Algorithmics	Student information	Date	Number of session
	UO: 283069	2/03/2022	3.1
	Surname: Carvajal Aza	Escuela de	
		((/)) İngenieria	

Activity 1. Basic Recursive Models

Name: Guillermo Dylan

Division 1

Since we know that a = 1, b = 3 and k = 1, taking into account that we are using a recursive method by division and a < b^k we conclude that the complexity is $O(n^1) = O(n)$.

Division 2

For this method, a = 2, b = 2 and k = 1, therefore $a = b^k$ and the complexity is $O(n^*logn)$.

Division 3

On this method, we have that a = 2, b = 2 and k = 0, then the complexity is calculated as $O(n^{\log b(a)})$, since $a > b^k$, and the complexity is: $O(n^{\log 2(2)})$ that is the same as O(n).

Division 4

The complexity for this algorithm is stated on the wording for this session, its O(n^2), and in order to achieve it we would need that:

$$a = 4$$
 $b >= 2$ $k = 2$

Since then a < b^k and the complexity is calculated with O(n^k).

Although this was the method I applied for getting the complexity, it is also true that we could achieve it as well by having a = 4, b = 2 and k <= 1, since then the complexity would be calculated with O(n^(logb(a)), to which if we apply the values stated is the same as O(n^2), but since we are also told that the number of sub problems must be 4 we cannot use this solution and must apply the first mentioned.

Subtraction 1

Now we have that the methods use recursion by subtraction instead of by division. Universidad de Oviedo

For this method: a = 1, b = 1 and k = 0, therefore a = 1

Then the complexity is calculated as $O(n^{k+1})$ which is O(n).

Algorithmics	Student information	Date	Number of session
	UO: 283069	2/03/2022	3.1
	Surname: Carvajal Aza		
	Name: Guillermo Dylan		

Subtraction 2

For the second method using recursion by subtraction we have that a = 1, b = 1 and k = 1, and again the complexity is calculated as $O(n^{(k+1)})$, since a is still equals to 1. Therefore the complexity is $O(n^2)$.

Subtraction 3

This method has that a = 2, b = 1 and k = 0, so, as a > 1 we have that the complexity is:

$$O(a^{(n/b)} = O(2^{(n/1)}) = O(2^{n})$$

Subtraction 4

The complexity for this method must be $O(3^{(n/2)})$, and in order to obtain it we are going to use:

$$a = 3$$
 $b = 2$ $k = 0$

By doing this we obtain a complexity of $O(n^3(n/2))$, since a > 1 and the formula for recursion by subtraction on this case is O(a^(n/b)).