Universitatea Babeș-Bolyai, Facultatea de Matematică și Informatică Analiză reală – Curs

Matematică, Matematică și Informatică, anul universitar: 2021/2022

Curs 9

Propoziția 1. Fie (X, \mathcal{A}, μ) un spațiu cu măsură și $f: X \to [0, \infty]$ o funcție \mathcal{A} -măsurabilă. Atunci:

- (i) dacă f este integrabilă, atunci f este finită μ -a.p.t.;
- (ii) $\int f d\mu = 0$ dacă și numai dacă f = 0 μ -a.p.t.

Etapa 3: Funcții măsurabile

Definiția 1. Fie (X, \mathcal{A}, μ) un spațiu cu măsură și $f: X \to \overline{\mathbb{R}}$ \mathcal{A} -măsurabilă. Spunem că *există integrala* funcției f în raport cu măsura μ dacă cel puțin una din integralele $\int f^+ d\mu$ sau $\int f^- d\mu$ este finită, caz în care *integrala* funcției f se definește prin

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu \in \overline{\mathbb{R}}.$$

Spunem că f este integrabilă dacă ambele integrale $\int f^+ d\mu$ și $\int f^- d\mu$ sunt finite, deci $\int f d\mu \in \mathbb{R}$. Dacă $B \in \mathcal{A}$, existența integralei și integrabilitatea funcției f pe mulțimea B revin la proprietățile respective ale funcției $f\chi_B$.

Observația 1. (i) Uneori, dacă se dorește să se specifice variabila de integrare se folosește notația $\int f(x)d\mu(x)$.

- (ii) Ne reamintim că f este \mathcal{A} -măsurabilă $\iff f^+$ și f^- sunt \mathcal{A} -măsurabile.
- (iii) Dacă f este o funcție măsurabilă care ia valori nenegative, atunci definiția de mai sus coincide cu Definiția 2 din Cursul 8.
- (iv) Dacă f este integrabilă, atunci f este finită μ -a.p.t.

Observația 2. Noțiunile de integrabilitate și integrală introduse în Definiția 1 pe un spațiu cu măsură general se mai numesc integrabilitate Lebesgue, respectiv integrală Lebesgue. O altă posibilitate des întâlnită în literatură este ca termenii integrabilitate Lebesgue și integrală Lebesgue să se refere la cazul în care $X = \mathbb{R}^m$, $m \in \mathbb{N}$, $A = \mathcal{L}(\mathbb{R}^m)$ și $\mu = \lambda$, măsura Lebesgue din \mathbb{R}^m .

Propoziția 2. Fie (X, \mathcal{A}, μ) un spațiu cu măsură şi $f, g: X \to \overline{\mathbb{R}}$ funcții \mathcal{A} -măsurabile astfel încât $f = g \ \mu$ -a.p.t. Dacă există integrala $\int f d\mu$, atunci există integrala $\int g d\mu$ şi $\int g d\mu = \int f d\mu$.

Observația 3. Fie (X, \mathcal{A}, μ) un spațiu cu măsură. Propoziția 2 spune că se poate face abstracție de mulțimile de măsură nulă atunci când se integrează o funcție. Astfel:

(i) În procesul de integrare, funcțiile care iau valori în $\overline{\mathbb{R}}$, dar sunt finite a.p.t. (cum este cazul funcțiilor integrabile), pot fi privite ca funcții cu valori reale:

(ii) De fapt, se pot integra funcții definite doar pe o mulțime din \mathcal{A} a cărei complementară are măsura nulă, caz în care funcției i se poate atribui, de exemplu, valoarea 0 pe mulțimea de măsura nulă unde nu a fost definită.

Propoziția 3. Fie (X, \mathcal{A}, μ) un spațiu cu măsură, $\alpha \in \mathbb{R}$ și $f, g: X \to \mathbb{R}$ funcții integrabile. Atunci:

- (i) αf este integrabilă şi $\int (\alpha f) d\mu = \alpha \int f d\mu$;
- (ii) f + g este integrabilă şi $\int (f+g)d\mu = \int fd\mu + \int gd\mu$;
- (iii) dacă $f \leq g$, atunci $\int f d\mu \leq \int g d\mu$.

Propoziția 4. Fie (X, \mathcal{A}, μ) un spațiu cu măsură și $f: X \to \overline{\mathbb{R}}$. Următoarele afirmații sunt echivalente:

- (i) f este integrabilă;
- (ii) f este A-măsurabilă şi |f| este integrabilă;
- (iii) f este \mathcal{A} -măsurabilă și există $g:X\to [0,\infty]$ integrabilă astfel încât $|f|\le g$.

În toate cazurile de mai sus, $|\int f d\mu| \leq \int |f| d\mu.$

Observația 4. Dacă (X, \mathcal{A}, μ) este un spațiu cu măsură, $A \in \mathcal{A}$ cu $\mu(A) < \infty$, orice funcție $f: X \to \mathbb{R}$ \mathcal{A} -măsurabilă care este mărginită pe A este integrabilă pe A. În particular, orice funcție continuă $f: \mathbb{R} \to \mathbb{R}$ este integrabilă Lebesgue pe orice submulțime

In particular, orice funcție continuă $f: \mathbb{R} \to \mathbb{R}$ este integrabilă Lebesgue pe orice submulțime compactă a lui \mathbb{R} .