7.1 Glossary of Notation

- Y: A $n \times p$ matrix containing all multivariate skew-normal regression outcomes such that y_{ij} is the j^{th} outcome observed for subject i, where i = 1, ..., n and j = 1, ...p.
- X: A $n \times m$ matrix containing all multivariate skew-normal regression covariates such that x_{ij} is the j^{th} covariate value for subject i.
- **B**: A $m \times p$ matrix containing all multivariate skew-normal regression coefficients such that $\mathbf{B} = [\boldsymbol{\beta}_1, ..., \boldsymbol{\beta}_p]$, where β_{ij} is interpreted as the effect of covariate i on outcome j for i = 1, ..., m and j = 1, ..., p.
- **E**: A $n \times p$ matrix of error terms in the multivariate skew-normal regression model component. **E** is made up of row vectors $\boldsymbol{\epsilon}_i = (\epsilon_{i1}, ..., \epsilon_{ip})$, where $\boldsymbol{\epsilon}_i \stackrel{iid}{\sim} N_p(0, \boldsymbol{\Sigma})$ for i = 1, ..., n.
- Σ : A $p \times p$ covariance matrix that defines the correlation between the p multivariate normal outcomes.
- Ω : A $p \times p$ covariance scale matrix that defines the correlation between the p multivariate skew-normal outcomes.
- ψ : A $p \times 1$ vector containing the skewness parameter for each outcome.
- α : A $p \times 1$ vector containing the skewness parameter for each outcome.
- t: A $n \times 1$ vector of truncated normal random effects used in the stochastic representation of the multivariate skew-normal distribution. For i = 1, ..., n, $t_i \stackrel{iid}{\sim} T_{[0,\infty)(0,1)}$
- X^* : A $n \times (m+1)$ matrix constructed by column binding t to X
- \mathbf{B}^* : A $(m+1) \times p$ matrix constructed by row binding $\boldsymbol{\psi}^T$ to \mathbf{B} .

7.2 Derivation of Full Conditional Distributions

7.2.1 Multivariate Skew-Normal Regression. Without loss of generality, we derive the full conditional distributions for the multivariate skew-normal regression model component under the assumption that all observations belong to a single cluster. To make the extension to the case where more than one cluster is specified, simply apply these distributional forms to cluster specific parameters and data.

The multivariate skew-normal regression model can be written as follows.

$$\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{t}\boldsymbol{\psi}^T + \mathbf{E} = \mathbf{X}^*\mathbf{B}^* + \mathbf{E}$$

For convenience, we define \mathbf{X}^* as a $n \times (m+1)$ matrix constructed by column binding \mathbf{t} to \mathbf{X} , and \mathbf{B}^* as a $(m+1) \times p$ matrix constructed by row binding $\boldsymbol{\psi}^T$ to \mathbf{B} . We assume that $t_i \stackrel{iid}{\sim} T_{[0,\infty)}(0,1)$ and that \mathbf{E} is made of row vectors $\boldsymbol{\epsilon}_i = (\epsilon_{i1},...,\epsilon_{ip})$ for i=1,...,n, where $\boldsymbol{\epsilon}_i \stackrel{iid}{\sim} N_p(0,\boldsymbol{\Sigma})$.

The conditional likelihood for this model is given below.

$$p(\mathbf{Y}|\mathbf{X}^*, \mathbf{B}^*, \mathbf{\Sigma}) \propto |\mathbf{\Sigma}|^{-n/2} \exp\left\{-\frac{1}{2} \operatorname{tr}(\mathbf{Y} - \mathbf{X}^* \mathbf{B}^*)^T (\mathbf{Y} - \mathbf{X}^* \mathbf{B}^*) \mathbf{\Sigma}^{-1}\right\}$$

We choose conjugate priors for \mathbf{B}^* and Σ as follows.

$$\Sigma \sim \text{inverse-Wishart}(\mathbf{V}_0, \nu_0)$$

$$\mathbf{B}^* | \mathbf{\Sigma} \sim MN_{(m+1) \times p}(\mathbf{B}_0^*, \mathbf{L}_0^{-1}, \mathbf{\Sigma})$$

We now dervive the joint posterior distribution of the parameters \mathbf{B}^* and Σ .

$$p(\mathbf{B}^*, \mathbf{\Sigma} | \mathbf{X}^*, \mathbf{Y}) \propto p(\mathbf{Y} | \mathbf{X}^*, \mathbf{B}^*, \mathbf{\Sigma}) p(\mathbf{B}^* | \mathbf{\Sigma}) p(\mathbf{\Sigma})$$

$$\propto |\mathbf{\Sigma}|^{-n/2} \exp \left\{ -\frac{1}{2} \operatorname{tr}((\mathbf{Y} - \mathbf{X}^* \mathbf{B}^*)^T (\mathbf{Y} - \mathbf{X}^* \mathbf{B}^*) \mathbf{\Sigma}^{-1}) \right\}$$

$$\times |\mathbf{\Sigma}|^{-m/2} \exp \left\{ -\frac{1}{2} \operatorname{tr}((\mathbf{B}^* - \mathbf{B}_0^*)^T \mathbf{L}_0 (\mathbf{B}^* - \mathbf{B}_0^*) \mathbf{\Sigma}^{-1}) \right\}$$

$$\times |\mathbf{\Sigma}|^{(\nu_0 + p + 1)/2} \exp \left\{ -\frac{1}{2} \operatorname{tr}(\mathbf{V}_0 \mathbf{\Sigma}^{-1}) \right\}$$

7.2.2 Multinomial Logit Regression.

7.2.3 Multivariate Normal Conditional Imputation. The multivariate normal conditional imputation derivations are given for a single cluster without loss of generality. In practive, the data and parameters in this section would be replaced by cluster specific estimates in the case of clustering.

For a given observation vector $\mathbf{y} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, we allow for missingness in at most p-1 of the multivariate outcomes through the use of a conditional imputation step embedded within our Gibbs sampler. Suppose \mathbf{y} contains q missing observations and can be partitioned into two vectors $\mathbf{y_1}$ and $\mathbf{y_2}$ such that $\mathbf{y_1}$ is a $q \times 1$ vector of missing observations and $\mathbf{y_2}$ is a $(p-q) \times 1$ vector of complete observations. Similarly, partition $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ as follows.

$$oldsymbol{\mu} = egin{bmatrix} oldsymbol{\mu}_1 \ oldsymbol{\mu}_2 \end{bmatrix} \qquad oldsymbol{\Sigma} = egin{bmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{bmatrix}$$

We will use these quantities to derive the conditional distribution $f(\mathbf{y_1}|\mathbf{y_2}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$.

$$f(\mathbf{y}_{1}|\mathbf{y}_{2},\boldsymbol{\mu},\boldsymbol{\Sigma}) \propto f(\mathbf{y}_{1},\mathbf{y}_{2}|\boldsymbol{\mu},\boldsymbol{\Sigma})$$

$$\propto \exp\left\{-\frac{1}{2}(\mathbf{y}-\boldsymbol{\mu})^{T}\boldsymbol{\Sigma}^{-1}(\mathbf{y}-\boldsymbol{\mu})\right\}$$

$$= \exp\left\{-\frac{1}{2}\begin{bmatrix}\mathbf{y}_{1}-\boldsymbol{\mu}_{1}\\\mathbf{y}_{2}-\boldsymbol{\mu}_{2}\end{bmatrix}^{T}\boldsymbol{\Sigma}^{-1}\begin{bmatrix}\mathbf{y}_{1}-\boldsymbol{\mu}_{1}\\\mathbf{y}_{2}-\boldsymbol{\mu}_{2}\end{bmatrix}\right\}$$

$$= \exp\left\{-\frac{1}{2}\begin{bmatrix}\mathbf{y}_{1}-\boldsymbol{\mu}_{1}\\\mathbf{y}_{2}-\boldsymbol{\mu}_{2}\end{bmatrix}^{T}\begin{bmatrix}\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12}\\\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}\end{bmatrix}^{-1}\begin{bmatrix}\mathbf{y}_{1}-\boldsymbol{\mu}_{1}\\\mathbf{y}_{2}-\boldsymbol{\mu}_{2}\end{bmatrix}\right\}$$

$$= \exp\left\{-\frac{1}{2}\begin{bmatrix}\mathbf{y}_{1}-\boldsymbol{\mu}_{1}\\\mathbf{y}_{2}-\boldsymbol{\mu}_{2}\end{bmatrix}^{T}\begin{bmatrix}\boldsymbol{\Sigma}_{11}^{*} & \boldsymbol{\Sigma}_{12}^{*}\\\boldsymbol{\Sigma}_{21}^{*} & \boldsymbol{\Sigma}_{22}^{*}\end{bmatrix}\begin{bmatrix}\mathbf{y}_{1}-\boldsymbol{\mu}_{1}\\\mathbf{y}_{2}-\boldsymbol{\mu}_{2}\end{bmatrix}\right\}$$

$$= \exp\left\{-\frac{1}{2}\left[(\mathbf{y}_{1}-\boldsymbol{\mu}_{cond})^{T}\boldsymbol{\Sigma}_{cond}^{-1}(\mathbf{y}_{1}-\boldsymbol{\mu}_{cond})\right]\right\}$$

$$\Rightarrow \mathbf{y}_{1}|\mathbf{y}_{2},\boldsymbol{\mu},\boldsymbol{\Sigma} \sim N_{q}(\boldsymbol{\mu}_{cond},\boldsymbol{\Sigma}_{cond})$$

$$\boldsymbol{\mu}_{cond} = \boldsymbol{\mu}_1 + \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}(\mathbf{y}_2 - \boldsymbol{\mu}_2), \qquad \boldsymbol{\Sigma}_{cond} = \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12}\boldsymbol{\Sigma}_{22}^{-1}\boldsymbol{\Sigma}_{21}$$

The blockwise inversion formula was used to invert Σ according to the following reparameterizations.

$$\begin{split} \boldsymbol{\Sigma}_{11}^* &= \boldsymbol{\Sigma}_{11}^{-1} + \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12} (\boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12})^{-1} \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \\ \boldsymbol{\Sigma}_{12}^* &= -\boldsymbol{\Sigma}_{11} \boldsymbol{\Sigma}_{12} (\boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12})^{-1} \\ \boldsymbol{\Sigma}_{21}^* &= -(\boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12})^{-1} \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \\ \boldsymbol{\Sigma}_{22}^* &= (\boldsymbol{\Sigma}_{22} - \boldsymbol{\Sigma}_{21} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12})^{-1} \end{split}$$