Curs 6

- O (S, Σ) -ecuație condiționată $(\forall X)t \stackrel{\cdot}{=}_s t'$ if H este formată din
 - \square o mulțime de variabile X,
 - \square doi termeni de același sort $t,t'\in T_\Sigma(X)_s$,
 - \square o mulțime H de ecuații $u \stackrel{\cdot}{=}_{s'} v$, cu $u, v \in T_{\Sigma}(X)_{s'}$.

- O (S,Σ) -ecuație condiționată $(\forall X)t\stackrel{\cdot}{=}_s t'$ if H este formată din
 - \square o mulțime de variabile X,
 - \square doi termeni de același sort $t,t'\in T_\Sigma(X)_s$,
 - \square o mulțime H de ecuații $u \stackrel{\cdot}{=}_{s'} v$, cu $u, v \in T_{\Sigma}(X)_{s'}$.
- O (S,Σ) -algebră $\mathcal{A}=(A_S,A_\Sigma)$ satisface o ecuație condiționată $(\forall X)t \stackrel{.}{=}_s t'$ if H dacă pentru orice funcție S-sortată $e:X\to A_S$, $\tilde{e}_{s'}(u)=\tilde{e}_{s'}(v)$, or. $u\stackrel{.}{=}_{s'}v\in H\Rightarrow \tilde{e}_s(t)=\tilde{e}_s(t')$.

- O (S, Σ) -ecuație condiționată $(\forall X)t \stackrel{\cdot}{=}_s t'$ if H este formată din
 - \square o mulțime de variabile X,
 - \square doi termeni de același sort $t,t'\in T_\Sigma(X)_s$,
 - \square o mulțime H de ecuații $u \stackrel{\cdot}{=}_{s'} v$, cu $u, v \in T_{\Sigma}(X)_{s'}$.
- O (S, Σ) -algebră $\mathcal{A} = (A_S, A_{\Sigma})$ satisface o ecuație condiționată $(\forall X)t \stackrel{\cdot}{=}_s t'$ if H dacă pentru orice funcție S-sortată $e: X \to A_S$, $\tilde{e}_{s'}(u) = \tilde{e}_{s'}(v)$, or. $u \stackrel{\cdot}{=}_{s'} v \in H \Rightarrow \tilde{e}_s(t) = \tilde{e}_s(t')$.
- O (S, Σ) -algebră \mathcal{A} este o Γ -algebră $(\mathcal{A} \text{ este model pentru } \Gamma)$ dacă $\mathcal{A} \models \gamma, \text{ or. } \gamma \in \Gamma.$

- O (S, Σ) -ecuație condiționată $(\forall X)t \stackrel{\cdot}{=}_s t'$ if H este formată din
 - \square o mulțime de variabile X,
 - \square doi termeni de același sort $t,t'\in T_\Sigma(X)_s$,
 - \square o mulțime H de ecuații $u \stackrel{\cdot}{=}_{s'} v$, cu $u, v \in T_{\Sigma}(X)_{s'}$.
- O (S,Σ) -algebră $\mathcal{A}=(A_S,A_\Sigma)$ satisface o ecuație condiționată $(\forall X)t \stackrel{.}{=}_s t'$ if H dacă pentru orice funcție S-sortată $e:X\to A_S$, $\tilde{e}_{s'}(u)=\tilde{e}_{s'}(v),$ or. $u\stackrel{.}{=}_{s'}v\in H\Rightarrow \tilde{e}_s(t)=\tilde{e}_s(t').$
- O (S, Σ) -algebră $\mathcal A$ este o Γ -algebră $(\mathcal A$ este model pentru $\Gamma)$ dacă $\mathcal A \models \gamma, \text{ or. } \gamma \in \Gamma.$

Notăm cu $Alg(S, \Sigma, \Gamma)$ clasa tuturor Γ -algebrelor.

Un tip abstract de date este o clasă $\mathfrak C$ de (S,Σ) -algebre cu proprietatea că oricare două (S,Σ) -algebre din $\mathfrak C$ sunt izomorfe:

$$\mathcal{A},\mathcal{B}\in\mathfrak{C}\Rightarrow\mathcal{A}\simeq\mathcal{B}.$$

Un tip abstract de date este o clasă $\mathfrak C$ de (S,Σ) -algebre cu proprietatea că oricare două (S,Σ) -algebre din $\mathfrak C$ sunt izomorfe:

$$A, B \in \mathfrak{C} \Rightarrow A \simeq B$$
.

Dacă A_1 și A_2 sunt inițiale în \Re , atunci $A_1 \simeq A_2$.

Un tip abstract de date este o clasă $\mathfrak C$ de (S,Σ) -algebre cu proprietatea că oricare două (S,Σ) -algebre din $\mathfrak C$ sunt izomorfe:

$$\mathcal{A}, \mathcal{B} \in \mathfrak{C} \Rightarrow \mathcal{A} \simeq \mathcal{B}.$$

Dacă \mathcal{A}_1 și \mathcal{A}_2 sunt inițiale în \mathfrak{K} , atunci $\mathcal{A}_1 \simeq \mathcal{A}_2$.

 T_{Σ} este (S, Σ) -algebră inițială, i.e.

pentru orice (S, Σ) -algebră $\mathcal B$ există un unic morfism $f: T_\Sigma \to \mathcal B$.

Un tip abstract de date este o clasă $\mathfrak C$ de (S,Σ) -algebre cu proprietatea că oricare două (S,Σ) -algebre din $\mathfrak C$ sunt izomorfe:

$$\mathcal{A}, \mathcal{B} \in \mathfrak{C} \Rightarrow \mathcal{A} \simeq \mathcal{B}.$$

Dacă \mathcal{A}_1 și \mathcal{A}_2 sunt inițiale în \mathfrak{K} , atunci $\mathcal{A}_1 \simeq \mathcal{A}_2$.

 T_{Σ} este (S, Σ) -algebră inițială, i.e.

pentru orice (S, Σ) -algebră \mathcal{B} există un unic morfism $f: T_{\Sigma} \to \mathcal{B}$.

 $T_{\Sigma}(X)$ este (S, Σ) -algebră liber generată de X, i.e.

pentru orice (S, Σ) -algebră $\mathcal{B} = (B_S, B_\Sigma)$, orice funcție S-sortată $e: X \to B_S$ se extinde unic la un (S, Σ) -morfism $\tilde{e}: T_\Sigma(X) \to \mathcal{B}$.

Cuprins

Specificații algebrice

2 Substituţii

3 Algoritmul de unificare

Specificații algebrice

Specificații

- O specificație este un triplet (S, Σ, Γ) , unde
 - \square (S, Σ) este o signatură multisortată
 - □ Γ este o mulțime de ecuații condiționate

Specificații

- O specificație este un triplet (S, Σ, Γ) , unde
 - \square (S, Σ) este o signatură multisortată
 - Γ este o mulțime de ecuații condiționate

Specificația (S, Σ, Γ) definește clasa modelelor $Alg(S, \Sigma, \Gamma)$, care reprezintă semantica ei.

Specificații echivalente

Definitie

Două specificații (S, Σ, Γ_1) și (S, Σ, Γ_2) sunt echivalente dacă definesc aceeași clasă de modele, i.e.

$$\mathcal{A} \models \Gamma_1 \Leftrightarrow \mathcal{A} \models \Gamma_2$$

□ Dacă Γ și Θ sunt mulțimi de ecuații condiționate a.î. $\Gamma \models \Theta$, atunci (S, Σ, Γ) și $(S, \Sigma, \Gamma \cup \Theta)$ sunt specificații echivalente.

Semantica unei teorii în Maude

```
    În Maude, o teorie fth ... endfth are ca semantică Alg(S, Σ, Γ)
    S mulțimea sorturilor
    Σ mulțimea simbolurilor de operații
    Γ mulțimea ecuațiilor definite în modul, iar fiecare ecuație eq t = t' și ceq t = t' if H este cuantificată de variabilele care apar în t și t'.
```

Pe T_{Σ} definim congruența semantică determinată de Γ:

$$\equiv_{\Gamma, T_{\Sigma}} := \bigcap \{ Ker(f) \mid f : T_{\Sigma} \to \mathcal{B}, \ \mathcal{B} \models \Gamma \}$$

Teorema (*)

 $T_{\Sigma}/_{\equiv_{\Gamma,T_{\Sigma}}}$ este Γ -algebra inițială.

Semantica unui modul în Maude

Fie (S,Σ) o signatură multisortată și Γ o mulțime de ecuații condiționate.

$$\mathfrak{I}_{(S,\Sigma,\Gamma)} = \{ \mathcal{I} \mid \mathcal{I} \text{ Γ-algebra inițială} \}$$

 \square $\mathfrak{I}_{(S,\Sigma,\Gamma)}$ este un tip abstract de date

Semantica unui modul în Maude

Fie (S, Σ) o signatură multisortată și Γ o mulțime de ecuații condiționate.

$$\mathfrak{I}_{(S,\Sigma,\Gamma)} = \{ \mathcal{I} \mid \mathcal{I} \text{ Γ-algebra inițială} \}$$

 \square $\mathfrak{I}_{(S,\Sigma,\Gamma)}$ este un tip abstract de date

In Maude, un modul fmod ... endfm definește tipul abstract de date $\mathfrak{I}_{(S,\Sigma,\Gamma)}$ și construiește efectiv algebra $\mathcal{T}_{\Sigma}/_{\equiv_{\Gamma,\mathcal{T}_{\Sigma}}}$

- □ S mulţimea sorturilor
- Σ mulţimea simbolurilor de operaţii
- □ Γ mulțimea ecuațiilor definite în modul, iar fiecare ecuație

eq
$$t = t$$
' \dot{s} i ceq $t = t$ ' if H

este cuantificată de variabilele care apar în t și t'.

Specificație corectă

Fie (S, Σ) o signatură multisortată și \mathcal{A} o (S, Σ) -algebră.

Definitie

O specificație (S, Σ, Γ) este adecvată pentru $\mathcal A$ dacă $\mathcal A$ este Γ -algebră inițială, i.e.

$$\mathcal{A} \in \mathfrak{I}_{(S,\Sigma,\Gamma)}$$
.

- $\Box S = \{s\}$
- \square $\Sigma = \{0 : \rightarrow s, succ : s \rightarrow s\}$
- $\Box \Gamma = \{(\forall x) succ(succ(succ(x)))) \stackrel{\cdot}{=} x\}$

Exempli

- $\Box S = \{s\}$
- \square $\Sigma = \{0 : \rightarrow s, succ : s \rightarrow s\}$
- $\Box \Gamma = \{(\forall x) succ(succ(succ(x)))) \stackrel{\cdot}{=} x\}$

 (S, Σ, Γ) este o specificație adecvată pentru $\mathcal{A} = (\mathbb{Z}_4, 0, succ)$, unde $A_{succ}(x) := (x+1) \mod 4$.

Exempli

- $\Box S = \{s\}$
- \square $\Sigma = \{0 : \rightarrow s, succ : s \rightarrow s\}$
- $\Box \Gamma = \{(\forall x) succ(succ(succ(x)))) \stackrel{\cdot}{=} x\}$

 (S, Σ, Γ) este o specificație adecvată pentru $\mathcal{A} = (\mathbb{Z}_4, 0, succ)$, unde $A_{succ}(x) := (x+1) \mod 4$.

Se reduce la a arăta că A este Γ -algebra inițială, i.e.

- $\blacksquare \mathcal{A} \models \gamma$, or. $\gamma \in \Gamma$,
- **2** pt. or. Γ -algebră \mathcal{B} , există un unic morfism $f: \mathcal{A} \to \mathcal{B}$.

$$\mathcal{A} = (\mathbb{Z}_4, 0, succ)$$
, unde $A_{succ}(x) := (x+1) \mod 4$.

$$\mathcal{A} = (\mathbb{Z}_4, 0, succ)$$
, unde $A_{succ}(x) := (x+1) \mod 4$.

- - $\square \text{ Fie } e: X \to \mathbb{Z}_4, \text{ unde } X = \{x\}.$

$$\mathcal{A} = (\mathbb{Z}_4, 0, succ)$$
, unde $A_{succ}(x) := (x+1) \mod 4$.

- - Avem

$$\tilde{e}(succ(succ(succ(x))))) = A_{succ}(A_{succ}(A_{succ}(A_{succ}(e(x)))))$$

$$= (e(x) + 4) \mod 4$$

$$= e(x) = \tilde{e}(x)$$

Exempli

$$\mathcal{A} = (\mathbb{Z}_4, 0, succ)$$
, unde $A_{succ}(x) := (x+1) \mod 4$.

- - Avem

$$\tilde{e}(succ(succ(succ(x))))) = A_{succ}(A_{succ}(A_{succ}(e(x)))))$$

$$= (e(x) + 4) \mod 4$$

$$= e(x) = \tilde{e}(x)$$

Fie B o Γ-algebră.

Existența: Definim $f: \mathbb{Z}_4 \to B$ prin

Exempli

$$\mathcal{A} = (\mathbb{Z}_4, 0, succ)$$
, unde $A_{succ}(x) := (x+1) \mod 4$.

- - Avem

$$\tilde{e}(succ(succ(succ(x))))) = A_{succ}(A_{succ}(A_{succ}(e(x)))))$$

$$= (e(x) + 4) \mod 4$$

$$= e(x) = \tilde{e}(x)$$

2 Fie B o Γ-algebră.

Existența: Definim $f: \mathbb{Z}_4 \to B$ prin

- $\Box f(0) := B_0$
- $f(x+1) := B_{succ}(f(x)), \text{ pt. } 0 \le x \le 2$

Exemplu

2 Arătăm că f este morfism:

- 2 Arătăm că f este morfism:
 - $\Box f(A_0) = f(0) = B_0$

- 2 Arătăm că f este morfism:
 - $\Box f(A_0) = f(0) = B_0$
 - $f(A_{succ}(x)) = f(x+1) = B_{succ}(f(x)), \text{ pt. } 0 \le x \le 2$

- 2 Arătăm că f este morfism:
 - $\Box f(A_0) = f(0) = B_0$
 - $f(A_{succ}(x)) = f(x+1) = B_{succ}(f(x)), \text{ pt. } 0 \le x \le 2$
 - Trebuie să mai arătăm că $f(A_{succ}(3)) = B_{succ}(f(3))$:

- 2 Arătăm că f este morfism:
 - $\Box f(A_0) = f(0) = B_0$
 - $f(A_{succ}(x)) = f(x+1) = B_{succ}(f(x)), \text{ pt. } 0 \le x \le 2$
 - Trebuie să mai arătăm că $f(A_{succ}(3)) = B_{succ}(f(3))$:
 - $f(A_{succ}(3)) = f(0) = B_0$

- 2 Arătăm că f este morfism:
 - $\Box f(A_0) = f(0) = B_0$
 - $f(A_{succ}(x)) = f(x+1) = B_{succ}(f(x)), \text{ pt. } 0 \le x \le 2$
 - □ Trebuie să mai arătăm că $f(A_{succ}(3)) = B_{succ}(f(3))$:
 - $f(A_{succ}(3)) = f(0) = B_0$
 - $B_{succ}(f(3)) = B_{succ}(B_{succ}(B_{succ}(B_{succ}(B_0))))$

Exemplu

- 2 Arătăm că f este morfism:
 - $\Box f(A_0) = f(0) = B_0$
 - $f(A_{succ}(x)) = f(x+1) = B_{succ}(f(x)), \text{ pt. } 0 \le x \le 2$
 - Trebuie să mai arătăm că $f(A_{succ}(3)) = B_{succ}(f(3))$:
 - $f(A_{succ}(3)) = f(0) = B_0$
 - $B_{succ}(f(3)) = B_{succ}(B_{succ}(B_{succ}(B_{succ}(B_0))))$
 - Cum $\mathcal{B} \models (\forall x) succ(succ(succ(succ(x)))) \stackrel{.}{=} x$, pt. $e': X \rightarrow B$, $e'(x) := B_0$, obtinem

$$B_{succ}(B_{succ}(B_{succ}(B_{succ}(B_0)))) = \tilde{e'}(succ(succ(succ(x))))) = e'(x) = B_0$$

Deci $f(A_{succ}(3)) = B_{succ}(f(3))$.

Exemplu

- Arătăm că f este morfism: $f(A_0) = f(0) = B_0$ $f(A_{succ}(x)) = f(x+1) = 0$
 - $f(A_{succ}(x)) = f(x+1) = B_{succ}(f(x)), \text{ pt. } 0 \le x \le 2$
 - Trebuie să mai arătăm că $f(A_{succ}(3)) = B_{succ}(f(3))$:
 - $f(A_{SUCC}(3)) = f(0) = B_0$ $B_{SUCC}(f(3)) = B_{SUCC}(B_{SUCC}(B_{SUCC}(B_{SUCC}(B_0))))$
 - $= \mathsf{Cum} \ \mathcal{B} \models (\forall x) \mathsf{succ}(\mathsf{succ}(\mathsf{succ}(\mathsf{succ}(\mathsf{succ}(x)))) \doteq x, \ \mathsf{pt.} \ e' : X \to B,$
 - $e'(x) := B_0$, obtinem

$$B_{succ}(B_{succ}(B_{succ}(B_{succ}(B_0)))) = \tilde{e'}(succ(succ(succ(succ(x))))) = \tilde{e'}(x) = B_0$$

Deci $f(A_{succ}(3)) = B_{succ}(f(3))$.

Unicitatea: Fie $g: A \rightarrow B$ un morfism.

Arătăm că g(x) = f(x), or. $x \in \{0, 1, 2, 3\}$, prin inducție:

- \square $g(0) = g(A_0) = B_0 = f(0)$
- $\square g(x+1) = g(A_{succ}(x)) = B_{succ}(g(x)) = B_{succ}(f(x)) = f(A_{succ}(x)) = f(x+1)$

Substituții

Substituție

Fie (S, Σ) o signatură multisortată și X, Y mulțimi de variabile.

□ Am văzut că, pentru orice (S, Σ) -algebră $\mathcal{B} = (B_S, B_\Sigma)$, orice funcție S-sortată $e: X \to B_S$ se extinde unic la un morfism $\tilde{e}: T_\Sigma(X) \to \mathcal{B}$.

Substituție

Fie (S, Σ) o signatură multisortată și X, Y mulțimi de variabile.

- □ Am văzut că, pentru orice (S, Σ) -algebră $\mathcal{B} = (B_S, B_\Sigma)$, orice funcție S-sortată $e: X \to B_S$ se extinde unic la un morfism $\tilde{e}: T_\Sigma(X) \to \mathcal{B}$.
- \square Ce se întâmplă dacă \mathcal{B} este liber generată de Y, i.e. $B \simeq T_{\Sigma}(Y)$?

Substituție

Fie (S, Σ) o signatură multisortată și X, Y mulțimi de variabile.

- □ Am văzut că, pentru orice (S, Σ) -algebră $\mathcal{B} = (B_S, B_\Sigma)$, orice funcție S-sortată $e: X \to B_S$ se extinde unic la un morfism $\tilde{e}: T_\Sigma(X) \to \mathcal{B}$.
- \square Ce se întâmplă dacă \mathcal{B} este liber generată de Y, i.e. $B \simeq T_{\Sigma}(Y)$?

Definitie

O substituție a variabilelor din X cu termeni din $T_{\Sigma}(Y)$ este o funcție S-sortată

$$\tau:X\to T_\Sigma(Y)$$
.

 $\square \{x_1 \leftarrow t_1, \dots, x_n \leftarrow t_n\} \text{ este notația uzuală pentru } \sigma : X \rightarrow T_{\Sigma}(X),$ cu $\sigma(x_i) = t_i \text{ și } \sigma(X) = X, \text{ pt. } x \neq x_i, \text{ or. } i = 1, \dots, n.$

- $\square \{x_1 \leftarrow t_1, \dots, x_n \leftarrow t_n\} \text{ este notația uzuală pentru } \sigma : X \to T_{\Sigma}(X),$ cu $\sigma(x_i) = t_i \text{ și } \sigma(X) = X, \text{ pt. } x \neq x_i, \text{ or. } i = 1, \dots, n.$
- O substituție $\tau: X \to T_{\Sigma}(Y)$ se extinde unic la un (S, Σ) -morfism $\tilde{\tau}: T_{\Sigma}(X) \to T_{\Sigma}(Y)$
 - \square $\tilde{\tau}_s(x) := \tau_s(x)$, or. $x \in X_s$,
 - \square $\tilde{\tau}_s(\sigma) := \sigma$, or. $\sigma : \rightarrow s$,
 - $\Box \ \widetilde{\tau}_{s}(\sigma(t_{1},\ldots,t_{n})) := \sigma(\widetilde{\tau}_{s_{1}}(t_{1}),\ldots,\widetilde{\tau}_{s_{n}}(t_{n})), \text{ or. } \sigma:s_{1}\ldots s_{n} \to s \text{ și or. }$ $t_{1} \in T_{\Sigma}(X)_{s_{1}},\ldots,t_{n} \in T_{\Sigma}(X)_{s_{n}}.$

- $\square \{x_1 \leftarrow t_1, \dots, x_n \leftarrow t_n\} \text{ este notația uzuală pentru } \sigma : X \to T_{\Sigma}(X),$ cu $\sigma(x_i) = t_i \text{ și } \sigma(X) = X, \text{ pt. } x \neq x_i, \text{ or. } i = 1, \dots, n.$
- O substituție $\tau: X \to T_{\Sigma}(Y)$ se extinde unic la un (S, Σ) -morfism $ilde{ au}: T_{\Sigma}(X) \to T_{\Sigma}(Y)$
 - \square $\tilde{\tau}_s(x) := \tau_s(x)$, or. $x \in X_s$,
 - \square $\tilde{\tau}_s(\sigma) := \sigma$, or. $\sigma : \rightarrow s$,
 - $\vec{\tau}_s(\sigma(t_1,\ldots,t_n)) := \sigma(\tilde{\tau}_{s_1}(t_1),\ldots,\tilde{\tau}_{s_n}(t_n)), \text{ or. } \sigma:s_1\ldots s_n\to s \text{ și or.}$ $t_1\in T_\Sigma(X)_{s_1},\ldots,t_n\in T_\Sigma(X)_{s_n}.$
- \square Vom indentifica uneori $\tilde{\tau}$ cu τ .

Fie X, Y și Z mulțimi de variabile.

 \square Compunerea substituțiilor $\tau: X \to T_{\Sigma}(Y)$ și $\mu: Y \to T_{\Sigma}(Z)$ este

$$au; \mu: X o T_{\Sigma}(Z)$$
 $(au; \mu)_s(x) := (au; ilde{\mu})_s(x),$ or. $x \in X_s.$

- ☐ Compunerea substituțiilor este asociativă.
- ☐ Compunerea substituțiilor nu este în general comutativă.

- $\square S = \{s\} \text{ si } \Sigma = \{a : \rightarrow s, \ f : s \rightarrow s, \ g : s \rightarrow s, \ p : sssss \rightarrow s\}$
- $\square X = \{x, y, z, u, v\}$
- $\Box t = p(u, v, x, y, z) \in T_{\Sigma}(X)$

- $\square S = \{s\} \text{ si } \Sigma = \{a : \rightarrow s, \ f : s \rightarrow s, \ g : s \rightarrow s, \ p : sssss \rightarrow s\}$
- $\square X = \{x, y, z, u, v\}$
- $\square \ t = p(u, v, x, y, z) \in T_{\Sigma}(X)$
- $\square \ \tau: X \to T_{\Sigma}(X), \ \tau = \{x \leftarrow f(y), \ y \leftarrow f(a), \ z \leftarrow u\}$
- $\square \ \tilde{\tau}(t) = p(u, v, f(y), f(a), u)$

- $\square S = \{s\} \text{ \sharp i } \Sigma = \{a : \to s, \ f : s \to s, \ g : s \to s, \ p : sssss \to s\}$
- $\square X = \{x, y, z, u, v\}$
- $\Box t = p(u, v, x, y, z) \in T_{\Sigma}(X)$
- $\square \ \tau : X \to T_{\Sigma}(X), \ \tau = \{x \leftarrow f(y), \ y \leftarrow f(a), \ z \leftarrow u\}$
- $\square \ \tilde{\tau}(t) = p(u, v, f(y), f(a), u)$
- $\square \ \mu: X \to T_{\Sigma}(X), \ \mu = \{y \leftarrow g(a), \ u \leftarrow z, \ v \leftarrow f(f(a))\}$
- $\square \ \widetilde{\mu}(t) = p(z, f(f(a)), x, g(a), z)$

Exempli

```
\Box S = \{s\} \text{ $\vec{\varsigma}$ i $\Sigma = \{a: \rightarrow s, \ f: s \rightarrow s, \ g: s \rightarrow s, \ p: sssss \rightarrow s\}} \\
\Box X = \{x, y, z, u, v\} \\
\Box t = p(u, v, x, y, z) \in T_{\Sigma}(X) \\
\Box \tau: X \rightarrow T_{\Sigma}(X), \ \tau = \{x \leftarrow f(y), \ y \leftarrow f(a), \ z \leftarrow u\} \\
\Box \tilde{\tau}(t) = p(u, v, f(y), f(a), u) \\
\Box \mu: X \rightarrow T_{\Sigma}(X), \ \mu = \{y \leftarrow g(a), \ u \leftarrow z, \ v \leftarrow f(f(a))\} \\
\Box \tilde{\mu}(t) = p(z, f(f(a)), x, g(a), z) \\
\Box (\tilde{\tau}; \tilde{\mu})(t) = \tilde{\mu}(\tilde{\tau}(t)) = \tilde{\mu}(p(u, v, f(y), f(a), u)) = \\
= p(z, f(f(a)), f(g(a)), f(a), z)
```

```
\square S = \{s\} și \Sigma = \{a : \rightarrow s, f : s \rightarrow s, g : s \rightarrow s, p : sssss \rightarrow s\}
\square X = \{x, y, z, u, v\}
\square t = p(u, v, x, y, z) \in T_{\Sigma}(X)
\Box \tau: X \to T_{\Sigma}(X), \tau = \{x \leftarrow f(y), y \leftarrow f(a), z \leftarrow u\}
\square \tilde{\tau}(t) = p(u, v, f(y), f(a), u)
\square \mu: X \to T_{\Sigma}(X), \ \mu = \{y \leftarrow g(a), \ u \leftarrow z, \ v \leftarrow f(f(a))\}
\square \tilde{\mu}(t) = p(z, f(f(a)), x, g(a), z)
\square (\tilde{\tau}; \tilde{\mu})(t) = \tilde{\mu}(\tilde{\tau}(t)) = \tilde{\mu}(p(u, v, f(y), f(a), u)) =
                     = p(z, f(f(a)), f(g(a)), f(a), z)
\square (\tilde{\mu}; \tilde{\tau})(t) = \tilde{\tau}(\tilde{\mu}(t)) = \tilde{\tau}(p(z, f(f(a)), x, g(a), z))
                      = p(u, f(f(a)), f(v), g(a), u)
```

Cazul monosortat

- \square (S, Σ) signatură monosortată, i.e. $S = \{s\}$.
- \square X mulțime de variabile și $T_{\Sigma}(X)$ termenii cu variabile din X.
- \square O ecuație constă în doi termeni $t,t'\in T_\Sigma(X)$ și o notăm $t\stackrel{.}{=} t'$
- ☐ În cazul monosortat cuantificarea înaintea unei ecuații nu este necesară.
- Egalitatea termenilor: dacă $t = \sigma(t_1, \ldots, t_n)$ și $t' = \tau(t'_1, \ldots, t'_k)$ atunci $t = t' \Leftrightarrow \sigma = \tau, \ n = k$ și $t_i = t'_i$, or. i
 - $\stackrel{\cdot}{=}$ egalitate formală = egalitate efectivă

Unificare. Cazul monosortat

Fie (S, Σ) signatură monosortată și X mulțime de variabile.

Problema unificării:

Pentru o mulțime finită de ecuații $U = \{t_1 \stackrel{.}{=} t'_1, \dots, t_n \stackrel{.}{=} t'_n\}$ găsiți un unificator.

Unificare. Cazul monosortat

Fie (S, Σ) signatură monosortată și X mulțime de variabile.

Problema unificării:

Pentru o mulțime finită de ecuații $U = \{t_1 = t'_1, \dots, t_n = t'_n\}$ găsiți un unificator.

 \square Un unificator pentru U este o substituție $\nu: X \to T_{\Sigma}(X)$ a.î.

$$\nu(t_i) = \nu(t'_i)$$
, or. $i = 1, ..., n$.

Unificare. Cazul monosortat

Fie (S, Σ) signatură monosortată și X mulțime de variabile.

Problema unificării:

Pentru o mulțime finită de ecuații $U = \{t_1 = t'_1, \dots, t_n = t'_n\}$ găsiți un unificator.

 \square Un unificator pentru U este o substituție $\nu: X \to T_{\Sigma}(X)$ a.î.

$$\nu(t_i) = \nu(t'_i)$$
, or. $i = 1, ..., n$.

Un unificator ν pentru U este un cel mai general unificator (cgu,mgu) dacă pentru orice alt unificator ν' pentru U, există o substituție μ astfel încât

$$\nu' = \nu; \mu.$$

- $\square S = \{s\} \text{ \mathfrak{s}i } \Sigma = \{0 : \to s, \ + : ss \to s, \ \star : ss \to s\}$
- $\square X = \{x, y\}$
- $\Box t = x + (y \star y) = +(x, \star (y, y))$
- $\Box t' = x + (y \star x) = +(x, \star (y, x))$

- \square $S = \{s\}$ și $\Sigma = \{0 : \rightarrow s, +: ss \rightarrow s, \star: ss \rightarrow s\}$ $\square X = \{x, y\}$ $\Box t = x + (y \star y) = +(x, \star(y, y))$
- \Box $t' = x + (y \star x) = +(x, \star(y, x))$
- \square $\nu = \{x \leftarrow y, y \leftarrow y\}$
 - \square $\nu(t) = y + (y \star y)$
 - \square $\nu(t') = y + (y \star y)$
 - \square ν este cgu

$$\square S = \{s\} \text{ i } \Sigma = \{0 : \rightarrow s, \ + : ss \rightarrow s, \ \star : ss \rightarrow s\}$$

$$\square X = \{x, y\}$$

$$\square t = x + (y \star y) = +(x, \star (y, y))$$

$$\square t' = x + (y \star x) = +(x, \star (y, x))$$

$$\square \nu = \{x \leftarrow y, y \leftarrow y\}$$

$$\square \nu(t) = y + (y \star y)$$

$$\square \nu(t') = y + (y \star y)$$

$$\square \nu \text{ este cgu}$$

$$\square \nu' = \{x \leftarrow 0, y \leftarrow 0\}$$

$$\square \nu'(t) = 0 + (0 \star 0)$$

$$\square \nu'(t') = 0 + (0 \star 0)$$

Exempli

$$S = \{s\} \text{ si } \Sigma = \{0: \rightarrow s, +: ss \rightarrow s, *: ss \rightarrow s\}$$

$$X = \{x, y\}$$

$$t = x + (y * y) = +(x, *(y, y))$$

$$t' = x + (y * x) = +(x, *(y, x))$$

$$v = \{x \leftarrow y, y \leftarrow y\}$$

$$v(t) = y + (y * y)$$

$$v(t') = y + (y * y)$$

$$v \text{ este cgu}$$

$$v' = \{x \leftarrow 0, y \leftarrow 0\}$$

$$v'(t) = 0 + (0 * 0)$$

$$v'(t') = 0 + (0 * 0)$$

$$v' = v; \{y \leftarrow 0\}$$

- □ Pentru o mulțime finită de ecuații $U = \{t_1 = t'_1, \dots, t_n = t'_n\}$ stabilește dacă există un cgu.
- □ Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.

- □ Pentru o mulțime finită de ecuații $U = \{t_1 = t'_1, \dots, t_n = t'_n\}$ stabilește dacă există un cgu.
- □ Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.
- ☐ Algoritmul lucrează cu două liste:
 - ☐ Lista soluție: *S*
 - ☐ Lista de rezolvat: R

- \square Pentru o mulțime finită de ecuații $U = \{t_1 = t'_1, \dots, t_n = t'_n\}$ stabilește dacă există un cgu.
- Există algoritmi mai eficienți, dar îl alegem pe acesta pentru simplitatea sa.
- ☐ Algoritmul lucrează cu două liste:
 - ☐ Lista soluție: *S*
 - ☐ Lista de rezolvat: *R*
- □ Iniţial:
 - \square Lista soluție: $S = \emptyset$
 - lacksquare Lista de rezolvat: $R = \{t_1 \stackrel{.}{=} t_1', \ldots, t_n \stackrel{.}{=} t_n'\}$

- □ SCOATE
 - \square orice ecuație de forma t = t din R este eliminată.

- □ SCOATE
 - \square orice ecuație de forma t = t din R este eliminată.
- DESCOMPUNE
 - orice ecuație de forma $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n)$ din R este înlocuită cu ecuațiile $t_1 = t'_1, \ldots, t_n = t'_n$.

- □ SCOATE
 - \square orice ecuație de forma t = t din R este eliminată.
- □ DESCOMPUNE
 - orice ecuație de forma $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n)$ din R este înlocuită cu ecuațiile $t_1 = t'_1, \ldots, t_n = t'_n$.
- □ REZOLVĂ
 - orice ecuație de forma x = t sau t = x din R, unde variabila x nu apare în termenul t, este mutată sub forma x = t în S. În toate celelalte ecuații (din R și S), x este înlocuit cu t.

Algoritmul se termină normal dacă $R = \emptyset$. În acest caz, S dă cgu.

Algoritmul este oprit cu concluzia inexistenței unui cgu dacă:

■ În R există o ecuație de forma

$$f(t_1,\ldots,t_n) \stackrel{\cdot}{=} g(t'_1,\ldots,t'_k)$$
 cu $f \neq g$.

2 În R există o ecuație de forma x = t sau t = x și variabila x apare în termenul t.

Algoritmul de unificare - schemă

	Lista soluție	Lista de rezolvat	
	S	R	
Inițial	Ø	$t_1 \stackrel{.}{=} t_1', \ldots, t_n \stackrel{.}{=} t_n'$	
SCOATE	S	R' , $t \stackrel{\cdot}{=} t$	
	5	R'	
DESCOMPUNE	S	$R', f(t_1,\ldots,t_n) \stackrel{\cdot}{=} f(t'_1,\ldots,t'_n)$	
	5	R' , $t_1 \stackrel{.}{=} t'_1, \ldots t_n \stackrel{.}{=} t'_n$	
REZOLVĂ	S	R', $x = t$ sau $t = x$, x nu apare în t	
	$x = t$, $S[x \leftarrow t]$	$R'[x \leftarrow t]$	
Final	S	Ø	

 $S[x \leftarrow t]$: în toate ecuațiile din S, x este înlocuit cu t

Exemple

- $\square S = \{s\}, \ \Sigma = \{g: s \rightarrow s, \ h: s \rightarrow s, \ f: sss \rightarrow s\}, \ X = \{x, y, z, w\}$

Exempli

- $\square S = \{s\}, \ \Sigma = \{g: s \rightarrow s, \ h: s \rightarrow s, \ f: sss \rightarrow s\}, \ X = \{x, y, z, w\}$
- \square $U = \{g(y) = x, f(x, h(x), y) = f(g(z), w, z)\}$ are gcu?

5	R	
Ø	$g(y) \doteq x, f(x, h(x), y) \doteq f(g(z), w, z)$	

Exemple

- $\square S = \{s\}, \ \Sigma = \{g : s \to s, \ h : s \to s, \ f : sss \to s\}, \ X = \{x, y, z, w\}$
- \square $U = \{g(y) = x, f(x, h(x), y) = f(g(z), w, z)\}$ are gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ

Exempli

- $\square S = \{s\}, \ \Sigma = \{g: s \rightarrow s, \ h: s \rightarrow s, \ f: sss \rightarrow s\}, \ X = \{x, y, z, w\}$
- \square $U = \{g(y) = x, f(x, h(x), y) = f(g(z), w, z)\}$ are gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(g(y)), y) \stackrel{\cdot}{=} f(g(z), w, z)$	

- $\square S = \{s\}, \ \Sigma = \{g: s \rightarrow s, \ h: s \rightarrow s, \ f: sss \rightarrow s\}, \ X = \{x, y, z, w\}$
- \square $U = \{g(y) = x, f(x, h(x), y) = f(g(z), w, z)\}$ are gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(g(y)), y) \stackrel{\cdot}{=} f(g(z), w, z)$	DESCOMPUNE

- $\square S = \{s\}, \ \Sigma = \{g: s \rightarrow s, \ h: s \rightarrow s, \ f: sss \rightarrow s\}, \ X = \{x, y, z, w\}$

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \doteq f(g(z),w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{\cdot}{=} g(z), h(g(y)) \stackrel{\cdot}{=} w, y \stackrel{\cdot}{=} z$	

Exempli

- $\square S = \{s\}, \ \Sigma = \{g: s \rightarrow s, \ h: s \rightarrow s, \ f: sss \rightarrow s\}, \ X = \{x, y, z, w\}$
- \square $U = \{g(y) = x, f(x, h(x), y) = f(g(z), w, z)\}$ are gcu?

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{\cdot}{=} g(z), h(g(y)) \stackrel{\cdot}{=} w, y \stackrel{\cdot}{=} z$	REZOLVĂ

- $\square S = \{s\}, \ \Sigma = \{g: s \rightarrow s, \ h: s \rightarrow s, \ f: sss \rightarrow s\}, \ X = \{x, y, z, w\}$

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = g(z), h(g(y)) = w, y = z	REZOLVĂ
$w \stackrel{\cdot}{=} h(g(y)),$	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		

Exempli

- $\square S = \{s\}, \ \Sigma = \{g: s \rightarrow s, \ h: s \rightarrow s, \ f: sss \rightarrow s\}, \ X = \{x, y, z, w\}$

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y),h(g(y)),y) \stackrel{\cdot}{=} f(g(z),w,z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{\cdot}{=} g(z), h(g(y)) \stackrel{\cdot}{=} w, y \stackrel{\cdot}{=} z$	REZOLVĂ
$w \stackrel{\cdot}{=} h(g(y)),$	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	$g(z) \stackrel{.}{=} g(z)$	SCOATE
$w \stackrel{\cdot}{=} h(g(z))$		

Exempli

- $\square S = \{s\}, \ \Sigma = \{g: s \rightarrow s, \ h: s \rightarrow s, \ f: sss \rightarrow s\}, \ X = \{x, y, z, w\}$

S	R	
Ø	$g(y) \stackrel{\cdot}{=} x$, $f(x, h(x), y) \stackrel{\cdot}{=} f(g(z), w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(g(y)), y) \stackrel{\cdot}{=} f(g(z), w, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{\cdot}{=} g(z), h(g(y)) \stackrel{\cdot}{=} w, y \stackrel{\cdot}{=} z$	REZOLVĂ
$w \stackrel{.}{=} h(g(y)),$	$g(y) \stackrel{.}{=} g(z), \ y \stackrel{.}{=} z$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	$g(z) \stackrel{.}{=} g(z)$	SCOATE
$w \doteq h(g(z))$		
$y \stackrel{\cdot}{=} z, x \stackrel{\cdot}{=} g(z),$	Ø	
w = h(g(z))		

 \square $\nu = \{y \leftarrow z, \ x \leftarrow g(z), \ w \leftarrow h(g(z))\}$ este cgu pentru ecuațiile din U.

- $\square S = \{s\}, \ \Sigma = \{b : \rightarrow s, \ g : s \rightarrow s, \ h : s \rightarrow s, \ f : sss \rightarrow s\}, \ X = \{x, y, z\}$

- $\square S = \{s\}, \ \Sigma = \{b : \rightarrow s, \ g : s \rightarrow s, \ h : s \rightarrow s, \ f : sss \rightarrow s\}, \ X = \{x, y, z\}$
- \square $U = \{g(y) \stackrel{\cdot}{=} x, \ f(x, h(y), y) \stackrel{\cdot}{=} f(g(z), b, z)\}$ are gcu?

S	R	
Ø	$g(y) = x, \ f(x, h(y), y) = f(g(z), b, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	f(g(y),h(y),y)=f(g(z),b,z)	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	$g(y) \stackrel{.}{=} g(z), h(y) \stackrel{.}{=} b, y \stackrel{.}{=} z$	- EŞEC -

- ☐ *h* și *b* sunt simboluri de operații diferite!
- \square Nu există unificator pentru ecuațiile din U.

Exempli

- $\square S = \{s\}, \ \Sigma = \{g : s \to s, \ h : s \to s, \ f : sss \to s\}, \ X = \{x, y, z, w\}$
- \square $U = \{g(y) \stackrel{.}{=} x, \ f(x, h(x), y) \stackrel{.}{=} f(y, w, z)\}$ are gcu?

- $\square S = \{s\}, \Sigma = \{g: s \rightarrow s, h: s \rightarrow s, f: sss \rightarrow s\}, X = \{x, y, z, w\}$
- \square $U = \{g(y) \stackrel{\cdot}{=} x, \ f(x, h(x), y) \stackrel{\cdot}{=} f(y, w, z)\}$ are gcu?

S	R	
Ø	g(y) = x, $f(x, h(x), y) = f(y, w, z)$	REZOLVĂ
$x \stackrel{\cdot}{=} g(y)$	$f(g(y), h(g(y)), y) \stackrel{\cdot}{=} f(y, w, z)$	DESCOMPUNE
$x \stackrel{\cdot}{=} g(y)$	g(y) = y, $h(g(y)) = w$, $y = z$	- EŞEC -

- \square În ecuația $g(y) \stackrel{.}{=} y$, variabila y apare în termenul g(y).
- \square Nu există unificator pentru ecuațiile din U.

Terminarea algoritmului

Propoziție

Algoritmul de unificare se termină.

Terminarea algoritmului

Propoziție

Algoritmul de unificare se termină.

Demonstrație

- □ Notăm cu
 - \square N_1 : numărul variabilelor care apar în R
 - \square N_2 : numărul aparițiilor simbolurilor care apar în R
- □ Este suficient să arătăm că perechea (N_1, N_2) descrește strict în ordine lexicografică la execuția unui pas al algoritmului:

dacă la execuția unui pas (N_1, N_2) se schimbă în (N'_1, N'_2) , atunci $(N_1, N_2) \ge_{lex} (N'_1, N'_2)$

Demonstrație (cont.)

Fiecare regulă a algoritmului modifică N_1 și N_2 astfel:

	N_1	N_2
SCOATE	<u> </u>	>
DESCOMPUNE	=	>
REZOLVĂ	>	

- \square N_1 : numărul variabilelor care apar în R
- \square N_2 : numărul aparițiilor simbolurilor care apar în R

Lema 1

Mulțimea unificatorilor pentru reuniunea ecuațiilor din R și S nu se modifică prin aplicarea celor trei reguli ale algoritmului de unificare.

Lema 1

Mulțimea unificatorilor pentru reuniunea ecuațiilor din R și S nu se modifică prin aplicarea celor trei reguli ale algoritmului de unificare.

Demonstrație

Analizăm fiecare regulă:

□ SCOATE: evident

Lema 1

Mulțimea unificatorilor pentru reuniunea ecuațiilor din R și S nu se modifică prin aplicarea celor trei reguli ale algoritmului de unificare.

Demonstrație

Analizăm fiecare regulă:

- □ SCOATE: evident
 - DESCOMPUNE: Trebuie să arătăm că

 ν unificator pt. \Leftrightarrow

$$u$$
 unificator pt. \Leftrightarrow u unificator pt. $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n) \qquad t_i = t'_i, \text{ or. } i = 1, \ldots, n.$

Lema 1

Mulțimea unificatorilor pentru reuniunea ecuațiilor din R și S nu se modifică prin aplicarea celor trei reguli ale algoritmului de unificare.

Demonstrație

Analizăm fiecare regulă:

- □ SCOATE: evident
 - □ DESCOMPUNE: Trebuie să arătăm că

$$u$$
 unificator pt. \Leftrightarrow u unificator pt. $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n) \qquad t_i = t'_i, \text{ or. } i = 1, \ldots, n.$
 u unif. pt. $f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n) \qquad \Leftrightarrow
u(f(t_1, \ldots, t_n)) =
u(f(t'_1, \ldots, t'_n)) \qquad \Leftrightarrow
f(
u(t_1), \ldots,
u(t_n)) =
f(
u(t'_1), \ldots,
u(t'_n)) \qquad \Leftrightarrow
u(t_i) =
u(t'_i), \text{ or. } i = 1, \ldots, n$
 $\Leftrightarrow
u$ unificator pt. $t_i = t'_i, \text{ or. } i = 1, \ldots, n$

Demonstrație (cont.)

□ REZOLVĂ:

Se observă că or. unificator ν pt. reuniunea ecuațiile din R și S, atât înainte cât și după aplicarea regulii REZOLVĂ, trebuie să satisfacă:

$$\nu(x)=\nu(t).$$

 \square Pt. or. unificator μ pt. x = t observăm că:

$$(x \leftarrow t); \mu = \mu$$

$$((x \leftarrow t); \mu)(x) = \mu(t) = \mu(x)$$

$$((x \leftarrow t); \mu)(y) = \mu(y), \text{ or, } y \neq x$$

Deci.

 μ este un unificator pt. ec. din $\it R$ și $\it S$ înainte de REZOLVĂ

$$\Leftrightarrow$$

 μ este un unificator pt. ec. din R și S după REZOLVĂ

Lema 2

Variabilele care apar în partea stângă a ecuațiilor din S sunt distincte două câte două și nu mai apar în altă parte în S și R.

Lema 2

Variabilele care apar în partea stângă a ecuațiilor din S sunt distincte două câte două și nu mai apar în altă parte în S și R.

Demonstrație

Exercițiu!

- \square Pres. că algoritmul de unificare se termină cu $R = \emptyset$.
- \square Fie $x_i \stackrel{.}{=} t_i$, i = 1, ..., k, ecuațiile din S.
- Definim substituţia:

$$\nu(x_i) = t_i$$
, or. $i = 1, ..., k$.

- \square ν este corect definită (vezi Lema 2).
- □ Cum variabilele x_i nu apar în termenii t_i , deducem că $\nu(t_i) = t_i = \nu(x_i)$, or. i = 1, ..., k.
- \square Deci ν este unificator pentru U (vezi Lema 1).

Lema 3

 ν definit mai sus cf. algoritmului de unificare este cgu pentru U.

Lema 3

 ν definit mai sus cf. algoritmului de unificare este cgu pentru U.

Demonstrație

 \square Pt. or. substituție s obținem că $\nu; s$ este unificator pt. U: pentru $t_i \stackrel{.}{=} t_i' \in U$, avem

$$(\nu; s)(t_i) = s(\nu(t_i)) = s(\nu(t_i')) = (\nu; s)(t_i')$$

 \square Fie μ un alt unificator pt. U. Avem

$$\square \mu(\nu(x_i)) = \mu(t_i) = x_i, \text{ or. } i = 1, \ldots, k,$$

$$\square$$
 $\mu(\nu(y)) = \mu(y)$, or. $y \neq x$.

Deci
$$\nu$$
; $\mu = \mu$.

 \square În concluzie, ν este cgu deoarece or. alt unificator se poate scrie ca o compunere a lui ν cu o substituție.

 \square Fie p și t termeni cu variabile din X. Spunem că p matches t (t este o instanță a lui p) dacă există o substituție $\nu: X \to T_{\Sigma}(X)$ astfel încât $\nu(p) = t$.

 \square Fie p și t termeni cu variabile din X. Spunem că p matches t (t este o instanță a lui p) dacă există o substituție $\nu: X \to T_{\Sigma}(X)$ astfel încât $\nu(p) = t$.

- $\Box t = (a+y) + (x \star x)$

Fie p și t termeni cu variabile din X. Spunem că p matches t (t este o instanță a lui p) dacă există o substituție $\nu: X \to T_{\Sigma}(X)$ astfel încât $\nu(p) = t$.

- $\Box t = (a+y) + (x \star x)$
- $\square \ \nu = \{x \leftarrow a + y, \ y \leftarrow x\}$
- $\square \ \nu(p) = (a+y) + (x \star x) = t$

 \square Fie t' termenul obținut din t prin înlocuirea fiecărei variabile x cu un simbol de constantă c_x

- \square Fie t' termenul obținut din t prin înlocuirea fiecărei variabile x cu un simbol de constantă c_x
- \square Substituția ν poate fi determinată aplicând algoritmul de unificare pentru ecuația p = t'.

- \square Fie t' termenul obținut din t prin înlocuirea fiecărei variabile x cu un simbol de constantă c_x
- \square Substituția ν poate fi determinată aplicând algoritmul de unificare pentru ecuația p = t'.

- $p = x + (y \star y)$
- $\Box t = (a+y) + (x \star x)$

- \square Fie t' termenul obținut din t prin înlocuirea fiecărei variabile x cu un simbol de constantă c_x
- \square Substituția ν poate fi determinată aplicând algoritmul de unificare pentru ecuația p=t'.

- $\Box t = (a+y) + (x \star x)$
- $\Box t' = (a + c_y) + (c_x \star c_x)$

- \square Fie t' termenul obținut din t prin înlocuirea fiecărei variabile x cu un simbol de constantă c_x
- Substituția ν poate fi determinată aplicând algoritmul de unificare pentru ecuația p = t'.

- \square $p = x + (y \star y)$
- $\Box t = (a+y) + (x \star x)$
- $\Box t' = (a + c_y) + (c_x \star c_x)$
- Aplicăm algoritmul de unificare pt. $\{x + (y \star y) = (a + c_v) + (c_x \star c_x)\}\$ și obținem $\{x = a + c_v, y = c_x\}$.

- \square Fie t' termenul obținut din t prin înlocuirea fiecărei variabile x cu un simbol de constantă c_x
- Substituția ν poate fi determinată aplicând algoritmul de unificare pentru ecuația p = t'.

- $p = x + (y \star y)$
- $\Box t = (a+y) + (x \star x)$
- $\Box t' = (a + c_y) + (c_x \star c_x)$
- □ Aplicăm algoritmul de unificare pt. $\{x + (y * y) = (a + c_y) + (c_x * c_x)\}$ și obținem $\{x = a + c_y, y = c_x\}$.
- □ O problemă de matching poate fi rezolvată prin unificare.

Pe săptămâna viitoare!