$$\bullet \ \psi(x) = x^4$$

•
$$\psi_l = 0$$

•
$$\psi_{\rm r} = 1$$

•
$$\psi_{\mathrm{ll}} = 0$$

•
$$\psi_{\rm rr}=4$$

$$g(x) = -24$$

Table 1: Numerical results of PRO1 scheme.

		$\omega = 1 1,1$		$\omega = 1 3$	$\omega = 1 3,1$		$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	3.33E-03		3.33E-03		3.33E-03	_	3.33E - 03	
	40	4.31E-04	2.95	4.31E - 04	2.95	4.31E - 04	2.95	4.31E - 04	2.95
ID (1)	80	5.46E - 05	2.98	5.46E - 05	2.98	5.46E - 05	2.98	5.46E - 05	2.98
$\mathbb{P}_3(4)$	160	6.86E - 06	2.99	6.86E - 06	2.99	6.86E - 06	2.99	6.86E - 06	2.99
	320	8.59E - 07	3.00	8.59E - 07	3.00	8.59E - 07	3.00	8.59E - 07	3.00
	640	9.20E - 08	3.22	9.20E - 08	3.22	9.20E - 08	3.22	9.20E - 08	3.22
	20	4.78E - 14	_	4.78E - 14	_	4.78E-14	_	4.78E - 14	
	40	$1.24E{-}13$	\uparrow	$1.24E{-}13$	\uparrow	$1.24E{-}13$	\uparrow	1.24E - 13	\uparrow
D. (6)	80	2.80E - 12	\uparrow	2.80E - 12	\uparrow	2.80E - 12	\uparrow	2.80E - 12	\uparrow
$\mathbb{P}_5(6)$	160	$9.42E{-11}$	\uparrow	$9.42E{-}11$	\uparrow	$9.42E{-}11$	\uparrow	$9.42E{-}11$	\uparrow
	320	1.10E-09	\uparrow	1.10E-09	\uparrow	1.10E-09	\uparrow	1.10E - 09	\uparrow
	640	7.63E-09	\uparrow	7.63E - 09	\uparrow	7.63E - 09	\uparrow	7.63E - 09	↑

- $\psi(x) = \exp(x)$
- $\psi_l = 1$
- $\psi_{\rm r} = e$
- $\psi_{\mathrm{ll}} = 1$
- $\psi_{\rm rr} = e$
- $g(x) = -\exp(x)$

Table 2: Numerical results of PRO1 scheme.

		$\omega = 1 1,1$		$\omega = 1 3$	$\omega = 1 3,1$		$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$\mathrm{E}_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	2.60E-04	_	2.60E - 04		2.60E - 04	_	2.60E - 04	_
	40	3.35E - 05	2.95	3.35E - 05	2.95	3.35E - 05	2.95	3.35E - 05	2.95
$\mathbb{P}_3(4)$	80	4.14E - 06	3.02	4.14E - 06	3.02	4.14E - 06	3.02	4.14E - 06	3.02
F3(4)	160	4.90E - 07	3.08	4.90E - 07	3.08	4.90E - 07	3.08	4.90E - 07	3.08
	320	5.33E - 08	3.20	5.33E - 08	3.20	5.33E - 08	3.20	5.33E - 08	3.20
	640	1.16E - 08	2.20	1.16E - 08	2.20	1.16E - 08	2.20	1.16E - 08	2.20
	20	1.78E - 07	_	1.78E - 07	_	1.78E - 07	_	1.78E - 07	_
	40	5.36E - 09	5.05	5.36E - 09	5.05	5.36E - 09	5.05	5.36E - 09	5.05
D. (6)	80	$1.43E{-}10$	5.23	$1.43E{-}10$	5.23	$1.43E{-}10$	5.23	$1.43E{-}10$	5.23
$\mathbb{P}_5(6)$	160	$9.21E{-}11$	0.64	$9.21E{-11}$	0.64	$9.21E{-}11$	0.64	$9.21E{-}11$	0.64
	320	6.88E - 10	\uparrow	$6.88E{-}10$	\uparrow	6.88E - 10	\uparrow	$6.88E{-}10$	\uparrow
	640	5.60E - 09	\uparrow	5.60E - 09	\uparrow	5.60E - 09	\uparrow	5.60E - 09	\uparrow

•
$$\psi(x) = \sin(\pi x)$$

•
$$\psi_l = 0$$

•
$$\psi_{\mathrm{ll}} = \pi$$

•
$$\psi_{\rm r} = 0$$

•
$$\psi_{\rm rr} = -\pi$$

•
$$g(x) = -\pi^4 \sin(\pi x)$$

Table 3: Numerical results of PRO1 scheme.

		$\omega = 1 1,1$		$\omega = 1 3$	$\omega = 1 3,1$		$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$\mathrm{E}_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	5.37E - 03	_	4.42E - 03	_	4.42E - 03	_	4.42E - 03	_
	40	7.55E - 04	2.83	6.90E - 04	2.68	6.90E - 04	2.68	6.90E - 04	2.68
D ₋ (1)	80	1.51E - 04	2.32	1.47E - 04	2.24	1.47E - 04	2.24	1.47E - 04	2.24
$\mathbb{P}_3(4)$	160	3.53E - 05	2.09	3.50E - 05	2.07	3.50E - 05	2.07	3.50E - 05	2.07
	320	8.67E - 06	2.02	8.65E - 06	2.02	8.65E - 06	2.02	8.65E - 06	2.02
	640	2.14E - 06	2.02	2.15E - 06	2.01	2.16E - 06	2.00	2.15E - 06	2.01
	20	2.68E - 05	_	2.24E - 05	_	2.24E - 05	_	2.24E - 05	_
	40	3.73E - 07	6.17	4.59E - 07	5.61	4.59E - 07	5.61	4.59E - 07	5.61
D. (6)	80	5.88E - 08	2.66	5.41E - 08	3.08	5.42E - 08	3.08	5.41E - 08	3.08
$\mathbb{P}_5(6)$	160	4.11E-09	3.84	3.93E - 09	3.78	3.55E - 09	3.93	3.75E - 09	3.85
	320	$4.63E{-}10$	3.15	1.62E - 09	1.28	2.64E - 09	0.43	$3.06E{-}10$	3.61
	640	4.31E - 08	\uparrow	3.45E - 09	\uparrow	8.41E - 09	\uparrow	1.32E - 08	\uparrow

•
$$\psi(x) = \sin(2\pi x)$$

•
$$\psi_l = 0$$

•
$$\psi_{\mathrm{ll}} = 2\pi$$

•
$$\psi_{\rm r} = 0$$

•
$$\psi_{\rm rr} = 2\pi$$

$$g(x) = -16\pi^4 \sin(2\pi x)$$

Table 4: Numerical results of PRO1 scheme.

		$\omega = 1 1,1$		$\omega = 1 3$	$\omega = 1 3,1$		$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	6.05E - 02		4.96E - 02	_	4.96E - 02	_	4.96E - 02	
	40	6.90E - 03	3.13	6.47E - 03	2.94	6.47E - 03	2.94	6.47E - 03	2.94
$\mathbb{D}_{-}(A)$	80	1.24E - 03	2.47	1.23E-03	2.40	1.23E - 03	2.40	1.23E - 03	2.40
$\mathbb{P}_3(4)$	160	2.82E - 04	2.14	2.82E - 04	2.12	2.82E - 04	2.12	2.82E - 04	2.12
	320	6.89E - 05	2.03	6.88E - 05	2.03	6.88E - 05	2.03	6.88E - 05	2.03
	640	1.71E - 05	2.01	1.71E - 05	2.01	1.71E - 05	2.01	1.71E - 05	2.01
	20	3.65E - 03		1.85E - 03	_	1.85E - 03	_	1.85E - 03	_
	40	1.55E - 05	7.88	1.95E - 05	6.57	1.95E - 05	6.57	1.95E - 05	6.57
D. (6)	80	1.54E - 06	3.34	1.76E - 06	3.47	1.76E - 06	3.47	1.76E - 06	3.47
$\mathbb{P}_5(6)$	160	1.29E-07	3.57	1.20E - 07	3.87	1.20E - 07	3.87	1.20E - 07	3.87
	320	8.64E-09	3.90	8.64E - 09	3.80	8.93E - 09	3.75	8.95E - 09	3.75
	640	1.80E - 08	\uparrow	1.65E - 08	\uparrow	3.84E - 08	\uparrow	1.46E - 08	\uparrow

- $\psi(x) = \sin(6\pi x) \exp(x)$
- $\psi_l = 0$
- $\psi_{\mathrm{ll}} = 6\pi$
- $\psi_{\rm r} = 0$
- $\psi_{\rm rr} = 6 {\rm e} \pi$
- $g(x) = \exp(x) \left(24\pi (36\pi^2 1)\cos(6\pi x) (1296\pi^4 216\pi^2 + 1)\sin(6\pi x) \right)$

Table 5: Numerical results of PRO1 scheme.

		$\omega = 1 1,1$		$\omega = 1 3$	3, 1	$\omega = 1 3$	$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	1.91E+01		1.64E + 01	_	1.64E+01	_	1.64E+01	_
	40	1.98E+00	3.27	1.57E+00	3.38	1.57E + 00	3.38	1.57E + 00	3.38
ID (4)	80	1.30E - 01	3.92	9.14E - 02	4.11	9.14E - 02	4.11	9.14E - 02	4.11
$\mathbb{P}_3(4)$	160	2.95E - 02	2.14	3.33E - 02	1.46	3.33E-02	1.46	3.33E - 02	1.46
	320	1.04E-02	1.51	1.08E - 02	1.63	1.08E - 02	1.63	1.08E - 02	1.63
	640	2.89E - 03	1.85	2.93E - 03	1.88	2.93E - 03	1.88	2.93E - 03	1.88
	20	1.82E+00	_	1.24E+00	_	1.24E+00	_	1.24E+00	_
	40	2.02E - 01	3.18	1.99E - 01	2.64	1.99E - 01	2.64	1.99E - 01	2.64
D. (6)	80	8.66E - 03	4.54	7.57E - 03	4.71	7.57E - 03	4.71	7.57E - 03	4.71
$\mathbb{P}_5(6)$	160	3.28E - 04	4.72	3.05E - 04	4.63	3.05E - 04	4.63	3.05E - 04	4.63
	320	1.49E - 05	4.46	1.52E - 05	4.32	1.52E - 05	4.32	1.52E - 05	4.32
	640	9.82E - 07	3.92	7.32E - 07	4.38	8.10E - 07	4.23	9.19E - 07	4.05

•
$$\psi(x) = -\exp(x) - (e-3)x^3 - (5-2e)x^2 + x + 1$$

•
$$\psi_l = 0$$

•
$$\psi_{ll} = 0$$

•
$$\psi_{\rm r} = 0$$

•
$$\psi_{\rm rr} = 0$$

•
$$g(x) = \exp(x)$$

Table 6: Numerical results of PRO1 scheme.

		$\omega = 1 1,1$		$\omega = 1 3$	$\omega = 1 3,1$		$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	2.60E-04	_	2.07E - 04	_	2.07E - 04	_	2.06E-04	_
	40	3.35E - 05	2.95	2.65E - 05	2.96	2.65E - 05	2.96	2.65E - 05	2.96
D- (1)	80	4.14E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02
$\mathbb{P}_3(4)$	160	4.90E - 07	3.08	3.82E - 07	3.10	3.82E - 07	3.10	3.82E - 07	3.10
	320	5.40E - 08	3.18	4.03E - 08	3.25	4.01E - 08	3.25	4.11E - 08	3.22
	640	1.07E - 08	2.34	7.36E - 09	2.45	6.71E - 09	2.58	1.09E - 08	1.91
	20	1.78E - 07	_	1.48E - 07	_	1.48E - 07	_	1.48E - 07	_
	40	5.36E - 09	5.05	4.46E - 09	5.06	4.45E - 09	5.06	4.45E - 09	5.06
D. (6)	80	$1.54E{-}10$	5.12	1.57E - 10	4.82	$1.58E{-}10$	4.82	$1.40E{-}10$	4.99
$\mathbb{P}_5(6)$	160	$3.50E{-}11$	2.14	$1.11E{-}10$	0.51	$1.69E{-}10$	\uparrow	$4.62E{-}10$	\uparrow
	320	1.77E - 09	\uparrow	1.18E - 09	\uparrow	4.14E - 09	\uparrow	$1.60E{-}10$	1.53
	640	1.09E - 08	\uparrow	2.60E - 08	\uparrow	3.89E - 08	\uparrow	1.19E - 08	\uparrow