

PRACTICE ASSIGNMENTS FOR JAVASCRIPT FUNDAMENTALS SECTIONS

THE COMPLETE JAVASCRIPT COURSE

Table of Contents

Instructions	4
JavaScript Fundamentals – Part 1	5
LECTURE: Values and Variables	5
LECTURE: Data Types	5
LECTURE: let, const and var	5
LECTURE: Basic Operators	5
LECTURE: Strings and Template Literals	6
LECTURE: Taking Decisions: if / else Statements	6
LECTURE: Type Conversion and Coercion	6
LECTURE: Equality Operators: == vs. ===	7
LECTURE: Logical Operators	7
LECTURE: The switch Statement	8
LECTURE: The Conditional (Ternary) Operator	8
Solutions – Part 1	9
LECTURE: Values and Variables	9
LECTURE: Data Types	9
LECTURE: let, const and var	9
LECTURE: Basic Operators	10
LECTURE: Strings and Template Literals	10
LECTURE: Taking Decisions: if / else Statements	10
LECTURE: Type Conversion and Coercion	11
LECTURE: Equality Operators: == vs. ===	11
LECTURE: Logical Operators	12
LECTURE: The switch Statement	12
LECTURE: The Conditional (Ternary) Operator	13
JavaScript Fundamentals – Part 2	14
LECTURE: Functions	14
LECTURE: Function Declarations vs. Expressions	14
LECTURE: Arrow Functions	14

	LECTURE: Functions Calling Other Functions	15	
	LECTURE: Introduction to Arrays	15	
	LECTURE: Basic Array Operations (Methods)	15	
	LECTURE: Introduction to Objects	16	
	LECTURE: Dot vs. Bracket Notation	16	
	LECTURE: Object Methods	16	
	LECTURE: Iteration: The for Loop	16	
	LECTURE: Looping Arrays, Breaking and Continuing	17	
	LECTURE: Looping Backwards and Loops in Loops	17	
	LECTURE: The while Loop	17	
S	tions - Part 2		
	LECTURE: Functions	18	
	LECTURE: Function Declarations vs. Expressions	18	
	LECTURE: Arrow Functions	19	
	LECTURE: Functions Calling Other Functions	19	
	LECTURE: Introduction to Arrays	20	
	LECTURE: Basic Array Operations (Methods)	20	
	LECTURE: Introduction to Objects	21	
	LECTURE: Dot vs. Bracket Notation	21	
	LECTURE: Object Methods	22	
	LECTURE: Iteration: The for Loop	22	
	LECTURE: Looping Arrays, Breaking and Continuing	23	
	LECTURE: Looping Backwards and Loops in Loops	23	
	LECTURE: The while Loop	23	

Instructions

- There is one assignment for each lecture in the JavaScript Fundamentals Sections Part 1 and 2 (not all lectures, but most);
- The goal of these assignments is that you can immediately apply the concepts you learn in each video;
- So after you complete each lecture, find the assignment for the video you just watched, and write the code according to the instructions;
- Take all the time that you need, no need to hurry!
- The solution for each assignment is at the end of Part 1 and Part 2. I advise you
 to check it out after you completed each assignment, or in case you have
 trouble moving forward in the code;
- In order to actually write the code, create a new script called assignments.js in the current project folder and link it to the HTML file we have been using, just like we previously linked script.js (an HTML file can include multiple JavaScript scripts). The console will now show outputs from both script.js and assignments.js
- And now, go have fun with these assignments! By the way, all these assignments are about countries

JavaScript Fundamentals - Part 1

LECTURE: Values and Variable

- 1. Declare variables called 'corry', 'continent' and 'population' and assign their values of to your own country (population in millions)
- 2. Log their values to the sole

LECTURE: Data Types

- 1. Declare a variable called sistand and set its value according to your country. The variable and do assign it any value yet
- 2. Log the types of to the console

LECTURE: let, const and

- 1. Set the value of 'lan ge' to the language spoken where you live (some countries have multi-languages, but just choose one)
- 2. Think about hick rables should be const variables (which values will never change, and night change?). Then, change these variables to const.
- 3. Try to change of the changed variables now, and observe what happens

LECTURE: Basic Operators

- 1. If your country split in half, are each half would contain half the population, then how many people would be in each half?
- 2. Increase the population of the console
- 3. Finland has a population 6 million. Does your country have more people than Finland?
- 4. The average population of a country is 33 million people. Does your country have less people than the average country?
- 5. Based on the variables you created, create a new variable 'description' which contains a string with this format: 'Portugal is in Europe, and its 11 million people speak portuguese'

LECTURE: Strings and TempLiterals

1. Recreate the 'descript' variable from the last assignment, this time using the template with the variable from the last assignment, this time

LECTURE: Taking Decisions: if Se Statements

- 1. If your country's population is greater that 33 million, log a string like this to the console: 'Portugal's population's above average'. Otherwise, log a string like 'Portugal's population's lion below average' (the 22 is the average of 33 minus the country's population)
- 2. After checking the result, change the population temporarily to 13 and then to 130. See the different results, and set the population back to original

LECTURE: Type Conversion and Conversion

1. Predict the result of these 5 op _____ns without executing them:

```
'9' - '5';
'19' - '13' + '17'
'19' - '13'
'123' < 57;
5 + 6 + '4' + 9 4 - 2:
```

2. Execute the operations to check if you were right

LECTURE: Equality Operators: == vs. ===

- 1. Declare a variable 'numNeighbours' on a prompt input like this: prompt('How many neighbour of the does your country have?');
- 2. If there is only 1 neighbour, log to console 'Only 1 border!' (use loose equality == for now)
- 3. Use an else—if block to log e than 1 border' in case 'numNeighbours' is greater than 1
- 4. Use an else blog log orders' (this block will be executed when 'numNeighbours' y other value)
- 5. Test the code with divariation of 'numNeighbours', including 1 and 0.
- 6. Change == to ===, and the code again, with the same values of 'numNeighbours'. Notice what happens when there is exactly 1 border! Why is this happening?
- 7. Finally, convert 'numNeighbours' to a number, and watch what happens now when you input 1
- 8. Reflect on why we should use the === operator and type conversion in this situation

LECTURE: Logical Operators

- 1. Comment out the previous code so the previous doesn't get in the way
- 2. Let's say Sarah is looking for a new country that speaks english, has less 150 million people and is not an island
- 3. Write an if statement to help Statement to he
- 4. If yours is the right counting a string like this: 'You should live in Portugal:)'. If not, log 'Portugal does not meet your criteria:('
- 5. Probably your country does not meet all the criteria. So go back and temporarily change some variables in order to make the condition true (unless you live in Canada:D)

LECTURE: The switch Statement

1. Use a switch statement to log the wing string for the given 'language':

chinese or mandarin: 'MOST' of native speakers!'

spanish: '2nd plant' num' native speakers'

english: '3rd place hindi: 'Number 4'

arabic: '5th most spoke___nguage'

for all other simply log 'Great language too :

LECTURE: The Conditional (Ternary)

- 1. If your country's population is great and 33 million, use the ternary operator to log a string like this to the core and Portugal's population is above average'.

 Otherwise, simply low ortugal abulation is below average'. Notice how only one word changes by the process two sentences!
- 2. After checking the resulting ge the population temporarily to 13 and then to 130. See the different resulting, and set the population back to original

Solutions - Part 1

LECTURE: Values and Variables

```
let country = 'Portugal';
let continent = 'Europe';
let population = 10;
console.log(country);
console.log(continent);
console.log(population);
```

LECTURE: Data Types

```
let isIsland = false;
let language;
console.log(typeof isIsland);
console.log(typeof population);
console.log(typeof country);
console.log(typeof language);
```

LECTURE: let, const and var

```
language = 'portuguese';
const country = 'Portugal';
const continent = 'Europe';
const isIsland = false;
isIsland = true;
```

LECTURE: Basic Operators

```
console.log(population / 2);
population++;
console.log(population);
console.log(population > 6);
console.log(population < 33);
const description1 =
    country +
    ' is in ' +
    continent +
    ', and its ' +
    population +
    ' million people speak ' +
    language;
console.log(description1);</pre>
```

LECTURE: Strings and Template Literals

```
const description = `${country} is in ${continent}, and its
${population} million people speak ${language}`;
```

LECTURE: Taking Decisions: if / else Statements

```
if (population > 33) {
  console.log(`${country}'s population is above average`);
} else {
  console.log(
    `${country}'s population is ${33 - population} million
    below average`,
  );
}
```

LECTURE: Type Conversion and Coercion

```
console.log('9' - '5'); // -> 4
console.log('19' - '13' + '17'); // -> '617'
console.log('19' - '13' + 17); // -> 23
console.log('123' < 57); // -> false
console.log(5 + 6 + '4' + 9 - 4 - 2); // -> 1143
```

LECTURE: Equality Operators: == vs. ===

```
const numNeighbours = prompt(
   'How many neighbour countries does your country have?',
);

// LATER : This helps us prevent bugs
const numNeighbours = Number(
   prompt('How many neighbour countries does your country have?'),
);

if (numNeighbours === 1) {
   console.log('Only 1 border!');
} else if (numNeighbours > 1) {
   console.log('More than 1 border');
} else {
   console.log('No borders');
}
```

LECTURE: Logical Operators

```
if (language === 'english' && population < 50 && !isIsland)
{
   console.log(`You should live in ${country} :)`);
} else {
   console.log(`${country} does not meet your criteria :(`);
}</pre>
```

LECTURE: The switch Statement

```
switch (language) {
  case 'chinese':
 case 'mandarin':
    console.log('MOST number of native speakers!');
   break:
  case 'spanish':
    console.log('2nd place in number of native speakers');
   break:
  case 'english':
   console.log('3rd place');
   break;
  case 'hindi':
    console log('Number 4');
   break:
  case 'arabic':
    console.log('5th most spoken language');
   break:
 default:
    console.log('Great language too :D');
```

LECTURE: The Conditional (Ternary) Operator

```
console.log(
  `${country}'s population is ${population > 33 ? 'above' :
  'below'} average`,
);
```


JavaScript Fundamentals - Part 2

Note: Please start Part 2 from scratch and comment out all the code from Part 1.

LECTURE: Functions

- 1. Write a function called 'describe and ry' which takes three parameters: 'country', 'population' are capitalCity'. Based on this input, the function returns a set g with a format: 'Finland has 6 million people and its capital city is Helsink.
- 2. Call this function 3 time of the input data for 3 different countries. Store the returned values in 3 different variables, and log them to the console

LECTURE: Function Declarations vs. Expressi

- 1. The world population is 7900 million people. Let a **function declaration** called 'percentage0fWorld1' which receives a 'population' value, and returns the percentage of the world population that the given population represents. For example, China has a million people, so it's about 18.2% of the world population
- 2. To calculate the percent of the given 'population' value by 7900 and then multiply by 100
- 3. Call 'percentageOfWorlar' for 3 populations of countries of your choice, store the results into variables, and log them to the console
- 4. Create a **function expression** which does the exact same thing, called 'percentageOfWorld2', and also call it with 3 country populations (can be the same populations)

LECTURE: Arrow Functions

1. Recreate the last assignment but the me create an **arrow function** called 'percentage0fWorld3'

LECTURE: Functions Calling Other Functions

- 1. Create a function called 'describe la lation'. Use the function type you like the most. This function takes it as arguments: 'country' and 'population', and returns a sea plike this: 'China has 1441 million people, which is about 18.2% of the country'.
- 2. To calculate the percentage escribe Population 'call the 'percentage of World1' you created earlier
- 3. Call 'describePopulation' with data for 3 countries of your choice

LECTURE: Introduction to Arrays

- 1. Create an array containing 4 population years of 4 countries of your choice.

 You may use the values you have been ung previously. Store this array into a variable called 'populations'
- 2. Log to the console whether the has 4 elements or not (true or false)
- 3. Create an array called the ergo cages 'containing the percentages of the world population for the opulation values. Use the function 'percentage0fWorld1 anat you created earlier to compute the 4 percentage values

LECTURE: Basic Array Operations (Methods)

- 1. Create an array containing all the neighbouring country of a country of your choice. Choose a country which has at least 2 or 2 shbours. Store the array into a variable called 'neighbours'
- 2. At some point, a new country called *'Utopia' is* eated in the neighbourhood of your selected country. So add it to the entire the 'neighbours' array
- 3. Unfortunately, after some time, the new dantry is dissolved. So remove it from the end of the array
- 4. If the 'neighbours' array es include the country 'Germany', log to the console: 'Probably not a central pean country:D'
- 5. Change the name of one of your neighbouring countries. To do that, find the index of the country in the 'neighbours' array, and then use that index to change the array at that index position. For example, you can search for 'Sweden' in the array, and then replace it with 'Republic of Sweden'.

LECTURE: Introduction to Ok

1. Create an object of ' antry' for a country of your choice, containing properties 'counts' pital', 'language', 'population' and 'neighbours' (an array like we used in previous assignments)

LECTURE: Dot vs. Bracket Milion

- 1. Using the object from the console: 'Finland has a finnish-speaking people, 3 neighbouring countries and a capital called He.
- 2. Increase the country's population by two million using **dot notation**, and then decrease it by two million using **brackets notation**.

LECTURE: Object Methods

- 1. Add a method called 'descripton' to the 'myCountry' object. This method will log a string to the constant milar to the string logged in the previous assignment, but important the previous general to the 'myCountry' object. This method will log a string to the 'myCountry' object. This method will log a string to the 'myCountry' object. This method will log a string to the 'myCountry' object. This method will log a string to the constant provided in the previous assignment, but important provided in the previous general to the string logged in the previous assignment, but important provided in the string logged in the previous general to the string logged in the string logge
- 2. Call the 'describe describe describe
- 3. Add a method called _____kIsland' to the 'myCountry' object. This method will set a new property on the object, called 'isIsland'.

 'isIsland' will be true if there are no neighbouring countries, and false if there are. Use the ternary operator to set the property.

LECTURE: Iteration: The for Loop

1. There are elections in your country small town, there are only 50 voters.

Use a for loop to simplete the 50 ople voting, by logging a string like this to the console (for number to 5 Voter number 1 is currently voting)

LECTURE: Looping Arrays, Breaking Continuing

- 1. Let's bring back the 'population' ray from a previous assignment
- 2. Use a for loop to compute an accalled 'percentages2' containing the percentages of the world population for the 4 population values. Use the function 'percentages2' that you created earlier
- 3. Confirm that 'perc' contains exactly the same values as the 'percentages' array we created manually in the previous assignment, and reflect on how much petter this solution is

LECTURE: Looping Backwards and Loops ps

- 1. Store this array of arrays into a variable
 [['Canada', 'Mexico'], ['Spate of the control of the con
- 2. Log **only** the neight country are console, one by one, **not** the entire arrays. Log a string and a string and a string are console, one by one, **not** the entire arrays.
- 3. You will need a loop in this. This is actually a bit tricky, so don't worry if it's too difficult to the type of the tricky and the tricky are the tricky.

LECTURE: The while Loop

- 1. Recreate the challenge from the lecture 'Loop' ys, Breaking and Continuing', but this time using a while loop (call the ercentages3')
- 2. Reflect on what solution you like better loop?

Solutions - Part 2

LECTURE: Functions

```
function describeCountry(country, population, capitalCity) {
  return `${country} has ${population} million people and
  its capital city is ${capitalCity}`;
}

const descPortugal = describeCountry('Portugal', 10,
'Lisbon');
const descGermany = describeCountry('Germany', 83,
'Berlin');
const descFinland = describeCountry('Finland', 6,
'Helsinki');
console.log(descPortugal, descGermany, descFinland);
```

LECTURE: Function Declarations vs. Expressions

```
function percentageOfWorld1(population) {
  return (population / 7900) * 100;
}

const percentageOfWorld2 = function (population) {
  return (population / 7900) * 100;
};

const percPortugal1 = percentageOfWorld1(10);
const percChina1 = percentageOfWorld1(1441);
const percUSA1 = percentageOfWorld1(332);
console.log(percPortugal1, percChina1, percUSA1);
```

LECTURE: Arrow Functions

```
const percentageOfWorld3 = population => (population / 7900)
* 100;

const percPortugal3 = percentageOfWorld3(10);
const percChina3 = percentageOfWorld3(1441);
const percUSA3 = percentageOfWorld3(332);
console.log(percPortugal3, percChina3, percUSA3);
```

LECTURE: Functions Calling Other Functions

```
const describePopulation = function (country, population) {
  const percentage = percentageOfWorld1(population);
  const description = `${country} has ${population} million
  people, which is about ${percentage}% of the world.`;
  console.log(description);
};

describePopulation('Portugal', 10);
describePopulation('China', 1441);
describePopulation('USA', 332);
```

LECTURE: Introduction to Arrays

```
const populations = [10, 1441, 332, 83];
console.log(populations.length === 4);
const percentages = [
   percentageOfWorld1(populations[0]),
   percentageOfWorld1(populations[1]),
   percentageOfWorld1(populations[2]),
   percentageOfWorld1(populations[3])
];
console.log(percentages);
```

LECTURE: Basic Array Operations (Methods)

```
const neighbours = ['Norway', 'Sweden', 'Russia'];
neighbours.push('Utopia');
console.log(neighbours);
neighbours.pop();
console.log(neighbours);

if (!neighbours.includes('Germany')) {
   console.log('Probably not a central European country :D');
}
neighbours[neighbours.indexOf('Sweden')] = 'Republic of Sweden';
console.log(neighbours);
```

LECTURE: Introduction to Objects

```
const myCountry = {
  country: 'Finland',
  capital: 'Helsinki',
  language: 'finnish',
  population: 6,
  neighbours: ['Norway', 'Sweden', 'Russia']
};
```

LECTURE: Dot vs. Bracket Notation

```
console.log(
   `${myCountry.country} has ${myCountry.population} million
   ${myCountry.language}-speaking people,
   ${myCountry.neighbours.length} neighbouring countries and
   a capital called ${myCountry.capital}.`
);

myCountry.population += 2;
console.log(myCountry.population);

myCountry['population'] -= 2;
console.log(myCountry.population);
```

LECTURE: Object Methods

```
const myCountry = {
  country: 'Finland',
  capital: 'Helsinki',
  language: 'finnish',
  population: 6,
  neighbours: ['Norway', 'Sweden', 'Russia'],
  describe: function () {
    console.log(
      `${this.country} has ${this.population} million
      ${this.language}-speaking people,
      ${this.neighbours.length} neighbouring countries and a
      capital called ${this.capital}.`
    );
  },
  checkIsland: function () {
    this.isIsland = this.neighbours.length === 0 ? true :
    false:
   // Even simpler version (see why this works...)
};
myCountry2.describe();
myCountry2.checkIsland();
console.log(myCountry2);
```

LECTURE: Iteration: The for Loop

```
for (let voter = 1; voter <= 50; voter++)
  console.log(`Voter number ${voter} is currently voting`);</pre>
```

LECTURE: Looping Arrays, Breaking and Continuing

```
const populations = [10, 1441, 332, 83];
const percentages2 = [];
for (let i = 0; i < populations.length; i++) {
   const perc = percentageOfWorld1(populations[i]);
   percentages2.push(perc);
}
console.log(percentages2);</pre>
```

LECTURE: Looping Backwards and Loops in Loops

```
const listOfNeighbours = [
   ['Canada', 'Mexico'],
   ['Spain'],
   ['Norway', 'Sweden', 'Russia'],
];

for (let i = 0; i < listOfNeighbours.length; i++)
   for (let y = 0; y < listOfNeighbours[i].length; y++)
      console.log(`Neighbour: ${listOfNeighbours[i][y]}`);</pre>
```

LECTURE: The while Loop

```
const percentages3 = [];
let i = 0;
while (i < populations.length) {
   const perc = percentageOfWorld1(populations[i]);
   percentages3.push(perc);
   i++;
}
console.log(percentages3);</pre>
```