

Automatic Keyphrase Extraction for News Media

"Want information, not documents"

--User

Supervised By:

Dr. Dhaval Patel

Computer Science Department

Presented By:

Nikita Jain

14535031

News Observatory System for Evolving World Events

News Headlines for World Events

Keyphrases for World Events Paris attacks The Gulf **Bihar Polls** Sheena Bora murder case **Onward Robotic Soldiers**

1984 Anti-sikh Riots

The Roadmap

- 1. Introduction
- 2. Problem Statement
- 3. Related Work
- 4. <u>Literature Gaps</u>
- 5. Keyphrase Quality Checkpoints
- 6. News-KEA
- 7. Experimental Work
- 8. Weakness of our Approach
- 9. Conclusion & References

Automatic Keyphrase Extraction for News Media

- Group of WORDS, i.e., Short in length
- Expresses an Important CONCEPT
- NO structure or grammatical RULES

Keyphrases in other social media

Keyphrases used by various social media to summarize their trending content

An Example of Keyphrases in News

Keyphrase uses

- Better summarisation
- Better indexing
- Better browsing
- Better metadata construction
- Classification and clustering
- Topic/content identification
- Back of book/document

Some more Applications

Keyphrases extracted from News corpus can be used News channels,

- Make it easy to skim news articles by Highlighting keyphrases.
- Search temporal events by using keyphrases as index terms.
- Refine news queries on search engine by using keyphrases as suggestions.
- Find similar news content by using keyphrases as a similarity metric.

Problem Statement

For a given concept*, mine *Interesting Keyphrases* from *News media information*, where a keyphrase is considered interesting if when it is shown to N persons, and more than N/2 persons find it interesting on the basis of *frequency*, *collocation* and *completeness* of the topic covered by the output set of keyphrases.

^{*} Concept can be any name, place, event, organization, etc.

Related Work

Existing work focuses more on extracting keyphrases from standard passage text

- Keyphrase Extraction (KEA) (I. H. Witten, 2005)
 - Parameters laid algorithm, Supervised learning task
 - None of the keyphrases describe events properly
 - For special topic, re-work is required
- Microsoft Web N-Gram Service (K. Wang, 2010)
 - Gives maximum likelihood of a phrase present
 - Online Algorithm, Limited number of token request
 - Computationally Expensive, as many combinations are tested
 - Large response time
- **ToPMine** (Ahmed El-Kishky, 2014)
 - Topic Modelling approach, converts Bag of (Words → Phrases)
 - Parameters laid algorithm
 - Subset is also returned as a keyphrase
 - Stopwords are present in keyphrase

None of them has leveraged News Media information characteristics

General flow work for Keyphrase Extraction (Based on Related Work)

Literature Gaps

- Language Dependent: No extensive work for Asian languages.
 - Even if we translate the previous work, results will not be good, as reordering of phrases in translation leads to dis-fluencies.
- Word segmentation: Identifying the boundaries of word in continuous text, is a fundamental problem of NLP. For News media data its further challenging.
- *Time Complexity:* Baseline systems like Microsoft Web N-gram have very high time complexity and are not good for streaming data like News media.
- Scalability: Systems having online services have limited no of token request. Systems like KEA, large size of dataset is required.
- Pre-trained Model: Baseline systems depends on a pre-trained datasets, hence do not generalize well on new evolving domains.

Keyphrase Quality Checkpoints

Qualities to validated the candidate keyphrase generated by the algorithms:

1. Frequency: Gives the list of most probable n-grams one will encounter for the concept.

PMI Mean and Standard Deviation

2. Collocation: As juxtaposition of words deviates from what is expected, hence it shows 'interestingness' and 'informative'.

Term Weights TF IDF X_i measure Term Length TF-IDF

3. Completeness: If long frequent phrase satisfy the above criteria, then their subsets also will satisfy the criteria. Phrase-construction algorithm should determine appropriate size.

Human Interference

News-KEA: System Architecture

Main Contribution

News-KEA: Preprocessing

Input: English News Headline

Output: Preprocessed English News Headline

		_
String Regular Expression	Replaced String	
"(_+"	"" (empty string)	
"(.)+"	"" (empty string)	
"@"	"at"	Character Penlacemen
"(!)+"	"" (empty string)	Character Replacemen
٠٠٠)	"" (empty string)	
"(?)+t"	" not"	
"(?)+"	"" (empty string)	
"(?)+s"	"\'s"	Stomming
"(?)+r"	" are"	Stemming
"(?)+m"	" am"	
"(?)+ve"	" have"	
token starting with "http"	token deleted	Sentence Delimiting
	•	—]

News-KEA: Preprocessing (Example)

Example 1

CADENCE OF HONOR: Floyd Central, Lanesville, New Albany cadets march for veterans

Removal of {Lowercase, Comma}

cadence of honor: floyd central lanesville new albany cadets march for veterans

Example 2

Syrian refugee crisis: It's about compassion and security

Removal of {Lowercase, apostrophe}

syrian refugee crisis: it about compassion and security

News-KEA: Candidate Identification

Input: Preprocessed English News Headline

Output: Phrases

Process: Not every character is of interest. We identified a list of interesting characters.

```
Interested Char: { : , ' ' , " " , - }*
```

Section Distribution Vector:

- Using *Interested Char* we divide the headline into different chunks (vector)
- Smallest length vector is passed to next stage

News-KEA: Candidate Identification (Example)

Interest Char (':')
<u>cadence of honor</u>: floyd central lanesville new albany cadets march for veterans

■ Interest Char ('...')

Keyphrase

Keyphrase

zoeller launches 'freeze identity thieves' initiative

News-KEA: Keyphrase Feature

Input: Phrases

Output: Keyphrases

Process: Rank the input set using filters and add Hashtags to the set.

Filters Used:

- Term Frequency (TF)
- Inverse Document Frequency (IDF)
- Stopwords

Hashtags*:

Word having prefix (#), is considered as hashtag

^{*} To be done

News-KEA: Keyphrase Selection Model

Input: Keyphrase Corpus, User request concept

Output: Keyphrases for user request concept

Process:

- Select unique keyphrases having similarity with user request
- Use External Knowledge base to find similar candidate keyphrases* Eg. {"PM Modi", "Narendra Modi", "Modi" }
- Remove less informative paraphrases*

Eg. {"Sheena Bora Muder Case", "Sheena Bora Case"}

The Roadmap

- 1. Introduction
- 2. Problem Statement
- 3. Related Work
- 4. <u>Literature Gaps</u>
- 5. Keyphrase Quality Checkpoints
- 6. News-KEA
- 7. Experimental Work
- 8. Weakness of our Approach
- 9. Conclusion & References

Experimental work (Methods)

To evaluate our algorithm's keyphrases with other baseline models, we perform comparative and qualitative test using following models:

- Baseline Model:
 - KEA-I
 - KEA-II
 - ToPMine
 - Microsoft Web N-Gram
- Proposed Model
 - News-KEA

Experimental work (Data)

Data Type:

- Training
 - Passage Test (25 Journal Articles, 25 Keys, English)
 - News Headlines (1.1 million, English, 3680 Keys)
 - Bing Search Query (Online, English)
- Testing
 - News Headlines (2.2 million, English) and (3 million, English)

Experimental work (Model Training)

We trained 5 models for evaluating the keyphrases

■ Baseline Model:

KEA-I	Passage Text	
KEA-II	News Headline	
ToPMine	No training dataset	
Microsoft Web N-Gram	Bing Search Query	

- Proposed Model
 - News-KEA

Experimental work (Model Testing)

We tested 5 models for evaluating the keyphrases

■ Baseline Model:

KEA-I	News Headline (3 million)
KEA-II	News Headline (2.2 million)
ToPMine	News Headline (3 million)
Microsoft Web N-Gram	News Headline (3 million)

- Proposed Model
 - News-KEA

News-KEA	News Headline (3 million)
----------	---------------------------

Experimental work (Comparative Evaluation)

Following are the keyphrases returned by respective models for the Concept: "Scam".

M. Web N-Gram [222 Hits]	ToPMine [48 Hits]	News-KEA [77 Hits]	KEA-I [0 Hits]
Saradha scam	Saradha scam	saradha scam	
Coal scam	Coal scam	coal scam	
scammers	Saradha scam <u>says</u> CBI	cash-for-vote scam	
2g scam	scam case	fodder scam	KEA-II [0 Hits]
A big scam	Coal scam case	peb scam	
<u>In</u> adarsh scam	scam <u>accused</u>	chitfund scam	
Scam <u>people</u>	Coal scam case <u>says</u>	Ipl scam	

Testing data contained 2252 news headlines out of 1.1 million* headlines related to scams.

^{*} Preprocessed Headlines

Experimental work (Comparative Evaluation)

Scoring of Models

Model Name	Frequency	Colocation	Completeness	Score (Out of 3)
KEA-I		1		1
KEA-II	+	1 -		1.25
Microsoft Web N-Gram	1	1		2
ToPMine		1		1.5
News-KEA	1	*	1	2.75

^{*} As News Headlines have high percentage of Juxtaposition, (892728 headlines out of 1000000 = 89.27%)

Conducted User Study

- To assets the keyphrases a Google form was designed.
- No of questions: 10 {Topics} X 3 {Diversity, Meaningfulness, Best Result}.
- To ensure the un-biasedness of results, we randomly renamed each algorithm result.
- We emailed students of Computer Science Department, IIT Roorkee to invite them to participate in the experiment.
- Collected overall 120 responses, selected top 112 for inter-rater reliability test.

10 Topics: Events {FIFA, 26/11 attack, Earthquake}, Entities {Google, Greece, Obama, Salman Khan}, Concept {Scam, Budget}.

Result:

For keyphrases on the event "Earthquake", given by News-KEA (Algorithm 3), TopMine (Algorithm 1), Microsoft web N-gram (Algorithm 2).

Overall result-

Best Coverage/Diversity: News-KEA

Meaningfulness: ToPMine

Best Algorithm: News-KEA

Keyphrase Algorithms Survey on

'Earthquake'

Inter-Rater Reliability Test

- Measured the degree to which different judges or raters agree in their assessment decisions.
- As human observers will not necessarily interpret answers the same way

Statistical measure of inter-rater reliability applied: Fleiss Kappa We obtained slight agreement value for correlation coefficient, which indicates the stability of the scores.

Weakness of Our Approach

- Paraphrases are there.
- Number of phrases extracted are less.
- To annotate phrases in News articles, snippets, or other than headlines, our approach depends on external training models like KEA.

Conclusions

Contient tong: buttered Mariase extraction

- Proposed a system automatic keyphrase extraction for News Media Enlargement of the keyphrase corpus
 Compared three algorithms for News related keyphrase extraction
 Integrate tags with keyphrases clustering ble News information
- Personadization with reppartagessesting
- To make the algorithm completely language independent

Key References

- Ahmed El-Kishky, Y. S., Scalable Topical Phrase Mining from Text Corpora, (VLDB Endowment, 2014).
- K. Wang, C. Thrasher, E. Viegas, Xiaolong, Bo-june (Paul) Hsu., An Overview of Microsoft Web N-gram Corpus and Applications, (NAAACL HLT 2010).
- Gao, J. N., A Comparative Study of Bing Web N-gram Language Models for Web Search and Natural Language Processing, (ACM SIGIR, 2010).
- I. H. Witten, G. W.-M., Kea: Practical automatic keyphrase extraction, (*Fourth ACM conference on DL*, 2005).
- Turney, P., Learning to Extract Keyphrases from Text, (Information Retrieval, 2000).

End of Presentation

