

Why

We generalize the algebraic structure of addition and multiplication over the integers.¹

Definition

A ring (A, f, g) is a set A and two operations on A satisfying the following set of conditions.

- (A) (i) f is associative. (ii) f is commutative, (iii) A has an identity for f (i.e., is $e \in A$ with f(a, e) = f(e, a) = a for all $a \in A$ (iv) A has inverse elements for f (i.e., for any $a \in A$, there is \tilde{a} satisfying $f(a, \tilde{a}) = f(\tilde{a}, b) = e$)
- (B) (i) g is associative; (ii) A has an idenity element for g (i.e., there is $\tilde{e} \in A$ satisfying $g(a, \tilde{e}) = g(\tilde{e}, a) = a$)
- (C) (i) g left distributes: g(f(a,b),c) = f(g(a,c),g(b,c);(ii) g right distributes: g(c,f(a,b)) = f(g(c,a),g(c,b)).

Conditions (A) concern f, conditions (B) concern g, and conditions (C) relate the two. Define $\psi: \mathbf{Z} \times \mathbf{Z} \to \mathbf{Z}$ by $\psi(a,b) = a+b$ and $\pi: \mathbf{Z} \times \mathbf{Z} \to \mathbf{Z}$ by $\pi(a,b) = a \cdot b$. We have defined a ring so that (\mathbf{Z}, ψ, π) is one. The element referred to in (A.2) is $0 \in \mathbf{Z}$, so we refer to this element in any ring as the additive identity. That referred to (A.3) is $1 \in \mathbf{Z}$, so we refer to this element in any ring as the multiplicative identity. We

¹Future editions will likely modify this sheet, and give a genetic treatment involving the solution of polynomial equations by Galois.

refer to the elements mentioned in (A.4) as additive inverses. We call to f ring addition and g ring multiplication. Although integer products are commutative, we have not required this aspect (future editions will elaborate).

Notation

Our notation furthers this analogy with **Z**. We denote the ring addition by + and ring multiplication by \cdot . Moreover, we denote the ring's additive identity by 0 and the ring's multiplicative identity by 1. Finally, we denote the additive inverse of $a \in A$ by -a.

These notational conventions make the conditions (A), (B), (C) familiar relations among integers. (A) (1) a + (b + c) = (a + b) + c; (2) a + b = b + a; (3) a + 0 = 0 + a = a; (4) a + (-a) = 0. (B) (1) a(bc) = (ab)c; (2) 1a = a1 = a. (C) (1) (a + b)c = ac + bc; (2) (c(a + b) = ca + cb.

Immediate consequences

We needn't require that 0x = 0, because we can deduce it:

$$0x + x = (0+1)x = 1x = x.$$

Similarly, (-a)b = -(ab) since

$$ab + (-a)b = (a + (-a))b = 0b = 0.$$

Other familiar relations among the integers, e.g. (-a)(-b) = ab, may be deduced.

