Master thesis

Ignace Bossuyt

October 26, 2019

Contents

Ι	Radiative Transfer: theory	4
1	Very broad introduction & Summary1.1 Definition of specific intensity1.2 Radiation equations1.3 Radiative Diffusion Approximation1.4 Radiation Hydrodynamical equations1.5 Overview of symmetry assumptions1.6 Overview of units and key variables	4 4 4 5 6 6 6
2	The mathematics of Radiative Transfer 2.1 Auxiliary mathematics	7 7 7
3	Challenges in Radiative Transfer 3.1 Overview of the problem	8 8 8
4	Stellar Winds 4.1 Chronology of stellar wind studies 4.2 Observations & Formation of spectral lines in stellar winds	9 9 9
5	Glossary	10
II	Radiative Transfer: numerical techniques	11
6	Introduction to Monte Carlo Radiation Transfer 6.1 Elementary principles	11 11 11
7	Asymptotic Preserving Monte Carlo methods for transport equations in the diffusive limit	12
8	Fluid and hybrid Fluid-Kinetic models (for neutral particles in plasma edge) (Horsten	2019) 12
9	Overview of existing (Monte Carlo) radiative transfer codes 9.1 Synthesis codes	13 13 13
TT	I Practical work and Exercises	15

10 Overview of exercises (PART I)	15
11 Overview of exercises (PART II)	15
12 Overview of exercises (PART III)	15
13 Overview of exercises (PART IV)	16
14 Multiline transfer (PART I)	16
15 Multiline transfer (PART II)	16
16 Preparation for Equation meeting on 15 October	16
17 Preparation for meeting on 21 October	16
18 Introductory exercises 18.1 Analytical exercises	17 17 20 20
19 Limb darkening 19.1 Formulation of the problem	21 21 21 21 22 23
20 Spectral line formation: pcyg.f90 20.1 First adaptation: what if all photons are released radially from photosphere? 20.2 Second adaptation: isotropic scattering. 20.3 Third adaptation: introduction of Eddington limb-darkening 20.4 Fourth adaptaion: photospheric line-profile 20.5 Convergence analysis. 20.6 Variance reduction experiment 20.7 Mathematical description of the problem & Looking at literature	24 26 29 30 31 32 33 33
21 Transferring the code to Matlab 21.1 Limit variables	34 34 34 36
22 Theoretical background 22.1 General things 22.2 Geometry 22.3 Sobolev approximation 22.4 Can resonance in the same resonance line happen twice? 22.5 Meaning of the parameters 22.6 Special case: xmuestart = 1	37 37 38 39 39 39 39
23 Development of computer code (in Matlab) 23.1 Implementation in Matlab: user's manual	40 40 40 41

October 26, 2019	3
24 Computing the radiation force & luminosity $L(r)$ 24.1 Theoretical formulas	45 46 46
25 Backup from theory	48
26 Extension to higher dimensions	49
27 Closer look at Monte Carlo simulations 27.1 Random walk (diffusion equation)	
IV Questions	53
28 Questions for professor Sundqvist	53
29 Questions for professor Samaey	53
30 Solved questions	54
31 Interesting problems	55
32 Do not forget	55
V Thesis meetings	57
33 Meeting on 6 September 2019	57
34 Meeting on 23 September 2019	57
35 Meeting on 30 September 2019	57
VI Equation meetings	57

Exercises (part III) Via this link, you can go back to the exercises overview: see section 13.

Goal of the thesis Compute multiline transfer. With Monte Carlo techniques.

Part I

Radiative Transfer: theory

1 Very broad introduction & Summary

The material here originates from the master thesis of Nicolas Moens [Moe18] and from the course notes Introduction to numerical methods for radiation in astrophysics from professor Sundqvist.

1.1 Definition of specific intensity

The definition of the specific intensity is

$$I_{\nu} = \frac{dE_{\nu}}{\cos(\theta)d\Omega dt d\nu} = \frac{dE_{\nu}}{\mu d\Omega dt d\nu} \tag{1}$$

On the other hand, for the total energy of a collection of N photons holds that

$$E_{\nu} = NE_{\nu, \text{photon}} \tag{2}$$

To the point From this we deduce that

$$I_{\nu}\mu = \frac{N(\mu)dE_{\nu,\text{photon}}}{d\Omega dt d\nu} \tag{3}$$

and thus

$$I_{nu}\mu d\mu \sim N(\mu)d\mu \tag{4}$$

Considering the solid angle In spherical geometry $d\Omega = \sin(\theta)d\theta d\phi = d\mu d\phi$.

1.2 Radiation equations

Material from [Iva14] Specific intensity $I(s, \lambda, x, y, t)$ satisfies the Radiative Transfer Equation:

$$\boxed{\frac{\delta I(q,t)}{\delta s} = \eta(q,t) - \chi(q,t)I(q,t)}$$
(5)

In cartesian coordinates (with propagation vector $\vec{n} = \begin{bmatrix} n_x \\ n_y \\ n_z \end{bmatrix} = \begin{bmatrix} \sin(\theta)\cos(\phi) \\ \sin(\theta)\sin(\phi) \\ \cos(\theta) \end{bmatrix}$):

$$\frac{1}{c}\frac{\partial I}{\partial t} + \sin(\theta)\cos(\phi)\frac{\partial I}{\partial x} + \sin(\theta)\sin(\phi)\frac{\partial I}{\partial y} + \cos(\theta)\frac{\partial I}{\partial z} = \eta - \chi I \tag{6}$$

• 1D planar atmosphere: $\frac{\partial I}{\partial x} = \frac{\partial I}{\partial y} = 0$:

$$\frac{1}{c}\frac{\partial I}{\partial t} + \mu \frac{\partial I}{\partial z} = \eta - \chi I \tag{7}$$

- diffusion limit
- Definition of J in Equation (3.15)

Plane parallel geometry

• restrict oursevels to time-independent, one-dimensional (1D) case $I(s, \theta, \lambda)$ where s is the direction of the light ray

- it satisfies Radiation Transfer Equation (RTE) $\boxed{\frac{dI_{\lambda}}{d\tau_{\lambda}} = S_{\lambda} I_{\lambda}}$
- with 'formal' solution $I(\lambda, \tau_{\lambda}) = I_0(\lambda)e^{-\tau_{\lambda}} \int_0^{\tau_{\lambda}} S(t)e^{-t}dt$
 - no emissivity S = 0 then $I(\lambda)I_0(\lambda)e^{-\tau_{\lambda}}$
 - no opacity then $I_0(\lambda) = \int_0^s \eta_{\lambda}(s) ds$
 - constant source function $I(\lambda, \tau) = I_0(\lambda)e^{-\tau_{\lambda}} + S(1 e^{-\tau_{\lambda}})$
 - if $S=a+b\tau$ then $I(\lambda)=a+\frac{b}{k_{\lambda}}$ with k_{λ} the opacity. A jump in opacity leads to the jump in intensity of the opposite sign.

Specific intensity and its angular moments

specific intensity	$\Delta \epsilon = \boxed{I_{\nu}} A_1 A_2 / r^2 \Delta \nu \Delta t$
energy density	$E = \frac{1}{c} \iint I_{\nu} d\nu d\Omega$
flux vector	$F = \iint I_{\nu} n d\nu d\Omega$
pressure tensor	$P = \iint I_{\nu} nn d\nu d\Omega$
mean intensity	$J_{\nu} = \frac{c}{4\pi} E_{\nu}$
Eddington flux	$H_{\nu} = \frac{1}{4\pi} F_{\nu}$
Eddington's K	$K_{\nu} = \frac{c}{4\pi} P_{\nu}$

Eddington factor In general, the Eddington factor is a tensor, for 1D systems it is reduced to a scalar.

$$f_{\nu} = \frac{K_{\nu}}{J_{\nu}} = \frac{P_{\nu}}{E_{\nu}} \tag{8}$$

- $\bullet\,$ isotropic radiation field
- radiation field stronly peaked in radial (i.e. vertical in cartesian) direction

1.3 Radiative Diffusion Approximation

The radiative diffusion approximation bridges two regimes: regimes with \dots

- ullet on one hand, large optical depth $au\gg 1$: diffusion equation: temperature structure in a static stellar atmosphere
- on the other hand, where radiative transport is important

The diffusive approximation is the following: replace I = B or $I_{\nu} = B_{\nu}$.

$$I_{\nu} = B_{\nu} - \mu \frac{dB_{\nu}}{k_{\nu}dz} \tag{9}$$

This equation can be derived as a random walk of photons!

1.4 Radiation Hydrodynamical equations

The full RHD equations consist of

- five partial differential equations
- one HD closure equation, e.g. (i) variable Eddington tensor method or (ii) flux limited diffusion

Heat flux The heat flow rate density $\vec{\phi}$ satisfies the Fourier law $\vec{\phi} = -k\nabla T$. More information can be found for instance on [Wik18].

1.5 Overview of symmetry assumptions

plane-parallel	1D atmosphere
	bounded by horizontal surfaces
spherical symmetry	

1.6 Overview of units and key variables

specific intensity I_{ν}	$\left[\frac{ergs}{cm^2.sr.Hz.s}\right] = \left[\frac{J}{cm^2.sr.Hz.s}\right]$
opacity $\alpha = k_{\nu}$	$\left[\frac{m^2}{kg}\right]$
optical depth $\tau = \int_0^l \alpha(s)ds$	[/]
	$\tau = 0$ leave atmosphere

- expanding flow: photons are redshifted (lower frequency higher wavelength)
- compressing flow: photons are blueshifted (higher frequency lower wavelength)

2 The mathematics of Radiative Transfer

The material in this section is based on the book [Bus60].

2.1 Auxiliary mathematics

• $\cos(\Theta) = \cos(\theta)\cos(\theta') + \sin(\theta)\sin(\theta')\cos(\phi - \phi')$

• phase function
$$p(\mu,\phi,\mu',\phi',\tau) = \sum_{n=0}^N \omega_n P_n(\cos(\Theta))$$

- isotropic scattering $p(\tau) = \omega_0(\tau)$

• equation of transfer
$$\boxed{ \mu \frac{\partial I(\tau, \mu, \phi)}{\partial \tau} = I(\tau, \mu, \phi) - \mathcal{S}(\tau, \mu, \phi) }$$
 with $\mathcal{S}(\tau, \mu, \phi) = B_1(\tau) + \frac{1}{4\pi} \int_{-1}^1 d\mu' \int_0^{2\pi} I(\tau, \mu', \phi') p(\mu, \phi, \mu', \phi') d\phi'$

– axially symmetric with isotropic scattering
$$\mathcal{S}(\tau) = \frac{\omega_0(\tau)}{2} \int_{-1}^1 I(\tau, \mu') d\mu' = B_1(\tau) + \frac{\omega_0(\tau)}{2} \int_0^{\tau_1} \mathcal{S}(t) E_1(|t - \tau|) dt$$

- the Milne equation of the problem $(1 \omega_0 \bar{\Lambda})$ { mahtcalS(t)} = $B(\tau)$
 - * solve for S(t)
 - * then find $I(\tau, \mu)$

2.2 Background: integral equations

Based on the book [BHR02].

- 1. integral equation from differential equation
- 2. types of integral equations
- 3. operator notation and existence of solutions
- 4. closed-form solutions
 - separable kernels
 - integral transform method (Fourier transform)
 - differentiation
- 5. Neumann series
- 6. Fredholm theory
- 7. Schmidt-Hilbert theory

Fredholm equation first kind

$$0 = f + \lambda \mathcal{K}y \tag{10}$$

7

Fredholm equation second kind

$$y = f + \lambda \mathcal{K}y \tag{11}$$

3 Challenges in Radiative Transfer

The material here originates from an oral discussion with Ivan Milic.

3.1 Overview of the problem

$$\xrightarrow{I_{\lambda}^{*}} T(\tau) , \rho(\tau) , \vec{B}(\tau) , \vec{v}(\tau) \xrightarrow{I_{\lambda}^{+}}$$

Forward problem

The forward problem is schematically represented

$$\overrightarrow{T}, \rho, \overrightarrow{B}, \overrightarrow{v} \qquad forward problem
I_{\lambda}^{+} = F(\overrightarrow{T}, \rho, \overrightarrow{B}, \overrightarrow{v}) \qquad I_{\lambda}^{+}$$

In fact solve for intensity vector $\vec{I} = \begin{pmatrix} I \\ Q \\ \alpha \\ V \end{pmatrix}$ obeying the equation

$$\frac{d\vec{I}}{d\tau} = -X(\vec{T}, \rho, \vec{B}, \vec{v})\vec{I} - \vec{j}(\vec{T}, \rho, \vec{B}, \vec{v})$$
(12)

and the solution

$$I_{\lambda}^{+} = I_{0}^{+} e^{-\int} + \int \vec{j} e^{-\int} d\tau$$
 (13)

Example Source function
$$S = a\tau + b$$
 then $\int_0^{\tau_{max}} (a\tau + b)e^{-\tau}d\tau = ...$

Inverse problem

The inverse problem is schematically represented

Via least-squares approximation

$$\min_{\vec{T},\rho,\vec{B},\vec{v}} \sum \left(I_{\lambda}^{obs} - I_{\lambda}(\vec{T},\rho,\vec{B},\vec{v}) \right)^{2}$$
(14)

3.2 Challenging domains of application

- Lyman alpha in Galaxy Halos
- Dusty torii (AGD)
- protoplanetary disks
- circumstellar disks
- athmospheres

4 Stellar Winds

 ${\bf From} \,\, [{\bf introStellarWindsLamersCassinelli 1999}]$

4.1 Chronology of stellar wind studies

- 1. early history: similarties between spectra of nova and luminous stars
- 2. diagnostics of structure of oouter atmospheres of the sun and stars
- 3. the development of the solar wind theory, further evidence for outflows
- 4. rocket and early satellite observations of stellar winds
- 5. instabilities and non-speherical effects in winds

There are still many things of stellar winds that are uncertain.

4.2 Observations & Formation of spectral lines in stellar winds

- line scattering
 - resonance scattering: from ground state of atom

4.2.1 Pcygni profiles

$\begin{array}{c} 10 \\ \hline 5 \\ \end{array}$ Glossary

Light Amplification by Stimulated Emission of Radiation • LASER: $\bullet \ \mbox{(spectral)}$ Line-force: force on material in stellar atmosphere

• MASER: Microwave Amplification by Stimulated Emission of Radiation

 $\bullet~{\rm SED}:$ spectral energy distribution

Part II

Radiative Transfer: numerical techniques

forewarned is forearmed General guidelines for good practices in scientific computing are found in [Wil+14].

6 Introduction to Monte Carlo Radiation Transfer

The material is taken from [WWBW2001] and from [WWBW2013].

6.1 Elementary principles

specific intensity	$I_{ u}$
radiant energy	dE_{ν}
surface area	dA
angle	θ
solid angle	$d\Omega$
frequency range	$d\nu$
time	dt
flux	$F_{ u}$
cross section	σ
scattering angle	χ
	$\mu = \cos(\chi)$
mean intensity	J
flux	Н
radiation pressure	K

6.2 Example: plane parallel atmosphere

- 1. emission of photons: select two angles (3D space). In isotropic scattering
 - θ met $\mu = \cos(\theta)$ - $\mu = 2\xi - 1$ (isotropic scattering) - $\mu = \sqrt{\xi}$ (A slab is heated from below. Then $P(\mu) = \mu$) • $\phi = 2\pi\xi$
- 2. propagation of photons
 - sample optical depth from $\tau = -\log(\xi)$
 - distance travelled $L = \frac{\tau z_{max}}{\tau_{max}}$
- 3. conclusion of emission and propagation

$$x = x + L\sin(\theta)\cos(\phi)$$

$$y = y + L\sin(\theta)\sin(\phi)$$

$$z = z + L\cos(\theta)$$
(15)

4. Binning: once the photon exists the slab. Produce histograms of the distribution function. Finally, we wish to compute the output flux or the intensity.

7 Asymptotic Preserving Monte Carlo methods for transport equations in the diffusive limit

A very interesting article about Monte Carlo methods for radiative transfer problems, from a mathematical point of view, is [DPS18]. I am currently trying to reproduce the numerical experiments that are reported in the article.

8 Fluid and hybrid Fluid-Kinetic models (for neutral particles in plasma edge) (Horsten2019)

The material is mainly taken from [Hor19].

- Kinetic Boltzmann equation: neutral velocity distribution $f_n(r,v)$
- If you taken into account (e.g. microscopic processes for atomic deuterium) then the kinetic Boltzmann equation becomes

$$v\nabla f_n(r,v) = S_r(r,v) + S_{cx}(r,v) - f_n(r,v)(R_{cx}(r,v) + R_i(r))$$
(16)

- Numerical solution strategies
 - finite differences/volumes/elements :computationally infeasible
 - spectral methods (series expansion of $f_n(r,v)$): not suitable for modelling discontinuties
 - stochatic approach: the whole velocity distribution is discretized by finite set of particles
- from Equation (16), the fluid model and the hybrid model is derived.
 - Fluid model: 3 state equations (continuity momentum energy) with boundary conditions
 - * pure-pressure equation: maximum error of 10 28 %
 - * with parallel momentum source: error 10 %
 - * with ion energy source: error 30 %
 - hybrid model based on micro-macro decomposition

9 Overview of existing (Monte Carlo) radiative transfer codes

9.1 Synthesis codes

As is pointed out in [Chr15], there are basically two methods to solve the radiative transfer problem: ray-tracing and Monte Carlo methods.

- RADICAL [RADICAL] (Ray-tracing, 2D, multi-purpose)
- MULTI [Car] [Car86] (computer program for solving multi-level non-LTE radiative transfer problems in moving or static atmospheres, very old: Uppsala 1986 1995)
- SKIRT [CB2] (continuum (Monte Carlo) radiation transfer in dusty astrophysical systems, such as spiral galaxies and accretion disks, from Ugent)
- TORUS [Har+19] (Monte Carlo radiation transfer and hydrodynamics code. Adopts 1D, 2D, 3D adaptive mesh refinement. Suitable for radiative equilibrium and creation of synthetic images and SED)
- RADMC-3D [Dul17] (Monte Carlo code that is especially applicable for dusty molecular clouds, protoplanetary disks, circumstellar envelopes, dusty tori around AGN and models of galaxies. Python interface with Fortran main code)
- TLUSTY and SYNSPEC [HL17a], [HL17b], [HL17c].

9.2 Inversion codes

- VFISV
- ASP/HAO
- HeLIx+
- SNAPI (not publicly available, created by Ivan Milic)
- multiple codes available from Instituto de Astrofyiica de Canarias (IAC)
- STiC: the Stockholm inversion code

Part III

Practical work and Exercises

10 Overview of exercises (PART I)

1. limb-darkening scattering exercise we did during the course. — You can look into your notes from that, and I attach here also a sample program which you can use a base. After you have familiarised yourself with this, you can start to think bout how you would go about to extend this to a 3D setting (assuming isotropic scattering).

- 2. (As prep for Monte-Carlo school) here is a script computing a UV resonance P-Cygni line in spherically symmetric wind with v beta-law. At top of routine, a few exercises are given, where you can modify and play around with code. Monte-Carlo program which computes a UV resonance spectral line from a fast outflowing spherically symmetric stellar wind (if you were not cc'd on that email, let me know so that I can send you the files as well). At the top of that little script, there are a few suggestions for exercises (additions) you could do to that program, in order to learn a bit more about the general workings of Monte-Carlo radiative transfer in this context. So that might be a good idea for you to do as well! (And you can also ask the others in the group for some tips etc. then.)
- 3. Some background reading:
 - Attached mc manual by Puls.
 - Paper by Sundqvist+ 2010 (Appendix, I think).

11 Overview of exercises (PART II)

- 1. Calculate the probability distribution to sample from in the case of Eddington limb darkening for the initial distribution (see Section 20.3).
 - finished + Ok
- 2. Calculate analytical solution for simplified problem in the case that mu = 1 (see Section 20.1).
 - \bullet finished + Ok + can be further studied
- 3. Perform convergence analysis (see Section 20.5).

12 Overview of exercises (PART III)

- 1. Revisit 3D limb darkening. ϕ should be sampled between 0 and 2π (see Section 19.5). (OK)
- 2. Revisit convergence analysis: adapt plot formatting and standard deviation is defined as square root of variance (see Section 20.5).
- 3. Test variance reduction technique (see Section 20.6).
- 4. Some general considerations about the definition of specific intensity (see Section 1.1). (OK)
- 5. For the Monte Carlo approximation of the diffusion equation, why do we have $N \sim \tau$ for low optical depth $\tau \ll 1$ (see Section 27).
- 6. Revisit the radial streaming approximation in pcyg.f90 for lower optical depth (e.g. xk0=0.5). (see Section 20.1).
- 7. What happens when you add a line (e.g. x = 0.5 = a)? How would you do that? (see Section ??)
- 8. Towards a mathematical description of the problem.

13 Overview of exercises (PART IV)

- 1. Convergence analysis: also fit a line through the points. Formally, we write $V = CN^x$ and determine both C and X from experimental data. Correspondingly, $\log(V) = \log(C) + x \log(N)$. This is fitted using least-squares (see Section 20.5).
- 2. Variance reduction technique
 - averaging over different stochastic realizations?
 - take xk0=0.5
 - try to also discretize μ
- 3. Adding a second line: develop computer code in the radial streaming assumption (use analytic formulas) $\mu = 1$ (see Section ??).
 - a following improvement is the use of a grid instead of using the bisection method.
- 4. Limb darkening. Have a look at section 19.3.1.

14 Multiline transfer (PART I)

1. What happens when you add a line (e.g. x = 0.5 = a)? How would you do that? (see section ??)

15 Multiline transfer (PART II)

- 1. calculate force from one line (see section 24).
 - discretize in shells
 - assume $\epsilon_i = cte$
- 2. compare to analytic expressions

16 Preparation for Equation meeting on 15 October

See Section 23.3.

17 Preparation for meeting on 21 October

I have been working on Section $\underline{22}$ and on Section $\underline{23.3}$.

questions

- also take into account the photons where no scattering takes place?
- language of master thesis?
- analytical expression for L(r)?

18 Introductory exercises

18.1 Analytical exercises

From course material from (prof. Sundqvist - CMPAA course).

- 1. introduction
- 2. radiation quantities
 - exercise p.3:
 - on one hand, we know that $\Delta \epsilon \sim C/r^2$
 - on the other hand, from the definition we know that $\Delta \epsilon = I_{\nu} A_1 A_2 / r^2 \Delta \nu \Delta t$

17

- combining these equations shows that I_{ν} is independent from r
- exercise p.4:

_

• exercise 1:

$$-F_x = \int_0^{\pi} \left[I_{\nu}(\theta) \sin^2(\theta) \int_0^{2\pi} \cos(\phi) \right] d\theta d\phi = 0$$

- the same reasoning for $F_y = 0$
- exercise 2:
 - the equation follows from $d\mu = d\cos(\theta) = \sin(\theta)d\theta$
- exercise 3:
 - isotropic radiation field (i.e. $I(\mu) = I$) then we have $F_{\nu} = 2\pi \int_{-1}^{1} I \mu d\mu = 2\pi I \left. \frac{x^2}{2} \right|_{-1}^{1} = 0$
- exercise 4:

$$-F_{\nu} = 2\pi \int_{-1}^{1} I(\mu)\mu d\mu = 2\pi \int_{-1}^{0} I_{\nu}^{-} \mu d\mu + 2\pi \int_{0}^{1} I_{\nu}^{+} \mu d\mu = 2\pi I_{\nu}^{+}$$

- exercise p.7:
 - isotropic radiation field:
 - * although the radiation pressure is a tensor, we will denote it as a scalar $P_{\nu} = \frac{4\pi I_{\nu}}{c}$
 - * the radiation energy density $E_{\nu} = \frac{12\pi I_{\nu}}{c}$
 - * thus $f_{\nu} = \frac{1}{3}$
 - very strongly peaked in radial direction (beam): $I_{\nu} = I_0 \delta(\mu \mu_0)$ with $\mu_0 = 1$
 - * pressure tensor $P_{nu} = \frac{1}{c} \int I_0 \delta(\mu \mu_0) nnd\Omega$
 - * energy density $E_{\nu}=\frac{1}{c}\int I_{\nu}d\Omega$
 - * in this case $P_{\nu} = E_{\nu}$ thus $f_{\nu} = 1$
- 3. radiation transport vs. diffusion vs. equilibrium
 - exercise p. 12: 1D, Cartesian geometry, plane-parallel, frequency-independent and isotropic emission/extinction
 - radiation energy equation
 - * The equation follows by integrating Equation (??)
 - * By definition, $E = \frac{1}{c} \iint I_{\nu} d\nu d\Omega$
 - * thus $\frac{dE}{dr} = \int (j kI) d\nu d\Omega$ thus $\frac{dE}{dr} = \frac{(j kI) 4\pi (\nu_1 \nu_0)}{c}$

- * work out the integral taking into account frequency-independent and isotropic coefficients:
- zeroth momentum equations
 - * One must also take into account the specific form of the flux vector

$$F = \iint I_{\nu} n d\nu d\Omega = 2\pi \int_{-1}^{1} I_{\nu}(\mu) \mu d\mu$$

* thus
$$\frac{dF}{dr} = \frac{1}{c} \int (j-kI) n d\nu d\Omega$$
 thus $\frac{dF}{dr} = \frac{(j-kI) 4\pi (\nu_1 - \nu_0) n}{c}$

- first moment equation
 - * similar reasoning

*
$$\frac{dP}{dr} = \int (j - kI)n \cdot n d\nu d\Omega$$
 thus $\left[\frac{dF}{dr} = \frac{(j - kI)4\pi(\nu_1 - \nu_0)n}{c}\right]$

• first exercise p. 15

$$- \ P = \frac{1}{c} \iint I_{\nu} \mu^2 d\Omega d\nu = \frac{2\pi}{c} \int_{\nu} \int_{-1}^{1} I_{\nu} \mu^2 d\mu d\nu = \frac{4\pi}{3c} \int B_{\nu} d\nu = \frac{aT^4}{3} = \frac{E}{3}$$

- second exercise p.15
 - assuming the diffusion limit,
 - flux-weighted mean opacity $\kappa_F = \frac{\int F_\nu \kappa_\nu d\nu}{\int F_\nu d\nu}$
 - Rosseland mean opacity $\frac{1}{\kappa_R} = \frac{\int_0^\infty \frac{1}{\kappa_\nu} \frac{dB_\nu}{dT}}{\int_0^\infty \frac{dB_\nu}{dT} d\nu}.$
 - * in the diffusion limit, $F_{\nu}=-\frac{4\pi}{3}\frac{dB_{\nu}}{k..dz}$ thus $\frac{dB_{nu}}{dT}=$

• third exercise p.15

- 4. the equations of radiation-hydrodynamics
- 5. numerical techniques for the radiative diffusion approximation
- 6. applications and approximations for a dynamically important radiative force in supersonic flows

• exercise p.27:
$$L_{SOB}=\Delta r=\frac{v_{th}}{dv/dr}=\frac{10[km/s]}{1000[km/s]/R_*}=0.01R_*$$

- 7. Appendix A: properties of equilibrium black-body radiation
 - exercise p. 29
 - this should be satisfied: $B_{\nu}d\nu = -B_{\lambda}d\lambda$ and also $\nu = \frac{c}{\lambda}$

- this is equivalent to saying that
$$0 = \nu d\lambda + \lambda d\nu$$
 or $d\lambda = -\frac{\lambda}{\nu} d\nu$ thus $B_{\lambda} = \frac{\nu}{\lambda} B_{\nu}$
- $B_{\lambda}(T) = \frac{\nu}{\lambda} \frac{2h\nu^{3}}{(\lambda\nu)^{2}} \frac{1}{e^{hc/\lambda kT} - 1} = \frac{2h\nu^{2}}{\lambda^{3}} \frac{1}{e^{hc/\lambda kT} - 1} = \frac{2hc^{2}}{\lambda^{5}} \frac{1}{e^{hc/\lambda kT} - 1}$

- first exercise p.31
 - derive that $\lambda_{max}T = 2897.8[\mu mK]$
- second exercise p.31
 - this is about the spectra of (unknown) stars
- first exercise p.32
 - see exercise 7
- second exercise p.32

- BB radiation: $I_{\nu} = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kt} 1}$
- the radiative flux for isotropic BB radiation is zero. See also exercise 3. This dus also holds for BB radiation.
- exercise p. 33
 - HR-diagram
- 8. Appendix B: Simple examples to the radiative transfer equation
 - first exercise p. 34
 - start from radiative transport equation $\mu \frac{dI}{ds} = \alpha \eta I$ in which $\eta = 0$ thus $\mu \frac{dI}{ds} = \alpha$
 - solving the ODE in the general case that $\alpha(s)$ is not constant:
 - * integrate the equation $\mu I = \int_0^D \alpha ds$
 - * ...
 - second exercise p. 34
 - * case $\tau(D) >> 1$: then $I(D) \approx S$
 - * case $\tau(D) << 1$: then $I(D) \approx I(0) + S(1-1) = I(0)$
 - first exercise p.35
 - * is the plane-parallel approximation valid for the solar photosphere?
 - second exercise p.35
 - * goal: find a solution to the equation $\mu \frac{dI_{\nu}}{d\tau_{\nu}} = I_{\nu} S_{\nu}$ where $I(\tau, \mu)$
 - * solution
 - second exercise p.35
- 9. Appendix C: connecting random walk of photons with radiative diffusion model
 - exercise p. 38. Computing the average photon mean-free path inside the Sun. $l=\frac{1}{\kappa\rho}=\frac{V_o}{\kappa M_o}[cm]$
 - exercise p.39. Computing the random-walk time (diffusion time) for photons

18.2 Numerical exercises

18.2.1 Implicit 1D solver

Exercise from (20-11-2018).

Goal Implement implicit solver for time-dependent diffusion equation

$$\partial_t u = \partial_{xx} u \tag{17}$$

Solution The convergence behaviour of the method is shown in Figure 1.

Figure 1: Convergence behaviour for 1D implicit solver (diffusion equation)

18.2.2 ADI 2D Solver

Goal Implement implicit solver for time-dependent diffusion equation

$$\partial_t u(t, x, y) = \partial_{xx} u(t, x, y) + \partial_{yy} u(t, x, y) \tag{18}$$

Solution There is still an error in the code.

18.2.3 Area of a circle

Goal Develop Monte Carlo code

Solution

18.3 Other Exercises

From course material from Ivan Milic.

18.3.1 Lecture 7

- 1. Derive expressions for the emergent radiation when properties are the following:
 - optically thin slab at all wavelengths
 - wavelength-independent incident radiation

Solution: see slide 14?

- 2. Derive ralations between Einstein coefficients.
- 3. Calculate electron density in atmosphere from FALC model

19 Limb darkening

19.1 Formulation of the problem

• The radiative transfer equation 5 in this situtation becomes an integro-differential equation with $S(\tau) = \frac{1}{4\pi} \int I(\tau,\mu) d\Omega$

$$\mu \frac{dI(\tau, \mu)}{d\tau} = -I(\tau, \mu) + S(\tau)$$

$$= -I(\tau, \mu) + \frac{1}{4\pi} \int I(\tau, \mu) d\Omega$$
(19)

• The difficulty resides in the (evaluation of) the source function. Monte Carlo simulation avoids explicit calculation source function: source function implicit in Monte Carlo simulation. There the physics are simulated in Between two consecutive scattering events as follows

$$\frac{dI}{dz} = -\alpha I \tag{20}$$

thus $I = I_0 e^{-\delta \tau}$ and then τ is sampled according to $\tau = -\log(X_{\rm random})$

19.2 Solving the (integro-differential) radiative transfer equation

Analytical Solution of Equation (19) Ik heb de mosterd gehaald op [Esp].

$$I(0,\mu) = \int_0^\infty S(\tau) exp\left(\frac{-\tau}{\mu}\right) d\left(\frac{\tau}{\mu}\right)$$
 (21)

Numerical Solution of Equation (19) First rewrite the equation

$$\mu \frac{dI(\tau,\mu)}{d\tau} = -I(\tau,\mu) + \frac{1}{4\pi} \int I(\tau,\mu) \sin(\theta) d\theta d\phi$$

$$= -I(\tau,\mu) + \frac{1}{4\pi} \int I(\tau,\mu) d\mu d\phi$$

$$= -I(\tau,\mu) + \frac{1}{2} \int I(\tau,\mu) d\mu$$
(22)

Discretization scheme:

$$??? (23)$$

19.3 Eddington-Barbier approximation

$$J(\tau) = 3H\left(\tau + \frac{2}{3}\right) \tag{24}$$

Together with the time-independent radiative transfer equation (5) in a gray (frequency-independent) planar medium gives

$$\mu \frac{\partial I(\tau, \mu)}{\partial \tau} = I(\tau, \mu) - 3H\left(\frac{2}{3} + \tau\right)$$
 (25)

The emergent intensity $I(0,\mu)$ is a solution of Equation (25). Its solution for $\tau=0$ equals

$$I(\tau = 0, \mu) = I_1 \left(\frac{2}{5} + \frac{3\mu}{5} \right) \tag{26}$$

with
$$a = \frac{\sigma}{2\pi} T_{eff}^4$$
 and $b = \frac{3\sigma}{4\pi} T_{eff}^4$

19.3.1 Validity of the Eddington-Barbier approximation

If we assume Equuation (24) then
$$I = I_1(a+b\mu)$$
 thus $J = \frac{1}{2} \int_0^1 (\tau,\mu) d\mu = \frac{1}{2} \int_0^1 (a+b\mu) d\mu$

dat ziet er hier niet goed uit

19.4 2D Case

We again have $\mu = \cos(\theta)$. The solution of the radiative transfer equation in plane-parallel symmetry with frequency-independent absorption and emission, is

$$I(\mu) = I_1(0.4 + 0.6\mu) \tag{27}$$

In the Monte Carlo code, the photons are sorted according to the direction that they leave the atmosphere.

Goal Calculates the angular dependence of photon's emitted from a plane-parallel, grey atmosphere of radial optical depth taumax. The value of tau determines the position of the photon

Variables and Algorithm

- muarray contains emergent photons
- na number of channels
- dmu = 1/na width of channels
- nphot number of photons
- taumax maximum optical depth

Algorithm 1 Limb darkening: compute quantitiy of photons

- visualisation:
 - ullet plot photon numbers from $\mu d\mu$ against mu
 - ullet plot specific intensity from $d\mu$ against ${\tt mu}$ against

Figure 2 is according to what is expected $I = I_0(0.4 + 0.6\mu)$. The input parameters are as follows Limb_Darkening(number_of_channels = 20, number_of_photons = 10^5 , maximum_optical_depth = 10).

Figure 2: histogram for mu

19.5 3D Case

What changes is this:

- introduction of a new angle ϕ
- ullet the optical depth is not updated with respect to ϕ

Figure 3: histogram for mu

Figure 4: histogram for phi

Figure 3 and Figure 4 are the result of the function Limb_Darkening_3D with the following input parameters: Limb_Darkening_3D(number_of_channels = 20, number_of_photons = 10^5 , maximum_optical_depth = 10). The results according to what is expected, namely $I = I_0(0.4 + 0.6\mu)$ and ϕ follows a uniform distribution.

Extension: make version where the optical depth is updated with respect to ϕ

Via this link, you can go back to the exercises overview: Section $\underline{12}$.

20 Spectral line formation: pcyg.f90

This section is about the study of line formation in an expanding wind.

Background

Overview of variables

name	explanation				
	paramaters				
xk0					
alpha	velocity profile parameter				
beta	velocity profile parameter				
start frequency of the photon					
xstart	start frequency				
vmin					
vmax					
	angle of the photon				
xmuestart	start angle				
xmuein	incident angle				
xmueou	outward angle				
pstart	impact parameter				
xnew	new photon frequency				
optical depth					
tau optical depth					
number of photons admin					
nphot	number of photons				
nin	photons scattered back into core				
nout	photons escaped				
	functions				
func	velocity profile				
	distance from center of star r				
xmueout	outwards (scattered) angle				
	xk0				
	alpha				
	r				
	V				
_	sigma				
nchan amount of bins					

October 26, 2019 _____

The photons are sorted according to xnew. In general, the flux is dependent on μ and the frequency x.

Practical formula

- emission angle $\mu = \cos(\theta)$
- according p-ray $p = \sqrt{1 \mu^2} = \sin(\theta)$
- incident angle xmuein = $\sqrt{1 \left(\frac{pstart}{r}\right)^2}$

Geometry & Symmetry assumptions

• spherical geometry

20.1 First adaptation: what if all photons are released radially from photosphere?

20.1.1 Release photons radially: numerical MC experiments

What would happen with line-profile, if you assumed all photons were released radially from photopshere?

- In other words xmuestart = 1.
- This is implemented under the test case test_number=1.
- Results in Figure 18 for opacity xk0 = 100.

Figure 5: The number of photons equals 10^5 , xk0=100

20.1.2 Derive analytic expression

See also slide 26/49 [Sundqvist course material].

 \bullet since xmuein = 1 we have for the velocity profile

$$v = v_{\infty} (1 - b/r)^{\beta} \tag{28}$$

A scaled version of Equation (28) yields

$$u = \frac{v(r)}{v_{\infty}} = \left(1 - \frac{b}{r}\right)^{\beta} \tag{29}$$

with $u \in [0..1]$

- Doppler shift for the frequency of the photons: $x_{CMF} = x_{REF} \mu u$.
- Condition for resonance from Sobolov approximation (to be studied later): $x_{CMF} = 0$ thus

$$x_{REF} = \mu u \tag{30}$$

or thus $x_{REF} = \boxed{u_{\text{interaction}}}$ and than solve Equation 29 for $r_{\text{interaction}}$

• If $\mu = 1$ then

$$x = \left(1 - \frac{b}{r}\right)^{\beta}$$

$$x^{1/\beta} = 1 - \frac{b}{r}$$
(31)

$$r(1 - x^{1/\beta}) = b$$

$$r(1-x^{1/\beta}) = b$$

$$r(x) = \frac{b}{1-x^{1/\beta}}$$
(32)

 \bullet From the location of interaction r, the incident angle can be calculated

$$xmuein = \sqrt{1 - \left[\frac{pstart}{r}\right]^2} = \sqrt{1 - \left[\frac{\sqrt{1 - xmuestart^2}}{r}\right]^2}$$
 (33)

Now also taking into account that xmuestart = 1

$$xmuein = 1 (34)$$

• The calculation of the optical depth goes as follows:

$$\tau = \frac{\text{xk0}}{rv^{2-\alpha}(1 + \text{xmuein}^2\sigma)} \tag{35}$$

Now also taking into account that xmuestart = 1 gives

$$\tau = \frac{\text{xk0}}{rv^2(1+\sigma)} \tag{36}$$

where
$$v(x) = \left(1 - \frac{b}{r}\right)^{\beta}$$
 and $\frac{dv}{dr} = \frac{\beta b}{r^2} \left(1 - \frac{b}{r}\right)^{\beta - 1}$ and $\sigma(x) = \frac{dv}{dr} \frac{r}{v} - 1$ thus $\sigma(x) = \frac{\beta b}{r} \left(1 - \frac{b}{r}\right)^{-1}$

- Assuming that $\beta = 1$ then $v(x) = 1 \frac{b}{r}$ and $\frac{dv}{dr} = \frac{\beta b}{r^2}$ and $\sigma(x) = \frac{\beta b}{r}$
- xmueou follows the distribution as given by the function xmueout, namely

$$p(x) = \frac{1 - e^{-\tau}}{\tau} \tag{37}$$

with $\tau = \frac{\tan 0}{1 + \mathbf{x}^2 \sigma}$ where **X** is a random number, so actually this comes down to

$$p(x) = \frac{1 - e^{-\frac{\tau_0}{1 + x^2 \sigma(x)}}}{\frac{\tau_0}{1 + x^2 \sigma(x)}}$$
(38)

• Finally one can combine these results to get the distribution of the photons according to the frequency x via the relation

$$xnew = xstart + v(xmueou-xmuein) = xstart + v(xmueou -1)$$
 (39)

In words, we initially have an isotropic distribution for xstart. The number of photons that are leaving the atmosphere at different frequencies is however not isotropic through complex interactions that are incorporated into p(x). One must also take into account that not all of the photons that are released actually escape from the atmosphere and also that sometimes no resonance is possible, and then Equation (39) is not applicable.

TO DO: proceed from this to the analytical expression for the flux. Here I am stuck for the moment.

20.1.3 Experiments with other opacities

The results for xk0=0.5 are shown in Figure 6.

Figure 6: The number of photons equals 10^5 , xk0=0.5

Via this link, you can go back to the exercises overview: Section $\underline{12}$.

20.2 Second adaptation: isotropic scattering

What would happen to line-profile, is you assumed scattering was isotropic (i.e., NOT following Sobolev-distribution)

- in the implementation, test_number = 2
- the results are shown in Figure 7.

Figure 7: The number of photons equals 10^5

It is clear from Figure 7 that the peak around x=0 is higher and sharper. Analyse this behaviour more closely

20.3 Third adaptation: introduction of Eddington limb-darkening

Goal Put Eddington limb-darkening in. What happens?

20.3.1 Construction of probability distribution corresponding to Eddington limb darkening

For a general (introductory) discussion about Eddington limb darkening, please refer to Section ??

- 1. Let us thus first review the emmission case where the flux in each direction is isotropic i.e. $I(\theta) = I$ (as experimented in paragraph 20.2)
 - the specific intensity is defined as $I_{\nu}(\mu) = \frac{dE_{\nu}}{\cos(\theta)dAdtd\nu d\Omega} = \frac{dE_{\nu}}{\mu dAdtd\nu d\Omega}$
 - the flux $F_{\nu} = \int_{\Omega} I_{\nu} \cos(\theta) d\Omega$ is in this case isotropic thus

$$\xi = \int_{0}^{\mu} F_{\nu} d\mu = \int_{0}^{\mu} \int_{\Omega} I_{\nu} \cos(\theta) d\Omega d\mu = A \int_{0}^{\mu} \mu d\mu \tag{40}$$

together with the condition that μ satisfies a probability distribution:

$$1 = \int_{-1}^{1} F_{\nu} d\mu = \int_{-1}^{1} \int_{\Omega} I_{\nu} \cos(\theta) d\Omega d\mu = \frac{A}{2}$$
 (41)

thus A=2. Photons need to be sampled according to $\mu d\mu$.

- 2. Now we look at a new case where the photons need to be emitted following a distribution that corresponds to $I(\theta) = I(0)(0.4 + 0.6\cos(\theta))$.
 - in this case the flux $F_{\nu} = \int_{\Omega} I_{\nu} \cos(\theta) d\Omega$ is isotropic but also satisfies

$$F_{\nu} = \int_{\Omega} I_{\nu}(0)[0.4 + 0.6\cos(\theta)]\cos(\theta)d\Omega \tag{42}$$

I am not sure about the correctness of the assumption of isotropy of the flux

$$\xi = \int_0^{\mu} F_{\nu} d\mu = A \int_0^{\mu} (0.4 + 0.6\mu) \mu d\mu \tag{43}$$

subject to the normalisation condition -very similar to Equation (41) - that

$$1 = \int_0^1 F_{\nu} d\mu = \frac{2A}{5} \tag{44}$$

thus $A = \frac{5}{2}$. Photons need to be sampled according to

$$\frac{5}{2}(0.4 + 0.6\mu)\mu d\mu\tag{45}$$

In the code pcyg.f90 this corresponds to test_number = 3 (not yet implemented).

The results of an accept-reject method that samples the probability distribution in Equation (45).

Via this link, you can go back to the exercises overview: Section 11.

Figure 8: Accept-reject method for Eddington limb darkening

20.4 Fourth adaptaion: photospheric line-profile

Challening: Put photospheric line-profile (simple Gaussian) in. What happens? Test on xk0=0 (opacity = 0) case.

- test case number 4
- This is still to be implemented.

20.5 Convergence analysis

Zero opacity The convergence of the Monte Carlo method is tested with the following input parameters

kx0	alpha	beta	test_number
0	0	1	0

for a varying amount of photons, as shown in Figure 9. We expect the method to have $\frac{1}{\sqrt{N}}$ convergence, where N is the number of photons. However, the methods strangely seems to have a faster convergence rate.

Figure 9: Original version of the code: convergence analysis (xk0=0)

<u>Nonzero opacity</u> The convergence test is set up as follows: different Monte Carlo simulations (with increasing number of photons) are compared to an *expensive* simulation with 10^7 photons. As can be seen in Figure 10, the spectrum profile behaves according to a $N^{0.5}$ law.

Figure 10: Original version of the code: convergence analysis (xk0=100)

Via this link, you can go back to the exercises overview: Section 11.

20.6 Variance reduction experiment

We will set up the test as follows

- run the code with xk0=100 and number of photons $N=10^7$
- run the code again for lower number of photons (e.g. $N = 10^3$), both with random sampling and pseudo-random sampling
- compute variance w.r.t. expensive simulation and compare
- test_number = 5

Figure 11: Original version of the code: convergence analysis (xk0=0)

xk0=100 Possible improvement: average over different stochastic realizations.

Via this link, you can go back to the exercises overview: Section 12.

20.7 Mathematical description of the problem & Looking at literature Have a look at [NS19] (see Appendix).

21 Transferring the code to Matlab

21.1 Limit variables

	xmin	xmax	vmin	vmax
Fortran	-1.1	1.1	0.01	0.98
Fortran (reverse order for scattering distribution)	-1.1	1.1	-0.98	-0.01
Matlab (with resonance_x = 0	-1	1	-0.8	0

21.2 Comparison

21.2.1 Literal Matlab version

Figure 12: Comparison of Fortran code and Matlab code (unchanged version - xk0 = 100)

Figure 13: Comparison of Fortran code and Matlab code (unchanged version - xk0 = 0.5)

21.2.2 More freely translated version

Figure 14: Comparison of Fortran code and Matlab code (freely adapted version)

Figure 15: Comparison of Fortran code and Matlab code (unchanged version - xk0 = 0.5)

21.3 Optimizations

21.3.1 Already implemented

21.3.2 To be implemented

• generation of random numbers that undergo no scattering: replace with continuum profile

22 Theoretical background

Algorithm 2 pcyg.f90: one resonance line

for all photons do

- 1. Release photon with frequency x
- 2. Check if interaction is uberhaupt possible.
- 3. Solve for distance (radius r) of interaction using Sobolev approximation $x_{CMF} = x_{REL} \mu v(r)$ with $x_{CMF} = 0$ and compute Sobolev optical depth
- 4. Check whether the photon is scattered:

if $\tau_S > -log(\xi)$ then

Interaction: the photon is scattered. Update the frequency

else

No interaction

4. update the frequency according to the scattering event

end for

collect photons and perform visualisation

22.1 General things

- $\lambda \nu = c$. Mostly stellar spectra are recorded for increasing λ , thus decreasing ν
- the β -velocity law

$$v = \left(1 - \frac{b}{r}\right)^{\beta} \tag{46}$$

where we want $v = \in [v_{\min}, v_{\max}]$. Thus on one hand $b = 1 - x_{v_{\min}}^{1/\beta} > 0$ and then we can compute the radius where $v = v_{\max}$, namely $r_{\max} = b/(1 - v_{\max}^{1/\beta})$

– Minimal velocity. Without angle correction (see Section 22.2), the minimal velocity is given by $(1-b)^{\beta}$. With angle correction,

$$v = \cos(\alpha) \left(1 - \frac{b}{r}\right)^{\beta} \tag{47}$$

then the minimal velocity is slightly higher.

- Maximal velocity equals v_{max}

Figure 16: Example of velocity profile (give paramters)

22.2 Geometry

Spherical symmetry. Scattering at point P

Figure 17: 2D Geometry for scattering

We can derive an expression, but first the sum of the angles in a triangle equals π which leads to $\alpha = \theta_{in} - \theta$. We then have the sine rule, namely that, with

$$\frac{\sin(\alpha)}{R} = \frac{\sin(\pi - \theta)}{r} = \frac{\sin(\theta)}{r} \tag{48}$$

and thus, with $R = R_* = 1$,

$$\cos(\alpha) = \sqrt{1 - \left(\frac{\sin(\theta)}{r}\right)^2} \tag{49}$$

Per definition

- $xmuestart = cos(\theta)$
- pstart = $R_* \sin(\theta)$
- $xmuein = cos(\alpha)$
- $xmueou = cos(\theta_{out})$

22.2.1 Condition for hitting the core

Check this only for inwards streaming photons!

$$pcheck = \sqrt{r^2 \left(1 - \cos(\theta_{\text{out}})^2\right)}$$

$$= r \sin(\theta_{\text{out}})$$
(50)

22.2.2 Slightly more general version

When $R_* \neq 1$, Equation (49) is replaced by

$$\cos(\alpha) = \sqrt{1 - \left(\frac{R_* \sin(\theta)}{r}\right)^2} \tag{51}$$

22.3 Sobolev approximation

• In fact, the absolute frequency of the photons does not change. However, in an observer's frame, we observe that the photon frequency changes at a scattering event. After a scattering event, the oberserver's frame frequency is updated as follows:

$$xnew = xstart + u(xmueou - xmuein)$$
 (52)

• Sobolev condition for resonance:

$$x_{REF} - \mu u = 0 \tag{53}$$

with $u = \frac{v}{v_{\infty}} \in [0, 1]$ and $\mu = \cos(\theta) \in [-1, 1]$ then

$$x_{REF} \in [0, 1] \tag{54}$$

• The radius of interaction, we solve for $v_{photon} = x > 0$, for a specific ν_0

$$\sqrt{1 - \left(\frac{p}{r}\right)^2} \left(1 - \frac{b}{r}\right)^\beta = \frac{\nu - \nu_0}{\nu_0} \frac{c}{v_\infty} \tag{55}$$

Now we are going to invest the effect of

- increasing $\nu_0 \uparrow$. What then happens is that the RHS decreases, thus $r \downarrow$.
- Inversely, $\nu_0 \downarrow$, then $r \uparrow$

22.4 Can resonance in the same resonance line happen twice?

After a first scattering event, the frequency is updated according to Equation (52). In my opinion, it is possible to have multiple scatterings.

22.5 Meaning of the parameters

- xk0 is a characteristic scale of opacity $\chi = \frac{\text{xk0}}{rv^{2+\alpha}}$
- opacity $\chi = \frac{\mathtt{xk0}}{rv^{2+\alpha}} \propto \kappa \rho \propto \frac{\kappa}{rv^2}$
- from this we deduce that $\kappa \propto \frac{1}{n^{\alpha}}$

22.6 Special case: xmuestart = 1

• FIRST SCATTTERING: from Equation (52) we have that xstart = u and then

Thus, since $xmueou \in [-1, 1]$ and $xmin \le xstart \le xmax$

$$xmin \le xnew \le xmax$$
 (57)

23 Development of computer code (in Matlab)

23.1 Implementation in Matlab: user's manual

Run the function test_function(test_number).

test_number	parameter settings
0	original version
1	first adaptation: radial release
2	isotropic scattering – higher peak
3	Eddington limb darkening
4	photospheric line-profile
5	simple well
6	other resonance frequency (thus introducing shift)
7	formation of two lines, only radially streaming photons (thus also radial release
8	formation of two lines, with radial release
9	formation of two lines, full scattering possibilities

Via this link, you can go back to the exercises overview: Section 13.

23.2 Keeping track of the photon path

24 Experiments and results

24.1 About the scattering probability distribution

Figure 18: Scattering distribution

24.2 Single resonance line

Figure 19: Single line formation with Sobolev approximation

24.3 Multiple line formation

• NON-INTERACTING LINES

Figure 20: Multiple lines (distant lines, non-interacting)

• OVERLAPPING LINES

Figure 21: Multiple lines (distant lines, non-interacting)

24.4 Effect of the opacity

Figure 22: Multiple lines (left xk0 = 100 and right xk0 = 0.5)

24.5 Observations

Figure ?? shows the profile when the scattering angle is allowed to lie in the interval $\mu_{\text{out}} \in [-1, 1]$. Figure ?? shows the same computations, but with $\mu_{\text{out}} \in [0, 1]$

Figure 23: Comparison with multiplied profile $(\mu_{\text{out}} \in [-1, 1])$

Figure 24: Comparison with multiplied profile $(\mu_{\text{out}} \in [0, 1])$

Loosely speaking, one can understand this result because in Figure ??, photons are not allowed to be backscattered to the first resonance line.

24.6 Convergence behaviour

Figure 25: Convergence behaviour

24.7 Some theoretical observations

- The resonance frequencies need to lie close enough to each other, otherwise no resonance is possible.
 - if the lines are close enough to each other, resonance ends always at the rightmost frequency because you can indeed have a pumping up, but the leftmost peak is then in the absorption zone of the rightmost, thus it is scattered again! You can indeed see that the joint zone is depleted and actually makes the rightmost line stronger.
- Calculation of scattering probability for overlapping regions. Define ...
 - the 'one-time scattering probability' p_1 .
 - probabiltiy of the overlapping region $p_2 = \frac{\text{length of overlapping region}}{\text{union of the length of the 'one-scattering' regions}}$.
 - HOWEVER take also into account that not all scattered photons are scattered.

Then we have

$$p_{\text{total}} = p_1(1 + 2p_2(1 + 2p_2(1 + \dots)))$$
(59)

25 Computing the radiation force & luminosity L(r)

This is based upon material from the text provided by professor Sundqvist, and the Phd thesis from Uwe Springmann [UweSpringmannPHD] where sperically symmetric Wolf-Rayet stars are discussed.

25.1 Theoretical formulas

1. Formal definition

$$g_{\text{radiation}} = \frac{\Delta p}{\Delta t \Delta m} = \frac{\Delta E}{v} \frac{1}{\Delta t} \frac{v}{M \Delta r} = -\frac{1}{\dot{M}} \frac{dL}{dr}$$
 (60)

2. Numerical approximation, we count photons

$$L(r) = \frac{1}{\Delta t} \sum_{i} \epsilon_{i} \operatorname{sign} \mu_{i}(r)$$
(61)

where $L(r_*)$ is given and the photon energies ϵ_i are given by a black-body distribution.

25.2 Solution strategy

Loop over all photons. In that loop, loop over all r values and assign the corresponding angle. Thus we need two additional arrays: r_values and angles. Update the array at each scattering event.

- \bullet create a grid for r
- for each r on the grid, look at the
- calculate L(r)
- then calculate $\frac{dL}{dr}$ numerically on that grid

25.3 Checking the correctness of the program

Enforce algorithmically that all photons stream in one direction (no scattering with xmueout < 0). Comment out the line xmueou = -xmueou in the function scatter.m.

Figure 26: Luminosity L(r) (for one resonance line) - test situation

25.4 Computing the radiation force for one line

Basic, well-known test situation.

Figure 27: Luminosity L(r) (for one resonance line)

25.5 Multiple lines

Figure 28: Luminosity L(r) (for multiple resonance line)

25.6 Theoretical considerations

25.6.1Analytical quantities

From the course notes on radiative processes

$$g_{\text{radiation}} = g_{\text{line}} = g_{\text{line}}^{\text{thin}} \frac{1 - e^{-\tau_S}}{\tau_S}$$
 (62)

where

$$g_{\rm thin} = g_e q = \frac{F_\nu^0 k_L}{\rho c} \tag{63}$$

with the Sobolev optical depth

$$\tau_S = \frac{\kappa_0}{r^2 v \left| \frac{dv}{dr} \right|} = \frac{\kappa_0}{r v^2 (\mu^2 \sigma + 1)} \tag{64}$$

and the density - mass loss relation

$$\dot{M} = \rho 4\pi r^2 v \tag{65}$$

Combining these quantities gives

$$g_{\text{radiation}} = \frac{F_{\nu_0}}{c} \frac{k_L}{\rho} \frac{1 - e^{-\tau_S}}{\tau_S} \tag{66}$$

$$g_{\text{radiation}} = \frac{F_{\nu_0}}{c} \frac{\kappa_0 v_\infty}{\lambda_0 R_* r^2 v} \frac{4\pi r^2 v}{\dot{M}} \frac{r^2 v \left| \frac{dv}{dr} \right|}{\kappa_0} \left(1 - e^{-\tau_S} \right)$$

$$g_{\text{radiation}} = \frac{F_{\nu_0} \nu_0}{\dot{M} c^2} \frac{dv_l}{dl} \left(1 - e^{-\tau_S} \right)$$
(68)

$$g_{\text{radiation}} = \frac{F_{\nu_0} \nu_0}{\dot{M} c^2} \frac{dv_l}{dl} \left(1 - e^{-\tau_s} \right)$$
(68)

From numerical computations

On the other hand we have

$$g_{\text{radiation}} = -\frac{1}{\dot{M}} \frac{dL}{dr}$$
(69)

These quantities should equal

For optically thick lines $(\tau_S \gg 1)$

$$g_{\text{radiation}}^{\text{numerical}} = -\frac{1}{\dot{M}} \frac{dL}{dr} = g_{\text{radiation}}^{\text{analytical}} = \frac{F_{\nu_0} \nu_0}{\dot{M} c^2} \frac{dv_l}{dl}$$
(70)

$$\frac{dL}{dr} = \frac{1}{4\pi r^2 c^2} \frac{F_{\nu_0}}{F} \frac{dv}{dr}$$
 (71)

Combining that with a β -velocity profile

$$v = \left(1 - \frac{b}{r}\right)^{\beta} \tag{72}$$

Then we have

$$\frac{dL}{dr} = \frac{F_{\nu_0}}{4\pi c^2} \frac{b}{r^3} \left(1 - \frac{b}{r} \right)^{\beta - 1}$$
 (73)

and for $\beta = 1$

$$\frac{dL}{dr} = \frac{F_{\nu_0}}{4\pi c^2} \frac{b}{r^4} \tag{74}$$

$$\left| \frac{dL}{dr} \right| = C^{te} \frac{1}{r^4} \tag{75}$$

25.7 With high xk0

TO BE UPDATED

${f {26}}^{50}$ Backup from theory

Transport step and collision step. There is no absorption.

51

October 26, 2019 27 Extension to higher dimensions

TO BE DONE

28 Closer look at Monte Carlo simulations

28.1 Random walk (diffusion equation)

A more simple experiment that simulates the diffusion equation (1D random walk) is also set up. The results are shown in Figure 27. We observe that $N \sim \tau^2$, as can also be derived from theory.

Figure 29: Number of interactions (scattering events) versus opacity, random walk

• When starting from an initial condition $x_0 = 0$ and

$$x_N = x_{N-1} \pm l \tag{76}$$

we have for the variance that $\langle x_N \rangle^2 = N l^2$

• If we require a photon to cover a distance R then $N = \frac{R^2}{l^2}$ and

- the relation between mean-free path l and opacity α is $l = \frac{1}{\alpha}$

- with
$$\tau = \int_0^R \alpha ds = \frac{R}{l}$$

then we have that $N = \tau^2$. This corresponds with the observations in Figure 27.

28.2 Limb darkening

We first look at results from the limb darkening program, as studied in Section 19. In Figure 28, the number of scattering events is plotted versus the opacity of the medium.

Figure 30: Number of interactions (scattering events) versus opacity, kimb darkening

- For high opacity $\tau \gg 1$ we observe that $N \sim \tau$.
- Bridging regime.
- For opacity $\tau \ll 1$ we observe that $N \sim 1$: namely the photons travels very far during the first emission event.

If you assume constant opacity then $\tau = \alpha z$

Part IV

Questions

29 Questions for professor Sundqvist

- \bullet What are the equations governing the processes in pcyg.f90
- What does this mean? xnew=xstart+(v-sign(0.06,xmueou))*xmueou-v*xmuein
- Pcygni profiles: Why don't we just take the absorption and the emission and add them together.
- why in rtbis we have that rmin = 1
- changed xmuestart from -1 to 1.

30 Questions for professor Samaey

- In [DPS18], Equation (31) why does it correspond to diffusion (more specifically the second term on the right hand side).
- what is the difference between Monte Carlo and equation-free computing?

31 Solved questions

- Sundqvist+ 2009: what is thermal velocity (see Wikipedia)
- Sundqvist+ 2009: what is line force (see explanation Dylan)
- unclassified: what is a flux limiter? (see course notes)
- unclassified: what is cross section of scattering (see Wikipedia)
- Puls manual: p.26: how does the Milne equation appear? (see library book)
- pcyg.f90: what are p-rays? (see anwser professor Sundqvist)
 - parallel rays leaving the atmosphere (of, e.g. a star)

- pcyg.f90: what is meant by Eddington limb-darkening? (see answer professor Sundqvist)
 - standard limb darkening
- Sundqvist+ 2009: what is the geometry of a slice?
- CMFAA course notes p.13 (the example) what is understood by plane-parallel geometry and is it 1D or 2D? (see answer professor Sundqvist)

_

- CMFAA course notes p.15: why is this called diffusion $F = T^3 \frac{dT}{dx}$ (flux proportional to local gradient in temperature)?
- unclassified: what is the terminal velocity v_{∞} ?
- unclassified: what is Sobo-distribution? (Sobolev distribution)
- pcyg.f90: for test_number = 2, why do we call it isotropic since isotropy of mu does not imply isotropy of theta? (myself, see definition of intensity)
- (for which star are the exerpimental data and what assumptions are used in the theory?) (see ... and derive some formulas)
- book Stellar Atmospheres [Mihalas] (bought)
- ordening of array freq (adapted the code, experimented with it)
 - why freq(1) = xmax-5*deltax?
 - frequency binning: how are you sure that no lower/higher frequencies can occur?
 derive this analytically
- Pcyg.f90 does it take into account that photons are scattered away from the observer? (via assumption of radial symmetry)

32 Interesting problems

 $\bullet\,$ inverse radiative transfer problem

might be interesting for looking at

- $\bullet\,$ splitting methods
- \bullet Eddington factors

33 Do not forget

 \bullet convergence plots

Part V

Thesis meetings

34 Meeting on 6 September 2019

- overview of Petnica summer institute on Astrophysics
- question: manual by Puls: why is isotropic distribution sampled from $\mu\mu$?
- pcyg.f90 program
- practical arangements
- SKIRT code
- discussion of paper (Dimarco+2018)

35 Meeting on 23 September 2019

- ullet convergence plots
- relation $N \sim \tau + \tau^2/2$
- limb darkening

36 Meeting on 30 September 2019

- discussion about x_{\min} and x_{\max}
- discussion about introduction of second line.
 - take into account the Doppler shift because you have two different frames
 - make them radially streaming (release)
 - do step for step:
 - * begin with creating a correct well
- normalized frequency: $x = \frac{\nu \nu_0}{\nu_0} \frac{c}{v_{infty}}$
- adding other resonance frequencies, involves enlarging the frequency frame.
- about the goal of the master thesis. Making a master thesis is not doing a course where all is well-defined and a priori known.

Part VI

Equation meetings

- Meeting of 10 April 2019
- Meeting of 17 April 2019
- Meeting of 14 August 2019
- Meeting of 18 September 2019
- Meeting of 25 September 2019

References

- [BHR02] S. J Bence, M. P Hobson, and K. F Riley. *Mathematical methods for physics and engineering: a comprehensive guide*. 2nd ed. Cambridge: Cambridge University press, 2002. ISBN: 0521890675.
- [Bus60] I. W Busbridge. The mathematics of radiative transfer. Cambridge tracts in mathematics and mathematical physics 50. Cambridge: Cambridge University press, 1960.
- [Car] Mats Carlsson. MULTI Version 2.2. URL: http://folk.uio.no/matsc/mul22/mul22.html (visited on 09/20/2019).
- [Car86] M Carlsson. A computer program for solving multi-level non-LTE radiative transfer problems in moving or static atmospheres. 1986.
- [CB2] P. Camps and M. Baes. "SKIRT: An advanced dust radiative transfer code with a user-friendly architecture". In: *Astronomy and Computing* 9 (2), pp. 20–33. ISSN: 22131337. DOI: 10.1016/j.ascom.2014.10.004. URL: http://dx.doi.org/10.1016/j.ascom.2014.10.004.
- [Chr15] Pinte Christophe. "Continuum radiative transfer". eng. In: *EPJ Web of Conferences* 102 (2015), p. 00006. ISSN: 2100-014X.
- [DPS18] G. Dimarco, L. Pareschi, and G. Samaey. "Asymptotic-Preserving Monte Carlo Methods for Transport Equations in the Diffusive Limit". eng. In: SIAM Journal on Scientific Computing 40.1 (2018), pp. 504–528. ISSN: 1064-8275.
- [Dull7] Cornelis Dullemond. RADMC-3D. 2017. URL: http://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/ (visited on 09/20/2019).
- [Esp] Brian Espey. Lecture notes, Astrophysical Spectroscopy. URL: https://www.tcd.ie/Physics/study/current/undergraduate/lecture-notes/py3a06/PY3A06_plane_parallel_grey_atmosphere_2011_2012.pdf (visited on).
- [Har+19] Tim Harries et al. "The TORUS radiation transfer code". In: (Mar. 2019). arXiv: 1903.06672. URL: http://arxiv.org/abs/1903.06672.
- [HL17a] Ivan Hubeny and Thierry Lanz. "A brief introductory guide to TLUSTY and SYNSPEC". In: (2017), pp. 1–50. arXiv: 1706.01859. URL: http://arxiv.org/abs/1706.01859.
- [HL17b] Ivan Hubeny and Thierry Lanz. "TLUSTY User's Guide II: Reference Manual". In: (2017). arXiv: 1706.01935. URL: http://arxiv.org/abs/1706.01935.
- [HL17c] Ivan Hubeny and Thierry Lanz. "TLUSTY User's Guide III: Operational Manual". In: (2017). arXiv: 1706.01937. URL: http://arxiv.org/abs/1706.01937.
- [Hor19] Niels Horsten. Fluid and Hybrid Fluid-Kinetic Models for the Neutral Particles in the Plasma Edge of Nuclear Fusion Devices. Leuven, 2019. URL: https://lirias.kuleuven.be/handle/123456789/634723.
- [Iva14] Dimitri Mihalas Ivan Hubeny. Theory of stellar atmospheres: an introduction to astrophysical non-equilibrium quantitative spetroscopic analysis. 2014.
- [Moe18] Nicolas Moens. Radiation-Hydrodynamics with MPI-AMRVAC: Massive-Star Atmospheres and Winds. Leuven, 2018.
- [NS19] Ulrich M. Noebauer and Stuart A. Sim. "Monte Carlo Radiative Transfer". In: 5.1 (2019).
- [Wik18] Wikipedia contributors. Heat flux Wikipedia, The Free Encyclopedia. [Online; accessed 14-September-2019]. 2018. URL: https://en.wikipedia.org/w/index.php?title=Heat_flux&oldid=863233807.
- [Wik19] Wikipedia contributors. Optical depth Wikipedia, The Free Encyclopedia. [Online; accessed 14-September-2019]. 2019. URL: https://en.wikipedia.org/w/index.php?title=Optical_depth&oldid=884427147.
- [Wil+14] Greg Wilson et al. "Best Practices for Scientific Computing". In: *PLoS Biology* 12.1 (2014), pp. 1–18. ISSN: 15449173. DOI: 10.1371/journal.pbio.1001745. arXiv: arXiv: 1210.0530v4.