CLAIMS

What is claimed is:

1	1.	A method of managing a distributed transaction, the method comprising the steps of:
2		gathering latency information by monitoring latency of a network;
3		generating one or more time period values based on said latency information;
4		determining whether to terminate distributed transactions based on said one or more
5		time period values;
6		determining whether said latency information indicates that changes in the latency of
7		said network satisfy adjustment criteria; and
8		if said latency information indicates that changes in the latency of said network satisfy
9		adjustment criteria, then adjusting said one or more time period values.
1	2.	The method of Claim 1, wherein a participant participating in said distributed
2		transaction executes a transaction from said distributed transaction and terminates said
3		transaction based on termination criteria that includes at least one criterion based on a
4		particular value from said one or more time period values.
1	- 3 .	The method of Claim 2, wherein said distributed transaction is managed by a
2		coordinator that cooperates with said participant to execute the distributed transaction
3		by communicating messages with the participant over the network.
1	4.	The method of Claim 3, wherein the step of communicating with the participant over
2	••	the network is performed using a stateless protocol.
		•

2

1	5.	The method of Claim 4, wherein the stateless protocol is H11P of H11P3.
1	6.	The method of Claim 3, wherein said particular value is based on a period of time
2 .		between when a message is transmitted between said coordinator and said participant
3		and when an acknowledgement that the message has been received is received by the
4		originator of the message.
1	7.	The method of Claim 1, wherein:
2		said one or more time period values includes a particular value;
3		the step of monitoring includes generating a set of one or more transit times, wherein
4		each of said set of one or more transit times reflects a period of time between
5		when a message is transmitted over the network from a sender to a receiver
6		and when the sender receives an acknowledgement from the receiver that the
7		receiver has received the message; and
8		wherein said adjustment criteria includes a criterion that each of said set of one or
9		more transit times lie outside a range associated with said particular value.
1	8.	The method of Claim 7, wherein the step of generating a set of one or more transit
2		times includes the step of generating at least two transit times.
1	9.	The method of Claim 7, wherein the step of generating a set of one or more transit

times is performed by pinging a server connected to a particular network.

1	10.	The method of Claim 2, further including the step of determining a transaction
2		execution threshold period that reflects a period of time needed for said participant to
3		execute operations for transactions, wherein said particular value is based on said
4		transaction execution threshold period.
1	11.	The method of Claim 1, wherein:
2		said transaction specifies a modification to an item of data; and
3		said participant determines whether said transaction satisfies termination criteria
4		before allowing another modification specified by another transaction for said
5		item of data.
1	12.	A method of managing a distributed transaction, the method comprising the steps of:
2		determining a set of one or more transaction execution periods for transactions
3		executed by a participant that participates in distributed transactions, wherein
4		each transaction execution period of said set of one or more transaction
5		execution periods reflects the period of time that elapsed for said participant to
6		execute said each transaction;
7		if a difference between each of said set of one or more transaction execution periods
8		and a transaction execution threshold period satisfies adjustment criteria, then
9		adjusting said transaction execution threshold period; and
10		wherein termination criteria used to determine whether to terminate said distributed
11		transaction is based on said transaction execution threshold period.

1	13.	The method of Claim 12, wherein said adjustment criteria include a criterion that said
2		difference is so great that each of said set of one or more transaction execution
3		periods lies outside a range based on said transaction execution threshold period.
1	14.	The method of Claim 12, further including the steps of
2		monitoring a network for changes in latency of the network; and
3		generating one or more time period values based on said changes in latency, wherein
4		said termination criteria include a criterion based on said one or more time
5		period values.
1	15.	A method of managing a distributed transaction, the method comprising the steps of:
2		monitoring latency of a network, wherein said latency of said network is used to
3		generate one or more time period values used to determine whether to
4		terminate distributed transactions; and
5		if changes in latency satisfy adjustment criteria, then adjusting said one or more time
6		period values used to determine whether to terminate said distributed
7		transaction.
1	16.	A computer-readable medium carrying one or more sequences of instructions for
2		managing a distributed transaction, wherein execution of the one or more sequences
3		of instructions by one or more processors causes the one or more processors to
4		perform the steps of:
5		gathering latency information by monitoring latency of a network:

6		generating one or more time period values based on said latency information;
7		determining whether to terminate distributed transactions based on said one or more
8		time period values;
9		determining whether said latency information indicates that changes in the latency of
10		said network satisfy adjustment criteria; and
11		if said latency information indicates that changes in the latency of said network satisfy
12		adjustment criteria, then adjusting said one or more time period values.
1	17.	The computer-readable media of Claim 16, wherein a participant participating in said
2		distributed transaction executes a transaction from said distributed transaction and
3		terminates said transaction based on termination criteria that includes at least one
4		criterion based on a particular value from said one or more time period values.
1	18.	The computer-readable media of Claim 17, wherein said distributed transaction is
2		managed by a coordinator that cooperates with said participant to execute the
3		distributed transaction by communicating messages with the participant over the
4		network.
1	19.	A computer-readable medium carrying one or more sequences of instructions for
2		managing a distributed transaction, wherein execution of the one or more sequences
3		of instructions by one or more processors causes the one or more processors to

perform the steps of:

5		determining a set of one or more transaction execution periods for transactions
6		executed by a participant that participates in distributed transactions, wherein
7		each transaction execution period of said set of one or more transaction
8		execution periods reflects the period of time that elapsed for said participant to
9		execute said each transaction;
10		if a difference between each of said set of one or more transaction execution periods
11		and a transaction execution threshold period satisfies adjustment criteria, then
12		adjusting said transaction execution threshold period; and
13		wherein termination criteria used to determine whether to terminate said distributed
14		transaction is based on said transaction execution threshold period.
1	20.	A computer-readable medium carrying one or more sequences of instructions for
2		managing a distributed transaction, wherein execution of the one or more
3		sequences of instructions by one or more processors causes the one or more
4		processors to perform the steps of:
5		monitoring latency of a network, wherein said latency of said network is used to
6		generate one or more time period values used to determine whether to
7		terminate distributed transactions; and
8		if changes in latency satisfy adjustment criteria, then adjusting said one or more
9		time period values used to determine whether to terminate said distributed
10	•	transaction.