

Main Factory Site in Takatsuki

Semiconductor Plant in Nagaokakyo

Semiconductor Plant in Okayama

Color Picture Tube Plant in Utsunomiya

Electron Tube Plant in Kyoto

With this catalog we wish to introduce our contribution to the "Benefits from Electronics for Everyone." And this, of course, means we wish to offer our customers active electronic components of high quality and performance.

The catalog you have before you is the fourth edition covering our electronic components. It contains the most up-to-date description of all our products. We have tried to present the information you need to understand what we have to offer in the field of active electronic components. Please feel free to address any inquiries you may have to our sales offices, representatives or distributors.

As always, Matsushita Electronics Corporation wishes to offer you still better service to satisfy your quality and performance requirements.

CONTENTS

TYPE NUMBER LIST
Semiconductors
Cathode Ray Tubes 4
Electron Tubes 6
SEMICONDUCTORS
Type Index of Transistors
Cross Referenec Guide
Transistors
Silicon Transistors: Small Signal
Silicon Transistors: Large Signal
Silicon Junction FET
Silicon MOS FET
Silicon Transistors: Transmitting
②-Series Transistors for the Communications Industry27
Germanium Transistors: H.F. Amplification
Germanium Transistors: L.F. Amplification
Germanium Transistors: L.F. Power Amplification
Diodes
Germanium Diodes ······ 35
Silicon Diodes
Silicon Rectifiers
Variable Capacitance Diodes
PIN Diodes
Thyristors
Silicon Control Rectifiers
Silicon Control Switch
Bi-Directional Triode Thyristors
Trigger Diode
Opto Electronic Devices 41
Red Light Emitting Diodes: GaAsP41
Green Light Emitting Diode: GaP41
Green Light Emitting Diode: Converter type
Infrared Light Emitting Diodes: GaAs
Photo Transistors 43
Linear Monolithic Integrated Circuits45
For Radio, Audio 45
For TV
For VTR
Miscellaneous Type

	Digital Monolithic Integrated Circuits	79
	Bipolar	79
	MOS	97
	Outline Drawings	107
C	ATHODE RAY TUBES	
	Quick Reference Sheet ····	116
	Color Picture Tubes ·····	119
	Monochrome Picture Tubes ····	123
	Instrument Cathode Ray Tubes	127
	High Speed Reading/Printing Tubes (Fiber Optics Type)	129
	High Resolution Display Tubes	131
	Outline Drawings	133
	Color Picture Tubes	133
	Monochrome Picture Tubes	140
	Instrument Cathode Ray Tubes ·····	145
	High Speed Reading/Printing Tubes	149
	High Resolution Monochrome Display Tubes	152
	High Resolution Color Display Tubes	153
	Base Connections	154
EL	ECTRON TUBES	
	Preferred Types (Receiving Tubes)	156
	Receiving Tubes (TV set)	157
	Receiving Tubes (FM/AM Radio Set)	169
	Receiving Tubes (Hi-Fi Set)	171
	Miscellaneous (Other Application)	171
	Operating Examples (AF Power Tubes)	173
	Numeric Display Panel (Flandipak *) ·····	175
	Vidicons	177
	Silicon Vidicons	179
	Plumbicon * · · · · · · · · · · · · · · · · · ·	181
	Continuous-Wave Magnetrons	187
	Outline Drawings	189
	Receiving Tubes ·····	189
	Flandipak * ·····	191
	Vidicons	192
	Silicon Vidicons	192
	Plumbicon *	193
	Continuous-Wave Magnetrons	193
	Rase Connections	198

TYPE NUMBER LIST

SEMICONDUCTORS (TRANSISTORS)

Type No.	Page	Type No.	Page	Type No.	Page	Type No.	Pag
2SA100	31		33	2SC583©	27	2SC1074Z	29
2SA101	31	*2SB170	31	*2SC585	25	2SC1075	25
2SA102	31	2SB171	31	2SC644	17	2SC1075©	29
2SA103	31	2SB172	33	2SC645	17	25C1076	25
2SA104	31	2SB173	31	2SC645©	27	2SC1076Z	29
	31	2SB175	31	2SC647	19	2501190	25
2SA342	31	2SB176	33	2SC696	19	2SC1190Z	29
2SA546	19	*2SB177	33	2SC696Z	27	2501191	25
2SA546Z	27	2SB178	33	2SC696A	19	2SC11912	29
2SA546A	19	2SB 78A	33	2SC696AZ	27	2501192	25
2SA546AZ	27	2SB324	33	2SC697	19	2SC1192(Z)	29
2SA547	19	2SB345	31	2SC697©	27	2SC1215	17
2SA547(Z)	27	2SB346	31	2SC697A	19	2SC1215(Z)	27
2SA547A	19	2SB347	31	2SC697A(Z)	27	2SC1226	21
2SA550	17	2SB348	31	2SC731	25	2SC1226A	21
2SA550(Z)	27	*2SB371	33	2SC731(Z)	29	2SC1303	25
2SA550A	17	2SB449	33	2SC761	17	2SC1303(2)	29
2SA550A	27	2SB473		2SC761	27	2SC1317	21
2SA550A2	17	2SB475	33	2SC761		2501317	21
2SA564(Z)		2SB475 2SB476		2SC762	17 27	2SC1318	-
2SA564A	27		33				25
	. 17	2SB481		250821	25 29	2SC1326②	
2SA564AZ	27	2SB493	33 19	2SC821②		2501327	17
*2SA637	17	2SB512		250822	25 29	2501328	_
2SA666	17	2SB512A	19	2SC822(Z)		2SC1346	21
2SA666A	17	2SB513	19	25C828	17	2SC1347	21
2SA683	19	2SB513A	19	2SC828(Z)	27	2SC1354	25
2SA684	19	2SB532	19	2SC828A	17	2SC1354Z	29
2SA685	17	2SB533	33	2SC828AZ	21	2SC1359	17
2SA699	19	2SC98	17	2SC829	17	2501360	17
2SA699A	19	2SC99	17	2SC829Z	27	2501383	21
2SA719	19	*2SC316	17	2SC840	19	2SC1384	21
2SA720	19	2SC456	25	2SC840A	19	2SC1398	2:
2SA721	17	*2SC477	17	280901	21	2SC1405	25
2SA722	17	2SC478	25	2SC901A	21	2SC1405Z	29
2SA730	19	*2SC526	19	2SC947	17	2501406	21
2SA731	19	2SC538	17	2SC947(Z)	27	2SC1407	2
2SA748	19	2SC538Z	27	2SC948	17	2SC1446	21
2SA749	17.	2SC538A	17	2SC948Z	27	2SC1450	21
2SA751	19	2SC538A(Z)	27	2801012	17	2SC1501	21
2SA752	19	*2SC539	17	2SC1012(Z)	27	2SC1509	21
2SA766	19	2SC562	17	2SC1012A	17	2SC1518	21
2SA777	19	2SC562(2)	27	2SC1012AZ	27	△2SC1547	17
2SA794	19	2SC563	17	2SC1033	17	△2SC1547②	27
2SA795	19	2SC563(Z)	27	2SC1033	27	2SC1550	2
△2SA838	17	2SC563A	17	2SC1033A	17	2SC1565	21
		2SC563AZ	27	2SC1033AZ	27	△2SC1566	21
2SB126	33	*2SC57I	25	25C1047	17	2SC1567	2
2SB126A	33	*2SC572	25	2SC1047(Z)	27	2SC1568	21
2SB127	33	*2SC573	25	2501073	25	2SC1573	17
2SB127A	33	2SC582	19	2SC1073	29	2501620	25
	33	2SC583	17	2SC1073@	25	2SC1620Z	29

(TRANSISTORS)

Type No.	Page	Type No.	Page	Type No.	Page	Type No.	Page
2SD189	21	2SD299	21	2SD334Z	27	2SD390	23
2SD189A	21	2SD300	23	2SD350	23	2SD390A	23
2SD198	21	2SD312	23	2SD352	33	△2SD418	23
2SD198Z	27	2SD317	23	2SD365	23		
2SD199	21	2SD317A	23	2SD365A	23	2SK50	23
2SD200	21	2SD318	23	2SD366	23	△2SK56	23
2SD200A	21	2SD318A	23	2SD366A	23	*3SK32	25
2SD226	21	2SD319	23	*2SD367	33	3SK39	25
2SD226(Z)	27	2SD319(Z)	27	2SD379	23	3SK39Z	29
2SD226A	21	2SD321	23	2SD380	23	△35K49	25
2SD226B	21	2SD324	23	2SD389	23	△35K49Z	29
*2SD246	21	2SD334	23	2SD389A	23		

(DIODES)

Type No.	Page	Type No.	Page	Type No.	Page	Type No.	Page
MA23	35	MA162	. 35	MA622	37	0A70	35
MA25	35	MA242/R	37	MA625	37	0A79	35
MA26	35	MA242C/CR	37	MA630	37	18A0	35
MA26W	35	MA320	37	MA715	37	OA85	35
MA53	35	MA340	37	MA720	37	OA90	35
MA56	35	MA550	37	MA725	37	OA91	35
MA I 50	35	MA615	37	MA730	37	OA95	35
MAI6I	35	MA619	37			OA99	35

(THYRISTORS)

	Type No.	Page	Type No.	Page	Type No.	Page	Type No.	Page
Г	2SF248	39	*2SM79	39	MA6 I	39	△2SM 5	39
	*2SF1060	39	△2SM 25	39	M2IC	39	△M28C	39
	*2SM58	39	3SF11	39	M23C	39		

(OPTO ELECTRONIC DEVICES)

Type No.	Page						
LNII	41	LN22W	41	LN52	43	PNIIO	43
LNIIW	41	LN23	41	LN53	43	PNIIOW	43
LNI2	41	△LN24	41	LN60	43	PNIII	43
LNI2W	41	LN30	41	LN70	43	PNIIIW	43
LNI3	41	△LN32	41			PN I 40	43
LN21	41	△LN34	41				
LN2 I W	41			PN100	43		
LN22	41	LN5 I	43	PNIOI	43		

※ Maintenance

△ Preliminary

(LINEAR MONOLITHIC INTEGRATED CIRCUITS: BIPOLAR)

Type No.	Page	Type No.	Page	Type No.	Page	Type No.	Page
OM200	45	AN222	55	AN249	65	AN328	67
* AN127	45	AN225	55	△ AN252	47	AN331	67
ANI36	45	AN227	55	AN253	49	* AN332	69
AN155	77	AN228	57	△ AN258	49	AN333	69
AN202	53	AN229	57	AN260	49	AN334	69
AN203	45	AN230	57	AN264	49	△ AN340	71
* AN204	45	AN231	57	△ AN270	49	AN342	71
AN205	53	AN232	57			AN343	71
AN206	53	AN233	59	△ AN272	51	AN353	51
* AN208	77	AN234	59	AN274	51	△ AN370	49
AN209	53	AN235	59	AN277	51	AN603	77
AN210	45	AN236	59	AN288	65	AN605	75
AN211	47	AN237	59	AN289	65	△ AN610	77
AN214	47	AN238S	61	AN30 I	73	AN902	77
AN215	47	AN240	61	AN302	73	AN903	77
AN217	47	AN241	61	△ AN303	73	AN904	77
△AN219	47	AN242	61	AN304	75	AN905	77
AN220	55	△ AN247	63	△ AN316	75	AN915	77
AN221	55	△ AN248	63	△ AN320	67		

(DIGITAL MONOLITHIC INTEGRATED CIRCUITS: BIPOLAR)

Type No.	Page	Type No.	Page	Type No.	Page	Type No.	Page
DN801S	91	DN821	93	DN1094	87	DN1937	81
DN803T	91	DN822	93	DN1097	87	DN 1944	81
DN804	91	DN830	95	DN1099	89	DNI 946	83
DN805	91	DN831	95	DN1930	79	DN 1949	83
DN806	91	DN850	95	DN1932	79	DN1961	83
DN807	93	DN85 I	95	DN1933	79	DN1962	85
△ DN8 I I	93	DN852	95	DN1935	79	DN I 963	85
DN820	93	DN1093	85	DN1936	81		

(DIGITAL MONOLITHIC INTEGRATED CIRCUITS: MOS)

Type No.	Page	Type No.	Page	Type No.	Page	Type No.	Page
*MNIII	97	MN132P	99	△ MN5530	103	△ MN6050	105
MNI12	97	△ MN1003	99	△ MN5701	103	△ MN6060	105
MNI 15	97	△ MN I 200 Series	101	△ MN5710	103		
MNI16	97	MN5500A	101	MN6031	103		
MNI3IA	99	△ MN5521	101	MN6032	105		

[※] Maintenance △ Preliminary

CATHODE RAY TUBES

(COLOR PICTURE TUBES)

Type No.	Page	Type No.	Page	Type No.	Page	Type No.	Page
140AGB22	119	370BGB22	119	470BXB22	121	510CEB22	121
200HB22	119	370BRB22	119	470CTB22	121	5IOFLB22	121
200KB22	119	370AXB22	119	470EJB22	121	510DTB22	121
200LB22	119	420AB22	119	470CZB22	121	510FUB22	121
250RB22A	119	420NB22	119	470ESB22	121	550EB22	121
320NB22A	119	420ACB22	119	490ASB22A	121	560DB22	121
320CB22A	119	420AHB22	119	490BKB22B	121	560KB22	121
320AGB22	119	420XB22	119	490CHB22A	121	560EB22	121
370ACB22	119	440ASB22A	121	510ACB22A	121		
370AKB22	119	470BYB22	121	510AEB22A	121		

(MONOCHROME PICTURE TUBES)

Type No.	Page						
I VABP4	123	230ANB4	123	310GDB4	123	440ANB4	125
I VACP4	123	230AYB4	123	310FJB4	123	440GB4	125
85GB4	123	240MB4	123	340AHB4	125	A47-23W	125
IIOCB4	123	280UB4	123	340AZB4	125	470LB4	125
140AKB4	123	280VB4	123	340AYB4	125	500WB4	125
140FB4	123	310FDB4	123	340FB4	125	500XB4	125
I 50ACB4	123	310HCB4	123	340NB4	125	500JB4	125
230ADB4	123	310GUB4	123	400ADB4	125	520AB4	125
230AHB4	123	310GZB4	123	400CDB4	125	590GB4	125
230AEB4	123	310CYB4	123	400BGB4	125	A59-11W	125
230ARB4	123	310EDB4	123	400CHB4	125	590YB4	125

(INSTRUMENT CATHODE RAY TUBES)

Type No.	Page	Type No.	Page	Type No.	Page	Type No.	Page
40GB1	127	120ADB31	127	130AGB31	127	140ARB31A	127
40DB31	127	I I ODB3 I	127	I 30AVB I	127	140RB31A	127
75AJB1	127	130ACB31	127	140VB31	127	140UB31A	127
ЗВКРЗ І	127	130AWB31	127	140AEB31	127		
100DB31	127	130QB31	127	140AMB31A	127		

(HIGH SPEED READING/PRINTING TUBES)

Type No.	Page	Type No.	Page	Type No.	Page	Type No.	Page
75ANB I I	129	250UB11	129	250VB11	129	250ZB48	129
250JB11	129	250WB11	129	250YB48	129		

(HIGH RESOLUTION MONOCHROME DISPLAY TUBES)

Type No.	Page						
40CB4	131	M17-141W	131	340BAB39	131		
85HB4	131	230BAB39	131				

(HIGH RESOLUTION COLOR DISPLAY TUBES)

Type No.	Page						
140AUB22	131	370BUB22	131	420AJB22	131	550FB22	131

ELECTRON TUBES

(RECIVING TUBES)

Type No.	Page	Type No.	Page	Type No.	Page	Type No.	Page
IBK2	157	6CW5	159	9A8	163	34R3	167
152	157	6DJ8	159	9AQ8	163	33HE7 €	167
IS2A	157	6DT6A	159	9GH8A	163	38HE7	167
IX2B	157	6DX8	159	9GV8	163	40KG6A	167
2GK5	157	6EA8	159	9JW8	163	42EC4A	167
2HA5/2HM5	157	6EC4A	159	IOCW5	165	50JY6	167
3CU3	157	6EH7	161	I ODX8	165	6AQ8	169
3CU3A	157	6EJ7	161	I OGK6	165	6AR5	169
3CV3	157	6FQ7/6CG7	161	I OGV8	165	6AV6	169
3CV3A	157	6GH8A	161	IIAF9	165	6BE6	169
3DT6A	157	6GJ7	161	I IBM8	165	6BM8	169
3EH7	157	6GK5	161	IILY6	165	6X4	169
3EJ7	157	6GK6	161	IIMS8	165	12AV6	169
3GK5	157	6GS7	161	IIR3	165	12BA6	169
3HA5/3HM5	157	6GU7	161	1179	165	12BE6	169
3HQ5	157	6GX7	161	I2AT7	165	I2DT8	169
4BL8	157	6GV8	161	12B-B14	165	17EW8	169
4DT6A	157	6HA5/6HM5	161	I 2BH7A	165	30A5	169
4EH7	157	6HB7	161	I 2BY7A	165	30M-P27	169
4EJ7	157	6HG8	161	12FQ7	165	35C5	169
4GJ7	157	6HQ5	161	12G-B3	165	35W4	169
4GK5	157	6JX8	161	12G-B7	165	50BM8	169
4GS7	157	6KE8	161	12RK-19	165	50C5	169
4HA5/4HM5	157	6KG6A	161	14GW8	165	50EH5	169
4R-HH15	157	6KZ8	161	15CW5	165	50H-B26	169
5GH8A	159	6LF6	161	15DQ8	165	5AR4	171
5GJ7	159	6LJ8	161	16A8	167	6AU6	171
5GS7	159	6LM8	163	16AQ3	167	6AU6A	171
5GX7	159	6LN8	163	I 6GK6	167	6BQ5	171
5HG8	159	6LX8	163	16Y9	167	6CA4	171
5LJ8	159	6R3	163	1748	167	6CA7	171
6AB8	159	6Y9	163	1723	167	12AU6	171
6AF9	159	7DJ8	163	18GV8	167	12AU7	171
6AL3	159	7GS7	163	20AQ3	167	I 2AX7	171
6AL5	159	7HG8	163	20LF6	167	I 2AX7A	171
6BK4B	159	8A8	163	21KQ6	167	7189	171
6BK4C/6EL4A	159	8B8	163	25E5	167	PF86	171
6BL8	159	8CW5	163	25HX5	167	6360	171
6BX6	159	8FQ7/8CG7	163	29KQ6	167	S200 I	171
6CL8A	159	8GJ7	163	29LE6	167		
6CM5	159	8LS6	163	30AE3	167		

NUMERIC DISPLAY PANEL (FLANDIPAK*)

Type No.	Page						
CD801	175	CD802	175	CD1201	175		
* 1		100					

(VIDICONS)

Type No.	Page	Type No.	Page	Type No.	Page	Type No.	Page
20PE I. I	177	20PE 3A	177	20PE 4	177	S4071	177
7262A	177	7735A	177	8507	177	8541	177
S4070	177		177				

(SILICON VIDICONS)

Type No.	Page						
20PE15	179	25PE 4	179				

(PLUMBICON*)

Type No.	Page						
XQ1020	181	XQ1020L	181	XQ1020R	181	XQ1020G	181
XQ1020B	181	XQ1025L	181	XQ1025R	181	XQ1022	181
XQ1070	183	XQ1070L	183	XQ1070R	183	XQ1070G	183
XQ1070B	183	XQ1071	183	XQ1071L	183	XQ1071R	183
XQ1071G	183	XQ1070B	183	XQ1072	183	XQ1080	185
XQ1080L	185	XQ1080R	185	XQ1080G	185	XQ1080B	

(MAGNETRONS)

Type No.	Page	Type No.	Page	Type No.	Page	Type No.	Page
2M66	187	2M77	187	2M78A	187	2M88	187
2M I 77A	187	2M 78 A	187	2M53-M	187	2M75-M	187
2M I 75	187						

SEMICONDUCTORS

TYPE INDEX OF TRANSISTORS

		Dr	U	ΗF		١	V	Н	F			/VHF Powe				Н	F			,	A F	=	Sv	
Type No.	Structure	Drawing	Т	V		T V	/		F I	М				S	W	М	W·L\	N	_	Lov		0	Switching	rage
		ο No.	Amp	Mix Osc	RF	Mix Osc	F	RF	Conv	IF	UHF	VHF	HF	RF	Conv	RF	Conv	IF	Video	Low Noise	Amp	Output	ning	. 0
2SA100	Ge PNP D	T-5														•								26
2SA101	Ge PNP D	T-5																•						26
2SA102	Ge PNP D	T-5														•	•							26
2SA103	Ge PNP D	T-5												•	•	•	•							26
2SA104	Ge PNP D	T-5								•				•	•	•	•							26
2SA341	Ge PNP A	T-6									٠,					•	•							26
2SA342	Ge PNP A	T-6														•	•							2
2SA546	Si PNP EP	T-12																			•	•		1
2SA546A	Si PNP EP	T-12																				•		1
2SA547	Si PNP EP	T-14																			•	•		1
2SA547A	Si PNP EP	T-14																			•	•		1
2SA550	Si PNP EP	T-9																		•	•			1
2SA550A	Si PNP EP	T-9																		•	•			1
2SA564	Si PNP EP	T-24																		•	•			1
2SA564A	Si PNP EP	T-24																		•	•			1
2SA637	·Si PNP TP	T-9																					•	1
2SA666	Si PNP EP	T-24																		•				1
2SA666A	Si PNP EP	T-24																		•				1
2SA683	Si PNP EP	T-25	1																		•	•		1
2SA684	Si PNP EP	T-25																				•		1
2SA685	Si PNP TP	T-24																					•	1
2SA699	Si PNP EP	T-30	1																			•		1
2SA699A	Si PNP EP	T-30																				•		1
2SA719	Si PNP EP	T-24																			•	•		1
2SA720	Si PNP EP	T-24	1																		•	•		1
2SA721	Si PNP EP	T-24																		•				1
2SA722	Si PNP EP	T-24															,			•				1
2SA730	Si PNP EP	T-26																			•	•		1
2SA731	Si PNP EP	T-26																			•	•		1
2SA748	Si PNP EP	T-31																			_	•		1
2SA749	Si PNP EP	T-24																				-	•	1
2SA751	Si PNP EP	T-27																			•	•	-	1
2SA752	Si PNP EP	T-27													-						•	•		1

		Drawing	U	ΗF			V	н	F			/VHF Powe				Н	F			,	Α .	F	S	
Type No.	Structure	wi. ng	T	٧		T۱	/		F۱	Λ			(4)	S	W	M	1W • I	_W		١٥			Switching	Page
		N _o .	Amp	Mix Osc	RF	Mix Osc	IF	RF	Conv	IF	UHF	VHF	HF	RF	Conv	RF	Conv	IF	Video	Low Noise	Amp	Output	ning	e .
2SA766	Si PNP DM	T-21										e .										•	•	19
2SA777	Si PNP EP	T-25																			•			19
2SA794	Si PNP EP	T-35																			•			19
2SA795	Si PNP P	T-34																				•		19
2SA838	Si PNP EP	T-24						•	•	•				•	•	•	•	•						17
2SB126	Ge PNP A	T-16																				•		33
2SB126A	Ge PNP A	T-16																				•		33
2SB127	Ge PNP A	T-16																				•		33
2SB127A	Ge PNP A	T-16								,												•		33
2SB128	Ge PNP A	T-16																				•		33
2SB128A	Ge PNP A	T-16																				•		33
2SB170	Ge PNP A	T-2																			•			31
2SB171	Ge PNP A	T-2																			•			31
2SB172	Ge PNP A	T-2		,																		•		33
2SB173	Ge PNP A	T-2																		• .	•			31
2SB175	Ge PNP A	T-2																			•			31
2SB176	Ge PNP A	T-2																				•		33
2SB177	Ge PNP A	T-2																						33
2SB178	Ge PNP A	T-4																				•		33
2SB178A	Ge PNP A	T-4																				•		33
2SB324	Ge PNP A	T-3																				•		33
2SB345	Ge PNP A	T-3																						31
2SB346	Ge PNP A	T-3																			•			31
2SB347	Ge PNP A	T-3																		•	•			31
2SB348	Ge PNP A	T-3																		•	•			31
2SB371	Ge PNP A	T-3																				•		33
2SB449	Ge PNP A	T-16																				•		33
2SB473	Ge PNP A	T-20							7															33
2SB475	Ge PNP A	T-3																				•		33
2SB476	Ge PNP A	T-12		121																		•		33
2SB481	Ge PNP A	T-20																				•		33
2SB493	Ge PNP A	T-15																				•		33

		Drawing	U	ΗF			V	Н	F			/VHF Powe				Н	F				A I	F	Sw	70
Type No.	Structure	wing	Т	٧		T \	/	1	- N	И				S	W	- 1	MW •	LW		Lo			Switching	Page
	, Amp	Mix Osc	RF	Mix Osc	IF	RF	Conv	IF	UHF	VHF	HF	RF	Conv	RF	Conv	IF	Video	Low Noise	Amp	Output	ning			
2SB512	Si PNP EM	T-32																				•		19
2SB512A	Si PNP EM	T-32																				•		19
2SB513	Si PNP EM	T-33																				•		19
2SB513A	Si PNP EM	T-33																				•		19
2SB532	Si PNP EM	T-19																						19
2SC98	Si NPN EP	T-9																					•	17
2SC99	Si NPN EP	T-9						,															•	17
2SC316	Si NPN P	T-9																		•	•			17
2SC456	Si NPN EP	T-11											•											25
2SC477	Si NPN EP	T-6					•	•	•	•														17
2SC478	Si NPN EP	T-9																						25
2SC526	Si NPN EM	T-12																						19
2SC538	Si NPN EP	T-9																						17
2SC538A	Si NPN EP	T-9														48					•			17
2SC539	Si NPN EP	T-9															7			•	•			17
2SC562	Si NPN P	T-7					•																	17
2SC563	Si NPN EP	T-7					•																	17
2SC563A	Si NPN EP	T-7					•																	17
2SC571	Si NPN EP	T-12										•												25
2SC572	Si NPN EP	T-23										•												25
2SC573	Si NPN EP	T-23										•												25
2SC582	Si NPN TM	T-21																				•		19
2SC583	Si NPN EP	T-6	•																					17
2SC585	Si NPN EP	T-22										•												25
2SC644	Si NPN EP	T-24																		•				17
2SC645	Si NPN EP	T-10							•	•				•	•	•	•							17
2SC647	Si NPN TM	T-16																				•		19
2SC696	Si NPN EP	T-12											•								•	•		19
2SC696A	Si NPN EP	T-12											•								•	•		19
2SC697	Si NPN EP	T-14											•									•		19
2SC697A	Si NPN EP	T-14											•									•		19
2SC731	Si NPN EP	T-13									•													25
2SC761	Si NPN P	T-6			•	•																		17

		Dr	U	ΗF			٧	Н	F			VHI Powe				Н	F			,	A F	=	S	
Type No.	Structure	Drawing	Т	٧		Т	٧		F	М				S	W	Ν	∕W ·	LW		L0			Switching	Page
		No.	Amp	Mix Osc		Mix Osc IF RF Conv IF UHF	VHF	HF	RF	Conv	RF	Conv	IF	Video	Low Noise	Amp	Output	ning	Ф					
2SC762	Si NPN P	T-6		•	•	•														4				17
2SC821	Si NPN EP	T-13																						25
2SC822	Si NPN EP	T-13										•												25
2SC828	Si NPN EP	T-24																			•			17
2SC828A	Si NPN EP	T-24						- 1													•			17
25C829	Si NPN EP	T-24						•	•	•				•	•	•	•	•						17
2SC840	Si NPN TM	T-21																				•		19
2SC840A	Si NPN TM	T-21																				•		19
250901	Si NPN TM	T-16																		2			•	21
2SC901A	Si NPN TM	T-16																					•	21
2SC947	Si NPN P	T-6		•		•																		17
2SC948	Si NPN P	T-6		•																				17
25C1012	Si NPN TP	T-12																	•					17
2SC1012A	Si NPN TP	T-12				-						202							•					17
2501033	Si NPN TP	T-9																					•	17
2SC1033A	Si NPN TP	T-9																					•	17
2SC1047	Si NPN EP	T-24						•	•															17
2SC1073	Si NPN EP	T-28									•													25
2SC1074	Si NPN EP	T-28									•													25
2SC1075	Si NPN EP	T-28						7			•													25
2SC1076	Si NPN EP	T-28							- 1		•													25
2501190	Si NPN EP	T-28										•												25
2SC1191	Si NPN EP	T-29										•												25
2501192	Si NPN EP	T-29										•							77					25
2SC1215	Si NPN EP	T-24		•		•																		17
2SC1226	Si NPN EP	T-30																				•		21
2SC1226A	Si NPN EP	T-30				-																•		21
2501303	Si NPN EP	T-13									K	•												25
2501317	Si NPN EP	T-24																			•	•		21
2501318	Si NPN EP	T-24													-						•	•		21
2501326	Si NPN EP	T-12									•											_		25
2SC1327	Si NPN EP	T-24																		•				17
2SC1328	Si NPN EP	T-24						ø												•				17

		D _r	U	ΗF		,	V	Н	F			VHF Powe				Н	F			,	A F	7	S	
Type No.	Structure	Drawing	Т	٧		T \	V		F N	M				S	W	N	1W • L	W		Lo		_	Switching	Page
		ng No.	Amp	Mix Osc	RF	Mix Osc	IF	RF	Conv	IF	UHF	VHF	HF	RF	Conv	RF	Conv	IF	Video	Low Noise	Amp	Output	ning	ē
2SC1346	Si NPN EP	T-26																			•	•		21
2501347	Si NPN EP	T-26																			•	•	5.5	21
2SC1354	Si NPN EP	T-29										•												25
2501359	Si NPN EP	T-24						•	•	•				•	•	•	•	•						17
2501360	Si NPN EP	T-25					•																	17
2501383	Si NPN EP	T-25																			•	•		21
2SC1384	Si NPN EP	T-25																			•			21
2501398	Si NPN EP	T-31																				•		21
2SC1405	Si NPN EP	T-36										•												25
2SC1406	Si NPN EP	T-27																			•	•		21
2SC1407	Si NPN EP	T-27																			•	•		21
2SC1446	Si NPN TP	T-32																				•		21
2SC1450	Si NPN DM	T-21																				•	•	21
2SC1501	Si NPN TP	T-34																						21
2SC1509	Si NPN EP	T-25																			•			21
2SC1518	Si NPN EP	T-25																				•		21
2SC1547	Si NPN P	T-6	•	•		•																		17
2SC1550	Si NPN TP	T-34																	•					21
2SC1565	Si NPN P	T-34																				•		21
2SC1566	Si NPN TP	T-35																	•					21
2SC1567	Si NPN EP	T-35																						21
2SC1568	Si NPN EP	T-35																				•		21
2SC1573	Si NPN TP	T-25																			•		•	17
2501620	Si NPN EP	T-36																						25
2SD189	Si NPN TM	T-16																				•		21
2SD189A	Si NPN TM	T-16																				•		21
2SD198	Si NPN TM	T-16																				•		21
2SD199	Si NPN PM	T-16																					•	21
2SD200	Si NPN PM	T-17																					•	21
2SD200A	Si NPN PM	T-17														2							•	21
2SD226	Si NPN TM	T-21																				•		21
2SD226A	Si NPN TM	T-21							142													•		21
2SD226B	Si NPN TM	T-21																				•		21

		Dra	Uŀ	HF			V	Н	F			/VHF Powe				Н	F			,	Α Ι	F	Sv	
Type No.	Structure	Drawing	·Τ	٧		Τ ١	1		F N	1				S	W	M	W• L	W	_	Lov		ب	Switching	Page
		N o	Amp	Mix Osc	RF	Mix Osc	IF	RF	Conv	IF	UHF	VHF	HF	RF	Conv	RF	Conv	IF	Video	Low Noise	Amp	Jutput	ing	
2SD246	Si NPN PM	T-17															-						•	21
2SD299	Si NPN PM	T-17																					•	21
2SD300	Si NPN PM	T-17																					•	23
2SD312	Si NPN TM	T-17																					•	23
2SD317	Si NPN TJ	T-32	-																			•		23
2SD317A	Si NPN TJ	T-32																				•		23
2SD318	Si NPN TJ	T-33													20.0							•		23
2SD318A	Si NPN TJ	T-33																				•		23
2SD319	Si NPN DJ	T-18																				•		23
2SD321	Si NPN TM	T-16																					•	23
2SD324	Si NPN TM	T-21																				•		23
2SD334	Si NPN DJ	T-16																				•		23
2SD350	Si NPN PM	T-19																					•	23
2SD352	Ge NPN A	T-3																				•		33
2SD365	Si NPN TM	T-32																				•		23
2SD365A	Si NPN TM	T-32																				•		23
2SD366	Si NPN TM	T-33																				•		23
2SD366A	Si NPN TM	T-33																				•		23
2SD367	Ge NPN A	T-3																				. •		33
2SD379	Si NPN EM	T-19																				•		23
2SD380	Si NPN PM	T-19									2												•	23
2SD389	Si NPN TJ	T-32																				•		23
2SD389A	Si NPN TJ	T-32																				•		23
2SD390	Si NPN TJ	T-33																				•		23
2SD390A	Si NPN TJ	T-33																				•		23
2SD418	Si NPN TM	T-19																					•	23

A ; Alloy

D; Drift

EP; Epitaxial Planar P; Planar

TP; Triple Diffused Planar

AD; Alloy Diffused

DJ; Diffused Junction

EM; Epitaxial Mesa

TM; Triple Diffused Mesa

TJ; Triple Diffused Junction

DM; Double Diffused Mesa

PM; Emitter Planar Collector Mesa

CROSS REFERENCE GUIDE

(SILICON TRANSISTORS)

Type No.	Matsushita Nearest Equivalent	Page
2N327A	2SA564A	17
2N328A	2SA564A	17
2N329A	2SA564A	17
2N330A	2SA564A	17
2N923	2SA564A	17
2N1429	2SA550	17
2N2 I 75	2SA550	17
2N2 I 76	2SA550	17
2N2 I 77	2SA550	17
2N2 78	2SA550	17
2N2 8	2SA564	17
2N2 82	2SA564	17
2N2219	2SC696	19
2N2222	2SC1318	21
2N2274	2SA550	17
2N2275	2SA550	17
2N2276	2SA564	17
2N2277	2SA564	17
2N2278	2SA550	17
2N2279	2SA550	17
2N2332	2SA564	17
2N2333	2SA564	17
2N2334	2SA564	17
2N2337	2SA564	17
2N2372	2SA564	17
2N2373	2SA564	17
2N2377	2SA550	17
2N2906	2SA550	17
2N3053	2SC696	19
2N3054	2SD226A	21
2N3055	2SD319	23
2N3317	2SA564	17
2N3318	2SA564	17
2N3335	2SA564	17
2N3391A	2SC828A	17
2N3404	2SC1347	21
2N3405	2SC1347	21 .
2N3414	2501317	21
2N3415	2501317	21
2N3416	2501318	21
2N3440	2SC1012A	17
2N3444	2SC696	19
2N3566	2SC828A	17
2N3569	2501318	21
2N3638	2SA719	19

Type No.	Matsushita Nearest Equivalent	Page
2N3642	2SC828A	17
2N3643	2SC829	17
2N3644	2SA564A	17
2N3645	2SA720	19
2N3693	2SC829	17
2N3702	2SA719	19
2N3703	2SA720	19
2N3704	25C1318	21
2N3708	2SC538A	17
2N3710	2SC828A	17
2N3903	2SC828A	17
2N3905	2SA564A	17
2N3925	2SC572	25
2N3927	2SC573	25
2N3948	2SC731	25
2N4O4OA	2SD317A	23
2N4106	2SB324	33
2N4248	2SA564A	17
2N4314	2SA546	19
2N4428	2SC1326	25
2N4403	2SA720	19
2N4427	2SC571	25
2N4428	2501326	25
2N4636	2SA546	19
2N4637	2SA546A	19
2N4916	2SA550A	17
2N5086	2SA666	17
2N5087	2SA666A	17
2N5209	2SC644	17
2N5210	2SC644	17
2N5232A	2501318	21
2N5355	2SA719	19
2N5449	2501318	21
2N5824	2SC828A	17
2N5825	2SC828A	17
2N5869	2SC647	19
2N5870	2SD189	21
2N5873	2SD189	21
2N5874	2SD334	23
2N5882	2SD319	23
2N6010	2501318	21
2N6021	2SB5 2A	19
2N6022	2SB5 2A	19
2N6023	2SB512	19
2N6081	2501190	25

Type No.	Matsushita Nearest Equivalent	Page
2N6082	2501191	25
2N6084	2501192	25
2N6121	2SD317	23
2N6 22	2SD317	23
2N6123	2SD317A	23
2N6124	2SB512	19
2N6125	2SB512	19
2N6126	2SB512A	. 19
40243	2SC762	17
A413	2SC563	17
A415	2SC829	17
A466	2SC562	17
A467	2SC762	17
A484	2SC562	17
A702	2SD199	21
A705	2SD200	21
A2667	2SC562	17
AD162	2SB481	33
ASY26	2SB324	33
BC107	2SC538A	17
BC147	2SC828	17
BC158	2SA564A	17
BC178/9	2SA550A	17
BDY82	2SB512	19
BDY83	2SB512	19
BF115	2SC645	17
BF167	2SC562	17
BF173	2SC563	17
BF179	2SC1012A	17
BF180	2SC761	17
BF181	2SC762	17
BF182	2SC947	17
BF183	2SC948	17
BF195	2SC829	17
BF200	2SC762	17
BF235	2SC829	17
BU 05	2SD200	21
BU 08	2SD299/300	21/23
D400	2SC1226A	21
D4102	2SA699A	19
DTS70I	2SD199	21
DTS702	2SD200	21
DTS704	2SD199	21
DTS80I	2SD199	21
ECG107	2SC645	17

Type No.	Matsushita Nearest Equivalent	Page
ECG 23A	2SC828	17
ECG154	2SC456	25
ECG159	2SA564	17
ECG163	2SC901	21
ECG175	2SD226A	21
GE-12	2SC582	19
GE-17	2SC538A	17
GE-20	2SC828A	17
GE-21	2SA564	17
GE-23	2SD226A	21
HEP50	2SC829	17
HEP56	2SC645	17
HEP57	2SA564	17
HEP240	2SC582	19
HEP241	2SC840A	19
HEP254	2SD324	23
HEP703	2SD226A	21
HEP706	2SC1012A	17
HEP707	2SD198	21
HEP709	2SC562	17
HEP712	2SC456	25
HEP728	2SC828A	17
HEP738	2SC538A	17
MJ400	2SD200	21
MJ1800	2SD199	21
MJ2251	2SC582	19
MJ2252	2SD198	21
MJ2253	2SD226A	21
MJ2254	2SC840A	19
MJ3026	2SD312	23
D40D1	2SC1226A	21
D43C8	2SA547	19
D43C8	2SA547	19
D44C8	2SD226A	21
MJ3027	2SD312	23
MJ3029	2SD321	23
MJ3202	2SC582	19
MJ3701	2SD226	21
MJ8400	2SD300	23
MJE370	2SA564	17
MM 1559	2SC1354	25
MPS918	2SC948	17
MPS3638A	2SA564A	17
MPS3643	2SC829	17
MPS3693	2SC829	17
03000	200020	1/

Type No.	Matsushita Nearest Equivalent	Page
MPS6512	25C829	17
MPS6512/3/4	2SC828A	17
MPS6513	2SC538A	17
MPS6515	2SC538A	17
MPS6517/8	2SA550A	17
MPS6519	2SA564	17
MPS6520	2SC538A	17
MPS6522	2SA666	17
MPS6523	2SA666	17
MPS6542	2SC762	17
MPS6543	2SC1215	17
MPS6544	2SC563A	17
MPS6545	2501360	17
MPS6548	2SC948	17
MPS6560	2SC1317	21
MPS6561	2SC1317	21
MPS6567	2SC829	17
MPSA-55	2SA684	19
MPS-H20	2SC563	17
MPS-H32	2SC562	17
MPSU04	2SC582	19
PFB1400	2SD324	23
0C25	2SB 26A	33
SE1001	25C829	17
SE5006	2SC829	17
SE5025	2SC829	17
SE5030	2SC948	17

Type No.	Matsushita Nearest Equivalent	Page
SE5055	2SC562	17
SE6002	2SC538A	17
SE7056	2SC1012A	17
SK3018	2SC538A	17
SK3020	2SC828	17
SK3021	2SC582	19
SK3024	2SC828A	17
SK3025	2SA564A	17
SK3028	2SD226A	21
SK3040	2SC582	19
SK5798	2SA564A	17
SKAII17	2SC828A	17
SKA1416	2SC829	17
SKA4074/5/6	2SC829	17
SKA4525	2SC829	17
SKA4768	2SC829	17
SPQ8075	2SC828A	17
SPS-1847	2SC582	19
SPS-4399	2SC829	17
SPS4423	2SC829	17
SX3826	2SC829	17
TIS38	2SA550A	17
TIS85	2SC562	17
TIS86	2SC948	17
TIS87	2SC563A	17
TA2700	2SC582	19

(INTEGRATED CIRCUITS: DIGITAL)

Type No.	Matsushita Nearest Equivalent	Page
DTμL9093	DN I 093	85
DTμL9094	DN1094	87
DTμL9097	DN1097	87
DTμL9099	DN I 099	89
DTμL9930	DN 1930	79
DTμL9932	DN1932	79
DTμL9933	DN1933	79
DTμL9935	DN I 935	79

Type No.	Matsushita Nearest Equivalent	Page
DTμL9936	DN I 936	81
DUμL9937	DN I 937	81
DTμL9944	DN I 944	81
DTµL9946	DN I 946	83
DTμL9949	DN I 949	83
DTμL9961	DN 96	83
DTµL9962	DN1962	85
DTµL9963	DN I 963	85

Type No.	Matsushita Nearest Equivalent	Page
CA3044	AN220	55
CA3064	AN222	55

Type No.	Matsushita Nearest Equivalent	Page
CA3065	AN24 I	61
MC1352	AN238S	61

TRANSISTORS

(SILICON TRANSISTORS : SMALL SIGNAL)

	Al			¶aximu =25℃	m Rati	ngs						Elec	trical	Ch	aract	eristic	cs(Ta	=25°)					
Type No.	V _{СВО}	*		Ic	Pc	Tj	Bias	СВО	Bias	h	FE			Bia	ıs	fτ			Cor	nditio	1	NF	₩NV	
	(V)	VCE0 VCER		(mA)	(mW)	(℃)		max.	*VCE	IE * Ic (mA)	min.	typ.	max.		*Ic			max (MHz)	*VCE		f (KH2)	Grounded Configura- tion	typ. *(mV) (dB)	* (m
2SA550	- 25	- 25	-	-100 ¹⁾	300	175	-	-1		2	40	250	520	(V)	(IIIA)	(IVITIZ)	(IVITIZ)	(IVITIZ)	(v)	(IIIA)	(NHZ)	Т	(ub)	(ac
2SA550A	- 45	-45	100	-100 ¹⁾	300	175	-10	- 1	– 5	2	40	250	520											
2SA564	- 25	- 25	-	-100 ¹⁾	250	125	-10	- 1	- 5	2	65	230	700	- 10	1		80							
2SA564A	- 45	- 45		-100 ¹⁾	250	125	-10	- 1	- 5	2	65		700	- 10			80							
2SA637*	-150		-5		300	175	-100		*-3				700		*-10	40	00							
25A666	-130 -25	*7) -150		-50 $-100^{1)}$	150	125	-	- 1		2	90	250	520	-10	ホ −10	40			-5	0.2	0.1			16
7.8	-									2									1.00					16
2SA666A	- 45 150	-45 *7)		-100 ¹⁾	150	125		-1			90	250	520	10	. 10	40			-5	0.2	0.1			10
2SA685	-150	-150	-5	-50	300	125	-100		2 1000	*-15			10.40		*-10	40	050		. 10		T21			**
2SA721	-35	-35		-1001)	150	125		-0.1		2	260		1040	- 100	10		250		*-10		Flat			15 **
2SA722	-55	-55		-1001)	150	125	-10			2	260	00	1040	- 120	10		250		*-10	*-1	Flat			15
2SA749	-100	-100	500	50	250	125	- 50			*-20		80	001	1,2555	*-10	1,50	0.00						0.0	_
2SA838 △	- 30	- 20	- 5	-30	250	125	- 10		-10	1	50	100	220			150	300		- 10	1	5MHz		2.8	4
2SC98	20	15		100	300	175	20	0.1	0.35		30		60	2	* 10		350							
2SC99	20	15	5	100	300	175	20	0.1	0.35	* 10	40		120	2	* 10		350				0.01			١.
2SC316*	45	45	5	1001)	300	175	10	0.01						5	*0.5		50		*5	10μA	$0.01 \\ \sim 10$			41
2SC477*	50		5	30	140	175	10	1	10	* 1	40	85	170	10	* 1	150	230							_
2SC538	25	25	5	1001)	300	175	10	1	5	- 2	90	250	700											
2SC538A	45	45	5	1001)	300	175	10	1	5	- 2	90	250	700											
2SC539*	25	25	5	1001)	300	175	10	1	5	- 2	90	250	700						5	-0.2	$0.03 \\ \sim 15$	E.		46
2SC562	40	30	4	25	130	175	10	1	10	- 4	26			10	- 4	220	330	500						
2SC563	40	25	4	25	145	175	40	10	10	- 7	38			10	- 5	360	550	820						
2SC563A	40	40	4	25	300	175	40	10	10	- 7	38			10	- 5	360	550	820						
2SC583	30	15	2.5	501)	200	200			* 1	* 2	25		150	5	* 2	1000								
2SC644	30	25	5	1001)	150	125	10	1	5	- 2	90		700						5	-0.2	0.1			56
2SC645	30		5	30	140	175	10	1	10	* 1	40		250	10	* 1	150	200							
2SC761	30	20	3	20	150	175			10	- 2	25			10	- 2	450	675	950						
2SC762	30	20	3	20	150	175			10	- 2	25			10	- 2	450	600	770						
2SC828	30	25	5	1001)	250	125	10 -	1	5	- 2	65		700						5	-0.2	1		66)	
2SC828A	45	45	5	1001)	250	125	10	1	5	- 2	65		700						5	-0.2	1		66)	
2SC829	30	20	5	30	250	125	10	1	10	- 1	40		500											
2SC947	25		3	15	150	175			10	- 2	10	20		10	- 3	400	650	1000						
2SC948	25	20		15	150	175			10	- 3	10	24		10		700	800							
25C1012	-	*1659	-	60	2500 ⁴⁾	175	12	2	* 20		20			10	-10	80								
2SC1012A	1	* 250°		60	2500 ⁴⁾	175	,		* 20						-10	-	100							
25C1033	200			25	300	175	12	2	*10		30													Т
2SC1033A	250		-	25	300	175	12	2	*10		20													
2SC1047	30	20	-	15	150	125		Ť	6	- 1	40		500	6	- 1	450	650							+
2SC1215	30		3	50	200	125			10	- 2	25		500		-15			1600			2			
2SC1213	35		5	1001)	150	125	10	0.1	5	- 2	260		1040		-10		250	.000	* 10	* 1	Flat			**
2SC1327	55	55		100	150	125	10	0.1	5	- 2	260		1040	-	-10 -10		250				Flat			#*
2SC1328 2SC1359												100				-							20	15
	30	20		30	250	125	10	0.1	10	- 1 - 10	50	100	220		* 1		300		10	- 1	5MH ₂		2.8	4
2SC1360	50		4	50	650	135	20	0.1	10	-10	-	50	100		-10	300	500		11		0.003			-
2SC1547△	30	-		20	150	150	25	0.1	10	- 2	20				-2		900		11		800M		4	6
2SC1573	250	200	5	1001)	600	135	12	2	* 10	* 5	30			10	-10	50	80							

Bi	25	Zrb			Ri	ac Cre	* C	ob		Con	dition	Уf	el			Ri	ac Vo	E(sat)		Use	Drawing	Type No.
		f	tvn	max			_					-		min	tvn					USE	No.	1900 110.
V)	(mA)	(MHz)	(Ω)	(Ω)	(V)	(m,A)	(MHz)	(pF)	(pF)	(V)	(mA)	f (MHz)	ounded nfigura- n	(m\(\mathcal{U}\))	(m \(\mathcal{U}\))	(mA)	(mA)	(V)	(V)			
																− 50	- 2.5	-0.3		General	T-9	2SA550
																-50	- 2.5	- 0.3		General	T-9	2SA550A
																- 50	- 2.5	- 0.3		General	T-24	2SA564
																-50	- 2.5	-0.3		General	T-24	2SA564A
					-10	0	1		*10							-15	- 1		-1.0	Switching	T-9	2SA637%
																- 50	- 2.5	- 0.3		Low noise	T-24	2SA666
																- 50	- 2.5	- 0. 3		Low noise	T-24	2SA666A
					-10	0	1		*10							-15	- 1		- 1	Switching	T-24	2SA685
																-100	-10		-0.6	Low noise	T-24	2SA721
																-100	-10		-0.6	Low noise	T-24	2SA722
																-50	- 5		-0.3	Switching	T-24	2SA749
10	1	2	25	50	-10	1	10.7	1.2	2											RF Amp.	T-24	2SA838
																100	10		0.6	Switching	T-9	25098
																100	10		0.6	Switching	T-9	25C99
																10	1		1.2	Low noise	T-9	2SC3169
10	- 1	2	18	40	10	- 1	0.5	0.5	0.8											RF Amp.	T-6	2SC477
																100	10	0.21	0.32		T-9	2SC538
																100	10		0.32	General	T-9	2SC538A
																100	10		0.32		T-9	2SC539%
					10	- 1		0.15	0.22	10	- 4	35	Е	70	95	10	1	1.5	0.00	VIF (AGC)	T-7	2SC562
					10	- 1		0.23		5	- 7	35	E	110	140	10	1	0.15		VIF Amp.	T-7	2SC563
					10	- 1		0.23		5	- 7	35	E	110	140	10	1	0.15		VIF Amp.	T-7	2SC563A
					5	2		0.120	0.8			- 00			110		•	0.10		UHF Amp.	T-6	2SC583
						-			0.0							50	10	0.14		Low noise	T-24	2SC644
10	- 1	2	22	50	10	- 1	0.5	0.65	1 2							10	1	0.1		RF Amp.	T-10	2SC645
	-	_			10			0.28								10	1	3		UHF Amp.	T-6	2SC761
					10			0.28								10	1	3		VHF Amp.	T-6	2SC762
					10	-	10.1	0.20	0.00							50	5	0.14		General	T-24	2SC828
							-											W 0.0		General	T-24	2SC828
10	- 1			60	10	- 1		1 2	1.6							50	5	0.14		RF Amp.	T-24	2SC829
10	1			00	10		10.7		1.0							10	1	0.1		UHF Mix.	T-6	2SC947
							10.7										1					
10	-10	5	60r a ²	100ps ²⁾	10	-		0.33	3 0							10	1	0.6	1.0	UHF Osc.	T-6	25C948
10	10	J	oups"	100ps	20		0.5		3.0							10	2		1.0	Video out.	T-12	2501012
				-	20	-10	0.5		3.0	-						60	10		10	Video out.	T-12	2501012
																5	1		1.0	Switching	T-9	2501033
					C		10.7	0.00	1.0							5	1	0.1	1.0		T-9	2501033
					6		-	0.88								10	1	0.1	141	RF Amp.	T-24	2SC1047
					30	- 1	10.7	1.0	1.5							10	1	0.1		UHF Osc.	T-24	2SC1215
																100	10		0.6	Low noise	T-24	2501327
			2.5													100	10		0.6	Low noise	T-24	2501328
10	- 1	2	22	50	10	-		0.9								10	1	0.1		RF Amp.	T-24	2SC1359
					10	- 1	10.7		0.96	1.5						20	2		0.4	VIF Amp.	T-25	2501360
					10	0	1	* 0.8												UHF Amp.	T-6	2SC1547

⁸⁾ Rg=50K Ω 9) R_{BE}=1K Ω 10) Rg=100K Ω V_G=80dB 11) Rs=10K Ω

(SILICON TRANSISTORS: LARGE SIGNAL)

		Absolut		ximum F =25℃)	Ratings			197		EI	ectri	cal C	harac	teristi	cs (Ta	=25℃	:)			
Type No.	V _{СВО}	V _{CEO}	VEBO	lc	Pc	Tj	Bias	1 сво	Bias	hғ	E		- 00	Bias	h	FE		Bias	V BE (s	eat)
	(V)	* V _{CES} # V _{CER} (V)	(V)	(A)	(W)	(℃)	V _{CB} (V)	max. (μA)	V CE * VCB (V)	I _E *I _C (A)	min.	typ.	max.	V CE * VCB (V)	l _E * l _C (A)	min.	typ.	V CE * V CB (V)	IE * I c (A)	max (V)
2SA546	-70	-60	- 5	- 1	1.26)	175	-30	- 3	- 3	*-0.1	30	80	173	- 3	*-1.0	25		- 3	*-0.1	-0.8
2SA546A	-90	-80	- 5	- 1	1.26)	175	-30	- 3	- 3	*-0.1	30	80	173	- 3	*-1.0	25		- 3	*-0.1	-0.8
2SA547	-70	-60	- 5	- 1	10 ⁴⁾	175	-30	- 3	- 3	*-0.1	30	80	173	- 3	*-1.0	25		- 3	*-0.1	-0.
2SA547A	-90	-80	- 5	- 1	104)	175	-30	- 3	- 3	*-0.1	30	80	173	- 3	*-1.0	25		- 3	*-0.1	-0.
2SA683	-30	- 25	- 5	$-1.5^{7)}$	1 6)	135	-20	-0.1	-10	*-0.5	60	160	340	- 5	*-1.0	50	100	I _B =-50mA	*-0.5	*-1.
2SA684	-60	-50	- 5	-1.5^{7}	1 6)	135	-20	-0.1	-10	*-0.5	60	160	340	- 5	*-1.0	50	100	I _B =-50mA	*-0.5	*-1.
2SA699	-40	-20	- 5	$-3^{7)}$	10 ⁴⁾	150	-20	- 1	- 5	*-1	30	120	220					I _B =-0.2A	*-2.0	
2SA699A	-50	-40	- 5	$-3^{7)}$	104)	150	-20	- 1	- 5	*-1	30	120	220					I _B =-0.2A	*-2.0	
2SA719	-30	-25	- 5	$-1^{7)}$	0.4	125	-20	-0.1	-10	*-0.15	60	160	340	-10	*-0.5	40	90	I _B =-50mA	*-0.5	
2SA720	-60	-50	- 5	-17)	0.4	125	-20	-0.1	-10	*-0.15	60	160	340	-10	* -0.5	40	90	I _B =-50mA	*-0.5	
2SA730	-30	-25	- 5	-17)	0.6	125	-20	-0.1	-10	*-0.15	60	160	340	-10	*-0.5	40	90	I _B =-50mA	*-0.5	*-1.
2SA731	-60	-50	- 5	$-1^{7)}$	0.6	125	-20	-0.1	-10	*-0.15	60	160	340	-10	* -0.5	40	90	I _B =-50mA	*-0.5	
2SA748	-70	-50	- 5	$-3^{7)}$	15 ⁴⁾	150	-40	- 1	- 5	*-0.1	30			- 5	*-1.0	30	130	I _B =-0.2mA	*-2.0	*-1.
2SA751	- 30	-25	- 5	$-1.5^{7)}$	1	135	- 20	-0.1	-10	*-0.5	60	160	340	- 5	*-1.0	50	100	I _B =-50mA	*-0.5	*-1.
2SA752	-60	-50	- 5	$-1.5^{7)}$	1	135	-20	-0.1	-10	*-0.5	60	160	340	- 5	*-1.0	50	100	I _B =-50mA	*-0.5	*-1.
2SA766	-150	# -150 ⁹⁾	- 5	$-1.2^{7)}$	205)	150	-60	-30	- 5	*-0.1	30		150	- 5	* -0.5	30		- 5	*-0.1	-0.
2SA777	-80	-80	- 5	-1 ⁷⁾	0.75	135	-20	-0.1	-10	*-0.15	65	160	330	- 5	* -0.5	50	100	I _B =-50mA	*-0.5	*-1.
2SA794	- 100	- 100	- 5			150			- 10	*-0.15	65	160	330	- 5	*-0.5	50	100	I _B =-50m A	*-0.5	-
2SA795	- 150	-150	- 5	-0.5^{7}	108)	150	- 60	- 30	- 10	*-0.1	50		240	- 10	*-0.01	50		-10	* 0.01	- 0.
2SB512	-60	-60	- 5	- 3	25 ⁴)	150	-20	-30	- 3	*-0.1	40			- 3	*-1.0	30	60	- 3	*-1.0	-1.4
2SB512A	-80	-80	- 5	- 3	25 ⁴⁾	150	-20	-30	- 3	*-0.1	40			- 3	*-1.0	30	60	- 3	*-1.0	
2SB513	-60	-60	- 5	- 3	25 ⁴)	150	-20	-30	- 3	*-0.1	40			- 3	*-1.0	30	60	- 3	*-1.0	
2SB5 3A	-80	-80	- 5	- 3	254)	150	-20	-30	- 3	*-0.1	40			- 3	*-1.0	30	60	- 3	*-1.0	
2SB532	-80	-80	- 5	-7 ⁷⁾	60 ³⁾	150	-50	-1mA	- 4	*-1	30		180	- 4	*-4.0	30		- 4	*-4.0	+
2SC526*	165	150	5	55m	2.34)	175	12	2	* 20	-45m	20									
2SC582	300	# 300 ¹⁾	3	0.157)	6.5 ²⁾	150	300	100	*10	-0.05	30	65	150					10	* 0.05	0.7
25C647	80	80	5	5	50 ³⁾	150	80	10mA	4	* 0.1	20	40	1.5755436	4	* 4.0	20	40	4	* 4.0	1.5
25C696	100	60	5	3	1.26)	175	30	3	3.	-0.1	30		173	3	-1.0	28		3	-0.1	0.8
2SC696A	130	80	5	37)	1.26)	175	30	3	3	-0.1	30		173	3	-1.0	28		3	-0.1	0.8
25C697	100	60	5	3 7)	104)	175	30	3	3	-0.1	30		173	3	-1.0	28		3	-0.1	0.8
2SC697A	130	80	5	3 7)	104)	175	30	3	3	-0.1	30		173	3	-1.0	28		3	-0.1	0.8
2SC840	100	60	5	3 6)	204)	150	100	5 mA	3	* 0.1	30			3	*1.0	30		3	*1.0	1.5
2SC840A	150	100	5	3 6)	204)	150	100	5 mA	3	* 0.1	30			3	*1.0	30		3	*1.0	1.5

1) $R_{BE} = 3K\Omega$ 2) $T_{C} = 70\,^{\circ}\text{C}$ 3) $T_{C} = 75\,^{\circ}\text{C}$ 4) $T_{C} = 25\,^{\circ}\text{C}$ 5) $T_{C} = 80\,^{\circ}\text{C}$ 6) With cooling fin 7) I_{CM} 8) $T_{C} = 90\,^{\circ}\text{C}$ 9) $R_{BE} = 5K\Omega$

Bias	VCE	sat)	Bias	f⊤ ¾	Ķfαe			tf		Use	Drawing	Type No
lc	l _B	max.	V _{CE} *V _{CB}	lE *Ic		typ. *(KHz)	Condition	typ.	max. (μS)		No.	
(A) - 1	(A)	(V) -0.8	(V) -10	(A) 0.05	(MHz)	(MHz) 80		(765)	(μς)	General	T-12	2SA546
- 1		-0.8	-10	0.05		80				General	T-12	2SA546
- 1		-0.8	-10	0.05		80				General	T-14	2SA547
- 1		-0.8	-10	0.05		80				General	T-14	2SA547
		-0.4		0.05		200				General	T-25	2SA683
		-0.4		0.05		200				General	T-25	2SA684
- 2		-1.0		0.5		150				AF Out.	T-30	2SA699
- 2		-1.0	-	0.5		150				AF Out.	T-30	2SA699
155		-0.6		0.05		200				General	T-24	2SA719
		-0.6		0.05		200				General	T-24	2SA720
		-0.6		0.05		200				General	T-26	2SA730
		-0.6		0.05		200				General	T-26	2SA731
		-1.0		* -0.5		150				AF Out.	T-31	2SA748
0.5	-0.05	-0.4	-10	0.05		200				General	T-27	2SA751
		-0.4		0.05		200				General	T-27	2SA752
- 1	-0.1	-1.0	* -10	0.1		20				Vert. Out.	T-21	2SA766
0.5	-0.05	-0.4	*-10	0.05		120				AF Amp.	T-25	2SA777
0.5	-0.05	-0.4	* -10	0.05		120				AF Amp.	T-35	2SA794
.25	-0.025	-10								AF Out.	T-34	2SA795
- 2	-0.4	-1.0	-10	*-0.2		***70				AF Out.	T-32	2SB512
- 2	-0.4	-1.0	-10	*-0.2		***70				AF Out.	T-32	2SB512
- 2	-0.4	-1.0	-10	*-0.2		** * 7 0				AF Out.	T-33	2SB513
- 2	-0.4	-1.0	-10	*-0.2		** 70				AF Out.	T-33	2SB513/
- 5	-0.5	-1.5	-10	*-0.5		10				AF Out.	T-19	2SB532
			*10	-0.01		250				Video Out.	T-12	2SC526
			* 10	- 0.05		35				AF Out.	T-21	2SC582
5	1.0	1.6	10	-0.5		43				AF Out.	T-16	2SC647
2	0.4	0.8	10	-0.05	35					General	T-12	2SC696
2	0.4	0.8	10	-0.05	35					General	T-12	2SC696
2	0.4	0.8	10	-0.05	35					General	T-14	2SC697
2	0.4	0.8	10	-0.05	35					General	T-14	2SC697
2	0.4	1.5	10	-0.05		50				AF Out.	T-21	2SC840
2	0.4	1.5	10	-0.05		50				AF Out.	T-21	2SC840

		Absolu		ximum F =25℃)	Ratings						Elec	trical	Cha	racte	ristics (Та=	25℃)		
Type No.	Vсво	V CEO	VEBO	l c	Pc	Tj	Bias	сво,	Bias	h	FE			Bias	h	FE		Bias	* V	BE BE(sat)
	(v)	*Vces #Vcer		(A)	(w)	(°C)	V _{CB}	max. (μΑ)	V _{CE} * V _{CB}	E * c (A)	min.	typ.	max	VCE *VCB (V)	E * c (A)	min.	typ.	V CE * V CB (V)	E * C (A)	max (V)
2SC901		* 200	6	5	50 ³⁾	150	150		4	* 5.0	14	25		(V)	(A)			4	* 5.0	1.
2SC901A		* 250	6	5	503)	150	150	15mA	4	* 5.0	14	25						4	*5.0	1.
2SC1226	40	20	5	3 6)	104)	150	20	1	5	*1	30	120	220					$I_B = 0.2A$	* 2	*1.
2SC1226A	50	40	5	3 6)	104)	150	20	1	5	*1	30	120	220					$I_B = 0.2A$	* 2	*1.
2501317	30	25	5	1 6)	0.4	125	20	0.1	10	* 0.15	60	160	340	10	*0.5	40	90	$I_B = 50 \mathrm{mA}$		*1
2501318	60	50	5	1 6)	0.4	125	20	0.1	10	* 0.15	60	160	340	10	*0.5	40		$I_B = 50 \mathrm{mA}$		*1
2SC1346	30	25	5	1 6)	0.6	125	20	0. 1	10	* 0.15	60	160	340	10	*0.5	40		I _B = 50 m A	2000000	*1
2SC1347	60	50	5	1 6)	0.6	125	20	0.1	10	* 0.15	60	160	340	10	*0.5	40		I _B = 50m A		*1.
2SC1383	30	25	5	1.56)	1 5)	135	20	0.1	10	* 0.15	60	160	340	5	*1.0	50		$I_B = 50 \mathrm{mA}$		*1
2SC1384	60	50	5	1.56)	1 5)	135	20	0.1	10	* 0.5	60	160		5	*1.0	50		I _B = 50m A		*1
2501398	70	50	5	3 6)	154)	150	40	1.0	5	* 0.1	30			5	*1.0	30		$I_B = 0.2 \text{mA}$		*1
2SC1406	30	25	5	1.56)	1	135	20	0.1	10	* 0.5	60	160	340	5	*1.0	50		I _B = 50m A		*1
2SC1407	60	50	5	1.56)	1	135	20	0.1	10	* 0.5	60	160	-	5	*1.0	50	-	$I_B = 50 \mathrm{mA}$		*1
2SC1446		# 300 ¹⁾	5	0.156)	102)	150	300	100	10	* 0.01	30			10	*0.05	30		10	* 0.05	1
2SC1450	150	# 15011)	5	1.26)	20 10)	150	60	30	5	* 0.1	45		150	5	*0.5	45		5	*0.1	0
2SC1501		#30011	5	0.156)	102)	150	300	100	10	* 0.01	30			10	* 0.05	30		10	* 0.05	1
2SC1509	80	80	5	1 6)	0.75	135	20	0.1	10	* 0.15	65	160	330	5	*0.5	50	100	I _B = 50m A	* 0.5	*1
2SC1518	25	20	5	1.56)	0.75	135	25	0.1	2	*0.5	65	160	330	2	*1.0	50	100	$I_B = 50_m A$	* 0.5	*1
2SC1550	250	250	5	0.1	104)	150	250	100	50	* 0.005	50		250	10	*0.03	30		10	* 0.03	1
2SC1565	150	150	5	0.56)	109)	150	60	30	10	*0.1	60		240	10	* 0.01	50		10	* 0.01	0
2SC1566△	250	250	5	0.156)	4 4)	150			20	*0.04	40			50	* 0.005	30		20	* 0.04	1
2SC1567	100	100	5	1 6)	5 5)	150			10	* 0.15	65	160	330	5	*0.5	50	100	$I_B = 50 \text{m A}$	*0.5	*1
2SC1568	18	18	5	2 6)	4 4)	150	18	0.1	2	*0.5	90	200	450	2	*1.5	50	100	$I_B = 50 \text{ m A}$	*0.5	*1
2SD189	80	80	5	5	503)	150	80	5 mA	4	*1	40		210	4	*4.0	20		4	*4.0	1
2SD189A	100	100	5	5	503)	150	100	5 mA	4	*1	40		2 10	4	*4.0	20		4	*4.0	1
2SD198	300	# 300 ⁷⁾	6	1	253)	150	150	5 mA	5	*0.1	35		330	5	*0.3	30		5	*0.1	1
2SD199	800	# 700 ⁸⁾	6	0.56)	253)	150	800	1 mA	10	* 0.02	25			10	*0.2	30				
2SD200	1500	* 1500	5	2.56)	109)	115	1500	1 mA	5	* 2		2.5						$I_B = 1A$	* 2.0	*1
2SD200A	1500	* 1500	5	2.56)	10 ⁹⁾	115	1500	1 mA	5	* 2		2.5						$I_B = 1A$	* 2.0	*1
2SD226	40	40	8	3 6)	254)	150	20	30	3	* 0.1	40			3	*1.0	20		3	*1.0	1
2SD226A	60	60	8	36)	25 ⁴)	150	20	30	3	*0.1	40			3	*1.0	20		3	*1.0	1.
2SD226B	80	80	8	36)	25 ⁴)	150		30	3	*0.1	40			3	*1.0	30		3	*1.0	1.
2SD246*		* 1500	5	4.56)	16 ⁹⁾		1500		5	*4.0	2							$I_B=2A$		*1.
2SD299		* 1500	5	56)	16 ⁹⁾	-	1500		5	*4.0	2							$I_B=2A$		*1.

1) $R_{BE} = 3K\Omega$ 2) $T_{c} = 70^{\circ}C$ 3) $T_{c} = 75^{\circ}C$ 4) $T_{c} = 25^{\circ}C$ 5) with cooling fin 6) I_{CM} 7) $R_{BE} = 500\Omega$ 8) $R_{BE} = 220\Omega$

Bia	s V CE	(sal)	Bia	s f⊤%	¢fαe				t f			Use.	Drawing No.	Type No.
1 c	(A)	max.	* V CE * V CB	*1c		typ. *(KHz) (MHz)	(Condition		typ.	max. (μS)		140.	
2	1.0	1.6					Ic=5A, IB1=0.8A,	$-V_{BB}=5V$,	$R_B = 0.5\Omega$	0.3	1.0	Hor. Out.	T-16	2SC901
2	1.0	1.6					Ic=5A, IB1=0.8A,	$-V_{BB} = 5V$,	$R_B = 0.5\Omega$	0.3	1.0	Hor. Out.	T-16	2SC901A
2	0.2	1.0	5	-0.5		150						AF Out.	T-30	2501226
2	0.2	1.0	5	-0.5		150						AF Out.	T-30	2501226
0.5	0.05	0.6	10	-0.05		200						General	T-24	2501317
0.5	0.05	0.6	10	-0.05		200						General	T-24	2501318
0.5	0.05	0.6	10	-0.05		200						General	T-26	2501346
0.5	0.05	0.6	10	-0.05		200						General	T-26	2501347
0.5	0.05	0.4	* 10	-0.05		200						General	T-25	2501383
0.5	0.05	0.4	* 10	-0.05		200						General	T-25	2501384
2	0.2	1	5	* 0.5		150						AF Out.	T-31	2501398
0.5	0.05	0.4	* 10	-0.05		200						General	T-27	2SC1406
0.5	0.05	0.4	* 10	-0.05		200						General	T-27	2SC1407
0.1	0.01	5	30	-0.02		55						AF Out.	T-32	2SC1446
1	0.1	1.0	*10	-0.1		15						Vert. Out.	T-21	2SC1450
0.1	0.01	5	30	-0.02		55						General	T-34	2SC1501
0.5	0.05	0.4	*10	0.05		120						AF Amp.	T-25	2SC1509
1	0.05	0.5	*10	-0.05		150						DC-DC Conv	T-25	2SC1518
0.05	0.005	2	30	-0.02	70	100						Video Out.	T-34	2SC1550
0.25	0.025	10										AF Out.	T-34	2SCI 565
0.1	0.01	1	*10	-0.01	80	100						Video Out.	T-35	2SC1566
0.5	0.05	0.4	*10	-0.05		120						AF Amp.	T-35	2SC1567
1	0.05	0.5	* 6	-0.05		150						AF Out.	T-35	2SCI 568
5	1.0	2	10	-0.5		12						AF Out.	T-16	2SD189
5	1.0	2	10	-0.5		12						AF Out.	T-16	2SD189A
1	0.1	5	10	* 0.1		25	,					AF Out.	T-16	2SD198
0.5	0.05	10	10	* 0.1		7						Vert. Out.	T-16	2SD199
2	1.0	5					Ic=2.5A, IBend=1.3	1 A, $-V_{BE} = 5$	V	0.7		Hor. Out.	T-17	2SD200
2	1.0	5					Ic=2.5A, IBend=1.			0.7		Hor. Out.	T-17	2SD200A
2	0.4	1	10	* 0.2		** * 25						AF Out.	T-21	2SD226
2	0.4	1		*0.2		** * 25						AF Out.	T-21	2SD226A
2	0.4	1		*0.2		** * 25						AF Out.	T-21	2SD226B
4.5	2.0	10					Ic = 4A, IBend = 2.5A,	$R_B = 0.5\Omega$. L	_{_В} = 10 µН		1.0	Hor. Out.	T-17	2SD246 *
4.5	2.0	10					Ic = 4A, IBend = 2.5A,				1.0	Hor. Out.	T-17	2SD299

		Absolu		ximum =25℃)	Ratings					EI	ectric	cal C	harac	teristi	cs (Ta	=25℃	;)			
Type No.	V _{CBO}	V _{CEO}	VEBO	1 c	Pc	Tj	Bias	Ісво	Bias	h	FE			Bias	h	E		Bias	V _{BE}	
	(V)	*Vces #Vcer (V)	(V)	(A)	(W)	(℃)	V _{CB} *V _{CE} (V)	max. (μA)	VCE * VCB (V)	l _E * l _C (A)	min.	typ	max.	V _{CE} * V _{CB} (V)	I _E * I _C (A)	min.	typ.	V _{CE} * V _{CB} (V)		max (A)
2SD300	1500	* 1500	5	5 ⁶⁾	16 ⁹⁾	115	1500	1 mA	10	*2.5	3		8					I _B =2A	*4.5	*1.6
2SD312	800	#60011)	6	1.06)	2510)	150	800	1 mA	10	*0.02	25			10	*0.6	30				
2SD317	60	60	8	3	25 ⁴⁾	150	20	30	3	*0.1	40			3	*1	30	60	3	*1.0	1.4
2SD317A	80	80	8	3	25 ⁴⁾	150	20	30	3	*0.1	40			3	* 1	30	60	3	*1.0	1.4
2SD318	60	60	8	3	25 ⁴⁾	150	20	30	3	*0.1	40			3	*1	30	60	3	*1.0	1.4
2SD318A	80	80	8	3	25 ⁴⁾	150	20	30	3	*0.1	40			3	*1	30	60	3	*1.0	1.4
2SD319	110	80	7	30 ⁶⁾	1004)	150	40	30	4	*1	40		200	4	* 5	20		4	* 5.0	2.0
2SD321	250	* 250	6	15 ⁶⁾	60 ³⁾	150	250	2 mA	5	* 5	25		100					I _B =1A	*5.0	*2.
2SD324	300	# 3001)	3	$0.15^{6)}$	10 ²⁾	150	300	100	10	*10mA	30			10	*0.05	50		10	*0.05	1.2
2SD334	110	80	7	6	75 ⁴⁾	150	110	1 mA	4	*1	40		260					4	*1.0	2.5
2SD350	1500	700	5	116)	22 ⁹⁾	115	1500	1 mA	10	* 4	3		8					$I_B=2A$	*4.5	*1.0
2SD365	60	60	5	3	25 ⁴⁾	150	20	30	3	*0.1	40			3	1	30	60	3	1	1.4
2SD365A	80	80	5	3	25 ⁴⁾	150	20	30	3	*0.1	40			3	1	30	60	3	1	1.4
2SD366	60	60	5	3	25 ⁴⁾	150	20	30	3	*0.1	40			3	1	30	60	3	1	1.4
2SD366A	80	80	5	3	25 ⁴⁾	150	20	30	3	*0.1	40			3	1	30	60	3	1	1.4
2SD379	80	80	5	76)	60 ³⁾	150	50	1 mA	4	*1	30		180	4	*4	30		4	*4.0	1.5
2SD380	1500	700	5	13 ⁶⁾	50 ³⁾	130	1500	1 mA	10	* 5	5		15					I _B =1A	*5.0	*1.6
2SD389	60	60	8	3	254)	150	20	30	3	*1	30	-	160	3	* 0.1	40		3	1	1.2
2SD389A	80	80	8	3	254)	150	20	30	3	*1	30		160	3	*0.1	40		3	1	1.2
2SD390	60	60	8	3	254)	150	20	30	3	*1	30		160	3	*0.1	40		3	1	1.2
2SD390A	80	80	8	3	254)	150	20	30	3	*1	30		160	3	*0.1	40		3	1	1.2
2SD418△	1000	500	5	106)	804)	150	* 1000	1 mA	5	* 5	6.5		30					I _B =2.5A	* 7.5	*3.0

¹⁾ $R_{BE} = 3K\Omega$ 2) $T_{c} = 70\,^{\circ}\text{C}$ 3) $T_{c} = 75\,^{\circ}\text{C}$ 4) $T_{c} = 25\,^{\circ}\text{C}$ 5) With cooling fin 6) I_{CM} 7) $R_{BE} = 500\Omega$ 8) $R_{BE} = 220\Omega$

(SILICON JUNCTION FET)

					Maximum a=25℃)	Ratings					
Type No.	V _{DSO}	V_{DGO}	I DSO	I DGO	I GSO	Topr	Tstg	Bias		IDS	
						*PT		V _{DS}	V _G s	RL	max.
	(V)	(V)	(mA)	(mA)	(mA)	(℃)	(℃)	(V)	(V)	$(K\Omega)$	(mA)
2SK50	10	10	2	2	2	$-10 \sim +70$	$-20 \sim +80$	4.5	0	2.2±1%	1.0
2SK56△	10	10	10		10	* 100mW	$-55 \sim +125$	5	0		10

					Volta a							
Bias	VCE	sat)	Bias	f T	 ∜ f α e		tf			Use.	Drawing	Type No.
Ic (A)	I _B (A)	max.	V _{CE}	IE * Ic (A)	min. *(KHz) (MHz)		Condition	typ. (μS)	max. (μS)		No.	
2.5	0.85	10					$I_C\!=\!4A$, $I_{Bend}=\!2.5A$, $R_B\!=\!0.5\Omega$, $L_B\!=\!10\mu\!H$		1.0	Hor. Out.	T-17	2SD300
1	0.1	10	10	*0.1		5				Vert. Out.	T-17	2SD312
2	0.4	1	10	*0.2		※ * 25				AF Out.	T-32	2SD317
2	0.4	1	10	*0.2		* * 25				AF Out.	T-32	2SD317A
2	0.4	1	10	*0.2		※ ∗25				AF Out.	T-33	2SD318
2	0.4	1	10	*0.2		* * 25				AF Out.	T-33	2SD318A
5	0.5	2	10	*0.5		1				AF Out.	T-18	2SD319
5	1.0	1					$I_{C}\!=\!5A$, $I_{Bend}\!=\!0.8A$, $R_{B}\!=\!0.5\Omega$, $-V_{BB}\!=\!5V$		1.0	Switching	T-16	2SD321
0.1	0.01	10								AF Out.	T-21	2SD324
5	0.5	2	10	*0.5		* * 25				AF Out.	T-16	2SD334
4.5	2	7					$I_C = 4A$, $I_{Bend} = 2.5A$, $L_B = 10 \mu H$		1.0	Switching	T-19	2SD350
2	0.4	1.0	10	*0.2		** 70				AF Out.	T-32	2SD365
2	0.4	1.0	10	*0.2		** 70				AF Out.	T-32	2SD365A
2	0.4	1.0	10	*0.2		** 70				AF Out.	T-33	2SD366
2	0.4	1.0	10	*0.2		** 70				AF Out.	T-33	2SD366A
5	0.5	1.5	10	*0.5		10				AF Out.	T-19	2SD379
5	1	10					$I_{C} = 5A$, $I_{Bend} = 1.5A$, $L_{B} = 5\mu H$	- :	0.9	Switching	T-19	2SD380
2	0.4	1	10	*0.2		* * 25				AF Out.	T-32	2SD389
2	0.4	. 1	10	*0.2		* * 25				AF Out.	T-32	2SD389A
2	0.4	1	10	*0.2		* * 25	, *			AF Out.	T-33	2SD390
2	0.4	.1	10	*0.2		* * 25				AF Out.	T-33	2SD390A
4	1	1.0					$I_{C} = 5A, I_{B1} = 1A, -I_{B2} = 1A$	1.5		Switching	T-19	2SD418△

⁹⁾ $T_c = 90^{\circ}C$ 10) $T_c = 100^{\circ}C$ 11) $R_{BE} = 560^{\circ}\Omega$

		Ele	ectrical Cha	racteristic	s (Ta=25	℃)					
	Bias		gm			Bias	NV * NF		Structure	Drawing	Type No.
V _{DS}	V _{GS}	f (KHz)	R _L . (ΚΩ)	$(\mu \nabla)$	V _{DS}	Co *I DS (pF)	R _L *f (KΩ)	max. (μV)	Structure	No.	
4.5	0	1	2.2±1 %	350	4.5	7.0	2.2±1 %	4	N-channel	T-24	2SK50
5.0	0	1000		4000	5	* 1mA	* 100 MHz	*4.5dB	N-channel	T-24	2SK56△

(SILICON MOS FET)

			Maximum (Ta=25℃)		ngs						EI	ectri	cal Cl	narac	teristi	cs (Ta=2	5℃)				
Type No.	VDS	V _{G1S}	V _{G2S}	I _D	Рт	Tch	Bias	5	I DSS			Bias	V G1S	sc		Bias	V G2	sc		Bias	I GIS	s
	(V)	(V)	(V)	(mA)	(mW)	(°C)		V _{G1} s (V)		min (mA)		V _{DS}	V G2S	Ι _D (μΑ)	max.	V _{DS} (V)	V G1S	Ι _D (μΑ)	max.	V _{G1S}	V ps V g2s (V)	max. (pA)
35K32*	20	−10∼+8	-10~ + 8	15	170	125	10	0	5	0	5	10	5	50	-2.5	10	0	50	-2.5	- 10	0	100
35K39	20	± 8	± 8	24	250	150	10	0	5	1	24	10	5	50	-3.0	10	0	50	-3.0	± 8	0	20n A
3SK49△	20	± 8	± 8	30	350	150	10	0	5	3	30	10	5	50	-3.0	10	0	50	-3.0	± 8	0	20n A

(SILICON TRANSISTORS: TRANSMITTING)

		Abso	lute Maxir (Ta=2	num Ratin 5℃)	gs				Electric	al Charac	teristi	cs (Ta	a = 25℃)	
Type No.	V _{CBO}	V CEO	V _{EBO}	l c	Pc	Ti	Bias	I _{CB0}	Bias	h F	E			Bias f _⊺	
	(V)	* V CES	(V)	(A)	(w)	(°C)	* V CE	max. (<i>µ</i> A)	V CE * V CB (V)	1 E * I C (A)	min.	typ.	V _{CE}	l _E (A)	min. * typ. (MHz
2SC456	50	* 50	1.5	0.61)	0.75	175	12	1	6	-0.08		12		,	
2SC478	50	* 50	1.5	0.121)	0.3	175	12	1	12	-0.02	10	20	12	-0.02	100
2SC571 *	36	18	4.0	1.51)	62)	175	20	5	13.5	* 0.1		70	13.5	-0.1	250
2SC572*	36	18	4.0	3.01)	102)	175	20	. 5	13.5	*0.2		80	13.5	-0.15	250
2SC573*	36	18	4.0	4.01)	202)	175	20	10	13.5	*0.4		80	13.5	-0.3	250
2SC585*	65	40	4.0	3.01)	202)	175	30	12	* 28	-0.2		80	28	-0.15	250
2SC731	40	20	4.0	1.01)	2.52)	175	20	1	13.5	*0.1	20		10	-0.03	* 700
2SC821	40	20	4.0	0.61)	2.52)	175	20	1	13.5	*0.1	20		10	-0.03	350
2SC822	40	20	4.0	0.81)	2.52)	175	20	1	13.5	*0.1	20		10	-0.03	400
2SC1073	36	18	4.0	1.51)	22)	175	20	5	13.5	*0.1	20	70	13.5	-0.1	* 100
2SC1074	36	18	4.0	2.01)	102)	175	20	5	13.5	*0.2	15	50	13.5	-0.15	* 70
2SC1075	36	18	4.0	4.01)	$20^{2)}$	175	20	10	13.5	*0.4	15	60	13.5	-0.3	* 800
2SC1076	36	18	4.0	6.01)	302)	175	20	30	13.5	*0.6	15	50	13.5	-0.5	* 800
2501190	36	18	4.0	5.01)	302)	175	20	100	13.5	*0.4	10	50	10	-0.3	* 600
2501191	36	18	4.0	7 · 0 1)	452)	175	20	500	13.5	*0.8	10	50			
2501192	36	18	4.0	10 1)	$60^{2)}$	175	20	1mA	13.5	*1.0	10	60	10	-1	* 350
2501303	40	20	4.0	0.51)	$0.6^{2)}$	175	20	1.0	13.5	*0.1	20	70	10	-0.03	350
2SC1326	55	- 30		0.41)	52)	175	* 28	20	5	*0.05		30	15	-0.025	* 700
2SC1354	55	35	4.0	101)	60 2)	175	20	1mA	13.5	*1.0	10	50			
2SC1405	36	18	4.0	1.51)	102)	175	20	50	10	* 0.1		40			
2SC1620	36	18	3.0	1.21)	10 2)	175	15	100	13.5	* 0.1	10	50			

1) I cm 2) T c=25°C

Bias	lg2ss			Bias	i,	yfs			Bias	С	rSS		Bias		GP	5			Structure	Drawing	Type No
V _{G2S}	V_{DS} V_{G1S} (V)	max.	V _{DS}	V _{G2S}	I _{DS}	f (KHz)	(m Ω)	max. * typ. (m℧)	V _{DS}	V _{G1S} V _{G2S} (V)	f (KHz)	typ.	V _{DS}	I _D (mA)	V _{G2S}	f (MHz)	min.	typ.		No.	
-10	0	100	10	5	5	455	- 5	10	10	-10	455	35	10	8	5	200	15	25	N channel	T-8	35K32
± 8	0	20nA	10	5	5	455	7	18	10	- 8	455	10	10	8	5	200	18		N channel	T-8	3SK39
± 8	0	20n A	10	5	5	455		* 15	10	- 8	455	10	15		7	200	17	19.5	N Channel	T- 8	3SK49

D:	Соь		Diag	г ьь			Car 12			Po	η	Ü:		Drawing	Tuno No
Bias			Bias				Condi					Us	se	No.	Type No.
V _{CE}	(mA)	max. * typ. (pF)	V _{CE}	(A)	typ. (Ω)	max.	fop (MHz)	V _{CC}	Pin (W)	min.	min. * typ. (%)			140.	
12	- 1	15					27	12		0.5	45	HF	Out.	T-12	2SC456
12	- 1	8					27	12		0.1	49	HF	Out.	T-9	2SC478
13.5	0	15					175	13.5	0.125	1.0	60	VHF	Out.	T-12	2SC571%
13.5	0	35	13.5	-0.15	5	15	175	13.5	1.0	4.0	70	VHF	Out.	T-23	2SC572 ×
13.5	0	35	13.5	-0.3	4.5	15	175	13.5	4.0	12.0	80	VHF	Out.	T-23	2SC573
30	0	20	28	-0.25	6.5	15						VHF	Out.	T- 22	2SC585 ×
10	0	10					500	13.5	0.3	1.0	* 60	UHF	Out.	T- 13	2SC731
10	0	10	10	-0.03	15	50	175	15	0.25	1.0		VHF	Out.	T-13	2SC821
10	0	10	10	-0.03	15	50	175	15	0.5	1.7		VHF	Out.	T-13	2SC822
13.5	0	10					500	13.5	0.4	1.6	* 60	UHF	Out.	T-28	2501073
13.5	0	25					500	13.5	1.0	3.2	* 60	UHF	Out.	T-28	2501074
13.5	0	25					500	13.5	3.0	7.0	* 60	UHF	Out.	T-28	2SC1075
13.5	0	30					500	13.5	6	14	* 60	UHF	Out.	T-28	2501076
13.5	0	* 17					175	13.5	4.0	15	* 60	VHF	Out.	T-28	2501190
10	0	* 50					175	13.5	8.0	25	* 60	VHF	Out.	T-29	2501191
10	0	*100					175	13.5	14	35	* 60	VHF	Out.	T-29	2501192
10	0	10	10	-0.03	15	50	175	15	0.05	0.5		VHF	Out.	T-12	2501303
30	0	3					400	28	0.1	1.0	45	UHF	Out.	T- 12	2501326
							175	24	8.0	35	50	VHF	Out.	T-29	2SC1354
							175	13.5	0.35	3.0	* 60	VHF	Out.	T- 36	2SC 405
							500	13.5	0.6	2.2	* 60	UHF	Out.	T- 36	2501620

(Z)-SERIES TRANSISTORS FOR THE COMMUNICATIONS INDUSTRY)

(Z)—Series Silicon transistors are high reliability types assembled with specially selected materials in specially controlled process to provide optimum reliability for the communications industry.

The inspections and the quality control are performed in accordance with the U.S military standard MIL-S-19500E, MIL-STD-750B and MIL-STD-202D.

(Metal type)

		Absolut		ximum =25℃)	Rating	s			•			Elec	trical	Cha	racter	istics	(Ta	=25℃	:)				
Type No.	V _{CBO}	V _{CEO}	V _{EBO}	Ic	Pc	Tj	Bias	СВО	Bias	CEO	Bias		h FE			Bias		V _{BE}		Bias		V _{CE(Sa}	t)
1) po 110.		*Vcer		. 0				max.	V _{CE}	*I _{EBO} max.	V _{ÇE}	Ιc	min.	typ.	max.	V _{CB}		typ.	max.	Ic	I _B	typ.	max.
	(V)	(V)	(V)	(mA)	(mW)	(℃)	(V)	(μA)	* V _{EB}	(μA)	(V)	(mA)				* V CE (V)	(mA)	(V)	(V)	(mA)	(mA)	(V)	(V)
2SA546Z	-70	-60	-5	-3A1)	1.2W ²	175	-30	-0.1	-60	-50	-3	-100	38		115	*-3	-100		-0.8	-1A	-100		-0.8
2SA546A(Z)	-90	-80	-5	$-3A^{1)}$	1.2W ²	175	-30	-0.1	-80	-50	-3	-100	38		115	*-3	-100		-0.8	-1A	-100		-0.8
2SA547(Z)	-70	-60	-5	-3A1	10W3	175	-30	-0.1	-60	-50	-3	-100	38		115	*-3	-100		-0.8	-1A	-100		-0.8
2SA550Z	-25	-25	-5	-1001)	300	175	-10	-0.1	-25	-10	-5	2	130		520					-50	-2.5	-0.3	
2SA550A(Z)	-45	-45	-5	-100 ¹⁾	300	175	-10	-0.1	-45	-10	-5	2	130		520					-50	-2.5	-0.3	
2SC538Z	25	25	5	100 1)	300	17.5	10	0.1	25	10	5	-2	130	250	520					100	10	0.21	0.32
2SC538AZ	45	45	5	100 1)	300	175	10	0.1	45	10	5	-2	130	250	520					100	10	0.21	0.32
2SC562Z	40	30	4	25	130	175	10	0.1	30	10	10	4	26			*2	10		0.95	10	1	1.5	
2SC563(Z)	40	25	4	25	145	175	10	0.1	25	10	10	7	38			*10	7	0.9		10	1	0.15	
2SC563A(Z)	40	40	4	25	300 2)	175	10	0.1	40	10	10	7	38			*10	7	0.9		10	1	0.15	
2SC583Z	30	15	2.5	50 1)	200	175	10	0.1	15	10	1	2	25		150				-				
2SC645Z	30	25	5	30	140	175	10	0.1	25	10	10	1	70		250					10	1		0.1
2SC696Z	100	60	5	3A1)	1.2W ²	175	30	0.1	60	50	3	100	38		115	3	100		0.8	2A	400		0.8
2SC696A(Z)	130	80	5	3A.1)	1.2W ²	175	30	0.1	80	50	3	100	38		115	3	100		0.8	2A	400		0.8
2SC697Z	100	60	5	3A1	10W ³	175	30	0.1	60	50	3	100	38		115	3	100		0.8	2A	400		0.8
2SC697A(Z)	130	80	5	3A1)	10W3	175	30	0.1	80	50	3	100	38		115	*3	100		0.8	2A	400		0.8
2SC7612	30	20	3	20	150	175	10	0.1	20	10	10	2	40			*7	12	0.75	1.0	10	1	3	
2SC762Z	30	20	3	20	150	175	10	0.1	20	10	10	2	75			* 7	12	0.75	1.0	10	1	3	
2SC947Z	25	20	3	15	150	175	10	0.1	25	10	10	2	10	20		*10	2	0.77		10	1	0.6	
2SC948Z	25	20	3	15	150	175	10	0.1	25	10	10	3	10	25		*10	3	0.77		. 10	1	0.6	
2SC1012(2)	165	165	5	60	2.5W ³	175	12	0.2	165	50	20	40	20			* 20	40		1.2	10	2		1.0
2SCI0I2AZ	250	250	5	60	2.5W ³⁾	175	12	0.2	250	50	20	40	20			* 20	40		1.2	60	10		10.0
2SC10332	200	150	5	25	300	175	12	0.2	150	50	10	5	30							5	1		1.0
2SC1033AZ	250	200	5	25	300	175	12	0.2	200	50	10	5	20							5	1		1.0
2SCI547②△	30	20	3	20	150	175	25	0.1	20	10	10	3	20										
2SD198Z	300	*300 ⁷	6	1A	25W ⁴	150	300	500	150	1 m	5	0.1	60		200	* 5	100		1.5	1A	100		5
2SD226②	40	40	8	3A1)	25W ³⁾	150	20	3	*10	*30	3	1A	30		100	*3	1A		1.4	2A	400		1
2SD3197	110	80	7	30A1)	100W ³⁾	150	40	5	40	50	4	5 A	30		50	*4	5A		2.0	5A	500		2
2SD334Z	110	80	7	6 A	75W ³	150	40	5	40	50	4	1 A	70		150	*4	1A		2.5	5A	500		2

(Plastic type)

	А	bsolut		kimum l =25℃)	Rating	S						Elec	trica	l Cha	racter	istics	s (Ta	=25°	C)				
Type No.	V _{CBO}	V _{CEO}	V _{EBO}	Ic	Pc	Tj	Bias	СВО	Bias	CEO	Bi	as h	FE			Bi	as \	BE		Bi	as V	CE (Sat)
		*VCER					V _{CB}	max.	V _{CE}	max.	V_{CE}	Ic	min.	typ.	max.	V _{CB}	ΙE	typ.	max.	Ic	IB	typ.	max.
	(V)	(V)	(V)	(mA)	(mW)	(℃)	(V)	(μA)	(V)	(μA)	(V)	(mA)				(V)	(mA)	(V)	(V)	(mA)	(mA)	(V)	(V)
2SA564Z	-25	-25	-5	-100 ¹⁾	250	125	-10	-0.1	- 25	-10	-5	2	130	250	520					-100	-10	-0.21	-0.32
2SA564AZ	-45	-45	-5	-100^{10}	250	125	-10	-0.1	-45	-10	-5	2	130	250	520					-100	-10	-0.21	-0.32
2SC828②	30	25	5	100 1)	250	125	10	0.1	25	10	5	-2	130	250	520					100	10	0.21	0.32
2SC828AZ	45	45	5	100 1)	250	125	10	0.1	45	10	5	-2	130	250	520					100	10	0.21	0.32
2SC829②	30	20	5	30	250	125	10	0.1	20	10	10	-1	70		250								
2SC1047②	30	20	3	15	150	125	10	0.1	20	10	6	-1	65		260	6	-1	0.72					
2SC1215②	30	20	3	50	200	125	10	0.1	20	10	10	-2	25			10	-2	0.72					

¹⁾ I_{CM} 2) With cooling fin 3) $T_c=25^{\circ}$ 4) $T_c=75^{\circ}$ 5) $R_g=2K\Omega$ 6) $R_g=50\bar{\Omega}$ 7) $R_{BE}=500\Omega$

4																20-1							-	Drawing	
Bi	as f	^T Δf	αe	Bi	as	NF	ī		Bi	as	Cre	,		Bi	as	Z r	b .	Bi	ias	Р	G *	Y _{fe}	Use.		Type No.
V _{CB} *V _{CE} (V)	*10		typ. *max. (MHz)														max.				min. (dB)	(dB)		No.	
	* -50		80																		(III O)	(IIIO)	General	T-12	2SA546(Z)
* -10	* -50		80																				General	T-12	2SA546A
* -10	* -50		80																				General	T-14	2SA547②
* -10	*-1		120						,														General	T-9	2SA550Z
* -10	* -1		120																				General	T-9	2SA550A
5	-2		180																				General	T-9	2SC538Z
5	-2		180																				General	T-9	2SC538A
10	-4	220	330						10	-1		0.15	0.22					10	-4		*70	* 90	VIF (AGC)	T-7	2SC562(Z)
10	-5	360	550						10	-1		0.23	0.32					5	-7		*110	*140	VIF Amp.	T-7	2SC563(Z)
10	-5	360	550						10	-1		0.23	0.32					5	-7		*110	*140	VIF Amp.	T-7	2SC563A
5	-2	1000							5	-2			0.8										UHF Amp.	T-6	2SC583(Z)
10	-1	150	200						10	-1		0.65	1.2	10	-1	2	50						RF Amp.	T-10	2SC645Z
10	* 50	35																					General	T-12	2SC696Z
10	* 50	35																					General	T-12	2SC696A
10	* 50	35																					General	T-14	2SC697(Z)
10	-50	35																					General	T-14	2SC697A
10	-2	450	* 950						10	-1		0.35	0.4					10	-2			12	UHF Amp.	T-6	2SC7612
10	-2	450	* 770						10	-1		0.35	0.4					10	-2			11	VHF Amp.	T-6	2SC762(Z)
10	-3	400	650						10	-1		0.33						10	-2			11	UHF Mix.	T-6	2SC947(Z)
10	-3	700	800						10	-1		0.33						10	-3			13	UHF Osc.	T-6	2SC948Z
10	-10	80	100						20	-10			3.0										Video Out.	T-12	2501012
10	-10	80	100						20	-10			3.0										Video Out.	T-12	2SC1012A
10	-10		150																				Switching	T-9	2SC1033
10	-10		150																				Switching	T-9	2SC1033A
10	-3		900	*11		800	4	6	10	0		0.13						11		800	14	16	UHF Amp.	T-6	2SC1547(Z)
*10	*100		25																				AF Out.	T-16	2SD198Z
*10	*200		△25K					,															AF Out.	T-21	2SD226Z
*10	* 500		1																				AF Out.	T-18	2SD319(Z)
*10	* 500		△25K																				AF Out.	T-16	2SD334Z

Bi	as f	т		Bi	as	NF			Bi	as	Cr	e		Bi	as	Z rt	,	Bi	as	P _G			Use.	Drawing	Type No.
V _{CB} *V _{CE} (V)	*1c		typ.	* V CB	c * E (mA)		8.6	max.			f (MHz)	typ.	nax.	V _{CB}		f (MHz)	max.	V _{CB} (V.)		f (MHz)	min.			No.	
-10	1		80	-5	-0.2	0.001	6 5)													-			General	T-24	2SA564(Z)
-10	1		80	-5	-0.2	0.001	6 5)																General	T-24	2SA564A(Z)
10	-2		220	5	0.2	0.001	6 5)																General	T-24	2SC828(Z)
10	-2		220	5	0.2	0.001	6 5)																General	T-24	2SC828A(Z)
10	-1	150	230											10	-1	2	60						RF Amp.		2SC829(Z)
6	-1	450	650	*6	*-1	100	3.36)	5.06)	6	-1	10.7	0.8	1.0					6	-1	100	20	24	RF Amp.	T-24	2SC1047(Z)
10	-10	650	1200						10	-1	10.7	1.0	1.5					10	-1	200		20	UHF Osc.	T-24	2SC1215②

(Metal type: Transmitting)

		Absolu	te Maxi (Ta=	mum Ra 25℃)	tings				Electr	ical Char	acterist	ics (Ta	=25℃)		
Type No.	V _{CB0}	V _{CEO}	V _{EBO}	Ic	Pc	Ti	Bias IcBo	*I _{CEO}	Bias		h FE		Bi	as f _T	
	(V)	*V _{CES}	(V)	(A)	(W)	(°C)	* V _{CE} (V)	max. (μA)	V _{CE} * V _{CB} (V)	_E * _C (A)	min.	typ.	V CE (V)	Ι _Ε (Α)	min. * typ. (MHz)
2SC731②	40	20	4.0	1.01)	2.53)	175	20	1	13.5	*0.1	20	70	10	-0.03	* 700
2SC821②	40	20	4.0	0.61)	2.53)	175	20	1	13.5	*0.1	20	70	10	-0.03	350
2SC822②	40	20	4.0	0.81)	2.53)	175	20	1	13.5	*0.1	20	70	10	-0.03	400
2SC1303(Z)	40	20	4.0	0.51)	0.63)	175	20	1	13.5	*0.1	20	70	10	-0.03	350
2SC13262	55	30		0.41)	5 3)	175	* 28	20	5	* 0.05		30	15	-0.025	* 700

(Plastic type: Transmitting)

		Absolu	te Maxi (Ta=2	mum Rat 25℃)	ings				Elect	rical Cha	racteris	stics (T	a=25℃)		
Type No.	V _{CBO}	V _{CEO}	V _{EBO}	lc .	Pc	T _i	Bias I CBO	*I _{CEO}	Bia	h as	FE		Bi	as f _T	
	(V)	* V _{CES}	(V)	(A)	(W)	(℃)	V _{CB} *V _{CE} (V)	max. (μA)	V _{CE} *V _{CB} (V)	*Ic (A)	min	typ.	V _{CE}	Ι _Ε (Α)	min. * typ. (MHz)
2SC1073Z	36	18	4.0	1.51)	23)	175	20	5	13.5	*0.1	20	70	13.5	-0.1	* 1000
2SC1074Z	36	18	4.0	2.01)	10 3)	175	20	5	13.5	*0.2	15	50	13.5	-0.15	* 700
2SC1075②	36	18	4.0	4.01)	20 3)	175	20	10	13.5	*0.4	15	60	13.5	-0.3	* 800
2SC1076Z	36	18	4.0	6.01)	30 3)	175	20	30	13.5	*0.6	15	50	13.5	-0.5	* 800
2SC1190Z	36	18	4.0	5.01)	30 3)	175	20	100	13.5	*0.4	10	50	10	-0.3	* 600
2SC11912	36	18	4.0	7.01)	45 ³⁾	175	20	500	13.5	*0.8	10	50			
2SC1192Z	36	18	4.0	10 1)	60 ³⁾	175	20	1 mA	13.5	*1.0	10	60	10	-1	* 350
2SC1354Z	55	35	4.0	10 1)	60 ³⁾	175	20	1.0	13.5	*1.0	10	50			
2SC1405②	36	18	4.0	1.51)	10 3)	175	20	50	10	*0.1		40	42		1
2SC16202	36	18	3.0	1.21)	10 3)	175	15	100	13.5	*0.1	10	50			

(Metal type: MOS FET)

		Absol		laximu a=25°	m Rat	tings					E	lectri	ical C	harac	teristi	cs (T	a=25	℃)				
Type No.	V _{DS}	V _{G1S}	V _{G2S}	ID	Рт	T _{Ch}	Bi	as	IDSS			В	ias V _G	1SC		Bia	as V	G2 SC		Bias	I _{G1SS}	
							V_{DS}	V _{G1S}	V _{G2S}	min.	max.	V_{DS}	V _{G2S}	ID	max.	V_{DS}	V_{G1S}	ID	max	V _{G1S}	V _{DS} V _{G2S}	max.
	(V)	(V)	(V)	(mA)	(mW)	(℃)	(V)	(V)	(V)	(mA)	(mA)	(V)	(V)	(µ A)	(V)	(V)	(V)	(μA)	(V)	(V)	(V)	(nA)
35K39Z	20	± 8	± 8	24	250	-55~150	10	0	5	1	24	10	5	50	-3	10	0	50	-3	±8	0	20
3SK49② △	20	± 8	± 8	30	350	-55~150	10	0	5	3	30	10	5	50	-3	10	0	50	-3	±8	0	20

¹⁾ I $_{CM}$ 2) With cooling fin 3) T $_{c}=25\%$ 4) T $_{c}=75\%$ 5) Rg =2K Ω 6) Rg $=50\Omega$

Bias	Соь		Bi	as r _b	b		Con	dition		Po	η	Use.	Drawing	Type No.
V _{CE}	I _E	max. * typ. (pF)	V _{CE}	Ι _Ε (Α)	typ.	max. (Ω)	f _{OP} (MHz)	V _{CC} (V)	Pin (W)	min.	min. * typ. (%)		No.	
10	0	10					500	13.5	0.3	1.0	* 60	UHF Out.	T-13	2SC731②
10	0	10	10	-0.03	15	50	175	15	0.25	1.0		VHF Out.	T-13	2SC821(Z)
10	0	10	10	-0.03	15	50	175	15	0.5	1.7		VHF Out.	T-13	2SC822(Z)
10	0	10	10	-0.03	15	50	175	15	0.05	0.5		VHF Out.		2SC1303
30	0	3					400	28	0.1	1.0	45	UHF Out.		2SC13260

	Соь			as rb	h'					Po	η	Use.	Drawing	Type No.
Bias			Bi	45			Condit					USE.	No.	Type No.
V _{CE}	l _E	max. * typ. (pF)	V _{CE}	I _E	typ.	max.	f _{OP} (MHz)	V _{cc}	Pin (W)	min.	min. * typ. (%)			
13.5	0	10					500	13.5	0.4	1.6	* 60	UHF Out.	T-28	2SC1073
13.5	0	25					500	13.5	1.0	3.2	* 60	UHF Out.	T-28	2SC10742
13.5	0	25					500	13.5	3.0	7.0	* 60	UHF Out.	T-28	2SC1075
13.5	0	30					500	13.5	6.0	14.0	* 60	UHF Out.	T-28	2SC1076
13.5	0	* 17					175	13.5	4.0	15.0	* 60	VHF Out.	T-28	25011902
10	0	* 50					175	13.5	8.0	25.0	* 60	VHF Out.	T-29	25011912
10	0	*100					175	13.5	14.0	35.0	* 60	VHF Out.	T-29	2501192
							175	24	8.0	35.0	50	VHF Out.	T-29	25013542
							175	13.5	0.35	3.0	* 60	VHF Out.	T-36	2SC 405
							500	13.5	0.6	2.2	* 60	UHF Out.	T-36	2SC16202

Bias	ı	G2SS		Bias		y fs			Bias	Cı	'ss		Bi	as	P _G				Structure		Type No.
V _{G2S}	V_{DS} V_{G1S} (V)	max.	V _{DS}	V _{G2S}		f (KHz)	min. (m℧)	max. ∗typ. (m℧)	V _{DS}	V _{G1S} V _{G2S} (V)	f (KHz)	typ.	V_{DS} (V)	I _D (mA)	V _{G2S} (V)	f (MHz)	min. (dB)	typ.		No.	
±8	0	20	10	5	5	455	7	18	10	-8	455	10	10	8	5	200	18		N channel	T-8	35K39Z
±8	0	20	10	5	5	455		*15	10	-8	455	10	15	8	7	200	17	19.5	N channel	T-8	3SK49 ②△

(GERMANIUM TRANSISTORS : H.F. AMPLIFICATION)

	А		Maximun a=25℃	n Ratings	s			Elec	ctrical C	haracte	ristics (Ta=25℃	c)		
Type No.	Vсво	V ево	Ic	Pc	Tj	Bias I	СВО	Bia	ıs l	1 fe		Bia	s f	αb	
						VċB	max.	V_{CB}	lε	min.	typ.	V _{CB}	lE	min.	typ.
	(V)	(V)	(mA)	(mW)	(°C)	(V)	(µA)	(V)	(mA)			(V)	(mA)	(MHz)	(MHz)
2SA100	-40	-0.7	-10	60	75	-10	-16	- 6	1	80		- 6	1	10	
2SA101	-40	-0.7	-10	60	75	-10	-16	- 6	1	12					
2SA102	-40	-0.7	-10	60	75	-10	-16	- 6	1	12	40	- 6	1	20	25
2SA103	-40	-0.7	-10	60	75	-10	-16	- 6	1	25	50	- 6	1	30	35
2SA104	-40	-0.7	-10	60	75	-10	-16	- 6	1	30	100	- 6	1	40	50
2SA341*	-20	-0.5	-10	63	75	- 6	-13	- 6	1	40					
2SA342	- 20	-0.5	-10	63	75	- 6	-13								

(GERMANIUM TRANSISTORS : L.F. AMPLIFICATION)

and the second		Absolu	te Maximum (Ta=25℃				Electrica	al Characte	ristics (Ta	1=25℃)	
Type No.	V _{CBO}	V _{EBO}	I c	Pc	Tj	Bias I	СВО	Bia	ıs h	fe	
						V _{CB}	max.	V_{CB}	I _E	min.	typ.
	(V)	(V)	(mA)	(mW)	(°C)	(V)	(μ A)	(V)	(mA)		
2SB170*	-30		-100	125	85	-10	-12	- 6	1	20	30
2SB171	-30		−100 ·	125	85	-10	-12	- 6	1	40	60
2SB173	-30		— 100	125	85	-10	-12	- 6	1	40	100
2SB 175	-30		-100	125	85	-10	-12	- 6	1	55	100
2SB345	-32	-10	-100	500 ¹⁾	85	-10	-10	– 5	2	65	90
2SB346	-32	-10	-100	500 ¹⁾	85	-10	-10	– 5	2	80	120
2SB347	-32	-10	-100	5001)	85	-10	-10	– 5	2	65	90
2SB348	-32	-10	-100	5001)	85	-10	-10	– 5	2	80	120

¹⁾ with cooling fin 12.5 cm² 2) Rg = 500 Ω 3) Rg = 2K Ω

Ві	as	rbb	Bias	Cob			Con	dition	F	rG			Use	Drawing	Type No.
V _{CB}	I _E (mA)	max. (Ω)	V _{CB} (V)	I _E (mA)	max. (pF)	V _{CB}	1 E (mA)	f (MHz)	Grounded Configuration	min. (dB)	typ.	max. (dB)	030	No.	Турс но.
- 6	1	180											RF Amp.	T-5	2SA100
			- 6	1	5	- 6	1	0.455	E	21	24	29	IF Amp.	T-5	2SA101
- 6	1	30	- 6	1	5								MW Conv.	T-5	2SA102
- 6	1	30	- 6	1	5								RF IF Amp.	T-5	2SA103
- 6	1	30	- 6	1	5								RF IF Amp.	T-5	2SA104
									-				RF Amp.	T-6	2SA341%
						- 6	1	100		10		20	RF Amp.	T-6	2SA342

									Drawing	
	Bi	as fae			Bias 1	NF		Use		Type No.
max.	V _{CB} (V)	I _E (mA)	min. (KHz)	V _{св} (V)	I _E (mA)	f (KHz)	max. (dB)		No.	
40				- 2	0.5	1	16	AF Amp.	T-2	2SB170*
85				- 2	0.5	1	16	AF Amp.	T-2	2SB171
220				- 2	0.5	1	6	Low noise	T-2	2SB173
360				- 2	0.5	1	16	AF Amp.	T-2	2SB175
180	- 2	10	10	- 5	0.5	1	10 2)	AF Amp.	T-3	2SB345
270	- 2	10	10	-10	0.5	1	10 2)	AF Amp.	T-3	2SB346
180	- 2	10	10	-10	0.5	0.1	15 ³⁾	Low noise	T-3	2SB347
270	- 2	10	10	-10	0.5	0.1	15 ³⁾	Low noise	T-3	2SB348

(GERMANIUM TRANSISTORS: L.F. POWER AMPLIFICATION)

t i t		Abs	olute Maximum (Ta=25℃)			Elec	ctrical Chara	cteristics (Ta=25℃)
Type No.	V _{CBO}	V _{EBO}	I c	Pc	T _j	Bias	СВО	Bias	
	(V)	(V)	(A)	(W)	(°C)	V _{CB} (V)	max. (μA)	V _{CB} (V)	1 _E (A)
2SB126	-32	-10	-3.5	301)	90	-14	-220	-1	1
2SB126A	-60	- 20	-3.5	301)	90	-14	-220	-1	1
2SB127	-32	-10	-3.5	301)	90	-14	-220	-1	1
2SB127A	-60	- 20	-3.5	301)	90	-14	-220	-1	1
2SB128	-80	-40	-6.0	301)	90	-14	-220	-1	1
2SB128A	-120	-60	-6.0	301)	90	-14	-220	-1	1
2SB172	-32	-10	-0.34)	0.125	85	-10	-12	-1	$I_B = -2 \text{m} A$
2SB176	-32	-10	-0.34)	0.125	85	-10	-12	-1	$I_B = -2 \text{m}$
2SB177*	-60	-10	-0.34)	0.125	85	-10	-12	-1	$I_B = -2 \text{m} A$
2SB178	-20	-6	-0.54)	0.552)	85	-12	-20	0	0.05
2SB178A	-40	-6	-0.54)	0.552)	85	-12	-20	0	0.05
2SB324	-32	-10	-1.0	0.652)	90	-10	-10	0	0.05
2SB371*	-32	-10	-0.2	0.52)	7 5	-10	-15	0	0.05
2SB449	-50	-20	-3.5	22.53)	100	-14	-3mA	0	1.0
2SB473	-32	-10	-1.5^{4}	4.35)	90	-10	-15	0	0.05
2SB475	-25	-6	-0.54)	0.15	85	-12	-20	-0.5	0.15
2SB476	-20	-10	-2.0	65)	85	-20	-500	0	2.0
2SB481	-32	-10	-3.04)	65)	90			0	0.1
2SB493	-40	-14	-5.04)	95)	90	-40	- 1 mA	0	3.0
2SB533	-20	-10	-2.0	65)	85	-20	-200	0	2.0
2SD352	32	10	1.0	0.652)	90	10	25	0	-0.05
2SD367*	25	6	0.54)	0.15	85	12	20	0.5	-0.15

¹⁾ Tc \leq 45°C 2) With cooling fin 12.5cm² 3) Tc \leq 50°C 4) IcM 5) Tc \leq 25°C

h _{FE}			E	Bias h	1 FE		Bia	as fae	*f T	Use.	Drawing	Type No
min.	typ.	max.	V _{CB} (V)	Ι _Ε (A)	min.	typ.	V CE * V CB (V)	I _E (mA)	# typ. min. (KHz)		No.	
20	35	55	- 1	3	15	25	- 6	1	# 6	High Po.	T-16	2SB126
20	35	55	- 1	3	15	25	- 6	1	# 6	High Po.	T-16	2SB126
45	75	130	- 1	3	34	55	- 6	1	# 6	High Po.	T-16	2SB127
45	75	130	- 1	3	34	55	- 6	1	# 6	High Po.	T-16	2SB127
20	40	55	- 1	6	16	27				High Po.	T-16	2SB128
20	40	55	- 1	6	16	27				High Po.	T-16	2SB128
35	50	63								Low Po.	T-2	2SB172
57	90	140								Low Po.	T-2	2SB176
30	90	140								Low Po.	T-2	2SB177
47		500	0	0.3	56					Medium Po.	T-4	2SB178
47		500	0	0.3	56					Medium Po.	T-4	2SB178
50		295	0	0.3	53		- 2	10	10	Medium Po.	T-3	2SB324
90		218	0	0.2	50		- 2	10	10	Medium Po.	T-3	2SB371
25	45	165	0	3.0	20	35	- 2	500	7	High Po.	T-16	2SB449
40	80	305	0	0.5	51	80	- 2	100	10	High Po.	T-20	2SB473
46		334								Medium Po.	T-3	2SB475
40	75						*-2	100	*300	DC Conv.	T-12	2SB476
35		170	0	1.0	36		- 2	100	10	High Po.	T-20	2SB481
40							*-2	100	*300	DC Conv.	T-15	2SB493
75							*-2	100	*300	DC Conv.	T-12	2SB533
63		295	0	-0.3	69		2	-10	10	Medium Po.	T-3	2SD352
46		334					2	-10	# 30	Medium Po.	T-3	2SD367

DIODES

(GERMANIUM DIODES)

				Maximum Ta=25℃)								
Type No.	VR	1 F	I FM	l _{surge}	Ti	T stg	Bias	l F	Bias	Í R	Bias	l _R
							VF	min.	VR	max.	VR	max
	(V)	(mA)	(mA)	(mA)	(℃)	(℃)	(V)	(mA)	(V)	(µA)	(V)	(µA)
OA70	15	50	150	400		$-55 \sim +75$	1	4	10	150	22.5	800
0A79	30	35	100	200		$-55 \sim +75$	1	2	10	18	45	340
18A0	90	50	150	500		$-55 \sim +75$	1	3	10	11	70	150
0A85	90	, 50	150	500		$-55 \sim +75$	1	5	10	7	70	81
OA90	15	50	150	400		$-55 \sim +75$	1	4	10	150	22.5	800
0A91	90	50	150	500		$-55 \sim +75$	1	3	10	11	75	185
0A95	90	50	150	500		$-55 \sim +75$	1	5	10	7	75	110
OA99	30	35	100	200		$-55 \sim +75$	1	2	10	18	45	340
MA23	30	100			75	$-55 \sim +75$			30	300	-	
MA25	30	100			75	$-55 \sim +75$			30	200		

(SILICON DIODES)

			Abso	olute Maxim (Ta=25		gs					
Type No.	V_{R}	1 F	I FM	l surge	Τį	T opr	T _{stg}	Bias I	R	Bias	l _R
								V _R	max.	VR	max.
	(V)	(mA)	(mA)	(mA)	(°C)	(%)	(%)	(nA)	(nA)	(V)	(μA)
MA26		20					$-30 \sim + 75$				
MA26W		30					$-55 \sim +110$				
MA53	20	100			100	60	$-55 \sim +100$	15	100		
MA56	20	100			a.	$-25 \sim +85$	$-55 \sim +100$	15	100		
MA 150	35	100	225	500	200		$-55 \sim +200$	15	25	35	100 1)
MAI6I	50	100	225	500	200		$-55 \sim +200$	15	25	50	5
MA162	7 5	100	225	500	200		$-55 \sim +200$	20	25	75	5

¹) Ta=150°C

		Ele	ectrical Ch	aracteristi	cs (Ta=25	℃).				Drawing	
Bias I	R	Condi	ition	;	7	Bias	V	F	Use.	Diaming	Type No
VR	max.	f	RL	CL	min.	1 F	min.	max.		No.	
(V)	(µA)	(MHz)	(KΩ)	(pF)	(%)	(mA)	(mV)	(mV)			
		30	3.9	10	50				Detector	D-1	0A70
		10.7	33	330	76				Detector	D-1	0A79
100	275								General	D-1	0A81
100	250								General	D-1	0A85
		30	3.9	10	50				Detector	D-2	0A90
100	275								General	D-2	0A91
100	250								General	D·2	0A95
		10.7	33	330	76				Detector	D-2	0A99
						1	120	185	AVC	D-3	MA23
						3	95	145	AVC	D-3	MA25

				Electr	ical Ch	aracteris	tics (Ta	1=25℃)						
Bias	١	/F	Bias	С		Condition	n r	f	Conditio	n	t rr		Use	Drawing	Type No.
l F	min.	max.	VR	f	max.	l F	f	max.	VR	RL	I _F ~I _R	max.		No.	
(mA)	(V)	(V)	(V)	(MHz)	(pF)	(mA)	(MHz)	(Ω)	(V)	(Ω)	(mA)	(nS)			
1.5	0.56	0.61											AVC	D-6	MA26
3.0	1.19	1.29											AVC	D-6	MA26W
100		1.0	10	1	2.0	10	100	1		1			Switching	D-7	MA53
100		1.0	15	1	2.0	3	100	0.85					Switching	D-7	MA56
100		1.2	0	1	2.0				1	100	10~1	10	Switching	D-9	MAI50
100		1.2	0	1	2.0				1	100	10~1	4	Switching	D-9	MAI61
100		1.2	0	1	2.0				1	100	10~1	4	Switching	D-9	MA162

(SILICON RECTIFIERS)

			Electri	cal Characte	eristics (Ta=	=25℃)			
Type No.	VR	l _F	FM	1 surge	Tj	T _{opr}	T _{st g}	Bias I R	
								V _R	max.
	(KV)	(mA)	(mA)	(A)	(°C)	(°C)	(°C)	(KV)	(μ A)
MA242/R	90V	1.5A	14A 1)	1002)	i.		$-55 \sim +150$	90V	3 m A
MA242C/CR	90V	3.0A	3 A		175	55	$-20 \sim +175$	90V	3 m A
MA615	9	5	100			$-55 \sim +75$	$-55 \sim +125$	9	0.3
MA619	12	5	100			$-55 \sim +75$	$-55 \sim +125$. 12	0.3
MA622	13	5	100			$-55 \sim +75$	$-55 \sim +125$	13	0.3
MA625	15	5	100		;	$-55 \sim +75$	$-55 \sim +125$	15	0.3
MA630	18	5	100			$-55 \sim +75$	$-55 \sim +125$	18	0.3
MA715	9	5	100			$-55 \sim +85$	$-55 \sim +125$	9	0.3
MA720	13	5 _	100			$-55 \sim +85$	$-55 \sim +125$	13	0.3
MA725	. 15	5	100			$-55 \sim +85$	$-55 \sim +125$	15	0.3
MA730	15	5	100			$-55 \sim +85$	$-55 \sim +125$	15	0.3

¹⁾ with cooling fin 2) \leq 0.1sec 3) \leq 0.2sec

(VARIABLE CAPACITANCE DIODES)

	A	Absolute M (Ta	laximum F a=25℃)	Ratings			۸					
Type No.	VR	lF	Tj	Tstg	Bias IR		Bias By	'R	Conditio	n Cd	1	
	(v)	(mA)	(°C)	(°C)	V _R (V)	max.	Ι _R (μΑ)	min.	V _R (V)	f (MHz)	min. (pF)	max. (pF)
MA320	28	20	60	−55~+80	28	10	50	30	25	1	1.81	2.73
MA340	25		80	$-55 \sim +80$	25	100			2	1	10.5	16.0

(PIN DIODE)

		Absolu	ute Maxim (Ta=25		gs							
Type No.	VR	lF	Р	Tj	Tstg	Bias IR		Bias IR		Bias VF		
						V _R	max.	V _R	max.	lF	typ.	max.
	(V)	(mA)	(mW)	(°C)	(°C)	(V)	(μ_{A})	(V)	(nA)	(mA)	(V)	(V)
MA550	30	100	120	100	$-55 \sim +100$	30	50	10	100	100	0.95	1.2

			Electr	ical Cha	racteristic	s (Ta=2	25℃)				Drawing	
Condition	l R		Bias V _F		Bias V F		Condition	n tr	r	Use		Type No.
V _R	(°C)	max. (μA)	l _F (mA)	max.	1 _F	max.	I _F (mA)	I _R (mA)	max.		No.	
			1.5A ³⁾	0.95	103)	1.15				Rectifier for	D-4	MA242/R
			3.0A	1.0	10	1.1				Alternator	D-5	MA242C/CF
9	80	5	25	18			2	4	350		D-10	MA615
12	80	5	25	24			2	4	350		D-10	MA619
13	80	5	25	26			2	4	350		D-10	MA622
15	80	5	25	30			2	4	350	High Voltage	D-10	MA625
18	80	5	25	36			2	4	350	Rectifier for	D-10	MA630
9	80	. 3	25	18			2	4	250	Color TV	D-11	MA715
13	80	3	25	24			2	4	250		D-11	MA720
15	80	3	25	30			2	4	250		D-11	MA725
15	80	3	25	36			2	4	250		D-11	MA730

			Elect	rical Cha	racterist	ics (Ta	=25℃)					Drawing	
Cond	ition	C da	2		C d1	/ C _{d2}	Condit	tion	F	Rs	Use		Type No.
V_R		min.	typ.	max.	min.	max.	f	Cd	V _R	max.		No.	
(V)	(MHz)	(pF)	(pF)	(pF)			(MHz)	(pF)	(V)	(Ω)			
3	1	9.45	11.5	13.48	4	6	470	9		1.2	UHF/VHF	D-7	MA320
10	1	3.3		5.7	2.5	3.4	470	9		1.2	UHF/VHF	D-7	MA340

			Ele	ctrical (Characte	ristics	(Ta=25	℃)					Drawing	
Conditi	on CR			Conditi	ion rf1			Condit	ion rf2	2		Use	No.	Type No.
V _R	f	typ.	max.	lF	f	typ.	max.	l _F	f	min.	typ.		INO.	
(V)	(MHz)	(pF)	(pF)	(mA)	(MHz)	(Ω)	(O)	(mA)	(MHz)	$(K \Omega)$	(KO)			
30	1	0.5	1	20	100	4	10	0	100	1.0	3	UHF AGC	D-8 .	MA550

THYRISTORS

(SILICON CONTROL RECTIFIERS)

				Abs	olute Max (Ta=		ings						
Type No.	10	F(Peak)	Surge	VFO(Peak)	VRO(Peak).	V _{RO} (Peak)	V _{GF} (Peak)	P _G (Peak)	Pg	Tj	Conditio	n I FO	* _{FX}
					፠ V _{/RX (Peak)}						VF	Tc	max.
	(A)	(A)	(A)	(V)	(V)	$_{\alpha}\left(V\right)$	(V)	(W)	(W)	(°C)	(V)	(°C)	(mA)
2SF248	6.4	10	50 ¹	200	200	500 2	10	5.	0.5	125	200	125	5
2SF1060*	2		2011	200	200	300 2)	10	0.5	0.1	110	200	110	*1 4)
M2IC	0.2		8	200	* 200 ⁶⁾	300 2)	6	0.1	0.01	110	200	110	* 0.056
M23C	2		20	200	* 200 ⁶⁾	300 2)	6	0.5	0.1	110	200	110	* 0.1 6

(SILICON CONTROL SWITCH)

No. of Concession, Name of Street, or other Persons and Street, or other P							Absol	ute Ma (Ta=	ximum =25℃)	Ratings	5							
	Type No.	Individual	V _{CBO}	V _{CER} 1	VCEO	V _{EBO}	lε	I _{EM} 2)	Ic	Ісм	Ptot	Ti	Tstg	1	CER		1 :	EB0
																max.		max.
			(V)	(V)	(V)	(V)	(mA)	(mA)	(mA)	(mA)	(mW)	(℃)	(℃)	В	ias	(nA)	Bias	(µA)
		NPN	70	70		5	-100	- 500	50	100				V _{CE} (V)	R _{BE} (KΩ)		V _{ER}	
	26511	NIN	70	70		3	100	300	30	100	050	150	-55~	70	10	100	5	1
	3SFII	PNP	-70		-70	-70	100	500			250	150	+175				-V _{EB}	
			, ,					- 30								•	70	0.1

¹⁾ $R_{BE} = 10K\Omega$ 2)t pulse ≤ 1 msec, duty = 0.05

(BI-DIRECTIONAL TRIODE THYRISTORS)

		А	bsolute Maxi (Ta=2		gs						
Type No.	I T(RMS)	ITSM	V _{DRM}	Рсм	P _{GAV}	Tj	Conc	liton I _{DRM}		Condition	Vтм
							V _{DRM}	Tj	max.	I _{TM}	max.
	(A)	(A)	(V)	(w)	(W)	(°C)	(V)	(°C)	(mA)	(A)	(V)
2SM58*	10	801)	± 200 1)	5	0.5	100	200	100	2	14	1.65
2SM79*	2	202)	± 200 ²⁾	2	0.2	100	200	100	1	4	1.6
2SM 25△	10	80	± 200	5	0.5	110	200	110	2	14	1.65
2SM 5 △	3	303)	± 200	1	0.1	110	200	110	0.1	5	2.0
M28C △	1	20	± 200	1	0.1	110	200	110	0.1	2	2.0

(TRIGGER DIODE)

	Abso		Maximu a=25°	um Ratings C)			Electr	rical C	harac	teristi	cs (Ta	a=25°C	2)				
Type No.	Pav	I PM	Topr	T _{stg}	Bias	V _{BO}		Bias	I BO		Condi	tion V)	_ a	Application	Drawing	Type No
					I	min.	max.	V	typ.	max.		min.	typ.	(%/%)		No.	
	(mW)	(A)	(℃)	(℃)	(µA)	(V)	(V)	(V)	(μA)	(µA)		(V)	(V)	C d			
MA61	150	2 1)	60	$-55 \sim +125$	I во	24	36	V _{BO}	1	100	Fig.2	4	6.3	0.1	Trigger	S-5	MA6 I

¹⁾ Ta=50℃, t<10µs, f=60Hz

¹⁾ non repetitive 20msec 2) non repetitive 10msec 3) $I_F=10A$, $I_{RM}=5A$, $dv/dt=20V/\mu s$, $T_j=125\%$ 4) $R_{GK}=220\Omega$ 5) $R_L=100\Omega$

¹⁾ Tc < 70°C 2) Tc < 75°C 3) Tb < 63°C

			Electri	cal Char	acteristi	cs (Ta=	=25℃)					=		
Conditio	on I	RO * RX	Bias \	/ F	Bias I	GT	Bias	V GT	Тн	t off	R thi-m	Structure	Drawing	Type No.
V _R	Тc	m ax.	lF	max.	VF	max.	VF	max.	typ.	max.	* typ. max.		No.	
(V)	(°C)	(mA)	(A)	(V)	(V)	(mA)	(V)	(V)	(V)	(µ S)	(°C /W)			
200	125	5	20	2.3	6	25	6	2.5	10	25(3)	3	Pgate PNPN	S-1	2SF248
200	110	*1 4)	6	1.7	6	35)	6	0.845)	10		9.8	Pgate PNPN	S-2	2SF 1060
200	110	* 0.05 6)	1	1.6	6	16)	6	0.8 6)	$3.0^{6)}$		* 60	Pgate PNPN	S-6	M21C
200	110	* 0.16	4	2.2	6	16)	6	0.8 (6)	2.06)		10	Pgate PNPN	S-7	M23C

6) R $_{GK}=1K\Omega$

		hre			Bia	ıs	V AE			Bia	ıs	Тн				t off		Structure	Drawing	Type No
		min.	typ.	max.	I A	l c	RBE	typ.	max.	R _{BE}	l c	-V _{BB}	typ.	max.	RBE	typ.	max.		No.	
Bia	ıs				(mA)	(mA)	$(K\Omega)$	(V)	(V)	$(K\Omega)$	(mA)	(V)	(mA)	(mA)	$(K\Omega)$	(μS)	$(\mu \mathrm{S})$			
V _{CE}	Iс (mA)																			
2	10	50	180		50		10	1 05		10	10	0	0.5		10	0	10	DNDN	0.4	00=11
V _{CB}	Ι ε (mA)				50	0	10	1.05	1.4	10	10	2	0.5	1	10	6	12	PNPN	S-4	3SF11
0	1	0.19	1.1	2.5																

		Electrical C	haracteristic	es (Ta=25℃)				Drawing	PERMIT
Con	ndition GT		Conditi	ion V _{GT}		Rth (j-m)	Structure	Diawing	Type No.
V _D		max.	V _D		max.	max.		No.	
(V)		(mA)	(V)		(V)	(°C /W)	8		
6	Fig. 1	50	6	Fig. 1	3	2.2	NPNPN	S-1	2SM58*
6	Fig. 1	10	6	Fig. 1	2	9.6	NPNPN	S-2	2SM79*
6	Fig. 1	50	6	Fig. 1	3	2.0	NPNPN	S-3	2SM 25△
6	Fig. 1	30	6	Fig. 1	2	8.0	NPNPN	S-7	2SM151△
6	Fig. 1	20	6	Fig. 1	2	10	NPNPN	S-7	M28CA

OPTO ELECTRONIC DEVICES

(RED LIGHT EMITTING DIODES : GaAsP)

			Absolute M (Ta	Maximum Ra a=25℃)	atings					
Type No.	V _R	l _F	I _{FM}	Р	Topr	Tstg		В	λ	Р
							I _F	typ.	lF	typ.
100	(V)	(mA)	(mA)	(mW)	(°C)	(°C)	(mA)	(f_{t-L})	(mA)	۾) ٣
LNII	3	75	100	150	$-25 \sim +100$	$-55 \sim +100$	50	3000	50	660
LNIIW	. 3	75	100	150	$-25 \sim +100$	$-55 \sim +100$	50	3000	50	66
LN12	3	30	40	60	$-25 \sim +100$	$-55 \sim +100$	20	1500	20	66
LN12W	3	30	40	60	$-25 \sim +100$	$-55 \sim +100$	20	1500	20	66
LN13	3	30	40	60	$-25 \sim +100$	$-55 \sim +100$	20	800	20	66
LN21	3	65	80	130	$-25 \sim +100$	$-55 \sim +100$	50	6000	50	67
LN21W	3	65	80	130	$-25 \sim +100$	$-55 \sim +100$	50	6000	50	67
LN22	3	25	35	50	$-25 \sim +100$	$-55 \sim +100$	20	3000	20	67
LN22W	3	25	35	50	$-25 \sim +100$	$-55 \sim +100$	20	3000	20	67
LN23	3	25	35	50	$-25 \sim +100$	$-55 \sim +100$	20	1500	20	67
LN24	3	30	35	60	$-25 \sim +85$	$-30 \sim +100$	20	500	20	67

(GREEN LIGHT EMITTING DIODES: GaP)

			Absolute M (Ta	aximum Ra =25℃)	tings					
Type No.	V _R	l _F	I _{FM}	Р	Topr	T stg		В	λ	. Р
•							lF	typ.	1 _F	typ.
	(V)	(mA)	(mA)	(mW)	(°C)	(°C)	(mA)	(f_{t-L})	- (mA)	(Å)
LN32	3	30	40	80	~ 25~ + 85	$-30 \sim +100$	20	1200	20	5600
LN34△	3	30	35	80	$-25 \sim +85$	$-30 \sim +100$	20	300	20	5600

(GREEN LIGHT EMITTING DIODE: CONVERTER TYPE)

		Abso	ute Maxii (Ta=2	mum Ratings 25℃)								
Type No.	V _R	l _F	Р	Topr	Tstg	Item	В.	Po	λ	>	Δ	λ
							I _{F(DC)}	typ.	IF(DC)	typ.	I _{F(DC)}	typ.
	(V)	(mA)	(mW)	(°C)	(°C)		(mA)		(mA)	(Å)	(mA)	(Å)
LN30(MEL4720)	3	100	150	$-25 \sim +75$	− 30~ + 100	Visible Light	100	150f _{t-L}	100	5400	100	150
LINSO(NIEL4720)	3	100	130	-23 - + 13	- 30 - + 100	Infrared	100	2.0mW	100	9500	100	500

			Electric	al Chara	cteristics	(Ta=25°	C)					
	λ		VF		Bias I	R	Bias	С		Use	Drawing No.	Type No
l _F	typ.	l _F	typ.	max.	V _R	max.	V _R	f	typ.		140.	
(mA)	(Å)	(mA)	(V)	(V)	(V)	(µ A)	(V)	(MHz)	(pF)			
50	200	75	1.75	2.0	3	10	0	1	60	Indicator	0-1	LNII
50	200	75	1.75	2.0	3	10	0	1	60	Indicator	0-1	LNIIW
20	200	30	1.75	2.0	3	10	0	1	50	Indicator	0-2	LN12
20	200	30	1.75	2.0	3	10	0	1	50	Indicator	0-2	LN12W
20	200	30	1.75	2.0	3	10	0	1	50	Indicator	0-2	LN13
50	200	65	1.80	2.0	3	10	0	1	20	Indicator	0-3	LN21
50	200	65	1.80	2.0	3	10	0	1	20	Indicator	0-3	LN21W
20	200	25	1.75	2.0	3	10	0	1	20	Indicator	0-4	LN22
20	200	25	1.75	2.0	3	10	0	1	20	Indicator	0-4	LN22W
20	200	25	1.75	2.0	3	10	0	1	20	Indicator	0-4	LN23
20	200	30	1.75	2.0	3	10	0	1	20	Indicator	0-7	LN244

			Electri	ical Char	acteristics	(Ta=2	5℃)					
	λ		VF		Bias IR		Bias	С		Use	Drawing No.	Type No.
lF	typ.	İF	typ.	max.	V _R	max.	VR	f	typ.		140.	
(mA)	(Å)	(mA)	(V)	(V)	(V)	(μA)	(V)	· (MHz)	(pF)			
20	300	30	2.2	2.6	3	10	0	1	60	Indicator	0-4	LN32A
20	300	30	2.2	2.6	3	10	0	1	60	Indicator	0-7	LN34△

				Electr	ical Ch	aracteris	tics (Ta	a=25℃)						
V	F		1	R		Co		t	r	t	f	Use	Drawing	Type No.
I _{F(DC)}	typ.	max.	V _R	max.	V _R	f	typ.	le		LE			No.	
(mA)	(V)	(V)	(V)	(µ A)	(V)	(MHz)	(pF)	(mA)		(mA)				
100	1.25	1.5	3	10	0	,	70	100	< 5mS	100	< 2μ S	la dia akan	0.5	LNOO
100	1.25	1.3	3	10	0	1	70	100	<2mS	100	< 1µ S	Indicator	0-5	LN30

(INFRARED LIGHT EMITTING DIODES: GaAs)

		Α Α	bsolute Ma (Ta:	ximum Rat =25℃)	ings		5					
Type No.	V _R	1 _F	IFM	Р	Topr	T _{stg}	Р	0	λ	Р	Δ	λ
							IF(DC)	typ.	IF(DC)	typ.	I F(DC)	typ.
	(V)	(mA)	(A)	(mW)	(°C)	(°C)	(mA)	(mW)	(mA)	(\mathring{A})	(mA)	(Å)
LN51 (MEL4715)	5	100	21)	150	$-25 \sim +100$	$-30 \sim +125$	100	6.0	100	9500	100	500
LN52	3	100	21)	150	$-25 \sim +80$	$-30 \sim +100$	100	6.0	100	9500	100	500
LN53	3	50	11)	75	$-25 \sim +85$	$-30 \sim +100$	50	1.2	50	9500	50	500
LN60	3	50	11)	75	-25~+ 85	$-30 \sim +100$	50	3.5	50	9500	50	500
LN70(MEL4710)	5	75	11)	125	$-25 \sim +100$	$-30 \sim +125$	75	1.0	75	9100	75	400

¹⁾ f = 100Hz, duty Cycle 0.1%

(PHOTO TRANSISTORS)

		Absol	ute Maximu (Ta=25°							
Type No.	V _{CEO}	VECO	Pc	Topr	Tstg	10	Œ0			I ce(L)
						V CE	typ.	max.	V CE	L
	(V)	(v)	(mW)	(°C)	(°C)	(V)	(µ A)	(μA)	(V)	(Lux)
PNIOO	20	5	50	$-25 \sim +85$	$-40 \sim +100$	20	0.05	10	10	500
PNIOI (MEL4750)	30	5	100	$-30 \sim +125$	$-55 \sim +100$	10	0.02	1.0	10	500
PNIIO	20	5	100	$-25 \sim +85$	$-40 \sim +100$	20	0.05	10	10	500
PNIIOW	20	5	100	$-25 \sim +85$	$-40 \sim +100$	20	0.05	10	10	500
PNIII	20	5	100	$-25 \sim +85$	$-40 \sim +100$	20	0.05	10	10	500
PNIIIW	20	5	100	$-25 \sim +85$	$-40 \sim +100$	20	0.05	10	10	500
PNI40	20	5	50	$-25 \sim +85$	$-30 \sim +100$	10	0.008	10	10	250

VF			Ji	R		С	0	t _R		t,	(Rs	5	Use.	Drawing	Type No.
l _F	typ.	max.	V _R (V)	max (µA)	V _R (V)	f (MHz)	typ.	l _F (mA)	typ. * nS (μS)	1 _F (mA)	typ. * nS (μS)	l _F (mA)	typ. (Ω)		No.	
100	1.25	1.5	5	10	0	1	75	100	1.0	100	1.0	100	0.8	Electronic Isolators	0-5	LN51
100	1.25	1.6	3	10	0	1	50	100	1.0	100	1.0	100	0.8	Electronic Isolators	0-6	LN52
50		1.5	3	10	0	1	50	100	1.0	100	1.0	50	1.2	Electronic Isolators	0-7	LN53
50	1.2	1.5	3	10	0	1	50	100	1.0	100	1.0	50	1.2	Electronic Isolators	0-8	LN60
75	1.25	1.5	5	10	0	1	60	100	* 80	100	* 50	7 5	0.8	Electronic Isolators	0-5	LN70

		λ	P		t	,			t _f		Use.	Drawing	Type No.
min. (mA)	typ.	V _{CE} (V)	L (Lux)	typ.	V _{CE} (V)	R_L	typ. (μS)	V _{CE}	R _L (Ω)	typ. (µS)		No.	
0.2	1.0	10	500	8000	10	100	4	10	100	4	Detector	0-9	PN100
2.0	6.0	10	500	8000	10	100	3	10	100	3	Detector	0-5	PNIOI
0.8	2.0	10	500	8000	10	100	4	10	100	4	Detector	0-10	PNIIO
0.8	2.0	10	500	8000	10	100	4	10	100	4	Detector	0-10	PNIIOW
4.5	6.0	10	500	8000	10	100	5	10	100	6	Detector	0-10	PNIII
4.5	6.0	10	500	8000	10	100	5	10	100	6	Detector	0-10	PNIIIW
0.6	1.8	10	250	8000	10	100	4	10	100	4	Detector	0-11	PN 140

LINEAR · MONOLITHIC INTEGRATED CIRCUITS

(FOR RADIO, AUDIO)

		Absolut	e Maximum Rat (Ta=25℃)	ings		Electrical Characteristic	cs (Ta	=25℃)		
Type No.	Application	Item	Rating	Unit	Item	Condition	min.	typ.	max.	Uni
		V ₁₋₃	5	v	I 2	V ₂₋₁ =5V			10	μΑ
		- V ₄₋₃	5	V	I 4	$-V_{4-3}=5V$			10	μA
OM200	Hearing Aid	I 2, I 4	5	mA	Itot	$V_{1-3}=1.3V, I_2=0.7mA$	2		1.2	m.A
0141200	Hearing Ald	PT	25	mW	PG ·	$V_{1-3} = 1.3V, I_2 = 0.7mA$	75			dI
		Topr	80	°C	Dtot	f=1KHz, Po=0.2mW			10	%
100		Tstg	$-20 \sim 80$	$^{\circ}$						
		V_{2-4}		V	t ₁	$-V_{1-4}=5V$			10	μА
		V ₃₋₄	5	V	I 3	$V_{3-2} = 5V$			10	μ
		$-V_{1-4}$		V	Itot	W -1 2W I -0 7 A			1.2	m/
ANII 07	Low-level	I ₁	10	mA	RF	$V_{2-4}=1.3V, I_3=0.7mA$			750	KΩ
AN127	AF Amp.	Ι3	25	mA	PG	$V_{2-4}=1.3V, I_3=0.7mA$	75			dI
		Рт	70	mW	Dtot	f=1KHz, Po=0.2mW			10	%
		Topr	$-20 \sim 100$	$^{\circ}$	NF	$V_{2-4}=1.3V, I_3=0.7mA$				
		Tstg	$-65 \sim 100$	°C	NF	$f = 400 \sim 3200 Hz$			6	dI
		V ₃₋₂		V		T 100 4 17 017				
		V_{5-2}	9.5	V	h FE	$I_{10} = 100 \mu A, V_{10-7} = 0 V$	40			
		V ₈₋₇	_	V						
		V ₉₋₁₀	6	V	V_{3-2}	$I_3 = 7 \mathrm{mA}, \ V_{5-2} = 7 \mathrm{V}$		0.8	1.2	V
	AF High-Gain	I 3	20	mA		$Vcc=7V$, $V_0=1V$				
AN136	ric Amp.	I 4, I 7	3	mA	Gv	f = 1 KHz	93			dI
		$-I_{9}, -I_{10}$	10	mA	1	$Vcc=7V$, $R_S=2K\Omega$				
		P _T	160	mW	NF	$f = 30 \sim 15000 Hz$		2.5	4	dE
	œ	Topr	$-20 \sim 75$	°C	V ₃₋₂	$V_{cc} = 7 V, I_{9} = 200 \mu A$	3.4	3.8	4.2	V
		Tstg	$-20 \sim 80$	°C						
	1.0	V _{CEX}	13.5	V	I сво	V _{CB} =10V			1	μ
		V ₅₋₄	10	V	V ₈₋₄	V ₅₋₄ =4V	1.2		1.6	V
		V _{EBO}	5	· V		Vi=26dB, MOD. 400Hz 30%	275000			
AN203	AM/FM IF Amp.	Ic	3	mA	VO(AM)	$V_{5-4}=4V, f=455KHz$	15			m\
	· ·	PT	200	mW		Vi=40dB, MOD. 400Hz 30%				
	,	Topr	$-20 \sim 75$	°C	V _{O(FM)}	$V_{5-4} = 4 V, f = 10.7 MHz$	17	35	63.5	m'
	-	Tstg	-65~150	°C						
		V ₆₋₁₂	15	V	Ι 6		2.5		10	m
		I ₆	15	mA	V ₁₋₁₂	V _{CC} =12V	3.5		8	V
AN204 *	Dual Pre-Amp.	PT	200	mW	V ₁₁₋₁₂		3.5		8	V
	7 2	Topr	$-20 \sim 75$	°C	- V _N	$V_{CC} = 12V, R_S = 2.2K\Omega$	1000		9	m
		Tstg	$-65 \sim 150$	°C	1.4	0 8990 - March (€ 100 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3		
		V _{CEX}	13.5	V	I сво	V _{CB} = 10 V			1	μ
		V ₅₋₄	10	V	V ₈₋₄	V ₅₋₄ =4 V	1.2		1.6	V
		V _{EBO}	6	V	10-4	$V_{5-4} = 4V, f = 455 \text{ KHz}$				
AN210	AM/FM IF Amp.	Ic	5	mA	VO(AM)	Vi=40dB, MOD. 400Hz 30%	4			m'
		PT	250	mW		$V_{5-4}=4V, f=10.7MHz$				
		Topr	-20~75	°C	V _{O(FM)}	Vi=30dB, MOD. 400Hz 30%	7.6	20	51	m'
		p.	20 10			OULD, OD. TOULL 00/0				

Maintenance

			Maximum Rat (Ta=25℃)	tings	Electrical Characteristics (Ta=25℃)						
Type No.	Application	Item	Rating	Unit	Item	Condition	min.	typ.	max.	Unit	
		V ₂₋₁₂	12	v	V _{cc}		6	9	12	V	
	1714	I 12	25	mA	Ch. Sep. (f=1KHz)	$V_{i} = 300 \text{mV}, V_{cc} = 9 \text{ V} \\ \text{MOD} = 100 \%$	35	45		dB	
AN211	FM Multiplex	Рт	250	mW	Ch. Bal.	$V_i = 300 \text{mV}, f = 1 \text{KHz}$ $V_{cc} = 9 \text{V}$			2	dB	
	Demodulator	Topr	$-20 \sim 75$	°C	ON, OFF LEVEL	$V_{CC} = 9V(V_{11-12})$	45	75	120	m V	
		Tstg	$-65 \sim 150$	°C							
		V ₉₋₂	18	V	Po	Vcc=13V, $f=1KHzDtot=10\%, RL=4\Omega$	4	4.4		W	
	4.4-Watt	Itot	1.2	A	Vo	f = 1 KHz, Vi = 10 mV $R_L = 4\Omega$	1.25	1.7	2.25	V	
AN214	Audio Power	PT	4.5	W	Dtot	f=1 KHz, Po=1 W $R_L=4\Omega$		0.3	1.5	%	
	Amp.	Topr	$-20 \sim 70$. ℃	V _N	$Rg = 10K\Omega$, $R_L = 4\Omega$		1	4.5	mV	
		Tstg	$-55 \sim 150$	℃	I _{CQ}	$V_{CC}=13V$	10	20	50	mΑ	
		V ₂₋₁ , V ₁₆₋₁	12	V	Po	$V_{\text{CC}}=6V$ Dtot=10%, RL=8 Ω	1			W	
		V ₃₋₁₃	12	V	Vo	$V_{cc}=6V$ $V_{i}=0.1 \text{mV}, R_{L}=8\Omega$	0.63	1	1.6	V	
AN215	Audio Pre-Amp.	Itot (Peak)	1	A	Dtot	Vcc=6V Vo=1V, RL=8Ω			1.5	%	
	Power Amp.	PT	2	W	V _N	$V_{CC}=6V$ $Rg=1K\Omega$, $R_{L}=8\Omega$			16	mV	
		Topr	$-20 \sim 70$	°C	I _{CQ}	V _{cc} =6V			80	mΑ	
		Tstg	$-55 \sim 150$	°C							
		Vcc	9.5	V	V _{O(AM)}	$V_{CC}=6V, V_{i}=36dB$ MOD. $_{30\%}$	14.5	30	42	тV	
		V _{CEX}	16	V	V _{O(FM)}	$V_{CC} = 6 \text{ V}, V_{i} = 10.7 \text{ MHz MOD.} \\ V_{i} = 40 \text{ dB} \text{ 400Hz } 30\%$	17	40	76	mV	
AN217	AM/FM IF Amp.	Itot	40	mA	Itot	V _{CC} =6V	6	20	40	mΑ	
	AM RFiConverter	PT	400	mW							
		Topr	$-20 \sim 75$	°C						:	
		Tstg	$-65 \sim 150$	°C							
		V ₅₋₄	8	V	I 1	$V_{1-2} = 10 V$			1.2	μΑ	
		Itot	20	mA	I 11	$V_{11-4} = 4V$	0.3	1	1.5	mΑ	
	FM Tuner	PT	200	mW	I 14	$V_{14-4} = 4V$	0.3	1.1	1.6	mA	
AN219A	System	Topr	$-20 \sim 75$	°C	V ₁₂₋₄	$V_{5-4} = 4V$	1.1	1.4	1.7	V	
		Tstg	$-65 \sim 150$	°C	Itot	$V_{5-4} = 4V$	2	5	9	mA	
	×				V _{O(FM)}	$f = 100 \text{MHz}$, $V_i = 100 \mu \text{V}$ MOD. 400 Hz 30%		15		mΝ	
115		V ₈₋₄	18	V	Po	Vcc=13V, $f=1KHzDtot=10\%, RL=4\Omega$	2.5	3		W	
	3 Watt	Itot	2	A	Gv	f = 1 KHz, Vi = 10 mV $R = 4 \Omega$	45	46	47	dB	
AN252△	Audio Power	PT	4.5	W	Dtot	f=1KHz, Po=0.5W RL=4 Ω		0.4	1.5	%	
	Amp.	Topr	$-30 \sim 75$	°C	V _N	$Rg = 10K\Omega$, $RL = 4\Omega$			2	mV	
		Tstg	$-55 \sim 150$	°C	I _{CQ}	V _{cc} =13V	7	15	40	mA	

		Absolu	te Maximum Ra (Ta=25℃)	tings	Electrical Characteristics (Ta=25℃)							
Type No.	Application	Item	Rating	Unit	Item	Condition	min.	typ.	max.	Unit		
		Vcc	7.5	V	V _{O (AM)}	$V_{CC}=5V$, $f = 455Hz$ MOD. $V_{i} = 30dB$ 400Hz 30%	2.2	3.5	5.6	m V		
		Vcer	14	V	Vo(FM)	$V_{CC} = 5V$, $f = 10.7 MHz MOD.$ $V_i = 20 dB 400 Hz 30\%$	1.8	3	5	m V		
ANOFO	AM/FM IF Amp.	Itot	40	mA	Itot	$V_{CC}=5V$	5.4	15	23.5	mA		
AN253	AF Driver	Рт	300	mW	V_N	$V_{CC}=5V, R_S=5K\Omega$		0.4		mV		
		Topr	$-20 \sim 75$	°C								
		Tstg	-65~150	°C			2					
		V ₄₋₇	11	V	I 14 (ON)	$V_{4-6} = 85 \text{mV}$ $V_{4-6} = -85 \text{mV}$	400			μΑ		
		Itot	22	mA	I 14 (OFF)	$V_{4-6} = 55 \text{mV} V_{4-6} = -55 \text{mV}$			10	иA		
	FM Stereo	Рт	250	mW	V _{4-6(ON)}	$V_{4-6} = 240 \text{mV} V_{4-6} = -245 \text{mV}$	1			V		
AN258△	Muting System	Topr	$-20 \sim 75$	°C	$V_{4-6(\mathrm{OFF})}$	$V_{4-6} = 185 \text{mV} \\ V_{4-6} = -190 \text{mV}$			0.5	V		
		Tstg	-65~150	°C	G _{V(FM)}	V _{CC} =8V f=10.7MHz		30		dB		
					S (MUT)	V _{CC} =8V		70		dB		
AMERICA SPECIA		V ₈₋₆	9	V	I 1	V _{CC} =6V		9	1	μΑ		
	AM/FM IF Amp.	V_{CEO}	13.5	V	I 10	V _{CC} =6V	0.4	2.2	4.4	m A		
		V _{CEX}	14	V	I 7	V _{CC} =6V	0.25	1.4	3	mA		
		V_{EBO}	5	V	V_{13-4}	V _{CC} =6V	1.4	1.5	1.6	V		
AN260	Tuning Meter	Ιc	5	mA	Itot	V _{CC} =6V	4.5	15	28	mA		
	Driver	Itot	30	mA	I 5	V _{CC} =6V	0.4	0.5	0.6	mА		
		Рт	300	mW	V _{O (AM)}	V _{CC} =6V, f=455KHz Vi=100μVMOD. 400Hz, 30%	7	10	14	mV		
		Topr	-20-75	°C	V _{O(FM)}	V _{CC} =6V, f=10.7MHz V _i =100µVMOD. 400Hz, 30%	8	13	16	mV		
		Tstg	-65~150	°C		V1 = 100 M V 1.10 D. 140 112, 00 / 0						
		V_{8-1}	24	V	Itot	V _{CC} = 18V	3		13	m A		
		Itot	16	mA	Gv(open)	Vcc=18V, f=1KHz Vo=1V rms	65	70		dB		
	Dual Low Noise	Рт	400	mW	Dtot	Vcc=18V, f=1KHz Vo=1Vrms,Gy=34dB		0.03	0.1	%		
AN264	Pre-Amp.	Topr	-20~75	°C	Vo	Vcc=18V, f=1KHz Gv=34dB. Dtot=1%	3			Vrms		
		Tstg	$-65 \sim 150$	°C	V _N	$V_{CC}=18V$, Rs=2.2K Ω Gv=76dB, BW=30Hz~65KHz		12	18	mVrm		
					ZIN	Vcc=18V f=1MHz, Gy=34dB	50	100		ΚΩ		
		V_{CC}	20 (24)	V	Itot	$V_{\rm CC}=^{9\mathrm{V}}_{(20\mathrm{V})}$		1.3 (3.1)	2.3	mA		
	81	PT	100 (140)	mW	Gv(open)	$V_{CC} = {}^{9V}_{(20V)}, {}^{f=1KHz}_{Vi=0.1mV}$	75 (75)	80	, , ,	dB		
		Topr	-20~75	°C	Dtot	$V_{CC} = {}^{9V}_{(20V), f} = 1 \text{KHz}, {}^{V_0 = 0.3}_{(1.0)}$		0.07	0.2 (0.1)	%		
AN270 △	Low Noise	Tstg	-55~125	°C	Vo	$V_{CC} = {}^{9}V_{CC}, f = 1 KHz$ $D_{tot} = 1\%$	1.5 (4.5)	2	, , , , ,	Vrms		
AN370)△	Pre-Amp.				Vni	$V_{CC}=9V, Rg=2.2K\Omega$,,	0.8	1.5	μVrm		
					V_{NO}	$V_{CC}=(20V)$, $R_g=47K\Omega$		(20)	(25)	mVrm		
	1				$R_1 + R_7$	U U	65		300	ΚΩ		

AN253

AN264

		Absolu	te Maximum Ra (Ta=25℃)	tings	Electrical Characteristics (Ta=25℃)							
Type No.	Application _.	Item	Rating	Unit	Item	Condition	min.	typ.	max.	Unit		
	7	Vcc	34	V	Po	Vcc=20V, Dtot=5% f=1KHz	4.5	5		W		
	5 -Watt	Itot	2	A	Gv	$V_{CC}=20V, V_{i}=30mV$ f=1KHz	38	40		dB		
AN272 △	Audio Power	P _T	6	W	Dt ot	Vcc=20V, f=1KHz Po=1W		0.3	1	%		
	Amp.	Topr	$-20 \sim 75$	°C	V _N	$V_{CC}=20V, R_g=50K\Omega$		0.7	2	mV		
		Tstg	$-55 \sim 150$	°C	Icq	V _{CC} =20V,	10	20	50	mV		
		V_{2-10}	16	V	I _{CQ}	$V_{2-10} = 10 V$, $R = 1 \sim 3 K\Omega$	(5)	10 (12)	(22)	m A		
AN274		Itot	0.25	A	Vo	$V_{2-10} = 10 V$ $V_{i} = 10 \text{ mV rms}, f = 1 \text{ KHz}$	0.6	0.8		V		
	AF Power Amp.	PT	0.65	W	Po	$V_{2-10} = 10 \text{ V}$ $V_{1} = 100 \text{ mV rms}, f = 1 \text{ KHz}$	0.85	1.3		W		
(AN374)		Topr	-20~+65	°C	Dtot	$V_{2-10} = 10 V$ Po = 50mVrms, f = 1 KHz		0.5	1.5	%		
		Tstg	$-55 \sim +150$	°C	V _N	$V_{2-10} = 10 V, \frac{Rg = 2.2K\Omega}{(Rg = 51K\Omega)}$		(0.5)	0.42	mV		
		V_{4-6}	9.5	V	V _{O (AM)}	$V_{CC}=8.2 \text{ V} $ MOD. 400Hz 30% $f=450 \text{ KHz}, \text{ Vi}=33 \mu \text{ V}$	10		20	mV		
		V _{CEX}	16	V	V _{O(FM)}	$V_{\text{CC}} = 8.2 \text{V}$ MOD. 400Hz 30% f = 10.7MHz, Vi = 200 μ V	4.5		18	mV		
AN1077	AM/FM IF Amp.	Itot	40	mA	Itot	$V_{CC}=8.2V$	6	25	40	mΑ		
AN277	AM RF Converter	P _T	400	mW								
		Topr	$-20 \sim 75$	$^{\circ}$ C								
		Tstg	$-65 \sim 150$	$^{\circ}$ C								
		$V_{\rm CC}$	5.5	V	I ₁	$V_{CC}=4V, R=200\Omega$	200			mV		
		VCER	11	V	Itot	V _{CC} =4V	10		20	mΑ		
ANGEO	AM/FM IF Amp.	Itot	30	mA	V _{O(FM)}	$V_{CC}=4V$, $V_i=200\mu V_{400Hz \ 30\%}^{MOD.}$	4.25		10.1	mV		
AN353	Meter Driver	PT	165	mW	Vomax.	V_{CC} =4V, V_i =40mV $^{MOD.}_{400Hz}$ $^{30\%}$	7		17	mV		
		Topr	$-20 \sim 75$	°C	G (FM)	$V_{\text{CC}} = 4 \text{ V} \rightarrow 2 \text{ V}$ $V_{\text{i}} = 200 \mu \text{ V}$			15	dB		
		Tstg	-55~125	°C	G (FM)	$V_{CC} = 4 V \rightarrow 5 V$ $V_{i} = 200 \mu V$			11	dB		

(FOR TV)

		Absolu	te Maximum Rat (Ta=25℃)	ings		Electrical Characterist	tics (Ta	=25℃)		
Type No.	Applica tion	ltem	Rating	Unit	ltem	Condition	min.	typ.	max.	Unit
		V 12-5		V	Ι 7	V c c = 12V	13.5	16	18.5	mA
		V 13-5	14	V	Vsync.			10		Vp-p
	TV Def.Signal	V 14-5		V	V 13	$V_{CC} = 12V, R_{13-5} = 1.7K\Omega$		2.5		V
	Processing	I6	150	mA	△f н Vсс	$V_{CC} = 9.6 \sim 14.4V$			60	Hz
AN202	Circuit	ls	70	mA	Тн	$V_{CC} = 12V$	23	24	26	μsec
1000	Circuit	Рт	445	m W	∆f v Vcc	$V_{CC} = 9.6 \sim 14.4V$			2	Hz
		Topr	$-20 \sim 70$	°C	Tv	V c c = 12V	800	950	11,00	μsec
		Tstg	−40~150	°C						
		V 1-14	7	V	I 11	$V_{CC} = 12V, V_2 = 2.6V, V_6 = 0$	13	16.4	19.6	mA
		V 2-14	− 6 ~ 10	V	V 6	Vcc=12V,AGC Operate	-0.9	-1.0	-1.1	V
		V 4-14		V	Gv	$V_{CC} = 12V, V_6 = -0.5V$ $V_{in} = 0.3V_{rms}, f = 1MHz$	2.16	2.4	2.66	time
		V 5-14	6	V		$V_{CC} = 12V, V_{6} = -2V$				
	TV Video	V 6-14	-10~ 6	V	V 13	$R_L = 12K\Omega$	9.5	10.4	11	V
	Signal	V ₁₁ -14	15.6	V		$V_{CC} = 12V, V_4 = 3V$				
AN205	Processing	I ₁₂₋₁₄	6	V	V 3	$V_6 = -2V$ 3-14: 4.7 K Ω	6.4	7.1	7.8	V
	Circuit	I ₈ ,I ₁₂	150	mA	GIF	$V_{CC} = 12V$		50		times
		I 10	± 10	mA	5.11	$V_{CC} = 12V, V_2 = 2.5V$				times
		Рт	445	mW	V 1	$V_6 = -4V, \frac{1-14}{3-14} : 5.6K\Omega$	9.5	10.4	11	V
		Topr	-20~70	°C	GRF	$V_{CC} = 12V$		50		time
		Tstg	-40~150	°C	GIII	700 207		00		time
		V 9-8	10 100	v	Icc	×	15	19	25	mA
		V 10-14	15	V	Vi (lim.)		30	43	50	d Bμ
		V 10-14	- 10	v	VO(AF)	$V_{CC} = 11V, f = 4.5MHz$	250	300	430	mV
	FM IF	I9	10		G _V	$Vi = 80dB\mu$	230	73	430	dB
AN206	and		30	mA	AMR	$VI = OODD\mu$				
ANZUG	AF Preamp.	I10, I 11	375	mA	Dtot			45 0.5		dB
14-14	(Ratio Det.)	Рт	50 (T ₁₆)	mW	I CEO	V _{CE} =15V		0.5	10	
	(Ratio Det.)	Topr	-20~60	mW °C		T_{16} $V_{CE}=5V, I_{E}=1mA$	30	50	120	μA
					hfE	V CE- 3 V, I E - I mA	30	30	120	
		Tstg	40~ 150	°C V	Ι 4	V ₄₋₁₄ =20V	6.6		10	A
		V 1-14	35				6.6	*	10	mA V
		V 2-14	20	V	V 9 V 9	$V_{4-14}=20V, I_5=80\mu A$	17 5		1	V
AN209	Tuning	V 4-14	250		V 9	$V_{4-14}=20V, V_5=0$ $V_{4-14}=20V, I_{12}=10\mu A$	17.5			V
ANZUS	Indicator	Рт		mW °C	V 3	The state of the s			3.5	V
		Topr	-20~80	°C		I 3 = 6.8mA				
		Tstg	−40~150	°C	V 3	$V_{4-14} = 20 \text{ V}, I_{12} = 20 \mu \text{ A}$ $I_{3} = 10 \mu \text{ A}$	35			V

AN202

AN206

		Absolu	te Maximum Rati (Ta=25℃)	ngs		Electrical Characteri	stics (T	Ta=25℃)	
Type No.	Application	ltem	Rating	Unit	ltem	Condition	min.	typ.	max.	Unit
		V ₄₋₁₃	+20, 0	V	Itot	$V_{\rm CC}=30V,~R_{\rm S}=1.5K\Omega$	12	12.5	13.5	mA
		V 7 - 13	+12, 0	V	Ιτ	$V_{14-13} = 9V$	2.5	4	5.5	mA
	A	V 8 - 13	+12, 0	V	V 14-13		10.5	11.2	12	V
ANIZZO	Automatic Fine	I 14	+50, -50	mA	I 4	$V_{CC} = 30 V$	1	2	4	mA
AN220	Tuning	I 4	+20, -20	mA	V ₇₋₁₃	$R_S = 1.5 K\Omega$	5	6.5	8	V
	Combination	P _T	445	mW	V 8-13	$R_S = 1.5 RM$	5	6.5	8	V
		Topr	$-20 \sim 70$	$^{\circ}\!\mathbb{C}$	V 7-8		-1.5	- 0	1.5	V
	Dr.	Tstg	$-40 \sim 150$	$^{\circ}$ C	Vi (lim.)	f=58.75MHz		90	120	mV
		V ₁₋₁₂	11.2	V	Itot	$V_{CC}=24V,\ R_S=820\Omega$	14	15.6	17.5	mA
		V ₂₋₁₂	+5, -5	V	Ιτ	$V_{3-12} = 9V$	4.3	6.25	7.8	mA
		V ₄₋₂	+15, 0	V	I 4	V 04V D 0000	1	2	4	mA
		V ₇₋₂	+5, -2	V	V 7-12	$V_{CC} = 24V, R_S = 820\Omega$	5	6.5	8	V
	Automatic Fine	I 4	+20, -20	mA	V ₇		6			V _{P-F}
AN221	Tuning	I 8	+2, -0.2	mA	G v(1)	Vcc=24V, Rs=820Ω, f=58.75 MHz, Vi=10mVrms	20			dB
	Combination	Itot	37	mA	V _{4(max.)}	Vcc=24V, Rs=820Ω f=58.75MHz, Vi=200mVrms	1.7			Vrms
		P_T	445	m W	G v (2)	$V_{CC}=24V,~R_S=820\Omega \ f=1KHz,~V_I=10mVrms$	30			dB
		Topr	$-20 \sim 70$	$^{\circ}\!\mathbb{C}$	Ri	$V_{CC}=24V$, $R_S=820\Omega$		1		ΚΩ
		Tstg	$-40 \sim 150$	$^{\circ}\!\mathbb{C}$	Ci	f=58.75MHz Pin ₁₁₋₁₂		5		рF
		V ₄₋₁₃	+20, 0	V	Itot	$V_{CC} = 30V$, $R_S = 1.5 K\Omega$	11.5	12.1	12.7	mA
		V 7-13	+12, 0	V	IT	$V_{14-13} = 10.5V$	4	6.5	9.5	mA
		V ₈₋₁₃	+12, 0	V	V 14-13		10.9	11.8	12.8	V
	Automatic Fine	I 14	+50, -50	mA	I 4	V	1	2	4	mA
AN222	Tuning	I4	+20, -20	mA	V 7-13	$V_{CC} = 30V$	5	6.9	8	V
	Combination	P _T	445	mW	V 8-13	$R_S = 1.5 K\Omega$	5	6.9	8	V
		Topr	$-20 \sim 70$	$^{\circ}\!\mathbb{C}$	V ₇₋₈		-1	0	1	V
		Tstg	-40~150	$^{\circ}\!\mathbb{C}$	Vi (lim.)	f = 58.75 MHz		18		m V
1111()		V ₁₄₋₇	+ 30	V	Itot	$R_L = 3.3 K\Omega$	13.5	18	22.5	mA
		I 14	+ 30	mA	V ₁₄₋₇	9	18	24	30	V
		V ₁₂₋₇	+11.5, +1.5	V	V 1, 2, 4	$R_L = 3.3 K\Omega$	12	14.4	17	V
		V_{13-7}	+11.5, +1.5	V	△V ₀ max.	$R_L = 3.3 K\Omega$		0.3	2	V
AN225	Color	I 1, I 2, I 4	+0,1,-40	mA	V _{B-Y}	$Vrf = 1 Vp \cdot p, Vchr. = 0.2 Vp \cdot p$ $R_L = 5.6 K\Omega$		10		Vp-p
AN227	Demodulator	I 12, I 13	+1, -1	mA	G _{G-Y}	$Vrf = 1 Vp \cdot p$, $Vchr. = 0.2 Vp \cdot p$ $R_L = 5.6 K\Omega$		28.5		dB
		R _{1, 2, 4}	3	ΚΩ	E _{B-Y} / E _{R-Y}	$Vrf = 1 Vp \cdot p \cdot Vchr. = 0.2 Vp \cdot p$ $R_L = 5.6 K\Omega$		83		%
		P _T	445	m W	E_{G-Y}/E_{R-Y}	Vrf = 1 Vp-p, Vchr. = 0.2 Vp-p $R_L = 5.6 K\Omega$		40		%
		Topr	$-20\!\sim\!70$	$^{\circ}$	φ _G − _Y	$Vrf = 1Vp \cdot p, Vchr. = 0.2Vp \cdot p$ $R_L = 5.6K\Omega$		237		degree
		Tstg	$-40 \sim 150$	°C	Vu max.	$Vrf = 1 Vp - p Vchr. = 0$ $R_L = 5.6 K\Omega$			500	mVp-p

AN220

AN221

		Absolu	ute Maximum Rati (Ta=25℃)	ngs	Electrical Characteristics (Ta=25℃)						
Гуре No.	Application	ltem	Rating	Unit.	ltem	Condition	min.	typ.	max.	Unit.	
-		V 1-9	+15.6	V	Itot	,	14	18	22	mA	
		I 1	+41(AN 228/229/231) +50(AN 230)	m A	V 1 – 9		9.6	12	14.4	V	
		V 3 - 9 V 13 - 9	+30, 0	V	V 10-9	AN228/230/231 AN229		1.8		Vp-I	
		V 16-9	+30, 0 V ₁₋₉ , 0 (AN229)	V	V 13-9	AN228/230/231 AN229		7.2 1.36		Vp-	
		V 2 - 9 V 5 - 9	V ₁₋₉ - 5	V	В		4.5			MHz	
AN228		V 8 - 9 V 10 - 9	V1-9, - 5	V	G 10-12	AN228/230/231 AN229($V_{10-9} = 11 \sim 10V$)	1.12 1.46	1.2 1.57	1.28 1.68	time	
AN229	Video Jungle	PT5 PT-7	60 45	m W	G 10-14	$\begin{array}{c} AN228/230/231 \\ AN229(V_{10-9} = 11 \sim 10V) \end{array}$	2.4 3.5	3 3.9	3.6 4.3	time	
AN230	Combination	I 3 I 4	$+10, -0.1 \\ +0.1, -10$	m A	G 10-11	V ₁₀₋₉ =(11~10V) Pin (10→(11)Gain		0.99		time	
AN231	Combination	I 6 I 14	+ 1 , -10	m A	V 6 - 9	$R_{6-9} = 3.3K\Omega$ $V_{10-9} = 9V$	9			V	
ANZST		I 5 I 10, I 15	+ 1, -0.1	m A	V 4 - 9	$R_{4-9} = 10K\Omega, V_{5-9} = 3.2V$ $V_{6-9} = 6V$	8.4			V	
		I 13	+20, 0	m A	V 2 - 9	AN228/230 negative going AN229/231 positive going	9.3 1.04	9.8 1.3	10.3 1.55	V	
		I 16	+10, 0 0,-10(AN229)	m A	V 8 - 9	AN229 AN230/231	3.99	4.2	4.41	V	
		Рт	490	m W	V 16-9	AN229positive going (fixed) AN 228/230/231negative going		7.5	≤30	V	
		Topr	-20~70	°C	GRF	$\begin{array}{c} Pin \textcircled{6} \rightarrow \textcircled{4} Gain \\ R_{4-9} = 10 K\Omega, V_{4-9} = 3V \end{array}$		80		time	
		Tstg	−40~150	°C	GIF	Pin	500			time	
100	*			181	I tot		16.8	21	25.2	mA	
					V15-4		9.6	12	14.4	V	
		V 15-4	+15.6	V	V 9	negative going	6.2		8.2	Vp-1	
		I 15	+41	m A	V 10	positive going		3.8		Vp-1	
		V 3 -4, V 5	+30, 0	V	△ f н V сс	$V_{15-4} = 12V \pm 20\%$			-55	Hz	
		V 11-4 I 13-4	+ 5, 0	V	△f н Та	$Ta = -20 \sim 60^{\circ}C$		50		Hz	
	Deflection	V 9 -4	V ₁₅₋₄ , -5	V	Тн	horizontal oscillator		24.2		μsec	
AN232	Combination	V 10-4	V 15-4, 0	V	Hpull in (1)	synchronized	300			Hz	
	Combination	V 14-4	+ 5, - 5	V	Hpull in(2)	synchronized	800			Hz	
		I 3, I 5	+150, -1	m A	fvo	vertical oscillator		55.5		Hz	
		Рт	490	m W	∆f v Vcc	$V_{15-4} = 12V \pm 20\%$	0	2	4	Hz	
		Topr	$-20 \sim 70$	°C	△f v Ta	Ta =- 20~60°C		2		Hz	
		Tstg	$-40 \sim 150$	°C	Τv	vertical oscillator		600		μsee	
					β	horizontal oscillator		810		Hz/	
					μ	sawtooth 4.65Vp-p flyback pulse with 12µsec		4		V/μs	

AN228

			Absolut	e Maximum Rat (Ta=25℃)	ings		Electrical Characteristi	cs (Ta	=25℃)		
Type No.	Applica	ation	Item	Rating	Unit	Item	Condition	min.	typ.	max.	Unit
			V 13-6	15.6	V	Itot	f H = 31.5KHz	18.5	23.5	28	mA
			V_{1} - 6 V_{2} - 6 V_{8} - 6	+ 5, -	V	V 15-6	$t_{P} = +0.3 \mu_{Sec}$		5.6		V
			V 3-6 V 16-6	-, -5	V	V 15-6	t P = 0		5.3		v
			V 10-6	V 13-6. —	V`	G 15-12			30		times
- 40	Deflect	ion	V 14-6	+12, -5	V	fно		29	31.5	35	KHz
AN233	Combin		I 9, I 11	+0.1, -30	mA	Тн		6	9	13.5	KHz
	Combin	ation	Itot	34	mA	β		100	124	150	Hz/v
			Рт	490	m W	V 5-6	V 3 = 1 V			0.6	V
			Topr	$-20 \sim 70$	°C	V 7-6	$V_8 = 2.5 V$			0.6	V
			Vstg	$-40 \sim 150$	°C						
			I 13-8	+15.6	V	It ot	$V_{11-8} = V_{12-8} = 12V$ - $I_3 = 1.4 \text{ mA}, -I_{14} = 2.3 \text{ mA}$	22	27.5	33	mA
			I 13	+ 41	mA	V 13-8	-13-1.4mA, -114-2.5mA	9.6	12	14.4	V
			V ₁₁₋₈ · V ₁₂₋₈	+15.6, 0	V	V ₃	color sat.control set for max.output		1.1		Vp-p
			V 12-8 V 15-8	+ 5, - 5	V	V 14	Chroma output is V ₃		0.7		Vp-p
			V 16-8	+ 6, - 5	V	932 1944	(1.1Vpp) color sat. control		3.6		V
			I 3	+ 0.1, -10	mA	V 15-8	set of max. output		2		V
	Chrominance I	I 11, I 12	+10, 0	mA	1.10	set for max 6dB output		0.8		V	
AN234		I 14	+0.1, -10	mA		chroma output is V ₃		26		dB	
AN235	Combin	ation	I 15	+ 3, -0.1	mA	∧V3 Vcc	$-6 dB$ $V_{13-8} = 12V \pm 20\%$			10	%
			I 16	+ 2, -0.1	mA	D. G	V 10 0 12 V ± 2070		5.5		%
			Рт	490	m W	D. P			1		degree
			Topr	$-20 \sim 70$	°C	D. 1					degree
			Tstg	-40~150	°C						
		AN234	1318	10 100	0		V ₇₋₈ = V ₉₋₈ = 4 V		40		dB
		AN235				Gν	$V_{10} = 3 \mathrm{mVrms}$ $V_{7-8} = V_{9-8} = 4 \mathrm{V}$		34		dB
		ANZOO	V 1 -5	15.6	V	Itot	$V_{10} = 6 \text{ mVrms}$ $V_{1-5} = V_{14-5} = 12 \text{ V}$	21.5	27	32.5	mA
			I 1	41	mA	V ₁₋₅	$V_{10-5} = 2V$	9.6	12	14.4	V
			V 10-5	+ 5, - 5	V	RAPC	burst input = 0.5 Vp-p	± 600	12	11.1	Hz
			V 10-5	+ 15.6, 0	V	KAPC	burst input = 0.5 Vp-p	⊥ 000	2.25		degree
			V 14-5	+1, -1	· ·	μ	burst input = 0.5Vp-p		3		100 F m V
		9	I 6	+1, -1	mA mA	β	$V_{12-11} = \pm 20 \text{mV}$	9.5	13		degree Hz
AN236	Refere	ence	I 7.I 8	+1, -1 $+10, -10$		V 14	500Ω connected between	1	1.3		mV Vp-p
	Combin	nation		+3, -0.1	mA		Terminal 14 and 1	1	1.3	100	
AN237		I 10	+3, -0.1 +10, 0	mA		$V_{1-5} = 12V \pm 20\%$ $T_a = -20 \sim 70^{\circ}C$			200	Hz	
		I 14		mA	△fosc Ta	$1a = -20 \sim 70 \text{ C}$ $burst input = 0$			200	Hz	
		Рт	490	mW °C	V 8-7	$V_{10-5} = 1.5 V$ $100K\Omega$ connected		20		mV	
			Topr	-20~70	°C	-	between Terminal 8 and 7				4
		12:000	Tstg	−40 ~150	°C		1 0 5 7 7		. 000		
		AN236		9		△V 8-7	burst input = 0.5 Vp-p $R_1 = 10 \text{K}\Omega$, $R_2 = 100 \text{K}\Omega$		+ 230		mV
A STATE OF THE STATE OF		AN237					$C_1 = 3.3 \mu F, C_2 = 10 \mu F$		-230		mV

			Absolut	e Maximum Rat (Ta=25℃)	ings	Electrical Characteristics (Ta=25℃)							
Type No.	Application	n	Item	Rating	Unit.	ltem	Condition	min.	typ.	max.	Unit.		
		\dashv	V ₁₁₋₄	+18	V	Itot	$V_7 = V_8 = 12V$		28	35	mA		
			V7, 8-4	+18	V	V_{11-4}	$V_7 = V_8 = 12V$	9.6	12	14.4	V		
			V ₅₋₄	V_{11-4} , -20	V	Gv	f=58.75MHz	38		44	dB		
			V_{6-4}	+10, 0	V	V _{12 (max.)}	$V_{13-4} = 6.5V$		9.5		V		
	Video IF		V ₁₃₋₄	+10, 0	V	V _{12(min.)}	$V_{13-4} = 6.5V$		0.3		V		
AN238S	Combination		I 5	+0.5, -2	mA	g 11	f=58.75MHz		167		m℧		
			Itot	37	mA	C ₁₁	f=58.75MHz		8		pF		
			P _T	445	mW	Y 12	f=58.75MHz		⟨1.0		μΰ		
			Topr	$-20 \sim 70$	°C	R ₂₂	f=58.75MHz		12		ΚΩ		
			Tstg	$-40 \sim 150$	°C	C 22	f=58.75MHz		4.6		pF		
			I 5	50	mA	I 5	$V_{5-3} = +9V$	10	16	24	mA		
			I 1, I 2	+ 1, -0.1	mA	Vi (lim)	f=4.5MHz, $FM=400Hz\pm 25KHz (FM)$		250	400	μV		
	Sound Channel		I 6 . I 7	+1, -1	mA	AMR	f=4.5MHz30%(AM)	40	50		dB		
			I s	+0.5, -6	mA	VOAF	f=4.5MHz, $Vi=100mV\triangle f = \pm 25KHz, FM=400Hz$	0.5	0.8		Vrms		
AN240		I 12	+0.5, -6	mA	R _{O(7)}	ZI ZZMIZ, IM TOUIZ		7.5		ΚΩ			
AN241	Combination		P _T	445	mW	GAF		17.5	20	23	dB		
	(Def.Peak De	et.)	Topr	$-20 \sim 70$	°C	Dtot(1)	$V_i=0.1V \text{ rms}, f=400\text{Hz}$		1.5		%		
			Tstg	$-40 \sim 150$	°C	Dtot (2)	Dtot=5%, f=400Hz	2	2.5		Vrms		
	AN	241				V ₅₋₃	4	10.3	11.2	12.2	V		
			V 16-9	15.6	V	I 16	$V_{16-9} = 12V, \ V_{5-9} = 10.5V \ V_{6-4} = 2V$	24	30	36	mA		
			I 16	41	mA	V _{11, 13, 15}	$V_{16-9} = 12V$ $V_{6-9} = 2V$	4.85	5.4	5.95	V		
			$V_{3-9} \\ V_{4-9}$	9.5, -1.5	V	V_{B-Y}	V ₁₆₋₉ = 12V Vchroma = 0.5Vp-p	5.6	7		Vp-p		
			V ₄₋₉ V ₅₋₉	$V_{16-9} - 5$	V	G _{в-}	$V_{16-9} = 12V$	11	14	17	times		
			V ₆₋₉	+5, -5	V	$\frac{\mathbf{E}_{\mathbf{B}-\mathbf{Y}}}{\mathbf{E}_{\mathbf{R}-\mathbf{Y}}}$	Vchroma=0.3Vp-p	108	120	132	%		
AN242			V ₇₋₉	V ₁₆₋₉ , 0	V	$\frac{\mathbf{E}_{G-Y}}{\mathbf{E}_{R-Y}}$	$V_{CW} = 1 V_{p-p}$	32	40	48	%		
	Color		Is	+0.1, -10	mA	ϕ_{G-Y}	$V_6 = 1V_{p \cdot p(H \text{ pulse})}$	227	237	247	degree		
	Demodulator		Is	+ 5	mA peak)	Vu max.	$V_{16-9} = 12V$			35	mVp-p		
			I 11, I 13, I 15	+1, -2	mA	$\begin{vmatrix} V_{13-11} \\ V_{13-15} \end{vmatrix}$	$V_{16-9} = 12V V_{16-9} = 2V$			0.3	V		
			P _T	490	mW	$ V_{13-15} $ $\triangle V_{13-11} V_{c}$ $\triangle V_{13-15} V_{c}$	c V 12V + 20%			35	mV		
			Topr	$-20 \sim 70$	°C	△ V ₁₃ -15 Ve	$V_{16-9} = 12V \ Ta = -20 - 70 ^{\circ} C$			60	mV		
			Tstg	$-40 \sim 150$	°C	G_{5-8}	$V_{16-9} = 12V, V_{5-9} = 10.5V$ f = 0.5MHz	1.9	2.1	2.3	times		
			1 315		1,500	В	$V_{16-9} = 12V$ $V_{5-9} = 10.5V$	4.5			MHz		

AN238S

AN241

		Absolu	te Maximum Rati (Ta=25℃)	ngs	Electrical Characteristics (Ta=25℃)						
Type No.	Application	Item	Rating	Unit.	ltem	Condition	min.	typ.	max	Unit.	
		V 2, 14-15	+14.4	V	Itot	$V_{1-15} = V_{16-15} = V_{14-15} = 12V$ $V_{2-15} = 10V$		17	20.5	mA	
		V1,16-15	+14.4	V	AP	f = 58MHz		50		dB	
		V 12-15	+10, 0	V	G _R	f = 58MHz	60			dB	
		V 8 - 15	+14.4, 0	V	g 11	f = 58MHz Pin 3		0.85		mΰ	
		V 11-15	+14.4, 0	V	b 11	f = 58MHz Pin 3		3.15		mÜ	
		I 3	+ 3 , - 3	mA	g 22	f = 58MHz Pin ①		12		μ	
	Video IF	I 4	+ 0.1, -30	mA	b 22	f = 58MHz Pin ①		360		μΰ	
AN247△	Combination	I 7	+ 3, -0.1	mA	Y 12	f = 58MHz			0.01	μ	
		I 9	+ 3 , -50	mA	Y 21	f = 58MHz		300		μ	
		I 12	+ 3, - 1	m A	V9-15(max.			9		V	
		I 13	+ 3 , - 3	mA	V9-15(min.)				0.2	V	
		Itot	34	mA	V4-15(max.)		10		V	
		P_{Γ}	490	mW	V 4-15(min.)				0.2	V	
		Topr	−20∼70	°C	V5-15(max.			11		V	
		Tstg	$-40 \sim 150$	°C	V 5-15(min.)				0.2	V	
		V 14-3	14.4	V	Itot	$V_{14-3} = 12V$		39	47	mA	
		V ₁₋₂	+0.5, -0.5	V	V 9 – 3	$V_{14-3} = 12V$		6		V	
		V 6-7	-5	V	V 10-3	$V_{14-3} = 12V$		6		V	
		V 8 - 10	-5	V	<u>△V9-3</u> <u>△Ta</u>	$Ta = -20 \sim 70^{\circ}C$			± 2	mV/°C	
		I 1	+ 3, -0.1	mA	<u>△V 10−3</u> <u>△Ta</u>	$Ta = -20 \sim 70 ^{\circ}C$			± 2	mV/°C	
		I 2	+ 3, -0.1	mA	Vin	fo = 58.75 MHz, $fs = 400 Hzm = 80%$		20		mVrms	
	Video IF	I 4	+ 1 , -10	mA	V o - n	fo = 58.75 MHz, $fs = 400 Hzm = 40%$, $Vin = 20 mV$		500		mVrms	
AN248△	Combination	I 6	+ 3, -0.1	mA	BW - N			6		MHz	
		I 9	+ 1, -10	mA	CR				10	mVrms	
		I 10	+ 1 , -10	mA	DG – N				5	%	
		I 11	+0.1, -10	mA	DP-N				3	degrees	
		Itot	44	mA	Ri	f = 58MHz Pin ①		3.5		ΚΩ	
		Рт	640	m W	Ci	f = 58MHz Pin ①		9		pF	
		Topr	−20∼ 70	°C	Vo (AFT)			80		mVrms	
		Tstg	−40 ~ 150	°C							

AN247 (Envelope I -8)

AN248 (Envelope I -8)

			e Maximum Rati (Ta=25℃)	ngs	Electrical Characteristics (Ta=25℃)							
Type No.	Application	Item	Rating	Unit	Item	Condition	min.	typ.	max.	Unit		
		V ₁₋₈	14.4	V	Itot		25.5	32	38.5	mA		
		I ı	50	mA	V 1 -8		9.6	12	14.4	V		
		V 5 - 8	+1.2, 0	V	V 6 - 8	$I_5 = 1_{mA}, 16V - 6: 910\Omega$ $1 - 9: 270 K\Omega, 7 - 8: 240S$	4.9	6	7.4	V		
		V 6 -8	+20, 0	V	A 2 - 6	$1_5 = 1_{mA}, 16V - 6 : 910\Omega$ $V_2 = 1V_{PP}, 7 - 8 : 240\Omega$	7.4	8.3	9.2	times		
		V ₁₀₋₈	+29, 0	V	B 2 - 6	-3dB point	6.4	7.5		MHz		
		V 13-8	+ 2, 0	V	DG 2-6	$I_5 = 1 \text{ mA}, 16V - 6: 910 Ω$ $V_2 = 1 V_{PP}, 7 - 8: 240 Ω$		4		%		
	Widow	V14-8	+24, 0	V	A2-3 A2-4	$V_{2-8} = 3.5 V, V_{2} = 1 V_{PP}$ $3-8 \cdot 2.7 K\Omega, 4-8 \cdot 1.5 K\Omega$	1.9	2.1	2.3	times		
AN249	Video Jungle	V 16-8	+14.4, 0	V	B 2-4	$V_{2-8} = 3.5 V$, $V_{2} = 1 V_{PP}$ $4 - 8 : 1.5 K\Omega$	10			MHz		
	Combination	I 2	+ 1, 0	mA	DG 2-4	$V_{2-8} = 3.5 V, V_2 = 1 V_{p-p}$ $4 - 8 : 1.5 K\Omega$		1		%		
		I 5	+1.5, 0	mA	DP 2-4	$V_{2-8} = 3.5 V, V_{2} = 1 V_{p-p}$ $4-8: 1.5K\Omega$		1.1		degree		
	·	I 6	+18, 0	mA	V 13-8(S)	$I_{14} \cong 0$, when V_{13-8} is more than $V_{13-8(S)}$		1 .2		V		
		PT	490	mW	A 13-14	①4-20V: 10KΩ	100	145		time		
	e	Topr	-20~ 70	°C	V 16-8(S)	$V_{15-8} = 0.2V$, when V_{16-8} is more than V_{16-8} (S)		9.4		V		
		Tstg	$-40 \sim 150$	°C	Ri (2-8)	f = 3.6 MHz		40		ΚΩ		
			-		C O (2-8)	f = 3.6MHz		9		pF		
		V 8 – 10	+14.4	V	Itot		21.5	28	34.5	mA		
		I 8	44.5	mA	V 8 - 10		9.6	12	14.4	V		
	. *	V 2 - 10	– 5	V	V 9	burst output = 2Vp-p		1.2		Vp-p		
		V6-10,V7-10	V_{8-10} , 0	V	V R - Y V B - Y	burst output = 2Vp-p	0.8			Vp-p		
		V 9 - 10	+17, 0	V		tint control range		100		degree		
		V 13-10	$V_{3-10}, -5$	V		-3dB down from maximum output		23		dB		
411000	Color Processing	V 14-10	+2.5, 0	V	Vcw	color killer "ON"	0.7			V _{p-p}		
AN288	Combination	V 15-10	+10, 0	V	f cw	color killer "ON" AN288 AN289	3.18	3.58	3.98	MHz		
AN289	Sombination	I 1.I 5.I 13 I 14.I 15.I 16	+ 3, -0.1	mA	△V9 Vcc	V ₂₋₁₀ = 3 V p-pG pulse 5μs width V ₈₋₁₀ = 12V ± 20%	-2.5		+2.5	dB		
		I 2	+10, -1	mA (peak)	$ \triangle \boldsymbol{\phi}_{\mathrm{R-Y}} _{\mathrm{Vcc}}$	$V_{8-10} = 12V \pm 20\%$			5	degree		
		I 3,I 11	+0.1, -10	mA	color killer	$V_{8-10} = 12V \pm 20\%$		2		dB		
		I 4,I 12	+0.1, -3	mA	△V 9 Ta	$Ta = -20 \sim 70^{\circ}C$			2.4	dB		
		Рт	640	m W	$ \triangle^{\mathbf{p}}_{R-Y} _{\Gamma \mathbf{a}}$	Ta = − 20~ 70°C			15	degree		
		Topr	-20~70	°C	D•G			6		%		
		Tstg	−40~ 150	°C	D·P	· ·		4		degree		

ANZ 86 ANZ 805 MTA

AN249

		Absolu	te Maximum Rati (Ta=25℃)	ngs		Electrical Characterist	ics (Ta	=25℃)		
Type No.	Application	ltem	Rating	Unit.	ltem	Condition	min.	typ.	max.	Unit.
		V 16-3	+ 21	V	I 16	$V_{CC} = 24V$, $R_S = 270\Omega$ $V_{1-3} = 5.6V$, $V_{10-3} = V_{16-3}$	13	20	27	mA
		V 1 - 3	+10, 0	V	I 10	"	1	1.9	3.5	mA
		V 4 - 3	+10, 0	V	I 4	"	0.4	0.65	1	mA
		V 6,8-3	+7,0	V	Vi (lim.)	f = 58.75 MHz		80		mVrms
		V 7-3	+10, 0	V	Vo	f = 58.75MHz Vi = 180mV		2.1		Vrms
		V 10-3	+20, 0	V	Ri	f=58.75MHz Pin 7		1.7		kΩ
		V 14-3	+ 7, 0	V	Ci	"		5.5		pF
AN320△	Tuning system	I 2	+1, -1	mA	Ro	f = 58.75 MHz Pin 10		1.8		kΩ
	Combination	I 4	+0.1, -3	mA	Со	"		4.5		рF
		I 5	+ 3, - 2	mA	V 12,13-3		6	6.5	7	V
		I 15	+ 3, - 3	mA	V 12-13	S1.S2 OFF	- 0.7	0	+0.7	V
		Itot	30	mA	V 12-13	S ₁ ,S ₂ ON	-0.1	0	+0.1	V
		Рт	640	m W	t (R-G)		8	11	14	μse
		Topr	−20~70	°C	t (max.)		28	33	38	μsec
		Tstg	−40 ∼ 150	°C	S ML			0.1	2 :	μs/m
		V 1-9	+15.6	V	Itot		14	18	22	mA
		I 1	+ 41	mA	V 1 - 9		9.6	12	14.4	V
		V 3 - 9 V 13 - 9	$^{+\ 30},\ 0\ ^{+\ 24},\ 0$	V	V 15-9	AN 328 AN 331		0.48		V
		V 13-9	+30, 0	V	V 13-9	AN328		7.2		Vp-p
		$V_{2-9} \ V_{5-9}$	V ₁₋₉ ,— 5	V	В	,	4.5			MHz
		V 8 - 9 V 10 - 9	V ₁₋₉ , - 5	V	G 10-12	$V_{10-9} = 11 \sim 10 V$ Pin $0 \rightarrow 0$ Gain	1.12	1.2	1.28	time
	Video Jungle	P _{T5} P _{T7}	60 45	mW	G 10-14	$V_{10-9} = 10.2 - 11.2V$ Pin 10 - 14 Gain	2.2	2.7	3.3	time
AN328	Combination	I 3 I 4	$+10, -0.1 \\ +0.1, -10$	mA	G 10-11	$V_{10-9} = 11 - 10V$ $Pin(10) \rightarrow (11)Gain$		0.99		time
AN331	Combination	I 6 I 14	+ 1, -10	mA	V 6 - 9	$R_{6-9} = 3.3K\Omega$ V ₁₀₋₉ = 9V	9			V
		I 5 I 10, I 15	+ 1, -0.1	mA	V 4 - 9	$R_{4-9} = 10 K\Omega, V_{5-9} = 3.2V$ $V_{6-9} = 6V$	8.4			V
		I 13	+20, 0	mA	V 2 - 9	$V_{3-9} = 6V$, $R_{1-3} = 3.3K\Omega$ positive going	1.04	1.3	1.55	V
		I 16	+10, 0	mA	V 8 - 9	positive going	2.54	2.7	2.86	V
		Рт	490	mW	V 16-9	negative going			≤30	V
		Topr	-20~70	°C	GRF	$Pin(6) \rightarrow (4)Gain$ $R_{4-9} = 10K\Omega, V_{4-9} = 3V$		80		times
		Tstg	−40~150	°C	G 2 - 3	$R_{1-3} = 3.3 K\Omega$		54		times

AN320

AN328

AN320 (Envelope I -8) carrier in amplifier ML out red pulse ML color change circuit ML pulse DC H.pulse ML amplifier detector gate circuit green pulse voltage sawtooth regulator oscilator **4** AN328, AN331 (Envelope I -8) 00000 0 first video sync-pulse sync-pulse sync-pulse separator amplifier amplifier amplifier 3 ABL out noise noise blockout gate gate protector 2 ABL in RF AGC delayed amplifier RF AGC noise AGC IF AGC 4 AGC out detector amplifier amplifier 9 (5)

AGC out

		Absolu	te Maximum Rati (Ta=25℃)	ngs		Electrical Characte	eristics (Ta	=25℃)		
Type No.	Application	Item	Rating	Unit	ltem	Condition	min.	typ.	max.	Unit
		V 15-4	15.6	V	Itot		20	25	30	mA
		I 15	41	mA	V 15-4		9.6	12	14.4	V
		$\begin{matrix} V_{3-4} \\ V_{5-4} \end{matrix}$	+30, 0	V	V 9	negative going	6.2		8.2	Vp-p
		V 16-4	$V_{15-4}+2, 0$	V	V 10	positive going		3.8		Vp-p
		V ₁₁₋₄ V ₁₃₋₄	+ 5, 0	V	△f н V сс	$V_{15-4} = 12V \pm 20\%$	-10		30	Hz
		V 9 - 4	$V_{15-4}, -5$	V	∆f _H T a	$Ta = -20 \sim 70^{\circ}C$		75		Hz
ANIOOOW	Deflection	V 10-4	V ₁₅₋₄ , 0	V	τн	10	22.7	24.2	25.7	μsec
AN332 *	Combination	V 12-4	+15, 0	V	H pull in	•		± 150		Hz
AN334	Combination	I 3,I 5	+150, -1	mA	H hold	9		± 500		Hz
		I 1,I 9	+0.1, -10	mA	β			810		Hz/V
		I 2,I 8,I 10	+10, -10	mA	μ			4		V/μse
		I 7,I 11	+1, -1	mA	fvo		52	55	58	Hz
		PT	490	mW	∆fv Vcc	$V_{15-4} = 12 V \pm 20\%$	0	0.5	1.5	Hz
		Topr	-20~70	°C	△f v Ta	$Ta = -20 \sim 70^{\circ}C$		1.5	3	Hz
		Tstg	-40~150	°C	τν			630		μsec
		V 13-6	15.6	V	Itot	$f_H = 31.5 \text{KHz}$	14	19	24	mA
		$V_{1-6} \ V_{14-6}$	V 13-6, - 5	V	V 13-6			12		V
		V 2-6 V 3-6	-, -5	V	V 15-6			4.9		V
		V 8 - 6	+ 5 , -	V	G 15-12		- 1 v	30		times
		V 10-6	V 13-6, -	V	f HO		29	31.5	35	KHz
11.	Deflection	V 15-6	V 13-6, 0	V	Тн	*	6	9	13.5	μsec
AN333		V 16-6	+15.6, 0	V	β		100	124	150	Hz/V
	Combination	I 9,I 11	+0.1, -30	mA	V 5 - 6	I 3 = 1 mA			0.6	V
		Itot	34	mA	V7-6	V 8 = 2.5 V	1		0.6	V
		Рт	490	mW	V 16-6(ON)	R ₁₃₋₁₆ =22KΩ			0.6	V
		Topr	-20~70	°C	V16-6(0FF)	$V_{5-6} = 0 V$ $I_{2} = 0.5 \mathrm{mA}$	11			v
		Tstg	-40~150	°C	V 16-6(ON)	R ₁₃₋₁₆ =22KΩ			0.6	V
					V16-6(0FF	$V_{1-6} = 5 V$	11			V

Maintenane

AN332

AN333

	**	Absolut	te Maximum Rati (Ta=25℃)	ngs		Electrical Characteristic	s (Ta=	=25℃)		
Type No.	Appl cation	Item	Rating	Unit	Item	Condition	min.	typ.	max.	Unit
·		V ₁₋₃	+ 5, - 5	V	Itot	V ₅₋₃ = +12V	18	27	40	mA
		V2-3	+4, -5	V	Vi (lim)	$f_0 = 4.5 MHz$ $f_m = 400 Hz$ $\triangle f = \pm 25 KHz$ (FM)		100	300	μV
		V4-3	+ 6, 0	V	AMR	fo=4.5MHz 30%(AM)	40	55		dB
		V7 - 3	V 5 - 3, 0	V	Gm (IF)	f = 4.5MHz		550		mΰ
		V9-3	+ 4, 0	V	0 (IF)	f = 4.5MHz		46		degrees
		V ₁₀₋₃	+4, -5	V	Cfb	f = 4.5 MHz		< 0.02	24	pF
	Sound channel	V ₁₄₋₃	+ 3, - 5	V	Ri	f = 4.5MHz		17		K
AN340 △	Combination	I 1	+ 1, -0.1	mA	Ci	f = 4.5 MHz		4.7		рF
	(Def. Peak Det.)	I 2	+ 1, -0.1	mA	Att		80	90		dB
	(Bon roun Bon)	I 9	+1, -1	mA	V o (o)	fo = 4.5 MHz, fm = 400 Hz $\triangle f = \pm 25 KHz, Vi = 100 mV$		20		μV
		I 10	-1, -0.1	mA	VO(AF)		0.4	0.6		Vrms
		Itot	50	mA	Ro(7)			6.2		ΚΩ
		Рт	445	m W	Ro(8)			300		Ω
		Topr	-20~ 70	°C	G(AF)	Vi = 0.1 Vrms f = 400 Hz	17.5	20		dB
		Tstg	−40 ∼150	°C	Dtot	$V_0 = 2 \text{ V rms}$ f = 400 Hz		1.5		%
		V 16-9	14.4	V		$V_{16-9} = 12V \pm 20\%$			50	m V
	-	V 1 – 9 V 2 – 9	+8, -2.5	V	$\triangle V_{13-11} $ Ta $\triangle V_{13-15} $ Ta	$Ta = -20 \sim 70^{\circ}C$			60	m V
		$V_{3-9} \ V_{4-9}$	+9.5, -1.5	V.	Ев-ч	AN342	135	150	165	%
		V 5 - 9	V 16-9. 0	V	E_{R-Y}	AN343	91	106	121	%
		V 6-9	+ 5, - 5	V	EG-Y	AN342	32	40	48	%
		V 7 – 9	V 16-9. 0	V	E_{R-Y}	AN343	24	30	36	%
4010.40		I 1,2,3,4	+ 1 , - 1	mA	ф G – Y		227	238	247	degrees
AN342	Color	I 5	+ 1, -0.1	mA	G _{R-Y}			23		dB
AN343	Demodulator	I 6	+ 3, - 1	mA	Vu (max.)				50	mV
		I 7	+ 5, 0	mA	G 5-8			6		dB
		I 8	+0.2, -5	mA	В		4.5			MHz
		Itot	41	mA	Itot	$V_{5-9} = 10V, V_6 = 3V_{P-P}H_{pulse}$	17.6	22	26.4	m A
		\mathbf{P}_{T}	490	mW	V 16-9		9.6	14	14.4	V
	<	Topr	-20~ 70	°C	V 13-9	$V_{6-9} = 3V_{P-P}$. H pulse	5.7	6	6.3	V
		Tstg	−40−150	°C	V 13-11	V ₆₋₉ =3Vp-p, H pulse			50	m V

AN340

AN342

AN340 (Envelope I -7)

AN342, AN343 (Envelope I -8)

(FOR VTR)

		Absolut	e Maximum Rat (Ta=25℃)	ings		Electrical Characteris	tics (Ta	=25℃)		
Type No.	Application	Item	Rating	Unit	Item	Condition	mi n.	typ.	max	Unit
		V ₁₋₄	15.6	V	I 1	$V_1 = 12V$	18.5	23 .3	28	m A
		Itot	45	mA	G v 15-16	$V_{16} = 1V_{P-P}$	3	3.5	4	
		V 7 -4	-12	V	Vo sync 13	$V_{16} = 1 V_{P-P}$	8.4			Vp-p
	VTR Servo	V 11-4	-12	V	V I N 16	V ₁₆ =Pulse 60Hz	3	7.6	20	mVp-
ANIOOI	Control Signal	I 8	-10	mA	Twr9	$V_{16} = 1V_{P-P} 60H_z$	25	27.5	30	msec
AN301	Process Circuit	I 9	-10	mA	G v 2 – 3	$V_3 = 5mV_{P-P}$		150		times
	1 100033 Ollouit	I 13	-10.3	mA	V _{IN 3}	V ₃ = Pulse 30Hz	0.6	0.9	1.5	mVp-p
		Pτ	550	mW	TwP8	$V_3 = 5 \text{mV}_{P-P} 30 \text{Hz}$	26	29	31	msec
		Topr	-10~60	°C						
		Tstg	$-40 \sim 150$	°C		-				
		V 12-4	15.6	V	Itot	$V_{12-4} = 12V$	15	25	38	mA
		V 13-4	0 ~ 12	V	V 11	$V_{12-4} = 12V$	2	3	4	V
		I 1	- 5	mA	AAGC 7	$V_{12-4} = 12V$ $V_{i} = 0.5V_{p-1}$	1	1.3	1.8	Vp-p
		I 4	-45	mA	CAGC 7	$f = 10KHz$ $-10 \sim +5dB$		0.5	1	dB
411000	VTR Video	I 7	- 5	mA	GAGC ®	$V_{12-4} = 12V, f = 10KHz$ $V_i = 0.1V_{P-P}$		22		dB
AN302	AGC Circuit	I 14	-5.5	mA	SN AGC 7	$V_{12-4} = 12V$, Video signal $0.15V_{P-P}$	45	50		dB
		Itot	45	mA	Gf	$V_{12-4} = 12V$, $f_1 = 1MHz$ $f_2 = 5MHz$, $V_1 = 0.1V_{P-P}$		0.5		dB
	-	P _T	490	mW	GEH	$V_{12-4} = 12V$, $V_i = 0.3V_{P-P}$ $f_1 = 10KHz$, $f_2 = 2MHz$	7.1	8	8.5	dB
		Topr	$-10 \sim 70$	°C	GEL	$V_{12-4} = 12V, f = 10KHz$ $V_{1} = 0.3V_{P-P}$	8	10	12	. dB
		Tstg	$-40 \sim 150$	°C	DAGC	$V_{12-4} = 12V, f = 10KHz$ $V_{1} = 0.5V_{P-P}$		0.5	1.5	%
		V 9 - 14	14.4	V	SN impr.	A CONTRACTOR OF THE CONTRACTOR		4		dB
		I 7	-30	mA	Vo(max.)	f = 10 KHz	3.4			Vp-p
	VTR Noise	I 8	-30	mA	Dtot	$f=10KHz$, $Vi=0.3V_{\mathrm{P-P}}$			1	%
AN303 △	Suppression	Itot	100	mA	HA	f = 3MHz, $Vi = 3mVP-P$	36			dB
	Circuit	Рт	1.44	W	VA 1	$f = 10 \text{KHz}$, $Vi = 0.3 V_{P-P}$	1.8	2	2.5	Vp-p
		Topr	$-20 \sim 70$	°C	MA	$f = 3MHz$, $Vi = 0.5V_{P-P}$	1.4			Vp-p
		Tstg	$-40 \sim 150$	°C	Sq	$f = 3MHz$, $P_0 = 3V_{P-P}$			- 50	dB

 \triangle Preliminary

		Absolut	e Maximum Rat (Ta=25℃)	tings		Electrical Characteristi	cs (Ta:	=25℃)		
Type No.	Application	Item	Rating	Unit	Item	Condition	min.	typ.	max.	Unit
		V 12-4	15.6	V	I 12	$V_{12-4} = 12V$	15	25	30	mA
		V 7-5	+ 12	V	V8(P-P)	pin ® 1 KΩ GND	1	1.2		V
		V 7-6	+ 30	V	Gv	$V_{12-4} = 12V$, $f = 4 \text{ MHz}$ $V_i = 0.14 \text{mV}_{P-P}$	1			Vp-p
		V 6 - 5	. – 5	V	Vo(f)/Vo	. V 10V t - 4 MU.	40			dB
	VTR Video	I 7	+ 20	mA	Vo(f)/Vo	TOTAL AND A	40			dB
AN304	FM Limiter	I s	- 5	mA	Vo(f)/Vo	1017 / 4 1411	40			dB
	Circuit	I tot	30	mA	Vo(f)/Vo	X1 10X1 (4 MIII		41		dB
		Рт	490	m W	Vo(f)/Vo	V 19V f - 4 MHa		48		dB
		PT(T30)	50	mW	h FE	$V_{12-4} = 12V$	40		200	
		Topr	-20-70	°C						
		Tstg	-40-150	°C	1					
		V 16-6	14.4	V	I 16	$V_{16-6} = 12V$	18	25	37	mA
		V 5-6	3	V	V13-6		4.7	5.6	6.6	V
		V 15-6	5	V	Vi(max.)	$V_{16-6} = 12V, f = 4MHz$ $V_{0} = Po(max.)$			400	mVp-
	VTR	I 6	+ 1, -40	mA	Voc	$V_{16-6} = 12V, f = 4MHz$ $V_{i} = 70mV$	135	180	225	mVrn
46	Dropout	I 9	+ 1, - 5	mA	Gc	$V_{16-6} = 12V, f = 4MHz$ $V_{i} = 70mV$		8.7		dB
AN316 A	Compensation	I 15	+6, -1	mA	Gf c	$V_i = 70 \text{ mV}, f = 3 \text{ MHz}$ $V_i = 70 \text{ mV}, f = 10 \text{ MHz}$		- 5		dB
	Circuit	Itot	40	mA	SNc	$V_{OC}/V_O(at \ Vi=0)$		50		dB
		Рт	485	m W	Vrd	$V_{7-6} = 30 \text{mVrms}, f = 4 \text{MHz}$		1	1.5	mVrm
		Topr	− 20~70	°C	Vrc	$V_{2-6} = 70 \mathrm{mVrms}, f = 4 \mathrm{MHz}$		1	1.5	mVrm
		Tstg	$-40 \sim 150$	°C	Vd	Vi=200mVp·p, f=4MHz Drop Out time=3H	20	35	55	mVp-
	::	(Schmidt)	15	V	V _{IN} (on)	V 7 -14 = 12 V	3.6	4	4.4	V
		VIN	10	V	VIN(OFF)	V ₇₋₁₄ =12V	3.6	4	4.4	V
		Io(on)	-40	mA	Vo(on)	$I_{O(ON)} = -20 \text{mA}, V_{IN} = 3.6 \text{ V}$		0.2	0.4	V
		Vo(on)	15	V	Z _{IN}	$V_{IN} = 5 V$		10		МΩ
	VTR Automatic	(DC Amp)	1	mA	VIN(ON)		0		0.3	V
AN605	Tape Loading	I 2	1	mA	I _{IN} (OFF)		0.1			mA
	Circuit	V 2-14	15	V	Vo(on)	$I_{O(ON)} = -2 \text{ mA}, V_{IN} = 0.3 \text{ V}$		0.2	1	V
		Рт	490	m W	Itot			20		mA
		Topr	-10~65	°C						
		Tstg	-65~150	°C						

(MISCELLANEOUS TYPE)

			te Maximum Ratii (Ta=25°C)	ngs		Electrical Characteristics	(Ta=2	5°C)		
Type No.	Application	ltem	Rating	Unit	Item	Condition	min.	typ.	max.	Unit.
		I ı	7.2	mA	V 1-2	I = 5mA	31		35	V
	Voltage	Рт	250	mW	r 1 – 2	I = 5 mA, f = 1 KHz		12	25	Ω
AN155	Stabilizer	Topr	0 ~ 150	°C	$\triangle V_{1-2}$	I = 5mA	0.1		1 55	** /0
		Tstg	$-20 \sim 150$	°C	△Ta	$Ta = 10 \sim 50$ °C	-3.1		1.55	mV/°
		V 2-1	16	V	RACP	V battery=16.6V	5.17		11.23	ΚΩ
		V 12- 10	25	V	RADP	V battery=11V	17.8		33.8	ΚΩ
	Protect Circuit	I 6, I 8	50	mA	△VADP		3			V
AN208 *	for Battery	Рт	300	m W		leakage current				
		Topr	$-20\!\sim\!75$	°C	Ioff	at cut off condition			4	mA
		Tstg	-40~150	°C						
		Vcc	18	V	V 11-3	V _{CC} =13.5V	5.95	6 .3	6.65	V
		V 4-3	+6.3, -10	V	△V 5-3	V _{CC} =13.5V	1.2			V
		V 11-3	+5.9, 0	V	V10-3	V _{CC} =13.5V	2.03	2.26	2.49	V
		Vsurge	+300, -300	V	V 1-3	V _{cc} =13.5V	1.3	1.6	1.9	V
	Tachometer	I _{tot}	-120	mA	△V 10-3	$V_{CC} = 10 \sim 16V$	-0.1		0.1	V
AN603	for Mobile	Рт	370	m W	I 9	$V_{CC}=13.5V, V_{IN}=0.5V_{p-p}$		18		mA
		Topr	− 30~ 85	°C	△I 9	$V_{CC} = 10 \sim 16V$			0.72	mA
		Tstg	−65 ~150	°C	△V' 10-3	$T_a = -30^{\circ} \sim 80^{\circ} \text{C} V_{CC} = 13.5 \text{V}$		- 20	0.12	mV
			55 150		△I 9	$Ta = -30 \sim 80^{\circ}C \text{ V}_{CC} = 13.5V$		- 0.36		mA
					Δτ	$Ta = -30 \sim 80^{\circ}C$ $V_{CC} = 13.5V$		-40		μse
	i.	V 7,8-11	14.4	V	h FE (T8)	14 00 000 100 10101	40	100	300	7.00
		I 7	+10, -0.1	mA	h FE (T7)		40	100	300	
		I s	+10, -0.1	mA	I 8 – I 7		-100	0	100	μA
		I 12	+0.1, -10	mA	10 11		100			7-11
AN610 △	Balanced	I 13	+0.1, -10	mA						
	Modulator	Itot	15	mA						
		Рт	400	m W						
		Topr	$-20 \sim 70$	°C						
		Tstg	-55~150	°C						
-		Vсво	25	V	Ісво	$V_{CB} = 10V, I_E = 0$			1	μΑ
		Ісм	100	mA	І єво	$V_{EB} = 5 V, I_{C} = 0$			1	μΑ
AN902	Multi Transistor	Рт	300	m W	VCE(sat)	$I_{C} = 100 \text{ mA}, I_{B} = 10 \text{ mA}$			1.4	V
ANSOL	Watti Transistor	Topr	$-20 \sim 100$	°C	h FE	$V_{CE} = 5 \text{ V}, I_{E} = 2 \text{ mA}$	40		1.1	
		Tstg	$-35 \sim 125$	°C	нгь	V CE - 0 V , I E - 2 III I	10			
		Topr	-20-70	°C	I 5-4	V ₅₋₄ = 10V, I ₃ = 0			1	μΑ
		Tstg	-20-70 $-40-150$	°C	I 3-4	$V_{3-4} = 5V, I_{5} = 0$			1	μ A
AN903	Differential	Рт	445	mW	V 5-3(sat)	$I_4 = 0.5 \mathrm{mA}, I_5 = 5 \mathrm{mA}$			0.6	V
AN904	Amp.	Vсво	30	V	h FE	$V_{5-3} = 2V, I_{3} = -1 \text{ mA}$	40		0.0	•
AN905	AN903	V CBO	5	V	Gv	$V_{11-4} = 12V, V_{9-14} = 5V$.0	1		time
	AN905	I CM	30	mA	Gv	$V_{11-4} = 12V, V_{9-14} = 5V$ $V_{11-4} = 12V, V_{9-14} = 5V$		27		time
	ANSOS	V CBO	30	V	Ісво	$V_{CB} = 30V$		21	1	μA
		V СВО	+ 30, - 0.1	mA	I сво	$V_{EB} = 3V$			1	
AN915	Multi Transistor	Рт	445	m W	VCE(sat)	$I_{.C} = 5 \text{ mA}, I_{.B} = 0.5 \text{ mA}$			0.6	μA
Allele	Multi HallSISTOF	Topr	-20-70	°C					40	V
		Topi	-20~70	C	h fe	$V_{CE} = 2V$, $I_{E} = -1 \text{ mA}$			40	

DIGITAL · MONOLITHIC INTEGRATED CIRCUITS

(BIPOLAR)

		Absolut	te Maximum Ra (Ta=25℃)	tings		Ele	ctrical Characteristics (Ta=	25℃)		
Type No.	Function	Item	Rating	Unit.	Item	V _{cc} (V)	Condition	min.	max.	Unit.
					Vol		V _{IH} =1.9V, I ₀ =12mA		0.4	V
					V _{OH}	4.5	$V_{IL} = 1.1V, I_0 = -0.12mA$	2.6	-	V
		Vcc	$-0.5 \sim 8$	V	IIL		$V_{IH} = 4V, V_I = 0$		-1.6	mA
		VI	$-1.5 \sim 5.5$	V	Ітн	5.5	$V_{IL}=0, V_I=4V$		2	μA
	5	V_0	6	V	Ios		$V_{IL} = 0, V_0 = 0$		-1.34	mA
	Dual	Li	−10 ~ 1	mA	Іон		$V_{IL} = 0, V_0 = 4.5V$		50	μA
DN1930	4-Input	I ₀	30	mA	V _{OH(E)}	4.5	$V_{IL(E)} = 1.8V, I_0 = -0.12mA$	2.6		V
	Expandable	PT	250	mW	I CCL	5			6.5	mA
	NAND Gate	Topr	0~75	°C	Іссн	8	$V_{IL} = 0$		5.5	mA
		Tstg	$-65 \sim 150$	°C	tpdL		$R=400\Omega$, $C=50pF$	10	30	nse
					t _{pdH}		$R=3.9K\Omega$, $C=30pF$	25	80	nse
					PT	- 5	15	17	(typ.)	mW
					FO				8	
					Vol		V _{IH} = 1.9V, I ₀ = 36mA		0.4	V
					Voн	4.5	$V_{1L} = 1.1V, I_0 = -2.5mA$	2.6		V
		Vcc	-0.5~8	V	I _{IL}		$V_{IH} = 4V, V_I = 0$		-1.6	mA
		VI	-1.5~5.5	V	I _{IH}	5.5	$V_{IL}=0, V_I=4V$		2	μA
	Dual	V ₀	6	V	Ios	0.0	$V_{1L} = 0, V_0 = 0$	-18	-	mA
	4-Input	I	-10~ 1	mA	Гон		$V_{1L} = 0, V_0 = 4.5V$	10	50	μA
DN1932	Expandable	I ₀	150	mA	V _{OH(E)}	4.5	$V_{IL}(E) = 1.8V, I_0 = -2.5mA$	2.6	30	μA V
DITT 932	NAND Gate	PT	250	mW	I CCL	5	VIL(E) - 1.0 V, 10 - 2.0 m/1	2.0	26.6	mA
	Buffer	Topr	0 ~75	°C	I CCL	8	$V_{IL} = 0$		6	mA
	Bullet	Tstg	-65~150	°C	1.000,0000	0	$R = 150\Omega, C = 500pF$	15	40	
		TStg	-65-150	C	t _{pdL}	-	$R = 510\Omega$, $C = 500pF$	25	80	nse
	*				t _{pdH}	- 5	K-31012, C-300pF		(typ.)	nse mW
					FO			32	25	III VV
		37	1.5.5.5	V	17.5		V -0 I -0 A	0.00		V
	Dual	V _I	-1.5~5.5		V _F		$V_{IL} = 0, I_0 = 2mA$ $V_{IL} = 0, V_I = 4V$	0.68	0.82	
DN1933	4-Input	I	-10~ 1	mA °C	IIR		100000		100	μA
4	Expander	Topr	0 ~75	°C	Ior	-	$V_0 = 4V$		10	μA
		Tstg	−65~150	°C	**		V 0.55V I 10.4		0.4	***
		37	0.5.0	17	Vol	4.5	$V_{IH} = 2.55V, I_0 = 12mA$	0.0	0.4	V
		Vcc	-0.5~8	V	V _{OH}		$V_{IL} = 1.92V, I_0 = -0.12mA$	2.6		V
		Vı	-1.5~5.5	V	IIL	5.5	$V_1 = 0.65V$		-1.6	m A
1.0		V ₀	6	V	Ios		$V_{IL} = 0.82V, V_0 = 0$		-1.34	mA
	Expandable	I	-10~ 1	mA	Іон	4.5	$V_{IL} = 0.82V, V_0 = 4.5V$		50	μA
DN 1935	Hex Inverter	I 0	30	mA	ICCL	5			19.5	mA
		PT	250	mA	Іссн	8	$V_{IL} = 0.65V$		16.5	mΑ
		Topr	0 ~75	°C	t _{pdL}		$R=400\Omega$, $C=50pF$	10	30	nse
		Tstg	$-65 \sim 150$	°C	t _{pdH}		$R=3.9K\Omega$, $C=30pF$	25	80	nse
		-			PT		÷	51	(typ.)	mW
				۸	FO				8	

		Absolu	te Maximum Rat (Ta=25℃)	ings		Ele	ctrical Characteristics (Ta=	=25℃)		
Type No.	Function	Item	Rating	Unit.	Item	V cc (V)	Condition	min.	max.	Unit.
					Vol		$V_{IH} = 1.9V, I_0 = 12mA$		0.4	V
					V _{OH}	4.5	$V_{IL} = 1.1V, I_0 = -0.12 \text{mA}$	2.6		V
		Vcc	$-0.5 \sim 8$	V	I _{IL}		VI = 0		-1.6	mA
		Vı	$-1.5 \sim 5.5$	V	I _{IH}	5.5	$V\iota = 4V$		2	μΑ
		V_0	6	V	Ios		$V_{IL} = 0, V_0 = 0$		-1.3	mA
	Hex	Iı	−10 ∼ 1	mA	Іон	4.5	$V_{IL} = 0, V_0 = 4.5V$		50	μA
DN1936	Inverter	Ιο	30	mA	I ccl	5			19.5	mA
		Рт	250	mW	I cch	8	$V_{IL} = 0$		16.5	mA
		Popr	0~75	°C	t pdL		$R = 400\Omega, C = 50pF$	10	30	nsec
		Tstg	$-65 \sim 150$	°C	t pdH		$R=3.9 \text{K}\Omega$, $C=30 \text{pF}$	25	80	nsec
	>				PT	5			(typ.)	mW
		,			FO				8	
					V_{OL}		$V_{IH} = 1.9 V, I_0 = 11 mA$		0.4	V
					Voh	4.5	$V_{IL} = 1.1V, I_0 = -0.5 \text{mA}$	2.6	0.000.000	mA
		V_{CC}	-0.5~8	V	I _{IL}		$V_I = 0$		-1.6	mA
		Vı	$-1.5 \sim 5.5$	V	I _{IH}	5.5	$V_I = 4V$		2	μA
		V_0	6	V	Ios		$V_{IL} = 0, V_0 = 0$		-4	mA
	Fast	I	−10~ 1	mA	Іон	4.5	$V_0 = 4.5V$		50	μA
DN1937	Hex	I ₀	30	mA	Iccl	5			32.1	mA
	Inverter	P_T	250	mW	I ссн	8	$V_{IL} = 0$		16.5	mA
		Topr	0~75	°C	t pdL		$R=400\Omega$, $C=50pF$	10	30	nsec
		Tstg	$-65 \sim 150$	°C	t pdH		$R=3.9 \text{K}\Omega$, $C=30 \text{pF}$	15	50	nsec
					PT	5	1.00 mg/1.00	75	typ.)	mW
					FO				7	70.00
	,				Vol	4.5	$V_{IH} = 1.9 V, I_0 = 40 mA$		0.4	V
					Voh		$V_{1L} = 0, I_0 = 5 \text{mA}$	6		V
		Vcc	-0.5~8	V	IIL		$V_{IH} = 4V, V_{I} = 0$		1.6	mA
		Vı	$-1.5 \sim 5.5$	V	I _{IH}	5.5	$V_{1L} = 0, V_1 = 4V$		2	μA
	Dual	V ₀	6	V	Іон		$V_{IL} = 1.1V, V_0 = 4.5V$		50	μA
	4-Input	Ιı	-10~1	mA	I _{OH(E)}		$V_{IL(V)} = 1.8 \text{mA}, V_0 = 4.5 \text{V}$		50	μA
DN 1944	Expandable	Ιο	150	mA	I cci.	5			20	mA
	NAND	P_T	250	mW	I ссн	8	$V_{IL} = 0$		6	mA
	Power Gate	Topr	0 ~75	°C	t _{pdL}		$R = 150\Omega, C = 100pF$	10	35	nsec
		Tstg	-65~150	°C	t pdH		$R = 510\Omega$, $C = 20 pF$	15	50	nsec
		0		-	PT	5	,		(typ.)	mW
					FO				27	

		Absolu	te Maximum Rat (Ta=25℃)	ings	- ×	E	lectrical Characteristics (Ta	=25℃)		
Type No.	Function	Item	Rating	Unit.	Item	V _{cc} (V)	Condition	min.	max.	Unit
					Vol		$V_{IH} = 1.9 V, I_0 = 12 mA$		0.4	V
	- · · · · · · · · · · · · · · · · · · ·				Von	4.5	$V_{IL} = 1.1V, I_0 = -0.12mA$	2.6		V
		Vcc	-0.5~8	V	I _{IL}		$V_{IH} = 4V, V_{\iota I} = 0$		-1.6	mA
		V _{I.}	-1.5~5.5	V	I _{IH}	5.5	$V_{IL} = 0$, $V_I = 4V$		2	μА
		V_0	6	V	Ios		$V_{IL} = 0, V_0 = 0$		-1.34	mA
	Quadruple	IE	−10 ~ 1	mA	Іон	4.5	$V_{IL} = 0$, $V_0 = 4.5V$		50	μA
DN 1946	2-Input	I ₀	30	mA	I _{CCL}	5			13	mA
	NAND Gate	P_T	250	mW	Іссн	8	$V_{IL} = 0$		11	mA
		Topr	0~75	°C	t _{pdL}		$R = 400\Omega, C = 50pF$	10	30	nsec
		Tstg	-65~150	°C	tран		R=3.9KΩ, C=30pF	25	80	nsec
					PT	- 5		34	(typ.)	mW
					FO				8	
					Vol		V _{IH} = 1.9V, I ₀ = 11mA	-	0.4	V
	=				Voh	4.5	$V_{IL} = 1.1V, I_0 = -0.5 \text{mA}$	2.6		V
		Vcc	-0.5~8	V	I _{IL}		$V_{IH} = 4V, V_{I} = 0$		-1.6	mA
	* 8	Vı	-1.5~5.5	V	Іін	5.5	$V_{IL}=0$, $V_I=4V$		2	μA
	Fast	V ₀	6	V	Ios		$V_{IL} = 0, V_0 = 0$		-4	mA
	Quadruple	I r	−10~ 1	mA	Іон	4.5	$V_{IL} = 0, V_0 = 4.5V$		50	μA
DN 1949	2-Input	I ₀	30	mA	I ccl	5	100		21.4	mA
	NAND Gate	PT	250	mW	I ссн	8	V _{IL} = 0		11	mA
		Topr	0~75	°C	t pdL		$R = 400\Omega, C = 50pF$	10	30	nsec
		Tstg	-65~150	°C	t pdH		R=3.9KΩ, C=30pF	15	50	nsec
					PT	- 5		50	(typ.)	mW
					FO				7	
					Vol		V _{IH} =1.9V, I ₀ =11mA		0.4	V
					V _{OH}	4.5	$V_{IL} = 1.1V, I_0 = -0.5mA$	2.6		V
		Vcc	-0.5~8	V	I _{IL}		$V_{IH} = 4V$, $V_{L} = 0$		-1.6	mA
		Vr	$-1.5 \sim 5.5$	V	I _{IH}	5.5	$V_{IL} = 0$, $V_{T} = 4V$		2	μA
	Fast	V_0	6	V	Ios		$V_{IL} = 0, V_0 = 0$		-4	mA
	Dual	In	-l 0∼ 1	mA	Іон		$V_{IL} = 0, V_0 = 4.5V$		50	μA
DN 1961	4-Input	Ιο	30	mA	V _{OH(E)}	4.5	$I_{IL(E)} = 1.8 \text{mA}, I_0 = -0.5 \text{mA}$	2.6		V
	Expandable	P_T	250	mW	I ccl	5			10.7	mA
	NAND Gate	Topr	0 ~75	°C	I ссн	8	$V_{IL} = 0$		5.5	mA
		Tstg	-65~150	°C	t _{pdL}		$R=400\Omega$, $C=50pF$	10	30	nsec
					t pdH	1.	R=3.9KΩ, C=30pF	15	50	nsec
					P _T	- 5		25	(typ.)	mW
					FO				7	

		Absolut	e Maximum Rat (Ta=25℃)	ings		Е	lectrical Characteristics (Ta	a=25℃)		
Type No.	Function	Item	Rating	Unit.	Item	V cc (V)	Condition	min.	max.	Unit
					Vol		V _{IH} =1.9V, I ₀ =12mA		0.4	V
					V _{OH}	4.5	$V_{IL} = 1.1V, I_0 = -0.12mA$	2.6		V
		Vcc	-0.5~8	V	I _{IL}		$V_{IH} = 4V$, $V_I = 0$		-1.6	mA
		Vı	$-1.5 \sim 5.5$	V	I _{IH}	5.5	$V_{IL} = 0, V_{I} = 0$		2	μΑ
		V_0	6	V	Ios		$V_{IL} = 0, \ V_0 = 0$		-1.34	mA
	Triple	Ιţ	−10 ~ 1	mA	I он	4.5	$V_{IL} = 0, V_0 = 4.5V$		50	μA
DN1962	3-Input	Io	30	mA	I CCL	5			9.75	mA
	NAND Gate	P_T	250	mW	I ссн	8	$V_{IL} = 0$		8.25	mA
		Topr	0~75	°C	t pdL		$R = 400\Omega, C = 50pF$	10	30	nse
		Tstg	$-65 \sim 150$	°C	t pdH		$R=3.9 \text{K}\Omega$, $C=30 \text{pF}$	25	80	nse
					PT	- 5		25.5	(typ.)	mW
					FO				8	
		1			Vol		V _{IH} =1.9V, I ₀ =11mA		0.4	V
					Von	4.5	$V_{IL} = 1.1V, I_0 = -0.5 \text{mA}$	2.6		V
		Vcc	-0.5~8	V	IIL		$V_{IH} = 4V, V_{I} = 0$	2.0	-1.6	mΑ
		Vı	$-1.5 \sim 5.5$	V	I _{IH}	5.5	$V_{IL} = 0, V_I = 4V$		2	μA
	Fast	V ₀	6	V	Ios		$V_{IL} = 0, V_0 = 0$		-4	mΑ
	Triple	I I;	-10~ 1	mA	Іон	4.5	$V_{IL} = 0, V_0 = 4.5V$		50	μA
DN1963	3-Input	I 0	30	mA	I ccl	5	· 112 0, 10 1.01		16.1	mA
	NAND Gate	PT	250	mW	Іссн	8	$V_{IL} = 0$		8.25	mA
		Topr	0~75	°C	t pdL		$R=400\Omega$, $C=50pF$	10	30	nse
		Tstg	-65~150	°C	t pdH		$R = 3.9 \text{K}\Omega, C = 30 \text{pF}$	15	50	nse
		10.6	00 100		PT	5	т 0.01м2, 0 обрт		(typ.)	mW
					FO			07.0	7	111.11
					VoL		$V_{IL.} = 1.1V, V_{IH} = 1.9V$ $I_0 = 16.8 \text{mA}$		0.4	V
					Vон	4.5	$V_{IL} = 1.1V, V_{IH} = 1.9V$ $I_0 = -0.12mA$	2.6		V
					I _{IL} J/K		$V_{IH} = 4V, V = 0$		-1.07	mA
		$V_{\rm CC}$	$-0.5 \sim 8$	V	I _{IH} J/K	5.5	$V_{IL} = 0, V = 4V$		2	μΑ
	Dual	Vı	$-1.5 \sim 5.5$	V	I _{ILT}		$V_{1L} = 1.1V, V_1 = 0$		-3.2	mA
	J/K Clocked	V_0	6	V	I _{IHT}	4	$V_{IL} = 0, V_{I} = 4V$		10	μA
DN1093		Iı	$-10\sim 1$	mA	IILSD		$V_{1L} = 0, V_{r} = 0$		-3.2	mA
DIVIOSS	Flip-Flop	Ιο	30	mA	I _{IHSD}		$V_{IL} = 0, V_{I} = 4V$		2	μA
	(Separate	P_{T}	250	mW	Ios	5.5	$V_{IL} = 0, \ V_0 = 0$	-0.6	-2.25	mA
	Clock)	Topr	0~75	°C	I он		$V_{IL} = 0, V_0 = 5.5V$		50	μA
		Tstg	$-65 \sim 150$	°C	I cc(IH)	5			28	mA
					I cc(IL)	8	$V_{IL} = 0$		40	mA
					t pdL		$R=330\Omega$, $C=50pF$	30	80	nse
					t pdH		$R=2K\Omega$, $C=30pF$	30	80	nse
					P _T	5		1976	(typ.)	mW
					FO				12	

		Absolu	te Maximum Ra (Ta=25℃)	tings		E	Hectrical Characteristics (Ta=25℃)		
Type No.	Function	Item	Rating	Unit.	Item	V cc (V)	Condition	min.	max.	Unit.
					Vol		$V_{1L} = 1.1V, V_{1H} = 1.9V$ $I_0 = 15.4mA$		0.4	V
					Vон	4.5	$V_{IL} = 1.1V, V_{IH} = 1.9V$ $I_0 = -0.5mA$	2.6		V
					I _{IL J K}		$V_{IH} = 4V, V_{A} = 0$		-1.0	mA
		Vcc	-0.5~8	V	I _{IН} јк		$V_{IL} = 0, V_{I} = 4V$		2	μA
	Fast	V_1	-1.5~5.5	V	I _{ILT}		$V_{1L} = 1.1 V, V_1 = 0$		-3.2	mA
	Dual J/K	V_0	6	V	I _{IHT}		$V_{1L} = 0, V_{1} = 4V$		10	μA
	Clocked	I	-10∼ 1	mA	I _{ILSD}	5.5	$V_{1L} = 0, V_1 = 0$		-3.2	mA
DN1094	Flip-Flop	Io	30	mA	I _{1HSD}		$V_{1L} = 0, V_{1c} = 4V$		2	μA
	(Separate	PT	250	mW	Ios		$V_{1L} = 0, V_0 = 0$	-2.1	-4.7	mA
	Clock)	Topr	0 ~75	°C	Іон		$V_{IL} = 0, V_0 = 5.5V$	-	50	μA
		Tstg	-65~150	°C	I _{CC(IH)}	5			32.4	mA
					I _{CC(IL)}	8	$V_{IL} = 0$		40	mA
					t _{pdL}		$R = 330\Omega, C = 50pF$	30	75	nsec
					t pdH		$R = 2K\Omega$, $C = 30pF$	30	65	nsec
					PT	5	A Braz, o dopr		(typ.)	mW
				j.	FO			101	11	
					Vol		$V_{IL} = 1.1V, V_{IH} = 1.9V$ $I_0 = 15.4mA$		0.4	V
					V _{он}	4.5	$V_{IL} = 1.1V, V_{IH} = 1.9V$ $I_0 = -0.5 \text{mA}$	2.6		V
					IIL JK.		$V_{IH} = 4V, V_{I} = 0$		-1.07	mA
					I _{IH} J/K		$V_{IL} = 0, V_{I} = 4V$		2	μA
	Fast	V_{CC}	-0.5~8	V	I _{ILT}		$V_{1L} = 1.1V, V_1 = 0$		-6.4	mA
	Dual J/K	Vı	$-1.5 \sim 5.5$	V	Інт		$V_{IL}=0$, $V_{I}=4V$		20	μΑ
	Clocked	V ₀	6	V	I _{ILSD}		$V_{IL} = 0, V_I = 0$		-3.2	mA
DN1097	Flip-Flop	Ιı	−10 ~ 1	mA	I _{IHSD}	5.5	$V_{IL}=0$, $V_I=4V$		2	μA
DIVIOSI	(Common	I ₀	30	mA	IILCD		$V_{IL} = 0, V_{I} = 0$		-6.4	mA
	Clock	P_T	250	mW	I IHCD		$V_{IL} = 0, V_{I} = 4V_{-}$		4	μA
	and	Topr	0 ~75	°C	Ios		$V_{IL} \! = \! 0, V_0 = \! 0$	-2.1	-4.7	mA
	Clear)	Tstg	-65~150	°C	I он		$V_{IL}\!=\!0,V_0\!=\!5.5V$		50	μA
					I cc(IH)	5			32.4	mA
					I _{CC(IL)}	8	$V_{IL} = 0$		32	mA
					t pdL		R=330Ω C=50pF	30	75	nsec
					t pdH		$R=2K\Omega$ $C=30pF$	30	65	nsec
					P _T	5		104	(typ.)	mW
					FO				11	7

		Absolu	te Maximum Rat (Ta=25℃)	tings		Elec	ctrical Characteristics (Ta=	25℃)		
Type No.	Function	Item	Rating	Unit.	Item	V _{CC} (V)	Condition	min.	max.	Unit.
					Vol		$V_{IL} = 1.1V, V_{IH} = 1.9V$ $I_0 = 16.8 \text{mA}$		0.4	V
					Vон	4.5	$V_{IL} = 1.1V, V_{IH} = 1.9V$ $I_0 = -0.18mA$	2.6		V
					I _{IL J K}		$V_{IH} = 4V$, $V_I = 0$		-1.07	V
					I _{1Н Ј К}	5.5	$V_{IL} = 0$, $V_I = 4V$		2	μ A
	D 1 1/16	Vcc	$-0.5 \sim 8$	V	I _{ILT}		$V_{IL} = 1.1V, V_I = 0$		-6.4	mA
	Dual J/K	VI	$-1.5 \sim 5.5$	V	I _{IHT}	4	$V_{IL} = 0$, $V_I = 4V$		20	μ A
	Clocked	V_0	6	V	I _{ILSD}		$V_{IL} = 0, \ V_{I} = 0$		-3.2	mA
DN1099	Flip-Flop	I 1	-10~ 1	mA	I _{IHSD}		$V_{\text{IL}}\!=\!0,V_{\text{I}}\!=\!4V$		2	μ A
DN 1099	(Common	Ιο	30	mA	IILCD	5.5	$V_{IL} = 0, \ V_I = 0$		-6.4	mA
	Clock	P_T	250	mW	I _{1HCD}	3.3	$V_{IL}\!=\!0,\ V_{I}\!=\!4V$		4	μ A
	and	Topr	0~75	°C	Ios		$V_{\text{IL}} \! = \! 0, \; V_0 = \! 0$	-0.6	-2.25	mA
	Clear)	Tstg	-65~150	°C	Іон		$V_{IL}\!=\!0,V_0=\!5.5V$		50	μA
					I cc(IH)	5			28	mA
					I cc(IL)	8	$V_{IL} = 0$		32	mA
					t pdL		$R\!=\!330\Omega,\;C\!=\!50pF$	30	80	nsec
					t pdH	5	$R=2K\Omega$, $C=30pF$	30	80	nsec
					PT	J		96	(typ.)	mW
					FO				12	

DN 1930

DN1936

DN1932

DN1944

DN1093

DN1099

Type No.		Absolute Maximu (Ta=25°				Electrical Characteristics (Ta=25℃)						
	Function	Item	Rating	Unit.	ltem	Condition	min.	typ.	max.	Unit		
	20270	Vcc	8	V	$V_{OH(a \sim g)}$	$V_{CC} = 4.5V, I_{O} = -7 \text{ mA}$ $V_{IH} = 1.9V, V_{IL} = 0.9V$	1.8			V		
	BCD-7 Segment	V_{IN}	5.5	V	V _{OH(RBO)}	V_{CC} =4.5V, I_{O} =0.12mA V _{IH} =1.9V, V_{IL} =0.9V	2.6			V		
DN8015	Decorder	P_0	6	mW	$V_{OL(a-g)}$	$V_{CC} = 4.5V, I_{O} = 5mA$ $V_{IH} = 1.9V, V_{IL} = 0.9V$			1	V		
DINOUTS	Recorder	P_T	400	mW	V _{OL(RBO)}	$V_{CC} = 4.5V, I_{O} = 5mA$ $V_{IL} = 0.9V$			0.4	V		
	Driver for	Topr	0 ~75	°C	I IH (A.B.C.D)	$V_{CC} = 5.5V, V_1 = 4V$ $V_{CC} = 5.5V, V_1 = 5.5V$			10 30	μА		
	LED	Tstg	$-55 \sim 150$	°C	IIL (ABSI)				$-16 \\ -3.2$	mA		
	Vr(DN803T)	50	V		$I_R = 10 \mu A$	50			V			
	-	V _R (DN804)	40	V	V _R (DN804)	$I_R = 10 \mu A$	40			V		
DN803T		IF	200	mA	V _F	$I_F = 200 mA$			1.3	V		
DN804	Diode Arrays	I FM	400	mΑ	V _F	$I_F = 400 \text{mA}$ f = 1 MHz, duty $50%$			1.6	V		
DN806		P _T (Ta<70°C)	500	mW	Vsub	$I_{SUB} = 10 \mu A$	60			V		
	į.	Topr	$-55\!\sim\!125$	°C	t rr	$I_F = 100 \text{mA}, R_L = 100 \Omega$ $I_R = 100 \text{mA}, ir = 10 \text{mA}$		5	10	nse		
		Tstg	$-55 \sim 150$	°C	Cj	$V_R = 0$, $f = 1 MHz$		4		рF		
		5			VoL	$V_{CC} = 16V$, $I_{OL} = 1 \text{ mA}$			0.4	V		
		Vcc	16	V	Vol	$V_{CC} = 4V, I_{OL} = 1mA$			0.4	V		
		I 1	16	V	V _{OH}	$V_{CC} = 16V, I_{OH} = -1.1 \text{mA}$	12			V		
	*	Ιc	5	mA	V _{OH}	$V_{CC} = 4V, I_{OH} = -0.2 mA$	2.2			V		
DN805	Toggle Flip-Flop	P _T	200	mW	Iccl	$V_{CC} = 16V$			15	mΑ		
		Topr	$-20 \sim 75$	°C	ICCL	$V\mathrm{cc} = 4V$			3.5	mΑ		
		Tstg	$-55 \sim 150$	°C	I ссн	V cc = 16 V			15	mA		
					I cch	Vcc = 4V			3.5	mΑ		
					fmax	$V_{IN} = 3.5 V_p \cdot p_{(OFF \text{ set } 0.5V)}$ duty 30%		1		MHz		

DN801S

DN803T

DN805

		Absolu	Absolute Maximum Ratings (Ta=25℃)			Electrical Characteristics (Ta=25℃)						
Ty/pe No.	Function	Item.	Rating	Unit	ltem	C ondition	min.	typ.	max.	Unit		
					Vсво	$I_{C} = 100 \mu A, I_{E} = 0$	70			V		
					VCEO	$I_C = 10 \mathrm{mA}$, $I_B = 0$	30			V		
					VEBO	$I_{E} = 100 \mu\text{A}, I_{C} = 0$	5			V		
				-	Ісво	$V_{CB} = 40V, I_E = 0$			10	μA		
		Vсво	70	V		$I_C = 30_mA$, $I_B = 3_mA$			0.3			
		VCEO	30	V	VCE(sat)	I $_{C} = 100 mA$, I $_{B} = 10 mA$			0.4	v		
-		VEBO	5	V		$I_{C} = 500 \text{mA}, I_{B} = 50 \text{mA}$			0.8			
DN807	Quad Transistor	Iс	600	mA		$V_{CE} = 1V, I_{C} = 30mA$	30					
	Arrays	Рт	600	mW	h fe	$V_{CE} = 1 V, I_{C} = 100 mA$	30					
		Topr	0 ~ 75	°C		$V_{CE} = 1V, I_{C} = 500 \text{ mA}$	20					
		Tstg	-55~150	°C	fт	$V_{CE} = 10V, I_{C} = 50mA$		300		МН		
					t on	I c = 500 mA, V cc = 15 V $I B = 50 \text{mA}, V_{BE(OFF)} = -0.9 \text{ V}$ $RL = 28\Omega, C_1 = 15 \text{pF}$		25	40	nse		
	41				toff	$\begin{array}{l} I_{\rm C} = 500\text{mA}, V_{\rm CC} = 15V\\ I_{\rm B} = 50\text{mA}, I_{\rm B(OFF)} = -50\text{mA}\\ R_{\rm L} = 28\Omega, C_{\rm L} = 15\text{pF} \end{array}$		40	70	nse		
		Vcc	15	V	Vol	$V_{CC} = 15V, I_{OL} = 6mA$ $V_{IT} = 0, V_{IS} = 15V$			0.4	V		
		Vı	15	V	Vol	$V_{CC} = 9V, I_{OL} = 5mA$ $V_{IT} = 0, V_{IS} = 9V$			0.4	V		
		V ₀	15	V	Vон	$V_{CC} = 15V, I_{OH} = -1mA$ $V_{IT} = 0, V_{IS} = 15V$	13			V		
	Twelve or	Рт	450	mW	Vон	$V_{CC} = 9V, I_{OH} = -1 \text{ mA}$ $V_{IT} = 0, V_{IS} = 9V$	7			V		
DN811A	Sixteen	Topr	$-20 \sim 75$	°C	VIL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1		0.5	V		
	Counter	Tstg	-55~150	°C	VIL		4			V		
	od.ne.				-I _{IL}	$V_{CC} = 15V, V_{IN} = 0$			1.5	mA		
					Іін	$V_{CC} = 15V, V_{IN} = 15V$			100	μΑ		
					Icc	$V_{CC} = 15V, V_{IT} = 0 V_{LS} = 0$			30	mA		
		ΙR	3	mA		$I_R = 10 \mu A$	6.5			V		
		IF	10	mA	V _R	$I_R = 3 \text{ mA}$	6.8			V		
DN820		V ₀	15	V	VF	$I_F = 5 \text{ mA}$			1	V		
DN821	Diode Matrix	(Note) V CC	15	V	(Note) I os	$V_{CC} = 15V, V_{O} = 0$	5.8		10	m.A		
DN822		Рт	400	mW	Vsub	$Isub = 10 \mu\text{A}$	15			V		
		Topr	0 ~ 75	°C								
		Tstg	-55~150	°C								

Note: only to DN820 and DN822 \triangle Preliminary

Circuit Schematic **DN807** (Envelope I -7) **DN8II** (Envelope I - 7) (Top View) **DN820** (Envelope I -8) **DN82** I (Envelope I -8) $R_1 \sim R_4 = 2 \text{K} \Omega$ 40 5 0-6 0-80 8 0-10 0 -10 0 L15 0-GND 9 14 13 12 11 Outputs 14 13 12 11 Outputs **DN822** (Envelope I -8) **--**016 R1\$R2\$R3\$R4\$ R1 - R4=2KΩ Inputs < 90 10 0-12 0

L13 0-

GND 8

		Absolu	te Maximum Ra (Ta=25℃)	tings		Electrical Characteristics	s (Ta=	25℃)		
Type No. Fu	Function	Item	Rating	Unit	Item	condition	min.	typ.	max.	Unit
		Vcc	6	V	B (H→L)	$V_{CC} = 5V$			750	gauss
		Icc	15	mA	$B_{(L \to H)}$	$V_{CC} = 5V$	100			gauss
	0	V ₀	6	V	Vol	$V_{CC} = 5V$, $I_{OL} = 12mA$, $B = 750$ gauss			0.4	V
DN830	Switching type	Ιο	15	mA	Vон	$V_{CC} = 5V, I_{OH} = -100 \mu A$ B=100gauss	2.4			V
	Hall IC	Рт	90	mW	-I os	$V_{CC} = 5 V, V_{O} = 0, B = 0$			1.34	mA
		Topr	− 20 ∼ 75	°C	I cc-H	$V_{CC} = 5 V, B = 0$			10.0	mA
		Tstg	− 55 ~ 125	°C	I cc L	V _{CC} = 5 V, B= 750 gauss			13.5	mA
		Vcc	6	V	B offset	$V_{CC} = 5 V, V_{Q1} = V_{Q2}$	- 350		+ 350	gaus
		I cc	15	mA	Vон	$V_{CC} = 5V, I_{OH} = -10 \text{mA},$ $B = \mp 500 \text{gauss}$	2.4			V
		Vo	6	V	Vol.	$V_{CC} = 5V, I_{OL} = 0.1 \text{mA},$ $B = \pm 500 \text{gauss}$			0.5	V
DN831	Linear type	Io	-15~4.4	mA	Vol	$V_{CC} = 5V, I_{OL} = -2mA,$			0.5	V
	Hall IC	Рт	90	m W	Icc	$B = \pm 500 gauss$ $V_{CC} = 5 V$			13.5	mA
		Topr	- 20 ~ 75	°C	100	V CC - 5 V			10.0	
		Tstg	- 55~ 125	°C		, ,				
	Vcc	15	V	V _{IH}	V c c = 12V	2			V	
				1,000		3		0.6	V	
		Icc	60	m W	VIL	V _{CC} = 12V	0		0.0	-
		Vı	15	V	Vон	$V_{CC} = 12V, I_O = -1mA$	9		0.4	V
DN850	Monostable	Іоь	10	mA	Vol	$V_{CC} = 12V, I_O = 5mA$			0 .4	V
	Multivibrator	Іон	- 10	mA	tof	$V_{CC} = = 12V, t_0 = 10 \mu_{SCC}$		0.05		μsec
		Рт	400	m W	tor	100 3000 100 100 100 100 100 100 100 100		0.2		μsec
		Topr	− 20 ∼ 75	°C	Іссн	$V_{CC} = 12V$	2	4	6	mA
		Tstg	- 55~ 150	°°C	ICCL	$V_{CC} = 12V$	10	19	25	mA
		Vcc	8	V	Vol	$V_{CC} = 4.5V$, $I_{OL} = 6mA$			0.4	V
		Icc	100	mA	Vон	$V_{CC} = 4.5V, I_{OH} = -0.12mA$	2.6			V
		Vo	5.5	V	I IL	$V_{CC} = 5.5V, V_{IL} = 0$	0		- 9	mA
	4 Bit	Vı	5.5	V	IIH	$V_{CC}=5.5V, V_{IH}=4V$			24	μΑ
DNIGE	Reversible	II	+1, -20	mA	VCPOL	$V_{CC}=4.5V$ I CPOL=12mA, Vup IL=0.6V			0.4	T V
DN851	Binary	Io	20	mΑ	Vсрон	$I_{CPOH} = -0.12 \text{mA},$ $Vup_{IL} = 0.6 \text{V}, Vcc = 4.5 \text{V}$	2.6			V
	Counter	PT	400	m W	Iup IL Idn IL	Vup(dn) IL=0V, Vcc=5.5V Output "HHHH"/"LLLL".	0		-10	mA
		Topr	−10 ∼ 7 5	°C	Iup IH	V (J.) 5 5 V V - 5 5 V			50	μΑ
		Tstg	- 65 - 150	°C	Icli	$V_{CC} = 5.5 V$	0.3			mA
					I cc	Output "LLLL". Vcc=5V			45	mA
		Vcc	8	V	Vol	$V_{CC} = 4.5V, I_{OL} = 5 \text{ mA}$ $V_{IH} = 1.9V, V_{IL} = 1.1V$			0.15	V*
		I cc	100	mA	Іон	$V_{IH} = 1.9 \text{ V}, V_{IL} = 1.1 \text{ V}$ $V_{CC} = 5.5 \text{ V}, V_{OH} = 35 \text{ V}$ $V_{IH} = 1.9 \text{ V}, V_{IL} = 1.1 \text{ V}$			10	μΑ
		Vон	40	V	IIL	$V_{IH} = 1.9 \text{ V}, V_{IL} = 1.1 \text{ V}$ $V_{CC} = 5.5 \text{ V}, V_{IL} = 0$ $V_{IH} = 4 \text{ V}$	0		-1.6	mA
	Binary to	IoL	30	mA	Ітн	$V_{CC} = 5.5V, V_{IH} = 4V$ $V_{IL} = 0$	15)		2	μΑ
DN852	Octuple	Іон	- 5	mA	Icc	$V_{1L} = 0$ $V_{1} = open, V_{CC} = 5V$			27	mA
	Decoder	Рт	400	m W	1.00					
		Topr	- 20~ 75	°C	-					
		Tstg	$-65 \sim 150$	°C	-					

Circuit Schematic

DN83 I (Envelope I -6)

DN850 (Envelope I -7)

DN85 I (Envelope I -7)

DN852 (Envelope I -8)

(Top View)

(MOS)

Type No.		Absolute Maximum Ratings (Ta=25℃)				Electrical Characteristics (Ta=25℃)						
	Function	Item	Rating	Unit	Item	Condition	mi n.	t yp.	max.	Unit		
		V _{DD}	-30	V	I DD	$V_{DD} = -24V$	- 4	- 6	- 8	mA		
	Vantinal	V _{IN}	-30	V	V _{IH}	$V_{DD} = -24V$			- 3	V		
	Vertical	VF	0.3	V	V_{IL}	$V_{DD} = -24V$	- 8			V		
MNIII*	Automatic	Рт	250	mW	Vvoh	$V_{DD} = -24V$ $R_L = 12K\Omega$			- 4	V		
	Sync. Circuit	Topr	-30~70	°C	Vvol	$V_{DD} = -24V$ $R_{L} = 12K\Omega$	- 22		- 24	V		
	for TV	Tstg	−55 ~125	°C	Vнон	$V_{DD} = -24V$ $R_{L} = 47K\Omega$			- 4	V		
					VHOL	$V_{DD} = -24V$ $R_{L} = 47K\Omega$	- 22		- 24	V		
		V_{DD}	-30	V	I DD	$V_{DD} = -24V$	- 4	- 6	- 8	mA		
		V _{IN}	-30	V	VIH	$V_{DD} = -24V$			- 3	V		
	Vertical	VF	0.3	V	VIL	$V_{DD} = -24V$	- 8	4		V		
MNI12	Automatic	PT	250	mW	Vvoh	$V_{DD} = -24V$ $R_{L} = 12K\Omega$			- 4	V		
	Sync. Circuit	Topr	$-30 \sim 70$	°C	Vvol	$V_{DD} = -24V$ $R_{L} = 12K\Omega$	- 22		- 24	V		
	for TV	Tstg	−55 ~125	°C	V _{нон}	$V_{DD} = -24V$ $R_{L} = 47K\Omega$			- 4	V		
					V _{HOL}	$V_{DD} = -24V$ $R_{L} = 47K\Omega$	-22		- 24	V		
	25	V_{DD}	- 15	V	I DD	$V_{DD} = -12V$			-10	mA		
	$\frac{1}{2}, \frac{1}{525} / \frac{1}{2}, \frac{1}{625}$	V _{IN}	-15	V	V _{IH}	$V_{DD} = -12V$			- 2	V		
MNI 15		VF	0.3	V	V _{IL}	$V_{DD} = -12V$	- 6			V		
	Frequency Divider	Рт	250	mW	V _{VOH}	$V_{DD} = -12V$ $R_{L} = 10K\Omega$			- 1	V		
MNI16	Divider	Topr	-30~70	°C	V _{vol}	$V_{DD} = -12V$ $R_{L} = 10K\Omega$	- 9			V		
		Tstg	-55~125	°C	V _{HOH}	$V_{DD} = -12V$ $R_{L} = 10K\Omega$			- 1	V		
					V _{HOL}	$V_{DD} = -12V$ $R_{L} = 10K\Omega$	- 9			V		

Maintenance

			e Maximum Rati (Ta=25℃)	ngs		Electrical Characterist	cs (Ta	=25℃)		
Type No.	Function	Item	Rating	Unit	Item	Condition	min.	typ.	max.	Uni
		VGG	-33	V	I GG	$V_{GG} = -30V$			7	mA
		V _{DD}	- 20	V	VIH	$V_{GG} = -30V$			-2.5	V
	3+2+1	VIN	- 25	V	VIL	$V_{GG} = -30V$	- 9			V
MNISIA	Binary	VF	0.3	V	Vон	$V_{DD} = -13V$, $R_L = 20K\Omega$			-1	V
	Frequency	PT	250	mW	Vol	$V_{DD} = -13V$, $R_L = 20K\Omega$	-11			V
	Divider	Topr	$-30 \sim 75$	°C	fin	$V_{GG} = -30V$	DC		100	KHz
100		Tstg	−55∼125	°C	V _N	V _{GG} = -30V, H, L level	1.5			V
		V _{GG}	-33	V	IGG	$V_{GG} = -30V$			7	mA
	3+2+1	V_{DD}	-20	V	VIH	$V_{GG} = -30V$			-2.5	V
	Binary	VIN	-25	V	VIL	$V_{GG} = -30V$	-9			V
MN132P	-	VF	0.3	V	Vон	$V_{DD} = -13V$, $R_L = 20K\Omega$			-1	V
	Frequency	Рт	250	mW	Vol	$V_{DD} = -13V$, $R_L = 20K\Omega$	-11			V
1	Divider	Topr	$-30 \sim 75$	°C	fin	$V_{GG} = -30V$	DC		100	KHz
		Tstg	-55~125	°C	V _N	$V_{GG} = -30V$, H, L level	1.5			V
		(Note 1) VTE	-25~0.3	V	I BB	$V_{SS} = 16V, V_{BB} - V_{SS} = 3 \sim 4V$ $V_{DD} = 0V$			100	μΑ
		PT	850	mW	I _{DD} (av)	t c = 500 nsec t precharge = 180 nsec			(Note 2) 18	mA
		Topr	0~70	°C	Іон	$R_L = 100\Omega$	600		3000	μА
		Tstg	-55~125	°C	Vон	$R_L = 100 \Omega$	60		300	mV
					I ol	Note 3				
	N. R. STERRES				Vol	Note 3				
	1024Bit				P _T (av)	All cell out put in "1"State.			330	mW
MN1003A	P-Channel				Pr (st.by)	1 State.			3	m W
	Dynamic				t AC		300			nsec
	RAM				t _C		500			nsed
					trefresh	0~70°C			2	mse
	*.	Note 2. T	The peak value The low output	of I _{DD} i	tages with is 48 mA ma	respect to the most positiv .x. e leakage current of the MN the clocks. V _{OL} equals I _{OL} a	V1003 p	lus ext	ernal no	

 \triangle Preliminary

MNISIA

MN 132P

Type No.		Absolu	ite Maximum Ra (Ta=25℃)	tings		Elect	trical Characteris	stics (Ta	a=25°C)		
	Function	Item	Rating	Unit	Item	Co	ondition	min.	typ.	max.	Uni
		(Note 1) VTE	-20~0.3	V	VIH			+0.3		-2	V
		PT	700	mW	VIL	Note 2 o	r 3	-4.2		-10	V
		Topr	-30~70	°C	Vон		$I_{OH} = -100 \mu A$		-0.5	-1.5	v
		Tstg	-55~125	°C	Vol.	Note	I _{OL} = 1.6 mA	-4.55	-5.7		V
					Ion	2 or 3	$V_0 = -5 V$	-2			mΑ
100					IoL		$V_0 = -4.55V$	1.6	4		mΑ
MN1200△	4096 Bit			1	Tacc	Note 2 Note 3			0.7		μse
Series	Static ROM				IDD1	Note 2 or 3			-12		mΑ
					I DD2	Note 2 Note 3			- 9 - 6		mA
					I GG	Note 2 or 3				-100	μА
			Input voltage a				− 14V±5%		300 200		m V
		Note 2.		%, V D D	ly voltage: $c_2 = -14V \pm$	Note 3 s. 5%, V _{GG} =					m V
		Note 2.	$V_{DD1} = -14V \pm 5$	%, V D D	ly voltage: $c_2 = -14V \pm$	Note 3 s. 5%, V _{GG} =				-600	
		Note 2. Note 3.	$V_{DD1} = -14V \pm 5$ $V_{DD1} = -14V \pm 5$	%, Vde	ly voltage: 02 = -14V ± 02 = -5V ±	Note 3 s. 5%, V _{GG} = -			200	-600 -7	μΑ
	8-Digit 1Chip	Note 2. Note 3.	$V_{DD1} = -14V \pm 5$ $V_{DD1} = -14V \pm 5$ -15	%, V d d	ly voltages $p_2 = -14V \pm p_2 = -5V \pm p_3$ I GG	Note 3 s. 5%, V _{GG} = -				12.2.1	μA mA
MN5500A	8-Digit 1Chip Desk-Top	Note 2. Note 3. VGG VDD	$V_{DD1} = -14V \pm 5$ $V_{DD1} = -14V \pm 5$ -15 -10	%, V d n	$\begin{array}{c} \text{ly voltages} \\ \text{2}_2 = -14\text{V} \pm \\ \text{2}_2 = -5\text{V} \pm \\ \text{I GG} \\ \text{I DD} \end{array}$	Note 3 s. 5%, V _{GG} = -		0	-150 -3.5	12.2.1	μA mA mW
MN5500A		Note 2. Note 3. VGG VDD VIN	$V_{DD1} = -14V \pm 5$ $V_{DD1} = -14V \pm 5$ -15 -10 -10	%, VDD	$\begin{array}{c} \text{ly voltage:} \\ \text{c}_2 = -14 \text{V} \pm \\ \text{c}_2 = -5 \text{V} \pm \\ \text{I GG} \\ \text{I DD} \\ \text{P T} \end{array}$	Note 3 s. 5%, V _{GG} = -	- 14V ± 5%	0 -3.5	-150 -3.5	-7	μA mA mW
MN5500A	Desk-Top	Note 2. Note 3. VGG VDD VIN VF	$V_{DD1} = -14V \pm 5$ $V_{DD1} = -14V \pm 5$ -15 -10 -10 0.3	%, V DE %, V DE V V V V	$\begin{array}{c} \text{ly voltage:} \\ \text{ly voltage:} \\ \text{l2} = -14\text{V} \pm \\ \text{l2} = -5\text{V} \pm \\ \text{I GG} \\ \text{I DD} \\ \text{PT} \\ \text{VIH} \end{array}$	Note 3 s. 5%, V _{GG} = -		-	-150 -3.5	-7 -1.5	μA mA mW V
MN5500A	Desk-Top	Note 2. Note 3. VGG VDD VIN VF	$V_{DD1} = -14V \pm 5$ $V_{DD1} = -14V \pm 5$ -15 -10 -10 0.3 -15	%, V DE	$\begin{array}{c} \text{ly voltage:} \\ \text{c}_2 = -14 \text{V} \pm \\ \text{c}_2 = -5 \text{V} \pm \\ \text{I GG} \\ \text{I DD} \\ \text{PT} \\ \text{VIH} \\ \text{VIL} \end{array}$	Note 3 s. 5%, V _{GG} = -	- 14V ± 5%	-	-150 -3.5	-7 -1.5 -7	μA mA mW V
MN5500A	Desk-Top	Note 2. Note 3. VGG VDD VIN VF VCP Topr	$V_{DD1} = -14V \pm 5$ $V_{DD1} = -14V \pm 5$ -15 -10 -10 0.3 -15 $-30 \sim 70$	%, V DE	ly voltage: $c_2 = -14V \pm$ $c_2 = -5V \pm$ I_{GG} I_{DD} P_T V_{IH} V_{IL}	Note 3 s. 5%, V _{GG} = -	- 14V ± 5%	-3.5	-150 -3.5	-7 -1.5 -7	μA M M V V V V V
MN5500A	Desk-Top	Note 2. Note 3. VGG VDD VIN VF VCP Topr Tstg	$V_{DD1} = -14V \pm 5$ $V_{DD1} = -14V \pm 5$ -15 -10 -10 0.3 -15 $-30 \sim 70$ $-55 \sim 125$	%, V DE V V V V V V C °C	ly voltage: $I_{22} = -14V \pm$ $I_{32} = -5V \pm$ I_{DD} P_{T} V_{IH} V_{OL}	Note 3 s. 5%, VGG = - 5%, VGG = - all clear	- 14V ± 5%	-3.5	-150 -3.5 28	-7 -1.5 -7 -1	μA M M V V V V V V μA A
MN5500A	Desk-Top Calculator	Note 2. Note 3. VGG VDD VIN VF VCP Topr Tstg VGG	$V_{DD1} = -14V \pm 5$ $V_{DD1} = -14V \pm 5$ -15 -10 -10 0.3 -15 $-30 \sim 70$ $-55 \sim 125$ -15	%, V D D V V V V V V V V V V V V V V V V	ly voltage: 22 = -14V ± 22 = -5V ± I GG	Note 3 s. 5%, VGG = - 5%, VGG = - all clear	- 14V ± 5%	-3.5	-150 -3.5 28	-7 -1.5 -7 -1 -600	μA M M V V V V V μA M A
	Desk-Top Calculator 8-Digit	Note 2. Note 3. VGG VDD VIN VF VCP Topr Tstg VGG VDD	$V_{DD1} = -14V \pm 5$ $V_{DD1} = -14V \pm 5$ -15 -10 -10 0.3 -15 $-30 \sim 70$ $-55 \sim 125$ -15 -10	%, V DD V V V V V V V C C C V V	ly voltage: $I_{02} = -14V \pm$ $I_{02} = -5V \pm$ I_{DD} P_{T} V_{1H} V_{0H} V_{0L} I_{GG} I_{DD}	Note 3 s. 5%, VGG = - 5%, VGG = - all clear	- 14V ± 5%	-3.5	-150 -3.5 28 -200 -4.3	-7 -1.5 -7 -1 -600	μAA mW V V V V μAA mAA mW M M M M M M M M M M M M M M M M M M
	Desk-Top Calculator 8-Digit 1 Memory	Note 2. Note 3. VGG VDD VIN VF VCP Topr Tstg VGG VDD VIN	$V_{DD1} = -14V \pm 5$ $V_{DD1} = -14V \pm 5$ -15 -10 -10 0.3 -15 $-30 \sim 70$ $-55 \sim 125$ -15 -10 -10	%, V DD V V V V V V C C C V V V	ly voltage: $I_{22} = -14V \pm$ $I_{32} = -5V \pm$ I_{33} I_{34} I_{34} V_{34}	Note 3 s. 5%, VGG = - 5%, VGG = - all clear	- 14V ± 5%	-5	-150 -3.5 28 -200 -4.3	-7 -1.5 -7 -1 -600 -7	μA mA mW V V V V μA mA
MN5500A MN552I∆	Desk-Top Calculator 8-Digit 1 Memory Desk-Top	Note 2. Note 3. VGG VDD VIN VF VCP Topr Tstg VGG VDD VIN VF	$V_{DD1} = -14V \pm 5$ $V_{DD1} = -14V \pm 5$ -15 -10 -10 0.3 -15 $-30 - 70$ $-55 - 125$ -15 -10 -10 0.3	%, V DE V V V V V V V V V V V V V V V V V		Note 3 s. 5%, VGG = - 5%, VGG = - all clear	- 14V ± 5%	-3.5 -5	-150 -3.5 28 -200 -4.3	-7 -1.5 -7 -1 -600 -7 -1.5	

		Absolu	te Maximum Rat (Ta=25°C)	ings		Electrical Characterist	ics (Ta	=25℃)		
Type No.	Function	Item	Rating	Unit	Item	Condition	min.	typ.	max.	Unit
		Vgg	- 15	V	IGG	all clear		400		μΑ
	8-Digit 1 Chip	V _{DD}	-10	V	I DD	all clear		4		mΑ
	Desk-TOP Calculator	VIN	-30	V	V _{IH} .	Except clear key	0		-3.5	V
MN5530 [△]	Internal Clock Generator	VF	0.3	V	VIL	Except clear key	- 6		- 30	V
	Display Tube	Topr	-30-70	°C	VolH	I ₀ = 0.3mA, Segment Output			- 1	V
	Direct Drive	Tstg	- 55~ 125	°C	Vozn	Io=3mA, Grid Scan Output		- 2		V
					Vol	Display Tube Direct Drive	- 30			V
		VGG	— 15	V	I GG	$V_{DD} = -6 V$		2		mΑ
	12 0:-:	V dd	-10	V	I DD	$V_{GG} = -12V$		10		mΑ
	12 Digit	VIN	- 10	V	Рт	$V_{CP} = -12V$		80		m W
MN5701A	1 Memory	VF	0.3	V	VIH		0		-1.5	V
	Desk-Top	VCP	— 15	V	VIL		-3.5		-7	V
	Calculator	Topr	- 30 ~ 70	°C	Vон				-1	V
		Tstg	-55-125	°C	Vol		-5			V
		VGG	- 15	V	I GG	$V_{DD} = -6 V$		2		mΑ
	16 0:-:1	V _{DD}	- 10	V	I dd	$V_{GG} = -12V$		10		mA
	16 Digit 1 Memory	VIN	- 10	V	Рт	$V_{CP} = -12V$		80		m W
MN5710△		VF	0.3	V	VIH		0		-1.5	V
	Desk-Top	VCP	- 1 5	V	VIL		-3.5		-7	V
	Calculator	Topr	-30~70	°C	Vон				-1	V
		Tstg	-55~125	°C	Vol		-5			V
		VGG	- 20	V	IGG			2		mΑ
		V _{DD}	— 15	V	IDD			2		mΑ
	4-Digit	VIN	- 17	V	Рт			65		m W
MN6031	Decimal	VF	0.3	V	VIH		0		-1	V
	UP/Down	Рт	200	m W	VIL		-4.5		-10	V
	Counter	Topr	-30~70	°C	V _{OH}		0		-0.5	V
		Tstg	-55~125	°C	Vol		-4.5		- 5	V

 \triangle Preliminary * Envelope I -22

		Absolu	ite Maximum Ra (Ta=25℃)	tings		Electrica	al Characteristi	cs (Ta:	=25℃)		
Type No.	Function	Item	Rating	Unit	Item	Cond	dition	min.	typ.	max.	Unit
		V _{GG}	- 20	V	I GG				6		mA
1		V _{IN}	- 17	V	Рт				100		m W
		VF	0.3	V	VIH			0		-1	V
********	A/D	Рт	250	mW	VIL			-4.5		-10	V
MN6032	Converter	Topr	-30~70	°C	Vон			0		-0.6	V
		Tstg	- 55~ 125	°C	Vol			-5.5		-10	V
					I он			0.5			mA
					IOL			0.5	-		mA
		VTE	3.2~-0.3	V	VDD	Vss=0		1.1		3.2	V
	CMOS Quartz	Topr	-30~70	°C	I DD	$V_{DD} = 1.5 V$.	fxtal = 32.786KHz NO LOAD			8	μΑ
MN6050△	Watch Circuit with Stepping	Tstg	- 55~ 125	°C	IL	$V_{DD} = 1.5 V$				1	mA
	Motor Driver				RL	$V_{DD} = 1.5 V$				800	Ω
					t w	$V_{DD} = 1.5 V$,	fxtal = 32.786KHz			15.6	msec
		VGG	- 21	V	I GG			8	-13	-16	mA
		V _{DD}	-15	V	IDD	$V_{SS} = 0 V$	Output Terminal Open		- 20		μΑ
	Cura Circal	VIN	-15	V	Рт	$V_{DD} = -5 V$	Output Terminal Open		220	280	m W
MNICOCOA	Sync. Signal	VF	0.3	V	I он	$V_{GG} = -17V$	$V_0 = -1V$	-0.3			mA
MN6060△	Generator	Ιo	± 1	mA	IoL		$V_0 = -3.5 V$	0.3			mA
	for TV Camera	P _T	500	mW	fнı	Color Opera	ntion		2.045		MHz
		Topr	-30~70	°C	THI	B/W Operat	ion		2.0475		MHZ
		Tstg	−55 ~ 125	°C	Cı					20	p F

[△] Preliminary

OUTLINE DRAWINGS

Unit: mm (inch)

Unit: mm (inch)

Unit: mm (inch)

0.25 ±0.05 (.009)

7.62±0.25 (.30)

2.3 09)

0° ~15°

15.24

(.50)

15.24

(.60)

0.25 ±0.05

(.60)

0-15

4.0±0.1 (157)

1.2 (0.47)

1-0-15°

CATHODE RAY TUBES

QUICK REFERENCE SHEET (COLOR PICTURE TUBES)

Screen	Deflection	Reinforcement	Uni-potential Focus Lens	Туре	Bi-potential Focu	us Lens Type
Size	Angle & Neck Diameter		,			
(Visual Size)	(mm)	Method	Type No.	Page	Type No.	Page
5" (4.5V)	55° - 20.0φ	None			▼ I40AGB	22 119
	70° 00 1	T-Band	☆▼ 200HB22			
8" (7V)	70° – 29.1φ	Bonded Frame	▼ 200KB22	119		
	90°-29.1φ	Bonded Frame			▼ 200LB2	22 119
10" (9V)	90°-36.5φ	Bonded Frame	☆▼ 250RB22A	119		
13" (12V)	90° — 36.5 φ	Bonded Frame	☆▼ 320CB22A⊙ ▼ 320AGB22	119	☆▼ 320NB2	22A 119
			☆▼ 370ACB22		⊙5▼ 370BRE	119
(90°-36.5φ	Bonded Frame	⊙ ▼ 370AKB22	119		
14" (13V)			⊙ ▼ 370BGB22			
	110° - 29.1φ	Bonded Frame				119
			☆▲ 420AB22		⊙5▲ 420AHB	119
10" (15)()	90°-36.5φ	Bonded Frame		119		
16" (15V)						
	110° - 29.1φ	Bonded Frame				22 119
17" (16V)	90° - 36.5φ	Bonded Frame			☆▼ 440ASE	322A 121
			☆▲ 470BYB22	121	☆▲ 470BXB	122
	90°-36.5φ	Bonded Frame				121
18" (17V)					⊙ 5▲ 470EJE	322
	110° - 29.1φ	Bonded Frame				
	110 23.1φ	Donded 11 ame			⊙ ••• 470ESB	121
		None			☆▲ 490CHE	322A 121
19" (18V)	90°-36.5φ	Bonded Frame			☆▲ 490BKE	322B 121
		Bonded Plate			☆▲ 490ASE	322A 121
		None			☆▲ 510ACE	322A
	90° - 36.5φ	140110			☆▲ 5IOAEE	322A 121
20" (19V)	υυ ου.υφ	Bonded Frame				322
20 (101)		Donaca Trame			●5▲ 510FLE	322
	110° - 29.1φ	Bonded Frame				121
					⊙ ••• 510FUE	322
22" (20V)	90°-36.5φ	None			⊙☆▲ 550EB2	
	90° - 36.5φ	None			▲ 560DB2	
22" (21V)		Push Through			▲ 560KB2	
	110° - 29.1φ	Bonded Frame				121

①: Negative guard band concept with black surround screen.

^{☆:} Maintenance type.

^{5:5} Electrode gun.

^{▼:} Delta gun type (Blue gun down)

^{▲:} Delta gun type (Blue gun up)

^{•••:} In Line gun type.

QUICK REFERENCE SHEET (MONOCHROME PICTURE TUBES)

Screen Size	Deflection Angle &	Reinforcement	Heater: 2.0V — 85n 2.8V — 107n		Heat	12	2. 0V — 67mA 2. 6V — 64mA	
(Visual Size)	Neck Diameter (mm)	Method	EC2: 80V ~ 300V	Page	EC2: 100~130V	Page	EC2: 250~400V	Page
1.5" (1.4V)	$36^{\circ}-13m{\phi}$	None	☆ I VABP4 ☆ I VACP4	123				
3" (2.9V)	$50^{\circ}-13\phi$	None	☆85GB4	123				
4.5" (4V)	$55^{\circ}-20\phi$	None					IIOCB4	123
5" (4.5V)	$55^{\circ}-20oldsymbol{\phi} \ 70^{\circ}-20oldsymbol{\phi}$	None None					I 40AKB4 ☆ I 40FB4	123
6" (5.5V)	$70^{\circ} - 20 \phi$	None					☆ I 50ACB4	123
(0.01)	10 204	None					230AHB4	123
9" (8.5V)	$90^{\circ}-20\phi$	Bonded Frame			230ANB4 230AYB4	123	230ADB4	123
10" (9V)	$90^{\circ}-20\phi$	T-Band						
11" (10V)	$90^{\circ}-20\phi$	Bonded Frame					☆280VB4	123
		Bonded Frame			310FDB4	123		
12" (12V)	$90^{\circ}-20\phi$	T-Band			310GUB4 310HCB4	123		
12 (124)	$110^{\circ} - 20\phi$	Bonded Frame						
14° (13V)	$90^{\circ}-20\phi$	T-Band			340AYB4 340AZB4 340AHB4	125 125		
	110° — 20 ф	Bonded Frame				120		
	$114^{\circ}-28.6oldsymbol{\phi}$	None Bonded Frame						
16" (15V)	$110^{\circ}-20m{\phi}$	None Bonded Frame						
17" (16V)	$114^{\circ}-28.6oldsymbol{\phi}$	Bonded Frame						
19" (18V)	$114^{\circ}-28.6\phi$	None Bonded Frame						
20° (19V)	$114\degree-28.6oldsymbol{\phi}$	None Bonded Frame						
21" (20V)	$114\degree-28.6oldsymbol{\phi}$	Bonded Frame						
23" (22V)	$110^{\circ}-28.6\phi$	None Bonded Frame						

^{☆:} Maintenance type.

	1	Heater: 6.3V—	300m <i>A</i>	1		Heat	er: 4.	2V — 450mA		Screen Size
EC2: 60V	Page	EC2: 100~200V	Page	EC2: 300~500V	Page	EC2: 60V	Page	EC2: 120~200V	Page	(Visual Size
										1.5" (1.4V)
										3" (2.9V)
										4.5" (4V)
										5" (4.5V)
										6" (5.5V)
		230ARB4	123					230AEB4	123	9" (8.5V)
		240MB4	123							10° (9V)
		24011134	125					☆280UB4	123	11" (10V)
		310CYB4 310GZB4	123 123					310EDB4 ☆310FJB4 310GDB4	123	12" (12V)
										14" (13V)
		340NB4	125	4004004	105			☆340FB4	125	
				☆400ADB4 400CDB4	125			☆400BGB4	125 125	16" (15V)
440GB4	125					440ANB4	125		120	17" (16V)
				☆470LB4 ☆A47-23W	125 125					19" (18V)
500WB4	125									00" (10)
500XB4	125					500JB4	125			20" (19V)
520AB4	125									21" (20V)
				☆590GB4	125					23" (22V)
				☆A59-IIW	125	☆590YB4	125			- VE

COLOR PICTURE TUBES

					Tube Constr	uctions ²⁾			-	Heat	ting ⁵⁾
Screen Size (Visual Size)	Type No. 1)	Deflec- tion Angle (degrees)	Neck Dia. (mm)	Gun ³⁾ Type	Reinforcement ⁴⁾ Method	Overall Length (mm)	Trio Dot Pitch (mm)	Light Transmission (%)	Base Connec- tion No.	Ef	If (mA
5" (4.5V)	▼ 140AGB22	55	20.0	BPF	None	237 ± 7.0	0.44	76.0	Fig. 1	2.8	321
8" (7V)	☆▼200HB22 ▼200KB22	70	29.1	UPF	T-Band Bonded Frame	293±7.0	0.55	66.0	Fig. 2	12.6	192
	▼200LB22	90	29.1	BPF	Bonded Frame	252.3 ± 7.0	0.55	66.0	13C	6.3	900
10"(9V)	☆▼250RB22A	90	36.5	UPF	Bonded Frame	305.3 ± 9.5	0.61	64.5	14BH	6.3	900
	☆▼320NB22A			BPF				62.0	14BE		
13" (12V)		90	36.5	UPF	Bonded Frame	347.3 ± 9.5	0.61	48.0 87.0	14BH	6.3	900
	☆▼370ACB22 ● 370AKB22		* 30	UPF		365.8±9.5		57.0	14BH		
14" (13V)	● ▼370BGB22●5▼370BRB22	90	36.5	BPF	Bonded Frame	370.8±9.5	0.61	86.0	Fig. 3	6.3	900
		110	29.1	BPF	Bonded Frame	294.5±9.5	0.61	86.0	13C	6.3	900
	☆▲420AB22⊙ ▲420NB22⊙ ▲420ACB22	90	36.5	UPF	Bonded Frame	397.3±9.5	0.61	56.0	14BH	6.3	900
16" (15V)	⊙ 5▲420AHB22	90		BPF		402.3±9.5		86.0	Fig. 3		
	⊙ ▲420XB22	110	29.1	BPF	Bonded Frame	314.9±9.5	0.61	86.0	13C	6.3	900

 $1) \quad \ \bullet \quad \ : \ \, \text{Negative guard band concept with black suround screen}.$

☆ : Maintenance type.

▼ : Delta gun type (Blue gun down).

▲ : Delta gun type (Blue gun up).

•••: In line gun type.

5 : 5 Electrode gun.

2) Deflection method : Magnetic

Focusing method : Electrostatic.

Glass bulb

: Increased X-ray absorption.

3) Gun type

 $UPF: Uni\mbox{-potential focus lens.}$

BPF: Bi-potential focus lens.

140AGB22

200KB22

370AKB22 370BRB22

1	Maximum Rat	ings (Desi	gn Max.)			Typical Oper	ating Con-	ditions		
Eb	Focus Voltage Ec3or Ec4	Ec ₂ Peak6) **Ec ₂	Ec₁ or ※Ek	la total ⁷)	Eb	Focus Voltage Ec3or Ec4	Ec₂ ₩Ec₂′	E _{C 1} 8) or ※Ek	Drawing No.	Type No.
(kV)	(V)	(V)	(V)	(μA)	(kV)	(V)	(V)	(V)		
$9.5 \sim 14.5$	3200	1000	-400~0	145	12	2280~2700	175~480	S- 40	1	▼ I 40AGB22
14~18	$-550 \sim 1100$	1000	-300~0	350	: 16	−75∼ 400	220~470	S- 60	2	☆▼200HB22
14~16	-550~1100	1000	-300~0	330	: 10	−75~ 400	220~470	5- 60	3	▼200KB22
$16\!\sim\!20$	4300	1000	$-400 \sim 0$	350	18	3020~3600	110~250	S- 60	4	▼200LB22
16~22	$-550 \sim 1100$	1000	-400~0	500	18	−75∼ 400	190~410	S- 80	5	☆▼250RB22A
	5200					3360~4000	200~520	R - 100		☆▼320NB22A
16~24		1000	-400~0	650	20	75 400	005 470	C 00	6	☆▼320CB22A
	$-550 \sim 1100$					−75 ∼ 400	225~470	S- 90		⊙ ▼320AGB22
									7	☆▼370ACB22
16~24	$-550 \sim 1100$	1000	-400~0	700	20	-75~ 400	150~390	S - 100	'	▼370AKB22
									8	⊙ ▼370BGB22
19~24	6200	1000 ** 1000	※ 0∼400	650	22	4580~5280	320~575 **0~400	 × S − 100	7	⊙5▼370BRB22
19~24	5280			650	22	3700~4400	200~430	S-100	9	⊙ ▲370AXB22
									10	☆▲420AB22
20~26	$-550 \sim 1100$	1000	$-400 \sim 0$	700	22	−75∼ 400	150~390	S-100	10	⊙ ▲420NB22
									11	⊙ ▲420ACB22
19~26	6700	1000 ** 1000	※ 0∼400	650	24	5000~5760	320~575 **0~400	※ S−100	12	⊙5▲420AHB22
19~26	5700	1000	-400~0	650	24	4030~4800	200~430	R-100	13	⊙ ▲420XB22

- 4) Reinforcement method: The bonded frame type tubes are provided with metal mounting lugs to facilitate mounting into the cabinet.
- 5) Heater voltage under standby condition: 63% of normal heater voltage.
- 6) Ec2 peak Including video signal voltage.
- 7) Ia total : Long term average value.
- 8) Ec_1 R: Visual extinction of focused raster.
 - S: Visual extinction of focused spot.

					Tube Constr	ructions 2)				Heat	ing ⁵⁾
Screen Size Visual Size)	Type No. 1)	Deflec- tion Angle (degrees)	Neck Dia. (mm)	Gun ³⁾ , Type	Reinforcement ⁴⁾ Method	Overall Length (mm)	Trio Dot Pitch (mm)	Light Trans- mission (%)	Base Connection No.	Ef	If (mA)
17" (16V)	☆▼440ASB22A	90	36.5	BPF	Bonded Frame	414.6 ± 9.5	0.71	58.5	14BE	6.3	900
	☆▲470BYB22			UPF				66.5	14 BH		
	☆▲470BXB22					$\textbf{425.1} \pm \textbf{9.5}$		54.5	14BE		
	▲470CTB22	90	36.5	BPF	Bonded Frame		0.70		14BE	6.3	900
18" (17V)	⊙ 5▲470EJB22	*		DFF		430.1±9.5		85.5	Fig. 3		
	▲470CZB22			DDD	B 1.1 B	335.6 ± 9.5	0.61	85.5	13C	6.3	900
	⊙ •••470ESB22	110	29.1	BPF	Bonded Frame	$\textbf{328.6} \pm \textbf{9.5}$	H0.74 V0.95	85.5	Fig. 4	6.3	900
	☆▲490ASB22A				Bonded Plate	$\textbf{451.4} \pm \textbf{9.5}$		48.5			
19" (18V)	☆▲490BKB22B	90	36.5	BPF	Bonded Frame	$\textbf{446.5} \pm \textbf{9.5}$	0.61	55.0	14BE	6.3	900
	☆▲490CHB22A				None	446.5 ± 9.5		55.0			
	☆▲510ACB22A				None			53.5			
	☆▲510AEB22A					$\textbf{453.7} \pm \textbf{9.5}$		33.3	14BE		
	● ▲510CEB22	90	36.5	BPF	Bonded Frame		0.61		-	6.3	900
20" (19V)	⊙ 5 ▲ 510FLB22				Donded Frame	458.7±9.5		85.0	Fig. 3		
		110	00.1	DDE	D. L.I.E.	$\textbf{357.2} \pm \textbf{9.5}$	0.61	85.0	13C	6.3	900
	⊙ •••510FUB22	110	29.1	BPF	Bonded Frame	350.2 ± 9.5	H0.77 V1.06	85.0	Fig. 4	6.3	900
22" (20V)	⊙☆▲550EB22	90	36.5	BPF	None	$\textbf{475.9} \pm \textbf{9.5}$	0.64	85.0	14BE	6.3	900
	▲560DB22	90	36.5	BPF	None	472.2±9.5	0.68	52.0	14BE	6.3	900
22" (21V)	▲560KB22	90	30.5	DFF	Push Through	412.2 = 9.5	0.08	52.0	14 DE	0.3	900
	⊙ ▲560EB22	110	29.1	BPF	Bonded Frame	380.2 ± 9.5	0.69	85.0	13C	6.3	900

1) • Negative guard band concept with black surround screen.

☆ : Maintenance type.

▼ : Delta gun type (Blue gun down).

▲ : Delta gun .type (Blue gun up)

••• : In line gun type.

5 : 5 Electrode gun.

2) Deflection method : Magnetic.Focusing method : Electrostatic.

Glass bulb : Increased X-ray absorption.

3) Gun type UPF: Uni-potential focus lens.

BPF: Bi-potential focus lens.

470CTB22 470EJB22

470CZB22

١	Maximum Ra	tings (Desi	gn Max.)		Ту	pical Operatin	g Conditio	ns		
Eb (kV)	Focus Voltage Ec ₃ or E _{C4} (V)	Ec ₂ Peak6) **Ec ₂ ′	Ec ₁ or	la total7)	Eb	Focus Voltage Ec ₃ or Ec ₄ (V)	Ec ₂ **Ec ₂ ' (V)	Ec 18) or **Ek (V)	Drawing No.	Type No.
20~26	5700	1000	-400~0	700	24	4030~4800	200~520	R-100	14	☆▼440ASB22
20~26	550~1100			700	24	−75 ∼ 400	150~390	R-105		☆▲470BYB22
	6000	1000	$-400 \sim 0$	700		4200~5000	200~520	R-100		☆▲470BXB22
20~27.5	6000				25	4200~5000	200~520	K-100	15	▲470CTB22
20~21.5	7000	1000 ** 1000	※ 0∼400	750	23	5200~6000	430~760 **0~400	※ S − 130	20	⊙ 5▲470EJB22
19~26	5700	1000	$-400 \sim 0$	750	24	4020 ~ 4800	200~430	R-100	16	▲470CZB22
20 ~ 27	7000	1000	-400~0	720	25	5200~6050	345~760	 ★ S − 100	17	⊙ •••470ESB22
									18	☆▲490ASB22
20~27.5	6000	1000	$-400 \sim 0$	750	25	4200 ~ 5000	200~520	R-100	19	☆▲490BKB22I
									20	☆▲490CHB22
									21	☆▲510ACB22
	6000	1000	$-400 \sim 0$			4200 ~ 5000	200 ~ 520	R-100		☆▲510AEB22
20~27.5				750	25				22	
	7000	1000 ** 1000	※ 0∼400			5200~6000	430~760 ×0~400	※ S − 130	22	⊙§▲510FLB22
19~26	5700	1000	$-400 \sim 0$	750	24	4020~4800	200 ~ 430	R - 100	23	
20~27	7000	1000	$-400 \sim 0$	720	25	5200~6050	345~760	 S − 100	24	⊙ • • • 510FUB22
$20 \sim 27.5$	6000	1000	$-400 \sim 0$	1000	25	4200~5000	200~520	R-100	25	⊙☆▲550EB22
20~27.5	6000	1000	$-400 \sim 0$	1000	25	4200~5000	200~520	R-100	26	▲560DB22
20 21.0	3000	1000	400 0	1000	20	1200 0000	200 320	100	27	▲560KB22
20~27.5	6000	1000	$-400 \sim 0$	1000	25	4200~5000	200~430	S - 100	28	▲560EB22

- 4) Reinforcement Method: The bonded frame type tubes are provided with metal mounting lugs to facilitate mounting into the cabinet.
- 5) Heater voltage under standby condition: 63% of normal heater voltage.
- 6) Ec2 peak : Including video signal voltage.
- 7) Ia total : Long term average value.
- 8) Ec_2 R: Visual extinction of focused raster.
 - $S\ \vdots\ Visual$ extinction of focused spot.

510DTB22

560EB22

MONOCHROME PICTURE TUBES

Screen				Tul	oe Constructions	s ²⁾			Heat	ing ⁵⁾		
Size (Visual Size)	Type No. 1)	Deflec- tion Angle (degrees)	Neck Dia. (mm)	Gun ³⁾ Type	Reinforcement ⁴⁾ Method	Overall Length (mm)	Light Trans- mission (%)	Base Connec- tion No.	Ef (V)	If		
	☆● I VABP4			UPF				Fig. 6	2.0	85		
1.5'(1.4V)	☆● I VACP4	36	13.0	BPF	None	118max.	88	Fig. 5	2.0	85		
3"(2.9V)	☆●85GB4	50	13.0	UPF	None	147max.		Fig. 6	2.8	107		
4.5"(4V)	I I OCB4	55	20.0	TPF	None	177max.	80	7GT	12.6	64		
	140AKB4	55	20.0	TPF	None	202max.	70	7GT	12.6	64		
5"(5V)	☆ 140FB4	70	20.0	TPF	None	163max.	80	7GT	12.6	64		
6"(5.5V)	☆ 150ACB4	70	20.0	TPF	None	174max.	70	7GT	12.6	64		
	• 230ADB4			TPF	Bonded Frame	199max.	53.5	7GT	12.6	64		
	● 230AHB4	90		IPF	None	199max.	53.5	761	12.0	04		
0"(0 514)	● 230AEB4		00.0						4.2	450		
9"(8.5V)	• 230ARB4		20.0	LIDE	Bonded Frame	220max.	53.5	7GR	6.3	300		
	● 230ANB4			UPF	Bonded Frame	ZZUmax.	55.5	7GK	12.6	64		
	● 230AYB4								12.0	67		
10"(9V)	240MB4	90	20.0	UPF	T-Band	221max.	53.5	7GR	6.3	300		
11" (10)()	☆ 280UB4	00	20.0	UPF	Bonded Frame	250max.	49.5	7GR	4.2	450		
11" (10V)	☆ 280VB4	90	20.0	TPF	Bonded Frame	231.4max.	49.5	7GT	12.6	64		
	310FDB4				Bonded Frame				12.6	64		
	310HCB4	90	20.0	UPF	T-Band	280max.	49.5	7GR	12.0	04		
	310GUB4	30			1 - Danu			"	12.0	67		
12" (12V)	310GZB4				T-Band				6.3	300		
12 (124)	310CYB4	110			Bonded Frame				0.0	550		
•	310EDB4		110	110 2		20.0 UPF	Bonded Frame	242max.	49.5	7GR		
	310GDB4		25.0	0.2	T-Band			4.2	450			
	☆ 310FJB4		T-Band									

1) • : Ultra-rectangular Tube.

☆ : Maintenance type.

2) Deflection method: Magnetic. Focusing method: Electrostatic.

3) Gun type TPF: Tri-potential focus lens.

UPF: Uni-potential focus lens.

BPF: Bi-potential focus lens.

-	Focus Voltage				Focus Voltage			Drawing	Type No.
Eb	Ec3or Ec4	Ec2	Ek	Eb	Ec3 or Ec4	Ec2	Ek 6)	No.	
(kV)	(V)	(V)	(V)	(kV)	(V)	(V)	(V)	1,1,80	
4.0~6.0	- 50~ 100	70~100	0~ 80	5	0~ 80	80	8~25		☆● I VABP4
4.0~6.0	_	70~100	0~ 80	5	400~580	120	13~47	29	☆● I VACP4
5.0~7.5	$-550 \sim 1100$	150~450	0~100	6	0~200	300	22~42	30	☆ • 85GB4
5.5~7.5	-550~1100	250~440	0~125	6	0~300	300	12~30	31	I I OCB4
7~10	-550~1100	$250 \sim 550$	0~125	8	0~400	400	21~41	32	140AKB
6~10	$-550 \sim 1100$	250~440	0~125	8	0~300	300	14~32	33	☆ 140FB4
5.5~7.5	$-550 \sim 1100$	250~550	0~125	6	0~400	400	21~41	34	☆ I5OACB
7~13	-550~1100	250~550	0~125	10	0~400	400	21~41	36	● 230ADB
7~13	-550~1100	250~550	0~125	10	0~400	400	21~41	35	● 230AHB
									● 230AEB
7~13	-550~1100	80~250	0~154	10	0~400	120	31~51	36	• 230ARB
7-13	-330 -1100	00 - 200	0 - 134	10	0 400	120	31 - 31	30	• 230ANE
									● 230AYB
$7 \sim 13$	$-550 \sim 1100$	$100{\sim}250$	0~154	10	0~400	140	31~51	37	240MB4
9~14	$-550 \sim 1100$	$80 \sim 250$	0~154	11	0~400	120	31~51	38	☆ 280UB4
9~14	$-550 \sim 1100$	$250\sim550$	0~125	11	0~400	400	21~41	36	☆ 280VB4
		80~250	0~154		0~400	120	31~51	39	310FDB
9~16	$-550 \sim 1100$	200	0 104	12	0 400	120	31 31	40	310HCB
		$60 \sim 130$	$-2 \sim +250$		$-130 \sim +170$	110	48~74	40	310GUB
								42	310GZE
9~14	-550~1100	80~250	0~154	11	0~400	120	31~51	41	310CYB
J 11	1100	00 200	0 101	•	0 100	120	01 01		310EDE
								42	310GDB
$9 \sim 16$	$-550 \sim 1100$	$150 \sim 400$	0~154	11	0~400	200	35~55		☆ 310FJB

- 4) Reinforcement method: The bonded frame type tubes are provided with metal mounting lugs to facilitate mounting into the cabinet.
- 5) Heater Voltage under standby condition: 63% of normal heater voltage.
- 6) Ek : Visual extinction of focused raster.

Screen				Tu	be Construction	s ²⁾			H	leating ⁵
Size (Visual Size)	Type No. 1)	Deflec- tion Angle (degrees)	Neck Dia. (mm)	Gun ³⁾ Type	Reinforcement ³⁾ Method	Overall Length (mm)	Light Trans- mission (%)	Base Connec- tion No.	Ef	If (mA)
	●340AHB4				Bonded Frame				12.6	64
	• 340AZB4	90	20	UPF	T-Band	287 max.	48	7GR	10.0	CT
14" (13V)	●340AYB4				I — Band				12.0	67
	☆ ● 340FB4	110	20	UPF	Bonded Frame	249max.	48	7GR	4.2	450
	●340NB4	110	20	UPF	Bonded Frame	249 max.	48	/GR	6.3	300
	☆ 400ADB4	114	28.6	UPF	None	265 ± 7	49.5	8HR	6.3	300
16" (15V)	400CDB4	114	20.0	UFF	Bonded Frame	265 ± 7	49.5	опк	0.3	300
10 (13 V)	☆ 400BGB4	110	20	UPF	None	284.3max.	49.5	7GR	4.2	450
	☆ 400CHB4	110	20	UPF	Bonded Frame	284.3max.	49.3	/GK	4.2	450
17" (16V)	• 440ANB4	114	28.6	UPF	Bonded Frame	284 ± 7	46.0	8HR	4.2	450
17 (10 0)	• 440GB4	114	20.0	UFF	Bonded Frame	204 ± 1	40.0	onk	6.3	300
19" (18V)	☆ A47-23W	114	28.6	UPF	Bonded Frame	289 ± 7	44.5	8HR	6.3	300
19 (10 4)	☆ 470LB4	114	20.0	UFF	None	209 ± 1	44.5	onic	0.3	300
	●500WB4				None				6.3	300
20" (19V)	●500XB4	114	28.6	UPF	Bonded Frame	311 ± 7	44.0	8HR	0.3	300
	●500JB4				Bonded Prame				4.2	450
21" (20V)	☆ 520AB4	114	28.6	UPF	Bonded Frame	321.3 ± 7	42.5	8HR	6.3	300
	☆ 590GB4				None				6.3	300
23" (22V)	☆ A59-IIW	110	28.6	UPF	Bonded Frame	358±8	41.0	8HR	0.3	300
9.1134,05	☆ 590YB4	110			Donueu Trame	е			4.2	450

1) • : Ultra-rectangular tube.

☆ : Maintenance type.

2) Deflection method : Magnetic. Focusing method : Electrostatic.

3) Gun type UPF: Uni-potential focus lens.

IVI	aximum Ratings	(Design IV	iax.)	турісаі (Operating Conditi	ons (Cath	ode Drive)	Drawing	
Eb (kV)	Focus Voltage Ec3 or Ec4 (V)	E-C2 (V)	Ek (V)	Eb (kV)	Focus Voltage Ec3or Ec4 (V)	Ec ₂	Ek ⁶⁾ (V)	No.	Type No.
		00 - 050	0~154		0~400	120	31~51	43	● 340AHB4
$9 \sim 16$	$-550 \sim 1100$	80~250	0~154	12	0~400	120	31~31	44	• 340AZB
		$60 \sim 130$	$0{\sim}250$		$-130 \sim +170$	110	48~74	45	● 340AYB4
9~16	$-550 \sim 1100$	80~250	0~154	12	0~400	120	31~51	46	☆ • 340FB4
9 10	- 550 - 1100	80 - 230	0 154	12	0 - 400	120	31 - 31	40	• 340NB4
9~16	$-550 \sim 1100$	300~600	0~165	12	0~400	400	36~66	47	☆ 400ADB
3 10	330 1100	300 000	0 100	12	0 400	400	30 00	48	400CDB
9~16	$-550 \sim 1100$	80~250	$0 \sim 154$	12	0~400	120	31~51	49	☆ 400BGB
	000 1100	00 200						50	☆ 400CHB
1~20	$-550 \sim 1100$	40~ 80	0~154	16	0~400	60	34~58	51	• 440ANB
									• 440GB4
1~20	-550~1100	300~600	0~165	16	0~400	400	36~66	52	☆ A47-23
	000 1100							53	☆ 470LB4
								54	• 500WB4
$1\sim20$	$-550 \sim 1100$	40~ 80	0 - 154	16	0~400	60	34~58	55	• 500XB4
								Allegan	• 500JB4
1~20	$-550 \sim 1100$	40~ 80	0~154	16	0~400	60	34~58	56	☆ 520AB4
1~20	$-550 \sim 1100$	300~600	0~165	18	0~400	500	45~79	57	☆ 590GB4
		3 000 30000						58	☆ A59-11
$1\sim 22$	$-550 \sim 1100$	40~ 80	$0 \sim 154$	18	$0 \sim 400$	60	$34 \sim 58$		☆ 590YB4

- 4) Reinforcement method: The bonded frame type tubes are provided with metal mounting lugs to facilitate mounting into the cabinet.
- 5) Heater Voltage under standby condition: 63% of normal heater voltage.
- 6) Ek

: Visual extion of focused raster.

500XB4

A59-11W

INSTRUMENT CATHODE RAY TUBES

	1)	Frequ-				Tube Co	nstructio	ns ³⁾			. 0	ptical Data	
Scre		ency Range	Type No. 2)	Outside Face	Overall Length	Post-	Side Contact	Neck Dia.	Internal Graticule	Metal back	Phospor ⁴⁾		
		(MHz)		Dimension (mm)	(mm max.)		Pin	(mm)			Color	Persistence	
1.5"	R	-	40GB1	37 φ	120	-	_	37	_	-	Green	Medium short	
1.3	s	~ 5	40DB31	36×29	180	-	_	20	0	_	Green	Medium short	
3"	R	~ 5	75AJBI	76 φ	287	_	_	35	_	-	Green	Medium short	
,	K	~ 10	3BKP31	76.8¢	296	Helical	_	51	-,	-	Green	Medium short	
	R	~ 15	100DB31	100 φ	348	Scan mag.	_	51	0	0	Green	Medium short	
1 "	" S	~ 30	120ADB31	97.5×85.5	329.5	Scan mag.	_	51	0	0	Green	Medium short	
		~ 50	I I ODB31	98×75	395	Scan mag.	0	51	0	0	Green	Medium short	
		~ 5	130ACB31	133 φ	375	_	_	35	_	-	Green	Medium short	
			130AWB31	133 ¢	335	_	-	51	-	-	Green	Medium short	
	R	~ 10	~ 10	☆130QB31	133 φ	388	Helical	_	51		2—1	Green	Medium short
			☆ I 30AGB3 I	133 φ	418	Helical	-	51	_	0	Green	Medium short	
		~100	130AVB31	133 φ	460	Scan mag.	0	51	0	0	Green	Medium short	
5"			☆140VB31	117.5×97.5	420.5	Scan mag.	0	51	0	0	Green	Medium short	
		E0	140AEB31	117.5×97.5	413.5	Scan mag.	0	51	- 1	0	Green	Medium short	
		~ 50	140AMB31A	117.5×97.5	413.5	Scan mag.	0	51	0	0	Green	Medium short	
	S		140ARB31A	117.5×97.5	413.5	Scan mag.	0	51	0	0	Green	Medium short	
		~100	140RB31A	118×86	460	Scan mag.	0	51	0	0	Green	Medium short	
		~250	140UB31A	118×86	460	Scan mag.	0	51	0	0	Green	Medium short	

- 1) R: Round, S: Square 2) ☆: Maintenance type
- 3) Deflection method: Electro-static, Focusing method: Electro-static.

40GBI

40DB31

130AWB31

Absolut	te Max.R	atings				Typical Op	perating	Condition	ons ⁵⁾				
V PDA	Vaccel	V foc	V PDA	V accel	Vfoc	— V cut-off	Fac	ction tor cm)	Min. U Scannir (mn	ng Area	Line 6)	Drawing No.	Type No.
(V)	(V)	(V)	(V)	(V)	(V)	(V)	Υ	Х	Υ	х		110.	
_	1500	1200	-	800	170	10~26	68.0	68.0	30	30	0.27	59	40GB I
-	2500	1000	-	1500	440~530	26~58	15.0	23.0	18	27	0.24	60	40DB31
-	2500	1000	_	1500	257~387	42.5~67.5	18.7	27.2	57	68	0.20	61	75AJBI
5000	1600	1000	4000	1000	35~165	30~60	12.2	35.7	45	60	0.30	62	3BKP31
6600	2200	2200	6000	1500	255~345	18~54	5.85	18.8	60	75	0.32	63	100DB31
11000	2200	2200	10000	1500	380~480	30~70	6.3	13.5	64	80	0.25	64	120ADB31
13000	2200	2200	10000	1500	450~550	23~68	4.55	17.0	48	80	0.30	6 5	I I ODB3 I
-	2500	1000	-	1500	257~387	42.5~67.5	12.5	16.0	100	100	0.30	66	130ACB31
_	2200	2200	_	2000	220~370	25~66	12.9	28.5	80	100	0 28	67	130AWB31
8000	2500	1500	2000	500/2000	270~360	45~75	4.3	10.0	70	100	0.35	68	☆ I 30QB3 I
8800	3300	1650	4000	1000	250~350	45~75	8.5	18.0	80	100	0.35	00	☆ I 30AGB3 I
16500	2500	2500	15000	1500	375~625	40~90	2.9	10.95	60	100	0.30	69	130AVB31
12500	2200	2200	10000	1500	450~550	23~68	4.25	15.5	80	100	0.30	70	☆ I 40VB3 I
12500	2200	2200	10000	1500	450~550	23~68	4.25	15.5	80	100	0.30	71	140AEB31
12500	2200	2200	10000	1500	450~550	23~68	4.25	15.5	80	100	0.30	/1	140AMB317
16500	2200	2200	15000	1800	540~660	32~79	6.00	18.5	80	100	0.23	72	140ARB31A
19000	2500	2500	18000	2200	550~920	64~143	4.25	16.1	60	100	0.22	73	140RB31A
19000	2500	2500	18000	2200	550~920	64~143	4.25	16.1	60	100	0.22	74	140UB31A

- 4) Other phosphors are available. 5) Heating: Indirect heating Vf = 6.3V If = 0.3A (40DB31: Vf = 2.8V, If = 0.107A)
- 6) Measured with shrinking raster method in the center of the screen at a screen current $10\mu\,\mathrm{A}.$

I I ODB3 I

140ARB31A

140UB31A

HIGH SPEED READING/PRINTING TUBES (FIBER OPTICS TYPE)

			Tube	Constru	ctions			Optical Data				
Type No.		Min. Useful Fiber Optics Screen Area (mm×mm)	Deflection		Focusing Method	Overall Length	Neck Dia.	р	Light Trans-			
75ANB11	Face		Angle (deg.)	Method		(mm)	(mm)	Color	Persistence	mission of Fiber (%)		
75ANBII	Flat	54×40	50	mag.	sta.	140.5±9.5	20	Blue	Medium Short	55		
250JB11	El.	177. > / 0	50	mag.	mag.	515 ± 10	26.5	Blue	Medjum Short			
250UB11	Flat	175×3	50		sta.	$\textbf{401.5} \pm \textbf{10}$	36.5	Diue	Medjum Snort	64		
250WB11	Tale	010>/0.0			mag.	$\textbf{522.5} \pm \textbf{10}$	20. 5	DI	M 1: C1 .			
250VB11	Flat	210×9.6	55	mag.	sta.	417 ± 10	36.5	Blue	Medium Short	60		
250YB48	D.	175×3	50		. mag.	513 ± 10	00.5	Yellowish	CI.			
250ZB48	Prism	210×3	55	mag.		526.5 ± 10	36.5	Green	Short	_		

75ANBII

250WB11

¹⁾ Other phosphors are available. 2) Heating: Indirect heating Vf = 6.3V, If = 0.3A

Abs	olute Max	ximum R	atings		Typical	Operatir	ng Conditio	ns ²⁾			
V,a (V)	Vifoc (V)	Vc2	Screen Loading (ave.) (mW/cm²)	Va	Vfoc (V)	V·c2	Max. 3) Anode Current (Peak) (μA)	−Vcut-off	line 4) Width (ave.) (mm)	Drawing No.	Type No.
15000	1100	550	3	12000	0~ 400	400	1,—1	20~40	0.120	75	75ANBII
18000	_	650	11	15000	_	250	100	53~82	0.065	76	250JB11
18000	4800	650	11	15000	2800~4000	300	100	38~68	0.090	77	250UB11
18000	_	650	11	15000	-	250	100	53~82	0.065	78	250WB1
18000	4800	650	11	15000	2800~4000	300	100	38~68	0.090	79	250VB11
10000		CEO	11	15000		050	100	50 00	0.005	80	250YB48
18000	_	650	11	13000	_	250	100	53~82	0.065	81	250ZB48

- 3) To prevent the cathode from damage by over loading, anode current should not exceed the specified value.
- 4) Measured with shrinking raster method in the center of the screen at a beam current $5\mu\mathrm{A}$ (75ANB11:50 $\mu\mathrm{A}$).

HIGH RESOLUTION DISPLAY TUBES

MONOCHROME TUBES

					Tube Constructions							
Screen Size (Visual Size)	Type No.	Deflection Angle	Neck Dia.	Gun Type	Reinforcement Method	Screen Curvature	Overall Length	Light Trans- mission	Base Connec- tion			
		(deg.)	(mm)			(mm)	(mm)	(%)	No.			
1.5'(1.4V)	40CB4	36	13	BPF	_	Flat	114max.	79	_			
3" (2.9V)	85HB4	50	13	BPF	-	1500	147 max.	75	_			
7" (6V)	M17-141W	70	28.6	UPF	Bonded Faceplate	Flat	232 ± 8	80	8HR			
9" (8.5V)	230BAB39	90	28.6	UPF	Bonded Frame	686	$\textbf{245.5} \pm \textbf{8}$	53.5	8HR			
14" (13V)	340BAB39	90	28.6	UPF	T-band	770	310.5 ± 8	48	8HR			

1) Other phosphors are available.

2) Deflection method: Magnetic

Focusing method : Electrostatic

COLOR TUBES (Three gun shadowmask type)

				Tube Constr	uctions			Optical Data			
Screen Size (Visual Size)	Type No.	Deflection Angle (deg.)	Neck Dia. (mm)	Reinforcement Method	Screen Curvature (mm)	Overall Length (mm)	Base Connection No.	Trio Dot Pitch (mm)	Array	Light Trans- misson (%)	
5" (4.5V)	140AUB22	55	20.0	Non-reflection Bonded Faceplate	Flat	242±9	Fig. 1	0.27	112,000	76	
14" (13V)	⊙370BUB22	90	36.5	Bonded Frame	575	365.8 ± 9.5	14BE	0.31	690,000	86	
16" (15V)	⊙420AJB22	90	36.5	Bonded Frame	653	397.3±9.5	14BE	0.31	910,000	86	
22"(20V)	⊙550FB22	90	36.5	Bonded Frame	776	475.9±9.5	14BE	0.31	1,900,000	85	

1) Phoshor : Red, Green & Blue, Other phosphors are available.

2) 0 : Negative guard hand concept with black surround screen.

3) Deflection method: Magnetic. Focusing method : Electrostatic. Focus lens : Bipotential.

Hea	ting	Max	imum Rat	ings		Typical O	perating	Conditions			
Ef (V)	lf (ma)	Eb	Ec3 or Ec4	E C2	Eb	Ec3 or Ec4	Ec2	Ec1	Resolution	Drawing No.	Type No.
(V)	(mA)	(kV)	(V)	(V)	(kV)	(V)	(V)	(V)	(lines)		
2.8	107	6	750	150	5	400~580	120	$-13 \sim -43$	500	82	40CB4
2.8	107	7.5	850	450	6	510~690	300	$-18 \sim -57$	700	83	85HB4
6.3	30.0	1 8	1000	800	16	0~400	600	$-40 \sim -90$	1200	84	M17-141W
6.3	300	1 8	1000	800	16	0~400	600	$-37 \sim -87$	1700	85	230BAB39
6.3	300	1 8	1000	800	16	0~400	600	$-37 \sim -87$	1800	86	340BAB39

Hea	ating	Max	ximum Ra	tings	Typical Operating Conditions						
Ef	If	Eb	Есз	4) la	Eb	Ec3	E C2	EC1	5) Resolution	Drawing No.	Type No.
(V)	(mA)	(kV)	(V)	(μA)	(kV)	(V)	(V)	(V)			
2.8	321	14.5	3200	145 ^①	12	2280~ 2700	170~ 480	-40	350 ^①	87	140AUB22
6.3	900	27.5	6000	500 ②	25	4200~ 5000	700~1400	※ 55	80②	88	⊙370BUB22
6.3	900	27.5	6000	500 ^②	25	4200~5000	700~ 1400	* 55	90②	89	⊙420AJB22
6.3	900	27.5	6000	7 50 ①	25	4200~5000	650~1450	※ 7 5	150 ^②	90	⊙550FB22

4) Ia

 $\textcircled{1} : Total \ anode \ current (long \ term \ avarage \ value)$

②: Peak anode current for each gun (duty factor under 25%)

5) Resolution ①: Number of lines.

 $\ensuremath{\mathfrak{D}}$: Displayable number of characters in horizontal width.

OUTLINE DRAWINGS (COLOR PICTURE TUBES)

Unit: mm (inch)

(1) 140AGB22,

(2) 200HB22

(3) 200KB22

(4) 200LB22

145.3min.

(6) 320NB22A, 320CB22A, 320AGB22

(5) 250RB22A

3

370AKB22

8

370BGB22

P

① 365.8 ± 9.5 ② 370.8 ± 9.5

30min. (1.181)

200.5±4.8 -(7.894±0.189)

25max. (0.984) -

70.8±2.5 (2.787±0.098)

292max. (11,496) 265min. (10.433)

222 (8.740)

199.0min.

(7.837)

290min (8.228)

238max (9.370)

254.5mir (10.023) 274 (10.787)

347.3±9.5 -(13.673±0.375)

 $36.5 \phi \pm 1.6$ (1.438 \pm 0.063) External conductive coating.

Base -(B12-246)

182.3±4.8 -(7.177±0.188)-30min. (1.181)

45 20max. (1.772) (0.787)

245.8nom (9.677)

210.6min. (8.291)

(9) 370AXB22

(10) 420AB22, 420NB22

(1) 420ACB22

(12) 420AHB22

Unit: mm (inch)

(13) 420XB22

(14) 440ASB22

(15) ① 470BXB22, 470BYB22, 470CTB22 ② 470EJB22

(16) 470CZB22

(17) 470ESB22

(18) 490ASB22A

395.9min (15.585)

(19) 490BKB22B

(20) 490CHB22A

Unit: mm (inch)

(21) 510ACB22A

② ① 510AEB22A, 510CEB22 ② 510FLB22

(23) 5 I ODTB22

(24) 5 I OFUB22

(25) 550EB22

346.5min. (13.642)

(26) 560DB22

(27) 560KB22

443.1mir (17.445)

(28) 560EB22

(MONOCHROME PICTURE TUBES)

(35) 230AHB4

(6) (1) 230ADB4, 230AYB4 (2) 230AEB4, 230ARB4, 230ANB4

(37) 240MB4

(38) (1) 280VB4, 280UB4

(39) 310FDB4

(40) 310HCB4, 310GUB4

(53) 470LB4 (54) 500WB4 311±7 -(12.244±0.276) 289±7 (11.378±0.276) 200±4 (7.874±0.157) 184±5 (7.244±0.197) **~** 100max. (3.937) 100max. -(3.937) 342±3 (13.465±0.118) 339十3 308.0min. (12.125) -304.8min. (12.000) 941R (37.04) 1219R (48.0) 28.6 \$\pi + 1.1 \\ (1.125 \dots 0.031) 393.7min (15.500) 66 40±5 conductive (2.598) (1.575±0.197) coating. 74.2 44.5±5 conductive (2.921) (1.751±0.197) coating. 425±3 (16,732±0,120) Cavity cap. Base (J1-21) (B7-208) 417±3 (16.417±0,118) Base (B7-208) Cavity ⋅cap. (J1-21) (55) 500JB4, 500XB4 (56) 520AB4 321.3±7 (12.649±0.275) 311±7 -(12.244±0.275)-210.3±5 (8.279±0.196) 200±4 External -(7.874±0.157) conductiv 454.7 (17.901) 393.7min. (15.500) 324.5min. (12.775) 308.0min. (12.125) 336.7min. (13.250) 322.6 (12.700) 378max. (14.881) 353min. (13.897) 240 (9.448) 408.2min (16,070) 443min. (17.440) 64.3 44.5±5 ((2.531) (1.751±0.197) 69.1 44.5±5 (2.720) (1.751±0.196) 433.5max (17.066) 466max. (18,346) Cavity cap. Base (J1-21) (B7-208) Cavity Cop Base (J1-21) (B7-208) (57) 590GB4 (58) A59-IIW, 590YB4 358±8 (14.094±0.312)-358±8 -(14.094±0.314)-(14.094±0.514) 249±5 (9.803±0.196) 130±10 (5.118±0.395) External conductive coating. 248±4 -(9.764±0.157)-| 130±10 (5.118±0.395) 522 (20.551) (2.244) 489.0min (19.250) External conductive 419±3 (16,496±0,118) 384.2min. (15.125) 427max. (16.811) 402min. (15.826) 384.2min. (15.125) 370.5 -(14.586)-505min. (19.881 489.0min (19.250) 51±5 (2.008±0.197) 86min. 51±5 (3.385) (2.007±0.196) 521±3 (20.512±0.118) Cavity cap. Base (J1-21) (B7-208) Cavity cap. Base (J1-21) (B7-208)

(INSTRUMENT CATHODE RAY TUBES)

(59) 40GBI

(60) 40DB31

(61) 75AJBI

(62) 3BKP3 I

(67) 130AWB31

(68) 1 130AGB31 2 130QB31

(69) I30AVB3I

(70) 140VB31

(HIGH SPEED READING/PRINTING TUBES)

(75) 75ANBII

(76) 250JBII

(77) 250UBII

(78) 250WB11 | 120.5±7 | (3.543±0.118) | (3.5

(79) 250VBII

(HIGH RESOLUTION MONOCHROME DISPLAY TUBES)

(HIGH RESOLUTION COLOR DISPLAY TUBES)

Unit: mm (inch)

(87) 140AUB22

(88) 370BUB22

276.3 min. (10.878) 313.8 nom. (12.354)

(89) 420AJB22

Base (B12-246)

(90) 550FB22

BASE CONNECTIONS

(COLOR PICTURE TUBES)

ELECTRON TUBES

PREFERRED TYPES (RECEIVING TUBES)

			Monochrome	TV Set		Color	TV Set
Aı	pplication		Without Transf	ormer	With Transformer	Without	Transformer
		300mA	450mA	600mA	6.3V	300mA	450mA
	RF AMP.	4GK5 4HA5	3GK5 3HA5	2GK5 2HA5	6GK5 6HA5	4GK5 4HA5	3GK5 3HA5
TUNER	OSC., MIXER	7GS7 8GJ7	5GS7 5GJ7	4GS7 4GJ7	6GS7 6GJ7	7GS7 8GJ7	5GS7 5GJ7
	IF AMP.	6EH7 6EJ7	4EH7 4EJ7	3EH7 3EJ7	6EH7 6EJ7	6EH7 6EJ7	4EH7 4EJ7
/IDE0	AMP.	11LY6 12BY7A 15DQ8	8LS6 10DX8 11MS8	12BY7 A	6DX8 12BY7A	11LY6 12BY7A 15DQ8	8LS6 10DX8
	IF AMP.	6BX6 9GH8A	6GH8A	5GH8A	6BX6 6GH8A	6BX6	6GH8A
SOUND	DET.	6DT6A	4DT6A	3DT6A	6DT6A	6DT6A	4DT6A
	AMP. OUTPUT	16A8	11BM8	8B8	6BM8	16A8	11BM8
SYNC.	., SEPARATOR AGC	6AB8 9GH8A 15DQ8	6GH8A 10DX8	4BL8 5GH8A	6AB8 6GH8A	6JX8 9GH8A 12FQ7 15DQ8	6GH8A 8FQ7 10DX8
VERT.	osc.	18GV8	11MS8	9GV8	6GV8	9GH8A 12FQ7	6GH8A 8FQ7
DEF.	OUTPUT	18GV8	11MS8	9GV8	6GV8	15CW5	10 CW5
HORIZ.	OSC., AFC	8A8 9JW8	6GH8A 6LX8	4BL8 5GH8A	6BL8 6GH8A	12FQ7	8FQ7
EF.	OUTPUT	25E5 29KQ6	21KQ6 38HE7	12B-B14 12G-B3	6CM5	29KQ6 40KG6A	21 KQ6
[DAMPER.	17Z3 30AE3	20AQ3 38HE7	16AQ3	6AL3 6R3	30AE3 42EC4A	20 AQ3
Eŀ	HT RECT.	1BK2 1S2 1S2A 1X2B	1BK2 1S2 1S2A 1X2B	1BK2 1S2 1S2A 1X2B	1BK2 1S2 1S2A 1X2B	3CU3 3CU3A 3CV3 3CV3A	3CU3 3CU3A 3CV3 3CV3A
SHUNT	REGULATOR					6BK4B 6BK4C/ oEL4A	6BK4B 6BK4C/6EL4
FOO	CUS RECT.					1X2B	1X2B
COLO	OR CIRCUIT					6AL5 6BX6 9AQ8 9GH8A 12BH7A 15DQ8	4EJ7 6GH8A 8FQ7 10DX8

RECEIVING TUBES (TV SET)

Тур	e No.		Base		Неа	ating	v	Classification	Andline	100000000000000000000000000000000000000	t External acitances	
.Matsushita	European	•	Connec- tions	Drawing No.	Туре	Ef (V)	If (mA)	by Construction	Application	Cpg (Approx.)	Cin (Approx.)	Cout (Approx.)
IBK2		NT	9 Y	21-7	Filament	1.4	550	Diode	HV Rect.	Cp-f1.2	_	-
1 5 2	DY86	NT	9DT	21-31	Cathode	1.4	550	Diode	HV Rect.	Cp-k1.55	_	_
1 S 2 A	DY87	NT	9DT	21-31	Cathode	1.4	550	Diode	HV Rect.	Cp-k1.55		
1 X 2 B		NT	9 Y	21-7	Filament	1.25	200	Diode	HV Rect.	Cp-f1.0		_
⊙2 G K 5		МТ	7FP	18-2	Cathode	2.3	600	Triode ×	RF Amp.	0.52△	5.0△	3.5△
⊕2HA5/ 2HM5	xc900	МТ	7GM	18-1	Cathode	2.4	600	Triode ×	RF Amp.	0.35△	4.5△	3.0△
3 C U 3		GT	8MK	29-02	Filament	3.15	280	Diode	HV Rect.	Cp-fis1.5	-	_
3 C U 3 A		GT	8MK	29-02	Filament	3.15	280	Diode	HV Rect.	Cp-fis1.5	_	_
3 C V 3		GT	8EZ	20-16A	Cathode	3.15	270	Diode	HV Rect.	Cp-k 1.6	-	
3 C V 3 A		GT	8EZ	29-16A	Cathode	3.15	270	Diode	HV Rect.	Cp-k1.6	-	_
3DT6A		МТ	7EN	18-2	Cathode	3.15	600	Pentode #	FM Det.	0.02🖎	5.8△	-
⊙3 E H 7	XF183	NT	9AQ	21-12	Cathode	3.6	600	Pentode ^b	RF, IF Amp.	0.0055	9.5	3.0
⊙3 E J 7	XF184	NT	9AQ	21-12	Cathode	3.6	600	Pentode #	RF, IF Amp.	0.0055	10.0	3.0
⊙3 G K 5		МТ	7FP	18-2	Cathode	2.8	450	Triode	RF Amp.	0.52△	5.0△	3.5△
⊙ 3HA5/ 3HM5	LC900	МТ	7GM	18-1	Cathode	2.7	450	Triode×	RF Amp.	0.35🕾	4.5△	3.0▲
⊙3 H Q 5		МТ		18-2	Cathode	2.8	450	Triode ×	RF Amp.	0.52 🖎	5.0△	3.5△
4 B L 8	XCF80	NT	9DC	21-2	Cathode	4.5	600	Triode ⇔ Pentode #	Sync. Separator Osc. AF, RF Amp.	1.5 max.0.025	2.5	1.8
4DT6A		МТ	7EN	18-2	Cathode	4.2	450	Pentode #	FM Det.	0.02△	5.8	_
⊙ 4 E H 7	LF183	NT	9AQ	21-12	Cathode	4.6	450	Pentode ^b	RF, IF Amp.	0.0055	9.5	3.0
⊙ 4 E J 7	LF184	NT	9AQ	21-12	Cathode	4.6	450	Pentode #	RF, IF Amp.	0.0055	10.0	3.0
⊙4 G J 7	XCF801	NT	9QA	21-20	Cathode	4.1	600	Triode ♦ Pentode #	Osc. Mixer	1.8 \(\triangle \text{max.} \) 0.012 \(\triangle \text{max.} \)	3.3 🛆 6.2 🛆	1.7△ 3.7△
⊙ 4 G K 5		МТ	7FP	18-2	Cathode	4.0	300	$Triode^{ imes}$	RF Amp.	0.52 🖎	5.0△	3.5△
0400=			0.07				200	Triode 0	Osc.	2.0	2.4	1.25
⊙ 4 G S 7		NT	9GF	21-2	Cathode	4.0	600	Pentod e #	Mixer	0.012	6.0	3.6
⊙4HA5/ 4HM5	PC900	МТ	7GM	18-1	Cathode	3.9	300	Triode×	RF Amp.	0.35△	4.5△	3.0△
⊙4R-HH15		NT	9AJ =9DE	21-2	Cathode	4.0	600	Twin-Triode \\$	RF Amp.	(Unit 1) 0.9 \(\triangle \) (Unit 2) 0.9 \(\triangle \)	3.8\triangle 6.3\triangle	1.3\to 2.4\to 2.4

★…Tentative Data⊙…Frame Grid Tube•…(MT…7-pin Miniature Tube NT…9-pin Miniature Tube)#…Sharp-Cutoffb…Remote-CutoffO…Semi Remote-Cuttoff×…High-µ◇…Medium-µ‡…Low-µ⊗…Design Maximum Value

△···With External Shield □···Absolute Maximum Value

		n Rating nter Valu				Typical (Operatio	on and	Charac	teristics	×		Damada	Type No.
Eb (V)	E c 2	Pp (w)	Ik (mA)	Eb (V)	Ec2 (V)	E _{C1} ,Rk (V)(Ω)	Ib (mA)	I _{C2} (mA)	μ	(μ _Ω)	rp (kΩ)	Po (w)	Remarks	Matsushita
epx=	24kV⊗	Ib=4	4mA⊗		Max	. DC Out	put Curi	ent=0.8	88mA ⊗					1 B K 2
epx=	27kV□	Ib=40)mA		Max	. DC Out	put Curr	ent=0.8	3mA					1 S 2
e p x =	27 k V□	Ib=40)mA		Max	. DC Out	pu' Curr	ent = 0.8	BmA					1 S 2 A
epx=	22kV□	Ib=45	5mA \otimes		Max	. DC Out	put Cur	rent=0.	5mA�					1 X 2 B
200�	-	2.5�	22�	135	-	-1	11.5	-	78	15000	5.4			2 G K 50
200�	-	2.2	20 🗇	135	-	-1	11.5	_	76	14500		_		2HA5/ 2HM5
epx=	33k V⊗	Ib=10	00mA⊗		Max	. DC Out	put Cur	rent=2.0)mA⊗					3 C U 3
epx=	33kV⊗	Ib=10	00mA⊗	Ma	x. DC O	utput Cur	rent=2	.0mA⊗ ∑	K-Ray F	Radiation	25mR/Hr	nax.		зсиза
epx =	35kV⊗	Ib=10	00mA		Max	. DC Outp	put Curi	ent = 1.5	9mA⊗					3 C V 3
epx=	35kV⊗	Ib=10	00mA	Ma	x. DC O	utput Cui	rrent=1	.9mA⊗ :	X-Ray I	Radiation	25mR/H	max.		зсуза
330�	Ecc ₂ = 330V ⊗	1.7�	-	150	100	560	155	1.8	_	1350	150		Ec ₃ =0, Gm(g ₃ -p) =515μυ	3DT6A
250	250	2.5	20	200	90	-2	12	4.5	_	12500	500	_	Ec 3 = 0	3 E H 7
250	250	2.5	25	200	200	-2.5	10	4.1	_	15000	380	-	Ec 3 = 0	3 E J 70
200�	-	2.5�	22�	135		-1	11.5	-	70	14000	5.4			3 G K 50
200�	-	2.2	20�	135	_	-1	11.5	_	76	14500	_	-		3HA5/ 3HM5
200	-	2.5 🗇	22�	135	-	0	11.5	-	70	14000	No.	-		3 H Q 50
250	_	1.5	14	100	_	-2	14	-	20	5000	_	-		
250	175	1.7	14	170	170	-2	10	2.8	_	6200	400	-		4 B L 8
330�	Ecc₂= 330V ⋄	1.7	-	150	100	560	1.55	1.8	-	1350	150		$Ec_3 = 0$ $Gm(g_3-p) = 515\mu U$	4DT6A
250	250	2.5	20	200	90	-2	12	4.5	-	12500	500	_	Ec 3 = 0	4 E H 70
250	250	2.5	25	200	200	-2.5	10	4.1		15000	380		Ec 3 = 0	4 E J 70
125	-	1.5	20	100	_	-3	15		20	9000	_	_		4.0 1.70
250	250	2.0	18	170	120	-1.4	10	3		11000	min.350	_		4 G J 70
200�	_	2.5 🗇	22�	135	-	-1	11.5	_	78	15000	5.4	_		4 G K 5
125	_	1.5	15	100		-3	14		17	5500	_	_		400=
250	150	2.0	18	170	150	-1.2	10	3.3		12000	min.350	-		4 G S 70
200�	-	2.2	20�	135	_	-1	11.5	_	76	14500	-	-		4HA5/ 4HM5
165�	_	1.7	22�	90	_	143	7		44	8000	_	_		4R-HH15@

LC...The LC (Limited Connection) shown in the base connection drawing should be used only for the cases particularly indicated.

Тур	e No.		Base Connec-	Drawing	Не	ating		Classification	Application		External citances i	
Matsushita	European	•	tions	No.	Type	Ef (V)	If (mA)	Construction		Cpg (Approx.)	Cin (Approx.)	Cout (Approx.)
5 G H 8 A		NT	9MP	01.0	Carlant	4.7	coo	Triode	Sync. Separator	2.0	2.4	1.1
эчном		141	9MP	21-2	Cathode	4.7	600	Pentode #	Osc. Amp.	0.012	5.8	3.5
⊚ 5 G J 7	LCF801	NT	9QA	21-20	Cathode	5.4	450	Triode ⁽⁾ Pentode [#]	Osc. Mixer	1.8\triangle max. 0.012\triangle	3.3≜ 6.2≜	1.7A 3.7
⊙5 G S 7		NT	9GF	21-2	Cathode	5.4	450	Triode > Pentode #	Osc. Mixer	2.0 0.012	2.4	1.25
5 G X 7		мт	9QA	21-2	Cathode	5.4	450	Triode \(\chi \) Pentode \(\psi \)	Osc. VHF Mixer	1.2	2.3	1.9
5 H G 8	LCF86	NT	9MP	21-2	Cathode	5.4	450	Triode > Pentode #	Osc. Mixer	2.0 0.012	2.4 5.8	1.25
5 L J 8		мт	9GF	21-2	Cathode	5.4	450	Triode †	Osc. VHF Mixer	1.4 0.015	2.4 6.0	1.5
6 A B 8	ECL80	NT	9AT	21-3	Cathode	6.3	300	Triode ⁽⁾ Pentode [#]	AF Amp. Sync Separator Power Amp.	0.9 max. 0.2	2.1 4.3	0.8
6 A F 9		Decal 10Pin	10L	21-4	Cathode	6.3	810	Duplex. Pentode #	Video Amp. Sync. Separator Amp.	(Unit 1) 0.105 (Unit 2) 0.14	12.0 10.0	7.0 11.0
6 A L 3	E Y 8 8	NT	9CB	21-11	Cathode	6.3	1.55A	Diode	Damper	Cp-all 8.6	Ck-f 2.0	_
6 A L 5	EAA91	МТ	6BT	18-1	Cathode	6.3	300	Twin-Diode	Det.	C ₁ P- ₂ P 0.068	Cp-all 2.5	Ck-all 3.4
6 B K 4 B		GT	8GC	38-19 38-29A	Cathode	6.3	200	Beam Triode	HV Shunt Regulator	0.03	2.6	1.0
6BK4C/ 6EL4A		GT	8GC	38-19 38-29 A	Cathode	6.3	200	Beam Triode	HV Shunt Regulator	0.03	2.6	1.0
6 B L 8	ECF80	NT	9DC	21-2	Cathode	6.3	430	Triode ⇔ Pentode #	AF, RF Amp. Sync Separator	1.5 max.0.025	2.5 5.2	1.8
6 B X 6	EF80	NT	9AQ	21-3	Cathode	6.3	300	Pentode #	RF, IF Amp.	0.007	6.9	3.1
6 C L 8 A		мт	9FX	21-2	Cathode	6.3	450	Triode Pentode	Osc. VHF Mixer	1.8	2.8 5.0	1.5
6 C M 5	EL36	GT	8GT	29-12A	Cathode	6.3	1.25A	Beam Power Tube	Horiz Def Power Amp.	max. 1.1	17.5	8.0
6 C W 5	EL86	NT	9CV	21-4	Cathode	6.3	760	Beam Power Tube	Vert. Def. Power Amp.	max. 0.6	13	6.8
∞6 D J 8	ECC88	NT	9AJ =9DE	21-2	Cathode	6.3	365	Twin-Triode \(\circ\)	RF Amp.	(Unit 1) 1.4\(\triangle \) (Unit 2) 1.4\(\triangle \)	3.3≜	2.5△ 3.2△
6DT6A		МТ	7EN	18-2	Cathode	6.3	300	Pentode #	FM Det.	0.02	5.8△	-
6 D X 8	ECL84	NT	9HX	21-3	Cathode	6.3	720	Triode	Sync. Separator	2.7	3.8	2.3
								Pentode #	Video Amp.	max. 0.1	8.7	4.2
6 E A 8		NT	9DC	21-2	Cathode	6.3	450	Triode. Pentode #	Sync. Separator Osc. Amp.	1.9 max.0.01	3.0 15.0	1.9
6EC4A	EY500A	Mag- noval	9-14	38-02	Cathode	6.3	2.1A	Diode	Damper	Cp-K13	Ck-f 3.7	_

★…Tentative Data ⊙…Frame Grid Tube •…(MT…7pin Miniature Tube NT…9-pin Miniature Tube) ♯…Sharp-Cutoff b…Remote-Cutoff ⊙…Semi Remoto-Cutoff ×…High-μ ◇…Medium-μ ★…Low-μ ⊗…Design Maximum Value △…With External Shield □…Absolute Maximum Value

6BK4C/6EL4A

6BL8

	Maximum esign-Ce					Typiçal	Operation	on and	Charac	teristics	s		Remarks	Type No.
Eb (V)	E _{c1} (V)	Pp (W)	lk (mA)	Eb (V)	E _{C2}	E_{C1} , RK $(V)(\Omega)$	Ib (mA)	I _{C2} (mA)	μ	Gm (μ℧)	rp (kΩ)	Po (W)		Matsushita
125	-	1.5	15	100	_	-3	14	_	17	5700	-	-		
250	150	2.0	18	170	150	-1.2	10	3.3	-	12000	min. 350	_		5 G H 8 A
125	-	1.0	20	100	-	-3	15	-	20	9000	-	-		
250	250	2.0	18	170	120	-1.4	10	3	_	11000	min. 350	-		5 G J 7
125	-	1.5	15	100	-	-3	14	_	17	5500	-	_		
250	150	2.0	18	170	150	-1.2	10	3.3	_	12000	min. 350	_		5 G S 7
275		1.5	20	125	-	68	13	-	40	8500	4.7	_		
275	275	2.2	20	125	125	-1.0	8	2.5	-	11000	-	-		5 G X 7
125	_	1.5	15	100	-	-3	14	-	17	5700	_	-		
250	150	2.0	18	170	150	-1.2	10	3.3	-	12000	min. 350	-		5 H G 8
280	-	2.0	20	150	-	68	13	-	40	8500	5.0	-		
280	280	2.0	20	150	125	33	14	4	-	14000	1-1	-		5 L J 8
200	_	1.0	8	100	_	0	8	-	20	1900	-	_		
400	250	3.5	25	200	200	-8	17.5	3.3	_	3300	150	1.4	$Ec_3=0$ R _L =11k Ω	6 A B 8
250	250	5.1	60	80	180	-1.3	65	18.5	_	29000	32	_	ICE TARE	
250	250	1.5	15	150	150	-2.1	10	3.0	_	8500	160	_		6 A F 9
epx=7. Pp=5V	5kV⊗	Ib=220 ehk=6	Om A	_	_	_	_	_	_	_	_	_		6 A L 3
epx=3		Ib=54				Maximum	DC Out	put Cur	rent=9	mА				6 A L 5
Ebb=⊗ 60kV	Ec= -135⊗	40◈	Ib=1.6 [♦]		_	_	_	_	200	_		_		6BK4B
Ebb=⊗ 60kV	Ec = -135⊗	40⊗	Ib=1.6 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	_	_	_	_	_	2000	X R	ay Radia	tion 0.	5mR/Hmax.	6BK4C
250	- 133	1.5	14	100	_	-2	14	_	20	5000	_	· · ·		
250	175	1.7	14	170	170	-2	10	2.8		6200	400	_		6 B L 8
300	300	2.5	15	170	170	-2	10	2.5	_	7400	500	-	Ec3=0	6 B X 6
330	_	2.5	_	125	_	-1.0	14	_	40	8000	5.0	_		
330	330	2.5	_	125	125	-1.0	12	4.0	_	6500	_	_		6CL8A
250 epx=7kV)	050	12.0	200	100	100	-8.2	100	7	_	14000	5	_		6 C M 5
250	250	12.0	100	170	170	-12.5	70	3.5	-	11000	26	5.1		6 C W 5
130	-	1.8	25	90	_	-1.3	15	_	33	12500		_		6 D J 8
330⊗	Ecc ₂ =	1.7	_	150	100	560	1.55	1.8	_	1350	150	_	$Ec_3 = 0$, GM (gop) = $515\mu\Omega$	6DT6A
250	330V⊗	1.0	12	200	_	-1.7	3	-	65	3000		_	(gop) = 515µ11	
250	250	4.0	40	170	170	-2.1	18	3	_	11000	min. 100	_		6 D X 8
	_	2.5	-	150	_	56	18	_	40	8500	5.0	_	-	
330		2.0				-1	12	4	_	6400	200	_		6 E A 8
330 330	330	3.1	-	125	125	-1								

 $LC \cdots The \ LC \ (Limited \ Connection) \ shown \ in \ the \ base \ connection \ drawing \ should \ be \ used \ only \ for \ the \ cases \ particularly indicated$

		and the same of th	-									
Туре	e No.		Base Connec-	Drawing	He	ating		Classification by	Application	10000 000 0000000	External citances	
Matsushita	European	•	tions	No.	Type	Ef (V)	If (mA)	Construction		Cpg (Approx.)	Cin (Approx.)	Cout (Approx.
⊙6 E H 7	EF183	NT	9AQ	21-12	Cathode	6.3	300	Pentode ^b	RF, IF Amp.	0.0055	9.5	3.0
06 E J 7	EF184	NT	9AQ	21-12	Cathode	6.3	300	Pentode #	RF, IF Amp.	0.0055	10.0	3.0
6FQ7/ 6CG7		NT	9LP	21-3	Cathode	6.3	600	Twin-Triode 🜣	Horiz. & Vert.	(Unit 1) 3.6 (Unit 2) 3.8	2.4	0.34
6 G H 8 A		NT	9DC	21-2	Cathode	6.3	450	Triode ⇔ Pentode #	Sync. Separator Osc. Amp.	1.7 max. 0.02	3.0	1.4
⊙6 G J 7	ECF801	NT	9QA	21-20	Cathode	6.3	390	Triode \$\triangle\$ Pentode #	Osc.	1.8A	3.3A 6.2A	1.7△
⊙6 G K 5		МТ	7FP	18-2	Cathode	6.3	180	Triode ×	RF Amp.	0.012	5.0△	3.5△
6 G K 6		NT	9GK	21-4	Cathode	6.3		Power Pentode	Power Amp. Vert. Def.	max. 0.14	10.0	7.0
⊙6 G S 7		NT	9GF	21-2	Cathode	6.3	365	Triode \Diamond	Osc.	2.0	2.4	1.25
6 G U 7		NT	9LP	21-3	Cathode	6.3	600	Pentode* Twin-Triode	Mixer Vert.Def.Amp.	0.012 (Unit 1) 3.0 (Unit 2)	6.0 3.4 3.6	3.6 0.44 0.34
6 G X 7		мт	9QA	21-2	Cathode	6.3	400	Triode †	Osc. VHF Mixer	1.2 0.005	2.3	1.9
6 G V 8	ECL85	NT	9LY	21 -4	Cathode	6.3	900	Triode × Beam Power	Vert. Def. Osc. Video Amp. Power Amp.	-	-	-
⊙6HA5/ 6HM5	EC900	МТ	7GM	18-1	Cathode	6.3	185	Tube Triode ×	RF Amp.	0.35 🖎	4.5△	3.0△
6 H B 7		NT	9QA	21 -1	Cathode	6.3	450	Triode ◊ Pentode #	Sync. Separator Osc. Amp.	1.9 max. 0.01	3.0 5.0	1.9
⊙6 H G 8	ECF86	NT	9MP	21-2	Cathode	6.3	365	Triode †	Osc.	2.0	2.4	1.1
⊙6 H Q 5		МТ	7GM	18-2	Cathode	6.3	180	Triode ×	RF Amp.	0.52 🖎	5.0△	3.5△
6 J X 8	ECH84	NT	10-54	21 -3	Cathode	6.3	300	Triode Heptode ♡	Sync. Amp. Sync. Separator	1.1	3.0	i—
6 K E 8		мт	9DC	21 -2	Cathode	6.3	400	Triode Pentode◊	Osc. VHF Mixer	1.3	2.4	2.0
6KG6A	EL509	Mag- noval	9RJ	38-01	Cathode	6.3	2.0A	Beam Power Tube	Horiz. Def. Power Amp.	2.5	_	_
6 K Z 8		NT	9FZ	21-2	Cathode		450	Triode \(\triangle \) Pentode \(\psi \)	Osc. Mixer	1.6A	3.2≜	1.8△
6 L F 6		Mag-	12GW	38-01	Cathode	6.3	(2A)	Beam Power Tube	Horiz. Def.	0.01 🕾	-	_
		noval						Tube Triode	Power Amp. Osc.	1.4	2.4	1.5
6 L J 8		МТ	9GF	21-2	Cathode	6.3	400	Pontode	VHF Mixer	0.015	6.0	3.4

★…Tentative Data ⊙…Frame Grid Tube •…(MT…7-pin Miniature Tube NT…9-pin Miniature Tube) ♯…Sharp-Cutoff b…Remote-Cutoff O…Semi Remote-Cutoff ×…High-μ ◇…Medium-μ ★…Low-μ ⊙…Design Maximum Value ∴…With External Shield □…Absolute Maximum Value

	Maximum esign-Cer					Typical	Operat	ion and	Charac	cteristic	S		Remarks	Type No.
Eb (V)	E _{C2} (V)	Pp (W)	lk (mA)	Eb (V)	E _{C2} (V)	E _{c1} , RK (V)(Ω)	lb (mA)	I _{C2} (mA)	μ	Gm (μ℧)	rp (kΩ)	Po (W)		Matsushita
250	250	2.5	20	200	90	-2	12	4.5	_	12500	500	_	Ec ₃ = 0	6 E H 7
330	250	2.5	25	200	200	-2.5	10	4.1	_	15000	380	-	Ec3 = 0	6 E J 7
330 ⊗	-	4.0�	22�	250	,	-8	9	_	20	2600	7.7	1-		6FQ7/ 6CG7
330	_	2.5	-	125		-1	13.5	_	46	8500	5.4	_		CCHOA
350	330	2.5	20	125	125	-1	12	4	_	7500	200	_		6GH8A
125	_	1.5	20	100	-	-3	15	-	20	9000	-	_		0017
250	250	2.0	18	170	120	-1.4	10	3	_	11000	min. 350	-		6 G J 7
200 🗇	-	2.5�	22�	135	-	-1	11.5	-	78	15000	5.4			6 G K 5
330 ⊗	330	13.2	.65	250	250	-7.3	48	5.5	-	11300	38	5.7	$R_L = 5.2k\Omega$	6 G K 6
125	_	1.5	15	100	-	-3	14	-	17	5500	-	-		
250	150	2.0	18	170	150	-1.2	10	3.3	-	12000	min. 350	-		6 G S 7
450	-	3.5	20	250	-	-10.5	11.5		16.5	3100	5.3	-		6 G U 7
275	-	1.5	20	125	125	68	13	-	40	8500	4.7	-		6 G X 7
275	275	2.2	20	125	125	-1.0	8	2.5		11000	_	-		6 G X /
250	_	0.5	15	100	-	-0.85	5	_	60	5500	11	-		c c v e
250	250	7.0	75	170	170	-15	41	2.5	_	7300	26	_		6 G V 8
200 🗇	_	2.2�	20�	135	_	-1	11.5	-	76	14500	-	_		6HA5/ 6HM5
330	-	2.5	-	150	-	0	18	1-	40	8500	5.0	_		6 H B 7
330	330	3.1	-	125	125	-1	12	4	-	6400	200	_		опь/
125		1.5	15	100	-	-3	14	-	17	5700	1-	1-1		6 H G 8
250	150	2.0	18	170	150	-1.2	10	3.3	-	12000	min. 350	1-1		опио
200	-	2.5�	22	135	-	0	11.5	-	70	14000	-	1-1		6 H Q 5
250	-	1.3	10	50	-	0	3	-	50	3700	-	-		6 J X 8
250	Ec2+4= 250	1.7	12.5	135	Ec ₂ + ₄ = 14	0	1.7	$1c_2 + 4 = 0.9$	-	2200	-	_	$Ec_3=0$	0000
280	_	2.0	20	125	7	68	13	-	40	8000	5.0	-		6 K E 8
280	280	2.0	20	125	125	33	10	2.8	-	12000	_	-		
ep=8kV)	275	40◈	500	50	175	-10	800	70	-	-	-			6 K G 6 A
330	_	2.5	_	125	-	-1	13.5	-	46	8500	5.4	-		6 K Z 8
330	$Ecc_2=330$	2.5	_	125	125	-1	12	-	_	7500	200	-		0 K 2 8
ep = 8kV	275	40◈	_	50	175	-10	800	70	_	_	_	-		6 L F 6
280	-	2.0	20	150	-	68	13	-	40	8500	5.4	-		6 L J 8
280	280	2.0	20	150	125	33	14	4.0	-	14000	-	_		0 2 0 8

 $LC\cdots The\ LC\ (Limited\ Connection)$ shown in the base connection drawing should be used only for the cases particularly indicated.

Тур	e No.		Base Connec-	Drawing	Не	ating		Classification by	Application		External citances	
Matsushita	European	•	tions	No.	Type	Ef (V)	If (mA)	Construction		Cpg (Approx.)	Cin (Approx.)	Cout (Approx.
6 L M 8		мт	9AE =9DC	21-2	Cathode	6.3	450	Triode [♦] Pontode [#]	General Purpose Amp. Burst Amp.	1.8	3.2 5.5	1.9
6 L N 8	LCF80	NT	9DC	21-2	Cathode	6.3	450	Triode \(\chi \) Pentode \(\psi \)	Sync. Separator. Osc. RF Amp. Conv	max.1.5	2.5	1.8
6 L X 8	LCF802	NT	9DC	21-2	Cathode	6.3	450	Triode × Pentode	Sync. Separator Horiz. Osc.	1.5	2.4	Cg-f max. 0. Cg-f max. 0.
6 R 3	EY81	NT	9CB	21-8	Cathode	6.3	810	Diode	Damper	Cp-all 6.4	Ck-f 2.8	—
∞6 Y 9	EFL200	Decal 10pin	10-55	21-4	Cathode	6.3	810	Duplex- Pentode #	Video Amp. Sync. Separator	(Unit 1) 0.105 (Unit 2) 0.14	12.0 10.0	7.0 7.0
⊚7 D J ['] 8	PCC88	NT	9AJ =9DE	21-2	Cathode	7.2	300	Twin-Triode \	RF Amp.	(Unit 1) 1.4\(\triangle \) (Unit 2) 1.4\(\triangle \)	3.3\(\text{\ti}}\text{\te}\tint{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\texit{\text{\text{\text{\texi}\text{\texi}\text{\text{\texit{\tet{\text{\text{\text{\text{\text{\texi}\text{\texi}\texit{\t	2.5 £
⊙7 G S 7		NT	9GF	21-2	Cathode	7.6	300	Triode †	Osc. Mixer	2.0	2.4	1.25 3.6
⊙7 H G 8	PCF86	NT	9MP	21-2	Cathode	7.6	300	Triode ♦ Pentode	Osc. Mixer.	2.0 0.012	2.4	1.1
8 A 8		NT	9DC	21-2	Cathode	8.4	300	Triode ♥ Pentode #	Sync. Separator Osc. RF Amp.	1.5 max.0.025	2.5 5.2	1.8
8 B 8	XCL82	NT	9EX	21-4	Cathode	8.0	600	Triode × Power Pentode	AF Amp. Vert. Def., Power Amp.	4.4 max.0.3	2.7 9.3	4.3 8.0
8 C W 5	X L 8 6	NT	9CV	21-4	Cathode	8.0	600	Beam Power Tube	Vert. Def., Power Amp.	max. 0.6	13.0	6.8
8FQ7 8CG7		NT	9LP	21-3	Cathode	8.4	450	Twin-Triode 🜣	Horiz. & Vert. Osc.	(Unit 1) 3.6 (Unit 2) 3.8	2.4	0.34
08 G J 7	PCF801	NT	9QA	21-20	Cathode	7.6	300	Triode ♡ Pentode #	Osc. Mixer.	1.8\triangle max. 0.012\triangle	3.3\text{\ti}}}}}}} \end{endote}}}}}}}}}}}	1.74 3.74
8 L S 6		NT	9GK	21-3	Cathode	7.5	450	Pentedo #	Video Amp.	0.075	7.2	4.2
9 A 8	PCF80	NT	9DC	21-2	Cathode	9.0	300	Triode ♦ Pentode #	Sync. Separator Osc. RF IF Amp.	1.5 max.0.025	2.5 5.2	1.8
9 A Q 8	PCC85	NT	9AJ =9DE	21-2	Cathode	9.0	300	Twin-Triode 🜣	Osc., Mixer	1.5	3.0	1.2
9 G H 8 A		NT	9DC	21-2	Cathode	9.45	300	Triode ⁽⁾ Pentode #	Sync. Separator Horiz. Osc.	1.7 max.0.02	3.0 5.0	1.4
9 G V 8	XLC85	NT	9LY	21-4	Cathode	8.8	600	Triode × Pentode	Vert, Def, Osc. Vert Def., Power Amp.	1.4 0.015	2.4	1.5
9 J W 8	PCF802	NT	9DC	21-2	Cathode	9.0	300	Triode × Pentode #	Sync. Separator Horiz. Osc.	1.5	2.4	Cg-f max. 0. Cg-f max. 0.

★…Tentative Data ⊙…Frame Grid Tube •…(MT…7-pin Miniature Tube NT…9-pin Miniature Tube) #…Sharp-Cutof b···Remote-Cutoff O···Semi Remote-Cutoff ×···High-μ ◇···Medium-μ Φ···Low-μ ⊗···Design Maximum Value

△···With External Shield □···Absolute Maximum Value

6LX8

7GS7

		n Ratings nter Valu				Typical	Operati	on and	Chara	cteristic	S		Remarks	Type No.
Eb (V)	E _{C1} (V)	Pp (W)	Ik (mA)	Eb (V)	E _{C2} (V)	E_{c1} , RK $(V)(\Omega)$	lb (mA)	I _{C2} (mA)	μ	Gm (μ℧)	rp (kΩ)	Po (W)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Matsushita
330 350	330	2.5	_	125 125	_ 125	-1.0 -2.0	13.5 12	4.0	46	8500 6000	5.4	_		6 L M 8
250	-	1.5	14	100	_	-2	14	_	20	5000	_	_		
250	175	1.7	14	170	170	-2	10	2.8	_	6200	400	_		6 L N 8
250	_	1.4	10	200	_	-2	3.5	_	70	3500	-			
250	250	1.2	15	100	100	-1	6	1.7	_	5500	400	_		6 L X 8
epx=5k Pp=3.5		Ib=150n	n A	_	_	_	_	_	_	_	-	_		6 R 3
Pp=3.5 250	250	ehk=5k\	60	170	170	-2.7	30	7.2	-	22000	32	_		0 11 0
250	250	1.5	15	150	150	-2.1	10	3	_	8500	160	_		6 Y 9
250	230	1.0	10	150	130	2.1	10	3		0300	100			Burley
130	-	1.8	25	90	_	-1.3	15	-	33	12500	-	-		7 D J 8
125	1-	1.5	15	100	-	-3	14	1-1	17	5500	-			
250	150	2.0	18	170	150	-1.2	10	3.3	_	12000	-	_		7 G S 7
125	_	1.5	15	100	-	-3	14	-	17	5700	-	1-		
250	150	2.0	18	170	150	-1.2	10	3.3	-	12000	min. 350	_		7 H G 8
250	_	1.5	14	100	-	-2	14	-	20	5500	-	_		5-2-575
250	175	1.7	14	170	170	-2	10	2.8	_	6200	400	_		8 A 8
250	_	1.0	15	100	-	0	3.5	-	70	2200	-	-		
250	250	Vert. Out. 5 AF Out. 7	50.	170	170	-11.5	41	9	_	7500	16	3.2		8 B 8
250	250	12.0	100	170	170	-12.5	70	3.5	_	11000	26	5.1	$R_L=2k\Omega$	8 C W 5
330◈	-	4.0\$	22�	250	_	-8	9	_	20	2600	7.7	_		8FQ7/ 8CG7
125	_	1.5	20	100	-	-3	15	1-1	20	9000	_	_		
250	250	2.0	18	170	120	-1.4	10	3	_	11000	min. 350	-		8 G J 7
180◈	180�	5◈	_	110	110	65	14	3.2	36	11000	54	_		8 L S 6
250	_	1.5	14	100	-	-2	14	-,	20	5000	-	_		
250	175	1.7	14	170	170	-2	10	2.8	-	6200	400	_		9 A 8
250	-	2.5	15	170	-	-1.5	10	_	50	6200	_	_		9 A Q 8
330	_	2.5	_	125	_	-1	13.5	_	46	8500	5.4	_		
350	330	2.5	20	125	125	-1	12	4	_	7500	200	_		9 G H 8 A
250	_	0.5	15	100	_	180	5	_	60	5500	_	_		154.5
250	250	7.0	75	170	170 -	345	200	2.5	_	7300	26	- 7		9 G V 8
250	_	1.4	10	200	_	-2	3.5	_	70	3500	_	_		I to
250	250	1.2	15	100	100	-1	6	1.7	_	5500	400	_		9 J W 8

 $LC\cdots The\ LC\ (Limited\ Connection)$ shown in the base connection drawing should be used only for the cases particularly indicated.

Тур	e No.		Base Connec	Drawing	Не	ating		Classification by	Application	0.0000000000000000000000000000000000000	External citances i	
Matsushita	European	•	tions	No.	Туре	Ef (V)	If (mA)	Construction	Application	Cpg (Approx.)	Cin (Approx.)	Cout (Approx.
1 0 C W 5	LL86	NT	9CV	21-4	Cathode	10.3	450	Beam Power Tube	Vert. Def., Power Amp.	max. 0.6	13.0	6.8
I O D X 8	LCL84	NT	9HX	21-3	Cathode	10.2	450	Triode ×	Sync. Separator	2.7	3.8	2.3
TOBAG	-0204		JIII	21 0	outhous	10.2	,	Pentode #	Video Amp.	max. 0.1	8.7	4.2
IOGK6		NT	9GK	21-4	Cathode	10.6	450	Power Pentode	Power Amp. Video Amp.	max. 0.14	10.0	7.0
10GV8	LCL85	NT	9LY	21-4	Cathode	10.6	450	Triode × Beam Power Tube	Vert. Def., Osc Vert. Def., Power Amp.	_	_	_
⊙IIAF9		Decal 10Pin	10L	21-4	Cathode	11.5	450	Dulplex Pentode #	Video Amp. Sync. Separator Amp.	(Unit 1) 0.105 (Unit 2) 0.14	12.0 10.0	7.0 11.0
IIBM8	LCL82	NT	9EX	21-4	Cathode	10.7	450	Triode × Power Pentode	AF Amp. Vert. Def., Power Amp.	4.4 max. 0.3	2.7 9.3	4.3 8.0
IILY6		NT	9GK	21-3	Cathode	11.0	300	Pentode #	Video Amp.	0.075	9.5	3.8
IIMS8		NT	9LY	21-4	Cathode	11.4	450	Triode × Pentode	Vert. Def., Osc. Vert. Def., Amp.	1.8 max. 0.6	2.9	2.2 8.0
IIR3	LY81	NT	9CB	21-8	Cathode	11.3	450	Diode	Damper	00	Ck-f 2.8	_
⊙ I I Y 9	LFL200	Decal 10Pin	10-55	21-4	Cathode	11.5		Duplex Pentode #	Video Amp. Sync. Separator, Amp.	(Unit 1) 0.105 (Unit 2) 0.14	12.0 10.0	7.0 11.0
12AT7	ECC81	NT	9A	21-2	Cathode		300 150	Twin-Triode ×	RF Amp.	(Unit 1) 1.5 (Unit 2) 1.5	2.2	0.5
12B-B14		Mag- noval	9NH	29-51	Cathode	12.6	600	Beam Power Tube	Horiz. Def. Power Amp.	max. 1.4	17.5	7.7
128H7A		NT	9A	21-3	Cathode	6.3	600 300	Twin-Triode 🜣	Vert. Def. Amp.	(Unit 1) 2.6 (Unit 2) 2.6	3.2	0.5
12BY7A		NT	9BF	21-3	Cathode	6.3		Pentode #	Video Amp.	0.063	10.2	3.5
12FQ7		NT	9LP	21-3	Cathode	12.6		Twin-Triode ♡	Horiz & Vert.	(Unit 1) 3.6 (Unit 2) 3.8	2.4	0.3
12G-B3		GT	8GT	29-12A	Cathode	12.6	600	Beam Power Tube	Horiz. Def. Power Amp.	max. 1.1	17.5	7.7
12G-B7		GT	8GT	38-32	Cathode	12.6		Beam Power Tube	Horiz. Def. Power Amp.	max. 1.4	17.5	7.7
12R-K19		NT	9CB	21-11	Cathode	12.6	600	Diode	Damper	Cp-all 8.5	Ck-f 3.0	_
14GW8	PCL86	NT	9LZ	21-4	Cathode	14.5	300	Triode × Pentode	AF Pre-Amp. Power Amp.	1.4 max. 0.4	2.3	2.5
15CW5	PL 8 4	NT	9CV	21-4	Cathode	15.0	300	Beam Power	Vert. Def., Power Amp.	max. 0.4	13.0	6.8
15DQ8	PCL84	NT	9HX	21-3	Cathode	13.7		Tube Triode ×	Sync. Separator	2.7	3.8	2.3

★…Tentative Data ⊙…Frame Grid Tube •…(MT…7-pin Miniature Tube NT…9-pin Miniature Tube) #…Sharp-Cutoff b···Remote-Cutoff O···Semi Remote-Cutoff ×···High-μ ◇···Medium-μ Φ···Low-μ ⊗···Design Maximum Value △···With External Shield □···Absolute Maximum Value

12BH7A

		n Rating enter Valu				Typical	Operati	on and	Charac	cteristics	S		Remarks	Type No.
Eb (v)	E _{C1} (v)	Pp (w)	Ik (mA)	Eb (v)	E _{C2}	E _{C1} , RK (ν)(Ω)	lb (mA)	l C2 (m A)	μ	Gm (μΩ)	rp (kΩ)	Po 6 (w)	Kemarks	Matsushita
250	250	12.0	100	170	170	-12.5	70	3.5	_	11000	26	5.1	$R_L=2k\Omega$	10CW5
250 250	_ 250	1.0	12 40	200 170	170	-1.7 -2.1	3 18	- 3	65	3000 11000	- min. 100	_		I O D X 8
330	330	13.2	65	250	250	-7.3	48	5.5	-	11300	38	5.7	$R_L=5.2k\Omega$	IOGK6
250 250	250	0.5 7.0	15 75	100 170	- 170	-0.85 -15	5 41	- 2.5	60	5500 7300	11 26	_	2	10GV8
250 250	250 250	5.1	60	80 150	180 150	-1.3 -2.1	65	18.5	-	29000 8500	32 160			IIAF9®
250 250	250	1.0 Vert.Out.5 AF Out. 7	15 50	100 170	- 170	-0 -11.5	3.5 41	9	70 —	2200 7500	_ 16	3.2	$R_L=3.25k\Omega$	IIBM8
330◈	190�	6.5	-	250	180	100	26	5.75	_	11000	89	_		IILY6
250 ♦ 250 ♦	_ 200⊗	0.5 ⊗ 6.0 ⊗	15 ♦ 70 ♦	100 120	- 110	-0.85 -10	5 50	- 3	60	5500 8500	11 13	-		IIMS8
epx=5k' Pp=3.5	V	Ib = 150r ehk = 5k	mA V	_	_	_	_	_	_	_	_	_		IIR3
250 250	250 250	5.1	60 15	170 150	170 150	-2.7 -2.1	30 10	7.2	_	22000 8500	32 160	. –		1 1 Y 9@
300	-	2.5	-	250	-	200	10	-	60	5500	10.9	_		12AT7
00 ep=7kV)	250	13.0	100	100	100	-7.7	100	7	-	14000	5.3	_		12B-B14
300	-	3.5	20	250	_	-10.5	11.5	_	16.5	3100	5.3	_		12BH7A
300◈	190�	6.5◈	_	250	180	100	26	5.75	-	11000	93	_		12BY7A
300⊗	-	4.0	22�	250	_	-8	9	-	20	2600	7.7	1		12FQ7
00 (ep = 6.6kV)	220 🗆	11.0□	165 🗆	100	100	-7.7	100	7	-	14000	5.3	_		12G-B3
70回 (ep :7.7kV)回	275 🗆	16.5 🗆	220 🗆	100	100	-7.7	100	7	_	14000	5.3	_		12G-B7
ерх=5.	5kV	6.5◈	Ib=⊗ 200	_	-	_		-	_	-	-	-		12R-K19
300 300	300	0.5 9.0	4 55	250 250	_ 250	-1.9 -7	1.2 36	6	100	1600 10000	48	4	$R_L = 7 k\Omega$	14GW8
250	250	12.0	100	170	170	-12.5	70	3.5	-	11000	26	5.1	$R_L = 2k\Omega$	15CW5
250 250	_ 250	1.0	12 40	200 170	- 170	-1.7 -2.1	3 18	3	65	3000 11000	- min. 100	_		15DQ8

 $LC\cdots The\ LC\ (Limited\ Connection)$ shown in the base connection drawing should be used only for the cases particularly indicated.

Тур	e No.		Base Connec-	Drawing	Не	ating		Classification by	Application		ut Externa citances	
Matsushita	European	•	tions	No.	Type	Ef (V)	If (mA)	Construction		Cpg (Approx.)	Cin (Approx.)	Cout (Approx.
16A8	PCL82	NT	9EX	21-4	Cathode	16.0	300	Triode × Power Pentode	AF Amp. Vert. Def., Power Amp.	4.4 max. 0.3	2.7 9.3	4.3 8.0
16AQ3	X Y 8 8	NT	9CB	21-11	Cathode	16.0	600	Diode	Damper	Cp-all 8.6	Ck-f 2.0	-
16GK6		NT	9GK	21-4	Cathode	16.0		Power Pentode	Power. Amp. Video Amp.	max. 0.14	10.0	7.0
⊙I 6 Y 9	PFL200	Decal 10pin	10-55	21-4	Cathode	17.0		Duplex- Pentode #	Video Amp. Video Amp. Sync. Separator, Amp.	(Unit 1) 0.105 (Unit 2) 0.14	12.0 10.0	7.0 11.0
17A8		NT	9DC	21-2	Cathode	18.0	150	Triode ⇔ Pentode #	Sync. Separator, Osc. RF, IF Amp.	1.5 max. 0.025	2.5 5.2	1.8
17Z3	PY81	NT	9CB	21-8	Cathode	17.0	300	Diode	Damer	Cp-all 6.4	Ck-f 2.8	_
'18GV8	PLC85	NT	9LY	21-4	Cathode	17.3	300	Triode × Beam Power Tube	Vert. Def., Osc. Vert. Def. Power Amp.	-	_	_
20AQ3	LY88	NT	9CB	21-11	Cathode	20.2	450	Diode	Damper	Cp-all 8.6	Ck-f 2.0	
20LF6		Mag noval	12GW	38-01	Cathode	20.0	600	Beam Power Tube	Horiz. Def. Power Amp.	2.5	-	_
2 KQ6	LL521	Mag- noval	9RJ	29-01	Cathode	21.5	450	Beam Power Tube	Horiz. Def. Power Amp.	1.5	27.0	11.0
2 5 E 5	PL36	GT	8GT	29-12A	Cathode	25.0	300	Beam Power Tube	Horiz. Def. Power Amp.	max. 1.1	17.5	8.0
25HX5		Mag- noval	9SB	29-44	Cathode	25.0	300	Beam Power Tube	Vert Def. Power Amp.	max. 1.1	17.3	7.7
29KQ6	PL521	Mag- noval	9RJ	29-01	Cathode	30.0	300	Beam Power Tube	Horiz. Def. Power Amp.	1.5	27.0	11.0
29LE6		Mag- noval	9RJ	29-01	Cathode	30.0	300	Beam Power Tube	Horiz. Def. Power Amp.	1.5	27.0	11.0
30AE3	PY88	NT	9CB	21-11	Cathode	30.0	300	Diode	Damer.	Ca-all 8.6	Ck-f 2.0	_
3 4 R 3		NT	9CB	21-8	Cathode	34.0	150	Diode	Damer	Cp-all 6.4	Ck-f 2.8	_
33HE7€		Duo- decar	12FS	38-57	Cathode	33.6	450	Diode Beam Power Tube	Damper Horiz. Def., Amp.	Cp-(h+k) 7.0 0.38	$\frac{\text{Ck-}(p+h)}{7.0}$	Ch-k1.
38HE7		Duo- decar	12FS	38-57	Cathode	37.8	450	Diode Beam Power Tube	Damper Horiz. Def., Amp.	Cp·(h+k) 7.0 0.38	Ck- (p+h) 8.0 19.38	Ch-k1.
40KG6A	PL509	Mag- noval	9RJ	38-01	Cathode	40.0	300	Beam Power Tube	Horiz. Def. Power Amp.	2.5	_	
42EC4A	PY500A	Mag- noval	9-14	38-02	Cathode	42.0	300	Diode	Damper	Cp-k13	Ck-f 3.7	_
50JY6		GT	8MG	29-12A	Cathode	50.0	150	Beam Power Tube	Vert. Def. Power Amp.	1.1	17.5	8.0

★…Tentative Data ⊙…Frame Grid Tube •…(MT…7pin Miniature Tube NT…9pin Miniature Tube) #…Sharp-Cutoff b···Remote-Cotoff O···Semi Remote-Cutoff ×···High-μ ◇···Medium-μ +···Low-μ

△···Wih External Shield □···Absolute Maximum Value

16A8

16AQ3

18GV8

21KQ6

	Maximun esign-Ce					ГурісаІ	Operati	on and	Chara	cteristic	S		Remarks	Type No.
Eb (V)	E _{C1} (V)	Pp (W)	Ik (mA)	Eb (V)	E _{C2} (V)	E_{C1} , RK $(V)(\Omega)$	Ib (mA)	I _{C2} (mA)	μ	Gm (μ℧)	rp (kΩ)	Po (W)	L_L =3.25k Ω R_L =5.2k Ω Separated G_3 type as snivets counter measure	Matsushita
250 250	_ 250	1.0 Vert. Out.5	15 50	100 170	170	9 -11.5	3.5 41	- 9	70	2200 7500	-	-	1 -2 2510	16A8
epx=7. Pp=5V		AF Out. 7 Ib=220m	2.2		170	-11.5	41	-		7500	16	3.2	LL-3.23K12	10100
		ehk=6.6								11000	-		D 5 01 0	16AQ3
330	330	13.2	65	250	250	-7.3	48	5.5	_	11300	38	5.7	$R_L=5.2k\Omega$	16GK6
250	250	5.1	60	80	80	-1.3	30	7.2	_	22000	32	_		1 6 Y 9
250	250	1.5	15	150	150	-2.1	10	3	-	8500	160	_		
250 250	175	1.5	14	100	170	-2	14	-	20	5000	-	_		17A8
250 epx=51		Ib=150m	14	170	170	-2	10	2.8	_	6200	400			
$P_p=3.5W$		ehk=5kV			1—	_	_	_	-		_	_		17Z3
250	_	0.5	15	100	_	-0.85	5	-	60	5500	11	-		18GV8
250	250	7.0	75	170	170	-15	41	2.5	-	7300	26	_		
epx=7. Pp=5V	.5kV□ V	Ib = 220n ehk = 6.6	n A Sk V	-	-	=	-		1-1	-	_	1-1		20 A Q 3
(ep= ⊗ 8kV)	275	40◈	-	50	175	-10	800	70	1-1	_	-	_		20LF6
275 (ep= 6.5kV)	275⊗	17.0�	275�	40	Ecc ₂ =135	0	450	35	1-1	-	-	-	as snivets counter	2 I K Q 6
250 (ep=7kV)	250	12.0	200	100	100	-8.2	100	7	-	14000	5	_		2 5 E 5
400◈	300⊗	14.0�	220�	100	100	-8.2	100	7	1-1	14000	5	_		25HX5
275 � (ep= 6.5kV)	275�	17.0�	275�	40	Ecc 2 =135	0	450	35	<u></u>	-		-	as snivets counter measure Ec3=0,	29KQ6
275 (ep= 6.5kV)	275	20.0	275	40	Ecc ₂ =135	0	450	35	-	-		-	as snivets counter measure Ec ₃ =0	29LE6
epx=7. $Pp=5V$.5kV□ V	Ib=220n ehk=6.6	n A Sk	1-1	-	_	_	-	-	_	_	_		30 A E 3
epx=5k Pp=3.	kV	lb=150m ehk=5k\	ıA	.—.	-	-	_	_	_	_	_	_		3 4 R 3
epx= 4.2kV	-	Ib= 1200mA	$\begin{array}{c} Ib = \\ 200 mA \end{array}$	21	-		350	-	1—1	. –	-	_		33HE7(F)
500 ⊚ ep=5kV)	150◈	10�	230 🗇	130	130	-22	60	2.8	4.2	8800	6.2	_		JUNETA
epx = 4.2kV	-	Ib= 1200mA	Ib = 200mA	21	2-	-	350	-		_	_	-		001157
500 ⊗ (ep=5kV)	150⊗	10�	230�	130	130	-22	60	2.8	-	8800	6.2	_		38HE7
(ep= 8kV)⊗	275	40◈	500	50	175	-10	800	70	-	-	-	_		40KG6A
epx = 7kV	ehk = 6.3kV	110	Ib=440	_	_	-	_	_	_	_	_	_		42EC4A
275⊗ ep=7kV)	275⊗	13.0�	220�	100	100	-8.2	100	7		14000	5	_	Separated G ₁ type as snivets counter measure Ec ₂ = 0	50JY6

LC...The LC (Limited Connection) shown in the base connection drawing should be used only for the cases particularly indicated.

RECEIVING TUBES (FM/AM RADIO SET)

Ту	pe No.		Base Connec-	Drawing	Drawing Heating			Classification by	Application	Without External Shield Capacitances in pF			
Matsushita	European		tions	No.	Type Ef		If (mA)	Construction	, гриссион	Cpg (Approx.)	Cin (Approx.)	Cout (Approx.	
6 A Q 8	ECC85	NT	9AJ = 9DE	21-2	Cathode	6.3	435	Twin-Triode×	RF Amp. Conv	1.5	3.0	1.2	
6 A R 5		МТ	6CC	18-3	Cathode	6.3	400	Power Pentode	Power Amp.	7 -	_	-	
6 A V 6	EBC91	мт	7 BT	18-2	Cathode	6.3	300	Twin-Diode Triode×	Det. AF Amp.	2.0	2.2	0.8	
6 B A 6	EF93	МТ	7BK	18-2	Cathode	6.3	300	Pentode ^b	RF Amp.	0.0035	5.5	5.0	
6 B E 6	EK90	МТ	7CH	18-2	Cathode	6.3	300	Heptode	Conv.	Cg 3-P max.0.3	Cg 3-all 7	Cg3-all5 Cp-all 8	
6 B M 8	ECL82	NT	9EX	21 -4	Cathode	6.3	740	Triode × Power Pentode	AF Amp. Power Amp.	4.4 max.0.3	2.7 9.3	4.3	
6 X 4	E Z 9 0	МТ	5BS	21-3	Cathode	6.3	600	Twin-Diode	FW Rect.	-	1-	_	
12AV6	нвсэі	МТ	7BT	18-2	Cathode	12.6	150	Twin-Diode Triode×	Det. AF Amp.	2.0	2 .2	0.8	
12846	HF93	МТ	7BK	18-2	Cathode	12.6	150	Pentode	RF Amp.	0.0035	5.5	5.0	
12BE6	нк 9 о	МТ	7CH	18-2	Cathode	12.6	150	Heptode	Conv.	Сдз-р	Cg 3-all 7	Cg 3-all 5 Cp-all 8	
12DT8		NT	9AJ = 9DE	21-2	Cathode	12.6	150	Twin-Triode ×	FM RF Amp. Osc., Mixer	1.6 🛆	2.7△	2.6	
17EW8	HCC85	NT	9AJ =9DE	21-2	Cathode	17.5	150	Twin-Triode×	RF Amp.Conv.	1.5	3	1.2	
3 0 A 5	HL94	МТ	7CV	18-3	Cathode	30.0	150	Beam Power Tube	Power Amp.	0.3	12	5.8	
30M-P27		MT	7CV	18-3	Cathode	30.0	150	Beam Power Tube	Power Amp.	0.32	12.5	5.8	
3 5 C 5		MT	7CV	18-3	Cathode	35.0	150	Beam Power Tube	Power Amp.	0.6	12	9	
3 5 W 4	HY90	МТ	5BQ	18-3	Cathode	35.0	150	Diode	FW Rect.	_	1-	_	
50BM8		NT	9EX	21-4	Cathode	50.0	100	Triode Pentode×	AF Amp. Vert.Def. Power Amp.	4.4 max.0.3	2.7 9.3	4.3 8.0	
5 0 C 5	HL92	NT	7CV	18-3	Cathode	50.0	150	Beam Power Tube	Power Amp.	0.6	13	8.5	
50EH5		МТ	7CV	18-3	Cathode	50.0	150	Power Pentode	Power Amp.	0.65	17	9	
50H-B26		Mag.	10-53	29-44	Cathode	50.0	150	Beam Power Tube	Power Amp.	max.1.1	17.3	7.7	

*···Tentative Data •···Frame Grid Tube •···(MT···7-pin Miniature Tude NT···9-pin Miniature Tube) #···Sharp-Cutoff b··· Remote-Cutoff ····Semi Remote-Cutoff ····High-μ ····Medium-μ ····Low-μ ····Design Maximum Value ····With External Shield ····Absolute Maximum Value

30A5

		m Ratin enter Val				Typical		Remarks	Type No.					
Eb (V)	E c2 (V)	P p (W)	Ik (mA)	Eb (V)	E c2 (V)	E _{c1} , Rk (γ) (Ω)	Ib (mA)	I c2 (mA)	μ	(μΩ)	$_{(k\Omega)}^{rp}$	P o (W)	Remarks	Matsushita
00	-	2.5	15	250	_	-2.3	10	-	57	5900	-	-		6 A Q 8
50	250	8.5	-	250	250	_	32	5.5	-	2300	68	3.4	$R_L = 7.6K\Omega$	6 A R 5
-	-	-	lb= 1	10	-	-	2	-		-	-	-		
00	_	0.55	-	250	-	-2	1.2	=	100	1600	62.5	_		6 A V 6
30⊗	330⊗	3.4�	-	250	100	68	11	4.2	-	4400	1ΜΩ	_	E _{C3} = 0 V	6 B A 6
30	Ecc ₂ + ₄ = 330	1.1	15.5	250	100	10Vrms	2.9	Ic ₂ + ₄ =6.8	_	Gc=470	1ΜΩ	_	$Ec_3 = -1.5, Rg_3 = 20k\Omega, Ic_1 = 0.5mA$	6 B E 6
00	_	1	15	100	-	0	3.5	_	70	2200	-	-		
00	300	Vert.Out5 AF Out7	50	170	170	-11.5	41	9	-	7500	16	3.2	$R_L = 3.25 K\Omega$	6 B M 8
ox = 1.	25k V⊗	1b = 24	15mA⊗	Maximum DC Output Current=90mA								-		6 X
r—r	_	_	lb=1	10	-	-	2	-	-	1-	-	-		10011
30	-	0.55	-	250	_	-2	1.2	-	100	1600	62.5	-		12AV6
30◈	330◈	3.4�	-	250	100	68	11	4 .2	-	4400	1ΜΩ	_	E _C _s = 0 V	12BA
30	Ecc ₂ + ₄ = 330	1.1	15.5	250	100	10Vrms	2.9	$I_{c_2+4} = 6.8$	-	Gc=475	1ΜΩ	-	$Ec_3 = -1.5, Rg_3 = 20K\Omega, Ic_1 = 0.5mA$	12BE
00	_	2.5	-	250	-	200	10	-	60	5500	10.9	-		12DT
50	-	2.5	15	170	-	-1.5	10	-	50	6200	_	-		17EW8
50	150	-	100	100	100	-6.7	43	3	-	9200	22	1.9	$R_L = 2.4 K\Omega$	3 0 A 5
65◈	165�	10۞	110 🗇	130	110	- 9	64	2.5	-	10000	20	4	$R_L = 1.6 K\Omega$	30M-P27
50◈	130�	5.2	-	110	110	-7.5	40	3	-	5800	13	1.5	$R_L = 2.5 K\Omega$	3 5 C 5
epx = 3	30 V	Ib=6	00mA		M	aximum	DC Outp	ut Curr	ent=100) mA		_		3 5 W 4
50	-	1	15	100	_	0	3.5	-	70	2200	-	-		E 0 D
50	250	7	50	170	170	-11.5	41	9	-	7500	16	3.2	$R_L = 3.25 K\Omega$	5 O B M 8
50◈	130�	7⊗	-	120	110	-8	49	4	-	7500	-	2.3	$R_L = 2.5 K\Omega$	5 0 C
50◈	130�	5.5�	-	115	115	62	42	11.5	-	14600	11	1.4	$R_L = 3K\Omega$	50EH5
50	300	18	220۞	130	130	- 12	123	8.5	_	15000	4	8	$R_L = 0.8K\Omega$	50H-B26

LC...The LC (Limited Connection) shown in the base connection drawing should be used only for the cases particularly indicated.

RECEIVING TUBES (HI-FI SET)

Ту	Base Connec-	Drawing No.	Heating			Classification by	Application	Without External Shield Capacitances in pF				
Matsushita	European	•	tions	110.	Type.	Ef (V)	If (mA)	Construction	Application	Cpg (Approx.)	Cin (Approx.)	Cout (Approx.)
5 A R 4	G Z 3 4	GT	5DA	32-1	Cathode	5.0	1.9A	Twin-Diode	FW Rect.	_	-	-
6 A U 6		МТ	7BK	18-2	Cathode	6.3	300	Pentode#	AF RF Amp.	0.0035	5.5	5
6AU6A		МТ	7BK	18-2	Cathode	6.3	300	Pentode #	AF RF Amp.	0.005	5.5	5
6 B Q 5	EL84	NT	9CV	21-4	Cathode	6.3	760	Power Pentode	Power Amp.	max 0.5	10.8	6.5
6 C A 4	EZ8I	NT	9M	21-4	Cathode	6.3	1.0A	Twin-Diode	FW Rect.	_	_	-
6 C A 7	EL34	GT	8EP	32-2	Cathode	6.3	1.5A	Power Pentode	Power Amp.	max.1.1	15.2	8.4
12AU6		МТ	7BK	18-2	Cathode	12.6	150	Pentode #	AF RF AMP.	0.005	5.5	5.0
12AU7	ECC82	NT	9A	21-2	Cathode		300 150	Twin-Tride ?	AF Amp.	(Unit 1) 1.5 (Unit 2) 1.5	1.8 1.8	0.37 0.25
12AX7	ECC83	NT	9A	21-2	Cathode	6.3		Twin-Triode×	AF Amp.	(Unit 1) 1.6 (Unit 2) 1.6	1.6 1.6	0.46 0.34
12AX7A		NT	9A	21-2	Cathode	6.3	300 150	Twin-Triode ×	AF Amp.	(Unit 1) 1.6 (Unit 2) 1.6	1.6 1.6	0.46 0.34
7189		NT	9CV	21-4	Cathode	6.3		Power Pentode	Power Amp.	max. 0.5	10.8	6.5
PF86	PF86	NT	9BJ = 9CB	21-2	Cathode	4.5	300	Pentode	AF Amp.	max .0.05	4	5

★…Tentative Data ②…Frame Grid Tube □…(MT…7-pin Miniature Tube NT…9-pin Miniature Tube) #...Sharp-Cutoff □...Semi Remote-Cutoff ∨...High-μ ◇…Medium-μ Φ...LoW-μ ③...Design Maximum Value

△···With External Shield □···Absolute Maximum Value

MISCELLANEOUS (OTHER APPLICATION)

Type No.			Base	Drawing	Heating			Classification	Application	Without External Shield Capacitances in pF		
Matsushita	ita European	•	tions	Drawing No.	Туре	Ef (V)	If (mA)	dy Construction	Application	Cpg (Approx.)	Cin (Approx.)	Cout (Approx.
6360	QQE03/12	NT	9PW	21-4	Cathode	6.3 12.6	820 410	Twin Beam Power Tube	RF Power Amp	max.0.1	6.2	2.6
S2001		GT	Special	38-22B	Cathode	6.3	1.0A	Beam Power Tube	RF Power Amp.	max.0.24	13.5	8.5

★···Tentative Data ⊙···Frame Grid Tube •···(MT···7-pin Miniature Tube NT···9-pin Miniature Tube) #···Sharp-Cutoff b···Remote-Cutoff ○···Semi Remote Cutoff ×···High-μ ◇···Medium-μ Φ····Low-μ ◇···Design Maximum Value △···With External Shield □···Absolute Maximum Value

		n Ratings nter Valu				Typical	Operatio	on and	Charac	teristics	i		Damada	Type No.
Eb (V)	E c2 (V)	Pp (W)	lk (mA)	Eb (V)	E c2	Ec1 Rk (V) (Ω)	Ib (mA)	l c2 (mA)	μ	Gm (μ℧)	$_{(k\Omega)}^{rp}$	Po (W)	Remarks	Matsushita
ерх=	1.5kV	1b = 7	50mA			Maxim	um DC	Output (Current=	= 250 mA				5 A R 4
330	330	3.5	-	250	150	68	10.6	4.3	-	5200	1 000	_		6 A U (
330	330	3.5	-	250	150	68	10.6	4.3	-	5200	· -	-		6 A U 6 A
300	300	12	65	250	250	-7.3	48	5.5	-	11300	38	6	$R_L = 5.2 k\Omega$	6 B Q 5
epx=	px = 1.3kV Ib = 500mA					Maxim	um DC	Output (Current=	=180 mA				6 C A 4
800	500	27.5	150	250	265	-13.5	100	14.9	=	12500	17	11	$R_L = 2k\Omega$	6 C A
330	330	3 .5	-	250	150	68	10.6	4.3	-	5200	-	-		12AU
300	_	2.75	20	250	_	- 8.5	1 0. 5	_	17	2200	77	-		1240
300	-	1	8	250	-	-2	1.2	-	100	1600	62.5	-		12AX
330	-	1.2	-	250	1-1	- 2	1.2	_	100	1600	-	_		12AX7
400	300	12	65	250	250	-7.3	48	5.5	_	11300	40	6	$R_L = 5.2k\Omega$	7 1 8 9
300	200	1	6	250	140	-2	3.0	0.6	_	2000	2.5ΜΩ	-	E _{C3} =0	PF86

 $LC\cdots The\ LC\ (Limited\ Connection)$ shown in the base connection drawing should be used only for the cases particularly indicated.

		n Ratings nter Value				Typical	Operatio	on and	Charac	cteristics	S		Daniel	Type No.
Eb (V)	E c2 (V)	P (W)	lk (mA)	Eb (V)	E _{C2} (V)	E_{C1} Rk $(V)(\Omega)$	Ib (mA)	I _{C2} (mA)	μ	Gm (μ℧)	rp (kΩ)	po (w)	Remarks	Matsushita
300 🗆	200 🗆	2×5□	_	Ebb=300	175	-40	2×37.5	2.3	_	F=200 MHz	_	14.5	$I_{C2} = 2 \times 0.9 \text{mA}$	6360
600□	250 🗆	27 🗆	_	600	200	-70	150	10		F=60 MHz	1—	63	$I_{C1} = 2.8 \text{mA}$	S2001

LC...The LC (Limited Connection) shown in the base connection drawing should be used only for the cases particularly indicated.

12AX7

OPERATING EXAMPLES (AF POWER TUBES)

Type No.	Classifi- cation by operation	Con- nection	Eb (V)	Ec2	Ec1 (V)	lb (mA)	b sig	I _{G2}	I G2 sig	Esig (rms) (V)	R _L	P ₀ (w)	KF (%)	Pf (w)
	A ₁ S		250	250	-12.5	45	47	4.5	7	8.8	5	4.5	8	
*6 A Q 5	AB ₁ PP		250	250	-15	35 ×2	39.5×2	2.5×2	6.5×2	10.6	10	10	5	0.04
* O A Q S	A ₁ S	Triode	250		-17.5	31	34			12.4	3	1.1	9	2.84
	AB ₁ PP	Connect.	250		-22.5	16 ×2	22.5×2			15.9	7	3.1	4	
	A ₁ S		250	250	-18	32	33	5.5	10	12.7	7.6	3.4	11	
+ C A D E	AB ₁ PP		250	250	-25	17.5×2	27×2	4 ×2	8.5×2	17.7	11	7.5	5	0.50
*6 A R 5	A ₁ S	Triode	250		-22.5	25	26			15.9	4	0.9	6	2.52
	AB ₁ PP	Connect.	250		-27.5	14 ×2	17.5×2			19.4	9	2.3	3	
* C D M O	A ₁ S		272	$272 Rg_2 = 2200\Omega$	650Ω፠	28	27	6.5	10.8	9.5	8	3.5	10	
6BM8	AB ₁ PP		250	200	220Ω	28 ×2	31 ×2	5.8×2	13 ×2	12.5	10	10.5	4.8	4.91
16A8	A ₁ S	Triode	200		-17	35	36			12	3	1.5	8	4.8
*50BM8	AB ₁ PP	Connect.	200		-19	20 ×2	33 ×2			13.4	4	4	4	5.0
	A ₁ S		250	250	-7.3	48	49.5	5.5	10.8	4.3	5.2	5.7	10	
	AB ₁ PP		300	300	130Ω*	36 ×2	46 ×2	4 ×2	11 ×2	10	8	17	4	
*6BQ5	B ₁ PP		300	300	-14.7	7.5×2	46 ×2	0.8×2	11 ×2	10	8	17	4	4.79
	A ₁ S	Triode	250		270Ω∗	34	36	-		6.7	3.5	1.95	9	
	AB ₁ PP	Connect.	300		270Ω∗	24 ×2	26 ×2			10	10	5.2	2.5	
	A ₁ S		250	265	-13.5	100	104	14.9	25	8.7	2	11	10	
	AB ₁ PP		Ebb375	470Ω▲	130Ω*	75 ×2	95 ×2	11.5×2	22.5×2	21	3.4	35	5	
*6CA7	B ₁ PP		Ebb800	750Ω▲	-39	25 ×2	91 ×2	3 ×2	19 ×2	23.4	11	100	5	9.45
	A ₁ S	Triode	Ebb375		270Ω∗	70	73			18.9	3	6	8	
	AB ₁ PP	Connect.	Ebb400		270Ω∗	65 ×2	71 ×2			22	5	16.5	3	
6 C M 5	B ₁ PP	Triode	300	150	-29	18 ×2	100 ×2	0.5×2	19 ×2	20	3.5	44.5	7.2	7.88
25E5	B ₁ PP	Connect.	250		-45	20 ×2	70 ×2			32	3	16.4	4	7.5
	A ₁ S		170	170Ω▲	-12.5	70	70	5	22	7	2.4	5.6	10	
*6CW5	AB ₁ PP		250	200	150Ω∗	50 ×2	55 ×2	2 ×2	13 ×2	13	5.5	18.5	4.5	4.79
10CW5	P		300		120Ω*	66	64			5.4	1	4.5	9.3	4.77
15CW5	A ₁ S	Triode	170		-15.1	50	62			10.8	1.2	2.1	10	4.5
	AB ₁ PP	Connect.	170		270Ω*	32.5×2	36 ×2			13.4	3.5	3.9	3.8	

Type No.	Classifi- cation by	Con- nection	Eb	Ec2	E _{c1}	lb	Ib sig	l G2	I _{G2} sig	Esig	RL	Po	KF	Pf
	operation		(V)	(V)	(V)	(mA)	(mA)	(mA)	(mA)	(V)	$(k\Omega)$	(w)	(%)	(w)
	A ₁ S		120	110	- 8	49	50	4	8.5	5.7	2.5	2.3	10	
	AB ₁ PP		100	100	- 9	26 ×2	35 ×2	2.5×2	11 ×2	6.4	3	3.3	4	
*50C5	A ₁ S	Triode	100		- 7.5	40	41			5.3	1	0.4	4	7.5
	AB ₁ PP	Connect.	100		-11.5	15 ×2	20 ×2			8.1	3	1	2	
	A ₁ S		100	100	- 6.7	43	43	3	11	4.3	2.4	1.9	10	
	AB ₁ PP		100	100	- 9	23 ×2	42 ×3	2 ×2	12 ×2	6.4	3	4.3	4	
	A ₁ S	Triode Connect.	100		- 8	35	36			5.6	1.5	0.5	5	4.5
	AB ₁ PP	Connect.	100		-11.5	14 ×2	19 ×2			8.1	4	1.2	2	
. 20M D27	A ₁ S		130	110	- 9	64	64	2.5	17	6.4	1.6	4	12	
* 30M-P27	A ₁ PP		130	110	- 9	65 × 2	64.7×2	2.5×2	8.5×2	6.4	3.2	8.25	8	4.5
	A ₁ S		110	110	- 7.5	40	41	3	7	5.3	2.5	1.5	10	
3 5 C 5	AB ₁ PP		100	100	- 9	24 ×2	31 ×2	2 ×2	10 ×2	6.4	3	2.5	4	5 05
3505	A ₁ S	Triode	100		- 7.5	34	35			5.3	1	0.3	4	5.25
	AB, PP	Connect.	100		-11.5	14 × 2	17 ×2			8.1	3	0.7	2	
*35EH5	A ₁ S		110	115	62Ω፠	42	42	11.5	14.5	2.1	3	1.4	7	5.25
*50EH5	AB ₁ PP		140	120	68Ω≫	23.5×2	26.5×2	5.5×2	8.85×2	6.67	6	3.8	5	7.5
	A ₁ S		250	250	- 7.3	48	49.5	5.5	10.8	4.3	5.2	5.7	10	
.7.1.0.0	B ₁ PP		400	300	-15	7.5×2	52.5×2	0.8×2	12.5×2	10.5	8	24	4	4 50
*7189	A ₁ S	Triode	250		270Ω፠	34	36			6.7	3.5	1.95	9	4.79
	AB ₁ PP	Connect.	300		270Ω ፠	24 × 2	26 ×2			10	10	5.2	2.5	

*-----Cathode Resistance

NUMERIC DISPLAY PANEL

FLANDIPAK*

				Outline D	imensions	Heigt of	Ciphers
Type No.	Indication	Digit	Color	Length mm (inch)	Height mm (inch)	Numeral mm (inch)	Decimal Point mm (inch)
CDCCI	Numeral 0~9	8	Neon Red	107Max.	51Max.	Approx.	Approx.
CD801	Decimal point	8	Neon Red	(4.213)	(2.008)	(0.315)	(0.043)
	Numeral 0~9	8	N. D.I	75Max.	36Max.	Approx.	Approx.
CD802	Decimal point	0	Neon Red	(2.953)	(1.417)	6.5 (0.256)	(0.031)
	Numeral 0~9		N. D.J	131 Max.	47.5Max.	Approx.	Approx.
CD1201	Decimal point	12	Neon Red	(5.157)	(1.870)	(0.315)	$\begin{pmatrix} 1.1 \\ (0.043) \end{pmatrix}$

^{*}Registered Trade Mark for Numerical Display Panel.

CD801

CD802

		Absolute Maximam Ratings				12				
Features	Cathode	Cathode Current	tp	eb	I _K Segment	Rk	tp(A)	tp(K)	Du	Type No.
· High-Brightness		I _K (mApp)	(µs)	eb	(mApp)	$(k\Omega)$	(µs)	(µs)		
· High-Brightness	Ko~9	0.4 ~0.9	50~400	100	0.65	82	100	100	1/10	00001
· High-Reliability	Kdp	0.25~0.55		190	0.4	130	160	120	1/10	CD801
· High-Brightness	Ko~9	0.2 ~0.55		100	0.35	150	000	150	1/10	00000
· High-Raliability	Kdp	$0.2 \sim 0.55$	100~250	190	0.35	150	200	150	1/10	CD802
· High-Brightness	Ko~9	0.4 ~0.9	50~400	190	0.7	82	160	120	1/14	001001
· High-Raliability	Kdp	0.3 ~ 0.75			0.5	100	160	120	1/14	CD1201

CD1201

VIDICONS

	Park de la			General	Data						
Type No.	Focusing methode	Deflection methode	Bulb Diameter (inch)	Greatest Diameter mm (inch)	Overall Length mm (inch)	Heater Voltage (V)	Heater Current (mA)	Grid No.6 Voltage (V)	Grid No.5 Voltage (V)	Grid No.4 Voltage (V)	Grid No.3 Voltage (V)
20PE	Magnetic	Magnetic	(2/3)	19.6 (0.772)	108 (4.252)	6.3	110	-	-	750	750
20PE13A	Magnetic	Magnetic	(2/3)	19.6 (0.772)	108 (4.252)	6.3	95	-	_	750	750
20PE 4	Electrostatic	Magnetic	(2/3)	19.6 (0.772)	108 (4.252)	6.3	95	600	350	350	350
*1 \$4071	Magnetic	Magnetic	(2/3)	19.6 (0.772)	108 (4.252)	6.3	95	-	_	750	750
7262A	Magnetic	Magnetic	(1)	28.6 (1.126)	130 (5.118)	6.3	95	-		750	750
7735A	Magnetic	Magnetic	(1)	28.6 (1.126)	159 (6.260)	6.3	600	-	_	750	750
8507	Magnetic	Magnetic	(1)	28.6 (1.126)	159 (6.260)	6.3	600	-	_	1000	1000
8541	Magnetic	Magnetic	(1)	28.6 (1.126)	159 (6.260)	6.3	95	-	_	1000	1000
* 2 \$4070	Magnetic Electrostatic	Magnetic	(1)	28.6 (1.126)	164 (6.457)	6.3	95	1350	1000	750	1350

		Typical Operating Conditions													
Type No.	Scanned Target Area mm ² (inch ²)	Target Tempera- ture (°C')	Grid No.6 Voltage (V)	Grid No.5 Voltage (V)	Grid No.4 Voltage (V)	Grid No.3 Voltage (V)	Grid No.2 Voltage (V)	Grid No.1 Voltage for Cutoff (V)	Gamma	Field Strength of focusing (G)	Field Strength of Align- ment Coil (G)				
20PE	6.6×8.8 (0.26×0.346)	25~35	-		250	~300	300	-20~ - 80	0.74	50	0 ~ 4				
20PE13A	6.6×8.8 (0.26 × 0.346)	25~35	_	_	400	300	300	−35∼ − 80	0.74	50~56	0 ~ 4				
20PE14	6.6×8.8 (0.26×0.346)	25~35	500	300	35~55	300	300	-30~ - 80	0.74	_	0 ~ 4				
*1 \$4071	6.6×8.8 (0.26×0.346)	25~35	_		400	300	300	−35~ − 80	0.74	50~56	0 ~ 4				
7262A	9.5×12.7 (0.374×0.5)	25~35	-	-	250	~300	300	-45~ -100	0.74	40	0 ~ 4				
7735A	9.5×12.7 (0.374×0.5)	25~35	-	_	250	~300	300	-45~ -100	0.74	40	0 ~ 4				
8507	9.5×12.7 (0.374×0.5)	25~35	-	-	500	300	300	−45∼ −100	0.74	38~44	0 ~ 4				
8541	9.5×12.7 (0.374×0.5)	25~35	_	_	500	300	300	-45~ -100	0.74	38~44	0 ~ 4				
*2 \$4070	9.5×12.7 (0.374×0.5)	25~35	1200	800	600	1200	300	−45~ −100	0.74	41~51	0 ~ 4				

				gs	mum Ratin	osolute Maxi	At			
Type N	Tempera- ture (°C)	Illumination (ℓ x)	Peak Output Current (µA)	Dark Current (μA)	Target Voltage (V)	Heater Positve with respect to Cathode (V)	Heater Negative with respect to Cathode (V)	Grid No.1 Voltage Positive Value (V)	Grid No.1 Voltage Negative Value (V)	Grid No.2 Voltage (V)
20PE I	70	10000	0.5	0.15	80	10	125	0	- 300	350
20PE 13	70	10000	0.5	0.15	80	10	125	0	-300	350
20PE 4	70	10000	0.5	0.15	80	10	125	0	-200	350
* 1 \$4071	70	10000	0.5	0.15	80	10	125	0	-300	350
7262A	70	10000	0.55	0.25	100	10	125	0	-300	750
7735A	70	10000	0.55	0.25	100	10	125	0	- 300	750
8507	70	10000	0.55	0.25	100	10	125	0	-300	750
8541	70	10000	0.55	0.25	100	10	125	0	-300	750
* 2 \$4070	70	10000	0.55	0.25	100	10	125	0	-300	750

Center Resolution (TV lines)	Face Plate Illumination (\ell x)	Target Voltage (V)	Dark Current (μ A)	Signal Current (µA)	Type No.
500	10	10~45	0.02	0.22	20PE
650	10	10~45	0.02	0.22	20PE 3A
550	10	10~45	0.02	0.22	20PE 4
650	10	10~45	0.02	0.22	* 1 S4071
600	10	$10\!\sim\!45$	0.02	0.3	7262A
600	10	10~45	0.02	0.3	7735A
800	10	10~45	0.02	0.3	8507
800	10	10~45	0.02	0.3	8541
400	30	30~55	0.05	0.2	* 2 \$4070

* 1 S4071 is for two vidicon color camera tube.

2 S4070 is single tube color vidicon.

SILICON VIDICON

			G	eneral Data	a					
Type No.	Focusing method	Deflection methode	Bulb Diameter (inch)	Greatest Diameter mm (inch)	Orerall Length mm (inch)	Heater Voltage (V)	Heater Current (mA)	Grid No.4 Voltage (V)	Grid No. 3 Voltage (V)	Grid No.2 Voltage (V)
20PE15	Magnetic	Magnetic	(2/3)	19.6 (0.772)	108 (4.252)	6.3	95	350	350	350
25PE14	Magnetic	Magnetic	(1)	28.6 (1.126)	130 (5.118)	6.3	95	550	550	350

Type No.	Scanned Target Area mm ² (inch ²)	Target Tem- perature (°C)	Grid No.4 Voltage	Grid No.3 Volt ge	Grid No.2 Voltage (V)	Grid No.1 Voltage for Cutoff	Gamma	Field strength of focusing (G)	Field strength of Align- ment Coil (G)	Center Resolution (TV lines)		
20PE15	6.6 8.8 (0.26×0.346)	25~35	300	240	300	-35~-80	0.95~1	Approx. 48	0 ~ 4	450		
25PE14	$9.5 \times 12.7 \ (0.374 \times 0.5)$	25~35	300	240	300	-45~-100	0.95~1	Approx. 38	0 ~ 4	550		

Absolute Maximum Ratings									
Grid No.1 Voltage Negative Value (V)	Grid No.1 Voltage Positive Value (V)	Heater Negative with respect to Cathode (V)	Heater Positive with respect to Cathode (V)	Target Voltage (V)	Dark Current (µA)	Peak Output Current(2)	Humination $(\ \ell_{ \rm X})$	Temperature (\mathfrak{C})	Type No
150	0	125	10	60	_	0.5	500000	70	20PE 5
150	0	125	10	60		0.75	500000	70	25PE 4

Face Plate Illumination	Target Voltage (V)	Dark Current (µA)	Signal Current (µA)	Type No.
1	10~15	0.01	0.3	20PE 5
1	10~15	0.02	0.55	20PE14

PLUMBICON *

		G	eneral Dat	a						
Type No.	Focusing Nethod	Deflection Method	Bulb Diameter mm	Heater Voltage (V)	Heater Current (mA)	Normal Scanned Area mm² (inch²)	Signal Electrode Voltage (V)	Grid No. 4 Voltage (V)	Grid No. 3 Voltage (V)	Grid No. 2 Voltage (V)
XQ1020	Magnetic	Magnetic	30	6.3	300	12.8×17.1 (0.504×0.673)	45	675	600	300
XQ1020L	Magnetic	Magnetic	30	6.3	300	12.8×17.1 (0.504×0.673)	45	675	600	300
XQ1020R	Magnetic	Magnetic	30	6.3	300	12.8×17.1 (0.504×0.673)	45	675	600	300
XQ1020G	Magnetic	Magnetic	30	6.3	300	12.8×17.1 (0.504×0.673)	45	675	600	300
XQ1020B	Magnetic	Magnetic	30	6.3	300	12.8×17.1 (0.504×0.673)	45	675	600	300
XQ1025L	Magnetic	Magnetic	30	6.3	300	12.8×17.1 (0.504×0.673)	45	675	600	300
XQ1025R	Magnetic	Magnetic	30	6.3	300	12.8×17.1 (0.504×0.673)	45	675	600	300
XQ1022	Magnetic	Magnetic	30	6.3	300	Circle of 18mm(0.709) Diameter	(1) 15~45	675	600	300

Grid No. 1 Voltage for	Sensitivity	Dark	Modulation depth at 400	Limiting	Gamma of Transfer	Decay La	ag (%)	Typial	Type No.
Cutoff (V)	(μA/ m)	Current (nA)	TV Lines at center of picture (%)	Resolution (TV Lines)	Charact- ristics	60msec	After 200msec	Application	
-30~-100	(2) Min. 325	Max. 3	(4) Typ. 40	≥600	0.95±0.05	(5) Max. 5	(5) Max. 2	Monochrome	XQ1020
−30~−100	(2) Min. 325	Max. 3	(4) Typ. 40	≥600	0.95±0.05	(5) Max. 5	(5) Max. 2	Luminance channel	XQ1020L
-30~-100	Min. (2)	Max. 3	(4) Typ. 35	≥600	0.95 ± 0.05	(5) Max. 5	(5) Max. 2	Red channel	XQ1020R
-30~-100	(2) Min. 130	Max. 3	(4) Typ. 40	≥600	0.95±0.05	(5) Max. 5	(5) Max. 2	Green channel	XQ1020G
−30~−100	(2) Min. 35	Max. 3	Typ. 50	≥600	0.95±0.05	(5) Max. 6	(5) Max. 3	Blue channei	XQ1020B
-30~-100	(2) Typ. 450	Max. 3	(4) Typ. 55	≥700	0.95±0.05	(5) Typ. 3	(5) Typ. 1.5	Luminance channel	XQ1025L
−30~−100	Typ. 160	Max. 3	(4) Typ. 55	≥700	0.95±0.05	(5) Typ. 5	(5) Typ. 2	Red channel	XQ1025R
-30~-100	(3) Min. 200	Max. 3	(4) Min. 30	_	0.95±0.05	(6) Typ. 5	(6) Typ. 2	X-ray application	XQ1022

*Registered Trade Mark for T.V. Camera Tube

- (1) The target voltage should be adjusted to the value indicated by the tube manufacturer on the test sheet as delivered each individual tube.
- (2) Measuring Conditions:

Illumination 4.54 lx at black body color temperature of 2854 $^{\circ}$ K; The appropriate filter inserted in the light-path, the signal current obtaine in nA is a measure of the color sensitivity expressed in μ A per lumen of white light befor the filter.

Filters used: XQ1020R, XQ1025R Schott OG2 thickness 3mm XQ1020G Schott VG9 thickness 1mm

XQ1020G Schott VG9 thickness 1mm XQ1020B Schott BG12 thickness3mm

(3) Sensitivity measured with a fluorescent light source having P20 distribution.

(4) Measuring Conditions:

	XQ1025, L, R XQ1020, XQ1020L, G	XQ1020R, B	XQ1022
High-light Signal Current	0.3μΑ	0.15μA	$0.1 \mu A$
Beam Current I bea	n 0.6μA	0.3 <i>µ</i> A	0.5µA

(5) Measuring Conditions:

A light source with a color temperature of 2854 $^{\circ}K$ and appropriate filter inserted in light-path for tubes XQ1020R, G B and XQ1025R.

	XQ1020 XQ1020L, R, G, B	XQ1025L	XQ1025R
High-light Signal Current Is	0.1 <i>µ</i> A	0.3μΑ	0.15 µ A
Beam Current I beam	0.1 <i>µ</i> A	0.6µA	0.3 _µ A

(6) Measured with a signal current of $0.1\mu A$ and a beem current of $0.5\mu A$. Fluorescent light source having P20 distribution.

		G	eneral Dat	ca						
Type No.	Focusing Method	Deflection Methode	Bulb. Diameter	Heater Voltage	Heater Current	Normal Scanned Area mm ²	Signal Electrode Voltage	Grid No. 4 Voltage	Grid No. 3 Voltage	Grid No. 2 Voltage
			(inch)	(V)	(mA)	(inch ²)	,(V)	(V)	(V)	(V)
XQ1070	Magnetic	Magnetic	(1.0)	6.3	95	9.5×12.7 (0.374×0.506)	45	960	600	300
XQ1070L	Magnetic	Magnetic	(1.0)	6.3	95	9.5×12.7 (0.374×0.500)	45	960	600	300
XQ1070R	Magnetic	Magnetic	(1.0)	6.3	95	9.5×12.7 (0.374×0.500)	45	960	600	300
XQ1070G	Magnetic	Magnetic	(1.0)	6.3	95	9.5×12.7 (0.374×0.500)	45	960	600	300
XQ1070B.	Magnetic	Magnetic	(1.0)	6.3	95	9.5×12.7 (0.374×0.500)	45	960	600	300
XQ1071	Magnetic	Magnetic	(1.0)	6.3	95	9.5×12.7 (0.374×0.500)	45	960	600	300
XQ1071L	Magnetic	Magnetic	(1.0)	6.3	95	9.5×12.7 (0.374×0.500)	45	960	600	300
XQ1071R	Magnetic	Magnetic	(1.0)	6.3	95	9.5×12.7 (0.374×0.500)	45	960:	600	300
XQ1071G	Magnetic	Magnetic	(1.0)	6.3	95	9.5×12.7 (0.374×0.500)	45	960	600	300
XQ1071B	Magnetic	Magnetic	(1.0)	6.3	95	9.5×12.7 (0.374×0.500)	45	960	600	300
XQ1072	Magnetic	Magnetic	(1.0)	6.3	95	9.5×12.7 (0.374×0.500)	(1) 15~45	960	600	300

		Ty	ypical Opera	iting Conditi	ions and Pe	rformance			
Grid No. 1 Voltage for		Dark	Modulation depth at 400	Limiting	Gamma of Transfer	Decay	Lag %	Typical	Type No.
Cutoft (V)	Sensitivity (µA/ℓm)	Current (nA)	TV lines at Center of Picture %)	Resolution TV Lines)	Charactri- stics	After 60msec	After 200msec	Application	
−35~−100	(2) Min. 325	Max. 3	(4) Typ. 40	≥750	0.95±0.05	(5) Max. 7	(5) Max. 2.5	Monochrome	XQ1070
−35~−100	(2) Min. 325	Max. 3	(4) Typ. 40	≥750	0.95±0.05	(5) Max. 7	(5) Max. 2.5	Luminance channel	XQ1070L
−35~−100	(2) Min. 70	Max. 3	(4) Typ. 35	≥750	0.95±0.05	(5) Max. 11	(5) Max. 4	Red channel	XQ1070F
−35~−100	(2) Min. 130	Max. 3	(4) Typ. 40	≥750	0.95±0.05	(5) Max. 7	(5) Max. 2.5	Green channel	XQ10700
−35 ~ −100	(2) Min. 35	Max. 3	(4) Typ. 45	≥750	0.95±0.05	(5) Max. 11	(5) Max. 4	Blue channel	XQ I 070
−35~−100	(2) Min. 325	Max. 3	(4) Typ. 40	≥750	0.95±0.05	(5) Max. 5	(5) Max. 2	Monochrome	XQ1071
−35 ~ −100	(2) Min. 325	Max. 3	(4) Typ. 40	≥750	0.95±0.05	(5) Max. 5	(5) Max. 2	Luminance channel	XQ10711
−35~−100	(2) Min. 70	Max. 3	(4) Typ. 35	≥750	0.95±0.05	(5) Max. 5	(5) Max. 2	Red channel	XQ10711
−35 ~ −100	(2) Min. 130	Max. 3	(4) Typ. 40	≥750	0.95±0.05	(5) Max. 5	(5) Max. 2	Green channel	XQ1071
-35~-100	(2) Min. 35	Max. 3	(4) Typ. 45	≥750	0.95±0.05	(5) Max. 6	(5) Max. 3	Blue channel	XQ1071
-30~-100	(3) Min. 200	Max. 3	(4) Min. 25	≥600	0.95±0.05	(5) Max. 10	(5) Max. 4	X-ray application	XQ1072

⁽¹⁾ The target voltage should be adjusted to the value indicated by the tube manufacturer on the test sheet as delivered each individual tube.

(2) Measuring Conditions:

Illumination 8.15 lx at black body color temperature of 2854°K: The appropriate filter inserted in the light-path, the signal current obtained in nA is a measure of the color sensitivity expressed in μ A per lumen of white light before the filter.

Filters used: XQ1070R, XQ1071R Schott OG2 thickness 3mm

XQ1070G, XQ1071G Schott VG9 thickness 3mm

XQ1070B, XQ1071B Schott BG12 thickness 3 mm

(3) Sensitivity measured with a fluorescent light source having P20 distribution.

(4) Measuring Conditions:

	XQ1070, XQ1070L, G XQ1071, XQ1071L, G	XQ1070R, B XQ1071R, B	XQ1072
High-light Signal Current Is	0.2 µ A	0.1 µA	0.1 <i>µ</i> A
Beam Current beam	0.4μΑ	0.2 <i>µ</i> A	0.5μΑ

(5) Measuring Conditions:

A light source with a color temperature of 2854°K and appropriate filter inserted in light-path for tubes XQ1070R, G, B.

	XQ1070R,B	XQ1070 XQ1070∟,G	XQ1071 XQ1071L,R,G,B	XQ1072
High-light Signal Current Is	0.02µA	$0.04\mu A$	0.1 µA	0.1μΑ
Beam Current I beam	0.2 μΑ	0.4 μΑ	0.1μΑ	0.1μΑ

		Gei	neral Da	ta		Typical Operating Conditions and Performance								
Туре	Focusing	Deflection	Bulb	Heater	Heater	Normal Scanned	Signal Electrode	Cathode (V		Grid No. 6	Grid No. 5	Grid No. 4+2	Grid No. 3	
No.	Method	Method	Diameter (inch)	Voltage (V)	Current (mA)	Area * mm² (inch²)	Voltage (V)	During Readout Mode	During A.C.T. Mode	Voltage (V)	Voltage (V)	Voltage (V)	During Readout Mode	During A.C.T. Mode
XQ1080	Magnetic	Magnetic	1.0	6.3	95	9.5×12.7 (0.374×0.500)	45	0	0~15	750	475	300	250	$0 \sim 30$
XQ1080L	Magnetic	Magnetic	1.0	6.3	95	9.5×12.7 (0.374×0.500)	45	0	$0 \sim 15$	750	475	300	250	$0 - \overset{(1)}{30}$
XQ1080R	Magnetic	Magnetic	1.0	6.3	95	9.5×12.7 (0.374×0.500)	45	0	$0 \sim \overset{(1)}{15}$	750	475	300	250	$0 \sim \overset{(1)}{30}$
XQ1080G	Magnetic	Magnetic	1.0	6.3	95	9.5×12.7 (0.374×0.500)	45	0	$0 \sim 15^{(1)}$	750	475	300	250	$0 \sim \overset{(1)}{30}$
XQ1080B	Magnetic	Magnetic	1.0	6.3	95	9.5×12.7 (0.374×0.500)	45	0	$0 \sim \overset{(1)}{15}$	750	475	300	250	$0 \sim 30$

Notes

(1) Pulse amplitude settings

Cathode pulse Vk: Adjusted to obtain an A.C.T. limiting level at 1.3 to 1.5 times I sp.

Gvid no. 3 pulse: Adjusted for maximum and most uniform A.C.T. action over the total scanned area.

Grid no. 1 pulse: Adjusted for proper handling of a highlight with a diameter of 10% of picture height and with a brightness corres-

ponding to 32 times peak signal white (I sp).

N.B. Extention of the A.C.T. range can be obtained by increasing the grid no. 1 pulse; This may, however, introduce dark current.

(2) Adjusted with the A.C.T. made inoperative, e.g. by setting the cathode pulse to 15V.

The control grid voltage is adjusted to produce a beam current just sufficient to allow a peak signal current of twice the typical value, I sp, as observed and measured on a waveform oscilloscope. This amount of beam current is termed Ibp.

(3) Typical beam current, signal current and pulse settings(1)

	XQ1080 XQ1080L	XQ1080R	XQ1080G	XQ1080B
Isp	200n A	100n A	200n A	100n A
Ibp	400n A	200n A	400n A	200n A
A.C.T. level (peak)	280n A	140n A	280n A	140n A
Cathode pulse Vkp	10V	5V	10V	5 V
Grid no. 1 pulse Vg1p	40V	30V	40V	30V
Grid no. 3 pulse Vg3p	220 to 250V	220 to 250V	220 to 250V	220 to 250V

XB1080 XB1080L, R, G, B.

Typecal Operating Conditions and Performance												
Grid No. 1 Voltage (V)		tage	Grid No. 1 Voltage	Sensiti-	Dark	Dark Modulation depth at	Limiting	Gamma	Highlight	Decay Lag (%)		Туре
During ReadOut Mode	During A.C.T. Mode	Blanking on Grid No. 1 Peak	for Cut-off (V)	(μA/Im)	Current (nA)	400 TV lines at Center of Picture (%)	Resolution (TV Lines)	Charac-	Handling (Lens Stops)	After 60msec	After 200msec	No.
See note 2	See note 1	50	-45 ~ -110	Min. 325	Max. 3	Typ. 40	≥750	0.95±0.05	≥ 5	Typ. 1.5	Typ. 0.6	XQ1080
See note 2	See note 1	50	-45 ~ -110	Min. 325	Max. 3	Typ. 40	≥750	0.95±0.05	≥ 5	Typ. 1.5	Typ. 0.6	XQ1080L
See note 2	See note 1	50	-45 ~ -110	Min. 70	Max. 3	Typ. 35	≥750	0.95±0.05	≥ 5	Typ. 2.5	Typ. 1 (6)	XQ1080R
See note 2	See note 1	50	-45 ~ -110	Min. 130	Max. 3	Typ. 40	≥750	0.95±0.05	≥ 5	Typ. 1.5	Typ. 0.6	XQ1080G
See note 2	See note 1	50	-45 ~ -110	Min. 35	Max. 3	Typ. 45	≥750	0.95±0.05	≤ 5 (1)	Typ. 3.5	Typ. 2 (6)	XQ1080B

(4) Measuring conditions.

Illumination 8.15lx at black body temperature of 2854°K; The appropriate filter inserted in the light path filters used:

Filterused: XQ1080R Schott OG570 thickness 3mm.

XQ1080G Schott VG9 thickness 1mm.

XQ1080B Schott BG12 thickness 3mm.

(5) Measuring conditions.

		XQ1080 XQ1080L	XQ1080R	XQ1080G	XQ1080B
Highlight signal cur	rent Isp	0.2 µ A	0.1 μ A	0.2 µ A	0.1 µ A
Beam current	Ibp	0.4 µ A	0.2μ Α	0.4 µ A	0.2 _{\mu} A

(6) Measuring conditions.

A light source with a color temperature of 2854°K and appropriate filter inserted in the light path for the chrominance tubes R, G and B.

		XQ1080 XQ1080L	XQ1080R	XQ1080G	XQ1080B
High light signal current	Is .	0.2 µ A	0.1 µ A	0.2 µ A	0.1 µ A
Beam current	Ib	0.4μΑ	0.2 _{\mu} A	0.4 _{\mu} A	0.2 _{\mu} A

CONTINUOUS-WAVE MAGNETRON

		Typical Operating Conditions										
Type No.	f (MHz)	Po (W)	Ef (V)	lf (A)	ebm (kV)	lb (mA)	Cooling Air Quantity (\ell /min)	RF Output	Mounting Position			
2M66	2450	800	3.0	13.5	4.0	300	700	Probe	Cathode Vertical			
2M77	2450	800	3.1	13.5	4.1	300	700	Probe	Cathode Vertical			
2M78A	2450	500	3.2	14.5	2.8	278	600	Probe	Cathode Vertical			
2M88	2450	800	3.1	13.5	4.1	300	700	Probe	Cathode Vertical			
2M 77A	2450	830	3.1	14.2	4.1	300	1100	Probe	Cathode Vertical			
2M 78A	2450	600	3.2	14.5	3.3	300	600	Probe	Cathode Vertical			
2M53-M	2450	800	3.1	13.5	4.1 .	300	1500	Probe	Cathode Vertical			
2М75-М	2450	200	3.1	14.0	2.4	150	200	Coaxal	Cathode Vertical			
2M175	2450	200 100	3.5 3.5	15.3 15.3	2.2	175 100	200 100	Coaxal	Cathode Vertical			

Po: Power Output into matched load.

Mechanical Characteristics					Absolute Maximum Ratings									
RF Coupler	Magnet	Net weight (kg)	Cooling Anode		Ef (V)	tK (sec)	ebm (kV)	Ib DC (mA)	Pi (w)	Tp	Tk	σι	Application	Type No.
See attached	Electro Magnet	0.65	Air (Trans-	Min.	2.7	5	-	-	-	-	-	-	Microwave Oven	2M66
drawing	Magnet		verse flow)	Max.	3.3	-	4.5	350	1400	140	300	4	Oven	
See attached	Permanent	2.5	Air (Trans-	Min.	2.8	5	-	-	-	_	-		Microwave	2M77
drawing	Magnet	2.0	verse flow)	Max.	3.4	-	4.5	350	1400	140	300	4	Oven	
See attached	Permanent	2.0	Air (Trans-	Min.	2.85	0	-	-	_	_	-	_	Microwave Oven	2M78A
drawing	Magnet	2.0	verse flow)	Max.	3.55	-	3.3	350	1000	150	300	4		
See	Permanent	2.0	Air	Min.	2.8	5	_	-	-	-	-	-	Microwave Oven	2M88
attached drawing	Magnet	3.0	(Trans- verse flow)	Max.	3.4	_	4.5	350	1400	140	300	4		
See	Permanent		Air	Min.	2.8	3	_	_	_	_	_	_	Microwave	2M177
attached drawing	Magnet	2.0	(Trans- verse flow)	Max.	3.4	_	4.5	350	1400	150	300	4	Oven	
See	Permanent		Air	Min.	2.85	_	_	_	_	-	_	_	Microwave	
attached drawing	Magnet	2.0	(Axial flow)	Max.	3.55	0	3.8	350	1200	150	300	4	Oven	2M178
See	Permanent		Air	Min.	2.8	5	_	_	_	_	_	_	Microwave	
attached drawing	Magnet	2.0	(Trans- verse flow)	Max.	3.4	_	4.5	350	1400	140	300	4	Oven	2M53-N
See	Permanent		Air	Min.	3.05	0	_	_	_	_	_	_		
attached drawing	Magnet	2.0	(Trans- verse flow)	Max.	3.75	_	3.0	200	600	140	300	2	Medical	2M75-N
See	Permanent		Air	Min.	3.15	0	_	_	_	_	_	_		2M175
attached drawing	Magnet	2.0	(Trans- verse flow)	Max.	3.85	_	3.0	200	600	150	300	2	Medical	

σ_L: Voltage Standing wave ratio.

OUTLINE DRAWINGS (RECEIVING TUBES)

Unit: mm (inch)

					Unit: mm (inch)
18-1	18-2	18-3	21-2	21-3	21-4
44,45 M ax. 11.75) 11.80 11.80 11.00 11	53.9 Max. (2.125) 8 1 1 255 (1.255) 10.255 (1.255) (66.67 M ax. (2.626.) 10.023 M ax. (2.63.7.8)	19.1~22.2 φ (0.752~0.874 φ) (0.752~0.874 φ) 121 (2.66.1) 121 (2.66.1) 121 (2.66.1)	66.67 Max. 2.625.Max. 2.625.Max. 2.625.Max. 2.637.80 2.637.80 (2.375)	19.1~22.2.9 (0.752/2.0.874 \$\phi\$) T21.43Max. T21.43Max. (230.6.1) T21.73Max. (2.8.2.1)
2 H A 5 3 H A 5 4 H A 5 6 A L 5 6 H A 5 6 A K 5	2 G K 5 3DT6A 3 G K 5 4DT6A 3 H Q 5 6A V 6 4 G K 5 6DT6A 6 A U 6 12AU6 6 B A 6 12AV6 6 B E 6 12BE6 6 G K 5 6 H Q 5 12BA6	5 A Q 5 6 A Q 5 6 A R 5 6 X 4 3 O A 5 3 O M · P27 3 5 C 5 3 5 E H 5 3 5 W 4 5 O C 5 5 O E H 5	4 B L 8 6 L J 8 4 G S 7 6 L M 8 4 R-HH15 6 L N 8 5 G H 8 A 6 L X 8 5 G S 7 7 D J 8 5 G X 7 7 H G 8 5 H G 8 7 G S 7 5 L J 8 8 A 8 6 A Q 8 9 A Q 8 6 C L 8 A 9 A Q 8 6 C L 8 A 9 J W 8 6 B L 8 12 A T 7 6 G H 8 A 12 A U 7 6 G S 7 12 A X 7 6 G X 7 12 D T 8 6 H B 7 1 8 A 8 6 H G 8 17 E W 8 6 K E 8 P F 8 6 6 K Z 8	6 B X 6 6 A B 8 6 F Q 7 6 D X 8 6 G U 7 6 J X 8 F Q 7 8 L S 6 100X8 12BH7A 12BY7A 12FQ7 15DQ8 11LY6	6 A F 9 10 G V 8 6 B M 8 11 A F 9 6 B Q 5 11 B M 8 6 C A 4 11 M S 8 6 C W 5 1 1 Y 9 6 G K 6 15 C W 5 6 G V 8 1 6 A 8 6 Y 9 16 G K 6 8 B 8 1 6 Y 9 8 C W 5 18 G V 8 9 G V 8 50 B M 8 10 C W 5 6 3 6 0 10 G K 6
29-02	29-12A	29-16A	29-44	29-51	32-1
27.0~30.1 \$\phi\$ (1.63~1.185 \$\phi\$) (1.63~1.185 \$\phi\$) (252.5~8.82.4 \$\phi\$ Max. (1.281 \$\phi\$)	27.0~30.1 \$\phi\$ (1.63~1.185 \$\phi\$) T29 T29 \$\frac{\partial \text{gr. F.}}{\partial \text{gr. F.}} \text{Erg.} \text{gr. F.} \text{gr. F.} \text{Erg.} \text{gr. F.} \text{Erg.} \text{gr. F.} \text{Erg.} \text{gr. F.} \text{gr. F.} \text{Erg.} \text{gr. F.} g	27.0~30.1 \$\phi\$ (1.063~1.185\$\phi\$) T29 \(\frac{10.65}{6.00}\cdot\frac{1}{6.00}\cdot\fr	27.0~30.1 (1,063~1,185) T 29 (3,189) (1,063~1,185)	97.2 Max. (3.827) (1.063 ~ 1.182 %) (3.228 - 3.484) (3.228 - 3.484)	33.3 \otimes Max. (1.311 \otimes) (33.46) (1.311 \otimes) (1.314 \otimes) (1.3
3 C U A 3 C U 3 A	6 C M 5 1 2 G · B 3 2 5 E 5 5 0 J Y 6	3 C V 3 3 C V 3 A	50H-B26 25HX5	1 2 B · B 1 4	5 A R 4

						Jnit: mm (inch)
21-7	21-8	21-11	21-12	21-20	21-31	29-01
19.1~22.2 \$\phi\$ Max. (0.752~0.874 \$\phi\$) \\ \(\text{(0.752}\) \text{(0.874} \$\phi\$) \\ \(\text{(0.752}\) \text{(0.875} \\ \text{(0.852}\) \text{(0.852} \\ \text{(0.852}\) \text{(0.852}\) \\ \(\text{(0.852}\) \text{(0.852)}\) \\ \(\text{(0.852}\) \text{(0.852)}\) \\ \(\text{(0.852)}\) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	19.1~22.2 ¢ (0.752~0.874 ¢) (0.752~1.0 ± 1.2 ± 0	19.1~22.2.2 \$\phi\$ (0.752~0.874 \$\phi\$) (0.752~0.87	19.1 ~ 22.2 \$\phi\$ (0.752 ~ 0.874 \$\phi\$) T21 (PS1 7.7) T21 (PS1 7.7)	19.1~22.2 \$\phi\$ (0.752~0.874 \$\phi\$) 19.1~22.2 \$\phi\$ (0.752~0.874 \$\phi\$) 19.1~22.2 \$\phi\$ (2.222.1) 19.1~22.2 \$\phi\$ (2.222.1) 19.1~22.2 \$\phi\$ (2.222.1)	74.0Max. 74.0Max. 72.513) 75.0133 7	104.2 Max. (4.102) (1.023 - 1.182 + 0.177) (3.583 ± 0.177)
1 B K 2 1 X 2 B	6 R 3 1 1 R 3 1 7 Z 3 3 4 R 3	6 A L 3 1 6 A Q 3 2 0 A Q 3 3 0 A E 3	3 E H 7 3 E J 7 4 E H 7 4 E J 7 6 E H 7 6 E J 7	4 G J 7 5 G J 7 6 G J 7 8 G J 7	1 S 2 1 S 2 A	2 1 K Q 6 2 9 K Q 6 2 9 L E 6
32-2	38-01	38-02	38-19 38-29A	38-03	38-57	
115 Max. (1.311 Å) 101 Max. (1.39%) 13.9% Max. (1.310 Å)	124.7 Max. (4.909) 82.1 109.5 ~ 1 16 Max. (4.311 ~ 4.567)	115.2 Max. (4,535) (10,063 – 10,063 Max. (13,937 ~ 4,193)	738 738 738 738 738 738 738 738 738 738	36.6~39.6 ¢ (1.44)~ (1.559 ¢) (1.44)~ (1.559 ¢) (1.44)~ (1.559 ¢) (1.44)~ (1.559 ¢) (1.759 ¢) (1.719 ¢) (1.719 ¢)	36.6~39.6 \$ (3.336) (1.441~1.559 \$ (1.441~1.559 \$ (
6 C A 7	6 K G 6 A 6 L F 6 2 O L F 6 4 O K G 6 A	6 E C 4 A 4 2 E C 4 A	6 B K 4 B 6BK4C/6EL4A	S 2 0 0 1	33HE7 (F) 38EH7	

FLANDIPAK*

Unit: mm (inch)

(VIDICONS) Unit: mm (inch)

(SILICON VIDICONS)

(CONTINUOUS-WAVE MAGNETRONS)

2M75-M

2MI75

BASE CONNECTIONS (RECEIVING TUBES)

HO S HL 3 5 W 4	H 6 6 6 A Q 5 6 A Q 5 6 A Q 5 7 7 8 Z	3 C V 3 3 C V 3 A 3 C V 3 A SEZ	3 E H 7 3 E J 7 4 E H 7 4 E J 7 6 B X 6 6 E H 7 9AQ
H NC 6 X 4	6 B E 6 1 2 B E 6 7 CH	6 B K 4 B 6 B K 4 C 6 B K 4 B 6 B K 4 C 6 B K 4 C 6 B K 4 C 6 B K 4 C 6 B K 4 C 6 B K 4 C 6 C C C C C C C C C C C C C C C C C	H G Po 6 A B 8 (4 G F Po 6 A B 8 (5 G F Po 6 A B 8 (6 G F Po 7 Po 6 A B 8 (7 G F Po 7 Po 6 A B 8 (8 G F Po 7 Po
1P 5 A R 4	H G G G G G G G G G G G G G G G G G G G	G: PG	G11S HCT 12BY4A G11S HCT 12BY4A G11S HCT 12BY4A G11S HCT 12BY4A 9BF
H 2K 6 A L 5	3 D T 6 A 4 D T 6 A 6 6 D T 6 A 8 G ₁ 7 EN	5 0 J Y 6	PF86
H G G G G G G G G G G G G G G G G G G G	14 6 S S S G K 5 S S G K 5 G K 5 G K 5 G K 5 G K 5 T F P	3 C U 3 3 C U 3 A 3 C U 3 A 2 F U 8 F.IS	B CB 3 4 · R 3
GIS TBK	2HA5/2HM5 3HA5/3HM5 4HA5/4HM5 6HA5/6HM5 2 H Q 5 3 H Q 5 7GM 4 H Q 5 6 H Q 5	B 1 2 A U 7 1 2 A U 7 1 2 A X 7 A 1 2 B H 7 A 9 A	6 B Q 5 6 C W 5 6 E A 8 8 C W 5 10 C W 5 15 C W 5 7 1 8 9
6 A V 6 1 2 A V 6 1 2 A V 6	GO G	H H IP 4R-HH15 2K G G G G A Q 8 3	H H PP 4 B L 8 G G H 8 A 7 J S 6 L N 8 8 6 L X 8 8 9 A 8 9 G H 8 A 9 J W 8 1 7 A 8

H.K.IS H.H.K.IS 1 S 2	H H IP 6 F Q 7 2x 4 6 1G 6 G U 7 2 8 F Q 7 2 1 2 F Q 7	6 K G 4 A 6 2 1 K Q 6 2 2 9 K Q 6 4 0 K G 6 A	2P 6 (0) K.IGs 6 Y 9 2P 6 (0) K.IGs 1 1 Y 9 2G 7 (0) 1 6 Y 9
H H H H H H H H H H H H H H H H H H H	9LP	9RJ	2K2G ₃ O 1G ₂ 2G ₁ P 1 O - 55
6 B M 8 B 8 B 8 B 8 B 8 B 8 B 8 B 8 B 8 B	B IS 1 1 M S 8 G IP G IP 1 & G V 8 9 L Y	25 H X 5	Pp NC IC Ko (6) (10) (7) (8) (33 H E 7) (7) NC (10) (10) (10) (10) (10) (10) (10) (10)
6 CL 8 A 9 FX	H H NC 6 C A 4	FIS FIS 1 B K 2 NC O O O O O O O O O O O O O O O O O O O	NC POIC 6 L F 6 G G ONC 2 0 L F 6 G G O O O O O O O O O O O O O O O O O O
H B B G K Z 8 9 K Z 8 9 K Z 8	Kp,Kr, G,pp Grp S G A 8 H 5 G A 8 H 5 H G 8 6 H G 8 7 H G 8 7 H G 8 8 F P 8 F P 8 F P 8 F P 8 F P 9 MP	H H K IC 6 E C 4 A 4 2 E C 4 A 4 2 E C 4 A 9 E	KGIIS P G S 2 0 0 1 G: O T GIS H H KGIIS IC
# # # # # # # # # # # # # # # # # # #	K.G. 9 (12B-B14) K.G. 9 (10) R.G. 9 (10) S.G. 12B-B14) S.G. 12B-B14)	6 A F 9 PP2	
G ₃ S P 8 L S 6 8 L S 6 1 0 G K 6 1 6 G K 6 1 1 L Y 6 9 G K	2G, 9 PW	50H·B26	****
9HX	** G J 7	K.G.3.e. 6 J X 8 K.G.3.e. 6 G 7-4-1 j.m. 6 J X 8 K.G.3.e. 6 G 7-4-1 j.m. 6 J X 8 K.G.3.e. 7 6 7-4-1 j.m. 6 J X 8	

(VIDICONS)

(SILICON VIDICONS)

(PLUMBICON*)

SALES OFFICES

MATSUSHITA ELECTRONICS CORPORATION

SEMICONDUCTOR DIVISION CATHODE RAY TUBE DIVISION ELECTRON TUBE DIVISION

Takatsuki, Osaka, Japan Tel: Takatsuki (0726) 82-5521

Export Division

MATSUSHITA ELECTRIC TRADING CO., LTD.

• Head Office: Kawaramachi Bldg. 71, 5-chome, Kawaramachi, Higashi-ku, Osaka, Japan = 541

Tel: Osaka (06) 202-1221 Telex: MATSUELE OS3380

Cable Address: "MATSUELECO" OSAKA

• Tokyo Branch: 30th Floor, World Trade Center Bldg., No. 5, 3-chome, Shibahamamatsu-cho,

Minato-ku, Tokyo, Japan ∓105 Tel: Tokyo (03) 435-4501 Telex: MATSUELE TK4647

Cable Address: "MATSUELECO" TOKYO

Sales Organization in U.S.A.

MATSUSHITA ELECTRIC CORP. OF AMERICA

• Head Office: Pan-Am Building 200 Park Ave., New York, N.Y. 10017, U.S.A.

Tel: 212-973-5700, 5710, 5729

Cable Address: "MECAYORK NEW YORK"

• Chicago Office: 2960 Hart Drive Franklin Park, Ill. 60131

Tel: 312-455-3105

Sales Organization in West Germany

MATSUSHITA ELECTRIC SALES (EUROPE) G. m. b. H.

2 Hamburg 36, Jungfernstieg 40, F.R. Germany

Tel: 341543 thr, 341545

Cable Address: "HAMATELEC HAMBURG"

Sales Organization in Brasil

MATSUSHITA ELECTRIC BRASILEIRA INDÚSTRIA e COMÉRCIO LIMITADA

Rua Xavier de Tolede, 114-11 Ander, São Poulo Brasil

(Caixa Postal 2094, São Paulo) Tel: 32 (9195), 33 (2987)

Cable Address: "MEBRIC SÃO PAULO"

Panasonic

(U.S.A. and Canada)

National

(except U.S.A. and Canada)

