Analyse structurelle du Golden Gate Bridge

Jean-Louis DU, Guénolé ODAH

January 4, 2025

Sommaire

- Introduction
- 2 Géométrie
- Maillage
- 4 Calculs
- Conclusion

Présentation du projet :

- Représenter le Golden Gate Bridge (de manière simplifiée)
- Prendre un main le logiciel Code_Aster
- Comparer le comportement du modèle avec celui de la structure réelle
- Repérer des axes d'améliorations

Hypothèses et dimensions

Hypothèses:

- Tours et route (éléments 3D) représentés par un ensemble de pavés
- Cordes (éléments 1D)

Figure: Schéma du Pont

Hypothèses et dimensions

Figure: Dimension de la route et des tours

De plus, les petits câbles sont réparties des deux côtés du pont sur toutes la longueur avec un intervalle de 15 m

Création de la géométrie

- Choix de l'origine
- Utiliser l'interface de Salome_Meca pour commencer (création des pavés, utilisation des translations, des symétries)
- Utiliser le script Python pour faciliter les modifications et pour effectuer les tâches redondantes (les petits câbles notamment)

Géométrie obtenue

Figure: Géométrie obtenue

Partitionnement de la géométrie

Pour créer le maillage du pont :

- Créer un maillage pour les éléments 1D
- Créer un maillage pour les éléments 3D
- Fusionner les deux maillages (mais il faut que les noeuds correspondent)

On doit donc partitionner les éléments 3D de cette manière. On le fait à l'aide du script **Python**

Partitionnement de la géométrie

Figure: Partition

On remarque que les noeuds des cordes sont aussi des noeuds de la structure 3D

On voit aussi que notre structure 3D est maintenant composée de pavés seulement

Maillage

On se propose de mailler les blocs de manière hexaédrique Après la fusion des maillages, on obtient cela

Figure: Mesh

Maillage

Figure: Mesh zoomé

En haut de la tour on a sous-maillé une partie pour que les mailles ne soient pas trop fines.

Groupes du maillage

On a créé les groupes suivants dans notre maillage :

- Groupes de Noeuds :
 - block_rot
- Groupes de Cotés :
 - Gros_cables
 - Petits_cables
- Groupes de Faces :
 - Pont d
 - Pont_g
 - Tour_d
 - Tour_g
 - Pieds
 - Debut
 - Debui
 - Fin
 - Route
- Groupes de Volumes :
 - Bloc

Groupes du maillage

Figure: Groupes surfacique du maillage

Matériaux Hypothèses chargement

Matériaux et Hypothèses

- Câbles: E = 200 GPa, $rho = 7860 kg/m^3$
- **Bloc**: E = 35 *GPa* , rho = 2400kg/m³
- **Précontrainte**: Simulation par variation de température.

$$\sigma = \mathbf{E} \cdot \alpha \cdot \Delta T$$

Matériaux Hypothèses chargement

Matériaux et Hypothèses

- Câbles: E = 200 GPa, $rho = 7860 kg/m^3$
- **Bloc**: E = 35 *GPa* , $rho = 2400 \text{kg/m}^3$
- **Précontrainte**: Simulation par variation de température.

$$\sigma = \mathbf{E} \cdot \alpha \cdot \Delta T$$

Conditions de chargements

- Conditions aux limites : Supports fixes aux bases des tours.
- Gravité
- **Trafic**: Charge uniforme 5.5 kN/m².
- Vent : Force latérale appliquée sur la structure 627 N/m².

Cas 1 : Précontrainte + Gravité

- Objectif : Évaluer les déformations sous gravité et précontrainte.
- Résultat : Déformations excessives sous précontrainte théorique ($\Delta T = 115$).

- (a) Déformation de 10^2 ; $\Delta T = 115$.
 - (b) Déformation avec $\Delta T = 2600$.

Figure: Comparaison des déformations sous précontrainte.

Cas 2 : Précontrainte + Gravité + Trafic

- Charge de trafic ajoutée sur la route (5.5 kN/m²).
- Résultat : Effet minimal sur les déplacements.

(a) wikipédia.

(b) Déformation trafique

Figure: Comportement avec traffic

Cas 3 : Précontrainte + Gravité + Trafic + Vent

- Vent appliqué avec une pression de 627 N/m².
- Effet du vent minimal à moins de l'exagérer.

Figure: Effet du vent sur la déformation du pont.

Résultats finaux

Déplacements maximaux observés :

• Gravité: 5.8 m

• Trafic : 6.0 m

• Vent: 0.097 m

Tentative d'étude sismique

- Séisme de magnitude 8 prévu.
- Problèmes de calcul modal : erreurs numériques, pas de calcul propre.
- Solutions tentées : raffinement du maillage, ajustement des paramètres de tolérance, sans succès.

Discussion des résultats

- Simplifications faites :
 - Charge de vent supposée uniforme.
 - Effets dynamiques du trafic non pris en compte.
 - Géométrie simplifiée.
 - Béton pur au lieu de béton armé.

Figure: Comparaison entre géométrie simplifiée et réelle.

Conclusion et perspectives

- Le modèle simplifié représente bien le comportement mécanique du pont.
- Améliorations futures :
 - Analyse sismique plus précise.
 - Modélisation plus détaillée des matériaux.
 - Étude des effets dynamiques du trafic.