Tarea #990 Investigar sobre herramientas opensource para computo de alto desempeño, entregar en Markdown para el 14/05/2025.

El cómputo de alto desempeño (HPC, por sus siglas en inglés) requiere herramientas eficientes para maximizar el uso de recursos como CPU, GPU y redes de interconexión en clústeres. A continuación te presento una lista de herramientas **opensource** ampliamente usadas en entornos HPC, clasificadas por categoría:

Sistemas de gestión de recursos y colas de trabajo

- 1. SLURM (Simple Linux Utility for Resource Management)
 - El gestor de colas más popular en sistemas HPC.
 - Permite reservar nodos, ejecutar trabajos en lote o interactivos.
 - o Altamente escalable.
 - o https://slurm.schedmd.com

2. PBS/Torque

- o Torque es una evolución opensource de PBS (Portable Batch System).
- Menos usado que SLURM, pero aún presente en algunos centros de cómputo.

3. HTCondor

- Diseñado para trabajos de alto volumen y baja prioridad.
- Útil para cómputo distribuido sobre máquinas heterogéneas.

Librerías y entornos de programación paralela

1. MPI (Message Passing Interface)

- o Estándar de facto para programación paralela en clústeres.
- Implementaciones populares:

■ OpenMPI: https://www.open-mpi.org

■ MPICH: https://www.mpich.org

2. OpenMP

- Permite paralelizar programas C, C++ o Fortran con directivas de compilador.
- o Ideal para paralelismo a nivel de hilo en CPUs multinúcleo.

3. CUDA / ROCm

- **CUDA** (de NVIDIA) no es completamente open source.
- o ROCm (de AMD) sí es open source y se está expandiendo.
- o Útiles para aprovechar GPUs en aplicaciones HPC.

4. Charm++

- Modelo de programación paralela orientado a objetos.
- Usado en simulaciones científicas y dinámicas moleculares (ej. NAMD).

Bibliotecas científicas y numéricas

1. BLAS / LAPACK / ScaLAPACK

- Operaciones algebraicas optimizadas.
- o Implementaciones como OpenBLAS, ATLAS y Netlib LAPACK.

2. PETSc

- o Toolkit para resolver ecuaciones diferenciales parciales en paralelo.
- o https://petsc.org

3. Trilinos

o Colección modular para álgebra lineal, solvers, optimización.

o https://trilinos.github.io

4. FFTW (Fastest Fourier Transform in the West)

o Transformadas de Fourier en 1D, 2D y 3D.

Herramientas de virtualización y contenedores

1. Singularity

- Diseñado para HPC, permite ejecutar contenedores de forma segura sin root.
- o Compatible con Docker.

2. Apptainer

- o Fork oficial y sucesor de Singularity, mantenido por la Linux Foundation.
- https://apptainer.org

Monitoreo y gestión

1. Ganglia

- o Sistema de monitoreo distribuido para clústeres.
- o Visualización web de uso de CPU, memoria, red, etc.

2. Prometheus + Grafana

- Stack moderno para monitoreo y visualización.
- o Ampliamente adoptado también en entornos HPC.

Otras herramientas y frameworks

1. Hadoop / Spark (modo clúster)

o Aunque más orientados a Big Data, pueden usarse para tareas HPC.

2. Dask

Computación paralela en Python, escala desde laptops hasta clústeres.

3. JupyterHub

o Servidor multiusuario de Jupyter, útil para entornos académicos HPC.

```
🕶 # Herramientas Open Source para Cómputo de Alto Desempeño (HPC)
 El cómputo de alto desempeño (HPC) requiere herramientas eficientes para maximizar el uso de recursos como CPU,
 GPU y redes de interconexión en clústeres. A continuación se presenta una lista de herramientas **opensource**
 ampliamente usadas en entornos HPC, clasificadas por categoría:
→ ## Sistemas de gestión de recursos y colas de trabajo
▼ ### 1. SLURM (Simple Linux Utility for Resource Management)
  - Gestor de colas más popular en sistemas HPC.
  - Permite reservar nodos, ejecutar trabajos en lote o interactivos.
  - Altamente escalable.
 - [https://slurm.schedmd.com](https://slurm.schedmd.com)

→ ### 2. PBS/Torque

  - Evolución opensource de PBS (Portable Batch System).
  - Menos usado que SLURM, pero aún presente en algunos centros de cómputo.
### 3. HTCondor
  - Diseñado para trabajos de alto volumen y baja prioridad.
  - Útil para cómputo distribuido sobre máquinas heterogéneas.
- ## Librerías y entornos de programación paralela
### 1. MPI (Message Passing Interface)
 - Estándar para programación paralela en clústeres.
- Implementaciones:
    - **OpenMPI**: [https://www.open-mpi.org](https://www.open-mpi.org)
    - **MPICH**: [https://www.mpich.org](https://www.mpich.org)
```

Herramientas Open Source para Cómputo de Alto Desempeño (HPC)

El cómputo de alto desempeño (HPC) requiere herramientas eficientes para maximizar el uso de recursos como CPU, GPU y redes de interconexión en clústeres. A continuación se presenta una lista de herramientas **opensource** ampliamente usadas en entornos HPC, clasificadas por categoría:

Sistemas de gestión de recursos y colas de trabajo

1. SLURM (Simple Linux Utility for Resource Management)

- Gestor de colas más popular en sistemas HPC.
- Permite reservar nodos, ejecutar trabajos en lote o interactivos.
- Altamente escalable.
- https://slurm.schedmd.com

2. PBS/Torque

- Evolución opensource de PBS (Portable Batch System).
- Menos usado que SLURM, pero aún presente en algunos centros de cómputo.

3. HTCondor

- Diseñado para trabajos de alto volumen y baja prioridad.
- Útil para cómputo distribuido sobre máquinas heterogéneas.

Librerías y entornos de programación paralela

1. MPI (Message Passing Interface)

- Estándar para programación paralela en clústeres.
- Implementaciones:
 - **OpenMPI**: https://www.open-mpi.org
- **MPICH**: https://www.mpich.org

2. OpenMP

- Paralelismo a nivel de hilo para CPUs multinúcleo.
- Se usa con directivas en C, C++ y Fortran.

3. CUDA / ROCm

- **CUDA** (NVIDIA): no completamente open source.
- **ROCm** (AMD): sí es open source y creciente en soporte GPU.

4. Charm++

- Modelo de programación paralela orientado a objetos.
- Usado en simulaciones científicas (por ejemplo, NAMD).

Bibliotecas científicas y numéricas

1. BLAS / LAPACK / ScaLAPACK

- Operaciones algebraicas optimizadas.
- Implementaciones: **OpenBLAS**, **ATLAS**, **Netlib LAPACK**.

2. PETSc

- Toolkit para ecuaciones diferenciales parciales en paralelo.
- https://petsc.org

3. Trilinos

- Módulos para álgebra lineal, solvers y optimización.
- https://trilinos.github.io

4. FFTW (Fastest Fourier Transform in the West)

- Transformadas de Fourier en 1D, 2D y 3D.

Contenedores y virtualización

1. Singularity

- Diseñado para HPC.
- Ejecuta contenedores sin necesidad de privilegios root.
- Compatible con Docker.

2. Apptainer

- Fork oficial de Singularity, mantenido por la Linux Foundation.
- https://apptainer.org

Monitoreo y gestión

1. Ganglia

- Sistema de monitoreo distribuido para clústeres.
- Visualización de CPU, RAM, red, etc.

2. Prometheus + Grafana

- Stack moderno para monitoreo.
- Visualización rica y personalizable.

Otros frameworks y herramientas útiles

1. Hadoop / Spark (modo clúster)

- Más orientados a Big Data, pero útiles en tareas HPC.

2. Dask

- Computación paralela en Python.
- Escala desde laptops hasta clústeres.

3. JupyterHub

- Servidor multiusuario de notebooks Jupyter.
- Muy útil en entornos educativos y científicos.