臺北市立松山高中110學年度第一學期高一數學科教學計畫書一、教學目標:

- (1) 引導學生瞭解教材的內容、方法與精神。
- (2) 訓練學生清晰嚴謹的邏輯思維,加強判斷思考的能力。
- (3) 提昇學生的數學能力,奠定學習相關學科的基礎。
- (4) 培養學生主動學習及研究數學的興趣,進而能欣賞數學之美。

二、教學內容:

第一章 數與式

1-1 實數

教學內容:

- 1. 認識有理數,並能將有理數化成有限小數或循環小數。
- 2. 能進行有理數之分數與小數形式的互化,並知道循環小數的特徵。
- 3. 了解整數離散性與有理數稠密性的意義。
- 4. 能了解無理數的意義,並能利用計算機與十分逼近法計算平方根式之無理數。
- 5. 能在數線上標畫出給定的整數、有理數、平方根式之無理數等所對應的位置。
- 6. 能理解數線上的點坐標即為實數,而實數系統可以分成有理數與無理數兩大類。
- 7. 能了解因為實數不全為有理數,所以有理數雖然稠密卻不能佈滿數線。
- 8. 介紹算術平均數與幾何平均數的概念及定義。
- 9. 透過代數與幾何方式進行算幾不等式的證明,而且應強調等號成立的條件。

1-2 絕對值

教學內容:

- 1. 能了解並運用數線上的分點公式,並判別其在數線上的位置。
- 2.能了解絕對值的具體概念為距離, |a-b|代表在數線上A(a) ,B(b) 兩點之間的距離。
- 3. 能求解含絕對值的一次方程式與不等式。
- 4. 能理解絕對值方程式與絕對值不等式,在數線上所代表的距離關係。
- 5. 透過絕對值不等式所求得的解,搭配在數線上所呈現的區域,引入區間符號與交集、聯集符號等,表達不等式的解區間。
- 6. 能將不等式 $|x-a| \le b$ 與誤差範圍的意義相連結,並能用此形式的不等式表達誤差範圍。

1-3 式的運算

教學內容:

- 1. 能了解常用的立方乘法公式, 並能進行展開、分解及化簡等形式運算。
- 2. 能熟悉分式與根式的運算與化簡。
- 3. 介紹雙重根式,並能利用平方公式化簡雙重根式。

1-4 指數與對數

教學內容:

- 1. 複習指數為非負整數的指數律,並由此推導負整數指數、有理指數的合理定義。
- 2. 能利用計算機求得 x^y 的數值,並能理解例如: $3^{2.5} = \sqrt{3^5}$ 應為無理數,而計算機的結果是 $3^{2.5}$ 的近似值。

- 3. 能了解無理數指數也符合指數律,亦即推廣指數律對所有實數指數皆成立。
- 4. 了解常用對數的符號 $\log_{10} a = \log a$ 。
- 5. 了解對數符號的意義,並能將對數與指數作互換。
- 6.能了解當b>0時, $10^x=b$ 有唯一實數解,我們將此實數解x以符號 $\log b$ 表示,亦即任意正數b都可以改寫成 $10^{\log b}$ 。
- 7. 了解科學記號的有效數字,能將任意數依指令寫成正確的概數,並能判讀計算機顯示的科學記號數字。
- 8. 當正實數 p 表示成科學記號 $p = a \times 10^n$ 時,理解 n 就是 $\log p$ 的整數部分,而 $\log a$ 就是 $\log p$ 的小數部分,呼應 $1 \le a < 10$ 的規定。

第二章 直線與圓

2-1 直線方程式

教學內容:

- 1. 直線的斜率及其絕對值的意義:介紹斜率的定義,能知道斜率與直線的陡峭程度關係,並 為利用直線斜率能求直線方程式預做伏筆。
- 2. 坐標平面上的直線方程式:介紹直線的點斜式、斜截式(因審查要求,未介紹名詞,僅出現形式)、一般式等,其實學生不需要去背誦各個名詞,要能瞭解這些不同的形式是因應給予的已知條件不同,可以更快速的求出直線方程式,而且各方程式彼此之間可以相互轉換,所以學會點斜式的概念也就夠了。
- 3. 平行直線與垂直直線:與兩線在幾何上的平行與垂直不同,現在改由坐標化(斜率)的觀點來看兩線之間的平行與垂直,它們在斜率上的表現會是如何。

2-2 直線方程式的應用

教學內容:

- 1. 點到直線的距離公式:由於學生還沒有學習向量,所以必須利用其他方式來求點到直線的 距離,此處改用坐標化求點到直線的距離公式,與傳統上的求法較為不同。
- 2. 二元一次方程組的解及幾何意義:兩線之間的幾何意義有重合、平行、相交於一點(包含垂直),相對於二元一次方程組的解會有無限多組解、無解、一解的狀況,兩者之間的關係是如何在方程組中呈現。
- 3. 二元一次不等式:我們已經知道二元一次方程式是一條直線,這直線會把平面分成二個部分,若探討這二個部分在「坐標」(數據化)上的表現方式,於是就很自然地導出二元一次不等式可以用「大於」及「小於」分別對應這兩個區域,那個符號對應那個區域是必須能判斷的。

2-3 圓與直線的關係

教學內容:

- 1. 圓的方程式:我們已經知道圓的幾何概念,要如何將這個幾何概念用「坐標」來表示。
- 2. 圓與直線的三種關係:我們在繪製圓與直線時,可以發現它們之間有三種幾何關係,分別 是相交於2點、相切於1點及不相交(或稱相離)。
- 3. 圓與直線的相交情形:圓與直線既然有3種關係,我們就會想了解這3種關係會如何表現 在方程式上,它們之間的幾何關係要如何用「坐標」來說明。
- 4. 圓的切線:圓與直線的3種關係裏,切線與圓相切於切點,而切點與圓心的連線會與切線 垂線,這個性質會讓切線方程產生與圓方程式之間的特殊代數情形,有些會以「公式」來 呈現,是此處學生必須注意的重點。

第三章 多項式函數

3-1 多項式及其運算

教學內容:

- 1. 介紹多項式的定義以及相關的基本概念。
- 2. 介紹多項式的加法、減法與乘法的橫式及直式運算,並介紹直式的簡記方式。
- 3. 介紹多項式的除法原理與長除法。
- 4. 介紹綜合除法。
- 5. 介紹餘式定理與因式定理。
- 6. 能將多項式轉化為(x-a)之形式的多項式 (即<u>泰勒</u>多項式) ,並利用此形式求函數的近似值。

3-2 簡單多項式函數及其圖形

教學內容:

- 1. 說明函數與函數圖形的定義。
- 2. 介紹常數函數、一次函數及其圖形性質。
- 3. 介紹二次函數及其圖形性質與圖形的平移。
- 4. 介紹二次函數的配方法。
- 5. 說明二次函數無限制範圍與限制範圍時的最大值與最小值問題。
- 6. 利用二次函數的圖形說明二次函數恆正與恆負的條件。
- 7. 介紹函數圖形遞增與遞減定義。
- 8. 說明點對稱圖形的定義。
- 9. 介紹三次函數的圖形特徵與平移。
- 10. 介紹三次函數的配立方法,並以此說明三次函數皆可以化為 $y = a(x-h)^3 + p(x-h) + k$ 的形式。
- 11. 介紹多項式的線性近似。

3-3 多項式不等式

教學內容:

- 1. 說明函數圖形特徵,如根的位置、函數值正負區間。
- 2. 說明一次不等式的代數與幾何解法。
- 3. 說明二次不等式的解法。
- 4. 說明如何繪出已分解的高次多項式的大略圖形,並利用圖形求解已分解的高次不等式。
- 三、教學方法: 視各單元的主題,循序漸進,讓學生實際操作隨堂練習、自我評量及習作,並 補充教材使學生能靈活運用基本概念,進而達成各單元之課程目標。

四、作業規定:依各節上課進度,指定補充教材為回家作業。

五、成績計算:三次定期考查各佔 20%,

平常成績佔 40%(包括:作業成績、小考成績、學習態度等。)。

六、家長配合事項:

- (1) 數學能力的養成需要長時間的累積,動作練習是必要的條件。若有各位家長的配合與督促, 在親師互相配合下,同學們的表現定會更傑出。
- (2) 學校老師指定之作業,務必請學生親自完成並按時繳交,以養成良好學習習慣及態度,為日後奠定良好基礎能力及規劃。
- (3) 請協助提醒您的孩子,每份考卷務必確實訂正,並多鼓勵孩子主動演練試題,若有不懂務必向老師詢問,也請您關懷孩子在校學習情形。