(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 23 May 2002 (23.05.2002)

PCT

(10) International Publication Number WO 02/40671 A2

- (51) International Patent Classification⁷: C12N 15/12, C07K 14/705, 16/28, A01K 67/027, A61K 38/16, C12N 5/10, G01N 33/50, 33/53
- (21) International Application Number: PCT/US01/44974
- (22) International Filing Date:

15 November 2001 (15.11.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/249,645

16 November 2000 (16.11.2000) US

- (71) Applicant (for all designated States except US): INCYTE GENOMICS, INC. [US/US]; 3160 Porter Drive, Palo Alto, CA 94304 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandero, CA 94577 (US). LU, Dyung, Aina, M. [US/US]; 233 Coy Drive, San Jose, CA 95123 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). ELLIOTT, Vicki, S. [US/US]; 3770 Polton Place Way, San Jose, CA 95121 (US). THANGAVELU, Kavitha [IN/US]; 1950 Montecito Avenue, #23, Mountain View, CA 94043 (US). RAMKUMAR, Jayalaxmi [IN/US]; 34359 Maybird Circle, Fremont, CA 94555 (US). LU, Yan [CN/US]; 3885 Corrina Way, Palo Alto, CA 94303 (US). LO, Terrence, P. [CA/US]; 1451 Beach Park Boulevard, #115, Foster City,

CA 94404 (US). **GURURAJAN**, **Rajagopal** [IN/US]; 5591 Dent Avenue, San Jose, CA 95118 (US). **GANDHI**, **Ameena**, **R.** [US/US]; 705 5th Avenue, San Francisco, CA 94118 (US). **ARVIZU**, **Chandra** [US/US]; 490 Sherwood Way #1, Menlo Park, CA 94025 (US). **YAO**, **Monique**, **G.** [US/US]; 1189 Woodgate Drive, Carmel, IN 46033 (US).

- (74) Agents: HAMLET-COX, Diana et al.; Incyte Genomics, Inc., 3160 Porter Drive, Palo Alto, CA 94304 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

2/40671 AZ

(54) Title: IMMUNOGLOBULIN SUPERFAMILY PROTEINS

(57) Abstract: The invention provides human immunoglobulin superfamily proteins (IGSFP) and polynucleotides which identify and encode IGSFP. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of IGSFP.

IMMUNOGLOBULIN SUPERFAMILY PROTEINS

TECHNICAL FIELD

5

10

15

20

25

30

This invention relates to nucleic acid and amino acid sequences of immunoglobulin superfamily proteins and to the use of these sequences in the diagnosis, treatment, and prevention of immune system disorders, neurological disorders, developmental disorders, muscle disorders, and cell proliferative disorders, including cancer, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of immunoglobulin superfamily proteins.

BACKGROUND OF THE INVENTION

Most cell surface and soluble molecules that mediate functions such as recognition, adhesion or binding have evolved from a common evolutionary precursor (i.e., these proteins have structural homology). A number of molecules outside the immune system that have similar functions are also derived from this same evolutionary precursor. These molecules are classified as members of the immunoglobulin (Ig) superfamily. The criteria for a protein to be a member of the Ig superfamily is to have one or more Ig domains, which are regions of 70-110 amino acid residues in length homologous to either Ig variable-like (V) or Ig constant-like (C) domains. Members of the Ig superfamily include antibodies (Ab), T cell receptors (TCRs), class I and II major histocompatibility (MHC) proteins, CD2, CD3, CD4, CD8, poly-Ig receptors, Fc receptors, neural cell-adhesion molecule (NCAM) and platelet-derived growth factor receptor (PDGFR).

Ig domains (V and C) are regions of conserved amino acid residues that give a polypeptide a globular tertiary structure called an immunoglobulin (or antibody) fold, which consists of two approximately parallel layers of β -sheets. Conserved cysteine residues form an intrachain disulfide-bonded loop, 55-75 amino acid residues in length, which connects the two layers of the β -sheets. Each β -sheet has three or four anti-parallel β -strands of 5-10 amino acid residues. Hydrophobic and hydrophilic interactions of amino acid residues within the β -strands stabilize the Ig fold (hydrophobic on inward facing amino acid residues and hydrophilic on the amino acid residues in the outward facing portion of the strands). A V domain consists of a longer polypeptide than a C domain, with an additional pair of β -strands in the Ig fold.

A consistent feature of Ig superfamily genes is that each sequence of an Ig domain is encoded by a single exon. It is possible that the superfamily evolved from a gene coding for a single Ig domain involved in mediating cell-cell interactions. New members of the superfamily then arose by exon and gene duplications. Modern Ig superfamily proteins contain different numbers of V and/or C

1

domains. Another evolutionary feature of this superfamily is the ability to undergo DNA rearrangements, a unique feature retained by the antigen receptor members of the family.

Many members of the Ig superfamily are integral plasma membrane proteins with extracellular Ig domains. The hydrophobic amino acid residues of their transmembrane domains and their cytoplasmic tails are very diverse, with little or no homology among Ig family members or to known signal-transducing structures. There are exceptions to this general superfamily description. For example, the cytoplasmic tail of PDGFR has tyrosine kinase activity. In addition Thy-1 is a glycoprotein found on thymocytes and T cells. This protein has no cytoplasmic tail, but is instead attached to the plasma membrane by a covalent glycophosphatidylinositol linkage.

Another common feature of many Ig superfamily proteins is the interactions between Ig domains which are essential for the function of these molecules. Interactions between Ig domains of a multimeric protein can be either homophilic or heterophilic (i.e., between the same or different Ig domains). Antibodies are multimeric proteins which have both homophilic and heterophilic interactions between Ig domains. Pairing of constant regions of heavy chains forms the Fc region of an antibody and pairing of variable regions of light and heavy chains form the antigen binding site of an antibody. Heterophilic interactions also occur between Ig domains of different molecules. These interactions provide adhesion between cells for significant cell-cell interactions in the immune system and in the developing and mature nervous system. (Reviewed in Abbas, A.K. et al. (1991) Cellular and Molecular Immunology, W.B. Saunders Company, Philadelphia PA, pp.142-145.)

20 Antibodies

10

15

25

30

Antibodies are multimeric members of the Ig superfamily which are either expressed on the surface of B-cells or secreted by B-cells into the circulation. Antibodies bind and neutralize foreign antigens in the blood and other extracellular fluids. The prototypical antibody is a tetramer consisting of two identical heavy polypeptide chains (H-chains) and two identical light polypeptide chains (L-chains) interlinked by disulfide bonds. This arrangement confers the characteristic Y-shape to antibody molecules. Antibodies are classified based on their H-chain composition. The five antibody classes, IgA, IgD, IgE, IgG and IgM, are defined by the α , δ , ϵ , γ , and μ H-chain types. There are two types of L-chains, κ and λ , either of which may associate as a pair with any H-chain pair. IgG, the most common class of antibody found in the circulation, is tetrameric, while the other classes of antibodies are generally variants or multimers of this basic structure.

H-chains and L-chains each contain an N-terminal variable region and a C-terminal constant region. The constant region consists of about 110 amino acids in L-chains and about 330 or 440 amino acids in H-chains. The amino acid sequence of the constant region is nearly identical among H- or L-

chains of a particular class. The variable region consists of about 110 amino acids in both H- and L-chains. However, the amino acid sequence of the variable region differs among H- or L-chains of a particular class. Within each H- or L-chain variable region are three hypervariable regions of extensive sequence diversity, each consisting of about 5 to 10 amino acids. In the antibody molecule, the H- and L-chain hypervariable regions come together to form the antigen recognition site. (Reviewed in Alberts, B. et al. (1994) Molecular Biology of the Cell, Garland Publishing, New York NY, pp. 1206-1213 and 1216-1217.)

Both H-chains and L-chains contain the repeated Ig domains of members of the Ig superfamily. For example, a typical H-chain contains four Ig domains, three of which occur within the constant region and one of which occurs within the variable region and contributes to the formation of the antigen recognition site. Likewise, a typical L-chain contains two Ig domains, one of which occurs within the constant region and one of which occurs within the variable region.

The immune system is capable of recognizing and responding to any foreign molecule that enters the body. Therefore, the immune system must be armed with a full repertoire of antibodies against all potential antigens. Such antibody diversity is generated by somatic rearrangement of gene segments encoding variable and constant regions. These gene segments are joined together by site-specific recombination which occurs between highly conserved DNA sequences that flank each gene segment. Because there are hundreds of different gene segments, millions of unique genes can be generated combinatorially. In addition, imprecise joining of these segments and an unusually high rate of somatic mutation within these segments further contribute to the generation of a diverse antibody population.

Neural Cell Adhesion Proteins

10

15

20

25

30

Neural cell adhesion proteins (NCAPs) play roles in the establishment of neural networks during development and regeneration of the nervous system (Uyemura et al. (1996) Essays Biochem. 31:37-48; Brummendorf and Rathjen (1996) Curr. Opin. Neurobiol. 6:584-593). NCAP participates in neuronal cell migration, cell adhesion, neurite outgrowth, axonal fasciculation, pathfinding, synaptic target-recognition, synaptic formation, myelination and regeneration. NCAPs are expressed on the surfaces of neurons associated with learning and memory. Mutations in genes encoding NCAPS are linked with neurological diseases, including Charcot-Marie-Tooth disease (a hereditary neuropathy), Dejerine-Sottas disease, X-linked hydrocephalus, MASA syndrome (mental retardation, aphasia, shuffling gait and adducted thumbs), and spastic paraplegia type I. In some cases, expression of NCAP is not restricted to the nervous system. L1, for example, is expressed in melanoma cells and hematopoietic tumor cells where it is implicated in cell spreading and migration, and may play a role in

tumor progression (Montgomery et al. (1996) J. Cell Biol. 132:475-485).

10

15

20

25

30

NCAPs have at least one immunoglobulin constant or variable domain (Uyemura et al., supra). They are generally linked to the plasma membrane through a transmembrane domain and/or a glycosyl-phosphatidylinositol (GPI) anchor. The GPI linkage can be cleaved by GPI phospholipase C. Most NCAPs consist of an extracellular region made up of one or more immunoglobulin domains, a membrane spanning domain, and an intracellular region. Many NCAPs contain post-translational modifications including covalently attached oligosaccharide, glucuronic acid, and sulfate. NCAPs fall into three subgroups: simple-type, complex-type, and mixed-type. Simple-type NCAPs contain one or more variable or constant immunoglobulin domains, but lack other types of domains. Members of the simple-type subgroup include Schwann cell myelin protein (SMP), limbic system-associated membrane protein (LAMP) and opiate-binding cell-adhesion molecule (OBCAM). The complex-type NCAPs contain fibronectin type III domains in addition to the immunoglobulin domains. The complex-type subgroup includes neural cell-adhesion molecule (NCAM), axonin-1, F11, Bravo, and L1. Mixed-type NCAPs contain a combination of immunoglobulin domains and other motifs such as tyrosine kinase, epidermal growth factor-like, sema, and PSI (plexins, semaphorins, and integrins) domains. This subgroup includes Trk receptors of nerve growth factors such as nerve growth factor (NGF) and neurotropin 4 (NT4), Neu differentiation factors such as glial growth factor II (GGFII) and acetylcholine receptor-inducing factor (ARIA), the semaphorin/collapsin family such as semaphorin B and collapsin, and receptors for members of the semaphorin/collapsin family such as plexin (for plexin, see below).

An NCAP subfamily, the NCAP-LON subgroup, includes cell adhesion proteins expressed on distinct subpopulations of brain neurons. Members of the NCAP-LON subgroup possess three immunoglobulin domains and bind to cell membranes through GPI anchors. Kilon (a kindred of NCAP-LON), for example, is expressed in the brain cerebral cortex and hippocampus (Funatsu et al. (1999) J. Biol. Chem. 274:8224-8230). Immunostaining localizes Kilon to the dendrites and soma of pyramidal neurons. Kilon has three C2 type immunoglobulin-like domains, six predicted glycosylation sites, and a GPI anchor. Expression of Kilon is developmentally regulated. It is expressed at higher levels in adult brain in comparison to embryonic and early postnatal brains. Confocal microscopy shows the presence of Kilon in dendrites of hypothalamic magnocellular neurons secreting neuropeptides, oxytocin, or arginine vasopressin (Miyata et al. (2000) J. Comp. Neurol. 424:74-85). Arginine vasopressin regulates body fluid homeostasis, extracellular osmolarity and intravascular volume. Oxytocin induces contractions of uterine smooth muscle during child birth and of myoepithelial cells in mammary glands during lactation. In magnocellular neurons, Kilon is proposed to

play roles in the reorganization of dendritic connections during neuropeptide secretion.

Sidekick (SDK) is a member of the NCAP family. The extracellular region of SDK contains six immunoglobulin domains and thirteen fibronectin type III domains. SDK is involved in cell-cell interaction during eye development in <u>Drosophila</u> (Nguyen, D.N.T. et al. (1997) Development 124:3303).

Synaptic Membrane Glycoproteins

Specialized cell junctions can occur at points of cell-cell contact. Among these cell junctions are communicating junctions which mediate the passage of chemical and electrical signals between cells. In the central nervous system, communicating junctions between neurons are known as synaptic junctions. They are composed of the membranes and cytoskeletons of the pre- and post-synaptic neurons. Some glycoproteins, found in biochemically isolated synaptic subfractions such as the synaptic membrane (SM) and postsynaptic density (PSD) fractions, have been identified and their functions established. An example is the SM glycoprotein, gp50, identified as the β 2 subunit of the Na⁺/K⁺-ATPase.

Two glycoproteins, gp65 and gp55, are major components of synaptic membranes prepared from rat forebrain. They are members of the Ig superfamily containing three and two Ig domains, respectively. As members of the Ig superfamily, it is proposed that a possible function of these proteins is to mediate adhesive interactions at the synaptic junction (Langnaese, K. et al. (1997) J. Biol. Chem.272:821-827).

20 Lectins

5

15

25

30

Lectins comprise a ubiquitous family of extracellular glycoproteins which bind cell surface carbohydrates specifically and reversibly, resulting in the agglutination of cells (reviewed in Drickamer, K. and Taylor, M.E. (1993) Annu. Rev. Cell Biol. 9:237-264). This function is particularly important for activation of the immune response. Lectins mediate the agglutination and mitogenic stimulation of lymphocytes at sites of inflammation (Lasky, L.A. (1991) J. Cell. Biochem. 45:139-146; Paietta, E. et al. (1989) J. Immunol. 143:2850-2857).

Sialic acid binding Ig-like lectins (SIGLECs) are members of the Ig superfamily that bind to sialic acids in glycoproteins and glycolipids. SIGLECs include sialoadhesin, CD22, CD33, myelin-associated glycoprotein (MAG), SIGLEC-5, SIGLEC-6, SIGLEC-7, and SIGLEC-8. The extracellular region of SIGLEC has a membrane distal V-set domain followed by varying numbers of C2-set domains. The sialic acid binding domain is mapped to the V-set domain. Except for MAG which is expressed exclusively in the nervous system, most SIGLECs are expressed on distinct subsets of hemopoietic cells. For example, SIGLEC-8 is expressed exclusively in eosinophils, one form of

polymorphonuclear leucocyte (granulocyte) (Floyd, H. et al. (2000) J. Biol. Chem. 275: 861-866). <u>Leucine-Rich Repeat Proteins</u>

5

10

15

20

25

30

Leucine-rich repeat proteins (LRRPs) are involved in protein-protein interactions. LRRPs such as mammalian neuronal leucine-rich repeat proteins (NLLR-1 and NLLR-2), <u>Drosophila</u> connectin, slit, chaopin, and toll all play roles in neuronal development. The extracellular region of LRRPs contains varying numbers of leucine-rich repeats, immunoglobulin-like domains, and fibronectin type III domains (Taguchi, A. et al. (1996) Brain Res. Mol. Brain Res. 35:31-40).

In addition to the V and C2 sets of immunoglobulin-like domains, there is a D set immunoglobulin-like domain, named IPT/TIG (for immunoglobulin-like fold shared by plexins and transcription factors). IPT/TIG containing proteins include plexins, MET/RON/SEA (hepatocyte growth factor receptor family), and the transcription factor XCoe2, a transcription factor of the Col/Olf-1/EBF family involved in the specification of primary neurons in Xenopus (Bork, P. et al. (1999) Trends Biochem. Sci. 24:261-263; Santoro, N.M. et al. (1996) Mol. Cell Biol. 16:7072-7083; Dubois L. et al. (1998) Curr. Biol. 8:199-209). Plexins such as plexin A and VESPR have been shown to be neuronal semaphorin receptors that control axon guidance (Winberg M.L. et al. (1998) Cell 95:903-916).

The discovery of new immunoglobulin superfamily proteins, and the polynucleotides encoding them, satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of immune system disorders, neurological disorders, developmental disorders, muscle disorders, and cell proliferative disorders, including cancer, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of immunoglobulin superfamily proteins.

SUMMARY OF THE INVENTION

The invention features purified polypeptides, immunoglobulin superfamily proteins, referred to collectively as "IGSFP" and individually as "IGSFP-1," "IGSFP-2," "IGSFP-3," "IGSFP-4," "IGSFP-5," and "IGSFP-6." In one aspect, the invention provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6. In one alternative, the

invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:1-6.

The invention further provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6. In one alternative, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO:1-6. In another alternative, the polynucleotide is selected from the group consisting of SEQ ID NO:7-12.

10

15

20

25

30

Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.

The invention also provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.

Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, b) a polypeptide comprising a naturally

5

10

15

20

25

30

occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6.

The invention further provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:7-12, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:7-12, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.

Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:7-12, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:7-12, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof. In one alternative, the probe comprises at least 60 contiguous nucleotides.

The invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:7-12, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:7-12, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b)

detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.

The invention further provides a composition comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, and a pharmaceutically acceptable excipient. In one embodiment, the composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-6. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional IGSFP, comprising administering to a patient in need of such treatment the composition.

10

15

20

25

30

The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional IGSFP, comprising administering to a patient in need of such treatment the composition.

Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group

consisting of SEQ ID NO:1-6. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional IGSFP, comprising administering to a patient in need of such treatment the composition.

The invention further provides a method of screening for a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.

10

15

20

25

30

The invention further provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6. The method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.

The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence selected from the group consisting of SEQ ID NO:7-12, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting

altered expression of the target polynucleotide.

5

10

15

20

25

30

The invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:7-12, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:7-12, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:7-12, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:7-12, iii) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Alternatively, the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

BRIEF DESCRIPTION OF THE TABLES

Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the present invention.

Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog for polypeptides of the invention. The probability scores for the matches between each polypeptide and its homolog(s) are also shown.

Table 3 shows structural features of polypeptide sequences of the invention, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.

Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble

polynucleotide sequences of the invention, along with selected fragments of the polynucleotide sequences.

Table 5 shows the representative cDNA library for polynucleotides of the invention.

Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.

Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

10

15

20

25

30

"IGSFP" refers to the amino acid sequences of substantially purified IGSFP obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which intensifies or mimics the biological activity of IGSFP. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other

compound or composition which modulates the activity of IGSFP either by directly interacting with IGSFP or by acting on components of the biological pathway in which IGSFP participates.

An "allelic variant" is an alternative form of the gene encoding IGSFP. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

10

15

20

25

30

"Altered" nucleic acid sequences encoding IGSFP include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as IGSFP or a polypeptide with at least one functional characteristic of IGSFP. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding IGSFP, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding IGSFP. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent IGSFP. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of IGSFP is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.

The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence.

Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of IGSFP. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of IGSFP either by directly interacting with IGSFP or by acting on components of the biological pathway in which IGSFP participates.

5

15

20

25

30

The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind IGSFP polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "aptamer" refers to a nucleic acid or oligonucleotide molecule that binds to a specific molecular target. Aptamers are derived from an <u>in vitro</u> evolutionary process (e.g., SELEX (Systematic Evolution of Ligands by EXponential Enrichment), described in U.S. Patent No. 5,270,163), which selects for target-specific aptamer sequences from large combinatorial libraries. Aptamer compositions may be double-stranded or single-stranded, and may include deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-like molecules. The nucleotide components of an aptamer may have modified sugar groups (e.g., the 2'-OH group of a ribonucleotide may be replaced by 2'-F or 2'-NH₂), which may improve a desired property, e.g., resistance to nucleases or longer lifetime in blood. Aptamers may be conjugated to other molecules, e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system. Aptamers may be specifically cross-linked to their cognate ligands, e.g., by photo-activation of a cross-linker. (See, e.g., Brody, E.N. and L. Gold (2000) J. Biotechnol. 74:5-13.)

The term "intramer" refers to an aptamer which is expressed <u>in vivo</u>. For example, a vaccinia virus-based RNA expression system has been used to express specific RNA aptamers at high levels

in the cytoplasm of leukocytes (Blind, M. et al. (1999) Proc. Natl Acad. Sci. USA 96:3606-3610).

The term "spiegelmer" refers to an aptamer which includes L-DNA, L-RNA, or other left-handed nucleotide derivatives or nucleotide-like molecules. Aptamers containing left-handed nucleotides are resistant to degradation by naturally occurring enzymes, which normally act on substrates containing right-handed nucleotides.

5

10

15

20

25

30

The term "antisense" refers to any composition capable of base-pairing with the "sense" (coding) strand of a specific nucleic acid sequence. Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand of a reference DNA molecule.

The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" or "immunogenic" refers to the capability of the natural, recombinant, or synthetic IGSFP, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

"Complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement, 3'-TCA-5'.

A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding IGSFP or fragments of IGSFP may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been subjected to

repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.

"Conservative amino acid substitutions" are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.

	Original Residue	Conservative Substitution
	Ala	Gly, Ser
	Arg	His, Lys
15	Asn	Asp, Gln, His
	Asp	Asn, Glu
	Cys	Ala, Ser
	Gln	Asn, Glu, His
	Glu	Asp, Gln, His
20	Gly	Ala
,	His	Asn, Arg, Gln, Glu
	Пе	Leu, Val
	Leu	Ile, Val
	Lys	Arg, Gln, Glu
25	Met	Leu, Ile
	Phe	His, Met, Leu, Trp, Tyr
	Ser	Cys, Thr
	Thr	Ser, Val
	Trp	Phe, Tyr
30	Tyr	His, Phe, Trp
	Val	Ile, Leu, Thr

10

35

40

Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to a chemically modified polynucleotide or polypeptide.

Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an

16

alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

A "detectable label" refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.

5

10

15

20

25

30

"Differential expression" refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.

"Exon shuffling" refers to the recombination of different coding regions (exons). Since an exon may represent a structural or functional domain of the encoded protein, new proteins may be assembled through the novel reassortment of stable substructures, thus allowing acceleration of the evolution of new protein functions.

A "fragment" is a unique portion of IGSFP or the polynucleotide encoding IGSFP which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.

A fragment of SEQ ID NO:7-12 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:7-12, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ ID NO:7-12 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:7-12 from related polynucleotide sequences. The precise length of a fragment of SEQ ID NO:7-12 and the region of SEQ ID NO:7-12 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A fragment of SEQ ID NO:1-6 is encoded by a fragment of SEQ ID NO:7-12. A fragment of SEQ ID NO:1-6 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-6. For example, a fragment of SEQ ID NO:1-6 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-6. The precise length of a fragment of SEQ ID NO:1-6 and the region of SEQ ID NO:1-6 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A "full length" polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon. A "full length" polynucleotide sequence encodes a "full length" polypeptide sequence.

10

15

20

30

"Homology" refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.

The terms "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.

Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequences.

Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at http://www.ncbi.nlm.nih.gov/BLAST/. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2

Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at http://www.ncbi.nlm.nih.gov/gorf/bl2.html. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Reward for match: 1

Penalty for mismatch: -2

Open Gap: 5 and Extension Gap: 2 penalties

Gap x drop-off: 50

Expect: 10

10

15

20

25

30

Word Size: 11

Filter: on

Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.

The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.

Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e

sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.

Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) with blastp set at default parameters. Such default parameters may be, for example:

10 Matrix: BLOSUM62

Open Gap: 11 and Extension Gap: 1 penalties

Gap x drop-off: 50

Expect: 10

Word Size: 3

15 Filter: on

5

20

25

30

Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.

The term "humanized antibody" refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

"Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the

stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 µg/ml sheared, denatured salmon sperm DNA.

5

10

15

20

30

Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5° C to 20° C lower than the thermal melting point ($T_{\rm m}$) for the specific sequence at a defined ionic strength and pH. The $T_{\rm m}$ is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating $T_{\rm m}$ and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, $2^{\rm nd}$ ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9.

High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 µg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.

The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., $C_0 t$ or $R_0 t$ analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words "insertion" and "addition" refer to changes in an amino acid or nucleotide

sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.

"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

An "immunogenic fragment" is a polypeptide or oligopeptide fragment of IGSFP which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment of IGSFP which is useful in any of the antibody production methods disclosed herein or known in the art.

The term "microarray" refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.

5

10

15

20

25

30

The terms "element" and "array element" refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.

The term "modulate" refers to a change in the activity of IGSFP. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of IGSFP.

The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.

"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

"Post-translational modification" of an IGSFP may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary

by cell type depending on the enzymatic milieu of IGSFP.

5

10

15

20

25

30

"Probe" refers to nucleic acid sequences encoding IGSFP, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule.

Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers" are short pueloic acids wavelly DNA oligonucleotides, which may be appealed to a target

are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).

Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.

Methods for preparing and using probes and primers are described in the references, for example Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel, F.M. et al. (1987) Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis, M. et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).

Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to

avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.

5

10

15

20

25

30

A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, <u>supra</u>. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.

Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.

A "regulatory element" refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.

"Reporter molecules" are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.

An "RNA equivalent," in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of

the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

The term "sample" is used in its broadest sense. A sample suspected of containing IGSFP, nucleic acids encoding IGSFP, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

5

10

15

20

25

30

The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

A "transcript image" or "expression profile" refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.

"Transformation" describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed cells" includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently

transformed cells which express the inserted DNA or RNA for limited periods of time.

5

10

15

20

25

30

A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.

A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of

the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length of one of the polypeptides.

THE INVENTION

5

10

15

25

30

The invention is based on the discovery of new human immunoglobulin superfamily proteins (IGSFP), the polynucleotides encoding IGSFP, and the use of these compositions for the diagnosis, treatment, or prevention of immune system disorders, neurological disorders, developmental disorders, muscle disorders, and cell proliferative disorders, including cancer.

Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project ID). Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ ID NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide ID) as shown. Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) as shown.

Table 2 shows sequences with homology to the polypeptides of the invention as identified by BLAST analysis against the GenBank protein (genpept) database. Columns 1 and 2 show the polypeptide sequence identification number (Polypeptide SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for polypeptides of the invention. Column 3 shows the GenBank identification number (GenBank ID NO:) of the nearest GenBank homolog. Column 4 shows the probability scores for the matches between each polypeptide and its homolog(s). Column 5 shows the annotation of the GenBank homolog(s) along with relevant citations where applicable, all of which are expressly incorporated by reference herein.

Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and 2 show the polypeptide sequence identification number (SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for each polypeptide of the invention. Column 3 shows the number of amino acid residues in each polypeptide. Column 4 shows potential phosphorylation sites, and column 5 shows potential glycosylation sites, as determined by the MOTIFS program of the GCG sequence analysis software package (Genetics Computer Group, Madison WI). Column 6 shows amino acid residues comprising signature sequences, domains, and motifs. Column 7

shows analytical methods for protein structure/function analysis and in some cases, searchable databases to which the analytical methods were applied.

5

10

15

20

25

30

Together, Tables 2 and 3 summarize the properties of polypeptides of the invention, and these properties establish that the claimed polypeptides are immunoglobulin superfamily proteins. For example, SEQ ID NO:1 is 87% identical to murine punc (putative neural cell adhesion protein) (GenBank ID g3068592) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:1 also contains immunoglobulin and fibronectin type III domains as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS analysis provides further corroborative evidence that SEQ ID NO:1 is a neural cell adhesion protein. SEQ ID NO:2-6 were analyzed and annotated in a similar manner. The algorithms and parameters for the analysis of SEQ ID NO:1-6 are described in Table 7.

As shown in Table 4, the full length polynucleotide sequences of the present invention were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences. Columns 1 and 2 list the polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and the corresponding Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) for each polynucleotide of the invention. Column 3 shows the length of each polynucleotide sequence in basepairs. Column 4 lists fragments of the polynucleotide sequences which are useful, for example, in hybridization or amplification technologies that identify SEQ ID NO:7-12 or that distinguish between SEQ ID NO:7-12 and related polynucleotide sequences. Column 5 shows identification numbers corresponding to cDNA sequences, coding sequences (exons) predicted from genomic DNA, and/or sequence assemblages comprised of both cDNA and genomic DNA. These sequences were used to assemble the full length polynucleotide sequences of the invention. Columns 6 and 7 of Table 4 show the nucleotide start (5') and stop (3') positions of the cDNA and/or genomic sequences in column 5 relative to their respective full length sequences.

The identification numbers in Column 5 of Table 4 may refer specifically, for example, to Incyte cDNAs along with their corresponding cDNA libraries. For example, 7184821H1 is the identification number of an Incyte cDNA sequence, and BONRFEC01 is the cDNA library from which it is derived. Incyte cDNAs for which cDNA libraries are not indicated were derived from pooled cDNA libraries (e.g., 71553470V1). Alternatively, the identification numbers in column 5 may refer to GenBank cDNAs or ESTs (e.g., g2993996) which contributed to the assembly of the full

length polynucleotide sequences. In addition, the identification numbers in column 5 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database (i.e., those sequences including the designation "ENST"). Alternatively, the identification numbers in column 5 may be derived from the NCBI RefSeq Nucleotide Sequence Records Database (i.e., those sequences including the designation "NM" or "NT") or the NCBI RefSeq Protein Sequence Records 5 (i.e., those sequences including the designation "NP"). Alternatively, the identification numbers in column 5 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm. For example, $FL_XXXXXXX_N_1_N_2_YYYYY_N_3_N_4$ represents a "stitched" sequence in which XXXXXX is the identification number of the cluster of sequences to which the algorithm was applied, and YYYYYY is the number of the prediction generated by the 10 algorithm, and $N_{1,2,3,...}$, if present, represent specific exons that may have been manually edited during analysis (See Example V). Alternatively, the identification numbers in column 5 may refer to assemblages of exons brought together by an "exon-stretching" algorithm. For example, FLXXXXXX_gAAAAA_gBBBBB_1_N is the identification number of a "stretched" sequence, with XXXXXXX being the Incyte project identification number, gAAAAA being the GenBank identification 15 number of the human genomic sequence to which the "exon-stretching" algorithm was applied, gBBBBB being the GenBank identification number or NCBI RefSeq identification number of the nearest GenBank protein homolog, and N referring to specific exons (See Example V). In instances where a RefSeq sequence was used as a protein homolog for the "exon-stretching" algorithm, a RefSeq identifier (denoted by "NM," "NP," or "NT") may be used in place of the GenBank identifier 20 (i.e., gBBBBB).

Alternatively, a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods. The following Table lists examples of component sequence prefixes and corresponding sequence analysis methods associated with the prefixes (see Example IV and Example V).

Prefix	Type of analysis and/or examples of programs	
GNN, GFG,	Exon prediction from genomic sequences using, for example,	
ENST	GENSCAN (Stanford University, CA, USA) or FGENES	
	(Computer Genomics Group, The Sanger Centre, Cambridge, UK).	
GBI	Hand-edited analysis of genomic sequences.	
FL	Stitched or stretched genomic sequences (see Example V).	

30

25

INCY	Full length transcript and exon prediction from mapping of EST	
	sequences to the genome. Genomic location and EST composition	
	data are combined to predict the exons and resulting transcript.	

In some cases, Incyte cDNA coverage redundant with the sequence coverage shown in column 5 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown.

5

10

15

20

25

30

Table 5 shows the representative cDNA libraries for those full length polynucleotide sequences which were assembled using Incyte cDNA sequences. The representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotide sequences. The tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.

The invention also encompasses IGSFP variants. A preferred IGSFP variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the IGSFP amino acid sequence, and which contains at least one functional or structural characteristic of IGSFP.

The invention also encompasses polynucleotides which encode IGSFP. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:7-12, which encodes IGSFP. The polynucleotide sequences of SEQ ID NO:7-12, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

The invention also encompasses a variant of a polynucleotide sequence encoding IGSFP. In particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding IGSFP. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:7-12 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:7-12. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of IGSFP.

In addition, or in the alternative, a polynucleotide variant of the invention is a splice variant of a polynucleotide sequence encoding IGSFP. A splice variant may have portions which have significant

sequence identity to the polynucleotide sequence encoding IGSFP, but will generally have a greater or lesser number of polynucleotides due to additions or deletions of blocks of sequence arising from alternate splicing of exons during mRNA processing. A splice variant may have less than about 70%, or alternatively less than about 50% polynucleotide sequence identity to the polynucleotide sequence encoding IGSFP over its entire length; however, portions of the splice variant will have at least about 70%, or alternatively at least about 85%, or alternatively at least about 95%, or alternatively 100% polynucleotide sequence identity to portions of the polynucleotide sequence encoding IGSFP. Any one of the splice variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of IGSFP.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding IGSFP, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring IGSFP, and all such variations are to be considered as being specifically disclosed.

10

15

20

25

30

Although nucleotide sequences which encode IGSFP and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring IGSFP under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding IGSFP or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding IGSFP and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode IGSFP and IGSFP derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding IGSFP or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of

5

10

15

20

30

hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:7-12 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding IGSFP may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.)

Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060).

Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo

Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

10

15

20

25

30

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode IGSFP may be cloned in recombinant DNA molecules that direct expression of IGSFP, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express IGSFP.

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter IGSFP-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

The nucleotides of the present invention may be subjected to DNA shuffling techniques such

as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent No. 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of IGSFP, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.

10

15

20

25

30

In another embodiment, sequences encoding IGSFP may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.) Alternatively, IGSFP itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solution-phase or solid-phase techniques. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY, pp. 55-60; and Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (Applied Biosystems). Additionally, the amino acid sequence of IGSFP, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)

In order to express a biologically active IGSFP, the nucleotide sequences encoding IGSFP or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and

inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding IGSFP. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding IGSFP. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding IGSFP and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

5

10

15

25

Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding IGSFP and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

A variety of expression vector/host systems may be utilized to contain and express sequences encoding IGSFP. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. (See, e.g., Sambrook, supra; Ausubel, supra; Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509; Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945; Takamatsu, N. (1987) EMBO J. 6:307-311; The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196; Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659; and 30 Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.) Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. (See, e.g., Di Nicola, M. et al. (1998) Cancer Gen. Ther. 5(6):350-356; Yu, M. et al. (1993) Proc. Natl. Acad. Sci. USA

90(13):6340-6344; Buller, R.M. et al. (1985) Nature 317(6040):813-815; McGregor, D.P. et al. (1994) Mol. Immunol. 31(3):219-226; and Verma, I.M. and N. Somia (1997) Nature 389:239-242.) The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding IGSFP. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding IGSFP can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding IGSFP into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of IGSFP are needed, e.g. for the production of antibodies, vectors which direct high level expression of IGSFP may be used. For example, vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.

10

15

20

25

30

Yeast expression systems may be used for production of IGSFP. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast <u>Saccharomyces cerevisiae</u> or <u>Pichia pastoris</u>. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, <u>supra</u>; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; and Scorer, C.A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of IGSFP. Transcription of sequences encoding IGSFP may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding IGSFP may be ligated into

an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses IGSFP in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

5

15

20

25

30

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of IGSFP in cell lines is preferred. For example, sequences encoding IGSFP can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in *tk* and *apr* cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, *dhfr* confers resistance to methotrexate; *neo* confers resistance to the aminoglycosides neomycin and G-418; and *als* and *pat* confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., *trpB* and *hisD*, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to

quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding IGSFP is inserted within a marker gene sequence, transformed cells containing sequences encoding IGSFP can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding IGSFP under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding IGSFP and that express IGSFP may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

10

15

20

25

30

Immunological methods for detecting and measuring the expression of IGSFP using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on IGSFP is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton; R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding IGSFP include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding IGSFP, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes <u>in vitro</u> by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega

(Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

5

10

15

20

25

30

Host cells transformed with nucleotide sequences encoding IGSFP may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode IGSFP may be designed to contain signal sequences which direct secretion of IGSFP through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding IGSFP may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric IGSFP protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of IGSFP activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the IGSFP encoding sequence and the heterologous protein sequence, so that IGSFP may be cleaved away from the heterologous moiety following purification. Methods for fusion protein

expression and purification are discussed in Ausubel (1995, <u>supra</u>, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled IGSFP may be achieved <u>in</u> <u>vitro</u> using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, ³⁵S-methionine.

5

10

15

20

25

30

IGSFP of the present invention or fragments thereof may be used to screen for compounds that specifically bind to IGSFP. At least one and up to a plurality of test compounds may be screened for specific binding to IGSFP. Examples of test compounds include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

In one embodiment, the compound thus identified is closely related to the natural ligand of IGSFP, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner. (See, e.g., Coligan, J.E. et al. (1991) <u>Current Protocols in Immunology</u> 1(2): Chapter 5.) Similarly, the compound can be closely related to the natural receptor to which IGSFP binds, or to at least a fragment of the receptor, e.g., the ligand binding site. In either case, the compound can be rationally designed using known techniques. In one embodiment, screening for these compounds involves producing appropriate cells which express IGSFP, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, <u>Drosophila</u>, or <u>E. coli</u>. Cells expressing IGSFP or cell membrane fractions which contain IGSFP are then contacted with a test compound and binding, stimulation, or inhibition of activity of either IGSFP or the compound is analyzed.

An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with IGSFP, either in solution or affixed to a solid support, and detecting the binding of IGSFP to the compound. Alternatively, the assay may detect or measure binding of a test compound in the presence of a labeled competitor. Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a solid support.

IGSFP of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of IGSFP. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for IGSFP activity, wherein IGSFP is combined with at least one test compound, and the activity of IGSFP in the

presence of a test compound is compared with the activity of IGSFP in the absence of the test compound. A change in the activity of IGSFP in the presence of the test compound is indicative of a compound that modulates the activity of IGSFP. Alternatively, a test compound is combined with an in vitro or cell-free system comprising IGSFP under conditions suitable for IGSFP activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of IGSFP may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.

In another embodiment, polynucleotides encoding IGSFP or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Patent No. 5,175,383 and U.S. Patent No. 5,767,337.) For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292). The vector integrates into the corresponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330). Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.

10

15

20

25

30

Polynucleotides encoding IGSFP may also be manipulated <u>in vitro</u> in ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).

Polynucleotides encoding IGSFP can also be used to create "knockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding IGSFP is injected into animal ES cells, and the injected sequence integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease. Alternatively,

a mammal inbred to overexpress IGSFP, e.g., by secreting IGSFP in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74).

THERAPEUTICS

10

15

20

25

30

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of IGSFP and immunoglobulin superfamily proteins. In addition, the expression of IGSFP is closely associated with eosinophils, lung tissue, prostate tumor tissue, uterine myometrial tissue, and brain tissues such as globus pallidus and substantia innominata. Therefore, IGSFP appears to play a role in immune system disorders, neurological disorders, developmental disorders, muscle disorders, and cell proliferative disorders, including cancer. In the treatment of disorders associated with increased IGSFP expression or activity, it is desirable to decrease the expression or activity of IGSFP. In the treatment of disorders associated with decreased IGSFP expression or activity, it is desirable to increase the expression or activity of IGSFP.

Therefore, in one embodiment, IGSFP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of IGSFP. Examples of such disorders include, but are not limited to, an immune system disorder such as acquired immunodeficiency syndrome (AIDS), X-linked agammaglobinemia of Bruton, common variable immunodeficiency (CVI), DiGeorge's syndrome (thymic hypoplasia), thymic dysplasia, isolated IgA deficiency, severe combined immunodeficiency disease (SCID), immunodeficiency with thrombocytopenia and eczema (Wiskott-Aldrich syndrome), Chediak-Higashi syndrome, chronic granulomatous diseases, hereditary angioneurotic edema, immunodeficiency associated with Cushing's disease, Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a neurological disorder such as epilepsy, ischemic cerebrovascular disease,

5

10

15

20

25

30

stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a developmental disorder such as renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss; a muscle disorder such as cardiomyopathy, myocarditis, Duchenne's muscular dystrophy, Becker's muscular dystrophy, myotonic dystrophy, central core disease, nemaline myopathy, centronuclear myopathy, lipid myopathy, mitochondrial myopathy, infectious myositis, polymyositis, dermatomyositis, inclusion body myositis, thyrotoxic myopathy, and ethanol myopathy; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis,

prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus.

5

10

15

20

25

30

In another embodiment, a vector capable of expressing IGSFP or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of IGSFP including, but not limited to, those described above.

In a further embodiment, a composition comprising a substantially purified IGSFP in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of IGSFP including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of IGSFP may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of IGSFP including, but not limited to, those listed above.

In a further embodiment, an antagonist of IGSFP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of IGSFP. Examples of such disorders include, but are not limited to, those immune system disorders, neurological disorders, developmental disorders, muscle disorders, and cell proliferative disorders, including cancer, described above. In one aspect, an antibody which specifically binds IGSFP may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express IGSFP.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding IGSFP may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of IGSFP including, but not limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of IGSFP may be produced using methods which are generally known in the art. In particular, purified IGSFP may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind IGSFP. Antibodies to IGSFP may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments

produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with IGSFP or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to IGSFP have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of IGSFP amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

10

15

20

Monoclonal antibodies to IGSFP may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc.

Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce IGSFP-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)

Antibodies may also be produced by inducing <u>in vivo</u> production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter,

G. et al. (1991) Nature 349:293-299.)

15

20

25

30

Antibody fragments which contain specific binding sites for IGSFP may also be generated. For example, such fragments include, but are not limited to, F(ab')₂ fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between IGSFP and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering IGSFP epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for IGSFP. Affinity is expressed as an association constant, K_a , which is defined as the molar concentration of IGSFP-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple IGSFP epitopes, represents the average affinity, or avidity, of the antibodies for IGSFP. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular IGSFP epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10^9 to 10^{12} L/mole are preferred for use in immunoassays in which the IGSFP-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10^6 to 10^7 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of IGSFP, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of IGSFP-antibody

complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, <u>supra</u>, and Coligan et al. <u>supra</u>.)

In another embodiment of the invention, the polynucleotides encoding IGSFP, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding IGSFP. Such technology is well known in the art, and antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding IGSFP. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totawa NJ.)

10

20

25

30

In therapeutic use, any gene delivery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein. (See, e.g., Slater, J.E. et al. (1998) J. Allergy Clin. Immunol. 102(3):469-475; and Scanlon, K.J. et al. (1995) 9(13):1288-1296.) Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors. (See, e.g., Miller, A.D. (1990) Blood 76:271; Ausubel, supra; Uckert, W. and W. Walther (1994) Pharmacol. Ther. 63(3):323-347.) Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art. (See, e.g., Rossi, J.J. (1995) Br. Med. Bull. 51(1):217-225; Boado, R.J. et al. (1998) J. Pharm. Sci. 87(11):1308-1315; and Morris, M.C. et al. (1997) Nucleic Acids Res. 25(14):2730-2736.)

In another embodiment of the invention, polynucleotides encoding IGSFP may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-X1 disease characterized by X-linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C. et al. (1995) Science 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) Cell 75:207-216; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:643-666; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:667-703), thalassamias, familial hypercholesterolemia, and hemophilia resulting from Factor VIII or Factor IX deficiencies (Crystal, R.G. (1995) Science 270:404-410; Verma, I.M. and N. Somia (1997) Nature 389:239-242)), (ii) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated

cell proliferation), or (iii) express a protein which affords protection against intracellular parasites (e.g., against human retroviruses, such as human immunodeficiency virus (HTV) (Baltimore, D. (1988) Nature 335:395-396; Poeschla, E. et al. (1996) Proc. Natl. Acad. Sci. USA. 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as <u>Candida albicans</u> and <u>Paracoccidioides</u> <u>brasiliensis</u>; and protozoan parasites such as <u>Plasmodium falciparum</u> and <u>Trypanosoma cruzi</u>). In the case where a genetic deficiency in IGSFP expression or regulation causes disease, the expression of IGSFP from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic deficiency.

5

10

15

20

25

30

In a further embodiment of the invention, diseases or disorders caused by deficiencies in IGSFP are treated by constructing mammalian expression vectors encoding IGSFP and introducing these vectors by mechanical means into IGSFP-deficient cells. Mechanical transfer technologies for use with cells <u>in vivo</u> or <u>ex vitro</u> include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivics, Z. (1997) Cell 91:501-510; Boulay, J-L. and H. Récipon (1998) Curr. Opin. Biotechnol. 9:445-450).

Expression vectors that may be effective for the expression of IGSFP include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX, PCR2-TOPOTA vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA). IGSFP may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or β-actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456), commercially available in the T-REX plasmid (Invitrogen)); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND; Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F.M.V. and H.M. Blau, supra)), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding IGSFP from a normal individual.

Commercially available liposome transformation kits (e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deliver polynucleotides to target cells in culture and require minimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method

5

10

15

20

25

30

(Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1:841-845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.

In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to IGSFP expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding IGSFP under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus cis-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci. USA 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al. (1998) J. Virol. 72:9873-9880). U.S. Patent No. 5,910,434 to Rigg ("Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant") discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4+ T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al. (1997) Blood 89:2259-2267; Bonyhadi, M.L. (1997) J. Virol. 71:4707-4716; Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. USA 95:1201-1206; Su, L. (1997) Blood 89:2283-2290).

In the alternative, an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding IGSFP to cells which have one or more genetic abnormalities with respect to the expression of IGSFP. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent No. 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P.A. et al. (1999) Annu. Rev. Nutr. 19:511-544 and Verma, I.M. and N. Somia (1997) Nature 18:389:239-242, both incorporated by reference herein.

5

10

15

20

25

30

In another alternative, a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding IGSFP to target cells which have one or more genetic abnormalities with respect to the expression of IGSFP. The use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing IGSFP to cells of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1-based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res. 169:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S. Patent No. 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference. U.S. Patent No. 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999) J. Virol. 73:519-532 and Xu, H. et al. (1994) Dev. Biol. 163:152-161, hereby incorporated by reference. The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.

In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding IGSFP to target cells. The biology of the prototypic alphavirus, Semliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and K.-J. Li (1998) Curr. Opin. Biotechnol. 9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for IGSFP into the alphavirus genome in place of the capsid-coding region results in the production of a large number of IGSFP-coding RNAs and the synthesis of high levels of IGSFP in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83). The wide host range of alphaviruses will

allow the introduction of IGSFP into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction. The methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.

5

10

15

20

25

30

Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding IGSFP.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding IGSFP. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell

lines, cells, or tissues.

5

10

15

20

25

30

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding IGSFP. Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression. Thus, in the treatment of disorders associated with increased IGSFP expression or activity, a compound which specifically inhibits expression of the polynucleotide encoding IGSFP may be therapeutically useful, and in the treatment of disorders associated with decreased IGSFP expression or activity, a compound which specifically promotes expression of the polynucleotide encoding IGSFP may be therapeutically useful.

At least one, and up to a plurality, of test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly. A sample comprising a polynucleotide encoding IGSFP is exposed to at least one test compound thus obtained. The sample may comprise, for example, an intact or permeabilized cell, or an <u>in vitro</u> cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding IGSFP are assayed by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding IGSFP. The amount of hybridization may be quantified, thus forming the

basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)

10

15

20

25

30

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.

An additional embodiment of the invention relates to the administration of a composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient. Excipients may include, for example, sugars, starches, celluloses, gums, and proteins. Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA). Such compositions may consist of IGSFP, antibodies to IGSFP, and mimetics, agonists, antagonists, or inhibitors of IGSFP.

The compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

Compositions for pulmonary administration may be prepared in liquid or dry powder form.

These compositions are generally aerosolized immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol delivery of fast-

acting formulations is well-known in the art. In the case of macromolecules (e.g. larger peptides and proteins), recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S. et al., U.S. Patent No. 5,997,848). Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.

Compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

10

15

20

25

30

Specialized forms of compositions may be prepared for direct intracellular delivery of macromolecules comprising IGSFP or fragments thereof. For example, liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule. Alternatively, IGSFP or a fragment thereof may be joined to a short cationic N-terminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example IGSFP or fragments thereof, antibodies of IGSFP, and agonists, antagonists or inhibitors of IGSFP, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED_{50} (the dose therapeutically effective in 50% of the population) or LD_{50} (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD_{50}/ED_{50} ratio. Compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED_{50} with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the

subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 μ g to 100,000 μ g, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

10

15

20

25

30

In another embodiment, antibodies which specifically bind IGSFP may be used for the diagnosis of disorders characterized by expression of IGSFP, or in assays to monitor patients being treated with IGSFP or agonists, antagonists, or inhibitors of IGSFP. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for IGSFP include methods which utilize the antibody and a label to detect IGSFP in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring IGSFP, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of IGSFP expression. Normal or standard values for IGSFP expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibodies to IGSFP under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of IGSFP expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding IGSFP may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of IGSFP may be correlated with

disease. The diagnostic assay may be used to determine absence, presence, and excess expression of IGSFP, and to monitor regulation of IGSFP levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding IGSFP or closely related molecules may be used to identify nucleic acid sequences which encode IGSFP. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding IGSFP, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the IGSFP encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:7-12 or from genomic sequences including promoters, enhancers, and introns of the IGSFP gene.

10

15

20

25

30

Means for producing specific hybridization probes for DNAs encoding IGSFP include the cloning of polynucleotide sequences encoding IGSFP or IGSFP derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes <u>in vitro</u> by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ³²P or ³⁵S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding IGSFP may be used for the diagnosis of disorders associated with expression of IGSFP. Examples of such disorders include, but are not limited to, an immune system disorder such as acquired immunodeficiency syndrome (AIDS), X-linked agammaglobinemia of Bruton, common variable immunodeficiency (CVI), DiGeorge's syndrome (thymic hypoplasia), thymic dysplasia, isolated IgA deficiency, severe combined immunodeficiency disease (SCID), immunodeficiency with thrombocytopenia and eczema (Wiskott-Aldrich syndrome), Chediak-Higashi syndrome, chronic granulomatous diseases, hereditary angioneurotic edema, immunodeficiency associated with Cushing's disease, Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's

syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple 10 sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, 15 encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental 20 disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a developmental disorder such as renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, 25 gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and 30 sensorineural hearing loss; a muscle disorder such as cardiomyopathy, myocarditis, Duchenne's muscular dystrophy, Becker's muscular dystrophy, myotonic dystrophy, central core disease, nemaline myopathy, centronuclear myopathy, lipid myopathy, mitochondrial myopathy, infectious myositis,

5

10

15

20

25

30

polymyositis, dermatomyositis, inclusion body myositis, thyrotoxic myopathy, and ethanol myopathy; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus. The polynucleotide sequences encoding IGSFP may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered IGSFP expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding IGSFP may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding IGSFP may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding IGSFP in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of IGSFP, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding IGSFP, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the

patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding IGSFP may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced <u>in vitro</u>. Oligomers will preferably contain a fragment of a polynucleotide encoding IGSFP, or a fragment of a polynucleotide complementary to the polynucleotide encoding IGSFP, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.

10

15

20

25

30

In a particular aspect, oligonucleotide primers derived from the polynucleotide sequences encoding IGSFP may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from the polynucleotide sequences encoding IGSFP are used to amplify DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels. In fSCCP, the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high-throughput equipment such as DNA sequencing machines. Additionally, sequence database analysis methods, termed in silico SNP (isSNP), are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence. These computerbased methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the

high throughput MASSARRAY system (Sequenom, Inc., San Diego CA).

10

15

20

25

30

Methods which may also be used to quantify the expression of IGSFP include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microarray. The microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.

In another embodiment, IGSFP, fragments of IGSFP, or antibodies specific for IGSFP may be used as elements on a microarray. The microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.

A particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or cell type. A transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al., "Comparative Gene Transcript Analysis," U.S. Patent No. 5,840,484, expressly incorporated by reference herein.) Thus a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type. In one embodiment, the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microarray. The

resultant transcript image would provide a profile of gene activity.

5

10

15

20

25

30

Transcript images may be generated using transcripts isolated from tissues, cell lines, biopsies, or other biological samples. The transcript image may thus reflect gene expression <u>in vivo</u>, as in the case of a tissue or biopsy sample, or <u>in vitro</u>, as in the case of a cell line.

Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vitro model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N.L. Anderson (2000) Toxicol. Lett. 112-113:467-471, expressly incorporated by reference herein). If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties. These fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data. after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in interpretation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity. (See, for example, Press Release 00-02 from the National Institute of Environmental Health Sciences, released February 29, 2000, available at http://www.niehs.nih.gov/oc/news/toxchip.htm.) Therefore, it is important and desirable in toxicological screening using toxicant signatures to include all expressed gene sequences.

In one embodiment, the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.

Another particular embodiment relates to the use of the polypeptide sequences of the present invention to analyze the proteome of a tissue or cell type. The term proteome refers to the global

5

10

15

20

25

30

pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individually to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a cell's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type. In one embodiment, the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, supra). The proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains. The optical density of each protein spot is generally proportional to the level of the protein in the sample. The optical densities of equivalently positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment. The proteins in the spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry. The identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.

A proteomic profile may also be generated using antibodies specific for IGSFP to quantify the levels of IGSFP expression. In one embodiment, the antibodies are used as elements on a microarray, and protein expression levels are quantified by exposing the microarray to the sample and detecting the levels of protein bound to each array element (Lueking, A. et al. (1999) Anal. Biochem. 270:103-111; Mendoze, L.G. et al. (1999) Biotechniques 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.

Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in parallel with toxicant signatures at the transcript level. There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) Electrophoresis 18:533–537), so proteome toxicant signatures may be useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile. In addition, the analysis of transcripts in body fluids is difficult, due to rapid

degradation of mRNA, so proteomic profiling may be more reliable and informative in such cases.

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the corresponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.

5

10

15

20

25

30

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.) Various types of microarrays are well known and thoroughly described in <u>DNA Microarrays: A Practical Approach</u>, M. Schena, ed. (1999) Oxford University Press, London, hereby expressly incorporated by reference.

In another embodiment of the invention, nucleic acid sequences encoding IGSFP may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.) Once mapped, the nucleic acid sequences of the invention may be used to develop

genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP). (See, for example, Lander, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357.)

Fluorescent <u>in situ</u> hybridization (FISH) may be correlated with other physical and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, <u>supra</u>, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding IGSFP on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.

10

15

20

25

30

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, IGSFP, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between IGSFP and the agent being tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with IGSFP, or fragments thereof, and washed. Bound IGSFP is then detected by methods well known in the art. Purified IGSFP can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding IGSFP specifically compete with a test compound for binding IGSFP. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with IGSFP.

In additional embodiments, the nucleotide sequences which encode IGSFP may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The disclosures of all patents, applications and publications, mentioned above and below, including U.S. Ser. No. 60/249,645, are expressly incorporated by reference herein.

15

20

25

30

10

5

EXAMPLES

I. Construction of cDNA Libraries

Incyte cDNAs were derived from cDNA libraries described in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA) and shown in Table 4, column 5. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A)+ RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using

the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), PCDNA2.1 plasmid (Invitrogen, Carlsbad CA), PBK-CMV plasmid (Stratagene), PCR2-TOPOTA plasmid (Invitrogen), PCMV-ICIS plasmid (Stratagene), pIGEN (Incyte Genomics, Palo Alto CA), or pINCY (Incyte Genomics), or derivatives thereof. Recombinant plasmids were transformed into competent E. coli cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5α, DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

15

20

25

30

Plasmids obtained as described in Example I were recovered from host cells by <u>in vivo</u> excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows. Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared

using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VIII.

5

10

15

20

30

The polynucleotide sequences derived from Incyte cDNAs were validated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The Incyte cDNA sequences or translations thereof were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM; PROTEOME databases with sequences from Homo sapiens, Rattus norvegicus, Mus musculus, Caenorhabditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Candida albicans (Incyte Genomics, Palo Alto CA); and hidden Markov model (HMM)-based protein family databases such as PFAM. (HMM is a probabilistic approach which analyzes consensus primary structures of gene families. See, for example, Eddy, S.R. (1996) Curr. Opin. Struct. Biol. 6:361-365.) The queries were performed using programs based on BLAST, FASTA, BLIMPS, and HMMER. The Incyte cDNA sequences were assembled to produce full length polynucleotide sequences. Alternatively, GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences (see Examples IV and V) were used to extend Incyte cDNA assemblages to full length. Assembly was performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length polypeptide sequences. Alternatively, a polypeptide of the invention may begin at any of the methionine residues of the full length translated polypeptide. Full length polypeptide sequences were subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, the PROTEOME databases, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and hidden Markov model (HMM)-based protein family databases such as PFAM. Full length polynucleotide sequences are also analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San

Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments are generated using default parameters specified by the CLUSTAL algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.

Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and full length sequences and provides applicable descriptions, references, and threshold parameters. The first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probability value, the greater the identity between two sequences).

The programs described above for the assembly and analysis of full length polynucleotide and polypeptide sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:7-12. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies are described in Table 4, column 4.

IV. Identification and Editing of Coding Sequences from Genomic DNA

5

10

15

20

25

30

Putative immunoglobulin superfamily proteins were initially identified by running the Genscan gene identification program against public genomic sequence databases (e.g., gbpri and gbhtg). Genscan is a general-purpose gene identification program which analyzes genomic DNA sequences from a variety of organisms (See Burge, C. and S. Karlin (1997) J. Mol. Biol. 268:78-94, and Burge, C. and S. Karlin (1998) Curr. Opin. Struct. Biol. 8:346-354). The program concatenates predicted exons to form an assembled cDNA sequence extending from a methionine to a stop codon. The output of Genscan is a FASTA database of polynucleotide and polypeptide sequences. The maximum range of sequence for Genscan to analyze at once was set to 30 kb. To determine which of these Genscan predicted cDNA sequences encode immunoglobulin superfamily proteins, the encoded polypeptides were analyzed by querying against PFAM models for immunoglobulin superfamily proteins. Potential immunoglobulin superfamily proteins were also identified by homology to Incyte cDNA sequences that had been annotated as immunoglobulin superfamily proteins. These selected Genscan-predicted sequences were then compared by BLAST analysis to the genpept and gbpri public databases. Where necessary, the Genscan-predicted sequences were then edited by comparison to the top BLAST hit from genpept to correct errors in the sequence predicted by Genscan, such as extra or omitted exons. BLAST analysis was also used to find any Incyte cDNA or

public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA coverage was available, this information was used to correct or confirm the Genscan predicted sequence. Full length polynucleotide sequences were obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences and/or public cDNA sequences using the assembly process described in Example III. Alternatively, full length polynucleotide sequences were derived entirely from edited or unedited Genscan-predicted coding sequences.

V. Assembly of Genomic Sequence Data with cDNA Sequence Data "Stitched" Sequences

Partial cDNA sequences were extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example III were mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that were subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval was present on more than one sequence in the cluster were identified, and intervals thus identified were considered to be equivalent by transitivity. For example, if an interval was present on a cDNA and two genomic sequences, then all three intervals were considered to be equivalent. This process allows unrelated but consecutive genomic sequences to be brought together, bridged by cDNA sequence. Intervals thus identified were then "stitched" together by the stitching algorithm in the order that they appear along their parent sequences to generate the longest possible sequence, as well as sequence variants. Linkages between intervals which proceed along one type of parent sequence (cDNA to cDNA or genomic sequence to genomic sequence) were given preference over linkages which change parent type (cDNA to genomic sequence). The resultant stitched sequences were translated and compared by BLAST analysis to the genpept and gbpri public databases. Incorrect exons predicted by Genscan were corrected by comparison to the top BLAST hit from genpept. Sequences were further extended with additional cDNA sequences, or by inspection of genomic DNA, when necessary.

"Stretched" Sequences

10

15

20

25

30

Partial DNA sequences were extended to full length with an algorithm based on BLAST analysis. First, partial cDNAs assembled as described in Example III were queried against public databases such as the GenBank primate; rodent, mammalian, vertebrate, and eukaryote databases using the BLAST program. The nearest GenBank protein homolog was then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in

Example IV. A chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog. The GenBank protein homolog, the chimeric protein, or both were used as probes to search for homologous genomic sequences from the public human genome databases. Partial DNA sequences were therefore "stretched" or extended by the addition of homologous genomic sequences. The resultant stretched sequences were examined to determine whether it contained a complete gene.

VI. Chromosomal Mapping of IGSFP Encoding Polynucleotides

The sequences which were used to assemble SEQ ID NO:7-12 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ID NO:7-12 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Généthon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.

Map locations are represented by ranges, or intervals, of human chromosomes. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Généthon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Human genome maps and other resources available to the public, such as the NCBI "GeneMap'99" World Wide Web site (http://www.ncbi.nlm.nih.gov/genemap/), can be employed to determine if previously identified disease genes map within or in proximity to the intervals indicated above.

VII. Analysis of Polynucleotide Expression

15

20

25

30

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, <u>supra</u>, ch. 7; Ausubel (1995) <u>supra</u>, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related

molecules in cDNA databases such as GenBank or LIFESEQ (Incyte Genomics). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

5

10

15

20

25

30

BLAST Score x Percent Identity

5 x minimum {length(Seq. 1), length(Seq. 2)}

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a BLAST alignment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.

Alternatively, polynucleotide sequences encoding IGSFP are analyzed with respect to the tissue sources from which they were derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example III). Each cDNA sequence is derived from a cDNA library constructed from a human tissue. Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitalia, female; genitalia, male; germ cells; hemic and immune system; liver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassified/mixed; or urinary tract. The number of libraries in each category is counted and divided by the total number of libraries across all categories. Similarly, each human tissue is classified into one of the following disease/condition categories: cancer, cell line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided

71

by the total number of libraries across all categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding IGSFP. cDNA sequences and cDNA library/tissue information are found in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA).

VIII. Extension of IGSFP Encoding Polynucleotides

5

10

15

20

25

30

Full length polynucleotide sequences were also produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer was synthesized to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and 2-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 μ l PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 μ l of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μ l to 10 μ l aliquot of the reaction mixture was analyzed by electrophoresis on a 1% agarose gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates,

digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent <u>E. coli</u> cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37 °C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).

In like manner, full length polynucleotide sequences are verified using the above procedure or are used to obtain 5' regulatory sequences using the above procedure along with oligonucleotides designed for such extension, and an appropriate genomic library.

IX. Labeling and Use of Individual Hybridization Probes

5

10

15

20

25

30

Hybridization probes derived from SEQ ID NO:7-12 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μ Ci of [γ -32P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10^7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.

X. Microarrays

5

10

15

20

25

The linkage or synthesis of array elements upon a microarray can be achieved utilizing photolithography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, <u>supra.</u>), mechanical microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena (1999), <u>supra</u>). Suggested substrates include silicon, silica, glass slides, glass chips, and silicon wafers. Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)

Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microarray. Fragments or oligomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). The array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each array element. Alternatively, laser desorbtion and mass spectrometry may be used for detection of hybridization. The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed. In one embodiment, microarray preparation and usage is described in detail below.

30 Tissue or Cell Sample Preparation

Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)⁺ RNA is purified using the oligo-(dT) cellulose method. Each poly(A)⁺ RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/µl oligo-(dT) primer (21mer), 1X first

strand buffer, 0.03 units/µl RNase inhibitor, 500 µM dATP, 500 µM dGTP, 500 µM dTTP, 40 µM dCTP, 40 µM dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech). The reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A)+ RNA with GEMBRIGHT kits (Incyte). Specific control poly(A)+ RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37°C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85°C to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 µl 5X SSC/0.2% SDS.

Microarray Preparation

10

15

20

25

30

Sequences of the present invention are used to generate array elements. Each array element is amplified from bacterial cells containing vectors with cloned cDNA inserts. PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 µg. Amplified array elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).

Purified array elements are immobilized on polymer-coated glass slides. Glass microscope slides (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a 110°C oven.

Array elements are applied to the coated glass substrate using a procedure described in U.S. Patent No. 5,807,522, incorporated herein by reference. 1 µl of the array element DNA, at an average concentration of 100 ng/µl, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 nl of array element sample per slide.

Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60°C followed by washes in 0.2% SDS and distilled water as before.

Hybridization

Hybridization reactions contain 9 μl of sample mixture consisting of 0.2 μg each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer. The sample mixture is heated to 65°C for 5 minutes and is aliquoted onto the microarray surface and covered with an 1.8 cm² coverslip. The arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber is kept at 100% humidity internally by the addition of 140 μl of 5X SSC in a corner of the chamber. The chamber containing the arrays is incubated for about 6.5 hours at 60°C. The arrays are washed for 10 min at 45°C in a first wash buffer (1X SSC, 0.1% SDS), three times for 10 minutes each at 45°C in a second wash buffer (0.1X SSC), and dried.

10 **Detection**

15

20

25

30

Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY). The slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.

In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores. Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.

The sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration. A specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two samples from different sources (e.g., representing test and control cells), each labeled with a different fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.

The output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital

(A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.

A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte).

XI. Complementary Polynucleotides

Sequences complementary to the IGSFP-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring IGSFP. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of IGSFP. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the IGSFP-encoding transcript.

.20 XII. Expression of IGSFP

5

10

15

25

30

Expression and purification of IGSFP is achieved using bacterial or virus-based expression systems. For expression of IGSFP in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the *trp-lac* (*tac*) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express IGSFP upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of IGSFP in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant <u>Autographica californica</u> nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding IGSFP by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to

infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, IGSFP is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from IGSFP at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified IGSFP obtained by these methods can be used directly in the assays shown in Examples XVI and XVII, where applicable.

XIII. Functional Assays

5

10

15

20

25

30

IGSFP function is assessed by expressing the sequences encoding IGSFP at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include PCMV SPORT (Life Technologies) and PCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 μ g of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 μ g of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser opticsbased technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light

scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) <u>Flow Cytometry</u>, Oxford, New York NY.

The influence of IGSFP on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding IGSFP and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding IGSFP and other genes of interest can be analyzed by northern analysis or microarray techniques.

XIV. Production of IGSFP Specific Antibodies

5

10

15

20

25

30

IGSFP substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the IGSFP amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Applied Biosystems) using FMOC chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-IGSFP activity by, for example, binding the peptide or IGSFP to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XV. Purification of Naturally Occurring IGSFP Using Specific Antibodies

Naturally occurring or recombinant IGSFP is substantially purified by immunoaffinity chromatography using antibodies specific for IGSFP. An immunoaffinity column is constructed by

covalently coupling anti-IGSFP antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing IGSFP are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of IGSFP (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/IGSFP binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and IGSFP is collected.

XVI. Identification of Molecules Which Interact with IGSFP

5

10

15

20

25

30

IGSFP, or biologically active fragments thereof, are labeled with ¹²⁵I Bolton-Hunter reagent. (See, e.g., Bolton, A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled IGSFP, washed, and any wells with labeled IGSFP complex are assayed. Data obtained using different concentrations of IGSFP are used to calculate values for the number, affinity, and association of IGSFP with the candidate molecules.

Alternatively, molecules interacting with IGSFP are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989) Nature 340:245-246, or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).

IGSFP may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).

XVII. Demonstration of IGSFP Activity

An assay for IGSFP activity measures the ability of IGSFP to recognize and precipitate antigens from serum. This activity can be measured by the quantitative precipitin reaction (Golub, E.S. et al. (1987) Immunology: A Synthesis, Sinauer Associates, Sunderland MA, pp. 113-115). IGSFP is isotopically labeled using methods known in the art. Various serum concentrations are added to constant amounts of labeled IGSFP. IGSFP-antigen complexes precipitate out of solution and are collected by centrifugation. The amount of precipitable IGSFP-antigen complex is proportional to the amount of radioisotope detected in the precipitate. The amount of precipitable IGSFP-antigen complex is plotted against the serum concentration. For various serum concentrations, a characteristic precipitin curve is obtained, in which the amount of precipitable IGSFP-antigen complex initially increases proportionately with increasing serum concentration, peaks at the

equivalence point, and then decreases proportionately with further increases in serum concentration. Thus, the amount of precipitable IGSFP-antigen complex is a measure of IGSFP activity which is characterized by sensitivity to both limiting and excess quantities of antigen.

Alternatively, an assay for IGSFP activity measures the expression of IGSFP on the cell surface. cDNA encoding IGSFP is transfected into a non-leukocytic cell line. Cell surface proteins are labeled with biotin (de la Fuente, M.A. et.al. (1997) Blood 90:2398-2405). Immunoprecipitations are performed using IGSFP-specific antibodies, and immunoprecipitated samples are analyzed using SDS-PAGE and immunoblotting techniques. The ratio of labeled immunoprecipitant to unlabeled immunoprecipitant is proportional to the amount of IGSFP expressed on the cell surface.

5

10

15

20

Alternatively, an assay for IGSFP activity measures the amount of cell aggregation induced by overexpression of IGSFP. In this assay, cultured cells such as NIH3T3 are transfected with cDNA encoding IGSFP contained within a suitable mammalian expression vector under control of a strong promoter. Cotransfection with cDNA encoding a fluorescent marker protein, such as Green Fluorescent Protein (CLONTECH), is useful for identifying stable transfectants. The amount of cell agglutination, or clumping, associated with transfected cells is compared with that associated with untransfected cells. The amount of cell agglutination is a direct measure of IGSFP activity.

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table 1

Incyte	Polypeptide	Incyte	Polynucleotide	Incyte
Project ID	SEQ ID NO:	Polypeptide ID	SEQ ID NO:	Polynucleotide ID
6471113	1	6471113CD1	7	6471113CB1
7701502	2	7701502CD1	8	7701502CB1
5727379	3	5727379CD1	6	5727379CB1
5831801	4	5831801CD1	10	5831801CB1
7195090	5	7195090CD1	11	7195090CB1
7473826	9	7473826CD1	12	7473826CB1

Table 2

Polypeptide SEQ ID NO:	Incyte Polypeptide ID	GenBank ID NO:	Probability Score	GenBank Homolog
-	6471113CD1	g3068592	0.0	Punc [Mus musculus]
				(Salbaum, J.M. (1998) Mech. Dev. 71:201-204)
2	7701502CD1	g6746556	8.8e-7⊈	sialic acid-binding immunoglobulin-like lectin-8 [Homo sapiens]
				(Floyd, H. et al. (2000) J. Biol. Chem. 275:861-866)
3	5727379CD1	g9837568	7.1e-43	<u> </u>
4	5831801CD1	g312590	3.4e-15	biliary glycoprotein [Mus musculus]
				(McCuaig, K. et al. (1993) Gene 127:173-183)
ഹ	7195090CD1	g7290075	0.0	sdk gene product [Drosophila melanogaster]
				(Adams, M.D. et al. (2000) Science 287:2185-2195)

Table 3

Analytical Methods and Databases	SPSCAN	HMMER	HMMER	HMMER-PFAM		HMMER-PFAM	מ האנד דת	BLOCKS	***	BLAST-	PRODOM		BLAST-DOMO		3				BLAST-DOMO		SPSCAN	HMMER	HMMER-PFAM		BLAST-	PRODOM	
Signature Sequences, Domains and Motifs	Signal peptide: M1-G35	Signal peptide: M1-G35	Transmembrane domain: I623-F641	Immunoglobulin domains:	G56-A119, G153-A211, H252-A309, G344-A402,	Fibronectin type III domains:	ונ	Receptor Lyrosine Kinase BL00790: E439-A464, D487-T517		PUTATIVE NEURONAL CELL ADHESION	MOLECULE PUNC	PD123980: N604-A783	BRO	\sim	A39752 1-814: P244-E421, L16-V118,	Q134-V210	[1-821:	A60350 1-800: V126-G374, G344-E421	IMMUNOGLOBULIN	DM00001 P43146 328-410: P329-0410	Signal cleavage: M1-A16	Transmembrane domain: A457-M475	Immunoglobulin domain:	G157-V217, G269-A325, G373-A427	OR GLYCOPROT	TRANSMEMBRANE IMMUNOGLOBULIN FOLD	ADHESION ALTERNATIVE SPLICING: PD005007: L2-R231
Potential Glycosyla- tion Sites			N604 N93				٠														N100 N355	N364					
Potential Phosphoryla- tion Sites			S412 S436		S528 S582 S611 S616	S665 S8 T137 T148 T181											•				S220 S318	S85 T143		T322 T357		¥321	
Amino Acid Residues	793																				475						
Incyte Polypeptide ID	6471113CD1																				7701502CD1						
SEQ ID NO:	 -															-					2						

Table 3 (cont.)

Analytical Methods and Databases	BLAST-DOMO	MOTIFS	HMMER	HMMER-PFAM			HMMER-PFAM	HMMER-PFAM		HMMER	HMMER	HMMER-PFAM		BLAST-	PRODOM		HMMER	HMMER-PFAM									
Signature Sequences, Domains and Motifs	MYELIN; SCHWANN; SIALOADHESIN; FORM DM03744 P20138 1-142:M1-T143	a X	Transmembrane domain: M519-W538	154 12	S178-R201	N250-E273,		rich r	: G27-P56	33	Transmembrane domain: I243-W263	7:1	₹-1	ANTIGEN PRECURSOR SIGNAL	1 6	PD010953: I43-V231	Transmembrane domain: W1882-F1901	Fibronectin type III domains:	P642	1	-S1239,	-	75-S1664, P1676	17			
Potential Glycosyla- tion Sites			N130 N188	N250 N260 N299 N38	N463 N494	N499				N13		N189 N35					N1156	N1207 N145	N1528	N1622	N1641	N1693 N175	N1767	N1914	LE 3	7 N44	N529 N553
Potential Phosphoryla- tion Sites			S109 S169	2 5	307 T3	378 T41	425 T4	234 Y55		125		T156 T60 T90					S1036 S1063	109 S11	1173 S1	1327 S1	1422 S144	1501 S1	1590 S	1695 S1	1788 S	22 S194	S1952 S1971
Amino Acid Residues			578							298							2066										
Incyte Polypeptide ID			5727379CD1							5831801CD1							7195090CD1										
SEQ ID NO:	2		2			<u></u>				4							വ										

Table 3 (cont.)

SEQ	Incyte	Amino	Potential	Potential	Signature Sequences,	Analytical
ID NO:	Polypeptide ID	Acid Residues	Phosphoryla- tion Sites	Glycosyla- tion Sites	ത	Methods and Databases
			S1998 S2029	N656 N695 N756 N889		HMMER-PFAM
			S652 S66 S853	N&V X	E275-A334, G368-A429, G462-I523, C824-E903	
			,,,		tin type III	BLIMPS-
			T1055 T1058 T1112 T1247		PR00014: T860-P869, N672-Y682, V595-Y613, Y1848-E1862	PRINTS
					BASIC FIBROBLAST GROWTH FACTOR	BLAST-DOMO
					176	
	•				•	
			T162		IMMUNOGLOBULIN:	BLAST-DOMO
					DM00001 P20241 428-516: P354-V444	
			T202		되	BLAST-DOMO
			TZZZ TZZ/ TZS T345 T357 T364		DM00007 S50893 585-685: G624-Y722	
			1495			
			7113			
			ŗ841			
	7473826CD1	333	S310 S69 S89	N125 N160	Signal peptide: M1-A60	SPSCAN
			1164	56	IG domains	HMMER-PFAM
			T316 T325 T35	N33 N65	like fold shared by plexins and	
			T5		ritipn fact	
				•		
					RECEPTOR KINASE TYROSINE PROTEIN	BLAST-
						PRODOM
					CYTE GROWTH ATPE	
					PD003981: S118-N238, T2-P76,	
					e-value=1.3e-10	

Table 4

3,	Position	2700	989	1040	2382	1857	409	1389	1296	2464	1617	2321	2090	1916	1116	621	1333	1734		2112		1419	802	1381	1301
5,	Position	2152	104	512	410	1614	1	977	961	1966	1395	1953	1348	1302	537	1	674	 1		1516		873	ㄷ	800	652
Sequence	Fragments	7184821H1 (BONRFEC01)	7744009H1 (ADRETUE04)	5048190F8 (PLACFER01)	GNN.g8389522_000026_002.edit	1449087H1 (PLACNOT02)	GNN.g8389522_000027_002.edit	6471113F8 (PLACFEB01)	5048190R8 (PLACFER01)	71553470V1	2414883H1 (HNT3AZT01)	71583648V1	71583740Vl	71571142V1	7168805H1 (MCLRNOC01)	4991695T6 (LIVRTUT11)	1709963F6 (PROSNOT16)	FL5727379_g8176790_000004_g315	7804	7065822H1 (BRATNOR01)		6884626H1 (BRAHTDR03)	7091169R8 (BRAUTDR03)	6891983H1 (BRAITDR03)	7091169F8 (BRAUTDR03)
Selected	Fragments	1-627,	1-139,	1711-2116,	410-1502,	1859-2134						1915-1938,		1-1001,	1988-2063,	1453-1503		2052-2112,	1-456,	1041-1128,	864-1119	1-262,	1-452,	1123-1364,	1368-1419
Sequence	Length	2700										2321						2112				1419			
Incyte	Polynucleotide ID	6471113CB1										7701502CB1						5727379CB1				5831801CB1			
acle	SEQ ID NO:											∞						<u>م</u>				70			

Table 4 (cont.)

<u></u>	,			-					, — 		,	,	,	,	,		·			
3' Position	3386	5268	489	2736	2464	6374	3235	4838	1029	3966	335	5809	1605	2011	3445		1350	1002		
5' Position	3281	4711	178	2105	1908	5722	2677	3863	243	3304		5056	947	1235	2633		817			
Sequence Fragments		7674694J1 (NOSETUE01)	g2993996	7262823H1 (UTRETMC01)	7195090H1 (LUNGFER04)	71185491V1	7634914H1 (SINTDIE01)	56002695J1	7198117R8 (LUNGFER04)	7634914J1 (SINTDIE01)	GNN.g6042167_008.edit	72080251D1	7198133F8 (LUNGFER04)	6879120F8 (LNODNOR03)	GBI.g10334962_000008_000011.ed	it	5001304F8 (PROSTUT21)	FL7473826_g7382420_000006_g600	6555	
Selected Fragments	1007-2395,	2744-6374,	1-144,	490-6119													1250-1350,	1-341,	1-982,	760-1063
Sequence Length	6374																1350			
Incyte Polynucleotide ID	7195090CB1																7473826CB1			
Polynucleotide SEQ ID NO:	TT																12			-

Table 5

ひっしゃいっしょう		
FOTYMOTHOR	TIICY CE	Replesentate
SEQ ID NO:	Project ID	Library
7	6471113CB1	HNT2AZS07
8	7701502CB1	EOSINOT02
6	5727379CB1	UTRSNOT12
10	5831801CB1	BRAUTDR03
11	7195090CB1	LUNGFER04
12	7473826CB1	PROSTUT21

Table 6

Library	Vector	Library Description
BRAUTDR03	PCDNA2.1	dom p
		parriqus and substantia innominata tissue removed irom a 55-year-old caucasian remale who died from cholangiocarcinoma. Pathology indicated mild meningeal fibrosis
		predominately over the convexities, scattered axonal spheroids in the white matter of
		the cingulate cortex and the thalamus, and a few scattered neurofibrillary tangles in
		the entorhinal cortex and the periaqueductal gray region. Pathology for the
		with residual or relapsed tumor. Patient history included cholangiocarcinoma, post-
		malnutrition, oliguria and acute renal failure. Previous surgeries included
		cholecystectomy and resection of 85% of the liver.
EOSINOT02	PSPORT1	Library was constructed using RNA isolated from pooled eosinophils obtained from
		allergic asthmatic individuals.
HNT2AZS07	PSPORT1	This subtracted library was constructed from RNA isolated from an hNT2 cell line
		(derived from a human teratocarcinoma that exhibited properties characteristic of a
		committed neuronal precursor) treated for three days with 0.35 micromolar AZ. The
		hybridization probe for subtraction was derived from a similarly constructed library
		from untreated hNT2 cells. 3.08M clones from the AZ-treated library were subjected to
:		three rounds of subtractive hybridization with 3.04M clones from the untreated
		library. Subtractive hybridization conditions were based on the methodologies of
		Swaroop et al. (NAR (1991) 19:1954) and Bonaldo et al. (Genome Research (1996)
		6:791).
LUNGFER04	PCDNA2.1	
		removed from a Caucasian male fetus who died from fetal demise.

Table 6 (cont.)

Library	Vector	Library Description
PROSTUT21	DINCK	Library was constructed using RNA isolated from right prostate tumor tissue removed from a 61-year-old Caucasian male during a radical prostatectomy and regional lymph
		n. Pa
		predominant mass involving the right side centrally and peripherally. The tumor invaded the right mid-posterior capsule but did not extend beyond it. The surgical
		were positive, including right apex and
		presented with induration, hyperplasia of the prostate, and elevated prostate
		specific antigen. Patient history included renal failure, osteoarthritis, left renal
		artery stenosis, benign hypertension, thrombocytopenia, hyperlipidemia, tobacco and
		alcohol abuse in remission, and hepatitis C (carrier). Previous surgeries included a
		total hip replacement. Patient medications included aspirin and Inderal. Family
		history included benign hypertension in the mother and in the grandparent(s).
UTRSNOT12	DINCY	Library was constructed using RNA isolated from uterine myometrial tissue removed
		from a 41-year-old Caucasian female during a vaginal hysterectomy with dilation and
		curettage. The endometrium was secretory and contained fragments of endometrial
		polyps. Benign endo- and ectocervical mucosa were identified in the endocervix.
		Pathology for the associated tumor tissue indicated uterine leiomyoma. Patient
		history included ventral hernia and a benign ovarian neoplasm.

Table 7

Parameter Threshold		Mismatch <50%		ESTs: Probability value= 1.0E-8 or less Full Length sequences: Probability value= 1.0E-10 or less	ESTs: fasta E value=1.06E-6 Assembled ESTs: fasta Identity= 95% or greater and Match length=200 bases or greater; fastx E value=1.0E-8 or less Full Length sequences: fastx score=100 or greater	Probability value= 1.0E-3 or less	PFAM hits: Probability value= 1.0E-3 or less Signal peptide hits: Score= 0 or greater
Reference	Applied Biosystems, Foster City, CA.	Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Applied Biosystems, Foster City, CA.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25:3389-3402.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad Sci. USA 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183:63-98; and Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489.	Henikoff, S. and J.G. Henikoff (1991) Nucleic Acids Res. 19:6565-6572; Henikoff, J.G. and S. Henikoff (1996) Methods Enzymol. 266:88-105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.	Krogh, A. et al. (1994) J. Mol. Biol. 235:1501-1531; Sonnhammer, E.L.L. et al. (1988) Nucleic Acids Res. 26:320-322; Durbin, R. et al. (1998) Our World View, in a Nutshell, Cambridge Univ. Press, pp. 1-350.
Description	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	A program that assembles nucleic acid sequences.	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises as least five functions: fasta, tfasta, fastx, tfastx, and ssearch.	A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.	An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.
Program	ABI FACTURA	ABI/PARACEL FDF	ABI AutoAssembler	BLAST	FASTA	BLIMPS	HMMER

Table 7 (cont.)

		Taoro	/ (COIII.)	
	Program	Description	Reference	Parameter Threshold
	ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.	Normalized quality score>GCG-specified "HIGH" value for that particular Prosite motif. Generally, score=1.4-2.1.
	Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	
, ,	Phrap	A Phils Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M.S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
	Consed	A graphical tool for viewing and editing Phrap assemblies.	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
	SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12:431-439.	Score=3.5 or greater
·	TMAP	A program that uses weight matrices to delineate transmembrane segments on protein sequences and determine orientation.	Persson, B. and P. Argos (1994) J. Mol. Biol. 237:182-192; Persson, B. and P. Argos (1996) Protein Sci. 5:363-371.	
	TMHMMER	A program that uses a hidden Markov model (HMM) to delineate transmembrane segments on protein sequences and determine orientation.	Sonnhammer, E.L. et al. (1998) Proc. Sixth Intl. Conf. on Intelligent Systems for Mol. Biol., Glasgow et al., eds., The Am. Assoc. for Artificial Intelligence Press, Menlo Park, CA, pp. 175-182.	
•	Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	17-221; bage I.

What is claimed is:

10

20

- 1. An isolated polypeptide selected from the group consisting of:
- a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-6,
- b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-6,
- c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, and
- d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-6.
- 2. An isolated polypeptide of claim 1 comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-6.
 - 3. An isolated polynucleotide encoding a polypeptide of claim 1.
 - 4. An isolated polynucleotide encoding a polypeptide of claim 2.
 - 5. An isolated polynucleotide of claim 4 comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:7-12.
- 6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
 - 7. A cell transformed with a recombinant polynucleotide of claim 6.
 - 8. A transgenic organism comprising a recombinant polynucleotide of claim 6.
 - 9. A method of producing a polypeptide of claim 1, the method comprising:
 - a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant

polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and

- b) recovering the polypeptide so expressed.
- 10. A method of claim 9, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-6.
 - 11. An isolated antibody which specifically binds to a polypeptide of claim 1.
- 12. An isolated polynucleotide selected from the group consisting of:
 - a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:7-12,
 - b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:7-12,
 - c) a polynucleotide complementary to a polynucleotide of a),
 - d) a polynucleotide complementary to a polynucleotide of b), and
 - e) an RNA equivalent of a)-d).

- 13. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 12.
 - 14. A method of detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 12, the method comprising:
- 25 a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and
- detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.
 - 15. A method of claim 14, wherein the probe comprises at least 60 contiguous nucleotides.

16. A method of detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 12, the method comprising:

- a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and
- b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
- 17. A composition comprising a polypeptide of claim 1 and a pharmaceutically acceptable excipient.
- 18. A composition of claim 17, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-6.
- 19. A method for treating a disease or condition associated with decreased expression of functional IGSFP, comprising administering to a patient in need of such treatment the composition of claim 17.
 - 20. A method of screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising:
 - a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
 - b) detecting agonist activity in the sample.

5

10

20

- 21. A composition comprising an agonist compound identified by a method of claim 20 and a pharmaceutically acceptable excipient.
- 22. A method for treating a disease or condition associated with decreased expression of functional IGSFP, comprising administering to a patient in need of such treatment a composition of claim 21.
- 23. A method of screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:
 - a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
 - b) detecting antagonist activity in the sample.

24. A composition comprising an antagonist compound identified by a method of claim 23 and a pharmaceutically acceptable excipient.

- 25. A method for treating a disease or condition associated with overexpression of functional IGSFP, comprising administering to a patient in need of such treatment a composition of claim 24.
 - 26. A method of screening for a compound that specifically binds to the polypeptide of claim 1, the method comprising:
 - a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and
 - b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.
- 27. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, the method comprising:
 - a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1,
 - b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and
 - c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.

25

30

20

- 28. A method of screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 5, the method comprising:
 - a) exposing a sample comprising the target polynucleotide to a compound, under conditions suitable for the expression of the target polynucleotide,
 - b) detecting altered expression of the target polynucleotide, and
 - c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.

- 29. A method of assessing toxicity of a test compound, the method comprising:
- a) treating a biological sample containing nucleic acids with the test compound,
- hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 12 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 12 or fragment thereof,
- c) quantifying the amount of hybridization complex, and
- d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
- 30. A diagnostic test for a condition or disease associated with the expression of IGSFP in a biological sample, the method comprising:
 - a) combining the biological sample with an antibody of claim 11, under conditions suitable for the antibody to bind the polypeptide and form an antibody:polypeptide complex, and
 - b) detecting the complex, wherein the presence of the complex correlates with the presence of the polypeptide in the biological sample.
 - 31. The antibody of claim 11, wherein the antibody is:
 - a) a chimeric antibody,
 - b) a single chain antibody,
 - c) a Fab fragment,

5

10

20

25

- d) a F(ab')₂ fragment, or
- e) a humanized antibody.
- 32. A composition comprising an antibody of claim 11 and an acceptable excipient.
- 33. A method of diagnosing a condition or disease associated with the expression of IGSFP in a subject, comprising administering to said subject an effective amount of the composition of claim 32.

- 34. A composition of claim 32, wherein the antibody is labeled.
- 35. A method of diagnosing a condition or disease associated with the expression of IGSFP in a subject, comprising administering to said subject an effective amount of the composition of claim 34.

5

10

- 36. A method of preparing a polyclonal antibody with the specificity of the antibody of claim 11, the method comprising:
 - a) immunizing an animal with a polypeptide consisting of an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, or an immunogenic fragment thereof, under conditions to elicit an antibody response,
 - b) isolating antibodies from said animal, and
 - screening the isolated antibodies with the polypeptide, thereby identifying a polyclonal antibody which binds specifically to a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-6.

15

- 37. A polyclonal antibody produced by a method of claim 36.
- 38. A composition comprising the polyclonal antibody of claim 37 and a suitable carrier.
- 39. A method of making a monoclonal antibody with the specificity of the antibody of claim 11, the method comprising:
 - a) immunizing an animal with a polypeptide consisting of an amino acid sequence selected from the group consisting of SEQ ID NO:1-6, or an immunogenic fragment thereof, under conditions to elicit an antibody response,

- b) isolating antibody producing cells from the animal,
- c) fusing the antibody producing cells with immortalized cells to form monoclonal antibody-producing hybridoma cells,
- d) culturing the hybridoma cells, and
- e) isolating from the culture monoclonal antibody which binds specifically to a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-6.
 - 40. A monoclonal antibody produced by a method of claim 39.

41. A composition comprising the monoclonal antibody of claim 40 and a suitable carrier.

42. The antibody of claim 11, wherein the antibody is produced by screening a Fab expression library.

5

- 43. The antibody of claim 11, wherein the antibody is produced by screening a recombinant immunoglobulin library.
- 44. A method of detecting a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-6 in a sample, the method comprising:
 - a) incubating the antibody of claim 11 with a sample under conditions to allow specific binding of the antibody and the polypeptide, and
 - b) detecting specific binding, wherein specific binding indicates the presence of a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-6 in the sample.

15

20

- 45. A method of purifying a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-6 from a sample, the method comprising:
 - a) incubating the antibody of claim 11 with a sample under conditions to allow specific binding of the antibody and the polypeptide, and

b) separating the antibody from the sample and obtaining the purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-6.

25

30

- 46. A microarray wherein at least one element of the microarray is a polynucleotide of claim 13.
- 47. A method of generating an expression profile of a sample which contains polynucleotides, the method comprising:

a) labeling the polynucleotides of the sample,

b) contacting the elements of the microarray of claim 46 with the labeled polynucleotides of the sample under conditions suitable for the formation of a hybridization complex, and

- c) quantifying the expression of the polynucleotides in the sample.
- 48. An array comprising different nucleotide molecules affixed in distinct physical locations on a solid substrate, wherein at least one of said nucleotide molecules comprises a first oligonucleotide or polynucleotide sequence specifically hybridizable with at least 30 contiguous nucleotides of a target polynucleotide, and wherein said target polynucleotide is a polynucleotide of claim 12.
- 49. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to at least 30 contiguous nucleotides of said target polynucleotide.

50. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is

- completely complementary to at least 60 contiguous nucleotides of said target polynucleotide.
- 51. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to said target polynucleotide.
 - 52. An array of claim 48, which is a microarray.

- 53. An array of claim 48, further comprising said target polynucleotide hybridized to a nucleotide molecule comprising said first oligonucleotide or polynucleotide sequence.
 - 54. An array of claim 48, wherein a linker joins at least one of said nucleotide molecules to said solid substrate.
- 55. An array of claim 48, wherein each distinct physical location on the substrate contains multiple nucleotide molecules, and the multiple nucleotide molecules at any single distinct physical location have the same sequence, and each distinct physical location on the substrate contains nucleotide molecules having a sequence which differs from the sequence of nucleotide molecules at another distinct physical location on the substrate.
 - 56. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:1.
 - 57. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:2.

58. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:3.

59. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:4.

50. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:5.

61. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:6.

62. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:7.

63. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:8.

64. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:9.

65. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:10.

66. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:11.

67. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:12.

.

<110> INCYTE GENOMICS, INC. BAUGHN, Mariah R. LU, Dyung Aina M. YUE, Henry ELLIOTT, Vicki S. THANGAVELU, Kavitha RAMKUMAR, Jayalaxmi LU, Yan LO, Terrence P. GURURAJAN, Rajagopal GANDHI, Ameena R. ARVIZU, Chandra YAO, Monique G. <120> IMMUNOGLOBULIN SUPERFAMILY PROTEINS <130> PF-0841 PCT <140> To Be Assigned <141> Herewith <150> 60/249,645 <151> 2000-11-16 <160> 12 <170> PERL Program <210> 1 <211> 793 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte ID No: 6471113CD1 <400> 1 Met Ala Val Gln Arg Ala Ala Ser Pro Arg Arg Pro Pro Ala Pro 10 15 Leu Trp Pro Arg Leu Leu Leu Pro Leu Leu Leu Leu Leu Pro 20 25 Ala Pro Ser Glu Gly Leu Gly His Ser Ala Glu Leu Ala Phe Ala 35 40 Val Glu Pro Ser Asp Asp Val Ala Val Pro Gly Gln Pro Ile Val 55 60 50 Leu Asp Cys Arg Val Glu Gly Thr Pro Pro Val Arg Ile Thr Trp 75 65 70 Arg Lys Asn Gly Val Glu Leu Pro Glu Ser Thr His Ser Thr Leu 85 80 90 Leu Ala Asn Gly Ser Leu Met Ile Arg His Phe Arg Leu Glu Pro 95 100 105 Gly Gly Ser Pro Ser Asp Glu Gly Asp Tyr Glu Cys Val Ala Gln 110 120 115 Asn Arg Phe Gly Leu Val Val Ser Arg Lys Ala Arg Ile Gln Ala 125 135

130

Ala Thr Met Ser Asp Phe His Val His Pro Gln Ala Thr Val Gly

				140					145					150
Glu	Glu	Gly	Gly		Ala	Arg	Phe	Gln		Gln	Ile	His	Gly	
Pro	Lys	Pro	Leu	Ile 170	Thr	Trp	Glu	Lys	Asn 175	Arg	Val	Pro	Ile	
Thr	Asp	Asn	Glu	Arg 185	Тух	Thr	Leu	Leu	Pro 190	Lys	Gly	Val	Leu	Gln 195
Ile	Thr	Gly	Leu	Arg 200	Ala	Glu	Asp	Gly	Gly 205	Ile	Phe	His	Суз	Val 210
Ala	Ser	Asn	Ile	Ala 215	Ser	Ile	Arg	Ile	Ser 220	His	Gly	Ala	Arg	Leu 225
Thr	Val	Ser	Gly	Ser 230	Gly	Ser	Gly	Ala	Tyr 235	Lys	Glu	Pro	Ala	Ile 240
Leu	Val	Gly	Pro	Glu 245	Asn	Leu	Thr	Leu	Thr 250	Val	His	Gln	Thr	Ala 255
Val	Leu	Glu	Cys	Val 260	Ala	Thr	Gly	Asn	Pro 265	Arg	Pro	Ile	Val	Ser 270
Trp	Ser	Arg	Leu	Asp 275	Gly	Arg	Pro	Ile	Gly 280	Val	Glu	Gly	Ile	Gln 285
Val	Leu	Gly	Thr	Gly 290	Asn	Leu	Ile	Ile	Ser 295	Asp	Val	Thr	Val	Gln 300
His	Ser	Gly	Val	Tyr 305	Val	Cys	Ala	Ala	Asn 310	Arg	Pro	Gly	Thr	Arg 315
Val	Arg	Arg	Thr	Ala 320	Gln	Gly	Arg	Leu	Val 325	Val	Gln	Ala	Pro	Ala 330
Glu	Phe	Val	Gln	His 335	Pro	Gln	Ser	Ile	Ser 340	Arg	Pro	Ala	Gly	Thr 345
Thr	Ala	Met	Phe	Thr 350	Cys	Gln	Ala	Gln	Gly 355	Glu	Pro	Pro	Pro	His 360
Val	Thr	Trp	Leu	Lys 365	Asn	Gly	Gln	Val	Leu 370	Gly	Pro	Gly	Gly	His 375
Val	Arg	Leu	Lys	Asn 380	Asn	Asn	Ser	Thr	Leu 385	Thr	Ile	Ser	Gly	Ile 390
			Asp	395					400					405
			Ser	410					415					420
			Pro	425					430					435
2			Glu	440					445					450
			Ile	455					460					Ala 465
			Glu	470					475					Thr 480
Phe	Gln	His	Leu	Val 485	Ser	Asp	Leu	Glu	Pro 490	Ser	Thr	Ala	Tyr	Ser 495
Phe	Tyr	Ile	Lys	Ala 500	Tyr	Thr	Pro	Arg	Gly 505	Ala	Ser	Ser	Ala	Ser 510
Val	Pro	Thr	Leu	Ala 515	Ser	Thr	Leu	Gly	Glu 520	Ala	Pro	Ala	Pro	Pro 525
			Val	530					535					Leu 540
Trp	Glu	Pro	Trp	Pro 545	Arg	Leu	Ala	Gln	His 550	Glu	Gly	Gly	Phe	Lys 555
Leu	Phe	Tyr	Arg	Pro	Ala	Ser	Lys	Thr	Ser	Phe	Thr	Gly	Pro	Ile

```
560
                                     565
                                                          570
Leu Leu Pro Gly Thr Val Ser Ser Tyr Asn Leu Ser Gln Leu Asp
                 575
                                     580
Pro Thr Ala Val Tyr Glu Val Lys Leu Leu Ala Tyr Asn Gln His
                590
                                     595
                                                          600
Gly Asp Gly Asn Ala Thr Val Arg Phe Val Ser Leu Arg Gly Ala
                605
                                     610
                                                          615
Ser Glu Arg Thr Gly Ile Val Ile Gly Ile His Ile Gly Val Thr
                620
                                     625
                                                          630
Cys Ile Ile Phe Cys Val Leu Phe Leu Leu Phe Gly Gln Arg Gly
                635
                                     640
                                                          645
Arg Val Leu Leu Cys Lys Asp Val Glu Asn Gln Leu Ser Pro Pro
                650
                                     655
                                                          660
Gln Gly Pro Arg Ser Gln Arg Asp Pro Gly Ile Leu Ala Leu Asn
                665
                                     670
                                                          675
Gly Ala Arg Arg Gly Gln Arg Gly Gln Leu Gly Arg Asp Glu Lys
                680
                                     685
Arg Val Asp Met Lys Glu Leu Glu Gln Leu Phe Pro Pro Ala Ser
                695
                                     700
Ala Ala Gly Gln Pro Asp Pro Arg Pro Thr Asp Pro Ala Ala Pro
                710
                                     715
Ala Pro Cys Glu Glu Thr Gln Leu Ser Leu Leu Pro Leu Gln Gly
                725
                                     730
                                                          735
Cys Gly Leu Met Glu Gly Lys Thr Thr Glu Ala Lys Thr Thr Glu
                740
                                     745
                                                          750
Ala Thr Ala Pro Cys Ala Gly Leu Ala Ala Ala Pro Pro Pro
                755
                                     760
                                                          765
Asp Gly Gly Pro Gly Leu Leu Ser Glu Gly Gln Ala Ser Arg Pro
                770
                                     775
                                                          780
Ala Ala Arg Val Thr Gln Pro Ala His Ser Glu Gln
                785
                                     790
<210> 2
<211> 475
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7701502CD1
<400> 2
Met Leu Leu Pro Leu Leu Ser Ser Leu Leu Gly Gly Ser Gln
  1
                                      10
Ala Met Asp Gly Arg Phe Trp Ile Arg Val Gln Glu Ser Val Met
                                      25
                 20
Val Pro Glu Gly Leu Cys Ile Ser Val Pro Cys Ser Phe Ser Tyr
                 35
                                      40
                                                           45
Pro Arg Gln Asp Trp Thr Gly Ser Thr Pro Ala Tyr Gly Tyr Trp
                 50
                                                           60
Phe Lys Ala Val Thr Glu Thr Thr Lys Gly Ala Pro Val Ala Thr
                 65
                                      70
                                                          75
Asn His Gln Ser Arg Glu Val Glu Met Ser Thr Arg Gly Arg Phe
                 80
                                      85
                                                          90
Gln Leu Thr Gly Asp Pro Ala Lys Gly Asn Cys Ser Leu Val Ile
                 95
                                                         105
                                     100
```

Hirst Hinte

```
Arg Asp Ala Gln Met Gln Asp Glu Ser Gln Tyr Phe Phe Arg Val
                110
                                     115
                                                          120
Glu Arg Gly Ser Tyr Val Arg Tyr Asn Phe Met Asn Asp Gly Phe
                125
                                     130
                                                          135
Phe Leu Lys Val Thr Ala Leu Thr Gln Lys Pro Asp Val Tyr Ile
                140
                                     145
                                                          150
Pro Glu Thr Leu Glu Pro Gly Gln Pro Val Thr Val Ile Cys Val
                155
                                     160
                                                          165
Phe Asn Trp Ala Phe Glu Glu Cys Pro Pro Pro Ser Phe Ser Trp
                                     175
                170
                                                          180
Thr Gly Ala Ala Leu Ser Ser Gln Gly Thr Lys 'Pro Thr Thr Ser
                185
                                     19.0
                                                          195
His Phe Ser Val Leu Ser Phe Thr Pro Arg Pro Gln Asp His Asn
                200
                                     205
                                                          210
Thr Asp Leu Thr Cys His Val Asp Phe Ser Arg Lys Gly Val Ser
                215
                                     220
Val Gln Arg Thr Val Arg Leu Arg Val Ala Tyr Ala Pro Arg Asp
                230
                                     235
                                                          240
Leu Val Ile Ser Ile Ser Arg Asp Asn Thr Pro Ala Leu Glu Pro
                245
                                     250
                                                          255
Gln Pro Gln Gly Asn Val Pro Tyr Leu Glu Ala Gln Lys Gly Gln
                260
                                     265
                                                         270
Phe Leu Arg Leu Leu Cys Ala Ala Asp Ser Gln Pro Pro Ala Thr
                275
                                     280
                                                          285
Leu Ser Trp Val Leu Gln Asn Arg Val Leu Ser Ser His Pro
                290
                                     295
                                                          300
Trp Gly Pro Arg Pro Leu Gly Leu Glu Leu Pro Gly Val Lys Ala
                305
                                     310
                                                          315
Gly Asp Ser Gly Arg Tyr Thr Cys Arg Ala Glu Asn Arg Leu Gly
                320
                                     325
                                                          330
Ser Gln Gln Arg Ala Leu Asp Leu Ser Val Gln Tyr Pro Pro Glu
                335
                                     340
Asn Leu Arg Val Met Val Ser Gln Ala Asn Arg Thr Val Leu Glu
                350
                                355
Asn Leu Gly Asn Gly Thr Ser Leu Pro Val Leu Glu Gly Gln Ser
                365
                                     370
Leu Cys Leu Val Cys Val Thr His Ser Ser Pro Pro Ala Arg Leu
                                     385
                380
Ser Trp Thr Gln Arg Gly Gln Val Leu Ser Pro Ser Gln Pro Ser
                395
                                     400
Asp Pro Gly Val Leu Glu Leu Pro Arg Val Gln Val Glu His Glu
                410
                                     415
                                                          420
Gly Glu Phe Thr Cys His Ala Arg His Pro Leu Gly Ser Gln His
                425
                                     430
                                                         435
Val Ser Leu Ser Leu Ser Val His Tyr Lys Lys Gly Leu Ile Ser
                440
                                     445
                                                         450
Thr Ala Phe Ser Asn Gly Ala Phe Leu Gly Ile Gly Ile Thr Ala
                455
                                     460
                                                         465
Leu Leu Phe Leu Cys Leu Ala Leu Ile Met
                470
                                     475
```

<210> 3

<211> 578

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 5727379CD1

<400> 3

Met Leu His Thr Ala Ile Ser Cys Trp Gln Pro Phe Leu Gly Leu Ala Val Val Leu Ile Phe Met Gly Ser Thr Ile Gly Cys Pro Ala Arg Cys Glu Cys Ser Ala Gln Asn Lys Ser Val Ser Cys His Arg Arg Arg Leu Ile Ala Ile Pro Glu Gly Ile Pro Ile Glu Thr Lys Ile Leu Asp Leu Ser Lys Asn Arg Leu Lys Ser Val Asn Pro Glu Glu Phe Ile Ser Tyr Pro Leu Leu Glu Glu Ile Asp Leu Ser Asp Asn Ile Ile Ala Asn Val Glu Pro Gly Ala Phe Asn Asn Leu Phe Asn Leu Arg Ser Leu Arg Leu Lys Gly Asn Arg Leu Lys Leu Val Pro Leu Gly Val Phe Thr Gly Leu Ser Asn Leu Thr Lys Leu Asp Ile Ser Glu Asn Lys Ile Val Ile Leu Leu Asp Tyr Met Phe Gln Asp Leu His Asn Leu Lys Ser Leu Glu Val Gly Asp Asn Asp Leu Val Tyr Ile Ser His Arg Ala Phe Ser Gly Leu Leu Ser Leu Glu Gln Leu Thr Leu Glu Lys Cys Asn Leu Thr Ala Val Pro Thr Glu Ala Leu Ser His Leu Arg Ser Leu Ile Ser Leu His Leu Lys His Leu Asn Ile Asn Asn Met Pro Val Tyr Ala Phe Lys Arg Leu Phe His Leu Lys His Leu Glu Ile Asp Tyr Trp Pro Leu Leu Asp Met Met Pro Ala Asn Ser Leu Tyr Gly Leu Asn Leu Thr Ser Leu Ser Val Thr Asn Thr Asn Leu Ser Thr Val Pro Phe Leu Ala Phe Lys His Leu Glu Leu His Ile Val Gly Ala Gln Leu Arg Thr Ile Glu Pro His Ser Phe Gln Gly Leu Arg Phe Leu Arg Val Leu Asn Val Ser Gln Asn Leu Glu Thr Leu Glu Glu Asn Val Phe Ser Ser Pro Arg Ala Leu Glu Val Leu Ser Ile Asn Asn Asn Pro Leu Ala Cys Asp Cys Arg Leu Leu Trp Ile Leu Gln Arg Gln Pro Thr Leu Gln Phe Gly Gln Gln Pro Met Cys Ala Gly Pro Asp Thr Ile Arg Glu Arg Ser Phe Lys Asp Phe His Ser Thr Ala Leu Ser Phe Tyr Phe Thr Cys Lys Lys Pro Lys Ile Arg Glu Lys Lys Leu Gln

```
380
                                     385
                                                          390
His Leu Leu Val Asp Glu Gly Gln Thr Val Gln Leu Glu Cys Ser
                 395
                                     400
Ala Asp Gly Asp Pro Gln Pro Val Ile Ser Trp Val Thr Pro Arg
                 410
                                     415
Arg Arg Phe Ile Thr Thr Lys Ser Asn Gly Arg Ala Thr Val Leu
                 425
                                     430
                                                          435
Gly Asp Gly Thr Leu Glu Ile Arg Phe Ala Gln Asp Gln Asp Ser
                 440
                                     445
                                                          450
Gly Met Tyr Val Cys Ile Ala Ser Asn Ala Ala Gly Asn Asp Thr
                 455
                                     460
                                                          465
Phe Thr Ala Ser Leu Thr Val Lys Gly Phe Ala Ser Asp Arg Phe
                 470
                                     475
                                                          480
Leu Tyr Ala Asn Arg Thr Pro Met Tyr Met Thr Asp Ser Asn Asp
                 485
                                     490
                                                          495
Thr Ile Ser Asn Gly Thr Asn Ala Asn Thr Phe Ser Leu Asp Leu
                 500
                                     505
                                                          510
Lys Thr Ile Leu Val Ser Thr Ala Met Gly Cys Phe Thr Phe Leu
                 515
                                     520
                                                          525
Gly Val Val Leu Phe Cys Phe Leu Leu Leu Phe Val Trp Ser Arg
                 530
                                     535
                                                          540
Gly Lys Gly Lys His Lys Asn Ser Ile Asp Leu Glu Tyr Val Pro
                 545
                                     550
                                                          555
Arg Lys Asn Asn Gly Ala Val Val Glu Gly Glu Val Ala Gly Pro
                 560
                                     565
                                                          570
Arg Arg Phe Asn Met Lys Met Ile
                 575
<210> 4
<211> 298
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 5831801CD1
<400> 4
Met Lys Arg Glu Arg Gly Ala Leu Ser Arg Ala Ser Arg Ala Leu
                                      10
                                                           15
Arg Leu Ala Pro Phe Val Tyr Leu Leu Leu Ile Gln Thr Asp Pro
                  20
                                      25
Leu Glu Gly Val Asn Ile Thr Ser Pro Val Arg Leu Ile His Gly
                 35
                                      40
Thr Val Gly Lys Ser Ala Leu Leu Ser Val Gln Tyr Ser Ser Thr
                  50
                                      55
                                                           60
Ser Ser Asp Arg Pro Val Val Lys Trp Gln Leu Lys Arg Asp Lys
                  65
                                                           75
                                      70
Pro Val Thr Val Val Gln Ser Ile Gly Thr Glu Val Ile Gly Thr
                 80
                                      85
                                                           90
Leu Arg Pro Asp Tyr Arg Asp Arg Ile Arg Leu Phe Glu Asn Gly
                 95
                                     100
                                                          105
Ser Leu Leu Ser Asp Leu Gln Leu Ala Asp Glu Gly Thr Tyr
                110
                                     115
                                                          120
Glu Val Glu Ile Ser Ile Thr Asp Asp Thr Phe Thr Gly Glu Lys
                125
                                     130
                                                          135
```

```
Thr Ile Asn Leu Thr Val Asp Val Pro Ile Ser Arg Pro Gln Val
                140
                                     145
                                                          150
Leu Val Ala Ser Thr Thr Val Leu Glu Leu Ser Glu Ala Phe Thr
                155
                                     160
                                                          165
Leu Asn Cys Ser His Glu Asn Gly Thr Lys Pro Ser Tyr Thr Trp
                170
                                     175
                                                          180
Leu Lys Asp Gly Lys Pro Leu Leu Asn Asp Ser Arg Met Leu Leu
                185
                                     190
                                                          195
Ser Pro Asp Gln Lys Val Leu Thr Ile Thr Arg Val Leu Met Glu
                                     205
                200
                                                          210
Asp Asp Asp Leu Tyr Ser Cys Met Val Glu Asn Pro Ile Ser Gln
                                     220
                215
                                                          225
Gly Arg Ser Leu Pro Val Lys Ile Thr Val Tyr Arg Arg Ser Ser
                230
                                     235
                                                          240
Leu Tyr Ile Ile Leu Ser Thr Gly Gly Ile Phe Leu Leu Val Thr
                245
                                     250
                                                          255
Leu Val Thr Val Cys Ala Cys Trp Lys Pro Ser Lys Arg Lys Gln
                260
                                     265
                                                          270
Lys Lys Leu Glu Lys Gln Asn Ser Leu Glu Tyr Met Asp Gln Asn
                275
                                     280
                                                          285
Asp Asp Arg Leu Lys Pro Ala Pro Lys Asp His Ser Pro
                290
                                     295
<210> 5
<211> 2066
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7195090CD1
<400> 5
Met Asp Glu Ala Gly Asn His His Ser Gln Gln Thr Asn Thr Arg
Thr Lys Asn Gln Thr Pro His Val Leu Thr His Arg Tyr Ile Ile
                 20
                                      25
Pro Ser Leu Gln Lys Leu Asp Ala Gly Phe Tyr Arg Cys Val Val
                                      40
Arg Asn Arg Met Gly Ala Leu Leu Gln Arg Lys Ser Glu Val Gln
                 50
                                      55
Val Ala Tyr Met Gly Ser Phe Met Asp Thr Asp Gln Arg Lys Thr
                 65
                                      70
Val Ser Gln Gly Arg Ala Ala Ile Leu Asn Leu Leu Pro Ile Thr
                                      85
                 80
                                                           90
Ser Tyr Pro Arg Pro Gln Val Thr Trp Phe Arg Glu Gly His Lys
                 95
                                     100
                                                         105
Ile Ile Pro Ser Asn Arg Ile Ala Ile Thr Leu Glu Asn Gln Leu
                110
                                     115
                                                         120
Val Ile Leu Ala Thr Thr Ser Asp Ala Gly Ala Tyr Tyr Val
                125
                                     130
                                                         135
Gln Ala Val Asn Glu Lys Asn Gly Glu Asn Lys Thr Ser Pro Phe
                140
                                     145
                                                         150
Ile His Leu Ser Ile Ala Arg Asp Val Gly Thr Pro Glu Thr Met
                155
                                     160
                                                         165
```

Ala Pro Thr Ile Val Val Pro Pro Gly Asn Arg Ser Val Val Ala

				170					175					180
Gly	Ser	Ser	Glu	Asn 185	Thr	Leu	Glu	Cys		Ala	Ser	Ala	Arg	
Val	Glu	Asp	Leu	Ser 200	Val	Thr	Trp	Lys	Arg 205	Asn	Gly	Val	Arg	Ile 210
Thr	Ser	GJA	Leu	His 215	Ser	Phe	Gly	Arg	Arg 220	Leu	Thr	Ile	Ser	Asn 225
Pro	Thr	Ser	Ala	Asp 230	Thr	Gly	Pro	Tyr	Val 235	Cys	Glu	Ala	Ala	
Pro	Gly	Ser	Ala	Phe 245	Glu	Pro	Ala	Arg	Ala 250	Thr	Ala	Phe	Leu	Phe 255
Ile	Ile	Glu	Pro	Pro 260	Tyr	Phe	Thr	Ala	G1u 265	Pro	Glu	Ser	Arg	Ile 270
Ser	Ala	Glu	Val	Glu 275	Glu	Thr	Va1	Asp	Ile 280	GJA	Суз	Gln	Ala	
Gly	Val	Pro	Leu	Pro 290	Thr	Leu	Gln	Trp	Tyr 295	Lys	Asp	Ala	Ile	
Ile	Ser	Arg	Leu	Gln 305	Asn	Pro	Arg	Tyr		Val	Leu	Ala	Ser	
Gly	Leu	Arg	Ile	Gln 320	Lys	Leu	Arg	Pro	Glu 325	Asp	Ser	Gly	Ile	
Gln	Cys	Phe	Ala	Ser 335	Asn	Glu	Gly	Gly	Glu 340	Ile	Gln	Thr	His	Thr 345
Tyr	Leu	Asp	Val	Thr 350	Asn	Ile	Ala	Pro	Val 355	Phe	Thr	Gln	Arg	Pro 360
Val	Asp	Thr	Thr	Val 365	Thr	Asp	Gly	Met	Thr 370	Ala	Ile	Leu	Arg	Cys 375
Glu	Val	Ser	Gly	Ala 380	Pro	Lys	Pro	Ala	Ile 385	Thr	Trp	Lys	Arg	Glu 390
Asn	His	Ile	Leu	Ala 395	Ser	Gly	Ser	Val	Arg 400	Ile	Pro	Arg	Phe	Met 405
Leu	Leu	Glu	Ser	Gly 410	Gly	Leu	Gln	Ile	Ala 415	Pro	Val	Phe	Ile	Gln 420
Asp	Ala	Gly	Asn	Tyr 425	Thr	Cys	Tyr	Ala	Ala 430	Asn	Thr	Glu	Gly	Ser 435
Leu	Asn	Ala	Ser	Ala 440	Thr	Leu	Thr	Val	Trp 445	Asn	Arg	Thr	Ser	Ile 450
Va1	His	Pro	Pro	Glu 455	Asp	His	Va1	Val	Ile 460	Lys	Gly	Thr	Thr	Ala 465
Thr	Leu	His	Cys	Gly 470	Ala	Thr	His	Asp	Pro 475	Arg	Val	Ser	Leu	Arg 480
Tyr	Val	Trp	Lys	Lys 485	Asp	Asn	Val	Ala	Leu 490	Thr	Pro	Ser	Ser	Thr 495
Ser	Arg	Ile	Val	Val 500	Glu	Lys	Asp	Gly	Ser 505	Leu	Leu	Ile	Ser	Gln 510
Thr	Trp	Ser	Gly	Asp 515	Ile	Gly	Asp	Tyr	Ser 520	Cys	Glu	Ile	Val	Ser 525
Glu	Gly	Gly	Asn	Asp 530	Ser	Arg	Met	Ala	Arg 535	Leu	Glu	Val	Ile	Glu 540
Leu	Pro	His	Ser	Pro 545	Gln	Asn	Leu	Leu	Val 550	Ser	Pro	Asn	Ser	Ser 555
His	Ser	His	Ala		Val	Leu	Ser	Trp		Arg	Pro	Phe	Asp	
Asn	Ser	Pro	Ile		Tyr	Tyr	Ile	Val		Leu	Ser	Glu	Asn	
Ser	Pro	Trp	Lys	Val	His	Leu	Ser	Asn		Gly	Pro	Glu	Met	

				590					Ene					600
Gly	Val	Thr	Val		Gly	Leu	Thr	Pro	595 Ala 610	Arg	Thr	Tyr	Gln	600 Phe 615
Arg	Val	Cys	Ala		Asn	Glu	Val	Gly		Gly	Gln	Tyr	Ser	
Glu	Thr	Ser	Arg		Met	Leu	Pro	Glu		Pro	Pro	Ser	Ala	
Pro	Lys	Asn	Ile	Val 650	Ala	Ser	Gly	Arg		Asn	Gln	Ser	Ile	
Val	Gln	Trp	Gln	Pro 665	Pro	Pro	Glu	Thr	Glu 670	His	Asn	Gly	Val	Leu 675
Arg	Gly	Tyr	Ile	Leu 680	Arg	Tyr	Arg	Leu	Ala 685	Gly	Leu	Pro	Gly	Glu 690
Tyr	Gln	Gln	Arg	Asn 695	Ile	Thr	Ser	Pro	Glu 700	Val	Asn	Tyr	Cys	Leu 705
Val	Thr	Asp	Leu	Ile 710	Ile	Trp	Thr	Gln	Tyr 715	Glu	Ile	Gln	Val	Ala 720
				725				Val	730					735
Glu	Tyr	Thr	Leu	Gln 740	Gly	Val	Pro	Thr	Ala 745	Pro	Pro	Gln	Asn	Val 750
				755				Thr	760				_	765
				770				Gly	775					780
				785				Pro	790					795
				800				Val	805					810
				815				Phe	820				_	825
				830				Ser	835					840
				845				Val	850					855
				860				Val	865					870
				875				Tyr	880					885
				890				Thr	895					900
				905				Leu	910					915
				920				Ala	925					Val 930
				935				Val	940					945
				950				Asn	955					Ala 960
				965				Asp	970	_				975
				980				Gly	985		_			990
Glu	Trp	Val	Thr	Leu 995	Tyr	Glu	Glu	Glu 1	Asn .000	Glu	Pro	Asp		Gln .005
Met	Leu	Glu	Ile	Pro	Asn	Leu	Thr	Pro	Tyr	Thr	His	Tyr	Arg	Phe

			1010				1015				1020
Arg	Met	Lys	Gln Val 1025		Ile	Val	Gly Pro 1030	Ser			Ser Pro 1035
Ser	Ser	Arg	Val Ile 1040		Thr	Leu	Gln Ala 1045		Pro	Asp	Val Ala 1050
Pro	Thr	Ser	Val Thr 1055		Arg	Thr	Ala Ser 1060		Thr	Ser	Leu Arg 1065
Leu	Arg	Trp	Val Pro 1070		Pro	Asp	Ser Gln 1075		Asn	Gly	Asn Pro 1080
Glu	Ser	Val	Gly Tyr 1085		Ile	Lys	Tyr Trp 1090		Ser	Asp	Leu Gln 1095
Ser	Ser	Ala	Val Ala 1100		Val	Val	Ser Asp 1105		Leu	Glu	Arg Glu 1110
			1115				1120				Leu Gln 1125
			1130				1135				Glu Val 1140
Val	Arg	Gly	Arg Thr 1145		Glu	Ser	Val Pro 1150	Ser	Ala	Ala	Pro Glu 1155
			1160				1165				Leu Thr 1170
			1175				1180				Leu Gly 1185
			1190				1195				Pro Arg 1200
			1205				1210				Leu Ala 1215
			1220				1225				Ala Phe 1230
			1235				1240				Leu Glu 1245
			1250				1255				Val Phe 1260
			1265				1270		_		Pro Pro 1275
			1280				1285				Tyr Arg 1290
			1295				1300				Val Gly 1305
			1310				1315				Glu Ser 1320
			1325				1330				Trp Gly 1335
			1340				Thr Thr 1345			r	1350
			1355				Val Pro · 1360				1365
			1370				Val Pro 1375	_		_	1380
			1385				Gln Val 1390				1395
			1400				Ser Ile 1405				1410
			1415				Pro Phe 1420			_	1425
Arg	Leu	Lys	Ala Thr	Asn	Asp	Ile	Gly Asp	Ser	Asp	Phe	Ser Ser

			1430	1			1435				1440
Glu	Thr	Glu		Thr	Thr	Leu		Val			Glu Pro
Pro	Gly	Ser	Val Ser 1460		Thr	Pro		Thr	Ser	Ser	Val Leu 1470
Ile	Gln	Trp	Gln Pro		Arg	Asp	Glu Ser 1480		Asn	Gly	Leu Leu 1485
Gln	Gly	Tyr	Arg Ile 1490		Tyr	Arg	Glu Leu 1495		Tyr	Glu	Ala Gly 1500
Ser	Gly	Thr	Glu Ala 1505		Thr	Leu	Lys Asn 1510		Ile	Ala	Leu His 1515
Ala	Glu	Leu	Thr Ala 1520		Ser	Ser	Phe Lys 1525		Val	Asn	Ser Ser 1530
Ser	Thr	Ser	Thr Met 1535		Glu	Leu	Thr His 1540		Lys	Lys	Tyr Arg 1545
Arg	Tyr	Glu	Val Ile 1550		Thr	Ala	Tyr Asn 1555		Ile	Gly	Glu Ser 1560
Pro	Ala	Ser	Ala Pro 1565		Glu		Phe Val 1570	_	Glu	Ala	Ala Pro 1575
Ala	Met	Ala	Pro Gln 1580		Val	Gln	Val Thr 1585		Leu	Thr	Ala Ser 1590
Gln	Leu	Glu	Val Met 1595		Asp	Pro	Pro Pro 1600	Pro	Glu	Ser	Gln Asn 1605
Gly	Asn	Ile	Gln Gly 1610		Lys	Ile	Tyr Tyr 1615		Glu	Ala	Asp Ser 1620
Gln	Asn	Glu	Thr Glu 1625		Met	Lys	Val Leu 1630	Phe	Leu	Pro	Glu Pro 1635
Val	Val	Arg	Leu Lys 1640		Leu	Thr	Ser His 1645	Thr	Lys	Tyr	Leu Val 1650
Ser	Ile	Ser	Ala Phe 1655		Ala	Ala	Gly Asp 1660	,	Pro	Lys	Ser Asp 1665
Pro	Gln	Gln	Gly Arg 1670		His	Gln	Ala Ala 1675	Pro	Gly	Ala	Pro Ser 1680
Phe	Leu	Ala	Phe Ser 1685		Ile	Thr	Ser Thr 1690	Thr	Leu	Asn	Val Ser 1695
Trp	Gly	Glu	Pro Ala 1700		Ala	Asn	Gly Ile 1705	Leu	Gln	Gly	Tyr Arg 1710
			1715				1720	_			Lys Val 1725
			1730				1735				Lys Val 1740
Arg	Asp	Leu	Thr Lys 1745	Gly	Val	Thr	Tyr Phe 1750	Phe	Arg	Val	Gln Ala 1755
			1760				Leu Gln 1765				1770
Gly	Pro	Ala	Glu Gly 1775	Ser	Pro	Gly	Ser Pro 1780	Arg	Asp	Val	Leu Val 1785
			1790				Leu Gln 1795				1800
			1805				Tyr Val 1810				1815
			1820				Phe Val 1825				1830
Ser	Ala	Thr	Ser Tyr 1835	Thr	Leu	Ser	Leu Asp 1840	Lys	Leu	Arg	Gln Gly 1845
Val	Thr	Tyr	Glu Phe	Arg	Val	Val	Ala Val	Asn	Glu	Ala	Gly Tyr

Gly Glu Pro Ser Asn Pro Ser Thr Ala Val Ser Ala Gln Val Glu Ala Pro Phe Tyr Glu Glu Trp Trp Phe Leu Leu Val Met Ala Leu Ser Ser Leu Ile Val Ile Leu Leu Val Val Phe Ala Leu Val Leu His Gly Gln Asn Lys Lys Tyr Lys Asn Cys Ser Thr Gly Lys Gly Ile Ser Thr Met Glu Glu Ser Val Thr Leu Asp Asn Gly Gly Phe Ala Ala Leu Glu Leu Ser Ser Arg His Leu Asn Val Lys Ser Thr Phe Ser Lys Lys Asn Gly Thr Arg Ser Pro Pro Arg Pro Ser Pro Gly Gly Leu His Tyr Ser Asp Glu Asp Ile Cys Asn Lys Tyr Asn Gly Ala Val Leu Thr Glu Ser Val Ser Leu Lys Glu Lys Ser Ala Asp Ala Ser Glu Ser Glu Ala Thr Asp Ser Asp Tyr Glu Asp Ala Leu Pro Lys His Ser Phe Val Asn His Tyr Met Ser Asp Pro Thr Tyr Tyr Asn Ser Trp Lys Arg Arg Ala Gln Gly Arg Ala Pro Ala Pro His Ser Val Ala Ile Leu Leu Thr Ser Asn Pro Ser Ala Tyr Leu Ser Val Ala Pro Arg Gly Ser Ala Ser Trp <210> 6 <211> 333 <212> PRT <213> Homo sapiens <220> <221> misc_feature <223> Incyte ID No: 7473826CD1 <400> 6

Met Thr Ser Val Thr Ile Lys Gly Ser Gly Phe Ala Val Ser Ser Ala Gly Val Lys Val Leu Met Gly His Phe Pro Cys Lys Val Leu Ser Val Asn Tyr Thr Ala Ile Glu Cys Glu Thr Ser Pro Ala Ala Gln Gln Leu Val Asp Val Asp Leu Leu Ile His Gly Val Pro Ala Gln Cys Gln Gly Asn Cys Thr Phe Ser Tyr Leu Glu Ser Ile Thr Pro Tyr Ile Thr Gly Val Phe Pro Asn Ser Val Ile Gly Ser Val Lys Val Leu Ile Glu Gly Glu Gly Leu Gly Thr Val Leu Glu Asp Ile Phe Gly His His Ser Val Ser Val Val Val Gly Ser Lys Gly

```
Leu Ala Leu Gly Asn Leu Thr Val Ser Ser Pro Pro Val Ala Ser
                125
                                     130
Leu Ser Pro Thr Ser Gly Ser Ile Gly Gly Gly Thr Thr Leu Val
                                     145
                140
                                                         150
Ile Thr Gly Asn Gly Phe Tyr Pro Gly Asn Thr Thr Val Thr Ile
                155
                                     160
                                                         165
Gly Asp Glu Pro Cys Gln Ile Ile Ser Ile Asn Pro Asn Glu Val
                170
                                     175
                                                         180
Tyr Cys Arg Thr Pro Ala Gly Thr Thr Gly Met Val Asp Val Lys
                185
                                     190
                                                         195
Ile Phe Val Asn Thr Ile Ala Tyr Pro Pro Leu Leu Phe Thr Tyr
                200
                                     205
                                                         210
Ala Leu Glu Asp Thr Pro Phe Leu Arg Gly Ile Ile Pro Ser Arg
                215
                                     220
                                                         225
Gly Pro Pro Gly Thr Glu Ile Glu Ile Thr Gly Ser Asn Phe Gly
                230
                                     235
                                                         240
Phe Glu Ile Leu Glu Ile Ser Val Met Ile Asn Asn Ile Gln Cys
                245
                                     250
                                                         255
Asn Val Thr Met Ala Asn Asp Ser Val Val Gln Cys Ile Val Gly
                260
                                     265
Asp His Ala Gly Gly Thr Phe Pro Val Met Met His His Lys Thr
                275
                                     280
                                                         285
Lys Gly Ser Ala Thr Ser Thr Val Val Phe Glu Tyr Pro Leu Asn
                290
                                     295
                                                         300
Ile Gln Asn Ile Asn Pro Ser Gln Gly Ser His Lys Tyr Ala Arg
                305
                                     310
                                                         315
Thr Cys Arg Tyr Phe Val Ser Val Asn Thr Tyr Leu Glu Thr Leu
                320
                                     325
                                                         330
Phe Arg Lys
<210> 7
<211> 2700
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 6471113CB1
<400> 7
atggctgtgc agcgcgccgc gtctccgcgc cgcccgcccg ccccgctctg gccccggctc 60
ctgctgccgc tgctgttgct gctgctgccc gcgccgagcg agggtcttgg ccactctgct 120
gaactggcat ttgctgtgga gccaagtgat gatgttgccg tccccgggca gcctatagtg 180
ctggactgca gggtggaggg gacccctcca gtgcgaatca cctggaggaa qaatqqqqta 240
gagetgeeag agagtaceea etceacettg etggeeaatg ggteettgat gateegteae 300
ttcaggctgg agccgggagg cagcccttcg gatgaaggtg actatgagtg tgtggcccag 360
aaccgctttg ggctggtggt cagccggaag gctcgcatcc aagctgcaac catgtcggac 420
ttccacgtgc atccccaggc caccgtgggt gaggagggtg gtgtggcccg cttccagtgc 480
caaatccatg ggcttcccaa acccctgatc acttgggaga agaacagagt cccaattgac 540
```

acggacaatg agaggtacac attgctgccc aagggggtcc tgcagatcac aggacttcga 600

gctgaggacg gtggcatctt ccactgtgtg gcctcaaaca tcgccagtat ccggatcagc 660

cacggggcca ggctcactgt gtcaggctcg ggctctgggg cctacaagga gccagccatc 720

ctcgtggggc ctgagaacct caccctgaca gtgcaccaga ccgcggtgct tgagtgtgtc 780

gccacgggca acccgcgccc cattgtgtcc tggagccgcc tggatggtcg ccctatcggg 840

gtggagggca tccaggtgct gggcacagga aacctcatca tctcagacgt gacggtccag 900

```
cactctggcg tctacgtctg tgcagccaac agacctggca cccgggtgag gagaacggca 960
cagggccggc tggtggtgca agccccagct gagtttgtgc agcatcccca gtccatctcc 1020
aggccagctg ggaccacagc catgttcacc tgccaagccc agggtgagcc accgcctcat 1080
gtcacgtggc tgaaaaatgg acaggtgctg gggccaggag gccacgtcag gctcaagaat 1140
aacaacagca cactgaccat ttctggaatc ggtcctgagg atgaagccat ttatcagtgt 1200
gtggccgaga acagtgcggg ctcatcacag gccagtgcca ggctgaccgt actgtgggct 1260
gaggggctcc ccgggcctcc ccgcaatgtg cgggcagtct ctgtgtcttc cactgaggtg 1320
cgtgtgtcct ggagtgagcc gctggccaac accaaggaga tcatcggcta cgtcctgcac 1380
atcaggaagg ctgctgaccc accggagctg gagtatcagg aggcagtcag caagagcacc 1440
tttcagcacc tggtcagcga cctggagccc tccacagcct acagtttcta catcaaggcc 1500
tacacaccaa ggggggccag ctcagcctct gtgcccaccc tagctagcac cctgggtgaa 1560
gcccctgccc caccccact gtcagtgcga gtcctgggca gctcctcctt gcagctgctg 1620
tgggagcctt ggccccggct ggcccagcac gagggcggct tcaagctgtt ttaccgccca 1680
gcaagcaaga cctccttcac cggccccatc ctgctgcctg gaaccgtctc ctcctacaac 1740
ctcagccagc tcgaccccac tgcagtgtat gaggtgaagc tgctcgccta caaccagcat 1800
ggagatggca atgccacagt ccgctttgtg tctttgaggg gagcatctga gaggacaggc 1860
atcgtcatcg gcatccacat cggggtcact tgcatcatct tctgtgtcct cttcctcctg 1920
ttcggccaaa ggggcagggt cctcctgtgt aaagatgtgg aaaaccagct gtcccctcca 1980
cagggtcccc ggagccagag ggaccctggc attctggccc taaatggggc gagacgggga 2040
cagcggggcc agctgggccg agacgagaaa cgtgtggata tgaaggagct ggagcagctg 2100
ttccccccgg ccagcgcagc agggcagccg gaccccagac ccacagatcc tgcagccccc 2160
gctccgtgtg aggagaccca gctctccttg ctgccacttc aggggtgcgg cctgatggag 2220
gggaagacga cggaggcgaa gaccacagag gccacggctc cctgcgccgg cctggcggct 2280
gccccaccac ccccagatgg aggccctggc ctcctcagtg aaggccaggc ttccaggcct 2340
gcagcggccc gggttaccca gccagctcac tcggaacagt agccagtgtc tggcaggctc 2400
cagagggtgg acggagcggg gcccattctc aggtcaaaag caagatttct actgtcatgt 2460
gggatttgga tggtcctggg ggctccccag catttctatc ctgactgcct cttgggttgt 2520
caaaacccaa ggcagccttg acagggaccc cccggcccta acacccatca ggagttggag 2580
cagttcctgc aggagcctgt tccttccctg ggctgacgcc cccttgcctc tgcctgggta 2640
cccacatgac ttggaactga actaacattt ttctttaaaa agcaaaactt aaaaaaaaa 2700
<210> 8
<211> 2321
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7701502CB1
<400> 8
tactttatat tgtctgtgaa agctttaacc aggcgtcctg cattttacct gacaagacca 120
gccccctcca gtaacggtcc cttcccctgt acccaccacc tccaccacca gtggcccaga 180
taagggtage teactgtgga etteteaett etgettttee gatgaeceag ggeecagagg 240
gagageeece accecactae eccaceeeca geeaggeeec caggatagae acaageetge 300
cctctcctcc tacacaggga gctctggaag gaccagctca acaagcccaa ggccaggctg 360
ggcccccagg agacccagag gacaactggg caaggtgggc cggagagtgt gggggaaggc 420
aaaggagttc tgtgagctca gcgtctgaag ctcatttcat gcatcaggcc ccagggctca 480
gcttccgcct tcggcttccc cttctgccaa gagccctgag ccactcacag cacgaccaga 540
gaacaggeet gteteaggea ggeeetgege etectatgeg gagatgetae tgeeactget 600
gctgtcctcg ctgctgggcg ggtcccaggc tatggatggg agattctgga tacgagtgca 660
ggagtcagtg atggtgccgg agggcctgtg catctctgtg ccctgctctt tctcctaccc 720
ccgacaggac tggacagggt ctaccccagc ttatggctac tggttcaaag cagtgactga 780
gacaaccaag ggtgctcctg tggccacaaa ccaccagagt cgagaggtgg aaatgagcac 840
ccggggccga ttccagctca ctggggatcc cgccaagggg aactgctcct tggtgatcag 900
```

```
agacgcgcag atgcaggatg agtcacagta cttctttcgg gtggagagag gaagctatgt 960
gagatataat ttcatgaacg atgggttctt tctaaaagta acagccctga ctcagaagcc 1020
tgatgtctac atccccgaga ccctggagcc cgggcagccg gtgacggtca tctgtgtgtt 1080
taactgggcc tttgaggaat gtccacccc ttctttctcc tggacgggg ctgccctctc 1140
ctcccaagga accaaaccaa cgacctccca cttctcagtg ctcagcttca cgcccagacc 1200
ccaggaccac aacaccgacc tcacctgcca tgtggacttc tccagaaagg gtgtgagcgt 1260
acagaggacc gtccgactcc gtgtggccta tgcccccaga gaccttgtta tcagcatttc 1320
acgtgacaac acgccagccc tggagcccca gccccaggga aatgtcccat acctggaagc 1380
ccaaaaaggc cagttcctgc ggctcctctg tgctgctgac agccagcccc ctgccacact 1440
gagctgggtc ctgcagaaca gagtcctctc ctcgtcccat ccctggggcc ctagacccct 1500
ggggctggag ctgcccgggg tgaaggctgg ggattcaggg cgctacacct gccgagcgga 1560
gaacaggctt ggctcccagc agcgagccct ggacctctct gtgcagtatc ctccagagaa 1620
cctgagagtg atggtttccc aagcaaacag gacagtcctg gaaaaccttg ggaacggcac 1680
gtctctccca gtactggagg gccaaagcct gtgcctggtc tgtgtcacac acagcagccc 1740
cccagccagg ctgagctgga cccagagggg acaggttctg agccctccc agccctcaga 1800
ccccggggtc ctggagctgc ctcgggttca agtggagcac gaaggagagt tcacctgcca 1860
cgctcggcac ccactgggct cccagcacgt ctctctcagc ctctccgtgc actataagaa 1920
gggactcatc tcaacggcat tctccaacgg agcgtttctg ggaatcggca tcacggctct 1980
tcttttcctc tgcctggccc tgatcatgta ggttaagagg aggcgtggcg gggtctgggg 2040
cctggaccca ggaagaggg aggtgttgca ggccgaaaga gtgaaggtcg tgatcaacgc 2100
agtatacctc tggaggttac atgagtaaac agcaaactgt tctcataaat gcagaatgtt 2160
gtccaactga caaactgcgt ctgcttccca gagggaatgc tgagggcagt cacgcccaa 2220
gcgaagtgtt tcttgtaatt aggcacagct gaagcttgtt agtaataata tgaacctgtg 2280
atcaattaaa cagctgacca attgttaaaa aaaaaaaaa a
                                                                 2321
<210> 9
<211> 2112
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 5727379CB1
<400> 9
atgcttcaca cggccatatc atgctggcag ccattcctgg gtctggctgt ggtgttaatc 60
ttcatgggat ccaccattgg ctgcccgct cgctgtgagt gctctgccca gaacaatct 120
gttagctgtc acagaaggcg attgatcgcc atcccagagg gcattcccat cgaaaccaaa 180
cctctgctgg aagagataga cttgagtgac aacatcattg ccaatgtgga accaggagca 300
ttcaacaatc tctttaacct gcgttccctc cgcctaaaag gcaatcgtct aaagctggtc 360
cctttgggag tattcacggg gctgtccaat ctcactaagc ttgacattag tgagaataag 420
attgtcattt tactagacta catgttccaa gatctacata acctgaagtc tctagaagtg 480
ggggacaatg atttggttta tatatcacac agggcattca gtgggcttct tagcttggag 540
cagctcaccc tggagaaatg caacttaaca gcagtaccaa cagaagccct ctcccacctc 600
cgcagcctca tcagcctgca tctgaagcat ctcaatatca acaatatgcc tgtgtatgcc 660
tttaaaagat tgttccacct gaaacaccta gagattgact attggccttt actggatatg 720
atgcctgcca atagcctcta cggtctcaac ctcacatccc tttcagtcac caacaccaat 780
ctgtctactg tacccttcct tgcctttaaa cacctggagc ttcatatagt gggggcccag 840
cttcgcacca ttgagcctca ctccttccaa gggctccgct tcctacgcgt gctcaatgtg 900
tctcagaacc tgctggaaac tttggaagag aatgtcttct cctcccctag ggctctggag 960
gtcttgagca ttaacaacaa ccctctggcc tgtgactgcc gccttctctg gatcttgcag 1020
cgacagccca ccctgcagtt tggtggccag caacctatgt gtgctggccc agacaccatc 1080
cgtgagaggt ctttcaagga tttccatagc actgcccttt ctttttactt tacctgcaaa 1140
aaacccaaaa tccgtgaaaa gaagttgcag catctgctag tagatgaagg gcagacagtc 1200
cagctagaat gcagtgcaga tggagacccg cagcctgtga tttcctgggt gacaccccga 1260
```

```
aggcgtttca tcaccaccaa gtccaatgga agagccaccg tgttgggtga tggcaccttg 1320
gaaatccgct ttgcccagga tcaagacagc gggatgtatg tttgcatcgc tagcaatgct 1380
gctgggaatg ataccttcac agcctcctta actgtgaaag gattcgcttc agatcgtttt 1440
ctttatgcga acaggacccc tatgtacatg accgactcca atgacaccat ttccaatggc 1500
accaatgcca atacttttc cctggacctt aaaacaatac tggtgtctac agctatgggc 1560
tgcttcacat tcctgggagt ggttttattt tgttttcttc tcctttttgt gtggagccga 1620
gggaaaggca agcacaaaaa cagcattgac cttgagtatg tgcccagaaa aaacaatggt 1680
gctgttgtgg aaggggaggt agctggaccc aggaggttca acatgaaaat gatttgaagg 1740
cccacccctc acattactgt ctctttgtca atgtgggtaa tcagtaagac agtatggcac 1800
agtaaattac tagattaaga ggcagccatg tgcagctgcc cctgtatcaa aagcagggtc 1860
tatggaagca ggaggacttc caatggagac tctccatcga aaggcaggca ggcaggcatg 1920
tgtcagagcc cttcacacag tgggatacta agtgtttgcg ttgcaaatat tggcgttctg 1980
gggatctcag taatgaacct gaatatttgg ctcacactca cggacaatta ttcagcattt 2040
tctaccactg caaaaaaaa aaaaaaaaat aaaaaagaac tacctacagt gtaggattta 2100
catattaaaa ag
                                                                  2112
<210> 10
<211> 1419
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 5831801CB1
<400> 10
gtacgagttg gtcgagctcc atcactgata cggacgccag tgtgctggaa agcttacatg 60
taccctcctc ctcaggaaga aggagtgtta ggtggagaca gggatagttg ggacacaaag 120
tccagttaag tgtgtgtccc agctcagtgc tctgagccca gatcctcatc tccctgggta 180
gtgaggetea geacagaeaa geaaceaaet getgggetge eggtgeeee eatgttggaa 240
cctgagttgg agattatctc ctaagcagat acctgtcttc caaactgggg atgtagggct 300
tggaaactag aaaatgccag gtctgaggga gaggaaagaa caagtccagc aatacacaga 360
gctctgtgta ttcagaggga agttggcagg gttgtgttcg ggcagagaaa ctccgagtgg 420
tacaaagggg acgtgcccag agtggagaaa tcatgctaat tgtctgcact agagctggag 480
aacgccaccc aaaatgaaga gagaaagggg agccctgtcc agagcctcca gggccctgcg 540
ccttgctcct tttgtctacc ttcttctgat ccagacagac cccctggagg gggtgaacat 600
caccagecee gtgcgcetga tecatggcae cgtggggaag teggetetge tttetgtgea 660
gtacagcagt accagcagcg acaggcctgt agtgaagtgg cagctgaagc gggacaagcc 720
agtgaccgtg gtgcagtcca ttggcacaga ggtcatcggc accctgcggc ctgactatcg 780
agaccgtatc cgactctttg aaaatggctc cctgcttctc agcgacctgc agctggccga 840
tgagggcacc tatgaggtcg agatctccat caccgacgac accttcactg gggagaagac 900
catcaacctt actgtagatg tgcccatttc gaggccacag gtgttggtgg cttcaaccac 960
tgtgctggag ctcagcgagg ccttcacctt gaactgctca catgagaatg gcaccaagcc 1020
cagctacacc tggctgaagg atggcaagcc cctcctcaat gactcgagaa tgctcctgtc 1080
ccccgaccaa aaggtgctca ccatcacccg cgtgctcatg gaggatgacg acctgtacag 1140
ctgcatggtg gagaacccca tcagccaggg ccgcagcctg cctgtcaaga tcaccgtata 1200
cagaagaagc tccctttaca tcatcttgtc tacaggaggc atcttcctcc ttgtgacctt 1260
ggtgacagtc tgtgcctgct ggaaaccctc caaaaggaaa cagaagaagc tagaaaagca 1320
aaactccctg gaatacatgg atcagaatga tgaccgcctg aaaccagccc caaaggacca 1380
cagcccctag gctggacaac tccttcagtt tgcccagcc
                                                                  1419
<210> 11
<211> 6374
<212> DNA
```

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte ID No: 7195090CB1

<400> 11

atggatgaag ctggaaacca tcattctcag caaactaaca caaggacaaa aaaccaaaca 60 ccgcatgttc tcactcatag gtacattatt ccatctttgc agaagctcga tgctgggttt 120 taccgctgcg tggtgcgaaa cagaatggga gcactcctgc aaagaaaatc agaagttcaa 180 gtcgcatata tgggaagttt catggatacg gaccagagga aaacagtttc tcaaggacgt 240 gcagcgattc taaacctgct gcccatcacc agctacccca gacctcaagt gacttggttt 300 agagaagggc acaagattat tccaagcaac agaatagcca tcacattgga gaatcagctg 360 gtgatcctcg ccaccacac cagtgatgcc ggggcatact acgtgcaggc cgtgaatgag 420 aaaaatggag aaaacaagac aagcccattc attcatttga gcatagcaag agatgttggc 480 acacctgaaa ccatggcccc aaccattgtg gttcccccgg gcaacagaag tgtggtggct 540 ggatccagtg agaacacctt ggaatgtata gccagtgcca ggcctgtgga ggacctgagt 600 gtgacctgga agaggaatgg agtgagaatc accagtggcc tccacagctt tggaagacgc 660 ctcaccatca gcaacccgac gtccgcggac accgggccat acgtctgcga ggcggcgctg 720 ccggggagcg cttttgaacc ggccagggcg acggcctttc ttttcatcat agagccacca 780 tattttactg ctgagcccga gagtcggatt tcagctgaag tagaagaaac tgtggacatc 840 ggatgtcaag ccatgggggt ccccttccc accttcagt ggtacaagga tgccatctcc 900 atcagcagge tecagaatee tegatacaaa gtgetegeea geggaggeet gegeateeag 960 aagctgcgtc cagaggactc cggaatcttc cagtgcttcg ccagcaatga aggagggag 1020 atccagaccc acacctacct ggatgtaacc aatatcgctc cagtgttcac ccagcggcca 1080 gtggacacca cagttactga cgggatgaca gccattctaa ggtgtgaggt gtccggggct 1140 cccaaacccg ccatcacctg gaaaagagaa aaccacattc tggccagtgg ctctgtccgg 1200 attcctaggt tcatgcttct tgaatcgggg ggtctacaga tcgcgcccgt cttcatccag 1260 gatgccggca actacacctg ctatgcggcc aacacagagg gctccctgaa tgcatcggcc 1320 acgctcactg tgtggaatcg gacgtccatc gtccaccctc ctgaggacca cgtggtgatt 1380 aaggggacca cggccacgct gcactgtggt gccacacatg acccccgggt ttcactccgc 1440 tacgtttgga agaaggacaa cgtggccctg actccatcga gcacgtctag gatcgtggtg 1500 gagaaggacg ggtcccttct catcagccag acgtggtcag gcgacatcgg tgactacagc 1560 tgcgagattg tttctgaagg agggaatgac tccaggatgg cccggctgga agtgattgaa 1620 ctgcctcatt cacctcagaa cctcctggtc agccctaatt cttcccacag ccacgccgtg 1680 gtgctctctt gggtccggcc ctttgatgga aacagtccta ttctttatta catcgtggag 1740 ctctctgaaa acaactctcc atggaaggtg catctgtcaa acgttggccc tgagatgaca 1800 ggcgtcaccg tgagtggcct gactccggct cgtacctatc aattccgggt gtgcgcggtg 1860 aatgaagtgg gcaggggcca gtacagcgcc gagacaagca ggttgatgct acctgaagaa 1920 ccacccagtg ctcccccgaa aaatatagtg gccagtgggc ggactaatca gtccattatg 1980 gtccagtggc agccacccc agaaacagag cacaacgggg tgttgcgtgg atacatcctc 2040 aggtaccgcc tggctggcct tcccggagag taccagcagc ggaacatcac cagcccggag 2100 gtgaactact gcctggtgac agacctgatc atctggacac agtatgagat acaggtggcg 2160 gcgtacaacg gggccggtct gggcgtcttc agcagggcag tgaccgagta caccttgcag 2220 ggagtgccca ccgcgcccc gcagaacgtg cagacggaag ccgtgaactc caccaccatt 2280 cagttcctgt ggaaccctcc gcctcagcag tttatcaatg gcatcaacca gggatacaag 2340 cttctggcat ggccggcaga tgccccgag gctgtcactg tggtcactat tgccccagat 2400 ttccacggag tccaccatgg acacataacg aacctgaaga agtttaccgc ctacttcact 2460 tccgttctgt gcttcaccac ccctggggac gggcctccca gcacacctca gctggtctgg 2520 actcaggaag acaaaccagg agctgtggga catctgagtt tcacagagat cttggacaca 2580 tctctcaagg tcagctggca ggagcccctg gagaaaaatg gcatcattac tggctatcag 2640 atctcttggg aagtgtacgg caggaacaac tctcgtctca cgcacaccct gaacagcacg 2700 acgcacgagt acaagatcca aggcctctca tctctcacca cctacaccat cgacgtggcc 2760 gctgtgactg ccgtgggcac tggcctggtg acttcatcca ccatttcttc tggagtgccc 2820 ccagaccttc ctggtgcccc atccaacctg gtcatttcca acatcagccc tcgctccgcc 2880 accetteagt teeggeeagg etatgaeggg aaaacgteea tetecaggtg gattgttgag 2940 gggcaggtgg gagctatcgg cgacgaggag gagtgggtca ccctctatga agaggagaat 3000 gagcctgatg cccagatgct ggagatccca aacctcacac cctacactca ctacagattt 3060

Canatanaa	nactonnent	tattagaaaa	nessastnan	at cast at ta	acceptanta	2120
					ccgggtcatc	
					tactgccagt	
					cgggaacccc	3300
			cgctcagacc			
			ttcaccatcg			3360
_			gccgtcgggg	_		3420
			tcagccgccc			3480
			tggacatccg			3540
	_	_	cgggccaaag			3600
					gcgcaagttc	
		-			ccccagcacg	
					gctcgtgttc	3780
cccgaagtga	gactcacctc	cgtgcggata	gtgtggcaac	ctccggagga	gcccaacggc	3840
atcatcctgg	ggtaccagat	tgcctaccgc	ctggccagca	gcagccccca	caccttcacc	3900
accgtggagg	tcggcgccac	agtgaggcag	ttcacagcca	ccgacctggc	cccggagtcc	3960
gcatacatct	tcaggctgtc	cgccaagacg	aggcagggct	ggggggagcc	actggaggcc	4020
accgtcatca	ccaccgagaa	gagagagcgg	ccggcacccc	ccagagagct	cctggtgccc	4080
caggcagaag	tgaccgcacg	cagcctccgg	ctccagtggg	tcccgggcag	cgacggggcc	4140
tcccccatcc	ggtacttcac	catgcaggtg	cgagagctgc	ctcggggtga	gtggcagacc	4200
tactcctcgt	ccatcagcca	tgaggcgaca	gcatgcgtcg	ttgacagact	gaggcccttc	4260
					cttcagttca	
		-	_		atctgtctca	
					ggacgaaagc	
			tactacaggg			4500
					gctcacagcc	•
					actaacacat	
			atgaccgcct			4680
			ggcgaggctg			4740
			cagctggagg			4800
			tacaagattt			4860
			tteeteeceg			4920
			agcatatcag			4980
			acccaccagg			5040
			accedecagg			5100
				1	ccctgtacaa	5220
			agagggaact			
			ttccgtgtcc			5280
			gggccagccg			5340
			gaactgacgc			5400
					tgaaggctta	
					cagcctggat	
			cgggtggtgg			5580
			tcagctcaag			5640
			tccagcctga			5700
			aagtataaga			5760
			gacaacggag			5820
					caggtcccca	
ccccggccta	gccccggcgg	cctgcactac	tcagacgagg	acatctgcaa	caagtacaac	5940
					atcagaatct	
gaggccacgg	actctgacta	cgaggacgcg	ctgcccaagc	actccttcgt	gaaccactac	6060
atgagcgacc	ccacctacta	caactcatgg	aagcgcaggg	cccagggccg	cgcacctgcg	6120
ccgcacagtg	tagctatcct	cctgacgagc	aacccgtctg	cgtacctaag	tgtggctccc	6180
cgtgggtcag	cgtcctggta	gcatggatcc	agtctgaaag	gtgaggacaa	cgtggaaact	6240
catgagctga	gaatgaaaga	tgggacacgt	ctccttcccg	cgtcaccttc	tggtttaggg	6300
agccgtcagg	tccctaaacg	ttccctacaa	ctttttctga	aattgtgcag	aaaaacagat	6360
ctcattaaga	aaaa					6374
					•	

```
<210> 12
<211> 1350
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7473826CB1
<400> 12
atgacaagcg tgaccataaa aggctctgga tttgccgttt cttctgcagg tgtaaaagtc 60
cttatgggtc atttcccatg taaagttcta tcagtgaatt atacggccat tgaatgtgaa 120
acateceetg etgeceaaca gettgtggat gtagatette taatacatgg agtgeetgee 180
cagtgccagg gaaactgcac cttttcatac ttagaaagca tcactcctta cataacagga 240
gtcttcccaa actctgtcat aggatctgta aaagttctta ttgaaggaga aggtttgggg 300
actgttttgg aggacatttt tggacatcat tctgttagtg ttgtggtggg aagtaaaggc 360
ttggctctgg gaaacctgac tgtcagcagc ccccagtag catctctatc accaacttct 420
ggaagcattg gtggtggaac tacactggtg atcacaggaa atggcttcta tccaggcaac 480
actacagtca ctattgggga tgaaccttgt caaattattt ccatcaaccc caatgaagtc 540
tactgccgca ctcccgctgg gaccactgga atggtcgatg ttaaaatctt tgttaataca 600
attgcttatc cacctttgct ttttacatat gccctggagg atactccatt tctcagagga 660
attateceaa geagaggtee accaggaact gaaattgaga teactggate caactttgge 720
tttgagatct tggaaatctc cgtgatgata aataacattc agtgtaatgt aaccatggcc 780
aatgatagtg tggtgcagtg catcgtggga gatcatgctg ggggcacatt tcctgttatg 840
atgcatcata agacaaaagg ctcagccacg tccacagttg tatttgagta cccgcttaat 900
attcaaaata ttaatccaag ccaaggtagt cataagtatg caagaacctg cagatatttt 960
gtttcagtaa acacttattt agaaacctta tttagaaaat aatatgttac tcaaacacat 1020
aaaatttcta gtgttttttt tgtttgtttg gttttttttt tttgagacag agtctcgctc 1080
ggtcgcccag gctggagtgc agtggcgcga tcttggctca ttgcaagctc tgcctcccag 1140
gttcacgcca ttctcctgcc tcagcctccc gagtagctgg gactacaggc gcccgccacc 1200
atgcctggct aattttttt ggtattttta gtagagacgg ggtttcacca tgaaatttta 1260
tagcacaata caaatacttg gctttatgta gcaaataaat aagcttgtaa gtgtataatt 1320
```

atttatttca aaatactaaa ctttaaaata

1350