DATA MINING & DATA WAREHOUSING

Module III

- Association Rule Mining
 - **★ What is AR**
 - **★ Methods to discover AR**
 - **★ Apriori algo**
 - **★ Partition algo**
 - **★ Pincer seaarch algo**
 - **★ FPtree growth algo**
 - **★ Incremental algo**
 - **★ Border algo**
 - **★ Generalized ARs**

Incremental Algorithm

Incremental Algorithm

- Earlier FP algorithms, assume that DB does not change.
- But transaction DB is not static.
- When DB is updated the existing ARs may become invalid
- Before deriving the frequent itemsets the DB become updated thereby derived itemsets are no more valid

- Instead of redoing the FP derivation the earlier computations of frequent itemsets must also be used
 - The incremental algorithm aims to achieve this
 - **★ So the earlier computations of frequent itemsets are used in this algorithm**

The following notations are used in incremental algorithms

- T_{old} existing DB
- L_{old} already computed frequent itemsets
- T_{new} new set of transactions added to the database
- $T_{\text{whole}} = T_{\text{old}} U T_{\text{new}}$
- We have to find L_{whole}

Let L_{new} is set of all frequent itemsets of T_{new} & L_{new} is initially unknown. & Observaions used are

- 1. An itemset is in L_{whole} if it is an element of both L_{new} and L_{old}
- 2. Any itemset which is neither in L_{new} or L_{old} cannot be in L_{whole}

we start finding L_{new} and make some passes over T_{new} (we use condition 1 to find L_{whole})

These passes can be used to find $\{ s(X): X \text{ in } L_{old} \} \text{ in } T_{new}$

i.e., $s(X)_{Tnew}$ for X in L_{old}

Based on condition 1

- But unless we read T_{old,}
- We cannot find those
 Frequent Itemsets, if any,
 - \rightarrow which are frequent T_{new}
 - > but infrequent in T_{old}

- Using Incremental Method
 - * Count s(X) wrt T_{new} for all X in L_{old}
 - * This may give partial charaterization of Lwhole
 - * This is achieved by just one pass over T_{new} only

The above process takes following cases

- a. The itemsets of L_{old} that are frequent in T_{new} (hence, in T_{whole}) can be determined.
- b. The itemsets that belong to L_{old} but are not in L_{new} are automatically eliminated.
- c. The itemsets that are neither in L_{new} nor in L_{old} are not considered.

- To get <u>complete characterisation</u> is
 - * first compute L_{new} by making one pass over T_{new}
 - * Next compute support of itemsets in $L_{new} \setminus L_{old}$ by making one pass over T_{old}
 - i.e., it requires one pass over T_{old} and many passes over T_{new}

Based on case 1

 To get complete For reference!!!! charaterization Start finding Passes over T_{new} single pass over Lold **L**new Many passes over Frequent Frequent Itemsets **Itemsets** of T_{new} of T_{old} $s(X) : X \text{ in } L_{new} \setminus L_{old}$

For reference!!!!

circle) in B (right circle): $B \cap A^{\complement} = B \setminus A$

The relative complement of A in B is denoted $B \setminus A$ according to the ISO 31-11 standard. It is sometimes written B - A, but this notation is ambiguous, as in some contexts it can be interpreted as the set of all elements b - a, where b is taken from B and a from A.

Formally:

$$B \setminus A = \{x \in B \mid x \notin A\}.$$

Examples [edit]

- $\{1,2,3\} \setminus \{2,3,4\} = \{1\}.$
- $\{2,3,4\} \setminus \{1,2,3\} = \{4\}.$
- If $\mathbb R$ is the set of real numbers and $\mathbb Q$ is the set of rational numbers, then $\mathbb R\setminus\mathbb Q$ is the set of irrational numbers.

- The disadvantage here of complete charaterization process is
 - * FIs may not be genetated and pass is wasted

- If we know in advance whether DB pass is required or not then it will help reducing the unnecesary passes
 - ***** i.e., search for FI of T_{whole} which is not in L_{old}
 - if no such FIs then no DB pass is required
- For which a new concept called 'promoted border set' is used
- If there is a 'promoted border set' we need to scan T_{old}

Promoted Border Set

- An itemset that was border set before update and becomes a frequent set after update is called 'promoted border set'
 - ★ If it exists we have to read T_{old} again
 - * $L_{whole} \cap (L_{new} \setminus L_{old})$! = Ø iff there exixts promoted border itemsets

Simple modification to the apriori algo gives border

sets

Modified A Priori Algorithm to Generate Border Sets and Frequent Sets

```
Initialize: k := 1, C_1 = all the 1-itemsets;
read the database to count the support of C_1 to determine L_1
L_{i} := \{ \text{frequent 1-itemsets} \};
k := 2; // k represents the pass number//
while (L_{k,l} \neq \emptyset) do
begin
      C_{i} := gen_{candidate_{item}} sets with the given L_{i}
      prune C_{i}
      for all transactions t \in T do
      increment the count of all candidates in C_t, that are contained in t;
      L_{\iota} := \{c \in C_{\iota} \mid s(c)_{\tau} \geq \sigma\} ;
      B_{\iota} := \{c \in C_{\iota} \mid s(c)_{\tau} < \sigma\};
      k := k + 1:
end
      L := \bigcup_{i} L_{i}
      B := \bigcup_{k} B_{k}
```

Border Algorithm

- This algorithm is based on a new incremental method for generating the frequent sets, which are the basis for the association rules.
- The border algo maintains support count for all frequent sets & border sets
 - * if the border set is promoted then DB is passed/scanned, if not no scanning of DB

- Notations used are
 - **★** F frequent itemsets,
 - * B- promoted border stes,

The Borders algorithm works by constantly maintaining the count information for all frequent sets and all border sets in the current relation.

- 1. L_{old} and B_{old} and their support count values are known
- 2. count Support value for all items in \mathbf{L}_{old} U B_{old} in T_{new}
 - \circ this requires 1 pass over the T_{new} , the algo collects 2 categories of info F & B

F: contains itemsets of L_{old} which becomes frequent in T_{whole}

B: promoted border sets

- if no promoted border set
 - F contains all frequent set of T_{whole}
- if there is promoted border set
 - generate candidate sets which are supersets of promoted border sets
 - \bullet make one pass over the T_{new} , one pass over the

 T_{whole}

Border Alg

- \blacksquare Read T_{new} and calculate s(X) for all X in L_{old} U B_{old}
- Find
 - $\star F = \{X \mid X \in L_{old} \text{ and } s(X)T_{whole} > = min_sup\}$
 - $*B = \{X \mid X \in B_{old} \text{ and } s(X)T_{whole} > = \min_{sup}\}$
- Candidate generation
 - \bigstar Generate all the candidate sets C_k from B_{k-1} and F_{k-1}
 - **★ Prune all the candidate sets C**_k
 - ★ C=UC_k
- \blacksquare Read T_{whole} and calculate support count value of all the candidates in C_k
- new-Frequent-Items= $\{X | X \in C \text{ and } s(X)T_{whole} > = min_sup\}$
- L_{whole}=F U new-Frequent-Items
- B_{whole} ={ B_{old} \B} U { $X \in C$ and $s(X)T_{whole}$ < min_sup and all its subsets are in L_{whole} }

Border Algorithm

```
read T_{\text{new}} and increment the support count of X for all X \in L_{\text{old}} \cup B_{\text{old}}
F := \{X \mid X \in L_{\text{old}} \text{ and } s(X)_{T_{\text{while}}} \ge \sigma\}
B:=\{X\mid X\in B_{\mathrm{old}} \text{ and } s(X)_{T}\geq \sigma\}
 Let m be the size of the largest element in B.
 Candidate-generation
for all itemsets l_i \in B_{k-1} \cup C_{k-1} do begin
for all itemsets l_2 \in B_{k_1} \cup F_{k_2} \cup C_{k_3} do begin
        if l_1[1] = l_2[1] \wedge l_1[2] = l_2[2] \wedge ... \wedge l_1[k-1] < l_2[k-1] then
        c = l_1[1], l_1[2], \ldots l_1[k-1], l_2[k-1]
        C_{k} = C_{k} \cup \{c\}
end do
end do
Prune C_k for all k:
all subsets of k-1 size should be present in B_{k-1} \cup F_{k-1} \cup C_{k-1}
k := k+1
Candidate C := \bigcup C_{i}
read T_{whole} and count the support values of each itemset in C.
new_frequent_sets := \{X \mid X \in C \text{ and } s(X)_{T \to T} \ge \sigma\}
L_{whole} := F \cup \text{new\_frequent\_sets}
B_{\text{whole}} := (B_{\text{old}} \setminus B) \cup \{X \in C \text{ and } s(X)_{T_{\text{analy}}} < \sigma \text{ and all its subsets are in } L_{\text{whole}} \}
```