CSE4203: Computer Graphics Chapter – 8 (part - B) Graphics Pipeline

Mohammad Imrul Jubair

Outline

• Bresenham's Circle Drawing Algorithm

Assumptions

Assumptions

The first pixel of the circumference is plotted on (o, R)

The first pixel of the circumference is plotted on (o, R)
Then the plotting of next pixels starts clock-wise....

That means the plotting starts from (o, R) and moving into the 2nd Octant

while moving through the 2nd octant, the Xvalue is increasing and Y value is decreasing

So, if we can obtain (X,Y) in 2nd octant, we can calculate the points-

• 7th Octant : (X,-Y)

• 6th Octant : (-X, -Y)

• 3rd Octant : (-X, Y)

So, if we can obtain (X,Y) in 2nd octant, we can simply swap X and Y to get the points-

• 1^{st} Octant : (Y, X)

• 8th Octant : (Y, -X)

• 5th Octant : (-Y, -X)

• 4th Octant : (-Y, X)

Drawing in all the octants

So, if we can obtain (X,Y) in 2nd octant, we can calculate the points in other 7 octants

So, our target is to get the pixels of only 2nd octant of the circumference

As we know that,

In 2^{nd} Octant : X < Y

In 1st Octant : X > Y

We will stop when X > Y, that means when 2nd octant is completed

Equation of Circle and its function representation

$$x^{2} + y^{2} = R^{2}$$

$$F(x,y) = x^{2} + y^{2} - R^{2} = 0$$
(x,y)

Equation of Circle and its function representation

If F(X,Y) = o, the point (X,Y) on the circle

If **F(X,Y) > 0**, the point (X,Y) is outside the circle

If **F(X,Y) < 0**, the point (X,Y) is inside the circle

Selecting E or SE depends on closeness to the circumference.

If E is closer to circumference, then E is selected

If SE is closer, then SE is selected

Selecting E or SE using Mid Point Criteria

If midpoint M is outside the circle, SE is closer to the circumference, So, **SE** is selected

If midpoint M is inside the circle, E is closer to the circumference, So, **E** is selected

Selecting E or SE using Mid Point Criteria

We know,
$$F(x, y) = x^2 + y^2 - R^2$$

Lets put the mid point **M**'s coordinate in function $F(X,Y)$
 $F(M) = F(X_P + 1, Y_P - 0.5) = (X_P + 1)^2 + (Y_P - 0.5)^2 - R^2$

Lets store **F(M)** in a variable **d**

So,
$$\mathbf{d} = \mathbf{F}(\mathbf{M})$$

d is called 'decision variable'

Selecting E or SE using Mid Point Criteria

If **d** >= **o**, then midpoint M is outside the circle, SE is closer to the circumference, So, **SE** is selected

If **d** < **o**, then midpoint M is inside the circle, E is closer to the circumference, So, **E** is selected

$$d_1 = F(M_1)$$
= $F(X_P+1, Y_P-0.5)$
= $(X_P+1)^2 + (Y_P-0.5)^2 - R^2$

$$d_1 = F(M_1)$$
= $F(X_P+1, Y_P-0.5)$
= $(X_P+1)^2 + (Y_P-0.5)^2 - R^2$

If
$$d_1 < 0, E(X_P = X_P + 1, Y_P)$$

$$d_{1} = F(M_{1})$$

$$= F(X_{p}+1, Y_{p}-0.5)$$

$$= (X_{p}+1)^{2} + (Y_{p}-0.5)^{2} - R^{2}$$
If $d_{1} < 0$, $E(X_{p}=X_{p}+1, Y_{p})$

$$d_{2} = F(M_{2})$$

$$= F(X_{p}+2, Y_{p}-0.5)$$

$$= (X_{p}+2)^{2} + (Y_{p}-0.5)^{2} - R^{2}$$

$$= X_{p}^{2} + 4X_{p} + 4 + (Y_{p}-0.5)^{2} - R^{2}$$

$$= X_{p}^{2} + 2X_{p} + 1 + (Y_{p}-0.5)^{2} - R^{2} + 2X_{p} + 3$$

$$= d_{1} + (2X_{p}+3)$$

$$d_{1} = F(M_{1})$$

$$= F(X_{p}+1, Y_{p}-0.5)$$

$$= (X_{p}+1)^{2} + (Y_{p}-0.5)^{2} - R^{2}$$
If $d_{1} < 0$, $E(X_{p}=X_{p}+1, Y_{p})$

$$d_{2} = F(M_{2})$$

$$= F(X_{p}+2, Y_{p}-0.5)$$

$$= (X_{p}+2)^{2} + (Y_{p}-0.5)^{2} - R^{2}$$

$$= X_{p}^{2} + 4X_{p} + 4 + (Y_{p}-0.5)^{2} - R^{2}$$

$$= X_{p}^{2} + 2X_{p} + 1 + (Y_{p}-0.5)^{2} - R^{2} + 2X_{p} + 3$$

$$= d_{1} + (2X_{p}+3)$$

Every iteration after **selecting E**, we can successively update our decision variable with-

$$\mathbf{d}_{\text{NEW}} = \mathbf{d}_{\text{OLD}} + (2\mathbf{X}_{\text{P}} + 3)$$

$$d_1 = F(M_1)$$
= $F(X_P+1, Y_P-0.5)$
= $(X_P+1)^2 + (Y_P-0.5)^2 - R^2$

$$d_1 = F(M_1)$$
= $F(X_P+1, Y_P-0.5)$
= $(X_P+1)^2 + (Y_P-0.5)^2 - R^2$

If
$$d_1 >= 0$$
, SE($X_P = X_P + 1$, $Y_P - 1$)

Bresenham's Mid Point Criteria: Successive Updating (for selecting SE)

$$d_1 = F(M_1)$$
= $F(X_P+1, Y_P-0.5)$
= $(X_P+1)^2 + (Y_P-0.5)^2 - R^2$

If
$$d_1 >= 0$$
, SE($X_P = X_P + 1$, $Y_P - 1$)
 $d_2 = F(M_2)$

.... DIY....

$$=d_1+(2X_P-2Y_P+5)$$

Bresenham's Mid Point Criteria: Successive Updating (for selecting SE)

Every iteration after **selecting NE**, we can successively update our decision variable with-

$$d_{NEW} = d_{OLD} + (2X_P - 2Y_P + 5)$$

Bresenham's Mid Point Criteria: Successive Updating (summary)

If d >= 0, then midpoint M is outside the circle, SE is closer to the circumference, So, SE is selected and do $d = d + \Delta SE$ Where, $\Delta SE = 2X_P - 2Y_P + 5$

Initialization

$$d_{INIT} = F(M_1)$$
= $F(1, R-0.5)$
= $(1)^2 + (R-0.5)^2 - R^2$
= $1 + R^2 - R + 0.25 - R^2$
= $1.25 - R$

Initialization

$$d_{INIT} = F(M_1)$$
= $F(1, R-0.5)$
= $(1)^2 + (R-0.5)^2 - R^2$
= $1 + R^2 - R + 0.25 - R^2$
= $1.25 - R$
 $\approx 1 - R$

Initialization

$$R = 2$$

 $d = 1.25 - R = -0.75$

$$R = 2$$
$$d = 1 - R = -1$$

Summary

So, finally.....

$$\mathbf{d}_{\text{INIT}} = \mathbf{1} - \mathbf{R}$$

If $\mathbf{d} < \mathbf{0}$, then \mathbf{E} is selected, $\mathbf{d} = \mathbf{d} + \Delta \mathbf{E}$

If $d \ge 0$, then **SE** is selected, $d = d + \Delta SE$

Where,

$$\Delta E = 2X_P + 3$$

$$\Delta SE = 2X_P - 2Y_P + 5$$

Algorithm

```
void MidpointCircle(int radius)
    int x = 0;
    inty = radius;
    intd = 1 - radius;
    CirclePoints(x, y);
    while (y > x)
         if (d < 0) /* Select E*/
                 d = d + 2 * x + 3;
         else
         { /* Select SE*/
            d = d + 2 * (x - y) + 5;
            y = y -1;
     x = x + 1;
     CirclePoints(x, y);
```

Algorithm

```
void MidpointCircle(int radius)
    int x = 0;
    inty = radius;
    intd = 1 - radius;
    CirclePoints(x, y);
    while (y > x)
         if (d < 0) /* Select E*/
                 d = d + 2 * x + 3;
         else
         { /* Select SE*/
            d = d + 2 * (x - y) + 5;
            y = y -1;
     x = x + 1;
     CirclePoints(x, y);
```

```
CirclePoints (x,y)

Plotpoint(x,y);

Plotpoint (x,-y);

Plotpoint(-x,y);

Plotpoint(-x,-y);

Plotpoint(y,x);

Plotpoint(y,-x);

Plotpoint(-y,x);

Plotpoint(-y,x);

end
```

	0	1	2	3	4	5	6	7
10								
9								
8								
7								
6								
5								
4								
7 6 5								

Given: Radius, R=10

	0	1	2	3	4	5	6	7
10								
9								
8								
7								
6								
5								
4								
4								

Given:

$$h=1 -R=-9$$

10	0	1	2	3	4	5	6	7
9								
8								
7								
6								
5								
4								

Given:

$$(x,y)=(0,10)$$

K	1			
2 x	0			
2 y	20			
h				
(x,y)				

10	 0	1	2	3	4	5	6	7
9								
8								
7								
6								
5								
4								

Given:

$$h=1 -R=-9$$

K	1			
2 X	0			
2 y	20			
h				
(x,y)	E(1,10)			

$$h \le 0, E$$

10	0	1	²	3	4	5	6	7
9								
8								
7								
6								
5								
4								

Given:

$$(x,y)=(0,10)$$

$$h=1 -R=-9$$

$$h=h+\Delta E=h+2x+3$$

K	1			
2 X	0			
2 y	20			
h	-6			
(x,y)	E(1,10)			

10	 0	1	2	3	4	5	6	7
9								
8								
7								
6								
5								
4								

Given:

$$(x,y)=(0,10)$$

h=1 -R=-9

$$h=1 -R=-9$$

K	1	2			
2 X	0	2			
2 y	20	20			
h	-6				
(x,y)	E(1,10)				

1 <u>0</u>	0	1	2	3	4	5	6	7
9								
8								
7								
6								
5								
4								

Given:

$$h=1 -R=-9$$

K	1	2			
2 X	0	2			
2 y	20	20			
h	4 -6				
(x,y)	E(1,10)	E(2,10)			

$$h \le 0, E$$

10	0	1	2	3	4	5	6	7
9								
8								
7								
6								
5								
4								

Given:

$$(x,y)=(0,10)$$

$$h=1 -R=-9$$

$$h=h+\Delta E=h+2x+3$$

K	1	2			
2 X	0	2			
2 y	20	20			
h	-6	-1			
(x,y)	E(1,10)	E(2,10)			

1 <u>0</u>	0	1	2	3	4	5	6	7
9								
8								
7								
6								
5								
4								

Given:

$$(x,y)=(0,10)$$

$$(x,y)=(0,10)$$

h=1 -R=-9

K	1	2	3		
2 X	0	2	4		
2 y	20	20	20		
h	-6	-1			
(x,y)	E(1,10)	E(2,10)			

10	0	1	2	3	4	5	6	7
9								
8								
7								
6								
5								
4								

Given:

$$(x,y)=(0,10)$$

K	1	2	3		
2 X	0	2	4		
2 y	20	20	20		
h	-6	4 ₋₁			
(x,y)	E(1,10)	E(2,10)	E(3,10)		

$$h \le 0, E$$

10_	0	1	2	3	4	5 	6	7
9								
8								
7								
6								
5								
4								

Given:

$$(x,y)=(0,10)$$

$$h=1 -R=-9$$

$$h=h+\Delta E=h+2x+3$$

K	1	2	3		
2x	0	2	4		
2 y	20	20	20		
h	-6	-1	6		
(x,y)	E(1,10)	E(2,10)	E(3,10)		

10	0	1	2	3	4	5	6	7
9								
8								
7								
6								
5								
4								

Given:

Radius, R = 10

$$h=1 -R=-9$$

K	1	2	3	4		
2 X	0	2	4	6		
2 y	20	20	20	20		
h	-6	-1	4 6			
(x,y)	E(1,10)	E(2,10)	E(3,10)	S(4,9)		

h > 0,SE

Given:

$$(x,y)=(0,10)$$

$$h=1 -R=-9$$

$$h = h + \Delta SE = h + 2x - 2y + 5$$

K	1	2	3	4		
2 X	0	2	4	6		
2 y	20	20	20	20		
h	-6	-1	6	-3		
(x,y)	E(1,10)	E(2,10)	E(3,10)	S(4,9)		

Given:

$$h=1 -R=-9$$

K	1	2	3	4	5	6	7
2 X	0	2	4	6	8	10	12
2 y	20	20	20	20	18	18	16
h	-6	-1	6	-3	8	5	6
(x, y)	E(1,10)	E(2,10)	E(3,10)	S(4,9)	E(5,9)	S(6,8)	S(7,7)

Given:

Radius, R = 10

$$(x,y)=(0,10)$$

$$h=1 -R=-9$$

Untill y > x

K	1	2	3	4	5	6	7
2 X	0	2	4	6	8	10	12
2 y	20	20	20	20	18	18	16
h	-6	-1	6	-3	8	5	6
(x,y)	E(1,10)	E(2,10)	E(3,10)	S(4,9)	E(5,9)	S(6,8)	S(7,7)

Practice Problem

• Perform the midpoint algorithm to draw a circle's portion at 7^{th} octant which has center at (2,-3) and a radius of 7 pixels. Show each iterations and plot the points.