Functional Analysis - Mandatory Assignment 2

Marius Enevold Gjesme - wbm323

25. January 2021

Problem 1

Let H be an infinite dimensional separable Hilbert space with orthonormal basis $(e_n)_{n\geq 1}$. Set

$$f_N = N^{-1} \sum_{n=1}^{N^2} e_n$$

for all $N \geq 1$.

(a)

Show that $f_N \to 0$ weakly, as $N \to \infty$, while $||f_N|| = 1$, for all $N \ge 1$. Let K be the norm closure of $co\{f_N : N \ge 1\}$.

We first show that $||f_N|| = 1$ for all $N \ge 1$.

$$||f_N||^2 = \langle f_N, f_N \rangle$$

$$= \langle N^{-1} \sum_{n=1}^{N^2} e_n, N^{-1} \sum_{k=1}^{N^2} e_k \rangle$$
Be more
$$= N^{-2} \sum_{n=1}^{N^2} \langle e_n, \sum_{k=1}^{N^2} e_k \rangle$$

$$= N^{-2} \sum_{n=1}^{N^2} 1$$

$$= N^{-2} \cdot N^2$$

$$= 1.$$

Thus $||f_N|| = 1$ as desired.

To show that $f_N \to 0$ weakly as $N \to \infty$ we use problem 2 in HW4. So we have to show that $(g(f_N))_{N \ge 1}$ converges to g(0) for every $g \in H^*$.

Note this holds for all $x \in H$. Thus let $\varepsilon > 0$. By the Riesz representation theorem each $g \in H^*$ is of the form F_y , where $F_y(f_N) = \langle f_N, y \rangle$ for some $y \in H$. Thus we have to show that $\langle f_N, y \rangle \to 0 \text{ as } N \to \infty \text{ for all } y \in H.$

Recall that we can write

$$y = \sum_{i=1}^{\infty} \langle y, e_i \rangle e_i$$

for any $y \in H$ (5.27 Folland). We also have Parceval's identity

$$||y||^2 = \sum_{i=1}^{\infty} |\langle y, e_i \rangle|^2.$$

As this sum converges, then for any $\varepsilon > 0$ there exists $m \in \mathbb{N}$ such that

$$\sum_{i=m+1}^{\infty} |\langle y, e_i \rangle|^2 < \frac{\varepsilon^2}{4}.$$

Using this we can use the Pythagorean Theorem (5.23 Folland) to show that

$$\begin{aligned} ||\sum_{i=m+1}^{\infty} \langle y, e_i \rangle e_i|| &= \left(||\sum_{i=m+1}^{\infty} \langle y, e_i \rangle e_i||^2 \right)^{\frac{1}{2}} \\ &= \left(\sum_{i=m+1}^{\infty} ||\langle y, e_i \rangle e_i||^2 \right)^{\frac{1}{2}} \\ &= \left(\sum_{i=m+1}^{\infty} |\langle y, e_i \rangle|^2 \right)^{\frac{1}{2}} \\ &< \frac{\varepsilon}{2}. \end{aligned}$$

Now we look at $\langle f_N, y \rangle$. We have

$$\langle f_N, y \rangle = \langle f_N, \sum_{i=1}^{\infty} \langle y, e_i \rangle e_i \rangle$$
$$= \langle f_N, \sum_{i=1}^{m} \langle y, e_i \rangle e_i \rangle + \langle f_N, \sum_{i=m+1}^{\infty} \langle y, e_i \rangle e_i \rangle.$$

We first look at the second term, where we can use Cauchy-Schwarz to get

$$|\langle f_N, \sum_{i=m+1}^{\infty} \langle y, e_i \rangle e_i \rangle| \leq ||f_N||||\sum_{i=m+1}^{\infty} \langle y, e_i \rangle e_i|| < \frac{\varepsilon}{2}.$$

Now we consider the first term.

$$\begin{split} |\langle f_N, \sum_{i=1}^m \langle y, e_i \rangle e_i \rangle| &= |\langle N^{-1} \sum_{n=1}^{N^2} e_n, \sum_{i=1}^m \langle e_i, y \rangle e_i \rangle| \\ &= |N^{-1} \sum_{i=1}^m \sum_{n=1}^{N^2} \langle e_n, \langle y, e_i \rangle e_i \rangle| \\ &= |N^{-1} \sum_{i=1}^m \langle y, e_i \rangle \sum_{n=1}^{N^2} \langle e_n, e_i \rangle| \\ &\leq N^{-1} |\sum_{i=1}^m \langle y, e_i \rangle| \qquad \text{Shoul be } \langle \gamma, e_i \rangle \text{ if using } \\ &\leq N^{-1} \sum_{i=1}^m |\langle y, e_i \rangle|. \end{split}$$

Where we used that

$$\sum_{n=1}^{N^2} \langle e_n, e_i \rangle \le 1$$

and that the absolute value is a norm. Now we have that

$$\sum_{i=1}^{m} |\langle y, e_i \rangle| = M$$

for some $M \in \mathbb{R}_+$ as it is a finite sum. As $N^{-1} \to 0$ for $N \to \infty$ there exists some $Q \in \mathbb{N}$ such that $N^{-1} < \frac{\varepsilon}{2M}$ for all N > Q. Thus for N > Q we have that

$$|\langle f_N, \sum_{i=1}^m \langle y, e_i \rangle e_i \rangle| \le N^{-1}M < \frac{\varepsilon}{2}.$$

Thus we get for N > Q

$$|\langle f_N, y \rangle| \le |\langle f_N, \sum_{i=1}^m \langle y, e_i \rangle e_i \rangle| + |\langle f_N, \sum_{i=m+1}^\infty \langle y, e_i \rangle e_i \rangle| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

We have shown $|\langle f_N, y \rangle| \to 0$ as $N \to \infty$ for all $y \in H$ and hence we have shown $f_N \to 0$ weakly for $n \to \infty$.

(b)

Argue that K is weakly compact, and that $0 \in K$.

Set $A := \{f_N | N \ge 1\}$. By proposition 2.10 we have that H is reflexive as it is a Hilbert space. Then Theorem 6.3 gives that $\overline{B}_H(0,1)$ is weakly compact. We want to show that K is a closed subset in the weak topology of $\overline{B}_H(0,1)$ as then also K is weakly compact.

Theorem 5.7 gives that K is the weak closure of co(A), hence we want to show that $co(A) \subset \overline{B}_H(0,1)$ as then $K \subset \overline{B}_H(0,1)$ by 5(c) in mandatory assignment 1. Let $x = \sum_{i=1}^{n} \alpha_i f_{N_i} \in co(A)$. Then we have that

$$||x|| \le \sum_{i=1}^{n} \alpha_i ||f_{N_i}|| = \sum_{i=1}^{n} \alpha_i = 1.$$

Thus $x \in \overline{B}_H(0,1)$ as desired. Thus $K \subset \overline{B}_H(0,1)$ and K is a weakly closed subset of a weakly compact set, and hence K is weakly compact as desired.

Note that in (a) we saw that $f_N \to 0$ weakly as $N \to \infty$, hence as K is the weak closure of co(A) we have $0 \in K$ as desired.

(c)

Show that 0, as well as each f_N for $N \ge 1$, are extreme points in K.

Let us first show that 0 is an extreme point.

Suppose $0 = \alpha x + (1 - \alpha)y$ for $0 < \alpha < 1$ and $x, y \in K$. Then as K is the (norm and weak) closure of co(A) we have sequences $(x_n)_{n\geq 1}$ and $(y_n)_{n\geq 1}$ in co(A)converging to x and y respectively.

Then as taking the inner product is continuous we have for any $k \geq 1$

with the notation, now it
$$\langle x, e_k \rangle = \langle \lim_{n \to \infty} x_n, e_k \rangle$$
 Could with the notation, now it
$$= \lim_{n \to \infty} \langle \sum_{s=1}^p \beta_s f_{N_s}, e_k \rangle$$
 looks as though there is no dependence on \mathbf{N} .
$$= \lim_{n \to \infty} \sum_{s=1}^p \beta_s \langle N_s^{-1} \sum_{m=1}^{N_s^2} e_m, e_k \rangle$$

$$= \lim_{n \to \infty} \sum_{s=1}^p \beta_s N_s^{-1} \sum_{m=1}^{N_s^2} \langle e_m, e_k \rangle.$$

Thus $\langle x_n, e_k \rangle \geq 0$ for all n as we are taking sums consisting of non-negative terms. Hence we also have $\langle x, e_k \rangle \geq 0$.

Similarly we have that $\langle y, e_k \rangle \geq 0$ for all $k \geq 1$. Now we have

$$0 = \langle 0, e_k \rangle = \langle \alpha x + (1 - \alpha)y, e_k \rangle = \alpha \langle x, e_k \rangle + (1 - \alpha) \langle y, e_k \rangle$$

which implies that $\langle x, e_k \rangle = \langle y, e_k \rangle = 0$ as $\alpha > 0$. Hence by completeness (5.27) Folland) x = y = 0 as desired and 0 is an extreme point for K.

We now show that f_N is an extreme point for any $N \geq 1$.

Let $f_N = \alpha x + (1 - \alpha)y$ for $x, y \in K$ and $0 < \alpha < 1$. As $x, y \in K$ we have

from (b) that $||x||, ||y|| \le 1$. Now we can use Cauchy-Schwarz to get $|\langle f_N, x \rangle| \le ||f_N||||x|| \le 1$ and similarly $|\langle f_N, y \rangle| \le 1$. Then by using the triangle inequality we get

$$1 = |\langle f_N, f_N \rangle|$$

= $|\langle f_N, \alpha x + (1 - \alpha)y \rangle|$
 $\leq \alpha |\langle f_N, x \rangle| + (1 - \alpha)|\langle f_N, y \rangle|$

and as $\alpha > 0$ this implies that $|\langle f_N, x \rangle| = |\langle f_N, y \rangle| = 1$. Now using Cauchy-Schwarz and then the triangle inequality yields

$$1 = |\langle f_N, f_N \rangle|$$

$$= |\langle f_N, \alpha x + (1 - \alpha)y \rangle|$$

$$\leq ||f_N|| ||\alpha x + (1 - \alpha)y||$$

$$\leq \alpha ||x|| + (1 - \alpha)||y||$$

and as above we get ||x|| = ||y|| = 1.

Recall that Cauchy-Schwarz is an equality iff the two elements it is used on are linearly dependent.

Note that we have $1 = |\langle f_N, x \rangle| = ||f_N|| ||x|| = ||f_N|| ||y|| = |\langle f_N, y \rangle|$. Hence there exists s, t such that $f_N = sx = ty$. But then

$$|s| = |s|||x|| = ||sx|| = ||ty|| = |t|||y|| = |t|$$

and

$$1 = ||f_N|| = ||sx|| = |s| = |t|.$$

Now if s=t=-1 we have $-f_N=x=y$ and thus $f_N=-\alpha f_N-(1-\alpha)f_N=-f_N$ implying $f_N=0$ which is a contradiction. Hence s=t=1 and thus $f_N=x=y$ and f_N is an extreme point as desired.

 (\mathbf{d})

Are there any other extreme points in K? Justify your answer.

We want to show that K is convex. Let $x,y\in K$. Is $\alpha x+(1-\alpha)y\in K$ for all $\alpha\in[0,1]$?

As $x, y \in K$, we have sequences $(x_n)_{n\geq 1}$ and $(y_n)_n \geq 1$ in $\operatorname{co}(A)$ converging to x and y respectively. Thus we have that the sequence $(w_n)_{n\geq 1}$ defined by

$$w_n := \alpha x_n + (1 - \alpha) y_n$$

converges to $\alpha x + (1 - \alpha)y$. However it is a sequence in $\operatorname{co}(A)$ as that set is convex and $x_n, y_n \in \operatorname{co}(A)$. Thus also $\alpha x + (1 - \alpha)y \in K$ as desired.

If K was not comex, then it could not have extreme points by definition...

Thus as H is a Hilbert space in particular it is a LCTVS and hence we can use Theorem 7.9 (Milman) to get that $\operatorname{Ext}(K) \subset \overline{A}^{\tau_w}$.

Let $x \in \overline{A}^{\tau_w}$, such that $x \notin A \cup \{0\}$. Then there exists a sequence $(a_n)_{n \geq 1}$ in A converging to x. As $x \notin A$ none of the f_N occurs infinitely many times in the sequence, hence infinitely many different elements of A occurs in the sequence converging to x.

In (a) we showed that $f_N \to 0$ weakly for $N \to \infty$, that means for every neighbourhood U of 0, the sequence f_N is eventually in U. In particular this means that for every neighbourhood of 0, there are only finitely many of the elements in A that are not in the neighbourhood. Thus for any neighbourhood U of 0, we have that the sequence $(a_n)_{n\geq 1}$ has infinitely many elements that are in U as there are only finitely many elements of A that are not in U and $(a_n)_{n\geq 1}$ has infinitely many different elements. Thus 0 is a cluster point for $(a_n)_{n\geq 1}$, but as the weak topology is Hausdorff, this contradicts that the sequence converges to x. f

Hence $\overline{A}^{\tau_w} = A \cup \{0\}$ and thus there are no more extreme points in K.

Problem 2

Let X and Y be infinite dimensional Banach spaces.

(a)

Let $T \in \mathcal{L}(X,Y)$. For a sequence $(x_n)_{n\geq 1}$ in X and $x \in X$, show that $x_n \to x$ weakly, as $n \to \infty$, implies that $Tx_n \to Tx$ weakly, as $n \to \infty$.

By problem 2 in HW4 we have to show that $F(Tx_n) \to F(Tx)$ as $n \to \infty$ for all $F \in Y^*$.

Let $F \in Y^*$, then $F \circ T \in X^*$, hence as $x_n \to x$ weakly for $n \to \infty$, problem 2 in HW4 gives that $F \circ T(x_n) \to F \circ T(x)$ for $n \to \infty$, but that was exactly what we wanted to show. Hence $Tx_n \to Tx$ weakly as $n \to \infty$.

Let $T \in \mathcal{K}(x,y)$. For a sequence $(x_n)_{n\geq 1}$ in X and $x \in X$, show that $x_n \to x$ weakly, as $n \to \infty$, implies that $||Tx_n - Tx|| \to 0$, as $n \to \infty$.

As $(x_n)_{n\geq 1}$ converges weakly to x problem 2 from HW4 gives that the sequence is bounded. In particular any subsequence $(x_{n_k})_{k\geq 1}$ is also bounded. Then Proposition 8.2 gives that there exists a subsequence $(x_{n_k})_{i\geq 1}$ of the subsequence $(x_{n_k})_{k\geq 1}$ such that $||Tx_{n_{k_i}} - y|| \to 0$ for $i \to \infty$. Hence it also converges weakly to y, but from (a) we have that it also converges weakly to Tx and as the weak topology is Hausdorff we have that y = Tx. Hence any subsequence of $(x_n)_{n\geq 1}$

has a subsequence, such that using T yields a sequence that converges in norm to Tx.

To show that $(Tx_n)_{n\geq 1}$ converges to Tx in norm, suppose for contradiction that it does not. Then there exists an $\varepsilon > 0$ such that for any positive integer N there exists an $s_N \geq N$ such that $||Tx_{s_N} - Tx|| \geq \varepsilon$.

Now let N run through the positive integers and for each number pick the smallest such s_N . That yields a sequence of natural numbers $(s_N)_{N>1}$ such that the sequence $(x_{s_N})_{N\geq 1}$ is a subsequence of $(x_n)_{n\geq 1}$ satisfying $||Tx_{s_N}-Tx||\geq \varepsilon$ for all $N \geq 1$. However as we have seen above it has a subsequence $(x_{s_{N_i}})_{j\geq 1}$ s.t. $(Tx_{s_{N_i}})_{j\geq 1}$ converges to Tx in norm which is clearly a contradiction. Thus $||Tx_n - Tx|| \to 0$ for $n \to \infty$ as desired.

(c)

Let H be a separable infinite dimensional Hilbert space. If $T \in \mathcal{L}(H,Y)$ satisfies that $||Tx_n - Tx|| \to 0$, as $n \to \infty$, whenever $(x_n)_{n \ge 1}$ is a sequence in H converging weakly to $x \in H$, then $T \in \mathcal{K}(H, Y)$.

We prove this by contraposition. Thus we assume T is not compact. Then Proposition 8.2 gives that $T(B_H(0,1))$ is not totally bounded i.e. there exists an $\varepsilon > 0$ such that $T(\overline{B}_H(0,1))$ can't be covered by a finite union of open ε -balls. We now construct a sequence $(x_n)_{n>1}$ in $\overline{B}_H(0,1)$.

Let x_1 be any element in $\overline{B}_H(0,1)$. Then pick some $y \in T(\overline{B}_H(0,1)) \setminus B_Y(Tx_1,\varepsilon)$. This is possible as $T(\overline{B}_H(0,1))$ is not totally bounded. Then there exists some element $a \in \overline{B}_H(0,1)$ such that T(a) = y. Set $x_2 := a$. We continue in this fashion, i.e. if we have defined the first n-1 elements of the sequence, we can define x_n as follows; as $T(\overline{B}_H(0,1))$ is not totally bounded there exists an element $y' \in T(\overline{B}_H(0,1))$ such that

$$y' \notin \bigcup_{i=1}^{n-1} B_Y(x_i, \varepsilon).$$

Furthermore there exists $a' \in \overline{B}_H(0,1)$ such that T(a') = y. Then set $x_n := a'$. The constructed sequence clearly satisfies that $||Tx_i - Tx_j|| \ge \varepsilon$ for all $i \ne j$.

Now we want to show that the constant sequence. To show this we first note that H is reflexive by Proposition 2.10. Now Riesz This is an artificant Theorem gives each $F \in H^*$ is of the form F_y with $||F_y|| = ||y||$ is an isometric isomorphism. isomorphism. In particular it sends an ONB in H to an ONB in H^* , and hence as H is separable, H^* is also separable (5.29 Folland). Thus Theorem 5.13 gives that $(\overline{B}_H(0,1),\tau_w)$ is metrizable as H is relexive. Now Theorem 6.3 gives that $\overline{B}_H(0,1)$ is weakly compact. But then $\overline{B}_H(0,1)$ is a compact metric space, hence it is sequentially compact i.e. every sequence has a convergent subsequence.

- in the weak topday

In particular the constructed sequence has a convergent subsequence $(x_{n_k})_{k\geq 1}$. It is clear by construction that the corresponding sequence $(Tx_{n_k})_{k\geq 1}$ does not converge to Tx in norm for $k\to\infty$.

Thus we have shown the contrapositive statement.

(d)

Show that each $T \in \mathcal{L}(\ell_2(\mathbb{N}), \ell_1(\mathbb{N}))$ is compact.

Note that $\ell_2(\mathbb{N})$ is a Hilbert space and furthermore that it is separable by problem 4 in HW4. Thus we can use (c).

First let $(x_n)_{n\geq 1}$ be a sequence in $\ell_2(\mathbb{N})$ converging weakly to x. Then by (a) $Tx_n \to Tx$ weakly for $n \to \infty$. Remark 5.3 then gives that $||Tx_n - Tx|| \to 0$ for $n \to \infty$, hence by (c) T is compact as desired.

(e)

Show that no $T \in \mathcal{K}(X,Y)$ is onto.

Suppose that T is onto. Then T is open by the Open Mapping Theorem. Then $T(B_X(0,1))$ is open in Y and thus as T is linear $0 \in T(B_X(0,1))$ and thus there exists $\varepsilon > 0$ such that $B_Y(0,\varepsilon) \subset T(B_X(0,1))$. Also we have that $T(\overline{B}_X(0,1))$ is compact in Y.

T(Bz (0,1))

Consider the map $f: Y \to Y$ defined by $y \mapsto \frac{1}{2\varepsilon}y$. It is clearly continuous and it maps $B_Y(0,\varepsilon)$ to $B_Y(0,2)$, hence $T(\overline{B}_X(0,1))$ is mapped to some compact set containing the closed unit ball of Y. Then the closed unit ball is a closed subset of a compact set, hence it is compact. However this contradicts problem 3(e) in the first mandatory assignment. f

(f)

Let $H = L_2([0,1], m)$, and consider the operator $M \in \mathcal{L}(H, H)$ given by Mf(t) = tf(t) for $f \in H$ and $t \in [0,1]$. Justify that M is self-adjoint, but not compact.

 $\langle Mf,g \rangle = \int_{[0,1]} tf(t)g(t)dm(t) = \int_{[0,1]} f(t)tg(t)dm(t) = \langle f,Mg \rangle.$

Thus M is self-adjoint.

Note now that H is an infinite dimensional vector space, and that it is separable by problem 4 HW4. Thus if T is compact, then the Spectral Theorem gives that H has an ONB consisting of eigenvectors for M, however by problem 3 HW6 M has no eigenvalues. $\mathcal F$

Thus M is not compact.

Problem 3

Consider the Hilbert space $H = L_2([0,1], m)$ where m is the Lebesgue measure. Define $K: [0,1] \times [0,1] \to \mathbb{R}$ by

$$K(s,t) = \begin{cases} (1-s)t, & 0 \le t \le s \le 1, \\ (1-t)s, & 0 \le s < t \le 1, \end{cases}$$

and consider $T \in \mathcal{L}(H, H)$ defined by

$$(Tf)(s) = \int_{[0,1]} K(s,t)f(t)dm(t), \quad s \in [0,1], \ f \in H.$$

(a)

Justify that T is compact.

As $m([0,1]) = 1 < \infty$ m is a finite Borel measure. Note that $|K(s,t)| \le 1$ for $(s,t) \in [0,1] \times [0,1]$, hence by using Tonelli we have

$$\int_{[0,1]\times[0,1]} |K(s,t)| d(m\otimes m)(s,t) = \int_{[0,1]} \int_{[0,1]} |K(s,t)| dm(t) dm(s)$$

$$\leq \int_{[0,1]} \int_{[0,1]} 1 dm(t) dm(s)$$

$$= 1$$

$$< \infty.$$

Thus $K \in L_2([0,1] \times [0,1], m \otimes m)$ and hence we see $T = T_K$, where T_K is the operator defined in (\square) on p. 46 in the notes. Furthermore it is clear that K is continuous by the pasting/gluing lemma as (1-s)t and (1-t)s are both continuous functions.

We also have that [0,1] is compact as it is a closed and bounded subset of \mathbb{R} , furthermore it is Hausdorff. Thus Theorem 9.6 gives that T is compact.

(b)

Show $T = T^*$.

Note first that K(s,t) = K(t,s). This is immediate from the definition of K.

T = TE $E(St) = k(t_1S)$ $(-k(S_1t))$ Shaw this

Let $f, g \in H$, then we have

$$\langle Tf, g \rangle = \int_{[0,1]} Tf \cdot \overline{g} dm$$

$$= \int_{[0,1]} \left(\int_{[0,1]} K(s,t) f(t) dm(t) \right) \overline{g(s)} dm(s)$$

$$= \int_{[0,1]} \int_{[0,1]} K(s,t) f(t) \overline{g(s)} dm(t) dm(s)$$

We want to use Fubini's Theorem so we have to show, that

$$\int_{[0,1]\times[0,1]} |f(t)K(s,t)g(s)|d(m\otimes m)(t,s) < \infty.$$

We use Tonelli's Theorem to show this. Furthermore we use that $|K(s,t)| \leq 1$ for $s,t \in [0,1]$. We also use that $f,g \in L_1([0,1],m)$, which we know from problem 2 HW2.

$$\int_{[0,1]\times[0,1]} |f(t)K(s,t)g(s)|d(m\otimes m)(t,s) = \int_{[0,1]} \left(\int_{[0,1]} |f(t)K(s,t)g(s)|dm(t) \right) dm(s)
= \int_{[0,1]} \left(\int_{[0,1]} |f(t)K(s,t)|dm(t) \right) |g(s)|dm(s)
\leq \int_{[0,1]} \left(\int_{[0,1]} |f(t)|dm(t) \right) |g(s)|dm(s)
\leq \int_{[0,1]} k|g(s)|dm(s)
\leq kk'
< \infty$$

where k and k' are finite as $f, g \in L_1([0,1], m)$. Thus we can use Fubini and we have

$$\begin{split} \langle Tf,g\rangle &= \int_{[0,1]} \int_{[0,1]} K(s,t)f(t)\overline{g(s)}dm(t)dm(s) \\ &= \int_{[0,1]} \int_{[0,1]} K(s,t)f(t)\overline{g(s)}dm(s)dm(t) \\ &= \int_{[0,1]} f(t) \left(\overline{\int_{[0,1]} K(t,s)g(s)dm(s)} \right)dm(t) \\ &= \langle f,Tg\rangle. \end{split}$$

Here we used K(s,t) = K(t,s). Thus T is self-adjoint as desired.

This is for

linear operator

This is for

linear operator

And incommitted linear lin

9

(c)

Show that

$$(Tf)(s) = (1-s) \int_{[0,s]} tf(t)dm(t) + s \int_{[s,1]} (1-t)f(t)dm(t), \ s \in [0,1], \ f \in H.$$

Use this to show that Tf is continuous on [0,1] and (Tf)(0) = (Tf)(1) = 0.

To show this we note that K is a piecewise-defined function. Thus we get

$$\begin{split} (Tf)(s) &= \int_{[0,1]} K(s,t) f(t) dm(t) \\ &= \int_{[0,s]} K(s,t) f(t) dm(t) + \int_{[s,1]} K(s,t) f(t) dm(t) \\ &= \int_{[0,s]} (1-s) t f(t) dm(t) + \int_{[s,1]} s(1-t) f(t) dm(t) \\ &= (1-s) \int_{[0,s]} t f(t) dm(t) + s \int_{[s,1]} (1-t) f(t) dm(t) \end{split}$$

as desired.

We now have

$$Tf(0) = 1 \int_{[0,0]} tf(t)dm(t) + 0 \int_{[0,1]} (1-t)f(t)dm(t) = 0 + 0 = 0.$$

$$Tf(1) = 0 \int_{[0,1]} tf(t)dm(t) + 1 \int_{[1,1]} (1-t)f(t)dm(t) = 0 + 0 = 0.$$

Now we want to use this to show that Tf is continuous on [0,1]. We do this by showing that Tf is bounded.

$$\begin{split} |Tf(s)| &= |(1-s)\int_{[0,s]} tf(t)dm(t) + s\int_{[s,1]} (1-t)f(t)dm(t)| \\ &\leq |\int_{[0,s]} tf(t)dm(t)| + |\int_{[s,1]} (1-t)f(t)dm(t)| \\ &\leq \int_{[0,s]} |tf(t)|dm(t)| + \int_{[s,1]} |(1-t)f(t)|dm(t) \\ &\leq \int_{[0,s]} |f(t)|dm(t)| + \int_{[s,1]} |f(t)|dm(t) \\ &= \int_{[0,1]} |f(t)|dm(t) \\ &= k \\ &< \infty. \end{split}$$

Thus $||Tf|| \le k$, hence by (1.8) we have $|Tf(s)| \le ||Tf||||s| \le k|s|$ and now Tf is continuous by Proposition 1.10 as desired.

Problem 4

Consider the Schwartz space $\mathscr{S}(\mathbb{R})$ and view the Fourier transform as a linear map $\mathcal{F}: \mathscr{S}(\mathbb{R}) \to \mathscr{S}(\mathbb{R})$.

(a)

For each integer $k \geq 0$, set $g_k(x) = x^k e^{\frac{-x^2}{2}}$ for $x \in \mathbb{R}$. Justify that $g_k \in \mathcal{S}(\mathbb{R})$, for all integers $k \geq 0$. Compute $\mathcal{F}(g_k)$, for k = 0, 1, 2, 3.

Define $f(x) = e^{\frac{-x^2}{2}}$. By HW7 problem 1 it suffices to show that $f \in \mathscr{S}(\mathbb{R})$. We want to show this by showing that $\partial^{\beta} f(x) = p(x)f(x)$ for some polynomial p as then it is clear that $p(x)f(x) \to 0$ for $|x| \to \infty$ as f goes to 0 faster than any polynomial goes to infinity.

We show this by induction on β . For $\beta=0$ it is clear. Suppose then that it holds for β , then we have

$$\partial^{\beta+1} e^{-\frac{x^2}{2}} = \partial \left(\partial^{\beta} e^{-\frac{x^2}{2}} \right)$$

$$= \partial \left(p(x) e^{-\frac{x^2}{2}} \right)$$

$$= p'(x) e^{-\frac{x^2}{2}} - xp(x) e^{-\frac{x^2}{2}}$$

$$= (p'(x) - xp(x)) e^{-\frac{x^2}{2}}$$

$$= q(x) f(x)$$

as the derivative of a polynomial is a polynomial and the product and difference of polynomials is also a polynomial.

Thus we have shown the asserted and furthermore note that $x^{\alpha}\partial^{\beta}f(x)$ is also of the form p(x)f(x), hence $f \in \mathcal{S}(\mathbb{R})$, and so is g_k for all $k \geq 1$ as desired.

First we note that by Proposition 11.4 we have $\mathcal{F}(f(x)) = f(x)$ and thus we can use (d) in Proposition 11.13 to compute $\mathcal{F}(g_k)$ for k = 0, 1, 2, 3. Furthermore we have $g_0 = f = \mathcal{F}(f)$ so $\mathcal{F}(g_0) = g_0$.

We have

$$\partial(f(x)) = -xe^{-\frac{x^2}{2}}.$$

$$\begin{split} \partial^2(f(x)) &= \partial(-xe^{-\frac{x^2}{2}}) \\ &= -e^{-\frac{x^2}{2}} - (-x)xe^{-\frac{x^2}{2}} \\ &= (x^2 - 1)e^{-\frac{x^2}{2}}. \end{split}$$

$$\partial^{3}(f(x)) = \partial((x^{2} - 1)e^{-\frac{x^{2}}{2}})$$

$$= 2xe^{-\frac{x^{2}}{2}} - x(x^{2} - 1)e^{-\frac{x^{2}}{2}}$$

$$= (3x - x^{3})e^{-\frac{x^{2}}{2}}.$$

Thus we can compute the Fourier transformations

$$\mathcal{F}(g_1(x)) = i^1 \partial (f(x))$$
$$= i \cdot (-xe^{-\frac{x^2}{2}})$$
$$= -ixe^{-\frac{x^2}{2}}.$$

$$\mathcal{F}(g_2(x)) = i^2 \partial^2(f(x))$$

$$= -1 \cdot (x^2 - 1)e^{-\frac{x^2}{2}}$$

$$= (1 - x^2)e^{-\frac{x^2}{2}}.$$

$$\mathcal{F}(g_3(x)) = i^3 \partial^3(f(x))$$

$$= -i \cdot (3x - x^3)e^{-\frac{x^2}{2}}$$

$$= i(x^3 - 3x)e^{-\frac{x^2}{2}}.$$

Hence we have computed the desired Fourier transformations.

(b)

Find non-zero functions $h_k \in \mathscr{S}(\mathbb{R})$ such that $\mathcal{F}(h_k) = i^k h_k$, for k = 0, 1, 2, 3.

Note first for $f, g \in \mathscr{S}(\mathbb{R})$, that h := af + bg is in $\mathscr{S}(\mathbb{R})$ as

$$\begin{split} x^{\alpha}\partial^{\beta}h(x) &= x^{\alpha}\partial^{\beta}(af(x) + bg(x)) \\ &= x^{\alpha}(a\partial^{\beta}(f(x)) + b\partial^{\beta}(g(x))) \\ &= ax^{\alpha}\partial^{\beta}(f(x)) + bx^{\alpha}\partial^{\beta}(g(x)) \\ &\to a\cdot 0 + b\cdot 0 \\ &= 0 \end{split}$$

for $|x| \to \infty$. Note that we have used that ∂ is linear, hence also ∂^{β} is linear. Now consider the functions

$$h_0 := g_0, \ h_1 := 2g_3 - 3g_1, \ h_2 := 2g_2 - g_0, \ h_3 := g_1.$$

By the above these functions are Schwarz functions. We want to show, that these functions satisfies the desired. We use that \mathcal{F} is linear. As we saw in (a) we have $\mathcal{F}(h_0) = \mathcal{F}(g_0) = g_0 = h_0 = i^0 h_0$.

$$\mathcal{F}(h_1) = \mathcal{F}(2g_3 - 3g_1)$$

$$= 2\mathcal{F}(g_3) - 3\mathcal{F}(g_1)$$

$$= 2(i(x^3 - 3x)e^{-\frac{x^2}{2}}) - 3(-ixe^{-\frac{x^2}{2}})$$

$$= i(2x^3 - 3x)e^{-\frac{x^2}{2}}$$

$$= i(2g_3 - 3g_1)$$

$$= ih_1.$$

$$\mathcal{F}(h_2) = \mathcal{F}(2g_2 - g_0)$$

$$= 2(1 - x^2)e^{-\frac{x^2}{2}} - e^{-\frac{x^2}{2}}$$

$$= (1 - 2x^2)e^{-\frac{x^2}{2}}$$

$$= i^2(2x^2 - 1)e^{-\frac{x^2}{2}}$$

$$= i^2(2g_2 - g_0)$$

$$= i^2h_2.$$

$$\mathcal{F}(h_3) = \mathcal{F}(g_1)$$

$$= -ixe^{-\frac{x^2}{2}}$$

$$= i^3xe^{-\frac{x^2}{2}}$$

$$= i^3g_1$$

$$= i^3h_3.$$

As all of h_0, h_1, h_2, h_3 are non-zero we have found functions satisfying the desired. Furthermore as $g_k \in \mathscr{S}(\mathbb{R})$ for all integers $k \geq 0$, we have that $h_j \in \mathscr{S}(\mathbb{R})$ for j = 0, 1, 2, 3 as desired.

(c)

Show that $\mathcal{F}^4(f) = f$, for all $f \in \mathscr{S}(\mathbb{R})$.

Let $\hat{f} := \mathcal{F}(f)$ and let the inverse Fourier transformation be denoted \check{f} . Then we have

$$\hat{f}(y) = \mathcal{F}^{2}(f)$$

$$= \mathcal{F}(\hat{f})$$

$$= \int_{\mathbb{R}} \hat{f}(x)e^{-iyx}dm(x)$$

$$= \check{f}(-y).$$

This is easily seen by the definition of the inverse Fourier transformation. Now corollary 12.12 gives that $\dot{f}(-y) = f(-y)$ as $f \in \mathcal{S}(\mathbb{R})$. Thus we have

$$\mathcal{F}^4(f) = \mathcal{F}^2(\mathcal{F}^2(f)) = \mathcal{F}^2(f(-y)) = f(-(-y)) = f(y).$$

Hence we have shown that $\mathcal{F}^4(f) = f$ for all $f \in \mathscr{S}(\mathbb{R})$ as desired.

(d)

Use (c) to show that if $f \in \mathscr{S}(\mathbb{R})$ is non-zero and $\mathcal{F}(f) = \lambda f$, for some $\lambda \in \mathbb{C}$, then $\lambda \in \{1, i, -1, -i\}$. Conclude that the eigenvalues of \mathcal{F} precisely are $\{1, i, -1, -i\}$.

By (c) we have $f = \mathcal{F}^4(f) = \mathcal{F}^3(\lambda f) = \lambda \mathcal{F}^2(\lambda f) = \lambda^4 f$. Thus we have $\lambda^4 = 1$, but 1 has exactly four fourth roots and those are exactly $\{1, i, -1, -i\}$, hence $\lambda \in \{1, i, -1, -i\}$ as desired.

Note that $\{i^k|k=0,1,2,3\}=\{1,i,-1,-i\}$ and thus these are all eigenvalues for \mathcal{F} by (b). Furthermore any eigenvalue λ of \mathcal{F} satisfies $\lambda g=\mathcal{F}(g)$ for some non-zero g, hence there are no other eigenvalues of \mathcal{F} than $\{1,i,-1,-i\}$.

Problem 5

Let $(x_n)_{n\geq 1}$ be a dense subset of [0,1] and consider the Radon measure

$$\mu = \sum_{n=1}^{\infty} 2^{-n} \delta_{x_n}$$

on [0, 1]. Show that $supp(\mu) = [0, 1]$.

The support of the Radon measure is defined in problem 3 HW8. Note that [0,1] is compact in particular locally compact. It is also Hausdorff, so we are in the setting of problem 3 HW8. We have to determine all open null sets of [0,1] wrt. μ .

The empty set is open and has measure 0. Let $U \neq \emptyset$ be an open set. Then as $(x_n)_{n\geq 1}$ is a dense subset of [0,1] we have that $x_k \in U$ for some positive integer k. Then by definition of μ we have that

$$\mu(U) \ge \mu(\{x_k\}) = 2^{-k} > 0.$$

Hence the only open set with measure 0 is the empty set and thus by definition we have $\mathrm{supp}(\mu)=\varnothing^c=[0,1]$ as desired.

