Pseudo-Boolean Optimization in memory of P.L. Hammer

Endre Boros

RUTCOR, Rutgers University

April 12, 2013

Outline

- Pseudo-Boolean Optimization
 - Pseudo-Boolean Functions
 - Representations and Bounds
 - Persistencies and Autarkies
 - Graph Cut Models
 - Implication Networks
- 2 Results
 - Computational Results

Variables and Literals

- Variables: $x_1, x_2, ..., x_n \in \{0, 1\}; V = \{1, 2, ..., n\}$
- Negations: $\bar{x}_i = 1 x_i \in \{0, 1\} \text{ for } i = 1, ..., n$

Pseudo-Boolean Function (PBF):

$$f:\{0,1\}^n\to\mathbb{R}$$

$$f(x_1, ..., x_n) = \sum_{S \subseteq V} a_S \prod_{i \in S} x_i$$

Unconstrained Binary Optimization (PBO

$$\min_{(x_1,...,x_n)\in\{0,1\}^n} f(x_1,...,x_n)$$

Variables and Literals

- Variables: $x_1, x_2, ..., x_n \in \{0, 1\}; V = \{1, 2, ..., n\}$
- Negations: $\overline{x}_i = 1 x_i \in \{0, 1\}$ for i = 1, ..., n

Pseudo-Boolean Function (PBF):

$$f: \{0,1\}^n \to \mathbb{R}$$

$$f(x_1, ..., x_n) = \sum_{S \subseteq V} a_S \prod_{i \in S} x_i$$

Unconstrained Binary Optimization (PBO

$$\min_{(x_1,...,x_n)\in\{0,1\}^n} f(x_1,...,x_n)$$

Variables and Literals

- Variables: $x_1, x_2, ..., x_n \in \{0, 1\}; V = \{1, 2, ..., n\}$
- Negations: $\overline{x}_i = 1 x_i \in \{0, 1\}$ for i = 1, ..., n

Pseudo-Boolean Function (PBF):

$$f: \{0,1\}^n \to \mathbb{R}$$

$$f(x_1, ..., x_n) = \sum_{S \subseteq V} a_S \prod_{i \in S} x_i$$

Unconstrained Binary Optimization (PBO)

$$\min_{(x_1,...,x_n)\in\{0,1\}^n} f(x_1,...,x_n)$$

Pseudo-Roolean Ontimizati

(Hammer and Rudeanu, 1968)

Variables and Literals

- Variables: $x_1, x_2, ..., x_n \in \{0, 1\}; V = \{1, 2, ..., n\}$
- Negations: $\overline{x}_i = 1 x_i \in \{0, 1\}$ for i = 1, ..., n

Pseudo-Boolean Function (PBF):

$$f: \{0,1\}^n \to \mathbb{R}$$

$$f(x_1, ..., x_n) = \sum_{S \subseteq V} a_S \prod_{i \in S} x_i$$

Unconstrained Binary Optimization (PBO)

$$\min_{(x_1,...,x_n)\in\{0,1\}^n} f(x_1,...,x_n)$$

Pseudo-Boolean Optimization

(Hammer and Rudeanu, 1968

Variables and Literals

- Variables: $x_1, x_2, ..., x_n \in \{0, 1\}; V = \{1, 2, ..., n\}$
- Negations: $\bar{x}_i = 1 x_i \in \{0, 1\} \text{ for } i = 1, ..., n$

Pseudo-Boolean Function (PBF):

$$f: \{0,1\}^n \to \mathbb{R}$$

$$f(x_1, ..., x_n) = \sum_{S \subseteq V} a_S \prod_{i \in S} x_i$$

Unconstrained Binary Optimization (PBO)

$$\min_{(x_1,...,x_n)\in\{0,1\}^n} f(x_1,...,x_n)$$

Pseudo-Boolean Optimization

(Hammer and Rudeanu, 1968)

Outline

- Pseudo-Boolean Optimization
 - Pseudo-Boolean Functions
 - Representations and Bounds
 - Persistencies and Autarkies
 - Graph Cut Models
 - Implication Networks
- 2 Results
 - Computational Results

Posiforms: Nonnegative (except maybe the constant terms) multi-linear polynomials in 2n literals $x_1, \overline{x}_1, ..., x_n, \overline{x}_n$

Posiforms: Nonnegative (except maybe the constant terms) multi-linear polynomials in 2n literals $x_1, \overline{x}_1, ..., x_n, \overline{x}_n$

$$f = -2 - x_1 - x_2 - x_3 + x_1 x_2 + x_1 x_3 + x_2 x_3$$
 quadratic PBF

Posiforms: Nonnegative (except maybe the constant terms) multi-linear polynomials in 2n literals $x_1, \overline{x}_1, ..., x_n, \overline{x}_n$

$$f = -2 - x_1 - x_2 - x_3 + x_1 x_2 + x_1 x_3 + x_2 x_3$$
 quadratic PBF
= $-5 + \overline{x}_1 + \overline{x}_2 + \overline{x}_3 + x_1 x_2 + x_1 x_3 + x_2 x_3$ quadratic posiform

Posiforms: Nonnegative (except maybe the constant terms) multi-linear polynomials in 2n literals $x_1, \overline{x}_1, ..., x_n, \overline{x}_n$

$$f = -2 - x_1 - x_2 - x_3 + x_1 x_2 + x_1 x_3 + x_2 x_3$$

= $-5 + \overline{x}_1 + \overline{x}_2 + \overline{x}_3 + x_1 x_2 + x_1 x_3 + x_2 x_3$
= $-4 + \overline{x}_3 + \overline{x}_1 \overline{x}_2 + x_1 x_3 + x_2 x_3$

quadratic PBF quadratic posiform quadratic posiform

Posiforms: Nonnegative (except maybe the constant terms) multi-linear polynomials in 2n literals $x_1, \overline{x}_1, ..., x_n, \overline{x}_n$

$$f = -2 - x_1 - x_2 - x_3 + x_1x_2 + x_1x_3 + x_2x_3$$

$$= -5 + \overline{x}_1 + \overline{x}_2 + \overline{x}_3 + x_1x_2 + x_1x_3 + x_2x_3$$

$$= -4 + \overline{x}_3 + \overline{x}_1\overline{x}_2 + x_1x_3 + x_2x_3$$

$$= -3 + x_1x_2x_3 + \overline{x}_1\overline{x}_2\overline{x}_3$$

quadratic PBF quadratic posiform quadratic posiform cubic posiform

Posiforms: Nonnegative (except maybe the constant terms) multi-linear polynomials in 2n literals $x_1, \overline{x}_1, ..., x_n, \overline{x}_n$

$$f = -2 - x_1 - x_2 - x_3 + x_1 x_2 + x_1 x_3 + x_2 x_3$$

$$= -5 + \overline{x}_1 + \overline{x}_2 + \overline{x}_3 + x_1 x_2 + x_1 x_3 + x_2 x_3$$

$$= -4 + \overline{x}_3 + \overline{x}_1 \overline{x}_2 + x_1 x_3 + x_2 x_3$$

$$= -3 + x_1 x_2 x_3 + \overline{x}_1 \overline{x}_2 \overline{x}_3$$

quadratic PBF quadratic posiform quadratic posiform cubic posiform

Roof Dual Bound: $C_2(f) \le f$ (Hammer, Hansen and Simeone, 1984)

$$C_2(f) = \text{largest } C \text{ s.t. } f = C + \phi \text{ for some quadratic posiform } \phi.$$

Posiforms: Nonnegative (except maybe the constant terms) multi-linear polynomials in 2n literals $x_1, \overline{x}_1, ..., x_n, \overline{x}_n$

$$\begin{array}{rcl} f & = & -2 - x_1 - x_2 - x_3 + x_1 x_2 + x_1 x_3 + x_2 x_3 \\ & = & -\mathbf{5} + \overline{x}_1 + \overline{x}_2 + \overline{x}_3 + x_1 x_2 + x_1 x_3 + x_2 x_3 \\ & = & -4 + \overline{x}_3 + \overline{x}_1 \overline{x}_2 + x_1 x_3 + x_2 x_3 \\ & = & -\mathbf{3} + x_1 x_2 x_3 + \overline{x}_1 \overline{x}_2 \overline{x}_3 \end{array}$$

quadratic PBF quadratic posiform quadratic posiform cubic posiform

Roof Dual Bound: $C_2(f) \le f$ (Hammer, Hansen and Simeone, 1984)

$$C_2(f) = \text{largest } C \text{ s.t. } f = C + \phi \text{ for some quadratic posiform } \phi.$$

Complete Hierarchy of Bounds:

(B, Crama and Hammer, 1990)

$$C_2(f) \le C_3(f) \le \dots \le C_n(f) = \min f$$

Posiforms: Nonnegative (except maybe the constant terms) multi-linear polynomials in 2n literals $x_1, \overline{x}_1, ..., x_n, \overline{x}_n$

$$f = -2 - x_1 - x_2 - x_3 + x_1 x_2 + x_1 x_3 + x_2 x_3 \qquad c$$

$$= -5 + \overline{x}_1 + \overline{x}_2 + \overline{x}_3 + x_1 x_2 + x_1 x_3 + x_2 x_3 \qquad c$$

$$= -4 + \overline{x}_3 + \overline{x}_1 \overline{x}_2 + x_1 x_3 + x_2 x_3 \qquad c$$

$$= -3 + x_1 x_2 x_3 + \overline{x}_1 \overline{x}_2 \overline{x}_3 \qquad c$$

quadratic PBF quadratic posiform quadratic posiform cubic posiform

Roof Dual Bound: $C_2(f) \le f$ (Hammer, Hansen and Simeone, 1984)

$$C_2(f) = \text{largest } C \text{ s.t. } f = C + \phi \text{ for some quadratic posiform } \phi.$$

Complete Hierarchy of Bounds:

(B, Crama and Hammer, 1990)

$$C_2(f) \le C_3(f) \le \cdots \le C_n(f) = \min f$$

Recent generalizations

Bisubmodular functions: (Kolmogorov, 2010; Kahl and Strandmark, 2011)

Outline

- Pseudo-Boolean Optimization
 - Pseudo-Boolean Functions
 - Representations and Bounds
 - Persistencies and Autarkies
 - Graph Cut Models
 - Implication Networks
- 2 Results
 - Computational Results

Partial assignment: $y \in \{0,1\}^S$, $S \subseteq V$

Partial assignment: $y \in \{0,1\}^S$, $S \subseteq V$

y is a **persistency** for a pseudo-Boolean function f if

$$f(x|y) \le f(x) \quad \forall \ x \in \{0,1\}^V.$$

Partial assignment: $y \in \{0,1\}^S$, $S \subseteq V$

y is a **persistency** for a pseudo-Boolean function f if

$$f(x|y) \le f(x) \quad \forall \ x \in \{0,1\}^V.$$

y is an **autarky** for a posiform ϕ if

T(y) = 0 for all terms T of ϕ for which $Var(T) \cap S \neq \emptyset$.

Partial assignment: $y \in \{0,1\}^S$, $S \subseteq V$

y is a **persistency** for a pseudo-Boolean function f if

$$f(x|y) \le f(x) \quad \forall \ x \in \{0,1\}^V.$$

y is an **autarky** for a posiform ϕ if

T(y) = 0 for all terms T of ϕ for which $Var(T) \cap S \neq \emptyset$.

$$S = \{\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}\}$$
 and $y = (1, 0, 1)$ is an autarky of the posiform

$$\phi = \mathbf{x_1}\mathbf{x_2} + 5\overline{\mathbf{x_1}}\mathbf{x_3}x_6 + 4\overline{\mathbf{x_2}}\overline{\mathbf{x_3}}x_7 + 4\overline{\mathbf{x_1}}x_4 + 5\mathbf{x_2}x_5 + 6x_4x_5$$

Partial assignment: $y \in \{0,1\}^S$, $S \subseteq V$

y is a **persistency** for a pseudo-Boolean function f if

$$f(x|y) \le f(x) \quad \forall \ x \in \{0,1\}^V.$$

y is an **autarky** for a posiform ϕ if

T(y) = 0 for all terms T of ϕ for which $Var(T) \cap S \neq \emptyset$.

Every autarky of a posiform ϕ is a persistency of the function $f = \phi$.

Partial assignment: $y \in \{0,1\}^S$, $S \subseteq V$

y is a **persistency** for a pseudo-Boolean function f if

$$f(x|y) \le f(x) \quad \forall \ x \in \{0,1\}^V.$$

y is an **autarky** for a posiform ϕ if

T(y) = 0 for all terms T of ϕ for which $Var(T) \cap S \neq \emptyset$.

Every autarky of a posiform ϕ is a persistency of the function $f = \phi$.

Given y it is

- easy to test if y is an autarky for a given posiform ϕ ;
- hard to test if y is a persistency for a given PBF f.

Partial assignment: $y \in \{0,1\}^S$, $S \subseteq V$

y is a **persistency** for a pseudo-Boolean function f if

$$f(x|y) \le f(x) \quad \forall \ x \in \{0,1\}^V.$$

y is an **autarky** for a posiform ϕ if

T(y) = 0 for all terms T of ϕ for which $Var(T) \cap S \neq \emptyset$.

Every autarky of a posiform ϕ is a persistency of the function $f = \phi$.

Given y it is

- easy to test if y is an autarky for a given posiform ϕ ;
- hard to test if y is a persistency for a given PBF f.

Every persistency of a function f is an autarky for some posiform ϕ representing f.

Every persistency of a function f is an autarky for some posiform ϕ representing f.

If f has persistencies $y^1 \in \{0,1\}^{S_1}$ and $y^2 \in \{0,1\}^{S_2}$, then it also has a persistency $y^3 \in \{0,1\}^{S_1 \cup S_2}$.

Every persistency of a function f is an autarky for some posiform ϕ representing f.

If f has persistencies $y^1 \in \{0,1\}^{S_1}$ and $y^2 \in \{0,1\}^{S_2}$, then it also has a persistency $y^3 \in \{0,1\}^{S_1 \cup S_2}$.

Every posiform ϕ has a unique maximal subset $S = S(\phi)$ for which it has an autarky $y \in \{0,1\}^S$.

Every persistency of a function f is an autarky for some posiform ϕ representing f.

If f has persistencies $y^1 \in \{0,1\}^{S_1}$ and $y^2 \in \{0,1\}^{S_2}$, then it also has a persistency $y^3 \in \{0,1\}^{S_1 \cup S_2}$.

Every posiform ϕ has a unique maximal subset $S = S(\phi)$ for which it has an autarky $y \in \{0,1\}^S$.

For a quadratic function f it is "easy" to find the unique maximal persistent set S(f) provable by quadratic posiforms. (B. and Hammer, 1990)

Outline

- Pseudo-Boolean Optimization
 - Pseudo-Boolean Functions
 - Representations and Bounds
 - Persistencies and Autarkies
 - Graph Cut Models
 - Implication Networks
- 2 Results
 - Computational Results

- A QPBF is submodular IFF all quadratic coefficients are nonpositive. (Doit Yourself, anytime)
- To a submodular QPBF f associate a network G_f as follows

- There is a one-to-one correspondence between values of f and s-t cut values of G_f . (Hammer, 1965)
- Graph cuts (325000) in computer vision: (Greig, Porteous, and Seheult, 1989), (Boykov, Veksler and Zabih 1998)

- A QPBF is submodular IFF all quadratic coefficients are nonpositive. (Doit Yourself, anytime)
- To a submodular QPBF f associate a network G_f as follows

$$\mathbf{f} = 4 - \mathbf{x}_1 + 7\mathbf{x}_2 + \mathbf{x}_3 - 3\mathbf{x}_1\mathbf{x}_2 - \mathbf{x}_1\mathbf{x}_3 - 2\mathbf{x}_2\mathbf{x}_3$$

- - A QPBF is submodular IFF all quadratic coefficients are nonpositive. (Doit Yourself, anytime)
 - \bullet To a submodular QPBF f associate a network G_f as follows

$$\begin{split} \mathbf{f} &= 4 - \mathbf{x}_1 + 7\mathbf{x}_2 + \mathbf{x}_3 - 3\mathbf{x}_1\mathbf{x}_2 - \mathbf{x}_1\mathbf{x}_3 - 2\mathbf{x}_2\mathbf{x}_3 \\ &= 4\overline{\mathbf{x}}_1 + 5\mathbf{x}_2 + 3\mathbf{x}_1\overline{\mathbf{x}}_2 + \overline{\mathbf{x}}_1\mathbf{x}_3 + 2\mathbf{x}_2\overline{\mathbf{x}}_3 \end{split}$$

- There is a one-to-one correspondence between values of f and s-t cut values of G_f . (Hammer, 1965)
- Graph cuts (325000) in computer vision: (Greig, Porteous, and Seheult, 1989), (Boykov, Veksler and Zabih, 1998)

- s
 - 0

- t

- A QPBF is submodular IFF all quadratic coefficients are nonpositive. (Doit Yourself, anytime)
- \bullet To a submodular QPBF f associate a network G_f as follows

$$\begin{split} \mathbf{f} &= 4 - \mathbf{x}_1 + 7\mathbf{x}_2 + \mathbf{x}_3 - 3\mathbf{x}_1\mathbf{x}_2 - \mathbf{x}_1\mathbf{x}_3 - 2\mathbf{x}_2\mathbf{x}_3 \\ &= 4\overline{\mathbf{x}}_1 + 5\mathbf{x}_2 + 3\mathbf{x}_1\overline{\mathbf{x}}_2 + \overline{\mathbf{x}}_1\mathbf{x}_3 + 2\mathbf{x}_2\overline{\mathbf{x}}_3 \\ &= 4\mathbf{s}\overline{\mathbf{x}}_1 + 5\mathbf{x}_2\overline{\mathbf{t}} + 3\mathbf{x}_1\overline{\mathbf{x}}_2 + \overline{\mathbf{x}}_1\mathbf{x}_3 + 2\mathbf{x}_2\overline{\mathbf{x}}_3 \end{split}$$

- There is a one-to-one correspondence between values of f and s-t cut values of G_f . (Hammer, 1965)
- Graph cuts (325000) in computer vision: (Greig, Porteous, and Seheult, 1989), (Boykov, Veksler and Zabih 1998)

- A QPBF is submodular IFF all quadratic coefficients are nonpositive. (Doit Yourself, anytime)
- To a submodular QPBF f associate a network G_f as follows

$$\begin{split} \mathbf{f} &= 4 - \mathbf{x}_1 + 7\mathbf{x}_2 + \mathbf{x}_3 - 3\mathbf{x}_1\mathbf{x}_2 - \mathbf{x}_1\mathbf{x}_3 - 2\mathbf{x}_2\mathbf{x}_3 \\ &= 4\overline{\mathbf{x}}_1 + 5\mathbf{x}_2 + 3\mathbf{x}_1\overline{\mathbf{x}}_2 + \overline{\mathbf{x}}_1\mathbf{x}_3 + 2\mathbf{x}_2\overline{\mathbf{x}}_3 \\ &= 4\mathbf{s}\overline{\mathbf{x}}_1 + 5\mathbf{x}_2\overline{\mathbf{t}} + 3\mathbf{x}_1\overline{\mathbf{x}}_2 + \overline{\mathbf{x}}_1\mathbf{x}_3 + 2\mathbf{x}_2\overline{\mathbf{x}}_3 \end{split}$$

- There is a one-to-one correspondence between values of f and s-t cut values of G_f . (Hammer, 1965)
- Graph cuts (325000) in computer vision: (Greig, Porteous, and Seheult, 1989), (Boykov, Veksler and Zabih. 1998)

- A QPBF is submodular IFF all quadratic coefficients are nonpositive. (Doit Yourself, anytime)
- To a submodular QPBF f associate a network G_f as follows

$$\begin{split} \mathbf{f} &= 4 - \mathbf{x}_1 + 7\mathbf{x}_2 + \mathbf{x}_3 - 3\mathbf{x}_1\mathbf{x}_2 - \mathbf{x}_1\mathbf{x}_3 - 2\mathbf{x}_2\mathbf{x}_3 \\ &= 4\overline{\mathbf{x}}_1 + 5\mathbf{x}_2 + 3\mathbf{x}_1\overline{\mathbf{x}}_2 + \overline{\mathbf{x}}_1\mathbf{x}_3 + 2\mathbf{x}_2\overline{\mathbf{x}}_3 \\ &= 4\mathbf{s}\overline{\mathbf{x}}_1 + 5\mathbf{x}_2\overline{\mathbf{t}} + 3\mathbf{x}_1\overline{\mathbf{x}}_2 + \overline{\mathbf{x}}_1\mathbf{x}_3 + 2\mathbf{x}_2\overline{\mathbf{x}}_3 \end{split}$$

- There is a one-to-one correspondence between values of f and s-t cut values of G_f . (Hammer, 1965)
- Graph cuts (325000) in computer vision: (Greig, Porteous, and Seheult, 1989), (Boykov, Veksler and Zabih. 1998)

- A QPBF is submodular IFF all quadratic coefficients are nonpositive. (Doit Yourself, anytime)
- To a submodular QPBF f associate a network G_f as follows

$$\begin{split} f &= 4 - x_1 + 7x_2 + x_3 - 3x_1x_2 - x_1x_3 - 2x_2x_3 \\ &= 4\overline{x}_1 + 5x_2 + 3x_1\overline{x}_2 + \overline{x}_1x_3 + 2x_2\overline{x}_3 \\ &= 4s\overline{x}_1 + 5x_2\overline{t} + 3x_1\overline{x}_2 + \overline{x}_1x_3 + 2x_2\overline{x}_3 \end{split}$$

- There is a one-to-one correspondence between values of f and s-t cut values of G_f . (Hammer, 1965)
- Graph cuts (325000) in computer vision: (Greig, Porteous, and Seheult, 1989), (Boykov, Veksler and Zabih 1998)

- A QPBF is submodular IFF all quadratic coefficients are nonpositive. (Doit Yourself, anytime)
- To a submodular QPBF f associate a network G_f as follows

$$\begin{split} f &= 4 - x_1 + 7x_2 + x_3 - 3x_1x_2 - x_1x_3 - 2x_2x_3 \\ &= 4\overline{x}_1 + 5x_2 + 3x_1\overline{x}_2 + \overline{x}_1x_3 + 2x_2\overline{x}_3 \\ &= 4s\overline{x}_1 + 5x_2\overline{t} + 3x_1\overline{x}_2 + \overline{x}_1x_3 + 2x_2\overline{x}_3 \end{split}$$

- There is a one-to-one correspondence between values of f and s-t cut values of G_f . (Hammer, 1965)
- Graph cuts (325000) in computer vision: (Greig, Porteous, and Seheult, 1989), (Boykov, Veksler and Zabih, 1998)

- A QPBF is submodular IFF all quadratic coefficients are nonpositive. (Doit Yourself, anytime)
- To a submodular QPBF f associate a network G_f as follows

$$\begin{split} f &= 4 - x_1 + 7x_2 + x_3 - 3x_1x_2 - x_1x_3 - 2x_2x_3 \\ &= 4\overline{x}_1 + 5x_2 + 3x_1\overline{x}_2 + \overline{x}_1x_3 + 2x_2\overline{x}_3 \\ &= 4s\overline{x}_1 + 5x_2\overline{t} + 3x_1\overline{x}_2 + \overline{x}_1x_3 + 2x_2\overline{x}_3 \end{split}$$

- There is a one-to-one correspondence between values of f and s-t cut values of G_f . (Hammer, 1965)
- Graph cuts (325000) in computer vision: (Greig, Porteous, and Seheult, 1989), (Boykov, Veksler and Zabih, 1998)

- A QPBF is submodular IFF all quadratic coefficients are nonpositive. (Doit Yourself, anytime)
- To a submodular QPBF f associate a network G_f as follows

$$\begin{split} \mathbf{f} &= 4 - \mathbf{x}_1 + 7\mathbf{x}_2 + \mathbf{x}_3 - 3\mathbf{x}_1\mathbf{x}_2 - \mathbf{x}_1\mathbf{x}_3 - 2\mathbf{x}_2\mathbf{x}_3 \\ &= 4\overline{\mathbf{x}}_1 + 5\mathbf{x}_2 + 3\mathbf{x}_1\overline{\mathbf{x}}_2 + \overline{\mathbf{x}}_1\mathbf{x}_3 + 2\mathbf{x}_2\overline{\mathbf{x}}_3 \\ &= 4\mathbf{s}\overline{\mathbf{x}}_1 + 5\mathbf{x}_2\overline{\mathbf{t}} + 3\mathbf{x}_1\overline{\mathbf{x}}_2 + \overline{\mathbf{x}}_1\mathbf{x}_3 + 2\mathbf{x}_2\overline{\mathbf{x}}_3 \end{split}$$

- There is a one-to-one correspondence between values of f and s-t cut values of G_f . (Hammer, 1965)
- Graph cuts (325000) in computer vision: (Greig, Porteous, and Seheult, 1989), (Boykov, Veksler and Zabih, 1998)

- A QPBF is submodular IFF all quadratic coefficients are nonpositive. (Doit Yourself, anytime)
- To a submodular QPBF f associate a network G_f as follows

$$\begin{split} f &= 4 - x_1 + 7x_2 + x_3 - 3x_1x_2 - x_1x_3 - 2x_2x_3 \\ &= 4\overline{x}_1 + 5x_2 + 3x_1\overline{x}_2 + \overline{x}_1x_3 + 2x_2\overline{x}_3 \\ &= 4s\overline{x}_1 + 5x_2\overline{t} + 3x_1\overline{x}_2 + \overline{x}_1x_3 + 2x_2\overline{x}_3 \end{split}$$

• There is a one-to-one correspondence between values of f and s-t cut values of G_f . (Hammer, 1965)

$$f(0,1,0) = C(\{s,2\},\{1,3,t\}) = 11$$

 Graph cuts (325000) in computer vision: (Greig, Porteous, and Seheult, 1989), (Boykov, Veksler and Zabih, 1998)

- A QPBF is submodular IFF all quadratic coefficients are nonpositive. (Doit Yourself, anytime)
- To a submodular QPBF f associate a network G_f as follows

$$\begin{split} f &= 4 - \mathbf{x}_1 + 7\mathbf{x}_2 + \mathbf{x}_3 - 3\mathbf{x}_1\mathbf{x}_2 - \mathbf{x}_1\mathbf{x}_3 - 2\mathbf{x}_2\mathbf{x}_3 \\ &= 4\overline{\mathbf{x}}_1 + 5\mathbf{x}_2 + 3\mathbf{x}_1\overline{\mathbf{x}}_2 + \overline{\mathbf{x}}_1\mathbf{x}_3 + 2\mathbf{x}_2\overline{\mathbf{x}}_3 \\ &= 4s\overline{\mathbf{x}}_1 + 5\mathbf{x}_2\overline{\mathbf{t}} + 3\mathbf{x}_1\overline{\mathbf{x}}_2 + \overline{\mathbf{x}}_1\mathbf{x}_3 + 2\mathbf{x}_2\overline{\mathbf{x}}_3 \end{split}$$

• There is a one-to-one correspondence between values of f and s-t cut values of G_f . (Hammer, 1965)

$$f(0,1,0) = C(\{s,2\},\{1,3,t\}) = 11$$

• Graph cuts (325000) in computer vision: (Greig, Porteous, and Seheult, 1989), (Boykov, Veksler and Zabih, 1998)

Outline

- Pseudo-Boolean Optimization
 - Pseudo-Boolean Functions
 - Representations and Bounds
 - Persistencies and Autarkies
 - Graph Cut Models
 - Implication Networks
- 2 Results
 - Computational Results

$$f = 10 - 2x_1 - 6x_2 + 2x_1x_2 - 2x_1x_3 + 4x_2x_3$$

$$f = \mathbf{10} - 2\mathbf{x_1} - 6\mathbf{x_2} + 2\mathbf{x_1}\mathbf{x_2} - 2\mathbf{x_1}\mathbf{x_3} + 4\mathbf{x_2}\mathbf{x_3}$$

= $10 - 2x_1 - 6x_2 + 2x_1x_2 - 2x_1(1 - \overline{x_3}) + 4x_2x_3$

$$f = \mathbf{10} - 2\mathbf{x}_1 - 6\mathbf{x}_2 + 2\mathbf{x}_1\mathbf{x}_2 - 2\mathbf{x}_1\mathbf{x}_3 + 4\mathbf{x}_2\mathbf{x}_3$$

= $10 - 2x_1 - 6x_2 + 2x_1x_2 - 2x_1(1 - \overline{x}_3) + 4x_2x_3$
= $10 - 4x_1 - 6x_2 + 2x_1x_2 + 2x_1\overline{x}_3 + 4x_2x_3$

$$f = \mathbf{10} - \mathbf{2x_1} - 6\mathbf{x_2} + \mathbf{2x_1x_2} - \mathbf{2x_1x_3} + 4\mathbf{x_2x_3}$$

$$= 10 - 2x_1 - 6x_2 + 2x_1x_2 - 2x_1(1 - \overline{x_3}) + 4x_2x_3$$

$$= 10 - 4x_1 - 6x_2 + 2x_1x_2 + 2x_1\overline{x_3} + 4x_2x_3$$

$$= 10 - 4(1 - \overline{x_1}) - 6(1 - \overline{x_2}) + 2x_1x_2 + 2x_1\overline{x_3} + 4x_2x_3$$

$$f = \mathbf{10} - 2\mathbf{x}_1 - 6\mathbf{x}_2 + 2\mathbf{x}_1\mathbf{x}_2 - 2\mathbf{x}_1\mathbf{x}_3 + 4\mathbf{x}_2\mathbf{x}_3$$

$$= 10 - 2x_1 - 6x_2 + 2x_1x_2 - 2x_1(1 - \overline{x}_3) + 4x_2x_3$$

$$= 10 - 4x_1 - 6x_2 + 2x_1x_2 + 2x_1\overline{x}_3 + 4x_2x_3$$

$$= 10 - 4(1 - \overline{x}_1) - 6(1 - \overline{x}_2) + 2x_1x_2 + 2x_1\overline{x}_3 + 4x_2x_3$$

$$= 4\overline{x}_1 + 6\overline{x}_2 + 2\mathbf{x}_1\mathbf{x}_2 + 2\mathbf{x}_1\overline{x}_3 + 4\mathbf{x}_2\mathbf{x}_3 = \phi$$

$$f = \mathbf{10} - 2\mathbf{x}_1 - 6\mathbf{x}_2 + 2\mathbf{x}_1\mathbf{x}_2 - 2\mathbf{x}_1\mathbf{x}_3 + 4\mathbf{x}_2\mathbf{x}_3$$

$$= 10 - 2x_1 - 6x_2 + 2x_1x_2 - 2x_1(1 - \overline{x}_3) + 4x_2x_3$$

$$= 10 - 4x_1 - 6x_2 + 2x_1x_2 + 2x_1\overline{x}_3 + 4x_2x_3$$

$$= 10 - 4(1 - \overline{x}_1) - 6(1 - \overline{x}_2) + 2x_1x_2 + 2x_1\overline{x}_3 + 4x_2x_3$$

$$= 4\overline{\mathbf{x}}_1 + 6\overline{\mathbf{x}}_2 + 2\mathbf{x}_1\mathbf{x}_2 + 2\mathbf{x}_1\overline{\mathbf{x}}_3 + 4\mathbf{x}_2\mathbf{x}_3 = \phi$$

$$\mathbf{C}(\phi) = \mathbf{0}$$
 and $\mathbf{S}(\phi) = \emptyset$

$$\overline{\overline{x}}_1$$

$$f = 4\overline{x}_1 + 6\overline{x}_2 + 2x_1x_2 + 2x_1\overline{x}_3 + 4x_2x_3$$

$$f \ = \mathbf{4}\overline{x}_1 + 6\overline{x}_2 + 2x_1x_2 + 2x_1\overline{x}_3 + 4x_2x_3$$

$$f = 4\overline{x}_1 + \textcolor{red}{6}\overline{x}_2 + 2x_1x_2 + 2x_1\overline{x}_3 + 4x_2x_3$$

$$f = 4\overline{x}_1 + 6\overline{x}_2 + 2x_1x_2 + 2x_1\overline{x}_3 + 4x_2x_3$$

$$f = 4\overline{x}_1 + 6\overline{x}_2 + 2x_1x_2 + \textcolor{red}{2x_1}\overline{x}_3 + 4x_2x_3$$

$$f \ = 4\overline{x}_1 + 6\overline{x}_2 + 2x_1x_2 + 2x_1\overline{x}_3 + \textcolor{red}{4x_2x_3}$$

$$f \ = 4\overline{x}_1 + 6\overline{x}_2 + 2x_1x_2 + 2x_1\overline{x}_3 + 4x_2x_3$$

$$f = 4\overline{x}_1 + 6\overline{x}_2 + 2x_1x_2 + 2x_1\overline{x}_3 + 4x_2x_3$$

$$\begin{array}{ll} f &= 4\overline{x}_1 + 6\overline{x}_2 + 2x_1x_2 + 2x_1\overline{x}_3 + 4x_2x_3 \\ &= 3\overline{x}_1 + 5\overline{x}_2 + 2x_1x_2 + x_1\overline{x}_3 + 3x_2x_3 \\ &+ (\overline{x}_1 + x_1\overline{x}_3 + x_3x_2 + \overline{x}_2) \end{array}$$

$$\begin{array}{ll} f &= 4\overline{x}_1 + 6\overline{x}_2 + 2x_1x_2 + 2x_1\overline{x}_3 + 4x_2x_3 \\ &= 3\overline{x}_1 + 5\overline{x}_2 + 2x_1x_2 + x_1\overline{x}_3 + 3x_2x_3 \\ &\quad + (\overline{x}_1 + x_1\overline{x}_3 + x_3x_2 + \overline{x}_2) \\ &= 3\overline{x}_1 + 5\overline{x}_2 + 2x_1x_2 + x_1\overline{x}_3 + 3x_2x_3 \\ &\quad + (1 + \overline{x}_1x_3 + \overline{x}_3\overline{x}_2) \end{array}$$

$$\begin{split} f &= 4\overline{x}_1 + 6\overline{x}_2 + 2x_1x_2 + 2x_1\overline{x}_3 + 4x_2x_3 \\ &= 3\overline{x}_1 + 5\overline{x}_2 + 2x_1x_2 + x_1\overline{x}_3 + 3x_2x_3 \\ &+ (\overline{x}_1 + x_1\overline{x}_3 + x_3x_2 + \overline{x}_2) \\ &= 3\overline{x}_1 + 5\overline{x}_2 + 2x_1x_2 + x_1\overline{x}_3 + 3x_2x_3 \\ &+ (1 + \overline{x}_1x_3 + \overline{x}_3\overline{x}_2) \\ &= 1 + 3\overline{x}_1 + 5\overline{x}_2 + 2x_1x_2 + x_1\overline{x}_3 + 3x_2x_3 + \overline{x}_1x_3 + \overline{x}_3\overline{x}_2 \end{split}$$

$$\begin{array}{ll} f &= 4\overline{x}_1 + 6\overline{x}_2 + 2x_1x_2 + 2x_1\overline{x}_3 + 4x_2x_3 \\ &= 1 + 3\overline{x}_1 + 5\overline{x}_2 + 2x_1x_2 + x_1\overline{x}_3 + 3x_2x_3 + \overline{x}_1x_3 + \overline{x}_3\overline{x}_2 \end{array}$$

$$\begin{array}{ll} f &= 4\overline{x}_1 + 6\overline{x}_2 + 2x_1x_2 + 2x_1\overline{x}_3 + 4x_2x_3 \\ &= 1 + 3\overline{x}_1 + 5\overline{x}_2 + 2x_1x_2 + x_1\overline{x}_3 + 3x_2x_3 + \overline{x}_1x_3 + \overline{x}_3\overline{x}_2 \\ &= 4 + 2\overline{x}_2 + 2\overline{x}_1\overline{x}_2 + 2\overline{x}_1x_3 + 2x_2x_3 + 2\overline{x}_2\overline{x}_3 \end{array}$$

$$\begin{array}{ll} f &= 10 - 2x_1 - 6x_2 + 2x_1x_2 - 2x_1x_3 + 4x_2x_3 \\ &= 4\overline{x}_1 + 6\overline{x}_2 + 2x_1x_2 + 2x_1\overline{x}_3 + 4x_2x_3 \\ &= 4 + 2\overline{x}_2 + 2\overline{x}_1\overline{x}_2 + 2\overline{x}_1x_3 + 2x_2x_3 + 2\overline{x}_2\overline{x}_3 \end{array}$$

$$\begin{array}{ll} f &= 10 - 2x_1 - 6x_2 + 2x_1x_2 - 2x_1x_3 + 4x_2x_3 \\ &= 4\overline{x}_1 + 6\overline{x}_2 + 2x_1x_2 + 2x_1\overline{x}_3 + 4x_2x_3 \\ &= 4 + 2\overline{x}_2 + 2\overline{x}_1\overline{x}_2 + 2\overline{x}_1x_3 + 2x_2x_3 + 2\overline{x}_2\overline{x}_3 \end{array}$$

- Strong persistency: $x_2 = 1, x_3 = 0$
- Weak persistency: $x_1 = 1$ (or $x_1 = 0$)
- This method computes the unique maximal set of autark variables justifiable by any quadratic posiform of the given quadratic PBF (B. and Hammer, 1990).

- Strong persistency: $x_2 = 1, x_3 = 0$
- Weak persistency: $x_1 = 1$ (or $x_1 = 0$)
- This method computes the unique maximal set of autark variables justifiable by any quadratic posiform of the given quadratic PBF (B. and Hammer, 1990).

- Strong persistency: $x_2 = 1, x_3 = 0$
- Weak persistency: $x_1 = 1$ (or $x_1 = 0$)
- This method computes the unique maximal set of autark variables justifiable by any quadratic posiform of the given quadratic PBF (B. and Hammer, 1990).

Outline

- Pseudo-Boolean Optimization
 - Pseudo-Boolean Functions
 - Representations and Bounds
 - Persistencies and Autarkies
 - Graph Cut Models
 - Implication Networks
- 2 Results
 - Computational Results

Via Minimization in VLSI Design

		Percentage of Variables Fixed by					
Problem	n	Persist	Persistency Probing		ALL	Time	
		(strong)	(weak)	(forc)	(equal)	TOOLS	(sec)
via.c1y	829	93.6%	6.4%	0%	0%	100%	0.03
via.c2y	981	94.7%	5.3%	0%	0%	100%	0.06
via.c3y	1328	94.6%	5.4%	0%	0%	100%	0.09
via.c4y	1367	96.4%	3.6%	0%	0%	100%	0.09
via.c5y	1203	93.1%	6.9%	0%	0%	100%	0.08
via.c1n	828	57.4%	9.6%	32.4%	0.6%	100%	0.49
via.c2n	980	12.4%	4.4%	83.1%	0.1%	100%	7.14
via.c3n	1327	6.8%	5.7%	87.3%	0.2%	100%	18.17
via.c4n	1366	11.1%	1.3%	87.6%	0%	100%	23.08
via.c5n	1202	3.4%	1.4%	95.0%	0.2%	100%	17.13

¹S. Homer and M. Peinado. Design and performance of parallel and distributed approximation algorithms for maxcut. Journal of Parallel and Distributed Computing 46 (1997) 48-61.

Vertex Cover in Planar Graphs

	Averages for 100 graphs in each of the 4 groups				
	Variables 1	Fixed (%)	Time (sec)		
n	A. D. N. ²	\mathbf{QUBO}^3	A. D. N. ²	\mathbf{QUBO}^3	
1000	68.4	100	4.06	0.05	
2000	67.4	100	12.24	0.16	
3000	65.5	100	30.90	0.27	
4000	62.7	100	60.45	0.53	

³Pentium 4, 2.8 GHz, Windows XP, 512 MB

²Alber, Dorn, Niedermeier. Experimental evaluation of a tree decomposition based algorithm for vertex cover on planar graphs. Discrete Applied Mathematics 145 (2005) 219-231; 750 GHz, Linux PC, 720 MB

Jumbo Vertex Cover in Planar Graphs

	Computing Times (min) ⁴			
Vertices	Planar Density			
	10%	50%	90%	
50,000	0.7	2.3	0.9	
100,000	2.9	10.2	3.9	
250,000	19.5	69.8	26.3	
500,000	79.3	277.3	106.9	

QUBO fixed all variables for all problems!

⁴Averages over 3 experiments on a Xeon 3.06 GHz, XP, 3.5 GB RAM.

One Dimensional Ising Models

		Average Comp	uting Time	(s)
σ	Number of Spins	Branch, Cut & Price ⁵	${ m BiqMaq^5}$	\mathbf{QUBO}^6
2.5	100	699	68	1
	150	92 079	388	3
	200	N/A	993	9
	250	N/A	6567	14
	300	N/A	$34\ 572$	21
3.0	100	256	59	1
	150	13 491	293	2
	200	61 271	1 034	3
	250	55 795	3 594	4
	300	55 528	8 496	5

 $^{^5{\}rm F.}$ Rendl, G. Rinaldi, A. Wiegele. (2007). Solving max-cut to optimality by intersecting semidefinite and polyhedral relaxations.

⁶ALL problems were solved by QUBO.

Larger One Dimensional Ising Models

		Average of 3 Problems		
σ	n	Variables not fixed	QUBO Time $(s)^7$	
2.5	500	5	13	
	750	22	30	
	1000	24	53	
	1250	20	81	
	1500	32	124	
3.0	500	0	4	
	750	0	12	
	1000	0	23	
	1250	0	37	
	1500	0	59	

 $^{^{7}}$ Pentium M, 1.6 GHz 760 MB RAM

- How can we extend the above results for general PBF-s?
- How can we find autarkies for a given posiform?
- Quadratization via graph stability (Ebenegger, Hammer, de Werra, 1984): Can we map persistencies?
- Quadratization in higher dimension: given f, find quadratic g such that

$$f(x) = \min_{y \in \{0,1\}^m} g(x,y)$$
 for all $x \in \{0,1\}^n$

Passe it resists? How many new variables do we need? (Greenberg 1972)

Which quadratization provides as with the most associations (8)

- How can we extend the above results for general PBF-s?
- How can we find autarkies for a given posiform?
- Quadratization via graph stability (Ebenegger, Hammer, de Werra, 1984): Can we map persistencies?
- Quadratization in higher dimension: given f, find quadratic g such that

$$f(x) = \min_{y \in \{0,1\}^m} g(x,y) \text{ for all } x \in \{0,1\}^n$$

- Does it exists? How many new variables do we need?
 (Resultant 1975)...
- Which quadratization provides us with the most possistencies?

- How can we extend the above results for general PBF-s?
- How can we find autarkies for a given posiform?
- Quadratization via graph stability (Ebenegger, Hammer, de Werra, 1984): Can we map persistencies?
- Quadratization in higher dimension: given f, find quadratic g such that

$$f(x) = \min_{y \in \{0,1\}^m} g(x,y) \text{ for all } x \in \{0,1\}^n$$

Does it exists? How many new variables do we need?
 (Rosemberg, 1975)

 Which quadratization provides us with the most providencies?

- How can we extend the above results for general PBF-s?
- How can we find autarkies for a given posiform?
- Quadratization via graph stability (Ebenegger, Hammer, de Werra, 1984): Can we map persistencies?
- Quadratization in higher dimension: given f, find quadratic g such that

$$f(x) = \min_{y \in \{0,1\}^m} g(x,y)$$
 for all $x \in \{0,1\}^n$

- Does it exists? How many new variables do we need? (Rosenberg, 1975), ...
- Which quadratization provides us with the most persistencies?

- How can we extend the above results for general PBF-s?
- How can we find autarkies for a given posiform?
- Quadratization via graph stability (Ebenegger, Hammer, de Werra, 1984): Can we map persistencies?
- Quadratization in higher dimension: given f, find quadratic g such that

$$f(x) = \min_{y \in \{0,1\}^m} g(x,y)$$
 for all $x \in \{0,1\}^n$

- Does it exists? How many new variables do we need? (Rosenberg, 1975), ...
- Which quadratization provides us with the most persistencies?

- How can we extend the above results for general PBF-s?
- How can we find autarkies for a given posiform?
- Quadratization via graph stability (Ebenegger, Hammer, de Werra, 1984): Can we map persistencies?
- Quadratization in higher dimension: given f, find quadratic g such that

$$f(x) = \min_{y \in \{0,1\}^m} g(x,y)$$
 for all $x \in \{0,1\}^n$

- Does it exists? How many new variables do we need? (Rosenberg, 1975), ...
- Which quadratization provides us with the most persistencies?

References

- Hammer, P.L. Some network flow problems solved with pseudo-Boolean programming. *Operations Research* **13** (1965) 388-399.
- Hammer, P.L. and S. Rudeanu. Boolean Methods in Operations Research and Related Areas. (Springer-Verlag, Berlin, Heidelberg, New York, 1968.)
- Hammer, P.L., P. Hansen and B. Simeone. Roof duality, complementation and persistency in quadratic 0 – 1 optimization. Mathematical Programming 28 (1984), pp. 121-155.
- Boros E. and P.L. Hammer. A max-flow approach to improved roof-duality in quadratic 0 - 1 minimization. RUTCOR Research Report RRR 15-1989, RUTCOR, March 1989.
- Boros, E., Y. Crama, and P.L. Hammer. Upper bounds for quadratic 0-1 maximization. Operations Research Letters, 9 (1990), 73-79,
- Billionnet, A. and A. Sutter. Persistency in quadratic 0-1 optimization. *Math. Programming* **54** (1992), no. 1, Ser. A, pp. 115–119.

References Cont'd

- Boros, E., Y. Crama and P.L. Hammer. Chvátal cuts and odd cycle inequalities in quadratic 0 - 1 optimization. SIAM Journal on Discrete Mathematics, 5 (1992), 163-177.
- Boros, E. and P.L. Hammer, Pseudo-Boolean Optimization, Discrete Applied Mathematics, 123 (2002) 155–225.
- Boros, E., P.L. Hammer, G. Tavares, and R. Sun. A max-flow approach to improved lower bounds for quadratic 0 1 minimization.
 Discrete Optimization, 5/2 (2007) 501-529.
- E. Boros, Y-H. Chen, A. Fix, A.G. Gruber, J. Schwartz, R. Zabih: A graph cut algorithm for higher order Markov random fields. IEEE Conference Proceedings for ICCV 2011, Barcelona, Spain (2011), pp. 1020-1027.
- A. Fix, Y-H. (Joyce) Chen, E. Boros, and R. Zabih: A graph cut algorithm based on approximating the signed bi-form graph, European Conference on Computer Vision, 2012, Part I, LNCS 7572, pp. 385-398.