Why are we studying crowds?

Real Crowds

- Design, dimensions of public building
 - Normal usage
 - Emergency evacuation

Why are we studying crowds?

Virtual Crowds

- Video games
- Movies, ads
- Participative democracy

Le Seigneur des Anneaux

Crowd simulation software

Avatar

Data

- https://ped.fz-juelich.de/db
 - Collection of data from experiments involving the Forschungszentrum Jülich Includes large scale experiment of stadium evacuation
 - Links to other experimental data obtained all over the world

Experiment in a stadium

Project HERMES, cf [Burghardt, Seyfried, Klingsch, Transp. research Part C 37, 268 (2013)]

Pedestrian experiments: tracking

From Videos

- Easier if pedestrians wear a special hat
- Use of some tracking software
 - Example: Open Software PeTrack
 (https://www.fz-juelich.de/en/ias/ias-7/services/software/petrack)

From [Boltes et al, Neurocomput. (2013)]

Pedestrian experiments: tracking

From Videos

- Easier if pedestrians wear a special hat
- Use of some tracking software
 - Example: Open Software PeTrack
 (https://www.fz-juelich.de/en/ias/ias-7/services/software/petrack)

Exp. of [Nicolas & al, Sci. Rep. (2019)]

Pedestrian experiments: tracking

From Depth-Field movies

- Preserves more anonymity
- Kinect (Easy, narrow field of view, works only inside)
- Double cameras (Synchronization needed)

High precision motion capture (VICON)

- Markers detected by infrared cameras
- Used for virtual production, in virtual reality, etc

High precision motion capture (VICON)

- Markers detected by infrared cameras
- Used for virtual production, in virtual reality, etc

From the PEDIGREE Project

Reconstruction of trajectories

- From raw data to 3D markers' trajectories
- From markers to pedestrians
- Interpolating for missing data

Deep learning

Example with depth field measurements

From [Corbetta et al, AVSS 2017]

- (A) = synthetic data (ground truth)
- (B) = CL = Clustering Approach
- (C) = CNN = Deep Convolution Neural Network

Deep learning

Intermediate and high densities

From [J. Vandoni, PhD Thesis, SATIE, Univ. Paris Saclay (2019)]

- (a) Makkah Dataset
- (b) Regent's Park Dataset
 - Red blobs = ground-truth heads
 - Green blobs = True positive
 - Blue blobs = False positive

Deep learning

Learning to estimate density without individual tracking

• Learning principle

From [J. Vandoni, PhD Thesis, Univ. Paris Saclay (2019)]

• Perspective correction

MAE = Mean Absolute Error (compared to ground truth)

Ring

Ring

[M. Moussaïd, E. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond and G. Theraulaz, *Traffic Instabilities in Self-organized Pedestrian Crowds*, PLoS Computational Biology (2012)]

Can we model pedestrian flows as fluids?

Ring: Experimental density fields

global density

0.59,

 $0.98 \text{ ped/} m^2$

1.18

Macroscopic models for pedestrians

- \blacktriangleright 2 densities ρ_+ and ρ_-
- ightharpoonup 2 velocities u_+ and u_-

Possible to develop 1st or 2nd order macroscopic models, but with double number of equations.

1st order macroscopic model for pedestrians

[S. Motsch et al, Math. Biosci. Eng. 15 (2018) 1271]

$$f(\rho_+, \rho_-) = a\rho_+ (1 - b\rho_+ - c\rho_-)$$

Sample set	a	b	С	R^2
50% - 50%	1.218	0.273	0.181	0.944
75% - 25%	1.216	0.087	0.203	0.972
100% - 0%	1.269	0.077	0	0.982

- b ∼ friction with co-moving pedestrians
- lacktriangle c \sim friction with counter-moving pedestrians

Comparison Model/Experiment

Transport modeling

Comparison Model/Experiment

75% – 25%

From [Motsch et al, Math. Biosci. Eng. 15 (2018) 1271]

Comparison Model/Experiment

Velocity
$$u(\rho) = f(\rho)/\rho$$

Cluster velocity $\lambda(\rho) = f'(\rho)$

From [Motsch et al, Math. Biosci. Eng. 15 (2018) 1271]

Model prediction

Relative gain using the segregation strategy

Pressure divergence

Pressure term diverging at maximum density

From [Appert-Rolland, Degond, Motsch (2011)]

Two-Ways Aw-Rascle model

Contrarily to the One-Way Aw-Rascle model, the Two-Ways Aw-Rascle model is not always hyperbolic.

From [Appert-Rolland, Degond, Motsch (2011)]

Example for one particular choice of $p(\rho_+, \rho_-)$.

Numerical simulations of the Two-ways Aw-Rascle model

Initial condition in the hyperbolic region:

From [Appert-Rolland, Degond, Motsch (2011)]

Numerical simulations of the Two-ways Aw-Rascle model

Initial condition outside of the hyperbolic region:

First many clusters; after longer time, only one cluster remains.

Pbl Macroscopic models

Properties of pedestrians:

- Incompressible at high density
- Undeformable

PhD thesis Aude Roudneff-Chupin (LMO, Orsay, 2011)

Pbl Macroscopic models

Properties of pedestrians:

- Incompressible at high density
- Undeformable

PhD thesis Aude Roudneff-Chupin (LMO, Orsay, 2011)

