Math 375

Geonho Roh

(1) 4.4 Pr 4

If $T: V \to V$ has the property that T^2 has a nonnegative eigenvalue λ^2 Prove at least one of λ or $-\lambda$ is an eigenvalue for T.

$$T^{2}(x) = \lambda^{2}x$$
 $T^{2}(x) - \lambda^{2}x = 0$
 $(T^{2} - \lambda^{2}I)x = 0$

$$\det\left(T^2-\lambda^2I
ight)=0$$
 $\det\left(T^2-\lambda^2I
ight)=\det\left(T-\lambda I
ight)\det\left(T+\lambda I
ight)$

 $\det (T - \lambda I)$ is zero or $\det (T + \lambda I)$ is zero Therefore at least one of λ or $-\lambda$ is an eigenvalue for T.

(2) 4.4 Pr 11

Assume that a linear transformation T has two eigenvectors x and y belonging to distinct eigenvalues i and p. If ax + by is an eigenvector of T prove that a = 0 or b = 0

$$T(x)=ix \quad T(y)=py$$
If $ax+by$ is an eigenvector $T(ax+by)=\lambda(ax+by)$
 $aT(x)+bT(y)=\lambda ax+\lambda by$
 $aT(x)+bT(y)=aix+bpy$
 $\lambda ax+\lambda by=aix+bpy$
 $(\lambda-i)ax+(\lambda-p)by=0$
Since x and y are linearly independent
 $(\lambda-i)a=0 \quad (\lambda-p)b=0$
if $a\neq 0$ and $b\neq 0$
 $\lambda=i=p$

However the problem said i and p are distinct eigenvalues Therefore $a \neq 0$ and $b \neq 0$ is false

It proves that a = 0 or b = 0

(3) 4.4 Pr 12

Let $T:S\to V$ be a llinear transformation such that every nonzero element of S is an eigenvector Prove that there exist a scalar c such that T(x)=cxIn other words the only transformation with this property is a scalar times the identity

let x is an vector in S

y is also a vector in S which is dependent with x

$$y = kx$$

$$T(y) = kT(x) = kcx = cy$$
 therefore c exist

if x and y are independent

and they are belonging to distinct eigenvalues, the previous problem showed that

x + y can't be eigenvector

It means for ax + by which $a \neq 0$ and $b \neq 0$ to be eigenvector belonging eigenvalues should be not distinct

x and y are independent and having eigenvalues that aren't distinct

$$T(x) = \lambda x$$

$$T(y) = \lambda y$$

$$Txx^{-1} = \lambda xx^{-1}$$

$$T = \lambda I$$

$$Tyy^{-1} = \lambda yy^{-1}$$

$$T = \lambda I$$

So
$$T(ax + by) = aT(x) + bT(y) = a\lambda x + b\lambda y = \lambda(ax + by)$$

So T is scalar times identity that has every nonzero elements as eigenvector (4) 4.8 Pr 1

Determine the eigenvalues and eigenvectors of each of the matrices for each eigenvalue λ compute the dimension of the eigenspace $E(\lambda)$

a)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

let A

- (5) 4.8 Pr 7
- (6) 4.8 Pr 14
- (7) 8.3 Pr 3
- (8) 8.3 Pr 5