Information Diffusion

Diffusion, Assortativity & Influence
— SL08 —

Philippe Cudré-Mauroux

pcm@unifr.ch

TABLE OF CONTENTS — SL08

- 1. Information Diffusion Information Diffusion
- 2. Herd Behavior
- 3. Information Cascades
- 4. Diffusion of Innovations
- 5. Epidemics
- 6. Assortativity
- 7. Influence

OVERVIEW

- ► Information diffusion:
 - ► Herd Behavior
 - ► Information Cascades
 - ► Diffusion of Innovations
 - ► Epidemics
- ► Assortativity
- ► Influence

Information Diffusion on Social Media (1/2)

- ► Example: Super Bowl XLVII blackout
- ► Tweet from cookie brand

- ► SuperBowl ads cost around \$4 million for 30s
- ► Cookie brand got similar attention basically for free
 - ► 15k retweets, 10k likes, media exposure...
 - ► Wired: "How Oreo won the marketing Super Bowl"

Information Diffusion on Social Media (2/2)

- ► Information diffusion: process by which a piece of information (knowledge) is spread and reaches individuals through interactions.
- ► Information diffusion is a research arrea borrowing from multiple fields
 - ► Sociology, epidemiology, ethnography...
- ▶ Diffusion process typically involve three kinds of entities:
 - ▶ i) senders ii) receivers iii) a medium
- ► Today's focus: techniques that can model information diffusion.

FOUR MODELS OF DIFFUSIONS

► Explicit network:

- ► Herd behavior (individuals observe the actions of all others and act in an aligned form with them)
- ► Information cascades (individuals observe their immediate neighbors)

► Implicit network:

- ▶ Diffusion of Innovation (bird's-eye view of how an innovation spreads through a population assuming that interactions among individuals are unobservable)
- ► Epidemics (infection is considered a random natural process where individuals are exposed to a pathogen)

TABLE OF CONTENTS — SL08

- 1 Information Diffusion
- 2. Herd Behavior Herd Behavior
- 3 Information Cascades
- 4. Diffusion of Innovations
- 5. Epidemics
- 6. Assortativity
- 7. Influence

HERD BEHAVIOR

- ► Example: online auction
 - ► Individuals are connected through the auctions that are public
 - ► Individuals sometimes bid on items that might otherwise be considered unpopular as they trust others and assume that the high number of bids that the item received is a strong signal of its value
- ► Further example: choosing restaurant based on current attendance
- Herd behavior describes when a group of individuals performs actions that are aligned without previous planning
 - ► It has ben observed in flocks, herds, and in humans during sportings events, demonstrations, religious gatherings, etc.
 - ► It requires i) connections between individuals and ii) a method to transfer behavior among individuals or to observe their behavior

SOLOMON ASCH EXPERIMENT

- ► 3% vs 32% of incorrect answers
- ► Wisdom of the crowd?

DESIGNING A HERDING EXPERIMENT

- ► Four conditions to satisfy:
 - 1. Decisions must be made
 - 2. Decisions must be sequential
 - 3. Individuals must have private information that helps them decide
 - 4. Individuals do not know the private information of others but can try to infer them from what they observe
- ► Example: Opaque urn with three marbles in it
 - ► Marbles can be blue (B) or red (R)
 - Guarantee to have at least one of of each color (so either BBR or RRB)
 - Students come in turn, pick one marble and check its color in private
 - ► Then make their prediction for the majority color on a blackboard in public
- SMA 2019 SLOW When does herd behavior take place?

BAYESIAN ANALYSIS OF HERD BEHAVIOR (1/2)

- ► P(BBR) = P(RRB) = 0.5
- ► P(B|BBR) = P(R|RRB) = 2/3
- ► Let's imagine that the first student draws a B
 - P(B) = P(B|BBR)P(BBR) + P(B|RRB)P(RRB) = 0.5
 - ► $P(BBR|B) = P(B|BBR)P(BBR)P^{-1}(B) = 2/3$
 - \blacktriangleright So first student should rationally predict BBR

Bayesian Analysis of Herd Behavior (2/2)

- ▶ Now, imagine that the second student draws B also
- ► What will the third student predict?
 - P(B, B, R|BBR) = 2/3 * 2/3 * 1/3 = 4/27
 - ► P(B, B, R) = P(B, B, R|BBR)P(BBR) + P(B, B, R|RRB)P(RRB) = 1/9
 - ► P(BBR|B, B, R) = 2/3
- ► So the third student will predict B even if she draws red!
- ► Similar for all further students (... even if the urn if RRB!)

URN EXPERIMENT

- ► Blackboard predictions are in rectangles
- ► Edges represent what students observe

INTERVENTION

- ► As herding converges to a consensus, one can intervene with the process
 - ► Typically by disclosing private information to the individuals
 - ► Example for the urn: i) disclosing the majority or ii) disclosing previous observations

TABLE OF CONTENTS — SL08

- 1. Information Diffusion
- 2. Herd Behavior
- 3. Information Cascades
 Information Cascades
- 4. Diffusion of Innovations
- 5. Epidemics
- 6. Assortativity
- 7. Influence

INFORMATION CASCADES

- ► On social media, individuals commonly repost content posted by others
- ► An information cascade is a piece of information being cascaded among a set of individuals where
 - 1. Individuals are connected by a network and
 - 2. Individuals are only observing decisions of their immediate neighbors
- ► Cascade users have less information available to them compared to herding users

INDEPENDENT CASCADE MODEL (ICM)

- ▶ Basic model that can help explain information cascades
- ► Underlying assumptions:
 - ► Directed graph with actors (nodes) and communication channels (edges)
 - ► Decisions are binary: nodes can either be active (adopting the behavior) or inactive
 - ▶ Once activated, a node can activate its neighbors
 - Activation is progressive: nodes cannot turn inactive once active
- ightharpoonup Let v get activated at time t
 - $lackbox{ }v$ can activate its neighbors w with a probability $p_{v,w}$ at time t+1
 - v cannot activate its neighbors after that

ICM EXAMPLE

ICM example; number on the edges represent $p_{vw} \,\, \odot \!\, \mathrm{SMM}$

MAXIMIZING THE SPREAD OF CASCADES

- ▶ One interesting question is which nodes to activate such that the final number of activated nodes is maximized?
 - ▶ Let S denote the seed set and f(S) the final number of activated nodes
 - ► ICM is stochastic; it can however be made deterministic by pre-generating all random numbers at the beginning of the process
 - ▶ f(S) is monotone: $f(S \cup \{v\}) \ge f(S)$
 - ► Unfortunately the solution is NP-hard
 - ▶ One can get at least a $(1-1/e) \approx 0.63$ approximation of the optimal value greedily by iteratively selecting nodes that maximize the total number of nodes being ultimately activated

MAXIMIZING CASCADES

Algorithm 7.2 Maximizing the spread of cascades – Greedy algorithm **Require:** Diffusion graph G(V, E), budget k

```
    return Seed set S (set of initially activated nodes)
    i = 0;
    S = {};
    while i ≠ k do
    v = arg max<sub>v∈V\S</sub> f(S ∪ {v});
or equivalently arg max<sub>v∈V\S</sub> f(S ∪ {v}) - f(s)
    S = S ∪ {v};
    i = i + 1;
    end while
    Return S;
```

INTERVENTION

- ► There are basically three ways of stopping an information cascade (e.g., stopping the spread of a false rumor on social media)
 - ► Limiting the number of out-links of activated nodes
 - ► Limiting the number of in-links of inactive nodes
 - ightharpoonup Decreasing the activation probability of a node $p_{v,w}$

TABLE OF CONTENTS — SL08

- 1. Information Diffusion
- 2. Herd Behavior
- 3. Information Cascades
- 4. Diffusion of Innovations
 Diffusion of Innovations
- 5. Epidemics
- 6. Assortativity
- 7. Influence

DIFFUSION OF INNOVATIONS

- ► An innovation is defined as an idea, practice, or object that is perceived as new by an individual
- ► Diffusion of innovation is a phenomenon that is commonly observed on social networks
 - ► Video going viral
 - ► Piece of news being retweeted largely
- ► Innovations abound, however only few of those largely spread through networks

TYPES OF ADOPTERS

Types of adopters and s-shaped cumulative adoption curve ©SMM

TWO-STEP FLOW MODEL

► Elihu Katz developed a two-step flow model to describe how information gets diffused through mass media

Two-step flow model ©SMM

MODELLING DIFFUSION

- ▶ Three notions are of particular importance: A(t): the population that adopted the innovation at time t; P the total population; and i(t) the coefficient of diffusion of the item (innovativeness)
- ► A simple diffusion model capturing that the rate at which the adopters grow directly depends on innovativeness:
 - $ightharpoonup \frac{dA(t)}{dt} = i(t)[P A(t)]$
 - ► The adoption rate only affects adopters who have not yet adopted the item
 - ightharpoonup i(t) can be defined in various ways depending on the model

EXTERNAL-INFLUENCE MODEL

- ► The coefficient of diffusion is constant
 - ► Example: diffusion of a breaking news on social media
- $\frac{dA(t)}{dt} = \alpha [P A(t)]$ which can be solved as
- $A(t) = P(1 e^{-\alpha t})$

External-Influence for P=100 and $\alpha=0.01$ ©SMM

INTERNAL-INFLUENCE MODEL

- ► The adoption depends on how many have adopted the item in the current time step (pure imitation model)
 - ► Example: peers joining a social networking site

►
$$\frac{dA(t)}{dt} = \beta A(t)[P - A(t)]$$
 which can be solved as
► $A(t) = \frac{P}{1 + \frac{P - A_0}{A_0} e^{-\beta P(t - t_0)}}$

$$A(t) = \frac{P}{1 + \frac{P - A_0}{A_0} e^{-\beta P(t - t_0)}}$$

Internal-Influence for
$$P=200$$
 and $\beta=10^{-5}$ and $A_0=30$ (CSMM

► Mixed-Influence Model: combination of both models

INTERVENTION

- ► Interventions to stop the diffusion can leverage the three main aspects of the model
 - ► Limiting the distribution of the item or the audience by reducing the population *P*
 - ightharpoonup Reducing the interest in the item by influencing α
 - ► Reducing the interactions within the population and thus reducing β

TABLE OF CONTENTS — SL08

- 1. Information Diffusion
- 2. Herd Behavior
- 3 Information Cascades
- 4. Diffusion of Innovations
- 5. Epidemics Epidemics
- 6. Assortativity
- 7. Influence

EPIDEMICS

- ► In an epidemic, a disease spreads widely within a population
 - ► The process consists of a pathogen (the disease being spread), a population of hosts (e.g., humans, animals, or plants) and a spreading mechanism (e.g., breathing, drinking, sexual activity)
- ► Many different ways of modeling epidemics
- ► Here we assume unknown connections among individuals and unknown process of infection
 - ► Focuses on global patterns
- ► Individuals usually do not decide whether to get infected or not

EXAMPLES

- ▶ Black Death in the 13th century
 - ► Plague that decimated more than 50% of Europe's population
- ► Computer viruses
 - ► *Stuxnet* infected more than 50% of computers in some countries in 2010

STATES OF INDIVIDUALS IN EPIDEMICS

- ► Susceptible S(t): population that can potentially be infected at time t
- ▶ Infected I(t): infected population that can also infect susceptible individuals
- ▶ Recovered (or Removed) R(t): population that either recovered (and is now immune) or was killed by the infection (cannot infect others and is not susceptible)
- ► Total population $N = S(t) + I(t) + R(t) \forall t$

SI MODEL (1/2)

- ► The most basic epidemic model, SI, consider that infected individuals never get cured
- ▶ We assume that the contact probability (prob. of individuals getting in contact) is β and that the disease is propagated with probability 100%
- An infected individual will infect βS individuals at each time step leading to: $dI/dt = \beta IS$, which can be rewritten as $dI/dt = \beta I(N-I)$

SI MODEL (2/2)

- ► The solution to this differential equation is called the logistic growth function
- ▶ $I(t) = \frac{NI_0e^{\beta t}}{N+I_0(e^{\beta t}-1)}$ where I_0 is the number of infected individuals at time 0.

SI simulation (N=100, $I_0=1$, $\beta=0.003$) compared to HIV growth

SIR MODEL (1/2)

- ightharpoonup A second model, SIR, considers as well that infected individuals can recover, with a probability γ
- ► This yields the following differential equations: $dS/dt = -\beta IS$; $dI/dt = \beta IS \gamma I$; $dR/dt = \gamma I$.

The SIR model

SIR MODEL (2/2)

► The differential equations have no closed-form solution but results can be simulated

SIR simulation (
$$S_0 = 99$$
, $I_0 = 1$, $R_0 = 0$, $\beta = 0.01$ and $\gamma = 0.1$)

INTERVENTION

- ► Stopping the epidemic outbreak is usually a pressing question
- ► A standard solution is to vaccinate the population
 - Reduces the size of the population at risk, and hence of the infected
 - ► Typically requires that 96% gets vaccinated (herd immunity)
 - ► *If* we can identify highly-connected nodes, then 30% is enough
- ► Other techniques such as quarantine work as well

TABLE OF CONTENTS — SL08

- 1. Information Diffusion
- 2. Herd Behavior
- 3 Information Cascades
- 4. Diffusion of Innovations
- 5. Epidemics
- 6. Assortativity
 Assortativity
- 7. Influence

Information Diffusion | Herd Behavior | Information Cascades | Diffusion of Innovations | Epidemics | Assortativity | Influence | Occoded | Occod

ASSORTATIVITY

- Social forces connect individuals in different ways
- One of these ways is assortativity also known as social similarity
 - ► In assortative networks, similar nodes are connected to one another more often than dissimilar nodes
 - ► Friendship networks are typically assortative
- Assortativity can be quantified by measuring how similar nodes are connected

US High School Friendship (1994); 80% of the links exist between members of the same race

Influence

MEASURING ASSORTATIVITY

- ► For nominal attributes (e.g., race, nationality, gender) one simply has to consider the number of edges between nodes of the same type
 - ▶ If $t(v_i)$ denotes the type of a node, A the adjacency matrix, m the number of edges and $\delta(x, y)$ is 0 if $x \neq y$ and 1 otherwise then
 - $\blacktriangleright \frac{1}{2m} \sum_{ij} A_{ij} \delta(t(v_i), t(v_j))$
- ► A common technique is to subtract the expected assortativity to get the *assortativity significance*
 - ► The expected number of eges between two nodes v_i and v_j of degree d_i and d_j is $d_id_j/2m$; the expected number of edges of the same type is then
 - $\blacktriangleright \frac{1}{2m} \sum_{ij} \frac{d_i d_j}{2m} \delta(t(v_i), t(v_j))$

MODULARITY

- ► The resulting measure is called modularity Q
- $\qquad \qquad \mathbf{P} \quad Q = \frac{1}{2m} \sum_{ij} (A_{ij} \frac{d_i d_j}{2m}) \delta(t(v_i), t(v_j))$
- ► Modularity can be normalized by dividing by its maximum value (when all edges are connecting nodes of the same type)

ASSORTATIVITY FOR ORDINAL ATTRIBUTES

- ► For ordinal values (when there is a clear ordering of the values), we are interested in how correlated are the values of connected nodes
- ▶ We construct two variables: X_L representing the ordinal values associated with the *left* node of the edges and X_R for the values of the *right* node of the edges

PEARSON CORRELATION

- ► The covariance is then simply $\sigma(X_L, X_R) = E[X_L X_R] - E[X_L] E[X_R]$
- Similar to modularity, we can normalize covariance by dividing by the standard deviation to obtain the Pearson correlation ρ

$$\rho(X_L, X_R) = \frac{\sigma(X_L, X_R)}{\sigma(X_L)\sigma(X_R)} = \frac{\frac{1}{2m} \sum_{ij} \left(A_{ij} - \frac{d_i d_j}{2m} \right) x_i x_j}{\frac{1}{2m} \sum_{ij} A_{ij} x_i^2 - \frac{1}{2m} \sum_{ij} \frac{d_i d_j}{2m} x_i x_j}$$

- 4. Diffusion of Innovations

- 7. Influence Influence

INFLUENCE

- ► A frequent question in assortative networks is to determine the influence of nodes.
- ► In a simple model, nodes make decision based on their neighbors who have already made the decision
- ► The Linear Threshold Model (LTM) is such a model where the weights of the edges between the nodes represent how much the nodes can affect each other
 - ► A node become active at time t if the sum of the weight of its incoming edges reaches its own threshold θ

LINEAR THRESHOLD MODEL

Algorithm 8.1 Linear Threshold Model (LTM)

```
Require: Graph G(V, E), set of initial activated nodes A_0

    return Final set of activated nodes A.

 2: i=0;
 3: Uniformly assign random thresholds \theta_v from the interval [0, 1];
 4: while i = 0 or (A_{i-1} \neq A_i, i \geq 1) do
       A_{i+1} = A_i
       inactive = V - A_i;
       for all v \in \text{inactive do}
          if \sum_{i \text{ connected to } v, i \in A_i} w_{i,v} \ge \theta_v. then
             activate v;
            A_{i+1} = A_{i+1} \cup \{v\};
10:
         end if
11:
       end for
12:
13:
       i = i + 1:
14: end while
15: A_{\infty} = A_i;
16: Return Am:
```

LTM SIMULATION

LTM simulation (values on the nodes represent thresholds) ©SMM

3MA 2019/SL08 4