https://eduassistpro.github.

Add WeChat edu_assist_pr

Assignment Project Exiden Help

Assignment Project Exam Help

Multivariate Gaussians and PCA

https://eduassistpro.github.

Outline

- Multivariate Gaussians
- Assigned compositions and covariance matrices

 Assigned and covariance matrices

 Eigendecompositions and covariance matrices

 Eigendecompositions and covariance matrices

 Eigendecompositions and covariance matrices

 Assigned and covariance matrices

 Eigendecompositions and covariance matrices

 Assigned and covariance matrices
 - - https://eduassistpro.github.

Multivariate Gaussians: Isotropic Gaussians

▶ Start with $X = (X_1, \dots, X_d) \sim N(0, I)$, i.e., X_1, \dots, X_d are iid N(0, 1) random variables.

Assign parameters in Project to (xi) and Gustelp

 $(X_i) = 0$

https://eduassistpro.github.

Figure 1: Density function for isotropic Gaussian in \mathbb{R}^2

Figure 2: Density function level sets for isotropic Gaussian in \mathbb{R}^2

Affine transformations of random vectors

► Start with any random vector Z, then apply linear transformation, followed by translation ____

Assignment, followed by translation \mathbb{R}^{+} and \mathbb{R}^{+} $\mathbb{$

https://eduassistpro.github.

distribution, not just Gaussian distributi

A raisform the Galsian district the the Gaussian pdf is easy to understand.

Multivariate Gaussians: General Gaussians

If $Z \sim \mathrm{N}(0,I)$ and $X = MZ + \mu$, we have $\mathbb{E}(X) = \mu$ and $\mathrm{cov}(X) = MM^\mathsf{T}$

Assignment Projecte Examer Help

• We say $X ext{N}(\mu, MM^{\mathsf{T}})$

https://eduassistpro.github.

Note: every non-singular covariance math MCG some non-singular covaria

Figure 3: Density function level sets for anisotropic Gaussian in \mathbb{R}^2

Inference with multivariate Gaussians (2)

▶ Bivariate case: $(X_1, X_2) \sim \mathrm{N}(\mu, \Sigma)$ in \mathbb{R}^2

Assignment Project Exam Help

- https://eduassistpro.github.
 - ► Miracle 1: it is a Gaussian distribution

Adidmalks Not Chat edu_assist_pr

► Miracle 3: variance doesn't depend on

Inference with multivariate Gaussians (2)

- ▶ What is the distribution of $X_2 \mid X_1 = x_1$?
 - ► Miracle 1: it is a Gaussian distribution

Assignification of X₁ from the point of th

https://eduassistpro.github.

$$\hat{m} = \frac{X_1, X_2}{\text{var}(X_1)} \quad \frac{\Sigma_{1,2}}{\text{edu_assist_pr}}$$

$$Add \quad \hat{W} \in \text{Chartedu_assist_pr}$$

► Therefore:

Therefore:
$$\begin{split} \mathbb{E}[X_2 \mid X_1 = x_1] &= \hat{m}x_1 + \hat{\theta} \\ &= \mu_2 + \hat{m}(x_1 - \mu_1) \\ &= \mu_2 + \frac{\Sigma_{1,2}}{\Sigma_{1,1}}(x_1 - \mu_1) \end{split}$$

Inference with multivariate Gaussians (3)

- ▶ What is the distribution of $X_2 \mid X_1 = x_1$?

Assignment Microscopic Assignment Microscopic Microscopic Assignment Microscopic Microscop Miracle 3: variance doesn't depend on x_1

https://eduassistpro.github.

$$= \Sigma_{2,2} - \frac{1}{\Sigma_{1,1}^2} \Sigma_{1,1}$$
$$= \Sigma_{2,2} - \frac{\Sigma_{1,2}^2}{\Sigma_{1,1}}.$$

Inference with multivariate Gaussians (4)

▶ Beyond bivariate Gaussians: same as above, but just writing things properly using matrix notations

 $Assignment_{X_1} \underbrace{Project}_{x_1} \underbrace{Exam}_{\mu_1} Help$

https://eduassistpro.github.

Eigendecomposition (1)

▶ Every symmetric matrix $M \in \mathbb{R}^{d \times d}$ has d real <u>eigenvalues</u>, which we arrange as

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_properties Add WeChat edu_assist_properties Add with Add wech Add Ad

```
v_i^{\mathsf{T}} v_j = \mathbf{1}_{\{i=j\}}
```

Eigendecomposition (2)

- lacktriangledown Arrange v_1,\ldots,v_d in an $\underline{\mathit{orthogonal\ matrix}}\ V := [v_1|\cdots|v_d]$
- Assignment $\Pr_{M}^{VV} = I \text{ and } VV^{\mathsf{T}} = \sum_{i=1}^{d} v_i v_i^{\mathsf{T}} = I$ Exam Help

https://eduassistpro.github.

 $\lambda_i v_i$

- ► TASIC PW PW PAIR PROPERTY PI
 - ► Can also write $M = V\Lambda V^{\mathsf{T}}$, where $\Lambda = \mathrm{diag}(\lambda_1, \dots, \lambda_d)$
 - ▶ The matrix V diagonalizes M:

 $V^{\scriptscriptstyle\mathsf{T}} M V = \Lambda$

Covariance matrix (1)

- $lackbox{} A \in \mathbb{R}^{n \times d}$ is data matrix

Assignment-metric Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

is (empirical) variance of data along direction u

Covariance matrix (2)

► Note: some pixels in OCR data have very little (or zero!) variation

Assign has green properties of the Exam, Help

https://eduassistpro.github.

Add WeChat edu_assist_pr

Figure 4: Which pixels are likely to have very little variance?

Top eigenvector

 $ightharpoonup \Sigma$ is symmetric, so can write eigendecomposition

Assignment Project Exam Help

- https://eduassistpro.github.
 - ► This follows from the following charact

Figure 5: What is the direction of the top eigenvector for the covariance of this Gaussian?

Top k eigenvectors

- \blacktriangleright What about among directions orthogonal to v_1 ?
- Assign an any v_2 , corresponding to second largest eigenvalue λ_2 . Assign an argument λ_2 any λ_2 is a first or any λ_2 is a first of the property of the property

https://eduassistpro.github.

(the top k eigenvectors)

Principal component analysis

▶ k-dimensional principal components analysis (PCA) mapping:

Assignment Project Exam Help where $V = [v_1 \quad v_1]$ where $V = [v_1 \quad v_1]$

- https://eduassistpro.github.
 - Add WeChat edu_assist_pr

Figure 6: Fraction of residual variance from projectio dimension

Covariance of data upon PCA mapping

► Covariance of data upon PCA mapping:

Assignment Prefect Exam Helpwhere Λ_k is diagonal matrix with $\lambda_1, \ldots, \lambda_k$ along diagonal.

PCA and linear regression

▶ Use k-dimensional PCA mapping $\varphi(x) = V_k^\mathsf{T} x$ with ordinary least squares _____

Assignment Project Exam Help

https://eduassistpro.github.

Therefore Other Properties $\hat{\beta} = (V_k^{\mathsf{T}} A^{\mathsf{T}} A V_k)$ $\hat{\beta} = (V_k^{\mathsf{T}} A^{\mathsf{T}} A V_k)$ $\hat{\beta} = \Lambda_b^{\mathsf{T}} V_k^{\mathsf{T}} A^{\mathsf{T}} b$

(Note: here $\hat{\beta} \in \mathbb{R}^k$.)

Principal component regression

▶ Use $\hat{\beta} = \Lambda_k^{-1} V_k^{\mathsf{T}} A^{\mathsf{T}} b$ to predict on new $x \in \mathbb{R}^d$:

Assignment $Project^{1} Exam$ Help

https://eduassistpro.github.

$$\hat{w} := (V_k \Lambda_k^{-1} V^\mathsf{T} \qquad \mathsf{T}$$

- ► The saled We Cohate edu_assistis proper hyperparameter)
- Alternative hyper-parameterization: $\lambda > 0$; same as before but using the largest k such that $\lambda_k \geq \lambda$.

Spectral regularization

▶ PCR and ridge regression are examples of

Assignment Project Exam Help

https://eduassistpro.github.

- ightharpoonup I.e., g is applied to eigenvalues of
- Add We Chat edu_assist_pr
- **Claim**: Can write each of PCR and ridge regression as

$$\hat{w} = g(A^{\mathsf{T}}A)A^{\mathsf{T}}b$$

for appropriate function g (depending on λ).

Comparing ridge regression and PCR

- $\hat{w} = g(A^{\mathsf{T}}A)A^{\mathsf{T}}b$
- Assignment telepiecte λ : $g(z) = \frac{1}{z+\lambda}$ Ridge regression (with parameter λ): $g(z) = \frac{1}{z+\lambda}$ Help

https://eduassistpro.github.

Figure 7: Comparison of ridge regression and PCR

Matrix factorization

Assignment Project Exam Help

Fry to approximate
$$A$$
 with BC , where B $\mathbb{R}^{n \times k}$ and

https://eduassistpro.github.

- ightharpoonup Think of B as the encodings of the dat
- Theorem (Schmidt, 1907; Lettert edu_assist_production is given by truncating the
 - solution is given by truncating the singular value decomposition (SVD) of A

Singular value decomposition

lacktriangle Every matrix $A \in \mathbb{R}^{n imes d}$ —say, with rank r—can be written as

Assignment Project: Exam Help

https://eduassistpro.github.

- $lackbox{} v_1,\ldots,v_r\in\mathbb{R}^d$ (orthonormal ri
- Add WeChatsedu_assist_pr

where

- $lackbox{U} = [u_1|\cdots|u_r] \in \mathbb{R}^{n \times r}$, satisfies $U^{\mathsf{T}}U = I$
- $\triangleright S = \operatorname{diag}(\sigma_1, \dots, \sigma_r) \in \mathbb{R}^{r \times r}$
- $ightharpoonup V = [v_1|\cdots|v_r] \in \mathbb{R}^{d\times r}$, satisfies $V^{\mathsf{T}}V = I$

Truncated SVD

- ▶ Let A have SVD $A = \sum_{i=1}^{r} \sigma_i u_i v_i^{\mathsf{T}}$ (rank of A is r)
- Assignment Project Exam Help $A_k := \sigma_i u_i v_i^{\mathsf{T}}$
 - https://eduassistpro.github.
 - $\triangleright S_k^k = \operatorname{diag}(\sigma_1, \dots, \sigma_k) \in \mathbb{R}^{k \times k}$
 - Add (Samie Ckahan edu_assist_pr

$$||A - A_k||_F^2 = \min_{M: \text{rank}(M) = k} ||A - M||_F^2 = \sum_{i=k+1}^r \sigma_i^2$$

Encoder/decoder interpretation (1)

- ► Encoder: $x \mapsto \varphi(x) = V_k^\mathsf{T} x \in \mathbb{R}^k$ ► Encoding rows of A: $AV_k = U_k S_k$
- Assignment Linguist Exam Help
 - ▶ Same as k-dimensional PCA mapping!

https://eduassistpro.github.

squared distances to data points.

Encoder/decoder interpretation (2)

Example: OCR data, compare original image to decoding of k-dimensional PCA encoding ($k \in \{1, 10, 50, 200\}$)

Assignment Project Exam Help https://eduassistpro.github.

Application: Topic modeling (1)

lacktriangleright Start with n documents, represent using "bag-of-words" count vectors

```
Assignment Project ExamizHelp

| aardvark abacus abalone |
| https://eduassistpro.github.
| Add WeChat edu_assist_pro.github.
```

Application: Topic modeling (2)

lacktriangle Rank k SVD provides an approximate factorization

Assignment Project Exam Help where $B = \mathbb{R}^{n \times k}$ and $C = \mathbb{R}^{k \times d}$

- https://eduassistpro.github.
- \blacktriangleright If rows of C were probability distrib

Add WeChat edu_assist_probability that word w a edu_assist_probability that word w a

Application: Matrix completion (1)

- ► Start with ratings of movies given by users
- Assignment Project Exam Help Netflix: n = 480000, d = 48000; on average, each user rates
 - https://eduassistpro.github.

with goal of minimizing $||A - BC||_F^2$

lackbox Note: If all entries of A were observed, we could do this with truncated SVD.

Application: Matrix completion (2)

► Need to find a low-rank approximation without all of *A*: (low-rank) matrix completion

Assignment of Project Exam Help

gradient descent" (discussed later)

Help

gradient descent (discussed later)

https://eduassistpro.github.

Feature representations from matrix completion

MovieLens data set (n=6040 users, d=3952 movies. $|\Omega| = 800000$ ratings)

Assignment Productrix Compation of the Ip

https://eduassistpro.github.

- ▶ Some nearest-neighbor pairs $(c_i,$
 - Tey Story (1995), Tey Story 2 (1999) Gene and Syneth Ity (1995) Er CU __assist__prediction (1995), Carlito's Way (1993)

 - ► The Crow (1994), Blade (1998)
 - ► Forrest Gump (1994), Dances with Wolves (1990)
 - ► Mrs. Doubtfire (1993), The Bodyguard (1992)