

School of Computer Science & Engineering

Continuous Assessment Test -I

A2+TA2+TAA2-Slot CAT-I (Aug-2018)

CSE2002-Theory of Computation and Compiler Design

Time: 1:30 Hrs

Max.Marks:50

Answers ALL the questions

- 1. Prove or disprove the following:
 - a) Let $L = \{ w \in \{0, 1\}^+ / \text{ w contains at least three 1's} \}$ and let [4] $L' = \{0, 1\}^{T} \{0, 1\}^{T} \{0, 1\}^{T} \{0, 1\}^{T} \{0, 1\}^{T}, L = L^{T}$
 - b) Let $L = \{a^n b^n / n \ge 0\}$. Then the complement of L is L^c and [4] $L^{c} = \{a^{n}b^{m} / m, n \ge 1, m \ne n\}$
 - c) The regular expressions P = (1*0 + 001)*01 and O = (1*001 + 00101)* are equivalent [4]
 - d) Every subset of a regular set is regular. [4]
 - e) Regular expression corresponding to the complement of the regular expression (a + ab)* is (aa*b)* b (a+b)* [4]
- 2. a) Construct DFA for the NFA given below: [5]

[5]

b) Using Arden's Theorem, construct a regular expression to the automata given below

- 3. a) State pumping lemma for regular languages and show that $L = \{a^{ni} / n \ge 1\}$ is not regular. [4] b) Construct a DFA over $\Sigma = \{a,b\}$ for accepting strings which satisfy the following conditions: If the string begins with a it is of even length (≥ 2). If the string begins with b it is of odd length (≥ 3). [4]
- 4. a) Show the translation for an assignment statement: position:= initial + rate * 60. Clearly indicate the output of each phase of the compiler. [4]
 - h) When do you say two states are equivalent in DFA? When are they distinguishable? What do you mean by a distinguishable sequence? Consider the DFA in the following figure. a is the initial state and d is the final state. [8]

Which states are equivalent? Which states are distinguishable? Find the minimum state automaton.

xxxxxxxEndxxxxxxx