1.

(a) (R1; R2); R3 = { (a,b)
$$|\exists c, (a,c) \in (R1;R2); (c,b) \in R3}$$

={ (a,b) $|\exists c,\exists d, (a,d) \in R1; (d,c) \in R2; (c,b) \in R3}$
={ (a,b) $|\exists d, (a,d) \in R1; (d,b) \in (R2;R3)}$
= R1; (R2; R3)

(b) R1 = {
$$(a,b) | (a,b) \in S \times S$$
 }
= { $(a,b) | (a,b) ; (b,b)$ } = R1 ; I (Because I = { $(x,x) | x \in S$ } so $(b,b) \subseteq I$)
= { $(a,b) | (a,a) ; (a,b)$ } = I ; R1 (so on so forth, $(a,a) \subseteq I$)

(c) If we assign R1 = { (1,2) } ,R2 = { (2,3) } , then (R1; R2) $\stackrel{\leftarrow}{}$ = { (3,1) }, and R1 $\stackrel{\leftarrow}{}$; R2 $\stackrel{\leftarrow}{}$ = ϕ , so the statement is not true.

(d) (R1
$$\cup$$
 R2); R3 = { (a,b) | \exists c, (a,c) \in (R1 \cup R2); (c,b) \in R3}
= { (a,b) | ((a1,c1) \in R1 \cup (a2,c2) \in R2)); ((c1,b1) \in R3 \cup (c2,b2) \in R3)) },
where {(a1,c1)} \cup {(a2,c2)} = {(a,c)} and {(c1,b1)} \cup {(c2,b2)} = {(c,b)}.
= { (a,b)| ((a1,c1) \in R1; (c1,b1) \in R3) \cup ((a2,c2) \in R2; (c2,b2) \in R3)}
= (R1; R3) \cup (R2; R3)

(e) If wen assign R1 = { (1,1) , (1,2) } , R2 = { (1,4) , (1,5) } , R3 = { (1,4) , (2,5) } , then R1 ; $(R2 \cap R3) = \{ (1,4) \}$, and $(R1 ; R2) \cap (R1 ; R3) = \{ (1,4) , (1,5) \}$, In this case the left is not equal to the right ,the statement is not true.

(a)Base case: $R^i = R^{i+1}$, which holds $R^j = R^i$ for j = i+1. Inductive case: Assume $R^{i+n} = R^{i+n+1}$, where $n \in N$. So it is obvious $R^{i+n} = R^{i+n+1} = R^{i+n} \cup (R;R^{i+n})$. And $R^{i+n+2} = R^{i+n+1} \cup (R;R^{i+n+1}) = R^{i+n} \cup (R;R^{i+n}) = R^{i+n+1}$. For each R^j (j>i), it is equal to the previous one, thus $R^j = R^i$ for all $j \ge i$.

(b)From the formula: $R^{i+1} := R^i \cup (R; R^i)$ $i \ge 0$, we can conclude for every i, $R^i \subseteq R^{i+1}$. So for $k \in [0,i], R^k \subseteq R^i$. And from question (a), we can get if $R^i = R^{i+1}$, then $R^i = R^j$ for all $j \ge i$, so $R_j \subseteq R_i$.

In conclusion, $R^{k} \subseteq R^{i}$ for all $k \ge 0$.

(c)Base case: R^0 ; $R^m = R^m$ (from 1b) = R^{0+m} , so P(0) holds. Inductive case: Assume P(n) holds ,which is R^n ; $R^m = R^{n+m}$. R^{n+1} ; $R^m = [R^n \cup (R \; ; \; R^n)] \; ; \; R^m = (R^n \; ; \; R^m) \cup (R \; ; \; R^n \; ; \; R^m)$ (from 1d) $R^{n+m+1} = R^{n+m} \cup (R \; ; \; R^{n+m}) = (R^n \; ; \; R^m) \cup (R \; ; \; R^n \; ; \; R^m)$ (from 1d) So $R^{n+1} = R^{n+m+1}$, P(n+1) holds.

Therefore P(n) holds for all $n \in N$.

(d)We assume (a,b) \in R^{k+1} and (a,b) \notin R^k.Because R^{k+1} := R^k \cup (R;R^k), (a,b) \in (R;R^k).

Therefore, $\exists (a,c_k) \in R$, $(c_k,b) \in R^k$. And we can also get $(c_k,b) \notin R^i$, $i \le k-1$ (if $(c_k,b) \in R^{k-1}$, and $(a,c_k) \in R$, we can get $(a,b) \in R^k$). So $(c_k,b) \in R$; R^{k-1} .

Therefore, $\exists (c_k, c_{k-1}) \in R$, $(c_{k-1}, b) \in R^{k-1}$, and still $(c_{k-1}, b) \notin R^i$, $i \le k-2$.

So we get the following result:

$$(a,ck) \in R$$
 $(ck,b) \notin R^i, i \le k-1$

 $(ck,ck-1) \in R$ $(ck-1,b) \notin R^i, i \le k-2$

.....

And c1 \neq c2 \neq \neq ck ,ci \in S, $\{c1,c2,....,ck\}$ = k = |S|.So a \in $\{c1,c2,....,ck\}$

 $(a,b) \in R^k$, which conflict with hypothesis(assume $(a,b) \notin R^k$). Therefore, $(a,b) \in R^k$, which means for every element in R^{k+1} , it is also in R^k , so $R^{k+1} = R^k$.

(e)From the conclusion of (c),we can assign n=m=k,which is $R^k;R^k=R^{2k}$.From the conclusion (a) and (d), we can know $R^k=R^{k+1}$,and then $R^k=R^j$ for $j\geqslant k$,so $R^{2k}=R^k$.Therefore $R^k;R^k=R^k$,which indicates if $(a,b)\in R^k$, $(b,c)\in R^k$,then $(a,c)\in R^k$.So R^k is transitive.

(f) $F = (R \cup R^{<-})$

R: Because $F^0 = \{(x,x)|x \in S\}$ and $F^0 \subseteq F^i$, so R holds.

S:I can't really prove it, but I feel it is certainly right, because R and R are symmetric, each time they evolve, they are still symmetric.

T:It is just the same as the problem (e).

So $(R \cup R^{\leftarrow})$ is an equivalence relation.

3.

(a) a binary tree is either an empty tree represented by a null pointer, or is a single ordered node which contains a data, a left and right pointer and each pointer points to a binary tree.

(b) count(T) =
$$\begin{cases} 0 & if T = NULL \\ 1 + count(T - > left) + count(T - > right) & recursive \end{cases}$$

$$\text{(d) internal(T)} = \begin{cases} -1 & if T = NULL \\ 0 & if T > left = NULL \ and \ T > right = NULL \\ 1 + internal(T > left) + internal(T > right) & recursive \end{cases}$$

(e) Base case: If the binary tree is only an empty tree which represents NULL, then from the conclusion c and d,internal(T) = -1 and leaves(T) = 0 ,which holds. And if the binary tree's left pointer and right pointer each points to NULL, we can also see from the c and d that internal(T) = 0 and leaves(T)=1, which also holds.

Inductive case: Assume for a arbitary binary tree,internal(T)=I,leaves(T)=L which satisfies L=I+1. Then we consider the following three conditions.

First:We extend a leaf node, making it to be a fully-internal nodes by adding two leaf nodes to be its successors. This time I' = I+1,L' = L-1+2=L+1,so L'=I'+1, which holds.

Second:We extend a leaf node, adding one leaf node to be its either left or right successor. This time I' = I, L' = L - 1 + 1 = L, which holds.

Third:We extend a node which is neither a leaf node nor a fully-internal node, making it to be the fully-internal node by adding a leaf node to it. This time I'=I+1,L'=L+1, which holds.

In conclusion, P(T) holds for all binary trees T.

4.

```
(a) h1 = "Alpha uses channel hi", l1 = "Alpha uses channel lo"; h2 = "Bravo uses channel hi", l2 = "Bravo uses channel lo"; h3 = "Charlie uses channel hi", l3 = "Charlie uses channel lo"; h4 = "Delta uses channel hi", l4 = "Delta uses channel lo". 

(i) \phi1 = (h1 \vee l1) \wedge (h2 \vee l2) \wedge (h3 \vee l3) \wedge (h4 \vee l4)

(ii) \phi2 = \neg (h1 \wedge l1) \wedge \neg (h2 \wedge l2) \wedge \neg (h3 \wedge l3) \wedge \neg (h4 \wedge l4)
```

(b)

(i) If we assign h1 = T,h2=F,h3=T,h4=F,l1=F,l2=T,l3=F,l4=T,this time $V(\phi_1 \land \phi_2 \land \phi_3) = T.$

 $(\text{iii}) \phi_3 = ((\text{h1} \land \neg \text{h2}) \lor (\text{l1} \land \neg \text{l2})) \land ((\text{h2} \land \neg \text{h3}) \lor (\text{l2} \land \neg \text{l3})) \land ((\text{h3} \land \neg \text{h4}) \lor (\text{l3} \land \neg \text{l4}))$

If we assign h1= T,h2 =T,h3=T,h4=T,l1=F,l2=F,l3=F,l4=F,this time it is quite easy to know $V(\phi_1 \land \phi_2 \land \phi_3)$ =F.

So $\phi_1 \land \phi_2 \land \phi_3$ is satisfiable for $V(\phi_1 \land \phi_2 \land \phi_3) = T$ for some truth assignment v.

(ii) First solution : Alpha uses channel hi,Bravo uses channel lo,Charlie uses channel hi,Delta uses channel lo.

Second solution: Alpha uses channel lo,Bravo uses channel hi,Charlie uses channel lo,Delta uses channel hi.