10/29/22, 5:42 PM SL EX1

SL EX1

roi hezkiyahu

28 10 2022

library(dplyr)

library(ggplot2)

library(purrr)

library(caret)

library(class)

Q1

1. Population Optimizer of absolute loss

Prove that for absolute loss: $L_{abs}(Y, f(X)) = |Y - f(X)|$, EPE is minimized by setting $f^*(x) =$ Median(Y|X=x)

Hint: you may find the following identity useful:

$$\int_{y>c} (y-c)dP(y) = \int_{y>c} Pr(Y>y)dy$$

(a) Generalization to quantile loss The τ th quantile loss for $0 < \tau < 1$ is defined as:

$$L_{\tau}(Y, f(X)) = \begin{cases} \tau \times (Y - f(X)) & \text{if } Y - f(X) > 0 \\ -(1 - \tau) \times (Y - f(X)) & \text{otherwise} \end{cases}$$

Prove that the EPE is minimized by setting $f^*(x)$ to be the τ th quantile of P(Y|X=x), i.e., $P(Y \le f^*(x)|X = x) = \tau$

notice that the median is a specific case for the quantile loss with $\tau=0.5$ so proving for the general case will cover both questions

1a

$$\frac{\partial E_{Y|X}[(L_{\tau}(Y,f(X)))|X=x]}{\partial f(x)} = \int_{min_y}^{f(x)} (1-\tau)dF_Y(y) + \int_{f(x)}^{max_y} -\tau dF_Y(y) = F_Y(f(x)) - \int_{min_y}^{f(x)} \tau dF_Y(y) + \int_{f(x)}^{max_y} -\tau dF_Y(y) = F_Y(f(x)) - \int_{min_y}^{f(x)} \tau dF_Y(y) + \int_{f(x)}^{max_y} -\tau dF_Y(y) = F_Y(f(x)) - \int_{min_y}^{f(x)} \tau dF_Y(y) + \int_{f(x)}^{max_y} -\tau dF_Y(y) = F_Y(f(x)) - \int_{min_y}^{f(x)} \tau dF_Y(y) + \int_{f(x)}^{max_y} -\tau dF_Y(y) = F_Y(f(x)) - \int_{min_y}^{f(x)} \tau dF_Y(y) + \int_{f(x)}^{max_y} -\tau dF_Y(y) = F_Y(f(x)) - \int_{min_y}^{f(x)} \tau dF_Y(y) + \int_{f(x)}^{max_y} -\tau dF_Y(y) = F_Y(f(x)) - \int_{min_y}^{f(x)} \tau dF_Y(y) + \int_{f(x)}^{max_y} -\tau dF_Y(y) = F_Y(f(x)) - \int_{min_y}^{f(x)} \tau dF_Y(y) + \int_{f(x)}^{max_y} -\tau dF_Y(y) = F_Y(f(x)) - \int_{min_y}^{f(x)} \tau dF_Y(y) + \int_{f(x)}^{max_y} -\tau dF_Y(y) = F_Y(f(x)) - \int_{min_y}^{f(x)} \tau dF_Y(y) + \int_{f(x)}^{max_y} -\tau dF_Y(y) = F_Y(f(x)) - \int_{min_y}^{f(x)} \tau dF_Y(y) + \int_{f(x)}^{max_y} -\tau dF_Y(y) = F_Y(f(x)) - \int_{min_y}^{f(x)} \tau dF_Y(y) + \int_{f(x)}^{max_y} -\tau dF_Y(y) + \int_{f(x)}^{max_y} \tau dF_Y(y) + \int_{f(x)}^{max$$

Q2

2. ESL 2.3: Derive equation (2.24) (expected median distance to origin's nearest neighbor in an ℓ_p ball):

$$d(p,n) = (1 - \frac{1}{2}^{1/n})^{1/p}$$

Suggested approach:

- (a) Find the probability that all observations are outside a ball of radius r < 1, as a function of r.
- (b) You are looking for r such that this probability is 1/2.

Plot d(p, n) against p for $n \in \{100, 5000, 100000\}$ and $p \in \{3, 5, 10, 20, 50, 100\}$ (make one curve for every value of n — use the R functions plot() and lines()) and interpret the graph.

$$denote\ D_c=min(||X_1||,\dots,||X_n||)$$

$$P(\text{all observations are outside a ball of radius }r)=P(D_c>r)$$

$$P(D_c>r)=\Pi_{i=1}^nP(||X_i||>r)=P(||X_1||>r)^n=(1-P(||X_1||< r))^n=(1-r^p)^n$$
 we are looking for such r such that $P(D_c>r)=\frac{1}{2}\Rightarrow (1-r^p)^n=\frac{1}{2}\Rightarrow (1-\frac{1}{2^{1/n}})^{1/p}=r$

10/29/22, 5:42 PM SL EX1

```
radius_function <- function(p){</pre>
  n <- 1:100000
  return( (1 - 1/2^{(1/n)})^{(1/p)})
p_s <- c(3,5,10,20,50,100)
df <- map(p_s,radius_function)</pre>
df <- as.data.frame(df)</pre>
colnames(df) <- paste0("p_",p_s)</pre>
df["n"] = 1:100000
{\tt colors = c("p\_3"="blue", "p\_5" = "red", "p\_10"="purple", "p\_20"="yellow", "p\_50"="black", "p\_100"="green")}
ggplot(data = df) +
  geom\_smooth(aes(x = n, y = p_3,color = "p_3")) +
  geom\_smooth(aes(x = n, y = p_5, color = "p_5")) +
  geom\_smooth(aes(x = n, y = p_10, color = "p_10")) +
  geom\_smooth(aes(x = n, y = p_20,color = "p_20")) +
  geom\_smooth(aes(x = n, y = p_50, color = "p_50")) +
  geom\_smooth(aes(x = n, y = p_100, color = "p_100")) +
  labs(x="n", y = "fraction outside ball", color = "legend") +
  scale_color_manual(values = colors)
```

```
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
## `geom_smooth()` using method = 'gam' and formula 'y ~ s(x, bs = "cs")'
```


we can see that an p grows the fraction of observations outsde the ball increaces

Q3

3. ESL 2.7: Compare classification performance of k-NN and linear regression on the zipcode data, on the task of separating the digits 2 and 3. Use $k \in \{1, 3, 5, 7, 15\}$. Plot training and test error for k-NN choices and linear regression. Comment on the shape of the graph.

10/29/22, 5:42 PM SL_EX1

```
acc_err <- function(y_true,y_pred){</pre>
  return (1-mean(y_true == y_pred))
df_train <- read.table("zip.train") %>% rename("y" = "V1") %>%
  filter(y %in% c(2,3)) %>% mutate(y = y-2)
df_test <- read.table("zip.test") %>% rename("y" = "V1") %>%
 filter(y %in% c(2,3)) %>% mutate(y = y-2)
get_knn_res <- function(k,df_train,df_test){</pre>
  X_tr <- as.matrix(df_train %>% select(-y))
 X_te <- as.matrix(df_test %>% select(-y))
 y_tr <- df_train %>% select(y)
  train_preds <- knn(train = X_tr,test = X_tr,cl = as.matrix(y_tr),k = k)</pre>
 test_preds <- knn(train = X_tr,test = X_te,cl = as.matrix(y_tr),k = k)</pre>
 train_err <- acc_err(df_train$y,train_preds)</pre>
 test_err <- acc_err(df_test$y,test_preds)</pre>
  return( c(train_err, test_err))
}
zip_lm \leftarrow lm(y\sim.,data = df_train)
lr_train_err <- acc_err(df_train$y,(predict(zip_lm,df_train) > 0.5)*1)
lr_test_err <- acc_err(df_test$y,(predict(zip_lm,df_test) > 0.5)*1)
k_s = c(1,3,5,7,15)
knn_train_res <- c()
knn_test_res <- c()</pre>
for (i in 1:length(k_s)){
  knn_res <- get_knn_res(k=k_s[i],df_train,df_test)</pre>
  knn_train_res <- c(knn_train_res,knn_res[1])</pre>
  knn_test_res <- c(knn_test_res,knn_res[2])</pre>
result\_df \leftarrow tibble(k = c(0,k\_s),train\_res = c(lr\_train\_err,knn\_train\_res) \ , test\_res = c(lr\_test\_err,knn\_test\_res))
colors = c("train"="blue", "test" ="red")
ggplot(data = result_df) +
  geom_smooth(aes(x = k, y = train_res,color = "train")) +
  geom\_smooth(aes(x = k, y = test\_res,color = "test")) +
  labs(x="k", y = "error", color = "legend", caption = "k = 0 is linear regression") +
  scale_color_manual(values = colors)
```

```
## `geom_smooth()` using method = 'loess' and formula 'y \sim x' ## `geom_smooth()` using method = 'loess' and formula 'y \sim x'
```

```
## Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning -
## Inf

## Warning in max(ids, na.rm = TRUE): no non-missing arguments to max; returning -
## Inf
```


10/29/22, 5:42 PM SL EX

we can see that as k increaces the knn model error rate increace as well in the train and test set.

we can also see that linear regression has the worst test results

Q4

4. ESL 2.9 (second edition only) Consider a linear regression model, fit by least squares to a set of training examples $T = \{(X_1, Y_1), ..., (X_N, Y_N)\}$, drawn i.i.d from some population. Let $\hat{\beta}$ be the least

squares estimate. Suppose we also have some other ("test") data drawn independently from the same distribution $\{(\tilde{X}_1, \tilde{Y}_1), ..., (\tilde{X}_M, \tilde{Y}_M)\}$. Prove that:

$$\frac{1}{N}\mathbb{E}(\sum_{i=1}^{N}(Y_i-X_i^T\hat{\beta})^2) \leq \frac{1}{M}\mathbb{E}(\sum_{i=1}^{M}(\tilde{Y}_i-\tilde{X}_i^T\hat{\beta})^2),$$

that is, the expected squared error in-sample is always bigger than out of sample in least squares fitting. Note that the values X are also random variables here, and the expectation is over everything that is random, including X, Y and $\hat{\beta}$.

Hint: There are several ways to prove this. One starts from considering the best possible linear model we derived in class:

$$\beta^* = (E(XX^T))^{-1}E(XY),$$

and comparing both sides to it.

Note: Students who find more than one valid way to prove the result will get a bonus grade.

* Extra credit problem: Optimality of k-NN in fixed dimension Assume $X \sim \text{Unif}([0,1]^p)$, and $Y = f(X) + \epsilon$ with $\epsilon \sim (0,\sigma^2)$ (that is, f(x) = E(Y|X=x)). Assume f is Lipschitz: $||x_1 - x_2|| < \delta \Rightarrow |f(x_1) - f(x_2)| < c\delta$, $\forall x_1, x_2 \in [0,1]^p$. Choose any sequence k(n) such that:

$$k(n) \xrightarrow{n \to \infty} \infty$$

 $k(n)/n \xrightarrow{n \to \infty} 0$

Then:

$$\text{EPE}(\text{k-NN using } k(n)) \stackrel{n \to \infty}{\longrightarrow} EPE(f) = \sigma^2$$

(The proof does not have to be completely formal, for example you can replace a binomial with its normal approximation without proof of the relevant asymptotics).

the expected error is the same for all obesravtions so we can assume M=N=1

denote E_{tr}, E_{te} the expected train and test error

$$E((\tilde{Y} - \tilde{X}\hat{eta})^2) \ge E((\tilde{Y} - \tilde{X}\tilde{eta})^2) \ (\tilde{eta} ext{ being LSE for the test set}) \Rightarrow E_{te} \ge E((\tilde{Y} - \tilde{X}\tilde{eta})^2)$$

 $E((\tilde{Y} - \tilde{X}\tilde{\beta})^2) = E((Y - X\hat{\beta})^2)$ (its an expected value thus the point of estimate doesn't matter) to conclude we get:

$$E_{te} = E((ilde{Y} - ilde{X}\hat{eta})^2) \geq E((ilde{Y} - ilde{X} ilde{eta})^2) = E((Y - X\hat{eta})^2) = E_{tr}$$

try #2, i am not completly sure about the varinace claim here

the expected error is the same for all obesravtions so we can assume M=N=1

denote E_{tr} , E_{te} the expected train and test error

$$E_{tr} = \sigma^2 + bias(f(x)) + var(f(x)) = \sigma^2 + var(f(x)) \ (\hat{eta} ext{ is unbaised})$$
 $E_{te} = \sigma^2 + bias(f(ilde{x})) + var(f(ilde{x}))$
 $var(f(ilde{x})) = var(f(x)), \ \ and \ \ bias(f(ilde{x})) \geq 0$
 $ext{thus we get:} E_{te} \geq E_{tr}$

Extra

 $let \ x_0 \in X$ be a fixed point

$$egin{aligned} orall arepsilon \, orall k \, \exists m_k \, ; orall n > m_k, \quad ||x_0 - x_j|| < arepsilon_k \, orall x_j \in N_k(x_0) \ \end{aligned} ext{thus form f being lipschitz } :|f(x_0) - f(x_1)| < arepsilon_k \delta \end{aligned}$$

10/29/22, 5:42 PM SL_EX1

$$ext{thus } |\hat{f}\left(x_0
ight) - f(x_0)| = |\sum_{x_j \in N_k(x_0)} rac{f(x_j)}{k} - f(x_0)| = |\sum_{x_j \in N_k(x_0)} rac{f(x_j) - f(x_0) + f(x_0)}{k} - f(x_0)| \le \ \le \sum_{x_j \in N_k(x_0)} rac{|f(x_j) - f(x_0)|}{k} + |\sum_{x_j \in N_k(x_0)} rac{f(x_0)}{k} - f(x_0)| = \sum_{x_j \in N_k(x_0)} rac{|f(x_j) - f(x_0)|}{k} \le arepsilon_k \delta \ ext{thus for } arepsilon_k rac{n o \infty}{k} 0 : bias(\hat{f}\left(x_0
ight)) \stackrel{n o \infty}{\longrightarrow} 0 \ V(E(\hat{f}\left(x_0
ight)))) = V(\sum_{x_j \in N_k(x_0)} rac{E(f(x_j))}{k}) \stackrel{n o \infty}{\longrightarrow} V(\sum_{x_j \in N_k(x_0)} rac{f(x_0)}{k}) = \sum_{x_j \in N_k(x_0)} rac{V(f(x_0))}{k} = 0$$

we get that the bais and variance terms both converge to zero as n goes to ∞ so from the prediction error decomposition we get tha $EPE(\textbf{k-nn using k(n)}) \xrightarrow{n \to \infty} \sigma^2$