Binary probit regression with I-priors

Haziq Jamil
Supervisors: Dr. Wicher Bergsma & Prof. Irini Moustaki

Social Statistics (Year 3) London School of Economics & Political Science

8-9 May 2017

PhD Presentation Event

http://phd3.haziqj.ml

Outline

- Introduction
- Probit models with I-priors
 The latent variable motivation
 Using I-priors
 Estimation (and challenges)
 What works
- Variational inference Introduction A simple example
- 4 Illustration in R
- 6 Applications
- **6** Summary

The latent variable motivation

- Consider binary responses y_1, \ldots, y_n together with their corresponding covariates x_1, \ldots, x_n .
- For i = 1, ..., n, model the responses as

$$y_i \sim \text{Bern}(p_i)$$
.

 Assume that there exists continuous, underlying latent variables y_1^*, \ldots, y_n^* , such that

$$y_i = \begin{cases} 1 & \text{if } y_i^* \ge 0 \\ 0 & \text{if } y_i^* < 0. \end{cases}$$

Model these continuous latent variables according to

$$v_i^* = f(x_i) + \epsilon_i$$

where $(\epsilon_1, \dots, \epsilon_n) \sim \mathsf{N}(\mathbf{0}, \Psi^{-1})$ and $f \in \mathcal{F}$ (some RKHS).

Using I-priors

Assume an I-prior on f. Then,

$$f(x_i) = \alpha + \sum_{k=1}^n h_{\lambda}(x_i, x_k) w_k$$
$$(w_1, \dots, w_n) \sim \mathsf{N}(\mathbf{0}, \mathbf{\Psi})$$

• For now, consider iid errors $\Psi = \psi I_n$. In this case,

$$p_i = P[y_i = 1] = P[y_i^* \ge 0]$$

$$= P[\epsilon_i \le f(x_i)]$$

$$= \Phi\left(\psi^{1/2}(\alpha + \sum_{k=1}^n h_\lambda(x_i, x_k)w_k)\right)$$

where Φ is the CDF of a standard normal.

• No loss of generality compared with using an arbitrary threshold au or error precision ψ . Thus, set $\psi = 1$.

The probit I-prior model

Ν

End

Estimation

- Denote $f_i = f(x_i)$ for short.
- The marginal density

$$p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) d\mathbf{f}$$

$$= \int \prod_{i=1}^{n} \left[\Phi(f_i)^{y_i} (1 - \Phi(f_i))^{1-y_i} \right] \cdot N(\alpha \mathbf{1}_n, \mathbf{H}_{\lambda}^2) d\mathbf{f}$$

Illustration in R

Estimation

- Denote $f_i = f(x_i)$ for short.
- The marginal density

$$p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) d\mathbf{f}$$

$$= \int \prod_{i=1}^{n} \left[\Phi(f_i)^{y_i} (1 - \Phi(f_i))^{1-y_i} \right] \cdot N(\alpha \mathbf{1}_n, \mathbf{H}_{\lambda}^2) d\mathbf{f}$$

- Some strategies:
 - X Naive Monte-Carlo integral

Illustration in R

Estimation

- Denote $f_i = f(x_i)$ for short.
- The marginal density

$$p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) d\mathbf{f}$$

$$= \int \prod_{i=1}^{n} \left[\Phi(f_i)^{y_i} (1 - \Phi(f_i))^{1-y_i} \right] \cdot N(\alpha \mathbf{1}_n, \mathbf{H}_{\lambda}^2) d\mathbf{f}$$

- Some strategies:
 - X Naive Monte-Carlo integral
 - X EM algorithm with a MCMC E-step

Estimation

- Denote $f_i = f(x_i)$ for short.
- The marginal density

$$p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) d\mathbf{f}$$

$$= \int \prod_{i=1}^{n} \left[\Phi(f_i)^{y_i} (1 - \Phi(f_i))^{1-y_i} \right] \cdot N(\alpha \mathbf{1}_n, \mathbf{H}_{\lambda}^2) d\mathbf{f}$$

- Some strategies:
 - X Naive Monte-Carlo integral
 - EM algorithm with a MCMC E-step
 - Laplace approximation

wai vu no taylor

Estimation

- Denote $f_i = f(x_i)$ for short.
- The marginal density

$$p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) d\mathbf{f}$$

$$= \int \prod_{i=1}^{n} \left[\Phi(f_i)^{y_i} (1 - \Phi(f_i))^{1-y_i} \right] \cdot N(\alpha \mathbf{1}_n, \mathbf{H}_{\lambda}^2) d\mathbf{f}$$

- Some strategies:
 - X Naive Monte-Carlo integral
 - EM algorithm with a MCMC E-step
 - Laplace approximation
 - MCMC sampling

Laplace's method

• Interested in $p(\mathbf{f}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) =: e^{Q(\mathbf{f})}$, with normalising constant $p(\mathbf{y}) = \int e^{Q(\mathbf{f})} d\mathbf{f}$. The Taylor expansion of Q about its mode $\tilde{\mathbf{f}}$

$$Q(\mathbf{f}) \approx Q(\tilde{\mathbf{f}}) - \frac{1}{2}(\mathbf{f} - \tilde{\mathbf{f}})^{\top} \mathbf{A}(\mathbf{f} - \tilde{\mathbf{f}})$$

is recognised as the logarithm of an unnormalised Gaussian density, with ${\bf A}=-{\sf D}^2 Q({\bf f})$ being the negative Hessian of Q evaluated at $\tilde{\bf f}$.

• The posterior $p(\mathbf{f}|\mathbf{y})$ is approximated by $N(\tilde{\mathbf{f}}, \mathbf{A}^{-1})$, and the marginal by

$$p(\mathbf{y}) \approx (2\pi)^{n/2} |\mathbf{A}|^{-1/2} p(\mathbf{y}|\tilde{\mathbf{f}}) p(\tilde{\mathbf{f}})$$

• Won't scale with large *n*; difficult to find modes in high dimensions.

R. Kass and A. Raftery (1995). "Bayes Factors". *Journal of the American Statistical Association* 90.430, pp. 773–795, §4.1, pp. 777-778.

Full Bayesian analysis using MCMC

- Assign hyperpriors on parameters of the I-prior, e.g.
 - $\lambda^2 \sim \Gamma^{-1}(a,b)$
 - $\sim \alpha \sim N(c, d^2)$

for a hierarchical model to be estimated fully Bayes.

- No closed-form posteriors need to resort to MCMC sampling.
- Computationally slow, and sampling difficulty results in unreliable posterior samples.
- *DENSITY PLOTS OF LAMBDA HERE*

Variational inference introduction

 Name derived from calculus of variations which deals with maximising or minimising functionals.

Functions
$$p: \theta \mapsto \mathbb{R}$$
 (standard calculus)
Functionals $\mathcal{H}: p \mapsto \mathbb{R}$ (variational calculus)

Using standard calculus, we can solve

$$\arg\max_{\boldsymbol{\theta}} p(\boldsymbol{\theta}) =: \hat{\boldsymbol{\theta}}$$

e.g. p is a likelihood function, and $\hat{\theta}$ is the ML estimate.

• Using variational calculus, we can solve

$$\arg\max_{p}\mathcal{H}(p)=:\tilde{p}$$

e.g. \mathcal{H} is the entropy $\mathcal{H} = -\int p(x) \log p(x) dx$, and \tilde{p} is the entropy maximising distribution.

C. M. Bishop (2006). Pattern Recognition and Machine Learning. Springer

Summary

Variational inference introduction (cont.)

- Consider a statistical model where we have observations (y_1, \ldots, y_n) and also some latent variables (z_1, \ldots, z_n) .
- The z_i s could be random effects or some auxiliary latent variables.
- In a Bayesian setting, this could also include the parameters to be estimated.
- GOAL: Find approximations for
 - ▶ The posterior distribution $p(\mathbf{z}|\mathbf{y})$; and
 - ▶ The marginal likelihood (or model evidence) p(y).

Decomposition of the log marginal

• Let q(z) be some density function to approximate p(z|y). Then the log-marginal density can be decomposed into

$$\begin{aligned} \log p(\mathbf{y}) &= \log p(\mathbf{y}, \mathbf{z}) - \log p(\mathbf{z}|\mathbf{y}) \\ &= \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z})} - \log \frac{p(\mathbf{z}|\mathbf{y})}{q(\mathbf{z})} \right\} q(\mathbf{z}) \, \mathrm{d}\mathbf{z} \\ &= \mathcal{L}(q) + \mathsf{KL}(q \| p) \\ &\geq \mathcal{L}(q) \end{aligned}$$

- ullet L is referred to as the "lower-bound", and it serves as a surrogate function to the marginal.
- Maximising the $\mathcal{L}(q)$ is equivalent to minimising $\mathsf{KL}(q\|p)$.
- Although KL(q||p) is minimised at $q(z) \equiv p(z|y)$ (c.f. EM algorithm), we are unable to work with p(z|y).

ntroduction Probit with I-priors Variational Illustration in R Applications Summary End

Comparison

ction Probit with I-priors Variational Illustration in R Applications Summary End

Factorised distributions (Mean field theory)

troduction Probit with I-priors Variational Illustration in R Applications Summary End

○○○○○

○○○○○

Variational Illustration in R Applications Summary End

Variational Bayes EM

Estimation of Gaussian mean and variance

End

Thank you!