Housing Price Regression

Hokeun Go BANA320

Data Source: Kaggle.com

Problem statement: Which Independent variable impacts the target variable, Price, the most. Step 1: Data/Business Understanding

Variables Type Independent **Dependent** Regression Model (Linear) Bathroom Bedroom Guestroom Hot Water Mainroad Price AC Preferred Area Basement **Furnitured Status** Parking

Step 2. Data Preparation

1. Select variables: (11) / dropped "area", "stories"

```
housing_select = housing[['price', 'bedrooms', 'mainroad', 'bathrooms','basement', 'prefarea','furnishingstatus', 'parking', 'airconditioning', 'guestroom', 'hotwat housing_select.head
```

2. No Missing Data Shown

3. Changing Data Types

```
housing select.dtypes
                int64
                int64
bedrooms
                int64
mainroad
               object
hathrooms
                int64
prefarea
               object
furnishingstatus
               object
airconditioning
questroom
               object
hotwaterheating
               object
dtype: object
housing_select['mainroad'] = housing_select['mainroad'].astype('category')
housing select['airconditioning'] = housing select['airconditioning'].astype('category')
housing select['questroom'] = housing select['questroom'].astype('category')
housing select['hotwaterheating'] = housing select['hotwaterheating'].astype('category')
housing select['prefarea'] = housing select['prefarea'].astype('category')
housing select['furnishingstatus'] = housing select['furnishingstatus'].astype('category')
```

Data Source: Kaggle.com

Step 2. Data Preparation: Elimination of Outliers

Step 2. Data Preparation: Make Dummies

Г	price	bedrooms	mainroad	bathrooms	basement	prefarea	furnishingstatus	parking	airconditioning	guestroom	hotwaterheating
9	13300000	4	yes	2	no	yes	furnished	2	yes	no	no
7	1 12250000	4	yes	4	no	no	furnished	3	yes	no	no
:	12250000	3	yes	2	yes	yes	semi-furnished	2	no	no	no
;	3 12215000	4	yes	2	yes	yes	furnished	3	yes	no	no
1	11410000	4	yes		yes	no	furnished	2	yes	yes	no

```
housing_select = pd.get_dummies(housing_select, columns=mainrd, drop_first=True)
housing_select = pd.get_dummies(housing_select, columns=ac, drop_first=True)
housing_select = pd.get_dummies(housing_select, columns=gst_room, drop_first=True)
housing_select = pd.get_dummies(housing_select, columns=ht_wtr, drop_first=True)
housing_select = pd.get_dummies(housing_select, columns=prefarea, drop_first=True)
housing_select = pd.get_dummies(housing_select, columns=frniture, drop_first=True)
housing_select = pd.get_dummies(housing_select, columns=base, drop_first=True)
```

housing_select.head()

	price	bedrooms	bathrooms	parking	mainroad_yes	airconditioning_yes	guestroom_yes	hotwaterheating_yes	prefarea_yes	furnishingstatus_semi- furnished
0	13300000	4	2	2						
1	12250000	4	4	3				0		
2	12250000	3	2							
3	12215000	4	2	3			0			
4	11410000	4								

Step 2. Data Preparation: Standardizing Data

```
numeric_var = ['price']
scaler = StandardScaler()
housing_select[numeric_var] = scaler.fit_transform(housing_select[numeric_var])
housing_select.head()
```

	price	bedrooms	bathrooms
0	13300000	4	2
1	12250000	4	4
2	12250000	3	2
3	12215000	4	2
4	11410000	4	1

	price	bedrooms	bathrooms
0	4.566365	4	2
1	4.004484	4	4
2	4.004484	3	2
3	3.985755	4	2
4	3.554979	4	1

Train_Test_Split to get the R squared

```
X4 = housing_select[['bedrooms', 'bathrooms', 'parking', 'mainroad_yes', 'aircond
Y4 = housing_select['price']

X_train, X_test, Y_train, Y_test = train_test_split(X4, Y4, test_size=0.2, random_state=42)

model = LinearRegression()

model.fit(X_train, Y_train)

y_pred = model.predict(X_test)
```

```
r_squared = r2_score(Y_test, y_pred)
print(f"R-squared: {r_squared}")

n = X_test.shape[0]
p = X_test.shape[1]
adjusted_r_squared = 1 - (1 - r_squared) * (n - 1) / (n - p - 1)
print(f"Adjusted R-squared: {adjusted_r_squared}")

mse = mean_squared_error(Y_test, y_pred)
print(f"Mean squared error: {mse}")
```

Step 3. Model Comparison (R^2, MSE)

Model 1

```
X1 = housing_select[['bedrooms', 'bathrooms']]
Y1 = housing_select['price']
```

R-squared: 0.2605701076698278

Adjusted R-squared: 0.2466186002673717 Mean squared error: 1.070265332447618

Model 2

```
X2 = housing_select[['bedrooms', 'bathrooms', 'parking']]
Y2 = housing_select['price']
```

R-squared: 0.35927577259623034

Adjusted R-squared: 0.3409693660989799 Mean squared error: 0.9273968166049447


```
R-squared: 0.5708854770213114
```

Adjusted R-squared: 0.5222230053433158

Mean squared error: 0.6211087790170299

Model 3

X3 = housing_select[['bedrooms', 'bathrooms', 'parking', 'mainroad_yes']]
Y3 = housing_select['price']

R-squared: 0.4048614103660153

Adjusted R-squared: 0.38197146461086195 Mean squared error: 0.8614152701884653

Step 4.Modeling


```
intercept = model.intercept_
print(intercept)
-2.0281951076890494
```

```
price bedrooms bathrooms parking mainroad_yes airconditioning_yes guestroom_yes hotwaterheating_yes prefarea_yes turnishingstatus_semi-furnished

0 13300000 4 2 2 1 1 1 0 0 0 1 0 0
```

```
7,900,000 = -2.0281951076890494 + 0.14*Bed(4) + 0.70 *Bath(2) + 0.18*Parking(2) + 0.4*mainroad(1) + 0.58*AC(1) + 0.26*Guestroom(0) + 0.41*Hotwater(0) + 0.41*preferArea(1) -0.10*Semi-furnitured(0) -0.28*Unfurnitured(0) + 0.05*basement(0)
```

Step 5. Insights

1. Bathrooms impacts the most on housing price

Options:

- Even though model 4 has the best R^2 values compared to other models, the value is still lower than 0.7, this indicates linear regression might not be the best fit for housing price data.
- From the data and model, basement has the least impact.

Thank You