Grundlagen Geladene Teilchen im EM-Feld Transformation auf Wirkungs-Winkel-Variable Resonanzen Ausblick

Hamilton-Formalismus in der Beschleunigerphysik

Sonja Bartkowski, Dimitrios Skodras

Technische Universität Dortmund

11.06.2015

Gliederung

- Grundlagen
- 2 Geladene Teilchen im EM-Feld
 - Relativistik
 - Transformation ins mitbewegete System
 - Beispiele
- 3 Transformation auf Wirkungs-Winkel-Variable
 - Bedeutng der Wirkungs-Winkel-Variablen
 - Beispiele
- Resonanzen
- 6 Ausblick

Grundlagen

Geladene Teilchen im EM-Feld Transformation auf Wirkungs-Winkel-Variable Resonanzen Ausblick

Teilcheninhalt:

Fundamentale Wechselwirkungen:

- Teilcheninhalt:
 - Leptonen: e^+ , μ^+ , ν

Fundamentale Wechselwirkungen:

- Teilcheninhalt:
 - Leptonen: e^+ , μ^+ , ν
 - Quarks: \bar{u} , \bar{d} , s, c

Fundamentale Wechselwirkungen:

- Teilcheninhalt:
 - Leptonen: e^+ , μ^+ , ν
 - Quarks: \bar{u} , \bar{d} , s, c
 - Vektorbosonen: W⁺, g
- Fundamentale Wechselwirkungen:

- Teilcheninhalt:
 - Leptonen: e^+ , μ^+ , ν
 - Quarks: \bar{u} , \bar{d} , s, c
 - Vektorbosonen: W⁺, g
 - (Skalarbosonen: H, π)
- Fundamentale Wechselwirkungen:

- Teilcheninhalt:
 - Leptonen: e^+ , μ^+ , ν
 - Quarks: \bar{u} , \bar{d} , s, c
 - Vektorbosonen: W^+ , g
 - (Skalarbosonen: H, π)
- Fundamentale Wechselwirkungen:
 - starke Wechselwirkung (QCD)

- Teilcheninhalt:
 - Leptonen: e^+ , μ^+ , ν
 - Quarks: \bar{u} , \bar{d} , s, c
 - Vektorbosonen: W^+ , g
 - (Skalarbosonen: H, π)
- Fundamentale Wechselwirkungen:
 - starke Wechselwirkung (QCD)
 - elektroschwache Wechselwirkung (GSW-Theorie)

Grundlagen
Geladene Teilchen im EM-Feld
Transformation auf Wirkungs-Winkel-Variable
Resonanzen
Ausblick

Feynmangraph

ruhendes D-Meson

Feynmangraph

- ruhendes D-Meson
- 2 propagiert in t

Feynmangraph

- ruhendes D-Meson
- \bigcirc propagiert in t.

Feynmangraph

- ruhendes D-Meson
- 2 propagiert in t.
- c wandelt unter Abstrahlung von W^+ in s
- W^+ zerstrahlt in Leptonpaar I^+ , ν_I

Grundlagen

Geladene Teilchen im EM-Feld Transformation auf Wirkungs-Winkel-Variable Resonanzen Ausblick

Überblick

• Fermis Goldene Regel für Zerfälle:

Teilchenströme

ullet Starke WW zwischen c und $ar{q}_1$

• Fermis Goldene Regel für Zerfälle:

$$\underline{\mathrm{d}\Gamma}_{\mathsf{Breite}} = \frac{1}{2m_D} \underbrace{\mathrm{d}\Phi}_{\mathsf{Phasenraum}} \cdot \underbrace{|\mathcal{M}|}_{\mathsf{Amplitude}}^{2}$$

Teilchenströme

ullet Starke WW zwischen c und $ar{q}_1$

• Fermis Goldene Regel für Zerfälle:

$$\underline{\mathrm{d}\Gamma}_{\mathsf{Breite}} = \frac{1}{2m_D} \underbrace{\mathrm{d}\Phi}_{\mathsf{Phasenraum}} \cdot \underbrace{|\mathcal{M}|}_{\mathsf{Amplitude}}^2$$

- Teilchenströme
 - relativistischer Dirac-Strom

ullet Starke WW zwischen c und $ar{q}_1$

• Fermis Goldene Regel für Zerfälle:

$$\underline{\mathrm{d}\Gamma}_{\mathsf{Breite}} = \frac{1}{2m_D} \underbrace{\mathrm{d}\Phi}_{\mathsf{Phasenraum}} \cdot \underbrace{|M|}_{\mathsf{Amplitude}}^2$$

- Teilchenströme
 - relativistischer Dirac-Strom
 - kurze Reichweite von W⁺ für geringe Energien
 - \rightarrow Beschreibung durch
 - 4-Fermionen-Wechselwirkung
- ullet Starke WW zwischen c und $ar{q}_1$

• Fermis Goldene Regel für Zerfälle:

$$\frac{\mathrm{d}\Gamma}{\mathrm{Breite}} = \frac{1}{2m_D} \underbrace{\mathrm{d}\Phi}_{\mathrm{Phasenraum}} \cdot \underbrace{|M|}_{\mathrm{Amplitude}}^2$$

- Teilchenströme
 - relativistischer Dirac-Strom
 - kurze Reichweite von W⁺ für geringe Energien
 - \rightarrow Beschreibung durch
 - 4-Fermionen-Wechselwirkung
- Starke WW zwischen c und \bar{q}_1
 - \circ erhält Parität ${\cal P}$

Fermis Goldene Regel für Zerfälle:

$$\underbrace{\mathrm{d}\Gamma}_{\mathsf{Breite}} = \underbrace{\frac{1}{2m_D}}_{\mathsf{Phasenraum}} \cdot \underbrace{\left|\mathcal{M}\right|}_{\mathsf{Amplitude}}^{2}$$

- Teilchenströme
 - relativistischer Dirac-Strom
 - kurze Reichweite von W⁺ für geringe Energien
 - → Beschreibung durch
 - 4-Fermionen-Wechselwirkung
- ullet Starke WW zwischen c und $ar{q}_1$
 - \circ erhält Parität ${\cal P}$
 - störungsrechnerisch nicht erfassbar
 - \rightarrow Darstellung durch

Formfaktoren f

- Grundlagen
- 2 Geladene Teilchen im EM-Feld
 - Relativistik
 - Transformation ins mitbewegete System
 - Beispiele
- 3 Transformation auf Wirkungs-Winkel-Variable
 - Bedeutng der Wirkungs-Winkel-Variablen
 - Beispiele
- 4 Resonanzen
- 6 Ausblick

Grundlagen

Geladene Teilchen im EM-Feld

Transformation auf Wirkungs-Winkel-Variable
Resonanzen

Relativistik

Ausblick

Transformation ins mitbewegete System Beispiele

Zerfallsbreite

Relativistik

Transformation ins mitbewegete System Beispiele

Zerfallsbreite

ullet Inverses der hier sehr kurzen Lebensdauer au

Zerfallsbreite

- ullet Inverses der hier sehr kurzen Lebensdauer au
- Energiemessung führt wegen Energieunschärfe zu Verteilungen

Relativistik

Transformation ins mitbewegete System Beispiele

Zerfallsbreite

- ullet Inverses der hier sehr kurzen Lebensdauer au
- Energiemessung führt wegen Energieunschärfe zu Verteilungen
- \rightarrow Breite der Verteilung Γ kann gemessen werden

Relativistik

Transformation ins mitbewegete System Beispiele

Ergebnis der differentiellen Zerfallsbreite

Fermis Goldene Regel:

Ergebnis der differentiellen Zerfallsbreite

Fermis Goldene Regel:

$$\mathrm{d}\Gamma(D \to K l \nu) = \frac{|M|^2}{2m_D} \mathrm{d}\Phi(K, l, \nu)$$

Ergebnis der differentiellen Zerfallsbreite

Fermis Goldene Regel:

$$\begin{split} \mathrm{d}\Gamma(D \to K l \nu) &= \frac{|M|^2}{2 m_D} \mathrm{d}\Phi(K, \, l, \, \nu) \\ &= \frac{G_F^2 |V_{cs}|^2}{24 \pi^3} |f_+(q^2)|^2 |p_K|^3 \mathrm{d}q^2 \end{split}$$

Fermikonstante G_F , CKM-Element V_{cs} , Formfaktor f_+ , Kaonimpuls p_K , Impulsübertrag q^2

Relativistik Transformation ins mitbewegete System Beispiele

Phasenraumvolumen

Relativistik Transformation ins mitbewegete System Beispiele

Phasenraumvolumen

• Enthält kinematische Informationen (Energien, Impulse)

Phasenraumvolumen

- Enthält kinematische Informationen (Energien, Impulse)
- ullet Je mehr Endzustände existieren, umso größer ist Φ

Phasenraumvolumen

- Enthält kinematische Informationen (Energien, Impulse)
- Je mehr Endzustände existieren, umso größer ist Φ
- Nicht vom Matrixelement unabhängig berechenbar, da es Viererimpulse enthält

Phasenraumvolumen

- Enthält kinematische Informationen (Energien, Impulse)
- Je mehr Endzustände existieren, umso größer ist Φ
- Nicht vom Matrixelement unabhängig berechenbar, da es Viererimpulse enthält

Ein erster Ausdruck:

$$\mathrm{d}\Phi = (2\pi)^4 \frac{\mathrm{d}^3 p_K}{2(2\pi)^3 E_K} \frac{\mathrm{d}^3 k_1}{2(2\pi)^3 E_1} \frac{\mathrm{d}^3 k_2}{2(2\pi)^3 E_2} \delta^4 (p_D - p_K - k_1 - k_2)$$

Relativistik Transformation ins mitbewegete Systen Beispiele

senkrechte Magnetfelder

senkrechte Magnetfelder

• Enthält dynamische Informationen (Wechselwirkungen)

senkrechte Magnetfelder

- Enthält dynamische Informationen (Wechselwirkungen)
- ullet Beschreibt Übergang ähnlich Streuung von Startzustand i zu Endzustand f

senkrechte Magnetfelder

- Enthält dynamische Informationen (Wechselwirkungen)
- ullet Beschreibt Übergang ähnlich Streuung von Startzustand i zu Endzustand f
- Betragsquadrat $|M|^2$ kann als Wahrscheinlichkeit für Reaktion betrachtet werden

senkrechte Magnetfelder

- Enthält dynamische Informationen (Wechselwirkungen)
- ullet Beschreibt Übergang ähnlich Streuung von Startzustand i zu Endzustand f
- Betragsquadrat $|M|^2$ kann als Wahrscheinlichkeit für Reaktion betrachtet werden

Ein erster Ausdruck:

$$M = \langle KI\nu | \mathcal{H} | D \rangle$$

kleine Winkel zur Sollbahn

kleine Impulsabweichungen zum Sollimpuls

Bedeutende Größen

Beispiel: Gradientenfehler

Beispiel: Sextupol

Beispiel: Sextupol

Verhalten in Resonanznähe

Grundlagen
Geladene Teilchen im EM-Feld
Transformation auf Wirkungs-Winkel-Variable
Resonanzen
Ausblick

Fixpunkte

Grundlagen
Geladene Teilchen im EM-Feld
Transformation auf Wirkungs-Winkel-Variable
Resonanzen
Ausblick

Oktupol

Grundlagen
Geladene Teilchen im EM-Feld
Transformation auf Wirkungs-Winkel-Variable
Resonanzen
Ausblick

Kopplung

Gegenwart vieler Nichtlinearitäten