Plenum 18/9

4.3:
$$\frac{1}{4}$$
, $\frac{3}{3}$, $\frac{3}{5}$, $\frac{3}{5}$, $\frac{3}{5}$, $\frac{1}{5}$, $\frac{$

Da et:
$$\lim_{n \to \infty} \left(\frac{2n^{3}-13}{5n^{3}-4} - \frac{4n^{4}+12}{1-5n^{4}} \right)$$

$$\lim_{n \to \infty} \frac{2n^{3}-13}{5n^{3}-4} - \lim_{n \to \infty} \frac{4n^{4}+12}{1-5n^{4}}$$

$$\lim_{n \to \infty} \frac{2n^{3}-13}{5n^{3}-4} - \lim_{n \to \infty} \frac{4n^{4}+12}{1-5n^{4}}$$

$$\lim_{n \to \infty} \frac{2n^{3}-13}{5n^{3}-4} - \lim_{n \to \infty} \frac{4n^{4}+12}{1-5n^{4}}$$

$$\lim_{n \to \infty} \frac{2n^{3}-13}{5n^{3}-4} - \lim_{n \to \infty} \frac{4n^{4}+12}{1-5n^{4}}$$

$$\lim_{n \to \infty} \frac{2n^{3}-13}{5n^{3}-4} - \lim_{n \to \infty} \frac{4n^{4}+12}{1-5n^{4}}$$

$$\lim_{n \to \infty} \frac{2n^{3}-13}{5n^{3}-4} - \lim_{n \to \infty} \frac{4n^{4}+12}{1-5n^{4}}$$

$$\lim_{n \to \infty} \frac{2n^{3}-13}{5n^{3}-4} - \lim_{n \to \infty} \frac{4n^{4}+12}{1-5n^{4}}$$

$$\lim_{n \to \infty} \frac{2n^{3}-13}{5n^{3}-4} - \lim_{n \to \infty} \frac{4n^{4}+12}{1-5n^{4}}$$

$$\lim_{n \to \infty} \frac{2n^{3}-13}{5n^{3}-4} - \lim_{n \to \infty} \frac{4n^{4}+12}{1-5n^{4}}$$

$$\lim_{n \to \infty} \frac{2n^{3}-13}{5n^{3}-4} - \lim_{n \to \infty} \frac{4n^{4}+12}{1-5n^{4}}$$

$$\lim_{n \to \infty} \frac{2n^{3}-13}{5n^{3}-4} - \lim_{n \to \infty} \frac{4n^{4}+12}{1-5n^{4}}$$

$$\lim_{n \to \infty} \frac{2n^{3}-13}{5n^{3}-4} - \lim_{n \to \infty} \frac{4n^{4}+12}{1-5n^{4}}$$

$$\lim_{n \to \infty} \frac{2n^{3}-13}{(n^{2}+n^{2}+n^{2}+1)}$$

$$\lim_{n \to \infty} \frac{2n^{3}-13}{(n^{2}+n^{2}+1)}$$

$$\lim_{n \to \infty} \frac{2n^$$

4) b)
$$\lim_{n\to\infty} \frac{2\sin(n)}{n} = 0$$
:

 $\lim_{n\to\infty} \frac{2\sin(n)}{n} = 0$:

 $\lim_{n\to\infty} \frac{2\sin(n)}{n} = \lim_{n\to\infty} \frac{2\sin(n)}{n} < E$

Merk: $|\sin(n)| \le 1$ for alle n ($\sin(n) \in [-1, 1]$)

for alle n). Derfor or det not a finne $N \in \mathbb{N}$
 $\lim_{n\to\infty} \frac{2\cdot 1}{n} = \frac{2}{N} < E$ ($\lim_{n\to\infty} \frac{2\cdot 1}{n} = \frac{2}{n}$)

 $\lim_{n\to\infty} \frac{2\cdot 1}{n} = \frac{2}{N}$

Velg N til å være det fórste heltallet stórre enn $\frac{2}{E}$. Da er, for alle n > N: $\frac{2 \sin(n)}{n} - 0 \le \frac{2}{n} \le \frac{2}{E} = E$ De med er $\lim_{n \to \infty} \frac{2\sin(n)}{n} = 0$.

= < N

$$(3)c) \lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 0$$

Vil ha: $\lim_{n\to\infty} \frac{a_n}{b_n}$ er verken 0 eller ∞ .

La
$$\{a_n\} = \{\frac{1}{n}\}, \{b_n\} = \{\frac{1}{n}\}, Da \text{ vi}$$

 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{n} = 0$

 $\lim_{n\to\infty}b_n=0$

Here med: $\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{1}{h} = \lim_{n\to\infty} 1 = 1$ $\{0,\infty\}$ $\{(-1)^n = \{-1,1\}$

5.1: Kontinuitet

1) e)
$$f(x) = \frac{\sqrt{x+2}}{\ln|x|}$$
; antar $f \rightarrow 1R$ (reell funksjon)

Vy er definer for $y \ge D$ (pga.) $y = x + 2 \ge 0$ $x \ge -2$

ln|x| er definert for alle $x \neq 0$. ln|x| er definert for alle $x \neq 0$ og s.a. $ln|x| \neq 0$, ln|x| er definert for alle $x \neq 0$ og s.a. $ln|x| \neq 0$,