Time series Analysis Lecture 3 Time Series Models

Muyi Li

Wang ya'nan Institute for Studies in Economics (WISE)
Department of Statistics, School of Economics
Xiamen University

(Institute) 1 / 40

Outline

回归模型

- 回归模型 自回归模型
 Regression and Autoregression
- Autoregressive (AR) models自回归模型
- Moving average (MA) models移动平均模型
- Autoregressive moving average (ARMA) models; 自回归滑动平均模型

Regression

Regressive model:

$$y_i = \alpha + \delta x_i + e_i \tag{1}$$

Autoregressive (AR) model

自回归模型和历史数据中的时间有关
$$y_t = \alpha + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + e_t$$
(2)

• Distributed Lag (DL) model 分布滞后模型 (DL) 是专门处理 "自变量历史值对因变量有持续影响" 的工具 $y_t = \alpha + \delta_0 x_t + \delta_1 x_{t-1} + \cdots + \delta_q x_{t-q} + e_t$ (3)

• Autoregressive Distributed Lag (ADL) model:

 $y_t = \alpha + \phi_1 y_{t-1} + \dots + \phi_p y_{t-p} + \delta_0 x_t + \delta_1 x_{t-1} + \dots + \delta_q x_{t-q} + e_t$ (4) 自回归分布滞后模型(ADL)是时间序列分析中处理"因变量自身惯性 + 外部变量滞后影响"的强大工具

(Institute) 3 / 40

- $y_t = \phi_0 + \phi_1 y_{t-1} + e_t$, where $e_t \sim i.i.d.(0, \sigma^2)$.
- A compact form: $(1 \phi_1 B)y_t = \phi_0 + e_t$.
- B: back-shift operator:

$$By_t = y_{t-1},$$

$$B^k y_t = y_{t-k},$$

$$B^0 y_t = y_t,$$

$$B^k c = c.$$

- Characteristic equation: $\phi(x) = 1 \phi_1 x = 0$.
- Stationary condition: the root of $1 \phi_1 x = 0$ is outside of the unit circle, then AR(1) is stationary iff $|\phi_1| < 1$.

AR(1)

Given the stationarity of y_t :

- Mean: $\mu = Ey_t = \frac{\phi_0}{1 \phi_1}$,
- Variance:

$$E[(y_t - \mu)^2] = \phi_1^2 E[(y_{t-1} - \mu)^2] + \sigma^2,$$

$$\gamma_0 = \phi_1^2 \gamma_0 + \sigma^2 \Rightarrow \gamma_0 = \frac{\sigma^2}{1 - \phi_1^2}.$$

• The autocovariance function (ACVF) at lag *j*:

$$\begin{array}{lcl} \gamma_j &=& \mathit{Cov}(y_{t-j},y_t) \\ &=& \phi_1\gamma_{j-1} = \frac{\phi_1^j\sigma^2}{1-\phi_1^2}, \ \text{for all} \ j \geq 1. \end{array}$$

• The autocorrelation function (ACF) at lag *j*:

$$\rho_j = \frac{\gamma_j}{\gamma_0} = \phi_1^j.$$

(Institute) 4 □ →

ACF of AR(1)

Figure 1: ACF of AR(1) processes

(Institute) 6 / 40

$|\phi_1| < 1$

• Case 1: Stationary.

When $|\phi_1| < 1$, the series $\{r_t\}$ exhibits mean-reverting behavior. Let $y_t = y_t - \mu$, then $y_t = \phi_1 y_{t-1} + e_t$ and $\Delta y_t = y_t - y_{t-1} = (\phi_1 - 1) y_{t-1} + e_t$, $\begin{cases} E(\Delta y_t | I_{t-1}) < 0, & \text{if } y_{t-1} > 0; \\ E(\Delta y_t | I_{t-1}) > 0, & \text{if } y_{t-1} < 0. \end{cases}$

$y_t = 0.5y_{t-1} + e_t$

Figure 2: Stationary AR(1)

(Institute) 8 / 40

$$|\phi_1|=1$$

- Case 2: Non-stationary. $\phi_1 = 1$, it is not covariance stationary.
 - Assuming $\phi_0 = 0$, AR(1) model can be rewritten as the random walk process:

$$y_t = e_t + e_{t-1} + \cdots + e_1 + y_0.$$

- $\gamma_{0,t} \equiv E(y_t y_0)^2 = t\sigma^2$ $\gamma_{j,t} \equiv E(y_t - y_0)(y_{t-j} - r_0) = (t - j)\sigma^2$ and $\rho_{j,t} = (t - j)/t$ for all $k \ge 0$.
- Similarly, when $\phi_1 = -1$, it is not covariance stationary.

□▶→□▶→重▶→重→□●の○○

$y_t = y_{t-1} + e_t$

Figure 3: Unit-root nonstationary

$|\phi_1| > 1$

ullet Case 3: Explosive. When $|\phi_1|>1$, e.g. $\phi_1=3$ and assume $\phi_0=0$,

$$y_t = e_t + 3e_{t-1} + 3^2e_{t-2} + \dots + 3^{t-1}e_1 + 3^ty_0.$$

In this case, r_t is called the explosive process, in the sense that r_t diverges to ∞ .

$y_t = \overline{1.2 * y_{t-1} + e_t}$

Figure 4: Explosive AR(1)

- $y_t = \phi_0 + \phi_1 y_{t-1} + \phi_2 y_{t-2} + e_t$, where $e_t \sim i.i.d.(0, \sigma^2)$.
- $(1 \phi_1 B \phi_2 B^2) v_t = \phi_0 + e_t$
- Characteristic equation: $\phi(x) = 1 \phi_1 x \phi_2 x^2 = 0$
- Stationary condition: the roots of $1 \phi_1 x \phi_2 x^2 = 0$ are outside of the unit circle.
- Stationarity condition for AR(2) model is equivalent to

$$\begin{cases} \phi_2 + \phi_1 < 1, \\ \phi_2 - \phi_1 < 1, \\ -1 < \phi_2 < 1. \end{cases}$$

(Institute) 13 / 40

Stationary region for AR(2) model

Figure 5: Stationary region for AR(2) model.

Mean of AR(2) process

Given y_t is a stationary AR(2) process

• Mean: $E(y_t) = \phi_0 + \phi_1 E(y_{t-1}) + \phi_2 E(y_{t-2}) + E(e_t)$,

$$\mu = \frac{\phi_0}{1 - \phi_1 - \phi_2}$$

•

$$y_t - \mu = \phi_1(y_{t-1} - \mu) + \phi_2(y_{t-2} - \mu) + e_t.$$

• ACVF: Multiplying $(Y_{t-j} - \mu)$ on both sides and taking expectation,

$$\gamma_j = \phi_1 \gamma_{j-1} + \phi_2 \gamma_{j-2}$$
, for all $j = 1, 2, 3, \dots$

•
$$j = 1$$
,

$$\gamma_1 = \phi_1 \gamma_0 + \phi_2 \gamma_{-1} = \phi_1 \gamma_0 + \phi_2 \gamma_1.$$

•
$$j = 2$$
,

$$\gamma_2 = \phi_1 \gamma_1 + \phi_2 \gamma_0;$$

◆ロト ◆団 ト ◆ 差 ト ◆ 差 ・ からで

Cont.

Variance:

$$\gamma_0 = E(y_t - \mu)^2
= \phi_1 \gamma_1 + \phi_2 \gamma_2 + \sigma^2
= \phi_1 \rho_1 \gamma_0 + \phi_2 \rho_2 \gamma_0 + \sigma^2;
= \frac{(1 - \phi_2)\sigma^2}{(1 + \phi_2)((1 - \phi_2)^2 - \phi_1^2)}.$$

ACF:

$$\begin{split} \rho_1 &= \frac{\gamma_1}{\gamma_0} = \frac{\phi_1}{1 - \phi_2}; \\ \rho_2 &= \phi_1 \rho_1 + \phi_2 = \frac{\phi_1^2}{1 - \phi_2} + \phi_2; \\ \rho_j &= \phi_1 \rho_{j-1} + \phi_2 \rho_{j-2}, \quad \text{for} \quad j \geq 3. \end{split}$$

16 / 40

ACF pattens of AR(2)

AR(p)

- $y_t = \phi_0 + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + e_t$
- $\phi(B)y_t = \phi_0 + e_t$, where $\phi(B) = 1 \phi_1 B \cdots \phi_p B^p$.
- Condition for Stationarity: the roots of $\phi_p(z) = 0$ lie outside the unit circle.
- ACF of AR(p) model:

$$\gamma_k = \phi_1 \gamma_{k-1} + \dots + \phi_p \gamma_{k-p}, \quad k > 0.$$

$$\rho_k = \phi_1 \rho_{k-1} + \dots + \phi_p \rho_{k-p}, \quad k > 0.$$

(the so-called Yule-Walker equations of ρ_k .)

(Institute) 18 / 40

Cont'd for AR(p)

• Solve the following sets of equations to obtain ρ_1, \dots, ρ_p .

$$\begin{cases} \rho_1 - \phi_1 \rho_0 - \dots - \phi_p \rho_{p-1} = 0, \\ \dots \\ \rho_p - \phi_1 \rho_{p-1} - \dots - \phi_p \rho_0 = 0. \end{cases}$$

• Using the following recursive equations to get calculate ρ_k when $k \geq p+1$.

$$\rho_k = \phi_1 \rho_{k-1} + \dots + \phi_p \rho_{k-p}.$$

(□▶ ◀♬▶ ◀불▶ ◀불▶ = = ~♡٩♡

PACF for AR(p) Processes

- The PACF at lag k (denoted by π_k) measures the correlation between y_t and y_{t-k} regardless of their linear relationship with the intermediate variables $\{y_{t-1}, \cdots, y_{t-k+1}\}$.
- If y_t is a normally distributed times series, then

$$\pi_k = Corr(y_t, y_{t-k}|y_{t-1}, \cdots, y_{t-k+1})$$

This definition is equivalent to say that

$$\pi_k = Corr(y_t - E(y_t|y_{t+1}, \dots, y_{t+k-1}), y_{t+k} - E(y_{t+k}|y_{t+1}, \dots, y_{t+k-1}))$$

= $Corr(y_t - \hat{y}_t, y_{t+k} - \hat{y}_{t+k}).$

• On linear regression theory, \hat{y}_t and \hat{y}_{t+k} are the best linear estimates of y_t and y_{t+k} (respectively) based on the values of $y_{t+1}, \dots, y_{t+k-1}$.

(Institute) 20 / 40

Computing the PACF

• According to the above definitions, the partial autocorrelation coefficient of order k is computed as the least squares estimator of the coefficient ϕ_{kk} in

$$y_t = \phi_{k1} y_{t-1} + \dots + \underbrace{\phi_{kk}}_{\pi_k} y_{t-k} + e_t$$
 (5)

where y_t is assumed to be zero mean.

• We will only include a further lagged variable y_{t-k} in the model for y_t if y_{t-k} makes a genuine and additional contribution to y_t in addition to those from $y_{t-1}, \dots, y_{t-k+1}$.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

How to obtain ϕ_{kk} ?

• Multiplying both sides of Eq. (5) by y_{t-j} (j > 0), and taking expectation, we can get

$$\gamma_j - \phi_{k1}\gamma_{j-1} - \phi_{k2}\gamma_{j-2} - \cdots - \phi_{kk}\gamma_{j-k} = 0.$$

Consider the above (moment) equations jointly for j = 1, 2, ..., k, we have

$$\begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_k \end{bmatrix} = \begin{bmatrix} \gamma_0 & \gamma_1 & \cdots & \gamma_{k-1} \\ \gamma_1 & \gamma_0 & \cdots & \gamma_{k-2} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{k-1} & \gamma_{k-2} & \cdots & \gamma_0 \end{bmatrix} \begin{bmatrix} \phi_{k1} \\ \phi_{k2} \\ \vdots \\ \phi_{kk} \end{bmatrix}.$$

(Institute) 22 / 40

How to obtain ϕ_{kk} ?

• Similarly, we can replace all γ s with ρ s, the corresponding result is

$$\begin{bmatrix} \rho_1 \\ \rho_2 \\ \vdots \\ \rho_k \end{bmatrix} = \begin{bmatrix} \rho_0 & \rho_1 & \cdots & \rho_{k-1} \\ \rho_1 & \rho_0 & \cdots & \rho_{k-2} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{k-1} & \rho_{k-2} & \cdots & \rho_0 \end{bmatrix} \begin{bmatrix} \phi_{k1} \\ \phi_{k2} \\ \vdots \\ \phi_{kk} \end{bmatrix}.$$

By the Cramer rule, we have

$$\phi_{kk} = \frac{\det \begin{bmatrix} \rho_0 & \rho_1 & \cdots & \rho_{k-2} & \rho_1 \\ \rho_1 & \rho_0 & \cdots & \rho_{k-3} & \rho_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \rho_{k-1} & \rho_{k-2} & \cdots & \rho_1 & \rho_k \end{bmatrix}}{\det \begin{bmatrix} \rho_0 & \rho_1 & \cdots & \rho_{k-2} & \rho_{k-1} \\ \rho_1 & \rho_0 & \cdots & \rho_{k-3} & \rho_{k-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \rho_{k-1} & \rho_{k-2} & \cdots & \rho_1 & \rho_0 \end{bmatrix}}$$

(Institute) 23 / 40

The ACF and PACF of AR Models

Figure 7: The PACF of AR(p) Models

(Institute) 24 / 40^o

Moving average (MA) Model

MA(q):

$$y_t = \theta_0 + e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2} - \dots - \theta_q e_{t-q},$$

where $q \ge 0$ is a finite integer and $\{e_t\} \sim i.i.d.(0, \sigma_e^2)$.

- MA(0) is actually a i.i.d. sequence if $\theta_0 = 0$.
- First proposed by E. Slutsky in 1927 to explain some cycle phenomena in economic data etc.
- In some textbooks, they use the following definition equation:

$$y_t = \theta_0 + e_t + \theta_1 e_{t-1} + \theta_2 e_{t-2} + \dots + \theta_q e_{t-q},$$

(Institute) 25 / 40

MA(1) process

- $y_t = \theta_0 + e_t \theta_1 e_{t-1}$.
- $\mu = E(y_t) = \theta_0$
- Variance $\gamma_0 = Var(y_t) = \sigma_e^2 (1 + \theta_1^2)$.
- ACVF at lag 1 is

$$\begin{array}{lcl} \gamma_1 & = & Cov(y_t, y_{t-1}) \\ & = & Cov(e_t - \theta_1 e_{t-1}, e_{t-1} - \theta_2 e_{t-2}) \\ & = & Cov(-\theta_1 e_{t-1}, e_{t-1}) = -\theta_1 \sigma_e^2, \end{array}$$

• ACF at lag 1 is

$$\rho_1 = \frac{-\theta_1}{1 + \theta_1^2}.$$

(4日) (個) (注) (注) (注) (200)

MA(1) process

• The ACVF at lag 2 is

$$\gamma_2 = Cov(y_t, y_{t-2})$$

$$= Cov(e_t - \theta_1 e_{t-1}, e_{t-2} - \theta_1 e_{t-3})$$

$$= 0,$$

- Similarly, $\gamma_k = Cov(y_t, y_{t-k}) = 0$, and $\rho_k = 0$, whenever $k \ge 2$;
- That is, the process has no correlation beyond lag 1.

(□ > ∢@ > ∢ ≧ > ∢ ≧ > ≧ • ੭ < ♡

27 / 40

ACF of MA(1)

$$\begin{cases} E(y_t) = \theta_0, \\ \gamma_0 = \sigma_e^2 (1 + \theta_1^2), \\ \rho_1 = \frac{-\theta_1}{1 + \theta_1^2}, \\ \rho_k = 0, \quad \forall \ k \ge 2. \end{cases}$$

ACF pattern of MA(1) model

Figure 8: The ACFs of MA(1) model cuts off from lag 2.

(Institute) 29 / 40

MA(2) process

Consider a MA(2) process,

$$y_t = \theta_0 + e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2}.$$

- Mean: $\mu = E(y_t) = \theta_0$.
- Variance:

$$\gamma_0 = Var(y_t) = Var(e_t - \theta_1 e_{t-1} - \theta_2 e_{t-2})$$

$$= (1 + \theta_1^2 + \theta_2^2)\sigma_e^2,$$

|ロト 4回 ト 4 E ト 4 E ト 9 Q C・

MA(2) process

ACVF at lag 1:

$$\gamma_{1} = Cov(y_{t}, y_{t-1})
= Cov(e_{t} - \theta_{1}e_{t-1} - \theta_{2}e_{t-2}, e_{t-1} - \theta_{1}e_{t-2} - \theta_{2}e_{t-3})
= (-\theta_{1} + \theta_{1}\theta_{2})\sigma_{e}^{2},$$

ACF at lag 2:

$$\gamma_{2} = Cov(y_{t}, y_{t-2})
= Cov(e_{t} - \theta_{1}e_{t-1} - \theta_{2}e_{t-2}, e_{t-2} - \theta_{1}e_{t-3} - \theta_{2}e_{t-4})
= Cov(-\theta_{2}e_{t-2}, e_{t-2}) = -\theta_{2}\sigma_{e}^{2}.$$

 \bullet $\gamma_k = 0$, for all k > 3.

(Institute) 31 / 40

ACF of MA(2) Model

The ACF of the MA(2) model is

$$\begin{cases} \rho_1 = \frac{-\theta_1 + \theta_1 \theta_2}{1 + \theta_1^2 + \theta_2^2}, \\ \rho_2 = \frac{-\theta_2}{1 + \theta_1^2 + \theta_2^2}, \\ \rho_k = 0, \quad \forall k \ge 3. \end{cases}$$

MA(q) process

- $y_t = \theta_0 + e_t \theta_1 e_{t-1} \theta_2 e_{t-2} \dots \theta_q e_{t-q}, e_t \sim i.i.d.(0, \sigma^2).$
- Lag form: $y_t = \theta_0 + (1 \theta_1 B \theta_2 B^2 \dots \theta_q B^q) e_t$.
- MA(q) model is always weakly stationary. (Why?)
- Mean: $\mu = E(y_t) = \theta_0$;
- Variance: $\gamma_0 = (1 + \theta_1^2 + \cdots + \theta_q^2)\sigma^2$;
- ACF at lag j:

$$\rho_j = \frac{\theta_j + \theta_{j+1}\theta_1 + \theta_{j+2}\theta_2 + ... + \theta_q\theta_{q-j}}{1 + \theta_1^2 + ... + \theta_q^2}, \text{ for } j = 1, 2, ..., q;$$

and $\rho_j = 0$ for j > q.

• Invertibility: All roots of $1 - \theta_1 x \theta_2 x^2 - \cdots + \theta_q x^q = 0$ lie out of unit circle.

(Institute) 33 / 40

MA(q) process

Summary:

- For MA(q) process, $\rho_k = 0$ for any k > q. (ACF cuts off after q lags.)
- The cut-off property of the ACF is a special property which can be used to identify the value of q if a MA(q) model is specified to the data.
- $\sqrt{T}(\hat{\rho}_k) \stackrel{d}{\rightarrow} N(0, 1 + 2\sum_{j=1}^{k-1} \rho_j^2).$

Autoregressive moving average (ARMA) model

ARMA(1,1):

- $y_t = \phi_1 y_{t-1} + \phi_0 + e_t \theta_1 e_{t-1}$. or Lag form: $(1 - \phi_1 B)y_t = \phi_0 + (1 - \theta_1 B)e_t$, where $e_t \sim i.i.d.(0, \sigma_e^2)$.
- Stationary condition: same as AR(1)
- Invertible condition: same as MA(1)
- Mean: $\mu = E(y_t) = \frac{\phi_0}{1-\phi_1}$ (same as AR(1))
- Variance: $\gamma_0 = Var(y_t) = \frac{(1 2\phi_1\theta_1 + \theta_1^2)\sigma_e^2}{1 \phi_1^2}$
- ACF: $\rho_k = \phi_1 \rho_{k-1}$ for k > 1 and $\rho_1 = \phi_1 \frac{\theta_1 \sigma_e^2}{\gamma_0}$.)

(Institute) 35 / 40

ARMA(p,q)

A general ARMA(p,q) model is in the form:

$$y_t = \phi_0 + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + e_t - \theta_1 e_{t-1} - \dots - \theta_q e_{t-q}.$$

Lag form:

$$\phi(B)y_t = \phi_0 + \theta(B)e_t,$$

where
$$\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p$$
 and $\theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q$.

- It is assumed that the polynomials $\phi(B)$ and $\theta(B)$ can not have common factors.
- Again, for a stationary process, we can rewrite the model as

$$\phi(B)(y_t - \mu) = \theta(B)e_t.$$

(Institute) 36 / 40

Properties of ARMA(p, q) models

- Stationarity: The ARMA process is stationary iff all roots of $\phi(z) = 1 - \phi_1 z - \cdots - \phi_p z^p = 0$ lie outside the complex unit circle.
- Invertibility: All roots of $\theta(z) = 1 + \theta_1 z + \cdots + \theta_q z^q = 0$ lie outside the unit circle.
- AR representation: $\pi(B)y_t = \frac{\phi_0}{\theta(1)} + e_t$, where $\pi(B) = \frac{\phi(B)}{\theta(B)}$. The π -weight π_i can be obtained by equating the coefficients of B^i in $\pi(B)\theta(B) = \phi(B)$.
- MA representation: $y_t = \frac{\phi_0}{\phi(1)} + \psi(B)e_t$, where $\psi(B) = \frac{\theta(B)}{\phi(B)}$. Again, the ψ -weight can be obtained by equating the coefficients.
- The MA representation is particularly useful in computing variances of forecast errors.

Properties of ARMA(p, q)

Given stationarity:

- Mean: $\mu = \frac{\phi_0}{1 \phi_1 \dots \phi_p}$.
- ACVF: (Centralized by μ) Using the result

$$E(y_t e_{t-j}) = \begin{cases} \sigma_e^2, & \text{for } j = 0; \\ \psi_j \sigma_e^2, & \text{for } j > 0; \\ 0, & \text{for } j < 0. \end{cases}$$

Then

$$\begin{array}{ll} \gamma_{j} & -\phi_{1}\gamma_{j-1}-\cdots-\phi_{p}\gamma_{j-p} \\ & = \begin{cases} (1+\theta_{1}\psi_{1}+\cdots+\theta_{q}\psi_{q})\sigma_{e}^{2}, & \text{for } j=0; \\ (\theta_{j}+\theta_{j+1}\psi_{1}+\cdots+\theta_{q}\psi_{q-j})\sigma_{e}^{2}, & \text{for } j=1,\ldots,q; \\ 0, & \text{for } j>q, \end{cases}$$

where $\psi_0 = 1$ and $\theta_j = 0$ for j > q.

Cont'd

• ACF: the correlation coefficient ρ_i satisfies that

$$\rho_j - \phi_1 \rho_{j-1} - \dots - \phi_p \rho_{j-p} = 0, \quad \text{for } j > q,$$

then the ACF satisfy the difference equation $\phi(B)\rho_j=0$ for j>q with ρ_1,\ldots,ρ_q as initial conditions.

39 / 40

Homework

1. Write the Yule-Walker equations for the AR(3) model:

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_3 y_{t-3} + e_t$$
, where $e_t \sim i.i.d.(0, \sigma^2)$.

2. Simulate the data generating process from the MA(1), MA(2) and MA(3) models respectively and plot their sample ACF. Observe the empirical patterns.

3.

$$y_t = e_t + \theta e_{t-1} + \theta^2 e_{t-2} + \theta^3 e_{t-3} + \cdots,$$

where $|\theta| < 1$, and $\{e_t\} \sim i.i.d.(0, \sigma_e^2)$. Calculate the mean, variance and autocorrelations of y_t .