	1 IA																	18 VIIIA
1	1 1.0079 H Hydrogen 1s ¹	2 IIA			•	•		élément					13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	$\begin{array}{cc} 2 & 4.0025 \\ \mathbf{He} \\ \mathrm{Helium} \\ 1s^2 \end{array}$
2 [He]	3 6.941 Li Lithium 2s ¹	4 9.0122 Be Beryllium 2s ²	Métaux alcalinsMétaux alcalino-terreuMétaux				Non-métaux Halogènes Gaz nobles		Actinides Métaux de transition				5 10.811 B Boron 2s ² 2p ¹	$\begin{array}{c} {\bf 6} & 12.011 \\ & {\bf C} \\ & {\bf Carbon} \\ & 2s^22p^2 \end{array}$			9 18.998 F Flourine $2s^22p^5$	10 20.180 Ne Neon 2s ² 2p ⁶
3 [Ne]	11 22.990 Na Sodium 3s ¹	12 24.305 Mg Magnesium 3s ²	3 IIIA	■ M 4 IVB	étalloides 5 VB	6 VIB	7 VIIB	thanides 8 VIIIB	9 VIIIB	10 VIIIB	11 IB	12 IIB	$\begin{array}{c} \textbf{13} & 26.982 \\ \textbf{Al} \\ \text{Aluminium} \\ 3s^23p^1 \end{array}$	14 28.086 Si Silicon $3s^23p^2$	$\begin{array}{c} \textbf{15} & 30.974 \\ \textbf{P} \\ \text{Phosphorus} \\ 3s^23p^3 \end{array}$	$\begin{array}{c} {\bf 16} & 32.065 \\ {\bf S} \\ {\rm Sulphur} \\ 3s^2 3p^4 \end{array}$	17 35.453 $\begin{tabular}{c} {\bf CI} \\ {\bf Chlorine} \\ 3s^23p^5 \end{tabular}$	18 39.948 Ar Argon $3s^23p^6$
4 [Ar]	${ {\color{red} {\bf K}} \atop {\bf Potassium} \atop 4s^1} }$	20 40.078 Ca Calcium 4s ²	$\begin{array}{ccc} {\bf SC} & {\bf 44.956} \\ {\bf SC} & \\ {\bf Scandium} & \\ 3d^14s^2 & \\ \end{array}$	$\begin{array}{c} \textbf{22} & 47.867 \\ \textbf{Ti} \\ \text{Titanium} \\ 3d^24s^2 \end{array}$	$\begin{array}{c} \textbf{23} & 50.942 \\ \textbf{V} \\ \text{Vanadium} \\ 3d^34s^2 \end{array}$	$\begin{array}{c} \textbf{24} & 51.996 \\ \textbf{Cr} \\ \text{Chromium} \\ 3d^54s^1 \end{array}$	25 54.938 Mn Manganese $3d^54s^2$	Fe Iron 3d ⁶ 4s ²	27 58.933 $ extbf{Co}$ Cobalt $3d^74s^2$	28 58.693 Ni Nickel 3d ⁸ 4s ²	29 63.546 $\overline{\text{Cu}}$ Copper $3d^{10}4s^1$	30 65.39 \mathbf{Zn} Zinc $3d^{10}4s^2$	Ga Gallium 3d ¹⁰ 4s ² 4p ¹	$\begin{array}{cc} {\bf 32} & 72.64 \\ {\bf Ge} \\ {\bf Germanium} \\ 3d^{10}4s^24p^2 \end{array}$	$\begin{array}{c} {\bf 33} & {\bf 74.922} \\ {\bf As} \\ {\bf Arsenic} \\ {\bf 3} d^{10} 4s^2 4p^3 \end{array}$	34 78.96 Se Selenium 3d ¹⁰ 4s ² 4p ⁴	$8r$ Bromine $3d^{10}4s^24p^5$	Kr Krypton 3d ¹⁰ 4s ² 4p ⁶
5 [Kr]	37 85.468 Rb Rubidium 5s ¹	$\begin{array}{cc} \textbf{38} & 87.62 \\ \textbf{Sr} \\ \textbf{Strontium} \\ & 5s^2 \end{array}$	$\begin{array}{c} \textbf{39} & 88.906 \\ \textbf{Y} \\ \textbf{Yttrium} \\ 4d^15s^2 \end{array}$	$\begin{array}{c} \textbf{40} & 91.224 \\ \textbf{Zr} \\ \text{Zirconium} \\ 4d^25s^2 \end{array}$	Nb Niobium 4d ³ 5s ²	$\begin{array}{c} \textbf{Mo} \\ \textbf{Mo} \\ \text{Molybdenum} \\ 4d^55s^1 \end{array}$	${f Tc}$ Technetium $4d^55s^2$	$\begin{array}{c} \textbf{44} & 101.07 \\ \textbf{Ru} \\ \text{Ruthenium} \\ 4d^75s^1 \end{array}$	Rh Rhodium 4d ⁸ 5s ¹	Pd Palladium 4d ¹⁰	47 107.87 Ag Silver $4d^{10}5s^{1}$	$\begin{array}{c} {\bf 48} & {\bf 112.41} \\ {\bf Cd} \\ {\bf Cadmium} \\ {\bf 4}d^{10}5s^2 \end{array}$	$\begin{array}{c} \textbf{49} & 114.82 \\ & \textbf{In} \\ & \text{Indium} \\ & 4d^{10}5s^25p^1 \end{array}$	50 118.71 Sn Tin $4d^{10}5s^25p^2$	51 121.76 Sb Antimony $4d^{10}5s^25p^3$	$\begin{array}{cc} {\bf 52} & {\bf 127.6} \\ {\bf Te} \\ {\bf Tellurium} \\ {4d^{10}5s^25p^4} \end{array}$	53 126.9 lodine 4d ¹⁰ 5s ² 5p ⁵	Xe Xenon $4d^{10}5s^25p^6$
6 [Xe]	55 132.91 Cs Caesium 6s ¹	56 137.33 Ba Barium 6s ²	57-71 La-Lu Lanthanide	72 178.49 Hf Halfnium $4f^{14}5d^26s^2$	73 180.95 Ta Tantalum $4f^{14}5d^36s^2$	$\begin{array}{c} {\bf 74} & 183.84 \\ {\bf W} \\ {\bf Tungsten} \\ 4f^{14}5d^46s^2 \end{array}$	75 186.21 Re Rhenium 4f ¹⁴ 5d ⁵ 6s ²	76 190.23 Os Osmium $4f^{14}5d^{6}6s^{2}$	77 192.22 $\begin{tabular}{l} \begin{tabular}{l} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & $	78 195.08 Pt Platinum 4f ¹⁴ 5d ⁹ 6s ¹	79 196.97 Au Gold 4f ¹⁴ 5d ¹⁰ 6s ¹	Hg Mercury $4f^{14}5d^{10}6s^2$	$\begin{array}{c} {\bf 81} & 204.38 \\ {\bf TI} \\ {\bf Thallium} \\ 4f^{14}5d^{10}6s^26p^1 \end{array}$	$\begin{array}{c} \textbf{82} & 207.2 \\ \textbf{Pb} \\ \text{Lead} \\ 4f^{14}5d^{10}6s^26p^2 \end{array}$	83 208.98 Bi Bismuth $4f^{14}5d^{10}6s^26p^3$	$\begin{array}{c} {\bf Po} \\ {\bf Po} \\ {\bf Polonium} \\ 4f^{14}5d^{10}6s^26p^4 \end{array}$	$egin{array}{c} {\bf At} \\ {\bf Astatine} \\ 4f^{14}5d^{10}6s^26p^5 \end{array}$	Rn Radon
7 [Rn]	$\begin{array}{cc} \textbf{87} & 223 \\ \textbf{Fr} \\ \text{Francium} \\ 7s^1 \end{array}$	$\begin{array}{c} \textbf{88} & 226 \\ \textbf{Ra} \\ \text{Radium} \\ 7s^2 \end{array}$	89-103 Ac-Lr Actinide	$\begin{array}{c} \textbf{Rf} \\ \textbf{Rf} \\ \text{Rutherfordium} \\ 5f^{14}6d^27s^2 \end{array}$	$\begin{array}{cc} {\bf 105} & 262 \\ {\bf Db} \\ {\bf Dubnium} \\ 5f^{14}6d^37s^2 \end{array}$	$\begin{array}{c} \textbf{Sg} \\ \textbf{Sg} \\ \textbf{Seaborgium} \\ 5f^{14}6d^47s^2 \end{array}$	Bh Bohrium 5 f 14 6 d 27 s 2	Hs Hassium $5f^{14}6d^67s^2$	$\begin{array}{c} \textbf{Mt} \\ \textbf{Mt} \\ \text{Meitnerium} \\ 5f^{14}6d^77s^2 \end{array}$	$\begin{array}{cc} {\bf Ds} \\ {\bf Ds} \\ {\bf Darmstadtium} \\ 5f^{14}6d^97s^1 \\ \end{array}$	Rg Roentgenium $5f^{14}6d^97s^2$	$\begin{array}{c} {\bf 112} & 285 \\ {\bf Cn} \\ {\bf Copernicium} \\ 5f^{14}6d^{10}7s^2 \end{array}$	$\begin{array}{cc} {\bf 113} & 284 \\ {\bf Uut} \\ {\bf Ununtrium} \\ 5f^{14}6d^{10}7s^27p^1 \end{array}$	$\begin{array}{ccc} {\bf 114} & 289 \\ {\bf FI} \\ {\bf Flerovium} \\ 5f^{14}6d^{10}7s^27p^2 \end{array}$	115 288 Uup Ununpentium $5f^{14}6d^{10}7s^27p^3$	116 293 Lv Livermorium $5f^{14}6d^{10}7s^27p^4$	$\begin{array}{cc} {\bf 117} & 292 \\ {\bf Uus} \\ {\bf Ununseptium} \\ 5f^{14}6d^{10}7s^27p^5 \end{array}$	118 294 Uuo Ununoctium $5f^{14}6d^{10}7s^27p^6$
	z r Symb	Masse pole	[Xe]	$\begin{array}{cc} 57 & 138.91 \\ \mathbf{La} \\ \mathbf{Lanthanum} \\ 5d^16s^2 \end{array}$	$\begin{array}{c} {\bf 58} & {\bf 140.12} \\ {\bf Ce} \\ {\bf Cerium} \\ {\bf 4}f^15d^1 \end{array}$	$\begin{array}{c} 59 & 140.91 \\ \mathbf{Pr} \\ \mathbf{Praseodymium} \\ 4f^36s^2 \end{array}$	60 144.24 Nd Neodymium $4f^46s^2$	$\begin{array}{c} \textbf{61} & \textbf{145} \\ \textbf{Pm} \\ \textbf{Promethium} \\ 4f^56s^2 \end{array}$	$\begin{array}{cc} {\bf 62} & {\bf 150.36} \\ {\bf Sm} \\ {\bf Samarium} \\ {\bf 4} f^{6} 6 s^{2} \end{array}$	63 151.96 Eu Europium 4f ⁷ 6s ²	$\begin{array}{c} {\bf 64} & 157.25 \\ {\bf Gd} \\ {\bf Gadolinium} \\ 4f^75d^16s^2 \end{array}$	$\begin{array}{ccc} {\bf 65} & 158.93 \\ & {\bf Tb} \\ & {\rm Terbium} \\ & 4f^96s^2 \end{array}$	$\begin{array}{c} {\bf 66} & {\bf 162.50} \\ {\bf Dy} \\ {\bf Dysprosium} \\ {4f^{10}6s^2} \end{array}$	67 164.93 Ho Holmium $4f^{11}6s^2$	68 167.26 Er Erbium $4f^{12}6s^2$	$\begin{array}{ccc} \textbf{69} & 168.93 \\ & \textbf{Tm} \\ & \text{Thulium} \\ & 4f^{13}6s^2 \end{array}$	70 173.04 Yb Ytterbium $4f^{14}6s^2$	71 174.97 Lu Lutetium $6s^24f^{14}5d^1$
			[Rn]	$\begin{array}{cc} \textbf{89} & 227 \\ \textbf{Ac} \\ \text{Actinium} \\ 6d^17s^2 \end{array}$	90 232.04 Th Thorium $6d^27s^2$	91 231.04 Pa Protactinium $5f^26d^17s^2$	92 238.03 U Uranium $5f^36d^17s^2$	93 237 ${\bf Np}$ Neptunium $5f^46d^17s^2$	$\begin{array}{cc} 94 & 244 \\ \mathbf{Pu} \\ \text{Plutonium} \\ 5f^67s^2 \end{array}$	$\begin{array}{cc} \textbf{95} & 243 \\ \textbf{Am} \\ \text{Americium} \\ 5f^77s^2 \end{array}$	96 247 Cm Curium 5f ⁷ 6d ¹ 7s ²	$\begin{array}{cc} 97 & 247 \\ \mathbf{Bk} \\ \mathbf{Berkelium} \\ 5f^97s^2 \end{array}$	$\begin{array}{c} \textbf{98} & 251 \\ \textbf{Cf} \\ \text{Californium} \\ 5f^{10}7s^2 \end{array}$	$\begin{array}{c} \textbf{99} & 252 \\ \textbf{Es} \\ \text{Einsteinium} \\ 5f^{11}7s^2 \end{array}$	$\begin{array}{c} \textbf{100} & 257 \\ \textbf{Fm} \\ \text{Fermium} \\ 5f^{12}7s^2 \end{array}$	$\begin{array}{c} \textbf{101} & 258 \\ \textbf{Md} \\ \textbf{Mendelevium} \\ 5f^{13}7s^2 \end{array}$	102 259 No Nobelium $5f^{14}7s^2$	$\begin{array}{ccc} {\bf Lr} \\ {\bf Lawrencium} \\ 5f^{14}7s^27p^1 \end{array}$