### Visual-its-Better-HWE:

Pipeline básico para visualização de dados obtidos no PopGen Fishpond

**Autor: Samuel Chagas de Assis** 

Resumo: A visualização de dados é uma etapa importante para interação e relação de dados obtidos em experimentos. Na genética populacional, a interpretação dos dados de proporção e sua aplicação são um grande desafio no processo de aprendizagem dos estudantes de graduação. Por isso, ferramentas de interface amigável são desenvolvidas para facilitar a interação, cruzamento e visualização de dados genéticos de maneira didática. Nesse artigo, apresenta-se uma *pipeline*, baseado em linguagem de programação R, para visualização de dados obtidos nos experimentos da interface web *PopGen Fishpond*, buscando otimizar o intercruzamento das variáveis geradas pelo expertimento virtual e aprimorar o processo de aprendizagem. Por fim, a visualização é incrementada com um teste clássico para o equilíbrio de Hardy-Weinberg, onde o *Qui-quadrado* e *p-valor* auxiliam na comparação entre diferentes tratamentos.

Palavras-chave: HardyWeinberg, Bioinformática, Evolução.

# 1. Introdução

O avanço de tecnolgias de genotipagem e sequenciamento alimentam continuamente o armazenamento de dados para pesquisa de genética populacional, possibilitando a expansão de variáveis coletadas em um tempo reduzido, como é o caso dos Estudos de Associação de Genômica Ampla (ou *GWAS*, sigla em inglês) (BOUGHTON et al., 2020). No entanto, o teste das proporções do equlíbrio de Hardy-Weingberg (HWE), apesar da sua simplicidade em relação a abordagens recentes, continua sendo fundamental nos avanços da área. Sua aplicação é destacada nas primeiras análises de triagem amostral atualmente e sua importância é refletida nas inúmeras ferramentas que aplicam os príncipios de HWE, especialmente em pacotes de linguagem em Python e R, como Genopop para Python e *genetics*, *adegenet*, *GAP* e *HardyWeinberg* para R (SANTOS et al., 2020).

No entanto, essa abordagem não é limitada ao campo da pesquisa científica, a licenciatura incorpora os príncipios de HWE no ensino da Evolução, utilizando a genética populacional para contextualizar genética e evolução, como: a dinâmica de genes dentro de uma população diferem dos genes herdados; foco na frequência alélica, em oposição aos indíviduos; e exemplos relevantes para demonstração do HWE (BREWER et al., 2013). Por isso, esse trabalho apresenta uma ferramenta para facilitar a visualização de dados obtidos através do *PopGen Fishpond* (SUSILAWATI et al., 2019), utilizando o pacote *R HardyWeinberg* e testando através de diferentes tratamentos ao longo das gerações de carpas Koi.

#### 1.1 Equilíbrio de Hardy-Weinberg

Os princípios de Hardy-Weinberg define que frequências alélicas e fenotípicas permanecem constante ao longo das gerações com ausência de processo evolutivo, sua importância está em avaliar se existem influênias evolutivas atuando sob determinado marcador. A partir do ponto de vista matemático, descreve-se que pra determinados marcadores dialélicos, como A e B, suas respectivas frequências p e q (p+q=1) estão em HWE se as frequências relativas fenotípicas, como  $f_{AA}$ ,  $f_{AB}$  e  $f_{BB}$  são dadas por  $p^2$ , 2pq e  $q^2$ , respectivamente. Além disso, essa abordagem pode ser seguida para sistemas com multiplos alelos  $A_{i}$ ,...,  $A_{k}$  com frequências  $p_{1}$ ,...,  $p_{k}$  considerando a frequência para homozigotos  $p_{i}^{2}$  e heterozigotos  $2p_{i}p_{i}$  (GRAFFELMAN, 2015).

O HWE pressupões que uma população esteja em equilibrio quando: (I) não há mutação, (II) não migração,ou seja, sem fluxo gênico; (III) acasalamento aleatório; (IV) população significativamente grande  $(N \to \infty)$ ; (V) ausência de processo seletivo, todos os alelos possuem mesmo potencial de adaptação (SANTOS et al., 2020). Existem diversos testes estátisticos que avaliam se determinado marcador (i.e. genes HLA, ABO, etc) pode estar em HWE ou não. Uma abordagem clássica é o teste de Qui-quadrado (Equação 1) o qual compara a contagem de genotípos observadas ( $f_{AA}$ ,  $f_{AB}$ ,  $f_{BB}$ ) com a contagem esperada em HWE ( $e_{AA} = np^2$ ,  $e_{AB} = 2np$ ,  $e_{BB} = nq^2$ , n = número total de indíviduos).

$$x^{2} = \frac{(f_{AA} - e_{AA})^{2}}{e_{AA}} + \frac{(f_{AB} - e_{AB})^{2}}{e_{AB}} + \frac{(f_{BB} - e_{BB})^{2}}{e_{BB}}$$
(Eq. 1)

Além disso, demais aboragens estatísticas são aplicadas para evitar distúrbios durante a coleta de dados e análise, como as correções consiederadas na equação do Qui-quadrado (i.e. Correção de Yates, que avalia a independência de tabales de contigência) ou Teste exato para HWE de significância estatística.

# 1.3 Pacote HardyWeinberg

O Pacote HardyWeinberg foi desenvolvido em 2015 e consiste em uma ferramenta para análise de marcadores genéticos dialélicos, ambientada por linguagem R e utilizada na representação gráfico do (des)equilibrio de Hardy-Weinberg, como gráfico ternário e Q-Q (GRAFFELMAN, 2015). O pacote está disponibilizado em https://cran.r-project.org/web/packages/HardyWeinberg/index.html.

# 2. Metodologia

Os métodos compreendem a construção do *Pipeline* em linguagem R e avaliação através de diferentes tratamentos.

# 2.1 Construção do Visual-its-Better-HWE

O processo de construção partiu de um dataset composto por dados adquiridos no PopGen Fishpond, compostos pelos parâmetros utilizados no design do experimento e os resultados ao longo das gerações, conforme o Quadro 1 no Material Suplementar (MS). A visualização dos resultados foi obtido através de um pipeline basedo em R (R versão 4.1.1 e RStudio 1.4). O código e o dataset utilizado resultados dos experimentos estão disponíveis em https://github.com/chagas98/VisualItsBetterHWE (Dados.csv para variáveis de resultados dos experimentos; Evolucao.R para Resultados cn.csv e Resultados fit.csv para resultados do Qui-Quadrado). Logo após, aplicou-se a avaliação do funcionadmento do programa. O pipeline é organizado conforme demonstrado no Fluxograma 1.



Fluxograma 1 - Visual-its-Better-HWE Pipeline

#### 2.2 Avaliação do Pipeline

#### 2.2.1 Grupo Controle

Inicialmente, foi gerado um grupo controle no Fishpond, ou seja, um grupo que se encontra em condições baseadas no HWE. Por isso, devido a falta de informação do software, avaliou-se qual a taxa de mortalidade e tamanho da prole ideal para se ter as condições de HWE bem ajustadas e a geração de um controle adequado para as futuras análises. A coleta dos dados ocorreu ao longo de 100 gerações com intervalo de 10 gerações. Os tratamentos ocorreram em triplicata. Nas configurações do *Fishpond*, foram escolhidos valores que excluíriam migração, seleção, mutação e avalia-se aqui a mortalidade da população, os valores podem ser conferidos a Tabela 1 no MS.

#### 2.2.2 Seleção vs HWE

Como forma de avaliar a efitividade dos gráficos gerados, buscou-se verificar se a mudança da taxa adaptativa, conferida para cada genótipo, poderia ser avaliada por diferentes abordagens gráficas, facilitando a inferência no relacionamento dos dados e na constatação do desequlíbrio. Sendo assim, foi configurado um *fitness* igual a 0.5 para os genotipos rr, RR, Rr, separadamente, e monitorados ao longo de 100 gerações com intervalo de 20 gerações. O restante das configurações foram ajustadas de acordo com os grupos avaliados anteriormente, Cn e Cnn (FitrrCn, FitRRCn, FitRrCn e FitrrCnn, FitRRCnn, FitRrCnn). Logo após, os gráficos gerados foram comparados com os resultados estatísticos. Todo o experimento ocorreu em triplicata.

#### 3. Resultados

# 3.1 Grupo Controle

A definição do grupo controle foi avaliada comparado dois tratamento: a taxa de mortalidade igual o tamanho da prole dos peixes (Cn) e o tamanho da prole três vezes maior que a taxa de mortalidade (Cnn). Observou-se um distanciamento da proporção alélica inicial no grupo Cn para os alelos r (q) e R (p) , podendo indicar um processo adaptativo (Figura 1).



Figura 1 - Relação Frequência q (alelo r) x Frequência p (alelo R.

Curiosamente, a frequência alélica ao longo do tempo se mostrou mais estável graficamente para o grupo Cn comparado ao grupo Cnn. Apesar de ter gerado um ajuste baseado em regressão linear entre as replicatas, percebe-se que há uma discrepância entre os dados obtidos a partir do grupo Cn (Figura 2).



**Figura 2 - Frequência alélica ao longo do tempo.** Linhas: replicatas ajustadas com modelo de regressão linear

Além disso, quando comparado ao gráfico de HWE (onde se encontram valores esperados para frequência genotípica em HWE), observa-se que o grupo Cn

possui maior discrepância (Figura 3). Portanto, para melhor avaliar essa relação, a análise de Qui-quadrado foi realizada posteriormente.



**Figura 3 - Relação Frequência q x Frequência p.** Prop\_rr\_Geno, Prop\_Rr\_Geno Prop\_RR\_Geno: Proporção do genotipo rr, Rr, RR, respectivamente.

Por meio dos cálculos descritos no item 1.1, obteve-se os valores de Qui-quadrado para cada uma das gerações. Na tabela 2 (no MS), observa-se que Cn e Cnn tiveram resultados semelhantes em relação a aceitação ou rejeição da hipótese nula. Na aba Resultados, valores Xcalc superiores ao Xtab (~3.841, em um grau de liberdade = 1) foram Rejeitados e os inferiores foram aceitos (H0). Portanto, utilizou-se ambos os grupos como controle para as próximas análises.

#### 3.2 Seleção vs HWE

Conforme constatado anteriormente, a alteração da taxa de mortalidade em relação ao tamanho da prole gerou um distanciamento das proporções alélicas iniciais. Como avaliado na Figura 4, mesmo com alteração de *fitness* dos genótipos, o grupo Cn contribui para um possíel processo adaptativo. Curiosamente, algumas frequências alélicas para genótipos *rr* com *fitness* reduzido apresentaram altas frequências.



Figura 4 - Relação Frequência q x Frequência p. Tratamento: FitrrCn - Fitness rr = 0.5 para Cn; FitRrCn - Fitness Rr = 0.5 para Cn; FitRRCn - Fitness RR = 0.5 para Cn; FitRrCnn - Fitness Rr = 0.5 para Cnn; FitRrCnn - Fitness Rr = 0.5 para Cnn; FitRRCn - Fitness RR = 0.5 para Cnn.

No entanto, a Figura 2 contribui para elucidar que as frequências elevadas de *rr, observadas na Figura 1,* possuem contribuição da alta variabilidade encontrada quando reduzido o fitness heterozigoto no grupo Cn (FitRrCn). Além disso, constata-se que o tratamento Cn (taxa de mortalidade = tamanho da prole) contribui conseideravelmente no processo adaptativo (Figura 5).



Figura 5 - Frequência alélica ao longo do tempo.

No entanto, ao analisar as diferentes frequências genotípicas em relação as frequências alélicas esperadas, ambos os tratamentos tornam dificíl a visualização de quais gerações estão em desequilíbrio (Figura 6).



**Figura 3 - Relação Frequência q x Frequência p.** Prop\_rr\_Geno, Prop\_Rr\_Geno Prop\_RR\_Geno: Proporção do genótipo rr, Rr, RR, respectivamente.

Por fim, o teste de Qui-quadrado apresentou rejeição singnificativamente em em todos os tratamentos dessa seção. As gerações iniciais apresentaram equilíbrio inicial, evento esperado já que se configura a proporção alélica inicial.

#### Discussão

No experimento, os alelos R e r, que determinam a pigmentação das carpas Koi, foram avaliados em função da alteração da taxa de mortalidade da população em relação ao tamanho da prole e logo após, avaliou-se a influência da taxa adaptativa (fitness) conferida por cada genótipo. O pipeline desenvolvido conseguiu relacionar as variáveis em diferentes perspectivas, possibilitando uma percepção mais fundamentada sobre a inferência do HWE.

Mesmo que em taxas iguais, a população de peixes reduziu drasticamente, sugerindo que a taxa de mortalidade no Fishpond apresenta um influência superior

ao tamanho da prole durante a simulação. Essa relação não distanciou significativamente a população de carpas do HWE, o qual foi avaliado graficamente e por meio do teste Qui-quadrado com p valor inferior ao intervalo de confiança na maioria dos casos. Em contrate, a diferença entre essas duas váriaveis não incrementaram o HWE, sugerindo que a mortalidade exerce pode ter uma influência baixa sobre o processo de seleção. No entanto, maiores análises são necessárias para avaliar a taxa de mortalidade superior ao tamanho da prole.

Em relação ao *fitness* dos genótipos, observou-se que essas váriaveis influênciam consideravelmente no desequilibrio da população de carpas e quando somado as influências da taxa de mortalidade, podem acelerar o processo adaptativo.

Por fim, essa ferramenta requer maiores incrementos, especialmente do ponto de vista estatístico, podendo gerar análises mais robustas em relação ao Qui-Quadrado, inserindo determinadas correções e possibilitem maiores intercruzamentos de variáveis.

#### Referências

BOUGHTON, A. P. et al. Exploring and visualizing large-scale genetic associations by using PheWeb. Nature Genetics: Correspondence, 2020.

BREWER, M. S.; GARDNER, G. E. Teaching Evolution through the Hardy-Weinberg Principle: A real-time, active-learning exercise using classroom response devices. The American Biology Teacher, 2013.

GRAFFELMAN, J. Exploring Diallelic Genetic Markers: The HardyWeinberg Package. Journal of Statistical Software, 2015.

SANTOS, F. A. HW\_TEST, a program for comprehensive HARDY-WEINBERG equilibrium testing. Evolutionary Genetics, 2020.

SUSILAWATI, P. R. Implementation of Web-Based Virtual Laboratory Media in Learning

# **Material Suplementar**

# Quadro 1 - Dicionário de Dados

| Colunas      | Descrição                          |
|--------------|------------------------------------|
| Name         | Nome do Experimento                |
| Tratamento   | Nome do Tratamento                 |
| Initial_size | Tamanho da população inicial       |
| Capacity     | Capacidade populacional            |
| SexRatio     | Razão entre machos e fêmeas        |
| Mortality    | Mortalidade da População           |
| Brood        | Tamanho da prole                   |
| RpropInit    | Proporção Alélica R inicial        |
| Migration    | Taxa migratória                    |
| MigRprop     | Proporção Alélilca R de imigrantes |
| Rtor         | Taxa de mutação de R para r        |

| rtoR            | Taxa de mutação de r para R |
|-----------------|-----------------------------|
| Fitnrr          | Adaptação para rr           |
| FitnRr          | Adaptação para Rr           |
| FitnRR          | Adaptação para RR           |
| Generation      | Gerações                    |
| Population_Size | Tamanho da População        |
| Prop_R_AI       | Proporção Alélica R         |
| Prop_r_Al       | Proporção Alélica r         |
| Prop_rr_Geno    | Proporção Genotípica rr     |
| Prop_Rr_Geno    | Proporção Genotípica Rr     |
| Prop_RR_Geno    | Proporção Genotípica RR     |

Tabela 1 - Desenho Experimental

| Condições             | Cn  | Cnn |
|-----------------------|-----|-----|
| Initial size          | 500 | 500 |
| Carrying Capacity     | 500 | 500 |
| Mortality Rate        | 10  | 5   |
| Brood Size            | 10  | 15  |
| Initial R Allele Prop | 0.5 | 0.5 |
| Migration Rate        | 0   | 0   |
| MIgrant R allele      | 1   | 1   |
| R to r                | 0   | 0   |
| r to R                | 0   | 0   |
| Fit rr                | 1   | 1   |
| Fit Rr                | 1   | 1   |

| Fit RR                 | 1 | 1 |
|------------------------|---|---|
| Strength of Assortment | 0 | 0 |

Tabela 2 - Resultados Qui-Quadrado (Cn/Cnn)

|   | Tratamento | Generation | RRN | RrN | rrN | Xcalc                   | pval                  | Resultado |
|---|------------|------------|-----|-----|-----|-------------------------|-----------------------|-----------|
| 1 | Cn         | 0          | 122 | 257 | 117 | 0.552862690<br>300262   | 0.457150353<br>9112   | НО        |
| 2 | Cnn        | 0          | 132 | 254 | 115 | 0.074364888<br>3347021  | 0.785084400<br>866084 | НО        |
| 3 | Cn         | 10         | 114 | 194 | 80  | 0.006352885<br>43693749 | 0.936471890<br>606877 | Н0        |
| 4 | Cnn        | 10         | 154 | 247 | 99  | 0.004856916<br>27268765 | 0.944439143<br>961186 | НО        |
| 5 | Cn         | 20         | 93  | 150 | 50  | 0.497248104<br>875283   | 0.480711783<br>05042  | H0        |
| 6 | Cnn        | 20         | 144 | 262 | 99  | 0.931074114<br>577636   | 0.334583972<br>539176 | H0        |
| 7 | Cn         | 30         | 85  | 119 | 46  | 0.082543000<br>4745369  | 0.773880343<br>549317 | H0        |
| 8 | Cnn        | 30         | 142 | 255 | 105 | 0.171860370<br>813897   | 0.678463702<br>250645 | НО        |
| 9 | Cn         | 40         | 89  | 105 | 31  | 0.012505140<br>5697514  | 0.910961065<br>864013 | H0        |

| 10 | Cnn | 40  | 163 | 240 | 99 | 0.313578415<br>845215   | 0.575492582<br>968553  | H0      |
|----|-----|-----|-----|-----|----|-------------------------|------------------------|---------|
| 11 | Cn  | 50  | 86  | 103 | 38 | 0.421224954<br>081303   | 0.516326448<br>040278  | H0      |
| 12 | Cnn | 50  | 175 | 234 | 94 | 0.876223206<br>29682    | 0.349238203<br>555385  | Н0      |
| 13 | Cn  | 60  | 95  | 117 | 38 | 0.010832264<br>7341548  | 0.917107317<br>384801  | Н0      |
| 14 | Cnn | 60  | 174 | 235 | 90 | 0.378573345<br>925553   | 0.538367748<br>074122  | НО      |
| 15 | Cn  | 70  | 92  | 118 | 34 | 0.084644185<br>6803136  | 0.771099702<br>955151  | Н0      |
| 16 | Cnn | 70  | 189 | 221 | 94 | 3.866966967<br>232      | 0.049245438<br>7673331 | Rejeita |
| 17 | Cn  | 80  | 77  | 135 | 42 | 1.526943339<br>48738    | 0.216571775<br>280433  | Н0      |
| 18 | Cnn | 80  | 187 | 231 | 85 | 0.764400418<br>504377   | 0.381954921<br>599874  | Н0      |
| 19 | Cn  | 90  | 71  | 116 | 45 | 0.009862801<br>11828439 | 0.920890839<br>606438  | Н0      |
| 20 | Cnn | 90  | 186 | 239 | 71 | 0.115237806<br>188977   | 0.734257994<br>941833  | Н0      |
| 21 | Cn  | 100 | 72  | 99  | 62 | 4.712055261<br>03763    | 0.029951822<br>7610657 | Rejeita |
| 22 | Cnn | 100 | 190 | 236 | 77 | 0.037419118<br>3026097  | 0.846614220<br>051966  | НО      |

<sup>\*</sup>Rejeita: Xcalc > 3.841; H0: Xcalc < 3.841

Tabela 3 - Resultados Qui-Quadrado (Fit)

| Tratamento | Generation | Populat ion_Siz          | Prop_R_AI             | RRN | RrN | rrN | Xcalc                  | pval                    | Resultado |
|------------|------------|--------------------------|-----------------------|-----|-----|-----|------------------------|-------------------------|-----------|
|            |            | -                        | 0.4666666             |     |     |     | 0.26424766495          | 0.60721685511809        |           |
| FitRRCn    | 0          | 493                      | 6666667               | 130 | 240 | 123 | 6223                   | 4                       | H0        |
| FitRRCnn   | 0          | 503                      | 0.5                   | 116 | 277 | 111 | 4.67812156097<br>478   | 0.03054913585892<br>37  | Rejeita   |
| FitRrCn    | 0          | 500                      | 0.52                  | 133 | 252 | 113 | 0.05714304245<br>06147 | 0.81106982878586<br>4   | H0        |
| FitRrCnn   | 0          | 503.33<br>333333<br>3333 | 0.50666666<br>6666667 | 131 | 248 | 124 | 0.05854528473<br>94997 | 0.80881012795473<br>7   | Н0        |
| FitrrCn    | 0          | 500                      | 0.50666666<br>6666667 | 128 | 252 | 118 | 0.04490700139<br>69102 | 0.83217512591488        | Н0        |
| FitrrCnn   | 0          | 504.66<br>666666<br>6667 | 0.49666666<br>6666667 | 121 | 256 | 126 | 0.11383412738<br>7614  | 0.73582055924194<br>6   | Н0        |
| FitRRCn    | 20         | 283.66<br>666666<br>6667 | 0.43666666<br>6666667 | 43  | 165 | 78  | 7.88553790043<br>032   | 0.00498316551881<br>038 | Rejeita   |
| FitRRCnn   | 20         | 503                      | 0.39                  | 75  | 252 | 181 | 0.59322605532          | 0.44117432758520        | H0        |

|          |    |                          |                       |     |     |     | 7402                 | 4                        |         |
|----------|----|--------------------------|-----------------------|-----|-----|-----|----------------------|--------------------------|---------|
| FitRrCn  | 20 | 213.33<br>333333<br>3333 | 0.55333333<br>3333333 | 82  | 70  | 60  | 22.4289234355<br>02  | 2.18065281684281<br>e-06 | Rejeita |
| FitRrCnn | 20 | 499.66<br>66666<br>6667  | 0.54                  | 180 | 180 | 142 | 38.1645859843<br>555 | 6.50218681911723<br>e-10 | Rejeita |
| FitrrCn  | 20 | 242.33<br>333333<br>3333 | 0.58                  | 72  | 137 | 34  | 5.42914087354<br>972 | 0.01980341936405<br>05   | Rejeita |
| FitrrCnn | 20 | 503                      | 0.5666666<br>6666667  | 146 | 278 | 79  | 7.52157739392<br>61  | 0.00609642729376<br>754  | Rejeita |
| FitRRCn  | 40 | 193.66<br>666666<br>6667 | 0.29333333<br>3333333 | 10  | 94  | 90  | 4.83152981771<br>331 | 0.02794382474872<br>28   | Rejeita |
| FitRRCnn | 40 | 500                      | 0.42                  | 70  | 270 | 160 | 6.38839730116<br>459 | 0.01148686957833<br>92   | Rejeita |
| FitRrCn  | 40 | 163                      | 0.67                  | 92  | 33  | 38  | 46.5622529341<br>272 | 8.87535442710156<br>e-12 | Rejeita |
| FitRrCnn | 40 | 503                      | 0.52                  | 184 | 154 | 164 | 73.4402411807<br>596 | 1.03729586555121<br>e-17 | Rejeita |
| FitrrCn  | 40 | 230.66<br>666666<br>6667 | 0.6866666<br>6666667  | 101 | 113 | 16  | 3.89700260251<br>192 | 0.04837233736795<br>08   | Rejeita |
| =itrrCnn | 40 | 502.33<br>333333<br>3333 | 0.6266666<br>6666667  | 171 | 290 | 44  | 25.0729218316<br>446 | 5.52026219522115<br>e-07 | Rejeita |
| FitRRCn  | 60 | 169.66<br>666666<br>6667 | 0.21666666<br>6666667 | 3   | 67  | 99  | 4.12225440958<br>247 | 0.04232264400273<br>58   | Rejeita |
| FitRRCnn | 60 | 497                      | 0.37                  | 45  | 273 | 179 | 16.3510824943<br>049 | 5.26260951077622<br>e-05 | Rejeita |
| FitRrCn  | 60 | 127.66<br>666666<br>6667 | 0.68                  | 78  | 18  | 31  | 54.8623423462<br>479 | 1.29274379889936<br>e-13 | Rejeita |
| FitRrCnn | 60 | 502                      | 0.45333333<br>3333333 | 164 | 129 | 209 | 115.118414792<br>642 | 7.4135724612535e-<br>27  | Rejeita |
| FitrrCn  | 60 | 195.66<br>666666<br>6667 | 0.77                  | 112 | 79  | 5   | 3.64792864368<br>828 | 0.05613898929926<br>33   | НО      |
| FitrrCnn | 60 | 502.33<br>333333<br>3333 | 0.6966666<br>666667   | 228 | 246 | 28  | 13.0546267622<br>85  | 0.00030253611782<br>2392 | Rejeita |
| FitRRCn  | 80 | 227.66<br>666666<br>6667 | 0.15333333<br>3333333 | 4   | 65  | 160 | 0.46938016354<br>851 | 0.49327246055694         | Н0      |
| FitRRCnn | 80 | 496                      | 0.35                  | 25  | 293 | 179 | 44.9870395363<br>994 | 1.98342838679962<br>e-11 | Rejeita |
| FitRrCn  | 80 | 110                      | 0.67                  | 72  | 4   | 34  | 89.3638903543<br>183 | 3.28477744900494<br>e-21 | Rejeita |
| FitRrCnn | 80 | 502.33<br>333333<br>3333 | 0.41333333<br>3333333 | 151 | 112 | 238 |                      | 3.7964967239853e-<br>33  | Rejeita |
|          |    |                          |                       |     |     |     |                      |                          | -       |

|          |     | 333333<br>3333           |                       |     |     |     | 397                   | 22                       |         |
|----------|-----|--------------------------|-----------------------|-----|-----|-----|-----------------------|--------------------------|---------|
| FitrrCnn | 80  | 502.33<br>333333<br>3333 | 0.71333333<br>3333333 | 239 | 238 | 25  | 12.0485536150<br>622  | 0.00051832581435<br>3088 | Rejeita |
| FitRRCn  | 100 | 227                      | 0.15333333<br>3333333 | 4   | 64  | 161 | 0.37671588312<br>5871 | 0.53936610189210<br>7    | H0      |
| FitRRCnn | 100 | 507                      | 0.29                  | 20  | 259 | 228 | 25.5995347529<br>254  | 4.20140685335836<br>e-07 | Rejeita |
| FitRrCn  | 100 | 217.33<br>333333<br>3333 | 0.67                  | 144 | 1   | 72  | 209.085312385<br>711  | 2.17483715160051<br>e-47 | Rejeita |
| FitRrCnn | 100 | 501.33<br>333333<br>3333 | 0.39                  | 152 | 87  | 262 | 200.053640757<br>562  | 2.03294809995623<br>e-45 | Rejeita |
| FitrrCn  | 100 | 177.33<br>333333<br>3333 | 0.8                   | 111 | 63  | 5   | 0.87131159140<br>6708 | 0.35059246047297<br>1    | НО      |
| FitrrCnn | 100 | 503                      | 0.73666666<br>6666667 | 257 | 228 | 18  | 13.9907493526<br>556  | 0.00018371227341<br>1545 | Rejeita |

\*Rejeita: Xcalc > 3.841; H0: Xcalc < 3.841