

PATENT COOPERATION TREATY

From the INTERNATIONAL BUREAU

PCT

NOTIFICATION OF ELECTION
(PCT Rule 61.2)

Date of mailing (day/month/year) 23 October 2000 (23.10.00)	To: Assistant Commissioner for Patents United States Patent and Trademark Office Box PCT Washington, D.C.20231 ETATS-UNIS D'AMERIQUE in its capacity as elected Office
International application No. PCT/US00/02543	Applicant's or agent's file reference BERG 99.01 CIP PCT
International filing date (day/month/year) 01 February 2000 (01.02.00)	Priority date (day/month/year) 02 February 1999 (02.02.99)
Applicant BERG, N., Edward	

1. The designated Office is hereby notified of its election made:

in the demand filed with the International Preliminary Examining Authority on:
29 August 2000 (29.08.00)

in a notice effecting later election filed with the International Bureau on:

2. The election was

was not

made before the expiration of 19 months from the priority date or, where Rule 32 applies, within the time limit under Rule 32.2(b).

The International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Facsimile No.: (41-22) 740.14.35	Authorized officer Olivia TEFY Telephone No.: (41-22) 338.83.38
---	---

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : H01L	A2	(11) International Publication Number: WO 00/46837 (43) International Publication Date: 10 August 2000 (10.08.00)
<p>(21) International Application Number: PCT/US00/02543</p> <p>(22) International Filing Date: 1 February 2000 (01.02.00)</p> <p>(30) Priority Data: 60/118,263 2 February 1999 (02.02.99) US 60/152,532 3 September 1999 (03.09.99) US</p> <p>(71)(72) Applicant and Inventor: BERG, N., Edward [US/US]; 70 Horizon Drive, Bedford, NH 03110 (US).</p> <p>(74) Agent: SOLOWAY, Norman, P.; Hayes, Soloway, Hennessey, Grossman & Hage, P.C., 175 Canal Street, Manchester, NH 03101 (US).</p>		<p>(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Published <i>Without international search report and to be republished upon receipt of that report.</i></p>

(54) Title: IMPROVED CIRCUIT BOARD MANUFACTURING PROCESS

(57) Abstract

An improved method for manufacturing circuit boards which utilizes direct printing methods to form conductor patterns from metal foils disposed on one or both sides of a conventional substrate, to form conductors directly onto a circuit board substrate, to form circuit devices directly onto a circuit board substrate, to form shields directly on circuit patterns, to form solder masks directly on circuit patterns, and to form multi-layer circuit board laminates. The circuit devices formed using Applicant's direct printing processes include capacitors, resistors, inductors, and transformers.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

1

IMPROVED CIRCUIT BOARD MANUFACTURING PROCESS

2

Field Of The Invention

3

The present invention relates to an improved process for forming a single-sided, double-sided, or a multilayer circuit board.

5

Background Of The Invention

6

Printed circuit (or wiring) boards are well known in the electronics field. In general, such boards consist of a dielectric resin impregnated substrate (e.g. of woven or non-woven glass fibers) that is adhered to a sheet or foil of conductive metal, generally copper, on at least one surface. Typical resins that can be used to impregnate the substrate include phenolic resins, epoxy resins, polyimides, polyesters and the like. The copper sheet or foil is joined to the semi-cured resin impregnated substrate using well known techniques, e.g. by application of heat and pressure.

13

Thereafter, electrical circuit patterns are formed on the copper layers by conventional techniques. For example, a layer of photoresist may be coated over the copper layer, exposed imagewise and developed to yield a relief resist image on the copper layer. The exposed copper is etched away and the resist image is removed, leaving the copper circuit pattern exposed. Elemental copper, like other pure metals, generally exhibits poor adhesion characteristics for bonding to dielectric resinous substrates typically used in circuit board manufacture, and intermediate conversion coatings are frequently helpful to enhance the adhesion of the metal to the substrate. Hence, the copper foil may be treated prior to being laminated to the resin substrate to form a layer of copper oxide, tin or other adhesion promoter on at least one surface. Various methods have been employed for this purpose. Examples of such methods are described in U.S. Pat. Nos. 2,955,974; 3,177,103; and 3,198,672, which are hereby incorporated by reference.

26

Printed circuit boards prepared as described above may be assembled to form multilayer printed circuit board constructions by stacking a predetermined number of boards one atop another. In such a construction, the cured or semi-cured polymeric non-conductive materials (such as epoxy resin impregnated fiberglass cloth) is in contact with the copper surface of the adjacent circuit board. The stacked circuit board

1 assembly may be laminated together by application of heat and pressure to form a
2 multilayer printed circuit board.

Typical laminating conditions involve pressing the stacked boards between metallic plates at a pressure between about 200 psi to about 600 psi at a temperature of between about 150° C. to 205° C. for up to about 4 hours. The electrical circuit patterns on the outer layers may then be interconnected to the circuit patterns on the inner layers by drilling an array of holes through the multilayer assembly circuit boards. The through-holes in the assembled boards are then cleaned by treatment with dilute solutions of strong acids and the like. Thereafter, the through-holes may be plated with copper to render the sides of the holes conductive thereby completing the circuit between the outer layer and the inner layer circuit patterns.

Summary of the Invention

13 The present invention relates to improvements in circuit board manufacturing
14 processes. In one aspect, the invention relates to imprinting techniques for
15 manufacturing circuit boards. More particularly, in one aspect the invention relates to
16 a method for making printed circuit boards utilizing printing techniques for direct
17 contact masks that resist plating and metallic etching. Applicant's invention also
18 includes methods for direct printing of conductors and circuit devices and insulators
19 onto circuit boards. Masks that resist solder and electrical shields may also be printed
20 on the circuits and the substrate. Component position and designations can be directly
21 printed.

22 Various circuit devices can be directly printed onto circuit boards. These
23 devices include capacitors, resistors, inductors, and transformers. For example,
24 capacitors can be formed at desired locations by printing a conductor, then a
25 dielectric, and then a second conductor to form a parallel plate capacitor. Conductors
26 can cross each other by printing an insulating pattern on a conductor or conductors at
27 the desired cross over point(s) and subsequently printing a crossing over conductor(s).
28 The process will make multi-layers as well as two sided plated through hole types of
29 printed circuit boards.

30 Printing on the metallic conductor for direct contact masks that resist plating
31 and metallic etching can be done by:

1 a. Electro-photographic printer with chemically resistant toner.
2 b. Ink jet printer with chemically resistant ink.
3 c. Relief press printer with chemically resistant ink in either direct or
4 off-set mode.
5 d. Lithographic press printer with chemically resistant ink in either direct or
6 off-set mode
7 e. Intaglio press printer with chemically resistant ink in either direct or
8 off-set mode.
9 f. By screen printing.
10 Use of these direct printing techniques results in better definition of etched circuitry
11 than can be achieved using conventional processes. In addition, use of these direct
12 printing techniques allows for manufacture of narrower conductors, giving higher
13 circuit densities on a circuit board than could be achieved using conventional
14 techniques.

15 **Brief Description of the Drawings**

16 The invention will be better understood from a reading of the following detailed
17 description taken in conjunction with the drawings in which like reference designators
18 are used to designate like elements, and in which:

19 FIG. 1 is a sectional view of a double-sided, metal clad, circuit board substrate;

20 FIG. 2 is a sectional view of the first and second steps in Applicant's circuit
21 board manufacturing process showing a direct printed pattern mask;

22 FIG. 3 is a sectional view of the second step in Applicant's process;

23 FIG. 4 is a view similar to FIG. 3, of the next step in Applicant's process;

24 FIG. 5 is a sectional view of an intermediate step in Applicant's alternative
25 process;

26 FIG. 6 is a top view of a first void formed in a first conductor disposed on the top
27 surface of a circuit board substrate in accordance with Applicant's alternative process;

28 FIG. 7 is a bottom view of a second void formed in a second conductor disposed
29 on the bottom surface of a circuit board substrate in accordance with Applicant's
30 alternative process;

31 FIG. 8 is a sectional view of a via formed in a substrate;

1 FIG. 9 is a sectional view showing printing of a plating resist mask;

2 FIG. 10 is a sectional view showing plating of exposed portions of the top and

3 bottom sides of a substrate;

4 FIG. 11 is a sectional view showing formation of a first circuit pattern and a

5 second circuit pattern;

6 FIG. 12 is a sectional view of a plated via;

7 FIG. 13 is a sectional view showing direct printing of conductors onto a plated

8 via;

9 FIG. 14 is a sectional view showing direct printing of circuit devices onto a

10 substrate;

11 FIG. 15 is a sectional view showing the first step of a process to print crossing

12 conductors onto a circuit board substrate;

13 FIG. 16 is a sectional view showing the second step of a process to print crossing

14 conductors onto a circuit board substrate;

15 FIG. 17 is a top view showing printing of crossing conductors onto a circuit

16 board substrate;

17 FIG. 18 is a sectional view showing printing of multiple crossing conductors

18 onto a circuit board substrate;

19 FIG. 19 is a top view showing multiple crossing conductors printed onto a circuit

20 board substrate;

21 FIG. 20 is a sectional view of printed shields disposed on printed circuit devices;

22 FIG. 21 is a sectional view showing printing of a solder mask onto a circuit

23 board substrate;

24 FIG. 22 is a sectional view of a multilayer circuit board formed using

25 Applicant's process;

26 FIG. 23 is a sectional view of a circuit board laminate formed using Applicant's

27 process which includes a via connecting all layers of the laminate; and

28 FIG. 24 is a sectional view of a circuit board laminate formed using Applicant's

29 process which includes a via connecting two of three component substrates.

30 **Detailed Description Of The Preferred Embodiments**

31 Turning to FIG. 1, the printed circuit board production process begins with non-

1 conducting substrate 10 which has top surface 12 and bottom surface 14. Substrate 10
2 can be formed from a fiber-reinforced thermoset composition, a molded thermoplastic
3 material, a ceramic material, a glass material, a stiff cardboard material, and mixtures of
4 same. Preferably, substrate 10 is a FR-4 type epoxy material. Substrate 10 is between
5 about 0.008 and 0.124 inches thick, preferably between about 0.011 and about 0.062
6 inches thick.

7 First conductor 16 covers top surface 12 and second conductor 18 covers bottom
8 surface 14. First conductor 16 and second conductor 18 are metallic films having a
9 thickness between about 0.0002 and about 0.002 inches. First conductor 13 and second
10 conductor 14 may be formed from the same or from different metals. First conductor 13
11 and second conductor are preferably both formed from copper.

12 Referring to FIG. 2, first pattern mask 20 is applied to portions of first
13 conductor 16 leaving other portions of first conductor 16 exposed. For example,
14 numeral 22 corresponds to an exposed area of first conductor 16. First pattern mask
15 20 may be applied by printing techniques, including electro-photographic (i.e.
16 electrostatic) printing, ink jet printing, relief press printing or the like using either
17 direct or off-set mode, and lithographic press printing or the like using either direct or
18 off-set mode and screen printing. The inks used to form first pattern mask 20 are
19 commercially available. Preferred inks include conventional size controlled laser
20 printing inks which are applied and then heated to fuse the inks. If desired, the
21 substrate may be pre-heated, e.g. to 100°C-160°C prior to printing.

22 Similarly, second pattern mask 24 is applied to portions of second conductor
23 18 leaving the remaining portions of second conductor 18 exposed. The same
24 printing processes and inks are used as described above in conjunction with first
25 pattern mask 20. Numeral 26 corresponds to such an exposed area of second
26 conductor 18. Exposed areas 22 and 26 correspond to the location on substrate 10
27 where a conduction pathway, sometimes called a via, between top surface 12 and
28 bottom surface 14 is desired. As those skilled in the art will appreciate, a plurality of
29 vias may be required in any given circuit board.

30 The next step, FIG. 3, involves plating up the exposed areas at 30A, 32A using
31 either electrochemical or electroless plating. The first and second pattern masks 20,24

1 are then removed, and the first and second conductor films 16,18 are etched back and
2 removed completely except the underlying plated up areas which, due to their
3 increased thickness, survive in part the etching step. See FIG. 4.

4 The process for forming a via is now illustrated. The portion of first
5 conductor 16 in exposed area 22 is removed from top surface 12 to form void 30. At
6 either the same time, or in a separate step, the portion of second conductor 18 in
7 exposed area 26 is removed from bottom surface 14 to form void 32. The portion of
8 first conductor 16 in exposed area 22, and the portion of second conductor 18 in
9 exposed area 26, are preferably removed by chemical etching processes. Referring to
10 FIG. 5, first pattern mask 20 and second pattern mask 24 are then removed. First
11 pattern mask 20 and second pattern mask 24 may be removed in a single step, or in
12 separate steps.

13 Referring to FIG. 6, void 30 is roughly cylindrical, with the walls of the
14 cylinder being defined by first conductor 16 and the floor of the cylinder being
15 defined by top surface 12. Referring to FIG. 6, void 32 is roughly cylindrical, with
16 the walls of the cylinder being defined by second conductor 18 and the floor of the
17 cylinder being defined by bottom surface 14. The diameters of void 30 and void 32
18 may be approximately equal, or they may be different.

19 Referring to FIGS. 7 and 8, via 34 is a hole drilled through substrate 10
20 connecting void 30 and void 32. Via 34 has a diameter equal to or smaller than the
21 diameters of either void 30 and void 32. Via 34 may be formed using a laser device
22 or by chemical means. Use of chemical means to place through-holes in a metal foil
23 clad circuit board substrate is taught in U.S. Pat. No. 5,653,893, which is hereby
24 incorporated herein. Alternately the substrate could be mechanically drilled without
25 forming voids in the conductor surfaces 16 and 18 as described herein.

26 The vias formed and the remainder of the first and second conductors 16,18
27 are then plated, thereby providing conductive pathways between the top and bottom
28 surfaces and build-up of metal on the exposed surfaces of conductors 16,18. Plating
29 via wall 40 can be accomplished by using electro-less plating after applying a
30 nucleating material such as colloidal palladium or palladium sulfite and powdered
31 silver. In this plating step, the remaining portions of first conductor 16 and 18 are

1 also plated. Alternatively, electroplating of the holes can be effected before or after
2 the circuit pattern masks are applied as described below, by seeding the holes with a
3 conductive ink comprised of polymeric binders with powdered graphite and powdered
4 silver which is squeegeed into the holes, excess ink drawn out, e.g. by means of a
5 vacuum, and the substrate baked.

6 Referring to FIG. 9, pattern masks for plating resist are then printed on certain
7 portions of conductors 36 and 38. These pattern masks are "negatives" of the desired
8 circuits, and do not cover the vias already formed. For example, masks 42 and 44 are
9 printed on conductor 36, and masks 46 and 48 are printed on conductor 38. As
10 before, these masks can be printed using electro-photographic printing (electrostatic)
11 using conventional size controlled laser printing inks or the like, ink jet printing, relief
12 press printing using either direct or off-set mode, and lithographic press printing using
13 either direct or off-set mode or screen printing.

14 The exposed portions of conductors 36 and 38 comprise the desired circuit
15 pattern. These exposed portions and the already-formed vias are again plated by
16 electro or electroless means to enhance the thickness of the desired conduction
17 pathways. Referring to FIG. 10, conductors 50, 52, 54, and 58 are plated to give a
18 thickness of between about 0.0005 and about 0.001 inches. In addition, via wall 56 is
19 plated to give a thickness of between about 0.0005 and about 0.001 inches.

20 Referring to FIG. 11, the plating masks are removed and entire substrate is
21 etched, removing the electro-less(or metallization) plating which the circuit masks
22 covered and the thin beginning conducting layer leaving only the desired conducting
23 circuits and plated vias. Circuit elements, shields, and screens can then be printed.

24 In a separate embodiment, conductors and circuit components can also be
25 formed by the printing processes described previously. Referring to FIG. 12, substrate
26 68 has been processed in the manner described in FIGS. 1-11. Substrate 68 includes
27 conductor 70, conductor 72, via 74, and plated via wall 76, all of which are formed in the
28 manner described above. Referring to FIG. 13, conductors 80, 82, and 84 are formed by
29 direct printing methods using electrically-conductive inks. The inks used to form these
30 conductors preferably comprise 80-90 percent polymeric binders, with the balance
31 comprising powdered graphite and colloidal silver. Preferred inks comprise inks with a

1 high wax content.

2 Circuit elements can be printed in a desired array between desired conductor
3 points. Referring to FIG. 14, component 86 is printed onto substrate 68 so as to connect
4 to conductor 70 and conductor 82. Similarly, component 88 is printed onto substrate 68
5 so as to connect to conductor 72 and conductor 84.

6 For example, capacitors can be made by printing conductive plates where
7 capacitors are desired. Over these plates is printed a dielectric. Over the dielectric is
8 printed the top conductive plate and connection. A resistor can be formed by printing
9 one or more layers between two conductors using a resistive ink. An inductor can be
10 formed by printing one or more layers between two conductors using an ink having a
11 magnetic permeability.

12 Referring to FIG. 13, conductors that cross over other conductors are made by
13 first making bottom conductors in the methods previously described. For example,
14 conductors 70, 72, 80, 82, and 84 are formed as described above. Referring to FIG. 15,
15 insulator 90 is printed by the methods described herein, over conductor 80 in the location
16 where a crossover conductor is desired. The insulator may be printed over the entire
17 surface except where conductors between insulating layers (vias) are desired. Similarly,
18 insulator 92 is printed over conductor 84 in the location where a crossover conductor is
19 desired. Referring to FIG. 16, crossing conductor 94 is then printed, by the methods
20 described herein, crossing over conductor 80 where conductor 80 is covered by insulator
21 90. Similarly, crossing conductor 96 is printed so as to cross over conductor 84 where
22 conductor 84 is covered by insulator 92. FIG. 17 shows a top view of substrate 68,
23 conductors 70, 80, and 84, as well as insulators 90 and 92 and crossing conductors 94
24 and 96. Printing may be done in selective areas as illustrated or by printing a
25 multiplicity of conductors and insulators or a layer of conductors and insulators.

26 Multiple layers of crossing conductors can be formed by printing insulators over
27 any previous crossing conductor layer where a second crossover is desired. Referring to
28 FIG.s 18 and 19, conductor 84, first insulator 92, and first crossing conductor 96 are
29 formed as described above. Second insulator 100 is then printed over first crossing
30 conductor 96. Second crossing conductor 102 is then printed over second insulator 100
31 to form multiple layers of crossing conductors. Such multilayer conductors can be used,

1 for example, to print a transformer device onto a circuit board where primary windings
2 and secondary windings are printed over one or more layers of a printed material having
3 a magnetic permeability.

4 Shields can then be printed over the appropriate conductors and circuit elements
5 utilizing the desired printing techniques with appropriate inks. Referring to FIG. 20,
6 conductors 112 and 114 are formed on substrate 110 using the methods described above.
7 Shield 116 is then printed, using the printing techniques described herein, over conductor
8 112, and shield 118 is printed over conductor 114. In addition, solder masks can be
9 printed on areas where solder adhesion is not desired. Soldering is normally done to
10 connect circuit elements to the printed circuit board. As those skilled in the art will
11 appreciate, such soldering is preferably done using automated wave soldering
12 equipment. Referring to FIG. 21, solder masks 122, 124, and 126 are printed over
13 certain portions of substrate 120 so that solder will not adhere to those portions when
14 substrate 120 is passed through a wave soldering device. The printing techniques may
15 be used to print directly on a screen or on an offset intermediary which could be used to
16 transfer the image to the screen which could be used in screening on the solder mask.

17 Multi-layered structures are made by interleaving individual substrates with their
18 layers of conductors, insulators and components, and insulating layers, where each of the
19 individual substrates is first formed as previously described. After bonding the multiple
20 substrates and insulating layers to form a laminate, the top and bottom surfaces of that
21 laminate are processed like a "thick" beginning substrate. Referring to FIG. 22, laminate
22 130 is formed from substrates 132, 134, and 136, and insulating layers 138 and 140.
23 Insulating layer 138 electrically insulates bottom surface 142 of substrate 132 from top
24 surface 144 of substrate 134. Similarly, insulating layer 140 electrically insulates bottom
25 surface 146 of substrate 134 from top surface 148 of substrate 136. Alternatively, these
26 insulating layers may be formed direct by printing techniques described herein.

27 Top surface 144 and bottom surface 146 of substrate 134 are processed in the
28 manner described using direct printing techniques above prior to lamination. Bottom
29 surface 142 of substrate 132, and top surface 148 of substrate 136, are processed using
30 the direct printing techniques described above prior to formation of laminate 130.

31 Insulating layers 138 and 140 may comprise an adhesive material or a separate

1 adhesive material may be used to join substrates 132, 134, and 136 with insulating layers
2 138 and 140 to form laminate 130. Adhesives used include epoxy resins, cyanoacrylate
3 monomers and oligomers, polyurethanes, and mixtures thereof. The top surface 140 and
4 bottom surface 150 are left blank until after the bonding process after which they
5 processed using the direct printing methods described above.

6 Holes for interlayer connections are made in each substrate. These holes make
7 the desired connections to the appropriate inner layer(s). Holes for though hole
8 components are made "oversized" in each separate substrate and final drilled after the
9 bonding process. The through component holes are made "oversized" since they will
10 be multiply plated when the top and bottom surfaces of the bonded substrates are
11 processed. This will reduce the hole size to the desired size.

12 Referring to FIG. 23, laminate 160 is formed in the manner described above
13 from substrates 162, 164, and 166. After joining those substrates to form laminate 160,
14 via 168 is formed as described above and via wall 170 is plated. This plated via
15 electrically connects conductor 190 disposed in surface 172, conductor 192 disposed in
16 surface 174, conductor 194 disposed in surface 176, conductor 196 disposed in surface
17 178, and conductor 198 disposed in bottom surface 182.

18 In an alternative embodiment, laminate substrates can be formed in a series of
19 steps so as to allow electrical interconnection of only certain layers. Referring to FIG.
20 24, laminate 200 is formed from substrates 202, 206, and 210, and interleaved insulating
21 layers 204 and 208. However, a sublamine is first formed from insulating layer 208
22 and substrates 206 and 210. Via 248 having plated wall 250 is then formed through that
23 sublamine. Insulating layer 204 and substrate 202 are then joined to the sublamine.

24 Plated via wall 250 electrically connects conductors 230 and 232 disposed on
25 surface 216, conductors 234 and 236 disposed on surface 218, conductors 238 and 240
26 disposed on surface 220, and conductor 242 disposed on bottom surface 222. However,
27 plated via wall 250 does not electrically connect to any conductors disposed on surfaces
28 212 or 214 of substrate 202 because insulator 204 insulates plated via wall 250 from
29 substrate 202. Via 244 having plated via wall 246 electrically connects conductor 224
30 disposed on top surface 212 to conductors 226 and 228 disposed on surface 214.

1 Still other changes are possible. For example, through holes may be
2 mechanically drilled, in which case the masking, etching and plating steps for hole
3 formation may be eliminated. Also, in another embodiment of the invention, a multi-
4 layer board may be built up by printing layers of conductors, insulators, circuit
5 elements, etc. as above described, and the resulting multi-layer board stripped from
6 the beginning substrate which then may be discarded or reused. In yet another
7 embodiment, the image could be printed from the appropriate inks utilizing a silk
8 screen or the like, and "screen printed" on the substrate.

1 What is claimed is:

2 1. A method of forming a circuit board, comprising the steps of:

3 a. supplying a non-conducting substrate having a top surface and a
4 bottom surface;

5 b. forming a plurality of conductive pathways between said top surface
6 and said bottom surface;

7 c. forming a first circuit pattern on said top surface; and

8 d. forming a second circuit pattern on said bottom surface.

9 2. The method of claim 1, further comprising the step of printing one or
10 more circuit devices on said first circuit pattern and on said second circuit pattern.

11 3. The method of claim 2, wherein said circuit devices are selected from
12 the group consisting of capacitors, inductors, resistors, transformers, and mixtures
13 thereof.

14 4. The method of claim 3, wherein said first circuit pattern comprises a
15 solderable component and a non-solder component, and further comprising the step of
16 printing a solder mask on said non-solder component of said first circuit pattern and
17 on said circuit devices printed on said first circuit pattern.

18 5. The method of claim 4, wherein said second circuit pattern comprises a
19 solderable component and a non-solder component, and further comprising the step of
20 printing a solder mask on said non-solder component of said second circuit pattern
21 and on said circuit devices printed on said second circuit pattern.

22 6. The method of claim 1, wherein said top surface comprises a first
23 conductor and said bottom surface comprises a second conductor, and wherein step b
24 further comprises the steps of:

25 printing an etch resist mask over a portion of said first conductor to form a
26 plurality of first exposed areas;

27 printing an etch resist mask over a portion of said second conductor to form a
28 plurality of second exposed areas, wherein each of said plurality of first exposed areas
29 is disposed above one of said plurality of second exposed areas;

30 removing said first conductor from each of said plurality of first exposed areas
31 to form a plurality of first void areas on said top surface;

1 removing said second conductor from each of said plurality of second exposed
2 areas to form a plurality of second void areas on said bottom surface;
3 forming a plurality of vias by connecting one of said plurality of first void
4 areas with one of said plurality of second void areas;
5 plating said plurality of vias to form said plurality of conductive pathways
6 between said top surface and said bottom surface.

7 7. The method of claim 6, wherein the printing steps further comprise use
8 of printing techniques selected from the group consisting of electro-photographic
9 printing, ink jet printing, relief press printing using either direct or off-set mode,
10 lithographic press printing using either direct or off-set mode, and screen image
11 transfer

12 8. The method of claim 7, wherein step c further comprises:
13 printing a plating resist mask on said top surface to define said first circuit
14 pattern;
15 plating said top surface increase the thickness of said first circuit pattern;
16 removing said plating mask; and
17 removing any exposed first conductor.

18 9. The method of claim 8, wherein the printing step further comprise use
19 of printing techniques selected from the group consisting of electro-photographic
20 printing, ink jet printing, relief press printing using either direct or off-set mode, and
21 lithographic press printing using either direct or off-set mode.

22 10. The method of step 9, wherein step d further comprises:
23 printing a plating resist mask on said bottom surface to define said second
24 circuit pattern;
25 plating said bottom surface to increase the thickness of said second circuit
26 pattern;
27 removing said plating mask; and
28 removing any exposed second conductor.

29 11. The method of step 10, wherein the printing step further comprise use
30 of printing techniques selected from the group consisting of electro-photographic

1 printing, ink jet printing, relief press printing using either direct or off-set mode, and
2 lithographic press printing using either direct or off-set mode.

3 12. A method of forming a multilayer circuit board, comprising the steps
4 of:

5 a. supplying a first substrate having a first top surface and a first bottom
6 surface;

7 b. forming a plurality of electrically conductive pathways between said
8 first top surface and said first bottom surface;

9 c. forming a first circuit pattern on said first top surface;

10 d. forming a second circuit pattern on said first bottom surface;

11 e. supplying a second substrate having a second top surface and a second
12 bottom surface;

13 f. forming a plurality of electrically conductive pathways between said
14 second top surface and said second bottom surface;

15 g. forming a third circuit pattern on said second top surface;

16 h. forming a fourth circuit pattern on said second bottom surface;

17 i. supplying a first insulating layer having a first side and a second side;

18 j. joining said first side of said first insulating layer to said first bottom
19 surface, and joining said second side of said first insulating layer to said second top
20 surface, such that said first insulating layer electrically insulates said second circuit
21 pattern from said third circuit pattern;

22 k. forming a plurality of electrically conductive pathways between said
23 first circuit pattern, said second circuit pattern, said third circuit pattern, and said
24 fourth circuit pattern.

25 13. The method of claim 12, further comprising the step of printing one or
26 more circuit devices on said first circuit pattern, on said second circuit pattern, on said
27 third circuit pattern, and on said fourth circuit pattern.

28 14. The method of claim 13, wherein said circuit devices are selected from
29 the group consisting of capacitors, inductors, resistors, transformers, and mixtures
30 thereof.

1 15. The method of claim 12, wherein said first top surface comprises a first
2 conductor and said first bottom surface comprises a second conductor, and wherein
3 step b further comprises the steps of:

4 printing an etch resist mask over a portion of said first conductor to form a
5 plurality of first exposed areas;

6 printing an etch resist mask over a portion of said second conductor to form a
7 plurality of second exposed areas, wherein each of said plurality of first exposed areas
8 on said top surface is disposed above one of said plurality of second exposed areas on
9 said bottom surface;

10 removing said first conductor from each of said first exposed areas to form a
11 plurality of first void areas on said top surface;

12 removing said second conductor from each of said plurality of second exposed
13 areas to form a plurality of second void areas on said bottom surface;

14 forming a plurality of vias by connecting one of said plurality of first void
15 areas with one of said plurality of second void areas;

16 plating said plurality of vias to form said plurality of conductive pathways
17 between said first top surface and said first bottom surface.

18 16. The method of claim 15, wherein step c further comprises:

19 printing a plating resist mask on said first top surface to define said first circuit
20 pattern;

21 plating said first top surface to increase the thickness of said first circuit
22 pattern;

23 removing said plating mask; and

24 removing any exposed first conductor.

25 17. The method of claim 16, wherein the printing step further comprise use
26 of printing techniques selected from the group consisting of electro-photographic
27 printing, ink jet printing, relief press printing using either direct or off-set mode, and
28 lithographic press printing using either direct or off-set mode.

29 18. The method of step 17, wherein step d further comprises:

30 printing a plating resist mask on said first bottom surface to define said second
31 circuit pattern;

1 plating said bottom surface to increase the thickness of said second circuit
2 pattern;
3 removing said plating mask; and
4 removing any exposed second conductor.

5 19. The method of step 18, wherein the printing step further comprise use
6 of printing techniques selected from the group consisting of electro-photographic
7 printing, ink jet printing, relief press printing using either direct or off-set mode,
8 lithographic press printing using either direct or off-set mode, and screen image
9 transfer.

10 20. The method of claim 12, wherein said second top surface comprises a
11 first conductor and said second bottom surface comprises a second conductor, and
12 wherein step f further comprises the steps of:

13 printing an etch resist mask over a portion of said first conductor to form a
14 plurality of first exposed areas;

15 printing an etch resist mask over a portion of said second conductor to form a
16 plurality of second exposed areas, wherein each of said plurality of first exposed areas
17 on said top surface is disposed above one of said plurality of second exposed areas on
18 said bottom surface;

19 removing said first conductor from each of said first exposed areas to form a
20 plurality of first void areas on said top surface;

21 removing said second conductor from each of said plurality of second exposed
22 areas to form a plurality of second void areas on said bottom surface;

23 forming a plurality of vias by connecting one of said plurality of first void
24 areas with one of said plurality of second void areas;

25 plating said plurality of vias to form said plurality of conductive pathways
26 between said second top surface and said second bottom surface.

27 21. The method of claim 20, wherein step g further comprises:

28 printing a plating resist mask on said second top surface to define said third
29 circuit pattern;

30 plating said second top surface to increase the thickness of said third circuit
31 pattern;

1 removing said plating mask; and
2 removing any exposed first conductor.

3 22. The method of claim 21, wherein the printing step further comprise use
4 of printing techniques selected from the group consisting of electro-photographic
5 printing, ink jet printing, relief press printing using either direct or off-set mode, and
6 lithographic press printing using either direct or off-set mode.

7 23. The method of step 22, wherein step h further comprises:
8 printing a plating resist mask on said second bottom surface to define said
9 fourth circuit pattern;

10 plating said second bottom surface to increase the thickness of said fourth
11 circuit pattern;

12 removing said plating mask; and
13 removing any exposed second conductor.

14 24. The method of step 23, wherein the printing step further comprises use
15 of printing techniques selected from the group consisting of electro-photographic
16 printing, ink jet printing, relief press printing using either direct or off-set mode, and
17 lithographic press printing using either direct or off-set mode.

18 25. The method of claim 12, further comprising the steps of:

19 l. supplying a third substrate having a third top surface and a third
20 bottom surface;

21 m. forming a plurality of electrically conductive pathways between said
22 third top surface and said third bottom surface;

23 n. forming a fifth circuit pattern on said third top surface;

24 o. forming a sixth circuit pattern on said third bottom surface;

25 p. supplying a second insulating layer having a first side and a second
26 side;

27 q. joining said first side of said second insulating layer to said second
28 bottom surface, and joining said second side of said second insulating layer to said
29 third top surface, such that said second insulating layer electrically insulates said
30 fourth circuit pattern from said fifth circuit pattern; and

1 r. forming a plurality of electrically conductive pathways between said
2 first circuit pattern, said second circuit pattern, said third circuit pattern, said fourth
3 circuit pattern, said fifth circuit pattern, and said sixth circuit pattern.

4 26. The method of claim 25, wherein said third top surface comprises a
5 first conductor and said third bottom surface comprises a second conductor, and
6 wherein step m further comprises the steps of:

7 printing an etch resist mask over a portion of said first conductor to form a
8 plurality of first exposed areas;

9 printing an etch resist mask over a portion of said second conductor to form a
10 plurality of second exposed areas, wherein each of said plurality of first exposed areas
11 on said top surface is disposed above one of said plurality of second exposed areas on
12 said bottom surface;

13 removing said first conductor from each of said first exposed areas to form a
14 plurality of first void areas on said top surface;

15 removing said second conductor from each of said plurality of second exposed
16 areas to form a plurality of second void areas on said bottom surface;

17 forming a plurality of vias by connecting one of said plurality of first void
18 areas with one of said plurality of second void areas;

19 plating said plurality of vias to form said plurality of conductive pathways
20 between said first top surface and said first bottom surface.

21 27. The method of claim 26, wherein step n further comprises:

22 printing a plating resist mask on said first top surface to define said fifth
23 circuit pattern;

24 plating said first top surface to increase the thickness of said first circuit
25 pattern;

26 removing said plating mask; and

27 removing any exposed first conductor.

28 28. The method of claim 27, wherein the printing step further comprise use
29 of printing techniques selected from the group consisting of electro-photographic
30 printing, ink jet printing, relief press printing using either direct or off-set mode, and
31 lithographic press printing using either direct or off-set mode.

1 29. The method of claim 28, wherein step o further comprises:
2 printing a plating resist mask on said first bottom surface to define said sixth
3 circuit pattern;

4 plating said bottom surface to increase the thickness of said second circuit
5 pattern;

6 removing said plating mask; and
7 removing any exposed second conductor.

8 30. The method of claim 29, wherein the printing step further comprise use
9 of printing techniques selected from the group consisting of electro-photographic
10 printing, ink jet printing, relief press printing using either direct or off-set mode,
11 lithographic press printing using either direct or off-set mode, and screen image
12 transfer.

13 31. A method of forming a circuit board, comprising the steps in sequence
14 of:

15 a. supplying a non-conducting substrate having a top surface and a
16 bottom surface each covered with a top and a bottom metallic layer, respectively;

17 b. forming a pattern mask on the top and the bottom metallic layers,
18 leaving exposed metallic patterns;

19 c. building-up the exposed metallic patterns to increase the thickness
20 thereof;

21 d. removing the pattern mask whereby to expose the metallic patterns;
22 and

23 e. etching the metallic layer coated substrate from step d whereby to
24 remove exposed metallic surfaces, while leaving intact at least a portion of the built-
25 up metallic patterns.

26 32. The method of claim 31, wherein said pattern mask is applied by
27 printing.

28 33. The method of claim 32, wherein said printing comprises electro-
29 photographic printing, ink jet printing, release press printing using either direct or off-
30 set mode, lithographic press printing using either direct or off-set mode, and screen
31 image transfer.

1 34. The method of claim 33, wherein said printing is effected employing a
2 fusible ink.

3 35. The method of claim 34, wherein said fusible ink comprises a
4 polymeric binder ink containing colloidal metal.

5 36. The method of claim 35, wherein the colloidal metal comprises
6 colloidal silver or colloidal palladium.

7 37. The method of claim 32, including the step of pre-heating the substrate
8 prior to printing.

9 38. The method of claim 37, where the board is preheated to a temperature
10 in the range of 100°C-160°C.

11 39. The method of claim 31, wherein said exposed metallic patterns are
12 built-up by plating.

13 40. The method of claim 12, and further comprising the step of removing
14 the resulting multiplayer circuit board from the first substrate.

091890471

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
10 August 2000 (10.08.2000)

PCT

(10) International Publication Number
WO 00/46837 A3(51) International Patent Classification⁷: **H05K 3/36**

IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(21) International Application Number: PCT/US00/02543

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(22) International Filing Date: 1 February 2000 (01.02.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/118,263 2 February 1999 (02.02.1999) US
60/152,532 3 September 1999 (03.09.1999) US**Published:**

- with international search report
- with amended claims

(71) Applicant and

(72) Inventor: BERG, N., Edward [US/US]; 70 Horizon Drive, Bedford, NH 03110 (US).

(88) Date of publication of the international search report:
16 August 2001

(74) Agent: SOLOWAY, Norman, P.; Hayes, Soloway, Hennessey, Grossman & Hage, P.C., 175 Canal Street, Manchester, NH 03101 (US).

Date of publication of the amended claims:

20 September 2001

(81) Designated States (national): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL,

*For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.***WO 00/46837 A3**

(54) Title: IMPROVED CIRCUIT BOARD MANUFACTURING PROCESS

(57) Abstract: An improved method for manufacturing circuit boards which utilizes direct printing methods to form conductor patterns (20 and 24) from metal foils disposed on one or both sides of a conventional substrate (10), to form conductors (16, 18) directly onto a circuit board substrate, to form circuit devices directly onto a circuit board substrate, to form shields (116 and 118) directly on circuit patterns, to form solder masks (122 and 124) directly on circuit patterns, and to form multilayer circuit

board laminates. The circuit devices formed using Applicant's direct printing processes include capacitors, resistors, inductors, and transformers.

AMENDED CLAIMS

[received by the International Bureau on 23 March 2001 (23.03.01);
original claims 1-40 amended (9 pages)]

1

2 1. A method of forming a circuit board, comprising the steps of:
3 a. supplying a non-conducting substrate having a top surface and a
4 bottom surface;

5 b. forming a plurality of conductive pathways between said top surface
6 and said bottom surface;

7 c. forming a first circuit pattern on said top surface; and

8 d. forming a second different circuit pattern on said bottom surface.

9 2. The method of claim 1, further comprising the step of printing one or
10 more circuit devices on said first circuit pattern and on said second circuit pattern.

11 3. The method of claim 2, wherein said circuit devices are selected from
12 capacitors, inductors, resistors and transformers.

13 4. The method of claim 3, wherein said first circuit pattern comprises a
14 solderable component and a non-solder component, and further comprising the step of
15 printing a solder mask on said non-solder component of said first circuit pattern and
16 on said circuit devices printed on said first circuit pattern.

17 5. The method of claim 4, wherein said second circuit pattern comprises a
18 solderable component and a non-solder component, and further comprising the step of
19 printing a solder mask on said non-solder component of said second circuit pattern
20 and on said circuit devices printed on said second circuit pattern.

21 6. The method of claim 1, wherein said top surface comprises a first
22 conductor and said bottom surface comprises a second conductor, and wherein step b
23 further comprises the steps of:

24 printing an etch resist mask over a portion of said first conductor to form a
25 plurality of first exposed areas;

26 printing an etch resist mask over a portion of said second conductor to form a
27 plurality of second exposed areas wherein each of said plurality of first exposed areas
28 is disposed above one of said plurality of second exposed areas;

29 removing said first conductor from each of said plurality of first exposed areas
30 to form a plurality of first void areas on said top surface;

31

1 removing said second conductor from each of said plurality of second exposed
2 areas to form a plurality of second void areas on said bottom surface;
3 forming a plurality of vias by connecting one of said plurality of first void
4 areas with one of said plurality of second void areas;
5 plating said plurality of vias to form said plurality of conductive pathways
6 between said top surface and said bottom surface.

7 7. The method of claim 6, wherein the printing steps further comprise use
8 of printing techniques selected from electro-photographic printing, ink jet printing,
9 relief press printing using either direct or off-set mode, lithographic press printing
10 using either direct or off-set mode, and screen image transfer.

11 8. The method of claim 7, wherein step c further comprises:
12 printing a plating resist mask on said top surface to define said first circuit
13 pattern;

14 plating said top surface increase the thickness of said first circuit pattern;
15 removing said plating mask; and
16 removing said first conductor.

17 9. The method of claim 8, wherein said plating resist mask of step c is
18 printed by electro-photographic printing, ink jet printing, relief press printing using
19 either direct or off-set mode, and lithographic press printing using either direct or off-
20 set mode.

21 10. The method of step 9, wherein step d further comprises:
22 printing a plating resist mask on said bottom surface to define said second
23 circuit pattern;

24 plating said bottom surface to increase the thickness of said second circuit
25 pattern;
26 removing said plating mask; and
27 removing said second conductor.

28 11. The method of step 10, wherein said plating resist mask of step d is
29 printed by electro-photographic printing, ink jet printing, relief press printing using
30 either direct or off-set mode, and lithographic press printing using either direct or off-
31 set mode.

- 1 12. A method of forming a multilayer circuit board, comprising the steps
2 of:
3 a. supplying a first substrate having a first top surface and a first bottom
4 surface;
5 b. forming a plurality of electrically conductive pathways between said
6 first top surface and said first bottom surface;
7 c. forming a first circuit pattern on said first top surface;
8 d. forming a second circuit pattern on said first bottom surface;
9 e. supplying a second substrate having a second top surface and a second
10 bottom surface;
11 f. forming a plurality of electrically conductive pathways between said
12 second top surface and said second bottom surface;
13 g. forming a third circuit pattern on said second top surface;
14 h. forming a fourth circuit pattern on said second bottom surface;
15 i. supplying a first insulating layer having a first side and a second side;
16 j. joining said first side of said first insulating layer to said first bottom
17 surface, and joining said second side of said first insulating layer to said second top
18 surface, such that said first insulating layer electrically insulates said second circuit
19 pattern from said third circuit pattern;
20 k. forming a plurality of electrically conductive pathways between said
21 first circuit pattern, said second circuit pattern, said third circuit pattern, and said
22 fourth circuit pattern.
- 23 13. The method of claim 12, further comprising the step of printing one or
24 more circuit devices on said first circuit pattern, on said second circuit pattern, on said
25 third circuit pattern, and on said fourth circuit pattern.
- 26 14. The method of claim 13, wherein said circuit devices are selected from
27 capacitors, inductors, resistors, and transformers.
- 28 15. The method of claim 12, wherein said first top surface comprises a first
29 conductor and said first bottom surface comprises a second conductor, and wherein
30 step b further comprises the steps of:
31 printing an etch resist mask over a portion of said first conductor to form a

1 plurality of first exposed areas;

2 printing an etch resist mask over a portion of said second conductor to form a

3 plurality of second exposed areas, wherein each of said plurality of first exposed areas

4 on said top surface is disposed above one of said plurality of second exposed areas on

5 said bottom surface;

6 removing said first conductor from each of said first exposed areas to form a

7 plurality of first void areas on said top surface;

8 removing said second conductor from each of said plurality of second exposed

9 areas to form a plurality of second void areas on said bottom surface;

10 forming a plurality of vias by connecting one of said plurality of first void

11 areas with one of said plurality of second void areas;

12 plating said plurality of vias to form said plurality of conductive pathways

13 between said first top surface and said first bottom surface;

14 16. The method of claim 15, wherein step c further comprises:

15 printing a plating resist mask on said first top surface to define said first circuit

16 pattern;

17 plating said first top surface to increase the thickness of said first circuit

18 pattern;

19 removing said plating mask; and

20 removing said exposed first conductor.

21 17. The method of claim 16, wherein said plating resist mask of step c is

22 printed by electro-photographic printing, ink jet printing, relief press printing using

23 either direct or off-set mode, and lithographic press printing using either direct or off-

24 set mode.

25 18. The method of step 17, wherein step d further comprises:

26 printing a plating resist mask on said first bottom surface to define said second

27 circuit pattern;

28 plating said bottom surface to increase the thickness of said second circuit

29 pattern;

30 removing said plating mask; and

31 removing said second conductor.

1 19. The method of step 18, wherein said plating resist mask of step d is
2 printed by electro-photographic printing, ink jet printing, relief press printing using
3 either direct or off-set mode, lithographic press printing using either direct or off-set
4 mode, and screen image transfer.

5 20. The method of claim 12, wherein said second top surface comprises a
6 first conductor and said second bottom surface comprises a second conductor, and
7 wherein step f further comprises the steps of:

8 printing an etch resist mask over a portion of said first conductor to form a
9 plurality of first exposed areas;

10 printing an etch resist mask over a portion of said second conductor to form a
11 plurality of second exposed areas, wherein each of said plurality of first exposed areas
12 on said top surface is disposed above one of said plurality of second exposed areas on
13 said bottom surface;

14 removing said first conductor from each of said first exposed areas to form a
15 plurality of first void areas on said top surface;

16 removing said second conductor from each of said plurality of second exposed
17 areas to form a plurality of second void areas on said bottom surface;

18 forming a plurality of vias by connecting one of said plurality of first void
19 areas with one of said plurality of second void areas;

20 plating said plurality of vias to form said plurality of conductive pathways
21 between said second top surface and said second bottom surface;

22 21. The method of claim 20, wherein step g further comprises:

23 printing a plating resist mask on said second top surface to define said third
24 circuit pattern;

25 plating said second top surface to increase the thickness of said third circuit
26 pattern;

27 removing said plating mask; and

28 removing said first conductor.

29 22. The method of claim 21, wherein said plating resist mask of step g is
30 printed by electro-photographic printing, ink jet printing, relief press printing using
31 either direct or off-set mode, and lithographic press printing using either direct or off-

1 set mode.

2 23. The method of step 22, wherein step h further comprises:

3 printing a plating resist mask on said second bottom surface to define said
4 fourth circuit pattern;

5 plating said second bottom surface to increase the thickness of said fourth
6 circuit pattern;

7 removing said plating mask; and

8 removing said second conductor.

9 24. The method of step 23, wherein said plating resist mask of step h is
10 printed by electro-photographic printing, ink jet printing, relief press printing using
11 either direct or off-set mode, and lithographic press printing using either direct or off-
12 set mode.

13 25. The method of claim 12, further comprising the steps of:

14 1. supplying a third substrate having a third top surface and a third
15 bottom surface;

16 m. forming a plurality of electrically conductive pathways between said
17 third top surface and said third bottom surface;

18 n. forming a fifth circuit pattern on said third top surface;

19 o. forming a sixth circuit pattern on said third bottom surface;

20 p. supplying a second insulating layer having a first side and a second
21 side;

22 q. joining said first side of said second insulating layer to said second
23 bottom surface, and joining said second insulating layer to said third top surface, such
24 that said second insulating layer electrically insulates said fourth circuit pattern from
25 said fifth circuit pattern; and

26 r. forming a plurality of electrically conductive pathways between said
27 first circuit pattern, said second circuit pattern, said third circuit pattern, said fourth
28 circuit pattern, said fifth circuit pattern, and said sixth circuit pattern.

29 26. The method of claim 25, wherein said third top surface comprises a
30 first conductor and said third bottom surface comprises a second conductor, and
31 wherein step m further comprises the steps of:

1 printing an etch resist mask over a portion of said first conductor to form a
2 plurality of first exposed areas;

3 printing an etch resist mask over a portion of said second conductor to form a
4 plurality of second exposed areas, wherein each of said plurality of first exposed areas
5 on said top surface is disposed above one of said plurality of second exposed areas on
6 said bottom surface;

7 removing said first conductor from each of said first exposed areas to form a
8 plurality of first void areas on said top surface;

9 removing said second conductor from each of said plurality of second exposed
10 areas to form a plurality of second void areas on said bottom surface;

11 forming a plurality of vias by connecting one of said plurality of first void
12 areas with one of said plurality of second void areas;

13 plating said plurality of vias to form said plurality of conductive pathways
14 between said first top surface and said first bottom surface.

15 27. The method of claim 26, wherein step n further comprises:

16 printing a plating resist mask on said first top surface to define said fifth
17 circuit pattern;

18 plating said first top surface to increase the thickness of said first circuit
19 pattern;

20 removing said plating mask; and

21 removing said first conductor.

22 28. The method of claim 27, wherein said plating resist mask step n is
23 printed by electro-photographic printing, ink jet printing, relief press printing using
24 either direct or off-set mode, and lithographic press printing using either direct or off-
25 set mode.

26 29. The method of claim 28, wherein step o further comprises:

27 printing a plating resist mask on said first bottom surface to define said sixth
28 circuit pattern;

29 plating said bottom surface to increase the thickness of said second circuit
30 pattern;

31 removing said plating mask; and

1 removing said second conductor.

2 30. The method of claim 29, wherein said plating resist mask of step o is
3 printed by electro-photographic printing, ink jet printing, relief press printing using
4 either direct or off-set mode, lithographic press printing using either direct or off-set
5 mode, and screen image transfer.

6 31. A method of forming a circuit board, comprising steps in sequence of:

7 a. supplying a non-conducting substrate having a top surface and a
8 bottom surface each covered with a top and a bottom metallic layer, respectively;
9 b. forming a pattern mask on the top and the bottom metallic layers,
10 leaving exposed metallic patterns;

11 c. building up the exposed metallic patterns to increase the thickness
12 thereof;

13 d. removing the pattern mask whereby to expose the metallic patterns;
14 and

15 e. etching the metallic layer coated substrate from step d whereby to
16 remove exposed metallic surfaces, while leaving intact at least a portion of the built-
17 up metallic patterns.

18 32. The method of claim 31, wherein said pattern mask is applied by
19 printing.

20 33. The method of claim 32, wherein said pattern mask is printed by
21 electro-photographic printing, ink jet printing, relief press printing using either direct
22 or off-set mode, lithographic press printing using either direct or off-set mode, and
23 screen image transfer.

24 34. The method of claim 33, wherein said printing is effected employing a
25 fusible ink.

26 35. The method of claim 34, wherein said fusible ink comprises a
27 polymeric binder ink containing colloidal metal.

28 36. The method of claim 35, wherein the colloidal metal comprises
29 colloidal silver or colloidal palladium.

30 37. The method of claim 32, including the step of pre-heating the substrate
31 prior to printing.

1 38. The method of claim 37, where the board is preheated to a temperature
2 in the range of 100°C-160°C.

3 39. The method of claim 31, wherein said exposed metallic patterns are
4 built-up by plating.

5 40. The method of claim 12, and further comprising the step of removing
6 the resulting structure from the first substrate.

1 / 8

FIG. 1

FIG. 2

FIG. 3

FIG. 4

2 / 8

FIG. 5

FIG. 6

3 / 8

FIG. 7

FIG. 8

FIG. 9

FIG. 10

4 / 8

FIG. 11

FIG. 12

FIG. 13

FIG. 14

5 / 8

FIG. 15

FIG. 16

6 / 8

FIG. 17

FIG. 18

FIG. 19

7 / 8

FIG. 20

FIG. 21

8 / 8

FIG. 23

FIG. 24