Problem 22. If $f: A \to B$ has an inverse function then f is onto and f is one-to-one.

$$\square$$

Problem 23. A real number $x \in \mathbb{R}$ is called algebraic if there exists $a_0, a_1, \ldots, a_{n-1}, a_n \in \mathbb{Z}$, not all zero, so that

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$

That is, a real number is algebraic if it is a root of a polynomial equation with integer coefficients.

(a) The numbers $\sqrt{2}$, $\sqrt[3]{2}$, and $\sqrt{3} + \sqrt{2}$ are algebraic.

(b) For fixed $n \in \mathbb{N}$, let A_n be the set of algebraic numbers which are roots of polynomials, with integer coefficients, of degree n. Then A_n is countable.

(c) The set of all algebraic numbers is countable.

$$\square$$

Problem 24. There is an onto function $f:(0,1) \to S$ where $S = \{(x,y): 0 < x,y < 1\}$ is the unit square in the plane \mathbb{R}^2 .

$$\square$$

Problem 25. (a) $\lim_{n \to \infty} \frac{2n+1}{5n+3} = \frac{2}{5}$

Proof. Let
$$\epsilon > 0$$
.

(b)
$$\lim_{n \to \infty} \frac{2n^2}{n^3 + 1} = 0$$

Proof. Let
$$\epsilon > 0$$
.

(c)
$$\lim_{n \to \infty} \frac{\sin(n)}{\sqrt{n}} = o$$

Proof. Let
$$\epsilon > 0$$
.

Problem 26. (a) A sequence with an infinite number of ones that does not converge to one.

(b) A sequence with an infinite number of ones that converges to a limit not equal to one.

Problem 27. Let (x_n) be a sequence that converges to x. Suppose p(x) is a polynomial. Then

$$\lim_{n \to \infty} p(x_n) = p(x).$$

Proof.

Problem 28. Consider three sequences (x_n) , (y_n) , and (z_n) for which $x_n \leq y_n \leq z_n$ for each n. If $x_n \to \ell$ and $z_n \to \ell$ then $y_n \to \ell$.

Proof.