Exercises

Computational Intelligence Lab
SS 2019

Machine Learning Institute

Dept. of Computer Science, ETH Zürich

Prof. Dr. Thomas Hofmann

Web http://cil.inf.ethz.ch/

Series 11, May 16-17, 2019

(Dictionary Learning and Compressed Sensing)

Problem 1 (Sparse coding with overcomplete dictionary):

Given a signal $\mathbf{x}=(3,1,-2)\in\mathbb{R}^3$ and an overcomplete dictionary $\mathbf{U}=[\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3,\mathbf{u}_4]\in\mathbb{R}^{3\times 4}$,

$$\mathbf{U} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -1 & 1 & 1\\ 1 & 1 & -1 & 1\\ 1 & 1 & 1 & -1 \end{bmatrix},$$

find the sparse representation z of the signal x with $||z||_0 \le 2$.

- **a.** Find the atom $\mathbf{u}^{(1)}$ that minimize the reconstruction error $\|\mathbf{x} \hat{\mathbf{x}}^{(0)}\|_2^2$ where $\hat{\mathbf{x}}^{(0)} = z^{(1)}\mathbf{u}^{(1)}$, and compute the residual $\mathbf{r}^{(1)} = \mathbf{x} \hat{\mathbf{x}}^{(0)}$.
- **b.** Find the atom $\mathbf{u}^{(2)}$ that minimize the reconstruction error $\|\mathbf{r}^{(1)} \hat{\mathbf{x}}^{(1)}\|_2^2$ where $\hat{\mathbf{x}}^{(1)} = z^{(2)}\mathbf{u}^{(2)}$.
- c. Write down the sparse representation z of signal x.

Problem 2 (Compressed Sensing):

a. Map each of the three equations $\|\mathbf{x}\|_2 = 1$, $\|\mathbf{x}\|_1 = 1$, and $\|\mathbf{x}\|_0 = 1$ to a plot among a., b., or c. on the following figure. Note that \mathbf{x} is s 2D vector with coordinates x_1 and x_2 (i.e. $\mathbf{x} = \begin{bmatrix} x_1, x_2 \end{bmatrix}$).

b. Show the solution of each optimization problem on plots a., b., and c. of the following figure.

$$\min \|\mathbf{x}\|_2$$
 Subject to $\frac{1}{2}x_1 + x_2 = 1$

$$\min \|\mathbf{x}\|_1$$
 Subject to $\frac{1}{2}x_1 + x_2 = 1$

$$\min \|\mathbf{x}\|_0$$
 Subject to $\frac{1}{2}x_1 + x_2 = 1$

c. We can formulate the above three optimization problem as

$$\min \|\mathbf{x}\|_p$$
 subject to $\frac{1}{2}x_1+x_2=1,$

where $p \in \{0, 1, 2\}$. Mark the right sentence using your previous answers.

- $[\hspace{1em}]$ Solutions of the constrained problems have intersection for p=1 and p=0.
- Solutions of the constrained problems have intersection for p=2 and p=0.

Problem 3 (Compressed Sensing):

Please find the iPython notebook ex3.ipynb from

github.com/dalab/lecture_cil_public/tree/master/exercises/ex11

answer the question in this file.

Problem 4 (Matching pursuit algorithm):

In the last tutorial session, you have seen that the matching pursuit algorithm converges. In this exercise, you will show some limitations of the algorithm.

- a. Find an overcomplete dictionary and a vector x such that the approximation $\hat{\mathbf{x}}$ resulting from the matching pursuit algorithm will never exactly equal x no matter the number of iterations. Note that this implies that at least one atom will be selected multiple times.
- b. Find an instance where the sparse representation returned by matching pursuit (assuming that after some number of iterations, the approximation is perfect) is not optimal, i.e. there is a different representation for which the 0-norm is strictly smaller.1

¹Hint: You have to think in at least three dimensions.