dans M incidente à v.

Pour un graphe G=(V,E), on construit une matrice sommet-sommet A de taille $|V|\times |V|$ tel que :

- $-A[i,j] = x_{i,j}, \text{ si } \{i,j\} \in E \text{ et } i < j.$
- $-A[i,j] = -x_{j,i}$, si $\{i,j\} \in E$ et i > j.
- -0, sinon.

On admet le résultat suivant :

Det(A) est nul \iff il n'existe pas de couplage parfait de G.

- **10.a**] On considère $G = (\{1, 2, 3\}, \{\{1, 2\}\})$. Monter que G n'admet pas de couplage parfait.
- **10.b**] Proposer un algorithme (probabiliste) pour décider de l'existence d'un couplage parfait.
- **10.c**] Donner les caractéristiques de l'algorithme : type (Las-Vegas ou Monte-Carlo), complexité et probabilité d'erreur.