

Myga TreeMap分析

- 时间复杂度 (平均)
- □添加、删除、搜索: O(logn)
- ■特点
- □ Key 必须具备可比较性
- □元素的分布是有顺序的
- 在实际应用中,很多时候的需求
- □ Map 中存储的元素不需要讲究顺序
- Map 中的 Key 不需要具备可比较性
- 不考虑顺序、不考虑 Key 的可比较性,Map 有更好的实现方案,平均时间复杂度可以达到 O(1)
- □那就是采取哈希表来实现 Map

- 设计一个写字楼通讯录, 存放所有公司的通讯信息
- □座机号码作为 key (假设座机号码最长是 8 位) , 公司详情 (名称、地址等) 作为 value
- □添加、删除、搜索的时间复杂度要求是 O(1)

```
private Company[] companies = new Company[100000000];
public void add(int phone, Company company) {
    companies[phone] = company;
}
public void remove(int phone) {
    companies[phone] = null;
}
public Company get(int phone) {
    return companies[phone];
}
```

- 存在什么问题?
- □空间复杂度非常大
- □空间使用率极其低,非常浪费内存空间
- □其实数组 companies 就是一个哈希表,典型的【空间换时间】

索引	数据
0	
1	>
• • •	
40089008	小码哥
• • •	
68485438	大码哥
9999999	

小码哥教育 哈希表 (Hash Table)

- 哈希表也叫做散列表 (hash 有 "剁碎"的意思)
- 它是如何实现高效处理数据的?
- □ put("Jack", 666);
- □ put("Rose", 777);
- □ put("Kate", 888);
- ■添加、搜索、删除的流程都是类似的
- 1. 利用哈希函数生成 key 对应的 index【O(1)】
- 2. 根据 index 操作定位数组元素【O(1)】
- 哈希表是【空间换时间】的典型应用
- 哈希函数,也叫做散列函数
- ■哈希表内部的数组元素,很多地方也叫 Bucket (桶),整个数组叫 Buckets 或者 Bucket Array

M 小四司教育 TreeMap vs HashMap

- ■何时选择TreeMap?
- □元素具备可比较性且要求升序遍历 (按照元素从小到大)
- ■何时选择HashMap?
- □无序遍历