Overview

- Types of statistical learning problems
- * Why learning is difficult?
- Bias variance tradeoff
- An example: kNN vs Linear Regression (in a separate pdf file)
- * Not all about prediction

Goal of ML: Minimize *generalization error* (i.e., error on unseen future datasets), not training error.

- * Bias
- * Variance

Goal of ML: Minimize *generalization error* (i.e., error on unseen future datasets), not training error.

- * Bias
- * Variance

Goal of ML: Minimize *generalization error* (i.e., error on unseen future datasets), not training error.

- * Bias
- * Variance

Goal of ML: Minimize *generalization error* (i.e., error on unseen future datasets), not training error.

Goal of ML: Minimize *generalization error* (i.e., error on unseen future datasets), not training error.

- * Bias
- * Variance

What'll be Covered in Stat542

- * Flexible modeling techniques to reduce bias
- Useful strategies to achieve the tradeoff between bias and variance

Two Successful Strategies

* Regularization: Restrict the parameters to a low-dimensional space, which is *adaptively* determined by the data.

Two Successful Strategies

* Regularization: Restrict the parameters to a low-dimensional space, which is *adaptively* determined by the data.

Two Successful Strategies

- * Regularization: Restrict the parameters to a low-dimensional space, which is *adaptively* determined by the data.
- * Ensemble: Average many low-bias high-variance models; averaging reduces variance.

FIGURE 2.11. Test and training error as a function of model complexity.

Overview

- Types of statistical learning problems
- Why learning is difficult?
- * Bias variance tradeoff
- * An example: kNN vs Linear Regression
- Not all about prediction

Not All About Prediction

- * Although the focus of this course is prediction, statistical learning \neq prediction
- * Exploration vs. Prediction
- * Data product vs. decision making
- * Make your model to generate actionable insights