

POR-2262(EX) (WT-2262)(EX) EXTRACTED VERSION

OPERATION SUN BEAM SHOT LITTLE FELLER II PROJECT OFFICERS REPORT—PROJECT 1.5

DEBRIS THROWOUT

G.L. Kruchko, Project Officer

289

U.S. Army Engineer Research and Development Laboratories Fort Belvoir, Virginia

AD-A995

15 April 1965

NOTICE:

This is an extract of POR-2262 (WT-2262), Operation SUN BEAM, Shot Little Feller II, Project Officers Report, Project 1.5.

Approved for public release; distribution is unlimited.

THE COL

Extracted version prepared for Director DEFENSE NUCLEAR AGENCY Washington, DC 20305-1000

1 April 1985

85 09 13 005

BB

Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: STTI, WASHINGTON, DC 20305-1000, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH IT DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.

UN	CL	ASSI	FIE	0			
CHOITY	C1 /	CCIEIC	ATIO	NI OE	THIC	DA	ČΕ

AD-	A	99	5-	1	D9
	/	/_/_	1 0	6.0	1 L

REPORT	DOCUMENTATIO	N PAGE			Form Approved OMB No. 0704-0188 Exp. Date: Jun 30, 1986
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE	MARKINGS		
2a. SECURITY CLASSIFICATION AUTHORITY			/AVAILABILITY OF		diatuibution is
2b. DECLASSIFICATION/DOWNGRADING SCHED	ULE	unlimited.	or public re	iease;	distribution is
4. PERFORMING ORGANIZATION REPORT NUMI	ER(S)	5. MONITORING	ORGANIZATION RE	PORT NU	IMBER(S)
		<u>'</u>	X) (WT-2262		
6a. NAME OF PERFORMING ORGANIZATION Army Engineer Res. & Dev. Labs	6b. OFFICE SYMBOL (If applicable)		ONITORING ORGAN		
Army Engineer Res. a bev. Labs		Defense At	omic Support	Agenc	У
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (Cit	ty, State, and ZIP C	ode)	
Ft. Belvoir, VA		Washington	, DC		
8a. NAME OF FUNDING / SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	T INSTRUMENT IDE	NTIFICAT	ION NUMBER
SIGARIENTON	(ii oppiidait)				
8c. ADDRESS (City, State, and ZIP Code)			UNDING NUMBERS		
		PROGRAM ELEMENT NO.	PROJECT NO	TASK NO.	WORK UNIT ACCESSION NO.
11. TITLE (Include Security Classification)		<u> </u>	<u>i</u> i		
OPERATION SUN BEAM, SHOT LITTLE FELLER II, PROJECT OFFICERS REPORT PROJECT DEBRIS THROWOUT, EXTRACTED VERSION					1.5,
12. PERSONAL AUTHOR(S) G.L. Kruchko					
13a. TYPE OF REPORT 13b. TIME FROM	COVERED	14. DATE OF REPO 1965, Ap	RT (Year, Month, D	Jay) 15.	PAGE COUNT 55
				on rem	
provide an unclassified version	itive military information removed in order to istribution. The work was performed by the				
Defense Nuclear Agency in supp	ort of the DoD No 18. SUBJECT TERMS (<u>uclear Test </u>	Personnel Re	view P	rogram.
FIELD GROUP SUB-GROUP	Sun Beam	Cylin		dentity	by block number)
18 3	Little Feller		Effects		
19 4 19. ABSTRACT (Continue on reverse if necessar	Surface Bursts				
The primary objective of this blast-driven surface debris in casualty-producing source from range and dispersion of object information as flight path, ef	project was to co order to assess near surface nu s having various	ollect data (the signific clear bursts sizes, shape	cance of sur . The proje es, and weig	face m ct cov hts, a	issiles, as a ered only the nd excluded such
Since this was a first-time ex somewhat presumptive. However of directional dispersion, that hazard to field personnel is lawrface of the ground 150 feet missile hazard. It was conclust some undetermined distance than anticipated and appears t	, it was establist effective distances than 350 fee or more from a light death and that tree braces of the aprime factor of the second second that the second second the aprime factor of the second second the second seco	shed that the ance at which the from ground burst of this anches would anches in estab	e debris has h missiles won descro, and s type shoul pile up, te area is a malishing crit	no co ould p small d not nding ore im eria f	nsistent pattern roduce a serious objects on the pose a serious to form a barrier portant factor
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS			CURITY CLASSIFICA SSIFIED	HON	
22a. NAME OF RESPONSIBLE INDIVIDUAL Betty L. Fox		226. TELEPHONE (1 202-325-70	Include Area Code) 042	22c. OF	FICE SYMBOL STTI

uction.		
1490		
	4	

SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED

FOREWORD

Classified material has been removed in order to make the information available on an unclassified, open publication basis, to any interested parties. The effort to declassify this report has been accomplished specifically to support the Department of Defense Nuclear Test Personnel Review (NTPR) Program. The objective is to facilitate studies of the low levels of radiation received by some individuals during the atmospheric nuclear test program by making as much information as possible available to all interested parties.

The material which has been deleted is either currently classified as Restricted Data or Formerly Restricted Data under the provisions of the Atomic Energy Act of 1954 (as amended), or is National Security Information, or has been determined to be critical military information which could reveal system or equipment vulnerabilities and is, therefore, not appropriate for open publication.

The Defense Nuclear Agency (DNA) believes that though all classified material has been deleted, the report accurately portrays the contents of the original. DNA also believes that the deleted material is of little or no significance to studies into the amounts, or types, of radiation received by any individuals during the atmospheric nuclear test program.

ABSTRACT

To assess the significance of surface missiles as a casualty producing source from very low-yield, near-surface, nuclear bursts was the primary objective of this experiment. Test objects which consisted of cylinders, cubes, plates, and various building materials were placed in a pattern around ground zero and, by locating these objects and determining reactions and displacements, the significance of this hazard was evaluated.

This was the first experiment of this type to investigate solely blast-driven surface debris. Results showed that twenty percent of the test objects were displaced a distance of 300 feet or more from ground zero. The maximum displacement was 711 feet.

In addition to the objects, tree branches were placed at varying heights above the ground surface and at varying distances out to 200 feet from ground zero. Large poles were used to hold the branches perpendicular to radial lines extending out from ground zero. The maximum branch displacement was 420 feet from ground zero, and twenty percent of all branches were displaced over 260 feet from ground zero.

Since this was a first-time experiment for this type of debris hazard, conclusions had to be somewhat presumptive.

However, it was established that the debris has no consistent pattern of directional dispersion, that effective distance at which missiles would produce a serious hazard to field personnel is less than 350 feet from GZ, and small objects on the surface of the ground 150 feet or more from a burst of this type should not pose a serious missile hazard. There is evidence that missile hazard did not constitute the governing casualty-producing factor for this type of burst. In addition, it was concluded that tree branches would pile up, tending to form a barrier at some undetermined distance from ground zero, projected area appears to be the controlling factor in establishing criteria for missile production, and that additional studies and experiments are required to more thoroughly understand the behavior of missiles created by very low yield nuclear bursts.

The second of th

CONTENTS

18.	Directional vectors of objects	40
19.	Cylinders, postshot, S45E line	41
20.	Wooden blocks N67° 30' E line	41
21.	Tree limb displacement, 30-degree line	42
	Tree limb displacement, 300-degree line	

DEBRIS THROWOUT

INTRODUCTION

OBJECTIVES

The primary objective of this project was to collect data on the range and dispersion of blast-driven surface debris in order to assess the significance of surface missiles, as a casualty-producing source from yield, near surface, nuclear bursts.

This investigation was necessarily restrictive, due to its status and the initial step into studying this phenomena. It was not possible to investigate the complete scope of this field, and important factors had to be left open for later study. This project covered only the range and dispersion of objects having various sizes, shapes, and weights, and excluded such information as flight path, effect of wind velocity, and drag characteristics.

BACKGROUND AND THEORY

With the advent of small tactical-size nuclear weapons, a knowledge of battlefield-type missile reaction has become necessary. This knowledge must include missiles most likely found under battlefield conditions, including rocks, tree branches, and building materials. Very few studies have been conducted in this

particular area and most of these were concerned with biological interest and they have dealt primarily with missiles
of minute size, i.e., glass fragments and gravel. Three such
studies previously conducted were: Operation Teapot (Reference 6) and
two projects in Operation Plumbbob (References 7 and 8). As a part of
Operation Plumbbob (Reference 8), stones ranging in weight from 0.375
to 42.34 pounds were subjected to dynamic pressures of from 0.25 to
53.5 psi and investigated for displacement. Additional information concerning blast-produced missiles was obtained as a result of the atomic
detonations over Japan (Reference 10) and some accidental chemical
explosions. These studies were also basically concerned with fragmentary missiles.

Recent studies have been conducted to produce some knowledge about the battlefield-type missile. In addition to the project reported on herein, the study of movement behavior of ideal natural objects was conducted in Project 1.5, Danny Boy (Reference 2). This study was carried out in connection with a deeply buried device and was basically aimed at studying the throwout from within the crater zone. Another recently completed study is an investigation of structural debris distribution produced by accidental explosions and experimental detonations; also, specific estimates are made of the debris hazard to troops by flying tree limbs (Reference 9).

PROCEDURE

There are several variables which affect the path of travel of a missile. These variables include projected area, mass, drag and friction forces, blast force, and duration. By making assumptions and assigning constant ideal condition values for these variables, displacements can be calculated which under actual conditions would seldom, if ever, be attained; however, it is impractical to calculate displacements for all possible casualty producing missiles in the blast area. OPERATIONS

An assortment of objects consisting of cylinders, cubes, plates, tree branches, and various building materials were utilized as test subjects for this experiment. These objects were placed in different orientations at various distances along radial lines from ground zero. A complete tabulation of all test subjects is presented in Table 1, including shape, size, number, and average weight. Figure 1 is a view of some typical objects placed at the test site. The test objects were painted fluorescent colors to assist in postshot locating and identification; also, each object was measured, weighed, and number coded. Tree branches were number coded with metal tags.

LAYOUT

The preshot layout of the test array was accomplished using standard survey methods, i.e., transit and tape. "As

depicted in Figure 2, three concentric circles were staked at 20-100-, and 200-foot intervals from ground zero. Radial lines spaced at 15° intervals were marked and staked. These lines extended from ground zero out to a distance of 200 feet. Only 20 radial lines were used so as not to interfere with other experiments. A 100-foot tape was stretched between reference points along each radial line and stakes were driven at each 10-foot interval for target location.

The test objects were placed along each radial as shown by the above referenced scale drawing (Figure 2). The objects were placed in a consistent orientation on each line, but in the entire array, the cylinders, pipe, and tubing were placed (1) upright with the length vertical to the ground, (2) flat with the length perpendicular to the radial line from ground zero, and (3) flat with the length parallel to the radial line from ground zero. Throughout the remainder of the report, the orientations will be referred to as shown in Figure 3.

In addition to being placed singly, the objects were also placed in piles. The number of objects included in each stack is inclosed in parenthesis (Figure 2). Wooden blocks were stacked in pyramid fashion, beginning with a base of six blocks. Six piles were placed on two radial lines at distances of 50, 100, and 150 feet from ground zero. Three piles were oriented perpendicular and three parallel to radial lines from ground zero. An investigation of the effects of height, as well as pile configuration, on displacement was the prime reason for

this type of display. The building materials were also placed in piles 50 and 100 feet from ground zero. The bricks were stacked 50 to a pile and the 2- by-4-inch boards were stacked 30 to a pile. The arrangement of one pile of wooden blocks and lumber is shown in Figure 4.

PROPERTY AND ADDRESS OF THE PARTY OF THE PAR

Actual pine branches ranging in lengths from three to six feet and having trunk diameters of three to four inches were used as test objects. Poles containing four holes drilled at varying heights above the ground were used to hold the branches parallel to the ground surface which provided branch coverage from the surface of the ground to approximately 15 feet above the surface. These fabricated trees were placed on two radial lines at 50-foot intervals from ground zero. Figure 5 is a diagram of a typical fabricated tree. The pine branches, obtained a short distance north of the test site, were secured in the holes with wooden wedges, in order to simulate, as near as possible, a branch under actual circumstances. The first branches were installed four days prior to shot time. Figures 6, 7, 8, and 9 are photographs of this installation.

The Ballistic Research Laboratories (BRL), Aberdeen Proving Ground, Maryland, conducted an experiment requiring high-speed motion picture coverage (Reference 5). Added utilization of this camera was attempted by placing three steel cubes and four wooden blocks on a concrete platform level with the ground surface and in view of the high-speed camera. It was anticipated that the initial velocities, partial trajectories, and method of displacement could be derived from the film.

Unfortunately, no useful film was obtained from this endeavor.
RESULTS

An initial visual survey was made on D+1 day and the

final detail survey was made after the radiation in the area
had decayed to a satisfactory level. A visual search for the
objects was conducted out to approximately 1,000 feet from
ground zero. Each found object was surveyed and the coordinate system used to determine both preshot and postshot location.
The accurace of the survey was within a minimum precision of 1 to
100. A digital computer was utilized to convert the pre- and postshot surveys to computed displacement and direction.

The detailed survey located 515 out of a total of 555 objects placed prior to the event. This is a recovery rate of 92.8 percent. Appendix A is a listing of most test items, their locations, displacements, orientations, and bearings. Since only three of the bricks and one 2-by-4-inch board were displaced, any appreciable amount and the listing of these test items would tend to be long and repetitious. Thus, the data have not been included in the tabulations.

The maximum displacement of any object was 711 feet, or a distance of 761 feet from ground zero. Twenty percent of all objects were displaced 300 feet or further from ground zero as shown graphically in Figure 10. The greatest average displacements were attained from the wooden blocks. However, a $3\frac{1}{2}$ -by-6-inch cylinder (number 58) was located 675 feet from ground zero, or an actual displacement of 666 feet.

Certain results will be brought out concerning each

individual class of object. The steel plates, 1/4-by-12 inches square, had minor movement (less than four feet) in all cases except eight. These plates had displacements of from 14 to 341 feet, which are excessively high when compared with the data on the other plates, particularly those at the same distance from ground zero.

A 100-foot preshot placement of 3½-by-9 inches cylinders placed 90 degrees apart on the north, south, east and west radial lines produced displacements of 53, 11, 1, and 195 feet when the cylinders were oriented upright, closed, open, and closed, respectively. The projected area of the open position is less than 5 percent of the upright or closed position.

None of the five wooden blocks placed less than 50 feet from ground zero were located. From 50 feet out to 200 feet, 152 blocks were placed and 91 percent were recovered. Of the recovered blocks, 20 percent were thrown farther than 420 feet from ground zero (see Figure 10). A preshot placement of piles of block 50 feet from ground zero and oriented parallel and perpendicular to the radial line from ground zero resulted in postshot maximum displacements of 459 feet and 711 feet, respectively. If we determine average displacement distances of the blocks that were in the parallel and perpendicular piles, we find that the blocks in the parallel piles had an average displacement of about 26 percent of those in the perpendicular piles. This percent closely resembles the percent of projected area avail-

able for reaction and implies somewhat the significance of projected area to missiling hazards. The blocks placed in piles had directional trajectories on the average of \pm 15° from the original radial line. Sixty-eight percent of these displacements were in a counter-clockwise direction.

All of the tree branches were sheared from their supports. Figures 11 and 12 show results typical of this action. Also, four of the closest supports themselves were broken off by the blast wave. Of the 32 branches placed, 75 percent were located. Three of these could not be identified, since the number plates had been lost or destroyed. The most distant branch was located 420 feet from ground zero and, although unidentifiable, it is assumed by process of elimination to have come from the closest support to ground zero, 50 feet. All branches from the 150- to 200-foot distances, as well as five of the eight branches placed at the 100-foot distance, were located and identified. At 50 feet, no branches were identifiable, although three were located without number tage. Table 2 is a compilation of the results on the tree branches. Figure 10 relates that 20 percent of all branches were displaced a distance greater than 260 feet from ground zero.

The bricks. 50 to a pile, were placed in two rows of five each and stacked five high. The amount of displacement was somewhat less than had been expected (Figures 13 and 14). Only three brick were displaced any appreciable distance and they

were recovered 243, 225, and 240 feet from ground zero. Also, the piles of lumber (2 by 4's) had minor displacement as well (Figure 15). Only one board was displaced more than seven feet from the pile and it was located 210 feet from ground zero.

Blast data for this shot were recorded by the Ballistic Research Laboratories and these records have been utilized to correlate the data in this report (Reference 1). Pertinent time and pressure values as taken from curves in the above referenced report, at distances of 40 and 200 feet respectively, ranged from (1) 840 to 17 pounds per square inch for peak overpressure, (2) 2712 to 12 psi for dynamic pressure and (3) 7 to 50 milliseconds for positive duration.

DISCUSSION

The accuracy of measurements on both the pre- and postshot surveys was within 1 in 100. This is satisfactory when judged from the point of view of the rolling and bouncing effects which are certain to have affected the direction and distance of the object displacements. In addition, under actual battlefield conditions, the initial landing of a missile would be its most likely point of damage; therefore, this would be the important governing limit. Since roll and bounce would increase the distance of the final location, it is evident that the accuracy attained is sufficient for this experiment.

To attempt an evaluation of the missile hazard from a single very low yield near-surface burst is understandably difficult. Several assumptions or areas of thought are

necessary which, because of the preliminary stage of investigation, might later be proven to have been of greater or lesser magnitudes. However, it will be attempted, at this time, using the data obtained from this one experiment, to discuss several important results which were obtained. It would appear that the greatest contributory factors toward the production of a missile is the projected area and weight of the object which is subjected to the force.

In an examination of the movement of all pipes, tubes, and cylinders, the characteristics of projected area appear to have a considerable effect on the displacement in all cases except the 3 inch cylinders, which will be discussed separately. We find that at any particular distance from ground zero, displacements for this type of object, in most instances, ranged less than 10 percent of the total movement when comparing the open position to the closed and upright positions. In general, this agrees with the projected area ratio of the open to closed position. Additionally, a look at the $3\frac{1}{2}$ -by- 9-inch cylinders and $4^{1}/_{2}$ -by -12-inch pipes shows that displacements for the open positions were generally less than five percent of the displacement for the closed and upright position; likewise, the projected areas compare similarly. From this we may assume that the projected area in a majority of cases is approximately proportionate to the total displacement when we are concerned with low yield bursts, very short duration, and other factors being identical or nearly so.

In comparing the displacements of the 3½-by-3 inch cylinders in the open and closed or upright positions, it was discovered that in most instances, the open cylinders were displaced greater distances than the others. It would appear that this object became airborne and reached maximum velocity early in the loading phase and moved along for some distance with the blast wave front. This phenomena is attributed to the shape and light weight of this test item.

The displacement of the flat plates relates the complexities involved in this area. The gross difference in displacements from equal locations is quite evident. It is possible to have as much as 98 percent difference between minimum and maximum projected area. This difference provides an extremely variable characteristic and causes difficult forecasting and large extremes of displacement. It would be most difficult to arrive at one prediction method which would account for all variables in all forms. A review of the data on the 4-1/2-inch pipes, which weighed approximately the same as the plates, further justifies the statement of projected area being most important. The pipes in the closed and upright position had considerably more displacement, in most instances, than did the plates. However, this was not unexpected, since the pipes in this position had a much higher probability of consistent projected area.

The objects having the highest probability of consistent projected area were the wooden blocks. These objects

had the greatest amount of movement of the entire array. The displacement of the blocks placed in piles was as antic-That is, blocks nearest the top of the pile had greater displacements than those at the bottom. This is understandable, as the blocks on or near the top have more freedom of movement and thus are subject to becoming airborne more readily. Figures 16 and 17 show the distribution of the blocks and point out the fact that the block piles perpendicular to the ground zero line had greater displacements than those parallel to this line. This, of course. is again related basically to the amount of projected area available for the blast wave to react upon and freedom of movement. Reference 6 indicated that objects closer to the ground surface had larger displacements than those at higher elevations. However, with the piles of wooden blocks having heights of 38.5 inches, as used in this test, this was not the case. It appeared that the blast wave had a consistent effect on the piles and the blocks were displaced somewhat according to their position in the pile, the top blocks going the farthest.

The steel cubes had an average displacement less than any other test item. This is understandable, because they had the greatest weight and the ratio of projected area to mass was the least of any of the test items.

It is impossible to give a logical explanation why three bricks, from the two piles of 50 each, were displaced

225, 240, and 243 feet, while the remaining brick moved very little. Nor can the 210-foot displacement of a single 2-by-4-inch board, from one of the two stacks of 30 each, be satisfactorily explained.

The direction of displacement is, of course, most important because it is the basic measurement for safe distance. Figure 18 is a diagram of the directional vectors of all objects, except tree branches, stacked 2-by-4 lumber, stacked brick, and 5-1/2-inch wooden blocks in piles. A study of this figure shows the random scatter of the objects.

The data discloses that the objects in the eastern half of the array had considerably less movement than those in the western half. It is believed that this was caused, to a certain extent, by the breakup of the blast wave when it contacted the military tanks present in this area. Figures 19 and 20 are photographs taken of this area, and it can be seen that the test items are still in relatively straight lines and have fairly even spacing.

The data show that at a distance of 145 feet from ground zero, 73 percent of the ideal objects would be casualty-producing missiles. At the same distance, the overpressure was 25 psi (Reference 1), which has a 1.0 percent probability of human fatality (Reference 10). At a distance of 700 feet from ground zero, the overpressure dissipated to two psi (Reference 1) and the missile hazard was reduced to 0.4 percent probability. However, the initial radiation at 700 feet from ground zero for a burst of this type is approximately 2,000 rem (References 3 and 4), which is well

above the probable survival level for whole-body radiation. All recovered objects were displaced less than 1,000 feet; however, the initial radiation at this distance was 1,000 rem. This shows that the initial radiation is the most farreaching effect measured as horizontal distance from ground zero. The simple foxhole would reduce the radiation effect but it is felt that this type of protection would not reduce the missile effect radius any appreciable amount; however, additional study and investigations should be conducted to establish the parameters of foxhole protection.

Probably the most significant result obtained from this test was the displacement of the tree branches, especially those along the 30-degree radial line where the branches had freedom of movement and no obstructions in their flight path. Of the sixteen branches emplaced, eleven were recovered and identified, all having a preshot location of 100, 150, and 200 feet from ground zero. Six of the eleven branches were displaced a distance of 259 feet (plus or minus 18 feet) from ground zero (Figures 21 and 22). This pile-up of branches was probably caused by the decay of the initial impulse and wind velocity at a rate proportionate to the distance offset of the trees. The branches along the 300 degree radial line did not displace as far from ground zero as those on the 30-degree radial line; however, the ground surface had a slight incline, 180 to 210 feet from ground zero, and half the identified branches were found on

this slope. This would seem to indicate that similar results could have been expected had the ground been level. The above discussion is not in agreement with the theoretical estimate of the debris hazards to troops by flying tree limbs in the proximity of forest stands, as found in Reference 9.

An evaluation of the displacement of all test objects shows that less than 12 percent of the objects had been displaced more than 350 feet from ground zero. Also, it was revealed that less than 5 percent of the ideal test objects placed directly upon the ground surface were displaced beyond this distance. Upon further analysis of the data, it was noted that relatively few objects, with a preshot placement of 150 feet or more from ground zero, had displacements greater than 20 feet and most of these were stacked wooden blocks.

It is concluded:

- (1) The effective distance at which missiles would produce a serious hazard to field personnel is less than 350 feet from a burst of this type.
- (2) That no consistent pattern of direction can be established and missiles can be expected to have a directional angle ranging up to plus or minus 30 degrees from their initial location.
- (3) That small objects, such as those used in this experiment, on the surface of the ground, 150 feet or more from a burst of this type, should not pose a serious missile hazard.
 - (4) Projected area is a more important factor than

anticipated and appears to be a prime factor in establishing criteria for missile production.

- (5) Nuclear radiation is the governing casualty-producing factor for exposed troops.
- (6) A low yield burst of this type in a sparsely forested area would form a barrier of branches at some undetermined distance from ground zero.
- (7) Additional study and experiments are required to more thoroughly understand the behavior of missiles created by very low-yield nuclear bursts.

TABLE 1. TABULATION OF TEST OBJECTS

Ite	Ob jects		Dimension	Quantity	Averag	Average Weight
			Inches		spunod	bounds onuces
	Steel	Steel Cylinders	3-1/2 OD x 3 long-1/4 thick	30	1	23
2	Steel	Steel Cylinders	3-1/2 OD x 6 long-1/4 thick	07		17
3	Steel	Steel Cylinders	3-1/2 OD x 9 long-1/4 thick	3	8	10
4	Steel Cubes	Cubes	4 x 4 x 3-1/2 long	34	16	•
\$	Steel Pipes	Pipes	4-1/2 OD x 12 long	30	10	٠
9	Steel Tubes	Tubes	3 SQ x 12 long	30	•	13
1	Steel	Steel Plates	12 x 12 x 1/4	30	10	9
80	Wooden	Wooden Boards	2 x 4 x 72 long	09	1	1
6	Wooden	Wooden Blocks	5-1/2 x 5-1/2 x 5-1/2	157	6	6
10	Bricks		3-7/8 x 2-1/2 x 8-1/4	100	1	;
	-	TOTAL (Ideal ((Ideal Objects)	555		
11	Tree Limbs	edmi.	36-72 long x 3-4 trunk dismeter	32		
	-	TOTAL (All Tes	(All Test Objects)	785		

FABLE 2. TABULATION OF TREE BRANCH DISPLACEMENT DATA

	Preshot	TO WOT THE		shot		Postshot		
			Height			Bearing		
	Distance	Bearing	Above	Distance		Prom Pre-	Perpendicular Bearing	Bearing :
No.	Prom G2	Prom GZ	Ground	From GZ	Displacement	Shot Position	Distance	Prom GZ
	ft		In.	ft	It		ft	
Tree	Tree Limb							
119	20	N60W	30	;	;	:	;	;
12b		M09N	65	1	;	;	;	;
13 ^b		N60W	100	;	;	:	;	;
140		MO9N	135	;	;	;	;	;
51 ^b		N30E	35	;	:	:	:	;
52b		N30E	20	:	:	:	:	1
53b		N30E	105	;	:	•	:	;
24b		N30E	140	;	:	;	;	;
21	100	MOON	45	194.9	92.25	N63.4W	11.7	N674
22 ^b		MO9N	80	;	:	•	;	:
24 ^b		MOON	150	:	:	:	;	:
61 b		N30E	21	:	:	•	:	;
62		N30E	56	181.6	83.5	N13.5E	23.7	N22.4E
63		N30E	91	257.38	157.5	N33.4E	9.6	N32.1E
23		MO9N	115	161.6	0.19	M1.74	21.0	N52.5W
79		N30E	126	275.2	178.2	N12.3E	54.0	N18.6E
31	150	MO9N	34	176.1	26.2	NS6.74	1.5	NS9.5W
32		MO9N	69	192.4	42.7	N53.84	4.6	N58.74
33		MOOM	104	189.9	0.04	. 1461,94	1.3	N60.44
34		MO9N	139	204.1	55.8	N43.84	15.6	NS5.64
7.1		N30E	09	215.3	65.1	N28.6E	1.9	N29.8E
72		N30E	95	209.38	59.2	N28.4E	2.0	N29.8E
73		N30E	130	247.3	97.5	N24.3E	10.2	N28E

TABLE 2. TABULATION OF TREE BRANCH DISPLACEMENT DATA (CONTINUED)

	Preshot					Postshot		
			Height			Bearing		
	Distance	Bearing	Above	Distance		From Pre-	Perpendicular Bearing	Bearing
No.	From GZ	From G2	Cround	From GZ	Displacement	Shot Position	Distance	From GZ
	ft		uj	ft	ft		ft	
74	150	N30E	165	251.1	101.1	N35E	8.2	N32.2E
41	200	M60W	147	238.5	39.1	N76H	9.01	N62.7W
42		MOON	82	219.6	9.04	N7.1E	37.5	NSO.34
43		M60W	117	287.6	87.6	N68.74	13.0	N62.8W
4		MO9N	152	269.0	68.4	NS 84	2.5	N59.44
81		N30E	57	248.2	48.3	N23.2E	5.6	N28.6E
82		N30E	92	254.9	54.8	N28.8E	1.1	N29.6E
83		N30E	127	253.6	53.6	N24.9E	9.4	N28.8E
84		N30E	162	242.4	6.67	N65.4E	29.0	N36.8E
VC		MO9N	;	420.0	•	•	1.8	WS9.8W
o M		MO9N	:	313.5	:	:	23.1	NS5.8W
ပ္ပ		N30E	•	159.1	•	:	13.6	N25.1E

Measurement made perpendicular from original radial line to terminal location.

b These branches could not be located.

C Lettered branches could not be identified as number tags had been destroyed.

Figure 1 Typical ideal objects: 4-by-12 pipe, 3-by-3 cylinder, $4\frac{1}{2}$ cube. 1-by-6 cylinder, 4-by-12 tube, $5\frac{1}{2}$ wood block. (DASA-723-2-NTS-62)

Figure 2 Test object layout.

Figure 3 Orientation nomenclature for objects:

..re 4 Wood blocks (1) and 2-by-4 boards (2)

Figure 5 Tree branch exposure technique.

Figure 6 Typical installation of tree branches at 50 and 100 feet from ground zero, N30E line. (DASA-725-06-NTS-62)

Figure 7 Typical installation of tree branches at 150 and 200 feet from ground zero, N30E line. (DASA-725-01-NTS-62)

Figure 8 Typical installation of tree branches at 50 and 100 feet from ground zero, N60W line. (DASA-725-04-NTS-62)

Figure 9 Typical installation of tree by the ness at 150 and 200 feet from ground zero, NooW line. (DASA-725-05-NTS-62)

Figure 10 Cumulative percents of displacement for objects.

Figure 11 Tree branches, postshot, N30E line. (USAERDL J10065)

Figure 12 Tree branches, postshot, N60W line. (USAERDL J10061)

Figure 13 Brick pile, postshot, N67-30E line. (USAERDL J10068)

Figure 14 Brick pile, postshot, N67-30E line. (USAERDL J-9452)

Figure 15 2-by-4 boards in pile, postshot, S15E line. (USAERDL J-9456)

Figure 16 Wood blocks on N30W line (perpendicular pile).

Figure 17 Wood blocks on S60W line and S75W line (parallel pile).

Figure 18 Directional vectors of objects.

Figure 19 Cylinders, postshot, S45E line. (USAERDL J-9455)

Figure 20 Wooden blocks, N67° 30' E line. (USAERDL J-9451)

Figure 21 Tree limb displacement, 30-degree line.

62

Figure 21 Tree limb displacement, 30-degree line.

Figure 22 Tree limb displacement, 300-degree line.

APPENDIX A

DATA TABULATIONS

TABLE A.	1 TABULA	CION OF	ALL I	DEAL (PLIECTS	DISPL	CHEST	DATA
	Deschool							

	Presb	ot				Postshot		
						Bearing		***************************************
No.	Distance From GZ	Bearing From GZ	Orientation	Distance From GZ	Displacement	From Pre- Shot Position	Perpendicular Distance ^a	Bearing From G
	ft			ft	ft	7220 10344404	ft	From G
	/all all			ı				
3 14	/2" × 3" Lo	ong Cyline	ler					
7	10	N45E	Open	581.0	572.8	N10.1E	327.8	N10.7E
3	10	540E	Closed	Not Located				
22	10	.N45W	Upright	Not Located				
9	30	N45E	Upright	Not Located				
26	30	N45W	Open	91.3	65.9	N6.8W	40.8	N18.5W
3	30	S40E	Closed	Not Located				
0	50	N45E	Open	51.2	1.4	W11 10		
1	50	340E	Open	89.1		N17.1E	0.8	N44.2E
ō	50·	N45W	Closed	196.6	40.0	556.2E	11.2	547.2E
1	70	N45E	Closed		146.7	N43.4W	4.21	N43.8W
•	70	74-32	CTOREG	134.9	64.9	N43.9E	1.3	N44.5E
2	70	S40E	Upright	81.3	12.1	518.5E	4.4	\$36.9E
5	70	N45W	Open	186.0	116.1	N49.8W	9.6	N47.9W
8	90	N45E	Upright	94.0	4.5	N65.7E	1.9	N46.1E
4	90	S40E	Closed	135.7	45.8	\$34.9E	4.1	538.3E
9	90	N45W	Open	136.4	53.3	N81.9W	. 32.0	N58.6W
6	110	N45E	Open	109.8	0.8	531.3E	0.8	
7	110	340E	Open	110.3	0.7	N76.4E		N45.4E
•			open.	110.5	0. 7	N/0.46	0.7	540.3E
8	110	N45W	Closed	145.8	44.0	M86.6W	29.2	N56.6
8	130	N45E	Closed	134.0	4.1	M50.3E	0.4	N45.21
6	130	S40E	Upright	147.6	17.6	538.9E	0.3	539.91
5	130	N45W	Open	188.6	60.5	N27.9W	17.8	N39.6
0	150	N45E	Upright	150.5	0.6	N64.3E	0.2	N45.11
<u> </u>	150	540E	Closed	150.2	0.2	57.7E	0.1	\$39.91
	150	N45W	Open	152.4	5.8	N21.4E	5.3	N41W
2	170	N45E	Open	170.3	0.4	N1.2W	0.3	N45.11
3	170	540E	Open	167.7	2.3	N29.3W	0.4	539.91
4	170	N45W	Upright	171.8	2.2	N9.8W	1.3	N44.6
L	190	N45E	Closed	191.2	1.3	N51.5E	0.1	N45E
9	190	\$40 E	Upright	190.6	0.8	S67.1E	0.4	540.12
7	190	N45W	Open	190.6	1.8	S65W	1.7	N44.5W
1/3	2" x 6" Lor	g Cylinde	ar .					
6	10	575W	Open	181.0	175.7	N45.7W	151.2	N48.4
5	10	S15E	Upright	Not Located				71-4-0 0 4m
8	10	N30W	Closed	674.9	665.8	N55.1W	282.4	N54.7V
5	20	N67.5E	Open	27.6	7.8	N52.3E	2.0	N63.3E
1	30	North	Upright	390.0	360.1	NIE	6.9	NIE
4	30	N9OE	Open		20.4	447 444		
2	30	South	Closed	9.5	20.6	587.6W	0.9	584.5 E
_			~.0444	Not Located				

TABLE A.1 Continued

	Pre	bot				Postshot		
				Distance		Bearing From Pre-		
	Distance	learing		From GZ	Displacement		Perpendicular	
llo,	Pros CZ	From CZ	Orientation	ft ft	ft	Shot Position	Distance ⁴	From G
	ft			1.0	16		IE	
10	30	H9OV	Closed	Not Located				
36	50	Morth	Upright	180.1	132.7	H21.7W	49.1	X15.8W
12	50	MYOE	Open	50.6	2.4	366.6W	2.3	387.4W
10	50	South	Closed	255.1	205.1	\$1.8V	6.6	\$1.5W
LS.	50	Macri	Closed	403.3	354.1	1179.4W	65.3	180.7W
16	70	North	Upright	183.8	113.9	MO.9E	1.8	NO.6E
13	70	MOOR	Open	75.9	9.3	136.6E	7.5	N84.4E
0	70	South	Closed	151.1	81.2	\$4.1E	5.8	\$2.2E
1	70	NYOW	Closed	351.0	281.0	N88.8V	5.9	N89W
38	90	North	Upright	Not Located		11001011	3.9	140 AM
4	90	NOOR	Open	96.8	12.2	N40.8E	10.0	waa an
ū	90	South	Closed	100.7			10.5	N83.8E
;	90	NAOM	Closed	216.6	10.8	56.2W	1.2	50.7W
7	110	North	Upright	192.4	126.8	384.7W	11.8	586.9W
3	110	N9OE			82.5	W1.4W	2.1	NO.6W
	110	MYUE	Open	110.3	0.5	139.2E	0.4	N89.8E
9	110	South	Closed	113.4	3.4	\$5.2E	0.3	50.2E
7	110	NYOW	Closed	225.3	115.5	N85.2W	9.7	N87.5W
3	130	North	Uprieht	143.7	13.8	M3.5E	0.8	NO.3E
2	130	N9OE	Open	130.1	0.5	531.3E	0.5	589.8E
0	130	South	Closed	138.0	8.1	57.9E	1.1	50.7E
•	130	NACA			•			
2	150		Closed	175.0	45.1	1189.44	0.5	N89.9W
•	150	North	Upright	153.6	3.6	102,48	0.2	NO.1W
:	150	HOOK	Open	149.7	0.4	348W	0.3	389.9E
3	150	South	Closed	155.0	5.0	50.3W	0.0	South
_	130	N9OW	Closed	144.1	6.0	M78.3E	1.2	N89.5W
3	170	North	Upright	173.4	3.5	NS.1W	0.3	NO.1W
1	170	N9OE	Open	169.8	0.1	378.7W	0.0	589.9E
4	170	South	Closed	173.1	3.2	\$5.5W	0.3	50.1W
4 7	170	N9OW	Closed	164.9	6.7	\$50.2E	4.3	588.5W
,	190	North	Upright	191.6	1.7	N7.7W	0.2	NO.1W
5	190	N9OZ	Open					
6	190	South	Closed	189.8	0.6	\$17.2W	0.6	589.8E
•	190	N9OW		190.9	1.4	542.3W	0.9	50.3W
1 /-	110		Closed	190.9	1.3	N53W	0.8	N89.5W
* * 7 4	2" x 9" Lon	S Cylinde	KT .					
10	10							
7	10	North	Upright	Not Located				
12	10	N9OE	Open	58.3	52.6	N30.5E	45.3	N39E
01	10	South	Closed	Not Located	J V		70.00	
00	20	NOON	Closed	Not Located				
		Morth	Upright	328.8	307.2	N12E	64.0	N11.3E

TABLE A.1 Continued

	Pres	306				Postshot		
	Distance	Bearing		Distance		Bearing From Pro-	Perpendicular	Bearin
No.	From GZ		Orientation	From GZ	Displacement	Shot Position	Distance	From G
	ft	•		ft	ft		ft	
	••	***	0		144 6	536.8E	151.8	531.3E
113	20	MOR	Open	202.1	189.5	330.00	231.0	
95	20	South	Closed	Not Located	_			
109	20	N9OM	Closed	Not Located		and 100	23.1	N4.4W
75	40	North	Upright	298.3	258.5	NS.1W		587E
83	40	N9OE	Open	40.8	2.3	518.42	2.2	30/8
92	40	South	Closed	282.1	242.3	55E	21.2	54.3E
73	40	MOON	Closed	381.2	341.4	N845W	32.5	N85.1W
80	60	North	Upright	225.6	165.7	NAU	11.6	N3W
85	60	NOOE	Open	63.4	3.4	NS4E	0.4	N89.7E
114	60	South	Closed	114.5	54.6	51.8W	1.7	50.9W
89	60	N9OM	Closed	276.4	216.5	187.5W	9.6	N8 SW
72	80	North	Upright	Not Located				
74	80	N9OE	Open	83.3	3.7	N65.5E	1.5	N89E
81	80	South	Closed	189.5	109.6	53.1E	5.8	51.8E
71	80 .	N9OM	Closed	247.9	168.1	585.3W	13.7	586.5W
105	100	North	Upright	153.2	53.3	N2.1E	1.9	NO.7E
96	100	N9OE	Open	100.1	0.7	535.1E	0.6	589.61
78	100	South	Closed	111.0	11.0	54.2W	0.8	50.4W
87	100	N9OW	Closed	294.4	194.6	186.4W	12.1	N87.6W
106	120	North	Hand she	132.8	12.8	NO.9E	0.2	NO.1E
86	120	N9OE	Upright Open	104.9	15.4	559.9W	2.7	588.51
						a		
76	120	South	Closed	137.6	17.7	54.9W	1.5	SO.6W
07	120	N9OW	Closed	166.7	47.7	N88.3W	1.4	589.5W
94	140	North	Upright	147.9	7.9	North	0.0	North
11	140	N9OE	Open	139.9	0.1	S45W	0.1	589.9E
93	140	South	Closed	152.0	12.1	52.8W	0.6	50.2W
91	140	N9OW	Closed	201.3	61.4	587.3W	3.0	589.2W
84	160	North	Upright	166.3	6.4	N6.2E	0.7	NO.2E
82	160	N9OE	Open	160.0	0.1	N42E	0.1	N89E
04	160	South	Closed	164.4	4.6	511.7W	0.9	50.3W
03	160	N9OW	Closed	168.0	9.7	557.1W	5.5	588,1W
						M44 Am		
88	180	North	Upright	151.3	1.5	N21.8E	0.6	NO.2E
7 7	180	N9OE	Open	179.8	0.3	\$19.7W	0.3	589.91
98	180	South	Closed	134.3	4.4	\$6.7W	0.5	50.2W
79	180	N9OW	Closed	179.3	0.6	N88.1E	0.0	N89.9W
90	200	North	Upright	:00.6	0.7	N4.9W	0.1	NO.1W
08	200	N9OE	Open	199.9	0.5	South	0.5	589.9W
02	200	South	Closed	.01.9	2.2	\$25.1W	0.9	50.3W
	200	N9OW	Closed	:00.0	0.6	N9.3W	0.6	N89.8W

13 10 N15E Closed wot Located

TABLE A.1 Continued

	Pres	hot				Postshot		
_						Bearing		
	Distance	Bearing		Distance		From Pre-	Perpendicular	
٠,	From GZ	From GZ	Orientation	From GZ	Displacement ft	Shot Position		From GZ
	ft						ft	
3	10	\$75E	Open	Not Located				
19	10	1175W	Upright	Not Located				
15	30	N15E	Closed	Not Located	_			
20	30	575E	Open	33.1	3.6	N72.3E	2.0	\$78.4E
LO	30	N75W	Upright	419.3	289.4	N70.5W	30.3	N79.2W
2	50	N15E	Closed .	. 288.4	238.4	N15.8E	3.5	N15.7E
16	50	375E	Open	51.0	1.1	554.2E	0.4	\$74.6E
28	50	N75W	Upright	160.2	110.4	N68.6W	12.3	N79.4W
11	70	N15E	Closed	282.7	212.9	N10.1E	18.1	N11.3E
5	70	S75E	Open	70.7	1.1	521.2E	0.9	574.3E
12	70	N75W	Upright	209.5	139.9	N82W	17.1	N79.7W
7	90	N15E	Closed	108.9	19.0	N13.4E	0.5-	N14.8E
6	90	575E	Open	91.2	3.4	M34.4E	3.2	377E
23	90	N75W	Upright	176.2	86.3	N75.3W	0.4	N75.1W
24	110	N15E	Closed	130.6	20.7	N13.8E	0.4	N14.8E
2	110	575E	Орек	110.4	0.6	533.2E	0.4	\$74.8E
•	110	N75W	Upright	189.2	79.7	N66.5W	11.7	N71.5W
i	130	W15E	Closed	157.6	27.6	N16.6E	0.8	W15.3E
16	130	S75E	Open	130.1	0.6	S5.4W	0.6	574.7E
29	130	N75W	Upright	149.9	19.9	N74.6W	0.1	N74.9W
17	150	N15E	Closed	167.6	17.7	N20.1E	1.6	N15.5E
	150	S75E	Open	150.1	0.2	574E	0.0	S75E
	150	N75W	Upright	163.0	13.1	N75.8W	0.2	N75.1W
-	170	N15E	Closed	178.3	8.5	N25.1E	1.5	N15.5E
-	170	S75E	Open	170.0	0.6	85.9W	0.6	\$74.8E
21	170	V-101	Manual - Lan	15/ 0		\$12.9E	100.8	364.1Wb
	190	N75W	Upright	154.0	114.1		0.1	N15E
	190	N15E	Closed	193.5	3.6	N14E	0.5	574.9E
	190	875E N75W	Open Upright	190.3 190.0	0.6 0.3	\$23.9E \$32W	0.3	N75.1W
3" 5	quare x 1:	2" Long T						
7	20	NISE		Nan I				
30	20	S75E	Closed	Not Located				
_	20	375E N75W	Open	Not Located	00 7	S80.3W	27.1	584.8W
	40		Upright	107.2	88.7	N9.8E	28.7	N10.4E
_	40	N15E S75E	Closed Open	356.5 51.2	316.7 11.3	N9.8E S79.1E	0.8	\$75.9E
25	40	N75W	Upright	408.3	368.4	N80.6W	36.0	N80.1W
26	60	N15E		408.3 228.3		NOU.OW N11.5E	10.2	N12.4E
	60		Closed		158.9		0.3	\$74.7E
3	60	875E N75W	Open	60.7	0.8	S48.7E N67W	24.3	N69W
5	80		Upright	233.8	: 14.3		20.3	N22E
		N15E	Closed	167.4	38.6	N28.2E	-414	

TABLE A.1 Continued

*	Pr	esbot				Postshot		
						Bearing		
	Distance	Bearing		Distance		From Pre-	Perpendicular	Bearing
No.	From GZ	From GZ	Orientation	From GZ	Displacement	Shot Position	Distance	From G
	ft .			ft	ft		ft	
4	80	575E	Open	81.1	1.4	532.8E	1.0	874.3E
5	80	N75W	Upright	174.5	94.6	N75W	0.0	N75W
_	100	N15E	Closed	127.9	28.0	N12.6E		
1							1.2	N14.5E
50	100	S75E	Open	101.0	1.2	543.7E	0.6	\$74.6E
1	100	N75W	Upright	184.3	84.7	N6 84	10.3	N71.8W
4	120	N15E	Closed	142.3	22.4	N18.8E	1.5	N15.6E
.0	120	575E	Open	120.3	0.9	N35.5E	0.8	575.4E
7	120	N75W	Upright	174.8	55.2	N72.6W	7.3	N77.4H
3	140	N15E	Closed	176.4	37.5	NO.3W	9.9	N11.8E
8	140	375E	Оред	140.2	0.2	N74.7E	0.1	575.1E
Ĭ	•			.40.0	***		0.1	3/3.18
8	140	N75W	Upright	172.3	32.4	N78.2W	1.8	N75.6W
6	160	NISE	Closed	174.2	14.2	N17E	0.5	N15.2E
2	160	575E	Open	159.9	0.1	N53.1W	0.1	375E
4	160	N75W	Upright	168.6	8.8	N64.3W	1.6	N74.5W
9	180	NISE	Closed	183.0	3.0	N12.8E	0.1	N14.9E
29	180	S75E	0	180.1	0.3	S19.1E	0,2	
-			Open.					374.9E
6	180	N75W	Upright	181.3	1.4	N53.7W	0.5	N74.8W
1	200	N15E	Closed	204.7	4.8	N14.5E	0.1	N15E
7	200	575E	Open	199.9	0.5	515.5W	0.5	574.9E
.2	200	N75W.	Upright	201.0	1.1	N66.8W	0.2	N75W
1/4	' x 12" Sq	uare Plat	•					
5	10	N3OE		40.0	32.1	N13.1W	22.0	N3.3W
6	10	S60E		10.6	0.7	\$22.4E		557.7E
23	10	S60W		11.2	1.2	\$54.6W		559.4W
8	10	N60W		We Locate				,
1	20	N30E		190.8	341.1	N18.8E	66.3	N19.4E
.8	20	S60E		1.0	51.6	S43E	15.1	547.7E
9	20	N60W		.0.2	0.5	546.5W		N61.5W
4	. 40	N3OE		.1.8	1.9	N9.1E		
6	40	SOE		11.6	21.6			N29.1E
4	40	N60W		-1.8		S59.8E		259.9E
0	60	N30E		•1.0	2.8	368.1W	-	N63W
7	60	S60E		~0.2	32.1	N61.7W		N58.5E
. 7		3006		40.2	0.8	N49.2E	0.7	560.7E
.4	60	N60W		.4.0	96.4	N68.6W	14.4	N65.3Wb
.2	80	S60E		w).1	0.7	N37.3E	0.7	560.5E
.5	80	N60W		40.5	1.3	S50.5W		N60.9W
9	100	N30E		0.0	2.0	N60.9W		N28.8E
7	190	S60E		0.5	0.7	N75E		560.3E
7	100	N60W		. 1,9	314.7	589.3W	160.9	163.5Wb
3	120	N30E		1.9	1.5			
8	120					N54.4W		N29.3E
0	120	S60E		٠.9	0.1	N48.8W	0.0	60E

TABLE A.1 Continued

_	Preshot				Postshot						
						Bearing					
.	Distance	learing .	0-4	Distance		From Pre-	Perpendicular	Bearing			
мо.	ft CL	From GZ	Orientation	From GZ	Displacement	Shot Position	Distance	Proe G			
	IE			IE	ft		ft				
13	120	M6ON		123.3	3.4	N68.7W	0.5	wea			
6	140	M3OE		140.3	1.7	N48.4W	1.6	N60.2W			
19	140	SEOR		139.8	0.3	S60E		M29.3E			
22	140	N6OW		140.0	1.3	\$32.5W	0.2	560.1E			
ī	160	M30E		160.0			1.3	M60.6W			
•	100	MV6		160.0	1.3	NS7.5W	1.3	M29.5E			
20	160	560E		159.6	0.5	N8.5W	0.4	560.2E			
25	160	NEON		165.0	14.2	N11.4E	13.5	NS5.3W			
2	180	N30E		179.7	1.7	N67.3W	1.7	N29.5E			
30	180	N6OW		182.2	2.3	N53.7W	0.3				
21	200	SOOE		199.1	1.0	N28.6W	0.5	M59.9W 560.7E			
٨,	x 4" x 3 1,	/9" TURE 6	teel Cube			5.20,0	. •••	300.72			
			reer out		C						
23	10	N15W		350.8	340.8	N15.7W	3.9	N15.7W			
8	20	N45 E		151.8	131.9	N41.7E	7.7	N42.1E			
12	20	S40E		89.2	69.3	S46.7E	8.1	\$45.2W			
18	20 .	N45W		60.2	40.9	N27W	12.6	N32.9W			
1	40	N45E		51.5	11.5	N40.3E	1.0	N43.9E			
12	40 -	S40E		40.8	0.9	511.9E	0.4	\$39.4E			
4	40	N45W		73.6	33.7	N50.1W	3.0	N47.3W			
16	60	N45E		61.7	1.8	N27.4E	0.6	N44.5E			
34	60	540E .		62.2	2.3	S54.8E	0.6	540.5E			
		N4.5W		64.9	5.0	N40.4W	0.4	N44.7W			
)		N45E		80.7	0.8	N63.4E	0.3	N45.2E			
)	80	S40E		81.8	2.7	S7.5W	2.0	\$38.6E			
1	80	N45W		100.1	20.2	N49.8W	1.7	N46W			
)	100	N45E		100.4	0.7	\$83.3E	0.5	N45.3E			
1	100	S40E		114.6	14.8	S33E	1.8	S39.1E			
		N45W		112.9	13.0	N41W	0.9	N44.5W			
l		N45E		121.0	1.2	N47.2E	0.6	N45.3E			
3		S40E		120.5	0.5	S53.6E	0.1	539.9E			
)	• • •	N45W		129.4	9.5	N40.9W	0.7	S44.7W			
5	• • •				,	140.74					
Š		N45E		140.1	0.2	S73.3E	, 0.2	N45.1E			
, 6		S40E		139.9	0.4	\$44.9W	0.4	539.9E			
_		N45W		141.5	1.7	N21.8W	0.7	N44.7W			
5 9	160	N45E		160.1	0.3	N85.4E	0.2	N41.1E			
,	160	S40E		160.4	0.5	S66E	0.2	\$40.1E			
2	160	N45W		160.3	1.3	N29.7E	1.3	N44.6W			
1		N45Z		130.1	0.2	N45E		N45X			
3		540Z		: 19.8				S40E			
0		N45W			0.1	S40E	- • -	N44.8W			
9		N45E		179.9	0.7	N48.7E					
7		·~~		199.8	0.1	S4.1W	0.1	N45E			
	200	540E		200.1	0.2	S19.8E	0.1	S40E			
3		145W									

TABLE A.1 Continued

	Presi	101					Postshot		
	Distance Bearing From CZ Prom CZ Orientation					Bearing			
				Distance	941	From Pre- Shot Position	Perpendicular		
No.	ft ft	From CZ	OFTERESCION	From CZ	Displacement ft	Supt resition	Distance ^a	From G	
	IE			••			••		
15	122.5	529.3W		130.1	7.6	\$28.2W	0.2	\$29.3W	
24	121.9	527.2W		131.8	10.0	535.5W	1.5	\$27.5W	
31	123.0	528.4W		130.8	7.8	531.7%	0.5	528.4W	
5 1/	'2" x 5 1/2	" x 5 1/2	" LWE Wooden B	locks					
10	10	M67.30E		Not Located	1				
21	10	S30E		Not Located	1				
42	20	S30E		Not Located	l '				
40	40	167.30E		Not Located					
ii	40	S30E		Not Located			•		
4	50	SOOW	Parallel	Not Located					
6				68.6	18.7	\$67 \ 7	2.3	562W	
7				77.9	28.4	548.2W	5.8	\$55.7W	
				204.3	154.3	557.9W	5.7	558.4W	
17		04/80	Ba-a11-1			337.7 W	3.7	330.48	
22 23	50	360W	Parellel	Not Located	213.7	341.1W	69.3	544.6W	
24				123.8	76.1	\$37.4W	29.2	546.3W	
6				144.0	94.1	556.8W	5.2	567.9W	
8				205.0	156.3	545.4W	39.5	\$48.9W	
9				204.9	156.2	\$45.2W	39.9	548.5W	
1				359.9	311.4	545.2W	79.6	547.2W	
36				Not Located	i.				
38				472.1	459.2	N42W	449.1	N486	
43				257.1	212.9	329 3W	108.7	\$35W	
45				235.8	186.0	\$53.5W	21.0	\$54.9W	
				72.2		- 558.7W	0.5	S59.6W	
59 . 61				Not Located		330.74	0.3	337.0	
				W •					
65				Not Located	- -		•• •	444 941	
71				180.5	133.8	\$35.7W	55.0	\$42.3W	
76				234.8	188.9	\$33.6W	84.0	339.W	
77				170.0	122.3	539.8W	42.3	545.6W	
78				113.5	66.5	S86.3₩	29.5	875W	
82	50	N3CW	Perpendicular	608.4	558.4	M31A	9.3	N30.9W	
86				Not Located	1				
88				617.2	567.2	N31.9W	18.7	N31.7W	
93				578.9	529.0	N26.3W	34.5	N26.6W	
94				614.7	564.8	N30.9W	8.4	N30.8W	
96				675.6	630.5	N3.5W	281.4	N5.4W	
97				633.7	584.1	N22.8W	73.5	N23 .4W	
98				760.7	710.9	N34.8W	59.9	N34.5W	
00				559.3	510.3	N18.4W	102.3	N19.5W	
05				260.5	211.9	N15.1W	54.6	N17.99	
06				506.2	456.4	N34.5W	35.4	N34W	
80				497.9	448.2	N35.9W	45.8	N35.3W	

TABLE A.1 Continued

	Preshot					Postshot		
	04-4	Bearing		Distance		Bearing From Pro-	Perpendigular	Bassina
		Prom CZ	Orientation	From GZ	Displacement			From GZ
ю,	From @	ft	Ot 1 care case	źŧ	ft	144	ft	710= 4=
				500.4	450.5	N26.2W	30.1	N26.6W
16				743.1	695.1	N46.9W	201.6	N45.7W
25				706.8	657.6	140.7W	122.1	M39.9W
38				430.5	380.7	M24.5W	36.4	W15.2W
.44 .53				619.6	574.1	N4.4W	247.9	N6.4W
56				551.4	502.2	N18.50	97.2	M19.9W
57	50	1630W	Perpendicular	515.2	466.1	N18.7W	91.7	N19.6W
.59			Pile	610.1	562.3	M12.2W	171.8	N13.6W
61				617.7	567.8	N29.2W	8-0	N29.3W
62				Not Locate				
19	60	N67.5E	Single	413.8	353.8	M67.2E	2.0	N67.2E
56	60	530E		272.3	214.1	\$14.2E	58.5	S17.6E
80	80	N67.5E		254.2	174.4	N60.7E	9.6	N69.7E
85	80	S30E	•	183.9	104.1	534.3E	7.8	\$32.4E
2	100	N67.5E		107.7	7.8	N57.5E	1.4	N66.7E
35	100	S30E		169.3	76.9	S4W	43.0	515.3E
30	100	4760	Parallel Pile	130.4	31.2	S60.2W	8.0	571.5W
79	100	575W	Legalier Line	181.4	81.6	580W	7.1	\$77.3₩
92				182.1	82.5	S81.6W	9.4	578W
01				192.1	93.4	581.3W	21.2	588.1W
.07 .09				197.9	98.3	\$71.3W	12.7	\$67.5W
10				259.4	159.5	871.4¥	10.0	572.8
12				Not Locate		U/ 11-74	••••	
				276.9	177.6	S67.2W	24.1	570W
.15				135.3	35.5	S69W	3.7	\$73.4
17					73.5	576.3W	1.6	\$75.5
.22				173.5	73.3 54.0	\$52.7W	28.9	\$63.8
.23				148.4		368.6W	3.9	\$73.3
24				135.0 Not Locate	35.2 ·	300.0M	3.,	0.0.0.
28					82.4	S81W	8.6	\$77.7
30				182.1			113.0	545.1
31				226.6 274.2	148.6 174.2	S25.5W S75.6W	1.9	375.4
								573.4
137				155.9	56.0	\$70.4W	4.5	
.37^	•			176.4	76.8	S82.6W	10.1	S78.3
.47				205.5	105.6	S79.3W	7.9	\$77.2
.48				200.1	100.3	879.4W	7.7	S77.2
149				153.8	54.7	S87.6W	11.9	\$79.5V
L54				166.7	156.5	\$27.4E	152.8	\$8.5W
163				184.7	84.8	\$77.4W	3.6	\$76.1V
ì	100	N3OW	Perpendicular	407.1	316.3	N1.7W	150.1	N8.4W
8			Pile	427.1	329.8	N15W	85.2	N18.5
9				398.8	299.6	N37.9W	41.4	N35.9

TABLE A.1 Continued

	PI	eshot		Postshot						
						Bearing				
	Distance	Bearing		Distance		From Pre-	Perpendicular	Bearing		
No.	From GZ	From CZ	Orientation	From GZ	Displacement	Shot Position	Distance	From CZ		
	ft			ft	ft		ft			
10				201.4	103.6	N46.5W	29.3	N38.4W		
11				385.7	293.8	N56.7W	132.0	N50W		
16				377.8	279.0	N19.9W	48.7	N22.4W		
21				474.1	382.6	N56.5W	170.8	NS1.1W		
32				Not Locate	d					
						7.0				
37				402.1	304.2	N43.5W	70,8	N40.1W		
39				386.0	286.0	N31.5W	7.5	N31.1W		
40				546.9	453.5	N53W	177.2	N48.9W		
41				417.4	327.3	NO.7W	159.9	Ж7.5W		
44				394.4	294.5	N32.5W	12.7	M31.9W		
44 ^d					344.5	N12.6W	103.3	N16.5W		
44-				440.9	520.3	N49.9W	177.3	N46.8W		
46				615.2	287.5	N5.9W	117.5	N12W		
48				380.9	238.9	N34.5W	18.6	N33.1W		
50 50d				338.6	216.9	N35.8W	21.9	N34W		
20-				316.5	210.7	N33.ON	41.7	Water		
54				398.8	299.1	N34.3W	22.6	N33.2W		
55			•	402.6	307.6	N50.9W	109.6	N45.8W		
47				263.3	163.4	N27.6W	6.8	N28.5W		
58				560.3	460.3	N29.2W	` 6.3	N29.4W		
66				332.7	232.8	N32.4W	9.9	N31.7W		
A										
66 ^d				203.9	103.9	N29.6W	0.7	N29.8W		
68				519.1	419.1	N31W	7.3	W8.0EM		
.45	120	N67.5E	Single	151.2	31.2	N66.3E	0.7	N67.2E		
90	120	S30E		118.8	2.8	N35.3E	2.6	531.2E		
5	140	N67.5E		148.1	8.6	N47.8E	2.9	N66.4E		
12	140	S30E	•	176.3	36.4	S31E	0.7	530.2E		
81	150	N3OW	Perpendicular	361.6	221.8	N57.4W	102.0	N46.4W		
84	130	Moon	Pile	345.7	195.8	N31.2W	4.2	N30.7W		
87				342.4	200.6	NSW	84.8	N15.3W		
99				218.3	69.2	N41W .	13.2	N33.5W		
.02				264.1	125.0	N62.4W	66.9	N44.7W		
.03				330.27	181.4	N39.3W	29.4	N35.1W		
.13	150	N30W	Perpendicular	446.4	305.5	N5.6W	126.1	N13.6W		
18			Pile	Not Locate	_					
.20				263.6	115.7	N15.6W	28.9	N23.7W		
29				306.9	160.9	N48.2W	50.3	N39.4W		
36				404.2	260.9	N8.5W	95.5	N16.3W		
40				182.5	38.1	N65.1W	21.9	N36.9W		
				314.1	167.2	N13.9W	46.3	N21.5W		
.41										

TABLE A.1 Continued

	- 214	ebot				Postshot		
				MACOUNT DE		Bearing		
No.	Prom GE	Bearing From GZ	Orientation	Prom GZ	Displacement	From Pre- Shot Position	Perpendicular Distance ^a	Pros G
	ft			ft	ft		ft	
143				328.6	184.5	10.40	68.0	M18:1W
146				382.4	239.6	152.6W	92.2	BAAN
150				314.2	164.4	104.4W	12.5	132.3W
151				410.6	266.7	19.5V	93.4	¥16.24
152				244.4	96.2	W15.8W	23.6	124.5W
155				393.6	248.9	1049.40	82.5	142.1W
60				296.8	147.3	123.4W	17.0	126.7W
164				208.4	6048	1649.1W	19.9	135.5W
3	150	375W	Parallel Pile	152.9	3.4	844.1W	1.8	\$74.30
13	50	3/34		184.2	34.5	582.GU	4.6	376.4W
14				153.8	3.9	364W	0.8	874.7W
18				151.0	1.7	\$24.39	1.3	374.5W
20				168.5	18.9	863.7W	3.7	873.7N
27				167.8	17.9	369W	1.9	\$74.6
30				155.0	6.7	533 .4W	4.4	573.4
33				149.8	1.3	822.9F	1.3	\$74.5
34				157.4	7.4	872.6:	0.3	374.9
49				154.4	4.6	863.5W	1.3	\$74.5
52				Not Locate	d			
53				150.5	1.3	59.5W	1.2	874.5W
60				156.7	7.5	849.2V	3.3	573.8W
12				153.7	4.4	543.4W	2.3	574.1W
3				159.7	9.8	573.1W	0.3	874.94
4				151.5	1.7	349.5W	0.7	\$74.7W
7				155.3	6.2	546.3V	3.0	\$73.9W
0	150	575W	Parallel File	157.8	9.5	539.9W	5.4	\$73W
12				157.5	7.9	859.3W	2.1	874,26
73				151.5	1.5	374.1W	0.0	875W
74				154.4	4.5	369.9W	0.4	574. SH
75				184.6	35.0	584.6W	5.8	576.84
9	160	M67.5E	Single	160.4	0.5	164.2E	0.2	167.42
19	160	330E	277-840	165.4	5.8	\$50.2E	2.0	\$30.7
51	180	M67.5E		249.44	106.2	M6.5E	92.9	M45.5E
15	180	330E		188.7	8.8	\$35.3E	0.8	100.31
91	200	M67.5E		203.2	3.4	N52.1E	0.9	167.3E
14	200	330E		200.3	0.4	533.2E	0.0	330E
33.	122	532W	On Platform	Not Locate	4			
35.	128	528W		Not Locate	d			*** **
650	129.2	327.6W		307.2	181.6	545.2W	54.8	537.91
	129.2	\$27.6W		422.9	295.2	338W	53.1	534.88

Measurement made from original radial line perpendicular to terminal location Data appears to be incorrect Parthest displaced object located Blocks listed twice were located in two equal masses at different terminal points Objects positioned on concrete pad

REFERENCES

- 1. Meszaros, J.J., and others; "Airblast Phenomena from Small Yield Devices" (U); Project 1.1, Operation Sun Beam, POR-2260, June 1963; Ballistic Research Laboratories, Aberdeen Proving Grounds, Maryland; Secret Restricted Data.
- 2. Ahlers, Edward B.; "Throwout Study of an Underground Nuclear Detonation" (U); Project Danny Boy, POR-1814, February 1964; Illinois Institute of Technology, Technology Center, Chicago 16, Illinois; Confidential Formerly Restricted Data.
- 3. Morgenthau, M., and Solumehyk, M.; "Residual Radiation from a Very-Low-Yield Burst" (U); Project 2.10, Operation Hardtack, WT-1678, December 1960; U.S. Army Chemical Warfare Laboratories, Army Chemical Center, Maryland; Secret Restricted Data.
- 4. Cowan, M. Jr.; "Fallout Contamination from a Very-Low-Yield Burst" (U); Project 2.14, Operation Hardtack, WT-1602, May 1962; Sandia Corporation, Albuquerque, New Mexico; Secret Formerly Restricted Data.
- 5. Ethridge, N. H.; "Blast Effects on Single Objects and Military Vehicles" (U); Project 1.3, Operation Sun Beam, POR-2261; Ballistic Research Laboratories, Aberdeen Proving Grounds, Maryland; Confidential Formerly Restricted Data.
- 6. Bower, I.G., Strehler, A.F., Wetherlie, M.B.; "Distribution and Density of Missiles from Nuclear Explosions" (U); Project 33.4, Operation Teapot, WT-1168, December 1956; Lovelace Foundation for Medical Education and Research, Albuquerque, New Mexico; Unclassified.
- 7. Goldizer, V.C., Richmond, D.R., and Chiffelle, T.L.; "Missile Studies with a Biological Target" (U); Project 33.4, Operation Plumbbob, WT-1470, November 1957; Lovelace Foundation for Medical Education and Research, Albuquerque, New Mexico; Unclassified.
- 8. Bowen, I.G., and others; "Missiles Secondary to Nuclear Blast" (U); Project 33.2, Operation Plumbbob, WT-1468, October 1964; Lovelace Foundation for Medical Education and Research, Albuquerque, New Mexico; Unclassified.
- 9. Ahlers, E.A.; "Debris Hazards, A Fundamental Study" (U); Contract No. DA-49-146-X2-097, DASA-1362; Illinois Institute of Technology, Technology Center, Chicago 16, Illinois. Secret.
- 10. United States Atomic Energy Commission; "The Effects of Nuclear Weapons" (U); DA PAM No. 39-3, April 1962; U.S. Government Printing Office; Unclassified.

Page 55 Deleted