

will)

Endoscopic Artifact Inpainting for Improved Endoscopic Image Segmentation

Zhangyuan Yu', Chenlin Du', Hangyui Liang, Xinqi Zheng, Zeyao Ma, Mingjun Wu, Mingwu Ao, and Qicheng Laol Contact reven-july@bupt.com.cn

Endoscopic imaging plays a crucial role in modern diagnostics and minimally invasive procedures. However, artifacts caused by specular and diffuse reflections 1 present significant challenges, particularly in tasks such as endoscopic image 1 segmentation. Existing methods tackling endoscopic artifacts typically address only one type of reflection, failing to fully account for the non-Lambertian reflectance of endoscopic fissue structures.

Therefore, inspired by the simplified Phong model for endoscopy, we propose a I novel artifact inpainting framework. Our work can be summarized as follows: 1 • Propose a two-stage artifact inpainting framework. The first stage suppresses

specular artifacts, while the second stage focuses on inpainting diffuse artifacts. Additionally, we introduce a weight map to control the handling of diffuse

 Conduct thorough experiments to compare with SOTA models. The proposed 1 framework can offer better artifact inpainting quality and robustly improve the 1 segmentation performance of endoscopic images.

 Conduct various ablation studies to evaluate the effectiveness of key components and hyperparameter settings in our proposed framework.

Specular

= Phong Reflection

Process Pipeline

Remove Inpainted Image Insspec Refined Image Iout

■ Visualization of Artifact Inpainting

■ Visualization of Endoscopic Image Segmentation

titative comparison for segmentation performance enhancement

Quantitative comparison for segmentation performance of Tooth Dataset							ataset
			Polyp Da	VC-ColonDB	ETIS mDice mIoU	Teeth(Point)	nDice mIoU
	1 W 1 S / S / S / S / S / S / S / S / S / S	mDice mIoU 93.2 88.8 93.0 88.4 93.6 89.4 93.6 88.5 94.1 89.2 89.0 89.0	92.0 87.0 7 91.4 86.2 7 92.5 87.4 8 92.1 87.0 7 92.7 87.6 7 91.3 86.0 7	77.4 69.0 9.0 69.7 0.9 73.0 9.4 70.2 9.6 70.0 6.2 69.0	79.3 71.3 73.6 65.2 78.2 70.9 77.7 68.6 79.5 71.4 69.2 62.4	73.5 62.1 75.7 65.6 65.1 52.9 95.8 92.5 91.4 85.6	84.1 74.0 80.6 70.0 84.6 74.9 85.1 75.4 86.3 77.3 77.9 66.8 86.8 78.0
	Ours						

95.0

B248 (Thu-PM)

- Adapting DL models to medi challenges: Architecture s

- Transfer learning from In but often ineffective due between natural and medica

- Neural Architecture Sea automated design but lacks for selecting effective weigh

A. Training Phase: Meta-Space Constructi

1. Create a model zoo with 720K r pairs efficiently using Supernetw 2. Encode models and datasets latent space 3. Refine the latent space with a c

Performance + Rank + FD

III. Experiments

 Protocol: Cross-validation strategy built using all datasets except the one