The Yoneda Lemma as Fast as Possible

Pete Su

October 14, 2021

1. The Big Picture

The Yoneda Lemma is a basic and beloved result in category theory. In most treatments it shows up fairly early in the books and lecture notes on the subject. Its statement is also deceivingly compact because all of its content is buried inside layers of abstraction and notation that would have been built up while working through the conceptual basis of category theory.

In particular the result ties together the following sets of ideas:

- Categories (objects and arrows).
- Sets of mappings in categories
- Functors
- Natural transformations
- Functor categories

What most textbooks and notes do is to spend several chapters and sections defining and giving examples and intuition about what all these things are, and then telling you what the lemma says. Then you have to flip back and forth through a hundred pages of exposition to remember what all the symbols mean.

I am going to do the following dumb thing: I am going to state the result in several different kinds of notation and then define the pieces as fast as possible and with handy cross references so you don't have to do all that page flipping.

Note that I am not a mathematician or a category theory expert. I'm just a guy trying to figure out the notation. So everything in this document is probably wrong.

2. Statement of the Lemma

To me the hardest thing about understanding this result is unwrapping the notation to use to state it. There are a ton of different styles, all of which layer multiple ideas on top of each other in a way that makes the statement of the lemma very compact textually and very dense conceptually. Here are a few examples.

Lemma 1 (Yoneda). Let C be a locally small category. Then

$$[\mathbf{C}^{\mathrm{op}}, \mathbf{Set}](\mathsf{H}_{\mathsf{X}}, \mathsf{F}) \cong \mathsf{F}(\mathsf{X})$$
 (2.1)

naturally in $X \in \mathbf{C}$ and $F \in [\mathbf{C}^{\mathrm{op}}, \mathbf{Set}]$.

Lemma 2 (Yoneda). Let **C** be a locally small category and $X \in \mathbf{C}$. Then for any functor $F : \mathbf{C} \to \mathbf{Set}$ there is a bijection

$$\operatorname{Hom}(\mathbf{C}(X,-),F)\cong FX$$

that associates a natural transformation $\alpha: \mathbf{C}(X,-) \Longrightarrow F$ to the element $\alpha_X(1_X) \in FX$. Moreover, this correspondence is natural in both X and F.

This verison introduces the Nat notation for the set of natural transforms.

Lemma 3 (Yoneda). For any locally small category C, object $X \in C$, and functor $F : C \to Set$ we have $Nat(C(X, -), F) \cong FX$ both naturally in $X \in C$ and $F \in [C, Set]$

You can also write that one the dual way:

Lemma 4 (Yoneda). For any locally small category C, object $X \in C$, and functor $F : C^{op} \to Set$ we have $Nat(C(-,X),F) \cong FX$ both naturally in $X \in C$ and $F \in [C^{op}, Set]$

This version has some different notation and terminology:

Lemma 5 (Yoneda). Let **C** be a category, let X be an object of **C**, and let $F : \mathbf{C}^{op} \to \mathbf{Set}$ be a presheaf on **C**. Consider the map

$$\text{Hom}_{[\mathbf{C}^{\text{op}},\mathbf{Set}]} (\text{Hom}_{\mathbf{C}}(-,X),F) \longrightarrow FX$$

assigning to a natural transformation α : $\text{Hom}_{\mathbf{C}}(-,X) \Rightarrow F$ the element $\alpha_X(\text{id}_X) \in FX$, which is the value of the component α_X of α on the identity at X.

This assignment is a bijection, and it is natural both in X and in F.

This version peels away some of the layers:

Lemma 6 (Yoneda). Let **C** be a locally small category, let X be an object of **C**, and let $F: C \to \mathbf{Set}$ be a functor. Then

- (i) There is a bijection between the set of natural transformations from C(X, -) to F and the elements of FX
 - (ii) The bijection in (i) is natural in both F and X.

These examples cover the range of different notational schemes used to write down this result. I've made them look a bit more uniform than they do in real life just by using the same style of typesetting for all of them. But, there is still a lot of notation flying around here. So let's get into it.

3. Categories

Categories have a deliciously multi-part definition.

Definition 1. A category **C** consists of:

- A collection of *objects* that we will denote with upper case letters X, Y, Z, ..., and so on. We call this collection *Objects*(**C**). Traditionally people write just **C** to mean *Objects*(**C**) when the context makes clear what is going on.
- A collection of *arrows* denoted with lower case letters f, g, h, ..., and so on. Other names for *arrows* include *mappings* or *functions* or *morphims*. We will call this collection *Arrows*(**C**).

The objects and arrows of a category satisfy:

- Each arrow f maps one object $A \in Objects(\mathbf{C})$ to another object $B \in Objects(\mathbf{C})$ and we denote this by writing $f : A \to B$. Here A is called the *domain* of f and B the *codomain*.
- For each pair of arrows $f: A \to B$ and $g: B \to C$ we can form a new arrow $g \circ f: A \to C$ called the *composition* of f and g. This is also sometimes written gf.
- For each $A \in Objects(\mathbb{C})$ there is a function $1_A : A \to A$, called the *identity* at A that maps A to itself. Sometimes this object is also written as id_A .

Finally, we have the last two rules:

- For any $f: A \to B$ we have that $1_B \circ f$ and $f \circ 1_A$ are both equal to f.
- Given $f: A \to B$, $g: B \to C$, $h: C \to D$ we have that $(h \circ g) \circ f = h \circ (g \circ f)$, or alteratively (hg)f = h(gf). What this also means is that we can always just write hgf if we want.

We will call the collection of all arrows from A to B $Arrows_{\mathbf{C}}(A, B)$. We will usually write Arrows(A, B) when it's clear what category A and B come from. Traditionally people write Hom(A, B) or $Hom_{\mathbf{C}}(A, B)$, or just $\mathbf{C}(A, B)$ to mean Arrows(A, B). Here "Hom" stands for homomorphism, which is a word that often means mappings that preserve some kind of structure.

At this point every category theory book will list a few dozen examples of categories that show up in various areas of math. These will have strangely

truncated names like **Meas** and **Grp** and will be typeset in a different font. For these short notes I think the only specific category that we will run into is **Set**, where the objects are sets and the arrows are mappings between sets.

Speaking of sets. In the definition of categories we were careful about not calling anything a *set*. This is because some categories involve collections of things that are too "large" to be called sets and not get into set theory trouble. Here are two more short definitions about this that we will need.

Definition 2. A category **C** is called *small* if *Arrows*(**C**) is a set.

Definition 3. A category C is called *locally small* if $Arrows_C(A, B)$ is a set for every $A, B \in C$.

For the rest of this note we will only deal with locally small categories, since in the the setup for the Lemma, we are given a category **C** that is locally small. Next we need to know what functors are.

4. Functors

As we navigate our way from basic categories up to the statement of the lemma we will travel through multiple layers conceptual abstraction. Functors are the first step up this ladder. Functors are the *arrows between categories*. That is, if you were to define the category where the objects were categories of some kind then the arrows would be functors. Of course you have to be careful about how you do this to not get into set theory trouble, but if all the categories are small it works out.

Definition 4. Given two categories C and D a *functor* $F:C\to D$ is defined by two sets of parallel rules. First:

- For each object $X \in \mathbf{C}$ we assign an object $F(X) \in \mathbf{D}$.
- For each arrow $f: X \to Y$ in **C** we assign an arrow $F(f): F(X) \to F(Y)$ in **D**.

So F maps objects in C to objects in D and maps arrows in C to arrows in D that have the appropriate domains and codomains. That is, the domain of F(f) is F applied to the domain of f, and the codomain of f is F applied to the codomain of f. In addition the following must be true:

• If $f: X \to Y$ and $g: Y \to Z$ are arrows in C then $F(g \circ f) = F(g) \circ F(f)$ (or F(gf) = F(g)F(f)).

• For every $X \in \mathbf{C}$ it is the case that $F(1_X) = 1_{F(X)}$.

So, a functor consists of two mappings, one on objects and one on arrows. And, these mappings preserve all of the structure of a category, namely domains and codomains, composition, and identities.

We'll define one more notation for convenience here

Definition 5. Given any functor $F : C \to D$ from a category C to another category D and an object $X \in C$ we may write FX to mean F(X). This is analogous to the more compact notation for composition of arrows above.

Some of the statements of the Lemma use this notation for both arrows and functors.

Functors are notationally confusing because we are using one letter to denote two mappings. So if $F : C \to D$ and $X \in C$ then F(X) is the functor applied to the object, which will be an object in D. On the other hand, if $x : A \to B$ is an arrow in C then F(x) is an arrow in D. This seems obvious from the definition but in proofs and calculations the notations will often shift back and forth without enough context and can be very confusing.

Functors appear in the Lemma in a couple of places. The core content of the result has to do with when one set of functors is isomorphic (in some sense) to another set of functors. To see how we study that question we need go up one more step in our abstraction ladder and ask: what do arrows between functors look like?

5. Natural Transformations

Natural transformations map functors to functors in the same way that arrows in a category map objects to objects. The definition is a bit more complicated and abstract, but that's what it ultimately means.

Definition 6. Let C and D be categories, and let F and G be functors $C \to D$. To define a *natural transformation* α from F to G, we assign to each object X of C, an arrow $\alpha_X : FX \to GX$ in D, called the *component* of α at X. In addition, for each arrow $f: X \to Y$ of C, the following diagram has to commute:

$$\begin{array}{ccc} FX & \stackrel{Ff}{\longrightarrow} & FY \\ \downarrow^{\alpha_X} & & \downarrow^{\alpha_Y} \\ GX & \stackrel{Gf}{\longrightarrow} & GY \end{array}$$

This is the first commutative diagram that I've tossed up. There is no magic here. The idea is that you get the same result no matter which way you travel through the diagram. So here $\alpha_Y \circ F$ and $G \circ \alpha_X$ must be equal.

We denote natural transformations as double arrows, $\alpha : F \Rightarrow G$, to distinguish them in diagrams from functors (which are denoted by single arrows):

You might wonder to yourself: what makes natural transformations "natural"? The answer appears to be related to the fact that you can construct them from *only* what is given to you in the category at hand, they apply in some sense universally over all the objects of the category, and you don't need to make any other specific assumptions about the objects or functors in order for construction to work. In this sense they define a relationship between functors that is just sitting there for you to grab in a "natural" way.

6. Functor Categories

7. Duals

8. The Full Stack

9. Notes

Category theory texts love to overload notation, so I've done it too. Here is a list of some examples.

No two writers seem to agree on what basic notations to use for basic concepts. So I've made up my own shit too.

In the modern world of LATEX there is no reason to limit names to being only four or five letters in length, so where appropriate I have done the unthinkable and written some names out in full.

10. Who I Stole From