Roger Access Control System

Instrukcja instalacji terminali MCT86M-IO-CH-HR

Oprogramowanie firmowe: 1.1.30.266 i wyższe

Wersia dokumentu: Rev.D

minimum informacji Ninieiszv dokument zawiera wymaganych skonfigurowania, podłączenia i zamontowania urządzenia. Pełny funkcjonalności oraz parametrów konfiguracyjnych danego urządzenia jest dostępny w jego instrukcji obsługi dostępnej na stronie www.roger.pl

WSTEP

Czytnik przeznaczony jest do pracy z kontrolerem dostępu serii MC16 (system RACS 5) i znajduje swoje zastosowanie przede wszystkim w systemach automatyki hotelowej. Fabrycznie nowy czytnik posiada adres ID=100 a jego pozostałe nastawy są skonfigurowane do wartości domyślnych.

KONFIGUROWANIE URZADZENIA

Czytnik oferuje wiele opcji programowych, które mogą dopasowywać jego działanie do indywidualnych warunków instalacji. W szczególności, programowaniu podlega jego adres. Konfigurowanie czytnika może być wykonane za pomocą programu zarządzającego VISO v2 lub programu narzędziowego RogerVDM.

Uwaga: Zdalne konfigurowanie urządzenia z programu VISO v2 możliwe jest wyłącznie wtedy, gdy założona jest zworka na styki MEM (rys. 4). Usunięcie zworki ze styków MEM blokuje możliwość zdalnej zmiany nastaw czytnika, w tym jego adresu. W fabrycznie nowym urządzeniu styki MEM są zwarte.

KONFIGURACJA Z PROGRAMU VISO V2

W systemie RACS 5 v2 czytnik może zostać zainstalowany w miejscu docelowym bez konieczności jego wcześniejszej konfiguracji. Zgodnie z notą aplikacyjną AN006 zarówno ustawienie jego adresu, jak i skonfigurowanie innych jego opcji może być wykonane za pomocą programu zarządzającego systemem kontroli dostępu VISO v2 bez dostępu do styków serwisowych (rys. 4) czytnika.

KONFIGURACJA Z POZIOMU ROGERVDM

Rys. 1 Podłączenie urządzenia do interfejsu w celu konfiguracji

Procedura programowania z poziomu programu RogerVDM:

- Podłącz urządzenie do interfejsu RUD-1 zgodnie z rys. 1, a interfejs RUD-1 do portu USB komputera.
- Zdejmij zworkę ze styków MEM (rys. 4) jeżeli jest założona.
- Wykonaj restart urządzenia (wyłącz/włącz zasilanie lub zewrzyj na chwilę styki RST) a pomarańczowy LED SYSTEM zacznie pulsować i w ciągu 5 sekund od restartu załóż zworkę na styki MEM.
- Uruchom program RogerVDM i wskaż urządzenie *MCT*, wersję firmware, kanał komunikacyjny *RS485* oraz port szeregowy pod którym zainstalował się interfejs komunikacyjny RUD-1.
- Kliknij Połącz, program nawiąże połączenie z urządzeniem i automatycznie przejdzie do zakładki Konfiguracja.
- Ustaw odpowiedni adres RS485 w zakresie 100-115 oraz stosownie do indywidualnych wymagań pozostałe nastawy konfiguracyjne.
- Kliknij przycisk Wyślij do urządzenia a program prześle nowe ustawienia do urządzenia.
- Opcjonalnie zapisz ustawienia konfiguracyjne do pliku na dysku (polecenie Zapisz do pliku...).
- Odłącz urządzenie od interfejsu RUD-1 i pozostaw zworkę na stykach MEM by umożliwić późniejszą zdalną konfigurację z programu VISO v2 lub usuń zworkę z kontaktów MEM, jeśli urządzenie ma być zablokowane przed zdalnym programowaniem

Uwaga: Nie zbliżaj karty do czytnika podczas współpracy z programem RogerVDM.

MANUALNE USTAWIENIE ADRESU

Adres urządzenia może być ustawiony ręcznie z zachowaniem dotychczasowych nastaw konfiguracyjnych

Procedura manualnego ustawienia adresu:

- Usuń wszystkie połączenia z linii A i B.
- Zdejmij zworkę ze styków MEM (rys. 4) jeżeli jest założona.
- Wykonaj restart urządzenia (wyłącz/włącz zasilanie lub zewrzyj na chwilę styki RST) a pomarańczowy LED SYSTEM zacznie pulsować i w ciągu 5
- sekund od restartu załóż zworkę na styki MEM. Wprowadź trzy cyfry określające adres RS485 w przedziale 100-115 poprzez wyprowadz uży syry onesiające adies no-os w pieceżnie 100-110 popiece odczyt dowolnej karty zbliżeniowej standardu MIFARE.
 Pozostaw zworkę na stykach MEM by umożliwić późniejszą zdalną
- konfigurację z programu VISO v2 lub usuń zworkę z kontaktów MEM, jeśli urządzenie ma być zablokowane przed zdalnym programowaniem.
- Wykonaj restart urządzenia.

W przypadku terminali bez klawiatury możliwe jest skonfigurowanie adresu metodą wielokrotnego odczytu karty. W metodzie tej w celu wprowadzenia cyfry N należy N-krotnie odczytać dowolną kartę zbliżeniową standardu MIFARÉ a następnie odczekać do momentu pojawienia się podwójnego bip-u i po tym sygnale zaprogramować kolejną cyfrę adresu. Emulację cyfry 0 wykonuje się przez 10-krotny odczyt karty.

Programowanie adresu ID=101 metodą wielokrotnego odczytu karty zbliżeniowej:

- Odczytaj 1-krotnie kartę i zaczekaj na podwójny bip.
- Odczytaj 10-krotnie kartę i zaczekaj na podwójny bip.
- Odczytaj 1-krotnie kartę i zaczekaj na podwójny bip.
- Odczekaj aż czytnik się zrestartuje przyjmując nowy adres.

RESET PAMIĘCI

Reset pamięci kasuje wszystkie dotychczasowe nastawy konfiguracyjne i przywraca ustawienia fabryczne urządzenia w tym adres ID=100.

- Usuń wszystkie połaczenia z linii A i B.
- Zdejmij zworkę ze styków MEM (rys. 4) jeżeli jest założona.
- Wykonaj restart urządzenia (wyłącz/włącz zasilanie lub zewrzyj na chwilę styki RŚT) a pomarańczowy LÉD SYSTEM zacznie pulsować i w ciągu 5 sekund od restartu załóż zworkę na styki MEM.
- Odczytaj 11-krotnie dowolną kartę zbliżeniową standardu MIFARE.
- Odczekaj aż urządzenie zakończy procedurę długim sygnałem dźwiękowym. Pozostaw zworkę na stykach MEM by umożliwić późniejszą zdalną konfigurację z programu VISO v2 lub usuń zworkę z kontaktów MEM, jeśli urządzenie ma być zablokowane przed zdalnym programowaniem.
- Wykonaj restart urządzenia.

ZMIANA OPROGRAMOWANIA FIRMOWEGO

Oprogramowanie firmowe (firmware) urządzenia może być zmieniane na nowsze lub starsze. Wgranie oprogramowania odbywa się za pośrednictwem interfejsu RUD-1 i programu RogerVDM. Na stronie producenta urządzenia www.roger.pl. publikowane są pliki oprogramowania.

Procedura zmiany oprogramowania:

- Podłącz urządzenie do interfejsu RUD-1 zgodnie z rys. 2, a interfejs RUD-1 do portu USB komputera
- Załóż zworkę na styki FDM (rys. 4).
- Wykonaj restart urządzenia (wyłącz/włącz zasilanie lub zewrzyj na chwilę stýki RST).
- Uruchom program RogerVDM i w menu górnym wybierz Narzędzia, a następnie polecenie Aktualizuj oprogramowanie.
- W nowo otwartym oknie wskaż typ urządzenia, port komunikacyjny pod którym zainstalował się RUD-1 oraz ścieżkę dostępu do głównego pliku firmware (*.hex) i dodatkowego pliku firmware (*.cyacd). Wciśnij przycisk *Aktualizuj* by rozpocząć wgrywanie firmware do urządzenia.
- W dolnej części okna widoczny będzie pasek postępu.
- Gdy aktualizacja zostanie ukończona zdejmij zworkę ze styków FDM i wykonaj restart urządzenia.

Rys. 2 Podłączenie urządzenia do interfejsu w celu aktualizacji oprogramowania

DODATKI

Rys. 3 Sposób otwarcia obudowy

Rys. 4 Lokalizacja styków serwisowych

Tabela 1. Opis zacisków		
Nazwa	Opis	
+12V	Zasilanie 12VDC	
GND	Potencjał odniesienia (masa)	
Α	Magistrala RS485, linia A	
В	Magistrala RS485, linia B	
COM	Zacisk wspólny przekaźnika REL	
NC	Zacisk rozwierany przekaźnika REL	
NO	Zacisk zwierany przekaźnika REL	
IN1	Linia wejściowa IN1	
IN2	Linia wejściowa IN2	
IN3	Linia wejściowa IN3	
OUT1	Linia wyjściowa OUT1	
OUT2	Linia wyjściowa OUT2	

Tabela 2. Dane techniczne			
Napięcie zasilania	Nominalne 12VDC, dopuszczalne 10-15VDC		
Pobór prądu (średni)	~60 mA		
Wejścia	Trzy wejścia parametryczne (IN1IN3) elektrycznie połączone wewnętrznie z +12V przez rezystor 5,6 kΩ. Dla linii typu NO i NC próg wyzwolenia na poziomie ok. 3,5V		
Wyjścia przekaźnikowe	Jedno wyjście przekaźnikowe (REL1) z jednym stykiem NO/NC, obciążalność 30V/1A DC/AC		
Wyjścia tranzystorowe	Dwa wyjścia tranzystorowe (IO1, IO2) typu otwarty kolektor, obciążalność 15V/150mA DC		
Ochrona antysabotażowa (TAMPER)	Otwarcie obudowy raportowane metodą programową do kontrolera dostępu		
Karty	13.56MHz MIFARE Ultralight, Classic, DESFire (EV1, EV2, EV3) i Plus		
Zasięg odczytu	Do 7 cm dla kart MIFARE Ultralight, Classic Do 4 cm dla kart MIFARE DESFire (EV1, EV2, EV3), Plus		
Odległości	Do 1200 m długości magistrali RS485 pomiędzy kontrolerem a terminalem		
Stopień ochrony IP	IP30		
Klasa środowiskowa	Klasa II, warunki wewnętrzne, temperatura		

(wg EN 50133-1)	otoczenia: -10°C- +50°C, wilgotność względna: 10 do 95% (bez kondensacji)
Wymiary W x S x G	155 x 85 x 22 mm
Waga	~180g
Certyfikaty	CE, RoHS

Rys. 5 Podłączenie terminali i ekspanderów do kontrolera serii MC16

Rys. 6 Typowa kontrola zasilania 230VAC przez terminal z kieszenią na kartę

Symbol ten umieszczony na produkcie lub opakowaniu oznacza, że tego produktu nie należy wyrzucać razem z innymi odpadami gdyż może to spowodować negatywne skutki dla środowiska i zdrowia ludzi. Użytkownik jest odpowiedzialny za dostarczenie zużytego sprzętu do wyznaczonego punktu gromadzenia zużytych urządzeń elektrycznych i elektronicznych. Szczegółowe informacje na temat recyklingu można uzyskać u odpowiednich władz lokalnych, w przedsiębiorstwie zajmującym się usuwaniem odpadów lub w miejscu zakupu produktu. Gromadzenie osobno i recykling tego typu odpadów przyczynia się do ochrony zasobów naturalnych i jest bezpieczny dla zdrowia i środowiska naturalnego. Masa sprzętu podana jest w instrukcji.

Kontakt: Roger Sp. z o. o. sp. k. 82-400 Sztum

82-400 Sztum Gościszewo 59 Tel.: +48 55 272 0132 Faks: +48 55 272 0133

Pomoc tech.: +48 55 267 0126 Pomoc tech. (GSM): +48 664 294 087 E-mail: pomoc.techniczny@roger.pl Web: www.roger.pl