

CalcEnergies.m

TimeStep 1stOrd.m

First order means the time method was first order. We are only using P(t) and E(t) to calculate P(t + dt)

TimeStep 2ndOrd.m

Second order means the time method was second order. We are using P(t), P(t - dt), E(t), and E(t dt) to calculate P(t + dt)

NOTATION: comma in subscript indicates partial derivative

$$E_i^d = \phi_{,i} = \frac{\partial}{\partial x_i} \phi$$

NOTATION: repeated subscripts indicates summation

$$\sigma_{ij} = C_{ijkl}\varepsilon_{kl} = \sum_{kl} C_{ijkl}\varepsilon_{kl}$$

Calc Elastic Energy $f_{el} = C_{ijkl} \left(\varepsilon_{ij} - \varepsilon^0_{ij} \right) \left(\varepsilon_{kl} - \varepsilon^0_{kl} \right)$ CalcElasticEnergy.m

Solve $C_{ijkl}u_{k,lj}=C_{ijkl}$ with boundary conditions

u = displacement field

 $\varepsilon^0 = eigenstrain, function of \vec{P}$

$$\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}) = strain$$

See https://www.sciencedirect.com/science/article/pii/S1359645401003603,

Summary Chapters 2-5

Computationally Expensive

The tensor equation $C_{ijkl}u_{k,lj}=C_{ijkl}$ is solved by performing a 2D (x,y) FFT This 2D FFT creates a 1D ODE for each (kx,ky) (x \rightarrow kx, y \rightarrow ky from the 2D FFT) point. This requires iterating through (kx,ky) and solving an ODE at each

Calc Electric Energy $f_{elec}=-rac{1}{2}E_i^dP_i$ CalcElecEnergy.m Solve $\kappa_{ij}\phi_{ji}=rac{1}{\varepsilon_0}$ $P_{i,i}$ with boundary conditions

k = relative permittivity

 $\phi = electric potential$

 $E_i^d = \phi_i$

See http://www.mmm.psu.edu/SC2005ActaMater.pdf, Summary Chapter 6

Computationally Expensive

Similar 2D FFT method used to solve the tensor equation. Less computationally expensive than CalcElasticEnergy b/c easier to apply boundary conditions.

Calc Landau Energy. Plug into the polynomial equation.

Solve $\frac{\partial P_2}{\partial au} = -W_2\left(\vec{P}\right) + G_{11}P_{2,22}$ with boundary conditions.

 W_2 represents all the energies.

 $G_{11}P_{2,22}$ is the gradient energy, which accounts for the energy associated with the spatial variation of P.

Time Discretization: $P_2(\tau + \Delta \tau) - \Delta \tau G_{11} P_{2,22}(\tau + \Delta \tau) = -\Delta \tau W_2(\overline{P_2(\tau)}) + P_2(\tau)$

Long-Qing Chen's key step was to consider the gradient term implicitly.

Gradient is calculated with respect to the future time step $P_{2,22}(\tau + \Delta \tau)$ rather than the current time step τ

$$\begin{split} & \text{3D FFT: } \mathcal{F}_{3D} \left\{ P_2(\tau + \Delta \tau) - \Delta \tau G_{11} P_{2,22}(\tau + \Delta \tau) = -\Delta \tau W_2 \left(\widehat{P}_2(\tau) \right) + P_2(\tau) \right\} \\ & \widehat{P}_2(\tau + \Delta \tau) + \Delta \tau G_{11} \xi_2^2 P_2(\tau + \Delta \tau) = -\Delta \tau \widehat{W}_2 + \widehat{P}_2(\tau) \\ & \widehat{P}_2(\tau + \Delta \tau) = \frac{-\Delta \tau \widehat{W}_2 + \widehat{P}_2(\tau)}{1 + \Delta \tau \left(G_{11} \xi_2^2 \right)} \end{split}$$

$$\widehat{P_2}(\tau + \Delta \tau) + \Delta \tau G_{11} \xi_2^2 P_2(\tau + \Delta \tau) = -\Delta \tau \widehat{W_2} + \widehat{P_2}(\tau)$$

$$\widehat{P}_{2}(\tau + \Delta \tau) = \frac{-\Delta \tau \widehat{W}_{2} + \widehat{P}_{2}(\tau)}{2}$$

 ξ is the FFT axis. The hat notation means the FFT'ed function.

See https://www.sciencedirect.com/science/article/pii/S001046559700115X, Summary Chapter 7