NAME:
SIGNATURE://
WILL THIS MATTER A YEAR FROM NOW
Paper 3
September 2022
2Hrs 45Mins
NATIONAL ASSOCIATION OF CHEMISTYR TEACHERS
Uganda Certificate of Education
CHEMISTRY
Paper 3
DURATION: 2HRS 45MINS
INSTRUCTIONS TO CANDIDATES
Answer both questions. Answers are to be written in the spaces provided in this booklet.

Use blue ink ball pen only. Any work done in pencil will not be marked except drawings.

You are not allowed to use any reference books (i.e. text books, booklets on qualitative analysis etc

All working must be clearly shown

NATIONAL ASSOCIATION OF CHEMISTRY TEACHERS

BA_1 which contains 3.15g of the dibasic acid, $H_2Y.2H_2O$ in 500cm ³ of solution.				
BA ₂ which contains 4.8g o	BA_2 which contains 4.8g of impure sodium hydroxide in one liter of solution.			
(2molesS of BA ₂ react with	1 1mole of BA 1)			
	Proce	dure:		
Pipette 25 or 20cm³ of BA 2	into a conical flask. Add 2 t	to 3 drops of phenolphthale	in indicator and titrate	
with BA ₁ from the burette	until the end point is reache	ed. Repeat the titration unti	l consistent results are	
obtained. Record your resu	ılts in the table below.			
Volume of the pipette used:cm³ (1mark)				
Experiment	1	2	3	
Final Burette reading				
(cm³)				
Initial Burette reading				
(cm³)				
Volume of BA ₂ used (cm₃)				
	,			
Values used to calculate average volume BA₁ used and				
Average Volume of BA ₁ used:				

(H=1, Y=88, O=16)

a) Calculate the molarity of the dibasic acid, $H_2Y.2H_2O.$

1. You are provided with the following;

b)	Calcula	te the;
	i)	Number of moles of BA ₁ that reacted
	'/	Number of moles of BA1 that reacted
	ii)	Concentration of pure sodium hydroxide in BA ₂ in grams per liter.
	,	
		(Na= 23, 0= 16, H-= 1)
c)	Determ	ine the;
	i)	Percentage purity of the sodium hydroxide used in the preparation of BA_2 .

ii)	Percentage of the impurity in the sodium hydroxide sample used in the preparation of
	BA_2 .

2. You are provided with substance **G**, which contains two cations and one anion. Carryout the following tests to identify them. Identify any gases which may be evolved. Write your observations and deductions.

Test		Observation	Deduction
a)	Heat a spatula endful of		
	G in a dry test tube		
	strongly until there is no		
	further change.		
b)	To a spatula endful of G,		
	add 4cm³of dilute nitric		
	acid, keep the resultant		
	solution for part (G).		
c)	To 3cm³ of the resultant		
	solution obtained in (b)		
	above, add 7cm³ of dilute		
	sodium hydroxide		
	solution, shake well and		
	then filter. Keep both the		
	filtrate and residue.		
d)	To the filtrate obtained in		
	(G) above, add dilute		
	nitric acid drop by drop		
	until the solution is just		
	acidic. Divide the		
	resultant solution into		
	three parts.		
i)	To the second parts,		

	add dilute	
	ammonium	
	hydroxide solution	
	drop wise until in	
	excess.	
ii)	To the second parts,	
	add dilute	
	ammonium	
	hydroxide solution	
	drop wise until in	
	excess.	
iii)	To the third part,	
	add a few drops of	
	potassium iodide	
	solution.	
e)	To the residue obtained	
	in (G) above, add dilute	
	nitric acid until the	
	residue just dissolves.	
	Divide the resultant	
	solution into three parts.	
i)	To the first part, add	
	dilute sodium	
	hydroxide solution	
	drop wise until in	
	excess.	

ii)	To the second part,	
	add Zinc powder and	
	warm gently.	
iii)	To the third part,	
	add dilute	
	ammonium	
	hydroxide solution	
	drop wise until in	
	excess.	

Cations in G :	and	
Anions in G :		

END