Name: Namrata Bhorade

Class: BE COMPS UID: 2018130004

Data Science, 2022

Tut 6: Machine Learning 1

- 1. [Probability] Assume that the probability of obtaining heads when tossing a coin is λ .
- a. What is the probability of obtaining the first head at the (k + 1)-th toss?
- b. What is the expected number of tosses needed to get the first head?

	Data Science, 2022	Page No.
	Tut 6: Machine Learning 1	Date
2.1	a) was it were sat them on six	As PCALL
91.	I P(H) = a A IN a discretipe a	
	en Trans de constact mas	
	: P(T)= 1-7-0 and add	50102 571
	PLH at Kith	
	10	at 1 1 56
	P(H at K+1 + toss) = P(Tax k	toss and Hatke
	= (1-2)x 3	-1-
	C .	
	b) Let M be no of tosses requi	md to and the
	first head and let S = Elm)
	As tosses are independent and	expectation is
	additive	A
	S = 7x1 + (1-7) x (5+1)	3
	3 = 7 / 1 (1 //) (3+1)	1
	· S= 3 + S+1-25-2	E. 1977 i
	:. S 7× = 1	- A 7. 4
	:. S=1	
	7	
	A Section 1889 No.	7.0

- 2. [Probability] Assume X is a random variable.
- a. We define the variance of X as: $Var(X) = E[(X E[X])^2]$. Prove that $Var(X) = E[X^2] E[X]^2$.
- b. If E[X] = 0 and $E[X^2] = 1$, what is the variance of X? If Y = a + bX, what is the variance of Y?

	Page No. Date
6.2	X + random variable
a.	Variance of X: Var(x) = F[(x-E[x])2]
	To prove. Vor(x) = F(x2) - F(x)2
	Given that for It'd & I would be to be a see to
	Vor(x) = E[(x - E[x])2]
	$= E[x^2 - 2 \times E(x) + E(x)^2]$
	$= \frac{\mathbb{E}[x^2] - 2\mathbb{E}[x\mathbb{E}[x]] + \mathbb{E}[x]^2}{\mathbb{E}[x^2] - 2\mathbb{E}[x]^2 + \mathbb{E}[x]^2}$
	$= E[\chi^2] - E[\chi]^2 - I$
_p.	E(x) = 0 and E(x2] = 1 [r]] = (r) m/
113	To find: 1) Variance of Xd (1)
	DIF Y=a+bx, Var(y=)
0	Vor(x)= E[x2]- E[x]2 (-from I)
	$= 1 - 0^2$
7	:. Vor(x) =1

3. [Probability] Your friend Aku is a great predictor about winning horse race. Assume that we know three facts: 1) If Aku tells you that a horse name black beauty will win, it will win with probability 0.99. 2) If Aku tells you that a black beauty will not win, it will not win with probability 0.99999. 3) With probability 10⁻⁵, Aku predicts that a black beauty is a winning horse. This also means 10⁻⁵, Aku predicts that a black beauty that with probability 1 -Given horse, what is the probability that it wins? a. a b. What is the probability that Aku correctly predicts a black beauty is winning?

	Page No. Date
0.3	Let A be the event that "Aku predicts that
300	a given horse is a winning horse "
	let A be the event "Aku predicts that the given horse is not a winning horse".
	Similarly let B be the event that the given horse coins and nB be the event that the given horse
	does not win
a.	Given a hone, the probability that it wins
	P(B) = P(B,A) + P(B, A)
	= P(BIA) P(A) + P(B/A) P(A)
	= 0.99 ×10-5 + (1-0.99999)×(1-10-5)
	- P(B) = 1.99 ×10 ⁻⁵ - · (t)
þ.	Probability that Aku predicts a black beauty is winning.
	$\frac{P(A B) = P(A B) = P(A B) P(A)}{P(B)}$
	= 0.99 ×10-5 (from_ I)
10 To	: P(AIB) = 0.497
1 2 A	
10 m	