Chapitre 5 – Isométries en dimension 2 et 3

Dans tout le chapitre, E désigne un espace préhilbertien de dimension $n \in \mathbb{N}^*$.

On rappelle que si $(x_1, ..., x_n)$ est une famille de n vecteurs de E et $B = (e_1, ..., e_n)$ est une base de E, alors $\det_B(x_1, ..., x_n) = \det(\operatorname{Mat}_B(x_1, ..., x_n))$

$$= \det(X_1, \dots, X_n)$$
 où $\forall k \in [1, n], X_k = \operatorname{Mat}_B(x_k)$

Si B' est une autre base de E, si on note, $\forall k \in [1, n], X'_k = \operatorname{Mat}_{B'}(x_k)$ et $P = \operatorname{Pass}_{B \to B'}$

Alors
$$X_k = PX'_k$$
.

$$\operatorname{Donc} \operatorname{det}(X_1, \dots, X_n) = \operatorname{det}(PX_1', \dots, PX_n') = \operatorname{det}(P) \operatorname{det}(X_1', \dots, X_n') = \operatorname{det}(B') \times \operatorname{det}_{B'}(X_1, \dots, X_n)$$

1) Espaces euclidiens orientés

On se fixe une b.o.n $B_0 = (e_1, ..., e_n)$ de E.

Pour toute base orthonormée B de E, on sait que $P = Pass_{B_0 \to B} \in O_n(\mathbb{R})$

Ainsi $det(P) = \pm 1$

Ainsi l'ensemble des bases orthonormées de E peut donc s'écrire comme l'union disjointe :

$$\{B \text{ b.o.n de } E \mid \det(Pass_{B_0 \to B}) = 1\} \cup \{B \text{ b.o.n de } E \mid \det(Pass_{B_0 \to B}) = -1\}$$

On dit que B a la même orientation que B_0 si $\det(Pass_{B_0 \to B}) > 0$.

On dit que B inverse l'orientation de B_0 si $\det(Pass_{B_0 \to B}) < 0$.

La base B_0 est appelée base de référence pour l'orientation de E.

Orienter l'espace euclidien consiste à choisir une b.o.n B_0 de B de référence et adopter le vocabulaire suivant :

<u>Définition</u>: Soit E un espace euclidien orienté par une base <u>orthonormée</u> B_0 . Soit B une b.o.n de E, on dit que la base B est directe si $\det(Pass_{B_0\to B})=+1$ et indirecte si $\det(Pass_{B_0\to B})=-1$

Remarque:

- 1) B_0 est une base directe puisque $Pass_{B_0 \to B_0} = I_n \in SO_n(\mathbb{R})$
- 2) L'ordre des éléments de la base orthonormée B est important
- 3) À partir d'une b.o.n <u>indirecte</u> de E, on peut toujours construire une b.o.n directe de E en multipliant l'un des vecteurs par -1.

Produit mixte

Soit *E* un espace euclidien <u>orienté</u> de dimension $n \in \mathbb{N}^*$.

<u>Propriété</u>: Soit $(x_1, ..., x_n)$ une famille de \underline{n} vecteurs de E. Alors le déterminant $\det_B(x_1, ..., x_n)$ est le même dans n'importe quelle b.o.n <u>directe</u> de E. On le nomme le produit mixte de la famille $(x_1, ..., x_n)$ et on le note $[x_1, ..., x_n] = \det_B(x_1, ..., x_n)$ $\forall B$ b.o.n <u>directe</u> de E.

Remarque:

Par propriétés des déterminants, on a :

$$[x_1, ..., x_n] = 0 \Leftrightarrow \text{la famille } (x_1, ..., x_n) \text{ est liée}$$

2) Classification des isométries en dimension 2

Dans toute cette partie, E désigne un espace euclidien orienté de dimension 2.

Rotation du plan orienté

<u>Théorème</u>: Une isométrie directe du plan orienté E a la même matrice dans n'importe quelle base <u>orthonormée</u> directe de E. Plus précisément, il existe un réel θ , unique modulo 2π , tel que $\forall B$ b.o.n directe de E,

$$Mat_B(u) = R_\theta$$

On dit alors que u est la rotation d'angle θ et on la note $u=Rot_{\theta}$

<u>Remarque</u>: comprendre l'unicité modulo 2π comme suit, si $\exists \theta, \theta' \in \mathbb{R}$ tel que $R_{\theta} = R_{\theta'}$ alors

$$\theta \equiv \theta'[2\pi]$$

<u>Définition</u>: Soient $x,y \in E$ non nuls. Il existe une unique rotation $r \in SO(E)$ qui envoie $\frac{x}{\|x\|} \sup \frac{y}{\|y\|}$. On appelle alors mesure de l'angle orienté de x à y le réel θ unique à 2π près tel que $r = Rot_{\theta}$ et on note $\widehat{(x,y)} \equiv \theta[2\pi]$.

Si de plus, $\theta \in]-\pi;\pi]$, on dit que θ est la mesure <u>principale</u> de l'angle orienté de x à y.

<u>Proposition</u>: pour tous $x, y, z \in E \setminus \{0_E\}$

- (i) $\forall \lambda, \mu \in \mathbb{R}_+^*, (\widehat{\lambda x}, \widehat{\mu y}) \equiv \widehat{(x, y)}[2\pi]$
- (ii) $\widehat{(x,y)} \equiv \widehat{(x,z)} + \widehat{(z,y)} [2\pi]$
- (iii) $\widehat{(y,x)} \equiv -\widehat{(x,y)} [2\pi]$

<u>Proposition</u>: Soient $x, y \in E \setminus \{0_E\}$. Notons $\theta \equiv \widehat{(x,y)} [2\pi]$. Alors

$$\langle x, y \rangle = ||x|| ||y|| \cos(\theta)$$
 et $[x, y] = ||x|| ||y|| \sin(\theta)$

Où [x, y] désigne le produit mixte de x et y. (on a $[x, y] = \det_B(x, y)$ pour toute base orthonormée directe B de E.

Démonstration **★**

Comme $\frac{x}{\|x\|}$ est de norme 1, on peut connaître une b.o.n directe $\mathcal{B} = \left(\frac{x}{\|x\|}, u\right)$ de E. Alors comme

$$\frac{y}{\|y\|} = \operatorname{Rot}_{\theta} \left(\frac{x}{\|x\|} \right) \operatorname{et} \operatorname{Mat}_{\mathcal{B}} (\operatorname{Rot}_{\theta}) = R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

$$\operatorname{Or} \frac{y}{\|y\|} = \cos\theta \ \times \frac{x}{\|x\|} + \sin\theta \ \times u \Longleftrightarrow y = \|y\| \cos\theta \ \times \frac{x}{\|x\|} + \|y\| \sin\theta \ \times u$$

Alors
$$\langle x, y \rangle = \|x\| \|y\| \cos \theta \left(\frac{x}{\|x\|}, \frac{x}{\|x\|} \right) + \|x\| \|y\| \sin \theta \left(\frac{x}{\|x\|}, u \right) = \|x\| \|y\| \cos \theta$$

<u>Théorème</u>: Soient u une isométrie indirecte du plan E (ie $u \in O(E)$ avec $\det(u) = -1$) et $B = (e_1, e_2)$ une base orthonormée de E. Alors il existe $\theta \in \mathbb{R}$ tel que

$$Mat_B(u) = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$$

Et u correspond à la réflexion par rapport à la droite vectorielle engendrée par le vecteur

$$a = \cos\left(\frac{\theta}{2}\right)e_1 + \sin\left(\frac{\theta}{2}\right)e_2$$

<u>Théorème</u>: Les endomorphismes orthogonaux directs du plan orienté E sont les rotations vectorielles. Celles-ci commutent entre elles et ont même représentation matricielle dans toute base orthonormée directe de E. Les endomorphismes orthogonaux indirects du plan sont les réflexions.

<u>Corollaire</u>: Dans le plan, la composée de deux rotations est une rotation, la composée de deux réflexions est une rotation, et la composée d'une rotation et d'une réflexion est une réflexion.

Classification des isométries en dimension 3

<u>Théorème</u>: Soit $u \in SO(E)$ une isométrie directe de E. Alors 1 est nécessairement valeur propre de u, et si l'on prend $a \in \ker(u - Id_E)$ unitaire, il existe un unique réel θ , à 2π près, tel que pour toute base orthonormée directe $\mathcal B$ de premier vecteur a,

$$Mat_B(u) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$$

On dit alors que u est la rotation d'axe dirigé et orienté par a et d'angle orienté par θ . On la notera $\text{Rot}_{a,\theta}$.

<u>Théorème</u>: Soit $u \in O(E) \setminus SO(E)$ une isométrie indirecte de E. Alors -1 est nécessairement valeur propre de u, et si l'on prend $a \in \ker(u + Id_E)$ unitaire, il existe un unique réel θ , à 2π près, tel que pour toute base orthonormée directe \mathcal{B} de premier vecteur a,

$$\operatorname{Mat}_{B}(u) = \begin{pmatrix} -1 & 0 & 0\\ 0 & \cos(\theta) & -\sin(\theta)\\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Ainsi, u est la rotation d'axe D dirigé et orienté par a et d'angle θ avec la réflexion par rapport au plan D^{\perp} .

<u>Définition</u>: Soient $x, y \in E$ de dimension 3. On appelle produit vectoriel de x par y, noté $x \land y$, l'unique élément de E tel que :

$$\forall z \in E, [x, y, z] = \langle x \land y, z \rangle$$

Exemple:

$$\forall y \in E, 0_E \land y = 0_E$$

Proposition: L'application produit vectoriel

$$\begin{array}{ccc} E \times E & \to & E \\ (x,y) & \mapsto & x \wedge y \end{array}$$

est bilinéaire antisymétrique :

$$\forall \lambda \in \mathbb{R}, \forall (x, y, t) \in E^3, (\lambda x + y) \land t = \lambda(x \land t) + (y \land t) \text{ et } y \land x = -x \land y$$

Proposition: Soient $x, y \in E$

- (i) $x \wedge y$ est orthogonal à x et y, ie $\langle x \wedge y, x \rangle = 0$ et $\langle x \wedge y, y \rangle = 0$.
- (ii) La famille (x, y) est libre si et seulement si $x \land y \neq 0_E$.

<u>Proposition</u>: Soit $\mathcal{B}=(e_1,e_2,e_3)$ une base orthonormée directe de E. Pour $x,y\in E$, notons

$$x = \sum_{k=1}^{3} x_k e_k$$
 et $y = \sum_{k=1}^{3} y_k e_k$

Avec $(x_1, x_2, x_3), (y_1, y_2, y_3) \in \mathbb{R}^3$, alors

$$x \wedge y = (x_2y_3 - x_3y_2)e_1 + (x_3y_1 - x_1y_3)e_2 + (x_1y_2 - x_2y_1)e_3$$

<u>Proposition</u>: Si $\mathcal{B} = (e_1, e_2, e_3)$ est en base orthonormée directe de E.

Alors
$$e_3=e_1 \wedge e_2$$
, $e_1=e_2 \wedge e_3$, $e_2=e_3 \wedge e_1$

<u>Proposition</u>: Si (x, y) est une famille orthonormée de E, alors $(x, y, x \land y)$ est une b.o.n directe de E.

Exemple : Soit E un ev euclidien orienté de dimension 3 muni d'une base orthonormée directe $B = (e_1, e_2, e_3)$.

Déterminer la nature géométrique et les caractéristiques de $u \in \mathcal{L}(E)$ tel que

$$Mat_B(u) = A := \frac{1}{3} \begin{pmatrix} 2 & 2 & 1 \\ -1 & 2 & -2 \\ -2 & 1 & 2 \end{pmatrix}$$

On a ${}^tAA=I_3$, donc $A\in \mathcal{O}_3(\mathbb{R})$, et comme B est une b.o.n de $E,u\in \mathcal{O}(E)$.

De plus,
$$\det u = \det A = \frac{1}{3^3} \begin{vmatrix} 2 & 2 & 1 \\ -1 & 2 & -2 \\ -2 & 1 & 2 \end{vmatrix} = \frac{1}{3^3} \begin{vmatrix} 2 & 0 & 1 \\ -1 & 3 & -2 \\ -2 & 3 & 2 \end{vmatrix} = \frac{1}{3^2} \begin{vmatrix} 2 & 0 & 1 \\ -1 & 1 & -2 \\ -2 & 1 & 2 \end{vmatrix}$$
$$= \frac{1}{3^2} \left| \begin{vmatrix} 2 & 0 & 1 \\ 1 & 0 & -4 \\ 2 & 1 & 2 \end{vmatrix} \right|$$
$$= \frac{1}{3^2} \times (-1) \times (-8 - 1)$$
$$= +1$$

Donc $u \in SO(E)$

De plus, $u \neq Id_E$, donc u est une rotation autour d'un axe $D = \ker(u - Id_E)$.

Soit $x \in E$, $x = \sum_{k=1}^{3} x_k e_k$ avec les $x_k \in \mathbb{R}$.

Alors
$$x \in D \Leftrightarrow (u - Id_E)(x) = 0_E \Leftrightarrow (A - I_3) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \frac{1}{3} \begin{pmatrix} -1 & 2 & 1 \\ -1 & -1 & -2 \\ -2 & 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} x_1 = x_2 \\ x_3 = -x_2 \end{cases}$$

Donc $D = \text{Vect}\{e_1 + e_2 - e_3\}$

De plus, $||e_1 + e_2 - e_3||^3 = 3 \text{ car } B \text{ est une b.o.n de } E.$

Donc on pose $a=\frac{1}{\sqrt{3}}(e_1+e_2-e_3)$ et on oriente l'axe $D=\mathrm{Vect}\{a\}$ par le vecteur a.

Alors $u = \operatorname{Rot}_{a,\theta}$ et on cherche (modulo 2π) l'angle de cette rotation.

On remarque que $e_1-e_2\perp a$

Donc on peut poser $b=\frac{1}{\sqrt{2}}(e_1-e_2)$ de manière que (a,b) soit orthonormée.

Alors $B' = (a, b, a \land b)$ est une b.o.n directe de E

$$\operatorname{Mat}_{B}(a \wedge b) = \operatorname{Mat}_{B}(a) \wedge \operatorname{Mat}_{B}(b) = \frac{1}{\sqrt{3}} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \wedge \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ -1 \\ -2 \end{pmatrix}$$

le
$$a \wedge b = \frac{1}{\sqrt{6}}(-e_1 - e_2 - e_3)$$

 $\mathsf{Et}\,\mathsf{Mat}_{B'}(u) = {}^t \mathit{PAP}\,\,\mathsf{ou}\,\mathit{P} = \mathit{Pass}_{B\to B'}$

On a donc
$$\operatorname{Mat}_{B'}(u) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & -\sqrt{3}/2 \\ 0 & \sqrt{3}/2 & 1/2 \end{pmatrix}$$

Donc
$$\theta = \frac{\pi}{3}[2\pi]$$