

Bio-Radar Sensor for Human Presence Detection IR24VDA

Specification

Model	Standard	
Description Wireless Bio-Radar Sensor for He		
	Presence Detection	
Part Number	IR24VDA	
Date	2021/03/19	
Version	1.1	

Design Team				
Approval Check Edi				
宝刘印亚	之温印馨	之刘即昭		

R.1513, Zhongnan Building Block A, NO.18 Zhonghua W. Rd, Ganjingzi Dist, Dalian

Tel: +86-411-84619565 Email: info@iflabel.com Site: www.iflabel.com

www.iflabel.com 2/16

Contents

Overview	4
1. Operating Principle	4
2. Precautions for Hardware Design	5
2. 1. Circuit for Reference of Power Supply Design	5
2. 2. Wiring Diagram	6
3. Layout Requirements of Antenna and Case	6
4. Electrostatic Protection	7
5. Factors Interfering Radar Function	7
5. 1 Abnormal Output of Nobody State	7
5. 2 Abnormal Output of Somebody State	8
6. Functions	9
6. 1. Description of Functions	9
6. 2. Output Description of Body Motion Amplitude Parameters	9
7. Instruction of Protocol	1 0
8. Communication Commands and Parameter Definition	1 0
8. 1. Definition and Instruction of Frame Structure	10
8. 2. Address Distribution and Data Information Instruction	11
Appendix 1: Parsing Code for Reference of CRCCheck Code	14
Appendix 2: Parsing Code for Reference of Body Motion Sign Parameters	s16

Overview

This document mainly describes the use of the radar and the problems needing attention in each stage, so as to reduce the design cost and increase the stability of the product as much as possible and improve the completion efficiency of the project.

From the hardware circuit reference design, the layout requirements of radar antenna and shell, how to distinguish interference and multifunctional standard UART protocol output.

The radar is a self-contained space sensing sensor, which is a module composed of RF antenna, radar chip and high-speed main frequency MCU. Relying on the stable, flexible and superior algorithm architecture core, the radar can solve the user's various scene detection needs. It can be equipped with upper computer or host computer to flexibly output detection status and data, meet several groups of GPIO, and can be customized and developed by users.

1. Operating Principle

The radar transmits 24G band millimeter wave signal, the measured target reflects electromagnetic wave signal, demodulates the transmitted signal, and then obtains echo demodulated signal data through amplification, filtering, ADC and other processing. The amplitude, frequency and phase of echo signal are solved in MCU unit, and finally the measurement of target parameters (breathing, motion, micro motion, etc.) and scene evaluation are realized.

www.iflabel.com 4 / 16

2. Precautions for Hardware Design

The rated power supply voltage of the radar shall meet 4.9 - 6V. Under normal working conditions, the rated current requires an input of more than 200mA. Power supply design, power ripple shall be ≤ 100 mV.

2.1. Circuit for Reference of Power Supply Design

Figure. 1

www.iflabel.com 5/16

2.2. Wiring Diagram

Figure 3. Wiring Diagram of Radar Module and Peripheral Device

3. Layout Requirements of Antenna and Case

PCBA: Height of Radar Mount Above Other Components≥ 1mm

Case Structure: Radar Antenna Plane to Case: 2 - 5mm

External Detection Surface: Non-metallic plane, no curve to avoid affection on performance of detection coverage

Figure 4

www.iflabel.com 6/16

4. Electrostatic Protection

The radar product has an electrostatic sensitive circuit inside, which is vulnerable to electrostatic hazards. Therefore, it is necessary to do a good job in electrostatic protection in the process of transportation, storage, work and taking. Do not touch and grasp the antenna surface and connector pins of the radar module, but only the corners.

When operating the radar sensor, please wear anti-static gloves.

5. Factors Interfering Radar Function5.1 Abnormal Output of Nobody State

A. Movements from doorway, the other side of wooden wall detected due to too large radar scanning coverage

Adjustment: Tune down sensitivity and set up scenario for radar

- **B.** Radar faces down air-conditioning, fan in operating Adjustment: Readjust the position of radar
- C. Swinging objects by airflow from air-conditioning Adjustment: Cotton, non-metallic objects will not cause false-alarm and metallic objects need to be fixed
- Palse alarm by Vibration of Radar not fixedAdjustment: Avoid shaking or vibration
- **E.** Pets, flying birds or other moving objects
 Adjustment: Because of the high sensitivity of slight motion detection, this cannot be excluded
- **F.** False judgement from interference of power supply Adjustment: Stabilize the current and reduce ripple

www.iflabel.com 7/16

5.2 Abnormal Output of Somebody State

Radar judges human presence via sending and receiving electromagnet wave, closer to radar, higher the accuracy

- **A.** Human body beyond radar scanning coverage Adjustment: Readjust the installation angle. Detection range varies slightly in different environments due to different reflection coverage
- **B.** False output due to shading by metallic objects

 Too thick office desks, chairs made from metal will block electromagnet wave and cause a false alarm
- **C.** Difference in scanning angle Adjustment: Human body not scanned by radar, causing a false alarm
- **D.** Low sensitivity of radar Adjustment: Use parameter condition of radar to improve

www.iflabel.com 8 / 16

6. Functions

6.1. Description of Functions

Function Points	Time of State Change/Explanation
DP1: somebody/nobody	nobody to somebody, report within 0.5s somebody to nobody, output "No" in 1to 2mins
DP2: stationary/active	shift between stationary and active, report within 0.5s
DP3: personnel approaching/leaving/no directional movement	output every 2s
DP4: parameter of body motion amplitude from 0 – 100	output every 5s refer to (section 6.2)
DP5: sensitivity gear from 0 – 9	10 gears for default scenario
DP7: scenario (bed,bathroom,hotel,bedroom,office, default)	different scenarios according to size of coverage
DP8: confirm reminder of false alarm of nobody	

6.2. Output Description of Body Motion Amplitude Parameters

Parameter of Body Motion Amplitude						
0%	nobody	nobody in environment				
1%	stationary	no body movement only respiration				
2%-30%	slight motion	slight motion from head or limbs				
31%-60%	walk/quick body movement	relatively slow body movement				
61%-100%	run/big movement in close distance	quick body movement				

www.iflabel.com 9/16

7. Instruction of Protocol

This protocol is applied to the communication between 24G millimeter wave detection radar and host computer.

This protocol briefly introduces the radar work flow, briefly introduces the composition architecture of the interface protocol, and gives the control commands and data required for relevant radar work. The definition of serial port communication is as follows:

Interface level: TTL

Baud rate: 9600bps

Stop bit: 1

Data bit: 8

Parity check: No

8. Communication Commands and Parameter Definition

8.1. Definition and Instruction of Frame Structure

A. Definition of Frame Structure

Initial Code	Data Le	ength	Function Code	Address Code 1	Address Code 2	Data	Check C	ode
0X55	Lenth_L	Lenth_H	Command	Address _1	Address _2	Data	Crc16_ L	Crc16_ H
1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	n Byte	1 Byte	1 Byte

B. Instruction of Frame Structure

ab Initial code: 1Byte, default 0X55

Data length: 2 Byte, low byte first, high byte after

length=data length+function code+address code 1+address code 2+data+check code

c Function: 1Byte

Data read: 0X01
Data write: 0X02

Passive report command: 0X03 Active report command: 0X04

d Address: address code 1 function classify, address code 2 specific function

e Please refer to instruction of address distribution and data information

f.g. Data: n Byte

Check code: 2 Byte, low byte first, high byte after

Use CRC16 for check, please refer to Appendix 1

www.iflabel.com 10 / 16

8.2. Address Distribution and Data Information Instruction

		Int	erface Contents of 240	 G	
			Bio-perception Radar		
	Function code	Address code 1	Address code 2	Data	Remark
2		Mark	Device ID 0X01 Software version 0x02		
3	Read 0x01	looking up 0x01	Software version 0x03		
4			Protocol version 0x04		
		Looking-up radar	Environment state 0X05		
11		information 0x03	Vital sign parameter 0x06		
12		System	Threshold gear 0x0C		
		parameter looking-up 0x04	Scenario setting 0x10		
16	Write	System	Threshold gear 0x0C	Enumeration range 0~9	Respectively to gear level 0 1 2 3 4 5 6 7 8 9 (default is 6) higher gear level, higher sensitivity
	0x02	parameter 0x04		Default mode 0x00 Area detection (Top-mounted) 0x01	
			Scenario setting 0x10	Bathroom (Top- mounted) 0x02	
				Bedroom (Top- mounted) 0x03	
				Living room (Top- mounted) 0x04	
				Office (Top- mounted) 0x05	
				Hotel (Top- mounted) 0x06	

www.iflabel.com 11/16

		Other function 0X05	Restart 0X04			
17			Device ID 0x01	12 Byte data		
18		Report Radar information	Software version 0x02	10 Byte data		
19		0x01	Hardware version 0x03	8 Byte data		
20	Passive report		Protocol version 0x04	8 Byte data		
27	command 0x03	Report			Nobody 00 FF FF	
28	0.03		Environment	Stationary personnel 01 00 FF		
29	Radar information 0X03	state 0x05	Active personnel 01 01 01			
30			Vital parameters 0x06	4 Byte Float data (see appendix 2)		

www.iflabel.com 12/16

				Current gear	
		Barrat aller	Threshold gear 0X0C	(0X00~0X09)	
				Default 0x00	
	Passive	Report other information		Area detection (Top-	
	report	0X04		mounted) 0x01	
	0x03		Scenario setting	Bathroom (Top-	
			0x10	mounted) 0x02	
				Bedroom (Top-	
				mounted) 0x03	
				Living room (Top-	
				mounted) 0x04 Office (Top-mounted)	
				0x05	
				Hotel (Top-mounted)	
				0x06	
31		Report radar information	Environment state 0x05	Nobody 00 FF FF	
32	Active			Stationary personnel	
				01 00 FF	
33				Active personnel 01 01 01	
34		_	0x03	Parameter of body motion 0X06	4 Byte Float data
	report			Fixed No 0x01	
	0X04			character Approaching	
			Approaching/Leaving	0x01 0x02	
			0×07	0x01 Leaving 0x03	
			Heartbeat 0X01	Nobody 00 FF FF	
		Report other information 0X05		Stationary personnel	
				01 00 FF	
				Active personnel	
				01 01 01	
		V	Reset of abnormal 0X02	0X0F	

www.iflabel.com 13/16

Appendix 1: Parsing Code for Reference of CRC Check Code

```
signed char cuc_ RCHi[56]=
1. const
   un
2.
3.
     0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
4.
     0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
     0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
5.
     0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
6.
7.
     0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
8.
     0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
     0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
9.
10.
     0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
11.
     0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
12.
     0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
     0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
14.
     0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
15.
     0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
     0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
16.
     0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
     0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
18.
     0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
19.
20.
     0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
     0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
22.
     0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
23.
     0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
24.
     0x00, 0xC1, 0x81, 0x40
25. };
```

www.iflabel.com


```
1. const unsigned char cuc_CRCLo[256]=
2. {
     0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7,
3.
4.
     0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D 0xCD, 0x0F, 0xCF, 0xCE, 0x0E,
5.
     0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9,
6.
     0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD 0x1D, 0x1C, 0xDC,
     0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
7.
     0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32,
      0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D,
9.
10.
      0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38,
11.
      0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF,
     0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
12.
13.
      0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1,
14.
     0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4,
     0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB,
15.
     0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA,
16.
17.
      0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
     0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0,
18.
19.
      0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97,
      0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D 0x9D, 0x5F, 0x9F, 0x9E, 0x5E,
20.
21.
     0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89,
22.
     0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
23.
      0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83,
24.
     0x41, 0x81, 0x80, 0x40
25. };
1. static unsigned shortint
                                us_CalculateCrc16(unsigned char *lpuc_Frame,unsi
    gned short int lus Len)
2. {
3.
      unsigned char luc CRCHi = 0xFF;
4.
      unsigned char luc_CRCLo = 0xFF;
5.
      int li_Index=0;
6.
7.
      while(lus_Len--)
8.
9.
          li_Index = luc_CRCLo ^ *(lpuc_Frame++);
10.
          luc_CRCLo = (t_BYTE)( luc_CRCHi ^cuc_CRCHi[li_Index]);
11.
          luc_CRCHi = cuc_CRCLo[li_Index];
12.
13.
      return (unsigned short int )(luc_CRCLo << 8 |luc_CRCHi);</pre>
14. }
```

www.iflabel.com

Appendix 2: Parsing Code for Reference of Body Motion Sign Parameters

```
typedef union
{
    unsigned char
    Byte[4]; float Float;
}Float_Byte;

void main()
{
    Float_Byte fb;
    fb.Byte[0] = 0x9A;
    fb.Byte[1] = 0xFB;
    fb.Byte[2] = 0xE7;
    fb.Byte[3] = 0x3F;
    printf("%f\r\n",fb.Float);
}
```

www.iflabel.com 16/16