

Road Line Identification

James Kervin

Fall 22 CMSE 202 Honors Project

Goals:

- Create a method for identifying road lines
- Create a method for finding the right line vector
- 3. Analyze the effectiveness of each method

Key

Key Assumptions and Limitations

Assumptions:

- Each image is 800 x 300
- Each image contains a road in it

Limitations:

- Not all images have the same angle to the road
- Images come from different cameras

Training the SVM

(Support Vector Machine)

- Find images and create keys
- Break the image into its components
- Train using a set amount of data
- Test with new images

One Picture Training Set

SVM Parameters:

C: 100 Γ: 0.005

Results:

	precision	recall	f1-score	support
0	0.99	1.00	0.99	14347
1	0.93	0.77	0.84	653
accuracy			0.99	15000
macro avg	0.96	0.88	0.92	15000
weighted avg	0.99	0.99	0.99	15000

One Picture Training Set Results

Multi-picture Training Set

Multi-picture Training Set Results 1

Multi-picture Training Set Results 2

Right Line Vector Algorithm

```
x_{\text{key\_indcies}} = (\text{sorted(key\_indecies, key} = \text{lambda } x: x[0]))
```

```
while Gap_size > 2 and X_lBound == 0 and Y_lBound == 0:
X_lBound, Y_lBound = findGap_n(x_key_indcies, X_rBound, Gap_size)
Gap_size -= 1
```


Right Line Vector Results

Conclusion

The RGB SVM method:

- can determine the pixels of the road
- very sensitive to noise

The gap algorithm:

- successful on clean pictures
- also very sensitive to noise

Time to bring in and predict image: 3.76

Left Bound: (174,65) Rigth Bound: (180,68) line angle -26.57 degrees vector Equation Slope: 0.50 B intercept: -22.00

