

Non-Deterministic Finite Automata

Nondeterministic Finite Accepter (NFA)

Alphabet set = $\{a\}$

Nondeterministic Finite Accepter (NFA)

Alphabet set = $\{a\}$

Nondeterministic Finite Accepter (NFA)

Alphabet set = $\{a\}$

All input is consumed

Input cannot be consumed

An NFA accepts a string: when there is a computation of the NFA that accepts the string

AND

all the input is consumed and the automaton is in a final state

Example

aa is accepted by the NFA:

because this computation accepts aa

Rejection example

An NFA rejects a string: when there is no computation of the NFA that accepts the string:

 All the input is consumed and the automaton is in a non final state

OR

The input cannot be consumed

Example

a is rejected by the NFA:

All possible computations lead to rejection

Rejection example

Input cannot be consumed

Input cannot be consumed

aaa is rejected by the NFA:

All possible computations lead to rejection

Language accepted: $L = \{aa\}$

Lambda Transitions

a a

(read head does not move)

all input is consumed

String aa is accepted

Rejection Example

(read head doesn't move)

No transition: the automaton hangs

Input cannot be consumed

String aaa is rejected

Language accepted: $L = \{aa\}$

$$-q_0 \xrightarrow{a} q_1 \xrightarrow{\lambda} q_2 \xrightarrow{a} q_3$$

Another NFA Example

Another String

 $a \mid b \mid a \mid b$

Language accepted

$$L = \{ab, abab, ababab, ...\}$$
$$= \{ab\}^+$$

Another NFA Example

Language accepted

$$L(M) = {\lambda, 10, 1010, 101010, ...}$$

= ${10} *$

Remarks:

- The λ symbol never appears on the input tape
- ·Simple automata:

Formal Definition of NFAs

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: Set of states, i.e. $\{q_0, q_1, q_2\}$

 Σ : Input applied, i.e. $\{a,b\}$

 δ : Transition function

 q_0 : Initial state

F: Final states

Transition Function δ

$$\delta(q, x) = \{q_1, q_2, \square, q_k\}$$

resulting states with following one transition with symbol x

Transition Function δ

$$\delta(q_0,1) = \{q_1\}$$

$$\delta(q_1,0) = \{q_0,q_2\}$$

$$\delta(q_0,\lambda) = \{q_0,q_2\}$$

$$\delta(q_2,1) = \emptyset$$

Extended Transition Function δ^*

$$\delta * (q_0, a) = \{q_1\}$$

$$\delta * (q_0, aa) = \{q_4, q_5\}$$

$$\delta * (q_0, ab) = \{q_2, q_3, q_0\}$$

Special case:

for any state q

$$q \in \delta^*(q,\lambda)$$

Formally

 $q_j \in \delta^*(q_i, w)$: there is a walk from q_i to q_j with label w

$$w = \sigma_1 \sigma_2 \square \sigma_k$$

$$q_i \xrightarrow{\sigma_1} \sigma_2 \xrightarrow{\sigma_2} \sigma_k$$

The Language of an NFA $\,M\,$

$$\delta * (q_0, aa) = \{q_4, \underline{q_5}\} \qquad aa \in L(M)$$

$$\in F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_7$$

$$q_7$$

$$q_7$$

$$q_8$$

$$q_8$$

$$q_8$$

$$q_8$$

$$q_9$$

$$\delta * (q_0, ab) = \{q_2, q_3, \underline{q_0}\} \qquad ab \in L(M)$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_4$$

$$q_5$$

$$q_4$$

$$q_5$$

$$q_4$$

$$q_5$$

$$q_4$$

$$q_1$$

$$p_2$$

$$p_3$$

$$p_4$$

$$p_4$$

$$p_4$$

$$p_5$$

$$p_4$$

$$p_5$$

$$p_4$$

$$p_5$$

$$p_7$$

$$p_8$$

$$\delta * (q_0, abaa) = \{q_4, \underline{q_5}\} \quad aaba \in L(M)$$

$$\in F$$

$$F = \{q_0, q_5\}$$

$$q_4$$

$$q_5$$

$$q_6$$

$$q_1$$

$$\lambda$$

$$\lambda$$

$$\delta * (q_0, aba) = \{q_1\} \qquad aba \notin L(M)$$

$$\notin F$$

$$L(M) = \{ab\} * \cup \{ab\} * \{aa\}$$

Formally

The language accepted by NFA M is:

$$L(M) = \{w_1, w_2, w_3, ...\}$$

where
$$\delta * (q_0, w_m) = \{q_i, q_j, ..., q_k, \square \}$$

and there is some
$$q_k \in F$$
 (final state)

$$w \in L(M) \qquad \delta * (q_0, w)$$

$$q_i \qquad q_k \in F$$