MA3205

AY24/25 Sem 2

by ngmh

1. Sets and Operations

```
A1.1 Axiom of Extensionality \forall x \ [x \in A \Longleftrightarrow x \in B]
```

D1.6 Subcollection $A \subseteq B$ if $\forall x [x \in A \Rightarrow x \in B]$

D1.7 Empty Set x is empty if $\forall y [y \notin x]$

F1.8 If $x = \emptyset$ and A is a collection then $x \subseteq A$

F1.9 If $x = \emptyset$ and $y = \emptyset$, x = y

D1.11 Basic Operations

- 1. $x \cup y = \{z : z \in x \lor z \in y\}$
- 2. $x \cap y = \{z : z \in x \land z \in y\}$
- 3. $x \setminus y = \{z : z \in x \land z \notin y\}$
- 4. $x \triangle y = (x \setminus y) \cup (y \setminus x)$
- 5. $P(x) = \{z : z \subseteq x\}$

L1.12 Properties

- $1. \ \ x \cup y = y \cup x$
- $2. \ x \cap y = y \cap x$
- $3. \ x \cup (y \cup z) = (x \cup y) \cup z$
- $4. \ x \cap (y \cap z) = (x \cap y) \cap z$
- 5. $x \cup (y \cap z) = (x \cup y) \cap (x \cup z)$
- $6. x \cap (y \cup z) = (x \cap y) \cup (x \cap z)$
- 7. $x \setminus (y \cup z) = (x \setminus y) \cap (x \setminus z)$
- 8. $x \setminus (y \cap z) = (x \setminus y) \cup (x \setminus z)$

D1.13 Union and Intersection

$$\bigcup A = \{x : \exists y \ [y \in A \land x \in y]\}$$

$$\bigcap A = \left\{ \begin{array}{ll} \emptyset & \text{if } A = \emptyset \\ \{x : \forall y \ [y \in A \Rightarrow x \in y]\} & \text{otherwise} \end{array} \right.$$

E1.16 Symmetric Difference

- 1. $(X \triangle Y) \triangle Z = X \triangle (Y \triangle Z)$
- $2. \ X \triangle X = \emptyset$
- 3. $X \triangle Y = Y \triangle X$
- $4. \ X \triangle \emptyset = X$

E1.18 $X \cap (Y \triangle Z) = (X \cap Y) \triangle (X \cap Z)$

2. Pairing, Products, and Relations

- **D2.1 Ordered Pair** $\langle a, b \rangle = \{\{a\}, \{a, b\}\}\$
- **L2.2** $\langle x, y \rangle = \langle a, b \rangle$ iff $x = a \land y = b$
- D2.3 Cartesian Product $A \times B = \{z: \exists a \in A \ \exists b \in B \ [z = \langle a, b \rangle]\}, A^2 = A \times A$

E2.5 Define $pair(a,b) = \{a,\{a,b\}\}$. Assuming we cannot have $A \in B \in A$, pair(a,b) = pair(x,y) iff $a = x \land b = y$

D2.6 Relation A relation is a collection of ordered pairs.

- 1. R is a relation if $\forall x \in R \exists a \exists b [x = \langle a, b \rangle]$
- 2. R is a relation on A if $R \subseteq A \times A$
- 3. $dom(R) = \{a : \exists b \ [\langle a, b \rangle \in R] \}$
- 4. $ran(R) = \{b : \exists a \ [\langle a, b \rangle \in R] \}$
- 5. $R^{-1} = \{x : \exists a \; \exists b \; [\langle a, b \rangle \in R \land x = \langle b, a \rangle] \}$

D2.8 Function A function is a relation where no two elements have the same first coordinate.

- 1. $\forall a, b, c [(\langle a, b \rangle \in f \land \langle a, c \rangle \in f) \Rightarrow b = c]$
- 2. $f: A \to B$ if f is a function, dom(f) = A and $ran(f) \subseteq B$

F2.9 If R is a relation and $S \subseteq R$, then S is a relation. If f is a function and $q \subseteq f$, then q is a function.

D2.10 R restricted to A: $R \upharpoonright A = R \cap (A \times ran(R))$

F2.11 $f \upharpoonright A$ is a function. If $A \subseteq dom(f)$, then $dom(f \upharpoonright A) = A$

D2.12 Image of A under R: $Im_R(A) = \{b : \exists a \in A \ [\langle a,b \rangle \in R]\}$. If f is a function, for any $a \in dom(f)$ f(a) denotes the unique b such that $\langle a,b \rangle \in f$

```
 \begin{array}{l} \mathbf{D2.14} \ Im_{f^{-1}}(B) = \{a: \exists b \in B \ [\langle b, a \rangle \in f^{-1}]\} = \{a: \exists b \in B \ [\langle a, b \rangle \in f]\} = \{a: a \in dom(f) \land f(a) \in B\} \end{array}
```

L2.15 $Im_R(\bigcup A) = \bigcup \{I : \exists a \in A \ [I = Im_R(a)]\}$

L2.16 If for any x and z, if $x \neq z$ then $Im_R(\{x\}) \cap Im_R(\{z\}) = \emptyset$, then

- 1. $Im_R(\bigcap A) = \bigcap \{I : \exists a \in A \ [I = Im_R(a)]\}$
- 2. $Im_B(B \setminus A) = Im_B(B) \setminus Im_B(A)$

C2.17 For any function and sets,

- 1. $Im_{f^{-1}}(\bigcup A) = \bigcup \{I : \exists a \in A \ [I = Im_{f^{-1}}(a)]\}$
- 2. $Im_{f^{-1}}(\bigcap A) = \bigcap \{I : \exists a \in A \ [I = Im_{f^{-1}}(a)]\}$
- 3. $Im_{f-1}(B \setminus A) = Im_{f-1}(B) \setminus Im_{f-1}(A)$

D2.18 f as composed with g:

 $g \circ f = \{x : \exists a \ \exists b \ \exists c \ [\langle a, b \rangle \in f \land \langle b, c \rangle \in g \land x = \langle a, c \rangle] \}$

L2.19 If f, g, h are functions then

- 1. $g \circ f$ is a function
- 2. If $f:A\to B$ and $g:B\to C$, then $g\circ f:A\to C$
- 3. $h \circ (g \circ f) = (h \circ g) \circ f$

D2.20 Injection / Surjection / Bijection Consider $f: A \rightarrow B$

- 1. 1-1 / Injection: $\forall a, a' \in A [f(a) = f(a') \Rightarrow a = a']$
- 2. Onto / surjection: ran(f) = B
- 3. Bijection: 1-1 and Onto

D2.21 $X^Y = \{f : f \text{ is a function } \land f : Y \rightarrow X\}$

L2.22 If $f: A \to B$ is 1-1 and onto, then $f^{-1}: B \to A$ is 1-1 and onto.

E2.23 It is possible that $Im_f(a \cap b) \neq Im_f(a) \cap Im_f(b)$

E2.24 If f is 1-1, $Im_f(\bigcap A) = \bigcap \{Im_f(a) : a \in A\}$ and

 $Im_f(B \setminus A) = Im_f(B) \setminus Im_f(A)$

2.27 The following are equivalent

- 1. $\forall x, z \ [x \neq z \Rightarrow Im_R(\{x\}) \cap Im_R(\{z\}) = \emptyset]$
- 2. R^{-1} is a function

CV2.28 Functions as sequences Suppose dom(f) = I.

 $f = \langle A_i : i \in I \rangle = \{x : \exists i \in I \ [x = \langle i, A_i \rangle]\}. \ \forall i \in I, f(i) = A_i.$

CV2.29

- 1. $Im_f(A) = \{f(a) : a \in A \cap dom(f)\}$. If $A \subseteq dom(f)$, then $Im_f(A) = \{f(a) : a \in A\}$
- 2. If $dom(f) = A \times B$, $f(\langle a, b \rangle) = f(a, b)$

CV2.30 Suppose F is a function, $x \in dom(F)$, and F(x) is also a function. Then if $y \in dom(F(x))$, F(x)(y) = (F(x))(y).

CV2.32 If $F=\langle A_i:i\in I\rangle$, then $\bigcup ran(F)=\bigcup_{i\in I}A_i$, similarly for $\bigcap ran(F)$

CV2.33 To specify a function f with domain I, it is enough to specify f(i) for each $i \in I$. $f = \{z : \exists i \in I \ \exists x \ [z = \langle i, x \rangle \land x \ \text{satisfies property} \ P \ \text{w.r.t} \ i]\}$. If there is a unique object satisfying P for each i, then f is a function and dom(f) = I.

EP2.34 Define $F: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$. For $f \in \mathbb{N}^{\mathbb{N}}$, we must specify $F(f) \in \mathbb{N}^{\mathbb{N}}$. We must specify $F(f)(n) \in \mathbb{N}$ for each $n \in \mathbb{N}$. For example, F(f)(n) = f(n) + 1. Then $F(f) = \{\langle n, f(n) + 1 \rangle : n \in \mathbb{N} \}$ and

 $F = \{\langle f, \{\langle n, f(n) + 1 \rangle : n \in \mathbb{N} \} \rangle : f \in \mathbb{N}^{\mathbb{N}} \}.$ Similarly, define

 $\mathcal{F}: (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$. For $F \in (\mathbb{N}^{\mathbb{N}})^{\mathbb{N}}$, we must specify $\mathcal{F}(F) \in \mathbb{N}^{\mathbb{N}}$ by specifying $\mathcal{F}(F)(n)$ for each n. Since F is a function with domain \mathbb{N} , F(i) is defined for all $i \leq n$ and $F(i) \in \mathbb{N}^{\mathbb{N}}$. So $F(i)(n) \in \mathbb{N}$. Set

 $\mathcal{F}(F)(n) = \max\{F(i)(n): i \leq n\}. \ \mathcal{F}(F) \ \text{eventually dominates} \ \{F(n): n \in \mathbb{N}\}.$

EP2.35 Let I be a set, $\langle J_i:i\in I\rangle$ be a sequence of sets, and $\langle A_{i,j}:j\in J_i$ be a sequence of sets. Define $X=\{\bigcup_{j\in J_i}A_{i,j}:i\in I\}$. First define F with dom(F)=I. For each $i\in I$, $F(i)=\bigcup_{j\in J_i}A_{i,j}$. $X=Im_F(I)=ran(F)$. $\bigcap X=\bigcap_{i\in I}\bigcup_{j\in J_i}A_{i,j}$.

EP2.36 There is a biection $F: \mathcal{P}(X) \to \{0,1\}^X$. We must specify F(a) for each $a \in \mathcal{P}(X)$; a function with dom(F(a)) = X and $ran(F(a)) \subseteq \{0,1\}$. It is enough to specify F(a)(x) for each $x \in X$.

 $F(a)(x) = \left\{ \begin{array}{ll} 0 & \text{if } x \in A \\ 1 & \text{if } x \notin A \end{array} \right. \text{ which is } 1-1 \text{ and onto.}$

D2.37 Cartesian Product Let F be a function with dom(F) as a set. $\prod F = \{f: f \text{ is a function} \land dom(f) = dom(F) \land \forall x \in dom(F) \ [f(x) \in F(x)]\}.$ If $F = \langle A_i : i \in I \rangle$, then

 $\prod F = \prod_{i \in I} A_i = \{f: f \text{ is a function } \land dom(f) = I \land \forall i \in I \ [f(i) \in A_i] \}$ A2.38 Axiom of Choice If $\langle A_i : i \in I \rangle$ is a sequence of sets such that

 $\forall i \in I \ [A_i \neq \emptyset], \text{ then } \prod_{i \in I} A_i \neq \emptyset$

D2.40 Directed Collection G is directed if $\forall a,b \in G \ \exists c \in G \ [a \subseteq c \land b \subseteq c]$

L2.41 If G is a directed collection of functions, $f = \bigcup G$ is a function. $dom(f) = \bigcup \{dom(\sigma) : \sigma \in G\}$ and $ran(f) = \bigcup \{ran(\sigma) : \sigma \in G\}$

T2.47 Generalised De Morgan's (Requires **Axiom of Choice**) Let I be a set, and $\langle J_i:i\in I\rangle$ be a sequence of sets. Suppose $I\neq\emptyset$ and $\forall i\in I\ [J_i\neq\emptyset]$. For each $i\in I$, let $\langle A_{i,j}:j\in J_i\rangle$ be a sequence of sets.

- 1. $\bigcup_{i \in I} \bigcap_{j \in J_i} A_{i,j} = \bigcap \{ \bigcup_{i \in I} A_{i,f(i)} : f \in \prod_{i \in I} J_i \}$
- 2. $\bigcap_{i \in I} \bigcup_{j \in J_i} A_{i,j} = \bigcup \{\bigcap_{i \in I} A_{i,f(i)} : f \in \prod_{i \in I} J_i \}$
- 3. $\prod_{i \in I} (\bigcup_{j \in J_i} A_{i,j}) = \bigcup \{\prod_{i \in I} A_{i,f(i)} : f \in \prod_{i \in I} J_i\}$
- 4. $\prod_{i \in I} (\bigcap_{j \in J_i} A_{i,j}) = \bigcap \{ \prod_{i \in I} A_{i,f(i)} : f \in \prod_{i \in I} J_i \}$

T2.48 Fix $n \ge 1$, Let X be a set and $A_1, ..., A_n$ be subsets of X. There are at most 2^{2^n} sets that can be formed using $X \setminus ... \cup$, and \cap .

- 1. Redefine $\bigcap \emptyset = X$
- 2. Let $S = \{0, 1\}^{\{1, \dots, n\}}$, then $|S| = 2^n$
- 3. For each $\sigma \in S$ define $b_{\sigma} = (\bigcap \{A_i : \sigma(i) = 0\}) \cap (\bigcap \{X \setminus A_i : \sigma(i) = 1\})$
- 4. For each $a \in \mathcal{P}(S)$ let $c_a = \bigcup \{b_\sigma : \sigma \in a\}$
- 5. Let $\mathcal{B} = \{c_a : a \in \mathcal{P}(S)\}. |\mathcal{B}| \le |\mathcal{P}(S)| = 2^{2^n}$
- 6. **CL2.49** For each $1 \le i \le n$, $A_i \in \mathcal{B}$
- 7. **CL2.50** For any $a, b \in \mathcal{P}(S), c_a \cup c_b = c_{(a,b)}$
- 8. **CL2.51** For any $a, b \in \mathcal{P}(S), X \setminus c_a = c_{(S \setminus a)}$
- 9. Claim 2.52 For any $a, b \in \mathcal{P}(S), c_a \cap c_b = c_{(a \cap b)}$

E2.53 There exists $\langle A_n:n\in\mathbb{N}\rangle$ and $\langle B_n:n\in\mathbb{N}\rangle$ such that

- 1. $\forall n \in \mathbb{N} [B_n \subset A_n]$
- 2. $\forall n, m \in \mathbb{N} [n \neq m \Rightarrow B_n \cap B_m = \emptyset]$
- 3. $\bigcup_{n\in\mathbb{N}} A_n = \bigcup_{n\in\mathbb{N}} B_n$

E2.55 If $I \neq \emptyset$ is a set and $\langle A_i : i \in I \rangle$ is a sequence of sets and X is a set then

- 1. $X \setminus (\bigcup_{i \in I} A_i) = \bigcap_{i \in I} (X \setminus A_i)$
- 2. $X \setminus (\bigcap_{i \in I} A_i) = \bigcap_{i \in I} (X \setminus A_i)$

3. Russell's Paradox and Proper Classes

T3.1 Russell $R = \{x : x \text{ is a set } \land x \notin x\}$ is not a set Modified Morse-Kelley Rules

- Everything is a class.
- Every set is a class.
- Every collection of sets is a class.
- 4. Axiom of Comprehension: If A is a class and x is a set, then $A \cap x$ is a set.
- Axiom of Replacement: If F is a class which is a function and x a set, then $Im_F(x)$ is a set.
- 6. Axioms of Pairing / Union / Power-Set: If A and B are sets, then so are $\{A,B\}, \bigcup A, \mathcal{P}(A)$
- 7. Axiom of Choice
- 8. Axiom of infinity: \mathbb{N} is a set
- 9. Axiom of Extensionality

T3.3 $V = \{x : x \text{ is a set}\}\$ is not a set, but a proper class

EP3.4 $A \times B$ is a set

E3.5 $dom(A), ran(A), \bigcap A, A^B$ are sets

E3.6 For I and $\langle A_i : i \in I \rangle$ which is a sequence of sets, $\prod_{i \in I} A_i$ is a set

E3.7 If R is a relation, $Im_R(A)$ is a set

E3.8 $\mathbf{U} = \{x : \exists a \ \exists b \ [x = \langle a, b \rangle] \}$ is not a set

E3.9 Let F be a class. If F is a function and dom(F) is a set, F is a set

4. The Natural Numbers

F4.1 Peano Axioms

- 1. 0 is a natural number
- 2. If n is a natural number, there exists S(n) which is also a natural number
- 3. If $n \neq m$, then $S(n) \neq S(m)$
- 4. $0 \neq S(n)$ for any natural number n
- 5. If X is a class of natural numbers where $0 \in X$ and $\forall n \in X \ [S(n) \in X]$, then $X = \mathbb{N}$
- **D4.2** $S(x) = x \cup \{x\}$
- **D4.3** 0 is the empty set ∅
- **D4.4** A class is inductive if $0 \in A$ and $\forall x \in A \ [S(x) \in A]$. n is a natural number if it belongs to every inductive class.
- F4.5 Axiom of infinity The class of all natural numbers
- $\mathbb{N} = \{n : n \text{ is a natural number}\}\$ is a set.
- **L4.6** 0 is a natural number, and if n is a natural number, then so is S(n). $\mathbb N$ is an inductive class, and $\mathbb N\subseteq A$ for every inductive class A.
- **L4.7** If X is any set of natural number such that $0 \in X$ and
- $\forall n \in X \ [S(n) \in X], \text{ then } X = \mathbb{N}$
- **F4.8 Principle of Mathematical Induction** Suppose P is a property, which 0 has, and $\forall n \in \mathbb{N} \ [n$ has property $P \Rightarrow S(n)$ has property P]. Then all natural numbers have property P.
- **L4.9** If n is a natural number then
- 1. $\forall x \in n [x \subseteq n]$
- 2. $n \subseteq \mathbb{N}$
- 3. $\forall x [(x \subseteq n \land x \neq \emptyset) \Rightarrow \exists m \in x [x \cap m = \emptyset]]$
- **L4.10** For natural numbers n, m, k
- 1. $n \notin n$
- 2. $m \subseteq n \Rightarrow (m \in n \lor m = n)$
- 3. $(m \subseteq n \land n \in k) \Rightarrow m \in k$
- 4. $m = n \lor m \in n \lor n \in m$
- **L4.11** For $X \subseteq \mathbb{N}$, if $X \neq \emptyset$, then $\exists n \in X \ [X \cap n = \emptyset]$
- **D4.12** We identify the relation < on natural numbers with \in
- **F4.13 Principle of Strong Induction** Suppose P is some property. Suppose that $\forall n \in \mathbb{N}$ [if P holds for all $m \in \mathbb{N}$ less than n then P holds for n]. Then P holds for all $n \in \mathbb{N}$.
- **L4.14** If $n, m \in \mathbb{N}$ and $n \neq m$, then $S(n) \neq S(m)$.
- **E4.15** For natural numbers n, m, k
- 1. $m \in n \in k$ implies $m \in k$
- 2. It is impossible to have $m \in n \in S(m)$
- 3. If $n \neq 0$ then $n = S(\lfloor \rfloor n)$
- 4. $n \leq m$ iff $n \subseteq m$
- 5. $max\{n, m\} = n \cup m$
- 6. Either n = 0 or $\exists k \in n \ [S(k) = n]$
- **E4.16** If $X \subseteq \mathbb{N}$ and $\forall n \in X [n \subseteq X]$, then $X = \mathbb{N}$ or $\exists n \in \mathbb{N} [X = n]$
- **L4.16** If $X \subseteq \mathbb{N}$ and $\forall n \in X \ [n \subseteq X]$, then $X = \mathbb{N}$ or $\exists n \in \mathbb{N} \ [X = n]$ **D4.17 Extenders** Let $\mathbf{FN} = \{\sigma : \sigma \text{ is a function } \land \exists n \in \mathbb{N} \ [dom(\sigma) = n]\}$ be
- the proper class of all functions whose domain is some natural number. An
- extender is a function $\mathbf{E}: \mathbf{FN} \to \mathbf{V}$. When you input $\sigma = \{\langle 0, \sigma(0) \rangle, ..., \langle n, \sigma(n) \rangle\}$ into $\mathbf{E}, \mathbf{E}(\sigma)$ outputs the next value $\sigma(S(n))$.
- **T4.19** Suppose $\mathbf{E}: \mathbf{FN} \to \mathbf{V}$ is an extender. Then there exists a unique $f: \mathbb{N} \to \mathbf{V}$ satisfying $\forall n \in \mathbb{N} \ [f(n) = \mathbf{E}(f \upharpoonright n)].$
- **CL4.21** For each $n \in \mathbb{N}$ there is an approximation to f with domain equal to n.
- **CL4.22** Let $\sigma, \tau \in \mathbf{FN}$ be approximations to f. Either $\sigma \subseteq \tau$ or $\tau \subseteq \sigma$.
- **EP4.23** Consider $\mathbf{E}(\sigma) = \bigcup \sigma(m)$. $f(0) = \mathbf{E}(f \upharpoonright 0) = \mathbf{E}(\emptyset) = X$ and
- $f(S(n)) = \mathbf{E}(f \upharpoonright S(n)) = \bigcup f(n). \ f(0) = X, f(1) = \bigcup X, f(2) \bigcup \bigcup X.$ This set ||ran(f)|| is the transitive closure of X, trcl(X).
- **EP4.24** Consider $f(0) = \emptyset$, $f(S(n)) = \mathcal{P}(f(n))$. Set
- $\mathbf{E}(\sigma) = \emptyset, \mathbf{E}(\sigma) = \mathcal{P}(\sigma(m))$. This gives
- $V_0 = f(0) = \emptyset, V_{S(n)} = f(S(n)) = \mathcal{P}(f(n)) = \mathcal{P}(V_n).$
- $V_{\omega} = \bigcup ran(f) = \bigcup \{V_n : n \in \mathbb{N}\}.$

D2.45 Addition and Multiplication

- Define $\langle f_m: m \in \mathbb{N} \rangle$ such that $f_m: \mathbb{N} \to \mathbb{N}$ is the unique function such that $f_m(0) = m$ and $\forall n \in \mathbb{N} \ [f_m(S(n)) = S(f_m(n))]$
- In other words, define the extender $\mathbf{E}: \mathbf{FN} \to \mathbf{V}$ as follows. For any $\sigma \in \mathbf{FN}$, $\mathbf{E}(\sigma) = \left\{ \begin{array}{ll} m & \text{if } dom(\sigma) = 0 \\ S(\sigma(\bigcup Jdom(\sigma))) & \text{if } dom(\sigma) \neq 0 \end{array} \right.$
- $f_m: \mathbb{N} \to \mathbf{V}$ is the unique function satisfying $\forall n \in \mathbb{N} \ [f_m(n) = \mathbf{E}(f_m \upharpoonright n)].$
- Then $m + n = f_m(n)$, and m + S(n) = (m + n) + 1.
- Define $\langle g_m: m\in \mathbb{N} \rangle$ such that $g_m: \mathbb{N} \to \mathbb{N}$ is the unique function such that $g_m(0)=0$ and $\forall n\in \mathbb{N}$ $[g_m(S(n))=f_{q_m(n)}(m)]$
- In other words, define the extender $\mathbf{E}: \mathbf{FN} \to \mathbf{V}$ as follows. For any $\sigma \in \mathbf{FN}$, if $dom(\sigma) = 0$ $\mathbf{E}(\sigma) = \left\{ \begin{array}{c} 0 & \text{if } dom(\sigma) = 0 \\ f_{\sigma(\bigcup dom(\sigma))}(m) & \text{if } dom(\sigma) \neq 0 \text{ and } \sigma(\bigcup dom(\sigma)) \in \mathbb{N} \\ \emptyset & \text{if } dom(\sigma) \neq 0 \text{ and } \sigma(\bigcup Jdom(\sigma)) \notin \mathbb{N} \end{array} \right.$
- $g_m: \mathbb{N} \to \mathbf{V}$ is the unique function satisfying $\forall n \in \mathbb{N} \ [g_m(n) = \mathbf{E}(g_m \upharpoonright n)].$
- Then $m \cdot n = g_m(n)$, and $m \cdot S(n) = (m \cdot n) + m$.

E4.26 For $n, m, k \in \mathbb{N}$

- 1. n+1=S(n)
- 2. n + (m + k) = (n + m) + k
- 3. n + m = m + n
- 4. $n + n = 2 \cdot n$
- 5. If $2 \cdot n = 2 \cdot m$ then n = m
- $6. \ n \cdot (m+k) = n \cdot m + n \cdot k$
- 7. $n \cdot (m \cdot k) = (n \cdot m) \cdot k$
- 8. $n \cdot m = m \cdot n$

E4.27 For $m, n, k \in \mathbb{N}$

- 1. If n < k then m + n < m + k
- 2. If $m \neq 0$ and n < k then $m \cdot n < m \cdot k$

E4.28 A transitive set satisfies $\forall x \in X \ [x \subseteq X]$.

- 1. For each $n \in \mathbb{N}$, V_n is transitive and V_{ω} is transitive
- 2. For each $n \in \mathbb{N}$, $n \subseteq V_n$ and $n \notin V_n$
- 3. $\mathbb{N} \subseteq V_{\omega}$ and $\mathbb{N} \notin V_{\omega}$
- **E4.29** $f \in \mathbb{N}^{\mathbb{N}}$ is increasing if $\forall n \in \mathbb{N}$ $[f(n) \leq f(n+1)]$. f is unbunded if $\forall k \in \mathbb{N} \ \exists n \in \mathbb{N} \ [f(n) > k]$. Let $H : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be a function. For each $m \in \mathbb{N}$, let h_m be the function in $\mathbb{N}^{\mathbb{N}}$ such that $\forall n \in \mathbb{N} \ [h_m(n) = H(m,n)]$ which is increasing and unbounded. There exists an increasing and unbounded function f such that $\forall m \in \mathbb{N} \ \exists l \in \mathbb{N} \ \forall n \in \mathbb{N} \ [n \geq l \Rightarrow f(n) < h_m(n)]$.
- **E4.30** Let X be a set, $0_X \in X$ be some element, and $S_X: X \to X$ be some function. Suppose
- 1. $\forall x \in X [S_x(x) \neq 0_X]$
- 2. $\forall x, y \in X [x \neq y \Rightarrow S_X(x) \neq S_X(y)]$
- 3. For every $A\subseteq X$, if $0_X\in A$ and $\forall x\in A$ $[S_X(x)\in A]$, then X=AThen $(\mathbb{N},S,0)$ is isomorphic to $(X,S_X,0_X)$. There is a 1-1 and onto function
- Then $(\mathbb{N}, S, 0)$ is isomorphic to $(X, S_X, 0_X)$. There is a 1-1 and onto funct $F: \mathbb{N} \to X$ such that $F(0) = 0_X$ and $\forall n \in \mathbb{N} \ [F(S(n)) = S_X(F(n))]$.
- **E4.31** Define $A_0 = \{\emptyset\}$, $A_1 = \mathbb{N}$, for $n \geq 1$, $A_{S(n)} = A_n \times \mathbb{N}$. There is an extender $\mathbf{E} : \mathbf{FN} \to \mathbf{V}$, $\mathbf{E}(\sigma) = \sigma(\bigcup dom(\sigma)) \times \mathbb{N}$, where
- $dom(\sigma)=0\Rightarrow \mathbf{E}(\sigma)=\{\emptyset\}, dom(\sigma)=1\Rightarrow \mathbf{E}(\sigma)=\{\mathbb{N}\}$ that generates $\langle A_n:n\in\mathbb{N}\rangle$.

E4.32

- 1. X is transitive iff $\bigcup X \subseteq X$
- 2. trcl(X) is the smallest transitive set containing X as a subset

5. Comparing Sizes of Sets

- **D5.1 Equinumerosity** $A \approx B$ if there exists $f: A \to B$ which is both 1-1 and onto.
- **F5.2** $\mathcal{P}(A) \approx \{0, 1\}^A$
- **D5.4** $A \lessapprox B$ means there exists $f: A \to B$ which is 1-1 and B is at least as big as A. If $A \lessapprox B$ but $A \not\approx B$, then $A \lessapprox B$. It is not possible to find $g: A \to B$ that is both 1-1 and onto. B is strictly bigger in size than A.

```
L5.5 If f:A \to B and g:B \to C are 1-1 functions then g \circ f:A \to C is 1-1.
```

L5.6 For sets *A*, *B*, *C*

- 1. $A \lesssim A$
- 2. If $\widetilde{A} \lesssim B$ and $B \lesssim C$ then $A \lesssim C$
- 3. If $A \approx B$ and $B \approx C$ then $A \approx C$
- **T5.7 Cantor** For any set $X, X \lessapprox \mathcal{P}(X)$.

5.2 The Schröder Bernstein Theorem

T5.8 If $f:A \to B$ and $g:B \to A$ are both 1-1 functions, then there exists $I \subseteq A$ and $J \subseteq B$ such that $f \upharpoonright I:I \to J$ is 1-1 and onto, and $g \upharpoonright (B \setminus J):B \setminus J \to A \setminus I$ is 1-1 and onto.

CL5.9 For each $b \in B \setminus J$, $g(b) \in A \setminus I$.

CL5.10 For each $a \in A \setminus I$, there exists $b \in B \setminus J$ with g(b) = a.

T5.11 Schröder-Bernstein For any sets A and B, if $A\lessapprox B$ and $B\lessapprox A$, then $A\approx B$.

E5.12 Suppose $f: X \to Y$ is a 1-1 function. For any $Z \subseteq X$, $Z \approx Im_f(Z)$.

E5.13 Suppose $I\subseteq A$ and $J\subseteq B$. If Ipprox J and $(A\setminus I)pprox (B\setminus J)$, then Approx B.

E5.14 If $n \in \mathbb{N}$ and $A \approx S(n)$, then $\forall a \in A, (A \setminus \{a\} \approx n)$.

E5.15 If $n \in \mathbb{N}$ and $A \approx n$, then if $a \notin A$, $(A \cup \{a\}) \approx S(n)$.

E5.16 Let $n, m \in \mathbb{N}$. Then

- 1. If $f:n\to n$ is 1-1, then f is onto. There is no 1-1 function from S(n) to n.
- 2. If $m \in n$, then $m \lesssim n$.
- 3. If $x \subseteq n$, then $x \lessapprox n$.
- 4. $n \lesssim \mathbb{N}$
- 5. If $A \approx n$, $B \approx m$, and $A \cap B = \emptyset$, then $(A \cup B) \approx (n+m)$.

D5.19 A set is finite if there exits $n \in \mathbb{N}$ such that $n \approx A$. A is infinite if it is not finite. A is countable if $A \lesssim \mathbb{N}$. A is uncountable if it is not countable.

L5.20 If $f:A\to B$ is a 1-1 function, then for any $X,Y\subseteq A$, if $Im_f(X)=Im_f(Y)$, then X=Y.

L5.21 For sets A, B, C, D

- 1. If $A \lesssim B$ then $\mathcal{P}(A) \lesssim \mathcal{P}(B)$
- 2. If $A \lesssim B$ then $A^C \lesssim B^C$
- 3. If $A \lesssim B, C \lesssim D$, and $B \cap D = \emptyset$, then $A \cup C \lesssim B \cup D$

L5.22 If $n \in \mathbb{N}$ and $A \lesssim n$, then A is finite.

L5.23 If $n \in \mathbb{N}$ and there exists an onto function $\sigma : n \to A$, then $A \lesssim n$

L5.24 If A and B are finite, then so is $A \cup B$.

T5.25 If A is a finite set and f is a function with dom(f) = A then

- 1. If $X \subseteq A$, then $X \lesssim A$
- 2. ran(f) is finite and $ran(f) \lesssim A$
- 3. If $\forall a \in A \ [a \text{ is finite}] \ \text{then } \cup A \ \text{is finite}$
- 4. $\mathcal{P}(A)$ is finite

E5.26 If $A \subseteq \mathbb{N}$ is finite and nonempty, $max(A) = \bigcup A$

E5.27 If $A \lesssim C$ and $B \lesssim D$, then $A \times B \lesssim C \times D$. If A and B are finite, $A \times B$ and A^B are finite.

E5.28 If I is a finite set and $\langle A_i:i\in I\rangle$ is a sequence of sets such that $\forall i\in I\ [A_i \text{ is finite}]$, then $\prod_{i\in I}A_i$ is finite.

E5.29 Suppose $\langle A_n : n \in \mathbb{N} \rangle$ is a sequence of infinite subsets of \mathbb{N} . There exists

an infinite set $A \subseteq \mathbb{N}$ such that $\forall n \in \mathbb{N} \ [A \cap A_n \text{ is infinite and } (\mathbb{N} \setminus A) \cap A_n \text{ is infinite}].$

E5.30 For any function, $dom(f) \approx f$.

6. Orders

Quasi, Partial, Linear, and Well-Orders

D6.2 Quasi Order Reflexive, Transitive

- 1. $\forall x \in X [x \leq x]$
- 2. $\forall x, y, z \in X [(x < y \land y < z) \Rightarrow x < z]$

D6.4 Partial Order Irreflexive. Transitive

- 1. $\forall x \in X [x \not< x]$
- 2. $\forall x, y, z \in X [(x < y \land y < z) \Rightarrow x < z]$

D6.5 Linear Order Irreflexive, Transitive, Comparable

- 1. $\forall x \in X [x \triangleleft x]$
- 2. $\forall x, y, z \in X [(x \triangleleft y \land y \triangleleft z) \Rightarrow x \triangleleft z]$
- 3. $\forall x, y \in X [x = y \lor x \lhd y \lor y \lhd x]$

F6.6 Suppose $\langle X,< \rangle$ is a partial order. Define a relation \leq on X by $x\leq y$ iff x< y or x=y. Then $\langle X,\leq \rangle$ is a quasi order where

 $\forall x, y \in X \ [(x \le y \land y \le x) \Rightarrow x = y].$

C6.8 If $\langle X, < \rangle$ is a partial order and $Y \subseteq X$ then $(Y \times Y) \cap <$ is a partial order on Y, as a shorthand for $\langle Y, ((Y \times Y) \cap <) \rangle$. Restricted to Y then Z is the same as restricting directly to Z.

D6.9 Maximal / Minimal Element $x \in X$ is maximal if $\forall y \in X \ [x \not< y]. \ x \in X$ is minimal if $\forall y \in X \ [y \not< x].$ There could be multiple in a partial order.

L6.12 For a finite partial order, every chain or antichain is contained in a maximal chain or antichain.

 $\textbf{D6.13 Well-Order} \ \, \textbf{Every non-empty subset has a minimal element}.$

 $\forall A \subseteq X \ [A \neq \emptyset \Rightarrow \exists a \in A \ \forall a' \in A \ [a \leq a']].$

L6.15 (AC) A linear order $\langle X,< \rangle$ is a well-order iff there is no $f:\mathbb{N} \to X$ where $\forall n \in \mathbb{N} \ [f(n) > f(n+1)].$

D6.16 For a linear order $\langle X, < \rangle$ $pred_{\langle X, < \rangle}(x) = \{x' \in X : x' < x\}$, or the set of predecessors of x in X for the ordering <. A subset $A \subseteq X$ is downwards closed if $\forall a \in A \ \forall x \in X \ [x < a \Rightarrow x \in A]$. The predecessor subset is downwards closed along with the entire set.

F6.17 For a linear order $\langle X, < \rangle$, if $A \subseteq X$ is downwards closed.

 $\forall a \in A \ pred_{\langle A, < \rangle}(a) = pred_{\langle X, < \rangle}(a).$

F6.19 Let $\langle X, < \rangle$ be a well-order and A a downwards closed subset of X. Etiher A = X or $\exists x \in X$ such that $A = pred_{\langle X, < \rangle}(x)$.

E6.20 If $\langle X, < \rangle$ is a well-order and $A \subseteq X$, $\langle A, < \rangle$ is a well-order.

E6.21 Let $\langle X, < \rangle$ be a linear order. $f: X \to X$ is expansive if

 $\forall x \in X \ [f(x) > x], \text{ and order-preserving if }$

 $\forall x, y \in X \ [x < y \Rightarrow f(x) < f(y)].$ If $\langle X, < \rangle$ is a well-order, every order-preserving f is expansive.

E6.22 Suppose $\langle X, < \rangle$ is a quasi-order. Define E on X by $\forall x,y \in X, x \to y$ iff $x \leq y$ and $y \leq x$. E is an equivalence relation on X. Let $Z = \{[x] : x \in X\}$ where [x] is the equivalence class of x under E. Define \prec on Z by $[x] \prec [y]$ iff $x \leq y$ and $y \not\leq x$. This relation is well-defined and a partial order on Z.

New orders from old

L6.23 Suppose X is a set and $\langle Y, \prec \rangle$ and $\langle Z, \lhd \rangle$ are partial orders. Suppose $f: X \to Y$ and $g: X \to Z$ are functions. Define < on X by stipulating that $\forall x, x' \in X, \, x < x' \leftrightarrow (f(x) \prec f(x') \ or \ (f(x) = f(x') \ and \ g(x) \lhd g(x')))$. Then,

- 1. < is a partial order on X
- 2. if $\langle Y, \prec \rangle$ and $\langle Z, \prec \rangle$ are both linear orders and $\forall x, x' \in X \ [(f(x) = f(x') \ and \ g(x) = g(x')) \Rightarrow x = x']$ then < is also a linear order on X
- 3. similarly for well-orders

C6.24 Let X be a set and $\langle Y, \prec \rangle$ be a partial order. Suppose $f: X \to Y$ is a function. Define $<^*$ on X by $\forall x, x' \in X, x <^* x' \leftrightarrow f(x) \prec f(x')$. Then $<^*$ is a partial order on X. If f is 1-1 and \prec is a linear order on Y, then $<^*$ is a linear order on X. Similarly for well-orders. Use Y=Z, f=g, $\prec=\lhd$.

EP 6.25 Lexographic / **Dictionary Order** Define $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ by setting $f(\langle m, n \rangle) = m$ and $g(\langle m, n \rangle) = n$ for all $\langle m, n \rangle \in \mathbb{N} \times \mathbb{N}$. By L6.23, the relation $<_{lex}$ defined on $\mathbb{N} \times \mathbb{N}$ by $\langle m, n \rangle <_{lex} \langle k, l \rangle \leftrightarrow (f(\langle m, n \rangle) \in f(\langle k, l \rangle) \ or \ (f(\langle m, n \rangle) = f(\langle k, l \rangle) \ and \ g(\langle m, n \rangle) \in g(\langle k, l \rangle))) \leftrightarrow (m \in k \ or \ (m = k \ and \ n \in l))$ is a well-order on $\mathbb{N} \times \mathbb{N}$.

D6.26 Suppose $\langle I,<\rangle$ is a well-order and X is a set. For $f,g\in X^I$, if $f\neq g$, define $\Delta(f,g)=min(\langle\{i\in I:f(i)\neq g(i)\},<\rangle)$. It is well-defined for the conditions mentioned above.

L6.27 Suppose $\langle X, \lhd \rangle$ is a linear order and $\langle I, < \rangle$ is a well-order. Define \prec on $X^I \ \forall f,g \in X^I$ by $f \prec g \leftrightarrow (f \neq g \ and \ f(\Delta(f,g)) \lhd g(\Delta(f,h)))$. Then \prec is a linear order on X^I .

D6.28

- $[\mathbb{N}]^n = \{a \in \mathcal{P}(\mathbb{N}) : a \approx n\}$, or subsets of the naturals equinumerous to n.
- $\mathbb{N}^{\bar{n}} = \{\sigma : \sigma \text{ is a function and } dom(\sigma) = n \wedge ran(\sigma) \subseteq \mathbb{N}\}$, or functions with domain n and range as a subset of the naturals.
- $[\mathbb{N}]^{<\omega}=\{a\in\mathcal{P}(\mathbb{N}):a \text{ is finite}\}$, or subsets of the naturals equinumerous to finite n.
- $\mathbb{N}^{<\omega} = \{\sigma : \sigma \text{ is a function and } dom(\sigma) \in \mathbb{N} \land ran(\sigma) \subseteq \mathbb{N}\}$, or functions with a finite domain and range as a subset of naturals.
- $[\mathbb{N}]^{<\omega} = \bigcup_{n \in \mathbb{N}} [\mathbb{N}]^n$ and $\mathbb{N}^{<\omega} = \bigcup_{n \in \mathbb{N}} \mathbb{N}^n$.

EP6.29 $\langle \mathbb{N}, \in \rangle$ is a well-order. Define a linear order $<_{lex}$ on $\mathbb{N}^{\mathbb{N}}$ using L6.27. Since $2^{\mathbb{N}} \subseteq \mathbb{N}^{\mathbb{N}}, \langle 2^{\mathbb{N}}, <_{lex} \rangle$ is also a linear order. Define $F: \mathbb{N}^{<\omega} \to \mathbb{N}^{\mathbb{N}}$ as follows. $\sigma \in \mathbb{N}^{<\omega}, dom(\sigma) \in \mathbb{N}$ and $\sigma: dom(\sigma) \to \mathbb{N}$. Define $F(\sigma): \mathbb{N} \to \mathbb{N}$

 $\operatorname{by} F(\sigma)(n) = \left\{ \begin{array}{ll} \sigma(n) & \text{if } n \in dom(\sigma) \\ dom(\sigma) & \text{if } n \notin dom(\sigma) \end{array} \right. \text{ for every } n \in \mathbb{N}. \ F \text{ is } 1-1.$

Since $<_{lex}$ is a linear order on $\mathbb{N}^{\mathbb{N}}$, by C6.24, $<_{lex}$ defined on $\mathbb{N}^{<\omega}$ by $\sigma<_{lex}\tau\leftrightarrow F(\sigma)<_{lex}F(\tau)$ is also a linear order. From EP2.36, we have a 1-1 and onto $F:\mathcal{P}(\mathbb{N})\to 2^{\mathbb{N}}$. We can induce

 $A <_{lex} B \leftrightarrow F(A) <_{lex} F(B)$ for $A, B \in \mathcal{P}(\mathbb{N})$. Since $[\mathbb{N}]^{<\omega} \subseteq \mathcal{P}(\mathbb{N})$, $\langle [\mathbb{N}]^{<\omega}, <_{lex} \rangle$ is also a linear order.

E6.30 Let $\langle X, < \rangle$ and $\langle Y, \prec \rangle$ be partial orders. Define $\langle X \times Y, \lhd \rangle$ by $\langle x, y \rangle \lhd \langle x', y' \rangle \leftrightarrow (x < x' \land y \prec y')$. This is a partial order.

E6.31 A linear order $\langle X, < \rangle$ is dense if $\forall x, z \in X$ with $x < z, \exists y \in X$ such that $x < y < z. \langle \mathbb{N}^\mathbb{N}, <_{lex} \rangle$ is dense while $\langle 2^\mathbb{N}, <_{lex} \rangle$ is not dense.

E6.32 $<_{lex}$ on $\mathcal{P}(\mathbb{N})$ is defined by the 1-1 and onto F from EP2.36.

- 1. $\forall A, B \in \mathcal{P}(\mathbb{N}), A <_{lex} B \text{ iff } A \neq B \land min(A \triangle B) \in A$
- 2. $\langle [\mathbb{N}]^{<\omega} \setminus \{\emptyset\}, <_{lex} \rangle$ does not have any maximal or minimal elements
- 3. $\langle [\mathbb{N}]^{<\omega} \setminus \{\emptyset\}, <_{lex} \rangle$ is dense

6.3 Embeddings and Isomorphisms

D6.33 If $\langle X, \lhd \rangle$ and $\langle Y, \prec \rangle$ are linear orders, $f: X \to Y$ is an isomorphism between them if f is 1-1 and onto and $\forall x,y \in X \ [x \lhd y \Leftrightarrow f(x) \prec f(y)]$. Two linear orders are isomorphic if f exists which is an isomorphism.

L6.34 $\langle X, \lhd \rangle$ and $\langle Y, \prec \rangle$ are linear orders. Suppose $f: X \to Y$ is an onto function such that $\forall x, y \in X \ [x \lhd y \Rightarrow f(x) \prec f(y)].$ f is an isomorphism.

D6.35 $\langle X, < \rangle$ and $\langle Y, \prec \rangle$ are linear orders. $f: X \to Y$ is an embedding if $\forall x, x' \in X \ [x < x' \Leftrightarrow f(x) \prec f(x')]$ and f is 1-1. If there exists and embedding f, we say that $\langle X, < \rangle$ embeds into $\langle Y, \prec \rangle$ and $\langle X, < \rangle \hookrightarrow \langle Y, \prec \rangle$. $\langle X, < \rangle$ is isomorphic to $\langle Im_f(X), \prec \rangle$.

F6.36 $\langle X, < \rangle$ and $\langle Y, \prec \rangle$ are linear orders. If $f: X \to Y$ is a function such that $\forall x, x' \in X \ [x < x' \Rightarrow f(x) \prec f(x')]$, then f is an embedding.

F6.37 $\langle X, < \rangle$ and $\langle Y, \prec \rangle$ are linear orders. Suppose A and B are downwards closed subsets of X and Y. If $f: A \to B$ is an isomorphism from $\langle A, < \rangle$ to

 $\langle B, \prec \rangle$, then $\forall a \in A, f \upharpoonright pred_{\langle X, \prec \rangle}(a)$ is an isomorphism from $\langle pred_{\langle X, \prec \rangle}(a), \prec \rangle$ to $\langle pred_{\langle Y, \prec \rangle}(f(a)), \prec \rangle$.

T6.38 Suppose $\langle X, \lhd \rangle$ is a finite linear order. $\exists ! n \in \mathbb{N}$ such that $\langle X, \lhd \rangle$ is isomorphic to $\langle n, \in \rangle$. This isomorphism is unique.

T6.39 Suppose $\langle X, \triangleleft \rangle$ is an infinite linear order such that $\forall x \in X, pred_{\langle X, \triangleleft \rangle}$ is finite. $\langle X, \triangleleft \rangle$ is isomorphic to $\langle \mathbb{N}, \in \rangle$. The isomorphism from X to \mathbb{N} is unique. **CL6.40** $\forall x, y \in X$ $[x \triangleleft y \Rightarrow f(x) \in f(y)]$.

CL6.41 ran(f) is a downwards closed subset of $\langle \mathbb{N}, \in \rangle$.

D6.42 A linear order $\langle X, \lhd \rangle$ has type omega ω if X is infinite and $\forall x \in X$, $pred_{\langle X, \lhd \rangle}(x)$ is finite.

7. Countable and Uncountable Sets

Countable Sets

C7.1 If $X \subseteq \mathbb{N}$ is infinite, $\langle X, \in \rangle$ is isomorphic to $\langle \mathbb{N}, \in \rangle$.

C7.2 If X is infinite and countable, then $X \approx \mathbb{N}$.

T7.3 There exist linear orders of type omega on $\mathbb{N} \times \mathbb{N}$, $[\mathbb{N}]^{<\omega}$, and $\mathbb{N}^{<\omega}$. Define $f: \mathbb{N} \to X$ to show infinite, then $g: X \to \mathbb{N}$ and $h: X \to X$. Define \prec as normal, and use it to show $\operatorname{pred}_{\langle X, \prec \rangle}(x)$ is finite.

C7.4

- 1. $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$, $[\mathbb{N}]^{<\omega} \approx \mathbb{N}$, and $\mathbb{N}^{<\omega} \approx \mathbb{N}$
- 2. $\forall n \in \mathbb{N} \ [n \geq 1 \Rightarrow \mathbb{N}^n \ \land [\mathbb{N}]^{<\omega} \approx \mathbb{N}]$

L7.5 Suppose that $\langle A_n:n\in\mathbb{N}\rangle$ and $\langle f_n:n\in\mathbb{N}\rangle$ are sequences such that $\forall n\in\mathbb{N},\,f_n:A_n\to\mathbb{N} \text{ is }1-1.$ Then $\bigcup_{n\in\mathbb{N}}A_n$ is countable.

L7.6 (AC) A countable union of countable sets is countable. If $\langle A_n : n \in \mathbb{N} \rangle$ is a sequence of countable sets, then $\bigcup_{n \in \mathbb{N}} A_n$ is countable.

L7.8 The set of rationals \mathbb{O} is countable, i.e. $\mathbb{O} \to \mathbb{N}$.

E7.9 Let $\langle X, \lessdot \rangle$, $\langle Y, \lhd \rangle$ and $\langle Z, \prec \rangle$ be linear orders. Suppose $f: X \to Y$ and $g: Y \to Z$ are isomorphisms. $f^{-1}: Y \to X$ and $g \circ f: X \to Z$ also are.

E7.10 Define a sequence of relations $\langle \neg a : n \in \mathbb{N} \rangle$ by induction on $n \in \mathbb{N}$. Let $\neg a \in \mathbb{N}$. Suppose $\neg a \in \mathbb{N}$ is a relation on $[\mathbb{N}]^n$. Define $\neg a \in \mathbb{N}$ as follows. Fix $a,b \in [\mathbb{N}]^{S(n)}$. If max(a) < max(b), a < max(b). If max(a) = max(b), $a \cap max(b)$ and $b \cap max(b)$ are in $[\mathbb{N}]^n$. Then if $a \cap max(a) < max(b)$, $a \cap max(b)$, $a \cap max(b)$ by induction. $a \cap max(b)$ by Suppose $a \cap max(b)$, $a \cap max(b)$. Define $a \cap max(b)$ by induction. $a \cap max(b)$ and $a \cap max(b)$ are relation on $a \cap max(b)$. If $a \cap max(b)$ is a relation on $a \cap max(b)$ and $a \cap max(b)$ in $a \cap max(b)$ in

1. $\langle \lhd_n : n \in \mathbb{N} \rangle$ is well-defined, $\forall n \in \mathbb{N}, \langle [\mathbb{N}]^n, \lhd_n \rangle$ is a linear order of type ω .

- 2. $\langle \prec_n : n \in \mathbb{N} \rangle$ is well-defined, $\forall n \in \mathbb{N}, \langle \mathbb{N}^n, \prec_n \rangle$ is a linear order of type ω .
- 3. We can then prove (2) and (3) of T7.3 without AC.

E7.11 Extenders for the following:

- $\begin{array}{|c|c|c|} \textbf{1.} & f(0) = f(1) = 1, f(n) = f(n-1) + f(n-2) \ \forall n > 1 \\ & & dom(\sigma) \in 2 \\ \textbf{E}(\sigma) = \begin{cases} 1 & dom(\sigma) \in 2 \\ \sigma(\bigcup dom(\sigma)) + \sigma(\bigcup \bigcup dom(\sigma)) & \text{for valid } dom(\sigma) \text{ etc.} \\ \emptyset & \text{otherwise} \end{cases}$
- 2. $f(n) = \triangleleft_n \text{ on } [\mathbb{N}]^n$
- 3. $f(n) = \prec_n \text{ on } \mathbb{N}^n$

 $\sigma \prec_{n+1} \tau$.

7.2 Sets of Size Continuum

F7.12 If $x, y \in \mathbb{R}$ and x < y, there is a $q \in \mathbb{Q}$ with x < q < y. L7.13 $2^{\mathbb{N}} \lesssim \mathbb{R} \lesssim \mathcal{P}(\mathbb{Q})$

T7.14 These sets are equinumerous: $2^{\mathbb{N}}$, $\mathbb{N}^{\mathbb{N}}$, $\mathcal{P}(\mathbb{N} \times \mathbb{N})$, $\mathcal{P}(\mathbb{N})$, $\mathcal{P}(\mathbb{O})$, \mathbb{R} . $2^{\mathbb{N}} \subset \mathbb{N}^{\mathbb{N}} \subset \mathcal{P}(\mathbb{N} \times \mathbb{N})$. So $2^{\mathbb{N}} \lesssim \mathbb{N}^{\mathbb{N}} \lesssim \mathcal{P}(\mathbb{N} \times \mathbb{N})$. $\mathbb{N} \approx \mathbb{N} \times \mathbb{N}$. By L5.22, $\mathcal{P}(\mathbb{N}) \lesssim \mathcal{P}(\mathbb{N} \times \mathbb{N}) \lesssim \mathcal{P}(\mathbb{N})$ so $\mathcal{P}(\mathbb{N}) \approx \mathcal{P}(\mathbb{N} \times \mathbb{N})$. By L7.8, $\mathbb{Q} \lesssim \mathbb{N}$. By F5.2, $2^{\mathbb{N}} \lesssim \mathbb{R} \lesssim \mathcal{P}(\mathbb{Q}) \lesssim \mathcal{P}(\mathbb{N}) \lesssim 2^{\mathbb{N}}$. We also have $2^{\mathbb{N}} \lesssim \mathbb{N}^{\mathbb{N}} \lesssim \mathcal{P}(\mathbb{N} \times \mathbb{N}) \lesssim 2^{\mathbb{N}}$. **D7.15** A set X has size continuum or size \mathfrak{c} if $X \approx \mathcal{P}(\mathbb{N})$.

L7.16 $(r, s) = \{x \in \mathbb{R} : r < x < s\}$ has size \mathfrak{c} . The function

 $f(x) = \begin{cases} \frac{x-t}{s-x} & \text{if } x \ge t \\ \frac{x-t}{s-x} & \text{if } x < t \end{cases}$ is well-defined and 1-1 and onto **E7.17** Let $l\subseteq\mathbb{R}^2$ be a line. Define $\phi:\mathbb{R}\to l$ as $\phi(x)=\langle x,mx+c\rangle$ and

 $\phi(y) = \langle c, y \rangle$ for the different line cases. $l \approx \mathbb{R}$. For a < b and c < d, let $m=rac{d-c}{b-a}$ and p=c-ma. Then f:(a,b) o (c,d) is 1-1 and onto.

E7.19 Prove $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$. Define $H : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ by

 $H(m,n)=\frac{(m+n)(m+n+1)}{2}+m$. H is 1-1 and onto by the following steps.

1. If i + j = n, then H(i, j) = H(0, n) + i < H(0, n + 1)2. If i + j = n, x + y = n, i < x, then H(i, j) < H(x, y)

3. If i + j = n, x + y = m, n < m, then H(i, j) < H(x, y)

4. H is 1-1

5. Let $i \in \mathbb{N}$, and $n = min\{k \in \mathbb{N} : 2i < k(k+1)\}$. If $x = i - \frac{n(n-1)}{2}$ and y = n - 1 - x, then $\langle x, y \rangle \in \mathbb{N} \times \mathbb{N}$ and H(x, y) = i, and H is onto

L7.21 If $A \lesssim B$ and $A \neq \emptyset$, then there exists an onto $g: B \to A$.

L7.22 (AC) Suppose A and B are sets and $f: B \to A$ is onto. Then $A \lesssim B$. **L7.23** Let A, B, C be sets and suppose $f: C \to B$ is onto. Then $A^B \lesssim A^C$. **C7.24** If $B \approx C$, then $A^B \approx A^C$.

C7.25 If $A \lesssim D$, $B \lesssim C$, and $B \neq \emptyset$, then $A^B \lesssim D^C$.

L7.26 There exists a sequence $\langle A_n : n \in \mathbb{N} \rangle$ of pairwise disjoint infinite subsets of \mathbb{N} such that $\bigcup_{n\in\mathbb{N}}A_n=\mathbb{N}$. Define $B_n=\{\langle n,m\rangle:m\in\mathbb{N}\}$, and let $A_n = f^{-1}(B_n).$

L7.27 Suppose A, B, and C are sets with $B \cap C = \emptyset$. Then $A^B \times A^C \approx A^{B \cup C}$. Define $F: A^B \times A^C \to A^{B \cup C}$. $F(f, g) = f \cup g$, and

C7.28 $\mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \approx \mathbb{N}^{\mathbb{N}}$. Define $A \cup B = \mathbb{N}, A \cap B = \emptyset$. Then $\mathbb{N}^A \approx \mathbb{N}^\mathbb{N} \approx \mathbb{N}^B$ and $\mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \approx \mathbb{N}^A \times \mathbb{N}^B \approx \mathbb{N}^{A \cup B} \approx \mathbb{N}^{\mathbb{N}}$.

C7.29 \mathbb{R}^2 has size c. This can be used to count lines and planes. Use $\mathbb{R}^2 \approx \mathbb{R}^{\{0\}} \times \mathbb{R}^{\{1\}} \approx \mathbb{R} \times \mathbb{R} \approx \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \approx \mathbb{N}^{\mathbb{N}} \approx \mathbb{R}.$

EP7.30 Let \mathfrak{L} denote the set of lines in \mathbb{R}^2 . $\mathfrak{L} = \mathfrak{L}_0 \cup \mathfrak{L}_1$ where $\mathfrak{L}_0 = \{l : l \text{ satisfies } y = mx + c, m, c, \in \mathbb{R}\}$ and $\mathfrak{L}_1=\{l:l \text{ satisfies } x=c,c,\in\mathbb{R}\}.$ Then $\mathfrak{L}_0\approx\mathbb{R}^2\approx\mathbb{R}$ and $\mathfrak{L}_1\approx\mathbb{R}$, so \mathfrak{L} has

L7.31 Let A. B. C be sets. $A^{(B \times C)} \approx (A^B)^C$. Define $F: A^{(B \times C)} \to (A^B)^C$ using $F(f): C \to A^B$ as $F(f)(c)(b) = f(\langle b, c \rangle)$.

C7.32 $(\mathbb{N}^{\mathbb{N}})^{\mathbb{N}} \approx \mathbb{N}^{\mathbb{N}}$. Use $(\mathbb{N}^{\mathbb{N}})^{\mathbb{N}} \approx \mathbb{N}^{(\mathbb{N} \times \mathbb{N})}$ and $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$.

C7.33 $\mathbb{R}^{\mathbb{N}}$ has size \mathfrak{c} . Use $\mathbb{R} \approx \mathbb{N}^{\mathbb{N}}$.

D7.34 A function $f: \mathbb{R} \to \mathbb{R}$ is continuous if for each $x \in \mathbb{R}$ and each $\epsilon > 0$. there exists $\delta > 0$ such that $Im_f((x - \delta, x + \delta)) \subset (f(x) - \epsilon, f(x) + \epsilon)$. A set $U \subseteq \mathbb{R}$ is an open interval if there exists $r, s \in \mathbb{R}$ such that

 $U = (r, s) = \{x \in \mathbb{R} : r < x < s\}$. $U \subseteq \mathbb{R}$ is open if it is the union of a collection of open intervals.

L7.35 There are only \mathfrak{c} many continuous functions from \mathbb{R} to \mathbb{R} .

L7.36 There are only \mathfrak{c} many open subsets of \mathbb{R} .

E7.37 $\mathbb{R}^{\mathbb{R}} \approx 2^{\mathbb{R}}$. First, $2^{\mathbb{R}} \subseteq \mathbb{R}^{\mathbb{R}}$, so $2^{\mathbb{R}} \lesssim \mathbb{R}^{\mathbb{R}}$. Next, define $f : \mathbb{R} \to \mathbb{R}$. $f \in \mathbb{R}^{\mathbb{R}}$, $f \subseteq \mathbb{R} \times \mathbb{R}, f \in \mathcal{P}(\mathbb{R} \times \mathbb{R})$. So $\mathbb{R}^{\mathbb{R}} \subseteq \mathcal{P}(\mathbb{R} \times \mathbb{R})$, and $\mathbb{R}^{\mathbb{R}} \lesssim \mathcal{P}(\mathbb{R} \times \mathbb{R}) \approx 2^{\mathbb{R} \times \mathbb{R}} \approx 2^{\mathbb{R}} \text{ as } \mathbb{R} \approx \mathbb{R} \times \mathbb{R}.$

E7.38 There are only countably many algebraic real numbers. Almost all real numbers are transcendental. $a \in \mathbb{R}$ is algebraic if there exists a non-zero

polynomial $p(X) \in \mathbb{Z}[X]$ such that p(a) = 0. If a is not algebraic, it is transcendental

E7.39 A function $f: \mathbb{R} \to \mathbb{R}$ is increasing if $\forall x, y \in \mathbb{R} [x < y \Rightarrow f(x) < f(y)].$ There are only \mathfrak{c} many increasing functions.

E7.40 Let $X\subseteq 2^{\mathbb{N}}$ be countable. Then $(2^{\mathbb{N}}\backslash X)\approx 2^{\mathbb{N}}$. If T is the set of transcendental real numbers, $T \approx R$. Since $(2^{\mathbb{N}} \setminus X) \subset 2^{\mathbb{N}}$, $(2^{\mathbb{N}} \setminus X) \lesssim 2^{\mathbb{N}}$. We want to show that $2^{\mathbb{N}} \lesssim (2^{\mathbb{N}} \setminus X)$ so that we can apply Schröder Bernstein. Let $A,B\subseteq\mathbb{N}$ be infinite sets such that $A\cap B=\emptyset$ and $A\cup B=\mathbb{N}$. By C5.33, fix bijections $\psi:A\to\mathbb{N}$ and $\varphi:B\to\mathbb{N}$. Define $G:2^{\mathbb{N}}\to(2^{\mathbb{N}}\setminus X)$ as follows by defining $G(f): \mathbb{N} \to 2$. Let $n \in \mathbb{N}$. If $n \in A$, define $G(f)(n) = f(\psi(n)) \in 2$. If $n \in B$, $e(\varphi(n)) \in X \subseteq 2^{\mathbb{N}}$, and $e(\varphi(n))(n) \in 2$. If $e(\varphi(n))(n) = 0$, then G(f)(n) = 1, if $e(\varphi(n))(n) = 1$, then G(f)(n) = 0. Since either $n \in A$ or $n \in B$, $G(f)(n) \in 2$ and $G(f) \in 2^{\mathbb{N}}$. If $G(f) \in X$, then there exists $k \in \mathbb{N}$ with e(k) = G(f) and $n \in B$ with $\varphi(n) = k$. But since $n \in B$, $G(f)(n) \neq e(\varphi(n))(n) = e(k)(n) = G(f)(n)$, a contradiction. This shows $G(f) \notin X$. Now we show that G is 1-1. Fix $f \neq f' \in 2^{\mathbb{N}}$. There exists $k \in \mathbb{N}$ with $f(k) \neq f'(k)$. There exists $n \in A$ with $\psi(n) = k$. $G(f)(n) = f(\psi(n)) = f(k) \neq f'(k) = f'(\psi(n)) = G(f')(n)$. Then $G(f) \neq G(f')$. We have shown that $2^{\mathbb{N}} \lesssim (2^{\mathbb{N}} \setminus X)$ as needed.

8. More about Partial and Linear Orders

8.1 Dilworth's Decomposition for Finite Partial Orders

T8.1 (Dilworth) Suppose $\langle X, < \rangle$ is a finite partial order. Let $k(X) = max\{m \in \mathbb{N} : \exists A \subseteq X [A \text{ is an antichain in } X \land A \approx m]\}. X \text{ is a}$ union of k(X) disjoint chains.

CL8.2 For all j, j' < n, if $j \neq j'$, then x_i and $x_{i'}$ are incomparable.

CL8.3 $\langle Z, < \rangle$ does not have any *n*-element antichains.

E8.4 Suppose $k \in \mathbb{N}$ and $\langle X, \langle \rangle$ is a finite partial order such that all chains have at most k elements. X is a union of k many antichains.

E8.5 Suppose $\langle X, < \rangle$ is a partial order. Suppose $k, l \in \mathbb{N}$. Suppose $\langle X, < \rangle$ has the property that all chains have at most l elements and all antichains have at most k elements. X is finite or it has at most $k \cdot l$ elements.

E8.6 Suppose X is a finite set of women and Y is a set of men with $Y \approx n$ for some $n \in \mathbb{N}$. Let the sequence $\langle a_i : i < n \rangle$ enumerate the men. For each $i < n, a_i$ chooses a set $S_i \subseteq X$ of women he likes. It is possible to marry each a_i to someone in S_i iff for all $k \leq n$ and all k-element subsets $F \subseteq n$, $\bigcup_{i \in F} S_i$ has at least k elements.

8.2 More about Linear Orders

D8.8 Let $\langle X, < \rangle$ be a partial order and $A \subseteq X$. $x \in X$ is an upper bound of A if $\forall a \in A \ [a < x]$. x is a lower bound if $\forall a \in A \ [x < a]$. Let U be the set of upper bounds of A and L be the set of lower bounds of A. If there exists $u \in U$ such that $\forall x \in U \ [u \leq x]$, then u is the supremum of A in X or $sup_X(A)$ or minimal upper bound. For L and [x < l], it is called the infimum or $inf_X(A)$ or greatest lower bound. There can only be at most one supremum or infimum.

EP8.9 Let $A = \{p \in \mathbb{Q} : p^2 < 2\}$. $sup_{\mathbb{Q}}(A)$ and $inf_{\mathbb{Q}}(A)$ do not exist, but $\sup_{\mathbb{R}}(A) = \sqrt{2}$ and $\inf_{\mathbb{R}}(A) = -\sqrt{2}$.

D8.10 Let $\langle X, < \rangle$ be a linear order. A pair $\langle A, B \rangle$ is a cut of $\langle X, < \rangle$ if A is downwards closed, B is upwards closed, and A and B partition X i.e. $A \cap B = \emptyset$ and $A \cup B = X$.

F8.11 Suppose $\langle X, < \rangle$ is a linear order and $Y \subseteq X$. If $z \in X \setminus Y$, $A = \{a \in Y : a < z\}, B = \{b \in Y : z < b\}, \text{ then } \langle A, B \rangle \text{ is a cut of } \langle Y, < \rangle.$

D8.13 A linear order $\langle X, < \rangle$ is dense if $\forall x, y \in X \; \exists z \in X \; [x < y \Rightarrow x < z < y].$

D8.14 A linear order is without endpoints if it has neither a maximal nor minimal element. A countable dense linear order with no endpoints is universal for all countable linear orders; every countable linear order embeds into such an order. **T8.15 (Cantor, AC)** Suppose $\langle X, < \rangle$ is a non-empty dense linear order without

endpoints. Let $\langle Y, \prec \rangle$ be any countable linear order. Then $\langle Y, \prec \rangle \hookrightarrow \langle X, < \rangle$.

T8.16 (Cantor) Let $\langle X, \prec \rangle$ and $\langle Y, \prec \rangle$ be non-empty countable dense linear orders without endpoints. Then they are isomorphic.

E8.17 Embedding is a quasi-order (reflexive, transitive) on linear orders.

E8.19 $\langle X, < \rangle \hookrightarrow \langle Y, \prec \rangle \land \langle Y, \prec \rangle \hookrightarrow \langle X, < \rangle$ does not imply isomorphism. Take $X = \mathbb{Q} \cap [0,1]$ and $Y = \mathbb{Q} \cap (0,1)$.

E8.20 We can have $\langle X, < \rangle \not\hookrightarrow \langle Y, \prec \rangle \land \langle Y, \prec \rangle \not\hookrightarrow \langle X, < \rangle$ (incomparability). Take $X = \langle \mathbb{N}, \in \rangle$ and $Y = \langle \mathbb{N}, \ni \rangle$.

9. Well-Ordered Sets

F9.1 If $\langle X, < \rangle$ is a linear order of type ω , then it is a well-order.

L9.2 Suppose A and B are downwards closed subsert of X where $\langle X, < \rangle$ is a well-order. If $\langle A, < \rangle \cong \langle B, < \rangle$, then A = B.

C9.3 Suppose $\langle X, < \rangle$ is a well-order, and $x < x' \in X$. Then $\langle pred_{\langle X < \rangle}(x'), < \rangle \not\cong \langle pred_{\langle X, < \rangle}(x), < \rangle.$

C9.4 Suppose $\langle X, < \rangle$ is a well-order. Then for any $x \in X$, $\langle pred_{\langle X < \rangle}(x), < \rangle \ncong \langle X, < \rangle.$

L9.5 If $\langle X, < \rangle$ and $\langle Y, \prec \rangle$ are isomorphic well-orders, then the isomorphism between them is unique.

T9.6 Suppose $\langle X, \prec \rangle$ and $\langle Y, \prec \rangle$ are well-orders. Then exactly one of the following holds:

1. $\langle X, < \rangle \cong \langle Y, \prec \rangle$

2. $\exists x \in X \ [\langle pred_{\langle X, < \rangle}(x), < \rangle \cong \langle Y, \prec \rangle]$

3. $\exists y \in Y \ [\langle X, \prec \rangle \cong \langle pred_{\langle Y, \prec \rangle}(y), \prec \rangle]$

E9.11 Define the product of X and Y to be $Z = Y \times X$. The dictionary order \triangleleft on Z is a well-order.

E9.13 Given well-orders $\langle X, <_X \rangle \cong \langle A, <_A \rangle, \langle Y, <_Y \rangle \cong \langle B, <_B \rangle$, then the product and sum of $\langle X, <_X \rangle, \langle Y, <_Y \rangle \cong \langle A, <_A \rangle, \langle B, <_B \rangle$.

10. Ordinals

 $WO = \{\langle X, \langle \rangle : X \text{ is a set } \land \langle \text{ is a well-ordering of } X\}$

10.1 Basic Properties of Ordinals

D10.1 A set x is transitive if every element of x is a subset of x, or $\forall y [y \in x \Rightarrow y \subseteq x].$

D10.2 Ordinals A set α is an ordinal if it is transitive and well-ordered by \in . Let $\in_{\alpha} = \{ \langle \beta, \gamma \rangle \in \alpha \times \alpha : \beta \in \gamma \}$. α is an ordinal if α is transitive and $\langle \alpha, \in_{\alpha} \rangle$ is a well-order. The subscript of \in_{α} is often omitted.

F10.3 $\mathbb N$ is an ordinal. Every $n \in \mathbb N$ is also an ordinal.

T10.4 Let x be an ordinal. The following hold:

1. $\forall y \in x \ [y \text{ is an ordinal } \land y = pred_{\langle x, \in \rangle}(y)]$

2. if y is any ordinal and $\langle x, \in \rangle \cong \langle y, \in \rangle$ then x = y

3. if y is any ordinal, then exactly one of the following things hold: $x \in y, x = y, y \in x$

4. if y, z are ordinals and $x \in y$ and $y \in z$, then $x \in z$

5. if C is a non-empty class of ordinals, then $\exists y \in \mathbf{C} \ \forall z \in \mathbf{C} \ [y \in z \lor y = z]$

D10.5 ORD = $\{\alpha : \alpha \text{ is an ordinal}\}\$ is the class of all ordinals.

T10.6 Burali-Forti ORD is not a set.

L10.7 Every transitive set of ordinals is an ordinal.

T10.8 Let $\langle X, < \rangle$ be a well-ordered set. Then there exists a unique α such that $\langle X, < \rangle \cong \langle \alpha, \in_{\alpha} \rangle$.

D10.11 If $\langle X, < \rangle$ is any well-ordered set, then $otp(\langle X, < \rangle)$, or the order type of $\langle X, < \rangle$ is the unique ordinal α such that $\langle X, < \rangle$ is isomorphic to $\langle \alpha, \in_{\alpha} \rangle$.

L10.13 For ordinals $\alpha, \beta, \alpha < \beta$ iff $\alpha \subseteq \beta$.

L10.14 If A is a non-empty set of ordinals, then $min(A) = \bigcap A$. If A is any set of ordinals, then $sup_{\mathbf{ORD}}(A) = \bigcup A$.

L10.15 For any α , $S(\alpha)$ is an ordinal, $\alpha < S(\alpha)$, and $\forall \beta \ [\beta < S(\alpha) \iff \beta < \alpha].$

D10.16 α is a successor ordinal if $\exists \beta \ [\alpha = S(\beta)]. \ \alpha$ is a limit ordinal if $\alpha \neq 0$ and α is not a successor ordinal.

L10.17 An ordinal α is a natural number iff $\forall \beta \leq \alpha \ [\beta = 0 \lor \beta \text{ is a successor ordinal}].$ CV10.18 $\omega = N$.

Induction and Recursion on the Ordinals

T10.19 Let $P(\alpha)$ be some property. If $\forall \alpha \in \mathbf{ORD} \ [\forall \beta < \alpha \ [P(\beta)] \Longrightarrow P(\alpha)]$ then $\forall \alpha \in \mathbf{ORD} [P(\alpha)].$

D10.20 Let $FOD = \{ \sigma : \sigma \text{ is a function } \land \exists \alpha \in ORD [dom(\sigma) = a] \}$ denote the class of all functions whose domain is some ordinal. An ordinal extender is a function $\mathbf{E}: \mathbf{FOD} \to \mathbf{V}$. When you plug in a function with domain α into an ordinal extender, the output tells you what the value of the function at α ought to

T10.21 Suppose $\mathbf{E}: \mathbf{FOD} \to \mathbf{V}$ is any extender. Then there exists a unique function $F:\mathbf{ORD} \to \mathbf{V}$ satisfying the condition that $\forall \alpha \in \mathbf{ORD} \ [\mathbf{F}(\alpha) = \mathbf{E}(\mathbf{F} \upharpoonright \alpha)]$. The function generated is a proper class and

not a set. $\mathbf{F} \upharpoonright \alpha$ is a function with $dom(\mathbf{F} \upharpoonright \alpha) = \alpha$ because $\alpha \subseteq \mathbf{ORD}$.

EP10.24 Define $V_0 = \emptyset$. Fix $\alpha \in \mathbf{ORD}$ and suppose V_β is given for all $\beta < \alpha$. If $\alpha = S(\beta)$ for some β let $V_{\alpha} = \mathcal{P}(V_{\beta})$. If α is a limit ordinal, then $V_{\alpha} = \bigcup \{V_{\beta} : \beta < \alpha\}$. Define $\mathbf{E} : \mathbf{FOD} \to \mathbf{V}$ as follows. Fix $\sigma \in \mathbf{FOD}$. Let $\alpha = dom(\sigma) \in \mathbf{ORD}$. If $\alpha = 0$, $\mathbf{E}(\sigma) = \emptyset$. If α is a successor ordinal, $\exists ! \beta, S(\beta) = \alpha$. Then $\beta \in \alpha$, so $\sigma(\beta)$ is defined and in **V**. Let $\mathbf{E}(\sigma) = \mathcal{P}(\sigma(\beta))$. If α is a limit ordinal, then let $\mathbf{E}(\sigma) = \bigcup ran(\sigma)$.

E10.26 Call C trans-finitely inductive if:

- 1. $0 \in \mathbf{C}$
- 2. $\forall x \in \mathbf{C} [S(x) \in \mathbf{C}]$
- 3. for any set $X \subseteq \mathbb{C}$, $|X| \in \mathbb{C}$

ORD is the smallest trans-finitely inductive class.

E10.27 Let α be any ordinal. If $X \subseteq \alpha$, then $otp(\langle X, \in \rangle) < \alpha$.

E10.28 Let α be any ordinal. α is a limit ordinal iff $\bigcup \alpha = \alpha$.

E10.29 For EP10.24, for each $\alpha \in \mathbf{ORD}$, V_{α} is transitive and $\bigcup_{\alpha \in \mathbf{ORD}} V_{\alpha}$ is transitive, $\alpha \subseteq V_{\alpha}$ and $\alpha \notin V_{\alpha}$.

11. Ordinal Arithmetic

11.1 Addition and Multiplication

D11.1 Let $\langle X, <_X \rangle$ and $\langle Y, <_Y \rangle$ be well-orders. Define

 $X \oplus Y = (\{0\} \times X) \cup (\{1\} \times Y)$. Define $<_{X \oplus Y}$ to be: 1. $\forall x, x' \in X \left[\langle 0, x \rangle <_{X \oplus Y} \langle 0, x' \rangle \iff x <_X x' \right]$

- 2. $\forall y, y' \in Y \ [\langle 1, y \rangle <_{X \oplus Y} \langle 1, y' \rangle \iff y <_Y y']$
- 3. $\forall x \in X \forall y \in Y \left[\langle 0, x \rangle <_{X \oplus Y} \langle 1, y \rangle \right]$

Then it is a well-order.

D11.2 Suppose α and β are ordinals. Define $\alpha + \beta$ to be the order-type of the well-order $\langle \alpha \oplus \beta, <_{\alpha \oplus \beta} \rangle$, where $<_{\alpha} = \in_{\alpha}$ and $<_{\beta} = \in_{\beta}$.

L11.4 Let $\langle X, <_Y \rangle$, $\langle Y, <_Y \rangle$, $\langle Z, <_Z \rangle$ be well-orders. Suppose $A, B \subseteq Z$.

Assume $A \cup B = Z$ and $\forall a \in A \ \forall b \in B \ [a <_Z b]$. Then if $\langle A, <_Z \rangle \cong \langle X, <_X \rangle$ and $\langle B, <_Z \rangle \cong \langle Y, <_Y \rangle$, then $\langle Z, <_Z \rangle \cong \langle X \oplus Y, <_{X \oplus Y} \rangle.$

L11.5 For any α, β, γ :

- 1. $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$
- $2. \ \alpha + 0 = \alpha$
- 3. $\alpha + 1 = S(\alpha)$
- 4. $\alpha + S(\beta) = S(\alpha + \beta)$
- 5. if β is a limit ordinal, then $\alpha + \beta = \sup\{\alpha + \xi : \xi < \beta\}$

R11.6 (2), (3), (5) can be used to give an inductive definition of +. For a fixed α , we can define \dotplus which is equivalent to + on **ORD** by:

- 1. $\alpha + 0 = \alpha$
- 2. $\alpha \dotplus S(\beta) = S(\alpha \dotplus \beta)$
- 3. if β is a limit ordinal, then $\alpha + \beta = \sup\{\alpha + \xi : \xi < \beta\}$

D11.7 Let α and β be ordinals. Let $<_{\alpha,\beta}$ be the dictionary order on $\beta \times \alpha$. That is, for $\langle \zeta, \xi \rangle$, $\langle \zeta', \xi' \rangle \in \beta \times \alpha$, $\langle \zeta, \xi \rangle <_{\alpha, \beta} \langle \zeta', \xi' \rangle$ iff either $\zeta < \zeta'$ or $\zeta = \zeta'$ and $\xi < \xi'$. Then it is a well-order and $\alpha \cdot \beta = otp(\langle \beta \times \alpha, <_{\alpha \cdot \beta} \rangle)$ which is β copies of α .

L11.8 Suppose α, β, γ are ordinals. Suppose $A \subseteq \gamma$ and $\langle A, \in \rangle \cong \langle \beta, \in \rangle$. Then $\langle A \times \alpha, <_{\alpha \cdot \gamma} \rangle \cong \langle \beta \times \alpha, <_{\alpha \cdot \beta} \rangle$.

L11.9 For any α, β, γ :

- 1. $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$
- 2. $\alpha \cdot 0 = 0$
- 3. $\alpha \cdot 1 = \alpha$
- 4. $\alpha \cdot S(\beta) = a \cdot \beta + \alpha$
- 5. if β is a limit ordinal, $\alpha \cdot \beta = \sup\{a \cdot \xi : \xi < \beta\}$
- 6. $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$

Also, \cdot is not commutative on **ORD** since $2 \cdot \omega \neq \omega \cdot 2$. (6) fails for multiplication on the right since $(1+1) \cdot \omega = \omega \neq 1 \cdot \omega + 1 \cdot \omega$.

Exponentiation

D11.10 For a fixed α , define α^{β} by recursion on β using the following clauses:

- 1. if $\alpha = 0$, then $\alpha^0 = 0$; if $\alpha > 0$, then $\alpha^0 = 1$
- 2. $\alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha$
- 3. if β is a limit ordinal, then $\alpha^{\beta} = \sup\{a^{\xi} : \xi < \beta\}$

E11.11 Define the extender $\mathbf{E}_{\alpha}^{+}: \mathbf{FOD} \to \mathbf{V}$ as follows. For any $\sigma \in \mathbf{FOD}$,

$$\mathbf{E}_{\alpha}^{+}(\sigma) = \left\{ \begin{array}{ll} \alpha & \text{if } dom(\sigma) = 0 \\ S(\sigma(\beta)) & \text{if } dom(\sigma) = S(\beta) \\ \bigcup ran(\sigma) & \text{if } dom(\sigma) \text{ is a limit ordinal} \end{array} \right.$$

For other operations need to check the case where $\sigma(\beta) \notin \mathbf{ORD}$.

E11.12 For any ordinal $\alpha > 0$, $\alpha \cdot \omega > \alpha$.

E11.13 $\alpha < \beta \Rightarrow \gamma + \alpha < \gamma + \beta \land \alpha + \gamma \leq \beta + \gamma$ but not < on the second clause.

E11.14 If $\alpha > \omega$ is an ordinal, then $1 + \alpha = \alpha$.

E11.15 If $\gamma > 0$, then $\alpha < \beta \Rightarrow \gamma \cdot \alpha < \gamma \cdot \beta \wedge \alpha \cdot \gamma < \beta \cdot \gamma$ but not < on the second clause.

E11.16 Let $0 < \alpha \le \beta$ be ordinals. There exist unique δ, ξ such that $\xi < \alpha$ and $\alpha \cdot \delta + \xi = \beta$.

E11.17 $\alpha^{(\beta+\gamma)} = \alpha^{\beta} \cdot \alpha^{\gamma}$ for ordinals $\alpha > 0$.

E11.18 Define $\alpha_0 = \omega$ and $\forall n \in \omega, a_{n+1} = \omega^{\alpha_n}$. Let $\epsilon_0 = \sup\{\alpha_n : n \in \omega\}$. Then $\omega^{\epsilon_0} = \epsilon_0$.

Cardinals and Cardinal Arithmetic

D12.1 A set X is said to be well-orderable if there exists a relation $\langle \subseteq X \times X \rangle$ such that $\langle X, < \rangle$ is a well-order.

D12.2 Let X be a well-orderable set. Define the cardinality of X, |X|, to be the minimal element of $\{\alpha \in \mathbf{ORD} : \alpha \approx X\}$. $|\alpha|$ is defined for every $\alpha \in \mathbf{ORD}$, and $|\alpha| < \alpha$.

D12.3 α is a cardinal if $|\alpha| = \alpha$.

F12.4 If $n \in \omega$, then n is a cardinal. ω is a cardinal.

L12.5 If $|\alpha| < \beta < \alpha$, then $|\beta| = |\alpha|$.

L12.6 A se is finite iff $|X| < \omega$. A set is countable iff $|X| \le \omega$.

D12.7 Let κ and λ be cardinals. These are well-orderable:

1. $\kappa \boxplus \lambda = |(\{0\} \times \kappa) \cup (\{1\} \times \lambda)|$ 2. $\kappa \boxtimes \lambda = |\kappa \times \lambda|$

L12.8 Every infinite cardinal is a limit ordinal.

T12.9 If κ is an infinite cardinal, then $\kappa \boxtimes \kappa = \kappa$.

C12.10 Let κ and λ be infinite cardinals. Then $\kappa \boxplus \lambda = \kappa \boxtimes \lambda = max\{\kappa, \lambda\}$.

T12.11 For every set X there is a cardinal α such that there is no 1-1 function

D12.16 For each $\alpha \in \mathbf{ORD}$, α^+ is the least cardinal strictly greater than α .

L12.17 Suppose $F : ORD \rightarrow ORD$ is a function such that $\forall \alpha, \beta \in \mathbf{ORD} \ [\alpha < \beta \Rightarrow \mathbf{F}(\alpha) < \mathbf{F}(\beta)]. \ \mathsf{Then} \ \forall \beta \in \mathbf{ORD} \ [\beta < \mathbf{F}(\beta)].$ **D12.18** Define a sequence $\langle \omega_{\alpha} : \alpha \in \mathbf{ORD} \rangle$ by induction using the following clauses:

- 1. $\omega_0 = \omega$
- 2. $\omega_{S(\alpha)} = \omega_{\alpha}^+$
- 3. if α is a limit ordinal, then $\omega_{\alpha} = \sup\{\omega_{\xi} : \xi < \alpha\}$

R12.19 ω_{α} is sometimes deonted as \aleph_{α} .

L12.20 $\alpha < \beta \Longrightarrow \aleph_{\alpha} < \aleph_{\beta}$ and every infinite cardinal is equal to \aleph_{α} for some $\alpha \in \mathbf{ORD}$.

12.1 Choice and Cardinality

D12.21 Let X be any set. F is a choice function on X if F is a function, $dom(F) = X \setminus \{0\}, \text{ and } \forall a \in X \setminus \{0\} [F(a) \in a].$

T12.22 Zermelo TFAE for a set X:

- 1. X is well-orderable
- 2. there exists a choice function on $\mathcal{P}(X)$

T12.26 AC TFAE:

- 1. the Cartesian product of non-empty sets is non-empty
- 2. for every set X there exists a choice function on X
- 3. every set is well-orderable
- 4. for any two sets X and Y, either $X \lesssim Y$ or $Y \lesssim X$
- 5. for every set X there is an ordinal α and a 1-1 function $f:X\to\alpha$
- 6. for every set X there is a cardinal κ such that $X \approx \kappa$

Cardinal Exponentiation and König's Theorem

D12.28 (AC) Let κ and λ be cardinals. Define $\kappa^{\lambda} = |\{f : f \text{ is a function } \wedge dom(f) = \lambda \wedge ran(f) \subseteq \kappa\}|.$

L12.30 Let κ , λ , θ be cardinals. The following hold:

- 1. $(\kappa^{\lambda})^{\theta} = \kappa^{(\lambda \boxtimes \theta)}$
- 2. $(\kappa^{\lambda}) \boxtimes (\kappa^{\theta}) = \kappa^{(\lambda \boxplus \theta)}$

D12.31 Define a squence of cardinals $\langle \square_{\alpha} : \alpha \in \mathbf{ORD} \rangle$ by induction using the following clauses:

- 1. $\beth_0 = \omega$
- 2. $\beth_{S(\alpha)} = 2^{\beth_{\alpha}}$
- 3. if α is a limit ordinal, then $\beth_{\alpha} = \sup\{\beth_{\xi} : \xi < \alpha\}$

D12.32 The Generalised Continuum Hypothesis is the statement that $\forall \alpha \in \mathbf{ORD} \left[\beth_{\alpha} = \aleph_{\alpha} \right]$. The Continuum Hypothesis is the statement that $\beth_1 = \aleph_1$. Note $\beth_1 = 2^{\beth_0} = 2^{\aleph_0}$, so CH says $2^{\aleph_0} = \aleph_1$.

T12.34 König $(\aleph_{\omega})^{\aleph_0} > \aleph_{\omega}$.

C12.35 $2^{\aleph_0} \neq \aleph_{\omega}$.

E12.36 Let κ , λ be infinite cardinals where $\lambda < \kappa$. Then $\kappa^{\lambda} = |\{X \subset \kappa : |X| = \lambda\}|.$

E12.37 Let $\kappa, \lambda, \theta, \chi$ be cardinals. If $\kappa < \lambda$, then $\kappa^{\theta} < \lambda^{\theta}$. If $\kappa < \chi, \lambda < \theta$ and $\lambda \neq 0$, then $\kappa^{\lambda} < \gamma^{\theta}$.

E12.38 Let α be an ordinal. Let $W = \{ \langle Y, \triangleleft \rangle : Y \subseteq \alpha \land \langle Y, \triangleleft \rangle \text{ is a well-order} \}.$ $\alpha^+ = \{ otp(\langle Y, \triangleleft \rangle) : \langle Y, \triangleleft \rangle \in W \}.$

E12.39 There is a cardinal $\kappa = \aleph_{\kappa}$ and $\kappa = \beth_{\kappa}$.

E12.40 Suppose $\mathbf{F}:\mathbf{ORD}\to\mathbf{ORD}$ and

 $\forall \alpha, \beta \in \mathbf{ORD} \ [\alpha < \beta \Longrightarrow \mathbf{F}(\alpha) < \mathbf{F}(\beta)] \ \text{and for any limit ordinal } \beta,$ $\mathbf{F}(\beta) = \sup{\{\mathbf{F}(\alpha) : \alpha < \beta\}}$. Then $\forall \alpha \in \mathbf{ORD} \ \exists \beta > \alpha \ [\mathbf{F}(\beta) = \beta]$.

E12.41 $(\aleph_{\omega_1})^{\aleph_1} > \aleph_{\omega_1}$ and $2^{\aleph_1} \neq \aleph_{\omega_1} \aleph_{\omega_1}$.

13. Some applications of AC

D13.1 Let A be any set. $\mathcal{F} \subseteq \mathcal{P}(A)$ is of finite character iff $\forall X \subseteq A, X \in \mathcal{F} \Longleftrightarrow \forall Y \subseteq X \ [|Y| < \omega \Longrightarrow Y \in \mathcal{F}]$. All of X's finite subsets are in \mathcal{F} .

L13.2 Suppose $\mathcal{F}\subseteq\mathcal{P}(A)$ is of finite character. Then for any $X\in\mathcal{F}$ and any $Y\subseteq X,Y\in\mathcal{F}$.

T13.3 TFAE:

- 1. AC
- 2. for any set A and any $\mathcal{F} \subseteq \mathcal{P}(A)$, if F has finite character, then for every $X \in \mathcal{F}$, there exists $Y \in \mathcal{F}$ such that $X \subseteq Y$ and Y is maximal in $\langle \mathcal{F}, \subsetneq \rangle$ (Teichmüller-Tukey Lemma)
- 3. every chain in every partial order is contained in a maximal chain (Hausdorff's maximal chain theorem)
- 4. if $\langle X,<\rangle$ is any partial order where every chain in $\langle X,<\rangle$ has an upper bound in $\langle X,<\rangle$, then $\langle X,<\rangle$ has a maximal element (Zorn's lemma)
- $(4)\Longrightarrow(1)\text{: Prove the standard version of AC. Let I be any set and suppose $$\langle X_i:i\in I\rangle$ is any sequence of non-empty sets. Consider $$A=\{\sigma:\sigma\text{ is a function }\land dom(\sigma)\subseteq I\land\forall i\in dom(\sigma)\ [\sigma(i)\in X_i]\}$. Partially order A by \subseteq. Let $$C\subseteq A$ be any chain. $$C$ is a directed collection of functions. $$So$$$\bigcup $C=\tau$ is a function and $dom(\tau)=\bigcup\{dom(\sigma):\sigma\in C\}\subseteq I$. $$\tau(i)=\sigma(i)\in X_i$. Therefore $\tau\in A$ and $\forall\sigma\in C\ [\sigma\subseteq\tau]$. So τ is an upper bound for C. So every chain has an upper bound and there is a maximal $\sigma\in A$ by Zorn's lemma. We claim that $dom(\sigma)=I$. If not, there exists $i\in I\backslash dom(\sigma)$. Since $X_i\ne 0$, choose $x_i\in X_i$. Put $\tau=\sigma\cup\{\langle i,x_i\rangle\}$. Then $\tau\in A$ and $\sigma\subseteq\tau$, contradicting maximality of σ.}$

Using Zorn's Lemma $\langle X,<\rangle$ is a partial order. If every chain in $\langle X,<\rangle$ has an upper bound in $\langle X,<\rangle$, then $\langle X,<\rangle$ has a maximal element.

- 1. Find a relevant $\langle X, < \rangle$, e.g. $\langle \mathcal{P}(X), \subseteq \rangle$ which might be given.
- 2. Take a chain $\zeta\subseteq X$. Show ζ has an upper bound in $\langle X,<\rangle$. Usually this involves taking unions of things in ζ . But you have to check that these unions belong to X. Also, $\zeta=\emptyset$ is always a chain.
- 3. By Zorn's lemma $\exists x \in X$ maximal in $\langle X, < \rangle$. Now maximality will imply x has some special property. Most of the time you check x has the relevant property, because if it did not it would contradict maximality in $\langle X, < \rangle$.

E13.16 Let $\langle X,<\rangle$ be a partial order. Every antichain in $\langle X,<\rangle$ is contained in a maximal antichain. Let $A\subset X$ be an antichain.

- 1. $P = \{B \subseteq X : A \subseteq B \land B \text{ is an antichain}\}. \langle P, \subsetneq \rangle$ is a partial order.
- 2. Let $\zeta\subseteq P$ be a chain in $\langle P,\subsetneq\rangle$. Case I: $\zeta=\emptyset$. Then $A\in P$ and $\forall B\in \zeta\ [B\subseteq A]$. So A is an upper bound for $\zeta\in P$. Case II: $\zeta\neq\emptyset$. Let $D=\bigcup \zeta$. For any $B\in \zeta, B\subseteq D$. If $D\in P$, then D would be an upper bound of ζ as $\forall B\in \zeta\ [B\subseteq D]$. So We want to show $D\in P$. $D\subseteq X$ as $\forall B\in \zeta\ [B\subseteq X]$. As $\zeta\neq\emptyset$, $\exists B\in \zeta$ such that $A\subseteq B\subseteq D$. So $A\subseteq D$. Show D is an antichain. Suppose $x,y\in D, x\neq y$. $\exists B,B'\in \zeta$ with $x\in B,y\in B'$. As ζ is a chain, WLOG $B\subseteq B'$. So $x,y\in B'$. Since B' is an antichain, $x\not< y,y\not< x$. So D is an antichain and $D\in P$.
- 3. By Zorn's, $\exists B \in P$ which is maximal in $\langle P, \subsetneq \rangle$. Now $A \subseteq B, B$ is an antichain. If $\exists D, B \subsetneq D$, then $D \in P$ as $A \subseteq B \subseteq D$, contradicting maximality of B in $\langle P, \subsetneq \rangle$.

E13.19 Show every vector space V has a basis. Let $P=\{B\in \mathcal{P}(V): B \text{ is linearly independent}\}$. Then $\langle P,\subsetneq \rangle$ is a partial order. Take $\zeta\subseteq P$. If $\zeta=\emptyset$, then it is an upper bound. If $\zeta\neq\emptyset$, then take $B=\bigcup \zeta$. Suppose B is not linearly independent. Then there is a non-trivial solution, some $X\in\zeta$ must be linearly dependent, violating $X\in\zeta\in P$. So by Zorn's, there exists a maximal element in $B\in P$. Now show span(B)=V. Suppose otherwise. Then $\exists v\in V\notin span(B)$. Then take $B\cup\{v\}$ which is linearly independent, but this contradicts maximality of B. So span(B)=V, and B is a basis of V.

23/24 Q5 Call $X \subseteq \mathbb{R}$ an S-set if $\forall w, x, y, z \in X \ [w + x = y + z \Longrightarrow \{w, x\} = \{y, z\}].$ Let $\mathcal{P} = \{X \subseteq \mathbb{R} : X \text{ is an S-} set\}.$ 1. $\langle \mathcal{P}, \subseteq \rangle$ is a partial order. 2. Let $\zeta \subseteq \mathcal{P}$ be a chain in $\langle \mathcal{P}, \subsetneq \rangle$. Let $Y = \bigcup \zeta$. $Y \subseteq \mathbb{R}$ as $\forall x \in \zeta [x \subseteq \mathbb{R}]$. Show Y is an S-set. Suppose $w, x, y, z \in Y$. Find $w \in X_1, x \in X_2, y \in X_3, z \in X_4$. As ζ is a chain, WLOG $X_1 \subseteq X_2 \subseteq X_3 \subseteq X_4$. Then $w, x, y, z \in X_4$. As $X_4 \in \mathcal{P}$, it is an S-set. So Y is an S-set and $Y \in \mathcal{P}$. Since $\forall x \in \zeta [x \subseteq Y], Y$ is an upper bound 3. Show there is an uncountable S-set. By Zorn's, let $X \in \mathcal{P}$ be maximal in $\langle \mathcal{P}, \subseteq \rangle$. Assume X is countable. Let $Y = \{\frac{w+x}{2} : w, x \in X\}, Z = \{w+x-y : w, x, y \in X\}. X \cup Y \cup Z \text{ is }$ countable. As \mathbb{R} is uncountable, let $v \in \mathbb{R} \setminus (X \cup Y \cup Z)$. Then $X \cup \{v\}$ is an S-set by case bashing, and $X \cup \{v\} \in \mathcal{P}$, but this contradicts maximality of X. **23/24 Q4 F**(0) = 1, **F**(β) = **F**(α) · β if $\beta = \alpha + 1$,

 $\mathbf{F}(\beta) = \sup \{ \mathbf{F}(\alpha) : \alpha < \beta \}$ if β is a limit ordinal. The extender is

Swap out $\beta = dom(\sigma)$, $\mathbf{F}(\alpha) = \sigma(\bigcup dom(\sigma))$ where $\beta = \alpha + 1$,

 $\sigma(||dom(\sigma)|) \cdot dom(\sigma)$

 $| | | ran(\sigma) |$

 $\mathbf{E}(\sigma) =$

 $sup... = || ran(\sigma)|$

if $dom(\sigma) = 0$

otherwise

if $dom(\sigma) = S(\beta)$

if $dom(\sigma)$ is a limit ordinal