

QUÍMICA NIVEL SUPERIOR PRUEBA 1

Lunes 18 de mayo de 2009 (tarde)

1 hora

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- · Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.

0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
٢		9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
ю		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es
	·			30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
æ				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
Tabla periódica				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
bla pe				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
Ta				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
				25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p (237)
	atómico	ento tómica		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
	Número atómico	Elemento Masa atómica		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
				22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	÷	**
2		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
-	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

- 1. ¿Cuántos átomos de oxígeno hay en un mol de CuSO₄ 5H₂O?
 - A. 5
 - B. 9
 - C. 6.0×10^{23}
 - D. 5.4×10^{24}
- 2. ¿Qué muestra tiene mayor masa?
 - A. 6.0×10^{25} moléculas de hidrógeno
 - B. 5,0 moles de átomos de neón
 - C. $1,2 \times 10^{24}$ átomos de plata
 - D. $1,7 \times 10^2$ g de hierro
- 3. ¿Qué volumen de trióxido de azufre, en cm³, se puede preparar usando 40 cm³ de dióxido de azufre y 20 cm³ de oxígeno gaseoso a partir de la siguiente reacción? Suponga que todos los volúmenes se miden a la misma presión y temperatura.

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

- A. 20
- B. 40
- C. 60
- D. 80
- 4. ¿Qué muestra de nitrógeno gaseoso, N₂, contiene mayor número de moléculas de nitrógeno?
 - A. $1,4 \text{ g de } N_2$
 - B. $1,4 \text{ dm}^3 \text{ de } N_2 \text{ a } 1,01 \times 10^5 \text{ Pa y } 273 \text{ K}$
 - C. $1,4 \times 10^{23}$ moléculas de N_2
 - D. 1,4 moles de N₂

5. La tabla de abajo muestra el número de protones, neutrones y electrones presentes en cinco especies.

Especie	Número de protones	Número de neutrones	Número de electrones
X	6	8	6
Y	7	7	7
Z	7	7	8
W	8	8	8
Q	8	10	8

¿Qué dos especies son isótopos del mismo elemento?

- A. XyW
- B. YyZ
- C. ZyW
- D. WyQ
- **6.** ¿Qué opción presenta orden creciente de energía de los orbitales de un mismo nivel energético?
 - $A. \quad d \le s \le f \le p$
 - B. s
 - C. p < s < f < d
 - D. f < d < p < s
- 7. ¿Cuál es la configuración electrónica del ion Cr²⁺?
 - A. [Ar] $3d^5 4s^1$
 - B. $[Ar] 3d^3 4s^1$
 - C. [Ar] $3d^6 4s^1$
 - D. [Ar] $3d^4 4s^0$

- **8.** ¿Qué enunciado describe las tendencias de los valores de electronegatividad en la tabla periódica?
 - A. Los valores aumentan de izquierda a derecha a lo largo de un período y aumentan hacia abajo de un grupo.
 - B. Los valores aumentan de izquierda a derecha a lo largo de un período y disminuyen hacia abajo de un grupo.
 - C. Los valores disminuyen de izquierda a derecha a lo largo de un período y aumentan hacia abajo de un grupo.
 - D. Los valores disminuyen de izquierda a derecha a lo largo de un período y disminuyen hacia abajo de un grupo.
- 9. ¿Qué ecuación representa mejor la energía de primera ionización del magnesio?
 - A. $Mg(s) \rightarrow Mg^+(s) + e^-$
 - B. $Mg(g) \to Mg^{2+}(g) + 2e^{-}$
 - C. $Mg(g) \rightarrow Mg^{+}(g) + e^{-}$
 - D. $Mg(s) \rightarrow Mg^+(g) + e^-$
- 10. ¿Cuáles son los productos de la reacción entre cloro y agua?
 - A. O₂, H₂ y HCl
 - B. H₂ y OCl₂
 - C. HCl y HOCl
 - D. HOCl, H, y Cl,
- 11. ¿Qué enunciado describe mejor el enlace intramolecular en el HCN(l)?
 - A. Atracciones electrostáticas entre iones H⁺ e iones CN⁻
 - B. Sólo fuerzas de van der Waals
 - C. Fuerzas de van der Waals y enlaces de hidrógeno
 - D. Atracciones electrostáticas entre los pares electrónicos y los núcleos cargados positivamente

12. ¿Cuántos pares electrónicos enlazantes y cuántos pares solitarios rodean al átomo de azufre en la molécula de SF₄?

	Pares enlazantes	Pares solitarios
A.	4	1
B.	4	0
C.	6	0
D.	8	2

- 13. El metal M tiene sólo un número de oxidación y forma un compuesto de fórmula MCO_3 . ¿Qué fórmula es correcta?
 - A. MNO₃
 - B. MNH₄
 - C. MSO₄
 - D. MPO₄
- 14. ¿En qué opción se describe mejor la formación de enlaces π ?
 - A. Se forman por solapamiento lateral de orbitales paralelos.
 - B. Se forman por solapamiento axial de orbitales.
 - C. Se forman por solapamiento lateral de un orbital s y un orbital p.
 - D. Se forman por solapamiento axial de orbitales s o p.

15. ¿Cuál es la hibridación del átomo de carbono y cuántos enlaces σ y π hay en la molécula de metanal?

	Hibridación	Enlaces σ	Enlaces π
A.	sp^2	3	1
B.	sp^3	3	1
C.	sp ³	4	0
D.	sp ²	4	0

16. ¿Qué cantidad de energía, en kJ, se libera cuando 1,00 mol de monóxido de carbono arde de acuerdo con la siguiente ecuación?

$$2\text{CO}(g) + \text{O}_2(g) \rightarrow 2\text{CO}_2(g)$$
 $\Delta H^{\ominus} = -564 \text{ kJ}$

- A. 141
- B. 282
- C. 564
- D. 1128
- 17. El calor específico del hierro es de 0,450 J g⁻¹ K⁻¹. ¿Qué cantidad de energía, en J, se necesita para aumentar la temperatura de 50,0 g de hierro en 20,0 K?
 - A. 9,00
 - B. 22,5
 - C. 45,0
 - D. 450

$$2CO(g) + O_2(g) \rightarrow 2CO_2(g)$$

-8-

	CO(g)	$O_2(g)$	CO ₂ (g)
$S^{\Theta}/J K^{-1} mol^{-1}$	198	205	214

- A. -189
- B. -173
- C. +173
- D. +189
- 19. ¿Qué etapa(s) del ciclo de Born-Haber para la formación del LiCl es/son endotérmica(s)?
 - A. $\frac{1}{2}Cl_2(g) \rightarrow Cl(g) \text{ y Li}(s) \rightarrow Li(g)$
 - B. $Cl(g) + e^- \rightarrow Cl^-(g) \text{ y Li}(g) \rightarrow Li^+(g) + e^-$
 - C. $Li^+(g) + Cl^-(g) \rightarrow LiCl(s)$
 - D. $\frac{1}{2} \operatorname{Cl}_2(g) \to \operatorname{Cl}(g) \ y \ \operatorname{Cl}(g) + e^- \to \operatorname{Cl}^-(g)$
- **20.** ¿Cuál es la función del hierro en el proceso de Haber?
 - A. Desplaza la posición de equilibrio hacia los productos.
 - B. Disminuye la velocidad de la reacción.
 - C. Proporciona una secuencia de reacción alternativa que tiene menor energía de activación.
 - D. Reduce la variación de entalpía de la reacción.

21. Para la siguiente reacción.

$$5Br^{-}(aq) + BrO_{3}^{-}(aq) + 6H^{+}(aq) \rightarrow 3Br_{2}(aq) + 3H_{2}O(1)$$

Se determinó que la expresión de velocidad es:

velocidad =
$$k [Br^-][BrO_3^-][H^+]^2$$

¿Qué enunciado es correcto?

- A. El orden total es 12.
- B. Duplicar la concentración de todos los reactivos al mismo tiempo haría que se incrementase la velocidad de la reacción por un factor de 16.
- C. Las unidades de la constante de velocidad, k, son mol dm⁻³ s⁻¹.
- D. Una variación en la concentración de Br⁻ o de BrO₃⁻ no afecta la velocidad de reacción.

22. La expresión de velocidad para una reacción es:

velocidad =
$$k[X][Y]$$

¿Qué enunciado es correcto?

- A. A medida que la temperatura aumenta la constante de velocidad disminuye.
- B. La constante de velocidad aumenta con el aumento de temperatura pero eventualmente alcanza un valor constante.
- C. A medida que la temperatura aumenta la constante de velocidad aumenta.
- D. La constante de velocidad no se ve afectada por un cambio de temperatura.

Véase al dorso

23. Considere el siguiente mecanismo de reacción.

Etapa 1
$$H_2O_2 + I^- \rightarrow H_2O + IO^-$$
 lenta

– 10 **–**

Etapa 2
$$\text{H}_2\text{O}_2 + \text{IO}^- \rightarrow \text{H}_2\text{O} + \text{O}_2 + \text{I}^- \qquad \textit{rápida}$$

¿Qué enunciado identifica correctamente la etapa determinante de la velocidad de la reacción y su explicación?

- A. La etapa 2 porque es la etapa más rápida
- B. La etapa 1 porque es la etapa más lenta
- C. La etapa 1 porque es la primera etapa
- D. La etapa 2 porque es la última etapa
- 24. ¿Qué enunciado es correcto para el equilibrio $H_2O(1) \rightleftharpoons H_2O(g)$ en un sistema cerrado a 100 °C?
 - A. Todas las moléculas de H₂O(l) se han convertido en H₂O(g).
 - B. La velocidad de la reacción directa es mayor que la velocidad de la reacción inversa.
 - C. La velocidad de la reacción directa es menor que la velocidad de la reacción inversa.
 - D. La presión se mantiene constante.
- 25. ¿Cuáles son las definiciones de ácido de acuerdo con las teorías de Brønsted-Lowry y de Lewis?

	Teoría de Brønsted-Lowry	Teoría de Lewis
A.	donante de protones	receptor de pares electrónicos
B.	receptor de protones	receptor de pares electrónicos
C.	receptor de protones	donante de pares electrónicos
D.	donante de protones	donante de pares electrónicos

- **26.** Se mezclan 100 cm³ de una solución de NaOH de pH 12 con 900 cm³ de agua. ¿Cuál es el pH de la solución resultante?
 - A. 1
 - B. 3
 - C. 11
 - D. 13
- **27.** Cuando el amoníaco reacciona con agua, se comporta como base débil. ¿Cuál es la expresión de $K_{\rm b}$ para esta reacción?
 - A. $\frac{[NH_4^+][OH^-]}{[NH_3][H_2O]}$
 - B. $\frac{[NH_3][H_2O]}{[NH_4^+][OH^-]}$
 - $C. \quad \frac{[NH_3]}{[NH_4^+][OH^-]}$
 - D. $\frac{[NH_4^+][OH^-]}{[NH_3]}$
- **28.** En una titulación entre un ácido y una base se usa el indicador HIn. ¿Qué enunciado sobre la disociación del indicador, HIn, es correcto?

$$HIn(aq) \rightleftharpoons H^{+}(aq) + In^{-}(aq)$$

color A color B

- A. En solución fuertemente alcalina, se observaría el color B.
- B. En solución fuertemente ácida, se observaría el color B.
- C. En el punto de equivalencia, [In-] es mayor que [HIn].
- D. En solución débilmente ácida, se observaría el color B.

- **29.** ¿Qué ácido tendrá menor pH a igual concentración?
 - HNO,
- $K_a = 5,6 \times 10^{-4} \,\mathrm{mol}\,\mathrm{dm}^{-3}$
- В. HF
- $K_{\rm a} = 6.8 \times 10^{-4} \,\mathrm{mol}\,\mathrm{dm}^{-3}$
- C.
- C_6H_5COOH $K_a = 6.3 \times 10^{-5} \text{ mol dm}^{-3}$
- D. **HCN**
- $K_{\rm a} = 4.9 \times 10^{-10} \,\mathrm{mol \, dm}^{-3}$
- **30.** ¿Qué especie se oxida en la siguiente reacción?

$$2Ag^{+}(aq) + Cu(s) \rightarrow 2Ag(s) + Cu^{2+}(aq)$$

- A. Ag^{+}
- B. Cu
- C. Ag
- D. Cu^{2+}
- ¿En qué lista los halógenos presentan orden creciente respecto de su fuerza como oxidante (el agente 31. oxidante más débil primero)?
 - A. Cl₂ I₂ Br₂
 - B. I₂ Br₂ Cl₂
 - $C. I_2 Cl_2 Br_2$
 - D. Cl_2 Br_2 I_2

32. ¿Cuál es el potencial de la celda, en V, para la reacción que se produce cuando se conectan las dos siguientes semiceldas?

Fe²⁺(aq) + 2e⁻
$$\rightleftharpoons$$
 Fe(s) $E^{\Theta} = -0.44 \text{ V}$
Cr₂O₇²⁻(aq) + 14H⁺(aq) + 6e⁻ \rightleftharpoons 2Cr³⁺(aq) + 7H₂O(l) $E^{\Theta} = +1.33 \text{ V}$

- A. +0.01
- B. +0.89
- C. +1,77
- D. +2,65
- **33.** ¿Qué característica estructural debe poseer una molécula para sufrir una reacción de polimerización por adición?
 - A. Dos grupos funcionales
 - B. Un enlace doble carbono-carbono
 - C. Átomos de carbono unidos por enlace simple entre sí
 - D. Un enlace covalente polar
- **34.** ¿Cuál es el producto de la oxidación del 2-butanol?
 - A. 2-buteno
 - B. Ácido butanoico
 - C. Butanal
 - D. Butanona

35. ¿Cuál es el nombre del siguiente compuesto según la IUPAQ?

- A. 2-metilbutano
- B. Etilpropano
- C. 3-metilbutano
- D. Pentano
- **36.** ¿Qué ecuaciones representan la combustión incompleta del metano?
 - I. $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$
 - II. $CH_4(g) + 1\frac{1}{2}O_2(g) \rightarrow CO(g) + 2H_2O(g)$
 - III. $CH_4(g) + O_2(g) \rightarrow C(s) + 2H_2O(g)$
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III

37.	¿Cuál es el producto orgánico de la reacción entre CH ₃ CH ₂ NH ₂ y CH ₃ CH ₂ COOH?

- A. CH₃CH₂NHCOCH₂CH₃
- B. CH₃CH₂CH₂NHCOCH₃
- C. CH₃CH₂NHCOCH₃
- D. CH₃NHCOCH₃
- **38.** ¿Cuál es el nombre, según la IUPAQ, del compuesto CH₃CH₂COOCH₂CH₃?
 - A. Etanoato de etilo
 - B. Etanoato de propilo
 - C. Propanoato de etilo
 - D. Propanoato de pentilo
- **39.** ¿Qué enunciado es correcto sobre los enantiómeros de un compuesto quiral?
 - A. Sus propiedades físicas son diferentes.
 - B. Todas sus reacciones químicas son idénticas.
 - C. Una mezcla racémica hará rotar el plano de la luz polarizada.
 - D. Harán rotar el plano de la luz polarizada en direcciones opuestas.
- **40.** ¿Cuál será el mejor método para disminuir la incertidumbre **aleatoria** de una medición durante una titulación ácido-base?
 - A. Repetir la titulación
 - B. Asegurarse de que su ojo esté a la misma altura que el menisco cuando se realiza la lectura de la bureta
 - C. Usar una bureta diferente
 - D. Usar un indicador diferente para la titulación