<u>2110573: Pattern Recognition</u> <u>การรู้จำแบบด้วยคอมพิวเตอร์</u> <u>Thursdays 13:00-16:00</u>

Pattern Recognition

- What is pattern recognition
 - Types of classification problems
- Generative models
 - Maximum likelihood estimate
 - Maximum a posteriori estimate
 - Gaussian Mixture Models
 - Naive Bayes
- Dimensionality reduction and visualization
 - Principle Component Analysis
 - Linear Discriminant Analysis
 - Random Projection
 - t-SNE
- Discriminative models
 - Support Vector Machines
 - Neural Networks, DNN, CNN, LSTM
- Unsupervised methods
- Reinforcement learning (guest lecture)
- Other Applications and how to approach a classification task in the real world
- Tools: Jupyter Notebook, Tensorflow (Keras)

Course github https://github.com/ekapolc/pattern 2022

เนื้อหาวิชา

Pattern Recognitionเป็นส่วนหนึ่งของArtificial Intelligence ที่เน้นไปในการสร้างระบบรู้จำโดยอาศัยฐาน ข้อมูล วิชานี้จะสอนถึงการสร้างระบบรู้จำแบบต่างๆ รวมถึงทฤษฏีพื้นฐานของระบบรู้จำเหล่านั้น วิชาจะแบ่ง เป็นสองส่วนหลัก ช่วงแรกจะเน้นGenerative Models เช่น ทฤษฏีMaximum Likelihood Estimation,Maximum a posteriori และ Expectation Maximization ในช่วงที่สองจะเน้นDiscriminative Modeling เช่น Support Vector Machines และ Deep Learning ผู้เรียนจะได้เรียนรู้ถึงทฤษฏีและทดลอง ลงมือปฏิบัติจริงในด้านต่างๆเช่น bioinformatics, natural language processing, computer vision เป็นตัน เพื่อเป็นการปูพื้นฐานให้ผู้เรียนได้นำไปใช้ในวิชาเฉพาะทางที่สนใจต่อๆไป ในวิชานี้จะสอนผ่าน เครื่องมือที่ใช้กันทั่วไปในวงการ เช่น Jupyter Notebook และ Pytorch โดยการประมวลผลส่วนใหญ่จะทำ บนGoogle colaboratory ทั้งนี้ ผู้เรียนควรจะมีความรู้เบื้องต้นเกี่ยวกับlinear algebraและprobability

<u>ตารางการเรียน</u>

คาบเรียนที่	เนื้อหา	การบ้านและควิช
1 - 13/1	Introduction	
2 - 20/1	K-mean, Regression	เริ่มHW1
3 - 27/1	MLE, MAP, and Naive Bayes	ส่งHW1, Quiz 1, เริ่มHW2
4 - 3/2	GMM and EM	
5 - 10/2	Dimensionality reduction (PCA, LDA, RP) and visualization techniques (t-sne, UMAP, PHATE)	ส่งHW2, Quiz 2, เริ่มHW3
6 - 17/2	SVM	
7 - 24/2	Neural network basics	ส่งHW3, Quiz 3, เริ่มHW4
8 - 3/3	CNNs & Pytorch demo	เริ่ม HW5
9 - 10/3	Midterm week - No midterm for this class	
10 - 17/3	Recurrent, attention, and transformers	ส่งHW4, Quiz 4
11 - 24/3	Deep generative models (VAE, GAN, Diffusion)	ส่งHW5, Quiz 5, ส่ง course project proposal, เริ่ม HW6
11 - 31/3	Unsupervised methods	
12 - 7/4	Semi-supervised, self-supervised, and contrastive learning	ส่งHW6, Quiz 6, เริ่ม HW7
13 - 14/4	Songkran Holiday	
14 - 21/4	Reinforcement Learning	ส่งHW7, Quiz 7
15 - 28/4	No regular class - meeting/progress presentation with project mentors	Course project progress
16 - 5/5	Tricks of the trade: machine learning in the real world + Guest	
Some time during final exam	Project presentation No final exam for this class	ส่งcourse project

<u>การส่งการบ้านสาย</u>

สายไม่เกิน 6 ชม. -0.5 คะแนน สายไม่เกิน 24 ชม. -2 คะแนน

ถ้าส่งสายเกิน 24 ชม.จะไม่ได้รับการตรวจ

เกณฑ์การวัดผล

Attendance and in-class activities 10%

Quizzes 20%

Homework 40%

Project 30%

<u>การตัดเกรด</u>

- > 85% A
- > 80% B+
- > 75% B
- > 70% C+
- > 65% C
- > 60% D+
- > 55% D
- < 55% F

หมายเหตุ เกณฑ์การให้คะแนนดังกล่าวเป็นเกณฑ์เบื้องต้น ผู้สอนสามารถลดcut-offได้ตามความเหมาะสม ทั้งนี้ จะไม่มีการเพิ่มcut-offไม่ว่าในกรณีใดๆทั้งสิ้น

Office hour on discord

8-9 PM Friday, Tuesday

หนังสือเรียน

ไม่มีหนังสือเรียนบังคับ แต่ผู้สนใจสามารถอ่านหนังสือด้านล่างประกอบบทเรียนได้

- 1. Richard O. Duda, Peter E. Hart, David G. Stork, *Pattern Classification*, John Wiley & Sons, 2012.
- 2. Ian Goodfellow, Yoshua Bengio, Aaron Courville, *Deep Learning*, MIT Press, 2016.