

Estimating Time since Death with Artificial Intelligence

Noah Nisbet, John Suchanek, Jai Agarwal, Katherine Weisensee, Madeline Atwell, Carl Ehrett, Hudson Smith Clemson University, Watt Al Creative Inquiry Program

Introduction

Accurately determining the time since death, or postmortem interval (PMI), can facilitate the identification of an unknown individual and help to reconstruct the events around the time of death in medicolegal death investigations. We use the unique data resource afforded by the geoFOR app to build and test models for estimating PMI.

geoFOR

A major weakness with the current state of forensic research is the lack of a large and representative reference data set.

geoFOR is an app designed for use by researchers and investigators which creates a crowdsourced database that can be used to create, test, and refine models of decomposition rates in order to improve methods for estimating PMI.

Generative model

With a Bayesian approach, we model the decomposition process to not only get better predictions but better understand the relationships that drive the model to predict higher or lower PMI estimates.

Data validation	
Investigation into	
interobserver agreement	
scoring of decomposition	
characteristics for	
Reviewers A, B, and C	
using Fleiss' kappa, Cohen's	
kappa, and percent	_
agreement.	

A, B, C Fleiss' kappa:	0.76
A and C Cohen's kappa:	0.87
B and C Cohen's kappa:	0.71
B and A Cohen's kappa:	0.71
Percent Agreement	0.86

Decomposition Characteristics	Fleiss' kappa	% agree
Embalmed	NaN	1.00
Mummification	1.00	1.00
Burned	NaN	1.00
Weathered bone	NaN	1.00
Dry bone	NaN	1.00
Exposed bone, dry tissue	NaN	1.00
Adipocere	NaN	1.00
Rigor mortis full	1.00	1.00
Livor mortis absent	-0.01	0.96
Livor mortis unfixed	-0.01	0.96
Skin slippage	0.93	0.96
Rigor mortis absent	-0.01	0.96
Exposed bone, moist tissue	-0.01	0.96
Bone with grease	-0.01	0.96
Abdominal caving	0.31	0.92
Liquid decomp	0.72	0.92
Rigor mortis partial	-0.03	0.92
Skin discoloration	0.72	0.88
Drying of fingers, lips, nose	0.58	0.80
Marbling	0.69	0.80
Bloat	0.65	0.80
Greening abdomen	0.58	0.76
Purging	0.58	0.72
Rigor mortis passed	0.30	0.60

Discriminative model

- Simultaneous model selection and model calibration to optimize cross-validated performance
- CV'd R², 95% confidence interval: [0.80, 0.83]

Feature Specific Correlation of Residual

Spearman: -0.02

Absent R²: 0.84

 Ablation analysis to study model performance using different sets of regressors

Discriminative model investigation

- Spearman correlation coefficient and R² score to validate model performance on subcategories of data
- Clustering to examine model performance within clusters and for outlier detection
- Dimension reduction using t-SNE algorithm used to show 72 feature data in 2 dimensions

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7578167/