

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

TRANSMITTAL FORM

(to be used for all correspondence after initial filing)

Total Number of Pages in This Submission		Attorney Docket Number	RICHT-45041

ENCLOSURES (Check all that apply)

<input type="checkbox"/> Fee Transmittal Form <input type="checkbox"/> Fee Attached <input type="checkbox"/> Amendment/Reply <input type="checkbox"/> After Final <input type="checkbox"/> Affidavits/declaration(s) <input type="checkbox"/> Extension of Time Request <input type="checkbox"/> Express Abandonment Request <input type="checkbox"/> Information Disclosure Statement <input checked="" type="checkbox"/> Certified Copy of Priority Document(s) <input type="checkbox"/> Response to Missing Parts/ Incomplete Application <input type="checkbox"/> Response to Missing Parts under 37 CFR 1.52 or 1.53	<input type="checkbox"/> Drawing(s) <input type="checkbox"/> Licensing-related Papers <input type="checkbox"/> Petition <input type="checkbox"/> Petition to Convert to a Provisional Application <input type="checkbox"/> Power of Attorney, Revocation <input type="checkbox"/> Change of Correspondence Address <input type="checkbox"/> Terminal Disclaimer <input type="checkbox"/> Request for Refund <input type="checkbox"/> CD, Number of CD(s) _____	<input type="checkbox"/> After Allowance communication to Technology Center (TC) <input type="checkbox"/> Appeal Communication to Board of Appeals and Interferences <input type="checkbox"/> Appeal Communication to TC (Appeal Notice, Brief, Reply Brief) <input type="checkbox"/> Proprietary Information <input type="checkbox"/> Status Letter <input checked="" type="checkbox"/> Other Enclosure(s) (please Identify below): <input type="checkbox"/> RETURN POSTCARD
---	--	---

Remarks

SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT

Firm or Individual name	Scott W. Kelley Kelly Bauersfeld Lowry & Kelley LLP
Signature	
Date	March 9, 2004

CERTIFICATE OF TRANSMISSION/MAILING

I hereby certify that this correspondence is being facsimile transmitted to the USPTO or deposited with the United States Postal Service with sufficient postage as first class mail in an envelope addressed to: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450 on the date shown below.

Typed or printed name	Scott W. Kelley		
Signature		Date	March 9, 2004

This collection of information is required by 37 CFR 1.5. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

If you need assistance in completing the form, call 1-800-PTO-9199 and select option 2.

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to Commissioner for Patents, P.O. Box 1450 Alexandria, VA 22313-1450 March 8, 2004.

By:
Scott W. Kelley, Reg. No. 30,762

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of) Group Art Unit:
Olaf Kruse et al.)
Serial No. 10/761,856) Examiner:
Filed: January 20, 2004)
For: STARTING DEVICE FOR INTERNAL) Docket No. RICHT-45041
COMBUSTION ENGINE)

SUBMISSION OF CERTIFIED COPY OF PRIORITY DOCUMENT

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

In the above-identified pending U.S. Application, Applicant submits herewith a certified copy of related German Utility Application Serial No. 203 19 902.2, filed December 19, 2003, and from which a proper claim for priority under 35 U.S.C. §119 has been made.

Respectfully submitted,

KELLY BAUERSFELD LOWRY & KELLEY, LLP

By
Scott W. Kelley
Reg. No. 30,762
Attorney for Applicant

SWK:kr
6320 Canoga Avenue
Suite 1650
Woodland Hills, CA 91367
(818) 347-7900

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Gebrauchsmusteranmeldung

Aktenzeichen: 203 19 902.2

Anmeldetag: 19. Dezember 2003

Anmelder/Inhaber: DOLMAR GmbH, 2045 Hamburg/DE

Bezeichnung: Startvorrichtung für Brennkraftmotor

Priorität: 29.1.2003 DE 203 01 181.3

IPC: F 02 N 3/02

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Gebrauchsmusteranmeldung.

München, den 30. Januar 2004
Deutsches Patent- und Markenamt
Der Präsident

Im Auftrag
A handwritten signature in black ink, appearing to read "Faust".

Faust

RICHTER, WERDERMANN, GERBAULET & HOFMANN

EUROPEAN PATENT ATTORNEYS® • PATENTANWÄLTE

EUROPEAN TRADEMARK & DESIGN ATTORNEYS

HAMBURG • BERLIN • MÜNCHEN

DIPL.-ING. JOACHIM RICHTER® • B E R L I N
DIPL.-ING. HANNES GERBAULET® • H A M B U R G
DIPL.-ING. FRANZ WERDERMANN® • - 1 9 8 6
DIPL.-GEOL. MATTHIAS RICHTER • MÜNCHEN
DIPL.-PHYS. DR. ANDREAS HOFMANN® • MÜNCHEN

Neuer Wall 10 / II • 20354 HAMBURG

■ +49/(0)40/34 00 45 / 34 00 56

Telefax +49/(0)40/35 24 15

eMail: ham@rwgh.de

URL: <http://www.rwgh.de>

Ihr Zeichen
Your File

Unser Zeichen
Our File

HAMBURG

D 03662 III 1737

19.12.2003

Anmelder: **DOLMAR GmbH**
Jenfelder Straße 38
D-22045 Hamburg

Titel: **Startvorrichtung für Brennkraftmotor**

Technisches Gebiet

Die vorliegende Erfindung betrifft eine Startvorrichtung für mindestens einen Brennkraftmotor, insbesondere Seilzug-Startvorrichtung für mindestens einen Zweitakt- oder Viertaktmotor, mit mindestens einer in mindestens einem Gehäuse drehbar gelagerten Seilscheibe oder Seiltrommel, die zum Erzeugen des Antriebsdrehmoments für die Motorwelle mittels mindestens einer Handhabe, insbesondere mittels mindestens eines Anwerfgriffs oder Zuggriffs, über mindestens ein Kraftübertragungsmittel, insbesondere über mindestens ein Anwerfseil oder Zugseil, in Drehung versetzbar und über mindestens ein elastisches Kopplungsglied, insbesondere über mindestens eine Spiralfeder, mit mindestens einem Mitneh-

merglied, insbesondere mit mindestens einem Klinkenmitnehmer, verbunden ist, mittels dessen das Antriebsdrehmoment auf die Motorwelle übertragbar ist.

Stand der Technik

Die Bedienung einer Startvorrichtung für einen Brennkraftmotor, insbesondere einer Seilzug-Startvorrichtung für einen Zweitakt- oder Viertaktmotor, bereitete in der Vergangenheit oftmals Probleme, weil beim Starten durch die Kompression im Verbrennungsmotor (Brennkraftmotor) periodisch hohe Reaktionskräfte auftreten, wodurch wechselnde und vorübergehend sehr hohe Kräfte auf die Hand der Bedienperson wirken.

Die an der Handhabe, insbesondere am Anwerfgriff oder Zuggriff, der Startvorrichtung auftretenden Kraftspitzen sind hierbei umso größer, je leichter die rotierenden Massen des Verbrennungsmotors sind. Konkret bedeutet dies, daß das an der Motorwelle aufzubringende Drehmoment starken Schwankungen unterliegt, denn in der Kompressionsphase des Kolbens bis zum Totpunkt ist ein sehr hohes Drehmoment aufzubringen, während in der Expansionsphase das aufzubringende Drehmoment absinkt oder sogar auf Null fällt.

Um nun die Übertragung dieser besonders starken, durch die Kompression im Verbrennungsmotor verursachten Reaktionskräfte auf die Handhabe der Startvorrichtung zu reduzieren und hierdurch den Startvorgang zu erleichtern, wird in der eine Startvorrichtung der eingangs genannten Art offenbarenden Druckschrift DE-P 41 35 405 A1 vorgeschlagen, die Schwankungen des an der Motorwelle aufzubringenden Drehmoments elastisch abzufedern.

Hierzu wird zwischen die dem Kraftübertragungsmittel, insbesondere dem Anwerfseil oder Zugseil, der Handhabe zugeordnete Seilscheibe oder Seiltrommel und das Mitnehmerringglied, insbesondere den Klinkenmitnehmer, der Kurbelwelle ein elastisches Glied zwischengeschaltet, mittels dessen die durch Handhabe und Kraftübertragungsmittel vermittelte Zugbewegung beim Startvorgang von den vorstehend erläuterten Schwingungen etwas oder im Idealfall auch vollständig befreit wird (ein früherer Versuch, das Kraftübertragungsmittel selbst elastisch auszustalten, hatte zu unbefriedigenden Ergebnissen geführt hat).

Der wohl früheste Vorschlag bezüglich des Zwischenschaltens eines derartigen elastischen Kopplungsglieds ist der japanischen Gebrauchsmusterauslegeschrift Y-H6-16964 (Starting Industrial Co., Ltd.) zu entnehmen. Ein neuerer Vorschlag derselben Anmelderin geht aus der europäischen Patentanmeldung EP 1 203 883 A2 hervor.

Des weiteren wurde kürzlich auch ein Vorschlag entwickelt, bei dem das als Spiralfeder ausgestaltete elastische Kopplungsglied im Startbetrieb um einen Verdrehwinkel von etwa 270 Grad bis etwa 280 Grad verdreht wird, wodurch eine gute Starteigenschaft gegeben ist. Bei Erreichen dieses maximalen Verdrehwinkels legt sich die Spiralfeder dann infolge ihrer mit der Verdrehung verbundenen Verkleinerung an die Welle an. Durch dieses Anlegen der Spiralfeder an die Welle erfolgt eine Sperrung gegen weitere Verdrehung, so daß sich das Mitnehmerringglied der Kurbelwelle zwangsweise mit der Seilscheibe oder Seiltrommel mitdreht.

Diese Ausführungsform (= von der Firma Starting Industrial Co., Ltd., geliefertes Leichtstartsystem gemäß dem sogenannten "coil-spring"-Prinzip) erweist sich in der Praxis jedoch insofern als unvorteilhaft, als zwischen der Seilscheibe oder Seiltrommel und dem Mitnehmerringglied ein bauartbedingter Zwischenraum existiert, der über die Längentoleranz von drei Bau-

teilen definiert wird und der in der Serienfertigung kaum in der erforderlichen Qualität gehalten werden kann.

Demzufolge wird aufgrund des Wirkprinzips der Spiralfeder, die sich - eine weitere Verdrehbewegung über etwa 270 Grad bis etwa 280 Grad hinaus blockierend - um die Lagerachse legt, eine Windung dieser Spiralfeder einseitig in den Spalt oder Zwischenraum zwischen Seilscheibe oder Seiltrommel und (Klinken-)Mitnehmerring gedrückt, weil die Spiralfeder die gesamte Kraft des Kraftübertragungsmittels, das heißt die gesamte Seilzugkraft aufnehmen muß.

Im Ergebnis bedeutet dies, daß bei Überschreiten eines bestimmten Toleranzmaßes zumindest ein Teil einer Windung der Spiralfeder in den Spalt zwischen durch die Spiralfeder verbundener Seilscheibe oder Seiltrommel und Mitnehmerring eintritt und dabei naturgemäß überdehnt wird sowie eine bleibende Verformung erleidet, wodurch das System funktionsuntüchtig wird und blockiert.

Des weiteren ist zu bedenken, daß das als Spiralfeder ausgestaltete elastische Kopplungsglied bei jedem Startvorgang auf der Achse zur Anlage kommt (→ Winkelbegrenzung des Systems auf etwa 270 Grad bis etwa 280 Grad) und die zur Überwindung der Kompressionskraft erforderlichen Seilzugkräfte nur durch die Spiralfeder übertragen werden. Dies kann im Extremfall zu einem Bruch der Spiralfeder führen, infolge dessen die Startvorrichtung außer Funktion tritt und der Brennkraftmotor gar nicht mehr gestartet werden kann.

Auch besteht die Möglichkeit, daß Bruchstücke der gebrochenen Spiralfeder angrenzende Bauteile der Startvorrichtung beschädigen.

Darstellung der Erfindung: Aufgabe, Lösung, Vorteile

Ausgehend von den vorstehend dargelegten Nachteilen und Unzulänglichkeiten sowie unter Würdigung des umrissenen Standes der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Startvorrichtung der eingangs genannten Art so weiterzuentwickeln, daß ein Eintreten des elastischen Kopplungsglieds oder eines Teils hiervon in den bauartbedingten Zwischenraum zwischen der Seilscheibe oder Seiltrommel und dem Mitnehm erglied auf einfache und doch wirkungsvolle sowie zuverlässige Weise verhindert werden kann.

Diese Aufgabe wird durch eine Startvorrichtung mit den im Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen und zweckmäßige Weiterbildungen der vorliegenden Erfindung sind in den Unteransprüchen gekennzeichnet.

Gemäß der Lehre der vorliegenden Erfindung ist im Zwischenraum

- zwischen der Seilscheibe oder Seiltrommel, insbesondere der Achse der Seilscheibe oder Seiltrommel, und dem Kopplungsglied und/oder
- zwischen der Seilscheibe oder Seiltrommel, insbesondere der Achse der Seilscheibe oder Seiltrommel, und dem Mitnehm erglied, insbesondere der Achse des Mitnehm erglieds,

mindestens eine insbesondere dünnwandige Buchse oder Hülse vorgesehen, mittels derer dieser Zwischenraum zumindest partiell ausfüllbar ist. Hierdurch kann auf einfache und doch wirkungsvolle sowie zuverlässige Weise ein Eintreten des elastischen Kopplungsglieds oder eines Teils hiervon in den bauartbedingten Zwischenraum zwischen der Seilscheibe oder Seiltrommel und dem Mitnehm erglied verhindert werden.

Dies bedeutet mit anderen Worten, daß die vorliegende Erfindung vorschlägt, das Problem des Brechens des vorzugsweise als Spiralfeder ausgestalteten elastischen Kopplungsglieds infolge Eindringens einer

Windung der Spiralfeder in die Trennfuge zwischen Seilscheibe (Seiltrommel) und Mitnehmerring durch Einsetzen einer einfachen Buchse oder Hülse zu lösen.

Dieser Vorschlag ist ebenso einfach wie auch sicher und wirkungsvoll, denn die vorzugsweise nach Art eines Hohlzylinders geformte Buchse oder Hülse kann unproblematischerweise über die beiden sich gegenüberstehenden Wellenenden gestülpt werden, so daß dann sicher verhindert ist, daß sich die verwendete Feder verformt.

Dementsprechend legt sich das elastische Kopplungsglied, das heißt die Feder bei Betätigen der Startvorrichtung gemäß der vorliegenden Erfindung, das heißt bei Ziehen der Handhabe nun um die Buchse oder Hülse, die in zweckmäßiger Weise über die im wesentlichen gesamte Federlänge geht.

Der erforderliche Betriebsspalt (= bauartbedingt gebildeter Spalt oder bauartbedingt gebildete Trennfuge) zwischen der Achse der Seilscheibe oder Seiltrommel und der Achse des (Klinken-)Mitnehmerringglieds hat hierdurch keinen Einfluß auf die Feder mehr, wodurch die Toleranzen größer werden können, was wiederum eine kostengünstigere Herstellung der Startvorrichtung ermöglicht.

Gemäß einer besonders erfinderischen Weiterbildung ist die Buchse oder Hülse

- verdrehsicher auf der Achse der Seilscheibe oder Seiltrommel geführt und/oder
- mit Spiel zur Achse des Mitnehmerringglieds versehen.

Besonders günstige Materialeigenschaften kommen der vorliegenden Erfindung dann zugute, wenn die Buchse oder Hülse zwischen Feder und

Achse als dünnwandige, insbesondere gehärtete Metallbuchse oder -hülse montiert ist.

Gemäß einer besonders erfinderischen Weiterbildung der vorliegenden Startvorrichtung kann das elastische Kopplungsglied, insbesondere die spiralförmig ausgestaltete Feder, vorgespannt bzw. mit Vorspannung versehen sein, so daß bereits unmittelbar zu Beginn der Drehbewegung zwischen Seilscheibe oder Seiltrommel und (Klinken-)Mitnehmerring mit der durch das elastische Kopplungsglied vermittelten Kraftübertragung begonnen werden kann bzw. die über das elastische Kopplungsglied übertragbaren Kräfte größer werden können, weil ein im Vergleich zum Stand der Technik anderer Bereich der Kennlinie des elastischen Kopplungsglieds, insbesondere der Federkennlinie, ausnutzbar ist.

Durch die beschriebenen technischen Maßnahmen gemäß der vorliegenden Erfindung wird die (zuvor nur eingeschränkt, nämlich im Freizeit- und Hobbybereich einsetzbare) Startvorrichtung auch für den professionellen Markt nutzbar.

Die vorliegende Erfindung betrifft des weiteren eine Startvorrichtung für mindestens einen Brennkraftmotor, insbesondere Seilzug-Startvorrichtung für mindestens einen Zweitakt- oder Viertaktmotor, mit mindestens einer in mindestens einem Gehäuse drehbar gelagerten Seilscheibe oder Seiltrommel, die zum Erzeugen des Antriebsdrehmoments für die Motorwelle mittels mindestens einer Handhabe, insbesondere mittels mindestens eines Anwerfgriffs oder Zuggriffs, über mindestens ein Kraftübertragungsmittel, insbesondere über mindestens ein Anwerkseil oder Zugseil, in Drehung versetzbar und über mindestens ein vorgespanntes bzw. mit Vorspannung versehenes elastisches Kopplungsglied, insbesondere über mindestens eine Spiralfeder, mit mindestens einem Mitnehmerring, insbesondere mit mindestens einem Klinkenmitnehmer, verbunden ist, mittels dessen das Antriebsdrehmoment auf die Motorwelle übertragbar ist.

Indem das elastische Kopplungsglied, insbesondere die spiralförmig ausgestaltete Feder, vorgespannt bzw. mit Vorspannung versehen ist, kann bereits unmittelbar zu Beginn der Drehbewegung zwischen Seilscheibe oder Seiltrommel und (Klinken-)Mitnehmerglied mit der durch das elastische Kopplungsglied vermittelten Kraftübertragung begonnen werden bzw. können die über das elastische Kopplungsglied übertragbaren Kräfte größer werden, weil ein im Vergleich zum Stand der Technik anderer Bereich der Kennlinie des elastischen Kopplungsglieds, insbesondere der Federkennlinie, ausnutzbar ist.

Die vorliegende Erfindung betrifft des weiteren einen Brennkraftmotor, insbesondere Zweitakt- oder Viertaktmotor, aufweisend mindestens eine Startvorrichtung gemäß der vorstehend dargelegten Art.

Die vorliegende Erfindung betrifft des weiteren ein Arbeitsgerät, insbesondere ein verbrennungsmotorisch angetriebenes tragbares Handwerkzeug, wie etwa ein Freischneidegerät, eine Kettensäge, eine Motorsäge, einen Trennschleifer oder dergleichen, aufweisend mindestens einen mit mindestens einer Startvorrichtung gemäß der vorstehend dargelegten Art ausgestatteten Brennkraftmotor gemäß der vorstehend dargelegten Art.

Die vorliegende Erfindung betrifft schließlich die Verwendung mindestens einer mindestens einem Brennkraftmotor gemäß der vorstehend dargelegten Art zugeordneten Startvorrichtung gemäß der vorstehend dargelegten Art für ein Arbeitsgerät gemäß der vorstehend dargelegten Art.

Kurze Beschreibung der Zeichnungen

Wie bereits vorstehend erörtert, gibt es verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung in vorteilhafter Weise auszugestalten

und weiterzubilden. Hierzu wird einerseits auf die dem Anspruch 1 nachgeordneten Ansprüche verwiesen, andererseits werden weitere Ausgestaltungen, Merkmale und Vorteile der vorliegenden Erfindung nachstehend anhand der zwei durch die Figuren 1 bis 7B veranschaulichten Ausführungsbeispiele näher erläutert.

Es zeigt:

Fig. 1 in schematischer Vorderansicht ein Ausführungsbeispiel für eine in einem Gehäuse untergebrachte Startvorrichtung gemäß der vorliegenden Erfindung;

Fig. 2 in schematischer Seitenansicht die in einem Gehäuse untergebrachte Startvorrichtung aus Fig. 1;

Fig. 3 in schematischer vergrößerter Schnittansicht die Startvorrichtung aus Fig. 1 und 2 entlang der Schnittlinie A - A in Fig. 2;

Fig. 4A in schematischer Aufsicht ein Ausführungsbeispiel für eine der Startvorrichtung aus Fig. 1 bis 3 zuordbare Seilscheibe oder Seiltrommel gemäß der vorliegenden Erfindung;

Fig. 4B in schematischer Schnittansicht die Seilscheibe oder Seiltrommel aus Fig. 4A entlang der Schnittlinie B - B in Fig. 4A;

Fig. 5A in schematischer Seitenansicht ein Ausführungsbeispiel für ein der Startvorrichtung aus Fig. 1 bis 3, und hierbei insbesondere der Seilscheibe oder Seiltrommel aus Fig. 4A und 4B, zuordbares (Klinken-)Mitnehmerringglied gemäß der vorliegenden Erfindung;

Fig. 5B in schematischer Aufsicht das (Klinken-)Mitnehmerringglied aus Fig. 5A;

Fig. 6A in schematischer Aufsicht ein zu Fig. 4A alternatives Ausführungsbeispiel für eine der Startvorrichtung aus Fig. 1 bis 3 zuordbare Seilscheibe oder Seiltrommel gemäß der vorliegenden Erfindung;

Fig. 6B in schematischer Schnittansicht die Seilscheibe oder Seiltrommel aus Fig. 6A entlang der Schnittlinie B' - B' in Fig. 6A;

Fig. 7A in schematischer Seitenansicht ein zu Fig. 5A alternatives Ausführungsbeispiel für ein der Startvorrichtung aus Fig. 1 bis 3, und hierbei insbesondere der Seilscheibe oder Seiltrommel aus Fig. 6A und 6B, zuordbares (Klinken-)Mitnehmerringglied gemäß der vorliegenden Erfindung; und

Fig. 7B in schematischer Aufsicht das (Klinken-)Mitnehmerringglied aus Fig. 7A.

Gleiche oder ähnliche Ausgestaltungen, Elemente oder Merkmale sind in den Figuren 1 bis 7B mit identischen Bezugszeichen versehen.

Bester Weg zur Ausführung der Erfindung

Die Seilzug-Startvorrichtung 100 gemäß den Figuren 1 bis 7B ist zum manuellen Anwerfen eines Brennkraftmotors (Zweitaktmotor oder Viertaktmotor) bestimmt, der beispielsweise zu einer Motorkettensäge gehört. Die Seilzug-Startvorrichtung 100 ist in einem Gehäuse 1 untergebracht, das sowohl beim ersten Ausführungsbeispiel gemäß den Figuren 1, 2, 3, 4A, 4B, 5A, 5B als auch beim zweiten Ausführungsbeispiel gemäß den Figuren 1, 2, 3, 6A, 6B, 7A, 7B ein abnehmbarer, mit Lüftungsschlitz 1A (vgl. Figuren 1, 2 und 3) versehener Deckel des Motorgehäuses ist, in dem un-

ter anderem auch eine Luftführung 11 sowie eine im wesentlichen zylindrische Ausnehmung 12 vorgesehen sind.

Aus der (in Figur 3 zur rechten Seite gewandten) Innenwand des Gehäuses 1 geht ein Lagerzapfen 1B hervor, der von einem ebenfalls im wesentlichen gehäusefesten Federgehäuse 3 für eine spiralförmige, am Rand des Federgehäuses 3 einseitig eingespannte Starterfeder 2 umgeben ist. Diese Starterfeder 2 wird von einer (Metall-)Scheibe 3A gegen eine als Seilscheibe oder Seiltrommel 4 ausgeführte Kupplungstrommel (vgl. Figuren 4A und 4B oder alternativ Figuren 6A und 6B) abgedeckt und dient als Rückzugsfeder für die Seilscheibe oder Seiltrommel 4.

Die Seilscheibe oder Seiltrommel 4 weist einen rückseitigen Zapfen 4A auf (vgl. Figur 3), der durch eine Mittelbohrung der (Metall-)Scheibe 3A hindurch in das Federgehäuse 3 ragt und einen axialen Schlitz 4B für den Eingriff des inneren Endes der spiralförmigen Starterfeder 2 aufweist.

Auf die Seilscheibe oder Seiltrommel 4 ist als Kraftübertragungsmittel ein Anwerfseil oder Zugseil 9 aufgewickelt, dessen freies Ende aus dem Gehäuse 1 herausgeführt und an einer Handhabe 10, nämlich an einem Anwerfgriff oder Zuggriff befestigt ist. Durch Ziehen am Anwerfseil oder Zugseil 9 mittels der Handhabe 10 wird die Seilscheibe oder Seiltrommel 4 unter Abwicklung des Anwerfseils oder Zugseils 9 um den Lagerzapfen 1B in Bewegung versetzt.

Die Seilscheibe oder Seiltrommel 4 weist einen den Lagerzapfen 1B umgebenden kreisringförmigen Aufnahmeraum 4C auf, der zur Starterfeder 2 hin von einer Stirnwand 4D begrenzt wird. Zwischen dieser Stirnwand 4D der Seilscheibe oder Seiltrommel 4 und einem kreisringförmigen Aufnahmeraum 5A eines Klinkenmitnehmergeglieds 5 ist ein elastisch verformbares Kopplungsglied 6 in Form einer Spiralfeder angeordnet.

Das äußere, das heißt der Stirnwand 4D der Seilscheibe oder Seiltrommel 4 zugewandte Ende des elastischen Kopplungsglieds 6 ist in einen Schlitz 16 (vgl. Figuren 4A und 4B oder alternativ Figuren 6A und 6B) eingehängt, der in einem ringförmigen Absatz der Stirnwand 4D vorgesehen ist. Dieser Absatz umschließt das spiralfederförmige Kopplungsglied 6, dessen äußere Windung an der Innenwandung des Absatzes anliegt. Das innere, das heißt einer Stirnwand 5B des kreisringförmigen Aufnahmerraums 5A des Klinkenmitnehmergeglieds 5 zugewandte Ende des elastischen Kopplungsglieds 6 ist in eine in der Stirnwand 5B vorgesehene Ausnehmung 17 (vgl. Figur 5B oder alternativ Figur 7B) eingehängt.

Im montierten Zustand der Startvorrichtung 100 durchsetzt der gehäusefeste Lagerzapfen 1B eine Mittelbohrung 4E (vgl. Figuren 4A und 4B oder alternativ Figuren 6A und 6B) der Stirnwand 4D der Seilscheibe oder Seiltrommel 4, so daß diese Mittelbohrung 4E eine buchsenförmige Aufnahme für den Lagerzapfen 1B bildet. In ein axiales Innengewinde 1C (vgl. Figur 3) des Lagerzapfens 1B ist eine Befestigungsschraube 7 (vgl. Figur 3) eingeschraubt, an deren Kopf sich ein kreisringförmiger Absatz 7A (vgl. Figur 3) anschließt, mittels dessen das Klinkenmitnehmergeglied 5 über eine im Hinblick auf den Absatz 7A der Befestigungsschraube 7 paßgenau ausgelegte Mittelbohrung 5C (vgl. Figuren 3 und 5B oder alternativ Figuren 3 und 7B) am freien Ende des Lagerzapfens 1B befestigt ist.

Wenn die Seilscheibe oder Seiltrommel 4 durch Ziehen am Anwerfseil oder Zugseil 9 in Drehung versetzt wird, nimmt die Seilscheibe oder Seiltrommel 4 über das elastische Kopplungsglied 6 das Klinkenmitnehmergeglied 5 mit, denn die Seilscheibe oder Seiltrommel 4 und das Klinkenmitnehmergeglied 5 sind mittels des elastischen Kopplungsglieds 6 auf einer gemeinsamen Achse verbunden; mittels dieses Klinkenmitnehmergeglieds 5 ist also die Drehbewegung der Seilscheibe oder Seiltrommel 4 und damit das Drehmoment auf die anzutreibende Motorwelle übertragbar.

Grundsätzlich nimmt beim Antreiben bzw. Drehen der Motorwelle die Verdichtung im Brennkraftmotor bis zur oberen Totpunktage des Kolbens zu und fällt dann wieder ab; entsprechend periodisch schwankt das Reaktionsdrehmoment, was sich bei einer konventionellen Startvorrichtung in Form von hohen Kraftspitzen auswirkt, die beim Starten, das heißt beim Betätigen einer konventionellen Startvorrichtung aufgebracht werden müssen. Zum Ausgleich dieser periodischen Änderungen der aufzubringenden Kraft ist das vorbeschriebene, elastisch verformbare Kopplungsglied 6 vorgesehen, in den beiden veranschaulichten Ausführungsbeispielen gemäß den Figuren 1 bis 7B also die Spiralfeder 6.

Diese Spiralfeder 6 ist so dimensioniert, daß das Klinkenmitnehmerringlied 5 mit der Drehzahl der Seilscheibe oder Seiltrommel 4 mitgenommen wird, solange das Reaktionsdrehmoment der Motorwelle unterhalb eines vorgegebenen Grenzwerts bleibt, wobei sich also der Kolben des Verbrennungsmotors in den Bereichen vor und hinter seiner Totpunktage befindet. Beim Anstieg des Reaktionsdrehmomentes über diesen Grenzwert hinaus verformt sich die Spiralfeder 6 durch Zusammenziehen ihrer Windungen, so daß die Drehgeschwindigkeit des Klinkenmitnehmerringlieds 5 abnimmt, während die Seilscheibe oder Seiltrommel 4 mit gleicher Drehzahl und mit in etwa gleichem Kraftaufwand weitergedreht werden kann.

Die Seilscheibe oder Seiltrommel 4 dreht sich demzufolge zusätzlich relativ zum Klinkenmitnehmerringlied 5, das mit geringem Spiel in die Seilscheibe oder Seiltrommel 4 eingesetzt ist. Die Höhe der aus Flachbandstahl gefertigten Spiralfeder 6 ist so bemessen, daß die Stirnwand 5B des Mitnehmerringlieds 5 die Spiralfeder 6 nicht ständig berührt. Eine zeitweilige Anlage der Spiralfeder 6 an der Stirnwand 5B des Mitnehmerringlieds 5 ist möglich, womit eine Sicherung gegen Axialverschiebung der Windungen der Spiralfeder 6 erreicht wird.

Wie aus der Schnittdarstellung gemäß Figur 3 ersichtlich ist, ergibt sich bei der vorgeschilderten Ausgestaltung der Startvorrichtung 100 ein bauartbedingter Zwischenraum zwischen der Achse der Seilscheibe oder Seiltrommel 4 und der Achse des Klinkenmitnehmerglieds 5 und demzufolge auch zwischen der Achse der Seilscheibe oder Seiltrommel 4 und dem elastischen Kopplungsglied 6.

Um nun auf einfache und doch wirkungsvolle sowie zuverlässige Weise zu verhindern, daß eine Windung des elastischen Kopplungsglieds 6 oder ein Teil einer Windung des elastischen Kopplungsglieds 6 in diesen bauartbedingten Zwischenraum zwischen der Seilscheibe oder Seiltrommel 4 und dem Klinkenmitnehmerglied 5 eintritt, ist dieser Zwischenraum mittels einer dünnwandigen, hohlzylinderförmigen Buchse oder Hülse 8 ausfüllbar.

Mithin kann durch Einsetzen der einfachen Buchse oder Hülse 8 in den bauartbedingten Zwischenraum auch ausgeschlossen werden, daß das als Spiralfeder ausgestaltete elastische Kopplungsglied 6 infolge eines Eindringens einer Windung der Spiralfeder 6 in die Trennfuge zwischen Seilscheibe (= Seiltrommel 4) und Klinkenmitnehmerglied 5 bricht. Die Buchse oder Hülse 8 wird über die beiden sich gegenüberstehenden Wellenenden gestülpt, so daß auch ein Verformen des als Spiralfeder ausgestalteten elastischen Kopplungsglieds 6 sicher verhindert werden kann.

Dementsprechend legt sich das elastische Kopplungsglied, das heißt die Feder 6 bei Betätigen der Startvorrichtung 100, das heißt bei Ziehen der Handhabe 10 nun um die Buchse oder Hülse 8, die verdrehsicher auf der Achse der Seilscheibe oder Seiltrommel 4 geführt und mit Spiel zur Achse des Mitnehmerglieds 5 versehen ist.

Aus der Darstellung der Figur 3 ist des weiteren ersichtlich, daß sich die Buchse oder Hülse 8 über die im wesentlichen gesamte Höhe bzw. Länge des elastischen Kopplungsglieds 6 erstreckt. In erfindungswesentlicher

Weise entspricht die Höhe bzw. Länge der Buchse oder Hülse 8 zumindest in etwa der Summe

- aus der Tiefe des Aufnahmerraums 4C der Seilscheibe oder Seiltrommel 4
- und der Tiefe des Aufnahmerraums 5A des Klinkenmitnehm erglieds 5.

Der erforderliche Betriebsspalt (= bauartbedingt gebildeter Spalt oder bauartbedingt gebildete Trennfuge) zwischen der Achse der Seilscheibe oder Seiltrommel 4 und der Achse des Klinkenmitnehm erglieds 5 hat hierdurch keinen Einfluß auf das elastische Kopplungsglied 6 mehr, wodurch die Toleranzen größer werden können, was wiederum eine kostengünstigere Herstellung der Startvorrichtung 100 ermöglicht.

Um beim ersten Ausführungsbeispiel gemäß den Figuren 1, 2, 3, 4A, 4B., 5A, 5B die Relativbewegung zwischen der Seilscheibe oder Seiltrommel 4 und dem Klinkenmitnehm erglied 5 zu begrenzen und auf diese Weise eine Überlastung des elastischen Kopplungsglieds 6 zu verhindern, ist der Verdrehwinkel, um den das Klinkenmitnehm erglied 5 unter Beanspruchung des elastischen Kopplungsglieds 6 in bezug auf die Seilscheibe oder Seiltrommel 4 verdrehbar ist, im Startbetrieb des ersten Ausführungsbeispiels auf einen definierbaren Maximalwinkelwert in der Größenordnung von etwa 270 Grad bis etwa 280 Grad begrenzbar, wodurch eine gute Starteigenschaft gegeben ist.

Bei Erreichen dieses maximalen Verdrehwinkels in der Größenordnung von etwa 270 Grad bis etwa 280 Grad legt sich die Spiralfeder 6 infolge ihrer mit der Verdrehung verbundenen Verkleinerung an die Welle an. Durch dieses Anlegen der Spiralfeder 6 an die Welle erfolgt beim ersten Ausführungsbeispiel gemäß den Figuren 1 bis 5B eine Sperrung gegen weitere Verdrehung, so daß sich das Klinkenmitnehm erglied 5 der Kur bewelle zwangsweise mit der Seilscheibe oder Seiltrommel 4 mitdreht.

Mithin ist die Höchstbelastung des elastischen Kopplungsglieds 6 auf einfache und doch wirkungsvolle sowie zuverlässige Weise vorgebbar. Dies ist gemäß der Darstellung in den Figuren 5A und 5B beim ersten Ausführungsbeispiel durch einen Anschlag 13 bewerkstelligt, mittels dessen der Verdrehungswinkel des Klinkenmitnehm erglieds 5 gegenüber der Seilscheibe oder Seiltrommel 4 begrenzt wird, um auf diese Weise eine Überlastung des elastischen Kopplungsglieds 6 bei Anspannung auf Block zu vermeiden.

Neben der bei Betätigen der Startvorrichtung 100, das heißt bei Ziehen der Handhabe 10 erfolgenden Begrenzung des Verdrehungswinkels auf Maximalwinkelwerte in der Größenordnung von etwa 270 Grad bis etwa 280 Grad ist als weiterer wesentlicher technischer Effekt beim ersten Ausführungsbeispiel der Startvorrichtung 100 hervorzuheben, daß durch das Anformen des Anschlags 13 an der der Seilscheibe oder Seiltrommel 4 zugewandten Unterseite des Klinkenmitnehm erglieds 5 (= äußerer Flansch des Klinkenmitnehm erglieds 5) erreicht wird, daß im (sehr unwahrscheinlichen) Falle eines Bruchs des zwischen die Seilscheibe oder Seiltrommel 4 und das Klinkenmitnehm erglied 5 geschalteten elastischen Kopplungsglieds 6 ein "Notstartverhalten" erreicht werden kann, so daß ein Leichtstartsystem 100 mit Notstarteigenschaften gegeben ist:

In diesem Falle einer gebrochenen Spiralfeder 6 als elastischem Kopplungsglied wird zum Starten der Brennkraftmaschine nämlich das Kraftübertragungsmittel 9 (= Anwerfseil oder Seilzug) mittels der Handhabe 10 (= Anwerfgriff oder Zuggriff) soweit angezogen, bis der Anschlag 13 - eigentlich zum Zwecke des Erreichens des Maximalwinkelwerts - zur Anlage 15 (vgl. Figuren 4A und 4B) kommt und durch weiteres Ziehen am Kraftübertragungsmittel 9 ein normaler bzw. konventioneller Startvorgang durchgeführt werden kann.

Unabhängig davon, ob ein regulärer Betrieb (<--> intaktes elastisches Kopplungsglied 6) oder ein Notfallbetrieb (<--> gebrochenes elastisches Kopplungsglied 6) vorliegt, greift der kreis(ring)segmentförmig ausgebildete Anschlag 13 beim ersten Ausführungsbeispiel gemäß den Figuren 1 bis 5B in eine auf der dem Klinkenmitnehmerringglied 5 zugewandten Seite der Seilscheibe oder Seiltrommel 4 eingearbeitete Führungsnot 14 in eben diese Seilscheibe oder Seiltrommel 4 ein und ermöglicht beiden Bauteilen (Klinkenmitnehmerringglied 5 und Seilscheibe oder Seiltrommel 4) eine relative Verdrehung von bis zu etwa 270 Grad bis etwa 280 Grad zueinander, bevor der Weg durch Anlage des Kreis(ring)segments 13 am geschlossenen Ende 15 (= aus gummielastischem Werkstoff hergestellter Anschlagdämpfer --> Ende der Drehbewegung wird gedämpft gestoppt) der Führungsnot 14 begrenzt wird.

Um beim zweiten Ausführungsbeispiel gemäß den Figuren 1, 2, 3, 6A, 6B, 7A, 7B die Relativbewegung zwischen der Seilscheibe oder Seiltrommel 4 und dem Klinkenmitnehmerringglied 5 zu begrenzen und auf diese Weise eine Überlastung des elastischen Kopplungsglieds 6 zu verhindern, ist der Verdrehwinkel, um den das Klinkenmitnehmerringglied 5 unter Beanspruchung des elastischen Kopplungsglieds 6 in bezug auf die Seilscheibe oder Seiltrommel 4 verdrehbar ist, im Startbetrieb des zweiten Ausführungsbeispiels auf einen definierbaren Maximalwinkelwert in der Größenordnung von etwa 135 Grad bis etwa 140 Grad begrenzbar, wodurch eine gute Starteigenschaft gegeben ist.

Bei Erreichen dieses maximalen Verdrehwinkels in der Größenordnung von etwa 135 Grad bis etwa 140 Grad legt sich die Spiralfeder 6 infolge ihrer mit der Verdrehung verbundenen Verkleinerung an die Welle an. Durch dieses Anlegen der Spiralfeder 6 an die Welle erfolgt beim zweiten Ausführungsbeispiel gemäß den Figuren 1, 2, 3, 6A, 6B, 7A, 7B eine Sperrung gegen weitere Verdrehung, so daß sich das Klinkenmitneh-

merglied 5 der Kurbelwelle zwangsweise mit der Seilscheibe oder Seiltrommel 4 mitdreht.

Mithin ist die Höchstbelastung des elastischen Kopplungsglieds 6 auf einfache und doch wirkungsvolle sowie zuverlässige Weise vorgebbar. Dies ist gemäß der Darstellung in den Figuren 7A und 7B beim zweiten Ausführungsbeispiel durch zwei Anschlüsse 13, 13' bewerkstelligt, mittels derer der Verdrehungswinkel des Klinkenmitnehmmerglieds 5 gegenüber der Seilscheibe oder Seiltrommel 4 begrenzt wird, um auf diese Weise eine Überlastung des elastischen Kopplungsglieds 6 bei Anspannung auf Block zu vermeiden.

Im Unterschied zum ersten Ausführungsbeispiel gemäß den Figuren 1, 2, 3, 4A, 4B, 5A, 5B, bei dem lediglich ein Anschlag 13 vorgesehen sind, weist das zweite Ausführungsbeispiel gemäß den Figuren 1, 2, 3, 6A, 6B, 7A, 7B zwei Anschlüsse 13, 13' auf, um bei Betätigen der Startvorrichtung 100, das heißt bei Ziehen der Handhabe 10 eine möglichst gleichmäßige Lastverteilung zu erreichen. Hierdurch wird vermieden, daß ein Kippmoment auf die beteiligten Bauteile der Startvorrichtung 100 übertragen wird.

Um die angestrebte gleichmäßige Lastverteilung in möglichst exakter Form zu realisieren und um ein Übertragen des Kippmoments auf die beteiligten Bauteile der Startvorrichtung 100 in möglichst vollständiger Weise zu verhindern, sind die beiden Anschlüsse 13, 13' beim zweiten Ausführungsbeispiel einander im wesentlichen diametral gegenüberliegend, das heißt um etwa 180 Grad versetzt zueinander angeordnet (vgl. Figuren 7A und 7B).

Dementsprechend wird beim zweiten Ausführungsbeispiel jeder der beiden Anschlüsse 13 bzw. 13' in jeweils einer in etwa halbkreisbogenförmigen Führungsnuß 14 bzw. 14' geführt (vgl. Figuren 6A und 6B), wobei diese beiden Führungsnuß 14, 14' einander im wesentlichen spiegelbildlich

gegenüberliegend, das heißt um etwa 180 Grad versetzt zueinander in der Seilscheibe oder Seiltrommel 4 angeordnet sind (vgl. Figuren 6A und 6B).

Den vorstehenden Erläuterungen ist entnehmbar, daß bei Verwendung von zwei Anschlägen 13, 13' (vgl. zweites Ausführungsbeispiel gemäß den Figuren 1, 2, 3, 6A, 6B, 7A, 7B) lediglich der im Vergleich zum Einsatz eines Anschlags 13 (vgl. erstes Ausführungsbeispiel gemäß den Figuren 1 bis 5B) halbe Maximalwinkelwert erreicht wird. Diese Tatsache eines kürzeren (Feder-)Wegs und einer demzufolge verminderter Beanspruchung des elastischen Kopplungsglieds 6 (→ geringerer Verschleiß und höhere Lebensdauer) wird vom weiteren technischen Vorteil begleitet, daß bei Einsatz von zwei Anschlägen 13, 13' nicht nur das Auftreten von Kippmomenten vermieden wird, sondern auch größere Kräfte übertragen werden können, was insbesondere bei hubraumstärkeren Motoren von Interesse ist.

Neben der bei Betätigen der Startvorrichtung 100, das heißt bei Ziehen der Handhabe 10 erfolgenden Begrenzung des Verdrehungswinkels auf Maximalwinkelwerte in der Größenordnung von etwa 135 Grad bis etwa 140 Grad ist als weiterer wesentlicher technischer Effekt beim zweiten Ausführungsbeispiel der Startvorrichtung 100 hervorzuheben, daß durch das Anformen der beiden Anschläge 13, 13' an der der Seilscheibe oder Seiltrommel 4 zugewandten Unterseite des Klinkenmitnehmergeglieds 5 (= äußerer Flansch des Klinkenmitnehmergeglieds 5) erreicht wird, daß im (sehr unwahrscheinlichen) Falle eines Bruchs des zwischen die Seilscheibe oder Seiltrommel 4 und das Klinkenmitnehmergeglied 5 geschalteten elastischen Kopplungsglieds 6 ein "Notstartverhalten" erreicht werden kann, so daß ein Leichtstartsysteem 100 mit Notstarteigenschaften gegeben ist:

In diesem Falle einer gebrochenen Spiralfeder 6 als elastischem Kopplungsglied wird zum Starten der Brennkraftmaschine nämlich das Kraftübertragungsmittel 9 (= Anwerfseil oder Seilzug) mittels der Handhabe 10

(= Anwerfgriff oder Zuggriff) soweit angezogen, bis die beiden Anschlüsse 13 bzw. 13' - eigentlich zum Zwecke des Erreichens des Maximalwinkelwerts - zu den jeweiligen Anlagen 15 bzw. 15' (vgl. Figuren 6A und 6B) kommen und durch weiteres Ziehen am Kraftübertragungsmittel 9 ein normaler bzw. konventioneller Startvorgang durchgeführt werden kann.

Unabhängig davon, ob ein regulärer Betrieb (<-> intaktes elastisches Kopplungsglied 6) oder ein Notfallbetrieb (<-> gebrochenes elastisches Kopplungsglied 6) vorliegt, greift jeder der beiden kreis(ring)segmentförmig ausgebildeten Anschlüsse 13 bzw. 13' beim zweiten Ausführungsbeispiel gemäß den Figuren 1, 2, 3, 6A, 6B, 7A, 7B in jeweils eine auf dem Klinkenmitnehmerringglied 5 zugewandten Seite der Seilscheibe oder Seiltrommel 4 eingearbeitete Führungsnot 14 bzw. 14' in eben diese Seilscheibe oder Seiltrommel 4 ein und ermöglicht beiden Bauteilen (Klinkenmitnehmerringglied 5 und Seilscheibe oder Seiltrommel 4) eine relative Verdrehung von bis zu etwa 135 Grad bis etwa 140 Grad zueinander, bevor der Weg durch Anlage des Kreis(ring)segments 13 bzw. 13' am geschlossenen Ende 15 bzw. 15' (= aus gummielastischem Werkstoff hergestellte Anschlagdämpfer --> Ende der Drehbewegung wird gedämpft gestoppt) der Führungsnot 14 bzw. 14' begrenzt wird.

Hierbei kommen die beiden Anschlüsse 13 bzw. 13' beim zweiten Ausführungsbeispiel zum Zwecke des Erreichens des Maximalwinkelwerts am Ende der jeweiligen Führungsnot 14 bzw. 14' gleichzeitig zur Anlage 15 bzw. 15', wodurch die angestrebte gleichmäßige Lastverteilung in besonders exakter Form realisiert und ein Übertragen des Kippmoments auf die beteiligten Bauteile der Startvorrichtung 100 in vollständiger Weise verhindert wird.

Durch diese Art der Konstruktion der Startvorrichtung 100 gemäß den Figuren 1 bis 7B wird der Weg des elastischen Kopplungsglieds 6 (Federweg) bzw. der Winkel der Verdrehung gezielt gesteuert, das heißt das e-

lastische Kopplungsglied 6 nimmt nur noch die Kraft bis zum Wegende auf und wird infolge dessen bei seinem Anlegen an die Welle nicht mehr überlastet, was sich natürlich auch positiv auf die Lebensdauer des elastischen Kopplungsglieds 6 auswirkt.

Sollte das elastische Kopplungsglied 6, das heißt die spiralförmig ausgebildete Feder dennoch brechen, so verliert die Startvorrichtung 100 zwar ihre komfortablen Dämpfungseigenschaften beim Startvorgang, jedoch ist die Bedienperson weiterhin in der Lage, die Brennkraftmaschine zu starten. Mithin ist für die vorliegende Startvorrichtung 100

- das Vorsehen des Anschlags 13 beim ersten Ausführungsbeispiel gemäß den Figuren 1, 2, 3, 4A, 4B, 5A, 5B bzw.
- das Vorsehen der zwei Anschläge 13, 13' beim zweiten Ausführungsbeispiel gemäß den Figuren 1, 2, 3, 6A, 6B, 7A, 7B

insofern von wesentlicher Bedeutung, als bei einem Bruch des elastischen Kopplungsglieds 6 nicht mehr das ganze Werkzeug, zum Beispiel die gesamte Motorkettensäge, außer Funktion tritt.

Vielmehr wird

- mit dem Anschlag 13 beim ersten Ausführungsbeispiel gemäß den Figuren 1, 2, 3, 4A, 4B, 5A, 5B bzw.
- mit den beiden Anschlägen 13, 13' beim zweiten Ausführungsbeispiel gemäß den Figuren 1, 2, 3, 6A, 6B, 7A, 7B

erreicht, daß bei einem Bruch der spiralförmig ausgebildeten Feder 6 lediglich das grundsätzlich erwünschte weiche Zugverhalten beim Anziehen entfällt und daß die Startvorrichtung 100 - nach Überwinden des "Leerlaufs" bis zum Anschlag - wie ein normaler Starter bedienbar ist. Die Bedienperson kann den Zeitpunkt der Reparatur (Auswechseln des gebrochenen elastischen Kopplungsglieds 6) demzufolge selbst bestimmen und wird nicht in ihrer Arbeit behindert bzw. zu einer lästigen Unterbrechung genötigt.

Wenn nun das Reaktionsdrehmoment nach Überschreiten der Totpunktlage des Motorkolbens den vorgegebenen Grenzwert wieder unterschreitet, so entspannt sich das elastische Kopplungsglied 6 wieder bis zu seiner Ausgangslage, wobei sich das vom elastischen Kopplungsglied 6 mitgenommene Klinkenmitnehmerringglied 5 relativ zur Seilscheibe oder Seiltrommel 4 in Drehrichtung bewegt.

Das elastische Kopplungsglied 6 wirkt daher zugleich als Energiespeicher, der die bei der vorangegangenen Verformung gespeicherte Energie an das Klinkenmitnehmerringglied 5 abgibt und dieses derart beschleunigt, daß das Klinkenmitnehmerringglied 5 kurzzeitig eine absolut höhere Drehzahl als die Seilscheibe oder Seiltrommel 4 erreicht und sich dann wieder mit deren Geschwindigkeit dreht.

Zur Rückführung der Seilscheibe oder Seiltrommel 4 in ihre Ausgangslage ist die Starterfeder 2 vorgesehen, so daß Anwerfseil oder Zugseil 9, wie bei Seilzug-Startvorrichtungen üblich, nach dem Abziehen wieder auf die Seilscheibe oder Seiltrommel 4 aufgewickelt wird. Da das Federgehäuse 3 von der (Metall-)Scheibe 3A abgedeckt ist, entsteht zwischen dem Federgehäuse 3 und der Seilscheibe oder Seiltrommel 4 bei deren Drehbewegung eine nur geringe Reibung.

Die meisten Teile der Startvorrichtung 100 gemäß den Figuren 1 bis 7B sind aus Kunststoff hergestellt; so sind das Gehäuse 1, das Federgehäuse 3, die Seilscheibe oder Seiltrommel 4 sowie das Klinkenmitnehmerringglied 5 aus Kunststoff gefertigt. Das elastische Kopplungsglied 6 ist aus Flachbandstahl gefertigt, die Buchse oder Hülse 8 als gehärtete Metallbuchse oder -hülse montiert. Nicht zuletzt aufgrund der vorstehend dargelegten Wahl der Materialien sind die Herstellung und die Montage der Startvorrichtung 100 gemäß der vorliegenden Erfindung besonders kostengünstig.

Abschließend sei noch auf das

- mit vorstehenden Erläuterungen in Zusammenhang stehende oder
- von vorstehenden Erläuterungen unabhängige erfindungswesentliche Merkmal hingewiesen, daß das elastische Kopplungsglied 6, das heißt die spiralförmig ausgestaltete Feder sowohl beim ersten Ausführungsbeispiel gemäß den Figuren 1, 2, 3, 4A, 4B, 5A, 5B als auch beim zweiten Ausführungsbeispiel gemäß den Figuren 1, 2, 3, 6A, 6B, 7A, 7B vorgespannt, das heißt mit einer Vorspannung versehen sein kann.

Dies zeitigt unter anderem den positiven technischen Effekt, daß bereits unmittelbar zu Beginn der Drehbewegung zwischen Seilscheibe oder Seiltrommel 4 und Klinkenmitnehmerringglied 5 mit der durch das elastische Kopplungsglied 6 vermittelten Kraftübertragung begonnen werden kann und/oder daß die über das elastische Kopplungsglied 6 übertragbaren Kräfte größer werden können, weil ein im Vergleich zum Stand der Technik anderer Bereich der Kennlinie des elastischen Kopplungsglieds 6, das heißt der Federkennlinie ausnutzbar ist.

In besonders synergetischer Weise kann der Einbau des vorgespannten bzw. mit Vorspannung versehenen elastischen Kopplungsglieds 6 mit dem vorstehend beschriebenen Vorsehen

- eines Anschlags 13, mittels dessen der Verdrehungswinkel des Klinkenmitnehmerringglieds 5 gegenüber der Seilscheibe oder Seiltrommel 4 auf einen Maximaldrehwinkel in der Größenordnung von etwa 270 Grad bis etwa 280 Grad begrenzbar ist (= erstes Ausführungsbeispiel gemäß den Figuren 1 bis 5B), oder
- zweier Anschläge 13 und 13', mittels derer der Verdrehungswinkel des Klinkenmitnehmerringglieds 5 gegenüber der Seilscheibe oder Seiltrommel 4 auf einen Maximaldrehwinkel in der Größenordnung von etwa 135 Grad bis etwa 140 Grad begrenzbar ist (= zweites Ausführungsbeispiel gemäß den Figuren 1, 2, 3, 6A, 6B, 7A, 7B), kombiniert werden.

Bezugszeichenliste

- 100 Startvorrichtung, insbesondere Seilzug-Startvorrichtung
- 1 Gehäuse, insbesondere Ventilatorgehäuse
- 1A Lüftungsschlitz im Gehäuse 1
- 1B Lagerzapfen
- 1C Innengewinde des Lagerzapfens 1B
- 2 Starterfeder
- 3 Federgehäuse für Starterfeder 2
- 3A Scheibe, insbesondere Metallscheibe
- 4 Seilscheibe oder Seiltrommel
- 4A Zapfen der Seilscheibe oder Seiltrommel 4
- 4B axialer Schlitz des Zapfens 4A
- 4C Aufnahmeraum der Seilscheibe oder Seiltrommel 4
- 4D Stirnwand der Seilscheibe oder Seiltrommel 4
- 4E Mittelbohrung der Seilscheibe oder Seiltrommel 4
- 5 Mitnehmerring, insbesondere Klinkenmitnehmer
- 5A Aufnahmeraum des Mitnehmerringes 5
- 5B Stirnwand des Mitnehmerringes 5
- 5C Mittelbohrung des Mitnehmerringes 5
- 6 elastisches Kopplungsglied, insbesondere Spiralfeder
- 7 Schraube, insbesondere Befestigungsschraube
- 7A Absatz der Schraube 7
- 8 Buchse oder Hülse
- 9 Kraftübertragungsmittel, insbesondere Anwerfseil oder Zugseil
- 10 Handhabe, insbesondere Anwerfgriff oder Zuggriff
- 11 Luftführung
- 12 Ausnehmung
- 13 Anschlag, insbesondere erster Anschlag
- 13' zweiter Anschlag

- 14 Führungsnu zum Führen des Anschlags 13,
insbesondere erste Führungsnu zum Führen des ersten Anschlags
13
- 14' zweite Führungsnu zum Führen des zweiten Anschlags 13'
- 15 Anlage für Anschlag 13,
insbesondere erste Anlage für ersten Anschlag 13
- 15' zweite Anlage für zweiten Anschlag 13'
- 16 Schlitz in der Stirnwand 4D
- 17 Ausnehmung in der Stirnwand 5B

A n s p r ü c h e

1. Startvorrichtung (100) für mindestens einen Brennkraftmotor, insbesondere Seilzug-Startvorrichtung für mindestens einen Zweitakt- oder Viertaktmotor, mit mindestens einer in mindestens einem Gehäuse (1) drehbar gelagerten Seilscheibe oder Seiltrommel (4), die zum Erzeugen des Antriebsdrehmoments für die Motorwelle mittels mindestens einer Handhabe (10), insbesondere mittels mindestens eines Anwerfgriffs oder Zuggriffs, über mindestens ein Kraftübertragungsmittel (9), insbesondere über mindestens ein Anwerfseil oder Zugseil, in Drehung versetzbare und über mindestens ein elastisches Kopplungsglied (6), insbesondere über mindestens eine Spiralfeder, mit mindestens einem Mitnehmerring (5), insbesondere mit mindestens einem Klinkenmitnehmer, verbunden ist, mittels dessen das Antriebsdrehmoment auf die Motorwelle übertragbar ist,
d a d u r c h g e k e n n z e i c h n e t,
daß in einem Zwischenraum zwischen
 - der Seilscheibe oder Seiltrommel (4), insbesondere der Achse der Seilscheibe oder Seiltrommel (4), und
 - dem Kopplungsglied (6) bzw. dem Mitnehmerring (5), insbesondere der Achse des Mitnehmerringes (5),
mindestens eine insbesondere dünnwandige Buchse oder Hülse (8) vorgesehen ist, mittels derer dieser Zwischenraum zumindest partiell ausfüllbar ist.
2. Startvorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, daß die Buchse oder Hülse (8)
 - verdrehsicher auf der Achse der Seilscheibe oder Seiltrommel (4) geführt und/oder
 - mit Spiel zur Achse des Mitnehmerringes (5) versehen

ist.

3. Startvorrichtung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Buchse oder Hülse (8)
 - hohlzylinderförmig ist und/oder
 - über die sich gegenüberstehenden Achsenenden der Wellen, insbesondere der Trommelwelle bzw. der Motorwelle, stulpbar ist, so daß das Kopplungsglied (6) nicht deformiert wird.
4. Startvorrichtung gemäß mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sich die Buchse oder Hülse (8) über die im wesentlichen gesamte Länge des Kopplungsglieds (6) erstreckt.
5. Startvorrichtung gemäß mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß sich das Kopplungsglied (6) bei Betätigen der Startvorrichtung (100), insbesondere bei Ziehen der Handhabe (10), um die Buchse oder Hülse (8) legt.
6. Startvorrichtung gemäß mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Buchse oder Hülse (8) aus Metall, insbesondere aus gehärtetem Metall, gefertigt ist.
7. Startvorrichtung gemäß mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Zwischenraum
 - zwischen der Seilscheibe oder Seiltrommel (4), insbesondere der Achse der Seilscheibe oder Seiltrommel (4), und dem Kopplungsglied (6) und/oder
 - zwischen der Seilscheibe oder Seiltrommel (4), insbesondere der Achse der Seilscheibe oder Seiltrommel (4), und dem Mitnehmerglied (5), insbesondere der Achse des Mitnehmerglieds (5),

in Form mindestens eines bauartbedingt gebildeten Spalts oder in Form mindestens einer bauartbedingt gebildeten Trennfuge gegeben ist.

8. Startvorrichtung gemäß mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Kopplungsglied (6) vorgespannt bzw. mit Vorspannung versehen ist.
9. Startvorrichtung (100) für mindestens einen Brennkraftmotor, insbesondere Seilzug-Startvorrichtung für mindestens einen Zweitakt- oder Viertaktmotor, mit mindestens einer in mindestens einem Gehäuse (1) drehbar gelagerten Seilscheibe oder Seiltrommel (4), die zum Erzeugen des Antriebsdrehmoments für die Motorwelle mittels mindestens einer Handhabe (10), insbesondere mittels mindestens eines Anwerfgriffs oder Zuggriffs, über mindestens ein Kraftübertragungsmittel (9), insbesondere über mindestens ein Anwerfseil oder Zugseil, in Drehung versetzbare und über mindestens ein vorgespanntes bzw. mit Vorspannung versehenes elastisches Kopplungsglied (6), insbesondere über mindestens eine Spiralfeder, mit mindestens einem Mitnehmerglied (5), insbesondere mit mindestens einem Klinkenmitnehmer, verbunden ist, mittels dessen das Antriebsdrehmoment auf die Motorwelle übertragbar ist.
10. Brennkraftmotor, insbesondere Zweitakt- oder Viertaktmotor, gekennzeichnet durch mindestens eine Startvorrichtung (100) gemäß mindestens einem der Ansprüche 1 bis 9.
11. Arbeitsgerät, insbesondere verbrennungsmotorisch angetriebenes tragbares Handwerkzeug, wie etwa Freischneidegerät, Kettensäge, Motorsäge, Trennschleifer oder dergleichen, gekennzeichnet durch mindestens einen mit mindestens einer Startvorrichtung (100) ge-

mäß mindestens einem der Ansprüche 1 bis 9 ausgestatteten Brennkraftmotor gemäß Anspruch 10.

12. Verwendung mindestens einer mindestens einem Brennkraftmotor gemäß Anspruch 10 zugeordneten Startvorrichtung (100) gemäß mindestens einem der Ansprüche 1 bis 9 für ein Arbeitsgerät gemäß Anspruch 11.

Fig. 1

Fig. 2

Fig. 3

4 / 7

Fig. 4 A

Fig. 4 B

5/7

Fig. 5A

Fig. 5B

6 / 7

Fig. 6A

Fig. 6B

717

Fig. 7A

Fig. 7B

