

# ACM 模板库

Dounm



# 目录

| 二维计算几何            | 2  |
|-------------------|----|
| 三维计算几何            | 5  |
| 增量法求三维凸包          | 7  |
| 判断8个点是否为立方体       | 9  |
| 数据结构              | 10 |
| KD 树              | 10 |
| Splay 树           | 11 |
| 树状数组              | 14 |
| 线段树+扫描线求矩形覆盖面积    | 15 |
| 线段树+扫描线求重叠矩形周长    | 16 |
| 数论                | 18 |
| GCD               | 18 |
| Lucas 求组合数取模      | 18 |
| 错排公式              | 19 |
| 高斯消元              | 19 |
| 计算二进制中1的个数        | 21 |
| 矩阵快速幂             | 21 |
| 小数的大数次幂           | 22 |
| 扩展欧几里得及其应用        | 23 |
| 求欧拉函数             | 23 |
| 素数打表              | 23 |
| 位运算 O(n)求解全部组合数   | 24 |
| 字符串               | 24 |
| O(n)求最长回文子串       | 24 |
| 其他                | 24 |
| Lca               | 24 |
| 三分法               | 25 |
| 输入加速              | 26 |
| 四边形不等式优化 DP       | 26 |
| 斜率优化 DP           | 26 |
| 网络流               | 28 |
| 网络流 DINIC         | 28 |
| 网络流, 最小费用最大流 MCMF | 28 |

## 二维计算几何

```
/*点,直线,线段模板*/
const int MAXV = 100100;
                                                         //double p2pdis(Point p1,Point p2){return len(p1-p2);}//求
const double eps = 1e-8;
                                                          平面上两点之间的距离
const double inf = 1e8;
                                                         //解一元二次方程 Ax^2+Bx+C=0;
const double PI = 2.0*asin(1.0);
                                                         //返回-1 无解,1 有两个不同解,0 有一个解且赋值给 x1
struct Point { //点
                                                         int equa(double A,double B,double C,double &x1,double
    double x,y;
                                                         &x2){}
    Point(){}
                                                              double f=B*B-4*A*C;
    Point(double _x,double _y):x(_x),y(_y){}//拷贝构造函
                                                              if(dcmp(f)<0) return -1;
数
                                                              if(dcmp(f)==0){
    //重载运算符不会改变操作符的两个结构体对象
                                                                  x1 = (-B)/(2*A);
    Point
              operator+(const
                                  Point
                                             p){return
                                                                  return 0;
Point(x+p.x,y+p.y);}
    Point operator-(const Point p){return Point(x-p.x,y-
                                                              x1 = (-B + sqrt(f))/(2*A);
p.y);}
                                                              x2 = (-B-sqrt(f))/(2*A);
    Point
              operator*(const
                                 double
                                             p){return
                                                              return 1;
Point(x*p,y*p);}
                                                         }
   Point operator/(const double p){return Point(x/p,y/p);}
                                                         //计算直线一般式
    double
               operator^(const
                                             p){return
                                   Point
                                                         void format(Line In, double & A, double & B, double & C){
x*p.x+y*p.y;}//点积
                                                              A=In.dir.dy;
    double operator*(const Point p){return x*p.y-y*p.x;}//
                                                              B=-In.dir.dx;
叉积,因为是二维平面,所以返回 double
                                                              C=ln.p.y*ln.dir.dx-ln.p.x*ln.dir.dy;
};
                                                         }
struct Seg{Point a,b;}; //线段
                                                         //>>format();点到直线距离
struct Dir{
                                                          double p2ldis(Point a,Line In){
    double dx,dy;
                                                              double A,B,C;
    double
                operator^(const
                                    Dir
                                             p){return
                                                              format(In,A,B,C);
dx*p.dx+dy*p.dy;}//点积
                                                              return(fabs(A*a.x+B*a.y+C)/sqrt(A*A+B*B));
    double operator*(const Dir p){return dx*p.dy-
dy*p.dx;}//叉积,因为是二维平面,所以返回 double
                                                         //>>len(),p2pdis();点到线段距离
}: //方向向量
                                                          double p2segdis(Point x,Seg seg){
struct Line{Point p; Dir dir;}; //直线
                                                              double a,b,c,cos1,cos2;
struct Rad{Point Sp; Dir dir;}; //射线
                                                              a = len(x-seg.a);
struct Round{Point o; double r;};//圆
                                                              b = len(x-seg.b);
                                                              c = len(seg.a-seg.b);
                                                              cos1 = (a*a+c*c-b*b)/(2*a*c);
int dcmp(double x){return x < -eps?-1:x>eps;}//模糊精
                                                              cos2 = (b*b+c*c-a*a)/(2*b*c);
                                                              if(cos1 \le 0 \mid | cos2 \le 0)
double len(Point p){return sqrt(p.x*p.x+p.y*p.y);}//求向量
                                                                  return min(a,b);
长度
                                                              Line In;
double len2(Point p){return p.x*p.x+p.y*p.y;}//向量长度的
                                                              In.p = seg.a;
平方
                                                              ln.dir.dx = seg.b.x-seg.a.x;
//判断点在直线顺时针侧或逆时针侧,返回叉积,值为正
                                                              In.dir.dy = seg.b.y-seg.a.y;
在逆时针,值为负在顺时针
                                                              return p2ldis(x,ln);
         line point(Point
double
                           p1,Line
                                     In){return
                                                 (p1-
In.p)*Point(In.dir.dx,In.dir.dy);}
                                                         //判断点是否在线段上
```

```
bool point_seg(Point p,Seg s){
                                                             b.p.x*b.dir.dy)/b.dir.dx;
     return (s.b-s.a)*(p-s.a)==0;
                                                                  }
}
                                                                  else{
//>>line point();判断直线与线段是否相交,包括端点
                                                                       ans.x = b.p.x;
bool line_seg(Line In,Seg seg){
                                                                       ans.y
                                                                                          (a.dir.dy*b.p.x+a.dir.dx*a.p.y-
                                                             a.p.x*a.dir.dy)/a.dir.dx;
    if(line_point(seg.a,ln)*line_point(seg.b,ln)<=0)
                                                                  }
         return true;
                                                                  return ans;
    return false;
                                                             }
}
                                                             //>>format();求 p1 关于直线 In 的对称点 p2
//>>line point();判断两线段是否相交,包括端点
                                                             Point mirror(Point p1,Line In){
bool seg_seg(Seg s1,Seg s2){
                                                                  Point p2;
    Line 11,12;
                                                                  double A,B,C;
    11.p = s1.a; 11.dir.dx = s1.b.x-s1.a.x; 11.dir.dy = s1.b.y-
                                                                  format(In,A,B,C);
                                                                  p2.x=((B*B-A*A)*p1.x-2*A*B*p1.y-
s1.a.y;
    12.p = s2.a; 12.dir.dx = s2.b.x-s2.a.x; 12.dir.dy = s2.b.y-
                                                             2*A*C)/(A*A+B*B);
s2.a.y;
                                                                  p2.y=((A*A-B*B)*p1.y-2*A*B*p1.x-
    if(line\_point(s1.a,l2)*line\_point(s1.b,l2) > 0)return
                                                             2*B*C)/(A*A+B*B);
false;
                                                                  return p2;
    if(line point(s2.a,l1)*line point(s2.b,l1) > 0)return
                                                             }
false;
    return true;
//判断两条直线是否相交,0是相等,-1平行但不相等,
                                                             /*圆*/
1相交于一点
                                                             //>>formant(),equa();求直线与圆的两个交点
                                                             //利用解一元二次方程来求解
int line_line(Line a,Line b){
    if(dcmp(a.dir*b.dir)==0){
                                                             void Ircross(Round R,Line In,Point &p1,Point &p2){
         if(dcmp((a.p-b.p)*Point(b.dir.dx,b.dir.dy))==0){
                                                                  double A,B,C;
              return 0;
                                                                  format(In,A,B,C);
         }
                                                                  double x = R.o.x, y = R.o.y, r = R.r;
                                                                  if(dcmp(A) == 0){
         return -1;
                                                                       p1.y = p2.y = -C/B;
                                                                       //令横坐标为 t,(t-x)*(t-x) + (p1.y-y)*(p1.y-y) = r*r
    return 1;
}
                                                                       equa(1.0,-2*x,x*x+(p1.y-y)*(p1.y-y)-
//已知两直线相交, 求该交点
                                                             r*r,p1.x,p2.x);
Point Ilcross(Line a, Line b){
                                                                  }
    double k1,k2,b1,b2;
                                                                  else if(dcmp(B) == 0){
    Point ans:
                                                                       p1.x = p2.x = -C/A;
    if(dcmp(a.dir.dx) != 0 \&\& dcmp(b.dir.dx) != 0){
                                                                       //令纵坐标为t,(t-y)*(t-y)+(p1.x-x)*(p1.x-x)=r*r
         k1 = a.dir.dy/a.dir.dx;
                                                                       equa(1.0,-2*y,y*y+(p1.x-x)*(p1.x-x)-r*r,p1.y,p2.y);
         k2 = b.dir.dy/b.dir.dx;
                                                                  }
         b1 = (a.dir.dx*a.p.y-a.p.x*a.dir.dy)/a.dir.dx;
                                                                  else{
         b2 = (b.dir.dx*b.p.y-b.p.x*b.dir.dy)/b.dir.dx;
                                                                       //令横坐标为 t,(t-x)*(t-x)+((-A*t-C)/B-y)*((-A*t-
         ans.x = (b1-b2)/(k2-k1);
                                                             C)/B-y) = r*r
         ans.y = (b1*k2-k1*b2)/(k2-k1);
                                                                       equa(A*A+B*B,2*A*C+2*A*B*y-
                                                             2*x*B*B,B*B*x*x+C*C+2*B*y*C+B*B*y*y-
    else if(dcmp(a.dir.dx) == 0){
                                                             B*B*r*r,p1.x,p2.x);
         ans.x = a.p.x;
                                                                       p1.y = (-A*p1.x-C)/B;
                            (b.dir.dy*a.p.x+b.dir.dx*b.p.y-
                                                                       p2.y = (-A*p2.x-C)/B;
         ans.y
```

```
s += plg[i]*plg[i+1];
    }
                                                              s += plg[vcount-1]*plg[0];
}
//>>len();两个圆的两个交点.
                                                              return s/2;
bool round round(Round R1,Round R2, Point& p1, Point&
                                                          //求多边形重心,需要输入点集为逆时针或顺时针,但是
p2){
    Point o1 = R1.0,02 = R2.0;
                                                          至少3个点
    double r1 = R1.r, r2 = R2.r;
                                                          Point center(Point ply[],int pcnt){
    double d = len(o1-o2);
                                                              Point ret,p0,tri_center;
    if( dcmp(d-fabs(r1-r2))<0 || dcmp(d-r1-r2)>0 )
                                                              ret.x = ret.y = 0;
        return false;
                                                              p0 = ret;
    double cosa = (r1*r1 + d*d - r2*r2) / (2*r1*d);
                                                              double area = 0,tri_area;
    double sina = sqrt(max(0.0, 1.0 - cosa*cosa));
                                                              int s,t;
    p1 = p2 = o1;
                                                              for(int i = 0;i < pcnt;i + +){
    p1.x += r1 / d * ((o2.x - o1.x) * cosa + (o2.y - o1.y) * -
                                                                   s = i;
                                                                   t = (i==pcnt-1)?0:i+1;
sina);
    p1.y += r1 / d * ((o2.x - o1.x) * sina + (o2.y - o1.y) *
                                                                   tri_center.x = (ply[s].x + ply[t].x + p0.x);
cosa);
                                                                   tri_center.y = (ply[s].y + ply[t].y + p0.y);
    p2.x += r1 / d * ((o2.x - o1.x) * cosa + (o2.y - o1.y) *
                                                                   tri_area = (ply[s]-p0)*(ply[t]-p0);
                                                                   area += tri_area;
sina);
    p2.y += r1 / d * ((o2.x - o1.x) * -sina + (o2.y - o1.y) *
                                                                   ret.x += tri_center.x*tri_area;
                                                                   ret.y += tri_center.y*tri_area;
cosa);
    return true;
                                                              //为减少误差,除法最后一起算
}
                                                              ret.x = ret.x/(3*area);
                                                              ret.y = ret.y/(3*area);
                                                              return ret;
/*多边形*/
//对于给定的点集,让他们顺时针或逆时针排序。
                                                          //判断点 q 是否在多边形内
//其中 tmp 是该点集中的任意一点作为起始点,排序后
                                                          //该多边形是任意的凸或凹多边形,但是 Polygon[]必须
tmp 定然在点集第一个位置
                                                          是多边形顶点逆时针序列
//下面的代码是让其逆时针排序
                                                          double
                                                                                                       b){return
                                                                      get_angle(Point
                                                                                           a,Point
                                                          acos(a^b/(len(a)*len(b)));}
Point tmp;
bool anticlock_cmp(Point a,Point b){
                                                          bool pinplg(int vcount, Point ply[], Point q){
    if(dcmp(len(a-tmp))==0)
                                                              double sum angle = 0;
                                                              for(int i = 0;i < vcount-1;i + +){
        return true;
    else if(dcmp(len(b-tmp))==0)
                                                                   sum_angle += get_angle(ply[i]-q,ply[i+1]-q);
        return false;
                                                              }
    if(dcmp(a*b) == 0)
                                                              sum_angle += get_angle(ply[0]-q,ply[vcount-1]-q);
                                                              if(dcmp(sum_angle-2*PI) == 0)
        return a.x<b.x;
    return (a*b > 0);
                                                                   return true;
}
                                                              return false;
//求多边形面积
                                                         }
//要求 plg 数组里面必须得是顺时针(面积为负)或逆时针
(面积为正)方向
double area(int vcount, Point plg[]){
                                                          /*计算几何算法*/
    int i;
                                                          //graham 求凸包,O(n*log(n))
    double s = 0;
    if(vcount < 3)return 0;
                                                         //pnt 为初始点集,res 为凸包点集,逆时针排序好了
    for(i = 0; i < vcount-1; i++)
                                                          bool hull_cmpy(Point a,Point b){
```

```
if(dcmp(a.y-b.y)==0)return a.x<b.x;
     return a.y<b.y;
}
int graham(Point pnt[],int vcount,Point res[]){
     int i,len,k = 0,top = 1;
     sort(pnt,pnt+vcount,hull_cmpy);
     if(vcount==0)return 0;res[0] = pnt[0];
     if(vcount==1)return 1;res[1] = pnt[1];
     if(vcount==2)return 2;res[2] = pnt[2];
     for(i = 2;i < vcount;i ++){ //增加凸包逆时针上升一侧
的点
          while(top && dcmp((pnt[i]-res[top-1])*(res[top]-
res[top-1]))>0)
               top--;
          res[++top] = pnt[i];
    }
     len = top; res[++top] = pnt[vcount-2];
     for(i = vcount-3;i >= 0;i --){//增加凸包逆时针下降一
侧的点
          while(top!=len
                             &&
                                      dcmp((pnt[i]-res[top-
1])*(res[top]-res[top-1]))>0)
               top--;
          res[++top] = pnt[i];
    }
     return top;//凸包中点的个数为 top:0->(top-1).因为
节点 0 算了两次
}
//>>len2();平面最近点对,O(n*log(n))
Point lis[MAXV];
bool minp2p cmpx(Point a,Point b){return a.x<b.x;}</pre>
bool minp2p_cmpy(Point a,Point b){return a.y<b.y;}
double getmindist(Point p[],int l,int r){
     if(r-l==1)return len2(p[r]-p[l]);
     if(r-l==2)return min(len2(p[r]-p[l+1]),min(len2(p[l+1]-p[l+1]))
p[l]),len2(p[r]-p[l])));
     int mid = (l+r)>>1, lislen = 0;
     double
                                 ans
min(getmindist(p,l,mid),getmindist(p,mid,r));
     int k = mid-1;
     while(k \ge 1 \&\& dcmp(p[mid].x-p[k].x-ans) <= 0){
          lis[lislen++] = p[k];
          k--;
    }
     k = mid+1;
     while (k \le r \&\& dcmp(p[mid].x-p[k].x-ans) \le 0)
          lis[lislen++] = p[k];
          k++;
    }
     sort(lis,lis+lislen,minp2p_cmpy);
```

```
for(int i = 0;i < lislen;i++){
    for(int j = i+1;j<=i+7&&j<lislen;j ++){
        ans = min(ans,len2(p[i]-p[j]));
    }
}
return ans;
}
double mindist_p2p(int vcount,Point p[]){
    sort(p,p+vcount,minp2p_cmpx);
    return sqrt(getmindist(p,0,vcount-1));
}</pre>
```

## 三维计算几何

此模板中:

```
线段用两个端点 a,b 表示
直线用直线上任意两点 a,b 表示
平面用平面上任意一点 p0 以及该平面的法向量的单位
向量 n 表示
*/
/**************************/
const double eps = 1e-6;
 int dcmp(double x){
     return x < -eps ? -1 : x > eps;
}
struct Point3 {
  double x, y, z;
  Point3(double x=0, double y=0, double z=0):x(x),y(y),z(z)
{}
};
typedef Point3 Vector3;
Vector3 operator + (const Vector3& A, const Vector3& B)
{ return Vector3(A.x+B.x, A.y+B.y, A.z+B.z); }
Vector3 operator - (const Point3& A, const Point3& B)
{ return Vector3(A.x-B.x, A.y-B.y, A.z-B.z); }
Vector3 operator * (const Vector3& A, double p) { return
Vector3(A.x*p, A.y*p, A.z*p); }
Vector3 operator / (const Vector3& A, double p) { return
Vector3(A.x/p, A.y/p, A.z/p); }
```

double Dot(const Vector3& A, const Vector3& B) { return

double Length(const Vector3& A) { return sqrt(Dot(A, A)); }

double Angle(const Vector3& A, const Vector3& B) { return

A.x\*B.x + A.y\*B.y + A.z\*B.z;

```
acos(Dot(A, B) / Length(A) / Length(B)); }
Vector3 Cross(const Vector3& A, const Vector3& B) { return
Vector3(A.y*B.z - A.z*B.y, A.z*B.x - A.x*B.z, A.x*B.y -
A.y*B.x); }
double Area2(const Point3& A, const Point3& B, const
Point3& C) { return Length(Cross(B-A, C-A)); }
double Volume6(const Point3& A, const Point3& B, const
Point3& C, const Point3& D) { return Dot(D-A, Cross(B-A, C-
A)); }
// 四面体的重心
Point3 Centroid(const Point3& A, const Point3& B, const
Point3& C, const Point3& D) { return (A + B + C + D)/4.0; }
/***************************/
// 点 p 到平面 p0-n 的距离。n 必须为单位向量
double DistanceToPlane(const Point3& p, const Point3& p0,
const Vector3& n) {
  return fabs(Dot(p-p0, n)); // 如果不取绝对值,得到的
是有向距离
}
// 点 p 在平面 p0-n 上的投影。n 必须为单位向量
Point3 GetPlaneProjection(const Point3& p, const Point3&
p0, const Vector3& n) {
  return p-n*Dot(p-p0, n);
}
//直线 p1-p2 或线段 p1-p2 与平面 p0-n 的交点
Point3 LinePlaneIntersection(Point3 p1, Point3 p2, Point3
p0, Vector3 n)
{
    vector3 v = p2-p1;
    if(dcmp(Dot(n,p2-p1)) == 0)//此时直线与平面平行或
在平面上
        return Point3(0.0,0.0);
    double t = (Dot(n, p0-p1) / Dot(n, p2-p1));//分母为 0,
直线与平面平行或在平面上
    return p1 + v*t; //如果是线段 判断 t 是否在 0~1 之
间
}
// 点 P 到直线 AB 的距离
double DistanceToLine(const Point3& P, const Point3& A,
const Point3& B) {
  Vector3 v1 = B - A, v2 = P - A;
  return Length(Cross(v1, v2)) / Length(v1);
}
//点到线段的距离
```

```
double DistanceToSeg(Point3 p, Point3 a, Point3 b)
    if(a == b) return Length(p-a);
    Vector3 v1 = b-a, v2 = p-a, v3 = p-b;
    if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
    else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
    else return Length(Cross(v1, v2)) / Length(v1);
}
//求异面直线 p1+s*u 与 p2+t*v 的公垂线对应的 s 如果
平行I重合,返回 false
bool LineDistance3D(Point3 p1, Vector3 u, Point3 p2,
Vector3 v, double& s)
{
    double b = Dot(u, u) * Dot(v, v) - Dot(u, v) * Dot(u, v);
    if(dcmp(b) == 0) return false;
    double a = Dot(u, v) * Dot(v, p1-p2) - Dot(v, v) * Dot(u, v)
p1-p2);
    s = a/b;
    return true;
}
// p1 和 p2 是否在线段 a-b 的同侧
// 前提条件是确定了 p1,p2 和线段 a-b 是在同一平面内
bool SameSide(const Point3& p1, const Point3& p2, const
Point3& a, const Point3& b) {
  return dcmp(Dot(Cross(b-a, p1-a), Cross(b-a, p2-a))) >= 0;
}
// 点 P 在三角形 PO, P1, P2 中
// 前提条件:确定 p 和三角形共面
bool PointInTri(const Point3& P, const Point3& P0, const
Point3& P1, const Point3& P2) {
  return SameSide(P, P0, P1, P2) && SameSide(P, P1, P0, P2)
&& SameSide(P, P2, P0, P1);
// 三角形 POP1P2 是否和线段 AB 相交
bool TriSegIntersection(const Point3& P0, const Point3& P1,
const Point3& P2, const Point3& A, const Point3& B,
Point3& P) {
  Vector3 n = Cross(P1-P0, P2-P0);
  if(dcmp(Dot(n, B-A)) == 0) return false; // 线段 A-B 和平
面 POP1P2 平行或共面
  else { // 平面 A 和直线 P1-P2 有惟一交点
    double t = Dot(n, PO-A) / Dot(n, B-A);
    if(dcmp(t) < 0 || dcmp(t-1) > 0) return false; // 不在
线段 AB 上
```

P = A + (B-A)\*t; // 交点

}

struct T3dhull

```
return PointInTri(P, P0, P1, P2);
  }
}
//空间两三角形是否相交
bool TriTriIntersection(Point3* T1, Point3* T2) {
  Point3 P;
  for(int i = 0; i < 3; i++) {
    if(TriSegIntersection(T1[0],
                                 T1[1],
                                          T1[2],
                                                   T2[i],
T2[(i+1)%3], P)) return true;
    if(TriSegIntersection(T2[0],
                                 T2[1],
                                          T2[2],
                                                   T1[i],
T1[(i+1)%3], P)) return true;
  }
  return false;
}
//空间两直线上最近点对 返回最近距离 点对保存在
ans1 ans2 中
double SegSegDistance(Point3 a1, Point3 b1, Point3 a2,
Point b2)
{
    Vector v1 = (a1-b1), v2 = (a2-b2);
    Vector N = Cross(v1, v2);
    Vector ab = (a1-a2);
    double ans = Dot(N, ab) / Length(N);
    Point p1 = a1, p2 = a2;
    Vector d1 = b1-a1, d2 = b2-a2;
    double t1, t2;
    t1 = Dot((Cross(p2-p1, d2)), Cross(d1, d2));
    t2 = Dot((Cross(p2-p1, d1)), Cross(d1, d2));
    double dd = Length((Cross(d1, d2)));
    t1 /= dd*dd;
    t2 /= dd*dd;
    ans1 = (a1 + (b1-a1)*t1);
    ans2 = (a2 + (b2-a2)*t2);
    return fabs(ans);
}
// 判断 P 是否在三角形 A, B, C 中, 并且到三条边的距
离都至少为 mindist。保证 P, A, B, C 共面
bool InsideWithMinDistance(const Point3& P, const
Point3& A, const Point3& B, const Point3& C, double
mindist) {
  if(!PointInTri(P, A, B, C)) return false;
  if(DistanceToLine(P, A, B) < mindist) return false;</pre>
  if(DistanceToLine(P, B, C) < mindist) return false;
  if(DistanceToLine(P, C, A) < mindist) return false;
  return true;
}
```

```
// 判断 P 是否在凸四边形 ABCD(顺时针或逆时针)中,并且到四条边的距离都至少为 mindist。保证 P, A, B, C, D 共面 bool InsideWithMinDistance(const Point3& P, const Point3& A, const Point3& B, const Point3& C, const Point3& D, double mindist) { if(!PointInTri(P, A, B, C)) return false; if(!PointInTri(P, C, D, A)) return false; if(DistanceToLine(P, A, B) < mindist) return false; if(DistanceToLine(P, B, C) < mindist) return false; if(DistanceToLine(P, C, D) < mindist) return false; if(DistanceToLine(P, D, A) < mindist) return false; return true;
```

## 增量法求三维凸包

```
#define eps 1e-8
const int N = 310;
struct TPoint
{
    double x,y,z;
    TPoint(){}
    TPoint(double
                                           _y,double
                          _x,double
_z):x(_x),y(_y),z(_z){} //拷贝构造函数
    TPoint
             operator+(const
                               TPoint
                                        p)
                                              {return
TPoint(x+p.x,y+p.y,z+p.z);}
    TPoint operator-(const TPoint p) {return TPoint(x-
p.x,y-p.y,z-p.z);}
    TPoint
             operator*(const
                               double
                                              {return
                                        p)
TPoint(x*p,y*p,z*p);}
    TPoint
             operator/(const
                               double
                                        g)
                                              {return
TPoint(x/p,y/p,z/p);}
    TPoint operator*(const TPoint p) {return TPoint(y*p.z-
z*p.y,z*p.x-x*p.z,x*p.y-y*p.x);}//叉积
    double
             operator^(const
                               TPoint
                                              {return
                                        p)
x*p.x+y*p.y+z*p.z;}//点积
struct fac//
    int a,b,c;//凸包一个面上的三个点的编号
    //a,b,c 必须是按照逆时针来存储,因为只有这样的
话,vec{a->b} x vec{a->c}得到的法向量才指向外面
    bool ok;//该面是否是最终凸包中的面
};
```

```
int n;//初始点数
   TPoint ply[N];//初始点
   int trianglecnt;//凸包上三角形数
   fac tri[N];//凸包三角形
   int vis[N][N];//点 i 到点 j 是属于哪个面
   double
                   dist(TPoint
                                      a){return
sqrt(a.x*a.x+a.y*a.y+a.z*a.z);}//两点长度
    double area2(TPoint a,TPoint b,TPoint c){return
dist((b-a)*(c-a));}//三角形面积*2
   double volume6(TPoint a,TPoint b,TPoint c,TPoint
d){return (b-a)*(c-a)^(d-a);}//四面体有向体积*6
   double ptoplane(TPoint &p,fac &f)//正: 点在面同向
   {
       TPoint m=ply[f.b]-ply[f.a],n=ply[f.c]-ply[f.a],t=p-
ply[f.a];
       return (m*n)^t;
   }
   void deal(int p,int a,int b)
       int f=vis[a][b];//与当前面(cnt)共边(ab)的那个面
       fac add;
       if(tri[f].ok)
           if((ptoplane(ply[p],tri[f]))>eps) dfs(p,f);//如
果 p 点能看到该面 f,则继续深度探索 f 的 3 条边,以
便更新新的凸包面
           else//否则因为 p 点只看到 cnt 面, 看不到
f面,则p点和a、b点组成一个三角形。
           {
               add.a=b,add.b=a,add.c=p,add.ok=1;
               vis[p][b]=vis[a][p]=vis[b][a]=trianglecnt;
               tri[trianglecnt++]=add;
           }
       }
   }
   void dfs(int p,int cnt)//维护凸包,如果点 p 在凸包外
更新凸包
       tri[cnt].ok=0;//当前面需要删除,因为它在更大
的凸包里面
//下面把边反过来(先 b,后 a),以便在 deal()中判断与当
前面(cnt)共边(ab)的那个面。即判断与当头面(cnt)相邻的
3个面(它们与当前面的共边是反向的,如下图中(1)的法
线朝外(即逆时针)的面 130 和 312,它们共边 13,但一个
方向是 13,另一个方向是 31)
```

deal(p,tri[cnt].b,tri[cnt].a);

```
deal(p,tri[cnt].c,tri[cnt].b);
         deal(p,tri[cnt].a,tri[cnt].c);
    }
     bool same(int s,int e)//判断两个面是否为同一面
         TPoint a=ply[tri[s].a],b=ply[tri[s].b],c=ply[tri[s].c];
         return fabs(volume6(a,b,c,ply[tri[e].a]))<eps
              &&fabs(volume6(a,b,c,ply[tri[e].b]))<eps
              &&fabs(volume6(a,b,c,ply[tri[e].c]))<eps;
     }
     void construct()//构建凸包
     {
         int i,j;
         trianglecnt=0;
         if(n<4) return;
         bool tmp=true;
         for(i=1;i<n;i++)//前两点不共点
              if((dist(ply[0]-ply[i]))>eps)
                   swap(ply[1],ply[i]); tmp=false; break;
         }
         if(tmp) return;
         tmp=true;
         for(i=2;i<n;i++)//前三点不共线
         {
              if((dist((ply[0]-ply[1])*(ply[1]-ply[i])))>eps)
                   swap(ply[2],ply[i]); tmp=false; break;
              }
         if(tmp) return;
         tmp=true;
         for(i=3;i<n;i++)//前四点不共面
              if(fabs((ply[0]-ply[1])*(ply[1]-ply[2])^(ply[0]-
ply[i]))>eps)
                   swap(ply[3],ply[i]); tmp=false; break;
              }
         if(tmp) return;
         fac add;
         for(i=0;i<4;i++)//构建初始四面体(4 个点为
ply[0],ply[1],ply[2],ply[3])
         {
add.a=(i+1)%4,add.b=(i+2)%4,add.c=(i+3)%4,add.ok=1;
```

```
if((ptoplane(ply[i],add))>0)
```

swap(add.b,add.c);//保证逆时针,即法向量朝外,这样新点才可看到。

vis[add.a][add.b]=vis[add.b][add.c]=vis[add.c][add.a]=trian glecnt;//逆向的有向边保存

```
tri[trianglecnt++]=add;
}
for(i=4;i<n;i++)//构建更新凸包
{
```

for(j=0;j<trianglecnt;j++)//对每个点判断是 否在当前 3 维凸包内或外(i 表示当前点,j 表示当前面)

if(tri[j].ok&&(ptoplane(ply[i],tri[j]))>eps)//对当前凸包面进行判断,看是否点能否看到这个面

{
 dfs(i,j); break;//点能看到当前面,

更新凸包的面(递归,可能不止更新一个面)。当前点更新完成后 break 跳出循环

```
}
}
```

int cnt=trianglecnt;//这些面中有一些 tri[i].ok=0,它们属于开始建立但后来因为在更大凸包内故需删除的,所以下面几行代码的作用是只保存最外层的凸包

```
ret+=area2(ply[tri[i].a],ply[tri[i].b],ply[tri[i].c]);
return ret/2;
}
double volume()//体积
{
TPoint p(0,0,0);
```

for(int i=0;i<trianglecnt;i++)</pre>

double ret=0; for(int i=0;i<trianglecnt;i++)</pre>

ret+=volume6(p,ply[tri[i].a],ply[tri[i].b],ply[tri[i].c]);

```
return fabs(ret/6);
     }
     int facetri() {return trianglecnt;}//表面三角形数
     int facepolygon()//表面多边形数
         int ans=0,i,j,k;
         for(i=0;i<trianglecnt;i++)</pre>
              for(j=0,k=1;j< i;j++)
                   if(same(i,j)) {k=0;break;}
              ans+=k;
         return ans;
    //求重心
    TPoint gravity(){
         TPoint ret = TPoint(0.0,0.0,0.0);
         double retv = 0;
         TPoint p0 = ply[0];
         for(int i = 0;i < trianglecnt;i ++){</pre>
              double
volume6(ply[tri[i].a],ply[tri[i].b],ply[tri[i].c],p0);
              retv += tmp;
              ret
                                          ret
(ply[tri[i].a]+ply[tri[i].b]+ply[tri[i].c]+p0)/4.0*tmp;
         return ret/retv;
    //重心到凸包表面最近距离
     double mindis gra2pla(){
         double ret = inf;
         TPoint center = gravity();
         for(int i = 0;i < trianglecnt;i ++)
                                                  min(ret,-
volume6(ply[tri[i].a],ply[tri[i].b],ply[tri[i].c],center)/area2(p
ly[tri[i].a],ply[tri[i].b],ply[tri[i].c]));
              //凸包的重心必然在凸包内部,所以
volume6()求出的有向体积是负数
         return ret;
    }
}hull;
```

## 判断 8 个点是否为立方体

//原理: 立方体中任意一点到两个对角点的距离平方之

```
和为3*边长平方
struct point{
  ll x;
  II y;
  II z;
};
point pt[8];
II dst[8];
II dst2[8];
II dst3[8];
inline double get dist(int i,int j)
{
  II ans = (pt[j].x - pt[i].x) * (pt[j].x - pt[i].x);
  ans += (pt[j].y - pt[i].y) * (pt[j].y - pt[i].y);
  ans += (pt[j].z - pt[i].z) * (pt[j].z - pt[i].z);
  return ans:
}
inline bool check()
{
  for(int i = 0; i < 8; ++i)
     dst2[i] = dst[i] = get_dist(i, 7);
  sort(dst, dst + 8);
  II a2 = dst[1];
  if(a2 != dst[2] || a2 != dst[3])
     return false;
  if(2*a2 != dst[4] || 2*a2 != dst[5] || 2*a2 != dst[6])
     return false;
  if(3*a2 != dst[7])
     return false;
  int ind = 0;
  for(int i = 0; i < 8; ++i)
     if(dst2[i] == 3*a2)
     {
        ind = i;
        break;
     }
     for(int i = 0; i < 8; ++i){
        dst3[i] = get_dist(i, ind);
        if(dst3[i] + dst2[i] != 3 * a2)
           return false;
     }
     return true;
}
```

## 数据结构

#### KD 树

```
解决问题类型:
    1.多维空间询问最近邻
    2.多维空间(常见 2,3 维)对于有关空间的问询,例如
三维空间中某立方体内有几个点,
      二维空间某一平面有几个点
*/
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
typedef pair<int, LL> PII;
typedef pair<int, int> pii;
                        //最大节点数
const int maxn = 111222;
const int maxD = 2;
                        //最大维度
const int maxM = 12:
                        //最大问询第几近的点
const LL INF = 4611686018427387903LL;
int now;
struct TPoint {
    int x[maxD];
    void read(int k) {
        for (int i = 0; i < k; ++i)
            scanf("%d", x + i);
    }
} p[maxn];
bool cmp(const TPoint& a, const TPoint& b) {
    return a.x[now] < b.x[now];
template<typename T> T sqr(T n) {
    return n * n;
}
struct KDtree {
    int K, n, top;
    int split[maxn];
                    //split[i]=j:节点 i 以第 j 维度来分
割空间
                        //dis2[i]:离目标点 mp 第 i+1
    LL dis2[maxM];
近的点与之的距离平方
    TPoint stk[maxn]; //stk[i]:离目标点 mp 第 i+1 近的
点
    TPoint kp[maxn]; //存储 KD 树中所有的点
```

```
//目标点
                                                                     update(kp[mid], M);
    TPoint mp;
                                              //建树节
    void build(int I, int r) {
                                                                     if (1 + 1 == r)
点范围是 I->r-1
                                                                          return;
         if (l >= r)
                                                                     LL d = mp.x[split[mid]] - kp[mid].x[split[mid]];
              return;
                                                                     if (d \le 0) {
         int i, j, mid = (l + r) >> 1;
                                                                          nearest_search(l, mid, M);
                                                                          if (sqr(d) < dis2[M - 1])
         LL dif[maxD], mx;
         for (i = 0; i < K; ++i) {
                                                                               nearest_search(mid + 1, r, M);
              mx = dif[i] = 0;
                                                                     } else {
                                                                          nearest_search(mid + 1, r, M);
             for (j = 1; j < r; ++j)
                  mx += kp[j].x[i];
                                                                          if (sqr(d) < dis2[M - 1])
              mx /= r - I;
                                                                               nearest_search(l, mid, M);
             for (j = 1; j < r; ++j)
                                                                     }
                  dif[i] += sqr(kp[j].x[i] - mx);
                                                                 }
         }
                                                                 void find_nearest(TPoint p, int M) {
                                                                                                    //在 kd 树中
         now = 0;
                                                            找离 p 点第 M 近的点
         for (i = 1; i < K; ++i)
                                                                     for (int i = 0; i < M; ++i) {
              if (dif[now] < dif[i])
                                                                          dis2[i] = INF;
                  now = i;
                                                                     }
                                                                     mp = p;
         split[mid] = now;
                                                                     nearest_search(0, n, M);
         nth_element(kp + I, kp + mid, kp + r, cmp);
         //stl,可以在 O(n)内将第 mid 大的数放在处理后
                                                                 LL dist(const TPoint& a, const TPoint& b) { //a 和 b
数组的第 mid 位,mid 位前面的数都小于
                                                            两个点的欧几里得距离
         //该数,后面的数都大于该数,但是不保证是有
                                                                     LL res = 0;
序数列
                                                                     for (int i = 0; i < K; ++i)
         build(I, mid);
                                                                          res +=  sqr < LL > (a.x[i] - b.x[i]);
         build(mid + 1, r);
                                                                     return res;
                                                                 }
                                              // 更新
                                                            } KD;
    void update(const TPoint& p, int M) {
dis2[]
                                                            //调用时需要赋值:
                                                                KD.n 赋值为 KD 树初始总共有多少个点;
         int i, j;
                                                            // KD.K 代表 KD 树有几维
         LL tmp = dist(p, mp);
         for (i = 0; i < M; ++i)
                                                                KD.kp[]就是输入的点,p[i]是对原有点的备份(读入时
                                                            直接可利用 p[i].read()读入)
              if (dis2[i] > tmp) {
                  for (j = M - 1; j > i; --j) {
                                                            // 并且更改 maxn,maxD,maxM
                                                            //注意,调用里面函数时范围是:l->r-1
                       stk[j] = stk[j - 1];
                       dis2[j] = dis2[j - 1];
                  }
                                                            Splay 树
                  stk[i] = p;
                  dis2[i] = tmp;
                                                            /*指针版本*/
                  break;
                                                            //pnode I = rt->lchild,r = rt->rchild;
             }
                                                            //注意我们如果对 rt->Ichild 和 rt->rchild 改变的话记得更
    }
                                                            新 I.r 的值
    void nearest_search(int l, int r, int M) { //在 l->r-1 的
                                                            #define root top->lchild
范围内搜索
                                                            #define rnode root->rchild
         if (l >= r)
                                                            #define keytree rnode->lchild
              return;
                                                            //rnode is the right child of node root
         int mid = (l + r) >> 1;
```

```
int num[maxn];
//无论是线段树还是 splay, 所有需要问询的标记都需要
                                                          pnode NewNode(pnode rt,int val){
在与
                                                              pnode newnode;
//其相关的懒标记更改时也更改
                                                              newnode = (pnode)malloc(sizeof(node));
//如 Min 和 add,sum 和 add
                                                              //when i don't allocate memory for pointer, it may still
typedef struct Node{
                                                          works,
    int sz;//sz is the number of nodes in the subtree
                                                              //but it overlays some memory randomly.
                                                              newnode->val = val;
    int val;
    bool rev;//mark if this node is reversed
                                                              newnode->rev = false;
    //注意有的标记是否会影响到旋转方向的判断
                                                              newnode->sz = 1;
    struct Node *Ichild,*rchild,*parent;
                                                              newnode->lchild = newnode->rchild = NULL:
                                                              newnode->parent = rt;
}node;
typedef node *pnode;//node pointer
                                                              return newnode;
pnode top;
void put_up(pnode x){//将孩子状态更新上来
void Treavel(pnode x)
                                                              x->sz = 1;
{
                                                              pnode I = x->lchild,r = x->rchild;
    if(x != NULL)
                                                              if(I != NULL){
                                                                   x->sz+=I->sz;
        printf("结点 val: %2d 父结点 val %2d size %d
                                                              }
rever %d",x->val,x->parent->val,x->sz,x->rev);
                                                              if(r != NULL){
        pnode I = x->lchild,r = x->rchild;
                                                                   x->sz += r->sz;
        if(I != NULL){
             printf(" 左儿子 val %2d",l->val);
        }
                                                          void put down(pnode x){
        if(r!= NULL){
                                                              if(x->rev){
             printf(" 右儿子 val %2d",r->val);
                                                                   //先旋转自己的左右子树,再传递标记
                                                                   pnode tmp;
        printf("\n");
                                                                   tmp = x->lchild;
        Treavel(x->lchild);
                                                                   x->lchild = x->rchild;
        Treavel(x->rchild);
                                                                   x->rchild = tmp;
                                                                   pnode I = x->lchild,r = x->rchild;
    }
}
                                                                   if(I != NULL)
void debug()
                                                                       I->rev ^= x->rev;
{
                                                                   if(r != NULL)
    printf("root val:%d\n",root->val);
                                                                       r->rev ^= x->rev;
    Treavel(root);
                                                                   x->rev = false;
}
                                                              }
                      是
                                                   分
       以
              上
                                                          }
                                                          void build_tree(pnode rt,int l,int r,int kind){ //建树
                                                              if(I > r)return;
void free_pointer(pnode rt){//用完就要释放指针空间,否
                                                              int m = (l+r)/2;
则可能 MLE
                                                              pnode newnode;
    pnode I = rt->lchild,r = rt->rchild;
                                                              newnode = NewNode(rt,num[m]);
    if(I != NULL)
                                                              if(kind == 0)
        free pointer(I);
                                                                   rt->lchild = newnode;
    if(r!= NULL)
                                                              else
        free_pointer(r);
                                                                   rt->rchild = newnode;
    free(rt);
                                                              build_tree(newnode,l,m-1,0);
```

```
build_tree(newnode,m+1,r,1);
     put_up(newnode);
                                                                          k->lchild = parent;
}
                                                                          parent->parent = k;
void init(int n){
                                                                     }
     //为了方便处理边界,加上两个边界顶点 left 和
                                                                     put_up(parent);
right
                                                                }
                                                                void Splay(pnode k,pnode goal){//将 k 节点旋转到 goal 节
     pnode left, right;
     top = NewNode(NULL,0);
                                                                点的子节点处
     left = NewNode(top,0);
                                                                     pnode parent, grandpa;
     right = NewNode(left,0);
                                                                     parent = k->parent;
                                                                     grandpa = parent->parent;
     top->lchild = left;
                                                                     while(parent != goal){
     left->rchild = right;
                                                                          int t1 = (grandpa->lchild == parent)?0:1;
     left->sz = 2;
                                                                          int t2 = (parent-> lchild == k)?0:1;
                                                                          if(grandpa == goal){
                                                                               Rotate(k,!t2);
     build_tree(right,1,n,0);
     put_up(right);
                                                                               break;
     put_up(left);
                                                                          }
                                                                          if(t1 == t2)//如果想等, 先旋转 parent,在旋转 k
}
void Rotate(pnode k,int kind){
                                                                               Rotate(parent,!t1),Rotate(k,!t2);
     pnode parent, grandpa;
                                                                          else
     parent = k->parent;
                                                                               Rotate(k,!t2),Rotate(k,!t1);
     grandpa = parent->parent;
                                                                          parent = k->parent;
     put_down(parent);//put_down(parent) first
                                                                          grandpa = parent->parent;
     put down(k);
                                                                     }
     if(kind == 1){//rotate clockwise
                                                                     put_up(k);
          parent->lchild = k->rchild;
                                                                }
          if(k->rchild != NULL)
                                                                pnode get_kth(pnode rt,int k){
               k->rchild->parent = parent;
                                                                     pnode I = rt->lchild,r = rt->rchild;
          k->parent = grandpa;
                                                                     if(I == NULL){
          if(grandpa != NULL){
                                                                          if(k==0+1)
               if(grandpa->lchild == parent)
                                                                               return rt;
                    grandpa->lchild = k;
                                                                          return get_kth(r,k-1);
               else
                                                                     }
                    grandpa->rchild = k;
                                                                     else if(r == NULL){
                                                                          if(k==l->sz+1)
          }
          k->rchild = parent;
                                                                               return rt;
          parent->parent = k;
                                                                          return get_kth(l,k);
    }
                                                                     }
     else{
                                                                     else{
          parent->rchild = k->lchild;
                                                                          if(I->sz+1==k)
          if(k->lchild != NULL)
                                                                               return rt;
               k->lchild->parent = parent;
                                                                          else if(k \le l > sz)
          k->parent = grandpa;
                                                                               return get_kth(l,k);
          if(grandpa != NULL){
                                                                          else
               if(grandpa->lchild == parent)
                                                                               return get kth(r,k-(l->sz+1));
                    grandpa->lchild = k;
                                                                     }
               else
                                                                }
                    grandpa->rchild = k;
                                                                pnode del(int l,int r){ //return the pointer of deleted tree
```

```
Splay(get_kth(root,l),top);
    Splay(get_kth(root,r+2),root);
    pnode rt = keytree;
    rnode->lchild = NULL;
                                                  接
    rt->parent
                =
                     NULL;// 不可
                                             直
keytree->parent=NULL,因为此时 keytree==NULL
    put_up(rnode);
    put_up(root);
    return rt;
}
void inser(int I,pnode rt){//insert an interval after I
    Splay(get_kth(root,l+1),top);
    Splay(get_kth(root,l+2),root);
    keytree = rt;
    rt->parent = rnode;
    put_up(rnode);
    put_up(root);
}
pnode minbigger(int p){//求 val 大于 p 的最小的节点
    pnode t = root;
    pnode ans = NULL;
    while(t != NULL){
        if(t->val >= p){//这等于,下面求小于 p 的最大
值就不能等于了
             ans = t;
             t = t->lchild;
        }
        else
             t = t->rchild;
    }
    return ans;
pnode maxless(int p){//求 val 小于 p 的最大值
    pnode t = root;
    pnode ans = NULL;
    while(t != NULL){
        if(t->val < p){
             ans = t;
             t = t->rchild;
        }
        else
             t = t->lchild;
    }
    return ans;
}
void update(int l,int r,int c){
    //本来在仅有数组的子树中要找的两个节点是第 I-
1个和第 r+1 个节点
    //但是因为我们加了一个边界节点 root 且 root 在
```

```
数组子树的左边
   //所以我们在 root 为跟的数组中找第 I 和第 r+2 个
节点
    //所以 I 和 r+2 节点的左子树的节点个数就是 I-1 和
r+1
    Splay(get_kth(root,I),top);
    Splay(get_kth(root,r+2),root);
    keytree->add += c;
    keytree->sum += (II)c*keytree->sz;
}
Il query(int l,int r){
    Splay(get_kth(root,l),top);
    Splay(get_kth(root,r+2),root);
    return keytree->sum;
}
//用的时候在读入区间初始值之后先 init()
//对于一颗树的操作完成之后一定要 free_pointer()
```

#### 树状数组

```
6 的原码是 00000110
6 的反码是 11111001
反码+1 以后表示负数
11111010
这就是-6
*/
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define maxn 5010
long long c[maxn];
init(){
     memset(c,0,sizeof(c));
}
int lowbit(int x)//求得是 c[x]这个数组包括了(a[x]+a[x-
1]+...+a[x-lowbit(x)+1]) 共 lowbit(x)个 a[]数组的和
{
    return x&(-x);
void update(int x,int add)
    int i = x;
    while(i <= maxn)//因为要更新的话就需要把结点上
```

//c[i]的父节点就是 c[i+lowbit(i)]

层的包含此节点的 c[i]全部更新

```
{
        c[i] += add; //此处因为求逆序数, 所以更新为
加1
        i += lowbit(i);
    }
}
int sum(int x) //得到 a[1]->a[n]之和
{
    int ans = 0;
    for(int i = x ; i > 0 ; i -= lowbit(i))//c[i]包含 lowbit(i)个
a[]数组,从a[i]->a[i-lowbit(i)+1],
                                                //继
续更新 i, 然后求 c[i]即求出 sum
        ans += c[i];
    return ans;
}
```

#### 线段树+扫描线求矩形覆盖面积

```
//离散化+扫描线
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
using namespace std;
#define II long long
const II Mod=(1e9+7);
const int inf = 0x3f3f3f3f;
const int maxn = 2010;
const int maxm = 4*maxn;
int n;
double Y[maxn],qc[maxn];
struct Line{
    double x;
    double y1,y2;
    int flag;//flag 为 1 代表矩形左边, flag 为-1 代表矩
形的右边
}line[maxn];
struct Node{
    int l,r;
    double dl,dr; //l,r 离散化前的值
    double one,two;//one:覆盖一次的总长度,two:覆盖
两次的总长度
    int cover; //该节点被覆盖了几次
}node[maxm];
```

```
void init(){
    memset(node,0,sizeof(node));
    memset(line,0,sizeof(line));
    memset(Y,0,sizeof(Y));
}
void build(int id,int l,int r){
    node[id].l = l;
    node[id].r = r;
    node[id].dl = qc[l];
    node[id].dr = qc[r];//此处即离散化了
    if(I+1 == r)return;
    //此处注意,扫描线线段树中的节点指的仍然是坐
标系中v的值,而非一段v
    //所以建树的时候是 I->mid;mid->r;而叶子结点长度
为 2,即 l+1==r
    int mid = (1+r)/2;
    build(id*2,l,mid);
    build(id*2+1,mid,r);
void put up(int id){
//更新每个节点的 one 和 two 的值
//保证每个节点的 two 的值必然小于等于 one 的值
    if(node[id].cover >= 2)
         node[id].two = node[id].one = node[id].dr -
node[id].dl;
    else if(node[id].cover == 1){
        node[id].one = node[id].dr - node[id].dl;
        if(node[id].l+1 == node[id].r) //注意是否为叶子
结点
             node[id].two = 0;
        else
             node[id].two
                                 node[id*2].one
node[id*2+1].one;
    }
    else{
        if(node[id].l+1 == node[id].r) //注意是否为叶子
结点
             node[id].two = node[id].one = 0;
        else{
             node[id].two
                                  node[id*2].two
node[id*2+1].two;
                                 node[id*2].one
             node[id].one
node[id*2+1].one;
        }
    }
void update(int id,Line In){
    if(node[id].dl == ln.y1 && node[id].dr == ln.y2){}
        node[id].cover += In.flag;
```

```
//此处也得更新 id 的 one 和
          put up(id);
two
          return;
    }
     int mid = (node[id].l + node[id].r)/2;
     if(ln.y2 \le node[id*2].dr)
          update(id*2,ln);
     else if(ln.y1 >= node[id*2+1].dl)
          update(id*2+1,ln);
     else{
          Line e = In;
          e.y2 = node[id*2].dr;
          update(id*2,e);
          e.y1 = node[id*2+1].dl;
          e.y2 = In.y2;
          update(id*2+1,e);
    }
     put_up(id);
}
bool cmpx(Line a,Line b){
     if(a.x == b.x) return a.flag > b.flag;//重边时先入后出
     return a.x < b.x;
}
int main(){
     int T;
     int Case = 1;
     scanf("%d",&T);
     while(T--){
          scanf("%d",&n);
          init();
          int t = 1;
          for(int i = 1; i \le n; i ++){
               double x1,y1,x2,y2;
               scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
               line[t].x = x1; line[t].y1 = y1; line[t].y2 = y2;
line[t].flag = 1;
               Y[t] = y1;
               line[t].x = x2; line[t].y1 = y1; line[t].y2 = y2;
line[t].flag = -1;
               Y[t] = y2;
               t++;
         }
          sort(Y+1,Y+t);
           //接下来的是去重的步骤
          int cnt = 1;
          double mmax = -1000000;
          for(int i = 1; i < t; i ++){
               if(Y[i] > mmax){
```

#### 线段树+扫描线求重叠矩形周长

```
//离散化+扫描线
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
using namespace std;
#define II long long
const II Mod=(1e9+7);
const int inf = 0x3f3f3f3f;
const int maxn = 10010;
const int maxm = 4*maxn;
int n;
double Y[maxn],qc[maxn];//qc 存储去重后的 y 值
struct Line{
    double x;
    double y1,y2;
    int flag;
}line[maxn];
struct Node{
    int l,r;
    int dl,dr;//离散化前的坐标
    int lp,rp;//表示这个节点左右两个端点没有被覆盖,
有为1, 无为0
    double len;//区间被覆盖的总长度
    int cover;//区间被重复覆盖几次
```

int num;//区间被多少个线段覆盖,如果两个线段连

```
在一起,算一个线段
                                                                      if(ln.y2 \le node[id*2].dr)
}node[maxm];
                                                                            update(id*2,ln);
                                                                      else if(ln.y1 >= node[id*2+1].dl)
void init(){
     memset(node,0,sizeof(node));
                                                                           update(id*2+1,ln);
     memset(line,0,sizeof(line));
                                                                      else{
     memset(Y,0,sizeof(Y));
                                                                           Line tmp;
     memset(qc,0,sizeof(qc));
                                                                           tmp = ln;
}
                                                                           tmp.y2 = node[id*2].dr;
void build(int id,int l,int r){
                                                                           update(id*2,tmp);
     node[id].l = l;
                                                                           tmp.y1 = node[id*2+1].dl;
     node[id].r = r;
                                                                           tmp.y2 = ln.y2;
     node[id].dl = qc[l];
                                                                           update(id*2+1,tmp);
     node[id].dr = qc[r];
                                                                      }
     if(I+1 == r)return;
                                                                      put_up(id);
     int mid = (1+r)/2;
                                                                 }
     build(id*2,I,mid);
                                                                 bool cmpx(Line a,Line b){
     build(id*2+1,mid,r);
                                                                      if(a.x == b.x)
}
                                                                           return a.flag > b.flag;//边重合时,应该先插入,
                                                                 再删除
void put_up(int id){
     if(node[id].cover >= 1){
                                                                      return a.x < b.x;
          node[id].len = node[id].dr-node[id].dl;
                                                                 }
          node[id].rp = node[id].lp = 1;
                                                                 int main(){
          node[id].num = 1;
                                                                      int Case = 1;
    }
                                                                      while(~scanf("%d",&n)){
     else{
                                                                           init();
          if(node[id].l+1 == node[id].r){}
                                                                           int t = 1;
               node[id].rp = node[id].lp = 0;
                                                                           for(int i = 1; i \le n; i ++){
               node[id].len = 0;
                                                                                 double x1,y1,x2,y2;
               node[id].num = 0;
                                                                                 scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
         }
                                                                                line[t].x = x1; line[t].y1 = y1; line[t].y2 = y2;
          else{
                                                                 line[t].flag = 1;
               node[id].len
                                       node[id*2].len
                                                                                 Y[t] = y1;
node[id*2+1].len;
                                                                                t++;
               node[id].lp = node[id*2].lp;
                                                                                line[t].x = x2; line[t].y1 = y1; line[t].y2 = y2;
               node[id].rp = node[id*2+1].rp;
                                                                 line[t].flag = -1;
               node[id].num
                               =
                                      node[id*2].num
                                                                                 Y[t] = y2;
node[id*2+1].num;
                                                                                t++;
               if(node[id*2].rp == 1 && node[id*2+1].lp ==
                                                                           }
                                                                           sort(Y+1,Y+t);
1)
                    node[id].num--;
                                                                           //接下来的是去重的步骤
          }
                                                                           int cnt = 1;
     }
                                                                           double mmax = -1000000;
}
                                                                           for(int i = 1; i < t; i ++){
void update(int id,Line In){
                                                                                if(Y[i] > mmax){
     if(ln.y1 == node[id].dl && ln.y2 == node[id].dr){}
                                                                                     qc[cnt++] = Y[i];
          node[id].cover += In.flag;
                                                                                      mmax = Y[i];
          put_up(id);
                                                                                }
          return;
                                                                           }
    }
                                                                           sort(line+1,line+t,cmpx);
```

}

```
build(1,1,cnt);
    double ans = 0;
    update(1,line[1]);
    ans += line[1].y2-line[1].y1;
    for(int i = 2;i < t;i ++){
        ans += 2*node[1].num*(line[i].x-line[i-1].x);
        double tlen = node[1].len;
        update(1,line[i]);
        ans += fabs(tlen-node[1].len);
    }
    printf("%d\n",(int)ans);
}
return 0;
</pre>
```

# 数论

#### **GCD**

```
//最快速 gcd
int gcd(int a, int b)
while ( b ^= a ^= b ^= a %= b );
return a;
}
Stein 算法是一种计算两个数最大公约数的算法,
它是针对欧几里德算法在对大整数进行运算时,
需要试商导致增加运算时间的缺陷而提出的改进算法。
*/
typedef long long LL;
LL gcd(LL u,LL v)
    if (u == 0) return v;
    if (v == 0) return u;
    // look for factors of 2
    if (~u & 1) // u is even
        if (v & 1) // v is odd
             return gcd(u >> 1, v);
        else // both u and v are even
             return gcd(u >> 1, v >> 1) << 1;
    }
    if (~v & 1) // u is odd, v is even
        return gcd(u, v >> 1);
```

```
// reduce larger argument

if (u > v)

return gcd((u - v) >> 1, v);

return gcd((v - u) >> 1, u);
```

#### Lucas 求组合数取模

```
#include <cstdio>
#include <iostream>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
#define maxn 100010
typedef long long LL;
LL m,n,p;
LL Pow(LL a,LL b,LL mod) //快速幂求 a^b(%mod)
    LL ans=1;
    while(b)
     {
         if(b&1)
         {
              b--;
              ans=(ans*a)%mod;
         }
         else
         {
              b/=2;
              a=(a*a)%mod;
         }
     }
    return ans;
LL C(LL n,LL m)
{
     if(n<m)
         return 0;
    LL ans=1;
    for(int i=1;i<=m;i++)
         ans=ans*(((n-m+i)%p)*Pow(i,p-2,p)%p)%p;
    }
     return ans;
```

```
LL Lucas(LL n,LL m)
{
     if(m==0)
          return 1;
     return (Lucas(n/p,m/p)*C(n%p,m%p))%p;
}
int main()
{
     int t;
     scanf("%d",&t);
     while(t--)
     {
          scanf("%lld%lld%lld",&n,&m,&p);
          printf("%lld\n",Lucas(n,m));
     }
     return 0;
}
```

### 错排公式

```
/*
组合数学。考虑一个有 n 个元素的排列,若一个排列中
所有的元素都不在自己原来的位置上,
那么这样的排列就称为原排列的一个错排。
*/
void init()
{
    s[0]=0; s[1]=0; s[2]=1;
    int i;
    for (i=3;i<=100;i++)
        s[i]=(i-1)*(s[i-1]+s[i-2])%Mod;
```

#### 高斯消元

}

```
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#include<math.h>
using namespace std;

const int MAXN=50;
int A[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集
bool free_x[MAXN];//标记是否是不确定的变元,true 代表不确定
```

```
int Free[MAXN],num;//储存自由变元
inline int gcd(int a,int b)
    int t;
    while(b!=0)
    {
        t=b;
        b=a%b;
        a=t;
    }
    return a;
inline int lcm(int a,int b)
{
    }
void enumerate(int a[MAXN][MAXN],int k,int var){
                                              //枚
举所有的自由变元的情况
//模版中是翻牌的枚举
    int tmp = var-k;
    bool tmp_free[MAXN];
    int tx[MAXN];
    //tmp free[]和 tx[]分别用来暂存 free x[]和 x[]
    for(int i = 0; i < (1 << tmp); i++){
        int cnt = 0;//在 i 情况下一共翻了几张牌
        for(int j = 0;j < var;j ++){
            if(free_x[j]==false && x[j])cnt++;//确定取值
的变量后面没有记录
            tmp_free[j] = free_x[j];
            tx[j] = x[j];
        }
        int t = i;
        for(int j = 0; j < tmp; j ++){
            tmp free[Free[i]] = 0;//暂时将自由变元标
记为有解
            tx[Free[j]] = (t&1);
            if(tx[Free[j]]){
                cnt++;
            }
            t = t>>1;
        for(int j = k-1; j >= 0; j --){
            int index = 0;
            for(int p = 0;p < var;p ++){
                if(a[j][p] && tmp_free[p])
                //在自由变元被赋值之后,每一行至
多有一个未知变量
                //第 i 行左起第 1 个仍不知道解得变
```

量必然就是该未知变量

```
index = p;
            int tmp = a[j][var];
            for(int p = 0; p < var; p ++)
                if(a[j][p]) tmp ^= tx[p];
            tx[index] = tmp;
            tmp_free[index] = 0;//tx[index]也暂时有确
定解了
            if(tx[index])
                cnt++;
        result = min(result,cnt);//result 是最小翻牌数
   }
}
// 高斯消元法解方程组(Gauss-Jordan elimination).(-2 表
示有浮点数解,但无整数解,
//-1 表示无解, 0 表示唯一解, 大于 0 表示无穷解, 并
返回自由变元的个数)
//有 equ 个方程, var 个变元。增广矩阵行数为 equ,分别
为 0 到 equ-1,列数为 var+1,分别为 0 到 var.
int Gauss(int a[][],int equ,int var)
{
    int i,j,k;
    int max_r;// 当前这列绝对值最大的行.
    int col://当前处理的列
    int ta,tb;
    int LCM;
    int temp;
    int free_x_num;
    int free index;
    num = 0;
    for(int i=0;i<=var;i++)
    {
        x[i]=0;
       free_x[i]=true;
   }
   //转换为阶梯阵.
    col=0; // 当前处理的列
    for(k = 0; k < equ \&\& col < var; k++, col++)
    {// 枚举当前处理的行.
// 找到该 col 列元素绝对值最大的那行与第 k 行交
换.(为了在除法时减小误差)
        max r=k;
        for(i=k+1;i<equ;i++)
            if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
        }
```

```
if(max_r!=k)
        {// 与第 k 行交换.
            for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);
        }
        if(a[k][col]==0)
        {// 说明该 col 列第 k 行以下全是 0 了,则处理
当前行的下一列.
        //k 先--后来,k++,col++
            Free[num++] = col;
            k--;
            continue;
        for(i=k+1;i<equ;i++)
        {// 枚举要删去的行.
            if(a[i][col]!=0)
                LCM = lcm(abs(a[i][col]),abs(a[k][col]));
                ta = LCM/abs(a[i][col]);
                tb = LCM/abs(a[k][col]);
                if(a[i][col]*a[k][col]<0)tb=-tb;//异号的
情况是相加
                for(j=col;j<var+1;j++)
                    a[i][j] = a[i][j]*ta-a[k][j]*tb;
                }
           }
        }
   }
   // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)
这样的行(a!=0).
    for (i = k; i < equ; i++)
       //如果 col 先结束, 那么此时第 k~i 行必然是系
数部分全部为0,
        if (a[i][col] != 0) return -1;
   }
    // 2. 无穷解的情况: 在 var * (var + 1)的增广阵中出
现(0,0,...,0)这样的行,即说明没有形成严格的上三角阵.
   // 且出现的行数即为自由变元的个数.
   if (k < var)
        // 首先,自由变元有 var-k 个,即不确定的变
元至少有 var - k 个.
        for (i = k - 1; i >= 0; i--)
            // 第 i 行一定不会是(0,0,...,0)的情况,因
为这样的行是在第 k 行到第 equ 行.
           // 同样, 第 i 行一定不会是(0, 0, ..., a), a !=
```

0的情况,这样的无解的.

```
free_x_num = 0; // 用于判断该行中的不确定的变元的个数,如果超过 1 个,则无法求解,它们仍然为不确定的变元.
```

```
for (j = 0; j < var; j++)
                 if (a[i][i]
                            != 0 &&
                                           free_x[j])
free_x_num++, free_index = j;
             if (free_x_num > 1) continue; // 无法求解
出确定的变元.
            // 说明就只有一个不确定的变元
free_index,那么可以求解出该变元,且该变元是确定的.
            temp = a[i][var];
            for (j = 0; j < var; j++)
                 if (a[i][j] != 0 && j != free_index) temp -
= a[i][j] * x[j];
             x[free_index] = temp / a[i][free_index]; //
求出该变元.
             free x[free index] = 0; // 该变元是确定的.
        enumerate();
        return var - k; // 自由变元有 var - k 个.
    // 3. 唯一解的情况: 在 var * (var + 1)的增广阵中形
成严格的上三角阵.
    // 计算出 Xn-1, Xn-2 ... X0.
    for (i = var - 1; i >= 0; i--)
    {
        temp = a[i][var];
        for (j = i + 1; j < var; j++)
             if (a[i][j] != 0) temp -= a[i][j] * x[j];
        if (temp % a[i][i] != 0) return -2; // 说明有浮点数
解,但无整数解.
        x[i] = temp / a[i][i];
    }
    return 0;
}
```

#### 计算二进制中1的个数

```
/*
0x1100010101000 在这个二进制数, 我们可以看到 0, 1 交替出现, 当我们用这个数减去一个 1 的时候, 我们发现最这个数最大的影响就是这个数的最后一一
```

个1变为了0, 且这个1后面全部的0变为了1, 于是我们可以想到对数进行"与"操作, 去掉受影响 的部分,这样下去直到整个目标数变为0.

```
算法复杂度为 1 的个数
*/
int count(long v)
{
    int number = 0;

    while(v)
    {
        v &= (v-1);
        number++;
    }
    return number;
```

#### 矩阵快速幂

return c;

}

}

```
#define II long long
const II Mod = 1e9+7;
struct Matrix{
     II a[2][2];
}M,ini;
void init(){
     M.a[0][0] = 1;
     M.a[0][1] = 1;
     M.a[1][0] = -1;
     M.a[1][1] = 0;
     ini.a[0][0] = Y;
     ini.a[0][1] = X;
     ini.a[1][0] = ini.a[1][1] = 0;
Matrix Multi(Matrix a, Matrix b){
     Matrix c;
     int i,j,k;
     for (i = 0; i < 2; i++){
          for (j = 0; j < 2; j++){
               c.a[i][j] = 0;
               for(k = 0; k < 2; k++)
                    c.a[i][j] = (c.a[i][j] + a.a[i][k] *
b.a[k][j])%Mod;
               while(c.a[i][j] < 0) //对于可能出现的负数
                    c.a[i][j] += Mod;
          }
     }
```

```
Matrix Matrix_pow(int x){
    if(x == 1)return M;
    Matrix tmp = Matrix_pow(x/2);
    if(x \% 2 == 0)
         return Multi(tmp,tmp);
    else
         return Multi(Multi(tmp,tmp),M);
}
Il get(int x){
    if(x == 0)return 0;
    if(x == 1)return X;
    if(x == 2)return Y;
    Matrix tmp = Matrix pow(x-2);
    //上面几行由递推公式决定
    tmp = Multi(ini,tmp); //此处注意,一定是 ini 在左,
    return tmp.a[0][0];
//每次先运行 init();
```

#### 小数的大数次幂

```
//求小树的大数次幂模某个值。例如 2^(10^100000)
#include"math.h"
#define LL long long
#define nmax 100000 //大数字符串的长度
int flag[nmax], prime[nmax];
int plen;
void mkprime() {
    int i, j;
    memset(flag, -1, sizeof(flag));
    for (i = 2, plen = 0; i < nmax; i++) {
         if (flag[i]) {
               prime[plen++] = i;
         for (j = 0; (j < plen) && (i * prime[j] < nmax); j++)
{
              flag[i * prime[j]] = 0;
              if (i % prime[j] == 0) {
                    break;
              }
         }
    }
}
int getPhi(int n) {
    int i, te, phi;
    te = (int) sqrt(n * 1.0);
    for (i = 0, phi = n; (i < plen) && (prime[i] <= te); i++) {
```

```
if (n \% prime[i] == 0) {
                phi = phi / prime[i] * (prime[i] - 1);
                while (n % prime[i] == 0) {
                     n /= prime[i];
          }
     }
     if (n > 1) {
          phi = phi / n * (n - 1);
     }
     return phi;
int cmpCphi(int p, char *ch) {
     int i, len;
     LL res;
     len = strlen(ch);
     for (i = 0, res = 0; i < len; i++) {
          res = (res * 10 + (ch[i] - '0'));
          if (res > p) {
                return 1;
          }
     }
     return 0;
}
int getCP(int p, char *ch) {
     int i, len;
     LL res;
     len = strlen(ch);
     for (i = 0, res = 0; i < len; i++) {
          res = (res * 10 + (ch[i] - '0')) \% p;
     }
     return (int) res;
}
int modular exp(int a, int b, int c) {
     LL res, temp;
     res = 1 % c, temp = a % c;
     while (b) {
          if (b & 1) {
                res = res * temp % c;
          temp = temp * temp % c;
          b >>= 1;
     }
     return (int) res;
//a 是底数, ch 是次幂, c 是模
//ch 不能有前置 0,例如 099 不行
void solve(int a, int c, char *ch) {
     int phi, res, b;
```

}

```
phi = getPhi(c);
if (cmpCphi(phi, ch)) {
            b = getCP(phi, ch) + phi;
} else {
            b = atoi(ch);
}
res = modular_exp(a, b, c);
printf("%d\n", res);
}
```

#### 扩展欧几里得及其应用

```
int Extended Euclid(int a,int b,int& x,int &y)
    if(b==0){
         x=1;
         y=0;
         return a;
    }
    int d=Extended Euclid(b,a%b,x,y);
    int temp=x;x=y;y=temp-a/b*y;
    return d;
}
//用扩展欧几里得算法解线性方程 ax+by=c;
bool linearEquation(int a,int b,int c,int& x,int &y)
{
    int d=Extended_Euclid(a,b,x,y);
    if(c%d) return false;
    int k=c/d;
    x*=k;y*=k;//求的只是其中一个解
    //给一组特解(x, y), 通解为(x - kb', y + ka').
    //a'=a/gcd(a,b),b'=b/gcd(a,b)
    return true;
}
//用扩展欧几里得求模线性方程 ax=b(mod n)
bool linear_mod_equation (int a, int b, int n, int *sol)
{
    int d, x, y, min_po_sol;
    d = Extended Euclid(a,n,x,y);
    if (b % d) return false;
    else
    {
         sol[0] = x * (b/d) % n;
         min_po_sol = (sol[0]%(n/d)+(n/d))%(n/d);
         for (int i = 1; i < d; ++i)
              sol[i] = (sol[i - 1] + n / d) \% n;
    }
```

```
return true;
```

#### 求欧拉函数

```
int phi(int n)
{
     int ans,i,k;
     if(n==1)
          ans=0;
     else{
          ans=n;
          k=1;
          for(i=2;n!=1;i+=k){
               if(n\%i==0){
                    ans*=(i-1);ans/=i; //注意可能爆 int
                    while(n%i==0)n/=i;
                    i=k;
               }
          }
     }
     return ans;
}
```

## 素数打表

i = 0;

 $for(i = 2; i \le N; ++i)$ 

```
//o(n)时间的一种打表方法
#define N 50000 //质数范围
int prime[N]; //prime[0]=2,prime[1]=3,prime[2]=5,......

void init_prime()
{
    int i,j;
    memset(prime,0,sizeof(prime));
    for(i = 2;i <= sqrt(N*1.0); ++i)
    {
        if(!prime[i])
            for(j = i * i; j < N; j += i)//o->i*i 之间的数字
已经判断出是否为素数了
            prime[j] = 1;
    }
    //prime[]在上面是作为标记数组,0 代表是质数,1
代表不是
//prime[]在下面作为存储素数的数组
```

## 位运算 O(n)求解全部组合数

```
这个函数用来求 C(n, k), 其中 comb 就是二进制形式表
示的子集,
例如 000111 表示由后三个元素构成的组合或子集,
并且该迭代过程可生成字典序递增的组合,这一特性非
常有用。
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
int main()
{
   int k=2,n=5;
   int comb = (1 << k) - 1;
   while(comb < 1 <<(n))
   {
       //printf("%d\n",comb);//先使用
       int x = comb \& -comb, y = comb + x;
       comb = ((comb \& ^{\sim}y) / x >> 1) | y;
   system("pause");
    return 0;
}
```

## 字符串

#### O(n)求最长回文子串

```
//as for the initial string, p[i*2+1]-1 is the length of
//palindrome substring whose center is s[i]
int p[2*maxn+3];
char s[2*maxn+3];
int palindrome(char ini_s[]){
    memset(p,0,sizeof(p));
    //change the string
    int ini_len = strlen(ini_s);
    for(int i = 0;i < ini_len; i++){
        s[2*i] = '#';
        s[2*i+1] = ini_s[i];</pre>
```

```
s[2*ini_len] = '#';
      s[2*ini\_len+1] = '\0';
     //cal p[i]
      int id = -1,mx = 0,len = strlen(s);
      for(int i = 0;i < len;<math>i + +){
           if(mx > i)
                 p[i] = min(p[2*id-i],mx-i);
           else
                 p[i] = 1;
           while(s[i-p[i]] == s[i+p[i]]){
                 p[i]++;
                 if(i-p[i]<0 \mid | i+p[i]>=len)
                       break;
           if(i+p[i] > mx){
                 id = i;
                 mx = i+p[i];
           }
     }
     //get the longest palindrome substring
     int ans = -1;
     for(int i = 0;i < len;i ++)
           ans = max(ans,p[i]-1);
      return ans;
}
```

# 其他

#### Lca

```
//Tarjan 复杂度 O(n)
//Tarjan:我的版本(略去了 ancestor[]数组)
vector<int>Tree[maxn];
vector<pair<int,int> >Q[maxn];//存储问询,first 是所问的
节点标号,second 的是 LCA
vector<pair<int,int> >::iterator it;
int parent[maxn];
bool vis[maxn];
void init(){
    memset(vis,false,sizeof(vis));
    for(int i = 0;i < maxn;i ++){
        Tree[i].clear();
        Q[i].clear();
    }
}
```

```
int find_parent(int x){
                                                                   y = find_parent(y);
     if(parent[x] == x)
                                                                   parent[y] = x;//此处是把 parent[y]赋值为 x
                                                              }
         return x;
    return parent(x)=find_parent(parent(x));
                                                              void LCA(int x){
}
                                                                   parent[x] = x;
void union_set(int x,int y){
                                                                   ancestor[x] = x;
    x = find_parent(x);
                                                                   for(int i = 0; i < Tree[x].size(); i + +){
                                                                        int tmp = Tree[x][i];
    y = find_parent(y);
    parent[y] = x;//此处是把 parent[y]赋值为 x
                                                                        LCA(tmp);
}
                                                                        union_set(x,tmp);//注意顺序
void LCA(int x){
                                                                        ancestor[find parent(tmp)] = x;
     parent[x] = x;
                                                                   }
    for(int i = 0;i < Tree[x].size();<math>i + +){
                                                                   vis[x] = true;
                                                                   for(it=Q[x].begin(); it !=Q[x].end();it++){
         int tmp = Tree[x][i];
                                                                        int tmp = it->first;
         LCA(tmp);
         union_set(x,tmp);//注意顺序
                                                                        if(vis[tmp]){
    }
                                                                             it->second = ancestor[find_parent(tmp)];
    vis[x] = true;
                                                                        }
    for(it=Q[x].begin(); it !=Q[x].end();it++){
                                                                   }
         int tmp = it->first;
                                                              }
                                                              /*
         if(vis[tmp]){
              it->second = find_parent(tmp);
                                                              use make_pair()方法
         }
                                                              Q[a].push_back(make_pair<int,int>(b,-1));
    }
                                                              Q[b].push_back(make_pair<int,int>(a,-1));
}
                                                              */
                                                              三分法
//Tarjan:网上流传版本
vector<int>Tree[maxn];
                                                              http://hi.baidu.com/vfxupdpaipbcpuq/item/81b21d1910e
vector<pair<int,int> >Q[maxn];//存储问询,first 是所问的
                                                              a729c99ce33db?qq-pf-to=pcqq.group#
节点标号, second 的是 LCA
                                                              二分法求单调函数; 三分法求 凸性函数, 例如一元二次
vector<pair<int,int> >::iterator it;
                                                              方程
int ancestor[maxn],parent[maxn];
                                                              */
bool vis[maxn];
                                                              double Calc(Type a)
void init(){
                                                              {
     memset(vis,false,sizeof(vis));
                                                                   /* 根据题目的意思计算 */
    for(int i = 0;i < maxn;i ++){
                                                              }
         Tree[i].clear();
                                                              void Solve(void)
         Q[i].clear();
                                                              {
    }
                                                                   double Left, Right;
}
                                                                   double mid, midmid;
int find_parent(int x){
                                                                   double mid_area, midmid_area;
    if(parent[x] == x)
                                                                   Left = MIN; Right = MAX;
         return x;
                                                                   while (Left + EPS < Right)
     return parent[x]=find parent(parent[x]);
                                                                   {
}
                                                                        mid = (Left + Right) / 2;
void union_set(int x,int y){
                                                                        midmid = (mid + Right) / 2;
    x = find_parent(x);
```

```
mid_area = Calc(mid);
midmid_area = Calc(midmid);
// 假设求解最大极值.
if (mid_area >= midmid_area) Right = midmid;
else Left = mid;
}
```

#### 输入加速

```
/*
getchar()比 scanf()快
仅用于整数
*/
int input()
{
    char ch=' ';
    while(ch<'0'||ch>'9')ch=getchar();
    int x=0;
    while(ch<='9'&&ch>='0')x=x*10+ch-'0',ch=getchar();
    return x;
}
```

#### 四边形不等式优化 DP

```
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
#include<math.h>
#include<queue>
using namespace std;
#define II int64
const II Mod=(1e9+7);
const int inf = 0x3f3f3f3f;
const int maxn = 1010;
const int maxm = 10100:
int n;
int x[maxn],y[maxn];
int dp[maxn][maxn],s[maxn][maxn];
//s[i][j] is the value of k of the best chioce of dp[i][j]
int dis(int i,int k,int k1,int j){
     return abs(x[k1]-x[i])+abs(y[k]-y[j]);
}
int main(){
     while(scanf("%d",&n) != EOF){
```

```
for(int i = 1; i <= n; i++)
                scanf("%d%d",&x[i],&y[i]);
           memset(dp,0,sizeof(dp));
           for(int i = 1; i <= n; i ++){
                s[i][i] = i;
                dp[i][i] = 0;
           }
           for(int len = 2;len <= n;len ++){
                //outer loop is the number of nodes that we
connect
                //because the number of nodes of both
s[i][j-1] and s[i+1][k] are len-1
                for(int i = 1; i \le n-len+1; i ++){
                      int j = i + len - 1;
                      dp[i][j] = inf;
                      for(int k = s[i][j-1]; k \le s[i+1][j]; k++){
                           if(dp[i][j]
dp[i][k]+dp[k+1][j]+dis(i,k,k+1,j)){
dp[i][k]+dp[k+1][j]+dis(i,k,k+1,j);
                                 s[i][j] = k;
                           }
                      }
                }
           printf("%d\n",dp[1][n]);
     }
     return 0;
}
```

#### 斜率优化 DP

/\*

我们知道,有些 DP 方程可以转化成 DP[i]=f[j]+x[i]的形式,其中 f[j]中保存了只与 j 相关的量。这样的 DP 方程我们可以用单调队列进行优化,从而使得 O(n^2)的复杂度降到 O(n)。

可是并不是所有的方程都可以转化成上面的形式,举个例子: dp[i]=dp[j]+(x[i]-x[j])\*(x[i]-x[j])。如果把右边的乘法化开的话,会得到 x[i]\*x[j]的项。这就没办法使得 f[j]里只存在于 j 相关的量了。于是上面的单调队列优化方法就不好使了。

这里学习一种新的优化方法,叫做斜率优化,其实和凸包差不多,下面会解释。

举例子说明是最好的! HDU 3507, 很适合的一个入门题。

http://acm.hdu.edu.cn/showproblem.php?pid=3507

大概题意就是要输出 N 个数字 a[N],输出的时候可以连续连续的输出,每连续输出一串,它的费用是"这串数字和的平方加上一个常数 M"。

我们设 dp[i]表示输出到 i 的时候最少的花费, sum[i]表示从 a[1]到 a[i]的数字和。于是方程就是:

 $dp[i]=dp[j]+M+(sum[i]-sum[j])^2$ ;

很显然这个是一个二维的。题目的数字有 500000 个,不用试了,二维铁定超时了。那我们就来试试斜率优化吧,看看是如何做到从 O(n^2)复杂度降到 O(n)的。

#### 分析:

我们假设 k < j < i。如果在 j 的时候决策要比在 k 的时候决策 好 , 那 么 也 是 就 是  $dp[j] + M + (sum[i] - sum[j])^2 < dp[k] + M + (sum[i] - sum[k])^2 。 (因为是最小花费嘛,所以优就是小于)$ 

两 边 移 项 一 下 , 得 到 : (dp[j]+num[j]^2-(dp[k]+num[k]^2))/(2\*(num[j]-num[k]))<sum[i] 。 我 们 把 dp[j]-num[j]^2 看做是 yj,把 2\*num[j]看成是 xj。

那么不就是 yj-yk/xj-xk<sum[i]么? 左边是不是斜率的表示?

那么 yj-yk/xj-xk<sum[i]说明了什么呢? 我们前面是不是假设 j 的决策比 k 的决策要好才得到这个表示的? 如果是的话,那么就说明 g[j,k]=yj-jk/xj-xk<sum[i]代表这 j 的决策比 k 的决策要更优。

关键的来了:现在从左到右,还是设 k<j<i,如果g[i,j]<g[j,k],那么j点便永远不可能成为最优解,可以直接将它踢出我们的最优解集。为什么呢?

我们假设 g[i,j] < sum[i],那么就是说 i 点要比 j 点优,排除 i 点。

如果 g[i,j]>=sum[i],那么 j 点此时是比 i 点要更优,但是同时 g[j,k]>g[i,j]>sum[i]。这说明还有 k 点会比 j 点更优,同样排除 i 点。

排除多余的点,这便是一种优化!

所以这样相当于在维护一个下凸的图形,斜率在逐渐增 大。

通过一个单调队列来维护。

\*/

#include<stdio.h>

#include<iostream>

#include<string.h>

#include<algorithm>

#include<math.h>

#include<queue>

using namespace std;

#define II long long

```
const II Mod=(1e9+7);
const int inf = 0x3f3f3f3f3;
const int maxn = 500150;
const int maxm = 10100;
int n,m;
int sum[maxn],dp[maxn],q[maxn];
int get_up(int j,int k){
                       //求斜率分子
    return (dp[j]+sum[j]*sum[j]) - (dp[k]+sum[k]*sum[k]);
}
int get down(int j,int k){ //斜率分母
    return 2*(sum[j]-sum[k]);
}
int get_dp(int i,int k){
    int ans = dp[k]+(sum[i]-sum[k])*(sum[i]-sum[k])+m;
}
int main(){
    while (scanf("%d%d", &n, &m) != EOF) {
        sum[0] = 0;
        dp[0] = 0;
        for(int i = 1; i \le n; i ++){
             int a;
             scanf("%d",&a);
             sum[i] = sum[i-1]+a;
        }
        int head=0,tail=0;
        q[tail++] = 0;//0 是有含义的,代表所有字母都
在第一行的情况
        for(int i=1;i<=n;i++)
             //把斜率转成相乘,注意顺序,否则不等
号方向会改变的
             while(head+1<tail
                                                 &&
get_up(q[head+1],q[head])<=sum[i]*get_down(q[head+1],</pre>
q[head]))
                head++;
             //上面循环令 head 为 dp[i]的最优解
             //因为 sum[i]是递增的,这保证了能用斜
率优化
             //所以对于 i 来说 head 前面的点被删去,
那么对于 i+1, head 前面的点也会被删去
             dp[i]=get_dp(i,q[head]);
             while(head+1<tail
                                &&
                                       get_up(i,q[tail-
1])*get_down(q[tail-1],q[tail-2])<=get_up(q[tail-1],q[tail-
2])*get down(i,q[tail-1]))
                      tail--;
             q[tail++]=i;
```

//下面循环保证队列的单调性

```
}
    printf("%d\n",dp[n]);
}
return 0;
}
```

## 网络流

#### 网络流 DINIC

```
const int maxnode = 1000 + 5;
const int maxedge = 1000 + 5;
const int oo = 1000000000;
int node, src, dest, nedge;
int head[maxnode], point[maxedge], next1[maxedge],
flow[maxedge], capa[maxedge];//point[x]==y 表示第 x 条
边连接 y, head, next 为邻接表, flow[x]表示 x 边的动态
值, capa[x]表示 x 边的初始值
int dist[maxnode], Q[maxnode], work[maxnode];//dist[i]表
示i点的等级
void init(int _node, int _src, int _dest){//初始化, node 表
示点的个数, src 表示起点, dest 表示终点
    node = _node;
    src = src;
    dest = _dest;
    for (int i = 0; i < node; i++) head[i] = -1;
    nedge = 0;
}
void addedge(int u, int v, int c1, int c2){//增加一条 u 到 v
流量为 c1, v 到 u 流量为 c2 的两条边
    point[nedge] = v, capa[nedge] = c1, flow[nedge] = 0,
next1[nedge] = head[u], head[u] = (nedge++);
    point[nedge] = u, capa[nedge] = c2, flow[nedge] = 0,
next1[nedge] = head[v], head[v] = (nedge++);
bool dinic_bfs(){
    memset(dist, 255, sizeof (dist));
    dist[src] = 0;
    int sizeQ = 0;
    Q[sizeQ++] = src;
    for (int cl = 0; cl < sizeQ; cl++)
         for (int k = Q[cl], i = head[k]; i \ge 0; i = next1[i])
              if (flow[i] < capa[i] && dist[point[i]] < 0){
                  dist[point[i]] = dist[k] + 1;
                  Q[sizeQ++] = point[i];
              }
```

```
return dist[dest] >= 0;
}
int dinic_dfs(int x, int exp){
     if (x == dest) return exp;
     for (int &i = work[x]; i \ge 0; i = next1[i]){
         int v = point[i], tmp;
         if (flow[i] < capa[i] \&\& dist[v] == dist[x] + 1 \&\&
(tmp = dinic_dfs(v, min(exp, capa[i] - flow[i]))) > 0){
              flow[i] += tmp;
              flow[i^1] -= tmp;
              return tmp;
         }
     }
     return 0;
}
int dinic_flow(){
     int result = 0;
     while (dinic_bfs()){
         for (int i = 0; i < node; i++) work[i] = head[i];
         while (1){
              int delta = dinic_dfs(src, oo);
              if (delta == 0) break;
              result += delta;
         }
     }
     return result;
}
//建图前,运行一遍 init();
//加边时,运行 addedge(a,b,c,0),表示点 a 到 b 流量为 c
的边建成(注意点序号要从0开始)
//求解最大流运行 dinic_flow(),返回值即为答案
```

#### 网络流:最小费用最大流 MCMF

```
void add edge(int f, int t, int d1, int w){//f 到 t 的一条边,
流量为 d1,花费 w,反向边花费-w (可以反悔)
     e[ne].f = f, e[ne].t = t, e[ne].c = d1, e[ne].w = w;
     next1[ne] = point[f], point[f] = ne++;
     e[ne].f = t, e[ne].t = f, e[ne].c = 0, e[ne].w = -w;
     next1[ne] = point[t], point[t] = ne++;
}
bool spfa(int s, int t, int n){
     int i, tmp, l, r;
     memset(pre, -1, sizeof(pre));
     for(i = 0; i < n; ++i)
          dis[i] = inf;
     dis[s] = 0;
     q[0] = s;
     I = 0, r = 1;
     u[s] = true;
     while(I != r) {
          tmp = q[I];
          I = (I + 1) \% (n + 1);
          u[tmp] = false;
          for(i = point[tmp]; i != -1; i = next1[i]) {
               if(e[i].c \&\& dis[e[i].t] > dis[tmp] + e[i].w) {
                    dis[e[i].t] = dis[tmp] + e[i].w;
                    pre[e[i].t] = i;
                    if(!u[e[i].t]) {
                          u[e[i].t] = true;
                          q[r] = e[i].t;
                          r = (r + 1) \% (n + 1);
                    }
               }
          }
     if(pre[t] == -1)
          return false;
     return true;
}
void MCMF(int s, int t, int n, int &flow, int &cost){//起点 s,
终点 t, 点数 n, 最大流 flow, 最小花费 cost
     int tmp, arg;
     flow = cost = 0;
     while(spfa(s, t, n)) {
          arg = inf, tmp = t;
          while(tmp != s) {
               arg = min(arg, e[pre[tmp]].c);
               tmp = e[pre[tmp]].f;
          }
          tmp = t;
          while(tmp != s) {
               e[pre[tmp]].c -= arg;
```

```
e[pre[tmp] ^ 1].c += arg;
          tmp = e[pre[tmp]].f;
      }
      flow += arg;
      cost += arg * dis[t];
   }
}
//建图前运行 init()
//节点下标从0开始
//加边时运行 add_edge(a,b,c,d)表示加一条 a 到 b 的流
量为 c 花费为 d 的边 (注意花费为单位流量花费)
// 特 别 注 意
                  双向边,
                                  运
add_edge(a,b,c,d),add_edge(b,a,c,d)较好,不要只运行一
次 add_edge(a,b,c,d),费用会不对。
//求解时代入 MCMF(s,t,n,v1,v2),表示起点为 s,终点为
t, 点数为 n 的图中, 最大流为 v1, 最大花费为 v2
```