Assignment 4

September 19, 2023

1. Test the convergence or divergence of the series

(a)
$$\sum_{n=1}^{\infty} \frac{(3n)! + 4^{n+1}}{(3n+1)!}$$
.

(b)
$$\sum_{n=1}^{\infty} \frac{n^2}{2n^2+1}$$
.

(b)
$$\sum_{n=1}^{\infty} \frac{n^2}{2n^2+1}$$
.
(c) $\sum_{n=1}^{\infty} \frac{5}{2^{\frac{1}{n}}+1}$

(d)
$$\sum_{n=1}^{\infty} \frac{2}{n^2 + 2n}$$
.

(e)
$$\sum_{n=1}^{\infty} \frac{1}{2n^2+3n-5}$$
.

- 2. Suppose $\{a_n\}$ and $\{b_n\}$ are sequences of non negative real numbers, such that $\sum_{n=1}^{\infty} a_n^2$ and $\sum_{n=1}^{\infty} b_n$ both converge, then prove that $\sum_{n=1}^{\infty} a_n b_n$
- 3. Can you give an example of a convergent series $\sum_{n=1}^{\infty} x_n$ and a divergent series $\sum_{n=1}^{\infty} y_n$. such that $\sum_{n=1}^{\infty} (x_n + y_n)$ is convergent? Explain.
- 4. Prove that if $\sum_{n=1}^{\infty} a_n$ is a convergent series of non negative numbers and p > 1, then $\sum_{n=1}^{\infty} a_n^p$ converges.
- 5. If $\sum_{n=1}^{\infty} a_n$ converges with $a_n > 0$ then is always $\sum_{n=1}^{\infty} \sqrt{a_n}$ converges gent? Either prove it or give a counterexample.
- 6. If $\sum_{n=1}^{\infty} a_n$ converges with $a_n > 0$ then is always $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ convergent? Either prove it or give a counterexample.
- 7. If $\sum_{n=1}^{\infty} a_n$ converges with $a_n > 0$ then $\sum_{n=1}^{\infty} b_n$ where $b_n = \frac{a_1 + a_2 + \dots + a_n}{n}$ always divergent?