Midterm exam Algebra

Problem 1: The following two questions are independent:

- 1. Let G be a subgroup of $GL_n(\mathbb{F}_p)$ of cardinality $p^{\frac{n(n-1)}{2}}$. Prove that the elements of G are unipotent (i.e. any $g \in G$ satisfies $(g Id)^n = 0$) and simultaneously trigonalizable.
- 2. Let p>2 be a prime number and S_p the symmetric group on $\{1,\cdots,p\}$.
- i) How many p-cycles are there in S_p ?
- ii) How many p-Sylow's are there in S_p ?

Deduce from this Wilson's theorem: $(p-1)! = -1 \pmod{p}$.

Recall that the normaliser of a subgroup G of a group H is $N(G)=\{x\in H; xGx^{-1}=G\}.$

- iii) Prove that the cardinality of the normalizer of a p-Sylow of S_p is p(p-1).
- iv) Let G a subgroup of S_p of order p(p-1). Prove that G is the normaliser of a p-Sylow of S_p . Deduce that all subgroups of order p(p-1) of S_p are conjugated.

Problème 1:

Les deux questions suivantes sont indépendantes.

1. Soit G un sous-groupe de $GL_n(\mathbb{F}_p)$ de cardinal $p^{\frac{n(n-1)}{2}}$. Démontrer que les éléments de G sont unipotents (i.e. tout $g \in G$ satisfait à $(g - Id)^n = 0$) et simultanéments trigonalisables.

- 2. Let p>2 un nombre premier et S_p le groupe symétrique sur $\{1,\cdots,p\}$.
- i) Combien de p-cycles y a-t-il dans S_p ? Justifier la réponse.
- ii) Combien de p-Sylow y a-t-il dans S_p ? Justifier la réponse. En déduire le théorème de Wilson: $(p-1)! = -1 \pmod{p}$.

On rappelle que le normalisateur d'un sous-groupe G d'un groupe H est:

$$N(G) = \{ x \in H; xGx^{-1} = G \}.$$

- iii) Démontrer que le cardinal du normalisateur d'un p-Sylow de S_p est p(p-1).
- iv) Soit G un sous-groupe de S_p d' ordre p(p-1). Démontrer que G est le normalisateur d'un p-Sylow de S_p .

En déduire que tous les sous-groupes d'ordre p(p-1) de S_p sont conjugués.

Problem 2:

The following two questions are independent:

1. Let
$$A = \begin{pmatrix} 0 & -1 & 2 & -2 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 \end{pmatrix}$$
. Check that A is nilpotent. What is the reduced Jordan form of A .

2. Let k be a field and E a finite dimensional k-vector space.

i) Let $P, Q \in k[X]$ be monic polynomials such that P divides Q. Put p = deg(P), q = deg(Q). Let C_P and C_Q the associated compagnon matrices, and f_P and f_Q the corresponding endomorphisms of k^p and k^q respectively. Let $g: k^q \to k^p$ a linear map such that $f_P g = g f_Q$.

Prove that g is completely determined by the vector $g(e_1) \in k^p$, where $e_1 = (1, 0, \dots, 0) \in k^q$.

What is the dimension of the vector space of linear maps $g: k^q \to k^p$ such that $f_P g = g f_Q$.

For $u \in L(E)$, let $Com(u) = \{v \in L(E); vu = uv\}$ and $Bicom(u) = \{w \in L(E); \forall v \in Com(u), wv = vw\}$.

- ii) Suppose that $E = E_1 \oplus E_2$ with E_1 and E_2 subspaces which are stable by u: $u(E_i) \subset E_i, i = 1, 2$. Prove that $\forall w \in Bicom(u), w(E_i) \subset E_i, i = 1, 2$.
- iii) Prove that Bicom(u) = k[u].

Problème 2: Les deux questions suivantes sont indépendantes:

1. Soit
$$A = \begin{pmatrix} 0 & -1 & 2 & -2 & -1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 \end{pmatrix}$$
. Vérifier que A est nilpotente. Quelle est la forme

réduite de Jordan de A?

- 2. Soit k un corps et E un k espace vectoriel de dimension finie.
- i) Soient $P, Q \in k[X]$ des polynômes unitaires tels que P divise Q. Soient p = deg(P), q = deg(Q). Soient C_P et C_Q les matrices compagnons associées, et f_P et f_Q les endomorphismes correspondants de k^p et k^q respectivement. Soit $g: k^q \to k^p$ une application linéaire telle que:

$$f_P g = g f_Q$$
.

Démontrer que g est complètement déterminée par le vecteur $g(e_1) \in k^p$, où $e_1 = (1, 0, \dots, 0) \in k^q$.

Quelle est la dimension de l'espace vectoriel des applications linéaires $g: k^q \to k^p$ telles que $f_P g = g f_Q$.

Pour $u \in L(E)$, soit $Com(u) = \{v \in L(E); vu = uv\}$ et $Bicom(u) = \{w \in L(E); \forall v \in Com(u), wv = vw\}$.

ii) On suppose que $E = E_1 \oplus E_2$ avec E_1 et E_2 des sous-espaces stables par u:

$$u(E_i) \subset E_i, i = 1, 2$$
. Démontrer que $\forall w \in Bicom(u), w(E_i) \subset E_i, i = 1, 2$.

iii) Démontrer que Bicom(u) = k[u].

Problem 3:

- 1. Let $Z = (r_1, ..., r_n) \in \mathbb{R}^n$. Prove that it can be written as $aZ_1 + bZ_2$, where Z_1 and Z_2 are n-tuples of complex numbers of modulus 1 and $a, b \in \mathbb{R}$.
- 2. i) Prove that $M_n(\mathbb{C})$ is the direct sum of the real sub vector spaces of hermitian matrices and of anti-hermitian matrices.
- ii) Prove that any matrix $A \in M_n(\mathbb{C})$ can be written as a linear combination of four unitary matrices.
- 3. Find all linear forms $f: M_n(\mathbb{C}) \to \mathbb{C}$ such that:

$$\forall A \in M_n(\mathbb{C}), \forall U \in U_n(\mathbb{C}), f(UAU^*) = f(A).$$

Problème 3:

- 1. Soit $Z=(r_1,...,r_n)\in\mathbb{R}^n$. Démontrer qu'il peut être écrit comme aZ_1+bZ_2 , où Z_1 et Z_2 sont des n-tuples de nombres complexes de module 1 et $a,b\in\mathbb{R}$.
- 2. i) Démontrer que $M_n(\mathbb{C})$ est somme directe des sous-espaces vectoriels réels des matrices hermitiennes et des matrices anti-hermitiennes.
- ii) Démontrer que toute matrice $A \in M_n(\mathbb{C})$ peut s'écrire comme combinaison linéaire de quatre matrices unitaires.
- 3. Trouver toutes les formes linéaires $f: M_n(\mathbb{C}) \to \mathbb{C}$ telles que:

$$\forall A \in M_n(\mathbb{C}), \forall U \in U_n(\mathbb{C}), f(UAU^*) = f(A).$$

Problem 4:

- 1. Let $A \in M_n(\mathbb{C})$. Prove that there is a unitary matrix U such that UAU^* is upper triangular.
- 2. Let $A \in M_n(\mathbb{C})$, and $\lambda_1, \dots, \lambda_n$ its eigenvalues (counted with their algebraic multiplicities). Prove that A is normal if and only if $Tr(AA^*) = \sum |\lambda_i|^2$.

Problème 4:

- 1. Soit $A \in M_n(\mathbb{C})$. Démontrer qu'il existe une matrice unitaire U such that UAU^* est triangulaire supérieure.
- 2. Soit $A \in M_n(\mathbb{C})$, et $\lambda_1, \dots, \lambda_n$ ses valeurs propres (comptées avec leur multiplicités algébriques). Démontrer que A est normale si et seulement si $Tr(AA^*) = \sum |\lambda_i|^2$.