Dag 2

SATS. Om
$$\lim f(x) = A$$
 och $\lim g(x) = B$ så $\lim (f(x) + g(x)) = A + B$ (Additionsregeln), $\lim f(x)g(x) = AB$ (Produktregeln).

GVD: $\lim h(x) = D$

Setyder: for vary e e > e times e > e times e > e = e =

1 f(x)g(x) - AB / <! pB:s metod. Borja med special tallet A 30 1960/5 C Lemma li 1(x)=0, 9 x) begr. Da fotjer att l. fax)g(x)=0. bevis; $|1/(x)g(x)-AB| = |1/(x)g(x)| \le C|1/(x)|$ GVD: JW si att If(x)1<= < (. = 5 Bev.s av produktlagen: 1(x)g(x) - AB (1(x)-A)g(x) + A(g(x)-B)-0. -> O Begr. Begr. >0 V.S.B

A+1

A-1
$$= \{(x)\} \le A+1$$
 $|\{(x)\}\} (x) - A(B)| = |\{(x)\} - A(G(X) - B)\}| \le |\{(x)\} - A(G(X) - B)$ | \(\frac{A} - A(G(X) - B)| \(\frac{A} - A(G(X) -

Definition. Vi säger att funktionen f(x) har det oegentliga gränsvärdet $+\infty$ då $x \to +\infty$ om det för varje reellt tal R > 0 finns ett ω så att f(x) > R för alla för alla $x > \omega$.

Exempel: Visa att $\lim_{x \to +\infty} x^2 = +\infty$.

$$(x^2) > R \iff x > VR$$

 $(x, R > 0)$
 $(x, R$

autagande
$$\frac{n}{2n-1} = \frac{1}{2} \left(\frac{2n-1}{2n-1} \right) + \frac{1}{2} \left(\frac{1}{2n-1} \right)$$

Vad är supremum och infimum av följande talföljd? Antas maximum och minimum?

$$\left\{\frac{n}{2n-1}\right\}_{n=1}^{\infty}. \quad \frac{n}{2n-1} > \frac{n}{2n} = \frac{1}{2}.$$
1, \frac{3}{5}, \frac{4}{7},

$$max = 1 = sup$$

$$3 > \frac{1}{2}$$
 Finns n so all
$$\frac{n}{2n-1} < B$$

$$(=)$$
 $n < B(2n-1) <=> B < n(2B-1)$
 $(=)$ $n > \frac{B}{2B-1}$ $n = [\frac{B}{2B-1}] + 1$

Vad är supremum och infimum av följande talföljd? Antas maximum och minimum?

$$\left\{\ln n\right\}_{n=1}^{\infty}.$$

In n
$$vaxande$$
.

In $n = ln 1 = 0 = inf$.

Sup = +d (max saknas)

Vad är supremum och infimum av följande talföljd? Antas maximum och minimum?

minimum?
$$\left\{\left(1+\frac{(-1)^{n}}{2n}\right)^{n}\right\}_{n=1}^{\infty}.$$

$$N = 2 k \left\{\left(1+\frac{(-1)^{n}}{2n}\right)^{n}\right\}_{n=1}^{\infty}.$$

$$N = 2 k \left(1+\frac{(-1)^{n}}{2n}\right)^{n}$$

$$N = 2 k \left$$

Vad är supremum av följande mängd?

$$M=\{x\in\mathbb{Q}:x^2\leq 2\}$$