Теория вероятностей. Лекция восемнадцатая Слабая сходимость

Дмитрий Валерьевич Хлопин glukanat@mail.ru

Институт математики и механики им. Н.Н.Красовского

27.02.2019

Что разобрали:

- Неравенства концентрации меры
- Сходимости случайных величин
- Усиленный закон больших чисел
- Слабая сходимость
- Характеристические функции
- Центральная предельная теорема

Различные виды сходимости отвечают за разные типы надежности: начиная с некоторого момента все будет хорошо, отклонения больше заданного достаточно редки, ущерб будет мал в среднем и т. п. Все эти сходимости имеют дело со случайной величиной, понимаемой с точностью почти всюду. При этом какие-то вещи могут быть узнаны с вероятностью 1 (в предположении, что мы не в худшем из миров).

Усиленный закон больших чисел (в форме Колмогорова)

Пусть $\{\xi_n\}$ — последовательность независимых одинаково распределенных случайных величин со средним m и конечной дисперсией. Тогда

$$\underbrace{\xi_1 + \ldots + \xi_n}_{n} \xrightarrow{\text{п.в.}} m$$
 при $n \to \infty$.

Закон повторного логарифма

Теорема 3. [без д-ва] Пусть дана последовательность независимых одинаково распределенных случайных величин ξ_n со средним 0 и дисперсией $\sigma^2 > 0$. Тогда

$$\sup_{n>k} \frac{\xi_1 + \ldots + \xi_n}{\sigma \sqrt{2n \ln \ln n}} \xrightarrow{\text{п.в.}} 0 \text{ при } k \uparrow \infty,$$

и для всех положительных ε выполнено

$$\mathbb{P}(\xi_1 + \ldots + \xi_n > (1+\varepsilon)\sigma\sqrt{2n\ln\ln n} \text{ бесконечно много раз}) = 0,$$

$$\mathbb{P}(\xi_1 + \ldots + \xi_n < (1-\varepsilon)\sigma\sqrt{2n\ln\ln n} \text{ бесконечно много раз}) = 1.$$

Закон нуля и единицы. Очень частный случай

Теорема 4. Пусть дана последовательность независимых случайных величин ξ_n . Пусть некоторое событие A принадлежит $\sigma(\xi_n,\xi_{n+1},\dots)$ для всех $n\in\mathbb{N}$. Тогда $\mathbb{P}(A)=0$ или $\mathbb{P}(A)=1$.

Доказательство.

Отметим, что A не зависит от всех σ -алгебр $\sigma(\xi_1, \xi_2, \ldots, \xi_{n-1})$, тогда не зависит от объединяющей их $\sigma(\xi_1, \xi_2, \ldots, \xi_{n-1}, \xi_n \ldots)$, но $A \in \sigma(\xi_1, \xi_2, \ldots, \xi_{n-1}, \xi_n \ldots)$, следовательно событие A не зависит от самого себя, то есть $\mathbb{P}(A) = \mathbb{P}(A \cap A) = \mathbb{P}^2(A)$. Решая квадратное уравнение, получаем требуемое.

Задача [1,5 балла] Пусть борелевская функция f от координат x_1,\ldots,x_n,\ldots такова, что для всех $i\in\mathbb{N}$ $f(x_1,\ldots,x_{i-1},x_i,x_{i+1},x_{i+2},\ldots)=f(x_1,\ldots,x_{i-1},x_{i+1},x_i,x_{i+2},\ldots).$ Пусть X_1,\ldots,X_n,\ldots — независимые в совокупности одинаково распределенные случайные величины. Докажите, что случайная величина $f(X_1,\ldots,X_n,\ldots)$ с вероятностью 1 — константа.

От сильной к слабой сходимости...

- Неравенства концентрации меры
- Сходимости случайных величин
- Усиленный закон больших чисел
- Слабая сходимость
- Характеристические функции
- Центральная предельная теорема

Подумать: рассмотрите последовательность случайных величин, распределенных по закону U[1,1+1/n] или, например, N(1,1/n). Соответствующие им плотности сходятся почти всюду к нулю. Но вроде понятно, что в пределе вся масса сосредоточена в единице...

Слабая сходимость

Пусть имеется вероятностное пространство $(\Omega, \mathcal{F}, \mathbb{P})$. Рассмотрим также различные вероятности на $(\mathbb{R}, \mathcal{B})$. Если μ – вероятность на \mathbb{R} , то $F_{\mu}(x) \stackrel{\triangle}{=} \mu((-\infty, x])$. Для $\mu = \xi \# \mathbb{P}$ сократим обозначение до $F_{\mu} = F_{\xi}$.

Будем говорить, что μ_n слабо сходится к вероятности μ , обозначая её $\mu_n \stackrel{w}{\to} \mu$, если для каждой непрерывной ограниченной $\phi: \mathbb{R} \to \mathbb{R}$

$$\int_{\mathbb{R}} \phi(x) \mu_n(dx) \to \int_{\mathbb{R}} \phi(x) \mu(dx).$$

Подумать: докажите, что если каждая μ_n сосредоточена в некоторой x_n , то есть $\mu_n(A) \stackrel{\triangle}{=} |A \cap \{x_n\}|$, то μ_n сходится тогда и только тогда, когда сходится x_n .

Подумать: стоит ли требовать сходимость интегралов для всех измеримых функций?

Слабая сходимость, куда еще слабее...

Функция $\phi: \mathbb{R} \to \mathbb{R}$ называется финитной, если она равна нулю вне некоторого компакта [a,b]. Множество непрерывных финитных функций обозначим через $C_0(\mathbb{R})$, множество бесконечное число раз дифференцируемых финитных функций — через $C_0^\infty(\mathbb{R})$.

Предложение 7. μ_n сходится слабо к μ тогда и только тогда, когда для каждой бесконечное число раз дифференцируемой финитной функции $\phi: \mathbb{R} \to \mathbb{R}$ выполнено

$$\int_{\mathbb{R}} \phi(x) \mu_n(dx) \to \int_{\mathbb{R}} \phi(x) \mu(dx).$$

Эквивалентность определения слабой сходимости

Доказательство. Нужна лишь достаточность.

Каждому $\varepsilon>0$ выберем [a,b] такой, что $\mu[a,b]\geq 1-\varepsilon$. Пусть $\phi-$ произвольная непрерывная функция. Найдется $\phi^\varepsilon\in C_0^\infty(\mathbb{R})$ такая, что $|\phi^\varepsilon(x)-\phi(x)|\leq \varepsilon$ на $x\in [a,b]$. Можно считать, что $|\phi|\leq c,\ |\phi^\varepsilon|\leq 2c$. Теперь, для всех n

$$\left| \int_{-\infty}^{+\infty} \phi(x) \mu_n(dx) - \int_{-\infty}^{+\infty} \phi^{\varepsilon}(x) \mu_n(dx) \right| \leq \int_a^b |\phi(x) - \phi^{\varepsilon}(x)| \mu_n(dx)$$

$$+ \left| \int_{\mathbb{R} \times [a,b]} \phi(x) \mu_n(dx) \right| + \left| \int_{\mathbb{R} \times [a,b]} \phi^{\varepsilon}(x) \mu_n(dx) \right| \leq \varepsilon + 3c\varepsilon.$$

Аналогично,

$$\left| \int_{-\infty}^{+\infty} \phi(x) \mu(dx) - \int_{-\infty}^{+\infty} \phi^{\varepsilon}(x) \mu(dx) \right| \le \varepsilon + 3c\varepsilon.$$

Теперь сходимость следует из $\int_{-\infty}^{+\infty} \phi^{\varepsilon} \mu_n(dx) \to \int_{-\infty}^{+\infty} \phi^{\varepsilon} \mu(dx)$ при $n \to \infty$.

Интегрирование по частям

Для произвольной $\phi \in C_0^\infty(\mathbb{R})$

$$\int_{-\infty}^{+\infty} \phi(x)\mu(dx) = -\int_{-\infty}^{+\infty} \phi'(x)F_{\mu}(x)dx.$$

Для этого запишем

$$\phi(x) = \int_{-\infty}^{x} \phi'(t)dt = \int_{-\infty}^{+\infty} \mathbf{1}_{(-\infty,x]}(t)\phi'(t)dt.$$

Тогда, переставляя интегралы и используя равенства

$${f 1}_{(-\infty,x]}(t)$$
 = ${f 1}_{[t,+\infty)}(x)$, $\int_t^{+\infty} \mu(dx)$ = $1-F_\mu(t)$, мы получаем, что

$$\int_{-\infty}^{+\infty} \phi(x)\mu(dx) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathbf{1}_{(-\infty,x]}(t)\phi'(t)dt\mu(dx)$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathbf{1}_{[t,+\infty)}(x)\mu(dx)\phi'(t)dt = \int_{-\infty}^{+\infty} (1 - F_{\mu}(t))\phi'(t)dt$$

$$= -\int_{-\infty}^{+\infty} F_{\mu}(t)\phi'(t)dt.$$

Сколько-то фактов без доказательства

Слабая сходимость задает топологию на множестве всевозможных вероятностных мер. Эта топология может быть описана метрикой, например введенной ранее метрикой Канторовича. В функане, откуда и пошло название, рассматривают такую сходимость как сходимость на линейных отображениях вида

$$\phi \mapsto \int_{\mathbb{R}} \phi(x) \mu(dx).$$

Для полных сепарабельных метрических пространств Ω имеет место: **Теорема Александрова** [без д-ва]. Следующие условия эквивалентны:

- $\bullet \ \mu_n \xrightarrow{w} \mu;$
- $\mu(A) \leq \liminf_{n\to\infty} \mu_n(A)$ для всякого открытого множества A;
- $\mu(A) \ge \limsup_{n \to \infty} \mu_n(A)$ для всякого замкнутого множества A;
- $\mu(A) = \lim_{n \to \infty} \mu_n(A)$ для всякого борелевского множества A, у границы которого мера μ равна нулю.

Сходимость случайных величин по распределению

Будем говорить, что ξ_n сходится к ξ по распределению, обозначая её $\xi_n \stackrel{d}{\to} \xi$, если $\mu_{\xi_n} = \xi_n \# \mathbb{P}$ сходится к $\mu_{\xi} = \xi \# \mathbb{P}$ слабо, то есть для всякой непрерывной ограниченной функции ϕ

$$\int_{\Omega} \phi(\xi_n(\omega)) \mathbb{P}(d\omega) \to \int_{\Omega} \phi(\xi(\omega)) \mathbb{P}(d\omega).$$

Подумать: приведите пример $\xi:\Omega\to\{-1,1\}$ такой, что $\xi_n=\xi\stackrel{d}{\to}\xi$, $\xi_n=\xi\stackrel{d}{\to}-\xi$. Можно ли сделать вывод, что $\xi=-\xi$? Еще раз прочитайте предыдущий абзац.

Подумать: сравните определения, вдруг там что напутано...

Из
$$F_{\xi_n}(t) \to F_{\xi}(t)$$
 п.в. следует $\mu_n \stackrel{w}{\to} \mu$

Предложение 8. Последовательность случайных величин ξ_n сходится по распределению к случайной величине ξ тогда и только тогда, когда для всех точек непрерывности функции распределения F_ξ

$$F_{\xi_n}(t) \to F_{\xi}(t)$$
 при $n \to \infty$.

Докажем больше: $\mu_n \xrightarrow{w} \mu$ тогда и только тогда, когда

$$F_{\mu_n}(t) \to F_{\mu}(t)$$

во всех точках непрерывности $F_{\mu}.$

Доказательство. Докажем сначала обратное. Пусть ϕ — бесконечное число раз дифференцируемая финитная функция. Тогда для не более чем счетного числа точек t (лишь в точках разрыва) возможно не имеет место сходимость $\phi'(t)F_{\mu_n}(t) \to \phi'(t)F_{\mu}(t)$. По теореме Лебега о мажорируемой сходимости, используя интегрирование по частям, заключаем, что $\int_{-\infty}^{+\infty} \phi(x)\mu_n(dx)$ сходятся к $\int_{-\infty}^{+\infty} \phi(x)\mu(dx)$.

Из $\mu_n \xrightarrow{w} \mu$ следует $F_{\xi_n}(t) \to F_{\xi}(t)$ п.в.

Пусть $\mu_n \xrightarrow{w} \mu$. Пусть t — точка непрерывности F_μ , тогда для любого $\varepsilon > 0$ можно найти $\delta > 0$ такое, что $F_\mu(t-\delta) \ge F_\mu(t) - \varepsilon$. Выберем ϕ равным 1 на $(-\infty, t-\delta]$ и 0 на $[t, +\infty)$. На $[t-\delta, t]$ продлим ϕ аффинно. При достаточно больших n имеем

$$F_{\mu_n}(t) = \int_{-\infty}^{t} \mu_n(dx) \ge \int_{-\infty}^{+\infty} \phi(x) \mu_n(dx)$$

$$> \int_{-\infty}^{+\infty} \phi(x) \mu(dx) - \varepsilon > \int_{-\infty}^{t-\delta} \phi(x) \mu(dx) - \varepsilon = F_{\mu}(t-\delta) - \varepsilon \ge F_{\mu}(t) - 2\varepsilon.$$

Аналогичным образом мы получаем, что при достаточно больших n $F_{\mu_n}(t) \leq F_{\mu}(t) + 2 \varepsilon.$

$$\xi_n \xrightarrow{P} \xi \Rightarrow \xi_n \xrightarrow{d} \xi, \; \xi_n \xrightarrow{\text{п.в.}} \xi \Rightarrow \xi_n \xrightarrow{d} \xi, \; \xi_n \xrightarrow{L^p} \xi \Rightarrow \xi_n \xrightarrow{d} \xi$$
 Предложение 9. Если $\xi_n \xrightarrow{P} \xi$, то $\xi_n \xrightarrow{d} \xi$.

Доказательство. Положим

$$\mu \triangleq \mu_{\xi}, \quad \mu_n \triangleq \mu_{\xi_n}.$$

Пусть $\phi \in C_0^\infty(\mathbb{R})$, тогда $|\phi(x)| \le c$, $|\phi'(x)| \le c$. Выберем $\varepsilon > 0$ и введем $G_n^\varepsilon \triangleq \{\omega: |\xi_n - \xi| < \varepsilon\}$.

Имеем, что

$$\left| \int_{-\infty}^{+\infty} \phi(x) \mu(dx) - \int_{-\infty}^{+\infty} \phi(x) \mu_n(dx) \right| = \left| \mathbb{E} \phi(\xi_n) - \mathbb{E} \phi(\xi) \right|$$

$$\leq \left| \mathbb{E} \phi(\xi_n) - \mathbb{E} \phi(\xi) \right| \mathbf{1}_{G_n^{\varepsilon}} + \left| \mathbb{E} \phi(\xi_n) \right| \mathbf{1}_{\Omega \setminus G_n^{\varepsilon}} + \mathbb{E} \left| \phi(\xi) \right| \mathbf{1}_{\Omega \setminus G_n^{\varepsilon}}$$

$$\leq c\varepsilon + 2c \mathbb{P}(\Omega \setminus G_n^{\varepsilon}).$$

Поскольку $\mathbb{P}(\Omega \smallsetminus G_n^{arepsilon}) = \mathbb{P}(|\xi_n - \xi| \geq arepsilon) o 0$ при $n o \infty$, получаем, что

$$\lim_{n\to\infty} \left| \int_{-\infty}^{+\infty} \phi(x) \mu(dx) - \int_{-\infty}^{+\infty} \phi(x) \mu_n(dx) \right| \le c\varepsilon.$$

Устремляя arepsilon к нулю, получаем требуемое.

$$\xi_n \xrightarrow{d} \xi \Rightarrow \xi_n \xrightarrow{P} \xi$$
, если ξ — константа

Предложение 10 Если $\xi_n \xrightarrow{d} m$ для некоторой константы m, то $\xi_n \xrightarrow{P} m$.

Доказательство.

Пусть $\xi=m$. Отметим, что F_ξ непрерывна всюду, кроме точки m, более того $F_\xi(m-\varepsilon)=0, F_\xi(m+\varepsilon)=1$ для всех положительных ε . Остальное - голый счет: для всех положительных ε при $n\uparrow\infty$ имеем

$$\mathbb{P}(|\xi_n - m| \le \varepsilon) \ge \mathbb{P}(m - \varepsilon < \xi_n \le m + \varepsilon)$$

$$= F_{\xi_n}(m + \varepsilon) - F_{\xi_n}(m - \varepsilon) \to F_{\xi}(m + \varepsilon) - F_{\xi}(m - \varepsilon) = 1.$$

Что разобрали:

- Неравенства концентрации меры
- Сходимости случайных величин
- Усиленный закон больших чисел
- Слабая сходимость. Банальности
- Характеристические функции
- Центральная предельная теорема

Слабая сходимость предполагает, что изучаемое явление — черный ящик, не пытаясь залезть внутрь, она пытается угадать реакции на раздражители (значения у непрерывных функций). Она не требует знания ω , наоборот, она скорее предполагает, что Вы его не знаете и никогда не узнаете. И дает все остальное.

Впрочем, слабая сходимость еще долго не закончится: характеристические функции тоже о слабой сходимости...

На пять минут...

1. Эту задачу или ее вариацию я подкину на одну из следующих пятиминуток. Пусть $X_n(n>3)$ — последовательность независимых случайных величин, $\mathbb{P}(X_n=n)=\mathbb{P}(X_n=-n)=\frac{1}{n\ln n}$, $\mathbb{P}(X_n=0)=1-\frac{2}{n\ln n}$. Опровергнуть или доказать: сходится ли эта последовательность по вероятности, в среднем (p=2), почти всюду? 2. Опровергнуть или доказать: для любой случайной величины ξ последовательность ξ/n сходится по вероятности, в среднем (p=1), почти всюду?

Полное решение. Поскольку $\xi(\omega)/n \to 0$ для всех ω , значит сходимость к нулю почти всюду доказана. Следовательно, доказана и по вероятности.

Сходимость в среднем при p=2 эквивалентна $\mathbb{E}|\xi/n-0|^2=\mathbb{E}|\xi/n|^2=\mathbb{E}|\xi|^2/n^2\to 0$, что так, если матожидание $\mathbb{E}|\xi|^2$ существует. Для случайной величины, принимающей значение 5^n с вероятностью $1/2^n$ для всех $n\in\mathbb{N}$, такой сходимости нет.

Ответ: Да, для почти всюду и по вероятности; нет, для в среднем.