Remarks

Claims 1-12 are currently pending in the present patent application, with claim 13 having been cancelled through the above claim amendments. Claim 1 has been amended to more particularly point out and distinctly claim the recited subject matter. This amendment does not narrow the scope of claim 1.

In a final Office Action mailed 5 June 2006, the Examiner maintained the rejections of claims 1-6, 9, and 11-12 under 35 U.S.C. § 102(e) as being anticipated by U.S. Patent Application Publication No. 2002/0164523 to Shibata et al. ("Shibata"). Claims 7-8 and 10 stand rejected under 35 U.S.C. § 103(a) as being unpatentable over Shibata in view of U.S. Patent Application Publication No. 2002/0028367 to Sammes et al. ("Sammes").

On September 7, 2006, the undersigned along with the inventor Partho Sarkar and Brian Y. Lee, Canadian counsel for the assignee of the present application, held a telephone interview with the Examiner to discuss the rejections of the pending claims. As set forth in the Examiner's Interview Summary mailed September 12, 2006, no agreement was reached as to the allowability of any of the claims. More specifically, with regard to claim 1, the Examiner contends that the alumina ceramic of the Shibata reference corresponds to the porous ion-conducting structure recited in claim 1. See page 3 of the Interview Summary. The Examiner contends that even if the alumina ceramic is considered in the prior art as an insulating material, this material is nonetheless capable of conducting some ions, even if such ion conductivity is poor. Id. The Examiner requested objective evidence to support that such an alumina ceramic is "incapable" of transporting ions, meaning that the material exhibits no ion conduction at all. Id. During the interview, the Examiner also raised what he termed a potential 35 U.S.C. § 112, paragraph 1, issue regarding the recitation of an ion-conducting structure in the claims and pointed to paragraph 19 of the specification to support his assertion that only a description of oxygen ion conducting materials is contained in the application.

In order to help the Examiner appreciate certain distinctions between the pending claims and the subject matter of the applied references, a disclosed embodiment of the invention will now be discussed in comparison to the applied references. Specific distinctions between the pending claims and the applied references will be discussed after the discussion of the disclosed embodiment and the applied references. This discussion of the differences between the disclosed embodiment and applied references does not define the scope or interpretation of any of the claims.

Embodiments of the present invention are directed to an anode-supported solid oxide fuel cell (SOFC) including an anode support layer. A suitable material for the anode support layer (ASL) is yittria stabilized zirconia (YSZ). See, e.g., paragraph 8 of the present application. YSZ is an excellent conductor of negatively charged oxygen (oxide) ions at high temperatures. See paragraph 3. A SOFC operates at an elevated temperature, typically in the order of between 700-1000 °C. Id. YSZ is a solid oxide electrolyte and an oxygen ion conductor suitable for use in a SOFC. See, e.g., page 101 of the Suresh publication, which accompanies this amendment as Attachment 1. Other oxygen ion conducting materials suitable for use in a SOFC may be substituted for YSZ in the anode support layer. See paragraph 19. A characteristic of a solid electrolyte, which may otherwise be known as a fast ion conductor or a superionic solid, is a high electrical conductivity in the range of 10-1 - 10-4 ohm-1 · cm-1 (i.e. a resistivity of 10-10,000 ohm cm). See page 17 of Attachment 1. In contrast, alumina (aluminum oxide) has a resistivity of 5.0 X 108 at 700°C and 2 X 106 at 1000°C (see page 959 of the Shackelford and Alexander publication, which accompanies this amendment as Attachment 2) and thus is not a solid electrolyte/fast ion conductor/superionic solid suitable for SOFC use. See also the article that accompanies this amendment as Attachment 3 for additional information regarding resistivity and the listing of Web sites in Attachment 4 that illustrate alumina being used as an insulator.

Turning now to the Shibata patent, the Examiner points to paragraph 69 of Shibata as disclosing an SOFC unit cell having a porous base body 1 which

includes a ceramic (alumina) body plated with Ni, an electrode 10, an electrolyte 12, and an electrode 11. The base body 1 material (alumina) simply cannot be considered a porous oxygen ion conducting structure suitable for solid oxide fuel cell use. As shown in accompanying samples of scientific literature, alumina's resistivity is too high for this material to be considered a solid electrolyte and an oxygen ion conductor suitable for use in a SOFC. In order for a material to be considered an oxygen ion conductor suitable for SOFC use in an electrode, the material must provide the necessary and efficient ionic path for anodic reaction which takes place during SOFC operation. As is well known in the SOFC art, the ionic conductivity of the anode must be comparable to the ionic conductivity of the electrolyte, and thus alumina's resistivity is also too high at SOFC operating temperature to carry out SOFC electrode function.

The Examiner cannot contend that because alumina must exhibit some ion conductivity, the base body 1 of Shibata may be considered to correspond to the anode support layer of the present application. Materials are classified as having physical characteristics that result in each material being placed in a particular class of materials, such as an electric or thermal conductor or insulator or an ionic conductor or insulator. Materials are not classified in absolute terms as is suggested by the Examiner. The Examiner requests evidence that "ceramic alumina is INCAPABLE of transporting ions (no ion conduction at all)." See page 3 of the Interview Summary. No such evidence can be provided for any material. Although classified as a particular type of material, every material will exhibit some characteristics of another class of materials. For example, materials classified as electrical insulators exhibit some amount of electrical conductivity, but such conductivity is so small that these materials are nonetheless classified as insulators. If the Examiner's argument was accepted, then the classification of materials would be rendered pointless. Any material could be said to be whatever type of material was needed by an Examiner when formulating a rejection.

Pursuant to MPEP § 2111, during patent examination the pending claims must be given their broadest reasonable interpretation consistent with the

specification. The Examiner expressly mentioned this well known tenet of patent examination. As expressly set forth in Section 2111, the "broadest reasonable interpretation of the claims must also be consistent with the interpretation that those skilled in the art would reach." As evidenced by the accompanying technical literature, as well as the comments of the inventor Partho Sarkar during the telephone interview with the Examiner, one skilled in the art would not interpret the phrase "ion-conducting structure" to include the insulating material of alumina ceramic. The Examiner's attempt to so interpret this phrase is simply put an unreasonable interpretation of this language. Although the Examiner cites the "broadest reasonable interpretation" language of Section 2111 as the rationale for his interpretation, such an interpretation of this language plainly in violation of this section of the MPEP as well as in contravention of common sense.

Now turning to the claims, amended claim 1 recites an anode-supported solid oxide fuel cell including an anode support layer. The anode support layer includes a porous oxygen ion-conducting structure suitable for solid oxide fuel cell use and having pores impregnated with a catalytic and electronically conductive material. An electrolyte layer is in adjacent intimate contact with the anode support layer and a cathode layer is in adjacent intimate contact with the electrolyte layer.

Shibata neither discloses nor suggests an anode support layer as recited in amended claim 1. The base body 1 of Shibata simply cannot be said to correspond to the recited anode support layer. As discussed above, an alumina ceramic as set forth in paragraph 69 of Shibata simply is not "a porous oxygen ion-conducting structure suitable for solid oxide fuel cell use." Because an alumina ceramic exhibits some ion conductivity does not make such an alumina ceramic an ion-conducting structure. As previously discussed with reference to the attached technical literature, alumina's resistivity is too high for this material to be considered a solid electrolyte and an oxygen ion conductor suitable for use in a SOFC. Such an alumina's resistivity is also too high at SOFC operating temperatures to carry out the function of an SOFC electrode.

Furthermore, claim 1 recites an electrolyte layer in intimate contact with the ASL. Shibata discloses electrodes 10 and 11 to be in intimate contact with the electrolyte, and neither electrode 10, 11 of Shibata corresponds to the structure of the ASL as recited in claim 1, i.e. a porous oxygen ion conducting structure suitable for SOFC use and having pores impregnated with a catalytic and electronically conductive material. Although the Examiner suggests that the porous base body 1 in Shibata discloses the ASL as presently claimed, such base body is not in intimate contact with the electrolyte, nor can the base body material (alumina) be considered a porous oxygen ion conducting structure suitable for solid oxide fuel cell use.

For all these reasons, the combination of elements recited in amended claim 1 is allowable. Dependent claims 2-11 are allowable for at least the same reasons as claim 1 and due to the additional limitations added by each of these claims.

It should be pointed out that amended claim 1 now expressly recites that the anode support layer includes a "porous oxygen ion-conducting structure." Support for this is found, for example, in paragraph 12 of the application. This amendment should render moot any potential Section 112 issues alluded to by the Examiner in the Interview Summary. See page 3 of the Interview Summary. These comments are not meant to indicate that the undersigned agrees there ever were any Section 112 deficiencies with the prior claim language. Also note that this amendment in no way necessitates a new search by the Examiner since, as admitted by the Examiner, the prior language could have been construed to include any type of ion-conduction structure so surely the prior search included oxygen ion-conducting structures. The same is true of the amendment that the oxygen ion-conducting structure is "suitable for solid oxide fuel cell use." This amendment merely expressly recites what was implicit before and is in direct contrast to the structure and function of the relied upon components in Shibata, which are not suitable for solid oxide fuel cell use." The same is true for the amendments of claim 12, which will now be discussed in more detail below.

Amended claim 12 recites an anode-supported solid oxide fuel cell comprising an anode support layer including an oxygen ion-conducting structure suitable for solid oxide fuel cell use and with a plurality of vias extending through the thickness of the oxygen ion-conducting structure. At least some of the vias are filled with electronically conductive material. An anode functional layer is in adjacent intimate contact with the anode support layer and an electrolyte layer is in adjacent intimate contact with the anode functional layer. A cathode layer is in adjacent intimate contact with the electrolyte layer.

Shibata neither discloses nor suggests an anode support layer as recited in amended claim 12. The base body 1 of Shibata simply cannot be said to correspond to the recited anode support layer since an alumina ceramic is not an oxygen ion-conducting structure suitable for solid oxide fuel cell use. Simply because an alumina ceramic exhibits some ion conductivity does not make such an alumina ceramic an ion-conducting structure. Alumina's resistivity is too high for this material to be considered a solid electrolyte and an oxygen ion conductor suitable for use in a SOFC and the resistivity is also too high at SOFC operating temperatures to carry out the function of an SOFC electrode.

For all these reasons, the combination of elements recited in amended claim 12 is allowable

//

//

//

//

//

//

//

//

//

The present patent application is in condition for allowance. Favorable consideration and a Notice of Allowance are respectfully requested. The Examiner is requested to contact the undersigned at the number listed below for a telephone interview if, upon consideration of this amendment, the Examiner determines any pending claims are not in condition for allowance. The undersigned also requests the Examiner to direct all future correspondence to the address set forth below in the event the Examiner shows a different correspondence address for the attorney of record.

Respectfully submitted,

GRAYBEAL JACKSON HALEY LL

Paul F. Rusyn

Attorney for Applicant Registration No. 42,118

155 - 108th Avenue NE, Ste. 350

Bellevue, WA 98004-5973

(425) 455-5575

THIS PAGE BLANK (USPTO)

Date: 10/11/2006 Time: 4:32:20 PM

BEST AVAILABLE COPY

super- | PRINCIPLES ionic | AND solids APPLICATIONS

SURESH CHANDRA

Professor of Physics, Banaras Hindu University, Varanasi, India

NORTH-HOLLAND PUBLISHING COMPANY AMSTERDAM · NEW YORK · OXFORD

CHAPTER 2

Superionic Materials and Structures

Superionic solids are ionic materials with high electrical conductivity comparable with those of liquid electrolytes. These materials are also termed "solid electrolytes" or "fast ion conductors". Typically a superionic solid has the following characteristics:

- (i) crystal bonding is ionic;
- (ii) electrical conductivity is high $(10^{-1} 10^{-4} \text{ ohm}^{-1} \text{ cm}^{-1});$
- (iii) principal charge carriers are ions which means that the ionic transference number (t_{ion}) is almost equal to 1 (here t_{ion} refers to the fractional contribution of the ionic conductivity to the total conductivity);
- (iv) the electronic conductivity is small; generally materials with electronic transference number (t_e) less than 10^{-4} are considered satisfactory superionic solids.

The values of electrical conductivity of a few ionic and superionic solids are shown in Figure 2.1. The highest conductivity at room temperature obtained so far is for RbAg₄ I₅ which is 0.27 ohm⁻¹ cm⁻¹. This is many orders of magnitude higher than those of the more commonly known ionic solids KCl, NaCletc, which have room temperature conductivity $\sim 10^{-12}$ -10^{-16} ohm⁻¹ cm⁻¹. It may be noted that most of the superionic materials attain a high electrical conductivity above a certain temperature which may or may not be well defined. In other words, with increasing temperature the electrical conductivity sometimes changes gradually (as in β -alumina) or shows an abrupt jump (e.g. in β -AgI, RbAg₄ I₅ etc.). Furthermore, for the latter materials the abrupt conductivity change is sometimes associated with a distinct structural change (like the $\beta \rightarrow \alpha$ transition in AgI) but sometimes this is not so clear (as in RbAg₄ I₅). Structures which allow fast ion transport are generally disordered, "channelled" or "layered" (Wiedersich and Geller 1971). Ion—Ion interactions or correlation

over, Owens (1971) has noted that M^+ ions with volumes greater than $85(\Lambda^3)$ do not generally form conductive compounds. Furthermore, for bigger cations a lesser amount may be needed. For example, the maximum conductivity is obtained with 13 mole % MI for the $(CH_3)_4NI-AgI$ system, 12.5 mole % in the $(CH_3)_2(C_2H_5)_2NI-AgI$ system and 12 mole % in the $(C_2H_5)_4NI-AgI$ system. This means that the percentage of added cations decreases with its increasing size as is expected from Raleigh's picture.

The above structural principles have been deduced on the basis of the very small amount of available structural data — mostly on cation substituted systems. More structural studies would be necessary both on anion and cation substituted systems to arrive at a better understanding.

2.8 Oxygen ion conductors

The first solid oxide electrolyte ever used was probably the ceramic with composition 85 wt % ZrO2, 15 wt % Y2O3 which was used by Nernst (1899) as an incandescent lighting material. Later Baur and Preis (1937) used this material for a fuel cell. The definite conductivity mechanism in terms of oxygen vacancies was proposed by Wagner (1943) and later verified by Hund (1952). However, the sudden increase of scientific interest in such materials started after Kiukola and Wagner (1957a, 1957b) illustrated their use in high-temperature thermodynamic measurements and fuel cells. In principle, almost all oxides can be expected to show some degree of oxygen ion conduction particularly the non-stoichiometric oxides. The non-stoichiometry can be created by heating the metal oxides in vacuum or oxygen or the relevant metallic vapour (Wagner 1974). Most of the oxygen ion conductors are good only at high temperatures (~1000°C) and are mixed conductors (ionic + electronic + electron-hole). As in the case of other ionic conductors, the conductivity in this case is strongly dependent on the temperature and doping with aliovalent impurities (like Ca2+, Y3+, Sr2+ etc. in HfO2, CcO2 etc.) which control the number of point defects and their mobility. However, a unique property of oxide conductors is the dependence of the conductivity on the ambient pressure or activity. If the ambient oxygen pressure is low, the oxygen ions (Oo) would leave the solid electrolyte according to the following mechanism;:

[†] The defects are expressed in the Kröger-Vink notation: the symbol indicates the defect; the subscript the location of the defect; and the superscripts (') (') denote negative and positive charges respectively. For example Vö means vacancy at the oxygen site having effectively two positive charges. Similarly, O'' would indicate an oxygen ion at the interstitial site with effectively two negative charges.

tions, cooperative hopping or correlation effects play important roles. Details of the conductivity mechanism will be discussed in Chapter 4. Figure 2.46 gives a schematic plot of conductivity as a function of partial pressure of ambient oxygen for a typical oxide electrolyte at three different temperatures. The higher the temperature, the lower is the range of oxygen pressure over which the conductivity is ionic. The dependence of the range of ionic conduction on concentration of allovalent dopant (like Ca^{2+} or Y^{3+}) is shown in Figure 2.47. The effect of increasing concentration is to broaden the range of ionic conductivity and shift the whole conductivity curve to lower $p_{\rm O_s}$ values.

Most of the useful oxide electrolytes developed so far are based on ThO_2 . CeO_2 , HfO_2 and zirconia, though some other systems have also been described. For an earlier review see Etsell and Flengas (1970). The common structure which sustains high oxygen ion conduction is the "fluorite structure". The fluorite structure for MO_2 (M = metal ion Th, Ce etc) is shown in Figure 2.48. In this structure there are a large number of octahedral interstitial voids. Each metal cation is surrounded by eight

Fig. 2.47 Schematic representation of the dependence of conductivity of any oxide ion electrolyte on oxygen partial pressure for samples doped with different concentrations of allovalent anion (Ca^{2+} , Y^{3+} etc.).

©North-Holland Publishing Company, 1981

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN: D 444 86039 8

Publishers:

North-Holland Publishing Company - Amsterdam New York Oxford

Sole distributors for the U.S.A. and Canada:

Elsevier North-Holland, Inc. 52 Vanderbilt Avenue, New York, N.Y. 10017

PRINTED IN THE NETHERLANDS

LIBRARY
UNIVERSITY OF ALBERTA

CRC

MATERIALS SCIENCE AND ENGINEERING HANDBOOK

THIRD EDITION

James F. Shackelford

Professor of Materials Science and Engineering Division of Materials Science and Engineering and

Associate Dean of the College of Engineering University of California, Davis

William Alexander

Research Engineer Division of Materials Science and Engineering University of California, Davis

CRC Press

Boca Raton London New York Washington D C

Electrical Properties

Table 291. RESISTIVITY OF CERAMICS (SHEET 4 OF 6)

	(OILLI I		
Class	Ceramic	Resistivity (Ω–cm)	Temperature Range of Validity
Oxides	Aluminum Oxide (Al ₂ O ₃)	>10x10 ¹⁴	25°C
t.		2x10 ¹³	100"C
		lx10 ¹³	300°C
ļ		6.3x10 ¹⁰	500°C
i		5.0x10 ⁸	700°C
<u>.</u>		3.0x10 2x10 ⁶	1000°C
		2x10-	1000 C
£. 1	Beryllium Oxide (BeO)	>10 ¹⁷	25°C
		>10 ¹⁵	300°C
		1-5x10 ¹⁵	500°C
		1.5-2x10 ¹⁵	700°C
H.		4-7x10 ¹⁵	. 1000°C
	Magnesium Oxide (MgO)	1.3x10 ¹⁵	27°C
		0.2-1x10 ⁸	1000°C
		4x10 ²	1727°C
	Silicon Dioxide (SiO ₂)	10 ¹⁸	room temp.
N.	Zirconium Oxide (ZrO2)		
	(stabilized)	2300	700°C
	(stabilized)	77	1200°C
	(stabilized)	9.4	1300°C
	(stabilized)	1.6	1700 ° C
	(stabilized)	0.59	2000°C
	(stabilized)	0.37	2200°C

Ameridata compiled by J.S. Park from No. 1 Materials Index, Peter T.B. Shaffer, Plenum Press, 1987 York, (1964); Smithells Metals Reference Book, Eric A. Brundes, ed., in association with fuller Research Institute Ltd. 6th ed. London, Butterworths, Boston, (1983); and Ceramic Successful Ceramic Society (1986–1991).

Library of Congress Cataloging-in-Publication Data

Date: 10/11/2006 Time: 4:32:20 PM

CRC materials science and engineering handbook / [edited by] James F. Shackelford, William Alexander.—3rd ed.

p. cm.

Includes bibliographical references and index.

ISBN 0-8493-2696-6 (alk. paper)

 Materials—Handooks, manuals, etc. I. Shackelford, James F. H. Alexander, William, 1950 Feb. 13-

TA403.4 .C74 2000 620.1'1--dc21

00-048567

This hook contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.

@ 2001 by CRC Press LLC

No claim to original U.S. Government works International Standard Book Number 0-8493-2696-6 Library of Congress Card Number 00-048567 Printed in the United States of America 1 2 3 4 5 6 7 3 9 () Printed on acid-free paper THIS PAGE BLANK (USPTO)

insight review articles

Materials for fuel-cell technologies

Brian C. H. Staube' & Angelika Habizell I

. "Option to be interested from a first proper to the part of the property of

Hatt with search thanked energy fleechy and obstained caugh with high whiching seat ket tableaus or platinists. Havened before fatted throughing the glass of splitted has been facilitied provides an adeal, special hands have to be attached. These beast include applicate during of their hand the development in during mixerial is hard and beast. Treate the facility politicate during a distribution of the during any London facilities as passes, and refuglies on an interding that executed beast of the any three tableaus. Here the animation needs progress in the search and distribution of interdisciplination.

The type of that talls under active development are elemented in Fig. 11 for aching in act of (1607), demographents of the active act of (1607), demographents of the other polynesis elemented and the tall (1906) and management active active of the other active act

Summary of Comments on Steele

Page: 1

insight revious articles

From: 2281 425-455-1046 To: USPTO

insight roview arricks

and there have alreading and the contaction in make must in the contaction of beginning the contaction of the contaction of the must be in a long that the contaction of the must be reduced to the contaction of the contaction of the must be reduced to the contaction of the contactio traces of CO, or methanul in the DMHC, a Figure 3 CU Libration on Plana anacht des Lindes, eanwick also, 50 cm², priviais, maid bachtigs, 40 4 fing cord", images shore, 80 °C; pactore. 3 km; anacht hai neiwante. 50 kill, 2 xill. (G), 15% H; coahocht, de filium ed. 50)

opinineedforweinfoeleefts (wild kink groups footsily S degree and en dickerso of it

PAGE 29/35 * RCVD AT 10/11/2006 7:32:00 PM [Eastern Daylight Time] * SVR:USPTO-EFXRF-3/14 * DNIS:2738300 * CSID:GJH * DURATION (mm-ss):14-44

hisight review articles

is describent in operating anomalies designation.
Although VK is still the towned character maintain to KORC and ky oberthous deliverantialism and without particular consistent.

the me of variethese therrobjes und as CCO cell questing from a cool me have efficient and for the presentation of the presentation of client and the present a fact of the cool of the co

Page: 6

insight raview articles

insight reniem articles

יייייייייייייייייייייייייייייייייייייי	1
the free dialyst epititized for the reduction of gavern, whereat the	ŧ,
wednest obstructe is designed to approximate the feet and the feet	ş
Constitution of the consti	13
Compared the transmits the need to cell scaling and exactent	!!!
Current-vollage (1-1) characteristics have been reported? But the	1
publishmidgle medinbehangaredwid camina or facengaland	1
chritically also catalyse the extensed extrastion of the fact. The tank	ž
Remarked by these studies restricts has should another the	ī
fortiberation of whall shoulds no that the constraint due to the control of	ŝ
the state of the s	
I should be defined on the first wife of some simple.	-
Charles and the second of the	5
ווה טרי שם של ביו בעול היו להיו להיו להיו היו היו היו היו היו היו היו היו היו	Ξ
Configuration	

Date: 10/11/2006 Time: 4:32:20 PM

Attachment 4

Page 35 of 35

Spar Plug use alumina since it is electrically insulator:

http://vshsp.en.alibaba.com/search/offer

Auto Ignition System use alumina since it is an insulator:

http://starsparkplug.en.alibaba.com/offerlist.html

Alumina insulating coating:

http://www.freepatentsonline.com/6844023.html

Shanghai Morgan Matroc Technical Ceramics Co., Ltd

High efficiency alumina heat-electric insulator for welding and heat treatment. Morgan Technical Ceramics Shanghai produces a complete range of ceramic ... www.morganmatrocsh.com/e_chanpin_7.htm - 15k - <u>Cached</u> - <u>Similar pages</u>

Ortech industry -table containing alumina 's properties:

http://www.ortechceramics.com/alumina.htm

<u>Ceramic Tube and Ceramic Rod Products</u> - (111 companies)

Ceramic tube and ceramic rod products are suitable for use in applications requiring high temperature strength, erosion resistance, electrical or thermal insulation, and other specialized characteristics. <u>Search by Specification I Learn more about Ceramic Tube and Ceramic Rod Products</u>

Alumina insulator:

http://www.prgtech.com/engineering.html

Alumina use in thermocouple assembly as a insulator:

PDFJ Noble Metal

File Format: PDF/Adobe Acrobat elements, elements with insulators or assemblies. A typical, assembly includes a head, alumina insulators and a protecting ... www.watlow.com/literature/specsheets/files/sensors/ricnom0305.pdf - Similar pages

Page 8 -shows use of alumina tube in an assembly as a insulator:

Henry Rohrs poster

File Format: PDF/Adobe Acrobat

Alumina Insulator. Nickel Seat. Gold O-Ring. SS O-Ring Seat. Vespel Support. Sapphire
Ball. PZT Bimorph. Pulsed Valve. The pulsed valve consists of a ...

www.chemistry.wustl.edu/~msf/ASMS98/Pshenry98.pdf - Similar pages

Goodfellow- a table listing volume resistivity of alumina >10¹⁴ ohm-cm.:

http://www.azom.com/details.asp?ArticleID=2103

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.