

"A project on Time Series Predictive model"

Contents

SECTION1: Problem Definition	2
SECTION2: Brief description of the data	2
SECTION 3: Data Visualization	2
AFGHANISTAN	2
ALBANIA	
SECTION 4: Time Series Model and forecasting	
AFGHANISTAN	5
ALBANIA:	6
SECTION5: R File (code)	7

SECTION1: Problem Definition

- 1. Predict 2019 yearly export value to the country "AFGHANISTAN"
- 2. Predict 2019 yearly export value to the country "ALBANIA"

SECTION2: Brief description of the data

The data set has been taken from $\underline{www.Kaggle.com}$. This dataset includes the trade data for India for commodities in the HS2 basket.

In this project, the export values for all commodities for a year are added up and has been tried to fit a time series mode. This procedure is done in order to achieve if the total export value can be forecasted for the year 2019. This exercise is conducted for 2 countries as mentioned in the Problem Definition.

SECTION 3: Data Visualization

AFGHANISTAN

Year wise export to AFG

ACF Plot

ALBANIA

Year wise export to ALBANIA

ACF Plot

ACF plot indicates series is stationary. 7 out of 8 values are within ACF limits.

SECTION 4: Time Series Model and forecasting

AFGHANISTAN

Model:

afg_forecast=forecast(auto.arima(df\$TotalExportValue), h=1)

Plot:

plot(forecast(auto.arima(df\$TotalExportValue), h=1))

Forecasts from ARIMA(0,1,0)

Forecast for 2019 export to AFGHANISTAN in Million US\$:

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
2019	715.35	600.1737	830.5263	539.2031	891.4969

ALBANIA:

Model:

 $alb_forecast = forecast(auto.arima(df1\$TotalExportValue),\ h=1)$

Plot:

plot(forecast(auto.arima(df1\$TotalExportValue), h=1))

Forecasts from ARIMA(0,1,0) with drift

Forecast for 2019 export to ALBANIA in Million US\$:

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
2019	40.2675	37.18267	43.35233	35.54966	44.98534

SECTION5: R File (code)

In the same R file regression for both countries are done one after another.

