Лабораторная работа №3 Изучение пластинчатого регулируемого насоса

Цель работы: изучить конструкцию пластинчатого регулируемого насоса и определить его основные параметры.

3.1 Общие сведения

Благодаря малым габаритным размерам и несложной конструкции, пластинчатые гидромашины широко применяются в гидроприводах станков, автоматических линий и других стационарных машин, работающих в закрытых помещениях. Пластинчатый регулируемый насос типа Γ 12-53 работает при давлении p=6,3 МПа, частоте вращения n=1450 об/мин и номинальной подаче Q=24,6 л/мин.

Рисунок 3.1. – Конструкция насоса типа Γ 12-53

Конструкция насоса данного типа представлена на рисунке 3.1. В корпусе *I* и крышке 2, скрепленных винтами, установлен рабочий комплект. Комплект состоит из ротора *18* с пластинами *22*, подвижного внутреннего кольца статора *23*, неподвижного наружного кольца статора *24*, плоского распределительного диска *4* и распределительного диска *17* с уплотнительной шейкой. Рабочий комплект скреплен двумя винтами *33*. Ротор шейками установлен в подшипники скольжения *5*, *16* и посажен на шлицы вала *15*, свободно вращающегося в шариковых подшипниках.

Плоский диск имеет окно 20 для всасывания и вспомогательное окно 6 для нагнетания рабочей жидкости. Диск с шейкой имеет вспомогательное окно всасывания 19, окно нагнетания 10 и отверстия 12 для подвода рабочей жидкости под пластины. В корпусе закреплен качающейся узел внутреннего статора, включающий в себя неподвижную 31 и подвижную 32 опоры.

В отверстии наружного кольца статора установлен ограничитель 21, поддерживающий внутреннее кольцо статора при остановке насоса. В корпусе расположен регулировочный винт 35, перемещающийся в резьбовой гайке 34. С противоположной стороны корпуса расположен механизм регулирования подачи насоса, состоящий из корпуса регулятора 30, плунжера 29, пружины 28, упора 27 и винта 26 с герметичной гайкой 25. Вал наоса уплотняется манжетой 14, установленной во фланце 13.

При вращении вала с ротором, пластины (под действие центробежной силы в момент запуска и давления рабочей жидкости при работе) прижаты к рабочей поверхности внутреннего кольца статора и перемещаются в пазах ротора копируя профиль рабочей поверхности статора. При этом объем камеры между пластинами увеличивается во время соединения ее с окнами всасывания в дисках и заполняется рабочей жидкостью. Во время соединения с окнами нагнетания объем камеры уменьшается и жидкость вытесняется через эти окна. Под действием давления жидкости рабочий комплект прижимается к торцу крышки. Внутреннее кольцо статора имеет меньшую высоту, чем наружное кольцо. Это обеспечивает перемещение внутреннего кольца при регулировании подачи насоса. Механизм регулирования подачи насоса позволяет автоматически, в зависимости от величины давления на выходе, изменять величину эксцентриситета внутреннего кольца статора относительно ротора. Пружина 28 стремится установить внутреннее кольцо статора с максимальным эксцентриситетом, т.е. в положение, соответствующее наибольшей подаче.

Давление рабочей жидкости, нагнетаемой насосом, действует на рабочую поверхность внутреннего кольца статора и стремится его сдвинуть в сторону уменьшения эксцентриситета. Когда давление рабочей жидкости преодолевает усилие пружины, внутреннее кольцо статора передвигается в сторону уменьшения эксцентриситета, следовательно, уменьшается подача насоса. Регулировочный винт 35 служит для настройки насоса на необходимую максимальную подачу. Отвод утечек рабочей жидкости производится через штуцер 9 в крышке насоса.

3.2 Описание опытной установки

Схема лабораторной установки представлена на рисунке 3.2. Она включает электродвигатель 4 и регулируемый пластинчатый насос 3. Для

предохранения системы от перегрузок служит предохранительный клапан 6. Для очистки рабочей жидкости на всасывающей магистрали установлен фильтр 1. Измерение давления всасывания и нагнетания производится вакуумметром 2 и манометром 5. Распределитель 7 переключает направление потока жидкости к мотору 10 или цилиндру 9. Гидроцилиндр используемый в установке с одной рабочей полостью и распределитель 8 служит для переключения рабочего и обратного хода гидроцилиндра. Жидкость всасывается насосом и сливается из системы в бак 11.

Рисунок 3.2. – Схема опытной установки

Регулирование насоса осуществляется винтом на крышке насоса. Измерение расхода и частоты вращения мотора осуществляются расходомером и тахометром (на схеме условно не показаны).

3.3 Порядок проведения работы

- 1) Переключателем на передней панели установить распределитель 7 в правое положение (жидкость подается к гидромотору)
- 2) Регулировочным винтом насоса установить минимальное давление в системе (контролируя его по манометру 5).
- 3) Измерить объем жидкости, давление и частоту вращения и записать эти значения в таблицу 4.1.
 - 4) Опыт повторить 8...10 раз при различных значениях давления. Данные экспериментов и расчетов заносятся в таблицу 3.1.

3.4 Обработка результатов измерений

	2	2) Опр	еделить р	асход жиді	кости, пр	оходяц	цей через ги	ідромотор			
по	фор	омуле -									
	$Q_{\scriptscriptstyle{ ext{TM}}} = rac{V_{\scriptscriptstyle{ ext{Oft}}} \cdot n_{\scriptscriptstyle{ ext{TM}}}}{\eta_{\scriptscriptstyle{ ext{of.rm}}}} =$						M^3/c ,				
где	·	$V_{0_{\Gamma M}} = $		бочий объег		отора;					
	1	ı _™ -теку	щая часто	га вращения	гидромо	гора;					
	η	$_{ m lob.rm}=0,9$	98 – объем	ный КПД г	идромото	pa.					
		-			_	_	оде и на гидр	омоторе			
Q	$_{\Gamma M} =$: 		л/с	$Q_{\mathrm{Tp}} = $			л/c,			
	4	l) Опр	еделить м	ощность на	соса по ф	ормуле					
			$N = p \cdot Q$	=			Вт.				
	Таб	5лица 3 .1	– Результ	гаты опытов	в и расчет	ОВ					
	№ Оп.	Давление, p , кгс/см ²	Частота вращения, <i>n</i> , об/мин	Расход на гидромоторе, $Q_{\scriptscriptstyle \Gamma M}$, л/с	Объем жидкости, V , л	Время, <i>t</i> , с	Расход в трубопроводе, $Q_{\text{тр}}$, л/с	Мощность, <i>N</i> , Вт			
	1										
	2										
	3										

Построить графики зависимостей $Q_{\rm np} = f(p)$, N = f(p).

Лабораторная работа №4 Пластинчатые гидромашины

Цель работы: получить от преподавателя объемную гидромашину; демонтировать гидромашину; зарисовать основные детали машины (по выбору преподавателя) на формате A4, проставляя все размеры; собрать объемную гидромашину.

4.1 Общие сведения

Пластинчатая гидромашина — это роторная гидромашина с подвижными элементами в виде ротора, совершающего вращательное движение, и пластин, совершающих вращательное и возвратно-поступательное или возвратно-поворотное движения. Эти машины являются наиболее простыми из существующих типов и обладают при всех прочих равных условиях большим объемом рабочих камер.

Пластинчатые гидромашины делятся на машины одно-, двух- и многократного действия. В машинах однократного действия происходит один рабочий цикл, т.е. одно всасывание и нагнетание.

Машины однократного действия могут быть регулируемыми и нерегулируемыми. Машины многократного действия выполняются только нерегулируемыми. Пластинчатые гидромашины могут быть реверсивными и нереверсивными.

По количеству пластин гидромашины делятся на двух- и многопластинчатые.

Когда требуется обеспечить поступление в систему двух независимых потоков рабочей жидкости применяют сдвоенные насосы.

По виду распределения жидкости пластинчатые гидромашины бывают с цапфенным и торцевым (боковым) распределением.

По герметичности пластинчатые гидромашины уступают другим типам гидромашин. В сравнении с шестеренными машинами пластинчатые обеспечивают более равномерную подачу, а в сравнении с поршневыми проще по конструкции, дешевле, меньше по габаритам и менее требовательны к фильтрации жидкости.

В станкостроении пластинчатые насосы применяются главным образом в гидроприводах подачи агрегатных, сверлильно-расточных, токарных и фрезерных станков, а также в гидроприводах стола и других механизмов шлифовальных станков, в гидроприводах для транспортировки, индексации, зажима и загрузки деталей, обрабатываемых на автоматических станочных линиях.

Пластинчатые насосы применяются также в гидропрессах, автопогрузчиках, экскаваторах, бульдозерах и других строительно-дорожных

машинах, в прокатном оборудовании (блюминги, прокатные станы), в автомобилях (усилители приводов руля, механизмы опрокидывания самосвалов), в химическом машиностроении (приводы для вращения различных мешалок), в корабельных механизмах (приводы лебедок для подъема грузов, устройства для изменения шага винта), лесозаготовительных машинах, для литья под давлением, пищевом машиностроении и т. п.

4.2 Пластинчатые насосы типа БГ12-2...М

Насосы пластинчатые с постоянным рабочим объемом изготовляются в однопоточном (рисунок 4.1) исполнении и предназначены для нагнетания в гидравлические системы машин рабочей жидкости одним потоком, постоянным по величине и направлению. Гидравлически разгруженные сдвоенные пластины обеспечивают высокую долговечность насосов.

Применяются насосы в гидравлических системах станков, литейного, сварочного оборудования, прессов и других стационарных машин, работающих в закрытых помещениях, где требуемая величина давления не превышает 12,5 МПа.

Устройство и принцип работы.

Рисунок 4.1. – Пластинчатый насос двойного действия типа БГ 12-2... М

В чугунном корпусе 3 (рисунок 4.1) и крышке 7 смонтирован статор 6, имеющий внутри криволинейную поверхность, по которой скользят десять сдвоенных лопаток, свободно перемещающихся в радиальных пазах ротора 5.

Ротор посажен на шлицы вала 9, свободно вращающегося в подшипниках. Для распределения потоков масла и уплотнения торцов ротора и статора служат стальные диски — плоский 8 и с шейкой 4. Плоский диск имеет два основных окна 11 и два вспомогательных 10 для всасывания масла под лопатки.

Для увеличения площади всасывающих окон они соединяются отверстиями 13 статора с глухими основными 15 и вспомогательными 16

всасывающими окнами диска с шейкой, за счет чего обеспечивается всасывание масла с двух сторон ротора.

Диск с шейкой 4 (плавающего типа) имеет, кроме того, основные окна 14 для нагнетания масла и вспомогательные 17 для подачи масла под лопатки. Плоский диск 8 имеет глухие основные и вспомогательные окна (на рисунке условно не показаны), которые расположены с обеих сторон ротора и обеспечивают разгрузку ротора от давления масла в осевом направлении. Прижим пластин к статору в зоне всасывания осуществляется за счет центробежной силы. При запуске насоса первоначальный прижим диска 4 обеспечивается тремя пружинами 2, а при работе насоса диск прижимается давлением масла.

Насос работает следующим образом. При вращении ротора 5 пластины под действием центробежной силы всегда прижаты к внутренней поверхности статора. Каждая пластина перемещается в пазах ротора в соответствии с профилем внутренней поверхности статора 6.

Каждая из камер между двумя соседними пластинами во время соединения с окнами всасывания 11 увеличивает свой объем и заполняется маслом, а пространство под лопатками — через окна 10. Эта камера во время соединения с окнами нагнетания 14 уменьшает свой объем, вытесняя масло в полость нагнетания. За один оборот ротора производится два полных цикла всасывания и нагнетания масла. Благодаря диаметрально противоположному расположению камер нагнетания и всасывания нагрузка на ротор 5 от давления масла со стороны полостей нагнетания уравновешивается, и вал насоса передает только крутящий момент. Для предотвращения утечек масла по валу 9 насоса во фланце установлена манжета 1 из маслостойкой резины. Стык между корпусом и крышкой уплотняется круглым кольцом 12 из маслостойкой резины.

Основные параметры пластинчатых насосов типа БГ12-2...М приведены в таблице 4.1.

Таблица 4.1. – Основные параметры пластинчатых насосов типа БГ12-2...М

H	Типоразмер								
Параметр			БГ12 – 22AM			БГ12– 23М		БГ12— 24М	БГ12– 25AM
Номинальная подача, л/мин	5,4	9	14,6	19,4	25,5	33	54	72	105,6
Рабочий объем, см ³	5	8	12,5	16	20	25	45	56	80
Номинальное давление, МПа	12,5								
Число оборотов, об/мин	1500								
Потребляемая мощность, кВт	2	3,06	4,6	5,65	6,94	8,45	15,1	19,6	26
Объемный КПД	0,72	0,75	0,78	0,81	0,85	0,88	0,8	0,86	0,88
Общий КПД	0,55	0,6	0,65	0,7	0,75	0,8	0,73	0,75	0,83
Масса, кг	9,2					24,4			

^{*} Максимальное давление на выходе из насоса 14 МПа.

Насос может быть установлен в горизонтальном, вертикальном положении над уровнем масла и с погружением в него. Последнее обеспечивает более благоприятные условия работы, но затрудняет наблюдение при эксплуатации.

4.2 Пластинчатые гидромоторы типа Г16

Гидромотор типа Г16 (рисунок 4.2) производства фирмы «Гидропривод» г. Харьков, представляет собой нерегулируемую роторную пластинчатую гидромашину двукратного действия с реверсивным потоком жидкости.

Мотор пластинчатый типа Г16 относится к классу оборудования, предназначенного для использования в качестве силового привода машин производственного, погрузочного, строительного назначения. Во время работы гидромотор преобразует энергию подаваемой к нему рабочей жидкости во вращательное движение ведущего вала мотора. При достаточно высоком давлении жидкости обеспечивается мощный начальный вращательный момент и заданная частота вращения вала.

Устройство и принцип работы.

Рабочие камеры гидромотора (рисунок 4.2) образованы: цилиндрической поверхностью ротора 6, внутренней овальной поверхностью статора 3, дисками 1,7 и двумя соседними пластинами 2. Из-за овальности статора площади соседних пластин, находящихся под давлением жидкости, различны, что приводит к формированию неуравновешенной силы гидростатического давления и созданию крутящего момента на выходном валу гидромотора 11. За один оборот вала мотора пластина совершает два двойных хода, соответствующих двукратному увеличению и уменьшению объемов рабочих камер.

Жидкость из напорной линии гидросистемы подается во входное отверстие e корпуса 10 гидромотора и из кольцевой полости a через два окна в переднем диске 1 поступает в камеры \mathcal{H} , объем которых увеличивается при вращении ротора против часовой стрелки. Одновременно камеры 3 и κ , объемы которых уменьшаются, окнами n в заднем диске n0 соединяются с выходным отверстием n0 и далее со сливной линией гидросистемы.

Необходимым условием работы гидромотора является гарантированный прижим пластин к направляющей поверхности статора. Начальный прижим пластин обеспечивается кулачками 8 и 9, связанными с дисками 1,7 с помощью штифтов. При работе гидромотора пластины прижимаются центробежными силами и силами гидростатического давления жидкости, подводимой из линии нагнетания под торцы пластин. С той же целью отверстие n заднего диска связано с входным окном переднего диска 1. Плунжер 12 под действием силы давления смещается по каналу p

до упора в штифт 13, пропуская жидкость в отверстие m и кольцевую канавку ϵ . Из кольцевой канавки ϵ жидкость поступает под пластины в пазы ϵ ротора ϵ и прижимает пластины к поверхности статора, а из отверстия ϵ проходит в полость ϵ , обеспечивая поджим плавающего заднего диска к ротору. Предварительный поджим диска ϵ осуществляется силами упругости пружин ϵ Для изменения направления вращения вала гидромотора следует подключить отверстие ϵ к напорной, а отверстие ϵ к сливной линии гидросистемы.

Рисунок 4.2. – Пластинчатый гидромотор двойного действия типа Г16

Основные параметры пластинчатых гидромоторов типа Г16 приведены в таблице 4.2.

Таблица 4.2. - Основные параметры пластинчатых гидромоторов типа Г16

			r 1			
	Г16- 11М	Γ16- 12M	Γ16- 13M	Γ16- 14M	Г16- 15АМ	Γ16- 16AM
Рабочий объем,см ³ :	11,2	18	36	63	125	250
Номинальный расход масла, л/мин	14	19,4	37,1	67,2	129	266,7
Давление на входе максималь- ное,(МПа)	8			7		
Частота вращения, (об/мин) номинальная максимальная минимальная	960 2500 150		960 2200 150	960 1800 100		960 1500 100
Эффективная мощность номинальная ,кВт, не менее*	0,6	1,2	2,4	4,9	9,8	19,7
КПД при номинальном режиме работы, не менее объемный полный	0,77 0,5	0,89 0,63	0,93 0,69	0,9 0,73	0,93 0,76	0,9 0,77
Уровень звука, дБ(А)	,	77			2	87
Масса, кГ	6	,3	10	24		70

4.4 Порядок проведения работы

- 1) Используя методические указания, плакаты, учебные разрезы, отдельные узлы и детали, изучить устройство, принцип действия, технические характеристики, правила эксплуатации пластинчатых насосов.
 - 2) Разобрать пластинчатый насос, выданный преподавателем.
- 3) Выполнить необходимые измерения геометрических размеров нескольких деталей (по выбору преподавателя) данного пластинчатого насоса.
- 4) Выполнить чертежи деталей с проставлением всех необходимых размеров и с выполнением требований ЕСКД к рабочим чертежам деталей.
 - 5) Собрать пластинчатый насос.