Web Security

Friday, April 13, 2018 12:04 PM

The Web

(4) render (including running scripts in the html file)

- Html file likely contains a cookie (server wants browser to keep some information)
- More features -> more weaknesses
- Script files
 - Browser runs html file -> constructs query from script -> sends to server

Complications

- Browser
 - o Same access privilege as user
 - Content providers can render content (rich c2 set)
 - Managing sensitive user information (cookies)
- Android: each app = one user, different access rights

Attack Models

- Attacker = end system (Malicious web-server or user)
- Attacker = MITM
- Combination of different attacks

SSL/ TLS Secure Communication Channel

- TLS renegotiation
- Attacker = MITM between browser and server, able to sniff/ spoof packets at TCP/IP layers
 - HTTPS: attacker cannot compromise confidentiality/ authentication
- Heartbleed (improper input validation), wannacry, superfish, BEAST (crypto CBC)

Misleading the User

- URL = uniform resource locator
 - Consists of a few components, like the path and query
 - o Usually displayed with 2 levels of intensity (hostname vs. pat
 - Intentional phising emails sent by NUS.
- Safari only displays hostname, does not display path

Address Bar Spoofing

- Browsers should not allow webpages to display over the address bar (only way user can know website)

Clickjacking

- User Interface redress attack
- Another page loading in transparent layer
 - Solution = force frames to be visible
- Likejacking = get likes, cursorjacking = fake cursor

Cookies

- HTTP cookie = response from server
- Previously-saved cookies will be automatically sent to server
 - o Web server stateless, does not record who visits how many times. Info stored in cookie
 - Single sign-on, token-based authentication
 - SSO can be for a single site/ multiple in same enterprise
 - Usually has an expiry date
 - Token can be mac or concatenation (latter relies on security by obscurity, bad)
- With multiple web servers: which cookie to send?
 - Policy of same origin (PROTOCOL, hostname, port #)
- Server must remember previous tokens
 - Best is server keeps only one secret key k
 - Server verifies that the mac is correct by looking at stored user info

Can MITM steal cookies? No. even with fake website. Not same origin. (different hostname)

Cross Site Scripting (XSS) Attacks

- Cookies may be stolen
- User inputs data what if data = script?
 - < converted to < and ></p>
 - o Browser does not interpret it as a program
- Attacker tricks user to click on link which sends script to server
 - Script can steal cookie
 - Privilege escalation of script (exploits client's trust of server)
 - o Phishing: cookie sent to attacker website/ third party instead of original website
- XSS can be reflection (non-persistent)/ stored (e.g. forum)

Defence

- Most on server-side to filter malicious scripts in request
- Not fool proof
- E.g. Browser can convert all open brackets to ascii <
 - Other formats will surface

Cross Site Request Forgery (XSRF)

- Sea surf, reference forgery, session riding
- Reverse XSS: exploits server's trust of client
- Attacker makes use of client's cookie to send malicious requests to server
- Common prevention: additional authentication information

Other Attacks and Terminologies

- Misconfiguration, searching for filename
- Drive-by download
 - May be authorised/ unauthorised
 - User unaware of content/ consequences
- Web Bug/ Beacon
 - Checks if user has accessed content
 - Small image that is downloaded (request sent to server) when user visits web page

- o Image may be requested every visit or once and stored
- o Mostly unobtrusive/invisible
- CAPTCHA
 - o Completely Automated Public Turing test to tell Computers and Humans Apart
 - o Challenge-response
- Click fraud = fake clicking advertisements
 - o Pay-per-Click (PPC) online advertising