1. (1 point)

Let \mathcal{T} be the triangular region with vertices (1,0,0), (0,1,0), and (0,0,1) oriented with upward-pointing normal vector.

A fluid flows with constant velocity field ${\bf v}=9{\bf i}+7{\bf j}$ m/s. Calculate:

- (a) The flow rate through T
- **(b)** The flow rate through the projection of \mathcal{T} onto the *xy*-plane [the triangle with vertices (0,0,0), (1,0,0), and (0,1,0)]

Assume distances are in meters.

(a)
$$\iint_S \mathbf{v} \cdot d\mathbf{S} = \underline{\hspace{1cm}}$$

(b) $\iint_S \mathbf{v} \cdot d\mathbf{S} = \underline{\hspace{1cm}}$

Solution:

Solution: (a)

We compute the flow rate through $\mathcal T.$ Since the unit normal vector is $e_n = \left\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle$ we have,

$$\mathbf{v} \cdot \mathbf{e_n} = \langle 9, 7, 0 \rangle \cdot \left\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle = \frac{16}{\sqrt{3}}$$

Therefore, the flow rate through \mathcal{T} is the following flux:

$$\iint_{S} \mathbf{v} \cdot d\mathbf{S} = \iint_{S} (\mathbf{v} \cdot \mathbf{e_n}) dS =$$

$$\iint_{S} \frac{16}{\sqrt{3}} dS = \frac{16}{\sqrt{3}} \cdot \text{Area}(S) =$$

$$\frac{16}{\sqrt{3}} \cdot \frac{\sqrt{3}}{2} = \frac{16}{2} = 8$$

(b) The upward pointing normal to the projection \mathcal{D} of \mathcal{T} onto the *xy*-plane is $\mathbf{n} = \langle 0, 0, 1 \rangle$.

Since $\mathbf{v} = \langle 9, 7, 0 \rangle$ is orthogonal to \mathbf{n} , the flux of \mathbf{v} through \mathcal{D} is zero.

Answer(s) submitted:

- 8
- 0

(correct)

Correct Answers:

- 8
- 0

2. (2 points) A fluid has density 5 and velocity field $\mathbf{v} = -y\mathbf{i} + x\mathbf{j} + 5z\mathbf{k}$.

Find the rate of flow outward through the sphere $x^2 + y^2 + z^2 =$

Answer(s) submitted:

• 6400pi/3

(correct)

Correct Answers:

- 6702.05866666667
- **3.** (2 points) (a) Set up a double integral for calculating the flux of the vector field $\vec{F}(\vec{r}) = \vec{r}$, where $\vec{r} = \langle x, y, z \rangle$, through the part of the upward oriented surface $z = 3(x^2 + y^2)$ that lies above the disk $x^2 + y^2 \le 16$.

$$Flux = \iint_{Disk} dx dy$$

(b) Evaluate the integral.

$$Flux = \iint_{S} \vec{F} \cdot d\vec{A} = \underline{\qquad}$$

Hint: Change to polar coordinates to evaluate the integral. *Answer(s) submitted:*

- -3x^2-3y^2
- -384pi

(correct)

Correct Answers:

- -3*(x^2+y^2)
- -3*pi/2*4^4

4. (2 points) (a) Set up a double integral for calculating the flux of the vector field $\vec{F}(x,y,z) = x\vec{i} + y\vec{j}$ through the openended circular cylinder of radius 3 and height 4 with its base on the xy-plane and centered about the positive z-axis, oriented away from the z-axis. If necessary, enter θ as *theta*.

$$Flux = \int_{A}^{B} \int_{C}^{D} dz d\theta$$

A = ____

B = ____

C = ____

D = ____

(b) Evaluate the integral.

$$Flux = \iint_{S} \vec{F} \cdot d\vec{A} = \underline{\qquad}$$

Answer(s) submitted:

- 9
- 0
- 2pi
- 0
- 4
- 72pi

(correct)

Correct Answers:

- 3^2
- 0
- 2*pi
- 0
- 4
- 2*pi*3^2*4

5. (2 points)

A rectangular channel of width 3 and depth 3 meters lies in the \vec{j} direction. At a point d_1 meters from one side and d_2 meters from the other side, the velocity vector of fluid in the channel is

 $\vec{v} = d_1 d_2 \vec{j}$ meters/sec. Find the flux through a rectangle stretching the full width and depth of the channel, and perpendicular to the flow.

flux = _____

(Include units.)

Solution:

SOLUTION

Let x be the distance d_1 . Since the total width of the channel is 3, we have $d_2 = 3 - x$. The flux through a rectangle with dimensions $A = 3 \times 3$, is given by

Flux =
$$\int_A \vec{v} \cdot d\vec{A}$$
.

For a thin section of the channel of width dx, we have $d\vec{A} = (3 dx)\vec{j}$. Thus

Flux =
$$\int_0^3 \vec{v} \cdot (3 \, dx) \vec{j} = \int_0^w x (3 - x) \vec{j} \cdot (3 \cdot dx) \vec{j} = 3 \int_0^3 x (3 - x) \, dx$$

= $3 \int_0^3 (3x - x^2) \, dx = 3 \left(3 \frac{x^2}{2} - \frac{x^3}{3} \right) \Big|_{x=0}^{x=3} = \frac{27}{2} \text{m}^3/\text{s}$

Answer(s) submitted:

• 13.5m^3/s

(correct)

Correct Answers:

- 13.5 m^3/s
- **6.** (2 points) The temperature u in a star of conductivity 6 is inversely proportional to the distance from the center: $u = \frac{2}{\sqrt{y^2 + y^2 + z^2}}$.

If the star is a sphere of radius 7, find the rate of heat flow outward across the surface of the star.

Answer(s) submitted:

• 48pi

(correct)

Correct Answers:

• 150.79644737231

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America