Mid Semester Exam March-2022 (Division A) - System Software (CS306)

Section - I

u19cs012@coed.svnit.ac.in Switch account

Oraft saved

Your email will be recorded when you submit this form

* Required

1. Question *

Find out regular expression for each of the following

Set of all strings of 0's and 1's beginning with 1 and not having two consecutive 1's.

- A. 1(11*1)*+1(00*1)*11*
- B. 1(00*1)*+1(00*1)*00*
- C. 1(00*1)*+1(00*1)*11*
- D. 1(00*1)*+1(00*1)*00*

41	\sim	. •	4
16.	Qι	uestion	^

Consider the following statements S1 and S2:

S1: There is an algorithm that can detect if L(G) is infinite given a context-free grammar G.

S2: There is a method for determining whether two context-free grammars give the same language.

Which of the following statements is correct?

- A. S1 is not correct and S2 is correct
- B. Both S1 And S2 are correct
- C. Both S1 And S2 are not correct
- D. S1 is correct and S2 is not correct

	Δ
V	 _

Remove the ambiguity and find out which of the following grammar is unambiguous.

E -> E+E

E -> E*E

E->5|6|7

- A. E -> E+T |T
 - T -> T*F |F
 - F->5|6|7
- B. E -> E*E
 - T -> T+F |F
 - F->5|6|7
- C. E -> E+E | T
 - T -> T*F |F
 - F->5|6|7
- D. None of these

Consider the following grammar G:

S -> qABC

A -> a | bbD

B -> a | ∈

C -> b | ∈

D -> c | ∈

Which is the FOLLOW(A)?

- A. {q, b, c, a}
- B. {\$, a, b, c}
- C. {a, b, \$}
- D. $\{ \in, a, b, c \}$

Consider the following grammar:

- $S \to PR$
- $R \to S \mid \epsilon$
- $P \rightarrow id$

The grammar's predictive parser table, M, has the entries M[S, id] and M[R, \$].

- A. $\{S \rightarrow PR\}$ and $\{\}$
- B. $\{S \rightarrow PR\}$ and $\{R \rightarrow *S\}$
- C. $\{F \rightarrow id\}$ and $\{R \rightarrow \epsilon\}$
- D. $\{S \rightarrow PR\}$ and $\{R \rightarrow \epsilon\}$

The language generated by the grammar

S->AB

A -> BC | a

B -> CC | b

C -> a, is

- A. Infinite
- B. Empty
- C. Both a and b
- D. None of these

Construct a CFG to generate a language for

 $L = \{a^nba^n : n>=1\}$

- A. S -> aAa
 - A -> aAa | b
- B. A -> aAa
 - S -> aAa | b
- C. S -> aAa| a
 - A -> aAa | b
- D. None of the above

The number of tokens in the following C statement is

```
(i). printf ("i = \%d, &i = \%x", i, &i);
```

```
(ii). int main ( )
{
    /* find max of a and b*/
    int a=20, b=30;
    if (a<b)
    return (b);
    else
    return (a);
}
```

- A. (i) = 10, (ii) = 32
- B. (i) = 9, (ii) = 32
- C. (i) = 10, (ii) = 42
- D. (i) = 21, (ii) = 42
- (A
- E
- \bigcirc
- () D

Consider the grammar

S -> P*QRc | €

P -> +Pb |ba

Q -> *QC | cb

R -> cRa |ac

Find the FIRST(S):

- A. {a, b, c, ∈}
- B. {+, *}
- C. { ∈}
- D. {+, *, ∈}

- \bigcap D

Roll No. (Example - U11CS111) *

U19CS012

Name *

BHAGYA VINOD RANA

The following tasks are involved in lexical analysis:

- A. a) Building a uniform symbol table
 - b) Parsing the source code into tokens
 - c) Building a literal and identifier table
- B. a) To build a uniform symbol table
 - b) To initialize the variables
 - c) To organize the variables in a lexical order
- C. a) To initialize the variables
 - b) To organize the variables in a lexical order
 - c) Building a literal and identifier table
- D. None of the mentioned

) A
~	

0

15. Question *
Consider the following macro
MACRO
INCR &MEM_VAL, &INCR_VAL, ®=AREG
MOVER ®, &MEM_VAL
ADD ®, &INCR_VAL
MOVEM ®, & MEM_VAL
MEND
(Macro call: INCR A, B (Actual parameters A, B)) for above definition will be
A. INCR A, B, AREGB. INCR_D INCR_VAL=B, REG=BREG, MEM_VAL=AC. INCR_D INCR_VAL=B, MEM_VAL=A, REG=BREGD. All of above
A
Ов
○ c
O D

_	_		
5	(Ji	<i>lestion</i>	*

In a DFA, the maximum sum of in degree and out degree over a state is determined as follows:

$$\Sigma = \{a, b, c, d\}$$

- A. 6+6
- B. 6+16
- C. It is depend on the language

10. Question *

Eliminate the left recursion from the following grammar.

A -> Ac | Aad | bd |c

- A. A -> bdA' | bcA'
 - A' -> cA' | adA'
 - A' -> ε
- B. A -> bdA | bcA'
 - A' -> cA | adA'
- C. A -> bdA | A
 - A -> cA | adA
 - A -> ε
- D. None of these

- D

Which of the following grammar structures is (are) ambiguous?

- (A) $E \rightarrow E + T \mid T$
 - T-> T*F | F
 - F-> id
- (C) S-> aSbS| bSaS| ε
- (D) S-> aPQ

P-> bQb

Q->P| ϵ , where ϵ denotes empty string

Choose the correct answer from the options presented below:

- A. (A) and (C) only
- B. (B) only
- C. (C) and (D) only
- D. (A),(B) and (C) only

7	\sim		+
/	(J)	<u>lestion</u>	•

Find out regular expression for each of the following:

- (i) String over alphabets {a, b, c} where first b followed by first a.
- (ii) All strings 0's and 1's not containing the substring 011.
 - A. (i) c*bb(a+b+c)* (ii) 1*+1*0(0+10)*
 - B. (i) aa*+bb*ba(a+b+c)* (ii) 1*+1+1*0(0+11)*1
 - C. (i) c*+c*ba(a+b+c)* (ii) 1*+1*0(0+10)*+1*0(0+10)*1
 - D. None of these

4. Question *

Which of the following languages corresponds to the below DFA?

- A. $L = \{x \in \{0, 1\} * \mid x \text{ ends in } 1 \text{ and does not contain substring } 01\}$
- B. $L = \{x \in \{0, 1\} | x \text{ ends in 1 and does not contain substring 00} \}$
- C. L = $\{x \in \{0, 1\} * | x \text{ ends in 1 and does not contain substring 11} \}$
- D. L = $\{x \in \{0, 1\}^* | x \text{ ends in 1 and does not contain substring 00} \}$

How many derivation trees are there?

S->bA S->aB A->a B->b

A->aS B->bS A->bAA B->aBB

- D. 4

Consider the following grammar

S -> AaAb | BbBa

A -> ε

Β -> ε

Non Terminal	Input Symbol		
	а	В	\$
S	S->AaAb	S->BbBa	
Α	1	Α-> ε	
В	Α-> ε	2	

Test whether the grammar is LL(1) or not and find out the missing entries in the parsing table.

- A. Given grammar is LL(1) and missing entries 1. A-> ε, 2. B-> ε
- B. Given grammar is LL(1) and missing entries 1. A-> AaAb, 2. B-> ε
- C. Given grammar is LL(1) and missing entries 1. A-> ε, 2. B-> BaBb
- D. None of these

) <i>F</i>

\bigcirc	В
------------	---

17. Question *
Which of the following statements about a predictive parser is correct?
A. Recursive Descent parserB. no backtrackingC. Both a & bD. None of the above.
O A
ОВ
○ C
O D

Consider the following context free grammar where the set of terminal is {a, b, c, d, f}

S -> daA | Bf

A -> aS | baA | ε

B -> caAB | ε

The following is a partially filled LL(1) parsing table.

	А	В	С	D	f	\$
s			1	S->daA	2	
А	A->aS	A->baA	3		Α-> ε	4
В			5		Β-> ε	

Which of the following options represents the correct combination for the numbered cells in the table? ("Blank" indicates that the associated cell is empty)

- A. 1.S->Bf 2. Blank 3. Blank 4. A-> ε 5. B->ca
- B. 1. Blank 2. S->Rf 3. Blank 4. Blank 5. B->ca C. 1. S->Bf 2. S->Bf 3. A-> ε 4. A-> ε 5. B->caAB
- D. 1. S->Af 2. S->Bf 3. B-> ε
 - 4. A-> ε 5. B->caA

- D

Submit Clear form

Never submit passwords through Google Forms.

This form was created inside of Sardar Vallabhbhai National Institute of Technology, Surat. Report Abuse

Google Forms