Automatic Restriction Strategy Finder for Synthetic Biology Constructs

Jorge Gomes

Project Supervisor: Björn Johansson

Project in Bioinformatics and Systems Biology

July 2017

Synthetic Biology

- > The assembly of DNA constructs from small fragments into large constructs.
- Convergence of molecular biology with engineering principles and advances in biological technologies.
- Synthesis/ Manipulation of:
 - > Full length genes
- >> Proteins

> Pathways

Complete genomes

- > Applications:
 - > Vaccine and Antibody production

>> BioFuels

Crop Improvement

★ Industrial Enzymes: Food Quality

★ BioBased Chemicals: Plastics and Textiles

Synthetic Biology

Adapted from Ellis *et al.* DNA assembly for synthetic biology: from parts to pathways and beyond. *Integrative Biology*, *3*(2), 109-118.

Cloning vector/ plasmid

Problem

Adapted from Ellis *et al.* DNA assembly for synthetic biology: from parts to pathways and beyond. *Integrative Biology, 3*(2), 109-118.

Goals

> Design an algorithm capable of automatically selecting the most effective restriction enzyme(s) for DNA constructs analysis and distinction;

Minimize the number of enzymes necessary;

> Make it's use both simple and quick.

Pydna

- > Python package providing human-readable description and simulation of cloning and assembly strategies;
- ➢ Includes simulations for:
 - **Restriction Digestion**

Ligation

≫ PCR

Assembly

X Homologous recombination

> Primer Design

- Gel electrophoresis of DNA with generation of gel images
- **Command Line interface;**
- ✓ Integration with IPython Notebooks;

Methodology

★ 0. Inputs

★ 1. Sequence Alignment Step

Contiguous sequence;

% "Insert" sequence.

Methodology

- > 2. Restriction Enzymes Search Step
 - ★ Single cutters for Contiguous sequence;
 - 2 ≤ cuts for "Insert" sequence;
 - ➢ Intersection or combination of the above.

2 ≤ cuts for "Insert" sequence?

- **★ 3. Restriction Enzymes Testing Step**
 - **X** Fragment size;
 - ➢ Distinc band/fragment;
 - ➤ Band/pattern optimization.

★4. Outputs

Methodology

> How to use it?

> Restriction_Finder(seqs, min_size, r_enzymes, optim, gel, iso)

seqs: List of sequences as Dseqrecord objects;

min_size: Minimum fragment size allowed after digestion;

r_enzymes: Set of restriction enzymes to be used;

optim: Should the band optimization step be performed?;

gel: Should the output be presented on an agarose gel?;

iso: Should the optimal enzyme be an isoschizomer?

```
>rf = Restriction_Finder(seqs)
>rf.lanes()
>rf.solutions()
>rf.is_isoschizomer()
>rf.all_best()
```


Results

- Using 4 pUC18 cloning vectors with different inserted genes, minimum fragment size of 50bp.
- ★ Elapsed time: 10.753 seconds.

```
Gel obtained using PshBI
                     Lanes
     1
2
3
     5
Distance (cm)
                                        E = 5.00 \text{ V/cm}
                                        t = 2 h 16 m
   10
                                        expo = 0.5
   11
   12
   13
   14
   15
16
```

```
In [5]: rf.solutions()
The best enzyme is an isoschizomer so if you run
Restriction_Finder() multiple times you will get different
best enzymes but same digestion result

Best enzyme:
   PshBI
Other possible solutions:
[AseI, VspI]

In [6]: print(rf.all_best())
[PshBI, AseI, VspI]

In [7]: rf.lanes()
Lane order:
['L08752.1', 'U03991', 'LC129268.1', 'U07164.1']
```


Results

> Using 6 yeast based cloning vectors with different inserted genes, and different parameter values for *optim* and *iso*.

Test	Minimum fragment size (bp)	iso	optim	Best Restriction Enzyme	Other possible	Timing (s)
1	200	True	True	Aanl	Psil	26.96
2	150	True	True	Bbsl	Aanl, Psil, BstV2I, Bpil	41.66
3	150	True	False	Bpil	Aanl, Bbsl, Psil, BstV2l	33.28
4	50	True	True	Bbsl	Nspl, Aanl, Xcel, BsrFl, Psil, BstNSI, Tatl, and 9 others	61.59
5	50	False	True	Tatl	Nspl, Aanl, Xcel, Bbsl, BsrFl, Psil, BstNSl, Alw26l, Cfr10l, and 7 others	57.78

Results

- Restriction with BbsI, Bpil and Tatl respectively.
- ★ Lane order: pJC170, pJC175, pJC178, pJC181, pJC184, pJC187

Functionality

Time and Resource saving

Simple Use Detailed Guide

Worldwide Availability @ GitHub

Interactive Experience

Conclusion

Targeted

Requires Python and Pydna Efficiency Vs Precise results

Minimum Fragment Size parameter