DCN - CEUNES - UFES Mecânica

Atividade: Movimento rotacional¹

I. Movimento com velocidade angular constante

Um disco está girando em torno de um eixo fixo, em sentido anti-horário, sendo constante o número de voltas a cada segundo. O diagrama abaixo representa o disco visto de cima em um determinado instante.

Disco girando em sentido anti-horário.

A. Desenhe setas sobre o diagrama para representar a direção da velocidade (linear) em cada um dos pontos $A, B \in C$. Lembre-se que o tamanho da seta está relacionado com a magnitude do vetor. Explique seu raciocínio.

O tempo necessário para que os pontos B e C completem uma volta é $\it maior, menor$ ou $\it o mesmo$ do que o tempo que o ponto $\it A$ demora para completar uma volta?

Com base na resposta anterior, compare as velocidades lineares dos pontos $A,\ B$ e C. Classifique-as da maior para a menor.

B. Marque no diagrama abaixo a posição de cada um dos pontos A, B e C após o disco ter completado metade de uma volta. Desenhe o vetor velocidade para cada ponto.

Disco girando em sentido anti-horário.

Para cada ponto, como a velocidade pode ser comparada com a velocidade no instante anterior do item **A**? Discuta sobre a magnitude e a direção.

C. Suponha que o disco complete uma revolução (uma volta) em 2 segundos.

Para cada um dos pontos, encontre a variação do ângulo $(\Delta\theta)$ do vetor posição em 1 segundo.

Encontre a taxa de mudança no ângulo para qualquer ponto sobre o disco.

A taxa que você calculou acima é a *velocidade angular* do disco ou, mais precisamente, a magnitude do vetor velocidade angular. O vetor velocidade angular é definido como um vetor

que aponta na direção do eixo de rotação e é convencionalmente denotado pelo símbolo $\vec{\omega}$ (esta é a letra grega minúscula $\hat{o}mega$). Para determinar a direção do vetor velocidade angular, devemos supor que um observador está sobre o eixo de rotação olhando diretamente para o objeto em rotação. Se o observador enxerga o objeto girando em sentido anti-horário, $\vec{\omega}$ deve apontar na direção do observador. Se o observador enxerga o objeto girando em sentido horário, $\vec{\omega}$ deve apontar no sentido oposto. Também é possível usar a regra da mão direita para determinar a direção de $\vec{\omega}$. Verifique com o(a) professor(a) o procedimento para usar este método.

D. Baseando-se no enunciado acima, dois observadores em lados opostos de um objeto em rotação concordarão sobre qual é a direção do vetor velocidade angular?

Dois observadores que utilizam dois pontos diferentes sobre um objeto para determinar a velocidade angular concordarão sobre o módulo do vetor velocidade angular? Explique.

E. O diagrama abaixo mostra o mesmo disco girando do item A visto de cima e visto de lado. Sobre cada diagrama, desenhe o vetor que representa a velocidade angular do disco. (obs.: use o símbolo ⊙ para representar um vetor saindo do papel e o símbolo ⊗ para representar um vetor entrando no papel.)

Disco girando em sentido anti-horário visto de cima e visto de lado.

F. No espaço abaixo desenhe o vetor posição para o ponto C, em relação ao centro do disco, no instante inicial t_0 e após um pequeno intervalo de tempo Δt .

Insira os símbolos $\Delta \theta$ indicando a mudança de ângulo e r_C para indicar a distância do centro do disco até o ponto C. Desenhe o caminho percorrido pelo ponto C durante este intervalo de tempo. Qual é a distância que o ponto C percorreu durante Δt ? Expresse sua resposta em termos de r_C e $\Delta \theta$.

DCN - CEUNES - UFES Mecânica

Use sua resposta acima e a definição de velocidade média para encontrar uma expressão algébrica para a velocidade linear do ponto C em termos da velocidade angular ω do disco.

Sua equação deve mostrar uma implicação entre velocidade linear de cada ponto e a distância ao centro do disco. Que implicação é esta? Sua resposta é consistente com a sua resposta do item **A**?

II. Movimento com velocidade angular variável

A. Considere $\vec{\omega}_0$ como a velocidade angular inicial do disco. Para cada caso descrito a seguir, determine o módulo da variação da velocidade angular $|\Delta \vec{\omega}|$ em termos de $|\vec{\omega}_0|$.

Primeiro caso: O disco é colocado para girar mais rapidamente de tal forma que, eventualmente, um ponto fixo sobre o disco começa a girar duas vezes mais rápido a cada segundo.

Segundo caso: O disco é colocado para girar com a mesma taxa mas em sentido oposto.

B. Suponha que o disco desacelere uniformemente, de tal forma que $|\vec{\omega}|$ decresce de 8π rad/s a cada 4 s. (O disco continua girando no mesmo sentido e possui a mesma orientação com eixo de rotação fixo.)

Especifique a aceleração angular $\vec{\alpha}$ do disco: seu módulo, sua direção e seu sentido em relação a $\vec{\omega}$.

Na cinemática, encontramos o vetor aceleração considerando razão entre a mudança do vetor velocidade $\Delta \vec{v}$ e o intervalo de tempo Δt . Qual deve ser a expressão análoga que relaciona a velocidade com a aceleração angular $\vec{\alpha}$?

Verifique suas respostas com o(a) professor(a) antes de continuar.

III. Torque e aceleração angular

Uma barra rígida, representada na figura abaixo, pode girar em torno de um eixo fixo que passa pelo seu centro. O eixo de rotação da barra é perpendicular ao plano do papel.

A. Uma força de intensidade F_0 é aplicada no ponto M, sempre na direção perpendicular à barra, como mostra a figura. Para cada um dos seguintes casos, determine o sentido da aceleração angular.

Primeiro caso: A barra está inicialmente em repouso. (Dica: Considere $\Delta \vec{\omega}$.)

Segundo caso: A barra está girando a uma taxa constante antes da força ser aplicada.

Em sua resposta o valor da aceleração angular é dependente da barra está inicialmente girando no sentido horário ou anti-horário? Explique.

O ponto e a direção de aplicação da força pode afetar o movimento de rotação de um objeto. A tendência de uma força qualquer de produzir uma aceleração angular em um objeto é quantificada como o *torque* produzido pela força. O torque \vec{r} é definido como o produto vetorial $\vec{r} \times \vec{F}$, em que \vec{r} é o vetor com origem no eixo de rotação e extremidade no ponto de aplicação da força \vec{F} . A intensidade do torque é dada por $|\vec{\tau}| = |\vec{r}| |\vec{F}| \operatorname{sen}\theta$, sendo θ o ângulo entre \vec{r} e \vec{F} .

B. Compare a intensidade do torque resultante sobre a barra no item anterior com o torque obtido em cada um dos casos abaixo.

¹ Adaptado do livro *Tutorials in Introductory Physics* de McDermontt, Shaffer e Phys. Educ. Group da Univ. de Washington.