1. Introduction générale

2. Modèle de Lieb-Liniger et approche Bethe Ansatz

- - i) Dynamique particule libre dans espace à une dimension , périodique
 - ii) Première à seconde quantification
 - A) Outil pour le Bethe Antsatz
- b) Description du modèle de Lieb-Liniger
 - i) Introduction au modèle de gaz de Bose unidimensionnel et Hamiltonien du modèle
 - A) Champs de Bose
 - B) Expression de l'Hamiltonien
 - C) Commutation canonique
 - D) Équation du mouvement associée
 - ii) Fonction d'onde et Hamiltonien et moment à N corps
 - A) Cas d'une particule libre dans une boîte périodique : base des états propres à une particule
 - Contexte physique du système.
 - Détermination des états propres.
 - État à une particule dans la base de Fock
 - Orthonormalité de la base.
 - Fonction d'onde à une particule.
 - Hamiltonien dans le cas à une particule.
 - Hamiltonien dans le cas à une particule et Action de

 - Équation de Schrödinger différentielle.
 - Résolution avec conditions périodiques
 - Énergies quantifiées.
 - Notation adoptée et interprétation.
 - B) Deux particules
 - Introduction au système à deux bosons avec interaction de
 - Forme générale de l'état à deux particules dans la base de Fock
 - Définition et orthonormalisation de la base positionnelle
 - Symétrie et normalisation de la fonction d'onde à deux
 - particules. - Réécriture de l'Hamiltonien du champ.
 - Action de l'Hamiltonien sur l'état à deux particules et Forme
 - explicite de l'Hamiltonien effectif à deux corps Changement de variables : coordonnées du centre de masse et
 - Résolution du problème de centre de masse et de coordonnée

 - Forme symétrique de la fonction d'onde pour bosons.
 - Condition de discontinuité à cause du potentiel delta.
 - Détermination de la phase Φ .
 - Phase de diffusion à un corps.
 - Lien entre phase de diffusion et décalage temporel : interprétation semi-classique.
 - Retour aux coordonnées du laboratoire
 - C) Cas général à N particules : l'Ansatz de Bethe
 - iii) Opérateurs conservés (intégrales du mouvement)
 - A) Opérateurs nombre de particules Q et moment P
 - B) Propriétés
 - C) L'état propre
- c) Équation de Bethe et distribution de rapidité
 - i) Condition aux bords périodiques et équation de Bethe Ansatz
 - ii) Thermodynamique du gaz de Lieb-Liniger à température nulle
 - iii) Excitations élémentaires à température nulle
- 3. Théorie thermodynamique et équilibre généralisé
 - a) Dynamique hors équilibre et notions d'équilibre

- i) Limit Thermodynamique
 - A) Limite
 - B) The dressing
- ii) Notion d'état d'équilibre généralisé (GGE)
 - A) Configuration des états à N particules.
 - B) Observables diagonales dans la base des états propres.
 - C) Définition générale d'observables conservées.
 - D) Principe de maximisation de l'entropie.
 - E) Définition de la matrice densité et de la fonction de partition
 - F) Interprétation physique des multiplicateurs de Lagrange.
 - G) Probabilité d'un état à rapidités fixées.
 - H) Moyenne d'un observable et dérivées de Z.
 - I) Moments d'ordre supérieur et fluctuations.

 - J) Cas particulier de l'équilibre thermique.
- iii) Rôle des charges conservées extensives et quasi-locales
 - A) Écriture des observables thermodynamiques comme sommes sur les rapidités.
 - B) Interprétation fonctionnelle et échange des sommes.
 - C) Expression de la matrice densité généralisée.
 - D) Probabilité associée à une configuration de rapidités
 - E) Moyennes d'observables dans le GGE.
 - F) Interpretation.
 - G) Rôle dans le formalisme GGE.
 - H) D'un point de vue mathématique.
- b) Thermodynamique de Bethe et relaxation
 - i) Statistique des macro-états : entropie de Yang-Yang et moyennes dans le GGE
 - A) Macro-états et entropie dans la TBA.
 - B) Distribution de rapidité comme macro-état.
 - C) Dénombrement local des configurations microcanoniques.
 - D) Estimation asymptotique à l'aide de Stirling.
 - E) Entropie de Yang-Yang : définition .
 - F) Énergie généralisée.
 - G) Observables locales dans la limite thermodynamique.
 - H) Passage à la limite continue.
 - $I) \ \ \textit{Formule fonctionnelle pour les moyennes}.$
 - ii) Équations intégrales de la TBA
 - A) Moyenne des observables dans l'ensemble généralisé de Gibbs.
 - Approximation au point selle.
 - Développement fonctionnel au premier ordre.
 - Équation intégrale de la TBA.

4. Hydrodynamique généralisée

- a) Hydrodynamique et régimes asymptotiques
 - i) Hydrodynamique classique des systèmes chaotiques
 - ii) Hydrodynamique des systèmes intégrables et distribution de rapidité
 - iii) Équation d'hydrodynamique généralisée (GHD)

5. Fluctuations autour des états d'équilibre

- a) Introduction
- b) Développement autour du point selle
- c) Définition de la fonction de corrélation
- d) Fluctuations autour de la distribution moyenne et rôle de la Hessienne
- e) Fluctuations autour de la distribution moyenne
- f) Fonction correlation du nombre d'atomes et de l'énergie

6. Expériences sur les gaz 1D hors-équilibre

- a) Présentation de l'expérience
 - i) Piégeage transverses et longitudinale
- b) Outil de sélection spatial

7. Protocoles expérimentaux avancés

- a) Dispositif expérimental
 - i) Préparation et Confinement du Gaz Ultra-Froid de 87Rb
 - ii) Confinement Longitudinal et Stabilisation du Piège Quartique
 - iii) Sélection Spatiale et Réalisation de la Coupure Bipartite
 - iv) Dynamique Après Coupure
- b) Prédictions de la GHD
- c) Données expérimentales
- d) Sonder la distribution locale des rapidités
- e) Détails sur les calculs
 - i) Facteur d'occupation et distribution de rapidité à l'équilibre
 - ii) Dynamique du contour dans l'espace des phases (x,θ)
 - iii) Simulation de la déformation du bord
 - iv) Simulation de l'expansion

8. Mise en place d'un confinement longitudinale dipolaire

- a) Calculs analytiques pour le confinement dipolaire
 - i) Transformation de jauge et simplification du Hamiltonien
 - A) Cadre sans potentiel vecteur.
 - B) Hamiltonien simplifié.
 - C) Conclusion Simplification par transformation de jauge.
 - ii) Effet Stark dynamique et interaction dipolaire atomique
 - A) Polarisabilité scalaire, vectorielle et tensorielle dans les états
 - Interprétation physique
 - Cas des atomes alcalins (ex. Rubidium)
 - iii) Cas du Rubidium 87 dans une polarisation rectiligne
 - A) Champ électrique appliqué
 - B) Cas de désaccords très importants.
 - Décalage d'énergie au second ordre.
 - Structure orbitale et opérateur dipolaire
 - Application du théorème de Wigner-Eckart. - Application au cas 5S ightarrow 5P et q= 0.
 - C) Piégeage dipolaire d'un atome à deux niveaux généralités.
 - Introduction.
 - Système à deux niveaux et interaction avec le champ.
 - Expression du potentiel.
 - Conditions de validité.
 - Interprétation physique. - Confinement optique.
 - Taux de diffusion spontanée.
 - Bilan compromis intensité / désaccord D) Structure fine et base des états $|L,S;J,m_J\rangle$.
 - Décalage d'énergie au second ordre.
 - Projection dans la base découplée.
 - Application au cas $5S1/2 \rightarrow 5P1/2,3/2$ avec q = 0. - Potentiel dipolaire
 - iv) Quelle longueur d'onde du laser?
 - v) Quelle Puissance du laser?
- b) laser, MOPA, etc.. Données

9. Conclusion et perspectives