Эксперементальная проверка закона вращательного движения на крестообразном маятнике

Выполнил студент группы Б03-302: Танов Константин

1 Цель работы:

Экспериментально проверить уравнение вращательного движения, получив зависимость углового ускорения от момента инерции и момента прикладываемых к системе сил, а также проанализировать влияние сил трения, действующих в оси вращения.

2 Оборудование:

Крестообразный маятник, набор перегрузов, штангенциркуль, компьютер.

3 Теоретические сведения:

Основное уравнение вращательного движения тела вокруг закреплённой оси:

$$I\ddot{\varphi} = M,\tag{1}$$

где $\ddot{\varphi} \equiv \dot{\omega} \equiv \beta$ — угловое ускорение (ω — угловая скорость), I — полный момент инерции тела относительно оси вращения, M — суммарный момент внешних сил относительно этой оси.

Для экспериментального исследования закона вращательного движения (1) в работе используется крестообразный «маятник» , устройство которого изображено на рис. ??. Маятник состоит из четырёх тонких стержней радиуса a, укреплённых на втулке под прямым углом друг к другу. Втулка и два шкива различных радуисов (r_1 и r_2) насажены на общую ось. Ось закреплена в подшипниках, так что вся система может свободно вращаться вокруг горизонтальной оси. Момент инерции I маятника можно изменять, передвигая грузы $m_i(i=1,\ldots,4)$ вдоль стержней и меняя R_i . На один из шкивов маятника навита тонкая нить. Привязанная к ней лёгкая платформа известной массы m_{π} служит для размещения перегрузков m_{Γ} .

Установка оснащена датчиком, позволяющим фиксировать моменты времени прохождения концов стержней через него. Данные с датчика передаются на компьютер для последующей обработки и получения зависимостей угла поворота $\varphi(t)$, угловой скорости $\omega \equiv \dot{\varphi}$ и углового ускорения маятника $\beta \equiv \ddot{\varphi}$ от времени, а также углового ускорения от угловой скорости $\beta(\omega)$.

Рассмотрим силы, действующие на маятник. Основной вращающий момент поздаётся подвешенным на нити перегрузком. Непосредственно на маятник действует момент силы натяжения нити: $M_{\rm H}=rT$, где r – радиус шкива (r_1 или r_2). Силу T выразим из уравнения движения платформы $m_{\rm H}\ddot{y}=m_{\rm H}g-T$, где $m_{\rm H}=m_{\rm H}+m_{\rm F}$ – масса платформы с перегрузком. Ускорение платформы связано с угловым ускорением маятника условием нерастяжимости нити $\ddot{y}=\beta r$. Отсюда момент силы натяжения нити

$$M_{\rm H} = m_{\rm H} r(g - \beta r). \tag{2}$$

Вращению маятника препятствует момент силы трения в оси $M_{\rm Tp}$. Таким образом, с учётом (2) уравнение (1) может быть записано как

$$(I + m_{\rm H}r^2)\beta = m_{\rm H}gr - M_{\rm TP}. \tag{3}$$

Заметим, что в наших опытах, как правило, $m_{\rm H}r^2 \ll I$, и соответственно $M_{\rm H} \approx m_{\rm H}gr$, то маятник будет раскручиваться с постоянным угловым ускорением $\beta_0 \approx m_{\rm H}gr/I$.

Поскольку зависимость момента силы трения от нагрузки на маятник и скорости его вращения не известна (её исследование — отдельная экспериментальная задача), методика измерения должна быть построена так, что-бы минимизировать или вовсе исключить влияние $M_{\rm Tp}$. Можно высказать следующие качественные соображения о природе и величине $M_{\rm Tp}$. Она может иметь как составляющую, пропорциональную силе реакции в оси N (сухое трение в подшипниках), так и составляющую, пропорциональную угловой скорости ω вращения маятника (вязкое трение в подшипниках и сопротивления воздуха). Учитывая, что сила реакции уравновешенного маятника равна $N = m_{\rm M} g + T \approx (m_{\rm M} + m_{\rm H})g \approx m_{\rm M} g$, где $m_{\rm M}$ — масса маятника (как правило,

 $m_{\rm M} \gg m_{\rm H}$), можно записать

$$M_{\rm TP} \simeq \left(1 + \frac{m_{\rm H}}{m_{\rm M}}\right) M_0 + \eta \omega \approx M_0 + \eta \omega,$$
 (4)

где M_0 — момент сил трения для покоящегося маятника при нулевой массе подвеса (минимальное значение силы трения), η — некоторый коэффициент, отвечающий за вязкое трение.

4 Ход работы:

Оценим момент сил трения в подшипниках. Граничное значение складывается из массы перегрузка и массы платформы и равно $m_{\rm rp}=4,80+6,17=10,97$ г.

Измерения проводились на большом шкифе, радиус которого $r_1=1,78$ см. Тогда момент сил трения $M_0=m_{\rm rp}gr_1\approx 1.95\cdot 10^{-3}({\rm H\cdot m}).$

Проведём измерение коэффициентов прямой $\beta(\omega)$ k и β_0 , чтобы оценить случайную погрешность β_0 .

k, 1/c	$eta_0,\mathrm{pag}/c^2$	$(\beta_{0\text{сред}} - \beta_{0i})^2, \text{рад}^2/c^4$
$-0,0078 \pm 0,0058$	$0,5126 \pm 0,0012$	0,0015
$-0,0072 \pm 0,0021$	$0,4513 \pm 0,0008$	0,005
$-0,0079 \pm 0,0045$	$0,4388 \pm 0,0018$	0,0012
$-0,0090 \pm 0,0017$	$0,4666 \pm 0,0085$	0,0001
$-0,0085 \pm 0,0070$	$0,4737 \pm 0,0016$	0,0001
$-0,0084 \pm 0,0015$	$0,4999 \pm 0,0014$	0,0007
$-0,0088 \pm 0,0049$	$0,4749 \pm 0,0039$	0,0001

$$eta_{0 ext{cpeд}} pprox 0,4740 ext{(рад/c}^2)$$
 $\sigma_{ ext{cлуч}} = \sqrt{\sum_{i=1}^n rac{(eta_{0 ext{cpeg}} - eta_{0 ext{n}})^2}{n(n-1)}} pprox 0.01 ext{(рад/c}^2)$

Проведём измерения коэффициентов прямой $\beta(\omega)$ k и β_0 при разных массах перегрузка.

 $m_0 = 6,17$ г – масса платформы $r_1 = 1,78$ см – радиус большего шкива

$m_{\scriptscriptstyle \Gamma},$ $_{\scriptscriptstyle \Gamma}$	k, 1/c	$eta_0, \mathrm{pag/c}^2$	$M_{ m T}, { m H}\cdot{ m M}$
68.17	-0.0113 ± 0.0021	0.669 ± 0.002	$1.21 \cdot 10^{-2}$
106.17	-0.0123 ± 0.0022	1.067 ± 0.007	$1.89 \cdot 10^{-2}$
146.17	-0.0172 ± 0.0029	1.658 ± 0.001	$2.6\cdot10^{-2}$
176.17	-0.0221 ± 0.0019	1.907 ± 0.003	$3.1\cdot10^{-2}$
206.17	-0.0253 ± 0.0041	2.300 ± 0.008	$3.7\cdot10^{-2}$

где $M_{\rm T} = m_{\rm r} g r_1$ – момент силы натяжения нити

Постороим график $\beta_0(M_{\rm T})$ зависимости начального ускорения от момента силы натяжения. Полученная зависимость является прямой пропорциональностью, то есть $\beta_0 = a + b M_{\rm T}$.

Коэффициенты a и b вычислим по МНК.

$$a \approx -0,141(\text{рад/c}^2)$$

$$b \approx 66,46(1/\text{kg} \cdot \text{m}^2)$$

Пересечение с осью абсцисс при $\beta_0 = 0 \Rightarrow M_0 = -a/b \approx 2, 12 \cdot 10^{-3} (\text{H} \cdot \text{м})$ – момент сил трения. (Найденный ранее – $1.95 \cdot 10^{-3} (\text{H} \cdot \text{м})$).

Вычислим $I = 1/b \approx 0.015 (\text{кг} \cdot \text{м}^2)$.

Оценим погрешность I. Из формулы выше следует, что $\varepsilon_I = \varepsilon_b$.

$$\sigma_b \approx 2,02(1/\text{kg} \cdot \text{m}^2)$$

$$\varepsilon_b = \sigma_b/b \approx 0.03$$

Тогда
$$\sigma_I = \varepsilon_I I = \varepsilon_b I \approx 0.00045 (\text{кг} \cdot \text{м}^2)$$

В итоге имеем:

$$I = (0.015 \pm 0.00045)$$
кг · м 2

Проведём измерения зависимости углового ускорения от момента инерции ситемы.

$$m_{\scriptscriptstyle \Gamma}=106.17({\scriptscriptstyle \Gamma})$$
 – масса груза $r=1.78({\rm cm})$ – радиус шкива По формуле (3) имеем:

$$(I+m_{\rm H}r^2)\beta=m_{\rm H}gr-M_{\rm TP}$$

$$I\gg m_{\rm H}r^2\Rightarrow I_i\approx \frac{m_{\rm H}gr-M_{\rm TP}}{\beta_i}.$$

Полученные значения I_i занесём в таблицу и построим по ним график $I(R^2)$.

R, cm	k, 1/c	$eta, \mathrm{pag/c}^2$	I , kp · m^2
17	-0.0177 ± 0.0062	1.004 ± 0.0015	0.0182
15	-0.1540 ± 0.0030	1.1491 ± 0.0011	0.0159
13	-0.0136 ± 0.0015	1.3941 ± 0.0011	0.0131
18	-0.0163 ± 0.0017	0.9090 ± 0.0023	0.02201

Полученные по МНК коэффициенты прямой $I=a+bR^2$ равны: $a\approx 0,0038({\rm kg\cdot m^2})$ $b\approx 0,535({\rm kg})$ Вычислим I по формуле:

$$I = I_0 + \sum_{i=1}^{4} (I_i + m_i R_i^2)$$

где I_0 – момент инерции системы без грузов, а $I_i = \frac{1}{12} m_i h^2 + \frac{1}{4} m_i (a_1^2 + a_2^2)$. Поскольку массы грузов и расстояния до центра масс почти не отличаются $\sum_{i=1}^4 (I_i + m_i R_i^2) \approx 4I_1$. Вычислим эту величину и получим, что $4I_1 \approx 7.98 \cdot 10^{-5} (\mathrm{kr} \cdot \mathrm{m}^2) \ll a \Rightarrow I_0 \approx a$.

$$^{-5}$$
(кг · м²) « $a \Rightarrow I_0 \approx a$.

Тогда $\sigma_I = \sigma_a = \sqrt{\frac{\langle I^2 \rangle - \langle I \rangle^2 - b^2 \left(\langle R^4 \rangle - \langle R^2 \rangle^2\right)}{n}} \approx 0.000002$ (кг · м²)
Имеем
$$I_0 = (0.0038 \pm 0.000002)$$
(кг · м²)

Найдём I_0 другим способм. Измерим k и β_0 при перегрузке массой $m_{\pi}=106.17(\Gamma)$ без грузов на маятнике.Полученные данные занесём в таблицу.

k, 1/c	$eta_0, (\mathrm{pag/c}^2)$	
-0.0452 ± 0.0031	3.238 ± 0.006	
-0.0407 ± 0.0056	3.189 ± 0.009	
-0.0839 ± 0.001	3.776 ± 0.002	

$$\langle \beta_0 \rangle = 3,401 ({
m pag/c}^2)$$
 $I_0 pprox \frac{m_{
m n} gr - M_0}{\beta_0} pprox 0,0048 ({
m K}\Gamma \cdot {
m M}^2)$

График зависимости $\beta_0 = a + bM_{\mathrm{T}}$

График зависимости $I=a+bR^2$

5 Вывод

Мы убедились, что угловое ускорение маятника обратно пропорционально моменту инерции тела и прямо пропорционально моменту прикладываемых сил.