EN.530.626: Trajectory Generation for Space Systems Homework 3 Due Oct 21st 11:59PM

The code for this assignment can once again be found on GitHub at this link and can be downloaded by running git clone https://github.com/JHU-ACEL/trajdesign_hw.git from a terminal window. You can either clone/download the repository out or simply git pull if you had cloned out the repository for the last homework. Homework submissions and grading will be managed through Canvas.

Introduction

This homework will focus on the following technical concepts:

- 1. Understanding the importance of convex optimization techniques as applied to trajectory generation problems and how they can be extended to solve non-convex problems using sequential convex programming approaches.
- 2. Understanding how manifold constraints arising for physical systems can be satisfied within an optimal control framework and with a particular emphasis on the rotational space of quaternions S^3 .

To accomplish this, the software development learning goals include,

• Implementing trajectory optimization problem using off-the-shelf trajectory optimization packages such as cvxpy and acados.

Problem 1: PDG

In this problem, we will be implementing the lossless convexification approach for rocket powered descent guidance presented in [1].

Problem 2: Quaternion Optimal Control

In this problem, we will be implementing a controller to execute slews for the Astrobee free-flying robot [2] and learn how to satisfy manifold constraints associated with the quaternion space S^3 .

Submission Instruction

• Download the marimo notebook for each problem and join them together into a single PDF or HTML file named hw3.pdf.

Johns Hopkins Fall 2025

- Compress the hw3 folder containing your python files. Name this file "hw3.zip".
- Upload both the PDF/HTML file and the zip folder into the canvas assignment "Homework 3".

References

- [1] B. Açıkmeşe, J. M. Carson, and L. Blackmore, "Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem," *IEEE Transactions on Control Systems Technology*, vol. 21, no. 6, pp. 2104–2113.
- [2] T. Smith, J. Barlow, M. Bualat, T. Fong, C. Provencher, H. Sanchez, and E. Smith, "Astrobee: A new platform for free-flying robotics on the International Space Station," in *Int. Symp. on Artificial Intelligence, Robotics and Automation in Space*, 2016.