

ORIE 4580/5580: Simulation Modeling and Analysis

ORIE 5581: Monte Carlo Simulation

unit 2: mean, variance, and tails

Sid Banerjee School of ORIE, Cornell University

expected value (mean, average)

let X be a random variable, and $g(\cdot)$ be any real-valued function

• If X is a discrete ∇ with $\Omega = \mathbb{Z}$ and $\mathsf{pmf}\ p(\cdot)$, then

$$\mathbb{E}[X] =$$

$$\mathbb{E}[g(X)] =$$

• if X is a continuous rv with $\Omega=\mathbb{R}$ and $\operatorname{pdf} f(\cdot)$, then

$$\mathbb{E}[X] =$$

$$\mathbb{E}[g(X)] =$$

variance and standard deviation

• definition:
$$Var(X) =$$

$$\sigma(X) =$$

• (alternate formula for computing variance)

$$Var(X) =$$

independence

what do we mean by "random variables X and Y are independent"? (denoted as $X \perp \!\!\! \perp Y$; similarly, $X \not \!\! \perp Y$ for 'not independent')

intuitive definition: knowing X gives no information about Y

formal definition:

one measure of independence between rv is their covariance

$$Cov(X, Y) =$$
 (formal definition)

= (for computing)

independence and covariance

how are independence and covariance related?

- X and Y are independent, then they are uncorrelated
 - in notation: $X \perp \!\!\!\perp Y \Rightarrow Cov(X, Y) = 0$
- however, uncorrelated rvs can be dependent
 - in notation: $Cov(X, Y) = 0 \implies X \perp\!\!\!\perp Y$
- $Cov(X, Y) = 0 \Rightarrow X \perp \!\!\!\perp Y$ only for multivariate Gaussian rv (this though is confusing; see this Wikipedia article)

linearity of expectation

for any rvs X and Y, and any constants $a,b\in\mathbb{R}$

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

note 1: no assumptions! (in particular, does not need independence)

linearity of expectation

for any rvs X and Y, and any constants $a, b \in \mathbb{R}$

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

note 1: no assumptions! (in particular, does not need independence)

note 2: does not hold for variance in general

• for general X, Y

$$Var(aX + bY) =$$

when X and Y are independent

$$Var(aX + bY) =$$

using linearity of expectation

the TAs get lazy and distribute graded assignments among n students u.a.r. on average, how many students get their own hw?

using linearity of expectation

the TAs get lazy and distribute graded assignments among n students u.a.r. on average, how many students get their own hw?

Let
$$X_i = 1$$
 [student i gets her hw] (indicator rv)

N = number of students who get their own hw $= \sum_{i=1}^{10} X_i$ then we have:

$$\mathbb{E}[N] = \mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]$$

$$= \sum_{i=1}^{n} \mathbb{E}[X_{i}]$$

$$= \sum_{i=1}^{n} \mathbb{P}[X_{i} = 1] = \sum_{i=1}^{n} \frac{1}{n} = 1$$

normal distribution

rv X is said to be normally distributed with mean μ and variance σ^2 (in notation, $X \sim \mathcal{N}(\mu, \sigma^2)$) if its pdf $f(\cdot)$ is given by

$$f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right], -\infty < x < \infty.$$

the pdf looks like

properties of the normal distribution

1. the pdf is symmetric around the mean μ : if $X \sim \mathcal{N}(\mu, \sigma^2)$

$$\mathbb{P}[X \leq \mu - a] =$$

2. (Linear transformation) If $X \sim \mathcal{N}(\mu, \sigma^2)$, then

$$aX + b \sim$$

$$\frac{X-\mu}{\sigma}$$
 ~

3. If $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$, $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$, and $X \perp \!\!\!\perp Y$, then

$$X + Y \sim$$

cdf of normal distribution

if
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then its cdf is given by $\mathbb{P}[X \leq x] =$

- \bullet knowing cdf for $\mathcal{N}(0,1)$ is enough to find cdf for any normally distributed rv
- for $X \sim \mathcal{N}(0,1)$: cdf denoted $\Phi(x)$, available in most computing packages closely related to the error function $erf(x) = \frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^2} dt$; in particular, $\Phi(x) = \frac{1}{2} (1 + erf(\frac{x}{\sqrt{2}}))$

sums of independent rv

sums and averages of independent rv

- $X_1, X_2, ...$ are independent rv that are uniformly distributed over the interval $[0,1]; \mathbb{E}[X_1] = 1/2, \ Var(X_1) = 1/12.$
- the pdf of X_1 looks like

• what about the pdf of $X_1 + X_2$ and $(X_1 + X_2)/2$?

sums and averages of independent rv

$$S_n = X_1 + \ldots + X_n$$
 $\bar{X}_n = \frac{1}{n} [X_1 + \ldots + X_n]$

• $\mathbb{E}[S_n] =$

$$\mathbb{E}[\bar{X}_n] =$$

$$Var(S_n) =$$

$$Var(\bar{X}_n) =$$

- (roughly) sum of n i.i.d. random variables is \sqrt{n} times as variable as any one of the random variables
- average of n i.i.d. random variables is $1/\sqrt{n}$ times as variable as any one of the random variables

law of large numbers

let X_1, X_2, \ldots be a sequence of independent rvs with $\mathbb{E}[X_i] = \mu$ for all i then, "almost" always

$$ar{X}_n = rac{1}{n} \; \sum_{i=1}^n X_i {\longrightarrow} \; \mu \quad , \quad ext{as } n o \infty$$

note: for any finite n, $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ is still a random variable

central limit theorem

let X_1, X_2, \ldots be a sequence of independent rvs with

$$\mathbb{E}[X_i] = \mu, Var(X_i) = \sigma^2 < \infty$$
 for all

then,

$$\sqrt{n}(\bar{X}_n - \mu) \stackrel{D}{\longrightarrow} \sigma \mathcal{N}(0, 1) = \mathcal{N}(0, \sigma^2)$$
 , as $n \to \infty$

this suggests the following approximations for large n,

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \stackrel{D}{\approx}$$

$$S_n = \sum_{i=1}^n X_i \stackrel{D}{\approx} 1$$