Nitride film 0

MT-455

Group-2

Aim: To determine crystallite size and lattice strain for the given data.

Procedure:

Given the instrumental broadening value, $\mathbf{B_i} = 0.045^{\circ}$

Gaussian equation $B_R^2 = B_O^2 - B_i^2$

$$B_{R}Cos\theta=\frac{k\lambda}{L}+\eta Sin\theta \qquad \text{where,} \quad \eta=\textit{S} \text{train in the material}$$

$$L=\textit{Crystallite Size}$$

k=0.94

 $\lambda = 0.154$ nm

Comparing the above equation with y = bx + a

$$b = Slope = \eta$$
 Where,
$$a = Intercept = \frac{k\lambda}{L}$$

2θ	θ(rad)	B _o (fwhm)	B _o (rad)	B _o ²	B _i (deg)	B _i (rad)	Bi ²
32.89235	0.28704	0.91439	0.015959	0.000255	0.045	0.000785	6.1685E-07
34.91805	0.304717	0.45754	0.007986	6.38E-05	0.045	0.000785	6.1685E-07
39.34331	0.343335	1.47026	0.025661	0.000658	0.045	0.000785	6.1685E-07
56.53556	0.493366	1.68187	0.029354	0.000862	0.045	0.000785	6.1685E-07
71.0858	0.620341	2.44668	0.042703	0.001824	0.045	0.000785	6.1685E-07
84.1166	0.734056	1.46242	0.025524	0.000651	0.045	0.000785	6.1685E-07

$B_r^2 = B_o^2 - B_i^2$	B _r	B _r cosθ	sinθ	
0.000254077	0.01594	0.015288	0.283114	
6.31526E-05	0.007947	0.007581	0.300024	
0.000657864	0.025649	0.024152	0.336629	
0.00086105	0.029344	0.025844	0.473593	
0.001822897	0.042695	0.03474	0.581312	
0.00065086	0.025512	0.018942	0.669886	

Equation	y = a + b*x		
Plot	BrCosθ		
Weight	No Weighting		
Intercept	0.00713 ± 0.01139		
Slope	0.03167 ± 0.02452		
Residual Sum of	3.09912E-4		
Squares			
Pearson's r	0.5424		
R-Square (COD)	0.2942		
Adj. R-Square	0.11775		

$$b = Slope = \eta$$

$$a = Intercept = \frac{\mathbf{k}\lambda}{\mathbf{L}}$$
Therefore, $\eta = 0.03167$

$$\frac{\mathbf{k}\lambda}{\mathbf{L}} = 0.00713$$

$$\mathbf{L} = \frac{\mathbf{k}\lambda}{0.00713}$$

$$\mathbf{L} = \frac{0.94 \times 0.154}{0.00713}$$

$$\mathbf{L} = 20.3029 \text{ nm}$$

Result

 $\eta = S$ train in the material=0.0316 L= Crystallite Size = 20.3029 nm