

UNIVERSITY OF MUMBAI

DEPARTMENT OF STATISTICS

Vidyanagari, Mumbai-400098.

CERTIFICATE

This is to certify that the following students of M.Sc. Part-II have successfully completed the project "BREATHE INDIA" during the academic year 2020-2021. This work has been done independently to the best of our knowledge and Awareness.

Students involved in this academic project group are:

- ♦ Abhishek Bandivadekar. (Roll no. 04)
- ♦ Nikita Bansode. (Roll no. 05)
- ♦ Chetan Borghare. (Roll no. 09)
- ◆ Sunita Choudhary. (Roll no. 10)
- ♦ Vinayak Gaikar. (Roll no. 13)
- ♦ Ram Jadhav. (Roll no. 20)
- ♦ Rutija Parab. (Roll no. 37)
- ◆ Rajesh Patil. (Roll no. 38)

Dr. Alok D. Dabade.

Dr. Mrs. Vaijayanti U. Dixit.

(Guide and Mentor)

(Head of the Department, Statistics)

ACKNOWLEDGEMENT

We are extremely grateful to our Head of Statistics Department **Dr. Mrs. Vaijayanti Dixit** Madam for providing us with this opportunity of widening our horizons of knowledge and diving deep into the ocean of Statistics through this project.

We are immensely indebted to our guide and mentor **Dr**. **Alok Dabade** Sir who gave us his extremely valuable suggestions and ideas throughout the duration of our project. We are thankful to him for his time and effort.

We express our gratitude towards our Professor **Priyesh Tiwari** Sir & Dr. **Leela Subramaniyam** Madam for their support and guidance which helped us complete our project duly. We also thank other Professors of the Department of Statistics for providing us necessary knowledge without which this project could have not been complete.

Last but not the least, we would like to give our special thanks to all involved in this project including the team members and all the external supporters as without their inspiration and valuable suggestions, it would have not been possible to develop the project with ease and within prescribed time.

INDEX

Sr. No.	<u>Content</u>	Page No.
1.	Introduction	6
2.	What is AQI (Air Quality Index)	7
3.	Objectives	10
4.	Data Preparation	13
5.	Data Extraction	14
6.	Data Visualization and EDA	15
7.	Time Plot	33
8.	Time Series Analysis	43
9.	Spearman's Rank Correlation	82
10.	Kendall's Tau Coefficient	83
11.	Cross Tabulation	88
12.	Conclusion	95
13.	Codes	96
14.	Bibliography	99

"Air pollution may not always be visible, but it can be deadly. It is an invisible killer that lurks all around us, preying on young and old. It is causing deaths from heart attack, strokes, lung disease and cancer."

-WHO

Air pollution is not merely a nuisance and a threat to health. It is a reminder that our most celebrated technological achievements-the automobile, the jet plane, the power plant, industry in general, and indeed the modern city itself-are, in the environment, failures.

— Barry Commoner —

Introduction

Clean air is the foremost requirement to sustain healthy lives of humankind and those of the supporting ecosystems which in return affect the human wellbeing. Due to the rapid growth of economy and fossil fuel consumption and lack of emission controls, we have experienced substantially elevated concentrations of air pollutants, which not only degrade regional air quality, but also exert significant impacts on public health and global climate.

Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, pollen and mold spores may be suspended as particles. Ozone, a gas, is a major part of air pollution in cities. Air pollution is a type of environmental pollution that affects the air and is usually caused by smoke or other harmful gases, Nitrogen oxide (NO_x) , Particulate matter (PM), Carbon dioxide (CO_2) , Sulphur oxide (SO_x) , dioxins and furans, etc. mainly oxides of carbon, Sulphur and nitrogen. In other words, air pollution is the contamination of air due to the presence or introduction of a substance which has a poisonous effect.

COVID-19 is considered as one of the major disasters, which has impacted the whole world. Wuhan city, capital of Hubei province of China, faced the first outbreak of this COVID-19 during December 2019 and all nations of the world are affected by COVID-19 in a gradual manner. After China, most South Asian Countries like Japan, South Korea, and others are affected by the cross-border travels. The return of Chinese workers spread COVID-19 in Italy. The Government of India issued an advisory for travelers from China during early January and also started screening the travelers from China. In response to the global COVID-19 pandemic, the Indian Prime Minister announced Janata (people's) curfew on 22 March 2020 from 7 am until 9 pm. Soon after, the Government of India announced a complete nationwide lockdown. from 24 March 2020 for 21 days (14 April 2020) then second phase from 14 April 2020 to 3 May 2020 and further it extended in other cities having high number of covid cases. All the domestic and international flights, trains, and vehicular transport except for non-essential purposes were stopped and banned. Such lockdown was unique in India; total lockdown was not seen in any other countries. The Northern parts of India are subjected to poor air quality and atmospheric pollution, mainly due to emissions from vehicles, industry, brick kilns, coalbased power plants, and crop residue burning. For instance, New Delhi, capital of India, suffers with sustained poor air quality where pollution levels are higher compared with Beijing. In recent past, the Delhi Government conducted experiments of permitting odd or even licensed vehicles on the road to curb the pollution level (like Beijing). However, such experiments have generally not helped or improved the air quality of Delhi. Recently, someone carried out an analysis of PM2.5 data in a number of Chinese cities, Beijing, Shanghai, Guangzhou, and Wuhan during COVID-19, and found a pronounced reduction in air pollution attributed to the reduction of emissions in transportation and industrial sectors. They found 20–30% reduction in emission of NO2 in China, Spain, France, Italy, and the USA due to lockdown. During complete lockdown in India, roads were deserted without any vehicle except the emergency vehicles.

WHAT IS AQI?

The **Air Quality Index** (**AQI**) is an index for reporting air quality on a daily basis. Air quality index is usually the standardized formula to indicate how polluted the air currently is and is also used for simplified public information and data interpretation. AQI has the scale of about 0-500. Higher the AQI, higher is the pollution rate.

AQI CALCULATION

The Air Quality Index is based on measurement of particulate matter (PM2.5 and PM10), Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2) and Carbon Monoxide (CO) emissions. Most of the stations on the map are monitoring both PM2.5 and PM10 data, but there are few exceptions where only PM10 is available. There is no theoretical upper value of AQI but it is rare to find values above 1000.

These classifications are done for the calculated Air Quality Index values. This is done as, if the Air Quality Index value is between 0-50 then it is classified as good, 51-100 as satisfactory, 101-200 as moderate, 201-300 as poor, 301-400 is classified as very poor and above 401 considered as severe. There are also color barriers for this classification. Each type has separate color which shows the quality easily. Green represents good, sap green as satisfactory, yellow as moderate, orange as poor, red as very poor and maroon as the severe. This is for the easier understanding.

The pre-defined buckets of AQI are as follows:

Good (0-50)	Minimal Impact	Poor (201–300)	Breathing discomfort to people on prolonged exposure
Satisfactory (51–100)	Minor breathing discomfort to sensitive people	Very Poor (301–400)	Respiratory illness to the people on prolonged exposure
Moderate (101–200)	Breathing discomfort to the people with lung, heart disease, children and older adults	Severe (>401)	Respiratory effects even on healthy people

FORMULA FOR CALCULATING AQI

The AQI calculation uses 7 measures: PM2.5, PM10, SO2, NOx, NH3, CO and O3.For PM2.5, PM10, SO2, NOx and NH3 the average value in last 24-hrs is used with the condition of having at least 16 values. For CO and O3 the maximum value in last 8-hrs is used. Each measure is converted into a Sub-Index based on pre-defined groups.

Sometimes measures are not available due to lack of measuring or lack of required data points.

Final AQI is the maximum Sub-Index with the condition that at least one of PM2.5 and PM10 should be available and at least three out of the seven should be available. To get AQI at day level, the AQI values are averaged over the hours of the day.

Why this topic?

Clean air is the basic amenity when it comes to healthy living for mankind. Today poor air quality is the main reason for several acute health diseases. Poor air quality brings many health problems like cardiovascular disease and respiratory problems like asthma, allergies, pneumonia and bronchitis, etc. It is essential to know the air quality of our locality, city and nation to assess its impact on our health.

Covid-19 has affected the world on a huge scale and it continues to spread its claws. Almost every country had imposed lockdown in the year 2020 to mitigate the spread of this virus. India imposed lockdown on 22nd March, 2020. The lockdown has led to colossal economic loss to India; however, it has come as a respite to the environment. Utilizing the Air Quality Index data recorded before and during this adverse time, our project is aimed to determine the impact of lockdown on Air Quality Index (AQI) in various cities of India, also the factors that affect AQI and predict the future values of AQI for some of those cities.

Objectives:

- * To study Air Quality Index before lockdown and during lockdown.
- ❖ To forecast future values for Air Quality Index for four cities.
- ❖ To find association between Air Quality Index and other factors such as temperature, humidity, dew point, wind speed and pressure.

SOFTWARES USED:

- Minitab
- R Software
- Python
- MS-Excel
- SPSS (Statistical Package for the Social Sciences)

DATA PREPARATION

VARIABLES	DESCRIPTION
AQI	The air quality index (AQI) is an index for reporting air quality on a daily basis. It is a measure of how air pollution affects one's health within a short time period. The purpose of the AQI is to help people know how the local air quality impacts their health. It is a continuous variable.
AQI Bucket	AQI Category or Bucket is used to group the AQI values into six categories based on the value namely: Good (0–50), Satisfactory (51–100), Moderate (101–200), Poor (201–300), Very Poor (301–400), Severe (401–500). It is a categorical variable.
Average Temperature	Temperature is continuous variable as it does have fractional value too. The average temperature of the air as indicated by a properly exposed thermometer during a given time period, usually a day, a month, or a year. For climatological tables, the mean temperature is generally calculated for each month and for the year.
Average Humidity	Humidity is the concentration of water vapor present in the air. Humidity indicates the likelihood for precipitation, dew, or fog to be present. It is a continuous variable.
Average Windspeed	The "wind speed" reported in each observation is an average speed for the most recent two-minute period prior to the observation time. This is also considered the & "sustained wind" for routine surface observations. It is a continuous variable.
Average Dew Point	The dew point is the temperature to which air must be cooled to become saturated with water vapor. When cooled further, the airborne water vapor will condense to form liquid water (dew). When, air cools to its dew point through contact with a surface that is colder than the air, water will condense on the surface. It is a continuous variable.
Average Pressure	It is the force exerted on a surface by the air above it as gravity pulls it to Earth. It is commonly measured with a barometer. It is also a continuous variable.

DATA EXTRACTION

The data is taken from open source websites viz <u>kaggle.com</u> and <u>wunderground.com</u>. From Kaggle we get data of 11 cities namely Ahmedabad, Jaipur, Delhi, Mumbai, Chennai, Bengaluru, Gurgaon, Hyderabad, Brajrajnagar, Amritsar and Thiruvananthapuram. The data has daily observations for various Air pollutants, AQI, AQI bucket, Temperature, Humidity, Dew points, Wind speed and Pressure from 1st January, 2018 to 30th June, 2020 for each above mentioned cities. Because of time factor, we have chosen only 4 cities for our analysis, namely, Jaipur, Delhi, Chennai, Hyderabad. The data is basically time series data.

DATA VISUALIZATION

The overview of all data consisting all four cities:

OVERVIEW

Dataset Statistics

Number of Variables	20
Number of Rows	3647
Missing Cells	0
Missing Cells (%)	0.0%
Duplicate Rows	0
Duplicate Rows (%)	0.0%
Total Size in Memory	1.2 MB
Average Row Size in Memory	330.8 B
Variable Types	
Categorical	3
Numerical	17

PM2.5 Numerical

Distinct Count Unique (%) Missing Minimum 5-th Percentile	3028 83.00% 0 6.24 17.193	PM2.5 0.015	
Q1	32.735	0 100 200 300 400 500	
Median	47.88	PM2.5	
Q3	69.165		
95-th Percentile	158.282		
Maximum	582.28		
Range	576.04		
IQR	36.43	DM2.5	ļ
Mean	60.7374	PM2.5	
Standard Deviation	50.5423	330	
Variance	2554.52	250 -	
Sum	221509.3	9: WG 170 -	
Skewness	3.1512		
Kurtosis	13.9122	90	
Coefficient of Variation	0.8321	10	

PM10 Numerical

Numerical	
Distinct Count	2853
Unique (%)	78.20%
Missing	0
Minimum	0.21
5-th Percentile	35.175
Q1	77.555
Median	128.66
Q3	152.525
95-th Percentile	311.86
Maximum	761.91
Range	761.7
IQR	74.97
Mean	133.1024
Standard Deviation	85.8704
Variance	7373.723
Sum	485424.6
Skewness	1.9782
Kurtosis	5.9381
Coefficient of Variation	0.6451

NO Numerical

NO2 Numerical

Distinct Count	2611	
Unique (%)	71.60%	NO2
Missing	0	0.028
Minimum	3.73	0.021
5-th Percentile	11.32	0.014 - Density
Q1	18.725	0.007
Median	27.59	
Q3	40.985	0 20 40 60 80 100
95-th Percentile	61.354	NO2
Maximum	106.04	
Range	102.31	
IQR	22.26	
Mean	31.0953	NO2
Standard Deviation	15.8966	100
Variance	252.7004	80
Sum	113404.4	
Skewness	0.877	80 - 40 - 40 - 40 - 40 - 40 - 40 - 40 -
Kurtosis	0.5005	
Coefficient of Variation	0.5112	0

NH3 Numerical

CO Numerical

Distinct Count	254	СО	
Unique (%)	7.00%	1.2	
Missing	0	0.9	
Minimum	0	/ /	
5-th Percentile	0.36		
Q1	0.64	0.3	
Median	0.83	0	
Q3	1.05	0 0.8 1.6 2.4 3.2	
95-th Percentile	1.787	CO	
Maximum	3.66		
Range	3.66		
IQR	0.41	СО	
Mean	0.9061	•	
Standard Deviation	0.4508	3.2	
Variance	0.2033	2.4	
Sum	3304.55	8 1.6	
Skewness	1.8664		
Kurtosis	5.5914	0.8	
Coefficient of Variation	0.4976	0	

SO2 numerical

Distinct Count	1463	SO2
Unique (%)	40.10%	0.1
Missing	0	0.08
Minimum	2.47	\$\frac{\frac{1}{2}}{2} 0.06 - \frac{1}{2} 0.04 - \f
5-th Percentile	4.59	0.04
Q1	6.78	
Median	9.83	2 9 16 23 30
Q3	12.91	SO2
95-th Percentile	19.06	
Maximum	34.03	
Range	31.56	
IQR	6.13	SO2
Mean	10.4431	
Standard Deviation	4.5842	30
Variance	21.0146	23 -
Sum	38085.83	S 16 -
Skewness	1.0082	
Kurtosis	1.4352	9 -
Coefficient of Variation	0.439	2

O3 numerical

Distinct Count	2700	O3
Unique (%)	74.00%	0.024
Missing	0	≥ 0.018
Minimum	4.86	A 8 0.012 -
5-th Percentile	16.05	0.006
Q1	26.825	0 4
Median	36.37	0 20 40 60 80 100
Q3	48.6	O3
95-th Percentile	66.401	
Maximum	111.96	
Range	107.1	
IQR	21.775	O3
Mean	38.459	e e
Standard Deviation	15.7923	100
Variance	249.3982	80
Sum	140260	8 60 -
Skewness	0.7071	40
Kurtosis	0.6372	
Coefficient of Variation	0.4106	20
		0 -

AQI

Numerical		
Distinct Count	409	
Unique (%)	11.20%	
Missing	0	
Minimum	29	
5-th Percentile	54.3	
Q1	81	
Median	111	
Q3	158	
95-th Percentile	332	
Maximum	659	
Range	630	
IQR	77	
Mean	137.5053	
Standard Deviation	86.7255	
Variance	7521.314	
Sum	501482	
Skewness	1.953	
Kurtosis	4.2881	
Coefficient of Variation	0.6307	

Avg Temp

			-
num	erı	.ca	Т

Distinct Count	506	Avg Temp
Unique (%)	13.90%	0.04
Missing	0	≥ 0.03
Minimum	42	\$\frac{1}{2} 0.03 + \frac{1}{2} 0.02 + \frac{1}{2}
5-th Percentile	58.63	0.01
Q1	77.2	0
Median	83.1	40 50 60 70 80 90 100
Q3	88.9	Avg Temp
95-th Percentile	96.1	
Maximum	108.5	
Range	66.5	
IQR	11.7	Avg Temp
Mean	81.4781	•
Standard Deviation	10.7843	100
Variance	116.3011	90
Sum	297150.5	80 - 80 - 80 - 80 - 80 - 80 - 80 - 80 -
Skewness	-0.8555	5A 70 -
Kurtosis	0.4597	60
Coefficient of Variation	0.1324	50

Avg dew point numerical

numerical	
Distinct Count	514
Unique (%)	14.10%
Missing	0
Minimum	22.4
5-th Percentile	40
Q1	55.5
Median	68.7
Q3	74.55
95-th Percentile	78.6
Maximum	82.6
Range	60.2
IQR	19.05
Mean	64.4658
Standard Deviation	12.5922
Variance	158.5625
Sum	235106.7
Skewness	-0.8393
Kurtosis	-0.2674

Avg humidity

l

Distinct Count	788	Avg humidity
Unique (%)	21.60%	0.028
Missing	0	0.021
Minimum	9.6	0.014 - Density
5-th Percentile	26.1	0.007
Q1	47.6	0
Median	66.4	10 30 50 70 90
Q3	75.4	Avg humidity
95-th Percentile	87.7	
Maximum	98.9	
Range	89.3	
IQR	27.8	Avg humidity
Mean	61.5547	
Standard Deviation	18.8899	90
Variance	356.829	≥ 70
Sum	224490.1	Avg humidity
Skewness	-0.5454	1 20 4
Kurtosis	-0.4846	30
Coefficient of Variation	0.3069	10

Avg windspeed

			-
nume	rı	.ca	.1

Distinct	156	Avg windspeed
Count	130	0.16
		0.10
Unique (%)	4.30%	A
		0.12
Missing	0	≥
		Density 60.0
Minimum	0	
5-th Percentile	1.5	0.04
Percentile		
Q1	3.6	0 -
		0 0 40 04
Median	5.2	0 6 12 18 24
Q3	7.3	Avg windspeed
Ų3	7.3	
95-th	10.5	
Percentile	10.5	
Maximum	28.5	
Widamiidiii	20.5	
Range	28.5	
IQR	3.7	Avg windspeed
Mean	5.5848	•
	3.30 10	
Standard	2.7723	24 -
Deviation	2.7720	
Variance	7.6858	D 10
- Tarianec	7.0030	9 10 -
Sum	20367.6	peedspuin 12
		\$ 12 -
Skewness	0.7534	6/2
Kurtosis	1.4803	Ā
	1005	6 —
Coefficient		
of	0.4964	0
Variation		•
	l .	

From above EDA we conclude that:

PM2.5:-

- It is positively skewed.
- It is not normally distributed.
- It has outliers.
- It does not contain any negative value and zeros.

PM10:-

- It is right/positively skewed.
- It is not normally distributed.
- It has outliers.
- It does not contain any negatives and zeros.

NO:-

- It is positively skewed.
- It is not normally distributed.
- It has outliers.
- It does not contain any negative value and no zeros.

NO2:-

- It is right skewed.
- It is not normally distributed.
- It has outliers.
- It does not contain any negative value and no zeros.

NH3:-

- It is positively skewed.
- It is not normally distributed.
- It has outliers.
- It does not contain any negative value and no zeros.

CO:-

- It is positively skewed.
- It is not normally distributed.
- It has outliers.
- It does not contain any negative value but has 0.7% zeros.

SO2:-

- It is slightly right skewed.
- It is approximately normally distributed.
- It has outliers.
- It does not contain any negative value and no zeros.

O3:-

- It is right skewed.
- It is approximately normally distributed.
- It has outliers.
- It does not contain any negative value and no zeros.

AQI:-

- It is right skewed.
- It is not normally distributed.
- It has outliers.
- It does not contain any negative value and no zeros.

Temperature:-

- It is negatively skewed.
- It is not normally distributed.
- It has outliers.
- It does not contain any negative value and no zeros.

Dew Point:-

- It is left or negatively skewed.
- It is not normally distributed.

- It has outliers.
- It does not contain any negative value and no zeros.

Humidity:-

- It is slightly negatively skewed.
- It is not normally distributed.
- It has no outliers.
- It does not contain any negative value and no zeros.

Wind Speed:-

- It is positively skewed.
- It is not normally distributed.
- It has outliers.
- It does not contain any negative value and no zeros.

Objective 1	
To study Air Quality Index before lockdown and during lockdown.	

TIME SERIES ANALYSIS

A Time series is a collection of random variables at time t, represented as $\{X(t), t \in T\}$ where T is an infinite set of time periods and t is an indexing parameter. The set T is called as time parameter space and the set of collection of all possible values taken by X(t) is called state space. **Time Series Analysis** comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data.

Assumptions in Time Series Analysis:

Stationarity:

The first assumption is that the series are stationary. Essentially, this means that the series are normally distributed and the mean and variance are constant and independent of time over a long time period.

Uncorrelated random error:

We assume that the error term is randomly distributed and the mean and variance are constant over a time period. The Durbin-Watson test is the standard test for correlated errors.

No outliers:

We assume that there is no outlier in the series. Outliers may affect conclusions strongly and can be misleading. Random shocks (a random error component): If shocks are present, they are assumed to be randomly distributed with a mean of o and a constant variance.

Random shocks (a random error component):

If shocks are present, they are assumed to be randomly distributed with a mean of o and a constant variance.

Some important concepts and terms:

Dependence:

Dependence refers to the association of two observations with the same variable, at prior time points. Stationarity: Shows the mean value of the series that remains constant over a time period; if past effects accumulate and the values increase towards infinity, then stationarity is not met.

Differencing:

Used to make the series stationary, to De-trend, and to control the auto-correlations; however, some time series analyses do not require differencing and over-differenced series can produce inaccurate estimates.

Exponential smoothing in time series analysis:

This method predicts the one next period value based on the past and current value. It involves averaging of data such that the non-systematic components of each individual case or observation cancel out each other. The exponential smoothing method is used to predict the short-term predication. Alpha, Gamma, Phi, and Delta are the parameters that estimate the effect of the time series data. Alpha is used when seasonality is not present in data. Gamma is used when a series has a trend in data. Delta is used when seasonality cycles are present in data. A model is applied according to the pattern of the data.

Curve fitting in time series analysis:

Curve fitting regression is used when data is in a non-linear relationship.

Time Plot

A time series plot (sometimes called a time series graph) displays **values against time**. They are similar to Cartesian plane x-y graphs, but while an x-y graph can plot a variety of "x" variables (for example, height, weight, age), time plots can only display time on the x-axis. Unlike pie charts and bar charts, these plots do not have categories. Time plots are good for showing how data changes over time. For example, this type of chart would work well if you were sampling data at random times.

City-Jaipur

Time plot for city Jaipur from December 2019 to June 2020.

In above time plot for city Jaipur, blue line shows AQI before announcing lockdown and orange line shows AQI during the lockdown. Here, we clearly see that during lockdown, AQI decreases. This might be because there were less vehicular emissions, less human activities which contribute to Air Pollution. When government announced some relaxations, AQI showed an increase.

Also, to show it statistically first we make the two separate time plots of AQI before lockdown and during lockdown. Then we plot time series for both the observations.

Time plot before lockdown

Time plot during lockdown

From these plots it is visible that both the time series plots are not stationary. So, we make them stationary by differencing and then compare these time series by their respective values of means.

Mean of Time series data before lockdown= -0.0274

Mean of Time series data during lockdown= -0.59434

Mean of Time series data before lockdown ≥ Mean of Time series data during lockdown So, we conclude that AQI level decreases during lockdown.

City-Delhi

Time plot for city Delhi from December 2019 to June 2020.

In above time plot for city Delhi, blue line shows Air Quality Index before announcement of lockdown and orange line shows Air Quality Index during the lockdown. Here, we clearly see that before the lockdown, AQI for Delhi is too high affecting human health severely. But after the announcement of lockdown AQI shows immense decrease. Delhi is believed to have highly contaminated air because of excessive vehicular activities, industrial outputs, human contribution to poor air quality.

Also, to show it statistically first we make the two separate time plots of AQI before lockdown and during lockdown. Then we plot time series for both the observations.

Time plot before lockdown

Time plot during lockdown

From these plots it is visible that both the time series plots are not stationary. So, we make them stationary by differencing and then compare these time series by their respective values of means.

Mean of Time series data before lockdown= -0.32075

Mean of Time series data during lockdown= -0.4122

Mean of Time series data before lockdown \geq Mean of Time series data during lockdown So, we conclude that AQI level decreases during lockdown.

City-Hyderabad

Time plot for city Hyderabad from December 2019 to June 2020.

In above time plot for city Hyderabad, blue line shows AQI before the announcement of lockdown and orange line shows AQI during the lockdown. Here, we clearly see that during lockdown AQI decreases due to fewer industrial and human emissions. Even after providing relaxations from lockdown, AQI still shows a decreasing behavior.

Also, to show it statistically first we make the two separate time plots of AQI before lockdown and during lockdown. Then we plot time series for both the observations.

Time plot before lockdown

Time plot during lockdown

From these plots it is visible that both the time series plots are not stationary. So, we make them stationary by differencing and then compare these time series by their respective values of means.

Mean of Time series data before lockdown= -0.058553

Mean of Time series data during lockdown= -0.33645

Mean of Time series data before lockdown \geq Mean of Time series data during lockdown So, we conclude that AQI level decreases during lockdown.

City-Chennai

Time plot for city Chennai from December 2019 to June 2020.

In above time plot for city Chennai, blue line shows AQI before announcing lockdown and orange line shows AQI during the lockdown. Visibly during lockdown AQI decreases. After announcement of relaxations from lockdown, AQI again started increasing to higher values.

Also, to show it statistically first we make the two separate time plots of AQI before lockdown and during lockdown. Then we plot time series for both the observations.

Time plot before lockdown

Time plot during lockdown

From these plots it is visible that both the time series plots are not stationary. So, we make them stationary by differencing and then compare these time series by their respective values of means.

Mean of Time series data before lockdown= -0.01868

Mean of Time series data during lockdown= -0.28972

Mean of Time series data before lockdown \geq Mean of Time series data during lockdown So, we conclude that AQI level decreases during lockdown.

Objective 2
To forecast future values for Air Quality Index for four cities.

TIME SERIES ANALYSIS

Autoregressive model:

An Autoregressive (AR) model predicts future behavior based on past behavior.

An autoregressive model of order p, denoted as AR(p), is of the form,

$$x_t = \varphi_1 x_{t-1} + \varphi_2 x_{t-2} + \dots + \varphi_p x_{t-p} + w_t$$

Where, x_t is stationary, and φ_1 , φ_2 and φ_D are constants ($\varphi_D \neq 0$).

Although it is not necessary yet, we assume that w_t is a Gaussian white noise series with mean zero and variance σ_{w^2} , unless otherwise stated. If the mean, μ , of x_t is not zero,

replace x_t by $x_t - \mu$ and the model becomes,

$$x_t - \mu = \phi_1(x_{t-1} - \mu) + \phi_2(x_{t-2} - \mu) + \dots + \phi_p(x_{t-p} - \mu) + w_t$$

Which can be simplified to,

$$x_t = \alpha + \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p} + w_t$$

Where, $\alpha = \mu(1 - \phi_1 - ... - \phi_p)$.

The model can be expressed using <u>backshift operator</u> B, which is very useful in determining the various properties of the time series model, as

$$(1 - \varphi_1 B_1 - \varphi_2 B_2 \dots - \varphi_p B_p) x_t = w_t$$

or even more concisely as,

$$\varphi(B)x_t = w_t$$

Where, $\varphi(B) = 1 - \varphi_1 B_1 - \varphi_2 B_2 \dots - \varphi_p B_p$ and called as <u>autoregressive operator</u>.

Moving Average model:

Moving Average (MA) model uses past forecast errors to predict future values.

The moving average model of order q, or MA(q) model, is defined to be

$$\textbf{x}_{t} = w_{t} + \theta_{1}w_{t\text{-}1} + \theta_{2}w_{t\text{-}2} + \cdots + \theta_{q}w_{t\text{-}q}$$

Where, there are q lags in the moving average and θ_1 , θ_2 , ..., θ_q ($\theta_q \neq 0$) are parameters. Although it is not necessary yet, we assume that w_t is a Gaussian white noise series with mean zero and variance σ_{w^2} , unless otherwise stated. We may also write the MA(q) process in the equivalent form

$$x_t = \theta(B)w_t$$

Where, $\theta(B) = 1 - \theta_1 B - \theta_2 B^2 \cdot \cdot \cdot - \theta_q B^q$, called as <u>moving average operator</u>. Unlike the autoregressive process, the moving average process is stationary for any values of the parameters $\theta_1, \theta_2, \dots, \theta_q$.

ARMA Model:

A time series $\{x_t, t = 0, \pm 1, \pm 2, ...\}$ is ARMA(p, q) if it is stationary and

$$\textbf{x}_{t} = \phi_{1}\textbf{x}_{t-1} + \phi_{2}\textbf{x}_{t-2} + \ldots + \phi_{p}\textbf{x}_{t-p} + w_{t} + \theta_{1}w_{t-1} + \theta_{2}w_{t-2} + \cdots + \theta_{q}w_{t-q}$$

with $\phi_p \neq 0$, $\theta_q \neq 0$. We assume that w_t is a Gaussian white noise series with mean zero and variance $\sigma_{w^2} > 0$.

When q = 0, the model is called an autoregressive model of order p, AR(p), and when p = 0, the model is called a moving average model of order q, MA(q). To aid in the investigation of

ARMA models, it will be useful to write them using the AR operator and the MA operator. In particular, The ARMA(p, q) model can then be written in concise form as

$$\varphi(B) x_t = \theta(B) w_t$$

ARIMA:

<u>Autoregressive Integrated Moving Average model</u> (ARIMA) is a generalization of an <u>Autoregressive Moving Average (ARMA) model</u>.

ARIMA models are applied in some cases where data show evidence of non-stationarity in the sense of mean (but not variance/autocovariance), where an initial differencing step (corresponding to the "**Integrated**" part of the model) can be applied one or more times to eliminate the non-stationarity of the mean function (i.e., the trend). When the seasonality shows in a time series, the seasonal-differencing could be applied to eliminate the seasonal component.

Parameters of ARIMA model:

Autoregressive component: In ARIMA model, AR stands for autoregressive. Autoregressive parameter is denoted by p. When p=0, it means that there is no autocorrelation in the series. When p=1, it means that the series auto-correlation is till one lag.

Integrated: In ARIMA time series analysis, integrated is denoted by d. Integration is the inverse of differencing. When d=0, it means the series is <u>stationary</u> and we do not need to take the difference of it. When d=1, it means that the series is not stationary and to make it stationary, we need to take the first difference. When d=2, it means that the series has been differenced twice. Usually, more than two-time difference is not reliable.

Moving average component: In ARIMA model, MA stands for moving the average. MA parameter is denoted by q. In ARIMA, moving average q=1 means that it is an error term and there is auto-correlation with one lag. In order to test whether or not the series and their error term is auto correlated, we usually use W-D test, ACF, and PACF.

Decomposition:

Refers to separating a time series into trend, seasonal effects, and remaining variability.

How to do a Time Series Analysis:

1. Visualize the time series
2. Stationarize the series
3. Plot ACF/PACF charts and find optimal parameters
4. Build the ARIMA model
5. Make Predictions

For city JAIPUR

Time Series plot for AQI of city Jaipur from 01/01/2018 to 30/06/2020.

It is a Time Series plot for city Jaipur with days along the x-axis and AQI figures on the y-axis. As we can see our time series is not stationary. Also, by using decomposition.

We can see there is decreasing trend. This suggests that the time series is not stationary and will require differencing to make it stationary, at least a difference order of 1.

It is a Time Series plot of AQI data differenced for lag 1.

Estimation of Parameters (p, d, q)

Since we difference data with order one to make time series stationary results d=1.

Now we have to plot the ACF and PACF plots for the estimation of parameters (p, q).

Plot of ACF and PACF:

To determine the order of autoregressive (AR) and moving average (MA) series we use ACF and PACF plots. ACF and PACF plots are used to obtain the values of q and p to feed into the ARIMA model

ACF is an (complete) auto-correlation function which gives us values of auto-correlation of any series with its lagged values. In simple terms, it describes how well the present value of the series is related with its past values. Order q of the MA process is obtained from the ACF plot, this is the lag after which ACF crosses the upper confidence interval for the first time.

PACF is a partial auto-correlation function. Basically, instead of finding correlations of present with lags like ACF, it finds correlation of the residuals (which remains after removing the effects which are already explained by the earlier lag(s)) with the next lag value hence 'partial' and not 'complete' as we remove already found variations before we find the next correlation. Order p of the AR process is obtained from PACF plot.

From the above ACF plot we conclude that ACF is significant up to more than 3 lags. So, we consider the value of q=3.

From PACF plot we see that it increases at second lag again it decreases and significant up to 5 lag So, we consider the value of p=1.

Hence, we fit several different models for AQI. Finally, we consider p=1 and q=1. The best fit model we found is ARIMA(1,1,1) with no constant. The final estimates of the parameters are given below.

Final Estimates of Parameters:

Туре	Coeff	SE Coeff	T-Value	P-Value
AR 1	0.4795	0.0363	13.23	0.00
MA1	0.9114	0.0158	57.54	0.00

The significance of the parameters is tested using t-test with p-value very small for all. This indicates that all the parameters are significant.

Residual Sums of Squares

DF	SS	MS
907	981591	1082.24

The residuals must not be auto correlated and this is apparent below with autocorrelation being insignificant for all lags.

The significance of the autocorrelation among the residuals at four lags is tested using Ljung-Box Chi-Square Statistics and output is shown below.

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

Lag	12	24	36	48
Chi-Square	18.24	27.17	40.24	60.79
DF	9	21	33	45
P-Value	0.032	0.165	0.18	0.058

The p-values for the test at all the four lags are large pointing towards the insignificance of autocorrelation among residuals.

Also, the residuals are normally distributed which can be observed in the NPP and histogram. The error has constant variance which is evident from the graph of residual against the fitted values.

Now that we have fit the best possible model with all the assumptions being satisfied, we move to our main purpose of forecasting.

Forecast value from observation 912 (for next 30 days)

		95% I	Limits
Observations	Forecast		
		Lower	Upper
912	80.9882	16.4963	145.48
913	86.6738	12.5004	160.847
914	89.3374	11.5949	167.08
915	90.5519	10.9976	170.106
916	91.0715	10.3273	171.816
917	91.258	9.5765	172.94
918	91.2848	8.7791	173.791

919	91.2349	7.9597	174.51
920	91.1484	7.1324	175.164
921	91.0442	6.3041	175.784
922	90.9316	5.4784	176.385
923	90.8149	4.6567	176.973
924	90.6962	3.8399	177.553
925	90.5767	3.0283	178.125
926	90.4567	2.2219	178.691
927	90.3365	1.4208	179.252
928	90.2162	0.6247	179.808
929	90.0958	-0.1663	180.358
930	89.9754	-0.9524	180.903
931	89.855	-1.7337	181.444
932	89.7346	-2.5102	181.979
933	89.6142	-3.2821	182.51
934	89.4938	-4.0494	183.037
935	89.3734	-4.8124	183.559
936	89.253	-5.5709	184.077
937	89.1325	-6.3252	184.59
938	89.0121	-7.0753	185.1
939	88.8917	-7.8213	185.605
940	88.7713	-8.5633	186.106
941	88.6509	-9.3014	186.603
L	1		

Time series plot after fitting ARIMA model. It shows AQI of Jaipur city since 2018 (blue line) and forecasts and their 95% confidence limits (red line) for next month. On close observation we can see that AQI values slightly decrease in the forecasted values.

Model Summary for checking model efficiency:

Since the MAPE value is 15.791, on an average, the forecast is off by 15.79%

For city Chennai

Time Series plot for AQI of city Chennai from 01/01/2018 to 30/06/2020.

It is a Time Series plot for city Chennai with days along the x-axis and AQI figures on the y-axis.

This time plot suggests that the time series is stationary. Also, by using decomposition.

Also, by using decomposition there is no trend or seasonality. This suggests that the time series is stationary. Now we find parameters.

Estimation of Parameters (p, d, q)

Since our time series is stationary results d=0.

Now we have to plot the ACF and PACF plots for the estimation of parameters (p, q).

Plot of ACF and PACF:

The ACF is significant up to more than 20 lags. Here to fit model we consider the value of q=5.

From PACF, we consider the value of p=4.

Hence, we fit several different models for AQI. Finally, we consider p=4 and q=3 the best fit model we found is ARIMA(4,0,3) with no constant. The final estimates of the parameters are given below.

Final Estimates of Parameters:

Туре	Coeff	SE Coeff	T-Value	P-Value
AR1	1.393	0.237	5.88	0.000
AR2	-1.014	0.357	-2.84	0.005
AR3	1.052	0.271	3.89	0.000
AR4	-0.444	0.106	-4.17	0.000
MA1	0.7	0.24	2.92	0.004
MA2	-0.454	0.233	-1.95	0.052
MA3	0.644	0.168	3.83	0.000

The significance of the parameters is tested using t-test with p-value very small for all. This indicates that all the parameters are significant.

Residual Sums of Squares

DF	SS	MS
904	672312	743.708

The residuals must not be auto correlated and this is apparent below with autocorrelation being insignificant for all lags.

The significance of the autocorrelation among the residuals at four lags is tested using Ljung-Box Chi-Square Statistics and output is shown below.

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

Lag	12	24	36	48
Chi-Square	6.14	24.73	38.97	58.08
DF	4	16	28	40
P-Value	0.189	0.075	0.081	0.032

The p-values for the test at all the four lags are large pointing towards the insignificance of autocorrelation among residuals.

Also, the residuals are normally distributed which can be observed in the NPP and histogram. The error has constant variance which is evident from the graph of residual against the fitted values.

Now that we have fit the best possible model with all the assumptions being satisfied, we move to our main purpose of forecasting.

Forecast value from observation 912 (for next 30 days)

Observations	Forecast	95% Limits		
Observations	Torecast	Lower	Upper	
913	106.927	53.4648	160.389	
914	104.743	39.6988	169.787	
915	103.019	34.4631	171.575	
916	102.246	32.1861	172.306	
917	101.984	30.6547	173.313	
918	101.558	29.4801	173.636	
919	101.183	28.8185	173.548	

920	101.159	28.5351	173.783
921	101.175	28.2163	174.134
922	101.016	27.8368	174.195
923	100.919	27.6064	174.231
924	100.973	27.4881	174.458
925	100.972	27.2894	174.654
926	100.884	27.0617	174.707
927	100.863	26.9215	174.805
928	100.897	26.8082	174.986
929	100.875	26.6401	175.11
930	100.826	26.4759	175.175
931	100.825	26.3625	175.287
932	100.835	26.2468	175.424
933	100.808	26.1037	175.513
934	100.782	25.9759	175.588
935	100.783	25.874	175.692
936	100.779	25.7634	175.794
937	100.756	25.6432	175.868
938	100.741	25.5382	175.944
939	100.739	25.4445	176.033
940	100.728	25.344	176.113
941	100.711	25.2429	176.178
942	100.701	25.1532	176.248

Time series plot after fitting ARIMA model. It shows AQI of Chennai city since 2018 (blue line) and forecasts and their 95% confidence limits (red line) for next month. We can observe that AQI values remains approximately constant in the forecasted values.

Model Summary for checking model efficiency

Since the MAPE value is 17.869, on an average, the forecast is off by 17.87%

For city Hyderabad

Time Series plot for AQI of city Hyderabad from 01/01/2018 to 30/06/2020.

It is a Time Series plot for city Hyderabad with days along the x-axis and AQI figures on the y-axis. This time plot suggests that the time series is not stationary. Also, by using decomposition.

We can see there is decreasing trend and again it increases. This suggests that the time series is not stationary and will require differencing to make it stationary, at least a difference order of 1.

It is a Time Series plot of AQI data differenced for lag 1. Here we can see our time series is now stationary.

Estimation of Parameters (p, d, q)

Since our time series is non stationary, we take first difference. After taking first difference our time series being stationary. Hence, here we take d=1.

Now we have to plot the ACF and PACF plots for the estimation of parameters (p, q).

Plot of ACF and PACF:

From ACF plot after taking first difference we see that it is significant to lag3. So, we consider q as 3.

From PACF plot after taking first difference we can see that it is significant up to lag 1. So, we consider p as 1.

Hence, we fit various models for AQI. Finally we consider p=1 and q=2, the best fit model we found is ARIMA(1,1,2) with constant.

The final estimates of the parameters are given below.

Final Estimates of Parameters :

Type	Coeff	SE Coeff	T-Value	P-Value
AR 1	0.6373	0.046	13.85	0.00
MA 1	0.5728	0.0486	11.78	0.00
MA 2	0.3138	0.0355	8.83	0.00

The significance of the parameters is tested using t-test with p-value very small for all. This indicates that all the parameters are significant.

Residual Sums of Squares

DF	SS	MS
907	142021	156.584

The residuals must not be auto correlated and this is apparent below with autocorrelation being insignificant for all lags.

The significance of the autocorrelation among the residuals at four lags is tested using Ljung-Box Chi-Square Statistics and output is shown below.

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

Lag	12	24	36	48
Chi-Square	9.73	30.31	58.88	83.69
DF	8	20	32	44
P-Value	0.285	0.065	0.053	0.042

The p-values for the test at all the four lags are large pointing towards the insignificance of autocorrelation among residuals.

Also, the residuals are normally distributed which can be observed in the NPP and histogram. The error has constant variance which is evident from the graph of residual against the fitted values.

Now that we have fit the best possible model with all the assumptions being satisfied, we move to our main purpose of forecasting.

Forecast value from observation 912 (for next 30 days)

Observations	Forecast	95% Limits	
		Lower	Upper
913	46.1767	21.6456	70.708
914	46.8638	11.0358	82.692
915	47.2645	6.5105	88.019
916	47.4827	4.0007	90.965
917	47.5846	2.3575	92.812
918	47.6123	1.1344	94.090
919	47.5928	0.1324	95.053
920	47.5432	-0.7451	95.831

921	47.4743	-1.5486	96.497
922	47.3933	-2.3057	97.092
923	47.3045	-3.0323	97.641
924	47.2107	-3.7378	98.159
925	47.1137	-4.4280	98.656
926	47.0148	-5.1065	99.136
927	46.9145	-5.7755	99.604
928	46.8134	-6.4364	100.063
929	46.7118	-7.0903	100.514
930	46.6099	-7.7378	100.958
931	46.5077	-8.3794	101.395
932	46.4054	-9.0155	101.826
933	46.3031	-9.6462	102.252
934	46.2007	-10.2720	102.673
935	46.0982	-10.8928	103.089
936	45.9957	-11.5089	103.500
937	45.8932	-12.1204	103.907
938	45.7907	-12.7275	104.309
939	45.6882	-13.3303	104.707
940	45.5857	-13.9288	105.100
941	45.4832	-14.5233	105.490
942	45.3807	-15.1137	105.875

Time series plot after fitting ARIMA model. It shows AQI of Hyderabad city since 2018 (blue line) and forecasts and their 95% confidence limits (red line) for next month. On close observation we can see that AQI value slightly decrease in the forecasted values.

Model Summary for checking model efficiency

Since the MAPE value is 10.944, on an average, the forecast is off by 10.94%

For city Delhi

Time Series plot for AQI of city Delhi from 01/01/2018 to 30/06/2020.

It is a Time Series plot for city Delhi with days along the x-axis and AQI figures on the y-axis. This time plot suggests that the time series is not stationary. Also, by using decomposition.

We can see there is decreasing trend. This suggests that the time series is not stationary and will require differencing to make it stationary, at least a difference order of 1.

It is a Time Series plot of AQI data differenced for lag 1. Here we can see our time series is now stationary.

Estimation of Parameters (p, d, q)

Since our time series is non stationary, we took first difference. After taking first difference our time series being stationary. Hence, here d=1.

Now we have to plot the ACF and PACF plots for the estimation of parameters (p,q).

Plot of ACF and PACF:

From ACF plot after taking first difference we can see that it is significant till lag 3. So, we consider q as 2.

From PACF plot after taking first difference, we can see it is significant up to some lags. To fit the model we consider p as 1.

Hence, we fit various models for AQI. Finally, we consider p=1 and q=2, the best fit model we found is ARIMA(1,1,2) with constant. The final estimates of the parameters are given below.

Final Estimates of Parameters:

Type	Coeff	SE Coeff	T-Value	P-Value
AR1	0.5567	0.0527	10.56	0.00
MA1	0.5564	0.0541	10.29	0.00
MA2	0.3052	0.0374	8.16	0.00

The significance of the parameters is tested using t-test with p-value very small for all. This indicates that all the parameters are significant.

Residual Sums of Squares

DF	SS	MS
904	1911842	2107.87

The residuals must not be auto correlated and this is apparent below with autocorrelation being insignificant for all lags.

The significance of the autocorrelation among the residuals at four lags is tested using Ljung-Box Chi-Square Statistics and output is shown below.

Modified Box-Pierce (Ljung-Box) Chi-Square Statistic

Lag	12	24	36	48
Chi square	10.76	18.60	32.11	39.42
DF	8	20	32	44
P-Value	0.215	0.548	0.461	0.668

The p-values for the test at all the four lags are large pointing towards the insignificance of autocorrelation among residuals.

Also, the residuals are normally distributed which can be observed in the NPP and histogram. The error has constant variance which is evident from the graph of residual against the fitted values.

Now that we have fit the best possible model with all the assumptions being satisfied, we move to our main purpose of forecasting.

Forecast value from observation 912 (for next 30 days)

		95% Liı	mits
Observations	Forecast	Lower	Upper
913	87.603	-2.402	177.608
914	101.079	-26.229	228.387
915	108.446	-33.411	250.303
916	112.412	-37.121	261.946
917	114.485	-39.996	268.966
918	115.504	-42.685	273.692
919	115.936	-45.341	277.212
920	116.041	-47.991	280.073

921	115.965	-50.633	282.562
922	115.787	-53.26	284.833
923	115.552	-55.865	286.97
924	115.287	-58.447	289.021
925	115.004	-61.003	291.011
926	114.711	-63.533	292.955
927	114.413	-66.037	294.862
928	114.111	-68.515	296.738
929	113.809	-70.968	298.585
930	113.505	-73.397	300.406
931	113.2	-75.802	302.202
932	112.896	-78.184	303.975
933	112.591	-80.543	305.725
934	112.286	-82.881	307.453
935	111.981	-85.198	309.16
936	111.676	-87.495	310.847
937	111.371	-89.772	312.514
938	111.066	-92.03	314.162
939	110.761	-94.269	315.791
940	110.456	-96.491	317.402
941	110.151	-98.694	318.996
942	109.846	- 100.881	320.572

Time series plot after fitting ARIMA model. It shows AQI of Delhi city since 2018 (blue line) and forecasts and their 95% confidence limits (red line) for next month. On close observation we can see that AQI values slightly increases and again slightly decreases in the forecasted values.

Model Summary for checking model efficiency

Since the MAPE value is 15.741, on an average, the forecast is off by 15.74%

To check Linearity

To check linearity we use scatter plot.

A **scatter plot** (also called a scatterplot, scatter graph, scatter chart, scattergram, or scatter diagram) is a type of plot or mathematical diagram using Cartesian Coordinates to display values for typically two variables for a set of data.

For AQI and Average Temperature

There is no linear relationship between AQI and Average Temperature.

For AQI and Average Humidity

There is no linear relationship between AQI and Average Humidity.

For AQI and Average Pressure

There is no linear relationship between AQI and Average Pressure.

For AQI and Average Dew Point

There is no linear relationship between AQI and Average Dew point.

For AQI and Average Windspeed

There is no linear relationship between AQI and Average Windspeed.

To check Normality

To check normality we use Q-Q plot.

Also, by using Shapiro-Wilcoxon test and Kolmogorov-Smirnov test,

Hypothesis:

H₀: Data follows Normal Distribution.

H₁: Data does not follow Normal Distribution.

Using SPSS,

Tests of Normality						
	Kolmogorov-Smirnov ^a				Shapiro-Wilk	
Statistic df Sig.		Statistic	df	Sig.		
AQI	.171	3647	<.001	.802	3647	<.001
Avg Temp	.101	3647	<.001	.944	3647	<.001
Avg dew point	.135	3647	<.001	.908	3647	<.001
Avg humidity	.104	3647	<.001	.962	3647	<.001
Avg windspeed	.068	3647	<.001	.970	3647	<.001
Avg pressure	.431	3647	.000	.585	3647	<.001

Since, all p-values are \leq 0.05. We reject H_{0} .

Hence, all variables are not normally distributed.

Since, linearity and normality are violated by all variables, we carry out Spearman's rank correlation and Kendall's tau coefficient to find association.

SPEARMAN'S RANK CORRELATION:

Spearman's correlation coefficient, (ρ , also signified by r_s) measures the strength and direction of association between two ranked variables. Spearman's correlation determines the strength and direction of the **monotonic relationship** between your two variables. A monotonic relationship is a relationship that does one of the following:

- (1) as the value of one variable increases, so does the value of the other variable;
- (2) as the value of one variable increases, the other variable value decreases.

The Spearman correlation coefficient, ρ can take values from -1 to +1. A ρ of +1 indicates a perfect association of ranks, a ρ of zero indicates no association between ranks and a ρ of -1 indicates a perfect negative association of ranks. The closer ρ is to zero, the weaker the association between the ranks. There is no requirement of <u>normality</u> and hence it is a nonparametric statistic.

We can verbally describe the strength of the correlation using the following guide for the absolute value of:

- .00-.19 "very weak"
- .20-.39 "weak"
- .40-.59 "moderate"
- .60-.79 "strong"
- .80-1.0 "very strong"

There are two methods to calculate Spearman's correlation depending on whether:

- (1) your data does not have tied ranks
- (2) your data has tied ranks.

The formula for when there are **no tied ranks** is:

$$\rho = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

where d_i = difference in paired ranks

n = number of cases

i = paired score.

The formula to use when there are **tied ranks** is:

$$\rho = \frac{\sum_{i}(x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i}(x_{i} - \bar{x})^{2}\sum_{i}(y_{i} - \bar{y})^{2}}}$$

KENDALL'S TAU COEFFICIENT:

We have another approach like spearman rank correlation i.e. **Kendall's Tau (\tau)** correlation coefficient. It assesses statistical associations based on the ranks of the data.

 τ takes the values between -1 and 1. Spearman's ρ usually have larger values than Kendall's Tau.

The distribution of Kendall's tau has better statistical properties.

The interpretation of Kendall's tau in terms of the probabilities of observing the agreeable (concordant) and non-agreeable (discordant) pairs is very direct.

Concordant pairs: if both elements of one pair are either greater than, equal to, or less than the corresponding elements of the other pair.

Discordant pairs: if the two numbers in one observation differ in opposite directions.

The Kendall τ coefficient is defined as:

$$\tau = \frac{(number\ of\ concordant\ pairs) - (number\ of\ discordant\ pairs)}{c\binom{n}{2}}$$

where $\binom{n}{2} = \frac{n(n-1)}{2}$ is the binomial coefficient for the number of ways to choose two items from n items.

1.Checking Association between AQI and Average Temperature:

To test:

 $H_{\text{o}}\textsc{:}$ There is no association between AQI and Average temperature i.e. $\rho\textsc{=}0$ against

 H_1 : There is association between AQI and Average temperature i.e. $\rho \neq 0$

By Spearman's Rank correlation Coefficient-

p-value	ρ
2.2e-16≈0	-0.2184905

By Kendall's Tau-

p-value	τ
2.2e-16≈0	-0.1880942

Interpretation: Here, by both methods we get p-value ≤ 0.05, hence we reject $H_{o.}$

Conclusion: There is weak negative association between AQI and Average temperature.

2.Checking Association between AQI and Average Humidity:

To test:

 $H_{\text{o}}\text{:}$ There is no association between AQI and Average Humidity i.e. $\rho\text{=}0$ against

 H_1 : There is association between AQI and Average Humidity i.e. ρ≠0

By Spearman's Rank correlation Coefficient-

p-value	ρ
0.00	-0.2184905

By Kendall's Tau-

p-value	τ
0.00	-0.1517189

Interpretation: Here, by both methods we get p-value≤0.05, hence we reject H_o.

Conclusion: There is weak negative association between AQI and Average Humidity.

3. Checking Association between AQI and Average Pressure:

To test:

 $\ensuremath{H_{0}}\xspace$ There is no association between AQI and Average Pressure i.e. $\rho \text{=} o$ against

 H_1 : There is association between AQI and Average Pressure i.e. ρ ≠0

By Spearman's Rank correlation Coefficient-

p-value	ρ
0.00	-0.3352159

By Kendall's Tau-

p-value	τ
0.00	-0.2274167

Interpretation: Here, by both methods we get p-value≤0.05, hence we reject H_{o.}

Conclusion: There is weak negative association between AQI and Average Pressure.

4.Checking Association between AQI and Average Dew point:

To test:

 $H_{\text{o}}\textsc{:}$ There is no association between AQI and Average Dew point i.e. $\rho\textsc{=}0$ against

 H_1 : There is association between AQI and Average Dew point i.e. $\rho \neq 0$ By Spearman's Rank correlation Coefficient-

p-value	ρ
0.00	-0.5437234

By Kendall's Tau-

p-value	τ
0.00	-0.3618658

Interpretation: Here, by both methods we get p-value≤0.05, hence we reject H_o.

Conclusion: There is moderate negative association between AQI and Average Dew point.

5. Checking Association between AQI and Average Wind Speed:

To test:

 $H_0\text{:}$ There is no association between AQI and Average Wind Speed i.e. $\rho\text{=}0$ against

H₁: There is association between AQI and Average Wind Speed i.e. ρ≠0

By Spearman's Rank correlation Coefficient-

p-value	ρ
0.00	-0.4748167

By Kendall's Tau-

p-value	τ
0.00	-0.3362965

Interpretation: Here, by both methods we get p-value≤0.05, hence we reject H_{o.}

Conclusion: There is moderate negative association between AQI and Average Wind Speed.

Also, we check association using cross tabulation method too.

CROSS TABULATION

Cross Tabulation table is the basic technique for examining between two categorical (nominal or ordinal) variables, possibly controlling for additional of variables. Cross tabulation procedure offers several measures of and tests association. Additionally, you can obtain estimates of the orelative risk of an event given the presence or absence of a characteristic. A number of tests are available to determine if the relationship between 2x2 tabulated variables is significant.

Pearson chi square tests: Pearson chi-square used to test the independence of two attributes. A test of independence assesses whether paired observations on two attributes, expressed in a contingency table, independent of each other i.e. unassociated with each other. For the test of independence, a chi-square probability of less than or equal to 0.05 (or the chi square statistic being larger than the 0.05 critical point) is commonly interpreted by applied workers as justification for rejecting the null hypothesis.

Hypothesis to be tested:

H₀: The two attributes are independent of each other.

against

H₁: The two attributes are dependent of each other.

The first step in the chi-square test is to calculate the chi-square statistic. The chi-square statistic is calculated by finding the difference between each observed and theoretical frequency for each possible outcome, squaring them, dividing each by the theoretical frequency, and taking the sum of the results.

The test statistic is defined as:

$$\chi^2 = \sum \frac{(o_i - E_i)^2}{E_i}$$

 χ^2 = Pearson's cumulative test statistic, which asymptotically approaches a χ^2 Distribution.

 O_i = the number of observations of type i.

n= total number of observations.

 E_i = the expected (theoretical) frequency of type i, asserted by the null hypothesis.

The chi square statistic can then be used to calculate p-value by comparing the value of the statistic to a chi square distribution. The number of degrees of freedom is equal to $(k-1) \times (r-1)$ where, k and r are the levels of two attributes.

In our data we have one variable AQI bucket as categorical variable but other variables such as temperature, pressure, etc. are continuous variable. So, to carry out Chi square test we have converted them into categorical variable and proceeded ahead.

1.Checking Independence AQI Bucket to Avg Temperature:

Attribute 1=AQI bucket

Attribute 2=Average Temperature

To test:

 H_{o} : There is no association between AQI Bucket and Average Temperature. against

H₁: There is association between AQI Bucket and Average Temperature.

AOI Pueltet	Average Temperature		Total
AQI Bucket	40-80	81-120	Total
Good	45	79	124
Satisfactory	234	1132	1366
Moderate	613	968	1581
Poor	181	146	327
Very Poor	148	22	170
Severe	72	7	79
Total	1293	2354	3647

Chi Square Test:

Pearson Chi-Square Value	Degree of Freedom	p-value
569.52	5	2.2e-16≈0

Interpretation: We get p-value≤0.05. Hence, we reject H_0 .

Conclusion: There is an association between AQI and Average Temperature.

2.Checking Independence AQI Bucket to Average Humidity:

Attribute 1=AQI bucket

Attribute 2= Average Humidity

To test:

 H_{o} : There is no association between AQI Bucket and Average Humidity. against

H₁: There is association between AQI Bucket and Average Humidity.

A OI Baralant	Average Humidity		T . 1
AQI Bucket	0-50	Above 50	Total
Good and Satisfactory	204	1286	1490
Moderate	635	946	1581
Poor	123	204	327
Very Poor	18	152	170
Severe	6	73	79
Total	986	2661	3647

Chi Square Test:

Pearson Chi-Square Value	Degree of Freedom	p-value
341.03	4	2.2e-16≈0

Interpretation: We get p-value≤0.05. Hence, we reject H₀.

Conclusion: There is an association between AQI Bucket and Average Humidity.

3. Checking Independence AQI Bucket to Average Pressure:

Attribute 1=AQI bucket

Attribute 2= Average Pressure

To test:

 H_{o} : There is no association between AQI Bucket and Average Pressure. against

H₁: There is association between AQI Bucket and Average Pressure.

AOI Buokot	Average Pressure		Track 1
AQI Bucket	Below 28	Above 28	Total
Good	113	11	124
Satisfactory	370	996	1366
Moderate	468	1113	1581
Poor	246	81	327
Very Poor and Severe	240	9	249
Total	1437	2210	3647

Chi Square Test:

Pearson Chi-Square Value	Degree of Freedom	p-value
803.8	4	2.2e-16≈0

Interpretation: We get p-value≤0.05. Hence, we reject H_0 .

Conclusion: There is an association between AQI and Average pressure.

4.Checking Independence AQI Bucket to Average Dew point:

Attribute 1=AQI bucket

Attribute 2= Average Dew Point

To test:

 H_{o} : There is no association between AQI Bucket and Average Dew point. against

H₁: There is association between AQI Bucket and Average Dew point.

AOI Puelret	Average Dew Point		Total
AQI Bucket	0-60	61-120	Total
Good and Satisfactory	119	1371	1490
Moderate	693	888	1581
Poor	178	149	327
Very Poor	130	40	170
Severe	59	20	79
Total	1179	2468	3647

Chi. Square Test:

Pearson Chi-Square Value	Degree of Freedom	p-value
792.39	4	2.2e-16≈0

Interpretation: We get p-value ≤ 0.05. Hence, we reject H₀.

Conclusion: There is an association between AQI Bucket and Average Dew point.

5. Checking Independence AQI Bucket to Average Wind Speed:

Attribute 1=AQI bucket

Attribute 2= Average Wind Speed

To test:

H_o: There is no association between AQI Bucket and Average Wind Speed. against

H₁: There is association between AQI Bucket and Average Wind Speed.

AQI Bucket	Average Wind Speed		Total
	0-10	Above 10	Total
Good	53	71	124
Satisfactory	1242	124	1366
Moderate	1539	42	1581
Poor	319	8	327
Very Poor and Severe	243	6	249
Total	3396	251	3647

Chi Square Test:

Pearson Chi-Square Value	Degree of Freedom	p-value
565.93	4	2.2e-16≈0

Interpretation: We get p-value ≤ 0.05 . Hence we reject H_0 .

Conclusion: There is an association between AQI Bucket and Average Wind Speed.

Conclusion:

By Pearson chi square test, Spearman's Rank correlation coefficient and Kendall's Tau we conclude that,

- There is weak negative association between AQI and Average temperature, that means as temperature increases, AQI slightly decreases and vice a versa.
- There is weak negative association between AQI and Average Humidity, that means as humidity increases, AQI slightly decreases and vice a versa.
- There is weak negative association between AQI and Average Pressure, that means as Pressure increases, AQI slightly decreases and vice a versa.
- There is moderate negative association between AQI and Average Dew point, that means as Dew point increases, AQI decreases and vice a versa.
- There is moderate negative association between AQI and Average Wind Speed, that means as Wind speed increases, AQI decreases and vice a versa.

Conclusion

Objective 1- We conclude that Air Quality Index decreases during lockdown.

Objective 2- We conclude that forecasted future AQI value for next month for city Hyderabad and Jaipur shows slightly decreasing trend, for city Chennai it is slightly constant and for Delhi it increases in the beginning and then shows a decrease.

Objective 3- We arrived at a conclusion that there is weak association in AQI and temperature, humidity, pressure, wind speed and dew point. Also, because of negative association as AQI increases, all other factors such as temperature, humidity, pressure, wind speed and dew point decrease.

Coding

R codes

for Cross Tabulation

```
>data<-read.csv("data of 4 cities.csv")
>data
>temp<-table(data$AQI_bucket, data$Temperature)
>temp
>pre<-table(data$AQI_bucket, data$Pressure)
>pre
>hum<-table(data$AQI bucket, data$humidity)
>hum
>dew<-table(data$AQI_bucket, data$Dewpoint)
>dew
>wind<-table(data$AQI bucket, data$Windspeed)
>wind
For Chi square test
>chisq.test (temp, correct=F)
>chisq.test (pre, correct=F)
>chisq.test (hum, correct=F)
>chisq.test (dew, correct=F)
>chisq.test (wind, correct=F)
```

For Spearman's Rank correlation coefficient:

>cor.test(data\$AQI, Avg Temp, method="spearman",exact=F,data=data)

>cor.test(data\$AQI, Avg pressure, method="spearman",exact=F,data=data)

>cor.test(data\$AQI, Avg humidity, method="spearman",exact=F,data=data)

>cor.test(data\$AQI, Avg dewpoint, method="spearman",exact=F,data=data)

```
>cor.test(data$AQI, Avg windspeed, method="spearman",exact=F,data=data)
For Kendall's Tau coefficient:
>cor.test(data$AQI, Avg Temp, method="kendall", data=data)
>cor.test(data$AQI, Avg pressure, method="kendall", data=data)
>cor.test(data$AQI, Avg humidity, method="kendall", data=data)
>cor.test(data$AQI, Avg dewpoint, method="kendall", data=data)
>cor.test(data$AQI, Avg windspeed, method="kendall", data=data)
```

For time plot Using python

```
import pandas as pd
import seaborn as sns
dv=pd.read excel('Chennai during lockdown.xlsx')
dk=pd.read excel('Chennai before lockdown.xlsx')
dk
import matplotlib.pyplot as plt
sns.lineplot(x = "Month", y = "AQI",
             data = dk)
sns.lineplot(x = "Month", y = "AQI",
             data = dv)
plt.xticks(rotation = 25)
dv=pd.read excel('Delhi during lockdown.xlsx')
dk=pd.read excel('Delhi before lockdown.xlsx')
dk
import matplotlib.pyplot as plt
sns.lineplot(x = "Month", y = "AQI",
             data = dk)
sns.lineplot(x = "Month", y = "AQI",
             data = dv)
plt.xticks(rotation = 25)
dv=pd.read excel('Jaipur during lockdown.xlsx')
dk=pd.read excel('Jaipur before lockdown.xlsx')
import matplotlib.pyplot as plt
```

Bibliography

- 1. https://www.kaggle.com/rohanrao/air-quality-data-in-india
- 2. https://www.wunderground.com/health/mood.asp
- 3. https://www.analyticsvidhya.com/blog/2015/12/complete-tutorial-time-series-modeling/