© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°07

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – D'après E3A PC 2021

On identifie dans ce poblème les polynômes à leurs fonctions polynomiales associées. On note $E_n = \mathbb{R}_n[X]$ où n est un entier naturel non nul.

1 On associe à $f \in E_n$ l'application L(f) définie par

$$\forall x \in \mathbb{R}, \ L(f)(x) = e^{-x} \int_{-\infty}^{x} f(t)e^{t} \ dt$$

- 1.a Justifier que l'application L est bien définie.
- 1.b Calculer L(1).
- **1.c** Montrer que pour tout $k \in [0, n-1]$, $L(X^{k+1}) = X^{k+1} (k+1)L(X^k)$.
- **1.d** En déduire que L est un endomorphisme de E_n .
- **2 2.a** Soient $f \in E_n$ et g = L(f). Montrer que g est solution sur \mathbb{R} de l'équation différentielle y' + y = f.
 - **2.b** En déduire Ker(L) puis que L est un automorphisme de E_n .
- 3 Soient λ une valeur propre de L et f un vecteur propre associé.
 - **3.a** Justifier que $\lambda \neq 0$.
 - **3.b** Montrer que f est solution sur \mathbb{R} de l'équation différentielle (\mathcal{E}) : $\lambda y' + (\lambda 1)y = 0$.
 - **3.c** Résoudre l'équation différentielle (\mathcal{E}) sur \mathbb{R} .
 - **3.d** Déterminer les solutions polynomiales de (\mathcal{E}) .
 - 3.e En déduire les valeurs propres de L et les sous-espaces propres associés.
 - **3.f** L'endomorphisme L est-il diagonalisable?
- **4** On note D: $P \in E_n \mapsto P'$ et Id: $P \in E_n \mapsto P$.
 - **4.a** Comparer L^{-1} et D + Id.
 - **4.b** Déterminer la matrice M de L⁻¹ dans la base canonique \mathcal{B} de E_n.
 - **4.c** Déterminer les valeurs propres de L⁻¹. Retrouver alors les valeurs propres de L.