```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df=pd.read_csv("https://raw.githubusercontent.com/arib168/data/main/50_Startups.csv")
df
```


	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94

df.tail()

	F	R&D Spend	Administration	Marketing Spend	State	Profit	**
	45	1000.23	124153.04	1903.93	New York	64926.08	
	46	1315.46	115816.21	297114.46	Florida	49490.75	
	47	0.00	135426.92	0.00	California	42559.73	
df.s	ize						
	250						
df.i	sna().	.sum()					
	Marke State Profi	istration ting Spen					
	46	1315.46	115816.21	297114.46	Florida	49490.75	
df.c	olumns	5					
		(['R&D Sp ='object'		ration', 'Marketin	g Spend',	, 'State',	'Profit'],
x=df x	['Stat	te'].value	e_counts()				
	Flori	ornia da	17 17 16 type: int64				
	pie(x, show	labels=x.	index, autopct	= '%1.1f%%')			
	<func< td=""><td>tion matp</td><td>lotlib.pyplot.sh</td><td>now(*args, **kw)></td><td></td><td></td><td></td></func<>	tion matp	lotlib.pyplot.sh	now(*args, **kw)>			


```
x=df.iloc[:,:4]
y=df.iloc[:,4]
y
```

0 192261.83

```
1
      191792.06
2
      191050.39
3
      182901.99
4
      166187.94
5
      156991.12
6
      156122.51
7
      155752.60
8
      152211.77
9
      149759.96
10
      146121.95
11
      144259.40
12
      141585.52
13
      134307.35
14
      132602.65
15
      129917.04
16
      126992.93
17
      125370.37
18
      124266.90
19
      122776.86
20
      118474.03
21
      111313.02
22
      110352.25
23
      108733.99
24
      108552.04
25
      107404.34
26
      105733.54
27
      105008.31
28
      103282.38
29
      101004.64
30
       99937.59
31
       97483.56
32
       97427.84
       96778.92
33
34
       96712.80
35
       96479.51
36
       90708.19
37
       89949.14
38
       81229.06
39
       81005.76
40
       78239.91
41
       77798.83
42
       71498.49
43
       69758.98
44
       65200.33
45
       64926.08
46
       49490.75
47
       42559.73
48
       35673.41
49
       14681.40
```

Name: Profit, dtype: float64

Χ

	R&D Spend	Administration	Marketing Spend	State
0	165349.20	136897.80	471784.10	New York
1	162597.70	151377.59	443898.53	California
2	153441.51	101145.55	407934.54	Florida
3	144372.41	118671.85	383199.62	New York
4	142107.34	91391.77	366168.42	Florida
5	131876.90	99814.71	362861.36	New York
6	134615.46	147198.87	127716.82	California
7	130298.13	145530.06	323876.68	Florida
8	120542.52	148718.95	311613.29	New York
9	123334.88	108679.17	304981.62	California
10	101913.08	110594.11	229160.95	Florida
11	100671.96	91790.61	249744.55	California
12	93863.75	127320.38	249839.44	Florida
13	91992.39	135495.07	252664.93	California
14	119943.24	156547.42	256512.92	Florida
15	114523.61	122616.84	261776.23	New York
16	78013.11	121597.55	264346.06	California
17	94657.16	145077.58	282574.31	New York
18	91749.16	114175.79	294919.57	Florida
19	86419.70	153514.11	0.00	New York
20	76253.86	113867.30	298664.47	California
21	78389.47	153773.43	299737.29	New York
22	73994.56	122782.75	303319.26	Florida
23	67532.53	105751.03	304768.73	Florida
24	77044.01	99281.34	140574.81	New York
25	64664.71	139553.16	137962.62	California
26	75328.87	144135.98	134050.07	Florida
27	72107.60	127864.55	353183.81	New York
28	66051.52	182645.56	118148.20	Florida
29	65605.48	153032.06	107138.38	New York
30	61994.48	115641.28	91131.24	Florida
31	61136.38	152701.92	88218.23	New York
32	63408.86	129219.61	46085.25	California
33	55493.95	103057.49	214634.81	Florida

10/01/2023, 09:30		data_from_git.ipynb - Colaboratory		
34	46426.07	157693.92	210797.67 California	
35	46014.02	85047.44	205517.64 New York	
36	28663.76	127056.21	201126.82 Florida	
37	44069.95	51283.14	197029.42 California	
38	20229.59	65947.93	185265.10 New York	
39	38558.51	82982.09	174999.30 California	
40	28754.33	118546.05	172795.67 California	
41	27892.92	84710.77	164470.71 Florida	
42	23640.93	96189.63	148001.11 California	
43	15505.73	127382.30	35534.17 New York	
44	22177.74	154806.14	28334.72 California	
45	1000.23	124153.04	1903.93 New York	
16 7				

df.columns

Index(['R&D Spend', 'Administration', 'Marketing Spend', 'State', 'Profit'],
dtype='object')
49 0.00 116983.80 45173.06 California

sns.regplot(x=df['R&D Spend'],y=y,color="blue")

df.info

<bo< th=""><th>und method Da</th><th>taFrame.info of</th><th>R&D Spend</th><th>Administrati</th><th>on Marketing Spend</th></bo<>	und method Da	taFrame.info of	R&D Spend	Administrati	on Marketing Spend
Sta	te Profit				
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95

3, 09:	30		data_from_git.ipynl	o - Colaboratory		
11	100671.96	91790.61	249744.55	California	144259.40	
12	93863.75	127320.38	249839.44	Florida	141585.52	
13	91992.39	135495.07	252664.93	California	134307.35	
14	119943.24	156547.42	256512.92	Florida	132602.65	
15	114523.61	122616.84	261776.23	New York	129917.04	
16	78013.11	121597.55	264346.06	California	126992.93	
17	94657.16	145077.58	282574.31	New York	125370.37	
18	91749.16	114175.79	294919.57	Florida	124266.90	
19	86419.70	153514.11	0.00	New York	122776.86	
20	76253.86	113867.30	298664.47	California	118474.03	
21	78389.47	153773.43	299737.29	New York	111313.02	
22	73994.56	122782.75	303319.26	Florida	110352.25	
23	67532.53	105751.03	304768.73	Florida	108733.99	
24	77044.01	99281.34	140574.81	New York	108552.04	
25	64664.71	139553.16	137962.62	California	107404.34	
26	75328.87	144135.98	134050.07	Florida	105733.54	
27	72107.60	127864.55	353183.81	New York	105008.31	
28	66051.52	182645.56	118148.20	Florida	103282.38	
29	65605.48	153032.06	107138.38	New York	101004.64	
30	61994.48	115641.28	91131.24	Florida	99937.59	
31	61136.38	152701.92	88218.23	New York	97483.56	
32	63408.86	129219.61	46085.25	California	97427.84	
33	55493.95	103057.49	214634.81	Florida	96778.92	
34	46426.07	157693.92	210797.67	California	96712.80	
35	46014.02	85047.44	205517.64	New York	96479.51	
36	28663.76	127056.21	201126.82	Florida	90708.19	
37	44069.95	51283.14	197029.42	California	89949.14	
38	20229.59	65947.93	185265.10	New York	81229.06	
39	38558.51	82982.09	174999.30	California	81005.76	
40	28754.33	118546.05	172795.67	California	78239.91	
41	27892.92	84710.77	164470.71	Florida	77798.83	
42	23640.93	96189.63	148001.11	California	71498.49	
43	15505.73	127382.30	35534.17	New York	69758.98	
44	22177.74	154806.14	28334.72	California	65200.33	
45	1000.23	124153.04	1903.93	New York	64926.08	
46	1315.46	115816.21	297114.46	Florida	49490.75	
47	0.00	135426.92	0.00	California	42559.73	
48	542.05	51743.15	0.00	New York	35673.41	
49	0.00	116983.80	45173.06	California	14681.40>	

sns.regplot(x=df['Administration'],y=y,color="red")

sns.regplot(x=df['Marketing Spend'],y=y,color="green")

<matplotlib.axes. subplots.AxesSubplot at 0x7f3cc36121f0>

encoding technique

one_hot_encoding

```
from sklearn.compose import make_column_transformer
from sklearn.preprocessing import OneHotEncoder
col_transfer=make_column_transformer((OneHotEncoder(handle_unknown='ignore'),['State'])
x=col_transfer.fit_transform(x)
x
```

```
array([[0.0000000e+00, 0.0000000e+00, 1.0000000e+00, 1.6534920e+05,
        1.3689780e+05, 4.7178410e+05],
       [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.6259770e+05,
        1.5137759e+05, 4.4389853e+05],
       [0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 1.5344151e+05,
        1.0114555e+05, 4.0793454e+05],
       [0.0000000e+00, 0.0000000e+00, 1.0000000e+00, 1.4437241e+05,
        1.1867185e+05, 3.8319962e+05],
       [0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 1.4210734e+05,
        9.1391770e+04, 3.6616842e+05],
       [0.0000000e+00, 0.0000000e+00, 1.0000000e+00, 1.3187690e+05,
        9.9814710e+04, 3.6286136e+05],
       [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.3461546e+05,
        1.4719887e+05, 1.2771682e+05],
       [0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 1.3029813e+05,
        1.4553006e+05, 3.2387668e+05],
       [0.0000000e+00, 0.0000000e+00, 1.0000000e+00, 1.2054252e+05,
        1.4871895e+05, 3.1161329e+05],
       [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.2333488e+05,
        1.0867917e+05, 3.0498162e+05],
       [0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 1.0191308e+05,
        1.1059411e+05, 2.2916095e+05],
       [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 1.0067196e+05,
        9.1790610e+04, 2.4974455e+05],
       [0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 9.3863750e+04,
        1.2732038e+05, 2.4983944e+05],
       [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 9.1992390e+04,
        1.3549507e+05, 2.5266493e+05],
       [0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 1.1994324e+05,
        1.5654742e+05, 2.5651292e+05],
       [0.0000000e+00, 0.0000000e+00, 1.0000000e+00, 1.1452361e+05,
        1.2261684e+05, 2.6177623e+05],
       [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 7.8013110e+04,
        1.2159755e+05, 2.6434606e+05],
```

```
[0.0000000e+00, 0.0000000e+00, 1.0000000e+00, 9.4657160e+04,
            1.4507758e+05, 2.8257431e+05],
            [0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 9.1749160e+04,
             1.1417579e+05, 2.9491957e+05],
            [0.0000000e+00, 0.0000000e+00, 1.0000000e+00, 8.6419700e+04,
             1.5351411e+05, 0.0000000e+00],
            [1.0000000e+00, 0.0000000e+00, 0.0000000e+00, 7.6253860e+04,
             1.1386730e+05, 2.9866447e+05],
            [0.0000000e+00, 0.0000000e+00, 1.0000000e+00, 7.8389470e+04,
             1.5377343e+05, 2.9973729e+05],
            [0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 7.3994560e+04,
             1.2278275e+05, 3.0331926e+05],
            [0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 6.7532530e+04,
            1.0575103e+05, 3.0476873e+05],
[0.0000000e+00, 0.0000000e+00, 1.0000000e+00, 7.7044010e+04,
            9.9281340e+04, 1.4057481e+05],
            [1.00000000e+00, 0.00000000e+00, 0.0000000e+00, 6.4664710e+04,
             1.3955316e+05, 1.3796262e+05],
            [0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 7.5328870e+04,
            1.4413598e+05, 1.3405007e+05],
            [0.0000000e+00, 0.0000000e+00, 1.0000000e+00, 7.2107600e+04,
             1.2786455e+05, 3.5318381e+051,
            [0.0000000e+00, 1.0000000e+00, 0.0000000e+00, 6.6051520e+04,
             1 976/5560±05 1 191/9700±051
from sklearn.model selection import train test split
xtrain,xtest,ytrain,ytest=train test split(x,y,test size=.30,random state=1)
from sklearn.linear model import LinearRegression
l=LinearRegression()
l.fit(xtrain,ytrain)
ypred=l.predict(xtest)
ypred
    array([115325.09875888, 90638.08603376, 76019.13126601, 70325.43761815,
           179659.7398274 , 172204.16410706, 48850.65280981, 101321.43054263,
                                                                 84156.44747448,
            58316.95833315, 97217.64504548, 98129.20007849,
           117923.69116313, 75866.34008182, 113595.93339165])
dfl=pd.DataFrame({'Actual value':ytest,'Predicted value':ypred,'Difference':ytest-ypred
df1
```

	Actual_value	Predicted_value	Difference	7 .				
	27 105008.31	115325.098759	-10316.788759					
	35 96479.51	90638.086034	5841.423966					
	40 78239.91	76019.131266	2220.778734					
	38 81229.06	70325.437618	10903.622382					
	2 191050.39	179659.739827	11390.650173					
	("Slope = ",l.coe zip(x,l.coef_))	f_)						
	<pre>Slope = [4.21046246e+02 -5.35781864e+02 1.14735618e+02 7.70711613e-01 -1.41653527e-02 3.50988115e-02] [(array([0.000000e+00, 0.000000e+00, 1.000000e+00, 1.653492e+05,</pre>							
print		.mport mean_absolu in_absolute_percen 3280081237054		_				
		mport mean_absolu olute_error(ytest	_					
ľ	IAE : 7229.516119	284178						
	<pre>from sklearn.metrics import r2_score print("R2 score is ",r2_score(ytest,ypred))</pre>							
R	R2 score is 0.9529676095424967							
	<pre>from sklearn.metrics import mean_squared_error print("mean squared error =",mean_squared_error(ytest,ypred))</pre>							
m	nean squared erro	r = 74598131.6947	0714					
print	("Root mean squar	red error =",np.sq	rt(mean_squar	ed_error(ytest,ypred)))				
R	Root mean squared	error = 8637.020	996541987					

Colab paid products - Cancel contracts here

✓ 0s completed at 09:30

×