forming a silicon nitride layer on said first buffer layer; forming a second buffer layer on said silicon nitride layer; and forming a second oxide layer on said second buffer layer.

- 21. (Added) The method according to claim 20, wherein said first oxide layer is formed by introducing silane gas and nitrogen oxide gas.
- 22. (Added) The method according to claim 20, wherein said first buffer layer is silicon oxynitride (SiON) layer.

R'it

- 23. (Added) The method according to claim 22, wherein said first buffer layer is formed by introducing silane (SiH₄), nitrogen oxide (N_2O) and ammonia (NH_3) gas.
- 24. (Added) The method according to claim 20, wherein said silicon nitride layer is formed by introducing silane (SiH₄) and ammonia (NH₃) gas.
- 25. (Added) The method according to claim 20, wherein said second buffer layer is silicon oxynitride (SiON) layer.
- 26. (Added) The method according to claim 25, wherein said second buffer layer is formed by introducing silane (SiH₄), nitrogen oxide (N₂O) and ammonia (NH₃) gas.
- 27. (Added) The method according to claim 20, wherein said second oxide layer is formed by introducing silane (SiH₄) gas and nitrogen oxide (N_2O) gas.
- 28. (Added) The method according to claim 20, wherein said oxidenitride-oxide structure is formed in one wafer.