Hi间较短.操作较易 0.xxxw/(m·k)

准稳态法测量不良导体的导热系数和比热冷镜和区间

班级**<u>软锅一数</u>02**姓名 **旅库尼** 学号 <u>2020012544</u> 组号 <u>P-1</u> 座位号 <u>20</u> 实验日期 <u>2024-05</u>-06

一、万用表使用练习:

测量任务	测量值	万用表量程	不确定度计算公式及计算结果	完整测量结果	
电阻 R	+0.2650MD	2M2	2.02% 读载+ 0.01% 章程=2.53×10-	MD 0.2620±253×10-4	νW
电容 C	+0.953uF	2uF	1% 混散+0.5%量段= 0.019574F	0.953±0.0195 UF	
交流电压 U	+017.207mVAC	200mV	0.2% 满栽+ 0.05% 量程= 0.1344mV	200± 0.1344 mV	
交流信号f	+ 999.9S Hz	<u> </u> 300Hz 频率测量时量	0.01%	999.95±0.13Hz	
二极管导 通电压	0. 5828 VDC		(不需要估计不确定度)		

二、热导实验准备、器件检查:

- 1、接线前检测热电偶是否完好:
 - 中心面热电偶阻值= **3 40** (应小于 10 欧)
 - 加热面热电偶阻值=<u>3.11负</u> (应小于 10 欧)
 - 中心面冷端热电偶阻值= 3.**%**Ω (应小于 10 欧)
 - 加热面冷端热电偶阻值= ₹78Ω (应小于 10 欧)
- 2、两个相同电加热薄膜并联后的阻值= 55.200
- 3、冷端水温(近似以室温替代) $t_c = 26.9\%$
- 4、直流电源设定加热电压(15~20V),并测量(加热前后各测一次):

$$U(\mathbf{n}) = 17.999 \mathbf{2} V$$

R

5、其他已知条件:有机玻璃样品密度= 1196 kg/m^3 , 几何尺寸= $90 \text{mm} \times 90 \text{mm} \times 10 \text{mm}$ 热电偶 (铜-康铜) 温度系数=<u>40</u> uV/℃

三、实验接线,通电前记录 τ =0 时的数据 (U_1 应小于 10 微伏),通电加热起开始计时、按时记录数据:

τ(分钟)	0	1	2	3	4	5	6	7	8
$U_2(t_1,t_c)/\text{mV}$	0-234	0232	0.235	0-244	0.262	0.277	0.299	0.319	0.341
$U_1(t_2,t_1)/\text{mV}$	ე.ეე1	0.095	0.131	0.153	0164	0-171	0.175	0.177	0.178
τ(分钟)	9	10	11	12	13	14	15	16	17
$U_2(t_1,t_c)/\mathrm{mV}$	1.363	0.385	2.405	0.429	0450	0.4]2	0.492	0.512	0.537
$U_1(t_2,t_1)/\text{mV}$	0.179	ว.เาร	0.180	0.180	0.180	0.180	0.180	0.180	0.180
τ(分钟)	18	19	20	21	22	23	24	25	
$U_2(t_1,t_c)/\mathrm{mV}$	9.23.6	0.580	0.601	0.623	0.646	J.666	0.687	0.707	
$U_1(t_2,t_1)/\text{mV}$	0.180	0.179	0.179	0.179	0.179	0.179	0.178	0 178	