Домашнее задание №2

Бондарь София Группа Б05-021

Двойственность

Задача №1

Условие:

Выведите двойственную задачу для задачи:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|A\mathbf{x} - \mathbf{b}\|_2 + \frac{\lambda}{2} \|\mathbf{x}\|_2^2,$$

введя новую переменную $\mathbf{y} \in \mathbb{R}^m$, такую что $\mathbf{y} = A\mathbf{x} - \mathbf{b}$ и соответствующие ограничения. Параметры: $A \in \mathbb{R}^{m \times n}, \ \lambda \geq 0$. Таким образом, мы получим задачу, которая дает нижнюю оценку на решение для задачи безусловной минимизации.

Решение:

Рассмотрим функцию Лагранжа : $L(x,y,\nu) = ||y||_2 + \lambda/2||x||_2^2 + \nu^T(Ax-b-y)$. Тогда при $x \in \mathbb{R}^n$ инфинум данной функции будет равен:

$$infL = -\nu^T + inf(||y||_2 + \lambda/2||x||_2^2 + \nu^T(Ax - y))$$

$$L_x' = 0 \Longleftrightarrow \lambda x^T + \nu^T A = 0$$

$$L'_{y} = 0 <=> y/||y|| = \nu$$

 $L_x'=0<=>\lambda x^T+\nu^TA=0$ $L_y'=0<=>y/||y||=\nu$ тогда при $x=-A^T\nu/\lambda$ достигается минимум функции и, если выполнено условие $\nu\leq 1$, то достигается минимум функции в нуле. Теперь рассмотрим снова выражение, в которое подставим полученные значения

$$infL = -\nu^T b + inf(||y||_2 - \nu^T y) - \frac{1}{2\lambda} \nu^T (AA^T) \nu$$

$$infL = -\infty$$
 при $\nu \leq 1$, иначе $infL = 0 => max(-\nu^T b - \frac{1}{2\lambda} \nu^T (AA^T) \nu)$

Условие:

[8] Рассмотрим некоторую динамическую систему с дискретным временем, которая в каждый момент характеризуется некоторым состоянием $\mathbf{x}_t \in \mathbb{R}^n, t = \overline{0,T}$. Переход из одного состояния системы в другое осуществляется при помощи выбираемого линейного преобразования:

$$\mathbf{x}_{t+1} = A_t \mathbf{x}_t.$$

В данной задаче мы будем считать, что матрицы A выбираются из некоторого конечного множества $\mathcal{A} \in \left\{A^{(1)} \dots A^{(K)}\right\} \subset \mathbb{R}^{n \times n}$. Наша задача выбрать последовательность матриц $\{A_t\}_{t=0}^{T-1}$, которая минимизирует суммарные "потери"за все время $t=\overline{0,T}$, т.е. мы хотим минимизировать функционал вида $\sum_{i=1}^T f(\mathbf{x}_t)$ для некоторой заданной функции f. Формально эту задачу можно записать в следующем виде:

$$\min_{\substack{\mathbf{x}_1 \dots \mathbf{x}_T \in \mathbb{R}^n, \\ u_0 \dots u_{T-1} \in \{1 \dots K\}}} \sum_{i=1}^T f(\mathbf{x}_t),$$

$$s.t. \mathbf{x}_{t+1} = A^{(u_t)} \mathbf{x}_t, t = \overline{0, T-1}.$$
(1)

Начальное состояние \mathbf{x}_0 считаем данным. Функция f для дальнейшего исследования не обязательно должна быть выпуклой, но мы будем считать, что нам известна ее сопряженная функция $f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \mathbb{R}^n} (\mathbf{y}^\top \mathbf{x} - f(\mathbf{x}))$.

Данная задача является невыпуклой и достаточно тяжело решить её. Вместо этого, мы рассмотрим эвристический подход, основанный на двойственности.

- 1. [2] Найдите двойственную задачу для задачи (1). Выражение для двойственной задачи может содержать $\mathbf{x}_0, A^{(1)} \dots A^{(K)}, функцию f$ и её сопряженную f^* .
- 2. [1] Пусть $\nu_1^* \dots \nu_T^* \in \mathbb{R}^T$ есть оптимальное значение двойственной переменной, соответствующей T ограничениям исходной задачи. По данным $\nu_1^* \dots \nu_T^*$ мы будем искать u_t следующим образом:

$$(\tilde{u}_0 \dots \tilde{u}_{T-1}) \in_{\{u\}_{t=0}^{T-1} \in [K]^T} \inf_{x_1 \dots x_T} L(x_1 \dots x_T, u_0 \dots, x_{T-1}, \nu_1^* \dots, \nu_T^*).$$

Опишите алгоритм нахождения $\tilde{u}_0 \dots \tilde{u}_{T-1}$ таким способом. В данном пункте Вы должны описать, какие задачи оптимизации Вы решаете на каждом шаге и что Вы получаете в результате. Задачи оптимизации при построении алгоритма должны быть выписаны настолько просто, насколько возможно, и решены аналитически, если это возможно.

3. [1] Рассмотрим случай $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}Q\mathbf{x}$, где $Q \in \mathbb{S}^n_{++}$. Найдите сопряженную функцию $f^*(\mathbf{y})$ для нее.

Решение:

1. Рассмотрим функцию Лагранжа : $L(\{x_i\}_{i=1}^T, \{u_j\}_{j=0}^{T-1}, \{\nu_k\}_{k=0}^{T-1}) = \sum_{i=1}^T f(x_i) + \sum_{i=0}^{T-1} \nu_i^T(x_{i+1} - A^{u_i}x_i)$

Вытащим из первой суммы последнее слагаемое а из второй суммы первое: $L(\{x_i\}_{i=1}^T, \{u_j\}_{j=0}^{T-1}, \{\nu_k\}_{k=0}^{T-1}) = \sum_{i=1}^{T-1} (f(x_i) + (\nu_{i-1}^T - \nu_i^T A^{u_i}) x_i) + f(x_T) - \nu_0^T A^{u_0} x_0 + \nu_{T-1}^T x_T.$

По условию
$$f^*(\mathbf{y}) = \sup_{\mathbf{x} \in \mathbb{R}^n} \left(\mathbf{y}^\top \mathbf{x} - f(\mathbf{x}) \right)$$
. А это значит, что $-f^*(-\nu) = -\sup_x (-\nu^T x - f(x)) = \inf_x (\nu^T x + f(x))$

Возвращаясь к первому равенству, из второго тогда будет следовать:

$$\inf_{x} L(\{x_i\}_{i=1}^T, \{u_j\}_{j=0}^{T-1}, \{\nu_k\}_{k=0}^{T-1}) = -\nu_0^T A^{u_0} x_0 - f^*(\nu_{T-1}) - \sum_{i=1}^{T-1} f^*(A^{u_i} \nu_i - \nu_{i-1})$$

Двойственная задача выражается так:

$$h(\nu) = -f^*(\nu_{T-1}) - \max_A(\nu_0^T A x_0) - \sum_{i=1}^{T-1} \max_A(f^*(A\nu_i - \nu_{i-1}))$$

- 2. Чтоб найти \tilde{u}_t :
 - Переберем все матрицы, так чтоб максимизировать следующие величины:
 - Для t=0 хоттим максимизировать $\nu_0^T A x_0$
 - Для остальных t хотим максимизировать $f^*(A\nu_t \nu_{t-1})$
 - Ответом является номер лучшей (для максимизации) матрицы

3. Если
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\top}Q\mathbf{x}$$
, то $f^*(y) = \sup_x (y^T x - f(x)) =>$

$$\nabla_x = y - Qx = 0 \Longrightarrow x = Q^{-1}y \Longrightarrow$$

$$f^*(y) = \frac{1}{2}y^T Q^{-1}y$$

Условия оптимальности

Задача №3

Условие:

Пусть параметры $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n_{++}$ имеют положительные компоненты, при этом компоненты первого вектора отсортированы в порядке убывания $a_n \geq a_k \geq \dots a_1 > 0$, а компоненты второго вектора определены, как $b_k = \frac{1}{a_k}$. Выведите условия ККТ для задачи

$$\min_{\mathbf{x} \in \mathbb{R}^n} -\log(\mathbf{a}^{\top}\mathbf{x}) - \log(\mathbf{b}^{\top}\mathbf{x})$$

s.t. $\mathbf{x} \ge 0$, $f1^{\top}\mathbf{x} = 1$

и покажите, что вектор $\mathbf{x} = \left(\frac{1}{2}, 0, 0 \dots, 0, 0, \frac{1}{2}\right)^{\top}$ является решением этой задачи.

[1] Пусть $A \in \mathbb{S}_{++}^n$. Примените результат первой части задачи для вектора $\mathbf{a} = (\lambda_n \dots \lambda_1)^\top$, собственные значения в котором расположены в порядке убывания, чтобы доказать неравенство Канторовича:

$$2\left(\mathbf{u}^{\top}A\mathbf{u}\right)^{\frac{1}{2}}\left(\mathbf{u}^{\top}A^{-1}\mathbf{u}\right)^{\frac{1}{2}} \leq \sqrt{\frac{\lambda_n}{\lambda_1}} + \sqrt{\frac{\lambda_1}{\lambda_n}},$$

где вектор $\mathbf{u} \in \mathbb{R}^n$, $\|\mathbf{u}\|_2 = 1$.

Hint: Если $A\mathbf{v} = \lambda \mathbf{v}$ и A обратимая матрица, то $A^{-1}\mathbf{v} = \frac{1}{\lambda}\mathbf{v}$.

Решение:

1. а. Задача имеет вид min $f_0(x) = -log(a^Tx) - log(b^Tx)$, s.t. $f_i(x) = -x_i \le 0$, $h(x) = \sum x_i - 1 = 0$

При этом это задача выпуклой оптимизации $(f_i(x)$ — выпуклые, h(x) - афинная -log (a^Tx) и - $\log(b^Tx)$ выпуклые), а значит ККТ - достаточные условия

KKT:

$$f_i(x) \le 0$$

$$h(x) = 0$$

$$\lambda_i^* \ge 0$$

$$\lambda_i^* f_i(x) = 0$$

$$\nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) + \nu^* \nabla h(x^*) = 0$$

b. Преобразуя последнее уравнение получим (е - единичный вектор, e_i - вектор со всеми нулями и 1 на і месте) $-\frac{a}{a^Tx}-\frac{b}{b^Tx}-\sum \lambda_i^*+\nu^*=0$

Тогда $x^*=(1/2,0...0,1/2)^T$ удовлетворяет ККТ при $\lambda_2^*=0,\lambda_i^*=-\frac{a}{a^Tx}-\frac{b}{b^Tx}+2$ (i от 2 до n-1), $\nu^*=2$

1 и 2 условия выполняются условие 3: при i=1 , n выполняется равенство, при других:

$$\lambda_i^*=2-rac{2a_i^2+2a_1a_n}{a_i(a_1+a_n)}\geq 0\ (a_n-a_1)(a_i-a_1)\geq 0$$
 - выполнено

4 условие: при і от 2 до n-1 $f_i(x^*) = 0$, те 4 тоже выполнено

Подстановкой x^* в уравнение 5 ККТ убеждаемся, что і компонента обнуляется при і от 2 до n-1. При і = 1 , n $b_i=1/a_i$

 $-rac{2a_i}{a_1+a_n}-rac{2a_1a_2}{a_i(a_1+a_2)}+2=0$ равенство выполняется тогда уравнение 5 выполняется.

2.
$$A = O^T \sum O$$
, $v = Ou = u^T A^{-1} = v^T \sum_{i=1}^{n-1} v = \sum_{i=1}^{n-1} v_i^2 / \lambda_i$ love sonya.

тогда неравенство: $2(v^Ta)^{1/2}(v^Tb)^{1/2} \leq (\lambda_1 + \lambda_n)^{1/2}(1/\lambda_1 + 1/\lambda_n)^{1/2}$

логарифмируем $ln(v^Ta) + \frac{1}{2}ln(v^Tb) \leq \frac{1}{2}(ln(\lambda_1 + \lambda_n) + ln(1/\lambda_1 + 1/\lambda_n))$

$$-ln(\boldsymbol{v}^T\boldsymbol{a}) - \tfrac{1}{2}ln(\boldsymbol{v}^T\boldsymbol{b}) \geq -ln(\boldsymbol{x}^{*T}\boldsymbol{a}) - ln(\boldsymbol{x}^{*T}\boldsymbol{b})$$

тогда x^* - минимум f_0 (тк v, a, b удовлетворяет условиям пункта a) => $f_0(x^*) \le f_0(v)$

Рассмотрим задачу проекции на симплекс:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{x} - \mathbf{y}\|^2$$
s.t.
$$\sum_{i=1}^n x_i = 1, \mathbf{x} \ge 0.$$

- 1. [2] Выведите условия ККТ, упростите их и сведите задачу к нахождению двойственной переменной $\nu \in \mathbb{R}$, соответствующей единственному ограничению равенству в исходной задаче.
- 2. [1] Постройте алгоритм для нахождения оптимального ν с учетом зависимости $x(\nu)$, полученной в предыдущем пункте. Оцените сложность данного подхода.

Решение:

- 1) Для начала запишем необходимые условия ККТ:
- a. $x, \lambda \geq 0$
- b. $\sum x_i = 1$
- c. $\lambda_i x_i = 0$
- d. $2x 2y \lambda + \nu e = 0$

из этих условий следует, что $x_i = max(0, y_i + \nu e/2)$.

Для таких х выполнены всу условия, кроме условия b. Для его выполнения необходимо выполнение следующего равенства: $\sum max(0, y_i + \nu e/2) = 1$

- 2) Теперь рассмотрим нужный алгоритм для поиска оптимального значения, для этого введем функцию $l(\nu) = \sum max(0, y_i + \nu e/2) = 1$.
- а. рассмотим отрезок от 0 до C (так как при рассмотрении функции нетрудно заметить, что при nu=0 она тоже равна 0, а при $\nu=\infty$ она равна бесконечности и при это она монотонна на этом участке.)
- b. выберем мелкость разбиения (M разбиение) и разобьем наш отрезок
- с. теперь будем рассматривать значения в получившихся точках (концы отрезка нашего разбиения). С помощью бинпоиска мы сможем найти решение.

На каждом шаге мы считаем значение функции l за O(n), бинпоиск будет работать за log(|M|) - итого сложность данного подхода O(nlog(|M|))

Условие:

В данной задаче мы докажем следующий геометрический результат:

Пусть C есть многогранник в \mathbb{R}^n вида $C = \{\mathbf{x} | -1 \leq \mathbf{a}_i^\top \mathbf{x} \leq 1, i = \overline{1,p}\}$, такой что $\sum_{i=1}^p \mathbf{a}_i \mathbf{a}_i^\top \succeq 0$. Тогда рассмотрим эмипсоид $\mathcal{E} = \{\mathbf{x} | \mathbf{x}^\top Q^{-1} \mathbf{x} \leq 1\}, Q \in \mathbb{S}_{++}^n$ максимального объема, такой что он вписан в C, т.е. $\mathcal{E} \subseteq C$. Тогда $\sqrt{n}\mathcal{E} = \{\mathbf{x} | \mathbf{x}^\top Q^{-1} \mathbf{x} \leq n\}$ содержит C.

- [1] Покажите, что $\mathcal{E} \subseteq C$, тогда и только тогда, когда $\mathbf{a}_i^\top Q \mathbf{a}_i \le 1, i = \overline{1, p}$. *Hint:* Может быть полезным представить эллипсоид в виде $\mathcal{E} = \{Q^{1/2}\mathbf{y} || ||\mathbf{y}||_2 \le 1\}$.
- [2] Объем эллипсоида $\mathcal E$ пропорционален $(\det Q)^{1/2}$. Тогда согласно пункту , мы можем определить матрицу Q эллипсоида $\mathcal E$ как решение следующей задачи:

$$\min_{Q \in \mathbb{S}^n} -\log \det Q$$
s.t. $\mathbf{a}_i^{\top} Q \mathbf{a}_i \leq 1, i = \overline{1, p}.$ (2)

Пусть Q является оптимальным решением задачи (2). Тогда используя условия ККТ для этой задачи, покажите, что

$$\mathbf{x} \in C \Rightarrow \mathbf{x}^{\top} Q^{-1} \mathbf{x} < n$$

T.e. $C \in \sqrt{n}\mathcal{E}$.

Решение:

1. $\mathcal{E} = \{Q^{1/2}\mathbf{y}||\|\mathbf{y}\|_2 \le 1\} \in C <=> ||Q^{1/2}a_i||_2 = \sup|a_i^TQ^{1/2}y| \le 1$ при $||y||_2 \le 1$ для і от 1 до р

2. введем функцию $g(\lambda) = inf_{Q\succeq 0} \ L(Q,\lambda) = inf_{Q\succeq 0} \ (logdetQ^{-1} + tr((\sum \lambda_i a_i a_i^T)Q) - \sum \lambda_i)$

заметим, что inf (log $\det X^{-1}+tr(XY))=\log \det Y+$
n, если $Y\succ 0$, иначе $-\infty$

 $-X^{-1}+Y=0=>X=Y^{-1}$ при $Y\succ 0$, иначе существует ненулевое а, такое что $a^TYa\leq 0$ при $X=I+taa^T$ получим $X=1+t||a||_2^2$ и $\log \det X^{-1}+\operatorname{tr}(XY)=-\log(1+ta^Ta)+\operatorname{tr}Y+\operatorname{tr}a^TYa$

тогда двойственная функция $g(\lambda)=\log\det\sum(\lambda_ia_ia_i^T)-\sum_i+n$ при $\sum(\lambda_ia_ia_i^T)\succ 0$, иначе $-\infty$

итого задача log det $\sum (\lambda_i a_i a_i^T) - \sum_i + n - > \max$, s.t. $\lambda \succeq 0$

KKT:

$$Q \succ 0$$

$$a_i^T Q a_i \le 1$$

$$\lambda \succeq 0$$

$$\lambda_i (1 - a_i^T Q a_i) = 0$$

$$Q^{-1} = \sum_i \lambda_i a_i a_i^T$$

тогда
$$n=\sum \lambda_i tr(Qa_ia_i^T)=\sum \lambda_i=>x^TQ^{-1}x=\sum \lambda_i(a_i^Tx)^2\leq \sum \lambda_i=n$$

Conic Duality

Задача №6

Условие:

Выведите двойственную задачу для задачи:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|A\mathbf{x} - \mathbf{b}\|_2^2$$
 s.t. $\|\mathbf{x}\|_1 \le \alpha$; $\|\mathbf{x}\|_3 \le \beta$; $\|\mathbf{x}\|_{\infty} \le \gamma$,

где $A \in \mathbb{R}^{m \times n}, \, \alpha, \beta, \gamma > 0$ - некоторые положительные константы.

Решение:

Мы можем расписать условие через скалярные произведения двух векторов, например для $\|\mathbf{x}\|_1 \leq \alpha$ - это будет входит в Лагранжиан как $\langle \begin{pmatrix} x \\ \alpha \end{pmatrix}; \begin{pmatrix} \lambda_1 \\ \nu_1 \end{pmatrix} \rangle$, где λ_i — вектор, а ν_i — число.

Тогда
$$L(x, \lambda, \nu) = \|A\mathbf{x} - \mathbf{b}\|_2^2 - (\lambda_1^T + \lambda_2^T + \lambda_3^T)x - \nu_1\alpha - \nu_2\beta - \nu_3\gamma => 0 = \nabla_x = 2A^T(Ax - b) - \lambda_i => \frac{1}{2} \sum_{i=1}^3 \lambda_i + A^Tb = A^TAx => x = (A^TA)^{-1}(\frac{1}{2} \sum_{i=1}^3 \lambda_i + A^Tb)$$

Двойственная задача получится подставлением найденного х в $L(x,\lambda,\nu)$ с ограничени-иями на нормы λ_i относительно ν_i

Условие:

[6] На семинарах мы рассмотрели задачу вида:

$$\min_{\mathbf{x} \in \{-1,1\}^n} \mathbf{x}^\top W \mathbf{x},\tag{3}$$

где $W \in \mathbb{S}^n$. Мы также вывели для нее двойственную задачу:

$$\max_{\nu \in \mathbb{R}^n} -\mathbf{1}^\top \nu,$$
s.t. $W + \operatorname{diag}(\nu) \succeq 0.$ (4)

Данная задача дает оценку снизу на оптимальное значение (3).

1. [2] Покажите, что двойственная задача для задачи (4) имеет вид:

$$\min_{X \in \mathbb{S}^n} \operatorname{tr}(WX),$$
s.t. $X \succeq 0$, $X_{ii} = 1, i = \overline{1, n}$. (5)

Покажите, что если оптимальный X в задаче (5) имеет ранг 1, т.е. $\exists \mathbf{x} : X = \mathbf{x}\mathbf{x}^{\top}$, то \mathbf{x} - есть оптимальное решение задачи (3)

- 2. [1] Как соотносятся оптимальные значения задач (3), (4) и (5)?
- 3. [2] Решите задачу (5) при помощи СухРу.
- 4. [1] Восстановите приблизительное решение исходной задачи при помощи собственного разложения решения X из пункта 3. Пусть \mathbf{v} есть собственный вектор матрицы X, соотвествующий максимальному собстенному значению. Тогда возьмем в качетсве аппроксимации решения исходной задачи $\hat{\mathbf{x}} = \text{sign}(\mathbf{v})$. Сравните значение исходной задачи для такого вектора и полученное оптимальное значение задачи (5).

Решение

- 1. Введем функцию $L(\nu,x)=1^T\nu-tr(XW+Xdiag(\nu))=\sum \nu_i(1-X_{ii})-tr(XW),$ таким образом мы получаем задачу min(tr(WX)) (тк она эквивалентна задаче max(-tr(WX))), $s.t.X\succeq 0,~X_{ii}=1,$ і от 1 до п Заметим, что выполнено $(xx^T)_{ii}=x_i^2$ и $tr(Wxx^T)=x^TWx$, тогда если оптимальный X в задаче (5) имеет ранг 1, т.е. $\exists \mathbf{x}:X=\mathbf{x}\mathbf{x}^\top,$ то \mathbf{x} есть оптимальное решение задачи (3)
- 2. Пусть X будет оптимальным решением задачи (7), тогда X (при ранге 1) и оптимален в задаче (5). Нижняя оценка оптимального решения задачи (3) будет совпадать с оптимальными решениями задач (4), (5)