

Mestrado Integrado em Engenharia Física

Sumário

- <u>Introdução</u>
- Método as tensões nos nós
- Método das correntes de malha

- Métodos Sistemáticos de Análise de Circuitos Lineares de CC
 - Introdução Definições

- Métodos Sistemáticos de Análise de Circuitos Lineares de CC
 - Introdução Definições
 - Diferentes componentes ligados entre si por forma a cumprirem um determinado objectivo constituem um circuito eléctrico

- Introdução Definições
 - Diferentes componentes ligados entre si por forma a cumprirem um determinado objectivo constituem um circuito eléctrico
 - Um nó é um ponto ao qual ligam 2 ou mais elementos

- Introdução Definições
 - Diferentes componentes ligados entre si por forma a cumprirem um determinado objectivo constituem um circuito eléctrico
 - Um nó é um ponto ao qual ligam 2 ou mais elementos
 - Ramo é um troço de um circuito entre
 2 nós que contenha um qualquer elemento

- Métodos Sistemáticos de Análise de Circuitos Lineares de CC
 - Introdução Definições
 - Percurso (ou path) é qualquer trajecto ao longo de um circuito eléctrico que não passe mais do que uma vez pelo mesmo nó

- Introdução Definições
 - Percurso (ou path) é qualquer trajecto ao longo de um circuito eléctrico que não passe mais do que uma vez pelo mesmo nó
 - Se o nó de onde partimos é o mesmo a que chegamos então o trajecto constitui um percurso fechado (ou loop)

- Introdução Definições
 - Percurso (ou path) é qualquer trajecto ao longo de um circuito eléctrico que não passe mais do que uma vez pelo mesmo nó
 - Se o nó de onde partimos é o mesmo a que chegamos então o trajecto constitui um percurso fechado (ou loop)
 - Malha (ou mesh) é um percurso fechado que não inclui outros percursos fechados no seu interior

- Introdução Definições
 - Percurso (ou path) é qualquer trajecto ao longo de um circuito eléctrico que não passe mais do que uma vez pelo mesmo nó
 - Se o nó de onde partimos é o mesmo a que chegamos então o trajecto constitui um percurso fechado (ou loop)
 - Malha (ou mesh) é um percurso fechado que não inclui outros percursos fechados no seu interior
 - Nós essenciais são nós aos quais ligam 3 ou mais elementos

- Introdução Definições
 - Percurso (ou path) é qualquer trajecto ao longo de um circuito eléctrico que não passe mais do que uma vez pelo mesmo nó
 - Se o nó de onde partimos é o mesmo a que chegamos então o trajecto constitui um percurso fechado (ou loop)
 - Malha (ou mesh) é um percurso fechado que não inclui outros percursos fechados no seu interior
 - Nós essenciais são nós aos quais ligam 3 ou mais elementos
 - Ramos essenciais são percursos que ligam 2 nós essenciais

- Métodos Sistemáticos de Análise de Circuitos Lineares de CC
 - Introdução Definições

- Métodos Sistemáticos de Análise de Circuitos Lineares de CC
 - Introdução Definições

- Métodos Sistemáticos de Análise de Circuitos Lineares de CC
 - Introdução Definições

- Métodos Sistemáticos de Análise de Circuitos Lineares de CC
 - Introdução Definições

- Métodos Sistemáticos de Análise de Circuitos Lineares de CC
 - Método das Tensões nos Nós
 - Método das Correntes nas Malhas

circuito não-planar

■ Método das Tensões nos Nós

Método das Tensões nos Nós

Método das Tensões nos Nós

- O método dos nós consiste na aplicação consecutiva dos seguintes passos:
- Determinação do número total de nós essenciais do circuito (N)

Método das Tensões nos Nós

- Determinação do número total de nós essenciais do circuito (N)
- Escolha de um nó de referência para as tensões (a escolha é arbitrária mas uma boa opção é seleccionar o nó onde ligam o maior número de ramos)

Método das Tensões nos Nós

- Determinação do número total de nós essenciais do circuito (N)
- Escolha de um nó de referência para as tensões (a escolha é arbitrária mas uma boa opção é seleccionar o nó onde ligam o maior número de ramos)
- Atribuição de um sentido positivo para a corrente em cada um dos ramos (o sentido arbitrado não tem de ser necessariamente ser coincidente com o sentido real da corrente no circuito)

Método das Tensões nos Nós

- Determinação do número total de nós essenciais do circuito (N)
- Escolha de um nó de referência para as tensões (a escolha é arbitrária mas uma boa opção é seleccionar o nó onde ligam o maior número de ramos)
- Atribuição de um sentido positivo para a corrente em cada um dos ramos (o sentido arbitrado não tem de ser necessariamente ser coincidente com o sentido real da corrente no circuito)
- Aplicação da Lei de Kirchhoff das correntes (LKC) a cada um dos (N-1) nós do circuito

Método das Tensões nos Nós

- Determinação do número total de nós essenciais do circuito (N)
- Escolha de um nó de referência para as tensões (a escolha é arbitrária mas uma boa opção é seleccionar o nó onde ligam o maior número de ramos)
- Atribuição de um sentido positivo para a corrente em cada um dos ramos (o sentido arbitrado não tem de ser necessariamente ser coincidente com o sentido real da corrente no circuito)
- Aplicação da Lei de Kirchhoff das correntes (LKC) a cada um dos (N-1) nós do circuito
- Substituição da característica tensão-corrente dos componentes ligados aos nós

Método das Tensões nos Nós

- Determinação do número total de nós essenciais do circuito (N)
- Escolha de um nó de referência para as tensões (a escolha é arbitrária mas uma boa opção é seleccionar o nó onde ligam o maior número de ramos)
- Atribuição de um sentido positivo para a corrente em cada um dos ramos (o sentido arbitrado não tem de ser necessariamente ser coincidente com o sentido real da corrente no circuito)
- Aplicação da Lei de Kirchhoff das correntes (LKC) a cada um dos (N-1) nós do circuito
- Substituição da característica tensão-corrente dos componentes ligados aos nós
- Resolução do sistema de equações para obtenção das tensões nos (N-1) nós do circuito

Método das Tensões nos Nós

Exemplo

 Uma vez que o circuito possui três nós (N = 3), conclui-se que são necessárias (N-1) = 2 equações para a sua resolução

Método das Tensões nos Nós

Exemplo

Uma vez que o circuito possui três nós (N = 3), conclui-se que são necessárias (N-1) = 2 equações para a sua resolução

Método das Tensões nos Nós

Exemplo

Uma vez que o circuito possui três nós (N = 3), conclui-se que são necessárias (N-1) = 2 equações para a sua resolução

Método das Tensões nos Nós

Exemplo

A aplicação da Lei de Kirchhoff das correntes aos nós 1 e 2 do circuito permite escrever as seguintes equações:

Método das Tensões nos Nós

Exemplo

A aplicação da Lei de Kirchhoff das correntes aos nós 1 e 2 do circuito permite escrever as seguintes equações:

Nó 1:
$$i_1 = i_2 + i_3$$

Método das Tensões nos Nós

Exemplo

A aplicação da Lei de Kirchhoff das correntes aos nós 1 e 2 do circuito permite escrever as seguintes equações:

Nó 1:
$$i_1 = i_2 + i_3$$

Nó 2:
$$4 A = -i_3 + i_4$$

Método das Tensões nos Nós

Exemplo

A substituição da Lei de Ohm nos termos relativos às correntes nas resistências permite escrever as equações:

Método das Tensões nos Nós

Exemplo

A substituição da Lei de Ohm nos termos relativos às correntes nas resistências permite escrever as equações:

Nó 1:
$$\frac{20V - V_1}{2\Omega} = \frac{V_1}{10\Omega} + \frac{V_1 - V_2}{4\Omega}$$

Método das Tensões nos Nós

Exemplo

A substituição da Lei de Ohm nos termos relativos às correntes nas resistências permite escrever as equações:

Nó 1:
$$\frac{20V - V_1}{2\Omega} = \frac{V_1}{10\Omega} + \frac{V_1 - V_2}{4\Omega}$$

Nó 2:
$$4A = \frac{V_2 - V_1}{4\Omega} + \frac{V_2}{5\Omega}$$

Método das Tensões nos Nós

Exemplo

A resolução do sistema de equações permite obter:

Método das Tensões nos Nós

Exemplo

A resolução do sistema de equações permite obter:

$$v_1 = 17.2 \text{ V}$$

$$v_2 = 18.4 \text{ V}$$

Método das Tensões nos Nós

Exemplo

A resolução do sistema de equações permite obter:

$$v_1 = 17.2 \text{ V}$$
 $v_2 = 18.4 \text{ V}$
 $i_1 = \frac{20 \text{V} - v_1}{2\Omega} = 1.4 \text{ A}, \qquad i_2 = \frac{v_1}{10\Omega} = 1.72 \text{ A}$
 $i_3 = \frac{v_1 - v_2}{4\Omega} = -0.3 \text{ A}, \qquad i_4 = \frac{v_2}{5\Omega} = 3.58 \text{ A}$

■ Método das Tensões nos Nós – Casos Especiais

Caso 1 – Fontes de tensão independentes ligadas ao nó de referência

■ Método das Tensões nos Nós – Casos Especiais

- Caso 1 Fontes de tensão independentes ligadas ao nó de referência
- Neste caso, para cada um dos dois nós do circuito podem obter-se as equações :

■ Método das Tensões nos Nós – Casos Especiais

Caso 1 – Fontes de tensão independentes ligadas ao nó de referência

Neste caso, para cada um dos dois nós do circuito podem obter-se as equações :

Nó 1:
$$V_1 = 50 \text{ V}$$

Nó 2:
$$4A = \frac{V_2 - V_1}{4\Omega} + \frac{V_2}{5\Omega} \rightarrow V_2 = 36.7 \text{ V}$$

■ Método das Tensões nos Nós – Casos Especiais

Caso 2 – Fontes de tensão independentes ligadas entre dois nós distintos da referência

■ Método das Tensões nos Nós – Casos Especiais

Caso 2 – Fontes de tensão independentes ligadas entre dois nós distintos da referência

 Apesar de haver mais um nó, a relação entre v₂ e v₃ é conhecida. Neste caso,

■ Método das Tensões nos Nós – Casos Especiais

Caso 2 – Fontes de tensão independentes ligadas entre dois nós distintos da referência

Apesar de haver mais um nó, a relação entre v₂ e v₃ é conhecida. Neste caso,

$$V_3 = V_2 + 5V$$

$$(i_5 = i_3 - i_4)$$

■ Método das Tensões nos Nós – Casos Especiais

Caso 2 – Fontes de tensão independentes ligadas entre dois nós distintos da referência

Assim, é possível escrever as seguintes equações para os nós:

■ Método das Tensões nos Nós – Casos Especiais

Caso 2 – Fontes de tensão independentes ligadas entre dois nós distintos da referência

Assim, é possível escrever as seguintes equações para os nós:

Nó 1:
$$i_1 = i_2 + i_3 \rightarrow \frac{20V - V_1}{2\Omega} = \frac{V_1}{10\Omega} + \frac{V_1 - V_2}{4\Omega}$$

■ Método das Tensões nos Nós – Casos Especiais

Caso 2 – Fontes de tensão independentes ligadas entre dois nós distintos da referência

Assim, é possível escrever as seguintes equações para os nós:

Nó 1:
$$i_1 = i_2 + i_3 \rightarrow \frac{20V - V_1}{2\Omega} = \frac{V_1}{10\Omega} + \frac{V_1 - V_2}{4\Omega}$$

Super-nó 2-3:
$$4A = -i_3 + i_4 + i_6 \rightarrow \frac{v_2 - v_1}{4\Omega} + \frac{v_2}{5\Omega} + \frac{v_2 + 5V}{10\Omega}$$

■ Método das Tensões nos Nós – Casos Especiais

Caso 3 – Fontes de tensão dependentes ligadas entre dois nós distintos da referência

A fonte dependente estabelece uma relação entre as tensões nos nós 2 e 3 que é possível exprimir em função de v₁ e v₂:

$$V_3 = V_2 + 5i_3 = V_2 + 5\frac{V_1 - V_2}{4\Omega}$$

■ Método das Tensões nos Nós – Casos Especiais

Caso 3 – Fontes de tensão dependentes ligadas entre dois nós distintos da

referência

A análise do circuito resume-se, então, à aplicação da LKC ao nó 1 e ao super-nó 2-3:

■ Método das Tensões nos Nós – Casos Especiais

Caso 3 – Fontes de tensão dependentes ligadas entre dois nós distintos da

referência

A análise do circuito resume-se, então, à aplicação da LKC ao nó 1 e ao super-nó 2-3:

Nó 1:
$$i_1 = i_2 + i_3 \rightarrow \frac{20V - V_1}{2\Omega} = \frac{V_1}{10\Omega} + \frac{V_1 - V_2}{4\Omega}$$

■ Método das Tensões nos Nós – Casos Especiais

Caso 3 – Fontes de tensão dependentes ligadas entre dois nós distintos da

referência

A análise do circuito resume-se, então, à aplicação da LKC ao nó 1 e ao super-nó 2-3:

Nó 1:
$$i_1 = i_2 + i_3 \rightarrow \frac{20V - V_1}{2\Omega} = \frac{V_1}{10\Omega} + \frac{V_1 - V_2}{4\Omega}$$

Super-nó 2-3:
$$4A = -i_3 + i_4 + i_6 \rightarrow \frac{v_2 - v_1}{4\Omega} + \frac{v_2}{5\Omega} + \frac{v_2 + 5\frac{v_1 - v_2}{4\Omega}}{10\Omega}$$

■ Método das Correntes de Malha

Método das Correntes de Malha

A aplicação do método das malhas baseia-se em quatro passos principais, a saber:

 Determinação do número total de malhas do circuito (que será igual ao nº de equações a resolver)

Método das Correntes de Malha

- Determinação do número total de malhas do circuito (que será igual ao nº de equações a resolver)
- Atribuição de um sentido às correntes respectivas

Método das Correntes de Malha

- Determinação do número total de malhas do circuito (que será igual ao nº de equações a resolver)
- Atribuição de um sentido às correntes respectivas
- Aplicação da Lei de Kirchhoff das tensões (LKT) a cada uma das malhas

Método das Correntes de Malha

- Determinação do número total de malhas do circuito (que será igual ao nº de equações a resolver)
- Atribuição de um sentido às correntes respectivas
- Aplicação da Lei de Kirchhoff das tensões (LKT) a cada uma das malhas
- Substituição da característica tensão-corrente dos componentes ao longo da malha

Método das Correntes de Malha

- Determinação do número total de malhas do circuito (que será igual ao nº de equações a resolver)
- Atribuição de um sentido às correntes respectivas
- Aplicação da Lei de Kirchhoff das tensões (LKT) a cada uma das malhas
- Substituição da característica tensão-corrente dos componentes ao longo da malha
- Resolução do sistema de equações

Método das Correntes de Malha

 Definição das correntes de malha e obtenção das correntes nos componentes do circuito

Método das Correntes de Malha

 Definição das correntes de malha e obtenção das correntes nos componentes do circuito

Método das Correntes de Malha

 Definição das correntes de malha e obtenção das correntes nos componentes do circuito

$$i_{1} = i_{a},$$
 $i_{3} = i_{b},$ $i_{5} = i_{c}$

$$i_{2} = i_{a} - i_{b}$$

$$i_{4} = i_{b} - i_{c}$$

Método das Correntes de Malha

Exemplo

O circuito inclui 2 malhas pelo que serão necessárias 2 equações para o analisar

Método das Correntes de Malha

Exemplo

A aplicação da Lei de Kirchhoff das tensões às malhas a e b permite obter as duas equações algébricas seguintes:

Malha a:
$$V_a = V_1 + V_3$$

Malha *b*:
$$-v_b = v_2 - v_3$$

Método das Correntes de Malha

Exemplo

A substituição das características tensão-corrente das resistências (lei de Ohm) permite rescrever as equações na seguinte forma :

Malha *a*:
$$V_a = R_1 i_a + R_3 (i_a - i_b)$$

Malha *b*:
$$-v_b = R_2 i_b - R_3 (i_a - i_b)$$

■ Método das Correntes de Malha – Casos Especiais

Caso 1 – Fontes de corrente independentes pertencentes a uma só malha

■ Método das Correntes de Malha – Casos Especiais

Caso 1 – Fontes de corrente independentes pertencentes a uma só malha

Neste caso apenas se aplica a LKT à malha a:

■ Método das Correntes de Malha – Casos Especiais

Caso 1 – Fontes de corrente independentes pertencentes a uma só malha

Neste caso apenas se aplica a LKT à malha a:

Malha *a*:
$$V_a = R_1 i_a + R_3 (i_a + i_b)$$

■ Método das Correntes de Malha – Casos Especiais

Caso 1 – Fontes de corrente independentes pertencentes a uma só malha

Neste caso apenas se aplica a LKT à malha a:

Malha *a*:
$$V_a = R_1 i_a + R_3 (i_a + i_b)$$

Malha b:
$$i_b = i_f \rightarrow V_a = R_1 i_a + R_3 (i_a + i_f) = (R_1 + R_3) i_a + R_3 i_f$$

$$i_a = \frac{V_a}{R_1 + R_2} - \frac{R_3}{R_1 + R_2} i_f$$

- Método das Correntes de Malha Casos Especiais
 - Caso 2 Fontes de corrente independentes comuns a duas malhas

- Método das Correntes de Malha Casos Especiais
 - Caso 2 Fontes de corrente independentes comuns a duas malhas

Embora o circuito tenha 3 malhas, a relação entre i_b e i_c é conhecida (as malhas b e c definem uma "super-malha"):

■ Método das Correntes de Malha – Casos Especiais

Caso 2 – Fontes de corrente independentes comuns a duas malhas

Embora o circuito tenha 3 malhas, a relação entre i_b e i_c é conhecida (as malhas b e c definem uma "super-malha"):

$$i_c = i_f + i_b$$

■ Método das Correntes de Malha – Casos Especiais

Caso 2 – Fontes de corrente independentes comuns a duas malhas

Assim, a LKT aplica-se apenas à malha a e à super-malha b-c (a tracejado na figura):

Malha *a*:
$$V_a = R_1 i_a + R_4 (i_a - i_b)$$

■ Método das Correntes de Malha – Casos Especiais

Caso 2 – Fontes de corrente independentes comuns a duas malhas

Assim, a LKT aplica-se apenas à malha a e à super-malha b-c (a tracejado na figura):

Malha *a*:
$$V_a = R_1 i_a + R_4 (i_a - i_b)$$

Super-malha
$$b-c$$
: $-v_b = R_2 i_b + R_3 (i_f + i_b) - R_4 (i_a - i_b)$

■ Método dos Nós versus Método das Malhas

	Método dos Nós	Método das Malhas
Variáveis	Tensões nos nós	Correntes nas malhas
Lei utilizada	Lei de Kirchhoff das correntes	Lei de Kirchhoff das tensões
Número de equações	$n_{\rm e}$ – 1 – (número de fontes de tensão directamente ligadas a nós essenciais)	(número de malhas) – (número de fontes de corrente pertencentes a uma ou mais malhas)
Casos em que se simplifica	Fontes de tensão independentes ligadas ao nó de referência	Fontes de corrente independentes pertencentes a uma só malha
Casos em que se complica	Fontes de tensão ligadas entre dois nós distintos da referência (super-nó)	Fontes de corrente independentes comuns a duas malhas (super-malha)
Especialmente indicado	Circuitos só com fontes de corrente	Circuitos só com fontes de tensão