D3PM

Abstract

- Denoising diffusion probabilistic models (DDPMs)
 - 연속 상태 공간에서 이미지 및 파형 생성에서 인상적인 결과를 보여줌
- 이 논문에서는 Discrete Denoising Diffusion Probabilistic Models(D3PMs)을 소
 개
 - 연속 공간에서 가우시안 커널을 모방하는 전이 행렬, 임베딩 공간에서 nearest neighbors을 기반으로 하는 행렬, 그리고 absorbing states를 도입하는 행렬을 포 함함
 - 전이 행렬의 선택이 이미지와 텍스트 도메인에서 결과가 개선되게 하는 중요한 디자 인 결정임을 보여줌
 - variational lower bound와 auxiliary cross entropy loss를 결합한 새로운 loss function를 소개함
 - 텍스트의 경우, 이 모델 클래스는 LM1B에서 큰 어휘로 확장하면서 character-level
 텍스트 생성에서 강력한 결과를 얻음
 - CIFAR-10 이미지 데이터 세트에서, 논문의 모델은 샘플 품질을 접근하고, 연속 공간 DDPM 모델의 log-likelihood를 초과함

1. Introduction

- 최근에 diffusion model은 이미지 및 오디오 생성을 위한 매력적인 대안으로 등장하여 더 적은 추론 단계로 GAN과 비교할 수 있는 샘플 품질과 autoregressive model들과 비교할 수 있는 log-likelihoods을 달성함
- Diffusion model은 미리 정의된 forward process를 reverse 하기 위해 훈련된 parameterized Markov chain입니다.
 - 순방향 프로세스는 훈련 데이터를 순차적으로 손상시켜 순수한 잡음으로 변환하는 확률적 과정

- Diffusion model은 최대 likelihood와 score matching과 관련된 안정적인 목표를 사용하여 훈련되며, parallel iterative refinement을 사용하여autoregressive model보다 빠른 샘플링을 허용함
- Diffusion model들은 이산과 연속 상태 공간에서 제안되었지만, 가장 최근의 연구는 연속 상태 공간에서 작동하는 Gaussian diffusion process에 집중됨
- 이산 상태 공간을 갖는 확산 모델은 텍스트 및 이미지 segmentation 도메인에서 탐구되었지만, 대규모 텍스트 또는 이미지 생성을 위한 경쟁력 있는 모델 클래스로 아직 입증되지 않았음
- 이 연구의 목표는 더 구조화된 categorical corruption process를 사용하여 이산 diffusion 모델을 개선하고 확장하는 것

- 논문의 모델은 이산 데이터 (이미지 포함)를 연속 공간으로 변환하거나 임베딩할 필요가 없으며, forward process에서 사용되는 전이 행렬에 구조나 도메인 지식을 포함 시킬수 있음
- 이런 유연성을 활용하여 크게 개선된 결과를 얻을 수 있음
 - 텍스트 데이터에 적합한 구조화된 corruption processes를 개발하며, 토큰 간의 유
 사성을 이용하여 점진적인 corruption과 denoising을 가능하게 함
 - [MASK] 토큰을 삽입하는 corruption processes를 탐구하여 autoregressive 및 mask-based generative 모델들과 유사한 모델과의 유사성을 찾을 수 있음
 - 우리는 continuous diffusion models에 의해 활용된 locality에서 영감을 얻어 양자 화된 이미지에 대한 discrete diffusion models을 연구합니다. 이는 더 유사한 상태 로 우선적으로 확산되고 이미지 영역에서 훨씬 더 나은 결과를 가져오는 discrete corruption process의 특정 선택으로 이어집니다

• 기술적 및 개념적 기여

- 새로운 구조화된 diffusion 모델을 디자인하는 것을 넘어, D3PMs의 훈련을 안정화하는 새로운 auxiliary loss을 소개하고 상호 정보를 기반으로 한 여러 noise schedule들을 개발하여 성능을 향상 시킴
- character-level의 텍스트 생성에서 텍스트 생성을 위한 다양한 nonautoregressive baseline을 매우 능가하고, discrete diffusion model을 큰 어휘와 긴 시퀀스 길이로 성공적으로 확장함
- CIFAR-10 이미지 데이터 세트에서 log-likelihood와 샘플 품질에서 Ho et al.의
 Gaussian diffusion model에 접근하거나 능가하는 강력한 결과를 얻었음

2. Background: diffusion models

- 확산 모델은 forward와 reverse Markov process에 의해 characterize된 latent variable generative model임
- forward process 데이터 x0~q(x0)를 증가하는 noisy latent variable들의 시퀀스로 corrput함
- learned reverse Markov process는 점진적으로 latent variable들을 데이터 분포를 향해 denoise함
- time step T가 무한대로 가면, forward process와 the reverse process 모두 동일한 함수를 형태를 공유하며, forward process와 동일한 class의 분포들로부터 학습된 reverse process를 사용할 수 있음

3. Diffusion models for discrete state space

 이후부터는 이산 상태 공간을 갖는 확산 모델의 일반적인 클래스를 Discrete Denoising Diffusion Probabilistic Models (D3PMs)로 참조.

3.1 Choice of Markov transition matrices for the forward process

 이미지 및 텍스트를 포함한 대부분의 현실 세계 이산 데이터의 경우에는 전이 행렬 Qt 에 domain-dependent 구조를 추가하여 forward corruption process과 learnable reverse denoising process을 제어하는 것이 합리적이라고 주장

1. Uniform

다른 state으로의 전이 확률이 균일하기 때문에, 이 논문에서는 이 diffusion instance를 D3PM-uniform으로 동등하게 참조합니다.

2. Absorbing state

- 각 토큰이 동일하게 유지되거나 어떤 확률 βt로 [MASK]로 transition되는 흡수 상태를 가진 전이 행렬을 고려 → 이것은 범주 간에 특별한 관계를 부과하지는 않지만, uniform diffusion과 비슷하게 corrputed 토큰을 원래 토큰과 구별할 수 있게 함
- stationary 분포는 균일하지 않지만 모든 mass가 [MASK] 토큰에 있음
- 이미지의 경우, 회색 픽셀을 [MASK] absorbing 토큰으로 재사용함

3. Discretized Gaussian

• 다른 상태로 균일하게 transition하는 대신, 순서형 데이터의 경우 이산화된, truncated 가우시안 분포를 사용하여 연속 공간 확산 모델을 모방하는 것을 제안 → 이것은 전이 행렬이 doubly stochastic인 정규화를 선택하게 하며, 균일한 stationary 분포를 가지게 됨 → 이 전이 행렬은 더 높은 확률을 가진 유사한 state 로 transition하며, 이미지와 같은 양자화된 순서형 데이터에 적합함

4. Token embedding distance

• D3PM 프레임워크의 generality을 입증하기 위해 임베딩 공간에서 유사성을 사용하여 forward 프로세스를 안내하고, 균일한 stationary 분포를 유지하면서 유사한임베딩을 갖는 토큰 간에 더 자주 전환하는 doubly-stochastic 전이 행렬을 구성하는 방법을 탐구함

3.2 Noise schedules

- discretized Gaussian diffusion
 - 이산화하기 전 variance of the Gaussian을 선형적으로 증가하는 것을 탐색
- uniform diffusion
 - 우리는 코사인 함수로의 전환의 cumulative probabilit을 설정하는 코사인 스케줄을사용
- a general set of transition matrices Qt
 - 이전에 제안된 schedule들이 직접 적용되지 않을 수 있습니다

3.3 Parameterization of the reverse process

neural network nnθ(xt)를 사용하는 것에 집중해

 $\widetilde{p}_{\theta}(\widetilde{\boldsymbol{x}}_0|\boldsymbol{x}_t)$

의 로짓을 예측함 → 이를 q(xt-1|xt, x0)와 x0의 one-hot representations에 대한 총체을 결합하여 다음과 같은 parameterization을 얻음:

$$p_{\theta}(\boldsymbol{x}_{t-1}|\boldsymbol{x}_t) \propto \sum_{\widetilde{\boldsymbol{x}}_0} q(\boldsymbol{x}_{t-1}, \boldsymbol{x}_t|\widetilde{\boldsymbol{x}}_0) \widetilde{p}_{\theta}(\widetilde{\boldsymbol{x}}_0|\boldsymbol{x}_t).$$

• x0-parameterization에서

$$\widetilde{p}_{\theta}(\widetilde{\boldsymbol{x}}_0|\boldsymbol{x}_t)$$

가 모든 probability mass를 원래 값인 x0에 놓을 경우 KL divergence

$$D_{\mathrm{KL}}[q(x_{t-1}|x_t, x_0) \parallel p_{\theta}(x_{t-1}|x_t)]$$

가 0이 됨

- 주어진 state xt에서 최적의 reverse process는 q(xt|xt-1)이 0이 아닌 state들로의 transition만을 고려함 ⇒ Qt의 sparsity 패턴은 pθ(xt-1|xt)에서 이상적인 reverse transition 확률의 sparsity 패턴을 결정함
- 이런 parameterization은 학습된 reverse 확률 분포 pθ(xt-1|xt)가 Markov transition 행렬 Qt의 선택에 의해 지시된 올바른 sparsity 패턴을 갖도록 자동으로 보장한다. 이 parameterization을 통해

$$p_{ heta}(x_{t-k}|x_t) = \sum q(x_{t-k}, x_t| ilde{x}_0) ilde{p}_{ heta}(ilde{x}_0|x_t)$$

를 예측해 inference를 수행할 수 있음(k steps at a time)

• 마지막으로 순서형 이산 데이터를 모델링 할 때 neural net의 출력으로 직접적으로

$$\widetilde{p}_{\theta}(\widetilde{\boldsymbol{x}}_0|\boldsymbol{x}_t)$$

의 로짓을 예측하는 대신에 다른 옵션은 a truncated discretized logistic distribution로 확률을 모델링하는 것 ⇒ 이는 reverse model에 추가적인 순서형 inductive bias를 제공하고 이미지를 위한 FID와 log-likelihood 점수를 높임

3.4 Loss function

- reverse process의 x0-parameterization를 위한 보조 denoising 목표를 소개 → 각 타임 스텝마다 데이터 x0의 좋은 예측을 장려
- 이것을 negative variational lower bound와 결합하여 대체 손실 함수를 산출함:

$$L_{\lambda} = L_{\text{vb}} + \lambda \mathbb{E}_{q(\boldsymbol{x}_0)} \mathbb{E}_{q(\boldsymbol{x}_t|\boldsymbol{x}_0)} [-\log \widetilde{p}_{\theta}(\boldsymbol{x}_0|\boldsymbol{x}_t)].$$

4. Connection to existing probabilistic models for text

- D3PM 프레임워크와 기존의 probabilistic and language 모델링 접근 사이의 흥미로 운 연결에 대해 설명
- BERT는 단일 단계 diffusion model임
- Autoregressive model들은 (이산) diffusion model들임
- (Generative) Masked Language-Models (MLMs)들은 diffusion model들임

5. Text generation

1. Character-level generation on text8

Model	Model steps	NLL (bits/char) (1)	Sample time (s) (↓)
Discrete Flow [49] (8 × 3 layers)	-	1.23	0.16
Argmax Coupling Flow [20]	-	1.80	0.40 ± 0.03
IAF / SCF [57] [‡]	-	1.88	0.04 ± 0.0004
Multinomial Diffusion (D3PM uniform) [20]	1000	≤ 1.72	26.6 ± 2.2
D3PM uniform [20] (ours)	1000	$\leq 1.61 \pm 0.02$	3.6 ± 0.4
D3PM NN (L_{vb}) (ours)	1000	$\leq 1.59 \pm 0.03$	3.1474 ± 0.0002
D3PM mask ($L_{\lambda=0.01}$) (ours)	1000	$\leq 1.45 \pm 0.02$	3.4 ± 0.3
D3PM uniform [20] (ours)	256	$\leq 1.68 \pm 0.01$	0.5801 ± 0.0001
D3PM NN (L_{vb}) (ours)	256	$\leq 1.64 \pm 0.02$	0.813 ± 0.002
D3PM absorbing ($L_{\lambda=0.01}$) (ours)	256	$\leq 1.47 \pm 0.03$	0.598 ± 0.002
Transformer decoder (ours)	256	1.23	0.3570 ± 0.0002
Transformer decoder [1]	256	1.18	
Transformer XL [10] [†]	256	1.08	-
D3PM uniform [20] (ours)	20	$\leq 1.79 \pm 0.03$	0.0771 ± 0.0005
D3PM NN (L_{vb}) (ours)	20	$\leq 1.75 \pm 0.02$	0.1110 ± 0.0001
D3PM absorbing $(L_{\lambda=0.01})$ (ours)	20	$\leq 1.56 \pm 0.04$	0.0785 ± 0.0003

D3PM에 대해, D3PM absorbing model이 uniform과 NN diffusion model을 능가하면서 가장 성능이 좋게 나옴

2. Text generation on LM1B

- LM1B에 대한 실험
- 전체적으로 mask diffusion (D3PM absorbing)이 비교적 잘 수행되며 동일한 크기의 유사한 autoregressive model의 성능에 접근하고 훨씬 적은 단계로 scale하는 반면, uniform diffusion은 성능이 현저히 떨어짐
- D3PM NN model은 log likelihoods의 측면에서 uniform model에 비해 성능이 좋지 않음

6. Image generation

- 왼쪽 위: progressive sampling at t = 1000, 900, 800, ..., 0 for D3PM absorbing
- 왼쪽 아래: D3PM Gauss + logistic
- 오른쪽: D3PM Gauss + logistic model → best model

7. Related Work

- · diffusion generative models
- · denoising autoencoders

8. Discussion

- 한계
 - 다른 non-autoregressive generative model들과 같이, 논문의 모델은 텍스트 생성을 위한 Transformer XL과 같은 강한 strong autoregressive model에 비해 여전히 부족하고, continuous
 diffusion model들은 여전히 이미지 품질에 있어서 더 강한 결과들을 산출함
 - 。 사용하는 evaluation metrics에서 오는 한계