Documentation for fluidized bed case

Philippe Seil

December 28, 2016

Contents

1 General		eral	_	
2	Rur	tunning the case		
3	Setup			
	3.1	Geometry		
	3.2	Initialization		
	3.3	Run		
	3.4	Output		
4	4 Command line options			

1 General

This document describes an *LBDEMcoupling* case simulating a part of a fluidized bed. The bed is considered infinite, which is modelled by using periodic boundary conditions in lateral directions.

2 Running the case

The case is controlled by a set of command line options described in section 4. To run on Lise, a run script is required. This script can be controlled by

submitting shell variables via the command line. An example command line could be

The switch -v allows to set variables for access within the script. The script provided will create a subdirectory with velocity and cohesion in the directory name. If this directory already exists, it will be deleted and recreated, thus be careful what you wish for when starting a new simulation!

3 Setup

3.1 Geometry

The case consists of a box with extents l_x , l_y , l_z . The x and y directions are fully periodic. In z direction, the bottom wall is a velocity inlet and the top wall is a fixed pressure outlet. Before the outlet, a sponge zone in which the viscosity is gradually increased is added to reduce reflections. At a distance d_{in} form the inlet, a wall is placed. This wall only affects the particles and keeps them from falling into the inlet, which could cause computational trouble.

3.2 Initialization

Prior to a full simulation, a DEM-only initialization procedure is performed. First, the whole domain above d_{in} is filled with particles until a volume fraction of $(1 - \epsilon)^1$ is reached. These particles are then allowed to settle under gravity to form a close pack. Thus, setting $(1 - \epsilon)$ indirectly controls the height of the un-expanded bed. Directly estimating the bed height is difficult, because other variables (such as the parallelization) also influence particle insertion, but experience has shown that $(1 - \epsilon) = 0.4$ results in a bed height of slightly more than a third of the initially filled volume. Once the particles have settled, the real, coupled simulation starts.

 $^{^{1}\}epsilon$ usually denotes the void fraction of a packing, thus $(1-\epsilon)$ is the particle solid fraction

3.3 Run

After the initialization procedure described above, interaction between fluid and solid is switched on, and the simulation is run for t_{max} seconds. Currently, two modes are implemented: constant velocity and ramped velocity. Constant velocity means that the inlet velocity at the bottom of the domain is kept constant at u_{in}^0 for the whole simulation. For ramped velocity, an additional time t_{ramp} is needed. For $t < t_{ramp}$, the inlet velocity is given by

$$u_{in}(t) = \frac{t}{t_{ramp}} u_{in}^0 \tag{1}$$

and for $t \geq t_{ramp}$ the inlet velocity remains constant.

3.4 Output

The specified output folder must contain subdirectories tmp/ for LB data and post/ for DEM data. Data is written at intervals t_{write} . The simulation periodically outputs the flow field (optional) to the LB output directory, and the particle properties to the DEM output directory. Additionally, the averaged pressure is written to a file named pressure.txt and the inlet velocity is written to $u_{in.txt}$, both in the LB output directory.

4 Command line options

The case accepts parameters via command line options. Unless stated otherwise, these options are all mandatory. All options require a value specified right after their occurrence, for example

./fluidizedbed -N 8 --u_in 0.5 [other options]

All physical quantities are expected in SI units.

- -N: controls the resolution of the case. N grid cells per particle diameter will be used.
- --u_in: sets the inlet velocity u_{in}^0

- --u_max_1b: sets the maximum LB velocity $u_{max,lb}$. Decreasing $u_{max,lb}$ decreases the time step and can increase stability in some cases. For this case, a value of $u_{lb,max} = 0.05$ has been found to work just fine.
- --dt_dem_max: sets an upper limit for the DEM time step. The actual time step depends on the exact value of the LB time step and is computed internally.
- --outdir: specifies the directory to which the output is written. This
 directory must exist, and contain two subdirectories named tmp/ for LB
 data and post/ for DEM data.
- --rho_f: controls the fluid density ρ_f .
- --nu_f: controls the kinematic viscosity of the fluid ν_f .
- --rho_s: controls the bulk density of the particles ρ_s .
- \bullet --radius: sets the radius r_s of the particles.
- --vol_frac: sets the particle volume fraction (1ϵ) of the initial packing. This indirectly controls the height of the particle bed, and should not be much higher than 0.4.
- --lx, --ly, --lz set the size of the simulation box. The full resolution per direction is then given by $N_{tot,xyz} = N \frac{l_{xyz}}{2r_s}$.
- --inlet_distance: The distance d_{in} of the wall holding the particles to the inlet at z = 0.
- --max_t: the runtime of the simulation, t_{max} .
- --write_t: the interval at which data is written, t_{write} .
- --write_flowfield: controls if the full flow field is written to disk (the data can be quite large). Accepts anything that can be casted to bool, such as true/false, 0/1, ... This argument is optional, default setting is false.
- --ramp_time: The time to ramp up the inlet velocity to the final value set by --u_in, t_{ramp} . Set to zero (or leave out alltogether) to disable ramping. This argument is optional, default is no ramping.

- --cohesion_energy_density: Cohesion energy density. The case uses the sjkr cohesion model of LIGGGHTS, and the reader is referred to the LIGGGHTS documentation for details on the cohesion model.
- --use_smagorinsky: controls whether Smagorinsky-style turbulence modelling is used. Needs a boolean value just as --write_flowfield. This argument is optional. Default is false.
- --c_smago: if the Smagorinsky model is used, the Smagorinsky "constant" c_s is set. This argument is optional. Default value is $c_s = 0.15$.