SCIENCE COMMITTEE

Materials

Ions and Ionic Bonding

Ionic bonding is a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions. Example of an ionic compounds we use: salt(NaCl), sodium fluoride (NaF) ingredient in toothpaste.

$$F=krac{q_1q_2}{r^2}$$

where F represents the force of attraction in Newtons, q1 and q2 represents the charges of the two ions in coulombs, d represents the distance between the ions' nuclei in meters and k is a proportionality constant of 8.99 x 109 Newton square meters per square coulomb.

Ionic Compound	Covalent Compound
Non-metal + Metal	Non-metal + Non-metal
Transfer electrons (metal to non-metal)	Sharing electrons
Positive and negative charges	No charges
Naming with Greek Prefixes	Naming with Roman Numerals
Solid at room temperature (25°C)	Solid, liquid or gas at room temperature
High melting and boiling points	Low melting and boiling points
High attraction between particles	Weak attraction between molecules

A covalent bond is a chemical bond that involves the sharing of electron pairs between atoms.

Covalent compounds in real life: water(H2O), sugar(C6H12O6)

In covalent bond the atoms are held together by the electrostatic attraction between the positively charged nuclei of the bonded atoms and the negatively charged electrons they share.

known as the van der

Waals bond.

Hydrogen bond in the water: what is hydrogen bond?
When many water molecules form hydrogen bonds with other water molecules, they form a lattice of water molecules, which is strong and flexible. This creates a high surface tension.

Metals

Metals: solids with high melting and boiling points, malleable and good conductors of heat and electricity.

Metallic bond: A metallic bond is a type of chemical bond formed between positively charged atoms in which the free electrons are shared among a lattice of cations. In contrast, covalent and ionic bonds form between two discrete atoms. Metallic bonding is the main type of chemical bond that forms between metal atoms.

Macromolecules

A macromolecule is a very large molecule, such as a protein. They are composed of thousands of covalently bonded atoms. Eg. protein, diamonds, graphite

Uses of macromolecules in the body:

valence electrons.

Biological macromolecule	Building blocks	Functions
Proteins	Amino acids	Provide cell structure, send chemical signals, speed up chemical reactions, etc
Nucleic acids	Nucleotides	Store and pass on genetic information

Covalent Bond Structures: What shape/structure does a molecule take?

Ever wondered why some molecules are drawn differently, like $\rm H_2O$ is bent and $\rm CO_2$ is straight? Here, Lewis Structure is used

2) Count the number of e⁻ domain

Number of bonds: 2 Number of lone e⁻ pairs: 2 Sum: 2+2=4

*Note: Double bonds like in CO₂ count as 1 bond

Assumes configuration of least repulsion, e⁻ and atoms are furthest apart from each other.

When looking at Bond Angles, Lone pairs of e⁻ repels more than atoms, causing smaller bond angles in some instances

Electron Domain Geometry: Only Sum is taken into account (e⁻ counts) (SL)

Molecular Geometry: Both Sum and Number of Bonds are Looked At (SL)

These Molecules have identical Electronic and Molecular Structure

Eg: CO₃²-

Molecular Geometry: Both Sum and Number of Bonds are Looked At (HL)

These Molecules have identical Electronic and Molecular Structure

Note: The Central Atom for these 2 structures have more than 8 e⁻ in its outer shell, making it HL only

