Paweł Najuch

Data wykonania: 28-03-2016 18:46

Flight recorder simulator

1 Informacje wstępne

1.1 Wymagania

Do prawidłowego działania programu wymagana jest następująca wersja programu: **Python 3.4.3**. Do uruchomienia konieczne jest również posiadanie pakietu **SQLite3** do obsługi bazy danych. Niezbędne może się okazać również doinstalowanie do naszego Python'a następujących bibliotek: **Matplotlib** - odpowiedzialnej za rysowanie wykresów oraz **Tkinter** - odpowiedzialnej za graficzny interfejs.

1.2 Dane

Niezbędne jest również posiadanie przykładowych danych, które posłużą nam do symulacji lotu. W swoim projekcie wykorzystałem informacje o lotach pochodzące ze strony FlightAware.

Time	Position		Orientation	Groundspeed		Altitude		Reporting Facility
CET	Latitude	Longitude	Course Direction	KTS	km/h	feet	Rate	Location/Type
Thu 21:57:00		ı	.eft Gate (KRK / EPKK) @ Čtvr	tek 21:57:00 CET				Airline
			Taxi Time: 1 minu	ites				
Thu 21:58:01	Departure (KRK / EPKK) @ Čtvrtek 21:58:01 CET							FlightAware ADS-B (OSR / LKMT)
Thu 21:58:01	50.0698	19.7222	259° West	181	335	2,500		FA FlightAware ADS-B (OSR / LKMT)
Thu 21:58:21	50.0685	19.6942	280° West	203	377	3,000	2,542 🔨	FlightAware ADS-B (OSR / LKMT)
Thu 21:59:00	50.0805	19.6373	289° West	232	430	5,000	2,836 🔨	FlightAware ADS-B (KRK / EPKK)
Thu 21:59:16	50.0859	19.6109	288° West	253	468	5,600	2,516 🔨	FA FlightAware ADS-B (KRK / EPKK)
Thu 21:59:31	50.0913	19.5844	287° West	264	489	6,300	3,316 🔨	FA FlightAware ADS-B (KRK / EPKK)
Thu 21:59:54	50.1028	19.5429	297° West	272	504	7,700	3,158 🔨	FA FlightAware ADS-B (KRK / EPKK)
Thu 22:00:09	50.1115	19.5156	297° West	289	536	8,300	2,000 🔨	FlightAware ADS-B (KRK / EPKK)
Thu 22:00:24	50.1202	19.4886	297° West	309	573	8,700	2,600 🔨	FlightAware ADS-B (KRK / EPKK)
Thu 22:00:39	50.1309	19.4550	297° West	317	587	9,600	3,830 🛧	FlightAware ADS-B (KRK / EPKK)
Thu 22:01:11	50.1511	19.3903	296° West	317	587	11,700	3,469 🔨	FlightAware ADS-B (KRK / EPKK)
Thu 22:01:43	50.1710	19.3253	296° West	326	604	13,300	2,806 1	FlightAware ADS-B (OSR / LKMT)

Rysunek 1: Przykład pobranej tabeli zawierającej informacje o locie

Jak widać informacja dotycząca dokładnej daty nie została umieszczona, dlatego ręcznie w pliku zamieniłem dni tygodnia na date w formacie yyyy-mm-dd co ma kluczowe znaczenie podczas działania projektu. Przykładowe dane umieściłem w plikach z projektem w folderze **Example data**.

1.3 Uruchomienie

Aby uruchomić program wystarczy skorzystać z komendy python3 main.py

2 Opis działania programu

Symulacja lotu

Aby rozpocząć symulacje lotu należy wcześniej podać ścieżkę, w której chcemy zapisać naszą bazę [Save database] oraz plik z danymi do symulacji [Import logs]. Później korzystamy z opcji [Generate] i rozpoczyna się symulacja - odtworzenie naszego lotu. Dane zapisywane są w bazie co około 0.5s i na bieżąco generowany jest do nich wykres oraz log.

Rysunek 2: Symulacja lotu

Podglądanie czarnej skrzynki

Aby podglądnąć naszą **czarną skrzynkę** korzystamy z opcji [**Open blackbox**]. Następnie wybieramy plik z utworzoną bazą danych [**Open database**]. Możemy zmienić wyświetlany wykres w [**Chart**], zapisać go do pliku [**Save chart**] oraz zapisać nasz log do pliku CSV [**Export to CSV**].

Rysunek 3: Podglądanie czarnej skrzynki

3 Wykorzystane funkcjonalności

- Moduł **configparser** posłużył mi do utworzenia pliku konfiguracyjnego zawierającego informacje o naszej bazie danych oraz nazwie pliku z naszymi danymi do generowania.
- Moduł sqlite3 posłużył mi do zaimplementowania funkcjonalności związanych z bazą danych. W tym celu stworzyłem klasę MyDB odpowiedzialną za operacje dodawania rekordów. Dla uproszczenia przyjąłem, że wszystkie pola w bazie danych są typu tekstowego i przechowywane są tylko w jednej tabeli. Oczywiście można ulepszyć tą funkcjonalność normalizując naszą bazę danych i stworzyć tylko jedną bazę, która przechowywałaby informacje dotyczące innych pomiarów. Rozwiązanie to wiąże się jednak z pewnym nakładem czasu, który poświęciłem na tworzenie GUI, dlatego na potrzeby projektu przyjąłem, że każdy plik z bazą danych symbolizuje czarną skrzynkę.
- Moduł matplotlib do rysowania wykresów oraz csv do zapisania naszych danych z logu w pliku.
- Moduł Tkinter posłużył mi do stworzenia graficznego interfejsu do naszego programu. Ponieważ to pierwsza moja styczność z tworzeniem GUI wygląd jest dosyć prosty. GUI wykorzystuje również szereg pomocniczych funkcji do interakcji z użytkownikiem (wyświetlania, czyszczenia oraz przetwarzania informacji). Jak już wspomniałem to mój początek w projektowaniu GUI, dlatego nie udało mi się stworzyć odpowiednika klasy zarządzającej interfejsem przez co przeglądając kod wydaje się on na pierwszy rzut oka chaotyczny.

4 Dokumentacja

Opis wszystkich klas, funkcji oraz zmiennych znajduje się w plikach o rozszerzeniu .py.