BRAC University

Home Work sheet #5

MAT - 216

- 1. Evaluate the line integral $\int_C (xy + z^3) ds$ from (1,0,0) to (-1,0,0) along the helix C that is represented by the parametric equation $x = \cos t$, $y = \sin t$, z = t ($0 \le t \le \pi$).
- 2. Evaluate $\int_C xy dx + x^2 dy$ if
 - (a) C consists of line segments from (2,1) to (4,1) and from (4,1) to (4,5).
 - (b) C is the line segment from (2,1) and (4,5).
 - (c) Parametric equation for C are x = 3t 1, $y = 3t^2 2t$; $1 \le t \le 5/3$.
- 3. Show that (a) $\int (6x^2y 3xy^2) dy + (6xy^2 y^3) dx$ is independent of the path joining the points (1,2) and (3,4) (b) hence evaluate the integral.
- 4. Let $F(x, y) = (3x^2y + 2)i + (x^3 + 4y^3)j$ represents a force field. Determine if $\int_C F \, dr$ is independent of path if it is, find a potential function ϕ .
- 5. Let $F(x, y) = 2xy^3 i + (1 + 3x^2y^2) j$
 - (a) Show that $\ F$ is a Conservative Vector field on the entire $\ xy-plane$,
 - (b) find f by first integrating $\frac{\partial f}{\partial x}$,
 - (c) find f by first integrating $\frac{\partial f}{\partial y}$.
- 6. Use the potential function obtained in example (5) to evaluate the integral

$$\int_{(1,4)}^{(3,1)} 2xy^3 dx + (1+3x^2y^2) dy.$$

From Book:- (Calculus, Howard Anton 10th edition, soft copy)

EXERCISE SET 15.3

C CAS

1-6 Determine whether **F** is a conservative vector field. If so, find a potential function for it. ■

1.
$$\mathbf{F}(x, y) = x\mathbf{i} + y\mathbf{j}$$

2.
$$\mathbf{F}(x, y) = 3y^2\mathbf{i} + 6xy\mathbf{j}$$

3.
$$\mathbf{F}(x, y) = x^2 y \mathbf{i} + 5xy^2 \mathbf{j}$$

4.
$$\mathbf{F}(x, y) = e^x \cos y \mathbf{i} - e^x \sin y \mathbf{j}$$

5.
$$\mathbf{F}(x, y) = (\cos y + y \cos x)\mathbf{i} + (\sin x - x \sin y)\mathbf{j}$$

6.
$$\mathbf{F}(x, y) = x \ln y \mathbf{i} + y \ln x \mathbf{j}$$

- 7. In each part, evaluate $\int_C 2xy^3 dx + (1 + 3x^2y^2) dy$ over the curve C, and compare your answer with the result of Example 5.
 - (a) C is the line segment from (1, 4) to (3, 1).
 - (b) C consists of the line segment from (1, 4) to (1, 1), followed by the line segment from (1, 1) to (3, 1).
- **8.** (a) Show that the line integral $\int_C y \sin x \, dx \cos x \, dy$ is independent of the path.
 - (b) Evaluate the integral in part (a) along the line segment from (0, 1) to (π, -1).
 - (c) Evaluate the integral $\int_{(0,1)}^{(\pi,-1)} y \sin x \, dx \cos x \, dy$ using Theorem 15.3.1, and confirm that the value is the same as that obtained in part (b).

9-14 Show that the integral is independent of the path, and use Theorem 15.3.1 to find its value. ■

9.
$$\int_{(1,2)}^{(4,0)} 3y \, dx + 3x \, dy$$

10.
$$\int_{(0,0)}^{(1,\pi/2)} e^x \sin y \, dx + e^x \cos y \, dy$$

11.
$$\int_{(0,0)}^{(3,2)} 2xe^y dx + x^2 e^y dy$$

12.
$$\int_{(-1,2)}^{(0,1)} (3x - y + 1) \, dx - (x + 4y + 2) \, dy$$

13.
$$\int_{(2,-2)}^{(-1,0)} 2xy^3 dx + 3y^2x^2 dy$$

14.
$$\int_{(1,1)}^{(3,3)} \left(e^x \ln y - \frac{e^y}{x} \right) dx + \left(\frac{e^x}{y} - e^y \ln x \right) dy$$
, where x and y are positive.

Exercise set 15.4 - 1-14

EXERCISE SET 15.4

1-2 Evaluate the line integral using Green's Theorem and check the answer by evaluating it directly.

C CAS

- 1. $\oint y^2 dx + x^2 dy$, where C is the square with vertices (0,0), (1,0), (1,1), and (0,1) oriented counterclockwise.
- 2. $\oint_C y dx + x dy$, where C is the unit circle oriented counterclockwise.

3-13 Use Green's Theorem to evaluate the integral. In each exercise, assume that the curve C is oriented counterclockwise.

- 3. $\oint_C 3xy \, dx + 2xy \, dy$, where *C* is the rectangle bounded by x = -2, x = 4, y = 1, and y = 2.

 4. $\oint_C (x^2 y^2) \, dx + x \, dy$, where *C* is the circle $x^2 + y^2 = 9$.
- 5. $\oint_C x \cos y \, dx y \sin x \, dy$, where C is the square with vertices (0,0), $(\pi/2,0)$, $(\pi/2,\pi/2)$, and $(0,\pi/2)$.

6. $\oint_C y \tan^2 x \, dx + \tan x \, dy$, where C is the circle

- 7. $\oint_C (x^2 y) dx + x dy$, where C is the circle $x^2 + y^2 = 4$.
- 8. $\oint_C (e^x + y^2) dx + (e^y + x^2) dy$, where C is the boundary of the region between $y = x^2$ and y = x.

9. $\oint_C \ln(1+y) dx - \frac{xy}{1+y} dy$, where C is the triangle with vertices (0,0), (2,0), and (0,4).

10. $\oint x^2 y dx - y^2 x dy$, where C is the boundary of the region in the first quadrant, enclosed between the coordinate axes and the circle $x^2 + y^2 = 16$.

11. $\oint_C \tan^{-1} y \, dx - \frac{y^2 x}{1 + y^2} \, dy$, where C is the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1).

12. $\oint \cos x \sin y \, dx + \sin x \cos y \, dy$, where C is the triangle with vertices (0, 0), (3, 3), and (0, 3).

13. $\oint_C x^2 y dx + (y + xy^2) dy$, where C is the boundary of the region enclosed by $y = x^2$ and $x = y^2$.

14. Let C be the boundary of the region enclosed between $y = x^2$ and y = 2x. Assuming that C is oriented counterclockwise, evaluate the following integrals by Green's Theorem:

(a)
$$\oint_C (6xy - y^2) dx$$

(a)
$$\oint_C (6xy - y^2) dx$$
 (b) $\oint_C (6xy - y^2) dy$.