

STATISTICAL COMPUTATION

WEEK 4 – HYPOTHESIS TESTING (2/2)

Annisa Auliya I Melda Puspita

GET TO KNOW US

ANNISA AULIYA R.

082334174749

I MELDA PUSPITA L.

085257113961

https://intip.in/KomstatC2023

MATERIALS

- 2-Sample Test
- P-value

• • •

MEANS (σ_1^2 and σ_2^2 known): \vdots :

	Right-side	Left-side	Two-tail
Hypothesis	$\begin{array}{c} \mathbf{H}_0: \ \mu_1 - \mu_2 = d_0 \\ \mathbf{H}_1: \mu_1 - \mu_2 > d_0 \end{array}$	$\begin{aligned} \mathbf{H}_0 : \mu_1 - \mu_2 &= d_0 \\ \mathbf{H}_1 : \mu_1 - \mu_2 &< d_0 \end{aligned}$	$H_0: \mu_1 - \mu_2 = d_0 H_1: \mu_1 - \mu_2 \neq d_0$
Statistics	$Z_{hit} = \frac{(\bar{X}_1 - \bar{X}_2) - d_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$		
Critical Value	$Z_{hit} > Z_{\alpha}$	$Z_{hit} < -Z_{\alpha}$	$Z_{hit} < -Z_{lpha/2}$ or $Z_{hit} > Z_{lpha/2}$
Confidence Interval	$(\bar{X}_1 - \bar{X}_2) - Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} < \mu_1 - \mu_2 < (\bar{X}_1 - \bar{X}_2) + Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$		

MEANS (σ_1^2 and σ_2^2 unknown) $\sigma_1^2 = \sigma_2^2$

	Right-side	Left-side	Two-tail
Hypothesis	$\begin{array}{c} \mathbf{H}_0: \ \mu_1 - \mu_2 = d_0 \\ \mathbf{H}_1: \mu_1 - \mu_2 > d_0 \end{array}$	$\begin{array}{c} \mathbf{H}_0: \mu_1 - \mu_2 = d_0 \\ \mathbf{H}_1: \mu_1 - \mu_2 < d_0 \end{array}$	$H_0: \mu_1 - \mu_2 = d_0 H_1: \mu_1 - \mu_2 \neq d_0$
Statistics	$T_{hit} = \frac{(\bar{X}_1 - \bar{X}_2) - d_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}; \ s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$		
Critical Value	$T_{hit} > t_{\alpha;v}$	$T_{hit} < -t_{\alpha;v}$	$T_{hit} < -t_{lpha/2;v}$ or $T_{hit} > t_{lpha/2;v}$
Degree of Freedom	$v = n_1 + n_2 - 2$		
Confidence Interval	$(\bar{X}_1 - \bar{X}_2) - t_{\alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} < \mu_1 - \mu_2 < (\bar{X}_1 - \bar{X}_2) + t_{\alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$		

		_
2		2
_4		
O_4^-	=	()
\mathbf{c}_{1}	,	

	Right-side	Left-side	Two-tail
Hypothesis	$\begin{aligned} \mathbf{H}_0: \ \mu_1 - \mu_2 &= d_0 \\ \mathbf{H}_1: \mu_1 - \mu_2 &> d_0 \end{aligned}$	$\begin{aligned} \mathbf{H}_0 : \mu_1 - \mu_2 &= d_0 \\ \mathbf{H}_1 : \mu_1 - \mu_2 &< d_0 \end{aligned}$	$\begin{aligned} \mathbf{H}_0 : \mu_1 - \mu_2 &= d_0 \\ \mathbf{H}_1 : \mu_1 - \mu_2 \neq d_0 \end{aligned}$
Statistics	$T_{hit} = \frac{(\bar{X}_1 - \bar{X}_2) - d_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$		
Critical Value	$T_{hit} > t_{lpha;v}$	$T_{hit} < -t_{\alpha;v}$	$T_{hit} < -t_{lpha/2;v}$ or $T_{hit} > t_{lpha/2;v}$
Degree of Freedom	$v = \frac{(s_1^2/n_1 + s_2^2/n_2)^2}{[(s_1^2/n_1)^2/(n_1 - 1)] + [(s_2^2/n_2)^2/(n_2 - 1)]}$		
Confidence Interval	$(\bar{X}_1 - \bar{X}_2) - t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} < \mu_1 - \mu_2 < (\bar{X}_1 - \bar{X}_2) + t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$		

PAIRED MEAN

	Right-side	Left-side	Two-tail
Hypothesis	$H_0: \mu_d = d_0$ $H_1: \mu_d > d_0$	$H_0: \mu_d = d_0$ $H_1: \mu_d < d_0$	$H_0: \mu_d = d_0$ $H_1: \mu_d \neq d_0$
Statistics	$T_{hit} = \frac{\bar{d} - d_0}{S_D / \sqrt{n}}$		
Critical Value	$T_{hit} > t_{\alpha;v}$	$T_{hit} < -t_{\alpha;v}$	$T_{hit} < -t_{lpha/2;v}$ or $T_{hit} > t_{lpha/2;v}$
Degree of Freedom	v = n - 1		
Confidence Interval	$\bar{d} - t_{\alpha/2} \frac{s_d}{\sqrt{n}} < D < \bar{d} + t_{\alpha/2} \frac{s_d}{\sqrt{n}}$		

PROPORTIONS

	Right-side	Left-side	Two-tail
Hypothesis	$H_0: p_1 = p_2 \ H_1: p_1 > p_2$	$H_0: p_1 = p_2 \ H_1: p_1 < p_2$	$H_0: p_1 = p_2 $ $H_1: p_1 \neq p_2$
Statistics	$Z_{hit} = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}\hat{q}(1/n_1 + 1/n_2)}}; \ \hat{p}_i = \frac{x_i}{n_i}, \ \hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$		
Critical Value	$Z_{hit} > Z_{\alpha}$	$Z_{hit} < -Z_{\alpha}$	$Z_{hit} < -Z_{lpha/2}$ or $Z_{hit} > Z_{lpha/2}$
Confidence Interval	$(\hat{p}_1 - \hat{p}_2) - Z_{\alpha/2} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}} < p_1 - p_2 < \hat{p}_1 - \hat{p}_2 + Z_{\alpha/2} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{n_1} + \frac{\hat{p}_2 \hat{q}_2}{n_2}}$		

VARIANCES

	Right-side	Left-side	Two-tail
Hypothesis	$H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 > \sigma_2^2$	$ \begin{aligned} \mathbf{H}_0 : \sigma_1^2 &= \sigma_2^2 \\ \mathbf{H}_1 : \sigma_1^2 &< \sigma_2^2 \end{aligned} $	$H_0: \sigma_1^2 = \sigma_2^2 H_1: \sigma_1^2 \neq \sigma_2^2$
Statistics	$F_{hit} = \frac{s_1^2}{s_2^2}$		
Critical Value	$F_{hit} > f_{\alpha, v_1, v_2}$	$F_{hit} < f_{1-\alpha, v_1, v_2}$	$F_{hit} < f_{1-\frac{\alpha}{2},v_1,v_2}$ or $F_{hit} > f_{\frac{\alpha}{2},v_1,v_2}$
Degree of Freedom	$egin{array}{l} v_1 = n_1 - 1 \ v_2 = n_2 - 1 \end{array}$		
Confidence Interval	$\frac{s_1^2}{s_2^2} \cdot \frac{1}{f_{\frac{\alpha}{2}, v_1, v_2}} < \frac{\sigma_1^2}{\sigma_2^2} < \frac{s_1^2}{s_2^2} \cdot f_{\frac{\alpha}{2}, v_2, v_1}$		

• • •

Calculating P-Values Cheat Sheet

R FUNCTIONS

Function	Description	Usage
d <i>dist</i>	Density	Find PDF
pdist	Distribution function	Find CDF (p-value)
q <i>dist</i>	Quantile function	Find inverse CDF (critical value)
rdist	Random deviated	Generate random variable

THANKS

https://intip.in/KomstatC2023