Aspect-Based Sentiment Analysis Bhubaneswar Hospitals

TABLE OF CONTENTS

- O1 Problem Specification
- **04** Proposed Solution

02 Introduction

05 Block Diagram

O3 Literature Survey

06 Results & Discussion

07 References

Problem Specification

- Develop an aspect-based sentiment analysis model to analyze hospital reviews.
- Scrape reviews from Google Maps and other free sources.
- Focus on individual aspects like service, food, staff, facilities, and hygiene.
- Identify relevant aspects in hospital reviews.
- Determine sentiment polarity for each aspect.
- Aggregate multi-dimensional sentiment information.
- Generate an overall sentiment score for the hospital.
- Compare the sentiment score with the hospital's existing rating for cross-validation.

- Patient feedback from online reviews is essential for improving healthcare service quality.
- Star ratings on platforms like Google Maps lack detailed insights into specific aspects of hospital experiences.
- Aspect-Based Sentiment Analysis (ABSA) extracts fine-grained opinions on dimensions like care, staff, and hygiene.
- The project involves scraping hospital reviews, identifying key aspects, and analyzing sentiment using RoBERTa.

Table 1:Literature Study

YE	EAR	AUTHOR	TITLE	METHOD	ADVANTAGES	DISADAVNTAGES
20	24	JUNJIE CHEN , HAO FAN, AND WENCONG WANG	Syntactic and Semantic Aware Graph Convolutional Network for Aspect-Based Sentiment Analysis	Graph Construction with SS- GCN model	Incorporation of both syntactic and semantic information Automatic learning of weights Insight into sentiment polarity	Complexity Dependency on available data Generalization
20	23	HUA ZHAO , MANYU YANG , XUEYANG BAI , AND HAN LIU	A Survey on Multimodal Aspect-Based Sentiment Analysis	A multimodal aspect-based sentimental analysis	Comprehensive overview Analysis of existing methods Evaluation of research results	Limitations in literature survey Lack of detailed future research trends Scope for expansion
20	23	SIGEON YANG 1,QINGLONG LI 1,HAEBIN LIM 1,ANDJAEKYEONG KIM	An Attentive Aspect-Based Recommendation Model With Deep Neural Network	Attentive Aspect-Based Recommendation model with a Deep Neural Network (AARN).	Incorporation of BERT-based ABSA with Attention Mechanism Significant Performance Improvement Richer Insights and Granular Recommendations	Limited Information Consideration Limited Dataset Domain Simplistic Neural Network Architecture
20	24	HUA ZHAO,MANYU YANG,XUEYANG BAI,HAN LIU	A Survey on Multimodal Aspect-Based Sentiment Analysis	Attention Mechanism-Based Model with Graph Convolutional Network-Based Models	Comprehensive SurveyEmerging TrendsMultimodal Insights	 Limited Focus on Practical Applications Dataset and Evaluation Diversity Narrow Scope of Modalities

- Data Collection and Preprocessing: Scrape hospital reviews from Google Maps,
 clean the data, and define relevant aspects like service, food, and hygiene.
- Aspect Identification: Define aspect categories and extract aspect-related phrases using rule-based or NLP methods.
- RoBERTa Sentiment Analysis: Use the pre-trained RoBERTa model to determine sentiment polarity for each aspect, fine-tuning it for hospital reviews.
- Score Aggregation: Combine aspect-level sentiments into an overall score, with weighting based on aspect importance and frequency.
- Validation: Compare the sentiment scores with existing hospital ratings to evaluate model accuracy and identify improvement areas.
- LSTM Integration: Implement LSTM models to enhance sentiment classification by capturing temporal dependencies.

05 Block Diagram

Figure 1:Block Diagram

Table 2:Result

Title	Hospital Rating	Review Stars	Aspect Scores
Vivekanand Hospital Bhubaneswar	4.6	5	{'service': 0.12956, 'cleanliness': 0.19434, 'food': 0.06478, 'facilities': 0.12956, 'staff': 0.12956}
Health Village Hospital	4.6	3	{'service': -0.19454000000000002, 'cleanliness': - 0.29181, 'food': -0.0972700000000001, 'facilities': - 0.1945400000000002, 'staff': - 0.19454000000000002}
Manipal Hospitals, Bhubaneswar	4.6	1	{'service': -0.1756, 'cleanliness': - 0.26339999999999997, 'food': -0.0878, 'facilities': - 0.1756, 'staff': -0.1756}
Sunshine Hospital	4.6	5	{'service': 0.19424, 'cleanliness': 0.29135999999999995, 'food': 0.09712, 'facilities': 0.19424}

Sentiment Classification Accuracy for Each Aspect:

- Measures the model's ability to correctly classify sentiment (positive, negative, neutral) for each aspect.
- Metrics: Accuracy, precision, recall, and F1-score will be used for evaluation.
- Importance: Ensures accurate sentiment analysis for specific hospital features.

Correlation Between Generated Overall Sentiment Scores and Existing Hospital Ratings:

- Evaluates the relationship between ABSA sentiment scores and existing star ratings.
- Metrics: Pearson or Spearman correlation coefficients will be used to measure association.
- Importance: Validates the reliability and alignment of the ABSA model with current rating systems.

Qualitative Analysis of Aspect-Level Insights:

- Involves manual review of how well the model identifies aspects and classifies nuanced sentiments.
- Importance: Provides in-depth insights into the model's performance on real-world data and highlights areas for improvement.

- [1] S. Yang, Q. Li, H. Lim, and J. Kim, "An attentive aspect-based recommendation model with deep neural network," IEEE Access, vol. 12, pp. 5781–5791, 2024.
- [2] K. Jahanbin and M. A. Z. Chahooki, "Aspect-based sentiment analysis of twitter influencers to predict the trend of cryptocurrencies based on hybrid deep transfer learning models," IEEE Access, vol. 11, pp. 121656–121670, 2023.
- [3] Y. Yu, D.-T. Dinh, B.-H. Nguyen, F. Yu, and V.-N. Huynh, "Mining insights from esports game reviews with an aspect-based sentiment analysis framework," IEEE Access, vol. 11, pp. 61161–61172, 2023.
- [4] J. Chen, H. Fan, and W. Wang, "Syntactic and semantic aware graph convolutional network for aspect-based sentiment analysis," IEEE Access, vol. 12, pp. 22500–22509, 2024.
- [5] Jahanbin, K., & Chahooki, M. A. Z. (2023). Aspect-Based Sentiment Analysis of Twitter Influencers to Predict the Trend of Cryptocurrencies Based on Hybrid Deep Transfer Learning Models. IEEE Access, 11, 121656-121670.