PART 1: Multiple Choice

Select the <u>single</u> most appropriate response for each question. Note that <u>none of the above</u> MAY be a VALID ANSWER.

(Solution at end)

- (1) A possible consequence of *insufficient* timing margin is:
 - (A) sensitivity to relative humidity
 - (B) sensitivity to operating temperature
 - (C) sensitivity to switching noise
 - (D) all of the above
 - (E) none of the above
- (2) An application where internal port pin *pull-ups* would be useful is:
 - (A) sourcing current to an LED
 - (B) sinking current from an LED
 - (C) driving a CMOS load
 - (D) inputting a switch contact closure to ground
 - (E) none of the above
- (3) Interrupt servicing latency is defined as:
 - (A) the time it takes to execute an interrupt service routine
 - (B) the time it takes to get to an interrupt service routine once the interrupt request is recognized
 - (C) the time it takes to fetch the first instruction of the interrupt service routine once the interrupt request is asserted
 - (D) the time it takes to clear the device flag once the interrupt request is asserted
 - (E) none of the above
- (4) The difference between "special" and "normal" HC(S)12 operating modes is:
 - (A) the processor feels better about itself when operating in "special" mode
 - (B) certain registers can be changed only once in "normal" mode, but can be changed any number of times in "special" mode
 - (C) certain registers can only be modified when the processor is running in "special" mode
 - (D) certain registers can be changed only once in "special" mode, but can be changed any number of times in "normal" mode
 - (E) none of the above
- (5) If memory mapping conflicts occur, the HC(S)12 gives the *lowest* priority to:
 - (A) register space
 - (B) internal SRAM
 - (C) byte-erasable EEPROM
 - (D) flash EEPROM
 - (E) external memory

- (6) On the 9S12C, if an XIRQ request interrupts an IRQ service routine that is in progress, it is referred to as:
 - (A) presumption
 - (B) recursion
 - (C) preemption
 - (D) election
 - (E) none of the above
- (7) The following step is *not* performed when the 9S12C switches context to an IRQ ISR:
 - (A) setting the "I" bit of the CCR
 - (B) setting the "X" bit of the CCR
 - (C) pushing all of the CPU registers onto the stack
 - (D) loading the interrupt vector into the program counter
 - (E) none of the above
- (8) The purpose of a Digital BinkyTM (interrupt enable/masking capability) is:
 - (A) to prevent a pending interrupt from causing a hardware interrupt
 - (B) to prevent preemption of an interrupt that is currently being serviced
 - (C) to prevent interrupt recursion
 - (D) to prevent an interrupt from vectoring
 - (E) none of the above
- (9) The word "multiplexed", when used to describe an expanded microprocessor bus, means:
 - (A) address and data are sent over the same wires simultaneously
 - (B) address and data are sent over the same wires, but not at the same time
 - (C) address and data are sent over the same wires bi-directionally
 - (D) address and data are sent over separate wires, but not at the same time
 - (E) none of the above
- (10) In the read timing cycle discussed in class, the "Green Line" refers to the instant that the data "absolutely, positively has to be there", which is:
 - (A) the read setup time prior to the end of the bus cycle
 - (B) the bus cycle length minus the address generation delay
 - (C) the bus cycle length minus the data generation delay
 - (D) the read hold time prior to the end of the bus cycle
 - (E) none of the above
- (11) If the value on the data bus changes before the "Green Line":
 - (A) bus fighting might occur
 - (B) the wrong value might be read by the processor
 - (C) metastability might occur
 - (D) all of the above
 - (E) none of the above

Questions 12-20 refer to the timing chart on the page that follows.

(12)	The address generation delay (\mathbf{t}_{AD}) is:					
	(A)	10 ns	(B) 20 ns	(C) 30 ns	(D) 40 ns	(E) none of the above
(13)	3) The amount of read setup time available (t_{RS}) is:					
	(A)	10 ns	(B) 20 ns	(C) 30 ns	(D) 40 ns	(E) none of the above
(14)	The write data float delay (twz) is:					
	(A)	10 ns	(B) 20 ns	(C) 30 ns	(D) 40 ns	(E) none of the above
(15)	The <u>nominal</u> chip enable access time (t_{CE}) available is:					
	(A)	10 ns	(B) 20 ns	(C) 30 ns	(D) 40 ns	(E) none of the above
(16)	The	nominal o	output enable	access time (1	toe) available	is:
	(A)	10 ns	(B) 20 ns	(C) 30 ns	(D) 40 ns	(E) none of the above
(17)	If an SRAM with $t_{AA} = 30$ ns, $t_{CE} = 30$ ns, $t_{OE} = 10$ ns, and $t_{OH} = 10$ ns (reference from the negation of OE) is interfaced to the processor depicted in this timing characteristic the read timing margin provided will be:					
	(A)	10 ns	(B) 20 ns	(C) 30 ns	(D) 40 ns	(E) none of the above
(18)						s, and $t_{IH} = 0$ ns is interfaced to ming margin provided will be:
	(A)	10 ns	(B) 20 ns	(C) 30 ns	(D) 40 ns	(E) none of the above
(19)	The maximum amount of output float delay toz (referenced from the <i>end of</i> toh) the can be tolerated is:					
	(A)	10 ns	(B) 20 ns	(C) 30 ns	(D) 40 ns	(E) none of the above
(20)	(e.g., (A) (B) (C)	, less than higher p slower b burned o	n 10%), the <i>m</i>	ost likely resu ion/heat gener	ılt will be:) is <i>exceeded</i> by a <u>small</u> amoun

(E) none of the above

© 2015 by D. G. Meyer / Purdue University – may not be copied or reproduced, in any form or by any means.

Part 2: Design/Application Problem

Determine the *maximum clock speed* a **9S12C128** CPU (5 V) can run at in *expanded narrow mode* without stretch if a **7C199-10** SRAM is used in conjunction with an **LC4032B-25T44C** PLD to implement the "glue" logic (round your result to the nearest one-tenth MHz). Note that your determination should include an SRAM read timing margin of **10%**. Show your calculations, and *draw a detailed, to-scale read timing diagram* documenting your results in the space provided below (note: horizontal scale is **2.0** ns/division).

The ABEL file is the same one used for the homework. Use **ispLever** to perform a timing analysis of the critical read cycle paths.

Grading breakdown:

- detailed timing chart, annotated with all pertinent timing parameters
- maximum ECLK speed = ____ MHz (rounded to nearest *one-tenth* show work)

- timing simulation, ECLK rise to CE' assertion for PLD specified = ____ ns
- timing simulation, ECLK assertion to OE' assertion for PLD specified = _____ ns
- duration of potential bus fighting due to SRAM float delay = ____ ns

- 6 -

Part 1 solution key:

1-B, 2-D, 3-C, 4-B, 5-E, 6-C, 7-B, 8-A, 9-B, 10-A, 11-E, 12-C, 13-B, 14-A, 15-D, 16-B, 17-A, 18-C, 19-D, 20-A

Part 2 solution: <same as Problem #4 on Homework #3>

