Symulacja deterministyczna modelu biologicznego p53 / PTEN / MDM2

Symulacja procesów biologicznych - Ćwiczenia 12.05.2025 - Zofia Ratajczak, Wiktoria Jagodzińska

W ramach ćwiczenia zaimplementowano algorytm Runge-Kutty IV rzędu (RK4) ze stałym krokiem całkowania. Jest to podstawowa wersja realizacji. Model matematyczny został zaimplementowany bezpośrednio w kodzie w postaci funkcji opisującej zmiany stężeń czterech zmiennych: p53, MDM2_cyt, MDM2_nuc oraz PTEN.

Do realizacji symulacji wykorzystano język Python oraz biblioteki *numpy* i *matplotlib*. Dane wejściowe zostały zapisane jako stałe parametry w kodzie, a symulacja została wykonana dla 48 godzin z krokiem czasowym 1 minuta. Symulacja została przeprowadzona dla czterech scenariuszy, zgodnie z instrukcją:

1. Zdrowa komórka

Warunki: brak uszkodzenia DNA, obecny PTEN, brak siRNA.

Opis: W tym scenariuszu obserwujemy stabilne poziomy białek. p53 pozostaje umiarkowany, a MDM2 i PTEN funkcjonują w homeostazie.

2. Uszkodzenie DNA

Warunki: obecne uszkodzenie DNA, obecny PTEN, brak siRNA.

Opis: Zwiększenie aktywności p53 ze względu na odpowiedź na uszkodzenie DNA. MDM2 ulega regulacji zwrotnej, PTEN podtrzymuje stabilność transportu.

3. Nowotwór

Warunki: brak PTEN, obecne uszkodzenie DNA, brak siRNA.

Opis: Brak PTEN powoduje zaburzenia w transporcie MDM2 oraz destabilizację poziomów p53. Model odzwierciedla patologiczną sytuację komórkową.

4. Terapia

Warunki: brak PTEN, obecne uszkodzenie DNA, zastosowana terapia siRNA (hamuje MDM2). **Opis:** Pomimo braku PTEN, zahamowanie MDM2 przez siRNA przywraca względną równowagę poziomu p53. Terapia częściowo kompensuje zaburzenia wynikające z nowotworowego profilu komórki.

Warunki:

Parametr	Wartość	Opis
p1	8.8	Produkcja p53

p2	440	Produkcja MDM2 mRNA
p3	400	Produkcja PTEN
d1	1.375 × 10 ⁻⁴	Degradacja p53
d2	1.375 × 10 ⁻⁴	Degradacja MDM2
d3	3×10^{-5}	Degradacja PTEN
k1	1.425 × 10 ⁻⁴	Translacja MDM2m
k2	0.5	Stała w funkcji aktywacji
k3	1.5 × 10 ⁻⁵	Hamowanie przez PTEN

Wartości początkowe:

Białka	Opis	Wartość początkowa
p53	poziom białka p53	100
MDM2_cyt	MDM2 w cytoplazmie	100
MDM2_nuc	MDM2 w jądrze	50
PTEN	poziom PTEN	200

Wersja 1. implementacji - RK4 ze stałym krokiem całkowania

Wersja 3. implementacji - RK4 jako funkcja przyjmująca model ODE jako argument

Dane wejściowe są podane w kodzie – nie ma potrzeby wpisywania ich na wejściu.

Krok h jest ustalony z góry i jest stały w czasie (h = 1) - oznacza to, że niezależnie od tego, jak szybko zmieniają się zmienne biologiczne (np. poziom p53, MDM2 itd.), metoda Runge-Kutty będzie wykonywać obliczenia w równych odstępach czasu.

Otrzymane wyniki częściowo nie pokrywają się z biologicznymi założeniami. Może to być spowodowane niskimi wartościami parametrów podanych w zadaniu oraz niedokładnością obliczeniową powstała w wyniku użycia stałego kroku całkowania (h=1). Model ma proste liniowe zależności, nie uwzględnia opóźnień, nieliniowości i innych sprzężeń zwrotnych.

Kod do zadania znajduje się w pliku $rk_4.py$, natomiast jego skompilowana wersja w pliku $rk_4.exe$.