<u>J</u>)SAJ-22	Maths For	DSA		3 1
				1 2	
1 Prime	number cod	1-			
	For (i=	2; i< N	· 1++) {	
		Nº1.1) }		7.	
,		not p	nine:		
		3			
	Else	3			
		prime v	, 1		
)			
	we know	for a	nume	= 36,	its divisi
The state of		134	.911	,	15
120) ×	36	1 0 0		
		× 12	We com	ampic	1 these
		x 9	by wri		
	6	× 6	0	code	13U
	9	×4		KIM F	Vin
		×3 -) [epeated		
		6 x 1	7777	7 7 ° a	
Cole >	if (n <=1)		(1	7 N - 11	
			· ·		mem
		false;	<u> </u>	C	•
All and the		c = 21	7	Squ	any both
		CXC Z=	$= h) $ {	^2	Silles
	j¢ (n'/. c =	= 0)	62.	< n
int- Nor.	,	return Ea	lse;	•	
- 10 Kidni n	5			151.	
	(++;		4.		

return tru;

2) sieve of eratosnteno -> as we have to int n = Hu; boolean[] primes = new boolean [n+] siar (n, primes); static void sieve (int n, boolean[] primes)[For (int i=2 ', | ixi <= n', i++) (if (primes [i] = = false) (for (int 1 = i +i; j <=n; j=j+1)(- primo [j] = true; in array false prime 3 anji) - hu, notpani. for (int i= 2; i < n; i++) { if primes [i] = = false; pnnt (1); Time complexity > outer loop rusing titl A inner wop -> n/1 +1 +1 +1 ---) 1 cy (logn) . Time complexity = O(n log(logn))

s we use binary search

3 Finding square not of a num.

int n = 40; int p = 3;

nt p = 3; System. out. pnnt f("0/0.3F", sqrt(n,p));

Static double sgrt (int n , int p) (int s = 0;

int e=n; double not = 0.0;

while (S<=e) { int m = s + (e-s)/2;

if (mxm ==n)

return m; of (mxm >n)

e= m-1; else

s = m+1;

root = e;

Julie possible for precisions

```
preason digita, = 3 in this case
    double incr = 0.1;
     for (int i=0; 1/15 p; i++) }
               while (not + not <=n) {
                   root + = incr;
             root = not - mar;
                                         - here the not
                                        value had enceded
             mar/= 10;
                                          In : we rud
                                        to subtrat 0-1
                                         to get our previes
Step
Valle
                           gets to
       return root;
                           the next decimal
                           place
     Time complexity == O(log(n))
9 Newton Rhapson method For not
     Formula \rightarrow \int N = \left( \frac{X}{X} + \frac{N}{X} \right)
                                             guessed
                             2
      This formula
                                                 not
      worms because
      try to put IN Mylace

Of X, we will have LMS = RMS
       emor = not - x we will new
                                    minimising enor.
```

Mam. abs (a-b)
gives the enact value
(like mod 11).

Proces / Approach
O Assign X to N
O Assign & DN
2 we will find our ams wron
emor <
3 we will update up to x= xxx
$\sqrt{\lambda}$
X(NOt) = X + N
- x inited
$\frac{X(NOt) = X + N}{2}$
74
Code→
double n = n;
double not = 0;
while (true) {
$not = 0.5 \times (n + \frac{n}{n});$
VOU, , , , , , , , , , , , , , , , , , ,
if (Math. abs (not-x) (0.5) (
break;
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
n = not;
}
return not

3 Factors of a number: cg if we take num →20 20 has fayors 2 4 5 10 20 we can chear all nums below 20 line 170 n == 0 & is a factor. OR to reduce space time complexity. we can runit till like vin beause 11×20 2 710 / too factors are repeating in no reed to print) do twin. also we ston that later half, 20,10,5 in a languist and print revent ofit. Array List < Integer> list = new Array 27st <> (); for (int i= 1; j <= Ham. Sqrt(n); i++) { jf (n%) = = 0) { x (n1 == i) prevents < return (i) printry duplicates else adds the entum(i) list add (n/i); other factor to list now print reverse arraylist.

© Properties OF Modulo

• $(a+b)^{4}$, $m = [(a^{4})^{6}m) + (b^{4})^{6}m]^{4}$, m• $(a-b)^{4}$, $m = [(a^{4})^{6}m) - (b^{4})^{6}m) + m]^{4}$, m• $(a*b)^{4}$, $m = [(a^{4})^{6}m) + (b^{4})^{6}m]^{4}$, m• $(a*b)^{4}$, $m = [(a^{4})^{6}m) + (b^{4})^{6}m]^{4}$, m• $(a*b)^{4}$, $m = [(a^{4})^{6}m) + (b^{4})^{6}m]^{4}$, m• $(a*b)^{4}$, $m = [(a^{4})^{6}m) + (b^{4})^{6}m]^{4}$, m• $(a*b)^{4}$, $m = [(a^{4})^{6}m) + (b^{4})^{6}m]^{4}$, m• $(a*b)^{4}$, $m = [(a^{4})^{6}m) + (b^{4})^{6}m]^{4}$, m• $(a*b)^{4}$, $m = [(a^{4})^{6}m) + (b^{4})^{6}m]^{4}$, m• $(a*b)^{4}$, $m = [(a^{4})^{6}m) + (b^{4})^{6}m]^{4}$, m• $(a*b)^{4}$, $m = [(a^{4})^{6}m) + (b^{4})^{6}m]^{4}$

This meany

that b and m are coprines

L) only 1 as rommon factor

· (990m) % m = 9 % m only

· molom = 0 ~ + n E + ve intege

Die hard Enample What is MCF/GCD? For an equation n & y as in integers, what is the min. the Value you can get of the equation. OR It is the highest common factor of 2 no-s HCF (4, 18) = (2) 1, (2), 4 1, (2) 3, 6, 9, 18 min (3n+9y)=3 $1 \qquad 3L m (as ment)$ 31 buchet 91 bucket done 3 (n+sy)=3 put n = -2, y=3 you get min value

an + by = L eg-2n+4y = 5 MCFOF 2 and 4 is 2 2 (n+2y) = 5n+2g = 2.5 as we one getty degrad Dic hard not POSSIBL 3n +5y = 17 eg-1 (3n + 5y) = 171 divitus 17 : Dichard is possible 3n + 6y = 9 3/(n+2y)=93

as MCF divides, die hand

possible.

Euclids Algorimm for GCD gcd (a,b) = gcd (rem (b,a), a) ged (105, 224) = ged (rem (24,105), 105) = gcd (14,105) Why this is working? our eg - 1054 + 224 y gets convenil to 14n+ 105y brause gcd of (05,224) also divides a linear combination 06 105 and 224. is as soon as it is a linear combination, it is only n and y can be mythy. as 224 - 2×105 = 14

224 = 14/1/ 2/x105

14 u + 105y = 224 = L

(ode -) use Recursion-Function -Static mt gcd (int a, int b) [if (a = = 0) { return ged (byog, a) LCM (a,b) = min numberdivisble by both a and b we know that $a \times b = l(am(9,b) \times GCD(9,b)$ FORMULA .. CCM (916) = axb

(i

GCD (916)