Aufgabe 1. (2 Punkte) Es sei G eine abelsche Gruppe und H eine Untergruppe von G. Man zeige, dass H abelsch ist.

Aufgabe 2. (2 Punkte) Es sei G eine Gruppe und $g, h \in G$ sodass $gh = e_G$. Man zeige, dass h das Inverse von g ist.

Aufgabe 3. (3 Punkte)

Es sei G eine Gruppe und H eine nichtleere Teilmenge von G sodass $x(y^{-1}) \in H$ für alle $x, y \in H$. Man zeige, dass H eine Untergruppe von G ist.

Aufgabe 4. (3 Punkte)

Es sei G eine Gruppe.

- (i) Man zeige: $(ab)^{-1} = b^{-1}a^{-1}$ für alle $a, b \in G$.
- (ii) Es sei $\chi \colon G \to G$ die durch $g \mapsto g^{-1}$ definierte Abbildung. Man zeige: G is genau dann abelsch, wenn χ ein Gruppenhomomorphismus ist.

* Aufgabe 5. (5 Punkte)

- (i) Es sei $f: H \to G$ ein Gruppenhomomorphismus. Man zeige, dass f(H) eine Untergruppe von G ist.
- (ii) Es sei $f: H \to G$ ein Monomorphismus von Gruppen. Man zeige, dass H zu einer Untergruppe von G isomorph ist.
- (iii) Man zeige: jede endliche Gruppe ist isomorph zu einer Untergruppe der symmetrischen Gruppe \mathfrak{S}_n für ein $n \in \mathbb{N}$.