

Hệ mật mã dựa trên đường cong Elliptic

Version 0.1

Nội dung

- 1. Đường cong Elliptic (Elliptic Curve, EC)
- 2. Bài toán Logarit rời rạc trên EC
- 3. Giao thức trao đổi khoá Diffie-Hellman trên EC

Vấn đề: Tìm hệ mật với tham số ngắn hơn

Algorithm Family	Cryptosystems	Security Level (bit)			
		80	128	192	256
Integer factorization	RSA	1024 bit	3072 bit	7680 bit	15360 bit
Discrete logarithm	DH, DSA, Elgamal	1024 bit	3072 bit	7680 bit	15360 bit
Elliptic curves	ECDH, ECDSA	160 bit	256 bit	384 bit	512 bit
Symmetric-key	AES, 3DES	80 bit	128 bit	192 bit	256 bit

Kích thước theo bit của các hệ mật mã khoá công khai ở mức an toàn khác nhau

Đường cong Elliptic

Đường cong Elliptic trên K là tập mọi cặp (x,y) ∈ K thoả mãn phương trình

$$y^2 = x^3 + a \cdot x + b$$

cùng với một điểm vô cực O,

trong đó

$$a, b \in K$$

và thoả mãn $4 \cdot a^3 + 27 \cdot b^2 \neq 0$.

$$y^2 = x^3 - 3x + 3 \text{ trên R}$$

Đường cong $y^2 = x^3 + 2x + 2$ trên Z_{17}

Danh sách điểm

$\mathcal O$	
(0, 6)	(7, 11)
(0,11)	(9, 1)
(3,1)	(9, 16)
(3,16)	(10, 6)
(5, 1)	(10, 11)
(5,16)	(13, 7)
(6, 3)	(13,10)
(6, 14)	(16, 4)
(7, 6)	(16, 13)

Phép toán nhóm trên EC

- Ký hiệu phép toán nhóm bởi ký hiệu cộng "+".
- Cho hai điểm $P = (x_1, y_1) \text{ và } Q = (x_2, y_2)$
- Ta phải tính toạ độ của điểm thứ ba R thoả mãn:

$$P + Q = R$$

 $(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$

- Phép cộng điểm P + Q: Trường hợp R = P + Q và P ≠ Q
- Nhân đôi điểm P + P: Trường hợp P + Q nhưng P = Q.

Phép toán nhóm

Nhân đôi P + P = 2P

Phép toán cộng và nhân đôi các điểm

$$x_3 = s^2 - x_1 - x_2 \mod p$$

 $y_3 = s(x_1 - x_3) - y_1 \mod p$

với

$$s = \begin{cases} (y_2 - y_1)/(x_2 - x_1) \bmod p & if P \neq Q \\ (3x_1^2 + a)/(2y_1) \bmod p & if P = Q \end{cases}$$

Ví dụ

Xét đường cong

E:
$$y^2 = x^3 + 2x + 2 \mod 17$$

Ta muốn nhân đôi điểm P = (5,1).

$$2P = P + P = (5,1) + (5,1) = (x_3, y_3).$$

$$s = (3x_1^2 + a)/(2y_1) = (2 \cdot 1)^{-1}(3 \cdot 5^2 + 2) = 2^{-1} \cdot 9 = 13 \mod 17$$

$$x_3 = s^2 - x_1 - x_2 = 13^2 - 5 - 5 = 6 \mod 17.$$

$$y_3 = s(x_1 - x_3) - y_1 = 13(5 - 6) - 1 = -14 = 3 \mod 17$$

$$2P = (5,1) + (5,1) = (6,3)$$

Tính toán với Sagemath

```
sage: E = EllipticCurve(GF(17),[2,2])
sage: E
Elliptic Curve defined by y^2 = x^3 + 2*x + 2 over
Finite Field of size 17
sage: P = E(5,1)
sage: Q = P + P
sage: print Q
(6:3:1)
sage: E.is on curve(6,3)
True
        VIỆN CONG NGHỆ THONG TIN VÀ TRUYỀN THONG
```

Luật cộng đầy đủ cho EC

$$1.\mathcal{O} + \mathcal{O} = \mathcal{O}.$$

$$2.\mathcal{O} + (x_2, y_2) = (x_2, y_2).$$

$$3.(x_1, y_1) + \mathcal{O} = (x_1, y_1).$$

$$4.(x_1,y_1)+(x_1,-y_1)=\mathcal{O}.$$

5. cho
$$y_1 \neq 0$$
, $(x_1, y_1) + (x_1, y_1) = (s^2 - 2x_1, s(x_1 - x_3) - y_1)$
với $s = (3x_1^2 + a)/2y_1$.

6. cho
$$x_1 \neq x_2$$
, $(x_1, y_1) + (x_2, y_2) = (s^2 - x_1 - x_2, s(x_1 - x_3) - y_1)$
với $s = (y_2 - y_1)/(x_2 - x_1)$.

Kiếm tra các tính chất với Sagemath

$$1.0 + 0 = 0.$$

$$2.0 + (x_2, y_2)$$

$$2.0 + (x_2, y_2) = (x_2, y_2).$$

$$3.(x_1,y_1) + \mathcal{O} = (x_1,y_1).$$

$$4.(x_1,y_1)+(x_1,-y_1)=0$$

Hệ toạ độ chiếu

- Điểm chiếu $(X : Y : Z), Z \neq 0$ tương ứng với điểm trên Affine (X/Z,Y/Z).
- Phương trình chiếu của EC là $Y^2Z = X^3 + aXZ^2 + bZ^3$.
- Điểm tại vô cực \mathcal{O} tương ứng với (0:1:0), và phần tử nghịch đảo của (X: Y: Z) là (X: -Y: Z).

Lợi ích của hệ toạ độ chiếu

- Tính toán phép "+" hiệu quả hơn do tránh được phép nghịch đảo trên trường hữu hạn
- Phép toán cơ bản k P trở nên dễ dàng

$$(x', y') = 2(x, y)$$

$$S = \frac{3x^2 + a}{2y}$$

$$x' = s^2 - 2x$$

$$y' = s(x - x') - y$$

$$(X':Y':Z') = 2(X:Y:Z)$$

$$X' = 2YZ ((3X^2 + aZ^2)^2 - 8Y^2XZ)$$

 $Y' = (3X^2 + aZ^2)(12Y^2XZ - (3X^2 + aZ^2)^2) - 8Y^4Z^2$
 $Z' = 8Y^3Z^3$

Ví dụ trên Sagemath

```
def point_doubling(x, y, z, a):
    x_{\underline{}} = 2*y*z*((3*x^2 + a*z^2)^2 - 8*y^2*x*z)
    y = (3*x^2 + a*z^2)*(12*y^2*x*z
                       -(3*x^2 + a*z^2)^2) - 8*y^4*z^2
    z_{-} = 8*y^3*z^3
    return (x_,y_,z_)
F = GF(17)
x,y,z,a = F(13),F(7),F(1),F(2)
print (point_doubling(x,y,z,a))
E = EllipticCurve(GF(17),[2,2])
P = E(13,7)
print (P+P)
```


Tính toán với Sagemath

```
sage: E = EllipticCurve(GF(17),[2,2])
sage: E
Elliptic Curve defined by
y^2 = x^3 + 2*x + 2
over Finite Field of size 17
sage: for P in E:
....: print P
(0:1:0)
(0:6:1)
(0:11:1)
(3:1:1)
(3:16:1)
```

```
(5:1:1)
(5:16:1)
(6:3:1)
(6:14:1)
(7:6:1)
(7:11:1)
(9:1:1)
(9:16:1)
(10:6:1)
(10:11:1)
(13 : 7 : 1)
(13:10:1)
(16:4:1)
(16:13:1)
```


Nội dung

1. Đường cong Elliptic (Elliptic Curve, EC)

2. Bài toán Logarit rời rạc trên EC

3. Giao thức trao đổi khoá Diffie-Hellman trên EC

Nhóm con vòng (cyclic)

Định lý.

Các điểm trên đường cong Elliptic cùng với điểm \mathcal{O} có nhóm con vòng.

Dưới một số điều kiện các điểm trên EC lập thành một nhóm vòng.

P = (5,1)	6P = (16,13)	11P = (13,10)	16P = (10,11
2P = (6,3)	7P = (0,6)	12P = (0,11)	17P = (6,14)
3P = (10,6)	8P = (13,7)	13P = (16,4)	18P = (5,16)
4P = (3,1)	9P = (7,6)	14P = (9,1)	19P = <i>O</i>
5P = (9.16)	10P = (7.11)	15P = (3.16)	

Tính $log_P(Q)$ với P = (5,1) và Q = (10,11)

P =
$$(5,1)$$
 11P = $(13,10)$
2P = $(6,3)$ 12P = $(0,11)$
3P = $(10,6)$ 13P = $(16,4)$
4P = $(3,1)$ 14P = $(9,1)$
5P = $(9,16)$ 15P = $(3,16)$
6P = $(16,13)$ 16P = $(10,11)$
7P = $(0,6)$ 17P = $(6,14)$
8P = $(13,7)$ 18P = $(5,16)$
9P = $(7,6)$ 19P = \mathcal{O}

E: $y^2 = x^3 + 2x + 2 \mod 17$

Bài toán logarit rời rạc trên EC (ECDLP)

ĐN. Cho đường cong elliptic E. Ta xét một điểm P và điểm khác T.

Bài toán DL nhằm tìm số nguyên d thoả mãn

$$\underbrace{P + P + \dots + P}_{d \text{ times}} = dP = T.$$

Bài tập

Xét đường cong

E:
$$y^2 = x^3 + 2x + 2 \mod 17$$

Ta đã tính các "mũ" của P.

P =
$$(5,1)$$
 6P = $(16,13)$ 11P = $(13,10)$ 16P = $(10,11)$
2P = $(6,3)$ 7P = $(0,6)$ 12P = $(0,11)$ 17P = $(6,14)$
3P = $(10,6)$ 8P = $(13,7)$ 13P = $(16,4)$ 18P = $(5,16)$
4P = $(3,1)$ 9P = $(7,6)$ 14P = $(9,1)$ 19P = \mathcal{O}
5P = $(9,16)$ 10P = $(7,11)$ 15P = $(3,16)$

Với P = (5,1) và T = (16,4), hãy tìm số nguyên d sao cho P = T.

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Số điểm của EC

Hass's Theorem:

Cho đường cong E modun p, số điểm trên đường cong ký hiệu bởi #E và bị chặn bởi:

$$p + 1 - \sqrt{p} \le \#E \le p + 1 + 2\sqrt{p}$$

- #E ≈ p
- Nếu ta cần một đường cong với số điểm 2¹⁶⁰ ta phải sử dụng số nguyên tố cỡ 160 bit

Tính an toàn

- Mọi giao thức EC dựa trên tính khó giải của bài toán ECDLP
- Nếu EC được chọn cẩn thận, thuật toán tốt nhất để tính ECDLP cần $\approx \sqrt{p}$ bước.
- VD: p $\approx 2^{160}$

tấn công cần
$$\approx \sqrt{2^{160}} = 2^{80}$$
 bước

Nội dung

- 1. Đường cong Elliptic (Elliptic Curve, EC)
- 2. Bài toán Logarit rời rạc trên EC
- 3. Giao thức trao đổi khoá Diffie-Hellman trên EC

Pha 1: Tham số miền cho ECDH

1. Chọn một số nguyên tố p và đường cong

$$E: \quad y^2 = x^3 + ax + b \mod p$$

2. Chọn điểm $P = (x_P, y_P)$ trên đường cong

Pha 2: Trao đối khoá

Alice Chọn $\mathbf{a} \in \{2, ..., \#E - 1\}$

Bob Chọn $\mathbf{b} \in \{1,...,\#E-1\}$

$$A = a P$$

$$B = bP$$

$$a\mathbf{B} = a(bP) =$$

$$k_{AB} = abP$$

$$k_{AB} = abP$$
 = bA = b(aP)

Phép nhân với hằng số

```
def scalarmult(n,P):
    if n == 0: return 0
    if n == 1: return P
    R = scalarmult(n//2,P)
    R=R+R
    if n % 2: R = R + P
    return R
```

Thời gian CPU bị chặn bởi log2 (n)

lần nhân đôi điểm

Trường hợp tồi nhất:

$$31P = 2(2(2(2P + P) + P) + P) + P$$
.

4 phép nhân đôi; 4 phép cộng.

Trường hợp trung bình:

$$35P = 2(2(2(2(2P))) + P) + P.$$

5 phép nhân đôi; 2 phép cộng.

Tính an toàn của giao thức trao đổi khoá Diffie Hellman

- Kẻ tấn công nhìn thấy giá trị aP và bP
- Và phải tính giá trị K_{ab} = abP
- Khó khăn của tính toán được dẫn từ hai bài toán được tin là khó

Bài toán quyết định (DDH):

• Cho (P, aP, bP, cP), hãy kiểm tra liệu ab == c.

Bài toán tính toán Diffie Hellman (CDH):

Cho (P, aP, bP), hãy tính abP.

DLP -> DH

Quyết định Diffie Hellman (DDH):

• Cho (P, aP, bP, cP), kiểm tra liệu ab == c

Tính toán Diffie Hellman (CDH):

• Cho (P, aP, bP), hãy tính abP.

Nhiều người tin là "đúng"

Bài toán logarit rời rạc (DLP)

Cho (P, aP), hãy tính a

Giả sử tính toán Diffie Hellman

Giả sử tính toán DH đúng trong E nếu: P, aP, bP ⇒ abP

với mọi thuật toán hiệu quả A:

với $P \leftarrow \{phần tử sinh của E\}, a, b \leftarrow Z_n$

Đường cong P256

Đường cong có dạng $y^2 = x^3 - 3x + b \mod p$

- Số nguyên tố $p = 2^{256} 2^{224} + 2^{192} + 2^{96} 1$
- và b ở hexa là:

b := 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6 3bce3c3e

- Số nguyên tố gần bằng 2²⁵⁶, số điểm gần bằng 2²⁵⁶.
- Tính logarit rời rạc mất khoảng 2¹²⁸ bước
- Tham số b trong P256 được chọn thế nào?
- P256 được dùng rộng rãi trong thực tế

P256 trên Sagemath

```
sage: p = 2^256 - 2^24 + 2^192 + 2^96 -1
sage: is prime(p)
True
sage: b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e
sage: b
9559645253501865577261459496814587248748736692591040757213546036286
sage: P256 = EllipticCurve(GF(p), [-3,b])
sage: P256.order()
115792089210356248762697446949407573530139109078099854062854297063875752950436
sage: P= P256.random element()
sage: P
(44003593087052944491133812927777446441384567907740211507216944250174958576726 :
5520086247573023097393606373907129377872093705027768026391600457848619693219 : 1)
```


Bài tập

Xét đường cong

E:
$$y^2 = x^3 + 2x + 2 \mod 17$$

- Và hai điểm P = (5,1) và Q=(10,6) trên E.
- Điểm R = P + Q là gì?

1.
$$R = (15, 7)$$

$$2. R = (3,1)$$

3.
$$R = 0$$

Bài tập

Xét đường cong

E:
$$y^2 = x^3 + 2x + 2 \mod 17$$

- Và hai điểm P = (5,1) và Q=(10,6) trên E.
- Hãy tìm số nguyên d mà $1 \le d \le \#E$, thoả mãn: dQ = P?
- 1. d = 1
- 2. d = 13
- 3. d = 17
- 4. Không có số d như vậy.

