Math115A 2/03 notes

Vincent

2023-02-03

Recall that over the last two lectures L9&L10 we defined the notice of basis and dimension of a vector space:

Given a vector space V, a basis for V is a subset $S \subset V$ with the properties that S is linearly independent and generates V

We proved that if V is finitely generated (i.e., if $\exists S \subset V$ finite such that span(S) = V) then V has a finite basis and that all basis of V have the same number of elements. We called this common number the dimension of V denote dim(V)

We now enumerate several more consequences of the replacement theorem

11.1 Corollary

Let V be a finite dimensional vector space with dim(V) = m

- 1. if $S \subset V$ is a set with m element that generate V, then $m \geq n$
- 2. if $S \subset V$ has n elements and span(S) = V, then S is a basis from V
- 3. if $S \subset V$ has m elements and S is linearly independent and has n elements then S is a basis
- 4. Any linearly independent subset S of V can be extended to a basis of V, i.e. $\exists S' \subset V$ subset that contains S such that S' is a basis for V.

Proof: We already discussed these consequences of the replacement theom on Monday L9.

11.2 Theorem

Let V be a finite dimensional vector space and $W \subset V$ a subspace. Then W is finite dimensional and dim(W) < dim(V). Moreover, if dim(W) = dim(V) then W = V

Proof: Denote dim(V) = n and let $\{w_1, ... w_k\} \subset W$ be a linearly independent subset of W. By 11.1, this set can be extended to a basis of V, thus $k \leq n$. If $span(\{w_1, ... w_k\}) \neq W$, then set $w_{k+1} \in W - span(\{w_1, ... w_k\})$. We claim that $\{w_1, ... w_k, w_k + 1\}$ follows linearly independent indeed, because if $\sum_{i=1}^{k+1} c_1 w_1 = 0$ then for sure $c_{k+1} = 0$, or else we get $w_{k+1} = \sum_{j=1}^{k} (-\frac{c_j}{c_{k+1}}) w_j \in span\{w_1, ..., w_k\}$, contradiction. Thus $\sum_{i=1}^{k+1} c_1 w_1 = 0$ implies $\sum_{i=1}^{k} c_1 w_1 = 0$, which by linear independent of $\{w_1, ..., w_k\}$ implies $c_1 = c_2 = ... = c_k = 0$. So indeed $\{w_1, ..., w_{k+1}\}$ follows linear independent.

Thus, since any linear independent subset of W has $\leq n$ many elements with n finite, we can continues the process of choosing more and more linear independent vectors $w_1, ..., w_k$ in W. But since $k \leq n$ and n is finite this process must end after finitely many steps, say m steps, assume we got a linear independent $\{w_1, ..., w_m\}$ to span W, and from the above we have $m \leq n$. Since $\text{span}\{w_1, ..., w_m\} = W$ and $\{w_1, ..., w_m\}$ linear independent, $\{w_1, ..., w_m\}$ is a basis for W. Thus $\dim(W) = m \leq n = \dim(V)$

if in addition dim(W) = dim(V) then by 11.1.3 we must have that $\{w_1, ... w_m\}$ is also a basis of V thus W = V

11.3 Corollary

If V is finite dim vector space and $W \subset V$ subspace then any basis for W can be extended to a basis for V **Proof:** By Theom 11.2 we know that $m = dim(W) \le n$. Let $\{w_1, ... w_m\} \subset W$ be a basis for W in particular they are linear independent and by 11.1.4 we can extend this set V to a basis of V.

Linear Transformations Between Vector Spaces (2.1)

11.4 definition

Let V, W be vector spaces over the field F. A function $T: V \to W$ satisfying to properties a) $T(x+y) = T(x) + T(y), \forall x, y \in V$ b) $T(cx) - cT(x), \forall x \in V, c \in F$ is called a linear transformation from V to W

We often just use the term linear, as an adjective/noun to call such function $T:V\to W$

11.5 Remarks

```
if T:V\to W is linear, as above, then T(0_V)=0_W. Indeed, because by (b) above we have T(0*0_v)=0T(0_V) 2^o:T(x-y)=T(x)-T(y), \forall x,y\in V indeed T(x-y)=T(x+(-y))=T(x)+T(-y)=T(x)+T((-1)y)=T(x)+(-1)T(y)=T(x)-T(y) 3^o:T(\Sigma_{i=1}^nc_iT(x_i))=\Sigma_{i=1}^nc_iT(x_i), \forall x_1,...x_n\in V, c_1,...c_n\in F Indeed, This is clear by applying (a), (b) repeatly
```

11.6 Example

```
Define T: R^2 \to R^2 by T(a,b) = (a,-b). Then T is linear, because on the one hand T((a_1,b_1) + (a_2,b_2)) = T((a_1 + a_2,b_1 + b_2)) = (a_1 + a_2,-b_1 - b_2) on the other hand T(a_1,b_1) = (a_1,-b_1) T(a_2,b_2) = (a_2,-b_2) So T(a_1,b_1) + T(a_2,b_2) = (a_1,-b_1) + (a_2,-b_2) = (a_1+a_2,-b_1-b_2) Similarly, T(c(a,b)) = T(ca,cb) = (ca,-cb) = c(a,-b) = cT(a,b)
```

11.7 Example

 $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(a,b) = (a,0) is linear

Indeed, trivial to check:

The transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(a,b) = (a,-b) in 12.6 is called the reflection of \mathbb{R}^2 almost the x-axis and $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(a,b) = (a,0). 12.7 is called the projection of \mathbb{R}^2 on the x-axis

11.8 Example

Let V denote the set of all functions $f: \mathbb{R} \to \mathbb{R}$ that have derivative of any order. This is obviously a vector space over field \mathbb{R} when endowed with usual addition of functions and multiplication of functions by scalars: if $f, g \in V$ then $(f+g)(t) = f(t) + g(t), t \in \mathbb{R}, (cf)(t) = cf(t)$

Define, $T: V \to V$ by T(f) = f' (the derivative of f)

Then T is a linear transformation because of the linear properties of the derivation of functions:

 $(f+g)' = f' + g', (cf)' = cf'. \forall f, g \in V, c \in \mathbb{R}$

Obs one effect denotes this vector space by $V = C^{\infty}(\mathbb{R})$

11.9 Example

Let $V = C(\mathbb{R})$ the set of continuous functions $f : \mathbb{R} \to \mathbb{R}$. Then $C(\mathbb{R})$ with the usual addition of functions and multiplication by scalars is a vector space. Let $a, b \in \mathbb{R}$, a < b. Then the function $T : C(\mathbb{R}) \to \mathbb{R}$ defined by $T(f) = \int_a^b f(t)dt$ is linear because of the known properties of the integral $\int_a^b (f+g)(t)dt = \int_a^b f(t)dt + \int_a^b g(t)dt$, $\int_a^b (cf)(t)dt = c \int_a^b f(t)dt$

11.10 Definition

Let V, W be vector spaces and $T: V \to W$ linear. The null space of T (or kernel of T) is the set $N(T) := \{x \in V : T(x) = 0\}$ The range of T (or image of T) is the set $R(T) := \{T(x) : x \in V\}$

11.11 Examples

The projection of \mathbb{R}^2 denote the x axis theom 12.7 defined by $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(a,b) = (a,0), \forall (a,b) \in \mathbb{R}^2$ $N(T) = \{(0,b) : b \in \mathbb{R}\}$ i.e. the y-axis $R(T) = \{a,0 : a \in \mathbb{R}\}$ i.e. the x axis

11.12 Theorem

Let V, W be vector space and $T: V \to W$ be linear. Then N(T), R(T) are subspaces of V and respectively W **Proof:** Since $T(0_V) = 0_W$ we have $0_V \in N(T)$. if $v_1, v_2 \in N(T)$, i.e. $T(v_1) = 0_W, T(v_2) = 0_W$ Then $T(v_1 + v_2) = T(v_1) + T(v_2) = 0_W + 0_w = 0_w$, so $v_1 + v_2 \in N(T)$ if $v \in N(T)$ then $T(v) = 0_W$ so if $c \in \mathbb{R}$ scalar then $T(cv) = cT(v) = 0_w$ so $cv \in N(T)$. Similarly for R(T)