模 拟 考 试 卷

课程名称			密码学					考试学期					得分		
适用专业			网络空间安全				ぎ试 用	彡式 _	闭卷			考试时间长度 _		120 分钟	
试		_	=	11	四	五	六	七	八	九	+	+-	十二	总分	
得名	分														
_	-,	填空	(说	明: 1	清把	答案	填在	题目	中的	横线	上。	共 30 个	空,每	空1分,	
扌	共计	30 (分)。												
1	, IS	SO 74	98-2	确定	了五ナ	、类安	全服	务,即	J	\		`		,	
į	和		o												
2	、古	7典密	码体	制对理	见代 奢	密码学	的研	究和	学习具	具有十	分重	要的意义	,实现	古典密码	
,	体制	的两	种基	本方法	去代,	即		和		是构	造现	代分组密	码的核心	心方式。	
3	、信	言息妄	全中	所面	临的 属	找胁 攻	击是	多种	多样的	句, —	般将	这些攻击	分为两	大类,即	
-			和		o										
4	、 E	DE (三重	DES) 的	密钥七	长度 是	<u></u>	比	特; 匀	分组长	长度是	比特:	; 输出密	
-	文长	度是	<u> </u>	比特	寺。										
5	. 1	976 ^소	下,美	国两	位密码	马学者	د ا	和_		_提出	3了_		新思想	,它为解	
,	决传	统密	码中	的诸多	多难题	5提出	了一	种新思	思路。						
6	、月	月户 A	Alice &	合用庁	≒ Bob	发送	法消息	时选	择使月	月公钥	加密	算法进行	加密,	则加密时	
,	使用	的密	钥是	公开镇	月还是	Ł秘密	钥?		该	密钥日	由谁产	=生?	o		
7	、月	月户 A	Alice É	内密钥	对为	(PK	X_A , SK_A	ı), F	用户 E	Bob 的	宮钥	对为(Pi	(K_B,SK_B)	,公钥加	
1	解密	算法	均记	为 f ,	若 Al	ice 给	Bob	发送	一个問	死加密	了又认	证的消息	k m,则	相应的密	
-	文豆	表示	为		°										
8	、祁	有圆曲	线密	码算》	去 EC	C的	安全性	注是基	于			2	困难问题	[构建的。	
9	、 S	HA-1	算法	的分類	组长周				输出		为	_比特;\$	轮数为_	轮;	

所以,用穷搜索攻击寻找具有给定消息摘要的消息的复杂度为;以大于									
0.5 的概率用穷搜索攻击找出具有相同消息摘要的两个不同消息的复杂度									
为。									
10、n-LFSR(n级线性反馈移位寄存器)最大周期是。									
11、在一次性口令认证协议 S/KEY 中,如果系统存储的当前用户 U 的口令信息为									
$(ID_u, hash^c(Pwd), c)$, 其中, Pwd 是 U 的口令,则该用户口令可使用次。									
12、 AES 的状态在明文输入时第 n 个字节放在状态阵列的位置 (i,j) 上,则第 13 个									
字节所对应的状态阵列的位置(i, j)=。									
13、DES的初始置换和扩展置换如下表所示,则长为64比特的明文分组中第6个									
比特在置换后的位置是; DES 加密过程中某轮的右 32 比特中第 27 个比特在									
经过扩展置换后的位置是。									
58 50 42 34 26 18 10 2 60 52 44 36 28 20 12 4 4 5 6 7 8 9 62 54 46 38 30 22 14 6 8 9 10 11 12 13 64 56 48 40 32 24 16 8 9 10 11 12 13 12 13 14 15 16 17 18 19 20 21 59 51 43 35 27 19 11 3 20 21 22 23 24 25 61 53 45 37 29 21 13 5 24 25 26 27 28 29 63 55 47 39 31 23 15 7 28 29 30 31 32 1									
(a) 初始置换 (b) 扩展置换 E									
14、已知一超递增背包向量 A=(1, 3, 5, 11, 21, 44, 87, 175, 349, 701), 现在背包容积									
为 s=721,该背包的解是。									
二 判断(说明:正确的在后面的括号内打"√",错误的在后面的括号									
内打"×"。共5题,每题1分,共计5分)									
1、安全永远是相对的,永远没有一劳永逸的安全防护措施。()									
2、公钥证书是不能在网络上公开的,否则其他人可能假冒我的身份或伪造我的数									
字签名。()									
3、流密码可以分为同步流密码和异步(自同步)流密码,其中密钥流的产生并不									
是独立于明文流和密文流的流密码称为同步流密码。()									
4、DES 算法是一种多轮迭代密码。 ()									
共4页 第2页									

- 5、ELGamal 算法的安全性是基于离散对数问题,它的最大特点就是在加密过程中引入了一个随机数,使得加密结果具有不确定性,并且它的密文长度是明文长度的两倍。()
- 三、已知一明文串为00011001,相应的密文串为10111110,密钥流序列由3级m序列生成,试破译之。(6分)
- 四、 设多表代换密码 $C_i=AM_i+B \pmod{26}$ 中,A 是 2×2 矩阵,B 是 0 矩阵,又知明文 "here" 被加密为 "szol",求矩阵 A。(6分)
- 五、已知分组密码算法 AES 是建立在有限域 $GF(2^8)$ 上的,模多项式取为 $m(x)=x^8+x^4+x^3+x+1$,试计算 $(x^6+x^2+x+1)\times(x^4+x+1)$ mod m(x),若该计算用 x 乘表示时,试给出计算过程。(6分)
- 六、 设一个线性反馈移位寄存器 LFSR 为 $\langle 5,1+D+D^3+D^4+D^5 \rangle$, 其中联结多项式 C(D) 为本原多项式式(即特征多项式为 $P(x)=x^5+x^4+x^3+x+1$)。求该 LFSR 输出序 列的周期,并写出该周期序列。**(6分)**
- 七、 RSA 算法是一种极为重要的公钥密码算法,在网络安全应用中极为广泛。
 - (1) 试描述 RSA 算法的密钥产生、加密、解密过程 (3分)
 - (2) 证明 RSA 算法中解密过程的正确性; (5分)
- (3) 已知 RSA 的模数 $n=23\times29$,设加密指数 e=13,试用扩展欧几里德算法求解私钥 d**:** (3分)

八、求13的所有本原根(6分)

- 九、 在 Shamir 秘密分割门限方案中,设 k=3,n=5,q=17,5 个子密钥分别是 8、7、10、0、11,从中任选 3 个,构造插值多项式并求秘密数据 s。(6 分)十、 Diffie-Hellman 密钥交换协议易受到中间人攻击。
 - (1) 详细分析攻击者如何实施攻击; (4分)
 - (2) 说明最后的攻击结果。(2分)
- 十一、 己知 NS 协议如下
- ① A \rightarrow KDC: $ID_A \parallel ID_B \parallel N_1$

- ② KDC \rightarrow A: $E_{KA}[K_S \parallel ID_B \parallel N_1 \parallel E_{KB}[K_S \parallel ID_A]]$
- 3 A \rightarrow B: $E_{KB}[K_S \parallel ID_A]$
- ④ B→A: $E_{KS}[N_2]$
- ⑤ A→B: $E_{KS}[f(N_2)]$
 - (1) 分析以上协议的安全性,请问基于旧会话密钥的重放可在第几步? (2分)
 - (2) 如何进行? (3分)
- 十二、 已知一椭圆曲线 $E_7(1,1)=x^3+x+1 \mod 7$,设该曲线上的两个点 P=(2,2), Q=(0,6)。
 - (1) 试计算 3P, P+Q (4分)
- (2)利用该椭圆曲线实现的 ElGamal 密码体制中,若选择的生成元 P=(2,2),假设接收者 Alice 的秘密钥为 $n_A=5$,求 Alice 的公开钥 P_A 。(3 分)

说明: 设 $P=(x_1, y_1)$, $Q=(x_2, y_2)$, $P\neq Q$, 则 $P+Q=(x_3, y_3)$ 由以下规则确定:

$$x_3 \equiv (\lambda^2 - x_1 - x_2) \bmod p$$
;

$$y_3 \equiv (\lambda(x_1-x_3)-y_1) \mod p$$
, $\sharp \mapsto \lambda = \begin{cases} \frac{y_2-y_1}{x_2-x_1}, & P \neq Q \\ \frac{3x_1^2+a}{2y_1}, & P = Q \end{cases}$