ST 705 Linear models and variance components Homework problem set 6

February 16, 2022

- 1. Let $A \in \mathbb{R}^{n \times p}$.
 - (a) Prove the existence **and** uniqueness of the Moore-Penrose generalized inverse, usually denoted A^+ , of A.
 - (b) Show that if A has full column rank, then $A^+ = (A'A)^{-1}A'$.
 - (c) Show that if A has full row rank, then $A^+ = A'(AA')^{-1}$.
- 2. Let $X \in \mathbb{R}^{n \times p}$ with full column rank, $\Phi \in \mathbb{R}^{p \times m}$, and $U \in \mathbb{R}^{p \times p}$ be positive definite. Show that,

$$\|\Phi'X'(P_X - X(X'X + U)^{-1}X')^2X\Phi\| \le \|\Phi'X'(P_X - X(X'X + U)^{-1}X')X\Phi\|,$$
 where $P_X = X(X'X)^{-1}X'$.

3. Suppose that $v_1, \ldots, v_p \in \mathbb{R}^n$ are a set of linearly independent vectors, and $w_1, \ldots, w_p \in \mathbb{R}^n$ are the orthogonal vectors obtained from v_1, \ldots, v_p by the Gram-Schmidt process. Furthermore, denote by u_1, \ldots, u_p the normalized vectors corresponding to w_1, \ldots, w_p , and define the matrix $R \in \mathbb{R}^{p \times p}$ by

$$R_{ij} := \begin{cases} ||w_j|| & \text{if } i = j \\ \langle v_j, u_i \rangle & \text{if } i < j \\ 0 & \text{if } i > j \end{cases}$$

Prove that V = UR, where V is the matrix with columns v_1, \ldots, v_p and U is the matrix with columns u_1, \ldots, u_p .

- 4. In the notation of the previous problem, suppose that p = n. Further, assume that $V = U_1 R_1 = U_2 R_2$, where U_1 and U_2 are orthogonal matrices and R_1 and R_2 are upper triangular. Prove that the matrix $R_2 R_1^{-1}$ is orthogonal and diagonal.
- 5. Exercise 2.22 from Monahan.

- 6. Exercise 2.23 from Monahan.
- 7. Exercise 2.24 from Monahan.