Quiz, 10 questions

✓ Congratulations! You passed!

Next Item

1/1 points

1.

Consider using this encoder-decoder model for machine translation.

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

True

False

Correct

1/1 points

2

In beam search, if you increase the beam width ${\it B}$, which of the following would you expect to be true? Check all that apply.

Beam search will run more slowly.

Correct

Sequence models & Attention mechanism

10/10 points (100.00%)

Quiz,	10	quest	ions

Beam search will generally find better solutions (i.e. do a better job maximizing $P(y\mid x)$)

Correct

Beam search will converge after fewer steps.

Un-selected is correct

1/1 points

3.

In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.

True

Correct

1/1 points

4.

Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses

Sequence models & Attention machanism maximizes $P(y \mid x)$. 10/10 points (100.00%)

Quiz, 10 questions

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 10^{-7}$$

$$P(y^* \mid x) = 7.21 * 10^-8$$

Would you expect increasing the beam width B to help correct this example?

No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.

Correct

- No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

1/1 points

5.

Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggest you should focus your attention on improving the search algorithm.

True.

Correct

Sequence models & Attention mechanism

Quiz, 10 questions

points

6.

Consider the attention model for machine translation.

Further, here is the formula for $\alpha^{< t, t'>}$

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_{\chi}} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha^{< t,t'>}$ are true? Check all that apply.

We expect $lpha^{< t, t'>}$ to be generally larger for values of $a^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)

We expect $\alpha^{< t, t'>}$ to be generally larger for values of $a^{< t>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)

Sequence models & Attention mechanism

10/10 points (100.00%)

Quiz, 10 questions

 $\sum_t lpha^{< t, t'>} = 1$ (Note the summation is over t.)

Un-selected is correct

 $\sum_{t'} lpha^{< t, t'>} = 1$ (Note the summation is over t'.)

Correct

1/1 points

7.

The network learns where to "pay attention" by learning the values $e^{< t,t'>}$, which are computed using a small neural network:

We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t,t'>}$ which in turn depends on $e^{< t,t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet.

True

Correct

False

1/1 points

8.

Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:

The input sequence length T_{x} is large.

Correct

Sequence models & Attention mechanism

10/10 points (100.00%)

-	15, 15			
Quiz, 10 questions	$igcup$ The input sequence length T_x is small.			
	1/1 points			
	9.			
	Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?			
	c_oo_o_kkb_oooooookkk			
	cokbok			
	cookbook			
	Correct			
	cook book			
	coookkbooooookkk			
	1 / 1 points			
	10.			
	In trigger word detection, $x^{< t>}$ is:			
	Features of the audio (such as spectrogram features) at time t .			
	Correct			
	The t -th input word, represented as either a one-hot vector or a word embedding.			

Whether the trigger word is being said at time t.

Whether someone has just finished saying the trigger word at
 time t .

Sequence models & Attention mechanism

10/10 points (100.00%)

Quiz, 10 questions

