direction

 D_i = Torsion amplification factor at i'th storey

 D_0 = Diameter of confined core in a circular column

d = Effective depth of section

 $d_{\rm bL}$ = Longitudinal bar diameter

 $d_{\rm bw}$ = Diameter of hoop

 $d_{\rm fi}$ = Fictitious displacements at i'th storey used in Rayleigh quotient

 d_{ii} = Reduced storey displacement of the j'th vertical element at i'th storey

 \vec{E}_{a} = Modulus of Elasticity of steel

 $E_{\rm cm}$ = Mean value of Modulus of Elasticity of concrete in accordance with EN 1992-1-1:2004

 $E_{\rm d}$ = Design value of an action effect

 E_{di} = Design value of the action effect on the zone or element *i* in the seismic design situation

 $E_{\rm E}$ = Action effect due to seismic load

 $E_{\rm Fd}$ = Design value of an action effect on the foundation

 $E_{\rm G}$ = Action effect due to dead load

 $E_{\rm F.E.}$ = Action effect from the analysis of the design seismic action

 $E_{F,G}$ = Action effect due to the non-seismic actions included in the combination of actions for the seismic design situation

 $E_{\rm Q}$ = Action effect due to live load

e = Length of seismic link

 $F_{\rm fi}$ = Fictitious forces at i'th storey used in Rayleigh quotient

 F_i = Equivalent seismic load acting at i'th storey

 F_{xin} = Modal seismic load in the n'th mode acting at i'th storey in x direction F_{vin} = Modal seismic load in the n'th mode acting at i'th storey in y direction

 $F_{\theta in}$ = Modal seismic torque in the n'th mode acting at i'th storey around the vertical axis passing through mass centre

 $f_{\rm cd}$ = Design value of concrete compressive strength

 f_{ce} = Exopected value of concrete compressive strength

 $f_{\rm ck}$ = Characteristic value of concrete compressive strength

 $f_{\rm ctm}$ = Mean value of concrete tensile strength

 $f_{\rm v}$ = Nominal value of steel yield strength

 $f_{\rm vd}$ = Design value of steel yield strength

 f_{ye} = Expected value of steel yield strength

 f_{ydf} = Design yield strength of steel in the flange

 $f_{\rm vd,v}$ = Design value of yield strength of the vertical web reinforcement

 f_{vdw} = Design strength of web reinforcement

 $f_{\rm vk}$ = Characteristic value of steel yield strength

 f_{yld} = Design value of yield strength of longitudinal reinforcement

 f_{ywd} = Design value of yield strength of transverse reinforcement

 $f_{\rm e}$ = Equivalent seismic load acting at the mass centre of nonstructural element

 G_i = Total dead load at i'th storey of building

g = Acceleration of gravity (9.81 m/s²)

H_i = Total height of building measured from the top foundation level (In buildings with rigid peripheral basement walls, total height of building measured from the top of the ground floor level) [m]

H_N = Total height of building measured from the top foundation level
(In buildings with rigid peripheral basement walls, total height of building measured from the top of the ground floor level) [m]