Unified View

Chapter 8: Planning and Learning

Objectives of this chapter:

- To think more generally about uses of environment models
- Integration of (unifying) planning, learning, and execution
- "Model-based reinforcement learning"

DP with Distribution models

- In Chapter 4, we assumed access to a model of the world
 - These models describe all possibilities and their probabilities
 - We call them Distribution models
 - $-\text{e.g.}, p(s', r \mid s, a) \text{ for all } s, a, s', r$
- In Dynamic Programing we sweep the states:
 - in each state we consider all the possible rewards and next state values
 - the model describes the next states and rewards and their associated probabilities
 - using these values to update the value function
- In Policy Iteration, we then improve the policy using the computed value function

Chapter 8: Planning and Learning

- Today we will learn about other ways to use models to compute policies
- ... and learn about how those models can be learned

Paths to a policy

Sample Models

- Model: anything the agent can use to predict how the environment will respond to its actions
- Sample model, a.k.a. a simulation model
 - produces sample experiences for given s, a
 - sampled according to the probabilities
 - allows reset, exploring starts
 - often much easier to come by
- Both types of models can be used mimic or simulate experience: to produce hypothetical experience

Models

- Consider modeling the sum of two dice
 - A distribution model would produce all possible sums and their probabilities of occurring
 - A sample model would produce an individual sum drawn according to the correct probability distribution
- When we solved the Gambler's problem with value iteration, we used the distribution model
- When you solved the Gambler's problem with Monte-Carlo, you implemented a sample model in your environment code

Planning

Planning: any computational process that uses a model to create or improve a policy

- We take the following (unusual) view:
 - update value functions using both real and simulated experience
 - all state-space planning methods involve computing value functions, either explicitly or implicitly
 - they all apply updates from simulated experience

Planning Cont.

- Classical DP methods are state-space planning methods
- Heuristic search methods are state-space planning methods
- A planning method based on Q-learning:

Random-sample one-step tabular Q-planning

Do forever:

- 1. Select a state, $S \in \mathcal{S}$, and an action, $A \in \mathcal{A}(s)$, at random
- 2. Send S, A to a sample model, and obtain a sample next reward, R, and a sample next state, S'
- 3. Apply one-step tabular Q-learning to S, A, R, S': $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) Q(S, A) \right]$

Environment program Experiment program Agent program

Paths to a policy

Learning, Planning, and Acting

- Two uses of real experience:
 - model learning: to improve the model
 - direct RL: to directly improve the value function and policy
- Improving value function and/or policy via a model is sometimes called indirect RL. Here, we call it planning.

Direct (model-free) vs. Indirect (model-based) RL

- Direct methods
 - simpler
 - not affected by bad models

- Indirect methods:
 - make fuller use of experience: get better policy with fewer environment interactions

But they are very closely related and can be usefully combined:

planning, acting, model learning, and direct RL can occur simultaneously and in parallel

The Dyna Architecture

The Dyna-Q Algorithm

```
Initialize Q(s, a) and Model(s, a) for all s \in S and a \in A(s)
Do forever:
   (a) S \leftarrow \text{current (nonterminal) state}
   (b) A \leftarrow \varepsilon-greedy(S, Q)
   (c) Execute action A; observe resultant reward, R, and state, S'
   (d) Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) - Q(S,A)] direct RL
   (e) Model(S, A) \leftarrow R, S' (assuming deterministic environment) \longleftarrow model learning
   (f) Repeat n times:
         S \leftarrow \text{random previously observed state}
         A \leftarrow \text{random action previously taken in } S
                                                                                    planning
         R, S' \leftarrow Model(S, A)
         Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]
```

Demo

A simple maze: problem description

- 47 states, 4 actions, deterministic dynamics
- Obstacles and walls
- Rewards are 0 except +1 for transition into goal state
- $\gamma = 0.95$, discounted episodic task
- Agent parameters:
 - $\alpha = 0.1, \epsilon = 0.1$
 - Initial action-values were all zero
- Let's compare one-step tabular Q-learning and Dyna-Q with different values of n

Dyna-Q on a Simple Maze

Dyna-Q Snapshots: Midway in 2nd Episode

WITHOUT PLANNING (n=0)

WITH PLANNING (n=50)

Implementation details

- Notice during the demo, that the one-step Q-learning agent and Dyna-Q agent appeared to be equally reactive
- Updating the value function and selecting a new action is very fast
 - Thus, there is usually some time left over
 - We can use that time to run a planning loop
 - Planning with n=5 helps a lot
- What are other ways we could integrate planning with learning and acting?
- Planning of this form is anytime

When the model is wrong

- So far we have considered models, that:
 - Start empty and are always updated with correct info.
- The model can be wrong! Because:
 - environment might be stochastic and we have only seen a few samples
 - the environment has changed
- Planning is likely to compute a suboptimal policy in this case
- Imagine the world changed, and:
 - The suboptimal policy leads to discovery and correction of the modeling error

Blocking Maze problem

- Consider the Gridworld with a partition wall
- Dyna-Q can find the policy for reaching the goal state
- Then after 1000 time steps, we change the world:
 - we block the path of the existing planned policy
 - and open up a new path

When the Model is Wrong: Blocking Maze

The changed environment is harder

A change for the better

- If the world changes, such that a better path is possible:
 - the formerly correct policy will not reveal the improved situation
 - the modeling error may not be detected for a long time!

When the Model is Wrong: Shortcut Maze

The changed environment is easier

What is Dyna-Q+?

- Uses an "exploration bonus":
 - Keeps track of time since each state-action pair was tried for real
 - An extra reward is added for transitions caused by state-action pairs related to how long ago they were tried: the longer unvisited, the more reward for visiting

$$R+\kappa\sqrt{ au_{ ext{time since last visiting}}}$$
 the state-action pair

 The agent actually "plans" how to visit long unvisited states

The conflict between exploration and exploitation

- Exploration in planning: trying actions that improve the model
 - Make it more accurate
 - Make it a better match with the environment
 - Proactively discover when the model is wrong
- Exploitation: behaving optimally with respect to the current model
- Simple heuristics can be effective

Prioritizing Search Control

- Consider the second episode in the Dyna maze
 - The agent has successfully reached the goal once...

 In larger problems, the number of states is so large that unfocused planning would be extremely inefficient

Large maze and random search control

(Peng and Williams, 1993)

Prioritized Sweeping

- Which states or state-action pairs should be generated during planning?
- Work backwards from states whose values have just changed:
 - Maintain a queue of state-action pairs whose values would change a lot if backed up, prioritized by the size of the change
 - When a new backup occurs, insert predecessors according to their priorities
 - Always perform backups from first in queue
- Moore & Atkeson 1993; Peng & Williams 1993
- improved by McMahan & Gordon 2005; Van Seijen 2013

Prioritized Sweeping

Initialize Q(s, a), Model(s, a), for all s, a, and PQueue to empty Do forever:

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow policy(S, Q)$
- (c) Execute action A; observe resultant reward, R, and state, S'
- (d) $Model(S, A) \leftarrow R, S'$
- (e) $P \leftarrow |R + \gamma \max_a Q(S', a) Q(S, A)|$.
- (f) if $P > \theta$, then insert S, A into PQueue with priority P
- (g) Repeat n times, while PQueue is not empty:

$$S, A \leftarrow first(PQueue)$$

$$R, S' \leftarrow Model(S, A)$$

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

Repeat, for all \bar{S} , \bar{A} predicted to lead to S:

$$\bar{R} \leftarrow \text{predicted reward for } \bar{S}, \bar{A}, S$$

$$P \leftarrow |\bar{R} + \gamma \max_a Q(S, a) - Q(\bar{S}, \bar{A})|.$$

if $P > \theta$ then insert \bar{S}, \bar{A} into PQueue with priority P

Prioritized Sweeping vs. Dyna-Q

Rod Maneuvering (Moore and Atkeson 1993)

Improved Prioritized Sweeping with Small Backups

- Planning is a form of state-space search
 - a massive computation which we want to control to maximize its efficiency
- Prioritized sweeping is a form of search control
 - focusing the computation where it will do the most good
- But can we focus better?
- Can we focus more tightly?
- Small backups are perhaps the smallest unit of search work
 - and thus permit the most flexible allocation of effort

Full and Sample (One-Step) Backups

Heuristic Search

- Used for action selection, not for changing a value function (=heuristic evaluation function)
- Backed-up values are computed, but typically discarded
- Extension of the idea of a greedy policy only deeper
- Also suggests ways to select states to backup: smart focusing:

Summary

- Emphasized close relationship between planning and learning
- Important distinction between distribution models and sample models
- Looked at some ways to integrate planning and learning
 - synergy among planning, acting, model learning
- Distribution of backups: focus of the computation
 - prioritized sweeping
 - small backups
 - sample backups
 - trajectory sampling: backup along trajectories
 - heuristic search
- Size of backups: full/sample/small; deep/shallow