Laboratorium problemowe V rok

Regulator optymalno-czasowy dla serwomechanizmu

Rozważamy problem minimalnoczasowy dla systemu opisanego równaniem

$$\dot{x}_1 = x_2
\dot{x}_2 = ax_2 + bu$$
(1)

sterowanie dopuszczalne jest określone : $|u(t)| \le 1$, $a = -\frac{1}{T}$, $b = \frac{K}{T}$

Zadanie polega na przeprowadzenia system ze stanu początkowego $x(0) = x^0$ do stanu docelowego $x^f = \begin{bmatrix} x_1^f \\ x_2^f \end{bmatrix}$ w minimalnym czasie. Ze względu na to, że regulator

minimalnoczasowy sprowadza stan układu z dowolnego punktu do zera to nasz stan docelowe przesuwamy do zera poprzez zdefiniowanie nowego wektora stanu $z = col(z_1, z_2)$ gdzie $z_1 = x_1 - x_1^f$, $z_2 = x_2 - x_2^f$. Wkładając do równań (1) i zakładając, że x_2^f – prędkość końcowa jest równa zero - otrzymujemy równania stanu w nowych współrzędnych.

$$\begin{aligned}
\dot{z}_1 &= z_2 \\
\dot{z}_2 &= az_2 + bu
\end{aligned} \tag{2}$$

Teraz zadaniem sterowania czasooptymalnego jest przesunięcie systemu ze stanu początkowego $z^0 = x^0 - x^f$ do zera.