REAL ANALYSIS FIFTH WEEK

Exercise 3.3.13

Let (X, d) be a metric space and let Y be an open set in X. Show that every open set in (Y, d'), where d' is the inherited metric, is also open in X.

Let *Y* be an open subset of *X*. Want to show that if $A \subset Y$ is open in *Y* it is also open in *X*.

Since A is open in Y, $\exists r > 0$ such that $B_r(a) \subset A$. So, $B_r^Y(a) = \{y \in Y | d(y, a) < r\} \subset A$ and it needs to be shown that $B_r^X(a) = \{x \in X | d(x, a) < r\} \subset A$.

Notice, $B_r^Y(a) = B_r^X(a) \cap Y$. Note that Y is open and the intersection of open sets is open. So $B_r^Y(a)$ is open in X. Therefore, $\exists r_2$ such that $B_{r_2}^X(a) \subset B_r^Y(a) \subset A$.

Exercise 3.3.20

Show that $\mathbb Q$ as a subset of $\mathbb R$ with the usual metric is neither open or closed in $\mathbb R$. (Of course, if the metric space is simply $\mathbb Q$ with the usual metric, then $\mathbb Q$ is both open and closed in $\mathbb Q$.)

Rational numbers are dense in \mathbb{R} , which means between any $p,t\in\mathbb{Q},\,p\neq t$ there exists an irrational number, i. Without loss of generality say p< t, then p< i< t. Therefore, every open ball around $q\in\mathbb{Q}$ contains points not in \mathbb{Q} , i.e. the open ball, $\epsilon>0$, $B_{\epsilon}(q)\not\subset\mathbb{Q}$. Therefore \mathbb{Q} is not open.

Similarly, irrational numbers lie between any two rational numbers and none of \mathbb{Q}^c lie entirely in \mathbb{Q} . So, $\mathbb{R} \setminus \mathbb{Q}$ is not open and \mathbb{Q} is not closed.

Exercise 3.3.31

Suppose that A is a subset of a metric space X. Show that $\overline{A} = A \cup \{\text{accummulation points of } A\}$

Proof. Let $A' = \{$ accummulation points of $A \}$. Consider $A \cup A'$, then any $a \in A \cup A'$ is either in A or A'. Consider $a \in A$, note that $A \subset \overline{A}$, so $a \in \overline{A}$. If $a \in A'$, since \overline{A} is closed it must contains all the accumulation points of A so $a \in \overline{A}$. Therefore $A \cup A' \subset \overline{A}$

Now show $\overline{A} \subset A \cup A'$. Consider any $a \in \overline{A}$. Then $a \in A$ or $a \in \overline{A} \setminus A$. The first case is trivial. If $a \in \overline{A} \setminus A$, then $a \notin A$ but $a \in \overline{A}$ so a must be an accumulation point of A. Therefore, for any $a \in \overline{A}$, $a \in A$ or $a \in A'$ so conclude $\overline{A} \subset A \cup A'$.

Exercise 3.3.32

Suppose A is a subset of a metric space X. Prove or disprove $\overline{A} = A \cup \partial A$

Proof. Want to show $A \cup \partial A \subset \overline{A}$. Consider any $x \in A \cup \partial A$. Then either $x \in A$ or $x \in \partial A$. If $x \in A$ then $x \in \overline{A}$ since $A \subset \overline{A}$. If $x \in \partial A$ then for any $x \in A$ or $x \in A$ and $x \in A$ and $x \in A$ or it is an accumulation point of $x \in A$. Again since $x \in A$ and $x \in A$ or it is an accumulation point of $x \in A$. Since $x \in A$ are a was arbitrary, $x \in A$. Since $x \in A$ are a was arbitrary, $x \in A$ and $x \in A$ or it is an accumulation points, $x \in A$. Since $x \in A$ are a was arbitrary, $x \in A$ and $x \in A$ or it is an accumulation points, $x \in A$. Since $x \in A$ are a was arbitrary, $x \in A$ or it is an accumulation points, $x \in A$.

Next, want to show $\overline{A} \subset A \cup \partial A$. Consider any $x \in \overline{A}$, then $x \in A$ or $x \notin A$. If $x \in A$ we are done. If $x \notin A$, then $x \in X \setminus A$. Suppose x is an exterior point of A, then $x \in B_r(x)$, there exists x > 0 such that $B_r(x) \cap A = \emptyset$. However this contradicts $x \in \overline{A}$ since \overline{A} is the intersection of every closed set containing A. Therefore if $x \notin A$ then $x \in \partial A$. Then conclude, $\overline{A} \subset A \cup \partial A$.

Exercise 3.3.33

Suppose A is a subset of a metric space X. Prove that $\partial A = \overline{A} \cap \overline{A^c}$.

Proof. Choose any $x \in \overline{A} \cap \overline{A^c}$, then $x \in \overline{A}$ and $x \in \overline{A^c}$. Suppose there exists r > 0 such that $B_r(x) \cap A = \emptyset$, but then $x \notin \overline{A}$, which is a contradiction since \overline{A} is the intersection of all sets containing A. So x is either in ∂A or A. Now we should suppose $x \in A$ and there exists r > 0 such that $B_r(x) \subset A$. However, this contradicts that $x \in \overline{A^c} (= X \setminus \overline{A})$. Therefore $x \in \partial A$. This implies, since x was arbitrary, $\overline{A} \cap \overline{A^c} \subset \partial A$.

Now consider any $x \in \partial A$. This implies $\forall r > 0$, $B_r(x) \cap A \neq \emptyset$ and $B_r(x) \cap A^c \neq \emptyset$. Therefore $x \in \overline{A}$. Since $A^c \subset \overline{A^c}$, x is also in $\overline{A^c}$. Again, since x was arbitrary $\partial A \subset \overline{A} \cap \overline{A^c}$.

Exercise 3.3.49

1. Describe the closed convex hull of the unit ball in $\ell_n^p(\mathbb{R})$ for $1 \le p \le \infty$.

Let $B_1(0)$ be the unit ball in $\ell_n^p(\mathbb{R})$ and $\mathcal{I} := \{p, q \in \overline{B_1(0)}\}$. The closed convex hull of $B_1(0)$ is $\bigcap_{i \in \mathcal{I}} \{(1-t)p_i + t(q_i)|0 \le t \le 1 \text{ with } t \in \mathbb{R}\}$

2. Suppose $0 For <math>x \in \mathbb{R}^n$, define,

$$||x||_p = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}}$$

Define $S_p = \{x \in \mathbb{R}^n | ||x||_p \le 1\}$. Determine whether S_p is convex. If not, find the closed convex hull of S_p .

Proof. For S_p to be convex, the second derivative needs to be greater than 0.

$$S'_{p} = p|x_{k}|^{(p-1)}$$

 $S''_{p} = p(p-1)''|x_{k}|^{(p-2)}$

Since 0 , <math>p - 1 < 0 so $S_p'' < 0$ which means it is not convex. So now it is time to find the closed convex hull of S_p .

Consider the points at the corners of S_p , i.e. $p, q \in S_p$ where p = (1,0) and q = (0,1) and take the norm of the line segment formed by these two points.

$$||(1-t)p + tq||_{p} = ||1 - t[0,1] + t[0,1]||_{p} \text{ with } 0 \le t \le 1$$

$$= ||[1 - t, 0] + [0, t]||_{p}$$

$$= ||(1 - t, t)||_{p}$$

$$= (|(1 - t)|^{p} + |t|^{p})^{\frac{1}{p}}$$

$$\ge ((1 - t) + t)^{\frac{p}{p}}$$

$$= 1$$

For $0 , <math>(|(1-t)|^p + |t|^p)^{\frac{1}{p}} \ge 1$, so the line segment isn't contained in the S_p , confirming the above. However, for p = 1 $(|(1-t)|^p + |t|^p)^{\frac{1}{p}} = 1$ so the closed convex hull of S_p is $S_1 = \{x \in \mathbb{R}^n \mid ||x||_1 \le 1\}$

Not in Book

Work on the following problems.

1.
$$(A^o)^c = \overline{A^c}$$

Proof. Consider any $x \in (A^o)^c$, want so show $(A^o)^c \subset \overline{A^c}$. Then $x \notin A^o$. This means $\nexists \epsilon > 0$ such that $B_{\epsilon}(x) \subset A$. Therefore $\exists \epsilon > 0$ such that $B_{\epsilon}(x) \cap A^c \neq 0$, so $x \in \overline{A^c}$. This implies $(A^o)^c \subset \overline{A^c}$.

Consider any $x \in \overline{A^c}$. This means $\forall \epsilon > 0$, $B_{\epsilon}(x) \cap A^c \neq \emptyset$. Which means any open ball around x will intersect A^c so you cannot find an open ball where $B_{\epsilon}(x) \subset A$. This implies $x \notin A^o$. Therefore, $\overline{A^c} \subset (A^o)^c$

2. An isolated point of A is an accumulation point of A^c .

Proof. Let $x \in A$ be an isolated point of A. This means $\exists \epsilon > 0$ such that $B_{\epsilon}(x) \cap A = \{x\}$. Since isolated points are boundary points, it also means, for any $\epsilon > 0$ $B_{\epsilon}(x) \setminus \{x\} \cap A^c \neq \emptyset$. Therefore, any isolated point of A is an accumulation point of A^c .

3. Construct an example of a set A such that $\overline{A} = \emptyset$.

The Cantor set in space \mathbb{R} . The interior of the Cantor set is empty, i.e. $C^o = \emptyset$, since it contains no non-empty open intervals. The closure of \emptyset is also empty, i.e. $\overline{C^o} = \emptyset$.

4. A set A such that $\overline{A}^{o} = \emptyset$.

Again, the Cantor set fulfils this requirement. The closure of the Cantor set is the Cantor set. The interior of the Cantor set is empty.