COMP 3721: Theory of Computation Spring 2013 Midterm Exam

- 1. Print your name and student ID at the top of every page (in case the staple falls out!).
- 2. This is an open-book, open-notes exam.
- 3. Time limit: 80 minutes.
- 4. When asked to describe a DFA, NFA, or pushdown automaton, you can use either the state diagram (the preferred method) or the formal definition.
- 5. You can write on the back of the paper if you run out of space. Please let us know if you need more scratch paper.

1. (5 pts) Let $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$. Design a DFA or an NFA that only accepts one string which is your student ID.

2. (20 pts) Let $\Sigma = \{0, 1\}$. For any natural number n, let $b(n) \in \Sigma^*$ be the binary representation of n. For example, b(0) = 0, b(11) = 1011. Define the language

$$L = \{b(n) : 0 \le n \le 11\}.$$

- (a) Write a regular expression to represent L.
- (b) Design an NFA that accepts L.

(c) Design a DFA that accepts L.

3.	(35 pts) Denote by Regular the set of all regular languages and CFL the set of all context-
	free languages. For each of the following statements, decide if it is right or wrong. For a
	wrong statement, please give a counter example (you can use any alphabet Σ).

- (a) If $A \in \mathsf{Regular}$ and $B \in \mathsf{Regular}$, then $A \ominus B \in \mathsf{Regular}$. (\ominus is the *symmetric difference* of two sets, defined as $A \ominus B = (A B) \cup (B A)$)
- (b) If $A \in \mathsf{Regular}$ and $B \notin \mathsf{Regular}$, then $A \cap B \notin \mathsf{Regular}$.
- (c) If $A \not\in \mathsf{Regular}$ and $B \not\in \mathsf{Regular}$, then $A \cup B \not\in \mathsf{Regular}$.
- (d) If $A \in \mathsf{Regular}$, $B \notin \mathsf{Regular}$, and $A \cap B = \emptyset$, then $A \cup B \notin \mathsf{Regular}$.
- (e) If $A \in \mathsf{CFL}$ and $B \in \mathsf{Regular}$, then $A \cap B \in \mathsf{Regular}$.
- (f) If $A \in \mathsf{CFL}$ and $B \in \mathsf{CFL}$, then $A \cup B \in \mathsf{CFL}$.
- (g) If $A \in \mathsf{CFL} \mathsf{Regular}$ and $B \in \mathsf{CFL} \mathsf{Regular}$, then $A \cap B \not \in \mathsf{Regular}$.

4. (20 pts) Let $\Sigma = \{0, 1\}$. For any string $x \in \Sigma^*$, denote by \overline{x} the string obtained by flipping every symbol of x, e.g., $\overline{00110} = 11001$. Let $L = \{x\overline{x} : x \in \Sigma^*\}$. Prove that L is not regular.

5. (20 pts) Prove that any regular language is also a context-free language, by showing that for any regular expression α , there exists a context-free grammar G such that $L(\alpha) = L(G)$. Give a direct proof without using the equivalence between regular expressions and DFA/NFA, or the equilarence between context-free grammars and pushdown automata.