

Mª Purificación VICENTE GALINDO

purivg@usal.es

Mª Purificación GALINDO VILLARDÓN

pgalindo@usal.es

Departamento de Estadística.

Universidad de Salamanca. España

UN EJEMPLO CLÁSICO

EJEMPLO:

Los datos siguientes corresponden a 8 alumos en las asignaturas de Matemáticas, Ciencias Naturales, Francés y Latín.

Alumno	Matem.	C. Nat.	Francés	Latín
1	9	8	6	7
2	10	9	10	10
3	3	5	9	8
4	9	9	8	8
5	7	6	3	5
6	5	5	5	5
7	5	5	7	6
8	4	4	3	4

Es bien conocida la división clásica de las asignaturas de la enseñanza media en asignaturas de Ciencias y asignaturas de Letras. En lineas generales, las primeras se caracterizan por un factor racional y empírico, mientras que las segundas tienen un significado más especulativo, siendo la memoria una de sus características más importantes. Cada una de las asignaturas tendrá un poco de ambas componentes, aunque será mayoritariamente de uno de los dos grupos. Por ejemplo, las Ciencias Naturales son consideradas de Ciencias pero es indudable que también tienen una importane componente de memoria.

Además, cada asignatura tendrá tambien un componente propio, más alla de lo que tengan de Ciencias o Letras.

¿Será adecuado pensar en ajustar un modelo Factorial?

Para ello las variables observables tienen que estar correlacionadas

Estadísticos descriptivos

	Media	Desviación estándar	N de análisis
Matematicas	6,5000	2,61861	8
C Naturales	6,3750	1,99553	8
Francés	6,3750	2,61520	8
Latín	6,6250	1,99553	8

Determinante =.001 => var relacionadas

Matemáticas correlaciona significativamente con CN p-valor=0.000

Ciencias Nat correlaciona significativamente con Latín p-valor=0.015

Francés correlaciona significativamente con Latín p-valor=0.000

Las demás correlaciones No Significativas

Recordemos...

a_{ij} : **saturaciones** de la variable X_i en el factor F_j

 $\mathbf{a_{ij}}^2$ es la contribución del Factor \mathbf{F}_j a la variabilidad de la variable \mathbf{X}_i

d_i² es la contribución del factor único (unicidad)

La suma de las contribuciones de todos los factores comunes $h_i^2 = a_{i1}^2 + ... + a_{iq}^2$ se denomina **comunalidad**

Donde aparecen...

$$X_1 = a_{11}F_1 + a_{12}F_2 + \dots + a_{1q}F_q + d_1U_1$$

$$X_2 = a_{21}F_1 + a_{22}F_2 + \dots + a_{2q}F_q + d_2U_2$$

$$\dots \qquad \qquad X_p = a_{p1}F_1 + a_{p2}F_2 + \dots + a_{pq}F_q + d_pU_p$$

a_{ij} : saturaciones. Están en la Matriz Factorial

di² es la contribución del factor único (unicidad). Están en la diagonal de la matriz de Covarianzas anti-imagen

Comunalidad $h_i^2 = a_{i1}^2 + ... + a_{iq}^2$ están en la diagonal de la matriz reproducida

☑ Niveles de significación ☑ Reproducida

☑ Determinante ☑ Ant

✓ Anti-Imagen

Covarianzas/Correlaciones anti-imagen.
Covarianzas/correlaciones parciales,
cambiadas de signo.

Correlaciones reproducidas

	1	Matematicas	C Naturales	Francés	Latín
Correlación	Matematicas	,992 ^a	,952	,299	,562
reproducida	C Naturales	,952	,988 ^a	,544	,761
	Francés	,299	,544	,991ª	,945
	Latín	,562	,761	,945	,986ª
Residuo ^b	Matematicas		-,009	,004	-,001
Raios	C Naturales	-,009		,000	-,003
Bajos	Francés	,004	,000		-,011
	Latín	-,001	-,003	-,011	

Método de extracción: análisis de componentes principales.

- a. Comunalidades reproducidas
- b. Los residuos se calculan entre las correlaciones observadas y reproducidas. Existen 0 (0,0%) residuos no redundantes con valores absolutos mayores que 0,05.

Comunalidades proximas a 1

(en la diagonal de la matriz reproducida)

Estimación de la unicidad

en la diagonal de la matriz de Covarianzas anti-imagen

Matrices anti-imagen

		Mate	maticas	C Na	turales	Francé	S	Latín	
Covarianza anti-	Matematicas		,047		-,037	,01	9	-,00	2
imagen	C Naturales		-,037	1	,034	00	3	-,01	.1
	Francés		,019		-,003	,05	6	-,04	2
	Latín	١.	-,002		-,011	-,04	2	,03	9
Correlación anti-	Matematicas		,570 ^a		-,918	,36	3	-,04	2
imagen	C Naturales	· •	-,918		,653 ^a	-,07	4	-,29	1
	Francés		,363	· •	-,074	,570) ^a	90	3
	Latín		-,042		-,291	-,90	3	.661	1 ^a

a. Medidas de adecuación de muestreo (MSA)

Medidas adecuación muestra Todas > 0.5 pero no muy altas

Valores matriz *anti-imagen* bajos Los coeficientes de *correlación parciales* son muy bajos => existen factores comunes

Correlaciones reproducidas

		Ma	tematicas	С	Naturales	Francés	Latín
Correlación	Matematicas		,992 ^a		,952	,299	,562
reproducida	C Naturales		,952		,988 ^a	,544	,761
	Francés		,299	'	,544	,991 ^a	.945
	Latín		,562		,761	,945	,986ª
Residuo ^b	Matematicas				-,009	,004	-,001
	C Naturales		-,009			,000	-,003
Bajos	Francés		,004		,000		-,011
Dajos	Latín		-,001		-,003	-,011	

Método de extracción: análisis de componentes principales.

- a. Comunalidades reproducidas
- b. Los residuos se calculan entre las correlaciones observadas y reproducidas. Existen 0 (0,0%) residuos no redundantes con valores absolutos mayores que 0,05.

Comunalidades proximas a 1

(en la diagonal de la matriz reproducida)

Estimación de la unicidad

en la diagonal de la matriz de Covarianzas anti-imagen

Matrices anti-imagen

		Mate	maticas	C Na	turales	Fran	cés		Latín
Covarianza anti-	Matematicas		,047		-,037	,(019		-,002
imagen	C Naturales		-,037		,034	(003		-,011
	Francés		,019		-,003).	056	١,	-,042
	Latín	١.	-,002		-,011	-,(042		,039
Correlación anti-	Matematicas		,570 ^a		-,918	,3	363		-,042
imagen	C Naturales	`	-,918		,653 ^a	-,(074		-,291
	Francés		,363	· '	-,074	,5	70 ^a		903
	Latín		-,042		-,291	-,	903		.661 ^a

a. Medidas de adecuación de muestreo (MSA)

Covarianzas/Correlaciones anti-imagen.

Covarianzas/correlaciones parciales, cambiadas de signo.

Medidas adecuación muestra

Todas > 0.5 pero no muy altas

Valores matriz *anti-imagen* bajos Los coeficientes de *correlación parciales* son muy bajos => existen factores comunes Volvemos a verlas juntas...

Correlaciones reproducidas

			Ma	tematicas	С	Naturales	Francés	Latín
7	Correlación	Matematicas		,992 ^a		,952	,299	,562
7	reproducida	C Naturales		,952		,988 ^a	,544	,761
		Francés		,299		,544	,991 ^a	.945
		Latín		,562		,761	,945	,986ª
	Residuo ^b	Matematicas				-,009	,004	-,001
		C Naturales		-,009			,000	-,003
	Bajos	Francés		,004		,000		-,011
	Dajos	Latín		-,001		-,003	-,011	

Método de extracción: análisis de componentes principales.

- a. Comunalidades reproducidas
- b. Los residuos se calculan entre las correlaciones observadas y reproducidas. Existen 0 (0,0%) residuos no redundantes con valores absolutos mayores que 0,05.

Comunalidades proximas a 1

(en la diagonal de la matriz reproducida)

Estimación de la unicidad

Matrices anti-imagen

		Maten	naticas	C Naturale	s Francé	s Latín
Covarianza anti-	Matematicas		,047	-,03	7 ,01	9 -,002
imagen	C Naturales		-,037	,034	400	-,011
	Francés		,019	-,00	.05	-,042
	Latín		-,002	-,01	1 -,04	.2 ,039
Correlación anti-	Matematicas		,570 ^a	,91	,36	3 -,042
imagen	C Naturales		-,918	,653	a -,07	4 -,291
	Francés		,363	-,074	,570) ^a –.903
	Latín		-,042	-,29	1 -,90	.661 ^a

a. Medidas de adecuación de muestreo (MSA)

Medidas adecuación muestra
Todas > 0.5 pero no muy altas

Valores matriz *anti-imagen* bajos Los coeficientes de *correlación* parciales son muy bajos => existen factores comunes Descriptivos...

Ho: Matriz de correlaciones = Matriz identidad

(Unos en diagonal y ceros fuera de la diagonal) Estructura esférica

KMO y prueba de esfericidad de Bartlett

 $KMO \ge 0.75 \implies Bien$

Kaiser-Meyer-Olkin para realizar un Análisis Factorial, proponen: $KMO \ge 0, 5 \implies Aceptable$

KMO < 0, 5 \Rightarrow Inaceptable

Prueba de KMO y Bartlett

p-valor < 0.05

Resultados aceptables

Si p-valor <0.05, se rechaza la esfericidad y eso significa que el AF puede ser adecuado

Todo parece indicar que se puede encontrar esa estructura factorial ...

Busquémosla...

Permite obtener las comunalidades iniciales y los autovalores de la matriz analizada y los porcentajes de varianza asociados a cada autovalor.

Esta opción está activada por defecto.

√ Componentes principales

Mínimos cuadrados no ponderados Mínimos cuadrados generalizados Máxima verosimilitud

Factorización de ejes principales

Análisis alfa Análisis imagen

Nº de FACTORES

2 Ejes factoriales

Varianza total explicada

	Autovalores iniciales						
Componente	Autovalor Total	% de varianza	% acumulado				
1	3,038	75,960	75.960				
2	,918	22,960	98,920				
3	,023	,583	99,503				
4	,020	,497	100,000				

Método de extracción: análisis de componentes principales.

Solo un autovalor >1

El primer Factor explica más del 75%

Los dos primeros absorben el 98.92%

MODELO

a_{ij} saturaciones

$$X_i = \mathbf{a_{i1}} F_1 + \mathbf{a_{i2}} F_2 + \mathbf{d_i} U_i$$

Solución SIN ROTAR

Matriz factoriala

	Factor				
	1	2			
Matematicas	,804	-,571			
C Naturales	,934	-,337			
Francés	,791	,582			
Latín	,934	,335			

Método de extracción: factorización de eje principal.

a. 2 factores extraídos. 6 iteraciones necesarias.

F1: Ciencias ???; F2: Letras ???

Matriz de factor rotadoa

	Factor				
	1 a	2			
Matematicas	,973	,158			
C Naturales	,901	,416			
Francés	,154	,970			
Latín	,429	,894			

Método de extracción: factorización de eje principal.

Método de rotación: Varimax con normalización Kaiser.

MODELO

a_{ij} saturaciones

$X_i = a_{i1}F_1 + a_{i2}F_2 + d_iU_i$

Solución SIN ROTAR

Matriz factoriala

	Factor				
	1	2			
Matematicas	,804	-,571			
C Naturales	,934	-,337			
Francés	,791	,582			
Latín	,934	,335			

Método de extracción: factorización de eje principal.

a. 2 factores extraídos. 6 iteraciones necesarias.

Solución ROTADA

Matriz de factores rotadosa

Método de extracción:

Factorización del eje principal.

Método de rotación:

Normalización Varimax con Kaiser.

F1: Ciencias; F2: Letras

MODELO

 $X_i = a_{i1}F_1 + a_{i2}F_2 + d_iU_i$

a_{ii}: saturaciones

Factor 1 2 Matematicas ,973 ,158 C Naturales ,901 ,416 Francés ,154 ,970 Latín ,429 ,894

Matriz de factores rotados^a

Método de extracción: Factorización del eje principal. Método de rotación: Normalización Varimax con Kaiser.

Matemáticas = $0.973 \text{ C} + 0.158 \text{ L} + d_M U_M$

 $CN = 0.901C + 0.416 L + 0.034 U_M$

Francés = $0.154 \text{ C} + 0.970 \text{ L} + 0.056 \text{U}_{\text{M}}$

Latin= $0.429 \text{ C} + 0.894 \text{ L} + 0.039 \text{U}_{\text{M}}$

Estimación de la unicidad

Matrices anti-imagen

		Mate	maticas	CN	aturales	Francés	Latín
Covarianza anti-	Matematicas		0.047		-,037	,019	-,002
imagen	C Naturales		,		,034	003	-,011
	Francés		,019		-,003	.056	-,042
	Latín	L ,	-,002		-,011	-,042	,039
Correlación anti-	Matematicas		,570 ^a		-,918	,363	-,042
imagen	C Naturales	'	-,918		,653ª	-,074	-,291
	Francés		,363		-,074	,570ª	903
	Latín		-,042		-,291	-,903	.661 ^a

a. Medidas de adecuación de muestreo (MSA)

Resumiendo

Toda la información interesante

MODELO
$$X_i = a_{i1}F_1 + a_{i2}F_2 + d_iU_i$$

Subindice i denota la Variable
Subindice i denota Factor

a_{ii}: saturaciones

 ${a_{ij}}^2$ es la contribución del Factor F_j

$$\mathbf{h_i}^2 = \mathbf{a_{i1}}^2 + ... + \mathbf{a_{iq}}^2$$
 se denomina comunalidad

La suma de las contribuciones de todos los factores comunes

d_i² es la contribución del factor único (unicidad)

$$\mathbf{h_j}^2 = a_1^2 + ... + a_{ij}^2$$
 Varianza explicada por el Factor j

 $\mathbf{a_{ij}}$ $\mathbf{a_{ij}^2}$ $\mathbf{h_{i}^2}$ $\mathbf{h_{i}^2}$ $\mathbf{d_{i}^2}$

	Saturaciones Matriz Factor		Contribuciones Factor Principal		Comunalidad	Comunalidad Inicial (R ²)	Unicidad Inicial
					Factor Principal	Factor Principal	Diag Cov
	Principa	ıl rotada	rot	tada	rotada	Sin rotar	Antiimag
	Factor 1	Factor 2	Factor 1	Factor 2		Suma	n 1
X ₁ :Matemáticas	0.973	0.158	0.946	0.025	→ 0.971	0.953	0.047
X ₂ : CCNaturales	0.901	0.416	0.813	0.173	0.986	0.966	0.034
X ₃ : Francés	0.154	0.970	0.024	0.941	0.965	0.944	0.056
X ₄ : Latín	0.429	0.894	0.184	0.799	0.984	0.961	0.039
			1.967	1.939			

	Satura	Saturaciones		uciones	Comunalidad	Comunalidad	Unicidad
						Inicial (R²)	Inicial
	Matriz Factor		Factor Principal		Factor Principal	Factor Principal	Diag Cov
	Principa	ıl rotada	rotada		rotada	Sin rotar	<u>Antiimag</u>
	Factor 1	Factor 2	Factor 1 Factor 2			Suman 1	
X ₁ :Matemáticas	0.973	0.158	0.946	0.025	0.971	0.953	0.047
X ₂ : CCNaturales	0.901	0.416	0.813	0.173	0.986	0.966	0.034
X ₃ : Francés	0.154	0.970	0.024	0.941	0.965	0.944	0.056
X ₄ : Latín	0.429	0.894	0.184	0.799	0.984	0.961	0.039
			1.967	1.939			

Varianza total explicada

		Autovalores iniciales			Sumas de extracción de cargas al cuadrado			Sumas de rotación de cargas al cuadrado		
	Factor	Total	% de varianza	% acumulado	Total	% de varianza	% acumulado	Total	% de varianza	% acumulado
١	1	3,038	75,960	75,960	3,016	75,398	75,398	1,967	49,175	49,175
	2	,918	22,960	98,920	,890	22,250	97,648	1,939	48,473	97,648
	3	,023	,583	99,503						
	4	,020	,497	100,000						

Método de extracción: factorización de eje principal.

Matriz de factor rotado^a

	Factor			
	1	2		
Matematicas	,973	,158		
C Naturales	,901	,416		
Francés	,154	,970		
Latín	,429	,894		

Método de extracción: factorización de eje principal.

Método de rotación: Varimax con normalización Kaiser.

a. La rotación ha convergido en 3 iteraciones.

Matriz de factor rotado^a

	Factor			
	1	2		
Matematicas	,973			
C Naturales	,901	,416		
Francés		,970		
Latín	,429	,894		

Método de extracción: factorización de eje principal.

Método de rotación: Varimax con normalización Kaiser.

a. La rotación ha convergido en 3 iteraciones.

Excluir casos segúr

Reemplazar por la r

Formato de presentación de los coefic entes

Ordenados por tamaño

Suprimir pequeños coeficientes

Valor absoluto bajo: ,30

Ayada Cancelar Continuar

acto

egúr

Gráfico de factor en espacio de factores rotados

Bibliografía

CUADRAS, C.M. (1996). *Métodos de Análisis Multivariante*, EUB, Barcelona.

HAIR, J.F., ANDERSON, R.E., TATHAM, R.L. and BLACK, W.C. (1998). *Multivariate Data Analysis*, Prentice Hall, New Jersey.

JOLLIFE, I.T. (1986). Principal Component Analysis, Springer-Verlag, New York.

JOHNSON, D.E. (1998). Métodos Multivariados aplicados al análisis de datos, Thomson Eds., México.