Deep Neural Networks

Apprentissage par réseaux de neurones artificiels

ANNEN Rayane, MARTINS Alexis

Contents

Digit recognition from raw data	2
Shallow Neural Network	3
Hyper-parameters	3
Digit recognition from features of the input data	3
Shallow Neural Network	3
Hyper-parameters	3
Convolutional neural network digit recognition	4
Deep Convolutional Neural Network	4
Experiments	5
Raw data	5
100 neurones	5
300 neurones	6
600 neurones	7
Features-based (HOG)	8
PIX_P_CELL 4, orientation 8, 100 neurones	8
PIX_P_CELL 4, orientation 8, 300 neurones	9
PIX_P_CELL 4, orientation 4, 100 neurones	10
PIX_P_CELL 7, orientation 8, 100 neurones	11
CNN	12
25 neurones	12
250 neurones	13
500 neurones	14
General questions	15

Digit recognition from raw data

What is the learning algorithm being used to optimize the weights of the neural networks? What are the parameters (arguments) being used by that algorithm? What cost function is being used ? please, give the equation(s)

The algorithm used to optimize the weight is RMSprop (Root Mean Square Propagation).

The parameters are the following:

```
tf.keras.optimizers.RMSprop(
    learning_rate=0.001,
    rho=0.9,
    momentum=0.0,
    epsilon=1e-07,
    centered=False,
    weight_decay=None,
    clipnorm=None,
    clipvalue=None,
    global_clipnorm=None,
    use_ema=False,
    ema_momentum=0.99,
    ema_overwrite_frequency=100,
    jit_compile=True,
    name="RMSprop",
    **kwargs
```

The following equations are used:

$$E[g^{2}]_{t} = \beta E[g^{2}]_{t-1} + (1 - \beta) \left(\frac{\partial C}{\partial w}\right)^{2}$$
$$w_{t} = w_{t-1} - \frac{\eta}{\sqrt{E[g^{2}]_{t}}} \frac{\partial C}{\partial w}$$

where η is the learning rate, w_t the new weight, β is the moving average parameter, E[g] is the moving average of squared gradients and $\frac{\partial C}{\partial w}$ is the derivative of the cost function with respect to the weight.

The cost function is the categorical cross-entropy loss function:

$$\mathsf{CE} = -\frac{1}{N} \sum_{k=0}^{N} \log \vec{p_i}[y_i]$$

where N is the number of samples, $\vec{p_i}$ is the neural network output and y_i is the target class index.

Shallow Neural Network

For this experiment a simple shallow neural network is used. We use raw data to classify the digits.

Hyper-parameters

Changed made to the model from the original: we reduced the number of neurons in the hidden layer from 300 to 100.

- Epochs: 10
- Hidden layers:
 - 100 neurons, reLU
- Output activation function: softmax.
- Batch size: 128
- Weights in the hidden layer: 784 * 100 + 100 = 78400 + 100 = 78500
- Weights in the output layer = 10 * 100 + 10 = 1010
- Total weights: 78500 + 1010 = 79510

Digit recognition from features of the input data

Shallow Neural Network

In this experiment, we use the Histogram of gradients (HOG) features to classify the digits.

Hyper-parameters

HOG: - orientation count: 8 - pixels per cell: 4

- Epochs: 10
- Hidden layers:
 - 100 neurons, reLU
- Output activation function: softmax.
- Batch size: 128

- Weights in the hidden layer: 392 * 200 + 200 = 78400 + 200 = 78600
- Weights in the output layer = 10 * 200 + 10 = 2010
- Total weights: 78600 + 2010 = 80610

Convolutional neural network digit recognition

Deep Convolutional Neural Network

• Epochs: 10

• Batch size: 128

• Hidden layers:

- Convolutional 2D: 5x5

- MaxPooling 2D: pool size: 2x2

- Convolutional 2D: 5x5

- MaxPooling 2D: pool size: 2x2

- Convolutional 2D: 3x3

- MaxPooling 2D: 2x2

- Flatten layer

- Dense (25 neurons), activation function: reLU

Output: 10 neurons, activation function: softmax

Model complexity:

Layer (type)	Output Shape	Param #
l0 (InputLayer)	[(None, 28, 28, 1)]	0
l1 (Conv2D)	(None, 28, 28, 9)	234
l1_mp (MaxPooling2D)	(None, 14, 14, 9)	0
l2 (Conv2D)	(None, 14, 14, 9)	2034
l2_mp (MaxPooling2D)	(None, 7, 7, 9)	0
l3 (Conv2D)	(None, 7, 7, 16)	1312
l3_mp (MaxPooling2D)	(None, 3, 3, 16)	0

Experiments

Raw data

100 neurones

Test score: 0.07702907919883728 Test accuracy: 0.9757000207901001

313/313	[====				=====	=] - 1	s 2ms/	step		
array([[972,	Θ,	1,	1,	Θ,	Θ,	2,	1,	3,	0],
[Θ,	1126,	2,	Θ,	Θ,	2,	2,	1,	2,	0],
[2,	1,	1016,	1,	3,	Θ,	2,	3,	4,	0],
]	1,	Θ,	7,	994,	Θ,	2,	0,	1,	3,	2],
]	2,	Θ,	2,	1,	971,	Θ,	2,	1,	Θ,	3],
[4,	Θ,	Θ,	11,	1,	863,	7,	Θ,	5,	1],
]	3,	3,	1,	1,	3,	3,	943,	Θ,	1,	0],
]	Θ,	4,	10,	4,	3,	Θ,	Θ,	998,	3,	6],
[3,	Θ,	2,	5,	2,	2,	1,	3,	954,	2],
[2,	2,	Θ,	7,	13,	4,	1,	3,	2,	975]])

Test score: 0.06406917423009872 Test accuracy: 0.9811999797821045

313/313	[====				=====	=] - 1	s 2ms/	step		
array([[972,	Θ,	1,	1,	Θ,	Θ,	2,	1,	3,	0],
]	Θ,	1126,	2,	Θ,	Θ,	2,	2,	1,	2,	0],
[2,	1,	1016,	1,	3,	Θ,	2,	3,	4,	0],
[1,	Θ,	7,	994,	Θ,	2,	0,	1,	3,	2],
[2,	Θ,	2,	1,	971,	Θ,	2,	1,	Θ,	3],
[4,	Θ,	Θ,	11,	1,	863,	7,	Θ,	5,	1],
[3,	3,	1,	1,	3,	3,	943,	Θ,	1,	0],
]	Θ,	4,	10,	4,	3,	Ο,	0,	998,	3,	6],
[3,	Θ,	2,	5,	2,	2,	1,	3,	954,	2],
[2,	2,	Θ,	7,	13,	4,	1,	3,	2,	975]])

Test score: 0.060618676245212555 Test accuracy: 0.9815000295639038

313/313	[====			=====	=====	=] - 19	s 2ms/	step/		
array([[970,	1,	2,	Θ,	1,	Θ,	3,	1,	2,	0],
[Θ,	1128,	2,	1,	Θ,	1,	2,	1,	Θ,	0],
[4,	2,	1005,	3,	3,	Θ,	2,	5,	8,	0],
]	1,	0,	4,	994,	Θ,	5,	Θ,	1,	3,	2],
]	Θ,	0,	1,	1,	967,	Θ,	6,	1,	Θ,	6],
[2,	Θ,	Θ,	5,	1,	871,	6,	Θ,	5,	2],
]	3,	2,	1,	1,	3,	2,	945,	Θ,	1,	0],
]	2,	5,	7,	4,	Θ,	Θ,	Θ,	1002,	4,	4],
]	1,	2,	3,	4,	3,	2,	1,	2,	955,	1],
]	3,	3,	Θ,	5,	10,	2,	1,	4,	3,	978]])

Features-based (HOG)

PIX_P_CELL 4, orientation 8, 100 neurones

Test score: 0.06830427795648575 Test accuracy: 0.9771999716758728

313/313	[====				=====	=] - 1	s 1ms/	step		
array([[971,	0,	1,	Θ,	Θ,	2,	3,	2,	Θ,	1],
]	4,	1117,	1,	3,	1,	1,	4,	2,	2,	0],
]	2,	1,	1015,	2,	2,	0,	2,	5,	3,	0],
]	Θ,	1,	4,	986,	Θ,	10,	0,	4,	5,	0],
]	3,	1,	3,	Θ,	955,	Θ,	1,	1,	3,	15],
]	2,	1,	Θ,	10,	Θ,	875,	4,	Θ,	Θ,	0],
]	4,	2,	1,	Θ,	3,	3,	945,	Θ,	Θ,	0],
]	Θ,	2,	7,	3,	5,	Θ,	Θ,	995,	3,	13],
]	7,	Θ,	6,	8,	2,	2,	4,	4,	927,	14],
]	1,	2,	1,	5,	7,	1,	0,	5,	1,	986]])

PIX_P_CELL 4, orientation 8, 300 neurones

Test score: 0.09305289387702942 Test accuracy: 0.9696000218391418

313/313	[====		=====	=====	=====	=] - 0	s 1ms/	step		
array([[966,	1,	2,	Θ,	Θ,	3,	4,	1,	3,	0],
[Θ,	1123,	3,	1,	Θ,	Θ,	4,	Θ,	4,	0],
]	4,	7,	998,	4,	1,	Θ,	2,	8,	7,	1],
[Θ,	1,	2,	976,	Θ,	12,	0,	2,	16,	1],
]	3,	2,	3,	0,	956,	Θ,	4,	2,	4,	8],
]	4,	1,	Θ,	13,	Θ,	863,	5,	Θ,	5,	1],
]	5,	1,	1,	0,	5,	4,	939,	Θ,	3,	0],
]	2,	5,	6,	3,	7,	Θ,	Ο,	993,	3,	9],
]	7,	2,	2,	11,	3,	3,	3,	3,	936,	4],
]	5,	6,	Θ,	10,	18,	6,	1,	11,	6,	946]])

PIX_P_CELL 4, orientation 4, 100 neurones

Test score: 0.06113172695040703 Test accuracy: 0.9801999926567078

313/313	[====	=====	======		=====	=] - 0:	s 1ms/	step		
array([[972,	Θ,	1,	Θ,	Θ,	1,	3,	1,	1,	1],
]	4,	1122,	1,	2,	Θ,	1,	2,	Θ,	3,	0],
]	2,	4,	1017,	1,	1,	Θ,	2,	2,	3,	0],
]	Θ,	1,	2,	987,	Θ,	6,	1,	3,	10,	0],
]	1,	1,	1,	Θ,	962,	Θ,	Θ,	1,	3,	13],
]	2,	1,	Θ,	12,	Θ,	869,	4,	Θ,	1,	3],
]	4,	2,	1,	Θ,	3,	2,	945,	Θ,	1,	0],
]	Θ,	4,	8,	4,	4,	Θ,	Ο,	988,	3,	17],
]	6,	Θ,	4,	2,	1,	1,	1,	1,	949,	9],
]	Θ,	3,	1,	3,	5,	1,	Θ,	4,	1,	991]])

PIX_P_CELL 7, orientation 8, 100 neurones

Test score: 0.13366223871707916 Test accuracy: 0.9563999772071838

313/313	[====				=====	=] - 1	s 2ms/	step		
array([[950,	1,	4,	1,	Θ,	1,	10,	1,	9,	3],
[Θ,	1109,	3,	2,	3,	1,	7,	1,	9,	0],
]	3,	2,	989,	10,	6,	1,	2,	7,	11,	1],
]	1,	1,	7,	940,	2,	25,	1,	7,	24,	2],
]	Θ,	2,	2,	Θ,	953,	1,	1,	4,	5,	14],
]	1,	Θ,	1,	8,	Θ,	865,	1,	Θ,	15,	1],
[4,	2,	Θ,	1,	8,	10,	927,	Θ,	4,	2],
]	Θ,	5,	16,	5,	8,	Θ,	Θ,	957,	10,	27],
]	2,	3,	2,	8,	4,	15,	3,	5,	924,	8],
]	Θ,	3,	2,	11,	15,	5,	Θ,	12,	11,	950]])

CNN

25 neurones

Test score: 0.03834224492311478 Test accuracy: 0.9879999756813049


```
313/313 [==========
                          ======== ] - 1s 2ms/step
pred.shape = (10000, 10)
array([[ 975,
                                                                3,
                                                                       0],
                  0,
                               0,
                                      Θ,
                                            0,
                                                   1,
                                                          1,
                                      Θ,
                                                   Θ,
            1, 1127,
                         2,
                               Θ,
                                            2,
                                                          1,
                                                                2,
                                                                       0],
                  2, 1017,
                               2,
                                      Θ,
                                            0,
                                                   Θ,
                                                          7,
                                                                1,
                                                                       0],
                  Θ,
                         1, 1003,
                                            3,
            Θ,
                                      Θ,
                                                   Θ,
                                                          2,
                                                                       0],
                                                                1,
                                                   4,
                                            Θ,
                  Θ,
                         2,
                                    971,
                                                          2,
            Θ,
                               Θ,
                                                                Θ,
                                                                       3],
                  1,
                                          882,
                                                   1,
                                                                       1],
            Θ,
                         Θ,
                               6,
                                      Θ,
                                                          Θ,
                                                                1,
                                      2,
                                            6,
                                                 939,
                                                          Θ,
            5,
                  2,
                         Θ,
                               Θ,
                                                                4,
                                                                       0],
       [
           Θ,
                  2,
                         2,
                               2,
                                      Θ,
                                            1,
                                                   0, 1020,
                                                                1,
                                                                       0],
                              Θ,
                                                              964,
                                                                       1],
           4,
                  Θ,
                         2,
                                      Θ,
                                            1,
                                                   Θ,
                                                          2,
                                            3,
                                                                4,
            2,
                  3,
                         Θ,
                               3,
                                      6,
                                                   Θ,
                                                          6,
                                                                     982]])
```

Test score: 0.037620659917593 Test accuracy: 0.9884999990463257


```
313/313 [=======
                            ======== ] - 1s 2ms/step
pred.shape = (10000, 10)
array([[ 975,
                                     Θ,
                                                         Θ,
                                                               2,
                                                                      1],
                  Θ,
                        1,
                               Θ,
                                            0,
                                                  1,
           1, 1131,
                                                                      0],
                        2,
                               Θ,
                                     Θ,
                                            Θ,
                                                  1,
                                                         Θ,
                                                               Θ,
                  0, 1028,
           2,
                               Θ,
                                     Θ,
                                            Θ,
                                                  Θ,
                                                         1,
                                                               1,
                                                                      0],
                  Θ,
                        4,
                             999,
                                     Θ,
                                            3,
                                                  Θ,
                                                         2,
                                                                      1],
           Θ,
                                                               1,
                  1,
                        3,
                               Θ,
                                   964,
                                            Θ,
                                                  4,
                                                         Θ,
                                                               3,
                                                                      7],
           Θ,
                  Θ,
           2,
                               5,
                                          882,
                                                  1,
                                                                      2],
                        Θ,
                                     Θ,
                                                         Θ,
                                                945,
                  1,
                               Θ,
           7,
                        1,
                                     1,
                                            3,
                                                         Θ,
                                                                      0],
                                                               Θ,
                  1,
                       12,
                               Θ,
                                     Θ,
                                            Θ,
                                                0, 1012,
                                                               1,
                                                                      2],
           Θ,
                                            2,
                                                         2,
                                                             955,
           4,
                  Θ,
                       4,
                               2,
                                     Θ,
                                                  1,
                                                                      4],
                        0,
                                                         1,
           Θ,
                  1,
                               Θ,
                                     5,
                                            4,
                                                  0,
                                                               4,
                                                                    994]])
```

Test score: 0.04010535404086113 Test accuracy: 0.9871000051498413


```
313/313 [=========== ] - 1s 2ms/step
pred.shape = (10000, 10)
array([[ 973,
                 Θ,
                             Θ,
                                   Θ,
                                          2,
                                                2,
                                                      Θ,
                                                            2,
                                                                  1],
           0, 1131,
                                                      1,
                       1,
                             1,
                                   Θ,
                                          Θ,
                                                1,
                                                            Θ,
                                                                   0],
                 3, 1008,
                                                Θ,
                            12,
           1,
                                   1,
                                          Θ,
                                                      5,
                                                                   1],
                       0, 1006,
                                          3,
           Θ,
                 Θ,
                                   Θ,
                                                Θ,
                                                      Θ,
                                                            1,
                                                                   0],
                 1,
           Θ,
                       Θ,
                             Θ,
                                 975,
                                          Θ,
                                                0.
                                                      Θ,
                                                            1,
                                                                   5],
                                   0, 877,
                 Θ,
                            10,
                                                                  3],
           1,
                       Θ,
                                                1,
                                                      Θ,
                                                            Θ,
           1,
                 2,
                                         13,
                                              938,
                       Θ,
                            1,
                                   2,
                                                      Θ,
                                                            1,
                                                                  0],
                             3,
           Θ,
                 1,
                       5,
                                   1,
                                          Ο,
                                              0, 1010,
                                                            1,
                                                                   7],
                                   1,
                 Θ,
                            15,
                                          1,
                                                Θ,
                                                          953,
                                                                  3],
           Θ,
                       Θ,
                                                      1,
                                          2,
           Θ,
                 Θ,
                       Θ,
                             2,
                                   3,
                                                Θ,
                                                      1,
                                                            1, 1000]])
```

General questions

Do the deep neural networks have much more "capacity" (i.e., do they have more weights?) than the shallow ones? explain with one example

Yes, deep neural networks generally have much more capacity than shallow ones, as they have more layers and consequently more weights.

Counterintuitively, it is observed that the shallow model has many more parameters than the deep model. This is because a shallow model is heavily interconnected, which increases the number of parameters.

We can use the example of the laboratory where the shallow model has 10 times more parameters than the deep one.