

Regelungstechnik

für BEI4, BMEI4 und IBT

Prof. Dr. B. Wagner

4. Fall: $T_N = 3.3$ (keine Kompensation)

Kap. 6, Teil d: Aufgabe 6.3: Designstudie einer Regelung mit Wurzelortskurven

Wurzelortskurven (WOK)

- ⇒ Bekannt aus der Vorlesung:
 - ⇒ WOK zeigt die Lage der Pole des geschlossenen Regelkreises
 - ⇒ Ein paar Regeln zur Konstruktion von Wurzelortskurven
 - ⇒ Interpretation von Wurzelortskurven (Stabilität / Schwingneigung / Geschwindigkeit d. Regelkreises)
- ⇒ In diesem Abschnitt zu Aufgabe 6.3:
 - ⇒ Anwenden der Regeln an einem Beispiel / Skizzieren von Wurzelortskurven
 - ⇒ Designstudie: Diskussion der Konsequenzen der Wahl der Nachstellzeit T_N in Hinblick auf...
 - ⇒ ... Führungs- und Störverhalten ...
 - ⇒ ... bei Kompensation und bei "Nicht-Kompensation" von Strecken-Zeitkonstanten
 - ⇒ Diskussion der Frage "wie kann ich gutes Führungs- <u>und</u> Störverhalten erzielen"? Einsatz eines Vorfilters im Führungskanals zur Optimierung des Führungsverhaltens

Die Aufgabenstellung:

Übung 6.3

Gegeben sind die Übertragungsfunktionen von Regelstrecke und Regler wie folgt.

$$G_{S}(s) = \frac{1}{(1+s)(1+5s)}$$
 \Rightarrow Zeitkonstanten: 1 und 5 \Rightarrow Pole: -1 und -0,2

$$G_R(s) = V_R \frac{1 + sT_N}{sT_N} \Rightarrow \text{Nachstellzeit } T_N \Rightarrow \text{Pol: 0; Nullstelle: } -1/T_N$$

Diese Übung enthält eine Studie zur Einstellung eines PI-Reglers für eine PT₂-Strecke. Es werden unterschiedliche Einstellungen der Nachstellzeit verglichen. Der Parameter der WOK ist V_R . In den WOKs unten sind die Pole und Nullstellen der Strecke bereits eingetragen.

- Tragen Sie die Pole und Nullstellen des Reglers ein.
- Tragen Sie die Wurzelorte auf der reellen Achse ein.
- 3) Versuchen Sie, die Wurzelortskurve zu skizzieren.

1. Fall: $T_N = 5$ ("Kompensation" der langsamen Zeitkonstante)

=> Diese Verläufe sind in den nächsten Bildern als "Referenz" aufgetragen

Was kann man aus einer WOK ablesen?

Für welche Werte des Parameters ist der Regelkreis stabil?

Für welche Werte des Parameters ist der Regelkreis schwingfähig?

Übergangs-/Einschwingdauer abschätzen

- ⇒ Dominanten Pol / dominantes Polpaar suchen (am nähesten an Null)
- ⇒ Einschwingdauer ~ ca. 4/BetragRealteilDominanterPol
- ⇒ Weiter links ⇔ schneller!

Schwingkreisfrequenz sowie Periodendauer bei schwingfähigen Regelkreisen $\Leftrightarrow 2\pi$ / Imaginärteil

Reglerparametrierung (V_R festlegen)

- z. B. Einstellung der Dämpfung des Regelkreises ⇔ D = cos φ
- z. B. D = $1/\sqrt{2}$ = 0,71 \Leftrightarrow Winkel ϕ = 45° \Leftrightarrow Realteil = Imaginärteil

2. Fall: $T_N = 1$ ("Kompensation" der schnellen Zeitkonstante)

3. Fall: $T_N = 2$ (keine Kompensation)

Zur "kreativen" Arbeit mit Wurzelortskurven: Nutzung eines WOK-Tools

⇒ z. B. Matlab (man braucht die "Control Systems Toolbox"!):

- ⇒ Befehl zum Zeichnen einer einzelnen Wurzelortskurve: rlocus (root locus = Wurzelortskurve auf Englisch) das machen wir nicht, sondern:
- ⇒ Interaktive Arbeit mit Wurzelortskurven mit der Matlab-App "rltool" ⇔ "control system designer"
- ⇒ Zunächst: Eingeben der Strecken-Übertragungsfunktion und Eintragen als Regelstrecke

Zur "kreativen" Arbeit mit Wurzelortskurven: Nutzung eines WOK-Tools "control system designer 🃉 🖁

4. Fall: $T_N = 3,3$ (keine Kompensation)

--> besseres Störverhalten, da kein Kriechen mehr

Woher kommt der Überschwinger in der Führungssprungantwort?

...

Ohne Kompensation kommt es durch die Nullstelle in $G_w(s)$ (PDT₃-Übertragungsfunktion!) zu einem deutlichen "Überschwinger". Abhilfe: zum Beispiel PT₁-Filter im Sollwertkanal.

--> Formel mit 45° als Ergebnis gilt nicht mehr, da nur für PT2 gültig !! (--> deshalb nichtmehr ü = 4%)

Lösung für das Problem des Überschwingens in der Führungssprungantwort: Ein Vorfilter im Soliwert Kana

- ⇒ Außerhalb des Regelkreises ⇔ das Störverhalten wird dadurch nicht beeinflusst!
- \Rightarrow Mit T_N = 3,3 V_R = 2,2 Vorfilter-Zeitkonstante T_F = 3,3 bzw. T_F = 2,5 (gestrichelt):

Lösung für das Problem des Überschwingens in der Führungssprungantwort: Vorfilter im Solwert-Kanalisch

Was man noch machen kann:

- ⇒ V_R noch weiter erhöhen (bessere Störunterdrückung!)
- ⇒ ... sowie Anpassung des Vorfilters:

Zusammenfassung über diese Aufgabe 6.3:

- ⇒ Anwenden der Regeln für die Skizze von WOKn
- ⇒ Verständnis für die Wirkung von Nullstellen auf die Regelkreisdynamik ⇔ "Verbiegen" der WOK-Äste (da wäre man beim Vorgehen im Bode-Diagramm vielleicht gar nicht darauf gekommen?!)
- ⇒ Somit Finden einer geeigneten Reglereinstellung für gutes Störverhalten (Will man NUR ein gutes Führungsverhalten: Kompensation von (langsamen) Streckenpolen!)
- ⇒ Die "kreative" Arbeit mit WOKn erfordert etwas Einarbeitung / Erfahrung
- ⇒ Eine allgemeine Erkenntnis aus dieser Aufgabe:
 - ⇒ Will man SOWOHL gutes Störverhalten ALS AUCH gutes Führungsverhalten:
 - ⇒ Lege den REGLER für gutes STÖRVERHALTEN aus
 - ⇒ Falls das resultierende FÜHRUNGSVERHALTEN nicht gefällt: Setze ein <u>VORFILTER</u> im Führungskanal ein ⇔ "Zwei-Freiheitsgrade-Struktur"
- ⇒ Weitere strukturelle Maßnahmen (Störgrößenaufschaltung, Vorregelung, Kaskadierung) in Kapitel 8!