

INSTITUTO DE EDUCAÇÃO SUPERIOR DE BRASÍLIA - IESB Pós-Graduação em Inteligencia Artificial

Introdução

O scippy.stats fornece ao usuário do Pythom ferramentas para trabalhar com variáveis aleatórias (v.a) discretas ou contínuas. Os métodos mais comuns são:

- a) rvs: gerar valores aleatórios
- b) pdf: função de densidade de probabilidade
- c) cdf: função de probabilidade acumulada $P(X \leq x)$
- d) sf: função de sobrevivência P(X > x) (1-cdf)
- e) ppf: Inverso da função cdf (dada uma probabilidade α , retorna um valor x, tal que $P(X \le x) = \alpha$).
- f) isf: Inverso da função pdf (dada uma probabilidade α , retorna um valor x, tal que $P(X \le x) = \alpha$).
- g) stats: retorna as estatísticas: media, variâncias, assimétria (Fisher) e kurtose (Fisher).
- h) moment: momentos não centrais.

As variáveis contínuas têm os argumentos loc e scale para ajustar a locação e a escala da distribuição. Em uma distribuição Normal, parâmetro de locação é a media μ e o de escala é o desvio padrão σ .

Texto de base I

É a variável aleatória contínua X com parâmetros μ e σ , e função de densidade de probabilidade

$$f(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \text{ para } x \in \mathbb{R}$$

com μ , $\sigma \in \mathbb{R}$, $\sigma > 0$ e denotada $X \sim N(\mu, \sigma^2)$, cujo valor esperado é $E(X) = \mu$ e a variância é $V(X) = \sigma^2$.

Seja $X \sim N(\mu, \sigma)$ uma variável normal comcom $\mu, \sigma \in \mathbb{R}, \sigma > 0$. No Python, o módulo from scipy.stats import norm traz o método nomr.pdf $(\mathbf{x}, \mu, \sigma)$ para obter valores da função de densidade e norm.cdf $(\mathbf{x}, \mathbf{loc} = \mu, \mathbf{scale} = \sigma)$ para calcular $P(X \leq x)$.

O código abaixo calcula para x=5 o seu valor da densidade e da probabilidade $P(X \le x)$ par $X \sim N(\mu=5, \sigma=1)$.

```
import scipy.stats as spy
x = 5
fx = spy.norm.pdf(x,loc=5, scale=2)
print("Valor da densidade:",fx)
F = spy.norm.cdf(x,loc=5, scale=2)
print("Probabilidade P(X<=x):",F)</pre>
```

Exercícios

- 1 A função linspace(a,b,n) do numpy gera um array n valores igualmente espaçados entre
 a e b, incluíndo esses valores limites.
 - a) Crie o vetor x com 10 valores que iniciem em 1 terminem 2.
 - b) Crie o vetor y com 10 valores que iniciem em 2 terminem 1.
- 2 A função cumsum(x) do numpy gera um array com os valores acumulados.
 - a) Seja x=[1, 2, 3], execute o comando cumsum(x).
 - b) Crie y com 20 valores de 0 a 1 e gere z com as somas acumuladas de y.
- 3 Com a função linspace crie o vetor x com 100 valores de -3 a 3. Seja $X \sim N(0,1)$.
 - a) Obtenha o valor da função de densidade de x e armazene o valor em y.
 - b) Crie um gráfico de dispersão com a variável x, nas abcissas, e y nas ordenadas.
 - c) Obtenha a probabilidade de $P(X \le x)$ e armazene o valor em y.
 - d) Crie um gráfico de dispersão com a variável x, nas abcissas, e y nas ordenadas.
- 4 Para $X \sim N(\mu = 0, \sigma = 1)$, calcule:
 - a) P(X < 0);
 - b) P(X > 1.96);
 - c) P(-1 < X < 1);
 - d) c tal que $P(X \le c) = 0.5$;
 - e) c tal que $P(X \le c) = 0.025$.

- 5 Obtenha os percentis 0.01, 0.025, 0.05 , 0.50, 0.95, 0.975 e 0.99 de $Y \sim N(\mu = 10, \sigma = 2)$.
- 6 Obtenha os valores para a de uma distribuição $X \sim N(\mu=15,\sigma=3)$ tais que:
 - a) $P(X \le a) = 0.50$;
 - b) $P(-a \le X \le a) = 0.95$
 - c) $P(X \ge a) = 0.10$
- 7 (Motta 2006) Em uma distribuição de valores de glicose plasmática em jejum em homens normais entre 30 a 39 anos de idade, a média observada foi $\mu=100$ mg/dL e o desvio padrão $\sigma=15$ mg/dL.
 - a) Qual a proporção de homens com glicose plasmática entre 100 e 120 mg/dL?
 - b) Qual a proporção de homens com glicose plasmática acima de 120 mg/dL?
 - c) Qual o percentil 90, 95 e 97,5 da distribuição dos valores de glicose plasmática?
 - d) Faça o gráfico da função de densidade com x variando do percentil 1 ao percentil 99.
- 8 (Cybalista 2005) O número de acidentados que chega a um hospital por dia tem distribuição aproximadamente normal com $\mu=75$ e desvio padrão $\sigma=8$. Qual a probabilidade de que em certo dia, cheguem
 - a) mais de 75 acidentados?
 - b) entre 60 e 80 acidentados?
- 9 Gere duas amostras de tamanho 1000, uma de $X \sim N(\mu=0,\sigma=1)$ e outra de $Y \sim N(\mu=3,\sigma=0.5)$. Seja $Z=X^2+Y^2,$
 - a) faça um histograma com as três distribuições;
 - b) calcule a média e os desvio padrão de Z e compare com as de X e Y;
 - c) há algum indicativio de Z ter distribuição normal? Se sim, qual?
- 10 (SPIEGEL 2004) Se as alturas de 300 estudantes são normalmente distribuídos com média
 68 polegadas e desvio padrão 3 polegadas, qual a probabilidade de encontrar estudantes
 com altura
 - a) maior que 72 polegadas;
 - b) menor ou igual a 64 polegadas;
 - c) entre 65 e 71 polegadas.

- 11 (SPIEGEL 2004) A nota média em um exame final foi 72 e o desvio padrão foi 9. Os 10% melhores entre entre os estudantes recebem A. Qual a nota mínima que um estudante deve obter para receber um A?
- 12 Uma forma de simular os dados $X \sim N(0,1)$ é:
 - a) tire um valor aleatório x de uma distrbuição aleatória uniforme entre 0 e 1;
 - b) obtenha o percentil x de uma N(0,1).

Segue um exemplo de código:

```
from scipy.stats import uniform
from scipy.stats import norm
import numpy as pd
amostra = np.zeros(1000)
for i in np.arange(0,1000):
    x = uniform.rvs(size=1)
    amostra[i]=norm.ppf(x)
plt.hist(amostra,normed=True)

print('media:', amostra.mean(), '\n', 'desvio padrão:', amostra.std(),"\n")
plt.show()
```

Assim, simule de uma distribuição normal de média 5 e variância 2, uma amostra de tamanho 5000. Verifique se a amostra tem pelo menos 3 características da população simulada.

13 - Retire uma amostra aleatória de tamanho 200 de $X \sim N(0,1)$ e armazene em x. Qual o gráfico resultante de plt.plot(np.cumsum(x)).