Self-Organized Hawkes Processes

Shen Yuan¹, Hongteng Xu²

¹University of Electronic Science and Technology of China, ²Gaoling School of Artificial Intelligence, Renmin University of China

中國人民大學 高瓴人工智能学院
RENMIN UNIVERSITY OF CHINA Gaoling School of Artificial Intelligence Gaoling School of Artificial Intelligence

- Background
- ► Self-organized Hawkes Processes
- ► Reward-augmented Bandit Algorithm
- Experiments

Event Sequences in real world

Figure 1: The locations and the intensities of the earthquakes from 1900 to 2017.

Event Sequences in real world

Figure 2: User behaviors on social networks.

Event Sequences in real world

Figure 3: User behaviors on shopping websites.

Event Sequences and Temporal Point Processes

Event sequence: $\{(t_i, c_i)\}_{i=1}^I$, $c_i \in \mathcal{C}$, or Counting process: $N(t) = \{N_c(t)\}_{c \in \mathcal{C}}$.

Where $t_i \in [0, T]$ mean time stamps and $c_i \in \mathcal{C} = \{1, \dots, C\}$ mean event types.

Event Sequences and Temporal Point Processes

► **Intensity function:** The expected instantaneous happening rate of type-*c* events given the history.

$$\lambda_c(t) = rac{\mathbb{E}[dN_c(t)|\mathcal{H}_t]}{dt}, \; \mathcal{H}_t = \{(t_i, c_i)|t_i < t, c_i \in \mathcal{C}\}.$$

Classical Models of Point Process

(c) Hawkes: $\lambda^*(t) = \mu + \alpha \sum \kappa(t - t_i)$ (d) Self-correcting: $\lambda^*(t) = e^{\mu t - \sum \alpha}$

Hawkes Process

▶ Homogeneous Poisson process:

$$\lambda_c(t) = \mu_c$$

Hawkes Process

▶ Homogeneous Poisson process:

$$\lambda_c(t) = \mu_c$$

Poisson process is too simple...

Is there a temporal point process that could model the self- and mutually-triggering patterns?

Hawkes Processes

Hawkes Process $HP_{\mathcal{C}}(\mu, \Phi)$ models the triggering pattern between different events:

$$\lambda_c(t) = \underbrace{\mu_c}_{\text{base intensity}} + \sum_{(t_i, c_i) \in \mathcal{H}_t} \underbrace{\phi_{cc_i}(t - t_i)}_{\text{impact function}} \tag{1}$$

- $\blacktriangleright \mu = [\mu_c]$: exogenous fluctuation of the system.
- $lackbox{\Phi} = [\phi_{cc'}(t)]$: endogenous triggering pattern of type-c' on type-c.

Hawkes Processes

- $\phi_{cc}(\cdot)$: the **self**-triggering pattern.
- $\phi_{cc'}(\cdot), c \neq c'$: the **mutually**-triggering pattern.

Figure 4: Granger causality

Hawkes Processes

The **exponential impact function** is one of the widely-used impact function.

$$\phi_{cc'}(t-t') = a_{cc'} \exp(-w(t-t'))$$

where $\mathbf{A} = [a_{cc'}]$ is the trainable parameters of the impact functions and w is the decay factor.

Learning Method and Challenges

Learning **one** $HP_{\mathcal{C}}(\mu, \Phi)$ from a set of sequences $\mathcal{N} = \{N^u\}_{u \in \mathcal{U}}$:

$$\begin{aligned} \min_{\boldsymbol{\theta}} &- \underbrace{\log \mathcal{L}(\mathcal{N}; \boldsymbol{\theta})}_{\text{log-likelihood}} + \underbrace{\gamma \mathcal{R}(\boldsymbol{\theta})}_{\text{regularizer}}, \text{ where } \boldsymbol{\theta} = \{\boldsymbol{\mu}, \boldsymbol{\Phi}\}, \\ \mathcal{L}(\mathcal{N}; \lambda) &= \prod_{u \in \mathcal{U}} \Big(\prod_{(c_i^u, t_i^u) \in \mathcal{N}^u} \lambda_{c_i^u}(t_i^u) \times \exp \big(-\sum_{c \in \mathcal{C}} \int_0^T \lambda_c^u(s) ds \big) \Big). \end{aligned} \tag{2}$$

Learning Method and Challenges

Learning **one** $HP_{\mathcal{C}}(\mu, \Phi)$ from a set of sequences $\mathcal{N} = \{N^u\}_{u \in \mathcal{U}}$:

$$\begin{split} \min_{\boldsymbol{\theta}} & - \underbrace{\log \mathcal{L}(\mathcal{N}; \boldsymbol{\theta})}_{\text{log-likelihood}} + \underbrace{\gamma \mathcal{R}(\boldsymbol{\theta})}_{\text{regularizer}}, \text{ where } \boldsymbol{\theta} = \{\boldsymbol{\mu}, \boldsymbol{\Phi}\}, \\ \mathcal{L}(\mathcal{N}; \boldsymbol{\lambda}) & = \prod_{u \in \mathcal{U}} \Big(\prod_{(c_i^u, t_i^u) \in N^u} \lambda_{c_i^u}(t_i^u) \times \exp \big(- \sum_{c \in \mathcal{C}} \int_0^T \lambda_c^u(s) ds \big) \Big). \end{split} \tag{2}$$

- ► The real-world event sequences are often driven by multiple *local* heterogeneous Hawkes processes $\{HP_{\mathcal{C}_u}(\mu_u, \Phi_u)\}_{u \in \mathcal{U}}$.
 - ▶ **Local:** $C_u \subset C$ and $|C_u| \ll |C|$.
 - ▶ Heterogeneous: $C_u \neq C_{u'}$ for $u \neq u'$.

Learning Method and Challenges

Learning **one** $HP_{\mathcal{C}}(\mu, \Phi)$ from a set of sequences $\mathcal{N} = \{N^u\}_{u \in \mathcal{U}}$:

$$\begin{split} \min_{\boldsymbol{\theta}} &-\underbrace{\log \mathcal{L}(\mathcal{N}; \boldsymbol{\theta})}_{\text{log-likelihood}} + \underbrace{\gamma \mathcal{R}(\boldsymbol{\theta})}_{\text{regularizer}}, \text{ where } \boldsymbol{\theta} = \{\boldsymbol{\mu}, \boldsymbol{\Phi}\}, \\ \mathcal{L}(\mathcal{N}; \boldsymbol{\lambda}) &= \prod_{u \in \mathcal{U}} \Big(\prod_{(c_i^u, t_i^u) \in N^u} \lambda_{c_i^u}(t_i^u) \times \exp \big(-\sum_{c \in \mathcal{C}} \int_0^T \lambda_c^u(s) ds \big) \Big). \end{split} \tag{2}$$

- ► The real-world event sequences are often driven by multiple *local* heterogeneous Hawkes processes $\{HP_{\mathcal{C}_u}(\mu_u, \Phi_u)\}_{u \in \mathcal{U}}$.
 - ▶ **Local:** $C_u \subset C$ and $|C_u| \ll |C|$.
 - ▶ Heterogeneous: $C_u \neq C_{u'}$ for $u \neq u'$.
- ► However, the huge number of event types and extremely few observations make the learning of the HPs over-fitting even intractable.

- ► Background
- ► Self-organized Hawkes Processes
- ► Reward-augmented Bandit Algorithm
- **▶** Experiments

Superposition Property. For a set of independent Hawkes processes with a shared infectivity matrix, i:e:, $\{N^u \sim \operatorname{HP}(\mu^u, \Phi)\}_{u \in \mathcal{U}}$, the superposition of their sequences satisfies $\sum_{u \in \mathcal{U}} N^u \sim \operatorname{HP}(\sum_{u \in \mathcal{U}} \mu^u, \Phi)$.[Xu et al. AISTATS'18]

Learning multiple local heterogeneous Hawkes processes from few short sequences.

► **Key 1:** Leverage the **Superposition property** to increase the event density of each individual sequence.

Learning multiple local heterogeneous Hawkes processes from few short sequences.

► **Key 1:** Leverage the **Superposition property** to increase the event density of each individual sequence.

The problem becomes **learning each individual HP from selective subset of sequences.**

$$\min_{\{\boldsymbol{\theta}^u\}_{u\in\mathcal{U}}} \min_{\mathcal{N}^u\subset\mathcal{N}} - \sum_{u\in\mathcal{U}} \frac{1}{|\mathcal{N}^u\cup\mathcal{N}^u|} \log \mathcal{L}(\mathcal{N}^u\cup\mathcal{N}^u;\boldsymbol{\theta}^u), \tag{3}$$

Learning multiple local heterogeneous Hawkes processes from few short sequences.

► **Key 1:** Leverage the **Superposition property** to increase the event density of each individual sequence.

The problem becomes **learning each individual HP from selective subset of sequences.**

$$\min_{\{\boldsymbol{\theta}^u\}_{u\in\mathcal{U}}} \min_{\mathcal{N}^u\subset\mathcal{N}} - \sum_{u\in\mathcal{U}} \frac{1}{|\mathcal{N}^u\cup\mathcal{N}^u|} \log \mathcal{L}(\mathcal{N}^u\cup\mathcal{N}^u;\boldsymbol{\theta}^u), \tag{3}$$

Therefore, we need to design an algorithm to select a suitable subset for each HP.

- ► Background
- ► Self-organized Hawkes Processes
- ► Reward-augmented Bandit Algorithm
- Experiments

Intuitively, we hope that

- ▶ the selected sequences are **similar** to the target sequence;
- ▶ the selected sequences own some **randomness** to avoid the over-fitting problem.

Intuitively, we hope that

- ▶ the selected sequences are **similar** to the target sequence;
- ▶ the selected sequences own some **randomness** to avoid the over-fitting problem.

we treat the selection of target sequence's neighbors as a **multi-armed bandit problem**.

► Key 2: Design a Reward-augmented Bandit Algorithm to select neighbors for each sequence in the training phase.

- ► Key 2: Design a Reward-augmented Bandit Algorithm to select neighbors for each sequence in the training phase.
- ▶ Formulate a benefit matrix $\mathbf{B} = [b_{u,v}] \in \mathbb{R}^{|\mathcal{U}| \times |\mathcal{U}|}$, where $b_{u,v}$ represents the benefit from selecting the v-th sequence for the u-th Hawkes process.

- ► Key 2: Design a Reward-augmented Bandit Algorithm to select neighbors for each sequence in the training phase.
- ▶ Formulate a benefit matrix $\mathbf{B} = [b_{u,v}] \in \mathbb{R}^{|\mathcal{U}| \times |\mathcal{U}|}$, where $b_{u,v}$ represents the benefit from selecting the v-th sequence for the u-th Hawkes process.
 - 1. Initialize $b_{u,v} = \max_k d(N^u, N^k) d(N^u, N^v)$ for $v \in \mathcal{U}$, where $d(N^u, N^k)$ is the optimal transport distance between different event sequences.

- ► Key 2: Design a Reward-augmented Bandit Algorithm to select neighbors for each sequence in the training phase.
- ▶ Formulate a benefit matrix $\mathbf{B} = [b_{u,v}] \in \mathbb{R}^{|\mathcal{U}| \times |\mathcal{U}|}$, where $b_{u,v}$ represents the benefit from selecting the v-th sequence for the u-th Hawkes process.
 - 1. Initialize $b_{u,v} = \max_k d(N^u, N^k) d(N^u, N^v)$ for $v \in \mathcal{U}$, where $d(N^u, N^k)$ is the optimal transport distance between different event sequences.
 - 2. Select neighbor sequences $\{s_v\}$ for each sequence u by a bandit algorithm (e.g., the Upper Confidence Bound method).

- ► Key 2: Design a Reward-augmented Bandit Algorithm to select neighbors for each sequence in the training phase.
- ▶ Formulate a benefit matrix $\mathbf{B} = [b_{u,v}] \in \mathbb{R}^{|\mathcal{U}| \times |\mathcal{U}|}$, where $b_{u,v}$ represents the benefit from selecting the v-th sequence for the u-th Hawkes process.
 - 1. Initialize $b_{u,v} = \max_k d(N^u, N^k) d(N^u, N^v)$ for $v \in \mathcal{U}$, where $d(N^u, N^k)$ is the optimal transport distance between different event sequences.
 - 2. Select neighbor sequences $\{s_v\}$ for each sequence u by a bandit algorithm (e.g., the Upper Confidence Bound method).
 - 3. Update $b_{u,v} = b_{u,v} + \alpha \mathcal{L}(N^{s_v}; \boldsymbol{\theta}^u)$.

Optimal Transport Distance between Sequences

$$d(N^u,N^v) := \min_{\boldsymbol{T} \in \Pi(\frac{1}{|C_u|}\mathbf{1}_{|C_u|},\frac{1}{|C_v|}\mathbf{1}_{|C_v|})} \sum_{i \in C_u, j \in C_v} T_{ij} d(N^u_i,N^v_j) = \min_{\boldsymbol{T} \in \Pi(\frac{1}{|C_u|}\mathbf{1}_{|C_u|},\frac{1}{|C_v|}\mathbf{1}_{|C_v|})} \langle \boldsymbol{D}_{uv},\boldsymbol{T} \rangle$$

$$\leq \operatorname{equence} N^v$$

$$d(N^u_i,N^v_j) = \frac{1}{T} \int_0^T |N^u_i(t) - N^v_j(t)| dt$$

$$\leq \operatorname{equence} N^u$$

$$\downarrow Dot \operatorname{product}$$

$$\downarrow Dot \operatorname{product}$$

$$\downarrow Dot \operatorname{product}$$

$$\downarrow Duv$$

Merging learned Hawkes processes for exploration

Self-organized Hawkes Processes

- ► Background
- ► Self-organized Hawkes Processes
- ► Reward-augmented Bandit Algorithm
- Experiments

We experiment on the **Amazon review dataset** containing product reviews from Amazon spanning May 1996 - July 2014.

We experiment on the **Amazon review dataset** containing product reviews from Amazon spanning May 1996 - July 2014.

We select those items with **more than** 40 reviews. Then, their users need to satisfy three conditions:

- the ratings they gave to these items are bigger than 4;
- ▶ there are **at most** 3 reviews spanning January 2014 April 2014;
- ▶ there are **at least** 1 review from April 2014 to July 2014.

We experiment on the **Amazon review dataset** containing product reviews from Amazon spanning May 1996 - July 2014.

We select those items with **more than** 40 reviews. Then, their users need to satisfy three conditions:

- the ratings they gave to these items are bigger than 4;
- ▶ there are **at most** 3 reviews spanning January 2014 April 2014;
- ▶ there are **at least** 1 review from April 2014 to July 2014.

Table 1: Statistics of our datasets

Categories	Musical Instruments	Baby	Video Games	Garden	Instant Video
#Users	471	1979	2142	1812	5948
#Items	678	2134	2104	2064	1344
#Ratings	1218	6070	6126	4976	15470

After learning the behaviors of users in 3 months, our model predicts their behaviors in the next 3 months. For each user, 10 items are recommended.

$$p(c|t + \Delta t, \mathcal{H}_t^{\mathcal{C}}) = \frac{\lambda_c(t + \Delta t)}{\sum_{c' \in \mathcal{C}} \lambda_{c'}(t + \Delta t)}.$$
 (4)

Experiments: Continuous-Time Sequential Recommendation

To prove the effect of the reward-augmented bandit algorithm, we test the **SHP** model that learn a single Hawkes process by randomly superpose event sequences.

Data	Musical Instruments		Baby		Video Games		Garden			Instant Video					
@10(%)	P	R	F1	P	R	F1	P	R	F1	P	R	F1	P	R	F1
SVD	0.106	1.061	0.193	0.121	0.735	0.207	0.065	0.498	0.113	0.055	0.395	0.094	0.126	1.052	0.221
kNN	0.382	2.671	0.649	0.389	2.513	0.638	0.661	4.915	1.163	0.237	1.751	0.405	0.817	6.901	1.435
BPR	0.467	3.750	0.811	0.389	2.469	0.635	0.658	4.864	1.112	0.110	0.762	0.185	0.859	7.049	1.503
SLIM	0.212	1.351	0.347	0.111	0.712	0.180	0.499	3.595	0.835	0.242	1.544	0.401	1.333	11.428	2.351
FPMC	0.594	4.193	1.006	0.283	1.912	0.470	0.556	3.799	0.927	0.171	1.117	0.285	0.931	7.413	1.622
SHP	0.361	2.406	0.604	0.258	1.734	0.432	0.317	2.037	0.525	0.199	1.350	0.331	0.933	7.406	1.623
Ours	0.658	5.149	1.138	0.389	2.640	0.651	0.700	5.108	1.180	0.248	1.801	0.436	0.999	7.911	1.738

Experiments: Influence of the number of neighbors K

Summary

- ► The self-organized Hawkes process (SOHP) model learns heterogeneous local Hawkes processes based on selective subsets of event sequences.
- ► A learning algorithm combining bandit algorithm and optimal transport is proposed.
- ▶ Apply SOHP model into sequential recommendation system, and achieve higher f1 scores than state-of-the-art methods.
- ► The code is available at https://github.com/DaShenZi721/MHP.