Introduction to Machine Learning

Lab 1 Block 2

Rasmus Holm

2016-11-16

Contents

Assignment 1																														
2																														
3																		 												
$\mathbf{A}\mathbf{s}\mathbf{s}\mathbf{i}$	gn	me	ent	t 2	;																									
App	en	di	ĸ																											
C	od	e fe	or	As	sig	nn	nei	nt	1 .																					
C	od	e fe	$^{ m or}$	As	sig	nn	nei	nt	2 .									 												

Assignment 1

Assignment 2

Appendix

Code for Assignment 1

```
library(ggplot2)
myspline <- function(X, y, knots) {</pre>
    n <- length(X)</pre>
    m <- length(knots)</pre>
    df \leftarrow m + 2
    H <- matrix(0, nrow=n, ncol=df)</pre>
    H[, 1] <- 1
    H[, 2] <- X
    for (i in 3:df) {
        H[, i] \leftarrow pmax(X - knots[i - 2], 0)
    }
    data <- data.frame(y=y, H)</pre>
    ## Removes the intercept term (have it already)
    lmfit \leftarrow lm(y \sim 0 + ., data=data)
    coefficients <- as.numeric(coef(lmfit))</pre>
    yhat <- H %*% coefficients
    yhat
}
data <- read.csv2("../data/cube.csv", header=TRUE, sep=";")</pre>
knots \leftarrow c(2, 4)
yhat <- myspline(data$x, data$y, knots)</pre>
plot_data <- data.frame(x=data$x, y=data$y, yhat=yhat)</pre>
ggplot(plot_data) +
    geom_point(aes(x, y), color="red") +
    geom_point(aes(x, yhat), color="blue")
smooth_fit <- smooth.spline(x=data$x, y=data$y)</pre>
yhat <- fitted(smooth_fit)</pre>
## plot(smooth_fit, col="blue")
## points(data$x, data$y, col="red")
plot_data <- data.frame(x=data$x, y=data$y, yhat=yhat)</pre>
ggplot(plot_data) +
    geom_point(aes(x, y), color="red") +
    geom_point(aes(x, yhat), color="blue")
```

Code for Assignment 2