计算机组成原理 试题 参考答案

一、填空题 (每空 2 分, 共 30 分)

题号	空【1】答案	空【2】答案
1	指令系统	/
2	集中式	分布式
3	指令	数据处理
4	微程序级	操作系统级
5	指令控制	时间控制
6	反码表示法	对阶
7	可换	可移动
8	空间	时间

二、选择题 (每题 2 分, 共 20 分)

题号	答案								
1	В	2	D	3	A	4	В	5	A
6	С	7	C	8	A	9	С	10	В

三、综合题(共50分)

1、解:(6分)

Ι	X	有效地址 EA 算法	说明	寻址方式名称
0	00	EA=D		直接寻址(1分)
0	01	$EA=(PC)\pm D$	PC 为程序计数器	相对寻址(1分)
0	10	$EA=(R2)\pm D$	R2 为变址寄存器	变址寻址(1分)
0	11	$EA=(R1) \pm D$	R1 为基址寄存器	基址寻址(1分)
1	00	EA = (D)		间接寻址(1分)
1	11	EA= (R3)		寄存器间接寻址(1分)

2、解: (6分)

桥起着重要的作用,它连接两条总线,使彼此间相互通信。(2分)

桥又是一个总线转换部件,可以把一条总线的地址空间映射到另一条总线的地址空间 上,从而使系统中任意一个总线主设备都能看到同样的一份地址表。(2分)

桥可以实现总线间的猝发式传送,可使所有的存取都按 CPU 的需要出现在总线上。由此可见,以桥连接实现的 PCI 总线结构具有很好的扩充性和兼容性,允许多条总线并行工作。(2分)

3、解: (6分)

只有设备 A、D、G 时的中断处理过程及各段时间示意图如图 1 所示。

图 1 中断处理过程及各段时间示意图

4、解: (12分)

非流水线处理器、流水线处理器的时空图如图 2、图 3 所示。(各 5 分)

如上两图所示,执行相同的指令,在8个单位时间内,流水计算机完成5条指令,而 非流水计算机只完成2条,显然,流水计算机比非流水计算机有更高的吞吐量。(2分)

5、解: (10分)

(1)(6分)

由于地址码 26 位,字长 64 位,主存的最大容量为 $2^{26} \times 64$ 位= $64M \times 64$ 位。现每个模块的存储容量为 $16M \times 64$ 位,故需 4 块 (64/16)。(2 分)

每个模块条的存储容量为 $16M \times 64$ 位,使用 $4M \times 8$ 位的 DRAM 芯片拼成,共需要 $32 \land DRAM$ 芯片。 [(16/4) \times (64/8)]($2 \oiint$)

主存共需 4×32 =128 个 DRAM 芯片。(2分)

(2)(4分)

cache 的命中率

$$h=Nc/(Nc+Nm)=3900/(3900+100)=0.975$$

r = tm/tc = 200/50 = 4

cache 主存系统效率 e 为:

$$e=1/[r+(1-r)h]\times 100\%=1/[4+(1-4)\times 0.975]\approx 93\%$$
(2 分)
平均访问时间 Ta 为

$$Ta = Tc/e = 50 \text{ns}/0.93 = 53.8 \text{ns}$$
 (2分)

6、解: (10分)

(1) 用原码阵列乘法器: $[x]_{\bar{p}}=0$ 11011 (1分), $[y]_{\bar{p}}=1$ 11111 (1分) 乘积符号位为: 1,|x|=11011,|y|=11111

1	1	0 1	0	0	0	1	0	1	(2分)
	1	1 0	1	1					
		1 1	0	1	1				
		1	1	0	1	1			
			1	1	0	1	1		
				1	1	0	1	1	
			X)	1	1	1	1	1	
				1	1	0	1	1	

 $[x \times y]_{\bar{g}} = 1 \ 1101000101 \ (1 分)$

用补码阵列乘法器: $[x]_{*}=0$ 11011 (1 分), $[y]_{*}=1$ 00001 (1 分) 乘积符号位为: 1,|x|=1101 |y|=1111

					1	1	0	1	1	
				X)	1	1	1	1	1	
					1	1	0	1	1	
				1	1	0	1	1		
			1	1	0	1	1			
		1	1	0	1	1				
	1	1	0	1	1					
1	1	0	1	0	0	0	1	0	1	(2分)

 $[x \times y]_{*} = 1\ 0010111011$ (1分)