1	Fill in the b	lanks give	n n – 2k foi	hac nava	n - 2k + 1	for odd
Ι.	riii iii tiie t	naliks. give	: - ZK O	even and	11 – ZK+T	ioi ouu

- 4 is even because 4=2(2). Here, 4 plays the role of n and 2 plays the role of k.
- 5 is odd because 5=2(<u>2</u>)+1. Here, <u>5</u> plays the role of n and <u>2</u> plays the role of k.
- -4 is even because -4=2(<u>-2</u>). Here, <u>-4</u> plays the role of n and <u>-2</u> plays the role of k.
- -5 is odd because -5=2(<u>-2</u>)+1. Here, <u>-5</u> plays the role of n and <u>-2</u> plays the role of k.
- 0 is even because 0=2(_0). Here, 2__ plays the role of n and 0_ plays the role of k.
- 2. Fill in the blanks Use a direct proof to show that If n1 and n2 are even, then n1+n2 is even. Suppose that n1 and n2 are even. By definition, there exist an integer n1 such that n1=2(k) and there exists an integer n2 such that n2=2(k). Consider the sum of n1 and n2: n1+n2= 2k+2k =2(2k). Let 2k = 2k Thus n1+n2=2(2k) for some integer k. By definition, we know that n1+n2 is even.
- 3. Use <u>direct proof</u> to show the following theorem: If n is even, then n^2 is even. n is even then n = 2k for some integer k. Consider. n2 = (2k)2
- =4k2
- = 2(2k2)

Thus n2 = 2(2k2) for some integer k. By definition, we know that n is even.

4. Use <u>direct proof</u> to show the following theorem: If n is an even, then $3n^2+5n+18$ is even.

n is odd then n = 2k+1 for some integer k.

Consider. 3n2 + 5n + 18 = 3(2k+1)2 + 5(2k+1) + 18

- = 3(4k2 + 4k + 1) + 10k + 5 + 18
- = 12k2 + 12k + 3 + 10k + 5 + 18
- = 12k2 + 22k + 26
- = 2(6k2 + 11k + 13)

Thus 3n2 + 5n + 18 = 2(6k2 + 11k + 13) is even. for some integer k. By definition, we know that n is

5.	Fill in the blanks. Use a contrapositive pro	of For any integer r	n, if 5n+3 is even	, then n is odd
J.	Till ill the blanks. Ose a contrapositive pro	<u>n or arry miceger r</u>	1, 11 311 3 13 6 4 6 11,	, tricii ii is oa

If n is not odd, 5n+3 is not even

Suppose that n is not odd. We know that n is even . By definition, there exists an integer

such that $n=2(\underline{k})$. Consider:

$$5n+3=$$
 $5(5k)+3$ $=$ $10k+3$ $=2($ $5k+1$ $)+1.$

Let
$$2k = 2(5k+1)+1$$
. Thus $5n+3=2(5k+1)+1$

for some integer <u>k</u> . By definition, we know that 5n+3 is odd. Hence 5n+3 is not even.

6. Use a **contrapositive proof** If 3n²+5n+18 is even, then n is an even.

If n is even, then 3n2+5n+18 is even.

Suppose that n is not even. We know that n is even . By definition, there exists an integer such that n = 2k.

Consider:

$$3n2+5n+18 = 3(2k)2+5(2k)+18$$

= $12k2 + 10k +18$

$$= 2(6k2 + 5k + 9)$$

Thus $3n^2+5n+18 = 2(6k^2 + 5k + 9)$ for some integer k.

By definition, we know that $3n^2+5n+18$ is even.

Hence $3n^2+5n+18$ is even.

7. Use a **contrapositive proof** If n² is even, then n is even.

contrapositive, $\neg Q \rightarrow \neg p$

If n is not even, then n2 is not even.

Suppose that n is not even. We know that n is odd.

By definition, there exists an integer such that n=2k+1.

Consider: $n^2 = (2k+1)2$

$$= 4k2 + 4k + 1$$

$$= 2(2k2 + 2k) + 1$$

Thus n2 = 2(2k2 + 2k) + 1 for some integer k. By definition, we know that n2 is odd. Hence n2 is not even.

8. Fill in the blanks. Use proof by contradiction

Both p and $\neg q$ are true

Proof. Suppose, for the sake of contradiction, that n² + 5 is <u>odd</u> and n is also <u>odd</u>.

By definition, then, there exists integers k and l so that $n^2 + 5 = 2k+1$ and n = 2k+1Hence, we have

Therefore, 2k + 1 is $(2k^2 + 2k + 3)$. This is clearly impossible, and hence we cannot have that $n^2 + 5$ is odd and n is also odd.

Therefore, if that $n^2 + 5$ is odd, we must have n is even.

9. Use **proof by contradiction** to show that if n is an integer, and n³+5 is odd, then n is even

Both Q and ¬Q are true

Suppose, for the sake of contradiction, that n3 + 5 is <u>odd</u> and n is also <u>odd</u>.

By definition, then, there exists integers k so that $n^2 + 5 = 2k+1$ and n = 2k+1. Hence, we have

$$2k + 1 = n3 + 5$$

$$= (2k + 1) + 5$$

$$= (8k^{3} + 12k^{2} + 6k + 1) + 5$$

$$= 8k^{3} + 12k^{2} + 6k + 6$$

$$= 2(4k^{3} + 6k^{2} + 3k + 3)$$

Therefore, 2k+1 is $2(4k^3 + 6k^2 + 3k + 3)$. This is clearly impossible, and

hence we cannot have that $n^3 + 5$ is odd and n is also odd.

Therefore, if that $3n^2+5n+18$ is odd, we must have n is even.

10. Use **proof by contradiction** to show that if 3n²+5n+18 is even, then n is an even

Both Q and ¬Q are true

Proof. Suppose, for the sake of contradiction, that $3n^2+5n+18$ is odd and n is even.

ปวีณ แก้วทอง

By definition, then, there exists integers k so that $3n^2+5n+18 = 2k+1$ and n = 2k.

Hence, we have

$$2k+1 = 3n^{2}+5n+18$$

$$= 3(2k)2 + 5(2k) + 18$$

$$= 3(4k^{2}) + 5(2k) + 18$$

$$= 12k^{2} + 10k + 18$$

$$= 2(6k^{2} + 5k + 9)$$

Therefore, 2k+1 is 2(6k2 + 5k + 9). This is clearly impossible, and hence we cannot have that 3n2+5n+18 is odd and n is even.

Therefore, if that $3n^2+5n+18$ is odd, we must have n is not even