Contents

CONTENTS

Chapter 1

Graph Theory

CompleteGraph $[K_n, n] := (|K_n| = n) \land (e(K_n) = \binom{n}{2})$ $EmptyGraph[E_n, n] := (|K_n| = n) \land (e(K_n) = 0)$

 $ComplementGraph[\bar{G},G] := \bar{G} = \left(V,V^{\{2\}} \setminus \left(E \cup \{\{x,x\} \mid x \in V(G)\}\right)\right)$ $OpenNbhd[\Gamma_G(x),x,G] := \Gamma_G(x) = \{y \in V(G) \mid AdjacentV[(y,x),G]\}$

 $\overline{Closed\,N\,bhd[\Gamma_G^*(x),x,G]} := \left(\overline{OpenN\,bhd[\Gamma_G(x),x,G]}\right) \wedge \left(\overline{\Gamma_G^*(x)} = \overline{\Gamma_G(x)} \cup \{x\}\right)$

 $TrivialGraph[G] := G = K_1 = E_1$

1.1 Graphs

```
Graph[(V, E)] := (V \cap E = \emptyset) \land (E \subseteq V^{\{2\}})
SimpleGraph[(V, E)] := \left(Graph[(V, E)]\right) \land (E \subseteq \{\{a, b\} \in V^{\{2\}} \mid a \neq b\})
VertexSet[V((V, E)), (V, E)] := (Graph[(V, E)]) \land (V((V, E)) = V)
 EdgeSet[E((V,E)),(V,E)] := (Graph[(V,E)]) \land (E((V,E)) = E)
 AdjacentV[(x, y), G] := \{x, y\} \in E(G)
 Incident[e, x, y, G] := e = \{x, y\} \in E(G)
 AdjacentE[(a,b),G] := \exists !_{x \in V(G)} ((x \in a) \land (x \in b))
 [Notation] x y := AdjacentV[(x, y), G]
Subgraph[H,G] := (V(H) \subseteq V(G)) \land (E(H) \subseteq E(G))
Subgraph Induced By V[G[V'], V', G] := \left(E' = \{e \in E(G) \mid \exists_{a,b \in V'} (Incident[e,a,b,G])\}\right) \land \left(G[V'] = (V',E')\right)
 InducedSubgraph[H,G] := (Subgraph[H,G]) \land (SpannedBy[H,V(H),G])
SpanningSubgraph[H,G] := (Subgraph[H,G]) \land (V(H) = V(G))
 \overline{Remove}V[G-W,W,G] := (W \subseteq V(G)) \land (SubgraphInducedByV[G-W,V(G) \setminus \overline{W,G]})
 RemoveE[G-E,E,G] := (E \subseteq E(G)) \land (G-E = (V(G),E(G) \setminus E))
Add E[G+e,e,G] := \left(e \notin E(G)\right) \wedge \left(e \in V(G)^{\{2\}}\right) \wedge \left(G+e = \left(V(G), E(G) \cup \{e\}\right)\right)
Order[|G|, G] := |G| = |V(G)|
Size[e(G), G] := e(G) = |E(G)|
 DisjointEdges[E_G(U,W),U,W,G] := \left(U,W \subseteq V(G)\right) \land (U \cap W = \emptyset) \land \left(E_G(U,W) = \{e \in E(G) \mid \exists_{u \in U} \exists_{w \in W} (Incident[e,u,w,G])\}\right) \land (U \cap W = \emptyset) \land \left(E_G(U,W) = \{e \in E(G) \mid \exists_{u \in U} \exists_{w \in W} (Incident[e,u,w,G])\}\right) \land (U \cap W = \emptyset) \land \left(E_G(U,W) = \{e \in E(G) \mid \exists_{u \in U} \exists_{w \in W} (Incident[e,u,w,G])\}\right) \land (U \cap W = \emptyset) \land (U \cap W
 Disjoint Edges Size[e_G(U,W),U,W,G] := \left(Disjoint Edges[E_G(U,W),U,W,G]\right) \land \left(e_G(U,W) = |E_G(U,W)|\right)
 Isomorphic[H,G] \text{ or } H \cong G := \exists_{\phi} \bigg( \big( Bijection[\phi,V(H),V(G)] \big) \land \bigg( \forall_{x,y \in V(H)} \Big( \big( \{x,y\} \in E(H) \big) \iff \big( \{\phi(x),\phi(y)\} \in E(G) \big) \bigg) \bigg) \bigg) \bigg) \bigg)
  [Notation] x \in G := x \in V(G)
   [Notation] G^n := Order[n, G]
  [Notation] G(n,m) := (Order[n,G]) \wedge (Size[m,G])
SizeOrderN := \left( (Graph[G]) \land (n = |G|) \land \left( m = e(G) \right) \right) \implies (0 \le m \le \binom{n}{2})
(1) 0 \le m \le \sum_{i=0}^{n-1} (i) = \frac{(n-1)(n)}{2} = \binom{n}{2}
```

CHAPTER 1. GRAPH THEO

```
Degree[d_G(x), x, G] := d_G(x) = |\Gamma_G(x)|
MinDegree[\delta(G), G] := \delta(G) = min(\{d_G(x) \mid x \in V(G)\})
MaxDegree[\Delta(G), G] := \Delta(G) = max(\{d_G(x) \mid x \in V(G)\})
IsolatedV[v,G] := d_G(v) = 0
KRegularGraph[G, k] := k = \delta(G) = \Delta(G)
RegularGraph[G] := \exists_{k \in \mathbb{N}} (KRegularGraph[G, k])
DegreeSequence[\left(d_G(x_i)\right)_1^n, G] := (Order[n, G]) \land \left(\left(\left(d_G(x_i)\right)_1^n\right) = sort\left(\left\{d_G(x) \mid x \in V(G)\right\}\right)\right) \land \left(\delta(G) = d_G(x_1) \leq d_G(x_n) = \Delta(G)\right)
SumDegrees := \sum_{v \in V(G)} (d_G(v)) = 2e(G)
       \sum_{v \in V(G)} (d_G(v)) = \sum_{v \in V(G)} (|\{e \in E(G) | v \in e\}|) = 2|E(G)| = 2e(G)
H and shaking L emma := \sum_{v \in V(G)} (d_G(v)) \equiv 0 \pmod{2}
Degree Corollaries := \left( \left. Even \Big( \left| \left\{ v \in V(G) \mid Odd \left( d_G(v) \right) \right\} \right| \right) \right) \wedge \left( \delta(G) \leq \left[ 2e(G)/n \right] \right) \wedge \left( \Delta(G) \geq \left\lceil 2e(G)/n \right\rceil \right)
(1) H and s haking L emma \blacksquare Even(|\{v \in V(G) \mid Odd(d_G(v))\}|)
     SumDegrees \left[ \left( \delta(G) \leq \left\lfloor 2e(G)/n \right\rfloor \right) \wedge \left( \Delta(G) \geq \left\lceil 2e(G)/n \right\rceil \right) \right]
Walk[W,G] := \left( \forall_{i \in \mathbb{N}_1^{|W|}} \left( w_i \in V(G) \right) \right) \wedge \left( \forall_{i \in \mathbb{N}_1^{|W|-1}} \left( \{ v_i, v_{i+1} \} \in E(G) \right) \right)
WalkEV[(x, y), (\dot{W}, G)] := (Path[W, G]) \land (x, y) = (w_1, w_{|W|})
WalkL[l, (W, G)] := (Path[W, G]) \land (l = |W| - 1)
Trail[W,G] := (Walk[W,G]) \land \left( \forall_{i,j \in \mathbb{N}_{+}^{|W|-1}} \left( (i \neq j) \implies (\{w_{i},w_{i+1}\} \neq \{w_{j},w_{j+1}\}) \right) \right)
Path[W,G] := (Walk[W,G]) \land \left( \forall_{i,j \in \mathbb{N}_{i}^{|W|}} \left( (i \neq j) \implies (w_{i} \neq w_{j}) \right) \right)
ClosedWalk[W,G] := (Walk[W,G]) \land (w_{|W|} = w_1)
Circuit[W,G] := (Trail[W,G]) \land (Closed \dot{W} alk[W,G])
Cycle[W,G] := (ClosedWalk[W,G]) \land \left( \forall_{i \in \mathbb{N}_2^{|W|-1}} (w_0 \neq w_i \neq w_{|W|}) \right) \land \left( \forall_{i,j \in \mathbb{N}_2^{|W|-1}} \left( (i \neq j) \implies (w_i \neq w_j) \right) \right) \land (|W|-1 \geq 3)
CycleE[E, (W, G)] := (Cycle[W, G]) \land (E = \{\{w_i, w_{i+1}\} \mid i \in \mathbb{N}_1^{|W|-1}\})
EvenCycle[W,G] := (Cycle[W,G]) \land (Even(|W|-1))
OddCycle[W,G] := (Cycle[W,G]) \land (Odd(|W|-1))
Triangle[W, G] := (Cycle[W, G]) \land (|W| - 1 = 3)
IndependentV[V,G] := orall_{x,y \in V} (\neg AdjacentV[(x,y),G])
Independent E[E,G] := \forall_{a,b \in E} (\neg Adjacent E[(a,b),G])
Independent Path[\mathcal{P},G] := \exists_{x,y \in V(G)} \forall_{P,Q \in \mathcal{P}} \Big( (P \neq Q) \implies \big( V(P) \cap V(Q) = \{x,y\} \big) \Big)
IndependentV Equiv:= IndependentV \iff SubgraphInducedByV[] \cong E_n
PathG[P_n, n] := \left(V(P_n) = \{x_i \mid i \in \mathbb{N}_1^n\}\right) \land \left(E(P_n) = \{\{x_i, x_{i+1}\} \mid i \in \mathbb{N}_1^{n-1}\}\right)
CycleG[C_n, n] := (V(C_n) = V(P_n)) \land (E(C_n) = E(P_n) \cup \{\{x_n, x_1\}\})
Cycle Partition := \left( \forall_{v \in V(G)} \Big( Even \big( d_G(v) \big) \Big) \right) \iff \left( \exists_{\mathcal{C}} \Big( \Big( \mathcal{E} = \{ C_E \mid (C \in \mathcal{C}) \land \big( CycleE[C_E, (C, G)] \big) \} \right) \land \big( Partition[\mathcal{E}, E(G)] \big) \right)
       \left(\exists_{C} \left( \left( \mathcal{E} = \{ C_{E} \mid (C \in \mathcal{C}) \land \left( CycleE[C_{E}, (C, G)] \right) \} \right) \land \left( Partition[\mathcal{E}, E(G)] \right) \right) \right) \Longrightarrow \dots
```

 $(1.1) \quad \forall_{v \in V(G)} \left(d_G(v) = 2 * |\{v \mid (C \in \mathcal{C}) \land (v \in C)\} \right)| \quad \blacksquare \quad \forall_{v \in V(G)} \left(Even\left(d_G(v) \right) \right)$

1.1. GRAPHS

$$(2) \quad \left(\exists_{\mathcal{C}} \bigg(\Big(\mathcal{E} = \{C_E \mid (C \in \mathcal{C}) \land \big(CycleE[C_E, (C, G)] \big) \} \right) \land \big(Partition[\mathcal{E}, E(G)] \big) \right) \right) \\ \Longrightarrow \left(\forall_{v \in V(G)} \Big(Even \big(d_G(v) \big) \Big) \right)$$

$$(3) \left(\forall_{v \in V(G)} \Big(Even(d_G(v)) \Big) \right) \implies \dots$$

$$(3.1) \quad \left(e(G) = 0\right) \implies \left(\exists_{C} \left(\left(\mathcal{E} = \left\{C_{E} \mid (C \in \mathcal{C}) \land \left(CycleE[C_{E}, (C, G)]\right)\right\}\right) \land \left(Partition[\mathcal{E}, E(G)]\right)\right)\right)$$

$$(3.2) \quad (e(G) \neq 0) \implies \dots$$

$$(3.2.1) \quad \left(e(G)>0\right) \land \left(\forall_{v \in V(G)} \left(Even\left(d_G(v)\right)\right)\right) \quad \blacksquare \ \exists_{x_0 \in V(G)} \left(d_G(x_0) \geq 2\right)$$

- (3.2.2) There exists a PathG P of maximal length with endvertices (x_0, x_l) .
- (3.2.3) $(d_G(x_0) \ge 2)$ Let y be another vertex adjacent to x_0 that is not x_1 .
- (3.2.4) If y is not in P, then P is not a maximal PathG contradiction.
- (3.2.5) Thus y is in P, and P contains a cycle C.

(3.2.6) Let
$$G' = G - E(C)$$
. $\blacksquare \left(\forall_{v \in V(G')} \left(Even(d_{G'}(v)) \right) \right) \blacksquare$ Repeat on G' until all disjoint cycles C are found.

$$(3.2.7) \quad \exists_{\mathcal{C}} \left(\left(\mathcal{E} = \{ C_E \mid (C \in \mathcal{C}) \land \left(CycleE[C_E, (C, G)] \right) \} \right) \land \left(Partition[\mathcal{E}, E(G)] \right) \right)$$

$$(3.3) \quad \left(e(G) \neq 0\right) \implies \left(\exists_{\mathcal{C}} \left(\left(\mathcal{E} = \left\{C_{E} \mid (C \in \mathcal{C}) \land \left(CycleE[C_{E}, (C, G)]\right)\right\}\right) \land \left(Partition[\mathcal{E}, E(G)]\right)\right)\right)$$

$$(3.4) \quad \exists_{\mathcal{C}} \left(\left(\mathcal{E} = \{ C_E \mid (C \in \mathcal{C}) \land \left(CycleE[C_E, (C, G)] \right) \} \right) \land \left(Partition[\mathcal{E}, E(G)] \right) \right)$$

$$(4) \quad \left(\forall_{v \in V(G)} \Big(Even \big(d_G(v) \big) \Big) \right) \implies \left(\exists_{\mathcal{C}} \bigg(\Big(\mathcal{E} = \{ C_E \mid (C \in \mathcal{C}) \land \big(CycleE[C_E, (C, G)] \big) \} \right) \land \big(Partition[\mathcal{E}, E(G)] \big) \right) \bigg)$$

$$(5) \quad \left(\forall_{v \in V(G)} \Big(Even \big(d_G(v) \big) \Big) \right) \iff \left(\exists_{\mathcal{C}} \Big(\Big(\mathcal{E} = \{ C_E \mid (C \in \mathcal{C}) \land \big(CycleE[C_E, (C, G)] \big) \} \Big) \land \big(Partition[\mathcal{E}, E(G)] \big) \right) \right)$$

p. 21

$$Girth[G] := min\Big(\{n \in \mathbb{N} \mid \exists_{V_n}(Cycle[V_n, n, G])\}\Big)$$

$$Circum f erence[G] := max \Big(\{ n \in \mathbb{N} \mid \exists_{V_n} (Cycle[V_n, n, G]) \} \Big)$$

$$Connected V[(x, y), G] := \exists_{n, V_n} \Big((Path[V_n, n, G]) \land \Big((x, y) = (v_1, v_{n+1}) \Big) \Big)$$

Connected[G] := $\forall_{x,y \in V(G)} (ConnectedV[(x,y),G])$

$$Component[C,G] := (Subgraph[C,G]) \land \left(\forall_{c \in V(C)} \forall_{g \in V(G)} \Big(\big(g \notin V(C) \big) \implies \big(\neg ConnectedV[(g,c),G] \big) \Big) \right)$$

$$Degree[d_G(v),v,G] := d_G(v) = |\{e \in E(G) | v \in e\}|$$

$$Regular[G, r] := \forall_{v \in V(G)} (d_G(v) = r)$$

SumDeg :=
$$\sum_{v \in V(G)} (d_G(v)) = 2|E(G)|$$

$$(1) \quad \sum_{v \in V(G)} (d_G(v)) = \sum_{v \in V(G)} (|\{e \in E(G) | v \in e\}|) = 2|E(G)|$$

$$Odd Deg := Even(|\{v \mid Odd(d_G(v))\}|)$$

(1) SumDeg

$$\begin{aligned} Adjacency Matrix[\mathcal{A}(G),G] &:= \mathcal{A}(G) = \begin{bmatrix} a_{i,j} = \begin{cases} 1 & x_i x_j \in E(G) \\ 0 & x_i x_j \notin E(G) \end{bmatrix} \\ FanG[F_n,n] &:= \left(V = V(P_n) \cup \{v_0\}\right) \wedge \left(E = E(P_n) \cup \{v_0,v_i\} \mid i \in \mathbb{N}_1^n\}\right) \wedge \left(F_n = (V,E)\right) \end{aligned}$$

 $W heelG[W_n, n] := (V = V(P_n) \cup \{v_0\}) \land (E = E(P_n) \cup \{\{v_n, v_1\}\} \cup \{v_0, v_i\} \mid i \in \mathbb{N}_1^n\}) \land (W_n = (V, E))$ $StarG[S_n, n] := (V = V(P_n) \cup \{v_0\}) \land (E = \{\{v_0, v_i\} \mid i \in \mathbb{N}_1^n\}\}) \land (S_n = (V, E))$ $CompleteG[K_n, n] := (V = V(P_n)) \land (E = \{\{v_i, v_j\} \mid (i, j \in \mathbb{N}_1^n) \land (i \neq j)\})$ $BipartiteG[K_{m,n}, m, n] := \exists_{X,Y} \Big(\big(X \cup Y = V(K_{m,n}) \big) \land (X \cap Y = \emptyset) \land \big(E(K_{m,n}) \subseteq \{ \{x,y\} \mid (x \in X) \land (y \in Y) \} \big) \Big)$ $Complete Bipartite G[K_{m,n},m,n] := \exists_{X,Y} \Big(\big(X \cup Y = V(K_{m,n}) \big) \land (X \cap Y = \emptyset) \land \Big(E(K_{m,n}) = \{ \{x,y\} \mid (x \in X) \land (y \in Y) \} \Big) \Big)$

 $SnIsoKmn := S_n \cong K_{1,n} \cong K_{n,1}$

(1) TODO $\phi = \dots$

$$Distance[d_G(x,y),x,y,G] := d_G(x,y) = min \left(n \in \mathbb{N} \mid \left(\exists_{V_n} (Path[V_n,n,G]) \land \left((v_1,v_{n+1}) = (x,y) \right) \right) \right)$$

$$DMetric := \forall_{G,x,y,z} \left((Graph[G]) \land \left(x,y,z \in V(G) \right) \right) \implies \begin{pmatrix} \left(d_G(x,y) \geq 0 \right) & \land \\ \left(\left(d_G(x,y) = 0 \right) \iff (x=y) \right) \land \\ \left(d_G(x,y) = d(y,x) \right) & \land \\ \left(d_G(x,y) + d_G(y,z) \geq d_G(x,z) \right) \end{pmatrix}$$

- (1) By definition of cardinality and sets, $d_G(x, y) \ge 0$, $(d_G(x, y) = 0) \iff (x = y), d_G(x, y) = d(y, x)$
- (2) By cases:
 - (2.1) If $y \in [ShortestPath[x, z]]$, then $d_G(x, y) + d(y, z) = d_G(x, z)$
 - (2.2) If $y \notin [ShortestPath[x, z]]$, then $d_G(x, y) + d(y, z) > d_G(x, z)$
- (3) By cases, $d_G(x, y) + d_G(y, z) \ge d_G(x, z)$

$$\begin{aligned} & GraphPower[G',r,G] := \left(V = V(G)\right) \wedge \left(E = \{\{x,y\} \mid d_G(x,y) \leq r\}\right) \wedge \left(G' = (V,E)\right) \\ & GraphSum[G_1 + G_2,G_1,G_2] := \left(V = V(G_1) \cup V(G_2)\right) \wedge \left(E = E(G_1) \cup E(G_2) \cup \{\{x,y\} \mid \left(x \in V(G_1)\right) \wedge y \in V(G_2)\}\right) \wedge \left(G_1 + G_2 = (V,E)\right) \\ & GraphCartesian[G_1 \times G_2,G_1,G_2] := \begin{pmatrix} (V = V(G_1) \times V(G_2)) & \wedge & \\ \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left((x_1 = x_2) \wedge \left(\{y_1,y_2\} \in E(G_2)\right)\right) \vee \left((y_1 = y_2) \wedge \left(\{x_1,x_2\} \in E(G_1)\right)\right) \} \right) \wedge \\ & GraphComposition[G_1 \circ G_2,G_1,G_2] := \begin{pmatrix} (V = V(G_1) \times V(G_2)) & \wedge & \\ \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left((x_1 = x_2) \wedge \left(\{y_1,y_2\} \in E(G_2)\right)\right) \vee \left(\{x_1,x_2\} \in E(G_1)\right) \} \right) \wedge \\ & GraphConjunction[G_1 \wedge G_2,G_1,G_2] := \begin{pmatrix} (V = V(G_1) \times V(G_2)) & \wedge & \\ \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_1)\right) \wedge \left(\{y_1,y_2\} \in E(G_2)\right) \} \right) \wedge \\ & \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_1)\right) \wedge \left(\{y_1,y_2\} \in E(G_2)\right) \} \right) \wedge \\ & \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_1)\right) \wedge \left(\{y_1,y_2\} \in E(G_2)\right) \} \right) \wedge \\ & \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_1)\right) \wedge \left(\{y_1,y_2\} \in E(G_2)\right) \} \right) \wedge \\ & \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_1)\right) \wedge \left(\{y_1,y_2\} \in E(G_2)\right) \} \right) \wedge \\ & \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_1)\right) \wedge \left(\{y_1,y_2\} \in E(G_2)\right) \} \right) \wedge \\ & \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_1)\right) \wedge \left(\{y_1,y_2\} \in E(G_2)\right) \} \right) \wedge \\ & \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_1)\right) \wedge \left(\{y_1,y_2\} \in E(G_2)\right) \} \right) \wedge \\ & \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_1)\right) \wedge \left(\{x_1,x_2\} \in E(G_2)\right) \} \right) \wedge \\ & \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_1)\right) \wedge \left(\{x_1,x_2\} \in E(G_2)\right) \} \right) \wedge \\ & \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_1)\right) \wedge \left(\{x_1,x_2\} \in E(G_2)\right) \} \right) \wedge \\ & \left(E = \{\left((x_1,y_1),(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_2)\right) \} \right) \wedge \\ & \left(E = \{\left((x_1,y_1,(x_2,y_2) \mid x_1,(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_2)\right) \} \right) \wedge \\ & \left(E = \{\left((x_1,y_1,(x_2,y_2) \mid x_1,(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_2)\right) \} \right) \wedge \\ & \left(E = \{\left((x_1,y_1,(x_2,y_2) \mid x_1,(x_2,y_2)\right) \mid \left(\{x_1,x_2\} \in E(G_2)\right) \} \right) \wedge \\ & \left(E = \{\left((x_1,y_1,(x_2,y_2)$$

$$GraphComposition[G_{1} \circ G_{2}, G_{1}, G_{2}] := \begin{bmatrix} \left(E_{1}(x_{1}, y_{1}), (x_{2}, y_{2})\right) \mid \left((x_{1} = x_{2}) \land \left(\{y_{1}, y_{2}\} \in E(G_{2})\right)\right) \lor \left(\{x_{1}, x_{2}\} \in E(G_{1})\right)\} \\ \left(G_{1} \circ G_{2} = (V, E)\right) \\ \left(V = V(G_{1}) \times V(G_{2})\right) \land \\ \end{bmatrix} \land C_{1} \land C_{2} \land C_{3} \land C_{4} \land C_{4} \land C_{5} \land$$

$$GraphConjunction[G_1 \wedge G_2, G_1, G_2] := \begin{pmatrix} \left(V = V(G_1) \times V(G_2)\right) & \wedge \\ \left(E = \left\{\left((x_1, y_1), (x_2, y_2)\right) \mid \left(\left\{x_1, x_2\right\} \in E(G_1)\right) \wedge \left(\left\{y_1, y_2\right\} \in E(G_2)\right)\right\}\right) \wedge \\ \left(G_1 \wedge G_2 = (V, E)\right) \end{pmatrix}$$

$$KroneckerProduct[A \otimes B, A, B] := (Matrix[A, m, n]) \wedge (Matrix[B, p, q]) \wedge (A \otimes B = \begin{bmatrix} a_{1,1}B & \dots & a_{1,n}B \\ \vdots & \ddots & \vdots \\ a_{m,1}B & \dots & a_{m,n}B \end{bmatrix} \in \mathbb{R}^{mp} \times \mathbb{R}^{nq})$$

KroneckerProperties := ...

(1) TODO: https://archive.siam.org/books/textbooks/OT91sample.pdf

 $AdjacencyKroneckerIdentity := \forall_{G,H} (A(G \land H) = A(H) \otimes A(G))$

 $\overline{(1)}$ TODO

acyclic graph

$$Tree[G] := (Connected[G]) \land \left(\neg \exists_{n,V_n} (Cycle[V_n, n, G]) \right)$$

forest -> decomponents into trees

$$p = |V(G)| \ q = |E(G)|$$

 $GraphEquivalences := (Tree[G]) \iff ()$

.i. UKAI IIS

(1) TODO

6 CHAFTER I. GRAFH THEOR.

Chapter 2

Abstract Algebra

2.1 Functions

```
Rel[r, X] := (X \neq \emptyset) \land (r \subseteq X)
Func[f,X,Y] := (Rel[f,X\times Y]) \land \left(\forall_{x\in X}\exists !_{y\in Y}(\langle x,y\rangle \in f)\right)
Comp[g \circ f, f, g, X, Y, Z] := (Func[f, X, Y]) \land (Func[g, Y, Z]) \land \Big(g \circ f = \{\langle x, g(f(x)) \rangle \in X \times Z \mid x \in X\}\Big)
FuncComp := (Comp[g \circ f, f, g, X, Y, Z]) \implies (Func[g \circ f, X, Z])
(1) TODO
CompAssoc := h \circ (g \circ f) = (h \circ g) \circ f
(1) TODO
Domain[dom(f), f, X, Y] := (Func[f, X, Y]) \land (dom(f) = X)
Codomain[cod(f), f, X, Y] := (Func[f, X, Y]) \land (cod(f) = Y)
Image[im(A), A, f, X, Y] := (Func[f, X, Y]) \land (A \subseteq X) \land (im(A) = \{f(a) \in Y \mid a \in A\})
Preimage[pim(B), B, f, X, Y] := (Func[f, X, Y]) \land (B \subseteq Y) \land (pim(B) = \{a \in X \mid f(a) \in B\})
Range[rng(f), f, X, Y] := (Func[f, X, Y]) \land (Image[rng(f), dom(f), f, X, Y])
Inj[f,X,Y] := (Func[f,X,Y]) \land \left( \forall_{x_1,x_2 \in X} \Big( \big( f(x_1) = f(x_2) \big) \implies (x_1 = x_2) \Big) \right)
Surj[f, X, Y] := (Func[f, X, Y]) \land (\forall_{y \in Y} \exists_{x \in X} (y = f(x)))
Bij[f, X, Y] := (Inj[f, X, Y]) \wedge (Surj[f, X, Y])
\overline{Inv[f^{-1},f,X,Y]:=(Func[f,X,Y])}\wedge (Func[f^{-1},Y,X])\wedge (f\circ f^{-1}=I_Y)\wedge (f^{-1}\circ f=I_X)
SurjEquiv := (Surj[f, X, Y]) \iff (rng(f) = cod(f))
```

(1) TODO

$$\textit{BijEquiv} := (\textit{Bij}[f, X, Y]) \iff \left(\exists_{f_{-1}}(Inv[f^{-1}, f, X, Y])\right)$$

 $\overline{(1)}$ TODO

$$InjComp := ((Inj[f]) \land (Inj[g])) \implies (Inj[g \circ f])$$

 $\overline{(1)}$ TODO

$$SurjComp := ((Surj[f]) \land (Surj[g])) \implies (Surj[g \circ f])$$

(1) TODO

2.2 Divisibility, Equivalence Relations, Paritions

 $DivisionAlgorithm := \forall_{b \in \mathbb{Z}} \forall_{a \in \mathbb{Z}^+} \exists !_{q,r \in \mathbb{Z}} \big((b = aq + r) \land (0 \le r < a) \big)$

 $\overline{(1)}$ TODO

 $Divides[a,b] := (a,b \in \mathbb{Z}) \land (\exists_{c \in \mathbb{Z}}(b=ac))$ $ComDiv[a, b, c] := (Divides[a, b]) \land (Divides[a, c])$ $GCD[a,b,c] := (ComDiv[a,b,c]) \land \left(\forall_{d \in \mathbb{Z}} \Big(\big((Divides[d,b]) \land (Divides[d,c]) \big) \implies (Divides[d,a]) \Big) \right)$ RelPrime[a,b] := GCD[1,a,b]

CongRel[a, b, n] := Divides[n, a - b]

 $Partition[\mathcal{P},S] := \left(\forall_{P \in \mathcal{P}} (P \neq \emptyset) \right) \wedge \left(S = \bigcup_{P \in \mathcal{P}} (P) \right) \wedge \left(\forall_{P_1,P_2 \in \mathcal{P}} \left((P_1 \neq P_2) \implies (P_1 \cap P_2 = \emptyset) \right) \right)$ $EqRel[\sim,S] := (Rel[\sim,S]) \land \left(\forall_{a \in S} (a \sim a) \right) \land \left(\forall_{a,b \in S} \left((a \sim b) \implies (b \sim a) \right) \right) \land \left(\forall_{a,b,c \in S} \left(\left((a \sim b) \land (b \sim c) \right) \implies (a \sim c) \right) \right)$ $EqClass[[s], s, \sim, S] := (Rel[\sim, S]) \land (s \in S) \land ([s] = \{x \in S \mid x \sim s\})$

 $PartitionInducesEqRel := (Partition[\mathcal{P}, S]) \implies (\exists_{\sim}(EqRel[\sim, S]))$

 $\overline{(1) \text{ TODO} : \sim = \{ \langle a, b \rangle \in S \times S \mid (P \in \mathcal{P}) \land (a, b \in P) \}}$

 $EqRelInducesPartition := (EqRel[\sim, S]) \implies (\exists_{\mathcal{P}}(Partition[\mathcal{P}, S]))$

(1) TODO: $Partition[EqClass_1, EqClass_2, ...]$

 $EqRelCong := \forall_{n \in \mathbb{Z}^+} (EqRel[CongRel, \mathbb{Z}])$

(1) TODO

2.3 Groups

$$Group[G,*] := \left(\begin{array}{ll} (Function[*,G,G]) & \land \\ \left(\forall_{a,b,c \in G} \left((a*b)*c = a*(b*c) \right) \right) \land \\ \left(\exists_{e \in G} \forall_{a \in G} (a*e = a = e*a) \right) & \land \\ \left(\forall_{a \in G} \exists_{a^{-1} \in G} (a*a^{-1} = e = a^{-1}*a) \right) \end{array} \right)$$

Abelian $Group[G, *] := (Group[G, *]) \land (\forall_{a,b \in G}(a * b = b * a))$

$$Cancel Laws := \forall_G \Biggl((Group[G,*]) \implies \Biggl(\forall_{a,b,c \in G} \Bigl(\bigl((a*b=a*c) \implies (b=c) \bigr) \land \bigl((a*c=b*c) \implies (a=b) \bigr) \Bigr) \Biggr) \Biggr)$$

- - $(1.1) \quad a \in G \quad \blacksquare \quad \exists_{a^{-1} \in G} (a * a^{-1} = e = a^{-1} * a)$
 - (1.2) Function[*, G, G] $\blacksquare a^{-1} * a * b = a^{-1} * a * c$
 - $(1.3) \quad \left(\forall_{a,b,c \in G} \left((a * b) * c = a * (b * c) \right) \right) \land \left(\forall_{a \in G} \exists_{a^{-1} \in G} (a * a^{-1} = e = a^{-1} * a) \right) \blacksquare b = c$
- $(2) \quad (a * b = a * c) \implies (b = c)$
- $(3) \quad (a*c = b*c) \implies \dots$
- (3.1) TODO
- $(4) \quad (a*c = b*c) \implies (a = b)$
- $(5) \quad ((a*b=a*c) \implies (b=c)) \land ((a*c=b*c) \implies (a=b))$

$$\frac{IdUniq := \forall_G \bigg((Group[G,*]) \implies \bigg(\forall_{e_1,e_2 \in G} \forall_{a \in G} \Big(\big((a*e_1 = a = e_1*a) \land (a*e_2 = a = e_2*a) \big) \implies (e_1 = e_2) \Big) \bigg) \bigg)}{(1) \quad (Cancel Laws) \land \bigg(\forall_{a \in G} \exists_{a^{-1} \in G} (a*a^{-1} = e = a^{-1}*a) \bigg) \quad \blacksquare \quad a*e_1 = a = a*e_2 \quad \blacksquare \quad e_1 = e_2 }$$

(1)
$$(Cancel Laws) \land (\forall_{a \in G} \exists_{a^{-1} \in G} (a * a^{-1} = e = a^{-1} * a)) \blacksquare a * e_1 = a = a * e_2 \blacksquare e_1 = e_2$$

2.4. SUDURUUTS

$$InvUniq := \forall_G \Biggl(Group[G,*]) \implies \Biggl(\forall_{a \in G} \forall_{a_1^{-1}, a_2^{-1} \in G} \Biggl(\Bigl((a*a_1^{-1} = e = a_1^{-1} * a) \land (a*a_2^{-1} = e = a_2^{-1} * a) \Bigr) \implies (a_1^{-1} = a_2^{-1}) \Biggr) \Biggr) \Biggr)$$

 $InvProd := \forall_G \forall_{a,b \in G} \Big((a * b)^{-1} = b^{-1} * a^{-1} \Big)$

- (1) $(a * b) * (a * b)^{-1} = e$
- (2) $(a*b)*(b^{-1}*a^{-1}) = (a*(b*b^{-1})*a^{-1}) = e$
- $\overline{(3)} \ InvUniq \ \blacksquare \ (a*b)^{-1} = \overline{b^{-1}*a^{-1}}$

$$\begin{aligned} &OrderEl[o(G),G,*] := (Group[G,*]) \wedge \left(o(G) = |G|\right) \\ &gWitness[n,g,G,*] := (Group[G,*]) \wedge (n \in \mathbb{Z}^+) \wedge (g^n = e) \wedge \left(\forall_{m \in \mathbb{Z}^+} (m < n) \implies (g^m \neq e)\right) \\ &OrderEl[o(g),g,G,*] := (Group[G,*]) \wedge \left(\left(\exists_n (gWitness[n,g,G,*])\right) \implies \left(o(g) = n\right)\right) \wedge \left(\left(\neg \exists_n (gWitness[n,g,G,*])\right) \implies \left(o(g) = \infty\right)\right) \end{aligned}$$

2.4 Subgroups

 $Subgroup[H, G, *] := (Group[G, *]) \land (H \subseteq G) \land (Group[H, *])$ $TrivSubgroup[H, G, *] := (H = \{e\}) \lor (H = G)$

 $PropSubgroup[H,G,*] := (Subgroup[H,G,*]) \wedge (\neg TrivSubgroup[H,G,*])$

$$Subgroup Equiv := \forall_{H,G} \left(\begin{array}{l} (Subgroup[H,G,*]) \\ \\ \left((Group[G,*]) \wedge (\emptyset \neq H \subseteq G) \wedge (Function[*,H,H]) \wedge \left(\forall_{a \in H} \exists_{a^{-1} \in H} (a*a^{-1} = e = a^{-1}*a) \right) \end{array} \right) \right)$$

$$(1) \quad (Subgroup[H,G,*]) \implies \left((\emptyset \neq H \subseteq G) \land (Function[*,H,H]) \land \left(\forall_{a \in H} \exists_{a^{-1} \in H} (a*a^{-1} = e = a^{-1}*a) \right) \right)$$

$$(2) \quad \left((\emptyset \neq H \subseteq G) \land (Function[*,H,H]) \land \left(\forall_{a \in H} \exists_{a^{-1} \in H} (a*a^{-1} = e = a^{-1}*a) \right) \right) \implies \dots$$

- $(2.1) \quad \textit{Group}[G,*] \quad \blacksquare \quad (a,b,c \in H) \implies (a,b,c \in G) \implies \left((a*b)*c = a*(b*c) \right) \quad \blacksquare \quad \forall_{a,b,c \in H} \left((a*b)*c = a*(b*c) \right)$
- $(2.2) \quad \emptyset \neq H \quad \blacksquare \quad \exists_h (h \in H)$
- $(2.3) \quad h \in H \quad \blacksquare \ \exists_{h^{-1} \in H} (h * h^{-1} = e = h^{-1} * h)$
- $\hline (2.4) \quad Function[*,H,H] \quad \blacksquare \quad e=h*h^{-1} \in H \quad \blacksquare \quad e\in H \quad \blacksquare \quad \exists_{e\in H} \forall_{a\in H} (a*e=a=e*a)$
- $(2.5) \quad (Function[*, H, H]) \land \left(\forall_{a,b,c \in H} \left((a * b) * c = a * (b * c) \right) \right) \land \left(\exists_{e \in H} \forall_{a \in H} (a * e = a = e * a) \land (\forall_{a \in H} \exists_{a^{-1} \in H} (a * a^{-1} = e = a^{-1} * a) \right) \land (a * e = a = e * a) \land (b * e$
- (2.6) Group[H,*]
- $(2.7) \quad (Group[G,*]) \land (H \subseteq G) \land (Group[H,*]) \quad \blacksquare \quad Subgroup[H,G,*]$

$$(3) \quad \left((\emptyset \neq H \subseteq G) \land (Function[*,H,H]) \land \left(\forall_{a \in H} \exists_{a^{-1} \in H} (a*a^{-1} = e = a^{-1}*a) \right) \right) \implies (Subgroup[H,G,*])$$

$$(4) \quad (Subgroup[H,G,*]) \iff \left((Group[G,*]) \wedge (\emptyset \neq H \subseteq G) \wedge (Function[*,H,H]) \wedge \left(\forall_{a \in H} \exists_{a^{-1} \in H} (a*a^{-1} = e = a^{-1}*a) \right) \right)$$

$$Subgroup Equiv OST := \forall_{H,G} \Biggl((Subgroup [H,G,*]) \iff \Biggl((Group [G,*]) \land (\emptyset \neq H \subseteq G) \land \Bigl(\forall_{a,b \in H} (a*b^{-1} \in H) \Bigr) \Biggr) \Biggr)$$

(1) TODO

 $SubgroupIntersection := \forall_{H_1,H_2,G} \Big(\big(Subgroup[H_1,G,*] \big) \wedge \big(Subgroup[H_2,G,*] \big) \Big) \implies \big(Subgroup[H_1\cap H_2,G,*] \big) \Big) + (Subgroup[H_1,G,*] \Big) + (Subgroup[H_2,G,*] \Big) + (Subgroup[H_1,G,*] \Big) + (Subgroup[H_2,G,*] \Big) + (Subgroup[H_2,G,*]$

- (1) Group[G, *]
- $(2) \quad (e \in H_1) \land (e \in H_2) \quad \blacksquare \quad e \in H_1 \cap H_2 \quad \blacksquare \quad \emptyset \neq H_1 \cap H_2$
- $(3) \quad (H_1 \subseteq G) \land (H_2 \subseteq G) \quad \blacksquare \quad H_1 \cap H_2 \subseteq G$

- $(4) \quad \emptyset \neq H_1 \cap H_2 \subseteq G$
- $(5) (a, b \in H_1 \cap H_2) \implies \dots$
 - (5.1) $a, b \in H_1 \blacksquare a * b \in H_1$
- $(5.2) \quad a, b \in H_2 \quad \blacksquare \ a * b \in H_2$
- (5.3) $a * b \in H_1 \cap H_2$
- (6) $(a, b \in H_1 \cap H_2) \implies (a * b \in H_1 \cap H_2) \ \blacksquare \ Function[*, H_1 \cap H_2, H_1 \cap H_2]$
- $(7) \quad (a \in H_1 \cap H_2) \implies \dots$
- $(7.1) \quad (a^{-1} \in H_1) \land (a^{-1} \in H_2) \quad \blacksquare \quad a^{-1} \in H_1 \cap H_2$
- $(8) \ \ (a \in H_1 \cap H_2) \implies (a^{-1} \in H_1 \cap H_2) \ \blacksquare \ \forall_{a \in H_1 \cap H_2} \exists_{a^{-1} \in H_1 \cap H_2} (a * a^{-1} = e = a^{-1} * a)$
- $(9) \quad (Subgroup Equiv) \wedge (Group[G,*]) \wedge (\emptyset \neq H_1 \cap H_2 \subseteq G) \wedge (Function[*,H_1 \cap H_2,H_1 \cap H_2]) \wedge \ \dots \\ \\$
- $(10) \quad \dots \left(\forall_{a \in H_1 \cap H_2} \exists_{a^{-1} \in H_1 \cap H_2} (a * a^{-1} = e = a^{-1} * a) \right) \quad \blacksquare \quad Subgroup[H_1 \cap H_2, G, *]$

 $Centralizer[C(g), g, G, *] := (Group[G, *]) \land (g \in G) \land (C(g) = \{h \in G \mid g * h = h * g\})$

 $Subgroup Centralizer := \forall_{g,G} \Big((Centralizer[C(g), g, G, *] \Big) \implies \Big(Subgroup[C(g), G, *] \Big) \Big)$

- (1) $e * g = g * e \blacksquare e \in C(g) \blacksquare C(g) \neq \emptyset$
- $(2) \quad C(g) \subseteq G \quad \blacksquare \emptyset \neq C(g) \subseteq G$
- (3) $(a, b \in C(g)) \implies \dots$
- $(3.1) \quad (a * g = g * a) \land (b * g = g * b)$
- $(3.2) \quad (a*b)*g = a*(b*g) = a*(g*b) = (a*g)*b = (g*a)*b = g*(a*b) \quad \blacksquare a*b \in C(g)$
- $(4) \quad \left(a, b \in C(g)\right) \implies \left(a * b \in C(g)\right) \quad \blacksquare \quad \forall_{a, b \in C(g)} \left(a * b \in C(g)\right)$
- (5) $(a \in C(g)) \implies \dots$
- (5.1) a * g = g * a
- $(6) \quad (a \in C(g)) \implies \left(a^{-1} \in C(g)\right) \quad \blacksquare \quad \forall_{a \in C(g)} \left(a^{-1} \in C(g)\right)$
- $(7) \quad (Subgroup Equiv) \land \left(\emptyset \neq C(g) \subseteq G\right) \land \left(\forall_{a,b \in C(g)} \left(a * b \in C(g)\right)\right) \land \left(\forall_{a \in C(g)} \left(a^{-1} \in C(g)\right)\right) \quad \blacksquare \quad Subgroup [C(g),G,*]$

$$Center[Z(G), G, *] := (Group[G, *]) \land \left(Z(G) = \bigcap_{g \in G} (C(g))\right)$$

 $SubgroupCenter := \forall_G \Big(\big(Center[Z(G), G, *] \big) \implies \big(Subgroup[Z(G), G, *] \big) \Big)$

(1) $(SubgroupCentralizer) \land (SubgroupIntersection) \quad Subgroup[Z(G), G, *]$

2.5 Special Groups

2.5.1 Cyclic Group

 $CyclicSubgroup[< g >, g, G, *] := (Group[G, *]) \land (g \in G) \land (< g > = \{g^n \mid n \in \mathbb{Z}\})$

Generator[g, G, *] := CyclicSubgroup[G, g, G, *]

 $CyclicGroup[G,*] := \exists_{g \in G}(Generator[g,G,*])$

 $SubgroupOfCyclicGroupIsCyclic := \forall_{G,H} \Big((CyclicGroup[G,*]) \land (Subgroup[H,G,*]) \Big) \implies (CyclicGroup[H,*]) \Big)$

- (1) $\exists_{g \in G}(Generator[g, G, *])$
- $(2) \quad H \subseteq G \quad \blacksquare \quad \exists_{m \in \mathbb{Z}^+} \left((g^m \in H) \land \left(\forall_{k \in \mathbb{Z}^+} \left((k < m) \implies (g^k \notin H) \right) \right) \right)$
- $(3) (b \in H) \Longrightarrow \dots$
 - $(3.1) \quad H \subseteq G \quad \blacksquare \quad \exists_{n \in \mathbb{Z}^+} (b = g^n)$
 - $(3.2) \quad (DivisionAlgorithm) \land (n \in \mathbb{Z}) \land (m \in \mathbb{Z}^+) \quad \blacksquare \quad \exists !_{q,r \in \mathbb{Z}} \left((n = mq + r) \land (0 \le r < m) \right)$

```
(3.3) g^n = g^{mq+r} = g^{mq} * g^r \quad \blacksquare g^r = (g^{mq})^{-1} * g^n
```

$$(3.4) \quad g^n, g^m \in H \quad \blacksquare \quad g^n, (g^{mq})^{-1} \in H \quad \blacksquare \quad g^r = g^{mq})^{-1} * g^n \in H \quad \blacksquare \quad g^r \in H$$

$$(3.5) \quad (g^r \in H) \land (0 \le r < m) \land \left(\forall_{k \in \mathbb{Z}^+} \left((k < m) \implies (g^k \notin H) \right) \right) \ \blacksquare \ r = 0$$

$$(3.6) \quad (r = 0) \land (g^n = g^{mq+r}) \land (b = g^n) \quad \blacksquare \quad b = g^n = g^{mq} \quad \blacksquare \quad b \in \langle g^m \rangle$$

$$(4) \quad (b \in H) \implies (b \in \langle g^m \rangle) \quad \blacksquare \quad H \subseteq \langle g^m \rangle$$

$$\overline{(5) \ (b \in \langle g^m \rangle) \implies \dots}$$

$$(5.1) \quad \exists_{k \in \mathbb{Z}} \left(b = (g^m)^k \right)$$

$$(5.2) \quad (Group[H, G, *]) \land (g^m \in H) \quad \blacksquare \quad (g^m * g^m \in H) \land \left((g^m)^{-1} \in H \right)$$

(5.3) Induction
$$\blacksquare b = (g^m)^k \in H \blacksquare b \in H$$

$$(6) (b \in \langle g^m \rangle) \implies (b \in H) \blacksquare \langle g^m \rangle \subseteq H$$

$$(7) \quad (H \subseteq < g^m >) \land (< g^m > \subseteq H) \quad \blacksquare \quad H = < g^m > \quad \blacksquare \quad Generator[g^m, H, *] \quad \blacksquare \quad \exists_{h \in G} (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \blacksquare \quad CyclicGroup[H, *] = (Generator[h, G, *]) \quad \Box \quad CyclicGroup[H, G, *] = (Generator[h, G, *]) \quad \Box \quad CyclicGroup[H, G, *] = (Generator[h, G, *]) \quad \Box \quad CyclicGroup[H, G, *] = (Generator[$$

$$ExpModOrder := \forall_{G,g,n,s,t} \left(\left((Group[G,*]) \wedge (OrderEl[n,g,G,*]) \right) \implies \left((g^s = g^t) \iff \left(s \equiv t (mod \ n) \right) \right) \right)$$

$$(1) \quad (s \equiv t \pmod{n}) \iff (Divides[n, s - t]) \iff (\exists_{k \in \mathbb{N}} (s - t = kn)) \iff \dots$$

$$\frac{(1) \quad \left(s \equiv t \pmod{n}\right) \iff \left(\text{Divides}[n, s - t]\right) \iff \left(\exists_{k \in \mathbb{N}}(s - t = kn)\right) \iff \dots}{(2) \quad \dots \left(\exists_{k \in \mathbb{N}}(s = kn + t)\right) \iff \left(g^s = g^{kn + t} = g^{kn} * g^t = e^k * g^t = g^t\right) \iff \left(g^s = g^t\right)}$$

$$ExpModOrderCorollary := \forall_{G,g,n,s,t} \Big(\big((Group[G,*]) \land (OrderEl[n,g,G,*]) \big) \implies \big((g^s = e) \iff (Divides[n,s]) \Big) \Big)$$

$$(1) \quad ExpModOrder \quad (g^s = e) \iff (g^s = g^0) \iff (s \equiv 0 \pmod{n}) \iff (Divides[n, s - 0]) \iff (Divides[n, s])$$

2.5.2 Symmetric and Alternating Groups

```
SymmetricGroup[S_n, n] := S_n = \{permutation of a set with n elements\}
```

 $Symmetric Group Order := o(S_n) = n!$

$$SymmetricGroup As Disjoins Cycles := \forall_{\sigma \in S_n} \exists_{\Sigma \subseteq S_n} \Big((Disjoint Cycles[\Sigma]) \land \Big(\sigma = \prod(\sigma_i)\Big) \Big)$$

$$Symmetric Group As Transpositions := \forall_{\sigma \in S_n} \exists_{\Sigma \subseteq S_n} \Big((Transpositions[\Sigma]) \land \Big(\sigma = \prod(\sigma_i) \Big) \Big)$$

 $vFunction[v(\sigma), \sigma, S_n] := v(\sigma) = n - |DisjointFullCycles[\Sigma]|$

 $signFunction[sign(\sigma), \sigma, S_n] := sign(\sigma) = (-1)^{v(\sigma)}$

Even Permutation $[\sigma, S_n] := sign(\sigma) = 1$

 $OddPermutation[\sigma, S_n] := sign(\overline{\sigma}) = -1$

 $TranspositionSigns := sign(\tau \sigma) = -sign(\sigma)$

TranspositionSignsCorollary := $sign(\prod_{i=1}^{r} (\tau_i)) = (-1)^r$

 $SignProp := sign(\sigma \pi) = sign(\sigma)sign(\pi)$

Alternating Group $[A_n, n] := A_n = \{ \sigma \in S_n \mid Even Permutation [\sigma, S_n] \}$

Alternating Group Order := $o(A_n) = n!/2$

Dihedral Group 2.5.3

$$DihedralGroup[D_n,*] := \left(D_n = \{a^r * b^s \mid (r \in \mathbb{N}_{0,n-1}) \land (s \in \mathbb{N}_{0,1})\}\right) \land \begin{pmatrix} \left(a^p a^q = a^{(p+q)\%n}\right) \land \\ \left(a^p b a^q = a^{(p-q)\%n}b\right) \land \\ \left(a^p b a^q b = a^{(p-q)\%n}\right) \end{pmatrix}$$

 $DihedralGroupOrder := o(D_n) = 2n$

Lagrange's Theorem 2.6

```
LeftCoset[gH,g,H,G,*] := (Subgroup[H,G,*]) \land (g \in G) \land (gH = \{g*h \mid h \in H\})
RightCoset[Hg, g, H, G, *] := (Subgroup[H, G, *]) \land (g \in G) \land (Hg = \{h * g \mid h \in H\})
```

 $CosetCardinality := (RightCoset[Hg, g, H, G, *]) \implies (|H| = |Hg|)$

(1) Cancellation Laws $\blacksquare (h_1g = h_2g) \implies (h_1 = h_2) \blacksquare |H| = |Hg|$

$$CosetInduceEqRel := \forall_{G,H} \bigg(\Big((Subgroup[H,G,*]) \land (\sim = \{ \langle a,b \rangle \mid a*b^{-1} \in H \}) \Big) \implies \Big((EqRel[\sim,G]) \land (EqClass[Ha,a,\sim,G]) \Big) \bigg)$$

(1) $(a, b, c \in G) \implies \dots$

$$(1.1) \quad (Subgroup[H,G,*]) \implies (e \in H) \implies (a*a^{-1} \in H) \implies (a \sim a)$$

$$(1.2) \quad (a \sim b) \implies (a * b^{-1} \in H) \implies \left(b * a^{-1} = (a * b^{-1})^{-1} \in H\right) \implies (b \sim a)$$

$$(1.3) \ \left((a \sim b) \land (b \sim c) \right) \implies (a * b^{-1}, b * c^{-1} \in H) \implies \left(a * c^{-1} = (a * b^{-1}) * (b * c^{-1}) \in H \right) \ \blacksquare \ a \sim c$$

- (2) EqRel $[\sim, G]$
- $(3) (a, x \in G) \implies \dots$

$$(3.1) \quad (x \sim a) \iff (x * a^{-1} \in H) \iff \left(\exists_{h \in H} (x * a^{-1} = h)\right) \iff \left(\exists_{h \in H} (x = h * a)\right) \iff (x \in Ha)$$

 $\overline{(4)} \ [a] = \{x \in G \mid x \sim a\} = Ha$

$$CosetSet[G:H,H,G,*] := (Subgroup[H,G,*]) \land (G:H = \{gH \mid g \in G\})$$

 $IndexSubgroup[|G:H|,H,G,*] := (CosetSet[G:H,H,G,*]) \land (|G:H| = |G:H|) \land (|G| = (|H|)(|G:H|))$

$$LagrangeTheorem := \forall_{G,H} \Big(\big(Subgroup[H,G,*] \big) \land (o(G),o(H) \in \mathbb{N} \big) \Big) \implies \Big(o(G) = o(H)|G:H| \Big) \land \Big(Divides[o(H),o(G)] \Big)$$

$$(1) \quad (CosetInduceEqRel) \wedge (EqRelInducesPartition) \wedge (CosetCardinality) \quad \blacksquare \\ \left(o(G) = o(H)|G:H|\right) \wedge \left(Divides[o(H),o(G)]\right) \\ = o(H)|G:H| + o(H)|G:H| + o(H)|G:H| + o(H)|G:H| \\ = o(H)|G:H| + o(H)|G:H| + o(H)|G:H| + o(H)|G:H| \\ = o(H)|G:H| + o(H)|G:H| + o(H)|G:H| + o(H)|G:H| + o(H)|G:H| \\ = o(H)|G:H| + o(H)|G:H| +$$

$$OrderElDivOrder := \forall_{g,G} \Big((Order[n,G,*]) \land (OrderEl[m,g,G,*]) \Big) \implies \Big((Divides[m,n]) \land (g^n = e) \Big) \Big)$$

- (1) $CyclicSubgroup[\langle g \rangle, g, G, *]$ $Order[\langle g \rangle] = m$
- (2) $(LagrangeTheorem) \land (CyclicSubgroup)$ $\blacksquare Divides[Order[< g >], Order[G]]$ $\blacksquare Divides[m, n]$
- $\overline{(3) \quad g^n = g^{mk} = e^k = e}$

Any prime ordered cyclic group has no proper non-trivial subgroups and any non-identity element is a generator.

- (1) LagrangeTheorem Subgroups must have the order 1 or p Subgroups are trivial
- (2) CyclicSubgroup of a non-identity element is G \[\begin{align*} \text{Non-identity elements generates G} \]

$$\left((Subgroup[H,G,*]) \land \left(Subgroup[K,G,*] \land \left(RelPrime(o(H),o(K) \right) \right) \right) \implies (H \cap K = \{e\})$$

$$(1) \quad (LagrangeTheorem) \land (SubgroupIntersection) \land \Big(RelPrime\big(o(H),o(K)\big)\Big) \quad \blacksquare \ H \cap K = \{e\}$$

Homomorphisms 2.7

$$Homomorphism[\phi, G, *, H, \diamond] := (Function[\phi, G, H]) \land \left(\forall_{a,b \in G} (\phi(a * b) = \phi(a) \diamond \phi(b)) \right)$$

$$Monomorphism[\phi, G, *, H, \diamond] := (Homomorphism[\phi, G, *, H, \diamond]) \land (Inj[\phi, G, H])$$

$$Epimorphism[\phi, G, *, H, \diamond] := (Homomorphism[\phi, G, *, H, \diamond]) \land (Suri[\phi, G, H])$$

$$Epimorphism[\phi,G,*,H,\diamond] := (Homomorphism[\phi,G,*,H,\diamond]) \land (Surj[\phi,G,H])$$

$$Isomorphism[\phi,G,*,H,\diamond] := (Homomorphism[\phi,G,*,H,\diamond]) \land (Bij[\phi,G,H])$$

 $Isomorphic[G,*,H,\diamond] := \exists_{\phi}(Isomorphism[\phi,G,*,H,\diamond]) ** Notation: G \cong H **$

Automorphism $[\phi, G, *] := I$ somorphism $[\phi, G, *, G, *]$

$$IdMapsId := (Homomorphism[\phi, G, *, H, \diamond]) \implies (\phi(e_G) = e_H)$$

$$\overline{(1) \quad \phi(e_G) = \phi(e_G * e_G) = \phi(e_G) \diamond \phi(e_G) \quad \blacksquare \quad \phi(e_G) = \phi(e_G) \diamond \phi(e_G)}$$

2.7. HOMOMORPHISMS

```
(2) \quad e_H = \phi(e_G)^{-1} \diamond \phi(e_G) = \phi(e_G)^{-1} \diamond \left(\phi(e_G) \diamond \phi(e_G)\right) = \phi(e_G) \quad \blacksquare \ e_H = \phi(e_G)
```

 $InvMapsInv := (Homomorphism[\phi, G, *, H, \diamond]) \implies (\phi(g^{-1}) = \phi(g)^{-1})$

$$(1) \quad IdMapsId \quad \blacksquare \ e_H = \phi(e_G) = \phi(g * g^{-1}) = \phi(g) \diamond \phi(g^{-1}) \quad \blacksquare \ e_H = \phi(g) \diamond \phi(g^{-1}) \quad \blacksquare \ \phi(g^{-1}) = \phi(g)^{-1}$$

 $ExpMapsExp := (Homomorphism[\phi, G, *, H, \diamond]) \implies \left(\forall_{n \in \mathbb{N}^+} \left(\phi(g^n) = \phi(g)^n \right) \right)$

$$(1) \quad (n=1) \implies \dots$$

(1.1)
$$\phi(g^n) = \phi(g) = \phi(g)^n \quad \blacksquare \quad \phi(g^n) = \phi(g)^n$$

$$(2) \quad (n=1) \implies \left(\phi(g^n) = \phi(g)^n\right)$$

$$(3) \quad \left(\forall_{m \in \mathbb{N}^+} \left((m \le n) \implies \left(\phi(g^m) = \phi(g)^m \right) \right) \right) \implies \dots$$

$$(3.1) \quad \phi(g^{n+1}) = \phi(g^n * g) = \phi(g)^n \diamond \phi(g) = \phi(g)^{n+1} \quad \blacksquare \phi(g^{n+1}) = \phi(g)^{n+1}$$

$$(4) \quad \left(\forall_{m \in \mathbb{N}^+} \left((m \le n) \implies \left(\phi(g^m) = \phi(g)^m \right) \right) \right) \implies \left(\phi(g^{n+1}) = \phi(g)^{n+1} \right)$$

$$(5) \quad \left((n=1) \implies \left(\phi(g^n) = \phi(g)^n \right) \right) \wedge \left(\left(\forall_{m \in \mathbb{N}^+} \left((m \le n) \implies \left(\phi(g^m) = \phi(g)^m \right) \right) \right) \implies \left(\phi(g^{n+1}) = \phi(g)^{n+1} \right) \right) \dots$$

(6)
$$... \forall_{n \in \mathbb{N}^+} (\phi(g^n) = \phi(g)^n)$$

 $MapElDivOrder := \left((Homomorphism[\phi, G, *, H, \diamond]) \land (Order[n, G, *]) \right) \implies \left(\forall_{g \in G} \left((OrderEl[m, \phi(g), H, \diamond]) \implies (Divides[m, n]) \right) \right)$

- $(1) \quad Order El Div Order \quad \blacksquare g^n = e_G$
- (2) $(IdMapsId) \wedge (ExpMapsExp) \blacksquare e_H = \phi(e_G) = \phi(g^n) = \phi(g)^n \blacksquare \phi(g)^n = e_H$
- (3) $(ExpModOrderCorollary) \land (OrderEl[m, \phi(g), H, \diamond]) \land (\phi(g)^n = e_H)$ \blacksquare Divides[m, n]

 $MapElDivOrderCorollary := \left((Monomorphism[\phi,G,*,H,\diamond]) \land (Order[n,G,*]) \right) \implies \left(\forall_{g \in G} \left((OrderEl[m,\phi(g),H,\diamond]) \implies (m=n) \right) \right)$

- $(1) \quad Inj[\phi, G, H] \quad \blacksquare \quad \forall_{g_1, g_2 \in G} \left(\left(\phi(g_1) = \phi(g_2) \right) \implies (g_1 = g_2) \right)$
- (2) $e_H = \phi(g)^m = \phi(g^m) \mid e_H = \phi(g^m)$
- (3) $e_H = \phi(e_G) = \phi(g^n) \mid \! \mid e_H = \phi(g^n)$

$$(4) \quad \left(\forall_{g_1,g_2 \in G} \left(\left(\phi(g_1) = \phi(g_2) \right) \right) \implies (g_1 = g_2) \right) \right) \wedge \left(e_H = \phi(g^m) \right) \wedge \left(e_H = \phi(g^n) \right) \quad \blacksquare \quad g^m = g^n$$

(5) $\left(OrderEl[m,\phi(g),H,\diamond]\right) \wedge \left(Order[n,G,*]\right) \wedge \left(g^m=g^n\right) \quad \blacksquare \quad m=n$

 $HomoCompHomo := ((Homomorphism[\phi, G, *, H, \diamond]) \land (Homomorphism[\theta, H, \diamond, K, \Box])) \implies (Homomorphism[\theta \circ \phi, G, *, K, \Box])$

- (1) $FuncComp \quad Func[\theta \circ \phi, G, K]$
- $(2) \quad (g_1, g_2 \in G) \implies \dots$
 - $(2.1) \quad (Homomorphism[\phi, G, *, H, \diamond]) \land (Homomorphism[\theta, H, \diamond, K, \square]) \quad \blacksquare \quad \theta \circ \phi(g_1 * g_2) = \theta(\phi(g_1 * g_2)) = \dots$

$$(2.2) \quad \dots \theta \left(\phi(g_1) \diamond \phi(g_2) \right) = \theta \left(\phi(g_1) \right) \square \theta \left(\phi(g_2) \right) = \theta \circ \phi(g_1) \square \theta \circ \phi(g_2) \quad \blacksquare \quad \theta \circ \phi(g_1 * g_2) = \theta \circ \phi(g_1) \square \theta \circ \phi(g_2)$$

$$(3) \quad (g_1,g_2\in G) \implies \left(\theta\circ\phi(g_1\ast g_2)=\theta\circ\phi(g_1) \ \square \ \theta\circ\phi(g_2)\right) \ \blacksquare \ \forall_{g_1,g_2\in G}\left(\theta\circ\phi(g_1\ast g_2)=\theta\circ\phi(g_1) \ \square \ \theta\circ\phi(g_2)\right)$$

$$(4) \quad (Func[\theta \circ \phi, G, K]) \land \left(\forall_{g_1, g_2 \in G} \left(\theta \circ \phi(g_1 * g_2) = \theta \circ \phi(g_1) \bigsqcup \theta \circ \phi(g_2) \right) \right) \quad \blacksquare \quad Homomorphism[\theta \circ \phi, G, *, K, \bigsqcup]$$

 $IsoInvIso := (Isomorphism[\phi, G, *, H, \diamond]) \implies (Isomorphism[\phi^{-1}, H, \diamond, G, *])$

- (1) $Isomorphism[\phi, G, *, H, \diamond] \quad \blacksquare \quad (Homomorphism[\phi, G, *, H, \diamond]) \land (Bij[\phi, G, H])$
- (2) $BijEquiv \ \ \exists_{\phi^{-1}}(Inv[\phi^{-1},\phi,G,H]) \ \ \ \ \ Bij[\phi^{-1},H,G]$
- $(3) (x, y \in H) \implies \dots$

$$(3.1) \quad Homomorphism[\phi,G,*,H,\diamond] \quad \blacksquare \quad \phi\Big(\phi^{-1}(x)*\phi^{-1}(y)\Big) = \phi\Big(\phi^{-1}(x)\Big) \diamond \phi\Big(\phi^{-1}(y)\Big) = x \diamond y$$

$$(3.2) \quad \phi^{-1}(x \diamond y) = \phi^{-1} \left(\phi \left(\phi^{-1}(x) * \phi^{-1}(y) \right) \right) = (\phi^{-1} \diamond \phi) \left(\phi^{-1}(x) * \phi^{-1}(y) \right) = \phi^{-1}(x) * \phi^{-1}(y) \quad \blacksquare \phi^{-1}(x \diamond y) = \phi^{-1}(x) * \phi^{-1}(y)$$

$$(5) \quad (Bij[\phi^{-1},H,G]) \wedge \left(\forall_{x,y \in H} \left(\phi^{-1}(x \diamond y) = \phi^{-1}(x) * \phi^{-1}(y) \right) \right) \quad \blacksquare \quad Isomorphism[\phi^{-1},H,\diamond,G,*]$$

$$KCycleGroupIsomorphic := \begin{pmatrix} \left((CyclicGroup[G,*]) \land (CyclicGroup[H,\diamond]) \land (Order[n,G,*]) \land (Order[n,H,\diamond]) \right) \implies \\ \left(Isomorphic[G,*,H,\diamond]) \end{pmatrix}$$

- $(1) \quad \left(\exists_{g \in G}(Generator[g,G,*])\right) \land \left(\exists_{h \in H}(Generator[h,H,\diamond])\right)$
- (2) $\phi := \{ \langle g^n, h^n \rangle \in (G \times H) \mid n \in \mathbb{Z} \}$
- $\overline{(3) \ (n_1, n_2 \in \mathbb{Z}) \implies \dots}$
- $(3.1) \quad (ExpModOrder) \wedge (Order[n,G,*]) \wedge (Order[n,H,\diamond]) \quad \blacksquare \quad (g^{n_1} = g^{n_2}) \iff (n_1 \equiv n_2 (mod \ n)) \iff (h^{n_1} = h^{n_2}) \iff \dots$
- $(3.2) \ldots (\phi(g^{n_1}) = \phi(g^{n_2})) \blacksquare (g^{n_1} = g^{n_2}) \iff (\phi(g^{n_1}) = \phi(g^{n_2}))$
- $(4) \quad (n_1, n_2 \in \mathbb{Z}) \implies \left((g^{n_1} = g^{n_2}) \iff \left(\phi(g^{n_1}) = \phi(g^{n_2}) \right) \right) \dots$
- (5) ... $(Func[\phi, G, H]) \wedge (Inj[\phi, G, H]) \wedge (Surj[\phi, G, H]) \blacksquare Bij[\phi, G, H]$
- (6) $(g^n, g^m \in G) \implies \dots$
 - $(6.1) \quad \phi(g^n * g^m) = \phi(g^{n+m}) = h^{n+m} = h^n \diamond h^m = \phi(g^n) \diamond \phi(g^m) \quad \blacksquare \quad \phi(g^n * g^m) = \phi(g^n) \diamond \phi(g^m)$
- $(7) \quad (g^n,g^m\in G) \implies \left(\phi(g^n\ast g^m)=\phi(g^n)\diamond\phi(g^m)\right) \ \blacksquare \ \forall_{g^n,g^m\in G}\left(\phi(g^n\ast g^m)=\phi(g^n)\diamond\phi(g^m)\right)$
- $(8) \quad (Bij[\phi,G,H]) \land \left(\forall_{g^n,g^m \in G} \left(\phi(g^n * g^m) = \phi(g^n) \diamond \phi(g^m) \right) \right) \quad \blacksquare \quad Isomorphism[\phi,G,*,H,\diamond]$
- (9) $\exists_{\phi}(Isomorphism[\phi, G, *, H, \diamond]) \mid Isomorphic[G, *, H, \diamond]$

2.8 Kernel and Image Homomorphisms

$$Kernel[ker_{\phi}, \phi, G, *, H, \diamond] := (Homomorphism[\phi, G, *, H, \diamond]) \land \left(ker_{\phi} = \{g \in G \mid \phi(g) = e_H\}\right)$$

$$Image[im_{\phi}, \phi, G, *, H, \diamond] := (Homomorphism[\phi, G, *, H, \diamond]) \land \left(im_{\phi} = \{\phi(g) \in H \mid g \in G\}\right)$$

 $KernelSubgroupDomain := (Homomorphism[\phi, G, *, H, \diamond]) \Longrightarrow (Subgroup[ker_\phi, G, *])$

- $(1) \quad IdMapsId \quad \blacksquare \ \phi(e_G) = e_H \quad \blacksquare \ e_G \in ker_{\phi} \quad \blacksquare \ ker_{\phi} \neq \emptyset$
- (2) $ker_{\phi} \subseteq G \quad \blacksquare \emptyset \neq ker_{\phi} \subseteq G$
- $(3) (a, b \in ker_{\phi}) \implies \dots$
- $(3.1) \quad \left(\phi(a) = e_H\right) \wedge \left(\phi(b) = e_H\right) \quad \blacksquare \quad \phi(a * b) = \phi(a) \wedge \phi(b) = e_H \wedge e_H = e_H \quad \blacksquare \quad a * b \in \ker_{\phi} = e_H \wedge e_H \wedge e_H = e_H \wedge e_H \wedge e_H = e_H \wedge e_H$
- $(4) \quad (a,b \in ker_{\phi}) \implies (a*b \in ker_{\phi}) \quad \blacksquare \quad \forall_{a,b \in ker_{\phi}} (a*b \in ker_{\phi})$
- (5) $(a \in ker_{\phi}) \implies \dots$
 - (5.1) $\phi(a) = e_H$
- $(6) \quad (a \in ker_{\phi}) \implies (a^{-1} \in ker_{\phi}) \quad \blacksquare \quad \forall_{a \in ker_{\phi}} (a^{-1} \in ker_{\phi})$
- $(7) \quad (Subgroup Equiv) \wedge (\emptyset \neq ker_{\phi} \subseteq G) \wedge \left(\forall_{a,b \in ker_{\phi}} (a*b \in ker_{\phi}) \right) \wedge \left(\forall_{a \in ker_{\phi}} (a^{-1} \in ker_{\phi}) \right) \quad \blacksquare \quad Subgroup [ker_{\phi}, G, *]$

 $ImageSubgroupCodomain := (Homomorphism[\phi, G, *, H, \diamond]) \implies (Subgroup[im_\phi, H, \diamond])$

- $(1) \quad (Id \, M \, aps \, Id) \wedge (e_G \in G) \quad \blacksquare \quad \phi(e_G) = e_H \in H \quad \blacksquare \quad e_H \in im_\phi \quad \blacksquare \quad \emptyset \neq im_\phi$
- $(2) \quad im_{\phi} \subseteq H \quad \blacksquare \emptyset \neq im_{\phi} \subseteq H$
- (3) $(a, b \in im_{\phi}) \implies \dots$
- $(3.1) \quad \left(\exists_{g_a \in G} \left(a = \phi(g_a) \right) \right) \land \left(\exists_{g_b \in G} \left(b = \phi(g_b) \right) \right)$
- $(3.2) \quad (g_a * g_b \in G) \land (\phi(g_a * g_b) = \phi(g_a) * \phi(g_b) = a * b)$

```
(3.3) \quad \exists_{g \in G} \left( a * b = \phi(g) \right) \quad \blacksquare \quad a * b \in im_{\phi}
```

$$(4) \quad (a,b\in im_{\phi}) \implies (a*b\in im_{\phi}) \quad \blacksquare \ \forall_{a,b\in im_{\phi}}(a*b\in im_{\phi})$$

$$(5) \quad (a \in im_{\phi}) \implies \dots$$

$$(5.1) \quad \exists_{g_a \in G} \left(a = \phi(g_a) \right)$$

(5.2)
$$(g_a^{-1} \in G) \wedge (InvMapsInv) \quad \blacksquare \phi(g_a^{-1}) = \phi(g_a)^{-1} = a^{-1}$$

(5.3)
$$\exists_{g \in G} \left(a^{-1} = \phi(g) \right) \blacksquare a^{-1} \in im_{\phi}$$

$$\overline{(6) \ (a \in im_{\phi}) \implies (a^{-1} \in im_{\phi}) \ \blacksquare \ \forall_{a \in im_{\phi}} (a^{-1} \in im_{\phi})}$$

$$(7) \quad (Subgroup Equiv) \wedge (\emptyset \neq im_{\phi} \subseteq H) \wedge \left(\forall_{a,b \in im_{\phi}} (a * b \in im_{\phi}) \right) \wedge \left(\forall_{a \in im_{\phi}} (a^{-1} \in im_{\phi}) \right) \quad \blacksquare \quad Subgroup [im_{\phi}, H, \diamond]$$

 $ImageCyclicIsCyclic := \big((Homomorphism[\phi, G, *, H, \diamond]) \land (CyclicGroup[G, *]) \big) \implies (CyclicGroup[im_{\phi}, \diamond])$

$$(1) \quad CyclicGroup[G,*] \quad \blacksquare \quad \exists_{r \in G}(Generator[r,G,*]) \quad \blacksquare \quad G = \langle r \rangle = \{r^n \mid n \in \mathbb{Z}\}$$

(2)
$$ExpMapsExp \ \blacksquare \ im_{\phi} = \{\phi(g)|g \in G\} = \{\phi(r^n)|n \in \mathbb{Z}\} = \{\phi(r)^n|n \in \mathbb{Z}\} = \langle \phi(r) \rangle$$

$$(3) \quad Generator[\phi(r), im_{\phi}, \diamond] \quad \blacksquare \quad \exists_{s \in im_{\phi}} (Generator[s, im_{\phi}, \diamond]) \quad \blacksquare \quad CyclicGroup[im_{\phi}, \diamond]$$

 $HomoInjEquiv := (Homomorphism[\phi, G, *, H, \diamond]) \implies \Big((Inj[\phi, G, H]) \iff (ker_{\phi} = \{e_G\}) \Big)$

(1)
$$(Inj[\phi, G, H]) \implies \dots$$

$$(1.1) \quad Id \, Maps Id \quad \blacksquare \phi(e_G) = e_H \quad \blacksquare e_G \in ker_\phi \quad \blacksquare \{e_G\} \subseteq ker_\phi$$

$$(1.2) \quad (g \in ker_{\phi}) \implies \dots$$

$$(1.2.1) \quad (g \in ker_{\phi}) \land (IdMapsId) \quad \blacksquare \phi(g) = e_H = \phi(e_G)$$

$$(1.2.2) \quad (Inj[\phi, G, H]) \land (\phi(g) = \phi(e_G)) \quad \blacksquare g = e_G \quad \blacksquare g \in \{e_G\}$$

$$(1.3) \quad (g \in ker_{\phi}) \implies (g \in \{e_G\}) \quad \blacksquare \quad ker_{\phi} \subseteq \{e_G\}$$

$$(1.4) \quad (\{e_G\} \subseteq ker_\phi) \land (ker_\phi \subseteq \{e_G\}) \quad \blacksquare \ ker_\phi = \{e_G\}$$

(2)
$$(Inj[\phi, G, H]) \implies (ker_{\phi} = \{e_G\})$$

$$\overline{(3) \ (ker_{\phi} = \{e_G\}) \implies \dots}$$

$$(3.1) \quad \left((g_1, g_2 \in G) \land \left(\phi(g_1) = \phi(g_2) \right) \right) \implies \dots$$

$$(3.1.1) \quad InvMapsInv \quad \blacksquare \quad e_H = \phi(g_1) \diamond \phi(g_2)^{-1} = \phi(g_1) \diamond \phi(g_2^{-1}) = \phi(g_1 * g_2^{-1}) \quad \blacksquare \quad e_H = \phi(g_1 * g_2^{-1}) \quad \blacksquare \quad g_1 * g_2^{-1} \in ker_{\phi}$$

$$(3.1.2) \quad (ker_{\phi} = \{e_G\}) \land (g_1 * g_2^{-1} \in ker_{\phi}) \quad \blacksquare g_1 * g_2^{-1} = e_G \quad \blacksquare g_1 = g_2$$

$$(3.2) \quad \left((g_1, g_2 \in G) \land \left(\phi(g_1) = \phi(g_2) \right) \right) \implies (g_1 = g_2) \quad \blacksquare \quad \forall_{g_1, g_2 \in G} \left(\left(\phi(g_1) = \phi(g_2) \right) \implies (g_1 = g_2) \right) \quad \blacksquare \quad Inj[\phi, G, H]$$

$$(4) \quad (ker_{\phi} = \{e_G\}) \implies (Inj[\phi, G, H])$$

$$(5) \quad \left((Inj[\phi,G,H]) \implies (ker_{\phi} = \{e_G\})\right) \land \left((ker_{\phi} = \{e_G\}) \implies (Inj[\phi,G,H])\right)$$

(6)
$$(Inj[\phi, G, H]) \iff (ker_{\phi} = \{e_G\})$$

 $KerMultiplicityMap := \left((Homomorphism[\phi, G, *, H, \diamond]) \land (g \in G) \right) \implies \left((ker_{\phi})g = \{x \in G \mid \phi(x) = \phi(g)\} \right)$

$$(1) \quad \left(x \in (ker_{\phi})g \right) \implies \dots$$

$$(1.1) \quad \exists_{K_x \in ker_{\phi}}(x = K_x * g) \quad \blacksquare \quad \phi(x) = \phi(K_x * g) = \phi(K_x) \diamond \phi(g) = e_H \diamond \phi(g) = \phi(g) \quad \blacksquare \quad \phi(x) = \phi(g)$$

$$(2) \quad \left(x \in (ker_{\phi})g\right) \implies \left(\phi(x) = \phi(g)\right) \quad \blacksquare \quad (ker_{\phi})g \subseteq \{x \in G \mid \phi(x) = \phi(g)\}$$

(3)
$$\left((x \in G) \land \left(\phi(x) = \phi(g) \right) \right) \implies \dots$$

$$(3.1) \quad e_H = \phi(x) \diamond \phi(g)^{-1} = \phi(x) \diamond \phi(g^{-1}) = \phi(x * g^{-1}) \quad \blacksquare \quad x * g^{-1} \in ker_\phi \quad \blacksquare \quad x \in (ker_\phi)g$$

$$(4) \quad \left((x \in G) \land \left(\phi(x) = \phi(g) \right) \right) \implies \left(x \in (ker_{\phi})g \right) \ \blacksquare \ \left\{ x \in G \mid \phi(x) = \phi(g) \right\} \subseteq (ker_{\phi})g$$

$$(5) \quad \left((ker_{\phi})g \subseteq \{x \in G \mid \phi(x) = \phi(g)\} \right) \land \left(\{x \in G \mid \phi(x) = \phi(g)\} \subseteq (ker_{\phi})g \right) \quad \blacksquare \quad (ker_{\phi})g = \{x \in G \mid \phi(x) = \phi(g)\}$$

CHAPTER 2. ADSTRACT ALGEDRA

 $KerImPartitionsG := (Homomorphism[\phi, G, *, H, \diamond]) \implies (|G| = |ker_{\phi}||im_{\phi}|)$

- (1) $\forall_{g \in G} ([g] = \{x \in G \mid \phi(x) = \phi(g)\})$
- (2) $\mathcal{G} = \{[g] | g \in G\} \mid (Partition[\mathcal{G}, G]) \land (|\mathcal{G}| = |im_{\phi}|)$
- (3) $KerMultiplicityMap \mid \forall g \in G(|[g]| = |ker_{\phi}|)$
- $(4) \quad \overline{P}artition[\mathcal{G}, G] \quad \blacksquare \quad |G| = |\mathcal{G}||ker_{\phi}| = |im_{\phi}||ker_{\phi}|$

 $ImDivDomCod := (Homomorphism[\phi,G,*,H,\diamond]) \implies \Big((Divides[|im_{\phi}|,|G|]) \land (Divides[|im_{\phi}|,|H|])\Big)$

- $(1) \quad KerImPartitionsG \quad \blacksquare \quad \blacksquare \ |G| = |ker_{\phi}||im_{\phi}| \quad \blacksquare \ Divides[|im_{\phi}|, |G|]$
- (2) $(LagrangeTheorem) \wedge (ImageSubgroupCodomain) \mid |H| = |im_{\phi}||H : im_{\phi}||Divides[|im_{\phi}|, |H|]$

2.9 Conjugacy

Conjugate[\sim^* , a, b, G, *] := (Group[G, *]) \land ($a, b \in G$) \land ($\exists_{c \in G} (b = c^{-1} * a * c)$)

 $ConjugateEqRel := EqRel[\sim^*, G]$

- (1) $(a, b, c \in G) \implies \dots$

 - $(1.2) \quad (a \sim^* b) \implies (b = x_b^{-1} * a * x_b) \implies (x_b * b * x_b^{-1} = a) \implies (b \sim^* a)$
 - $(1.3) \ \left((a \sim^* b) \land (b \sim^* c) \right) \implies \left((b = x_b^{-1} * a * x_b) \land (c = x_c^{-1} * b * x_c) \right) \implies \dots$
 - $(1.4) \quad \dots \left(c = x_c^{-1} * x_b^{-1} * a * x_b * x_c = (x_b * x_c)^{-1} * a * (x_b * x_c)\right) \blacksquare a \sim^* c$
- (2) $EqRel[\sim^*, G]$

 $ConjugacyClass[C_g,g,G,*] := (Group[G,*]) \land (g \in G) \land (EqClass[C_g,g,\sim^*,G])$

 $ConjugacyClassEquiv := (ConjugacyClass[C_g,g,G,*]) \iff \left(\forall_{x \in G} \left((x \in C_g) \iff \left(\exists_{c \in G} (x = c^{-1}gc) \right) \right) \right)$

(1) By ConjugateEqRel and the definitions of ConjugacyClass, Conjugate

 $Conjugacy Center := (g \in G) \implies \Big((C_g = \{g\}) \iff \Big(g \in Z(G)\Big) \Big)$

- $(1) (C_g = \{g\}) \implies \dots$
- (1.1) $(x \in G) \implies \dots$
 - $(1.1.1) \quad (ConjugacyClass[C_g,g,G,*]) \land (ConjugacyClassEquiv) \land (x \in G) \quad \blacksquare \quad x^{-1}gx \in C_g$
 - $(1.1.2) \quad (C_g = \{g\}) \land (x^{-1}gx \in C_g) \quad \blacksquare \quad x^{-1}gx = g \quad \blacksquare \quad gx = xg$
- $(1.2) \quad (x \in G) \implies (gx = xg) \quad \blacksquare \quad \forall_{x \in G} (gx = xg) \quad \blacksquare \quad g \in Z(G)$
- $(2) \quad (C_g = \{g\}) \implies (g \in Z(G))$
- $(3) \quad (g \in Z(G)) \implies \dots$
- $(3.1) \quad \left(g \in Z(G)\right) \land \left(Group[G,*]\right) \quad \blacksquare \left(\forall_{c \in G}(gc = cg)\right) \land \left(\exists_{e}(e \in G)\right)$
- $(3.2) \quad (x \in G) \implies \dots$
 - $(3.2.1) \quad \left(\forall_{c \in G} (gc = cg) \right) \wedge \left(\exists_{e} (e \in G) \right) \quad \blacksquare \quad \left(\exists_{c \in G} (x = c^{-1}gc) \right) \iff \left(\exists_{c \in G} (x = c^{-1}gc = c^{-1}cg = g) \right) \iff (x = g) \iff (x \in \{g\})$
- $(3.3) \quad (x \in G) \implies \left(\left(\exists_{c \in G} (x = c^{-1}gc) \right) \iff (x \in \{g\}) \right) \quad \blacksquare \quad \forall_{x \in G} \left((x \in \{g\}) \iff \left(\exists_{c \in G} (x = c^{-1}gc) \right) \right)$
- $(3.4) \quad (ConjugacyClassEquiv) \land \left(\forall_{x \in G} \left((x \in \{g\}) \iff \left(\exists_{c \in G} (x = c^{-1}gc) \right) \right) \right) \blacksquare C_g = \{g\}$
- $(4) \quad g \in Z(G) \implies (C_g = \{g\})$
- $\overline{(5) \ (C_{\sigma} = \{g\}) \iff (g \in Z(G))}$

2.9. CONJUGACI

```
ConjugacyAbelian := \left( \forall_{g \in G} (C_g = \{g\}) \right) \iff (AbelianGroup[G, *])
```

Conjugate $Exp := \forall_{n \in \mathbb{N}^+} \left((x^{-1}gx)^n = x^{-1}g^nx \right)$

 $\overline{(1)} \quad \overline{(n=1)} \implies \dots$

$$(1.1) \quad (x^{-1}gx)^n = (x^{-1}gx)^1 = x^{-1}g^1x = x^{-1}g^nx \quad \blacksquare (x^{-1}gx)^n = x^{-1}g^nx$$

(2)
$$(n = 1) \implies ((x^{-1}gx)^n = x^{-1}g^nx)$$

$$(3) \left((n > 1) \land \left(\forall_{m \in \mathbb{N}^+} \left((m \le n) \implies \left((x^{-1} g x)^m = x^{-1} g^m x \right) \right) \right) \right) \Longrightarrow \dots$$

$$(3.1) \quad (x^{-1}gx)^{n+1} = (x^{-1}gx)^n * (x^{-1}gx) = (x^{-1}g^nx) * (x^{-1}gx) = x^{-1}g^{n+1}x \quad \blacksquare (x^{-1}gx)^{n+1} = x^{-1}g^{n+1}x$$

$$(4) \left((n > 1) \land \left(\forall_{m \in \mathbb{N}^+} \left((m \le n) \implies \left((x^{-1}gx)^m = x^{-1}g^mx \right) \right) \right) \right) \Longrightarrow \left((x^{-1}gx)^{n+1} = x^{-1}g^{n+1}x \right)$$

(5)
$$\forall_{n \in \mathbb{N}^+} \left((x^{-1}gx)^n = x^{-1}g^nx \right)$$

 $ConjugateOrder := \left((g_1, g_2 \in G) \land (g_1 \sim^* g_2) \right) \implies \left(o(g_1) = o(g_2) \right)$

- (1) $\exists_{c \in G} (g_2 = c^{-1}g_1c)$
- (3) $ExpModOrderCorollary \ \square \ Divides[o(g_2), o(g_1)]$
- $(4) \quad Conjugate Exp \quad \blacksquare \ e = g_1^{o(g_1)} = (cg_2c^{-1})^{o(g_1)} = cg_2^{o(g_1)}c^{-1} \quad \blacksquare \ e = cg_2^{o(g_1)}c^{-1} \quad \blacksquare \ g_2^{o(g_1)} = e$
- (5) $ExpModOrderCorollary \ \square \ Divides[o(g_1), o(g_2)]$
- $(6) \quad \left(Divides[o(g_2),o(g_1)]\right) \land \left(Divides[o(g_1),o(g_2)]\right) \land (g_1,g_2 \in \mathbb{N}^+) \quad \blacksquare \ o(g_1) = o(g_2)$
- $(8) \quad \exists_{c \in G} (g_2 = c^{-1}g_1c) \quad \blacksquare \ e = g_2{}^{o(g_2)} = (c^{-1}g_1c){}^{o(g_2)} = c^{-1}g_1{}^{o(g_2)}c \quad \blacksquare \ e = c^{-1}g_1{}^{o(g_2)}c \quad \blacksquare \ g_1{}^{o(g_2)} = e$
- $(9) \quad (m \in \mathbb{Z}^+) \land \left(m < o(g_2)\right) \implies \dots$

$$(9.1) \quad e \neq g_2{}^m = (c^{-1}g_1c)^m = c^{-1}g_1{}^mc \quad \blacksquare \quad e \neq c^{-1}g_1{}^mc \quad \blacksquare \quad e = c * e * c^{-1} \neq g_1{}^m \quad \blacksquare \quad g_1{}^m \neq e$$

$$(10) \quad \left(m < o(g_2)\right) \implies \left(e \neq g_1^m\right) \ \blacksquare \ \forall_{m \in \mathbb{Z}^+} \left(\left(m < o(g_2)\right) \implies \left(g_1^m \neq e\right)\right)$$

$$(11) \quad \left(g_1^{o(g_2)} = e\right) \land \left(\forall_{m \in \mathbb{Z}^+} \left(\left(m < o(g_2)\right) \implies (g_1^m \neq e)\right)\right) \quad \blacksquare \quad o(g_1) = o(g_2)$$

 $\underbrace{CentralizerConjugateCosets := \forall_{c,g,h \in G} \left((h = c^{-1}gc) \implies \left(C(h) = c^{-1}C(g)c \right) \right)}$

$$(1) \quad \left(c^{-1}ac \in c^{-1}C(g)c\right) \implies \dots$$

 $(1.1) \quad a \in C(g) \quad \blacksquare \quad ag = ga$

$$(1.2) \quad (c^{-1}ac)h = (c^{-1}ac)(c^{-1}gc) = c^{-1}agc = c^{-1}gac = c^{-1}g(cc^{-1})ac = h(c^{-1}ac) \quad \blacksquare \quad (c^{-1}ac)h = h(c^{-1}ac) \quad \blacksquare \quad c^{-1}ac \in C(h)$$

$$(2) \quad \left(c^{-1}ac \in c^{-1}C(g)c\right) \implies \left(c^{-1}ac \in C(h)\right) \quad \blacksquare \quad c^{-1}C(g)c \subseteq C(h)$$

- (3) $(a \in C(h)) \implies \dots$
- (3.1) $a \in C(h) \blacksquare ah = ha \blacksquare a(c^{-1}gc) = (c^{-1}gc)a$
- $(3.2) \quad (cac^{-1})g = g(cac^{-1}) \quad \blacksquare \quad cac^{-1} \in C(g) \quad \blacksquare \quad a \in c^{-1}C(g)c$

$$(4) \quad \left(a \in C(h)\right) \implies \left(a \in c^{-1}C(g)c\right) \quad \blacksquare \quad C(h) \subseteq c^{-1}C(g)c$$

$$(5) \quad \left(c^{-1}C(g)c \subseteq C(h)\right) \wedge \left(C(h) \subseteq c^{-1}C(g)c\right) \quad \blacksquare \quad C(h) = c^{-1}C(g)c$$

CHAPTER 2. ADSTRACT ALGEBI

Conjugates Multiplicity: = $(g \in G) \implies (o(G) = o(C(g))|C_g|)$

- $(1) \quad \phi := \{ \langle a^{-1}ga, C(g)a \rangle \in \left(C_g \times G : C(g) \right) \mid a \in G \}$
- (2) $(x, y \in G) \implies \dots$

$$(2.1) \quad (x^{-1}gx = y^{-1}gy) \iff (gx = xy^{-1}gy) \iff \left(g(xy^{-1}) = (xy^{-1})g\right) \iff \dots$$

$$(2.2) \quad \dots \left(xy^{-1} \in C(g)\right) \iff \left(C(g)(xy^{-1}) = C(g)\right) \iff \left(C(g)x = C(g)y\right)$$

(3)
$$(x, y \in G) \implies \left((x^{-1}gx = y^{-1}gy) \iff \left(C(g)x = C(g)y \right) \right) \dots$$

$$(4) \quad \dots \left(Func[\phi, C_g, G: C(g)] \right) \wedge \left(Inj[\phi, C_g, G: C(g)] \right) \wedge \left(Surj[\phi, C_g, G: C(g)] \right) \quad \blacksquare \quad Bij[\phi, C_g, G: C(g)]$$

(5)
$$\exists_{\phi} \Big(Bij[\phi, C_g, G : C(g)] \Big) \quad \blacksquare \quad |C_g| = |G : C(g)|$$

$$(6) \quad (Lagrange Theorem) \wedge (Subgroup Center) \wedge \left(|C_g| = |G:C(g)| \right) \quad \blacksquare \quad o(G) = o\left(C(g)\right) |G:C(g)| \quad \blacksquare \quad o(G) = o\left(C(g)\right) |C_g| = o\left($$

2.10 Normal Subgroups

 $NormalSubgroup[H,G,*] := (Subgroup[H,G,*]) \land \left(\forall_{h \in H} \forall_{g \in G} (g^{-1}hg \in H) \right)$

Center Normal Subgroup := Normal Subgroup[Z(G), G, *]

- (1) $SubgroupCenter \ \square \ Subgroup[Z(G), G, *]$
- (2) $(h \in Z(G)) \land (g \in G) \implies \dots$

(2.1)
$$hg = gh \ \blacksquare \ g^{-1}hg = h \in Z(G) \ \blacksquare \ g^{-1}hg \in Z(G)$$

$$(3) \quad \left(\left(h \in Z(G)\right) \land (g \in G)\right) \implies \left(g^{-1}hg \in Z(G)\right) \ \blacksquare \ \forall_{h \in Z(G)} \forall_{g \in G} \left(g^{-1}hg \in Z(G)\right)$$

$$(4) \quad \left(Subgroup[Z(G),G,*]\right) \wedge \left(\forall_{h \in Z(G)} \forall_{g \in G} \left(g^{-1}hg \in Z(G)\right)\right) \quad \blacksquare \quad NormalSubgroup[Z(G),G,*]$$

 $UnionConjugacyClassesNormalSubgroup := (NormalSubgroup[H,G,*]) \implies \left(H = \bigcup_{z \in H} (C_z)\right)$

- (1) $(NormalSubgroup[H, G, *]) \implies ...$
 - $(1.1) \quad Normal Subgroup[H, G, *] \quad \blacksquare \quad \forall_{x \in H} \forall_{g \in G} (g^{-1} x g \in H)$
 - $(1.2) \quad ((x \in H) \land (y \in C_x)) \implies \dots$
 - (1.2.1) $ConjugacyClassEquiv \ \blacksquare \ \exists_{c \in G}(y = c^{-1}xc)$

$$(1.2.2) \quad \left(\forall_{x \in H} \forall_{g \in G} (g^{-1} x g \in H) \right) \land (x \in H) \land (c \in G) \quad \blacksquare \quad y \in H$$

$$(1.3) \ \left((x \in H) \land (y \in C_x) \right) \implies (y \in H) \ \blacksquare \ \forall_{x \in H} (C_x \subseteq H)$$

$$(1.4) \quad \forall_{x \in H} (C_x \subseteq H) \quad \blacksquare \quad \forall_{x \in H} \forall_y (y \in C_x \implies y \in H) \quad \blacksquare \quad \forall_{x \in H} \forall_y (y \notin H \implies y \notin C_x)$$

$$(1.5) \quad (b \in H) \implies \left(b \in C_b \subseteq \bigcup_{z \in H} (C_z)\right) \blacksquare (b \in H) \implies \left(b \in \bigcup_{z \in H} (C_z)\right)$$

$$(1.6) \quad (b \not\in H) \implies \left(\forall_{a \in H} (b \not\in C_a) \right) \implies \left(b \not\in \bigcup_{z \in H} (C_z) \right) \blacksquare (b \not\in H) \implies \left(b \not\in \bigcup_{z \in H} (C_z) \right)$$

$$(1.7) \left((b \in H) \implies \left(b \in \bigcup_{z \in H} (C_z) \right) \right) \wedge \left((b \notin H) \implies \left(b \notin \bigcup_{z \in H} (C_z) \right) \right) \blacksquare (b \in H) \iff \left(b \in \bigcup_{z \in H} (C_z) \right)$$

$$(1.8) \quad \forall_b \left((b \in H) \iff \left(b \in \bigcup_{z \in H} (C_z) \right) \right) \blacksquare H = \bigcup_{z \in H} (C_z)$$

2.11. QUOTIENT GROUPS 21

(2)
$$(NormalSubgroup[H, G, *]) \Longrightarrow \left(H = \bigcup_{z \in H} (C_z)\right)$$

 $NormalSubgroupCosetEquiv := (NormalSubgroup[H, G, *]) \iff (\forall_{g \in G}(gH = Hg))$

- $(1) \quad \textit{CosetCardinality} \quad \blacksquare \quad \forall_{g \in G}(|Hg| = |gH|) \quad \blacksquare \quad \left(\forall_{g \in G} \left((Hg \subseteq gH) \iff (Hg = gH) \right) \right)$
- $(2) \quad \left(\forall_{g \in G} \left((Hg \subseteq gH) \iff (Hg = gH) \right) \right) \quad \blacksquare \quad (NormalSubgroup[H,G,*]) \\ \iff \left(\forall_{h \in H} \forall_{g \in G} (g^{-1}hg \in H) \right) \\ \iff \dots$
- $(3) \quad \dots \left(\forall_{h \in H} \forall_{g \in G} (hg \in gH) \right) \iff \left(\forall_{g \in G} (Hg \subseteq gH) \right) \iff \left(\forall_{g \in G} (Hg = gH) \right)$

 $NormalSubgroupIndexEquiv := (NormalSubgroup[H,G,*]) \iff (IndexSubgroup[2,H,G,*])$

$$(1) \quad Normal Subgroup Coset Equiv \quad \blacksquare \quad (Index Subgroup [2, H, G, *]) \\ \iff \left(\forall_{g \in G} (gH = Hg) \right) \\ \iff (Normal Subgroup [H, G, *]) \\ \iff \left(\forall_{g \in G} (gH = Hg) \right) \\ \iff \left(\forall_{g \in G} (gH =$$

 $KerInduceNormalSubgroup := (Homomorphism[\phi,G,*,H,\diamond]) \implies (NormalSubgroup[ker_{\phi},G,*])$

- (1) Kernel Subgroup Domain \blacksquare Subgroup $[\ker_{\phi}, G, *]$
- $(2) \quad \left((h \in ker_{\phi}) \land (g \in G) \right) \implies \dots$
 - $(2.1) \quad h \in ker_{\phi} \quad \blacksquare \quad \phi(h) = e_H$
 - $(2.2) \quad (Homomorphism[\phi,G,*,H,\diamond]) \wedge (InvMapsInv) \quad \blacksquare \quad \phi(g^{-1}*h*g) = \phi(g^{-1}) \diamond \phi(h) \diamond \phi(g) = \phi(g)^{-1} \diamond e_H \diamond \phi(g) = e_H \diamond \phi(g)$
 - (2.3) $\phi(g^{-1} * h * g) = e_H \quad \square \quad g^{-1}hg \in ker_\phi$
- $(3) \quad \left((h \in ker_{\phi}) \land (g \in G) \right) \implies (g^{-1}hg \in ker_{\phi}) \quad \blacksquare \quad \forall_{h \in ker_{\phi}} \forall_{g \in G} (g^{-1}hg \in ker_{\phi})$
- $(4) \quad (Subgroup[ker_{\phi},G,*]) \wedge \left(\forall_{h \in ker_{\phi}} \forall_{g \in G}(g^{-1}hg \in ker_{\phi})\right) \quad \blacksquare \quad NormalSubgroup[ker_{\phi},G,*]$

2.11 Quotient Groups

Quotient $Set[G/H, H, G, *] := (Subgroup[H, G, *]) \land (G/H = \{Hg \mid g \in G\})$

 $\overline{CosetMul[\bar{*},H,G,*]} := (Subgroup[H,G,*]) \land \left(\forall_{Hx,Hy \in G/H} (Hx \,\bar{*}\, Hy = \{h_1xh_2y \mid h_1,h_2 \in H\}) \right)$

 $SubsetMul[\bar{\times},G,*] := (Group[G,*]) \land \left(\forall_{A,B \subseteq G} \left(A \bar{\times} B = \{ a*b \mid (a \in A) \land (b \in B) \} \right) \right)$

$$QuotientGroupLemma := \left((NormalSubgroup[H,G,*]) \land (x,y,z \in G) \right) \implies \left(\left(\exists_{h_1,h_2 \in H} (z = h_1 x h_2 y) \right) \iff \left(\exists_{h_3 \in H} (z = h_3 x y) \right) \right)$$

- $(1) \quad \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \implies \dots$
- (1.1) $(Group[G, *]) \land (x \in G) \quad x^{-1} \in G$
- $(1.2) \quad (Normal \, Subgroup[H,G,*]) \wedge (x^{-1} \in G) \wedge (h_2 \in H) \quad \blacksquare (x^{-1})^{-1}h_2x^{-1} = xh_2x^{-1} \in H$
- (1.3) $(Group[H,*]) \land (h_1, xh_2x^{-1} \in H) \mid h_1xh_2x^{-1} \in H$
- $(1.4) \quad (h_1 x h_2 x^{-1})(xy) = h_1 x h_2 y = z \quad \blacksquare \quad (h_1 x h_2 x^{-1})(xy) = z$
- $(1.5) \quad (h_1 x h_2 x^{-1} \in H) \land \left((h_1 x h_2 x^{-1})(x y) = z \right) \quad \blacksquare \quad \exists_{h_3 \in H} (z = h_3 x y)$
- $(2) \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \implies \left(\exists_{h_3 \in H} (z = h_3 x y) \right)$
- $(3) \left(\exists_{h_3 \in H} (z = h_3 x y) \right) \implies \dots$
 - (3.1) $(Normal Subgroup[H, G, *]) \land (x \in G) \land (h_3 \in H) \mid x^{-1}h_3x \in H$
 - (3.2) $Group[H, *] \quad e \in H$
 - (3.3) $(e)x(x^{-1}h_3x)y = h_3xy = z$ $\blacksquare (e)x(x^{-1}h_3x)y = z$
- $(3.4) \quad (x^{-1}h_3x, e \in H) \land \left((e)x(x^{-1}h_3x)y = h_3xy = z \right) \ \blacksquare \ \exists_{h_1, h_2 \in H} (z = h_1xh_2y)$
- $(4) \quad \left(\exists_{h_3 \in H} (z = h_3 x y)\right) \implies \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y)\right)$

$$(5) \quad \left(\left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \implies \left(\exists_{h_3 \in H} (z = h_3 x y) \right) \right) \land \left(\left(\exists_{h_3 \in H} (z = h_3 x y) \right) \implies \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z = h_1 x h_2 y) \right) \Rightarrow \left(\exists_{h_1, h_2 \in H} (z$$

(6)
$$\left(\exists_{h_1,h_2\in H}(z=h_1xh_2y)\right) \iff \left(\exists_{h_3\in H}(z=h_3xy)\right)$$

$$QuotientGroupThm := \begin{pmatrix} \left((NormalSubgroup[H,G,*]) \land (QuotientSet[G/H,H,G,*]) \land (CosetMul[\bar{*},x,y,H,G,*]) \right) \Longrightarrow \\ (Group[G/H,\bar{*}]) \end{pmatrix}$$

 $(1) (Hx, Hy \in G/H) \implies \dots$

$$(1.1) \quad (Normal Subgroup[H,G,*]) \wedge (Quotient Group Lemma) \quad \blacksquare \quad \forall_{x,y,z \in G} \left(\left(\exists_{h_1,h_2 \in H} (z = h_1 x h_2 y) \right) \iff \left(\exists_{h_3 \in H} (z = h_3 x y) \right) \right)$$

$$(1.2) \quad (z \in Hx \bar{*}Hy) \iff \left(\exists_{h_1,h_2 \in H}(z = h_1xh_2y)\right) \iff \left(\exists_{h_3 \in H}(z = h_3xy)\right) \iff (z \in Hxy) \quad \blacksquare \quad Hx \bar{*}Hy = Hxy$$

- $(1.3) \quad (Group[G,*]) \land (x,y \in G) \quad \blacksquare \quad xy \in G \quad \blacksquare \quad Hxy \in G/H$
- (1.4) $(Hx \bar{*} Hy = Hxy) \land (Hxy \in G/H) \quad \blacksquare \exists !_{Hxy \in G/H} (Hx \bar{*} Hy = Hxy)$

$$(2) \quad (Hx, Hy \in G/H) \implies \left(\exists !_{Hxy \in G/H} (Hx \bar{*} Hy = Hxy)\right) \quad \blacksquare \quad Func[\bar{*}, G/H, G/H]$$

 $\overline{(3)} (Hx, Hy, Hz \in G/H) \implies \dots$

$$(3.1) \quad (Hx \bar{*} Hy) \bar{*} Hz = Hxy \bar{*} Hz = Hxyz = Hx \bar{*} Hyz = Hx \bar{*} (Hy \bar{*} Hz) \quad \blacksquare (Hx \bar{*} Hy) \bar{*} Hz = Hx \bar{*} (Hy \bar{*} Hz)$$

$$(4) \quad (Hx, Hy, Hz \in G/H) \implies \left((Hx \mathbin{\bar{*}} Hy) \mathbin{\bar{*}} Hz = Hx \mathbin{\bar{*}} (Hy \mathbin{\bar{*}} Hz) \right) \quad \blacksquare \quad \forall_{a,b,c \in G/H} \left((a \mathbin{\bar{*}} b) \mathbin{\bar{*}} c = a \mathbin{\bar{*}} (b \mathbin{\bar{*}} c) \right)$$

$$(5) \quad (He \in G/H) \land \left(\forall_{Hx \in G/H} (Hx \mathbin{\bar{*}} He = Hxe = Hx = Hex = He \mathbin{\bar{*}} Hx) \right) \quad \blacksquare \quad \exists_{e \in G/H} \forall_{a \in G/H} (a \mathbin{\bar{*}} e = a = e \mathbin{\bar{*}} a)$$

 $\overline{(6) \ (Hx \in G/H) \implies \dots}$

(6.1)
$$x \in G \mid x^{-1} \in G \mid Hx^{-1} \in G/H$$

(6.2)
$$Hx \bar{*} Hx^{-1} = Hxx^{-1} = He = Hx^{-1}x = Hx^{-1} \bar{*} Hx$$
 $\blacksquare Hx \bar{*} Hx^{-1} = He = Hx^{-1} \bar{*} Hx$

$$(6.3) \quad (Hx^{-1} \in G/H) \land (Hx \bar{*} Hx^{-1} = He = Hx^{-1} \bar{*} Hx) \quad \blacksquare \ \exists_{Hx^{-1} \in G/H} (Hx \bar{*} Hx^{-1} = He = Hx^{-1} \bar{*} Hx)$$

$$(7) \quad (Hx \in G/H) \implies \left(\exists_{Hx^{-1} \in G/H} (Hx \mathbin{\bar{*}} Hx^{-1} = He = Hx^{-1} \mathbin{\bar{*}} Hx) \right) \ \blacksquare \ \forall_{a \in G/H} \exists_{a^{-1} \in G/H} (a \mathbin{\bar{*}} a^{-1} = e = a^{-1} \mathbin{\bar{*}} a)$$

$$(8) \quad (Func[\bar{*},G/H,G/H]) \wedge \left(\forall_{a,b,c \in G/H} \left((a\,\bar{*}\,b)\,\bar{*}\,c = a\,\bar{*}\,(b\,\bar{*}\,c) \right) \right) \wedge \left(\exists_{e \in G/H} \forall_{a \in G/H} (a\,\bar{*}\,e = a = e\,\bar{*}\,a) \right) \wedge \ldots$$

(9)
$$\ldots \left(\forall_{a \in G/H} \exists_{a^{-1} \in G/H} (a \stackrel{?}{*} a^{-1} = e = a^{-1} \stackrel{?}{*} a) \right) \blacksquare Group[G/H, \stackrel{?}{*}]$$

$$Natural\,M\,ap[\bar{\phi},H,G,*] := \left(\bar{\phi} = \{\langle g,Hg \rangle \in (G,G/H) \mid g \in G\}\right) \land (N\,ormal\,Subgroup[H,G,*])$$

 $Natural Map Homo := (Natural Map[\bar{\phi}, H, G, *]) \implies (Homomorphism[\bar{\phi}, G, *, G/H, \bar{*}])$

- (1) Natural Map $[\bar{\phi}, H, G, *] \mid Func[\bar{\phi}, G, *, G/H, \bar{*}]$
- $(2) \quad (x, y \in G) \implies \dots$

$$(2.1) \quad \bar{\phi}(x*y) = Hxy = Hx \,\bar{*}\, Hy = \bar{\phi}(x) \,\bar{*}\, \bar{\phi}(y) \quad \blacksquare \ \bar{\phi}(x*y) = \bar{\phi}(x) \,\bar{*}\, \bar{\phi}(y)$$

$$(3) \quad (x, y \in G) \implies \left(\bar{\phi}(x * y) = \bar{\phi}(x) \bar{*} \bar{\phi}(y)\right) \quad \blacksquare \quad \forall_{x, y \in G} \left(\bar{\phi}(x) \bar{*} \bar{\phi}(y)\right)$$

$$(4) \quad (Func[\bar{\phi},G,*,G/H,\bar{*}]) \wedge \left(\forall_{x,y \in G} \left(\bar{\phi}(x)\,\bar{*}\,\bar{\phi}(y)\right)\right) \quad \blacksquare \quad Homomorphism[\bar{\phi},G,*,G/H,\bar{*}]$$

 $Natural MapKerH := (Natural Map[\bar{\phi}, H, G, *]) \implies (ker_{\bar{\phi}} = H)$

(1)
$$Group[H, *]$$
 $\blacksquare ker_{\bar{\phi}} = \{x \in G \mid \bar{\phi}(x) = He\} = \{x \in G \mid Hx = H\} = H$

$$FirstMap[\psi,\phi,G,*,H,\diamond] := \left(\psi = \{\langle ker_{\phi}g,\phi(g)\rangle \in (G/ker_{\phi}\times im_{\phi}) \mid g \in G\}\right) \wedge (Homomorphism[\phi,G,*,H,\diamond])$$

 $FirstIsoThm := (Homomorphism[\phi, G, *, H, \diamond]) \implies (Isomorphic[G/ker_{\phi}, \bar{*}, im_{\phi}, \diamond])$

- $(1) \quad (KerInduceNormalSubgroup) \land (Homomorphism[\phi,G,*,H,\diamond]) \quad \blacksquare \quad NormalSubgroup[ker_\phi,G,*]$
- $(2) \quad (QuotientGroupThm) \land (NormalSubgroup[ker_{\phi},G,*]) \quad \blacksquare \quad Group[G/ker_{\phi},\bar{*}]$
- (3) $(ImageSubgroupCodomain) \land (Homomorphism[\phi, G, *, H, \diamond]) \blacksquare Group[im_{\phi}, \diamond]$
- $(4) \quad \textit{FirstMap}[\psi, \phi, G, *, H, \diamond] \quad \blacksquare \quad \psi = \{\langle \textit{ker}_{\phi}g, \phi(g) \rangle \in (G/\textit{ker}_{\phi} \times \textit{im}_{\phi}) \mid g \in G\}$
- (5) $(g, h \in G) \implies \dots$

2.11. QUOTIENT GROUPS 25

```
(5.1) \quad (ker_{\phi}g = ker_{\phi}h) \iff (ker_{\phi}gh^{-1} = ker_{\phi}) \iff (gh^{-1} \in ker_{\phi}) \iff \left(\phi(gh^{-1}) = e_{H}\right) \iff \dots
(5.2) \quad \dots \left(e_{H} = \phi(g) \diamond \phi(h^{-1}) = \phi(g) \diamond \phi(h)^{-1}\right) \iff \left(\phi(g) = \phi(h)\right) \blacksquare \left(ker_{\phi}g = ker_{\phi}h\right) \iff \left(\phi(g) = \phi(h)\right)
```

- (6) $(g, h \in G) \implies \left((ker_{\phi}g = ker_{\phi}h) \iff \left(\phi(g) = \phi(h) \right) \right) \dots$
- $(7) \quad \dots (Func[\psi,G/ker_{\phi},im_{\phi}]) \wedge (Inj[\psi,G/ker_{\phi},im_{\phi}]) \wedge (Surj[\psi,G/ker_{\phi},im_{\phi}]) \quad \blacksquare \quad Bij[\psi,G/ker_{\phi},im_{\phi}]$
- $(8) \ (ker_{\phi}g, ker_{\phi}h \in G/ker_{\phi}) \implies \dots$
- $(8.1) \quad \psi(ker_{\phi}g\ \bar{*}\ ker_{\phi}h) = \psi(ker_{\phi}gh) = \phi(g\ *\ h) = \phi(g) \diamond \phi(h) = \psi(ker_{\phi}g) \diamond \psi(ker_{\phi}h) \quad \blacksquare \quad \psi(ker_{\phi}g\ \bar{*}\ ker_{\phi}h) = \psi(ker_{\phi}g) \diamond \psi(ker_{\phi}h) = \psi(ker_{\phi}h)$
- $(9) \quad (ker_{\phi}g, ker_{\phi}h \in G/ker_{\phi}) \implies \left(\psi(ker_{\phi}g \mathbin{\bar{*}} ker_{\phi}h) = \psi(ker_{\phi}g) \diamond \psi(ker_{\phi}h)\right) \ \blacksquare \ \forall_{a,b \in G/ker_{\phi}} \left(\psi(a \mathbin{\bar{*}} b) = \psi(a) \diamond \psi(b)\right)$
- $(10) \quad (Group[G/ker_{\phi}, \bar{*}]) \wedge (Group[im_{\phi}, \diamond]) \wedge (Bij[\psi, G/ker_{\phi}, im_{\phi}]) \wedge \left(\forall_{a,b \in G/ker_{\phi}} (\psi(a \,\bar{*}\, b) = \psi(a) \diamond \psi(b) \right))$
- $(11) \quad Isomorphism[\psi,G/ker_{\phi},\bar{*},im_{\phi},\diamond] \quad \blacksquare \ \exists_{\psi}(Isomorphism[\psi,G/ker_{\phi},\bar{*},im_{\phi},\diamond]) \quad \blacksquare \ Isomorphic[G/ker_{\phi},\bar{*},im_{\phi},\diamond]$

 $Second Iso Lemma := \left((Subgroup[H,G,*]) \land (Normal Subgroup[N,G,*]) \right) \implies \left(\left(Group[(HN)/N,\bar{*}] \right) \land \left(Group[H/(H\cap N),\bar{*}] \right) \right)$

- (1) $(Group[H,*]) \land (Group[N,*]) \blacksquare (e \in H) \land (e \in N)$
- (2) $e = e * e \in HN \quad \square \emptyset \neq HN \subseteq G$
- $(3) \quad (h_1 n_1, h_2 n_2 \in HN) \implies \dots$
 - $(3.1) \quad h_2 \in G \quad \blacksquare \quad (h_2)^{-1} n_1 h_2 \in N$
 - $(3.2) \quad (h_1 n_1)(h_2 n_2) = h_1 \left(h_2 (h_2)^{-1} \right) n_1 h_2 n_2 = (h_1 h_2) \left((h_2)^{-1} n_1 h_2 n_2 \right) \quad \blacksquare \quad (h_1 n_1)(h_2 n_2) = (h_1 h_2) \left((h_2)^{-1} n_1 h_2 n_2 \right) = (h_1 h_2) \left((h_2)^{-1}$
 - (3.3) $(Group[H,*]) \wedge (Group[N,*]) \ \blacksquare (h_1h_2 \in H) \wedge ((h_2)^{-1}n_1h_2n_2 \in N)$
 - $(3.4) \quad (h_1 n_1)(h_2 n_2) = (h_1 h_2)((h_2)^{-1} n_1 h_2 n_2 \in N \quad \blacksquare \quad (h_1 n_1)(h_2 n_2) \in N$
- $(4) \quad (h_1 n_1, h_2 n_2 \in HN) \implies \left((h_1 n_1)(h_2 n_2) \in N \right) \ \blacksquare \ \forall_{h_1 n_1, h_2 n_2 \in HN} \left((h_1 n_1)(h_2 n_2) \in N \right)$
- (5) $(hn \in HN) \implies \dots$
 - (5.1) $(Subgroup[H, G, *]) \land (Group[N, *]) \blacksquare (h^{-1} \in G) \land (n^{-1} \in N)$
 - $(5.2) \quad (Normal Subgroup[N, G, *]) \land (h^{-1} \in G) \land (n^{-1} \in N) \quad \blacksquare \ hn^{-1}h^{-1} \in N$
 - $(5.3) \quad (hn)^{-1} = n^{-1}h^{-1} = (h^{-1}h)n^{-1}h^{-1} = h^{-1}(hn^{-1}h^{-1}) \in HN \quad \blacksquare (hn)^{-1} \in HN$
- (6) $(hn \in HN) \implies ((hn)^{-1} \in HN) \parallel \forall_{hn \in HN} ((hn)^{-1} \in HN)$
- $(7) \quad (\emptyset \neq HN \subseteq G) \wedge \left(\forall_{h_1n_1,h_2n_2 \in HN} \left((h_1n_1)(h_2n_2) \in N \right) \right) \wedge \left(\forall_{hn \in HN} \left((hn)^{-1} \in HN \right) \right) \quad \blacksquare \quad Subgroup[HN,G,*] \quad \blacksquare \quad Group[HN,*]$
- (8) $(N \subseteq HN) \land (Group[N,*]) \blacksquare Subgroup[N,HN,*]$
- $(9) \quad ((n \in N) \land (h_1 n_1 \in HN)) \implies \dots$
- $(9.1) \quad (NormalSubgroup[N, G, *]) \land (h_1 n_1 \in G) \quad \blacksquare \quad (h_1 n_1)^{-1} n(h_1 n_1) \in N$
- $(10) \quad \left((n \in N) \land (h_1 n_1 \in HN) \right) \implies \left((h_1 n_1)^{-1} n(h_1 n_1) \in N \right) \quad \blacksquare \quad \forall_{n \in N} \forall_{h_1 n_1 \in HN} \left((h_1 n_1)^{-1} n(h_1 n_1) \in N \right) = 0$
- $(11) \quad (Subgroup[N, HN, *]) \land \left(\forall_{n \in N} \forall_{h_1 n_1 \in HN} \left((h_1 n_1)^{-1} n(h_1 n_1) \in N \right) \right) \quad \blacksquare \quad Normal Subgroup[N, HN, *]$
- $(12) \quad (SubgroupIntersection) \land (Subgroup[H,G,*]) \land (Subgroup[N,G,*]) \quad \blacksquare \quad Subgroup[H \cap N,G,*] \quad \blacksquare \quad Group[H \cap N,*]$
- (13) $(H \cap N \subseteq H) \land (Group[H \cap N, *])$ $\blacksquare Subgroup[H \cap N, H, *]$
- $(14) \quad ((x \in H \cap N) \land (h \in H)) \implies \dots$
- $(14.1) \quad x \in H \cap N \quad \blacksquare \quad (x \in H) \land (x \in N)$
- (14.2) $(Group[H,*]) \land (h \in H) \mid h^{-1} \in H$
- (14.3) $(Group[H,*]) \land (x,h,h^{-1} \in H) \mid h^{-1}xh \in H$
- $(14.4) \quad (NormalSubgroup[N,G,*]) \land (h \in G) \land (x \in N) \quad \blacksquare \quad h^{-1}xh \in N$
- $(14.5) \quad (h^{-1}xh \in H) \land (h^{-1}xh \in N) \quad \blacksquare \quad h^{-1}xh \in H \cap N$
- $(15) \quad \left((x \in H \cap N) \land (h \in H) \right) \implies (h^{-1}xh \in H \cap N) \quad \blacksquare \quad \forall_{x \in H \cap N} \forall_{h \in H} (h^{-1}xh \in H \cap N)$
- $(16) \quad (Subgroup[H \cap N, H, *]) \land \left(\forall_{x \in H \cap N} \forall_{h \in H} (h^{-1}xh \in H \cap N) \right) \quad \blacksquare \quad NormalSubgroup[H \cap N, H, *]$
- $(17) \quad (Group[HN,*]) \land (NormalSubgroup[N,HN,*]) \land (Group[H,*]) \land (NormalSubgroup[H\cap N,H,*])$

CHAPIER 2. ADSIRACI ALGEDRA

```
(18) QuotientGroupThm  [Group[(HN)/N,\bar{*}]) \wedge (Group[H/(H\cap N),\bar{*}])
```

 $Second\,M\,ap[\phi,H,N,G,*]\,:=\, \Big(\phi=\{\langle h,hN\rangle\in \big(H\times (HN)/N\big)\mid h\in H\}\,\Big) \wedge (Subgroup[H,G,*]) \wedge (N\,ormal\,Subgroup[N,G,*])$

 $Second I so Thm := \big((Subgroup[H,G,*]) \land (Normal Subgroup[N,G,*]) \big) \implies \big(I somorphic[H/(H \cap N),\bar{*},(HN)/N,\bar{*}] \big)$

- (1) Second I so Lemma $[Group[(HN)/N,\bar{*}]] \wedge (Group[H/(H\cap N),\bar{*}])$
- (2) Second Map $[\phi, H, N, G, *] \mid \phi = \{\langle h, hN \rangle \in (H \times (HN)/N) \mid h \in H\}$
- $(3) \quad ((h_1, h_2 \in H) \land (h_1 = h_2)) \implies \dots$
- (3.1) $\phi(h_1) = h_1 N = h_2 N = \phi(h_2) \quad \phi(h_1) = \phi(h_2)$
- $(4) \quad \left((h_1,h_2\in H)\wedge (h_1=h_2)\right) \implies \left(\phi(h_1)=\phi(h_2)\right) \quad \blacksquare \quad \forall_{h_1,h_2\in H} \left((h_1=h_2)\right) \implies \left(\phi(h_1)=\phi(h_2)\right) \quad \blacksquare \quad Func[\phi,H,(HN)/N]$
- $(5) (h_1, h_2 \in H) \implies \dots$
- $(5.1) \quad \phi(h_1 * h_2) = (h_1 * h_2)N = (h_1 N) \bar{*} (h_1 N) = \phi(h_1) \bar{*} \phi(h_2) \quad \blacksquare \phi(h_1 * h_2) = \phi(h_1) \bar{*} \phi(h_2)$
- $(6) \quad (h_1, h_2 \in H) \implies \left(\phi(h_1 * h_2) = \phi(h_1) \bar{*} \phi(h_2)\right) \quad \blacksquare \quad \forall_{h_1, h_2 \in H} \left(\phi(h_1 * h_2) = \phi(h_1) \bar{*} \phi(h_2)\right)$
- $(7) \quad \left(Func[\phi,H,(HN)/N] \right) \wedge \left(\forall_{h_1,h_2 \in H} \left(\phi(h_1 * h_2) = \phi(h_1) \bar{*} \phi(h_2) \right) \right) \quad \blacksquare \quad Homomorphism[\phi,H,*,(HN)/N,\bar{*}]$
- (9) $im_{\phi} = \{\phi(h) \mid h \in H\} = \{hN \mid h \in H\} = (HN)/N \quad \blacksquare \quad im_{\phi} = (HN)/N$
- $(10) \quad (First Map Thm) \land \left(Homomorphism[\phi, H, *, (HN)/N, \bar{*}]\right) \quad \blacksquare \quad Isomorphic[H/ker_{\phi}, \bar{*}, im_{\phi}, \bar{*}]$
- $(11) \quad (ker_{\phi} = H \cap N) \wedge \left(im_{\phi} = (HN)/N\right) \wedge (Isomorphic[H/ker_{\phi}, \bar{*}, im_{\phi}, \bar{*}]) \quad \blacksquare \quad Isomorphic[H/(H \cap N), \bar{*}, (HN)/N, \bar{*}]$

$$Third Map[\phi,K,H,G,*] := \left(\begin{array}{c} \left(\phi = \{\langle gK,gH \rangle \in \left((G/K) \times (G/H)\right) \mid g \in G\} \right) & \land \\ (NormalSubgroup[K,G,*]) \wedge (NormalSubgroup[H,G,*]) \wedge (Subgroup[K,H,*]) & \land \\ (NormalSubgroup[K,G,*]) \wedge (NormalSubgroup[K,G,*]) & \land \\ (NormalSubgroup[K,G,*]) \wedge (NormalSubgroup[K,G,*]) & \land \\ (NormalSubgroup[K,G,*]) & \land \\$$

$$ThirdIsoThm := \begin{pmatrix} \left((NormalSubgroup[K,G,*]) \wedge (NormalSubgroup[H,G,*]) \wedge (Subgroup[K,H,*]) \right) \implies \\ \left(Isomorphic[(G/K)/(H/K),\bar{*},G/H,\bar{*}] \right) \end{pmatrix}$$

- $(1) \quad Third \, Map[\phi,K,H,G,*] \quad \blacksquare \ \phi = \{\langle gK,gH \rangle \in \big((G/K) \times (G/H)\big) \mid g \in G\}$
- $(2) \quad \left(\left(g_1 K, g_2 K \in (G/K) \right) \wedge \left(g_1 K = g_2 K \right) \right) \implies \dots$
 - (2.1) $g_1K = g_2K \quad \blacksquare \quad (g_2)^{-1}g_1K = K \quad \blacksquare \quad (g_2)^{-1}g_1 \in K$
 - $(2.2) \quad (K \subseteq H) \land \left((g_2)^{-1} g_1 \in K \right) \ \blacksquare \ (g_2)^{-1} g_1 \in H$
 - $(2.3) \quad (g_2)^{-1}g_1 \in H \quad \blacksquare \quad g_1H = g_2H \quad \blacksquare \quad \phi(g_1K) = g_1H = g_2H = \phi(g_2K) \quad \blacksquare \quad \phi(g_1K) = \phi(g_2K)$
- $(3) \quad \left(\left(g_1K, g_2K \in (G/K)\right) \land \left(g_1K = g_2K\right)\right) \implies \left(\phi(g_1K) = \phi(g_2K)\right) \quad \blacksquare \quad \forall_{g_1K, g_2K \in (G/K)} \left(\left(g_1K = g_2K\right) \implies \left(\phi(g_1K) = \phi(g_2K)\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right) \land \left(g_1K + g_2K\right)\right) \quad \dots \quad (3) \quad \left(\left(g_1K + g_2K\right$
- (4) ... $Func[\phi, G/K, G/H]$
- $(5) \quad (g_1K, g_2K \in (G/K)) \implies \dots$
- $(5.1) \quad \phi(g_1K \bar{*} g_2K) = \phi((g_1 * g_2)K) = (g_1 * g_2)H = (g_1H) \bar{*} (g_2H) = \phi(g_1K) \bar{*} \phi(g_2K) \quad \blacksquare \quad \phi(g_1K \bar{*} g_2K) = \phi(g_1K) \bar{*} \phi(g_2K)$
- $\overline{(6) \quad \left(g_1K,g_2K\in (G/K)\right)} \implies \left(\phi(g_1K\ \bar{\ast}\ g_2K) = \phi(g_1K)\ \bar{\ast}\ \phi(g_2K)\right)\ \blacksquare\ \forall_{g_1K,g_2K\in (G/K)}\left(\phi(g_1K\ \bar{\ast}\ g_2K) = \phi(g_1K)\ \bar{\ast}\ \phi(g_2K)\right)$
- $(7) \quad (Func[\phi,G/K,G/H]) \land \left(\forall_{g_1K,g_2K \in (G/K)} \left(\phi(g_1K \ \bar{*} \ g_2K) = \phi(g_1K) \ \bar{*} \ \phi(g_2K) \right) \right) \quad \blacksquare \quad Homomorphism[\phi,G/K,\bar{*},G/H,\bar{*}]$
- (9) $(y \in (G/H)) \implies \dots$
- $(9.1) \quad \exists_{g \in G} (y = gH)$
- $(9.2) \quad g \in G \quad \blacksquare \quad gK \in (G/K)$
- (9.3) $\phi(gK) = gH = y \quad y = \phi(gK)$
- $(9.4) \quad \left(gK \in (G/K)\right) \land \left(y = \phi(gK)\right) \quad \blacksquare \quad \exists_{gK \in (G/K)}\left(y = \phi(gK)\right)$
- $(10) \quad \left(y \in (G/H)\right) \implies \left(\exists_{gK \in (G/K)} \left(y = \phi(gK)\right)\right) \quad \blacksquare \quad \forall_{y \in (G/H)} \exists_{gK \in (G/K)} \left(y = \phi(gK)\right) \quad \blacksquare \quad Surj[\phi, G/K, G/H]$
- (11) $(SurjEquiv) \wedge (Surj[\phi, G/K, G/H]) \quad \blacksquare im_{\phi} = G/H$
- (12) $(FirstMapThm) \land (Homomorphism[\phi, G/K, \bar{*}, G/H, \bar{*}])$ $\blacksquare Isomorphic[(G/K)/ker_{\phi}, \bar{*}, im_{\phi}, \bar{*}]$

 $(13) \quad (ker_{\phi} = H/K) \wedge (im_{\phi} = G/H) \wedge \left(Isomorphic[(G/K)/ker_{\phi}, \bar{*}, im_{\phi}, \bar{*}]\right) \quad \blacksquare \quad Isomorphic[(G/K)/(H/K), \bar{*}, G/H, \bar{*}]$