Otto-Friedrich-University of Bamberg

Professorship for Computer Science, Communication Services, Telecommunication Systems and Computer Networks

Foundations of Internet Communication

Assignment 3 Domain Name System (DNS) and Load Balancing

Submitted by:

Group X

Moktahid Al Faisal Abdullah Al Mosabbir Mohammed Mehedi Hasan Kazi Sayef Shawgat Sheikh Jumon Ahmed

Supervisor: Prof. Dr. Udo Krieger

Bamberg, June 7, 2020 Summer Term 2020

Contents

1	The Domain Information Groper (dig)	1
2	DNS Configuration with CoreDNS	2
3	Load Balancing with Traefik	8

List of Figures

1	authoritative DNS server for ru	1
2	Address of the Internet DNS root servers	1
3	Nameservers for domain uni-bamberg.de	1
4	lab.conf file of Table 1	2
5	Startup files of web_amy, web_penny, web_bernadette	2
6	Startup files of web_amy, web_penny, web_bernadette	3
7	Startup files of web_1	3
8	Startup files of pc_1 and pc_2	3
9	Startup files of dns_root, dns_lb	3
10	Static routes to the topology	4
11	Screenshot of dns setup	4
12	Screenshot of resolv.conf and curl gik.de	5
13	Screenshot of authoritative server	5
14	Screenshot of dns_lb setup	6
15	Screenshot of modified dns_root setup	6
16	Screenshot of configured core dns and load balancing	7
17	Screenshot of dig on gik.org	8
18	websheldon.startup file	8
19	webleonard.startup file	8
20	webhoward.startup file	8
21	trafiklbStartup.startup file	9
22	80 Listen Port	9
23	File Provider for new webserver	9
24	update dns root A record	10

25	dig confirmation	1(
26	Update router r1 to adjust traefik	10
27	Weighted round robin load balancer configuration	11
28	Test result of load balancer	11

1 The Domain Information Groper (dig)

1. Determine the authoritative DNS server for the top level domain ru

Figure 1: authoritative DNS server for ru

2. Determine the addresses of the Internet DNS root servers

Figure 2: Address of the Internet DNS root servers

3. Run dig to display the nameservers for the domain uni-bamberg.de

Figure 3: Nameservers for domain uni-bamberg.de

2 DNS Configuration with CoreDNS

1. Followings is the screenshot of lab.conf file:

Figure 4: lab.conf file of Table 1

2. Followings are the screenshots of startup files file:

Figure 5: Startup files of web_amy, web_penny, web_bernadette

Figure 6: Startup files of web_amy, web_penny, web_bernadette

Figure 7: Startup files of web_1

Figure 8: Startup files of pc_1 and pc_2

Figure 9: Startup files of dns_root, dns_lb

3. Static routes to the topology :

Figure 10: Static routes to the topology

4. Setup a DNS server on node dns_root :

Figure 11: Screenshot of dns setup

5. Add a name server And curl gik.de :

Figure 12: Screenshot of resolv.conf and curl gik.de

6. Use dig to determine the authoritative server for the root domain :

```
(/ # dig .

(cos Dig 9.14.12 <<>> ()
(j glabal pointons rend
(j; glabal pointons rend
(j; glabal pointons rend
(j; bots answer:
(j; glabal pointons rend
(j; bots answer:
(j; dos answer:
(j;
```

Figure 13: Screenshot of authoritative server

7. On node dns lb setup a DNS servers :

Figure 14: Screenshot of dns_lb setup

8. Modify dns_root to forward the name resolution of org to dns_lb :

Figure 15: Screenshot of modified dns_root setup

9. Configure CoreDNS on dns_lb to load balance the entry gik.org :

Figure 16: Screenshot of configured core dns and load balancing

Pitfalls of DNS load balancing:

Although easy to implement, round-robin DNS has a number of drawbacks, such as those arising from record caching in the DNS hierarchy itself, as well as client-side address caching and reuse, the combination of which can be difficult to manage. Round-robin DNS should not solely be relied upon for service availability. If a service at one of the addresses in the list fails, the DNS will continue to hand out that address and clients will still attempt to reach the inoperable service.

Round-robin DNS may not be the best choice for load balancing on its own, since it merely alternates the order of the address records each time a name server is queried. Because it does not take transaction time, server load, and network congestion into consideration, it works best for services with a large number of uniformly distributed connections to servers of equivalent capacity. Otherwise, it just does load distribution.[6]

10. dig gik.org:

```
moktahid — cd "/Users/moktahid/Desktop/assignment/lab 2/assignment 3/new"...

I'm web ...

I'm web ...

I'm web ...

I'm vec ...

I'm vec ...

I'm vec ...

I'm web ...

I'm w
```

Figure 17: Screenshot of dig on gik.org

3 Load Balancing with Traefik

1. Followings are the screenshot of new startup files:

```
web_sheldon.startup × lifconfig eth0 40.40.0.100 netmask 255.255.255.0 up ip route add default via 40.40.0.2
```

Figure 18: websheldon.startup file

Figure 19: webleonard.startup file

Figure 20: webhoward.startup file

2. Startup file for traefik_lb file:

```
itraefik_lb.startup ×
ifconfig eth0 10.0.10.1 netmask 255.255.255.0 up
ip route add default via 10.0.10.2
```

Figure 21: trafiklbStartup.startup file

listen on port 80 using a file provider:

```
| traefik.toml x
| [entryPoints]
| (entryPoints.web]
| address = ":80"
| [providers]
| [providers.file]
| directory = "/conf"
```

Figure 22: 80 Listen Port

Using a file provider forwards requests on gik.de to the new webservers:

Figure 23: File Provider for new webserver

3. Adjust A record of gik de from dns root to point traefik lb

```
dm_goot>zones> E dbde

1 $TIL 00000
2 @ IN 50A dnsde.de. admin.dnsde.de. (2006031201 28800 14400 3600000 0)
3 @ IN N5 dnsde.de.
4 dnsde.de. IN A 10.0.10
```

Figure 24: update dns root A record

4. confirm configuration with dig

```
tuhtn@tuhtn

2 <=>> DIG 911.3-1ubuntu1.11-lubuntu <=>> glk.de

2 <=>> DIG 911.3-1ubuntu1.11-lubuntu <=>> glk.de

2 | colon | colons: +cnd

2 | colon | colons: +cnd

2 | colon | colons: +cnd

3 | colon | colon | colon | colon | colon | colon |

3 | colon | colon | colon | colon | colon |

4 | colon | colon | colon | colon |

5 | colon | colon |

5 | colon | colon | colon |

5 | colon | colon |

5 | colon | colon | colon |

5 | colon | colon |

6 | colon | colon |

7 | colon | col
```

Figure 25: dig confirmation

5. Update static route topology Next we updated our router to suport load balancer traefik for example:

```
Fristartup

1 ifconfig eth0 10.10.0.1 netmask 255.255.255.0 up

2 ifconfig eth1 30.30.0.1 netmask 255.255.0.0 up

3 ifconfig eth2 20.20.0.1 netmask 255.255.260.0 up

4 ifconfig eth3 1.0.0.1 netmask 255.0.0.0 up

5

6 ip route add 40.40.0.0/24 via 30.30.0.2

7 ip route add 50.50.0.0/25 via 20.20.0.3

8 ip route add 2.0.0.0/8 via 20.20.0.3

9 ip route add 10.0.10.0/24 via 30.30.0.2
```

Figure 26: Update router r1 to adjust traefik

6. Test the load balancing behavior and add a weighted round robin procedure to forward 60 percent, 30 percent and 10 percent request to web sheldon, web leonard and web howard respectively.

```
traefik_b> conf > O traefik.toml

| Inttp|
| Inttp.routers|
| Inttp.routers.whoami|
| entryPoints=['web']
| rule='Host('gik.de')'
| service='whoami'
| Inttp.services.whoami|
| [http.services.whoami.weighted.services]]
| name = "al" |
| weight = 6 |
| [http.services.whoami.weighted.services]]
| name = "al" |
| weight = 3 |
| [http.services.whoami.weighted.services]]
| name = "al" |
| weight = 3 |
| [http.services.al.loadBalancer]
```

Figure 27: Weighted round robin load balancer configuration

```
/ # curl gik.de
I'm web_leonard
/ # curl gik.de
I'm web_sheldon
/ # curl gik.de
I'm web_sheldon
/ # curl gik.de
I'm web_leonard
/ # curl gik.de
I'm web_howard
/ # curl gik.de
I'm web_sheldon
/ # curl gik.de
I'm web_sheldon
/ # curl gik.de
I'm web_sheldon
/ # curl gik.de
I'm web_leonard
/ # curl gik.de
I'm web_leonard
/ # curl gik.de
I'm web_leonard
/ # curl gik.de
```

Figure 28: Test result of load balancer

literature/bib