

NVIDIA Jetson AGX Xavier Series and Jetson AGX Orin Series Camera Module

Hardware Design Guide

Document History

DG-09364-001_v1.5

Version	Date	Description of Change		
1.0	May 8, 2019	Initial Release		
1.1	June 14, 2019	Updated to include all of Jetson AGX Xavier series modules		
1.2	May 26, 2020	Updated Chapter 1 "Introduction" Updated and reorganized Chapter 2 "MIPI CSI Camera Module" Added new chapter (Chapter 3) covering SLVS		
1.3	June 8, 2021	 Updated Chapter 1: Introduction Updated and reorganized Chapter 2: MIPI CSI Camera Module Added Chapter 3: GMSL Interposer Board 		
1.4	March 16, 2022	Updated to include Jetson AGX Orin series modules and developer kit		
1.5	August 25, 2022	 Updated Section 2.2.8.2. "Clock Buffer and Oscillator" to use oscillator and to show all four MCLK options. Updated Section 3.3. "Jetson to Deserializer Connections" with the following: 		
		> Updated text to clarify must use internal C-PHY remapping		
		 Updated Figure 3-3. "Signal Routing using Default Mapping" to add example routing to deserializer for D-PHY cameras 		
		> Updated notes under both figures to correct which mode (D-PHY or C-PHY) can be supported based on the C-PHY mapping used		

Table of Contents

Chapter	1. Introduction	1
1.1	References	1
1.2	Abbreviations and Definitions	2
Chapter	2. MIPI CSI Camera Module	3
2.1	System Setup	3
2.2	CSI Camera Interposer Module	
2.2.	Single Camera Case	5
2.2.2	2 Multiple Camera Case	5
2.2.3	3 Camera Sensor Module	7
2.2.4	4 Jetson Camera Connector Pinout Table	7
2.2.5	5 Camera Module Power	10
2.2.6	6 I2C Address	10
2.2.7	7 CSI Camera Module Components	11
2.	.2.7.1 Camera Module EEPROM	11
2.	.2.7.2 I2C Mux	12
2.	.2.7.3 Jetson Camera Connector	12
2.2.8	8 Optional	13
2.	.2.8.1 I2C GPIO Expander	13
2.	.2.8.2 Clock Buffer and Oscillator	13
2.2.9	9 Example	14
2.3	Mechanical	15
Chapter	3. GMSL Interposer Board	17
3.1	System Setup	17
3.2	GMSL Interposer Board/Module	18
3.2.	1 GMSL Camera Sensor Module	19
3.3	Jetson to DeSerializer Connections	19
3.3.	1 CSI Connections	22
3.4	Control Signals and Interfaces	23
3.4.		
3.4.2	2 SPI	23
3.4.3	3 Control and Handshake Signals	23
Chapter	4. SLVS-EC Camera	25
4.1	SLVS Camera Connections for Developer Kit	
4.1.	·	
4.1.2	2 SLVS Developer Kit Camera Connections	27

	4.1.3	SLVS Camera Sensor Module	28
	4.1.4	Developer Kit SLVS Connector Pinout Tables	28
	4.1.5	SLVS Power	30
	4.1.6	SLVS Components	30
	4.1.6.1	SLVS EEPROM	30
	4.1.6.2	Jetson SLVS Camera Connector	31
	4.1.7	SLVS Mechanical	31
4.2	2 SLV	S Connections for Customer Carrier Board	32

List of Figures

Figure 2-1.	Jetson AGX Xavier Developer Kit Carrier Board	4
Figure 2-2.	Jetson AGX Orin Developer Kit Carrier Board	4
Figure 2-3.	Single Camera Case Block Diagram	5
Figure 2-4.	Multiple Camera Case Block Diagram	6
Figure 2-5.	Camera Sensor Module Block Diagram	7
Figure 2-6.	Jetson Camera Connector	12
Figure 2-7.	I-PEX 30-Pin Connector	14
Figure 2-8.	Recommended Interposer Module Outline	15
Figure 2-9.	Mechanical Limits Interposer Module Outline	16
Figure 3-1.	GMSL Interposer Board Example	18
Figure 3-2.	GMSL Camera Sensor Module Block Diagram	19
Figure 3-3.	Signal Routing using Default Xavier and Orin Mapping	20
Figure 3-4.	Signal Routing with Xavier and Orin C-PHY Swizzle Mapping	21
Figure 4-1.	Jetson AGX Xavier Developer Kit Carrier Board	26
Figure 4-2.	Developer Kit SLVS Camera Connection Block Diagram	27
Figure 4-3.	SLVS Camera Sensor Module Block Diagram	28
Figure 4-4.	Jetson SLVS PCIe Form Factor Camera Connector	31
Figure 4-5.	PCIe Form Factor Interposer Module Dimensions	31
Figure 4-6.	Custom Carrier Board SLVS Camera Connection Details	32

List of Tables

Table 1-1.	Abbreviations and Definitions	2
Table 2-1.	Jetson Camera Connector 2 x 60 Pinout	7
Table 2-2.	Power Source	10
Table 2-3.	I2C Address	11
Table 2-4.	EEPROM Structure	11
Table 2-5.	Clock Output Options	13
Table 3-1.	Xavier and Orin Internal CSI Swizzle Register Bit Fields	21
Table 3-2.	SoC to Serializer C-PHY Signal Mapping	22
Table 3-3.	GPIO Pin Description	24
Table 4-1.	Developer Kit SLVS Connector Pinout	28
Table 4-2.	SLVS Power Source	30

Chapter 1. Introduction

This design guide contains recommendations and guidelines for engineers to follow to create a product that is optimized to achieve the best performance from camera-related interfaces supported on the NVIDIA® Jetson AGX Xavier™ series, and Jetson AGX Orin series developer kits carrier board or on a custom carrier board.

The Jetson AGX Xavier series modules all support MIPI CSI. The Jetson AGX Xavier series modules except Jetson AGX Xavier Industrial also support the SLVS-EC camera interface. On the Jetson AGX Xavier developer kit carrier board, the CSI interface is routed to the 120-pin camera connector (J509). The SLVS-EC interface is routed to the x16 PCIe connector and share pins with an 8-lane PCIe interface on the Jetson AGX Xavier developer kit carrier board. The following sections describe how to design camera modules for these two interfaces.

References

Refer to the following documents or models for more information. Always use the latest revision of all documents.

- Jetson AGX Xavier Developer Kit Carrier Board Specification
- Jetson AGX Orin Developer Kit Carrier Board Specification
- Jetson AGX Xavier Series OEM Product Design Guide
- Jetson AGX Orin Series OEM Product Design Guide

Notes:

- References to Jetson AGX Xavier apply to any of the Jetson AGX Xavier series of modules.
- References to Jetson AGX Orin apply to any of the Jetson AGX Orin series of modules.

1.2 Abbreviations and Definitions

Table 1-1 lists the abbreviations that may be used throughout this design guide and their definitions.

Table 1-1. Abbreviations and Definitions

Abbreviation	Definition
ADDR	Address
AF	Auto Focus
B2B	Board-to-Board
CSI	MIPI spec. Camera Serial Interface
EEPROM	Electrically Erasable Programmable Read Only Memory
GPI0	General Purpose Input/Output
FM	Fast Mode of I2C (400 MHz)
I2C	Inter-IC
Mux	Multiplexer
LD0	Low Dropout (voltage regulator)
XTAL	Crystal Oscillator
SLVS-EC	Scalable Low Voltage Signaling Embedded Clock

Chapter 2. MIPI CSI Camera Module

This chapter is mostly concerned with connecting cameras to the Jetson AGX Xavier developer kit or Jetson AGX Orin carrier board camera connector (J509) which supports MIPI CSI. Much of the information would also apply to a custom carrier board design. However, it would be up to the designer to decide on an interposer connector or pinout (if implemented), I2C addressing, whether to implement an EEPROM, and mechanical requirements.

Items to be checked:

- Power distribution and usage
- ► I2C addressing
- EEPROM selection and control
- Pinout table
- Mechanical (connector and board outline)

System Setup

- ▶ Jetson AGX Xavier or Jetson AGX Orin developer kit
- ▶ Camera Interposer module- support from one to six CSI cameras
 - Up to 36 cameras (see note) can be supported by using an aggregator and the NVIDIA® Xavier™ virtual channel feature
 - Alternately, a GMSL deserializer module
- Camera Sensor modules

Note: This is the theoretical max and has not been verified.

Figure 2-1. Jetson AGX Xavier Developer Kit Carrier Board

Figure 2-2. Jetson AGX Orin Developer Kit Carrier Board

2.2 CSI Camera Interposer Module

The section details the camera interposer module for Jetson AGX Xavier or Jetson AGX Orin series.

Single Camera Case 2.2.1

When using a single camera sensor, the camera interposer module will be a simple passthrough to the camera sensor module, with no EEPROM or I2C mux on the interposer.

Figure 2-3. Single Camera Case Block Diagram

2.2.2 Multiple Camera Case

When multiple camera sensors are used (up to six CSI interfaces) with the developer kit, a camera interposer module with EEPROM is required. The EEPROM stores board and module IDs and information about the I2C mux that the software must perform camera auto detection. An I2C mux or expander would be required on the camera interposer if some or all the camera sensors have the same I2C addresses. An MCLK clock buffer may also be needed to help with signal integrity. These are optional and depend on the design requirements. The following figure is a block diagram for a multiple camera use case. It shows the EEPROM, I2C muxes, and MCLK buffer and a GPIO expander on the interposer board. In addition, each module shows an Auto Focus (AF) and flash block. These are optional features.

Figure 2-4. Multiple Camera Case Block Diagram

Note: The clock buffer shown in the figure is only to create separate clocks for the various modules. Full clock synchronization is beyond the scope of this use case.

2.2.3 Camera Sensor Module

Figure 2-5 is the block diagram for a camera sensor module when there are multiple camera sensors.

CAM#n Flash CAM_I2C To Interposer MCLK Module CTRL CSI * Flash/AF driver are optional

Camera Sensor Module Block Diagram Figure 2-5.

2.2.4 Jetson Camera Connector Pinout Table

This section contains the pinout table, which provides the camera's connector pins listing and description. JAX is a shortened name for Jetson AGX Xavier, and JAO is a shortened named for Jetson AGX Orin.

Pin	Signal Name	Description	Type/Dir	(V)	Pin	Signal Name	Description	Type/Dir	(V)
1	CSI_0_D0_P	00101	Output	1.2	2	CSI1_D0_P	00111	Output	1.2
3	CSI_0_D0_N	CSI 0 Lane 0	Output	1.2	4	CSI1_D0_N	CSI 1 Lane 0	Output	1.2
5	GND	Ground	Ground	0	6	GND	Ground	Ground	0
7	CSI_0_D0_P	001001	Output	1.2	8	CSI1_CLK_P	001401	Output	1.2
9	CSI_0_D0_N	CSI 0 Clock	Output	1.2	10	CSI1_CLK_N	CSI 1 Clock	Output	1.2
11	GND	Ground	Ground	0	12	GND	Ground	Ground	0
13	CSI0_D1_P		Output	1.2	14	CSI1_D1_P	CSI 1 Lane 1	Output	1.2
15	CSI0_D1_N	CSI 0 Lane 1	Output	1.2	16	CSI1_D1_N		Output	1.2
17	GND	Ground	Ground	0	18	GND	Ground	Ground	0
19	CSI2_D0_P	00101	Output	1.2	20	CSI3_D0_P	00101	Output	1.2
21	CSI2_D0_N	CSI 2 Lane 0	Output	1.2	22	CSI3_D0_N	CSI 3 Lane 0	Output	1.2
23	GND	Ground	Ground	0	24	GND	Ground	Ground	0
25	CSI2_CLK_P	CSI 2 Clock	Output	1.2	26	CSI3_CLK_P	CSI 3 Clock	Output	1.2

Pin	Signal Name	Description	Type/Dir	(V)	Pin	Signal Name	Description	Type/Dir	(V)
27	CSI2_CLK_N		Output	1.2	28	CSI3_CLK_N		Output	1.2
29	GND	Ground	Ground	0	30	GND	Ground	Ground	0
31	CSI2_D1_P	06101	Output	1.2	32	CSI3_D1_P	00101	Output	1.2
33	CSI2_D1_N	CSI 2 Lane 1	Output	1.2	34	CSI3_D1_N	CSI 3 Lane 1	Output	1.2
35	GND	Ground	Ground	0	36	GND	Ground	Ground	0
37	CSI4_D0_P	001/10	Output	1.2	38	CSI6_D0_P	001/10	Output	1.2
39	CSI4_D0_N	CSI 4 Lane 0	Output	1.2	40	CSI6_D0_N	CSI 6 Lane 0	Output	1.2
41	GND	Ground	Ground	0	42	GND	Ground	Ground	0
43	CSI4_CLK_P	CSI 4 Clock	Output	1.2	44	CSI6_CLK_P	CSI 6 Clock	Output	1.2
45	CSI4_CLK_N	CSI 4 Clock	Output	1.2	46	CSI6_CLK_N	CSI 6 Clock	Output	1.2
47	GND	Ground	Ground	0	48	GND	Ground	Ground	0
49	CSI4_D1_P	CSI 4 Lane 1	Output	1.2	50	CSI6_D1_P	CSI 6 Lane 1	Output	1.2
51	CSI4_D1_N	CSI 4 Lane I	Output	1.2	52	CSI6_D1_N	CSI 6 Lane I	Output	1.2
53	GND	Ground	Ground		54	GND	Ground	Ground	0
55	DVDD_CAM_	Unused			56	DVDD CAM	Unused		
57	LV	camera supply pin	Power		58	LV	camera supply pin	Power	
59	CSI5_D0_P	- CSI 5 Lane 0	Output	1.2	60	CSI7_D0_P	CSI 7 Lane 0	Output	1.2
61	CSI5_D0_N		Output	1.2	62	CSI7_D0_N		Output	1.2
63	GND	Ground	Ground	0	64	GND	Ground	Ground	0
65	CSI5_CLK_P	CSI 5 Clock	Output	1.2	66	CSI7_CLK_P	CSI 7 Clock	Output	1.2
67	CSI5_CLK_N	CSI 3 Clock	Output	1.2	68	CSI7_CLK_N	CSI / Clock	Output	1.2
69	GND	Ground	Ground	0	70	GND	Ground	Ground	0
71	CSI5_D1_P	CSI 5 Lane 1	Output	1.2	72	CSI7_D1_P	CSI 7 Lane 1	Output	1.2
73	CSI5_D1_N	OSI S Lane 1	Output	1.2	74	CSI7_D1_N	CSI / Lanc I	Output	1.2
75	12C3_CLK	I2C #3 clock	Bidir	1.8	76	NC (JAX) GPI014 (JA0)	Camera Error #1	Input	1.8V
77	I2C3_DAT	I2C #3 data	Bidir	1.8	78	NC (JAX) GPI028 (JA0)	Camera Error #2	Input	1.8V
79	GND	Ground	Ground	0	80	GND	Ground	Ground	0
81	AVDD_CAM	2.8V Camera	Power	2.8	82	AVDD_CAM_2V8	2.8V Analog Camera supply	Power	2.8
83		supply (LDO)			84	NC (JAX) GPI028 (JA0)	Camera Error #3	Input	1.8V
85	NC (JAX) GPI010 (JA0)	Camera FRSYNC #1	Output	1.8V	86	NC (JAX) UART4_RTS (JAO)	Camera Error #4	Input	1.8V
87	12C2_CLK	I2C #2 Clock	Bidir/OD	1.8	88	MCLK03	Camera #1 Master Clock	Input	1.8

Pin	Signal Name	Description	Type/Dir	(V)	Pin	Signal Name	Description	Type/Dir	(V)
89	I2C2_DAT	I2C #2 Data	Bidir/OD	1.8	90	GPI015	Camera #1 Powerdown	Input	1.8
91	MCLK02	Camera #0 Master Clock	Input	1.8	92	GPI016	Camera #1 Reset	Input	1.8
93	UART4_CTS	Camera #0 Powerdown	Input	1.8	94	MCLK04	Camera #2 Master Clock	Input	1.8
95	UART4_TX	Camera #0 Reset	Input	1.8	96	NC (JAX) GPI013 (JA0)	Camera FRSYNC #4	Output	1.8V
97	NC (JAX) GPI06 (JA0)	Camera FRSYNC #3	Output	1.8V	98	NC (JAX) GPI07 (JA0)	Camera FRSYNC #4	Output	1.8V
99	GND	Ground	Ground	0	100	GND	Ground	Ground	0
101	DVDD_CAM_ I/O	Unused Camera supply pin	Power		102	VDD_1V8	1.8V Camera supply.	Power	1.8
103	NC (JAX) SPI2_MOSI	Camera Interrupt #3	Input	1.8V	104	NC (JAX) SPI2_CS0_N	Camera Interrupt #4	Input	1.8V
105	12C4_CLK (JAX) 12C5_CLK (JAO)	I2C #4/#5 Clock	Bidir/OD	1.8	106	NC (JAX) SPI2_MISO	Camera Interrupt #2	Input	1.8V
107	I2C4_DAT (JAX) I2C5_DAT (JAO)	#4/#5 Data	Bidir/OD	1.8	108	VDD_3V3	3.3V supply	Power	3.3
109	NC	Unused	Unused	-	110				
111	NC	Unused	Unused	-	112	NC	Unused	Unused	-
113	NC	Unused	Unused	-	114	NC	Unused	Unused	-
115	GND	Ground	Ground	0	116	GND	Ground	Ground	0
117	NC (JAX) SPI2_CLK (JAO_	Camera Interrupt #1	Input	1.8V	118				
119	GPI025 (JAX) GPI012 (JA0)	System power enable	Output	1.8	120	VDD_3V3	3.3V supply	Power	3.3

Legend	Ground	Power	Reserved	Functionality different between JAX and JAO
--------	--------	-------	----------	---

Note: In the Type/Dir column, Output is to from the camera module. Input is to the camera module. Bidir is for bidirectional signals. OD is for Open-Drain.

2.2.5 Camera Module Power

Power sources from the camera connector are listed in Table 2-2.

Table 2-2. Power Source

Net Name	Specification	Note
VDD_3V3	3.3V, with the current coming from four pins, all of which are on a single "row" (see note for maximum current).	This is an 'always on' power, so it is not recommended to use it as a power source requiring power sequence.
AVDD_CAM_2V8	2.8V, with the current coming from three pins, one of which is on the same "row" as the 3.3V pins and the other two on another "row" (see note for maximum current).	2.8V analog power. Derived by an LDO on the NVIDIA carrier board and enabled by the Jetson AGX Xavier GPIO36 signal.
VDD_1V8	1.8V, with the current coming from a single pin on the same "row" as the 3.3V pins and one 2.8V pin (see note for maximum current).	This is an 'always on' power, so it is not recommended to use it as a power source requiring power sequence.

Note: The Samtec connector specification limits the current to 2A per pin (one pin powered per row). A row is defined as each of the 30-pin segments per side. Since there are six power pins assigned to the row 62-120 (even pins), these should be limited to 2A total maximum. If this current is not enough for the requirements of a camera module design, an external supply may be needed, or the designer should get approval from Samtec before exceeding 2A per row. If an external supply is used, care must be taken that pins common with the Jetson AGX Xavier module, or developer kit carrier board are not powered before the developer kit is fully powered.

Proper power sequence is required in order not to damage the Jetson module.

- ▶ All camera powers except 1.8V for EEPROM should be 'Off' by default
- ▶ The Jetson module should control powers

2.2.6 12C Address

This section provides the I2C address description for the camera interposer module and camera sensor module. The I2C addresses shown in the following table are what were used on the camera interposer and module boards designed by NVIDIA. These specific I2C addresses are not required. If the I2C address for the EEPROM device is different, this must be added to the address list in the EEPROM Manager. The I2C address for the I2C mux is stored in the EEPROM.

Table 2-3. I2C Address

Jetson Carrier Board	Camera Interposer Module		Each Camera Sensor Module
CAM_I2C	EEPROM, AT24C02D	7'h54	*Flash driver IC (optional)
	I2CMUX, TCA9546A	7'h70	*Auto focus driver (optional)
	*I2C GPI0 Expander (optional)		

2.2.7 CSI Camera Module Components

This section details the components for the Jetson camera module.

2271 Camera Module EEPROM

Camera modules intended to be compatible with the developer kit must implement the EEPROM on the interposer board or camera module for single module designs. For productspecific implementations incorporating the Jetson module, the EEPROM can be emitted, and initialization mechanism is the responsibility of the partner or customer.

- ► Camera interposer module EEPROM power rail should be 'ON' by default
- ► Features:
 - 2 Kbit (256 × 8)
 - I2C-compatible up to 400 KHz (FM) at 1.8V
 - AT24C02D from Atmel is recommended
- ▶ The EEPROMs allow Jetson to dynamically detect the interposer board and one or more camera modules connected to it, and to load the corresponding device tree files

Table 2-4. EEPROM Structure

EEPROM Byte Absolute Address	Description	Data	Comments
Byte - 0	Version - Major	0x00	Major Version of BoardID Contents (Integer) - increments on backwards-incompatible changes
Byte - 1	Version - Minor	0x02	Minor Version of BoardID Contents (Integer) - increments on backwards compatible changes within Major Version
Byte - 2 through 19	RESERVED	0xFF	
Byte - 20 Thru 49	Product Part Number		Asset Tracker for Customer board design: Byte-20 = 0xCC, Bytes 21-49: Customer assigned unique string with zero-termination. for example: Company Name/Stock Ticker followed by design/rev. This field

EEPROM Byte Absolute Address	Description	Data	Comments			
	·		should contain characters A-Z, a-z, 0-9 and dash ONLY (for example: NVDA-12345)			
Byte - 50 Thru 88	RESERVED	0xFF				
User Data Section						
Byte - 89	0	0x70	I2C MUX-1 7-bit Address			
Byte - 90	Camera Interposer Board I2C MUX-1	0x01	I2C mux Type (Refer to the following rows for Type Code Vs Part# Mapping)			
Byte - 91 through 254	RESERVED	0xFF				
Byte - 255	CRC		CRC-8 Computed for Bytes 0 through 254.			
I2C mux Type Code Vs Part# Mapping						
Mux Type Code	Part#		Description			
1	TCA9548A		8 Channel I2C mux			

2.2.7.2 I2C Mux

An I2C mux is only required if there are multiple devices on the same I2C bus that have the same I2C secondary address. Camera modules intended to be compatible with the developer kit must use an I2C mux that is compatible with the one mux type listed in the EEPROM. For product-specific implementations incorporating the Jetson module, the partner or customer can choose the mux of their choice but will be responsible for the software support.

- ▶ I2C mux must be used to isolate all camera sensor modules
- ► Features:
 - 4-Channel outputs
 - I2C-compatible up to 400 KHz (FM) at 1.8V
 - TCA9548PWR from TI is recommended

2.2.7.3 Jetson Camera Connector

The board-to-board (B2B) connector on the Jetson carrier board is the Samtec QSH-060-01-H-D-A-K-TR.

Figure 2-6. Jetson Camera Connector

Mating terminal connector to be used: QTH-060-xx-F(H)-D-A-x

- \rightarrow xx = 01 for 5.00 mm B2B spacing
- \rightarrow xx = 02 for 8.00 mm B2B spacing
- xx = 03 for 11.00 mm B2B spacing
- \rightarrow xx = 04 for 16.00 mm B2B spacing

2.2.8 **Optional**

This section details the options for the camera module.

12C GPIO Expander 2.2.8.1

- ▶ An I2C GPIO expander can be used to expand control signals for camera sensor modules
- ► Features:
 - 8-bit bidirectional GPIO expansion
 - I2C-compatible up to 400 KHz (FM) at 1.8V

Clock Buffer and Oscillator 2282

- ▶ There are up to four clock output options from the Jetson module (see Table 2-5)
- It is recommended to use the clocks from Jetson, but a clock buffer can be used to drive multiple clocks from a single source
- An external oscillator can be used if dynamic frequency switching from the AP is not needed for the sensor

Table 2-5. Clock Output Options

Module Pin Name	Camera Connector Pin #
MCLK02	91
MCLK03	88
MCLK04	94
MCLK05	Not available on camera connector

2.2.9 Example

The following example is a six, 2-CSI Lane camera configuration. See Figure 2-4. Other configurations are possible including 4-CSI lane camera configurations with up to four cameras, or more than six cameras with the use of an aggregator and the virtual channel feature supported by Jetson AGX Xavier.

- Example setup with up to six cameras with two CSI lane cameras
- Six cables with plug are also needed to connect interposer module to sensor modules
- Each connector must accommodate the following signals
 - Powers (as needed):
 - > VDD 3V3
 - > AVDD CAM 2V8
 - > VDD 1V8
 - CSI_CLK and CSI_DATA: Two data lanes each
 - MCLK from the module (possibly through a buffer) or clock from local XTALs on interposer or camera modules
 - CAM I2C (CLK, DAT)
 - CAM RST and CAM PWDN (as required by camera modules)
 - Other control signals as needed
- Ex) I-PEX connector
 - Ex. 20525-030-02C

Figure 2-7 is an example connector between the camera sensor module and the camera interposer module.

I-PEX 30-Pin Connector Figure 2-7.

2.3 Mechanical

The recommended outline for an interposer module if used with either the NVIDIA Jetson AGX Xavier or Jetson AGX Orin developer kits is shown in Figure 2-8.

Figure 2-8. Recommended Interposer Module Outline

QTH-060-01-H-A-D Connector (See Note) 3.50 x3 28.13 32.20 41.00 33.50 73.60

Max Bottom Component Height = 2.00 with

Note: The bottom component height maximum allowed depends on the camera module connector used:

- QTH-060-01-H-A-D (5.00 mm Spacing) = 1.2 mm maximum bottom component height
- QTH-060-02-H-A-D (8.00 mm Spacing) = 4.2 mm maximum bottom component height
- QTH-060-03-H-A-D (11.00 mm Spacing) = 7.2 mm maximum bottom component height
- QTH-060-04-H-A-D (16.00 mm Spacing) = 12.2 mm maximum bottom component height

A larger interposer board could be used with either the Jetson AGX Xavier or Jetson AGX Orin Developer Kit carrier boards but may not be compatible with future Developer Kits supporting the same connector. The mechanical limits shown in Figure 2-9 will ensure that the interposer module will fit on in the developer kit space if the mating connector used is the minimum height (QTH-060-01-H-A-D with 5.00 mm board to board spacing) and the maximum component height on the bottom of the module is 1.5 mm. If taller versions of the connector are used, the outline could be extended, or the maximum component height below the module

can be increased. If the QTH-060-03-H-A-D (11.00 mm spacing) or QTH-060-04-H-A-D (16.00 mm spacing) connectors are used on the module, the board size is not limited (depending on the height of the components on the bottom of the module), although the feet on the developer kits may have to be removed.

Figure 2-9. Mechanical Limits Interposer Module Outline

Note: See note under Figure 2-8

Chapter 3. GMSL Interposer Board

An alternative to connecting CSI cameras directly to the Jetson module is to use a GMSL link with a serializer at the camera end and a deserializer near Jetson. This allows for much longer distances between the camera and the Jetson platform. This chapter provides guidelines for designing an interposer board including a GMSL deserializer to be plugged in the developer kit carrier board camera connector (J509). The information provided here should also help with the design of a custom design integrating a GMSL deserializer.

Note: The Maxim MAX96712 GMSL to CSI deserializer is used as an example in this section. If a different deserializer is used, the signal mapping, control interfaces and signals may be different.

Items to be checked:

- Signal mapping from camera connector to deserializer
- Control signals and interfaces
- Camera connector pinout (see previous section)
- Mechanical dimension requirements (see previous section)
- Power distribution and usage (see previous section)

System Setup

The system setup includes:

- Jetson AGX Xavier or Jetson AGX Orin Developer Kit
- Camera Interposer Module with GMSL deserializer
 - Up to 36 cameras can be supported by using an aggregator and the NVIDIA® Xavier™ virtual channel feature
- GMSL Camera Sensor modules

3.2 GMSL Interposer Board/Module

The section details the camera interposer module for Jetson AGX Xavier series or Jetson AGX Orin series.

Figure 3-1. GMSL Interposer Board Example

3.2.1 GMSL Camera Sensor Module

Figure 3-2 is the block diagram for a GMSL camera sensor module.

CAM #1 & #2 (2, x4 lane cameras shown) GMSL2 Serializer CSI DCOP, DCON SIOAP 49.9Ω,1%^{0.22}uF CKCP, CKCN DC1P, DC1N **SIOAN SIOBP** 49.9Ω,1%^{0.22}uF DDOP, DDON **SIOBN** CKDP, CKDN DD1P, DD1N **SIOCP** 49.9Ω,1%^{0.22}uF SIOCN DEOP, DEON CKEP, CKEN SIODP 49.9Ω,1%^{0.22}uF DE1P, DE1N SIODN DFOP, DFON CKFP, CKFN DF1P, DF1N 12C1 OSC 12C2 *AF Flash Flash

Figure 3-2. GMSL Camera Sensor Module Block Diagram

3.3 Jetson to DeSerializer Connections

Jetson AGX Xavier and Jetson AGX Orin support MIPI CSI D-PHY and C-PHY modes. The MAX96712 device is designed to support either type of CSI camera. Depending on the requirements for the design, the CSI C-PHY remapping registers may need to be programmed to match either Mapping option in Table 3-2. Xavier and Orin do not support this flexible swizzling of the signals in D-PHY mode.

- ▶ If a design will support only C-PHY or only D-PHY cameras, the signals can be routed to match either Mapping #1 or Mapping #2. The pins would then be routed to the deserializer based on their D-PHY or C-PHY signals.
- ▶ If a design requires support for both D-PHY and C-PHY cameras, the Mapping #2 must be used. This aligns the D-PHY and C-PHY signals so they can be routed to the deserializer correctly for both CSI types.

Figure 3-3 and Figure 3-4 show both approaches.

Figure 3-3. Signal Routing using Default Xavier and Orin Mapping

D-PHY Only

C-PHY Only

Note: This signal routing connects the Xavier default signals to the Maxim deserializer. This will not work for both D-PHY and C-PHY cameras on the other end of the GMSL link for this deserializer. One or the other would work, depending on how the connections are made.

Figure 3-4. Signal Routing with Xavier and Orin C-PHY Swizzle Mapping

Note: Since Xavier and NVIDIA Orin only support the signal swizzling shown in Figure 3-4 for C-PHY mode, this method will work for both D-PHY and C-PHY cameras on the other end of the GMSL link for this deserializer. The swizzle registers should be set as follows:

- POLARITY SWIZZLE CPHYO A (control for lane 0): 000 = ABC to ABC
- POLARITY SWIZZLE CPHY1 A (control for lane 1): 010 = ABC to BCA

If a different deserializer is used, the swizzle settings may need to be set differently. Check the deserializer specification carefully.

Table 3-1 lists the Xavier and NVIDIA Orin Swizzle register fields. For C-PHY, there are six options for either of the upper (Lane 1) and lower (Lane 0). For D-PHY there are only options to swap the polarity of the signals. The table also lists the options. These can be found in the Xavier Series System-on-Chip Technical Reference Manual or Orin Series System-on-Chip Technical Reference Manual

Note: Note that the swizzling can only remap all trios in Lane 0 or Lane 1 of each two lane block the same.

Table 3-1. Xavier and Orin Internal CSI Swizzle Register Bit Fields

NVCSI_PHY_0_NVCSI_CIL_A_POLARITY_SWIZZLE_CTRL_0								
Bit	Reset	Description						
13:11	0x0	POLARITY_SWIZZLE_CPHY1_A:						
		Polarity Swizzle control for Lane A1 in CPHY mode. valid only in CPHY mode						
		000 - A B C> A B C						
		001 - A B C> A C B						
		010 - A B C> B C A						
		011 - A B C> B A C						

NVCSI_PHY_0_NVCSI_CIL_A_POLARITY_SWIZZLE_CTRL_0									
Bit	Reset	Description							
		100 - A B C> C A B							
		101 - A B C> C B A							
10:8	0x0	POLARITY_SWIZZLE_CPHY0_A:							
		Polarity Swizzle control for Lane A0 in CPHY mode. valid only in CPHY mode							
		000 - A B C> A B C							
		001 - A B C> A C B							
		010 - A B C> B C A							
		011 - A B C> B A C							
		100 - A B C> C A B							
		101 - A B C> C B A							
1	0x0	POLARITY_SWIZZLE_DPHY1_A:							
		Polarity Swizzle control for Lane A1. register bit valid only in DPHY mode.							
0	0x0	POLARITY_SWIZZLE_DPHY0_A:							
		Polarity Swizzle control for Lane A1. register bit valid only in DPHY mode.							

3.3.1 **CSI Connections**

Table 3-2 shows that the two mappings described previously. Mapping #1 is the default signal mapping for Xavier or NVIDIA Orin. Mapping #2 matches the requirements for the MAX96712 deserializer.

Table 3-2. SoC to Serializer C-PHY Signal Mapping

Signal Name	Mapping #1	Mapping #2	Signal Name	Mapping #1	Mapping #2
CSI_A_D0_P	CPHY_A0_A	CPHY_A0_A	CSI_E_D0_P	CPHY_E0_A	CPHY_E0_A
CSI_A_D0_N	CPHY_A0_B	CPHY_A0_B	CSI_E_D0_N	CPHY_E0_B	CPHY_E0_B
CSI_A_CLK_P	CPHY_A0_C	CPHY_A0_C	CSI_E_CLK_P	CPHY_E0_C	CPHY_E0_C
CSI_A_D1_P	CPHY_A1_A	CPHY_A1_B	CSI_E_D1_P	CPHY_E1_A	CPHY_E1_B
CSI_A_D1_N	CPHY_A1_B	CPHY_A1_C	CSI_E_D1_N	CPHY_E1_B	CPHY_E1_C
CSI_A_CLK_N	CPHY_A1_C	CPHY_A1_A	CSI_E_CLK_N	CPHY_E1_C	CPHY_E1_A
CSI_B_D0_P	CPHY_B0_A	CPHY_B0_A	CSI_F_D0_P	CPHY_F0_A	CPHY_F0_A
CSI_B_D0_N	CPHY_B0_B	CPHY_B0_B	CSI_F_D0_N	CPHY_F0_B	CPHY_F0_B
CSI_B_CLK_P	CPHY_B0_C	CPHY_B0_C	CSI_F_CLK_P	CPHY_F0_C	CPHY_F0_C
CSI_B_D1_P	CPHY_B1_A	CPHY_B1_B	CSI_F_D1_P	CPHY_F1_A	CPHY_F1_B
CSI_B_D1_N	CPHY_B1_B	CPHY_B1_C	CSI_F_D1_N	CPHY_F1_B	CPHY_F1_C
CSI_B_CLK_N	CPHY_B1_C	CPHY_B1_A	CSI_F_CLK_N	CPHY_F1_C	CPHY_F1_A
CSI_C_D0_P	CPHY_C0_A	CPHY_C0_A	CSI_G_D0_P	CPHY_G0_A	CPHY_G0_A
CSI_C_D0_N	CPHY_C0_B	CPHY_C0_B	CSI_G_D0_N	CPHY_G0_B	CPHY_G0_B

Signal Name	Mapping #1	Mapping #2	Signal Name	Mapping #1	Mapping #2
CSI_C_CLK_P	CPHY_C0_C	CPHY_C0_C	CSI_G_CLK_P	CPHY_G0_C	CPHY_G0_C
CSI_C_D1_P	CPHY_C1_A	CPHY_C1_B	CSI_G_D1_P	CPHY_G1_A	CPHY_G1_B
CSI_C_D1_N	CPHY_C1_B	CPHY_C1_C	CSI_G_D1_N	CPHY_G1_B	CPHY_G1_C
CSI_C_CLK_N	CPHY_C1_C	CPHY_C1_A	CSI_G_CLK_N	CPHY_G1_C	CPHY_G1_A
CSI_D_D0_P	CPHY_D0_A	CPHY_D0_A	CSI_H_D0_P	CPHY_H0_A	CPHY_H0_A
CSI_D_D0_N	CPHY_D0_B	CPHY_D0_B	CSI_H_D0_N	CPHY_H0_B	CPHY_H0_B
CSI_D_CLK_P	CPHY_D0_C	CPHY_D0_C	CSI_H_CLK_P	CPHY_H0_C	CPHY_H0_C
CSI_D_D1_P	CPHY_D1_A	CPHY_D1_B	CSI_H_D1_P	CPHY_H1_A	CPHY_H1_B
CSI_D_D1_N	CPHY_D1_B	CPHY_D1_C	CSI_H_D1_N	CPHY_H1_B	CPHY_H1_C
CSI_D_CLK_N	CPHY_D1_C	CPHY_D1_A	CSI_H_CLK_N	CPHY_H1_C	CPHY_H1_A

3.4 Control Signals and Interfaces

The deserializer used as reference is the MAX96712 device. It has several interfaces and control signals including I2C, SPI, FSYNC, ERRB, LOCK, and PWDNB. These are described in the following sections.

3 4 1 12C

I2C is used as the control interface for the Maxim device as well as an option to pass through the GMSL link to control cameras. There are three I2C interfaces on the MAX96712 deserializer. An I2C mux can be used to supply the I2C interfaces. One option is to use the TCA9548PWR from TI, which is mentioned earlier in this document.

3.4.2 SPI

SPI is another interface that can be passed through the GMSL2 link for camera control. The MAX96712 supports up to two SPI interfaces, each with up to two chip selects. The Jetson AGX Xavier Developer Kit does not route SPI to the camera connector, so this option is available only to custom carrier board designs. The Jetson AGX Orin Developer Kit does route SPI to the camera connector. If used, it is recommended that the Jetson module is the initiator and the deserializer is the target.

Control and Handshake Signals 3.4.3

Signals for control and handshake with the descrializer can be connected to available GPIOs on the module. The developer kit camera connector has several available GPIO pins listed in Table 3-3. These are all 1.8V only pins.

Table 3-3. GPIO Pin Description

Pin #	Pin Name
Pin 88	Pin 88 (MCLK03
Pin 90	GPI015
Pin 91	MCLK02
Pin 92	GPI016
Pin 93	UART4_CTS
Pin 94	MCLK04
Pin 95	UART4_TX
Pin 119	GPI025

The MAX96712 has control signals such as LOCK, ERRB, PWDNB, and FRSYNC. These can each be connected to one of the GPIOs on the camera connector, or other available GPIOs for a custom carrier board design. The FRSYNC signal can be used in the following three ways listed. For the first two cases, any GPIO will work. For the last one that requires PWM functionality, a Jetson pin supporting this must be used. The developer kit camera connector does not have a pin with PWM capability.

- If FSYNC must be a periodic signal but does not need high accuracy (in terms of jitter), then software can be used with a GPIO signal already on the 120-pin camera connector (of developer kit).
- ▶ If FSYNC is a one-shot signal, a GPIO can be used.
- ▶ If FSYNC must be a periodic signal with low jitter, PWM can be used. PWM functionality is supported on the following listed pins. See the pin mux or technical reference manual for more information.
 - GPI035 (GP_PWM5)
 - FAN PWM (GP PWM4)
 - PWM01 (GP PWM8)
 - GPI027 (GP PWM1)

Chapter 4. SLVS-EC Camera

SLVS Camera Connections for <u>4</u> 1 Developer Kit

This section is to be used when designing a camera module for use with the Jetson AGX Xavier Developer Kit carrier board PCIe x16 connector (J6) which supports SLVS (shared with PCIe interface).

Note: Only Jetson AGX Xavier supports SLVS. Jetson AGX Xavier Industrial (JAXi) and Jetson AGX Orin do not support SLVS.

Items to be checked:

- Power distribution and usage
- ► I2C addressing (If required)
- ▶ EEPROM selection and control
- Pinout table
- Mechanical: connector and board outline

4.1.1 System Setup

- Jetson AGX Xavier Developer Kit
- ► SLVS Camera Board/Interposer Module
- SI VS Camera Sensor Module

Figure 4-1. Jetson AGX Xavier Developer Kit Carrier Board

4.1.2 SLVS Developer Kit Camera Connections

This section covers the connections required for an SLVS board to plug into the Jetson AGX Xavier developer kit carrier board. As well as for a board or module to connect to a custom carrier board designed around Jetson AGX Xavier.

Jetson AGX Xavier **Carrier Board** Jetson PCIe/SLVS Conn. SLVS Input SLVS-EC SLVS-EC SLVS 8x lane REFCLK -REFCLK-MUX Clock Buffer LVDS-CMOS OUT DIFF DIFF DIFF OUT OUT To Camera Sensor Module 3.3V 1.8V XHS Level XVS SPI / I2C O I2C (Alternative to SPI) VCC_SRC (SYS_VIN_HV) 12V Reg **12V** SLVS Sensor VDD 12V GPIO23 Module Conn. VDD 3V3 VDD_3V3 3.3V Load **GPIO05**

Figure 4-2. Developer Kit SLVS Camera Connection Block Diagram

Note:

- An SLVS board designed to plug into the PCIe connector on the Jetson AGX Xavier Developer Kit carrier board must implement level shifters on the XHS and XVS signals as these are connected to PCIe CLKREQ and RST signals on the carrier board that are pulled to 3.3V.
- For details related to the oscillator, clock buffer, and LVDS-CMOS converter circuit, see the Custom Carrier Board section.

4.1.3 SLVS Camera Sensor Module

Figure 4-3 is a block diagram for a camera sensor module when there are multiple camera sensors.

Figure 4-3. SLVS Camera Sensor Module Block Diagram

Developer Kit SLVS Connector Pinout Tables 4.1.4

This section contains the pinout table, which provides the camera's connector pins listing and description.

Table 4-1. Developer Kit SLVS Connector Pinout

Pin #	Module Pin Name	Module Pin #s	Usage/Description	Type/ Direction	Pin #	Module Pin Name	Module Pin #s	Usage/Description	Type/ Direction
A1	-	-	Ground	Ground	B1				
A2 A3	-	-	12V Supply	Power	B2 B3	-	-	12V Supply	Power
A4	-	-	Ground	Ground	B4	_	-	Ground	Ground
A5	SPI2_SCK	E61	SPI 2 Clock	Output	B5	I2C_GP0_CLK		General I2C #0 Clock	Bidir/OD
A6	SPI2_MISO	D62	SPI 2 Master In/Slave Out	Input	B6	I2C_GP0_DAT		General I2C #0 Data	Bidir/OD
A7	SPI2_MOSI	F60	SPI 2 Master Out/Slave In	Output	B7	-	_	Ground	Ground
A8	SPI2_CS0	D60	SPI 2 Chip Select #0	Output	B8	-	-	3.3V supply	Power
A9			3.3V supply	Power	B9	SPI3_MISI	D56	SLVS XCLR	Output
A10	-	-	3.3v Supply	Power	B10	-	-	3.3V Auxiliary supply	Power
A11	PEX_L5_RST_N GPI019 (See Note 1)	H10 K56	PCIe Lane 0 Reset	Output	B11	PEX_WAKE_N SPI3_MOSI	A8 G56	PCIe Wake (Shared) SLVS XCE	Input
A12	-	-	Ground	Ground	B12	PEX_L5_CLKREQ_N GPI018 (See Note 3)	C8 C55	PCIe (#5) Clock Req. SLVS XHS	Bidir
A13	PEX_CLK5_P (Note 2) NVHS_SLVS_REFCLK _P	F24 E30	PCIe (#5) Ref Clock Output or	See	B13	-	-	Ground	Ground
A14	PEX_CLK5_N (Note 2) NVHS_SLVS_REFCLK _N	F25 E31	SLVS Ref Clock Input	Usage/ Desc	B14	NVHS0_TX0_P	H24	PCIe (#5) Lane 0 Transmit	Output
A15	-	-	Ground	Ground	B15	NVHS0_TX0_N	H25		
A16	NVHS0_SLVS_RX0_P	D24	PCIe (#5) or SLVS Lane 0	11	B16	_	-	Ground	Ground
A17	NVHS0_SLVS_RX0_N	D25	Receive	Input	B17	-	-	PRSNT2 - No connect	NC
A18	-	-	Ground	Ground	B18	-	-	Ground	Ground
A19	-	-	Reserved	Reserved	B19	NVHS0_TX1_P	K25	PCIe (#5) Lane 1 Transmit	Output
A20	-	-	Ground	Ground	B20	NVHS0_TX1_N	K24	r Gre (#3) Larie i Transmit	Output
A21	NVHS0_SLVS_RX1_P	B25	PCIe (#5) or SLVS Lane 1	Input	B21	_	_	Ground	Ground
A22	NVHS0_SLVS_RX1_N	B24	Receive		B22				

Pin		Module		Type/	Pin		Module		Type/
#	Module Pin Name	Pin #s	Usage/Description	Direction	#	Module Pin Name	Pin #s	Usage/Description	Direction
A23			0	0	B23	NVHS0_TX2_P	G27	PCIe (#5) Lane 2 Transmit	0
A24	_	-	Ground	Ground	B24	NVHS0_TX2_N	G26	PCIE (#5) Lane Z Transmit	Output
A25	NVHS0_SLVS_RX2_P	C27	PCIe (#5) or SLVS Lane 2	laat	B25			0	0
A26	NVHS0_SLVS_RX2_N	C26	Receive	Input	B26	-	-	Ground	Ground
A27		_	Ground	Ground	B27	NVHS0_TX3_P	J26	PCIe (#5) Lane 3 Transmit	Output
A28	_	_	Ground	Ground	B28	NVHS0_TX3_N	J27	Pole (#3) Lane 3 Transmit	Output
A29	NVHS0_SLVS_RX3_P	A26	PCIe (#5) or SLVS Lane 3	Innut	B29	_	-	Ground	Ground
A30	NVHS0_SLVS_RX3_N	A27	Receive	Input	B30	PWM01	K57	SLVS Focus PWM	Output
A31	_	-	Ground	Ground	B31	-	-	PRSNT2 – No connect	NC
A32	GPI027	H52	SLVS IRIS PWM	Output	B32	-	-	Ground	Ground
A33	_	-	Reserved	Reserved	B33	NVHS0_TX4_P	H28	PCIe (#5) Lane 4 Transmit	Output
A34	_	-	Ground	Ground	B34	NVHS0_TX4_N	H29	role (#3) Lalle 4 Transmit	Output
A35	NVHS0_SLVS_RX4_P	D28	PCIe (#5) or SLVS Lane 4	Input	B35		_	Ground	Ground
A36	NVHS0_SLVS_RX4_N	D29	Receive	IIIput	B36			oround	Ground
A37		_	Ground	Ground	B37	NVHS0_TX5_P	K29	PCIe (#5) Lane 5 Transmit	Output
A38	-	_	Oround	Ground	B38	NVHS0_TX5_N	K28	role (#J) Lalle J Transillit	Output
A39	NVHS0_SLVS_RX5_P	B29	PCIe (#5) or SLVS Lane 5	Input	B39	_	_	Ground	Ground
A40	NVHS0_SLVS_RX5_N	B28	Receive	Прис	B40			Orodila	Orodila
A41	_	_	Ground	Ground	B41	NVHS0_TX6_P	G31	PCIe (#5) Lane 6 Transmit	Output
A42	_		Oround	Oround	B42	NVHS0_TX6_N	G30	Tote (#3) Latte o Transmit	Output
A43	NVHS0_SLVS_RX6_P	C31	PCIe (#5) or SLVS Lane 6	Input	B43	_	_	Ground	Ground
A44	NVHS0_SLVS_RX6_N	C30	Receive	Прис	B44			Orodila	Orodila
A45		_	Ground	Ground	B45	NVHS0_TX7_P	J30	PCIe (#5) Lane 7 Transmit	Output
	_	_	Oround	Ground	B46	NVHS0_TX7_N	J31	TOTE (#J) Latte / Transfillt	Output
A47	NVHS0_SLVS_RX7_P	A30	PCIe (#5) or SLVS Lane 7	Input	B47	-	-	Ground	Ground
A48	NVHS0_SLVS_RX7_N	A31	Receive	mput	B48	_	-	PRSNT2 – No connect	NC
A49	-	-	Ground	Ground	B49	-	-	Ground	Ground

- 1. PEX L5 RST N and GPI019, PEX L5 CLKREQ N and GPI018, PEX WAKE N and SPI3 MOSI are tied together on the carrier board and the PCIe control signals are pulled to 3.3V on the module. If any of these SLVS control signals operate at 1.8V on the camera module, level shifters will be required.
- 2. The selection for either PEX_CLK5_P/N or NVHS_SLVS_REFCLK_P/N is determined by a mux on the carrier board. The mux is controlled by the module GPI06 pin (low = PEX_CLK5, high = SLVS_REFCLK.
- 3. This table shows only the PCIe x8 section of the connector as this is the only portion used. The rest of the x16 signal connections are NCs (except GND pins).
- 4. In the Type/Dir column, Output is to the PCIe connector. Input is from the PCIe connector. Bidir is for bidirectional signals.

Legend	Ground	Power	Reserved

4.1.5 SLVS Power

Power sources from the NVIDIA Jetson connector are listed in Table 4-2.

Table 4-2. SI VS Power Source

Connector Pin Name	Net Name	Specification	Note
+12V	VDD_12V	12.0V, 3A maximum supported across the five +12V power pins.	This power rail is enabled by the GPI005 signal from the module. The enable defaults to on.
+3.3V	PEX_3V3	3.3V, 3A maximum supported across the three +3.3V power pins.	This power rail is enabled by the GPI027 signal from the module. The enable defaults to on.
+3.3VAUX	VDD_3V3	3.3V, 1A maximum supported on the single +3.3VAUX power pin.	This is an 'always on' power, so it is not recommended to use it as a power source requiring power sequence.

Since the power supplies in Table 4-2 are all on by default, if the SLVS camera or associated circuitry requires any specific power sequencing, this should be handled on the interposer board.

4.1.6 SLVS Components

This section details the components for SLVS camera module.

4.1.6.1 SLVS EEPROM

SLVS Camera boards or modules are not required to include an EEPROM but can be included to allow Jetson to dynamically detect the interposer board/camera module. If implemented, the following requirements should be met:

- ► Camera interposer module EEPROM power rail should be 'ON' by default.
- ► Features:
 - 2 Kbit (256 × 8)
 - I2C-compatible up to 400 KHz (FM) at 1.8V
 - AT24C02D from Atmel is recommended
- ▶ The EEPROM structure is the same as in Table 2-4 in Chapter 2.

4162 Jetson SLVS Camera Connector

The PCIe connector on the Jetson AGX Xavier carrier board is an Amphenol 10146065-113Y0LF.

Jetson SLVS PCIe Form Factor Camera Connector Figure 4-4.

417 SLVS Mechanical

The NVIDIA Jetson AGX Xavier Developer Kit supports a standard PCIe x16 connector and can support up to a full-size PCIe card. The following figure shows some of the PCIe specification dimensions for a full-size x16 card. Only the x8 portion of the connector is used. The figure is shown as a reference only. An actual SLVS card could use just x8 fingers and be smaller than what is shown. There are no obstructions that would preclude having the board exceed the dimensions shown for length or height.

Figure 4-5. PCIe Form Factor Interposer Module Dimensions

Notes:

- 1. This is the maximum allowed for a single slot PCIe card. However, a triple slot card can be up to 55.12 mm max. Since the component side of the board faces away from the developer kit, the height restrictions do not need to be met.
- 2. The PCIe board solder side faces the developer kit heat sink. There is ~7 mm between the back of the board to the heat sink, so the solder side max height restriction could be violated somewhat. However, components should be kept from getting too close to the heat sink to avoid possible thermal or electrical shorting issues.

SLVS Connections for Customer 4.2 Carrier Board

The following figure shows the connections required for a custom carrier board.

Custom Carrier Board SLVS Camera Connection Details Figure 4-6.

Notice

The information provided in this specification is believed to be accurate and reliable as of the date provided. However, NVIDIA Corporation ("NVIDIA") does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This publication supersedes and replaces all other specifications for the product that may have been previously supplied.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and other changes to this specification, at any time and/or to discontinue any product or service without notice. Customer should obtain the latest relevant specification before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer. NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this specification.

Unless specifically agreed to in writing by NVIDIA, NVIDIA products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer's own risk.

NVIDIA makes no representation or warranty that products based on these specifications will be suitable for any specified use without further testing or modification. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer's sole responsibility to ensure the product is suitable and fit for the application planned by customer and to do the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer's product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this specification. NVIDIA does not accept any liability related to any default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this specification, or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this specification. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA. Reproduction of information in this specification is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without alteration, and is accompanied by all associated conditions, limitations, and notices.

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the NVIDIA terms and conditions of sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, Jetson, Jetson AGX Xavier, NVIDIA Orin, and Xavier are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

ARM

ARM, AMBA and ARM Powered are registered trademarks of ARM Limited. Cortex, MPCore and Mali are trademarks of ARM Limited. All other brands or product names are the property of their respective holders. "ARM" is used to represent ARM Holdings plc; its operating company ARM Limited; and the regional subsidiaries ARM Inc.; ARM KK; ARM Korea Limited.; ARM Taiwan Limited; ARM France SAS; ARM Consulting (Shanghai) Co. Ltd.; ARM Germany GmbH; ARM Embedded Technologies Pvt. Ltd.; ARM Norway, AS and ARM Sweden AB.

Copyright

© 2019 – 2022 NVIDIA Corporation. All rights reserved. a

