ANN vs CNN: "fashion-mnist" Dataset

Input

Fashion-MNIST is a dataset of Zalando's article images - consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image (taken from keras library).

Models

ANN:

Loss function – Categorical Cross Entropy

Optimizer - Stochastic Gradient Descent

#Epoch - 200

Structure:

Layer (type)	Output Shape	Param #
flatten_6 (Flatten)	(None, 784)	0
dense_18 (Dense)	(None, 300)	235500
dense_19 (Dense)	(None, 100)	30100
dense_20 (Dense)	(None, 10)	1010

Total params: 266,610 Trainable params: 266,610 Non-trainable params: 0

CNN:

Loss function - Categorical Cross Entropy

Optimizer - Stochastic Gradient Descent

#Epoch - 70

Structure:

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	26, 26, 32)	320
max_pooling2d_1 (MaxPooling2	(None,	13, 13, 32)	0
flatten_1 (Flatten)	(None,	5408)	0
dense_3 (Dense)	(None,	300)	1622700
dense_4 (Dense)	(None,	100)	30100
dense_5 (Dense)	(None,	10)	1010

Total params: 1,654,130 Trainable params: 1,654,130 Non-trainable params: 0 28x28 greyscale picture

Input layer (28x28 flatten)

Dense layer (300 units)

ReLu Activation

Dense layer (100 units)

Predicted Category

Training Phase Visualization:

Results

After ~30minutes of training (200 epochs for ANN model and 70 epochs for CNN model) and based on 10,000 testing dataset the results are:

ANN Model – 85.2% accuracy

CNN Model - 91.2% accuracy

<u>Code</u>

The implementation code is available in the Git repo (TensorFlow and NumPy are required).