A Peek into the Black Box: Exploring Classifiers by Randomization

Andreas Henelius <u>Kai Puolamäki</u>

Finnish Institute of Occupational Health

Henrik Boström

Lars Asker

Panagiotis Papapetrou

Stockholm University

$$y = f(x)$$

Class (healthy, ill) y = f(x) (body temperature, gender, ...) Vector of attributes

Class $\{ \text{healthy, ill } \} \longrightarrow \mathcal{Y} = f(x)$ (body temperature, gender, ...)

Properties of a good classifier include:

- high accuracy
- interpretability (e.g., why is a person healthy?)

Peek into the Black Box

$$y = f(x)$$

- Black box classifier: the form of f is impossible to interpret
- Even if we can understand the parameters of f, we may still not understand how the classifier uses the data (example later!)

Assumption

$$y = f(x)$$

- ullet We don't know the form of f
- We can test the classifier f with data of our choosing

- Idea and problem formulation
- The GoldenEye algorithm
- Experiments
- Concluding remarks

Class	A	В	С	D
1	1	0	1	1
1	1	0	1	0
1	0	1	1	1
1	0	1	1	0
1	0	0	1	1
1	0	0	1	0
1	1	1	1	1
1	1	1	1	0
1	1	0	0	1
1	1	0	0	0
1	0	1	0	1
1	0	1	0	0
0	1	1	0	1
0	1	1	0	0
0	0	0	0	1
0	0	0	0	0

$Class = (A \oplus B) \lor C$

Class =	= (A X	OR_B) C	$DR \; c$	D
1	1	0	1	1
1	1	0	1	0
1	0	1	1	1
1	0	1	1	0
1	0	0	1	1
1	0	0	1	0
1	1	1	1	1
1	1	1	1	0
1	1	0	0	1
1	1	0	0	0
1	0	1	0	1
1	0	1	0	0
0	1	1	0	1
0	1	1	0	0
0	0	0	0	1
0	0	0	0	0

Training a black box classifier...

Spoiler:

$$f(x) = (A \oplus B) \lor C$$

$$y = f(x)$$

Class	y	A	В	C	D
1	1	1	0	1	1
1	1	1	0	1	0
1	1	0	1	1	1
1	1	0	1	1	0
1	1	0	0	1	1
1	1	0	0	1	0
1	1	1	1	1	1
1	1	1	1	1	0
1	1	1	0	0	1
1	1	1	0	0	0
1	1	0	1	0	1
1	1	0	1	0	0
0	0	1	1	0	1
0	0	1	1	0	0
0	0	0	0	0	1
0	0	0	0	0	0

In this case accuracy = 100%

$$y^* = f(x^*)$$

y	y *	A	В	С	D
1	1	1	0	1	0
1	1	1	0	1	1
1	1	0	1	1	0
1	1	0	1	1	1
1	1	0	0	1	0
1	1	0	0	1	1
1	1	1	1	1	0
1	1	1	1	1	1
1	1	1	0	0	0
1	1	1	0	0	1
1	1	0	1	0	0
1	1	0	1	0	1
0	0	1	1	0	0
0	0	1	1	0	1
0	0	0	0	0	0
0	0	0	0	0	1

$$y^* = f(x^*)$$

Randomization I

y	y *	A	В	С	D
1	1	1	0	1	1
1	1	1	0	1	1
1	1	0	1	1	0
1	1	0	1	1	1
1	1	0	0	1	1
1	1	0	0	1	0
1	1	1	1	1	1
1	1	1	1	1	0
1	1	1	0	0	0
1	1	1	0	0	1
1	1	0	1	0	0
1	1	0	1	0	0
0	0	1	1	0	1
0	0	1	1	0	0
0	0	0	0	0	0
0	0	0	0	0	1

$$y^* = f(x^*)$$

Randomization 2

y	y *	A	В	С	D
1	1	1	0	1	0
1	1	1	0	1	0
1	1	0	1	1	0
1	1	0	1	1	0
1	1	0	0	1	0
1	1	0	0	1	1
1	1	1	1	1	1
1	1	1	1	1	1
1	1	1	0	0	1
1	1	1	0	0	1
1	1	0	1	0	0
1	1	0	1	0	0
0	0	1	1	0	1
0	0	1	1	0	1
0	0	0	0	0	1
0	0	0	0	0	0

$$y^* = f(x^*)$$

Randomization 3

y	y *	A	В	C	D
1	1	1	0	1	1
1	1	1	0	1	1
1	1	0	1	1	1
1	1	0	1	1	0
1	1	0	0	1	0
1	1	0	0	1	1
1	1	1	1	1	0
1	1	1	1	1	0
1	1	1	0	0	1
1	1	1	0	0	1
1	1	0	1	0	0
1	1	0	1	0	1
0	0	1	1	0	0
0	0	1	1	0	0
0	0	0	0	0	1
0	0	0	0	0	0

$$fidelity = \#(y = y^*)/N = 1$$

$$y^* = f(x^*)$$

y	y *	A	В	С	D
1	1	1	0	1	0
1	1	1	0	1	1
1	1	0	1	1	0
1	1	0	1	1	1
1	1	0	0	1	0
1	1	0	0	1	1
1	1	1	1	1	0
1	1	1	1	1	1
1	1	1	0	0	0
1	1	1	0	0	1
1	1	0	1	0	0
1	1	0	1	0	1
0	0	1	1	0	0
0	0	1	1	0	1
0	0	0	0	0	0
0	0	0	0	0	1

$$y^* = f(x^*)$$

y	y *	A	В	С	D
1	1	1	0	0	1
1	1	1	0	1	0
1	1	0	1	0	1
1	1	0	1	1	0
1	0	0	0	0	1
1	0	0	0	0	0
1	1	1	1	1	1
1	0	1	1	0	0
1	1	1	0	0	1
1	1	1	0	1	0
1	1	0	1	1	1
1	1	0	1	0	0
0	0	1	1	0	1
0	1	1	1	1	0
0	1	0	0	1	1
0	1	0	0	1	0

fidelity =
$$\#(y = y^*)/N = 0.63$$

$$y^* = f(x^*)$$

y	y *	A	В	С	D
1	1	1	0	1	0
1	1	1	0	1	1
1	1	0	1	1	0
1	1	0	1	1	1
1	1	0	0	1	0
1	1	0	0	1	1
1	1	1	1	1	0
1	1	1	1	1	1
1	1	1	0	0	0
1	1	1	0	0	1
1	1	0	1	0	0
1	1	0	1	0	1
0	0	1	1	0	0
0	0	1	1	0	1
0	0	0	0	0	0
0	0	0	0	0	1

Within-class randomization

y	y *	A	В	С	D
1	1	1	0	1	1
1	1	1	0	1	0
1	1	0	1	0	1
1	1	0	1	0	0
1	1	0	0	1	1
1	1	0	0	1	0
1	0	1	1	0	1
1	1	1	1	1	0
1	1	1	0	0	1
1	1	1	0	0	0
1	1	0	1	1	1
1	1	0	1	0	0
0	0	1	1	0	1
0	0	1	1	0	0
0	0	0	0	0	1
0	0	0	0	0	0

fidelity =
$$\#(y = y^*)/N = 0.94$$

$Pr(A, B, C, D \mid y) \approx Pr(C \mid y) \times Pr(A, B, D \mid y)$

y	y *	A	В	С	D
1	1	1	0	1	1
1	1	1	0	1	0
1	1	0	1	0	1
1	1	0	1	0	0
1	1	0	0	1	1
1	1	0	0	1	0
1	0	1	1	0	1
1	1	1	1	1	0
1	1	1	0	0	1
1	1	1	0	0	0
1	1	0	1	1	1
1	1	0	1	0	0
0	0	1	1	0	1
0	0	1	1	0	0
0	0	0	0	0	1
0	0	0	0	0	0

fidelity = $\#(y = y^*)/N = 0.94$

$$y^* = f(x^*)$$

y	y *	A	В	С	D
1	1	1	0	1	0
1	1	1	0	1	1
1	1	0	1	1	0
1	1	0	1	1	1
1	1	0	0	1	0
1	1	0	0	1	1
1	1	1	1	1	0
1	1	1	1	1	1
1	1	1	0	0	0
1	1	1	0	0	1
1	1	0	1	0	0
1	1	0	1	0	1
0	0	1	1	0	0
0	0	1	1	0	1
0	0	0	0	0	0
0	0	0	0	0	1

2 independent within-class randomizations

y	y*	A	В	С	D
1	1	1	0	1	1
1	1	0	1	1	0
1	1	1	0	1	1
1	1	0	0	1	0
1	1	1	0	1	1
1	1	0	1	1	0
1	1	1	1	1	1
1	1	1	1	1	0
1	0	0	0	0	1
1	0	0	0	0	0
1	1	0	1	0	1
1	1	1	1	0	0
0	1	0	1	0	1
0	0	0	0	0	0
0	0	1	1	0	1
0	1	1	0	0	0

fidelity =
$$\#(y = y^*)/N = 0.75$$

2 joint within-class randomizations

у	y *	A	В	C	D
1	1	0	1	1	1
1	1	0	1	1	0
1	1	0	1	1	1
1	1	1	0	1	0
1	1	0	0	1	1
1	1	1	0	1	0
1	1	1	1	1	1
1	1	1	1	1	0
1	1	1	0	0	1
1	1	1	0	0	0
1	1	0	1	0	1
1	0	0	0	0	0
0	0	0	0	0	1
0	0	1	1	0	0
0	0	0	0	0	1
0	0	1	1	0	0

fidelity =
$$\#(y = y^*)/N = 0.94$$

Grouping of attributes

- D neither used nor needed
- C used and needed
- C independent of other variables
- A and B both important, must occur together

$$\{\{A, B\}, \{C\}\}$$

$$f(x) = (A \oplus B) \vee C$$
 Finnish Institute of Occupational Health

The grouping $\{ \{ A, B \}, \{ C \} \}$ means that

- A and B randomized together within-class
- C is randomized within-class
- D is fully randomized

b is raily railed in zea						
у	y*	A	В	С	D	
1	1	0	1	1	1	
1	1	0	1	1	1	
1	1	0	1	0	0	
1	1	1	0	0	1	
1	1	0	0	1	1	
1	1	1	0	1	0	
1	0	1	1	0	1	
1	1	1	1	1	0	
1	1	1	0	0	0	
1	1	1	0	0	1	
1	1	0	1	1	0	
1	0	0	0	0	0	
0	0	0	0	0	1	
0	0	1	1	0	0	
0	0	0	0	0	0	
Institute of p ational Healt p	0	1	1	0 Kai F	uolamäk 1	

Problem formulations

Optimal k-grouping of attributes.

Given a dataset, a classifier, and a constant k, find a grouping of attributes of size k such that the fidelity is maximized. $\{\{A,B\},\{C\},\{D\}\}\}$

Problem formulations

Optimal k-grouping of attributes.

Given a dataset, a classifier, and a constant k, find a grouping of attributes of size k such that the fidelity is maximized. $\{\{A,B\},\{C\},\{D\}\}\}$

Optimal pruning of singleton attributes.

$$\{\{A,B\},\{C\}\}$$

- Idea and problem formulation
- The GoldenEye algorithm
- Experiments
- Concluding remarks

- Finds a grouping of attributes
- Greedy iterative top-down algorithm
- GoldenEye can find the optimal solution, if monotonicity holds (breaking groups appearing in "optimal solution" decreases fidelity)


```
{ { A, B, C, D } } fidelity = I
```



```
{ { A, B, C, D } }
fidelity = I

{ { B, C, D }, { A } }
fidelity = 0.75
```



```
\{ \{A, (B, C, D) \} \}
                             fidelity = |
{ { B, C, D }, { A } }
  fidelity = 0.75
        { { A, B, C }, { B } }
          fidelity = 0.75
```



```
\{ \{A, B, C, D \} \}
                            fidelity =
{ { B, C, D }, { A } }
  fidelity = 0.75
        { { A, B, C }, { B } }
                                  { { A, C, D }, { C } }
                                     fidelity = 0.92
          fidelity = 0.75
```



```
{ { A, B, C, D } }
                              fidelity =
                                                  { { A, B, C }, { D } }
fidelity = I
{ { B, C, D }, { A } }
  fidelity = 0.75
         { { A, B, C }, { B } }
                                     { { A, C, D }, { C } }
           fidelity = 0.75
                                        fidelity = 0.92
```



```
{ { A, B, C }, { D } }
fidelity = I
```



```
{ (A) B, C }, { D } }
fidelity = I

{ { B, C }, { A }, { D } }
fidelity = 0.75
```



```
\{ \{A, B, C\}, \{D\} \}
                              fidelity = I
{ { B, C }, { A }, { D } }
    fidelity = 0.75
                           { { A, C }, { B }, { D } }
                               fidelity = 0.75
```



```
\{ \{A, B, C\}, \{D\} \}
                              fidelity =
                                            { { A, B }, { C }, { D } }
{ { B, C }, { A }, { D } }
                                                fidelity = 0.92
    fidelity = 0.75
                          { { A, C }, { B }, { D } }
                              fidelity = 0.75
```



```
{ { A, B, C }, { D } }
                                 fidelity =
                                                 { { A, B }, { C }, { D } }
fidelity = 0.92
{ { B, C }, { A }, { D } }
    fidelity = 0.75
                             { { A, C }, { B }, { D } }
                                  fidelity = 0.75
```


$$\{ \{A, B\}, \{C\}, \{D\} \}$$

fidelity = 0.92


```
{ (A, B), { C}, { D} }
fidelity = 0.92

{ { A}, B }, { C}, { D} }

fidelity = 0.75
```



```
{ {A, B }, { C }, { D } }
fidelity = 0.92

{ {A }, {B }, { C }, { D } }
fidelity = 0.75
```



```
\{ \{A, B\}, \{C\}, \{D\} \}
                          fidelity = 0.92
\{ \{A\}, \{B\}, \{C\}, \{D\} \}
      fidelity = 0.75
                                              Output \{A, B\}
```



```
\{ \{ C, D \}, \{ A \}, \{ B \} \}
fidelity = 0.75
```



```
{ {C,D}, {A}, {B}} }
fidelity = 0.75

{ {C}, D}, {A}, {B}}

fidelity = 0.75
```


Final result: { { A, B }, { C }, { D } }

Finally, unnecessary singletons are pruned.

Finally, unnecessary singletons are pruned.

Randomising D fully does not reduce fidelity, hence singleton D can be pruned. $\{ \{ A, B \}, \{ C \} \}$

Finally, unnecessary singletons are pruned.

Randomising D fully does not reduce fidelity, hence singleton D can be pruned. $\{ \{ A, B \}, \{ C \} \}$

Randomising C fully reduces fidelity too much, hence singleton C can't be pruned.

Final output $\{ \{ A, B \}, \{ C \} \}$.

- Efficient implementation using random sampling and permutations
- Easily parallelizable
- 0 to 2 parameters
- Running time:
 - Constant in number of data items
 - Quadratic in number of attributes

- Idea and problem formulation
- The GoldenEye algorithm
- Experiments
- Concluding remarks

Experiments

- 26 data sets (synthetic and UCI)
- 15 commonly used classifiers

Previous toy data with noise

	Acc		A	В	С	D
"Correct"		{{A,B},{C}}	Χ	Χ	0	<u>-</u>
DecisionStump	0.74	{ }		<u> </u>		
OneR	0.74	{ }				
SMO	0.74	{ }				
naiveBaves	0.72	{ { C } }			O	
AdaBoostM1	0.69	{	Χ	Χ	Χ	Χ
Logistic	0.69	{	Χ	Χ	Χ	Χ
LogitBoost	0.69	{	Χ	Χ	Χ	Χ
Bagging	0.91	{ { A, B}, { C} }	Χ	Χ	O	,
IBk	0.91	{ { A, B}, { C} }	Χ	Χ	O	,
J48	0.91	{ { A, B}, { C} }	Χ	Χ	O	
JRip	0.91	{ { A, B}, { C} }	Χ	Χ	O	,
LMT	0.91	{ { A, B}, { C} }	Χ	Χ	O	
PART	0.91	{	Χ	Χ	O	,
SMO radial	0.91	{ { A, B}, { C} }	Χ	Χ	O	,
randomForest	0.90	{ { A, B}, { C} }	X	Χ	0	

UCI glass data

	Acc	mg	al	ri	si	na	fe	ca	k	ba
OneR	0.52		0		•	•	•		•	
JRip	0.55	•	0	•	•	•	•	0	0	······
SMO	0.51	Χ	Χ	Χ	•	•	Χ	Χ	0	·
J48	0.58	Χ	Χ	Χ	•	Χ	Χ			0
randomForest	0.73	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	·····
naiveBayes	0.52	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
Bagging	0.72	Χ	Χ	Χ	Χ	Χ	Χ	0	•	·····
PART	0.63	Χ	Χ	Χ	Χ	Χ	0	•	0	0
IBk	0.69	Χ	Χ	Χ	Χ	0	Χ	0	•	
SMO radial	0.66	Χ	Χ	Χ	Χ	0	Χ	0	0	
LMT	0.55	Χ	Χ	Χ	Χ	0	0	•	Χ	0
Logistic	0.56	Χ	0	•	Χ	Χ	•	Χ	0	0
AdaBoostM1	0.47	0	•		•	•	•	•	•	
DecisionStump	0.47	0	•	•	•	•	•	•	•	·
LogitBoost	0.65	0	Χ	Χ	Χ	Χ	,	Χ	0	0

UCI glass data

	Acc	mg	al	ri	si	na	fe	ca	k	ba
OneR	0.52	•	0	•	•	•	•	•	•	•
JRip	0.55	•	0	•		•	•	0	0	•
SMO	0.51	Χ	Χ	Χ	•		Χ	Χ	0	•
J48	0.58	Χ	Χ	Χ	•	Χ	Χ			0
randomForest	0.73	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
naiveBayes	0.52	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
Bagging	0.72	Χ	Χ	Χ	Χ	Χ	Χ	0		
PART	0.63	Χ	Χ	Χ	Χ	Χ	0		0	0
IBk	0.69	Χ	Χ	Χ	Χ	0	Χ	0	•	
SMO radial	0.66	Χ	Χ	Χ	Χ	0	Χ	0	0	
LMT	0.55	Χ	Χ	Χ	Χ	0	0		Χ	0
Logistic	0.56	Χ	0		Χ	Χ	•	Χ	0	0
AdaBoostM1	0.47	0	•	•	•	•	•	•	•	•
DecisionStump	0.47	0	•	•	•	•	•		•	•
LogitBoost	0.65	0	Χ	Χ	Χ	Χ		Χ	0	0

UCI glass data

	Acc	mg	al	ri	si	na	fe	ca	k	ba
OneR	0.52		0		•		•		•	•
JRip	0.55	•	0			•	•	0	0	
SMO	0.51	Χ	Χ	Χ		•	Χ	Χ	0	
J48	0.58	Χ	Χ	Χ		Χ	Χ			0
randomForest	0.73	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	
naiveBayes	0.52	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ
Bagging	0.72	Χ	Χ	Χ	Χ	Χ	Χ	0	•	
PART	0.63	Χ	Χ	Χ	Χ	Χ	0	•	0	0
IBK	0.60	X	X	X	X	0	X	0		
SMO radial	0.66	Χ	Χ	Χ	Χ	0	Χ	0	0	
LMT	0.55	Χ	Χ	Χ	Χ	0	O		Χ	0
Logistic	0.56	Χ	0	,	Χ	Χ		Χ	0	0
AdaBoostM1	0.47	0		•					,	•
DecisionStump	0.47	0								•
LogitBoost	0.65	0	Χ	Χ	Χ	Χ		Χ	0	0

Experiments not shown

- More datasets
- Stability of groupings
- Effects of the parameters to the GoldenEye
- Comparison to attribute selection

- Idea and problem formulation
- The GoldenEye algorithm
- Experiments
- Concluding remarks

Understanding parameters is not enough

- It is not enough to understand the parameters of the classifier
- The structure of data affects classification results
- Example: Naive Bayes binary classifier with 2 binary attributes benefits from correlations!

Conclusion

- A method based on randomization to find out how a classifier uses the data
 - It is not enough to just to understand the classifier, the structure of the data matters, too!
- Groupings are useful for exploration, maybe to improve classifiers
- Download our GoldenEye R package and come see our poster!

Conclusion

- A method based on randomization to find out how a classifier uses the data
 - It is not enough to just to understand the classifier, the structure of the data matters, too!
- Groupings are useful for exploration, maybe to improve classifiers
- Download our GoldenEye R package and come see our poster!

Data attributes
A and B independent for a
given class

Data attributes A and B independent for class 0 but correlated for class I

Data attributes A and B independent for a given class

Data attributes A and B independent for class 0 but correlated for class 1

- Independent within-class randomization impacts classifier performance more if attributes are correlated
- Interpretation: Naive Bayes uses correlations in data (also see Domingos and Pazzani 1997)

