RLE Prime

การแทนจำนวนหนึ่งด้วยรหัส RLE คือการแทนเลขที่ติดกันซ้ำกันในจำนวนนั้นด้วยตัวเลขนั้น ตามด้วยจำนวนที่ซ้ำ เช่น 7333 แทนด้วยรหัส 7 1 3 3 คือ มีเลข 7 ติดกัน 1 ตัว ตามด้วยเลข 3 ติดกัน 3 ตัว

เราเรียกจำนวนที่เขียนด้วยรหัส RLE ที่แทนจำนวนเฉพาะว่า RLE Prime เช่น 7 1 3 3 คือรหัส RLE ของ 7333 ที่เป็นจำนวน เฉพาะ ดังนั้น 7 1 3 3 เป็น RLE Prime (หมายเหตุ จำนวนเฉพาะคือจำนวนเต็มที่มากกว่า 1 ที่หารด้วยจำนวนเต็มบวก 1 และตัวเองได้ลงตัวเท่านั้น)

จงเขียนโปรแกรม ตรวจสอบว่า รหัส RLE ที่รับมา เป็น RLE Prime หรือไม่ ถ้าเป็น RLE Prime ให้แสดง **YES** ถ้าไม่ใช่ ให้แสดง **NO**

ข้อมูลนำเข้า

บรรทัดแรก เป็นจำนวนเต็ม \mathbf{k} (โดยที่ $1 \le \mathbf{k} \le 5$) ระบุจำนวนรหัส RLE ที่จะรับมาเพื่อตรวจสอบ \mathbf{k} บรรทัดต่อมา แต่ละบรรทัดคือรหัส RLE ที่ประกอบด้วยเลข 4 ตัว \mathbf{A} \mathbf{N} \mathbf{B} \mathbf{M} โดยที่ $0 \le \mathbf{A}$, $\mathbf{B} \le 9$ \mathbf{N} , $\mathbf{M} > 0$ และ $2 \le \mathbf{N} + \mathbf{M} \le 17$

ข้อมูลส่งออก

к บรรทัด แต่ละบรรทัดเป็นคำตอบ **yes** หรือ **no** จากการตรวจรหัส RLE ว่าเป็น RLE Prime หรือไม่

ตัวอย่าง	
input (จากแป้นพิมพ์)	output (ทางจอภาพ)
2	YES
1 1 3 1 — แทนเลข 13	YES
3 1 1 1 ——— แทนเลข 31	
4 แทนเลข 113	YES
1 2 3 1	YES
3 1 1 2	NO
3 2 2 1	
1 16 9 1	YES

ชุดทดสอบ

ข้อมูลทดสอบถูกแบ่งเป็นกลุ่ม ๆ โดยแต่ละกลุ่มมีปริมาณและลักษณะตามที่เขียนกำกับในตารางข้างล่างนี้ เพื่อจำแนกข้อมูล ทดสอบตามความยากง่ายในการประมวลผล

ปริมาณชุดทดสอบ	ลักษณะของชุดทดสอบ
10%	N = M = 1
10%	A = 2, B = 1
50%	$N + M \leq 9$
20%	$N + M \le 12$
10%	ไม่มีเงื่อนไข