Detección de Conductores con Alta Probabilidad de Retirarse

Defensa de prueba técnica Autora: M. en C. Gabriela Durán Meza

Índice

- OBJETIVOS Y REQUERIMIENTOS DEL PROYECTO
- GENERACIÓN DE DATOS SINTÉTICOS
- ANÁLISIS EXPLORATORIO DE DATOS (EDA)
- MODELO DE CHURN DE CONDUCTORES
- RESULTADOS Y EVALUACIÓN DEL MODELO
- CONSIDERACIONES Y LIMITACIONES
- CONCLUSIONES Y SIGUIENTES PASOS

TRAXIÓN Objetivos y Requerimientos del Proyecto

Objetivo general: **Identificar conductores en riesgo de abandono** mediante un modelo predictivo basado en datos sintéticos.

- Objetivos:
 - Emular datos reales de quejas de conductores
 - Realizar análisis exploratorio y modelado predictivo
 - Documentar el proceso completo en notebooks ejecutables
- Requerimientos:
 - Generar base de datos sintética (.csv, mínimo 3000 registros)
 - Desarrollar notebooks para: generación de datos, EDA y modelado

Generación de Datos Sintéticos

- Diseñando variables que generan **patrones realistas del sector**, lo que refuerza la credibilidad y utilidad del dataset sintético para simular un entorno laboral verosímil.
- Estableciendo la correlación lógica entre variables (por ejemplo, la relación entre edad y años de experiencia).
- Generando de textos mediante **GenAI**, implementando **langchain** y el modelo de **GPT-40** para obtener la columna 'message'.
- Implementando **Feature Engineering** para obtener nuevas variables (e.g. derivando "vears experience" en función de la edad).

	Par	ıdas	&Nun	пру			GenAl	Feature engineering	
driver_id	tag	age	salary	education		high_ prob_ leave	message	salario_por	zona_alta_y_ sueldo_bajo
3571958	3 operaciones	48	7390) primaria	baja	0	Hola, me gustaría que revisaran mi salario, ya que con 10 años de experiencia y el costo de vida actual, 7390 pesos al mes no es suficiente.	449.326288	0
3880410	recursos humanos	30	5444	secundaria	alta	0	Con un salario de 5444 pesos y viajes de casi 3 horas para solo 6.6 km, es frustrante que no se valore más nuestro tiempo y esfuerzo.	826.633723	0

Análisis Exploratorio de Datos (EDA)

Principales Factores que Aumentan el Riesgo de Renuncia

- Salario Insuficiente
 - Conductores con menor salario presentan una mayor propensión a renunciar.
- Zonas de Alto Riesgo
 Mayor probabilidad de churn en zonas clasificadas como "altas" por inseguridad
 o complejidad.
- Salario
 Vs
 Duración
 Lla ratio bajo de page respecte al tiempo/distancia de cada vigio está
 - Un ratio bajo de pago respecto al tiempo/distancia de cada viaje está asociado a una intención de renuncia más elevada.
 - Combinación de Zona Alta y Sueldo Bajo Este factor conjunto intensifica el riesgo de renuncia.

Modelo de Churn de Conductores

Alto desempeño en escenarios con datos heterogéneos y puede manejar mejor el desbalanceo.

Resistente a datos heterogéneos (numéricos, categóricos o textos codificados).

Modelos evaluados:

Random Forest vs. Gradient Boosting

Metodología utilizada:

- GridSearchCV para optimización de hiperparámetros
 - Validación cruzada para robustecer la evaluación

Métricas evaluadas:

- Precisión, recall, F1-score y matriz de confusión

Resultados y evaluación del modelo

Gradient Boosting fue seleccionado por su desempeño global superior.

- Reporte de Clasificación :
- **Precisión general del 96.6**%, con excelente capacidad para distinguir entre conductores que se quedarán y quienes podrían abandonar la empresa.
- Recall de 83.3% para clase de fuga (1): el modelo identifica correctamente a 8 de cada 10 conductores en riesgo de irse.
- Observaciones:
- El recall perfecto en la clase mayoritaria es consecuencia del desbalanceo.
- Se identifican oportunidades para aplicar técnicas de balanceo (e.g., sobremuestreo, submuestreo, ajuste de pesos).

	precision	recall	f1-score	support
0	0.964567	0.995935	0.98	492
1	0.978261	0.833333	0.9	108
accuracy	0.966667	0.966667	0.966667	0.966667
macro avg	0.971414	0.914634	0.94	600
weighted avg	0.967032	0.966667	0.9656	600

Resultados y evaluación del modelo

Insights del Modelo de Churn de Conductores

- Zonas de riesgo con bajo salario:
 Condiciones exigentes con poca compensación económica impulsan el abandono.
- Conductores con alta experiencia: A mayor antigüedad, mayor riesgo de churn.
- Sueldo insuficiente: Los bajos salarios siguen siendo un factor clave.
- Mensajes que indican frustración: renunciar, seguir, esfuerzo reflejan desgaste emocional y percepción de injusticia.

Q

Recomendaciones

- o Ajustar salarios en zonas complicadas.
- Retener talento con experiencia.
- Usar el contenido de mensajes como sistema de alerta temprana.

Consideraciones y limitaciones

- Aspectos Técnicos:
 - La implementación off-line del modelo de lenguaje que genera el texto realista basado en los datos sintéticos, no fue posible por cuestiones de incompatibilidad de versiones del ambiente local.
 - El desbalanceo es un área de mejora. Es necesario aplicar posibles técnicas (como sobremuestreo, submuestreo o ajuste de pesos de clases) para mejorar la detección de la clase minoritaria.
- Propuestas de Mejora

Un ajuste en el modelo de lenguaje puede generar clases más balanceadas.

- Definir la variable objetivo con base en datos históricos, usando datos reales.
- El sistema puede funcionar como un "early warning system", donde la combinación de mensajes recientes con otros factores (bajo ingreso, alta experiencia, muchas quejas) activa alertas para el área de RH u operaciones.

Conclusiones y próximos pasos

1. Valor del Mensaje en Lenguaje Natural

- El análisis de sentimiento y la extracción de palabras clave refuerzan las predicciones del modelo al detectar emociones como frustración, desmotivación o resignación.
- La solución propuesta, pese a estar basada en datos sintéticos, está estructurada para escalar fácilmente a datos reales una vez se integren, por la coherencia lógica y relacional entre variables.

2. Importancia del Feature Engineering

- Las variables derivadas como **years_experience** o **income_per_km** resultaron ser más predictivas que las variables base.
- Estas variables capturan relaciones no lineales clave, como la combinación de esfuerzo y recompensa, y mejoran la interpretabilidad del modelo.

3. Insights Geográficos

 Zonas geográficas específicas muestran patrones sistemáticos de insatisfacción, lo que sugiere que podría aplicarse una estrategia focalizada de intervención (e.g., incentivos regionales o mejoras logísticas).