INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

LICENCIATURA EM ENGENHARIA INFORMÁTICA E MULTIMÉDIA

PROCESSAMENTO DIGITAL DE SINAIS Teste Nº 1

20 de Abril de 2015

Duração: 1h30mn

1. Considere o sinal contínuo, $x(t) = 2 + 2\cos(2\pi 21t + \frac{\pi}{3})$.

- $\{2.0v\}$ (a) Represente graficamente x(t). Qual o período de x(t)?
- $\{2.0v\}$ (b) Represente graficamente o espectro de amplitude, |X(f)| e de fase $\angle X(f)$ do sinal x(t).
- $\{2.0v\}$ (c) Considere agora o sinal $y(t) = x(t) \sin(2\pi 33t)$. Qual o periódo fundamental de y(t)? Represente graficamente espectro de amplitude de y(t).
- $\{1.0v\}$ (d) Pretende-se digitalizar o sinal y(t). Qual a frequência adequada? Justifique.
- $\{1.0v\}$ (e) Considerando que y(t) é digitalizado com $F_s=100$ Hz, e codificado com 8 bits por amostra, qual o tamanho do ficheiro produzido quando y(t) tem uma duração de 9 minutos?
 - 2. Considere que Y_k representa os coeficientes da série de Fourier do sinal y(t)

$$Y_k = \begin{cases} -5 & , & k = 2 e - 2 \\ 10e^{j\frac{\pi}{3}} & , & k = 5 \\ 10e^{-j\frac{\pi}{3}} & , & k = -5 \\ 2 & , & k = 0 \end{cases}$$

- $\{2.0v\}$ (a) Represente graficamente em função de k, $|Y_k|$ e $\angle Y_k$.
- $\{2.0v\}$ (b) Considerando que a frequência fundamental, f_0 , é 50Hz, determine a expressão analítica de y(t).
- $\{2.0v\}$ (c) Calcule a potência de y(t) através da relação de Parseval.
 - 3. Considere o sinal contínuo e periódico, z(t) de período $T_0 = 5$ segundos, do qual se representa um troço na figura.
- $\{2.0v\}$ (a) Determine a série de Fourier de z(t).
- {2.0v} (b) Represente graficamente o espectro de amplitude e de fase.
- $\{2.0v\}$ (c) Seja w(t)=2z(t+2)+2. Represente graficamente w(t). Calcule W_k .

