Probability Model For A One Predictor Linear Regression Model

Nan Wu nanw@udel.edu

1 Linear Regression Model

The linear regression model is given as

$$y = \alpha + x\beta + \epsilon \tag{1}$$

where $y \in \mathbb{R}^N$, $x \in \mathbb{R}^N$, $\alpha \in \mathbb{R}$, $\beta \in \mathbb{R}$, $\epsilon \in \mathbb{R}^N$, and $\epsilon \sim \text{Normal}(0, \sigma)$. In this model, x is the predictor, y is the outcome, α is the intercept, β is the slope coefficient, ϵ is the residual.

2 Probability Model

Stan allows us to use improper priors if we don't have any prior knowledge about the parameters. We can therefore start with a simple model by assuming improper priors for α , β and σ :

$$\alpha \sim \text{Uniform}(-\infty, \infty)$$

 $\beta \sim \text{Uniform}(-\infty, \infty)$
 $\sigma \sim \text{Uniform}(0, \infty)$

Putting it all together, the probability model for the single predictor linear regression model is:

$$y_n \sim \text{Normal}(\mu_n, \sigma)$$

 $\mu_n = \alpha + x_n \beta$
 $\alpha \sim \text{Uniform}(-\infty, \infty)$
 $\beta \sim \text{Uniform}(-\infty, \infty)$
 $\sigma \sim \text{Uniform}(0, \infty)$