Lecture5 Classification

1. Exercise Broken Down

Task

Fashion-MNIST classification with dense neural network

In this exercise, you will build a deep neural network to classify images from the Fashion-MNIST dataset using only dense layers. The Fashion-MNIST dataset is a collection of images of clothing items, where each image is a 28x28 grayscale image of one of 10 classes.

Single-label, multi-class classification problem.

Load Data

Pre-process Data

A lot of time typically goes into organizing data

```
def preprocess_data(x_train, y_train, x_test, y_test, val_size=10000):
    # Normalize the data to be within the range [0,1]
    x_train = x_train.astype('float32') / 255.
    x_test = x_test.astype('float32') / 255.

# Slice the training data into train and validation sets
    train_size = x_train.shape[0]
    x_val = x_train[-val_size:]
    y_val = y_train[-val_size:]
    y_train = x_train[:-val_size]
    y_train = y_train[:-val_size]

# Reshape data
    x_train = x_train.reshape((train_size-val_size, 28 * 28))
    x_val = x_val.reshape((val_size, 28 * 28))
    x_test = x_test.reshape((val_size, 28 * 28))
    return x_train, y_train, x_val, y_val, x_test, y_test
Common normalization for images

Train

Validation

Train

Val

Test

Common reshape to input images into
    Dense layers (rank3->rank2)

Test

Test
```

Build Model

Activation function

Dense layer without activation

output = dot(input, W) + b

• If you stack many of this, the resulting transformation is still linear. Your model is very restricted on what it can learn.

Activation functions allow the network to learn **non-linear transformations**

Activation Function in the Intermediate Layer

Activation Function in the Last Layer

Binary-class Classification Problem: Sigmoid

Multi-class Classification Problem: Softmax

Loss function

A measure of **how good** your model predictions are. Signal used in training.

The choice of the loss function depends on the problem.

- For our: Single-label, multi-class classification problem
 - Categorical cross-entropy
 - Sparse categorical cross-entropy

Cross-entropy loss

A quantity that measures distances between probability distributions, or ground truth distributions and predictions.

• The cross-entropy loss and sparse categorial cross-entropy loss are mathematically equivalent, is just a different interface

For binary classification

$$L = -rac{1}{N} \sum_{i=1}^{N} [y_i \log(p_i) + (1-y_i) \log(1-p_i)]$$

- ullet L is the loss for the entire dataset
- \bullet *N* is the number of samples
- y_i is the actual label (0 or 1)
- ullet p_i is the predicted probability of the class being 1 for the i_{th} sample

For multi-class classification

$$L = -rac{1}{N}\sum_{i=1}^N\sum_{c=1}^M y_{ic}\log(p_{ic})$$

- ullet L is the loss for the entire dataset
- \bullet N is the number of samples
- ullet M is the number of classes
- ullet y_{ic} : a binary indicator (0 or 1) if class label c is the correct classification for observation i
- ullet p_{ic} : is the predicted probability that observation i is of class c

Metrics

We use them to know how training is progressing.

This signal is NOT used by the model during training.

Accuracy

retrieved elements (model predicted these are dog pictures)

Train Model

- The fit() function has other input parameters you can use to tune the training of your model.
- Take a look at the documentation!

Test Model

Classification Problem

Single-label, Binary (=2-class)

Are these mushroom poisonous?

Yes / No

- Binary classification is a special case of classification where num_class == 2.
- Treat it as such use sparse categorical cross entropy, softmax, etc.

Single-label, Multi-class

What animal is this?

Predicted likelihoods

Cat	Dog	Rabbit	Duck
0.2	0.1	0.7	0.0

2. The fitting problem

Overfitting

- The model focuses on what it has seen (training examples)
- Too much that it only memorizes the seen examples by focusing on irrelevant details
- Fail at unseen examples

How can you mitigate overfitting?

Early stopping

• Looking at the train and validation losses, you can estimate the number of epochs needed for a robust fit (or use the early stopping callback in fit())

All the things you can find in other resources (web, books, ..) — such as

- regularizers
- adding noises
- dropout
- batch norm

• getting more data

are about preventing the model to memorize training examples by their irrelevant aspects

Underfitting

It could also happen that your model doesn't overfit ever. Then it's too small!

How can you mitigate underfitting?

- We need a larger model capacity.
- Increase the model size or stack more layers until the model is able to overfit.

3. The generalization problem

Distribution of training samples

Eval Dataset.

Dog picture count: 550. Cat picture count: 50. Total count: 600.

$$acc = \frac{550}{600} = 92\%$$

The bias problem

- Our models are not impartial.
- There are always biases we have to take care of.

How can you mitigate biases?

Data: Collect more data to balance the dataset.

Data: Balance the distribution with synthetic data.

Sampling: Oversample the less represented class.

Sampling: Undersample the majority class.

Loss: Weight the loss to compensate for imbalance.