In English Log ud

Sonia Coriani

CampusNet / 26050 Indledende kemi for biovidenskaberne E17 / Opgaver	
Eksamen i 26050 Efterår 2017	
Side 1	Vis rigtige svarSkjul rigtige sva
Spørgsmål 1	
/ægtning 5%: Hvilket udsagn er sandt?	
Ni har 10 valenselektroner. Elektronkonfigurationen for valenselektronerne er: 4s ² 3d ⁸	
Ni har 8 valenselektroner. Elektronkonfigurationen for valenselektronerne er: 3d ⁸	
Ni har 28 valenselektroner. Elektronkonfigurationen for valenselektronerne er: $[Ar]4s^23p^8$	
Ni har 2 valenselektroner. Elektronkonfigurationen for valenselektronerne er: 4s²	
Ni har ingen valenselektroner.	
Spørgsmål 2	
/ægtning 5%:	
Hvad er elektronkonfigurationen i grundtilstanden for Co ²⁺ :	
[Ar]4s ² 3d ⁵	
[Ar]4s ² 3d ⁷	
[Ar]3d ⁷	
[Ar]4s ⁷	
[Ar]4s ¹ 3d ⁶	
Spørgsmål 3	
/ægtning 4%: Hvilket af følgende generelle udsagn er normalt sandt?	
Ned gennem en gruppe stiger ioniseringsenergien.	
Alkalimetallerne har de højeste ioniseringsenergier.	
Hvis to atomer er isoelektroniske, så vil det atom, der har størst kerneladning have den mindste ioniseringsenergi.	
Hen igennem en periode stiger ioniseringsenergien når man går fra gruppe 16 til gruppe 18	
Hvis et atom har en stor ioniseringsenergi, er det meget reaktivt.	

Molekylorbitalteori

Spørgsmål 4

Vægtning 4%:

Molekylorbitalteori:

Vedlagt er MO-diagrammet for NO. Ud fra det, angiv om NO er stabilt og dens magnetiske egenskaber.

- NO er ustabilt og diamagnetisk
- NO er ustabilt og paramagnetisk
- NO er stabilt og ferromagnetisk
- NO er stabilt og diamagnetisk
- NO er stabilt og paramagnetisk

Spørgsmål 5

Vægtning 3%:

Molekylorbitalteori:

Angiv bindingsordenen for O_2^{2-}

- Bindingsorden = 0
- Bindingsorden = 1
- Bindingsorden = 2
- Bindingsorden = 3
- Bindingsorden = 4

Side 3
Lewisstrukturer
Spørgsmål 6
Vægtning 3%:
Angiv hvilken af følgende forbindelser der er isoelektronisk med CO
BaO
LIF
□ NaI
№ N ₂
КВг
Spørgsmål 7
Vægtning 1%:
Angiv antallet af lonepairs på hver F for forbindelsen ${\sf PF}_3$
0
01
□ 2☑ 3
Q 4
Spørgsmål 8
Vægtning 1%: Angiv antallet af lonepairs på Si for forbindelsen SiCl ₄
0
O 1
<u> </u>
□ 3
1 4
Spørgsmål 9
Vægtning 2%:
Angiv antallet af lonepairs på P for forbindelsen PF_3
_ 0
☑ 1
_ 2
<u> </u>
1 4

Vægtning 2%:

Angiv antallet af lonepairs på hver Cl i forbindelsen SiCl₄

- □ 0
- 1
- 2
- **2** 3
- 4

Side 4
Navngivning
Spørgsmål 11
Vægtning 1%:
Navngiv CaH ₂
Kaliumhydrid
Caliumhydrat
Calciumhydrid
Calciumdihydrogen
dihydrogencalcium
Spørgsmål 12
Vægtning 1%:
Opskriv formlen for bariumphosphat.
BaPO ₃
BaPO ₄
Ba ₃ (PO ₄) ₂
Ba ₂ (PO ₄) ₃
☐ Ba ₃ (PO ₃) ₂
Spørgsmål 13
Vægtning 1%:
Opskriv formlen for natriumperoxid.
Na ₂ O
NaO
Na ₂ O ₂
NaO ₂
Na ₂ O ₃
Spørgsmål 14
Vægtning 1%:
Opskriv formlen for chrom(VI)oxid.
Cr ₂ O ₃
K ₂ O ₃
CrO ₃
CrO ₂
KO ₂

Vægtning 1%:
Navngiv følgende ion: CIO
Chlorit
Hypochlorit
туростопс
Chlorat
Perchlorat

Chloroxid

Side 5 Navngivning Spørgsmål 16 Vægtning 1%: Opskriv formlen for ammoniumhydrogencarbonat. NH₃HCO₃ NH₄HCO₃ NH₄CO₄ NH₃CO₃H

NH₅CO₄

Side 6
Kompleksforbindelser
Vedhæftet er ligandfeltopsplitningen af d-orbitaler for oktaedriske komplekser (uden elektroner)
Filer: ligandfeltopsplitning.jpg
Spørgsmål 17
Vægtning 1%:
Angiv centralatomets koordinationstal for den ioniske kompleksforbindelse:
[Fe(CN) ₆] ⁴⁻
□ 1
□ 2
□ 3
□ 4
☑ 6
Spørgsmål 18
Vægtning 2%:
Angiv centralatomets oxidationstrin for den ioniske kompleksforbindelse:
[CrCl ₂ (NH ₃) ₄] ⁺
<u> </u>
<u> </u>
+1
⊘ +3
_ +4
Co. 200 200 21 10
Spørgsmål 19
Vægtning 3%:
[Fe(H ₂ O) ₆] ³⁺
[1-6(1)20)6]
e _g : 0
t _{2g} : 5
2.13
e _g : 2 t _{2g} : 3
-2y. 5
e _g : 0
t ₂₉ : 3
en: 3

vægtning 3%:
Navngiv følgende kompleksforbindelse: $K_3[Fe(CN)_6]$
kaliumhexacyanidoferrat(III)
trikaliumhexacyanidoferrat(II)
kaliumhexacyanidojern(III)
trikaliumjernhexacyanido(II)

Spørgsmål 21

Vægtning 3%:

 $Opskriv\ formlen\ for\ tetrahydroxidocuprat (II)-ionen.$

trikaliumjernhexacyanido(III)

- $[Cu(H_2O)_4]^{2+}$
- [Cu(OH)₄]²⁺
- Cu(OH)₄]²⁻
- Cu₄(OH)]³⁺
- [CuOH₄]²⁻

Reaktionsskemaer

Spørgsmål 22

Vægtning 4%:

Færdiggør og afstem følgende reaktion. Afbrænding i overskud af dioxygen.

 $\mathsf{AI}(\mathsf{s})\,+\,\mathsf{O}_2(\mathsf{g})\to ?$

- 4AI(s) + $5O_2(g) \rightarrow 2AI_2O_5(s)$

Spørgsmål 23

Vægtning 4%:

Færdiggør og afstem følgende reaktion, hvori KO_2 reagerer med stort overskud af vand.

$$KO_2(s) + H_2O(I) \rightarrow ?$$

- 4KO₂(s) + 2H₂O(I) → 4KOH(aq) + 3O₂(g)
- $\text{KO}_2(s) + 2H_2O(I) \rightarrow K^{4+}(aq) + 4OH^{-}(aq)$
- $= 2KO_2(s) + H_2O(I) \rightarrow K_2O(aq) + 2O_2(g) + H_2(g)$
- $\text{KO}_2(s) + 2H_2O(I) \rightarrow K(s) + 2H_2O_2(aq)$

Spørgsmål 24

Vægtning 4%:

 $Opskriv\ den\ afstemte\ reaktionsligning\ for\ fremstilling\ af\ jern\ i\ h\emptyset jovn\ ved\ reduktion\ af\ jern(III) oxid\ med\ kulilte$

- $2 \text{Fe}_2 \text{O}_3(\text{s}) + 3 \text{ C(s)} \rightarrow 4 \text{ Fe}(l) + 3 \text{ CO}_2(g)$
- 4FeO(s) \rightarrow Fe(l) + Fe₃O₄(s)
- □ $3CO(g) + 2Fe(OH)_3 (s) \rightarrow 2Fe(l) + 3CO_2 (g) + 3H_2O(g)$

10 of 15

Vægtning 4%:

Afstem denne redoxreaktion

 MnO_4^- (aq) + H^+ (aq) + ClO_3^- (aq) $\rightleftharpoons ClO_4^-$ (aq) + Mn^{2+} (aq) + H_2O (I)

- $\begin{tabular}{|c|c|c|c|c|} \hline & 2MnO_4$^-$ (aq) + 6H^+$ (aq) + 5ClO_3$^-$ (aq) \rightleftharpoons $5ClO_4$^-$ (aq) + 2Mn^2$^+$ (aq) + 3H_2O (I) $ \\ \hline \end{tabular}$
- $\begin{tabular}{ll} \hline $\mathsf{M}\mathsf{N}\mathsf{O}_4$^-$ (aq) + \mathsf{H}^+$ (aq) + <math>\mathsf{C}\mathsf{I}\mathsf{O}_3$^-$ (aq) \rightleftharpoons <math>\mathsf{C}\mathsf{I}\mathsf{O}_4$^-$ (aq) + <math>\mathsf{M}\mathsf{n}^2$^+$ (aq) + <math>\mathsf{H}_2\mathsf{O}$ (I) \\ \hline \end{tabular}$
- $\boxed{ \ \ \, } \ \ \, \mathsf{MnO_4^-}(\mathsf{aq}) + \mathsf{4H^+}(\mathsf{aq}) + \mathsf{CIO_3^-}(\mathsf{aq}) \ \, \rightleftharpoons \ \ \, \mathsf{CIO_4^-}(\mathsf{aq}) + \mathsf{Mn^{2+}}(\mathsf{aq}) + \mathsf{2H_2O}\left(\mathsf{I}\right) \\$
- \bigcirc 2MnO₄⁻ (aq) + 6H⁺ (aq) + 5ClO₃⁻ (aq) \rightleftharpoons 2ClO₄⁻ (aq) + 5Mn²⁺ (aq) + 3H₂O (I)

C₁₁H₁₇NO₃

Side 8
Støkiometri
Spørgsmål 26
Vægtning 4%:
Mælkesyre er en hydroxy-carboxylsyre der kan dannes i musklerne og føre til ømhed. Molmassen af mælkesyren er 90,1 g/mol. Elementaranalyse viser at stoffet indeholder 40,0% w/w C, 6,71% w/w H og 53,3% w/w O. Bestem molekylformlen.
C ₆ H ₁₂ O ₆
□ C ₆ H ₅ OH
CH ₂ O
\square C ₂ H ₄ O ₂
Spørgsmål 27
Vægtning 2%:
Koffein er et alkaloid som bl.a. findes i kaffe og te. Den stimulerer centralnervesystemet. En prøve ren koffein indeholder 0,624 g C, 0,065 g H, 0,364 g N og 0,208 g O. Bestem den empiriske formel for koffein.
C ₅ H ₄ NO ₂
\square C ₈ H ₁₀ N ₄ O ₂
☑ C ₄ H ₅ N ₂ O
\square C ₇ H ₈ N ₄ O ₂

Syre-base- og puffersystemer

Spørgsmål 28

Vægtning 6%:

Anilin ($C_6H_5NH_2$) er en svag base med K_b =4,60 x 10^{-10} . Reaktionsligningen er

 $C_6H_5NH_2 + H_2O \rightleftharpoons C_6H_5NH_3^+ + OH^-$

Ved at blande anilin med en stærk syre kan man fremstille en puffer.

Hvad er pH af:

(a) 200 mL 0,200 M anilin

(b) en opløsning fremstillet ved at blande 100 mL 0,15 M HCl med 200 mL 0,200 M anilin . Voluminet af den resulterende opløsning antages at være 300 mL.

Bemærk at vands autoprotolysekonstant er $K_{\rm V}$ =1,00 x 10⁻¹⁴

- (a) pH=5,02; (b) pH=4,89
- (a) pH=8,98; (b) pH=4,89
- (a) pH=8,98; (b) pH =9,11
- (a) pH=7,00; (b) pH = 7,00
- (a) pH=5,02; (b) pH = 9,11

Spørgsmål 29

Vægtning 2%:

Hvilken koncentrationsbrøk skal man bruge for at fremstille en cyansyre (HOCN)/cyanat (OCN $^{\circ}$) puffer med pH = 3,5?

 $K_{a} = 1.2 \times 10^{-4}$

- OCN-]/[HOCN] = 1,0
- OCN-]/[HOCN] = 0,42
- OCN-]/[HOCN] = 0,38
- \Box [OCN⁻]/[HOCN] = 0,50
- OCN-]/[HOCN] = 1,5

Spørgsmål 30

Vægtning 4%

50,00 mL vandig HCl-opløsning af ukendt koncentration bliver titreret med en vandig 0,1524 M opløsning af NaOH. Ved titreringsendepunkt er der brugt 33,32 mL af NaOH-opløsningen. Bestem koncentrationen (M) af den oprindelige HCl-opløsning.

- [HCI] =0,03332 M
- [HCI] = 0,1524 M
- [HCI] =0,1000 M
- [HCI] = 0,1016 M
- \square [HCI] = 5,078 x 10⁻³ M

Ligevægte

Spørgsmål 31

Vægtning 6%:

 K_p =0,403 for ligevægten

 $\text{FeO (s)} + \text{CO (g)} \rightleftharpoons \text{Fe (s)} + \text{CO}_2 \text{ (g)}$

ved 1000 °C. Hvis CO(g) ved P=1,0 atm er placeret i en cointainer sammen med et stort overskud FeO(s) ved 1000 °C, hvad er de partielle tryk af CO₂ og CO når ligevægten har etableret sig?

Bemærk at 1 atm = 1,013 bar.

- $P(CO) = 0,722 \text{ bar og } P(CO_2) = 0,291 \text{ bar}$
- $P(CO) = 0.291 \text{ bar og } P(CO_2) = 0.722 \text{ bar}$
- P(CO) = 0.291 atm og $P(CO_2) = 0.722$ atm
- $P(CO) = 0.713 \text{ bar og } P(CO_2) = 0.287 \text{ bar}$
- $P(CO) = 0.00 \text{ atm og } P(CO_2) = 1.00 \text{ atm}$

Spørgsmål 32

Vægtning 6%:

 $Mg(OH)_2$ har $K_{sp} = 8.9 \times 10^{-12}$.

- (a) beregn [OH-] ved en mættet opløsning af Mg(OH)₂ (s)
- (b) kan man fælde Mg(OH)₂ (s) fra en 0,001 M opløsning af Mg(NO₃)₂ hvis pH justeres til pH=9?
 - (a) $1.3 \times 10^{-4} \text{ M}$; (b) ja
 - (a) $2,6 \times 10^{-4} \text{ M}$; (b) ja
 - (a) $3.0 \times 10^{-6} \text{ M}$; (b) ja
 - (a) $1.3 \times 10^{-4} \text{ M}$; (b) nej
 - (a) 2,6 x 10⁻⁴ M; (b) nej

Kinetik

Spørgsmål 33

Vægtning 6%:

Bestem reaktionsorden og hastighedskonstanten for reaktionen (ved 45 $^{\circ}\text{C}$)

 $2N_2O_5\left(g\right)\rightarrow\ 4NO_2\left(g\right)+O_2\left(g\right)$

ud fra de følgende målinger af koncentration af N_2O_5 mod tiden

Tid (min)	[N 2 O 5] (M)
0 1	0,0165
10	0,0124
20 I	0,0093
30	0,0071
40 I	0,0053
50 I	0,0039
60 I	0.0029

- \square 2. orden og k=31 M $^{-1}$ min $^{-1}$
- \bigcirc 0. orden og k=3,0 x 10⁻⁴ M min⁻¹
- 1. orden og k=0,029 min⁻¹
- ☐ 1. orden og k=4,1 min⁻¹
- 2. orden og k=4,6 M⁻¹ s⁻¹