

12

Kinetic Theory of Gases

* Boyle's law: If m and T are constant

$$V \propto \frac{1}{P}$$

$$P_1V_1 = P_2V_2$$

❖ Charles's law: If *m* and *P* are constant

$$V \propto T$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

❖ Gay-Lussac's law: If *m* and *V* are constant

$$P \propto T$$

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

* Avogadro's law: If P, V and T are same

$$N_1 = N_2$$

where, N_1 and N_2 are the number of molecules

 $V \propto n$ (no. of molecules of gas)

$$\frac{\mathbf{V}_1}{\mathbf{n}_1} = \frac{\mathbf{V}_2}{\mathbf{n}_2}$$

* Graham's law: If P and T are constant

rate of diffusion
$$r \propto \frac{1}{\sqrt{\rho}}$$

$$\frac{r_1}{r_2} = \sqrt{\frac{\rho_2}{\rho_1}}$$

*** Dalton's law:** $P = P_1 + P_2 + P_3 \dots$

$$P = \text{Total pressure}$$

 $P_1, P_2, P_3 \dots =$ Pressure exerted by each component present in the mixture.

*** Ideal gas equation:** $PV = nRT = k_B NT$

n = number of moles

N = number of molecules

R = universal gas constant

 $k_{\rm B}$ = Boltzmann's constant

* Pressure exerted by ideal gas

$$P = \frac{1}{3} \frac{mN}{v} \overline{v^2}$$

$$\overline{\mathbf{v}^2}$$
 = mean square velocity $\left\{\overline{\mathbf{v}^2} = \frac{v_1^2 + v_2^2 + v_3^2 + \dots}{N}\right\}$

m =mass of each molecule

or $P = \frac{1}{3}nmv^{2}$ $n = \text{number density } i.e., n = \frac{N}{V}$

$$V_{\rm ms} = \left(\overline{v^2}\right)^{1/2}$$

K.E. =
$$\frac{3}{2}k_BT = \frac{1}{2}m\overline{v^2}$$

$$\overline{v^2} = \frac{3k_BT}{m}$$

$$\Rightarrow V_{\rm rms} = \sqrt{\frac{3k_BT}{m}}$$

$$V_{av} = \sqrt{\frac{8K_BT}{\pi m}}$$

$$V_{\rm mp} = \sqrt{\frac{2K_BT}{m}}$$

• Mean free path $(\overline{l}) = \frac{1}{\sqrt{2}n\pi d^2}$ n = number density

d = diameter of molecule

 γ = ratio of specific heats

 C_n = specific heat at constant pressure

 C_{v}^{p} = specific heat at constant volume

$$C_p - C_v = R$$

R = universal gas constant

S.No.	Atomicity	No. of degree of freedom	C _P	\mathbf{C}_{v}	$\gamma = C_P/C_v$
1	Monoatomic	3	$\frac{5}{2}R$	$\frac{3}{2}R$	$\frac{5}{3}$
2	Diatomic	5	$\frac{7}{2}R$	$\frac{5}{2}R$	$\frac{7}{5}$

$$c_{v(\text{mix})} = \frac{n_1 C_{v_1} + n_2 C_{v_2}}{n_1 + n_2}$$

where n_1 and n_2 are number of moles of gases mixed together C_{v_1} and C_{v_2} are molar specific heat at constant volume of the two gas and $C_{v(\text{mix})}$: Molar specific heat at constant volume for mixture.