Homework 6

Let

$$P_1 = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle) \cdot \frac{1}{\sqrt{2}}(\langle 0| - i\langle 1|) \text{ and } P_2 = \frac{1}{\sqrt{2}}(|0\rangle - i|1\rangle) \cdot \frac{1}{\sqrt{2}}(\langle 0| + i\langle 1|).$$

- 1. Check that the above matrices are projection operators.
- 2. Check that the above matrices can be used for organizing a von Neumann measurement.
- 3. Find the classical and quantum outputs of the measurements of a qubit in
 - 1. state $|0\rangle$,
 - 2. state $|1\rangle$.
- 4. Find the classical and quantum outputs of the measurement of a qubit in 1. state $\frac{A}{\sqrt{2}}(0) + \frac{B}{\sqrt{2}}(0)$
- 2. state $\frac{1}{\sqrt{2}}(|0\rangle i|1\rangle)$. For problems 3 and 4, please present results in the following form:

State $|v\rangle = ...$ WeChat: cstutor

Quantum outputs | Classical outputs | Probability

Write here q. out | Write here cl. out | Prob. of this event

- 5. We will use the following notations and assumptions.
 - 1. Basis 0, bit 0, means that Alice sends quantum state $|0\rangle$.
 - 2. Basis 0, bit 1, means that Alice sends quantum state $|1\rangle$.
 - 3. Basis 1, bit 0, means that Alice sends quantum state $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$.
 - 4. Basis 1, bit 1, means that Alice sends quantum state $|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$.
 - 5. Making measurement in basis B_0 means to use $P_0 = |0\rangle\langle 0|$ and $P_1 = |1\rangle\langle 1|$.
 - 6. Making measurement in basis B_1 means to use $P_0 = |+\rangle \langle +|$ and $P_1 = |-\rangle \langle -|$.

Let Alice choose the following bases and bits for sending qubits to Bob:

time instance: t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_9 t_{10} basis: B_0 B_1 B_1 B_0 B_1 B_0 B_1 B_0 B_0 B_1 bit: 0 1 0 1 1 1 0 0 0 0

Let now Bob use the following bases for conducting measurements

time instance: t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_9 t_{10} basis: B_0 B_0 B_0 B_1 B_1 B_1 B_1 B_0 B_0 B_1

Further Alice and Bob follow the protocol BB84 (which we discussed in the class).

Find the secret key obtained by Alice and Bob.

6. For the same settings (bases and bits used by Alice and bases used by Bob) let us assume that Eve intercepts the first 5 qubits sent by Alice. Eve measures these qubits using bases

Assignment Project Exam Help

and sends the qubits (after measurements) further to Bob.

Find possible classic that the terresponding probabilities of the first 5 measurements conducted by Bob.

WeChat: cstutorcs