GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	
	Robótica I

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Octavo Semestre	140801	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Capacitar al estudiante en el modelado y simulación de robots manipuladores a través de utilizar Software simbólico con la finalidad de establecer antecedentes para el control de robots.

TEMAS Y SUBTEMAS

- 1. Introducción a la robótica
 - 1.1 Breve historia
 - 1.2 Clasificación y aplicaciones
 - 1.3 Mercados y tendencias actuales

2. Morfología de robots

- 2.1 Componentes mecánicos y estructurales básicos
 - 2.1.1 Materiales
 - 2.1.2 Articulaciones y configuraciones cinemáticas
 - 2.1.3 Actuadores
 - 2.1.4 Transmisiones y reductores
- 2.2 Componentes en brazos
 - 2.2.1 Muñecas
 - 2.2.2 Elementos terminales
- 2.3 Sistema sensorial
- 2.4 Sistema de control

3. Fundamentos matemáticos y físicos

- 3.1 Descripción de la posición y orientación
 - 3.1.1 Sistema referencial
 - 3.1.2 Descripción de la posición
 - 3.1.3 Descripción de la orientación
 - 3.1.4 Matrices y coordenadas homogéneas
 - 3.1.5 Matriz homogénea de transformación inverza
- 3.2 Transformaciones: Translación y rotación
- 3.3 Composición de transformaciones
- 3.4 Velocidades y aceleraciones
- 3.5 Momentos de inercia, centros de masa y tensor de inercia

4. Modelado cinemático de robots

- 4.1 Introducción
- 4.2 Espacio articular y espacio Cartesiano
- 4.3 Problema cinemático directo
- 4.4 Problema cinemático inverso
- 4.5 Cinemática diferencial
 - 4.5.1 Matriz Jacobiana
 - 4.5.2 Matriz Jacobiana inversa

- 4.1.4 Configuraciones singulares
- 4.6 Proyectos de simulación cinemática de robots

5. Modelado dinámico de robots

- 5.1 Introducción
- 5.2 Formulación de Lagrange
 - 5.2.1 Energía cinética
 - 5.2.2 Energía potencial
 - 5.2.3 Ecuaciones de movimiento
- 5.3 Formulación Newton-Euler
 - 5.3.1 Ecuaciones de movimiento
- 5.4 Modelado dinámico en variables de estado
- 5.5 Modelado dinámico en el espacio de trabajo
- 5.6 Proyectos de simulación dinámica de robots

ACTIVIDADES DE APRENDIZAJE

Sesiones de clases dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, los retroproyectores y la videograbadora. Asimismo, se desarrollarán programas computacionales sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrá una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final.

Además se considerará el trabajo extra-clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL, AÑO Y Nº DE EDICIÓN)

Libros Básicos

ROBOTICA, Manipuladores y Robots Móviles, Ollero, A. B., España: Ed. Alfaomega, 2001. Introduction to Robotics: Mechanics and Control, Graig, J. J., Ed. Pearson Educación, Third Edition, 2004. Fundamentos de Robótica, Barrientos, A.; Peñín, F. L.; Balaguer, C. y Aracil, R., España: Ed. McGraw Hill/Interamericana. 1997.

Libros de consulta:

An Introduction to Al Robotics, Murphy, R., MIT Press, Cambridge, Massachussetts, 2000.

Prácticas de Robótica Utilizando MATLAB, Saltarén Pazmiño, Roque, J., Elche: Universidad Miguel Hernández D. L.. 2000.

Curso de Introducción a la Robótica, Apuntes de curso, Rubio, F. R.; Ortega, M.G.; Ortega, Vargas, M. y Castaño, F., 2000.

Robot Analysis: the Mechanical of Serial and Parallel Manipulators, Tsai, L. W., John Wiley & Son, New York, 1999.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero Mecatrónico, Mecánico, Mecánico Electricista, preferentemente con postgrado y con experiencia en modelado matemático de sistemas mecánicos.