- 1. Visa att $4*2+7*4+10*6+\ldots+(3n-2)(2n-2)=2n^3-2n^2$ för alla heltal $n\geq 2$ Lösning: Använd induktion över n
- 2. Visa att $\sum_{k=0}^{n} 4*5^k = 5^{n+1} 1$ för alla heltal $n \geq 0$

Lösning: Använd induktion över n

- 3. Visa att $7+11+15+\ldots+(4n+3)=2n^2+5n$, för alla heltal $n\geq 1$ Använd induktion över n
- $^{4.}$ Visa att för alla heltal $n\geq 2$ gäller $\sum_{k=0}^{n-2}(k+2)*2^{k+1}=(n-1)*2^n$ Använd induktion över n
- 5. Visa att för alla heltal $n \geq 2$ gäller $\sum_{k=1}^n (9k^2 9k) = 3n^3 3n$ Använd induktion över n
- 6. Visa att för alla heltal $n \geq 1$ gäller $2+2*5+3*8+\ldots+n(3n-1)=n^2(n+1)$ Använd induktion över n
- 7. Visa att $a+aq+aq^2+aq^3+\ldots+aq^{n-1}=a\frac{q^n-1}{q-1}$ för alla heltal $n\geq 1$ och $a,q\in\mathbb{R}$, där $q\neq 1$

Använd t.ex. induktion över n

8. Visa att $\sum_{i=1}^n \frac{1}{(4i-3)(4i+1)} = \frac{n}{4n+1}$ för alla heltal $n \geq 1$

Använd t.ex. induktion över n

- 9. Visa att $5+8+11+\ldots+(3n+2)=\frac{n(3n+7)}{2}$ för alla heltal $n\geq 1$ Använd induktion över n
- 10. Finns det något tal a så att likheten $\sum_{j=1}^n 4j^3 = n^4 + an^3 + n^2$ gäller för alla heltal $n \ge 1$? Bevisa i så fall ditt påstående.

Ett sådant tal är a=2, använd sedan induktion över n

11. Visa att
$$\frac{1}{1*2}+\frac{1}{2*3}+\frac{1}{3*4}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}$$
, för alla heltal $n\geq 1$ Använd induktion över n

12. Ge en generell formel för ett tal i följden som ges av:
$$\begin{cases} a_n=3a_{n-1}-2a_{n-2}\\ a_0=1\\ a_1=3 \end{cases} n\geq 2$$

Bevisa sedan din formel.