Dados os seguintes vetores em \mathbb{R}^4

$$v_1 = egin{bmatrix} 0 \ 5 \ -1 \ 3 \end{bmatrix}, \quad v_2 = egin{bmatrix} -1 \ -7 \ 3 \ -rac{7}{3} \end{bmatrix} \quad ext{e} \quad v_3 = egin{bmatrix} 3 \ 2 \ -rac{1}{4} \ 2 \end{bmatrix}$$

Verifique:

1.
$$\|v_1\|_{\infty} \ge \|v_2\|_1 + \|v_3\|_2$$
 F
2. $\|v_3\|_2 \le \|v_1\|_1 + \|v_2\|_{\infty}$ V
3. $\|v_1 - v_2\|_2 \le \|v_1 - v_2\|_1$ V

2.
$$\|v_3\|_2 \leq \|v_1\|_1 + \|v_2\|_\infty$$

3.
$$\|v_1-v_2\|_2 \leq \|v_1-v_2\|_1$$

4.
$$\|v_2-v_3\|_1 \leq \|v_1-v_3\|_\infty$$
 F

Dadas as seguintes matrices em $\mathbb{R}^{3\times 3}$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & -1 \\ 1 & 0 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \quad \text{e} \quad D = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Verifique quais das seguintes desigualdades:

1.
$$\|D\|_F > \|B\|_1 + \|A\|_\infty$$

2.
$$\|B\|_1 > \|C\|_{\infty} + \|A\|_F$$

1.
$$\|D\|_F > \|B\|_1 + \|A\|_{\infty}$$
 F
2. $\|B\|_1 > \|C\|_{\infty} + \|A\|_F$ F
3. $\|D + C\|_{\infty} \le \|D + A\|_{\infty}$

4.
$$||A + B||_F \ge ||C + D||_F$$

Dados os seguintes vetores
$$a_1=egin{bmatrix}1\\0\\0\end{bmatrix}, a_2=egin{bmatrix}1\\1\\0\end{bmatrix}, a_3=egin{bmatrix}1\\1\\1\end{bmatrix}$$
 .

Desta forma:

- 1. Verifique que $\{a_1,a_2,a_3\}$ é uma base para o \mathbb{R}^3 ;
- 2. Construir, a partir destes vectores, uma base ortonormal para o \mathbb{R}^3 .

Dados os seguintes vetores em \mathbb{R}^4

$$v_1 = egin{bmatrix} 1 \ 2 \ 3 \ 4 \end{bmatrix}, \quad v_2 = egin{bmatrix} 0 \ 5 \ -1 \ 3 \end{bmatrix} \quad ext{e} \quad v_3 = egin{bmatrix} -4 \ -3 \ 2 \ 1 \end{bmatrix}$$

Verifique:

1.
$$\|v_1\|_{\infty} \leq \|v_2\|_1 + \|v_3\|_2 \overline{\mathsf{V}}$$

2.
$$\|v_3\|_2 \leq \|v_1\|_1 + \|v_2\|_{\infty} \overline{\mathsf{V}}$$

3.
$$\|v_1-v_2\|_2 \leq \|v_1-v_2\|_1$$

1.
$$\|v_1\|_{\infty} \le \|v_2\|_1 + \|v_3\|_2$$
 \bigvee
2. $\|v_3\|_2 \le \|v_1\|_1 + \|v_2\|_{\infty}$ \bigvee
3. $\|v_1 - v_2\|_2 \le \|v_1 - v_2\|_1$ \bigvee
4. $\|v_2 - v_3\|_1 \ge \|v_1 - v_3\|_{\infty}$ \bigvee

Dadas as seguintes matrices em $\mathbb{R}^{3\times3}$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & -1 \\ 1 & 0 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \quad \text{e} \quad D = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Verifique quais das seguintes desigualdades:

2.
$$\|B\|_1 > \|C\|_{\infty} + \|A\|_F$$

3.
$$\|D+C\|_{\infty} \leq \|D+A\|_{\infty}$$
 V

4.
$$\|A+B\|_F \geq \|C+D\|_F$$
 F

Para uma matriz $A \in \mathbb{R}^{n imes n}$ elabore um Algoritmo que:

Multiplique o escalar $c \in \mathbb{R}$ a todos os elementos da coluna j, onde $j=1,\dots,n$, da matriz A.

Anexe sua resposta, contendo o algoritmo.

Dado
$$x=egin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$
 . Determine se a expressão:

$$N(x)=\sum_{i=1}^n|x_i|^3$$

define uma norma em \mathbb{R}^n .

Dado
$$x=egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix} \in \mathbb{R}^n$$
 . Determine se a expressão:

$$N(x) = \sum_{i=1}^{n} 2^{-i} |x_i|$$

define uma norma em \mathbb{R}^n .

Anexe sua resposta, contendo a justificativa detalhada.

Para uma matriz $A \in \mathbb{R}^{n imes n}$ elabore um Algoritmo que:

Multiplique simultaneamente as linhas $1,2,\ldots,n$ por c_1,c_2,\ldots,c_n respectivamente, da matriz A

Anexe sua resposta, contendo o algoritmo.

Para uma matriz $A \in \mathbb{R}^{n imes n}$ elabore um Algoritmo que:

Multiplique o escalar $c\in\mathbb{R}$ a todos os elementos da linha i, onde $i=1,\dots,n$, da matriz A.

Para uma matriz $A \in \mathbb{R}^{n imes n}$ elabore um Algoritmo que:

Multiplique o escalar $c \in \mathbb{R}$ a todos os elementos da coluna j, onde $j=1,\dots,n$, da matriz A.

Dadas as seguintes matrices em $\mathbb{R}^{3 \times 3}$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & -1 \\ 1 & 0 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \quad \text{e} \quad D = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Verifique quais das seguintes desigualdades:

1.
$$||A||_F \le ||B||_1 + ||D||_{\infty} |V|$$

2.
$$||A||_1 \ge ||B||_{\infty} + ||C||_F$$

3.
$$||A - D||_{\infty} \ge ||A - D||_F$$
 \lor

3.
$$||A - D||_{\infty} \ge ||A - D||_F |V|$$

4. $||D - C||_F \le ||A - C||_{\infty} |V|$

são verdadeiras ou falsas. Assim, arrastre e solte sobre o texto.

VF

Dados os seguintes vetores
$$a_1=\begin{bmatrix}-1\\-1\\0\end{bmatrix}$$
 , $a_2=\begin{bmatrix}-1\\0\\1\end{bmatrix}$, $a_3=\begin{bmatrix}0\\-1\\0\end{bmatrix}$.

Desta forma:

- 1 Verifique que $\{a_1, a_2, a_3\}$ é uma base para o \mathbb{R}^3 ;
- 2. Construir, a partir destes vectores, uma base ortonormal para o \mathbb{R}^3 .

Anexe sua resposta, contendo a justificativa detalhada.

Dados os seguintes vetores em \mathbb{R}^4

Tempo restai

$$v_1=egin{bmatrix}1\2\3\4\end{bmatrix},\quad v_2=egin{bmatrix}0\5\-1\3\end{bmatrix}\quad ext{e}\quad v_3=egin{bmatrix}-4\-3\2\1\end{bmatrix}$$

Verifique:

1. $\|v_1\|_{\infty} \leq \|v_2\|_1 + \|v_3\|_2$

2.
$$\|v_3\|_2 \leq \|v_1\|_1 + \|v_2\|_\infty$$

3.
$$\|v_1-v_2\|_2 \leq \|v_1-v_2\|_1$$

4.
$$\|v_2-v_3\|_1 \geq \|v_1-v_3\|_{\infty}$$

Dados os seguintes vetores
$$a_1=egin{bmatrix}1\\0\\0\end{bmatrix}$$
 , $a_2=egin{bmatrix}1\\1\\0\end{bmatrix}$, $a_3=egin{bmatrix}1\\1\\1\end{bmatrix}$.

Desta forma:

1. Verifique que $\{a_1,a_2,a_3\}$ é uma base para o \mathbb{R}^3 ;

2. Construir, a partir destes vectores, uma base ortonormal para o \mathbb{R}^3 .

Dado
$$x=egin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$
 . Determine se a expressão:

$$N(x) = \max\{|x_1|, |x_2|, \dots, |x_{n-1}|\}$$

define uma norma em \mathbb{R}^n .

Dadas as seguintes matrices em $\mathbb{R}^{3 imes 3}$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & -1 \\ 1 & 0 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \quad \text{e} \quad D = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Verifique quais das seguintes desigualdades:

1.
$$||A||_1 \leq ||B||_F + ||C||_\infty$$

2.
$$\|D\|_F \geq \|B\|_1 + \|C\|_\infty$$

3.
$$||A - B||_{\infty} \le ||A - B||_1$$

4.
$$||B-C||_1 > ||A-C||_F$$