

#### 28/AGOSTO

**MEDIDAS DE** 

CORRELACIÓN



#### Correlación

## Sentido

creciente o positiva / decreciente o negativa

### Forma

lineal / no lineal

## **Fuerza**

(dispersión en relación al patrón) fuerte / moderada / débil



# Correlación entre variables numéricas





#### Covarianza

$$cov_{x,y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$



1.00



#### Covarianza

$$cov_{x,y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

- Captura relaciones lineales
- El **signo** indica el sentido

#### Pero no está normalizada

(depende de las unidades de medida de las variables...)

¿Cuál es la versión normalizada de la covarianza?



$$r_{x,y} = \frac{cov_{x,y}}{S_x S_y}$$





















$$r_{x,y} = \frac{cov_{x,y}}{S_x S_y}$$

- Mide asociación lineal
- El **signo** indica sentido
- La magnitud indica la fuerza de relación lineal
- Está **normalizada** entre [-1,+1] (no depende de unidades de medida de las variables)

Puede medir asociaciones entre var. binaria y var. continua Es sensible a observaciones atípicas



## Correlación de Spearman

$$sp_{x,y} = r_{rank(x),rank(y)}$$









## Correlación de Spearman

$$sp_{x,y} = r_{rank(x),rank(y)}$$









## Correlación de Spearman

$$sp_{x,y} = r_{rank(x),rank(y)}$$

Es la correlación de Pearson del ranking de las variables.

- Mide asociaciones monótonas (captura no linealidades)
- El **signo** indica sentido
- La magnitud indica la fuerza de la relación
- Está normalizada entre [-1,+1]

Puede medir asociaciones entre var. binaria y var. continua Es más robusta a observaciones atípicas



# Correlación entre variables numéricas y categóricas









## TRA

#### Medidas de ANOVA



$$SS_{total} = \sum_{j=1}^{p} \sum_{i=1}^{n_j} (x_{ij} - \overline{x})^2$$

$$SS_{total} = SS_{between} + SS_{within}$$

$$SS_{between} = \sum_{j=1}^{p} n_j (\overline{x}_j - \overline{x})^2$$

$$SS_{within} = \sum_{j=1}^{p} \sum_{i=1}^{n_j} (x_{ij} - \overline{x}_j)^2$$

## TBA

#### Medidas de ANOVA





| term      | df  | sumsq      | meansq     | statistic | p.value  |
|-----------|-----|------------|------------|-----------|----------|
| x1        | 3   | 2624.9209  | 874.973630 | 410.979   | 0        |
| Residuals | 196 | 417.2837   | 2.128999   | NA        | NA       |
| term      | df  | sumsq      | meansq     | statistic | p.value  |
| x1        | 3   | 4.423538   | 1.4745128  | 1.695823  | 0.169229 |
| Residuals | 196 | 170.421436 | 0.8694971  | NA        | NA       |



### Medidas de ANOVA



$$\omega^{2} = \frac{SS_{B} - (p-1)(\frac{SS_{W}}{n-p})}{SS_{T} + \frac{SS_{B}}{p-1}}$$

#### omega-squared

$$\omega^2 = 0.86$$



Sobre los rangos de valores:

https://imaging.mrc-cbu.cam.ac.u k/statswiki/FAQ/effectSize



#### **ANOVA**

$$\omega^{2} = \frac{SS_{B} - (p-1)(\frac{SS_{W}}{n-p})}{SS_{T} + \frac{SS_{B}}{p-1}}$$

omega-squared

ANOVA generaliza el test t más allá de dos medias:

- H. nula: todas las medias son iguales
- H. alt.: al menos una media difiere

Podemos usar un effect size del test para medir la fuerza de la asociación entre una variable categórica y una continua.

Los p-valores nos hablan de la probabilidad de que exista un efecto. ¿Pero cuán relevante es ese efecto si existe?

→ El effect size es una medida normalizada de la magnitud del efecto



#### Medidas de ANOVA

#### **Atención**

Si las poblaciones se alejan mucho de la **normalidad** y hay **heterocedasticidad**:

- (a) Transformar con log(x), o bien
- (b) Usar Kruskal-Wallis + epsilon-squared (effect size)

Sobre los rangos de valores: los mismos que ANOVA



# Correlación entre variables categóricas





| region/equipo | Boca | River | Otros | Total |
|---------------|------|-------|-------|-------|
| Norte         | 11   | 150   | 15    | 176   |
| Sur           | 190  | 16    | 18    | 224   |
| Total         | 201  | 166   | 33    | 400   |

| region/equipo | Boca         | River        | Otros     | Total        |
|---------------|--------------|--------------|-----------|--------------|
| Norte         | 6.2% (11)    | 85.2% (150)  | 8.5% (15) | 100.0% (176) |
| Sur           | 84.8% (190)  | 7.1% (16)    | 8.0% (18) | 100.0% (224) |
| region/equipo | Boca         | River        | Otros     |              |
| Norte         | 5.5% (11)    | 90.4% (150)  | 45.5% (15 | j)           |
| Sur           | 94.5% (190)  | 9.6% (16)    | 54.5% (18 | 3)           |
| Total         | 100.0% (201) | 100.0% (166) | 100.0% (3 | 33)          |



#### V de Cramér

| region/equipo | Boca | River | Otros | Total |
|---------------|------|-------|-------|-------|
| Norte         | 11   | 150   | 15    | 176   |
| Sur           | 190  | 16    | 18    | 224   |
| Total         | 201  | 166   | 33    | 400   |

| region/equipo | Boca  | River | Otros | Total |
|---------------|-------|-------|-------|-------|
| Norte         | 88.4  | 73    | 14.5  | 175.9 |
| Sur           | 112.6 | 93    | 18.5  | 224.1 |
| Total         | 201.0 | 166   | 33.0  | 400.0 |

#### test chi-cuadrado

$$P(x,y) = P(x)P(y)$$
 independencia

$$p_{\cdot j} = rac{O_{\cdot j}}{N} = \sum_{i=1}^r rac{O_{i,j}}{N}$$

$$p_{i\cdot} = rac{O_{i\cdot}}{N} = \sum_{i=1}^c rac{O_{i,j}}{N},$$

frecuencias esperadas bajo independencia

$$E_{i,j} = Np_{i\cdot}p_{\cdot j},$$

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{i,j} - E_{i,j})^2}{E_{i,j}}$$

Fuente:



### V de Cramér

| V = A         | $\chi^2/n$                |
|---------------|---------------------------|
| $V - \bigvee$ | $\overline{min(k-1,r-1)}$ |

| region/equipo | Boca        | River       | Otros     | Total        |
|---------------|-------------|-------------|-----------|--------------|
| Norte         | 6.2% (11)   | 85.2% (150) | 8.5% (15) | 100.0% (176) |
| Sur           | 84.8% (190) | 7.1% (16)   | 8.0% (18) | 100.0% (224) |

| region/equipo | Boca         | River        | Otros       |
|---------------|--------------|--------------|-------------|
| Norte         | 5.5% (11)    | 90.4% (150)  | 45.5% (15)  |
| Sur           | 94.5% (190)  | 9.6% (16)    | 54.5% (18)  |
| Total         | 100.0% (201) | 100.0% (166) | 100.0% (33) |





#### V de Cramér

$$V = \sqrt{\frac{\chi^2/n}{\min(k-1,r-1)}}$$

El test chi-cuadrado mide independencia de atributos:

- H. nula: atributos independientes ("igualdad de perfiles")
- H. alt: lo contrario

El estadístico mide la diferencia entre las frecuencias observadas y esperadas bajo independencia.

Podemos usar el **effect size (V de Cramér)** para medir **asociación entre variables categóricas**. Varía entre 0 y 1.

Sobre los rangos de valores:

https://imaging.mrc-cbu.cam.ac.u k/statswiki/FAQ/effectSize



## Un problema

Pearson/spearman pueden ser ≈ 0 pero esto no implica independencia:



Tal vez nos interesa capturar patrones más raros... (e.g. no monótonos)







| K |   | A | В | C | D |
|---|---|---|---|---|---|
|   | A | 0 | 1 | 2 | 3 |
|   | В | 1 | 0 | 1 | 2 |
|   | С | 2 | 1 | 0 | 1 |
|   | D | 3 | 2 | 1 | 0 |
|   | Α |   | В |   | С |

|   | Α     | В     | C     | D     |
|---|-------|-------|-------|-------|
| Α | -1.75 | -0.25 | 0.75  | 1.25  |
| В | -0.25 | -0.75 | 0.25  | 0.75  |
| C | 0.75  | 0.25  | -0.75 | -0.25 |
| D | 1.25  | 0.75  | -0.25 | -1.75 |

|   | A | В | C | D |  |
|---|---|---|---|---|--|
| А | 0 | 1 | 2 | 3 |  |
| В | 1 | 0 | 1 | 2 |  |
| С | 2 | 1 | 0 | 1 |  |
| D | 3 | 2 | 1 | 0 |  |

|   | Α     | В     | C     | D     |
|---|-------|-------|-------|-------|
| Α | -1.75 | -0.25 | 0.75  | 1.25  |
| В | -0.25 | -0.75 | 0.25  | 0.75  |
| C | 0.75  | 0.25  | -0.75 | -0.25 |
| D | 1.25  | 0.75  | -0.25 | -1.75 |

matrices de distancias

matrices centradas

A B C D

.328125 0.078125 0.078125 0.328125

"distance covariance" por obs.



$$a_{j,k}=\|X_j-X_k\|, \qquad j,k=1,2,\ldots,n, \qquad ext{matrices de} \ b_{j,k}=\|Y_j-Y_k\|, \qquad j,k=1,2,\ldots,n, \qquad ext{distancias}$$

$$A_{j,k}:=a_{j,k}-ar{a}_{j\cdot}-ar{a}_{\cdot k}+ar{a}_{\cdot\cdot}, \qquad B_{j,k}:=b_{j,k}-ar{b}_{j\cdot}-ar{b}_{\cdot k}+ar{b}_{\cdot\cdot}, \quad extit{matrices centradas}$$

$$\mathrm{dCov}_n^2(X,Y) := rac{1}{n^2} \sum_{j=1}^n \sum_{k=1}^n A_{j,k} \, B_{j,k}.$$
 distance covariance

$$\mathrm{dVar}_n(X) := \mathrm{dCov}_n^2(X,X) = rac{1}{n^2} \sum_{k,\ell} A_{k,\ell}^2, \;\; extit{distance variance}$$

$$\mathrm{dCor}(X,Y) = \frac{\mathrm{dCov}^2(X,Y)}{\sqrt{\mathrm{dVar}(X)~\mathrm{dVar}(Y)}},$$









dCor = 0



|   | A    | В    | C    | D    |
|---|------|------|------|------|
| Α | -1.5 | -1.5 | 1.5  | 1.5  |
| В | -1.5 | -1.5 | 1.5  | 1.5  |
| С | 1.5  | 1.5  | -1.5 | -1.5 |
| D | 1.5  | 1.5  | -1.5 | -1.5 |

|   | A | В | C | D |  |
|---|---|---|---|---|--|
| Α | 0 | 3 | 0 | 3 |  |
| В | 3 | 0 | 3 | 0 |  |
| С | 0 | 3 | 0 | 3 |  |
| D | 3 | 0 | 3 | 0 |  |



matrices de distancias

matrices centradas

dCov por obs.

## TBA

## **Distance Correlation (dCor)**



dCor = 0.53



0.0448

0.0128

0.0768

0.0128

dCov por obs.

matrices de

distancias

matrices

centradas





#### Otros:

→ <u>HSIC</u> (Hilbert-Schmidt Independence Criterion)

→ MIC (Maximal Mutual Information) (Murphy 6.3)

Fuente: <a href="https://en.wikipedia.org/wiki/Distance\_correlation">https://en.wikipedia.org/wiki/Distance\_correlation</a>



#### **Lecturas recomendadas**

- Statistical Reasoning in the Behavioral Sciences (King et al, 2018)
- Handbook of Parametric and Nonparametric Statistical Procedures (Sheskin, 2011) Table 1.20
- Probabilistic Machine Learning (Murphy, 2022) Cap. 3.1
- Measures of Association: How to Choose? (Khamis, 2008)
- The need to report effect size estimates revisited (Tomczak y Tomczak, 2014)