R CODE FOR WSMA

<u>library(tm)</u>
library(SnowballC)
<u>Create corpus</u>
<pre>corpus = Corpus(VectorSource(Dataset\$description))</pre>
Convert to lower-case
<pre>corpus = tm map(corpus, tolower)</pre>
<pre>corpus = tm map(corpus, removePunctuation)</pre>
Word cloud before removing stopwords
library(wordcloud)
wordcloud(corpus,colors=rainbow(7),max.words=100)
<pre>corpus = tm map(corpus, removeWords, c("the", "and",</pre>
stopwords("english")))
<pre>corpus = tm_map(corpus, stripWhitespace)</pre>
<pre>corpus = tm map(corpus, stemDocument)</pre>
wordcloud(corpus,colors=rainbow(7),max.words=100)
#Document term matrix
<u>frequencies = DocumentTermMatrix(corpus)</u>
<u>frequencies</u>
<pre>sparse = removeSparseTerms(frequencies, 0.995)</pre>
Convert to a data frame
<u>Dataset = as.data.frame(as.matrix(Dataset))</u>
<u>colnames(Dataset) = make.names(colnames(Dataset))</u>
Add dependent variable
<u>Dataset\$deal = Dataset\$deal</u>
#Get no of deals
<u>table(Dataset\$deal)</u>
Build CART model
<u>library(rpart)</u>
<u>library(rpart.plot)</u>
Dataset = rpart(deal ~ ., data=Dataset, method="class")
#CART Diagram
prp(Dataset, extra=2)
Evaluate the performance of the CART model
<pre>predictCART = predict(Dataset, data=Dataset, type="class")</pre>
<u>CART initial <- table(Dataset\$deal, predictCART)</u>
Baseline accuracy

BaseAccuracyCart = sum(diag(CART initial))/sum(CART initial) #Random Forest Model library(randomForest) set.seed(123) DatasetRF = randomForest(deal~., data = Dataset) # Make predictions: predictRF = predict(DatasetRF, data=Dataset) # Evaluate the performance of the Random Forest randomForestInitial <- table(Dataset\$deal, predictRF>= 0.5) # Baseline accuracy BaseAccuracyRF = sum(diag(randomForestInitial))/sum(randomForestInitial) #variable importance as measured by a Random Forest varImpPlot(DatabaseRF,main='Variable Importance Plot: Shark Tank',type=2) # Logistic Regression model set.seed(123) Datasetlogistic = $glm(deal^{\sim})$, data = Dataset) # Make predictions: predictLogistic = predict(Dataset, data=Dataset) # Evaluate the performance of the Random Forest LogisticInitial <- table(Dataset\$deal, predictLogistic> 0.5) # Baseline accuracy BaseAccuracyLogistic = sum(diag(LogisticInitial))/sum(LogisticInitial) # Add ratio variable into Dataset Dataset\$ratio = Dataset\$askedFor/Dataset\$valuation ########CART Model######### Datasetratio = rpart(deal ~ ., data=Dataset, method="class") #CART Diagram prp(Datasetratio, extra=2) # Evaluate the performance of the CART model predictCARTratio = predict(DatasetRatio, data=Dataset, type="class") CART ratio <- table(Dataset\$deal, predictCARTratio) # Baseline accuracy BaseAccuracyRatio = sum(diag(CART ratio))/sum(CART ratio) ########Random Forrest############ #Random Forrest Model DatasetRFRatio = randomForest(deal ~ ., data=Dataset) #Make predictions: predictRFRatio = prediDatasetRFRatio, data=Dataset) # Evaluate the performance of the Random Forest

RandomForestRatio <- table(Dataset\$deal, predictRFRatio>= 0.5)

Baseline accuracy

BaseAccuracyRFRatio =

sum(diag(RandomForestRatio))/sum(RandomForestRatio)

#variable importance as measured by a Random Forest

varImpPlotDatasetRFRatio,main='Variable Importance Plot: Shark Tank with

Ratio',type=2)

########Logistic Regression#########

DatasetRatio = $glm(deal^{\sim}, data = Dataset)$

Make predictions:

predictLogisticRatio = predict(DatasetRatio, data=Dataset)

Evaluate the performance of the Random Forest

LogisticRatio <- table(Dataset\$deal, predictLogisticRatio>= 0.5)

Baseline accuracy

BaseAccuracyLogisticRatio = sum(diag(LogisticRatio))/sum(LogisticRatio)