ПРОГРАММА «ARKAW» ДЛЯ РАСЧЕТА ТРЕХІПАРНИРНОЙ АРКИ

При определении внутренних усилий в трехшарнирной арке многократно вычисляются геометрические параметры (координаты сечений, тригонометрические функции углов наклона касательной к оси арки) и внутренние усилия в балке. Контроль вычислений производится по соответствию эпюр внутренних усилий приложенной к арке нагрузке.

В программе «**ArkaW**» внутренние усилия вычисляются студентом самостоятельно в одном контрольном сечении, и при правильных результатах выводится полная информация для всех сечений (таблица значений, эпюры усилий).

Исходные данные для программы:

- уравнение оси арки (парабола или окружность);
- пролет арки;
- стрела подъема;
- координата ключевого шарнира;
- координата контрольного сечения;
- количество сосредоточенных сил;
- количество распределенных нагрузок;
- количество дополнительных сечений.

Для сосредоточенных сил вводятся величина и координата точки приложения, для распределенных нагрузок величина, координаты начального и конечного сечения. Для дополнительных сечений вводятся их координаты.

В программе принята правая система координат, начало на левой опоре арки. После ввода и корректировки (в случае необходимости) исходной информации программа выбирает расчетные сечения — у опор и ключевого шарнира, одно сечение в точке приложения сосредоточенной силы, следующее правее на расстоянии 0,01 м. Для распределенных нагрузок назначаются три сечения — в начале, в середине и конце участка приложения нагрузки. Все сечения сортируются в порядке возрастания.

Контрольные величины:

- опорные реакции в арке;
- изгибающий момент, поперечная и продольная силы в заданном сечении арки.

Дополнительно могут быть проверены внутренние усилия в заданном сечении в балке, координата сечения по оси y, тригонометрические функции для угла наклона касательной ϕ , радиус дуги окружности R.

В программе заложены следующие пределы отклонения контрольных величин. Для опорных реакций 1 %, внутренних усилий в арке 3 %, для геометрических параметров и внутренних усилий в балке 1 %. Если любая из контрольных величин по модулю меньше единицы, то абсолютная ошибка допускается не более величины 0,1.

Пример 1. Исходные данные для расчета арки показаны на рис. 1. Уравнение оси арки — окружность, пролет L=30,0 м; стрела подъема f=5,0 м; координата ключевого шарнира $x_C=15,0$ м; координата контрольного сечения $x_k=5,0$ м; количество сосредоточенных сил — 1; распределенных нагрузок — 1; дополнительных сечений — 1.

Для сосредоточенной силы $F_1=5.0~{\rm kH};~x_F=25.0~{\rm m};$ для равномерно-распределенной нагрузки $q_1=2.0~{\rm \frac{kH}{M}};~x_{q{\rm H}}=0.0~{\rm m};$ $x_{q{\rm K}}=10.0~{\rm m}.$ Для дополнительного сечения $x=20.0~{\rm m}.$

По результатам ручного расчета определяем контрольные величины.

Опорные реакции в арке:

$$V_A = 17,50 \text{ кH}; \ V_B = 7,50 \text{ кH}; \ H_A = H_B = H = 12,50 \text{ кH}.$$

Внутренние усилия в контрольном сечении арки:

$$M_A = 26,09 \text{ kH} \cdot \text{m}; \ Q_A = 1,878 \text{ kH}; \ N_A = -14,463 \text{ kH}.$$

Рис. 1. Трехшарнирная арка (пример 1)

Puc. 2. Окно программы «ArkaW» на этапе ввода исходных данных

Дополнительные величины для проверки следующие. Изгибающий момент и поперечная сила в контрольном сечении для балки:

$$M_{\rm F} = 62,50 \text{ kH} \cdot \text{m}; \ Q_{\rm F} = 7,50 \text{ kH}.$$

Геометрические параметры:

$$y = 2.913 \text{ m}; \cos \varphi = 0.917; \sin \varphi = 0.400; R = 25.0 \text{ m}.$$

По результатам расчета заполнена таблица и построены эпюры внутренних усилий в сечениях арки (рис. 3, 4).

Порядок работы с программой следующий.

1. Создаем новую задачу

3. Вводим исходные данные

2. Задаем информацию о задаче

4. Производим расчет

5. Переходим на закладку « Проверка», вводим контрольные величины и проверяем результаты ручного расчета

6. Опорные реакции

7. Внутренние усилия

8. При необходимости проверяем внутренние усилия в балке и геометрические параметры

Неверные данные выделяются цветом

10. При необходимости сохраняем данные в файле

11. Завершаем работу

N	×	У	CosFi	SinFi	Mb	Qb	Ма	Qa	Na
1	0,000	0,000	0,800	0,600	0,000	17,500	0,000	6,500	-20,500
2	5,000	2.913	0,917	0.400	62,500	7,500	26,089	1,874	-14,456
3	10,000	4,495	0,980	0,200	75,000	-2,500	18,814	-4,949	-11,747
4	15,000	5,000	1,000	0,000	62,500	-2,500	0,000	-2,500	-12,500
5	20,000	4,495	0,980	-0,200	50,000	-2,500	-6,186	0,051	-12,747
ŝ	25,000	2.913	0.917	-0.400	37,500	-2,500	1.089	2,709	-12,456
7	25,010	2,909	0,916	-0,400	37,425	-7,500	1,069	-1,868	-14,457
8	30,000	0,000	0,800	-0,600	0,000	-7,500	0,000	1,500	-14,500

Рис. 3. Таблица результатов расчета арки:

N – номер сечения;

х, у – координаты сечения;

cosFi, SinFi – тригонометрические функции угла;

Mb, Qb – внутренние усилия в балке;

Ma, Qa, Na – внутренние усилия в арке

Рис. 4. Эпюры изгибающих моментов (a), поперечных сил (δ), продольных сил (ϵ) в арке, построенные программой «ArkaW»