2. sklop: Poissonov model

1 Podatki

Imamo zgodovinske podatke o stevilu rojstev cetverckov na leto v Prusiji za obdobje 69 let (Ladislaus von Bortkiewicz), za katere je znano, da se dobro prilegajo Poissonovi porazdelitvi.

##		${\tt stevilo.cetverckov}$	stevilo.let
##	1	0	14
##	2	1	24
##	3	2	17
##	4	3	9
##	5	4	2
##	6	5	2
##	7	6	1

2 Verjetnostni model za nas primer

Vzorec X_1, X_2, \ldots, X_n , kjer je:

- n = 69 stevilo let,
- X_i predstavlja stevilo rojstev cetverckov v *i*-tem letu,
- $X_i \mid \lambda \sim \text{Poiss}(\lambda)$,
- $P(X_i = k \mid \lambda) = \frac{1}{k!} \lambda^k e^{-\lambda}$ za $k \in \{0, 1, 2, ...\},\$
- $E(X_i) = \lambda$ (parameter, ki nas zanima),
- $Var(X_i) = \lambda$.

Za vsako leto imamo sledece stevilo rojenih cetverckov:

```
(x <- rep(podatki$stevilo.cetverckov, podatki$stevilo.let))</pre>
```

Vse in se vec o Poissonovi porazdelitvi najdete tu (pripravil doc. dr. Gaj Vidmar):

• clanek: http://ims.mf.uni-lj.si/archive/17(2)/31.pdf

3 Naloge

- 3.1 Kako bi ocenili parameter λ s "klasicno" frekventisticno statistiko? Katere metode bi lahko uporabili?
- 3.2 Ocenjevanje v Bayesovi statistiki

Bayesova formula:

$$f(\vartheta|\vec{x}) = \frac{f(\vec{x}|\vartheta)f(\vartheta)}{f(\vec{x})} \propto f(\vec{x}|\vartheta)f(\vartheta).$$

Opazeni podatki:

- n: stevilo let
- $k = \sum_{i=1}^{n} X_i$: stevilo cetverckov

```
(n \leftarrow length(x))
```

[1] 69

 $(k \leftarrow sum(x))$

[1] 109

3.2.1 Izracunajte parametre apriorne porazdelitve

Za apriorno porazdelitev izberite Gamo porazdelitev, ki je v primeru Poissonove porazdelitve podatkov konjugirana porazdelitev (ang. *conjugate prior*; pomeni, da apriorna in aposteriorna porazdelitev pripadata enaki druzini porazdelitev), zato se lahko uporablja tudi izraz **Gama-Poissonov model**.

Gostota Gama porazdelitve pri parametrih $\alpha, \beta > 0$:

$$f(\lambda \mid \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha - 1} e^{-\beta \lambda},$$

- $E(Gama(\alpha, \beta)) = \frac{\alpha}{\beta}$,
- $Var(Gama(\alpha, \beta)) = \frac{\alpha}{\beta^2}$.

Izracunajte α in β apriorne porazdelitve, pri cemer upostevajte, da je povprecje apriorne porazdelitve enako 1.5 (torej toliksno je povprecno stevilo rojenih cetverckov na leto), medtem ko standardni odklon znasa 0.5.

```
E <- 1.5
SD <- 0.5
beta <- E/SD/SD
alpha <- E * beta
```

3.2.2 Narisite gostoto apriorne porazdelitve (funkcija dgamma)

3.2.3 Vemo, da je aposteriorna porazdelitev porazdeljena Gama. Izracunajte parametre aposteriorne porazdelitve in narisite njeno gostoto (na istem grafu kot za apriorno porazdelitev)

3.2.4 Izracunajte $P(1.1 \le \lambda \le 1.9)$ in $P(1.1 \le \lambda \le 1.9 | \vec{x})$

```
sum(pgamma(c(1.1, 1.9), alpha, beta) * c(-1, 1))
## [1] 0.5811641
sum(pgamma(c(1.1, 1.9), alpha_apost, beta_apost) * c(-1, 1))
## [1] 0.9839279
```

3.2.5 Izracunajte 95% centralni kredibilnostni interval za λ . Pomagajte si s funkcijo qgamma. Narisite meje kredibilnostnega intervala na grafu iz tocke 3.2.3 (abline(v=)).

3.2.6 Srediscna cena parametra λ

Na predavanjih ste zapisali, da je pricakovana vrednost aposteriorne porazdelitve (ki je hkrati ocena za λ , oznacimo jo z $\hat{\lambda}$) enaka

$$\hat{\lambda} = \frac{\beta}{\beta + n} \cdot \frac{\alpha}{\beta} + \frac{n}{\beta + n} \cdot \frac{k}{n}.$$

Primerjajte $\hat{\lambda}$, apriorno oceno za λ (to je $\frac{\alpha}{\beta}$) in frekventisticno oceno $\frac{k}{n}$ na danem vzorcu.

Kateri vrednosti je ocena $\hat{\lambda}$ blizje? Zakaj?

```
lambda_apriorna <- alpha/beta
lambda_aposteriorna <- beta/(beta+n)*alpha/beta + n/(beta+n)*k/n
lambda_frekventisticna <- k/n</pre>
```

3.2.7 Kolikšna je verjetnost, da se v povprecju na leto rodijo eni do dvoji cetvorcki?

3.2.8 DODATNA NALOGA: Napovedovanje

Zanima nas, kaj lahko povemo o stevilu cetvorckov v prihajajocem letu ob upostevanju podatkov zadnjih 69 let, tj. zanima nas **aposteriorna napovedna porazdelitev**.

(Ce bi nas zanimalo stevilo cetvockov v prihajajocem letu brez upostevanja podatkov 69 let, potem bi nas zanimala **apriorna napovedna porazdelitev**).

V Poissonovem modelu z apriorno Gama porazdelitvijo lahko hitro izpeljemo apriorno/aposteriorno napovedno porazdelitev:

$$P(Y = K) = \frac{\Gamma(K + \tilde{\alpha})}{\Gamma(\tilde{\alpha}) K!} \tilde{\beta}^{\tilde{\alpha}} / (\tilde{\beta} + 1)^{K + \tilde{\alpha}} \quad \text{za } K \in \{0, 1, 2, \ldots\}.$$

To je ravno negativna binomska porazdelitev s parametroma $r=\tilde{\alpha}$ in $p=1/(1+\tilde{\beta})$, zasledimo pa lahko tudi poimenovanje **Gama-Poissonova porazdelitev**.

Za $\tilde{\alpha},\tilde{\beta}$ vstavimo primerna parametra Gama apriorne oz. aposteriorne porazdelitve.

- Izracunajte apriorno in aposteriorno napovedno porazdelitev.
- Poglejte, kaksna je razlika med pravilno izracunano aposteriorno napovedno porazdelitvijo in tisto, ki jo dobimo, ce v Poissonovo porazdelitev vstavimo naso oceno parametra $\hat{\lambda} = \alpha_{\rm apost}/\beta_{\rm apost}$.