Results Section: Public Genetic Diversity

```
library(staphopia)
library(ggplot2)
library(reshape2)
library(scales)
```

In this section we will look into genetic diversity that has been sequenced in *Staphylococcus aureus*. In order to do so, we'll use variant counts, cgMLST and MLST as measures of diversity.

Aggregating Data For Public Samples

First we'll get all publicly available *S. aureus* samples.

```
ps <- get_public_samples()</pre>
```

MLST

Next we will will use the MLST information has a measure of genitic diversity. In this case we are interested in the total number of unique sequence types sequenced. We'll use $get_st_by_year()$ to get some basic stats about how many STs have been sequenced. We will also use $get_top_sequence_types()$ to get each ST represented in the database and the total number of samples with each ST. (Note: 5000 is just an arbitrarly large number to retreive all STs)

```
sequence_types <- get_st_by_year()
top_st <- get_top_sequence_types(5000)
colnames(sequence_types)</pre>
```

```
[1] "year"
##
                                        "unique"
    [3] "novel"
                                        "assigned"
##
    [5] "assigned_agree"
                                        "assigned_disagree"
##
       "unassigned"
                                        "unassigned_agree"
##
   [9]
       "unassigned_disagree"
                                        "predicted_novel"
        "all"
                                        "partial"
## [11]
## [13]
        "ariba_blast"
                                        "mentalist_blast"
## [15] "mentalist_ariba"
                                        "single"
## [17] "ariba"
                                        "mentalist"
## [19] "blast"
                                        "count"
## [21] "overall novel"
                                        "overall assigned"
## [23] "overall_assigned_agree"
                                        "overall_assigned_disagree"
## [25] "overall_unassigned"
                                        "overall_unassigned_agree"
## [27] "overall unassigned disagree"
                                        "overall predicted novel"
## [29] "overall all"
                                        "overall partial"
## [31] "overall_ariba_blast"
                                        "overall_mentalist_blast"
## [33] "overall_mentalist_ariba"
                                        "overall_single"
## [35] "overall_ariba"
                                        "overall_mentalist"
## [37] "overall_blast"
                                        "overall"
```

This gives us 38 columns for each year. These columns are:

- 1. year: The year.
- $2.\,$ unique: The Number of unique STs for a given year.
- 3. novel: Number of STs not sequenced previously.

- 4. assigned: Samples which a ST was determined.
- 5. assigned_agree: Samples in which each program that called an ST agreed in ST.
- 6. assigned_disagree: Samples in which programs did not each call the same ST.
- 7. unassigned: Samples which a ST was not determined.
- 8. unassigned agree: Each program was unable to assign an ST.
- 9. unassigned disagree: Samples in which no ST was determined, but each program does not agree
- 10. predicted_novel: Samples with a match to each Loci, but allele pattern does not exist.
- 11. all: Samples with an ST determined with agreement between each program.
- 12. partial: Samples with an ST determined with agreement between two programs. 13: ariba_blast: Samples with an ST determined with agreement between Ariba and BLAST.
- 13. mentalist blast: Samples with an ST determined with agreement between MentaLiST and BLAST.
- 14. mentalist_ariba: Samples with an ST determined with agreement between MentaLiST and Ariba.
- 15. single: Samples with an ST determined by only a single program.
- 16. ariba: Samples with an ST determined by only Ariba.
- 17. mentalist: Samples with an ST determined by only MentaLiST.
- 18. blast: Samples with an ST determined by only BLAST.
- 19. count: Total number of samples in a given year. 21-38: overall_X: The cumulative totals of previous years for column x

Summary of MLST Diversity

Assignment Breakdown

```
t(sequence_types[sequence_types$year == max(sequence_types$year),21:38])
##
                                    8
## overall_novel
                                 1098
## overall assigned
                                42337
## overall_assigned_agree
                                42243
## overall assigned disagree
                                   94
## overall unassigned
                                  612
## overall unassigned agree
                                  612
## overall_unassigned_disagree
                                    0
## overall_predicted_novel
                                  306
## overall_all
                                41226
## overall_partial
                                  922
## overall_ariba_blast
                                   81
## overall_mentalist_blast
                                  669
## overall_mentalist_ariba
                                  172
## overall_single
                                  189
## overall_ariba
                                   29
## overall_mentalist
                                  111
## overall blast
                                   49
## overall
                                42949
```

Top STs

```
top_st[1:10,]
## st count percent overall
```

```
## 1
        22
            7189
                    16.74
                             16.74
## 2
         8
            6184
                    14.40
                             31.14
         5
## 3
            4664
                    10.86
                             42.00
      239
            3123
                     7.27
                             49.27
## 4
```

```
## 5
      398
           2326
                    5.42
                            54.68
## 6
       30
           1872
                    4.36
                            59.04
## 7
       45
           1663
                    3.87
                            62.91
                    2.73
## 8
       15
           1172
                            65.64
## 9
       36
            857
                    2.00
                            67.64
## 10 105
            857
                    2.00
                            69.63
```

This gives us 4 columns for each ST, in descending order based on the *count* column. In other words the most represented STs are seen first. These columns are:

- 1. st: The sequence type.
- 2. count: The number of samples with given ST.
- 3. percent: The percent of samples represented by given ST.
- 4. overall: The percent of samples represented by given ST and previous STs.

How many unique STs represented?

```
nrow(top_st[top_st$st > 0,])
## [1] 1098
```

How many STs represented by a single sample?

```
nrow(top_st[top_st$count == 1, ])
## [1] 588
```

Visualizing MLST Diversity

The following sections will be plots to visualize relationships in the data.

Unique Sequence Types By Year

Novel Sequence Types By Year

Overall Novel Sequence Types By Year

```
p <- ggplot(data=sequence_types, aes(x=year, y=overall_novel)) +
    xlab("Year") +
    ylab("Cumulative Count") +
    geom_bar(stat='identity') +</pre>
```


Top 10 Sequence Types


```
# Output plot to PDF and PNG
staphopia::write_plot(p, paste0(getwd(), '/../figures/figure-05-top-10-sequence-types'))
```

Total Allele Matches For Unassigned Samples

cgMLST Patterns

Finally, we'll look at cgMLST as a measure of genetic diversity. We will use the $get_cgmlst()$ function to get the cgMLST results for each Sample. This function might take a little while to retrieve all teh results.

```
# USE_DEV to prevent timeout here until problem resolved
USE_DEV = TRUE

cgmlst <- get_public_cgmlst_patterns()
cgmlst$percent <- cgmlst$count / sum(cgmlst$total_samples)
cgmlst</pre>
```

##		samples_in_pattern	count	total_samples	percent
##	1	170	1	170	2.325473e-05
##	2	133	1	133	2.325473e-05
##	3	99	1	99	2.325473e-05
##	4	83	1	83	2.325473e-05
##	5	79	1	79	2.325473e-05
##	6	61	1	61	2.325473e-05
##	7	59	1	59	2.325473e-05
##	8	52	1	52	2.325473e-05
##	9	39	1	39	2.325473e-05
##	10	36	1	36	2.325473e-05
##	11	34	1	34	2.325473e-05
##	12	33	1	33	2.325473e-05
##	13	30	3	90	6.976420e-05
##	14	29	1	29	2.325473e-05
##	15	28	1	28	2.325473e-05
##	16	26	1	26	2.325473e-05
##	17	24	3	72	6.976420e-05
##	18	22	1	22	2.325473e-05
##	19	21	4	84	9.301893e-05
##	20	19	2	38	4.650946e-05
##	21	18	2	36	4.650946e-05
##	22	15	3	45	6.976420e-05

```
## 23
                       14
                                             56 9.301893e-05
## 24
                       13
                               3
                                             39 6.976420e-05
## 25
                       12
                               4
                                             48 9.301893e-05
## 26
                       11
                               8
                                             88 1.860379e-04
## 27
                       10
                               5
                                             50 1.162737e-04
                        9
                               5
                                             45 1.162737e-04
## 28
## 29
                        8
                                            128 3.720757e-04
                              16
                        7
## 30
                              28
                                            196 6.511325e-04
## 31
                        6
                              25
                                            150 5.813683e-04
                        5
## 32
                              47
                                            235 1.092972e-03
## 33
                        4
                              86
                                            344 1.999907e-03
                        3
                             223
                                            669 5.185805e-03
## 34
                        2
## 35
                           1363
                                           2726 3.169620e-02
## 36
                                          36880 8.576345e-01
                        1 36880
```

This gives us two columns:

- 1. samples in pattern: The number of samples with a given cgMLST pattern.
- 2. count: The number patterns with a given number of samples.
- 3. total_samples: Number of samples represented by a row (samples_in_pattern * count)
- 4. percent: Percent of samples represented

For example, if samples_in_pattern is 100 and the count is 2. That means there are **2** (count=2) cgMLST patterns that are shared by **100** samples (samples_in_count=100) each, representing a total of **200** samples (count * samples_in_count).

Total Number of Distinct cgMLST Patterns

```
sum(cgmlst$count)
## [1] 38730

How many shared cgMLST patterns?

sum(cgmlst[cgmlst$samples_in_pattern > 1, ]$count)
## [1] 1850
```

How many samples share a cgMLST pattern?

36

```
sum(cgmlst[cgmlst$samples_in_pattern > 1, ]$total_samples)
## [1] 6122
```

How many samples have a unique cgMLST pattern?

1 36880

```
cgmlst$percent <- cgmlst$count / sum(cgmlst$total_samples)
cgmlst[cgmlst$samples_in_pattern == 1, ]

## samples_in_pattern count total_samples percent</pre>
```

36880 0.8576345

Session Info

sessionInfo()

```
## R version 3.4.3 (2017-11-30)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.2 LTS
##
## Matrix products: default
## BLAS: /usr/lib/libblas/libblas.so.3.6.0
## LAPACK: /usr/lib/lapack/liblapack.so.3.6.0
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8
                                  LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8
                                  LC_COLLATE=en_US.UTF-8
## [5] LC_MONETARY=en_US.UTF-8
                                  LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8
                                  LC_NAME=C
## [9] LC_ADDRESS=C
                                  LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
## attached base packages:
## [1] stats
                graphics grDevices utils
                                              datasets methods
##
## other attached packages:
## [1] scales_0.5.0
                     reshape2_1.4.3 ggplot2_2.2.1
                                                     staphopia_0.1.9
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.15
                           knitr_1.20
                                                magrittr_1.5
## [4] munsell_0.4.3
                            colorspace_1.3-2
                                                R6_2.2.2
## [7] rlang_0.1.6
                           stringr_1.2.0
                                                httr_1.3.1
## [10] plyr_1.8.4
                           tools_3.4.3
                                                grid_3.4.3
## [13] data.table_1.10.4-3 gtable_0.2.0
                                                htmltools_0.3.6
## [16] yaml_2.1.18
                           lazyeval_0.2.1
                                                rprojroot_1.3-2
## [19] digest_0.6.15
                           tibble_1.4.2
                                                curl_3.1
## [22] evaluate_0.10.1
                           rmarkdown_1.9
                                                labeling_0.3
## [25] stringi_1.1.6
                           compiler_3.4.3
                                                pillar_1.1.0
## [28] backports_1.1.2
                            jsonlite_1.5
```