Упражнения: Прости операции и пресмятания

Задачи за упражнение в клас и за домашно към курса "Основи на програмирането" @ СофтУни.

Тествайте решенията си в judge системата: https://judge.softuni.bg/Contests/Compete/Index/1160

1. Конзолен конвертор: USD към BGN

Напишете програма за конвертиране на щатски долари (USD) в български лева (BGN). Закръглете резултата до 2 цифри след десетичната запетая. Използвайте фиксиран курс между долар и лев: 1 USD = 1.79549 BGN.

Примерен вход и изход

вход	изход
20	35.91

вход	изход
100	179.55

вход	изход
12.5	22.44

Насоки

1. Прочетете входните данни от конзолата (щатските долари):

```
Scanner scanner = new Scanner (System.in);
double usd = Double.parseDouble(scanner.nextLine());
```

2. Създайте нова променлива, в която ще направите конвертирането от щатски долари към български лева, като знаете валутния курс:

```
double bgn = usd * 1.79549;
```

3. Принтирайте получените български лева, като закръглите резултата до 2 цифри след десетичната запетая (използвайте printf и %.2f):

```
System.out.printf("%.2f", bgn);
```

2. Конзолен конвертор: от радиани в градуси

Напишете програма, която чете **ъгъл в радиани** (rad) и го преобразува в **градуси** (deg). Използвайте формулата: **градус = радиан * 180 / \pi**. Числото π в Java програми е достъпно чрез **Math.PI**. Закръглете резултата до най-близкото цяло число използвайки "%.0f".

Примерен вход и изход

вход	изход
3.1416	180

вход	изход
6.2832	360

вход	изход
0.7854	45

вход	Изход
0.5236	30

Насоки

1. Прочетете входните данни от конзолата (радианите):

```
Scanner scanner = new Scanner(System.in);
double radians = Double.parseDouble(scanner.nextLine());
```

2. Създайте нова променлива, в която ще направите конвертирането от радиани къмградуси, като знаете формулата за изчисление:

3. Принтирайте получените градуси, като закръглите резултата цяло число (използвайте printf и %.0f):

```
System.out.printf("%.0f", degrees);
```

3. Лице на правоъгълник в равнината

Правоъгълник е зададен с координатите на два от своите срещуположни ъгъла (х1, у1) и (х2, у2). Да се пресметнат площта (лицето) и периметърът му. Входът се чете от конзолата. Числата х1, у1, х2 и у2 са дадени по едно на ред. Изходът се извежда на конзолата и трябва да съдържа два реда с по едно число на всеки от тях – лицето и периметърът.

Примерен вход и изход

вход	изход
60	1500.00
20	160.00
10	
50	
30	2000.00
40	180.00
70	
-10	
600.25	350449.69
500.75	2402.00
100.50	
-200.5	

Резултатите да се форматират до два знака след десетичната запетая.

Насоки

1. Прочетете входните данни от конзолата последователно (координатите на точките):

```
Scanner scanner = new Scanner(System.in);
double x1 = Double.parseDouble(scanner.nextLine());
double y1 = Double.parseDouble(scanner.nextLine());
double x2 = Double.parseDouble(scanner.nextLine());
double y2 = Double.parseDouble(scanner.nextLine());
```

2. Намерете дължината и широчината на правоъгълника, за да намерите след това лицето и периметъра. Създайте две променливи, в първата ще изчислявате дължината, а във втората широчината. Разликата между координатите x1 и x2 ще ви даде дължината на правоъгълника, а разликата между координатите у1 и у2 ще ви даде широчината. Използвайте Math.abs (абсолютна стойност) и вземете абсолютната стойност на разликата от коордиантите, за да бъдат дължината и широчината на правоъгълника положителни числа.


```
double length = Math.abs(x1 - x2);
double width = Math.abs(y1 - y2);
```

3. Лицето и периметъра на правоъгълник се намират по следните формули:

4. Създайте две променливи, в които ще изчислявате лицето и периметъра:

```
double area = length * width;
double perimeter = 2 * (length + width);
```

5. Принтирайте лицето и периметъра на два реда:

```
System.out.printf("%.2f%n", area);
System.out.printf("%.2f", perimeter);
```

Примерни изпитни задачи

4. Шивашки цех

Шивашки цех приема поръчки за ушиване на покривки и карета за маси. Покривките са правоъгълни, каретата са квадратни, броят им винаги е еднакъв. Покривката трябва да виси с 30 см от всеки ръб на масата. Страната на каретата е половината от дължината на масите. Във всяка поръчка се включва информация за броя и размерите на масите.

Напишете програма, която пресмята цената на поръчка в долари и в левове, като квадратен метър плат за правоъгълна покривка струва 7 долара, а за каре – 9 долара. Курсът на долара е 1.85 лева.

Вход

Потребителят въвежда 3 числа, по едно на ред:

- Брой правоъгълни маси цяло число в интервала [0...500]
- Дължина на правоъгълните маси в метри реално число в интервала [0.00...3.00]
- Широчина на правоъгълните маси в метри реално число в интервала [0.00...3.00]

Изход

Да се отпечатат на конзолата две числа: цената на изделията в долари и в левове.

- о "{цена в долари} USD"
- "{цена в левове} BGN"

Резултатите да се закръглят до два знака след десетичната запетая.

Примерен вход и изход

Вход	Изход	Обяснения

5 1.00 0.50	72.85 USD 134.77 BGN	Общата площ на покривките е: 5 броя * (1.00 + 2 * 0.30) * (0.5 + 2 * 0.30) = 8.80 кв. метра Общата площ на каретата е: 5 броя * (1.00 / 2) * (1.00 / 2) = 1.25 кв. метра Цена в долари: 8.80 * 7 долара + 1.25 * 9 долара = 72.85 долара Цена в левове: 72.85 * 1.85 = 134.77 лева
10 1.20 0.65	189.90 USD 351.32 BGN	Общата площ на покривките е: 10 броя * (1.2 + 2 * 0.30) * (0.65 + 2 * 0.30) = 22.50 кв. метра Общата площ на каретата е: 10 броя * (1.20 / 2) * (1.20 / 2) = 3.60 кв. метра Цена в долари: 22.50 * 7 долара + 3.60 * 9 долара = 189.9 долара Цена в левове: 189.9 * 1.85 = 351.32 лева

Насоки

1. Прочетете входните данни от конзолата последователно (броя маси, дължината и широчината на масите):

```
int tables = Integer.parseInt(scanner.nextLine());
double length = Double.parseDouble(scanner.nextLine());
double width = Double.parseDouble(scanner.nextLine());
```

2. За да намерите общата площ на покривките и на каретата, преди това трябва да знаете площта на една покривка и на едно каре. Покривките са правоъгълни слеодвателно площта им се изчислва като умножим дължината по широчината. Към стойностите на дължината и широчината на покривките трябва да добавим два пъти по 30 см (0.30 метра), след което да изчислим площта. Каретата са квадратни и площта им се намира като умножим страната на квадрата по същата тази страна. Дължината на страната на карето намерете като разделите дължината на покривката на две. Създайте си две променливи. В едната изчислявайте площта на една покривка, а в другата площта на едно каре:

```
double areaOneCover = (length + 2 * 0.30) * (width + 2 * 0.30);
double areaOneSquare = (length / 2 ) * (length / 2);
```

3. Намерете общата площ на покривките и на каретата, като умножите броя на масите по площта за една покривка / каре. Създайте две променливи, в едната изчислявайте общата площ на покривките, а в другата общата площ на каретата.

```
double areaCovers = tables * areaOneCover;
double areaSquares = tables * areaOneSquare;
```

4. Намерете общата цена в долари за покривките и каретата. За да намерите общата цена, трябва да съберете цената за покривките и цената за каретата. Цената за покривките намерете като умножите общата площ на покривките по цената за един квадратен метър покривка (7 долара), а цената за каретата намерете като умножите общата площ на каретата по цената за един квадратен метър каре (9 долара). Създайте две променливи, в едната изчислете цената за покривките, а в друагата цената за каретата. Направете трета променлива, в която да изчислите общата цена от покривките и каретата:


```
double priceCovers = areaCovers * 7;
double priceSquares = areaSquares * 9;
double totalPriceInDollars = priceCovers + priceSquares;
```

5. Намерете общата цена в български лева, като умножите цената в долари по дадения фиксиран валутен курс. Създайте променлива, в която ще пресмятате цената в лева:

```
double totalPriceInBGN = totalPriceInDollars * 1.85;
```

6. Принтирайте на два реда резултатите. На първия цената в долари, на втория цената в лева, закръглени до втория знак след десетичната запетая (използвайте printf и %.2f, а за преминаване на нов ред -> шаблона %n):

```
System.out.printf("%.2f USD%n", totalPriceInDollars);
System.out.printf("%.2f BGN", totalPriceInBGN);
```

5. Зала за танци

Група танцьори си търсят нова зала. Залата, която са харесали, е правоъгълна и има размери: L - дължина и W - ширина (в метри). В залата има квадратен гардероб със страна - A и правоъгълна скамейка с площ 10 пъти по-малка от площта на залата. Мястото, което заема един танцьор е 40 cm² и допълнително за свободно движение му трябват още 7000cм².

Напишете програма, която да изчислява колко танцьори могат да се поберат в залата и да се движат свободно. Полученият резултат трябва да се закръгли до най-близкото цяло число надолу.

Вход

От конзолата се четат 3 реда:

- 1. L дължина на залата в метри реално число в интервала [10.00 ... 100.00]
- 2. W ширина на залата в метри реално число в интервала [10.00 ... 100.00]
- 3. А страна на гардероба в метри реално число в интервала [2.00... 20.00]

Изход

Да се отпечата на конзолата едно цяло число – броят танцьори, които могат да се поберат в свободното пространство на залата, закръглени до най-близкото цяло число надолу.

Примерен вход и изход

Вход	Изход	Чертеж	Обяснения
50 25 2	1592	Пейка Гарде -роб	Големина на залата в квадратни сантиметри: (50 * 100) * (25 * 100) = 12 500 000; Големина на гардероба: (200 * 200) = 40000; Големина на пейката: 12 500 000 / 10 = 1 250 000; Свободно пространство = 12 500 000 - 40000 - 1 250 000 = 11210000; Брой танцьори = 11210000 / (40 + 7000) = 1592;

Насоки

1. Прочетете входните данни от конзолата последователно (дължината и широчината на залата, страната на гардероба):

```
double length = Double.parseDouble(scanner.nextLine());
double width = Double.parseDouble(scanner.nextLine());
double wardrobeSide = Double.parseDouble(scanner.nextLine());
```

2. Намерете площта на залата. Понеже залата е правоъгълна, площта и се намира като умножим дължината по широчината на залата. Създайте нова променлива, превърнете дължината и широчината в сантиметри (умножавате дадените метри по 100) и след това изчислете площта:

```
double hallArea = (length * 100) * (width * 100);
```

3. Намерете площта на гардероба. Понеже той е квадратен, площта му се намира като се умножи страната по същата тази страна. Създайте нова променлива, превърнете дължината на страната на гардероба в сантиметри и след това изчислете площта му:

```
double areaWardrobe = (wardrobeSide * 100) * (wardrobeSide * 100);
```

4. Намерете площта, която заема пейката, като разделите площта на залата на 10. Създайте нова променлива и в нея изчислете площта на пейката:

```
double benchArea = hallArea / 10;
```

5. Намерете свободното пространство, като от площта на залата извадете площта на гардероба и площта на пейката. Създайте си нова променлива и в нея изчислете свободното пространство:

```
double freeSpace = hallArea - areaWardrobe - benchArea;
```

6. Намерете броя танцьори, който може да побере залата, като разделите свободното пространство на пространството, което заема един танцьор (7000 кв.см + 40 кв.см = 7040 кв.см). Направете нова променлива и в нея изчислете броя танцьори:

```
double dancers = freeSpace / (40 + 7000);
```

7. Принтирайте броя танцьори, закръглен до най-близкото число надолу (използвайте Math.floor и закръглете с %. 0f, за да принтирате цялото число, т.е. от 1592.0 да остане само 1592):

```
System.out.printf("%.Of", Math.floor(dancers));
```

6. Благотворителна кампания

В сладкарница се провежда благотворителна кампания за събиране на средства, в която могат да се включат сладкари от цялата страна. Първоначално прочитаме от конзолата броя на дните, в които тече кампанията и броя на сладкарите, които ще се включат. След това на отделни редове получаваме количеството на тортите, гофретите и палачинките, които ще бъдат приготвени от един сладкар за един ден. Трябва да се има предвид следния ценоразпис:

- Торта 45 лв.
- Гофрета 5.80 лв.
- Палачинка 3.20 лв.

1/8 от крайната сума ще бъде използвана за покриване на разходите за продуктите по време на кампанията. Да се напише програма, която изчислява сумата, която е събрана в края на кампанията.

Вход

От конзолата се четат 5 реда:

- 1. Броят на дните, в които тече кампанията цяло число в интервала [0 ... 365]
- 2. Броят на сладкарите цяло число в интервала [0 ... 1000]
- 3. Броят на тортите цяло число в интервала [0... 2000]
- 4. Броят на гофретите цяло число в интервала [0 ... 2000]
- 5. Броят на палачинките цяло число в интервала [0 ... 2000]

Изход

Да се отпечата на конзолата едно число:

парите, които са събрани, форматирани до втория знак след десетичната запетая.

Примерен вход и изход

Вход	Изход	Обяснения	
20 8 14 30 16	119728.00	Изчисляваме сумата, която се изкарва на ден за всеки един от продуктите, направени от 1 сладкар: Торти: 14 * 45 = 630 лв.; Гофрети: 30 * 5.80 = 174 лв.; Палачинки: 16 * 3.20 = 51.20 лв. Обща сума за един ден: (630 + 174 + 51.20) * 8 = 6841.60 лв. Сума събрана от цялата кампания: 6841.60 * 20 = 136832лв. Сума след покриване на разходите: 136832 - 1/8 от 136832 = 119728 лв.	
Вход	Изход		
131 5 9 33 46	426175.75		

Насоки

1. Прочетете входните данни от конзолата последователно (броя на дните, сладкарите, тортите, гофретите и палачинките):

```
int days = Integer.parseInt(scanner.nextLine());
int bakers = Integer.parseInt(scanner.nextLine());
int cakes = Integer.parseInt(scanner.nextLine());
int waffles = Integer.parseInt(scanner.nextLine());
int pancakes = Integer.parseInt(scanner.nextLine());
```

2. Намерете приходът от всеки един продукт, като умножите броя на продукта по цената дадена в условието. Създайте три нови променливи и в тях направете изчисленията:

```
double cakesProfit = cakes * 45;
double wafflesProfit =
double pancakesProfit =
```

3. Намерете печалбата за един ден от един сладкар. Създайте нова променлива и пресметнете в нея печалбата за един ден от един сладкар, като съберете печалбата от всички продукти. След това

създайте друга променлива и в нея пресметнете печалбата за един ден от всички сладкари (умножете печалбата за един ден от един сладкар по броя сладкари):

```
double profitPerDayByOne = cakesProfit + wafflesProfit + pancakesProfit;
double profitPerDayByAll =
```

4. Намерете печалбата за всички дни, като умножите печалбата за един ден по броя дни, през които тече кампанията. Създайте си нова променлива и изчислете в нея печалбата за цялата кампания. След това изчислете разходите, които са 1/8 от печалбата за цялата кампания. Създайте друга променлива и изчислете разходите:

```
double totalProfit = profitPerDayByAll * days;
double expenses =
```

5. Намерете парите, които са събрани за кампанията. Те се изчисляват, като от общата печалба за кампанията извадим разходите. Създайте нова променлива и изчислете събраните пари:

```
double finalProfit = totalProfit - expenses;
```

6. Принтирайте парите, които са събрани за кампанията, закръглени до втория знак след десетичната запетая. Използвайте printf и %.2f:

```
System.out.printf("%.2f", finalProfit);
```

7. Алкохолна борса

Георги решава да направи купон и отива до алкохолната борса за да купи бира, вино, ракия и уиски. На конзолата се въвежда цената на уискито в лв./л. и количеството на бирата, виното, ракията и уискито, които трябва да закупи. Да се напише програма, която пресмята колко пари са му необходими, за да плати сметката, като знаете, че:

- цената на ракията е с 50% по-ниска от тази на уискито;
- цената на виното е с 40% по-ниска от цената на ракията;
- цената на бирата е с 80% по-ниска от цената на ракията.

Вход

От конзолата се четат 5 реда:

- 1. Цена на уискито в лева реално число в интервала [0.00 ... 10000.00]
- 2. Количеството бира в литри реално число в интервала [0.00 ... 10000.00]
- 3. Количеството вино в литри реално число в интервала [0.00 ... 10000.00]
- 4. Количеството ракия в литри реално число в интервала [0.00 ... 10000.00]
- 5. Количеството уиски в литри реално число в интервала [0.00 ... 10000.00]

Изход

Да се отпечата на конзолата едно число:

парите, които са необходими на Георги, форматирани до втория знак след десетичната запетая.

Примерен вход и изход

Вход Изход Обяснения	
----------------------	--

50 10 3.5 6.5	315.00	Цена на ракията за литър: 25 лв. Цена на виното за литър: 25 – (0.4 * 25) = 15 лв. Цена на бирата за литър: 25 – (0.8 * 25) = 5 лв. Сума за ракията : 6.5 * 25 = 162.50 лв. Сума за виното : 3.5 * 15 = 52.50 лв. Сума за бирата : 5 * 10 = 50 лв. Сума за уискито : 1 * 50 = 50 лв. Обща сума : 162.50 + 52.50 + 50 + 50 = 315 лв.
Вход	Изход	
63.44 3.57 6.35 8.15 2.5	560.62	

