www.makautonline.com

HTTP://WWW.MAKAUT.COM

CS/B.TECH/ODD SEM/SEM-1/M-101/2016-17

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: M-101 **MATHEMATICS-I**

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the $10 \times 1 = 10$ following:
 - - a) $(-1)^n 5^n (\log 2)^n 2^{-5x}$ b) 2^{-5x}
 - c) $(-1)^n 5^n \cdot 2^{-5x}$ d) none of these.
 - Lagrange's mean value theorem is obtained from Cauchy's mean value theorem for two functions f(x)and g(x) by putting g(x) =
 - a) i

c) x

none of these.

1/10101

Turn over

www.makautonline.com

HTTP://WWW.MAKAUT.COM CO/ D. LECTI/ OULD DEM/ DEM-1/ M-101/ 2010-1/

iii) The series
$$\sum \frac{1}{(2x+1)^n}$$
 is

- convergent
- ,b) divergent
- oscillatory
- none of these.
- The rank of the null matrix is

c) 2

- d) 3.
- If the matrix $\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & \lambda \end{pmatrix}$ is singular, then the

value of λ is

c)

- vi) If α , β , γ are the roots of the equation

$$x^2 - 3x + 2 = 0$$
 then $\begin{vmatrix} 0 & \alpha & \beta \\ \beta & 0 & 0 \\ 1 & -\alpha & \alpha \end{vmatrix} =$

b) 3/2

- 6 c)

d) 3.

www.makautonline.com

HTTP://WWW.MAKAUT.COM

CS/B.TECH/ODD SEM/SEM-1/M-101/2016-17

- vii) Which of the following theorems can be applied on f(x) = |x| in the interval [-1, 1]?
 - Rolle's theorem
 - Mean Value theorem
 - Cauchy's M. V. theorem
 - none of these.
- viii) The sequence $\left\{\frac{1}{2^n}\right\}$ is
 - monotonic increasing
 - b) oscillatory
 - divergent c)
 - monotonic decreasing.
- ix) If $u = \sin^{-1} \sqrt{\frac{x^{\frac{1}{2}} + y^{\frac{1}{2}}}{x^{\frac{1}{3}} + u^{\frac{1}{3}}}}$ then $\sin u$ is a homogeneous

function of degree

a)
$$\frac{1}{6}$$

b)
$$-\frac{1}{6}$$

c)
$$\frac{1}{12}$$

1710101

d)
$$-\frac{1}{12}$$
.

| Turn over

www.makautonline.com

HTTP://WWW.MAKAUT.COM

CS/B.TECH/ODD SEM/SEM-1/M-101/2016-17

x) If
$$u + v = x$$
, $uv = y$ then the value of $\frac{\partial(u, v)}{\partial(x, y)} =$

b)
$$\frac{1}{u-v}$$

d)
$$\frac{1}{uv}$$

xi) If
$$u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$$
 then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}$ is equal

10

xii) The value of m for which the vectors $2\hat{i} - \hat{j} - \hat{k}\hat{i} + 2\hat{j} - 3\hat{k}$, $3\hat{k} + m\hat{i} + 5\hat{k}$ are coplanar is

d)
$$-5$$
.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

$$3 \times 5 = 15$$

2. Prove that
$$\begin{vmatrix} (b+c)^2 & c^2 & b^2 \\ c^2 & (c+a)^2 & a^2 \\ b^2 & a^2 & (a+b)^2 \end{vmatrix} = 2(bc+ca+ab)^2$$

Expand the function $\sin x$ in power of x in infinite series.

www.makautonline.com

HTTP://WWW.MAKAUT.COM

CS/B.TECH/ODD SEM/SEM-1/M-101/2016-17

4. Test the convergence of the series

$$1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^4} + \frac{4^4}{5^5} + \dots$$

5. Verify Cayley-Hamilton theorem for
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{pmatrix}$$
.

Hence compute A^{-1} .

6. Find $div\vec{F}$ and $curl\vec{F}$ where $\vec{F} = qrad(x^3 + y^3 + z^3 - 3xyz)$.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) If $y = \sin(m \sin^{-1} x)$, show that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 m^2)y_n = 0.$
 - b) Using mean value theorem prove that $0 < \frac{1}{\log(1+x)} \frac{1}{x} < 1 \text{ for all } x > 0.$
 - (c) If $I_n = \int_0^{\pi/2} \sin^{2n+1} \theta \ d\theta$, where n is a positive integer, show that $I_n = \frac{2n}{2n+1} I_{n+1}$. Use this to evaluate $\int_0^{\pi/2} \sin^7 \theta d\theta$. 5+5+5
- 8. a) Examine the convergence of the series

$$1 + \frac{\sqrt{2} - 1}{1!} + \frac{(\sqrt{2} - 1)^2}{2!} + \frac{(\sqrt{2} - 1)^3}{3!} + \dots$$

b) Calculate f_x , f_y , f_x (0, 0), f_y (0, 0) for the function

$$f(x) = \frac{xy}{\sqrt{x^2 + y^2}}, \text{ if } x^2 + y^2 = 0$$

= 0, \text{ if } x = y = 0

www.makautonline.com HTTP://www.MAKAUT.COM

CS/B.TECH/ODD SEM/SEM-1/M-101/2016-17

c) Find the rank of the matrix
$$\begin{pmatrix} 1 & 3 & 4 & 3 \\ 3 & 9 & 12 & 3 \\ 1 & 3 & 4 & 1 \end{pmatrix}$$

$$5 + 5 + 5$$

9. a) Test the convergence of the series

$$\frac{6}{1.3.5} + \frac{8}{3.5.7} + \frac{10}{5.7.9} + \dots$$

b) Examine the consistency of the system of the following equations and solve:

$$x + 2y - z = 10$$
, $x - y - 2z = -2$, $2x + y + 3z = 8$

- c) Find all maxima and minima of the function $f(x, y) = x^3 + y^3 63(x + y) + 12xy.$ 5 + 5 + 5
- 10. a) If u = f(y z, z x, x y), prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$
 - b) If $\vec{p} = t\hat{i} + 2t^2\hat{j} + 3t^3\hat{k}$, evaluate $\begin{bmatrix} \vec{p} & \vec{p} & \vec{p} \end{bmatrix}$.
 - c) Apply Stokes' theorem to evaluate $f_c(ydx + zdy + xdz)$ where C is the curve of intersection of $x^2 + y^2 + z^2 = a^2$ and x + z = a.

$$5 + 5 + 5$$

HTTP://WWW.MAKAUT.COM

- 11. a) if $x = \alpha(u + v)$, y = b(u v)where $u = r^2 \cos 2\theta$, $v = r^2 \sin 2\theta$, then show that $\frac{\partial (x, y)}{\partial (r, \theta)} = -8abr^3.$
 - b) Evaluate the following double integral by using suitable transformation: $\iint x^2 y^2 dxdy \text{ where } R \text{ is the region of the circle}$

 $x^2 + y^2 \le 1.$

c) Evaluate $\int_0^a \int_0^x \int_0^{x+y} e^{x+y+z} dxdydz$. 5+5+5