Асимптотика. Бинарный поиск. Два указателя.

ЛОШ. Инф-1. 1-ый день

Задача 1. Дан массив из n чисел. Поступает q запросов вида: найти сумму элементов массива на отрезке с границами l_i и r_i .

Задача 2. В массиве из нулей и единиц длины n первый и последний элементы различны. За $O(\log n)$ найдите две соседние позиции в массиве, на которых стоят различные элементы.

Задача 3. Есть два принтера. Один печатает лист раз в x минут, другой раз в y минут. За сколько минут они напечатают n листов? (n > 0)

Задача 4. На прямой расположены n стойл (даны их координаты на прямой), в которые необходимо расставить k коров так, чтобы минимальное расстояние между коровами было как можно больше. Гарантируется, что 1 < k < n.

Задача 5. Пусть дан строго возрастающий массив длины n. Найти, существует ли такая пара элементов массива, что сумма этих элементов равна заданному числу k.

Задача 6. Пусть дан строго возрастающий массив длины n. Найти, количество пар a и b, таких что b-a>k.

Задача 7. Даны 2 строго возрастающих массива: a_1, \ldots, a_n и b_1, \ldots, b_m , а также число k. За O(n+m) найдите количество пар (i,j), таких что $a_i+b_j=k$.

Задача 8. У Егора есть n книг. Про каждую книгу Егор знает сколько времени занимает ее прочтение. Теперь Егор хочет начать с какой-то книги и читать их последовательно. При этом у него есть только t минут. Найдите максимальное количество книг, которые Егор успеет прочитать.

Задача 9. На прямой находятся N точек. Требуется подсчитать количество пар точек, расстояние между которыми $\geqslant D$ за линию.

Мастер-теорема

Пусть имеется рекуррентное соотношение:

$$T(n) = \begin{cases} a \cdot T(n/b) + O(n^c), & n > 1 \\ O(1), & n = 1 \end{cases}$$
где $a \in \mathbb{N}, b \in \mathbb{R}, b > 1, c \in \mathbb{R}^+$

Тогда асимптотическое решение имеет вид:

- 1. Если $c > \log_b a$, то $T(n) = O(n^c)$
- 2. Если $c = \log_b a$, то $T(n) = O(n^c \log n)$
- 3. Если $c < \log_b a$, то $T(n) = O(n^{\log_b a})$

Задача 9. Найдите решение для каждого из приведённых ниже рекуррентных соотношений в терминах *O*-нотации:

1.
$$T(n) = 2T(n/3) + 1$$

2.
$$T(n) = 5T(n/4) + n$$

3.
$$T(n) = 7T(n/7) + n$$

4.
$$T(n) = 9T(n/3) + n^2$$

5.
$$T(n) = 8T(n/2) + n^3$$

6.
$$T(n) = 3T(n/2) + n^2$$

7.
$$T(n) = 8T(n/2) + 1000n^2$$

8.
$$T(n) = 2T(n/2) + n\log_2 n$$