Lógica para Computação

Profa. Dra. Viviane Menezes

vivianemenezes@ufc.br

Linguagem Formal

Termo

- Qualquer variável é um termo;
- Uma constante é um termo;
- Um símbolo funcional é um termo.

$$t ::= x \mid c \mid f(t_1, \dots, t_n)$$

Linguagem Formal

Fórmulas

- Um predicado é uma fórmula
- \blacksquare Se φ é uma fórmula $\neg \varphi$ é uma fórmula
- Se φ e ψ são fórmulas $\varphi \wedge \psi$, $\varphi \vee \psi$, $\varphi \rightarrow \psi$ é uma fórmula.
- Se φ é uma fórmula $\exists x \varphi$ e $\forall x \varphi$ também são fórmulas.

$$\varphi ::= P(t_1, \cdots, t_n) \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \rightarrow \varphi \mid \exists x \varphi \mid \forall x \varphi$$

Árvores de Análise

- \blacksquare $\forall x$ e $\exists x$ formam nós e possuem apenas um filho;
- Predicados $P(t_1, t_2, \dots, t_n)$ tem P como nó e P tem n filhos.

Árvores de Análise

Construa as seguintes árvores de análise:

- $(\forall x (P(x) \land Q(x))) \rightarrow (\neg P(x) \lor Q(y))$

Árvores de Análise

- Variáveis livres
- Variáveis presas.

Dada uma variável x, um termo t e uma fórmula φ , definimos:

$$\varphi[t/x]$$

para a fórmula obtida de φ substituindo-se cada ocorrência livre da variável x em φ

Exemplos

- $\varphi[f(x,y)/x]$, sendo

Exemplos

- $\varphi[f(x,y)/x], \text{ sendo}$

- $\blacksquare \varphi[f(x,y)/x]$, sendo

- termo livre
- termo preso

- termo livre
- termo preso

Definição

Dados um termo t, uma variável x e uma fórmula φ , dizemos:

t é livre para x em φ se

nenhuma folha livre de x ocorre no escopo de $\forall y$, $\exists y$ para qualquer variável y ocorrendo em t.

Exercício

Seja φ a fórmula $\exists x (P(y,z) \land (\forall y (\neg Q(y,x) \lor P(y,z))))$:

- Construa a árvore de análise de φ .
- Identifique todas as variáveis livres e presas.
- Compute:

 - $\varphi[f(x)/y].$
- O termo f(x) é livre para y em φ ?

Dedução Natural -Lógica de Predicados

```
Eliminação do Quantificador Universal (\forall)
\vdots \qquad \vdots \qquad \vdots \\ \text{m.} \qquad \forall x \varphi(x) \\ \vdots \qquad \vdots \qquad \vdots \\ \text{n.} \qquad \varphi[x0/x] \qquad \forall \text{e m}
```

se φ é verdade para todos os x, φ é verdade para um x_0 específico.

Exemplo 1:

 $P(x0), \forall x(P(x) \rightarrow \neg Q(x)) \vdash \neg Q(x0)$

```
Introdução do Quantificador Universal (\forall)

\vdots \qquad \vdots \qquad \vdots \\
m. \qquad x0 \\
\vdots \qquad \vdots \qquad \vdots \\
n. \qquad \varphi(x0) \\
n+1. \qquad \forall x\varphi[x/x0] \qquad \forall i \ m-n
```

se φ é verdade para um x_0 arbitrário, φ é verdade para todo x.

Exemplo 2:

 $\blacksquare \forall x (P(x) \rightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)$

se φ é verdade para um x0 específico, então existe um x em que φ é verdade.

Exemplo 3:

 $\blacksquare \forall x P(x) \vdash \exists x P(x)$

```
Eliminação do Quantificador Existencial
                    \exists x \varphi(x)
 m.
                    x0 \varphi[x0/x]
                                    hipótese
   n.
   p.
                               ∃e m, n-p
   p + 1.
```

se φ é verdade para pelo menos um 'valor' de x e se, a partir da suposição que φ é verdade para um x_0 genérico, pudermos demonstrar χ . Então, χ é verdade.

Exemplo 4:

 $\blacksquare \forall x (P(x) \rightarrow Q(x)), \exists x P(x) \vdash \exists x Q(x)$

Exercícios

- $\exists x P(x), \forall x \forall y (P(x) \to Q(y)) \vdash \forall y Q(y)$
- $\exists x \neg P(x) \vdash \neg \forall x P(x)$