Notes on Set Theory

Qi'ao Chen

December 9, 2019

Contents

Fore	eword	2
Mod	lels of Set - Sertraline	2
2.1	Some mathematical logic	2
2.2	Cumulative Hierarchy	3
2.3	Relativization	5
2.4	Absoluteness	6
2.5	Relative consistence of the axiom of foundation	8
2.6	Induction and recursion based on well-order relation	9
	Mod 2.1 2.2 2.3 2.4 2.5	Foreword Models of Set - Sertraline 2.1 Some mathematical logic

1 Foreword

Notes for the entrance examination

2 Models of Set - Sertraline

2.1 Some mathematical logic

Theorem 2.1 (Gödels second incompleteness theorem). If a consistent recursive axiom set T contains **ZFC**, then

$$T \not\vdash \operatorname{Con}(t)$$

especially, **ZFC** $\not\vdash$ Con(**ZFC**)

Definition 2.2. Suppose (M, E_M) and (N, E_N) are two models of set theory, then

- 1. if for any formula σ , $M \models \sigma$ if and only if $N \models \sigma$, then M and N are **elementary equivalent**, denoted by $M \equiv N$
- 2. If bijection $f: M \to N$ satisfies: for any $a, b \in M$, aE_Mb iff $f(a)E_Nf(b)$, then $f: M \cong N$ is an **isomorphism**
- 3. If $M \subseteq N$ and $E_M = E_N \upharpoonright M$, then M is N's submodel
- 4. If M is isomorphic to a submodel of N by injection f, and for any formula $\varphi(x_1,\ldots,x_n)$, for any $a_1,\ldots,a_n\in M$, $M\models\varphi[a_1,\ldots,a_n]$ iff $N\models\varphi[f(a_1),\ldots,f(a_n)]$, then f is called an **elementary embedding** from M to N, written as $f:M\prec N$
- 5. If $M \subseteq N$ and $M \prec N$, then M is a **elementary submodel** of N

Lemma 2.3. Suppose $N \models \mathbf{ZFC}, M \subseteq N$, then $M \prec N$ iff $\forall \varphi(x, x_1, \dots, x_n)$, $\forall (a_1, \dots, a_n) \in M$, if $\exists a \in N \text{ s.t. } N \models \varphi[a, a_1, \dots, a_n]$, then $\exists a \in M \text{ s.t. } M \models \varphi[a, a_1, \dots, a_n]$

Definition 2.4. Suppose $(M, E) \models \mathbf{ZFC}$

- 1. $h_{\varphi}: M^n \to M$ is φ 's **Skolem function** if $\forall a_1, \ldots, a_n \in M$, if $\exists a \in M$ s.t. $M \models \varphi[a, a_1, \ldots, a_n]$, then $M \models \varphi[h_{\varphi}(a_1, \ldots, a_n), a_1, \ldots, a_n]$. requires **AC**
- 2. Let $\mathcal{H} = \{h_{\varphi} \mid \varphi \text{ is a formula on set theory}\}$. For any $S \subseteq M$, **Skolem** hull $\mathcal{H}(S)$ is the smallest set consisting of S and closed under \mathcal{H}

Lemma 2.5. $N \models \mathbf{ZFC}, S \subseteq N$, if $M = \mathcal{H}(S)$, then $M \prec N$

Theorem 2.6 (Löwenheim-Skolem theorem). Suppose $N \models \mathbf{ZFC}$ and is infinite, then there is a model M s.t. $|M| = \omega$ and $M \prec N$

2.2 Cumulative Hierarchy

This section works in \mathbf{ZF} (a.k.a. \mathbf{ZF} – axiom of foundation)

Definition 2.7. For any α , define sequence V_{α}

- 1. $V_0 = \emptyset$
- 2. $V_{\alpha+1} = \mathcal{P}(V_{\alpha})$
- 3. For any limit ordinal λ , $V_{\lambda} = \bigcup_{\beta < \lambda} V_{\beta}$

And WF =
$$\bigcup_{\alpha \in \mathbf{On}} V_{\alpha}$$

Lemma 2.8. For any ordinal α

- 1. V_{α} is transitive
- 2. if $\xi \leq \alpha$, then $V_{\xi} \subseteq V_{\alpha}$
- 3. if κ is inaccessible cardinal, then $|V_{\kappa}|=\kappa$

Proof. 1. Obviously $\kappa \leq V_{\kappa}$. Since κ is inaccessible, then for any $\alpha < \kappa$, $|V_{\alpha}| < \kappa$.

Definition 2.9. For any set $x \in WF$,

$$\operatorname{rank}(x) = \min\{\beta \mid x \in V_{\beta+1}\}$$

Lemma 2.10. 1. $V_{\alpha} = \{x \in \mathbf{WF} \mid \text{rank}(x) < \alpha\}$

- 2. **WF** is transitive
- 3. For any $x, y \in \mathbf{WF}$, if $x \in y$, then $\mathrm{rank}(x) < \mathrm{rank}(y)$
- 4. for any $y \in \mathbf{WF}$, $\mathrm{rank}(y) = \sup\{\mathrm{rank}(x) + 1 \mid x \in y\}$

Lemma 2.11. Supoose α is an ordinal

1. $\alpha \in \mathbf{WF}$ and $\mathrm{rank}(\alpha) = \alpha$

2.
$$V_{\alpha} \cap \mathbf{On} = \alpha$$

Lemma 2.12. 1. If $x \in \mathbf{WF}$, then $\bigcup x, \mathcal{P}(x), \{x\} \in \mathbf{WF}$, and their ranks are all less than $\mathrm{rank}(x) + \omega$

- 2. If $x,y\in \mathbf{WF}$, then $x\times y, x\cup y, x\cap y, \{x,y\}, (x,y), x^y\in \mathbf{WF}$, and their ranks are all less than $\mathrm{rank}(x)+\mathrm{rank}(y)+\omega$
- 3. $\mathbb{Z}, \mathbb{Q}, \mathbb{R} \in V_{\omega+\omega}$
- 4. for any set x, $x \in \mathbf{WF}$ iff $x \subset \mathbf{WF}$

Lemma 2.13. Suppose AC

- 1. for any group G, there exists group $G' \cong G$ in **WF**
- 2. for any topological space T, there exists $T' \cong T$ in **WF**

Definition 2.14. Binary relation < on set A is **well-founded** if for any nonempty $X \subseteq A$, X has minimal element under <

Theorem 2.15. If $A \in \mathbf{WF}$, then \in is a well-founded relation on A

Lemma 2.16. If set *A* is transitive and \in is well-founded on *A*, then $A \in \mathbf{WF}$

Lemma 2.17. For any set x, there is a smallest transitive set $\operatorname{trcl}(x)$ s.t. $x \subseteq \operatorname{trcl}(x)$

Proof.

$$x_0 = x$$

$$x_{n+1} = \bigcup_{n < \omega} x_n$$

$$\operatorname{trcl}(x) = \bigcup_{n < \omega} x_n$$

trcl(x) is called **transitive closure** of x

Lemma 2.18. Without axiom of power set

- 1. if x is transitive, then trcl(x) = x
- 2. if $y \in x$, then $trcl(y) \subseteq trcl(x)$
- 3. $\operatorname{trcl}(x) = x \cup \bigcup \{\operatorname{trcl}(y) \mid y \in x\}$

Theorem 2.19. For any set X, the following are equivalent

- 1. $X \in \mathbf{WF}$
- 2. $\operatorname{trcl}(X) \in \mathbf{WF}$
- 3. \in is a well-founded relation on trcl(X)

Theorem 2.20. The following propositions are equivalent

- 1. Axiom of foundation
- 2. For any set X, \in is a well-founded relation on X
- 3. V = WF

2.3 Relativization

Definition 2.21. Let **M** be a class φ a formula, the **relativization** of φ to **M** is $\varphi^{\mathbf{M}}$ defined inductively

$$(x \in y)^{\mathbf{M}} \leftrightarrow x = y$$
$$(x \in y)^{\mathbf{M}} \leftrightarrow x \in y$$
$$(\varphi \to \psi)^{\mathbf{M}} \leftrightarrow \varphi^{\mathbf{M}} \to \psi^{\mathbf{M}}$$
$$(\neg \varphi)^{\mathbf{M}} \leftrightarrow \neg \varphi^{\mathbf{M}}$$
$$(\forall x \varphi)^{\mathbf{M}} \leftrightarrow (\forall x \in \mathbf{M}) \varphi^{\mathbf{M}}$$

Note $\varphi^{\mathbf{V}} = \varphi$ and

$$f^{\mathbf{M}} = \{(x_1, \dots, x_n, x_{n+1}) \in \mathbf{M} \mid \varphi^{\mathbf{M}}(x_1, \dots, x_n, x_{n+1})\}$$

Definition 2.22. For any theory T, any class ${\bf M}$, ${\bf M} \models T$ iff for any axiom φ of T, $\varphi^{\bf M}$ holds

Theorem 2.23 (ZF). WF \models ZF

Proof. • Axiom of existence

 $(\exists x(x=x))^{\mathbf{M}} \leftrightarrow \exists x \in \mathbf{M} \ (x=x)$, which is equivalent to \mathbf{M} being nonempty

• Axiom of extensionality

$$\forall X \forall Y \forall u ((u \in X \leftrightarrow u \in Y) \to X = Y)^{\mathbf{M}} \Leftrightarrow$$
$$\forall X \in \mathbf{M} \ \forall Y \in \mathbf{M} \ \forall u \in \mathbf{M} \ ((u \in X \leftrightarrow u \in Y) \to X = Y)$$

Lemma 2.24. If \mathbf{M} is transitive, then axiom of extensionality holds in \mathbf{M}

• Axiom schema of specification

$$\forall X \in \mathbf{M} \exists Y \in \mathbf{M} \ \forall u \in \mathbf{M} \ (u \in Y \leftrightarrow u \in X \land \varphi^{\mathbf{M}} (u))$$

Since for any $X \in \mathbf{WF}$, $\mathcal{P}(X) \subseteq \mathbf{WF}$

- Axiom of paring
- Axiom of union
- Axiom of power set

$$\forall X \in \mathbf{M} \ \exists Y \in \mathbf{M} \ \forall u \in \mathbf{M} \ (u \in Y \leftrightarrow (u \subseteq X)^{\mathbf{M}})$$

and

$$(u \subseteq X)^{\mathbf{M}} \leftrightarrow \forall x \in \mathbf{M} \ (x \in u \to x \in X) \leftrightarrow u \cap \mathbf{M} \subseteq X$$

- Axiom of foundation
- Axiom schema of replacement

2.4 Absoluteness

Definition 2.25. For any formula $\psi(x_1,\ldots,x_n)$ and any class ${\bf M}$, ${\bf N}$, ${\bf M}\subseteq {\bf N}$, if

$$\forall x_1 \dots \forall x_n \in \mathbf{M} \left(\psi^{\mathbf{M}} \left(x_1, \dots, x_n \right) \leftrightarrow \psi^{\mathbf{N}} \left(x_1, \dots, x_n \right) \right)$$

then $\psi(x_1,\dots,x_n)$ is absolute for ${\bf M}$,cn. If ${\bf N}={\bf V}$, then ψ is absolute for ${\bf M}$

Lemma 2.26. Suppose $\mathbf{M} \subseteq \mathbf{N}$ and φ, ψ are formulas, then

- 1. if φ , ψ are absolute for **M** ,cn, then so are $\neg \varphi$, $\varphi \rightarrow \psi$
- 2. if φ doesn't contain any quantifiers, then φ is absolute for any **M**
- 3. if **M** ,**N** are transitive and φ is absolute for them, then so are $\forall x \in y\varphi$

Definition 2.27. Δ_0 formula

- 1. $x = y, x \in y$ are Δ_0 formulas
- 2. if φ , ψ are Δ_0 , then so are $\neg \varphi$, $\varphi \rightarrow \psi$
- 3. if φ is Δ_0 , y is any set, then $(\forall x \in y)\varphi$ is Δ_0

If φ is Δ_0 , then $\exists x_1 \dots \exists x_n \varphi$ is Σ_1 formula, $\forall x_1 \dots \forall x_n \varphi$ is Π_1

Lemma 2.28. M \subseteq N are both transitive, $\psi(x_0,\ldots,x_n)$ is a formula, then

- 1. if ψ is Δ_0 , then it's absolute for **M**, cn
- 2. if ψ is Σ_1 , then

$$\forall x_1 \dots x_n (\psi^{\mathbf{M}} (x_1, \dots, x_n) \to \psi^{\mathbf{N}} (x_1, \dots, x_n))$$

3. if ψ is Π_1 , then

$$\forall x_1 \dots x_n (\psi^{\mathbf{N}}(x_1, \dots, x_n) \to \psi^{\mathbf{M}}(x_1, \dots, x_n))$$

Lemma 2.29. If $\mathbf{M} \subseteq \mathbf{N}$, $\mathbf{M} \models \Sigma$, $\mathbf{N} \models \Sigma$ and

$$\Sigma \vdash \forall x_1 \dots \forall x_n (\varphi(x_1, \dots, x_n) \leftrightarrow \psi(x_1, \dots, x_n))$$

then φ is absolute for **M**, **N** if and only if ψ is absolute for **M**, **N**

Definition 2.30. Suppose $\mathbf{M} \subseteq \mathbf{N}$, $f(x_1, \dots, x_n)$ is a function. f is **absolute** for \mathbf{M} and \mathbf{N} if and only if $\varphi(x_1, \dots, x_n, x_{n+1})$ defining f is absolute.

Theorem 2.31. Following relations and functions can be defined in \mathbf{ZF}^- Pow – Inf and are equivalent to some Δ_0 formulas. So they are absolute for any transitive model \mathbf{M} on \mathbf{ZF}^- – Pow – Inf

- 1. $x \in y$
- 2. x = y
- 3. $x \subset y$
- 4. $\{x, y\}$
- 5. {*x*}
- 6. (x, y)
- 7. Ø

- 8. $x \cup y$
- 9. x y
- 10. $x \cap y$
- 11. x^+
- 12. x is a transitive set
- 13. LJ*x*
- 14. $\bigcap x (\bigcap \emptyset = \emptyset)$

Lemma 2.32. Absoluteness is closed under operation composition

Theorem 2.33. Following relations and functions are absolute for any transitive model M on $\mathbf{Z}\mathbf{F}^-$ – Pow – Inf

- 1. z is an ordered pair
- 2. $A \times B$
- 3. R is a relation
- 4. dom(R)
- 5. ran(R)
- 6. *f* is a function
- 7. f(x)
- 8. *f* is injective

2.5 Relative consistence of the axiom of foundation

Lemma 2.34. Suppose transitive class $\mathbf{M} \models \mathbf{Z}\mathbf{F}^- - \mathrm{Pow} - \mathrm{inf}$ and $\omega \in \mathbf{M}$, then the axiom of infinity is true in \mathbf{M} . Hence the axiom of infinity is true in $\mathbf{W}\mathbf{F}$

Theorem 2.35. Let T be a theory of set theory language and Σ a set of sentences. Suppose \mathbf{M} is a class and $T \vdash \mathbf{M} \neq \emptyset$, then if $\mathbf{M} \models_T \Sigma$, then

- 1. for any sentences φ , if $\Sigma \vdash \varphi$, then $T \vdash \varphi^{\mathbf{M}}$
- 2. if *T* is consistent, then so is $Cn(\Sigma)$

Theorem 2.36. The axiom of foundation is consistent with **ZF**.

Proof. By 2.35, let T be **ZF**,
$$\Sigma$$
 be **ZF** and **M** be **WF**

Lemma 2.37 (ZF⁻). Suppose transitive model $\mathbf{M} \models \mathbf{ZF}^- - \text{Pow} - \text{Inf.}$ If $X, R \in \mathbf{M}$ and R is a well-order on X, then

$$(R \text{ is a well-order on } X)^{\mathbf{M}}$$

Theorem 2.38 (ZF⁻).
$$V_{\omega} \models \mathbf{ZFC} - \mathbf{Inf} + \neg \mathbf{Inf}$$

Proof. For any $X \in V_{\omega}$, X is finite hence there is a well-ordering on X

Corollary 2.39.
$$Con(\mathbf{Z}\mathbf{F}^-) \to Con(\mathbf{Z}\mathbf{F}\mathbf{C} - Inf + \neg Inf)$$

2.6 Induction and recursion based on well-order relation

Definition 2.40. R is a well-founded relation on X if and only if

$$\forall U \subset \mathbf{X}(U \neq \emptyset \to \exists y \in U(\neg \exists z \in U(z\mathbf{R}y)))$$

Definition 2.41. Relation \mathbf{R} is **set-like** on \mathbf{X} iff for any $x \in \mathbf{X}$, $\{y \in \mathbf{X} \mid y\mathbf{R}x\}$ is a set

Definition 2.42. If R is a set-like relation on X and $x \in X$, define

$$\operatorname{pred}^{0}(\boldsymbol{X}, x, \boldsymbol{R}) = \{ y \in \boldsymbol{X} \mid y\boldsymbol{R}x \}$$
$$\operatorname{pred}^{n+1}(\boldsymbol{X}, x, bR) = \bigcup \{ \operatorname{pred}(\boldsymbol{X}, y, \boldsymbol{R}) \mid y \in \operatorname{pred}^{n}(\boldsymbol{X}, x, \boldsymbol{R}) \}$$
$$\operatorname{cl}(\boldsymbol{X}, x, \boldsymbol{R}) = \bigcup_{n \in \omega} \operatorname{pred}^{n}(\boldsymbol{X}, x, \boldsymbol{R})$$

Lemma 2.43. If R is a set-like relation on X, then for any $y \in cl(X, x, R)$, $pred(X, y, R) \subseteq cl(X, x, R)$

Theorem 2.44 (Induction on well-founded set-like relation). If R is a well-founded set-like relation on X, then every nonempty $Y \subseteq X$ has minimal element under R

Theorem 2.45. Suppose R is a well-founded set-like relation on X. If $F: X \times V \to V$, then there is a unique $G: X \to V$ s.t.

$$\forall x \in \boldsymbol{X}(\boldsymbol{G}(x) = \boldsymbol{F}(x, \boldsymbol{G} | \text{pred}(\boldsymbol{X}, x, \boldsymbol{R})))$$

Definition 2.46. If R is a set-like well-founded relation on X, define

$$rank(x, \boldsymbol{X}, \boldsymbol{R}) = \sup\{rank(y, \boldsymbol{X}, \boldsymbol{R}) + 1 \mid y\boldsymbol{R}x \wedge y \in \boldsymbol{X}\}\$$

Note that

$$F(x,h) = \sup\{\alpha + 1 \mid \alpha \in \operatorname{ran}(h)\}\$$

Lemma 2.47 (**ZF**⁻). If X is transitive and \in is well-founded on X, then $X \subseteq WF$ and for any $x \in X$, rank $(x, X, \in) = \operatorname{rank}(x)$

Definition 2.48. R is a set-like well-founded relation on X, **Mostowski** function G on (X,R) is

$$\mathbf{G}(x) = \{ \mathbf{G}(y) \mid y \in \mathbf{X} \land y\mathbf{R}x \}$$

 $\mathbf{M} = \operatorname{ran}(\mathbf{G})$ is called the **Mostowski collapse** of (\mathbf{X}, \mathbf{R})

Lemma 2.49. 1.
$$\forall x, y \in X(xRy \rightarrow G(x) \in G(y))$$

- 2. **M** is transitive
- 3. If the axiom of power set holds, $\mathbf{M} \subseteq \mathbf{WF}$
- 4. if the axiom of power set holds and $x \in X$, then ${\rm rank}(x,X,R) = {\rm rank}(G(x))$

Definition 2.50. R is extensional on X iff

$$\forall x, y \in X (\forall z \in X (zRx \leftrightarrow zRy) \rightarrow x = y)$$

Lemma 2.51. If X is transitive then \in is extensional on X

Lemma 2.52. Let R be a set-like well-founded relation on X, G is a Mostowski function on it. If R is extensional, then G is an isomorphism

Theorem 2.53 (Mostowski collapse theorem). Suppose R is set-like well-founded extensional on X, then there are unique transitive class M and bijection $G: X \to M$ s.t. $G: (X, R) \cong (M, \in)$