CSCI-567: Assignment #3

Due on Friday, October 16, 2015

Saket Choudhary 2170058637

Contents

Problem 4																					:
Problem 4:	(a)		 									 						 			•
Problem 4:	(b)		 									 						 			•
Problem 4:	(c)		 									 						 			4
Problem 4:	(d)		 									 						 			4
Problem 4:	(e)		 									 						 			4
Problem 1																					ţ
Problem 1:	(a)		 									 						 			ţ
Problem 1:	(b)		 									 						 			(
Problem 1:	(c)		 									 						 			(
Problem 1:	(d)		 									 						 			(

Problem 4

Given: $k_1(.,.)$ and $k_2(.,.)$ are kernel function. Thus, for any vector $y \in \mathbf{R}$, $y^T K y \ge 0$ where $K_{ij} = k(x_i, x_j)$ Mercer's theorem requires K to be positive semi-definite.

Problem 4: (a)

 $k_3(x, x') = a_1 k_1(x, x') + a_2 k_2(x, x')$ where $a_1, a_2 \ge 0$ Since $k_1(x, x')$ is positive definite, $\forall y \in \mathbf{R}$,

$$y^T K^{(1)} y \ge 0,$$
 where

$$K_{ij}^{(1)} = k_1(x_i, x_j')$$

Similarly,

$$y^T K^{(2)} y \ge 0,$$
 where (4a.2)

$$K_{ij}^{(2)} = k_2(x_i, x_j')$$

Thus, from (4a.1) and (4a.2), we get

$$y^{T}(K^{(1)} + K^{(2)})y \ge 0 \ \forall y \in \mathbf{R} \implies$$
$$y^{T}K^{(3)}y \ge 0 \ \forall y \in \mathbf{R}$$
where
$$K_{ij}^{(3)} = k_{3}(x_{i}, x_{j}')$$

Problem 4: (b)

 $k_4(x, x') = f(x)f(x')$ Let $K_{ij}^{(4)} = k_4(x_i, x_j) = f(x_i)f(x'_j)$ Since f(x) is a real valued function, consider $K^{(4)}$

$$K^{(4)} = \begin{bmatrix} f(x_1)f(x_1') & f(x_1)f(x_2') & \cdots & f(x_1)f(x_n') \\ \vdots & & & & \\ f(x_n)f(x_1') & f(x_n)f(x_2') & \cdots & f(x_n)f(x_n') \end{bmatrix}$$

$$K^{(4)} = \vec{F(x)}_{n \times 1} \vec{F(x)}_{1 \times n}^T$$
where

$$F(x)_{1\times n}^{T} = \begin{pmatrix} f(x_1) \\ f(x_2) \\ \vdots f(x_n) \end{pmatrix}$$

Now consider $y^T K^{(4)} y = y^T F(x) F(x)^T y = y^T F(x) (y^T F(x))^T = ||y^T F(x)||_2^2 \ge 0$ Thus, $k_2(.,.)$ is a valid kernel function!.

Problem 4: (c)

 $k_5(x,x') = g(k_1(x,x'))$ where g is a polynomial with positive coefficients.

Since g has positive coefficients, $g(x) \ge 0 \forall x \ge 0$

Now consider,

$$y^{T}K^{(5)}y = (y_1 \ y_2 \cdots y_n) \times \begin{bmatrix} g(k_1(x_1, x_1')) & g(k_1(x_1, x_2')) & \cdots & g(k_1(x_1, x_n')) \\ \vdots & & & & \\ g(k_1(x_n, x_1')) & g(k_1(x_n, x_2')) & \cdots & g(k_1(x_n, x_n')) \end{bmatrix} \times \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

$$y^{T}K^{(5)}y = y_{1}g(k_{1}(x_{1}, x_{1}'))y_{1} + y_{2}g(k_{1}(x_{1}, x_{2}'))y_{2} + \cdots + y_{n}g(k_{1}(x_{n}, x_{n}'))y_{n}$$

Since $g(k_1(x_i, x_i)) \ge 0$

$$y^T K^{(5)} y > 0 \ \forall \ y \in \mathbf{R}$$

Thus k_5 is a kernel

Problem 4: (d)

 $k_6(x, x') = k_1(x, x')k_2(x, x')$

Thus, in terms of our earlier defined matrix notation, $K^{(6)} = K^{(1)} \circ K^{(2)}$ where \circ denotes element wise multiplication (also known as the Hadamard product).

Since, k_1 and k_2 are valid kernel function $\exists v_i w_j$ the eigen vectors of matrix K_1 and K_2 defines such that: $K^{(1)} = \sum_i \lambda_i v_i v_i^T$ and $K^{(2)} = \sum_i \mu_j w_j w_j^T$

Now.

$$K^{(6)} = K^{(1)} \circ K^{(2)}$$

$$= \sum_{i} \lambda_{i} v_{i} v_{i}^{T} \circ \sum_{j} \mu_{j} w_{j} w_{j}^{T}$$

$$= \sum_{i,j} \lambda_{i} \mu_{j} (v_{i} v_{i}^{T}) \circ w_{j} w_{j}^{T}$$

$$= \sum_{i,j} \lambda_{i} \mu_{j} (v_{i} \circ w_{j}) (v_{j} \circ w_{j})^{T}$$

$$\geq 0$$

Because $(v_i \circ w_j)(v_j \circ w_j)^T = ||v_i w_j||_2^2 \ge 0$

Problem 4: (e)

 $k_7(x, x') = exp(k_1(x, x'))$

Just like subpart (c), here g(x) = exp(x) (it's not a polynomial, though that does not affect the derivation we came up with in part (c)). So this is immediate from part (c).

Problem 1

Problem 1: (a)

Let $\sigma(a) = \frac{1}{1+e^{-a}}$ and

$$P(Y = 1|X = x) = \sigma(b + w^T x)P(Y = 0|X = x) = 1 - \sigma(b + w^T x)$$

Observe that Y = 1 when $b + w^T x \ge 0$ and Y = 0 when $b + w^T x < 0$ Thus,

$$P(Y = y|X = x) = \sigma(b + w^{T})^{y}(1 - \sigma(b + w^{T}x))^{(1 - y)}$$

$$\log(P(Y = y|X = x)) = y\log(\sigma(b + w^{T}x))^{y} + (1 - y)\log(1 - \sigma(b + w^{T}x))$$

$$= y\log(\frac{\sigma(b + w^{T})}{1 - \sigma(b + w^{T}x)}) + \log(1 - \sigma(b + w^{T}x))$$

$$= y(b + w^{T}x) + \log(\frac{e^{-(b + w^{T}x)}}{1 + e^{-(b + w^{T}x)}})$$

$$= y(b + w^{T}x) + \log(\frac{1}{1 + e^{(b + w^{T}x)}})$$

$$= y(b + w^{T}x) - \log(1 + e^{(b + w^{T}x)})$$
([1.1])

$$\mathcal{L}(w) = -\log(\prod_{i=1}^{n} P(Y = y_i | X = x_i))$$

$$= -\sum_{i=1}^{n} \log(P(Y = y_i | X = x_i))$$

$$= -\sum_{i=1}^{n} (y_i (b + w^T x_i) - \log(1 + e^{(b + w^T x_i)}))$$

Consider $(L)(w) = y(b + w^T x) - \log(1 + e^{(b+w^T x_i)})$

$$\frac{\partial \mathcal{L}(w)}{\partial w} = -(xy^T) + \frac{e^{(b+w^Tx)}x}{1 + e^{(b+w^Tx)}}$$

$$\frac{\partial^2 \mathcal{L}(w)}{\partial w^2} = 0 + \frac{\partial}{\partial w} \left(x - \frac{x}{1 + e^{(b+w^Tx)}}\right)$$

$$\frac{\partial^2 \mathcal{L}(w)}{\partial w^2} = \frac{x(e^{(b+w^Tx)})x^T}{(1 + e^{(b+w^Tx)})^2} \ge 0 \ \forall \ x \in \mathbf{R}$$

$$\frac{\partial^2 \mathcal{L}(w)}{\partial w^2} = x^T \sigma(b + w^Tx)(1 - \sigma(b + w^Tx))x \ge 0$$
(1.2)

From (1.2) $\frac{\partial^2 \mathcal{L}(w)}{\partial w^2} \ge 0$ and hence, from the definition of convex functions, $\mathcal{L}(w)$ is indeed a convex function.

Problem 1: (b)

When the data is perfectly linearly separable, (assume first n/2 of the n training points belong to class 0 and the remaining to class 1), thus our regression model should assign the first n/2 points to class with cent percent certainity or with probability 1 and the remaining n/2 to class 0 with probability 1. For this to happen, $P(Y = 1|X = X_1) = 1$ and $P(Y = 0|X = X_0) = 1$ where X_1 is the set of points belonging to class 1 and X_0 is the set of points belonging to class 0.

Clearly this scenario is possible when $||w|| \longrightarrow \infty$

Problem 1: (c)

A simple example with two points would be (0,0), (1,1). Intuitively the step function's step branches (the horizontals of a sigmooid function) will be located at infinity. Also the line separating the points (0,0) and (1,1) can be anywhere in between 0 and 1, thus there will be multiple solutions.

Problem 1: (d)

$$\mathcal{L}(w) = \sum_{j=1}^{n} \left(-y_j(b + w^T x_j) + \log(1 + e^{(b + w^T x_j)}) \right) + \lambda ||w||_2^2$$

$$\frac{\partial(\mathcal{L})(w)}{\partial w_i} = \sum_{j=1}^{n} \left(-y_j(x_{ji}) + \frac{x_{ji}e^{(b + w^T x_j)x_{ij}}}{1 + e^{(b + w^T x_j)}} \right) + 2\lambda w_i = 0$$