Hauptfaserbündel und Vektorbündel

Adrian Pegler

Christian-Albrechts-Universität zu Kiel Arbeitsgruppe Geometrie 24098 Kiel

30. Juli 2018

Zusammenfassung. This is my abstract.

1 Faserbündel

Definition 1.1. Faserbündel

Seien E, B, F Differenzierbare Mannigfaltigkeiten, $\pi \colon E \to B$ eine glatte surjektive Funktion.

Falls es um jeden Punkt $x \in B$ eine Umgebung U sowie einen Diffeomorphismus $\Phi_U \colon \pi^{-1}(U) \to U \times F$ gibt, sodass

$$\pi_U \circ \Phi_U = \pi \tag{1}$$

gilt, nennen wir (E, π, B) Faserbündel mit typischer Faser F. Nach Gleichung 1 kommutiert also folgendes Schema:

B heißt Basisraum und E Totalraum des Faserbündels. Die Abbildung Φ_U wird auch lokale Trivialisierung oder Bündelkarte genannt. Mit $E_x := \pi^{-1}(x)$ bezeichnen wir für alle $x \in B$ die Faser über x.

Bemerkung 1.2.

Muhaha

2 Vektorbündel

Definition 2.1. Hauptfaserbündel

Hier folgt die Definition