Synthetic Differences in Differences Simulations

Joshua Derenski

Simulations

Parameters

- Number of Ls: 1
- Draws per L: 100
- Number of Units: 100
- Number of Control Units: 95
- Number of Times: 200
- Number of pre-treatment Times: 190
- Rank of L: 10
- Autocorrelation Parameter: 0
- True Effect Size for Constant Effect: 10
- Error Type: gaussian
- Error Variance (if Gaussian error): 16
- Degrees of freedom (if t-error): 5
- Exchangable: FALSE
- Penalized: TRUE
- Rank Estimation Method: threshold
- Scaling for L: 5
- Treatment Effect Type: decay
- Treatment Design: staggered_adoption
- Lag Structure (if using staggered adoption structure): random
- Average Treatment Length (if using staggered adoption structure, with random adoption): 4
- Maximum lag: 4

Our Method vs Competitors, Fixed Parameters

Results

Signal to Noise Ratio

[1] 20.556

```
mse for DID
##
      mse
## 33.1032
Se for mse for DID
##
     se_mse
## 0.8431584
mse for SC
##
       {\tt mse}
## 379.579
Se for mse for SC
   se_mse
## 6.091563
mse for our Method (Explicit Tau)
##
        mse
## 13.21425
Se for mse for our Method (Explicit Tau)
##
     se_mse
## 0.7768032
mse for SDID
        mse
## 88.35847
Se for mse for SDID
##
   se_mse
## 2.906349
mse For Our Method (Not Explicit Tau)
##
        mse
## 13.21426
Se for mse for Our Method (Not Explicit Tau)
     se mse
## 0.7768033
```

```
mse For Oracle (Perfect L)

## mse
## 11.67569

mse For Oracle (Perfect L)

## se_mse
## 0.6420064
```

Matrix Bias vs Reduction in Variance due to Averaging

For more general designs of W (like the block design scheme considered here) we allow a block in the bottom right hand corner of W to be non-zero. When implementing our method, we have two competing effects on estimation:

- The bias that's introduced by making more of the Y_{ij} s zero.
- The help we get with estimating τ by being able to average over cells (because we asmeane tau) is the same for all units and times.

It would appear that accurracy increases for estimating τ to a point, and then decreases when the bias introduced by replacement of cells with 0 in Y becomes too great.

Influence of N_0/N on Performance

Influence of ρ on Performance

Influence of τ on Performance

Influence True Rank on Performance

Influence of Rank Error on Performance

