Тестер микросхем

AVC1READER ver.1

Описание архитектуры

Содержание

Описа	ание		. 2
		ический проект тестера AVC1READER	
		Структура файлов проекта	
1	.2	Структурная схема проекта	. 7
1	.3	Сборка проекта в Quartus II	. 0

Описание

AVC1READER представляет собой устройство-тестер цифровых микросхем, блоков и модулей, в частности, синтезированных в ПЛИС, построенный на базе отладочного комплекта Terasic DE2-115. Логический проект тестера написан для ПЛИС EP4CE115F29 фирмы Altera семейства Cyclone IV, которая входит в состав данного отладочного комплекта и сохранен на загрузочной флеш-памяти EPCS64, которая также присутствует на плате комплекта.

Принцип работы тестера AVC1READER заключается в чтении AVC файла, содержащего вектора, которые представляют собой наборы сигналов в определенный момент времени, и, сравнивая значение сигнала в векторе с сигналом от исследуемой микросхемы, в случае несовпадения, записывать вектор ошибки в ERCY файл.

Для полноценной работы тестер AVC1READER должен обладать следующим функционалом:

- 1) Взаимодействовать с SD картой, читать информацию из AVC файла и записывать ошибочные векторы в ERCY файл;
- 2) Взаимодействовать с пользователем посредством элементов вводавывода, в частности, кнопок и индикаторов;
- 3) Взаимодействовать с тестируемой микросхемой через разъемы общего назначения посредством сигнальных шлейфов или кабелей.

Для достижения приведенного функционала, в проекте тестера AVC1READER должны быть предусмотрены следующие компоненты:

- 1) Машина состояний для управления SD картой по линии CMD;
- 2) Машина состояний для управления SD картой по линии DAT;
- 3) Память контроллера SD карты для формирования не изменяющих содержимое пакетов;
- 4) Мультиплексоры контроллера SD карты для формирования изменяющих содержимое пакетов;
- 5) Регистр адреса SD карты на шине;
- 6) Модули по управлению машиной состояний по линии СМD;
- 7) Модули по управлению машиной состояний по линии DAT;
- 8) Модули по управлению линиями CMD и DAT SD карты;
- 9) Модули по управлению файловой системой FAT32 SD карты;
- 10) Модули обработки и сравнений содержимого AVC файла, располагающегося на SD карте, в файловой системе FAT32, со значениями сигналов приходящих с микросхемы;
- 11) Модули формирования ERCY файла по результатам обработки и сравнений в AVC файле;

- 12) Модуль формирования секторного адреса для SD карты;
- 13) Модули формирования контрольных сумм CRC, таких как CRC16 (для линии DAT) и CRC7 (для линии CMD);
- 14) Модули управления пользовательским вводом-выводом (в частности, кнопки и индикация);
- 15) Прочие вспомогательные модули: арифметические (умножение, деление), преобразование строк (из числа в строку, из строки в число) и т.д.

Для загрузки AVC файла на SD карту для AVC1READER предусмотрен Linux скрипт AVC1WRITER.sh, который записывает AVC файл, проверяя его на отсутствие ошибок и добавляя в конец AVC файла специальную дополнительную строку.

Таким образом, скрипт для записи AVC файла на SD карту должен выполнять следующие операции:

- 1) Проверять аргументы AVC1WRITER.sh при запуске
- 2) Проверять AVC файл на существование;
- 3) Проверять AVC файл на присутствие расширения *.avc в имени;
- 4) Проверять заголовок AVC файла на корректность;
- 5) Проверять векторы AVC файла на корректность;
- 6) Проверять наличие векторов в AVC файле;
- 7) Проверять AVC файлы на наличие сигналов в заголовке;
- 8) Производить поиск устройств форматированных в файловую систему FAT32;
- 9) Форматировать выбранное FAT32 устройство (предполагается SD карта) и проверять корректность операции;
- 10) Добавлять дополнительную служебную строку в AVC файл и копировать редактированный AVC файл на SD карту в корень файловой системы FAT32.

Монтировать SD карту форматированную в FAT32 придется, к сожалению, вручную. Для этого необходимо переподключить SD карту с внешним кардридером и открыть папку с SD картой, где после нажатия клавиши ENTER должен появиться AVC файл.

1. Логический проект тестера AVC1READER

1.1 Структура файлов проекта

Проект AVC1READER представлен множеством файлов, каждый из которых представляет отдельный функциональный модуль. Для удобства, наборы файлов, отвечающие за один и тот же компонент, объединены в одну и ту же папку. Все файлы проекта собраны в одной папке AVC1READER или AVC READER.

В таблице 1.1 представлен список используемых директорий и их описаний проекта AVC1READER.

Таблица 1.1 – директории проекта AVC1READER

Директория	Описание
Arithmetic	Арифметические модули проекта
AVC	Модули обработки AVC файла
CMD	Модули работы с линией CMD SD карты
CRC	Модули подсчета контрольных сумм CRC
DATA	Модули работы с линией DAT SD карты
ERCY	Модули для формирования ERCY файла
FAT	Модули для работы с FAT таблицами (FAT1 и FAT2)
FAT32	Модули для работы со структурой FAT32 SD карты
LINE	Модули для работы с линиями DAT и CMD
MBR	Модули для работы со структурой MBR SD карты
PLL	Модули для работы с ФАПЧ ПЛИС
SD	Модули для инициализации SD карты
STR	Модули для работы со строками
USER	Модули пользовательского ввода-вывода

В таблице 1.2 представлен список используемых файлов и их функциональное описание в AVC1READER.

Таблица 1.2 – файлы проекта AVC1READER

Файл	Описание
AVC1READER.v	Главный файл верхнего уровня логического проекта
	AVC1READER. Содержит модули верхних уровней
	компонентов AVC1READER и машины состояний
	линий CMD и DAT.
AVC1READER.vt	Тестбенч главного файла верхнего уровня
	AVC1READER
AVC1WRITER.sh	
Arithmetic/divide2.v	Автоматически сгенерированный модуль деления 32-
	разрядного числителя на 8-разрядный знаменатель с
	получением 32-разрядного результата с 8-разрядным

	остатком
Arithmetic/multiply2.v	Автоматически сгенерированный модуль умножения
	31-разрядного числа на 8-разрядное с получением 39-
	разрядного результата
AVC/avcctrl.v	Модуль контроллера AVC файла, содержащий
	основные файловые поля для таблицы файлов FAT32
	и модули для обработки AVC файла
AVC/avcheader.v	Автоматически сгенерированный модуль RAM
11 V C/ aveneauer.v	памяти буфера для хранения полей заголовка AVC
	файла
AVC/avchdrhdlr.v	Обработчик заголовка сигналов файла AVC
AVC/avcparser.v	Обработчик (парсер) сигналов файла AVC
AVC/avcompare.v	Модуль сравнения сигналов AVC с приходящими
4370/ 11 0	сигналами на IDE колодку
AVC/sgnlbuf.v	Автоматически сгенерированный модуль FIFO
	буфера для двоичных сигналов с однобитовым
	выходом
AVC/signnum.v	Автоматически сгенерированный модуль FIFO
	буфера с номерами сигналов на шинах и в заголовке
AVC/vectorbuf.v	Автоматически сгенерированный модуль FIFO
	буфера с номерами векторов с ошибочными
	сигналами
CMD/cmdctrl.v	Модуль контроллера линии CMD SD карты.
	Управляет приемным и передающим модулями CMD.
CMD/cmdmux.v	Модуль мультиплексора меняющихся пакетов на
	линии CMD
CMD/cmdnum.v	Модуль получения номера пакета CMDn, где
	n – получаемый номер пакета (команды).
CMD/cmdrx.v	Приемный модуль линии CMD SD карты, в основе
	которого лежит 8-разрядный сдвигающий регистр с
	последовательным вводом и параллельным выводом
CMD/cmdtx.v	Передающий модуль линии CMD SD карты, в основе
CHID, ontaiss.	которого лежит 8-разрядный сдвигающий регистр с
	параллельным вводом и последовательным выводом
CRC/crc7.v	Модуль подсчета контрольной суммы CRC7 для
CRC/C/C/.V	меняющихся пакетов на линии CMD SD карты
CRC/crc16.v	1
CNC/CICIO.V	Модуль подсчета контрольной суммы CRC16 для
DATA/Antonotes	меняющихся пакетов на линии DAT SD карты
DATA/datactrl.v	Модуль контроллера линии DAT SD карты.
DATA / 1	Управляет приемным и передающим модулями DAT.
DATA/datarx.v	Приемный модуль линии DAT SD карты, в основе
	которого лежит 8-разрядный сдвигающий регистр с
	последовательным вводом и параллельным выводом
DATA/datatx.v	Передающий модуль линии DAT SD карты, в основе

	которого лежит 8-разрядный сдвигающий регистр с параллельным вводом и последовательным выводом
ERCY/ercyctrl.v	Модуль контроллера ERCY файла, содержащего формирователь записи в виде мультиплексора для таблицы файлов FAT32 и модули формирования ERCY файла
FAT/fatctrl.v	Модуль контроллера FAT таблиц FAT1 и FAT2, редактирующего FAT таблицы с учетом записанного ERCY файла на SD карту
FAT/fatsram.v	Автоматически сгенерированный модуль SRAM буфера 512 байт FAT таблицы
FAT32/fat32ctrl.v	Модуль контроллера FAT32, содержащий основные поля структуры FAT32
LINE/tsctrl.v	Модуль контроллера направлений линий CMD и DAT SD карты, осуществляющий переключение данных линий с выхода на вход и обратно
MBR/mbrctrl.v	Модуль контроллера MBR, содержащий основные поля структуры MBR начала диска (SD карты)
PLL/altpll1.v	Автоматически сгенерированный модуль ФАПЧ для регулирования системной частоты проекта данной версии AVC1READER в пределах 50 МГц
SD/sdcrom.hex	Двоичный файл в формате Intel HEX, содержащий поля не меняющихся пакетов на линии CMD
SD/sdcrom.v	Автоматически сгенерированный модуль SRAM инициализирующийся полями пакетов из HEX файла sdcrom.hex
SD/sdmemaddr.v	Модуль управления адресами секторов SD карты
SD/sdpktrom.v	Модуль управлению указателями памяти не меняющихся пакетов на линии CMD
STR/atoi3.v	Модуль преобразования 3-символьной строки, содержащей число в числовое значение в двоичном формате
STR/atoi3mult10.v	Модуль умножения числа на 10 для преобразования из строки в число
STR/atoi3mult100.v	Модуль умножения числа на 100 для преобразования из строки в число
STR/itoa32.v	Модуль преобразования числового значения в двоичном формате в строку, содержащую символьную запись данного числа
STR/itoarom.hex	Двоичный файл в формате Intel HEX, содержащий значения единиц, десяток, сотен и тысяч для преобразований из числа в строку
STR/itoarom.v	Автоматически сгенерированный модуль SRAM инициализирующийся начальными значениями из

	файла itoarom.hex
USER/user7seg.v	Модуль управления 7-сегментными индикаторами
	(8 штук)
USER/userctrl.v	Модуль антидребезга для пользовательских кнопок
USER/userdebug.v	Модуль формирования пользовательской информации
	на LCD дисплее
USER/userlcd.v	Модуль управления LCD дисплеем
USER/userled.v	Модуль управления светодиодом готовности

1.2 Структурная схема проекта

отруктурная схема изображенная на рисунке 1 внутреннюю архитектуру и взаимодействие между перечисленными ранее. отображает модулями

Рисунок 1 – Структурная схема AVC1READER

1.3 Сборка проекта в Quartus II

Сборка проекта тестера AVC1READER осуществляется в среде Quartus II (Quartus Prime).