

Especificação

- Objetivo da aula
 - apresentar uma variedade de critérios de avaliação da qualidade vinculados às práticas de inspeção e revisão
- Justificativa
 - a inspeção já nos primeiros artefatos do desenvolvimento reduz o custo do desenvolvimento.
 - quando feito de uma forma sistemática e segundo critérios conhecidos essa redução é mais significativa
- Pezzè, M.; Young, M.; Teste e Análise de Software; 2008; capítulo 19
- Staa, A.v.; *Programação Modular*; Campus; 2000; capítulos 3, 10 e 12

Mar 2015

Arndt von Staa © LES/DI/PUC-Rio

Técnica de revisão: medição estática

Medições estáticas

- medem propriedades do código ou de outros artefatos e indicam os fragmentos que têm chance de gerar problemas (bad smells, odores)
 - estilo de programação que tende a induzir defeitos (fault proneness)
 - estilo de programação difícil de manter
 - estilo de programação difícil de testar
 - propriedades cujo risco foi avaliado através de experimentos
 - acoplamento
 - coesão
 - encapsulamento
 - complexidade ciclomática (McCabe) número de decisões no fluxograma

 - fan out
 - ...

Exemplo: complexidade ciclomática (McCabe)


```
pValor = ( char * ) pValorParm ;
   numBytes = TamValor - Offset ;
   if ( numBytes > DIM_LINHA ) {
     numBytes = DIM_LINHA ;
   } /* if */
    for( i = 0 ; i < numBytes ; i ++ ) {</pre>
      ValChar = *( pValor + Offset + i ) ;
      fprintf( pArqLog , " %02X" , ValChar ) ;
10 } /* for */
11 for(; i < DIM_LINHA; i ++) {</pre>
      fprintf( pArqLog , " ");
12
13 } /* for */
14 fprintf( pArqLog , " ");
15 for( i = 0 ; i < numBytes ; i ++ ) {
      Ch = *( pValor + Offset + i ) ;
16
17
      if ( ( Ch < 32 )
         || ( Ch == 127 )
|| ( Ch == 255 )) {
18
19
          Ch = '.' ;
20
21
       } /* if */
       fprintf( pArqLog , "%c" , Ch ) ;
23 } /* for */
```

imprime, em hexadecimal e ASCII, até DIM_LINHA caracteres a partir do offset de um string

Arndt von Staa © LES/DI/PUC-Rio

Exemplo: complexidade ciclomática LES · Como reduzir? ImprimirLinha(comp , linha , DIM) { IniciarLinha() if (comp <= 0) return; criar várias funções: numCh = comp ; if (numCh > DIM) numCh = DIM ; ImprimirLinha(linha , comp , DIM) ImprimirParteHexa(linha) ImprimirParteHexa(linha , numCh) ImprimirEnchimento(DIM) ImprimirParteChar(linha) ImprimirEnchimento(numCh , DIM) incompleto ImprimirParteChar(linha , numCh) ImprimirParteChar(linha) { for (int i = 0 ; i < numCh ; i++) {</pre> bool EhImprimível (ch) if (EhImprimivel(linha[i]) { ImprimirCh(linha[i]) ; O código ao lado ficou mesmo mais ImprimirCh('.') legível? } Mais manutenível? Imprimir Linha E o diagrama ao lado? Substituir as chamadas por Imprimir Imprimir Imprimir pseudo-instruções funciona? Parte Hexa Enchimento Parte Char Ver se é imprimível

Reorganização (refactoring)

- Diversos problemas existentes no código podem tornar mais custosa a manutenção
 - esses problemas são conhecidos por bad smells, odores ou anomalias de código
 - algumas dessas anomalias podem ser removidos por ferramentas de reorganização, ou refactoring
 - Eclipse fornece várias ferramentas de reorganização para Java
 - desenvolvimento ágil preconiza a remoção de odores após ter completado o teste automatizado

Fowler, M.; *Refactoring: Improving the Design of Existing Code*; Reading, Massachusetts: Addison-Wesley; 2000

Sjøberg, D.I.K.; Yamashita, A.; Anda, B.C.D.; Mockus, A.; Dybå, T.; "Quantifying the Effect of Code Smells on Maintenance Effort"; *IEEE Transactions on Software Engineering* 39(8); Los Alamitos, CA: IEEE Computer Society; 2013; pags 1144-1156

Mar 2015

Arndt von Staa © LES/DI/PUC-Rio

7

Técnica de revisão: análise estática

- Análise estática
 - examinam propriedades a partir da análise do código.
 Exemplos
 - a partir do grafo de chamadas envolvendo o programa
 - que função ou método chama que outra função ou método?
 - que catch trata de um dado throw?
 - reorganização de componentes
 - existem arestas de corte no grafo que permitam separar componentes?
 - controle de tipos semânticos
 - ex. velocidade em m/s

tipo semântico - informa o significado e a dimensão do dado, não somente a codificação

Mar 2015

Arndt von Staa © LES/DI/PUC-Rio

Análise estática exemplo 1 / 3

- Calcular o tempo para o encontro de duas pessoas andando em direções contrárias ao redor de uma lagoa
 - velocidades: vp1 e vp2
 - perímetro: d
 - código proposto

```
double f( double d, double vp1, double vp2 )
{
   return d * ( vp1 / vp2 ) ;
```

o código está semanticamente errado porém sintaticamente correto

- quais são os defeitos?
- · como descobrir os defeitos através de análise estática?

A linguagem F# possui sintaxe para esse tipo de controle: ver units of measure

Mar 201

Arndt von Staa © LES/DI/PUC-Ri

9

Análise estática exemplo 2 / 3


```
semantic_types double veloc , double dist , double time , double number ;
rules
{
    veloc = dist / time ;
    number = veloc / veloc ;
    time = dist / veloc ;
    dist = dist * number ;
} ;

time f( dist d, veloc vp1, veloc vp2 )
{
    return d * ( vp1 / vp2 ) ;
}
este código viola as regras definidas.
Retorna distância e não tempo.
```

- Seria possível escrever um programa que acusa a existência de defeitos no código acima?
- E as vulnerabilidades de associação de dimensões erradas?
 - ex. passar km/h para um parâmetro esperando por m/s

Mar 2015

Arndt von Staa © LES/DI/PUC-Rio

Análise estática exemplo 3 / 3 LES dimensions vms , vkmh , km , m , s, h ; rules vms = m / s ;vkmh = km / h; vms = 0,27777778 * vkmh constante de conversão km/h para m/s semantic_types double veloc , double dist , double time , double number ; operations veloc = dist / time ; veloc = veloc + veloc ; number = veloc / veloc ; time = dist / veloc ; dist = dist * number ; time:s f(dist:m d, veloc:vms vp1, veloc:vkmh vp2) return d / (vp1 + vp2) ;

Seria possível escrever um programa que acusa a existência de defeitos no código

Análise estática de interfaces

acima?

- Mesmo se não tiver uma ferramenta de controle de tipos
 - sempre especifique a semântica de todos os parâmetros
 - isso facilita muito a inspeção visual do uso das interfaces
 - uso incorreto de interfaces é uma das maiores causas de defeitos

Ic - interface do ponto de vista do cliente

Is - interface do ponto de vista do servidor

Se servidor correto => correto Impossível observar Sempre incorreto

Arndt von Staa © LES/DI/PUC-Ri

Análise estática de duplicação de código

- Copiar , colar e alterar código é nocivo
 - duplica código, agora existem dois para manter
 - se o código copiado contiver um defeito, as cópias também conterão
 - aumenta desnecessariamente o esforço de manutenção
 - duplicações também podem acontecer quando dois programadores se depararem com problemas similares
- Procure ferramentas de análise do código à busca de duplicações
 - elimine as duplicações encontradas
 - crie um método com parâmetros que implementa as diversas variantes do código base

Mar 2015

Arndt von Staa © LES/DI/PUC-Ri

12

Uso de análise estática

- Procure ferramentas de análise estática, exemplos
 - a primeira delas: *lint* para UNIX
 - findbugs (java)
 - cpplint (google c++)
 - existem inúmeras outras para as mais variadas plataformas

Mar 2015

Arndt von Staa © LES/DI/PUC-Rio

Técnica de revisão: análise dinâmica

- Análise dinâmica (incluído aqui para confronto com análise estática)
 - apoia revisões após o desenvolvimento
 - verifica propriedades relevantes durante a execução
 - é mais para teste do que para revisão ou inspeção
 - exemplos
 - satisfação de condições
 - assertivas executáveis, verificadores estruturais
 - controle dinâmico de tipos
 - controle vazamento de recursos
 - avaliação do desempenho
 - algumas ferramentas
 - valgrind para C++ / UNIX; Insure++
 - ferramentas de medição de desempenho
 - ...

Mar 2015

Arndt von Staa © LES/DI/PUC-Ri

1 =

Técnica de revisão: uso de padrões

- Estude e use padrões e técnicas de revisão ou inspeção
 - melhora a eficácia das revisões e inspeções reduz a frequência de enganos → reduz a inserção de defeitos
 - mais próximo do ideal correto por construção
 - com ganho de produtividade
 - redução de custos em virtude da redução do retrabalho inútil
 - treinamento deve ser adequado às características da organização e do projeto
 - os critérios usados devem amoldar-se à natureza do problema, à cultura da organização e à qualidade requerida
- · Precisa mesmo?
 - O treinamento em padrões de projeto e de programação é requerido como parte da formação de bons programadores

Mar 2015

Arndt von Staa © LES/DI/PUC-Rio

Técnica de revisão: técnicas formais leves

- Utilize técnicas formais leves
 - também faz parte da formação de bons programadores
 - assertivas e argumentação da corretude
 - especificar, projetar e programar utilizando técnicas e modelos suficientemente formais
 - procure e utilize ferramentas
 - verificadores de modelos (model checkers)
 - transformadores que convertem modelos em outros artefatos de nível de abstração mais baixo, ou então redigidos em outra linguagem de representação
 - » a grande maioria dos transformadores converte para esqueletos de código que precisam ser preenchidos pelo desenvolvedor
 - » a geração de esqueletos dificulta a manutenção
 - geradores que convertem modelos em código compilável

Mar 2015

Arndt von Staa © LES/DI/PUC-Ri

17

Critérios de qualidade para casos de uso

- Casos de uso estabelecem um diálogo entre usuário e o sistema a ser desenvolvido (ou existente)
 - possivelmente envolvem vários interessados
 - devem conter ações relacionadas com todos os interessados
- Casos de uso devem evitar detalhes de implementação
 - deve-se evitar descrever a interface física com o usuário
- Deve-se evitar ações excessivamente detalhadas
 - ex. Usuário fornece largura do produto (fornece as dimensões)
- Deve-se evitar ações excessivamente vagas
 - ex. Usuário fornece dados
- As ações devem ser coerentes com o objetivo do caso de
 - o objetivo do caso de uso deve estar refletido no título

Mar 2015

Arndt von Staa © LES/DI/PUC-Ric

Critérios de qualidade para casos de uso

- Casos de uso devem ser redigidos para que leitores leigos em computação possam ler e entender
 - evite jargão "computês"
 - procure manter-se no domínio do problema e não focar a implementação
- Casos de uso devem ser redigidos com sintaxe e ortografia correta
 - evite palavras complicadas ou fora de uso
 - evite adjetivos e advérbios que pouco ou nada contribuam para o entendimento
 - use uma linguagem polida (bem educada)
- Casos de uso podem levar ou a sucesso ou a falha,
 - o texto deve deixar clara qual das duas terminações ocorrem
 - e o que fazer quando ocorrem erros de uso

Mar 201!

Arndt von Staa © LES/DI/PUC-Ri

19

Critérios de qualidade para casos de uso LES Caso de uso O nome do caso de uso descreve o objetivo a alcançar? ex. Efetuar login no sistema específico Resumo A descrição é resumida? • Explica bem o objetivo principal? Escopo A natureza do caso de uso é "caixa preta"? Obs. um caso de uso deve ser uma característica (feature, funcionalidade) O escopo contém tudo o que o caso de uso abordará? • O escopo contém coisas que o caso de uso não abordará? Ator principal • O ator principal aciona o caso de uso? • Cada interessado figura em pelo menos uma ação e/ou regra Interessados de negócio? Todas as interações externas referem a algum interessado? • Os interesses (metas) de cada interessado estão definidas? · necessário - contém nada que possa ser eliminado • suficiente – contém tudo o que é necessário

Invariante	 Foi redigida como um conjunto de condições? Todas as condições são relevantes para o caso de uso?
	• Falta alguma condição relevante para o caso de uso?
	• Todas as condições precisam valer antes e também após qualquer forma de <i>término normal</i> do caso de uso?
Pré condições	 Foram redigidas como um conjunto de condições? Invariante + pré-condições estabelecem todas as condições necessárias para poder iniciar o caso de uso? falta alguma condição necessária para iniciar o caso de uso? Todas as pré-condições são diferentes das condições invariantes?
Acionamento	 O evento que aciona o caso de uso é disparado pelo ator principal?
	• Se não for, o caso de uso é parte de uma máquina de estado

terminar? Obs. podem ser usados os critérios de qualidade de especificação	Possui entre 3 e 9 ações? Podem ocorrer casos que violem essa regenerar esta a sações estão redigidas segundo o padrão de redação? As ações do fluxo principal correspondem ao objetivo principal não consideram anomalias de execução? Basta a satisfação da invariante e das pré-condições para pode disparar o fluxo principal? O fluxo principal pode ser disparado pelo ator principal? O fluxo principal resulta em algo que interesse ao ator principal of fluxo principal é viável? O fluxo principal é capaz de assegurar a invariante ao terminar of fluxo principal é capaz de assegurar a pós-condição ao
--	--

Critérios de qualidade para casos de uso LES • Cada fluxo alternativo é disparado por um evento ou condição claramente definida? • Cada fluxo alternativo ou inicia em uma ação definida, ou é genérico? • A condição de disparo é não ambígua com relação aos demais fluxos alternativos? • A condição de disparo do fluxo alternativo pode ocorrer na Fluxos alternativos • Todas as condições anormais (exceções) foram consideradas? (cenário - Considere uma a uma as ações do fluxo principal e dos alternativo) fluxos alternativos. • As ações estão redigidas segundo o padrão de redação? • O fluxo alternativo com término anormal é capaz de assegurar a garantia mínima? • Está claro qual será o resultado da execução do fluxo alternativo? (poderia estar nas pós-condições) Obs. podem ser usados os critérios de qualidade de especificações.

	Critério	s de qualidade para casos de uso
Laboratório de Engenharia de Software	Pós condições	 Foram redigidas como um conjunto de condições? A invariante + pós-condições estabelecem completamente o resultado ao término do fluxo normal? falta alguma condição de saída de interesse para o ator principal ou outros interessados? Todas as pós-condições são diferentes das condições invariantes? As pós condições podem ser utilizadas como oráculo de teste?
	Garantia mínima	 Foi redigida como um conjunto de condições? A garantia mínima estabelece completamente o resultado ao término (anormal) de um fluxo alternativo? Falta alguma condição de garantia mínima? As condições podem ser utilizadas como oráculo de teste?
		Arndt von Staa © LES/DI/PUC-Rio 24

	Cada requisito corresponde a um requisito não funcional?
	 Foram considerados todos os requisitos n\u00e3o funcionais relevantes?
Requisitos	 Todos os requisitos relacionados s\u00e3o relevantes para o caso de uso?
	Os requisitos são viáveis?
	Todos os requisitos são verificáveis?
	 Todas as regras de negócio explicitamente ou implicitamente requeridas pelas diversas ações estão definidas?
Regras de negócio	 Todas as regras de negócio estão relacionadas a pelo menos uma ação?
	 As regras de negócio são compatíveis com as condições válidas nas ações a que se relacionam?

	Critérios	de qualidade para casos de uso	LES
Software	Casos de uso correlatos	 Todos os casos de uso que abordem aspectos ou característi (features) correlatas estão referenciados? Algum caso de uso referenciado não aborda aspectos ou características correlatas? 	icas
Engennaria de s	Artefatos correlatos	 Todos os documentos, artigos, mensagens, fontes de informação, etc. que contêm alguma informação relevante po caso de uso estão relacionados? Somente estão relacionados os artefatos que contêm alguma informação relevante para o caso de uso? 	
aboratório de			
	Mar 2015	Arndt von Staa © LES/DI/PUC-Rio	26

Critérios da qualidade de especificações

- Explicitude (explícito + -(t)ude)
 - todos os itens da especificação estão explicitamente definidos e documentados
- Necessidade
 - a especificação contém somente os itens cuja presença possa ser justificada
- Suficiência
 - a especificação não omite aspectos relevantes
 - exemplo: a especificação de uma classe relaciona os atributos e métodos públicos e protegidos, e todas as dependências de outras classes
- Consistência
 - a especificação não contém contradições internas, ou com outros documentos

Mar 2015

Arndt von Staa © LES/DI/PUC-Ri

27

Critérios de qualidade de especificações

- Ausência de redundância
 - Redundância ocorre quando um mesmo item é especificado em vários lugares (duplicação, repetição), exemplos
 - descrever a interface com o usuário no cabeçalho do módulo e também na função que implementa esta interface
 - especificar a parte externada tanto no módulo de definição como no módulo de implementação
- Verificabilidade (isso é obrigatório)
 - deve ser possível determinar objetivamente a satisfação de cada item da especificação
- Testabilidade (isso é desejável)
 - é uma forma de verificabilidade em que a satisfação dos itens de especificação é verificada através de casos de teste

Mar 2015

Arndt von Staa © LES/DI/PUC-Ric

Critérios de qualidade de especificações

Concisão

- a especificação é redigida com poucas palavras
 - evite circunlóquios, adjetivos e advérbios que nada acrescentem à especificação

Compreensibilidade

- a especificação deve ser compreensível pelos diversos leitores
 - leitores são possivelmente leigos em computação
- Não-ambiguidade (inequívoco)
 - todos os leitores devem entender o item exatamente da mesma maneira

Prioridade

 está claro o que é efetivamente requerido – essencial – e o que é apenas desejado

Mar 2015

Arndt von Staa © LES/DI/PUC-Ri

20

Critérios de qualidade de especificações

Nivelamento

- a especificação está no nível de abstração do artefato sendo especificado. Exemplos
 - para a arquitetura do sistema, são relevantes os modelos conceituais das bases de dados utilizadas
 - para um usar um sistema não interessa saber como as bases de dados são organizadas
 - mas é necessário saber que serviços o sistema presta
 - interface abstrata com o usuário

Viabilidade

- cada item da especificação pode ser implementado pela equipe disponível
 - é teoricamente possível implementar com o desempenho desejado
 - computabilidade
 - complexidade teórica
 - análise de algoritmos
 - a equipe tem competência para implementar

Mar 2015

Arndt von Staa © LES/DI/PUC-Ric

Outros critérios de qualidade de especificações Adequação Acurácia ou Exatidão Precisão Desempenho Portatilidade Proteção Segurança contra desastres safety Segurança contra mau uso security Recuperabilidade Tolerância a falhas Não cancelamento Indiana Arndt von Staa © LES/DI/PUC-Rio

Critérios de qualidade de decomposições

Especificação dos requisitos do elemento

- avaliada segundo os critérios de Especificação de Requisitos
- nem todos os critérios precisam ser abordados em cada um dos elementos. Ressaltamos os seguintes:
- Definição
 - deve estar claramente definida a intenção do elemento
- Adequação
 - compatibilidade entre o serviço a ser prestado pelo elemento e as necessidades (essência / precisa) e expectativas (deseja) do usuário
- Nivelamento
 - todos os elementos do conjunto de solução estão no mesmo nível de abstração

Mar 2015

Arndt von Staa © LES/DI/PUC-Ri

2 E

Critérios de qualidade de decomposições

- Necessidade
 - cada elemento do conjunto de solução efetivamente contribui para a sua solução
- Suficiência
 - o conjunto solução resolve completamente a abstração raiz
- Viabilidade
 - o elemento ou já é uma solução concreta, ou admite uma solução satisfatória

Mar 2015

Arndt von Staa © LES/DI/PUC-Rio

Critérios de qualidade de decomposições

Minimalidade

 não existe subconjunto do conjunto de solução que por si só represente um conceito bem definido

Ortogonalidade

- cada elemento resolve uma parte da abstração raiz que não é resolvida por qualquer outro elemento
- ideal: cada parte da abstração raiz é resolvida por exatamente um elemento

Reusabilidade

- o elemento pode ser utilizado de forma verbatim em uma variedade de contextos
 - quanto mais bem delimitado for o elemento
 - maior a chance de poder ser reutilizado reuso por acaso
 - mais reutilizável será reuso por projeto

Mar 201

Arndt von Staa © LES/DI/PUC-Ri

27

Critérios de qualidade de decomposições

Completeza de interface

- a especificação da interface do elemento está completa e em conformidade com os requisitos do elemento
- é na realidade um fator de qualidade (um conjunto de critérios), a ser visto mais adiante

Integrabilidade

 os elementos do conjunto de solução podem ser integrados sem necessitarem de adaptações

Flexibilidade

- o elemento pode ser utilizado em diferentes contextos através da seleção de parâmetros existentes na interface
 - através de parâmetros, ou redefinições de métodos pode-se criar elementos genéricos
- a flexibilidade deve ser a mínima necessária

Mar 2015

Arndt von Staa © LES/DI/PUC-Ric

Critérios de qualidade de decomposições

A interface de um elemento é composta por itens da interface

- Tipo do item
 - deve estar claramente definida a semântica do item e a sua escala de medição, exemplos:
 - velocidade em m/s
 - símbolo é um string ASCII terminado em zero
- Necessidade do item
 - o item da interface é necessário para poder corretamente utilizar o elemento
- Suficiência de itens
 - o conjunto de todos os itens da interface permite corretamente utilizar o elemento

Mar 2015

Arndt von Staa © LES/DI/PUC-Ri

20

Critérios de qualidade de decomposições

- · Minimalidade de itens
 - não existe um subconjunto do conjunto de itens e que represente um conceito bem definido, i.e. um item composto
- · Ortogonalidade de itens
 - cada item se refere a um requisito do elemento que nenhum outro item considera
- Encapsulamento
 - são tornadas visíveis na interface física somente as propriedades de implementação efetivamente necessárias

Mar 2015

Arndt von Staa © LES/DI/PUC-Rio

Manual de critérios

- Crie e mantenha um Manual de Critérios de Qualidade para a sua organização
 - componentes básicos
 - padrões de arquitetura e de projeto
 - design patterns
 - padrões de programação
 - defina com precisão as restrições de uso das várias linguagens de representação utilizadas
 - crie padrões técnicos ajustando as linguagens de representação às necessidades da organização

Organização aqui significa: empresa, divisão de uma empresa, ou grupo dentro de uma empresa que se dedica ao desenvolvimento de sistemas intensivos em software

1ar 2015

Arndt von Staa © LES/DI/PUC-Ri

Manual de critérios

- · Verifique se cada um dos critérios do manual
 - é coerente com os demais critérios
 - corresponde a alguma coisa relevante
 - ou elimina riscos de defeitos ou vulnerabilidades
 - ou contribui para a satisfação de algum requisito não funcional
 - manutenibilidade
 - testabilidade
 - segurança
 - . . .
 - evite achologia conduza experimentos, ou procure evidências na Web

achologia – "lógica" baseada em opinião ou intuição e não em fatos. Ex. eu acho que x é verdade

Mar 2015

Arndt von Staa © LES/DI/PUC-Rio

Manual de critérios

- A publicação e o uso de um Manual de Critérios de Qualidade é, por si só, um fator significativo para o aumento da qualidade sem que isto implique em mais custos ou perda de produtividade
 - desenvolver com base em critérios conhecidos reduz o número de defeitos e vulnerabilidades inseridos sem requerer mais esforço [Weinberg, 1998]
 - menos defeitos inseridos reduz o retrabalho inútil
 - retrabalho inútil é esforço perdido, ou seja é produtividade diminuída e custo aumentado
 - menos retrabalho no mínimo mantém produtividade e custo, na prática melhora sensivelmente esses dois fatores

Weinberg, G.M.; The Psychology of Computer Programming; 2nd edition; New York: Dorset House; 1998

Mar 2015

Arndt von Staa © LES/DI/PUC-Ric

12

Como especificar um critério de avaliação

- Objetivo
 - descreve a finalidade do critério
 - para que serve o critério? O que avalia?
- Porque é relevante
 - justifica a relevância de se atingir o objetivo
 - por que interessa atingir o objetivo?
- Artefatos a que se aplica
 - lista os artefatos que estarão sujeitos à avaliação
- Elementos utilizados
 - discrimina os elementos do artefato utilizados durante a avaliação segundo o critério
- Propriedades envolvidas
 - discrimina as métricas das propriedades utilizadas no critério

Mar 2015

Arndt von Staa © LES/DI/PUC-Ric

Como especificar um critério de avaliação

- O que é avaliado
 - identifica as propriedades avaliadas ou medidas
- Como é avaliado
 - descreve o processo de avaliação
- Escalas
 - descreve como é apresentado o resultado da avaliação
- Tratamento dos resultados
 - descreve o que deve ser feito em resposta à avaliação
 - tratamento das não conformidades observadas

Mar 201!

rndt von Staa © LES/DI/PUC-Ric

4 E

Exemplo 1 : Completeza da interface 1 / 6

- Objetivos da avaliação
 - Assegurar que o artefato produza exatamente (todos e somente) os resultados especificados nos requisitos
 - Assegurar que o artefato receba exatamente os dados necessários para satisfazer todos os seus requisitos
- Porque é relevante avaliar
 - A inconsistência, o excesso, ou a falta de completeza dos resultados e dados necessários face aos requisitos de um artefato são causas de erro de projeto, implementação e de uso (chamada) do artefato.
- A que artefatos se aplica
 - Às especificações e ao código de programas, componentes, módulos, classes e funções.

Mar 2015

Arndt von Staa © LES/DI/PUC-Rio

Exemplo 1 : Completeza da interface 2 / 6

- Elementos a que se aplica
 - Requisitos:
 - especificações das condições, atributos, propriedades ou características, funcionais ou não, a serem satisfeitas pelo artefato
 - Dados:
 - todos itens de interface que transferem dados do cliente para o artefato
 - item de interface: parâmetro, valor retornado, atributo de objeto, atributo de classe, variável global, arquivo, base de dados, mensagem, tipos e classes definidos pelo usuário usados para especificar dados da interface
 - Resultados:
 - todos itens de interface que transferem do artefato para o cliente

Mar 2015

Arndt von Staa © LES/DI/PUC-Ri

17

Exemplo 1 : Completeza da interface 3 / 6

- O que é avaliado
 - A correspondência exata entre os objetivos e os requisitos
 - A correspondência exata entre os resultados produzidos pelo artefato e os seus requisitos
 - A correspondência exata entre os dados recebidos e os resultados produzidos

Mar 2015

Arndt von Staa © LES/DI/PUC-Rio

Exemplo 1 : Completeza da interface 4 / 6

- Como é avaliado
 - Para cada requisito é verificado a sua necessidade com relação aos objetivos do artefato
 - Para cada objetivo é verificado se os requisitos garantem a respectiva plena satisfação
 - Para cada resultado a ser produzido, é verificado se existe algum requisito que torne necessário este resultado
 - Para cada requisito, é verificado se existem suficientes resultados para que este requisito possa ser satisfeito
 - Para cada dado, é verificado se existe algum resultado que dependa deste dado
 - Para cada resultado, é verificado se existem suficientes dados para poder produzir este resultado

Mar 2015

Arndt von Staa © LES/DI/PUC-Ric

40

Exemplo 1 : Completeza da interface 5 / 6

- Escalas (unidades de medida)
 - contagem e registro de todas as não conformidades:
 - lista dos problemas de entendimento da especificação
 - lista de defeitos nos objetivos
 - · lista dos requisitos desnecessários
 - lista dos requisitos em falta (insuficientes)
 - lista dos dados usados e não registrados na interface;
 - lista dos dados registrados como recebidos, mas não usados;
 - lista dos dados registrados como requeridos, mas não recebidos;
 - lista dos resultados produzidos e não registrados na interface;
 - lista dos resultados registrados como produzidos, mas não requeridos
 - lista dos resultados registrados como requeridos, mas não produzidos

Mar 2015

Arndt von Staa © LES/DI/PUC-Ric

Exemplo 1 : Completeza da interface 6 / 6

- Tratamento dos resultados
 - a especificação da função deve ser corrigida repetidas vezes até que não existam mais
 - defeitos observados
 - problemas de entendimento
 - sugestões de melhorias
 - após cada correção deve ser refeita a revisão
 - a especificação será aceita somente se não existir defeito observado nem problema de entendimento.

Mar 2015

Arndt von Staa © LES/DI/PUC-Rio

E1

Ex. 2: Uniformidade de terminologia 1 / 5

- Objetivo
 - Eliminar erros de comunicação devidos ao uso de significados diferentes para um mesmo nome e/ou devido à escolha de um nome não expressivo
- Porquê é relevante
 - Uma das principais fontes de erros de desenvolvimento e/ou de manutenção é o entendimento incorreto das especificações
- A que artefatos se aplica
 - A todos os artefatos

Expressivo: 1. Que exprime; significativo; [Aurélio]

Mar 2015

Arndt von Staa © LES/DI/PUC-Ric

Ex. 2: Uniformidade de terminologia 2 / 5

Elementos utilizados

nomes (verbete)

simples

compostos

expressivo [De expresso + -ivo.] Adjetivo

etimologia classe léxica acepção

1.Que exprime; significativo: Calou-se, magoado, num silêncio expressivo. exemplo

extraído de [Aurélio]

significados (acepção)

· atribuídos aos nomes

· para os quais deveriam existir nomes

O que é avaliado

- Para cada significado existe um único nome

Para cada nome existe um único significado

- O nome induz o leitor a saber qual o significado

Ex. 2: Uniformidade de terminologia 3 / 5

- Como é avaliado
 - existe um glossário fornecendo todos os pares <nome, significado> conhecidos
 - todos os problemas têm sua posição marcada no artefato
 - para cada ocorrência de um nome no artefato
 - verifique se o seu significado está explícito. Não estando:
 - registre problema: nome sem significado explícito
 - verifique se é expressivo, não sendo
 - registre problema: falta de expressividade e o porquê dela
 - verifique se o correspondente significado é igual ao definido no glossário. Não sendo:
 - registre problema: o nome com vários significados e quais são eles
 - para cada ocorrência de um significado no artefato
 - verifique se existe um nome no glossário. Não existindo:
 - registre problema: significado sem nome explícito
 - verifique se existem outros nomes no glossário. Existindo:
 - registre problema: significado com vários nomes

Arndt von Staa © LES/DI/PUC-Ri

Ex. 2: Uniformidade de terminologia 4 / 5

- Unidades de medida
 - contagem dos nomes sem significados no glossário
 - contagem de nomes não expressivos
 - contagem de significados com vários nomes
 - contagem dos nomes utilizados com significado diferente do registrado no glossário
 - contagens de significados sem nomes explícitos
 - Problemas:
 - o que é um significado?
 - · como se identifica um?
 - 1. Quando determinado usuário ativa o editor de folha de tempo, será buscada a folha
 - 2. de tempo correspondente ao dia atual conforme o relógio do computador. Caso já
 - 3. existam 1 ou mais tarefas registradas relativas ao dia atual, a folha é inicializada
 - 4. com esta lista de tarefas. Caso contrário a folha será deixada em branco.

Mar 2015

Arndt von Staa © LES/DI/PUC-Ri

E E

Ex. 2: Uniformidade de terminologia 5 / 5

- Tratamento dos resultados
 - substitua cada nome não expressivo por um que seja
 - escolha use um dos vários nomes de um dado significado
 - para cada discrepância
 - gere um par < nome , significado > temporário
 - para cada par temporário verifique se já existe um nome com significado semelhante ou igual
 - o nome sendo novo e não existindo significado semelhante ou igual, efetive o par temporário no glossário
 - existindo nome com significado igual, todos os usos do novo nome devem ser substituídos de modo a referenciar o nome já existente
 - existindo um nome com significado semelhante, deve ser justificada a necessidade da diferença de significados
 - sendo possível justificar, efetive o novo par no glossário
 - não sendo possível justificar, corrija o artefato de modo a usar o nome e o significado já definidos no glossário.

Mar 2015

Arndt von Staa © LES/DI/PUC-Rio

