Lezione 1 – Data Path di una semplicissima CPU

Architettura degli elaboratori

Modulo 4 - Struttura della CPU

Unità didattica 1 - Struttura interna della CPU

Nello Scarabottolo

Università degli Studi di Milano - Ssri - CDL ONLINE

La CPU NS-0

Per analizzare in dettaglio la struttura interna di una CPU ci rifacciamo a un esempio didattico estremamente semplice:

la CPU NS-0

...cioè la CPU di Nello Scarabottolo, che non è neppure arrivata alla versione 1 perché l'autore si vergogna di proporla al vasto pubblico...

Caratteristiche della CPU NS-0 (1)

Macchina RISC...hissima! (Reduced Instruction Set Computer):

- pochissime istruzioni macchina:
 - opcode 2 bit → 2^2 =4 istruzioni.
- istruzioni macchina NON tutte di uguale lunghezza;
- pochissimi modi di indirizzamento:
 - immediato e diretto.

Macchina a 16 bit:

- data bus a 16 bit → celle di memoria da 16 bit;
- address bus a 14 bit → 2¹⁴=16K celle di spazio di indirizzamento.

Caratteristiche della CPU NS-0 (2)

GPR

 1 registro a 16 bit, denominato con molta fantasia R0...

CC

 eventuale valore nullo (Z) dell'ultimo risultato di un'operazione di somma da parte dell'ALU.

ALU

- solo le operazioni strettamente indispensabili:
 - ADD
 - ...basta...

Scopo degli Internal Bus: il Data Path

Un registro può:

- emettere il suo contenuto sugli Output Internal Bus cui è collegato;
- campionare il valore presente sull'Input Internal Bus.

Se l'ALU è capace di propagare alla sua uscita O ciò che si presenta a uno degli ingressi A o B, le informazioni possono circolare fra i registri della CPU:

Comando ALU (C)			(C)	Significato		
	MSB	LSB				
	0	0		NOP		
	0	1		PASS	(O=A)	
	1	0		INC	(O=A+1)	
	1	1		ADD	(O=A+B)	(if O=0: 1→F)

Abbiamo definito il DATA PATH.

Comandi ai registri

Per muovere i dati lungo il *Data Path*, oltre ai comandi all'ALU ci servono i seguenti comandi per i registri:

```
Z_{SAMPLE}
RO_{IN}, RO_{OUT1}, RO_{OUT2}
PC_{IN}, PC_{OUT1}
IR_{IN}, IR_{OUT1}
MAR_{IN}, MAR_{OE}
MDR_{IN}, MDR_{OUT1}, MDR_{SAMPLE}, MDR_{OE}
```

In sintesi...

In una CPU particolarmente semplice, abbiamo definito il *Data Path*:

- tre Internal Bus per far circolare i valori presenti nei registri della CPU;
- ALU per collegare i due Internal Bus di Output all'Internal Bus di Input;
- comandi per estrarre il contenuto di ciascun registro o per modificare il contenuto di ciascun registro;
- comandi per emettere il contenuto di MAR sull'Address Bus e per scambiare il contenuto di MDR con il Data Bus;
- comandi MEMR e MEMW del Control Bus per accedere a memoria.

