

Quantum Operators on a Qubit

Jibran Rashid

Thursday, July 14
WOMANIUM QUANTUM 2022

Qubit on a Unit Circle

Circuit Evaluation

$$\begin{array}{l} |O\rangle\otimes(\kappa|o\rangle+8|I\rangle)\otimes(P|O\rangle+8|I\rangle) \\ |O\rangle\otimes(\kappa|o\rangle+8|I\rangle)\otimes(\kappa|o\rangle+8|I\rangle) \\ |O\rangle\otimes(\kappa|o\rangle+8|I\rangle)\otimes(\kappa|o\rangle+8|I\rangle) \\ |O\rangle\otimes(\kappa|o\rangle+8|I\rangle) \\ |O\rangle\otimes($$

Circuit Evaluation

Prob for first qubit to $|0\rangle$ H H Mbe in state (1) $\alpha |0\rangle + \beta |1\rangle$ $= \frac{1}{2} B^2 (R-\xi)^2$ $\gamma \left| 0 \right\rangle + \delta \left| 1 \right\rangle$ Given that first qubit is measured in state 1, what is the probability distribution for 2nd qubit? second qubit is always 11>. Does there exist a choice of x, B, M, & for which first qubit is measured in state 11> with probability 1. A = 0, B = 1, $A = \frac{1}{\sqrt{2}}$, $A = -\frac{1}{\sqrt{2}}$, $A = -\frac{1}{\sqrt{2$

$$= \frac{1}{2} \left[2x8(000) + 2x8(001) + B(8+8)(010) + B(8+8)(011) \right] + B(8-8)(100) + B(8-8)(100)$$

Preparing a Bell State

$$|0\rangle = H$$

$$|+\rangle |0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) |0\rangle$$

$$= \frac{1}{\sqrt{2}} (|0\rangle + |10\rangle)$$

$$\frac{1}{\sqrt{2}} (|0\rangle + |11\rangle) = \frac{1}{\sqrt{2}} (|0\rangle + |10\rangle)$$

Entanglement vs Perfect Correlation

Correlation

Entanglement