19. Устойчивость решений дифференциальных и разностных уравнений.

Андрей Бареков Ярослав Пылаев По лекциям Устинова С.М.

January 12, 2020

1 Общий случай

Общий нелинейный случай:

$$\frac{dx}{dt} = f(t, x), x(t_0) = x_0$$
 (1)

Будем изучать характер поведения решения при возмущениях в начальных условиях. При не очень сильных ограничениях на функцию f, на конечном промежутке $t \in [t_0, T]$ имеется непрерывная зависимость решения от начальных условий. Поэтому наибольший интерес вызывает поведение решения при $t \to \infty$.

Решение x(t) системы (1) называется устойчивым по Ляпунову, если:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall y(t))$$
$$(\|x(t_0) - y(t_0)\| < \delta \Rightarrow \|x(t) - y(t)\| < \varepsilon)$$

в т.ч. при $t \to \infty$.

Определение 1.

Здесь y(t) - другое решение (1), которое отличается начальными условиями.

Решение x(t) системы (1) называется асимптотически устойчивым по Ляпунову, если оно устойчиво, и дополнительно выполняется условие:

$$\lim_{t \to \infty} (x(t) - y(t)) = 0$$

Определение 2.

Аналогичные определения можно ввести для систем разностных уравнений $x_{n+1} = F(n, x_n)$ с заменой непрерывной переменной t на целую переменную n.

Для некоторых систем уравнений вывод об устойчивости решения можно сделать, не получая решения в явном виде. Так, например, для линейных дифференциальных уравнений с постоянной матрицей выводы об устойчивости можно сделать на основе собственных значений этой матрицы.

2 Устойчивость решений линейных дифференциальных уравнений с постоянной матрицей

$$\frac{dx}{dt} = Ax + f(t), x(0) = x_0 \tag{1}$$