DAH Academic Hub

Cursos con modalidad de enseñanza presencial en grupos y aprendizaje experimental de crecimiento en grafos.

El concepto de aprendizaje basado en grafos se sustenta en el ideal de adaptar el proceso educativo a las variables personales de cada estudiante. Reconociendo que cada individuo posee su propio estilo de aprendizaje, intereses y conocimientos previos, podemos potenciar estos atributos como áreas de oportunidad para su desarrollo. De ello se deduce que un enfoque de aprendizaje que siga una planificación lineal y uniforme sería intrínsecamente inadecuado, ya que pasaría por alto las características únicas de cada alumno.

Por otro lado, la personalización del aprendizaje, aunque enriquecedora, introduce complicaciones en el seguimiento de la efectividad individual de cada plan de estudios recomendado. Este enfoque demanda una constante actualización y adaptación ante las posibles variables y cambios, sin dejar de mencionar el desafío que representa la medición precisa del progreso y la efectividad en un modelo tan diversificado.

Además, es crucial fundamentar esta educación no solo en el aprendizaje técnico, sino tambié en la construcción de comunidad y en la inculsación de valores, entre los que destacan el construcción de comunidad y en la inculsación de valores, entre los que destacan el construcción de comunidad y en la inculsación de valores, entre los que destacan el construcción de comunidad y en la inculsación de valores, entre los que destacan el construcción de comunidad y en la inculsación de valores entre los que destacan el construcción de comunidad y en la inculsación de valores entre los que destacan el construcción de construcción de construcción de cada plan d

Además, es crucial fundamentar esta educación no solo en el aprendizaje técnico, sino también en la construcción de comunidad y en la inculcación de valores, entre los que destacan el compañerismo y el fomento del aprendizaje autodidacta. Este enfoque se vislumbra viable a través de un sistema educativo que promueva el intercambio de conocimientos entre miembros de la misma comunidad, propiciando un entorno donde el aprendizaje es recíproco y enriquecido por la diversidad de experiencias y perspectivas de sus integrantes.

El método de Feynman sostiene: "Si no entiendes algo lo suficientemente bien, intenta explicarlo". En este argumento, destacamos la enseñanza como método de aprendizaje personal. En las experiencias previas de nuestra comunidad, hemos observado cómo la capacidad de impartir una sesión de entrenamiento, enseñar sobre un tema dominado o guiar la resolución de ejercicios, estimula la participación y el interés en la disciplina estudiada, contribuyendo a la formación de una identidad colectiva.

En un entorno donde todos son maestros y no hay alumnos, el maestro se convierte en un estudiante consciente de los temas que domina y de que siempre habrá algo nuevo que aprender. Esta perspectiva es crucial, pues de lo contrario, su progreso estaría limitado. Al promover esta dinámica, fomentamos un ciclo continuo de aprendizaje y enseñanza, donde el conocimiento fluye libremente, enriqueciendo a toda la comunidad.

Por lo tanto, reconocemos en el principio de "aprender enseñando" el fundamento para el desarrollo de una comunidad organizada pero descentralizada, cuyos miembros están unidos

por el deseo común de avanzar en su adquisición de conocimiento. Este enfoque promueve una red de aprendizaje en la que cada individuo, al compartir su dominio, contribuye al crecimiento colectivo y a la expansión del entendimiento mutuo, reforzando así el tejido de la comunidad mediante la colaboración y el intercambio constante de saberes.

Avanzar en una comunidad orientada hacia el progreso y la filantropía no solo asegura nuestro bienestar individual y colectivo, sino que también promueve una sensación de seguridad compartida. A lo largo de las siguientes páginas, se explorará más a fondo un sistema de enseñanza cuyo objetivo primordial es democratizar el acceso al conocimiento. Este acceso, caracterizado por ser gratuito, solidario, entretenido, personalizado, efectivo y práctico, busca ante todo ser autosustentable, auto mejorable y autorreplicable, garantizando así su perdurabilidad y relevancia a largo plazo.

Partiendo del concepto de grafo empezaremos con algunas analogías sobre el tipo de aprendizaje estandarizado en la mayoría de comunidades. Para efectos de este documento, el aprendizaje lineal se define como todo aprendizaje enfocado únicamente en el seguimiento de ciertos temas de manera secuencial donde los temas de diferentes materias no cruzan entre ellos sino que cada materia de estudio es una línea paralela a las otras.

Por tanto, funcionando en el individuo como una pila de temas estudiados crecientes a lo alto cada fila independiente a la otra.

Aunado al hecho que este sistema es normalmente estandarizado para cumplir únicamente las necesidades básicas de la educación y no especializada en las habilidades, aprendizaje y deficiencias de cada estudiante.

Por tanto, nos gusta platicar sobre un concepto de aprendizaje no lineal enfocado en la teoría de grafos.

Visto desde la idea que un grafo es el único tipo de estructura lo suficiente moldeable, especializada, que puede dar a entender una gran cantidad de datos expresados únicamente en un solo espacio representado por coordenadas de diferentes dimensiones, siendo las variables características de cada persona, tipo de aprendizaje, intereses y gustos.

Por tanto, un grafo es la única estructura capaz de dar seguimiento a los enlaces de aprendizaje que trabaja nuestro pensamiento de manera natural, la representación más viable para capturar el desarrollo de cada individuo.

Un aprendizaje especializado para cada sujeto pues es alimentado por sus comportamientos, crecimiento y retroalimentación de cada actividad a un sistema planificado donde dependiendo de dicha entrada dará un resultado previsible que ira transformando eventualmente a un perfil de estudiante muy exacto.

Igualmente, este estudiante siendo un sujeto de aprendizaje eventualmente se convertirá en experto o maestro de algún tema y asegurando el cumplimiento de una de nuestras reglas fundamentales, "enseñar es la mejor manera de aprender".

Finalmente siendo una comunidad enfocada principalmente al enfoque practico y la

innovación, el ideal de poder trabajar, estudiar, progresar y aprender con personas similares a nosotros nos permite también reconocer que es más eficiente estudiar y entender la vista de un solo tema a través de 5 o 6 perspectivas diferentes a las tuyas, pero similares en aprendizaje técnico, que únicamente ser analizada y comprendida por la sesgada percepción de uno mismo. Siempre exhortando la colaboración y el entusiasmo al aprendizaje, pero nunca retroalimentando positivamente la falta de compromiso ni la falta de moral al propósito del proyecto en desarrollo.

Por tanto, tomando en cuenta todo lo anterior un buen inicio de pruebas sería el semestre del club de algoritmia DAH sesiones sábados [XXXXXXX] - [XXXXXXX]:

La propuesta inicial es el desarrollo de 7 sábados seguidos de sesiones de aprendizaje y entrenamiento de temas variados relacionados al desarrollo de proyectos y tecnologías computacionales.

Se propone la realización de 10 mesas de aprendizaje donde el concepto orbita la idea de un "Experto" o para nombre público "DAHMaster" que tendrá preparado con previo aviso el desarrollo de 7 cursos o "Workshops" con duración de 5 horas y temas autocontenidos. El desarrollo de temas autocontenidos va de la mano con la propuesta de variación de estudio y personalización a los asistentes "Estudiantes" o "DAHAcademics".

La propuesta de 10 mesas de aprendizaje con 10 DAHMaster >= 1 por mesa en el transcurso de 7 sábados visto desde una perspectiva en tabla nos daría algo similar a la siguiente imagen visto desde la perspectiva de un DAHAcademics escogiendo que workshops elegir cada sábado. (En esta imagen de prototipo no se muestran los cursos ni los temas a escoger reales).

Mesas/Sesion Mesa 1: Desarrollo de videojuegos (Principiante) Mesa 2: Frontend (principiante)	Sabado 1 (Introduccional curso, explicacion del sistema, realizacion de cuestionarios y presentacion de temas, inicio de tema 1) Mesa 1: Introduction to Game Development with Unity—Building Your First Game Mesa 2: HTML & CSS Basics—Creating a Personal Webpage	Sabado 2 (tema autocontenido 2) Mesa 1: Game Mechanics - Designing a Platformer Mesa 2: Responsive Web Design - Making Sites Mobile - Friendly	Sabado 3 (tema autocontenido 3) Mesa 1: introducing Ai in Game Development – Non-Player Character Behavior Mesa 2: Advanced JavaScript – Frameworks Overview	Sabado 4 (tema autocontenido 4) Mesa 1: Designing User interfaces for Games Mesa 2: Building Single Page Applications with React	Sabado 5 (tema autocontenido 5) Mesa 1: Multi-level Game Development From Concept to Play Store Mesa 2: Building a Progressive Web App
Mesa 2: Frontend	Mesa 2: HTML & CSS Basics - Creating a	Mesa 2: Responsive Web Design – Making	Mesa 2: Advanced JavaScript –	Mesa 2: Building Single Page	Mesa 2: Building a Prog
(principlante)	Personal Webpage	Sites Mobile-Friendly	Frameworks Overview	Applications with React	Web App
Mesa 3: Algoritmia	Mesa 3: Understanding Algorithms - Sorting	Mesa 3: Algorithms in Practice - Problem-	Mesa 3: Algorithm Challenges –	Mesa 3: Data Structures in Depth – Trees and Graphs	Mesa 3: Mestering Sorting
(Principiante)	and Searching	Solving in Python	Recursion and Backtracking		Algorithms and Their Efficiency
Mesa 4: Algoritmia	Mesa 4: Advanced Algorithms - Dynamic	Mesa 4: Graph Algorithms - Network	Mesa 4: Optimization Techniques in	Mesa 4: Competitive Programming	Mesa 4: Algorithms for Big Data –
(Avanzada)	Programming	Analysis	Algorithms	-Preparing for Contests	MapReduce Concepts
"Mesa 5: Desarrollo de proyectos y gestion de equipos de trabajo	Mesa 5: Project Management Fundamentals - Agile Methodology	Mesa 5: Effective Communication and Leadership in Projects	Mesa 5: Resource Management in Projects	Mesa 5: Negotiation Skills for Project Leaders	Mesa 5: Crisis Management in Tech Projects
Mesa 6: Modelado 3D tecnico (Principiante)	Mesa 6: Getting Started with Blender for 3D Modeling	Mesa 6: Texturing and Lighting in 3D Models	Mesa 6: Advanced 3D Modeling Techniques - Realistic Textures	Mesa 6: Animation Basics in 3D Modeling	Mesa 6: Sculpting with ZBrush
Mesa 7: Inteligencia	Mesa 7: Al for Beginners – What is Machine	Mesa 7: Building a Recommendation	Mess 7: Natural Language	Mesa 7: Implementing Neural	Mesa 7: Al in Robotics - Basics of
artificial (principiante)	Learning?	System with Python	Processing with Python	Networks with TensorFlow	Robotic Vision
Mesa 8: DevOps y herramientas de desarrollo	Mesa 8: Intro to DevOps – Understanding Continuous integration	Mesa 8: Introduction to Cloud Services for Developers	Mesa 8: Version Control with Git – Branching and Merging	Mesa 8: Containerization with Docker	Mesa 8: Continuous Deployment -Automation with Jenkins
Mesa 9 : Desarrollo backend con php,laravel y mariaDB	Mesa 9: PHP & Laravel Essentials – Building a Blog	Mesa 9: Database Design - Structuring a SQL Database	Mesa 9: Advanced PHP – Security and Performance	Mesa 9: Using Laravel for API Development	Mesa 9: Advanced Maria DB - Indexes and Stored Procedures
Mesa 10: Modelado 3D Mesa 10: Artistic	Mesa 10: Artistic 3D Modeling – Sculpting a	Mesa 10: Character Rigging Basics in	Mesa 10: Environmental Design –	Mesa 10: Advanced Character	Mesa 10: Real-time Rendering
Artisiticp (principiante Simple Character	Simple Character	Blender	Creating Outdoor Scenes	Design — Details and Textures	Techniques

Esta imagen representaría la tabla de posibilidades. Cada casilla representa un campo posible a escoger por el estudiante, pero agregando algunas variables, recomendaciones, sugerencias y llevando un seguimiento exacto del estudiante podríamos transformar esta tabla de posibilidades en un historial ramificado del trayecto educativo y un portafolio de su desarrollo de proyectos muy exacto.

Empecemos con la idea que en esta tabla de posibilidades tenemos 3 perfiles de aprendizaje distintos.

En estos perfiles de aprendizaje distintos destacamos las características en ciertos estudiantes de aprender por métodos distintos o tener temas de interés en específico, daremos de ejemplo 3 de los perfiles ejemplo con características genéricas o que hemos detectado en algunos de nuestros compañeros.

- *Creativo, analítico, pensar de una manera diferente conectando con rapidez temas interdisciplinarios y con normalidad se adaptan bien a los diferentes sistemas de aprendizaje o temas de enseñanza.
- *Creativo, artístico, comprende los conceptos de colorimetría, espaciado, proporción y en general conceptos sensitivos como otras artes no únicamente visuales.
- *Analítico, razonal, Alto pensamiento crítico, atención al detalle y la exactitud.

Cada uno de ellos le asignaremos un color en nuestro mapa de decisiones.

*Creativo, analitico, pensar de una manera diferente conectando rapidamente temas interdiciplinarios y normalmente se adaptan bien a los diferentes sitemas de aprendizaje o *Creativo, artistico, comprende los conceptos de colorometria, espaciado, proporcion y en general conceptos sensitivos como otras artes no unicamente visuales.

*Analitico, razonal, Alto pensamiento critico, atencion al detalle y la

Si representamos sus colores en cada parte que toman una decisión dentro del mapa de posibilidades al final de un semestre podríamos llegar a ver variaciones de un mapa similar a

este:

Mesas/Sesion	Sabado 1 (introduccional curso, explicacion del sistema, realizacion de cuestionarios y presentacion de temas, início de tema 1)	Saltado 2 (tema autocontenido 2)	Sabado 3 (tema autocontenido 3)	Sabado 4 (tema autocontenido 4)		Sebado 6 (tema autocontenido 6)	Sabado 7 (tema autocontenido 7)
Mess 1: Desarrollo de videojuegos (Principiante)	Mesa 1: Introduction to Game Development with Unity - Building Your First Game	Mess Is Game Mechanics - Designing a Platformer	Mess 1: Introducing Al in Game Development - Non-Player Character Behavior	Mess 1: Designing User Interfaces for Games	Mess 1: Multi-level Game Development – From Concept to Play Store	Meas 1: Game Project - Prototype Development	Mess 1: Developing for VR = Immersive Game Environments
Mess 2: Frontend (principlente)	Mess 3: HTML & CSS Basics - Creating a Personal Webpage	Mess 2: Responsive Web Design – Making Sites Mobile-Priendly	Mess 2: Advanced JavaScript – Frameworks Overview	Mess 2: Building Single Page Applications with React	Mess 2: Building a Progressive Web App	Mess 3: Full Stack Development – Connecting Frontend and Seckend	Mese 21 Exploring the JAMstack - Static Site Generators
Mesa 3: Algoritmia (Principiante)	Mesa is Understanding Algorithms – Sorting and Searching	Mesa is Algorithms in Practice – Problem- Solving in Python	Mesa 3: Algorithm Challenges – Recursion and Backtracking	Mess 3: Data Structures in Depth – Trees and Graphs	Mesa its Mastering Sorting Algorithms and Their Efficiency	Mesa is Algorithms for Machine Learning	Mesa 3: Parallel Algorithms and Concurrent Programming
Mesa 4: Algoritmia (Avanzada)	Mesa & Advanced Algorithms – Dynamic Programming	Mesa & Graph Algorithms – Network Analysis	Mesa 4: Optimization Techniques in Algorithms	Mesa4: Competitive Programming - Preparing for Contests	Mesa & Algorithms for Rig Data – MapReduce Concepts	Mesa 4: Quantum Computing Algorithms -An introduction	Mesa 4: Advanced Data Structures - Skip Lists and Bloom Filters
Mesa 5: Desamolto de proyectos y gestion de eguipos de trabajo	Mesa Sc Project Management Fundamentals - Agile Methodology	Mess St Directive Communication and Leadership in Projects	Mesa S: Resource Management in Projects	Mesa 5: Negotiation Skills for Project Leaders	MesaS: Crisis Management in Tech Projects	Meas St Scaling Agile Across Organizations	MesaS: Managing Distributed Teams
Mesa 6: Modelado 30 tecnico (Principiante)	Mesa to Setting Started with Slender for 30 Modeling	Mesa 6: Texturing and Lightling in 3D Models	Mesa 6: Advanced 30 Modeling Techniques – Realistic Textures	Mesa-6: Animation Basics in 3D Modeling	Mess & Sculpting with Zärush	Meas 6: 30 Environment Art – From Concept Art to	Mese fir Realistic Character Modeling for Production
Mesa 7: Inteligencia artificial (principiante)	Mesa 7: Al for Beginners – What is Machine Learning?	Mess 7: Building a Recommendation System with Python	Mess 7: Natural Language Processing with Python	Mesa 7: Implementing Neural Networks with TensorFlow	Mess 7: Al in Robotics – Resics of Robotic Vision	Mese 7: Mechine Learning Project = From Data to	Mess 7: Deep Learning – Convolutional Neural Networks
Mesa 8: DevOps y herramientas de desarrollo	Mesa & intro to DevOps = Understanding Continuous Integration	Mesa & Introduction to Cloud Services for Developers	Mesa 8: Version Control with Git = Branching and Merging	Meas8: Containerization with Docker	Mess & Continuous Deployment - Automation with Jenkins	Mess & infrastructure as Code – Basics of Ansible	Mese 8: Microservices Architecture - Design Patterns
Mess 9 : Desarrollo backend con php.jaravel y maria00	Mesa 9: PHP & Laravel Essentials – Building a Blog	Mesa 9: Database Design – Structuring a SQL Database	Mesa 9: Advanced PHP - Security and Performance	Mesa9: Using Laravel for API Development	Mesa 9: Advanced Maria 08 - Indexes and Stored Procedures	Mess 9: Building Scalable PHP Applications	Mesa 9: Refectoring Legacy PHP Codebase
Mesa 50: Modelado 30 Artisitico (principiante	Mesa 10: Artistic 2D Modelling—Sculpting a Simple Character	Mess 10: Character Rigging Basics in Blender	Mess 50: Environmental Design – Creating Outdoor Scenes	Meta 18: Advanced Character Design – Details and Textures	Mess 10: Real-time Rendering Techniques	Mess 10: Character Animation for Games	Mess 18: Advanced Animation Techniques - Motion Capture Integration

(hasta ahora todos han sido especulaciones y elecciones predichas con base en el comportamiento de miembros anteriores, se busca la recopilación de datos reales)

Muchas de estas predicciones las hacemos únicamente viendo el rango de posibilidades dentro de las elecciones de cada estudiante.

Cada estudiante a pesar de tener un currículo en blanco para elegir el tipo de desarrollo que quiere tomar podría parecer que es completa y con 100% de disposición a cada una de ellas, pero a final de un rápido juicio de selección consciente o inconsciente termina habiendo una menor cantidad difícilmente siendo 100% de posibilidades a elegir, siempre siguiendo las costumbres, gustos, valores, intereses, y circunstancias de cada uno.

Si pudiéramos estandarizar la selección de estos cursos y monitorear la selección e historial de cada participante permitiendo 2 cosas indispensables en este sistema:

- 1.- Poder "graduar" un estudiante adecuadamente calificado para ciertos temas. "puede haber estudiantes que varíen entre las mesas, pero eventualmente ira optando por algunas en específico, por tanto, al pasar las sesiones eventualmente definirá el perfil o tipo de estudiante, finalmente al estar decidido por un tipo de perfil de aprendizaje igualmente puede convertirse en algún maestro de algún tema que ya dominé.
- 2.- Poder asegurar que los estudiantes en todo momento se están priorizando sus habilidades e intereses, siendo el esfuerzo en conjunto de aprendizaje y enseñanza en ambos lados del intercambio en todo momento, conseguir Alumnos de calidad para poder tener maestros de calidad.

Eventualmente si pudiéramos ver un perfil con por ejemplo 8 características: pensamiento lógico, afinidad por los números, capacidad de análisis, atención al detalle, pensamiento crítico, planificación y organización, solución de problemas, pensamiento abstracto.

En la siguiente imagen se representa en azul fuerte la selección del participante y en azul bajo

las otras posibles 3 selecciones del participante.

Veras/Serion	Sabado i introduccional carto, explicacion del sistema, realizacion de questionarias y presentacion de tamas, inicio de tama 1)	Sabado 2 henra autocomenido 2)	Sabado 3 (tema autocontenido 3)	Sabado 4 (tema autocantenido 4)	Satado 6 perra autocontenido 6)	Sebado 6 (tema autocontenido 6)	Sasado 7 (terra autocontenido 7)
Meza I: Desarrollo de videopegna (Principiante)	Mess Erretrodyczton to Gave Development with Unity - Building Sour Frist Game	Mess Is Game Mechanics - Designing a Platformer	Mess 1: Introducing A) in Garne Development - Non-Player Character Behavior	Mate 1: Designing User Interfaces for Gennes	Mean 3; Multi-level Game Development - From Concept to Play Store	Mesa I: Game Project -Pronotype Development	Mess 2: Developing for VII - Immersive Game Environments
Wess 2: Fromend (principlente)	Mess 2: HTML & CSS Series - Creeding a Personal Webbegs	Mess 2: Responsive Web Design - Making Sites Mobile Priendly	Mess 2: Adverced JavaScript – frameworks Overview	Mess 2: Suiteding Single Page Applications with React.	Mess 2; Building a Progressive Web App	Mess 2: Full Stack Development + Connecting Frontend and Sackerd	Mess 2: Exploring the JAVIstack - Static Site Generators
Meta 3: Algorismia (Principiante)	Mess & Understanding Algorithms - Sorting and Searching	Mess & Algorithms in Practice - Problem- Solving in Python	Mate & Algorithm Challenger - Security and Sentracting	Mess is Data Structures in Depth- Trees and Graphs	Mess-Is blastering Sorting Algorithms and Their Efficiency	Mess & Algorithms for Machine Learning	Meas & Farance Aguintons and Concurrent Programming
Mesa 4: Algorismia (Avanzada)	Mess 4: Advanced Algorithms - Dynamic Programming	Mana da Bragos degarithera - Saturara Analysis	Mesa 4: Optimization Techniques in Algorithms	Mess & Compatition Programming - Property Mr Contacts	West-4: Algorithms for Big Data - Mapfielace Concepts	Mess & Quarture Computing Algorithms	Mesa & Advanced Data Structures ~ Skip Lists and Bloom Filters
Mesa 5: Desarrollo de proyectos y gestion de arquipes de trabajo	Mesa St Project Management Fundamentals - Agile Methodology	Mess St Dfective Communication and Leadership in Projects	Mesa Schesource Management in Projects	Mesa Scriegotistion Skills for Project Leaders	Mess St Cross Management in Tech Projects	Mesa ScScaling Agile Across Organizations	WeasS: Managing Distributed Teams
Mese 5: Modelado 30 tecnico (Principiante)	Mesels Cetting Started with Standar for 30 Modeling	Mese 6r Tenturing and Lighting in 3D Models	Mesa 6r Advanced 3D Wodeling Techniques - Realistic Textures	Mesa to Animetion Basics in 30 Modeling	Mean&: Scalpring with 23 ruth	Mess 6: 30 Environment Art - From Concept Art to	Meself: Realistic Character Modeling for Production
Weta 7: inteligencia artificial (principiante)	Mesa 7: At for Segioners — tirtus is Machine Learning?	Mess 7: Railding a Recommendation System with Python	Mass 7: Natural Language Processing with Python	Mess 7: Implementing Neural Networks with Tensor-Row	Mesa 7: Allie Robotics – Basics of Robotic Vision	Mesa 7: Machine Learning Project = From Data to	Mess 7: Deep Learning - Convolutional Neural Nationals
Mesa S DevOps y herramientas de desarrollo	Meas Scintro to DevOps = Understanding Continuous Integration	Mess & Introduction to Good Services for Developers	Mess Schlerpion Control with Gra- Branching and Merging	Mess to Containerization with Docker	Messille Continuous Deployment - Automation with Jenkins	Mess Scinfrastructure as Code - Besits of Analisis	
Mess 9 : Deserrollo backend.con pho, laravel y mariaD8	Mesa 9: PHF & Laravel Essentials - Building a Ring	Mess % Database Design - Structuring a SQL Database	Mess to Advanced Pro? - Security and Participance	Mesets Using Largest for API Descriptment	Mesa St Advanced Maria DS - Indexes and Stored Procedures	Mass 9: Suilding Scalable PMP Applications	Mesa St Fellottering Legacy PHF Codebase
Mess 10: Modelado 30 Artistico (principiente		Meas 10: Character Rigging Basics in Blander	Mess 10: Snuirconvental Design – Creating Outdoor Scenes	Mess 10: Advanced Character Design – Details and Testures	Mega 10: Real-time Rendering Techniques	Mass 30: Character Animation for Games	Mess 38: Advanced Animation Techniques - Motion Capture Integration

Si pudiéramos ver en el mapa curricular tanto las opciones elegidas como las opciones consideradas nos abriría un mundo de posibilidades en materia de educación y divulgación de conocimiento, nos permitiría saber que círculos de interés hay en la comunidad, con cuantos expertos y personas capacitadas contamos, y cuanta es nuestra tasa de participación, producción y desarrollo de proyectos generándonos una conclusión mejor evaluable ante nuestros objetivos de comunidad dedicada a la filantropía y la innovación.

Viendo este desarrollo a una gran escala donde no solo únicamente consideramos los cursos desarrollados en estos 7 sábados sino una continuidad a 5 o 10 años a futuro mostraría en conjunto un árbol de aprendizaje exacto y medible del estudiante/maestro en formación, que intereses o posibles líneas alternas de aprendizaje seria igualmente afín o tendría una fácil adaptabilidad en caso de ser necesario para el desarrollo de ciertos proyectos o trabajo. Al a par el mismo estudiante pueda ver su progreso, aprendizaje, deficiencias, y ser consciente de sus presentes habilidades y de lo que puede ser capaz de crear.

Measu/Sepice	Sabada I Introduccional cursa, explicacion del sistema, realizacion de cuestionarios y presentacion de temas, inicio de tema I)	Sabado 2 (tema autocontenido 2)	Sabado 3 (tema autocomtenido 3)	Sabado 4 (tema autocontenido 4)	Sabado 5 (tema autocontenido 5)	Sabado 5 (tama autocontanido 5)	Sebado 7 (tema autocontenido 7)	
Mess 1: Desarrollo de videojuegos (Principlante)	Meas 3: Introduction to Game Development with Unity -Building Your First Same	Mess 1: Same Mechanics – Besigning a Platformer	Mess 3: Introducing All in Game Development – Non-Player Character Behavior	Mess St Designing User Interfaces for Games	Mess It Multi-level Game Development - Fram Concept to Play Store	Mess 1: Game Project - Protetype Development	Meas 1: Developing for VR – Immersive Game Environments	
Mess 2: Prontend (principlante)	Mess 2: HTML & CSS Basics - Creating a Personal Webpage	Mess 2: Responsive Web Design - Making Stes Mobile-Priendly	Mesa 2: Advanced JavaScript - Frameworks Overview	Mess 2: BuildingSingle Page Applications with React	Mess 2: Building a Progressive Web App	Mess In Pull Stack Development - Connecting Prontend and Backend	Mess 2: Exploring the JAV/stack - Static Site Generators	
Mess 3: Algoritmia (Principlante)	Mess 3: Understanding Algorithms - Sorting and Searching	Mess 3: Algorithms in Practice - Problem- Solving in Python	Mess 3: Algorithm Challenges – Recursion and Secttracking	Mess 3: Data Structures in Depth - Trees and Graphs	Mess It Mastering Sorting Algorithms and Their Efficiency	Mess 3: Algorithms for Machine Learning	Mess 3: Parallel Algorithms and Concurrent Programming	
Mess 4: Algoritmia (Avencede)	Mess 4: Advanced Algorithms - Dynamic Programming	Mess 4: Graph Algorithms – Network Analysis	Mess-4: Optimization Techniques in Algorithms	Messel: Competitive Programming - Preparing for Contests	Mess-& Algorithms for Big Data - MapReduce Concepts	Mese 4: Quantum Computing Algorithms —An introduction	Mess 4: Advanced Data Structures – Skip Lists and Bloom Filters	Gene de semestre, retroallmentacion al estudiante y organizacion
Mess 5: Deserrollo de proyectos y gestion de equipos de trabajo	Mess S: Project Management Fundamentals - Agile Methodology	Mess Scillective Communication and Leadership in Projects	Mesa S: Resource Management in Projects	Mess S: Negotiation Skills for Project Leaders	Messis Crisis Management in Tech Projects	Mess St Scaling Agile Across Organizations	MeasS: Wanaging Distributed Teams	gara proximo semestre
Mesa 6: Moderado 3D tecnico (Principia ste)	Mesalfis Detting Started with Blender for SD Modeling	Mesa 6: Texturing and Lighting in 80 Models	Mesa & Advanced 82 Modeling Techniques - Restlictic Textures	Mesatis Animation Basics in 3D Modeling	Meselic Sculpting with 25 rush	Mesa 6: 3D Environment Art = From Concept Art to	Mesa fix Realistic Character Modeling for Production	
Mesa 7: inteligencia artificial (principiante)	Mess 7: Al for Beginners – What is Machine Learning?	Mess 7: Building a Recommendation System with Python	Mess 7: Natural Language Processing with Python	Mess 7: Implementing Neural Networks with TensorFlow	Mess 7: Ai in Robotics – Basics of Robotic Vision	Mess 7: Machine Learning Project – From Data to	Mess 7: Seep Learning— Convolutional Neural Networks	
Mess 6: DevOps y herramientas de deserrollo	Mess 8: Intro to DevOpe - Understanding Continuous Integration	Wess 8s introduction to Cloud Services for Developers	Mess B: Version Control with Git - Branching and Merging	Mess B: Containerization with Docker	Messill: Continuous Deployment -Automation with Jankins	Mess 8: Infrastructure as Code - Basics of Ansible	Mess & Microservices Architecture - Design Patterns	
Mess 9 : Deserrollo backend con phy, Jaravel y maria DB	Mesa 51 PHP & Laravel Dosentials – Building a Bing	Mese 9: Detabase Design = Structuring a SQL Detabase	Mess 5: Advanced PRP - Security and Performance	Mese 5: Using Laravel for API Development	Mese 9: Advanced Maria 26 Indexes and Stored Procedures	Mess % Building Scalable PHP Applications	Mesa 5: Refectoring Legacy PRF Codebase	
	Mesa 30: Artistic SD Modeling - Sculpting a Simple Character	Mesa 30-Character Rigging Basics in Blander	Mess 30: Environmental Design – Creating Dutdoor Scenes	Mesa 30: Advanced Character Design - Details and Textures	Mesa 10: Seal-time Sendering Techniques	Mesa 18: Character Animation for Games	Mess 18: Advanced Animation Techniques - Motion Capture Integration	

(representación del aprendizaje de un estudiante visto únicamente a 2 semestres de historia y sus 3 posibles variaciones o líneas alternas)

Rubrica de planeaciones para los DAHMasters primer prototipo de proyecto aprendizaje por grafos. Cada curso debe ser visto como un nodo en el transcurso de aprendizaje de EEL y sus compañeros, por tanto, cada nodo debe cumplir ciertos requisitos mínimos

- *El curso debe estar planeado para cumplir un mínimo de 4 sábados y un máximo de 7 sábados,
- *El curso debe estar planeado para cada sábado durar un mínimo de 2 horas y un máximo de 5 horas.
- *El curso debe estar planeado para ser practicado a un grupo entre 2 y 5 personas (6 considerando el DAHMaster).
- *El curso debe rondar bajo un tema en específico pero cada una de sus clases debe ser autocontenidas permitiendo a los estudiantes variar y retomar el ritmo sin perder continuidad.
- *Está permitido pedir requisitos previos para entrar a ciertas mesas de temas que necesitan continuidad obligatoria.
- *Cada curso debe tener de 3 a 5 características o requisitos previos para empezar o tener un mejor entendimiento de la lección.

(Características y perfil de entrada)

*Cada curso debe ofrecer mínimo 3 máximo 5 características o beneficios al usuario. (Características y perfil de salida)

- *Cada lección debe tener un título fácil de entender y lo suficiente específico sobre lo que consiste la lección, herramientas que utilizarán o conceptos que se debatirán.
- *Cada lección debe tener una introducción o texto de prevista para dar a entender a los posibles estudiantes que esperar de la lección
- *cada lección debe tener que herramientas a usar son necesarias, (incluirse como una sección de herramientas a utilizar) (si usar alguna herramienta es indispensable, ponerlo como requisito en la sección de requisitos)
- *Considerar un proyecto, o prueba para asegurar el éxito de aprendizaje de cada lección.
- *Cada lección debe considerar un mínimo de 20% a 100% de practica en sus lecciones y a lo sumo un 80% teoría. (Esto significa que puede haber sesiones de entrenamiento 100% de prácticas o hacer proyectos pruebas etc. Pero no puede haber sesiones 100% teóricas, deben tener mínimo un 20 de practica en su desarrollo)