CS & IT ENGINEERING

COMPUTER ORGANIZATION
AND ARCHITECTURE

IO Organization

Lecture No.-02

Recap of Previous Lecture

Topics to be Covered

Effective transmission rate = efficiency * actual transfer rate

efficiency of transmission line = bits transmitted for each Char

$$= \frac{8}{8+1+1}$$

$$= \frac{8}{10}$$

$$= 0.8 \text{ or } 80\%$$

#Q. How many 8-bit characters can be transmitted per second over 9600 serial communication link using a parity synchronous mode of transmission with 1 start bit, 8 data bits, 2 stop bits and 1 parity bit?

bits for 1 char = 1+8+2+1 = 12 bits
char/sec =
$$\frac{9600}{12}$$
 = 800 char/sec.

[NAT]

#Q. An asynchronous serial communication is employing 8 character bits, 1 parity bit, 2 start bits and 1 stop bit. To maintain a rate of 700 char/sec the minimum transfer rate should be required is _____ bits/sec?

efficiency of line =
$$\frac{8}{8+1+2+1} = \frac{8}{12}$$

[NAT]

- #Q. 8-bit characters can be transmitted using a parity synchronous mode of transmission with 1 start bit, 8 data bits, 2 stop bits and 1 parity bit.
- 1. What is the efficiency of the transmission line? = $\frac{8}{1+8+2+1} = \frac{8}{12}$
- 2. If the transfer rate of the line is $\frac{2000}{3000}$ bits per second, then effective transfer rate is?

Effective transfer rate =
$$\frac{8}{12}$$
 * 3000 bits/sec
= $\frac{2}{3}$ * 3000 bits/sec
= 2000 bits/sec = $\frac{2000}{8}$ bytes/sec = 250 bytes/sec

- 1. Programmed I/o or Program Controlled I/O (51/0 & CPU)
 2. Interrupt Initiated I/O or Interrupt Driven I/O)

 - 3. DMA (Direct Memory Access) between I/O & mem.

Topic: Programmed IO

- There is no any provision through which IO can inform to CPU about data transfer
- IO sets its own status and waits
- CPU runs program periodically and checks the status of each device one-by-one
- · If any device has its status set then CPU performs data transfer for it.

Time required in programmed I/O = (status check time) + Data transfer time time needed by device to process & send status Reg. to CPU depends on I/O
operational speed

Assuming a device operating on 20 MBPs rate. The time needed to check status in programmed I/O if status seg. Size is 1 byte? 20 MB, processing time = 1 sec 20 MB $= 0.05 \, \mu sec = 50 \, hsec$

Topic: Interrupt Initiated IO

 IO device has a provision (Interrupt Signal) to inform to CPU about communication.

Topic: Interrupt Initiated IO

- IO device has a provision (Interrupt Signal) to inform to CPU about communication.
- When CPU receives interrupt:
 - It completes execution of current instruction
 - Saves the status (PC, PSW etc.) of current process onto the stack
 - Branches to service the interrupt
 - Resumes the previous process by taking out the values from stack

- #Q. The following are some events that occur after a device controller issues an interrupt while process L is under execution.
 - P. The processor pushes the process status of L onto the control stack
 - Q. The processor finishes the execution of the current instruction
 - R. The processor executes the interrupt service routine
 - S. The processor pops the process status of L from the control stack
 - T. The processor loads the new PC value based on the interrupt
 Which of the following is the correct order in which the events above occur?

A QPTRS PTRSQ

C TRPQS QTPRS

Topic: Interrupt Initiated IO

Interrupt service Routine: - (ISR)

A funct or a prog. execution of which services the interrupt.

Topic: Vectored vs Non-Vectored

(scalar)

device sends interrupt le reference of ISR too.

clu runs ISR & services lu interrupt device sends only interrupt

cpv runs a Lefault Service routine to understand which device sent enterrupt, Why

C where is it's ISR

then CPU runs ISR.

Topic: Maskable vs Non-Maskable

can be accepted can be rejected

always accepted

Topic: Internal Vs External

occurs during execut of an instruct, then s/ce interrupt

is occurred.

> First CPU services internal interrupt, then CPU restarts that instruct.

example:- page fault

generated by devices

Hardware?

2 mins Summary

Topic

Asynchronous Data Transfer

Topic

Modes of Transfer

Topic

Programmed IO

Topic

Interrupt IO

Happy Learning

THANK - YOU