CSE 4125: Distributed Database Systems Chapter – 5

Translation of Global Queries to Fragment Queries.

(Part - E)

Topics to be discussed –

Simplification of Non-distributed Query

Question type:

/* A query is given */

Now, answer the following questions.

- i. Draw the operator tree. [2]
- Perform step-by-step transformations to simplify the operator tree, indicating which rule and criterion is applied at each step.

[5]

Non-distributed (Equivalence Transformation for Queries):

- \square Query \rightarrow Operator Tree.
- \square Operator Tree \rightarrow Simplified Operator Tree.

We will follow this -

Equivalence Query transformation steps:

- 1. Generate the equivalent operator tree (T_{global}) for the given query (Q_{global}) .
- 2. Find the common sub-expression (R) from T_{global} .
- 3. Apply rules to remove R and obtain simplified tree $T_{removed}$.
- 4. Apply criteria 1 and 2 on $T_{removed}$ to obtain final simplified operator tree $T_{transformed}$.
- 5. Write the query Q_{transformed} from T_{transformed}.

So,
$$Q_{global} \leftrightarrow Q_{transformed}$$

Some Rules/Properties

Properties

- R NJN R \leftrightarrow R \longrightarrow 1
- RUNR \leftrightarrow R \longrightarrow 2
- R DF R \leftrightarrow 0 \longrightarrow 3
- R NJN SL_F R ↔ SL_F R
- R UN SL_F R \leftrightarrow R
- R DF SLF R \leftrightarrow SLNOTF R \longrightarrow 6
- (SLF1 R) NJN (SLF2 R) ↔ SLF1 AND F2 R → 7
- (SLF1 R) UN (SLF2 R) ↔ SLF1 OR F2 R
- (SLF1 R) DF (SLF2 R) ↔ SLF1 AND NOT F2 R → 9

They will be used to remove common sub-expressions in the simplification of operator tree.

Example 1

EMP (EMPNUM, DEPTNUM, NAME, SAL, AGE)
DEPT (DEPTNUM, NAME, AREA, MGRNUM)

Q: PJ $_{\text{EMP.NAME}}$ ((EMP JN $_{\text{DEPTNUM=DEPTNUM}}$ SL $_{\text{MGRNUM=373}}$ DEPT) DF (SL $_{\text{SAL}>35K}$ EMP JN $_{\text{DEPTNUM=DEPTNUM}}$ SL $_{\text{MGRNUM=373}}$ DEPT))

Now, answer the following questions.

- i. Draw the operator tree.
- Perform step-by-step transformations to simplify the operator tree, indicating which rule and criterion is applied at each step.

Operator Tree

Any common portion?

Any common portion?

Any common portion? NOW?

F = SAL > 35K

Can you apply Criterion 1 and/or 2 on this tree?

Applying criterion -2

After Applying criterion – 2

Transformed Query

 $\mathbf{Q_T: PJ_{EMP.NAME}} ((\mathbf{PJ_{NAME,DEPTNUM} SL_{SAL <=35K}} \ EMP) \ \mathbf{JN_{DEPTNUM=DEPTNUM}} (\mathbf{PJ_{DEPTNUM} SL_{MGRNUM=373}} \ DEPT))$

Transformed Query

Output:

$$\mathbf{Q_{T}} : \mathbf{PJ}_{\text{EMP.NAME}} ((\mathbf{PJ}_{\text{NAME,DEPTNUM}} \ \mathbf{SL}_{\text{SAL} <=35K} \ EMP) \ \mathbf{JN}_{\text{DEPTNUM} = \text{DEPTNUM}} (\mathbf{PJ}_{\text{DEPTNUM}} \ \mathbf{SL}_{\text{MGRNUM} = 373} \ DEPT))$$

Input:

Q: PJ
$$_{\text{EMP.NAME}}$$
 ((EMP JN $_{\text{DEPTNUM=DEPTNUM}}$ SL $_{\text{MGRNUM=373}}$ DEPT) DF (SL $_{\text{SAL}>35K}$ EMP JN $_{\text{DEPTNUM=DEPTNUM}}$ SL $_{\text{MGRNUM=373}}$ DEPT))

$$Q \longleftrightarrow Q_T$$

Example 2.1

EMP (EMPNUM, DEPTNUM, NAME, SAL, AGE)
DEPT (DEPTNUM, NAME, AREA, MGRNUM)

Q: PJ _{EMP.NAME} SL _{MGRNUM=373} ((*EMP* JN _{DEPTNUM=DEPTNUM} *DEPT*) DF (SL _{SAL>35K} *EMP* JN _{DEPTNUM=DEPTNUM} *DEPT*))

Now, answer the following questions.

- i. Draw the operator tree.
- Perform step-by-step transformations to simplify the operator tree, indicating which rule and criterion is applied at each step.

Operator Tree

Any common portion?

Any common portion? NOW?

Any common portion? NOW?

F = SAL > 35KJN DEPTNUM=DEPTNUM **PJ** EMP.NAME EMP DEPT $\mathbf{SL}_{\mathrm{MGRNUM}=373}$ $SL_{\,NOT\,F}$ • R DF SLF R ↔ SLNOTF R

F = SAL > 35K

Can you apply Criterion 1 and/or 2 on this tree?

Applying Criterion 2 -

After Applying criterion -2

After Applying criterion – 1

Transformed Query

 $\mathbf{Q_T: PJ_{EMP.NAME}} ((\mathbf{PJ_{NAME,DEPTNUM} SL_{SAL <=35K}} \ EMP) \ \mathbf{JN_{DEPTNUM=DEPTNUM}} (\mathbf{PJ_{DEPTNUM} SL_{MGRNUM=373}} \ DEPT))$

Transformed Query

Output:

$$\mathbf{Q_{T}}: \mathbf{PJ}_{\text{EMP.NAME}} ((\mathbf{PJ}_{\text{NAME,DEPTNUM}} \mathbf{SL}_{\text{SAL} <=35K} EMP) \mathbf{JN}_{\text{DEPTNUM} = \text{DEPTNUM}} (\mathbf{PJ}_{\text{DEPTNUM}} \mathbf{SL}_{\text{MGRNUM} = 373} DEPT))$$

Input:

Q: PJ
$$_{\rm EMP.NAME}$$
 SL $_{\rm MGRNUM=373}$ ((EMP JN $_{\rm DEPTNUM=DEPTNUM}$ DEPT) DF (SL $_{\rm SAL>35K}$ EMP JN $_{\rm DEPTNUM=DEPTNUM}$ DEPT))

$$Q \longleftrightarrow Q_T$$

Example 2.2

EMP (EMPNUM, DEPTNUM, NAME, SAL, AGE)
DEPT (DEPTNUM, NAME, AREA, MGRNUM)

Q: PJ _{EMP.NAME} SL _{MGRNUM=373} ((*EMP* JN _{DEPTNUM=DEPTNUM} *DEPT*) DF (SL _{SAL>35K} *EMP* JN _{DEPTNUM=DEPTNUM} *DEPT*))

Now, answer the following questions.

- i. Draw the operator tree.
- Perform step-by-step transformations to simplify the operator tree, indicating which rule and criterion is applied at each step.

Operator Tree

Any common portion? NOW?

F = SAL > 35K

Can you apply Criterion 1 and/or 2 on this tree?

Applying criterion -2

After Applying criterion – 2

Transformed Query

 $\mathbf{Q_T: PJ_{EMP.NAME}} ((\mathbf{PJ_{NAME,DEPTNUM} SL_{SAL <=35K}} \ EMP) \ \mathbf{JN_{DEPTNUM=DEPTNUM}} (\mathbf{PJ_{DEPTNUM} SL_{MGRNUM=373}} \ DEPT))$

Transformed Query

Output:

$$\mathbf{Q_{T}}: \mathbf{PJ}_{\text{EMP.NAME}} ((\mathbf{PJ}_{\text{NAME,DEPTNUM}} \mathbf{SL}_{\text{SAL} <=35K} EMP) \mathbf{JN}_{\text{DEPTNUM} = \text{DEPTNUM}} (\mathbf{PJ}_{\text{DEPTNUM}} \mathbf{SL}_{\text{MGRNUM} = 373} DEPT))$$

Input:

Q: PJ
$$_{\rm EMP.NAME}$$
 SL $_{\rm MGRNUM=373}$ ((EMP JN $_{\rm DEPTNUM=DEPTNUM}$ DEPT) DF (SL $_{\rm SAL>35K}$ EMP JN $_{\rm DEPTNUM=DEPTNUM}$ DEPT))

$$Q \longleftrightarrow Q_T$$

Example 3

```
Practise
 * Draw Operator Trose for the following queries:
       SUPPLY (SNUM, PNUM, DEPTNUM, QUAN)
       DEPT ( DEPTNUM, NAME, AREA, MGCRNUM)
Query:
(SL DEPTNUM = 10 DEPT NJN (SL PNUM = "PI" SUPPLY
DF SL PNUM = "P2" SUPPLY )) UN (SL DEPTNUM = 10 DEPT
NJN SI PNOM="P," SUPPLY)
```

Operator Tree

How?

A

В

$SL_{PNUM = P1} SUPPLY$

SUPPLY

SNUM	PNUM	DEPTNUM	QUAN
1	P1	1	10
2	P2	2	20
3	P1	1	30
4	P2	1	40
5	P1	2	50
6	P2	1	60

SNUM	PNUM	DEPTNUM	QUAN
1	P1	1	10
2	P2	2	20
3	P1	1	30
4	P2	1	40
5	P1	2	50
6	P2	1	60
	The state of the s		

SNUM	PNUM	DEPTNUM	QUAN
1	P1	1	10
3	P1	1	30
5	P1	2	50

$SL_{PNUM = P2} SUPPLY$

SNUM	PNUM	DEPTNUM	QUAN
2	P2	2	20
4	P2	1	40
6	P2	1	60

A

SNUM	PNUM	DEPT NUM	QUAN
1	P1	1	10
3	P1	1	30
5	P1	2	50

DF

В

SNUM	PNUM	DEPT NUM	QUAN
2	P2	2	20
4	P2	1	40
6	P2	1	60

SNUM	PNUM	DEPT NUM	QUAN
1	P1	1	10
3	P1	1	30
5	P1	2	50

A

Any common portion? NOW?

Do we need to apply criteria 1 and/or 2? No, already simplified.

Transformed Query

Q_T: $SL_{DEPTNUM = 10} DEPT$ NJN $SL_{PNUM = P1} SUPPLY$

Transformed Query

Output:

 Q_T : $SL_{DEPTNUM = 10} DEPT$ NJN $SL_{PNUM = P1} SUPPLY$

Input:

Q: (SL _{DEPTNUM = 10} DEPT NJN (SL_{PNUM = P1} SUPPLY DF SL_{PNUM = P2} SUPPLY))

UN (SL $_{DEPTNUM = 10}$ DEPT NJN SL $_{PNUM = P1}$ SUPPLY)

$$Q \longleftrightarrow Q_T$$

Last Example

EMP (EMPNUM, DEPTNUM, NAME, SAL, AGE)
DEPT (DEPTNUM, NAME, AREA, MGRNUM)

Consider the following global query:

 $((SL_{F1} EMP JN_{A=B} DEPT) UN (SL_{F2} EMP JN_{A=B} DEPT)) DF (SL_{F3} EMP JN_{A=B} DEPT)$

Here,

F1, F2, F3 can represent any condition. In this example consider none of them are same. Imagine, A = B = DEPTNUM

Now, answer the following questions.

- i. Draw the operator tree. [2]
- Perform step-by-step transformations to simplify the operator tree, indicating which rule and criterion is applied at each step.

Operator Tree

Any common portion?

Any common portion?

Any common portion?

We can write it as $\mathbf{SL}_{F1} \mathbf{R} \mathbf{UN} \mathbf{SL}_{F2} \mathbf{R}$ which is Rule 8!

Any common portion?

Any common portion?

Let, F4 = F1 OR F2

Any common portion?

We can write it as $\mathbf{SL}_{F4} \mathbf{R} \mathbf{DF} \mathbf{SL}_{F3} \mathbf{R}$ which is Rule 9!

Any common portion?

Let, F4 = F1 OR F2

Can we apply Criterion 1 and/or 2?

Simplification

Because in the original query, all \mathbf{SL}_{F1} , \mathbf{SL}_{F2} , \mathbf{SL}_{F3} were applied on EMP relation.

Simplification

After Applying Criterion 2 -

Transformed Query

 $\mathbf{Q_{T}}$: $\mathbf{SL}_{(F1 \text{ OR } F2) \text{ AND NOT } F3}$ EMP $\mathbf{JN}_{A=B}$ DEPT

Transformed Query

Output:

 $\mathbf{Q_{T}}$: $\mathbf{SL}_{(F1 \text{ OR } F2) \text{ AND NOT } F3}$ EMP $\mathbf{JN}_{A=B}$ DEPT

Input:

Q:

 $((SL_{F1}\ EMP\ JN_{A=B}\ DEPT)\ UN\ (SL_{F2}\ EMP\ JN_{A=B}\ DEPT))\ DF\ (SL_{F3}\ EMP\ JN_{A=B}\ DEPT)$

$$Q \longleftrightarrow Q_T$$

```
EMP (EMPNUM, DEPTNUM, NAME, SAL, AGE)
     DEPT ( DEPTNUM, NAME, AREA, MGRNUM)
Query: PJ NAME, AGE (EMP JN DEPTNUM SL AREA="NOTH"
 DEPT) DF (EMP JN DEPTNUM SL DEPTNUM (10 DEPT))
```

Consider the following global relational schemata.

EMP (ID, NAME, SAL, AGE, MGRNUM, DEPTNUM)
DEPT (ID, AREA, DEPTNUM, MGRNUM)

Corresponding fragmentation schemata:

 $EMP_1 = SL_{SAL \le 25K} EMP$ $EMP_2 = SL_{SAL > 25K} EMP$ $DEPT_1 = SL_{AREA = "North"} DEPT$ $DEPT_2 = SL_{AREA = "South"} DEPT$

Also consider the following global query.

 $PJ_{NAME, AREA}(((SL_{SAL} > 25K EMP JN_{ID=ID} SL_{AREA} = "North" DEPT) DF (SL_{SAL} \le 25K EMP JN_{ID=ID} SL_{AREA} = "North" DEPT)) NJN (SL_{AREA} = "North" (EMP JN_{ID=ID} DEPT)))$

EMP (EMPNUM, DEPTNUM, NAME, SAL, AGE)
DEPT (DEPTNUM, NAME, AREA, MGRNUM)

Consider the following global query:

$$((SL_{F1} EMP JN_{A=B} DEPT) DF (SL_{F2} EMP JN_{A=B} DEPT)) NJN$$

 $((EMP JN_{A=B} DEPT) UN (SL_{F3} EMP JN_{A=B} DEPT))$

Here,

F1, F2, F3 can represent any condition. In this example consider none of them are same. Imagine, A = B = DEPTNUM

EMP (EMPNUM, DEPTNUM, NAME, SAL, AGE)
DEPT (DEPTNUM, NAME, AREA, MGRNUM)

Consider the following global query:

$$((SL_{F1}\ EMP\ JN_{A=B}\ DEPT)\ UN\ (SL_{F2}\ EMP\ JN_{A=B}\ DEPT))\ NJN$$
 $((EMP\ JN_{A=B}\ DEPT)\ DF\ (SL_{F3}\ EMP\ JN_{A=B}\ DEPT))$

Here,

F1, F2, F3 can represent any condition. In this example consider none of them are same. Imagine, A = B = DEPTNUM

Consider the following global query and answer the questions from (i) to (iii).

$$(((SL_{F1}RJN_{A=B}S)DF(SL_{F2}RJN_{A=B}S))NJN(RJN_{A=B}S))$$

$$UN(SL_{F1AND\ NOT\ F2}RJN_{A=B}S)$$

- i) Draw the operator tree.
- ii) Perform step-by-step transformations to simplify the operator tree, indicating which rule and criterion is applied at each step.
- iii) Write the query from the obtained simplified tree. [2]

Here,

F1, F2, F3 can represent any condition. In this example consider none of them are same. Imagine, A and B represents the same attribute of two different relation R and S.

[2]

[5]

EMP (EMPNUM, DEPTNUM, NAME, SAL, AGE)
DEPT (DEPTNUM, NAME, AREA, MGRNUM)

(a) Consider the following global query and answer the questions (i) and (ii).

$$\left(\left((SL_{SAL>25K}\ \textit{EMP}\ JN_{ID=ID}\ \textit{DEPT})\ DF\ (SL_{AGE\leq25}\ \textit{EMP}\ JN_{ID=ID}\ \textit{DEPT})\right)NJN\ (\textit{EMP}\ JN_{ID=ID}\ \textit{DEPT})\right)$$

$$DF\ (SL_{SAL>25K\ AND\ AGE>25}\ \textit{EMP}\ JN_{ID=ID}\ \textit{DEPT})$$

- Draw the operator tree.
- ii. Perform step-by-step transformations to simplify the operator tree, indicating which rule and criterion is applied at each step.

[2]

[6]