A PROOFS

A.1 Proof of Equivalence

We first provide the proof of Theorem 1.

Lemma 1. Given m sets of discrete independent random variables that are uniformly distributed, i.e. $\bigcup_{i=1}^{m} \{x_{i,j} | x_{i,j} \sim U_i(0, N_i), j = 1, 2, ..., N_i\}$, we have

$$\mathbb{E}_{x \sim U}(x) = \sum_{i=1}^{m} \beta_i \mathbb{E}_{x_i \sim U_i}(x_i), \tag{21}$$

where $\beta_i = N_i / \sum_{j=1}^m N_j$ and $U := U(0, \sum_{j=1}^m N_j)$ is a uniform distribution for all variables.

PROOF. The expectation of all random variables is

$$\mathbb{E}_{x \sim U}(x) = \sum_{i=1}^{m} \sum_{j=1}^{N_i} \frac{1}{\sum_{k=1}^{m} N_k} x_{i,j}$$
 (22)

$$= \sum_{i=1}^{m} \sum_{j=1}^{N_i} \frac{N_i}{\sum_{k=1}^{m} N_k} \frac{1}{N_i} x_{i,j}$$
 (23)

$$= \sum_{i=1}^{m} \beta_i \sum_{i=1}^{N_i} \frac{1}{N_i} x_{i,j}$$
 (24)

$$=\sum_{i=1}^{m}\beta_{i}\mathbb{E}_{x_{i}\sim U_{i}}(x_{i}). \tag{25}$$

Theorem 1. For old data $x_i \in X$, the NCE-II with the new data ΔX plus the InfoNCE only with X is equivalent to the one with all data X', i.e., $\mathcal{L}_i^{I,X'} = \mathcal{L}_i^{I,X} + \mathcal{L}_i^{II}$.

PROOF. For each input x_i , given the \mathcal{L}_i^I in Eq.(1) and \mathcal{L}_i^{II} in Eq.(8), we have

$$\mathcal{L}_{i}^{I,X'} = -\log \frac{f_{i}^{+}}{f^{+} + K \mathbb{E}_{p_{n}^{X'}} f_{i}^{-}},$$
 (26)

for conciseness, we use f_i^+ for $f(x_i, x_i^+)$ and f_i^- for $f(x_i, x_i^-)$. Following Lemma 1, we have

$$\mathcal{L}_{i}^{I,X'} = -\log \frac{f_{i}^{+}}{f_{i}^{+} + (1-\alpha)K\mathbb{E}_{p_{n}^{X}}f_{i}^{-} + \alpha K\mathbb{E}_{p_{n}^{\Delta X}}f_{i}^{-}}$$
(27)

$$=-\log\frac{f_i^+}{f_i^+ + K\mathbb{E}_{p_n^X}f_i^- + \alpha K(\mathbb{E}_{p_n^{\Delta X}}f_i^- - \mathbb{E}_{p_n^X}f_i^-)}$$
 (28)

$$= -(\log \frac{f_i^+}{f_i^+ + K \mathbb{E}_{p_n^X} f_i^-}$$

$$+\log\frac{f_{i}^{+} + K\mathbb{E}_{p_{n}^{X}}f_{i}^{-}}{f_{i}^{+} + K\mathbb{E}_{p_{n}^{X}}f_{i}^{-} + \alpha K(\mathbb{E}_{p_{n}^{\Delta X}}f_{i}^{-} - \mathbb{E}_{p_{n}^{X}}f_{i}^{-})}) \quad (29)$$

$$= \mathcal{L}_{i}^{I,X} + \log(1 + \frac{\alpha K(\mathbb{E}_{p_{n}^{\Delta X}} f_{i}^{-} - \mathbb{E}_{p_{n}^{X}} f_{i}^{-})}{f_{i}^{+} + K \mathbb{E}_{p_{n}^{X}} f_{i}^{-}})$$
(30)

$$= \mathcal{L}_{i}^{I,X} + \log(1 + \alpha \frac{f_{i}^{+} + K \mathbb{E}_{p_{n}^{\Delta X}} f_{i}^{-}}{f_{i}^{+} + K \mathbb{E}_{p_{n}^{X}} f_{i}^{-}} - \alpha)$$
(31)

$$= \mathcal{L}_i^{I,X} + \mathcal{L}_i^{II}. \tag{32}$$

Therefore, given an encoder trained by InfoNCE on the old data, the proposed NCE-II bridges the gap caused by the change of the noise distribution and is equivalent to retraining one.

A.2 Proof of Bias Analysis

We next provide the proof of the bias analysis in Table 2.

PROOF. For inference, the bias of old data is

$$\mathcal{L}_{i}^{I,X} - \mathcal{L}_{i}^{I,X'}$$

$$= -\log \frac{f(x_{i}, x_{i}^{+})}{f(x_{i}, x_{i}^{+}) + K\mathbb{E}_{x_{i}^{-} \sim p_{x}^{X}} f(x_{i}, x_{i}^{-})}$$

$$+ \log \frac{f(x_{i}, x_{i}^{+})}{f(x_{i}, x_{i}^{+}) + K\mathbb{E}_{x_{i}^{-} \sim p_{x}^{X'}} f(x_{i}, x_{i}^{-})}$$
(33)

$$= \log f(x_i, x_i^+) + K \mathbb{E}_{x_i^- \sim p_n^X} f(x_i, x_i^-) - \log f(x_i, x_i^+) + K \mathbb{E}_{x_i^- \sim p_n^{X'}} f(x_i, x_i^-)$$
(34)

$$= \log \frac{f(x_i, x_i^+) + K \mathbb{E}_{x_i^- \sim p_n^X} f(x_i, x_i^-)}{f(x_i, x_i^+) + K \mathbb{E}_{x_i^- \sim p_n^{X'}} f(x_i, x_i^-)}$$
(35)

$$=r_{i,X\to X'}. (36)$$

And the bias of new data is self-evidence. For fine-tuning, the bias of old data is the same as inference and the bias of new data is

$$\mathcal{L}_{i}^{I,\Delta X} - \mathcal{L}_{i}^{I,X'}$$

$$= -\log \frac{f(x_{i}, x_{i}^{+})}{f(x_{i}, x_{i}^{+}) + K\mathbb{E}_{x_{i}^{-} \sim p_{n}^{\Delta X}} f(x_{i}, x_{i}^{-})}$$

$$+\log \frac{f(x_{i}, x_{i}^{+})}{f(x_{i}, x_{i}^{+}) + K\mathbb{E}_{x_{i}^{-} \sim p_{n}^{X'}} f(x_{i}, x_{i}^{-})}$$
(37)

$$= \log f(x_i, x_i^+) + K \mathbb{E}_{x_i^- \sim p_n^{\Delta X}} f(x_i, x_i^-)$$

$$- \log f(x_i, x_i^+) + K \mathbb{E}_{x_i^- \sim p_n^{X'}} f(x_i, x_i^-)$$
(38)

$$= \log \frac{f(x_i, x_i^+) + K \mathbb{E}_{x_i^- \sim p_n^{\Delta X}} f(x_i, x_i^-)}{f(x_i, x_i^+) + K \mathbb{E}_{x_i^- \sim p_n^{X'}} f(x_i, x_i^-)}$$
(39)

$$= r_{i,\Delta X \to X'}. \tag{40}$$

A.3 Proof of Bound

We next give the proof of Theorem 2.

Theorem 2. The difference between the empirical risk of the method with the proposed NCE-II and retraining with InfoNCE in the entire training process is bounded by $\alpha \mathcal{R}^{old}$, where $\mathcal{R}^{old} = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}_{i}^{I,old}$ approaches to zero as $\mathcal{L}_{i}^{I,old}$ is minimized after previous training process on old data X and the growth ratio $\alpha \in [0,1)$. Then we have $\alpha \mathcal{R}^{old} \to 0$.

PROOF. In the whole training process, the empirical risk of the proposed incremental method is

$$\mathcal{R} = \mathcal{R}^{old} + \mathcal{R}^{inc} \tag{41}$$

$$= \frac{1}{N} \sum_{X_i \in X} \mathcal{L}_i^{I,X} + \frac{1}{N + \Delta N} \mathcal{L}. \tag{42}$$

Algorithm 1: Incremental Contrastive Learning **Input:** old data *X* and new data ΔX , encoder $\phi(x;\theta)$ trained on X, number of negative samples K, growth rate α , DDPG networks \mathcal{D} for X and \mathcal{D}' for ΔX **Output:** encoder $\phi(x;\theta)$ 1 while not converge do foreach $x_i \in \Delta X$ do // meta-train let $\theta' = \theta$; **foreach** $x_j \in sampled \{x_j\}_{j=1}^{\lceil (1-\alpha)/\alpha \rceil} from X$ **do** get positive x_i^+ with augmentation; sample negatives $$\begin{split} \{x_{j,k}^-\}_{k=1}^K \sim p_n^X, \{x_{j,k}^-\}_{k=K}^{2K} \sim p_n^{\Delta X}; \\ \text{get the embeddings with } \phi(x;\theta') \ ; \end{split}$$ calculate $\mathcal{L}_{i}^{II} \leftarrow \text{Eq.(8)}$; extract state $s_i = \mathcal{F}(x_i, \theta')$; generate learning rate $lr_s \leftarrow Eq.(15)$; calculate new parameters $\theta' \leftarrow \text{Eq.}(11)$; get the reward $r_i \leftarrow \text{Eq.}(16)$; update $\mathcal{D} \leftarrow \text{Eq.}(17) \sim \text{Eq.}(19)$; end // meta-test get positive x_i^+ with augmentation; sample negatives $\{x_{i,k}^-\}_{k=1}^K \sim p_n^{X'}$; get the embeddings with $\phi(x; \theta')$; calculate $\mathcal{L}_{i}^{I,X'} \leftarrow \text{Eq.}(1)$; extract state $s_i = \mathcal{F}(x_i, \theta')$; generate learning rate $lr_q \leftarrow \text{Eq.}(15)$; update parameters $\theta \leftarrow \text{Eq.}(11)$; get the reward $r_i \leftarrow \text{Eq.}(16)$; update $\mathcal{D}' \leftarrow \text{Eq.}(17) \sim \text{Eq.}(19)$; end 25 end

The empirical risk of retraining is

$$\mathcal{R}^{retrain} = \frac{1}{N + \Delta N} \sum_{Y_i \in Y'} \mathcal{L}_i^{I,X'}$$
(43)

$$= \frac{1}{N + \Delta N} \left(\sum_{Y_i \in X} \mathcal{L}_i^{I,X'} + \sum_{Y_i \in \Delta X} \mathcal{L}_i^{I,X'} \right) \tag{44}$$

$$=\frac{1}{N+\Delta N}(\sum_{x_i\in X}\mathcal{L}_i^{I,X}+\sum_{x_i\in X}\mathcal{L}_i^{II}+\sum_{x_i\in \Delta X}\mathcal{L}_i^{I,X'}). \eqno(45)$$

Thus, the difference between the proposed method and retraining is

$$\Delta \mathcal{R} = \mathcal{R} - \mathcal{R}^{retrain} = \alpha \mathcal{R}^{old}. \tag{46}$$

Therefore, the bound is $\alpha \mathcal{R}^{old}$, where \mathcal{R}^{old} approaches to zero since the origin training process on the old data X converges and is weighted by the growth ratio $\alpha \in [0, 1)$. That is, $\alpha \mathcal{R}^{old} \to 0$.

B OVERALL ALGORITHM

The overall framework is in Figure 1, after training the encoder $\phi(\cdot;\theta)$ on the old data X with NCE-I, the ICL framework treats X as the support set and the new data ΔX as the query set. In the metatrain stage, the encoder is trained on a mini-batch of X with NCE-II and obtains the new parameters of the encoder θ' . The learning rate lr_s is learned by the DDPG networks D. In the meta-test stage, the parameters are optimized on ΔX by NCE-I with the learning rate lr_q generated from the other DDPG networks D'. For the detailed workflow, please refer to Algorithm 1.