2/2

3/3

2/2

4/4

Note: 20/20 (score total: 26/26)



+53/1/16+

IPS - S7A - Jean-Matthieu Bourgeot

QCM2

| $_{ m IPS}$ |               |            |  |
|-------------|---------------|------------|--|
| Quizz       | $d\mathbf{u}$ | 13/11/2013 |  |

| Nom et prénom | :     |      | ., |
|---------------|-------|------|----|
| Ingrien       | Publo | <br> |    |

Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses.

Ne pas faire de RATURES, cocher les cases à l'encre.

| Question 1 • Classer ses différentes technologies de CAN par ordre de Temps d | e conversion |
|-------------------------------------------------------------------------------|--------------|
| (du plus rapide au plus lent) ?                                               | · -          |
| flash - approximation successives - simple rampe - double rampe               |              |
| double rampe - flash - approximation successives - simple rampe               |              |
| flash - approximation successives - double rampe - simple rampe               |              |

| flash - approximation successives - | - double rampe - simple rampe |
|-------------------------------------|-------------------------------|
| approximation successives - flash - | - simple rampe - double rampe |
| approximation successives - flash - | - double rampe - simple rampe |

Question 2 •

On considère une résistance thermométrique Pt100 de résistance  $R_C(T)=R_0(1+\alpha T)$  où T représente la température en °C,  $R_0=1$ k $\Omega$  la résistance à 0°C et  $\alpha=3,85.10^{-3}$ °C  $^{-1}$  le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant



Question 3 •

Quelle est la capacité d'un condensateur plan ? On notc :

- $\bullet$   $\epsilon$  : Permittivité du milieu entre les armatures.
- S : Surface des armatures.
- d: Distance entre les armatures.

Question 4 •

Le capteur sur la photo ci-contre permet de mesurer ...





|     | Question 5 • Pourquoi faire du sur-échantillonnage?                                                                                                                                                                                    |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2/2 | Pour améliorer l'efficacité du filtre antirepliement.  Pour réduire le bruit de quantification  Pour supprimer les perturbations de mode commun.                                                                                       |
|     | $ \textbf{Question 6} \bullet  \text{A quoi est reliée la résolution d'un potentiomètre linéaire à piste résistive ? } $                                                                                                               |
| 1/1 | La résistance maximale du potentiomètre  La course électrique.  La longueur du potentiomètre  Le pas de bobinage  La taille des grains de la poudre utilisée                                                                           |
|     | Question 7 • Des jauges extensométriques permettent de mesurer                                                                                                                                                                         |
| 1/1 | des résistances des courants des températures des grands déplacements des flux lumineux des déformations.                                                                                                                              |
|     | Question 8 • Un capteur LVDT permet de mesurer :                                                                                                                                                                                       |
| 1/1 | des déplacements angulaires des flux lumineux des températures des déplacement linéaire                                                                                                                                                |
|     | Question 9 • Quels sont les intérêts d'un amplificateur d'instrumentation ?                                                                                                                                                            |
|     | Cela permet d'isoler galvaniquement la chaine d'acquisition et le procédé.                                                                                                                                                             |
| 2/2 | Les voies sont symétriques.                                                                                                                                                                                                            |
| 3/3 | Le gain est fixé par une seule résistance.  De rejeter les perturbations de mode différentiel.                                                                                                                                         |
|     | Les impédances d'entrées sont élevés.                                                                                                                                                                                                  |
|     | Question $10 \bullet$<br>Soit un CAN acceptant en entrée des signaux compris entre $0V$ et $10V$ , la quantification s'effectue sur 8bits, le temps de conversion est de $T_C = 1$ ms.<br>Quel est le pas de quantification de ce CAN? |
| 1/1 | 78 mV 1.25 V 10 mV.s <sup>-1</sup> 80 mV.s <sup>-1</sup>                                                                                                                                                                               |
|     | Question 11 •                                                                                                                                                                                                                          |
|     | On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) =$                                                                                                                                                        |
|     | $\frac{A_0}{1+\tau_C p}$ , avec $U_s$ la sortie de l'AOP et $\epsilon=u_+-u$ . Pour le montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre $E$ et $U_s$ , Que dire de la stabilité du système bouclé?                      |
| 6/6 | Le système est stable                                                                                                                                                                                                                  |