Ques 1.

Determine the force in each member of the truss shown in fig-1. Indicate whether the members are in tension or compression.

Fig-1

Solution:

Applying the equations of equilibrium, we have

$$\Sigma F_x = 0$$

$$\Rightarrow 300 - C_x = 0$$

$$\Rightarrow C_x = 300 N$$

$$\Sigma M_C = 0$$

$$\Rightarrow -A_y \times 12 + 200 \times 6 + 300 \times 8 = 0$$

$$\Rightarrow A_y = 300 N$$

$$\Sigma F_y = 0$$

$$\Rightarrow 300 - C_y - 200 = 0$$

$$\Rightarrow C_y = 100 N$$

The analysis can now start at either joint A or C. The choice is arbitrary since there are one known and two unknown member forces acting on the pin at each of these joints.

Joint A (fig-1(a)):

Applying the equations of equilibrium, we have

$$\Sigma F_y = 0$$

$$\Rightarrow 300 - \frac{8}{10} \times F_{AB} = 0$$

$$\Rightarrow F_{AB} = 375 N (C)$$

$$\Sigma F_x = 0$$

$$\Rightarrow F_{AD} - \frac{6}{10} \times 375 = 0$$

$$\Rightarrow F_{AD} = 225 N (T)$$

Fig-1(a)

Joint D. (fig-1(b)):

Using the result for ${\cal F}_{A\!D}$ and summing forces in

Fig-1(b)

the horizontal direction, we have,

$$\begin{split} &\Sigma F_x = 0 \\ &\Rightarrow -F_{AD} + \frac{6}{10} \times F_{DB} + 300 = 0 \\ &\Rightarrow -225 + \frac{6}{10} \times F_{DB} + 300 = 0 \\ &\Rightarrow F_{DB} = -125 \, N \end{split}$$

The negative sign indicates that $\boldsymbol{F}_{\mathit{DB}}$ acts in the opposite sense to that shown in fig-1(b)

Hence, $F_{DB} = -125 N$.

$$\begin{split} & \Sigma F_y = 0 \\ \Rightarrow & -F_{DC} - \frac{8}{10} \times F_{DB} = 0 \\ \Rightarrow & -F_{DC} - \frac{8}{10} \times (-125) = 0 \\ \Rightarrow & F_{DC} = 100 \ N \ (C) \end{split}$$

Joint C (fig.1(c)):

Fig-1(c)

$$\Sigma F_x = 0$$

$$\Rightarrow F_{CB} - 300 = 0$$

$$\Rightarrow F_{CB} = 300 N (C)$$