Robotics

Exercise 3

Lecturer: Jim Mainprice

TAs: Philipp Kratzer, Janik Hager, Yoojin Oh

Machine Learning & Robotics lab, U Stuttgart

Universitätsstraße 38, 70569 Stuttgart, Germany

May 6, 2021

1 Motion profiles (2 points)

Construct a motion profile that accelerates constantly in the first quarter of the trajectory, then moves with constant velocity, then decelerates constantly in the last quarter. Write down the equation MP(s): $[0,1] \mapsto [0,1]$.

2 Verify some things from the lecture (6 points)

- a) On slides 12+13 we derived the basic inverse kinematics law. Verify that (assuming linearity of ϕ , i.e., $J\delta q=\delta y$) for $C\to\infty$ the desired task is fulfilled exactly, i.e., $\phi(q^*)=y^*$. By writing $C\to\infty$ we mean that C is a matrix of the form $C=\varrho C_0,\ \varrho\in\mathbb{R}$, and we take the limit $\varrho\to\infty$. (2P)
- b) On slide 20 there is a term $(\mathbf{I} J^{\#}J)$ called nullspace projection. Verify that for $\varrho \to \infty$ (and $C = \varrho \mathbf{I}$) and any choice of $\delta a \in \mathbb{R}^n$

$$\delta q = (\mathbf{I} - J^{\#}J)\delta a \Rightarrow \delta y = 0$$

(assuming linearity of ϕ , i.e., $J\delta q=\delta y$). Note: this means that any choice of δa , the motion $(\mathbf{I}-J^{\#}J)\delta a$ will not change the "endeffector position" y. (2P)

c) On slides 31 + 32 it says that

$$\underset{q}{\operatorname{argmin}} \|q - q_0\|_W^2 + \|\Phi(q)\|^2$$

$$\approx q_0 - (J^{\mathsf{T}}J + W)^{-1}J^{\mathsf{T}} \Phi(q_0) = q_0 - J^{\#}\Phi(q_0)$$

where the approximation \approx means that we use the local linearization $\Phi(q) = \Phi(q_0) + J(q - q_0)$. Verify this. (2P)

3 IK in the simulator (6 points)

Installation instructions:

- 1. On github https://github.com/humans-to-robots-motion/robotics-course you can find the course repository and an instruction on how to install it.
- 2. To make sure you have an updated version of the repository, run 'qit pull' and 'qit submodule update'
- 3. You can find the exercises in the directory course1-Lectures. From there, you can run:
 - For python: 'jupyter-notebook 01-kinematics/kinematics.ipynb'
 - For C++: 'cd 01-kinematics', 'make', './x.exe -mode 2'

The goal of this task is to reach the coordinates $y^* = (-0.2, -0.4, 1.1)$ with the right hand of the robot. Assume $W = \mathbf{I}$ and $\sigma = .01$.

- a) The provided code already generates a motion using inverse kinematics $\Delta q = J^{\sharp} \Delta y$ with $J^{\sharp} = (J^{\top}J + \sigma^2W)^{-1}J^{\top}$. Record the task error, that is, the deviation of hand position from y^* after each step. You can plot the error using 'plt.plot(err)' and 'plt.show()' in python or 'gnuplot(err)' in C++ (err) is the array of errors). Why is it initially large? (1P)
- b) Try to do 100 smaller steps $\delta q = \alpha J^{\sharp} \delta y$ with $\alpha = .1$ (each step starting with the outcome of the previous step). How does the task error evolve over time? (1P)
- c) Generate a nice trajectory composed of T = 100 time steps. Interpolate the target linearly $\hat{y} \leftarrow y_0 + (t/T)(y^* y_0)$ in each time step. How does the task error evolve over time? (2P)
- d) Generate a trajectory that moves the right hand in a circle centered at (-0.2, -0.4, 1.1), aligned with the xz-plane, with radius 0.2. (2P)