Problem

The lengths of the three sides of a triangle are consecutive positive integers. The largest angle of the triangle is two times of the smallest angle. What is the largest side of the triangle?

Solution

6. Method 1: Let $\angle A$ be the largest angle and $\angle B$ be the smallest angle. Draw the angle bisector of $\angle A$ to meet BC at $D.\angle A$ is twice $\angle B$. We know that $\angle 2 = \angle 3$, $\angle ADC = \angle 1 + \angle 3 = \angle A$. $\triangle CAD \sim \triangle CBA$.

$$\frac{AB}{BD} = \frac{AC}{CD} \Rightarrow \frac{CD}{BC - CD} = \frac{AC}{AB}$$

We have: $\frac{CD}{AC} = \frac{AC}{BC} \implies CD = \frac{AC^2}{BC}$ According to the angle bisector theorem, we get: $\frac{AB}{BD} = \frac{AC}{CD} \implies \frac{CD}{BC-CD} = \frac{AC}{AB}$ Separate CD to get: $CD = \frac{AC \times BC}{AB+AC}$ Substitute (2) into (1), $\frac{AC^2}{BC} = \frac{AC \times BC}{AB+AC} \implies \frac{AC}{BC} = \frac{BC}{AB+AC}$ $\implies \frac{x-1}{x+1} = \frac{x+1}{2x-1} \implies x^2 - 5x = 0 \implies x = 5$ The largest side is x + 1 = 6.

Method 2: Extend CA to D such that AD = AB. Then $\angle 1 = \angle 2$ and $\angle CAB = 2\angle 2$. We are given that $\angle CAB = 2\angle ABC$, so $\angle 2 = \angle ABC$ and

$$\triangle ABC \sim \triangle BDC.$$

$$\frac{x-1}{x+1} = \frac{x+1}{x-1+x} \Rightarrow (x-1)(2x-1) = (x+1)^2$$

$$\Rightarrow x^2 - 5x = 0 \Rightarrow x = 5 \Rightarrow x+1 = 6.$$

Method 3: We have the following theorem: In $\triangle ABC$, if $\angle A =$

$$2\angle B$$
, then $a^2=b^2+bc$
 $a=(x+1), b=(x-1),$ and $c=x$

$$(x+1)^2 = (x-1)^2 + (x-1)x \Rightarrow x^2 - 5x = 0 \Rightarrow x = 5$$

 $\Rightarrow x+1 = 6.$

Draw the height of the figure (especially when area calculation is involved).

Draw the height to hypotenuse of a right triangle In triangle $ABC, \angle ACD = 90^{\circ}$, Draw $CD \perp AB$. D is the feet of the perpendiculars to AB from C.

Then $\triangle ABC \sim \triangle ACD \sim \triangle CBD$.

Draw the second height of the figure when one height is shown. In triangle $ABC, AD \perp BC$. D is the feet of the perpendiculars to BC from A. Draw $BE \perp AC$. E is the feet of the perpendiculars to AC from B. AD meets BC at F.

$$\angle CBE = \angle CAD, \angle AFE = \angle C = \angle BFD.$$

Draw two heights of trapezoid from the short base to the long base. In trapezoid ABCD, AB//DC. Draw AE and BF such that $AE \perp DC, BF \perp DC$. As shown in the figure to the right, AE = BF, AB = EF. DF + CE = DC + EF = DC + AB.

Chapter 4 Draw the Auxiliary lines with Perpendicular Lines