Eksempler på TNS-modeller

Oddvar Hallingstad 20171129

1 En-akset plattform

Figuren nedenfor viser en en-akset plattform (den måler akselerasjonen bare langs en akse) som kan dreie seg om en akse vinkelrett på papirplanet. Denne dreiningen måles av en gyro.

Feildefinisjoner			
$\delta f = f - \widetilde{f}$	$\delta x = x - \tilde{x}$	$\delta heta = heta - ilde{ heta}$	
$\delta\omega = \omega - \tilde{\omega}$	$\delta v = v - \tilde{v}$		

Legg merke til definisjonene av feil. De er valgt på denne måten fordi dette gir en standard systemmodell for et eventuelt Kalmanfilter. Målingene \tilde{f} og $\tilde{\omega}$ kan ses på som pådrag. Dersom vi måler posisjonen for bruk i et Kalmanfilter må feilmodellen være $z=\tilde{x}=x+w$ hvor w er hvit støy.

Systemmodell	Navigasjonslikninger	Feillikninger
$\dot{x} = v$	$\dot{ ilde{x}} = ilde{v}$	$\delta \dot{x} = \delta v$
$\dot{v} = \frac{f - g\sin\theta}{\cos\theta}$	$\dot{\tilde{v}} = \frac{\tilde{f} - g\sin\tilde{\theta}}{\cos\tilde{\theta}}$	$\delta \dot{v} = \frac{1}{\cos^2 \tilde{\theta}} \left(\tilde{f} \sin \tilde{\theta} - g \right) \delta \theta + \frac{1}{\cos \tilde{\theta}} \delta f$
	$\stackrel{\cdot}{ ilde{ heta}}= ilde{\omega}$	$\delta\dot{ heta}=\delta\omega$

Denne systemmodellen er ikke på standardform fordi stamdardformen krever et kjent pådrag, men f og ω er de sanne verdiene som vi ikke kjenner. Vi setter derfor inn for disse fra feildefinisjonene, dvs vi setter

inn $f = \tilde{f} + \delta f$ og $\omega = \tilde{\omega} + \delta \omega$ og får den nye systemmodellen:

$$\begin{array}{rcl} \dot{x} & = & v \\ \dot{v} & = & \dfrac{\tilde{f} + \delta f - g\sin\theta}{\cos\theta} \\ \dot{\theta} & & \ddots + \delta \ddots \end{array}$$

Denne likninga er på standardformen

$$\underline{\dot{x}} = f(\underline{x}, \underline{u}, \underline{v})$$

 $\underline{\dot{x}} = \underline{f}\left(\underline{x},\underline{u},\underline{v}\right)$ men antall tilstander og detaljert struktur avhenger av støymodellene for δf og $\delta \omega$. Dersom disse bare er hvitstøy, dvs $\delta f = v_f$ og $\delta \omega = v_\omega$ kan vi definer:

$$\begin{array}{rcl} \underline{x} & = & [x;v;\theta] \\ \underline{u} & = & \left[\tilde{f};\tilde{\omega};g\right] \\ \underline{v} & = & [v_f;v_{\omega}] \end{array}$$

og får systemmodellen

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} x_2 \\ \frac{1}{\cos x_3} (u_1 - u_3 \sin x_3 + v_1) \\ u_2 + v_2 \end{bmatrix}$$

I navigasjonslikningene ser en bort fra støyen, men bruker det samme pådraget som går inn på systemmodellen:

$$\begin{bmatrix} \dot{\tilde{x}}_1 \\ \dot{\tilde{x}}_2 \\ \dot{\tilde{x}}_3 \end{bmatrix} = \begin{bmatrix} \tilde{x}_2 \\ \frac{1}{\cos \tilde{x}_3} \left(u_1 - u_3 \sin \tilde{x}_3 \right) \\ u_2 \end{bmatrix}$$

Bare likningen for $\delta \dot{v}$ krever en egen utledning:

$$\begin{split} \delta \dot{v} &= \frac{f - g \sin \theta}{\cos \theta} - \frac{\tilde{f} - g \sin \tilde{\theta}}{\cos \tilde{\theta}} = \frac{\tilde{f} + \delta f - g \sin \left(\tilde{\theta} + \delta \theta\right)}{\cos \left(\tilde{\theta} + \delta \theta\right)} - \frac{\tilde{f} - g \sin \tilde{\theta}}{\cos \tilde{\theta}} = \frac{\delta f}{\cos \tilde{\theta}} + \left(\frac{\tilde{f} \sin \tilde{\theta}}{\cos^2 \tilde{\theta}} - g \left(1 + \tan^2 \theta\right)\right) \delta \theta + O\left(\delta \theta^2, \delta f^2\right) \\ &= \frac{1}{\cos^2 \tilde{\theta}} \left(\tilde{f} \sin \tilde{\theta} - g\right) \delta \theta + \frac{1}{\cos \tilde{\theta}} \delta f + O\left(\delta \theta^2, \delta f^2\right) \delta \dot{v} = \frac{f - g \sin \theta}{\cos \theta} - \frac{\tilde{f} - g \sin \tilde{\theta}}{\cos \tilde{\theta}} \end{split}$$

2 To-akset plattform

plattform

Figur 2: To-akset plattform

ſ	Feildefinisjoner						
ſ	$\delta \underline{f} = \underline{f}^p - \underline{\widetilde{f}}^p$	$\delta \underline{x} = \underline{x}^n - \underline{\tilde{x}}^n$	$\delta heta = heta - \widetilde{ heta}$				
	$\delta\omega = \omega - \tilde{\omega}$	$\delta \underline{v} = \underline{v}^n - \underline{\tilde{v}}^n$	$R_p^n = R\left(\tilde{\theta}\right)\left(I\right)$	$I + \delta \theta$	0	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$	

Den elementære rotasjonsmatrisa R er gitt ved

$$R_p^n = R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Feillikningene skrevet på vektorform:

Systemmodell	Navigasjonslikninger	Feillikninger
$\dot{\underline{x}}^n = \underline{v}^n$	$\frac{\tilde{x}}{\tilde{x}}^n = \tilde{v}^n$	$\delta \dot{\underline{x}} = \delta \underline{v}$
$\underline{\dot{v}}^n = R_p^n \underline{f}^p - \underline{g}^n$	$\hat{\underline{v}}^n = \tilde{R}_p^n \hat{\underline{f}}^p - \underline{g}^n$	$\delta \underline{\dot{v}}^n = R_3 \left(\tilde{\theta} \right) \left[\begin{array}{c} -\tilde{f}_y \\ \tilde{f}_x \end{array} \right] \delta \theta + R_3 \left(\tilde{\theta} \right) \delta \underline{f}$
$\dot{ heta}=\omega$	$\dot{\widetilde{ heta}}=\widetilde{\omega}$	$\delta\dot{ heta}=\delta\omega$

Feilikningene skrevet på komponentform:

Systemmodell	Navigasjonslikninger	Feillikninger
$\underline{\dot{x}} = \underline{v}$	$\stackrel{\cdot}{ ilde{x}} = \stackrel{ ilde{v}}{ ilde{v}}$	$\delta \dot{\underline{x}} = \delta \underline{v}$
$\dot{v}_1 = f_x \cos \theta - f_y \sin \theta$	$\hat{\tilde{v}}_1 = \tilde{f}_x \cos \tilde{\theta} - \tilde{f}_y \sin \tilde{\theta}$	$\delta \dot{v}_1 = -\left(\tilde{f}_x \sin\tilde{\theta} + \tilde{f}_y \cos\tilde{\theta}\right)\delta\theta + \delta f_x \cos\tilde{\theta} - \delta f_y \sin\tilde{\theta}$
$\dot{v}_2 = f_x \sin \theta + f_y \cos \theta - g$	$\dot{\tilde{v}}_2 = \tilde{f}_x \sin \tilde{\theta} + \tilde{f}_y \cos \tilde{\theta} - g$	$\delta \dot{v}_2 = \left(\tilde{f}_x \cos \tilde{\theta} - \tilde{f}_y \sin \tilde{\theta} \right) \delta \theta + \delta f_x \sin \tilde{\theta} + \delta f_y \cos \tilde{\theta}$
$\dot{ heta} = \omega$	$\stackrel{\cdot}{ ilde{ heta}}= ilde{\omega}$	$\delta\dot{ heta}=\delta\omega$

Utledning av likningen for hastighetsfeil:

$$\begin{split} \delta \underline{\dot{v}}^n &= R_p^n \underline{f}^p - \tilde{R}_p^n \underline{\hat{f}}^p = R \left(\check{\theta} \right) \left(I + \delta \theta \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \right) \left(\underline{\hat{f}}^p + \delta \underline{f} \right) - R \left(\check{\theta} \right) \underline{\hat{f}}^p = R \left(\check{\theta} \right) \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \underline{\hat{f}}^p \delta \theta + R \left(\check{\theta} \right) \delta \underline{f} = R \left(\check{\theta} \right) \begin{bmatrix} -\tilde{f}_y \\ \tilde{f}_x \end{bmatrix} \delta \theta + R \left(\check{\theta} \right) \delta \underline{f} \end{split}$$

3 Tre-akset plattform, flat ikke-roterende jord

For en tre-akset plattform kan feilen defineres på flere måter.

3.3 Tranformasjonsfeilen referert n-systemet

Vi skal her se på feillikningene når feilen i beregningen av rotasjonsmatrisa \mathbb{R}_p^n refereres til n-systemet.

Feildefinisjoner			
$\delta \underline{f} = \underline{f}^p - \tilde{\underline{f}}^p$	$\delta \underline{x}^n = \underline{x}^n - \underline{\tilde{x}}^n$	$R_p^n = R\left(\underline{\varepsilon}\right) \tilde{R}_p^n$	
$\delta\underline{\omega} = \underline{\omega}_p^{np} - \underline{\tilde{\omega}}_p^{np}$	$\delta \underline{v}^n = \underline{v}^n - \underline{\tilde{v}}^n$	$R\left(\underline{\varepsilon}\right) = I + S\left(\underline{\varepsilon}\right)$	

Systemmodell	Navigasjonslikninger	Feillikninger
$\underline{\dot{x}}^n = \underline{v}^n$	$\dot{\tilde{\underline{x}}}^n = \tilde{\underline{v}}^n$	$\delta \dot{\underline{x}^n} = \delta \underline{v}^n$
$\underline{\dot{v}}^n = R_p^n \underline{f}^p - \underline{g}^n$	$\dot{\underline{\tilde{v}}}^n = \tilde{R}_p^n \underline{\tilde{f}}^p - \underline{g}^n$	$\delta \underline{\dot{v}}^n = -S\left(\tilde{R}_p^n \underline{\tilde{f}}^p\right) \underline{\varepsilon} + \tilde{R}_p^n \delta \underline{f}$
$\dot{R}_{p}^{n} = R_{p}^{n} S\left(\underline{\omega}_{p}^{np}\right)$	$\tilde{R}_{p}^{n} = \tilde{R}_{p}^{n} S\left(\underline{\tilde{\omega}}_{p}^{np}\right)$	$\dot{\underline{arepsilon}} = \tilde{R}_p^n \delta \underline{\omega}$

Bevis av d.l. for $\delta \underline{v}^n$:

$$\delta\underline{\dot{v}}^{n}=R_{p}^{n}\underline{f}^{p}-\underline{g}^{n}-\left(\tilde{R}_{p}^{n}\underline{\tilde{f}}^{p}-\underline{g}^{n}\right)=\left(I+S\left(\underline{\varepsilon}\right)\right)\tilde{R}_{p}^{n}\left(\underline{\tilde{f}}^{p}+\delta\underline{f}\right)-\tilde{R}_{p}^{n}\underline{\tilde{f}}^{p}=S\left(\underline{\varepsilon}\right)\tilde{R}_{p}^{n}\underline{\tilde{f}}^{p}+\tilde{R}_{p}^{n}\delta\underline{f}$$

Bevis av d.l. for $\underline{\varepsilon}$:

$$\text{V. siden: } \dot{R}_{p}^{n} - \tilde{R}_{p}^{n} = S\left(\underline{\dot{\varepsilon}}\right) \tilde{R}_{p}^{n} + \left(I + S\left(\underline{\varepsilon}\right)\right) \tilde{R}_{p}^{n} - \tilde{R}_{p}^{n} = S\left(\underline{\dot{\varepsilon}}\right) \tilde{R}_{p}^{n} + S\left(\underline{\varepsilon}\right) \tilde{R}_{p}^{$$

Satt sammen:

$$S\left(\underline{\dot{\varepsilon}}\right)\tilde{R}_{p}^{n}+S\left(\underline{\varepsilon}\right)\tilde{R}_{p}^{n}S\left(\underline{\tilde{\omega}}_{p}^{np}\right)=S\left(\underline{\varepsilon}\right)\tilde{R}_{p}^{n}S\left(\underline{\tilde{\omega}}_{p}^{np}\right)+\tilde{R}_{p}^{n}S\left(\delta\underline{\omega}\right)$$

$$S\left(\underline{\dot{\varepsilon}}\right)\tilde{R}_{p}^{n}=\tilde{R}_{p}^{n}S\left(\delta\underline{\omega}\right)$$

$$S\left(\underline{\dot{\varepsilon}}\right) = \tilde{R}_{p}^{n}S\left(\delta\underline{\omega}\right)\tilde{R}_{n}^{p} \Leftrightarrow \underline{\dot{\varepsilon}} = \tilde{R}_{p}^{n}\delta\underline{\omega}$$