

Разрезание пиццы

• на сколько максимум кусков можно разрезать пиццу?

n	1	2	3	4	5	6	7	8	9
f(n)	2	4	7	11	16	22	29	37	46

• то есть f(n)=f(n-1)+n=f(n-2)+(n-1)+n=1+1+2+3+4+...+(n-1)+n=1+n(n+1)/2 проверка :

f(7) = 1+7* 82 = 29, 22+7 = 29 проверка : f(9) = 1+9* 210 = 46, 37+9 = 46

Убийство по кругу для k=2

- по кругу стоят юниты, умирает каждый k-й, пропуская мёртвых. Какой юнит выживет? •
- Рассмотрим случай для k=2, то есть умирает каждый второй:

n	f(n,2)	f(n,2)-n	2*n+1-	n	f(n,2)						
			f(n,2)								
1	1	0	2	10	5	-5	16	19	7	-12	32
2	1	-1	4	11	7	-4	16	20	9	-11	32
3	3	0	4	12	9	-3	16	21	11	-10	32
4	1	-3	8	13	11	-2	16	22	13	-9	32
5	3	-2	8	14	13	-1	16	23	15	-8	32
6	5	-1	8	15	15	0	16	24	17		32
7	7	0	8	16	1	-15	32	25	19		32
8	1	-7	16	17	3	-14	32	26	21		32
9	3	-6	16	18	5	-13	32	27	23		2

Убийство по кругу, для k=2, формула

- то есть
- $2n + 1 f(n, 2) = 2 \cdot 2^{\lfloor \log_2 n \rfloor}$ откуда
- $f(n,2) = 2n + 1 2 \cdot 2^{\lfloor \log_2 n \rfloor}$
- быстро посчитать целый логарифм от 2:
- def log_2_uint(x):
 - $x \mid = x >> 1$;
 - $x \mid = x >> 2$;
 - $x \mid = x >> 4$;
 - x = x >> 8;
 - $x \mid = x >> 16$;
 - #x |= x >> 16; #for long
 - $x = x ^ (x >> 1);$
 - return x

Убийство по кругу, для k=3, таблица

Убийство по кругу, для k=3, таблица

n	f(n,3)	red-n	3n-red+1	n	f(n,3)	red-n	3n-red+1	n	f(n,3)	red-n	3n-red+1
1	1			10	4,10	0	21	19	10,17	-9	48
2	1, 2			11	2,7	-9	32	20	13,20	-7	48
3	1, 2	-2	9	12	5,10	-7	32	21	2,16	-5	48
4	1,4	0	9	13	8,13	-5	32	22			
5	2,4	-3	14	14	2,11	-3	32	23			
6	1,5	-1	14	15	5,14	-1	32	24			
7	1,4	-6	21	16	1,8	-15	48	25			
8	4,7	-4	21	17	4,11	-13	48	26			
9	1,7	-2	21	18	7,14	-11	48	27			

Убийства по кругу для k=3, закономерность

- есть два числа, каждое число растёт с шагом в 3,
- затем когда становится n-1, следующим будет 1
- а если равно n, то следующим будет 2

Кощей ложит деньги в банк

- вначале ложит k, затем в каждый последующий день на 1 больше
- после того как кощей ложит деньги, банк уменьшает всю сумму в 2 раза
- при каком начальном n в банке всегда будет целое число
- перебором подошло только k=2

ложит	2	3	4	5		чётн	нечёт	чёт	нечёт
сумма	2	4	6	8		чёт	чёт	чёт	чёт
после деления	1	2	3	4		нечёт	чёт	нечёт	чёт
ложит	6	7	8		18	19	20	21	
сумма	6	10	13 xx		18	28	34	38	
после деления	3	5			9	14	17	19xx	

Квадрат задан линиями

- y=ax+b y=bx+c y=cx+d y=dx+a
- пусть первая пепендикулярна второй (и четвёртой), тогда
 - b=-1/a y = ax-1/a, y = -x/a+a, y = ax-1/a y = ax-1/a
 - c=a
 - d=b=-1/a
 - пусть первая пепендикулярна третей, тогда
 - c=-1/a
- перпендикуляр к линии
- $1 + h^2 = t^2$
- $t^2 + 1 + a^2 = (a+h)^2 = a^2 + 2 ah + h^2$
- $1 + h^2 + 1 + a^2 = (a+h)^2 = a^2 + 2 ah + h^2$
- $1 ++ 1 += (a+h)^2 = + 2 ah = 2$
- a = 1/h

Вероятность прийти раньше

Задача 1. Антон, Борис и Вениамин договорились прийти в музей в промежуток между 13:00 и 14:00. Каждый мальчик выбирает время прихода наугад. Известно, что Антон пришёл раньше Бориса. Какова вероятность, что он пришёл и раньше Вениамина? Ответ должен быть числом от 0 до 1. Если необходимо, округлите ответ с точностью до 0,001.

Подход высокого уровня

Из соображений симметрии, при фиксированных 2 точках, есть два варианта - меньшая либо б либо а то есть вариантов, где a< b в два раза меньше чем всего пар точек. Тогда вероятность, что антон пришёл раньше бориса, который пришёл случайно, равно P(a<б) = 0.5

Формальный подход

Вероятность что случайное А меньше случайного б в интервале 0,1равна б Давай посмотрим какова сумма пероятности для всех возможных а Это будет интеграл от 0 до 1 от б d б равно одна вторая То есть а прийдёт раньше б с вероятностью 1/2

Подход высокого уровня

Далее, при 3 или более фиксированных точках, всего вариантов размещения на тех же позициях разных людей будет n!, размещений где меньшая точка a-(n-1)! итого вероятность что а окажется наименьшей, (n-1)!/n! = 1/n $P(a<\delta u a<\delta u...) = 1/n$

Наконец условная вероятность что а< в при а <б это а меньше б и в делить на а меньш б 1/3 делить на 1/2 будет 2/3

Вероятность прийти раньше 2

• Итого если есть n+1 элементов из которых надо найти вероятность что а меньше остальных n при условии что оно меньше конкретных k. по условной вероятности будет k+1 делить n+1. В этом условии k=1 n =2

• Можно несколько усовершенствовать задачу сказав что а должно быть меньше любых количество К из n. Думаю ты без труда найдёшь эту маленькую модификацию

открывать и закрывать двери

- есть 100 дверей в ряд, все двери в начале закрыты. Человек открывает двери, на каждом шагу і меняя статус двер с шагом і. то есть на первом шагу тронет все двери, на втором каждую вторую, на третьем каждую третью, и т.п.
- Какие двери останутся открытыми в конце? дверь трогается на шаге, который делит номер двери n
- количество делителей числа чётное, только если оно не квадрат. на каждый делитель k найдётся другой делитель n/k
- если мы трогаем дверь чётное число раз, то в конце оно будет закрыто, если только порядковый номер не квадрат

положить костяшки домино так чтобы нельзя было уже ложить

5. На прямокутну дошку $m \times n$ $(m,n \ge 3)$ поклали декілька фігурок доміно (прямокутники 1×2 або 2×1) таким чином, що фігурки доміно не накладаються одна на іншу, не виходять за межі дошки $m \times n$, принаймні одне кутове поле дошки покрите доміно та більше жодної фігурки доміно не можна покласти на дошку без порушення цих правил. Доведіть, що принаймні $\frac{2}{3}$ від усіх полів дошки заповнені.

- две незанятые клетки не могут стоять рядом по вертикали и горизонтали
- тогда в ряду должно быть примерно две занятые, одна незанятая клетка, или больше, если требуются костяшки домино
- тогда чёрными должны быть заполнены хотя бы 2/3 доски

вариантов путеи по прямоугольной доске с диагоналями

• википедия:

- Числа Деланнуа[1] (или числа Деланоя[2]; фр. Delannoy) D(a, b) в комбинаторике описывают количества путей из левого нижнего угла прямоугольной решётки (a, b) в противоположный по диагонали угол, используя только ходы вверх, вправо или вверх-вправо («ходом короля»).
- пусть k<=m<=n, где k выбранное число диагоналей,
- тогда мы делаем n+m-k шагов, из которых выбираем варианты разместить k диагоналей, m-k горизонтальных линий, n-k вертикальных линий
- количество вариантов путей для одного k числа диагоналей будет полиномиальным коэффициентом $\binom{n+m-k}{k,n-k,m-k} = \frac{(n+m-k)!}{k!(n-k)!(m-k)!}$
- тогда количество пути для всех k от 0 до m будет

•
$$\sum_{k=0}^{m} \frac{(n+m-k)!}{k!(n-k)!(m-k)!}$$