Bila pada masalah transportasi pola meminimumkan kita akan meminimumkan ongkos angkut total, maka pada masalah transportasi memaksimumkan kita ingin memaksimumkan keuntungan atau profit produk kita dari segi distribusinya. Semakin tinggi barang yang kita distribusikan akan mempermurah ongkos pendistribusiannya, sehingga pengeluaran yang dilakukan dapat ditekan, dan akan meningkatkan profit, atau dengan kata lain memaksimumkan pengeluaran dalam bentuk ongkos angkut dengan mengoptimalkan pengiriman barang dalam sekali pengantaran. Pernahkah kalian melakukan transaksi free ongkir dengan syarat nominal pembelian? Nah prinsip inilah yang digunakan pedagang bekerja sama dengan jasa pengiriman barang. Atau ketika kalian membeli sesuatu menggunakan jasa gosend, nilai jasa gosendnya akan ditambahkan pada harga orderan, semakin banyak porsi yang kita pesan, semakin kecil nilai jasa gosend per porsinya. Ini adalah prinsip menekan biaya distribusi dengan memaksimumkan pendistribusian, atau walau terdengar aneh istilahnya adalah memaksimumkan pengeluaran.

Sehingga masalah transportasi pola memaksimumkan perlu juga untuk kita pelajari. Demikian pula untuk kasus tidak setimbang. Hal ini mungkin sekali terjadi, yaitu permintaan lebih banyak daripada persediaan (biasanya terjadi di waktu-waktu tertentu untuk produk tertentu pula, misalnya ketika Idul Fitri, kebutuhan akan daging sapi, ayam kampung, ayam ras, telur, ikan, dan sebagainya akan meningkat tajam daripada hari-hari biasanya, sementara persediaan yang ada mungkin tidak memenuhi kebutuhan yang meningkat, akibat dari kasus ini, harga barang-barang tersebut akan meningkat. Sebaliknya di masa awal pandemi beberapa waktu lalu, banyak sekali peternak ayam, peternak ikan, peternak ayam petelur, dan sebagainya yang menjual barang dengan harga sangat murah karena persediaan yang mereka miliki lebih banyak dari permintaan yang ada.

Ketidakseimbangan ini harus tetap kita selesaikan dengan menggunakan teori yang ada yang akan kita pelajari di pertemuan pekan ini.

Sekarang kita mulai dengan masalah transportasi pola memaksimumkan setimbang. Cekidot...

Pada model matematika masalah transportasi pola memaksimumkan setimbang, hanya berbeda pada keoptimuman fungsi tujuan masalahnya saja dibandingkan pada pola meminimumkan setimbang, sedang untuk kendalanya tidak ada perbedaan. Kita lihat modelnya:

Masalah Transportasi Pola Memaksimumkan Setimbang

Model matematikanya:

Masalah: Mencari $x_{ij} \ge 0$

dengan kendala

$$\sum_{i=1}^{n} x_{ij} = b_i, i = 1, 2, ..., m$$

dan

$$\sum_{i=1}^{n} x_{ij} = a_j, j = 1, 2, ..., n$$

dengan

$$\sum_{i=1}^{m} b_i = \sum_{j=1}^{n} a_j$$

agar

$$P = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \text{ maksimum.}$$

Penyelesaian masalah bentuk ini tidaklah sulit dilakukan. Kita cukup mengubah masalah ke pola meminimumkan setimbang, setelah itu kita selesaikan seperti masalah transportasi pola meminimumkan setimbang yang kita pelajari sebelumnya.

Masalah berpola maksimum ini akan dikembalikan ke masalah berpola minimum dengan cara transformasi

$$\bar{c}_{ij} = N - c_{ij} \tag{1}$$

dengan N adalah sebarang bilangan yang memenuhi $N \ge c_{ij}$, untuk semua i dan j.

Jika kedua ruas pada persamaan (1) dikalikan x_{ij} , untuk semua i dan j, kita peroleh

$$\bar{P} = \sum_{i=1}^{m} \sum_{j=1}^{n} \bar{c}_{ij} x_{ij}$$
$$= \sum_{i=1}^{m} \sum_{j=1}^{n} (N - c_{ij}) x_{ij}$$

Dísusun oleh Caturiyatí, Edísí Revísí 2024

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} Nx_{ij} - \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}x_{ij}$$
$$= \sum_{i=1}^{m} \sum_{j=1}^{n} Nx_{ij} - P.$$

Perhatikanlah bahwa nilai $\sum_{i=1}^{m} \sum_{j=1}^{n} Nx_{ij}$ adalah konstan. Dengan demikian jika P mencapai maksimum, maka \bar{P} mencapai nilai minimum untuk x_{ij} yang telah tertentu (solusi basis yang tidak merosot)

Jadi soal berpola maksimum sekarang menjadi berpola minimum sebagai berikut:

Mencari $x_{ij} \ge 0$

dengan kendala

$$\sum_{i=1}^{n} x_{ij} = b_i, i = 1, 2, ..., m$$

dan

$$\sum_{i=1}^{n} x_{ij} = a_j, j = 1, 2, ..., n$$

dengan

$$\sum_{i=1}^{m} b_i = \sum_{i=1}^{n} a_i$$

agar

$$\bar{P} = \sum_{i=1}^{m} \sum_{j=1}^{n} \bar{c}_{ij} x_{ij} \text{ minimum,}$$

dengan $\bar{c}_{ij} = N - c_{ij}$ dan $N \ge c_{ij}$ sebarang bilangan.

kemudian dikerjakan seperti biasa kita mengerjakan soal masalah meminimumkan setimbang.

Contoh:

Data Soal Memaksimumkan

Diubah ke meminimumkan dengan mengambil N = 8.

	D_1	D_2	D_3	b_i
01	4	3	2	40
02	5	4	6	40
03	2	7	6	40
a_j	50	50	20	120

	D_1	D_2	D_3	b_i
O_1	4	5	6	40
	•			
O_2	3	4	2	40
O_3	6	1	2	40
3				
a_j	50	50	20	120

Tabel kiri adalah tabel soal yang memaksimumkan profit, sedangkan tabel kanan adalah tabel meminimumkan hasil transportasi dengan mengubah data ongkos angkut satuanya, dengan mengambil $N=8 \geq c_{ij}$, $\forall i,j$.

Selanjutnya kita lakukan penentuan variabel basis awal. Dalam contoh ini menggunakan Metode c_{ij} Terkecil.

	D_1	D_2	D_3	b_i
O_1	4	5	6	40
	30	10		
O_2	3	4	2	40
	20		20	
O_3	6	1	2	40
3		40		
a_j	50	50	20	120

Variabel basis yang diperoleh berdasar urutan pengisian adalah: x_{32} , x_{23} , x_{21} , x_{11} , x_{12} dengan alokasi pada K_{32} , K_{23} , K_{21} , K_{11} , K_{12} berturut-turut 40,20,20,30,10.

Perhatikan bahwa pada tabel kotak isi = 5; m + n - 1 = 3 + 3 - 1 = 5. Jadi tabel tidak merosot.

Setelah itu kita lakukan uji optimum, kali ini kita gunakan metode MOD1

Dengan mengambil $v_1 = 0$, kita tentukan nilai bilangan baris dan bilangan kolom lainnya menggunakan rumus bilangan baris dan bilangan kolom pada kotak isi.

$$K_{11}$$
: $u_1 + v_1 = c_{11} \rightarrow u_1 + 0 = 4 \rightarrow u_1 = 4$
 K_{12} : $u_1 + v_2 = c_{12} \rightarrow 4 + v_2 = 5 \rightarrow v_2 = 1$
 K_{21} : $u_2 + v_1 = c_{21} \rightarrow u_2 + 0 = 3 \rightarrow u_2 = 3$

K_{23} : $u_2 + v_3 = c_{23} \to 3 + v_3 = 2 \to v_3 = -1$
K_{32} : $u_3 + v_2 = c_{11} \to u_3 + 1 = 1 \to u_3 = 0$

	D_1	D_2	D_3	b_i	u_i
01	30	5 10	6	40	4
02	20	4	20	40	3
03	6	40	2	40	0
a_j	50	50	20	120	
v_j	0	1	-1		•

Setelah semua bilangan baris dan bilangan kolom diperoleh, kita tentukan nilai c_{ij}^\prime dengan rumus pada kotak kosong

$$K_{13}$$
: $c'_{13} = u_1 + v_3 - c_{13} = 4 - 1 - 6 = -3$
 K_{22} : $c'_{22} = u_2 + v_2 - c_{22} = 3 + 1 - 4 = 0$
 K_{31} : $c'_{31} = u_3 + v_1 - c_{31} = 0 + 0 - 6 = -6$
 K_{33} : $c'_{33} = u_3 + v_3 - c_{33} = 0 - 1 - 2 = -3$.

	D_{i}	1	D	2	D	3	b_i	u_i
O_1		4		5		6	40	4
_	30		10			-3		
O_2		3		4		2	40	3
- 2	20			0	20			
O_3		6		1		2	40	0
- 3	_	-6	40			-3	- 0	
a_j	50)	50	0	2	0	120	
v_j	0		1	_	_	1		

Ternyata semua c'_{ij} tidak ada yang bernilai positif. Jadi tabel telah optimum. Dengan nilai

$$\bar{P} = \sum_{i=1}^{m} \sum_{j=1}^{n} \bar{c}_{ij} x_{ij}$$

$$= 4.30 + 5.10 + 3.20 + 2.20 + 1.40$$

$$= 120 + 50 + 60 + 40 + 40$$

$$= 310.$$

Dan
$$P_{maks} = 8.(30 + 10 + 20 + 20 + 40) - \bar{P}$$

= $8.120 - 310$
= $960 - 310$
= 650 .

Atau dengan menggunakan rumus:

$$P_{maks} = \sum_{i=1}^{m} \sum_{j=1}^{n} (N - c_{ij}) x_{ij}$$

$$= (8 - c_{11}) x_{11} + (8 - c_{12}) x_{12} + (8 - c_{21}) x_{21} + (8 - c_{23}) x_{23} + (8 - c_{32}) x_{32}$$

$$= (8 - 4) 30 + (8 - 5) 10 + (8 - 3) 20 + (8 - 2) 20 + (8 - 1) 40$$

$$= 4.30 + 3.10 + 5.20 + 6.20 + 7.40$$

$$= 120 + 30 + 100 + 120 + 280$$

$$= 650.$$

Karena tabel perubahan sudah optimum, maka tabel aslinya juga demikian sehingga nilai maksimum dapat dihitung langsung dari data. Yaitu variabel basis solusi optimumnya dimasukkan pada tabel masalah pola memaksimumkan sesuai kotaknya, kemudian dihitung nilai fungsi tujuan memaksimumkannya, sebagai berikut: Variabel basis solusi optimum berturut-turut $x_{32}, x_{23}, x_{21}, x_{11}, x_{12}$ dengan alokasi pada $K_{32}, K_{23}, K_{21}, K_{11}, K_{12}$ berturut-turut 40,20,20,30,10.

	D_1		D_2		D_3		b_i
O_1		4		3		2	40
1	30		10				
O_2		5		4		6	40
2	20				20		
O_3		2		7		6	40
3			40				
a_{j}	50)	50)	20)	120

$$P_{maks} = 30.4 + 10.3 + 20.5 + 20.6 + 40.7$$

= $120 + 30 + 100 + 120 + 280 = 650$.

Selanjutnya kita bahas masalah transportasi tak setimbang. Kita lihat dulu untuk masalah pola meminimumkan tak setimbang.

Masalah Transportasi Meminimumkan Tidak Setimbang

Dalam masalah ini banyaknya persediaan $\sum_{i=1}^m b_i$ tidak sama dengan banyaknya permintaan $\sum_{i=1}^n a_i$. Ada dua kasus:

Kasus 1: Persediaan lebih banyak dari Permintaan

$$\sum_{i=1}^{m} b_i > \sum_{j=1}^{n} a_j$$

Dalam kasus ini masalah dibuat setimbang dengan cara memasukkan *permintaan semu*, $a_{n+1} = \sum_{i=1}^m b_i - \sum_{j=1}^n a_j$ dan $c_{in+1} = 0$. Kemudian diselesaikan dengan cara seperti masalah meminimumkan setimbang.

Contoh. Diberikan tabel masalah transportasi meminimumkan sebagai berikut Soal aslinya

	D_1	D_2	D_3	b_i
01	4	4	2	45
02	3	7	8	45
03	2	5	6	70
a_j	40	50	60	

Perhatikan $\sum_{i=1}^3 b_i = 160 > \sum_{j=1}^3 a_j = 150$, masalah tidak setimbang. Perlu disetimbangkan dengan menambah kolom semu dengan $a_4 = \sum_{i=1}^m b_i - \sum_{j=1}^n a_j = 160 - 150 = 10$ dan semua $c_{i4} = 0, \forall i = 1,2,3$.

Karena tabel sudah menjadi tabel setimbang yang akan diminimumkan, maka selanjutnya dikerjakan seperti biasa. Kali ini kita lakukan penentuan variabel basis awal dengan Metode c_{ij}

Terkecil, tetapi bukan $c_{ij} = 0$ pada kolom semu (ini akan kita isikan terakhir). Urutan pengisiannya sebagai berikut:

 $K_{13} = 45$ sehingga O_1 jenuh; $K_{31} = 40$ sehingga D_1 jenuh

 $K_{32} = 30$ sehingga O_3 jenuh; $K_{22} = 20$ sehingga D_2 jenuh

 $K_{23} = 15$ sehingga D_3 jenuh; $K_{24} = 10$ sehingga D_4 dan O_2 jenuh.

Untuk mempermudah pemahaman, kita lihat dulu pada tabel sebelah kiri, yaitu tabel tanpa kolom semu. Dengan urutan pengisian tersebut didapat tabel berikut. Namun ada kelebihan 10 satuan.

	D_1	D_2	D_3	b_i
O_1	4	4	45	45
02	3	20	15	45
03	40	30	6	70
a_j	40	50	60	

Kelebihan 10 satuan tersebut kita masukkan dalam kolom semu tabel berikut yang telah dilengkapi dengan kolom semu dengan alokasi permintaan 10. Karena yang belum jenuh adalah baris 2, maka alokasi 10 dimasukkan pada baris 2 dan (tentu saja) kolom 4.

	D_1	D_2	D_3	D_4	b_i
01	4	4	45	0	45
02	3	20	15	10	45
O_3	40	30	6	0	70
a_j	40	50	60	10	160

Variabel basis awalnya sesuai urutan pengisian berturut-turut: x_{13} , x_{31} , x_{32} , x_{22} , x_{23} , x_{24} dengan alokasi pada K_{13} , K_{31} , K_{32} , K_{22} , K_{23} , K_{24} berturut-turut 45,40,30,20,15,10.

Banyaknya kotak isi = 6 = m + n - 1. Solusi adalah solusi layak basis yang tidak merosot. Tetapi ini bukan solusi sebenarnya. Solusi sebenarnya pada tabel sebelumnya (tabel tanpa kolom semu).

Selanjutnya kita lakukan uji optimum. Disini kita gunakan Metode MOD1.

Pada kotak isi dengan mengambil $u_1=0$, akan kita tentukan bilangan baris dan bilangan kolom lainnya:

$$K_{13}$$
: $u_1 + v_3 = c_{13} \to 0 + v_3 = 2 \to v_3 = 2$
 K_{23} : $u_2 + v_3 = c_{23} \to u_2 + 2 = 8 \to u_2 = 6$

$$K_{22}$$
: $u_2 + v_2 = c_{22} \rightarrow 6 + v_2 = 7 \rightarrow v_2 = 1$

$$K_{32}$$
: $u_3 + v_2 = c_{32} \rightarrow u_3 + 1 = 5 \rightarrow u_3 = 4$

$$K_{31}$$
: $u_3 + v_1 = c_{31} \rightarrow 4 + v_1 = 2 \rightarrow v_1 = -2$

$$K_{24}$$
: $u_2 + v_4 = c_{24} \rightarrow 6 + v_4 = 0 \rightarrow v_4 = -6$

	D_1	D_2	D_3	D_4	b_i	u_i
O_1	4	4	2	0	45	0
_	-6	-3	45			
O_2	3	7	8	0	45	6
	+1	20	15	10		
03	2	5	6	0	70	4
3	40	30	0	-6		
a_j	40	50	60	10	160	
v_j	-2	1	2	-6		ļ

Pada kotak kosong kita tentukan nilai c'_{ij} sebagai berikut:

$$K_{11}$$
: $c'_{11} = u_1 + v_1 - c_{11} = 0 - 2 - 4 = -6$

$$K_{12}$$
: $c'_{12} = u_1 + v_2 - c_{12} = 0 + 1 - 4 = -3$

$$K_{21}$$
: $c'_{21} = u_2 + v_1 - c_{21} = 6 - 2 - 3 = 1$

Dísusun oleh Caturíyatí, Edísí Revísí 2024

$$K_{33}$$
: $c'_{33} = u_3 + v_3 - c_{33} = 4 + 2 - 6 = 0$
 K_{14} : $c'_{14} = u_1 + v_4 - c_{14} = 0 - 6 - 0 = -6$

$$K_{34}$$
: $c'_{34} = u_3 + v_4 - c_{34} = 4 - 6 - 0 = -2$

Tabel belum optimum (cek!), karena masih ada $c'_{ij} > 0$ yaitu $c'_{21} = 1$. Maka dilakukan penggeseran variabel basis baru, dengan membentuk lintasan tertutup pada K_{21} .

Lintasan tertutup: $K_{21} - K_{22} - K_{32} - K_{31}$, dengan alokasi terkecil pada K_{22} sebesar 20. Lakukan penggeseran alokasi donor terkecil ke akseptor. Diperoleh tabel baru berikut:

Tabel baru

	D_1	D_2	D_3	D_4	b_i
O_1	4	4	2	0	45
			45		
O_2	3	7	8	0	45
- 2	20		15	10	
03	2	5	6	0	70
	20	50			
a_j	40	50	60	10	160

Variabel basis barunya: x_{13} , x_{31} , x_{32} , x_{21} , x_{23} , x_{24} dengan alokasi pada K_{13} , K_{31} , K_{32} , K_{21} , K_{23} , K_{24} berturut-turut 45,20,50,20,15,10.

Selanjutnya kita lakukan uji optimum. Disini kita gunakan Metode MOD1. (Sekali kita gunakan Metode MOD1, maka hingga optimum diperoleh, kita gunakan Metode MOD1, di lain pihak sekali kita gunakan MBL, maka hingga optimum dicapai kita harus menggunakan MBL untuk alat ujinya).

Pada kotak isi dengan mengambil $u_1=0$, akan kita tentukan bilangan baris dan bilangan kolom lainnya:

$$K_{13}$$
: $u_1 + v_3 = c_{13} \to 0 + v_3 = 2 \to v_3 = 2$

$$K_{23}$$
: $u_2 + v_3 = c_{23} \rightarrow u_2 + 2 = 8 \rightarrow u_2 = 6$

$$K_{21}$$
: $u_2 + v_1 = c_{21} \to 6 + v_1 = 3 \to v_1 = -3$

$$K_{31}: u_3 + v_1 = c_{31} \to u_3 - 3 = 2 \to u_3 = 5$$

 $K_{32}: u_3 + v_2 = c_{32} \to 5 + v_2 = 5 \to v_2 = 0$

$$K_{24}$$
: $u_2 + v_4 = c_{24} \to 6 + v_4 = 0 \to v_4 = -6$

	D_1		D_2		D_3	3	D_{λ}	1	b_i	u_i
O_1		4		4		2		0	45	0
	_	-7	-	-4	45			-6		
O_2		3		7		8		0	45	6
3 2	20		-	-1	15		10			
O_3	I I	2		5		6		0	70	5
- 3	20		50		_ 	+1		-1		
a_{j}	40		50		60)	10)	160	
v_j	-3		0		2		-(6		•

Pada kotak kosong kita tentukan nilai c'_{ij} sebagai berikut:

$$K_{11}$$
: $c'_{11} = u_1 + v_1 - c_{11} = 0 - 3 - 4 = -7$

$$K_{12}$$
: $c'_{12} = u_1 + v_2 - c_{12} = 0 + 0 - 4 = -4$

$$K_{22}$$
: $c'_{22} = u_2 + v_2 - c_{22} = 6 + 0 - 7 = -1$

$$K_{33}$$
: $c'_{33} = u_3 + v_3 - c_{33} = 5 + 2 - 6 = 1$

$$K_{14}$$
: $c'_{14} = u_1 + v_4 - c_{14} = 0 - 6 - 0 = -6$

$$K_{34}$$
: $c'_{34} = u_3 + v_4 - c_{34} = 5 - 6 - 0 = -1$

Tabel belum optimum (cek!), karena masih ada $c'_{ij} > 0$ yaitu $c'_{33} = 1$. Maka dilakukan penggeseran variabel basis baru, dengan membentuk lintasan tertutup pada K_{33} .

Lintasan tertutup: $K_{33} - K_{31} - K_{21} - K_{23}$, dengan alokasi terkecil pada K_{23} sebesar 15. Lakukan penggeseran alokasi donor terkecil ke akseptor. Diperoleh tabel baru berikut:

Tabel baru

	D_1	D_2	D_3	D_4	b_i
O_1	4	4	2	0	45
			45		
O_2	3	7	8	0	45
2	35			10	
03	2	5	6	0	70
	5	50	15		
a_j	40	50	60	10	160

Variabel basis barunya: x_{13} , x_{31} , x_{32} , x_{21} , x_{33} , x_{24} dengan alokasi pada K_{13} , K_{31} , K_{32} , K_{21} , K_{33} , K_{24} berturut-turut 45,5,50,35,15,10.

Selanjutnya kita lakukan uji optimum. Disini kita gunakan Metode MOD1. (Sekali kita gunakan Metode MOD1, maka hingga optimum diperoleh, kita gunakan Metode MOD1, di lain pihak sekali kita gunakan MBL, maka hingga optimum dicapai kita harus menggunakan MBL untuk alat ujinya).

Pada kotak isi dengan mengambil $u_1=0$, akan kita tentukan bilangan baris dan bilangan kolom lainnya:

$$K_{13}$$
: $u_1 + v_3 = c_{13} \to 0 + v_3 = 2 \to v_3 = 2$

$$K_{33}$$
: $u_3 + v_3 = c_{33} \rightarrow u_3 + 2 = 6 \rightarrow u_2 = 4$

$$K_{21}$$
: $u_2 + v_1 = c_{21} \to 4 + v_1 = 3 \to v_1 = -1$

$$K_{31}$$
: $u_3 + v_1 = c_{31} \rightarrow u_3 - 1 = 2 \rightarrow u_3 = 3$

$$K_{32}$$
: $u_3 + v_2 = c_{32} \rightarrow 3 + v_2 = 5 \rightarrow v_2 = 2$

$$K_{24}$$
: $u_2 + v_4 = c_{24} \rightarrow 4 + v_4 = 0 \rightarrow v_4 = -4$

	D_1		D_2		D_3		D_{z}	1	b_i	u_i
O_1		4		4		2		0	45	0
		-5		-2	45			-4		
O_2		3		7		8		0	45	4
	35			-1	-	-2	10			
O_3		2		5		6		0	70	3
	5		50		15			-1		
a_j	40		50		60		10)	160	
v_j	-1		2		2			4		•

Pada kotak kosong kita tentukan nilai c'_{ij} sebagai berikut:

$$K_{11}$$
: $c'_{11} = u_1 + v_1 - c_{11} = 0 - 1 - 4 = -5$
 K_{12} : $c'_{12} = u_1 + v_2 - c_{12} = 0 + 2 - 4 = -2$
 K_{22} : $c'_{22} = u_2 + v_2 - c_{22} = 4 + 2 - 7 = -1$
 K_{23} : $c'_{23} = u_2 + v_3 - c_{23} = 4 + 2 - 8 = -2$
 K_{14} : $c'_{14} = u_1 + v_4 - c_{14} = 0 - 4 - 0 = -4$
 K_{34} : $c'_{34} = u_3 + v_4 - c_{34} = 3 - 4 - 0 = -1$

Tabel sudah optimum (cek!), karena semua $c'_{ij} \leq 0$.

Dengan nilai optimum
$$C_{min} = 2.45 + 3.35 + 2.5 + 5.50 + 6.15$$

= $90 + 105 + 10 + 250 + 90$
= 545 .

Kasus 2: Permintaan lebih banyak dari Persediaan

$$\sum_{i=1}^{m} b_i < \sum_{j=1}^{n} a_j$$

Serupa dalam Kasus 1 di sini kita setimbangkan dengan memasukkan "pangkalan atau origin" semu O_{m+1} dengan $b_{m+1} = \sum_{j=1}^n a_j - \sum_{i=1}^m b_i$ dan memasukkan $c_{m+1j} = 0$.

Contoh. Diberikan masalah transportasi meminimumkan sebagai berikut

	D_1	D_2	D_3	b_i
01	4	4	2	40
02	3	7	8	45
03	2	5	6	65
a_j	55	60	50	

Perhatikan $\sum_{i=1}^m b_i=150<\sum_{j=1}^n a_j=165$, yaitu kasus tidak setimbang. Perlu disetimbangkan dengan menambah baris semu O_4 dengan alokasi 15 dan nilai $c_{4j}=0$, $\forall j=1,2,3$.

Ditunjukkan pada tabel setimbang berikut. Selanjutnya dilakukan penentuan variabel basis awal. Dalam contoh ini digunakan Metode c_{ij} Terkecil, dengan urutan pengisian kotak sebagai berikut: $K_{13} - K_{31} - K_{32} - K_{12} - K_{42} - K_{43}$.

	D_1	1	I	\mathcal{O}_2	1	\mathcal{O}_3	b_i
O_1		4		4		2	40
_		-5		-2	40		
O_2		3		7		8	45
2	_	0	45			-1	
O_3		2		5		6	65
- 3	55		10			-1	
O_4		0		0		0	15
3 4		-3	5		10		10
a_j	55	5	ϵ	50	5	50	165

Jadi permintaan 2 dan 3 (a_2 dan a_3) tidak terpenuhi masing-masing kurang 5 dan 10 satuan.

Variabel basis awalnya adalah x_{13} , x_{31} , x_{32} , x_{12} , x_{42} , x_{43} dengan alokasi masing-masing berturut-turut 40,55,10,45,5,10.

Banyaknya variabel basis 6 = m + n - 1, tabel tidak merosot.

Selanjutnya dilakukan uji optimum, kali ini menggunakan Metode Batu Loncatan.

Tabel Lintasan Tertutup

	LINT	ASAN					Δc	c'_{ij}
K ₁₁	K ₁₁	K ₁₃	K_{43}	K ₄₂	K ₃₂	K ₃₁		
	+4	-2	+0	-0	+5	-2	+5	-5
K ₁₂	K ₁₂	K ₁₃	K_{43}	K ₄₂				
	+4	-2	+0	-0			+2	-2
K ₂₁	K ₂₁	K ₂₂	K ₃₂	K ₃₁				
	+4	-7	+5	-2			0	0
K ₂₃	K ₂₃	K ₄₃	K ₄₂	K ₂₂				
	+8	-0	+0	-7			+1	-1
K ₃₃	K ₃₃	K ₄₃	K ₄₂	K ₃₂				
	+6	-0	+0	-5			+1	-1
K ₄₁	K ₄₁	K ₃₁	K ₃₂	K_{42}				
	+0	-2	+5	-0			+3	-3

Karena semua $c'_{ij} \leq 0$ untuk semua kotak kosong maka tabel sudah optimum, dengan nilai

$$C_{min} = 2.40 + 7.45 + 2.55 + 5.10$$

= $80 + 315 + 110 + 50$
= 555 .

Sekarang bagaimana dengan masalah transportasi maksimum tidak setimbang? Caranya adalah:

- Ubah menjadi masalah transportasi meminimumkan dulu yang tentu saja masih tidak setimbang.
- 2. Masalah meminimumkan hasil transformasi tersebut kemudian disetimbangkan:
 - a. Jika $\sum_{i=1}^{m} b_i > \sum_{j=1}^{n} a_j$, maka setimbangkan dengan menambah destinasi semu (kolom semu), dengan nilai demand semu = $\sum_{i=1}^{m} b_i \sum_{j=1}^{n} a_j$ dan semua c_{ij} pada kolom semu bernilai nol dan diisikan alokasi terakhir.

- b. Jika $\sum_{i=1}^m b_i < \sum_{j=1}^n a_j$, maka setimbangkan dengan menambah origin semu (baris semu), dengan nilai supply semu = $\sum_{j=1}^n a_j \sum_{i=1}^m b_i$ dan semua c_{ij} pada baris semu bernilai nol dan diisikan alokasi terakhir.
- 3. Lakukan uji optimum, hingga diperoleh tabel optimum.
- 4. Tentukan nilai fungsi tujuan memaksimumkannya.

Contoh: Diberikan masalah transportasi memaksimumkan berikut:

	D_1	D_2	D_3	b_i
01	4	5	6	55
02	3	4	2	40
03	6	1	2	40
a_{j}	50	50	20	

Ubah masalah menjadi berpola meminimumkan dengan mengambil $N=7>c_{ij}$, $\forall i,j$. Sehingga tabel berpola meminimumkannya menjadi

	D_1	D_2	D_3	b_i
01	3	2	1	55
02	4	3	5	40
03	1	6	5	40
a_{j}	50	50	20	

Perhatikan $\sum_{i=1}^m b_i = 135 > \sum_{j=1}^n a_j = 120$, tidak setimbang. Setimbangkan dengan menambah kolom semu D_4 dengan demand semu sebesar 15 dan $c_{i4} = 0$, $\forall 1,2,3$. Tabel menjadi

	D_1	D_2	D_3	D_4	b_i
01	3	2	1	0	55
02	4	3	5	0	40
03	1	6	5	0	40
a_j	50	50	20	15	135

Kita lakukan penentuan variabel basis awal dengan Metode SBL

	D_1	L	D_2		D_3		D_4		b_i
O_1		3		2		1		0	55
1	50		5			0	-	-4	
O_2		4		3		5		0	40
	_	0	40			-3	-	-3	10
O_3		1		6		5		0	40
3	_	+6	5		20		15		
a_j	50)	5	0	2	0	15		135

Variabel basis yang dihasilkan berturut-turut x_{11} , x_{12} , x_{22} , x_{32} , x_{33} , x_{34} dengan alokasi pada kotak-kotak K_{11} , K_{12} , K_{22} , K_{33} , K_{34} berturut-turut 50,5,40,5,20,15, yaitu banyaknya variabel basis adalah 6 = m + n - 1, tidak merosot.

Lanjutkan dengan uji optimal, akan digunakan metode Stepping Stone sebagai berikut:

Tabel Lintasan Tertutup

	LINT	ASAN			Δc	c'_{ij}
K ₁₃	K ₁₃	K ₃₃	K ₃₂	K ₁₂		
	+1	- 5	+6	-2	0	0
K ₂₁	K ₂₁	K ₁₁	K ₁₂	K ₂₂		
	+4	-3	+2	-3	0	0
K ₂₃	K ₂₃	K ₃₃	K ₃₂	K ₂₂		
	+5	- 5	+6	-3	+3	-3
K ₃₁	K ₃₁	K ₁₁	K ₁₂	K ₃₂		
	+1	-3	+2	-6	-6	+6
K ₁₄	K ₁₄	K ₃₄	K ₃₂	K ₁₂		
	+0	-0	+6	-2	+4	-4
K ₂₄	K ₂₄	K ₃₄	K ₃₂	K ₂₂		
	+0	-0	+6	-3	+3	-3

Masih ada $c'_{ij} > 0$ yaitu $c'_{31} = 6$, sehingga akan dilakukan penggeseran variabel basis sesuai lintasan tertutup pada K_{31} yaitu K_{31} , K_{11} , K_{12} , K_{32} dengan kotak donor adalah K_{11} dan K_{32} dengan alokasi masing-masing 50 dan 5, sehingga 5 menjadi alokasi terkecil yang akan didonorkan pada K_{31} dan K_{12} sebagai kotak akseptor. x_{31} menjadi variabel basis baru, sedangkan x_{32} menjadi variabel non basis baru. Perbaiki tabel.

Tabel 2

	D	1	D_2		D_3		D	4	b_i
O_1		3		2		1		0	55
	45		10			+6		+2	
O_2		4		3		5		0	40
2		0	40			+3		+2	
O_3		1		6		5		0	40
- 3	5	ı		-6	20		15		
a_j	5	0	5	0	2	0	15		135

Lakukan uji optimal lagi, masih menggunakan Metode Stepping Stone

Tabel Lintasan Tertutup

	LINT	ASAN					Δc	c_{ij}'
K ₁₃	K ₁₃	K ₃₃	K ₃₁	K ₁₁				
	+1	-5	+1	-3			-6	+6
K ₂₁	K ₂₁	K ₁₁	K ₁₂	K ₂₂				
	+4	-3	+2	-3			0	0
K ₂₃	K ₂₃	K ₃₃	K ₃₁	K ₁₁	K ₁₂	K ₂₂		
	+5	-5	+1	-3	+2	-3	-3	+3
K ₃₂	K ₃₂	K ₃₁	K ₁₁	K ₁₂				
	+6	-1	+3	-2			+6	-6
K ₁₄	K ₁₄	K ₃₄	K ₃₁	K ₁₁				
	+0	-0	+1	-3			-2	+2
K ₂₄	K ₂₄	K ₃₄	K ₃₁	K ₁₁	K ₁₂	K ₂₂		
	+0	-0	+1	-3	+2	-2	-2	+2

Masih ada $c'_{ij} > 0$ yaitu $c'_{13} = 6$, $c'_{23} = 3$, $c'_{14} = 2$, dan $c'_{24} = 2$, sehingga akan dilakukan penggeseran variabel basis sesuai lintasan tertutup pada K_{13} sebagai kotak dengan c'_{13} dengan nilai positif terbesar, yaitu K_{13} , K_{33} , K_{31} , K_{11} dengan kotak donor adalah K_{33} dan K_{11} dengan alokasi masing-masing 20 dan 45, sehingga 20 menjadi alokasi terkecil yang akan didonorkan pada K_{13} dan K_{31} sebagai kotak akseptor. x_{13} menjadi variabel basis baru, sedangkan x_{33} menjadi variabel non basis baru. Perbaiki tabel.

Tabel 3

	D	1	D	2	D	3	D	4	b_i
O_1		3		2		1		0	55
	25		10		20			+2	
O_2		4		3		5		0	40
		0	40			-3		+2	
O_3		1		6		5		0	40
- 3	25			-6		-6	15		
a_j	50	0	5	0	2	0	15		135

Lakukan uji optimal lagi, masih menggunakan Metode Stepping Stone

Tabel Lintasan Tertutup

	LINT	ASAN					Δc	c'_{ij}
K ₂₁	K ₂₁	K ₁₁	K ₁₂	K ₂₂				
	+4	-3	+2	-3			0	0
K ₂₃	K ₂₃	K ₂₂	K ₁₂	K ₁₃				
	+5	-3	+2	-1			+3	-3
K ₃₂	K ₃₂	K ₃₁	K ₁₁	K ₁₂				
	+6	-1	+3	-2			+6	-6
K ₃₃	K ₃₃	K ₃₁	K ₁₁	K ₁₃				
	+5	-1	+3	-1			+6	-6
K ₁₄	K ₁₄	K ₃₄	K ₃₁	K ₁₁				
	+0	-0	+1	-3			-2	+2
K ₂₄	K ₂₄	K ₃₄	K ₃₁	K ₁₁	K ₁₂	K ₂₂		
	+0	-0	+1	-3	+2	-2	-2	+2

Masih ada $c'_{ij} > 0$ yaitu $c'_{14} = 2$, dan $c'_{24} = 2$, sehingga akan dilakukan penggeseran variabel basis sesuai lintasan tertutup pada K_{14} (dipilih) sebagai kotak dengan c'_{14} dengan nilai positif terbesar, yaitu K_{14} , K_{34} , K_{31} , K_{11} dengan kotak donor adalah K_{34} dan K_{11} dengan alokasi masing-

masing 15 dan 25, sehingga 15 menjadi alokasi terkecil yang akan didonorkan pada K_{14} dan K_{31} sebagai kotak akseptor. x_{14} menjadi variabel basis baru (semu), sedangkan x_{34} menjadi variabel non basis baru (semu). Perbaiki tabel.

Tabel 4

	D	1	D	2	D	3	D	4	b_i
O_1		3		2		1		0	55
	10		10		20		15		
O_2		4		3		5		0	40
- 2		0	40			-3		+1	
O_3		1		6		5		0	40
- 3	40			-6		-6		-2	
a_j	50	0	5	0	2	0	15		135

Lakukan uji optimal lagi, masih menggunakan Metode Stepping Stone Tabel Lintasan Tertutup

	LINTASAN	Δc	c'_{ij}
K ₂₁	K_{21} K_{11} K_{12} K_{22}		
	+4 -3 +2 -3	0	0
K ₂₃	K_{23} K_{22} K_{12} K_{13}		
	+5 -3 +2 -1	+3	-3
K ₃₂	K_{32} K_{31} K_{11} K_{12}		
	+6 -1 +3 -2	+6	-6
K ₃₃	K_{33} K_{31} K_{11} K_{13}		
	+5 -1 +3 -1	+6	-6
K ₂₄	K_{24} K_{22} K_{12} K_{14}		
	+0 -3 +2 -0	-3	+1
K ₃₄	K_{34} K_{31} K_{11} K_{14}		
	+0 -1 +3 -0	+2	-2

Masih ada $c'_{ij} > 0$ yaitu $c'_{24} = 1$, sehingga akan dilakukan penggeseran variabel basis sesuai lintasan tertutup pada K_{24} sebagai kotak dengan c'_{24} dengan nilai positif terbesar, yaitu K_{24} , K_{22} , K_{12} , K_{14} dengan kotak donor adalah K_{22} dan K_{14} dengan alokasi masing-masing 40 dan 15, sehingga 15 menjadi alokasi terkecil yang akan didonorkan pada K_{24} dan K_{14} sebagai kotak akseptor. x_{24} menjadi variabel basis baru (semu), sedangkan x_{14} menjadi variabel non basis baru (semu). Perbaiki tabel.

Tabel 5

	D	1	D	2	D	3	D	4	b_i
O_1		3		2		1		0	55
1	10		25		20			-1	
O_2		4		3		5		0	40
- 2		0	25		-	-3	15		
O_3		1		6		5		0	40
	40			-6	-	-6		-3	
a_j	50	0	5	0	20	0	15		135

Lakukan uji optimal lagi, masih menggunakan Metode Stepping Stone

Tabel Lintasan Tertutup

	LINT	CASAN			Δc	c_{ij}'
K ₂₁	K ₂₁	K_{11} -3	K_{12}	K_{22}		
	+4	-3	+2	-3	0	0
K ₂₃		K ₂₂				
	+5	-3	+2	-1	+3	-3
K ₃₂	K ₃₂	K ₃₁	K ₁₁	K ₁₂		
	+6	-1	+3	-2	+6	-6
K ₃₃		K ₃₁				
	+5	-1	+3	-1	+6	-6

Dísusun oleh Caturíyatí, Edísí Revísí 2024

K ₁₄	K ₁₄	K_{24}	K ₂₂	K ₁₂				
	+0	-0	<i>K</i> ₂₂ +3	-2			+1	-1
K ₃₄	K ₃₄	K ₃₁	K ₁₁	K ₁₂	K ₂₂	K ₂₄		
	+0	-1	<i>K</i> ₁₁ +3	-2	+3	-0	+3	-3

Tabel sudah optimal, semua $c'_{ij} \leq 0$, dengan nilai

$$P_{min} = 3.10 + 2.35 + 1.20 + 3.25 + 1.40$$

$$= 30 + 70 + 20 + 75 + 40$$

$$= 235. \text{ dan}$$

$$P_{maks} = 7. (10 + 35 + 20 + 25 + 40) - 25$$

$$P_{maks} = 7. (10 + 35 + 20 + 25 + 40) - 235$$

= $7.130 - 235$
= $910 - 235$
= 675 .

Cek: Masukkan alokasi variabel basis pada tabel ongkos masalah memaksimumkan

	D_1	D_2	D_3	b_i
O_1	4	5	6	55
	10	35	20	
O_2	3	4	2	45
2		25		
O_3	6	1	2	40
	40			
a_j	50	50	20	

Dísusun oleh Caturiyatí, Edísí Revisí 2024

$$P_{maks} = 4.10 + 5.35 + 6.20 + 4.25 + 6.40$$

= $40 + 175 + 120 + 100 + 240$
= 675 .

Untuk contoh masalah pola memaksimumkan tak setimbang $\sum_{i=1}^m b_i < \sum_{j=1}^n a_j$ berikut, silakan dikerjakan sendiri ya.

Contoh: Diberikan masalah transportasi memaksimumkan berikut

	D_1	D_2	D_3	b_i
O_1	4	3	2	40
02	5	4	6	40
03	2	7	6	40
a_j	50	50	45	120

Kejadian Khusus:

Pernahkah kalian mengalami kejadian penentuan variabel basis yang menyebabkan jenuh bersamaan sebelum penentuan terakhir. Apa akibatnya?

Mari kita lihat contoh berikut:

Contoh. Diberikan masalah transportasi meminimumkan sebagai berikut

	D_1	D_2	D_3	b_i
01	4	4	2	50
02	3	7	8	45
03	2	5	6	55
a_j	55	60	50	

Perhatikan $\sum_{i=1}^{m} b_i = 150 < \sum_{j=1}^{n} a_j = 165$, yaitu kasus tidak setimbang. Perlu disetimbangkan dengan menambah baris semu O_4 dengan alokasi 15 dan nilai $c_{4j} = 0, \forall j = 1,2,3$.

Ditunjukkan pada tabel setimbang berikut.

	D_1	D_2	D_3	b_i
01	4	4	2	50
02	3	7	8	45
03	2	5	6	55
04	0	0	0	15
a_j	55	60	50	165

1. Akan dilakukan penentuan variabel basis awal dengan Metode SBL:

	D_1	D_2	D_3	b_i
01	50	4	2	50
02	5	40	8	45
03	2	5 20	35	55
O_4	0	0	15	15
a_j	55	60	50	165

Tidak ada masalah, dengan variabel basis berturut-turut $x_{11}, x_{21}, x_{22}, x_{32}, x_{33}, x_{43}$. Tabel tidak merosot.

2. Dengan Metode Vogel

	D_1	D_2	D_3	b_i	
O_1	4	4	2	50	2 2 * * * * *
		50			
O_2	3	7	8	45	5 * * * * * *
2	45				
O_3	2	5	6	55	3 3 3 3 * * *
03		5	50		
O_4	0	0	0	15	0 0 0 0 0 0 *
	10	5			
a_j	55	60	50	165	
	2	4	2		1
	2	<u>4</u>	2		
	2	5	<u>6</u>		
	2	<u>5</u>	*		
	<u>0</u>	0	*		
	*	0	*		

Tidak ada masalah, dengan variabel basis berturut-turut x_{21} , x_{12} , x_{33} , x_{32} , x_{41} , x_{42} . Tabel tidak merosot.

3.	Dengan	Metode	$C_{i:i}$	Terkecil
<i>J</i> .	Dengan	Mictoac	~ 1.1	1 CIRCUII

	D_1	D_2	D_3	b_i
01	4	4	50	50
02	3	45	8	45
03	55	5	6	55
O_4	0	15	0	15
a_j	55	60	50	165

Urutan c_{ij} dari yang terkecil: 2,3,4,5,6,7,8

Isikan $c_{ij} = 2$, yaitu pada c_{13} dan c_{31} , pilih salah satu dulu. Pilih c_{13} , isikan pada K_{13} alokasi maksimum antara 50 supply dan 50 demand. Kita coba isikan ya... Apa yang terjadi? Baris 1 dan kolom 3 jenuh bersamaan. Abaikan, mari dilanjutkan.

Karena baris dan kolom yang memuat c_{31} belum jenuh, maka kita bisa isikan alokasi pada K_{31} dengan nilai 55 supply dan 55 demand. Apa yang terjadi? Baris 3 dan kolom 1 jenuh bersamaan. Abaikan, mari kita lanjutkan.

Karena kolom yang memuat $c_{ij} = 3,4,5$ dan $c_{ij} = 6$ semua sudah jenuh, maka beranjak ke $c_{ij} = 7$. Pada K_{22} isikan alokasi 45 sehingga baris 2 jenuh.

Tersisa $c_{ij} = 0$ pada baris semu, isikan kekurangan alokasi pada baris dan kolom terkait. Pada K_{42} isikan 15.

Variabel yang dihasilkan x_{13} , x_{31} , x_{12} , x_{42} , ada 4 variabel basis, namun $4 \neq m + n - 1 = 6$. Akibat yang diperoleh:

- a. Variabel yang diperoleh bukan variabel basis, karena tidak saling bebas linear dan tidak membangun.
- b. Tabel merosot. $m + n 1 \neq \text{variabel yang dihasilkan}$.
- c. Tidak dapat dilakukan uji optimum.

Kita coba lakukan uji optimum pada tabel merosot tersebut.

a. Akan digunakan Metode MOD1

Pada kotak isi: Ambil $u_2 = 0$

$$K_{22}$$
: $u_2 + v_2 = c_{22} \to 0 + v_2 = 7 \to v_2 = 7$

$$K_{42}$$
: $u_4 + v_2 = c_{42} \rightarrow u_4 + 7 = 0 \rightarrow u_4 = -7$

$$K_{11}$$
: $u_1 + v_1 = c_{11} \rightarrow u_1 + v_1 = 4 \rightarrow u_1 = ? \ v_1 = ?$

$$K_{31}\colon u_3+v_1=c_{31}\to u_3+v_1=2\to u_3=?\ v_1=?$$

Uji tidak bisa dilanjutkan, karena tidak bisa memperoleh semua bilangan baris dan bilangan kolom yang diperlukan.

b. Akan digunakan Metode Stepping Stone

Tabel Lintasan Tertutup

	LINTASAN	Δc	c'_{ij}
K ₁₁			
K ₁₂			
K ₂₁			
K ₂₃			
K ₃₂			
K ₃₃			
K ₄₁			
K ₄₃			

Pertanyaan: apakah pengisian yang menyebabkan merosot tidak dapat dihindari? Jawabnya dapat.

	D_1	D_2	D_3	b_i
01	10	40	2	50
02	3 45	7	8	45
O_3	2	5	6	55
		20	35	
O_4	0	0	0	15
- 4			15	
a_j	55	60	50	165

Walau c_{ij} terkecil bernilai 2 dan ada dua kotak, namun pemilihan kedua $c_{ij} = 2$ tersebut menyebabkan kemerosotan, maka hindari memilih $c_{ij} = 2$ untuk pengisian pertama, gunakan c_{ij} terkecil di atasnya yaitu $c_{ij} = 3$, pada K_{21} , isikan 45, baris 2 jenuh.

Ke c_{ij} terkecil selanjutnya yaitu $c_{ij} = 4$, ada dua pilihan c_{11} dan c_{12} , pilih salah satu dulu. Misal pilih K_{11} , isikan 10, kolom 1 jenuh. Karena baris 1 belum jenuh, pilih $c_{ij} = 4$ pada K_{12} , isikan 40, baris 1 jenuh.

Ke c_{ij} terkecil selanjutnya yaitu $c_{ij} = 5$, pada K_{32} , isikan 20, kolom 2 jenuh.

Pilihan terakhir adalah $c_{ij} = 6$, pada K_{33} , isikan 35, baris 3 jenuh.

Baru isikan sisanya pada K_{43} , sebagai kotak semu yang masih bebas, isikan kekurangannya, yaitu 15, yang menyebabkan jenuh bersamaan baris 4 dan kolom 3.

Variabel yang dihasilkan dari pengisian ini berturut-turut: x_{21} , x_{11} , x_{12} , x_{32} , x_{33} , x_{43} , yaitu ada 6 variabel, 6 = m + n - 1, tabel tidak merosot dan variabelnya merupakan variabel basis awal.

Sekarang, perhatikan uji optimum dari contoh memaksimumkan tidak setimbang sebelumnya. Berikut ini adalah uji yang menunjukkan tabel telah optimum.

	LINT	ASAN					Δc	c'_{ij}
K ₂₁	K ₂₁	K ₁₁	K ₁₂	K ₂₂				
	+4	-3	+2	-3			0	0
K ₂₃	K ₂₃	K ₂₂	K ₁₂	K ₁₃				
	+5	-3	+2	-1			+3	-3
K ₃₂	K ₃₂	K ₃₁	K ₁₁	K ₁₂				
	+6	-1	+3	-2			+6	-6
K ₃₃	K ₃₃	K ₃₁	K ₁₁	K ₁₃				
	+5	-1	+3	-1			+6	-6
K ₁₄	K ₁₄	K ₂₄	K ₂₂	K ₁₂				
	+0	-0	+3	-2			+1	-1
K ₃₄	K ₃₄	K ₃₁	K ₁₁	K ₁₂	K ₂₂	K ₂₄		
	+0	-1	+3	-2	+3	-0	+3	-3

Adanya nilai $c_{ij}^{\prime}=0$ mengindikasikan solusi tidak tunggal. Ada pilihan solusi.

 x_{21} menjadi kandidat variabel basis pada solusi optimum. Pada tabel optimum, kita lakukan penggeseran variabel basis, kemudian lakukan uji, dan tentukan nilai optimum fungsi tujuannya. Pada lintasan tertutup $K_{21} - K_{11} - K_{12} - K_{22}$, yang merupakan donor terkecil adalah K_{11} dengan nilai 10, maka lakukan penggeseran.

	D_1	D_2	D_3	D_4	b_i
O_1	3	2	1	0	55
		45	20		
O_2	4	3	5	0	40
0 2	10	15		15	10
O_3	1	6	5	0	40
3	40				10
a_j	50	50	20	15	135

Lakukan uji optimum

	LINT	ASAN					Δc	c'_{ij}
K ₁₁	K ₁₁	K ₁₂	K ₂₂	K ₂₁				
	+3	-2	+3	-4			0	0
K ₂₃	K ₂₃	K ₂₂	K ₁₂	K ₁₃				
	+5	-3	+2	-1			+3	-3
K ₃₂	K ₃₂	K ₃₁	K ₂₁	K ₂₂				
	+6	-1	+4	-3			+6	-6
K ₃₃	K ₃₃	K ₃₁	K ₂₁	K ₂₂	K ₁₂	K ₁₃		
	+5	-1	+4	-3	+2	-1	+6	-6
K ₁₄	K ₁₄	K ₂₄	K ₂₂	K ₁₂				
	+0	-0	+3	-2			+1	-1
K ₃₄	K ₃₄	K ₃₁	K ₂₁	K ₂₄				
	+0	-1	+4	-0			+3	-3

Tabel optimum karena $c'_{ij} \leq 0$ untuk semua kotak kosong. Nilai optimum fungsi tujuan:

	D_1	D_2	D_3	b_i
01	4	45	20	55
02	10	15	2	45
O_3	40	1	2	40
a_j	50	50	20	

$$P_{maks} = 5.45 + 6.20 + 3.10 + 4.15 + 6.40$$

= 225 + 120 + 30 + 60 + 240
= 675.

Mungkin sekali terjadi, di dalam proses distribusi terjadi suatu keadaan salah satu jalur yang biasa dilalui diinfokan ditutup karena mengalami kerusakan atau perbaikan. Bagaimana dengan proses distribusi barang ke suatu lokasi yang jalurnya ditutup tadi?

Untuk masalah demikian solusinya mengganti ongkos angkut pada jalur rusak tersebut dengan $c_{ij} = M$, M adalah nilai yang sangat besar, dengan tujuan jalur tersebut tidak dipilih dalam solusi. Kemudian dikerjakan seperti biasa.

Kalau tadi yang merosot pada penentuan variabel awal, sekarang bagaiman jika kemerosotan terjadi ketika dilakukan perbaikan tabel? Ini biasanya terjadi jika ada dua donor yang merupakan donor terkecil dengan nilai yang sama, sehingga ketika dilakukan penggeseran variabel basis, kedua kotak donor tersebut akan menjadi kosong bersamaan, dan variabel penyusun plb nya, menjadi tidak sama dengan m+n-1, atau tabel baru merosot. Apa yang harus dilakukan? Yang harus dilakukan adalah mengisi salah satu kotak kosong dari donor terkecil terkecil tadi dengan

alokasi semu ε yang bilangan ini hanya berfungsi sebagai alat bantu (katalisator) untuk tetap berlanjutnya uji optimal. Sifat dari ε ini dalam perhitungan adalah $a+\varepsilon=a, b-\varepsilon=b,$ dan $\varepsilon-\varepsilon=0$.

Karena ε mengisi posisi variabel basis, maka banyaknya variabel basis sama dengan m+n-1, tabel tidak merosot. Proses uji optimum dilakukan hingga diperoleh tabel optimum. Pada plb, ε tidak ikut masuk.

Demikian solusi masalah yang mungkin kita hadapi dalam menyelesaikan masalah transportasi.