# Columbia MA Math Camp

Differential Calculus

Vinayak Iyer July 22, 2020

## **Table of Contents**

## Single Variable

Multivariable Derivative

Second Derivatives and Taylor Series Expansions

The Implicit Function Theorem

#### **Derivative**

The fundamental concept in calculus is that of the **derivative**, which is simply a rate of change. Consider a function  $f: \mathbb{R} \to \mathbb{R}$ . The quantity

$$\frac{f(x_0+h)-f(x_0)}{h}$$

tells us the average rate of change of f between  $x_0$  and  $x_0 + h$ .

The big idea with derivatives is simply that we let h go to 0.

#### Definition 1.1

Let  $A \subset \mathbb{R}$ . A function  $f: A \to \mathbb{R}$  is said to be differentiable at  $x_0$  iff the limit :

$$f'(x_0) \equiv \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

exists.

We define the derivative of f at  $x_0$  as  $f'(x_0)$ 

# Derivative as an approximation

There's another interpretation of the derivative: it is the best linear approximation of a function.

- Suppose you wanted to approximate f(x) by a linear function g(x) = mx + b around the point  $x_0$
- A good approximation should have the following properties:
  - The functions should agree at  $x_0$ :  $g(x_0) = f(x_0)$ . So  $g(x_0 + h) = f(x_0) + mh$
  - The per-unit error should be small near  $x_0$ :

$$\lim_{h \to 0} \frac{f(x_0 + h) - g(x_0 + h)}{h} = 0$$

These properties combined imply  $m = f'(x_0)$ 

## Common derivatives and rules

#### Common functions:

- $\frac{d}{dx}c = 0$
- $\bullet$   $\frac{d}{dx}x^n = nx^{n-1}$
- $\frac{d}{dx}e^x = e^x$
- $\frac{d}{dx} \log x = \frac{1}{x}$

#### Combining derivatives:

- $\frac{d}{dx}(f(x)+g(x))=f'(x)+g'(x)$
- $\frac{d}{dx}(\alpha f(x)) = \alpha f'(x)$
- $\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$  (product rule)
- $\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$  (chain rule)

## Chain Rule example

- Consider a consumer whose utility u is only directly dependent on consumption c: u = u(c)
- However, consumption depends on the consumer's wealth: c = c(w)
- Therefore u = u(c(w)). We can capture the dependencies in a graph



• The chain rule tells us:

$$\frac{du}{dw} = \frac{du}{dc} \frac{dc}{dw}$$

5

## **Table of Contents**

Single Variable

#### Multivariable Derivative

Second Derivatives and Taylor Series Expansions

The Implicit Function Theorem

#### **Aside: Multivariable Functions**

- We will be working with functions from  $\mathbb{R}^n$  to  $\mathbb{R}$  a lot
- For functions of two variables, one common tool we'll use is **level curves**. This is the graph of the equation f(x, y) = c
- Example: let  $a \in \mathbb{R}^2$  and consider the function  $f(x, y) = a_1 x + a_2 y$ . The graph of this function is called a **hyperplane**

## **Notion of Linear Approximation**

In the single-variable setting, f'(x) was the term in the **best linear approximation** of f'(x)

$$f(y) \approx f(x) + f'(y)(y-x)$$

where "best" meant the relative error goes to 0. That is, f'(x) is the value m such that

$$\lim_{y \to x} \frac{f(y) - (f(x) + m(y - x))}{y - x} = 0$$

# Notion of Linear Approximation (cont.)

If  $f: \mathbb{R}^n \to \mathbb{R}^m$ , then a linear approximation of f is:

$$f(y) = f(x) + A(y - x)$$

where A is a  $m \times n$  matrix. Thus we will define the **derivative of** f **at** x or the **Jacobian of** f **at** x as the matrix A such that

$$\lim_{y\to x}\frac{f(y)-(f(x)+\mathsf{A}(y-x))}{\|y-x\|}\to 0$$

#### **Partial Derivative**

Let us introduce the notion of a very useful concept of a partial derivative :

#### **Definition 2.1**

For a function  $f: \mathbb{R}^n \to \mathbb{R}^m$ , it's partial derivative of the ith coordinate wrt to the jth argument at  $x \in \mathbb{R}^n$  is:

$$\frac{\partial f_i}{\partial x_j}(x) := \frac{d}{dt} f_i(x + te_j)|_{t=0}$$

What's the partial derivative of  $f(x) = x_1^2 + x_1x_2$ ?

# Properties of the derivative

#### Properties:

- If  $f: \mathbb{R}^n \to \mathbb{R}^m$ , then f'(x) is an  $m \times n$  matrix also known as the **Jacobian**.
  - If f is real-valued, the column vector  $f'(x)^T$  is called the **gradient** of f or sometimes denoted as  $\nabla f(x)$
- The derivative is **linear**. If  $f, g : \mathbb{R}^n \to \mathbb{R}^m$  and  $\alpha \in \mathbb{R}$ :
  - (f+g)'(x) = f'(x) + g'(x)
  - $(\alpha f)'(x) = \alpha f'(x)$
- If f is differentiable at x, f is continuous at x

#### The Chain Rule

- Let  $f: \mathbb{R}^n \to \mathbb{R}^m$  and  $g: \mathbb{R}^m \to \mathbb{R}^k$ .
- Define  $h: \mathbb{R}^n \to \mathbb{R}^k$  by h(x) = g(f(x)).
- If f is differentiable at x and g is differentiable at f(x), then

$$h'(x) = g'(f(x))f'(x)$$

• (Heuristic proof) two linear approximations:

$$h(y) = g(f(y))$$

$$\approx g[f(x) + f'(x)(y - x)]$$

$$\approx g(f(x)) + g'(f(x))f'(x)(y - x)$$

$$= h(x) + \underbrace{g'(f(x))f'(x)}_{h'(x)}(y - x)$$

• Full proof in FMEA, page 96

# What does f'(x) look like?

• Consider the partial derivative wrt  $x_i$  i.e. :

$$\frac{\partial f(x)}{\partial x_i} = i\text{-th column of } f'(x)$$

This allows us to calculate the Jacobian

$$f'(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{pmatrix}$$

## The Chain Rule: Interpretation

Returning to the chain rule, consider the following example:

- ullet Utility u depends on consumption c and hours worked h
- However c and h depend on the going wage w. Define  $x(w) : \mathbb{R} \to \mathbb{R}^2$  by x(w) = (c(w), h(w)).
- Define v(w) = u(x(w)). The chain rule says v'(w) = u'(x(w))x'(w):

$$v'(w) = \begin{pmatrix} \frac{\partial u}{\partial c} & \frac{\partial u}{\partial h} \end{pmatrix} \begin{pmatrix} \frac{\partial c}{\partial w} \\ \frac{\partial h}{\partial w} \end{pmatrix}$$
$$= \frac{\partial u}{\partial c} \frac{\partial c}{\partial w} + \frac{\partial u}{\partial h} \frac{\partial h}{\partial w}$$

#### Some common derivatives

Being comfortable taking vector derivatives in one step can save you a **lot** of algebra (especially in econometrics). You should know these identities by heart :

• Let  $f: \mathbb{R}^n \to \mathbb{R}^m$  with f(x) = Ax where A is an  $m \times n$  matrix:

$$f'(x) = A$$

• Let  $f: \mathbb{R}^n \to \mathbb{R}$  with f(x) = x'Ax where A is an  $n \times n$  matrix:

$$f'(x) = x'(A + A')$$

If A is symmetric, f'(x) = 2x'A

• If  $f,g:\mathbb{R}^n\to\mathbb{R}$  and h(x)=f(x)g(x), then

$$h'(x) = f'(x)g(x) + f(x)g'(x)$$

#### Some technical concerns

- We have seen that if f is differentiable, its partials exist and the Jacobian is just the matrix of partial derivatives.
- What if we only know that the partials exist? Is that enough for differentiability?
- Sadly, the answer is no (idea: function could behave nicely along the axes, but misbehave along other directions)
- However, if the partials are also continuous, then the derivative exists. Almost every function we work with in economics will have continuous partial derivatives

## **Table of Contents**

Single Variable

Multivariable Derivative

Second Derivatives and Taylor Series Expansions

The Implicit Function Theorem

# Higher Derivatives: Single Variable

For a function  $f: \mathbb{R} \to \mathbb{R}$ , the **second derivative** of f at x is the derivative of f' at x

$$f''(x) = \lim_{h \to 0} \frac{f'(x+h) - f'(x)}{h}$$

The second derivative measures the change in the slope per unit change in x:

- f''(x) > 0 means the derivative is (locally) increasing in x
- f''(x) < 0 means the derivative is (locally) decreasing in x

Can keep going to third, fourth derivatives, etc. (not commonly used)

## Taylor Series: Single Variable

Suppose you want to approximate f by a polynomial around the point  $x_0$ 

$$h(x) \equiv a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \ldots + a_n(x - x_0)^n$$

Two intuitive criteria for a "good" approximation are:

- $h(x_0) = f(x_0)$ , which implies  $a_0 = f(x_0)$
- The first n derivatives of h should match those of f at  $x_0$

Differentiating repeatedly gives  $h^k(x_0) = k!a_k$ . Thus the **Taylor series expansion of order** n **of** f **around**  $x_0$  is

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + ... + \frac{1}{n!}f^n(x_0)(x - x_0)^n$$

## Taylor Series: Exact Form of Remainder

## Proposition 3.1

Let f be k + 1 times differentiable on [a, x]. Then

$$f(x) = f(a) + f'(a)(x - a) + \ldots + \frac{f^{k}(a)}{k!}(x - a)^{k} + \frac{f^{k+1}(\zeta)}{(k+1)!}(x - a)^{k+1}$$

for some  $\zeta \in (a, x)$ .

# Taylor Series: Single Variable (cont.)

- Taylor series are useful tools for many proofs in econometrics
- Approximation methods are used frequently in economics to help simplify nonlinear equations
- Accuracy of the approximation depends on distance from  $x_0$

[Show picture]

## Second Derivations: Multiple Variables

- For a function  $f: \mathbb{R}^n \to \mathbb{R}$ , we define second derivatives similarly, as the derivative of  $\nabla f$ .
- Evidently, the second derivative of f is an  $n \times n$  matrix, called the **Hessian** of f at x
- The form of the Hessian is

$$H(x) = \begin{pmatrix} \frac{\partial}{\partial x_1} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial}{\partial x_n} \frac{\partial f}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_1} \frac{\partial f}{\partial x_n} & \cdots & \frac{\partial}{\partial x_n} \frac{\partial f}{\partial x_n} \end{pmatrix}$$

#### Schwarz's Theorem

Worried about remembering the order of differentiation for the Hessian? In most cases, there's no need:

# **Theorem 3.1** (Schwarz) If f is twice continuously differentiable, the Hessian matrix is symmetric.

## **Taylor Series for Multivariable Functions**

- We will consider second-order expansions, as the notation is cumbersome beyond that point (and expansions beyond two orders are rare in economics).
- Let's take  $f: \mathbb{R}^2 \to \mathbb{R}$ . Suppose we want to approximate f around  $(x_1^*, x_2^*)$  with a second-order polynomial

$$h(x_1, x_2) = a_0 + a_1(x_1 - x_1^*) + a_2(x_2 - x_2^*) + a_{11}(x_1 - x_1^*)^2 + a_{12}(x_1 - x_1^*)(x_2 - x_2^*) + a_{22}(x_2 - x_2^*)^2$$

 We again require that h(x<sub>0</sub>, y<sub>0</sub>) = f(x<sub>0</sub>, y<sub>0</sub>) and that all first and second order derivatives of h match f

# **Taylor Series for Multivariable Functions (cont.)**

Differentiating and matching terms gives

$$h(x_1, x_2) = f(x_1^*, x_2^*) + \frac{\partial f(x_1^*, x_2^*)}{\partial x_1} (x_1 - x_1^*) + \frac{\partial f(x_1^*, x_2^*)}{\partial x_2} (x_2 - x_2^*)$$

$$+ \frac{1}{2} \frac{\partial^2 f(x_1^*, x_2^*)}{\partial x_1^2} (x_1 - x_1^*)^2 + \frac{\partial^2 f(x_1^*, x_2^*)}{\partial x_1 \partial x_2} (x_1 - x_1^*) (x_2 - x_2^*)$$

$$+ \frac{1}{2} \frac{\partial^2 f(x_1^*, x_2^*)}{\partial x_2^2} (x_2 - x_2^*)^2$$

• Much cleaner to write in matrix form:

$$h(x) = f(x^*) + f'(x^*)(x - x^*) + \frac{1}{2}(x - x^*)^T H(x^*)(x - x^*)$$

 This formula holds for functions with more than 2 variables, and is known as the second order Taylor series expansion of f around x\*

## **Table of Contents**

Single Variable

Multivariable Derivative

Second Derivatives and Taylor Series Expansions

The Implicit Function Theorem

#### Motivation

- Many economic analyses introduce equations of the form f(x, y) = 0, where x is a vector of "exogenous" variables and y a vector of "endogenous" variables
- ullet We are frequently interested in understanding the impact of x on y, namely y'(x)
- However, the equations are complicated and it may not be possible to solve explicitly for y(x) in order to take derivatives
- The implicit function theorem gives us a way to do such comparative statics even in the absence of a closed form solution

#### **IFT: Two Variables**

- Let  $f: \mathbb{R}^2 \to \mathbb{R}$
- Assume for every x there is a unique y that satisfies f(x,y)=0. Write y=y(x)
- Differentiate the expression f(x, y(x)) = 0 with respect to x and apply the chain rule:

$$f_x(x, y(x)) + f_y(x, y(x))y'(x) = 0$$

• So long as  $f_y(x, y(x)) \neq 0$ , we can solve for y'(x):

$$y'(x) = -\frac{f_x(x, y(x))}{f_y(x, y(x))}$$

# IFT: Many variables

- Let  $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$
- Assume for every x there is a unique y that satisfies f(x,y)=0. Write y=y(x)
- Now differentiate the expression f(x, y(x)) = 0 with respect to x and apply the chain rule:

$$f_x(x, y(x)) + f_y(x, y(x))y'(x) = 0$$

• So long as  $f_y(x, y(x))$  is invertible, we have

$$y'(x) = -\left(f_y(x, y(x))^{-1}\right)f_x(x, y(x))$$

 So long as f is continuously differentiable and det(f<sub>y</sub>(x, y(x))) ≠ 0, the above formula is correct. See FMEA page 84 for a full statement.

# **IFT: Supply and Demand Example**

- Let  $\theta \in \mathbb{R}^n$  be a vector of variables that affect supply and demand.
- Market clearing implies

$$Q^{s}(\theta,p)=Q^{d}(\theta,p)$$

for all  $\theta$ 

• To put it into our format:

$$\underbrace{Q^{s}(\theta,p) - Q^{d}(\theta,p)}_{f(\theta,p):\mathbb{R}^{n}\times\mathbb{R}\to\mathbb{R}} = 0$$

• This implicitly defines p as a function of  $\theta$ . Differentiating gives:

$$Q_{\theta}^{s}(\theta, p(\theta)) + Q_{p}^{s}(\theta, p(\theta))p'(\theta) = Q_{\theta}^{d}(\theta, p(\theta)) + Q_{p}^{d}(\theta, p(\theta))p'(\theta)$$

# IFT: Supply and Demand Example (cont.)

• Solving for  $p'(\theta)$  gives:

$$p'( heta) = rac{Q_ heta^d - Q_ heta^s}{Q_ heta^s - Q_ heta^d}$$

- The denominator is positive
- Therefore the sign of  $p'(\theta)$  depends on the sign of  $Q^d_{\theta} Q^s_{\theta}$
- ullet If demand reacts more strongly than supply to changes in heta, price increases