

Prof. Nadson Andrey

Sistema Binário na Informática: A Linguagem da Tecnologia

Decimal						
0						
1						
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						

Binário
0000
0001
0010
0011
0100
0101
0110
€0111
1000
1001
1010
1011
1100
1101
1110
1111

O que é o Sistema Binário?

• O sistema binário é um sistema numérico que utiliza apenas dois dígitos: 0 e 1. É como um alfabeto com apenas duas letras!

Analogia: O Sistema Binário como uma Luz

• Imagine uma lâmpada que pode estar acesa (1) ou apagada (0). Usando combinações de lâmpadas, podemos representar diferentes números e informações.

DECIMAL	BINARIO
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010

Contagem Binária: 0 e 1 são tudo o que você precisa.

• Assim como contamos em decimal (0, 1, 2, 3...), no sistema binário, começamos com 0 e 1, depois 10 (que é 2 em decimal), 11 (3 em decimal), e assim por diante.

Bits: Os Blocos de Construção da Informação

• Um único dígito binário (0 ou 1) é chamado de **bit**. Os bits são como pequenos blocos de construção que formam a base de todas as informações digitais.

1 byte = 8 bits

1 kilobyte = 1024 bytes

1 megabyte = 1024 kilobyte

1 gigabyte = 1024 megabyte

1 terabyte = 1024 gigabyte

Bytes: Grupos de Bits

• 8 bits juntos formam um **byte**, que é uma unidade de armazenamento de dados. Os bytes nos permitem armazenar números, letras, símbolos, imagens, vídeos e muito mais.

Representação de Dados: Como os bits representam tudo

- Utilizando combinações de bits, podemos representar qualquer informação, incluindo letras, números, cores, sons e imagens.
- Exemplo: a letra "A" é representada pelo código binário 01000001.

ASCII TABLE

Decimal	Hexadecimal	Binary	0ctal	Char	Decimal	Hexadecimal	Binary	0ctal	Char	Decimal	Hexadecimal	Binary	0ctal	Char
0	0	0	0	[NULL]	48	30	110000	60	0	96	60	1100000	140	`
1	1	1	1	[START OF HEADING]	49	31		61	1	97	61	1100001		а
2	2	10	2	[START OF TEXT]	50	32		62	2	98	62	1100010		b
3	3	11	3	[END OF TEXT]	51	33		63	3	99	63	1100011		C
4	4	100	4	[END OF TRANSMISSION]	52	34	110100	64	4	100	64	1100100		d
5	5	101	5	[ENQUIRY]	53	35	110101		5	101	65	1100101		e
6	6	110	6	[ACKNOWLEDGE]	54	36	110110		6	102	66	1100110		f
7	7	111	7	[BELL]	55	37	110111		7	103	67	1100111		g
8	8	1000	10	[BACKSPACE]	56	38		70	8	104	68	1101000		h
9	9	1001	11	[HORIZONTAL TAB]	57	39	111001		9	105	69	1101001		ï
10	A	1010	12	[LINE FEED]	58	3A	111010			106	6A	1101010		i
11	В	1011	13	[VERTICAL TAB]	59	3B	111011		;	107	6B	1101011		k
12	C	1100	14	[FORM FEED]	60	3C	111100		<	108	6C	1101100		î .
13	D	1101	15	[CARRIAGE RETURN]	61	3D	111101		=	109	6D	1101101		m
14	E	1110	16	[SHIFT OUT]	62	3E	111110		>	110	6E	1101110		n
15	F	1111	17	[SHIFT IN]	63	3F	111111		?	111	6F	1101111		0
16	10	10000	20	[DATA LINK ESCAPE]	64	40	1000000		@	112	70	1110000		р
17	11	10001	21	IDEVICE CONTROL 11	65	41	1000001		Ă	113	71	1110001		q
18	12	10010	22	[DEVICE CONTROL 2]	66	42	1000010		В	114	72	1110010		r
19	13	10011	23	IDEVICE CONTROL 31	67	43	1000011		С	115	73	1110011		S
20	14	10100	24	[DEVICE CONTROL 4]	68	44	1000100		D	116	74	1110100		t
21	15	10101	25	[NEGATIVE ACKNOWLEDGE]	69	45	1000101		E	117	75	1110101		u
22	16	10110	26	[SYNCHRONOUS IDLE]	70	46	1000110		F	118	76	1110110		V
23	17	10111	27	[END OF TRANS. BLOCK]	71	47	1000111		G	119	77	1110111		w
24	18	11000	30	[CANCEL]	72	48	1001000		н	120	78	1111000		X
25	19	11001	31	[END OF MEDIUM]	73	49	1001001		1	121	79	1111001		У
26	1A	11010	32	[SUBSTITUTE]	74	4A	1001010		J	122	7A	1111010		z
27	1B	11011	33	[ESCAPE]	75	4B	1001011		K	123	7B	1111011		{
28	1C	11100	34	[FILE SEPARATOR]	76	4C	1001100		L	124	7C	1111100		Ť
29	1D	11101	35	[GROUP SEPARATOR]	77	4D	1001101	115	М	125	7D	1111101		}
30	1E	11110	36	[RECORD SEPARATOR]	78	4E	1001110	116	N	126	7E	1111110	176	~
31	1F	11111	37	[UNIT SEPARATOR]	79	4F	1001111		0	127	7F	1111111		[DEL]
32	20	100000	40	[SPACE]	80	50	1010000	120	P					
33	21	100001	41	1	81	51	1010001	121	Q					
34	22	100010	42	II .	82	52	1010010	122	R					
35	23	100011	43	#	83	53	1010011	123	S					
36	24	100100	44	\$	84	54	1010100	124	T					
37	25	100101	45	%	85	55	1010101	125	U					
38	26	100110	46	&	86	56	1010110	126	V					
39	27	100111	47	1	87	57	1010111	127	W					
40	28	101000	50	(88	58	1011000	130	X					
41	29	101001	51)	89	59	1011001	131	Υ					
42	2A	101010	52	*	90	5A	1011010	132	Z					
43	2B	101011	53	+	91	5B	1011011	133	[
44	2C	101100		,	92	5C	1011100	134	\					
45	2D	101101		-	93	5D	1011101	. 135	1					
46	2E	101110	56		94	5E	1011110	136	^					
47	2F	101111	57	1	95	5F	1011111	. 137	_					

O Processamento Binário: Como os computadores trabalham

• Os computadores usam circuitos eletrônicos para realizar operações lógicas com os bits. Essas operações são a base de todo o processamento de informações.

Exemplos Práticos: O mundo digital em ação

• O sistema binário está por trás de tudo que fazemos no mundo digital, desde navegar na internet até jogar um videogame.

Conclusão: O Sistema Binário – A linguagem do futuro

• O sistema binário é a linguagem fundamental da computação moderna. Entender seus princípios é essencial para compreender como funciona o mundo digital e, com certeza, desempenhará um papel crucial no futuro da tecnologia.

Fim da Apresentação