PROJECT REPORT EE 112

Assignment-16

By:

200260046 Samyak Jain
 200260047 Sanyam Saxena
 200260048 Shadab Anjum

Aim: To design a push-pull amplifier with a load resistance of 5 ohms and an AC-output compliance of 15 V

Circuit Design:

Components:

- 1. A constant voltage source (V_{CC}) of 30V.
- 2. Biasing resistors R₁ and R₂ of resistance 1.5 kOhm each.
- 3. 3 capacitors of capacitance 1 mF each.
- 4. Load resistor R_L of resistance 5 ohms.
- 5. Complementary pair of a NPN transistor and a PNP transistor (identical I-V characteristics).
- 6. 2 diodes with I-V characteristics identical to that of the base emitter junction of the transistors.
- 7. An AC voltage source (frequency 1 kHz.)

Circuit Analysis:

- 1. Input AC source is connected to the base of both the transistors. The emitters of both the transistors are connected. R_L is connected to this emitter junction.
- 2. Thus, we have 2 emitter follower circuits in parallel.
- 3. The balancing is precisely managed such that when $v_{in} = 0$, we have
 - A) V_{BE} for the NPN transistor is (0.7ϵ) V, V_{BE} for the PNP transistor is $(-0.7 \text{ V} + \epsilon)$ V and both the transistors are in **cut-off** initially. (ϵ is very small)
 - B) Since $R_1 = R_2$, and the diodes are identical, potential at the mid-point of the biasing circuit is $V_{CC}/2 = 15 \text{ V}$.
 - C) Because of the symmetry of the circuit and the identical I-V characteristics of both the transistors, V_{CEQ} for the NPN transistor = $V_{CC}/2 = 15 \text{ V}$.
- 4. When $v_{in} > 0$:
 - A) V_{BE} for the NPN transistor becomes more than 0.7 V, making it forward bias, hence the NPN transistor is **active**.
 - B) V_{BE} for the PNP transistor is more than -0.7 V ($|V_{BE}| < 0.7V$), hence the PNP transistor is in **cutoff**.
- 5. When $v_{in} < 0$:
 - C) V_{BE} for the NPN transistor is less than 0.7 V, hence the NPN transistor is in **cutoff**.

D) V_{BE} for the PNP transistor becomes less than - 0.7 V ($|V_{BE}|$ >0.7V), making it forward bias, hence the PNP transistor is active.

DC Analysis:

Applying KVL in left (biasing) line we have:

$$\begin{split} V_{CC} - I_{bias} R_1 - V_{diode} - V_{diode} - I_{bias} R_2 &= 0 \\ V_{CC} - I_{bias} (R_1 + R_2) - 0.7 \ V - 0.7 \ V &= 0 \\ I_{bias} &= (30 - 1.4) V/(3 \ kOhm) = 9.53 \ mA \end{split}$$

Since the I-V characteristics of the diodes and the BE junctions of the transistors are identical, the quiescent current $I_{CQ} = I_{bias} = 9.53$ mA.

AC Analysis

Diagram 1:

Diagram 2:

AC load line

Amplitude of output voltage=V_{CE} in NPN

- 1. For $v_{in} > 0$, only the NPN transistor is active. Saturation current $(I_{C(sat)})$ flows through when $V_{CE} = 0$. Hence, $I_{C(sat)} = V_{CC}/2R_L = 3$ A.
- 2. In the circuit used, we have **AC-output compliance**(v_P)= V_{CEQ} = $V_{CC}/2$ = **15 V.** This formula of AC output compliance is valid in our circuit because I_{CQ} is much smaller than $I_{C(sat)}$ i.e. Q point is close to cut-off and output voltage (= V_{CE}) can fluctuate from $V_{CC}/2$ to 0 (at saturation) as shown in diagram 2 above.
- 3. Using the approach given in Malvino we have,

$$I_{av} = I_{C(sat)}/\pi = 0.95 \text{ A}$$

$$I_{total} = 0.95 A + I_{CQ} = 0.96 A$$

We can neglect re of the transistor since:

$$\dot{r_{\rm e}} = 25 \, \text{mV} / 0.96 \, \text{A} = 26.04 \, \text{ mOhms} << R_L = 5 \, \text{ohms}.$$

Thus, in all our previous calculations we have neglected the presence of $\dot{r_{\rm e}}$.

4. For Emitter follower circuits we know that,

$$A_v = R_L/(R_L + r_e) \approx 1.$$

So, since our AC output compliance is 15V we have,

Maximum Amplitude of $v_{in} = v_P/A_v \approx 15V$

(where v_P is the AC output compliance)

Benefits of this Design:

- 1. Using diodes instead of 2 more biasing resistors allows us to avoid Thermal Runaway i.e. since the diodes follow the same I-V characteristic as the transistor BE junction thus temperature fluctuations in the transistor does not lead to significant change in transistor current since diode voltage changes accordingly.
- 2. For our circuit, angular frequency of the AC input is $w = 2 \pi \text{ kHz}$ and capacitance of the capacitors is C = 1 mF. Hence $wC = 2 \pi$ is large enough that capacitors are closed lines for AC and open lines for DC.

Simulations

We simulated our circuit on FALSTAD and tested it for 2 cases:

1. $v_{in} = 15 \text{ V} = \text{desired AC compliance}$ Result: no distortions in the output voltage, it is a sinusoid of amplitude 14.61 V. This matches the expected output.

Figure: Falstad screenshot

2. $V_{in} = 20 \text{ V} > \text{desired AC compliance}$

Result: output voltage never exceeds 14.9 V, the output wave is distorted.

This signifies that the AC output compliance of the circuit is 14.9 V \approx 15 V.

Figure:Falstad screenshot 2

Bibliography:

- 1. EE 112 course Class slides
- 2. EE 112 course Tutorials
- 3. Electronic principles by Albert Malvino and David Bates 8th Edition