Sistemas Complejos Bioinspirados

REDES NEURONALES

Grado en Ingeniería de Tecnologías y Servicios de Telecomunicación

https://www.kaggle.com/learn

<u>⊪</u> Explore Courses

@	Python Learn the most important language for data science.
~	Intro to Machine Learning Learn the core ideas in machine learning, and build your first models.
	Pandas Solve short hands-on challenges to perfect your data manipulation skills.
Ø	Intermediate Machine Learning Handle missing values, non-numeric values, data leakage, and more.
4	Data Visualization Make great data visualizations. A great way to see the power of coding!
00000	Feature Engineering Better features make better models. Discover how to get the most out of your data.

Les	sons	Tutorial	Exercise
1	Hello, Python A quick introduction to Python syntax, variable assignment, and numbers	8	\Diamond
2	Functions and Getting Help Calling functions and defining our own, and using Python's builtin documentation	8	\bigcirc
3	Booleans and Conditionals Using booleans for branching logic	(2)	\bigcirc
4	Lists Lists and the things you can do with them. Includes indexing, slicing and mutating	8	\bigcirc
5	Loops and List Comprehensions For and while loops, and a much-loved Python feature: list comprehensions	8	\Diamond
6	Strings and Dictionaries Working with strings and dictionaries, two fundamental Python data types	8	\Diamond
7	Working with External Libraries Imports, operator overloading, and survival tips for venturing into the world of external libraries	8	\bigcirc

Operaciones básicas

Operator	Description	Example	Result
+	addition	2 + 3	5
-	subtraction	8 - 6	2
-	negative number	-4	-4
*	multiplication	5 * 2	10
/	division	6 / 3	2
**	raises a number to a power	10**2	100
_	returns last saved value	_ + 7	107

Trig function	Name	Description	Example	Result
math.pi	pi	mathematical constant π	math.pi	3.14
<pre>math.sin()</pre>	sine	sine of an angle in radians	<pre>math.sin(4)</pre>	9.025
<pre>math.cos()</pre>	cosine	cosine of an angle in radians	cos(3.1)	400
<pre>math.tan()</pre>	tangent	tangent of an angle in radians	tan(100)	2.0
<pre>math.asin()</pre>	arc sine	inverse sine, ouput in radians	math.sin(4)	9.025
<pre>math.acos()</pre>	arc cosine	inverse cosine, ouput in radians	log(3.1)	400
<pre>math.atan()</pre>	arc tangent	inverse tangent, ouput in radians	atan(100)	2.0
<pre>math.radians()</pre>	radians conversion	degrees to radians	math.radians(90)	1.57
<pre>math.degrees()</pre>	degree conversion	radians to degrees	math.degrees(2)	114.59

Math function		Name	Description	Example	Result
mat	th.e	Euler's number	mathematical constant \emph{e}	math.e	2.718
math.ex	xp()	exponent	\emph{e} raised to a power	${\sf math.exp(2.2)}$	9.025
math.lo	og()	natural logarithm	log base e	math.log(3.1)	400
math.log	10()	base 10 logarithm	log base 10	math.log10(100)	2.0
math.pd	ow()	power	raises a number to a power	math.pow(2,3)	8.0
math.sq	rt()	square root	square root of a number	math.sqrt(16)	4.0

Statistics function	Name	Description	Example	Result
mean()	mean	mean or average	mean([1,4,5,5])	3.75
median()	median	middle value	median([1,4,5,5])	4.5
mode()	mode	most often	mode([1,4,5,5])	5
stdev()	standard deviation	spread of data	stdev([1,4,5,5])	1.892
<pre>variance()</pre>	variance	variance of data	variance([1,4,5,5])	3.583

Trabajar con Arrays

Más rápido que las listas de Python

Links:

- Numpy Cheat Sheet

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

Redes Neuronales: Objetivos

PERCEPTRÓN EN

PYTHON.

APRENDER A
UTILIZAR LA
LIBRERÍA DE
PYTHON SCIKIT
LEARN.

CONSOLIDAR EL APRENDIZAJE DE LA PRÁCTICA ANTERIOR PARA VISUALIZAR GRÁFICAS CON MATPLOTLIB

ENTRENAR,
VALIDAR Y
COMPROBAR EL
CORRECTO
FUNCIONAMIEN
TO DE UNA RED
NEURONAL.

 ¿CUÁNDO TENGO QUE ENTREGAR EL RESULTADO DE LA PRÁCTICA? Para el desarrollo de la presente práctica el grupo deberá programar diversas funciones en Python que deberán ser subidas al poliformat de la asignatura antes de las 14h los días 25/26 de abril (No se admitirán ningún archivo subido después de dicha hora). Cada alumno debe subi del código, aunque se haya hecho en parejas. Los nombres de los archivos a subir se indican durante el desarrollo de la práctica.

> En esta práctica cada alumno deberá entregar un único archivo que contenga las siguientes funciones principales correspondiente a cada uno de los ejercicios de la práctica:

main_P4_SCBIO_DNI.ipynb

Subfunciones

- myperceptron AND DNI
- myperceptron XOR DNI
- mynn XOR DNI
- sklearn NN XOR()

La calificación se realizará ponderando la calidad del código y las respuestas en la entrevista. El apartado 1 tendrá una puntuación máxima de 3 puntos. El apartado 2 tendrá una puntuación de 1 punto y el apartado 3 tendrá una puntuación de 3 puntos. El apartado 4 valdrá 2 puntos. La originalidad en la solución, así como aquellos materiales extras como la estética sumarán hasta 1 punto extra.

1. Diseño de perceptrón simple

a. EVALUACIÓN CON LA FUNCIÓN AND

IN1	IN2	OUT
0	0	0
0	1	0
1	0	0
1	1	1

b. EVALUACIÓN CON LA FUNCIÓN XOR

Α	В	Out
0	0	0
0	1	1
1	0	1
1	1	0

Funciones a implementar

Función que inicialice el perceptrón con valores aleatorios para los pesos de las entradas y de las polarizaciones para un número dado de entradas:

initialize_perceptron(n_inputs)

Función que entrene el perceptrón partiendo de datos de entrenamiento. Utiliza una función de activación sigmoidal y backpropagation para el entrenamiento

train_perceptron(myperceptron,LR,input,output)

Función que evalúe el funcionamiento de la red para un conjunto de datos de validación:

useperceptron(myperceptron,input)

Función principal que incluirá las funciones previas y se encargará de llamar a dichas instrucciones para crear el perceptrón, entrenarlo y evaluar su funcionamiento. Esta función debe incluir un entorno gráfico.

myperceptron_AND_DNI

myperceptron AND DNI

Función principal que realiza las funciones de

- √ 1) Creación de las variables para el banco de entrenamiento y banco de validación
- ✓ 2) Creación de la red neuronal (perceptrón)
- √ 3) Entrenamiento de la red neuronal con el set de valores del banco de entrenamiento
- √ 4) Validación de la red con el banco de validación.
- √ 5) Cálculo y representación del error cometido.

HAREIS DOS EJEMPLOS TRATANDO DE **EMULAR UNA AND Y UNA XOR**

REDES NEURONALES

PERCEPTRON - RED NEURONAL UNICELULAR

BACKPROPAGATION

$$w_j(t+1) = w_j(t) + \eta \cdot \delta(t) \cdot x_j(t)$$

$$b = x_o \cdot w_o = 1 \cdot w_o$$

$$y = \varphi \left(\sum_{j=1}^m w_j x_j + b \right) = \varphi \left(X^t W + b \right)$$

$$y = \varphi \left(\sum_{j=0}^m w_j x_j \right)$$

Siendo:

w el peso, j el número de peso de la neurona η la constante de aprendizaje (e.g. 0.7) δ el error cometido

$$\delta = d_k - Y_k$$
 d_k = salida correcta
 Y_k = salida calculada
por la neurona

Xj la entrada j

REDES NEURONALES

Programar un perceptrón desde 0

```
1 def initialize_perceptron(n_inputs):
2  # Esta función crea e inicializa la estructura myperceptron.weights
3  # donde se guardan los pesos del perceptron. Los valores de los pesos
4  # iniciales deben ser números aleatorios entre -1 y 1.
5  # n_inputs: numero de entradas al perceptron
6  # OUTPUTS
7  # bias: bias del perceptron (e.g. 1)
8  # weights: pesos del perceptron
9  return out
```



```
1 def train perceptron(myperceptron, LR, input, output):
      # Función que modifica los pesos del perceptrón para que vaya aprendiendo a partir
      # de los vales de entrada que se le indican
      # INPUTS
      # myperceptron: estructura con el perceptron
      # LR: tasa de aprendizaje
      # input: matriz con valores de entrada de entrenamiento ([E1 E2])
8
      # output: vector con valores de salida de entrenamiento ([SE])
9
10
      # OUTPUTS
11
      # myperceptron: perceptron ya entrenado
      # bias: bias del perceptron
12
13
      # weights: pesos del perceptron
14
      # ESTE PERCEPTRÓN UTILIZA:
15
16
      # Función de activación sigmoidal
```

```
1 def useperceptron(myperceptron, input):
      # funcion que utiliza el perceptron para calcular las salidas a partir de
      # las entradas de acuerdo con lo que haya aprendido el perceptron en la
      # fase de entrenamiento
      # INPUTS
      # myperceptron: perceptron
      # input: entrada que se le pasara al perceptron (datos test)
      # OUTPUTS
      # out: salida
10
```


Visualizar Resultados

a. EVALUACIÓN CON LA FUNCIÓN AND

IN1	IN2	OUT
0	0	0
0	1	0
1	0	0
1	1	1

b. EVALUACIÓN CON LA FUNCIÓN XOR

A	В	Out
0	0	0
0	1	1
1	0	1
1	1	0

Perceptrón Multicapa

- 1) Creación de las variables para el banco de entrenamiento y banco de validación
- 2) Creación de la red neuronal de DOS CAPAS
- 3) Entrenamiento de la red neuronal con el set de valores del banco de entrenamiento
- 4) Validación de la red con el banco de validación.
- 5) Calculo y representación del error cometido.

Perceptrón Multicapa

```
43 def initialize nn(n_inputs):
44
      # INPUTS
      # n inputs: numero de entradas a la nn
45
      # OUTPUTS
46
      # bias: bias de la nn
47
      # weights: matriz de pesos de la nn
48
       bias = np.ones(n inputs +1) # tres bias
49
      weights = np.random.uniform(low=-1, high=1, size=(n_inputs+1,n_inputs+1))
50
                                                                                     #inicilizamos pesos
51
52
      out = {"weights": weights, "bias": bias}
      return out
53
54
```


RED NEURONAL MULTICAPA

RED NEURONAL MULTICAPA

BACKPROPAGATION

$$w_{kj}(t+1) = w_{kj}(t) + \eta \cdot \delta_k(t) \cdot x_j(t)$$
 Siendo k el número de neurona y j el número de peso de la neurona.

w el peso, j el número de peso de la neurona η la constante de aprendizaje (e.g. 0.7) δ el error cometido Xj la entrada j

 δ_k : depende de si estamos en la neurona de la última capa o en una neurona oculta:

Neurona 3 (neurona de la capa final):

$$\delta_3(t) = Y_3(t) \cdot [1 - Y_3(t)] \cdot [OUT(t) - Y_3(t)]$$

Siendo OUT(t) el valor de salida esperado.

Neurona 1 y 2 (neuronas de la capa intermedia):

$$\delta_1(t) = Y_1(t) \cdot [1 - Y_1(t)] \cdot w_{32} \cdot \delta_3(t)$$

$$\delta_2(t) = Y_2(t) \cdot [1 - Y_2(t)] \cdot w_{33} \cdot \delta_3(t)$$

δ_k : depende de si estamos en la neurona de la última capa o en una neurona oculta:

Neurona 1 y 2 (neuronas de la capa oculta):

$$\delta_{1}(t) = Y_{1}(t) \cdot [1 - Y_{1}(t)] \cdot w_{32} \cdot \delta_{3}(t)$$

$$w_{11}(t+1) = w_{11}(t) + \eta \cdot \delta_{1}(t) \cdot 1$$

$$w_{12}(t+1) = w_{12}(t) + \eta \cdot \delta_{1}(t) \cdot Input_{1}$$

$$w_{13}(t+1) = w_{13}(t) + \eta \cdot \delta_{1}(t) \cdot Input_{2}$$

Siendo OUT(t) el valor de salida esperado.

δ_k : depende de si estamos en la neurona de la última capa o en una neurona oculta:

Neurona 3 (neurona de la capa final):

$$\delta_{3}(t) = Y_{3}(t) \cdot [1 - Y_{3}(t)] \cdot [OUT(t) - Y_{3}(t)]$$

$$w_{31}(t+1) = w_{31}(t) + \eta \cdot \delta_{3}(t) \cdot 1$$

$$w_{32}(t+1) = w_{32}(t) + \eta \cdot \delta_{3}(t) \cdot Y_{1}$$

$$w_{33}(t+1) = w_{33}(t) + \eta \cdot \delta_{3}(t) \cdot Y_{2}$$

Siendo OUT(t) el valor de salida esperado.

APRENDER A UTILIZAR LA LIBRERÍA **DE PYTHON SCIKIT** LEARN.

sklearn.neural network.MLPClassifier

class sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100,), activation='relu', *, solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10, max_fun=15000) [source]

Multi-layer Perceptron classifier.

This model optimizes the log-loss function using LBFGS or stochastic gradient descent.

New in version 0.18.

Parameters:

hidden_layer_sizes: tuple, length = n_layers - 2, default=(100,)

The ith element represents the number of neurons in the ith hidden layer.

activation: {'identity', 'logistic', 'tanh', 'relu'}, default='relu'

Activation function for the hidden layer.

- 'identity', no-op activation, useful to implement linear bottleneck, returns f(x) = x
- 'logistic', the logistic sigmoid function, returns f(x) = 1 / (1 + exp(-x)).
- 'tanh', the hyperbolic tan function, returns f(x) = tanh(x).
- 'relu', the rectified linear unit function, returns f(x) = max(0, x)

Methods

fit(X, y)	Fit the model to data matrix X and target(s) y.
<pre>get_params([deep])</pre>	Get parameters for this estimator.
<pre>partial_fit(X, y[, classes])</pre>	Update the model with a single iteration over the given data.
<pre>predict(X)</pre>	Predict using the multi-layer perceptron classifier.
<pre>predict_log_proba(X)</pre>	Return the log of probability estimates.
predict_proba(X)	Probability estimates.
<pre>score(X, y[, sample_weight])</pre>	Return the mean accuracy on the given test data and labels.
set_params(**params)	Set the parameters of this estimator.
4	.

[0 0 0 1 0 1 1 0 0 0 1 0 1 0 1 0 1 0 1 1]

