ПРОСТЫЕ ЧИСЛА

1. Найти все простые числа в промежутке от 1 до 101 с помощью алгоритма Эратосфена.

Решение. - Ответ.

2	3	5	7	11	13	17	19	23	29	31	37	41
43	47	53	59	61	67	71	73	79	83	89	97	101

2. Пользуясь таблицей простых чисел, найти канонические разложения следующих чисел: a) 492, б) 22011, в) 7533, г) 4144.

НАИМЕНЬШЕЕ ОБЩЕЕ КРАТНОЕ

- **1.** Вычислить: a) НОК(744,198); б) НОК(60,1575); в) НОК(128,81).
- **2.** Вычислить: a) НОК(15,-12,3); б) НОК(1500,-1224,1440);
- в) НОК(176,288,394).

наибольший общий делитель

- 1. Вычислить: а) НОД (72, 96); б) НОД (231, 1089); в) НОД (50, 42).
- 2. Вычислить: а) НОД (-585, 81, -189); б) НОД (105, 165, 384);
- в) НОД (198, 294, 780); г) НОД (78, 294, 570, 36).

АЛГОРИТМЫ ЕВКЛИДА

1. Вычислить НОД при помощи: 1) алгоритма Евклида делением с остатком; 2) бинарного алгоритма Евклида; 3) расширенного алгоритма Евклида. Сравнить количество итераций.

a)
$$a = 715, b = 195$$
; 6) $a = 246, b = 396$; B) $a = 175, b = 14945$;

г)
$$a = 1818, b = 726;$$
 д) $a = 6887, b = 6319.$

Решение.

a)
$$a = 715$$
, $b = 195$.

1) алгоритм Евклида делением с остатком:

$$715 = 3 \cdot 195 + 130$$

$$195 = 1 \cdot 130 + 65$$

$$130 = 2 \cdot 65 + 0$$

$$HOД(715, 195) = 65.$$
 (3 итерации)

2) бинарного алгоритм Евклида:

- 1. a и b четные, то НОД $(a,b) = 2 \cdot \text{НОД}\left(\frac{a}{2}, \frac{b}{2}\right)$;
- 2. a нечетное, b четное, то НОД (a,b)= НОД $\left(a,\frac{b}{2}\right);$
- 3. a и b нечетные, a > b, то НОД (a, b) = НОД (a b, b);
- 4. a = b, то НОД (a, b) = a.

$$HOД(715,195) = [3] = HOД(715 - 195,195) = HOД(520,195) = [2] = HOД(260,195) = [2] = HOД(130,195) = [2] = HOД(65,195) = [3] = HOД(165,130) = [2] = HOД(65,65) = [4] = 65. (7 итераций – сколько раз использовали свойства)$$

3) расширенный алгоритм Евклида:

j	r_j	x_j	y_j	q_j
0	715	1	0	
1	715 195	0	1	3
2	130 65	1	-3	1
3	65	-1	4	2
	0			

Пояснения.

Заполняем таблицу по столбцам.

Сначала заполняем столбцы r_j и q_j :

 $r_0 = 715$ (большее из заданных чисел)

$$r_1=195$$

Далее используем формулу $r_{i-1} = q_i \cdot r_i + r_{i+1}$:

$$r_0 = q_1 \cdot r_1 + r_2$$

$$715 = q_1 \cdot 195 + r_2$$

Очевидно,
$$715 = 3 \cdot 195 + 130 \implies q_1 = 3$$
, $r_2 = 130$ – записали;

$$r_1 = q_2 \cdot r_2 + r_3$$

$$195 = q_2 \cdot 130 + r_3$$

Очевидно,
$$195 = 1 \cdot 130 + 65$$
 \Rightarrow $q_2 = 1$, $r_3 = 65$ – записали;

$$r_2 = q_3 \cdot r_3 + r_4$$

$$130 = q_3 \cdot 65 + r_4$$

Очевидно,
$$130 = 2 \cdot 65 + 0 \implies q_3 = 2$$
, $r_4 = 0$ – записали;

Так как $r_4 = 0$, то с этими столбцами закончили.

Теперь заполняем x_i столбец:

$$x_0 = 1$$
, $x_1 = 0$ всегда!

Далее используем формулу $x_{i+1} = x_{i-1} - q_i \cdot x_i$:

$$x_2 = x_0 - q_1 \cdot x_1 = 1 - 3 \cdot 0 = 1$$
 \implies $x_2 = 1$ – записали;

$$x_3 = x_1 - q_2 \cdot x_2 = 0 - 1 \cdot 1 = -1$$
 \implies $x_3 = -1$ – записали.

Теперь заполняем y_i столбец:

$$y_0 = 0$$
, $y_1 = 1$ всегда!

Далее используем формулу $y_{i+1} = y_{i-1} - q_i \cdot y_i$:

$$y_2 = y_0 - q_1 \cdot y_1 = 0 - 3 \cdot 1 = -3$$
 \implies $y_2 = -3$ – записали;

$$y_3 = y_1 - q_2 \cdot y_2 = 1 - 1 \cdot (-3) = 4$$
 \implies $y_3 = 4$ – записали.

Ответом будет НОД = $r_n = r_3 = 65$, а его разложением: $r_n = r_0 \cdot x_n + r_1 \cdot y_n$, то есть $r_3 = r_0 \cdot x_3 + r_1 \cdot y_3$ \Longrightarrow $65 = 715 \cdot (-1) + 195 \cdot 4$.

<u>Ответ.</u> $HOД(715,195) = 65 = 715 \cdot (-1) + 195 \cdot 4$. (3 итерации – смотри по таблице).