Analyse de couverture urbaine par homologie persistante : cas du développement des transports publics

Harnisch Elowan ; 14002

November 1, 2024

Homologie persistante

L'homologie persistante est une méthode pour calculer des caractéristiques topologique d'un espace. En l'occurrence ici pour déterminer des "trous" dans une couverture par les transports publics

Définitions

Simplexe

Généralisation d'un triangle en dimension n

Complexe simplicial

Un ensemble de simplexes de dimension non forcément égales

Filtration

Suite croissante pour l'inclusion de complexes simplicials

Figure 1: Exemple de filtration

Méthode

- Construction d'une filtration de complexes simplicials via les complexes pondérés de Vietoris-Rips
- Construction de la matrice de bordure
- Réduction de cette matrice par l'algorithme standard
- Construction du diagramme de persistance

Figure 2: Construction de Vietoris-Rips

Illustration

(a) A filtered simplicial complex:

(b) We put a total order on the simplices that is compatible with the filtration:

where σ_i denotes the *i*th simplex in this order.

(c) (Left) The boundary matrix B for the filtered simplicial complex in (a) with respect to order on simplices in (b), and (right) its reduction B given by applying Algorithm 1 (one first adds column 5 to column 6, and then column 4 to column 6):

$$B \; = \; \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \quad \overline{B} \; = \; \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

- (d) We read off the following intervals from the matrix \(\overline{B}\) in (c):
 - σ₁ is positive, unpaired; this gives the interval [1, ∞) in H₀.
 - σ₂ is positive, paired with σ₄; this gives no interval, because σ₂ and σ₄ enter at the same time in the filtration.
 - σ₃ is positive, paired with σ₅: this gives the interval [2, 3) in H₀.
 - σ₆ is positive, paired with σ₇: this gives the interval [3, 4) in H₁.

Définition des distances

Distance

On définit la distance d entre deux stations de metro x et y :

$$d(x,y) = min(t_{pied}(x,y), t_{voiture}(x,y))$$

Récupération des données

Pour le calcul des temps de trajet : apidocs.geoapify.com

Pour la récupération des stations et des temps d'attentes moyens : transport.data.gouv.fr

Résultats so far so good

Pour marseille

Figure 4: Diagramme de persistance

Conclusion

Restant:

- Compréhension des résultats précédents + correction du programme si necéssaire
- PreTraitement des informations sur Paris/Toulouse/Rennes
- Conclure