Problem 1. Definitions and theorems. State the requested definition, theorem, or property. Be sure to use correct notation and include any necessary quantifiers in the appropriate order.

(a) Give a precise definition of the **graph** of a function $f: A \to B$, using correct set-theoretical notation.

Solution:
$$\{(a,b): a \in A, b = f(a)\}, \text{ or, equivalently, } \{(a,f(a)): a \in A\}.$$

(b) Without using words of negation state the definition of "f is **not increasing**" (where f is a function from \mathbb{R} to \mathbb{R}). Write your answer in English, i.e., without using logical symbols.

Solution: "
$$(\exists x, y \in \mathbb{R})((x < y) \land (f(x) \le f(y)))$$
"
"There exist real numbers $x < y$ such that $f(x) \ge f(y)$."

(c) A function f from \mathbb{R} to \mathbb{R} is **not bounded** if ...

Solution: "
$$(\forall M \in \mathbb{R})(\exists x \in \mathbb{R})(|f(x)| > M)$$
."
"For all $M \in \mathbb{R}$ there exists $x \in \mathbb{R}$ such that $|f(x)| > M$."

(d) Two sets A and B are said to have the **same cardinality** if ...

Solution: "there exists a bijection from A to B."

Problem 2. Short answers, I. For the following questions, give an answer and a brief justification.

(a) Let f(x) = |x - 1| if x < 4, and f(x) = |x| - 1 if x > 2. Determine whether f is a **function** from \mathbb{R} to \mathbb{R} , and justify your answer (i.e., explain why, or why not, f is a function from \mathbb{R} to \mathbb{R}).

Solution: TRUE. For f to be a function we need to check that (i) the given rules define f(x) for every $x \in \mathbb{R}$, and (ii) the rules define a unique value f(x) for every $x \in \mathbb{R}$. Here f(x) is given by one formula, |x-1|, in the range x < 4, and by another formula, |x|-1, in the range x > 2. Since every real number is covered by these ranges, f(x) is defined (possibly ambiguously) for every $x \in \mathbb{R}$, so property (i) holds. To check whether property (ii) holds as well, we need to check whether in the overlap of these ranges, namely for 2 < x < 4, the two formulas given agree. Now,

$$|x| - 1 = x - 1$$
 for $x > 0$,
 $|x - 1| = x - 1$ for $x - 1 > 0$, i.e., $x > 1$,

so in the range 2 < x < 4 we have |x| - 1 = x - 1 = |x - 1|. Hence f(x) is unambiguously defined by the given rules, and therefore is a properly defined function from \mathbb{R} to \mathbb{R} .

(b) Let f(p/q) = 1/q if $p \in \mathbb{Z}, q \in \mathbb{N}$, and f(x) = 0 if x is irrational. Determine whether f is a function from \mathbb{R} to \mathbb{R} , and justify your answer (i.e., explain why, or why not, f is a function from \mathbb{R} to \mathbb{R}).

Solution: FALSE. The first of the two rules is ambiguous because of the non-unique way of writing a rational number as p/q with integers p and q. For example, the number x = 1/2 could be written as 1/2, 2/4, 3/6, etc., corresponding to the values $1/q = 1/2, 1/4, 1/6, \ldots$ Similarly, 0 can be written as 0/1, 0/2, 0/3, etc., so 0 would be mapped to multiple values under this rule: 1, 1/2, 1/3, etc. **Thus, this rule does NOT define a function.**

Remarks: If one requires p/q to be in reduced form, this ambiguity does not arise. The resulting function is well-defined, and has the remarkable property that it is continuous at all irrational points, and discontinuous at all rational points.

(c) Does there exist a function $f: \mathbb{R} \to \mathbb{R}$ that is unbounded, but not surjective? If so, give a *specific* example of such a function; if not, explain why no such function exists.

Solution: YES. $f(x) = x^2$ is unbounded, but not surjective since it does not take on negative values.

(d) Does there exist a function from \mathbb{R} to \mathbb{R} that has an inverse, but is not injective? If so, give a *specific* example of such a function; if not, explain why no such function exists.

Solution: NO. No such function exists, since if f has an inverse, then f is a bijection and hence injective.

Problem 3. Short answers, II. For the following questions, give an answer and a brief justification. For questions about cardinality and countability you can use (without proof) the following:

- (i) Known results about the countability or uncountability of the following **specific** sets: \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and the set of infinite binary sequences.
- (ii) Any of the **general** results and properties about countable sets given on the cardinality handout. If you use one of these results/properties, say so and indicate which property you are using.
 - (a) Does there exist a bijection between \mathbb{Z} (the set of all integers) and \mathbb{Z}_{odd} (the set of odd integers)? If so, give a *specific* example of such a bijection; if not, explain why no such bijection exists.

Solution: YES. f(n) = 2n - 1 is a bijection from all integers to the odd integers.

(b) Does there exist an infinite set A such that $A \times A$ has the same cardinality as A? If so, give a *specific* example of such a set, and explain briefly why this set has the required property. If not, explain why no such set exists.

Solution: YES. The set $A = \mathbb{N}$ has this property. The set \mathbb{N} is countable, and since the cartesian product of two countable sets is countable, the set of all pairs (a,b), with $a,b \in \mathbb{N}$, i.e., the set $\mathbb{N} \times \mathbb{N}$, is countable as well, and hence has the same cardinality as \mathbb{N} .

(c) Does the set \mathbb{R} have the same cardinality as the set $\mathbb{Q} \times \mathbb{Q}$? Explain clearly why, or why not, the two sets have the same cardinality.

Solution: NO. Since \mathbb{Q} is countable and the cartesian product of two countable sets is countable, $\mathbb{Q} \times \mathbb{Q}$ is countable. On the other hand, \mathbb{R} is uncountable, so it cannot have the same cardinality as $\mathbb{Q} \times \mathbb{Q}$.

Problem 4. Let the sequence a_n be defined by $a_1 = a_2 = a_3 = 1$ and $a_n = a_{n-1} + a_{n-2} + a_{n-3}$ for $n \ge 4$. Using induction, prove that $a_n < 2^n$ for all $n \in \mathbb{N}$.

Pay particular attention to the write-up, be sure to include all steps, any necessary quantifiers, and provide appropriate justifications for each step (e.g., "by induction hypothesis", "by formula (1)", "by algebra", "by the AGM inequality")

Solution: We will prove that (*) $a_n < 2^n$ holds for all $n \in \mathbb{N}$ by strong induction.

Base step: For n = 1, 2, 3, a_n is equal to 1, whereas the right-hand side of (*) is equal to $2^1 = 2$, $2^2 = 4$, and $2^3 = 8$, respectively. Thus, (*) holds for n = 1, 2, 3.

Induction step: Let $k \geq 3$ be given and suppose (*) is true for all n = 1, 2, ..., k. Then

$$a_{k+1} = a_k + a_{k-1} + a_{k-2}$$
 (by recurrence for a_n)
 $< 2^k + 2^{k-1} + 2^{k-2}$ (by strong ind. hyp. (*) with $n = k, k - 1$, and $k - 2$)
 $= 2^{k+1} \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} \right)$
 $= 2^{k+1} \frac{7}{8} < 2^{k+1}$.

Thus, (*) holds for n = k + 1, and the proof of the induction step is complete.

Conclusion: By the strong induction principle, it follows that (*) is true for all $n \in \mathbb{N}$.

Problem 5. Let A, B, C be sets, $f: A \to B$, and $g: B \to C$ be functions, and let $h: A \to C$ be defined by h(x) = g(f(x)) for $x \in A$. For each of the following statements, determine if it is true. If the statement is true, give a careful, step-by-step, proof; be sure to use proper mathematical notation and terminology, and include any necessary quantifiers, connecting words, and justifications. If it is false, give a *specific* counterexample.

(a) If f and g are surjective, then h is surjective.

Solution: TRUE. Proof:

1001.

Suppose f and g are surjective.

We seek to show that $h = g \circ f$ is surjective.

Let $c \in C$ be given. We seek to show that there exists an $a \in A$ such that h(a) = c.

Since $g: B \to C$ is surjective and $c \in C$, there exists $b \in B$ such that g(b) = c.

Since $f: A \to B$ is surjective and $b \in B$, there exists $a \in A$ such that f(a) = b.

Combining these equations, we get h(a) = g(f(a)) = g(b) = c.

Summarizing, we have shown that, for any $c \in C$, there exists $a \in A$ such that h(a) = c.

Therefore, h is surjective.

(b) If h is surjective, then f is surjective.

Solution: FALSE.

Counterexample: Let $A = C = \{1\}$, $B = \{1, 2\}$, f(1) = 1, g(1) = g(2) = 1. Then h(1) = g(f(1)) = 1, so h maps the single element 1 in A to the single element 1 in C, and thus is a bijection from A to C, and in particular surjective. On the other hand, f is not surjective, since it does not take on the value $2 \in B$.

Problem 6. Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ be defined by f(x,y) = (x+y, x-y).

(a) Determine whether f is injective. If it is, give a careful, step-by-step, proof of the injectivity; if it is not, explain why.

Solution: TRUE.

Proof: Suppose (x_1, y_1) and (x_2, y_2) are elements in $\mathbb{Z} \times \mathbb{Z}$ such that (*) $f(x_1, y_1) = f(x_2, y_2)$. We seek to show that (**) $(x_1, y_1) = (x_2, y_2)$. By the definition of f, (*) implies $(x_1 + y_1, x_1 - y_1) = (x_2 + y_2, x_2 - y_2)$, which in turn implies $x_1 + y_1 = x_2 + y_2$ and $x_1 - y_1 = x_2 - y_2$. Adding the latter two equations, we get $2x_1 = 2x_2$, so $x_1 = x_2$, and substituting this into the first of these equations

(b) Determine whether f is surjective. If it is, give a careful, step-by-step, proof of the surjectivity; if it is not, explain why.

gives $y_1 = y_2$. Thus, $(x_1, y_1) = (x_2, y_2)$, as desired. Therefore f is injective.

Solution: FALSE.

Counterexample: Consider the element $(1,0) \in \mathbb{Z} \times \mathbb{Z}$. We will show by contradiction that (1,0) is not in the image of f. Suppose f(x,y) = (1,0) for some $(x,y) \in \mathbb{Z} \times \mathbb{Z}$. By the definition of f, this implies 1 = x + y and 0 = x - y, hence x = y, 1 = 2x, and y = b = 1/2. which is a contradiction since $(x,y) \in \mathbb{Z} \to \mathbb{Z}$. Thus, there is no element $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ with f(x,y) = (1,0), so f cannot be surjective.