Yuelin Li - Analytic/Quantitative Résumé

A. Selected Quantitative Courses at Columbia University (4*** or above are graduate courses)

Subject	Course	Details	
Math	Introduction to	Textbook: Principles of Mathematical Analysis, W. Rudin, Chapter 1-11	
	Modern Analysis I&II	Content: Real and complex analysis, Point set topology, Continuous and	
	MATHGU4061-4062	differential functions, Integration, Implicit function theorem, Stokes'	
	(2019-2020)	theorem, Lebesgue measure and integral.	
	Introduction to	Textbook: <u>Algebra</u> , M. Artin, Chapter 2, 6, 7, <u>Abstract Algebra</u> , Dummit	
	Modern Algebra I	and Foote, Chapter 0-6, Handouts from Prof. Robert Friedman	
	MATHGU4041	Content: Groups, Homomorphisms, Rings, Fields, Polynomials, Field	
	(Fall 2020)	extensions, Galois theory.	
	Partial Differential	Textbook: Partial Differential Equations: An Introduction, Walter A.	
	Equations	Strauss, Chapter 1-8	
	MATHV3028	Content: First-order equations, Linear second-order equations,	
	(Spring 2020)	Separation of variables, Solution by series expansions, Boundary value	
		problems.	
	Ordinary Differential	Textbook: Handouts from Prof. Florian Johne, <u>Elementary Differential</u>	
	Equations	Equations and Boundary Value Problems, Boyce and DiPrima, Chapter 1-	
	MATHV2030	7, 9, 11	
	(Fall 2019)	Content: Linear theory, Nonlinear equations, Integral transform and	
		series solution techniques, The Banach fixed point theorem, Convergence	
		of the matrix exponential, Applications.	
	Linear Algebra	Textbook: <i>Linear Algebra with Applications</i> , Otto Bretsch, Chapter 1-8	
	MATHV2010	Content: Matrices, Vector spaces, Linear transformations, Eigenvalues	
	(Fall 2018)	and eigenvectors, Canonical forms, Applications.	
	Supervised Reading	Textbook: <u>Applied Partial Differential Equations</u> , A. Jeffrey, <u>Applied</u>	
	MATHV3902	Partial Differential Equations, R. Haberman, Chapter 1-8, 12, 14.	
	(Spring 2020)	Content: Weekly meeting and discussion on selected topics.	
Applied	Computational Inverse	Textbook: Handouts from Prof. Kui Ren	
Math	Problems	Content: Regression and regularization theory, Iterative schemes for	
	APMAE6901	nonlinear inverse problems, Deterministic and randomized minimization	
	(Spring 2020)	schemes, Deep learning with neural networks.	
	Computational Math:	Textbook: Handouts from Prof. Marc W. Spiegelman, <i>Numerical</i>	
	Numerical Methods	Methods in Engineering with Python 3, J. Kiusalaas, Chapter 1-10	
	APMAE4300		

	(Fall 2020)	Content: Errors, Root finding, Optimization, Interpolation, Numerical
		differentiation, Numerical quadrature, Numerical ODE and PDE,
		Convergence and stability, Numerical linear algebra.
Numerical Optimization and		Textbook: Convex Optimization, Boyd and Vandenberghe, Theory.
		Algorithms, and Applications with MATLAB, Beck, Linear and Nonlinear
	Algebra	Optimization, Griva, Nash, and Sofer
	APMAE4990	Content: Optimization models, Representation of linear constraints,
	(Spring 2021)	Linear programming, Unconstrained optimization, Optimality conditions
		for constrained problems, Feasible-point methods.
	Applied Functional	Textbook: <u>Applied Analysis</u> , Hunter and Nachtergaele, <u>Functional</u>
	Analysis	<u>Analysis</u> , Peter Lax
	APMAE4150	Content: Banach and Hilbert spaces, Compactness, Linear operators,
	(Spring 2021)	Compact operators, Fredholm alternative, Spectrum of linear operators,
		Spectral theory for self-adjoint compact operators, Applications.
Computer	Artificial Intelligence	Textbook: Artificial Intelligence: A Modern Approach, Russell and Norvig
Science	COMSW4701	Content: State-space problem representations, Problem reduction, And-or
	(Summer 2020)	graphs, Heuristic search, Predicate calculus, Resolution theorem proving,
		AI systems and languages for knowledge representation, Machine learning
		and concept formation.
	Machine Learning	Textbook: Pattern Recognition and Machine Learning, C. M. Bishop,
	COMSW4721	Chapter 1-7, 9, 12-14.3, <i>The Elements of Statistical Learning</i> , Hastie,
	(Spring 2020)	Tibshirani, and Friedman, Chapter 2, 3, 6, 7, 13, 14, <u>A Course in Machine</u>
	(Sping 2020)	Learning, Daume
		Content: Equivalence of maximum likelihood and least squares
		estimator, Bias-variance decomposition of mean squared error, Bayes
		classifier, Nonparametric methods, Gradient descent, Neural networks,
		Kernel methods, Dimension reduction and manifold learning, Resampling
		methods, Clustering, Sequential data modeling.
	Introduction to	
	Introduction to Databases	Textbook: <u>Database System Concepts</u> , Silberschatz, Korth and Sudarshan
	COMSW4111	Content: Entity-relationship modeling, Logical design of relational
		databases, Relational data definition and manipulation languages, SQL,
	(Fall 2019)	XML, Query processing, Physical database tuning, Transaction processing,
		Security.

	Computer Science	Textbook: <i>Introduction to the Theory of Computation</i> , M. Sisper, Chapter
	Theory 1-10	
	COMSW3261	Content: Deterministic and non-deterministic finite automata, Regular
	(Summer 2020)	expressions, Context-free grammars, Push-down automata, Turing
		machines, Chomsky hierarchy, Church-Turing thesis, Complexity Theory
		and NP-Completeness.
	Discrete Mathematics:	Textbook: <u>Mathematics: A Discrete Introduction</u> , Edward R.
	Combinatorics and	Scheinerman, Chapter 1-10, Handouts from Prof. Tony Dear
	Graph Theory COMSW3203 Content: Logic and formal proofs, Finite probability, Recurrelations, Sequences and summation, Partial orderings, Grap	
	(Spring 2019)	
	Data Structures with	Textbook: <i>The C Programming Language</i> , Keinighan and Ritchie,
	C/C++	Data Structures and Algorithm Analysis in C++, Mark A. Weiss
		Content: Programming in C/C++, Array based data structures, Heaps,
	(Spring 2019) Linked lists, UNIX environment, Trees, Graphs.	
		Textbook: Handouts from Prof. Adam Cannon and Prof. Scarlett
	INAFU6006/	Swerdlow
		Content: Introductory programming, Digital social sciences, finance,
	(Fall 2018)	public policy, Object-oriented programming, Algorithms, Data cleaning.
	Development	Content: Introductory Java, a mixture of lecture/demo and project based
	Technology	Java practice.
	COMSW3102	
	(Fall 2020)	
Statistics	Probability Theory	Textbook: <u>Probability and Statistics</u> , DeGroot and Schervish, Chapter 1-
	STATGU4203/	6
	STATGU5203	Content: Calculus-based probability theory, Random variables,
	(Summer 2020)	Conditional probability, Bayes rule, Important distributions, Joint
		distributions, Moment generating functions, Central limit theorem, laws
		of large numbers, Markovs inequality.
	Probability and	Textbook: Introduction to Probability and Statistics for Engineers and
	Statistics for Data	Scientists, Sheldon M. Ross, Chapter 1-12, 15, Probability and Statistics,
	Science	DeGroot and Schervish, selected reading in Chapter 7-12
	STATGU5701	Content: Probability theory and statistical inference used in data science;
	(Fall 2019)	Probabilistic models, Statistical inference: Point and confidence interval
		estimation, Hypothesis tests, Linear regression, Maximum likelihood,

	SIPAU6400	
	Analysis	
Econ	Microeconomic	Textbook: Microeconomics, Besanko and Braeutigam
		Neural network, Image classification.
		and calibration, Dimensionality reduction, Clustering, Manifold learning,
		feature selection, SVM, Decision trees, Random forest, Gradient boosting
	(Summer 2020)	Content: Supervised learning, Models for classification, Imputation and
	QMSSGR5073	12-16, 19, <u>Deep Learning</u> , Goodfellow, Bengio, Courville, Chapter 6, 7, 9
	Social Sciences	Chapter 1-6, <u>Applied Predictive Modeling</u> , Kuhn, Johnson, Chapter 1-4, 6,
	Machine Learning for	Textbook: <i>Introduction to Machine Learning with Python,</i> G. Muller,
		Nominal data, First difference analysis, Factor analysis.
		diagnostics, Bayes classifiers, Models for binary outcomes, Ordered data,
		Gauss-Markov assumptions and asymptotics, Heteroskedasticity and
	(Summer 2020)	Content: Data structures, Multiple regression analysis, Interactions,
	QMSSGR5019	Pandas, NumPy, and IPython, McKinney, Chapter 1-13
	Python	Wooldridge, Chapter 1-17, <u>Python for data analysis: Data wrangling with</u>
	Data Analysis with	Textbook: Introductory Econometrics: A Modern Approach, J.
		Scikit-learn, Predictive streaming analytics.
(Fall 2020)		Clustering, TF-IDF, Speech tagging, Sentimental analysis, Lexicons,
	QMSSGR5067	Content: NLTK, Text tokenization, Stemming, Web Scraping,
	Processing	Chapter 1-11, 19, Natural Language Processing with Python by NLTK
	Natural Language	Textbook: Speech and Language Processing, Jurafsky and Martin,
		Cointegration, GARCH models with R.
		series regression, Dynamic causal effects, Vector autoregressions,
		analysis of temporal processes, Difference-in-difference models, Time
	(Fall 2020)	Content: Time series data and longitudinal (panel) data, Regression
	QMSSGR5016	6, <u>R for Data Science</u> , Garrett Grolemund & Hadley Wickham
	Time Series Analysis	Textbook: Introduction to Time Series Analysis, Mark Pickup, Chapter 1-
		data in dynamic and interactive displays with R .
	(Spring 2020)	Content: Mapping geographic data, text, social networks, other forms of
	STATGU5702	ggplot2: Elegant Graphics for Data Analysis, Hadley Wickham
	QMSSGR5063/	Cookbook: Practical Recipes for Visualizing Data, Winston Chang,
	Data Visualization	Textbook: <i>Graphical Data Analysis with R</i> , Scott Murray, <i>R Graphics</i>
		ANOVA, Statistical analysis trained with R.
		Likelihood ratio tests, Nonparametric procedures, Theory of least squares,

	(Fall 2018)	Content: Demand-supply model, Welfare analysis, Consumer and
		producer theory, Equilibrium, Welfare theorems, Externalities, Public
		goods, Uncertainty and asymmetric information.
	Macroeconomic	Textbook: Macroeconomics, Abel, Bernanke and Croushore
	Analysis	Content: Labor market, Income and wealth, Balance of payments, Asset
SIPAU6401 market, Business cycle theory, The open economy.		market, Business cycle theory, The open economy.
		(Waiver by Passing Proficiency Test)
Other	Quantitative Analysis	Textbook: Statistics with STATA, Lawrence C. Hamilton,
	SIPAU6500	Introduction to the Practice of Statistics, D. Moore, G. McCabe,
	(Spring 2019)	Applied Regression, M. Lewis-Beck
		Content: Introduction to probability and statistics, Hypothesis tests,
		Linear regression, Statistical analysis trained with STATA .
	Tools for Analytics	Textbook: Handouts from Prof. Paul Logston
	IEORE4501	Content: Python programming, Recursion, Time complexity, Algorithms
	(Fall 2018-Audited)	and efficiency, Linux usage, SQL, Serialization, HTML, APIs.

B. Quantitative Courses at Peking University-Economics minor program

Subject	Course	Details
Economics	The Principles of Economics	Textbook: The Principles of Economics, N. Gregory Mankiw
	(Fall 2014)	Content: Factors of production, Factors of demand and
		supply, Effective allocation of resource in a production
		process, Interdependence and gains from trade.
	Intermediate Econometrics	Textbook: Introductory Econometrics: A Modern Approach,
	(Spring 2017)	Jeffery M. Wooldridge
		Content: Malfunctioning of Market, Monopoly, Externality
		and Asymmetric Information, Economic Behavior of
		Government, Public Finances.
	Intermediate Microeconomics	Textbook: Intermediate Microeconomics: A Modern
	(Spring 2015)	Approach, Hal R. Varian
		Content: Consumer theory, Theory of the firm, Game theory,
		Externalities of economics theory, Problems and allocation of
		public goods.
	Education Economics	Textbook: Economics of Education. Amsterdam: Elsevier,
	(Spring 2015)	Brewer, D, & Patrick McEwan.
		Content: Measurement of educational benefits, Education
		production function, Estimation of the relationship between
		education and economic growth, Expenditure on education,
		Allocation of funds and transfer payment.
	Intermediate Macroeconomics	Textbook: Macroeconomics. Paul Krugman
	(Fall 2016)	Content: Composition and accounting of national economy,
		Growth and capital accumulation, Growth and policy, Inflation
		and unemployment, Interest and monetary policy, Exchange
		rate and policy, The balance of trade, Capital mobility, The
		Mundell-Pleming Model.
	Growth Economics	Textbook: Economic Growth. Pearson: David N Weil.
	(Spring 2017)	Content: Economic perspective in public policies, Growth
		models.
	Economics of Innovation and	Textbook: Innovation and Incentives, Suzanne Scotchmer
	Intellectual Property Rights	Content: Economics of innovation processes, Intellectual
	(Spring 2017)	property rights, Model of the economics of optimal patent life,
		Model of patent licensing, The evaluation of innovations.

Finance	Internet Finance and Big Data	Textbook: Handouts from Prof. Fangfang Tang of
	(Spring 2015)	Department of Economics, Peking University
		Content: Web-centric business models,
		Financial innovation under Internet environment.
	Low-Carbon Economy and	Textbook: Climate Change and Carbon Trading, Fangfang
	Carbon Finance	Tang
	(Spring 2016)	Content: Carbon trading theory, Climate change and carbon
		trading, Coase Theorem, Global public goods.
	Financial Accounting	Textbook: Intermediate Financial Accounting, Yunping Wang
	(Spring 2017)	Content: Financial statement, Accounting dealing and
		financial report mode.
	Introduction to Internet	Textbook: Handouts from Prof. Feng Guo of Department of
	Finance (Spring 2017)	Finance, Peking University
		Content: Cases about third-party payment, P2P platform,
		Crowd-funding, Investigation, Financial regulations
L	1	