EHB 211E Basics of Electrical Circuits

Asst. Prof. Onur Kurt

Fundamental Concepts

Introduction

- Many branches of electrical engineering, such as power, electric machines, control, electronics, and communications, are based on electric circuit theory.
- Electric circuit theory: Analyzing and designing circuits
- Electrical circuits are present almost everywhere: Computers, TV, Telecommunication systems, and so on.
- Understanding fundamentals Complex systems Superior devices
- The purpose of the circuit theory: Predict the electrical behavior of circuits.

Introduction

- What is an electric (physical) circuit?
 - Interconnection of electrical elements (devices).
 - Electrical elements: Resistors, Capacitors, Diodes, etc.
 - Communicating or transferring energy from one point to another.

A simple electric circuit: a battery, a lamp, and connecting wires

A Complicated real electric circuit: a radio transmitter

• Our goal is to describe the behavior of a circuit as shown above.

Systems of Units

- m of
- Different types of system of units: British System of units (F.P.S.), Metric system of units (C.G.S. & M.K.S.), and international system of unit (SI).
- Using international system of unit (SI): Accepted system of units in engineering, science, and industries. It's been adopted since 1960.

Six basic SI units and one d	basic SI units and one derived unit relevant to this text.		
Quantity	Basic unit	Symbol	
Length	meter	m	
Mass	kilogram	kg	
Time	second	S	
Electric current	ampere	A	
Thermodynamic temperature	kelvin	K	
Luminous intensity	candela	cd	
Charge	coulomb	C	

Multiplier	Prefix	Symbol
10^{18}	exa	E
10^{15}	peta	P
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{2}	hecto	h
10	deka	da
10^{-1}	deci	d
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a

- What is charge?
 - Electrical property of the atomic particles of which matter consists, measured in coulombs (C).
- All mater is made of fundamental building blocks known as atoms.
- Atom: electrons, protons, and neutrons.
 - Charge of an electron = -1.602×10^{-19} C
 - Charge of a proton = 1.602×10^{-19} C
 - Neutron = Zero charge (Neutral particles)
- The following point should be noted about electric charge:
 - In 1 C of charge: $1/(1.602 \times 10^{-19} \text{ C}) = 6.24 \times 10^{18} \text{ electrons}$
 - The law of conservation of charge: Charge can neither be created nor destroyed, only transferred. The algebraic sum of the electric charges in a system does not change.

- Unique feature of electric charge or electricity: It is mobile, i.e.,
 - Transfer from one place to another
 - Converted to another form of energy
- When wire is connected to a battery (electromotive force, emf), charges move:
 - Positive charges move in one direction
 - Negative charges move in the opposite direction to create electric current
 - Conventionally, direction of current is taken as the movement of positive charges
 - □ In fact, Electrons move through the wire.

Electric current due to flow of electronic charge in a conductor

Positive current flow

Negative current flow

- By definition:
 - Electric current is the time rate of change of charge, measured in amperes
 (A). 1 A = 1 C / sec
- Mathematically, the relationship between current i, charge q, and time t:

$$i \triangleq \frac{dq}{dt}$$

• The charge transferred between time t₀ to t:

$$Q \triangleq \int_{t_0}^{t} idt$$

• Several types of current:

Direct current (dc): Current is constant.

Example: Battery

Alternating current (ac): Current varies sinusoidally with time.

Example: Current is used in household to run the electric appliances such as refrigerator, TV, etc.

Example 1:

How much charge is represented by 4,600 electrons?

Solution:

Each electron has -1.602×10^{-19} C. Hence 4,600 electrons will have -1.602×10^{-19} C/electron \times 4,600 electrons = -7.369×10^{-16} C

Example 2:

The total charge entering a terminal is given by $q = 5t \sin 4\pi t$ mC. Calculate the current at t = 0.5 s.

Solution:

$$i = \frac{dq}{dt} = \frac{d}{dt} (5t \sin 4\pi t) \text{ mC/s} = (5 \sin 4\pi t + 20\pi t \cos 4\pi t) \text{ mA}$$

At
$$t = 0.5$$
,

$$i = 5 \sin 2\pi + 10\pi \cos 2\pi = 0 + 10\pi = 31.42 \text{ mA}$$

Recall:

Product rule: $f(x)g(x) \Rightarrow \frac{d[f(x)g(x)]}{dx} \Rightarrow \frac{d[f(x)]}{dx}g(x) + f(x)\frac{d[g(x)]}{dx}$ Chain rule: $[f(g(x)] \Rightarrow \frac{d}{dx}[f(g(x)] \Rightarrow f'(g(x))g'(x)$ $\frac{d}{dx}[\sin(x)] \Rightarrow \cos(x) \& \frac{d}{dx}[\cos(x)] \Rightarrow -\sin(x)$

Example 3:

Determine the total charge entering a terminal between t = 1 s and t = 2 s if the current passing the terminal is $i = (3t^2 - t)$ A.

Solution:

$$Q = \int_{t=1}^{2} i \, dt = \int_{1}^{2} (3t^2 - t) \, dt$$
$$= \left(t^3 - \frac{t^2}{2} \right) \Big|_{1}^{2} = (8 - 2) - \left(1 - \frac{1}{2} \right) = 5.5 \, \text{C}$$

Recall:

$$\int x^n dx = \frac{x^{n+1}}{n+1}$$
$$\int adx = ax$$

Voltage

- Work or energy is required to move electrons in a conductor
- Work performed by an external electromotive force (emf), represented by battery
- Voltage (potential difference or emf) is the energy required to move a unit charge through an element, measured in volts (V).

• Mathematically, $v_{ab} \triangleq \frac{d\omega}{dq}$ where ω is energy (J) and q is charge (C).

Note that 1 volt = 1 joule/coulomb = 1 newton-meter/coulomb

Power and Energy

- What is power?
 - □ Time rate of expending or absorbing energy. Unit of power is Watt (W).
- What is energy?
 - □ Capacity to do work, measured in joules (J)

$$p \triangleq \frac{d\omega}{dt}$$

• Mathematically, $p \triangleq \frac{d\omega}{dt}$ where p is power (W), ω is energy (J), and t is time (s).

Power can be written in terms of voltage and current as:

$$p \triangleq \frac{d\omega}{dt} = \frac{d\omega}{dq} \cdot \frac{dq}{dt} = vi \longrightarrow p = vi$$

1 Wh=3600 J, where Wh is watt-hours

• The energy absorbed or supplied by an element from time t₁ to time t:

$$\omega = \int_{t_0}^t p \, dt = \int_{t_0}^t vi \, dt$$

Power and Energy

- Power can be absorbed or supplied by an element in a circuit
 - Power is positive if power is delivered to or absorbed by an element.
 - Power is negative if power is supplied by an element.
 - Current direction and voltage polarity play a major role in determining the sign of power

Supplying power (-)

Positive current enters the positive terminal.

$$p = 4 \times 3 = 12W$$

Positive current enters the negative terminal

$$p = -4 \times 3 = -12W$$

- Law of conservation of energy (Power): the algebraic sum of power in any circuit must be zero.
- +power absorbed = power supplied

$$\sum p = 0$$
 (Tellegen's theorem)

Example 4:

An energy source forces a constant current of 2 A for 10 s to flow through a light bulb. If 2.3 kJ is given off in the form of light and heat energy, calculate the voltage drop across the bulb.

Solution:

The total charge is

$$\Delta q = i \Delta t = 2 \times 10 = 20 \,\mathrm{C}$$

The voltage drop is

$$v = \frac{\Delta w}{\Delta q} = \frac{2.3 \times 10^3}{20} = 115 \text{ V}$$

Alternatively,

By definition:
$$p \triangleq \frac{dw}{dt} => dw = p \times dt => \int dw = \int p. \, dt => w = \int_{to}^{t} P. \, dt$$
 $w = \int_{to}^{t} P. \, dt => 2.3 \times 10^{3} = \int_{0}^{10} P. \, dt => 2.3 \times 10^{3} = p. \, t|_{0}^{10} => 2.3 \times 10^{3} = (10p-0)$ $\Rightarrow p = 230 \, W$ Since $p = vi$, then $230 = v \times 2 => v = 115 \text{V}$

Example 5:

Find the power delivered to an element at t = 3 ms if the current entering its positive terminal is

$$i = 5 \cos 60 \pi t A$$

and the voltage is: (a) v = 3i, (b) $v = 3 \frac{di}{dt}$.

Solution:

(a) The voltage is $v = 3i = 15 \cos 60 \pi t$; hence, the power is

$$p = vi = 75\cos^2 60\pi t \,\mathrm{W}$$

At t = 3 ms,

$$p = 75\cos^2(60\pi \times 3 \times 10^{-3}) = 75\cos^2(0.18\pi) = 53.48 \text{ W}$$

(b) We find the voltage and the power as

$$v = 3\frac{di}{dt} = 3(-60\pi)5 \sin 60\pi t = -900\pi \sin 60\pi t \text{ V}$$
$$p = vi = -4500\pi \sin 60\pi t \cos 60\pi t \text{ W}$$

At
$$t = 3$$
 ms,

$$p = -4500\pi \sin 0.18\pi \cos 0.18\pi W$$

= -14137.167 \sin 32.4° \cos 32.4° = -6.396 kW

Recall:

$$\frac{d(\cos x)}{dx} = -\sin x$$

$$\frac{d(\cos(ax))}{dx} = -\sin(ax)$$

Example 6:

How much energy does a 100-W electric bulb consume in two hours?

Solution:

We know that 1 Wh = 3600 J, then $200 Wh (100 Wh \times 2h) = 720 kJ$

This is same as:

By definition,
$$p = \frac{w}{t}$$

 $\Rightarrow w = pt \Rightarrow 100w \times 2h = 200 Wh$

Circuit Elements

- Element: basic building block of a circuit
- Two types of elements in electrical circuits:
 - □ Passive elements: cannot generate energy. Example: resistors, capacitors, and inductors
 - □ Active elements: capable of generating energy. Example: batteries, generators, and op amps
- Most important active elements: voltage and current sources
- Two kinds of sources:
 - Ideal independent source: active element that provides a specific voltage or current that is completely independent of other circuit elements
 - □ Ideal dependent (controlled) source: active element in which the source is controlled by another voltage or current

Circuit Elements

- Four types of dependent sources:
 - ➤ A voltage-controlled voltage source (VCVS)
 - ➤ A current-controlled voltage source (CCVS)
 - > A voltage-controlled current source (VCCS)
 - ➤ A current-controlled current source (CCCS)
- Dependent sources are useful in modelling elements such as transistors, operational amplifiers (op amps), and integrated circuits.

Example 7:

Calculate the power supplied or absorbed by each element in the figure shown below.

Solution:

- Recall:
 - If power is negative(-), power is supplied by the element.
 - If power is positive (+), power is absorbed by the element.
 - Current direction and voltage polarity play a major role in determining the sign of power

For p_1 , the 5-A current is out of the positive terminal (or into the negative terminal); hence,

$$p_1 = 20(-5) = -100 \text{ W}$$
 Supplied power

For p_2 and p_3 , the current flows into the positive terminal of the element in each case.

$$p_2 = 12(5) = 60 \text{ W}$$
 Absorbed power
 $p_3 = 8(6) = 48 \text{ W}$ Absorbed power

For p_4 , we should note that the voltage is 8 V (positive at the top), the same as the voltage for p_3 , since both the passive element and the dependent source are connected to the same terminals. (Remember that voltage is always measured across an element in a circuit.) Since the current flows out of the positive terminal,

$$p_4 = 8(-0.2I) = 8(-0.2 \times 5) = -8 \text{ W}$$
 Supplied power

$$\sum p = 0$$
 (Tellegen's theorem)

$$p_1 + p_2 + p_3 + p_4 = -100 + 60 + 48 - 8 = 0$$