Math 676 (Olivier) Class Notes

Colin Roberts

November 23, 2017

Contents

	Physics Prerequisites			
	1.1	Waves	2	
	1.2	Position and Momentum Operators	3	
	1.3	Wave Packets in 1D	4	
	1.4	Dispersive Propagation	5	
2	Ref	rerences	6	

1 Physics Prerequisites

1.1 Waves

We describe the electromagnetic field via $(\vec{E}(t,x),\vec{B}(t,x))$ with \vec{E} representing the electric field and \vec{B} representing the magnetic field. Of course, t represents time and x represents position (x could potentially be a vector in \mathbb{R}^3).

• Suppose we have a wave that is described by a scalar field $\phi(t,x)$, which is a solution to the wave equation

$$\partial_t^2 \phi - c^2 \Delta \phi = 0.$$

Then we say the intensity is $I(t,x) = |\phi(t,x)|^2$. We denote $\phi(0,x)$ by $\phi_0(x)$.

• Equivalently, we could choose to represent this solution in Fourier space by transforming from spatial coordinates x to wave vector coordinates k. We then have

$$\phi(t,x) = \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} \hat{\phi}_0(k) e^{i(kx - \omega t)} dx.$$

By Fourier-Plancherel we then have that

$$\int_{\mathbb{R}^3} |\phi(t,x)|^2 dx = \int_{\mathbb{R}^3} |\hat{\phi}_0(k)|^2 dk.$$

It then follows that in Fourier space, we have

$$-\omega^2 + c^2 |k|^2 = 0$$

iff ϕ is a solution to the wave equation. In other words, ϕ satisfies the dispersion relation $\omega^2 = c^2 |k|^2$.

- $\hat{\phi}_0(k)$ is smooth and has compact support. Meaning that $\hat{\phi}_0(k) = 0$ for $|k| \ge K$ for some positive K.
- We see that $\phi(t,x)$ has the following form:

• Finally we have that $\hat{\phi}(t,k) = \hat{\phi}_0(k)e^{i(kx-\omega t)}$ as the time-evolved state.

1.2 Position and Momentum Operators

We will use the following notation for the inner product $(u, v) = \int_{\mathbb{R}^3} \overline{u}(x)v(x)dx$ and for the norm $||u||^2 = (u, u)$.

Definition 1.1. The average position of a wave packet is

$$\langle x(t) \rangle \coloneqq \frac{\int_{\mathbb{R}^3} x |\phi(t,x)|^2 dx}{\|\phi(t,\cdot)\|^2}.$$

The momentum is then $\vec{p} = \hbar \vec{k}$. Then the average value of the momentum for the wave packet is given by

$$\langle p(t) \rangle \coloneqq \frac{\int_{\mathbb{R}^3} \hbar k |\hat{\phi}(t,k)|^2 dk}{\|\hat{\phi}(t,\cdot)\|^2}.$$

From here on out we restrict to normalized states, i.e., $\|\phi(t,\cdot)\| = 1$.

Definition 1.2. The position operator $X_i\varphi = x_i\varphi$ for i = 1, 2, 3. Note that for $\phi \in L^2(\mathbb{R}^3)$ we may not have that $X_i \colon L^2(\mathbb{R}^3) \to L^2(\mathbb{R}^3)$.

Definition 1.3. The momentum operator is $P_j\varphi(x) = i\hbar \frac{\partial}{\partial x_j}\varphi(x)$ for j = 1, 2, 3.

Remark. Of course we can Fourier transform the above operators. The Fourier transform of the position operator becomes differentiation with respect to k and the Fourier transform of the momentum operator becomes multiplication by $\hbar k$.

It follows that we can write the expected values for the position and momentum in the following way:

$$\langle X_j \rangle = (X_j \phi(t, \cdot), \phi(t, \cdot)),$$

$$\langle P_j \rangle = (P_j \phi(t, \cdot), \phi(t, \cdot)).$$

Proposition 1. X_j and P_j are symmetric operators. Meaning that for smooth functions ϕ, ψ we have that

$$(X_j\phi,\psi) = (\phi, X_j\psi),$$

$$(P_i\phi,\psi) = (\phi, P_i, \psi).$$

Moreover, X_j and P_j satisfy the Heisenberg commutation relations:

$$X_i P_j = P_j X_i, \qquad \qquad i \neq j$$

$$P_i X_i - X_i P_i = -i \hbar \mathbf{I}.$$

Proof. Left as an exercise. Hint: $P_i(X_i\varphi) - X_i(P_i\varphi) = -i\hbar\varphi$.

Since we were able to find the center of the wave packet, $\langle X_i \rangle$ (for position, at least). We wish to find the width of the wave packet in order to fully characterize the state. We have that the width is

$$(\Delta X_j)^2 = \int_{\mathbb{R}^3} |x_j - \langle X_j \rangle|^2 |\phi(t, x)|^2 dx$$
$$= ||x_j \phi(t, \cdot)|^2 - (\langle X_j \rangle)^2.$$

Proposition 2. Let A, B be symmetric operators that satisfy Heisenberg's commutation relation $AB - BA = i\hbar \mathbf{I}$, then

$$||A\varphi||^2 ||B\varphi||^2 \ge \frac{\hbar^2}{4} ||\varphi||^4.$$

Proof. Let $\lambda \in \mathbb{R}$. So then $\|(A+i\lambda B)\varphi\|^2 = \|A\varphi\|^2 + 2\operatorname{Re}(A\varphi, i\lambda B\varphi) + \lambda^2 \|B\varphi\|^2$. Now we have

$$\begin{split} \operatorname{Re}(A\varphi,i\lambda B\varphi) &= -\lambda \operatorname{Im}(A\varphi,B\varphi) \\ &= -\lambda \operatorname{Im}(\varphi,AB\varphi) \qquad \text{since } A,B \text{ is symmetric} \\ &= -\lambda \operatorname{Im}(BA\varphi,\varphi) \\ &= -\lambda \operatorname{Im} \int_{\mathbb{R}^3} \overline{BA\varphi}\varphi dx \\ &= \lambda \operatorname{Im} \int_{\mathbb{R}^3} \overline{\varphi} BA\varphi dx. \end{split}$$

So now,

$$\begin{aligned} 2\mathrm{Re}(A\varphi, i\lambda B\varphi) &= -\lambda \mathrm{Im}(\varphi, (AB - BA)\varphi) \\ &= -\lambda \mathrm{Im}(i\hbar \|varphi\|^2) \\ &= -\lambda \hbar \|\varphi\|^2. \end{aligned}$$

So,

$$\begin{split} \|A\varphi\|^2 - \lambda \hbar \|\varphi\|^2 - \lambda^2 \|B\varphi\|^2 &\geq 0 & \forall \lambda \in \mathbb{R} \\ &\Longrightarrow \, \hbar^2 \|\varphi\|^4 \leq 4 \|B\varphi\|^2 \|A\varphi\|^2 & \text{using a discrimant or something} \\ &\Longrightarrow \, \|B\varphi\| \|A\varphi\|^2 \geq \frac{\hbar}{2} \|\varphi\|^2. \end{split}$$

Theorem 1.1. Define $\Delta X_i = \sqrt{\|X_i\phi\|^2 - \langle X_i\rangle^2}$, $\Delta P_i = \sqrt{\|P_i\hat{\phi}\|^2 - \langle P_i\rangle^2}$. Then $\Delta X_i\Delta P_i \geq \frac{\hbar}{2}$ when $\|\phi\| = 1$.

П

Proof. We define $\tilde{X}_i = X_i - \langle X_i \rangle \mathbf{I}$ and $\tilde{P}_i = P_i - \langle P_i \rangle \mathbf{I}$.

Claim: \tilde{X}_i and \tilde{P}_i satisfy Heisenberg's commutation relation. Then apply the above proposition and we are done.

1.3 Wave Packets in 1D

Now we wish to investigate the wave packets a bit more to find out specific characteristics. We have

$$\phi(t,x) = \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}} \hat{\phi}_0(k) e^{i(kx - \omega t)} dk,$$

with $\hat{\phi}_0(k) = 0$ for $k \leq 0$.

Goal: Characterize $\langle X \rangle = (X\phi, \phi)$ with $\|\phi\| = 1$ and $\langle P \rangle$ when ϕ satisfies the wave equation. We can factor the wave equation into

$$(\partial_t - c\partial_x)(\partial_t + c\partial_x)\phi = 0.$$

We write the general solution $\phi = \phi_+ + \phi_-$ which correspond to waves traveling forward (backward) denoted with + (-). So now we have

$$\frac{d}{dt}\langle X \rangle = (X\partial_t \phi, \phi) + (X\phi, \partial_t \phi)$$

$$= -2\operatorname{Re}(X\phi, \partial_t \phi)$$

$$= -2\operatorname{Re}(X\phi, C\partial_x \phi)$$

$$= -2c\operatorname{Re} \int_{\mathbb{R}} x\overline{\phi}\partial_x \phi dx$$

$$= -c \int_{\mathbb{R}} x\partial_x |\phi|^2 dx \qquad \text{by integrating by parts, of course}$$

$$= c \int_{\mathbb{R}} |\phi|^2 dx = c.$$

This means that $\frac{d}{dt}\langle X\rangle=c$. This makes physical sense, since of course a wave should propagate at the speed of light.

Next, we have $\langle P \rangle = \int_{\mathbb{R}} \hbar k |\hat{\phi}(t,k)|^2 dk$. Then $\phi(t,x) = \frac{1}{(2\pi)^{1/2}} \int_{\mathbb{R}} \hat{\phi}_0(k) e^{i(kx-\omega t)} dx$. So $\hat{\phi}(t,k) = \hat{\phi}_0(k) e^{-i\omega t}$. Then $|\hat{\phi}(t,k)|^2 = |\hat{\phi}(k)|^2$ which implies that $\frac{d}{dt} \langle P \rangle = 0$. Physically this is saying that the expected value of the momentum should remain constant, which fits with our classical understanding.

1.4 Dispersive Propagation

Suppose that we have $\omega = \omega(k)$. Then

$$\langle X \langle = (X\phi, \phi) = (X\hat{\phi}, \hat{\phi}),$$

and

$$\hat{X\phi}(k) = i\nabla_k \hat{\phi}.$$

So, $\hat{\phi}(t,k) = \hat{\phi}_0(k)e^{-i\omega(k)t}$ and we have

$$\nabla_{k}\hat{\phi}(t,k) = \nabla_{k}\hat{\phi}_{0}(k)e^{-i\omega(k)t} - i\nabla_{k}\omega(k)\hat{\phi}_{0}(k)e^{-i\omega(k)t}$$

$$\implies \nabla_{k}\hat{\phi}\overline{\hat{\phi}} = \nabla_{k}\hat{\phi}_{0}\overline{\hat{\phi}}_{0} - i\nabla_{k}\omega(k)|\hat{\phi}_{0}(k)|^{2}$$

$$\implies \frac{d}{dt}\langle X\rangle = \int_{\mathbb{R}^{3}}\nabla_{k}\omega(k)|\hat{\phi}_{0}(k)|^{2}dk$$

$$= \langle \nabla_{k}\omega(k)\rangle.$$

Note that $\nabla_k \omega(k) = V_q(k)$ is known as the group velocity.

So when we have $\omega(k) = ck$ from the wave equation, then we have $\nabla_k \omega(k) = c$ which means there is no dispersion of our wave. As before, we have $\frac{d}{dt}\langle P \rangle = 0$.

With the Schödinger equation, we expect to have the wave disperse. Meaning that the wave packet will widen as time passes. We have $\Delta X_i^2 = \|X_i\phi\|^2 - (\langle X_i\rangle)^2$. Then we claim that $\Delta X_i^2 = At^2 + at + b$.

Exercise. Show that $A = \int_{\mathbb{R}^3} |\nabla_k \omega|^2 |\hat{\phi}_0(k)|^2 - \langle V_g \rangle^2$.

From the De Broglie relation we have $E = \frac{\hbar^2 |\vec{k}|^2}{2m} = \hbar \omega$ which implies that $\omega(k) = \frac{\hbar |\vec{k}|^2}{2m}$. So we can

find that the expression for the wave packet follows from below.

$$\begin{split} \phi(t,x) &= \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} \hat{\phi}_0(k) e^{i\left(k \cdot x - \frac{\hbar |\vec{k}|}{2m}t\right)} dk \\ i\hbar \partial_t \phi &= \frac{\hbar^2}{2m} \int_{\mathbb{R}^3} |k|^2 \hat{\phi}_0(k) e^{i0} dk \\ &= \frac{-\hbar^2}{2m} \Delta \phi. \end{split}$$

This implies the free Schödinger equation $i\hbar\partial_t\phi = \frac{-\hbar^2}{2m}\Delta\phi$.

2 References

1. Reed Simon