1. 교과목 수강인원

수업년도	수업학기	계열구분	수강인원	이수인원
2022	1	인문.사회	1	1
2022	1	자연과학	1	1
2022	1	공학	41	40
2023	1	인문.사회	2	2
2023	1	공학	50	49
2024	1	인문.사회	2	2
2024	1	공학	51	49
2025	1	인문.사회	1	0
2025	1	공학	47	0

2. 평균 수강인원

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목

No data have been found.

3. 성적부여현황(평점)

수업년도 수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목

No data have been found.

4. 성적부여현황(등급)

수업년도	수업학기	등급	인원	비율
2022	1	Α+	7	16.67
2022	1	Α0	13	30.95
2022	1	B+	8	19.05
2022	1	ВО	8	19.05
2022	1	C+	5	11.9
2022	1	C0	1	2.38
2023	1	A+	15	29.41
2023	1	Α0	14	27.45
2023	1	B+	9	17.65
2023	1	В0	9	17.65
2023	1	C+	3	5.88
2023	1	C0	1	1.96
2024	1	Α+	11	21.57
2024	1	A0	15	29.41
2024	1	B+	13	25.49
2024	1	ВО	7	13.73
2024	1	C+	2	3.92
2024	1	C0	3	5.88

5. 강의평가점수

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2024	1	91.5	93.79	91.1	96	
2023	2	91.8	93.15	91.56		
2023	1	91.47	93.45	91.13	92	
2022	2	90.98	92.48	90.7		
2022	1	90.98	92.29	90.75	81	

6. 강의평가 문항별 현황

		본인평 균 (가중 치적용)	HOLTH				점수별 인원분포				
번호	평가문항		소속학과,대학평균과의 차이 (+초과,-:미달)		매우 그렇 치않 다	그렇 치않 다	보통 이다	그렇 다	매우 그렇 다		
		5점 미만	학	과	대	학	1 24	2 전	그래	4 24	5점
	교강사:		차이	평균	차이	평균	- 1점	2점	3점	4점	> 점

No data have been found.

7. 개설학과 현황

학과	2025/1	2024/1	2023/1	2022/1	
산업공학과	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)	1강좌(3학점)	0강좌(0학점)

8. 강좌유형별 현황

강좌유형		2022/1	2023/1	2024/1	2025/1
일반	0강좌(0)	1강좌(43)	1강좌(52)	1강좌(53)	1강좌(48)

9. 교과목개요

교육과정	관장학과	국문개요	영문개요	수업목표
학부 2024 - 2027 교육과 정	서울 공과대학 산업공학과	본 강좌에서는 시계열(Time-series) 데이터 활용에 사용되는 다양한 기법 및 분석법을 습득하는데 주안점을 두고 학습을 진행한다. 전반기에는 시계열 분석의 기초를 수학한 후 평활법, 분해법, 정상성 시계열 모형을 탐색하며, 후반기에는 모형식별, 추정, 진단 과정을 학습한 후 비정상성 모형, 계절 ARIMA 모형, 이분산 시계열모형을 습득한다. 본 강좌는 시계열의 입문 성격으로 개설되며, 최소한의 증명으로 이론을 이해하고 R 프로그래밍을 통해 실제 데이터에 응용할 수 있는 능력을 배양하는데 주안점을 둔다.	This lecture focuses on acquiring various techniques and methods used to utilize time-series data. In the first half, we will learn the basics of time series analysis and then explore smoothing-based, decomposition-based, and stationary time series models. In the second half, we will learn model identification, estimation, and diagnostic processes, and then study the non-stationary, seasonal ARIMA, and models with heteroscedasticity. This lecture is an introductory course for the time-series analysis and forecasting where the primary goals are understanding theories with minimal proofs and fostering the ability to apply them to real data through R programming.	1. 시계열 분석 및 예측 관련 이론 및 구현 방법 습득 2. 기초 시계열 모형 에 대한 수리적 이해 3. R프로그래밍을 통한 시계열 데이터 활용 방법 체득
학부 2020 - 2023 교육과	서울 공과대학 산업공학	본 강좌에서는 시계열(Time-series) 데이터 활 용에 사용되는 다양한 기법 및 분석법을 습득하	This lecture focuses on acquiring various techniques and methods used to utilize	1. 시계열 분석 및 예측 관련 이론 및

교육과정	관장학과	국문개요	영문개요	수업목표
정	과	는데 주안점을 두고 학습을 진행한다. 전반기에는 시계열 분석의 기초를 수학한 후 평활법, 분해법, 정상성 시계열 모형을 탐색하며, 후반기에는 모형식별, 추정, 진단 과정을 학습한 후 비정상성 모형, 계절 ARIMA 모형, 이분산 시계열 모형을 습득한다. 본 강좌는 시계열의 입문 성격으로 개설되며, 최소한의 증명으로 이론을 이해하고 R 프로그래밍을 통해 실제 데이터에 응용할 수 있는 능력을 배양하는데 주안점을 둔다.	series models. In the second half, we will learn model identification, estimation, and diagnostic processes, and then study the non-stationary, seasonal ARIMA, and	구현 방법 습득 2. 기초 시계열 모형 에 대한 수리적 이히 3. R프로그래밍을 통한 시계열 데이터 활용 방법 체득

10. CQI 등록내역 No data have been found.