Introduction to the Theory of Computation

XU Ming

School of Software Engineering, East China Normal University

May 11, 2024

OUTLINE

- Parse Trees for Context-Free Grammars
- Ambiguity in Context-Free Grammars

Parse Trees for Context-Free Grammars

Inferences, Derivations, and Parse Trees

Let G = (V, T, P, S) be a CFG, and $A \in V$. We are going to show that the following are equivalent:

- w is recursively inferred to be in the language of A.
- $\bullet \ A \stackrel{*}{\Rightarrow} w.$
- $A \stackrel{*}{\Longrightarrow} w$, and $A \stackrel{*}{\Longrightarrow} w$.
- There is a parse tree of G with root A and yield w.

XU Ming (ECNU)

Lecture 09

To prove the equivalences, we use the following plan.

Note that two of the arcs (leftmost/rightmost derivation \rightarrow derivation) are very simple and will not be proved, since both leftmost and rightmost derivations are derivation.

From Inferences to Trees

Theorem 5.1

Let G = (V, T, P, S) be a CFG, and suppose w is shown to be in the language of a variable A by the recursive inference procedure. Then there is a parse tree for G with root A and yield w.

Proof We do an induction on the length of the inference.

Basis step: One step. Then we must have used a production $A \rightarrow w$. The desired parse tree is then

Inductive step: Suppose w is inferred in n+1 steps. Consider the last step of the inference. This inference uses some production for A, say $A \to X_1 X_2 \cdots X_k$, where $X_i \in V \cup T$.

XU Ming (ECNU)

We break w up as $w_1 w_2 \cdots w_k$, in which:

- if $X_i \in T$, then $w_i = X_i$;
- if $X_i \in V$, then w_i has been inferred being in X_i within n steps.

By the induction hypothesis there are parse trees i with root X_i and yield w_i . Then the following is a parse tree for G with root A and yield w:

8/43

XU Ming (ECNU) Lecture 09

Example

Consider a CFG that represent simple expressions in a typical programming language. Operators are + and \times , and arguments are identifiers, i.e. strings in

$$L((a+b)(a+b+0+1)^*).$$

The expressions are defined by the grammar $G = (\{E, I\}, T, P, E)$ where $T = \{+, \times, (,), a, b, 0, 1\}$ and P is the following set of productions:

1.
$$E \rightarrow I$$
,

5.
$$I \rightarrow a$$
,

2.
$$E \rightarrow E + E$$
,

6.
$$I \rightarrow b$$
,

3.
$$E \rightarrow E \times E$$
, 7. $I \rightarrow Ia$,

7.
$$I \rightarrow Ia$$

4.
$$E \rightarrow (E)$$
,

8.
$$I \rightarrow Ib$$
.

9.
$$I \rightarrow I0$$
,

10.
$$I \to I1$$
.

We have seen that $w = a \times (a + b00)$ is in the language of a variable E, and it is inferred in 9 steps. The last step of the inference is $E \to E \times E$.

	String	Language	Production	String(s) used
(i)	а	1	5	_
(ii)	b	1	6	_
(iii)	<i>b</i> 0	1	9	(ii)
(iv)	<i>b</i> 00	1	9	(iii)
(<i>v</i>)	а	E	1	(<i>i</i>)
(vi)	<i>b</i> 00	E	1	(iv)
(vii)	a + b00	E	2	(v),(vi)
(viii)	(a + b00)	E	4	(vii)
(ix)	$a \times (a + b00)$	E	3	(v), (viii)

So, the parse tree for G with root E and yield $a \times (a + b00)$ is

To prove the equivalences, we use the following plan.

Note that two of the arcs (leftmost/rightmost derivation \rightarrow derivation) are very simple and will not be proved, since both leftmost and rightmost derivations are derivation.

From Trees to Derivations

Theorem 5.2

Let G = (V, T, P, S) be a CFG, and suppose there is a parse tree for G with root A and yield w. Then we can construct a leftmost derivation from this parse tree: $A = \underset{lm}{\overset{*}{\longrightarrow}} w$ in G.

Proof We do an induction on the height of the parse tree.

Basis step: Height is 1. The parse tree must look like

Consequently $A \to w \in P$, and $A \Longrightarrow_{lm} w$.

Inductive step: Height is n + 1. The parse tree must look like

Then $w = w_1 w_2 \cdots w_k$, where

- ② If $X_i \in V$, then $X_i \stackrel{*}{\underset{lm}{\longrightarrow}} w_i$ in G by the induction hypothesis.

Now we construct $A \stackrel{*}{\Longrightarrow} w$ by an (inner) induction by showing that

$$A \stackrel{*}{\underset{lm}{\Longrightarrow}} w_1 w_2 \cdots w_i X_{i+1} X_{i+2} \cdots X_k$$
 exists for each $i \geq 0$.

When i = k, the result is a leftmost derivation of w from A.

XU Ming (ECNU)

Basis step: Let i = 0. We already know that $A \Longrightarrow_{lm} X_1 X_2 \cdots X_k$.

Inductive step: Make the induction hypothesis that

$$A \stackrel{*}{\Longrightarrow} w_1 w_2 \cdots w_{i-1} X_i X_{i+1} \cdots X_k$$

(Case 1): $X_i \in T$. Do nothing, since $X_i = w_i$, we have

$$A \stackrel{*}{\Longrightarrow} w_1 w_2 \cdots w_{i-1} w_i X_{i+1} \cdots X_k$$

(Case 2): $X_i \in V$. By the induction hypothesis there is derivation

$$X_i \Longrightarrow \alpha_1 \Longrightarrow \alpha_2 \cdots \Longrightarrow w_i$$

By the context-free property of derivations we can proceed with

$$A \stackrel{*}{\underset{lm}{\Longrightarrow}} w_1 w_2 \cdots w_{i-1} X_i X_{i+1} \cdots X_k$$

$$\Longrightarrow w_1 w_2 \cdots w_{i-1} \alpha_1 X_{i+1} \cdots X_k$$

$$\Longrightarrow w_1 w_2 \cdots w_{i-1} \alpha_2 X_{i+1} \cdots X_k \cdots$$

$$\Longrightarrow w_1 w_2 \cdots w_{i-1} w_i X_{i+1} \cdots X_k$$

In fact, it is this property that gives rise originally to the term "context-free". There are more powerful classes of grammars, called "context-sensitive", which do not play a major role in practice today.

XU Ming (ECNU)

Example

Let's construct the leftmost derivation for the tree

Suppose we have inductively constructed the leftmost derivation $E \underset{lm}{\Longrightarrow} I \underset{lm}{\Longrightarrow} a$ corresponding to the leftmost subtree; and the leftmost derivation $E \underset{lm}{\Longrightarrow} (E) \underset{lm}{\Longrightarrow} (E+E) \underset{lm}{\Longrightarrow} (I+E) \underset{lm}{\Longrightarrow} (a+E) \underset{lm}{\Longrightarrow} (a+I) \underset{lm}{\Longrightarrow} (a+I0) \underset{lm}{\Longrightarrow} (a+I00) \underset{lm}{\Longrightarrow} (a+b00)$ corresponding to the rightmost subtree.

For the derivation corresponding to the whole tree we start with $E \Longrightarrow_{lm} E \times E$ and expand the first E with the first derivation and the second E with the second derivation:

$$E \underset{lm}{\Longrightarrow} E \times E \underset{lm}{\Longrightarrow} I \times E \underset{lm}{\Longrightarrow} a \times E \underset{lm}{\Longrightarrow} a \times (E + E) \underset{lm}{\Longrightarrow} a \times (I + E) \underset{lm}{\Longrightarrow}$$
$$a \times (a + E) \underset{lm}{\Longrightarrow} a \times (a + I) \underset{lm}{\Longrightarrow} a \times (a + I0) \underset{lm}{\Longrightarrow} a \times (a + I00) \underset{lm}{\Longrightarrow} a \times (a + b00).$$

XU Ming (ECNU) Lecture 09 May 11, 2024 19/43

To prove the equivalences, we use the following plan.

Note that two of the arcs (leftmost/rightmost derivation \rightarrow derivation) are very simple and will not be proved, since both leftmost and rightmost derivations are derivation.

From Derivations to Inferences

Theorem 5.3

Let G = (V, T, P, S) be a CFG. Suppose $A \stackrel{*}{\underset{lm}{\longrightarrow}} w$, and that w is a string of terminals. Then we can infer that w is in the language of variable A.

Proof We do an induction on the length of the derivation $A \stackrel{*}{\underset{G}{\longrightarrow}} w$.

Basis step: One step. If $A \Longrightarrow_G w$ there must be a production $A \to w$ in P. Then we can infer that w is in the language of A.

21/43

Observation: Suppose that $A \Rightarrow X_1 X_2 \cdots X_k \stackrel{*}{\Rightarrow} w$. Then $w = w_1 w_2 \cdots w_k$, where $X_i \stackrel{*}{\Rightarrow} w_i$. The factor w_i can be extracted from $A \stackrel{*}{\Rightarrow} w$ by looking at the expansion of X_i only.

For example,
$$E\Rightarrow \underbrace{E}_{X_1}\underbrace{\times}_{X_2}\underbrace{E}_{X_3}\underbrace{\times}_{X_4}\underbrace{E}_{X_5}\overset{*}{\Rightarrow} a\times b+a.$$

We have
$$E \Rightarrow E \times E + E \Rightarrow I \times E + E \Rightarrow I \times I + E \Rightarrow I \times I + I \Rightarrow a \times I + I \Rightarrow a \times b + I \Rightarrow a \times b + a$$
.

By looking at the expansion of $X_3 = E$ only, we can extract $E \Rightarrow I \Rightarrow b$.

◆□▶◆御▶◆臣▶◆臣▶ 臣 幻९◎

Inductive step: Suppose A $\stackrel{*}{\underset{G}{\rightleftharpoons}}$ w in n+1 steps. Write the derivation as

$$A \Rightarrow X_1 X_2 \cdots X_k \stackrel{*}{\Longrightarrow} w$$

Then as noted on the previous slide we can break w as $w_1 w_2 \cdots w_k$ where $X_i \overset{*}{\underset{G}{\rightleftharpoons}} w_i$. Furthermore, $X_i \overset{*}{\underset{G}{\rightleftharpoons}} w_i$ can use at most n steps.

Now we have a production $A \to X_1 X_2 \cdots X_k$, and we know by the induction hypothesis that we can infer w_i to be the language of X_i .

Therefore we can infer $w_1 w_2 \cdots w_k$ to be in the language of A.

XU Ming (ECNU)

Ambiguity in Context-Free Grammars

Ambiguous Grammars

In the grammar

1.
$$E \rightarrow I$$
,
 5. $I \rightarrow a$,

 2. $E \rightarrow E + E$,
 6. $I \rightarrow b$,

 3. $E \rightarrow E \times E$,
 7. $I \rightarrow Ia$,

 4. $E \rightarrow (E)$,
 8. $I \rightarrow Ib$,

 9. $I \rightarrow I0$,

 10. $I \rightarrow I1$.

the sentential form $E + E \times E$ has two derivations:

$$E \Rightarrow E + E \Rightarrow E + E \times E$$
 and $E \Rightarrow E \times E \Rightarrow E + E \times E$

This gives us two parse trees:

This grammar is not a good one for providing unique structure. To use this expression grammar in a compiler, we would have to modify it to provide only the correct groupings.

In the same grammar the string a + b has several derivations, e.g.

$$E \Rightarrow E + E \Rightarrow I + E \Rightarrow a + E \Rightarrow a + I \Rightarrow a + b$$

and

$$E \Rightarrow E + E \Rightarrow E + I \Rightarrow I + I \Rightarrow I + b \Rightarrow a + b$$

However, their parse trees are the same, and the structure of a + b is unambiguous.

The mere existence of several derivations is not dangerous, it is the existence of several parses that ruins a grammar.

XU Ming (ECNU)

The two examples above suggest that it is not a multiplicity of derivations that cause ambiguity, but rather the existence of two or more parse trees.

Let G = (V, T, P, S) be a CFG. We say that G is ambiguous if there is at least one string w in T^* for which we can find two different parse trees, each with root labeled S and yield w.

If every string in L(G) has one and only one parse tree, G is said to be unambiguous.

Example

In above grammar, the terminal string $a + a \times a$ has two parse trees:

Removing Ambiguity from Grammars

- Good news: Sometimes we can remove ambiguity from CFG's "by hand".
- Bad news: There is no algorithm to do it.
- Worse news: There are context-free languages that have nothing but ambiguous CFG's; for these languages, removal of ambiguity is impossible.

Fortunately, in practice, for the sorts of constructs that appear in common programming languages, there are well-known techniques for eliminating ambiguity.

As an important illustration, we are studying the grammar

$$E \rightarrow I \mid E + E \mid E \times E \mid (E), \quad I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1.$$

There are two causes of ambiguity:

- There is no precedence between \times and +.
- ② There is no grouping of sequences of operators, e.g. is E + E + E meant to be E + (E + E) or (E + E) + E.

The solution to the problem of enforcing precedence is to introduce more variables, each representing expressions of same "binding strength".

- A factor is an expression that cannot be broken apart by an adjacent
 × or +. Our factors are identifiers and a parenthesized expression.
- ② A *term* is an expression that cannot be broken by +. For instance $a \times b$ can be broken by $a1 \times$ or $\times a1$, $a1 \times a \times b = (a1 \times a) \times b$. It cannot be broken by +, since e.g. $a1 + a \times b$ is (by precedence rules) same $a1 + (a \times b)$, and $a \times b + a1$ is same as $(a \times b) + a1$.
- **1** The rest are *expressions*, i.e. they can be broken apart with \times or +.

32/43

XU Ming (ECNU) Lecture 09 May

We'll let F stand for factors, T for terms, and E for expressions. Consider the following grammar:

- 1. $I \rightarrow a | b | Ia | Ib | I0 | I1$
- 2. $F \rightarrow I | (E)$
- 3. $T \rightarrow F \mid T \times F$
- 4. $E \rightarrow T \mid E + T$

Now the only parse tree for $a + a \times a$ will be

Why is the new grammar unambiguous?

Here is an intuitive explanation:

- A factor is either an identifier or (E), for some expression E.
- The only parse tree for a sequence $f_1 \times f_2 \times \cdots \times f_{n-1} \times f_n$ of factors is the one that gives $f_1 \times f_2 \times \cdots \times f_{n-1}$ as a term and f_n as a factor, as in the parse tree on the next slide.
- An expression is a sequence $t_1 + t_2 + \cdots + t_{n-1} + t_n$ of terms t_i . It can only be parsed with $t_1 + t_2 + \cdots + t_{n-1}$ as an expression and t_n as a term.

Leftmost Derivations and Ambiguity

Example

The terminal string $a + a \times a$ has two parse trees:

That gives rise to two derivations

$$E \underset{lm}{\Longrightarrow} E + E \underset{lm}{\Longrightarrow} I + E \underset{lm}{\Longrightarrow} a + E \underset{lm}{\Longrightarrow} a + E \times E \underset{lm}{\Longrightarrow} a + I \times E$$
$$\underset{lm}{\Longrightarrow} a + a \times E \underset{lm}{\Longrightarrow} a + a \times I \underset{lm}{\Longrightarrow} a + a \times a$$

and

$$E \underset{lm}{\Longrightarrow} E \times E \underset{lm}{\Longrightarrow} E + E \times E \underset{lm}{\Longrightarrow} I + E \times E \underset{lm}{\Longrightarrow} a + E \times E \underset{lm}{\Longrightarrow} a + I \times E$$
$$\underset{lm}{\Longrightarrow} a + a \times E \underset{lm}{\Longrightarrow} a + a \times I \underset{lm}{\Longrightarrow} a + a \times a$$

In general, there may be many derivations for one parse tree. But the diversity of leftmost/rightmost derivations implies that of parse trees.

Theorem 5.4

For any CFG G, a terminal string w has two distinct parse trees if and only if w has two distinct leftmost derivations from the start symbol.

Proof —SKETCH— (If). Let's look at how we construct a parse tree from a leftmost derivation. It should now be clear that two distinct derivations give rise to two different parse trees.

(Only if). If the two parse trees differ, they have a node with different productions, say $A \to X_1 X_2 \cdots X_k$ and $A \to Y_1 Y_2 \cdots Y_m$. The corresponding leftmost derivations will use derivations based on these two different productions and will thus be distinct.

Inherent Ambiguity

A CFL *L* is inherent ambiguous if all grammars for *L* are ambiguous.

Example

Consider
$$L = \{a^n b^n c^m d^m \mid n \ge 1, m \ge 1\} \cup \{a^n b^m c^m d^n \mid n \ge 1, m \ge 1\}.$$

A grammar for L is

$$G = ({A, B, C, D, S}, {a, b, c, d}, P, S)$$

where P is as follows:

$$S \rightarrow AB \,|\, C, \; A \rightarrow aAb \,|\, ab, \; B \rightarrow cBd \,|\, cd, \; C \rightarrow aCd \,|\, aDd, \; D \rightarrow bDc \,|\, bc$$

XU Ming (ECNU)

Let's look at parsing the string aabbccdd.

From this we see that there are two leftmost derivations:

$$S \underset{lm}{\Longrightarrow} AB \underset{lm}{\Longrightarrow} aAbB \underset{lm}{\Longrightarrow} aabbB \underset{lm}{\Longrightarrow} aabbcBd \underset{lm}{\Longrightarrow} aabbccdd$$

and

$$S \underset{lm}{\Longrightarrow} C \underset{lm}{\Longrightarrow} aCd \underset{lm}{\Longrightarrow} aaDdd \underset{lm}{\Longrightarrow} aabDcdd \underset{lm}{\Longrightarrow} aabbccdd$$

It can be shown that every grammar for *L* behaves like the one above. The proof is complex.

The language L is inherently ambiguous.

XU Ming (ECNU)

Homework

Exercises 5.2.2, 5.4.3

