

R at Scale:

Using Apache Spark & Adatao

Christopher Nguyen, PhD Co-Founder & CEO

Agenda

- I. R + Big Data Science: Problem Statement
- 2. Big Compute: Solution
- 3. In-Memory Big-Compute: Why & When
- 4. Apache Spark & Adatao: Overview & Demo

Christopher Nguyen, PhD
Adatao Inc.
Co-Founder & CEO

- Former Engineering Director of Google Apps (Google Founders' Award)
- Former Professor and Co-Founder of the Computer
 Engineering program at HKUST
- PhD Stanford, BS U.C. Berkeley Summa cum Laude
- Extensive experience building technology companies that solve enterprise challenges

Conventional approach:

Work on sub-sampled data

Parallel computing approach: Work directly on HDFS

Big Data & Big Compute Past & Present

How Have We Defined "Big Data"?

Old Definition

Huge Volume
High Velocity
Great Variety

New Definition

(Machine) Learn from Data

"Big Compute" Defined

Business Intelligence Big Insights Predictive Intelligence Distributed **Big Compute** • Data Mining & Machine Learning Distributed Big Data Storage & Query

What's Been Missing In the Big-Data Stack?

Alphabet Soup

Key components in the Enterprise Data Flow

Hadoop Analytic Landscape

ADVANCED

Interactive **Big Data** Application

BASIC (SQL)

Impala, Stinger, Presto, Platfora,

HiveQL

MapReduce

RDBMS

Hybrid

HDFS

Hadapt

HYBRID & BATCH

INTERACTIVE & FAST

In-Memory Big Compute Why? When?

Big-Compute Value vs Cost Cross-Over Points

The Future Increasingly Favors RAM

Latency Trends

Bandwidth Trends

Unified Big Compute

Comparison:

Hadoop MapReduce vs. Spark Architecture

Apache Spark: Big-Compute Engine

A Compute Engine for Hadoop Data that is:

Fast

Up to 100x Faster than MapReduce

Sophisticated

Can run today's most advanced algorithms

Fully Open Source

One of most active projects in Big Data

Unified Workbench for Collaborative Data Intelligence

Adatao Architecture

Big Insights

Business Intelligence Data Intelligence

Big Compute

Machine Learning
Data Mining

Big Data

DDF Client

PA Client

RHadoop

```
library(rmr2)
library(rhdfs)
hdfs.init()
from.dfs(mapreduce(
  input = '/tmp/airline.csv',
  input.format = make.input.format("csv", sep = ","),
 map = function(., data) {
    # filter out non-numeric values (header and NA)
   filter = !is.na(data[,15])
    data = data[filter,]
    # emit composite key (airline|year|month) and delay
    keyval(
    data[,c(9,1,2)],
    data[,15, drop = FALSE])
  reduce = function(k,delays) {
    keyval(k, mean(delays[,1]))
```

SparkR

```
library(SparkR)
sc <- sparkR.init()
airlineRDD <- textFile(sc, "/tmp/airline.csv")

map.func <- function(line) {
   data <- unlist(strsplit(line, ","))
   if (data[15] != "NA") { list(data[c(9,1,2)],c(as.integer(data[15]), 1L)) }
}

avg.arrdelay <- lapply(
   reduceByKey(lapply(airlineRDD, map.func),"+",2L),
   function(row) { list(row[[1]], row[[2]][1]/row[[2]][2]) }
)</pre>
```



```
df < \mbox{-} \mbox{ adatao.sql2ddf('select * from airline')} avg.arrdelay < \mbox{-} \mbox{ adatao.} \mbox{aggregate} (arrdelay ~ uniquecarrier + year + month, df, FUN=mean)
```

Feature Comparison

	RHadoop	SparkR	Adatao
Support Hive Tables	×	×	✓
Support HDFS	✓	✓	✓
Ability to Write MapReduce in R	✓	✓	✓
Native R Idioms	×	×	✓
DataFrame Abstraction	×	×	✓
Data Extraction	×	×	✓
Data Transformation	Raw	Raw	Idiomatic
Data Exploration	×	×	✓
Speed	×	✓	//

Demo Deployment Diagram

Adatao Benefits

Stop Moving Data Around

Data Science Directly on Hadoop Datasets

Native R Data.frame Experience

Table-like Abstraction on Top of Big Data

Focus on Analysis, not MapReduce

High-Level Programmable API (DDF)

Zero-Effort Model Deployment

Transactional & Analytic Support in One Stack

Model Terabytes in Seconds
Powerful, Fast, Interactive Data Science

Easily Visualize & Collaborate

Beautiful Charting, Dashboarding & RT Collaboration

Adatao Demo

To learn more about Adatao & DDF contact us, or come to our Spark Summit talk

www.adatao.com