INF01 118

Técnicas Digitais para Computação

Dimensionamento de Transistores Parasitas RC em Portas CMOS

Aula 6

Resistência de Canal do Transistor

canal do transistor

- Transistor não é 'chave ideal'.
- Canal do transistor ⇒ resistência
- Transistor conduzindo: $\text{resistência pequena } (R \Rightarrow 0 \)$
- Transistor 'cortado': $\text{resistência muito alta } (R \Rightarrow \infty)$

Dimensionamento de Transistor MOS

Resistência

$$\mathbf{R} = \rho \cdot \frac{L}{W \cdot T}$$

Lei de Ohm:

$$I = V / R$$

Inversor CMOS: (resistência parasita)

Capacitância (C)

Dimensionamento do Transistor MOS

Análise de 'r' ('on') e C:

• W
$$\uparrow$$
 : r \downarrow e C \uparrow

• L
$$\uparrow$$
 : r \uparrow e C \uparrow

Inversor CMOS: (capacitância parasita)

Associação de Transistores

Transistores em Paralelo

Transistores em Série

* Mais de 4 transistores em série devem ser evitados !!!

Consumo (Dissipação de Potência)

- Corrente de Carga: Iout
- Corrente de Curto-Circuito: Icc
- consumo estático ≈ 0
- consumo dinâmico (transição) = Iout + Icc
- consumo total = estático + dinâmico

* A variação de W e L afeta o tempo de transição dos sinais e o consumo da porta lógica.