Loan Default Analysis: Are Unqualified Borrowers Being Targeted by Lenders?

Rohan Nitin Mahajan, Christy Sato, Chris Smith, Lennart Zeugner

Problem Description

- Mortgage Crisis, 2008
- Loans lended to unqualified borrowers
 - What are the key indicators of unqualified borrowers?
- Prediction type
 - Classification

Dataset

- Home Credit Default Risk
- Kaggle
- Approximately 300,000 rows
- 120 variables

Descriptive Statistics - Target Variable

~ 92% of the loans in the dataset are repaid, while only ~8% default

The distribution of the target variable indicates an existing imbalance in our dataset

Descriptive Statistics - Total Credit Amount

Intuitively, it would make sense that total credit amount would be correlated with our target variable

The distribution of total credit amount is slightly right skewed with a **mean of ~ \$599000**

Descriptive Statistics - Age and Target

Those who defaulted, skewed toward younger ages

• Between the ages of 29 - 40

Descriptive Statistics - Missing Values

- Information about where client lives (common area, number of floors, number of entrances, etc)
- Number of inquiries to Credit Bureau
- # of observations of client's social circle

Exploratory Analysis - Positive Correlations

Top 3 Correlations:

- 1) Client Age
- Lender rating of the region where client lives with taking city into account (1,2,3)
- 1) Lender rating of the region where client lives (1,2,3)

Exploratory Analysis - Negative Correlations

Top 5 Correlations:

- Top 3 are normalized scores from external data sources. Metadata does not provide more information.
- 1) How long applicant has been employed at current job
- Average number of floors of the building applicant lives in

Data Preprocessing & Feature Engineering

- All categorical variables were converted to dummy variables
- Created by udf called quick_dummies() to create several separate data frames
 - Used SK_ID_CURR as key for joins
- Dropped columns with more than 60 percent of data missing
 - This will be something we work on moving forward
- 224 features -> 163 features after cleaning

Model Overview

- Two different classification models
 - Logistic Regression
 - Using varying elastic net parameters and PCA k values
 - 60% training, 30% validation, 10% testing
- Infer what variables indicate a high probability of default
- Moving towards more complex model in the future
 - Random Forest
 - Clustering K-Means

Models

• AUC Score - It can be thought as how good is the model at ranking the probabilities of the real labels

Models	Parameters	AUC Score (Val)	0	feature CNT_CHILDREN	pca_0 1.541711e- 02	pca_1 -5.000117e- 02	pca_2 3.218654e- 01	pca_3 -0.213280	pca_4 5.172046e- 03	pca_5	pca_6 1.851318e- 02	pca_7 -8.885754e- 02	pca_8 -1.545809e- 01	pca_9 4.191563e 07
		,	1	AMT_INCOME_TOTAL	-3.056546e- 01	-1.276710e- 02	4.507604e- 02	0.022044	4.027882e- 02	0.144756	6.881739e- 02	-1.537706e- 02	1.852703e- 02	-6.181973e
Model 1 Logistic Regress Model 2 Logistic Regress	maxIter = 10 maxIter = 20 StandardScaler PCA(k=10) elasticNet=.2	.70	2	AMT_CREDIT	-2.707864e- 01	-1.831456e- 01	9.213557e- 02	0.098138	-1.124033e- 01	0.210548	3.010201e- 01	-1.029287e- 01	5.295026e- 02	-3.647660e 02
			3	AMT_GOODS_PRICE	-2.773363e- 01	-1.812467e- 01	9.073546e- 02	0.090590	-1.066503e- 01	0.209727	2.913812e- 01	-9.717152e- 02	5.060236e- 02	-3.387634e 02
			4	REGION_POPULATION_RELATIVE	-2.538078e- 01	2.390151e- 02	-7.348504e- 02	0.146886	7.268901e- 02	-0.245938	-6.329163e- 02	-8.642057e- 02	-4.687827e- 02	6.678368e- 02
			5	DAYS_BIRTH	3.238538e- 02	2.329705e- 01	5.462648e- 02	-0.314234	4.091830e- 02	-0.123406	7.814457e- 02	-6.043386e- 02	1.988677e- 02	3.914418e- 02
			6	DAYS_EMPLOYED	1.793977e- 02	2.508883e- 01	4.425831e- 02	-0.109493	1.047082e- 01	-0.079601	1.659372e- 01	6.325123e- 02	-8.635969e- 03	1.309106e- 02
			7	DAYS_REGISTRATION	8.877898e- 03	7.362227e- 02	1.236905e- 01	-0.211704	1.490340e- 02	-0.008643	6.777354e- 02	3.293175e- 02	-1.158271e- 02	-1.402577e- 02
			8	DAYS_ID_PUBLISH	2.044916e- 02	8.243999e- 02	-7.600381e- 02	-0.049643	7.159724e- 03	-0.026227	5.280377e- 02	5.545623e- 02	4.779687e- 02	-4.152942e- 02
			9	FLAG_MOBIL	5.421011e- 20	-1.734723e- 18	3.469447e- 18	0.000000	9.714451e- 17	0.000000	-2.081668e- 16	-2.775558e- 16	-5.551115e- 17	-1.804112e

Evaluation Metrics

• Three of the most popular classification metrics are AUC, Recall, and Precision

Best Performing Model - Model 2:

- ROC Area Under Curve (Test)
 - o .72
- Recall (Test)
 - o 0 = .91
 - o 1 = .41
- Precision (Test)
 - o 0 = .91
 - o 1 = .03

Problems Encountered & Solutions

Problems:

- Imbalanced Dataset
- Missing Values
- Low recall score

Solutions:

- Random sample size of default values to balance dataset
- More advanced models to improve performance metrics