

Medida de la pobreza económica

Concepto de Pobreza

- "Una familia *pobre* es la que percibe unos ingresos totales insuficientes para satisfacer las necesidades mínimas de sustento" (Rowntree, 1901).
- "Los individuos son *pobres* porque no tienen las oportunidades, dignidad y comodidades que se consideran normales en la comunidad a la que pertenecen. Por tanto, son las normas <u>medias</u> continuamente cambiantes de esa comunidad las que constituyen los puntos de partida para el cálculo de la pobreza; los pobres son aquellos que se encuentran suficientemente por debajo de esos niveles medios". (Social Science Research Council, 1968; cita extraída de Atkinson, 1981).
- "Las personas son *pobres* si no pueden participar del estilo de vida de la sociedad" (Townsend, 1979).
- "Una familia es *pobre* cuando su renta es inferior al nivel necesario para recibir subsidios ó prestaciones asistenciales".
- Pobreza absoluta *versus* pobreza relativa.

Elementos del análisis estadístico de la pobreza

Umbral ó Línea de Pobreza

Dada una sociedad con N individuos, cuyo vector de rentas no negativas es $x = (x_1, x_2,..., x_N)$ ', entonces el umbral de pobreza es un valor z>0, tal que: $x_i < z \iff i$ es pobre

El conjunto de pobres será $T(x,z) = \{i: x_i < z\}$ y su cardinal(q) será el *número* de pobres.

Incidencia e Intensidad de la Pobreza

Utilicemos el siguiente ejemplo extraído de Creedy (*The dynamics of inequality and poverty*, 1998, págs. 27-28):

Considérese una población de 10 individuos, donde el umbral de pobreza se ha fijado en 10\$ y se dispone de 5\$ para aliviar el nivel de pobreza. Para ello, la política 1 (reducir la incidencia) consiste en otorgar 2\$ a 4 y 3\$ a 3, la política 2 (reducir la pobreza extrema) podría otorgar 3\$ a 1 y 2\$ a 2, mientras que la política 3 (de compromiso) otorgaría : 2\$ a 1 y 4 y 1\$ a 2. La distribución inicial y las resultantes serían:

Distribución	1	2	3	4	5	6	7	8	9	10
							20			
Política 1										
Política 2	7	8	8	9	12	15	20	25	30	35
Política 3	6	7	8	11	12	15	20	25	30	35

¿Qué política resulta más correcta ó eficiente?

Curvas I.I.D./T.I.P. (Jenkins y Lambert)

Sea una sociedad con N individuos, cuyo vector ordenado de rentas no negativas es $x = (x_1, x_2, ..., x_N)$, y sea z>0, el umbral de pobreza.

Déficit ó desnivel de pobreza del individuo i:

$$g_i = g(x_i;z) = Máx\{0,z-x_i\}$$
, $i=1,2,...,N$

Curvas I.I.D.

$$p_0 = 0, p_i = \frac{1}{N}$$
 $G_0 = 0, G_i = \frac{1}{N} \sum_{i=1}^{i} g_i$

IID(p,g) es la poligon que une los puntos $\{(p_i, G_i), i=0,1,...,N\}$

IID(p,g) es la poligonal que une los puntos

• IID(p) es una función cóncava creciente de p, cuya pendiente es el déficit de pobreza en cada p. IID(p) es constante, a partir de p=(q/N).

Criterio de dominación, según la curva IID

• Es posible también definir la curva IID sobre los déficits *normalizados* de pobreza:

$$\Gamma_{i} = \Gamma(x_{i},z) = Máx\{0, 1-(x_{i}/z)\}$$

donde IID(p,Γ) muestra características más similares a las curvas de Lorenz.

• Dadas dos distribuciones de renta (x,y), siendo z la línea de pobreza, se tiene que x *domina en pobreza* a y cuando:

$$x \ge_{IID} y \Leftrightarrow IID[p,g(x;z)] \ge IID[p,g(y;z)], \forall p \in [0,1]$$

En este caso, la distribución de x presenta mayor pobreza que y, para todos los umbrales de pobreza comunes inferiores a z.

• La relación definida tiene estructura de ordenación parcial, ya que son posibles los cruces de curvas IID.

Ejemplo: Curvas I.I.D./T.I.P.

Axiomática de Sen

Se considera el sistema básico de axiomas que cualquier indicador de pobreza debe satisfacer.

• Axioma Focal: El indicador de pobreza está determinado por las rentas de los pobres. Es decir, sean x e y dos vectores ordenados de rentas, y sean x(z) e y(z) los subvectores formados por las rentas de los pobres. Entonces:

$$x(z) = y(z)$$
 \Rightarrow $P(x,z) = P(y,z)$

• Axioma de Monotonía:

Sean $x = (x_1,..., x_i, ..., x_N)'$, $x^* = (x_1, ..., x_i - \alpha,...,x_N)'$, siendo z > 0 la línea de pobreza y $\alpha > 0$. Entonces:

$$x_i < z \implies P(x,z) < P(x^*,z)$$

• Axioma de Transferencia Débil:

Sean
$$x = (x_1, ..., x_i, ..., x_N)', x^* = (x_1, ..., x_i - \alpha, ..., x_j + \alpha, ..., x_N)', \text{ con } \alpha > 0.$$

 $x_i < z \implies P(x,z) < P(x^*,z)$

Otros axiomas de uso frecuente

- Axioma de *Simetría*: Si y se obtiene de x mediante una permutación, la medida de la pobreza no varía: P(x,z) = P(y,z), $\forall z > 0$.
- Axioma de *Sensibilidad frente a incrementos del umbral de pobreza:* Dado un vector x, ordenado de rentas, P(x,z')>P(x,z), $\forall z,z'>0$: z'>z
- Axioma de *Normalización:* Si no existen individuos cuya renta se sitúe por debajo del umbral de pobreza, la medida de la pobreza es cero.
- Axioma de *Continuidad:* Para un umbral de pobreza (z) determinado, la medida P(x,z) es una función continua de la renta (x).
- Axioma de *Descomponibilidad Aditiva:* Sea x el vector de rentas de una población y supongamos que ésta se particiona en m subgrupos: $x = (x^{(1)}, x^{(2)}, ..., x^{(m)})$. En este caso:

$$P(x,z) = \sum_{i=1}^{m} \frac{N_i}{N} P(x^{(i)}, z)$$

Indicadores Simples de Pobreza

En todos los casos, se supone una población de N individuos, cuyo vector ordenado de rentas es $x = (x_1, x_2, ..., x_N)$, siendo z>0, el umbral de pobreza. El número de pobres (q) es el cardinal de $T=T(x,z)=\{i: x_i< z\}$.

Proporción de Pobres

$$H(x,z) = \frac{q}{N}$$

Ratio de Pobreza

$$I(x,z) = \frac{1}{qz} \sum_{i \in T} g(x_i, z) = \frac{1}{qz} \sum_{i=1}^{q} (z - x_i) = 1 - \frac{\mu_q}{z}$$

Ratio Combinado de Pobreza

HI(x,z) = H(x,z).I(x,z) =
$$\frac{1}{Nz} \sum_{i=1}^{q} (z - x_i) = \frac{q}{N} - \frac{q \cdot \mu_q}{Nz}$$

Medidas basadas en déficits de pobreza

$$P(x,z) = A(q, N, z) \cdot \sum_{i \in T} g(x_i, z) \cdot V_i(x, z)$$

Medida de Sen

$$V_{i}(x,z) = q + 1 - i \implies S(x,z) = \frac{2}{(q+1)Nz} \sum_{i \in T} (z - x_{i}) . (q+1-i) = H. [I + (1-I)G_{q}]$$

Medida de Thon

$$V_{i}(x,z) = N + 1 - i \implies T(x,z) = \frac{2}{N(N+1)z} \sum_{i \in T} (z - x_{i}) \cdot (N + 1 - i) = \frac{q+1}{N+1} S(x,z) + \frac{2(N-q)}{N+1} HI(x,z)$$

Medida Exponencial

$$V_{i}(x,z) = e^{z-x_{i}} \implies E(x,z) = \frac{q.k}{N.z} \sum_{i \in T} (z-x_{i}).e^{z-x_{i}} = \frac{1}{Nz} \sum_{\substack{i=1 \ Dra. \ J. \ Dominguez}}^{q} (z-x_{i}).e^{-x_{i}/z}$$

Familias de Medidas de Pobreza

Familia de Kakwani

$$V_{i}(x,z) = (q+1-i)^{\alpha} \Rightarrow K(x,z,\alpha) = \frac{q}{Nz} \left(\sum_{i=1}^{q} i^{\alpha} \right)^{-1} \sum_{i=1}^{q} (z-x_{i})(q+1-i)^{\alpha}, \ \alpha \geq 0$$

$$\alpha = 0 \Rightarrow K(x,z;0) = HI(x,z)$$

$$\alpha = 1 \Rightarrow K(x,z;1) = S(x,z)$$

Familia de Foster, Greer y Thorbecke

$$V_{i}(x,z) = (z - x_{i})^{\alpha - 1} \Rightarrow F(x,z,\alpha) = \frac{1}{Nz^{\alpha}} \sum_{i=1}^{q} (z - x_{i})^{\alpha}, \ \alpha \ge 0$$

$$\alpha = 0 \Rightarrow F(x,z;0) = H(x,z)$$

$$\alpha = 1 \Rightarrow F(x,z;1) = HI(x,z)$$

$$\alpha = 2 \Rightarrow F(x,z;2) = H.(I^{2} + (1-I)^{2}CV_{0}^{2})$$

Medidas	Н	I	HI	Κα	Fα	T	Е
Axiomas							
Focal	SI						
Monotonía	NO	SI	SI	SI	SI	SI	SI
Transf. Débil	NO	NO	NO	SI	SI	SI	SI
Simetría	SI						
Incr. de la linea de pob.	NO	NO	NO	SI	SI	SI	SI
Normalización	SI						
Continuidad	NO	NO	SI	NO	SI	SI	SI
Descomponibilidad	SI	NO	SI	NO	SI	NO	NO

Análisis Estático y Dinámico

