Problem 1

When the context is clear, we write p(s,t) instead of $p_{\epsilon,\nu}(s,t)$. For $\theta \in \Theta, x \in \mathcal{X}$:

$$\begin{split} p(\theta,x) &= p(\theta,x,T(x)) \\ &= p(x|T(x),\theta)p(\theta,T(x)) \\ &= p(x|T(x))p(\theta,T(x)) & \text{(because T is sufficient)} \\ &= \frac{p(x,T(x))}{p(T(x))}p(\theta,T(x)) \\ &= \frac{p(x)}{p(T(x))}p(\theta,T(x)) \\ &= p(x)p(\theta|T(x)) \end{split}$$

So that:

$$p(\theta|x) = \frac{p(\theta, x)}{p(x)} = p(\theta|T(x))$$

As a result:

$$H(\theta|X) = \mathbb{E}\log\frac{1}{p(\theta|X)} = \mathbb{E}\log\frac{1}{p(\theta|T)} = H(\theta|T)$$

ie:

$$I(\theta, X) = H(\theta) - H(\theta|X) = H(\theta) - H(\theta|T(X)) = I(\theta, T(X))$$

Problem 2

1.

$$\mathbb{E}\tilde{\alpha}_k = \mathbb{E}[Y f_k(X)] = \mathbb{E}[E[Y|X] f_k(X)] = \langle f, f_k \rangle = \alpha_k$$
$$\hat{f}_N(x) = \sum_{k < N} \mathbb{E}[\tilde{\alpha}_k] f_k(x) = \sum_{k < N} \alpha_k f_k(x)$$

$$\mathbb{E}_X B^2(X) = \mathbb{E}|\sum_{k \ge N+1} \alpha_k f_k(X)|^2 = ||\sum_{k \ge N+1} \alpha_k f_k||_X^2 = \sum_{k \ge N+1} \alpha_k^2 \le \Phi(N)$$

2. (a)
$$E[A(x)] = \sum_{k \le N} \mathbb{E}Y f_k(X) f_k(x) = \sum_{k \le N} \alpha_k f_k(x)$$

By Cauchy-Shwarz, $\mathbb{E}[|Yf_k(X) - \alpha_k||Yf_l(X) - \alpha_l|] \leq \sigma_k \sigma_l < \infty$, so $\beta_{k,l} := Cov(Yf_k(X), Yf_l(X)) = \mathbb{E}[(Yf_k(X) - \alpha_k)(Yf_l(X) - \alpha_l)]$ is finite, and smaller than σ^2 in absolute value.

$$\operatorname{var}(A(x)) = E\left[\left|\sum_{k \leq N} (Y f_k(X) f_k(x) - \alpha_k f_k(x))\right|^2\right]$$

$$= \sum_{k \leq N} \mathbb{E}(Y f_k(X) f_k(x) - \alpha_k f_k(x))^2$$

$$+ \sum_{k,l \leq N, k \neq l} \mathbb{E}(Y f_k(X) f_k(x) - \alpha_k f_k(x))(Y f_l(X) f_l(x) - \alpha_k f_l(x))$$

$$= \sum_{k \leq N} \sigma_k^2 f_k^2(x) + \sum_{k,l \leq N, k \neq l} \beta_{k,l} f_k(x) f_k(x)$$

$$\left(\leq \sigma^2 (\sum_{k \leq N} f_k(x))^2\right)$$

(b)
$$\tilde{f}_N(x) = \frac{1}{n} \sum_{i \le n} \sum_{k \le N} Y_i f_k(X_i) f_k(x)$$

$$V(x) = \operatorname{var}(\tilde{f}_N(x))$$

$$= \frac{1}{n} \operatorname{var}\left(\sum_{k \leq N} Y f_k(X) f_k(x)\right) \quad \text{(By independence of the } (X_i, Y_i)$$

$$= \frac{1}{n} \operatorname{var}(A(x))$$

$$\leq \frac{\sigma^2}{n} (\sum_{k \leq N} f_k(x))^2$$

So that $\mathbb{E}_X V(X) \leq \frac{\sigma^2}{n} ||\sum_{k \leq N} f_k||^2 \leq \frac{N}{n} \sigma^2$

3.

$$\mathbb{E}||\hat{f}_N - f||^2 = \mathbb{E}||\hat{f}_N - \tilde{f}_N||^2 + \mathbb{E}||\tilde{f}_N - f||^2 \le \frac{N}{n}\sigma^2 + \Phi(N)$$

(a) Setting N to n_0 leads to $\Phi(N) = 0$ and therefore $\mathbb{E}||\hat{f}_N - f||^2 \le \frac{n_0 \sigma^2}{n} = O(\frac{1}{n})$

(b) Setting N to $\left(\frac{\alpha\lambda n}{\sigma^2}\right)^{\frac{1}{\alpha+1}}$ leads to $\frac{N}{n}\sigma^2 + \Phi(N) = \lambda^{\frac{1}{1+\alpha}} n^{\frac{-\alpha}{1+\alpha}} \left(\sigma^2 \left(\frac{\alpha}{\sigma^2}\right)^{\frac{1}{1+\alpha}} + \left(\frac{\alpha}{\sigma^2}\right)^{\frac{-\alpha}{1+\alpha}}\right) = O(\lambda^{\frac{1}{1+\alpha}} n^{-\frac{\alpha}{1+\alpha}})$

Problem 2

1. Let $r \leq r_0$, then

$$|f_{r}(x) - f(x)| = |\int_{B(x,r)} f(y) \frac{dP}{P(B(x,r))} - \int_{B(x,r)} f(x) \frac{dP}{P(B(x,r))}|$$

$$\leq \int_{B(x,r)} |f(y) - f(x)| \frac{dP}{P(B(x,r))}$$

$$\leq \int_{B(x,r)} ||y - x|| \frac{dP}{P(B(x,r))}$$

$$\leq r$$

2. By the last question, when $r < r_0$: $f_r(x) \le f(x) + r$. In addition, if r < f(x), then $f_r(x) \le 2f(x)$

Furthermore:

$$Q_n(B(x,r)) = \frac{1}{n} \sum_{i} 1_{|X_i - x| \le r}$$

By independence, since $Q(B(x,r))=E[1_{|X_1-x|\leq r}]=E[1^2_{|X_1-x|\leq r}]$:

$$var Q_n(B(x,r)) = \frac{1}{n} [Q(B(x,r)) - Q(B(x,r))^2]$$

$$\operatorname{var} \hat{f}_{r}(x) = \frac{1}{P(B(x,r))^{2}} \operatorname{var} Q_{n}(B(x,r))$$

$$= \frac{1}{nP(B(x,r))^{2}} [Q(B(x,r)) - Q(B(x,r))^{2}]$$

$$= \frac{1}{n} [\frac{f_{r}(x)}{P(B(x,r))} - f_{r}(x)]$$

$$= \frac{1}{n} [\frac{1}{P(B(x,r))} - 1] f_{r}(x)$$

$$\leq \frac{1}{n} \frac{2f_{r}(x)}{P(B(x,r))}$$
(when $r \leq \min(r_{0}, f(x))$)
$$\leq \frac{1}{n} \frac{2f_{r}(x)}{c_{0}r^{d}}$$
(when $r \leq r_{1}$)
$$\leq C \frac{f(x)}{nr^{d}}$$

The last inequality is valid for all $r \leq \min(f(x), r_0, r_1) := \alpha$.

3.
$$E\hat{f}_r(x) = \frac{E[Q_n(B(x,r))]}{P(B(x,r))} = f_r(x)$$
, so

$$E_{X_Q}[|\hat{f}_r(x) - f(x)|^2] = E_{X_Q}[|\hat{f}_r(x) - f_r(x)|^2] + |f_r(x) - f(x)|^2$$

$$\leq \frac{2f(x)}{c_0 n r^d} + r^2 \qquad (for \ r < \alpha)$$

$$\leq \frac{a}{r^d} + r^2 \qquad (a := \frac{2f(x)}{c_0 n})$$

Let's define $g: r \to \frac{a}{r^d} + r^2$, $g'(r) = \frac{-ad}{r^{d+1}} + 2r$, $g''(r) = \frac{ad(d+1)}{r^{d+2}} + 2 > 0$,

g is convexe, so it has a global minimum when g'(r) = 0, ie $r = \left(\frac{ad}{2}\right)^{\frac{1}{d+2}}$ and in that case

$$\begin{split} g(r) &= a^{1 - \frac{d}{d+2}} (\frac{d}{2})^{\frac{-d}{d+1}} + (\frac{ad}{2})^{\frac{2}{d+2}} \\ &= a^{\frac{2}{d+2}} \left((\frac{d}{2})^{\frac{-d}{d+1}} + (\frac{d}{2})^{\frac{2}{d+2}} \right) \\ &= n^{-\frac{2}{d+2}} \underbrace{(\frac{2f(x)}{c_0})^{\frac{2}{d+2}} \left((\frac{d}{2})^{\frac{-d}{d+1}} + (\frac{d}{2})^{\frac{2}{d+2}} \right)}_{C} \end{split}$$

We define $r(n) = \left(\frac{f(x)d}{nc_0}\right)^{\frac{1}{d+2}}$. This quantity is smaller than α , when $n > \frac{f(x)d}{c_0\alpha^{d+2}}$, and then we have that:

$$E_{X_O}[|\hat{f}_r(x) - f(x)|^2] \le Cn^{\frac{-2}{d+2}}$$

Problem 4

1. The X_i are iid and $E\left[\frac{1_{|X_i-x|\leq r}}{P(B(x,r))}\right] = \frac{Q(B(x,r))}{P(B(x,r))}$, $\operatorname{var} \frac{1_{|X_i-x|\leq r}}{P(B(x,r))} = \frac{Q(B(x,r))-Q^2(B(x,r))}{P(B(x,r))}$

$$\sqrt{n}(\hat{f}_r(x) - f_r(x)) = \frac{1}{\sqrt{n}} \sum_{i \le n} \frac{1_{|X_i - x| \le r}}{P(B(x, r))} - \frac{Q(B(x, r))}{P(B(x, r))} \xrightarrow{d} \mathcal{N}(0, \frac{Q(B(x, r)) - Q^2(B(x, r))}{P(B(x, r))})$$

Since $\xrightarrow{Q_n(B(x,r))-Q_n^2(B(x,r))} \xrightarrow{\text{a.s.}} \xrightarrow{Q(B(x,r))-Q^2(B(x,r))} \xrightarrow{P(B(x,r))}$, by slutsky:

$$\sqrt{\frac{nP(B(x,r))}{Q_n(B(x,r)) - Q_n^2(B(x,r))}} (\hat{f}_r(x) - f_r(x)) \stackrel{d}{\to} \mathcal{N}(0,1)$$

If z_{α} the $1-\frac{\alpha}{2}$ quantile of the normal distribution, then:

$$\mathbb{P}\left(\sqrt{\frac{nP(B(x,r))}{Q_n(B(x,r)) - Q_n^2(B(x,r))}}|\hat{f_r}(x) - f_r(x)| \le z_\alpha\right) \to 1 - \alpha$$

Therefore $[\hat{f}_r(x) \pm z_{\alpha} \sqrt{\frac{Q_n(B(x,r)) - Q_n^2(B(x,r))}{nP(B(x,r))}}]$ is a $1 - \alpha$ confidence interval for $f_r(x)$.

2. Under the new assumption, $f_r(x) - r \le f(x) \le r + f_r(x)$, so

$$\left[\hat{f}_r(x) \pm \left(r + z_\alpha \sqrt{\frac{Q_n(B(x,r)) - Q_n^2(B(x,r))}{nP(B(x,r))}}\right)\right]$$

is a $1 - \alpha$ confidence interval for f(x).

Problem 5

Lemma 0.1. Let $X_n \to \mathcal{N}(0, \sigma_x^2)$, $Y_n \to \mathcal{N}(0, \sigma_y^2)$, X_n and Y_n are independent for all n. Then $(X_n, Y_n) \to \mathcal{N}(0, diag(\sigma_x^2, \sigma_y^2))$ And as a corrolary, using the continuous mapping theorem: $X_n + Y_n = (1, 1)'(X_n, Y_n) \to \mathcal{N}(0, \sigma_x^2 + \sigma_y^2)$

Proof. Let F_n (resp. G_n) be the c.d.f of X_n (resp Y_n), and let H_n be the joint c.d.f of (X_n, Y_n) . Let F (resp. G) be the cdf of $N(0, \sigma_x^2)$ (resp $N(0, \sigma_y^2)$), and H be the c.d.f of $N(0, diag(\sigma_x^2, \sigma_y^2))$.

By independence: $H_n(x,y) = F_n(x)G_n(y) \rightarrow_n F(x)G(y) = H(x,y)$. Which proves the lemma.

Let's call p := R(h), q := R(h'). H_0 is equivalent to p = q, and H_1 is equivelent to $p \neq q$.

- We know that $1_{X=h(Y)}$ is binomial of parameter p. Same for h'.
- $E[\hat{R}(h) + \hat{R}'(h')] = p + 1$. By independence of all the X_i, X_i' ,
- Law of large numbers: $\hat{R}(h) \stackrel{as}{\to} p$, $\hat{R}(h') \stackrel{as}{\to} q$
- CLT:

$$\sqrt{n}(\hat{R}(h) - p) \xrightarrow{d} \mathcal{N}(0, p(1-p))$$

 $\sqrt{n}(\hat{R}'(h) - q) \xrightarrow{d} \mathcal{N}(0, q(1-q))$

By independence of X_i and X'_i for all i, using the lemma:

$$\sqrt{n}(\hat{R}(h') - \hat{R}'(h') - (p-q)) \xrightarrow{d} \mathcal{N}(0, p(1-p) + q(1-q))$$

• By Slutsky:

$$\sqrt{\frac{n}{\hat{R}(h)(1-\hat{R}(h))+\hat{R}(h')(1-\hat{R}(h'))}}(\hat{R}(h')-\hat{R}'(h')-(p-q)) \xrightarrow{d} \mathcal{N}(0,1)$$

•
$$P(\sqrt{\frac{n}{\hat{R}(h)(1-\hat{R}(h))+\hat{R}(h')(1-\hat{R}(h'))}}|\hat{R}(h') - \hat{R}'(h') - (p-q)| \le z_{\alpha}) \to 1-\alpha$$

So under H_0 :

$$P(\sqrt{\frac{n}{\hat{R}(h)(1-\hat{R}(h))+\hat{R}(h')(1-\hat{R}(h'))}}|\hat{R}(h')-\hat{R}'(h')| \le z_{\alpha}) \to 1-\alpha$$

The test whose rejection region is the following

$$1\left\{ \left(\frac{n}{\hat{R}(h)(1-\hat{R}(h))+\hat{R}(h')(1-\hat{R}(h'))}\right)^{\frac{1}{2}}|\hat{R}(h')-\hat{R}'(h')|>z_{\alpha}\right\}$$

is of level $1 - \alpha$.

Problem 6

Let f_0 (resp f_1) be the density of Z_0 (resp Z_1)

$$\begin{split} P(h(X) \neq Y) &= E[1_{h(X) \neq Y}] \\ &= E[1_{h(X) \neq Y}|Y = 0]P(Y = 0) + E[1_{h(X) \neq Y}|Y = 1]P(Y = 1) \\ &= \frac{1}{2}(P(h(Z_0) \neq 0) + P(h(Z_1 \neq 1)) \\ &= \frac{1}{2}(\int_R f_0(z)1_{h(z) \neq 0} + \int_R f_1(z)1_{h(z) \neq 1}) \\ &\geq \frac{1}{2}(\int_R \min(f_0(z), f_1(z)) & \text{(since } h(z) \in \{0, 1\}) \\ &= \frac{1}{2}(\int_R f_0(z)1_{f_0(z) < f_1(z)} + f_1(z)1_{f_0(z) \ge f_1(z)}) \\ &= \frac{1}{2}(\int_R f_0(z)1_{g(z) \neq 0} + f_1(z)1_{g(z) \neq 1}) & (g(z) = 1_{f_0(z) < f_1(z)}) \\ &= R(g) = \inf_h R(h) \\ &= \frac{1}{2}(P(Z_0 \in R_0) + P(Z_1 \in R_1)) \end{split}$$

Where

$$R_0 = g^{-1}(1) = \{z | \lambda_0 e^{-\lambda_0 z} \le \lambda_1 e^{-\lambda_1 z}\} = (-\infty, \frac{1}{\lambda_1 - \lambda_0} \log \frac{\lambda_1}{\lambda_0})$$
$$R_1 = \left[\frac{1}{\lambda_1 - \lambda_0} \log \frac{\lambda_1}{\lambda_0}, \infty\right)$$

Problem 7

Let \hat{f} be fixed.

While for each $P_{X,Y}$, the quantity $\mathbb{E}\bar{R}(h_{\hat{f}})/a_n$ converges to 0, the convergence can occur at different speeds so that at any moment n, there might exist a $P_{X,Y}$ for which $\mathbb{E}\bar{R}(h_{\hat{f}})/a_n$ is still larger than c.

If such situation happens, $\sup_{P_{X,Y}} \mathbb{E}\bar{R}(h_{\hat{f}})/a_n \geq c$, and taking the infimum over all \hat{f} and taking the \liminf , we get that a_n is the minimax rate for P.