

CON

PANDAS

ALESSANDRO SMAJLOVIC

PROCETTO FOOD

IN QUESTO DATASET TROVERAI 130MILA RECENSIONI DI VINI, DI CUI VENGONO INDICATI VARIETÀ, PROVENIENZA, VIGNA, PREZZO E DESCRIZIONE.
IMMAGINA ORA DI VOLER CREARE UN MARKETPLACE DI VINI PER METTERE IN CONTATTO I PICCOLI PRODUTTORI LOCALI CON ACQUIRENTI DA TUTTO IL MONDO

POTRESTI PROVARE A CAPIRE QUALI SONO LE VARIETÀ E LE VIGNE PIÙ APPREZZATE.

UN POSSIBILE OUTPUT DEL TUO LAVORO POTREBBE ESSERE LA PROPOSTA DI UNA STRATEGIA PER L'ASSORTIMENTO DA CUI PARTIRE PER IL MARKETPLACE DI VINO CHE VORRESTI CREARE.

IMPOSTAZIONE DEL PROCETTO

EXPLORATION

DATA CLEANING

DATA ANALYSIS

VISUALIZATION

COME PRIMA COSA SONO ANDATO A IMPORTARE LE VARIE LIBRERIE PIU' IL FILE CSV SU JUPYTER

	title	taster_twitter_handle	taster_name	region_2	region_1	province	price	points	designation	description	country	Unnamed: 0	
W	Nicosia 2013 Vulkà Bianco (Etna)	@kerinokeefe	Kerin O'Keefe	NaN	Etna	Sicily & Sardinia	NaN	87	Vulkà Bianco	Aromas include tropical fruit, broom, brimston	Italy	0	0
Р	Quinta dos Avidagos 2011 Avidagos Red (Douro)	@vossroger	Roger Voss	NaN	NaN	Douro	15.0	87	Avidagos	This is ripe and fruity, a wine that is smooth	Portugal	1	1
	Rainstorm 2013 Pinot Gris (Willamette Valley)	@paulgwine	Paul Gregutt	Willamette Valley	Willamette Valley	Oregon	14.0	87	NaN	Tart and snappy, the flavors of lime flesh and	US	2	2
	St. Julian 2013 Reserve Late Harvest Riesling	NaN	Alexander Peartree	NaN	Lake Michigan Shore	Michigan	13.0	87	Reserve Late Harvest	Pineapple rind, lemon pith and orange blossom	US	3	3
	Sweet Cheeks 2012 Vintner's Reserve Wild Child	@paulgwine	Paul Gregutt	Willamette Valley	Willamette Valley	Oregon	65.0	87	Vintner's Reserve Wild Child Block	Much like the regular bottling from 2012, this	US	4	4
	Dr. H. Thanisch (Erben Müller- Burggraef) 2013	NaN	Anna Lee C. Iijima	NaN	NaN	Mosel	28.0	90	Brauneberger Juffer- Sonnenuhr Spätlese	Notes of honeysuckle and cantaloupe sweeten th	Germany	129966	129966
	Citation 2004			0						Citation is given as			

```
# standard libraries
import numpy as np
import pandas as pd

# data visualization libraries
import seaborn as sns
from matplotlib import pyplot as plt
import plotly.express as px

# data cleaning library
import re

df=pd.read_csv('winemag-data-130k-v2.csv')
df.copy()
```

CON L'APERTURA DEL FILE POSSIAMO DARE UNA PRIMA OCCHIATA AL NOSTRO DATAFRAME.

INIZIO LA FASE DI ESPLORAZIONE. PRIMA GUARDANDO IN CHIARO TUTTE LE COLONNE A DISPOSIZIONE.

Out[9]: Index(['Unnamed: 0', 'country', 'description', 'designation', 'points', 'price', 'province', 'region_1', 'region_2', 'taster_name', 'taster_twitter_handle', 'title', 'variety', 'winery'],

dtype='object')

max 129970.000000

RESTITUISCO UNA SERIE DI STATISTICHE RIASSUNTIVE PER CIASCUNA COLONNA DEL DATAFRAME.

In [9]: df.columns

df.describe() Unnamed: 0 points price count 129971.000000 129971.000000 120975.000000 64985.000000 88.447138 35.363389 3.039730 41.022218 37519.540256 4.000000 0.000000 80.000000 min 32492.500000 17.000000 25% 86.000000 88.000000 25.000000 64985.000000 97477.500000 91.000000 42.000000

100.000000

OTTTENGO UNA PANORAMICA DELLE INFORMAZIONI.

<pre>#Columns types and non null df.info()</pre>	, count	
<pre><class 'pandas.core.frame.d="" (total="" 129971="" 14="" column<="" columns="" data="" entries,="" rangeindex:="" td=""><td>0 to 129970</td><td>Dtype int64</td></class></pre>	0 to 129970	Dtype int64
3 designation 4 points 5 price 6 province	129908 non-null 129971 non-null 92506 non-null 129971 non-null 120975 non-null 129908 non-null	object object int64 float64 object
0 _	108724 non-null 50511 non-null 103727 non-null 98758 non-null 129971 non-null 129970 non-null 129971 non-null	object object object object object
dtypes: float64(1), int64(2 memory usage: 13.9+ MB		object

3300.000000

```
# Definisco una funzione per estrarre l'anno da una stringa usando regex
def estrai_anno_da_stringa(testo):
    year = re.findall(r'\b\d{4}\b', testo) # Trova tutti i pattern YYYY nel testo
    if year:
        return int(year[0]) # Prende il primo anno trovato come intero
    else:
        return None

# Applico la funzione al campo 'title' per estrarre l'anno
df['year'] = df['title'].apply(estrai_anno_da_stringa)

# Gestisco i valori NaN e infiniti sostituendoli con 0
df['year'].fillna(0, inplace=True)

df['year'] = df['year'].astype(int)

# Dropping unnecessary columns
df.drop(['Unnamed: 0', 'province', 'region_1', 'region_2', 'taster_name', 'taster_twitter_handle', 'title'], axis=1, inplace=True)
#Visualizza il Dataframe con l'anno estratto
df
```


PROSEGUO CON UN PO' DI PULIZIA DEI DATI, ESTRAENDO L'ANNO PER CREARE UNA NUOVA COLONNA APPOSITA E SUCCESSIVAMENTE ELIMINANDO TUTTE LE COLONNE NON DI MIO INTERESSE.

COSÌ HO SNELLITO LE COLONNE PER AVERE UNA MAGGIORE COMPRENSIONE E FACILITÀ DELL'ANALISI.

year	winery	variety	price	points	designation	description	country	
2013	Nicosia	White Blend	NaN	87	Vulkà Bianco	Aromas include tropical fruit, broom, brimston	Italy	0
2011	Quinta dos Avidagos	Portuguese Red	15.0	87	Avidagos	This is ripe and fruity, a wine that is smooth	Portugal	1
2013	Rainstorm	Pinot Gris	14.0	87	NaN	Tart and snappy, the flavors of lime flesh and	US	2
2013	St. Julian	Riesling	13.0	87	Reserve Late Harvest	Pineapple rind, lemon pith and orange blossom	US	3
2012	Sweet Cheeks	Pinot Noir	65.0	87	Vintner's Reserve Wild Child Block	Much like the regular bottling from 2012, this	US	4
2013	Dr. H. Thanisch (Erben Müller- Burggraef)	Riesling	28.0	90	Brauneberger Juffer-Sonnenuhr Spätlese	Notes of honeysuckle and cantaloupe sweeten th	Germany	129966
2004	Citation	Pinot Noir	75.0	90	NaN	Citation is given as much as a decade of bottl	US	129967
2013	Domaine Gresser	Gewürztraminer	30.0	90	Kritt	Well-drained gravel soil gives this wine its c	France	129968
2012	Domaine Marcel Deiss	Pinot Gris	32.0	90	NaN	A dry style of Pinot Gris, this is crisp with \dots	France	129969
2012	Domaine Schoffit	Gewürztraminer	21.0	90	Lieu-dit Harth Cuvée Caroline	Big, rich and off-dry, this is powered by inte	France	129970

129971 rows x 8 columns

CORRELAZIONE TRA PUNTEGGIO E PREZZO

IL GRAFICO MOSTRATO È UN GRAFICO SCATTER PLOT (A DISPERSIONE) CHE RAPPRESENTA LA CORRELAZIONE TRA PUNTEGGI E PREZZI DEI VINI NEL DATAFRAME.

SULL'ASSE X NEL GRAFICO È RAPPRESENTATO IL PUNTEGGIO, MENTRE SULL'ASSE Y IL PREZZO.

IL GRAFICO DI DISPERSIONE PERMETTE DI VISUALIZZARE LA RELAZIONE O IL MODELLO TRA LE DUE VARIABILI.

I PUNTI NEL GRAFICO MOSTRANO LA DISTRIBUZIONE DEI DATI, INDICANDO OGNI PUNTO COME UN VINO.

QUANDO I PUNTI SI CONCENTRANO SU UNA PARTE DI UNA LINEA SIGNIFICA CHE C'È UNA CORRELAZIONE.

```
# Creo un grafico a dispersione tra punteggi e prezzi, eseguo un scatter plot tra punteggi e prezzo (points vs. price):
plt.scatter(df['points'], df['price'],alpha=0.5)
plt.xlabel('Punteggio')
plt.ylabel('Prezzo')
plt.title('Punteggio vs. Prezzo dei vini')
plt.show()
```


UN ISTOGRAMMA RAPPRESENTA LA
DISTRIBUZIONE DEI DATI UTILIZZANDO
BARRE VERTICALI, DOVE CIASCUNA
BARRA RAPPRESENTA UN INTERVALLO
DI VALORI. L'ALTEZZA DELLE BARRE
INDICA LA FREQUENZA O IL
CONTEGGIO DEI DATI ALL'INTERNO DI
QUELL' INTERVALLO.

```
# Crea un box plot dei punteggi, Un box plot fornisce
# una panoramica della distribuzione dei punteggi e permette di visualizzare la presenza di eventuali valori anomali (outliers).
sns.boxplot(x=df['points'])
plt.xlabel('Punteggio')
plt.title('Distribuzione dei punteggi dei vini')
plt.show()
```


UN BOX PLOT È UTILE PER COMPRENDERE LA CENTRALITÀ
DELLA DISTRIBUZIONE, LA DISPERSIONE, LA PRESENZA DI
VALORI ANOMALI E LA SIMMETRIA DEI DATI

QUESTI GRAFICI (ISTOGRAMMA E BOXPLOT) IN ENTRAMBI I CASI RESTITUISCONO LA DISTRIBUZIONE CON LA FASCIA PIÙ ALTA DI PUNTEGGIO DEI VINI.

PUNTEGGIO MEDIO PER PAESE

```
# Grafico a barre che mostri i punteggi medi dei vini per ciascun paese (country):
media_punteggi_per_paese = df.groupby('country')['points'].mean().sort_values(ascending=False)
media_punteggi_per_paese.head(10).plot(kind='bar')
plt.xlabel('Paese')
plt.ylabel('Punteggio Medio')
plt.title('Punteggio Medio per Paese (Top 10)')
plt.show()
                    Punteggio Medio per Paese (Top 10)
 Punteggio Medio
    20
                                     Paese
```


CALCOLANDO LA MEDIA,ATTRAVERSO UN GRAFICO A BARRE, SONO ANDATO A PRENDERE E RAFFIGURARE I PRIMI 10 PAESI COL PUNTEGGIO MEDIO MAGGIORE

VARIETA' PIU' RECENSITE

```
# Calcolo il conteggio delle varietà di vino
conteggio_varietà = df['variety'].value_counts().sort_values(ascending=False)

# Ordino il conteggio in ordine decrescente
varietà_top = conteggio_varietà.head(10)  # Mostra le prime 10 varietà più recensite

# Creo un grafico a barre delle varietà più recensite
varietà_top.plot(kind='barh')
plt.xlabel('Numero di recensioni')
plt.ylabel('Varietà di Vino')
plt.title('Le Varie Varietà di Vino più Recensite')
plt.show()
```


QUESTO GRAFICO A BARRE
ORIZZONTALE RAPPRESENTA
LE PRIME 10 VARIETA' DI VINO
PIU' RECENSITE.

PREZZO MEDIO DELLE VARIETÀ DI VINO PIÙ COSTOSE

EFFETTUANDO UN ALTRA MEDIA PER OGNI TIPO DI VARIETA', ELENCO LE PRIME 10 VARIETA' COL PREZZO MEDIO PIU' ELEVATO RAPPRESENTATO IN QUESTO GRAFICO A DISPERSIONE.

```
# Calcolo la media dei prezzi per ciascuna varietà di vino
media_prezzi_varietà = df.groupby('variety')['price'].mean()

# Elenco le prime 10 varietà con i prezzi medi più elevati
varietà_top_costose = media_prezzi_varietà.nlargest(10)

# Creo un grafico a dispersione delle varietà più costose
plt.figure(figsize=(10, 6))
plt.scatter(varietà_top_costose.index, varietà_top_costose.values, marker='o', s=100, color='r')
plt.xlabel('Varietà_di Vino')
plt.ylabel('Prezzo Medio')
plt.title('Prezzo Medio delle Varie Varietà di Vino più Costose')
plt.xticks(rotation=45, ha="right") # Ruota le etichette dell'asse x per una migliore leggibilità
plt.grid(True)
plt.show()
```


VARIETÀ PIÙ COSTOSE

```
# Elenco le prime 10 varietà con i prezzi più alti
varietà_top_costose = df.nlargest(10, 'price')

# Creo uno scatter plot delle varietà più costose tra le prime 10 con testo personalizzato
plt.figure(figsize=(10, 6))
plt.scatter(varietà_top_costose['variety'], varietà_top_costose['price'], marker='o', s=100, color='r')
plt.xlabel('Varietà di Vino')
plt.ylabel('Prezzo')
plt.ylabel('Prezzo')
plt.title('Le Prime Varietà di Vino più Costose ')
plt.xticks(rotation=45, ha="right") # Ruota le etichette dell'asse x per una migliore leggibilità

plt.grid(True)
plt.show()
```


AL PRIMO POSTO DELLA VARIETÀ DI VINI PIÙ COSTOSI, SI CLASSIFICA IL BORDEAUX RED BLEND.

VARIETÀ CON ALTO PUNTEGGIO

IN QUESTO CASO METTIAMO IN EVIDENZA LE VARIETÀ CON IL PUNTEGGIO PIÙ ALTO, SEGUITO DAI VINI PIÙ ECONOMICI...

```
# Seleziono le varietà di vino con il punteggio più alto (ad esempio, le prime 15)
higher_p = df.groupby(['variety'])['points'].max().sort_values(ascending=False).to_frame()[:15]

# Grafico che restituisce le varietà con il punteggio più alto
plt.figure(figsize=(10, 6))
ch1 = sns.barplot(x=higher_p['points'], y=higher_p.index, palette='colorblind')
ch1.set_xlabel('Punteggio')
ch1.set_ylabel('Varietà')
ch1.set_title('Varietà con il punteggio più alto')
plt.show()
```


VINI PIÙ ECONOMICI

COSÌ FACENDO VEDIAMO I VINI PIÙ ECONOMICI, MA ANCHE CON UN ALTO PUNTEGGIO.

APERTURA MARKETPLACE DI VINI INTERNAZIONALI.

HO FILTRATO I DATI PER UNA SELEZIONE DI VINI INTERNAZIONALI CHE SODDISFANO I CRITERI SPECIFICATI PER LA VENDITA NEL MARKETPLACE. I PUNTEGGI SUPERIORI A 90 INDICANO LA QUALITÀ SUPERIORE DEL VINO. I PREZZI **COMPRESI TRA 100 E 500** RAPPRESENTANO UN RANCE DI PREZZI ACCESSIBILE PER I VINI INTERNAZIONALI DI ALTA QUALITÀ.

wine = wine	df[(df['p	oints']	> 90) & (d	f['price'] >	50) &	(df['p	orice'] <	500)]					
	Unnamed: 0	country	description	designation	points	price	province	region_1	region_2	taster_name	taster_twitter_handle	title	
119	119	France	Medium- gold in color. Complex and inviting nos	Schoenenbourg Grand Cru Vendanges Tardives	92	80.0	Alsace	Alsace	NaN	NaN	NaN	Dopff & Irion 2004 Schoenenbourg Grand Cru Ven	ı
120	120	Italy	Slightly backward, particularly given the vint	Bricco Rocche Prapó	92	70.0	Piedmont	Barolo	NaN	NaN	NaN	Ceretto 2003 Bricco Rocche Prapó (Barolo)	Ν
130	130	Italy	At the first it was quite muted and subdued, b	Bricco Rocche Brunate	91	70.0	Piedmont	Barolo	NaN	NaN	NaN	Ceretto 2003 Bricco Rocche Brunate (Barolo)	Ν
133	133	Italy	Einaudi's wines have been improving lately, an	NaN	91	68.0	Piedmont	Barolo	NaN	NaN	NaN	Poderi Luigi Einaudi 2003 Barolo	Ν
134	134	US	Give this young Cab time in the cellar to come	NaN	91	78.0	California	Napa Valley	Napa	NaN	NaN	Clark-Clauden 2007 Cabernet Sauvignon (Napa Va	C Sa
129931	129931	France	A powerful, chunky wine, packed with solid tan	NaN	91	107.0	Burgundy	Grands- Echezeaux	NaN	Roger Voss	@vossroger	Henri de Villamont 2005 Grands- Echezeaux	Pi
129932	129932	Argentina	Andeluna's top wines tend to be ripe and	Pasionado	91	55.0	Mendoza Province	Uco Valley	NaN	Michael Schachner	@wineschach	Andeluna 2004 Pasionado Red (Uco Valley)	Re

INVESTIMENTO DELLE BOTTICLIE

L'OBIETTIVO DI QUESTO CODICE È CALCOLARE IL NUMERO DI BOTTIGLIE DI VINO DA ACQUISTARE E L'INVESTIMENTO TOTALE IN BASE A CRITERI SPECIFICI DI PUNTEGGIO E PREZZO.

```
# Imposto le soglie per il prezzo e il punteggio
prezzo_minimo = 50
prezzo_massimo = 500
soglia_punteggio = 90

# Definisco il costo per bottiglia
investimento_per_bottiglia = 100

# Filtro le bottiglie con prezzo compreso tra le soglie specificate e punteggio maggiore o uguale a 90
bottiglie_selezionate = wine[(wine['price'] >= prezzo_minimo) & (wine['price'] <= prezzo_massimo) & (wine['points'] >= soglia_punteggio)]

# Calcolo il numero di bottiglie da acquistare e l'investimento totale
numero_di_bottiglie_da_acquistare = bottiglie_selezionate.shape[0]
investimento_totale = (numero_di_bottiglie_da_acquistare * investimento_per_bottiglia)

print(f'Numero di bottiglie da acquistare: {numero_di_bottiglie_da_acquistare}')
print(f'Investimento totale: {investimento_totale} euro')
```

Numero di bottiglie da acquistare: 12873

Investimento totale: 1287300 euro

CONCLUSIONI

TRAMITE L'ANALISI DI QUESTO FILE ABBIAMO POTUTO CAPIRE COME NON NECESSARIAMENTE UN VINO COSTOSO HA UN PUNTEGGIO ALTO, E COME UN VINO ECONOMICO PUÒ AVERE UN PUNTEGGIO ELEVATO. ABBIAMO VISTO QUALI SONO I PUNTEGGI MEDI PER PAESE, LE VARIETÀ PIÙ RECENSITE E IL PREZZO MEDIO DELLE VARIETÀ PIÙ COSTOSE. INFINE ABBIAMO APERTO UN MARKETPLACE CALCOLANDO LA SPESA SECONDO I CRITERI SCELTI. QUESTA ANALISI CI HA AIUTATO A PRENDERE DECISIONI CONSAPEVOLI SULL'ACQUISTO DI BOTTIGLIE DI VINO IN BASE AI NOSTRI GUSTI E AL NOSTRO BUDGET. È STATO UN ESEMPIO DI COME L'ANALISI DEI DATI PUÒ ESSERE UTILIZZATA PER PRENDERE DECISIONI NEL MONDO REALE. IN CONCLUSIONE, QUESTO PROGETTO DIMOSTRA IL POTENZIALE DELL'ANALISI DEI DATI NEL PRENDERE DECISIONI INFORMATE E PERSONALIZZATE.

THANK YOU

GRAZIE PER LA VISIONE.

