ERERERERERERERERERE

91261M

Tohua tēnei pouaka mēnā kāore he tuhituhi i roto i tēnei pukapuka

Te Pāngarau me te Tauanga, Kaupae 2, 2020

KIA NOHO TAKATŪ KI TŌ ĀMUA AO!

91261M Te whakahāngai tūāhua taurangi hei whakaoti rapanga

9.30 i te ata Rāpare 19 Whiringa-ā-rangi 2020 Ngā whiwhinga: Whā

Paetae	Kaiaka	Kairangi
Te whakahāngai tūāhua taurangi hei whakaoti rapanga.	Te whakahāngai tūāhua taurangi mā te whakaaro whai pānga hei whakaoti	Te whakahāngai tūāhua taurangi mā te whakaaro waitara hōhonu hei whakaoti
	rapanga.	rapanga.

Tirohia mēnā e rite ana te Tau Ākonga ā-Motu (NSN) kei runga i tō puka whakauru ki te tau kei runga i tēnei whārangi.

Me whakamātau koe i ngā tūmahi KATOA kei roto i tēnei pukapuka.

Tirohia mēnā kei a koe te Puka Tikanga Tātai L2-MATHMF.

Tuhia ō mahinga KATOA.

Ki te hiahia koe ki ētahi atu wāhi hei tuhituhi whakautu, whakamahia te wāhi wātea kei muri i te pukapuka nei.

Me whakaatu e koe ngā mahinga taurangi i tēnei pepa. Ko te tikanga, mā te whakamahi i ngā tikanga o te kimikimi ka tirotiro, te whakautu tika noa iho rānei, ka herea te ākonga ki te taumata Paetae.

Tirohia mēnā e tika ana te raupapatanga o ngā whārangi 2-27 kei roto i tēnei pukapuka, ka mutu, kāore tētahi o aua whārangi i te takoto kau.

ME HOATU RAWA KOE I TĒNEI PUKAPUKA KI TE KAIWHAKAHAERE Ā TE MUTUNGA O TE WHAKAMĀTAUTAU.

TAPEKE

TŪMAHI TUATAHI

MĀ TE KAIMĀKA ANAKE

Whaka	atauwehea $6x^2 + 13x - 15$.
Ka toh	nua he pānga ko te $f(x) = x^2 + 10x + 22$.
	apuakina $f(x)$ ki te āhua pūrua oti, hei tauira $f(x) = (x + a)^2 + b$, ina ko a me b he
Whaka	apuakina $f(x)$ ki te āhua pūrua oti, hei tauira $f(x) = (x + a)^2 + b$, ina ko a me b he
Whaka	apuakina $f(x)$ ki te āhua pūrua oti, hei tauira $f(x) = (x + a)^2 + b$, ina ko a me b he
Whaka	apuakina $f(x)$ ki te āhua pūrua oti, hei tauira $f(x) = (x + a)^2 + b$, ina ko a me b he
Whaka	apuakina $f(x)$ ki te āhua pūrua oti, hei tauira $f(x) = (x + a)^2 + b$, ina ko a me b he

QUESTION ONE

(a) Factorise $6x^2 + 13x - 1$

(b)	A function is defin	ed as $f(x) = 1$	$x^2 + 10x + 22$
(0)	71 Tunetion is defin	$\operatorname{cu} \operatorname{as} f(x)$.	λ 10 λ 22.

Express $f(x)$ in completed square form, i.e. $f(x) = (x + a)^2 + b$, where a and b are integers.			

(c) I te rautau 16, i te waihanga ngā tohunga pāngarau i tētahi whārite hei whiriwhiri i te whārite pūtoru. I whakamahia e rātou ngā kīanga ki te āhua o $y = x^3 - 12Px + R$, ina ko P me R he tau pūmau tōrunga.

(i) Ko te kauwhata o $y = x^3 - 12Px + R$, mō ētahi uara o P me R, ka hipa mā te pūwāhi A (4,40), ā, kua tātuhia i raro.

Whiriwhiria tētahi kīanga mō P e pā ana ki R.

(ii)	I te pūwāhi B e tika ana ko $3x^2 - 12P = 0$.
	Mā te whakamahi i te taurangi, whakaaturia ko $x = -2P^{0.5}$ i B.

In the 16th century, mathematicians were developing a formula to solve any cubic equation. They used expressions in the form of $y = x^3 - 12Px + R$, where P and R are positive constants. ASSESSOR'S USE ONLY

The graph of $y = x^3 - 12Px + R$, for some values of P and R, passes through the (i) point A (4,40) and is sketched below.

(c)

Find an expression for P in terms of R.

(ii)	At point B it is true that $3x^2 - 12P = 0$.
	Using algebra, show that $x = -2P^{0.5}$ at B.

(iii) Me whai whakaaro anō ki te kōpiko me te whārite $y = x^3 - 12Px + R$. Ina he rerekē ngā uara o P me R, ka huri te āhua o te kōpiko, ā, he rerekē ngā roa o ngā rārangi karaka me te rārangi kikorangi o waenga (i raro). Engari, nā te hangarite, ka noho rite tonu te roa o ngā rārangi karaka e rua tētahi ki tētahi.

E whakaaturia ana i raro ko ētahi tauira o ngā kauwhata i riro mai i ngā tūmomo uara o *P* me *R*.

Mō ētahi pahekotanga o P me R, e toru ngā pātahitanga o te kōpiko i te tuaka-x. Ka pēnei mēnā he roa ake ia rārangi karaka i te rārangi kikorangi.

Whiriwhiria te \bar{a} huatanga me m \bar{a} tua whakatutuki i P me R m \bar{o} te kauwhata kia whai haukotinga- x motuhake e toru.	MĀ TE KAIMĀKA ANAKE
Tuhia tō whakautu ki te āhua ko ngā taup \bar{u} o P me R he tau tōp \bar{u} tōrunga.	

(iii) Consider again the curve with the equation $y = x^3 - 12Px + R$. As the values of P and R vary, the shape of the curve changes, and the lengths of the orange lines and of the central blue line (below) vary. However, by symmetry, the two orange lines remain the same length as each other.

Some examples of the graphs obtained from various values of P and R are illustrated below.

For some combinations of P and R, the curve can intersect the x-axis three times. This will happen if each orange line is longer than the blue line.

ind the condition that P and R must satisfy for the graph to have three distinct x -intervite your answer in a form where the exponents of P and R are both positive integers.	

TŪMAHI TUARUA

MĀ TE
KAIMĀKA
ANAKE

Wha	akaotia ia whārite e whai ake nei:
(i)	$\log_{x}(36) = 2.$
(ii)	$\log_5(x) + \log_5(2x) = 4.$

QUESTION TWO

olve each of the following equations:
$\log_x(36) = 2.$
$\log_5(x) + \log_5(2x) = 4.$
)

()	XXII 1 4:1: 4 1 = :4	5x + 4	3x-4		
(c)	Whakaotihia te whārite:	$\overline{x+4}$	$-\frac{1}{2x+1} = 2.$		

MĀ TE KAIMĀKA ANAKE

$\frac{5x+4}{x+4} -$	$-\frac{3x-4}{2x+1} = 2.$
	$\frac{5x+4}{x+4}$

- Me whai whakaaro ki ngā unahi e rua: MĀ TE KAIMĀKA ANAKE
- Ka tohua te Unahi Tuatahi mā te $y = ax^2 + bx + c$, ā,

(d)

Ka tohua te Unahi Tuarua mā te $y = dx^2 + ex + c$, ina ko a, b, c, d, me e he tau pūmau.

Thakamahia te taurangi hei whiriwhiri i ng \bar{a} whakatiki kei ng \bar{a} uara o a , b , c , d , me e hei hakarite ka t \bar{u} taki ng \bar{a} unahi e rua i ng \bar{a} p \bar{u} w \bar{a} hi motuhake e rua.					

(d) Consider two parabolas:

- Parabola One given by $y = ax^2 + bx + c$ and
- Parabola Two given by $y = dx^2 + ex + c$, where a, b, c, d, and e are constants.

Use algebra to determine the restrictions on the values of a , b , c , d , and e that would ensure that the parabolas meet at two distinct points.				

TŪMAHI TUATORU

MĀ TE
KAIMĀKA
ANAKE

	akaotihia te whārite $3^{4x} = 30$.
Me	whai whakaaro ki te pānga $W = (x+2)^{\frac{2}{5}}$, ina ko x he tauoti .
(i)	Me kī ko x te kaupapa o te ture $W = (x+2)^{\frac{2}{5}}$.
(ii)	Mō ēhea uara o x ka iti iho ngā uara o te pānga i te 20?

QUESTION THREE

ASSESSOR'S USE ONLY

Solve the equation $3^{4x} = 30$. (a)

Consider the function $W = (x+2)^{\frac{2}{5}}$, where x is a **whole number**. (b)

Make x the subject of the formula $W = (x+2)^{\frac{2}{5}}$. (i)

For what values of x will the function have values less than 20? (ii)

MĀ TE KAIMĀKA ANAKE

(c) He hokohoko kōtui a Zahra. Ka kite a Zahra ka nui ake te utu o te kōtui, ka iti iho ngā kōtui ka hokona. Ka whakamātauhia e Zahra ki te whakapiki i te utu o tētahi kōtui mā te \$2 i ia rā (ka tīmata atu i te \$7), ā, ka tuhia e ia e hia ngā kōtui ka hokona e ia i ia rā. Koinei tana mahi mō te 6 rā, ā, ka kite ia ko te maha o ngā kōtui i hokona i ia rā i te tīmatanga he 98, ā, ka heke mā te 3 i ia rā.

Ko te rahinga o ngā moni i whiwhi i a Zahra i ia rā mō ngā kōtui, arā, ko ngā whiwhinga moni, kua mau ki te papatau i raro.

Rā, d	1	2	3	4	5	6
Utu o tētahi kōtui (\$) = $2d + 5$	7	9	11	13	15	17
Maha o ngā kōtui i hokona = $101 - 3d$	98	95	92	89	86	83
Whiwhinga moni (\$)	686	855	1012	1157	1290	1411

ki	ēnā ka noho tika tonu ngā tauira katoa, he rā anō e rite pū ana ngā whiwhinga mon te \$445? Whakamahia te taurangi hei parahau i tō whakautu me te whakamārama nakataunga.
_	
_	
_	

(c) Zahra sells zips. Zahra notices that the higher the price of a zip, the fewer zips are sold. As an experiment, Zahra increases the price of a zip by \$2 each day (starting at \$7) and keeps a record of how many zips are sold each day. She does this for 6 days and finds that the number of zips sold each day started at 98 and is dropping by 3 each day.

The total amount of money Zahra received each day for zips, the turnover, is also recorded in the table below.

Day, d	1	2	3	4	5	6
Price of a zip (\$) = $2d + 5$	7	9	11	13	15	17
Number of zips sold = $101 - 3d$	98	95	92	89	86	83
Turnover (\$)	686	855	1012	1157	1290	1411

Mā te whakamahi i te taurangi, whiriwhiria kia toru ngā āhuatanga i te iti rawa me tutuki i tētahi tauoti k kia noho ai pea hei whiwhinga moni i tētahi rā.	

Using algebra, find at least three conditions a whole number k must satisfy for it to be a possible turnover for a given day.		

	He whārangi anō ki te hiahiatia.	MĀ TE KAIMĀKA
TAU TŪMAHI	Tuhia te (ngā) tau tūmahi mēnā e tika ana.	KAIMAKA ANAKE
		1

	Extra space if required.	
	Write the question number(s) if applicable.	
QUESTION NUMBER		

	He wharangi and ki te hiahiatia.	
таи тймані	Tuhia te (ngā) tau tūmahi mēnā e tika ana.	

	Extra space if required.	
	Write the question number(s) if applicable.	
QUESTION NUMBER		

English translation of the wording on the front cover

Level 2 Mathematics and Statistics 2020 91261 Apply algebraic methods in solving problems

9.30 a.m. Thursday 19 November 2020 Credits: Four

Achievement	Achievement with Merit	Achievement with Excellence
Apply algebraic methods in solving problems.	Apply algebraic methods, using relational thinking, in solving problems.	Apply algebraic methods, using extended abstract thinking, in solving problems.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

Make sure that you have Formulae Sheet L2-MATHMF.

Show ALL working.

If you need more room for any answer, use the extra space provided at the back of this booklet.

You are required to show algebraic working in this paper. Guess-and-check methods or correct answer(s) only, will generally limit grades to Achievement.

Check that this booklet has pages 2–27 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.