4. Координаты в пространстве

4.1. Аффинная система координат

Будем считать, что далее рассматривается векторное пространство всех векторов пространства, зафиксирована некоторая аффинная система координат (O, δ) , где $\delta = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$, или короче $O\overrightarrow{e_1}\overrightarrow{e_2}\overrightarrow{e_3}$.

Абсолютно аналогично координатам на плоскости устанавливаются

Утв 1. Координаты вектора \overrightarrow{AB} , где $A(x_1,y_1,z_1)$, $B(x_2,y_2,z_2)$, вычисляются как $(x_2-x_1,y_2-y_1,z_2-z_1)$.

Утв 2. Расстояние между двумя точками $A(x_1,y_1,z_1)$ и $B(x_2,y_2,z_2)$, заданными своими координатами в некоторой декартовой системе координат, равно $|\overline{AB}|=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}.$

Утв 3. Если точка M делит \overline{AB} , где $A(x_1,y_1,z_1)$, $B(x_2,y_2,z_2)$, в отношении λ , то $M\left(\frac{x_1+\lambda x_2}{1+\lambda},\frac{y_1+\lambda y_2}{1+\lambda},\frac{z_1+\lambda z_2}{1+\lambda}\right)$

Формулы преобразования аффинной системы координат при переходе от $O\overrightarrow{e_1}\overrightarrow{e_2}\overrightarrow{e_3}$ к $O'\overrightarrow{e_1}'\overrightarrow{e_2}'\overrightarrow{e_3}'$ выглядят:

$$\begin{cases} x = x_0 + x'c_{11} + y'c_{12} + z'c_{13} \\ y = y_0 + x'c_{21} + y'c_{22} + z'c_{23} \\ z = z_0 + x'c_{31} + y'c_{32} + z'c_{33} \end{cases} \quad \text{или} \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} = C \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} + \begin{pmatrix} x_0 \\ y_0 \\ z_0 \end{pmatrix},$$

где C — матрица перехода от базиса $\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}$ к базису $\overrightarrow{e_1}',\overrightarrow{e_2}',\overrightarrow{e_3}'$, а точка O' имеет координаты (x_0,y_0,z_0) в $O\overrightarrow{e_1}\overrightarrow{e_2}\overrightarrow{e_3}$.

4.2. Действия над векторами

Опр. Векторным произведением векторов \vec{a} и \vec{b} называется вектор \vec{c} , обозначаемый $[\vec{a},\vec{b}]$, который равен $\vec{0}$ если \vec{a} и \vec{b} коллинеарны, а если \vec{a} и \vec{b} неколлинеарны, то

1. \overrightarrow{c} перпендикулярен \overrightarrow{a} и \overrightarrow{b} ,

2.
$$|\vec{c}| = |\vec{a}||\vec{b}|\sin(\vec{a}, \vec{b}),$$

3.
$$(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$$
 — правый базис.

Если два неколлинеарных вектора отложить от одной точки, то длина их векторного произведения равна площади параллелограмма, построенного на получившихся точках.

Опр. Смешанным произведением векторов \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{c} называется число, обозначаемое \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} и равное $[\overrightarrow{a}, \overrightarrow{b}] \cdot \overrightarrow{c}$.

Teop 1. Абсолютная величина $\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}$ равна объему параллелепипеда, построенного на этих векторах, отложенных от одной точки.

Док-во. Сначала заметим, что если \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} компланарны, то утверждение очевидно (и то, и другое 0).

По определению, $\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}=[\overrightarrow{a},\overrightarrow{b}]\overrightarrow{c}=|[\overrightarrow{a},\overrightarrow{b}]|\cdot|\overrightarrow{c}|\cdot\cos([\overrightarrow{a},\overrightarrow{b}],\overrightarrow{c})=|\overrightarrow{a}||\overrightarrow{b}|\sin(\overrightarrow{a},\overrightarrow{b})\cdot|\overrightarrow{c}|\cos([\overrightarrow{a},\overrightarrow{b}],\overrightarrow{c})$. Видим, что получили произведение площади параллелограмма $|\overrightarrow{a}||\overrightarrow{b}|\sin(\overrightarrow{a},\overrightarrow{b})$ со сторонами $|\overrightarrow{a}|$ и $|\overrightarrow{b}|$ и величины $|\overrightarrow{c}|\cos([\overrightarrow{a},\overrightarrow{b}],\overrightarrow{c})=|\overrightarrow{c}|\cos(\overrightarrow{k},\overrightarrow{c})$ проекции \overrightarrow{c} на ось вектора \overrightarrow{k} . Модуль второго — высота параллелепипеда.

Теор 2. Пусть векторы $\overrightarrow{a}=(a_1,a_2,a_3),$ $\overrightarrow{b}=(b_1,b_2,b_3),$ $\overrightarrow{c}=(c_1,c_2,c_3)$ заданы координатами в правой декартовой системе координат. Тогда

$$\overrightarrow{a} \overrightarrow{b} \overrightarrow{c} = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}.$$
(1)

Док-во. Опять, если \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} компланарны, то все понятно.

Обозначим данную правую декартову систему координат, в которой даны координаты, через $O\overrightarrow{e_1}\overrightarrow{e_2}\overrightarrow{e_3}$ и введем систему координат $O\overrightarrow{i}\overrightarrow{j}\overrightarrow{k}$ (снова, с правым ортонормированным базисом).

Отложим векторы от точки $\overrightarrow{a}=\overrightarrow{OA}, \ \overrightarrow{b}=\overrightarrow{OB}, \ \overrightarrow{c}=\overrightarrow{OC}$ и выберем декартову систему координат \overrightarrow{Oijk} так, что \overrightarrow{i} сонаправлен с \overrightarrow{a} , вектор \overrightarrow{j} параллелен плоскости \overrightarrow{OAB} и на этой плоскости базис $(\overrightarrow{i},\overrightarrow{j})$ одинаково ориентирован с $(\overrightarrow{a},\overrightarrow{b})$, а \overrightarrow{k} сонаправлен с $[\overrightarrow{a},\overrightarrow{b}]$. Таким образом, базис $\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}$

правый ортонормированный. В заданной системе координат \overrightarrow{a} имеет координаты $(|\overrightarrow{a}|, 0, 0)$. С учетом Леммы 1 раздела об ориентации на плоскости, \overrightarrow{b} имеет координаты $(|\overrightarrow{b}|\cos(\overrightarrow{a},\overrightarrow{b}),|\overrightarrow{b}|\sin(\overrightarrow{a},\overrightarrow{b}),0)$. Действительно, $\overrightarrow{i}\overrightarrow{b}=$ $|\overrightarrow{b}|\cos(\overrightarrow{i},\overrightarrow{b})=|\overrightarrow{b}|\cos(\overrightarrow{a},\overrightarrow{b})$ для первой координаты и $\overrightarrow{j}\overrightarrow{b}=|\overrightarrow{b}|\cos(\widehat{\overrightarrow{j}},\overrightarrow{b})=$ $|\overrightarrow{b}|\cos((\overrightarrow{j},\overrightarrow{i})+(\overrightarrow{i},\overrightarrow{b}))$, но базисы плоскости $(\overrightarrow{i},\overrightarrow{j})$ и $(\overrightarrow{a},\overrightarrow{b})$ ориентированы одинаково, поэтому $|\overrightarrow{b}|\cos((\overrightarrow{\overrightarrow{j},\overrightarrow{i}})+(\overrightarrow{\overrightarrow{i},\overrightarrow{b}}))=|\overrightarrow{b}|\cos((\overrightarrow{\overrightarrow{j},\overrightarrow{i}})+(\overrightarrow{\overrightarrow{a},\overrightarrow{b}}))=$ $|\overrightarrow{b}|\cos((\overrightarrow{j},\overrightarrow{i})-(\overrightarrow{a},\overrightarrow{b}))|=|\overrightarrow{b}|\sin(\overrightarrow{a},\overrightarrow{b}).$ Вектор \overrightarrow{c} — какие-то $(\gamma_1,\gamma_2,\gamma_3)$, причем $\gamma_3 = \overrightarrow{k} \overrightarrow{c} = |\overrightarrow{c}| \cos(\overrightarrow{k}, \overrightarrow{c}).$

причем
$$\gamma_3 = k \ c = |c| \cos(k, c)$$
.

Продолжая запись предыдущего доказательства, $\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c} = |\overrightarrow{a}| |\overrightarrow{b}| \sin(\overrightarrow{a}, \overrightarrow{b})$.

 $|\overrightarrow{c}| \cos([\overrightarrow{a}, \overrightarrow{b}], \overrightarrow{c}) = \begin{vmatrix} |\overrightarrow{a}| & |\overrightarrow{b}| \cos(\overrightarrow{a}, \overrightarrow{b}) & \gamma_1 \\ 0 & |\overrightarrow{b}| \sin(\overrightarrow{a}, \overrightarrow{b}) & \gamma_2 \\ 0 & 0 & |\overrightarrow{c}| \cos(\overrightarrow{k}, \overrightarrow{c}) \end{vmatrix}$, получаем определи-

тель матрицы перехода от базиса $(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$ к $(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c})$.

Обозначим матрицу перехода от базиса $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ к $(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$ через C_1 , а матрицу перехода от $(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$ к $(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c})$ через C_2 . Тогда матрица перехода от $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ к $(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c})$ есть C_1C_2 , а ее определитель записан в (1). Но $|C_1C_2| = |C_1||C_2| = |C_1| \cdot \overrightarrow{a} \overrightarrow{b} \overrightarrow{c}$, а матрица C_1 ортогональная (т.е. такая, что $A^{-1} = A^t$, и поэтому ее определитель равен ± 1) и $|C_1| = 1$, т.к. это матрица перехода между одинаково ориентированными ортонормированными базисами. Следовательно, $|C_1C_2|=\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}.$

Теор 3. Пусть векторы $\overrightarrow{a}=(a_1,a_2,a_3),$ $\overrightarrow{b}=(b_1,b_2,b_3)$ заданы координатами в правой декартовой системе координат. Тогда $[\overrightarrow{a}, \overrightarrow{b}]$ имеет координаты $\left(\begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}, - \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}, \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix}\right).$

Док-во. Найдем коэффициенты разложения $[\overrightarrow{a},\overrightarrow{b}]=\alpha\overrightarrow{i}+\beta\overrightarrow{j}+\gamma\overrightarrow{k}$ в линейную комбинацию векторов базиса $(\overrightarrow{i},\overrightarrow{j},\overrightarrow{k})$. Имеем $\alpha=[\overrightarrow{a},\overrightarrow{b}]\overrightarrow{i}=$

$$\overrightarrow{a}\overrightarrow{b}\overrightarrow{i}=egin{bmatrix} a_1 & b_1 & 1 \\ a_2 & b_2 & 0 \\ a_3 & b_3 & 0 \end{bmatrix}=egin{bmatrix} a_2 & b_2 \\ a_3 & b_3 \end{bmatrix}$$
 для первой координаты по Теореме 2 и анало-

гично для
$$\beta = [\overrightarrow{a}, \overrightarrow{b}]\overrightarrow{j} = \overrightarrow{a}\overrightarrow{b}\overrightarrow{j}$$
, и $\gamma = [\overrightarrow{a}, \overrightarrow{b}]\overrightarrow{k} = \overrightarrow{a}\overrightarrow{b}\overrightarrow{k}$.

Утв 4 (Свойства). 1.
$$[\overrightarrow{a},\overrightarrow{b}] = -[\overrightarrow{b},\overrightarrow{a}]$$

2.
$$\alpha[\overrightarrow{a}, \overrightarrow{b}] = [\alpha \overrightarrow{a}, \overrightarrow{b}] = [\overrightarrow{a}, \alpha \overrightarrow{b}]$$

3.
$$[\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{c}] = [\overrightarrow{a}, \overrightarrow{c}] + [\overrightarrow{b}, \overrightarrow{c}]$$

4.
$$\alpha(\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}) = (\alpha\overrightarrow{a})\overrightarrow{b}\overrightarrow{c} = \overrightarrow{a}(\alpha\overrightarrow{b})\overrightarrow{c} = \overrightarrow{a}\overrightarrow{b}(\alpha\overrightarrow{b})\overrightarrow{c}$$

5.
$$(\overrightarrow{a} + \overrightarrow{b})\overrightarrow{c}\overrightarrow{d} = \overrightarrow{a}\overrightarrow{c}\overrightarrow{d} + \overrightarrow{b}\overrightarrow{c}\overrightarrow{d}$$

Док-во. Напрямую следует из Теоремы 3 и Теоремы 2.