Алгебра логики не А (отрицание, инверсия) $\neg A, \bar{A}$

 $\mathbf{A} \wedge \mathbf{B}, \mathbf{A} \cdot \mathbf{B} \quad \mathbf{A}$ и В (логическое умножение, конъюнкция) $A \vee B, A + B$ А или B (логическое сложение, дизъюнкция)

 $A \rightarrow B$ импликация (следование)

A = Bэквивалентность (равносильность)

 $A \rightarrow B = \neg A \lor B$ или $A \rightarrow B = \overline{A} + B$

А — Б — ГА V В пли А — В — А + В — \bar{A} + \bar{B} — \bar{A} + \bar{A} — 1, 0 · A = 0, A + 0 = A, A + A = A, A + \bar{A} = 1, A · \bar{A} = 0, (A + B) · (\bar{A} + B) = B A · (B + C) = A · B + A · C, A + (B · C) = (A + B) · (A + C) $A + A \cdot B = A$, $A \cdot (A + B) = A$, $A \cdot B + \bar{A} \cdot B = B$,

Задание №2 пример программы (СЛЕДИ ЗА СКОБКАМИ)

for y in range(2): for z in range(2): for w in range(2): if $((not((x \text{ or } y) \le (z \text{ and } w))) \text{ and } (x \le w)) == True$: print(x,y,z,w)

Задание №4

Прямое условие Фано: Никакое кодовое слово не может быть началом другого кодового слова.

Обратное условие Фано: никакой код не был окончанием другого (более длинного) кода.

Внимательно читай, нужно ли использовать весь алфавит! Если нужно, то оставь одно место!

Залание №5

Внимательно читай, что нужно найти!

В двоичной системе:

- четные числа оканчиваются на 0, нечетные на 1;
- числа, которые делятся на 4, оканчиваются на 00, и т.д.; числа, которые делятся на $2^{\rm k}$, оканчиваются на k нулей
- если число N принадлежит интервалу $2^{k\cdot 1} \le N < 2^k$, в его двоичной записи будет всего k цифр, например, для числа **125**:
- $2^6=64 \leq \mathbf{125} < 128 = 2^7, \quad 125 = 1111101_2 \ (7$ цифр) числа вида 2^k записываются в двоичной системе как единица и k нулей, например: $16=2^4=10000_2$ - числа вида 2^k -1 записываются в двоичной системе k единиц,
- например: $15=2^4\text{-}1=1111_2$ если известна двоичная запись числа N, то двоичную запись
- числа $2 \cdot N$ можно легко получить, приписав в конец ноль, например: 15 = 11112, 30 = 111102, 60 = 1111002, $15 = 1111_2, 30$ $120 = 1111000_2$

Таблица двоичного представления чисел 0-7 в виде *триад* (групп из

X10, X8	X_2
0	000
1	001
2	010
3	011

X_{10}, X_8	X_2
4	100
5	101
6	110
7	111
п 0-15 (в прести	та питеринию

Таблицу двоичного представления чисел 0-1 системе – 0-F₁₆) в виде тетрад (групп из 4-х битов):

X_{10}	\mathbf{X}_2	
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
	0110	

0111

X ₁₀	X16	X_2
8	8	1000
9	9	1001
10	A	1010
11	В	1011
12	C	1100
13	D	1101
14	E	1110
15	F	1111

bin(x) представление числа x в двоичной системе oct(x) представление числа x в восьмеричной системе hex(x) представление числа x в шестнадцатеричной системе

Задание №6

Спи ничего не выволит то меняй промежуток

for i in range(1, 100):	Задание: определите, при	
s = i	каком наименьшем введённом	
n = 1	значении переменной s	
while $s < 94$:	программа выведет число	
s = s + 8	128.	
n = n * 2		
if n == 128:	Курсивом выделено, то что	
print(i)	било в программе	

Залание №7

1 байт = 8 бит = 2^3 бит, 1 Кбайт = 1024 байта = 2^{10} байта = $2^{10} \cdot 2^3$ бит = 2^{13} бит, 1 Мбайт = 1024 Кбайта = 2^{10} Кбайта = $2^{10} \cdot 2^{10}$ байта = 2^{20} байта $= 2^{20} \cdot 2^3$ бит $= 2^{23}$ бит.

Для хранения растрового изображения нужно выделить в памяти I = x · v · i битов, гле х ширина, v высота и i – глубина цвета (разрядность кодирования) Количество цветов = 2ⁱ , i -глубина цвета Для хранения информации о звуке длительностью t секунд, закодированном с частотой дискретизации f Γ ц и глубиной кодирования Bбит и количестве каналов k требуется $k \cdot B \cdot f \cdot t$ бит

например, при стерео записи (k=2), f=8к Γ ц, глубине кодирования 16 бит на отсчёт и длительности звука 128 секунд требуется $I=2*8000\cdot 16\cdot 128/8/1024/1024\approx 3,9$ Мбайт

Задание №8

Формула для вычисления числа перестановок с повторениями; для двух разных символов она выглядит так: $P(n_a, n_*) = \frac{(n_a + n_*)!}{n_a! \cdot n_*!}$

Здесь n_a — количество букв A, n_* — количество звёздочек и восклицательный знак обозначает факториал натурального числа. Число не может начинаться с 0! 0,2,4,6,8 четные 1,3,5,7,9

нечетные

Если задание на СС, то +1 или -1, вспоми	ни про номера слов!
Игорь составляет таблицу кодовых	n=0
слов для передачи сообщений,	s='школа'
каждому	for a in s:
сообщению соответствует своё	for b in s:
кодовое слово. В качестве кодовых	for c in s:
слов Игорь использует трёхбуквенные	if
слова, в которых могут быть только	(a+b+c).count('κ')==1:
буквы Ш, К, О, Л, А, причём буква К	n+=1
появляется ровно 1 раз. Каждая из	print(n)
других допустимых букв может	Руками:
встречаться в кодовом слове любое	K44 = 16
количество раз или не встречаться	4 K 4 = 16
совсем. Сколько различных кодовых	4.4 K = 16
слов может использовать Игорь?	Ответ 48

Задание №11

Следить за округлением все вместе или по частям!

Для регистрации на сайте некоторой страны пользователю требуется придумать пароль. Длина пароля – ровно 11 символов. В качестве символов используются десятичные цифры и 12 различных букв местного алфавита, причём все буквы используются в двух начертаниях: как строчные, так и заглавные (регистр буквы имеет значение!). Под хранение каждого такого пароля на компьютере отводится минимально возможное и одинаковое иелое количество байтов, при этом используется посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством битов. Определите объём памяти в байтах, который занимает хранение 6̂0 паролей.

согласно условию, в пароле можно использовать 10 цифр (0..9) 12 заглавных букв местного алфавита + 12 строчных букв, всего 10 + 12 + 12 = 34 символа

для кодирования номера одного из 34 символов нужно выделить 6 бит памяти (5 не хватает, они закодируют только $2^5 = 32$ варианта)

- для хранения всех 11 символов пароля нужно 11 \cdot 6 = 66 бит поскольку пароль должен занимать целое число байт. берем ближайшее большее (точнее, не меньшее) значение, которое кратно 8: это 72 = 9 · 8; то есть один пароль занимает 9 байт - тогда 60 паролей занимают 9 · 60 = 540 байт **Ответ: 540.**

Задание №12

Если просят найти макс длину, то переставлять числа местами,

Какая строка получится в результате применения привелённой ниже программы к строке, состоящей из 68 идущих подряд цифр 8? В ответе запишите полученную строку.

ПОКА нашлось (222) ИЛИ нашлось (888) ПОКА нашлось (222) ИЛИ нап ЕСЛИ нашлось (222) ТО заменить (222, 8) ИНАЧЕ заменить (888, 2) КОНЕЦ ЕСЛИ КОНЕЦ ПОКА

n = '8'*68while '222' in n or '888' in n : if '222' in n: n = n.replace('222','8',1) elif '22' in n: n = n.replace('888', '2', 1)print(n)

Задание №13 Читай вопрос! 5 раз!

Задание №14 Значение арифметического выражения: 125 + 25³ + записали в системе счисления с основанием 5

#Количество 0 ? #Для суммы цифр n = 125 + 25 ** 3 + 5 ** 9 n = 125 + 25 ** 3 + 5 ** 9 k0 = 0while n > 0: while n > 0: if n % 5 == 0: k0 += 1 s += n % 5n = n // 5n = n / / 5print(s) print(k0)

Задание №15 Длина отрезка - конец минус начало Количество точек - конец минус начало + 1 Читай внимательно, ЦЕЛЫЕ НЕОТРИЦАТЕЛЬНЫЕ ИЛИ ПОЛОЖИТЕЛЬНЫЕ ЗНАЧЕНИЯ!

 \mathbf{DEJ} (Для какого наибольшего натурального числа A формула $(\neg \text{ДЕЛ}(x, A) \land \text{ДЕЛ}(x, 21)) \rightarrow \text{ДЕЛ}(x, 14)$ тождественно истинна (то есть принимает значение 1 при любом натуральном значении nepemenhoй x)?)

for A in range(1,100): flag=0for x in range(1,1000): if (((x % A != 0) and (x % 21) == 0) <= (x % 14 == 0)) == 0: flag = 1 if flag = = 0. print(A)

ХиҮ for A in range(1,200): flag = 0for x in range(1,100): for y in range(1,100): if ((y*y <= A) <= (y <= 10)) and ((x <= 9) <= (x*x < A)) == 0: flag = 1if flag == 0: print(A)

Побитовая коньюнкция

```
for A in range(0,100):
  flag = 0
  for x in range(0,1000):
    if ((x & 49 == 0) <= ((x & 28 != 0) <= (x & A != 0))) == 0:
      flag = 1
      break
  if flag == 0:
    print(A)
```

Обозначим через ВЗПР(а:, у) утверждение «натуральные числа г и у не имеют общих натуральных делителей, кроме 1»

При каком наименьшем натуральном значении A формула (ВЗПР(x, **360**) \rightarrow ВЗПР(x, A)) \land (ВЗПР(x, A) \rightarrow ВЗПР(x, A)) истинна при любом натуральном х?

gcd1(x,y): while y > 0: x, y = y, x % y if x != 1: return False else: return True for A in range(2, 100): good = 0
for x in range(1, 1000):
 if (gcd1(x, 360) <= gcd1(x, A)) and (gcd1(x, A) <= gcd1(x, 240)) == False: good = 1 break if good == 0: print(A)

Задание №16

1 функция F(n) = n при $n \le 3$; F(n) = n / 4 + F(n-3) при 3 <n < 32. $F(n) = 2 \cdot F(n-5)$ при n > 32Злесь // обозначает леление

нацело. В качестве ответа на

2 функции Алгоритм вычисления функций F(n) и G(n) задан следующими соотношениями F(1) = G(1) = 1

```
задание выведите значение
                                          F(n) = 2 \cdot F(n-1) + G(n-1) - 2,
F(100)
                                                 если n > 1
                                          G(n) = F(n-1) + 2 \cdot G(n-1), если
                                                n > 1
                                         Чему равно значение F(14) + G(14)?
def f(n):
                                          def f(n):
  if n \le 3:
                                               return 2 * f(n-1) + g(n-1)-2
     return n
  elif n > 3 and n <= 32:
return n // 4 + f(n - 3)
                                             else: return 1
                                          def g(n):
  elif n > 32
                                            if n > 1.
     return 2 * f(n - 5)
                                               return f(n-1) + 2 * g(n-1)
print(f(100))
                                          else: return 1
print(f(14) + g(14))
```

Задание №17

Обычная (Рассматривается множество целых чисел, принадлежащих отрезку [1012; 9638], которые делятся на 3 и не делятся на 11, 13, 17 и 19. Найдите количество таких чисел и максимальное из них. В ответе запишите два числа через пробел: сначала количество, затем максимальное число.)

```
k = 0
for i in range(1012,9638 + 1):
    if (i % 3 == 0) and (i % 11 != 0) and (i
    % 13 != 0) and (i % 17 != 0) and (i % 19
         != 0):
                  k+=1
                     if i > max1:
max1 = i
```

Сложная (Рассматривается множество целых чисел, принадлежащих числовому отрезку [1000; 9999], запись которых в пятеричной системе имеет не менее 6 цифр и которых в изгричной системе измест не менее о циру и заканчивается на 11 или 13. Найдите количество таких чисел и минимальное из них.) ** 6 цифр в пятеричной системе это $>5^5$

```
count
min_n = 10**8
sum_n = 0
sum_n += i
count += 1
       if i < min_n:
min_n = i
print('Количество:', count)
print('Минимальное число:', min_n)
```

Запание №18

Если есть стенки из чисел, то для макс заменяем на 0, для мин заменяем на 999999.

Перед чем стоит доллар, то и фиксируется. \$A14 фикс столбец A,

дата, фикс строка та.	
Формула стандартная	B2+MAKC(B12;A13)
Формула для ладьи	=MAKC(\$Q14:AC14;
(ходит на любое количество клеток по	AD\$1:AD13)+N14
вертикали и горизонтали)	
Формула, когда с севера на юг	=MAKC(A12:C12) + B2
Дана последовательность вещественных	=EСЛИ(D1>0;EСЛИ(ABS(
чисел. Из неё необходимо выбрать	A2-
несколько подряд идущих чисел так,	A1)<=10;D1+A2;A2);A2)
чтобы каждое следующее число	
отличалось от предыдущего не более чем	
на 10. Какую максимальную сумму	
могут иметь выбранные числа?	

Задание №19-21 Читай какие ходы и когда победа! Задание №22

Если ничего не выводит, то меняй промежуток!

```
for i in range(1, 1000):
Получив на вход число х.
этот алгоритм печатает два числа: L и M. Укажите
наибольшее число х, при
                                       M = 0
                                        while x > 0:
вводе которого алгоритм
печатает сначала 5 а потом 8
                                          M = M + I
                                          if x \% 2 != 0:
                                            L = L + I
                                       if L = 5 and M == 8:
                                          print(i)
```

Залание №23

У исполнителя есть две команды, которым присвоены номера: 1. Прибавить 1 2. Умножить на 2 Сколько существует программ, для которых при исходном числе 2

результатом является число 29 и при этом траектория вычислений содержит число 14 и не содержит числа 25?

Шпора от ФЛЭША https://www.youtube.com/channel/UC0f-GuGlcxH5IhkHLvo_CwA Задание №24

Одна строка	Несколько строк
f = open("24.txt")	f = open("24.txt")
s = f.readline()	for s in f:
	for i in range(len(s))
f.close()	f.close()

Функции в питоне	
возвращает позицию первой подстроки subs в строке s (или 0 если подстрока не найдена	s.find('subs') S.rfind('l')
в pascal) -1 в остальных	ищет с конца
заменить в строке S все вхождения	S.replace(old,
подстроки old на подстроку new, count раз	new, count)
Количество А в строке s	s.count('A')
Получить аски код А	Ord('A')
Превратить аски код в символ	Chr(20)

Пример проги для k =0	
В текстовом файле 24.txt	f = open("24.txt")
находится цепочка из	s = f.readline()
символов латинского	f.close()
алфавита А, В, С. Найдите	k, kmax = 0, 0
длину самой длинной	for i in range(len(s)):
подцепочки, состоящей из	if s[i] == 'C':
символов С.	k += 1
	kmax = max(k, kmax)
	else:
	$\mathbf{k} = 0$
	print(kmax)

	print(kmax)
Пример проги , когда k = 1	
Текстовый файл состоит не более чем из 10 ⁶ символов X, Y и Z. Определите	f = open('2.txt') s = f.readline() k, maxS = 1, 1
максимальное количество идущих подряд символов, среди которых каждые два соседних различны.	for i in range(1, len(s)): if s[i]!=s[i-1]: k+=1 maxS = max(k, maxS)
-	else: k = 1 print(maxS) f.close()

	f.close()	
Пример проги, какая буква встречается чаще всего		
Определите символ, который чаще всего встречается в файле сразу после буквы X. В ответе запишите сначала этот символ, а потом сразу (без разделителя) сколько раз он встретился после буквы X.	f = open('1.txt') s = f.readline() a = [0] * 26 nmax, c = 0, 0 for i in range(len(s) - 1): if s[i] == 'X': index = ord (s[i + 1]) - ord ('A') a[index] += 1 for i in range (len(a)): if nmax < a[i]: nmax = a[i] c = i print(chr(c + ord('A')), nmax)	
Текстовый файл состоит не более чем из 10° заглавных латинских букв (АZ). Текст разбит на строки различной длины. Определите количество строк, в которых встречается комбинация F*O, где звёздочка обозначает любой символ.	f.close() f = open('24.txt') k = 0 for s in f: good = 0 for i in range(len(s)-2): if s[i]=="F and s[i+2]=="O': good=1 break if good: k+=1 print(k) f.close()	

Все делители числа	Проверка на простоту
el = []	def isprime(n):
= int(input())	d = 2
= 2	while $d * d \le n$:
vhile d * d < n:	if n % d == 0:
if n % d == 0:	return False
del.append(d)	d += 1
del.append(n // d)	return True
d += 1	for i in range(2, 100):
d * d == n:	if isprime(i) == True:
del.append(d)	print(i)
rint(del)	* ''

if d * d == n:	if isprime(i) == True:
del.append(d)	print(i)
print(del)	• • • • • • • • • • • • • • • • • • • •
Решето эратосфена (на	ахождение всех простых чисел до п)
n = 20000	
resh = [1] * (n + 1)	
resh[0] = 0	
resh[1] = 0	
for i in range(2,len(resh))	r:
if resh[i] != 0:	
for j in range(i * i, le	en(resh), i):
resh[j] = 0	
prime = []	
for i in range(len(resh)):	
if resh[i] != 0:	
prime.append(i)	
print(prime)	

Если нечетное количество делителей, то проверяем только числа, коспътство делителен, то проверяем только числа, которые являются квадратом другого числа! (n ** 0,5 == int(n ** 0,5))

Алгоритм Евклида для нахо:	ждения НОД	двух чисел ($(L \bowtie M, L > M)$
**			

Через разность	Через остаток	
while L != M:	while $M > 0$:	
if $L > M$:	R = L % M	
L = M	L = M	
else:	M = R	
M -= L	Print(L) #это НОД	
print(M) #это НОД		

адание №26		
Сортировка по возрастанию Сортировка по убыванию		a.sort()
		a.sort(reverse = True)
Пузырек	for i in range(le	en(a)):
	t = 0	
	for j in range	e(len(a) - 1 - i):
	if a[j] < a	[j + 1]:
	a[j], a[j	[+1] = a[j+1], a[j]
	t = 1	
	if $t == 0$: bre	eak

Как копировать в эксель в несколько столбиков :

- как коппровать в эксель в несколько столонимы.

 1) Данные гекст по столбцам с разделителями далее пробел далее готово. Вставить столбики еще раз

 2) Файл открыть обзор !!все файлы!! открыть тоже самое
- Проверяй для второго ответа есть ли такие числа в файле!

```
Задание №27
                                    f = open('27-B1.txt')
n = int(f.readline())
  Имеется набор
  данных,
  состоящий из пар
                                     sum 1 = 0
  положительных
                                     div = 100000
                                    for i in range(n):

s = f.readline().split()
   пелых чисел.
  Необходимо
                                        for j in range(len(s)):

s[j] = int(s[j])

sum1 += max(s)
  выбрать из
  каждой пары
  ровно одно число
                                    sum1 +- max(s)

if max(s) - min(s) < div and (max(s) -

min(s)) % 3!=0:

div = max(s) - min(s)

if sum1 % 3!=0:
   так, чтобы сумма
  п всех
  выбранных чисел
  не делилась на 3
  и при этом была 
максимально
                                     print(sum1)
else:
  возможной.
(ОБЫЧНЫЙ
                                       print(sum1 - div)
                                    f = open('27-B.txt')

mas = [0] * 3

mas1 = [0] * 3

n = intf
  МЕТОД
ЧАСТИЧНЫХ
  СУММ)
Набор данных
                                     n = int(f.readline())
x = f.readline().split()
  состоит из пар
натуральных
                                       for j in range(len(x)):

x[j] = int(x[j])
                                    \max[\min(x)] = \min(x) mas[\min(x) \% 3] = \min(x) \% 3 mas[\max(x) \% 3] = \max(x) \% 3 for i in range(1, n):
  Необходимо
  выбрать из
                                        for j in range(len(mas1)):

mas1[j] = 0

x = f.readline().split()

for j in range(len(x)):
   каждой пары
  ровно одно число
   так, чтобы сумма
  всех выбранных
   чисел делилась
                                        x[j] = int(x[j])
for j in range(len(mas)):
  на 3 и при этом
                                           or j in range(ten(mas)):
if mas[j]+x[0]>mas1[(mas[j]+x[0]) % 3]:
mas1[(mas[j]+x[0])%3] = mas[j]+x[0]
if mas[j]+x[1]>mas1[(mas[j]+x[1]) % 3]:
mas1[(mas[j]+x[1])%3] = mas[j]+x[1]
  была
   максимально
  возможной.
                                        for j in range(len(mas)):
mas[j] = mas1[j]
                                     print(mas)
                                     f = open('27-A.txt')
                                    n = int(f.readline())
k = 3
  ЧАСТИЧНЫХ
 СУММ ЧЕРЕЗ
ГЕНЕРАТОРЫ
                                     mas = list(map(int, f.readline().split()))
                                     for i in range(1, n):

x = list(map(int, f.readline().split()))
                                        gen = [a + b \text{ for a in mas for b in x}]
mas 1 = [0] * k
                                        for a in gen:

mas1[a%k] = max(a, mas1[a%k])
```

	print(mas)
НЕЭФФЕКТИВН	f = open('27.txt')
АЯ	n = int(f.readline())
ПРОГА(СТАРОЕ	a = [0] * n
ЗАДАНИЕ)	for i in range(n):
Все данные –	a[i] = int(f.readline())
целые числа	maxi = a[0] + a[7]
(возможно,	for i in range(n - 7):
отрицательные).	for j in range(i + 7, n):
Требуется найти	if $a[i] + a[j] > maxi$:
наибольшую	maxi = a[i] + a[j]
сумму двух	print(maxi)
результатов	
измерений,	
выполненных с	
интервалом не	
менее, чем в 7	
минут.	
(CTAPOE	f = open('27.txt')
ЗАДАНИЕ)	n = int(f.readline())

mas = [a for a in mas 1 if a != 0]

(CTAPOE	f = open('27.txt')
ЗАДАНИЕ)	n = int(f.readline())
Дан набор из N	k6,k3,k2,k1 = 0,0,0,0
натуральных	for i in range(n):
чисел.	a = int(f.readline())
Необходимо	if a % 6 == 0:
определить	k6 += 1
количество пар	elif a % $3 == 0$:
элементов (аі, ај)	k3 += 1
этого набора, в	elif a % 2 == 0:
которых 1 < i < j	k2 += 1
< N и	else:
произведение	k1 += 1
элементов кратно	print(k6 * (k1 + k2 + k3) + k3 * k2 + k6 * (k6)
элементов кратно 6.	print($k6 * (k1 + k2 + k3) + k3 * k2 + k6 * (k6 - 1) // 2$)
6.	-1) // 2)
6. (CTAPOE	- 1) // 2) f = open('27.txt')
6. (СТАРОЕ ЗАДАНИЕ)	f = open('27.txt') n = int(f.readline())
6. (СТАРОЕ ЗАДАНИЕ) Необходимо	- 1) // 2) f = open('27.txt') n = int(f.readline()) c = [0] * 12
6. (СТАРОЕ ЗАДАНИЕ) Необходимо определить	-1) // 2) f = open('27.txt') n = int(f.readline()) c = [0] * 12 k = 0
6. (СТАРОЕ ЗАДАНИЕ) Необходимо определить количество пар	-1) // 2) f = open('27.txt') n = int(f.readline()) c = [0] * 12 k = 0 for i in range(n):
6. (СТАРОЕ ЗАДАНИЕ) Необходимо определить количество пар элементов (ai, aj)	-1) // 2) f = open('27.txt') n = int(f.readline()) c = [0] * 12 k = 0 for i in range(n): a = int(f.readline())
6. (СТАРОЕ ЗАДАНИЕ) Необходимо определить количество пар элементов (ai, aj) этого набора, в	-1) // 2) f = open('27.txt') n = int(f.readline()) c = [0] * 12 k = 0 for i i range(n): a = int(f.readline()) c[a % 12] += 1
6. (СТАРОЕ ЗАДАНИЕ) Необходимо определить количество пар элементов (аi, ai) этого набора, в которых 1 < i < j	-1) // 2) f = open('27.txt') n = int(f.readline()) c = [0] * 12 k = 0 for i in range(n): a= int(f.readline()) c[a % 12] += 1 for i in range(1, 6):

_CwA	
результатов измерений, выполненных с интервалом не менее, чем в 7 минут.	buf[i] = int(f.readline()) for i in range(k, n): elem = int(f.readline()) if i == k: max_n = buf[0] maxSum = buf[0] + elem else: max_n = max(max_n, buf[0]) maxSum = max(max_n, buf[0]) maxSum = max(max_n + elem) for j in range(k - 1): buf[j] = buf[j + 1] buf[k - 1] = elem print(maxSum)
(СТАРОЕ ЗАДАНИЕ С ОЧЕРЕДЬЮ) Необходимо найти в заданной серии количество пар таких показаний прибора, произведение которых кратно 6 и между моментами передачи которых прошло не менее 3 минут.	f = open("27.txt") $n = int(f.readline())$ $k = 3$ $k6, k3, k2, k1, res = 0,0,0,0,0$ $buf = [0] * k$ for i in range(k): $buf[i] = int(f.readline())$ for i in range(k, n): if buf[0] % 6 == 0: $k6 += 1$ $elif buf[0] % 3 == 0:$ $k3 += 1$ $elif buf[0] % 2 == 0:$ $k2 += 1$ $else:$ $k1 += 1$ $new1 = int(f.readline())$ if new1 % 6 == 0: $res += k6 + k3 + k2 + k1$ $elif new1 % 3 == 0:$ $res += k6 + k2$ $elif new1 % 2 == 0:$ $res += k6 + k3$ $else:$ $res += k6$ for i in range(k - 1):

 $\begin{aligned} buf[i] &= buf[i+1] \\ buf[k-1] &= new1 \end{aligned}$

print(res)

max_n, maxSum, elem = 0,0,0

f = open('test.txt') n = int(f.readline())

k = 7buf = [0] * k

for i in range(k):

(СТАРОЕ ЗАДАНИЕ С

ОЧЕРЕДЬЮ)

сумму двух

Требуется найти наибольшую