

Dirección General

Subdirección académica

Tarea: 2.2 Tema: Método de punto fijo

Asignatura: Métodos numéricos Calificación:

Profesor: Dr. Iván de Jesús May Cen **Fecha:** 13 de febrero del 2025

Estudiante: Antonio Josue Rodriguez **Carrera:** ISIC

Falcon

Reporte de la Tarea 2.2: Método de punto fijo

Ejercicio 1

Explicación de los Resultados

Este código implementa el método de punto fijo para encontrar la raíz de una ecuación. Este método consiste en reformular la ecuación f(x) = 0 en la forma g(x), de manera que al evaluar iterativamente $x_{n+1} = g(x_n)$, se obtenga la convergencia hacia la raíz.

Tiene los siguientes puntos:

- La definición de la función g(x): determinara la iteración del método de punto fijo.
- El criterio de la convergencia g'(x): va a evaluar si la función es contractiva en el punto buscado.
- Los errores (absoluto, relativo y cuadrático): estos miden la precisión entre iteraciones.

Tablas y Gráficas Obtenidas

Iteración x_n Error absoluto

Dirección General

1	1.870829	0.3708287
2	2.14767	0.2768412
3	2.333026	0.185356
4	2.449301	0.1162756
5	2.519505	0.07020333
6	2.56096	0.04145487
7	2.585126	0.02416683
8	2.599111	0.01398479
9	2.60717	0.008058417
10	2.611802	0.004632187
11	2.614461	0.002658986
12	2.615986	0.001525101
13	2.61686	0.000874343
14	2.617361	0.0005011306
15	2.617649	0.0002871803
16	2.617813	0.0001645587
17	2.617907	9.429002e-05
18	2.617962	5.402543e-05
19	2.617992	3.095449e-05
20	2.61801	1.773557e-05
21	2.61802	1.016165e-05
22	2.618026	5.82213e-06

Tabla 1.1 Tabla del error de valor absoluto de x_n

Dirección General

Grafica 2.1 Grafica de la función $g(x) = \sqrt{3x - 1}$

Dirección General

Subdirección académica

Grafica 2.2 Grafica de la Evolución del error absoluto.

Análisis de los Errores Encontrados

La función que se utiliza es $g(x) = (3x - 1)^{1/2}$.

 El error absoluto disminuye en cada iteración conforme el método de punto fijo se acerca a la raíz buscada. La reducción del error absoluto indica que el método está convergiendo correctamente.

Código: Tarea 2.2 Metodo de Punto Fijo

Ejercicio 2

Explicación de los Resultados

Dirección General

Subdirección académica

En este ejercicio se usa g(x) = In(4x), y la convergencia es menos uniforme en comparación con el ejercicio 1, ya que la pendiente de g(x) en algunos intervalos se acerca a 1, lo que ralentiza la convergencia.

Este ejercicio ilustra la importancia de elegir una función g(x) adecuada y un valor inicial apropiado.

Tablas y Gráficas Obtenidas

Iteración	x_n	Error absoluto	Error relativo
1	1.386294	0.3862944	0.2786525
2	1.712929	0.3266343	0.1906876
3	1.924499	0.2115703	0.1099353
4	2.04096	0.1164611	0.05706191
5	2.099715	0.05875465	0.02798221
6	2.128096	0.02838117	0.01333642
7	2.141522	0.01342614	0.00626944
8	2.147811	0.006289176	0.002928179
9	2.150744	0.002932475	0.00136347
10	2.152108	0.001364401	0.0006339833
11	2.152742	0.0006341843	0.0002945937
12	2.153037	0.0002946371	0.0001368472
13	2.153174	0.0001368566	6.356041e-05
14	2.153237	6.356243e-05	2.951947e-05

Dirección General

15	2.153267	2.951991e-05	1.370936e-05
16	2.15328	1.370945e-05	6.366775e-06
17	2.153287	6.366796e-06	2.95678e-06

Tabla 1.1 Tabla de iteraciones de los errores de x_n

Grafica 1.1 Grafica de la función $g(x) = \frac{e^x}{4}$

Dirección General

Subdirección académica

Grafica 1.2 Grafica de la evolución de los errores

Análisis de los Errores Encontrados

En este ejercicio se emplea la función g(x) = In(4x).

- En el error absoluto al inicio puede fluctuar si el punto inicial no está bien elegido, pero si la derivada de g(x) en la raíz es menor que 1 en valor absoluto, el error disminuirá progresivamente.
- El error relativo puede ser más sensible a cambios pequeños en x_n , lo que puede provocar variaciones en las primeras iteraciones, pero luego decrece.

Código: Tarea 2.2 Metodo de Punto Fijo

Ejercicio 3

Explicación de los Resultados

Dirección General

Subdirección académica

En este ejercicio, se usa g(x) = cos(x). Esta función tiene un comportamiento oscilatorio lo que significa que oscila alrededor de la raíz antes de estabilizarse. Este caso muestra que, aunque el método de punto fijo puede funcionar, su tasa de convergencia puede ser más lenta dependiendo de la función utilizada.

Tablas y Gráficas Obtenidas

Iteración	x_n	Error absoluto	Error relativo
1	0.877583	0.3775826	0.430253
2	0.639012	0.2385701	0.3733418
3	0.802685	0.1636726	0.2039064
4	0.694778	0.1079071	0.1553116
5	0.768196	0.0734178	0.09557173
6	0.719165	0.04903039	0.06817678
7	0.752356	0.03319031	0.04411518
8	0.730081	0.0222747	0.03050989
9	0.74512	0.01503928	0.02018369
10	0.735006	0.01011403	0.01376047
11	0.741827	0.006820214	0.009193812
12	0.737236	0.004590797	0.006227041
13	0.74033	0.003093926	0.00417912
14	0.738246	0.002083414	0.002822112
15	0.73965	0.001403724	0.001897823
16	0.738705	0.0009454234	0.00127984
17	0.739341	0.0006369129	0.0008614598
18	0.738912	0.0004290029	0.000580587
19	0.739201	0.0002889948	0.0003909554
20	0.739007	0.0001946644	0.0002634135
21	0.739138	0.000131131	0.0001774107
22	0.73905	8.833017e-05	0.0001195186
23	0.739109	5.950083e-05	8.050344e-05
24	0.739069	4.008022e-05	5.423068e-05
25	0.739096	2.699863e-05	3.652926e-05
26	0.739078	1.818655e-05	2.460709e-05

Dirección General

27	0.73909	1.22507e-05	1.657539e-05
28	0.739082	8.25221e-06	1.116549e-05

Tabla 1.1 Tabla de las iteraciones de errores de x_n

Grafica 1.1 Grafica de la funcion $g(x) = \cos(x)$

Dirección General

Subdirección académica

Grafica 1.2 Grafica de las evoluciones de los errores

Análisis de los Errores Encontrados

En este código se emplea la función g(x) = cos(x).

- En el error absoluto puede no reducirse lo suficiente si el método oscila, ya que la función coseno tiene puntos fijos múltiples y su derivada en algunos de ellos puede ser mayor a 1 en valor absoluto, afectando la convergencia.
- En el error relativo muestra fluctuaciones si el método no es estable, especialmente en funciones trigonométricas donde la derivada puede no estar en el rango adecuado.

Código: Tarea 2.2 Metodo de Punto Fijo

