IOT WORKSHOP

Ву:

Mahdi Bahreiny

روند پیشرفت کارگاه

جلسه 3

اتصال ESP به اینترنت و کنترل آن به صورت بی سیم و از راه دور

• جلسه 4

راه اندازی پنل کاربری برای کنترل ESP از طریق اینترنت

جلسه 2

اتصال ESP به شبکه و کنترل آن به صورت بی سیم و لوکال

جلسه 1

راه اندازی ESP و کنترل آن باسیم

جلسه اول:

آشنایی با مفاهیم IoT و ماژول ESP32

اهمیت Tol

• کاهش هزینه ها • The Internet of Things (IoT)

بهبود كارايي

بهبود قابلیت حمل

کاربردهای IoT

- خانه هوشمند
- صنعت پزشکی
- صنعت حمل و نقل
- مصرف هوشمند انرژی

M2M wireless sensor network

Building management

Internet of things

Embedded mobile

energy consumption

security and surveillance

monitoring & controlling

smart homes and cities

ساختار سامانه IoT

CLOUD COMPUTING VS. FOG COMPUTING VS. EDGE COMPUTING

- لايه لبه (Edge)
 - لايه مه (Fog)
- لايه ابر (Cloud)

آشنایی با ESP32

• یک SoC با قابلیت وایفای، بلوتوث دارای امکانات کامل بک میکروکنترلر

آشنایی با WROOM-32

- كريستال جهت عملكرد esp32
 - آنتن برای بخش رادیویی

آشنایی با NodeMCU 32S

- رگولاتور ولتاژ
- مبدل USB به UART
 - LED روی بورد
- دکمه های بوت و ریست

پین های بورد

- 18 يين ADC
 - 3 رابط SPI
- 3 رابط UART
 - 2 رابط 12C
- 16 خروجی PWM
 - 2 عدد DAC
 - 2 رابط 12S
- 10 يين لمس خازني

- . GPIO pins 34, 35, 36 and 39 are input only.
- TXO and RXO (Serial 0) are used for serial programming.
- TX2 and RX2 can be accessed as Serial2.
- Default SPI is VSPI. Both VSPI and HSPI pins can be set to any GPIO pins.
- \bullet All GPIO pins support PWM and interrupts.
- Builtin LED is connected to GPIO2.
- Some GPIO pins are used for interfacing flash memory and thus are not shown.

نحوه برنامه نویسی برای ESP

```
sketch_feb18a | Arduino IDE 2.3.1
                                                                              \times
File Edit Sketch Tools Help
                .Q. √
      sketch feb18a.ino
          1 void setup() {
包
          6 void loop() {
                                       Ln 1, Col 1 NodeMCU-32S on COM3 [not connected] Q
```

ESP-IDF

شیوه پیشنهاد شده توسط شرکت سازنده

انعطاف بيشتر

Arduino IDE

سهولت بيشتر

سرعت بيشتر توسعه

نوشتن یک برنامه ساده

```
Blink | Arduino IDE 2.3.1
                                                                         ×
File Edit Sketch Tools Help
              Blink.ino
            void setup() {
딉
               pinMode(LED BUILTIN, OUTPUT);
0
            // the loop function runs over and over again forever
        8 void loop() {
               digitalWrite(LED BUILTIN, HIGH); // turn the LED on (HIGH is
               delay(1000);
               digitalWrite(LED BUILTIN, LOW);
               delay(1000);
 O indexing: 35/49
                                            Ln 14, Col 1 NodeMCU-32S on COM3 [not connected] Q
```

PinMode

تعریف نوع پین

digitalWrite

نوشتن یک مقدار دیجیتال روی پین

برد بورد

ردیف های کناری اتصال افقی تمام خانه ها

ردیف های میانی به صورت ستونی

ارتباط سريال UART

سیم کشی

اتصال Txو Rx به صورت ضربدری

اتصال Gnd

فریم داده و پروتکل

بیت ها و نرخ تبادل

ارتباط سريال

```
uint8_t counter = 0;
    uint32 t lastSavedTime = 0;
    void setup() {
      Serial.begin(115200);
    void loop() {
      if(millis() - lastSavedTime > 1000){
 8
        counter ++;
 9
        Serial.print("One second past and counter is ");
10
        Serial.println(counter);
        lastSavedTime = millis();
11
12
13
```

Serial.begin(baudrate)

راه اندازی و تنظیم نرخ تبادل داده

Serial.println(data)

نوشتن داده در سریال

خواندن ورودی دیجیتال

Polling

در حلقه اصلی مدام ورودی چک میشود

digitalRead(pinNumber)

- دارای سربار در برنامه اصلی

Interrupt

به محض تغییر ورودی تابع ISR اجرا میشود

attachInterrupt(pinNumber, isrFunction, RISING

- خارج شدن از روند برنامه اصلی

خواندن ورودی دیجیتال (ادامه)

Interrupt

```
#define BUTTON PIN 13
    uint32 t lastTimeKeyPressed = 0;
    volatile bool flag = false;
    void IRAM ATTR isr() {
      if (millis() - lastTimeKeyPressed > 500)
        flag = true;
    void setup() {
      Serial.begin(115200);
      pinMode(BUTTON PIN, INPUT);
      attachInterrupt(BUTTON_PIN, isr, RISING);
11
12
    void loop() {
13
      if (flag) {
14
        flag = false;
15
16
        lastTimeKeyPressed = millis();
17
        Serial.println("key pressed");
18
```

Polling

analogRead()

واحد 12 بيتي ADC

سنسور LDR

کا کی کادی ۱۵۵ نورزیاد ۱۵۵ نورکعم

LDR

مقاومت متغیر با میزان روشنایی

نحوه استفاده

سری کردن با یک مقاومت و خواندن ولتاژ


```
x 3.3
```

```
light = analogRead(LDR_PIN);
String lightStat;
if (light < 1000)
   lightStat = "dark";
else if (light < 3000)
   lightStat = "normal";
else
   lightStat = "bright";</pre>
```

سنسور DHT22

DHT22 pins	
1	VCC
2	DATA
3	NC
4	GND

دما

با استفاده از دستور (getTemperature)

رطوبت

با استفاده از دستور (getHumidity

```
#include <DHT22.h>
DHT22 dht22(DHT_PIN);
float temperature, humidity;
void readDhtData(){
  temperature = dht22.getTemperature();
  humidity = dht22.getHumidity();
}
```

مالتی تسکینگ

ایجاد تسک و اختصاص به هسته

استفاده از امکانات FreeRTOS

xTaskCreatePinnedToCore(function, "name", 1000, NULL, 1, NULL, coreNumber);

استفاده از منبع مشترک

استفاده از semaphore و mutex

xSemaphoreTake(xMutex, portMAX_DELAY)

xSemaphoreGive(xMutex)

ممنون از توجه شما