Functional Analysis - Spring 2024

Paul Carmody Assignment #6– May 2, 2024

- p. 224 #4, 7, 8, 9,
- 4. Let p be defined on a vector space X and satisfy (1) and (2). Show that for any given $x_0 \in X$ there is a linear functional \tilde{f} on X such that $\tilde{f}(x_0) = p(x_0)$ and $|\tilde{f}(x)| \leq p(x)$ for all $x \in X$.

Let $f \in X'$ and $f(x_0) = p(x_0)$. Clearly, f is defined on the subspace spanned by x_0 , that is, f is linear and $f(\alpha x_0) = \alpha f(x_0)$. The Hahn-Banach Theorem says that there exists an extension of f, namely, $\tilde{f} \in X'$ such that $|\tilde{f}(x)| \leq p(x)$ for all $x \in X$.

7. Give another proof of Theorem 4.3-3 in the case of a Hilbert space.

Theorem 4.3-3a: (Bounded linear functionals, Hilbert). Let X be a Hibert space and let $x_0 \neq 0$ be any element in X. Then there exists a bounded linear functional \tilde{f} on X such that

$$\left\| \tilde{f} \right\| = 1, \qquad \qquad \tilde{f}(x_0) = \|x_0\|$$

Proof: Let $x_0 \in X$, then Z is the subspace spanned by x_0 . Any Cauchy sequence in Z will converge because that same sequence is in X which is complete. Hence, Z is also complete. We know that, for any $f_g \in Z'$ there exists a $g \in Z$ such that $f_g(x) = \langle x, g \rangle$ and $||f_g|| = 1$. By Hahn-Bannach, there exists an extension $\tilde{f} \in X'$ such that $||\tilde{f}|| = 1$ and $|f(x_0)| = ||\tilde{f}|| ||x_0|| = ||x||$.

- 8. Let X be a normed space and X' its dual space. If $X \neq \{0\}$, show that X' cannot be $\{0\}$. Let f(x) = ||x||, this is linear by definition. Therefore, $f \in X'$. We can see that when $x \neq 0$ that $f(x) \neq 0$. Therefore f is not the zero function and $X \neq \{0\}$.
- 9. Show that for a separable normed space X, theorem 4.3-2 can be proved directly, without the use of Zorn's Lemma (which was used indirectly, namely, in the proof of Theorem 4.2-1).

- p. 255 #10, 11, 13, 14,
- 10. (Space c-0) Let $y=(\eta_j), \eta_j \in \mathbb{C}$, be such that $\sum \xi_j \eta_j$ converges for every $x=(\xi_j) \in c_0$, where $c_0 \in l^{\infty}$ is the subspace of all complex sequences converge to zero. Show that $\sum |\eta_j| < \infty$. (Use 4.7-3)
- 11. Let X be a Banach space, Y a normed space and $T_n \in B(X, YT)$ such that $(T_n x)$ is Cauchy in Y for every $x \in X$. Show that $(\|T_n\|)$ is bounded.
- 13. If (x_n) in a Banach space X is such that $(f(x_n))$ is bounded for all $f \in X'$, show that $(\|x_n\|)$ is bounded.
- 14. if X and Y are Banach spaces and $T_n \in B(X,Y), n=1,2,\cdots$, show that equivalent statements are:
 - (a) $(||T_n||)$ is bounded.
 - (b) $(||T_n x||)$ is bounded for all $x \in X$.
 - (c) $(|g(T_n x)|)$ is bounded for all $x \in X$ and all $g \in Y'$.