

Sumário

- 1. Bibliografia
- 2. Equações Exponenciais
- 3. Problemas
- 4. Inequações Exponenciais

Bibliografia

Bibliografia da Aula 09

- Fundamentos da Matemática Elementar: 2 (Click para baixar)
- Pré-Cálculo, Schafier. (Click para baixar)

Equações Exponenciais

Equações

- ► Vamos relembrar o que é uma equação: 'Toda equação é uma declaração de que duas expressões são iguais.'
- ► Uma equação contendo variáveis, em geral, não é verdadeira nem falsa; a questão de ser verdadeira depende do(s) valor(es) da(s) variável(eis).
- Cada um dos valores da(s) variável(eis) que tornam a equação verdadeira é dito solução da equação.
- O conjunto de todas as soluções é chamado de conjunto solução da equação.

Método da redução a uma base comum

- ▶ É o método aplicado quando ambos os lados da equação forem redutíveis a potências de mesma base *a*.
- Como a função exponencial $f(x) = a^x$ é INJETORA ($f(x) = f(y) \Leftrightarrow x = y$), podemos concluir que

$$a^{x} = a^{y} \Leftrightarrow x = y (0 < a \neq 1).$$

Resolva a equação exponencial $2^x = 64$.

Resolva a equação exponencial $2^x = 64$.

Para verificarmos se 64 pode ser escrito numa potência inteira de 2 podemos ir multiplicando potências de 2 até chegar ou passar o número 64:

$$2^1 = 2$$
; $2^2 = 4$; $2^3 = 8$; $2^4 = 16$; $2^5 = 32$; $2^6 = 64$.

Ou podemos dividir o número 64 sucessivamente por 2 até obter o resultado igual a 1 (se possível):

$$64/2 = 32$$
; $32/2 = 16$; $16/2 = 8$; $8/2 = 4$; $4/2 = 2$; $2/2 = 1$.

Pudemos dividir o número 64 por 2, 6 vezes. Logo, $64/2^6=1$, de onde segue que

$$64 = 2^6$$

$$2^x = 2^6 \Leftrightarrow x = 6$$

e $S = \{6\}$ é o conjunto solução do problema dado.

Portanto, pela injetividade da função $f(x) = 2^x$,

Resolva a equação exponencial $8^x = \frac{1}{32}$.

Resolva a equação exponencial $8^x = \frac{1}{32}$.

Para verificarmos se 32 pode ser escrito numa potência de 8 podemos ir multiplicando potências de 8 até chegar ou passar o número 64:

$$8^1 = 8$$
; $8^2 = 64 > 32$.

Portanto não podemos escrever $32=8^b$, com b um número inteiro. Mas observe que, do exemplo anterior, $32=2^5$ e $8=2^3$. Logo, podemos escrever os dois lados da equação como uma potência do mesmo número.

$$2^{3x} = 2^{-5} \Leftrightarrow 3x = -5$$
$$\Leftrightarrow \frac{3x}{3} = \frac{-5}{3}$$
$$\Leftrightarrow x = -\frac{5}{3}.$$

Exercícios

Resolva a equação exponencial $(\sqrt{3})^x = \sqrt[3]{81}$.

Exercício 2

Resolva a equação exponencial $125^x = 0,04$.

Exercício 3

Resolva a equação exponencial $5^{2x^2+3x-2} = 1$.

Exercício 4

Resolva a equação exponencial $4^{x} - 3^{x-1/2} = 3^{x+1/2} - 2^{2x-1}$.

Problemas

Bactérias

O número de bactérias em uma cultura é contado como 400 no começo de um experimento. Se o número de bactérias dobrar a cada 3 horas, o número de indivíduos pode ser expresso pela fórmula $N(t)=400(2)^{t/3}$. Determine o número de bactérias presentes na cultura após 24 horas.

Bactérias

O número de bactérias em uma cultura é contado como 400 no começo de um experimento. Se o número de bactérias dobrar a cada 3 horas, o número de indivíduos pode ser expresso pela fórmula $N(t)=400(2)^{t/3}$. Determine o número de bactérias presentes na cultura após 24 horas.

Resposta: 102.400 indivíduos.

População - Modelo Malthusiano

O modelo de Malthus para o crescimento de uma população, baseia-se na suposição de que a população cresce (ou decresce) a uma taxa proporcional ao tamanho da população. Populações humanas podem ser modeladas sobre curtos períodos por funções de crescimento exponencial ilimitado (Modelo de Malthus).

Exercício 6

Se um país tem uma população de 22 milhões em 2000 e mantém uma taxa de crescimento populacional de 1% ao ano, então sua população, em milhões de habitantes, após um tempo, assumindo que t=0 em 2023, pode ser modelada como $N(t)=22e^{0.01t}$. Estime a população em 2033.

População - Modelo Malthusiano

O modelo de Malthus para o crescimento de uma população, baseia-se na suposição de que a população cresce (ou decresce) a uma taxa proporcional ao tamanho da população. Populações humanas podem ser modeladas sobre curtos períodos por funções de crescimento exponencial ilimitado (Modelo de Malthus).

Exercício 6

Se um país tem uma população de 22 milhões em 2000 e mantém uma taxa de crescimento populacional de 1% ao ano, então sua população, em milhões de habitantes, após um tempo, assumindo que t=0 em 2023, pode ser modelada como $N(t)=22e^{0.01t}$. Estime a população em 2033.

Resposta: Aproximadamente 24, 3 milhões.

Decaimento Radioativo

Exercício 7

Um certo isótopo radioativo decai de acordo com a fórmula $Q(t) = Q_0 e^{-0.034t}$, sendo que t é o tempo em anos e Q_0 é o número de gramas presentes inicialmente.

Se 20 gramas estão inicialmente presentes, em quantos anos restarão $\frac{20}{e^{0,34}}$ gramas (aproximadamente 14, 2g)?

Decaimento Radioativo

Exercício 7

Um certo isótopo radioativo decai de acordo com a fórmula $Q(t) = Q_0 e^{-0.034t}$, sendo que t é o tempo em anos e Q_0 é o número de gramas presentes inicialmente.

Se 20 gramas estão inicialmente presentes, em quantos anos restarão $\frac{20}{e^{0,34}}$ gramas (aproximadamente 14, 2g)?

Resposta: Em 10 anos.

Meia-vida

A meia-vida de certa substância radioativa é igual a 14 dias. Existem 6, 6 gramas presentes inicialmente.

- a) Expresse a quantidade da substância remanescente como uma função do tempo t, em dias.
- b) Resolvendo uma equação exponencial, determine quando existirá 0, 4125 gramas?

Meia-vida

Exercício 8

A meia-vida de certa substância radioativa é igual a 14 dias. Existem 6, 6 gramas presentes inicialmente.

- a) Expresse a quantidade da substância remanescente como uma função do tempo t, em dias.
- b) Resolvendo uma equação exponencial, determine quando existirá 0, 4125 gramas?

Resposta: a) $Q(t) = 6, 6 \cdot 2^{-t/14}$; b) 56 dias.

Inequações Exponenciais

Método da redução a uma base comum

- Este método será aplicado quando ambos os membros da inequação puderem ser representados como potências de mesma base a (0 < $a \ne 1$);
- Para a > 1, a função $f(x) = a^x$ é CRESCENTE $(f(x) < f(y) \Leftrightarrow x < y)$:

$$a^x < a^y \Leftrightarrow x < y$$
.

▶ Para 0 < a < 1, a função $f(x) = a^x$ é DECRESCENTE $(f(x) < f(y) \Leftrightarrow x > y)$:

$$a^{x} < a^{y} \Leftrightarrow x > y$$
.

Exemplo 3

Classifique em verdadeira ou falsa as seguintes sentenças:

- a) $3^{2,7} > 1$
- b) $(0,5)^{1,3} > (0,5)^{1,4}$
- c) $8^{1,2} > 4^{1,5}$
- d) $(\sqrt[3]{3})^{-0.5} < 27^{-0.1}$

Resolva a seguinte inequação exponencial: $4^x \ge 8$.

Resolva a sequinte inequação exponencial: $4^x \ge 8$.

Solução: Primeiro colocamos os dois lados da inequação na mesma base:

$$4^{x} = (2^{2})^{x} = 2^{2x} e 8 = 2^{3}.$$

Assim, queremos encontrar para quais valores reais x a inequação abaixo é verdadeira:

$$2^{2x} \ge 2^3 \Leftrightarrow 2x \ge 3,$$

pois a base a=2 é maior que 1 e, portanto, representa uma função exponencial crescente. Como

$$2x \ge 3 \Leftrightarrow \frac{1}{2} \cdot 2x \ge \frac{1}{2} \cdot 3 \Leftrightarrow x \ge \frac{3}{2},$$

de onde segue que a solução é dada por $S = \{x \in \mathbb{R} \mid x \geq 3/2\}$.

Exemplo 5

Resolva a seguinte inequação exponencial: $\left(\frac{1}{4}\right)^{x^2-1} \leq 32^{1-x}$.

Exemplo 5

Resolva a seguinte inequação exponencial: $\left(\frac{1}{4}\right)^{x^{-1}} \leq 32^{1-x}$.

Solução: Primeiro colocamos os dois lados da inequação na mesma base:

$$\left(\frac{1}{4}\right)^{x^2-1} = \left(\left(\frac{1}{2}\right)^2\right)^{x^2-1} = \left(\frac{1}{2}\right)^{2x^2-2} \text{ e } 32^{x-1} = \left(\left(\frac{1}{2}\right)^{-5}\right)^{1-x} = \left(\frac{1}{2}\right)^{5x-5}.$$

Assim, queremos encontrar os valores reais para os quais a inequação abaixo é verdadeira é dado por:

$$\left(\frac{1}{2}\right)^{2x^2-2} \leq \left(\frac{1}{2}\right)^{5x-5} \Leftrightarrow 2x^2-2 \geq 5x-5,$$

pois a base $a=\frac{1}{2}$ é menor que 1 e, portanto, representa uma função exponencial decrescente. A desigualdade a ser resolvida é

$$2x^2 - 2 \ge 5x - 5 \Leftrightarrow 2x^2 - 5x + 3 \ge 0.$$

O gráfico de $f(x) = 2x^2 - 5x + 3$ é dado a seguir.

Portanto, a solução é dada por $S = \{x \in \mathbb{R} \mid x \le 1 \text{ ou } x \ge 3/2\}.$