The claims have been amended to delete those compounds wherein B is hydrogen, in order to avoid any possible overlap with the subject matter being claimed in Applicants' copending application Serial No. 09/368,866, filed August 5, 1999 (Attorney Docket No. 13/068).

The claims have also been amended to address the various informalities noted by the Examiner in the Office Action, as discussed in further detail below. Support for these amendments is as discussed below.

I. Sequence Listing

The Examiner noted that the application contains sequence disclosures that are encompassed by the definitions for amino acid sequences set forth in 37 CFR 1.821 and indicated that the application fails to comply with the requirements of 37 CFR 1.821 to 1.825 regarding sequence disclosures (paper and computer readable form sequence listings, etc.).

In response, Applicants have reviewed the entire specification for the amino acid sequences that are required to be listed under 37 CFR 1.821 and have attached the required paper and computer readable form (CRF) copies of the Sequence Listing in accordance with the Rules. Attached also is the required Statement Under 37 CFR 1.821 (f) confirming that the paper and CRF copies of the Sequence Listing are identical. Applicants believe that they are now in compliance with the requirements of 37 CFR 1.821 to 1.825 regarding sequence disclosures and withdrawal of this objection is respectfully requested.

II. Rejection Under 35 U.S.C. 112, first paragraph

At pages 3 to 4 of the Office Action, the Examiner maintains this rejection of record. The Examiner argues that the term "pharmaceutically acceptable" in the claims implies an assertion of in-vivo therapeutic efficacy allegedly not demonstrated in the application.

Applicants strongly traverse for the reasons already of record. The term "pharmaceutically acceptable" in the claims is necessary to define the types of salts, esters, carrier media or auxiliary agents that are covered by the claimed invention, and it is a recognized term of art that simply means "non toxic." In order to advance the prosecution of this case, however, Applicants have replaced the term "pharmaceutically acceptable" in the claims with the equivalent term -- non toxic --, support being found in the application as filed, e.g. page 35, lines 19-21, and inherently found in the original term "pharmaceutically acceptable." Since the terms are equivalent, the scope of the claims has not been narrowed by this amendment.

In view of the above, withdrawal of this rejection under 35 USC 112, first paragraph, is respectfully requested.

III. Objection to Bracketing/Underlining

At page 4 of the Office Action, the Examiner objects to the previous amended claims 1, 40, 45, 59 and 60, for containing underlining or bracketing intended to appear in the printed patent or are properly part of the claimed material and not intended to indicate changes in the claims.

As provided under the amended Rule 37 CFR 1.121, Applicants are presenting clean copies of amended claims 1, 40, 45, 59 and 60 (in which claims 40, 59 and 60 are unchanged from the

previous amendment filed November 22, 2000). As such, Applicants submit that it is clear that any bracketing or underlining appearing in these clean claim copies are intended to appear in the printed patent and are properly part of the claimed material. Withdrawal of this objection is respectfully requested.

IV. Rejection Under 35 U.S.C. 112, second paragraph

At page 5 of the Office Action, various claims are rejected under 35 USC 112, second paragraph, as being indefinite because:

- (1) the term "Het" is undefined in claim 1;
- (2) a period is used in "Tab.5" in claim 76; and
- (3) Claim 59 is drawn to a mixture of compounds, therefore the dependency upon Claim 45 is allegedly improper since claim 45 is drawn to a single compound. Also, the term "racemic mixture of diastereoisomers" in claim 59 is allegedly superfluous under the circumstances.

In response to item (1), a definition for "Het" has been added to Claim 1, support being found in the application as filed, e.g., page 12, lines 11-22.

In response to item (2), the noted period has been deleted from claim 76.

In response to item (3), Applicants again traverse for the reasons of record, repeated below:

The Examiner indicates that claim 59 is drawn to a mixture of compounds whereas the parent claim 45 is drawn to a single compound. Applicants traverse. Claim 59 is drawn to mixtures of diastereoisomers of the same compound, also known as a "racemate" or a

"racemic mixture", which is clearly covered by "racemates" already recited in parent claim 45, line 1. The Examiner also alleges that the language "racemic mixture of diastereoisomers" is superfluous and that "diastereoisomers" alone would be sufficient. Applicants do not agree, since "diastereoisomers" alone would not necessarily signify that there is a racemic mixture or racemate, i.e., having no optical activity.

In order to advance the prosecution, however, Applicants have amended claim 45 to replace the term "racemate" with the equivalent language "racemic mixture of diastereoisomers or racemic mixture of optical isomers". Thus, claim 45 now provides clear antecedent basis for "racemic mixture of diastereoisomers" recited in claim 59.

In view of the above, withdrawal of this rejection is respectfully requested.

Claims 45 has also been amended to correct an informality in claim dependency.

V. Conclusion

In view of the above amendments and remarks, Applicants respectfully submit that this application is now in condition for allowance and earnestly request such action.

If any points remain at issue which can best be resolved by way of a telephonic or personal interview, the Examiner is kindly requested to contact the undersigned attorney at the telephone number listed below.

Respectfully submitted,

Philip I. Datlow

Reg. No. 41,482

Patent Department Boehringer Ingelheim Corp. 900 Ridgebury Road P.O. Box 368 Ridgefield, CT 06877

Tel: (203) 798-4542 Date: May 31, 2001 Certificate of Mailing

I hereby certify that this correspondence is being deposited with the U.S. Postal Service with sufficient postage as first class mail in an envelope addressed to:

Assistant Commissioner For Patents Washington, DC 20231 on May 31, 2001.

Phillip I. Datlow

AMENDED SPECIFICATION SHOWING THE CHANGES MADE

At page 4, lines 20 through 23; replace the paragraph with the following:

We investigated peptides potentially inhibitory to the NS3 protease. The discovery that the N-terminal cleavage product (Ac-D-D-I-V-P-C-OH) [SEQ. ID NO. 1] of an analog of a natural substrate of the NS3 protease was inhibitory led us to the peptide analogs of the present invention.

At page 106, lines 1 through 11; replace the paragraph with the following:

The substrate used for the HCV NS3 protease radiometric assay, DDIVPC-SMSYTW [SEQ. ID NO. 2], is cleaved between the cysteine and the serine residues by the enzyme. The sequence DDIVPC-SMSYTW [SEQ. ID NO. 2] corresponds to the NS5A/NS5B natural cleavage site in which the cysteine residue in P2 has been substituted for a proline. The peptide substrate DDIVPC-SMSYTW [SEQ. ID NO. 2] and the tracer biotin-DDIVPC-SMS[125I-Y]TW [SEQ. ID NO. 3] were incubated with the recombinant NS3 protease in the absence or in the presence of inhibitors. The separation of substrate from products was performed by adding avidin-coated agarose beads to the assay mixture followed by filtration. The amount of SMS[125I-Y]TW [SEQ. ID NO. 4] product found in the filtrate (with or without inhibitor) allowed for the calculation of the percentage of substrate conversion and of the percentage of inhibition.

At page 106, lines 19 through 25; replace the paragraph with the following:

Substrate: DDIVPC-SMSYTW [SEQ. ID NO. 2], 25 μ M final concentration (from a 2 mM stock solution in DMSO stored at -20°C to avoid oxidation).

Tracer: reduced mono-iodinated substrate(biotin-DDIVPC-SMS[125 I-Y]TW).[SEQ. ID NO. 3] (\approx 1 nM final concentration).

HCV NS3 protease type 1b, 25 nM final concentration (from a stock solution in 50 mM sodium phosphate, pH 7.5, 10% glycerol, 300 mM NaCl, 5 mM DTT, 0.01% NP-40).

At page 107, lines 18 through 32; replace the paragraph with the following:

The enzyme was cloned, expressed and prepared according to the protocol described in Example 37. The enzyme was stored at -80°C, thawed on ice and diluted just prior to use in the assay buffer containing the NS4A cofactor peptide. The substrate used for the NS3 protease/ NS4A cofactor peptide radiometric assay, DDIVPC-SMSYTW [SEQ. ID NO. 2], is cleaved between the cysteine and the serine residues by the enzyme. The sequence DDIVPC-SMSYTW [SEQ. ID NO. 2] corresponds to the NS5A/NS5B natural cleavage site in which the cysteine residue in P2 has been substituted for a proline. The peptide substrate DDIVPC-SMSYTW [SEQ. ID NO. 2] and the tracer biotin-DDIVPC-SMS[125I-Y]TW [SEQ. ID NO. 3] are incubated with the recombinant NS3 protease and the NS4A peptide cofactor KKGSVVIVGRIILSGRK [SEQ. ID NO. 5] (molar ratio enzyme: cofactor 1:100) in the absence or presence of inhibitors. The separation of substrate from products is performed by adding avidin-coated agarose beads to the assay mixture followed by filtration. The amount of SMS[125]-Y]TW [SEQ. ID NO. 4] product found in the filtrate allows for the calculation of the percentage of substrate conversion and of the percentage of inhibition.

At page 108, lines 4 through 14; replace the paragraph with the following:

Assay buffer: 50 mM Tris HCl, pH 7.5, 30% (w/v) glycerol, 1 mg/mL BSA, 1 mM TCEP (TCEP added just prior to use from a 1 M stock solution in water). Substrate: DDIVPCSMSYTW [SEQ. ID NO. 2], 25 μM final concentration (from a 2 mM stock solution in DMSO stored at -20°C to avoid oxidation).

Tracer: reduced mono iodinated substrate biotin DDIVPC SMS[¹²⁵I Y]TW [SEQ. ID NO. 3] (~1 nM final concentration).

HCV NS3 protease type 1b, 25 nM final concentration (from a stock solution in 50 mM sodium phosphate, pH 7.5, 10% glycerol, 300 mM NaCl, 5 mM DTT, 0 01% NP-40).

NS4A Cofactor peptide: KKGSVVIVGRIILSGRK [SEQ. ID NO. 5], 2.5 μM final concentration (from a 2 mM stock solution in DMSO stored at -20°C).

At page 109, line 10 through page 110, line 8; replace the paragraph with the following:

The NS2-NS5B-3' non coding region was cloned by RT-PCR into the pCR®3 vector (Invitrogen) using RNA extracted from the serum of an HCV genotype 1b infected individual (provided by Dr. Bernard Willems, Hôpital St-Luc, Montréal, Québec, Canada). The NS3-NS4A DNA region was then subcloned by PCR into the pFastBac™ HTa baculovirus expression vector (Gibco/BRL). The vector sequence includes a region encoding a 28-residue N-terminal sequence which contains a hexahistidine tag. The Bac-to-Bac™ baculovirus expression system (Gibco/BRL) was used to produce the recombinant baculovirus. The full length mature NS3 and NS4A heterodimer protein (His-NS3-NS4AFL) was expressed by infecting 10⁶ Sf21 cells/mL with the recombinant baculovirus at a multiplicity of infection of 0.1-0.2 at 27°C. The infected culture was harvested 48 to 64 h later by centrifugation at 4°C. The cell pellet was homogenized in 50mM NaPO₄, pH 7.5, 40% glycerol (w/v), 2mM β-mercaptoethanol, in presence of a cocktail of protease inhibitors. His-NS3-NS4AFL was then extracted from the cell lysate with 1.5% NP-40, 0.5% Triton X-100, 0.5M NaCl, and a DNase treatment. After ultracentrifugation, the soluble extract was diluted 4-fold and bound on a Pharmacia Hi-Trap Ni-chelating column. The His-NS3-NS4AFL was eluted in a >90% pure form (as judged by SDS-PAGE), using a 50 to 400 mM imidazole gradient. The His-NS3-NS4AFL was stored at -80° C in 50 mM sodium phosphate, pH 7.5, 10% (w/v) glycerol, 0.5 M NaCl, 0.25 M imidazole, 0.1% NP-40. It was thawed on ice and diluted just prior to use. The protease activity of His-NS3-NS4AFL was assayed in 50 mM Tris-HCl, pH 8.0, 0.25 M sodium citrate, 0.01% (w/v) n-dodecyl-β-D-maltoside, 1 mM TCEP. Five (5) uM of the internally quenched substrate anthranilyI-DDIVPAbu[C(O)-O]-AMY(3-NO₂)TW-OH [SEQ. ID NO. 6] in presence of various concentrations of inhibitor were incubated with 1.5 nM of His-NS3-NS4AFL for 45 min at 23°C. The final DMSO concentration did not exceed 5.25%. The reaction was terminated with the addition of 1M MES, pH 5.8. Fluorescence of the N-terminal product was monitored on a Perkin-Elmer LS-50B fluorometer equipped with a 96-well plate reader (excitation wavelength: 325 nm; emission wavelength: 423 nm). A non-linear curve fit using the

Hill model was then applied to the % inhibition-concentration data and 50% effective concentration (IC₅₀) was calculated through the use of SAS (Statistical Software System, SAS Institute Inc., Cary, N.C.).

At page 111, lines 12 through 29; replace the paragraph with the following:

The specificity of the compounds was determined against a variety of serine proteases: human leukocyte elastase, porcine pancreatic elastase and bovine pancreatic α -chymotrypsin and one cysteine protease: human liver cathepsin B. In all cases a 96-well plate format protocol using a colorimetric p-nitroaniline (pNA) substrate specific for each enzyme was used. Each assay included a 1 h enzyme-inhibitor pre-incubation at 30°C followed by addition of substrate and hydrolysis to $\approx 30\%$ conversion as measured on a UV Thermomax® microplate reader. Substrate concentrations were kept as low as possible compared to K_M to reduce substrate competition. Compound concentrations varied from 300 to 0.06 μ M depending on their potency. The final conditions for each assay were as follows: 50mM Tris-HCl pH 8, 0.5 M Na₂SO₄, 50 mM NaCl, 0.1 mM EDTA, 3% DMSO, 0.01% Tween-20 with:

[100 μ M Succ-AAPF-pNA [SEQ. ID NO. 7] and 250 pM α -chymotrypsin], [133 μ M Succ-AAA-pNA and 8 nM porcine elastase], [133 μ M Succ-AAV-pNA and 8 nM leukocyte elastase]; or

[100 mM NaHPO₄ pH 6, 0.1 mM EDTA, 3% DMSO, 1mM TCEP, 0.01% Tween-20, $30~\mu$ M Z-FR-pNA and 5 nM cathepsin B (the stock enzyme was activated in buffer containing 20 mM TCEP before use)].

At pages 114 through 126, replace Tables 1 through 3 with the following amended Tables 1 to 3:

TABLE 1

P6 P5 P4 P3 P2 P1

B N R13 R1

B N R13 R1

OH P6 P5 P4 P3 P2 P1

B N R13 R1

OH P6 P5 P4 P3 P2 P1

PPE Other MS AAA SEQ ID	(μM) (MH+) (%) <u>NO.</u>		703 113 8		85.4±1.6	85.4±1.6 100.3±1.8	85.4±1.6 100.3±1.8 113.85±4.9	85.4±1.6 100.3±1.8 113.85±4.9 95.8±0.8	85.4±1.6 100.3±1.8 113.85±4.9 95.8±0.8	85.4±1.6 100.3±1.8 113.85±4.9 95.8±0.8 98.8±2.6 85.9±1.1	85.4±1.6 100.3±1.8 113.85±4.9 95.8±0.8 98.8±2.6 85.9±1.1	85.4±1.6 100.3±1.8 113.85±4.9 95.8±0.8 98.8±2.6 85.9±1.1 101.15±1.65
	(μM) (μM)		7(71	71	71	77	77 77 77 77 77 77 77 77 77 77 77 77 77	77 77 77 77 77 77 77 77 77 77 77 77 77	77 77 77 77 77 77 77 77 77 77 77 77 77	71 77 71 77 77 77 77
(M _{II})	•											
	(mm)		46	i	5ć	59	59 26 8.5	26 8.5 1.5	26 26 8.5 1.5 16*	26 26 8.5 1.5 16*	26 26 8.5 1.5 16* 85*	26 8.5 1.5 16* 85* 80*
•			Cys	(Cys	Cys	Cys Cys	Cys Cys	Cys Cys Cys Cys Cys	Cys Cys Cys Cys Cys Cys Cys	Cys	Cys
•			Pro	Pro	217	Pro	Pro	Pro Pro	Pro Pro Pro	Pro Pro Pro Pro Pro Pro Pro	Pro Pro Pro Pro Pro Pro Pro	Pro Pro Pro Pro Pro Pro Pro Pro
5			Val	Val		Val	Val Val	Val Val	Val Val	Val Val Val	Val Val Val Val Val	Val Val Val Val Val Val Val
			Ile	Ile	_	Ile	Ile	lle Ile	lle lle lle	lle lle lle lle lle	lle lle lle lle lle lle lle	lle
			Asp	Asp	-	Asp	, L	Asp D-Asp D-Glu	Asp D-Asp D-Glu Glu	Asp D-Asp D-Glu Glu Val	Asp D-Asp D-Glu Glu Val Tbg	Asp D-Asp D-Glu Glu Val Tbg
0 1			Asp	Glu	_	1		1 1 1	ds _V	dsy dsy 	Asp Asp Asp Asp Asp	dsy dsy dsy dsy
<u> </u>			Ac	Ac		DAD	DAD	DAD Ac	DAD Ac Ac	DAD Ac Ac Ac	DAD Ac Ac Ac Ac Ac	
Tab. 1	Comp.	#	101	102		103	103	103	103 104 105 106	103 104 105 106 106	103 104 105 106 107	103 104 105 106 107 108

~	24 P3	P4 P3	
al Pro	Val	Tbg Val	Val
al	eu Val	Leu	-
 	lle lle	Ile	Ile
l gu	Ile Chg	Ile	Ile
al	Ile Val	Ile	-
्ह	lle Val	Ile	Ile
al al	Ile Val	Ile	Ile
/al	Ile Val	Ile	Ile
/al	lle Val	lle	lle
/al	lle Val	Ile	+-
/al Hyp(4-Bn)	lle Val F	Ile Val	Val
/al	Ile Val	Ile	-
/al	lle Val	lle	lle
/al	lle Val	Ile	Ile
v'al	Ile Val	Ile	Ile
Val	Ilo Val	110	+

Tab. 1	Tab. 1 B P6	P6	P5	P4	P3	*	Ы	IC ₃₀	HLE	PPE	IC ₅₀ HLE PPE Other	MS	AAA	<u>SEQ ID</u>
Comp.								(mm)	(M _H)	(Mm)	(µМ) (µМ) (µМ) (MH+)	(MH+)	(%)	NO
#							-							
127	Ac	Asp	Asp	Ile	Val	Pip	Nva	*509				713	107	32
128	Ac	Asp	D-Glu	Ile	Val	Pro	Nva	7.4				713	100.9 ± 3.6	11
129	Ac Asp	Asp	Tbg	Ile	Val	Pro	Nva	270*				269	9.8 ± 0.6	33
130	DAD	!	Asp	Ile	Val	Pro	Nva	123				642	107	55
131	Ac Asp	Asp	Glu	Chg Glu	Glu	Glu	Cys	24						35
132	Ac	Asp	D-Glu Chg Glu	Chg	Glu	Glu	Acca	36						11
133	Ac	Asp	Glu	Chg	Chg Val	Glu(OBn) Acca	Acca	39						36

		,		T			τ.	•		1		
SEQ 1D	NO.	37	• • •	: 11 		38	65 1	9	4	42	43	
AAA	(%)	107	103	7€.30	1.7	66	286	101.9	112	104	114	
MS	(MH+)	805	789	819		819	819	819	855	855	861	
PPE Other	(htM)			>300 >300**		·†········	† · · · · · · · · · · · · · · · · · · ·	<u> </u>				
	(Mu) (Mu)	-		1			:					
HLE	(mm)			>300								
IC_{50}	(mm)	7.2	0.93	9.0		9.4*	6.7*	6.4*	0.39	0.71	2.6	
P1		Nva	Nva	Nva		Nva	Nva	Nva	Nva	Nva	Nva	
R_{13}		O-Bn	O-Bn	O-Bn		o-tolyl-methoxy	m-tolyl-methoxy	p-tolyl-methoxy	1-NpCH ₂ O	2-NpCH ₂ O	4-tert-butyl-phenyl)-	methoxy
Р3	-	Val	Val	Val		Val	Val	∵ val	Val	Val	Val	
P4		lle		lle		•			lle			
P6 P5		Asp Asp	D-Val	Asp D-Glu		Asp Asp	· Vsp	. Vsb	Asp	Asp	. dsV	
- Pc		Asp	Asp	Asp		Asp	Asp	Asp	Asp	Asp	Asp	
В		Ac	Ac	ΥC		Λc	Αc	Ac	Ac		Ac	
Tab.2 B	Comp.	201	202	203		204	205	. 506	207	208	209	:

SECTIO	NO.	11		11	1 1		11		11	44		45	11	46	11	t 1	11
AAA	(%)	101.7 ±	5.4	93.4 ± 2	99.4 ± 2	101.8	104.1			100.6±	8.0	94.6 ± 3	111.2	95.7			N.S.
MS	(MH+)	849		845	803	698	895		879	789		818	910	740	269	683	869
PPE Other	(mm)	>300					>300	>300**									
	(мм) (мм)	>300			>300		>300						ļ 			ļ -	
HLE	(mM)	>300			>300		>300										
IC_{50}	(M _M)	0.033		0.12	0.21	0.036	0.028		0.014	09		8	0.49	2.3	31	22	20
P1		Cys		Nva	Acca	Nva	Nva		Acca	Nva		Nva	Nva	Nva	Nva	Nva	Nva
R ₁₃		O-Bn		O-Bn	O-Bn	2-NpCH ₂ O	2-NpCH ₂ O		1-NpCH2O	Bn		Ph(CH ₂) ₃	O-Bn	1-NpCH ₂ O	1-NpCH20	1-NpCH20	1-NpCH ₂ O
P3		Val		Val	Val	Val	Val		Val	Val		Val	Val	Val	Val	Val	Val
P4		Chg)	Chg	Ile	Ile	Chg		Chg	Ile		Ile	Ile	lle	N(Me)Ile	Ile	lle
1.5		Asp D-Glu		Asp D-Glu	Asp D-Glu	Asp D-Glu	Asp D-Glu		Asp D-Glu Chg	Asp Asp	-	Asp Asp	Asp D-Glu	Asp			•
P6 P5		Asp	-	Asp	Asp	Asp	Asp		Asp	Asp	•	Asp	Asp	·		1	1
В		Ac		Ac	Ac	Ac	Ac		Ac	- Ac		Ac	Ac	Ac	DAD	DAD	DAE
Tab.2	Comp.	210	2	211	212	213	214		215	716		217	218	219	220	221	222

AAA SECID	N	11	11	11	1 1	T ** :	1 1		47	· · · · ·	11		48	111	11
AAA		N.S.	N.S.	!		! !			: : 	! ! !-	:		:		
MS	(MH+)	737	737	929	707	635	613.4		818	675.4	!		929.2		
PPE Other	(мм) (мм) (мм)			: -	-										
HLE		:			: 	009<	009<			<u> </u>					
C_{50}	(mm)	25	26	45	0.76	3	35		3.3	2.6	1.4		0.14	41	12
D1		Nva	Nva	Nva	Acca	Acca		=0	Nva	Acca	Acca		Acca	Acca	Acca
$ m R_{13}$		1-NpCH ₂ O	1-NpCH20	1-NpCH ₂ O	1-NpCH2O	1-NpCH ₂ O	O-Bn		Val Ph(CH2)3	Chg 1-NpCH ₂ O	Chg 1-NpCH ₂ O		Val (31-Ph) CH ₂ O	O-Bn	Chg 1-NpCH ₂ O
Ь3		Val	Val	Val	Val	Val	Val		Val P	Chg 1	Chg 1		Val (3	Chg C	Chg 1
P4	_	Ile	Ile						lle ell	Chg	Chg		Ile	Chg	Chg
				1	1				Asp Asp He		! . i		Glu		1
9.d		1	:	1 1 1		! !	† ; ;		Asp			_	Asp	1	
Ω		0==	524	Ac	DAE	Ac	Ac		Āc	Āc	AcOCH2-	C(O)	Āc .	Ac	Boc
Tab.2	omp.	223	224	225	226	227	228		230	231	232		233		235

Ac — — — — — — — — — — — — — — — — — — —	Gly thioxo-									
Ac — Ac — Ac — Ac — Ac					(mm)	(mm)	lμ) (μη	(µМ) (µМ) (µМ) (МH+)	%)	NO.
DAE Ac		Val	1-NpCH ₂ O	Nva	4.0			720		1
	lle							(M+Na)		
	- Ille	Val	1-NpCH ₂ O	Acca	5.5			598		11
						_ -		(M+Na)		
	- Chg	Val	(4Br-Ph)O	Acca	27	195				11
	- Chg	Val	(2Br-Ph)O	Acca	27					11
240 Ac	- Chg	Val	(3Br-Ph)O	Acca	42					11
241 Ac	- Chg	Val	z s	Acca	18					t I
242 Ac	- Chg	Val	(4Br-Ph)S	Acca	36					11
ļ	Chg	Val	0 2	Acca	35					11
244 Ac	- Chg	Val		Acca	10					1.1
245 Ac	Chg	Val		Acca	5.0					11

<u> </u>		Ī	1	Ţ	T	T				Ţ
SEQ ID	NO.	11	49		11	11	11	11	11	11
AAA	(%)		119±1				-	91±1		
MS	(MH⁺)		803.6					651.4		
Other	(M _H)									
HLE PPE Other	(Ми) (ми)									
	(mm)									
IC ₅₀	(mm)	33	10	3.6	9.7	4.5	13	20	28	5.1
PI		Acca	Nva	Acca	Acca	Асса	Acca	Nva	Acca	Acca
R ₁₃		O OMe	Ph(CH ₂) ₂	D O Z	(4I-Ph)O	Z/	HO N O(0)0	1-NpCH ₂ O	O(0)OH	Mec(O)
P3		Val	Val	Chg	Val	Val	Val	Val	Val	Val
P4		Chg	Ile	Chg	Chg	Chg	Chg	Chg	Chg	Chg
P5			Asp Asp	 	: 1	 	· .	i	i i	
Pe		· · 1	$^{\circ}Asp$	<u> </u>	: 1	. 1	.		: 1	
<u>8</u>		!			:	:	1		; :	
ļ 			Ac	Ac	Ac	Ac	Ac	Ac	Ac	Ac
Tab.2	Comp.	246	247	248	249	250	251	252	253	254

Comp. 255 Ac 256 Ac		•	L'3	174	5	K13	LT	ار گر	HLE	112 0000	3	לכל	717
+								(mm)	(Мц) (Мц) (Мц)	(mm) ((MH+)	(%)	NO.
256 Ac		:		Chg	Val	ON NO	Acca	4.5					11
		: 1		Chg	Val	Z-Z // Z	Acca	11					11
257 Ac	٠			Chg	Val	ō z	Acca	2.2	>300				11
258 Ac	: : :	<u>. i</u>		Chg	Val		Acca	16					11
259 Ac	!			Chg	Val	Mee O	Acca	28					1.1
260 A	Ac	Asp	D-Glu Ile	ı Ile	Val	O-Bn	Cys	0.18					• 1
261 A	Ac		1	Chg	Val	O-Bn	Cys	28			1		11
262 A	Ac	1 -	<u> </u>	Ile	Val	1-NpCH ₂ O	Acca	40			631 (M+Na)		t I

SEQ ID	NO.	11	1.1	1.1	1.1	11	11	: 1	• • • • • • • • • • • • • • • • • • •
AAA SEQ ID	(%)								
PPE Other MS	(µМ) (µМ) (µМ) (WH+)	771 (M+Na)	811	811	721.4	721.4	665.1	835.5 (M-H)	745 (M-H)
Other	(mm)				i			!	
PPE	(mM)	!	<u> </u>		<u> </u>	!			
IC ₅₀ HLE	(mM)				 		!		: :
IC ₅₀	(mM)	17	6.4	10	9.7	12	24	2.2	2.0
Ы		Acca	Acca	Acca	Acca	Асса	Acca	Acca	Acca
R_{13}		Val 1-NpCH2O	Val 1-NpCH2O	Val 1-NpCH2O	1-NpCH ₂ O	Val 1-NpCH ₂ O	Val (3Br-Ph)CH ₂ O	Val 11-NpCH ₂ O	Val 1-NpCH ₂ O
<u>P3</u>		Val	Val	Val	Val	Val	Val	Val	Val
P4		lle] 	Ile	lle Ne	- - - - -	Chg	Chg	Chg
175		· • 1	;	.]	. 1	; ; i		1	1
P6							: 1		
В		HOOC Me	Bno		.HOOC4, 1		Ac		HOOGH.
Tab.2	Comp.	263	264	265	266	267	. 892	269	270

	:] · ·				
SEQ ID	ON O	 		20	11	h I
AAA	(%)	:	:	! :		·
MS	MH+)		i i		!	· - i
IC ₅₀ HLE PPE Other MS	(нМ) (нМ) (МН+)		÷	† :	+	
PPE ((M _H)	:		:	<u>.</u>	
HLE						
	(M _m)	&. &.	27	17.5	7.6	6.5
Ы		Acca	Acca	Nva	Cys	Acca
R ₁₃		1-NpCH ₂ O	(3,5-Br ₂ -Ph)CH ₂ O	H	H	CH,OH
P3	,	.val	Val	Val	Val	Val
Ь4 -		Chg	Chg	IIe		Chg
152		. 1	. 1	Asp Asp Ile	D-Val	
P6 P5						
В		H)		, , ,	· ·
Tab.2	Comp.	277	272 F	273 A	274 -	275 7

<u>~</u>	A O
L	≯
P3	κ _ε −∕ □ ο
P4	TZ O⇒ ZI
P5	α,— = 0
9 .	σ TZ ω

,			_,
MS AAA SEQ ID	NO.	<u> </u>	32
AAA	(%)	8.00	102
	$(\mu M) (MH^{+})$ (%)	713	713
IC ₅₀ HLE PPE Other	(mM)		:
PPE	(mM)		
HLE	(мм) (мм) (мм)		
$I_{C_{50}}$	(mm)	*86	*68
		Nva	Nva
M		N-Y-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-	Merry N
133		Val	Val
P5 P4 P3		Asp He	
15		Asp	dsV
P6		Asp	302 Ac Asp Asp He
B 9		301 Ac Asp	Y
TAB 3 B P6	Cpd#	301	302

TAR 3 R P6 P5 P4 P3	P4 P3	M	Ы	IC ₅₀	HIE	PPE	Other	IC ₅₀ HI.E PPE Other MS	AAA	AAA <u>SEQ ID</u>
-				(M _H)	(mm)	(mm)	(mm)	(%) (т) (мн) (мн) (мн) (мн) (мн)	(%)	NO.
303 Ac Asp Asp	lle Val	HIII	Nva	*#				753	104.4	23
		12/2 ₁								
304 Ac	Chg. Val	o -	Acca	1:1	! 					

AMENDED CLAIMS SHOWING THE CHANGES MADE

1. (Thrice Amended) A compound of formula I or the racemates, diastereoisomers or optical isomers thereof:

$$B = \begin{bmatrix} P_5 & P_4 & P_3 & P_2 & P_1 \\ \vdots & \vdots & \vdots & \vdots \\ R_6 & A & P_4 & P_5 & P_6 & P_6 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ R_7 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 \\ \vdots & \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 \\ \vdots & \vdots & \vdots \\ R_8 & P_7 & P_7 \\ \vdots & \vdots &$$

wherein Q is CH_2 or N-Y wherein Y is H or C_{1-6} alkyl;

a) when Q is CH₂, a is 0, b is 0, and B is an amide derivative of formula $R_{11a}N(R_{11b})$ -C(O)-wherein R_{11a} is H; C_{1-10} alkyl; C_6 aryl; C_{7-10} alkylaryl; C_{3-7} cycloalkyl or C_{4-8} (alkyleycloalkyl) optionally substituted with carboxyl; or heterocycle- C_{1-6} alkyl;

and R_{11b} is C_{1-6} alkyl substituted with carboxyl, (C_{1-6} alkoxy)carbonyl or phenylmethoxycarbonyl; or C_{7-16} aralkyl substituted on the aromatic portion with carboxyl, (C_{1-6} alkoxy)carbonyl or phenylmethoxycarbonyl;

or R_{11a} and R_{11b} are joined to form a 3 to 7-membered nitrogen-containing ring optionally substituted with carboxyl or (C_{1-6} alkoxy) carbonyl;

or

b) when Q is N-Y, a is 0 or 1, b is 0 or 1, and

B is H-an acyl derivative of formula R_{11} -C(O)- or a sulfonyl of formula R_{11} -SO₂ wherein

 R_{11} is (i) C_{1-10} alkyl optionally substituted with carboxyl or C_{1-6} alkanoyloxy; C_{1-6} alkoxy; or carboxyl substituted with 1 to 3 C_{1-6} alkyl substituents:

- (ii) C_{+} eyeloalkyl or C_{+} alkyleyeloalkyl, both optionally substituted with carboxyl, $(C_{+6}$ alkoxy)carbonyl or phenylmethoxycarbonyl;
- (iii) C_6 or C_{10} aryl or $C_{7\text{-}16}$ aralkyl optionally substituted with $C_{1\text{-}6}$ alkyl, hydroxy, or amino optionally substituted with $C_{1\text{-}6}$ alkyl; or
- (iv) Het optionally substituted with C_{1-6} alkyl, hydroxy, amino optionally substituted with C_{1-6} alkyl, or amido optionally substituted with C_{1-6} alkyl,

HOOC-
$$(C_{1-6}$$
alkyl)-N NCOO-(aryl or C_{1-6} alkylaryl)

 R_6 , when present, is C_{1-6} alkyl substituted with carboxyl;

 R_5 , when present, is C_{1-6} alkyl optionally substituted with carboxyl;

and

c) when Q is either CH₂ or N-Y, then

 R_4 is C_{1-10} alkyl, C_{3-7} cycloalkyl or C_{4-10} (alkylcycloalkyl);

z is oxo or thioxo;

 R_3 is C_{1-10} alkyl optionally substituted with carboxyl, C_{3-7} cycloalkyl or C_{4-10} (alkylcycloalkyl); W is a group of formula II:

wherein R_2 is C_{1-10} alkyl or C_{3-10} cycloalkyl optionally substituted with carboxyl or an ester or amide thereof; C_6 or C_{10} aryl or C_{7-16} aralkyl; or

W is a group of formula IIa:

wherein X is CH or N; and

 R_{2a} is divalent C_{3-4} alkylene which together with X and the carbon atom to which X and R_{2a} are attached form a 5- or 6-membered ring, said ring optionally substituted with OH; SH; NH₂; carboxyl; R_{12} ; CH_2 - R_{12} , OR_{12} , $C(O)OR_{12}$, SR_{12} , NHR_{12} or $NR_{12}R_{12a}$.

wherein R_{12} and R_{12a} are independently a saturated or unsaturated C_{+-} cycloalkyl or C_{4-+} (alkyl cycloalkyl) being optionally mono-, di- or tri-substituted with R_{13} , or R_{12} and R_{12a} is a C_6 or C_{10} aryl or C_{7-16} aralkyl optionally mono-, di- or tri-substituted

with R_{15} , or R_{12} and R_{12a} is Het or (lower alkyl)-Het optionally mono-, di- or trisubstituted with R_{15} ,

wherein each R_{15} is independently C_{1-6} alkyl; C_{1-6} alkoxy; amino optionally

mono- or di-substituted with C_{1-6} alkyl; sulfonyl; NO_2 ; OH; SH; halo; haloalkyl; amido optionally mono-substituted with C_{1-6} alkyl, C_6 or C_{10} aryl, C_{7-16} aralkyl, Het or (lower alkyl)-Het; carboxyl; carboxy(lower alkyl); C_6 or C_{10} aryl, C_{7-16} aralkyl or Het, said aryl, aralkyl or Het being optionally substituted with R_{16} ; wherein R_{16} is C_{1-6} alkyl; C_{1-6} alkoxy; amino optionally mono- or disubstituted with C_{1-6} alkyl; sulfonyl; NO_2 ; OH; SH; halo; haloalkyl; carboxyl; amide; or (lower alkyl)amide;

or X is CH or N; and R_{2a} is a divalent $C_{3.4}$ alkylene which together with X and the carbon atom to which X and R_{2a} are attached form a 5- or 6-membered ring which in turn is fused with a second 5-, 6- or 7-membered ring to form a bicyclic system wherein the second ring is substituted with OR_{12a} wherein R_{12a} is C_{7-16} aralkyl;

 R_{1a} is hydrogen, and R_1 is the side chain of an amino acid selected from the group consisting of cysteine (Cys), aminobutyric acid (Abu), norvaline (Nva) and allylglycine (AlGly); or R_{1a} and R_1 together form a 3- to 6-membered ring optionally substituted with R_{14} wherein R_{14} is C_{1-6} alkyl, C_{3-5} cycloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_6 aryl or C_{7-10} aralkyl all optionally substituted with halo; and

A is hydroxy; or C_{1-6} alkylamino, di(C_{1-6} alkylamino or phenyl- C_{1-6} alkylamino; wherein Het is a five-, six-, or seven-membered saturated or unsaturated, including aromatic, heterocycle containing from one to four heteroatoms selected from nitrogen, oxygen and sulfur, which heterocycle is optionally fused to a benzene ring: or a pharmaceutically acceptable non-toyic salt or ester thereof.

45. (Twice Amended) A compound of formula IB or the racemates, diastereoisomers, emoptical isomers, racemic mixture of diastereoisomers or racemic mixture of optical isomers thereof:

wherein

B, a, b, R_6 , R_5 , Y, R_4 , Z, R_3 , and A are as defined in claim 1,

 R_{13} is R_{12} , OR_{12} , $C(O)OR_{12}$, SR_{12} , NHR_{12} or $NR_{12}R_{12a}$ wherein R_{12} and R_{12a} are as defined in claim 1; and

 R_{14} is C_{1-6} alkyl, C_{2-6} alkenyl optionally substituted with halogen; C_{6-10} aryl or C_{7-10} aralkyl optionally substituted with halogen; or a pharmaceutically acceptable non-toxic salt or ester thereof.

- 47. (Amended) The compound of formula IB according to claim 4645, wherein B is 400 are an acyl derivative of formula $R_{11}C(O)$ wherein R_{11} is C_{1-6} alkyl; C_{1-6} alkoxy; C_{3-7} cycloalkyl optionally substituted with hydroxy; amido optionally substituted with C_{1-6} alkyl or Het; C_6 or C_{10} aryl, C_{7-16} aralkyl or Het all optionally substituted with C_{1-6} alkyl or hydroxy.
- 48. (Amended) The compound of formula IB according to claim 47, wherein B is $\frac{H \cdot or}{R_{11}}C(O)$ -wherein R_{11} is C_{1-6} alkyl,

49. (Amended) The compound of formula IB according to claim 48, wherein B is H-acetyl;

$$\bigcap_{0}^{N} \bigcap_{i}^{N} \bigcap_{j}^{N} \bigcap_{j}^{N} \bigcap_{i}^{N} \bigcap_{j}^{N} \bigcap_{j}^{N} \bigcap_{i}^{N} \bigcap_{j}^{N} \bigcap_{j$$

72. (Amended) A compound of formula (I):

wherein B, P6, P5, P4, P3, W and P1 are as defined below, said compound selected from the group consisting of:

group c	Onsisting	<i>j</i> UI.							
Comp	В	P6	P5	P4	Р3	W	P1	SEQ ID	
								<u>NO.</u>	
101	Ac	Asp	Asp	lle	Val	Pro	Cys;	<u>8</u>	İ
102	Ac	Glu	Asp	lle	Val	Pro	Cys;	<u>9</u>	j
103	DAD		Asp	lle	Val	Pro	Cys;	<u>10</u>	İ
104	Ac	Asp	D-Asp	lle	Val	Pro	Cys:	=	İ
105	Ac	Asp	D-Glu	lle	Val	Pro	Cys;	<u> </u>	İ
106	Ac	Asp	Glu	lle	Val	Pro	Cys;	<u>11</u>	
107	Ac	Asp	Val	lle	Val	Pro	Cys;	<u>12</u>	
108	Ac	Asp	Tbg	lle	Val	Pro	Cys;	<u>13</u>	
109	Ac	Asp	Asp	Val	Val	Pro	Cys;	<u>14</u>	İ
110	Ac	Asp	Asp	Chg	Val	Pro	Cys;	<u>15</u>	
111	Ac	Asp	Asp	Tbg	Val	Pro	Cys;	<u>16</u>	
112	Ac	Asp	Asp	Leu	Val	Pro	Cys;	<u>17</u>	
113	Ac	Asp	Asp	lle	lle	Pro	Cys;	<u>18</u>	
114	Ac	Asp	Asp	lle	Chg	Pro	Cys;	<u>19</u>	
115	Ac	Asp	Asp	lle	Val	Abu	Cys;	<u>20</u>	İ
116	Ac	Asp	Asp	lle	Val	Leu	Cys;	<u>21</u>	
117	Ac	Asp	Asp	lle	Val	Phe	Cys;	<u>22</u>	
118	Ac	Asp	Asp	lle	Val	Val	Cys;	<u>23</u>	Ì
119	Ac	Asp	Asp	lle	Val	lle	Cys;	<u>24</u>	i
120	Ac	Asp	Asp	lle	Val	Ala	Cys;	<u>25</u>	
121	Ac	Asp	Asp	lle	Val	Hyp(4-Bn)	Cys;	<u>26</u>	Ì
122	Ac	Asp	Asp	lle	Val	Pro	Abu;	<u>27</u>	İ
123	Ac	Asp	Asp	lle	Val	Pro	Nva;	<u>28</u>	

U. S. Appln. No. 09/368,670 Amendment

Comp	В	P6	P5	P4	P3	W	P1	SEQ ID
								NO.
124	Ac	Asp	Asp	lle	Val	Pro	AlGly;	<u>29</u>
125	Ac	Asp	Asp	lle	Val	Pro	Acpe;	<u>30</u>
126	Ac	Asp	Asp	lle	Val	Pro	Acca;	<u>31</u>
127	Ac	Asp	Asp	lle	Val	Pip	Nva;	<u>32</u>
128	Ac	Asp	D-Glu	lle	Val	Pro	Nva;	=
129	Ac	Asp	Tbg	lle	Val	Pro	Nva;	<u>33</u>
130	DAD		Asp	lle	Val	Pro	Nva;	<u>34</u>
131	Ac	Asp	Glu	Chg	Glu	Glu	Cys;	<u>35</u>
132	Ac	Asp	D-Glu	Chg	Glu	Glu	Acca;	=
and								<u>36</u>
133	Ac	Asp	Glu	Chg	Val	Glu(OBn)	Acca.	·

73. (Amended) A compound of formula (I)

wherein B, P6, P5, P4, P3, R₁₃ and P1 are as defined below, said compound selected from the group consisting of:

	orisisting or.		D.5	D4	P3	R ₁₃	P1	SEQ ID
Comp.	В	P6	P5	P4	23	N13	' '	
								NO.
201	Ac	Asp	Asp	lle	Val	O-Bn	Nva:	37
202	Ac	Asp	D-Val	lle	Val	O-Bn	Nva;	=
203	Ac	Asp	D-Glu	lle	Val	O-Bn	Nva;	=
204	Ac	Asp	Asp	lle	Val	o-tolyl-methoxy	Nva;	<u>38</u>
205	Ac	Asp	Asp	lle	Val	m-tolyl-methoxy	Nva;	39
206	Ac	Asp	Asp	lle	Val	p-tolyl-methoxy	Nva;	40
			ļ	lle	Val	1-NpCH ₂ O	Nva;	41
207	Ac	Asp	Asp	lle	Val	1-NpCH ₂ O	Nva;	41

U. S. Appln. No. 09/368,670 Amendment

Comp.	В	P6	P5	P4	P3	R ₁₃	P1	SEQ ID
•								<u>NO.</u>
208	Ac	Asp	Asp	lle	Val	2-NpCH₂O	Nva;	<u>42</u>
209	Ac	Asp	Asp	lle	Val	4-tert-butyl-phenyl)-	Nva;	<u>43</u>
						methoxy		
210	Ac	Asp	D-Glu	Chg	Val	O-Bn	Cys;	=
211	Ac	Asp	D-Glu	Chg	Val	O-Bn	Nva;	=
212	Ac	Asp	D-Glu	lle	Val	O-Bn	Acca;	Ξ
213	Ac	Asp	D-Glu	lle	Val	2-NpCH ₂ O	Nva;	=
214	Ac	Asp	D-Glu	Chg	Val	2-NpCH ₂ O	Nva;	=
215	Ac	Asp	D-Glu	Chg	Val	1-NpCH ₂ O	Acca;	=
216	Ac	Asp	Asp	lle	Val	Bn	Nva;	44
217	Ac	Asp	Asp	lle	Val	Ph(CH ₂) ₃	Nva;	<u>45</u>
218	Ac	Asp	D-Glu	lle	Val	O-Bn	Nva;	=
219	Ac		Asp	lle	Val	1-NpCH ₂ O	Nva;	46
220	DAD	- 		N(Me)lle	Val	1-NpCH ₂ O	Nva;	=
221	DAD			lle	Val	1-NpCH ₂ O	Nva;	=
222	DAE			lle	Val	1-NpCH ₂ O	Nva;	=
223	но			lle	Val	1-NpCH ₂ O	Nva;	=
224	но 🛴			lle	Val	1-NpCH ₂ O	Nva;	=
225	Ac			lle	Val	1-NpCH ₂ O	Nva;	=
226	DAE	- 		Chg	Val	1-NpCH ₂ O	Acca;	=
227	Ac			Chg	Val	1-NpCH ₂ O	Acca;	=
228	Ac			Chg	Val	O-Bn		=
230	Ac	Asp	Asp	lle	Val	Ph(CH ₂) ₃	Nva;	47
231	Ac			Chg	Chg	1-NpCH ₂ O	Acca;	=
232	AcOCH ₂ -			Chg	Chg	1-NpCH ₂ O	Acca;	=
233	Ac	Asp	Glu	lle	Val	(3I-Ph) CH ₂ O	Acca;	48
234	Ac			Chg	Chg	O-Bn	Acca;	=

Comp.	В	P6	P5	P4	P3	R ₁₃	P1	SEQ ID
								NO.
235	Вос			Chg	Chg	1-NpCH ₂ O	Acca;	=
236	Ac		Gly	thioxo-lle	Val	1-NpCH ₂ O	Nva;	=
237	DAE			lle	Val	1-NpCH ₂ O	Acca;	=
238	Ac			Chg	Val	(4Br-Ph)O	Acca;	=
239	Ac			Chg	Val	(2Br-Ph)O	Acca;	=
240	Ac			Chg	Val	(3Br-Ph)O	Acca;	=
241	Ac			Chg	Val	N S	Acca;	=
242	Ac			Chg	Val	(4Br-Ph)S	Acca;	=
243	Ac			Chg	Val	O	Acca;	=
244	Ac			Chg	Val	S CF ₃	Acca;	=
245	Ac			Chg	Val	O CF ₃	Acca;	=
246	Ac			Chg	Val	0—————————————————————————————————————	Acca;	=
247	Ac	Asp	Asp	lle	Val	Ph(CH ₂) ₂	Nva;	49
248	Ac			Chg	Chg	CH ₂ O	Acca;	=
249	Ac			Chg	Val	(41-Ph)O	Acca;	=
250	Ac			Chg	Val		Acca;	-
251	Ac			Chg	Val	HO N	Acca;	=
252	Ac			Chg	Val	1-NpCH ₂ O	Nva;	=

Comp.	В	P6	P5	P4	P3	R ₁₃	P1	SEQ ID
								NO.
253	Ac			Chg	Val	С(0)ОН	Acca;	=
254	Ac			Chg	Val	O N MeC(O)	Acca;	Ξ
255	Ac			Chg	Val	NO ₂	Acca;	=
256	Ac			Chg	Val	N N N N N N N N N N N N N N N N N N N	Acca;	=
257	Ac			Chg	Val	CI	Acca;	Ξ
258	Ac			Chg	Val	o S	Acca;	=
259	Ac			Chg	Val	Me N F	Acca;	=
260	Ac	Asp	D-Glu	lle	Val	O-Bn	Cys;	=
261	Ac			Chg	Val	O-Bn	Cys;	=
262	Ac	 		lle	Val	1-NpCH ₂ O	Acca;	=
263	HOOC Me Me Me			lle	Val	1-NpCH ₂ O	Acca;	Ξ
264	BnO CO CC			lle	Val	1-NpCH ₂ O	Acca;	=
265				lle	Val	1-NpCH ₂ O	Acca;	=
266	HOOCH			lle	Val	1-NpCH ₂ O	Acca;	=

Comp.	В	P6	P5	P4	P3	R ₁₃	P1	SEQ ID
								NO.
267	H000m/00			lle	Val	1-NpCH ₂ O	Acca;	-
268	Ac			Chg	Val	(3Br-Ph)CH₂O	Acca;	=
269	Bn0000 m			Chg	Val	1-NpCH ₂ O	Acca;	=
270	HOOCINCO			Chg	Val	1-NpCH ₂ O	Acca;	=
271	COOH CH ₂ N TCO CO OBn			Chg	Val	1-NpCH ₂ O	Acca;	=
272	Ac			Chg	Val	(3,5-Br ₂ -Ph)CH ₂ O	Acca;	=
273	Ac	Asp	Asp	lle	Val	Н	Nva;	<u>50</u>
274	Ac	Asp	D-Val	lle	Val	Н	Cys;	=
and 275	Ac			Chg	Val	СН ₂ ОН	Acca.	Ξ

74. (Amended) A compound of formula (I):

wherein B, P6, P5, P4, P3, W and P1 are as defined below, said compound selected from the group consisting of:

Comp	В	P6	P5	P4	P3	W	P1	SEQ ID	
								NO.	
301	Ac	Asp	Asp	lle	Val	22 N " M	Nva; e	<u>51</u>	İ
302	Ac	Asp	Asp	lle	Val	Me ZZZ	Nva;	<u>52</u>	
303	Ac	Asp	Asp	lle	Val	7-7-7-1 N	Nva;	<u>53</u>	
and 304	Ac			Chg	Val	Bn-C	Acca.	Ξ	İ

76. (Amended) A compound of formula (I):

wherein B, P6, P5, P4, P3, R_{13} , R_{14} and P1 are as defined below, said compound selected from the group consisting of:

U. S. Appln. No. 09/368,670 Amendment

Tab.	В	P6	P5	P4	Р3	R ₁₃	R ₁₄	P1
5_Cpd				_				$C_1 - C_2$
501	Ac			Chg	Val	OBn	Et	1R, 2R
502	Ac			Chg	Val	OBn	Et	1R, 2?
503	Ac			Chg	Chg	1-NpCH ₂ O	Et	1R, 2?
504	Ac			Chg	Chg	1-NpCH ₂ O	Et	1R, 2?
505	Ac			Chg	Chg	1-NpCH ₂ O	Et	1R, 2R
506	Ac			Chg	Chg	1-NpCH ₂ O	Et	1S, 2S
507	Ac			Chg	Val	1-NpCH ₂ O	Me	1R, 2.3
508	Ac			Chg	Val	1-NpCH ₂ O	CHMe ₂	IR, 2?
509	Ac	Asp	D-Glu	Chg	Chg	1-NpCH ₂ O	Et	1R, 2R
510	Ac			Chg	Val	1-NpCH ₂ O	CH ₂ O CH ₂ Ph	1R, 2?
511	Ac			Chg	Val	1-NpCH ₂ O	CH ₂ O CH ₂ Ph	1R, 2?
512	Ac			Chg	Val	1-NpCH ₂ O	(CH ₂) ₂ Ph	1R, 2?
513	Ac			Chg	Val	1-NpCH ₂ O	Et	1R,2R
514	Ac			Chg	Val	1-NpCH ₂ O	Et	1S,2S
515	Ac			Chg	Val	1-NpCH ₂ O	Bz	1R, 22
516	Ac			Chg	Val	1-NpCH ₂ O	Bz	1R, 2.?_
517	Ac	Asp	D-Glu	Ile	Val	OBn	Et	1R,2R
518	Ac	Asp	D-Glu	Chg	Val	1-NpCH ₂ O	Et	1R,2R
519	Ac			Chg	Val	1-NpCH ₂ O	Pr	1R, 2.7
520	Ac			Chg	Val	1-NpCH ₂ O	Pr	IR, 2?
521	Ac	Asp	D-Val	Chg	Val	1-NpCH ₂ O	Et	1R,2R
522	Ac			Chg	Val		vinyl	1S,2R
523	Ac			Chg	Val		ethyl	1R,2S
524	Ac			Chg	Val		propyl	1R, 2R
		<u> </u>	<u> </u>		t t			