- In R, you need to install the "Hmisc" package first, and then load it:
- > library(Hmisc) # Needed for correlation
- Our data frame is called "covary" and looks like this:

Participant	Study [‡] Time	Exam [‡] Score	Mean_Exam_Score	Mean_Study_Time
1	14	5	6.4	14.6
2	15	7	6.4	14.6
3	16	7	6.4	14.6
4	13	6	6.4	14.6
5	15	7	6.4	14.6

- To calculate Pearson's R for these two variables we type:
- > rcorr(covary\$`Study Time`, covary\$`Exam Score`)

The Pearson's r value is 0.69 - but it is not significant as p
= 0.20