3. Represente o número x=114,55469 em ponto flutuante, precisão simples. Mostre os passos na solução deste problema.

```
PASSO 1: Converter o número para binário
```

```
114/2 = 57, resto 0;

57/2 = 28, resto 1;

28/2 = 14, resto 0;

14/2 = 7, resto 0;

\frac{7}{2} = 3, resto 1;

\frac{3}{2} = 1, resto 1;

Parte inteira: 1110010<sub>2</sub>
```

$0,55469 \times 2 = 1,10938$	$0,00064 \times 2 = 0,00128$	$0,16384 \times 2 = 0,32768$
$0,10938 \times 2 = 0,21876$	$0,00128 \times 2 = 0,00256$	$0,32768 \times 2 = 0,65536$
$0,21876 \times 2 = 0,43752$	$0,00256 \times 2 = 0,00512$	$0,65536 \times 2 = 1,31072$
$0,43752 \times 2 = 0,87504$	$0,00512 \times 2 = 0,01024$	$0,31072 \times 2 = 0,62144$
$0.87504 \times 2 = 1.75008$	$0.01024 \times 2 = 0.02048$	$0,62144 \times 2 = 1,24288$
$0,75008 \times 2 = 1,50016$	$0,02048 \times 2 = 0,04096$	$0,24288 \times 2 = 0,48576$
$0,50016 \times 2 = 1,00032$	$0,04096 \times 2 = 0,08192$	$0,48576 \times 2 = 0,97152$
$0,00032 \times 2 = 0,00064$	$0.08192 \times 2 = 0.16384$	$0,97152 \times 2 = 1,94304$

Parte fracionária: 10001110000000001010012

PASSO 2: Converter para o padrão IEEE 754 1110010,100011100000000000101001 $_2 \times 2^0 = 1,1100101000111000000000000101001_2 \times 2^6$ Sinal = 0_2 Expoente = $6 + 127 = 133 = 10000101_2$ Mantissa = $11001010001110000000000_2$

Número:

 $010000101110010100011100000000000_2$