Uma Aplicação de MDS ao Mercado Automotivo

Tiago Mendonça Insper

- **9** tiagoms.com
- **?** tiagomendonca

O livro pode ser acessado em datascience.insper.edu.br.

Um pouco da história do professor Pedro Fernandez e do livro pode ser acessada nesse link.

Tive o prazer de colaborar, em conjunto com os professores Paulo Marques e Hedibert F. Lopes, na produção do livro do professor Pedro Fernandez.

Introdução

Dados do The World Bank

Pais	GDP	LifExp	Researchers
Argentina	11652.6	76	1233
Brasil	8920.8	75	881
Canadá	46210.5	82	4275
Japão	39286.7	84	5305

GDP per capita (current US\$) / Life expectancy at birth, total (years) / Researchers in R&D (per million people)

Distância dos pontos em \mathbb{R}^3

	Argentina	Brasil	Canadá	Japão
Argentina	0.000	0.312	2.657	2.968
Brasil	0.312	0.000	2.956	3.277
Canadá	2.657	2.956	0.000	0.746
Japão	2.968	3.277	0.746	0.000

Distância dos pontos pelo **MDS** (em \mathbb{R}^2)

	Argentina	Brasil	Canadá	Japão
Argentina	0.000	0.308	2.657	2.968
Brasil	0.308	0.000	2.956	3.276
Canadá	2.657	2.956	0.000	0.746
Japão	2.968	3.276	0.746	0.000

Resumindo

- Queremos representar observações de alta dimensão num número reduzido de dimensões.
- Podemos fazer isso com base nos dados brutos ou diretamente de uma matriz de dissimilaridades.

Aplicação ao Mercado Automotivo

Introdução

Consumidores (n = 150) recebem 30 papeletas com modelos de carros e agrupam os carros considerados equivalentes (substituíveis no momento da compra).

Este processo define uma medida de dissimilaridade por:

$$d_{ij} = rac{n - ext{quantas vezes } i ext{ e } j ext{ foram alocados no mesmo grupo}}{n}$$

Assim,

- $d_{ij}=0$ quando os modelos i e j são alocados dentro do mesmo grupo por todos os consumidores,
- ullet $d_{ij}=1$ se i e j não forem alocados dentro do mesmo grupo por nenhum consumidor.

Exemplo

id	Ka	Uno	Gol	Fox	Fit
Cliente 1	2	2	1	1	
Cliente 2	2	2	1	1	1
Cliente 3			1	1	
Cliente 4			1	1	1
Cliente 5	2	2	1	1	

$$d_{ij}=rac{n- ext{quantas vezes }i ext{ e }j ext{ foram alocados no mesmo grupo}}{n}$$
 $d_{ ext{Fox,Gol}}=rac{5-5}{5}=0$ $d_{ ext{Fit,Gol}}=rac{5-2}{5}=0.6$ $d_{ ext{Fit,Uno}}=rac{5-0}{5}=1$

Leitura dos dados

```
dissim ← read.csv("matriz_dissimilaridades.csv", row.names = 1)

dissim %>%
  round(2) %>%
  head() %>%
  kable(format = 'html', align = c(rep("c", ncol(dissim))))
```

	UNO	KA	VECT	CELT1	GOL	GOLF	CORSS	GOL1	ECO	BLA2	PALIN	SAVEI	HONDA	FOX
UNC	0.00	0.39	0.88	0.46	0.53	0.74	0.75	0.44	0.88	0.91	0.51	0.84	0.92	0.63
KA	0.39	0.00	0.90	0.38	0.53	0.73	0.74	0.44	0.92	0.94	0.49	0.85	0.91	0.63
VEC ⁻	0.88	0.90	0.00	0.87	0.83	0.75	0.56	0.86	0.90	0.85	0.83	0.86	0.44	0.84
CELT	1 0.46	0.38	0.87	0.00	0.44	0.66	0.71	0.35	0.90	0.93	0.42	0.87	0.89	0.57
GOL	0.53	0.53	0.83	0.44	0.00	0.57	0.73	0.28	0.91	0.91	0.46	0.85	0.85	0.58
GOL	F 0.74	0.73	0.75	0.66	0.57	0.00	0.71	0.56	0.89	0.87	0.66	0.89	0.73	0.64

Matriz de Dissimilaridades

Matriz de Dissimilaridades

MDS

VECT 0.36941030 0.191605507 ## CELT1 -0.39393623 0.083466421 ## GOL -0.32451871 0.075342140 ## GOLF -0.05852281 0.063068691

```
cars_mds ← cmdscale(dissim, k = 2, eig = TRUE)
head(cars_mds$points)

## [,1] [,2]
## UNO -0.35708628 0.007426957
## KA -0.39238141 0.049970533
```

Simulação

Projeção

19 / 34

Aplicação

Os clusters formados podem ser utilizados de diversas maneiras:

- carros dentro de um mesmo cluster indicam concorrentes diretos, e esta informação pode ser utilizada por um dos players do mercado no monitoramento das atividades das empresas concorrentes.
- **sistemas de recomendação** simples também podem ser construídos. Por exemplo, usuários que navegaram na Internet fazendo buscas pelo modelo "Saveiro", poderiam ser expostos a anúncios de modelos do mesmo cluster ("Palio", "Parati" etc).

Mercado de Scotch Whisky

```
library(bayesm)

data(Scotch)

Scotch %>%
   kable(format = "html", align = c(rep("c", 21)))
```

Chivas.Regal	Dewar.s.White.Label	Johnnie.Walker.Black.Label	JB	Johnnie.Walker.Red.Label
1	0	0	0	1
0	0	1	0	0
0	0	0	0	0
1	0	1	0	1
1	0	1	0	0
0	0	0	0	0
0	0	0	0	0
0	1	0	1	1

Quando cada atributo assume apenas os valores 0 e 1, podemos definir a **distância de Jaccard** da seguinte forma:

$$d_{AB} = 1 - rac{|A \cap B|}{|A \cup B|} = 1 - rac{\sum_{m=1}^p x_{Am} x_{Bm}}{\sum_{m=1}^p x_{Am} + \sum_{m=1}^p x_{Bm} - \sum_{m=1}^p x_{Am} x_{Bm}}.$$

```
mds ← cmdscale(jaccard, eig = TRUE)
hc ← hclust(dist(mds$points))
library(factoextra)
fviz_dend(hc,
          k = 6.
          cex = 0.9,
          horiz = TRUE,
          rect = TRUE, rect_fill = TRUE,
          color_labels_by_k = TRUE,
          main = "",
          ggtheme = theme_bw()
```


Os clusters obtidos revelam a estrutura de concorrência no mercado de Scotch whisky que pode ser utilizada para:

- formação de estoques e pedidos de compra
- organização de prateleiras em pontos de venda
- sistemas de recomendação.

Aplicação em Random Forest

Random Forest

```
library(ISLR)
librarv(randomForest)
rf \leftarrow randomForest(Balance \sim ., Credit[,-1], proximity = TRUE)
mds ← cmdscale(1 - rf$proximity, eig = TRUE)
Credit %>%
  mutate(coord1 = mds$points[,1],
         coord2 = mds$points[,2]) %>%
  ggplot(aes(x = coord1, v = coord2)) +
    geom point(aes(color = Limit, size = Rating, shape = Gender), alpha = .5) +
    xlab("Coordenada 1") + ylab("Coordenada 2") +
    ggtitle("Balance") +
    theme bw() +
    scale color continuous(low = "plum1", high = "purple4") +
    guides(shape = guide legend(override.aes = list(size = 5)))
```

Esses dados (Credit) estão no pacote ISLR.

Random Forest

33 / 34

Obrigado!

Mais exemplos podem ser encontrados no livro Data Science, Marketing & Business

Contato e redes sociais em tiagoms.com

Um agradecimento especial aos **organizadores** e **patrocinadores** do evento!

Apresentação criada no pacote xaringan.