

The Guggenheim Museum in Bilbao (Image courtesy: BBC.com)

What is the minimum number of guards to safeguard the whole gallery?

What is the minimum number of guards?

Placing minimum number of guards

What is the minimum number of guards?

Placing minimum number of guards

Art Gallery Problem [Victor Klee, 1973]

- Input : Art Gallery
- Output: Minimum number of guards that can safe-guard or cover the interior walls of the gallery

The Guggenheim Museum in Bilbao: hard to supervise (Image courtesy: BBC.com)

Input representation

- How do we represent the input / art gallery in geometric terms?
- Polygon

Placing Guards

Visibility

Visibility

- The vertex is the Grazing contact of line xy
- Definition of visibility which we already know: Point x is visible to point y iff the closed segment xy is nowhere exterior to the polygon
- According to the above definition: x is visible to y, even though there is a grazing contact between them

Definition of clear visibility

A vertex can block vision in the case of clear visibility

x has clear visibility to y if $xy \subseteq P$ and $xy \cap \partial P \subseteq \{x, y\}$.

Visibility: Covering a polygon

- A set of guards cover a polygon if every point in the polygon is visible to some guard
- What we have to do is: Given a simple Polygon
 P with n vertices, compute the minimum
 number of guards which cover P

How many guards are needed to cover the Polygon?

- For any given fixed polygon P with n vertices, there is some minimum number of guards for complete coverage
- Suppose we obtained g as the number of guards for P
- Is g the most that is ever needed for all possible polygons of n vertices?

Exercise

Draw two different polygons P₁ and P₂ with n vertices

 Show that P₁ and P₂ require different number of guards

FIGURE 1.3 Two polygons of n = 12 vertices: (a) requires 3 guards; (b) requires 4 guards.

Now we know

- For any given fixed polygon P with n vertices, there is some minimum number of guards for complete coverage
- Suppose we obtained g as the number of guards for P
- Is g the most that is ever needed for all possible polygons of n vertices?
- Not necessarily

Our objective

- Find out the largest number of guards that any polygon of n vertices needs, where n is an integer known to us
- Victor Klee posed this question formally as: Express as a function of n, the smallest number of guards that suffice to cover any polygon of n vertices
- This number of guards is said to be sufficient and necessary to cover P
 - Necessary because at least that many guards are needed for some polygons
 - Sufficient because that many always suffice for any polygon

Formal definition of our objective

- g(P): smallest number of guards needed to cover polygon P
- $g(P) = \min_{S} |\{S \text{ covers } P\}|$
 - S is a set of points and |S| is the cardinality of S
- Let P_n be a polygon of n vertices
- G(n) is the maximum of g(P_n) over all polygons of n vertices
 - $-G(n) = \max_{Pn} g(P_n)$
- Our objective is to find out what is G(n)

Our objective in simple words

• There can be different polygons with *n* vertices

- Find the minimum # of guards for each P
- $g(P) = \min_{S} \{S \text{ covers } P\}$
- Get the maximum # among those
- $G(n) = \max_{Pn} g(P_n)$
- Max over Min Formulation

Empirical exploration to compute G(n)

- For a triangle, G(3) = ?
- For a quadrilateral, G(4) = ?
- For a pentagon, G(5) = ?
- For a hexagon, G(6) = ?
- For a heptagon, G(7) = ?
- For an octagon, G(8) = ?
- For a nonagon (enneagon), G(9)=?
- For a decagon, G(10) = ?
- For a hendecagon (undecagon or endecagon), G(11) = ?
- For a dodecagon, G(12) = ?

Empirical exploration to compute G(n)

- For a triangle, G(3) = 1
- For a quadrilateral, G(4) = 1
- For a pentagon, G(5) = 1
- For a hexagon, G(6) = 2
- For a heptagon, G(7) = 2
- For a octagon, G(8) = 2
- For a nonagon (enneagon), G(9)=3
- For a decagon, G(10) = 3
- For a hendecagon (undecagon or endecagon), G(11) = 3
- For a dodecagon, G(12) = 4

Reference

J. O Rourke, Computational Geometry in C,
 2/e, Cambridge University Press, 1998

Thank you