Exam 1 Part B

Graded

Student

Paul Lea

Total Points

52 / 80 pts

Question 1

Method of Images 3 / 5 pts

→ + 2 pts Recognizing a method of images problem

+ 1 pt
$$\sigma = \epsilon_0 E|_{z=0}$$
 or $\sigma = -\partial V/\partial r|_{z=0}$

$$m{ ilde{arphi}}$$
 + 1 pt $ec{E}(0,0,0) = -rac{2q}{4\pi\epsilon_0 d^2} \hat{k}$

+ 1 pt
$$\sigma = -6.37 imes 10^{-7}\,C/m^2$$

Question 2

Gauss' Law 5 / 10 pts

→ + 2 pts Gauss' law or Coulomb's law

+ 2 pts
$$r < R$$
: $E(4\pi r^2) = rac{1}{\epsilon_0}rac{4}{3}\pi r^3
ho$

+ 2 pts
$$ec{E}=rac{
ho r}{3\epsilon_0}\hat{r}$$

$$ightharpoonup$$
 + 2 pts $r>R$: $E(4\pi r^2)=rac{1}{\epsilon_0}rac{4}{3}\pi R^3
ho$

🗸 + 2 pts
$$ec{E}=rac{
ho R^3}{3\epsilon_0 r^2}\hat{r}$$

- 1 pt Point adjustment

Question 3

Potential from field 2 / 8 pts

$$ightharpoonup$$
 + 2 pts $V(r) = -\int ec{E} \cdot dec{l}$

+ 2 pts
$$=\int_{\infty}^{R}rac{
ho R^{3}}{3\epsilon_{0}r^{2}}dr$$

+ 2 pts
$$=\int_{R}^{0}rac{
ho r}{3\epsilon_{0}}dr$$

+ 2 pts
$$V(0)=rac{
ho R^2}{2\epsilon_0}$$

+ 0 pts No answer

2 The field and thus the potential is different inside and outside the sphere.

- ✓ + 2 pts Switch is open so circuit is in series and all devices have the same current
- ightharpoonup + 2 pts Ohm's law: $I=(40.0V)/(175\Omega)=0.229A$
 - **+ 2 pts** Loop rule: $V_b-V_a={
 m emf}$ $V_{75\Omega}$
 - + 2 pts $\,V_b-V_a=-2.14 V\,$
 - + 0 pts No answer

Question 5

P=VI 4 / 4 pts

- → + 2 pts Correct power formula
- \checkmark + 2 pts P=5.73W
 - + 0 pts No answer

Question 6

Parallel circuit current

7 / 7 pts

- → 1 pt Switch is closed so we now have two circuits in parallel

$$I_{left} = (25V)/(100\Omega) = 0.250A$$

- hickspace hickspace + **2 pts** Ohm's law in right loop: $I_{right} = (15V)/(75\Omega) = 0.200A$
- → + 2 pts Kirchhoff junction rule:

$$I_{am} = I_{left} - I_{right} = 0.050A$$

+ 0 pts No answer

Please explain what you're doing or I will not give you the points next time

Question 7

Equivalent capacitance

6 / 6 pts

- 🗸 + **2 pts** middle branch: 3 capacitors in series so $rac{1}{C_{middle}} = \sum rac{1}{C_i}$
- \checkmark + 1 pt $C_{middle} = 5.29\,nF$
- ullet + 2 pts Full circuit: 3 capacitors in parallel so $C_{eq}=\sum C_i$
- ightharpoonup + 1 pt $C_{eq}=19.3\,nF$
 - + 0 pts No answer

Total system charge

5 / 5 pts

$$\checkmark$$
 + 2 pts $Q=C\Delta V$

$$ullet$$
 + 2 pts $Q_{tot} = C_{eq} V$

$$\checkmark$$
 +1 pt $Q_{tot}=482\,nC$

+ 0 pts Click here to replace this description.

Question 9

Capacitor charge 6 / 6 pts

- $m{\checkmark}\,$ + 2 pts $Q_{6.5}=C_{6.5}V$
- \checkmark + 2 pts $Q_{6.5}=162\,nC$
 - + 0 pts Click here to replace this description.

Question 10

Potential difference across capacitor in series

2 / 6 pts

- + 2 pts Capacitors in series have the same charge
- ightharpoonup + 2 pts $Q=C_{eq}V=(5.29\;nF)(25V)=132.25\;nC$
 - + 2 pts $V_{10}=rac{Q}{C_{10}}=13.2V$
 - + 0 pts Click here to replace this description.

Question 11

Field from potential

5 / 5 pts

$$m{\checkmark}\,$$
 + 2 pts $ec{E}=-ec{
abla}V$

🗸 + 3 pts
$$ec{E} = -z \hat{i} - 2y \hat{j} - x \hat{k}$$

+ 0 pts No answer

Question 12

Gauss' law in differential from

3 / 5 pts

🗸 + 3 pts
$$ec{
abla} \cdot ec{E} = rac{
ho}{\epsilon_0}$$

+ 2 pts
$$ec{
abla} \cdot ec{E} = -2\epsilon_0$$

+ 0 pts No answer

Work 0 / 5 pts

+ 2 pts
$$W=Q\Delta V$$

+ 1 pt
$$\Delta V = V(1,2,3) - V(\infty) = V(1,2,3)$$
 $(V(\infty) = 0)$

+ 2 pts
$$W=7Q$$

→ + 0 pts Click here to replace this description.

Part II: Problems - Include a logical statement or relevant equation for full credit

Problem 1. A charge of +10.0 nC is placed a distance of 0.050 meters above a very large, flat, grounded, conducting sheet. Calculate the surface charge density on the sheet at a position directly below the charge.

Problem 2. A solid ball of charge with uniform volume charge density ρ and radius R is centered at the origin.

a) Calculate the electric field inside and outside the ball.

b) Calculate the electric potential at the origin using a reference at infinity.

The figure displays an Problem 3. electrical circuit. All components are ideal.

a) Find the potential difference measured by the voltmeter with the switch open as

$$\sum_{i=1}^{N} \Delta V_i = 0$$

$$\sum_{i=1}^{N} T_i = 0$$

shown.

$$\frac{N}{2}$$
 $\Delta Vi = 0$ $\frac{23 - 75 \pm 145 + 100 \pm 20}{120}$ $\frac{1}{5} = 0$
 $\frac{1}{5} = 0$ $\frac{1}{5} = 0$ $\frac{1}{5} = 0$

b) Find the power supplied by the 25 V battery to the circuit when the switch is open.

c) Find the current measured by the ammeter with the switch closed.

Problem 4. For the system of capacitors shown in the figure, a potential difference of 25 V is maintained across ab

a) What is the equivalent capacitance of this system between a and b?

Sevis
$$\frac{1}{Ct} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

$$\frac{1}{10} = \frac{1}{10} + \frac{1}{10} = \frac{17}{40} = \frac{1}{Ct} - (t = \frac{90}{10} = 5.2 \text{ anf}$$

Parallel

$$C_{t} = C_{1} + C_{n} + ...$$

 $C_{t} = C_{1} + C_{n} + ...$
 $C_{t} = C_{n} + C_{n} + ...$

b) How much charge is stored by this system?

$$Q = (\Delta V)$$

$$[9.29(25) = 48).75$$

$$[482.25 nC]$$

c) How much charge does the 6.5 nF capacitor store?

$$Q = (AV)$$

$$Q = (1623nf)$$

d) What is the potential difference across the 10 nF capacitor?

$$\frac{132.25nC}{5.29nf} = \frac{Q}{19} + \frac{Q}{30} + \frac{Q}{10}$$

$$V_1 = \frac{49.095nC}{1000} = \frac{4.408 V}{1000}$$

$$Q = \frac{152.73}{1000}$$

Problem 5. The electric potential with respect to infinity inside a sphere with radius R=10 m is given by the function $V(x,y,z)=xz+y^2$

a) What is the electric field inside the sphere?

b) What is the volume charge density inside the sphere?

c) How much work would be required to bring a point charge +Q from ∞ to (1,2,3)?