گروه آموزشی :	Ph	نام و نام خانوادگی :
تاريخ : ا	ل ل داخيانېستۍ ټابرو ^د	شماره دانشجویی :
وقت : دقيقه		نام مدرس :
(: ديفرانسيل (امتحان میان ترم درس
	سال (اور / ۱۳ (سال (اور ا	نيما

توجه: مطالب صفحه اول پاسخنامه را به دقت مطالعه نمایید.

سوال ۱ – مسیرهای قائم بر دسته منحنیهای
$$y^{\dagger} + rc x = \cdot$$
 را بیابید.

$$(-y + fxy^{\dagger} \ln x) dx + x dy = \cdot$$

سوال ۳ – معادله مرتبه اول
$$(1+\pi x\sin y)dx-x^{\dagger}\cos y\,dy=\cdot$$
 را حل کنید.

را حل کنید.
$$\begin{cases} yy'' = \mathsf{Y}(y')^\mathsf{Y} - yy' \\ y(\cdot) = \mathsf{Y}, \quad y'(\cdot) = \mathsf{S} \end{cases}$$
 را حل کنید.

سوال ۵ - جواب عمومی معادله دیفرانسیل مرتبه دوم زیر را با استفاده از روش ضرایب نامعین بیابید.
$$y'' + \gamma y' + \gamma y = \epsilon e^{-x} \sin x$$

پاسخ سوالات امتحان میان ترم درس معادلات دیفرانسیل (۱۱ گروه هماهنگ) نیمسال دوم ۹۳–۱۳۹۲

جواب سوال ۱: ابتدا معادله دیفرانسیل دسته منحنیهای داده شده یعنی y'+rcx=0 را می نویسیم. از طرفین معادله مشتق می گیریم. y'-ryy'x=0 و داریم y'-ryy'+rc=0 با جایگذاری در معادله اصلی خواهیم داشت y'+rc=0 پس معادله دیفرانسیل دسته منحنیهای داده شده عبارت است از $y'=\frac{y}{rx}$ و معادله دیفرانسیل مسیرهای قائم آن عبارت است از $y'=\frac{-rx}{v}$ را حل کنیم که یک معادله جدایی پذیر است.

 $ydy = -\Upsilon xdx \rightarrow \frac{\Upsilon}{\Upsilon}y^{\Upsilon} = -x^{\Upsilon} + a \rightarrow y^{\Upsilon} + \Upsilon x^{\Upsilon} = \Upsilon a$

 $y' - \frac{1}{x}y = -4y^{T} \ln x$ بنویسیم داریم بنویسیم داریم به صورت به صورت $\frac{dy}{dx} = \frac{y - 4xy^{T} \ln x}{x}$ بنویسیم داریم بنولی است. طرفین معادله را بر $\frac{y'}{y^{T}} - \frac{1}{x} \times \frac{1}{y} = -4 \ln x$ که یک معادله برنولی است. طرفین معادله را بر $\frac{y'}{y^{T}} - \frac{1}{x} \times \frac{1}{y} = -4 \ln x$ تقسیم می کنیم:

با اعمال تغییر متغیر $u'+\frac{1}{x}u=\pm \ln x$ و یا $u'+\frac{1}{x}u=\pm \ln x$ که یک معادله خطی مرتبه اول است.

 $\mu = e^{\int \frac{1}{x} dx} = x \quad \rightarrow \quad u = \frac{1}{x} (c + \int x(\mathsf{f} \ln x) dx) = \frac{1}{x} (c + \int \mathsf{f} x \mathsf{f} \ln x dx) = \frac{1}{x} (c + \mathsf{f} x^\mathsf{f} \ln x - x^\mathsf{f})$ $y = \frac{x}{c + x^\mathsf{f} (\mathsf{f} \ln x - 1)} : \mathsf{g} = \frac{1}{y} (c + \mathsf{f} x^\mathsf{f} \ln x - x^\mathsf{f}) = \frac{1}{x} (c + \mathsf{f} x^\mathsf{f} \ln x - x^\mathsf{f})$ $y = \frac{x}{c + x^\mathsf{f} (\mathsf{f} \ln x - 1)} : \mathsf{g} = \frac{1}{y} (c + \mathsf{f} x^\mathsf{f} \ln x - x^\mathsf{f})$

 $M= {
m I} + {
m T} x \sin y$, $N= -x^{
m I} \cos y$: اوريم : $M_y= {
m T} x \cos y$, $N_x= -{
m I} x \cos y$

این معادله کامل نیست اما چون $\frac{M_y - N_x}{N} = \frac{6x \cos y}{-x^{\text{T}} \cos y} = \frac{-6}{x}$ این معادله کامل نیست اما چون

: یک متغیره بر حسب x دارد. داریم و با خوب این عامل انتگرالساز در طرفین معادله داریم $\mu = e^{\int \frac{-\delta}{x} dx} = \frac{1}{x^{\delta}}$

 $\left(\frac{1}{x^{\Delta}} + \frac{y}{x^{\tau}}\sin y\right)dx - \frac{1}{x^{\tau}}\cos y\,dy = 0$

 $+cx^{*} + x\sin y + 1 = \cdot$ و یا $-\frac{1}{x^{*}} - \frac{1}{x^{*}}\sin y = c$ که یک معادله کامل است و جواب آن عبارت است از

 $yuu'= \Upsilon u'-yu$ داریم u=y', u=y', u=y' معادله ، یک معادله مرتبه دوم فاقد x است با تغییر متغیر متغیر u=y'

 $\mu=e^{\int \frac{-\tau}{y}dy}=\frac{1}{y^{\tau}}=\frac{1}{y^{\tau}}$ و يا $u'-\frac{\tau}{y}u=-1$ که يک معادله مرتبه اول خطى است و $u=y'\neq 0$ و $u=y'\neq 0$

$$u = y^{\mathsf{T}}(c + \int \frac{1}{y^{\mathsf{T}}}(-1)dy) = y^{\mathsf{T}}(c + \int \frac{-1}{y^{\mathsf{T}}}dy) = y^{\mathsf{T}}(c + \frac{1}{y})$$

. کنون به معادله مرتبه اول و جداییپذیر y'=y(cy+1) رسیدهایم و برای راحتی کار مقدار

 $\frac{dy}{y(y+1)}=dx$ اکنون داریم y'=y(y+1) و c=1 و c=1 که نتیجه می دهد $s=r(c\times r+1)$: اکنون داریم

دانشکده ریاضی ۱۳۹۳/۱/۳۰

پاسخ سوالات امتحان میان ترم درس معادلات دیفرانسیل (۱۱ گروه هماهنگ) نیمسال دوم ۹۳–۱۳۹۲

$$A=rac{ au}{ au}$$
و یا $A=rac{ au}{y}$ که نتیجه می دهد $(rac{ au}{y}-rac{ au}{y+1})$ که نتیجه می دهد $(rac{ au}{y}-rac{ au}{y+1})$ که نتیجه می دهد $y=rac{ au e^x}{ au- au e^x}=rac{ au}{ au e^x}$ و با توجه به شرایط اولیه $y=rac{ au e^x}{ au- au e^x}=rac{ au}{ au e^x- au}$ و بالاخره داریم :

برای یافتن جواب خصوصی به کمک روش ضرایب نامعین فرض می کنیم :

 $y_p = e^{-x} (Ax\sin x + Bx\cos x)$

 $y'_{p} = e^{-x}[(-Ax - Bx + A)\sin x + (Ax - Bx + B)\cos x]$ $y''_{p} = e^{-x}[(YBx - YA - YB)\sin x + (-YAx + YA - YB)\cos x]$: و داريم

در معادله اصلی قرار می دهیم:

 $y_p'' + \mathsf{T} y_p' + \mathsf{T} y_p = e^{-x} [-\mathsf{T} B \sin x + \mathsf{T} A \cos x] = \mathsf{F} e^{-x} \sin x \, \to \, B = -\mathsf{T} \,, \, A = \mathsf{F} e^{-x} \, \to \, B = -\mathsf{T} \,, \, A = \mathsf{F} \,, \, A$

سیدرضا موسوی