

厦门大学《微积分 I-1》课程期末试卷

试卷类型: (理工类 A 卷) 考试日期 2017.01.11

一、求下列定积分(每小题6分,共18分):

	6 4	$\mathrm{d}x$
1.	\mathbf{J}_0	$\overline{1+\sqrt{x}}$

得 分	
评阅人	

2.
$$\int_{-3}^{3} [\sqrt{9-x^2} + x \ln(1+x^2)] dx$$

3.
$$\int_0^{\pi} x \sqrt{\cos^2 x - \cos^4 x} dx$$

1

二、求下列不定积分(每小题6分,共12分):

得 分	
评阅人	

$$2. \quad \int \frac{\mathrm{d}x}{x^2 \sqrt{1 + x^2}}$$

1/2*根号下(1+1/x 平方)+C

三、求反常积分
$$\int_0^{+\infty} \frac{1}{\sqrt[3]{x(x+1)}} dx$$
 。 (8分)

得 分	
评阅人	

四、设函数 f(x) 在区间 $[0,\pi]$ 上连续,且满足:

得 分	
评阅人	

五、计算下列极限: (每小题 6 分, 共 12 分)

1.
$$\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{n} \ln(1+\frac{k}{n})$$

2	m2-	
	/	

得	分	
评阅人		

$$\lim_{x \to 0} \frac{(\int_0^x e^{t^2} dt)^2}{\int_0^x (x - t) \cos t^2 dt}$$

六、求微分方程 $x \ln x dy + (y - \ln x) dx = 0$ 的通解。(9分)

得 分	
评阅人	

七、求微分方程 $y'' - y = 2(e^x + \cos x)$ 满足初始条件 y(0) = 0, y'(0) = 2 的特解。 (10 分)

得 分	
评阅人	

八、有一向上凹的光滑曲线在原点与x轴相切,且该曲线在任一点(x,y)处的曲率为 e^{-y} ,求该曲线的方程 $\left(-\frac{\pi}{2} < x < \frac{\pi}{2}\right)$ 。(10分)

得 分	
评阅人	

九、设函数 f(x) 在区间 $[0,+\infty)$ 上连续且单调增加,试证: 对于任何的 b>a>0 ,有

$$b\int_0^b f(x)dx - a\int_0^a f(x)dx < 2\int_a^b xf(x)dx$$
 (8 分)

十、设非负函数 f(x) 在区间 [0,a] (a>0) 上连续,且对任意 给定的 $x\in [0,a]$,均有 $f(x)\leq \int_0^x f(t) dt$,试证: $f(x)\equiv 0$, $\forall x\in [0,a]$ 。 (5分)

得 分	
评阅人	