אלגוריתמים 2

2016 בפברואר 23

מרצה: ד"ר עדן כלמטץ'

מסכם: מני סדיגורסקי

תוכן עניינים

סיבוכיות של פעולות אריתמטיות 29.10.15

תזכורת: חיבור וחיסור ניתנים לביצוע בזמן ($\mathcal{O}(n)$ כאשר הוא מספר הביטים (ולא גודל המספר). כפל וחילוק ניתנים לחישוב בזמן $\mathcal{O}(n^2)$

כלומר אם אנו עובדים עם 1024 אזי חיבור, אזי חיבור, או בינארי בייצוג בינארי או עובדים עם אנו עובדים עם א $\mathcal{O}\left(log_2\left(1024\right)\right)=\mathcal{O}\left(10\right)$ בזמן בימן $\mathcal{O}\left(log_2\left(1024\right)\right)=\mathcal{O}\left(10\right)$

הערה: חשוב לשים לב שמצד שני אם נבנה אלגוריתמים שרצים בזמן ריצה שתלוי בגודל הקלט (גודל המספר, נניח 1024) אזי התלות באורך הקלט כלומר (גודל הייצוג של הקלט נניח, 10 ביטים) תהיה גדולה אקספוננציאלית.

לדוגמה בבעית הגנב ($Knapsack\ problem$) הראנו שניתן בעזרת תכנון דינאמי לבנות אלגוריתם שרץ בזמן שהוא לינארי בגודל המספרי של הקלט m והיה נראה לנו שזה מצוין אלא שבעצם מה שחשוב בדרך כלל זה הייצוג כי זה אורך הקלט של התוכנית ובמקרה הזה נקבל שזמן הריצה כתלות באורך הייצוג n הוא

$$n = log_2 m \Rightarrow m = 2^n \Rightarrow \mathcal{O}(m) = \mathcal{O}(2^n)$$

כלומר למעשה האלגוריתם ירוץ זמן ריצה אקספוננציאלי באורד הקלט.

חשבון מודולרי

ביטים $n \geq a$ באטר ו $a,b \in \mathbb{Z}_m$ כאשר ו $a+b \, (mod \, m)$ ביטים על פי ההגדרה ומכאן או ומכאן א $0 \leq a,b < m$ ולכן נקבל אמן ריצה

$$\mathcal{O}(n) \quad \ni \quad \begin{cases} a + b \pmod{m} = a + b & \Leftarrow a + b < m \\ a + b \pmod{m} = a + b - m & \Leftarrow a + b \ge m \end{cases}$$

ביטים $n \geq n$ ו $a,b \in \mathbb{Z}_m$ אשר $ab \ (mod \ m)$ כפל: $\mathcal{O}(n^2)$ אשר פעולת כפל + פעולת חילוק עם שארית ובסה"כ זמן ריצה

 $a/b\Rightarrow ab^{-1}$ החופכי כלומר באיבר המשיים משמעותו מעל מעלה חילוק למעשה חילוק מעל הממשיים משמעותו הכפלה לאשר $b^{-1}b=1$

 $0
eq a \in$ כמו שראינו בקורס באלגברה ב \mathbb{Z}_m לא תמיד קיים הופכי אבל בקורס באלגברה ב $aa'=1 (mod\ m)$ כך ש $a'\in \mathbb{Z}_m$ אזי קיים $a'\in \mathbb{Z}_m$ הוא לא רק חוג אלא שדה.

האלגוריתם של אוקלידס למציאת האלגוריתם

 $a \leq b$ כאשר במהלך היום בלי הגבלת כעת באלגוריתם gcd(a,b) כאשר במהלך לדון כעת באלגוריתם

$$\gcd(a,b)=a$$
 אזי $a\mid b$ כלומר $b=0\ mod\ m$ טענה: אם אם $\gcd(a,b)=\gcd(a,a-b)$

נימוק:

$$c|a \wedge c|a \Rightarrow c|ab$$

ומנגד

$$c|a \wedge c| (b-a) \Rightarrow c| (a+(b-a)) = b$$

עד (gcd אם אום (ועדיין אוים שוב שוב א מ מ אוו ולחסר את אוו או מכך נוכל להמשיך אוו אחסר את מa או ולחסר אוו שנרד מתחת ל-a ומה נקבל בתוצאת החיסור הוא או במילים אחרות מרד מתחת ל-a

$$gcd(a,b) = gcd(a,b-ka) = gcd(a,b \bmod a)$$
 מסקנה:

ומכאן נקבל אלגוריתם רקורסיבי:

: GCD - Euclid(a, b)

- $c = b \mod a$
- a אם c=0 אם •
- GCD-Euclid(c,a) אחרת $^{ au}$ נחזיר \bullet

זמן ריצה a,b באורך ביטים

בהתבוננות האשונית נוכל לשים לב שבכל צעד אחד המספרים קטן ולכן נוכל להסיק שעומק בהתבוננות ראשונית ב $2^n{\geq}max(a,b){\geq}$ הרקורסיה

ננסה לחסום באופן טוב יותר.

$$b \ mod \ a \leq rac{b}{a}$$
 טענה:

הוכחה: נחלק למקרים ⁻

$$b \mod a < a \le \frac{b}{2} \Leftarrow a \le \frac{b}{2}$$
 .1

$$k>1$$
 נקבל שאם $a>rac{b}{2}$ מאחר ו $a>rac{b}{2}$.2

$$k > 1 \Rightarrow b \mod a = b - ka \le b - 2a < 0$$

$$b \ mod \ a = b - a < b - rac{b}{2} = rac{b}{2}$$
 ולכן בהכרח $k = 1$ ולכן בהכרח

אם כך בכל צעד, אחד הפרמטרים קטן לפחות בחצי כל שני צעדים, שני הפרמטרים קטנים אם כך בכל בראי בראטרים אות הוא לכל היותר בחצי האיטרציות הוא להיותר בחצי האיטרציות הוא לביד הוא להיותר בחצי האיטרציות הוא לביד הו

מאחר חילוק עם שארית פעמים מבצע (n) איטרציות, כלוומר איטרציות, מקבל מקבל מקבל מקבל מה"כ מה"כ ממן היצה לחילוק עם איטרציות, מה"כ ממן היצה מה"כ ממן היצה מה"כ מה"כ מחילה איטרציות, מה"כ מחילה מה"כ מחילה מה"כ מחילה איטרציות, מה"כ מחילה מה"כ מה"כ מחילה מחילה מחילה מה"כ מחילה מה"כ מחילה מח

 $aa'=1\in\mathbb{Z}_m$ משפט: אם $a'\in\mathbb{Z}_m$ כך אזי קיים $a'\in\mathbb{Z}_m$ אזי קיים $a'\in\mathbb{Z}_m$ משפט: אם

 $(B\acute{e}zout)$ למה: הלמה של באו

לכל $x,y\in\mathbb{Z}$ קייים $a,b\in\mathbb{N}$ לכל

$$xa + yb = GCD(a, b)$$

(נוכיח עוד מעט)

ראשוני m ראשוני יהי יהי יהי יהי המשפט: יהי

$$GCD(a, m) = 1 \Rightarrow \exists x, y : xa + ym = 1 \Rightarrow xa = 1 + (-y)bm \Rightarrow xa = 1 \pmod{m}$$

 \mathbb{Z}_m הערה: גם אם mפריק אבל וGCD(a,m)=1 קיים הופכי לm

xa+yb= הוכחת הלמה: נשנה מעט את הלגוריתם של אוקלידס כך הלגוריתם את מעט את הוכחת הלמה: GCD(a,b)

: GCD - Euclid(a, b)

- b = da + c ונשמור את d שעבורו $c = b \mod a$
 - y=0 x=1 אם c=0 נחזיר את c=0 אם •
- אחרת: נחזיר את y=x' אחר את את את את את וגם את את הכת וגם אחרת: לחזיר את הרקורסיה אחרת: מהרקורסיה

לך על x', y' החזירה הרקורסיבית החזירה נניח שהקריאה הרקורסיבית החזירה

$$x'c + y'a = GCD(c, a) = GCD(a, b)$$

בפעולה c,d קיבלנו $b \ mod \ a$ כך ש

$$b = da + c$$

כלומר

$$x'c + y'a = x'(b - da) + y'a = x'b + (y' - dx')a$$

את האיר בנוסף לGCD גם את

$$y = x' \ x = y' - dx$$

כנדרש

(ניתוח המקורי) עבוכיות: אם המקורי מה המקורי) (ניתוח מניתוח המקורי) סבוכיות: סבוכיות:

בדיקת ראשוניות

חישוב חזקה בחשבון מודולרי

ביטים $n \geq a, b, m$ $a^b \mod m$ את לחשב את

הבעיה: $ab \approx a$ ביטים באורך פעולות על מספרים ולבצע הוא $ab \approx ab$ ביטים באורך כזה זו בעיה.

רעיון: נבצע $mod \, m$ לאחר כל כפל.

טריק נפוץ ושימושי: נחשב את הסדרה

 $a \mod m$, $a^2 \mod m$, $a^4 \mod m$, ..., $a^{2^n} \mod m$

סדרה בת n איברים

בשביל לחשב כל איבר בסדרה פשוט נעלה את קודמו בריבוע

$$\left(a^{i} \bmod m\right)^{2} = a^{2i} \bmod m$$

נשים לב שמתכונות החשבון המודולורי תוצאת ה mod תהיה זהה גם אם נבצע אותה אחרי כל העלאה בריבוע, וכך נמנע מלבצע פעולות חשבוניות עם מספרים גדולים מדי. מקבל שלחישוב כל איבר נזדקק לפעולת כפל + פעולת mod (ששוות ערך לחילוק עם שארית) כלומר $\mathcal{O}\left(n^2\right)$ פעולות

ולכן בסך הכל עבור ככל הסדרה נקבל שזמן החישוב הוא $\mathcal{O}\left(n^3\right)$ אולכן בסך הכל עבור ככל הסדרה נקבל שזמן הייצוג הבינארי שלה) לסכום של חזקות של 2 כלומר כעת נוכל לפרק את החזקה (בעזרת הייצוג הבינארי שלה)

$$b = 2^{x_1} + 2^{x_2} + \dots$$

נקבל, אם כך, שנוכל לחשב את פעולת העלאה בחזקה בעזרת חישוב כפל של חזקות

$$a^b = a^{2^{x_1}} \cdot a^{2^{x_2}} \dots$$

גם כאן נכניס את פעולת הmod את פעולת את נכניס

$$b = \sum 2^{x_k} \Rightarrow a^b \bmod m = \prod_k (a^{2^{x_k}} \bmod m)$$

דוגמה:

$$5^{13} \mod 7$$

 $5 \mod 7, \Rightarrow 5^2 = 25 \mod 7 = 4 \Rightarrow 5^4 = 4^2 = 2 \mod 7 \Rightarrow 5^8 = 2^2 = 4 \mod 7$ $5^{13} \mod 7 = 5^{\sum (2^3 + 2^2 + 2^0)} \mod 7 = 5^8 \cdot 5^4 \cdot 5^1 \mod 7 = 4 \cdot 2 \cdot 5 = 5 \mod 7$

זמן ריצה:

- עבור חישוב הסדרה עיבוד ראשוני $\mathcal{O}\left(n^3\right)$
 - $^{-}$ בכל שלב עבור כל 2^{x_k} נבצע •

$$(\prod_{j=1}^{k-1} a^{2^{x_j}} \bmod m)(a^{2^{x_k}} \bmod m) \bmod m$$

כאשר הכופל השמאלי הוא מה שחושב עד כה והימני הוא החישוב הבא המבוקש

 $\mathcal{O}\left(n^3\right)$ סה"כ $\Leftarrow mod + c$ שלב בכפל

PRIMES

ישנן שתי בעיות קרובות אבל שונות מאוד בתחום של ראשוניות:

- בדיקת ראשוניות (PRIMES) בהינתן בדיקת האם הוא ראשוניי.
- m פריק, מצא גורם של בהינתן הינתן בהינתן הרוס בהינתן (FACTORING) פירוק לגורמים בהנתן אלגוריתם שפותר את בעיה 2 נוכל למצוא בעזרתו את כל הגורמים של m במה שמצאנו ונפעיל את האלגוריתם על תוצאת החילוק.

Pבעיה 1 היא בעיה קלה - שיערו שזה כך, ואכן בשנת 2002 הוכח שהיא בעיה בעיה בעיה בעיה לעומת זאת נחשבת בעיה קשה - לא ידוע על אלגוריתם שפותר אותה בזמן סביר.

היסטוריה

1.11.15

דטרמיניסטי ופולינומי Miller אלגוריתם של

הוכיח שהאלגוריתם נכון אם השערת רימן המוכללת נכונה Miller

רנדומי, נכון ללא הנחות אלגוריתם של Solovag-Starassen רנדומי, פולינומי, נכון ללא הנחות $PRIMES \in CO - RP$ הם הראו

. אלגוריתמים בעלי אפשרות רנדומית אלגוריתמים בעלי אלגוריתמים אלגוריתמים בעלי אפשרות רCO-RP

כלומר במקרה שלנו $^{ au}$ אם m ראשוני $^{ au}$ האלגוריתם יחזיר "כן" תמיד, אם הוא פריק

האלגוריתם יחזיר "לא" בהסתברות $\frac{1}{2} \leq m$ האלגוריתם יחזיר הסתברות בכל הפעמים "כן" אם חוזרים k פעמים על האלגוריתם על m נתון, ההסתברות פריק היא $\left(\frac{1}{2}\right)^k \geq m$ היא כאשר למעשה m פריק היא

אלגוריתם ב CO-RP (כלומר עם שגיאה הסתברותית אלגוריתם ב Miller-Rabinיעיל יותר (דרגת הפולינום נמוכה יותר), נכון ללא הנחות

מחזיר מחזיר אות שהוא הזה המובן במובן כלומר ללומר ZPP אלגוריתם Adelman-Hungתשובה נכונה ותוחלת זמן הריצה היא פולינומית

 $Pr\left[run-time\geq 2n^c
ight]\leq$ הערה: נניח שתוחלת זמן הריצה n^c נקבל מאי־שיוויון מרקוב ואף את האסתברות צעדים במשך פעם א פעמים א פעמים את נריץ את את נריץ את אלגוריתם א פעמים כל פעם אוריתם אוריתם אוריתם ל $\frac{1}{2}$ $\left(rac{1}{2}
ight)^k \geq$ ריצה לא תעצור בזמן הזה היא

 $PRIMES \in P$ הוכיחו ש Agrawal, Kayal, Saxena :2001

מציאת מספר ראשוני

התעובה האוניות, אם התשובה ביטים ונריץ אלגוריתם לבדיקת ראשוניות, אם התשובה הרעיון הכללי: נגריל מספר באורך mm היא "כן" נחזיר את

משפט המספרים הראשוניים: נגדיר

$$\pi(x) = |\{p | p \le x, \ p \ is \ prime\}|$$

אזי

$$\pi(x) = (1 + o(1)) \frac{x}{\ln(x)}$$

ומכאן שבין $(1+o(1)) rac{x}{ln(x)}$ יש ל2x אשוניים ומכאן

כלומר אם נגריל מספר שלם $2^n \leq m \leq 2^{n+1}$ נקבל ש

$$Pr[m \ is \ prime] = \frac{(1+o(1))\frac{2^n}{ln(2^n)}}{2^n} = (1+o(1))\frac{1}{nln(2)}$$

אם נבצע kn חזרות ההסתברות להצלחה באחת מהן היא

$$1 - Pr\left[failor\right] = 1 - \left(1 - \frac{1 + o\left(1\right)}{nln2}\right)^{kn} \ge 1 - \left(e^{-\frac{1 + o\left(1\right)}{nln2}}\right)^{kn} = 1 - \left(e^{-\frac{1 + o\left(1\right)}{ln2}}\right)^{k} > 1 - \left(\frac{1}{4}\right)^{kn} = 1 - \left(e^{-\frac{1 + o\left(1\right)}{ln2}}\right)^{kn} = 1 - \left(e^{-\frac{1$$

השערה: חפער המקסימלי בין שני האשונים המקסימלי ביים הוא רהפער הפער הפער הפער השערה: רחשערה: רחשערה רחשערה: רחשערה רחשערה רחשערה: רחשערה רחשערה הפער המקסימלי בין המקסימלי הפער המקסימלי הפער המקסימלי האשונים האשונים האשרה הפער המקסימלי המקסימלי האשונים האשונים האשונים האשרה המקסימלי המקסימלי האשונים האשונים האשונים האשונים האשרה המקסימלי המקסימלי האשונים האשונים האשונים האשונים האשונים האשרה המקסימלי המקסימלי האשונים האשונים האשרה המקסימלי ה

 $rac{1}{n}2^{rac{n}{2}}pprox$ התוצאה הכי טובה בדרך להוכחת ההשערה היא שהפער לא גדול מ

אלגוריתם CO-RP אלגוריתם

 $GCD(a,m) \neq 1$ עד פשוט לפריקות: m פריק פיים m פריק פשוט לפריקות:

דוגמה: עדים עדים ($2^{2n}pprox m,\ 2^npprox p,q$) אוניים באורך p,q כמה כאשר שוניים דוגמה: דוגמה: אם

$$m$$
 עדים מתוך $p+q+2 \Leftarrow egin{cases} \mathrm{p,2p,...}(q-1)p \ q,2q,...,(p-1)q \end{cases}$

לא יעיל! - $\mathcal{O}\left(rac{2\cdot 2^n}{2^{2n}}
ight)=\mathcal{O}\left(rac{1}{2^n}
ight)$ בערך האם בערך שנפגע שנפגע יעיל!

משפט: משפט פרמה הקטן

 $a^{p-1} \equiv 1 \ mod \ p$ מתקיים 1 < a < p-1 אם לכל

הוכחה: נבחר a ונסתכל על הקבוצה

$$A = \{a \cdot i \bmod p \mid i = 1...p - 1\}$$

עדה אם $i,j\in\mathbb{Z}_p$ אם $j,j\in\mathbb{Z}_p$ פך ש

$$i \equiv j \bmod p \Leftarrow (i-j)a\bar{a} \equiv 0 \bmod p \Leftarrow (i-j)a \equiv 0 \Leftarrow ia \equiv ja$$

מנימוק דומה ניתן להראות שכל אברי הקבוצה שונים מ0 ולכן למעשה אברי A הם כל המספרים דו1,...,p-1 בפרמוטציה כלשהי ומכאן

$$0 \neq \neq \prod_{i=1}^{p-1} i \equiv \prod_{i=1}^{p-1} ai \equiv a^{p-1} \prod_{i=1}^{p-1} i \pmod{p}$$

השיוויון * נובע מכך שבשדה מכפלה של אברים אברים אפס בהכרח שונה מאפס. השיוויון אנחנו לובע מכך שבשדה לכל איבר קיים הופכי ולכן נוכל להכפיל ב $\left(\prod_{i=1}^{p-1}i\right)^{-1}$ ולקבל מאחר ואנחנו בשדה לכל איבר קיים הופכי

$$a^{p-1} \equiv \left(\prod_{i=1}^{p-1} i\right) \left(\prod_{i=1}^{p-1} i\right)^{-1} \equiv 1 \pmod{p}$$

ובפרט $GCD(a,m) \neq 1$ עינו מקודם שאם פריק קיים m פריק מקודם ציינו מקודם איינו

$$a^{m-1} \neq 1 \bmod m$$

כי אם c|a,m נקבל

$$\forall j, k : c|a^k - jm \Rightarrow c|a^k \mod m$$

1 נקבל (m ולא (מודולו a את מספר שמחלק תמיד מספר נקבל a נקבל ולא כלומר

שאלה: בעזרת הטענה אפשר לשלול ראשוניות באופן חד משמעי (אם היא לא מתקיימת עבור a כלשהו) אבל מה יקרה אם m למעשה פריק! אז יתכן מצב שבו קיים a שיקיים את השקילות של $a^{m-1} \equiv 1 \ mod \ m$ השקילות של משפט פרמה תכשל בסבירות גבוה.

אם כך נשאל $^{ au}$ מה קורה אם קיים a כך ש

$$GCD(a,m) = 1$$

ובנוסף הוא עד לפריקות על פי פרמה כלומר a

$$a^{m-1} \not\equiv 1 \bmod m$$

או באופן את הראשוניות של m אמנם אר באופן או במילים אחרות אמנם אר ולכן או הוא פון או מפריך את אמנו אבל מצד שני הוא כן מפריך את הראשוניות על פי פרמה!

 $a^{m-1}\not\equiv 1\ mod\ m$ ובנוסף ובנוסף GCD(a,m)=1 למה: אם קיים a כך שb למה: אזי לפחות חצי מהמספרים $b\in\{1,..,m-1\}$ מקיימים גם

הוכחה: נניח שקיים a כזה ונגדיר

$$X = \left\{1 \le x \le m - 1 | x^{m-1} \not\equiv 1 \bmod m\right\}$$

נסמן את שאר האיברים בטווח

$$Y = \left\{1 \le y \le m - 1 | y^{m-1} \equiv 1 \bmod m\right\}$$

נראה עYל לי מY החד־תרכי המיפוי על ידי על און און |Y|<|X| עראה נראה נראה א

$$y \in Y \mapsto ay \ mod \ m$$

Xל־ איברים מ איברים מעתיקה אכן לי לי לראה נראה נראה נראה אכן מעתיקה אינ

$$(ay)^{m-1} \equiv a^{m-1}y^{m-1} \equiv a^{m-1} \not\equiv 1 \bmod m \Rightarrow ay \in X$$

 Z_m הראנו בעבר שגם אם \mathbb{Z}_m לא שדה עבור a כך שa כך שדה אופכי הופכי בעבר הראנו בעובדה או כדי להראות את החד־חד־ערכיות של ההעתקה שהגדרנו

$$ay \equiv az \mod m \Rightarrow a^{-1}ay \equiv a^{-1}az \mod m \Rightarrow y \equiv z \mod m$$

"מסקנה: אם קיים a שהינו עד שסותר את משפט פרמה הקטן אבל הוא זק לm אזי יש "הרבה כאלה (יותר מ $\frac{1}{2}$) עדים כאלה.

ולכן נוכל להגדיר את האלגוריתם הבא:

$$: Not - Quite - Miller - Rabin(m)$$

נגריל $a \in \{1,...,m-1\}$ ונבדוק •

"כן" נחזיר $a^{m-1}\equiv 1\ mod\ m$ אם –

"אחרת : נחזיר *"*לא" –

אם אחובי חיובי חיובי ולכן תמיד מהה הקטן הבדיקה היה המיד חיובי ולכן המיד ההה אחובי ולכן המיד מהחm נכון ונחזיר "כו"

אם m פריק אז - או שתנאי הבדיקה של משפט פרמה הקטן יכשל ונזהה נכון את m כפריק או שבמקרה ניפול על $a \in Y$ כלומר $a \in M$ היא נטעה ונחשוב שm פריק נחזיר הראנו שהסיכוי שהאפשרות השניה תקרה היא קטנה מ $\frac{1}{2}$ כלומר במקרה שm פריק נחזיר תשובה נכונה בהסתברות $\frac{1}{2}$

מספרי קרמייקל Carmichael הגדרה:

 $a^{m-1}\equiv 1\ mod\ m$ כך שמכר GCD(a,m)=1 כך שלכל מ כך שלכל הקטן ומתקיים מהסוג של כלומר זהו מספר שאין עבורו עדים מהסוג של משפט פרמה הקטן ועבורתם האלגוריתם שתיארנו יכשל בסבירות 1 (ולא $\frac{1}{2}$ כפי שרצינו).

בעיה: יש אינסוף מספרי קרמייקלץ למרות שהם נדירים

משפט: עבור n ביטים

5.11.15

 $Pr[m \ is \ Carmichael \ number] \le e^{-\Omega\left(n \frac{log(log(n))}{log(n)}\right)}$

לעומת זאת

$$Pr[m \ is \ prime] = \Theta\left(\frac{1}{n}\right)$$

ולכן האלגוריתם שראינו מספיק טוב כדי להגריל ולזהות מספר ראשוני בהסתברות גבוה מאוד. אם נפלנו על ראשוני אז מצוין. אם נפלנו על סתם מספר פריק בהרבה הרצות של הבדיקה נקבל סיכוי נמוך מאוד שנטעה ונחשוב שהוא ראשוני והסיכוי שכל הבדיקה נכשלה כי נפלנו על מספר קרמייקל הוא גם קלוש כי הם ממש נדירים.

אבל בתור אלגוריתם לבדיקה של מספר נתון זה לא מספיק, כי כאשר כבר נתון מספר לא מעניינת אותנו ההסתברות לקבל דווקא אותו ואם נפלנו על אחד בעייתי ניכשל בוודאות בלי קשר לכמה פעמים נבדוק. לכן הוסיפו באלגוריתם שלב של בדיקה שמזהה מספרי קרמייקל.

אבחנה: אם p ראשוני

ומתקיים $x^2 \equiv 1 \ mod \ p$ אזי:

$$(x+1)(x-1) = x^2 - 1 \equiv 0 \bmod p$$

p ומראשוניות

$$p|(x+1)(x-1) \Rightarrow p|x+1 \text{ or } p|x-1 \Rightarrow x \equiv \pm 1 \mod m$$

 $a \not\equiv \pm 1 \ mod \ m$ אבל $a^2 \equiv 1 \ mod \ m$ כך ש a < m : m אבל ולכן עד נוסף לפריקות

וכעת

Miller - Rabin(m)

- $a \in \{1,...,m-1\}$ אחיד האופן פגריל באופן
- "לא" נחזיר: $a^{m-1}\not\equiv 1\ mod\ m$ אם
 - $(a^{m-1} \equiv 1 \bmod m$ כלומר •
- עבור q ו $t\in\mathbb{N}$ עבור $m-1=2^tq$ אי־זוגי
 - נחשב את הסדרה

 $a_0 = a^q \mod m, a_1 = a^{2q} \mod m, ..., a_t = a^{2^t q} \mod m = a^{m-1} \mod m = 1$

"לא" "לאי: $a_{j-1}\neq \pm 1$ ו הסדרה: ער די $j\in \{1,...,t\}$ פיים אם הסדרה: אם לכל –

"כן" - אחרת: נחזיר <math>-

הסבר לצעד הנוסף: אם קיים j כמו שמתואר בצעד כלומר קיים

$$a_j = a^{2^j q} = \left(a^{2^{j-1}q}\right)^2 = 1 \mod m$$

ובנוסף

זמן ריצה:

$$a^{2^{t-1}q} = a_{j-1} \neq 1 \mod m$$

. ולכן שהראנו מקודם עד לפריקות פי הוא a_{j-1} ולכן

(ללא הוכחה) משפט: אם m מספר קרמייקל אזי הבדיקה הנוספת תחזיר "לא" בהסתברות מספר הוכחה)

- $\mathcal{O}\left(n^3
 ight): a^m \ mod \ m$ חישוב •
- $\mathcal{O}\left(n^3\right):a_0=a^q \ mod \ m$ לחשב •
- $t\leq log\left(m
 ight)=:$ ונבצע זאת מספר פעמים מ $\mathcal{O}\left(n^{2}
 ight):a_{j}=a_{j-1}\cdot a_{j-1}\ mod\ m$ חישוב $\mathcal{O}\left(n
 ight)$

 $\mathcal{O}\left(n^3\right)$ - ולכן סב"כ

קריפטוגרפיה

הצפנה במובן הקלאסי דורשת מפתח שבעזרתו ניתן להצפין הודעות ולפענח אותם. הצפנה שכזאת מכונה - הצפנה סימטרית.

בשנת 1977 פרסמו מערכות מאמר ובו העלו מאמר ובו מאמר מערכות מערכות בשנת בשנת 1977 פרסמו מערכות מאמר בשנת חיארו פרוטוקול ראשוני בעל אופי לא סימטרי.

סכימה כללית של פרוטוקול הצפנה במפתח ציבורי:

- $d=private\; key,\; e=$ בוריס מייצר (e,d) את המפתחות אקראי) את בוריתם אלגוריתם מייצר (לפי אלגוריתם המפתחות המפתחות ובייט מייצר (לפי אלגוריתם המפתחות המפתחות המפתחות ובייט מייצר (לפי אלגוריתם המפתחות המתחות המתחות המתחות המתחות המתחות ה
 - d את אצלו את ושומר אצלו את .2
 - $E\left(x,e
 ight)=y$ באמצעות באמפינה את מצפינה מצפינה 3.
 - $D\left(y,d\right)=x$ בוריס מפענח את המסר y באמצעות .4

d אי אפשר לגלות את בהסתברות סבירה בלי אנחת הקושי: אי אפשר לגלות את

 1 מתקיים x_1,x_2 אוריתם שתי הודעות x_1,x_2 מתקיים ולכל שתי הודעות x_1,x_2 מתקיים

$$Pr[A(E(x_1, e), e) = 1] \approx Pr[A(E(x_2, e), e) = 1]$$

RSA 8.11.15

ייצור המפתחות:

- $N=p\cdot q$ ומחשב p,q בוריס מגריל באקראי שני מספרים ראשוניים גדולים
 - GCD(e, (p-1)(q-1)) = 1 ש כך ש e בוחר •
- $ed=1 \ mod \ (p-1) \left(q-1
 ight)$ עך כך א אוקלידס אל אוקלידס של האלגוריתם של סרא האלגוריתם של סרא פ
 - (N,e) את פרסם ullet
 - (d) את שומר לעצמו \bullet

 $oldsymbol{x}$ אנסטסיה רוצה לשלוח לבוריס את ההודעה

- $y=x^e \ mod \ N$ מצפינה את באופן הבא
 - y את לבוריס את \bullet

בוריס רוצה לפענח:

 $y^d \mod N$ מחשב את •

 $y^d \mod N = x$ טענה:

 $arphi\left(N
ight)=$ היא הזרים הזרים הזרים (חבורת חבורה גודל החבורה גודל החבורה אוברה ועלא סחומר: וודל החבורה וודל פי משפט מתורת החבורות וועל פי משפט מתורת החבורות

$$\forall a, b \in \mathbb{Z}_N^* : a^b \equiv a^{b \mod \varphi(N)} \mod N$$

נקבל $ed=1 \ mod \ \varphi \left(N
ight)$ נקבל

$$y^d = (x^e)^d = x^{ed} \equiv x^1 \equiv x \bmod N$$

pprox למעשה יש הגדרה עוד יותר פורמלית שמגדירה במדויק מה הכוונה 1

הוכחה קצרה פחות וכן בחומר: לפי המשפט הקטן של פרמה

$$x^{p-1} = 1 \mod p, \ x^{q-1} = 1 \mod q$$

ולכן

$$ed = 1 \mod (p-1)(q-1) \Rightarrow ed = 1 + c(p-1)(q-1)$$

$$\Rightarrow y^d=(x^e)^d=x^{ed}=x^{1+c(p-1)(q-1)}=x\left(x^{p-1}
ight)^{c(q-1)}$$
אבל אבל $x^{p-1}=1\ mod\ p$ אבל

$$\Rightarrow x^{ed} = x \cdot 1^{c(q-1)} \mod p = x \mod p$$

באותו אופן נקבל

$$x^{ed} = x \mod q$$

ומכאן נקבל ש $x^{ed}-x$ ש נקבל וגם ביp מתחלק מתחלק מתחלק נקבל ע $x^{ed}-x$ שלכאן נקבל בסה"כ במכפלה ולכן בסה"כ

$$x^{ed} - x = 0 \mod N \Rightarrow x^{ed} = x \mod N$$

N אם יבגני (שמצוטט לקו ומנסה להבין מה המסר שעבר מאנסטסיה לבוריס) אזי הוא יוכל לעשות את אותם חישובים בדיוק כמו בוריס ולפענח את המסר המוצפן.

 $(^2$ הנחת הוכחה (לא קיימת הוכחה y,e,N קשה לחשב את בלי לדעת את y,e,N

הפרד ומשול

כפל מספרים

נרצה לנסות לחסוך בפעולות הדרושות לשם חישוב כפל. a,b - 2^n מאורך מספרים בינארים מאורך אם כך בשני מחלק כל אחד מהם לשרשור של שני חלקים שווים:

$$a = a_1 a_2 = \underbrace{\ldots a_1 \ldots a_2 \ldots a_1 \ldots a_2 \ldots}^{n/2 \ bits \ n/2 \ bits} = a_1 \cdot 2^{\frac{n}{2}} + a_2$$

$$b = b_1 b_2 = \overbrace{...b_1...}^{n/2} \overbrace{...b_2...}^{bits} = b_1 \cdot 2^{\frac{n}{2}} + b_2$$

בתרגיל בית ראינו את "הצפנת רבין" ועבורה הראנו שקילות לבעיית הפירוק לגורמים

והכפל ביניהם יתן

$$a \cdot b = a_1 b_1 2^n + (a_1 b_2 + a_2 b_1) 2^{\frac{n}{2}} + a_2 b_2$$

נשים לב שהכפלה ב 2^k פירושה הזזה של תוצאת הכפל בk ביטים. של תוצאת פירושה בירושה מבחינת מבחינת זמן הריצה.

הרעיון הוא לנסות לבצע ברקורסיה את הכפל בין החצאים השונים. אלא שבמצב הנוכחי בכל שלב ברקורסיה נבצע 4 קריאות רקורסיביות

1.
$$a_1b_1$$
 2. a_1b_2 3. a_2b_1 4. a_2b_2

ונקבל בדיוק את אותו זמן ריצה כמו באלגוריתם הנאיבי שאנו מכירים (נראה את חישוב זמן הריצה בהמשך).

אבל נשים לב שמתקיים

$$a_1b_2 + a_2b_1 = (a_1 + a_2)(b_1 + b_2) - a_1b_1 - a_2b_2$$

ואת האה האה לחסוך אנו ממילא ממילא ולכן נוכל בעזרת השיוויון הזה לחסוך קריאה a_2b_1 ואת האת.

 $:Karatsuba\ (a,b,n)$ אלגוריתם קרצובה

- $a\cdot b$ אם n=1 פאם
 - :אחרת
- בכמה בסך בסך (מדובר מתיארנו למעלה a_1,a_2,b_1,b_2 ל a,b את האה פועלות האה
 - : נחשבת רקורסיבית

$$k_1 \leftarrow Karatsuba\left(a_1, b_1, \frac{n}{2}\right)$$

$$k_2 \leftarrow Karatsuba\left(a_2, b_2, \frac{n}{2}\right)$$

$$k_3 \leftarrow Karatsuba\left(\left(a_1 + a_2\right), \left(b_1 + b_2\right), \frac{n}{2}\right)$$

ונחזיר –

$$k_2 + 2^n k_1 + 2^{\frac{n}{2}} (k_3 - k_2 - k_1)$$

זמן ריצה:

 $\mathcal{O}\left(n
ight)$: קריאה אחת בלי

עבור הקריאות הרקורסיביות:

n את אמן הריצה עבור מספר באורך $T\left(n
ight)$

נקבל

$$T(n) = 3T\left(\frac{n}{2}\right) + \mathcal{O}(n)$$

בכל שלב ברקורסיה נקרא ל3 קריאות. מאחר ובכל קריאה אנחנו מחלקסי את בn גקרא נקרא שלב ברקורסיה לובכל ובכל ובכל ובכל וובכל וובכ

לא נתאר באופן כללי עץ קריאות לא נחשב מדויק (ראינו בעבר שיטות איך לעשות את) לא נחשב במדויק (ראינו בעצ יהיו 3 בנים ועומק העץ יהיה $\log_2{(n)}$ ולכן מספר העלים יהיה

$$3^{\log_2(n)} = n^{\log_2 3} \approx n^{1.584}$$

זמן הריצה שכל קודקוד מתאר הוא למעשה סכום של הבנים שלו ועוד זמן לינארי שלא משפיע על החישוב. לכן נקבל שזמן הריצה הסופי שווה אסימפטוטית למספר העליםץ כלומר

$$T(n) = \mathcal{O}\left(n^{\log_2 3}\right) \approx \mathcal{O}\left(n^{1.584}\right)$$

 $^{3}\mathcal{O}\left(n^{2}
ight)$ שזה שיפור לעומת ה

 $F\ddot{u}rer-2007$ מאז נעשו עוד שיפורים בזמן הריצה. האלגוריתם הכי יעיל שידוע כיום הוא מאז מאז מאז פארים בזמן הריצה. האלגוריתם שרץ בזמן $\mathcal{O}\left(n\cdot log\left(n\right)\cdot 2^{\Theta(log^*(n))}\right)$ - שרץ בזמן

מכפלת מטריצות

 n^2 אפחות שצריך לחשב ולכן זמן הריצה יהיה לכל הפחות n^2

אלגוריתם נאיבי ז לכל תא במטריצה נבצע את הכפלת השורה והעמודה המתאימות כלומר נבצע אלגוריתם נאיבי ז לכל תא בסריצה בסה"כ נקבל $\mathcal{O}\left(n^3\right)$ עבור כל החישוב.

ננסה לצמצם את מספר הפעולות באופן הדומה לזה שראינו באלגוריתם קרצובה.

 $n/2x^{n/2}$ נחלק אותם ל4 מטריצות בלוקים כל אחד בגודל X,Y יהיו

$$X = \begin{pmatrix} A & B \\ C & D \end{pmatrix}, \ Y = \begin{pmatrix} E & F \\ G & H \end{pmatrix}$$

תוצאת הכפל תהיה בייצוג הזה

$$XY = \begin{pmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{pmatrix}$$

ריצה מקבלים שלב היינו בכל שלב היינו עם 4 קריאות שלא משארים אלא היינו מקבלים לב שאם לא ליינו מקבלים אלא לשארים לב אלא לא לאריתם הנאיבי. $\mathcal{O}\left(4^{log_2n}\right)=\mathcal{O}\left(n^{log_24}\right)=\mathcal{O}\left(n^2\right)$

אם ננסה כעת לחשב ברקורסיה את כל המכפלות נקבל 8 קריאות רקורסיביות בדומה לחישוב שראינו לגבי כפל מספרים נקבל זמן ריצה

$$\mathcal{O}\left(8^{\log_2 n}\right) = \mathcal{O}\left(n^{\log_2 8}\right) = \mathcal{O}\left(n^3\right)$$

כמו באלגוריתם הנאיבי. משום כך ננסה לצמצם את מספר הקריאות, אפילו הורדה של קריאה אחת כבר תהווה שיפור בזמן הריצה.

Strassen-1969 אלגוריתם שטראסן

•

$$P_1 = A(F - H), P_2 = (A + B)H, P_3 = (C + D)E, P_4 = D(G + E),$$

$$P_5 = (A + D)(E + H), P_6 = (B - D)(G + H), P_7 = (A - C)(E + F)$$

• והתוצאה תתקבל על ידי

$$XY = \begin{pmatrix} P_4 + P_5 + P_6 - P_2 & P_1 + P_2 \\ P_3 + P_4 & P_4 + P_5 - P_7 \end{pmatrix}$$

זמן ריצה: אחרי האלגוריתם של שטראסן התקבלו הרבה מאוד תוצאות ושיפורים וצמח תחום שלם של אלגוריתמים לחישוב כפל מטריצות. ובעקבות זאת החליטו לתת סימון מיוחד כדי לסמן את זמני הריצה של אלגוריתמים בתחום $\boldsymbol{\omega}$.

 $\omega = log_2 7$ האלגוריתם שראינו עכשיו נותן

בשנים שאחרי התקבלו התוצאות הבאות

$$\omega = 2.796, 2.78, 2.548, 2.5222, 2.517, 2.416, 2.409, 2.376$$

התוצאה האחרונה ברשימה התקבלה בסוף שנות ה80 ומאז במשך שנים אף אחד לא הצליח התוצאה האחרונה ברשימה התקבלה בסוף שנות ה $\omega=2.3727$ הצליחה להשיג Wiliams הצליח כמה חודשים לפני להשיג $\omega=2.3275$ אבל אף אחד לא שמע על זה בשם Stathers כי הוא לא טרח לפרסם את זה כמו שצריך]

12.11.15 כפל פולינומים והתמרת פורייה

n > nנתונים שני פולינומים ממשיים נדרגה

$$a(x) = \sum_{i=0}^{n} a_i x^i, \ b(x) = \sum_{i=0}^{n} b_i x^i$$

הייצוג של הפולינומים, שהוא למעשה הנתון שלנו, יהיה, בשלב זה, על ידי סדרת המקדמים של הפולינום. כלומר נתונות לנו שתי סדרות של מקדמים מששיים.

רוצים למצוא את המכפלה שלהם

$$a(x)b(x) = c(x) = \sum_{i=0}^{n} c_i x^i$$

כלומר רוצים למצוא את סדרת המקדמים $\{c_0,...,c_n\}$ כך ש

$$c_k = \sum_{j=0}^k a_j b_{k-j}$$

אם מאחר פפל. פעולות כפל. מקדם כל מקדם הוא, עבור כפל. מאחר אם מקדם באופן הנאיבי האה, עבור כל מקדם באופן בסה"כ מקדמים בסה"כ מיד מקדמים מקבל בסה"כ

$$1 + 2 + \dots + n = \mathcal{O}\left(n^2\right)$$

נשים לב לפער בין מספר פעולות הכפל שקיבלנו לבין אורך ה<u>פלט</u> (באופן כללי אורך הפלט מהווה חסם תחתון לזמן הריצה, שהרי המינימום אותו יש לעשות הוא להדפיס את הפלט. הרבה פעמים לא ניתן להגיע ממש עד לחסם התחתון הזה אבל ננסה כמה שניתן לצמצם את הפער עד אליו).

אנו נראה איך ניתן לשפר את התוצאה הזאת עד כדי $\mathcal{O}\left(n\cdot\log\left(n\right)\right)$ בעזרת מושג שנקרא "התמרת פורייה".

כדי להתעסק בנושא נתחיל בתזכורת/מבוא על פונקציות מרוכבות:

פונקציות מרוכבות - על רגל אחת

אנו מתעסקים במרחב המספרים המרוכבים

$$\mathbb{C} = \left\{ a + bi \mid a, b \in \mathbb{R}, i = \sqrt{-1} \right\} to$$

נוסחת אויילר אומרת ש־

$$e^{i\pi} - 1 = 0$$

למה זה נכון? נתבונן בטור טיילור של פונקציית האקספוננט

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

נזכור שמתקיים

$$i^0 = 1, i^1 = i, i^2 = -1,$$

$$i^3 = -1 \cdot i = -i, \ i^4 = -i \cdot i = -(-1) = 1$$

ולכן אם נציב בפונקציה xi נקבל

$$e^{xi} = \frac{(xi)^0}{1} + \frac{(xi)^1}{1} + \frac{(xi)^2}{2} + \frac{(xi)^3}{6} + \frac{(xi)^4}{24}...$$

$$= \frac{x^0}{1} + \frac{x^1}{1}i + \frac{x^2}{2}(-1) + \frac{x^3}{6}(-i) + \frac{x^4}{24} + \dots$$
$$= \frac{x^0}{1} + \frac{x^1}{1}i - \frac{x^2}{2} - \frac{x^3}{6}i + \frac{x^4}{24} + \dots$$

אלה שלא iם הסכום שמוכפלים האיברים לשניים לשניים לפריד את נפריד

$$e^{xi} = \begin{cases} \frac{1}{1} - \frac{x^2}{2} + \frac{x^4}{4!} + \dots \\ + \left(\frac{x}{1} - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots\right) & i \end{cases}$$

ולכן $sin\left(x\right)$ ו $cos\left(x\right)$ ולכן של טיילור טיילור טיילור למעשה וואלה

$$e^{xi} = \cos(x) + i \cdot \sin(x)$$

או בסימון מקוצר

$$e^{xi} = cis(x)$$

כעת אם נציב π נקבל

$$e^{\pi i} = \cos(\pi) + i \cdot \sin(\pi) = -1 + i \cdot 0 = -1$$

באופן מקביל אפשר להתייחס אל $e^{\theta i}$ בתור דרך הצגה אחרת של מספרים מרוכבים. אפשר לראות כל מספר מרוכב כנקודה במישור המרוכב הדו־מימדי. לכל נקודה כזאת נתבונן בשר לראות כל מספר הצירים (המספר המרוכב (0+0) ונסמן ב θ את הזווית מהישר לציר בישר ממנה לראשית הצירים (המספר המרוכב (0+0) ונסמן ב θ את האורך של הישר. במילים אחתרחקים מהראשית על הציר הממשי ("ציר "x") לפי θ את האורך של הישר.

דב ז' אונ ראודן של דוישר. במילים אווונו דוקים מווו אשינו על דוביד דוממשי (צירx) "מסתובבים" באווית heta. הצגה או (r, heta) נקראית - "הצגה פולרית" או "הצגה קובטית".

אם נעשה את החשבון (לא נעשה אותו כעת) נוכל לראות שהמעבר מהצגה זו להצגה ה"רגילה" של של נעשה אותו בייצוג פולרי (r,θ) לנקודה בייצוג פולרי נקודה בייצוג פולרי בייצוג פולרי ו

$$r\left(\cos\left(\theta\right)+i\cdot\sin\left(\theta\right)\right)=r\cdot e^{\theta i}$$

אם נתיחחס למקרה הפרטי בו r=1 נקבל ש מייצג למעשה נקודות על מעגל היחידה המרחחס למקרה הוא 1, הזווית היא המשתנה).

הבצגה הזאת כפל של מספרים מרוכבים נעשה פשוט וברור יותר

$$z_1 = r_1 \cdot cis(\theta_1), \ z_2 = r_2 \cdot cis(\theta_2)$$

$$z_1 \cdot z_2 = r_1 \cdot e^{\theta_1 i} \cdot r_2 \cdot e^{\theta_2 i} = (r_1 r_2) e^{(\theta_1 + \theta_2) i} = (r_1 r_2) \operatorname{cis} (\theta_1 + \theta_2)$$

תיתן $e^{\theta i}$ אופן בריבוע שהעלאה שהעלאה אופן ובאותו

$$e^{\theta i} \cdot e^{\theta i} = e^{2\theta i}$$

אם נחזור לפרשנות הגיאומטרית שהכזרנו למעלה, המשמעות של פעולת העלאה בריבוע היא סיבוב של נקודה על מעגל היחידה, זווית הסיבוב היא $heta^{ heta}.$

באופן כללי נוכל להראות באינדוקציה שהעלאה בחזקה היא

$$\left(e^{\theta i}\right)^n = e^{n\theta i}$$

הערה: ההצגה לא יחידה שהרי

$$r \cdot e^{\theta i} = r \cdot e^{(2\pi k + \theta)i}$$

עבור חזקות שלמות (כלומר $\left(r\cdot e^{ heta i}
ight)^n$ נקבל ע

$$(r \cdot e^{\theta i})^n = r^n \cdot e^{n\theta i} = r^n \cdot e^{2\pi nk + n\theta i} = (r \cdot e^{2\pi k + \theta i})^n$$

ולכן יש לנו סוג של "סגירות" תחת $+2\pi k$ ולכן חוסר היחידות לא באמת מהווה בעיה. אבל עבור חזקות לא שלמות נקבל שיש לנו בעיה של הגדרה, למעשה ההצגה הזאת לא לגמרי מוגדרת היטב.

ערך מוחלט מוגדר כ⁵

$$|z| = \begin{cases} |a+bi| &= \sqrt{a^2 + b^2} = \sqrt{z \cdot \overline{z}} \\ |r \cdot cis(\theta)| &= r \end{cases}$$

אפשר אפשר התאם להסבר הגיאומטרי מהמחלט מודד את המרחק מהמספר 0 ולכן, בהתאם להסבר הגיאומטרי לעיל, מתבקש שאכן בהצגה הזאת נקבל שהוא פשוט שווה ל

הגדרה: פולינום מרוכב

עבור θ ־ פרמטר קבוע כלשהו. נסמן

$$x = e^{\theta i}$$

נקבל ש

$$x^k = e^{k\theta i}$$

נשים לב שעבור "סיבובים". אחד של x על מעגל היחידה x^k יבצע a "סיבובים". כלומר עבור הערכים לב שעבורם המשתנה a יתן את כל הערכים על מעגל היחידה פעם אחת, a יתן את כל הערכים, כל אחד a פעם אחת, a יתן את כל הערכים, כל אחד a

העשרה

המשפט היסודי של האלגברה (עבור \mathbb{C}) לכל פולינום $p\left(x
ight)\in\mathbb{R}\left[\mathbf{x}
ight]$ לכל פולינום $p\left(x_0
ight)=0$ כך ש x_0 כך ש x_0 כך ש x_0 כך ש

ההוכחה תושלם כשיהיה לי זמן (זה לא חלק מהחומר פשוט עדן אמר ש"חבל לדלג על זה. זאת הכוחה ממש יפה")

15.11.15

טורי פורייה והתמרת פורייה - על רגל אחת

הערה: המבוא הזה, להבנתי, לא לגמרי נחוץ כדי להבין איך ולמה אלגוריתם FFT עובד. למי שאין כוח להתעמק בהקשר הרחב יותר של התמרת פורייה אפשר לדלג עד הכותרת "בחזרה לפולינומים"

נתעסק במרחב הוקטורי של פונקציות מהסוג

$$f: [-\pi, \pi] \to \mathbb{R}$$

כאשר חיבור פונקציות מוגדר

$$(f+g)(x) = f(x) + g(x)$$

וכפל בסקלר באופן דומה

$$(\lambda f)(x) = \lambda \cdot f(x)$$

הגדרה: מרחב מטרי הוא מרחב שבו הוספנו פונקציית מרחק בין איברים במרחב (מטרי מלשון "מטר" כלומר דרך למדוד מרחקים)

תזכורת: מרחב מכפלה פנימית הוא מרחב וקטורי שהוספנו לו אפשרות של כפל בעל תכונות מסויימות המכונה "מכפלה פנימית".

המכפלה הפנימית מאפשר גם למדוד אורכים/גדלים של איברים במרחב. גודל זה נקרא "יורמה"

ניתן להגדיר פונקציית מרחק/מטריקה בעזרת הנורמה ⁻ המרחק בין איברים יוגדר להיות הפרש בין הנורמות.

במקרה שלנו: המכפלה הפנימית מוגדרת להיות⁶

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x) g(x) dx$$

(עבור פונקציות) במטריקה מטריקה ממכפלה פנימית או נקראית מטריקה ממכפלה פונקציות) והיא מוגדרת באופן הבא

$$||f - g||_2 = \sqrt{\int_{-\pi}^{\pi} |f(x) - g(x)|^2 dx}$$

והיא למעשה מהווה הרחבה (עבור פונקציות) של פונקציית המרחק האוקלידית המוכרת בין שתי נקודות במרחב דו־מימדי.

עבור מספר מרוכב כללי $r \cdot e^{ heta i}$ העלאה בריבע תגרום לסיבוב הנקודה באווית אווית ריבע המרחק המרחק מהראשית $r \cdot e^{ heta i}$

 $z=a+bi\Rightarrow ar{z}=a-bi$ כסמן ב $ar{z}$ את המספר ה"צמוד" לz

היה בלבד לתחום המרחב את כי צמצמנו כי $[-\pi,\pi]$ כי עבור לתחום היא בלבד לההגדרה היא רק

 8 משפט: אם נצמצם את המרחב לפונקציות "נחמדות" אזי ניתן להגדיר למרחב בסיס אורתונורמלי אם נצמצם את המרחב לפונקציות "נחמדות"

$$\frac{1}{2\sqrt{\pi}}, \ \frac{1}{\sqrt{\pi}}\cos x, \ \frac{1}{\sqrt{\pi}}\sin x, \ \frac{1}{\sqrt{\pi}}\cos\left(2x\right), \ \frac{1}{\sqrt{\pi}}\sin\left(2x\right), \dots$$

או בכתיב אחר

$$B = \left\{ \frac{1}{2\sqrt{\pi}} \right\} \cup \left\{ \frac{1}{\sqrt{\pi}} \cos\left(nx\right) | n \in \mathbb{N} \right\} \cup \left\{ \frac{1}{\sqrt{\pi}} \sin\left(nx\right) | n \in \mathbb{N} \right\}$$

 $rac{1}{\sqrt{\pi}}\cos\left(nx
ight), rac{1}{\sqrt{\pi}}\sin\left(nx
ight)$ המשמעות היא שכל פונקציה "נחמדה" ניתנן לייצג כסכום של הופן ופונקציות מהצורה ניתנו באלגברה ניתן גם לבטא הצגה זו באופן מפורש

$$f(x) = \left(\int_{-\pi}^{\pi} \frac{1}{2\sqrt{\pi}} f(t) dt\right) \frac{1}{2\sqrt{\pi}} +$$

$$\sum_{n=1}^{\infty} \left(\int_{-\pi}^{\pi} \frac{1}{\sqrt{\pi}} \cos(nt) f(t) dt\right) \frac{1}{\sqrt{\pi}} \cos(nx) +$$

$$\sum_{n=1}^{\infty} \left(\int_{-\pi}^{\pi} \frac{1}{\sqrt{\pi}} \sin(nt) f(t) dt\right) \frac{1}{\sqrt{\pi}} \sin(nx)$$

טור פורייה

תזכורת: כאשר עסקנו בכפל פולינומים ראינו ש

$$a(x)b(x) = \sum c_k x^k$$

כאשר

$$c_k = \sum_{i=0}^k a_i b_{k-i}$$

 c_k ורצינו למצוא את המקדמים

המטרה שלנו היא לנסות להמיר את הפולינומים שלנו לייצוג של טורי פורייה (נראה תכף מה זה) ובמקרה הזה יהיה לנו הרבה יותר קל לחשב את המקדמים.

נקבל טריוות טריגונומטריות אגפים על ידי אני על אידי איז פ $e^{xi}=\cos\left(x
ight)+i\cdot\sin\left(x
ight)$ על ידי העברת אניט ש

$$\cos\left(x\right) = \frac{e^{xi} - e^{-xi}}{2}, \sin\left(x\right) = \frac{e^{xi} - e^{-xi}}{2i}$$

וקיצון אי־רציפות אי־רציפות של נקודות הי־רציפות וקיצון אינטגרביליות אינטגרביליות מספר אינטגרביליות ובעלות מספר אינטגרביליות ובעלות מספר אינטגרביליות ובעלות אינטגרביליות ובעלות ובעלות מספר אינטגרביליות ובעלות ובעלו

שים לב שהמרחב, בניגוד לרוב המרחבים שהתעסקנו בהם באלגברה, הוא אינסוף מימדי, ולכן גם הבסיס יהיה אינסופי אינסופי

נציב ערכים אלו בהצגה שראינו מקודם של נציב ערכים אלו בהצגה בהצגה

$$f(x) = \frac{1}{2\sqrt{\pi}} \sum_{n = -\infty}^{\infty} c_n e^{nxi}$$

כאשר

$$c_{n} = \int_{-\pi}^{\pi} e^{-nti} f(t) dt$$

הערה: הפונקציה שמקבלת f ומחזירה פונקציה f נקראת התמרת פורייה כדי להרחב את ההגדרה ולייצג פונקציה מהצורה $\mathbb{R} \to \mathbb{R}$ מה שעושים זה להגדיר פונקציה מהצורה את ההגדרה ולייצג פונקציה משיפים את $f:[-k,k] \to \mathbb{R}$ מהצורה אותר עליהם לאינסוף. לאינסוף שנוותר עליהם מקבלים ש

$$f(x) = \int_{-\infty}^{\infty} \hat{f}(\xi) e^{-2\pi x i \xi} d\xi$$

כאשר

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{2\pi x i \xi} dx$$

הגדרה: קונבולוציה

היות להיות gו
 fשל הקונבולוציה הקונבולו פונקציות פונקציות יהיו

$$(f \star g)(x) = \int_{-\infty}^{\infty} f(y) g(x - y) dy$$

אפשר להסתכל על קונבולוגציה כעל מעין הרחבה של כפל טורים למקרה הרציף.

משפט: משפט הקונבולוציה

$$(\hat{f}g)(\xi) = (\hat{f} \star \hat{g})(\xi)$$

$$(\hat{f \star g})(\xi) = (\hat{f}\hat{g})(\xi)$$

(ניסוח אחר אבל מעט שונה אומר שהתמרת פורייה של קונבולוציה של שתי פונקציות שווה למכפלת ההתמרות) כפי שנראה בהמשך

בחזרה לפולינומים

$$\forall 1 \leq k \leq d : p(x_k) = y_k$$

מקרה פרטי של הלמה הזאת בין כל שתי נקודות $(x_1,y_1),(x_2,y_2)$ עובר עובר בין ישר אחד פולינום ממעהל (1)

מסקנה: ניתן לייצג פולינום ממעלה n על ידי רשימה של גיתן לייצג פולינום ממעלה אלו. אלו. של ערך הפולינום עבור ערכי x_i אלו.

נשים לב שעבור שני פולינומים $a\left(x\right),b\left(x\right)$ ותוצאת המכפלה שלהם עשבור שני פולינומים לב שנח הערך או $y_{a}=a\left(x_{0}\right)$ הערך שנקבל נחשב בנקודה מסויימת את הערך של $y_{a}=a\left(x_{0}\right)$ ואת הערך של הערך שנקבל מהפולינום $a\left(x\right)$ בנקודה זו שווה למכפלת התוצואת כלומר

$$c\left(x_{0}\right) = y_{a}y_{b}$$

ולכן אם נמיר את הייצוג הנוכחי של הפולינום כרשימת מקדמים לייצוג כרשימת ערכים (עבור רשימת $c\left(x\right)$ אם נוכל לקבל את שנבחרו מראש) נוכל לקבל את מראים בייצוג כרשימת ערכים בקלות רבה.

אם נבחר את רשימת הx-ים באופן אקראי, חישוב ערך פולינום ממעלה n בנקודה x0 כלשהי דורש בחזקה העלאה בחזקה ו $\mathcal{O}\left(n\right)$ פעולות חיבור. אפילו אם נתייחס אל העלאה בחזקה בתור פעולה בזמן $\mathcal{O}\left(1\right)$ עדיין נקבל שעלינו לבצע $\mathcal{O}\left(n\right)$ פעולות לכל x_i ויש לנו x_i 1 שלנו לבצע $\mathcal{O}\left(n\right)$ פעולות לכל הפחות $\mathcal{O}\left(n^2\right)$ 2 כמו באלגוריתם הנאיבי.

הטריק הוא צריך למצוא רשימת xים שתאפשר לנו חישוב מהיר של ערכי $a\left(x\right),b\left(x\right)$ עבורם. בהינתן פולינום נפצל אותו לחזקות זוגיות וחזקות אי־זוגיות

$$a(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots$$

$$= (a_0 + a_2x^2 + a_4x^4 + \dots)$$

$$+ (a_1x + a_3x^3 + a_5x^5 + \dots)$$

$$= (a_0 + a_2x^2 + a_4x^4 + \dots)$$

$$+x(a_1 + a_3x^2 + a_5x^4 + \dots)$$

$$= (a_0 + a_2(x^2) + a_4(x^2)^2 + \dots)$$

$$+x(a_1 + a_3(x^2) + a_5(x^2)^2 + \dots)$$

כפי שניתן לראות קיבלנו בתור הסוגריים שני פולינומים שני פולינומים בתור בתור קיבלנו בתור הסוגריים שני פולינומים $a_{odd}\left(x\right)$ ולשני ו $a_{even}\left(x\right)$

$$a_{odd}(x) = a_0 + a_2 x + a_4 x^2 + \dots$$

$$a_{even}(x) = a_1 + a_3 x + a_5 x^2 + \dots$$

הפולינום שלנו מתקבל מהם באופן הבא

$$a(x) = a_{even}(x^2) + x \cdot a_{odd}(x^2)$$

בכך פיצלנו את $a\left(x\right)$ את לשני פולינומים צדרגה ברגה השלב הבא המתבקש יהיה להשתמש בכך פיצלנו את הערכים עבור הפולינומים החדשים.

כעת נשים לב שמאחר והמשתנה של הפולינומים החדשים הוא x^2 הם נותנים את אותו ערך עבור $\pm x_0$ לכל $\pm x_0$. משום כך אם נרכיב את רשימת הx-ים שלנו מזוגות של מספרים הופכיים, נצטרך לחשב רק חצי מהערכים ונחסוך זמן.

xים נבחרי

נתבונן במקרים הבסיסיים:

$$x_1=1$$
 גבחר $n=1$

אם n=2 אז נבחר $n=1, x_2=-1$ וכפי שראינו נחסוך כך חצי מהפעולות על ידי רקורסיה. אם n=4 אם אם אנו מעוניינים בזוגות של ערכים שכל זוג הוא מסוג $\pm x$ בנוסף נרצה לאפשר קריאה אם n=4 אנו מעוניינים בזוגות אם עבור לרקורסיה כלומר אם n=4 ברשימה נרצה לחשב את הפולינומים n=4 בלומר עבור n=4 ולכן נרצה שעבורם נקבל את הערכים n=4 כלומר נרצה שn=4 ולכן נבחר n=4 ולכן נבחר

$$x^{2} = \pm 1$$

$$\Rightarrow x_{1}, x_{2} = \sqrt{1}$$

$$x_{3}, x_{4} = \sqrt{-1}$$

$$\Rightarrow x_{1} = 1, x_{2} = -1$$

$$x_{3} = i, x_{4} = -i$$

n=4 של במקרה ולכן $x^2=1$ המקיימים x^2 כלומר כלומר כלומר התn=2 את החרכים בחרנו למעשה למעשה הערכים המקיימים

$$(x^2)^2 = x^4 = 1$$

 \mathbb{C} או במילים אחרות נבחר את את השורשים מסדר 4 של 1 ב

הסבר איטואיטיבי למה שהולך לקרות עכשיו - כמו שאנחנו רואים במקרים הפרטיים שהצגנו עכשיו, נרצה לפעול באופן רקורסיבי. ההפעלה של הפולינום על ערך x שקולה להפעלה של שני פולינומים (אחרים, מדרגה קטנה ממנו פי 2) על x^2 . משום כך בכל כניסה פנימה של שני פולינומים (אחרים, מעלים בריבוע את הx-ים שלנו. מה שנרצה שיקרה הוא שבכל שלב נקבל ערכים שמתחלקים לזוגות מהצורה x- כך שכאשר נעלה אותם בריבוע בשלב הבא התוצאה של הפעלת הפולינום על (x) שווה לתוצאה של הפעלה שלו על (x)2 שווה לחשב רק אחד מהם ונחסוך חצי מהחישוב בכל רמה.

בסיס הרקורסיה כמובן נבחר לחשב פולינום ממעלה 1 על המספר 1. לכן בשלב אחד לפני 1 נבחר שני ערכים שאם נעלה אותם בריבוע נקבל 1 כלומר את השורשים הריבועיים של 1 שהם לפני כן נבחר את השורשים שלהם $\pm 1, \pm i$ שהם למעשה השורשים שהם $\pm 1, \pm i$ מסדר את השורשים למעשה השורשים שלהם וכן הלאה. אם כך אם של 1 מסדר 4 (כלומר $\sqrt{1}$) ובשלב לפני כן את השורשים שלהם וכן הלאה. אם כך אם נתחיל מפולינום דרגה n נניח שn חזקה כלשהי של 2, נבחר בתור ערכים התחלתיים את נתחיל מפולינום דרגה של n ערכים) וכאשר נקרא לרקורסיה ונעלה אותם בריבוע נקבל את 1 שנגיע לבסיס הרקורסיה 1 כפי שרצינו.

1 של n מסדר השורישים השורישים באופן פחות כלשהו באופן פורמלי עבור n של ויותר פורמלי עבור n של השורישים מסדר לשם כך נגדיר:

$$\omega = e^{\frac{1}{n}2\pi i}$$

כזכור הפרשנות הגיאומטרית של e^{xi} היא נקודה על מעגל היחידה בזווית ולכן מאחר וזווית מאחר מתארת מעגל שלם. $x=2\pi/n$ מתארת מעגל שלם $x=2\pi/n$ מתארת מעגל שלם.

$$\omega^k = \left(e^{\frac{1}{n}2\pi i}\right)^k = e^{\frac{k}{n}2\pi i}$$

וקיבלנו, בדומה להסבר הקודם, זווית שהיא $\frac{n}{k}$ ממעגל שלם. ולכן אם נתבונן בקבוצה

$$\{\omega^k | k = 0, ..., n-1\}$$

נקבל בעצם חלוקה של מעגל היחידה לn חלקים כאשר הקבוצה היא אוסף הנקודות על המעגל המתאימות לחלוקה שכיאת.

לדוגמה בי עבור n=4 נקבל פשוט חלוקה של המעגל לn=4

$$\left\{e^{0i}, e^{\pi/2i}, e^{\pi i}, e^{3\pi/2i}\right\} = \{1, i, -1, -i\}$$

 $\omega^0,...,\omega^{n-1}$ את הרשימה את $x_0,..,x_{n-1}$ הרשימה כן, בתור הרשימה עבור $x_0,...,x_{n-1}$ אלו מתקיים:

- $-x^k=x^j$ יחיד שעבורו x^j קיים x^k קיים לזוגות כלומר לזוגות מתחלקים מתחלקים אוגות $x_{k+\frac{n}{2}}=\omega^{k+\frac{n}{2}}=\omega^k\omega^{\frac{n}{2}}=\omega^ke^{\frac{n}{2}\frac{1}{n}2\pi i}=\omega^ke^{\pi i}=-\omega^k=-x_k$
- 2. גם אם נעלה בריבוע את הסדרה היא עדיין תתחלק לזוגות. כלומר לכל $\left(x^k\right)^2$ קיים איבר בסדרה כך ש $\left(x^j\right)^2=-\left(x^k\right)^2$ עד בסדרה בסדרה על מעלים בריבוע את כל איבר בסדרה, בגלל תכונה 1 ומאחר ו $x=-y\Rightarrow x^2=y^2$ נקבל סדרה קצרה בחצי מזו שהיית לנו (בהנחה שאנחנו לא סופרים כפילויות).

בחזרה לכפל פולינומים

19.11.15

נתון פולינום

$$a(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$$

את ולחשב $x_0,...,x_{n-1}$ ולחשב את

$$\forall 0 \le i \le n - 1: \ A_i = a(x_i)$$

ובחרנו את

$$x_k = \omega^k = e^{\frac{2\pi i}{n}k}$$

nכאשר ω הוא שורש יחידה מסדר n והסדרה למעשה יוצרת "חלוקה" של מעגל היחידה לחלקים

n= איור 1: דוגמה עבור

נציב כעת ערך זה בפולינום ונקבל

$$A_k = a\left(\omega^k\right) = a\left(e^{\frac{2\pi i}{n}k}\right) = \sum_{j=0}^{n-1} a_j \left(e^{\frac{2\pi i}{n}k}\right)^j$$

 x^2 כפי שראינו ניתן להציג את הפולינום כצירוף של שני פולינומים במשתנה

$$a(x) = a_{even}(x^{2}) + x \cdot a_{odd}(x^{2})$$

עבור $x=\omega^k$ נקבל

$$a\left(\omega^{k}\right) = a_{even}\left(\left(\omega^{k}\right)^{2}\right) + \omega^{k} \cdot a_{odd}\left(\left(\omega^{k}\right)^{2}\right)$$

מאחר ו $\frac{n}{2}$ ולכן כפי שראינו מתקיים הוא שורש אורש מסדר מסדר יחידה מסדר יחידה מסדר מאחר ו ω

$$\left(\omega^k\right)^2 = \left(\omega^2\right)^k = \left(\omega^2\right)^{k+\frac{n}{2}} = \left(\omega^{k+\frac{n}{2}}\right)^2$$

 $a_{even}\left(\left(\omega^k\right)^2\right),\ a_{odd}\left(\left(\omega^k\right)^2\right)$ את נרצה לחשב הקורסיבית מחשב לחשב הקורסיבית משר בקריאה הרקורסיבית

$$a_{even}\left(\left(\omega^{2}\right)^{k}\right) = a_{even}\left(\left(\omega^{2}\right)^{k+\frac{n}{2}}\right)$$

$$a_{odd}\left(\left(\omega^2\right)^k\right) = a_{odd}\left(\left(\omega^2\right)^{k+\frac{n}{2}}\right)$$

תזכורת (למי שראה) בטורי פורייה מקדמי פורייה היו דומים למדי לביטוי הזה 9

$$\hat{f}(k) = \int_{-\infty}^{\infty} f(x) e^{-2\pi kix} dx$$

ומכאן הקשר להתמרת פורייה. אנו עושים שימוש במשהו שדומה לגרסה דיסקרטית של התמרת פורייה

מאחר ואנו מעוניינים לחשב את

$$a_{even}\left(\left(\omega^{2}\right)^{k}\right), a_{odd}\left(\left(\omega^{2}\right)^{k}\right), \ k=0,...,n-1$$

נוכל לחשבת

$$a_{even}\left(\left(\omega^{2}\right)^{k}\right), a_{odd}\left(\left(\omega^{2}\right)^{k}\right), \ k=0,...,\frac{n}{2}-1$$

ונקבל "בחינם", על פי השיוויון הקודם, את

$$a_{even}\left(\left(\omega^{2}\right)^{k}\right), a_{odd}\left(\left(\omega^{2}\right)^{k}\right), \ k = \frac{n}{2}, ..., n-1$$

ומכאן נקבל את

$$a\left(\omega^{k}\right) = a_{even}\left(\left(\omega^{k}\right)^{2}\right) + \omega^{k} \cdot a_{odd}\left(\left(\omega^{k}\right)^{2}\right), \ k = 0, ..., n-1$$

ובאופן הזה נחסוך חצי מהקריאות.

 $FFT\left(a\left(\cdot \right) ,\omega
ight)$ אלגוריתם

. במספר המקדמים. במשר m כאשר $\omega=e^{\frac{2\pi i}{n}k}$ מקדמים. של מקדמים נתון $a\left(\cdot\right)$ כאשר כאשר

$$a_0$$
 את ולכן נחזיר ולכן $a\left(\cdot\right)=a_0$ כלומר : $\omega=1=e^{rac{2\pi i}{\hbar}k}$ אם

: אחרת

נקבא את הארה את הארד נקבא
$$FFT\left(a_{even}\left(\cdot\right),\omega^{2}\right)$$
 נקרא הארה את העריה $\left(\left(\omega^{2}\right)^{0}\right),a_{even}\left(\left(\omega^{2}\right)^{1}\right),...,a_{even}\left(\left(\omega^{2}\right)^{\frac{n}{2}-1}\right)$

נקבל חזרה את $FFT\left(a_{odd}\left(\cdot\right),\omega^{2}
ight)$ נקבל רוזרה את –

$$a_{odd}\left(\left(\omega^{2}\right)^{0}\right),a_{odd}\left(\left(\omega^{2}\right)^{1}\right),...,a_{odd}\left(\left(\omega^{2}\right)^{\frac{n}{2}-1}\right)$$

:כעת עבור k=0,...,n-1 נחשב ונחזיר

$$a\left(\omega^{k}\right) \leftarrow a_{even}\left(\left(\omega^{2}\right)^{k}\right) + \omega^{k} \cdot a_{odd}\left(\left(\omega^{2}\right)^{k}\right)$$

כאשר את הערכים $k=rac{n}{2},...,n-1$ מתקבלים ע"י

$$a_{even}\left(\left(\omega^{2}\right)^{k}\right) = a_{even}\left(\left(\omega^{2}\right)^{k+\frac{n}{2}}\right)$$

$$a_{odd}\left(\left(\omega^2\right)^k\right) = a_{odd}\left(\left(\omega^2\right)^{k+\frac{n}{2}}\right)$$

ניתוח: נסמן את מספר הקריאות הרקורסיביות עבור n ב n בכל שלב יש שתי קריאות מספר רקורסיביות לחישוב $a_{even}\left(\omega^2\right), a_{odd}\left(\omega^2\right)$ כפי שראינו בכל אחת מהקריאות מספר הקריאות הנדרשות לצורך החישוב קטנות בחצי. כאשר אנו קוראים ל $a_{even}\left(\omega^2\right)$ נדרשים לחשב רק עבור $k=0,...,\frac{n}{2}-1$

 $a_{even}\left(\left(\omega^2\right)^k\right)+\omega^k\cdot a_{odd}\left(\left(\omega^2\right)^k\right)$ מלבד זאת בכל שלב עלינו לחשב את הסכום הסכום עבור לקריאות הרקורסיביות. כל שלב מעבר לקריאות הרקורסיביות. ולכו

$$T\left(n\right) = 2T\left(\frac{n}{2}\right) + \mathcal{O}\left(n\right) \Rightarrow T\left(n\right) = \mathcal{O}\left(n \cdot log\left(n\right)\right)$$

דרך אחרת להבין את המעבר אחרון אפשר לראות שבכל שלב n קטן בחצי ולכן עומק הרקורסיה ואכל רמה בכל רמה של עץ הרקורסיה של 2 קריאות כל אחת מהן מגודל בכל רמה אוא $\mathcal{O}\left(n\cdot\log\left(n\right)\right)$ ולכן כל הרמות יחד נקבל $\mathcal{O}\left(n\right)$ ולכן סה"כ כל הרמות יחד נקבל $\frac{n}{2}$

 $c\left(\cdot\right)=n$ כעת, לאחר שחישבנו את ערכם של $\left(\cdot\right)$ ו $a\left(\cdot\right)$ ו ב $a\left(\cdot\right)$ מתוך לחשב את המקדמים של כעת כל שנותר הוא לחשב את המקדמים של $a\left(\cdot\right)b\left(\cdot\right)$ מתוך רשימה של ערכים. כלומר, מה שנותר לעשות הוא אינטרפולציה.

נסמן ב FFT^{-1} את הפעולה ההפועה "מקבלים שערכוים (מה הפולינום, שאיננו ידוע, מחזיר עבור רשימה של x-ים) ומחזירים את מקדמי הפולינום. נראה בהמשך ש FFT^{-1} רצה באותו ימן ריצה של FFT

נסכם את כל מה שראינו ונתאר את האלגוריתם השלם להכפלת פולינומים:

אלגוריתם כפל פולינומים

 $d \geq a\left(\cdot\right), b\left(\cdot\right)$ מדרגה קלט: פולינומים

- $\mathcal{O}\left(n\cdot\log\left(n
 ight)\right)$ בים בזמן $a\left(\cdot
 ight),b\left(\cdot
 ight)$ על על FFt נפעיל נפעיל הערכה ונקבל הערכה שלהם לה ונקבל הערכה ונקבהיר בהמשד מי זה
 - $\mathcal{O}\left(n
 ight)$ בזמן $c\left(\omega^{i}
 ight)=a\left(\omega^{i}
 ight)b\left(\omega^{i}
 ight),\;i=0,...,n-1$ ביומן •
- ר בזמן $c\left(\cdot\right)$ את מקדמי ונקבל של שקיבלנו של השערוכים השערוכים על FFT^{-1} על נפעיל פעיל $\mathcal{O}\left(n\cdot\log\left(n\right)\right)$

 $\mathcal{O}\left(n \cdot log\left(n\right)\right)$ בסך הכל: זמן ריצה

הערה: $c\left(\cdot\right)$ מדרגה $d\geq 1$ ולכן (ממשפט האינטרפולציה שראינו) כדי לקבל אותו עלינו למצוא $c\left(\cdot\right)$ מדרגה שלו. מצד שני, FFT עובד עם שערוך של מספר נקודות שהוא חזקה שלמה של 2. כלומר d מספר הנקודות (שאותו נכניס כקלט של e צריך להיות אבריך להיות מינימלי כך ש

$$2d + 1 \le 2^k = n$$

במקרה הכי גרוע ב2d+1 גדול ב1 מחזקה שלמה של 2 (ולכן הפער גדוע ב2d+1 גדול ב2 מקסימלי). במצב כזה ב $2d=2^k$ עבור ב $2d=2^k$

$$2d + 1 = 2^k + 1 \Rightarrow n = 2^{k+1} = 2 \cdot 2^k = 2(2d) = 4d$$

כלומר גם במקרה גרוע

$$n = \mathcal{O}(d)$$

ומשום כך זמן הריצה שקיבלנו שקול לזמן ריצה

$$\mathcal{O}\left(d \cdot log\left(d\right)\right)$$

 FFT^{-1}

(אות קטנה) c_k .c (\cdot) בפולינום ω^k בפיבים מסמל ערך שמתקבל מסמל ערך שמתקבל מסמל את המקדם המקדם המקדם המקדם את המקדם המקדם המקדם המקדם את המקדם המקדם המקדם המקדם המקדם אונו מסמל את המקדם המק

 $c_0,...,c_{n-1}$ את למצוא רוצים ואנו $C_k=c\left(\omega^k
ight)$ כאשר כאפר כאפר כאפר כאופן באופן באופן מפורש

$$c\left(\cdot\right) = \sum_{j=0}^{n-1} c_j x^j$$

והנתון שלנו משמעותו ש

$$c(\omega^{0}) = \sum_{j=0}^{n-1} c_{j} (\omega^{0})^{j} = c_{0} + c_{1} + \dots + c_{n-1} = C_{0}$$

$$c(\omega^{1}) = \sum_{j=0}^{n-1} c_{j} (\omega^{1})^{j} = c_{0} + c_{1}\omega + \dots + c_{n-1}\omega^{n-1} = C_{1}$$

$$c(\omega^{2}) = \sum_{j=0}^{n-1} c_{j} (\omega^{2})^{j} = c_{0} + c_{1}\omega^{2} + \dots + c_{n-1} (\omega^{2})^{n-1} = C_{1}$$

...

$$c\left(\omega^{n-1}\right) = \sum_{j=0}^{n-1} c_j \left(\omega^{n-1}\right)^j = c_0 + c_1 \omega^{n-1} + \dots + c_{n-1} \left(\omega^{n-1}\right)^{n-1} = C_{n-1}$$

קיבלנו n משוואות לינאריות בn נעלמים n נעלמים ולכן נוכל לכתוב בכתיב אלגברי

$$\begin{pmatrix} C_0 \\ C_1 \\ \vdots \\ \vdots \\ C_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{n-1} \\ 1 & \omega^2 & \omega^4 & \dots & (\omega^2)^{n-1} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & \omega^{n-1} & (\omega^{n-1})^2 & \dots & (\omega^{n-1})^{n-1} \end{pmatrix} \cdot \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ \vdots \\ c_{n-1} \end{pmatrix}$$

W נשים לב שקיבלנו מטריצה n imes n שמזכירה מאוד את מטריצת ואן־דרמונדה נסמנה ב כדי לפתור את מערכת המשוואות ולקבל את $c_0,...,c_{n-1}$ את לעשות הוא לעפוך את שקיבלנו.

סתם כך להפוך מטריצה לוקח שכאן שכאן שכאן אלא שלא לוקח לוקח לוקח סתם כך להפוך מטריצה לוקח המטריצה ההופכית.

מתקיים

$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & \omega & \cdots & \omega^{n-1} \\ 1 & \omega^{2} & \cdots & (\omega^{2})^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & \omega^{n-1} & \cdots & (\omega^{n-1})^{n-1} \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & \omega^{-1} & \cdots & \omega^{-n+1} \\ 1 & \omega^{-2} & \cdots & (\omega^{-2})^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & \omega^{-n+1} & \cdots & (\omega^{-n+1})^{n-1} \end{pmatrix} = \begin{pmatrix} n & 0 & \cdots & 0 \\ 0 & n & & & \\ \vdots & & \ddots & & \\ 0 & \cdots & \cdots & n \end{pmatrix}$$

נימוק: האברים על האלכסון מתקבלים מכפל של שורה ועמודה בעלי אינקדס זהה

$$\sum_{j=0}^{n-1} \omega^{kj} \omega^{-kj} = \sum_{j=0}^{n-1} \omega^0 = \sum_{j=0}^{n-1} 1 = n$$

את נסמן $k_1 \neq k_2$ כאשר אינברים ושורה אינברים מכפל של מכפל מתקבלים מתקבלים אינברים אינברים מתקבלים מכפל אינברים אינברים התוצאה בs

$$\sum_{j=0}^{n-1} \omega^{k_1 j} \omega^{-k_2 j} = \sum_{j=0}^{n-1} \omega^{j(k_1 - k_2)} = s$$

נחשב כעת

$$\omega^{k_1 - k_2} \cdot s = \sum_{j=0}^{n-1} \omega^{j(k_1 - k_2)} \omega^{\omega k_1 - k_2} = \sum_{j=0}^{n-1} \omega^{(j+1)(k_1 - k_2)}$$
$$= [i = j+1] = \sum_{j=0}^{n} \omega^{j(k_1 - k_2)}$$

ולבסוף נחשב

$$(\omega^{k_1-k_2}-1)\cdot s = \omega^{k_1-k_2}\cdot s - \omega^{k_1-k_2} =$$

$$\sum_{i=0}^{n} \omega^{i(k_1-k_2)} - \sum_{j=0}^{n-1} \omega^{j(k_1-k_2)} = \omega^{n(k_1-k_2)} - \omega^{0(k_1-k_2)} = 0$$

$$\omega^{n(k_1-k_2)} = (\omega^n)^{(k_1-k_2)} = 1^{(k_1-k_2)} = 1$$

אבל ומכאן ומכאן 0 < $k_1 - k_2 < n$ ולכן הרי בין 0 לו מספרים שניהם ושניהם ואניהם $k_1 \neq k_2$ שנהכרת

$$\omega^{k_1-k_2}-1\neq 0$$

אבל ראינו ש

$$\left(\omega^{k_1-k_2}-1\right)\cdot s=0$$

ולכן המסקנה היא ש

$$\sum_{j=0}^{n-1} \omega^{j(k_1 - k_2)} = s = 0$$

בחזרה לאלגוריתם למציאת המקדמים:

כדי לקבל את המקדמים לקבל לקבל כדי לקבל את לקבל את

$$\begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ \vdots \\ c_{n-1} \end{pmatrix} \leftarrow \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega^{-1} & \omega^{-2} & \dots & \omega^{-n+1} \\ 1 & \omega^{-2} & \omega^{-4} & \dots & (\omega^{-2})^{n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & \omega^{-n+1} & (\omega^{-n+1})^2 & \dots & (\omega^{-n+1})^{n-1} \end{pmatrix} \cdot \begin{pmatrix} C_0 \\ C_1 \\ \vdots \\ C_{n-1} \end{pmatrix}$$

כעת נשים לב שאם היינו רוצים לקבל את תוצאת המכפלה של המטריצה W בוקטור כלשהו המשמעות היא למעשה להפעיל FFT על הוקטור הזה (בתור וקטור של מקדמים של פולינום) וכך היינו מקבלים את תוצאת המכפלה באופן מהיר יותר. שהרי תוצאת FFT מקיימת את המשוואה האלגברית הראשונה שראינו.

באותה מידה נשים לב שנוכל לקבל את תוצאת ההכפלה של המטריצה W^{-1} בוקטור נתון ע"י באותה מידה של ω^{-1} אלא שאת ω נחליף ב

הוא גם שורש יחידה. אם נזכר במשמעות הגיאומטרית של ω - חילקנו את מעגל היחידה הראשונה מעל הציר הממשי (זווית $\frac{2\pi}{n}$) והחזקות שלו היו שאר הנקודות (חזקה α נמצאת בזווית α . באותו אופן הנקודות (חזקה α נמצאת בזווית α .

$$\omega^{-1} = e^{-\frac{2\pi}{n}i} = e^{2\pi - \frac{2\pi}{n}} = e^{\frac{2\pi}{n}(n-1)} = \omega^{n-1}$$

במילים אחרות ω^{-1} הוא הנקודה שנקבל אם נזוז על מעגל היחידה בזווית ω^{-1} כלפי "מטה" (בכיוון ההפוך לזה הלכנו כדי לקבל את ω) והחזקות שלו יתנו את אותם ערכים שקיבלנו מהחזקות של ω בסדר הפוך. ולכן ניתן לבנות אלגוריתם FFT^{-1} באותו אופן בדיוק כמו ω כאשר השינוי היחיד הוא שימוש ב ω במקום ω (האלגוריתם זהה למעט החלפה זו). מסקנה: השלב האחרון באלגוריתם הכפלת הפולינומים אכן דורש זמן ω (ω (ω (ω (ω)) כפי שרצינו.

לצערי, בשל קוצר זמן, אני לא אספיק לסכם את הנושא של זיווגים. מקווה אחרי המבחן לעשות את זה.

תהליכים סטוכסטים

הגדרות בסיסיות:

- מעל קבוצה X_0, X_1, \dots מקריים מקריים הוא סדרה של סופי) הוא סדרה של משתנים מקריים הדיד, סופיS סופית של מצבים
- נאמר שלתהליך יש את **תכונת מרקוב** אם לכל i>0 המשתנה המקרי $X_t|X_{t-1}$ שאת יהיה ולוי אם לכל $X_0,...,X_{t-2}$ כלומר בכל "רגע" מה יהיה מצב הבא בתהליך תלוי אך ורק במצב שקדם לא (כאילו "לא זוכרים" את המצבים הקודים)
- שרשרת מרקוב ($Markov\ Chain$) הינה הליך סטוכסטי בעל תכונת מרקוב, כך ארשרת מרקוב ($p_{ij}|i,j\in S$) שקיימים עקיימים

$$Pr[X_t = j | X_{t-1} = i] = p_{ij}$$

כלומר לכל שני מצבים j והיא קבוע קיימת ההסתברות למעבר $i,j\in S$ והיא קבוע כלומר לכל שני מצבים לידי מטריצת מרחשת. כל שרשרת מרקוב ניתן להגדיר על ידי מטריצת ($p_{i,j}$) ולא תלויה בזמן שבו היא מערחשת. בשורה j בשורה בעמודה j בשורה בעמודה מעברים, המטריצה תכיל את הערך p_{ij} בשורה בעמודה שורה בעמודה בעמודה בעמודה בעמודה בעמודה שורים בעמודה בע

דוגמה:

הילוך מקרי בגרף

הסבר אינטואיטיבי - נתו ןלנו גרף ונקודת התחלה. אנו מגדירים את ההסתברות למעבר בין כל שתי נקודות. כלומר לכל שני קודקודים $u,v\in V$ בגרף נתייחס למאורע שהגענו איכשהו ל u ונקבע מה ההסבתרות שבצעד הבא נלך ל v. באופן כזה נקבל סדרה של משתנים מקריים שכל אחד מהם X_i נותן לנו התפלגות מה ההסתברות להיות בכל אחד מהקודקודים בצעד ה v.

S=V פורמלית הקודקודים את נגדיר את גדיר הקודקודים בורמלית פורמלית ערף $G=\langle V,E \rangle$ נאשר ומטריצת המעברים תהיה $P=\{p_{u,v}\}_{u,v\in V}$

$$p_{u,v} = \begin{cases} 0 & (u,v) \notin E \\ \frac{1}{\deg(u)} & (u,v) \in E \end{cases}$$

כלומר מכל קודקוד שאיננו מחובר אליו ההסתברות להתקדם בצעד הבא אל קודקוד שאיננו מחובר אליו בקשת הינה ב0לעומת את ההסתברות להתקדם אל כל אחד מהקודקודים שכן מחוברים אליו בקשת מתפלגת באופן אחיד.

דוגמה לדוגמה: עבור הגרף הבא

איור 2: גרף לדוגמה

נקבל את מטריצת המעברים

$$P = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3}\\ \frac{1}{2} & \frac{1}{2} & 0 & 0\\ 0 & 1 & 0 & 0 \end{bmatrix}$$

כל סדרת משתנים מקריים כזאת, מוגדרת היטב על ידי התפלגות המצב הראשון X_0 ומטריצת המעברים (למעשה נראה עוד מעט שמההתפלגות הראשונה, המייצגת את ההסתברות להמצאות בכל מצב ברגע הראשוני, ההתפלגות אחרי n צעדים, תתקבל ע"י הכפלת X_0 במטריצה פעמים).

 X_0 הבהרה: הוקטורים שאנו עוסקים בהם מייצגים התפלגות על המצבים. כלומר בוקטור הסיכו לדוגמה הערך במקום הj מסמן את הסיכוי להיות במצב j בזמן j (כלומר הסיכו שנתחיל את הסדרה מהמצב j).

באופן שזה המסלול שזה ההסתברות מה נוכל לשאול שנעבור מצבים סדרת מצבים פורמלי מה באופן באופן נוכל התסלול שנעבור מצבים הראשונים ונקבל בn

$$Pr[X_0 = \sigma_0, ..., X_n = \sigma_n] = Pr[X_0 = \sigma_0] \cdot \prod_{t=1}^{n} p_{\sigma_{t-1}, \sigma_t}$$

 $i,j\in S$ אכל אי־פריקה אי־פרים המעברים על ידי מטריצת על ידי מרקוב המוגדרת שרשרת מרקוב המוגדרת על ידי מטריצת מידי מידי מידי מידית חיובית מידי על עם הסתברות חיובית מידי לו

בדוגמה של הילוך מקרי בגרף ההגדרה הזאת שקולה לדרישה שהגרף יהיה קשיר

נשים לב: בהינתן מצב, אם נסכום את ההסתברויות למעבר ממנו לשאר המצבים, מהגדרה של הסתברות נקבל 1. במילים אחרות לכל i מתקיים

$$\sum_{j \in S} p_{i,j} = 1$$

בכתיב אלגברי יותר במאחר והכפלה בוקטור אחדות בעצם מחזירה את הסכום בכל שורה, והסכום הזה הרי שווה ל1 ולכן

$$P \cdot \begin{bmatrix} 1 \\ \cdot \\ \cdot \\ \cdot \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ \cdot \\ \cdot \\ 1 \end{bmatrix} \Rightarrow (P - I) \begin{bmatrix} 1 \\ \cdot \\ \cdot \\ 1 \end{bmatrix} = 0$$

למה 1: היא אי־פריקה הא והשרשרת־מרקוב כאשר $rank\left(P-I\right)=n-1$

$$x_1=x_2=...=x_n$$
 איי $(P-I)\,x=0$ אם $x=(x_1,...,x_n)\in\mathbb{R}^n$ טענת עזר: לכל

כלומר לא רק שוקטור האחדות מאפס את P-I כמו שראינו הוא גם היחיד (עד כדי כלומר לא בסקלר)

n-אם נוכיח את טענת העזר נוכל להוכיח את הלמה תוך שימוש במשפט מאלגברה (מימד הגרעין = -

$$dim(ker(P-I)) = 1 \Rightarrow rank(P-I) = n - dim(ker(P-I)) = n - 1$$

טריק שימושי: פונקציות הרמוניות

ונתון כי $f:\{1,...,n\}
ightarrow \mathbb{R}$ תהי

$$\forall t \in \{1, .., n\}: f(t) = \frac{f(t+1) - f(t)}{2}$$

argmax(f)=k וכמו כן מספרים הפונקציה הפונקציה הפונקציה א הפונקציה לנו שבנקודה איי בהכרח

$$f(k+1) = f(k) = f(k-1)$$

הסבר: הערך בכל נקודה הוא הממוצע של שני הערכים השכנים לו. עבור נקודה k שבה נקבל מקסימום האם אחד השכנים קטן ממנה השכן השני היה צריך להיות גדול ממנה כדי לאזן (שהרי ממוצע של שני מספרים נמצא תמיד בין שניהם), מאחר ו k מקסימלי הרי אין שכן שגדול ממנו ולכן האפשרות היחידה היא שאף אחד מהם גם לא קטן ממנו אלא שניהם שווים לו.

f של למינימום של מקביל הטענה נכונה באופן

מסקנה: בקצוות הקטע, הפונקציה מקבלת מקסימום או מינימום

$$Px=x$$
 או במילים אחרות כך $x=\begin{bmatrix} x_1 \\ . \\ . \\ . \\ x_n \end{bmatrix}$ או במילים אחרות בחזרה להוכחת הטענה: יהי

נקבל

$$\forall i \ x_i = (p_1, ..., p_n) \cdot \begin{bmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} = \sum_j p_{ij} x_j$$

jכלומר "שכן" ממוצע משוקלל" של השכנים של השכנים אנו מגדירים "שכן" כמצב כלומר הוא "ממוצע משוקלל" הוא השכנים של השכנים או $\{x_j|p_{ij}>0\}$ חיובית החסתברות לעבור ל

ומכאן בהינתן $i_0 \in S$ כך ש

$$x_{i_0} = \max_{\mathbf{j}} (x_{\mathbf{j}})$$

לכל $p_{i_0j}>0$ כלומר i_0 של "שכן" לכל ל

$$x_j = x_{i_0} = \max_i(x_i)$$

כי אחרת אם קיים "שכן" של i_0 , כלומר מצב j שההסתברות למעבר מ i_0 אליו היא חייב חייבית, כך ש $x_j < x_{i_0}$ אזי כדי "לאזן" את הממוצע המשוקלל שיהיה שווה ל x_i אזי כדי "לאזן" את הממוצע המשוקלל שיהיה שווה ל x_i שמקיים בסתירה למקסימליות של x_i שמקיים בסתירה למקסימליות של אחר של x_i

כיוון שהשרשרת היא אי־פריקה לכל מצב $j\in S$ קיים מסלול, בעל הסתברות חיובית להתרחשות, מ i_0 עד אליו. משום כך לכל $j\in S$ מאותו הטיעון היינו מקבלים באינקודציה להתרחשות, מ כל השכנים של i_0 שווה לערך של כל השכנים של $max\left(x_i\right)=x_{i_o}$ שווה לערך של כל השלהם עד ליאה עד ל

$$\forall j \in S \ x_j = x_{i_0} \left(= max \left(x_i \right) \right)$$

ובסה"כ נקבל

$$x_1 = \dots = x_n$$

נשים לב: אם באמן ההתפלגות של המשתנה המקרי על נתונה על ידי $q=(q_1,...,q_n)$ ידי לב: אם באמן אם המשתנה של המשתנה $\Pr\left[X_t=i\right]=q_i$

qP היא X_{t+1} אזי בזמן t+1 ההתפלגות של

 10 מתקיים $qP=(q_1^{\prime},...,q_n^{\prime})$ מתקיים

$$q_j' = q \cdot \begin{bmatrix} p_{1j} \\ \vdots \\ p_{nj} \end{bmatrix} = \sum_{i \in S} q_i p_{ij} = \sum_{i \in S} Pr\left[X_{t+1} = j | X_t = i\right] \cdot Pr\left[X_t = i\right] \stackrel{*}{=} Pr\left[X_{t+1} = j\right]$$

התפלגות מקובעת

(Stationary) מקובעת מקובעת התפלגות נקראת התפלגות המצבים $\pi=(\pi_1,...,\pi_n)$ מחת אחת

$$\pi P = \pi$$

כלומר אם בזמן t+1היא הנוכחית היא π אזי הנוכחית היא ההתפלגות ההתפלגות לבזמן הלאה, ההתפלגות בעצם מתקבעת האה וכן הלאה, ההתפלגות בעצם התקבעת האח

היא המקובעת המקלגות ההתפלגות קשיר היא בהילוך מקרי בגרף היא דוגמה: בהילוך היא

$$\pi_v = \frac{deg\left(v\right)}{2|E|}$$

למה זה נכון?

1. זאת התפלגות ־

$$\sum_{v} \pi_v = \frac{\sum_{v} deg(v)}{2|E|} = 1$$

2|E| כי כזכור סכום הדרגות בגרף שווה ל

2. היא מקובעת *-*

$$Pr\left[X_{t+1} = v | X_t \sim \pi\right] = \sum_{u} \pi_u p_{uv} = \sum_{u \in \Gamma(v)} \frac{\deg\left(u\right)}{2|E|} \cdot \frac{1}{\deg\left(u\right)}$$
$$= \frac{1}{2|E|} \sum_{u \in \Gamma(v)} 1 = \frac{1}{2|E|} \deg\left(v\right) = \pi_v$$

קיבלנו שלכל X_{t+1} הסיכוי שנהיה בו בזמן t+1 שווה הסיכוי שנהיה v הסיכוי שנהיה τ

וכן π וכן אי־פריקה אזי קיימת אירות מקובעת א למה 2: אם P

10.11.15

$$\forall i \in S \ \pi_i > 0$$
 .1

היחידה המקובעת ההתפלגות היחידה π היחידה .2

הוכחה: בלמה 1 ראינו כי

$$rank (P - I)^{t} = rank (P - I) = n - 1$$

ומכאן

$$dim\left(ker\left(P-I\right)^{t}\right) = 1$$

כך ש־ (עד כדי מכפלה בסקלר) יחיד עד יחיד יחיד יחיד עלומר קיים וקטור $v \neq 0$

$$\exists v \neq 0 \ (P - I)^t v = 0$$

ומאחר ובמטריצה ריבועית דרגת השורות שווה לדרגת העמודות, גם המימד של הגרעין שלהם שווה ולכן עבור v זה מתקיים שלהם שווה ולכן עבור v

$$v^t \left(P - I \right) \Rightarrow v^t P = v^t$$

 $\sum_i x_i = \sum_i x_i$ יעל ידי כפל בסלקר המתאים ניתן לנרמל את ע כך שהוקטור המנורמל x יקיים שקיים ניתן לבצע באופן אחד בלבד (על ידי כפל בסקלר מתאים)ומכאן שקיים .1 נירמול כזה ניתן לבצע באופן אחד בלבד xP=x ובנוסף הוא מקיים $\sum_i x_i = 1$

כדי להראות א אכן מייצג התפלגות, וכדי להראות את סעיף 1 מהמשפט, נותר להראות א אכן מייצג התפלגות, וכדי להראות ש

$$\forall i \ x_i > 0$$

לשם כך נחלק את המצבים לפי x לשתי קבוצות

$$S^+ = \{i | x_i > 0\}$$
 $S^{\leq 0} = \{i | x_i \leq 0\}$

נתבונן בסכום

$$\sum_{j \in S^{\leq 0}} x_j$$

(j או במילים את מסמל את (כאשר אחרות במילים אחרות xP=x או נשים לב

$$\forall j \ x_j = xP_j = \sum_{i \in S} x_i P_{ji}$$

ולכן נקבל

$$\sum_{j \in S^{\leq 0}} x_j = \sum_{j \in S^{\leq 0}} \left(\sum_{i \in S} x_i P_{ij} \right) = \sum_{j \in S^{\leq 0}} \left(\sum_{i \in S^{\leq 0}} x_i P_{ij} + \sum_{i \in S^+} x_i P_{ij} \right)$$

המעבר האחרון (*) נובע מנוסחאת ההסתברות השלמה 10

$$= \left(\sum_{j \in S} \sum_{i \in S^{\leq 0}} x_i P_{ij} - \sum_{j \in S^+} \sum_{i \in S^{\leq 0}} x_i P_{ij}\right) + \sum_{j \in S^{\leq 0}} \sum_{i \in S^+} x_i P_{ij}$$

נזכור שכל שורה וכל עמודה של P מייצגת התפלגות ולכן

$$\forall i \ \sum_{i \in S^{\leq 0}} P_{j \in Sij} = 1$$

נציב ונקבל

$$\sum_{i \in S^{\leq 0}} x_i - \sum_{j \in S^+} \sum_{i \in S^{\leq 0}} x_i P_{ij} + \sum_{j \in S^{\leq 0}} \sum_{i \in S^+} x_i P_{ij}$$

ובסה"כ קיבלנו את השיוויון

$$\sum_{j \in S^{\leq 0}} x_j = \sum_{i \in S^{\leq 0}} x_i - \sum_{j \in S^+} \sum_{i \in S^{\leq 0}} x_i P_{ij} + \sum_{j \in S^{\leq 0}} \sum_{i \in S^+} x_i P_{ij}$$

נצנצם ונעביר אגפים ונקבל

(*)
$$\sum_{j \in S^+} \sum_{i \in S^{\leq 0}} x_i P_{ij} = \sum_{j \in S^{\leq 0}} \sum_{i \in S^+} x_i P_{ij}$$

נשים את הגדרנו את בנוסף מהאופן ובנוסף אי־שלילי אי־שלילי מתקיים בו מאופן אי־שלילי אי־שלילי מתקיים עשי

$$\forall i \in S^+ \ x_i > 0, \ \forall i \in S^{\leq 0} \ x_i \leq 0$$

ולכן ב(*) אי־חיובי, כי הסימן בהכרח אי־שלילי ולעומת את צד שמאל אי־חיובי, כי הסימן ולכן ב(*) אוהם תלויים במקור של הi לא משחק תפקיד בקביעת הסימן) ולכן בהכרח כל המחוברים בשני הצדדים שווה לz

ובפרט

$$(**) \ \forall i \in S^+, j \in S^{\leq 0}: \ x_i P_{ij} = 0$$

מצד שני

$$\forall i \ \sum_{i} x_i = 1$$

 $i_0 \in S^+$ ולכן בהכרח קיים i_0 כך ש $x_{i_0} > 0$ ש כך ו

ועבור i_0 אם "שכן של "שכן שהינו שהינו $j_0\in S^{\leq 0}$ אם קיים ולכן ולכן מתקיים המקיים i_0,j_0 שעבור ועבור i_0,j_0 עעבור עעבור ולכן פקב פאריי ועבור וועבור אוני שעבור וועבור וועבור וועבור אוני שעבור וועבור ו

$$x_{i_0}P_{i_0j_0} > 0$$

בסתירה ל(**)

מסקנה: לכל j_0 שכן" של ה j_0 , כלומר שקיימת הסתברות חיובית למעבר מ j_0 ל־ק (כלומר פהכרח בהכרח בהכרח בהכרח

$$j_0 \in S^+$$

ובסה"כ נקבל שלכל S^+ כל "שכן" גם הוא ב S^+ ומכאן, בגלל האי־פריקות, נמשיך ובסה"כ נקבל שלכנים של ולשכנים שלהם וכן הלאה עד שנגיע לכל המצבים (כאמור, בגלל האי־פריקות) ונקבל שכולם ב S^+ או במילים אחרות

$$\forall i \in S \ x_i > 0$$

_

השלב הבא יהיה להראות שבשרשראות מרקוב אי־פריקות תמיד נתכנס להתפלגות π המקובעת. לשם כך נצטרך לסלק מצב בעיתי מסויים - כאשר יש מחזוריות בשרשרת. במצב שבו יש מחזוריות קבוע נקבל שבהינתן מצד התחלתי (אם לצורך הדוגמה נגדיר שההתפלגות ההתחלתית נותנת הסתברות 1 למצב נתון ולשאר 0) בכל שלב לאחר מכן נקבל מחזוריות של ההתפלגויות (למשל בדוגמה נקבל שבכל שלב נוכל ממש להגיד בדיוק איפה אנחנו אמורים להיות בתוך במחזור).

דוגמה: בגרף הבא

איור 3: גרף לא ארגודי

נגדיר, לשם נוחות, שההתפלגות ההתחלתית היא (1,0) כלומר ההסבתרות להתחיל מממצב מספר 1 היא 1 וההסתברות להתחיל מהמצב השני היא 0. נקבל שבצעד הבא בהכרח (הסתברות 1) נהיה במצב 2 כומר ההתפלגות תהיה (0,1) וכן הלאה. נקבל מחזוריות 2 בין ההפלגויות הנ"ל. באותו אופן גם אם היינו מגדירים את ההתפלגות ההתחלתית אחרת, ניתן להראות שהיינו מקבלים מחזוריות.

הגים שקולים ההגאים (התנאים הבאים שקולים הא אי־פריקה הנוסף התנאים הבאים שקולים ההגדרה: שרשרת מרקוב היא ארגודית אם היא אי־פריקה ובנוסף (התנאים הבאים שקולים ההt

1. אי־מחזורית. כלומר

$$GCD(\{|c||c - circle \ with \ positive \ probability\}) = 1$$

11

¹¹או במילים ⁻ "נאפשר" מעגלים חיוביים אבל לא באופן כזה שכל המעגלים יהיו מאורך שהוא כפולה של מספר קבוע. נניח אם כל המעגלים מאורך שהוא כפולה של 3 נקבל שיש מחזוריות מאורך 3 בשרשרת ולכן היא לא ארגודית.

 $i,j \in S$ ו נ $i,j \in S$ נים $i,j \in S$ ביים מ

$$Pr\left[x_t = j | x_0 = i\right] > 0$$

 $i \in S$ כך שלכל n>0 קיים $i \in S$ כל לכל.

$$Pr\left[x_n = j|x_0 = i\right] > 0$$

הגדרה אינטואיטיבית: אנו דורשים שלא תהיה מחזוריות (כמו בדרישה 1) באופן שקול הגדרה אינטואיטיבית: אנו דורשים שלא תחלנו בכל (תקדם מספיק (נעבור את צעד מספר n) נגיע למצב שבו לא משנה מאיפה התחלנו בכל צעד יש סיכוי (כלשהו) להיות בכל מצב.

הערה: לא נראה את ההוכחה לשקילות ההגדרות

 $X_t \sim q^{(t)} = X_0, X_1, \dots$ משפט: תהי מתפלגת שרשרת מרקוב ארגודית שבכל מחניל ארגודית שרשרת מרקוב ארגודית ווא $\left(q_0^{(t)},...,q_n^{(t)}
ight)$

אזי

$$q^{(t)} \stackrel{t \to \infty}{\longrightarrow} \pi$$

הוכחה:

coupling צימודcoupling

נסמן את מטריצת המעברים של השרשרת הנתונה בP נגדיר שלוש שרשראות מרקוב:

- ואת בעצם אות א $X_0 \sim q^{(0)}$ ההתחלתית ההתפלגות וההתפלגות הם לפי אמעברים המעברים כאשר כאשר לאנו השרשרת העתונה) השרשרת הנתונה
- ומכאן ש ברים המעברים התחלתית וההתפלגות פני הם לפי המעברים לאשר כאשר כאשר לפי לפי לוו $Z_0 \sim \pi$ כאשר ליי Z_0, Z_1, \dots ל
 - שמוגדרת באופן הבא Y_0, Y_1, \dots .3

$$Y_t = \begin{cases} Z_t & Y_{n-1} = Z_{t-1} \\ X_t & otherwise \end{cases}$$

י כלומר הראשונה בה $\{X_t\}$ מתחילה יחד עם $\{X_t\}$ והחל מהנקודה הראשונה בה $\{Y_t\}_{t\to\infty}$ כלומר אחרים עוברת לעקוב אחרי לעקוב אחרי לובע ש ובע אחרי לובע אחרי לובע לובע מוגדרים לפי לובע לובערים מוגדרים לפי לובערים מוגדרים לפי לובערים מוגדרים לפי

הסבר נוסף: חשוב להבחץ בין ההתפלגות של משתנה מקרי לבין הערך שהוא מחזיר. לדוגמה: נניח שיש לנו 3 קוביות ב 2 מתפלגות אחיד (סתם קוביה) והשלישית מזחירה בהתסברות ניח שיש לנו 3 קוביות $\frac{1}{10}$ כל ספרה אחרת. שתי הקוביות הרגילות מתפלגות זהה $\frac{1}{2}$ את הספרה 6 ובהסתברות תוצאה שונה. והקוביה השלישית יכולה (במקרה) להחזיר את אותו אבל יכולות להחזיר תוצאה שונה. והקוביה השלישית שונה. הערך כמו אחת הקוביות הרגילות למרות שהן מתפלגות שונה.

מתפלג בשלב ההתחלתי באופן זהה ל $\{X_t\}$ וההתפלגויות בהמשך נובעות מהכפלה של התפלגות זו בP ולכן למעשה $\{Y_t\}$ ו $\{Y_t\}$ ועונה אותה התפלגות בכל צעד. בהתחלה הם גם מחזירים את אותו הערך ממש (כאילו Y מסתכל מה יצא לX ועונה כמוהו). כאמור, כשאנחנו מציינים שיוווין בין משתנים מקריים לדוגמה $Y_t=Z_t$ הכוונה שהם מחזירים אותה תוצאה (במקרה הקוביות "שתי הקוביות שלנו נפלו על אותה ספרה) ולא ולאו דווקא) שהם מתפלגים אותו דבר.

לאחר המפגש, כאשר בפעם הראשונה $\{Y_t\}$, $X_t=Y_t=Z_t$ מפסיק להחזיר את הערך שמחזיר שמחזיר עדיין, מאחר וY בכל שלב שמחזיר שועובר "להעתיק" את הערך ש $\{Z_t\}$ מחזיר. עדיין, מאחר ו $X_t\}$ המעבר שולב לא שינה את כללי המעבר (שוב המעבר הוא בין התפלגות בשלב שלב להתפלגות בשלב X_t הוא עדיין מתפלג כמו X_t

ראה באיור לדוגמה. המספרים בקודקודים מסמנים את ההסתברות של המשתנה המקרי עבור הקודוקד (מצב) בצעד הנוכחי. הקודקוד האדום מסמן את ה"מיקום" בכל צעד, כלומר את הערך שהמשתנה המקרי החזיר. נשים לב שההתפלגות של Y זהה לזו של X גם בצעד הרביעי למרות שהם מחזירים ערך(קודקוד) שונה.

איור 4: דגימה של צימוד בהילוך מקרי בגרף

הערה: באופן פורמלי היה עלינו להראות ש $\{Y_t\}$ היא אכן שרשרת מרקוב מוגדרת היטב שהרי לא הגדרנו אותה באופן הרגיל שבו מוגדרת שרשרת מרקוב אלא כהכלאה. לא הראנו את ההצדקה לכך אבל ניתן להבין ב"נפנוף ידיים" שמאחר ובכל שלב ההתפלגות גם של X וגם של X מתקדמת לפי Y ניתן לעבור ביניהם "באופן חלק" כאשר הם נפגשים.

עלינו להוכיח:

$$Pr\left[Y_t \neq Z_t\right] \stackrel{t \to \infty}{\longrightarrow} 0$$

מדוע זה מספיק? כי מתקיים

$$\left| q_i^{(t)} - \pi_i \right| = |Pr[Y_t = i] - Pr[Z_t = i]| \le Pr[Y_t = i, Z_i \ne i] + Pr[Y_t \ne i, Z_i = i]$$

$$\Rightarrow \sum \left| q_i^{(t)} - \pi_i \right| \leq \sum \left(Pr\left[Y_t = i, Z_i \neq i \right] + Pr\left[Y_t \neq i, Z_i = i \right] \right) = 2Pr\left[Y_t \neq Z_t \right]$$

Zו א נכן מספיק להוכיח ש $\left|q_i^{(t)}-\pi_i\right|$ גם ט גם פוער אם ואף ל $Pr\left[Y_t\neq Z_t\right]$ אם נפגשים בשלב כלשהו בהסתברות ב

 $^{\prime}$ בחזרה להוכחה: לפי הארגודיות קיים N עבורו קיים לפי הארגודיות בחזרה

$$Pr[X_N = Z_N] \ge p_0$$

כי לכל דגימה אפשרית אX של היובית יש הסתברות, מהארגודיות (כאמור, מהארגודיות לא וכאמור, מהארגו Z_N של היובית בצעד הN

טענה: גם אם נתנה בכך שבצעד הNלא מתרחש מפגש באותו אופן בNהצעדים הבאים הטענה: גם אם נתנה עדיין תקפה כלומר מתקיים

$$Pr[X_{2N} = Z_{2N} | X_N \neq Z_N] \ge p_0$$

ובאופן כללי

$$Pr\left[X_{(k+1)N} = Z_{(k+1)N} | X_{kN} \neq Z_{kN}\right] \ge p_0$$

ולכן הסיכוי שבאף אחד מk דילוגים כאלה לא יהיה מפגש ולכן

$$Pr[X_N \neq Z_N, X_{2N} \neq Z_{2N}, ..., X_{kN} \neq Z_{kN}] =$$

$$Pr[X_N \neq Z_N] \cdot Pr[X_{2N} \neq Z_{2N}, ..., X_{kN} \neq Z_{kN} | X_N \neq Z_N]$$

$$< (1 - p_0) Pr[X_{2N} \neq Z_{2N}, ..., X_{kN} \neq Z_{kN} | X_N \neq Z_N]$$

$$(1-p_0) Pr[X_{2N} \neq Z_{2N} | X_N \neq Z_N] Pr[X_{3N} \neq Z_{3N}, ..., X_{kN} \neq Z_{kN} | X_N \neq Z_N, X_{2N} \neq Z_{2N}]$$

$$\leq (1 - p_0)^2 Pr[X_{3N} \neq Z_{3N}, ..., X_{kN} \neq Z_{kN} | X_N \neq Z_N, X_{2N} \neq Z_{2N}]$$

$$\dots \le (1 - p_0)^k \stackrel{k \to \infty}{\longrightarrow} 0 \qquad \blacksquare$$

זמני פגיעה וחזרה

P שרשרת מטריצת עם מרקוב שרשרת ארשרת ארשרת הגדרות: תהי מעברים עם נסמן:

i בעד הראשון שבו הגענו למצב .1

$$T_i = \min\left\{t \ge 0 | X_t = i\right\}$$

1 גרסה שונה מעט של 2

$$T_i^+ = min\{t > 0 | X_t = i\}$$

-Hitting-Time זמן פגיעה 3

$$H_{ij} = E\left[T_j | X_0 = i\right]$$

j ממצב למצב להגעה להגעה הזמן כלומר תוחלת

-Return-Time אמן חזרה.

$$R_i = E\left[T_i^+|X_0 = i\right]$$

תוחלת מספר הצעדים שנדרש כדי לצאת מi ולחזור אליו.

5. זמן כיסוי -

$$C_i = E\left[\max_j T_j | X_0 = i\right]$$

תוחת מספר הצעדים שנדרש כדי לעבור בכל קודקוד לפחות פעם אחת בהנחה שיצאנו i ממצב i

6. זמן כיסוי כללי -

$$C = \max_{i} C_{i}$$

הוכחה: מהגדרה

$$H_{ii} = 0$$

לכל $i\neq j$ כלשהו (יתכן ש $i\neq j$ נעשה לפחות עד אחד למצב לכל $i\neq j$ כלשהו לכל לכל כדי להגיע מj ל נעשה להגיע משיך (במידה ווווא ל $i\neq j$ מומר בהסתברות במשיך (במידה ווווא לביד) ליינו משים לא ל

$$H_{ij} = \sum_{k} p_{ik} (H_{kj} + 1) = \sum_{k} p_{ik} + \sum_{k} p_{ik} \cdot H_{kj} = 1 + \sum_{k} p_{ik} \cdot H_{kj}$$

טענה: לכל j נגדיר משתנים

$$\forall 1 \leq i \leq n : x_i = H_{ij}$$

המשתנים הללו מקיימים מערכת משוואות לינארית

$$x_j = 0$$

$$i \neq j: \quad x_i = 1 + \sum_k p_{ik} x_k$$

נראה שלמערכת יש פתרון יחיד:

נניח שיש לנו שני פתרונות

$$a_1, ..., a_n$$

$$b_1, ..., b_n$$

נגדיר

$$\forall i: c_i = a_i - b_i$$

מקיימים $\{c_i\}$

$$c_j = 0$$

$$i \neq j: \quad c_i \quad \sum_k p_{ik} c_k$$

מאחר ו

$$a_i - b_i = \left(1 + \sum_k p_{ik} a_k\right) - \left(1 + \sum_k p_{ik} b_k\right) = \sum_k p_{ik} c_k$$

בדומה למה שראינו בעבר - קיבלנו שכל c_i , פרט ל c_j , הוא "ממוצע משוקלל" של "שכניו" ולכן, מאותה טענה שראינו לעיל בנוגע לפונקציות הרמוניות, המקסימום וגם המיניומם נמצאים בהכרח ב $c_j=0$. משום שאם c_i אחר מקבל מקסימום נקבל שכל שכניו גם מקסימליים וכן הלאה עד שנגיע ל $c_j=0$ (בהכרח נגיע בגלל שהשרשרת אי־פריקה) ונקבל שגם הוא מקסימלי ובאופן מקביל נקבל שהוא גם מינימלי.

כלומר קיבלנו ש

$$\forall i: a_i - b_i = 0 \Rightarrow a_i = b_i$$

תזכורת: סימנו ב π את ההתפלגות המקובעת. נסמן ב π את ההסתברות להיות במצב iאת המפלגות את זמן את אמן את את המצב וווע סימנו בiאת המקובעת. סימנו ב $R_i/R(i)$ את את אמן החזרה עבור המצב

משפט: בשרשרת מרקוב אי־פריקה, לכל מצב i מתקיים

$$R\left(i\right) = \frac{1}{\pi_i}$$

לא הוכחה: אם נאתחל את השרשרת להתפלגות המקובעת $\pi \sim X_0 \sim \pi$ אזי שכזכור, היא תשאר בהתפלגות זו בכל הצעדים בהמשך. מהגדרת ההתפלגות נקבל שבתוחלת ב π_i מהגדרת זמן פגיעה אנו נחזור לi כל i צעדים ולכן אנחנו נהיה בi במצב במצב i מהצעדים מכאן ש

$$\pi_i = \frac{1}{R(i)}$$

כנדרש.

j מצב לכל נגדיר לכל מצב יותר הוכחה: בהינתן מצב

$$r_j = E\left[\left|\left\{0 < t \le T_i^+: X_t = j\right\}\right| | X_0 = i\right]$$

i אל וחוזר הפעמים שנגיע לj במסלול מספר הפעמים וחוזר אל

 $r_i=1$ נשים לב שמתקיים

ובנוסף

$$\sum_{j} r_{j} = \sum_{j} E\left[\left|\left\{0 < t \leq T_{i}^{+}: X_{t} = j\right\}\right|\right] = E\left[\sum_{j} \left|\left\{0 < t \leq T_{i}^{+}: X_{t} = j\right\}\right|\right]$$

 j_2 מאחר בסכום אנו סוכמים את כל הצעדים בהם הגענו ל j_1 ואת להצעדים בהם הגענו ליסוכמים את כל הצעדים במסלול מiל ליסוכמים את בל הצעדים במסלול מiל ליסוכמים את בל הצעדים במסלול מיסוכמים או ליסוכמים את בל הצעדים במסלול מיסוכמים את בל הצעדים במסלול מיסוכמים או ליסוכמים את בל הצעדים במסלול מיסוכמים הבל הצעדים במסלול מיסוכמים במסלול מיסומים במסלול מיסומים במסלול מיס

$$= E[|\{0 < t \le T_i^+ : X_t = j\}|] = E[T_i^+] = R(i)$$

כדי לחשב את משכן נוכל לסכום את מספר הפעמים שהגענו בצעד אחד משכן לסכום אל לפני r_k אל לפני סוף המסלול (נסכום לכל j כי עבור j שאיננו שכן התשובה תהיה (נסכום לכל j

$$r_k = E \sum_{j} \begin{bmatrix} \text{times before } T_i^+ & \text{we} \\ \text{went from } j \text{ to } k \end{bmatrix} = \sum_{j} p_{jk} E \begin{bmatrix} \text{times before } T_i^+ \\ \text{we visit in } j \end{bmatrix} = \sum_{j} p_{jk} r_j$$

קיבלנו מערכת משוואות לינאריות

$$\forall k: \ r_k = \sum_j p_{jk} r_j$$

 π וא אותה מערכת משוואות שקיבלנו כאשר חישבנו את ההתפךגות

כך ש c>0 כך קיים קבוע מכפלה בסקלר ולכן יחיד עד כדי מכפלה בחלר ולכן היים הראנו

$$\forall k: \ \forall r_k = \pi_k$$

אנו יודעים ש

$$R(i) = \sum_{k} r_k = \sum_{k} c\pi_k = c \sum_{k} \pi_k = c$$

נקבל $r_i=1$ נקבל

$$r_{i} = c \cdot \pi_{i} = R(i) \cdot \pi_{i} \Rightarrow R(i) = \frac{1}{\pi_{i}}$$

תזכורת: בגרף קשיר, לא מכוון, ההתפלגות המקובעת של הילוך מקרי היא

$$\pi_v = \frac{deg\left(v\right)}{2\left|E\right|}$$

מסקנה: בגרף קשיר, לא מכוון, מתקיים

$$R(v) = \frac{2|E|}{deg(v)}$$

n מסלול באורך

נניח שי שלנו מסלול P באורך P באורך הראשונה מ0,1,...,n-1,n:n באורך באורך מסלול מסלול הזמן (בתוחלת) שיקח לנו להגיע בפעם הראשונה מ

נסמן התאשונות הראשונות במסלול. בגרף המתקבל מk הנקודות הראשונות נסמלול. את את את זמן החזרה של נקודה j את דרגת בגרף את $\deg_k(j)$ בגרף את בארף את הרגת וב

נשים לב: $l = deg_k\left(k
ight) = 1$ ובנוסף בגרף המושרה הזה יש $l = deg_k\left(k
ight)$

$$R_k(k) = \frac{2k}{\deg_k(k)} = 2k$$

כדי להגיע מ0 לn עלינו לעבור בכל הנקודות בדרך כאשר

$$0 = T_0 < T_1 < \dots < T_n$$

נשים לב שמתקיים

$$T_n - T_0 = T_n - T_{n-1} + T_{n-1} - T_{n-2} + \dots - T_0$$

ולכן

$$H(0,n) = E[T_n - T_0|X_0 = 0] = E\left[\sum_{k=0}^{n-1} (T_{k+1} - T_k)|X_0 = 0\right]$$

$$= \sum_{k=0}^{n-1} E[(T_{k+1} - T_k) | X_0 = 0] = H(0,1) + H(1,2) + \dots + H(n-1,n)$$

כעת נשים לב שמהנקודה 0 ניתן רק לזוז לנקודה 1 ולכן $H\left(0,1\right)=1$ מנהקודה 1 ניתן לזוז לניתן המוצא. א חזרה ל1 או אחורה ל1 ואז חזרה (כי אין ברירה אחרת) ל1וחזרנו לנקודת המוצא. א לנו "מטבע" (או משתנה מקרי ברנולי עם 1/2 שבהסתברות 1/2 "מצליח", כלומר אנחנו מתקדמים "מטבע" (או משתנה מקרי ברנולי עם 1/2 שבהסתברות לבי",

ל 2 ובהסתברות ל "נכשל" כלומר אנחנו זיים אחורה ל 0. על פי המאפיינים של משתנה ברנולי ל $\frac{1}{2}$ "נכשל" כלומר גיהבל

$$E[number\ of\ "failures"] = \frac{1}{p} - 1 = 1$$

כל עוד אנחנו נכשלים המשמעות היא שאנו זזים צעד אחד ל 0 ואחד חזרה ל 1 ואז שוב "מטילים מטבע" כדי לדעת לאן נזוז. כאשר נצליח המשמעות היא שנלך צעד אחד נוסף כדי להגיע, סוף מטבע" כדי לדעת לאן נזוז. כאשר נצליח המשמעות היא שנלך בעד אחד נוסף כדי להגיע, סוף, אל 2 ולכן

$$H\left(1,2\right) = E\left[\begin{smallmatrix} number\ of\ times\ we\\ went\ the\ "wrong\ way" \end{smallmatrix} \right] \cdot E\left[\begin{smallmatrix} time\ to\ go\ 0\\ and\ return\ to\ 1 \end{smallmatrix} \right] + 1 = 1\cdot 2 + 1 = 3$$

באופן כללי

$$H\left(k,k+1\right) = E\left[\begin{smallmatrix} number\ of\ times\ we\\ went\ the\ "wrong\ way" \end{smallmatrix} \right] \cdot E\left[\begin{smallmatrix} time\ to\ return\ to\ k\ after\\ we\ went\ the\ wrong\ way \end{smallmatrix} \right] + 1$$

$$=1\cdot R_{k}(k)+1=2k+1$$

בסך הכל נקבל:

$$H(0,n) = \sum_{k=0}^{n-1} (2k+1) = n^2$$

לצערי, בשל קוצר אמן, אני לא אספיק לסכם את השיעור המבלבל מאוד והלא לגמרי קשור לצערי. בנושא SAT

חישוב קוונטי

רקע

הברה לא באמת צריך לדעת את הפיסיקה של תורת הקוונטים כדי לדעת לתכנן אלגוריתמים קוונטיםת באותה מידה שלא היינו צריכים ידע באלקטרוניקה של של מחשב קלאסי כדי לתכנן אלגוריתמים עד כה.

ניסוי שני הסדקים

אם נזרוק אבל לבריכה היא תכרום לגל שינוע ממקום הפגיע במים לכל הכיוונים. אם נחסום את גל המים בקיר עם סדק הגל יעצר למעט הסדק מעבר לקיר ינויע גל שתחילתו בסדק. אם המים, לצורך הניסוי, יכתימו את צד הבריכה, נקבל שם כתם מקביל למקום הסדק שככל שנתרחק ממנו הצבע יחלש. אם בקיר יהיו שני סדקים ולא רק אחד, יווצרו מעבר לקיר שני גלים שיתנגשו. שני גלים שמתנגשים יכולים או להתווסף זה לזה או לבטל זה את זה (תלוי במצב של כל אחד, לא

קריטי) ולכן נקבל בצד הבריכה לא כתם שהולך ודוהה בקצוות כמקודם אלא תבנית מתחזקת ונחלשת לכל האורך (אם כי גם כאן הצבע יהיה יותר מודגש במרכז).

כמובן שתופעה זו נובעת מהאופי הגלי של תנועת המים. אם היינו מנסים את אותו ניסוי עם חפץ חלקיקי כלשהו (כלומר עשוי חלקיקים, נניח, אבן) החלקיקים, אלה שהיו מצליחים לעבור את הסדק, היו ממשיכים ישירות וצובעים נקודה ותו לא.

בתחילת המאה ה19 בוצע ניסוי שכזה עם אור, במטרה לקבוע אם האור הוא גל או חלקיק, התוצאה היית שהאור התנהג כמו המים ממקודם, כלומר כמו גל. מאוחר יותר התברר שיש לאור גם מאפיינים חלקיקיים והוא מורכב מחלקיקים ששמם "פוטונים", האור, איכשהו, הוא גם גל וגם חלקיק.

בתחילת המאה ה20 ניסו לבצע את הניסוי עם אלקטרונים. למרבה ההפתעה גם האלקטרונים התנהגו כמו גלים ויצרו תבנית גלית על המסך שמאחורי הסדקים.

אז הוחלט לעשות את הניסוי מעט אחרת - במקום לירות כל פעם שני חלקיקים (פוטונים במקרה הזה) אחד לכל סדק, הפעם ירו חלקיק אחד בלבד לכיוון שני הסדקים באופן כזה שיש לו אפשרות לעבור בכל סדק (כתלות ב"ספין" מאפיין כלשהו של פוטונים. הספין לא ידוע במהלך הניסוי). על המסך התקבלה תבנית מתחלפת כאילו ירינו לשני הסדקים בו זמנית. במובן מסוים התברר שהפוטון הבודד "הפריע לעצמו".

תורת הקוונטים סיפקה את ההסבר לתופעה - אין מיקום מוגדר לפוטון (וכן לגבי עוד כמה מאפיינים) אלא מעין התפלגות מיקום במרחב, רק כאשר אנו מנסים למדוד את המיקום התתפלגות "קורסת" לערך מוגדר, כאילו יש משתנה אקראי שמגדיר את המיקום וניסיון למדוד אותו גורם לו להדגם ולעשות למוחלט. עקרון זה נקרא עקרון הסופרפוזיציה¹².

לעניינו

יחידת זכרון שיכולה להיות במצב קלאסי (cqubit - quantum bit) הגדרה: קיוביט (שנות במצב קלאסי האדרה: קיוביט שראינו עד כה) שאותם נסמן ב־ $\{0\}$ או בסופרפוזיציה כלומר $\{0,1\}$

$$lpha_0|0
angle+lpha_1|1
angle$$

$$\left|lpha_0
ight|^2+\left|lpha_1
ight|^2=1$$
 עלכל $lpha_0,lpha_1\in\mathbb{C}$ לכל

כלומר מצבו של קיוביט שנמצא בסופרפוזיציה הוא משהו שמזכיר הפתלגות אלא שהפעם יש ל"הסתברות" כיוון.

אם מודדים קיוביוט, כלומר נבדוק באיזה מצב הוא ובכך נכפה עליו מצב קלאסי, המצב של הקיוביט יהפוך ל $|0\rangle$ או $|1\rangle$ כאשר

$$Pr[we\ got\ |0\rangle] = |\alpha_0|^2, \qquad Pr[we\ got\ |1\rangle] = |\alpha_1|^2$$

פעולות על קיוביטים

אנו לא מאפשרים כל פעולה על קיוביט.

http://goo.gl/A5Cje0 להמחשה של הנסוי של להמחשה של

פעולה חייבת להיות לינארית. נחשוב על |0
angle, |1
angle כבסיס של מרחב וקטורי כלומר

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \ |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

ולפי ההגדרות נקבל שסופרפוזיציה היא צירוף לינארי של אברי הבסיס

$$\alpha_0|0\rangle + \alpha_1|1\rangle = \begin{pmatrix} \alpha_0\\ \alpha_1 \end{pmatrix}$$

ומאחר ו

$$\left\| \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix} \right\| = \left| \alpha_0 \right|^2 + \left| \alpha_1 \right|^2 = 1$$

. הוא וקטור המייצב את הסופרפוזיציה הא $\begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix}$ הוא הסופרפוזיציה הוקטור המייצב את

מלינארית נובע שפעולה על קיוביט יחיד יחיד על קיוביט יחיד כמטריצה מלינארית על שפעולה על שפעולה על שפעולתה מוגדרת על אברי הבסיס על על אברי הבסיס על על אברי הבסיס על על אברי הבסיס

$$U(|0\rangle) \longmapsto s_0 \in \mathbb{C}^2 \ U(|1\rangle\rangle) \longmapsto s_1 \in \mathbb{C}^2$$

ומכאן ש

$$U(q) = U(\alpha_0|0\rangle + \alpha_1|1\rangle) = \alpha_0 s_0 + \alpha_1 s_1$$

כדי לשמור על עקביות ההגדרה נרצה שתוצאת פעולה תהיה תמיד סופרפוזיציה תקינה של מצבים קלאסים. כלומר שיתקיים

$$\forall v \in \mathbb{C}^2: \|v\| = 1 \Rightarrow \|U(v)\| = 1$$

כלומר על מעבירה וקטורי יחידה לוקטורי יחידה, או במילים אחרות, על א מכווצת ולא מעוות אלא היא מריצת שיקוף ו/או סיבוב. מריצה כזאת, כפי שלמדנו כקורס באלגברה נקראית מטריצה אוניטרית המוגדרת באופן פורמלי

$$U \cdot U^* = 1$$

U של (traspose אחרי שעשינו אחרי המרוכב הוא הצמוד הוא $U*=\overline{U^T}$

הגדרה: צירוף של כמה קיוביטים

כ שמוגדרת משותפת קיוביטים להיות בסופרפוזיציה להיות להיות להיות מחודים להיות כ

$$\sum_{b_1...b_n \in \{0,1\}^n} \alpha_{b_1...b_n} |b_1...b_n\rangle\rangle$$

כך ש

$$\sum_{b_1...b_n} \left| \alpha_{b_1...b_n} \right|^2 = 1$$

. היא מחרוזת של הפסים ואחדות הבהרה $b_1...b_n$

במילים - סופרפוזיציה של כמה קיוביטים היא צירוף לינארי של מצבים קלאסים, אלא שבמקום במילים - סופרפוזיציה של כמה קיוביטים היא צירוף לינארי של כמה קלאסים בלבד $|0\rangle, |0\rangle, |0\rangle, |0\rangle$ שני מצבים קלאסים בלבד $|0\rangle, |0\rangle, |0\rangle$ של לנו

דוגמה: בשני קיוביטים נקבל את המצבים הקלאסים $|00\rangle, |01\rangle, |10\rangle, |11\rangle$ וסופרפוזיציה של שני קיוביטים נקבל את המצבים הקלאסים שני קיוביטים תהיה

$$\alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle$$

כך ש

$$|\alpha_{00}|^2 + |\alpha_{01}|^2 + |\alpha_{10}|^2 + |\alpha_{11}|^2 = 1$$

גם כאן ניתן להתייחס לייצוג כמרחב וקטורי 2^n מימדי והסופר פוזיציה הזאת, של שני קיוביטים תיוצג כ

$$\begin{pmatrix} \alpha_{00} \\ \alpha_{01} \\ \alpha_{10} \\ \alpha_{11} \end{pmatrix} \in \mathbb{C}^4$$

כד ש

$$\left\| \begin{pmatrix} \alpha_{00} \\ \alpha_{01} \\ \alpha_{10} \\ \alpha_{11} \end{pmatrix} \right\| = 1$$

הגדרה: אוסף של קיוביטים יכולים להיות במצב **שזור** (כלומר, יש מעין תלות בין המצבים שלהם, יוסבר בהמשך) או במצב לא שזור ואז ניתן לפרק את הסופרפוזיציה ל**מכפלה טנזורית** כלומר למכפלה הבאה¹³

$$q_1 \otimes ... \otimes q_n = \left(\alpha_0^1 | 0 \rangle + \alpha_1^1 | 1 \rangle\right) \otimes ... \otimes \left(\alpha_0^n | 0 \rangle + \alpha_1^n | 1 \rangle\right) = \sum_{b_1 ... b_n} \left(\prod_{k=1}^n \alpha_{b_k}^k\right) |b_1 ... b_n\rangle$$

n מאורד, אנחנו סוכמים על כל האינדקסים במכפלה מאורית אנחנו סוכמים על כל האינדקסים החרוות מאורד, ולכל אינקדס שכזה המקדם של המצב הקלאסי בעל האינקדס יהיה של אפסים ואחדות) ולכל אינקדס שכזה המקדם על המקדמים המתאימים בכל קיוביטץ לדוגמה עבור 3 קיוביטים ועבור אינדקס המכפלה של המקדם של $b_1b_2b_3=001$

$$\prod_{k=1}^3 \alpha_{b_k}^k = \alpha_0^0 \alpha_0^1 \alpha_1^2$$

אם, לעומת את הסופרפוזיציה לא היינו שזורים את הסופרפוזיציה (את $q_1,...,q_n$ האת הטועל אם, לעומת הצירוף הלינארי) בתור מכפלה טנזורית באופן הזה.

דוגמה:

$$\alpha_0^1\alpha_0^2|00\rangle+\alpha_0^1\alpha_1^2|01\rangle+\alpha_1^1\alpha_0^2|10\rangle+\alpha_1^1\alpha_1^2|11\rangle=\left(\alpha_0^1|0\rangle+\alpha_1^1|1\rangle\right)\otimes\left(\alpha_0^2|0\rangle+\alpha_1^2|1\rangle\right)$$
ולכן המצבים לא שזורים.

בדומה לפירוק של הסתברות על משתנים בלתי תלויים למכפלת הסתברויות 13

מדידה חלקית

$$Pr\left[^{the\ measurement}_{will\ return\ a_1...a_k}\right] = \sum_{b_{k+1}...b_n} \left|a_1...a_kb_{k+1}...b_n\right|^2$$

כלומר הסיכוי לקבל תוצאה חלקית מסוימת שווה לסכום ה"גדלים" של תוצאות המדידה (של כל הקיוביטים) האפשרויות ש"מסכימות" עם התוצאה החלקית.

 $P_{a_1...a_k}$ נכנה הסתברות זו

לאחר מדידה חלקית אם קיבלנו $a_1...a_k$ אזי שאר n-k הקיוביטים נמצאים עדיין בסופרפוזיציה שנובעת מהסופרפוזיציה שהיית כאשר k הקיוביטים הראשונים כבר לא חלק ממנה אלא הם כבר "נקבעו" כלומר

$$\sum_{b_{k+1}...b_n} \frac{\alpha_{a_1...a_kb_{k+1}...b_n}}{\sqrt{P_{a_1...a_k}}} |b_{k+1}...b_n\rangle$$

כלומר המקדם של המצבים הקלאסים (הצירוף הלינארי כולל רק את האינדקסים שלא נמדדו) $\sqrt{P_{a_1...a_k}}$ ב המקדמים של המקדמים בהינתן ש $\alpha_0=a_0,...,\alpha_k=a_k$ הוא סכום של המקדמים האפשריים בהינתן ש קואורדינאטות שסכומם 1 כך שהסופרפוזיציה תקינה.

הערה: מדידה חלקית מזכירה קצת הסתברות מותנית ⁻ מה ההתפלגות בהינתן שחלק מהמשתנים הם נקבעו.

אותפת שני קיוביטים עם סופרפוזיציה משותפת 14

$$\frac{-i}{\sqrt{2}}|00\rangle+0|01\rangle-\frac{1}{\sqrt{6}}|10\rangle+\frac{i}{\sqrt{3}}|11\rangle$$

נמדוד את הקיוביט הראשון בלבד

$$Pr\left[q_{1}=1\right] = Pr\left[q_{1}q_{2}=1 q_{2}\right] = \left|\alpha_{10}\right|^{2} + \left|\alpha_{11}\right|^{2} = \left|-\frac{1}{\sqrt{6}}\right|^{2} + \left|\frac{i}{\sqrt{3}}\right|^{2} = \frac{1}{6} + \frac{1}{3} = \frac{1}{2}$$

 15 ומכך נובע שבמקרה המשלים

$$Pr[q_1 = 0] = Pr[q_1q_2 = 0q] = \frac{1}{2}$$

לאחר המדידה:

 16 אם קיבלנו 0 - מאחר והמקדם של |01
angle הוא 0 הרי שההקיוביט השני חייב להיות 16

$$\frac{\alpha_{00}}{\sqrt{P_0}}|0\rangle = \frac{\frac{-i}{\sqrt{2}}}{\sqrt{\frac{1}{2}}}|0\rangle = -i|0\rangle$$

⁰ את המחובר השני רשמנו רק למען הבהירות, סתם כך לא צריך לרשום מחוברים שהמקדם שלהם הוא ב¹⁴ את המחובר השני רשמנו רק במקרה הזה אין צורך $^{\rm 15}$ ם אותו ניתן, כמובן, לחשב אך במקרה הזה אין צורך

יי. האיר סייביט השני תחזיר 16 למעשה, במצב שהתקבל ברור שמדידת הקיוביט השני תחזיר 16

• אם קיבלנו 1 זאי הקיוביט השני יהיה

$$P_1 = \frac{1}{2} \Rightarrow \frac{1}{\sqrt{P_1}} = \sqrt{2} \Rightarrow \sqrt{2} \left(\alpha_{10} | 0 \rangle + \alpha_{11} | 1 \rangle \right) = -\frac{1}{\sqrt{3}} | 0 \rangle + \sqrt{\frac{2}{3}} | 1 \rangle$$

EPR – Einstein Podolsky Rosen ניסוי/פרדוקס

בשנת 1935 הציעו אלברט איינשטיין, בוריס פודולסקי וניית'ן רוזן ניסוי מחשבתי במטרה להדגים את הבעייתיות של תורת הקוואנטים.

נניח שיש בידינו שני קיוביטים $\langle 11 \rangle + \frac{1}{\sqrt{2}} | 00 \rangle + \frac{1}{\sqrt{2}} | 10 \rangle$ (שאר המקדמים הם 0 ולכן לא טרחנו לרשום אותם). אם נעשה את החישוב כמו שעשינו מקודם (לא נתעכב על זה) נגלה שהם מתואמים לחלוטין, במובן שאם נמדוד קיוביט אחד הקיוביט השני בהכרח מקבל את אותו הערך. נניח שהפרדנו את הקיוביטים (בלי לפגוע בסופר פוזיציה המשותפת, זה אפשרי מבחינה פיזיקלית, לא משנה לנו איך) וכעת אנסטסיה מחזיקה בקיוביט הראשון ובוריס בשני.

שניהם מתפצלים כך שמהרחק ביניהם גדול, נניח בוריס טס למאדים. שניהם, בתיאום מראש, מודדים את הקיוביט שיש בידיהם באותו הזמן.

באופן "פלאי" שניהם יקבלו את אותה התוצאה. הבעיה היא שעל פניו, בשביל תוצאה מתואמת איזשהי אינפורמציה היית צריכה לעבור מאחד מהם לשני, אבל אם כך הרי שהמעבר הזה היה מהיר מאוד במרחק גדול כרצוננו בשבריר שניה, מה שסותר את תורת היחסות שטוענת שאין אפשרות לעבור את מהירות האור.

תוספת העשרה: איינשטיין התנגד נחרצות לפרשנות המקובלת לתוצאות של תורת הקוונטים (ובראשה מה שמכונה "אסכולת קופנהגן") שהסבירה שאין מאפיינים מוגדרים אלא סופרפוזיציה 7 . לטענת איינשטיין הפיזיקה מתנהגת באופן מוגדר ולכן הוא סבר שיש "משתנים חבויים" כלומר ישנם משתנים נוספים, שאנו לא יודעים עליהם עדיין, שנקבעים בשלב מוקדם יותר בניסוי והם קובעים, מראש את תוצאתו. ניסוי EPR (כמו גם הניסוי המחשבתי המפורסם על החתול של שרדינגר) בא להראות שהפרשנות הרווחת של תורת הקוונטים בעייתית. לצערו של איינשטיין, ניסויים רבים, ביניהם מימוש של הניסוי שהוא עצמו הגה, הראו שוב ושוב שדווקא פרשנות קופנהגן תואמת את הנתונים ושלא יתכן להניח את קיומם של משתנים חבויים 8 .

שער הדמר (Hadamard) שער

יכד: את הפעולה הבאה: NOT, AND וכד' במחשב קלאסי, שמבצע את הפעולה הבאה:

$$H(|0\rangle) = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

¹או בניסוחו המפורסם מתוך מכתב לחבר "מכניקת הקוונטים בהחלט מרשימה. אך קול פנימי אומר לי שהיא עדיין אינה הדבר האמיתי. התאוריה אומרת הרבה, אך לא באמת מקרבת אותנו במאומה לסודו של "הזקן" [אלוקים]. **אני,** אינה הדבר האמיתי. משוכנע שהוא אינו מטיל קוביות"

או כמו שהגיב הפיזיקאי נילס בוהר בתגובה לאימרה של איינשטיין "תפסיק לומר לאלוקים מה לעשות עם הקוביות שלו!" וכמו שהוסיף עשרות שנים אחר כך סטיבן הוקינג "לא זו בלבד שאלוקים משחק בקוביות הוא גם לפעמים זורק אותם למקומות בהם לא ניתן לראות אותם".

ואם כבר אז אצטט גם את הסופר טרי פראצ'ט ז"ל "אלוקים לא משחק בקובייה עם היקום: הוא משחק משחק בלתי ברור שהוא המציא, שאפשר להשוות, מנקודת המבט של שאר השחקנים (כלומר: כולם), לגרסה של משחק פוקר מבולבל, מוזר בחדר חשוך לחלוטין עם קלפים ריקים על סכומים אינסופיים, עם מחלק שלא אומר לך את החוקים ומחייך כל הזמן!"

$$H(|1\rangle) = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$

בבסיס שלנו (שמוגדר על ידי המצבים הקלאסים) (ולכן בכתיב $|0
angle=\begin{pmatrix}1\\0\end{pmatrix}, \ |1
angle=\begin{pmatrix}0\\1\end{pmatrix}$ ולכן בכתיב מטריציוני הפעולה תוגדר כ

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

כלומר עבור קיוביט כלשהו הכפלה שער הדמר שער העבור מעלת ($egin{al} lpha_0 \\ lpha_1 \\ \end{pmatrix}$ הפעלת הכפלה שלו כלומר $H \cdot egin{pmatrix} lpha_0 \\ lpha_1 \\ \end{pmatrix}$ כלומר כלומר למעשה הכפלה שער הדמר על הקיוביט היא למעשה הכפלה שלו

פעולה חוקית על k קיוביטים

פעולה על קיוביטים היא בעצם פעולה לינארית ואוניטרית מעל מרחב ממימד k קיוביטים על וקטורים מולה על וקטורים מהסוג

$$\begin{pmatrix} \alpha_{0\dots 0} \\ \vdots \\ \vdots \\ \alpha_{1\dots 1} \end{pmatrix} = \sum_{j_1\dots j_k \in \{0,1\}} \alpha_{j_1\dots j_k} |j_1\dots j_k\rangle$$

נזכור שכאשר יש לנו אוסף של k קיוביטים אנו מתייחסים אל הבסיס המורכב מהמצבים הקלאסים $|0...0\rangle, |0...01\rangle, |1...1\rangle$ וכל סופרפוזיציה היא צירוף לינארי של אברי הבסיס. נשים לב, בסכום כאן האינדקס רץ מ0...0 עד 1...1.

TRICAT - Controlled NOT דוגמה: שער

 $q_1 = |1
angle$ אמ"ם q_2 אם והופך את q_1, q_2 השער מקבל 2 קיוביטים

נשים לב שאנו צריכים רק לתאר מה הפעולה עושה למצבים הקלאסים. במקרה של סופרפוזיציה תוצאת הפעולה תתקבל מהלינאריות של הפעולה ומכך שהסופרפוזיציה היא למעשה צירוף לינארי של הבסיס.

$$CNOT(|0q_2\rangle) = |0q_2\rangle, \ CNOT(|1q_2\rangle) = |0(1-q_2)\rangle$$

ובכתיב מטריציוני

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

אפשר להגיע למטריצה על ידי כך שעבור כל וקטור בסיס e_i נשאל מה קורה כשמפעילים את הפעולה עליו ואת התשובה נכתוב בטור הi. לדוגמה עבור

$$e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = |10\rangle \Rightarrow q_1 = 1 \Rightarrow CNOT(e_3) = |11\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
 ולכן בטור השלישי במטריצה כתבנו

פעולה חלקית

n מתוך מיוביטים מתוך א פעולה פעולים מתוך מה

$$\sum_{j_1...j_n \in \{0,1\}} \alpha_{j_1...j_n} |j_1...j_n\rangle \longmapsto \sum_{j_1...j_n \in \{0,1\}} \alpha_{j_1...j_n} U(|j_1...j_k\rangle) \otimes |j_{k+1}...j_n\rangle$$

כלומר נניח ויש לנו שלושה קיוביטים בסופרפוזיציה

$$q_1q_2q_3 = \alpha_{000}|000\rangle + \alpha_{001}|001\rangle + \alpha_{010}|010\rangle + \alpha_{011}|011\rangle$$

$$+\alpha_{100}|100\rangle + \alpha_{101}|101\rangle + \alpha_{110}|110\rangle + \alpha_{111}|111\rangle$$

 $(q_2$ את $q_1=1$ על שני הקיוביטים הראשונים q_1q_2 (כלומר אם CNOT על שני הפעולה על המצבים הקלאסים וההשלכה על הסופרפוזיציה תנבע מהלינאריות. כלומר נקבל

$$CNOT (q_1q_2) q_3 = \alpha_{000}|000\rangle + \alpha_{001}|001\rangle + \alpha_{010}|010\rangle + \alpha_{011}|011\rangle$$
$$+\alpha_{100}|110\rangle + \alpha_{101}|111\rangle + \alpha_{110}|100\rangle + \alpha_{111}|101\rangle$$
$$= \alpha_{000}|000\rangle + \alpha_{001}|001\rangle + \alpha_{010}|010\rangle + \alpha_{011}|011\rangle$$
$$+\alpha_{110}|100\rangle + \alpha_{111}|101\rangle + \alpha_{100}|110\rangle + \alpha_{101}|111\rangle$$

 $q_1,q_2=|00
angle$ נתחיל משני קיוביטים במצב הקלאסי

נפעיל שער H על נקבל

$$H(q_1) \otimes q_2 = \left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right) \otimes |0\rangle = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|10\rangle$$

עכשיו נעפיל שער CNOT על שני הקיוביטים

$$\frac{1}{\sqrt{2}}CNOT\left(|00\rangle\right) + \frac{1}{\sqrt{2}}CNOT\left(|10\rangle\right) = \frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

EPR וקבילנו את הקיוביטים שהיינו צריכים לצורך ניסוי

חשוב לשים לב שהתחלנו מקיוביטים במצב קלאסי (וכמובן לא שזור) וסיימנו עם סופרפוזיציה של קיוביטים שזורים.

איך אנו יודעים שהם שזורים?

- 1. לפי תוצאות מדידה אם נמדוד קיוביט אחד זה ישפיע על המצב של הקיוביט השני.
- 2. אם הם לא היו שזורים היה היינו יכולים לבטא את הסופרפוזיציה כמכפלה טנזורית כלומר

$$\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle = (\alpha_0|0\rangle + \alpha_1|1\rangle) \otimes (\beta_0|0\rangle + \beta_1|1\rangle)$$

וזה לא אפשרי (אם ננס הלפתוח את המכפלה ולהשוות מקדמים נקבל מערכת משוואת ב4 נעלמים שאין לה פתרון)

טלפוטציה קוונטית

לאנסטסיה יש קיוביט q_1-1 בסופרפוזיציה $|0
angle+\alpha_1|1
angle$ בסופרפוזיציה בסופרפוזיציה על בסטסיה יש קיוביט לבוריס ליתר דיוק היא רוצה להביא למצב שלבוריס יהיה העתק ההה של הקיוביט לבוריס. היה).

 $q_2q_3=rac{1}{\sqrt{2}}|00
angle+rac{1}{\sqrt{2}}|11
angle\;EPR$ הבנה: אנסטסיה ובוריס מייצרים זוג קיוביטים כמו בניסוי q_1 של אנסטסיה ומסתכלים על שלושתם כעל המצב המשותף (אם מסופים את הקיוביט q_1 של אנסטסיה ומסתכלים על שלושתם כעל סופרפוזיציה משותפת)

$$(q_1q_2q_3) = (\alpha_0|0\rangle + \alpha_1|1\rangle) \otimes \left(\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle\right)$$