National Tsing Hua University

Fall 2023 11210IPT 553000

Deep Learning in Biomedical Optical Imaging

Homework 4

110066540 陳哲瑋

1. Task A: Model Selection

在此功課中,我是用了 Resnext50_32x4d 以及 resnet101 這兩架構去做比較, Resnext50_32x4d 使用了四個 Layer,但其四個層數 Layer 的 Bottleneck Layer 層數不是相同的,第一層為 3、第二層為 4、第三層為 6、第四層為 3、而用 Bottleneck Layer 的好處是可以改變維度及降低運算量,每個 Bottleneck Layer 都是由三個 Conv2d 所組成,而 resnet101 的組成與 Resnext50_32x4d 相似,他們的 Layer 數以及 Conv/ Bottleneck 數是相同的,但是他的 Bottleneck/Layer 比 resnet101 多了一點,這非常有可能是導致 resnet101 的運行時間比 resnext50 32x4d 多了兩分鐘,如表 1 所示。

	Layer 數	Bottleneck/Layer	Conv/ Bottleneck	花費時間
resnext50_32x4d	4	3=>4=>6=>3	3	15min
resnet101	4	3=>3=>23=>3	3	17min

表 1

接著從表 2 的第二欄可以看到 resnext50_32x4d 以及 resnet101 的 Best Train acc 皆達到了 100%,從最佳 Val Loss 數值及位置那一欄跟 Best Val Loss 那一欄可以看到,resnet101 發生了 Overfitting,當然 Resnext50_32x4d 也可看出有此問題,但是比起 resnet101 看起來好了一點,這應該是因為 resnet101 的 Bottleneck Layer 比 resnext50_32x4d 稍微複雜了一點,理論上越複雜的架構越容易使訓練結果 Overfitting,因此若要改善這兩個架構。可能要先讓他不那麼去貼合訓練的樣本。

	Final Train	Best Train	Final Val	Best Val	最佳 Val Loss 數值
	Loss	асс	Loss	асс	及位置
resnext50_32x4d	0.0218	100%	0.1718	99.63%	Epoch 22/30(0.0108)
resnet101	0.0471	100%	0.1032	98.19%	Epoch 17/30(0.0362)

2. Task B: Fine-tuning the ConvNet

	Final Train	Best Train	Final Val	Best Val	最佳 Val Loss	Test
	Loss	асс	Loss	асс	數值及位置	accuracy
resnext50_32x4d	0.00071	100%	0.0121	99.63%	Epoch	76.68%
					30/30(0.0121)	
resnet101	0.00019	100%	0.0498	98.40%	Epoch	78.8%
					22/30(0.0438)	

表3

可以從表 2 及表 3 發現,使用了 Transfer Learning 之後,性能有不少的提升,從 resnext50_32x4d 及 resnet101 比較中可知,雖然 Best Val Loss 沒有太大的改變,但是其 Overfitting 的程度已經降低了不少, resnext50_32x4d 在經過 35 次的訓練後其 Final Val acc 有持續在下降的趨勢,且 Test accuracy 也上升了不少 , resnext50_32x4d 及 resnet101 大約上升了 3.1%及 6.4%,可以確定的是使用兩個函數 resnet101 以及 resnext50_32x4d 都會對整體效能有所改善。

	Final Train	Best Train	Final Val	Best Val	最佳 Val Loss	Test
	Loss	асс	Loss	асс	數值及位置	accuracy
resnext50_32x4d	0.00019	100%	0.0092	99.63%	Epoch	80.68%
					28/30(0.0061)	
resnet101	0.00019	100%	0.0618	98.85%	Epoch	76.4%
					16/30(0.0438)	

表4

表四為改變了 resnext50_32x4d 的 weights 之結果, 從 原 本 的 MAGENET1K_V1 改成 IMAGENET1K_V2,同時 resnet101 的 weights 也一樣改為 IMAGENET1K_V2。可以觀察到更換 weights 後 resnet101 的 Best Val acc 上升了一點點,其最佳 Val Loss 數值及位置提前了一點點, Test accuracy 反而下降了大概有 2.4%,這就說明 resnet101 使用 IMAGENET1K_V2 後反而會加重 Overfitting 的狀況。 resnext50_32x4d 將 weights 更改為 IMAGENET1K_V2 後可以發現他的 Test accuracy 從 76.68%上升到 80.68%,上升了 4%,其 Overfitting 的狀況有所改善, 結果說明了改善不同的架構應使用不同的 weights 才能分別提升各自的效能

3. Task C: ConvNet as Fixed Feature Extractor

	Final Train	Best Train	Final Val	Best Val	最佳 Val Loss	Test
	Loss	асс	Loss	асс	數值及位置	accuracy
resnext50_32x4d	0.0899	96.78%	0.1066	94.65%	Epoch	86.18%
					16/30(0.1066)	
resnet101	0.1031	96.61%	0.1183	95.66%	Epoch	83.1%
					29/30(0.1154)	

從表 5 可以看到相較於使用第一種方法,凍結住訓練的地方效能會更好,可以發現這個方法的運行時間縮短了不少,resnet101 從 16 分鐘減少到 6 分 30 秒,約為原本的 2.5 分之 1 ,resnext50_32x4d 也節省了不少時間,從 15 分鐘縮短到了 5 分鐘,只要原本的 3 分之 1 。也可以發現 resnext50_32x4d 只有些許的 Overfitting,而 resnet101 基本上沒有 Overfitting。

4. Task D: Comparison and Analysis

	Final Train	Best Train	Final Val	Best Val	最佳 Val Loss	Test
	Loss	асс	Loss	асс	數值及位置	accuracy
resnext50_32x4d(B)	0.00071	100%	0.0121	99.63%	Epoch	76.68%
					30/30(0.0121)	
resnext50_32x4d(C)	0.0899	96.78%	0.1066	94.65%	Epoch	86.18%
					16/30(0.1066)	

表6

	Final Train	Best Train	Final Val	Best Val	最佳 Val Loss	Test
	Loss	асс	Loss	асс	數值及位置	accuracy
resnet101(B)	0.00019	100%	0.0498	98.40%	Epoch	78.8%
					22/30(0.0438)	
resnet101(C)	0.1031	96.61%	0.1183	95.66%	Epoch	83.1%
					29/30(0.1154)	

表 7

resnext50_32x4d 在 B 架構以及 C 架構的詳細資料列在表 6,resnet101 在 B 架構以及 C 架構的詳細資料列在表 7,兩者的 B 架構皆是使用了 IMAGENET1K_V1。從表 7 可以看到 B 的 Best Train acc 已經達到了 100%而 C 架構卻只有 96.61%,從最佳 Val Loss 數值及位置那一欄可以看到 B 架構的 Val Loss 從 Epoch 22/30 開始就已經是最佳的了且沒有再下降了,結合兩個數據可判斷出 B 架構已經Overfitting 了。表 7 的 Best Train acc 與表 6 一樣都是 B 架構比較高,但是可以發現最佳 Val Loss 數值及位置的高低與表 6 相反,有 Overfitting 的情況產生,但因為從表 6 以及表 7 可以看到 Test accuracy 在 C 架構都比 B 架構好,也有可能是input 的資料與測試的資料有很大的不相關性,導致無法正確的判斷對錯,故我認為採用 C 類型的架構是比較好的,且可從表 7 的 Best Val acc 欄及 Test accuracy欄看到,當 Best Val acc 上升 Test accuracy 就會下降,這情況也發生在resnext50_32x4d,且從表 6 以及表 7 可以可以發現 C 架構的 Test accuracy 都比 B 架構高,綜合下來要判斷醫療照片 C 架構比 B 架構更適合。

5. Task E: Test Dataset Analysis

	Final	Best	Final Val	Best Val	最佳 Val Loss	Test
	Train	Train	Loss	асс	數值及位置	accuracy
	Loss	асс				
rsnet18(out features=10)	0.0000	100%	0.0192	99.8%	Epoch	76.5%
					27/30(0.01495)	
rsnet18(out features=6)	0.0001	100%	0.0248	99.34%	Epoch	75.75%
					8/30(0.00968)	
rsnet18(out features=2)	0.0000	100%	0.0105	99.6%	Epoch	77.25%
					16/30(0.0085)	

表8

	Final Train	Best	Final Val	Best Val	最佳 Val Loss	Test	time
	Loss	Train	Loss	acc	數值及位置	accuracy	
		acc					
rsnet18(x_train:1 3 1 1	0.0000	100%	0.0105	99.6%	Epoch	77.25%	3:42
;x_val:1 3 1 1)					16/30(0.0085)		
rsnet18(x_train:1 3 3 1	0.0001	100%	0.0218	99.45%	Epoch	70.05%	11:10
;x_val:1 3 3 1)					26/30(0.0201)		
rsnet18(x_train:1 3 3 1	0.0001	100%	0.0344	99%	Epoch	80.5%	9:41
;x_val:1 3 1 1)					22/30(0.0305)		

表 9

在一 Task 我修改了兩中參數來看 rsnet18 的效能變化,表 8 是修改了 out features 的值,將其定為 6 及 10,去與原本的 2 做比較,可以發現 out features=10 的 Best Val acc 是最高的,但是他 Test accuracy 還是沒比 out features=2 大,且 out features=6 的 Best Val acc 及 Test accuracy 都是最低的,代表了要改善效能改 out features 值是無效果的。因此改成改 x_train 以及 x_val,首先將其改為 x_train:1 3 3 1&x_val:1 3 3 1,第二個則是 x_train:1 3 3 1&x_val:1 3 1 1,從表 9 可知,可以發現將 x_train 與 x_val 改為相同的值,並不會改善效能,反而會使效能下降,當 x_train 改為 1 3 3 1 同時將 x_val 改為 1 3 3 1 他的 Test accuracy 會下降不少,從 77.25%下降到 70.05%,且時間反而大幅上升了,從 3 分鐘上升到了 11 分鐘,這裡如果只改變 x_train,如果只將 x_train 改為 1 3 3 1 但 x_val 維持不變,竟然發現 Test accuracy 從 77.25%上升到了 80.5%,有非常顯著的改善,缺點是要花不少時間。只改變 x_train 會使訓練時間上升,當改 x_train 與 x_val 為不同的數值會有相當好的效果。但整體 Test accuracy 都無法到達 90%以上的正確率,因為這是拿一般影像去判斷醫療影像,會有不少誤差,Test accuracy 的正確率會不高。