Pozitif Terimli Seriler iam Yakınsaklık Testleri

1) Internal Testi

Interpal testi, poètif terimir bir serinin ona benzer zekilde davranan bir improper interpalk korsilastırmak suretiyle, yakınsak veya ıraksak olup olmadıpını belirlememize yardımcı olur.

Teorem: f fonksiyonu, bir pozitif N tamsayısı idin, $[N_1 \omega]$ aralıpında pozitif, sürekli azalan ve $a_n = f(n)$ olsun. O zaman, $\sum_{n=N}^{\infty} a_n$ serisi ile $\int_{n=1}^{\infty} f(n) dn$ inteprali aynı karakterlidir. (Her ikisi de ıraksar veya her ikisi de yakınsar)

Not: Yukarıdaki tesrem, veriten kosullar altında sadıce seri ile intepralm aynı karakterde olduğunu ifade eder, serinin toplamının integralin deperine esit olduğunu söylemez.

Ornele: 5 1 serisinin yakınsaklıpını inceley mit.

 $f(x) = \frac{1}{x^2+1}$ olsun. f forksiyonu $[1, \omega)$ aralipinda pozitif ve süreklidir

 $f'(x) = \frac{-2x}{(x^2+1)^2} < 0$ oldupundan f, bu aralıkta azalandır.

Dolayisiyla interpal testi kullandabilir.

 $\int \frac{dx}{1+x^2} = \lim_{R\to\infty} \int \frac{dx}{1+x^2} = \lim_{R\to\infty} \arctan \left| \frac{R}{1} \right| =$

=> Improper interpal yakınsak oldupundan seri de yakınsaktır.

Harmonik Seri

 $\sum_{n=1}^{\infty} \frac{1}{n}$ Serisine harmonik seri denir

A Harmonik seri ta' a waksar. Ancak bu sonuca n-terim testi ile ulasamayız, intepral testi kullanmalıyız:

 $f(x) = \frac{1}{x}$ $[1,\infty)$ da pozitif, sürekli ve azalandır.

 $\int_{1}^{\infty} \frac{1}{n} dn = \lim_{R \to \infty} \int_{R}^{R} \frac{dn}{n} = \lim_{R \to \infty} \lim_{R \to \infty} \left(\ln R - \ln 1 \right) = \infty = \inf_{R \to \infty} \inf_{R \to \infty} \lim_{R \to \infty} \left(\ln R - \ln 1 \right) = \infty = \inf_{R \to \infty} \inf_{R \to \infty} \lim_{R \to \infty} \lim_{R \to \infty} \lim_{R \to \infty} \left(\ln R - \ln 1 \right) = \infty = \inf_{R \to \infty} \lim_{R \to \infty} \lim_{R$

$$\sum_{n}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \cdots$$
 Serisine p-serisi denir.

$$\Theta$$
 P-serisi P>1 iain yakınsak, P<1 iain ıraksaktır. (+ ω 'a ıraksar)
P>1 olsun. $f(x) = \frac{1}{xP}$ fonksiyonu $[1, \omega)$ da pozitif, sürekli ve azalandır.

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \int_{1}^{\infty} x^{-p} dx = \lim_{R \to \infty} \left[\frac{x^{-p+1}}{-p+1} \right]_{R}^{R} = \frac{1}{1-p} \lim_{R \to \infty} \left[\frac{1}{R^{p-1}} - 1 \right] = \frac{1}{p-1}$$

oldypundan interpal testine pone seri yakınsaktır. (Seri toplamı 1 depildir!)

$$\int \frac{1}{n^p} dn = \frac{1}{1-p} \lim_{R\to\infty} \left(R^{1-p} - 1 \right) = \infty$$

oldupundan interpal testine pore seri vraksakter.

2) Mukayese Testi

Ian ve Ibn, terimleri nepatif olmayon iki seri olsun.

- a) Eper her n iain ansbn ve Ibn serisi yakınsak ise Ian serisi de yakınsaktır.
- b) toer her n iain and by ve Iby serisi walksale ise Iay serisi de

Druck =
$$\sum_{n=1}^{\infty} \frac{3n+1}{n^3+1}$$
 serisinin karakterini behrleyiniz

$$\frac{3n+1}{n^3+1} = \frac{3n}{n^3+1} + \frac{1}{n^3+1} < \frac{3n}{n^3} + \frac{1}{n^3} < \frac{3}{n^2} + \frac{1}{n^2} = \frac{4}{n^2}$$

$$= \sum_{n=1}^{\infty} \frac{3n+1}{n^3+1} < \sum_{n=1}^{\infty} \frac{4}{n^2} = \sum_{n=1}^{\infty} \frac{4}{n^2} p - \text{serisi olup } p = 271 \text{ oldupundan yakunsaktur.}$$

$$\text{Mukayese testine pore } \sum_{n=1}^{\infty} \frac{3n+1}{n^3+1} \text{ yakunsaktur.}$$

Ornele:
$$\frac{3}{5}$$
 5 Serisinin Karakterini belinkyin.

$$\frac{5}{5n-1} = \frac{1}{n-\frac{1}{5}} > \frac{1}{n} \Rightarrow \sum_{n=1}^{\infty} \frac{5}{5n-1} > \sum_{n=1}^{\infty} \frac{1}{n} \Rightarrow \text{Molecules elective points} = \sum_{n=1}^{\infty} \frac{5}{5n-1}$$
Harmonius seri

TS8

$$lnn < n \Rightarrow \frac{1}{lnn} > \frac{1}{n} \Rightarrow \sum_{n=2}^{\infty} \frac{1}{lnn} > \sum_{n=2}^{\infty} \frac{1}{n} \Rightarrow Mukayese + testine pone seri iraksalutur.$$

harmon! seri iraksa!

Örnek: $\sum_{i=1}^{\infty} \frac{1}{e^{i} \sqrt{n}}$ serisinin karakterini belirleyin.

1.401
$$e^n > n \Rightarrow \frac{1}{e^n} \langle \frac{1}{n} \Rightarrow \frac{1}{e^n \sqrt{n}} \langle \frac{1}{n \sqrt{n}} = \frac{1}{n^{3/2}} \rangle \Rightarrow \sum_{n=1}^{\infty} \frac{1}{e^n \sqrt{n}} \langle \sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \rangle \Rightarrow Mukayese testine polyconsake $P = \frac{3}{2} > 1$

yakınsak$$

$$\frac{2 \cdot ypl}{e^{1} \ln x} \left(\frac{1}{e^{n}} \right) = \sum_{n=1}^{\infty} \frac{1}{e^{n} \ln x} \left(\sum_{n=1}^{\infty} \frac{1}{e^{n}} \right) = \sum_{n=1}^{\infty} \frac{1}{e^{n}} \left(\frac{1}{e^{n}} \right)^{n-1}, r = \frac{1}{e} (1 =)$$

Mukayese testine permetrik seri

3) Limit Testi

I an ve Ibn pozitif terimli iki seri olmak lizere lim an = L olsun.

Smell: 5 1 serisinin karakterini belirkyin.

$$\frac{1}{1+\sqrt{n}} < \frac{1}{\sqrt{n}} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{1+\sqrt{n}} < \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \qquad P = \frac{1}{2} > 1 \Rightarrow Mukayese testi sonua vermez.$$

$$\lim_{n\to\infty} \frac{1}{1+\sqrt{n}} = \lim_{n\to\infty} \frac{\sqrt{n}}{1+\sqrt{n}} = 1 \neq 0, \infty$$

Limit testine pore iki seri aynı karakterde olup \$\frac{1}{\sigma} \frac{1}{\sigma} \text{ iraksak olduğundan

Omen.
$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^4-16}}{n^2\sqrt{n+1}}$$
 serisinin karakterini belirleyin.

$$\lim_{n\to\infty} \frac{\sqrt[3]{n^4-16}}{n^2\sqrt{n+1} \to \frac{5}{2}} = \lim_{n\to\infty} \frac{n^{7163}\sqrt{n^4-16}}{n^2\sqrt{n+1}} = 1 \neq 0, \infty$$

$$\frac{1}{n^{716}}$$

$$\frac{1}{n^{716}}$$

Limit testine pore iki seri agni karakterdedir.

$$\frac{3}{2} \frac{1}{n^{\frac{3}{4}}} = \frac{7}{6} \times 1$$
 oldupundan yakınsaktır, dolayısıyla seri yakınsaktır.

$$\frac{6}{5}$$
 $\frac{1}{5}$ $\frac{1}{5}$

$$\lim_{n\to\infty} \frac{n^3 + 2n + 3}{\frac{1}{n}} = \lim_{n\to\infty} \frac{n^4 + 2n^2 + 3n}{n^4 + 5n^2} = 1 \neq 0, \infty$$

5 1 harmonik seri olup iraksaktir, limit testinden seri iraksaktir.

Bruck = \sum_{n=1}^{\infty} \sin^3\left(\frac{1}{n}\right) \serisinin karakterini belvleyin

$$\lim_{n\to\infty} \frac{\sin^3\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)^3} = \lim_{n\to\infty} \left(\frac{\sin\frac{1}{n}}{\frac{1}{n}}\right)^3 = 1 \neq 0, \infty$$

 $\frac{1}{2} = \frac{1}{n^3}$ $9 = 3 \times 1$ oldupundan yakınsaktır, limit testinden seri yakınsaktır.

Bruck: \sum 1 ruck: \sum 1 ruck = 1 ruck | 1 ruck | 2 ruc

$$\lim_{n\to\infty}\frac{\frac{1}{e^n}}{\frac{1}{e^n}}=\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0$$

$$\sum_{n=1}^{\infty}\frac{1}{e^n}=\sum_{n=1}^{\infty}\frac{1}{e}\left(\frac{1}{e}\right)^{n-1}$$

$$r=\frac{1}{e}<1$$
yakınsaktır.

Limit testinden, $\sum_{i=1}^{\infty} \frac{1}{i}$ yakınsak oldupundan seri de yakınsaktır.

Not: sealen seri 5 to obayde lim letin = limiter = > sumit testi sonua vermendo

iralisah

4) Oran Testi

I an portifi terimli bir seri ve lim anti = L olsun.

- a) LL1 ise seri yakınsaktır.
- b) L>1 ise seri traksalatir.
- c) L=1 ise test sonua vermez.

Örnele: Asapidaki serileren karakterlerini belirleyin

$$\frac{1}{100} \sum_{n=0}^{\infty} \frac{2^{n+5}}{3^n} \Rightarrow \lim_{n\to\infty} \frac{2^{n+1}+5}{3^{n+1}} = \frac{1}{3} \lim_{n\to\infty} \frac{2+5 \cdot 2^{-n}}{1+5 \cdot 2^{-n}} = \frac{1}{3} \cdot \frac{2}{1} = \frac{2}{3} < 1$$

Oran testine pore seri yakınsaktır.

Not: Bu durum serinin toplamının \frac{2}{3} oldupu anlamına pelmez Toplamını bulalım:

$$\sum_{n=3}^{\infty} \frac{2^n + 5}{3^n} = \sum_{n=3}^{\infty} \left(\frac{2}{3}\right)^n + \sum_{n=3}^{\infty} \frac{5}{3^n} = \frac{1}{1 - \frac{2}{3}} + \frac{5}{1 - \frac{1}{3}} = \frac{21}{2}$$

$$2 \sum_{n=1}^{\infty} \frac{gg^{n}}{n!} \Rightarrow \lim_{n\to\infty} \frac{gg^{n+1}}{\frac{gg^{n}}{n!}} = \lim_{n\to\infty} \frac{gg^{n}}{n+1} = 0 < 1$$

Oran testine pore seri yakunsaktır.

(3)
$$\sum_{n=1}^{\infty} \frac{2^n}{n}$$
 => $\lim_{n \to \infty} \frac{2^{n+1}}{\frac{2^n}{n+1}} = \lim_{n \to \infty} 2 - \frac{n}{n+1} = 274$

Oran testine pore seri valesalutir.

$$\frac{4}{\sqrt[n]{\frac{n}{n!}}} = \lim_{n \to \infty} \frac{\frac{(n+1)^{n+1}}{(n+1)!}}{\frac{n^n}{n!}} = \lim_{n \to \infty} \frac{\frac{(n+1)^n(n+1)}{(n+1)!}}{\frac{n^n}{(n+1)!}} = \lim_{n \to \infty} \frac{(n+1)^n(n+1)}{(n+1)!} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e > 1$$

Oran testine pore seri iraksaktir.

$$\frac{5}{5} \sum_{n=1}^{\infty} \frac{n^2}{3^n} \Rightarrow \lim_{n \to \infty} \frac{(n+1)^2}{3^{n+1}} = \lim_{n \to \infty} \frac{1}{3} \frac{(n+1)^2}{n^2} = \frac{1}{3} \cdot 1 = \frac{1}{3} \cdot 1$$

Oran testine pore yakınsaktır.

$$6) \sum_{n=1}^{\infty} \frac{(2n)!}{n!n!} \Rightarrow \lim_{n\to\infty} \frac{\frac{(2(n+1))!}{((n+1)!)!}}{\frac{(2n)!}{(n!)^2}} = \lim_{n\to\infty} \frac{(2n+2)(2n+1)(2n)!}{(n+1)^2(n)!} \cdot \frac{(n+1)^2}{(2n)!}$$

$$= \lim_{n \to \infty} \frac{(2n+2)(2n+1)}{(n+1)^2} = 4 > 1 \Rightarrow 0 \text{ for a testine point you consorted}$$

$$\frac{4^{n+1}(n+1)!(n+1)!}{(2n+2)!} = \lim_{n\to\infty} \frac{4^{n+1}(n+1)!(n+1)!}{(2n+2)!} = \lim_{n\to\infty} \frac{4^{n}.(n+1)^{2}.(n+1)^{2}.(n+1)^{2}}{(2n+2)(2n+1)(2n+1)(2n+1)} = \lim_{n\to\infty} \frac{4^{n}.(n+1)^{2}.(n+1)^{2}.(n+1)^{2}.(n+1)^{2}}{(2n+2)(2n+1)(2n+1)(2n+1)(2n+1)} = \lim_{n\to\infty} \frac{4^{n}.(n+1)^{2}.(n+1)^$$

Dolayisiyla serinm bibtin terimleri a = 2 'den biyüktür. Yani dizinm n. terimi (penel terimi) n-100 iken 0'a yakınsamaz. n. terim testinden seri iraksaktır.

5) Kbk Testi

- a) LLA ise seri yakınsaktır.
- b) L>1 ise seri vaksaktir.
- c) L=1 ise test some vermez

Bruen: Asapidahi serilerin karakterlerini belirleym.

1)
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$
 =) $\sqrt{\frac{n^2}{2^n}} = \frac{\sqrt{n^2}}{2} = \frac{(\sqrt{n})^2}{2}$ =) $\lim_{n\to\infty} \frac{\sqrt{n}}{2} = \frac{1^2}{2} \times 1$

What testine point seri yellowscaletin.

$$2) \sum_{n=1}^{\infty} \frac{2^{n+1}}{n^n} = \lim_{n\to\infty} \sqrt{\frac{2^{n+1}}{n^n}} = \lim_{n\to\infty} \frac{2^{n+1}}{n} = 0 < 1$$

Kok testine pore seri yakınsaktır.

$$\frac{3}{3} \sum_{n=2}^{\infty} \frac{1}{(\ln n)^n} \Rightarrow \lim_{n\to\infty} \sqrt{\frac{1}{(\ln n)^n}} = \lim_{n\to\infty} \frac{1}{\ln n} = 0 < 1$$

Kbk testinden seri yakunsaktir.

$$4) \sum_{n=1}^{\infty} \frac{2^n}{n^3} -) \lim_{n \to \infty} \sqrt{\frac{2^n}{n^3}} - \lim_{n \to \infty} \frac{2}{(3n)^3} = \frac{2}{1^3} > 1$$

Kök testinden seri traksalutur.

$$\int_{n=1}^{\infty} \frac{2^{n}+5}{3^{n}} = \lim_{n\to\infty} \sqrt{\frac{2^{n}+5}{3^{n}}} = \lim_{n\to\infty} \sqrt{\frac{2^{n}(1+5,2^{-n})}{3}} = \lim_{n\to\infty} \frac{2}{3} \sqrt{1+\frac{5}{2^{n}}}$$

$$= \lim_{n\to\infty} \frac{2}{3} \cdot \left(1 + \frac{5}{2^{n}}\right)^{\frac{1}{2^{n}}} = \frac{2}{3} < 1$$

Kok testinden seni yakunsaktir.

liman #0 ise San serisi vraksaktır.

Örnek: Ascipidaki serilerin karakterlerini belirleyin.

$$\sqrt{n} \sum_{n=1}^{\infty} \frac{n^2+1}{n^2+5} \quad (pay \text{ we paydanin derecesi exit, limit testi uypulanamare})$$

$$\lim_{n\to\infty} \frac{n^2+1}{n^2+5} = 1 \neq 0 \quad \Rightarrow n \cdot \text{ terim testinden seri traksak}$$

$$\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n = e^{-1} = \frac{1}{e} \neq 0$$
 = 1 n. terim testinden seri iraksalutir.

Hatirlatina:
$$\lim_{n\to\infty} \left(1+\frac{a}{n}\right)^n = e^{a}$$

Alterne Seriler

Bir serinin terimleri sırasıyla bir pozitif bir nepatif deperler allyorsa boyle serilere alterne seri denir. Gend obrak, bir alterne seri YneIt igin anto olmak üzere

$$\sum_{n=1}^{\infty} (-1)^{n+1} \alpha_n = \alpha_1 - \alpha_2 + \alpha_3 - \alpha_4 + \dots$$

selelindedir.

Alterne seri testi: \(\sum_{(-1)}^{n+1} an serisi iain,

- 1) an>0. (xn=1,2,3,...)
- 2) anti (an (x n=1,2,3, --)
- 3) lim on = 0

Sartlari soplaniyorsa alterne seri yakınsaktır, aksi halde iraksaktır

Dinele: 5 (-1) 1/2+1 serisinin yakınsaklıpını inceleyin.

1)
$$a_1 = \frac{1}{n^2+1} > 0 \quad (4 = 1, 2, 3, --)$$

2)
$$a_{n+1} = \frac{1}{(n+1)^2+1} < \frac{1}{n^2+1} = a_n$$

2) $a_{n+1} = \frac{1}{(n+1)^2+1} \times \frac{1}{n^2+1} = a_n$ $\begin{cases} sartlar_i & sapland_ipindan & alterne seri \\ testine & pone & yakinsaktir. \end{cases}$

Mutlak yakınsaklık: Eper 5 lanl serisi yakınsak ise 5 an serisine mutlak yakınsaktır denir.

* Mutlak yakınsak bir seri yakınsaktır, ancak tersi dopru depildir.

Sarti yakınsaklık: Eper San serisi yakınsak ancak mutlak yakınsak depilse bu seriye forth yakınsaktır denir.

* Sartli yakınsaklık iain alterne seri testi kullanılır.

Alterne harmonik seri: $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ serisine alterne harmonik seri denir

★ ∑ (-1) n+1/2 alterne harmonile serisinin yakınsaklıpını meeleyip, tününü araştıralım

1) \$\frac{1}{2} \frac{1}{2} \tag{1} \t yakınsak depildir.

2) Sarth yakınsak olup olmadipini aulamak iam alterne seri testi yypulayalım:

a)
$$a_n = \frac{1}{n} > 0$$
 $(\forall n = 1, 2, ...)$

b) $\frac{1}{n+1} < \frac{1}{n} = 0$ $(\forall n = 1, 2, ...)$
 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ serisi yalcınsalıtır. Ancak mutlak yalcınsalı olmadığından sartlı yalcınsalıtır.

c)
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{n} = 0$$

 $\frac{1}{0}$ rnel: $\frac{\infty}{2}$ $\frac{n\cos n\pi}{2^n}$ serisinin yakunsaklipini inaleyin.

$$\sum_{n=1}^{\infty} \frac{n \cos n \pi}{2^n} = \sum_{n=1}^{\infty} (-1)^n \cdot \frac{n}{2^n}$$

Seri muttak yakınsak mı? Yani, $\sum_{n=1}^{\infty} \left| (-1)^n \frac{n}{2^n} \right| = \sum_{n=1}^{\infty} \frac{n}{2^n}$ yakınsak mı?

Kök testinden, $\lim_{n\to\infty} \sqrt[n]{\frac{n}{2^n}} = \lim_{n\to\infty} \frac{\sqrt[n]{n}}{2} = \frac{1}{2} \times 1$ olduğundan $\sum_{n=1}^{\infty} \frac{n}{2^n}$ yakın saktır.

0 halde, $\sum_{n=0}^{\infty} (-1)^n \frac{n}{2^n}$ serisi mutlak yakınsaktır.

Bruch. 5 (-1) 1 serisinin yakınsaklık türünü belirleyin.

Muttak yakınsak mi? Yani 5 1 milnin yakınsak mi?

∑ 1/n2 (p=2>1 ⇒ yalonsak) segerek limit testini

 $\lim_{n\to\infty}\frac{1}{n^2\ln^2n}=\lim_{n\to\infty}\frac{1}{\ln n}=0 \Rightarrow \text{ Limit testine pore }\sum_{n=1}^\infty\frac{1}{n^2}\text{ yakınsak olduğundan}$ ∑ 1 relisi de yalunsaletir.

=> 0 halde, \(\sum_{n^2 ln^2 n}^{\infty} \) serisi mutlak yakınsaktır.

@ Sevinn lande p-serisi sauli

ise innet vegor mukayese hullen

$$\sum_{n=2}^{\infty} \frac{\cos n\pi}{4mn} = \sum_{n=2}^{\infty} \frac{(-1)^n}{4nn}$$

Mukayese testmi kullanalim:

Mukayese testmi tomorrows
$$\frac{1}{n} < \frac{1}{n} < \frac{1}{n}$$

2)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{4nn}$$
 sorth yolunsah mi?

Alterne seri testine pore seri yakınsaktır Ancak muttak yakinsak olmadipindan sartli yakinsaktir.

Seriterde Terintern Yeniden Dizentenmesi:

Teorem: Eper 5 an serisi mutlak yakunsak bir seri ise ve balbzi..., bal... dizisi fang dizisinin herhapi bir sıralamada yeniden yazımı ise o zaman Ibn serisi mutlak yakınsaktır ve Ian serisinin toplamına yakınsar: Sbn = San

- @ Eper sartlı yakınsak bir serinin terimlerini yer depistirirsek farklı sonuciar elde ederit.
- 1) Eper bir seri mutlah yakınsak ise, serinin potitif terimleri ile oluşturulan alt seri ile nepatif terimlerden olusturulan alt serinin ikisi de yakınsar.
- 2) Eper bir seri sartlı yakınsak ise, nepatif terimli alt seri w'a, pozitif terimli alt seri too'a iraksar.
- @ Eper bir seri sartlı yalımsak ise o zaman serinin terimleri fola iraksayacak vega bir LEIR sayısına yakınsayarak sekilde yeniden düzenlenebilir.

Testlerin Özeti:

- 1) Gesmetrik seri:

 1-11 ise \(\sum_{n=1}^{\infty} \) arn-1 pesmetrik serisi yakınsar, depilse vaksar.
- 2) P-serisi:
 P>1 ise $\sum \frac{1}{n^p}$ serisi yakınsar, depilse waksar.
- 3) n. terim testi: lim an +0 ise Ian serisi iralisalitir.
- 4) Pozitif terimli seriler: intepral testi, oran testi, bolk testi, mukayese testi, limit testi kullandarak bu serilerin yakunsaklıpı inadenir.

 Mukayese ve limit testleri iain yakınsaklıpı / ıraksaklıpı bilinen (pesmetrik seri, hamonik seri, p-serisi (pibi) seriler seailir.
- 5) Alterne seriler: Alterne seri testi kosullarını saplayan seri yakınsaktır. Bu yakınsaklık iki tür olabilir.
 - a) Mutlan yakınsaklık: Elan yakınsakı ise Ean mutlan yakınsaktır b) Sartlı Yakınsaklık: Ean yakınsak ancak mutlan yakınsak depilse sartlı yakınsaktır, denir.

Pozitif terimli seri
Yakınsak Iraksak

Testleri
kullan
- intepral
- Oran
- Kök
- Mukayese
- Limit

-n terim

Alterne Seri

Yakınsak İraksak

Mutlak Sartlı
yak. yak.

Alterne seri testini kullan

TDY