

TECHNICAL REPORT QR-80-1

A STOCHASTIC MODEL OF RELIABILITY GROWTH

BY

D. D. PENROD

FEBRUARY 18, 1980

U.S. ARMY MISSILE COMMAND

Redstone Arsenal, Alabama

В

DISTRIBUTION STATEMENT A Approved for public release:

Distribution Unlimited

4/0-121

SMI FORM 1021, 1 JUL 79 PREVIOUS EDITION IS OBSOLETE

DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED DO NOT RETURN IT TO THE ORIGINATOR

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT CCES NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE

18/UR.11-19R1

INCLASSIFIED

A STOCHASTIC MODEL OF RELIGIOUS DARRELL D. PENROD 9. PERFORMING ORGANIZATION NAME AND DEPARTMENT OF Mechanical En	3/21/79 - 12/31/79 6. PERFORMING ORG. REPORT NUM 8. CONTRACT OR GRANT NUMBER(*) DAAK40-79-M-0103
A STOCHASTIC MODEL OF REL. A STOCHASTIC MODEL OF REL. DARRELL D. PENROD PERFORMING ORGANIZATION NAME AN	FINAL TECHNICAL BEPORT 3/21/79 - 12/31/79 6. PERFORMING ORG. REPORT NUM 8. CONTRACT OR GRANT NUMBER(** DAAK 40-79-M-0103
A STOCHASTIC MODEL OF RELIGIOUS AUTHOR(*) DARRELL D. PENROD PERFORMING ORGANIZATION NAME AN	FINAL TECHNICAL BEPORT 3/21/79 - 12/31/79 6. PERFORMING ORG. REPORT NUM 8. CONTRACT OR GRANT NUMBER(** DAAK 40-79-M-0103
DARRELL D. PENROD	3/21/79 - 12/31/79 6. PERFORMING ORG. REPORT NUM 8. CONTRACT OR GRANT NUMBER(*) DAAK40-79-M-0103
DARRELL D. PENROD	DAAK40-79-M-0103
DARRELL D. PENROD	DAAK40-79-M-0103
9. PERFORMING ORGANIZATION NAME AN	
Department of Mechanical Er	ID ADDRESS 10. PROGRAM ELEMENT, PROJECT. AREA & WORK UNIT NUMBERS
	nginaaring
Auburn University	Program Element 644613 DD Form 1498
Auburn, AL 36830	יייייייייייייייייייייייייייייייייייייי
11. CONTROLLING OFFICE NAME AND AD	711
Commander	(//) 18 Feb 30 / 18 80 /
US Army Missile Command Al	
Redstone Arsenal, AL 35898	SS/II different from Controlling Office) 15. SECURITY CLASS. (of this report)
14. MONITORING AGENCY NAME & ADDRE	SS(II ditterent from Controlling Office) 15. SECURITY CLASS. (of this report)
12)	UNCLASSIFIED
1 シ37	15a. DECLASSIFICATION DOWNGRAD
	SCHEDULE
2/min-31	tract Witerest in Block 20, 44-different from Report)
19. KEY WORDS (Continue on reverse side if	necessary and identify by block number)
Reliability Growth Reliability	
Bayesian	
Markov Chain	<i>!</i>
Reliability Growth	necessary and identify by block number)

SECURITY

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

\$46811

Entered)

INCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Item #20 continued:

constant with test data using Bayes Theorem, a posterior distribution is developed which then is used to calculate the expected reliability growth curve. The model was applied to test data from three missile development programs. The results compared favorably with the AMSAA model currently in use and showed more logical initial growth. The model does not appear to be unusually sensitive to priors or size of input matrices.

Acces	ssion For	-
NTIS	GRA&I	1
DTIC	TAB	ñ
Unanz	nounced	
Justi	fication_	
Ву		
Distr	ibution/	
Avai	lability (Codes
	Avail and	/or
Dist	Special	
	1 1	
H	1 1	
71	1 1	

UNCLASSIFIED

A STOCHASTIC MODEL OF RELIABILITY GROWTH

bу

D. D. Penrod
Department of Mechanical Engineering
Auburn University
Auburn, Alabama 36830

February 18, 1980

TABLE OF CONTENTS

PARAGRAPH TITLE	PAGE
Introduction	1
Stochastic Learning Model	2
Results	4
Methodology	9
Probability of Success	12
Sensitivity	12
Extension to MTBF	18
Conclusions and Recommendations	20
Appendix A. Scope of Work	22
Appendix B. Growth Curve Data	24
Reference	30

LIST OF ILLUSTRATIONS

FIGURE	TITLE	PAGE
1	System #1 Growth Curve	6
2	System #2 Growth Curve	7
3	System #3 Growth Curve	8
4	Program Success Curve	13
5	Growth Curve Sensitivity After One Test	15
6	Growth Curve Sensitivity After 109 Tests	16
7	Growth Curve Sensitivity to	17

Introduction

Reliability growth prediction and assessment are widely used in development programs for complex systems. A number of mathematical models have been developed for describing the change in the system reliability as the design matures. Usually the growth results from a test, analysis and fix program; and most of the models have focused on repairable systems. While these methods may be applicable to ideal development programs (those with no human judgment errors), they are frequently lacking when applied to real programs. Perhaps part of this discrepancy is due the fact that human judgment as to what to fix and when can be a significant part of the reliability growth process. Moreover, there is often a learning process on the part of the designers as the test results unfold. It is this human intervention in the process that motivated the approach that is taken herein, namely a learning model approach. Stochastic learning models have been used for some time, and one recommended by Bush and Mosteller [1] has shown wide applicability. A reliability growth model based upon this method has some advantages over current methods, some of which are explored herein.

Stochastic Learning Model

The basic model under consideration applies to a sequence of experiments, each of which can be scored a success or failure. It is assumed that the system under consideration is only altered after failures occur. Therefore, the probability of success of a given trial depends only on the number of failures preceding that trial. Let P_k be the probability of success after k failures (and fixes) have occurred. The basic model is given by

$$P_{k+1} = P_k + C(1-P_k)$$
 (1)

If $\pi(k,n)$ is defined to be the probability that exactly k failures occur in n trials, then the expected value of P after n trials, which is the reliability R(n), is given by

$$R(n) = \sum_{k=0}^{n} P_{k}^{\pi}(k,n)$$
 (2)

Now for any given value of C and the initial probability P_O , the values of P_k can be calculated. Also, $\pi(k,n)$ can be calculated using the relationship

$$\pi(k,n+1) = P_k \pi(k,n) + (1-P_{k-1}) \pi(k-1,n)$$
 (3)

Finally, R(n) is derived from $\pi(k,n)$ and P_k . Thus the entire process of generating growth curves (R(n) versus n) requires only the values of P_0 and C.

In an actual development program, P_O and C are generally not known exactly. However, based on experience or preliminary analyses, they can be estimated. This suggests

a Bayesian approach where prior probability distributions are generated for $_{\rm O}^{\rm P}$ and C and the posterior distributions of these parameters are computed as test results become available.

A discrete probability distribution will be used to represent the prior and posterior probabilities. As will be seen, it will be convenient to introduce a joint distribution for $P_{\rm O}$ and C. Let

$$M_{ij} = Probability(P_o = p_i \text{ and } C = c_j)$$
 (4)

For a given sequence S of test results, the posterior distribution

$$M_{ij} = P(P_o = P_i, C = C_j | S)$$

is calculated according to

$$P(P_{o} = P_{i}, C = C_{j}|S) = \frac{P(P_{o} = P_{i}, C = C_{j}, S)}{P(S)}$$

$$M_{ij}' = \frac{P(S|P_{o} = P_{i}, C = C_{j})M_{ij}}{\sum \sum P(S|P_{o} = P_{i}, C = C_{j})M_{ij}}$$
(5)

Now the entire process of growth curve generation is as follows:

- 1. Define a prior distribution for P_0 and C.
- 2. Using test results, calculate the posterior distribution for P_{O} and C.
- 3. Use equations 1, 2, 3 to determine $\pi(k,n|P_0 = p_i, C = c_j) \quad \text{and} \quad R(n|P_0 = p_i, C = c_j).$
- 4. Take the expected value of R(n) over the posterior distribution which is the expected reliability.

As can be seen, the process requires only an initial distri-

bution of $P_{\rm O}$ and C as input. The process is readily programmed on a digital computer. This was done on a PDP 11-70 for the purposes of this study. For the examples chosen, the required calculations were accomplished in several minutes, depending upon the number of trials and the number of points in the prior distribution.

Results

Using a 25 point prior distribution (five values of Po and five values of C), growth curves were generated for three test cases. These are compared with those generated by the AMSAA model. The test data and assumed priors are given below. Calculated values are found in Appendix B.

SYSTEM #1

TOTAL NO. OF TESTS: 279

FAILURES OCCURRED AT TESTS: 1, 3, 4, 5, 6, 7, 9, 11, 13, 14, 19, 22, 24, 25, 26, 27, 28, 31, 36, 41, 44, 45, 47, 49, 53, 66, 69, 70, 71, 73, 75, 76, 77, 87, 91, 92, 100, 102, 108, 115, 116, 123, 124, 125, 129, 134, 135, 139, 143, 149, 151, 152, 155, 156, 157, 161, 166, 173, 179, 181, 182, 185, 194, 202, 207, 209, 229,

The prior distribution for System #1 is given as follows:

c P	.25	.40	55 ،	.70	.85
0	.04	- 04	.04	.04	.04
.02	.04	.04	.04	.04	.04
.04	.04	.04	.04	.04	-04
.06	.04	.04	.04	.04	.04
.08	.04	.04	.04	-04	.04

SYSTEM #2

TOTAL NO. OF TESTS: 109

FAILURES OCCURRED AT TESTS: 3, 4, 5, 22, 26, 27, 30, 32, 37, 97, 103

SYSTEM #3

TOTAL NO. OF TESTS: 123

FAILURES OCCURRED AT TESTS: 2, 3, 4, 6, 8, 10, 11, 20, 24, 29, 34, 35, 46, 56, 61, 118

The prior distributions for systems #2 and #3 were the same

C Po	.25	.40	.55	.70	.85
0	.04	.04	.04	.04	.04
.06	.04	.04	.04	.04	.04
.12	.04	.04	.04	.04	.04
.18	.04	.04	.04	.04	.04
. 24	.04	.04	.04	.04	.04

6 STOCHASTIC MODEL - AMSAA MODEL SYSTEM #1 GROWTH CURVE NUMBER OF TESTS RELIABILITY NOUDES SECRO

CHEMPION LINE NO 808

8 STOCHASTIC MODEL - AMSAA MODEL SKSTEM #3 GROWTH CURVE NUMBER OF TESTS **YTILIAALLER** CROSS SECTION - B SQUARFS TO INCH CHAMPION LINE 40 608

In each of these cases, the AMSAA model has a steeper initial rise and a smaller slope thereafter. This type of behavior was anticipated and is one of the reasons for seeking other methods. The AMSAA curve, given by

$$1 - \lambda \beta T^{\beta-1}$$

will have an infinite slope at T = 0 if $\beta < 2$ (which is typical). Similarly, if growth curves are calculated on the basis of a small number of trials, the AMSAA model can yield results which are without meaning. In short, the curve for small values of T is of little value. Alternatively, the stochastic model uses the initial reliability of a design P as one of its parameters. This should yield better results for a small number of trials. Based on the three cases considered here, it would appear that the stochastic model gives a better representation of the reliability in the early phase of development and yields an ultimate value of the reliability which is in substantial agreement with the AMSAA method. This fact, plus the additional utility of the probability of program success capability (to be discussed in the next section) are sufficient to recommend the stochastic model. The additional effort required is small once the computer programs are written.

Methodology

The examples considered were already completed programs. The number of tests and ultimate reliability were specified. In a new program, these would be undetermined.

Also unknown would be the prior distribution for P_O and C. During the proposal phase of a system development, a preliminary design will presumably be proposed. Based on parts count, failure mode analysis, or experience with like designs, an approximate mean value \overline{P} of P_O is chosen. Now let N be the total number of tests in the planned program, and P_U the ultimate reliability to be achieved by the end of the program.

The number of failures (and fixes) required to reach the desired reliability is

$$k = \frac{1}{\ln{(1-C)}} \ln{\frac{1-P_u}{1-P_Q}}$$
 (6)

and the expected number of tests to produce k failures is

$$N = \sum_{i=0}^{k-1} \frac{1}{(1-C)^{i}(1-P_{O})}$$
 (7)

These two equations can be solved simultaneously to find k and C.

As an example, consider the case N = 100, P_0 = .5, P_{11} = .9. From Equation 6,

$$k = \frac{1}{\ln (1-C)} \ln (\frac{1-P}{1-P})$$

$$k \doteq -\frac{1}{C} \ln .2 = \frac{1}{C} \ln 5$$

Equation 7 yields

$$100 = 2 \sum_{i=0}^{k-1} \frac{1}{(1 - \frac{\ln 5}{k})^{i}}$$

This is satisfied, approximately, by k = 20. Thus

$$C \doteq \frac{1}{20} \ln 5 \doteq .08.$$

At this point, approximate mean values have been calculated for P_O and C. It remains only to select the complete joint distribution. Uniform or triangular distributions about P_O and C can be used to generate the priors M_{ij} . The sensitivity of the model does not appear to be too great so long as the mean values are the same. So the process of generating priors goes quite nicely with the process of initial reliability prediction and test program length. Since most, if not all of these steps, are required in the original proposal, it is a small task to set up the model originally for monitoring progress.

Probability of Success

A potentially useful product of the analysis described herein is the probability of reaching a specified ultimate reliability P_u . Denoted by P_o , it is calculated as follows:

$$P_{s}(n) = \sum_{P_{k} > P_{u}} \pi(k, n | P_{o} = P_{i}, C = C_{j}) M_{ij}$$

The summation is carried out over all i,j,k for which $P_k > P_u$. $P_s(n)$ is dependent upon n and the test results (through M_{ij}). $P_s(n)$ for System #2 is plotted in the next graph the priors and test results are as before. Notice that estimated probability of reaching $P_u = .9$ was above .7 initially. After failures on tests 3,4,5; P_s had dropped to .53. There are two possible ways that such a diagram could be used:

- 1. As a trend indicator denoting either rapid or gradual changes in P_{c} .
- 2. In the manner of a control chart with lower limits being set on P_S at which point serious program review would be triggered.

Sensitivity

The matter of the sensitivity of the results to changes in the priors is of great interest. If dramatic changes in predicted reliability occur with small changes in the priors, this would mean that resulting growth curves would be heavily dependent upon the input distributions.

SACS SECTION - B SQUARES TO INCH

CHAMPION LINE NO 808

Since these are judgmental, high sensitivity would call the entire method into question. Naturally, growth curves based on a few tests will be heavily influenced by changes in M_{ij}. This is illustrated by the accompanying curves which are growth curves based on one test, for three different priors. The base case is the same as was used previously for System #2. Variation #1 uses a distribution which weighs higher values of P_O more. Variation #2 weighs higher values of C more. Figure 5 gives the curves after one test. Figure 6 shows the resulting curves based on posteriors after 109 tests. Behavior typical of Bayesian models is seen, namely, the results are less dependent on priors as more information is included in the posteriors.

Sensitivity of a second type is also of interest. This one concerns the number of points in the joint distribution of Po and C. Large distributions require much more computer time to utilize, while small distributions may reduce resolution. Two cases are shown in Figure 7, a 25 point and a 121 point distribution. The two are both discrete approximations of a uniform distribution with the same expected values. As can be seen, there is very little difference between the two curves. Moreover, the 25 point case runs in one-fourth the computer time.

Certainly the number of cases run are not sufficient to draw general conclusions, but the sensitivity of the model does not appear to be too great, and the curves based on

CHAMPION LINE NO 808

H NE OF STRYCES H NOTE 15 550HD. 808 ON 3NET NOTAWARD small numbers of tests are surely more meaningful than Duane curves based on similar numbers of tests.

Extension to MTBF

The model, as described thus far is designed for one-shot items which either succeed or fail. It is not applicable to programs where the system in question is tested until failure, the time-to-fail noted, and the design improved. However, it is suggestive of a model which is applicable to such programs.

Consider a repairable system whose time-to-fail is distributed exponentially. Let $\lambda_{\hat{1}}$ be the failure rate after i failures (and fixes). Let a sequence of tests (and fixes) be performed on the system with $X_{\hat{1}}$ being the time of the i-th failure. Also, let

$$Y_i = X_i - X_{i-1}$$

Then the likelihood function for a sequence of N failures is

$$L = \lambda_0 \cdot \lambda_1 \cdot \lambda_2 \cdot \cdot \cdot \lambda_{N-1} e^{-\lambda_0 Y_1} e^{-\lambda_1 Y_2} \cdot \cdot \cdot e^{-\lambda_{N-1} Y_N},$$

and

$$\ln (L) = \sum_{i=0}^{N-1} \ln (\lambda_i) - \sum_{i=0}^{N-1} \lambda_i Y_{i+1}.$$

If some relation exists between successive λ_i , then the problem can be simplified. A useful example is

$$\lambda_{i+1} = \alpha \lambda_i$$

which implies

$$\lambda_i = \alpha^i \lambda_o$$
.

If $\alpha > 1$, the system is degrading. If $\alpha < 1$, the system is improving. It follows that

$$\ell n (L) = N \ell n \lambda_{O} - \sum_{i=O}^{N-1} \alpha^{i} \lambda_{O} Y_{i+1} + \frac{N(N-1)}{2} \ell n \alpha$$

The maximum likelihood estimates of $~\lambda_{\mbox{\scriptsize O}}~$ and $~\alpha~$ are found from:

$$\frac{\partial \ln L}{\partial \lambda_0} = 0 = \frac{N}{\lambda_0} - \sum_{i=0}^{N-1} \alpha^{i} Y_{i+1}$$

and

$$\frac{\partial \ell_{n}L}{\partial \alpha} = o = -\lambda_{o_{i=0}}^{N-1} i\alpha^{i-1}Y_{i+1} + \frac{N(N-1)}{2} \frac{1}{\alpha}$$

Thus

$$\lambda_{O} = \frac{N}{\sum_{i=0}^{N-1} \alpha^{i} Y_{i+1}}$$

and α is a root of the equation

$$\sum_{i=0}^{N-1} (\frac{N-1}{2} - i) \alpha^{i} Y_{i+1} = 0$$

A numerical method such as Newton-Rhapson can be used to find α in the latter equation which can then be used to solve for λ_O . This method has been applied to System #2 test data (using all 109 test results). The resulting maximum likelihood values for λ_O and α are

$$\lambda_{O} = .428567$$
 $\alpha = .798853$

These parameters are related to the previous model as follows:

$$\lambda_o = 1 - P_o$$

and

$$\alpha = 1 - C$$
.

However, MTBF testing is often for a specified total time T, and the expected MTBF after time T will be

$$\sum_{i=0}^{\infty} \frac{1}{\lambda_i} P_i(T) = \tau$$

where $P_i(T)$ is the probability that i events have occurred by time T. $P_i(T)$ is obtained from the solutions to the following system of equations:

$$\frac{dP_o}{dt} = -\lambda_o P_o$$

$$\frac{dP_{i}}{dt} = -\lambda_{i}P_{i} + \lambda_{i-1}P_{i-1}$$

Multiplying by $\frac{1}{\lambda_{1}}$ and summing, one obtains

$$\frac{d\tau}{dt} = -1 + \frac{1}{\alpha}$$

Hence

$$\tau = \frac{1}{\lambda_{\Omega}} - \frac{\alpha - 1}{\alpha} T$$

Conclusions and Recommendations

This study of some of the characteristics of the stochastic learning model for reliability growth prediction and assessment illustrates several characteristics of the model.

- After many tests, the results compare favorably with existing methods.
- For early assessment (after few tests), the

stochastic model is more applicable than existing methods.

- Generating the priors is directly related to the pre-program planning process.
- Probability of success monitoring is really a way of periodically reassessing the test program.
- 5. The model does not appear to be unusually sensitive to priors or size of the input distributions.
- 6. The model has a natural extension to repairable systems and mean time between failure calculation.
- Programming and running on modern high-speed computers is easily accomplished.

These features appear to be sufficient to recommend the method. However, only three systems have been evaluated, and these were accomplished after the fact. Therefore, it is recommended that this method be used on several programs from pre-planning through assessment to determine its utility. This would not require that other methods be abandoned until or unless the suggested method prove more useful. At that point, a decision could be made on continuation or modification.

At the very foundation of this method is the continuing assessment of whether the program is progressing rapidly enough to meet its final goal. As a management tool, this should be invaluable. Moreover, the model is based on behavioral aspects as well as the complexity of the system. It is felt, though not yet substantiated, that decisions made will be more accurately modeled by the method described.

APPENDIX A

Scope of Work

1. General

This Scope of Work consists of engineering effort required to pursue the evaluation/development of a specific reliability growth model. The particular model of interest is a Bayesian learning model of the form $P_{K+1} = P_{K} + C (1-P_{T})$ where:

P = Probability of Kth Event

 $P_{K+1} = Probability of K + 1st Event$

C = Constant Related to Learning Rate

2. Objective

In reliability growth planning/projection a model is needed that can be used to accurately predict the reliability growth of one-shot items such as missiles. The model shall have the capability to initially utilize estimates of the parameters of the model (Bayesian priors, etc.) and supplant these estimates with actual test data as it is generated. Existing models (Duane and others) are not totally satisfactory for projecting one-shot item reliability growth, especially in the early phases of a program and when data points (item test data) are few in number. The objective of this effort is to examine in detail a model of the type specified above and determine if it can be used/modified to satisfy this need.

3. Specific Tasks

- a. Utilizing actual system test data provided by the MIRADCOM Product Assurance Directorate on 3-4 recently developed missile systems, determine if the model would have achieved a good fit of the data. Compare the fit achieved on each system (with the model) with the AMSAA Model (Duane Model) fit of the same data.
- b. Develop complete methodology for applying the model to reliability growth projections for systems just entering the development cycle.
- c. Examine the model to determine its relative sensitivity to estimates of the model parameters. Determine how quickly errors in initial estimates of the parameters of the model are reduced by progressive use of actual data as it is generated.

d. After accomplishment of tasks a, b, and c above, provide recommendations on appropriateness of the model for use by MIRADCOM for reliability growth planning including any changes/modifications deemed appropriate to give the model more utility. This should include consideration of modifying the model so that it can be used for mean-time-between-failure data as well as one-shot data.

4. Reporting Requirements

- a. Oral reports as requested.
- b. A final report (reproducible master plus one copy) summarizing the work performed and conclusions derived under each task shall be submitted to the COTR within 30 days after completion of services.

APPENDIX B

Growth Curve Data

SYSTEM #1

Stochastic Model

Duane Curve $(1-\lambda \beta N^{\beta-1})$

 $\beta = .643469$ $\lambda = 1.78815$

No. Reliability No. Reliability No. Reliability No. Reliability 5 .453871 189 .820646 5 .351773 189 .822457 9 .477323 193 .823222 9 .474328 193 .823778 13 .498814 197 .825725 13 .53892 197 .825062 17 .518584 201 .828158 17 .580976 201 .826312 21 .536837 205 .830524 21 .611385 205 .827528 25 .553741 209 .832826 25 .634807 209 .828712 29 .569444 213 .835066 29 .653629 213 .829866 33 .58407 217 .837247 33 .669224 217 .83099 37 .597728 221 .839371 37 .682445 221 .832087 41	
9 .477323 193 .823222 9 .474328 193 .823778 13 .498814 197 .825725 13 .53892 197 .825062 17 .518584 201 .828158 17 .580976 201 .826312 21 .536837 205 .830524 21 .611385 205 .827528 25 .553741 209 .832826 25 .634807 209 .828712 29 .569444 213 .835066 29 .653629 213 .829866 33 .58407 217 .837247 33 .669224 217 .83099 37 .597728 221 .839371 37 .682445 221 .832087 41 .610511 225 .84144 41 .693857 225 .833158 45 .622501 229 .843457 45 .703851 229 .834203 49 .633771 233 .845423 49 .712708 233 .835223 <td>tу</td>	tу
9 .477323 193 .823222 9 .474328 193 .823778 13 .498814 197 .825725 13 .53892 197 .825062 17 .518584 201 .828158 17 .580976 201 .826312 21 .536837 205 .830524 21 .611385 205 .827528 25 .553741 209 .832826 25 .634807 209 .828712 29 .569444 213 .835066 29 .653629 213 .829866 33 .58407 217 .837247 33 .669224 217 .83099 37 .597728 221 .839371 37 .682445 221 .832087 41 .610511 225 .84144 41 .693857 225 .833158 45 .622501 229 .843457 45 .703851 229 .834203 49 .633771 233 .845423 49 .712708 233 .835223 <td></td>	
13 .498814 197 .825725 13 .53892 197 .825062 17 .518584 201 .828158 17 .580976 201 .826312 21 .536837 205 .830524 21 .611385 205 .827528 25 .553741 209 .832826 25 .634807 209 .828712 29 .569444 213 .835066 29 .653629 213 .829866 33 .58407 217 .837247 33 .669224 217 .83099 37 .597728 221 .839371 37 .682445 221 .832087 41 .610511 225 .84144 41 .693857 225 .833158 45 .622501 229 .843457 45 .703851 229 .834203 49 .633771 233 .845423 49 .712708 233 .835223	
21 .536837 205 .830524 21 .611385 205 .827528 25 .553741 209 .832826 25 .634807 209 .828712 29 .569444 213 .835066 29 .653629 213 .829866 33 .58407 217 .837247 33 .669224 217 .83099 37 .597728 221 .839371 37 .682445 221 .832087 41 .610511 225 .84144 41 .693857 225 .833158 45 .622501 229 .843457 45 .703851 229 .834203 49 .633771 233 .845423 49 .712708 233 .835223	
25 .553741 209 .832826 25 .634807 209 .828712 29 .569444 213 .835066 29 .653629 213 .829866 33 .58407 217 .837247 33 .669224 217 .83099 37 .597728 221 .839371 37 .682445 221 .832087 41 .610511 225 .84144 41 .693857 225 .833158 45 .622501 229 .843457 45 .703851 229 .834203 49 .633771 233 .845423 49 .712708 233 .835223	
29 .569444 213 .835066 29 .653629 213 .829866 33 .58407 217 .837247 33 .669224 217 .83099 37 .597728 221 .839371 37 .682445 221 .832087 41 .610511 225 .84144 41 .693857 225 .833158 45 .622501 229 .843457 45 .703851 229 .834203 49 .633771 233 .845423 49 .712708 233 .835223	
33 .58407 217 .837247 33 .669224 217 .83099 37 .597728 221 .839371 37 .682445 221 .832087 41 .610511 225 .84144 41 .693857 225 .833158 45 .622501 229 .843457 45 .703851 229 .834203 49 .633771 233 .845423 49 .712708 233 .835223	
37 .597728 221 .839371 37 .682445 221 .832087 41 .610511 225 .84144 41 .693857 225 .833158 45 .622501 229 .843457 45 .703851 229 .834203 49 .633771 233 .845423 49 .712708 233 .835223	
41 .610511 225 .84144 41 .693857 225 .833158 45 .622501 229 .843457 45 .703851 229 .834203 49 .633771 233 .845423 49 .712708 233 .835223	
45 .622501 229 .843457 45 .703851 229 .834203 49 .633771 233 .845423 49 .712708 233 .835223	
49 .633771 233 .845423 49 .712708 233 .835223	
53 .644383 237 .84734 53 .720634 237 .83622	
57 .654395 241 .84921 57 .727788 241 .837195	
61 .663855 245 .851035 61 .734291 245 .838147	
65 .672809 249 .852816 65 .74024 249 .839079	
69 .681297 253 .854555 69 .745713 253 .839991	
73 .689353 257 .856254 73 .750771 257 .840883	
77 .69701 261 .857913 77 .755466 261 .841757	
81 .704298 265 .859535 81 .759842 265 .842613	
85 .711242 269 .861119 85 .763934 269 .843451	
89 .717866 273 .862669 89 .767773 273 .844273	
93 .724192 277 .864184 93 .771384 277 .845078	
97 .73024 281 .865666 97 .774791 281 .845868	
101 .736027 101 .778012	
105 .741571 105 .781065	
109 .746886 109 .783964 113 .751986 113 .786722	
121 .761592 121 .791861 125 .76612 125 .79426	
129 .770481 129 .796558	
133 .774683 133 .798761	
137 .778733 137 .800876	
141 .78264 141 .802908	
145 .786412 145 .804864	
149 .790055 149 .806748	
153 .793576 153 .808565	
157 .796981 157 .810318	
161 .800275 161 .812012	
165 .803464 165 .81365	
169 .806553 169 915234	
173 .809546 173 .816769	
177 .812448 177 .818256	
181 .815263 181 .819699	
185 .817994 185 .821098	

SYSTEM #2

Duane Curve $(1-\lambda \beta N^{\beta-1})$

Stochastic Model $\beta = .60512$ $\lambda = .643436$ Test Test Test Test Reliability No. Reliability No. Reliability No. Reliability No. 2 .648134 50 .924783 2 .703874 50 .916927 3 .676819 51 .925932 3 .747686 51 .917575 4 .774781 .700693 52 .927046 4 52 .918204 5 .720944 53 5 .793777 .918817 .928125 53 6 .738385 54 .929172 .808102 .919414 6 54 7 .753594 55 7 55 .919996 .930188 .819435 8 .766993 .828709 56 .931174 8 56 .920563 9 .778903 57 .932132 9 .836493 57 .921116 10 .789569 .843156 58 .933063 10 58 .921656 .799185 11 59 .933968 11 .84895 59 .922183 .807904 .922698 12 60 .934848 12 .854051 60 13 .81585 13 .858592 .923201 61 .935705 61 14 .823127 14 .923692 62 .936539 .862671 62 15 .829817 63 .93735 15 .866361 63 .924173 .835992 .869724 .924643 16 64 .938141 16 64 17 17 .872806 .925103 .841711 65 .938911 65 .875645 18 .847023 .939662 18 .925553 66 66 .925994 19 .851973 67 .940394 19 .878271 67 20 .856596 20 .880712 .926426 68 .941109 68 21 .860926 69 .941806 21 .882988 69 .926849 22 .864989 22 .885118 70 .942486 70 .927263 23 .887117 71 23 .868811 71 .94315 .927669 24 72 24 .888998 .872413 .943798 72 .928068 25 .875814 73 .944432 25 .890773 73 .928459 26 .879031 74 .945051 26 .892452 74 .928842 27 .882078 75 .945656 27 .894043 75 .929218 28 .884969 76 .946247 28 .895554 76 .929587 29 .887716 77 .946826 29 .896991 77 .92995 30 .89033 78 .947391 30 .898361 78 .930306 31 .89282 79 .947945 31 .899668 79 .930656 32 .895195 80 .948487 32 .900918 .930999 80 .949017 33 .897463 81 33 .902115 81 .931337 34 .899631 .903262 82 82 .949537 34 .931669 35 .901707 83 35 83 .931995 .950045 .904363 36 .903695 .950543 84 36 .905421 84 .932316 37 .905601 37 85 .951032 .906439 85 .932631 38 .907431 86 .95151 38 .907419 86 .932942 39 .909189 87 .951979 39 .908364 87 .933247 40 .910879 88 .952439 40 .909275 88 .933548 .912505 89 41 .910156 89 .933844 41 .952889 .914071 .953331 90 42 .911007 90 .934135 42 91 .953765 43 .91183 91 .934422 43 .91558 44 .917035 92 .954191 44 .912626 92 .934704 .918439 93 45 .913398 93 .934982 45 .954608 .919795 .914147 94 .935256 46 94 .955018 46 .921105 47 .914873 95 47 95 .955421 .935526 .915577 96 .935792 48 .922372 96 .955816 48 49 .923597 97 .956204 49 .916262 97 .936054

SYSTEM #2 (Con't.)

	Stochast	ic Mod	del	_	Duane Curve = .60512		3N ^{β-1}) = .643436
Test		Test		Test		Test	
No.	Reliability	No.	Reliability	No.	Reliability	No.	Reliability
98	.956585	104	.958736	98	.936313	104	.93779
99	.956959	105	.959074	99	.936568	105	.938025
100	.957327	106	.959406	100	.936819	106	.938256
101	.957688	107	.959732	101	*> 1067	107	.938485
102	.958044	108	.960054	102	::7311	108	.93871
103	.958393	109	.96037	103	·	109	.938933

SYSTEM #3

Duane Curve

Stochastic Model

 $\beta = .501774$ $\lambda = 1.43041$

Test		Test		Test		Test	
No.	Reliability		Reliability	No.	Reliability		Reliability
2	.472249	50	.897904	2	.491855	50	.897789
3	.517579	51	.89956	3	.584803	51	.898792
4	.55523	52	.901162	4	.640245	52	.899767
5 6	.58709	53	.902715	5	.678098	53	.900714
6	.614456	54	.904218	6	.70605	54	.901634
7	.638253	55	.905676	7	.727781	55	.902529
8	.659159	56	.90709	8	.745302	56	.9034
9	.677689	57	.908462	9	.759818	57	.904248
10	.694238	58	.909794	10	.772101	58	.905074
11	.709115	59	.911087	11	.78267	59	.90588
12	.722569	60	.912344	12	.79189	60	.906664
13	.734799	61	.913565	13	.800026	61	.90743
14	.745969	62	.914753	14	.807275	62	.908177
15	.756213	63	.915909	15	.813787	63	.908906
16	.765644	64	.917033	16	.81968	64	.909618
17	.774358	65	.918128	17	.825045	65	.910313
18	.782433	66	.919194	18	.829957	66	.910993
19	.78994	67	.920232	19	.834476	67	.911657
20	.796937	68	.921244	20	.838653	68	.912307
21	.803475	69	.922231	21	.842528	69	.912942
22	.809599	70	.923193	22	.846135	70	.913564
23	.815347	71	.924131	23	.849506	71	.914173
24	.820752	72	.925047	24	.852663	72	.914769
25	.825846	73	.925941	25	.855629	73	.915353
26	.830655	74	.926814	26	.858423	74	.915925
27	.835202	75	.927666	27	.86106	75	.916485
28	.839508	76	.928498	28	.863555	76	.917034
29	.843592	77	.929312	29	.86592	77	.917573
30	.847472 .851161	78	.930107	30	.868166	78 70	.918101
31 32	.854675	79	.930885	31	.870302	79	.918619
33	.858024	80 81	.931645 .932389	32	.872337	80	.919128
34	.861222	82	.933117	33	.87428	81	.919627
35	.864277	83	.933829	34	.876136 .877912	82	.920117 .920598
36	.867199	84	.934526	35 36	.879613	83 84	.92107
37	.869997	85	.935208	37	.881246	85	.921534
38	.872679	86	.935877	3 <i>7</i> 38	.882813	86	.92199
39	.875252	87	.936531	39	.88432	87	.922438
40	.877721	88	.937173	40	.88577	88	.922878
41	.880094	89	.937801	41	.887167	89	.923311
42	.882376	90	.938418	42	.888513	90	.923737
43	.884573	91	.939022	43	.889813	91	.924156
44	.886688	92	.939614	43	.891067	92	.924567
45	.888726	93	.940195	45	.89228	93	.924973
46	.890692	94	.940764	46	.893453	94	.925371
47	.89259	95	.941323	47	.894589	95	.925764
48	.894422	96	.941872	48	.895689	96	.92615
49	.896192	97	.94241	49	.896755	97	.92653

SYSTEM #3 (Con't.)

Stochastic Model

Duane Curve

s = .501774	λ =	1.43041
-------------	-----	---------

Test No.	Reliability	Test	Reliability	Test	Reliability	Test	Reliability
98	.942938	111	.949017	98	.926905	111	.931303
99	.943457	112	.949432	99	.927274	112	.93161
100	.943966	113	.949839	100	.927637	113	.931912
101	.944467	114	.95024	101	.927995	114	.93221
102	.944958	115	.950635	102	.928347	115	.932504
103	.945441	116	.951024	103	.928 695	116	.932795
104	.945915	117	.951406	104	.929037	117	.933082
105	.946381	118	.951783	105	.929375	118	.933365
106	.946839	119	.952153	106	.929708	119	.933644
107	.94729	120	.952518	107	.930036	120	.933921
108	.947733	121	.952878	108	.930359	121	.934193
109	.948168	122	.953232	109	.930678	122	.934462
110	.948596	123	.953581	110	.930993	123	.934728

APPENDIX C
Priors For Sensitivity Analyses

Base Case

As given for Systems #2 and #3 on page 5.

Higher Growth (c)

CPO	. 25	. 40	. 55	. 70	. 85
0	. 02	. 02	. 02	. 02	.02
. 06	. 03	.03	.03	. 03	.03
. 12	.04	.04	.04	. 04	.04
.18	.05	. 05	. 05	. 05	.05
. 24	. 06	. 06	. 06	. 06	. 06

Higher Po

CPO	. 25	. 40	. 5 5	. 70	. 85
0	. 02	.03	. 04	. 05	. 06
.06	. 02	.03	. 04	. 05	.06
. 12	. 02	.03	. 04	.05	.06
.18	. 02	.03	. 04	.05	.06
. 24	. 02	.03	. 04	.05	.06

AL SYMPTOT

REFERENCE

[1] Bush, R. and Mosteller, F., "A Stochastic Model with Applications to Learning", Annals of Math. Stat., 1953, Vol. 24, 559-585.