MCMC proposals

The Larget-Simon move

Step I:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Larget, B., and D. L. Simon. 1999. Mol. Biol. Evol. 16: 750-759. See also: Holder et al. 2005. Syst. Biol. 54: 961-965.

The Larget-Simon move

Step I:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Step 2:

Shrink or grow selected 3edge segment by a random amount

The Larget-Simon move

Step I:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Step 2:

Shrink or grow selected 3edge segment by a random amount

The Larget-Simon move

Step I:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Step 2:

Shrink or grow selected 3edge segment by a random amount

Step 3:

Choose X or Y randomly, then reposition randomly

Proposed new tree: 3 edge lengths have changed and the topology differs by one NNI rearrangement

The Larget-Simon move

Step 1:

Pick 3 contiguous edges randomly, defining two subtrees, X and Y

Step 2:

Shrink or grow selected 3edge segment by a random amount

Step 3:

Choose X or Y randomly, then reposition randomly

Current tree

log-posterior = -34256

Proposed tree

log-posterior = -32519 (better, so accept)

Marginal split posterior probabilities

Sliding window proposal

propose new values (θ^*) uniformly within a proposal window centered at current value (θ)

Sliding window proposal

If proposed value is out of bounds, reflect it back in bounds

Surprisingly, this is a symmetric proposal, so the Hastings ratio = 1.0

Marginal distributions and credible intervals

Prior distributions

$$p(\theta \mid D) = \frac{p(D \mid \theta) p(\theta)}{p(D)}$$

Gamma(a,b) distribution

*Note: be aware that in many papers the Gamma distribution is defined such that the second parameter is the rate (*inverse* of the scale b used in this slide) rather than the scale! In this case, the mean and variance would be a/b and a/b^2 , respectively.

Lognormal(μ,σ) distribution

Lognormal(μ,σ) distribution

To choose μ and σ to yield a particular mean (m) and variance (v) for a lognormal prior, use these formulas (log is natural logarithm):

$$\sigma^2 = \log\left(1 + \frac{v}{m^2}\right) \qquad \mu = \log(m) - \sigma^2/2$$

Beta(a,b) distribution

Beta(a,b) distributions are appropriate for proportions, which must lie between 0 and 1 (inclusive).

Dirichlet(a,b,c,d) distribution

Flat: a = b = c = d = 1

Informative: a = b = c = d = 100

(every combination equally probable) (frequencies tend to be nearly equal)

Topology: discrete uniform

Edge lengths: Gamma-Dirichlet

Yule (pure birth) prior

Hierarchical models

Non-hierarchical model

All model parameters can be found in the likelihood function

Prior mean 0.1

$$L_{k} = \frac{1}{4} \left(\frac{1}{4} + \frac{3}{4} e^{-4v_{1}/3} \right) \left(\frac{1}{4} + \frac{3}{4} e^{-4v_{2}/3} \right) \left(\frac{1}{4} - \frac{1}{4} e^{-4v_{3}/3} \right) \left(\frac{1}{4} - \frac{1}{4} e^{-4v_{4}/3} \right) \left(\frac{1}{4} + \frac{3}{4} e^{-4v_{5}/3} \right)$$

JC69 likelihood for site k

Hierarchical model

Empirical Bayes

Empirical Bayes approach

Average edge length MLE used as the mean of the prior.

0.07 = (0.12 + 0.02 + 0.07 + 0.04 + 0.10)/5

Prior mean = 0.07

Maximum likelihood estimates (MLEs)

$$L_{k} = \frac{1}{4} \left(\frac{1}{4} + \frac{3}{4} e^{-4v_{1}/3} \right) \left(\frac{1}{4} + \frac{3}{4} e^{-4v_{2}/3} \right) \left(\frac{1}{4} - \frac{1}{4} e^{-4v_{3}/3} \right) \left(\frac{1}{4} - \frac{1}{4} e^{-4v_{4}/3} \right) \left(\frac{1}{4} + \frac{3}{4} e^{-4v_{5}/3} \right)$$

JC69 likelihood for site k

rjMCMC (reversible-jump MCMC)

Examples of rjMCMC analyses

b.
$$\begin{matrix} A \\ C \\ G \\ T \end{matrix} \begin{bmatrix} - & \beta & \beta \kappa & \beta \\ \beta & - & \beta & \beta \kappa \\ \beta \kappa & \beta & - & \beta \\ \beta & \beta \kappa & \beta & - \end{matrix} \end{bmatrix}$$

$$\begin{bmatrix} c\pi_T \beta \\ e\pi_T \beta \\ f\pi_T \beta \\ - \end{bmatrix}$$

$$\begin{bmatrix} A & C & G & T \\ - & \beta & \beta & \beta \\ G & \beta & - & \beta \\ \beta & \beta & - & \beta \\ \beta & \beta & \beta & - \end{bmatrix}$$

HKY85

5 species

4 species

3 species

2 species

3 species

a. Lewis, Holder, & Holsinger. 2005. Systematic Biology 54:241-253.

b. Huelsenbeck, Larget, & Alfaro. 2004. Molecular Biology and Evolution 21:1123-1133.

c. Rannala & Yang. 2013. Genetics 194:245-253.

rjMCMC polytomy model

The probability of accepting the forward proposal must take into account the proposal that exactly reverses it to ensure that at equilbrium the chain visits each model with the appropriate frequency

Bayes' factors

Likelihood surface when K80 true

Likelihood surface when JC69 true

Dirichlet process (DP) prior

all genes share same tree topology

ABC D

ABCD

(ABD) (C)

(AB) (CD)

Suppose we have data for 4 genes: A, B, C, D

Would like a prior that

encourages concordance (i.e.

genes have same tree topology)

but allows discordance

AB C D

ACD B

(AC) (BD)

AC B D

(AD) (BC)

(A) (BCD)

(A) (BC) (D

(AD) (B) (C)

A BD C

A B CD

each gene has a different tree topology

A

B

MOLE 2023 Paul O. Lewis

Dirichlet Process Prior applet
https://plewis.github.io/applets/dpp/

MOLE 2023 Paul O. Lewis