0.1 Preliminaries

Before delving into Plonk, let's first consider a few useful proving system gadgets.

Let Ω be some subset of \mathbb{F}_p of size k. Let $f \in \mathbb{F}_p^{(\leq d)}[X]$ $(d \geq k)$

Verifier has f

Now we need to construct efficient Poly-IOPs for two tasks described in below sections.

0.1.1 ZeroTest

Prove that f is identically zero on Ω .

- 1. Prover computes: $q(X) \leftarrow \frac{f(X)}{Z_{\Omega}(X)} \quad q \in \mathbb{F}_p^{(\leq d)}[X]$
- 2. Prover sends commitment [q] to the verifier
- 3. Verifier generates random $r \leftarrow \mathbb{F}_{p}^{(\leq d)}$
- 4. Verifier queries from the prover q(X) and f(X) at r
- 5. Verifier accepts if $f(r) = q(r) \cdot Z_{\Omega}(r)$ (implies that $f(X) = q(X) \cdot Z_{\Omega}(X)$ with high probability).

Lemma 0.1. f is zero on Ω if and only if f(X) is divisible by $Z_{\Omega}(X)$.

Remark. This protocol is complete and sound, assuming d/p is negligible.

0.1.2 Prescribed Permutation Check

Definition 0.2. $W: \Omega \to \Omega$ is a permutation of Ω if $\forall i \in [k], W(\omega^i) = \omega^j$ is a bijection.

Example. Example
$$(k=3)$$
: $W(\omega^0) = \omega^2$, $W(\omega^1) = \omega^0$, $W(\omega^2) = \omega^1$

Let f and g be polynomials in $\mathbb{F}_p^{(\leq d)}[X]$. Verifier has commitments [f], [g], [W].

<u>Goal</u>: prover wants to prove that f(y) = g(W(y)) for all $y \in \Omega$, equivalent to $g(\Omega)$ is the same as $f(\Omega)$, permuted by the prescribed W.

Naive way of doing this is by running **ZeroTest** on f(y) - g(W(y)) = 0 on Ω , however that would result in proving needing to manipulate polynomials of degree k^2 , resulting in quadratic prover time. We can reduce this to a product-check on a polynomial of degree 2k.

Remark. Observation: If $(W(\alpha), f(\alpha))_{\alpha \in \Omega}$ is a permutation of $(\alpha, g(\alpha))_{\alpha \in \Omega}$ then f(y) = g(W(y)) for all $y \in \Omega$.

Example.

Proof by example:
$$W(\omega^0)=\omega^2, \quad W(\omega^1)=\omega^0, \quad W(\omega^2)=\omega^1$$

 Right tuple: $(\omega^0,g(\omega^0)),(\omega^1,g(\omega^1)),(\omega^2,g(\omega^2))$
 Left tuple: $(\omega^2,f(\omega^0)),(\omega^0,f(\omega^1)),(\omega^1,f(\omega^2))$

Let $\hat{f}(X,Y) = \prod_{\alpha \in \Omega} (X - Y \cdot W(\alpha) - f(\alpha))$ and $\hat{g}(X,Y) = \prod_{a \in \Omega} (X - Y \cdot a - g(a))$ (bivariate polynomials of total degree k).

Lemma 0.3. $\hat{f}(X,Y) = \hat{g}(X,Y) \Leftrightarrow (W(\alpha),f(\alpha))_{\alpha \in \Omega}$ is a permutation of $(\alpha,g(\alpha))_{\alpha \in \Omega}$. To prove, use the fact that $\mathbb{F}_p[X,Y]$ is a unique factorization domain.

The complete protocol.

- 1. Verifier generates random $r, g \leftarrow \mathbb{F}_p^{(\leq d)}$
- 2. Run **ProductCheck** on $\hat{f}(r,s) = \hat{g}(r,s)$: $\prod_{a \in \Omega} \left(\frac{r-s \cdot W(a) f(a)}{r-s \cdot a g(a)} \right) = 1$

This would imply that $\hat{f}(X,Y) = \hat{g}(X,Y)$ with high probability due to Schwartz-Zippel.

Remark. Complete and sound, assuming 2d/p is negligible.

0.2 Plonk Arithmetization

Assume that we have a certain arithmetic circuit C with a |C| number of gates and $|I|=|I_x|+|I_w|$ number of inputs. We encode this circuit, recording its computation trace in a table, where rows represent the state per each gate, while columns are of the form (a,b,c), where a and b are left and right inputs, and c is the output of the gate. In this manner, the output of the last gate corresponds to the output of the circuit.

Example. Consider this circuit: $(x_1 + x_2) * (x_1 + w_1)$. Suppose we set $x_1 = 5, x_2 = 6, w_1 = 1$.

Then the computation trace would be following:

inputs: 5, 6, 1 Gate 0: 5, 6, 11 Gate 1: 6, 1, 7 Gate 2: 11, 7, 77

0.2.1 Encoding the trace as a polynomial

Let d=3|C|+|I| and $\Omega=\{1,\omega^1,\omega^2,\dots,\omega^{d-1}\}$. Then we would like to interpolate a polynomial $T\in\mathbb{F}_p^{(\leq d)}[X]$ to encode the entire computation trace in a succinct, processing-prone form.

- 1. T encodes all inputs: $T(\omega^{-j}) = \text{input } \#j \text{ for } j = 1, \dots, |I|$
- 2. T encodes all wires: $\forall \ell = 0, \dots, |C| 1$:
 - $T(\omega^{3\ell})$: left input to gate $\#\ell$
 - $T(\omega^{3\ell+1})$: right input to gate $\#\ell$
 - $T(\omega^{3\ell+2})$: output of gate $\#\ell$

Remark. In this way, we obtain the polynomial T in evaluation form. It is possible to compute coefficients of T using FFT in $O(d \log(d))$.

Example. For our example circuit, we have |C| = 3 and |I| = 3, therefore degree(T) = 11. The prover interpolates the polynomial T(X) such that:

inputs: $T(\omega^{-1}) = 5$, $T(\omega^{-2}) = 6$, $T(\omega^{-3}) = 1$, gate 0: $T(\omega^0) = 5$, $T(\omega^1) = 6$, $T(\omega^2) = 11$, gate 1: $T(\omega^3) = 6$, $T(\omega^4) = 1$, $T(\omega^5) = 7$, gate 2: $T(\omega^6) = 11$, $T(\omega^7) = 7$, $T(\omega^8) = 77$

0.3 Proving the validity of T

After prover $P(S_p, x, w)$ has constructed T, it commits it and sends to the verifier $V(S_v, x)$. Latter must verify (meaning former must prove) four points about the validity of constructed T, which we will describe in next sections.

0.3.1 *T*ncodes the correct inputs

Both prover and verifier interpolate a polynomial $\nu(X) \in \mathbb{F}_p^{(\leq d)}[X]$ that encodes the x-th input to the C:

for
$$j=1,\ldots,|I_x|:\nu(\bar{\omega}^j)=\text{input }\#j$$

Remark. Constructing $\nu(X)$ takes proportional to the size of input x.

Let $\Omega_{\mathsf{inp}} := \{\omega^{-1}, \omega^{-2}, ..., \omega^{-|I_x|}\} \subseteq \Omega$, then proving 1.2.1 is done with ZeroTest on Ω_{inp} :

$$T(y) - v(y) = 0 \quad \forall y \in \Omega_{\text{inp}}$$

Example. In our example, $\nu(\omega^{-1})=5$, $\nu(\omega^{-2})=6$.

0.3.2 Every gate is evaluated correctly

Encode gate types using a *selector* polynomial S(X): $S(X) \in \mathbb{F}_p^{\leq d}[X]$ such that $\forall \, l=0,...,|C|-1$:

- $S(\omega^{3l})=1$ if gate #l is an addition gate
- $S(\omega^{3l}) = 0$ if gate #l is a multiplication gate

Then, $\forall\,y\in\Omega_{\mathrm{gates}}:=\{1,\omega^3,\omega^6,\omega^9,...,\omega^{3(|C|-1)}\}$:

$$S(y) \cdot [T(y) + T(\omega y)] + (1 - S(y)) \cdot T(y) \cdot T(\omega y) = T(\omega^2 y)$$

where T(y) and $T(\omega y)$ are left and right inputs correspondingly.

This means, that once again we can narrow our check down to Zero Test for $\forall y \in \Omega_{\text{gates}}$:

$$S(y) \cdot [T(y) + T(\omega y)] + (1 - S(y)) \cdot T(y) \cdot T(\omega y) - T(\omega^2 y) = 0$$

Example. That is, in our C, since gates 0 and 1 are addition and 2 gate is multiplication, we have the following encoding for selector polynomial:

inputs:	5,	6,	1	S(X)
Gate 0 (ω^0):	5,	6,	11	1
Gate 1 (ω^3) :	6,	1,	7	1
Gate 2 (ω^6) :	11,	7,	77	0

You can see by substituting S(y) with actual values from the table, that if a selector polynomial evaluates as 1, then multiplication part of the proved constraint is leveling out - vice versa for 0.

0.3.3 The wiring is implemented correctly

In this part, we need to encode the wires of ${\cal C}$ to prove connection of inputs and outputs in gates.

Example. For our table:
$$\frac{\omega^{-1}, \ \omega^{-2}, \ \omega^{-3} \colon \quad 5, \quad 6, \quad 1}{0: \ \omega^{0}, \ \omega^{1}, \ \omega^{2} \colon \quad 5, \quad 6, \quad 11} \\ 1: \ \omega^{3}, \ \omega^{4}, \ \omega^{5} \colon \quad 6, \quad 1, \quad 7 \\ 2: \ \omega^{6}, \ \omega^{7}, \ \omega^{8} \colon \quad 11, \quad 7, \quad 77$$

We need following constraints:

$$T(\omega^{-2}) = T(\omega^1) = T(\omega^3) \tag{1}$$

$$T(\omega^{-1}) = T(\omega^0) \tag{2}$$

$$T(\omega^2) = T(\omega^6) \tag{3}$$

$$T(\omega^{-3}) = T(\omega^4) \tag{4}$$

For that matter, define a polynomial $W=\Omega \to \Omega$ that implements a rotation:

$$W(\omega^{-2}, \omega^{1}, \omega^{3}) = (\omega^{1}, \omega^{3}, \omega^{-2}), \quad W(\omega^{-1}, \omega^{0}) = (\omega^{0}, \omega^{-1}), \dots$$

Lemma 0.4. Lemma: $\forall y \in \Omega : T(y) = T(W(y)) = >$ wire constraints are satisfied. This may be proven using *prescribed permutation check*.

0.3.4 Output of the last gate conforms with expected

Let α be the expected output of C. Then, apply ZeroTest on:

$$T(\omega^{3|C|-1}) - \alpha = 0$$

0.4 Setup procedure

Not accounting for the details of selected poly-commit scheme (i.e KZG, FRI, etc.) the setup procedure preprocesses the circuit C and outputs for the prover selector and wiring polynomials S and W, and for the verifier respective commitments [S] and [W].

Remark. This setup procedure is untrusted.