

Ultraprecision Operational Amplifier

OP177

FEATURES

Ultralow Offset Voltage: $T_A = 25$ °C: 25 μ V Max

Outstanding Offset Voltage Drift: 0.1 μ V/°C Max Excellent Open-Loop Gain and Gain Linearity:

12 V/μV Typ CMRR: 130 dB Min PSRR: 115 dB Min

Low Supply Current: 2.0 mA Max

Fits Industry Standard Precision Op Amp Sockets

(OP07/OP77)

PIN CONNECTIONS
Epoxy Mini-DIP
(P Suffix)
8-Pin SO
(S-Suffix)

GENERAL DESCRIPTION

The OP177 features the highest precision performance of any op amp currently available. Offset voltage of the OP177 is only 25 μV max at room temperature. The ultralow V_{OS} of the OP177 combines with its exceptional offset voltage drift (TCV $_{OS}$) of 0.1 $\mu V/^{\circ}C$ max to eliminate the need for external V_{OS} adjustment and increases system accuracy over temperature.

The OP177's open-loop gain of 12 V/ μ V is maintained over the full ± 10 V output range. CMRR of 130 dB min, PSRR of 120 dB min, and maximum supply current of 2 mA are just a few examples of the excellent performance of this operational amplifier. The OP177's combination of outstanding specifications ensures accurate performance in high closed-loop gain applications.

This low noise bipolar input op amp is also a cost effective alternative to chopper-stabilized amplifiers. The OP177 provides chopper-type performance without the usual problems of high noise, low frequency chopper spikes, large physical size, limited common-mode input voltage range, and bulky external storage capacitors.

The OP177 is offered in the -40° C to $+85^{\circ}$ C extended industrial temperature ranges. This product is available in 8-pin epoxy DIPs, as well as the space saving 8-pin Small-Outline (SO).

Figure 1. Simplified Schematic

REV. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 www.analog.com
Fax: 781/326-8703 © Analog Devices, Inc., 2002

ELECTRICAL CHARACTERISTICS (@ $V_S = \pm 15$ V, $T_A = 25$ °C, unless otherwise noted.)

Parameter	Symbol	Conditions	Min	OP177	F Max	Min	OP177 Typ	G Max	Unit
INPUT OFFSET VOLTAGE	Vos			10	25		20	60	μV
LONG-TERM INPUT OFFSET Voltage Stability	ΔV_{OS} /Time			0.3			0.4		μV/Μο
INPUT OFFSET ¹ CURRENT	I _{OS}			0.3	1.5		0.3	2.8	nA
INPUT BIAS CURRENT	I_{B}		-0.2	1.2	2	-0.2	1.2	2.8	nA
INPUT NOISE VOLTAGE	e _n	$f_0 = 1 \text{ Hz to } 100 \text{ Hz}^2$		118	150		118	150	nV rms
INPUT NOISE CURRENT	i_n	$f_0 = 1 \text{ Hz to } 100 \text{ Hz}^2$		3	8		3	8	pA rms
INPUT RESISTANCE Differential- Mode ³	R _{IN}		26	45		18.5	45		ΜΩ
INPUT RESISTANCE COMMON-MODE	R _{INCM}			200			200		GΩ
INPUT VOLTAGE RANGE ⁴	IVR		±13	±14		±13	±14		V
COMMON-MODE REJECTION RATIO	CMRR	$V_{CM} = \pm 13 \text{ V}$	130	140		115	140		dB
POWER SUPPLY REJECTION RATIO	PSRR	$V_S = \pm 3 \text{ V to } \pm 18 \text{ V}$		115	125		110	120	dB
LARGE SIGNAL VOLTAGE GAIN	A _{VO}	$R_{L} \ge 2 \text{ k}\Omega,$ $V_{O} = 610 \text{ V}^{5}$	5000	12000		2000	6000		V/mV
OUTPUT VOLTAGE SWING	Vo	$R_{L} \ge 10 \text{ k}\Omega$ $R_{L} \ge 2 \text{ k}\Omega$ $R_{L} \ge 1 \text{ k}\Omega$	±12.5	±14.0 ±13.0 ±12.5		±12.5	±14.0 ±13.0 ±12.5		V V V
SLEW RATE ²	SR	$R_{\rm L} \ge 2 \ {\rm k}\Omega$	0.1	0.3		0.1	0.3		V/µs
CLOSED-LOOP BANDWIDTH ²	BW	$A_{VCL} = 1$	0.4	0.6		0.4	0.6		MHz
OPEN-LOOP OUTPUT RESISTANCE	Ro			60			60		Ω

REV. C –2–

	0P177
--	-------

POWER CONSUMPTION	P_{D}	$V_{S} = \pm 15 \text{ V},$					
	10	No Load	50	60	50	60	mW
		$V_s = \pm 3 V$, No Load	3.5	4.5	3.5	4.5	mW
SUPPLY							
CURRENT	I_{SY}	$V_S = \pm 15 \text{ V},$ No Load	1.6	2	1.6	2	mA
OFFSET ADJUSTMENT							
RANGE		$R_P = 20 \text{ k}\Omega$	±3		±3		mV

NOTES

REV. C -3-

¹Long-Term Input Offset Voltage Stability refers to the averaged trend line of V_{OS} versus time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 operating days are typically less than 2.0 μ V.

²Sample tested.

³Guaranteed by design. ⁴Guaranteed by CMRR test condition.

 $^{^5}$ To ensure high open-loop gain throughout the ± 10 V output range, A_{VO} is tested at -10 V $\leq V_O \leq 0$ V, 0 V $\leq V_O \leq +10$ V, and -10 V $\leq V_O \leq +10$ V.

Specifications subject to change without notice.

OP177-SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (@ $V_s = \pm 15 \ V$, $-40^{\circ}C \le T_A \le 85^{\circ}C$, unless otherwise noted.)

Parameter	Symbol	Conditions	Min	OP177F Typ	Max	Min	OP177G Typ	Max	Unit
INPUT OFFSET VOLTAGE	Vos			15	40		20	100	μV
AVERAGE INPUT OFFSET VOLTAGE DRIFT ¹	TCVos			0.1	0.3		0.7	1.2	μV/°C
INPUT OFFSET CURRENT	Ios			0.5	2.2		0.5	4.5	nA
AVERAGE INPUT OFFSET CURRENT DRIFT ²	TCI _{OS}			1.5	40		1.5	85	pA/°C
INPUT BIAS CURRENT	I _B		-0.2	2.4	4		2.4	±6	nA
AVERAGE INPUT BIAS CURRENT DRIFT ²	TCI_B			8	40		15	60	pA/°C
INPUT VOLTAGE RANGE ³	IVR		±13	±13.5		±13	±13.5		V
COMMON-MODE REJECTION RATIO	CMRR	$V_{CM} = \pm 13 \text{ V}$	120	140		110	140		dB
POWER SUPPLY REJECTION RATIO	PSSR	$V_S = \pm 3 \text{ V to } \pm 18 \text{ V}$	110	120		106	115		dB
LARGE-SIGNAL VOLTAGE GAIN ⁴	A _{VO}	$R_{\rm L} \ge 2 \text{ k}\Omega, V_{\rm O} = 10 \text{ V}$	2000	6000		1000	4000		V/mV
OUTPUT VOLTAGE SWING	Vo	$R_{\rm L} \ge 2/k\Omega$	±12	±13		±12	±13		V
POWER CONSUMPTION	P_{D}	$V_S = \pm 15 \text{ V}$, No Load		60	75		60	75	mW
SUPPLY CURRENT	I_{SY}	$V_S = \pm 15 \text{ V}$, No Load		20	2.5		2	2.5	mA

NOTES

Specifications subject to change without notice.

Figure 2. Typical Offset Voltage Test Circuit

Figure 3. Optional Offset Nulling Circuit

–4– REV. C

OP177TCV_{OS} is sample tested.

²Guaranteed by endpoint limits.

³Guaranteed by CMRR test condition.

 $^{^4}$ To ensure high open-loop gain throughout the ± 10 V output range, A_{VO} is tested at -10 V $\leq V_O \leq 0$ V, 0 V $\leq V_O \leq +10$ V, and -10 V $\leq V_O \leq +10$ V.

Figure 4. Burn-In Circuit

ABSOLUTE MAXIMUM RATINGS

Supply Voltage
Internal Power Dissipation ¹ 500 mW
Differential Input Voltage ±30 V
Input Voltage
Output Short-Circuit Duration Indefinite
Storage Temperature Range
S, P Package
Operating Temperature Range
OP177F, OP177G40°C to +85°C
Lead Temperature Range (Soldering, 60 sec) 300°C
DICE Junction Temperature (T_J)65°C to +150°C

Package Type	θ_{JA}^{2}	$\theta_{ m JC}$	Unit
8-Pin Plastic DIP (P)	103	43	°C/W
8-Pin SO (S)	158	43	°C/W

NOTES

ORDERING GUIDE

Model	Temperature	Package	Package
	Range	Description	Option
OP177FP	-40°C to +85°C	8-Pin Plastic DIP	
OP177GP	-40°C to +85°C	8-Pin Plastic DIP	
OP177FS	-40°C to +85°C	8-Pin SO	SO-8
OP177GS	-40°C to +85°C	8-Pin SO	SO-8

REV. C –5–

 $^{^1} For$ supply voltages less than ± 22 V, the absolute maximum input voltage is equal to the supply voltage.

 $^{^{2}\}theta_{JA}$ is specified for worst-case mounting conditions, i.e., θ_{JA} is specified for device in socket for P-DIP; θ_{JA} is specified for device soldered to printed circuit board for SO package.

0P177

APPLICATION INFORMATION

Gain Linearity

The actual open-loop gain of most monolithic op amps varies at different output voltages. This nonlinearity causes errors in high closed-loop gain circuits.

It is important to know that the manufacturer's A_{VO} specification is only a part of the solution, since all automated testers use endpoint testing and, therefore, show only the average gain. For example, Figure 5 shows a typical precision op amp with a respectable open-loop gain of 650 V/mV. However, the gain is not constant through the output voltage range, causing nonlinear errors. An ideal op amp would show a horizontal scope trace.

Figure 5. Typical Precision Op Amp

Figure 6. Output Gain Linearity Trace

Figure 7. Open-Loop Gain Linearity Test Circuit

Figure 6 shows the OP177's output gain linearity trace with its truly impressive average A_{VO} of 12000 V/mV. The output trace is virtually horizontal at all points, assuring extremely high gain accuracy. ADI also performs additional testing to ensure consistent high open-loop gain at various output voltages.

Figure 7 is a simple open-loop gain test circuit for your own evaluation.

THERMOCOUPLE AMPLIFIER WITH COLD-JUNCTION COMPENSATION

An example of a precision circuit is a thermocouple amplifier that must amplify very low level signals accurately without introducing linearity and offset errors to the circuit. In this circuit, an S-type thermocouple, which has a Seebeck coefficient of $10.3~\mu\text{V}/^\circ\text{C}$, produces 10.3~mV of output voltage at a temperature of 1000°C . The amplifier gain is set at 973.16. Thus, it will produce an output voltage of 10.024~V. Extended temperature ranges to beyond 1500°C can be accomplished by reducing the amplifier gain. The circuit uses a low-cost diode to sense the temperature at the terminating junctions and, in turn, compensates for any ambient temperature change. The OP177, with its high open-loop gain, plus low offset voltage and drift combines to yield a very precision temperature sensing circuit. Circuit values for other thermocouple types are shown in Table I.

Table I.

Thermo- couple Type	Seebeck Coefficient	R1	R2	R 7	R9
K	39.2 μV/°C	110 Ω	5.76 kΩ	102 kΩ	269 kΩ
J	50.2 μV/°C	100 Ω	4.02 kΩ	80.6 kΩ	200 kΩ
S	10.3 μV/°C	100 Ω	20.5 kΩ	392 kΩ	1.07 MΩ

Figure 8. Thermocouple Amplifier with Cold Junction Compensation

PRECISION HIGH GAIN DIFFERENTIAL AMPLIFIER

The high gain, gain linearity, CMRR, and low TCV_{OS} of the OP177 make it possible to obtain performance not previously available in single stage, very high gain amplifier applications. See Figure 9.

For best CMR, $\frac{R1}{R2}$ must equal $\frac{R3}{R4}$. In this example, with a 10 mV differential signal, the maximum errors are as listed in Table II.

–8– REV. C

Figure 9. Precision High Gain Differential Amplifier

Table II. High Gain Differential Amp Performance

Туре	Amount
Common-Mode Voltage	0.1%/V
Gain Linearity, Worst Case	0.02%
TCV _{OS}	0.0003%/°C
TCI_{OS}	0.008%/°C

ISOLATING LARGE CAPACITIVE LOADS

The circuit in Figure 10 reduces maximum slew rate but allows driving capacitive loads of any size without instability. Because the $100~\Omega$ resistor is inside the feedback loop, its effect on output impedance is reduced to insignificance by the high openloop gain of the OP177.

Figure 10. Isolating Capacitive Loads

Figure 11. Bilateral Current Source

Figure 12. Precision Absolute Value Amplifier

REV. C –9–

0P177

BILATERAL CURRENT SOURCE

The current sources shown in Figure 11 will supply both positive and negative current into a grounded load.

Note that
$$Z_0 = \frac{R5\left(\frac{R4}{R2} + 1\right)}{\frac{R5 + R4}{R2} - \frac{R3}{R1}}$$

and that for Z_O to be infinite,

$$\frac{R5 + R4}{R2} \text{ must} = \frac{R3}{R1}$$

PRECISION ABSOLUTE VALUE AMPLIFIER

The high gain and low TCV_{OS} assure accurate operation with inputs from microvolts to volts. In this circuit, the signal always appears as a common-mode signal to the op amps. See Figure 12.

Figure 13. Precision Positive Peak Detector

PRECISION POSITIVE PEAK DETECTOR

In Figure 13, the C_H must be of polystyrene, Teflon,* or polyethylene to minimize dielectric absorption and leakage. The droop rate is determined by the size of C_H and the bias current of the OP41.

PRECISION THRESHOLD DETECTOR/AMPLIFIER

In Figure 14, when $V_{IN} < V_{TH}$, amplifier output swings negative, reverse biasing diode D_1 . $V_{OUT} = V_{TH}$ if $R_L = \infty$. When $V_{IN} \ge V_{TH}$, the loop closes,

$$V_{OUT} = V_{TH} + \left(V_{IN} - V_{TH}\right) \left(1 + \frac{R_F}{R_S}\right)$$

C_C is selected to smooth the response of the loop.

Figure 14. Precision Threshold Detector/Amplifier

REV. C

^{*}Teflon is a registered trademark of DuPont.