Problema 1

Implementar el algoritmo de Gram-Schmidt modificado 8.1 del Trefet-hen (p. 58) para generar la descomposición QR

Algorithm 1: Modified Gram-Schmidt (Trefethen pag. 58)

Problema 2

Implementar el algoritmo que calcula el estimador de mínimos cuadra-dos en una regresión usando la descomposición QR.

Algorithm 2: Least Squares estimator.

```
def least_squares_estimator(X, Y):
    # Get QR decomposition of data matrix
    (Q, R) = qr_factorization(X)

# Transform y vector
    Y_prime = Q.T @ Y.T

# Solve system R * beta = y_prime
    beta = backward_substitution(R, Y_prime.T)

return beta
```

Problema 3

```
Generar Y compuesto de y_i = sen(x_i) + \epsilon_i donde \epsilon_i N(0, \sigma) con sigma = 0.11 para x_i = \frac{4\pi i}{n} para i = 1, ..., n.
```

Hacer un ajuste de mínimos cuadrados a Y, con descomposición \pmb{QR} , ajustando un polinomio de grado p-1.

Figura 1: Comparison

Figura 2: Comparison

Figura 3: Comparison

Figura 4: Comparison

Problema 4

Figura 5: Comparison

Figura 6: Comparison

Figura 7: Comparison

Figura 8: Comparison

Figura 9: Comparison

Figura 10: Comparison

Figura 11: Comparison

Figura 12: Comparison