Partie I. Inégalité de Hölder

1. Par la concavité de $x\mapsto \ln(x)$, on a pour tous a,b>0 et tout $\lambda\in[0,1]$ l'inégalité :

$$\lambda \ln(a) + (1 - \lambda) \ln(b) \le \ln(\lambda a + (1 - \lambda)b).$$

Pour $\lambda = \frac{1}{p}$ on obtient l'inégalité voulue. Enfin celle-ci reste vraie si a = 0 ou b = 0.

2. Il suffit d'appliquer l'inégalité précédente à

$$a = \frac{a_1^p}{a_1^p + a_2^p}$$
 et $b = \frac{b_1^q}{b_1^q + b_2^q}$.

3. De même on a aussi

$$\frac{a_2b_2}{(a_1^p+a_2^p)^{\frac{1}{p}}(b_1^q+b_2^q)^{\frac{1}{q}}} \leq \frac{1}{p}\frac{a_2^p}{a_1^p+a_2^p} + \frac{1}{q}\frac{b_2^q}{b_1^q+b_2^q} - \frac{1}{q}\frac{a_2^q}{b_1^q+b_2^q}$$

donc en sommant les inégalités obtenues puis en simplifiant on obtient celle voulue.

4. En reprenant l'inégalité du 2. avec

$$a=rac{a_j^p}{\displaystyle\sum_{i=1}^n a_i^p} ext{ et } b=rac{b_j^q}{\displaystyle\sum_{i=1}^n b_i^q}\,, \quad 1\leq j\leq n,$$

puis en sommant les inégalités obtenues, on obtient celle voulue.

Partie II. Fonctions höldériennes

1. a) On a $g'(x) = u'(x) - u'(x-y) = \alpha(x^{\alpha-1} - (x-y)^{\alpha-1})$. Comme la fonction $t \mapsto t^{\alpha-1}$ est décroissante sur [0,1] et $x-y \leq x$, on a $(x-y)^{\alpha-1} \geq x^{\alpha-1}$ et ainsi $g'(x) \leq 0$. La fonction g est alors décroissante sur [y, 1]

b) On a g(y)=0 donc $g(x)\leq 0$ sur $[y,\ 1]$. Ainsi, pour $0\leq y\leq x\leq 1$, $(x^{\alpha}-y^{\alpha})=u(x)-u(y)\leq u(x-y)=(x-y)^{\alpha}$. Enfin, on trouve que pour tout $(x,y)\in [0,1]^2$, $|x^{\alpha}-y^{\alpha}|\leq |x-y|^{\alpha}$. Donc u est α -hölderienne pour k=1.

2. La fonction nulle est clairement dans $\operatorname{Hol}_{\alpha}$ disons pour k=1. Si g_1 et g_2 sont dans $\operatorname{Hol}_{\alpha}$ et λ est un nombre réel, alors il existe deux constantes $k_1>0$ et $k_2>0$ telles que

$$\forall (x, y) \in [0, 1]^2, |g_1(x) - g_1(y)| \le k_1 |x - y|^{\alpha} \text{ et } |g_2(x) - g_2(y)| \le k_2 |x - y|^{\alpha}$$

Grâce à l'inégalité triangulaire.

$$\begin{aligned} |\lambda g_1(x) + g_2(x) - \lambda g_1(y) - g_2(y)| &\leq |\lambda| |g_1(x) - g_1(y)| + |g_2(x) - g_2(y)| \\ &\leq |\lambda| k_1 |x - y|^{\alpha} + k_2 |x - y|^{\alpha} \\ &\leq (|\lambda| k_1 + k_2) |x - y|^{\alpha} \end{aligned}$$

ce qui montre bien que $\lambda g_1 + g_2$ est dans $\operatorname{Hol}_{\alpha}$ pour $k = |\lambda| k_1 + k_2$. L'ensemble $\operatorname{Hol}_{\alpha}$ est donc bien un \mathbb{R} — espace vectoriel.

- 3. Soit $t \in]0,1]$. La fonction F définie sur]0,1] par $F(x)=t^x=\exp(x\ln(t))$ est décroissante sur]0,1]. Donc si $0 < \alpha \le \beta \le 1$ et si $(x, y) \in [0,1]^2$ alors $|x-y|^{\beta} \le |x-y|^{\alpha}$ y compris si x=y. De ce fait toute fonction dans $\operatorname{Hol}_{\beta}$ appartient à $\operatorname{Hol}_{\alpha}$.
- 4. Soit f une fonction appartenant à un $\operatorname{Hol}_{\alpha}$ pour k > 0. Soit $\varepsilon > 0$, on pose $\eta = \left(\frac{\varepsilon}{k}\right)^{1/\alpha}$ La condition $|x y| < \eta$ entraı̂ne

$$|f(x) - f(y)| \le k|x - y|^{\alpha} \le k\eta^{\alpha} \le \varepsilon.$$

Ainsi on a bien $f \in \mathcal{C}([0,1])$.

5. Supposons que qu'il existe $\alpha \in]0,1]$ tel que $f \in \operatorname{Hol}_{\alpha}$. Il existerait alors k>0 tel que

$$\forall (x,y) \in [0,1]^2, \quad |f(x) - f(y)| \le k|x - y|^{\alpha}.$$

En particulier pour tout $x \in \left]0, \frac{1}{2}\right]$, $\frac{1}{x^{\alpha}|\ln x|} \leq k$. Mais $\frac{1}{x^{\alpha}|\ln x|} \xrightarrow[x \to 0^{+}]{} + \infty$ donc on aboutit à une contradiction. Par conséquent, pour tout $\alpha \in]0, 1]$, $f \notin \operatorname{Hol}_{\alpha}$.

6. Soit f une fonction dans $C^1([0,1])$ D'après l'inégalité des accroissements finis, on a

$$\forall (x,y) \in [0,1]^2, \quad |f(x) - f(y)| \le ||f'||_{\infty} |x - y|.$$

 $||f'||_{\infty}$ est fini car f' est continue sur le compact [0,1].

Donc f appartient à Hol_1 donc à tous les $\operatorname{Hol}_{\alpha}$, d'après la question 3.

La réciproque est fausse. En effet $x\mapsto |x-\frac{1}{2}|$ est dans Hol_1 donc dans tous les $\operatorname{Hol}_\alpha$ sans être dérivable.

Partie III. Polynômes de Bernstein

- 1. Les variables Y_1 , , Y_n sont indépendantes et suivent toutes la loi de Bemoulli $\mathcal{B}(x)$, de paramètre $x \in [0,1]$ donc $S_n = \sum_{p=1}^n Y_p$ suit loi binomiale $\mathcal{B}(n,x)$, de paramètre (n,x).
- 2. a) Soient $n \in \mathbb{N}$, $k \in \mathbb{N}$ et $x \in [0,1]$. S_n suit la loi $\mathcal{B}(n,x)$. Donc $\mathbb{P}(S_n=k)=B_{n,k}(x)$. Par conséquent $0 \leq B_{n,k}(x) \leq 1$ pour tout $x \in [0,1]$.
 - b) On considère $(\widetilde{Y}_p)_{p\geq 1}$ une suite de variables aléatoires réelles indépendantes qui suivent toutes la loi de Bernoulli de paramètre 1-x et on pose $\widetilde{S}_n = \sum_{p=1}^n \widetilde{Y}_p$. Avoir k succès lors de la répétition de n épreuves indépendantes de Bernoulli de paramètre $x\in [0,1]$ est équivalent à avoir n-k échecs. On a donc, pour tout $x\in [0,1]$, $B_{n,k}(x) = \mathbb{P}(S_n = k) = \mathbb{P}(\widetilde{S}_n = n-k) = B_{n,n-k}(1-x)$.
 - c) S_n suit loi binomiale de paramètre (n, x) donc $\mathbb{E}(S_n) = nx$ et $\mathbb{V}(S_n) = nx(1-x)$.
 - d) Soit $x \in [0,1]$. On a $\sum_{k=0}^{n} kB_{n,k}(x) = \sum_{k=0}^{n} k\mathbb{P}(S_n = k) = \mathbb{E}(S_n) = nx$. D'autre part, $\mathbb{V}(S_n) = \mathbb{E}(S_n^2) (\mathbb{E}(S_n))^2 = \sum_{k=0}^{n} k^2 B_{n,k}(x) (nx)^2 \text{ donc}$ $\sum_{k=0}^{n} k^2 B_{n,k}(x) = nx(1-x) + (nx)^2.$ $\sum_{k=0}^{n} k(k-1)B_{n,k}(x) = \sum_{k=0}^{n} k^2 B_{n,k}(x) \sum_{k=0}^{n} kB_{n,k}(x) = n(n-1)x^2.$

3. Soit $n \geq 2$ un entier.

Pour $1 \le k \le n$, en remarquant que $S_n = S_{n-1} + X_n$, on a

$$(S_n = k) = ((S_{n-1} = k) \cap (X_n = 0)) \cup ((S_{n-1} = k - 1) \cap (X_n = 1)),$$

où l'union est disjointe. Par indépendance, d'une part des événements $(S_{n-1} = k)$ et $(X_n = 0)$, et d'autre part des événements $(S_{n-1} = k - 1)$ et $(X_n = 1)$, la formule des probabilités totales nous donne

$$\mathbb{P}(S_n = k) = \mathbb{P}(X_n = 0)\mathbb{P}(S_{n-1} = k) + \mathbb{P}(X_n = 1)\mathbb{P}(S_{n-1} = k - 1)
= (1 - x)\mathbb{P}(S_{n-1} = k) + x\mathbb{P}(S_{n-1} = k - 1).$$
(*)

Puisque $(S_{n-1} = -1) = \emptyset$ et $(S_{n-1} = n) = \emptyset$ on obtient $\mathbb{P}(S_n = 0) = \mathbb{P}(X_n = 0)\mathbb{P}(S_{n-1} = 0) = (1-x)\mathbb{P}(S_{n-1} = 0)$ et $\mathbb{P}(S_n = n) = \mathbb{P}(X_n = 1)\mathbb{P}(S_{n-1} = n-1) = x\mathbb{P}(S_{n-1} = n-1)$. Pour $1 \le k \le n-1$, la relation (\star) entraı̂ne que

$$\forall x \in [0,1], \quad B_{n,k}(x) = (1-x)B_{n-1,k}(x) + xB_{n-1,k-1}(x).$$

Si on pose, $B_{n,-1} = B_{n-1,n} = 0$, cete relation restera vraie pour k = 0 et k = n. On peut ainsi conclure que l'on a, pour $0 \le k \le n$,

$$B_{n,k}(X) = (1-X)B_{n-1,k}(X) + XB_{n-1,k-1}(X),$$

puisque ces polynômes sont égaux sur [0, 1].

4. On sait que S_n suit la loi binomiale $\mathcal{B}(n,x)$. La variable aléatoire $\frac{S_n}{n}$ prend les valeurs $\left\{\frac{k}{n};\ 0 \leq k \leq n\right\}$ et $\mathbb{P}\left(\frac{S_n}{n} = \frac{k}{n}\right) = \mathbb{P}(S_n = k) = B_{n,k}(x)$. Le théorème de transfert implique que pour toute $f \in C(0,1]$,

$$\mathbb{E}\left(f\left(\frac{S_n}{n}\right)\right) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \mathbb{P}\left(\frac{S_n}{n} = \frac{k}{n}\right) = \sum_{k=0}^n f\left(\frac{k}{n}\right) B_{k,n}(x) = B_n(f)(x) .$$

Puisque, $\mathbb{E}(f(x)) = f(x)$, on obtient

$$B_n(f)(x) - f(x) = \mathbb{E}\left(f\left(\frac{S_n}{n}\right)\right) - \mathbb{E}(f(x)) = \mathbb{E}\left(f\left(\frac{S_n}{n}\right) - f(x)\right).$$

5. Pour tout $\delta > 0$, On a d'après l'inégalit de Bienaymé-Tchebychev

$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mathbb{E}\left(\frac{S_n}{n}\right)\right| \ge \delta\right) \le \frac{\mathbb{V}\left(\frac{S_n}{n}\right)}{\delta^2}.$$

D'autre part, $\mathbb{E}\left(\frac{S_n}{n}\right) = \frac{1}{n}\mathbb{E}(S_n) = x$ et $\mathbb{V}\left(\frac{S_n}{n}\right) = \frac{1}{n^2}\mathbb{V}(S_n) = \frac{x(1-x)}{n}$. Ainsi,

$$\mathbb{P}\left(\left|\frac{S_n}{n} - x\right| \ge \delta\right) \le \frac{x(1-x)}{n\delta^2} \le \frac{1}{4n\delta^2} ,$$

la demière inégalité provient du fait que le maximum de la fonction $f:x\mapsto x(1-x)$ sur [0,1] est $\frac{1}{4}$.

6. D'après l'énoncé, $Z(\Omega)$ est fini. On note donc $Z(\Omega) = \{x_1, \ldots, x_n\}$ les valeurs prises par Z. Puisque $\mathbb{E}(Z) = \sum_{k=1}^n x_k \mathbb{P}(Z = x_k)$, on a

$$\varphi(\mathbb{E}(Z)) = \varphi\left(\sum_{k=1}^{n} x_k \mathbb{P}(Z = x_k)\right) \le \sum_{k=1}^{n} \mathbb{P}(Z = x_k) \varphi(x_k),$$

où on a utilisé le fait que $\sum_{k=1}^{n} \mathbb{P}(Z = x_k) = 1$ pour appliquer la définition généralisée de la convexité de φ . Le théorème de transfert permet d'identifier le terme de droite de l'inégalité précédente à $\mathbb{E}(\varphi(Z))$. On a donc bien $\varphi(\mathbb{E}(Z)) \leq \mathbb{E}(\varphi(Z))$.

7. Soit $\varepsilon > 0$. La fonction f étant continue sur le segment [0,1], le théorème de Heine implique que f est uniformément continue. Il existe donc $\delta > 0$ tel que

$$\forall (x,y) \in [0,1]^2$$
, $|x-y| < \delta \Rightarrow |f(x) - f(y)| \le \frac{\varepsilon}{2}$.

Par conséquent, on a pour tout $x \in [0, 1]$,

$$\left| f\left(\frac{S_n}{n}\right) - f(x) \right| \leq \frac{\varepsilon}{2} \mathbb{1}_{\left\{ \left| \frac{S_n}{n} - x \right| < \delta \right\}} + \left| f\left(\frac{S_n}{n}\right) - f(x) \right| \mathbb{1}_{\left\{ \left| \frac{S_n}{n} - x \right| \ge \delta \right\}}$$

$$\leq \frac{\varepsilon}{2} \mathbb{1}_{\left\{ \left| \frac{S_n}{n} - x \right| < \delta \right\}} + 2 \|f\|_{\infty} \mathbb{1}_{\left\{ \left| \frac{S_n}{n} - x \right| \ge \delta \right\}}$$

D'après la question 4., on a pour tout $x \in [0,1]$, $|B_n(f)(x) - f(x)| = |\mathbb{E}\left(f\left(\frac{S_n}{n}\right) - f(x)\right)|$. La fonction valeur absolue étant convexe, on a d'après la question 6.,

$$\forall x \in [0,1], \quad |B_n(f)(x) - f(x)| \le \mathbb{E}\left(\left|f\left(\frac{S_n}{n}\right) - f(x)\right|\right).$$

Ainsi par la croissance et la linéarité de l'espérance, on obtient pour tout $x \in [0, 1]$,

$$|B_{n}(f)(x) - f(x)| \leq \frac{\varepsilon}{2} \mathbb{E}\left(\mathbb{1}_{\left\{\left|\frac{S_{n}}{n} - x\right| < \delta\right\}}\right) + 2\|f\|_{\infty} \mathbb{E}\left(\mathbb{1}_{\left\{\left|\frac{S_{n}}{n} - x\right| \ge \delta\right\}}\right)$$

$$= \frac{\varepsilon}{2} \mathbb{P}\left(\left|\frac{S_{n}}{n} - x\right| < \delta\right) + 2\|f\|_{\infty} \mathbb{P}\left(\left|\frac{S_{n}}{n} - x\right| \ge \delta\right)$$

$$\leq \frac{\varepsilon}{2} + \frac{\|f\|_{\infty}}{2n\delta^{2}}$$

La dernière inégalité est conséquence de la question 5. et du fait que $\mathbb{P}\left(\left|\frac{S_n}{n}-x\right|<\delta\right)\leq 1$. Puisque $\lim_{n\to+\infty}\frac{||f||_\infty}{2n\delta^2}=0$, à partir d'un certain rang indépendant de x, on a pour tout $x\in[0,1]$, $|B_n(f)(x)-f(x)|\leq\varepsilon$. La suite $(B_n(f))_{n\geq 1}$ converge donc uniformément vers f sur [0,1].

8. Soit $f \in C([a,b])$. Pour $t \in [0,1]$, on pose g(t) = f(a+t(b-a)). Ainsi $g \in C([0,1])$ et pour tout $x \in [a,b]$, $f(x) = g\left(\frac{x-a}{b-a}\right)$. D'après la question 7., la suite $(B_n(g))_{n\geq 1}$ uniformément, sur [0,1], vers g. Pour $x \in [a,b]$, on pose $P_n(x) = B_n(g)\left(\frac{x-a}{b-a}\right)$. P_n est un polynôme et on a pour tout $x \in [a,b]$ et tout $n \in \mathbb{N}^*$,

$$|P_n(x) - f(x)| = \left| B_n(g) \left(\frac{x - a}{b - a} \right) - g \left(\frac{x - a}{b - a} \right) \right|$$

$$\leq \|B_n(g) - g\|_{\infty}.$$

Donc, $||P_n - f||_{\infty} \le ||B_n(g) - g||_{\infty}$ et alors la suite $(P_n)_{n \ge 1}$ converge uniformément vers f sur [a, b].

9. Soit (P_n)_{n∈N} une suite de polynômes convergeant uniformément sur R. Posons f = lim _{n→+∞} P_n. À partir d'un rang N∈N, ||P_n − f||_∞ ≤ 1. Par conséquent, pour tout n ≥ N, ||P_n − P_N||_∞ ≤ 2. P_n − P_N est un polynôme. Comme il est majoré, il est constant. Autrement dit, il existe c_n ∈ R tel que P_n = P_N + c_n. Or on a c_n = P_n(0) − P_N(0) → f(0) − P_N(0) = c. Donc f = lim _{n→+∞} P_n = P_N + c est un polynôme. On peut conclure que toute suite de polynômes (P_n)_{n∈N} qui converge uniformément sur R, converge vers un polynôme. Toute fonction continue sur R qui n'est pas un polynôme ne peut pas être limite uniforme d'une suite de polynômes. Donc le théorème de Weierstrass n'est pas valable si on

Partie IV. Estimation de l'erreur dans le cas höldérien

- 1. Puisque f appartient à $\operatorname{Hol}_{\alpha}(\ell)$, f est continue sur [0,1] (question II, 4.) donc $(B_n(f))_{n\geq 1}$ converge uniformément vers f sur [0,1] (question III, 7.).
- 2. D'après la question III, 4., on obtient pour tout $x \in [0,1]$,

$$|B_n(f)(x) - f(x)| \le \mathbb{E}\left(\left|f\left(\frac{S_n}{n}\right) - f(x)\right|\right).$$

En utilisant la croissance et la linéarité de l'espérance, on obtient pour tout $x \in [0,1]$,

$$|B_n(f)(x) - f(x)| \le \mathbb{E}\left(\ell \left| \frac{S_n}{n} - x \right|^{\alpha}\right) = \ell \mathbb{E}\left(\left| \frac{S_n}{n} - x \right|^{\alpha}\right).$$

3. On a par le théorème de transfert,

$$\mathbb{E}\left(\left|\frac{S_n}{n}-x\right|^{\alpha}\right) = \sum_{k=0}^n \left|x-\frac{k}{n}\right|^{\alpha} \mathbb{P}(S_n=k) = \sum_{k=0}^n \left[\left|x-\frac{k}{n}\right|^{\alpha} (\mathbb{P}(S_n=k))^{\frac{\alpha}{2}}) (\mathbb{P}(S_n=k))^{1-\frac{\alpha}{2}}\right]$$

On prend $p=\frac{2}{\alpha}$ et $q=\frac{2}{2-\alpha}$ qui vérifient bien $\frac{1}{p}+\frac{1}{q}=1$. L'inégalité de Hölder obtenue à la première partie permet alors d'écrire :

$$\mathbb{E}\left(\left|\frac{S_n}{n} - x\right|^{\alpha}\right) \le \left(\sum_{k=0}^n \left|x - \frac{k}{n}\right|^2 \mathbb{P}(S_n = k)\right)^{\frac{\alpha}{2}} \left(\sum_{k=0}^n \mathbb{P}(S_n = k)\right)^{\frac{2-\alpha}{2}}.\tag{**}$$

On a bien sûr $\sum_{k=0}^{\infty} \mathbb{P}(S_n = k) = 1$, alors la relation (**) nous donne

$$\mathbb{E}\left(\left|\frac{S_n}{n} - x\right|^{\alpha}\right) \le \left(\sum_{k=0}^{n} \left|x - \frac{k}{n}\right|^2 \mathbb{P}(S_n = k)\right)^{\frac{\alpha}{2}} = \left(\mathbb{E}\left(\left|\frac{S_n}{n} - x\right|^2\right)\right)^{\frac{\alpha}{2}}$$

4. Soit $f \in \operatorname{Hol}_{\alpha}(\ell)$. D'après les questions IV, 2. et IV, 3., on a pour tout $x \in [0,1]$,

$$|B_n(f)(x) - f(x)| \le \ell \mathbb{E}\left(\left|\frac{S_n}{n} - x\right|^{\alpha}\right) \le \ell \left(\mathbb{E}\left(\left|\frac{S_n}{n} - x\right|^2\right)\right)^{\frac{\alpha}{2}}.$$

D'autre part on a,

$$\mathbb{E}\left(\left|\frac{S_n}{n} - x\right|^2\right) = \frac{1}{n^2}\mathbb{E}(|S_n - nx|^2) = \frac{1}{n^2}\mathbb{E}(|S_n - \mathbb{E}(S_n)|^2) = \frac{1}{n^2}\mathbb{V}(S_n) = \frac{nx(1-x)}{n^2} \le \frac{1}{4n},$$

 $\operatorname{car} x(1-x) \leq \frac{1}{4}$, pour tout $x \in [0,1]$.

On a donc pour tout $x \in [0,1]$, $|f(x) - B_n(f)(x)| \le \ell \left(\frac{1}{4n}\right)^{\frac{n}{2}}$, soit

$$||B_n(f) - f||_{\infty} \le \ell \left(\frac{1}{4n}\right)^{\frac{\alpha}{2}}.$$

Partie V. Fonctions continues nulle part dérivables

1. Si h est dérivable en a, c'est que (au voisinage de a), on peut écrire

$$h(a + \varepsilon) = h(a) + \varepsilon h'(a) + \varepsilon g(\varepsilon)$$
,

où g est une fonction telle que $\lim_{\varepsilon\to 0}g(\varepsilon)=0$. On a donc, en posant $x_n=a+\alpha_n$ et $y_n = a - \beta_n$ (avec α_n et β_n positifs et $\lim_{n \to +\infty} \alpha_n = \lim_{n \to +\infty} \beta_n = 0$),

$$\frac{h(x_n) - h(y_n)}{x_n - y_n} = \frac{(\alpha_n + \beta_n)h'(a) + \alpha_n g(\alpha_n) + \beta_n g(-\beta_n)}{\alpha_n + \beta_n} = h'(a) + r_n,$$

avec
$$r_n = \frac{\alpha_n g(\alpha_n) + \beta_n g(-\beta_n)}{\alpha_n + \beta_n}$$

avec
$$r_n = \frac{\alpha_n g(\alpha_n) + \beta_n g(-\beta_n)}{\alpha_n + \beta_n}$$
.
On a $|r_n| \le \frac{\alpha_n |g(\overline{\alpha}_n)|}{\alpha_n + \beta_n} + \frac{\beta_n |g(-\beta_n)|}{\alpha_n + \beta_n} \le |g(\alpha_n)| + |g(-\beta_n)|$.

Ce qui montre que $\lim_{n\to+\infty} r_n = 0$. Par conséquent, $\lim_{n\to+\infty} \frac{h(x_n) - h(y_n)}{x_n - y_n} = h'(a)$.

- 2. On a pour tous $x \in \mathbb{R}$ et $k \in \mathbb{N}$, $|f_k(x)| \leq \frac{1}{r^k}$. Par conséquent, la série de terme général f_k converge normalement vers f. Donc f est bien définie et elle est continue sur \mathbb{R} .
- 3. a) Notons k_n la partie entière de $xm^n + \frac{1}{4\pi}$. On a bien $k_n = \sup_{k \in \mathbb{Z}} \left\{ k \le xm^n + \frac{1}{4\pi} \right\}$.
 - b) On a pour tout $n \in \mathbb{N}$, $k_n \leq xm^n + \frac{1}{4\pi} < k_n + 1$. Par conséquent, $4k_n \leq 4m^n x + \frac{1}{\pi} \leq 4m^n x + 1$ et $4m^n x < 4m^n x + \frac{1}{\pi} < 4k_n + 4 < 4k_n + 5$. Il vient, $y_n \le x < x_n$. D'autre part, $x_n - y_n = \frac{3}{2m^n}$ et finalement $\lim_{n \to +\infty} (x_n - y_n) = 0$ car $m > 1 + 6\pi$.
- 4. a) On a $f_k(x_n) = \frac{\sin\left(\frac{(4k_n+5)m^{k-n}\pi}{2}\right)}{m^k}$ et $f_k(x_n) = \frac{\sin\left(\frac{(4k_n-1)m^{k-n}\pi}{2}\right)}{m^k}$. Puisque m est pair, $f_k(x_n) = f_k(y_n) = 0$ si k > n. Si k = n alors $f_n(x_n) = \frac{1}{x^n}$ et $f_n(y_n) = -\frac{1}{r^n} \, .$
 - b) D'après la question précédente on a

$$\frac{f(x_n) - f(y_n)}{x_n - y_n} = \sum_{k=0}^n \frac{f_k(x_n) - f_k(y_n)}{x_n - y_n}$$
$$= \frac{2}{r^n(x_n - y_n)} + \sum_{k=0}^{n-1} \frac{f_k(x_n) - f_k(y_n)}{x_n - y_n}$$

c) On a $x_n - y_n = \frac{3}{2m^n}$, alors on trouve que

$$\frac{f(x_n) - f(y_n)}{x_n - y_n} = \frac{4}{3} \left(\frac{m}{r}\right)^n + \sum_{k=0}^{n-1} \frac{f_k(x_n) - f_k(y_n)}{x_n - y_n} \\
\ge \frac{4}{3} \left(\frac{m}{r}\right)^n - \left|\sum_{k=0}^{n-1} \frac{f_k(x_n) - f_k(y_n)}{x_n - y_n}\right| \\
\ge \frac{4}{3} \left(\frac{m}{r}\right)^n - \sum_{k=0}^{n-1} \frac{|f_k(x_n) - f_k(y_n)|}{x_n - y_n}.$$

d) D'après le théorème des accroissement finis il existe $z_n \in]y_n$, $x_n[$ tel que

$$\frac{|f_k(x_n) - f_k(y_n)|}{x_n - y_n} = |f'_k(z_n)|,$$

et donc que

$$\frac{|f_k(x_n) - f_k(y_n)|}{x_n - y_n} = 2\pi \left(\frac{m}{r}\right)^k |\cos(2\pi m^k z_n)| \le 2\pi \left(\frac{m}{r}\right)^k.$$

e) D'après la question V.4.d) on obtient

$$\sum_{k=0}^{n-1} \frac{|f_k(x_n) - f_k(y_n)|}{x_n - y_n} \le 2\pi \sum_{k=0}^{n-1} \left(\frac{m}{r}\right)^k = 2\pi \frac{\left(\frac{m}{r}\right)^n - 1}{\left(\frac{m}{r}\right) - 1}.$$

Et on obtient le résultat souhaité d'après la question V.4.c)

f) Si f était dérivable en x alors, d'après la question V.1., $\lim_{n\to+\infty} \frac{f(x_n)-f(y_n)}{x_n-y_n}$ serait f'(x). D'après la question V.4.e), on obtient

$$\frac{f(x_n) - f(y_n)}{x_n - y_n} \ge \left(\frac{m}{r}\right)^n \left[\frac{4}{3} - 2\pi \frac{1 - \left(\frac{r}{m}\right)^n}{\left(\frac{m}{r}\right) - 1}\right] \ge \left(\frac{m}{r}\right)^n \left[\frac{4}{3} - \frac{2\pi}{\left(\frac{m}{r}\right) - 1}\right].$$

Mais $\frac{m}{r} > 1 + 6\pi$ donc $\frac{f(x_n) - f(y_n)}{x_n - y_n} \ge \left(\frac{m}{r}\right)^n$ et alors $\lim_{n \to +\infty} \frac{f(x_n) - f(y_n)}{x_n - y_n} = +\infty$. Par conséquent, f n'est pas dérivable en x. Comme le choix de x est arbitraire, f n'est nulle part dérivable.

5. Soit $h \in \mathcal{C}([0,1])$. Alors d'après le théorème de Weierstrass, il existe une suite de polynômes $(P_n)_{n\geq 1}$ qui converge uniformément vers h sur [0,1].

Pour $n \ge 1$ et $x \in [0,1]$, on pose $\varphi_n(x) = \frac{f(x)}{n} + P_n(x)$. Alors pour tout $n \ge 1$, φ_n est continue sur [0,1] mais y est nulle part dérivable. D'autre part, la suite $(\varphi_n)_{n\ge 1}$ converge uniformément vers h.