ΘΕΜΑ 4

Διαστημικό όχημα μάζας M εκτοξεύεται από την επιφάνεια της Γης κατακόρυφα προς τα πάνω με αρχική ταχύτητα μέτρου u_0 . Όταν το όχημα βρεθεί σε ύψος $h=2R_\Gamma$, ένας εκρηκτικός μηχανισμός το διαχωρίζει ακαριαία σε δύο επιμέρους σώματα με μάζες $m_1=\frac{2M}{3}$ και $m_2=\frac{M}{3}$ αντίστοιχα. Αμέσως μετά την έκρηξη, το σώμα μάζας m_2 κινείται κατακόρυφα προς τη Γη χωρίς αρχική ταχύτητα και φτάνει στην επιφάνειά της με ταχύτητα μέτρου u_2 . Ενώ, το σώμα μάζας m_1 αποκτά την ελάχιστη ταχύτητα που χρειάζεται ώστε να διαφύγει από το πεδίο βαρύτητας της Γης.

4.1. Να υπολογίσετε το μέτρο της ταχύτητας u_1 που αποκτά το σώμα m_1 μετά την έκρηξη.

Μονάδες 6

4.2. Να υπολογίσετε το μέτρο της ταχύτητας που αποκτά το διαστημικό όχημα στο ύψος $h=2R_{\Gamma}$, λίγο πριν την έκρηξη.

Μονάδες 6

4.3. Να υπολογίσετε το μέτρο της ταχύτητας u_2 με την οποία φτάνει το σώμα m_2 στην επιφάνεια της Γης.

Μονάδες 6

4.4. Να υπολογίσετε το μέτρο της ταχύτητας u_0 με την οποία εκτοξεύτηκε το όχημα από την επιφάνεια της Γης.

Μονάδες 7

Δίνονται: η ένταση του πεδίου βαρύτητας στην επιφάνεια της Γης: $g_0=10m/s^2$, η ακτίνα της Γης: $R_\Gamma=6400km$, $\sqrt{42,66}=6,53$, $\sqrt{85,33}=9,24$, $\sqrt{104,25}=10,21$.