Using Knowledge Graphs for Text Retrieval

github.com/laura-dietz/tutorial-utilizing-kg

Laura Dietz

University of New Hampshire

Alex Kotov

Wayne State University

Edgar Meij

Bloomberg

Document Retrieval with Entities

Outline

- 1. Matching entities in documents
- 2. Find relevant entities
- 3. Entity types
- 4. Graph expansion
- 5. Combination of multiple sources
- 6. Machine learning
- 7. Entity aspects

Different Queries - Different Entities

Query	EU UK relations	dark chocolate health benefits
Query	Q EU Q UK	chocolate
Latent entities	• Brexit • Theresa May	Theobromine circulatory system
[Hasibi ICTIR16]	Named Entities	Concepts

Matching Entities in Documents

Q: dark chocolate health benefits

Matching Entities in Documents by Name

Q: dark chocolate health benefits

Document relevant?

Matching Entities in Documents by Name

Q: dark chocolate health benefits

Document relevant?

Matching Entities in Documents by Entity Links

Matching Entities in Documents by Entity Links

Q: dark chocolate health benefits

Document relevant?

Matching Entities in Documents by Article Terms

Q: dark chocolate health benefits

Combine All Names, Links, Terms

Using Entities as a Vocabulary of Concepts

$$score(\square) = \lambda_1 query terms +$$

$$\lambda_2$$
names +

use your favorite retrieval model here!

$$\lambda_3$$
entity links +

$$\lambda_4$$
article terms + ...

Document Retrieval with Entities

Find Relevant Entities

- 1. Matching entities in documents
- 2. Find relevant entities
- 3. Entity types
- 4. Graph expansion
- 5. Combination of multiple sources
- 6. Machine learning
- 7. Entity aspects

How to Find Relevant Entities?

Query	EU UK relations	dark chocolate health benefits
Query entities	Q EU Q UK	chocolate health
Latent entities	Perexit Theresa May	Theobromine circulatory system heart
	Named Entities	Concepts

Query Entities through Entity Linking

Query: dark chocolate health benefits

Latent Entities through Retrieval (e.g., Part 3)

Retrieve entities from knowledge base to obtain ranking of entities E (with score)

Latent Entities through Pseudo-Relev. Feedback

- 1. Retrieve preliminary documents
- 2. Entity link documents
- 3. Derive distribution over \$\frac{1}{2}\$ (bag of entities) (see Relevance Model / RM3)

[Dalton et al 14, Liu & Fang 15]

PRF is Inverse of Matching Entity Links

SIGIR 2018 Tutorial on Utilizing KGs in Text-centric IR - github.com/laura-dietz/tutorial-utilizing-kg

Latent Entities through Proximity to Query Words

Using distance between entity mentions and query words **q** as a measure for relevance.

[Petkova & Croft, 07] also see enity profiles [Liu & Fang, 15] entity context model [Dalton et al, 14]

Entity Expansion for Document Retrieval

Query entities + Object retrieval (Part 3)

Pseudo-relevance feedback (RM3)

Document = bag of entity links (instead of terms)

Using More from the Knowledge Graph

So far we used names and entity links. But KGs have so much more information!

Names

Links and relations

Different taxonomic type systems

How can we make use of it?

Using Types and Categories

- 1. Matching entities in documents
- 2. Find relevant entities
- 3. Entity types
- 4. Graph expansion
- 5. Combination of multiple sources
- 6. Machine learning
- 7. Entity aspects

Utilizing Entity Types

inferred as relevant because of same type

Entity Types Inferred through Entity Links

Entity Types Inferred through Entity Links

a) same-type entities

[Kaptein et al 10]

majority types among entities

prefer docs with entities of this type

Method	MAP on INEX
Full Text	0.03
Link	0.09
Type+Link	0.13

Entity Types through Text Classification

b) term classify query terms classifier with naive Bayes
[Xiong & Callan 15]

classify documents with naive Bayes

Open Issues Regarding Types

- Often types are very broad
- Often entities of many different types are relevant
- Often some entities of a type are relevant, others are not...
- Quality issues of type ontologies
- Wikipedia categories are very noisy

Graph Expansion

- 1. Matching entities in documents
- 2. Find relevant entities
- 3. Entity types
- 4. Graph expansion
- 5. Combination of multiple sources
- 6. Machine learning
- 7. Entity aspects

More Entities Found near Relevant Entities

Query: EU UK Relations

Using Relations and Types with Entity Links

Using Relations and Types with Entity Links

Using Relations and Types with Entity Links

Graph Expansion

Using seed entity nodes

- 2-hop expansion

- Graph walks:

- PageRank / HITS

- Shortest Paths

- Entity Relatedness

Different edge types

- Edge weighting

- Graph Clustering

Document Retrieval with (More) Entities

Successes of using the Link Structure

Kaptein et al 2010

Kotov & Zhai 2012

Boston et al 2014

Weight entities by:

M: How well Es article content matches the query

MR: How often **E** is linked by others (PageRank)

Method	F1 on TREC QA
M	76.92
M+d*MR	79.47
(d=0.0001)	

In recent years, links seem to not work any more...?!?

Link Structure "Stopped Working"

Wikipedia started with the "most popular" facts then it grew in number of nodes and number of connections, aiming for better coverage.

Wikipedia in 2013 Wikipedia in 2018

Hub nodes: New York City, California, United States

Link Structure "Stopped Working"

Wikipedia started with the "most popular" facts then it grew in number of nodes and number of connections, aiming for better coverage.

Wikipedia in 2013

Wikipedia in 2018

Hub nodes: New York City, California, United States

Big Question

How to infer which other connected entities / nodes are relevant for the information need Q?

...and therefore safe for expansion?

Open Issue: Predict Relevance of Edges

Open Issue: Predict Relevance of Edges

An edge can be relevant for one query and non-relevant for another query Can't be distinguished through graph structure.

Edges are relevant for query: EU UK Bands Edges are **not** relevant for query: EU UK Relations

Using Relation Extraction

Relation Extraction:

[Roth et al 14] (best at TAC KBP 13)

Research question:

relevant documents + extraction = relevant relations?

[Schuhmacher, Roth, Ponzetto, Dietz 16]

Relations of Relevant Documents [Schuhmacher et al, 16]

Goal: Relations need to be relevant and correct

More Big Questions

How to deal with high number of non-relevant relations in relevant documents?

How to utilize relation types, when the query does not explicitly mention them?

Combination of Multiple Sources

- 1. Matching entities in documents
- 2. Find relevant entities
- 3. Entity types
- 4. Graph expansion
- 5. Combination of multiple sources
- 6. Machine learning
- 7. Entity aspects

Complementary Sources

Typical approaches:

- 1) Use **complementary sources**: graph, article text, relevance feedback, type info
- 2) Use **machine learning**:
 Train weights for sources on test collection

Source: Relevance Feedback with Entity Links

Document = bag of Entity Links
Proximity of query and Entity Links
[Petkova 2007, Dalton et al 14, Liu & Fang 15]

Source: Object AND Article Content Retrieval

[Xiong & Callan 15, Dalton et al 14]

Source: Graph Structure and Walks

Machine Learning

- 1. Matching entities in documents
- 2. Find relevant entities
- 3. Entity types
- 4. Graph expansion
- 5. Combination of multiple sources
- 6. Machine learning
- 7. Entity aspects

Machine Learning / Probabilistic Models

Three approaches based on similar ideas:

- Dalton: Entity Query Feature Expansion
- Xiong: EsdRank
- Liu: Latent Entity Space

Probabilistic model with random variables Q,E,D.

An edge represents a measure of compatability or similarity.

One possible value for E -> property no ground truth!

<- One possible value for D ground truth available (TREC)</p>

$$p(q|D=d,R=1) = \sum_{e \in \mathcal{E}} p(q|e) \cdot p(e|d)$$

similarity of similarity of LM(q) and LM(e) and LM(d)

Wide range of experiments on which similarity measure / data source combination works best.

Entity Query Feature Expansion

[Dalton et al, 14]

Results on Robust04 ad hoc document retrieval.

EsdRank

[Xiong & Callan 15]

Discriminative probabilistic model based on Generalized linear models + EM Algorithm for learning weights w1, w2.

Only n+m features! But needs custom learning code.

Relation to Query / Latent Concept Expansion

Various vocabularies, but all represented by sets

$$score(\square) = \lambda_1 ext{query terms} +$$
 $\lambda_2 ext{names} +$
 $\lambda_3 ext{entity links} +$
 $\lambda_4 ext{article terms} + \dots$

Query Expansion with Uncertainties

Taking uncertainty and confidences into account.

[Raviv et al 16, Liu & Fang 15]

Neural: Word-Entity Duet Model

[Xiong et al, 17]

Figure 1: The Architecture of the Attention based Ranking Model for Word-Entity Duet (AttR-Duet). The left side models the query-document matching in the word-entity duet. The right side models the importances of query entities using attention features. They together produce the final ranking score.

Image credit: Xiong

Entity Aspects

- 1. Matching entities in documents
- 2. Find relevant entities
- 3. Entity types
- 4. Graph expansion
- 5. Combination of multiple sources
- 6. Machine learning
- 7. Entity aspects

Entity Aspects

Danger: An entity is relevant, but: only because of one aspect => many non-relevant aspects of relevant entities.

Example aspects about UK:

- still a member of the European Union
- is a constitutional monarchy
- the Raspberry Pi was invented in the UK
- there are many great UK bands

Depending on query, some are relevant, some not.

Refining Entity Links with Entity Aspects [Nanni et al, 18]

Here: Using sections from Entity's Wikipedia article as a canonical set of entity aspects.

On data from TREC CAR: P@1 = 68%

Results on BreXerch [Zhang et al 17] (Tweet classification)

Topic	# Tweets
Economy	155
Immigration	52
Sovereignty and influence	50
Security, law enforcement and defense	3
Risk to the Unity of the United Kingdom	30
Transatlantic Trade and Investment Partnership	5
Enlargement of the European Union	12
Proposed consequences of a vote to leave	65
Total	372
Excluded	
General	270
Out-of-topic	108

topic-independent training with L2R!

	P@1
random baseline	0.12
Ranking Approaches	
Content - BM25	0.37
Content - w-emb (cs)	0.36
AL (ours)	0.43
Classification Approache	es
Naive Bayes (tf-idf)	0.27
SVM (tf-idf)	0.27
Naive Bayes (w-emb)	0.38
SVM (w-emb)	0.37

Brexit topics

Results

taken from en.wikipedia.org/wiki/Issues_in_the_United_ Kingdom_European_Union_membership_referendum,_2016

Conclusion

- 1. Matching entities in documents
- 2. Find relevant entities
- 3. Entity types
- 4. Graph expansion
- 5. Combination of multiple sources
- 6. Machine learning
- 7. Entity aspects

How to Represent Different Knowledge "Units"

As terms? UK bands

brexit

As types? UK member of "European Union"

As is-a? UK as a European country

Related entities? UK Theresa_May

Relations? Theresa_May

prime_minister_of UK

Language Model p(brexit)=0.4

p(leave)=0.25

p(immigration)=0.10

[Reinanda SIGIR15, Liu IRJ15, Prasojo CIKM15]

KG-aware Text Retrieval: Knowledge "Units"

KG-aware Text Retrieval: Knowledge "Units"

Knowledge "Units": Infer Relevance, Match, Extract

1) Relevance: Which units are relevant? • UK Theresa 2) Match: prime minister of How to match units in text? European Union UK is a Many UK member of the bands are EU pseudo very good is the Prime relevance inverse tasks Minister of the feedback UK member of European_Union **UK** bands **UK** europe Theresa May 3) Extract: Theresa May prime minister of UK How to extract new units? (KB population)

Summary (Part 4)

- 1. Matching entities in documents
- 2. Find relevant entities
- 3. Graph expansion
- 4. Entity types
- 5. Combination of multiple sources
- 6. Machine learning

