1. What is left recursive grammar? Give an example. What are the steps in removing left recursion?

What is left recursion

- A grammar is said to be left –recursive if it has a non-terminal A such that there is a derivation A -> $A\alpha$, for some string α
- A Production is immediately left recursive if its LHS and Head of RHS is the same symbol
 - Example B -> Bvt
- Indirect Left Recursion -> A grammar is said to possess indirect left recusion if it derives a string where the head is that symbol
 - Example A -> Br -> Csr -> Atsr
 - A indirectly gives Atsr, which is a left recursion
- Immediate left recursion is a special case of indirect left recursion
 - Derivation involved is a single step

Eliminating Immediate Left Recursion

- Example
 - A -> Aα | β
 - This can be replaced by non recursive productions
 - A -> βA'
 - A' -> αA' | ε
 - Where β does not start with A
- In General
 - If we have productions of the form

$$A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \dots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$$

Could be replaced with non recursive productions

$$A \Rightarrow \beta_1 A' \mid \beta_2 A' \mid \dots \mid \beta_n A'$$

$$A' \Rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \dots \mid \alpha_m A' \mid \in$$
where $\beta_1 \dots \beta_n$ does not start with A

Example Problem

Consider the following left recursive grammar

By the general rule we followed earlier we can transform it

$$A \rightarrow A\alpha \mid \beta$$
 $\Rightarrow A \rightarrow \beta A'$
 $A' \rightarrow \alpha A' \mid \epsilon$

Here
$$A = E$$
, $\alpha = +T$, $\beta = T$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

Eliminating Indirect Left Recursion

Algorithm to eliminate Indirect Left Recursion

- Arrange non-terminals in some order: A, , A, ... A
- 2. for i = 1 to n do begin

replace each production of the form $A_i \rightarrow A_i \gamma$

by the productions $A_i \rightarrow \delta_1 \gamma | \delta_2 \gamma | \dots | \delta_k \gamma$

where $A_i \rightarrow \delta_1 \mid \delta_2 \mid \dots \mid \delta_k$ are all the current A_i productions

end

eliminate the immediate left-recursions among the A, productions

end

Consider this example

$$S \Rightarrow Aa \mid b$$

$$A \Rightarrow Ac \mid Sd$$

- First we Arrange the non terminals in some order
 - The non terminals here are S and A
 - S => A1, A => A2
 - There are 2 non terminals, set n=2

$$A_1 \Rightarrow A_2 a \mid b \qquad A_2 \Rightarrow A_2 c \mid A_1 d$$

- Loop 1
 - Loop from i=1 to 2 (2 is taken because n=2)
 - For j=1 to n i -1
 - Loop goes from 1 to 0, so nothing happens
- Loop 2
 - Case i=2 to 2
 - J=1 to 1

- Replacing each production of form Ai -> Aj γ
 - Here i = 2, and j = 1
 - A2 -> A1d
 - See what all alternatives does A1

• The alternatives are

$$\delta_1 = A_2 a$$

$$\delta_2 = b$$

- A2 -> A2ad | bd
- So basically

- We now get the Immediate Left Recursion
- Eliminating Immediate Left Recursion

$$A_1 \Rightarrow A_2 a \mid b$$
 $A_2 \Rightarrow A_2 c \mid A_2 a d \mid b d$
 $\alpha 1 = c \quad \alpha 2 = a d \quad \beta 1 = b d$

Eliminating immediate left recursion:

 $A_1 \Rightarrow A_2 a \mid b$
 $A_2 \Rightarrow b d A_2'$
 $A_2' \Rightarrow c A_2' \mid a d A_2' \mid \in$

EXECUTE: A $\Rightarrow c A_2' \mid a d A_2' \mid \in$

EXECUTE: A $\Rightarrow c A_2' \mid a d A_2' \mid \in$

EXECUTE: A $\Rightarrow c A_2' \mid a d A_2' \mid \in$

EXECUTE: A $\Rightarrow c A_2' \mid a d A_2' \mid \in$

EXECUTE: A $\Rightarrow c A_2' \mid a d A_2' \mid \in$

2. Compute First and follow for the following grammar

S -> ABCDE

 $A \rightarrow a \mid \epsilon$

C -> c

 $D \rightarrow d \mid \epsilon$

 $E \rightarrow e \mid \epsilon$

First

S -> ABCDE	$FIRST(S) = \{a,b,c\}$	FOLLOW(S) = {\$}
Α-> α ε	FIRST(A) = $\{a, \epsilon\}$	$FOLLOW(A) = \{b,c\}$
B-> b ε	$FIRST(B) = \{b, \epsilon\}$	$FOLLOW(B) = \{c\}$
C -> c	$FIRST(C) = \{c\}$	$FOLLOW(C) = \{d,e,\$\}$
D -> d ε	$FIRST(D) = \{d, \epsilon\}$	$FOLLOW(D) = \{e,\$\}$
E -> e ε	FIRST(E) = $\{e, \epsilon\}$	FOLLOW(E) = {\$}

Explanation for first

- A -> a | ε
 - First we take the production
 - A -> a
 - a
 - Next we take production
 - A -> ε
 - 3 •
- S -> ABCDE
 - First we consider A
 - A derives a
 - Adding a to First(s)
 - A also derives ε
 - · So we should consider next letter B
 - Considering B
 - B derives b
 - Adding b to First(s)
 - B derives ε
 - C
- C derives c
 - Adding c to First(s)

Follow

Theres are 3 rules

- FOLLOW (S) = {\$}, S is the start symbol
- If A -> α B β then (if B is followed by beta then)
 - FOLLOW(B) = FIRST (β)
 - Include all symbols in the FIRST(beta) except epsilon
- If A -> α B or A -> α B β where FIRST(β) contains ϵ
 - FOLLOW(B) = FOLLOW(A)

Explanation for Follow

FOLLOW(S)

- As per the rule the follow is \$
- FOLLOW(A)
 - What are the productions having A in the RHS, only one is there
 - S -> ABCDE
 - Now we need to find FOLLOW(A)
 - As per the rule
 - Set BCDE as β
 - Apply the rule
 - FOLLOW(B) = FIRST (β)
 - FOLLOW(A) = FIRST(BCDE)
 - FIRST(B) = b,ε
 - ϵ is there, so we need to find the FIRST of next letter, that is C
 - FIRST(C) = c
 - No ε, so stopping here
 - FOLLOW(A) = {b,c}
 - FOLLOW(B)
 - FOLLOW(B) = FIRST(C)
 - C
 - There is no epsilon, so stopping
 - FOLLOW(B) = {c}
 - FOLLOW(C)
 - FOLLOW(C) = FIRST(D)
 - d and epsilon
 - FIRST(D) = e,epsilon
 - Since the production ends with epsilon, we need to include FOLLOW(S)=\$
 - FOLLOW(C) = {d,e,\$}
- Similar steps for others

3. Check whether given grammar is ambigous or not

- A grammar is ambiguous if there are multiple parse trees for the same sentence
- Example

4. Error recovery strategies in parsing (1.Panic mode, 2.Phrase level recovery, 3.Error production, 4. Global generation

Panic Mode

- Detects the error and discard until the synchronizing token is seen
- The Panic mode correction skips a lot of input without checking for additional errors

Phrase Level Recovery

- On discovering an error, a parser may perform local correction on the remaining input, it
 may replace a prefix of the remaining input by some string that allow the parser to
 continue
- Example
 - Replace, by a;
 - Delete an extra;
 - Insert a missing;

Error Production

 If an error production is used by the parser, we can generate appropriate error diagnosis to indicate the rrror. Construct that has been recognized in the input

Global Correction

 In this method, the compiler itself makes a few changes as possible in processing an incorrect input string

5. Recursive descent parser with a suitable grammar. (with function)

- Method used to find out whether given string can be formed with the help of given grammar
- A -> abC | aBd | aAD
- B -> bB | ε
- C -> d | ε
- D -> a | b | ε
- Taking the first production A -> abC
 - The Input given is a a b a
 - There will be 2 pointers
 - input pointer
 - descent pointer
 - Input
 - **a** a b a
 - Descent pointer

- Value at input pointer and descent pointer are same
- Update input and descent pointer
- Input
 - a **a** b a
- Descent pointer

- a and b wont match, so we will backtrack
- Taking next production A -> aBd

• a **a** b a

- Value at input pointer and descent pointer are same
- Update input and descent pointer
- Descent pointer is pointing to a non terminal B

- Derive the value of B
 - B -> bB
 - Value at input pointer (a) and descent pointer (b) are not same
 - B -> ε
 - This will lead the descent pointer to d
 - value at input pointer (a) and descent pointer (d) are not same
- Backtracking again
- Taking next production A -> aAD
 - **a**aba

- Value at input pointer (a) and descent pointer (a) are same
- Incrementing the pointers
- a **a** b a
- Value at input pointer (a) and descent pointer (a) are same
- Incrementing the pointers
- Value at input pointer (a) and descent pointer (a) are same
- Value at input pointer (b) and descent pointer (b) are same
- Incrementing pointers
- aab**a**

- C is a non terminal, expanding, we get C -> d or C -> ϵ
- C ->d doesnt work
 - Input(a) and descent(d) doesnt match
- C -> ε

- We come across another non terminal D
- Expanding it
 - D -> a | b | ε
 - Using D -> a

- input and descent matches, since they are both a's
- a a b a string can be found using the parse tree as shown below

6. Non-Recursive Predictive parsering algorithm.

- 7. What is left factoring? Left factor the following grammar
- 8. Top-Down parser.
- 9. parsing table
- Non-recursive predictive parsing table (algorithm)
- LL(1) parsing table
- \bullet Predictive parsing table(¬ Eliminate left recursion, and ¬ Perform left factoring.)

10. Prove that the grammar is LL(1) or not.