Dona Minhoca

Prova Fase 3 - OBI2021

Dona Minhoca construiu uma bela casa, composta de N salas conectadas por N-1 túneis. Cada túnel conecta exatamente duas salas distintas, e pode ser percorrido em qualquer direção. A casa de dona Minhoca foi construída de modo que, percorrendo os túneis, é possível partir de qualquer sala e chegar a qualquer outra sala da casa.

Dona Minhoca quer se exercitar, e para isso planeja construir um túnel adicional, de modo a criar um "ciclo" de salas e túneis. Vamos chamar de *comprimento* do ciclo o número de salas do ciclo.

A figura (a) abaixo mostra um exemplo de casa. É possível obter um ciclo de comprimento três construindo um túnel entre as salas 2 e 5, ou um ciclo de comprimento quatro construindo um túnel entre as salas 1 e 3.

Dada a descrição da casa de dona Minhoca, escreva um programa para determinar o número de salas do ciclo de maior comprimento que é possível construir, e de quantas maneiras é possível construir um ciclo com esse comprimento.

Entrada

A primeira linha da entrada contém um inteiro N, o número de salas da casa de dona Minhoca. As salas são identificadas por números de 1 a N. Cada uma das N-1 linhas seguintes contém dois inteiros X e Y, indicando que há um túnel entre a sala X e a sala Y.

Saída

Seu programa deve produzir duas linhas. A primeira linha deve conter somente um inteiro, o número de salas do ciclo de maior comprimento que é possível construir. A segunda linha deve conter somente um inteiro, o número de ciclos distintos que é possível contruir com esse comprimento.

Restrições

- $3 \le N \le 50~000$
- $1 \le X \le N$; $1 \le Y \le N$; $X \ne Y$
- nos testes, o número de possíveis ciclos distintos é menor do que 100 000 000

Informações sobre a pontuação

- $\bullet\,$ Para um conjunto de casos de testes valendo 40 pontos, $N \leq 5~000$
- Para um conjunto de casos de testes valendo outros 60 pontos, nenhuma restrição adicional.

Exemplo de entrada 1	Exemplo de saída 1
5	4
1 2	2
2 4	
4 5 4 3	
4 3	

Explicação do exemplo 1: este exemplo corresponde à figura do enunciado. O comprimento do maior ciclo possível é quatro, e há duas maneiras de conseguir um ciclo desse comprimento: criando um túnel entre as salas 1 e 3 ou entre as salas 1 e 5.

Exemplo de entrada 2	Exemplo de saída 2
8	5
1 2	6
2 3	
3 4	
3 6	
5 3	
1 8	
1 7	

Explicação do exemplo 2: o comprimento do maior ciclo possível é cinco, e há seis maneiras de conseguir isso: criando um túnel entre os pares de salas (4,7) (4,8), (5,7), (5,8), (6,7) ou (6,8).