Quantum circuit design with Reinforcement Learning

Candidate: Francesco Montagna Supervisor: Davide Girolami - DISAT

October 17, 2021

Overview

Reinforcement Learning

Agent and Environment interaction loop:

Reinforcement Learning

The Grid World Example

A canonical example of the reinforcement learning problem is the Grid World.

I: Initial State

T: Terminal State

← Actions

Reinforcement Learning

- Value function: $\mathbb{E}[\sum_t R_t | S_t = s]$
- Policy: $\pi(a|s)$

Policy example:

Agent and environment become quantum systems (e.g. an atom).

Postulate 1: a physical system is associated to a complex vector space in which it is described by a vector.

$$|\psi\rangle = a_0 |0\rangle + a_1 |1\rangle$$
,

where $a_0, a_1 \in \mathbb{C}$.

Braket notation:

$$ullet$$
 $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$ullet$$
 $|1
angle=egin{bmatrix}0\\1\end{bmatrix}$

Postulate 2: the state space of an N particles physical system is the tensor product of the state spaces of the single particle physical systems.

Notation:

- ⊗: tensor product
- $|0\rangle \otimes |0\rangle = |00\rangle$

$$|\psi\rangle = a_{00} |00\rangle + a_{10} |10\rangle + a_{01} |01\rangle + a_{11} |11\rangle$$

The Qubit

- Classical bit: either 0 or 1.
- Qubit: superposition of $|0\rangle$ and $|1\rangle$, $|\psi\rangle=a_0\,|0\rangle+a_1\,|1\rangle$

Bloch sphere representation of a qubit:

Gates and Circuits

We define a quantum circuit as the combination of wires and logic gates.

Problem Statement

Prepare an initial state $|\psi\rangle$ into a target state $|\psi'\rangle$ minimizing the number of gates.

- Shortest path problem \rightarrow reinforcement learning formulation.
- Algorithm limited to 2 qubits physical systems.

$$|00\rangle {\longrightarrow} \boxed{\text{Agent Designed Circuit}} {\longrightarrow} |11\rangle$$

The Method

Agent States

- $|\psi_t\rangle = a_{00,t} |00\rangle + a_{10,t} |10\rangle + a_{01,t} |01\rangle + a_{11,t} |11\rangle$.
- $a_{mn} \in \mathbb{C}$: $a_{mn} = \operatorname{Re}(a_{mn}) + j\operatorname{Im}(a_{mn})$

agent state at time t:

$$S_t = [\text{Re}(a_{00,t}), \text{Re}(a_{10,t}), \text{Re}(a_{01,t}), \text{Re}(a_{11,t}), \\ \text{Im}(a_{00,t}), \text{Im}(a_{10,t}), \text{Im}(a_{01,t}), \text{Im}(a_{11,t})]$$

Actions

Actions are defined in terms of unitary gates applied to the quantum state:

- Rotations around X, Y, Z axes.
- $CNOT_{0,1}$: $CNOT_{0,1} |\alpha\rangle |\beta\rangle = |\alpha\rangle |\alpha \oplus \beta\rangle$

The Method

- $|\psi\rangle$: initial state vector.
- $|\psi_t\rangle = U |\psi\rangle = U_t U_{t-1} \dots U_1 |\psi\rangle$: state vector at time t.
- $|\psi'\rangle$: target state vector.
- $|\psi_T\rangle$: terminal state vector.

Fidelity: measures the similarity of two state vectors,

$$F(\psi', \psi_t) \in [0, 1]$$
.

Terminal state: given a tolerance threshold ϵ , a state is terminal if it satisfies the condition

$$F(\psi', \psi_T) \in [1 - \epsilon, 1]$$
.

The Method

Reward Function

$$R(s_t) = egin{cases} 100, & ext{if } |\psi_t
angle = |\psi_T
angle \ -1, & ext{else} \end{cases}$$

where s_t is the agent state at time t.

This choice forces the agent to minimize the number of exploited gates.

Results

Bell state	Fidelity	Number of gates
$rac{1}{\sqrt{2}}(\ket{00}+\ket{11})$	1	2
$rac{1}{\sqrt{2}}(\ket{00}-\ket{11})$	1	4
$rac{1}{\sqrt{2}}(\ket{01}+\ket{10})$	1	3
$rac{1}{\sqrt{2}}(\ket{01}-\ket{10})$	0.93	3

Table: Algorithm results on Bell states. Initial state: $|00\rangle$.

Figure: Circuit designed for the first Bell state as target.

IBM Quantum Lab

Figure: Quantum Computer at IBM (IBM Quantum Lab).

IBM Quantum Lab

Experimental Results

The code for the experiments is written with Qiskit, a Python based framework for quantum computing, developed and maintained by IBM.

Fidelity between real and expected states:

$$F(\psi_{theory}, \psi_{exp}) = 0.94$$

Conclusion

Results:

- Optimal policy learned to prepare $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ from $|00\rangle$.
- Physical apparatus introduces noise: $F(\psi_{theory}, \psi_{exp}) = 0.94$.

Limitations:

- Low number of qubits
- Optimality not guaranteed

Future work

 Learn the reward given examples of optimal policies: Inverse Reinforcement Learning

Thank you for your attention