CONTENTS Politecnico di Torino.

Crypto 6

Note: this material is not intended to replace the live lecture for students.

Contents

6.1	Cyclic groups and Discrete Logarithm	2
	6.1.1 Computing powers a^n	4
	6.1.2 Order of a group and of an element	5
6.2	Solving the first degree equation $a \cdot x = 1 \pmod{n}$	6
	6.2.1 Greatest common divisor (gcd)	8
6.3	Quadratic residues: solving $x^2 = r \pmod{n} \dots \dots \dots \dots \dots$	
	The Chinese Remainder Theorem (CRT)	
	6.4.1 CRT and Euler's ϕ function	13
6.5	Prime and pseudoprime numbers	14
	6.5.1 Tests, Criteria and Certificates	14
	6.5.2 Generation of large prime numbers	16
6.6	Bibliography	17

6.1 Cyclic groups and Discrete Logarithm

What is a Group?

Roughly speaking a group is a set with two operations * and inversion.

Formally: By a group (G, *) we mean a set G and a operation * between elements of G such that:

- i) any two elements a, b of G can be used to get another element $a * b \in G$;
- ii) associativity : (a * b) * c = a * (b * c);
- iii) there is a neutral element e i.e. for all $a \in G$

$$a * e = e * a = a$$

iv) any element a has an inverse i.e. there is $b \in G$ such that a * b = e.

The cardinal |G| is called **order of the group** G.

Exercise 6.1.1

Show:

- i) The neutral element e is unique.
- ii) Given a the inverse is unique.

NOTE 6.1.2

Commutativity is not compulsory. The symmetric group S_n is not commutative if n > 2.

Exercise 6.1.3

Show that S_3 is not commutative.

6.1.4 Cyclic Group

A group (G, *) is cyclic if there is $a \in G$ such that any other element b of G is of the form

$$b = \underbrace{a * a * a * a * a * \cdots * a}_{n-times}$$

In this case the element a is called **generator** of G. It is usual to write $b = a^n$.

6.1.5 Cyclic Subgroup generated by a

For a in G the cyclic subgroup or cyclic group generated by a and denoted by $\langle a \rangle$ is the set

$$\langle a \rangle = \{ \cdots, a^{-3}, a^{-1}, 1, a, a^2, a^3, \cdots \}$$

The **order** of a is $|\langle a \rangle|$.

NOTE 6.1.6

The group $\mathbb{Z}_p^* = \operatorname{GF}(p) \setminus \{0\}$ with p a prime number is cyclic. A generator g is also called **primitive element**.

6.1.1 Computing powers a^n

Exercise 6.1.7

Compute

$$8^e \pmod{p}$$

where
$$p = 2^{20} - 2^3 - 1$$
 and $e = \frac{p+1}{4}$.

Exercise 6.1.8

Compute

$$8^e \pmod{p}$$

where
$$p = 2^{256} - 2^{32} - 977$$
 and $e = \frac{p+1}{4}$.

http://mathworld.wolfram.com/LandauSymbols.html

Let $n = (d_t d_{t-1} d_{t-2} \cdots d_0)_2$, $d_t = 1$, the binary representation (base-2).

6.1.9 Efficient computation of powers: square-and-multiply algorithm

```
T=e
For i=t downto i=0
T = T * T
if d_i = 1
T = T * a
return(T)
```

Here is the **python** to compute $a^n \pmod{q}$:

6.1.10 Square-and-multiply in \mathbb{Z}_q

```
def squaremultiply(a,n,q):
    bina='{0:b}'.format(n)
    T=1
    amq=a%q
    for d in bina:
        T=(T*T)%q
        if d=='1': T=(T*amq)%q
    return(T)
```

6.1.2 Order of a group and of an element

Here we take $g \in \mathbb{Z}_n^*$ and consider the cyclic group $\langle g \rangle$ generated by g:

$$\langle g \rangle = \{g, g^2, g^3, \cdots, 1\}$$

Observe that there is a power w such that $g^w = 1$. The first such w is called the order (or period) of g. Notice that $w = |\langle g \rangle|$ i.e. the order of the element is the order of the cyclic subgroup generated by itself.

Lagrange's theorem

the order w is a divisor of $\phi(n)$.

The order of a subgroup divides the order of the group.

For example, let g = 3 in \mathbb{Z}_{44} . Then

$$\langle 3 \rangle = \{3, 9, 27, 37, 23, 25, 31, 5, 15, 1\}$$

So 3 has order 10 in \mathbb{Z}_{44} and $10|\phi(44) = \phi(4) \times \phi(11) = 3 \times 10$.

Exercise 6.1.11

Let $a \in \mathbb{Z}_n^*$. Show that $a^{\phi(n)} = 1 \pmod{n}$.

Exercise 6.1.12

Find $x \in \mathbb{Z}_{44}$ of order 3.

Exercise 6.1.13

By using the above table about $\mathbb{Z}_{24} \approx \mathbb{Z}_3 \times \mathbb{Z}_8$ compute a similar table for $\mathbb{Z}_{24}^* \approx \mathbb{Z}_3^* \times \mathbb{Z}_8^*$. Is \mathbb{Z}_{24}^* a cyclic group?

Exercise 6.1.14

Show that \mathbb{Z}_{22}^* is a cyclic group.

6.2 Solving the first degree equation $a \cdot x = 1 \pmod{n}$

	$29 \cdot x = 1$	$\pmod{45}$		
		1		
	45	0		
	$\frac{19}{29}$	1		
	16	-1		
	13	2		
	16	-1		
	13	2		
	3	-3		
	1	14		
	3	-3		
	1	14		
	0	-45		
So $x = 14$.				

You can also use the following **python**:

Exercise 6.2.2

Set $N = 16^{30} - 1$. Compute x such that $2x = 1 \pmod{N}$.

Exercise 6.2.3

Is the above **python** script 6.2.1 efficient? That is to say, how many iterations are (in average) necessary to compute inverse(r,N)?

Exercise 6.2.4

Let F_n be the sequence of Fibonacci $F_0 = 0, F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for n > 1. Compute x such that

$$F_{100} \cdot x \equiv 1 \pmod{F_{101}}$$

6.2.1 Greatest common divisor (gcd)

```
6.2.5
      gcd in Python
  '''' gcd(a,b) = [d,x,y] ,
             where d is the g.c.d(a,b).
             The integers $x,y$ are such that $d=ax+by$.
 \mathbf{I}_{-}\mathbf{I}_{-}\mathbf{I}_{-}
 def gcd(a,b):
      import numpy as np
      M = np.array([[a,1,0],[b,0,1]])
      while M[0,0]*M[1,0] != 0:
                 if M[0,0]<M[1,0]:</pre>
                      M[1]=M[1] - (M[1,0] // M[0,0])*M[0]
                 else:
                      M[0]=M[0] - (M[0,0] // M[1,0])*M[1]
      if M[0,0] == 0:
                return M[1]
      else:
                return M[0]
```

Exercise 6.2.6

Is the above **python** script 6.2.5 efficient? That is to say, how many iterations are (in average) necessary to compute gcd(a,b)?

6.3 Quadratic residues: solving $x^2 = r \pmod{n}$

Teorema 6.3.1 ▶ Euler's Criterion

Let p be a prime number and r an integer non divisible by p. Then r is a quadratic residue modulo p if and only if

 $r^{\frac{p-1}{2}} \equiv 1 \pmod{p}$

Group of quadratic residues

- 1) The set G of quadratic residues is a subgroup of \mathbb{Z}_n^* .
- 2) In case n is a prime number n = 2p + 1 where p is also a prime number G has order p.
- 3) If r is a quadratic residue modulo a prime $p \equiv 3 \pmod{4}$ then a square root of r is $r^{\frac{p+1}{4}}$.
- 4) If r is a quadratic residue modulo a prime $p \equiv 1 \pmod{4}$ then there is an efficient algorithm to find a square root e.g. Algorithm of Tonelli-Shanks.

Exercise 6.3.2

Find x such that $x^2 = 2082 \pmod{6121}$.

6.3.3 Cipolla's algorithm

Let r be a quadratic residue modulo p. To find a square root $u \in \mathbb{Z}_p$ find $s \in \mathbb{Z}_p$ such that $s^2 - r$ is not a quadratic residue. Set $A = \begin{bmatrix} s & s^2 - r \\ 1 & s \end{bmatrix}$. Compute u as

$$\mathbf{A}^{\frac{p+1}{2}} = \begin{bmatrix} u & 0 \\ 0 & u \end{bmatrix}$$

Exercise 6.3.4

Find u such that $u^2 = 4799 \pmod{1002257}$. Hint: python.

NOTE 6.3.5

To explain why Cipolla's method works it is necessary to develop Galois Theory but that is beyond this course.

6.4 The Chinese Remainder Theorem (CRT)

The CRT allows us to compute in \mathbb{Z}_{nm} regarding its elements as pairs. Here is an example:

Exercise 6.4.1

Find $x < 3 \times 5 \times 7$ such that

$$\begin{cases} x = 2 \pmod{3} \\ x = 3 \pmod{5} \\ x = 2 \pmod{7} \end{cases}$$

Exercise 6.4.2

Compute x such that $17 \times x = 1 \pmod{24}$.

Exercise 6.4.3

Compute ALL x such that $13 \times x = 18 \pmod{24}$.

Exercise 6.4.4

Compute ALL x such that $x^2 = 1 \pmod{24}$.

Exercise 6.4.5

Find x < 809933 such that

$$\begin{cases} x^2 = 62953 \pmod{809933} \\ x^2 = 504539 \pmod{854429} \end{cases}$$

6.4.1 CRT and Euler's ϕ function

Euler's $\phi(N)$ (also called totient) function counts the positive integers up to a given integer N that are relatively prime to N. That is to say, $\phi(N)$ is the cardinal of \mathbb{Z}_N^* the invertible elements w.r.t. the product.

Let $N = p^r \times q^s \times \cdots$ the factorization of N into powers of different prime numbers p, q, \ldots By computing with pairs we get

$$\phi(N) = \phi(p^r) \times \phi(q^s) \times$$

$|\mathbb{Z}_{p^r}^*|$

$$\phi(p^r) = (p-1) \times p^{r-1}$$

For example $\phi(7^2) = 6 \times 7 = 42$ because:

1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31	32	33	34	35
36	37	38	39	40	41	42
43	44	45	46	47	48	49

namely,
$$\phi(7^2) = 7^2 - 7 = 7 \times (7 - 1) = 7 \times 6 = 42$$
.

NOTE 6.4.6

Observe that to compute $\phi(n)$ using the above formulae it is necessary to factorize the number n.

6.5 Prime and pseudoprime numbers

Teorema 6.5.1 ▶ Fermat's Little Theorem

Let p be a prime number and r any integer. Then

$$r^p \equiv r \pmod{p}$$

6.5.1 Tests, Criteria and Certificates

Rabin-Miller: starting clue

Let n an odd number. Set $n-1=2^s\cdot d$ where d odd. If n is a prime number and $a\neq 0\pmod n$ then either

$$a^d \equiv 1 \pmod{n}$$

or

$$a^{2^r \cdot d} \equiv -1 \pmod{n}$$

for some $0 \le r \le s - 1$.

6.5.2 Rabin-Miller probabilistic test

```
Input #1: n > 3, an odd integer to be tested for primality
Input #2: k, the number of rounds of testing to perform
Output: "composite" if n is found to be composite, "probably prime" otherwise
write n as 2<sup>r</sup>·d + 1 with d odd (by factoring out powers of 2 from n - 1)
WitnessLoop: repeat k times:
   pick a random integer a in the range [2, n - 2]
   x ← a<sup>d</sup> mod n
   if x = 1 or x = n - 1 then
        continue WitnessLoop
   repeat r - 1 times:
        x ← x<sup>2</sup> mod n
        if x = n - 1 then
        continue WitnessLoop
   return "composite"
return "probably prime"
```

NOTE 6.5.3

The running time is $O(k \cdot \log^3(n))$. The mistake probability declaring prime a composite number is at most 4^{-k} [Rabin77, Theorem 2, page 134].

https://inventwithpython.com/cracking/chapter22.html

6.5.2 Generation of large prime numbers

Problem: How to construct a random n-bit prime number p?

Idea of the solution: Pick a n-bit random number X from

$$[2^{n-1}, 2^n - 1]$$

and check if it is a prime number.

Iteration until the test gives a positive answer.

Running time?

Teorema 6.5.4 ▶ Prime Number Theorem

The total number of prime $\langle N \text{ is (roughly)} \rangle$

$$\frac{N}{\log(N)}$$

So the number of primes in the interval $[2^{n-1}, 2^n - 1]$ is roughly

$$\frac{2^{n-1}}{n}$$

hence the probability that a random number in that range is a prime is $\frac{1}{n}$.

The failing probability after t trials is $(1-\frac{1}{n})^t$. By putting $t=\alpha \cdot n$ we can estimate (n>>0):

$$(1 - \frac{1}{n})^t = (1 - \frac{1}{n})^{\alpha \cdot n} = \left((1 - \frac{1}{n})^n\right)^{\alpha} \approx (e^{-1})^{\alpha} = e^{-\alpha}$$

So for n = 1000 and t = 3000 we have $e^{-\alpha} \approx 0.05$.

https://www.cs.purdue.edu/homes/hmaji/teaching/Fall%202018/lectures/11.pdf

6.6 Bibliography

Books I used to prepare this note:

[Paar10] Paar, Christof, Pelzl, Jan, Understanding Cryptography, A Textbook for Students and Practitioners, Springer-Verlag, 2010.

Here a list of papers:

[Rabin77]

Michael O Rabin,; Probabilistic algorithm for testing primality, Journal of Number Theory, Volume 12, Issue 1, 1980, Pages 128-138. https://www.sciencedirect.com/science/article/pii/0022314X80900840#!

and some interesting links:

```
http://gauss.math.luc.edu/greicius/Math201/Fall2012/Exercises/
ChineseRemainderThm.pdf
https://www.whitman.edu/mathematics/higher_math_online/
section03.07.html
https://pynative.com/python-range-function/
https://inventwithpython.com/cracking/chapter22.html
https://cseweb.ucsd.edu/~mihir/papers/gb.pdf
https://en.wikipedia.org/wiki/Euler%E2%80%93Jacobi_pseudoprime
https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test
https://en.wikipedia.org/wiki/Strong_pseudoprime
https://en.wikipedia.org/wiki/Solovay%E2%80%93Strassen_
primality_test
http://www.dtc.umn.edu/~odlyzko/doc/discrete.logs.hff.pdf
https://en.wikipedia.org/wiki/Fermat_primality_test
```