Algorithms and Data Structures 2 3 - Algorithm analysis

Dr Michele Sevegnani

School of Computing Science University of Glasgow

michele.sevegnani@glasgow.ac.uk

Outline

- *Common growth rates
- **'Example running times**
- More on asymptotic notation
 - Θ-notation
 - Ω -notation
 - o-notation
- Some exercises for you to try

Common growth rates

- We have seen linear O(n) (ARRAY-MAX) and quadratic O(n²) (INSERTION-SORT)
- Other examples
 - O(1) or constant
 - O(log n) or logarithmic (to base 2)
 - $O(\sqrt{n}) = O(n^{1/2})$ or fractional power
 - O(n) or linear
 - O(n log n) (usually just called n log n) or quasilinear
 - O(n²) or quadratic
 - O(n³) or cubic

How fast does √n grow?

- Note: we mean the positive square root when we say √n
 - A function is a map from one set to another
 - $-\sqrt{n}$ is not strictly speaking a function as it takes a single value to two different values
 - Example: $\sqrt{4}$ is +2 or -2
- Upper bound O(n)
 - √n ≤ cn
 - Pick $n_0 = 4$ and c = 1
- Lower bound O(log n)
 - log n ≤ $c\sqrt{n}$
 - Pick $n_0 = 64$ and c = 1

Comparing growth rates

n	0(1)	O(log n)	O(n log n)	O(n²)
1	1	0	0	1
2	1	1	2	4
4	1	2	8	16
8	1	3	24	64
16	1	4	64	256
32	1	5	160	1024
64	1	6	384	4096
32	1	5	160	1024
64	1	6	384	4096
128	1	7	896	16384
256	1	8	2048	65536
512	1	9	4608	262144
1024	1	10	10240	1048576
2048	1	11	22528	4194304
4096	1	12	49152	16777216
8192	1	13	106496	67108864
16384	1	14	229376	268435456

6

Two other complexities (both impossibly slow)

- Exponential O(2ⁿ)
 - Example: print out all the combinations/subsets from a set of size n
 - Every element is either in or out of a subset
- Factorial O(n!)
 - Example: print out all the permutations of the n elements of a set

A handy lookup table

f(n)	O(f(n))	Description	How good?
Α	O(1)	Constant	Nearly immediate
A+Blog ₂ n	O(log n)	Logarithmic	Stupendously fast
A+B√n	O(√n)	Square root	Very fast
A+Bn	O(n)	Linear	Fast
A+Blog₂n+Cn	O(n)	linear	Fast
A+Bnlog ₂ n	O(n log n)	n log n	Fairly fast
A+Bn+Cn ²	O(n ²)	Quadratic	Slow for large n
$A+Bn+Cn^2+Dn^3$	$O(n^3)$	Cubic	Slow for most n
A+B2 ⁿ	O(2 ⁿ)	Exponential	Impossibly slow
An!	O(n!)	Factorial	Impossibly slow

Or a graph

ADS 2, 2021

Elements

- Input: integer n
- Output: the sum of the first n squares

```
SQUARES1(n)
i := 0
sum := 0
while i < n
increment i
sum := sum + (i * i)
return sum</pre>
```

- Input: integer n
- Output: the sum of the first n squares

```
SQUARES1(n)
i := 0
sum := 0
while i < n
increment i
sum := sum + (i * i)
return sum</pre>
```

```
Operations
O(1)
O(1)
```

- Input: integer n
- Output: the sum of the first n squares

```
SQUARES1(n)
i := 0
sum := 0
while i < n
increment i
sum := sum + (i * i)
return sum</pre>
```

```
Operations
O(1)
O(1)
O(n)
O(n)
O(n)
```

- Input: integer n
- Output: the sum of the first n squares

```
      SQUARES1(n)
      Operations

      i := 0
      O(1)

      sum := 0
      O(1)

      while i < n</td>
      O(n)

      increment i
      O(n)

      sum := sum + (i * i)
      O(n)

      return sum
      O(1)
```

- Input: integer n
- Output: the sum of the first n squares

```
      SQUARES1(n)
      Operations

      i := 0
      O(1)

      sum := 0
      O(1)

      while i < n</td>
      O(n)

      increment i
      O(n)

      sum := sum + (i * i)
      O(n)

      return sum
      O(1)
```

- T(n) = O(1)+O(1)+O(n)+O(n)+O(n)+O(1) = O(n)
- Can we do better?

- Input: integer n
- Output: the sum of the first n squares

```
      SQUARES1(n)
      Operations

      i := 0
      O(1)

      sum := 0
      O(1)

      while i < n</td>
      O(n)

      increment i
      O(n)

      sum := sum + (i * i)
      O(n)

      return sum
      O(1)
```

- T(n) = O(1)+O(1)+O(n)+O(n)+O(n)+O(1) = O(n)
- Can we do better?

Summation rule

- Input: integer n
- Output: the sum of the first n squares

Summation rule

SQUARES2(n)

sum := n * (n+1) * (2*n+1)/6

return sum

Operations

O(1)

O(1)

- T(n) = O(1) + O(1) = O(1)
 - No loops!

- Input: integer n
- Output: the integer part of the square root of n

```
INT-SQRT1(n)
    i := 0
    while ((i+1)*(i+1) ≤ n)
    increment i
    return i
```

- Input: integer n
- Output: the integer part of the square root of n

```
INT-SQRT1(n)
    i := 0
    while ((i+1)*(i+1) ≤ n)
    increment i
    return i
```

Example: find the integer square root of 13

$$i=0; 1^2 \le 13$$

 $i=1; 2^2 \le 13$
 $i=2; 3^2 \le 13$
 $i=3; 4^2 > 13$
return 3

3 iterations of the loop

- Input: integer n
- Output: the integer part of the square root of n

```
INT-SQRT1(n)
    i := 0
    while ((i+1)*(i+1) ≤ n)
    increment i
    return i
```

Operations O(1)

- Input: integer n
- Output: the integer part of the square root of n

```
INT-SQRT1(n)
    i := 0
    while ((i+1)*(i+1) ≤ n)
    increment i
    return i
```

Operations O(1) $O(\sqrt{n})$ $O(\sqrt{n})$

- Loop iterated for i=0,1,.. until (i+1)² > n
 - until $i > \sqrt{n} 1$
 - number of times loop iterated is approximately \sqrt{n} (rounded down to nearest integer)

- Input: integer n
- Output: the integer part of the square root of n

```
INT-SQRT1(n)
    i := 0
    while ((i+1)*(i+1) ≤ n)
    increment i
    return i
```

```
Operations O(1) O(\sqrt{n}) O(\sqrt{n}) O(1)
```

- Input: integer n
- Output: the integer part of the square root of n

• $T(n) = O(1) + O(\sqrt{n}) + O(\sqrt{n}) + O(1) = O(\sqrt{n})$

More on asymptotic notation

Let f(n) be a function of n then

- f(n) = Ω(g(n)) if there are constants c and n_0 such that f(n) ≥ cg(n) when $n ≥ n_0$
- Big-Omega Big-Theta

- $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$
- f(n) = O(g(n)) if there are constants c and n_0 such that $f(n) \le cg(n)$ when $n \ge n_0$

- Let $f(n) = 5n^3 + 2$
- f(n) is always bounded above by 6n³ (with n>2)
 - $f(n) is O(n^3)$
 - But it is also true that $f(n) = O(n^4)$ and $O(n^{15})$
 - Upper bound (may or may not be asymptotically tight)
- f(n) is always bounded below by $4n^3$ (with n>0)
 - f(n) is $\Omega(n^3)$
 - Lower bound
- f(n) is both $O(n^3)$ and $\Omega(n^3)$
 - Thus f(n) is $\Theta(n^3)$
 - Tight bound

Non-tight upper bounds (little-oh notation)

- Let f(n) be a function of n then f(n)=o(g(n)) if f(n)=O(g(n)) and f(n)≠
 Θ(g(n))
 - Intuitively, f(x) = o(g(x)) means that g(x) grows much faster than f(x)
- Facts
 - For every function f(n), f(n)=o(g(n)) and f(n)=O(g(n))
 - Not every function that is big-O of g is also little-o of g
- Alternative definition: f(n)=o(g(n)) if
- From previous example: let f(n) = 5n³+2
 - f(n) is $O(n^4)$ and $\Theta(n^3)$, hence $f(n) = o(n^4)$

Exercises for you to try

Analyse the running time of the following algorithms (using big-Oh notation)

```
sum := 0
for i = 1 to n
for j = 1 to i
sum := sum + 1
```

```
sum := 0
for i = 1 to n
for j = 1 to i*i
  for k = 1 to j
  sum := sum + 1
```

```
sum := 0
for i = 1 to n
  for j = 1 to i*i
    if j mod i = 0 then
    for k = 1 to j
    sum := sum + 1
```

Solutions

```
sum := 0
for i = 1 to n
for j = 1 to i
sum := sum + 1
```

Explicitly iterating over i

- i = 1 inner loop is executed 1 times
 i = 2 inner loop is executed 2 times
- **–** ...
- -i = n inner loop is executed n times

Summing up

```
- T(n) = 1 + 2 + ... + n = n(n+1)/2 = O(n^2)
```

Alternatively note that

- i can grow up to n
- j can grow up to i = n

•Then apply the rule for nested loops to obtain

```
- O(n * n) = O(n<sup>2</sup>)
```

Solutions

```
sum := 0
for i = 1 to n
for j = 1 to i*i
  for k = 1 to j
  sum := sum + 1
```

•Note that

- i can grow up to n
- j can grow up to $i^2=n^2$
- k can grow up to $j=n^2$

•Going from the inner loop out we get

```
- O(n * n^2 * n^2) = O(n^5)
```

Solutions

```
sum := 0
for i = 1 to n
  for j = 1 to i*i
    if j mod i = 0 then
    for k = 1 to j
    sum := sum + 1
```

•Note that

- i can grow up to n
- j can grow up to $i^2=n^2$
- k can grow up to $j=n^2$
- However, if j=i, 2i, 3i, ..., i² then the inner loop is executed up to n² times, else inner loop is not executed
 - For any i there are in² executions
 - $T(n) = = O(n^4)$

Summary

- *Common growth rates
- Comparing growth rates
- **'Asymptotic lower bounds:** Ω -notation
- **Asymptotic tight bounds:** Θ-notation
- *Non-tight upper bounds: o-notation