Контрольные вопросы

1. **Вопрос.** Почему условие ||C|| < 1 гарантирует сходимость итерационных методов?

Ответ. Пусть ||C|| < 1. Покажем, что итерационный метод сходится.

Определение. Метод называется сходящимся, если $||x - x^n|| \to 0$ при $n \to \infty$.

$$x = Cx + y, (1)$$

где C — квадратная матрица размера $n \times n$; y — вектор столбец.

Запишем рекуррентное соотношение:

$$x^{k+1} = Cx^k + y, \ \forall k = 0, 1, 2, \dots$$
 (2)

Вычитаем из соотношения (1) соотношение (2), получаем

$$x - x^{k+1} = C(x - x^k). (3)$$

Вычисляя норму левой и правой части этого равенства имеем:

$$||x - x^{k+1}|| = ||C(x - x^k)|| < ||C|| ||(x - x^k)||, \forall k = 0, 1, 2, \dots,$$

так как это неравенство верно для всех k, то

$$||x - x^n|| \le ||C|| \, ||x - x^{n-1}|| \le ||C||^2 \, ||x - x^{n-2}|| \le \dots \le ||C||^n \, ||x - x^0||.$$

Норма $||x-x^0||$ не зависит от n. Используя условие ||C|| < 1, получаем:

$$\|C\|^n \to 0$$
 при $n \to \infty \Longrightarrow \|x - x^n\| \to 0$ при $n \to \infty$.

Таким образом, метод сходится.

2. **Вопрос.** Каким следует выбирать итерационный параметр τ в методе простой итерации для увеличения скорости сходимости? Как выбрать начальное приближение x^0 ?

Ответ. Обычно для улучшения скорости сходимости исходную систему, прежде чем приводить к виду, удобному для итераций, умножают на итерационный параметр τ , который выбирают так, чтобы выполнялась оценка $\|C\| \leq 1$ и норма матрицы C была как можно меньше. Однако мы не можем выбирать параметр слишком малым, поскольку тогда погрешность вычислений станет слишком большой. Начальное значение x^0 стоит выбирать как можно более близкое к решению, если это возможно.

3. **Вопрос.** На примере системы из двух уравнений с двумя неизвестными дайте геометрическую интерпретацию метода простой итерации, метода Якоби, метода Зейделя, метода релаксации.

Ответ. Метод Якоби. Преположим, что некоторое приближение x^k уже найдено. Расчетные формулы:

$$\begin{cases} x_1^{k+1} = -\frac{a_{12}}{a_{11}} x_2^k + \frac{b_1}{a_{11}} \\ x_2^{k+1} = -\frac{a_{21}}{a_{22}} x_1^k + \frac{b_2}{a_{22}} \end{cases}$$

Уравнения системы задают на плоскости Ox_1x_2 две прямые l_1 и l_2 соответственно. При определении x_1^{k+1} координата $x_2=x_2^k$ фиксируется и точка x перемещается параллельно оси Ox_1 до пересечения с прямой l_1 . Координата x_1 точки пересечения принимается за x_1^{k+1} . Затем точка x перемещается вдоль прямой $x_1=x_1^k$ до пересечения с прямой l_2 . Координата x_2 точки пересечения принимается за x_2^{k+1} .

Метод Зейделя. Преположим, что некоторое приближение x^k уже найдено. Расчетные формулы:

$$\begin{cases} x_1^{k+1} = -\frac{a_{12}}{a_{11}} x_2^k + \frac{b_1}{a_{11}} \\ x_2^{k+1} = -\frac{a_{21}}{a_{22}} x_1^{k+1} + \frac{b_2}{a_{22}} \end{cases}$$

Уравнения системы задают на плоскости Ox_1x_2 две прямые l_1 и l_2 соответственно. При определении x_1^{k+1} координата $x_2=x_2^k$ фиксируется и точка x перемещается параллельно оси Ox_1 до пересечения с прямой l_1 . Координата x_1 точки пересечения принимается за x_1^{k+1} . Затем точка x перемещается вдоль прямой $x_1=x_1^{k+1}$ до пересечения с прямой l_2 . Координата x_2 точки пересечения принимается за x_2^{k+1} .

Метод релаксации. Преположим, что некоторое приближение x^k уже найдено. Расчетные формулы:

$$\begin{cases} x_1^{k+1} = \omega \tilde{x}_1^{k+1} + (1-\omega)x_1^k \\ x_2^{k+1} = \omega \tilde{x}_2^{k+1} + (1-\omega)x_2^k, \end{cases}$$

где величины \tilde{x}_i^{k+1} вычисляются по методу Зейделя. Проделываем те же действия, что и в методе метода Зейделя. Отличие заключается в том, что после вычисления компоненты \tilde{x}_i^{k+1} по методу Зейделя, производят дополнительное смещение этой компоненты на величину $(1-\omega)(\tilde{x}_i^{k+1}-x_i^k)$.

4. **Вопрос.** При каких условиях сходятся метод простой итерации, метод Якоби, метод Зейделя и метод релаксации? Какую матрицу называют положительно определенной?

В данном случае мы будем рассматривать норму изменения за итерацию, а не норму погрешности численного решения. Если сходимость будем происходить очень медленно, то использование такой оценки для точки останова приведет к неверному ответу.

Ответ. Определение. Линейный оператор A, действующий в линейном пространстве H, называется:

- (a) положительным, если $\forall x \in H, x \neq 0 (Ax, x) > 0$;
- (b) положительно определенным, если $\exists \, \delta > 0 : \, \forall \, x \in H \, (Ax, x) \geq \delta(x, x).$

Если матрица симметричная положительно определенная и $B-0.5\tau A>0$ и $\tau>0$, то стационарный итерационный метод $B\frac{x^{k+1}-x^k}{\tau}+Ax^k=f$ сходится. Метод простой итерации сходится, если $\tau<\frac{2}{\lambda_{\max}}$, где λ_{\max} — максимальное собственное значение симметричной положительно определенной матрицы A. Метод Якоби сходится, если матрица A— симметричная положительно определенная матрица с диагональным преобладанием.

Метод релаксации сходится, если $0 < \omega < 2$, ω — заданный числовой параметр (параметр релаксации).

Метод Зейделя частный случай метода релаксации при $\omega = 1$.

5. Вопрос. Выпишите матрицу С для методов Зейделя и релаксации.

Ответ. Каноническая форма метода релаксации:

$$(D + \omega L) \frac{x^{k+1} - x^k}{\omega} + Ax^k = b; \quad \forall k = 0, 1, 2, \dots,$$

где ω — заданный числовой параметр (параметр релаксации).

A = L + D + U, где L — нижняя треугольная матрица, D — диагональная матрица, U — верхняя треугольная матрица.

Домножим на ω и перенесем все слагаемые кроме x^{k+1} вправо:

$$(D + \omega L) x^{k+1} = (D + \omega L - \omega A) x^k + \omega b; \quad \forall k = 0, 1, 2, \dots$$

Домножим обе части на $\left(D+\omega L\right)^{-1}$ слева:

$$x^{k+1} = (D + \omega L)^{-1} (D + \omega L - \omega A) x^k + \omega (D + \omega L)^{-1} b.$$

Получаем:

$$C = (D + \omega L)^{-1} (D + \omega L - \omega A) = (D + \omega L)^{-1} ((1 - \omega) D - \omega U).$$

Для метода Зейделя $\omega = 1$ и матрица C принимает вид:

$$C = -\left(D + L\right)^{-1} U.$$

6. Вопрос. Почему в общем случае для остановки итерационного процесса нельзя использовать критерий $\|x^k - x^{k-1}\| < \varepsilon$?

Этот критерий является нормой погрешности за одну итерацию. Если последовательность будет медленно сходится, то использование этого критерия в качестве точки останова может привести к ошибке. В качестве критерия для точки остановы лучше использовать норму погрешности численного решения.

7. **Bonpoc.** Какие еще критерии окончания итерационного процесса Вы можете предложить?

Ответ.

$$||x^{k} - x^{k-1}|| \le ||x^{k}|| \varepsilon + \varepsilon_{0};$$

$$||\frac{x^{k} - x^{k-1}}{||x^{k}|| + \varepsilon_{0}}|| \le \varepsilon;$$

$$||Ax^{k+1} - f|| \le \varepsilon;$$

$$||x^{k} - x^{k-1}|| \le \frac{1 - ||C||}{||C||} \varepsilon.$$

Для метода Зейделя:

$$||x^k - x^{k-1}|| \le \frac{1 - ||C||}{||C_U||} \varepsilon.$$