<u>Задача 202</u>

 $Paccмomрим молекулу SnF_4$

Краткие электронные формулы атомов:

Sn* [Kr
$$4d^{10}$$
] $5s^1 5p^3$
F [He] $2s^2 2p^5$

Механизм образования химических связей в молекуле SnF₄

Атом олова находится в состоянии sp^3 –гибридизации. Четыре sp^3 –гибридные орбитали атома олова перекрываются с четырьмя p-орбиталями 4 атомов фтора.

Геометрическая форма молекулы – правильный тетраэдр.

Векторная сумма диполей в молекуле равна нулю, дипольный момент молекулы равен нулю $(\mu_{\text{мол}}=0)$, молекула неполярна. Молекула имеет центр симметрии.

 $\mu_{\scriptscriptstyle{\mathrm{MOJ}}} = \Sigma \mu_{\scriptscriptstyle{\mathrm{CB}}} = 0 \implies$ молекула в целом **неполярная.**

Краткие электронные формулы атомов:

Xe* [Kr 4d¹⁰]
$$5s^2 5p^4 5d^2$$
 (B* = 4)
F [He] $2s^2 2p^5$ (B = 1)

Механизм образования связей в молекуле ХеГ₄:

Тип гибридизации атома ксенона: sp^3d^2 -гибридизация.

Четыре sp^3d^2 –гибридные орбитали атома ксенона перекрываются с четырьмя p-орбиталями 4 атомов фтора. На гибридизацию и геометрическую форму частицы оказывают влияние 2 неподеленные электронные пары. Геометрическая форма молекулы XeF_4 : плоский квадрат.

Векторная сумма диполей в молекуле равна нулю, дипольный момент молекулы равен нулю $(\mu_{\text{мол}}=0), \, \text{молекула неполярна}. \, \text{Молекула имеет центр симметрии}.$

 $\mu_{\text{мол}} = \Sigma \mu_{\text{св}} = 0 \implies$ молекула в целом неполярная