3.1 . Probability inequalities

Exercise:

- 1. The Chebychev's inequality for random variable X is $(-2 < X < \infty) \ge \frac{21}{25}$, find E(X) and V(X).
- 2. Two unbiased dice are thrown. If X is the sum of the numbers showing up, prove that $P(|X-7| \ge 3) \le \frac{35}{54}$. Compare this with the actual probability.
- 3. If X is the number scored in a throw of a fair die, find the upper bound for $P(|X \mu| \ge 2.5)$ where $\mu = E(X)$. Also find the actual probability.
- 4. If X is a r.v. such that E(X) = 3 and $E(X^2) = 13$, find the lower bound of $P(-2 \le X \le 8)$.
- 5. A discrete random variable X is specified by $p(-a) = p(a) = \frac{1}{8}$ and $p(0) = \frac{3}{4}$. Compute
 - (i) $P(|X| \ge 2\sigma)$ and
 - (ii) Chebychev's inequality bound.

Answers:

- 1. E(X) = 3 and V(X) = 4
- 2. Actual probability = $\frac{1}{3}$
- 3. Upper bound = 0.47 and actual probability = 0
- 4. $\frac{21}{25}$
- 5. (i) $\frac{1}{4}$ (ii) $\frac{1}{4}$