Audio Format Guide for Ambient Audio Capture

Supported Audio Formats

WAV (Waveform Audio File Format) - RECOMMENDED

File Extension: .wav

Description:

WAV is an uncompressed audio format that captures the raw audio signal exactly as recorded by your microphone. It's the industry standard for professional audio recording and archival purposes.

Technical Details:

• Format: Linear PCM (Pulse Code Modulation)

• Quality: Lossless (bit-perfect reproduction)

• Bit Depth: 16-bit or 32-bit float

• Sample Rate: Typically 44.1kHz or 48kHz (matches hardware)

• File Size: ~10 MB per minute (stereo, 44.1kHz, 16-bit)

Best For:

- Professional ambient recordings
- Audio that will be edited or processed later
- Maximum quality preservation
- Archival purposes
- Sound design and music production

Advantages:

- Zero quality loss
- Universal compatibility (plays on all devices)
- No CPU overhead during recording
- Immediate write to disk (most reliable)
- Perfect for later conversion to other formats

Disadvantages:

- Large file sizes
- Minimal metadata support

AIFF (Audio Interchange File Format)

File Extension: .aiff

Description:

AIFF is Apple's equivalent to WAV, offering the same uncompressed quality with enhanced metadata capabilities. It's the native format for Apple's professional audio applications.

Technical Details:

- Format: Linear PCM (identical to WAV internally)
- Quality: Lossless (bit-perfect reproduction)
- Bit Depth: 16-bit or 32-bit float
- Sample Rate: Matches hardware (44.1kHz, 48kHz, etc.)
- File Size: Same as WAV (~10 MB per minute)

Best For:

- Logic Pro and Apple audio software users
- macOS-centric workflows
- Recordings requiring detailed metadata
- Professional audio work on Mac

Advantages:

- Same quality as WAV
- Better metadata support (ID3 tags)
- Native format for Apple ecosystem
- Can store markers and loop points
- Excellent for collaborative Mac-based projects

Disadvantages:

- Large file sizes (same as WAV)
- Slightly less universal than WAV on non-Apple platforms

M4A (MPEG-4 Audio with AAC codec)

File Extension: .m4a

Description:

M4A uses AAC (Advanced Audio Codec) compression to create much smaller files while maintaining good audio quality. It's the format used by Apple Music, iTunes, and most modern streaming services.

Technical Details:

• Format: MPEG-4 AAC (lossy compression)

• Quality: Perceptually transparent at 256kbps+

• Bit Rate: Configurable (192-320kbps typical)

• Sample Rate: Matches source

• File Size: ~2 MB per minute (256kbps stereo)

Best For:

- Long recordings where storage is limited
- Casual listening (not professional editing)
- Sharing recordings online
- Mobile device playback
- Podcast-style ambient recordings

Advantages:

- 80-90% smaller files than WAV
- Excellent metadata support
- Modern, efficient codec
- Good quality at reasonable bitrates
- Universal playback support

Disadvantages:

- Lossy compression (permanently discards audio data)
- CPU overhead during encoding
- Not ideal for editing or processing
- Quality depends on bitrate setting
- Longer recording start time (encoding setup)

Note: M4A encoding is currently disabled in this version to ensure recording stability. Files are automatically saved as WAV until proper AAC encoding is implemented.

Which Format Should You Choose?

For Ambient Recording → Choose WAV

- Preserves every detail of the ambient soundscape
- No quality compromises
- Most reliable recording (no encoding delays)
- Maximum flexibility for future use

For Apple-Centric Workflows \rightarrow Choose AIFF

- Same quality as WAV
- Better integration with Logic Pro and other Apple tools
- Richer metadata for organizing recordings

For Storage Efficiency \rightarrow Choose M4A

- Dramatically smaller files
- Good enough quality for casual listening
- Better for long-term storage of many recordings

Technical Implementation Notes

Recording Format Selection

The app uses 32-bit float PCM when possible for maximum dynamic range and headroom. This prevents clipping and allows for greater flexibility in post-processing.

Sample Rate

The app automatically matches your audio interface's native sample rate to avoid unnecessary resampling and maintain optimal quality.

Buffer Size

8192 samples provides a good balance between low latency and CPU efficiency, resulting in stable long-duration recordings.

File Size Reference

1 Hour of Stereo Recording:

Format	Bit Depth	Sample Rate	Approximate Size
WAV	16-bit	44.1kHz	~600 MB
WAV	32-bit	48kHz	~1.3 GB
AIFF	16-bit	44.1kHz	~600 MB
AIFF	32-bit	48kHz	~1.3 GB
M4A	256kbps	48kHz	~115 MB

Recommendations by Use Case

Sound Design / Music Production:

→ WAV or AIFF, 32-bit, highest sample rate

Ambient Field Recording:

→ WAV, 32-bit float for maximum dynamic range

Podcast / Voice Recording:

→ WAV or M4A (256kbps), 48kHz is sufficient

Casual Background Recording:

→ M4A for efficient storage, 192-256kbps

Archival / Library Building:

→ WAV, highest quality settings, never use lossy formats