# **Analysis Report**

This report is structured as follows.

## **Contents**

| T                           |                                         |      |
|-----------------------------|-----------------------------------------|------|
|                             |                                         | C- ' |
|                             | f Group, Pre/Post, Age and Height       | 12,  |
| The univariate effect of ti | ime (Pre/Post) on the physical measures |      |
| The univariate effect of g  | groups                                  |      |
| Summary of the tests of hy  | potheses                                |      |
| References                  |                                         |      |
| SAMPLERE                    |                                         |      |

#### **Descriptive Statistics**

A two-way Analysis of Covariance was conducted to test if there are significant main effects of time (pre/post comparison) and group (group 1 and group 2) on five different measures, while controlling for the effects of height and age (covariates). The table below shows the descriptive statistics of each measure for each analysed group.

| LIACCRINTIVA | Statistics |
|--------------|------------|
| Descriptive  | Statistics |

| Descriptive Statistics |       |        |                |    |
|------------------------|-------|--------|----------------|----|
| Group                  |       | Mean   | Std. Deviation | N  |
| Pre.BW                 | 1     | 68.270 | 12.586         | 11 |
|                        | 2     | 67.090 | 10.242         | 11 |
|                        | Total | 67.680 | 11.214         | 22 |
| Post.BW                | 1     | 68.700 | 13.37          | 11 |
|                        | 2     | 68.518 | 10.66          | 11 |
|                        | Total | 68.609 | 11.80          | 22 |
| Pre.BF                 | 1     | 19.327 | 7.6634         | 11 |
|                        | 2     | 17.518 | 7.0767         | 11 |
|                        | Total | 18.423 | 7.2574         | 22 |
| Post.BF                | 1     | 17.727 | 7.2427         | 11 |
|                        | 2     | 16.582 | 7.1309         | 11 |
|                        | Total | 17.155 | 7.0382         | 22 |
| Pre.SKMM               | 1     | 30.900 | 4.3704         | 11 |
|                        | 2     | 31.127 | 4.8753         | 11 |
|                        | Total | 31.014 | 4.5196         | 22 |
| Post.SKMM              | 1     | 31.864 | 4.0751         | 11 |
|                        | 2     | 32.373 | 5.7632         | 11 |
|                        | Total | 32.118 | 4.8777         | 22 |
| Pre.1RM                | 1     | 57.273 | 14.3376        | 11 |
|                        | 2     | 56.591 | 15.5834        | 11 |
|                        | Total | 56.932 | 14.6168        | 22 |
| Post.1RM               | (1)   | 67.727 | 14.4246        | 11 |
|                        | 2     | 67.500 | 21.3014        | 11 |
|                        | Total | 67.614 | 17.7529        | 22 |
| Pre.FTS                | 1     | 14.770 | 2.114          | 11 |
|                        | 2     | 14.216 | 2.789          | 11 |
|                        | Total | 14.493 | 2.431          | 22 |
| Post.FTS               | 1     | 18.419 | 3.451          | 11 |
|                        | 2     | 17.558 | 3.188          | 11 |
|                        | Total | 17.989 | 3.272          | 22 |
|                        |       |        | •              |    |

### Two-way ANCOVA

There are three main assumptions present in the two-way ANCOVA method: lack of extreme outliers, homogeneity of intercorrelations and equality of variances.

The existence of outliers was examined using box plots. Box plots are graphical representations of the distribution of values in a particular variable. The graph literally box

in observations that are around the median (horizontal line in the middle of the box). The box edges represent the interquartile range of values. That is, the 25th percentile (lowest edge) and the 75th percentile (highest edge). 50% of values lie inside the box. The whiskers (lines protruding from the box) represent the minimum and maximum values observed among the cases. Outliers (participants of which values surpass 1.5 times the interquartile range) are presented as dots outside the whiskers, extreme outliers (more than 3 times this range) are represented as stars. The figure is shown below. There are no extreme outliers in the sample.



The other assumptions require that for all levels of the between-subjects factor (in this case, the different groups), variances and intercorrelations of the pre and post-op scores must be homogeneous. Homogeneity of intercorrelations is tested using Box M's test, of which results should not be significant under the 1% significance level (Pallant, 2010). The execution of the test indicated the assumption was not violated, Box's M (55) = 137.346, p = .304. Homogeneity of variances, on its turn, is tested with Levene's test (Levene, 1961)

and the results should not be significant as well. Results were non-significant for all measures (p > .05) (table below).

Levene's Test of Equality of Error Variancesa

|           | F     | df1 | df2 | Sig.  |
|-----------|-------|-----|-----|-------|
| Pre.BW    | 0.004 | 1   | 20  | 0.948 |
| Post.BW   | 0.256 | 1   | 20  | 0.619 |
| Pre.BF    | 0.058 | 1   | 20  | 0.812 |
| Post.BF   | 0.001 | 1   | 20  | 0.971 |
| Pre.SKMM  | 0.648 | 1   | 20  | 0.430 |
| Post.SKMM | 0.027 | 1   | 20  | 0.870 |
| Pre.1RM   | 1.105 | 1   | 20  | 0.306 |
| Post.1RM  | 0.251 | 1   | 20  | 0.622 |
| Pre.FTS   | 0.316 | 1   | 20  | 0.580 |
| Post.FTS  | 1.781 | 1   | 20  | 0.197 |

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

Within Subjects Design: Pre\_Post

#### The multivariate effect of Group, Pre/Post, Age and Height

The first analysis tested the multivariate effect. That is, does belonging to group 1 or group 2 produce a significant effect on all indicators together (BW, BF, SKMM, 1RM and FTS)? The table below suggests that Height, Pre/Post and 'Pre/Post \* Height' have a significant effect on all physical indicators (p < .05). That is, different heights produce different scores on the physical indicators, as well as time (Pre/Post). There is a significant difference on all indicators together between pre and post scores. 'Pre/Post \* Height' refers to the interaction effect. That is, the effect of time (pre/post) is significantly different between different heights (table below). The statistical significance (p-value) is shown in the column "sig.". The effect size (partial eta squared -  $\eta_p^2$ ) has the following thresholds (Cohen, 1988):

0.01: small effect;

0.06: medium effect;

• 0.138: large effect.

Thus, all the significant effects that were found were large effects.

a. Design: Intercept + Age + Height + Group

Multivariate Testsa

| Effect   |              |                       | Value | F                        | Hypothesis<br>df | Error<br>df | Sig.  | Partial<br>Eta<br>Squared |
|----------|--------------|-----------------------|-------|--------------------------|------------------|-------------|-------|---------------------------|
| Between  | Intercept    | Pillai's Trace        | 0.792 | г<br>10,684 <sup>b</sup> | 5.000            | 14.000      | 0.000 | 0.792                     |
| Subjects | тнегсері     | Wilks'                | 0.792 | 10,684 <sup>b</sup>      | 5.000            | 14.000      | 0.000 | 0.792                     |
| <b>,</b> |              | Lambda                |       | ·                        |                  |             |       |                           |
|          |              | Hotelling's<br>Trace  | 3.816 | 10,684 <sup>b</sup>      | 5.000            | 14.000      | 0.000 | 0.792                     |
|          |              | Roy's Largest<br>Root | 3.816 | 10,684 <sup>b</sup>      | 5.000            | 14.000      | 0.000 | 0.792                     |
|          | Age          | Pillai's Trace        | 0.191 | 0,661b                   | 5.000            | 14.000      | 0.659 | 0.191                     |
|          | -            | Wilks'<br>Lambda      | 0.809 | 0,661 <sup>b</sup>       | 5.000            | 14.000      | 0.659 | 0.191                     |
|          |              | Hotelling's<br>Trace  | 0.236 | 0,661 <sup>b</sup>       | 5.000            | 14.000      | 0.659 | 0.191                     |
|          |              | Roy's Largest<br>Root | 0.236 | 0,661 <sup>b</sup>       | 5.000            | 14.000      | 0.659 | 0.191                     |
|          | Height       | Pillai's Trace        | 0.782 | 10,069b                  | 5.000            | 14.000      | 0.000 | 0.782                     |
|          | -            | Wilks'<br>Lambda      | 0.218 | 10,069 <sup>b</sup>      | 5.000            | 14.000      | 0.000 | 0.782                     |
|          |              | Hotelling's<br>Trace  | 3.596 | 10,069 <sup>b</sup>      | 5.000            | 14.000      | 0.000 | 0.782                     |
|          |              | Roy's Largest<br>Root | 3.596 | 10,069 <sup>b</sup>      | 5.000            | 14.000      | 0.000 | 0.782                     |
|          | Group        | Pillai's Trace        | 0.214 | 0,764b                   | 5.000            | 14.000      | 0.591 | 0.214                     |
|          | ,            | Wilks'<br>Lambda      | 0.786 | 0,764b                   | 5.000            | 14.000      | 0.591 | 0.214                     |
|          |              | Hotelling's<br>Trace  | 0.273 | $0,764^{b}$              | 5.000            | 14.000      | 0.591 | 0.214                     |
|          |              | Roy's Largest<br>Root | 0.273 | 0,764 <sup>b</sup>       | 5.000            | 14.000      | 0.591 | 0.214                     |
| Within   | Pre_Post     | Pillai's Trace        | 0.530 | 3,161 <sup>b</sup>       | 5.000            | 14.000      | 0.041 | 0.530                     |
| Subjects | <del>-</del> | Wilks'<br>Lambda      | 0.470 | 3,161 <sup>b</sup>       | 5.000            | 14.000      | 0.041 | 0.530                     |
|          | ,0           | Hotelling's<br>Trace  | 1.129 | 3,161 <sup>b</sup>       | 5.000            | 14.000      | 0.041 | 0.530                     |
|          | 04           | Roy's Largest<br>Root | 1.129 | 3,161 <sup>b</sup>       | 5.000            | 14.000      | 0.041 | 0.530                     |
|          | Pre_Post *   | Pillai's Trace        | 0.325 | 1,348 <sup>b</sup>       | 5.000            | 14.000      | 0.301 | 0.325                     |
|          | Λ ~ ~        | Wilks'<br>Lambda      | 0.675 | 1,348 <sup>b</sup>       | 5.000            | 14.000      | 0.301 | 0.325                     |
| "6,      | <b>Y</b>     | Hotelling's<br>Trace  | 0.481 | 1,348 <sup>b</sup>       | 5.000            | 14.000      | 0.301 | 0.325                     |
| ANRI     |              | Roy's Largest<br>Root | 0.481 | 1,348 <sup>b</sup>       | 5.000            | 14.000      | 0.301 | 0.325                     |
|          | Pre Post *   | Pillai's Trace        | 0.643 | 5,041 <sup>b</sup>       | 5.000            | 14.000      | 0.008 | 0.643                     |
|          | Height       | Wilks'<br>Lambda      | 0.357 | 5,041 <sup>b</sup>       | 5.000            | 14.000      | 0.008 | 0.643                     |
|          |              | Hotelling's<br>Trace  | 1.800 | 5,041 <sup>b</sup>       | 5.000            | 14.000      | 0.008 | 0.643                     |
|          |              | Roy's Largest<br>Root | 1.800 | 5,041 <sup>b</sup>       | 5.000            | 14.000      | 0.008 | 0.643                     |
|          | Pre_Post *   | Pillai's Trace        | 0.177 | 0,601b                   | 5.000            | 14.000      | 0.700 | 0.177                     |
|          | Group        | Wilks'<br>Lambda      | 0.823 | 0,601 <sup>b</sup>       | 5.000            | 14.000      | 0.700 | 0.177                     |

| Hotelling's<br>Trace | 0.215 | 0,601 <sup>b</sup> | 5.000 | 14.000 | 0.700 | 0.177 |
|----------------------|-------|--------------------|-------|--------|-------|-------|
| Roy's Largest        | 0.215 | 0,601 <sup>b</sup> | 5.000 | 14.000 | 0.700 | 0.177 |

a. Design: Intercept + Age + Height + Group

Within Subjects Design: Pre\_Post

#### The univariate effect of time (Pre/Post) on the physical measures

The table below shows the main effects of the intervention over time (difference in Pre/Post scores) for each studied indicator, while controlling for Age and Height. The Pre/Post effect was significant only for RM, F(1, 22) = 14.986, p = .001,  $\eta_p^2 = .454$ . This indicates that the scores of RM are significantly different from Pre to Post times, while controlling for age and height. This effect, nevertheless, is significantly different depending on the height of the participant (p < .05). The 'Pre\_Post \* Group' line of the table indicates that there is no interaction effect between time and group for any measure. That is, the effect of the intervention (Pre/Post) is not significantly different between the groups (p > .05).

Tests of Within-Subjects Contrasts

| TOSIS OF WILITITI OU                 | Djeets eei | กานงเง |                               |    |                |        |       |                        |
|--------------------------------------|------------|--------|-------------------------------|----|----------------|--------|-------|------------------------|
| Source                               |            | R      | Type III<br>Sum of<br>Squares | df | Mean<br>Square | F      | Sig.  | Partial Eta<br>Squared |
| Pre_Post                             | BW         | Linear | 0.909                         | 1  | 0.909          | 0.396  | 0.537 | 0.022                  |
|                                      | BF         | Linear | 0.006                         | 1  | 0.006          | 0.002  | 0.963 | 0.000                  |
|                                      | SKMM       | Linear | 0.312                         | 1  | 0.312          | 0.594  | 0.451 | 0.032                  |
| ———————————————————————————————————— | RM         | Linear | 196.293                       | 1  | 196.293        | 14.986 | 0.001 | 0.454                  |
|                                      | FTS        | Linear | 4.131                         | 1  | 4.131          | 1.464  | 0.242 | 0.075                  |
| Pre_Post * Age                       | BW         | Linear | 0.648                         | 1  | 0.648          | 0.282  | 0.602 | 0.015                  |
|                                      | BF         | Linear | 0.491                         | 1  | 0.491          | 0.200  | 0.660 | 0.011                  |
|                                      | SKMM       | Linear | 1.548                         | 1  | 1.548          | 2.948  | 0.103 | 0.141                  |
|                                      | RM         | Linear | 3.086                         | 1  | 3.086          | 0.236  | 0.633 | 0.013                  |
|                                      | FTS        | Linear | 10.043                        | 1  | 10.043         | 3.559  | 0.075 | 0.165                  |
| Pre_Post *                           | BW         | Linear | 0.280                         | 1  | 0.280          | 0.122  | 0.731 | 0.007                  |
| Height                               | BF         | Linear | 0.076                         | 1  | 0.076          | 0.031  | 0.862 | 0.002                  |
|                                      | SKMM       | Linear | 0.022                         | 1  | 0.022          | 0.041  | 0.842 | 0.002                  |
|                                      | RM         | Linear | 267.888                       | 1  | 267.888        | 20.452 | 0.000 | 0.532                  |
|                                      | FTS        | Linear | 0.068                         | 1  | 0.068          | 0.024  | 0.878 | 0.001                  |
| Pre_Post *                           | BW         | Linear | 1.986                         | 1  | 1.986          | 0.864  | 0.365 | 0.046                  |
| Group                                | BF         | Linear | 1.602                         | 1  | 1.602          | 0.654  | 0.429 | 0.035                  |
|                                      | SKMM       | Linear | 0.003                         | 1  | 0.003          | 0.005  | 0.942 | 0.000                  |
|                                      | RM         | Linear | 19.822                        | 1  | 19.822         | 1.513  | 0.234 | 0.078                  |
|                                      | FTS        | Linear | 0.220                         | 1  | 0.220          | 0.078  | 0.783 | 0.004                  |
| Error (Pre_Post)                     | BW         | Linear | 41.384                        | 18 | 2.299          |        |       |                        |
|                                      |            |        |                               |    |                |        |       |                        |

b. Exact statistic

| BF   | Linear | 44.086  | 18 | 2.449  |  |  |
|------|--------|---------|----|--------|--|--|
| SKMM | Linear | 9.450   | 18 | 0.525  |  |  |
| RM   | Linear | 235.775 | 18 | 13.099 |  |  |
| FTS  | Linear | 50.793  | 18 | 2.822  |  |  |

## The univariate effect of groups

The table below shows that there are no significant main effects of belonging to a specific group on any of the measures (p > .05). Height is a significant covariate in for SKMM and RM (p < .01), which means that height significantly influences the scores of SKMM and RM.

Tests of Between-Subjects Effects

|           | on Gabjeete Ene |                            |    |                |        |       | - · · ·                   |
|-----------|-----------------|----------------------------|----|----------------|--------|-------|---------------------------|
| Source    |                 | Type III Sum of<br>Squares | df | Mean<br>Square | F      | Sig.  | Partial<br>Eta<br>Squared |
| Intercept | BW              | 860.324                    | 1  | 860.324        | 3.972  | 0.062 | 0.181                     |
| •         | BF              | 172.260                    | 1  | 172.260        | 1.597  | 0.223 | 0.081                     |
|           | SKMM            | 342.581                    | 1  | 342.581        | 17.169 | 0.001 | 0.488                     |
|           | RM              | 3861.150                   | 1  | 3861.150       | 12.989 | 0.002 | 0.419                     |
|           | FTS             | 28.482                     | 1  | 28.482         | 1.873  | 0.188 | 0.094                     |
| Age       | BW              | 157.500                    | 1  | 157.500        | 0.727  | 0.405 | 0.039                     |
| J         | BF              | 1.743                      | 1  | 1.743          | 0.016  | 0.900 | 0.001                     |
|           | SKMM            | 44.003                     | 1  | 44.003         | 2.205  | 0.155 | 0.109                     |
|           | RM              | 1028.443                   | 1  | 1028.443       | 3.460  | 0.079 | 0.161                     |
|           | FTS             | 0.089                      | 1  | 0.089          | 0.006  | 0.940 | 0.000                     |
| Height    | BW              | 1087.742                   | 1  | 1087.742       | 5.022  | 0.038 | 0.218                     |
| •         | BF              | 130.314                    | 1  | 130.314        | 1.208  | 0.286 | 0.063                     |
|           | SKMM            | 391.578                    | 1  | 391.578        | 19.625 | 0.000 | 0.522                     |
|           | RM              | 2804.768                   | 1  | 2804.768       | 9.435  | 0.007 | 0.344                     |
|           | FTS             | 6.941                      | 1  | 6.941          | 0.456  | 0.508 | 0.025                     |
| Group     | BW              | 0.973                      | 1  | 0.973          | 0.004  | 0.947 | 0.000                     |
|           | BF              | 51.325                     | 1  | 51.325         | 0.476  | 0.499 | 0.026                     |
|           | SKMM            | 10.363                     | 1  | 10.363         | 0.519  | 0.480 | 0.028                     |
|           | RM              | 0.044                      | 1  | 0.044          | 0.000  | 0.990 | 0.000                     |
|           | FTS             | 6.785                      | 1  | 6.785          | 0.446  | 0.513 | 0.024                     |
| Error     | BW              | 3899.021                   | 18 | 216.612        |        |       |                           |
| M.        | BF              | 1942.078                   | 18 | 107.893        |        |       |                           |
|           | SKMM            | 359.159                    | 18 | 19.953         |        |       |                           |
| <b>7</b>  | RM              | 5350.707                   | 18 | 297.261        |        |       |                           |
|           | FTS             | 273.773                    | 18 | 15.210         |        |       |                           |

In order to better visualize where the differences are present in terms of the RM scores and different heights, the following graph was plot. The variable 'Height' was categorizes into tho with less than 171cm and those with more than 171cm. The graph shows that the pre/post difference in the scores of "1RM" is substantially higher for those taller than 171cm. While the first group increases the mean score from 51.4 to 58, the taller group increases the scores from 62.5 to 77.3.



#### Summary of the tests of hypotheses

The table below summarizes the results of the study hypotheses.

| Hypothesis                                                                           | Result   |
|--------------------------------------------------------------------------------------|----------|
| H1: There is a significant difference in BW measurements from pre to post periods.   | Rejected |
| H2: There is a significant difference in BF measurements from pre to post periods.   | Rejected |
| H3: There is a significant difference in SKMM measurements from pre to post periods. | Rejected |

| H4: There is a significant difference in 1RM measurements from pre to post periods.                                | Confirmed |
|--------------------------------------------------------------------------------------------------------------------|-----------|
| H5: There is a significant difference in FTS measurements from pre to post periods.                                | Rejected  |
| H6: There is a significant difference in BW measurements between groups 1 and 2.                                   | Rejected  |
| H7: There is a significant difference in BF measurements between groups 1 and 2.                                   | Rejected  |
| H8: There is a significant difference in SKMM measurements between groups 1 and 2.                                 | Rejected  |
| H9: There is a significant difference in 1RM measurements between groups 1 and 2.                                  | Rejected  |
| H10: There is a significant difference in FTS measurements between groups 1 and 2.                                 | Rejected  |
| H11: The difference between pre and post scores of 1RM is significantly different between different height groups. | Confirmed |

## **BMI** as control variable

This section displays the same analyses conducted before, but this time controlling for BMI instead of Age and Height.

Levene's Test of Equality of Error Variances<sup>a</sup>

|           | Q.E   | df1 | df2 | Sig.  |
|-----------|-------|-----|-----|-------|
| Pre.BW    | 0.004 | 1   | 20  | 0.951 |
| Post.BW   | 0.216 | 1   | 20  | 0.647 |
| Pre.BF    | 0.772 | 1   | 20  | 0.390 |
| Post.BF   | 0.155 | 1   | 20  | 0.698 |
| Pre.SKMM  | 0.075 | 1   | 20  | 0.787 |
| Post.SKMM | 1.237 | 1   | 20  | 0.279 |
| Pre.1RM   | 0.062 | 1   | 20  | 0.807 |
| Post.1RM  | 0.804 | 1   | 20  | 0.380 |
| Pre.FTS   | 0.966 | 1   | 20  | 0.337 |
| Post.FTS  | 0.385 | 1   | 20  | 0.542 |

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept + BMI + Group Within Subjects Design: Pre\_Post

## The multivariate effect of Group, Pre/Post, Age and Height

Multivariate Tests<sup>a</sup>

| Effect          |            |                       | Value | F                   | Hypothesis<br>df | Error<br>df | Sig.  | Partial<br>Eta<br>Squared |
|-----------------|------------|-----------------------|-------|---------------------|------------------|-------------|-------|---------------------------|
| Between         | Intercept  | Pillai's Trace        | 0.827 | 14,299 <sup>b</sup> | 5.000            | 15.000      | 0.000 | 0.827                     |
| Subjects        |            | Wilks'<br>Lambda      | 0.173 | 14,299 <sup>b</sup> | 5.000            | 15.000      | 0.000 | 0.827                     |
|                 |            | Hotelling's<br>Trace  | 4.766 | 14,299 <sup>b</sup> | 5.000            | 15.000      | 0.000 | 0.827                     |
|                 |            | Roy's Largest<br>Root | 4.766 | 14,299 <sup>b</sup> | 5.000            | 15.000      | /     | 0.827                     |
|                 | BMI        | Pillai's Trace        | 0.842 | 15,961 <sup>b</sup> | 5.000            | 15.000      | 0.000 | 0.842                     |
|                 |            | Wilks'<br>Lambda      | 0.158 | 15,961 <sup>b</sup> | 5.000            | 15.000      | 0.000 | 0.842                     |
|                 |            | Hotelling's<br>Trace  | 5.320 | 15,961 <sup>b</sup> | 5.000            | 15.000      | 0.000 | 0.842                     |
|                 |            | Roy's Largest<br>Root | 5.320 | 15,961 <sup>b</sup> | 5.000            | 15.000      | 0.000 | 0.842                     |
|                 | Group      | Pillai's Trace        | 0.362 | 1,700b              | 5.000            | 15.000      | 0.195 | 0.362                     |
|                 |            | Wilks'<br>Lambda      | 0.638 | 1,700 <sup>b</sup>  | 5.000            | 15.000      | 0.195 | 0.362                     |
|                 |            | Hotelling's<br>Trace  | 0.567 | 1,700 <sup>b</sup>  | 5.000            | 15.000      | 0.195 | 0.362                     |
|                 |            | Roy's Largest<br>Root | 0.567 | 1,700 <sup>b</sup>  | 5.000            | 15.000      | 0.195 | 0.362                     |
| Within Subjects | Pre_Post   | Pillai's Trace        | 0.105 | 0,352b              | 5.000            | 15.000      | 0.873 | 0.105                     |
|                 |            | Wilks'<br>Lambda      | 0.895 | 0,352 <sup>b</sup>  | 5.000            | 15.000      | 0.873 | 0.105                     |
|                 |            | Hotelling's<br>Trace  | 0.117 | 0,352 <sup>b</sup>  | 5.000            | 15.000      | 0.873 | 0.105                     |
|                 |            | Roy's Largest<br>Root | 0.117 | 0,352 <sup>b</sup>  | 5.000            | 15.000      | 0.873 | 0.105                     |
|                 | Pre_Post * | Pillai's Trace        | 0.167 | 0,599 <sup>b</sup>  | 5.000            | 15.000      | 0.701 | 0.167                     |
|                 | BMI        | Wilks'<br>Lambda      | 0.833 | 0,599 <sup>b</sup>  | 5.000            | 15.000      | 0.701 | 0.167                     |
|                 | 4,         | Hotelling's<br>Trace  | 0.200 | 0,599 <sup>b</sup>  | 5.000            | 15.000      | 0.701 | 0.167                     |
|                 |            | Roy's Largest<br>Root | 0.200 | 0,599 <sup>b</sup>  | 5.000            | 15.000      | 0.701 | 0.167                     |
|                 | Pre_Post * | Pillai's Trace        | 0.113 | 0,382b              | 5.000            | 15.000      | 0.854 | 0.113                     |
|                 | Group      | Wilks'<br>Lambda      | 0.887 | 0,382 <sup>b</sup>  | 5.000            | 15.000      | 0.854 | 0.113                     |
| <b>D</b> ,      |            | Hotelling's<br>Trace  | 0.127 | 0,382b              | 5.000            | 15.000      | 0.854 | 0.113                     |
|                 |            | Roy's Largest<br>Root | 0.127 | 0,382b              | 5.000            | 15.000      | 0.854 | 0.113                     |

Root
a. Design: Intercept + BMI + Group
Within Subjects Design: Pre\_Post
b. Exact statistic

#### The univariate effect of time (Pre/Post) on the physical measures

The table below shows the main effects of the intervention over time (difference in Pre/Post scores) for each studied indicator, while controlling for Age and Height. The Pre/Post effect was significant only for RM, F(1, 22) = 14.986, p = .001,  $\eta_p{}^2 = .454$ . This indicates that the scores of RM are significantly different from Pre to Post times, while controlling for age and height. This effect, nevertheless, is significantly different depending on the height of the participant (p < .05). The 'Pre\_Post \* Group' line of the table indicates that there is no interaction effect between time and group for any measure. That is, the effect of the intervention (Pre/Post) is not significantly different between the groups (p > .05).

Tests of Within-Subjects Contrasts

| lests of Within-St | ibjects Co | ontrasts |                    |    |        |       |       |             |
|--------------------|------------|----------|--------------------|----|--------|-------|-------|-------------|
|                    |            |          | Type III Sum of df |    | Mean   | F     | Sig.  | Partial Eta |
| Source             |            |          | Squares            |    | Square |       | Oig.  | Squared     |
| Pre_Post           | BW         | Linear   | 0.179              | 1  | 0.179  | 0.080 | 0.780 | 0.004       |
|                    | BF         | Linear   | 2.200              | 1  | 2.200  | 1.048 | 0.319 | 0.052       |
|                    | SKMM       | Linear   | 0.072              | 1  | 0.072  | 0.133 | 0.720 | 0.007       |
|                    | RM         | Linear   | 32.405             | 1  | 32.405 | 1.200 | 0.287 | 0.059       |
|                    | FTS        | Linear   | 0.384              | 1  | 0.384  | 0.122 | 0.731 | 0.006       |
| Pre_Post * BMI     | BW         | Linear   | 0.004              | 1  | 0.004  | 0.002 | 0.969 | 0.000       |
|                    | BF         | Linear   | 4.708              | 1  | 4.708  | 2.243 | 0.151 | 0.106       |
|                    | SKMM       | Linear   | 0.728              | 1  | 0.728  | 1.341 | 0.261 | 0.066       |
|                    | RM         | Linear   | 0.019              | 1  | 0.019  | 0.001 | 0.979 | 0.000       |
|                    | FTS        | Linear   | 1.473              | 1  | 1.473  | 0.468 | 0.502 | 0.024       |
| Pre_Post *         | BW         | Linear   | 2.488              | 1  | 2.488  | 1.108 | 0.306 | 0.055       |
| Group              | BF         | Linear   | 2.747              | 1  | 2.747  | 1.309 | 0.267 | 0.064       |
| /,                 | SKMM       | Linear   | 0.046              | 1  | 0.046  | 0.084 | 0.775 | 0.004       |
|                    | RM         | Linear   | 0.581              | 1  | 0.581  | 0.022 | 0.885 | 0.001       |
|                    | FTS        | Linear   | 0.681              | 1  | 0.681  | 0.216 | 0.647 | 0.011       |
| Error(Pre_Post)    | BW         | Linear   | 42.658             | 19 | 2.245  |       |       |             |
|                    | BF         | Linear   | 39.874             | 19 | 2.099  |       |       |             |
|                    | SKMM       | Linear   | 10.318             | 19 | 0.543  |       |       |             |
|                    | RM         | Linear   | 513.049            | 19 | 27.003 |       |       |             |
| <u> </u>           | FTS        | Linear   | 59.821             | 19 | 3.148  |       |       |             |

#### The univariate effect of groups

The table below shows that there are no significant main effects of belonging to a specific group on any of the measures (p > .05). Height is a significant covariate in for SKMM and RM (p < .01), which means that height significantly influences the scores of SKMM and RM.

Tests of Between-Subjects Effects

| Tests of between-subjects Effects |                                                                         |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|-----------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                   | Type III Sum of                                                         | df                                                                                                                                                                                                                                                | Mean<br>Square                                                                                                                                                                                                                                                                                                 | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Partial Eta<br>Squared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| D\//                              |                                                                         | 1                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                | 0.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                   |                                                                         | 1                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                | A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                   |                                                                         | 1                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                   |                                                                         | 1                                                                                                                                                                                                                                                 | 210.505                                                                                                                                                                                                                                                                                                        | 7.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| RM                                | 1743.161                                                                | 1                                                                                                                                                                                                                                                 | 1743.161                                                                                                                                                                                                                                                                                                       | 3.297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| FTS                               | 275.598                                                                 | 1                                                                                                                                                                                                                                                 | 275.598                                                                                                                                                                                                                                                                                                        | 18.579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| BW                                | 4150.165                                                                | 1                                                                                                                                                                                                                                                 | 4150.165                                                                                                                                                                                                                                                                                                       | 57.791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| BF                                | 796.007                                                                 | 1                                                                                                                                                                                                                                                 | 796.007                                                                                                                                                                                                                                                                                                        | 11.811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| SKMM                              | 344.504                                                                 | 1                                                                                                                                                                                                                                                 | 344.504                                                                                                                                                                                                                                                                                                        | 11.457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| RM                                | 543.987                                                                 | 1                                                                                                                                                                                                                                                 | 543.987                                                                                                                                                                                                                                                                                                        | 1.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| FTS                               | 0.089                                                                   | 1                                                                                                                                                                                                                                                 | 0.089                                                                                                                                                                                                                                                                                                          | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| BW                                | 399.044                                                                 | 1                                                                                                                                                                                                                                                 | 399.044                                                                                                                                                                                                                                                                                                        | 5.557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| BF                                | 156.388                                                                 | 1                                                                                                                                                                                                                                                 | 156.388                                                                                                                                                                                                                                                                                                        | 2.320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| SKMM                              | 15.647                                                                  | 1                                                                                                                                                                                                                                                 | 15.647                                                                                                                                                                                                                                                                                                         | 0.520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| RM                                | 62.319                                                                  | 1                                                                                                                                                                                                                                                 | 62.319                                                                                                                                                                                                                                                                                                         | 0.118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| FTS                               | 5.462                                                                   | 1                                                                                                                                                                                                                                                 | 5.462                                                                                                                                                                                                                                                                                                          | 0.368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| BW                                | 1364.461                                                                | 19                                                                                                                                                                                                                                                | 71.814                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| BF                                | 1280.546                                                                | 19                                                                                                                                                                                                                                                | 67.397                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| SKMM                              | 571.339                                                                 | 19                                                                                                                                                                                                                                                | 30.070                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| RM                                | 10045.217                                                               | 19                                                                                                                                                                                                                                                | 528.696                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| FTS                               | 281.835                                                                 | 19                                                                                                                                                                                                                                                | 14.833                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                                   | BW BF SKMM RM FTS | Type III Sum of Squares BW 52.872 BF 87.569 SKMM 210.505 RM 1743.161 FTS 275.598 BW 4150.165 BF 796.007 SKMM 344.504 RM 543.987 FTS 0.089 BW 399.044 BF 156.388 SKMM 15.647 RM 62.319 FTS 5.462 BW 1364.461 BF 1280.546 SKMM 571.339 RM 10045.217 | Type III Sum of Squares  BW 52.872 1  BF 87.569 1  SKMM 210.505 1  RM 1743.161 1  FTS 275.598 1  BW 4150.165 1  BF 796.007 1  SKMM 344.504 1  RM 543.987 1  FTS 0.089 1  BW 399.044 1  BF 156.388 1  SKMM 15.647 1  RM 62.319 1  FTS 5.462 1  BW 1364.461 19  BF 1280.546 19  SKMM 571.339 19  RM 10045.217 19 | Type III Sum of Squares         df         Mean Square           BW         52.872         1         52.872           BF         87.569         1         87.569           SKMM         210.505         1         210.505           RM         1743.161         1         1743.161           FTS         275.598         1         275.598           BW         4150.165         1         4150.165           BF         796.007         1         796.007           SKMM         344.504         1         344.504           RM         543.987         1         543.987           FTS         0.089         1         0.089           BW         399.044         1         399.044           BF         156.388         1         156.388           SKMM         15.647         1         15.647           RM         62.319         1         62.319           FTS         5.462         1         5.462           BW         1364.461         19         71.814           BF         1280.546         19         67.397           SKMM         571.339         19         30.070 | Type III Sum of Squares         df         Mean Square         F           BW         52.872         1         52.872         0.736           BF         87.569         1         87.569         1.299           SKMM         210.505         1         210.505         7,000           RM         1743.161         1         1743.161         3.297           FTS         275.598         1         275.598         18.579           BW         4150.165         1         4150.165         57.791           BF         796.007         1         796.007         11.811           SKMM         344.504         1         344.504         11.457           RM         543.987         1         543.987         1.029           FTS         0.089         1         0.089         0.006           BW         399.044         1         399.044         5.557           BF         156.388         1         156.388         2.320           SKMM         15.647         1         15.647         0.520           RM         62.319         1         62.319         0.118           FTS         5.462         1 | Type III Sum of Squares         of Square         Mean Square         F         Sig.           BW         52.872         1         52.872         0.736         0.402           BF         87.569         1         87.569         1.299         0.269           SKMM         210.505         1         210.505         7.000         0.016           RM         1743.161         1         1743.161         3.297         0.085           FTS         275.598         1         275.598         18.579         0.000           BW         4150.165         1         4150.165         57.791         0.000           BF         796.007         1         796.007         11.811         0.003           SKMM         344.504         1         344.504         11.457         0.003           RM         543.987         1         543.987         1.029         0.323           FTS         0.089         1         0.089         0.006         0.939           BW         399.044         1         399.044         5.557         0.029           BF         156.388         1         15.647         0.520         0.479           RM |  |  |

In order to better visualize where the differences are present in terms of the RM scores and different heights, the following graph was plot. The variable 'Height' was categorizes into tho with less than 171cm and those with more than 171cm. The graph shows that the pre/post difference in the scores of "1RM" is substantially higher for those taller than 171cm. While the first group increases the mean score from 51.4 to 58, the taller group increases the scores from 62.5 to 77.3.

#### References

Cohen, J., 1988. Statistical power analysis for the behavioral sciences, 2nd ed. Erlbaum,

Hillsdale, NJ.

and.

and. Levene, H., 1961. Robust tests for equality of variances. Contrib. to Probab. Stat. Essays Honor Harold Hotell. 279-292.