

Доп. задачи анализа данных

8 мая 2020

Аномалии

Аномалии

Аномалия — паттерн в данных, который отличается от обычного поведения.

Аномалии (Outlier)

Аномалии разделяют на 2 группы — выбросы и новизну.

Выбросы — аномалии, присутствующие в обучающих данных.

Выбросы могут появиться на тестируемых данных.

Новизна — аномалии, которых нет в обучающих данных.

Новизна может появиться только на тестируемых данных.

Аномалии

Новизна может встретиться только в новых данных.

Причины появления выбросов

Ошибки в данных:

- 1. неточные измерения, ошибки записи при записи, округление;
- 2. показания сломанных приборов;
- 3. ошибки других моделей.

Основное применение методов обнаружения выбросов

Чистка данных для дальнейшего анализа модели.

Аномалии. Новизна

Причины появления новизны

Совершенно новые воздействия на систему, например:

- 1. вирус атаковал операцинную систему;
- вор воспользовался чужыми банковскими картами и потратил все деньги на них;
- 3. сломался прибор и стал давать неправильные показания;
- 4. пациент заболел и у него изменился сердечный ритм;
- 5. начал пробуждаться давно потухший вулкан.

Аномалии. Новизна

Применение

- Распознавание вредоносной активности в компьютерных системах;
- 2. Обнаружение подозрительных банковских операций;
- 3. Детектирование поломок приборов;
- 4. Медицинская диагностика;
- 5. Сейсмология.

Актуальность

Поиск в Google Scholar по статьям начиная с 2010 года:

- anomaly detection 366 000 статей;
- outlier detection 146 000 статей;
- novelty detection 122 000 статей;
- обнаружение аномалий 16 200 статей.

Поиск в Google Scholar по статьям начиная с 2015 года:

- anomaly detection 128 000 статей;
- outlier detection 51 600 статей;
- novelty detection 34 400 статей;
- ightharpoonup обнаружение аномалий **14 100** статей.

Индивидуальная

точка аномальная по отношению ко всем остальным данным

Контекстная

точка аномальная по отношению к своему контексту

Коллективная

группа точек аномальна по отношению к остальным данным

Детектирование аномалий

Сложности детектирования аномалий

- ► То, какой объект считать аномальным, а какой нет, сильно зависит от задачи.
- Часто нет размеченных данных,
 тяжело определить качество модели.
- Аномалии могут не выделяться по отдельным признакам.

Типы задач

1. Обучение с учителем:

Выборка полностью размечена на типичные и аномальные.

Особенность — сильный дисбаланс классов.

2. Частичное обучение с учителем:

Выборка частично размечена.

Например, известно, что в некоторые моменты прибор ломался.

3. Обучение без учителя:

Выборка не размечена, но предполагается, что типичных объектов существенно больше аномальных.

На выходе

- 1. Скоры оценка степени аномальности объекта;
- 2. Метки аномальный или нет.

Подходы к детектированию аномалий

- 1. Классификация мультиклассовая, одноклассовая (One Class SVM), нейронные сети;
- 2. Основанные на ближайших соседях расстояние до k-го coceдa, LocalOutlierFactor;
- Основанные на кластеризации DBSCAN, ROCK, SNN. Двух этапные — SOM, k-means, EM. Cluster-Based Local Outlier Factor;
- 4. Статистические методы ящик с усами, Grubb's test, регрессия, гистограммы, KDE;
- Спектральный анализ РСА;
- 6. Случайные леса iForest (IF), RRCF;
- 7. Контекстная аномальность ARIMA, HMM;
- 8. Коллективная аномальность HMM, WCAD, MEMM, IMM;
- 9. Нейронные сети автоэнкодеры, GAN, байес. нейронные сети.

Что изучим сегодня

Для всех методов:

- обучение без учителя;
- индивидуальные аномалии.

Подходы:

- Основанные на статистических распределениях;
- Основанные на ближайших соседях;
- Случайные леса;
- Одноклассовая классификация (One Class SVM).
- Автоэнкодер

Детектирование как выбросов, так и новизны.

Детектирование аномалий Статистические методы

Ящик с усами

В гауссовском случае расстояние между хвостами соответствует 99.3% данных, что аналогично правилу трех сигм.

PÔ

Критерий Граббса

Пусть $X_1, ..., X_n$ — выборка из нормального распределения.

Н₀: в выборке нет выбросов

Н₁: в выборке есть выбросы

Z-статистика: $Z_i = \left| X_i - \overline{X} \right| / S$, где S^2 — выборочная дисперсия (несмещенная)

Если

$$\max_{i=1..n} Z_i > \frac{n-1}{\sqrt{n}} \sqrt{\frac{T_{n-2,\alpha/(2n)}^2}{n-2+T_{n-2,\alpha/(2n)}^2}},$$

то X_i , соответствующий максимальному Z_i считается выбросом и удаляется, а процедура повторяется (МПГ не надо).

Многомерный случай сводим к одномерному: $Y_i = \sqrt{\left(X_i - \overline{X}\right)^T \widehat{\Sigma}^{-1} \left(X_i - \overline{X}\right)}$

Эллиптическая оболочка (Elliptic Envelope)

 $X_1, ..., X_n$ — выборка в d-мерном пространстве.

Предположение: распределение типичных объектов имеет эллипсоидальный вид (например, нормальное).

Идея: найти эллипс, который описывает типичные объекты.

Применение: выбросы, новизна.

Эллиптическая оболочка (Elliptic Envelope)

С-шаг:

1. Для каждого объекта вычислить расстояние Махаланобиса

$$d_{a,\Sigma}(i) = \sqrt{(X_i - a)^T \Sigma^{-1} (X_i - a)}$$

- 2. J набор из h точек, которые имеют наименьшее $d_{a,\Sigma}(i)$
- 3. Пересчитать a и Σ по точкам из J.

Примерное описание метода:

- 1. Рассматривается небольшие случайные подмножества
- 2. Внутри каждого проводится несколько итераций С-шага
- 3. Запоминается несколько наилучших приближ. (с малыми $\det \Sigma$)
- 4. Подмножества объединяются и снова производится несколько итераций С-шага по полученным ранее начальными приближениям.
- 5. Для наилучших приближ. выполняются С-шаги на всех данных.

 $X_1, ..., X_n$ — выборка в D-мерном пространстве

Идея модификации метода:

- 1. Пусть первые *d* главных компонент описывают бОльшую часть дисперсии данных.
- 2. Тогда по остальным D-d компонентам данные меняются незначительно. То есть проекции не сильно отклоняются от нуля.
- 3. Если проекция точки x на последние D-d главных компонент сильно отклоняется от нуля, то это аномалия.

Метод работает лучше для задач детектирования новизны.

Детектирование аномалий Методы, основанные на ближайших соседях

Локальный уровень выброса (Local Outlier Factor)

Идея: построение локальной "плотности" точек. Если плотность точки существенно меньше плотности соседей, то это выброс.

 $X_1,...,X_n$ — выборка в метрическом пр-ве с метрикой $\rho(x,y)$. $N_k(X_i)$ — множество k ближайших соседей точки X_i $\rho_k(X_i)$ — расстояние до k-го соседа точки X_i

Достижимое "расстояние" из точки X_i : $\rho_k^{reach}(X_j|X_i) = \max\{\ \rho_k(X_i),\ \rho(X_i,X_j)\ \}$ Смысл: все объекты из $N_k(X_i)$ имеют одинаковое "расстояние" до X_i .

Локальный уровень выброса (Local Outlier Factor)

Достижимое "расстояние" из точки X_i :

$$\rho_k^{reach}(X_j|X_i) = \max\{ \rho_k(X_i), \rho(X_i, X_j) \}$$

Локальная плотность достижимости объекта X_i обратное к среднему достижимому расстоянию из $N_k(X_i)$ до X_i

$$Idr(X_i) = \left(\frac{1}{|N_k(X_i)|} \sum_{x \in N_k(X_i)} \rho_k^{reach}(X_i|x)\right)^{-1}$$

Локальный уровень выброса —

отношение средней локальной плотности соседей к лок. плотности X_i

$$LOF(X_i) = \frac{1}{|N_k(X_i)|} \sum_{x \in N_k(X_i)} \frac{Idr(x)}{Idr(X_i)}$$

Локальный уровень выброса (Local Outlier Factor)

 $LOF(X_i) \approx 1$ — плотность точки X_i похожа на плотность соседей, $LOF(X_i) \ll 1$ — точка X_i внутренняя,

 $LOF(X_i) \gg 1$ — точка X_i является выбросом,

Применение: выбросы, есть модификация для детектирования новизны.

DBSCAN [напоминание]

DBSCAN = Density-Based Spatial Clustering of Applications with Noise

 $X_1, ..., X_n$ — выборка в d-мерном пространстве

Задача: кластеризовать типичные точки и отметить выбросы.

Метод:

- 1. Точка x основная точка, если в окрестности радиуса ε находится не менее k точек выборки;
- 2. Точка y достижима прямо из основной точки x, если $\|x-y\|\leqslant \varepsilon$
- Точка у достижима из основной точки х, если существует путь по основным точкам из х в у
- 4. Если точка у недостижима из основных точек, то она выброс.
- Основная точка формирует кластер вместе со всеми достижимыми из нее точками.

DBSCAN

Идея построения:

- 1. Найти ε -окрестность точки x;
- 2. Выделить точки с не менее k соседями;
- 3. Найти связные компоненты среди только основных точек;
- 4. Назначить неосновную точку ближайшему кластеру, если он на расстоянии не более ε . Иначе признать ее выбросом.

Применение: выбросы.

Детектирование аномалий Случайные леса

Изолирующий лес (Isolation Forest, iForest)

 $X_1, ..., X_n$ — выборка в d-мерном пространстве

Построение iTree по подвыборке S:

- 1. Выбираем случайный признак;
- 2. Выбираем случайное значение x на отрезке $\left[\max_{x \in S} x_j, \min_{x \in S} x_j\right]$ 3. Делим S по порогу x признака i
 - и рекурсивно строим дерево на полученных частях.

Лес iForest = нескольких независимых iTree.

Мера типичности x = средняя глубина листьев, в которые попал x.

Изолирующий лес (Isolation Forest)

Применение: выбросы, новизна.

Robust Random Cut Forest (Amazon, 2016)

$$X_1,...,X_n$$
 — выборка в d -мерном пространстве

Построение RRCT-дерева T(S) по подвыборке S:

- 1. Выбираем случайный признак j с вероятностью $r_j \left/ \sum_{j=1}^d r_j \right.$ где $r_j = \max_{x \in S} x_j \min_{x \in S} x_j$
- 2. Выбираем случайное значение x на отрезке $\left[\max_{x \in S} x_j, \min_{x \in S} x_j\right]$
- 3. Делим S по порогу x признака j и рекурсивно строим дерево на полученных частях.

Лес получается построением нескольких независимых деревьев.

PÔ

Robust Random Cut Forest (Amazon, 2016)

 $T(S - \{x\})$ — дерево при удалении объекта x из T(S):

f(x, T) — высота листа объекта x в дереве T.

$$M(T(S)) = \sum_{x \in S} f(x, T(S))$$
 — сложность дерева $T(S)$.

Выбросы находятся вначале \Longrightarrow при удалении меняют высоту многих объектов \Longrightarrow сложность сильно уменьшается.

$$Disp(x,S) = \frac{1}{\#T} \sum_{T} \sum_{y \in S - \{x\}} \left(f(y, T(S)) - f(y, T(S - \{x\})) \right)$$

Детектирование аномалий Одноклассовая классификация

SVM (два класса)

$$X_1,...,X_n$$
 — точки в d -мерном пространстве

$$Y_1,...,Y_n$$
 — метки класса $Y_i \in \{-1,+1\}$

$$\begin{cases} \frac{\|\theta\|^2}{2} + C \sum_{i=1}^n \xi_i^+ \longrightarrow \min_{\theta, \theta_0, \xi} \\ Y_i \left(\theta^T X_i + \theta_0 \right) \geqslant 1 - \xi_i \end{cases}$$

Решение:

$$f(x) = \operatorname{sign}\left(\sum_{i=1}^{n} \lambda_i Y_i X_i^T x + \theta_0\right),$$

SVM (два класса)

$$X_1, ..., X_n$$
 — точки в d -мерном пространстве

 $Y_1, ..., Y_n$ — метки класса $Y_i \in \{-1, +1\}$

$$\begin{cases} \frac{K(\theta,\theta)}{2} + C \sum_{i=1}^{n} \xi_{i}^{+} \longrightarrow \min_{\theta,\theta_{0},\xi} \\ Y_{i} \left(K(\theta,X_{i}) + \theta_{0} \right) \geqslant 1 - \xi_{i} \end{cases}$$

Решение:

$$f(x) = \operatorname{sign}\left(\sum_{i=1}^n \lambda_i Y_i K(X_i, x) + \theta_0\right),$$

One class SVM [детектирование новизны]

 $X_1,...,X_n$ — точки в d-мерном пространстве

Идея: отделить все точки от начала координат гиперплоск. $\theta^T x = \rho$.

$$\begin{cases} \frac{\|\theta\|^2}{2} + \frac{1}{\nu n} \sum_{i=1}^n \xi_i^+ - \rho \longrightarrow \min_{\theta, \xi, \rho} \\ \theta^T X_i \geqslant \rho - \xi_i \end{cases}$$

 ν — верхняя границ доли выбросов;

 θ — нормаль к гиперплоскости;

ho — расстояние от начала координат до гиперплоскости.

Решение:

$$f(x) = \operatorname{sign}\left(\sum_{i=1}^{n} \lambda_i X_i^T x - \rho\right),$$

One class SVM [детектирование новизны]

 $X_1,...,X_n$ — точки в d-мерном пространстве

Идея: отделить все точки от начала координат

$$\begin{cases} \frac{K(\theta,\theta)}{2} + \frac{1}{\nu n} \sum_{i=1}^{n} \xi_{i}^{+} - \rho \longrightarrow \min_{\theta,\xi,\rho} \\ K(\theta,X_{i}) \geqslant \rho - \xi_{i} \end{cases}$$

u — верхняя границ доли выбросов;

 θ — нормаль к гиперплоскости;

ho — расстояние от начала координат до гиперплоскости.

Решение:

$$f(x) = \operatorname{sign}\left(\sum_{i=1}^{n} \lambda_{i} K(X_{i}, x) - \rho\right),$$

One class SVM [детектирование новизны]

- ▶ В настоящее время популярный метод детектирования новизны.
- Хорошо работает только для RBF-ядра.

Детектирование аномалий Автоенкодер

Автоэнкодер [напоминание]

Идея: чем более вероятно событие, тем меньше информации требуется, чтобы его описать.

Автоэнкодер [напоминание]

Особенности модели

- Вход и выход модели совпадают.
- Слой между энкодером и декодером меньше чем входные данные.
- Энкодер и декодор не обязательно полностью симметричны.
- В качестве энкодера и декодера может быть полносвязная сеть, реккурентная, сверточная и т.д., а также их комбинации.

Основные идеи

- За счет сокращения описания данных нетипичное их поведение стирается.
- Для большего эффекта при обучении можно добавить на вход некоторое количество искусственных аномалий.
 Выход оставить прежним.

