Corporación Favorita Grocery Sales Forecasting A casestudy in modelling grocery sales in Equadorian

A casestudy in modelling grocery sales in Ecuadorian supermarkets

David Scroggs

4-12-2022

Introduction

Accurate forecasting of product sales is important to retail stores, as stated in the competition description:

"Predict a little over, and grocers are stuck with overstocked, perishable goods. Guess a little under, and popular items quickly sell out, leaving money on the table and customers fuming."

Competition is to forecast item sales in:

- ▶ 54 different grocery stores in 22 cities
- ▶ 4,100 sale items
- 4.5 years, 125 million rows of training data
- Forecast period of 2 weeks past final training data

Data

Competition model data is 7 tables, test/train containing the predictor variable and 5 other tables containing additional information.

Table	Rows	Cols	Column names
train	125,497,040	6	id, date, store_nbr, item_nbr, unit_sales, onpromotion
test	3,370,464	5	<pre>id, date, store_nbr, item_nbr, onpromotion</pre>
transactions	83,488	3	date, store_nbr, transactions
items	4,100	4	item_nbr,

Evaluation metric

Normalized Weighted Root Mean Squared Logarithmic Error (NWRMSLE)

- Weight (wi) are for perishable items (weight = 1.5), other items weight = 1
- Metric accounts for predicting results of a varying order of magnitude

$$NWRMSLE = \sqrt{\frac{\sum_{i=1}^{n} w_i \left(\ln(\hat{y}_i + 1) - \ln(y_i + 1)\right)^2}{\sum_{i=1}^{n} w_i}}$$

Model approach

- 1. Exploration of the training and auxiliary data sets
 - Explore the predictor variable
 - Explore the predictor relationship with other variables
- 2. Build a simple model on one item
 - ► Trial model algorithms
 - Trial data pre-processing
 - Test evaluation metric
 - Feature engineering
 - Model evaluation
- 3. Expand simple model
 - ► Model family of items (bread/bakery)
 - Expand model features
 - Tune hyper-parameters
 - Detailed model evaluation

Process

- Early EDA memory limit issues
- Proof of concept model
- Model fit times were long for the simple model
- + Predictor

Results

Final model - Tuned XGBoost

- ▶ Features modelled item number, store number, temporal information (weekday, month, year), store type, store cluster, location (state)
- hyper-parameters tuned: tree depth, min data points in a node, randomly sampled predictors
- Model evaluation: nwrmsle = 0.696 (good kaggle results ~ 0.50-0.53)

Figure 1: Feature importance

Residuals

- Model tends to under-estimate the result
- Stratification of residuals, particularly in higher unit sales

Figure 2: Residuals

Residual outliers

- ▶ Holidays not included in model features
 - ▶ Potential reason for some extreme outliers
- ▶ Store results insensitive to increase in sales
- ▶ Stores in 42, 49 large overestimates
 - Only stores in Quito city, and Type C
 - ▶ Both dummy features had high importance

Figure 3: Extreme residuals

Limitations

- Large data set meant:
 - detailed EDA was difficult
 - modelling times were long
- Holiday data detailed and complex (holiday transfers)
- Bakery/bread family didn't have new items issue not accounted for

Improvements/Future work

- Explore poor prediction performance of stores 42, 49
- Explore further feature engineering of bakery family model
 - ► Holiday information
 - ▶ Regional information
- Further EDA on other item families
- Further model hyper-parameter tuning
- ► EDA of effect of oil price, promotions, and re-investigate pay-day impact

Production deployment considerations

- New items/stores without history need coding
 - Work required to develop an approach to estimating these events
- Corporación Favorita work in 2 week horizons
 - Regular model retraining (daily)