Teoría de la Computación 2023

Lab 02

26.julio.2023

- 1. Construya autómatas finitos no-deterministas (AFN) para los siguientes lenguajes sobre $\Sigma = \{0, 1\}$:
 - i) Cadenas con un 1 en la penúltima posición.
 - ii) Cadenas que contengan (al menos) dos 0's consecutivos o dos 1's consecutivos.
 - iii) Cadenas binarias tales que la diferencia (absoluta) entre el número de ceros y el número de unos, no es múltiplo de 3.
- 2. Para cada uno de los autómatas AFN construidos en el Ejercicio 1, construir su AFD equivalente, describiendo de manera formal cada una de sus componentes.
- 3. Usar el algoritmo de McNaughton-Yamada-Thompson para producir autómatas finitos no-deterministas, para cada una de las siguientes expresiones regulares.
 - i) (0|1)*11(0|1)*
 - ii) $a(a \cup ab^*)^*$
 - iii) $a^*b^*c^*$
 - iv) El lenguaje de las cadenas sobre $\Sigma = \{0, 1, 2\}$ que comienzan con 0 y terminan con 2.
- 4. Convertir los AFN del ejercicio anterior a AFD.
- 5. La siguiente figura muestra un ε -AFN que acepta números decimales (con representación finita). En este caso, tenemos

$$M = (K, \Sigma, \delta, s, F)$$
, con $\Sigma = \{0, 1, \dots, 9, ..., +, -, \varepsilon\}$, $K = \{q_0, q_1, \dots, q_5\}$, $S = q_0$, $F = \{q_5\}$.

- (a) Convertir el autómata anterior a su AFD equivalente.
- (b) Implementar en Python el autómata finito determinista. Para ello, debe implementar funciones que hagan lo siguiente:
 - $transition(q, a, \delta)$ la cual devuelve el valor de la transición $\delta(q, a)$, para un estado $q \in K$ y un símbolo $a \in \Sigma$.
 - $final_state(q, w, \delta)$ la cual devuelve el estado q obtenido por el autómata después de terminar de leer la cadena $w \in \Sigma^*$.
 - $derivation(q, w, \delta)$ la cual derivación de la cadena $w \in \Sigma^*$ desde el estado $q \in K$, esto es, la secuencia ordenada de transiciones obtenidas.
 - $accepted(q, w, F, \delta)$ la cual devuelve verdadero si la cadena $w \in \Sigma^*$ es aceptada por el autómata partiendo desde el estado s; y falso en caso contrario.

- (c) Mostrar el resultado de la función derivation para las siguientes cadenas:
 - \bullet +0.1234567
 - 1.61 8081
 - 2022.3.3.3