Conglomerability and Disintegrability for Unbounded Random Variables

Mark Schervish, Teddy Seidenfeld, and Jay Kadane

This presentation engages two challenges for an *Expected Utility* theory of *coherent* preferences over *random quantities* when:

- 1. Utilities for (outcomes of) random variables are <u>unbounded</u>.
- 2. <u>Coherence</u> (that is, avoidance of uniform dominance in the partition by *states*) is the liberal standard for rational preference afforded by de Finetti's theory.

That standard allows merely finitely additive probability; so, conditional probability is *not* conglomerable in every partition.

Probability conglomerable in a partition: An unconditional probability lies inside the closed interval of conditional probabilities in a partition: $\pi = \{h_1, h_2, ...\}$. $inf_{h \in \pi} P(E \mid h) \leq P(E) \leq sup_{h \in \pi} P(E \mid h)$

• One central goal in our paper is to develop a theory of finitely additive *expectations* that accommodates these two challenges.

Aside: Savage's theory accommodates the second challenge, but not the first.

• As a second central goal, we seek to extend Lester Dubins' (1975) work on the theory of finitely additive expectations. Hereafter, think of the outcome of a variable as its utility.

Dubins relies on a finitely additive expectation for bounded random variables that can be written as an integral.

X is a bounded, real-valued variable defined on a set of states X: $\Omega \rightarrow \Re$

$$EU(X) = \int_{\Omega} X(\omega) d\mathbf{P}(\omega)$$

Consider:

- (i) Probability is an expectation for events (treated as indicator functions) $P(F) = EU(F) = \int_{\Omega} F(\omega) dP(\omega).$
- (ii) Conditional probabilities are random quantities, $\{P(E \mid h): h \in \pi\}$.

One of Dubins' main (1975) results is that with respect to the class χ of all bounded variables, a finitely additive expectation is conglomerable over χ in a partition π $\forall X \in \chi$ $inf_{h \in \pi} EU(X \mid h) \leq EU(X) \leq sup_{h \in \pi} P(X \mid h)$ just in case each expectation is an integral of its conditional expectations in π .

$$\forall X \in \chi \quad EU(X) = \int_{h \in \pi} EU(X \mid h) \ d\mathbf{P}(h).$$

• In this paper we develop an account of finitely additive expectations for unbounded variables that extends this result.

<u>Challenge 1</u> (SSK 2009) – With unbounded utilities, <u>coherent</u> preferences, i.e. preferences that respect simple dominance, state-by-state, do <u>not</u> also respect indifferences between <u>equivalent variables</u>.

Definition: Two variables are *equivalent* if they have the same **Probability distribution over outcomes.**

Example: Consider a fair coin toss with $P(H) = P(T) = \frac{1}{2}$ Let X be the variable X(H) = 1 and X(T) = 0Let Y be the variable Y(H) = 0 and Y(T) = 1. X and Y are equivalent as $P(X=1) = P(Y=1) = \frac{1}{2}$, etc.

- In canonical *EU*-theories utility is over the outcomes of variables: the decision maker is *indifferent* between equivalent variables. See: von Neumann-Morgenstern (1947); Savage (1954); Anscombe-Aumann (1963).
- In these theories, preference is defined over *lotteries* (aka *gambles*), which are the equivalence classes of equivalent variables.

Two Heuristic Examples illustrating Challenge #1

Each of the following two examples provides a collection of unbounded but equivalent variables that cannot all be indifferent to each other.

Common structure for both heuristic examples

- Let events E_n (n = 1, ...) form a partition $\pi_E = \{E_n\}$ with a Geometric $(\frac{1}{2})$ probability distribution: $P(E_n) = 2^{-n}$ (n = 1, 2, ...). Flip a fair coin until the first head. E_n = first head on flip #n.
- Let $\pi_A = \{A_H, A_T\}$ be the outcome of another fair-coin flip, independent of the events E_n . $P(A_H|E_n) = P(A_H) = \frac{1}{2}$.
- Consider the countable state-space $\pi_E \times \pi_A$.

Heuristic Example 1: St. Petersburg variables

Define three (equivalent) St. Petersburg random variables, X, Y, and Z, as follows.

 E_1 E_2 ... E_n ...

 $Z = 2 \qquad Z = 4 \qquad Z = 2^n$

 $A_{\mathrm{H}} \qquad X = 4 \qquad X = 8 \qquad X = 2^{n+1}$

 $Y = 2 \qquad Y = 2 \qquad Y = 2$

 $Z = 2 \qquad Z = 4 \qquad Z = 2^n$

 $A_{\mathrm{T}} \qquad X = 2 \qquad \qquad X = 2 \qquad \qquad X = 2$

 $Y = 4 \qquad Y = 8 \qquad Y = 2^{n+1}$

For each state in $\pi_E \times \pi_A$,

$$X + Y - 2Z = 2$$
, a constant quantity.

This situation contradicts indifference between all 3 pairs of these equivalent variables. Such indifference requires that the expected utility $[EU(\cdot)]$ for the difference between two equivalent variables is 0. In this example, that entails,

$$EU(X-Z) + EU(Y-Z) = EU(X+Y-2Z) = 0.$$

But the utility of a constant is that constant.

So,
$$EU(X+Y-2Z)=2$$
 a contradiction.

Thus, coherent preferences, here, are <u>not</u> defined merely by the probability distribution of utility outcomes.

Aside: Heuristic Example 1 uses non-Archimedean preference. The St. Petersburg variables do not have finite utility. Heuristic Example 2 uses Archimedean preferences.

Heuristic Example 2 – Coherent boost for unbounded variables.

As before, consider the countable state-space $\pi_E \times \pi_A$, with the Geometric(½) probability distribution on π_E , and with an independent "fair coin" distribution on π_A .

Define the three equivalent (Geometric) random variables X, Y, and Z.

	E_1	E_2	••••	$\boldsymbol{E_n}$
	X = 1	X = 2		X = n
$A_{ m H}$	Y = 2	Y = 3		Y = n+1
	Z = 1	Z = 1		Z = 1
	X = 1	X = 2		X = n
A_{T}	Y = 1	Y = 1		Y = 1
	Z = 2	Z = 3		Z = n+1

• X, Y, and Z are equivalent Geometric($\frac{1}{2}$) variables.

But for each state in
$$\pi_E \times \pi_A$$
, $Y + Z - X = 2$.

Thus for equivalent variables to have equal Expected Utility

$$EU(Y - X) + EU(Z - X) = 0 if and only if$$

$$EU(Y) = EU(Z) = EU(X) = 2.$$

Then Expected Utility for a Geometric $(\frac{1}{2})$ variable X is its *countably additive* expectation, 2, and Expected Utility is continuous from below.

Specifically, if a sequence of variables
$$\langle X_n \rangle \to X$$
 (pointwise convergence) and for each state ω , $X_n(\omega) \leq X(\omega)$, then $\lim_{n\to\infty} EU(X_n) = EU(X)$.

That is, in order to have indifference over equivalent Geometric(½) random variables, preferences must be continuous from below.

However, de Finetti's theory of *coherence* requires only that preference respects (uniform) dominance in the partition by *states*. This entails respecting *bounds* from sequences of bounded random variables without requiring continuity from below.

Consider, the unbounded Geometric(½) variable X from the example, where $X(\{A_T, E_n\}) = X(\{A_T, E_n\}) = n$; with $P(E_n) = 2^{-n}$.

Let X_n be the bounded, truncated variable:

and

Also,

$$X_n(\{A_T, E_m\}) = X(\{A_T, E_m\}) = m \text{ for } m \le n$$

 $X_n(\{A_H, E_m\}) = X(\{A_H, E_m\}) = 0 \text{ for } m > n.$

So, for each n = 1, 2, ..., and for each state ω ,

$$X_n(\omega) \leq X(\omega).$$

$$\langle X_n \rangle \to X.$$

Respect for (uniform) simple dominance in the partition by states entails merely that $\lim_{n\to\infty} EU(X_n) \leq EU(X)$.

Thus, if we start with the class of bounded variables and extend to included X, Y and Z, there is no sure-loss that results from the values EU(X) = 10, EU(Y) = 4, and EU(Z) = 8; when, X has boost 8, Y has boost 2, and Z has boost 6.

Unless preferences are continuous from below (entailing probability is countably additive) <u>Utility for unbounded variables will not be a function merely of the probability distribution of outcomes!</u>

Aside: The notion of state carries no metaphysical significance here. States are the elements of a state-space partition used to fix the values of variables.

Related Definitions:

Let $<\Omega$, \mathcal{Z} , P> be a (finitely additive) measure space, where $\Omega=\{\omega_1,\,\omega_2,\,\ldots\}$ a set of *states* – a countable Ω is enough for our needs here.

 ${\cal Z}$ is a σ -field of sets – used for the domain of the probability P and for measurability conditions on random variables.

 $\boldsymbol{\mathcal{Z}}$ may be the powerset of $\boldsymbol{\Omega}$ when state space is countable.

P is a (finitely additive) probability with domain 2.

Each variable X is real-valued, X: $\Omega \rightarrow \Re$, a \mathcal{E} -measurable function.

Challenge #2: Non-conglomerable conditional probabilities.

Recall when probability is conglomerable in a partition π .

Conglomerability in a partition: Probability is conglomerable in a partition $\pi = \{h_1, h_2, ...\}$ provided that, for each event E in the algebra, the unconditional probability P(E) lies inside the closed interval of conditional probabilities $\{P(E \mid h)\}$.

$$inf_{h\in\pi} P(E \mid h) \leq P(E) \leq sup_{h\in\pi} P(E \mid h)$$

• *Theorem* (SSK, 1984): Each finitely but not countably additive probability fails to be conglomerable in some countable partition.

Example (Dubins, 1975):

Let $\langle \Omega, \mathcal{Z}, P \rangle$ be a finitely additive measure space with

A countable $\Omega = \pi_E \times \pi_N$, where $\pi_E = \{E_C, E_F\}$ and $\pi_N = \{1, 2, ...\}$. \mathcal{Z} is the powerset of Ω .

$$P(E_C) = P(E_F) = \frac{1}{2}$$
.

 $P(N \mid E_C)$ is Geometric($\frac{1}{2}$)

 $P(N \mid E_F)$ is purely finitely additive – pick a "random" number.

	<u>N=1</u>	<i>N</i> =2	••••	N=m	••••
$E_{ m C}$	1/2 ²	1/2 ³	••••	$1/2^{(m+1)}$	••••
EF	0	0	••••	0	••••

Table of unconditional probabilities for states in Dubins' example.

$$P(N=m) = 2^{-(m+1)} > 0$$
. So conditional probability given N is determined. $P(E_C) = \frac{1}{2} < 1 = P(E_C \mid N=m)$.

and P fails to be conglomerable in the partition π_N .

In the light of non-conglomerable probability, the probability of an event is not always an "average" of its conditional probabilities.

When probability is not conglomerable for event E in partition π , then P is not disintegrable in π either: $P(E) \neq \int_{h \in \pi} P(E|h) dP(h)$.

But Probability is merely the special case of Expected Utility restricted to indicator functions: $P(E) = EU(E(\omega))$

So, the concepts of *conglomerability* and *disintegration* apply also to Expected Utility and Conditional Expected Utility.

Aside: de Finetti calls these values Previsions, not Expected Utilities.

<u>SO</u>, for random variables in a class $\chi = \{X\}$ an Expected Utility function is *disintegrable* over χ in partition π if $\forall X \in \chi$ $EU(X) = \int_{h \in \pi} EU(X|h) dP(h)$.

and it is *conglomerable* over χ in π if $\forall X \in \chi$ $inf_{h \in \pi} EU(X \mid h) \leq EU(X) \leq sup_{h \in \pi} EU(X \mid h)$.

Dubins (1975) established that if an expected utility function $EU(\cdot)$ is defined for a class χ of bounded variables that includes all linear combinations of these variables then:

 $EU(\cdot)$ is conglomerable in partition π for each $X \in \chi$ iff $EU(\cdot)$ is disintegrable in π for each $X \in \chi$.

The two challenges stand in the way of our central goals:

- Goal 1) Define f.a. expectations for unbounded variables so that expectations have an integral representation.
- Goal 2) Have this integral extend Dubins' result that, for a sufficiently rich class of unbounded variables conglomerability and disintegrability are coextensive.
- Challenge 1: Finitely additive expectations for unbounded variables are not a function of distributions over outcomes.
- Challenge 2: Of course, a theory of finitely additive conditional expectations for unbounded variables will display both non-conglomerable and non-disintegrable conditional expectations, because it does for probability and conditional probability, i.e. because it does so already for bounded variables.

Summary of our progress

Goal 1) We have adapted an existing theory of integrals – the *Daniell* integral (see Royden, 1968) – so that it matches de Finetti's coherence criterion for a class of functions forming a linear space and including all constants.

This class includes the unbounded variables from the 2nd heuristic example.

Thus, we are able to incorporate finite *boost* into our integral theory of expectations. The finitely additive *Daniell* integral is not required to be a function of the distribution of outcomes.

Aside: The first heuristic example with St. Petersburg variables involves infinite expectations. Since $(\infty - \infty)$ is not well defined, those variables are not included in our analysis.

• There is work yet to be done on an integral representation for non-Archimedean, finitely additive expected utility! Goal 2) Under the following finiteness conditions on unbounded variables, we extend Dubins' result that conglomerable and disintegrable expectations are coextensive, and show somewhat more.

Conditions on (unbounded) random variables:

- The variables are real-valued no St. Petersburg variables.
- The variables have finite absolute expectations: $EU(|X|) < \infty$.
- Each conditional expectation is finite: $EU(X \mid h) < \infty$.
- Expectation of conditional expectation is finite: $EU(EU(X|h)) < \infty$.

Note: The set of all variables that satisfy these conditions form a linear space.

Let $EU(\cdot)$ be a (de Finetti) coherent expectation, and π be a partition. Let W be a class of variables that meet the finiteness conditions.

• Definitions

Say that W is of <u>Class-0</u> relative to an $EU(\cdot)$ and a partition π if $EU(\cdot)$ is not conglomerable (hence, also not disintegrable) in π over W.

Aside: Let $W \subseteq Z$. Non-conglomerability is inherited by the larger class Z. So, if W is of Class-0 and then Z also is of Class 0.

Say that W is of <u>Class-1</u> relative to an $EU(\cdot)$ and a partition π if $EU(\cdot)$ is conglomerable but not disintegrable in π over W.

Say that W is of <u>Class-2</u> relative to an $EU(\cdot)$ and a partition π if $EU(\cdot)$ is both conglomerable and disintegrable in π over W.

- Dubins' (1975) result, applied to the class of all bounded random variables is that, either it is of Class-0 or of Class 2 relative to an $EU(\cdot)$ and a π .
- We show the same for classes of unbounded random variables that satisfy the finiteness conditions mentioned before, and which form a linear space.
- However, also we display a partition π , and a subclass (not a linear space) that includes all the bounded random variables that is of Class-1.

References

- Anscombe, F.J. and Aumann, R. (1963) A definition of subjective probability. *Annals of Math. Stat.* 34: 199-205.
- de Finetti, B. (1974) Theory of Probability (2 volumes). New York, John Wiley.
- Dubins, L. (1975) Finitely additive conditional probabilities, conglomerability, and disintegrations. *Ann. Prob.* 3: 89-99.
- Royden, H. L. (1968) Real Analysis. London, Macmillan.
- Savage, L.J. (1954) Foundations of Statistics. New York, John Wiley.
- Scherivsh, M.J., Seidenfeld, T. and Kadane, J.B. (1984) The Extent of nonconglomerability of finitely additive probabilities. Z. f. Wahrscheinlichkeitstheorie 66: 205-226.
- Seidenfeld, T., Schervish, M.J., and Kadane, J.B. (2009) Preference for equivalent random variables: a price for unbounded utilities. *J. Math. Econ.* 45: 329-340.
- Von Neumann, J. and Morgenster, O. (1947) Theory of Games and Economic Behavior (2nd ed.) Princeton, Princeton University Press.