Unit 4: Session 4

Initial Plan

This session: Sentiment Analysis and Recommendation Systems

Next Session: Association Rule Mining and Market Basket Analysis

Revised Plan

This session: Neural Networks, LLMs, Prompt Engineering

Next Session:

- Recommendation Systems
 - Association Rule Mining and Market Basket Analysis
- Sentiment Analysis

Neural Networks, LLMs and Prompt Engineering

Unit 4: Session 4

Neural Networks

Neural Networks: Intuition

Can you guess the equation?

Neural Networks: Intuition

The Equation is:

$$1x + 2y + 0 = \text{output}$$

Key Takeaways

- Input and Output are known
- We need to find the equation
- We can not modify the input and output
- We can multiply the input by a constant which is called weight
- We can add a constant to the output which is called bias

Neural Networks: Intuition - Perceptrons

Perceptrons were developed in the 1950s and 1960s by the scientist Frank Rosenblatt, inspired by earlier work by Warren McCulloch and Walter Pitts.

- Takes several binary inputs, $x1, x2, \ldots$
- Produces a single binary output

Rosenblatt proposed a simple rule to compute the output.

- We assign weights to each input, $w1, w2, \ldots$ which are real numbers expressing the importance of the respective inputs to the output.
- The neuron's output, 0 or 1, is determined by whether the weighted sum $\sum w_i x_i$ is less than or greater than some threshold value.

Neural Networks: Intuition - Perceptrons Example

There is concert in town and I want to go.

- Is the weather good?
- Does my friend accompany me?
- Is the concert near public transit?

Weather	Friend	Transit	Bias	Total / Threshold (5)	Go?
=	÷.	-	¥		-
-	-	_	æ	_	12
-		-	-	-	-

(Weather imes Importance of weather) + (Friend imes Importance of friend) + (Transit imes Importance of transit) + bias = output

Neural Networks: Intuition - Perceptrons Example

(Weather imes Importance of weather) + (Friend imes Importance of friend) + (Transit imes Importance of transit) + bias = output

Findings

- Weights determine how important each input is to the output
- The bias shifts the decision boundary

$$x_1w_1 + x_2w_2 + x_3w_3 + bias = output$$

Neural Networks: Intuition - Neuron

Neural Networks: Intuition

- Neural Network

INPUT 1	INPUT 2	OUTPUT
5	6	17
2	3	8
1	1	3
3	4	?

$$\begin{bmatrix} 5w_{11}^1 + 6w_{21}^1 & 5w_{12}^1 + 6w_{22}^1 & 5w_{13}^1 + 6w_{23}^1 \\ 2w_{11}^1 + 3w_{21}^1 & 2w_{12}^1 + 3w_{22}^1 & 2w_{13}^1 + 3w_{23}^1 \\ 1w_{11}^1 + 1w_{21}^1 & 1w_{12}^1 + 1w_{22}^1 & 1w_{13}^1 + 1w_{23}^1 \end{bmatrix}$$

$$=egin{bmatrix} 5 & 6 \ 2 & 3 \ 1 & 1 \end{bmatrix} . egin{bmatrix} w_{11}^1 & w_{12}^1 & w_{13}^1 \ w_{21}^1 & w_{22}^1 & w_{23}^1 \end{bmatrix} = X \cdot W$$

Neural Networks: Concepts

Forward Propagation

- Input > Hidden Layer > Output
- Weights are randomly initialized
- Output is calculated using the weights

Loss calculation

- Estimate the error between the predicted and actual output
- Choose a loss function e.g. Mean Squared Error

Backpropagation

- Calculate the gradient of the loss function with respect to the weights
- Update the weights

Explore Neural Network

Tensorflow Playground

Convolutional Neural Network

http://experiments.mostafa.io/public/ffbpann/

https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-deep-learning

https://poloclub.github.io/cnn-explainer/

https://medium.com/analytics-vidhya/what-do-you-mean-by-forward-propagation-in-ann-9a89c80dac1b

Neural Networks: Key concepts

- Neuron
- Activation Function
- Forward Propagation
- Loss Function
- Backpropagation
- Gradient Descent

LARGE LANGUAGE MODELs

Fill in the blank:

When I hear rain on my roof, I in my kitchen.					
Option	Probability				
Cook soup	9.4%				
Make coffee	5.2%				
Nap	2.5%				
Relax	0.1%				

Type the next characters:

Ty____

- Tye
- Typ
- Typi
- Typin
- Typing

Language Model may consider

- How many times have you typed "Typing"?
- How many time the word "Typing" appears in the English language?

- Machine Learning model that predicts and generates plausible language
- Can be used to generate text, translate text, summarize text, etc.
- It takes a sequence of words as input and predicts the probability of the next word in the sequence

Attention Network

The model learns to pay attention to the relevant words in the input sequence

Transformer

- Transformer is a neural network architecture that solves sequence-to-sequence tasks while handling longrange dependencies with ease
- It is based on the attention mechanism
- It is used in Google Translate, Google Assistant, etc.
- Transformer consists of an encoder and a decoder
- Full paper: https://arxiv.org/abs/1706.03762

Large Language Models

Large Language Models (LLMs) are trained on large amounts of text data

Language Model	Vendor	Parameter Count
GPT-3	OpenAl	175 billion
GShard	Google	600 billion
Switch Transformer	Google	1.6 trillion
T5	Google	11 billion
GPT-2	OpenAl	1.5 billion
BERT	Google	340 million
RoBERTa	Facebook	355 million

PROMPT ENGINERING

What is Prompt Engineering?

- Prompt Engineering is the art of asking the right questions to the language model
- Doesn't require any coding experience
- Just need creativity and persistence

Prompt Best Practices

- Clearly communicate what content or information is important
- Use specific, varied examples
- Break down complex prompts into simpler prompts

- Describe (Describe a topic)
- Inform (Ask a question)
- Narrate (Write a story)
- Opinions (What do you think about a topic)
- Research (What are the pros and cons of a topic)
- Translate (Translate a sentence)
- Summarize (Summarize a text)

Direct Prompts

One shot prompt

Prompt:

Can you give me a list of ideas for blog posts for tourists visiting New York City for the first time?

Prompt:

Create a four-column spreadsheet of 10 highly-rated science fiction movies, year of release, average audience rating, and top 3 keywords from audience reviews.

Make sure to cite the source of the audience rating.

Multi-step Prompts

```
Great product, 10/10: Positive
Didn't work very well: Negative
Super helpful, worth it: Positive

What is the sentiment of the following review?
It doesn't work!:
```

Chain-of-thought prompting

Zero-shot CoT

Prompt:

I went to the market and bought 10 apples. I gave 2 apples to the neighbor and 2 to the repairman. I then went and bought 5 more apples and ate 1. How many apples was I left with?

Let's think step by step.

Prompt Strategies

- Repeat keywords, phrases and ideas
- Specify the desired output format
- You can all caps to emphasize keywords
- Use synonyms or alternative phrasing

Look for examples in the Prompt Hero website

More example: https://ai.google.dev/examples?keywords=prompt

THE END:)