Лекция 8.

Второй и третий законы Ньютона

Уравнения движения точки в инерциальной системе координат E^3 : $\ddot{\vec{r}}=\vec{F}'$, \vec{r} , $\overrightarrow{F}'\in R^3$ (начальные условия \vec{r} (t₀) = \vec{r} ₀, $\dot{\vec{r}}$ (t₀) = $\dot{\vec{r}}$ ₀).

Введём понятия силы и массы для построения $\overrightarrow{F'}$.

Действие других тел на рассматриваемое тело имеет характер взаимодействия. Мера взаимодействия - сила \vec{F} , действующая на точку — вектор, сонаправленный с ускорением точки \vec{w} = \ddot{r} , которое вызывается этой силой. В механике силы разделяют на *контактные* и *полевые*. Ускорения, приобретаемые одним и тем же телом под действием разных сил, пропорциональны этим силам: $\frac{F_1}{F_2} = \frac{w_1}{w_2}$. Инертность - любой силе отношение F/w для данного тела постоянно.

Количественная характеристика инертности – macca. Сравнение масс: $\frac{m_1}{m_2} = \frac{w_1}{w_2}$. Свойства массы:

- Аддитивность масса составного тела равна сумме масс его частей;
- Постоянство масса неизменна со временем;

Механическая система - конечная или бесконечная система точек, снабженных массами.

Второй закон Ньютона: ускорение материальной точки в инерциальной системе координат прямо пропорционально действующей на нее силе и обратно пропорционально ее массе: $m\vec{w} = \vec{F}$. Следовательно: $\vec{F'} = \frac{\vec{F}}{m}$.

Третий закон Ньютона: всякое действие материальных точек друг на друга имеет характер взаимодействия. Две материальные точки действуют друг на друга с силами $(\overrightarrow{F_1}, \overrightarrow{F_2})$, равными по величине и направленными в противоположные стороны вдоль прямой, соединяющей точки: $\overrightarrow{F_1} = -\overrightarrow{F_2}$.

Рассмотрим, так называемые, ϕ ундаментальные силы, лежащие в основе и всех других известных сил.

Закон всемирного тяготения:

 M_1 , M_2 – две материальные точки, с массами m_1 , m_2 соответственно и $\vec{r} = \overrightarrow{M_1 M_2}$, $\vec{r} = |\vec{r}|$. Точки притягиваются друг к другу с силами $\overrightarrow{F_{1,2}} = -\overrightarrow{F_{2,1}}$, вычисляемые по формулам: $\overrightarrow{F_{1,2}} = \gamma \frac{m_1 m_2}{r^2} \frac{\vec{r}}{r}$, ($\overrightarrow{F_{1,2}}$ – сила притяжения точки M_1 к M_2), а γ – всемирная гравитационная постоянная.

Кулоновская сила:

 M_1 , M_2 – две частицы с зарядами q_1 , q_2 и $\vec{r} = \overrightarrow{M_1 M_2}$, $\vec{r} = |\vec{r}|$. Точки притягиваются друг к другу с силами $\overrightarrow{F_{1,2}} = -\overrightarrow{F_{2,1}}$, вычисляемые по формулам: $\overrightarrow{F_{1,2}} = \pm k \frac{q_1 q_2}{r^2} \frac{\vec{r}}{r}$, $(\overrightarrow{F_{1,2}} - \mathsf{сила})$ притяжения точки M_1 к M_2), а k — положительная постоянная, причем знак плюс соответствует случаю притягивающихся точек (при разноимённых зарядах).

Сила Лоренца:

На наряженную частицу q, движущуюся со скоростью \vec{v} в электромагнитном поле, действует сила: $\vec{F}=q(\vec{E}+\frac{1}{c}\vec{v}\times\vec{H})$, где \vec{E} , \vec{H} — напряженность электрического и магнитного полей, а с —скорость света в пустоте.

Рассмотрим силы, полученные из фундаментальных:

Однородная сила тяжести:

На материальную точку у поверхности Земли действует *сила тяжести*: $\vec{F}=m\vec{g}$, где \vec{g} – постоянный вектор ускорения свободного падения.

Вес \vec{P} — сила действия тела на опору (подвес), неподвижна относительно этого тела. Если тело и опора (подвес) неподвижны относительно Земли, то вес совпадает с силой тяжести. Иначе $\vec{P}=m(\vec{g}-\vec{w})$, где — ускорение тела вместе с опорой (подвесом) относительно Земли.

Упругая сила (закон Гука):

Это сила, пропорциональная отклонению $\vec{r} = \overrightarrow{OM}$ точки М от положения равновесия О: $\vec{F} = -\chi \vec{r}$, где χ – зависящая от контекста конкретной задачи константа.

Сила трения скольжения:

Это сила \vec{F} , появляющаяся при скольжении тела по поверхности другого тела: $\vec{F} = -fN\frac{\vec{v}}{v}$, где f- коэффициент трения скольжения, зависящий от природы соприкасающихся поверхностей, N- величина силы нормального давления, прижимающая трущиеся поверхности друг к другу, $\vec{v}-$ скорость движения тела по поверхности другого тела.

Сила сопротивления среды:

Это сила, действующая на тело в его поступательном прямолинейном движении в газе или жидкости: $\vec{F} = -k\vec{v}$, где k – коэффициент сопротивления среды (зависит от среды и тела), \vec{v} - скорость движения тела относительно среды.

Сила, действующая на тело в его поступательном (но не обязательно прямолинейном) движении: $\vec{F} = -kS\vec{v}$, где S – площадь проекции тела на плоскость перпендикулярную \vec{v} .

Первая задача динамики

Заключается в построении уравнений движения механических систем, состоящих из материальных точек и/или твердых тел, по заданным их движениям u/или свойствам движений в E^3 .

Примером такой задачи стала задача Ньютона, результатом решения которой является закон всемирного тяготения, состоит в определении силы, под действием которой материальные точки совершают движения вокруг другой материальной точки, удовлетворяя свойствам: траектории движения точек являются эллипсами, в одном из фокусов которого находится точка, вокруг которой происходит вращение; секторные скорости точек постоянны.

Такие задачи динамики, или как их называют - обратные, составляют специальный раздел аналитической динамики.

Вторая задача динамики

Состоит в определении движений механической системы по известным силам. Для системы из одной точки, задача состоит из нахождения её движения $\vec{r}(t)$ по известной действующей на неё силе и сводится к решению задачи Коши: $m\ddot{\vec{r}}=\vec{F}(\vec{r},\dot{\vec{r}},t),\, \vec{r}(t_0)=\overrightarrow{r_0},\, \dot{\vec{r}}(t_0)=\dot{\vec{r}_0}.$

Уравнение движения механической точки

Силы взаимодействия между материальными точками механической системы - внутренние силы. Силы, действующие на материальные точки системы, вызванные материальными объектами, не входящими в состав рассматриваемой механической системы - внешними силами. Геометрическая сумма внешних (внутренних) сил, действующих на материальную точку — главный вектор внешних (внутренних) сил.

Если обозначить векторы главных внешних и внутренних сил точки M_i (с массой m_i) как $\overrightarrow{F_j}$, соответственно, то можно получить *уравнения движения механической системы*: $m_j \ddot{\overrightarrow{r_j}} = \overrightarrow{F_j}(\overrightarrow{r_1}, ..., \overrightarrow{r_1}, ..., t) + \overrightarrow{F_j}'(\overrightarrow{r_1}, ..., \overrightarrow{r_1}, ..., t)$, которые определяют движение механической системы в пространстве E^3 (не обязательно в инерциальной системе координат).