Test 4

Dmitrii, Maksimov maksimov.dmitrii.m@gmail.com

February 28, 2023

Exercise 1

Newton's method: $x_{k+1} = x_k - [\nabla^2 f(x_k)]^{-1} \nabla f(x_k)$

•
$$\nabla f(x_k) = 12x_k^3 + 4x_k$$

Answer: d

Exercise 2

Exact Line Search: argmin $f(x_k - \alpha \nabla f(x_k))$

Answer: c

Exercise 3

Gradient divergence: $f(x_{k+1}) > f(x_k)$.

 $f(4-\gamma\nabla f(4)) > f(4) \Rightarrow 4(4-12\gamma)^2 - 20(4-12\gamma) + 7 + 9 > 0 \Rightarrow (4-12\gamma-1)(4-12\gamma-4) > 0.$

Taking into account $\gamma > 0 \Rightarrow \gamma > 0.25$.

Answer: b

Exercise 4

Since MSE is a convex function, $N \approx \frac{2LR}{\epsilon}$ and time $\approx Nmn \Rightarrow$, where $L = \frac{\lambda_{\max}(A^TA)}{m}$, $R = \max ||x - x^*|| \Rightarrow Nmn = \frac{2R\lambda_{\max}(A^TA)}{\epsilon}n$. Let's say $R_1 = R_2$, then time₁ < time₂. Answer: a

Exercise 5

Since, argmin $\frac{x^2}{4} = 0$ and $x_{k+1} = x_k - \frac{x_k}{2} = \frac{x_k}{2}, ||x_k - x^*|| \to 0$

Answer: c