Einführung in die Numerik WS2018/19

Dozent: Prof. Dr. Andreas Fischer

16. Oktober 2018

In halts verzeichnis

I	Interpolation									
	1	Grundlagen	2							
	2	Interpolation durch Polynome	4							
		2.1 Existenz und Eindeutigkeit	4							
		2.2 Newton-Form des Interpolationspolynoms	5							
		2.3 Interpolationsfehler	6							
	3	Interpolation durch Polynomsplines	9							
		3.1 Polynomsplines	9							
		3.2 Interpolation durch kubische Polynomsplines	9							
II	nui	merische Quadratur und Integration	11							
	1	Integration von Interpolationspolynomen	11							
	2	Newton-Cotes-Formeln	12							
	3	spezielle NEWTON-COTES-Formeln	13							
	4	Zusammengesetzte Newton-Cotes-Formeln	14							
	5	GAUSS'sche Quadraturformeln	15							
III	direkte Verfahren für lineare Gleichungssysteme									
	1	Gauss'scher Algorithmus für quadratische Systeme	16							
	2	Lineare Quadratmittelprobleme	17							
	3	Kondition linearer Gleichungssysteme	18							
IV	Kondition von Aufgaben und Stabilität von Algorithmen 19									
	1	Maschinenzahlen und Rundungsfehler	19							
	2	Fehleranalyse	20							
\mathbf{v}	Ne	wton-Verfahren zur Lösung nichtlinearer Gleichungssysteme	21							
	1	Das Newton-Verfahren	21							
	2	Gedämpftes Newton-Verfahren	22							
VI	line	eare Optimierung	23							
	1	Ecken und ihre Charakterisierung	23							
	2	Simplex-Verfahren	24							
	3	Die Tableauform des Simplex-Verfahrens	25							
	4	Revidiertes Simplex-Verfahren	26							
	5	Bestimmung einer ersten zulässigen Basislösung	27							
An	han	${f g}$	29							
A		ten	29							

	Liste der Theoreme Liste der benannten Sätze, Lemmata und Folgerungen	_
Index	Essee der sentamien state, Benniuwa and Folgerangen	31

Vorwort

Kapitel I

Interpolation

1. Grundlagen

Aufgabe:

Gegeben sind n+1 Datenpaare $(x_0, f_0), \ldots, (x_n, f_n)$, alles reelle Zahlen und paarweise verschieden. Gesucht ist eine Funktion $F: \mathbb{R} \to \mathbb{R}$, die die Interpolationsbedingungen

$$F(x_0) = f_0, \dots, F(x_n) = f_n$$
 (1)

genügt.

Definition (Stützstellen, Stützwerte)

Die x_0 bis x_n werden Stützstellen genannt.

Die f_0 bis f_n werden Stützwerte genannt.

Die oben gestellte Aufgabe wird zum Beispiel durch

$$F(x) = \begin{cases} 0 & x \notin \{x_0, \dots, x_n\} \\ f_i & x = x_i \end{cases}$$

gelöst. Weitere Möglichkeiten sind: Polygonzug, Treppenfunktion, Polynom, ...

- In welcher Menge von Funktionen soll F liegen?
- Gibt es im gewählten <u>Funktionenraum</u> für beliebige Datenpaare eine Funktion F, die den Interpolationsbedingungen genügt (eine solche Funktion heißt Interpolierende)?
- Ist die Interpolierende in diesem Raum eindeutig bestimmt?
- Welche weiteren Eigenschaften besitzt die Interpolierende, zum Beispiel hinsichtlich ihrer Krümmung oder der Approximation einer Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f_k = f(x_k)$ für $k = 0, \dots, n$
- Wie sollte man die Stützstellen wählen, falls nicht vorgegeben?
- Wie lässt sich die Interpolierende effizient bestimmen, gegebenenfalls auch unter der Berücksichtigung, dass neue Datenpaare hinzukommen oder dass sich nur die Stützwerte ändern?

■ Beispiel 1.1

k	0	1	2	3	4	5
x_k in s	0	1	2	3	4	5
f_k in °C	80	85,8	86,4	93,6	98,3	99,1

Interpolation im

- Raum der stetigen stückweise affinen Funktionen
- Raum der Polynome höchstens 5. Grades
- Raum der Polynome höchstens 4. Grades (Interpolation im Allgemeinen nicht lösbar, Regression nötig)

2. Interpolation durch Polynome

 Π_n bezeichne den Vektorraum der Polynome von Höchstgrad n mit der üblichen Addition und Skalarmultiplikation. Für jedes $p \in \Pi_n$ gibt es $a_0, \ldots, a_n \in \mathbb{R}$, sodass

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
(2)

und umgekehrt.

2.1. Existenz und Eindeutigkeit

Satz 2.1

Zu n+1 Datenpaaren $(x_0, f_0), \ldots, (x_n, f_n)$ mit paarweise verschiedenen Stützstellen existiert genau ein Polynom $p \in \Pi_n$, dass die Interpolationsbedingung Gleichung (1) erfüllt.

Beweis. • Existenz: Sei $j \in \{0, ..., n\}$ und $L_j : \mathbb{R} \to \mathbb{R}$ mit

$$L_j(x) := \prod_{\substack{i=0\\i\neq j}}^n \frac{x - x_i}{x_j - x_i} = \frac{(x - x_0) \cdot \dots \cdot (x - x_{j-1})(x - x_{j+1}) \cdot \dots \cdot (x - x_n)}{(x_j - x_0) \cdot \dots \cdot (x_j - x_{j-1})(x_j - x_{j+1}) \cdot \dots \cdot (x_j - x_n)}$$

das LAGRANGE-Basispolynom vom Grad n. Offenbar gilt $L_i \in \Pi_n$ und

$$L_j(x_k) = \begin{cases} 1 & k = j \\ 0 & k \neq j \end{cases} = \delta_{jk} \tag{3}$$

Definiert man $p: \mathbb{R} \to \mathbb{R}$ durch

$$p(x) := \sum_{j=0}^{n} f_j \cdot L_j(x) \tag{4}$$

so ist $p \in \Pi_n$ und außerdem erfüllt p wegen Gleichung (3) die Interpolationsbedingung Gleichung (1)

• Eindeutigkeit: Angenommen es gibt Interpolierende $p, \tilde{p} \in \Pi_n$ mit $p \neq \tilde{p}$. Dann folgt $p - \tilde{p} \in \Pi_n$ und $(p - \tilde{p})(x_k) = p(x_k) - \tilde{p}(x_k) = 0$ für $k = 0, \ldots, n$. Also hat $(p - \tilde{p})$ mindestens n + 1 Nullstellen, hat aber Grad n. Das heißt, dass $(p - \tilde{p})$ das Nullpolynom sein muss.

Definition (Interpolationspolynom)

Das Polynom, dass die Interpolationsbedingung erfüllt, heißt Interpolationspolynom zu $(x_0, f_0), \ldots, (x_n, f_n)$.

▶ Bemerkung 2.2

- Die Darstellung Gleichung (4) heißt Lagrange-Form des Interpolationspolynoms.
- Um mittels Gleichung (4) einen Funktionswert p(x) zu berechnen, werden $\mathcal{O}(n^2)$ Operationen genötigt; bei gleichabständigen Stützstellen kann man diesen Aufwand auf $\mathcal{O}(n)$ verringern. Ändern sich die Stützwerte, kann man durch Wiederverwendung von den $L_j(x)$ das p(x) in $\mathcal{O}(n)$ Operationen berechnen.
- Man kann zeigen, dass L_0 bis L_n eine Basis von Π_n bilden.

2.2. Newton-Form des Interpolationspolynoms

$$p(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \dots + c_n(x - x_0) \dots (x - x_{n-1})$$

$$(5)$$

mit Koeffizienten $c_0, \ldots, c_n \in \mathbb{R}$. Die Berechnung des Koeffizienten c_j kann rekursiv durch Ausnutzen der Interpolationsbedingung Gleichung (1) erfolgen. Für c_0 erhält man

$$f_0 \stackrel{!}{=} p(x_0) = c_0$$

Seien c_0 bis c_{i-1} bereits ermittelt. Dann folgt:

$$f_j \stackrel{!}{=} p(x_j) = \underbrace{c_0 + \sum_{k=1}^{j-1} c_k(x_j - x_0) \dots (x_j - x_{k-1})}_{\text{bekannt}} + c_j \underbrace{(x_j - x_0) \dots (x_j - x_{j-1})}_{\text{bekannt}}$$

▶ Bemerkung 2.3

- Der Aufwand um die Koeffizienten c_0, \ldots, c_n zu ermitteln ist $\mathcal{O}(n^2)$. Kommt ein Datenpaar hinzu, kann man Gleichung (5) um einen Summanden erweitern und mit $\mathcal{O}(n)$ Operationen c_{n+1} bestimmen.
- Sind die Koeffizienten c_0, \ldots, c_n in Gleichung (5) bekannt, dann benötigt man zur Berechnung von p(x) $\mathcal{O}(n)$ Operationen.
- Die Polynome $N_0, \ldots, N_n : \mathbb{R} \to \mathbb{R}$ mit

$$N_0 = 1$$
 und $N_i = (x - x_0) \dots (x - x_{i-1})$

heißen Newton-Basispolynome und bilden eine Basis von Π_n .

Die Koeffizienten c_0, \ldots, c_n ergeben sich wegen Gleichung (2) auch als Lösung des folgenden linearen Gleichungssystems:

$$\begin{pmatrix}
1 & & & & & \\
1 & (x_1 - x_0) & & & & \\
1 & (x_2 - x_0) & (x_2 - x_0)(x_2 - x_1) & & & \\
\vdots & \vdots & & \vdots & \ddots & \\
1 & (x_n - x_0) & (x_n - x_0)(x_n - x_1) & \dots & \prod_{i=0}^{n-1} (x_n - x_i)
\end{pmatrix} \cdot \begin{pmatrix}
c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_n
\end{pmatrix} = \begin{pmatrix}
f_0 \\ f_1 \\ f_2 \\ \vdots \\ f_n
\end{pmatrix}$$

Die Systemmatrix dieses linearen Gleichungssystems ist eine reguläre untere Dreiecksmatrix.

Zu effizienten Berechnung eines Funktionswertes p(x) nach Gleichung (5) mit gegebenen Koeffizienten

 c_0, \ldots, c_n kann man das Horner-Schema anwenden. Überlegung für n=3.

$$p(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + c_3(x - x_0)(x - x_1)(x - x_2)$$
$$= c_0 + (x - x_0) \left[c_1 + (x - x_1) \left[c_2 + (x - x_2)c_3 \right] \right]$$

Für beliebiges n liefert das den folgenden Algorithmus:

■ Algorithmus 2.4 (Horner-Schema für Newton-Form)

Input: $n, x, c_0, ..., c_n, x_0, ..., x_n$

1
$$p = c_n$$

2 do $j = n-1$, 0, -1
3 $p = c_j + (x - x_j)p$
4 end do

2.3. Interpolationsfehler

Definition (Maximum-Norm)

Die Norm

$$\|g\|_{\infty} := \max_{x \in [a,b]} |g(x)| \quad \text{für } g \in C[a,b]$$

definiert die Maximum-Norm in C[a, b].

Satz 2.5

Sei $f \in C[a, b]$. Dann existiert zu jedem $\varepsilon > 0$ ein Polynom p_{ε} mit $||f - p_{\varepsilon}|| \le \varepsilon$.

Also liegt die Menge aller Polynome (beliebig hohen Grades) direkt in C[a, b].

Definition 2.6 (Stützstellensystem)

<u>Stützstellensystem</u>: $a \le x_0^{(n)} < ... < x_n^{(n)} \le b$. Weiterhin bezeichne $p_n \in \Pi_n$ das zu den Datenpaaren $(x_k^{(n)}, f(x_k^{(n)}))$ gehörende eindeutig bestimmte Interpolationspolynom.

Satz 2.7 (Satz von Faber 1914)

Zu jedem Stützstellensystem gibt es $f \in C[a,b]$, sodass (p_n) nicht gleichmäßig gegen f konvergiert. $||p_n - f||_{\infty} \to 0$ bedeutet, dass (p_n) gleichmäßig gegen f konvergiert.

Nach einem Resultat von Erdös/Vertesi (1980) gilt sogar, dass $(p_n(x))$ fast überall divergiert.

■ Beispiel 2.8 (Runge)

$$f: \mathbb{R} \to \mathbb{R}, \, f(x) = \frac{1}{1+25x^2}$$

äquidistante Stützstellen $x_0,...,x_n,\,p\in\Pi_n$ als Interpolationspolynom

Stützstellen	interpoliertes Polynom
2	$1 - \frac{25x^2}{26}$
4	$3,31565x^4 - 4,27719x^2 + 1$
8	$\boxed{53,6893x^8 - 102,815x^6 + 61,3672x^4 - 13,203x^2 + 1}$
16	

Anmerkung

Wer mit Mathematica selber diese Polynome berechnen will, muss folgende Befehle benutzen:

- Funktion definieren: $f[x_]:=1/(1+25x^2)$
- Interpolations polynome ausrechnen: Expand[InterpolatingPolynomial[Table[{i,f[i]}, {i,-1,-1,Schrittweite}], {x}]]
- plotten: Plot[f[x],InterpolatingPolynomial[Table[{i,f[i]},{i,-1,-1,Schrittweite}],{x}],{x,-1,1}]

Satz 2.9

Sei $f \in C^{n+1}[a,b]$ und gelte $a \le x_0 < ... < x_n \le b$. Mit $p_n \in \Pi_n$ werde das zu den Datenpaaren $(x_0, f(x_0)), ..., (x_n, f(x_n))$ gehörende Interpolationspolynom bezeichnet. Dann existiert zu jedem $x \in [a,b]$ eine Zahl $\xi \in (a,b)$, so dass

$$f(x) - p_n(x) = \frac{f^{n+1}(\xi(x))}{(n+1)!} w(x) \quad \text{für alle } x \in [a, b]$$
 wobei $w(x) = (x - x_0) \cdot \dots \cdot (x - x_n)$

Beweis. Für $x = x_k$ mit k = 0, ..., n ist nicht zu zeigen, da p_n die Interpolationsbedingung erfüllt. Sei nun $x \in [a, b]$ fest gewählt mit $x \notin \{x_0, ..., x_n\}$. Weiter seien

$$K = \frac{f(x) - p_n(x)}{w(x)} \quad \text{und} \quad F : \begin{cases} [a, b] \to \mathbb{R} \\ t \mapsto f(t) - p_n(t) - Kw(t) \end{cases}$$

Man stellt unter Beachtung der Interpolationsbedingung fest, dass $F(x_0) = F(x_1) = \dots = F(x_n) = 0$ und F(x) = 0. Also besitzt F mindestens n+2 paarweise verschiedene Nullstellen in [a,b]. Da $F \in C^{n+1}[a,b]$ erhält man durch n+1-fache Anwendung des Satzes von Rolle, dass $F^{(n+1)}$ mindestens eine Nullstelle $\xi(x)$ in (a,b) besitzt. Also folgt

$$0 = F^{(n+1)}(\xi(x)) = f^{(n+1)}(\xi(x)) - \underbrace{p_n^{(n+1)}(\xi(x))}_{=0} - K\underbrace{w^{(n+1)}(\xi(x))}_{\text{Konstante}}$$

Da $w^{(n+1)} = (n+1)!$, erhält man

$$K = \frac{f^{(n+1)}(\xi(x))}{(n+1)!}$$

Da $x \in [a, b]$ beliebig gewählt war, ist die Behauptung bewiesen.

■ Beispiel 2.10

Sei $f \in C^2[a, b]$ mit $||f||_{\infty} \leq M$. Weiter sei $a = x_0 < x_1 = x_0 + h = b$. Mit Satz 2.9 folgt:

$$|f(x) - p_2(x)| = \left| \frac{f''(\xi(x))}{2} (x - x_0)(x - x_1) \right|$$

$$\leq \frac{1}{2} M \cdot \lambda(x) h \cdot (1 - \lambda(x)) h$$

$$\leq \frac{1}{2} M \cdot h^2 \underbrace{\lambda(x)(1 - \lambda(x))}_{\leq 1/4}$$

$$\leq \frac{1}{8} M \cdot h^2$$

$$x_0$$
 x
 x
 x
 x
 x
 x
 x
 x

$$\Rightarrow x = x_0 + \lambda \cdot (x_1 - x_0) = \lambda x_1 + (1 - \lambda)x_0$$

3. Interpolation durch Polynomsplines

3.1. Polynomsplines

Zur Abkürzung bezeichne Δ eine Zerlegung des Intervall [a,b] durch die Stützstellen $a=:x_0<\ldots< x_n:=b.$

Definition 3.1 (Polynomspline)

Ein Polynomspline vom Grad $m \in \mathbb{N}$ und Glattheit $l \in \mathbb{N}$ zur Zerlegung Δ ist eine Funktion $s \in C^l[a,b]$ mit

$$s_k := s|_{[x_k, x_{k+1}]} \in \Pi_n$$
 für $k = 0, ..., n-1$

Dabei bezeichnet $s|_{[x_k,x_{k+1}]}$ die Einschränkung von s auf das Intervall $[x_k,x_{k+1}]$. Die Menge aller Splines wird mit $\mathcal{S}_m^l(\Delta)$ bezeichnet.

Folglich ist ein Polynomspline $s \in \mathcal{S}_m^l(\Delta)$ auf jedem der Teilintervall $[x_k, x_{k+1}]$ ein Polynom vom Höchstgrad m. Außerdem ist $s \in \mathcal{S}_m^l(\Delta)$ in allen Punkten $x \in [a, b]$ (also auch in den Stützstellen) l-mal stetig differenzierbar. $\mathcal{S}_m^l(\Delta)$ ist mit der üblichen Addition und Multiplikation ein Vektorraum. Speziell ist $\mathcal{S}_1^0(\Delta)$ die Menge aller stetigen stückweise affin linearen Funktionen.

3.2. Interpolation durch kubische Polynomsplines

Gegeben sei eine Zerlegung Δ und die Stützwerte $f_0, ..., f_n$. Gesucht ist eine Funktion $s \in \mathcal{S}_3^l(\Delta)$ mit l = 1, 2 derart, dass

$$s(x_k) = f_k \quad \text{für } k = 0, ..., n \tag{6}$$

Jede derartige Funktion heißt kubischer Interpolationspline .

Konstruktion eines solchen Splines:

$$h_k := x_{k-1} - x_k$$
 für $k = 0, ..., n-1$
 $m_k := s'(x_k)$ für $k = 0, ..., n-1$

Wegen $l \in \{1,2\}$ ist s zunächst stetig differenzierbar. Wegen $s_k = s|_{[x_k,x_{k+1}]}$ für k = 0,...,n-1 und m = 3 kann man folgenden Ansatz für s_k benutzen:

$$s_k(x) = a_k(x - x_k)^3 + b_k(x - x_k)^2 + c_k(x - x_k) + d_k$$
(7)

Aus den Interpolationsbedingungen Gleichung (6) und der stetigen Differenzierbarkeit aller Funktionen in $s \in \mathcal{S}_m^l(\Delta)$ für $l \ge 1$ ergeben sich folgende Forderungen an s_k , k = 0, ..., n - 1:

$$s_k(x_k) = f_k \quad \text{und} \quad s_k(x_{k+1}) = f_{k+1}$$

 $s'_k(x_k) = m_k \quad \text{und} \quad s'_k(x_{k+1}) = m_{k+1}$

$$(8)$$

Diese liefern:

$$d_k = s_k(x_k) = f_k$$

$$c_k = s'_k(x_k) = m_k$$
(9)

und damit:

$$s_k(x_{k+1}) = a_k h_k^3 + b_k h_k^2 + m_k h_k + f_k = f_{k+1}$$

$$s'_k(x_{k+1}) = 3a_k h_k^2 + 2b_k h_k + m_k = m_{k+1}$$

Damit ergeben sich a_k und b_k als eindeutige Lösung für das lineare Gleichungssystem

$$\begin{pmatrix}
h_k^3 & h_k^2 \\
3h_k^2 & 2h_k
\end{pmatrix}
\begin{pmatrix}
a_k \\
b_k
\end{pmatrix} = \begin{pmatrix}
f_{k+1} - f_k - m_k f_k \\
m_{k+1} - m_k
\end{pmatrix}$$
(10)

Die Determinante ist $-h_k^4 \neq 0$.

Kapitel II

numerische Quadratur und Integration

1. Integration von Interpolationspolynomen

2. Newton-Cotes-Formeln

${\bf 3. \ spezielle \ Newton-Cotes-Formeln}$

4. Zusammenge	setzte Newton-	-Cotes-Formeln
---------------	----------------	----------------

${\bf 5.\ Gauss's che\ Quadratur formeln}$

Kapitel III

direkte Verfahren für lineare Gleichungssysteme

1. Gauss'scher Algorithmus für quadratische Systeme

${\bf 2.}\ \ {\bf Lineare}\ {\bf Quadratmittel probleme}$

3. I	Kondition linearer	Gleichungssys	steme Kapitel III: direkte Verfahren für lineare Gleichungssysteme
3.	Kondition	linearer	Gleichungssysteme

Kapitel IV

Kondition von Aufgaben und Stabilität von Algorithmen

1. Maschinenzahlen und Rundungsfehler

2. Fehleranalyse

Kapitel V

${\bf Newton\text{-}Verfahren\ zur\ L\"{o}sung\ nichtlinearer} \\ Gleichungssysteme$

1. Das Newton-Verfahren

2. (2. Gedämpftes Newton-Verkapiten V: Newton-Verfahren zur Lösung nichtlinearer Gleichungssysteme				
2.	Gedämpftes	Newton-Verfahren			

Kapitel VI

lineare Optimierung

1. Ecken und ihre Charakterisierung

2. Simplex-Verfahren

3. Die Tableauform des Simplex-Verfahrens

4. Revidiertes Simplex-Verfahren

5. Bestimmung einer ersten zulässigen Basislösung

Anhang A: Listen

A.1. Liste der Theoreme

A.2.	Liste	der	benannten	Sätze.	Lemmata	und Fo	olgerungen

Anhang	A:	Listen
--------	----	--------

A.2. Liste	e der benannten Sätze, Lemmata und Folgerungen	
Satz I.2.7:	Satz von Faber 1914	6

Index

HORNER-Schema, 6	Interpolierende, 2
Lagrange-Form, 4	
	kubischer Interpolationspline, 9
Basispolynom	
Lagrange-Basispolynom, 4	Maximum-Norm, 6
Newton-Basispolynome, 5	Polynomspline, 9
Funktionenraum, 2	
	Stützstellen, 2
Interpolations bedingungen, ${\color{gray}2}$	Stützstellensystem, 6
Interpolationspolynom, 4	Stützwerte, 2