NOMENCLATURE OF ORGANIC COMPOUNDS

Mainly three systems are adopted for naming an organic compound : -

- (i) Common Names or Trivial System
- (ii) Derived System
- (iii) IUPAC system or Geneva System

COMMON OR TRIVIAL SYSTEM

(i) On the basis of source from which they were obtained.

S.No.	Organic Compound	Trivial Name	Source
1.	CH ₃ OH	Wood spirit or Methyl	Obtained by destructive distillation
2.	NH ₂ CONH ₂	spirit Urea	of wood. Obtained from urine
3.	CH ₄	Marsh gas (fire damp)	It was produced in marsh places.
4.	СН ₃ СООН	Vinegar	Obtained from Acetum - i.e. Vinegar
5.	COOH COOH	Oxalic acid	Obtained from oxalis plant.
6.	нсоон	Formic acid	Obtained from formicus [Red ant]
7.	СН ₃ – СН – СООН ОН	Lactic acid	Obtained from lactous (milk)
8.	CH ₂ -COOH CH(OH)COOH	Malic acid	Obtain from Apple
9	сн ₃ сн ₂ сн ₂ соон	Butyric acid	Obtained from butter.
10.	CH ₃ (CH ₂) ₄ COOH	Caproic acid	Obtained from goats.
11.	C ₂ H ₅ OH	Grain alcohol	Obtained from barley.

(ii) On the basis of property

- 1. Glucose Sweet in test
- 2. Glycol Sweet poisnous

Glycerol - Sweet (Glycus - Sweet)

(iii) On the basis of discovery

- 1. RMgx (Grigard Reagent)
- 2. R₂Zn (Frankland reagent)

(iv) On the basis of structure

S.No.	No. of Carbon atom	Word Root
(i)	1C	Meth
(ii)	2C	Eth
(iii)	3C	Prop
(iv)	4C	But
(v)	5C	Pent
(vi)	6C	Hex
(vii)	7C	Hept
(viii)	8C	Oct
(ix)	9C	Non
(x)	10C	Dec

Common Names for Hydrocarbon Derivatives

S.No.	Compound	Name
1.	R – X	Alkyl halide
2.	R – OH	Alkyl alcohol
3.	R – SH	Alkyl thio alcohol
4.	R - NH ₂	Alkyl amine
5.	R-O-R	Dialkyl ether
6.	R-C-R	Dialkyl ketone
7.	R-NH-R	Dialkyl amine
8.	R-N-R I R	Trialkyl amine
9.	R-O-R'	Alkyl alkyl' ether
10.	R-C-R'	Alkyl alkyl' ketone
11.	R-NH-R'	Alkyl alkyl' amine
12.	R-N-R' R"	Alkyl alkyl' alkyl" amine

R is termed as alkyl -

GROUPS

Atom or a group of atoms which possess any 'free valency' are called as Groups.

If their are two structure of same molecular formula then some prefix (n, iso, neo) are used two differentiate them.

Normal group : -

- (a) It is represented by 'n'.
- (b) Groups having no branch (Straight chain).
- (c) Free bond will come either on 1st carbon atom or on last carbon atom.

$$n - butyl$$
 $CH_3 - CH_2 - CH_2 - CH_2 -$
 $n - propyl$ $CH_3 - CH_2 - CH_2 -$

Iso group : -

When one methyl group is attached to the second last carbon of the straight carbon chain is named as iso group.

e.g.
$$H_3C-CH CH_3-CH-CH_2 CH_3-CH-CH_2-CH_2 CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

Exception:

Neo group : -

- (a) When two methyl groups on second last carbon of a straight carbon chain is attached to other four carbon atom group is named as neo group.
- (b) It is represented by following structure -

(c) There should be one 4° carbon and atleast three methyl group on 4° carbon.

NOTE: (Optically Active) = If all valency are attached to different atoms.

Amyl group : -

Secondary group : -

- (a) The carbon having free valency attached to two carbon is called secondary carbon.
- (b) It is represented by following structure. C C C C

eg. (i)
$$CH_3 - CH - CH_2 - CH_3$$
 (ii) $CH_3 - CH - CH_2 - CH_2 - CH_3$ (secondary butyl) (secondary pentyl)

Tertiary group : -

- (a) The carbon having free valency attached to three other carbon.
- (b) It is represented by following structure C C C

e.g.
$$(i)CH_3 - C - CH_3$$
 $CH_3 - C - CH_2 - CH_3$ (Tertiary butyl) (Tertiary pentyl)

Alkyl group : -

When a hydrogen is removed from Alkane (saturated hydrocarbon) then alkyl group is formed. A bond is vacant on alkyl group on which any functional group may come.

alkane
$$\xrightarrow{-H}$$
 Alkyl - (C_nH_{2n+2}) (C_nH_{2n+1})

e.g.

(ii)
$$CH_3 - CH_3 \xrightarrow{-H} CH_3 - CH_2 -$$

Ethane ethyl

(viii)
$$CH_3$$
 CH_3
 CH_3

Alkenyl group : -

Alkynyl group -

$$(C_nH_{2n-2}) \qquad (C_nH_{2n-3})$$

$$CH \equiv C - \qquad CH \equiv C - CH_2 - \qquad CH_3 - C \equiv C -$$

$$Ethynyl \qquad Propargyl (2-propynyl) \qquad Propynyl (1-propynyl)$$

Alkylidene group -

Alkylene group

Position of double bond : -

In an unsaturated hydrocarbon if the position of double bond is on Ist or last carbon then it's prefix will be α (alpha) if it is on 2nd carbon it is termed as β (Beta) & the γ (gamma) & δ (delta) and so on.

COMMON - NAMING OF DIHALIDES

- (a) When two same halogen atoms are attached to the same carbon such compounds are called Gemdihalides.
- (b) Common names of such compounds are alkylidene halides

Exception : Methylidene halide (wrong) $CH_3-CH < X$

Methylene halide (right)

(c) When two same halogen atoms are attached to adjacent carbon, these are called as vicinal dihalides. Common names of such compounds are alkylene halide.

eg
$$CH_3 - CH - CH_2$$
 Propylene Iodide $H_3C - C - CH_2 - CI$ Isobutylene chloride CH_3

(d) When two same halogen atoms are attached at the two ends of a carbon chain its common naming will be polymethylene halide.

'poly' word indicates the number of -CH2- groups.

eg.
$$CH_2 - CH_2 - CH_2$$
 $CH_2 - CH_2 - CH_2 - CH_2$ $CH_2 - CH_2 - CH_2 - CH_2$ $CH_2 - CH_2$ $CH_$

Exception: –

$$CH_2 - X$$
 dimethylene halide (wrong)

 $|$
 $CH_2 - X$ ethylene halide (right)

COMMON - NAMING OF DI-HYDROXY COMPOUNDS

(a) When two -OH groups are attached to adjacent carbon atoms they are termed as alkylene glycol.

Butylene glycol Active amylene glycol

(b) When two -OH group are attached at the two ends of a carbon chain, these compounds are named as polymethylene glycol.

Poly \rightarrow Number of CH₂ groups.

$$\begin{array}{c} \text{eg.}: \begin{array}{c} \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} \\ \mathsf{I} \\ \mathsf{OH} \end{array} \begin{array}{c} \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} \\ \mathsf{I} \\ \mathsf{OH} \end{array} \begin{array}{c} \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} \\ \mathsf{I} \\ \mathsf{OH} \end{array} \begin{array}{c} \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH_2} \\ \mathsf{I} \\ \mathsf{OH} \end{array}$$

Exception:

CH₂ - OH Dimethylene glycol (wrong)

CH₂ - OH Ethylene glycol (right)

PROBLEMS

Make the structure of following organic compounds -

- 1. Isopropylidene Bromide 2. Active amylene Iodide
- Isobutylene glycol
 Isobutylene

Trimethylene glycol

ANSWERS

COMMON-NAMING OF THE FUNCTIONAL GROUP HAVING CARBON

(Common naming for Hydrocarbon derivatives)

S.No.	Functional group	Suffix
(i)	О -С - ОН	-ic Acid
(ii)	O O O O	-ic anhydride
(iii)	0 -C-O-R	-ate
(iv)	O -C-NH ₂	-amide
(v)	O -C - X	-yl halide
(vi)	о -С-н	-aldehyde
(vii)	- C ≡ N	-o-nitrile
(viii)	-N = C	-o-isonitrile

Prefix : -

1 Carbon → Form-

2 Carbon → Acet-

3 Carbon → Propion-

4 Carbon → Butyr| → Normal -

5 Carbon →

Valer NormalIso
SecondaryTertiary
Normal4 C + double bond = Croton-

Propionyl chloride

Isobutyramide

Acetaldehyde

NOMENCLATURE OF ESTER

The group which is attached to the oxygen is written as alkyl & the remaining structure is named on the basis of Functional Group suffix.

(vii)
$$CH_2 = CH - C - O - CH_2 - CH_3$$
 (viii) $CH_3 - CH = CH - C - O - CH_3$
Ethyl acrylate Methyl crotonate

NOMENCLATURE OF ANHYDRIDE

Rule: - Add the total number of carbon atoms & divide it by 2, the substract will give you the number of C - atom. Now name it according to suffix use for anhydride.

$$\frac{10\text{tal}}{2} = \text{Substract}$$

$$= \text{Number of C atom}$$

$$\frac{4}{2} = 2 \qquad \begin{array}{c} O & O \\ \parallel & \parallel \\ CH_3-C-O-C-CH_3 \end{array} \qquad \begin{array}{c} \frac{6}{2} = 3 \end{array} \qquad \begin{array}{c} O & O \\ \parallel & \parallel \\ C_2H_5-C-O-C-C_2H_5 \end{array}$$
Acetic anhydride

Propionic anhydride

If R ≠ R', You need not to find out substract.

Acetic propionic anhydride (right)

Propionic Acetic anhydride (wrong)

Divide it in two parts as above & name it by suffixing ic anhydride (alphabatically)

Butyric propionic anhydride

Isobutyric Secondary valeric anhydride

SOLVED EXAMPLE

Q.1 Which of the following is not a neo structure:-

Ans. C

Sol. A carbon must be attached with four carbons.

- Q.2 Acryl aldehyde is -
 - (A) A saturated aldehyde

(B) An alkene

(C) A polymer

(D) An unsaturated aldehyde

Ans. I

Sol. $CH_2 = CH - CHO$ unsaturated aldehyde.

- Q.3 The common name of the compound $CH_2 = CH C CH = CH_2$ is -
 - (A) Divinyl ketone
- (B) Diallyl ketone
- (C) Both A and B
- (D) None

Ans. A

Sol. $CH_2 = CH - is$ called as vinyl group.

Q.4 Common name of CH₂=CH-CN is:

- (a) acrylonitrile
- (b) vinyl cyanide
- (c) allyl cyanide
- (d) allyl nitrile

- (A) a, b and d
- (B) a, and b
- (C) only b
- (D) a, b and c

Ans.

Q.5 The number of possible alkyl groups of iso octane are -

- (A) 1
- (B) 3
- (C) 5
- (D) 6

B Ans.

CH, CH, -C-CH, -CH-CH, Sol. CH, CH, 1 + 1 + 1 = 3

Write the common names of the following compounds Q.6

- CH₃ CH₂ CN
- 2. CH₃ CH CH₂ I | | CH₃
- 3. CH₃ CH₂ CH CH₂ F | CH₃
- 4. CH₃ CH CH₂ CH₂ CI 5. CH₃ CH₂ CH CH₂ OH 6. CH₃ CH₂ CH₂ C NH₂ CH₃ CH₃

- 7. $CH_2 = CH SH$ 8. $CH_3 CH_2 CH_2 CH_3 CH_2 CH_3 CH_3 CH_2 CH_3 CH_2 CH_3 CH_3$

12. $CH \equiv C - CH_2 - Br$

ANSWERS

8.

1. Ethyl cyanide

- 2. Isobutyl Iodide
- 3. Active amyl fluoride
- 4. Iso pentyl chloride
- 5. Active amyl alcohol
- 7. Vinyl thio alcohol
- 6. Tertiary hexyl amine
- Secondary amyl alcohol.

Active secondary amyl amine

- 10. Neopentyl thio alcohol
- 11. Isopropenyl amine
- Propargyl Bromide 12.

MCQ

- Q.1 Which of the following are secondary radicals:
 - (a) $CH_3 CH C_2H_5$ (b) $CH_2 = C CH_3$ (c) $CH_2 = CH CH_3$ (d) $(CH_3)_2CH CH_3 CH_3$

- (A) a, b, c,
- (B) a, d, c (C) b, c, d
- (D) a, b, d

- Common name of the structure CH2-OH Q.2 CH, -OH
 - (A) Ethylene Glycol (B) Ethene dialcohol (C) Glycerol
- (D) Ethylene alcohol
- Common name of the compound CH₃ CH₂ C NH₂ is -Q.3
 - (A) Acetamide
- (B) Propionamide
- (C) Butyramide
- (D) Acetic amide

- Q.4 The structure of 2-butenyl radical is:
 - (A) CH3-CH-C2H5

- (B) CH₃-CH=CH-CH₂-
- (C) $CH_3 CH_2 C CH_3$
- (D) $CH_2 = CH_2 C CH_3$
- Q.5 Which one is structure of Maleic acid

- Common name of the structure $CH_3 C O CH = CH_2$ is: Q.6
 - (A) vinyl acetate
- (B) acryle acetate
- (C) methyl acrylate
- (D) Vinyl ethanoate

- Q.7 Which is the structural formula of isoprene
 - (A) CH₃-C=CH₂
 |
 CH₃

(D) CH₃-CH=CH-CH₃

The number of gem dihalides possible with the molecular formula $C_2H_4X_2$ and $C_3H_6X_2$ is given Q.8 by the set:

(A) 1, 2

(B) 2, 1

(C) 2, 2

(D) 1, 1

Q.9 Common name of the compound C₆H₅CHO

(A) Anisole

(B) Benzaldehyde

(C) Salicylaldehyde

(D) None of these

ANSWERS

Q.1(D) Q.2(A) Q.3(B) Q.4(B) Q.5(D) Q.6(A) Q.7(B) Q.8(A) Q.9(B)

PROBLEMS

Write down the structures of the following -Q.1

1. Di allyl amine

2. Tri methyl amine

3. Di isobutyl ether

4. Di isopentyl ketone

5. Di Active amyl amine

6. Di normal propyl ether

7. Tri neopentyl amine

Q.2 Write down the common names of the following:

Ans.(1) 1. CH₂=CH-CH₂-NH-CH₂-CH=CH₂

2. CH₃-N-CH₃
CH₃
CH₃

Ans. (2) 1. Tertiary valero-isonitrile 2. Isobutyryl chloride

Secondary Valer amide

DERIVED SYSTEM

According to this system name to any compound is given according to the parent name of the homologous series. This system is reserved for the following nine homologous series.

S.No.	Name of Homologous series	Derived Name	Structure of group
1.	Alkane	Methane	-¢-
2.	Alkene	Ethylene	>C=C<
3.	Alkyne	Acetylene	-C = C -
4.	Alkanol	Carbinol	-c-OH
5.	Alkanal	Acetaldehyde	-c-CHO
6.	Alkanoic acid	Acetic acid	- c - COOH
7.	Alkanoyl halide	Acetyl halide	-c-cox
8.	Alkanamide	Acetamide	-¢-CONH ₂
9.	Alkanone	Acetone	-ç-c-ç-

Types of Ethylene:- (Symmetrical & Unsymmetrical)

- (a) Symmetrical: -In the given two alkyl groups one group is attached to the one carbon of ethylene & next on the next carbon.
- (b) Unsymmetrical: When both the given groups are attached on the same carbon.

Note: Symmetrical & Unsymmetrical: -Terms are used only when two alkyl groups are given. eg.

Symmetrical dimethyl ethylene H CH_3 CH_3

PROBLEMS

Write down the derived names of the following compounds

1.
$$CH_2 = CH - CH_2 - C \equiv C - H$$

5.
$$CH_3 - CH_2 - C - C - H$$

 CH_3

ANSWERS

1. Allyl acetylene

3863 465 =

3. Ethyl methyl carbinol

Ethyl methyl acetaldehyde

7. Tri methyl methane

9. Tetra methyl methane

2. Tri methyl carbinol

4. Tri methyl acetaldehyde

6. Di methyl acetic acid

8. Ethyl di methyl methane

Tertiary butyl Isopropyl methane.

IUPAC NOMENCLATURE

The name consists of three parts:

Primary Prefix: It represents the nature of the principal / parent chain.

Primary Prefix
-
Cyclo
Bicyclo
Tricyclo
Spiro

Secondary prefix: It represent substituents.

Word root: It represents the number of carbon atoms in the principal / parent chain.

No. of carbon atoms	Word root
1	Meth
2	Eth
3	Prop
4	But
5	Pent
6	Hex
7	Hept
8	Oct
9	Non
10	Dec
11	Undec
12	Dodec
13	Tridec
20	Eicos
30	Triacont
40	Tetracont

Primary Suffix: It represents the nature of C-C bonds in the principal/ parent chain (whether single bond, double bond or triple bond).

Nature of bond	Primary suffix	
Saturated C-C single bond	ane	

Nature of bond	Primary suffix	
Unsaturated		
C = C bond	ene	
$C \equiv C$ bond	yne	
2C = C bonds	diene	
$2C \equiv C$ bonds	diyne	
$C = C + C \equiv C$	$en\underline{e} + yne = enyne$	

If secondary suffix starts from a vowel or y then the last 'e' of first suffix is omitted. Secondary suffix: is used for functional groups.

SATURATED UNBRANCHED HYDROCARBONS

IUPAC name = Word Root + Primary Suffix

e.g.

CH ₄	Meth + ane	=	Methane
$CH_3 - CH_3$	Eth + ane	=	Ethane
CH ₃ -CH ₂ -CH ₃	Prop + ane	=	Propane
/ /	But + ane	=	Butane
^	Pent + ane	=	Pentane
////	Hex + ane	=	Hexane
CH ₃ (CH ₂) ₉ CH ₃	Undec + ane	=	Undecane
CH ₃ (CH ₂) ₂₈ CH ₃	Triacont + ane	=	Triacontane

SATURATED BRANCHED CHAIN HYDROCARBONS

$$\begin{array}{c|c} \underline{Rules\ for\ naming\ Branches} \\ R-H \xrightarrow[-H]{-H} R- \\ Alkane & Alkyl\ substituent \\ (C_nH_{2n+2}) & (C_nH_{2n+1}) \end{array}$$

e.g.

	Alkane	Alkyl	IUPAC names
(1)	CH ₄	-CH ₃	Methyl
(2)	C_2H_6	$-C_{2}H_{5}$	Ethyl

Naming of complex alkyl groups

- Longest chain in a branch is selected starting from the same and where it originates from.
- (ii) Numbering is started from the originating end of a branch.

(3)
$$C_3H_8$$
 $-CH_2CH_2CH_3$ Propyl CH_3 $-CH_3$ $-CH_4$ C_4H_{10} $-C_4H_9$ $CH_3^2CH_2^2CH_2^2CH_2^2-$ Butyl $-CH_3^2CH_2^2CH_2^2-$ Butyl $-CH_3^2CH_2^2CH_2^2 -CH_3^2CH_2^2CH_2^2 -CH_3^2CH_2^2 -CH_3^2CH_2^2 -CH_3^2CH_2^2 -CH_3^2CH_2^2 -CH_3^2CH_3^2 -CH_3^2CH_3^2 -CH_3^2CH_3^2 -CH_3^2CH_3^2 -CH_3^2CH_3^2 -CH_3^2CH_3^2 -CH_3^2CH_3^2 -CH_3^2 -CH_3^$

SATURATED BRANCHED CHAIN HYDROCARBONS

Rules

Longest chain rule: Select the longest possible carbon chain as the parent chain or principal
carbon chain. All other carbon chains will be considered as side chain or substituents.

(2) If there is more than one longest chain possible then select the chain which contains maximum number of side chains

(3) Lowest set of locant rule: The number given to the side chain is locant. While numbering the parent chain, lowest set of locants rule needs to be followed. According to this rule, that set of locants will be considered which has got a lower number at the first point of difference.

* First set will be considered in this case.

(a) Side chains are always written in alphabetical order.

(b) Di, tri, tetra etc. are not considered in comparing alphabetical order.

(c) If lowest set of locants rule is not applicable then numbering is done according to alphabetical order.

(d) If Di, tri, tetra etc. are part of name of complex name then they considered in alphabetical order.

5-Ethyl-3,4-bis(1-methylethyl)-2-methylheptane

bis, tris, tetrakis are used for complex alkyl substituents

e.g.

(1) $\dot{C}H_3 - \dot{C}H_2 - \dot{C}H - \dot{C}H_2 - \dot{C}H_3$

3-methylpentane

(2) $\overset{1}{\text{CH}_{3}}$ $\overset{2}{\text{CH}_{2}}$ $\overset{3}{\text{CH}_{-}}$ CH $\overset{2}{\text{CH}_{2}}$ $\overset{4}{\text{CH}_{2}}$ $\overset{1}{\overset{5}{\text{CH}_{2}}}$ $\overset{6}{\text{CH}_{3}}$

3-ethylhexane

(3) CH₃-CH₂-CH₂-CH₂-CH₃
H₃C-CH-CH₃

3-ethyl-2-methylpentane

²CH—CH₃
(4) CH₃-CH₂-CH-CH₂-CH₃

⁴CH—CH₃

⁵CH₃

3,3-diethyl-2,4-dimethyl-pentane

2,2,5-trimethylhexane

(6) $\stackrel{6}{\text{CH}}_{3}$ - $\stackrel{5}{\text{CH}}_{2}$ - $\stackrel{4}{\text{CH}}_{2}$ - $\stackrel{3}{\text{CH}}_{2}$ - $\stackrel{2}{\text{CH}}_{3}$ - $\stackrel{1}{\text{CH}}_{2}$ - $\stackrel{1}{\text{CH}}_{3}$

3-Ethyl-4-methylhexane

(7) CH₃CCH₃
CH
CH₃CCH₃
(7) CH₃CCH₂CCH₂CCH₂CCH₃
CH₃CCH₃CCH₃CCH₃

2-methyl-4-bis(1-methylethyl)heptane

(8)
$$\overset{CH_2-CH_3}{\overset{7}{\text{CH}_3-\overset{6}{\text{CH}_2}-\overset{6}{\text{CH}_2}-\overset{6}{\text{CH}_2}-\overset{6}{\text{CH}_2}-\overset{7}{\text{CH}_2}-\overset{6}{\text{CH}_2}-\overset{7}{\text{CH}_3}-\overset{7}{\text{CH}_3}}{\overset{1}{\text{CH}_3}}$$
 4-(1,1-dimethylethyl)-3-ethylheptane $\overset{CH_2-CH_3}{\overset{1}{\text{CH}_3}-\overset{1}{\text{CH}_3}}$

PROBLEMS

Give IUPAC Name of following compounds:

(1)
$$CH_3CH_2 - C - CH_2CH_3$$
 (2) $CH_3 - C - CH - CH_2CH_3$ $CH_3 - CH_3 - CH$

(6)
$$CH_3CH_2 - CH - C - CH_2 - CH_2 - CH - CH_2CH_2CH_3$$

 $C(CH_3)_3$

(8)
$$CH_3$$

 $H_3C-CH-CH-CH_2CH_2CH_3$
 $CH_3-(CH_2)_5-CH-CH_2-CH-CH_2CH_2CH_2CH_3$
 CH_2CH_3

ANSWERS

- (1) 3,3-Dimethylpentane
- (2) 3-Ethyl-2,2-dimethylpentane
- (3)3,4-Dimethylhexane
- (4) 4-(1-methylethyl) -4 Propyl heptane
- (5) 3-Ethyl-2,4,5-trimethylheptane
- (6) 4-(1,1-Dimethylethyl)-3-ethyl-4,7-dimethylhexane
- (7) 4-(1-Methylethyl)-5-propyloctane (8) 7-(1,2-Dimethylpentyl)-5-ethyl tridecane

UNBRANCHED UNSATURATED HYDROCARBON

Numbering of carbon chain

- Rule-1: If unsaturated bond is present in the molecule at the terminal carbon, then numbering done from the side of unsaturated carbon.
 - eg. CH, = CH CH, CH,
 - But-1-ene
 - eg. CH = C CH, CH.
- But-1-vne
- Rule-2: If unsaturated bonds like double bond and triple bond is present at terminal carbon, then numbering always done from double bonded terminal carbon.
 - (Double bond preferred over triple bond when both bonds are at same position)
 - eg. $^{1}_{CH} = ^{2}_{CH} ^{3}_{CH} = ^{4}_{CH}$
- But-1-en-3-vne
- Rule-3: If unsaturated bonds like double bond or triple bond is present at terminal carbon, then numbering is done from either way.
 - eg. 1 2 3 4 CH. = CH CH = CH. But-1. 3-diene
 - eg. $^{1}_{CH}$, = $^{2}_{C}$ $^{3}_{C}$ = $^{4}_{CH}$
- But-1, 3-diyne
- Rule-4: If triple bond is present at terminal carbon and double bond is located at any carbon except other terminal carbon. Then numbering is done from triple bond.
 - 1 = 2 = 3 = 4 = 5 CH = C CH = CH CH, Pent -3 en 1 yne
- Rule-5: If double bond is present at terminal carbon and triple bond is present at any other position except other terminal carbon, then numbering is done from double bonded terminal carbon.
 - eg. $CH_{5} = CH C = C CH_{1}$ Pent -1 en 3 yne

MCQ

0.1 Correct IUPAC nomenclature of the given compound

(A) Hexa-1, 5-dien-3-yne

(B) Hex-3-yn-1, 5-diene

(C) Hex dieneyne

- (D) Hexeneyne
- Which is the correct order for numbering in the given compound. Q.2

Q.3 Write correct IUPAC name for given compound.

- (A) Hexa-2, 4-diyne (B) But-2, 4-diyne
- (C) Pent-2, 4-diyne
 - (D) Tetra-2, 4-diyne

- Which is correct structure for penta-1, 4-diyne 0.4
 - (A) //
- (B)

ANSWERS

- O.1 (A) O.2 (A)
- O.3 (A)
- 0.4(A)

BRANCHED UNSATURATED HYDROCARBON

Longest chain:

Rule-1: If unsaturated bonds like double bond or triple bond is present in the molecule, then that parent chain is considered which is containing unsaturated bonds like double bond or triple bond.

eg.
$$CH_{3} - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{3} - CH_{2} - CH_{4} - CH_{5} - CH_{5}$$

Rule-2: A primary suffix is added to the word root to indicate presence at double or triple bond in the parent chain.

For one double bond = Word root + locant + ene

For one triple bond = Word root + locant + yne

In case the parent chain contains two or more double bonds, the prefixes di, tri, tetra, etc. are used before primary suffix.

For two double bonds = Word root + locant + diene For two triple bonds = Word root + locant + diyne

Numbering of carbon chain:

Rule-1: In branched alkene, select that parent chain which is containing maximum unsaturated double bond or triple bond and follow properly of lowest locant rule.

eg.
$$\frac{1}{\text{CH} = \text{CH}_2}$$
 eg. $\frac{1}{\text{CH}_3 - \text{CH} = \text{C} - \text{CH} - \text{CH}_2 - \text{CH}_3}}$ eg. $\frac{1}{\text{CH}_3 - \text{CH} = \text{C} - \text{CH} - \text{CH} - \text{CH}_2 - \text{CH}_3}}$ 4, 6-dimethyl hept-2-ene

eg.
$$CH_{2} - CH_{2} = CH_{2}$$
 $CH_{2} - CH_{2} - CH_{2} - CH_{2}$
 $CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{3}$
 $CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{3} - CH_$

Rule-2: In branched alkene, if unsaturated double bond or triple bond is present in the cyclic ring, then numbering is done from double bonded carbon of the cyclic ring and follow lowest locant rule properly.

MCQ

Q.1 Which is the correct way of number in the given compound.

Q.2 Which is the correct structure for given IUPAC name

2-Ethyl-3-methyl Pent-2-en-1-al

Q.3 Which is the correct structure for given IUPAC name.

7-ethyl-2, 4, 5, 6-tetramethyl deca-1,8-diene

Q.4 The IPUAC name of is

- (A) 3-methyl cyclohexene
- (C) 6-methyl cyclohexene

- (B) 1-methyl cyclohex-2-ene
- (D) 1-methyl cyclohex-5-ene

Q.5 Which is correct match.

IUPAC Name

2-(2'-chloropropyl) hexa-1,3,5-triene

3, 7-dimethyl hepta-1, 3-6-triene

3, 4-dimethyl pent-1-en-2-ol

3-methyl cyclopent-1-yne

Which is incorrect match in the following-Q.6 Structure

IUPAC NAME

Octa-l-en-4-yne

4-Ethyl-2-Cyclopropylhex-1-ene

$$(c) \Longrightarrow -$$

3,3-dimethyl pent-1-en-4-yne

2-methyl-3-ethenyl cyclohexa-1, 3-diene

ANSWERS

Q.1 (A)

Q.2 (A) Q.3 (A)

Q.4 (A)

Q.5 (A)

Q.6 (D)

IUPAC NAMING OF ORGANIC COMPOUND CONTAINING FUNCTIONAL GROUPS

In IUPAC nomenclature functional groups are categorized into two type.

Type I: Groups of this type are not considered as functional groups in IUPAC nomenclature. They are considered as substituents & therefore represented by prefix. type I functional group & their prefix are shown below:

Groups	Prefix
– F	fluoro
-Cl	chloro
– Br	bromo
- I	iodo
- NO,	nitro
- NO	nitroso
– OR	alkoxy
-c-c-	epoxy

Rules for their nomenclature:

Rule I: If two substituents are present on same position from different ends, then priority is decided on the basis of alphabetical order.

Rule II: If multiple bond and type I functional group both are present, the priority is given to multiple bond.

$$H_3C - CH = CH - CH - CH_2 - CI$$

Rule III: These groups are written is alphabetical order in IUPAC name.

eg. (i)
$${}^{5}_{CH_{3}} - {}^{4}_{CH_{2}} - {}^{3}_{CH_{2}} - {}^{2}_{CH} - {}^{1}_{CH_{3}}$$
 2-fluoropentane

(ii)
$$H_3C - CH - CH_2 - CH_2 - CH - CI$$
 5-chloro-2-fluoroheptane CH_2 CH_3

(iii)
$$H_3C - CH_2 - CH - CH_2 - CH - CI$$
 3-chloro-5-fluoroheptane CH_2 CH_3

3, 5-dimethyl-4-nitro heptane

(v)
$$CH_2 - CH_2 - CH - CH_2 - C - CH_2 - CH_3$$
 2-ethyl-4-iodo-6-nitroso hex-1-ene NO I CH_2

(vi)
$$HC = CH - C - CH_2 - CH_2 - CI$$

 $\begin{vmatrix} & & \parallel \\ & & CI & CH_2 \end{vmatrix}$

1-chloro-3-chloroethylbuta-1, 3-diene

(vii)
$$H_3C - CH_2 - O - CH_2 - CH_3$$

ethoxy ethane

(viii)
$$H_3C - CH_2 - O - CH_2 - CH_2 - CH_3$$
 1-ethoxy propane

(ix)
$$H_3C - CH_2 - CH - O - CH_2 - CH_3 - CH_3$$
 2-propoxy butane CH_3

(x)
$$H_3C - CH_2 - CH - O - CH - CH_3$$
 2-(methyl ethoxy) butane or 2-isopropoxy butane CH_3 CH_3

Epoxides:

1, 2-epoxy propane

3, 4-epoxy heptane

2-chloro-5, 6-epoxy octane

1, 3-epoxy propane

2, 4-epoxy-3-methyl pentane

Type-II: Groups of this type are treated as functional groups and represented by suffix in IUPAC nomenclature. Priority table for functional group.

S.No.	Functional group	Name	Suffix	Prefix
(1)	O -C-OH	Carboxylic acid	oic acid	Carboxy
(2)	- SO ₃ H	Sulphonic acid	sulphonic acid	Sulpho
(3)	-C-O-C- O O	Acid anhydride	oic anhydride	z=
(4)	-C-OR	Ester	oate (alkyl+w.r.+oate)	Alkoxy carbonyl
	o o			
(5)	-C-Cl 	Acid chloride	oyl chloride	Chlorocarbonyl
(6)	-C-NH ₂	Amide	amide	Carbamoyl
(7)	- C ≡ N	Cyanide	nitrile	Cyano
(8)	- N ≡ C	Isocyanide	isonitrile	Isocyano
(9)	– СНО	Aldehyde	al	oxo / formyl
(10)	-C- O	Ketone	one	Oxo/Keto
(11)	-OH	Alcohol	ol	Hydroxy
(12)	– SH	Thio-alcohol	thiol	Mercapto
(13)	- NH ₂	Amine	amine	Amino
(14)	(=)		ene	
(15)	(≡)		yne	

Note: Double bond & triple bond are not true functional groups.

w.r. → Word Root

Rule for their nomenclature:

 Selection of parent 'C' chain: longest possible 'C' chain with functional group and having maximum number of multiple bonds is selected as parent 'C' chain.

$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$$

$$COOH$$

$$\begin{array}{c|c} \hline CH_2 = CH - C \\ \hline \\ COOH \\ \end{array} \qquad \begin{array}{c|c} CH_2 - CH_2 - CH_3 \\ \hline \\ CH_3 - CH_2 - CH_2 - CH_2 - CH_3 \\ \hline \\ CH_2 \\ \hline \\ CH_2 \\ \end{array}$$

- (2) Numbering:
- (a) Numbering starts from the side of functional group for numbering priority order is given below:
 Functional group > Multiple bonds > Substituents
- (b) If chain ending 'C' containing functional group is present then numbering starts from the 'C' of functional group these functional groups are known as DON category functional groups functional groups of this category are shown below:

Rule 3: 'e' of primary suffix is dropped if secondary suffix starts from a vowel.

Example of compounds having don category functional groups:

(i)
$$CH_3 - CH_2 - COOH$$
 Butanoic acid

(iii)
$$CH_3 - CH_2 - C - CH_2 - CH_2 - C - C1$$
 4-ethyl pent-4-en-1-oylchloride CH_2

(iv)
$$H$$
 NH_2 methanamide

(vii)
$$\begin{array}{c} O \\ \parallel \\ H_2N-C-CH_2-CH-CH_2-CH=CH_2 \\ \parallel \\ CH \\ \parallel \\ CH_2 \end{array}$$
 3-ethenyl hex-5-en-1-amide

(viii)
$$\begin{array}{c} CH_2 = CH - CH - C - CI \\ CI - H_2C - H_2C - CH_2 \end{array}$$
 2-(3-chloropropyl) but-3-en-1-oyl chloride

Ester:

$$\begin{array}{c|c}
 & O \\
 & R - C - O + R \\
\hline
 & alkanoate & alkyl \\
 & \rightarrow alkyl alkanoate
\end{array}$$

e.g.

Methyl ethanoate

ethyl methanoate

(iii)
$$CH_3 - CH - CH_2 - C - O + CH_3$$

 $CH_2 - CI$

methyl-4-chloro-3-methyl butanoate

(iv)
$$CI - CH_2 + O - C - CH_3$$

chloromethylethanoate

(v) H₃COOCCH₃

methyl ethanoate

(vi)
$$H_3C-H_2C-CH-C-O-CH_3$$

 O
 $CH_2-C-O-CH_3$
 O

methyl-2-ethyl butane-1, 4-dioate.

Anhydride: Nomenclature of anhydride is done on the basis of the carboxylic acid from which it is obtained.

$$CH_{3}-C-OH+CH_{3}-C-OH$$

$$CH_{3}-C$$

$$CH_{3}-C-OH+CH_{3}-CH_{2}-C-OH$$

$$CH_{3}-C-OH+CH_{3}-CH_{2}-C-OH$$

ethanoic propanoic anhydride

butanedioie anhydride

Benzene carboxylic propanoic anhydride

Benzene carboxylic-3-phenyl propanoic anhydride

Benzene carboxylic anhydride

Benzene carboxylic cyclohe carbocyclic anhydride

Example of compounds having functional group other than DON category:

1.
$$H_3C-CH_2-CH_2-CH-CH-CH_3$$
 (3-propylheptan-2-ol) $H_3C-CH_2-CH_2-CH_2$

3.
$$H_3C-C-C-CH_2-CH_3$$
 2-methylpent-l-ene-3-thiol CH_2

Mc
$$CH_2 - CH - SO_3H$$
 heptane-2, 5-disulphonic acid

4. $CH_2 - CH - SO_3H$
Et

5.
$$CH_3-CH = CH - C - CH_2 - C - CH_2-CH_3$$
 5-methylene oct-6-en-3-one CH_2

8.
$$CH_3 - CH_2 - CH_2 - CH_3$$

 N —ethyl pentan-3-amine NH-CH₂-CH₃

POLYFUNCTIONAL COMPOUNDS

Rule-I: If more than one functional groups are present then one is selected as principal functional group and represented by suffix. Other functional groups are treated as substituents & represented by prefix.

Selection of principal functional group is done according to priority table

amino methanomide (Urea)

4.

2-ethenyl-2-isocyano propane-1,3-dinitrite

5.

3-oxo pentanal

6. HO OH

2-hydroxy-3-oxo pentanoic acid

7. ONH₂

2-amino ethanomide

Rule-II: When principal group is selected then there is no use of priority table.

Rule-III: If any DON functional group is present as sec. functional group then its 'c' is not included in principal 'c' chain except –CHO group.

9. NC
$$-H$$
, $C - H$, $C - C$ OH 3-cyanopropanoic acid

CH₂ $- C$ OH

10. $CH_2 - C - CI$ 3-Chloro carbonylpropanoic acid

Carbamoyl methanoyl chloride

3-Ethylpent-4-yn-1-amide

Rule-IV: As secondary functional group, if 'C' of -CHO group is included in percent 'c' chain then oxo is used as prefix, otherwise we use formyl group as prefix.

4-oxobutanoic acid

2-formyl butane-1, 4-diamide

3, 5-dioxopentanoyl chloride

IUPAC nomenclature if DON category functional group is present as principal functional group & its 'c' is not included in parent 'c' chain →

- COOH	Carboxylic acid	
-C-O-C- 0 0	Carboxylic anhydride	
- COOR	Carboxylate	
-COCI	Carbonyl chloride	
- CONH,	Carboxamide	
- CN	Carbonitrile	
- CHO	Carbaldehyde	

e.g.

Cyclohexane carboxylic acid

Benzene carboxylic acid

Propane-1, 2, 3-tricarbadehyde

3-Carboxymethyl pentane-1, 5-dioic acid

4.

Cyclohexane-1, 2-dicarboxylic anhydride

SOLVED EXAMPLES

Q.1 The correct IUPAC name of the following compound is

$$O = CH - CH_2 - CH - CHO$$

 $H - \dot{C} = 0$

(A) 1, 1-diformyl propanal

(B) 3-formyl butanedial

(C) 2-formyl butanedial

(D) 1,1,2-ethane tricarbaldehyde

Ans. D

Sol. The principal functional group is – CHO. $O = CH - \overset{?}{C}H_2 - \overset{?}{C}H - CHO$

1, 1, 2 - Ethanetricarbaldehyde

Q.2 The correct IUPAC name of compound $CH_3 - CH_2 - C - CH - CHO$ is:

(A) 2-cyano-3-oxopentanal

(B) 2-formyl-3-oxopentanenitrile

(C) 2-cyano-1, 3-pentanediaone

(D) 1, 3-dioxo-2-cyanopentane

Ans. B

Sol. Here the main functional group is -CN, which had nitrile suffix and CHO and CO are taken as substituents.

$$\overset{5}{\text{CH}_3}$$
 - $\overset{4}{\text{CH}_2}$ - $\overset{3}{\overset{2}{\text{CH}}}$ - $\overset{2}{\overset{1}{\text{CH}}}$ - CHO (2-formyl-3-oxopentanenitrile)
O $\overset{1}{\overset{1}{\text{CN}}}$

Q.3 The IUPAC name of compound HO - C = O CH_3 is

$$CH_3 - C = C - C - H$$

 $NH_3 CI$

- (A) 2-amino-3-chloro-2-methyl-2-pentenoic acid
- (B) 3-amino-4-chloro-2-methyl-2-pentenoic acid
- (C) 4-amino-3-chloro-2-methyl-2-pentenoic acid
- (D) none of these

Ans. B

Sol. The principal functional group is carboxylic acid (-COOH)

$$HO - {}^{1}C = O$$
 ${}^{5}CH_{3}$
 $CH_{3} - {}^{2}C = {}^{3}C$ ${}^{4}C - H$
 NH_{2} CI

3 - amino - 4 - chloro - 2 - methyl - 2 - pentenoic acid

0

Q.4 IUPAC name of compound CH₃CH₂OCCH₂CH₂CH₃ is

- (A) Propyl propanoate
- (B) Ethyl butanoate
- (C) Propyl butanoate
- (D) Ethyl propanoate

Ans. B

Sol. $CH_3 - CH_2 - O - \overset{1}{C} - \overset{2}{C}H_2 - \overset{3}{C}H_2 - \overset{4}{C}H_3$

MCQ

Q.1 The IUPAC name of the compound having structure CICH2-CH2-COOH is:

- (A) 3-Chloro propanoic acid
- (B) 2-Chloro propanoic acid

(C) 2-Chloro ethanoic acid

(D) Chloro succinic acid

Q.2 The IUPAC Name of compound $CH_3 - C - CH_2 - OH$ is:

- (A) 2-Methyl-1, 2-propanediol
- (B) Isobutylene glycol
- (C) 1-2-Dihydroxy-2-Methyl propane
- (D) 2-Hydroxy methyl-2-propanol

Q.3 The IUPAC name of $CH_3 - CH - C - CH_2 - CH_2OH$ is -

- (A) 1-Hydroxy-4-methyl-3-pentanone
- (B) 2-Methyl-5-hydoxy-3-pentanone
- (C) 4-Methyl-3-oxo-1-pentanol
- (D) Hexanol-1-one-3

Q.4 IUPAC name of CH₃ CH CH₂ CH₂ CH₂ Br

- (A) 2-Chloro-3-methyl-7-bromo heptane
- (B) 7-Bromo-2-chloro-3-methyl heptane
- (C) 1-Bromo-5-methyl-6-chloro heptane
- (D) 1-Bromo-6-chloro-5-methyl heptane

Q.5 IUPAC name of CH₂=CH-CH₂-Cl is:

(A) Allyl cloride

(B) 1-Chloro-3-propene

(C) 3-Chloro-1-propene

(D) Vinyl chloride

Q.6 The correct IUPAC name for CH₂CH=C(COOH)CH₂CH₃ is: (A) 3-Carboxy-2-pentene (B) 2-Ethylidene butanoic acid (C) 2-Ethyl-2-butenoic acid (D) 3-Ethyl-2-buten-4-oic acid Q.7 The number of carbon atoms in the principal chain of the given compound are: CH3-CH2-CH2-C-COOH OHC-C-CH₂-CH₃ (C) 4 (A) 7 (D) 6 The IUPAC name of CH3-CH2-NH-CH3 is: Q.8 (A) Methyl ethyl amine (B) 1-methyl ethan amine (C) N-methyl ethan amine (D) N-ethyl methanamine Q.9 (A) Cyclo hexanoyl chloride (B) Cyclohexane carbonyl chloride (C) 1-Chloro cyclohexanal (D) Chloro cyclohexyl methanal Q.10 3-Methyl-2-pentanone is: The name of $CIH_2C - C = C - CH_2CI$ according to IUPAC nomenclature system is: Q.11 Br Br (A) 2, 3-Dibromo-1,4-dichloro-2-butene (B) 1,4-Dichloro-2,3-dibromobutene-2 (C) Dichloro dibromo butene (D) Dichloro dibromo butene The systematic IUPAC name for $CH_3 - C - NH_2$ and $CH_3 - C - Cl$ are : Q.12 (A) 1-Amino-1-oxo ethane, 1-chloro ethanal (B) 1-Amono ethanal, acetoy chloride (C) 1–Oxoethanamine, ethanoyl chloride (D) Ethanamide, Ethanoyl chloride The IUPAC name of the compound $CH_2-C=CH-C-NH_2$ is: $NH_2 OCH_3 O$ Q.13 (A) 4-Amido-2-methoxy-1-amino-2-butene (B) 4-Amino-3-methoxy-2-butenamide (C) 2-Methoxy-1, 4-diamino-2-butenal (D)1-Amino-2-methoxy-3-amido propene

Q.14 The correct name for $\bigcap_{OH}^{H} C = O$ is:

- (A) 2-Hydroxy cyclopentanal
- (B) 2–Formyl–1–hydroxy cyclopentane
- (C) 2-Hydroxy cyclopentane carbaldehyde
- (D) Cyclopentane-2-ol-1-al
- Q.15 The IUPAC name of C1-C-OC₂H₅ is:
 - (A) Ethoxy formyl chloride

(B) Ethoxy methanoyl chloride

(C) Ethyl chloro methanoate

- (D) Ethoxy carbonyl chloride
- Q.16 IUPAC name of CH₃ CH CH₂ CH CH₃ is:

 CH₃ CN
 - (A) 2-cyano-3-methyl hexane
- (B) 3-methyl-5-ctabigexabe
- (C) 2-4-Dimethyl pentanenitrile
- (D) 2-cyano-3-methylhexane
- Q.17 HO has the IUPAC name:
 - (A) 3,4-Dimethyl-1-penten-3-ol
- (B) Isopropyl-3-methyl vinyl carbinol
- (C) 2,3-Dimethyl-4-penten-3-ol
- (D) None of the above
- Q.18 Which of the following compound has wrong IUPAC name?
 - (A) CH₃CH₂ CH₂COO CH₂CH₃ (Ethyl butanoate)
- (B) CH₃ CH CH₂ CHO CH₃ (3 - Methylbutanal)
- (C) CH₃-CH-CH-CH₃ OH CH₃ (2-Methyl-3-butanol)
- (D) $CH_3 CH C CH_2 CH_3$ $CH_3 O$ (2 - Methyl - 3 - pentanone)
- Q.19 The IUPAC name of the compound
- 10 is:
 - (A) 1, 1-dimethyl-3-cyclohexanol
- (B) 1, 1–dimethyl–3–hydroxy cyclohexane
- (C) 3, 3-dimethyl-1-cyclohexanol
- (D) 3, 3-dimethyl-1-hydroxy cyclohexane
- Q.20 The IUPAC name of the compound is
- is Br
 - (A) 6-bromo-2-chlorocyclohexene
- (B) 3-bromo-1-chlorocyclohexene
- (C) 1–bromo–3–chlorocyclohexene
- (D) 2-bromo-6-chlorocyclohex-1-ene

ANSWERS

Q.1 (A) Q.2 (A) Q.3 (A) Q.4 (D) Q.5 (C) Q.6 (C) Q.7 (B) Q.8 (C) Q.9 (B) Q.10 (A) Q.11 (A) Q.12 (D) Q.13 (B) Q.14 (C) Q.15 (C) Q.16 (C) Q.17 (A) Q.18 (C) Q.19 (C) Q.20 (B)

NOMENCLATURE OF ALICYCLIC COMPOUNDS

(A) Unsubstituted cyclo compounds: Prefix + word root + suffix Cyclo + no. of C + ane / ene

Example: Cyclopropane Cyclobutane Cyclohexene

(B) Substituted cyclic compound (closed + open chain saturated)

Rule:

(ii)

 If number of carbons in closed chain ≥ no. of carbons in open saturated chain, then closed chain will be selected as parent chain.

Example:

3

(Carbon of closed chain)

1-methyl cyclo propane

Propyl cyclo pentane

1-(2-methyl propyl) cyclohexane 1-(1-methyl butyl)-2-methyl cyclohexane

If number of carbons in open chain > closed chain \Rightarrow Open chain is parent chain $\frac{1}{2} \xrightarrow{3} 4$

1-cyclobutyl pentane 2-cyclopentyl-4-methyl hexane

Rule:

Cyclic compounds with functional group is considered as parent chain:

→ If FG (-COOH) present on both cyclic and non-cyclic then number of carbon atoms is considered.

3-carboxymethyl cyclohexane carboxylic acid

cyclopentyl cyclohexane

3-cyclohexyl cyclopentane amine

If unsaturation (Multiple bond) present

Rule:

Chain containing multiple bond is selected as parent chain

If ring and non-cyclic side chain both containing double bond then check the number of C atoms and given parent chain.

Number of double bond is considered while selecting parent chain

1-(cyclopent-2-enyl) buta-1,3-diene

In case of more than one multiple bond use suffix 'a' after word root.

Cyclobutyl cyclohexane carboxylate

NOMENCLATURE OF BICYCLO COMPOUNDS

Bicyclo compounds: If two rings are fused at two common carbon atoms then compound are known as bicyclic compound.

(i) Unsubstituted bicyclo compounds

Biyclo (4.4.0) decane (Bridge head C not considered)

Bicyclo [2.2.0] Hexane

Bicyclo [2,1,1] Hexane

Bicyclo [3,2,0] Heptane

(ii) Substituted bicyclo (Bicyclo with subtitution or functional group)

In substituted bicyclic compounds numbering starts from a bridge head carbon atom and proceeds towards longest bridge then smaller bridge & then smallest bridge.

2-Chloro bicylo [2.2.1] heptane

bicylo [2.2.1] heptane-7-carboxylic acid

Bicyclo [2.1.1] hexane

Bicyclo [2.1.1] hexane-5-carboxylic acid

F.G. is preffered over double bond.
Bicyclo [3.2.2] dec-9 en-carboxylic acid

Bicyclo [3.2.2] non-8-ene-6-carboxylic acid

NOMENCLATURE OF SPIRO COMPOUNDS

Spiro comp. - Two cyclic rings are fused at one common carbon (only one bridge head)

Spiro

N/

Name: Prefix + no. of carbon in bridges in increasing order + suffix Spiro [2, 4] heptane

Rule for numbering: - In spiro compounds numbering starts from carbon of smaller ring which is next to spiro carbon proceeds towards other carbon atoms of smaller ring then towards larger ring via spiro carbon atom.

eg. 6-amino spiro [2, 4] heptane-4-carboxylic acid

eg.

Cyclopent-3-ene-1-carboxamide

2-Chloro cyclopentane carboxylic acid

Rule: - If more than one functional group is present at cyclic chain, then principal function group (PFG) is selected

PROBLEMS

Write the IUPAC Nomenclature of following compounds:

ANSWER

(1)	bicyclo [4.2.0] octane	(2)	bicyclo [4.3.0] non-7-ene
(3)	bicyclo [4.3.0] nonane-2-carboxylic acid	(4)	bicyclo [4.2.0] octane-7-one
(5)	bicyclo [2.2.2] octane-2-carbnitrile	(6)	bicyclo [2.2.1] heptane-7- carboxylic acid
(7)	spiro [2.2.0] penta-1, 4-diene	(8)	spiro [4.5] decan-1-one
(9)	spiro [2.3] hexane	(10)	5-formyl spiro [3.3] heptane-1-carboxylic acid
(11)	8-oxo bicyclo [4.2.0] octane-2-carboxylic a	8-methyl spiro [4.5] decan-1-amine	
(13)	1-chloro spiro [5.5] undecane	(14)	4-chloro spiro [4.4] nonan-1-ol
(15)	1-hydroxy spiro [2.5] octane-4-carboxylic a	spiro [2.5] octan-1-one	
(17)	bicyclo [3.2.0] hept-6-ene-2-carboxamide		
(18)	7-oxo spiro [4.4] nonane-1-carbaldehyde	(19)	spiro [2.5] octane-1-carbaldehyde
(20)	bicyclo [2.2.0] hexan-2-one	1033 98	