CLAIMS

We claim:

5

1. Anthraquinone dye compounds having the formulae:

I.
$$R_{1}NH O S$$

$$X - L \xrightarrow{R} Z - Q$$

$$X - L \xrightarrow{R} Z - Q$$

III.

$$\begin{array}{c}
N-N-L-Z \rightarrow M \\
R_1NH & O & S-C & C \\
N & C & R_2
\end{array}$$

$$\begin{array}{c}
N-C & N & C \\
N & C & R_2
\end{array}$$

$$\begin{array}{c}
N-C & N & C \\
N & C & R_2
\end{array}$$

$$\begin{array}{c}
N-C & N & C \\
N & C & R_2
\end{array}$$

IV.
$$(R_{5}S)_{m_{1}} \xrightarrow{O} NH \xrightarrow{R_{3}} X_{1} - L \xrightarrow{}_{m} Z - Q$$

$$(R_{5}S)_{m_{1}} \xrightarrow{O} NH \xrightarrow{R_{3}} X_{1} - L \xrightarrow{}_{m} Z - Q$$

$$V. \qquad \begin{matrix} R_{6}S \\ R_{6}S \end{matrix} \qquad \begin{matrix} O \\ NH \end{matrix} \qquad \begin{matrix} R_{7} \\ R_{4} \\ R_{7} \end{matrix} \qquad \begin{matrix} R_{7} \\ R_{4} \\ R_{7} \end{matrix}$$

VII.
$$R_{9} \text{ NH O } S \longrightarrow X_{2} \text{CH}_{2} \longrightarrow C(R_{8}) = \text{CH}_{2}$$

$$X_{2} \text{CH}_{2} \longrightarrow C(R_{8}) = \text{CH}_{2}$$

VIII.
$$R_{5}S O S \longrightarrow X - L \longrightarrow Z - Q$$

$$S O S - R_{5}$$

$$X - L \longrightarrow Z - Q$$

$$X. \qquad \begin{array}{c} R_5 - S & O & S - L_1 - Z - O \\ \\ Q - Z - L_1 - S & O & S - R_6 \end{array}$$

XI.
$$\begin{array}{c} R \\ R_5 - S \\ O \\ S - R_5 \end{array}$$

$$X_2CH_2 \longrightarrow C(R_\theta) = CH_2$$

XIII.

$$R_5 - S$$
 C
 R_2
 $R_5 - S$
 C
 R_2
 $R_5 - S$
 C
 R_2
 $R_3 - S$
 C
 R_2
 $R_3 - S$
 $R_4 - S$
 $R_5 - S$

XIV.
$$R_{\delta} - S \longrightarrow 0 \quad S - L_{1} - Z - Q$$

$$R_{\delta} - S \longrightarrow 0 \quad S - L_{1} - Z - Q$$

XV.
$$R_5 - S$$
 $R_5 - S$
 $R_5 -$

XVII.

XVIII.

$$R$$

$$X_4CH_2$$

$$C(R_8) = CH_2$$

$$X_4CH_2$$

XIX.

XX.

XXI.
$$\bigcirc S \longrightarrow X_4CH_2 \longrightarrow C(R_8)=CH_2$$

$$X_4CH_2 \longrightarrow C(R_8)=CH_2$$

wherein:

5

10

15

R is selected from hydrogen or 1-3 groups selected from C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy and halogen;

 R_1 is selected from C_1 - C_6 -alkyl, substituted C_1 - C_6 -alkyl, C_3 - C_8 -alkenyl, C_3 - C_8 -cycloalkyl, aryl and - L_1 -Z-Q; R_2 = selected from hydrogen, C_1 - C_6 -alkyl, substituted C_1 - C_6 -alkyl, C_3 - C_8 -cycloalkyl and aryl;

R₃ and R₄ are independently selected from C₁ - C₆-alkyl and bromine; R₅ is selected from C₁ - C₆-alkyl, substituted C₁ - C₆ alkyl, C₃ - C₈-cycloalkyl, aryl, heteroaryl, -L₁-Z-Q,

R₆ is selected from

 R_7 is selected from hydrogen, substituted or unsubstituted C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, halogen, hydroxy, substituted or unsubstituted C_1 - C_6 -alkylthio, sulfamoyl and substituted sulfamoyl;

 R_8 is selected from hydrogen and C_1 - C_6 -alkyl; R_9 is selected from the groups represented by R_1 and -L - Z - Q; R_{10} is selected from hydrogen and halogen;

X is a covalent bond or a divalent linking group selected from -O-, -S-, -SO₂-, -CO₂-, -CON(Y) - and -SO₂N(Y)-, wherein Y is selected from hydrogen, C_1 - C_6 -alkyl, substituted C_1 - C_6 -alkyl, C_3 - C_8 -cycloalkyl, C_3 - C_8 -alkenyl, aryl and -L-Z- Q;

 X_1 is selected from -O-, -S-, -SO₂- and -SO₂N(Y)-;

 X_2 is selected from -CO₂ - and -SO₂N(Y₁), wherein Y₁ is a group selected from hydrogen, C₁-C₆-alkyl, substituted C₁-C₆-alkyl, C₃-C₈-alkenyl, C₃-C₈-cycloalkyl, aryl, heteroaryl and -CH₂-p-C₆H₄-C(R₈)=CH₂;

 X_3 is selected from $-CO_2$ -, $-SO_2N(Y)$ -;

5

10

15

20

25

 X_4 is selected from -CO₂-, -O- and -SO₂N(Y₁)-;

L is a divalent linking group selected from C_1 - C_8 -alkylene, C_1 - C_6 -alkylene-arylene, arylene, C_1 - C_6 -alkylene-arylene - C_1 - C_6 -alkylene, C_3 - C_8 -cycloalkylene, C_1 - C_6 -alkylene - C_3 - C_8 -cycloalkylene - C_1 - C_6 -alkylene, C_1 - C_6 -alkylene - Z_1 -arylene - Z_1 - C_1 - C_6 -alkylene and C_2 - C_6 -alkylene- $[-Z_1$ - C_2 - C_6 -alkylene- $]_n$ - wherein Z_1 is selected from -O-, -S- and -SO₂- and n is 1-3;

 L_1 is a divalent linking group selected from C_2 - C_6 -alkylene, C_1 - C_6 -alkylene- C_3 - C_8 -cycloalkylene- C_1 - C_6 -alkylene, C_1 - C_6 -alkylene-arylene, C_3 - C_8 -cycloalkylene, and C_2 - C_6 -alkylene- $[-Z_1$ - C_2 - C_6 -alkylene- $]_n$ -;

 L_2 is selected from C_2 - C_6 -alkylene, C_1 - C_6 -alkylene-arylene- C_1 - C_6 alkylene and C_1 - C_6 -alkylene- C_3 - C_8 -cycloalkylene- C_1 - C_6 -alkylene;

Z is a divalent group selected from -O-, -S-, -NH-, -N(C_1 - C_6 -alkyl)-, -N(C_3 - C_8 alkenyl)-, -N(C_3 - C_8 cycloalkyl)-, -N(SO_2C_1 - C_6 -alkyl) and -N(SO_2 aryl)-, provided that when Q is a photopolymerizable optionally substituted maleimide radical, Z represents a covalent bond; Q is an ethylenically-unsaturated, photosensitive polymerizable group; and

m and m_1 each is 0 or 1.

2. Anthraquinone compounds according to Claim 1 wherein the ethylenically-unsaturated, photosensitive copolymerizable groups represented by Q are selected from the following organic radicals:

Ia
$$-COC(R_{11})=CH-R_{12}$$

IIa
$$-CONH-COC(R_{11})=CH-R_{12}$$

IVa
$$\begin{array}{c} R_{13} \\ \text{-CO-C-NHCOC(R}_{11}) \text{=CH-R}_{12} \\ R_{14} \end{array}$$

VIIa
$$-CH_2 - C(R_{11}) = CH_2$$

VIIIa -CONH
$$C$$
 R_{13} $C(R_{11})=CH_2$ R_{14}

IXa
$$-SO_2C(R_{11})=CH_2$$

wherein:

5

10

XIIIa

R₁₁ is selected from hydrogen and C₁-C₆-alkyl;

 R_{12} is selected from hydrogen; C_1 - C_6 -alkyl; phenyl and phenyl substituted with one or more groups selected from C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, -N(C_1 - C_6 -alkyl), nitro, cyano, C_1 - C_6 -alkoxycarbonyl, C_1 - C_6 -alkanoyloxy and halogen; 1- and 2-naphthyl which may be substituted with C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy; 2- and 3-thienyl which may be substituted with C_1 - C_6 -alkyl or halogen; 2- or 3-furyl which may be substituted with C_1 - C_6 -alkyl;

 R_{13} and R_{14} are selected from hydrogen, C_1 - C_6 -alkyl, substituted C_1 - C_6 -alkyl, aryl or may be combined to represent a -[-CH₂-]₃₋₅- radical;

 R_{15} is selected from hydrogen, C_1 - C_6 -alkyl, substituted C_1 - C_6 -alkyl, C_3 - C_8 -alkenyl, C_3 - C_8 -cycloalkyl and aryl;

 R_{16} is selected from hydrogen, C_1 - C_6 -alkyl and aryl.

15 3. Anthraquinone compounds according to Claim 2 having the formula:

wherein Z is -O-.

wherein Z is -O-.

5

5. Anthraquinone compounds according to Claim 2 having the formula:

III.
$$\begin{array}{c} N-N-\left\{L-Z\right\}_{m}Q \\ N-N-\left\{L-Z\right\}_{m}Q \\ N-C-N-\left\{L-Z\right\}_{m}Q \end{array}$$

wherein Z is -O-.

10 6. Anthraquinone compounds according to Claim 2 having the formula:

IV.
$$(R_{s}S)_{m_{1}} = 0$$

wherein Z is -O-.

$$V. \qquad \begin{matrix} R_6S \\ R_6S \end{matrix} \qquad \begin{matrix} O \\ NH \end{matrix} \qquad \begin{matrix} R_3 \\ R_4 \\ R_3 \\ R_4 \end{matrix} \qquad \begin{matrix} R_7 \\ R_4 \end{matrix}$$

wherein Z is -O-.

5 8. Anthraquinone compounds according to Claim 2 having the formula:

wherein Z is -O-.

9. Anthraquinone compounds according to Claim 2 having the formula:

VIII.
$$R_{5}S O S \longrightarrow X - L \longrightarrow Z - Q$$

$$S O S - R_{5}$$

$$X - L \longrightarrow Z - Q$$

wherein Z is -O-.

wherein Z is -O-.

5 11. Anthraquinone compounds according to Claim 2 having the formula:

$$X.$$
 $R_5 - S \quad O \quad S - L_1 - Z - Q$
 $Q - Z - L_1 - S \quad O \quad S - R_5$

wherein Z is -O-.

12. Anthraquinone compounds according to Claim 2 having the formula:

XII.

$$R_{s}S \longrightarrow X - L \xrightarrow{m} Z - Q$$

$$R_{s} - S \longrightarrow S \longrightarrow X - L \xrightarrow{m} Z - Q$$

wherein Z is -O-.

XIII.

$$R_{5}-S \longrightarrow O \longrightarrow C \longrightarrow R_{2}$$

$$R_{5}-S \longrightarrow O \longrightarrow C \longrightarrow N \longrightarrow L-Z \longrightarrow C$$

$$N=C \longrightarrow R_{2}$$

wherein Z is -O-.

5 14. Anthraquinone compounds according to Claim 2 having the formula:

XIV.

wherein Z is -O-.

15. Anthraquinone compounds according to Claim 2 having the formula:

XVI.

10

wherein Z is -O-.

16. Anthraquinone compounds according to Claim 2 having the formula:

XVII.

wherein Z is -O-.

wherein Z is -O-.

5 18. Anthraquinone compounds according to Claim 2 having the formula:

XX.
$$\begin{array}{c} N-N-\left[L-Z\right]_{m}Q \\ N-C & N-C \\ N-C & N-C \end{array}$$

$$\begin{array}{c} N-N-\left[L-Z\right]_{m}Q \\ N-C & N-C \end{array}$$

wherein Z is -O-.

- 19. Anthraquinone compounds according to Claim 2 wherein Q is organic10 radical Ia.
 - 20. Anthraquinone compounds according to Claim 2 wherein Q is organic radical Ia wherein R_{11} is hydrogen or methyl and R_{12} is hydrogen.
- 15 21. Anthraquinone compounds according to Claim 2 wherein Q is organic radical VIIa.
 - 22. Anthraquinone compounds according to Claim 2 wherein Q is organic radical VIIa wherein R₁₁ is hydrogen.

- 23. Anthraquinone compounds according to Claim 2 wherein Q is organic radical VIIIa.
- Anthraquinone compounds according to Claim 2 wherein Q is organic
 radical VIIIa wherein R₁₁ is hydrogen or methyl and R₁₃ and R₁₄ are methyl.
 - 25. Anthraquinone compounds according to Claim 3 wherein X is -CO₂-, L is -CH₂CH₂-, and m is 1.
- 26. Anthraquinone compounds according to Claim 5 wherein L is -CH₂CH₂-, m is 1, and R₂ is hydrogen.
 - 27. Anthraquinone compounds according to Claim 8 wherein L_1 is $-CH_2C(CH_3)_2CH_2$ and R_5 is aryl.

- 28. Anthraquinone compounds according to Claim 9 wherein X is -CO₂-, L is -CH₂CH₂-, and m is 1.
- 29. Anthraquinone compounds according to Claim 10 wherein L is -CH₂CH₂-,
 R₂ is hydrogen and m is 1.
 - 30. Anthraquinone compounds according to Claim 12 wherein X is -CO₂-, L is -CH₂CH₂-, and m is 1.
- 25 31. Anthraquinone compounds according to Claim 13 wherein L is -CH₂CH₂-, R₂ is hydrogen and m is 1.
 - 32. Anthraquinone compounds according to Claim 15 wherein X_3 is $-CO_2$ -, L is $-CH_2CH_2$ -, and R is hydrogen or bromine.

33. Anthraquinone compounds according to Claim 15 wherein X_3 is $-CO_2$ -, L is propylene, 1,4-cyclohexylenedimethylene or 2,2-dimethyltrimethylene, R is hydrogen, Z is -O-, and Q is an organic radical having the structure $-COC(R_{11})=CH_2$ wherein R_{11} is hydrogen, methyl or ethyl.

5

34. Anthraquinone compounds according to Claim 15 wherein X_3 is $-CO_2$ -, L is propylene, 1,4-cyclohexylenedimethylene or 2,2-dimethyltrimethylene, R is hydrogen, Z is -O-, and Q is an organic radical having structure VIIIa wherein R_{11} , R_{13} and R_{14} each is methyl.

10

- 35. Anthraquinone compounds according to Claim 16 wherein L_2 is $-CH_2C(CH_3)_2CH_2$ -, and R_{10} is hydrogen.
- 36. Anthraquinone compounds according to Claim 17 wherein X₃ is -CO₂-, L is
 15 -CH₂CH₂-, and R is hydrogen.
 - 37. Anthraquinone compounds according to Claim 17 wherein X_3 is $-CO_2$ -, L is propylene, 1,4-cyclohexylenedimethylene or 2,2-dimethyltrimethylene, R is hydrogen, Z is -O-, and Q is an organic radical having the structure
- -COC(R_{11})=CH₂ wherein R_{11} is hydrogen, methyl or ethyl.
 - 38. Anthraquinone compounds according to Claim 17 wherein X_3 is $-CO_2$ -, L is propylene, 1,4-cyclohexylenedimethylene or 2,2-dimethyltrimethylene, R is hydrogen, Z is -O-, and Q is an organic radical having structure VIIIa wherein R_{11} , R_{13} and R_{14} each is methyl.
 - 39. Anthraquinone compounds according to Claim 18 wherein L is -CH₂CH₂-, R₂ is hydrogen, and m is 1.

- 40. Anthraquinone compounds according to Claim 6 wherein X is $-SO_2N(Y)$ -, L is C_2 - C_6 alkylene, R_3 and R_4 are methyl or ethyl, Y is hydrogen, m is 1 and m_1 is 0.
- 5 41. Anthraquinone compounds according to Claim 6 wherein X is $-SO_2N(Y)$ -, L is C_2 - C_6 alkylene, R_3 and R_4 are methyl or ethyl, Y is hydrogen, m is 1 and m_1 is 1.
- 42. Anthraquinone compounds according to Claim 1 having formula VII wherein X₂ is -CO₂- and R and R₈ are hydrogen.
 - 43. Anthraquinone compounds according to Claim 1 having formula XI wherein X_2 is -CO2- and R_1 and R_8 are hydrogen.
- 44. Anthraquinone compounds according to Claim 1 having formula XVII wherein X₄ is -CO2- and R and R₈ are hydrogen.

- 45. Anthraquinone compounds according to Claim 1 having formula XXI wherein X_4 is -CO2- and R and R_8 are hydrogen.
- 46. Anthraquinone compounds according to Claim 1 having formula IV wherein X_1 is -O-, Z is -O-, L is -CH₂CH₂-, R_3 and R_4 are methyl or ethyl, m is 1 and m_1 is 0.
- 47. A coating composition comprising (i) one or more polymerizable vinyl compounds, (ii) one or more of the dye compounds of Claim 1, and (iii) a photoinitiator.
- 48. A coating composition according to Claim 47 comprising (i) one or more polymerizable vinyl compounds, (ii) one or more of the dye compounds of Claim 2

present in a concentration of about 0.05 to 15 weight percent based on the weight of component (i), and (iii) a photoinitiator present in a concentration of about 1 to 15 weight percent based on the weight of the polymerizable vinyl compound(s) present in the coating composition.

5

10

15

20

- 49. A coating composition according to Claim 48 wherein the polymerizable vinyl compounds comprise a solution of a polymeric, polymerizable vinyl compound selected from acrylated and methacrylated polyesters, acrylated and methacrylated polyethers, acrylated and methacrylated epoxy polymers, acrylated or methacrylated urethanes, and mixtures thereof, in a diluent selected from monomeric acrylate and methacrylate esters.
- 50. A polymeric coating composition comprising a polymer of one or more acrylic acid esters, one or more methacrylic acid esters and/or other copolymerizable vinyl compounds, having copolymerized therein one or more of the dye compounds defined in Claim 1.
- 51. A polymeric composition according to Claim 50 comprising a coating of an acrylic polymer of one or more acrylic acid esters, one or more methacrylic acid esters or a mixture thereof having copolymerized therein one or more of the dye compounds defined in Claim 2.
- 52. A polymeric composition according to Claim 50 comprising a coating of an unsaturated polyester containing one or more maleate/fumarate residues; one or more monomers which contain one or more vinyl ether groups, one or more vinyl ester groups, or a combination thereof, and, optionally, one or more acrylic or methacrylic acid esters; or a mixture thereof having copolymerized therein one or more of the dye compounds defined in Claim 2.

53. A polymeric coating according to Claim 51 containing from about 0.05 to 15.0 weight percent of the residue of one or more of the dye compounds of Claim 2 based on the weight of the coating.