High-Performance Unsupervised Anomaly Detection for Cyber-Physical System Networks

Peter Schneider, Konstantin Böttinger, October 19, 2018 / CPS-SPC

Who Peter Schneider, Konstantin Böttinger

What Anomaly Detection

When Online Detection

Where Cyber-Physical System Networks

Why High-Performance, Unsupervised

How Stacked Denoising Autoencoders

For what Detection in proprietary and/or binary protocols

Motivation

Rising number of attacks on cyber-physical systems (CPS)

■ 100%-secure systems are impossible

Network-based Anomaly Detection widely suggested as solution

The Problem

Detection systems for business IT already available

Adaptation of systems to CPS domain still ongoing

Including domain-specific knowledge should increase detection capabilities

What happens now

Figure: Insecure manufacturing system.

What happens now

Figure: Secure manufacturing system.

Challenges

- slow updates
- long product lifetime
- once protected environments

- high damage potential
- specialized attacks
- binary/proprietary protocols

Challenges

- slow updates
- long product lifetime
- once protected environments

- high damage potential
- specialized attacks
- binary/proprietary protocols

Figure: VDI, Cyber-Physical Systems: Chancen und Nutzen aus Sicht der Automation

How it is usually done

data acquisition phase

How it is usually done

How it is usually done

How it is usually done

How it (not) works

Performance

Figure: Performance comparison using different data aggregation strategies.

Performance

# packets	scapy	pyshark	рсар
1000	0.38s	0.63s	< 0.01s
3000	1.17 <i>s</i>	1.19 <i>s</i>	< 0.01s
10000	3.99s	3.15s	< 0.01s
50000	20.14s	13.79 <i>s</i>	0.02s

Performance

# packets	scapy	pyshark	рсар
1000	0.38s	0.63 <i>s</i>	< 0.01s
3000	1.17 <i>s</i>	1.19s	< 0.01s
10000	3.99 <i>s</i>	3.15 <i>s</i>	< 0.01s
50000	20.14s	13.79 <i>s</i>	0.02s

Assumptions bandwidth: 100Mbit/s, average packet length: 100bytes

Result up to 131072 network packets per second

Observations

packet parsing infeasible for larger CPS networks

classic ML feature extraction not possible

We need a faster solution for **feature extraction** and **anomaly detection**!

Pipeline

Figure: High-Performance Pipeline

Anomaly Detection for CPS Networks Pipeline

data acquisition real-time capturing

data preparation length cut-off or padding

anomaly detection stacked denoising autoencoders

Autoencoder-based Detection

Autoencoder-based Detection

Autoencoder-based Detection

SDA

Figure: Stacked auto-encoders.

Experiments

Modbus dataset

- labeled network packets
- several traces with and without attacks

SWaT dataset

- large dataset (~500GB)
- traces from several days with and without attacks
- pcap traces not labeled

Modbus dataset – training data

Figure: RMSE on the run1_3rtu_2s trace.

Modbus dataset - validation data

Figure: RMSE on the exploit_ms08_netapi_modbus_6RTU _with_operate trace.

Modbus dataset - validation data

Figure: RMSE on the run1_6rtu trace.

SWaT dataset

Figure: Results on SWaT dataset.

Label Estimation

Labels Estimated

dupack duplicated acknowledgements tcp.analysis.duplicate_ack

retransmit retransmitted packets tcp.analysis.retransmission or tcp.analysis.fast_retransmission

unknownproto-tls newly introduced TLS layers manual analysis

> tcpreset connection resets using TCP RST flag tcp.flags.reset==1

synflood flooding using TCP SYN packets

transum.status=="Response missing" and tcp.connection.syn

SWaT dataset, detailed results

Line		dupack	retransmit	unknownproto-tls
1	precision	6.38%	2.22%	4.35%
2	recall	3.95%	1.00%	0.38%
3	f1	4.88%	1.38%	0.70%

Table: Anomaly detection performance in problematic scenarios.

SWaT dataset, detailed results

Line		tcpreset	synflood
1	precision	99.80%	99.80%
2	recall	99.77%	99.99%
3	f1	99.78%	99.89%

Table: Anomaly detection performance in well-working scenarios.

Naive classifier Using packet length \rightarrow 0% f1-score

Conclusion

Where Cyber-Physical System Networks

→ **SWaT** (EtherNet/IP) and **Modbus** datasets for validation

Conclusion

Where Cyber-Physical System Networks

→ **SWaT** (EtherNet/IP) and **Modbus** datasets for validation

Why High-Performance

- \rightarrow fast **data acquisition** omitting packet parsing Unsupervised
- \rightarrow **feature learning** using SDAs

Conclusion

- Where Cyber-Physical System Networks
 - → **SWaT** (EtherNet/IP) and **Modbus** datasets for validation
 - Why High-Performance
 - \rightarrow fast **data acquisition** omitting packet parsing Unsupervised
 - \rightarrow **feature learning** using SDAs
- For what Detection in proprietary and/or binary protocols
 - \rightarrow up to **99%** f1-scores

Contact Information

Peter Schneider, Konstantin Böttinger

Product Protection & Industrial Security

Fraunhofer-Institute for Applied and Integrated Security (AISEC)

Address: Parkring 4

85748 Garching (near Munich)

Germany

Internet: http://www.aisec.fraunhofer.de

Phone: +49 89 3229986-142

Fax: +49 89 3229986-222

E-Mail: peter.schneider@aisec.fraunhofer.de

