

RK3399 JTAG 配置指南

发布版本:1.00

日期:2017.03

前言

概述

产品版本

芯片名称	内核版本
RK3399	Linux-4.4

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

软件开发工程师

修订记录

日期	版本	作者	修改说明
2017-03-15	V1.0	洪慧斌	

目录

1	RK33	99 JTAG 简介	. 2
		/SW 寄存器配置	
		IOMUX 引脚复用功能的切换	
		/SW 软件配置	
		Rockchip Linux 4.4	
	3.2	Upstream Linux 4.10 及以后版本	. 6
4		使用说明	

1 RK3399 JTAG 简介

1.1 RK3399 系统调试架构,支持 JTAG/SW 和 TRACE_DATA 两种输出接口。 这里主要介绍 JTAG/SW。

(图 1.1)

1.2、JTAG/SW 又分为两种接口,5线的 JTAG 接口和2线的SW 接口。
JTAG 接口包括TDO、TDI、TRST_N、TMS、TCK,SW 接口包括TMS和TCK两根线。
如图1.2.1,Debug的脚是和SDMMC复用的,硬件设计上可以直接将这些引脚连到JTAG/SW座子上,或者采用TF卡转接板来连接。这两种接口是芯片硬件自动识别和控制的,不需要软件干预。

即调试软件如 DS-5,若 TDO/TDI/TRST_N/TMS/TCK 全部连接,配置为 JTAG 或 SW 接口都能识别,如果只连接 TMS 和 TCK,则只能配置为 SW 接口,如图 1.2.4。

Fig. 20-8 DAP SWJ interface

Module Pin	Direction	PAD Name	IOMUX Setting
TCK	I	IO_SDMMCdata2_CXCSJTAGtck_ HDCPJTAGtdi_SDMMCgpio4b2	grf_gpio4b_sel[5:4]= 0x2
TMS	IO	IO_SDMMCdata3_CXCSJTAGtms_ HDCPJTAGtdo_SDMMCgpio4b3	grf_gpio4b_sel[7:6]= 0x2

(图 1.2.1)

(图 1.2.2 TF 卡转接板)

图 1.2.2 上的两列单排针根据图 1.2.3 布线,图 1.2.3 是 DS-5 等调试器的 JTAG 接口图。一般情况下,DS-5 上 Debug 的连接都采用 2 线的 SW (serial wire) 接口。硬件准备好后,可以在 Maskrom 或 Loader 烧写模式试连,以确保硬件没问题。因为在上述模式 JTAG/SW 功能是使能的,但到运行至 Linux 内核,SDMMC 驱动可能会禁止 JTAG 功能,这需要软件做相应修改。也就是说 Debug 功能和 TF 卡无法同时使用。

(图 1.2.3)

(图 1.2.4)

2 JTAG/SW 寄存器配置

2.1 IOMUX 引脚复用功能的切换

1. 配置 IOMUX 寄存器

GRF_GPIO4B_IOMUX (0xFF77_0000 +0x0e024)

			gpio4b3_sel GPIO4B[3] iomux select
7.6	DW	0.40	2'b00: gpio
7:6 RW	KVV	0x0	2'b01: sdmmc_data3
			2'b10: cxcsjtag_tms
			2'b11: hdcpjtag_tdo
			gpio4b2_sel
5:4 F	RW	W 0×0	GPIO4B[2] iomux select
			2'b00: gpio
			2'b01: sdmmc_data2
			2'b10: cxcsitag tck
			2'b11: hdcpjtag_tdi

2. 当配置 force Jtag 位时,硬件会自动切换,不需要配置寄存器 IOMUX GRF_SOC_CON7(0xFF77_0000+0x0e21c)

12 RW 0x1 grf_con_force_jtag	12	RW	0x1	grf_con_force_jtag
------------------------------	----	----	-----	--------------------

Debug 模块和 CPU 相关 CLK

一般无需 CLK 相关

3 JTAG/SW 软件配置

3.1 Rockchip Linux 4.4

1. 如果有使能 cpu power down 功能,会导致 jtag 无法正常访问 cpu,

这需要禁止所有 CPU 进入 power down 状态。

手动将每个 CPU 节点的 cpu-idle-states 属性注释掉:

arch/arm64/boot/dts/rockchip/rk3399.dtsi

```
cpu_l0: cpu@0 {
    device_type = "cpu";
    compatible = "arm,cortex-a53", "arm,armv8";
    reg = <0x0 0x0>;
    enable-method = "psci";
    #cooling-cells = <2>; /* min followed by max */
    dynamic-power-coefficient = <100>;
    clocks = <&cru ARMCLKL>;
    #cpu-idle-states = <&CPU_SLEEP &CLUSTER_SLEEP>;
};
```

也可以通过命令行动态开关:

```
for i in `busybox seq 0 5`; do
echo 1 > /sys/devices/system/cpu/cpu$i/cpuidle/state1/disable
echo 1 > /sys/devices/system/cpu/cpu$i/cpuidle/state2/disable
done
```

2.CLK 无需软件配置,默认寄存器配置就能正常使用 JTAG。

如果无法连接,可以尝试在 command line 添加以下配置:

将所有 CLK 默认打开

```
chosen {
    bootargs = "clk_ignore_unused";
};
```

3.2 Upstream Linux 4.10 及以后版本

只需将 force jtag 配置为 1 即可,代码如下:

4 DS-5 使用说明

DS-5 是 ARM 公司出的一款调试软件,下载地址

https://developer.arm.com/products/software-development-tools/ds-5-development-studio DS-5 soc 配置文件,以 DS-5 V5.26.2 为例:

1. 创建 Configuration Database

点 FILE->New->Other

选择 Configuration Database

2. 创建 Platform Configuration

A. 点 FILE->New->Other

B. 选 Platform Configuration, 点击 Next

C. 如果硬件连接的是 5 线的 JTAG,选第一个 Automatic/simple platform detection。 如果是 2 线的 SW,需要选第二个 Advanced platform detection or manual creation。 点击 Next

D. 选择之前创建的 Database, 然后点 Next

E. 创建成功后,在 Connection Address 选择 JTAG DEBUG 设备

F. 如果硬件连接的是 5 线的 JTAG,直接点击 Autodetect Platform。如果是 2 线的 SW,需要配置如下 图红色矩形框的配置,然后再点击上图的 Autodetect Platform。需要注意: 选择 Autodetect Platform 一定要在 Maskrom 模式下,否则很多模块可能识别不到。

G. 扫描检测完后在左侧串口展开如下列表,软件提示 CSETM 0-3 没有连接,需要手动添加

H. 右击 CSETM_0, 点击 Add Link From This Device

I. 选择 CSTFunnel,以此类推添加 CSETM_0-3

J. Ctrl+S保存工程,这时工程会生成如下文件

K. 选择调试连接的核

注意: 尝试连接时最好也是在 Maskrom 模式下先测试。