Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання РГР

з дисципліни: «Вакуумна та плазмова електроніка»

Виконавець:		
Студент 3-го курсу	(підпис)	Б.П. Фіцай
Перевірив:	(підпис)	О.М. Бевза

Завдання

- 1. Дивимось на графіки побудовані для п.3 лабораторної роботи.
 - 1.1 Визначити частоту червоної границі фотоефекту.
 - 1.2 Необхідно визначити напругу запирання для кожного елементу при інтенсивності 50 % та 100%. Пояснити, чому напруги запирання відрізняються при різній інтенсивності.
 - 1.3 Побудувати графіки залежностей напруги запирання від частоти (у вас вказані довжини хвиль, отже їх треба перерахувати в частоту) для випадку інтенсивності 50% та 100%. Для кожного матеріалу (у кожного свої три матеріала).
 - 1.4 Визначити з цих нових побудованих графіків роботу виходу в точці (будь-якій, назвіть її А) за вашим власним вибором, яка розташована десь посередині отриманого графіку. Для всіх трьох матеріалів. Для обох значень інтенсивності (50% та 100%). Порівняйте отримані значення роботи виходу при двох різних інтенсивностей для кожного матеріалу та зробити висновки.
 - 1.5 Розрахувати кінетичну швидкість електронів для точки A для всіх трьох матеріалів.
 - 1.6 Порівняти отримане із розрахунку значення роботи виходу з відомими значеннями роботи виходу (довідкові дані, вказати джерело) та розрахувати абсолютну та відносну помилки. Зробити для трьох ваших матеріалів матеріалів.
 - 1.7 Отримані результати звести до таблиці, де повинен бути вказаний кожен з трьох матеріалів та розраховані для нього значення: частота червоної границі фотоефекту, напруга запирання (для двох інтенсивностей), робота виходу в точці А (дві інтенсивності), кінетична швидкість електронів в точці А (для двох інтенсивностей 50% та 100%).

- 1.8 Зробіть перевірку правильності виконання розрахунків за формулою Ейнштейна для фотоефекту.
- 2. Беремо графіки зроблені до пункту 4, де було побудовано залежності струму від інтенсивності. Ви вибирали самі три довжини хвилі. У кожного вибрано свій один матеріал. Робимо:
 - 2.1 Побудуйте ваш графік в інших координатах, де вісь х- довжина хвилі, вісь у-струм. Беремо значення струму для Інтенсивності 50%.
 - 2.2 Побудуйте самі (ваші припущення) на вашому новому графіку іншим кольором як буде виглядати ця залежність, якщо інтенсивність буде складати, а далі за списком вибираємо свій варіант.
- 3. Пояснити чому струм змінився саме так. Дивимось на графіки побудовані для пункта 5. Де залежності енергії від частоти. Треба:
 - 3.1 Визначити яка саме енергія стоїть у вас по осі ігрек. Це повна енергія фотону чи робота виходу чи кінетична енергія електрона чи щось інше? Відповідь аргументовано пояснити.

Завдання 1

Табл. 1: Визначення частоти червоної межі фотоефекту

Речовина	Частота червоної границі фотоефекту, 10 ¹⁵ Гц
Na	0,5
Ca	0,8
Cu	1,2

За наступною формулою знайду частоту:

$$v = \frac{c}{\lambda} \tag{1}$$

λ , HM	$f~10^{15}~\Gamma$ ц
200	1,5
400	0,7
440	0,6
470	0,6

Na				
$f \cdot 10^{15}$, Гц	U_3 , B			
ј. 10 , 1 ц	50%	100%		
0.63	0	0		
0.68	0	0		
0.7	-1.7	-1.7		
1.5	-5.9	-6		

Ca				
$f \cdot 10^{15}$, Гц	U_3	U_3 , B		
<i>J</i> • 10 • , 1 ц	50%	100%		
0.63	0	0		
0.68	0	0		
0.7	0	0		
1.5	-3	-3.8		

Cu				
$f \cdot 10^{15}$, Гц	U_3 , B			
<i>J</i> · 10 · , 1 ц	50%	100%		
0.63	0	0		
0.68	0	0		
0.7	-3.3	-3.4		
1.5	-4.2	-4.3		

Роботу виходу можна знайти за формулою:

$$A = h \cdot f \tag{2}$$

$$A_{Na-50\%}=3.726 \text{ eB}$$
 $A_{Na-100\%}=3.685 \text{ eB}$ $A_{Ca-50\%}=4.347 \text{ eB}$ $A_{Ca-100\%}=4.140 \text{ eB}$ $A_{Cu}=2.898 \text{ eB}$

Тепер рахуємо кінетичну швидкість електронів для точки А для всіх трьох

матеріалів:

$$v = \sqrt{\frac{2 \cdot e \cdot U_3}{m}} \tag{3}$$

Для Na

$$v \approx 9.9 \cdot 10^5 \, \frac{\mathrm{M}}{\mathrm{c}}$$
 $v \approx 9.9 \cdot 10^5 \, \frac{\mathrm{M}}{\mathrm{c}}$

Для Са

$$v \approx 6.7 \cdot 10^5 \, \frac{\mathrm{M}}{\mathrm{c}}$$
 $v \approx 7 \cdot 10^5 \, \frac{\mathrm{M}}{\mathrm{c}}$

Для Cu

$$v = 10.7 \cdot 10^5 \, \frac{\mathrm{M}}{\mathrm{c}}$$

	Na		Ca		Cu	
	A, eB					
	розраховане	табличне	розраховане	табличне	розразоване	табличне
50%	3.7	2.0	4.3	4	2.9	4.4
100%	3.6	2.2	4.1	4	2.9	4.4

Для Na 50% похибка становить: $\triangle=1.5;\,\delta=68\%$ Для Na 100% похибка становить: $\triangle=1.4;\,\delta=63\%$

Для Са 50% похибка становить: $\triangle=0.3;~\delta=7,5\%$ Для Са 50% похибка становить: $\triangle=0.1;~\delta=2,5\%$

Для Си 50% похибка становить: $\triangle=1.5;\,\delta=33\%$ Для Си 100% похибка становить: $\triangle=1.5;\,\delta=33\%$

Частота червоної границі фотоефекту для Na: $0,5\cdot 10^{15}$ Γ ц Частота червоної границі фотоефекту для Ca: $0,8\cdot 10^{15}$ Γ ц Частота червоної границі фотоефекту для Cu: $1,2\cdot 10^{15}$ Γ ц *** Дані взято з https://himya.ru/rabota-vyxoda-elektronov.html

Завдання 2

	Na		Ca		Cu			
		A, eB						
	розраховане	з довідника	розраховане	з довідника	розразоване	з довідника		
50%	3.1	2.2	4.4	4	4.5	4.4		
100%	2.8				4.1			
	U_3 , B							
50%	-2	.8	-1.3		-3.4			
100%	-2.9		-1.4		-3.4			
	$V, \cdot 10^5 \frac{M}{c}$							
50%	9.9		6.7		10.7			
100%	9.9		7		9.18			

Завдання 3

Виходячи з II законом Столетова, можна стверджувати, що на графіках з лабораторної роботи №1 по осі у в мене саме кінетична енергію електронів.