Lab Assignment 2 - Decision Tree Part 1 - ID3

Build an **ID3 decision tree** for the following problem of finding whether a student is single or committed (3)

Reference: You can refer a similar problem in this page https://sefiks.com/2017/11/20/a-step-by-step-id3-decision-tree-example/

To Do

- Compute the Information Gains (using difference in weighted entropy) of the first features that better discriminates the single vs committed. Then split the tree based on the first feature.
- Choose the further features based on the information gains. Don't the split the tree if the information gain is not optimal.
- Print the information gains for each feature and every split. Finally print the tree.

S.No	Branch	CGPA	Gamer	Movie	Committed?
				Fanatic	
1	CSE	High	Yes	No	No
2	CSE	Low	Yes	No	No
3	CSE	High	Yes	Yes	No
4	CSE	High	No	No	Yes
5	CSE	Low	No	Yes	Yes
6	ECE	Low	Yes	No	No
7	ECE	High	Yes	Yes	Yes
8	ECE	Low	Yes	Yes	No
9	ECE	High	Yes	Yes	Yes
10	ECE	High	No	Yes	Yes
11	MECH	High	Yes	Yes	No
12	MECH	High	No	No	No
13	MECH	High	No	No	Yes
14	MECH	Low	No	No	Yes
15	MECH	Low	No	No	Yes

• Test the model with the below samples and calculate the accuracy.

1	CSE	High	No	Yes	Yes
2	ECE	Low	Yes	No	No
3	MECH	Low	No	Yes	No

Suggested Platform: Python: Azure Notebook/Google Colab Notebook, packages such as Numpy, Pandas

Submission: Submit your files in Single ipython Notebook in LMS before Sunday 5th Aug, 11.59 pm.

Marking: Marking is based on both performance during the lab hours as well as complete submission in LMS.