Qiskit

- a collection of software for executing programs on quantum computers.
- most notable softwares:
 - Qiskit SDK (open-source)
 - runtime environment of Qiskit Runtime (to execute workloads on IBM Quantum Computers)

Qiskit SDK

package name : qiskit (library)

- open-source SDK for working with quantum computers at the level of **extended quantum circuits, operator and primitives**.
 - Extended Quantum Circuits:
 - static
 - dynamic
 - scheduled
- core component of and the largest package under Qiskit (the collection)
- has the broadest suite of tools for quantum computing
- useful features [name (module)]:
 - Circuit-building tools (<u>qiskit.circuit</u>)
 - for initialising and manipulating:
 - registers
 - circuits
 - instructions
 - gates
 - parameters
 - control flow objects
 - Circuit library (<u>qiskit.circuit.library</u>)
 - a vast range of:
 - circuits
 - instructions

- gates
- key building blocks for circuit-based quantum computations
- Quantum info library (<u>qiskit.quantum info</u>)
 - toolkit for working with:
 - quantum states
 - operators
 - channels
 - using exact calculations (no <u>sampling noise</u>)
 - module used to:
 - specify input observables -- ??
 - analyse fidelity (here, accuracy), of outputs from primitive queries
- Transpiler (qiskit.transpiler)
 - for transforming and adapting quantum circuits to suit specific device topology
 - for optimisation of real Quantum Processing Units (QPUs) execution
- Primitives (<u>qiskit.primitives</u>)
 - module that contains the base definitions and reference implementations of :
 - Sampler and Estimator primitives
 - used by different quantum hardware providers to derive their own implementations.
 - More : https://docs.quantum.ibm.com/guides/primitives

Qiskit Runtime

- open-source elements:
 - The Qiskit Runtime client (the interface for users to access the Qiskit Runtime service)
 - The Qiskit SQK running on the server side
 - some of the software used for error mitigation
 - More to get involved with the Qiskit open-source efforts: Qiskit | Qiskit Extensions
- not open-source element:
 - The Qiskit Runtime service software that handles the technicalities of running our quantum program on IBM Quantum device (including any error mitigation and suppression)
- used for executing quantum computations on IBM Quantum hardware
- cloud-based service
- package name : qiskit-ibm-runtime (library)
 - o a client for that service
 - successor to <u>Oiskit IBM Provider</u> **DEPRECATED**
- streamlines quantum computations
- provides optimal implementations of the Qiskit primitives for IBM hardware
- More on selecting an IBM Quantum Channel: https://docs.quantum.ibm.com/guides/setup-c
 hannel

- designed to use additional classical and quantum compute resources
 - including techniques such as:
 - error suppression
 - error mitigation
 - Example : zero-noise extrapolation (ZNE)
 - More on configuration : https://docs.quantum.ibm.com/guides/configure-error-mitigation
 - to return a higher-quality result from executing quantum circuits on quantum processors
- includes 3 types of execution modes for running the quantum program on IBM hardware:
 - Job
 - Single query to a primitive that can be run over a specifies number of shots
 - o <u>Sessions</u>
 - Allow us to efficiently run multiple jobs in iterative workloads on quantum computers
 - Batch
 - Allows us to submit all our jobs at once for parallel processing

Qiskit Serverless

- package name: qiskit-serverless
- creating utility-scale quantum applications generally requires a variety of computer resource requirements
- premium users cam use Qiskit Serverless to easily submit quantum workflows for remote, managed execution
- More on how to use this collection of tools: https://docs.quantum.ibm.com/guides/qiskit-serverless

Qiskit Transpiler as a Service

- package name: qiskit-transpiler-service
- new experimental service
- provides remote transpilation capabilities on the cloud to IBM Quantum Premium Plan users
- additionally to local Qiskit SDK transpiler capabilities, our transpilation tasks can benefit from both IBM Quantum cloud resources and Al-powered transpiler passes using this service
- More on how to integrate cloud-based transpilation into our Qiskit workflow : <u>qiskit-transpiler-service</u>

The Qiskit ecosystem

- o ther open-source projects using the 'Qiskit' name (but not part of Qiskit itself)
 - can provide valuable additional functionality to supplement the core Qiskit workflow
 - some maintained by IBM Quantum teams
 - other supported by broaded open-source community
- The Qiskit SDK is designed in a modular, extensible way to make it easy for developers to create projects liek these that extend its capabilities.
- Popular projects:
 - Qiskit Aer (qiskit-aer) Maintained by IBM Quantum
 - package for quantum computing simulators with realistic noise models
 - provides interfaces to run quantum circuits with or without noise using multiple different simulation methods
 - qBraid SDK (qbraid) Maintained by qBraid
 - a platform-agnostic quantum runtime framework for both quantum software and hardware providers
 - designed to streamline the full lifecycle management of quantum jobs:
 - from defining program specifications to job submission
 - through the post-processing and visualisation of results
 - mthree (mthree) Maintained by IBM Quantum
 - package for implementing M3 (Matrix-free Measurement Mitigation)
 - a measurement mitigation technique
 - solves for corrected measurement probabilities using a dimensionality reduction step followed by either:
 - direct factorization
 - or, a preconditioned iterative method that:
 - nominally converges in O(1) steps
 - can be computed in parallel
 - Catalog of projects and information about how to nominate our own project: <u>Qiskit</u>
 <u>Ecosystem</u>