Отчёт по лабораторной работе №8

Элементы криптографии. Шифрование (кодирование) различных исходных текстов одним ключом

Ле Тиен Винь

Содержание

[.Цель работы	1
II. Задание	1
III. Выполнение задания	1
Код приложения	1
Анализ кода	
Результат программы	
IV. Вывод	

І.Цель работы

Освоить на практике применение режима одноключевого кодирования на примере кодирования различных исходных текстов одним ключом.

II. Задание

Два текста кодируются одним ключом (однократное гаммирование). Требуется не зная ключа и не стремясь его определить, прочитать оба текста. Необходимо разработать приложение, позволяющее шифровать и дешифровать тексты P1 и P2 в режиме однократного гаммирования. Приложение должно определить вид шифротекстов C1 и C2 обоих текстов P1 и P2 при известном ключе; Необходимо определить и выразить аналитически способ, при котором злоумышленник может прочитать оба текста, не зная ключа и не стремясь его определить.

III. Выполнение задания

Код приложения

```
#include <iostream>
#include <string>
using namespace std;

string xorOperator(const string &input, const string &key) {
    string output = input;
}
```

```
for (size t i = 0; i < input.size(); ++i) {
     output[i] = input[i] \land key[i \% key.size()];
  return output;
int main() {
  string P1 = "ThisIsSecret";
  string P2 = "DontTellThat";
  string key = "123456789123";
  string ciphertext1 = xorOperator(P1, key);
  string ciphertext2 = xorOperator(P2, key);
  cout << "Ciphertext 1: " << ciphertext1 << endl;</pre>
  cout << "Ciphertext 2: " << ciphertext2 << endl;</pre>
  string Text1 = xorOperator(xorOperator(ciphertext1,ciphertext2),P1);
  string Text2 = xorOperator(xorOperator(ciphertext1,ciphertext2),P2);
  cout << "Text 1: " << Text1 << endl;
  cout << "Text 2: " << Text2 << endl;
  return 0;
```

Анализ кода

• Мы используем метод шифрования: Выполнение операции сложения по модулю 2 (XOR).

```
string xorOperator(const string &input, const string &key) {
   string output = input;
   for (size_t i = 0; i < input.size(); ++i) {
      output[i] = input[i] ^ key[i % key.size()];
   }
   return output;
}</pre>
```

- Функция преобразует каждый элемент введенного текста в новый элемент, зашифрованный на основе ключа, с помощью операцией сложения по модулю 2 (XOR): Ci = Pi + Ki (1).
- Где Ci i-й символ получившегося зашифрованного послания, Pi i-й символ открытого текста, Ki i-й символ ключа, i = 1, ..., m.

```
int main() {
    string P1 = "ThisIsSecret";
    string P2 = "DontTellThat";
    string key = "123456789123";
```

```
string ciphertext1 = xorOperator(P1, key);
string ciphertext2 = xorOperator(P2, key);

cout << "Ciphertext 1: " << ciphertext1 << endl;
cout << "Ciphertext 2: " << ciphertext2 << endl;

string Text1 = xorOperator(xorOperator(ciphertext1,ciphertext2),P1);
string Text2 = xorOperator(xorOperator(ciphertext1,ciphertext2),P2);

cout << "Text 1: " << Text1 << endl;
cout << "Text 2: " << Text2 << endl;

return 0;
}</pre>
```

- В main мы определем 2 исходного текста с называниями P1 и P2 и ключ key.
- Используовать функцию "xorOperator" для генерации зашифрованного текста и вывода зашифрованного текста на экран.
- В ситуации, когда злоумышленник знал один из двух текста, он может прочитать остальный, не зная ключа и не стремясь его определить, на основе свойства операции XOR: 1+1=0, 1+0=1.
- Получаем C1 + C2 = P1 + K + P2 + K = P1 + P2, следует C1 + C2 + P1 = P1 + P2 + P1 = P2.

Результат программы

```
Ciphertext 1: eZZG|Ed]ZCWG
Ciphertext 2: u]]@aS[TmYSG
Text 1: DontTellThat
Text 2: ThisIsSecret
```

IV. Вывод

После лаборатоной работы я получил практические навыки по применению режима одноключевого кодирования на примере кодирования различных исходных текстов одним ключом.