2.1-3 - Consider the *searching problem*:

Input: A sequence of *n* numbers $A = \langle a_1, a_2, ..., a_n \rangle$ and a value *v*.

Output: An index i such that v = A[i] or the special value NIL if v does not appear in A.

Write pseudocode for Linear Search, which scans the sequence, looking for v. Using a loop invariant, prove that your algorithm is correct. Make sure that your loop invariant fulfills the necessary three properties.

i Loop Invariants: Used for showing why an algorithm is correct. Has the following properties:

- Initialization: It is true prior to the first iteration of the loop.
- **Maintenance:** If it is true before an iteration of the loop, it remains true before the next iteration.
- **Termination:** When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

```
LINEAR SEARCH (A, v):

1 for i = 0 to A.length:

2 if A[i] == v:

3 return cur

4 return NIL
```

Initialization: The index is not found prior to the first iteration since nothing has been searched vet.

Maintenance: At each step i is incremented and A[i] is checked against v and the loop terminates if v = A[i].

Termination: The loop terminates when either v is found, returning the index, or when all of A is searched, returning NIL.

Page 29

2.2-1 - Express the function
$$\frac{n^3}{1000}-100n^2-100n+3$$
 in terms of Θ notation.

 $\Theta(n^3)$

- **2.2-2** Consider sorting n numbers stored in array A by first finding the smallest element of A and exchanging it with the element in A[0]. Then finding the second smallest element of A, and exchange it with A[1]. Continue in this manner for the first n-1 elements of A. This algorithm is known as Selection Sort.
- A) Write pseudocode for Selection Sort.
- B) What <u>loop invariants</u> does this algorithm maintain?
- C) Why does it need to run for only the first n-1 elements, rather than for all n elements?
- D) Give the best-case and worst-case running times of Selection Sort in Θ -notation.

```
Selection Sort(A):
   for cur = 0 to A.length:
 2
         small = A[cur]
 3
         index = cur
 4
         for k = cur + 1 to A.length:
              if A[k] < \text{small}:
                   small = A[k]
                   index = k
 8
         temp = A[cur]
                                         // Swap the values
         A[\text{cur}] = \text{small}
 9
         A[index] = temp
10
```

Page 39

2.3-3 - Use mathematical induction to show that when n is an exact power of 2, the solution of the recurrence

$$T(n) = \begin{cases} 2 & \text{if } n = 2\\ 2T\left(\frac{n}{2}\right) + n & \text{if } n = 2^k \text{ for } k > 1 \end{cases}$$

is $T(n) = n \log_2 n$.

We show that T holds for n=2

$$T(2) = 2\log_2 2 = 2 * 1 = 2$$

Assuming $T(\frac{n}{2}) = \frac{n}{2} \log_2 \frac{n}{2}$

$$\begin{split} T(n) &= 2 \Big(\frac{n}{2} \log_2 \frac{n}{2} \Big) + n \\ &= 2 \Big(\frac{n}{2} (\log_2 n - \log_2 2) \Big) + n \\ &= 2 \Big(\frac{n}{2} (\log_2 n - 1) \Big) + n \\ &= (n \log_2 n - n) + n \\ &= n \log_2 n \end{split}$$

Therefore $T(n) = n \log_2 n$.

2.3-4 - We can express insertion sort as a recursive procedure as follows. In order to sort A[1..n], we recursively sort A[1..n-1] and then insert A[n] into the sorted array A[1..n-1]. Write a recurrence for the running time of this recursive version of insertion sort.

Undefined

Induction Theorem:

$$P(n_0) \land \left(\forall n_i > n + o.P(n_i) \rightarrow P(n_{i+1}) \right) \rightarrow \forall n > n_o P(n)$$

1.1-1 - Use mathematical induction to show that $T(n) = \frac{n^2 + n}{2}$ for

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n-1) + n & \text{if } n > 1 \end{cases}$$

We show that T holds for $n_0 = 1$

$$T(1) = \frac{1^2 + 1}{2} = \frac{2}{2} = 1$$

Assuming $T(n-1) = \frac{(n-1)^2 + (n-1)}{2}$ and n > 1

$$T(n-1) = \frac{(n-1)^2 + n - 1}{2}$$

$$= \frac{n^2 - 2n + 1 + n - 1}{2}$$

$$= \frac{n^2 - n}{2}$$

By the definition of T(n)

$$T(n) = \frac{T(n-1) + n}{2}$$

$$= \frac{n^2 - n}{2} + n$$

$$= \frac{n^2 - n + 2n}{2}$$

$$= \frac{n^2 + n}{2}$$

Therefore

$$T(n) = \frac{n^2 + n}{2}$$

By the induction theorem:

$$T(n) = \frac{n^2 + n}{2} \ \forall n \in \mathbb{N}, n \neq 0$$

1.1-2 - Proof that x * 2 = x + x using only the following identities:

$$2 = 1 - 1$$
 1.

$$a * 1 = a 2.$$

$$a * b = (a * (b - 1)) + a$$
 3.

$$x * 2 = x + x$$

$$\Leftrightarrow (\mathrm{id} \ 3)$$

$$(x * (2 - 1)) + x = x + x$$

$$\Leftrightarrow (\mathrm{id} \ 1)$$

$$(x * 1) + x = x + x$$

$$\Leftrightarrow (\mathrm{id} \ 2)$$

$$x + x = x + x$$

Tautology, therefore we're done. ■

1.1-3 - Proof that ΔABC is congruent to ΔCDE using the following identities:

- If two triangles have two congruent angles and one congruent side in the same order relative to each other they are congruent. (Usuallt called "AAS Congruent").
- When two straight lines cross, their opposite angles are congruent to each other.

When \overline{AD} crosses with \overline{BE} the following angles become congruent:

$$\angle ACB \cong \angle DCE$$

$$\angle BCD \cong \angle ACE$$

For an Angle-Angle-Side congruent triangle we need 2 congruent angles and one congruent side.

$$\overline{DE} \cong \overline{AB}$$

$$\angle CED \cong \angle ABC$$

$$\angle ACB \cong \angle DCE$$

By AAS Congruency:

 $\Delta ABC \cong \Delta CDE$

1.1-4 - Proof that the inversion of $\neg A \land ((B < C) \lor D)$ is $A \lor ((B \ge C) \land \neg D)$. List all identities you used.