BACCALAURÉAT S ANTILLES-GUYANE 22 IUIN 2015

Table des matières

1	Analyse - In	1
2	Probabilités	2
3	Complexes	3
4	Suites	4
5	Spécialité	5
6	Annexes	6

1 Analyse - ln

EXERCICE 1: Commun-Analyse - In

6 points

Soit f la fonction définie sur l'intervalle]0; $+\infty[$ par $f(x) = \ln x$. Pour tout réel a strictement positif, on définit sur]0; $+\infty[$ la fonction g_a par $g_a(x) = ax^2$.

On note $\mathscr C$ la courbe représentative de la fonction f et Γ_a celle de la fonction g_a dans un repère du plan. Le but de l'exercice est d'étudier l'intersection des courbes $\mathscr C$ et Γ_a suivant les valeurs du réel strictement positif a.

Partie A

On a construit en **annexe 1** (à rendre avec la copie) les courbes \mathscr{C} , $\Gamma_{0,05}$, $\Gamma_{0,1}$, $\Gamma_{0,19}$ et $\Gamma_{0,4}$.

- 1. Nommer les différentes courbes sur le graphique. Aucune justification n'est demandée.
- **2.** Utiliser le graphique pour émettre une conjecture sur le nombre de points d'intersection de \mathscr{C} et Γ_a suivant les valeurs (à préciser) du réel a.

Partie B

Pour un réel a strictement positif, on considère la fonction h_a définie sur l'intervalle]0; $+\infty[$ par

$$h_a(x) = \ln x - ax^2.$$

- **1.** Justifier que x est l'abscisse d'un point M appartenant à l'intersection de \mathscr{C} et Γ_a si et seulement si $h_a(x) = 0$.
- **2. a.** On admet que la fonction h_a est dérivable sur]0; $+\infty[$, et on note h'_a la dérivée de la fonction h_a sur cet intervalle.

Le tableau de variation de la fonction h_a est donné ci-dessous.

Justifier, par le calcul, le signe de $h'_a(x)$ pour x appartenant à]0; $+\infty[$.

b. Rappeler la limite de $\frac{\ln x}{x}$ en $+\infty$. En déduire la limite de la fonction h_a en $+\infty$. On ne demande pas de justifier la limite de h_a en 0.

- **3.** Dans cette question et uniquement dans cette question, on suppose que a = 0, 1.
 - **a.** Justifier que, dans l'intervalle $\left]0$; $\frac{1}{\sqrt{0.2}}\right]$, l'équation $h_{0,1}(x)=0$ admet une unique solution. On admet que cette équation a aussi une seule solution dans l'intervalle $\left]\frac{1}{\sqrt{0.2}}; +\infty\right[$.
 - **b.** Quel est le nombre de points d'intersection de \mathscr{C} et $\Gamma_{0,1}$?
- 4. Dans cette question et uniquement dans cette question, on suppose que

$$a = \frac{1}{2e}$$
.

- **a.** Déterminer la valeur du maximum de $h_{\frac{1}{2a}}$.
- **b.** En déduire le nombre de points d'intersection des courbes \mathscr{C} et $\Gamma_{\frac{1}{2a}}$. Justifier.
- **5.** Quelles sont les valeurs de a pour lesquelles $\mathscr C$ et Γ_a n'ont aucun point d'intersection? Justifier.

2 Probabilités

EXERCICE 2: commun - proba

5 points

La partie C peut être traitée indépendamment des parties A et B

Partie A

On considère une variable aléatoire X qui suit la loi exponentielle de paramètre λ avec $\lambda > 0$. On rappelle que, pour tout réel a strictement positif,

$$P(X \le a) = \int_0^a \lambda e^{-\lambda t} dt.$$

On se propose de calculer l'espérance mathématique de X, notée E(X), et définie par

$$E(X) = \lim_{x \to +\infty} \int_0^x \lambda t e^{-\lambda t} dt.$$

On note \mathbb{R} l'ensemble des nombres réels.

On admet que la fonction F définie sur \mathbb{R} par $F(t) = -\left(t + \frac{1}{\lambda}\right)e^{-\lambda t}$ est une primitive sur \mathbb{R} de la fonction f définie sur \mathbb{R} par $f(t) = \lambda t e^{-\lambda t}$.

1. Soit *x* un nombre réel strictement positif. Vérifier que

$$\int_0^x \lambda t e^{-\lambda t} dt = \frac{1}{\lambda} \left(-\lambda x e^{-\lambda x} - e^{-\lambda x} + 1 \right).$$

2. En déduire que $E(X) = \frac{1}{\lambda}$.

Partie B

La durée de vie, exprimée en années, d'un composant électronique peut être modélisée par une variable aléatoire notée X suivant la loi exponentielle de paramètre λ avec $\lambda > 0$.

La courbe de la fonction densité associée est représentée en annexe 2.

- 1. Sur le graphique de l'annexe 2 (à rendre avec la copie) :
 - **a.** Représenter la probabilité $P(X \le 1)$.
 - **b.** Indiquer où se lit directement la valeur de λ .

- **2.** On suppose que E(X) = 2.
 - a. Que représente dans le cadre de l'exercice la valeur de l'espérance mathématique de la variable aléatoire X?
 - **b.** Calculer la valeur de λ .
 - **c.** Calculer $P(X \le 2)$. On donnera la valeur exacte puis la valeur arrondie à 0,01 près. Interpréter ce résultat.
 - **d.** Sachant que le composant a déjà fonctionné une année, quelle est la probabilité que sa durée de vie totale soit d'au moins trois années ? On donnera la valeur exacte.

Partie C

Un circuit électronique est composé de deux composants identiques numérotés 1 et 2. On note D_1 l'évènement «le composant 1 est défaillant avant un an » et on note D_2 l'évènement «le composant 2 est défaillant avant un an ».

On suppose que les deux évènements D_1 et D_2 sont indépendants et que $P(D_1) = P(D_2) = 0,39$.

Deux montages possibles sont envisagés, présentés ci-dessous :

- 1. Lorsque les deux composants sont montés «en parallèle », le circuit A est défaillant uniquement si les deux composants sont défaillants en même temps. Calculer la probabilité que le circuit A soit défaillant avant un an.
- **2.** Lorsque les deux composants sont montés «en série », le circuit B est défaillant dès que l'un au moins des deux composants est défaillant. Calculer la probabilité que le circuit B soit défaillant avant un an.

3 Complexes

EXERCICE 3: Commun - Complexes

4 points

Partie A

On appelle $\ensuremath{\mathbb{C}}$ l'ensemble des nombres complexes.

Dans le plan complexe muni d'un repère orthonormé $(0; \overrightarrow{u}, \overrightarrow{v})$ on a placé un point M d'affixe z appartenant à \mathbb{C} , puis le point R intersection du cercle de centre O passant par M et du demi-axe O; O:

1. Exprimer l'affixe du point R en fonction de z.

2. Soit le point M' d'affixe z' définie par

$$z' = \frac{1}{2} \left(\frac{z + |z|}{2} \right).$$

Reproduire la figure sur la copie et construire le point M'.

Partie B

On définit la suite de nombres complexes (z_n) par un premier terme z_0 appartenant à $\mathbb C$ et, pour tout entier naturel n, par la relation de récurrence :

$$z_{n+1} = \frac{z_n + |z_n|}{4}.$$

Le but de cette partie est d'étudier si le comportement à l'infini de la suite $(|z_n|)$ dépend du choix de z_0 .

- 1. Que peut-on dire du comportement à l'infini de la suite ($|z_n|$) quand z_0 est un nombre réel négatif?
- **2.** Que peut-on dire du comportement à l'infini de la suite ($|z_n|$) quand z_0 est un nombre réel positif?
- **3.** On suppose désormais que z_0 n'est pas un nombre réel.
 - **a.** Quelle conjecture peut-on faire sur le comportement à l'infini de la suite $(|z_n|)$?
 - b. Démontrer cette conjecture, puis conclure.

4 Suites

EXERCICE 4: Obligatoire - Suites

5 points

Partie A

On considère l'algorithme suivant :

Variables :	k et p sont des entiers naturels					
	<i>u</i> est un réel					
Entrée :	Demander la valeur de <i>p</i>					
Traitement:	Affecter à u la valeur 5					
	Pour <i>k</i> variant de 1 à <i>p</i>					
	Affecter à u la valeur $0.5u + 0.5(k - 1) - 1.5$					
	Fin de pour					
Sortie:	Afficher <i>u</i>					

Faire fonctionner cet algorithme pour p=2 en indiquant les valeurs des variables à chaque étape. Quel nombre obtient-on en sortie?

Partie B

Soit (u_n) la suite définie par son premier terme $u_0 = 5$ et, pour tout entier naturel n par

$$u_{n+1} = 0,5u_n + 0,5n - 1,5.$$

- 1. Modifier l'algorithme de la première partie pour obtenir en sortie toutes les valeurs de u_n pour n variant de 1 à p.
- **2.** À l'aide de l'algorithme modifié, après avoir saisi p = 4, on obtient les résultats suivants :

n	1	2	3	4		
u_n	1	-0,5	-0,75	-0,375		

Peut-on affirmer, à partir de ces résultats, que la suite (u_n) est décroissante ? Justifier.

- **3.** Démontrer par récurrence que pour tout entier naturel n supérieur ou égal à 3, $u_{n+1} > u_n$. Que peut-on en déduire quant au sens de variation de la suite (u_n) ?
- **4.** Soit (v_n) la suite définie pour tout entier naturel n par $v_n = 0$, $1u_n 0$, 1n + 0, 5. Démontrer que la suite (v_n) est géométrique de raison 0, 5 et exprimer alors v_n en fonction de n.
- **5.** En déduire que, pour tout entier naturel n,

$$u_n = 10 \times 0.5^n + n - 5.$$

6. Déterminer alors la limite de la suite (u_n) .

5 Spécialité

EXERCICE 5 : Spécialité 5 points

Les parties A et B peuvent être traitées de façon indépendante

Partie A

Pour deux entiers naturels non nuls a et b, on note r(a, b) le reste dans la division euclidienne de a par b. On considère l'algorithme suivant :

Variables : c est un entier naturel a et b sont des entiers naturels non nuls

Entrées : Demander aDemander bTraitement : Affecter à c le nombre r(a, b)Tant que $c \neq 0$ Affecter à a le nombre bAffecter à b la valeur de bAffecter à b la valeur de bFin Tant que

Sortie : Afficher b

- 1. Faire fonctionner cet algorithme avec a = 26 et b = 9 en indiquant les valeurs de a, b et c à chaque étape.
- Cet algorithme donne en sortie le PGCD des entiers naturels non nuls a et b.
 Le modifier pour qu'il indique si deux entiers naturels non nuls a et b sont premiers entre eux ou non.

Partie B

À chaque lettre de l'alphabet on associe grâce au tableau ci-dessous un nombre entier compris entre 0 et 25.

A	В	С	D	Е	F	G	Н	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	О	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

On définit un procédé de codage de la façon suivante :

Étape 1 : on choisit deux entiers naturels p et q compris entre 0 et 25.

Étape 2 : à la lettre que l'on veut coder, on associe l'entier x correspondant dans le tableau ci-dessus.

Étape 3 : on calcule l'entier x' défini par les relations

$$x' \equiv px + q$$
 [26] et $0 \le x' \le 25$.

Étape 4 : à l'entier x', on associe la lettre correspondante dans le tableau.

- **1.** Dans cette question, on choisit p = 9 et q = 2.
 - a. Démontrer que la lettre V est codée par la lettre J.
 - **b.** Citer le théorème qui permet d'affirmer l'existence de deux entiers relatifs u et v tels que 9u + 26v = 1. Donner sans justifier un couple (u, v) qui convient.
 - **c.** Démontrer que $x' \equiv 9x + 2$ [26] équivaut à $x \equiv 3x' + 20$ [26].
 - d. Décoder la lettre R.
- **2.** Dans cette question, on choisit q = 2 et p est inconnu. On sait que J est codé par D. Déterminer la valeur de p (on admettra que p est unique).
- **3.** Dans cette question, on choisit p = 13 et q = 2. Coder les lettres B et D. Que peut-on dire de ce codage?

6 Annexes

À RENDRE AVEC LA COPIE

ANNEXE 2 de l'exercice 2

