RTL8762D 评估板用户手册

V1.0 2020/01/20

修订历史(Revision History)

日期	版本	修改	
2021/01/20	V1.0	初稿	
2021/01/20	V 1.0	Mailed	

目 录

修订历史(Revision History)	
图目录	
1 概 述	
1.1 RTL8762D EVB 简介	
1.2 评估板区块和接口分布	
1.2.1 评估板区块详细说明	
1.2.2 主芯片(模组)	5
1.2.3 电源部分	6
1.2.4 IO 接口部分	7
1.2.5 Interface 部分	7
1.2.6 其他部分	8
1.3 开发母版 pin 的分配	9
2 开发板使用说明	
2.1 使用板载 UART 转换芯片抓取 log	13
2.2 在评估板上量测电流	
2.3 六轴传感器	14
2.4 子板 Flash 说明	

表格目录

表 1-1 子板 IO pin 分配......9

图目录

图	1-1 评估板区块图	4
	1-2 评估板接口分布图	
	1-3 子板	
	1-4 电源跳线示意图	
图	1-5 HCI UART 跳线	8
图	1-6 LOG 跳线	8
图	1-7 G-sensor I2C 接线	8
图	1-8 EVB LED 部分原理图	9
图	1-9 EVB 复位按键及 5 组独立按键原理图	9
图	2-1 LOG out 接线	.13
图	2-2 评估板上电源示意图	.13

1 概 述

1.1 RTL8762D EVB 简介

这份文档主要介绍 8762D Bluetooth® 评估板的硬件使用。8762D 评估板上提供了客户开发的硬件环境,包括:

- 1. 电源转换模块;
- 2. 6轴运动传感器;
- 3. 4路 LED 和 6路按键;
- 4. 纽扣电池和锂电池座;
- 5. USB 转 UART 转换芯片, FT232RL。

1.2 评估板区块和接口分布

1.2.1 评估板区块详细说明

评估板区块和接口分布,见图 1-1 和图 1-2。

图 1-1 评估板区块图

图 1-2 开发板接口分布图

1.2.2 主芯片 (模组)

标记 5: EVB 子板-母板,连接母座,用于连接 RTL8762D 子板,子板见下图 1-3。

图 1-3 子板

请注意: 子板天线朝向应与母板天线丝印方向一致, 避免接反。

1.2.3 电源部分

见标记 8/9/10/12/13/14/15/21 (标记 21 在评估板板背面)

1). 标记 10, 母板供电选择模块, 见下图 1-4

图 1-4 电源跳线示意图

说明:

- A. 2V5: 使用评估板 USB 电源供电,电压为 2.5V,一般用于烧录 efuse 时的供电,
- B. VCR2302: 使用评估板背面的 CR2302 电池供电,
- C. 3V3: 使用评估板 USB 电源供电, 电压为 3.3V。
- 2) 标记 21: 开发板背面的 CR2032 battery 电池座。
- 3) 标记 15: 锂电池供电插座,可用锂电池对评估板供电。

请注意: 若采用锂电池供电,则标记10不能插跳线帽。

- **4). 标记 13/14:** AMS1117 3.3V 输出 LDO 芯片和 AMS1117 2.5V 输出 LDO 芯片,为 锂电池供电时,提供 5V 转 3.3V 和 5V 转 2.5V 电路。
 - 5). 标记 9: 为 G-sensor 和 SWD VCC 供电,正常工作时,需将此跳线帽接上。
- **6). 标记 8**: 用于测试整机功耗,测试时,去掉此处跳线帽,串接电流表或者是电流仪即可。请注意以下 3 点:
 - A.正常使用时, 需插上此跳线帽,
- B.测试电流时,需关闭 Log 打印,不能连接 UART 或者是 SWD 和调试器。避免影响测试结果,
 - C.特殊情况需测试 3.0v 的电流时,外部要用直流源 3.0V 供电,不能使用板载电源供电。
 - 7). 标记 12: Micro USB 5V 电源输入,此处可接外部 5V 电源或者是 PC 的 USB 端口。
 - 8). 标记 4: GND 跳线。

1.2.4 IO 接口部分

方便外设设备连接及提供 IO 测试接口。

- 1). 标记 1: 2x15 针 IO 跳线,
- 2). 标记 19: 2x14 针 IO 跳线。

1.2.5 Interface 部分

- 1). 标记 2, 作用: MIC 测试跳线, 用于外接 MIC。
- 2). 标记 3, 作用: UART/LOG 测试接口。
- a.使用 HCI UART 时,跳线连接方式如下图 1-5,
- b.使用 LOG 测试时,跳线连接如下图 1-6。

图 1-6 LOG 跳线

- **3). 标记 6**: 6 轴运动传感器芯片 G-sensor, 其电源由 VDD_DEV 提供, 因此需要使用 该功能时, 还需要将 J6 连接。
 - **4). 标记 7: I2C 接口,**连接 G-sensor,跳线 J18, J19, J20 跳线见图 1-7,

图 1-7 G-sensor I2C 接线

如果使用 I2C 接口,将 J18, J19 用跳线帽短接,即把 I2C 信号线接到对应 $M3_2$, $M3_3$ 上。默认情况下,INT 信号线可通过 J20 接到 M2 2 上,未配置 INT 功能可不接。

如果使用 SPI 接口,需要去掉 R1,从测试点 AD0 和 nCS 引出 SDO 和 nCS 飞线到指定 IO 上,再将 J18,J19 用跳线帽短接。

- 5).**标记 12**: Micro USB 接口,将其和 5V 电源或 PC 端连接后,可以进行电路供电或用作 Uart 通信口。
 - 6).标记 20: SWD 接口,用于 SWD 调试。

1.2.6 其他部分

1).**标记 16**: 4 路独立的 LED, 如图 1-8, 用于客户 APP 开发使用,使用时,请确保相应跳线帽(J24~J27)连接正确。

图 1-8 EVB LED 部分原理图

- 2).**标记 17**: 4 路 LED 跳线, 当测试功耗时, LED 可能会被点亮,影响最终功耗测试结果,测试时应将 J24~J27 这 4 路 LED 跳线断开。我们提供默认 LED 配置表,参考表 1-1,如果想用表格外的其他 IO 控制 LED,可以从 J24~J27 连接跳线到指定 IO 上。
 - 3).标记 18: 复位按键(RESET)和 5 组独立按键,如图 1-9。

图 1-9 EVB 复位按键及 5 组独立按键原理图

注意: 电容可与 IC 管脚内部上拉电阻组成滤波电路消除按键抖动,但会对键盘阵列扫描造成影响。默认电容不上件,需要时可添加 0.1 uF 电容。

4).标记 11: FT232 芯片。

1.3 开发母版 pin 的分配

子板边缘和白线齐平时,表示子板引脚没有错位,反之需要检查是否插错,母版 IO pin 分配如表 1-1 所示。

RTL876 RTL876 RTL875 RTL876 RTL876 RTL876 EVB EVB 2DW 2DK 2DJF 2DDF 2DGF 2DKF **FunctIO** socket

表 1-1 子板 IO pin 分配

		RTL876				n	
		2DJF					
P0_0	P0_0	P0_0	P0_0	P0_0	P0_0		M0_0
P0_1	P0_1	P0_1	P0_1	P0_1	P0_1	LED0	M0_1
P0_2	P0_2	P0_2	P0_2	P0_2	P0_2	LED1	M0_2
P0_3	P0_3	P0_3	P0_3	P0_3	P0_3	LOG	M0_3
P0_4	P0_4	P0_4	P0_4	P0_4	P0_4		M0_4
P0_5	P0_5	P0_5	P0_5	P0_5	P0_5),	M0_5
P0_6	P0_6	P0_6	P0_6	P0_6	P0_6		M0_6
P0_7	P0_7	P0_7	P0_7	P0_7	P0_7		M0_7
P1_0	P1_0	P1_0	P1_0	P1_0	P1_0	SWDIO	M1_0
P1_1	P1_1	P1_1	P1_1	P1_1	P1_1	SWDCL	M1_1
						К	
P1_2	P1_2	P1_2	P1_2	P1_2	P1_2		M1_2
P1_3	P1_3	P1_3	P1_3	P1_3	P1_3	LED2	M1_3
P1_4	P1_4	P1_4	P1_4	P1_4	P1_4	LED3	M1_4
P1_5	P1_5	P1_5	P1_5	P1_5	P1_5		M1_5
P1_6	P1_6	P1_6	P1_6	P1_6	P1_6		M1_6
P1_7	P1_7	P1_7	P1_7	P1_7	P1_7		M1_7
MICBIA	MICBIA	MICBIA	MICBIA	MICBIA	MICBIA	MIC_BI	M_MICB

S	S	S	S	S	S	AS	IAS
32k_XI	32k_XI	32k_XI	32k_XI	32k_XI	32k_XI		M_32k_
32K_XI	JZK_XI	JZK_XI	32K_XI	JZK_XI	JZK_XI		ΧI
32k_XO	32k_XO	32k_XO	32k_XO	32k_XO	32k_XO		M_32k_
02K_XO	UZK_XO	02K_XO	021(_)(0	021(_)(0	02K_XO		хо
P2_0	P2_0	P2_0	P2_0	P2_0	P2_0		M2_0
P2_1	P2_1	P2_1	P2_1	P2_1	P2_1		M2_1
						ICM206	
P2_2	P2_2	P2_2	P2_2	P2_2	P2_2	18_INT/	M2_2
						CUT	
P2_3	P2_3	P2_3	P2_3	P2_3	P2_3	KEY3	M2_3
P2_4	P2_4	P2_4	P2_4	P2_4	P2_4	KEY2	M2_4
P2_5	P2_5	P2_5	P2_5	P2_5	P2_5		M2_5
P2_6	P2_6	P2_6	P2_6	P2_6	P2_6	MIC_N	M2_6
P2_7	P2_7	P2_7	P2_7	P2_7	P2_7	MIC_P	M2_7
D2 0	D2 0	D2 0	D2 0	D2 0	D2 0	UART_T	M2 O
P3_0	P3_0	P3_0	P3_0	P3_0	P3_0	×	M3_0
D2 4	D2 4	D2 4	D2 4	D2 4	D2 4	UART_	M2 4
P3_1	P3_1	P3_1	P3_1	P3_1	P3_1	RX	M3_1
P3_2	P3_2	P3_2	P3_2	P3_2	P3_2	ICM206	M3_2

						18_I2C_	
						SCL	
						ICM206	
P3_3	P3_3	P3_3	P3_3	P3_3	P3_3	18_I2C_	M3_3
						SDA	
P3_4	P3_4	P3_4	P3_4	P3_4	P3_4		M3_4
P3_5	P3_5	P3_5	P3_5	P3_5	P3_5	KEY4	M3_5
P3_6	P3_6	P3_6	P3_6	P3_6	P3_6),	M3_6
						SPI0_C	
P4_0	P4_0	P4_0	P4_0	P4_0	P4_0	LK/	M4_0
1 4_0	i p	1 4_0	1 4_0	1 4_0	1 4_0	KEY0/S	1417_0
						wo	
						SPI0_MI	
P4_1	P4_1	P4_1	P4_1	P4_1	P4_1	SO/	M4_1
						KEY1	
P4_2	P4_2	P4_2	P4_2	P4_2	P4_2	SPI0_M	M4_2
, ,	1					OSI	············
P4_3	P4_3	P4_3	P4_3	P4_3	P4_3	SPI0_C	M4_3
		. 4_0			. 4_0	S_N	0
P5_0	P5_0	P5_0	P5_0	P5_0	P5_0	P5_0	M5_0

2 开发板使用说明

2.1 使用板载 UART 转换芯片抓取 log

 $P0_3$ 默认为 log 输出,将与 $P0_3$ 相连的 J15 用跳线帽与 J17 相连接后就可使用评估板上的 UART 转换芯片传输 log 数据到 PC。

使用 Log 测试时, 跳线连接方式如图 2-1 所示:

图 2-10 LOG out 接线

2.2 在评估板上量测电流

评估板预留了电流量测点,如图 2-2 所示:量测芯片时要断开 J23,量测通过 J23 的电流。

- 1. VDD DEV 为评估板外围电源;
- 2. VDD BAT 为评估板 VBAT, HVD 供电;
- 3. VDD IO 为 RTL8762D 芯片的 VDD IO 供电(部分封装无单独的 VDD IO 管脚);

图 2-2 评估板上电源示意图

注意点:

- 1. 测试电流时需要关闭 log 打印,避免额外的耗电;
- 2. 在一些情况要求测量 3.0V 时的电流,因此需要用外部直流电源 3.0V 供电,而不能使用板载供电;
- 3. 测量功耗时,为避免调试设备的影响,请勿将 UART, SWD 和调试器连接。

2.3 六轴传感器

六轴传感器 G-sensor 的电源由 VDD_DEV 提供,因此使用该功能时,需要将 J6 连接,可参考图 1-7。

如果使用 I2C 接口,将 J18,J19 用跳线帽短接,即把 I2C 信号线接到对应 $M3_2$, $M3_3$ 上。默认情况下,INT 信号线可通过 J20 接到 $M2_2$ 上,未配置 INT 功能可不接。

如果使用 SPI 接口,需要去掉 R1,从测试点 AD0 和 nCS 引出 SDO 和 nCS 飞线到指定 IO 上,再将 J18,J19 用跳线帽短接。

2.4 子板 Flash 说明

8762DK 8762DW EVB 需连接外部 flash 支持应用开发。由于不同应用对 IO 数量和 Flash size 要求有所区别, EVB 做如下硬件设计,在实际应用开发中还需注意:

IC PN.	Flash PN.	Size	工作电压	支持
8762DK	GD25Q127C	128Mbit	2.7~3.6V	4 bit
8762DW	GD25Q127C	128Mbit	2.7~3.6V	4 bit