SWAP: Servidor de disco NFS

David Cabezas Berrido

dxabezas@correo.ugr.es

27 de mayo de 2021

Índice

1.	Preparativos	2
2.	Configurar servidor NFS	2
	Configurar los clientes M1 y M2 3.1. Hacer la configuración permanente	2
4.	Seguridad en el servidor NFS	3

1. Preparativos

Creamos una nueva máquina virtual llamada **NFS-dxabezas**. Al igual que las otras máquinas, configuramos el doble adaptador de red (NAT + Solo-Anfitrión), instalamos Ubuntu Server 18.04.1 y creamos un usuario *dxabezas* con contraseña *Swap1234*. Comprobamos mediante PING que la máquina NFS tiene conexión con el resto de máquinas en la granja.

Su IP (en la red local) es 192.168.56.108.

2. Configurar servidor NFS

Comenzamos creando la carpeta a compartir, y cambiamos el propietario y los permisos.

```
sudo mkdir -p /datos/compartido
sudo chown nobody:nogroup /datos/compartido/
sudo chmod -R 777 /datos/compartido/
```

Comprobamos el propietario y los permisos que acabamos de asignar.

```
dxabezas@nfs-dxabezas:/datos$ ls -l
total 4
drwxrwxrwx 2 nobody nogroup 4096 May 25 10:40 comparation
```

Le damos permisos a M1 y M2 añadiendo la siguiente línea a /etc/exports.

/datos/compartido/ 192.168.56.102(rw) 192.168.56.101(rw)

Finalmente, reiniciamos el servicio y comprobamos el estado.

Figura 1: Todo parece estar correcto, teniendo en cuenta que estamos asumiendo la opción no_subtree_check. El subtree check consiste en comprobar que cada petición NFS solicita sólo archivos que están siendo exportados, para ello necesita información sobre el directorio padre.

3. Configurar los clientes M1 y M2

La siguiente configuración se realiza tanto en M1 como en M2.

Primero instalamos los paquetes necesarios.

```
sudo apt install nfs-common rpcbind
```

A continuación, creamos el punto de montaje, el directorio datos. También le damos todos los permisos sobre él a todos los usuarios.

```
cd /home/dxabezas
mkdir datos
chmod -R 777 datos
```

Si ahora modificamos la carpeta compartida en alguna máquina (M1, M2 o servidoro NFS), los cambios también se hacen efectivos en las otras dos.

```
total 8
   drwxrwxrwx 2 nobody
                          nogroup
                                   4096 May 25 10:40
   drwxr-xr-x 9 dxabezas dxabezas 4096 May 25 15:37
                            touch datos/archivo.
total 8
drwxrwxrwx 2 nobody
                     nogroup 4096 May 25 15:44
drwxr-xr-x 9 dxabezas dxabezas 4096 May 25 16:24 ...
            dxabezas dxabezas
                                 0 May 25
 xabezas@nfs-dxabezas:~$ ls -la /datos/compartido
total 8
                              4096 May 25 15:44
drwxrwxrwx 2 nobody
                     nogroup
drwxr-xr-x 3 root
                               4096 May 25 10:40 ...
                     root
```

Figura 2: El archivo creado por M1 aparece en M2 y en el servidor NFS.

3.1. Hacer la configuración permanente

Para hacer la configuración permanente, sólo tenemos que añadir (tanto en M1 como en M2) la siguiente línea al fichero /etc/fstab.

```
192.168.56.108:/datos/compartido /home/dxabezas/datos/ nfs auto,noatime,nolock,bg,nfsvers=3,intr,tcp,actimeo=1800 0 0
```

Al reiniciar la máquina, comprobamos que el directorio está montado y podemos acceder a los archivos.

4. Seguridad en el servidor NFS

Nuestro objetivo es configurar IPTABLES para que el servidor NFS siga funcionando mientras denegamos implícitamente el tráfico entrante. Partimos por tanto de la siguiente configuración:

```
iptables -P INPUT DROP
iptables -P OUTPUT ACCEPT
iptables -P FORWARD DROP
iptables -A INPUT -m state --state ESTABLISHED, RELATED -j ACCEPT
```

Para los servicios **nfs** y **portmapper**, sólo tenemos que abrir los puertos 2049 y 111 respectivamente, tanto TCP como UDP. Sin embargo, los servicios **mountd** y **nlockmgr** utilizan puertos dinámicos. Podemos consultar qué puerto está utilizando cada servicio con la siguiente orden.

```
xabezas@nfs-dxabezas:~$ rpcinfo
                         port
 program vers proto
                                service
   100000
              4
                           111
                                portmapper
                   tcp
   100000
              3
                   tcp
                           111
                                portmapper
   100000
              2
                           111
                                portmapper
                   tcp
              4
   100000
                   udp
                           111
                                portmapper
              3
   100000
                   udp
                           111
                                portmapper
   100000
              2
                   udp
                           111
                                portmapper
   100005
              1
                   udp
                         2000
                                mountd
   100005
              1
                         2000
                   tcp
                                mountd
   100005
              2
                   udp
                         2000
                                mountd
   100005
              2
                         2000
                                mountd
                   tcp
              3
   100005
                   udp
                         2000
                                mountd
              3
   100005
                         2000
                                mountd
                   tcp
              3
   100003
                         2049
                                nfs
                   tcp
   100003
                                nfs
                   tcp
                         2049
   100227
              3
                         2049
                   tcp
   100003
              3
                   udp
                         2049
                                nfs
              3
   100227
                   udp
                         2049
   100021
                   udp
                        49400
                                nlockmgr
              3
   100021
                   udp
                        49400
                                nlockmgr
   100021
              4
                        49400
                                nlockmgr
                   udp
   100021
              1
                   tcp
                        42601
                                nlockmar
   100021
              3
                        42601
                                nlockmgr
                   tcp
   100021
              4
                        42601
                                nlockmgr
                   tcp
```

Como no podemos abrir puertos dinámicamente con IPTABLES, fijaremos puertos para estos servicios. Para mountd, modificamos el archivo /etc/default/nfs-kernel-server y añadimos la siguiente línea.

```
RPCMOUNTDOPTS="--manage-gids -p 2000"
```

Para nlockmgr, creamos el archivo /etc/sysctl.d/swap-nfs-ports.conf con las siguientes opciones

```
fs.nfs.nlm_tcpport = 2001
fs.nfs.nlm_udpport = 2002
```

Lanzamos el archivo de configuración y reniciamos el servidor NFS con las siguientes órdenes.

```
sudo sysctl --system
/etc/init.d/nfs-kernel-server restart
```

La primera de ellas devuelve una salida muy extensa de configuraciones que se aplican. Entre ellas, está la siguiente secuencia.

```
* Applying /etc/sysctl.d/swap-nfs-ports.conf ...
fs.nfs.nlm_tcpport = 2001
fs.nfs.nlm_udpport = 2002
```

La segunda orden produce la siguiente salida.

```
[ ok ] Restarting nfs-kernel-server (via systemctl): nfs-kernel-server.service.
```

Como parece que todo va correctamente, volvemos a comprobar los puertos que utiliza cada servicio.

```
xabezas@nfs-dxabezas:~$ sudo rpcinfo
 program vers proto
                        port
                              service
  100000
             4
                  tcp
                         111
                              portmapper
             3
  100000
                  tcp
                         111
                               portmapper
  100000
             2
                  tcp
                         111
                               portmapper
   100000
                  udp
                         111
                               portmapper
             3
   100000
                  udp
                         111
                               portmapper
  100000
             2
                         111
                  udp
                              portmapper
  100005
                  udp
             1
                        2000
                              mountd
  100005
             1
                        2000
                              mountd
                  tcp
             2
  100005
                  qbu
                        2000
                              mountd
  100005
                  tcp
                        2000
                              mountd
  100005
             3
                  udp
                        2000
                              mountd
  100005
             3
                        2000
                  tcp
                              mountd
                        2049
  100003
                              nfs
                  tcp
  100003
                        2049
                               nfs
                  tcp
             3
                        2049
  100227
                  tcp
                        2049
  100003
             3
                  udp
                              nfs
  100227
             3
                  udp
                        2049
  100021
             1
                  udp
                        2002
                              nlockmar
  100021
             3
                  udp
                        2002
                              nlockmgr
  100021
                  udp
                        2002
                              nlockmgr
  100021
             1
                        2001
                               nlockmgr
                  tcp
             3
   100021
                        2001
                               nlockmgr
                  tcp
                        2001
   100021
             4
                  tcp
                               nlockmar
```

Como podemos observar, son justo los puertos que hemos seleccionado. Ahora podemos abrirlos con IPTABLES (sólo para M1 y M2) como solemos hacer. Nuestro script de IPTABLES queda de esta forma.

```
#!/bin/sh
```

```
# 1: Eliminar todas las reglas, configuración limpia
iptables -F
iptables -X
iptables -Z
# 2: Denegación implícita del tráfico entrante
iptables -P INPUT DROP
iptables -P OUTPUT ACCEPT
iptables -P FORWARD DROP
# 3: Permitir conexiones
iptables -A INPUT -m state --state ESTABLISHED, RELATED -j ACCEPT
# 4: Permitir acceso desde localhost (interface lo):
iptables -A INPUT -i lo -j ACCEPT
iptables -A OUTPUT -o lo -j ACCEPT
# 5: Abrir puerto 2049 (nfs), TCP y UDP, sólo M1 y M2
iptables -A INPUT -p tcp -s 192.168.56.102 --dport 2049 -j ACCEPT
iptables -A INPUT -p udp -s 192.168.56.102 --dport 2049 -j ACCEPT
iptables -A INPUT -p tcp -s 192.168.56.101 --dport 2049 -j ACCEPT
iptables -A INPUT -p udp -s 192.168.56.101 --dport 2049 -j ACCEPT
# 6: Abrir puerto 111 (portmapper), TCP y UDP, sólo M1 y M2
iptables -A INPUT -p tcp -s 192.168.56.102 --dport 111 -j ACCEPT
```

```
iptables -A INPUT -p udp -s 192.168.56.102 --dport 111 -j ACCEPT
iptables -A INPUT -p tcp -s 192.168.56.101 --dport 111 -j ACCEPT
iptables -A INPUT -p udp -s 192.168.56.101 --dport 111 -j ACCEPT

# 7: Abrir puerto 2000 (mountd), TCP y UDP, sólo M1 y M2
iptables -A INPUT -p tcp -s 192.168.56.102 --dport 2000 -j ACCEPT
iptables -A INPUT -p udp -s 192.168.56.102 --dport 2000 -j ACCEPT
iptables -A INPUT -p tcp -s 192.168.56.101 --dport 2000 -j ACCEPT
iptables -A INPUT -p udp -s 192.168.56.101 --dport 2000 -j ACCEPT
iptables -A INPUT -p udp -s 192.168.56.101 --dport 2000 -j ACCEPT

# 8: Abrir puertos para nlockmgr: 2001 (TCP) y 2002 (UDP), sólo M1 y M2
iptables -A INPUT -p tcp -s 192.168.56.102 --dport 2001 -j ACCEPT
iptables -A INPUT -p udp -s 192.168.56.102 --dport 2002 -j ACCEPT
iptables -A INPUT -p tcp -s 192.168.56.101 --dport 2001 -j ACCEPT
iptables -A INPUT -p udp -s 192.168.56.101 --dport 2001 -j ACCEPT
iptables -A INPUT -p udp -s 192.168.56.101 --dport 2002 -j ACCEPT
iptables -A INPUT -p udp -s 192.168.56.101 --dport 2002 -j ACCEPT
```

Activamos esta configuración. Para comprobar que sigue funcionando, realizamos satisfactoriamente una modificación similar a la de la Figura 2, modificando también desde M1.