Calculus

Mirek Nguyen

Contents

1	Lin	nita
	1.1	Limita s nekonečnem v podílu
	1.2	Asymptoty racionálních funkcí
2	Der	ivace
	2.1	Derivace složené funkce
	2.2	Tečna a normála
	2.3	Monotonie
	2.4	Lokální extrémy
	2.5	Globální (absolutní) extrémy
	2.6	Konvexita, konkávita
3	Inte	egrace
	3.1	Určitý integrál pomocí přímé metody
	3.2	
	3.3	Diferenciální rovnice

1 Limita

1.1 Limita s nekonečnem v podílu

• platí pro $\pm \infty$

$$\begin{split} \lim_{x \to \infty} f(\frac{x^2 - 1}{x^3 + 1}) &= \frac{mensi}{vetsi} = 0 \\ \lim_{x \to \infty} f(\frac{-x^4 + x}{4 + x - 2x^4}) &= \frac{stejny}{stejny} = \frac{-1}{-2} = \frac{1}{2} \\ \lim_{x \to \infty} f(\frac{x^{11} - x^5}{1 - x^{11}}) &= \frac{stejny}{stejny} = \frac{1}{-1} = -1 \\ \lim_{x \to \infty} f(\frac{2x^4 - 3x + 5}{1 - x^3}) &= \frac{vetsi}{mensi} = \frac{2 * \infty}{-1} = -\infty \end{split}$$

1.2 Asymptoty racionálních funkcí

- počítají se v krajních bodech D(f)
- 1. Definiční obor
- 2. Limita dané funkce (pomocí nul. bodu)
- 3. Do jakého ∞ se blíží
 - $zprava^+$ nebo $zleva^-$ (vybrat si)
 - je to důkaz, že je asymptotou
- 4. Vypočítat šikmou asymptotu typu y = kx + q

2 Derivace

2.1 Derivace složené funkce

$$f(g(x))' = f'(g(x)) * g'(x)$$

$$\sqrt{6x+7}' = f'(g(x)) * g'(x)$$

$$= \sqrt{g(x)}' * g'(x)$$

$$= \frac{1}{2 * \sqrt{g(x)}} * g'(x)$$

$$= \frac{1}{2 * \sqrt{6x+7}} * (6x+7)'$$

$$= \frac{3}{\sqrt{6x+7}}$$

2.2 Tečna a normála

- 1. Dopočítat souřadnici pro tečný bod
- 2. Derivace směrnice tečny a normály
 - zderivuju celou (zadanou) rovnici
- 3. Dosadit směrnici do rovnice
- 4. Převést do tvaru rovnice

$$y = mx + b$$
 m je směrnice $t: y - y_t = k_n * (x - x_t)$ rovnice tečny $n: y - y_t = k_t * (x - x_t)$ rovnice normály $k_t = f'(x)$ tečna $k_n = -\frac{1}{f'(x)}$ normála

2.3 Monotonie

- 1. Definiční obor
- 2. Derivace
- 3. Nulové body znaménko +
- 4. Intervaly, uzavřenost nul. bodů
 - rostoucí
 - klesající

2.4 Lokální extrémy

- 1. Definiční obor
- 2. Derivace
- 3. Nulové body
 - (a) dosadit do derivace
 - (b) znaménko
- 4. pouze v nul. bodech jsou extrémy
 - může jich být více
 - ostré lokální maximu, minimum

2.5 Globální (absolutní) extrémy

- 1. Definiční obor (může být zadán na intervalu)
- 2. Derivace
- 3. Nulové body derivace f'(x) = 0
 - (a) vypočítat
 - (b) vyjde konkrétní výsledek
 - (c) musí být v interavalu D(f)
- 4. K nul. bodům D(f) přidáme hodnotu z f'(x) = 0
- 5. Do funkce f(x) zadáváme hodnoty x z nul. bodů

2.6 Konvexita, konkávita

- 1. Definiční obor
- 2. 1. derivace a 2. derivace
- 3. Nulové body
 - podezřelé z inflexe (mění se zde znaménko)
 - zkontrolovat, zda leží v D(f)
- 4. Znaménko nulových bodů
 - ∪ konvexní (+)
 - ∩ konkávní (-)
- 5. Interval konvexity, konkávity
- 6. Inflexe inflexní body

- změna konvexity, konkávity
- definovaná, spojitá v bodě
- $I_1[x_1; y_1]$

3 Integrace

3.1 Určitý integrál pomocí přímé metody

$$\int_{a}^{b} f(x) dx = \left[F'(x) \right]_{a}^{b} = F(b) - F(a)$$
 (1)

- 1. Převést na primitivní funkci
 - rozdělit zlomek na dva (o stejném jmenovateli)
- 2. Integrace (abych se zbavil $F'(x) \to \text{negace}$)
- 3. Dosadit \rightarrow budu mít 2 funkce
- 4. Odečíst

3.2 Určitý integrál pomocí substituce

• pro složené funkce

$$\begin{split} \int_a^b f(g(x)) * g'(x) \, dx &= \begin{vmatrix} g(x) = t & a \to g(a) \\ g'(x) \, dx = \, dt & b \to g(b) \end{vmatrix} = \\ &\text{I. způsob} = \int_{g(a)}^{g(b)} f(t) \, dt = \Big[F(t) \Big]_{g(a)}^{g(b)} = F(g(b)) - F(g(a)) \\ &\text{II. způsob} = \int_?^? f(t) \, dt = \Big[F(t) \Big]_?^? = \\ &= \Big[F(t) \Big]_a^b = F(b) - F(a) \end{split}$$

zde existuje mez, vrátím substituci

3.3 Diferenciální rovnice

- 1. Převést na formu v=...
- 2. Přepsat y $\rightarrow \frac{dy}{dx}$
- 3. Vynásobím L a P rovnici "dx"

$$y' = f(x) * g(x) = \frac{dy}{dx}$$

 $y' = \frac{dy}{dx}$