RICERCA OPERATIVA

GRUPPO A

prova di esonero del 2 maggio 2011

1. Ricordando che la dipendenza affine è un caso particolare della dipendenza lineare, dire se i vettori $(^{1}/_{2}, 0, -1), (-^{1}/_{2}, 1, ^{1}/_{2})$ e (1, -1, 0) sono affinemente dipendenti, linearmente dipendenti o affinemente indipendenti.

La matrice dei coefficienti del sistema omogeneo

$$\frac{1}{2} \lambda_1 - \frac{1}{2} \lambda_2 + \lambda_3 = 0$$

$$\lambda_2 - \lambda_3 = 0$$

$$- \lambda_1 + \frac{1}{2} \lambda_2 = 0$$

ha determinante diverso da zero; quindi il sistema ammette soltanto la soluzione banale $\lambda_1 = \lambda_2 = \lambda_3 = 0$. I tre vettori sono dunque linearmente indipendenti e, di conseguenza, sono anche affinemente indipendenti.

2. Dire se il vettore $\mathbf{w} = (1, -1, \frac{1}{6})$ è combinazione conica o anche convessa dei vettori

$$\mathbf{v}_1 = (1, -\frac{3}{2}, \frac{1}{2})$$
 $\mathbf{v}_2 = (0, \frac{1}{2}, -\frac{1}{2})$ $\mathbf{v}_3 = (2, -1, \frac{1}{2})$

Si ha $\mathbf{w} = \frac{7}{9}\mathbf{v}_1 + \frac{5}{9}\mathbf{v}_2 + \frac{1}{9}\mathbf{v}_3$. Poiché la somma dei moltiplicatori dà $\frac{13}{9} > 1$, \mathbf{w} è combinazione conica ma non convessa dei vettori dati.

3. Take over

Un imprenditore vuole acquisire una quota di controllo pari ad almeno il 50% della *Bradipi Riuniti* (B). Ciò può farsi acquisendo quote di B direttamente sul mercato e/o acquisendo quote della *Armadilli & Co.* (A), la quale possiede il 30% di B: in questo secondo caso il possesso di ogni quota di A corrisponde quindi al possesso di 0,3 quote di B. La società A, d'altra parte, possiede l'80% delle quote della *Canguri Inc.* (C), che non rientra negli interessi strategici dell'imprenditore: una volta acquisito almeno il 50% di A, questi può quindi rientrare di parte della spesa piazzando sul mercato quote di C, tutte o in parte ma in misura ovviamente non superiore a quelle possedute per il tramite di A.

Indicate con *a* e *b* le quote di A e B acquisite dal mercato, e con *c* quelle di C cedute al mercato; riferendovi ai prezzi delle quote sotto riportati, formulate poi come programmazione lineare il problema di stabilire la strategia più economica per ottenere il controllo di B.

	Α	В	С
prezzo di mercato di una quota	32	78	56

Risolvete quindi il problema formulato con il metodo del simplesso.

L'obiettivo dell'imprenditore – minimizzare la spesa sostenuta – si scrive:

min
$$32a + 78b - 56c$$

Poiché l'imprenditore desidera controllare A, le quote di quest'ultima dovranno soddisfare i vincoli

$$50 \le a \le 100$$

Per quanto riguarda le quote di B acquisite sul mercato, esse non potranno superare il 70% (il rimanente 30 è infatti posseduto da A). Quindi

$$0 \le b \le 70$$

Infine le quote di C che potranno essere cedute non dovranno superare il quantitativo indirettamente garantito da A:

$$0 \le c \le \frac{4}{5} a$$

L'ultimo vincolo da scrivere riguarda il controllo di B. Questo è garantito dal possesso, diretto o tramite A, di almeno 50 quote:

$$^{3}/_{10} a + b \geq 50$$

Per risolvere il problema col metodo del simplesso occorre anzitutto portarlo in forma standard. Ciò richiede l'introduzione di 3 variabili di slack x, y, z e di una variabile di surplus w. Conviene inoltre ridefinire la variabile a come le quote di A da acquisire oltre le 50 richieste per il controllo (¹): il primo vincolo si riduce quindi ad $a \ge 0$, e la funzione obiettivo si trasforma di conseguenza. Il problema diventa

Per ottenere una prima base ammissibile risolviamo il problema ausiliario:

min
$$q$$
 $a + x = 50$
 $b + y = 70$
 $-4a + 5c + z = 200$
 $3a + 10b = 350$
 $a, b, c, x, y, z, w, q \ge 0$

Scriviamo la tabella canonica:

а	b	С	X	У	Z	W	q	
-3	-10	0	0	0	0	1	0	-350
1			1					50
	1			1				70
-4		5			1			200
3	10					-1	1	350

ed eseguiamo l'operazione di pivot necessaria a far uscire q dalla base:

a	b	С	X	У	Z	W	q	
0	0	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0	50
-0,3	0	0	0	1	0	0,1	-0,1	35
-4	0	5	0	0	1	0	0	200
0,3	1	0	0	0	0	-0,1	0,1	35

Eliminiamo ora la colonna q e sostituiamo la riga 0:

a	b	С	X	У	Z	W	
32	78	-56	0	0	0	0	-1600
1	0	0	1	0	0	0	50
-0,3	0	0	0	1	0	0,1	35
-4	0	5	0	0	1	0	200
0,3	1	0	0	0	0	-0,1	35

Riconosco che questo aspetto non era espresso molto chiaramente nel testo.

Per portare la tabella ottenuta in forma canonica bisogna sottrarre alla riga 0 la riga 4 moltiplicata per –78.

 а	b	С	X	У	Z	W	
8,6	0	-56	0	0	0	7,8	-4330
1	0	0	1	0	0	0	50
-0,3	0	0	0	1	0	0,1	35
-4	0	5	0	0	1	0	200
0.3	1	0	0	0	0	-0,1	35

Conviene operare un pivot in colonna c, riga 3. L'operazione è immediata e fornisce

a	b	С	X	У	Z	W	
-36,2	0	0	0	0	11,2	7,8	-2090
1	0	0	1	0	0	0	50
-0,3	0	0	0	1	0	0,1	35
-0,8	0	1	0	0	0,2	0	40
0,3	1	0	0	0	0	-0,1	35

Con un pivot in colonna *a* e riga 1 si ricava infine la tabella ottima:

а	b	С	X	У	Z	W	
0	0	0	36,2	0	11,2	7,8	-280
1	0	0	1	0	0	0	50
0	0	0	0,3	1	0	0,1	50
0	0	1	0,8	0	0,2	0	80
0	1	0	-0,3	0	0	-0,1	20

La soluzione consiste nell'acquisire l'intero pacchetto azionario della società A e un ulteriore quantitativo di 20 quote di B sul mercato. Il costo dell'operazione è mitigato dalla vendita di tutte le 80 quote della società C a quel punto possedute.

4. Take over complicato

Come si formula il Problema 3 se il costo delle quote di B da acquisire sul mercato cresce in dipendenza del quantitativo acquistato secondo la legge seguente?

	se le quote acquisite non superano il 20% di quelle disponibili	se le quote acquisite superano il 20% di quelle disponibili
prezzo di mercato di una quota di B	78	122

Per riformulare il problema occorre distinguere tra le quote di B acquistate entro il 20% e quelle che eccedono tale misura. Dette b e b' le corrispondenti variabili il secondo vincolo va quindi sostituito dalla coppia

$$0 \le b \le 20 \qquad \qquad 0 \le b' \le 50$$

Inoltre l'occorrenza di b nel quarto vincolo va sostituita dalla somma b + b':

$$^{3}/_{10} a + b + b' > 50$$

Infine l'obiettivo va riscritto tenendo conto dei nuovi prezzi:

min
$$32a + 78b + 122b' - 56c + 1600$$

Notiamo espressamente che poiché il costo associato alla variabile b è inferiore a quello associato a b', quest'ultima verrà attivata solo a condizione che b saturi il proprio vincolo al valore 20. Il PL così riscritto riformula dunque correttamente il problema.

1. Ricordando che la dipendenza affine è un caso particolare della dipendenza lineare, dire se i vettori $(^3/_2, ^5/_2, 0)$, $(1, 0, -^1/_2)$ e $(^-1/_2, 1, ^1/_2)$ sono affinemente dipendenti, linearmente dipendenti o affinemente indipendenti.

La matrice dei coefficienti del sistema omogeneo

$${}^{3}/_{2} \lambda_{1} + \lambda_{2} - \frac{1}{2} \lambda_{3} = 0$$

$${}^{5}/_{2} \lambda_{1} + \lambda_{3} = 0$$

$$- \frac{1}{2} \lambda_{2} + \frac{1}{2} \lambda_{3} = 0$$

ha determinante diverso da zero; quindi il sistema ammette soltanto la soluzione banale $\lambda_1 = \lambda_2$ $=\lambda_3=0$. I tre vettori sono dunque linearmente indipendenti e, di conseguenza, sono anche affinemente indipendenti.

2. Dire se il vettore $\mathbf{w} = (1, -\frac{1}{2}, \frac{1}{2})$ è combinazione conica o anche convessa dei vettori

$$\mathbf{v}_1 = (-3/2, 0, -1/2)$$
 $\mathbf{v}_2 = (0, -1, 1/6)$

$$\mathbf{v}_2 = (0, -1, \frac{1}{6})$$

$$\mathbf{v}_3 = (3, 1, 1)$$

Si ha $\mathbf{w} = \frac{1}{3} \mathbf{v}_1 + \mathbf{v}_2 + \frac{1}{2} \mathbf{v}_3$. Poiché la somma dei moltiplicatori dà $\frac{11}{6} > 1$, \mathbf{w} è combinazione conica ma non convessa dei vettori dati.

3. Take over

Vedi Gruppo A

4. Take over complicato

Vedi Gruppo A