

11B Analysis with S455 Setup

Supported by BMBF 05P15WOFNA and 05P19WOFN1.

The results presented here are based on the experiment s444/s473, which was performed at the beam line/infrastructure Cave C at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany) in the frame of FAIR Phase-0.

Tobias Jenegger

R3B WG Meeting 11. Jan. 2021

Setup and Detectors

Particle Identification

12C(p,2p)11B reaction

Further Methods of Identification

TUM Members:

Roman Gernhäuser, Lukas Ponnath, Philipp Klenze, Tobias Jenegger

The S455 Setup (February 2020)

Particle Identification

$$B\rho = \frac{\beta \gamma M}{q}$$

Time of Flight Measurement: Start to TOFW

Flight-path Reconstruction: Tracking Detectors (MWPC1, 2 and 3)

Charge Measurement : TWIM Music

Flightpath Reconstruction

Radius Reconstruction:

$$R = \frac{L_{eff}}{2\sin\left(\frac{\theta_{in} + \theta_{out}}{2}\right)}$$

Known:

- position and inflight angle (θ_{in}) before GLAD
- position after GLAD (MWPC3)

compute θ_{out} iteratively:

Charge versus A/q

12C(p,2p)11B reaction

Gamma Spectrum of 11B

- Single events can have
- All gamma hits are filled into the histogramm (not just the hit with highest energy)

3

200

100

Energy E [MeV]

5.0 MeV (5/2-) p-hole state

10

12C(p,2p)11B Analysis:

• Beam energy: 400 AMeV

• Beamtype: 12C

· Beam Time: 3 hours

Target: CH2 (12.29mm)

Tracking Detectors: MWPC 1,2,3

ToF measurement: START to ToFW

• Charge measurement: TWIM Music

Number of entries

• Event selection criteria CALIFA:

 \rightarrow two hits with E_{hit} > 30 MeV

¹¹B level scheme:

CALIFA Gamma Energy Spectrum

Polar Angular Distribution of protons for 12C(p,2p)11B

Theta1 vs Theta2 in CALIFA

Arzimuthal Distribution of protons for 12C(p,2p)11B

Momentum Distribution 2p & 11B

Long. mom. p1p2 vs long. mom. 11B

expected: barrier line

Smearing ??

Methods for Investigation:

- → Simulation
- → Boosting to the 12C frame
- → CALIFA shifting / geometric validation
- → Background analysis

Simulation of the 12C(p,2p)11B reaction

Long. Mom p1p2 vs long. Mom. 11B

Data:

Simulation of Polar Angular Distribution

Polar and Arzimuthal Cuts

Long. mom. p1p2 vs long. mom. 11B

Polar cut: ∢ (p1+p2) < 84°

Arzimuthal cut: 180° +- 30° angular difference

Boosting to 12C Frame

cos(gamma) in the z-x plane for 11B and p_i in 12C rest frame

 $p_{12C} + p_{tr} = p_1 + p_2 + p_{11B}$ $p_{12C} = p_i + p_{11B}$

$$p_i = p_1 + p_2 - p_{tr}$$

green: using the arzimuthal angle of the crystal center

blue: sweeping +- 2.5° around the crystal center

→ sweep should also be done with polar angle

Using this info for momentum distribution plots...

cos(gamma) > -0.6 & polar/arzimuthal cuts:

cos(gamma) < -0.6 & polar/arzimuthal cuts:

Can this be improved??

CALIFA shifting

As consistency check For this experiment CALIFA shift of 2.4 cm from nominal position toward SIS (see geometry files)

Does it change the pattern of the momentum distribution plots?

Of course not!

Background analysis

Background: 5.4 mm carbon target:

CH2 target (12.29 mm)

Summary & Outlook

- → Particle Identification works out
- → Gamma spectrum and angular distribution plots look reasonable
- → Further investigations for momenta distributions of the outgoing particles needed
- → Expand analysis towards 10B isotope

Thank you!

CALIFA @ Technical University of Munich (TUM)

Roman Gernhäuser, Lukas Ponnath, Philipp Klenze, Tobias Jenegger

Backup

