UAS DATA MINING

NIM: 2103842

Nama: Dicki Fathurohman

Kelas: Ilmu Komputer C2 - 2021

In [1]:

```
%matplotlib inline
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

data_ipm = pd.read_csv("https://raw.githubusercontent.com/dickifathurohman/2103842-UAS-DATMIN/main/Dataset/pmi.csv")

data_pangan = pd.read_csv("https://raw.githubusercontent.com/dickifathurohman/2103842-UAS-DATMIN/main/Dataset/ketidak_cukupan_pangan_prov

data_huruf = pd.read_csv("https://raw.githubusercontent.com/dickifathurohman/2103842-UAS-DATMIN/main/Dataset/melek_huruf_diatas15.csv")

data_rumah = pd.read_csv("https://raw.githubusercontent.com/dickifathurohman/2103842-UAS-DATMIN/main/Dataset/persen_rumah_menyewa.csv")

data_kalori = pd.read_csv("https://raw.githubusercontent.com/dickifathurohman/2103842-UAS-DATMIN/main/Dataset/persen_asupan_kalori_bawah_1

In []:
```

Untuk mengukur tingkat IPM akan digunakan data mengenai:

- persentasi kecukupan pangan : karena salah satu standar hidup yang layak dan hidup sehat yaitu adanya kebutuhan pangan yang terpenuhi
- data melek huruf : Banyaknya masyarakat yang dapat membaca menandakan baiknya juga pendidikan yang berada pada daerah tersebut
- data sewa rumah: Banyaknya masyarakat yang masih mengontrak atau menyewa rumah menandakan bahwa daerah tersebut masih kurang tinkat kesejahteraannya
- persen kalori : Sama seperti kebutuhan pangan, data persen asupan kalori ini dapat digunakan untuk mengukur kelayakan hidup berdasarkan asupan gizi

```
In [2]:
```

```
#gabungkan data
data_merge = pd.merge(data_pangan, data_rumah, how='left', on=["tahun", "prov"])
data_merge = pd.merge(data_merge, data_huruf, how='left', on=["tahun", "prov"])
data_merge = pd.merge(data_merge, data_kalori, how='left', on=["tahun", "prov"])
#data_merge = pd.merge(data_merge, data_pmi, how='left', on=["tahun", "prov"])
```

EDA / Visualisasi Data

```
In [3]:
```

```
fig, ax = plt.subplots(figsize=(20, 5))
sns.countplot(ax=ax, x="tahun", hue="kategori_pmi", data=data_ipm)
```

Out[3]:

<AxesSubplot:xlabel='tahun', ylabel='count'>

Pada countplot diatas, dapat dilihat bahwa tiap tahunnya ada peningkatan angka PMI. Pada tahun 2017 dan sebelumnya masih ada provinsi dengan kategori PMI yang sangat rendah. Namun pada tahun 2018 keatas, sudah tidak ada lagi provinsi dengan kategori PMI sangat rendah, dan bahkan beberapa provinsi dikategorikan sangat tinggi.

In [4]:

Berdasarkan heatmap yang ditampilkan diatas, terdapat korelasi antara kecukupan pangan dengan asupan kalori. Hal ini menandakan bahwa ketersedian pangan juga dapat mempengaruhi terhadap asupan gizi. Kebutuhan pangan yang semakin terpenuhi akan membuat gizi juga terpenuhi dengan cukup. Hal ini harus lebih diperhatikan mengingat banyaknya anak yang masih menderita kekurangan gizi, maka pemerintah sebaiknya memastikan masyarakat Indonesia memiliki asupan pangan yang cukup

Type *Markdown* and LaTeX: α^2

In [5]:

```
sns.pairplot(data=data_pangan[['tahun','pct_tdk_cukup_pangan','prov']],hue="prov")
```

Out[5]:

<seaborn.axisgrid.PairGrid at 0x243e251fac0>


```
In [6]:
```

```
rata_pangan = data_pangan.groupby((["prov", "tahun"])).mean().reset_index()
#rata_pangan = data_pangan.groupby(by="tahun").mean().reset_index()
rata_pangan
```

Out[6]:

	prov	tahun	pct_tdk_cukup_pangan
0	ACEH	2017	8.40
1	ACEH	2018	8.68
2	ACEH	2019	9.41
3	ACEH	2020	8.58
4	ACEH	2021	6.90
170	SUMATERA UTARA	2017	7.39
171	SUMATERA UTARA	2018	5.75
172	SUMATERA UTARA	2019	4.84
173	SUMATERA UTARA	2020	6.73
174	SUMATERA UTARA	2021	6.33

175 rows × 3 columns

Praproses

In [7]:

data_merge

Out[7]:

	tahun	pct_tdk_cukup_pangan	prov	persen_rumah_menyewa	melek_huruf_diatas15	persen_asupan_kalori_bawah_1400
0	2021	6.90	ACEH	6.86	98.24	NaN
1	2021	6.33	SUMATERA UTARA	14.13	99.19	NaN
2	2021	6.02	SUMATERA BARAT	11.37	99.26	NaN
3	2021	10.61	RIAU	11.82	99.2	NaN
4	2021	9.25	JAMBI	5.95	98.08	NaN
170	2017	26.57	MALUKU	6.53	99.13	20.99
171	2017	34.05	MALUKU UTARA	5.47	98.68	24.62
172	2017	27.22	PAPUA BARAT	13.10	97.16	23.27
173	2017	34.27	PAPUA	9.02	73.89	24.79
174	2017	8.23	INDONESIA	9.52	95.5	7.90

175 rows × 6 columns

In [8]:

data_merge.isnull().sum()

Out[8]:

tahun	а
pct tdk cukup pangan	a
	۵
prov	0
persen_rumah_menyewa	0
melek_huruf_diatas15	0
persen_asupan_kalori_bawah_1400 dtype: int64	70

terdapat nilai null untuk data asupan kalori, maka data ini akan diisi dengan nilai mediannya

```
In [9]:
```

```
data_merge['persen_asupan_kalori_bawah_1400'].fillna(data_merge['persen_asupan_kalori_bawah_1400'].median(),inplace=True)
data_merge.isnull().sum()
Out[9]:
tahun
                                   0
pct_tdk_cukup_pangan
                                   0
                                   0
persen_rumah_menyewa
                                   0
```

Sudah tidak ada nilai NULL lagi

persen_asupan_kalori_bawah_1400

melek_huruf_diatas15

In [10]:

dtype: int64

```
data_merge = pd.merge(data_merge, data_ipm, how='left', on=["tahun", "prov"])
data_merge.isnull().sum()
```

Out[10]:

0 tahun pct_tdk_cukup_pangan 0 0 prov persen_rumah_menyewa 0 melek_huruf_diatas15 0 persen_asupan_kalori_bawah_1400 0 kategori pmi dtype: int64

Setelah ditambahkan kategori IPM nya, ternyata ada yang masih bernilai NULL. Maka, untuk data tersebut akan dibuang

0

In [11]:

```
data_merge = data_merge.dropna()
data_merge.isnull().sum()
Out[11]:
tahun
                                    0
pct_tdk_cukup_pangan
                                    0
                                    0
prov
```

persen_rumah_menyewa 0 melek huruf diatas15 0 persen_asupan_kalori_bawah_1400 0 kategori_pmi dtype: int64

Agar lebih mudah untuk dibaca, nama kolom akan kita ubah

```
data_merge.columns = ['tahun','kurang_pangan','prov','sewa_rumah','melek_huruf','asupan_kalori','kategori_pmi']
data_merge
```

Out[12]:

	tahun	kurang_pangan	prov	sewa_rumah	melek_huruf	asupan_kalori	kategori_pmi
0	2021	6.90	ACEH	6.86	98.24	8.51	TINGGI
1	2021	6.33	SUMATERA UTARA	14.13	99.19	8.51	TINGGI
2	2021	6.02	SUMATERA BARAT	11.37	99.26	8.51	TINGGI
3	2021	10.61	RIAU	11.82	99.2	8.51	TINGGI
4	2021	9.25	JAMBI	5.95	98.08	8.51	TINGGI
169	2017	10.59	SULAWESI BARAT	2.69	92.79	11.24	SEDANG
170	2017	26.57	MALUKU	6.53	99.13	20.99	SEDANG
171	2017	34.05	MALUKU UTARA	5.47	98.68	24.62	SEDANG
172	2017	27.22	PAPUA BARAT	13.10	97.16	23.27	SEDANG
173	2017	34.27	PAPUA	9.02	73.89	24.79	SANGAT RENDAH

170 rows × 7 columns

```
In [13]:
```

```
data_merge.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 170 entries, 0 to 173
Data columns (total 7 columns):
     Column
                    Non-Null Count Dtype
0
     tahun
                     170 non-null
                                      int64
     kurang_pangan 170 non-null
                                      float64
                     170 non-null
                                      object
 3
     sewa_rumah
                     170 non-null
                                      float64
    melek_huruf
                     170 non-null
                                      object
    asupan_kalori 170 non-null
                                      float64
6 kategori_pmi 170 non-null obj
dtypes: float64(3), int64(1), object(3)
                                      object
memory usage: 10.6+ KB
```

tipe datanya akan diubah

```
In [14]:
```

```
data_merge['prov'] = data_merge['prov'].astype("category")
data_merge['melek_huruf'] = data_merge['melek_huruf'].astype("float")
data_merge['kategori_pmi'] = data_merge['kategori_pmi'].astype("category")
data_merge.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 170 entries, 0 to 173
Data columns (total 7 columns):
# Column
                  Non-Null Count Dtype
0
    tahun
                   170 non-null
    kurang_pangan 170 non-null
                                   float64
2
    prov
                   170 non-null
                                   category
3
    sewa_rumah
                   170 non-null
                                   float64
4
    melek_huruf
                   170 non-null
                                   float64
    asupan_kalori 170 non-null
                                   float64
    kategori_pmi 170 non-null
                                   category
dtypes: category(2), float64(4), int64(1)
memory usage: 9.8 KB
```

Setelah diubah tipe datanya menjadi sesuai, maka kategori_pmi akan dibuat menjadi code menggunakan label encode

```
In [15]:
```

```
#simpan dulu nama kategorinya, siapa tau dibutuhkan nanti
kategori = data_merge['kategori_pmi'].unique()
kategori
Out[15]:
```

```
['TINGGI', 'SEDANG', 'SANGAT TINGGI', 'SANGAT RENDAH']
Categories (4, object): ['SANGAT RENDAH', 'SANGAT TINGGI', 'SEDANG', 'TINGGI']
```

In [16]:

```
# ubah kategori dengan label encoder
from sklearn.preprocessing import LabelEncoder
encoder=LabelEncoder()
data_merge['kategori_pmi']=encoder.fit_transform(data_merge['kategori_pmi'])
data_merge
```

Out[16]:

	tahun	kurang_pangan	prov	sewa_rumah	melek_huruf	asupan_kalori	kategori_pmi
0	2021	6.90	ACEH	6.86	98.24	8.51	3
1	2021	6.33	SUMATERA UTARA	14.13	99.19	8.51	3
2	2021	6.02	SUMATERA BARAT	11.37	99.26	8.51	3
3	2021	10.61	RIAU	11.82	99.20	8.51	3
4	2021	9.25	JAMBI	5.95	98.08	8.51	3
169	2017	10.59	SULAWESI BARAT	2.69	92.79	11.24	2
170	2017	26.57	MALUKU	6.53	99.13	20.99	2
171	2017	34.05	MALUKU UTARA	5.47	98.68	24.62	2
172	2017	27.22	PAPUA BARAT	13.10	97.16	23.27	2
173	2017	34.27	PAPUA	9.02	73.89	24.79	0

170 rows × 7 columns

KLASIFIKASI

```
In [17]:
#one hot encoding
data_merge = pd.get_dummies(data=data_merge, columns=['prov'])
In [18]:
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
le.fit(data_merge['kategori_pmi'])
Y = le.transform(data_merge['kategori_pmi'])
#hapus label kelas dari x
X = data_merge.drop('kategori_pmi',axis=1)
In [19]:
#split dataset
from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,random_state=123)
#C:\\Users\\Dicki Fathurohman\\Documents\\UAS-DATMIN
#simpan untuk keperluan prediksi nanti
import pickle
with open('C:\\Users\\Dicki Fathurohman\\Documents\\UAS-DATMIN\\orders_x_train_columns.pickle', 'wb') as fp:
     pickle.dump(X_train.columns, fp)
In [20]:
#random forest
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
from sklearn.ensemble import RandomForestClassifier
rcv = RandomForestClassifier(n_estimators=50, random_state=123)
rcv.fit(X_train, Y_train)
Y_pred = rcv.predict(X_test)
acc = accuracy_score(Y_test, Y_pred)
print("Akurasi {}".format(acc))
print(classification_report(Y_test, Y_pred))
Akurasi 0.8235294117647058
                           recall f1-score
              precision
                                               support
           1
                   1.00
                              1.00
                                        1.00
                                                     1
           2
                    0.82
                              0.69
                                        0.75
                                                     13
           3
                   0.82
                              9.99
                                        0.86
                                                     20
    accuracy
                                        0.82
                                                     34
   macro avg
                   0.88
                              0.86
                                        0.87
                                                     34
weighted avg
                   0.82
                              0.82
                                        0.82
                                                     34
In [23]:
kategori
Out[23]:
['TINGGI', 'SEDANG', 'SANGAT TINGGI', 'SANGAT RENDAH']
Categories (4, object): ['SANGAT RENDAH', 'SANGAT TINGGI', 'SEDANG', 'TINGGI']
In [ ]:
```