The Theoretical Minimum Quantum Mechanics - Solutions L01E02

M. Bivert

January 1, 2023

Exercise 1. Show that the inner product defined by Eq. 1.2 satisfies all the axioms of inner products.

Let us recall the two axioms in question:

Axiom 1.

$$\langle C|\Big(|A\rangle + |B\rangle\Big) = \langle C|A\rangle + \langle C|B\rangle$$

Axiom 2.

$$\langle B|A\rangle = \langle A|B\rangle^*$$

Where z^* is the complex conjugate of $z \in \mathbb{C}$

And let us recall Eq. 1.2 of the book:

$$\langle B|A\rangle = \begin{pmatrix} \beta_1^* & \beta_2^* & \beta_3^* & \beta_4^* & \beta_5^* \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \end{pmatrix}$$
$$= \beta_1^* \alpha_1 + \beta_2^* \alpha_2 + \beta_3^* \alpha_3 + \beta_4^* \alpha_4 + \beta_5^* \alpha_5$$

For the first axiom, considering $\langle C| = (\gamma_i^*)$:

$$\langle C|(|A\rangle + |B\rangle) = (\gamma_1^* \quad \gamma_2^* \quad \gamma_3^* \quad \gamma_4^* \quad \gamma_5^*) \begin{pmatrix} \alpha_1 + \beta_1 \\ \alpha_2 + \beta_2 \\ \alpha_3 + \beta_3 \\ \alpha_4 + \beta_4 \\ \alpha_5 + \beta_5 \end{pmatrix}$$

$$= \gamma_1^*(\alpha_1 + \beta_1) + \gamma_2^*(\alpha_2 + \beta_2) + \gamma_3^*(\alpha_3 + \beta_3) + \gamma_4^*(\alpha_4 + \beta_4) + \gamma_5^*(\alpha_5 + \beta_5)$$

$$= (\gamma_1^* \alpha_1 + \gamma_2^* \alpha_2 + \gamma_3^* \alpha_3 + \gamma_4^* \alpha_4 + \gamma_5^* \alpha_5) + (\gamma_1^* \beta_1 + \gamma_2^* \beta_2 + \gamma_3^* \beta_3 + \gamma_4^* \beta_4 + \gamma_5^* \beta_5)$$

$$= (\gamma_1^* \quad \gamma_2^* \quad \gamma_3^* \quad \gamma_4^* \quad \gamma_5^*) \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \\ \alpha_5 \end{pmatrix} + (\gamma_1^* \quad \gamma_2^* \quad \gamma_3^* \quad \gamma_4^* \quad \gamma_5^*) \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \end{pmatrix}$$

$$= \langle C|A\rangle + \langle C|B\rangle \quad \Box$$

Before diving into the second axiom, let us observe that for $(a,b) = (x_a + iy_a, x_b + iy_b) \in \mathbb{C}^2$:

$$(ab)^* = ((x_a + iy_a) \times (x_b + iy_b))^*$$

$$= (x_a x_b - y_a y_b + i(x_b y_a + x_a y_b))^*$$

$$= x_a x_b - y_a y_b - i(x_b y_a + x_a y_b)$$

$$= (x_a - iy_a) \times (x_b - iy_b)$$

$$= a^* b^*$$

Or, perhaps more simply using complex numbers' exponential's form:

$$(ab)^* = \left(r_a r_b e^{i(\theta_a + \theta_b)}\right)^*$$
$$= r_a r_b e^{-i(\theta_a + \theta_b)}$$
$$= a^* b^*$$

Hence, regarding the second axiom:

$$\langle B|A\rangle = \left(\left(\langle B|A\rangle \right)^* \right)^*$$

$$= \left(\left(\beta_1^* \alpha_1 + \beta_2^* \alpha_2 + \beta_3^* \alpha_3 + \beta_4^* \alpha_4 + \beta_5^* \alpha_5 \right)^* \right)^*$$

$$= \left(\beta_1 \alpha_1^* + \beta_2 \alpha_2^* + \beta_3 \alpha_3^* + \beta_4 \alpha_4^* + \beta_5 \alpha_5^* \right)^*$$

$$= \left(\alpha_1^* \beta_1 + \alpha_2^* \beta_2 + \alpha_3^* \beta_3 + \alpha_4^* \beta_4 + \alpha_5^* \beta_5 \right)^*$$

$$= \left(\left(\alpha_1^* \quad \alpha_2^* \quad \alpha_3^* \quad \alpha_4^* \quad \alpha_5^* \right) \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \end{pmatrix} \right)^*$$

$$= \langle A|B\rangle^* \quad \Box$$