

FLEXICOKING Process Description

Gasifier

- 900 950 °C, 7 meter high fluidized bed, 16 meter diameter
- Coke gasification / combustion

- Gasifies approx. 85-90% of reactor coke production
 - Low Joule Gas contains 50% nitrogen and H2, CO, CO2, H2S and NH3
 - Temperature control with steam
- Coke circulation for heat transfer and prevents too small coke particles.

Hotspots

FLEXICOKING Process Description

Coke Transfer lines

Guess how many?

- · Rx-Hx3x
- Hx-Gx 2x
- Hx-Qx 1x

How can you transfer coke against the pressure?

Transfer line terminology

- Pressure balance
 - static pressure build-up in standpipe provides driving force for coke transport
 - flow control by slide valve or riser aerations

Transfer line terminology

Pressure balance

- static pressure build-up in standpipe provides driving force for coke transport
- flow control by slide valve or riser aerations

Limitations to aeration

- under-aeration in standpipes results in too low pressure build-up
- too little aeration in risers results in slugging
- too much aeration in standpipes results in too low density and may cause bubbles
- too much aeration in risers causes excessive wear

"Bubbles up" or "bubbles down"

- is determined by velocity differences between gas and particles
- is important for standpipe aeration

Transfer line terminology

Pressure balance

- static pressure build-up in standpipe provides driving force for coke transport
- flow control by slide valve or riser aerations

Limitations to aeration

- under-aeration in standpipes results in too low pressure build-up
- too little aeration in risers results in slugging
- too much aeration in standpipes results in too low density and may cause bubbles
- too much aeration in risers causes excessive wear

"Bubbles up" or "bubbles down"

- is determined by velocity differences between gas and particles
- is important for standpipe aeration

Successes and Disappointments over 17 years

- Significant (33%) capacity creep at low cost
- · Runlength doubled; reliability is high priority
- 6 out of 7 runs completed as scheduled
- · Air Blower problems 1 year after initial start-up
- Severe fouling in Heater Overhead Exchangers
- Gasifier Hot Spots
- · Heater maintenance challenges

Reliability and thruput history

Run	Ton/hr	Days on oil
	202	591
2	229	608
3	254	570
4	258	684
5	262	1048
6	265	1063
7	269	1195

Reliability and thruput history

Reliability increases effective thruput!

- Good process follow-up and stable operation key to success
- DMC controller installed in 2001
- Some hardware changes essential too:

 spare heat exchangers, material upgrading,
 instrumentation upgrading, design changes
 to reduce turnaround time
- Plan for current run is to increased from 3.5 to 4 years

1988-2003 debottlenecks

- minor Fluid Solids changes
- 2½ new destillation towers
- replaced a number of pumps
- diverted LPG from LPG/coker naphtha hydrofiner

Stretch run length with care:

Unplanned turnaround has high debits

		MEuro
	contractors ask more money for ± same scope	1.5
	contractors need 14 days to mobilize	
	result is additional downtime	4
	turnaround cost spread over shorter run	3.5
	coker down means Pipestill down	**
	jet and diesel to be purchased on spot market	3.5
÷	next run more conservative approach	2.5
	total additional cost of unplanned turnaround	15

Partial reactor bog terminated run 2 prematurely

Air Blower problems 1 year after initial start-up

High bearing temperature reading made entire organization nervous

- Serious problem or not?
- Repair required or do we reach turnaround?
- How to operate the coker and rest of the refinery?
- How to minimize risk and costs?
- 2 day case study chemical + mechanical engineers

FLEXICOKING • Questions?