Modular Supervisory Control

Dr Rong Su S1-B1b-59, School of EEE Nanyang Technological University Tel: +65 6790-6042, Email: rsu@ntu.edu.sg

Outline

- Motivation
- Ramadge-Wonham Modular Supervisory Control
- Queiroz-Cury Extension
- Coordinated Modular Supervisory Control
- Example
- Interface-based Approach
- Conclusions

Divide & Conquer

Construct Local Supervisors (by TCT)

- $G = G_1 \times G_2 \times G_3$ $(G = Sync(Sync(G_1, G_2), G_3)$ (8; 24))
- SPEC₁ = Selfloop(R_1 , { a_1,a_3,b_2,b_3 }) (2;10)
- SPEC₂ = Selfloop(R_2 , { a_1,a_2,b_1,b_3 }) (2;10)
- $SUPER_1 = Supcon(G, R_1)$ (12; 28)
- $SUPER_2 = Supcon(G, R_2)$ (12; 28)
- Nonconflict(SUPER₁, SUPER₂) = true
- $R = R_1 \times R_2 (R = Sync(R_1, R_2) (4; 16))$
- SUPER = Supcon(G, R) (18; 32)
- Isomorph(SUPER, Sync(SUPER₁, SUPER₂)) = true

What to Gain?

- Minsuper = Supreduce(G, SUPER, SUPER) (4; 13)
- Minsuper₁ = Supreduce(G, SUPER₁, SUPER₁) (2; 2)
- Minsuper₂ = Supreduce(G, SUPER₂, SUPER₂) (2; 2)

• |A| := the total number of states and transitions of A

$$|SUPER_1| + |SUPER_2| < |SUPER|$$

Motivation of Modular Control

Reduce complexity by allocating control tasks to local supervisors!

Outline

- Motivation
- Ramadge-Wonham Modular Supervisory Control
- Queiroz-Cury Extension
- Coordinated Modular Supervisory Control
- Example
- Interface-based Approach
- Conclusions

Architecture of Modular Supervisory Control

Composition of Local Supervisors (1)

- Recall that S is a *proper supervisor* of G if
 - $L_m(S) \cap L_m(G)$ is controllable with respect to G and Σ_{uc} ,
 - $-L_m(S) \cap L_m(G) = L(S) \cap L(G),$
 - S is nonblocking, i.e. $L_m(S) = L(S)$.
- Let S/G denote the supervision of S over G
 - $L_{\mathbf{m}}(S/G) := L_{\mathbf{m}}(S) \cap L_{\mathbf{m}}(G),$
 - $-L(S/G) := L(S) \cap L(G).$
- Given S_1 and S_2 , let $S_1 \land S_2 := \text{reachable}(S_1 \times S_2)$

Composition of Local Supervisors (2)

- Theorem 1 (Ramadge-Wonham)
 - Given two proper supervisors S_1 and S_2 of G, we have

$$L_{m}((S_{1} \land S_{2})/G) = L_{m}(S_{1}/G) \cap L_{m}(S_{2}/G)$$

$$L((S_{1} \land S_{2})/G) = L(S_{1}/G) \cap L_{m}(S_{2}/G)$$

- Furthermore, $S_1 \wedge S_2$ is a proper supervisor of G if and only if
 - $S_1 \land S_2$ is nonblocking
 - $L_m(S_1/G)$ and $L_m(S_2/G)$ are nonconflicting, i.e.

$$\overline{L_m(S_1/G) \cap L_m(S_2/G)} = \overline{L_m(S_1/G)} \cap \overline{L_m(S_2/G)} = L(S_1/G) \cap L(S_2/G)$$

Composition of Local Supervisors (3)

- Let $C(G, E) := \{K \subseteq L_m(G) \cap L_m(E) | \overline{K}\Sigma_{uc} \cap L(G) \subseteq \overline{K}\}.$
- Let $\sup C(G, E)$ be the greatest element of C(G, E).
- Theorem 2 (Wonham-Ramadge)
 - Given a plant G and two specifications E_1 , E_2 , if $\sup C(G, E_1)$ and $\sup C(G, E_2)$ are nonconflicting, then

$$\sup C(G, E_1 \times E_2) = \sup C(G, E_1) \cap \sup C(G, E_2)$$

The General Procedure for RW Modular Design

- Given G and E_1 , E_2
- $S_1 = Supcon(G, E_1)$
- $S_2 = Supcon(G, E_2)$
- Nonconflict(S_1, S_2) = true ?
 - If yes, then $\{S_1 \text{ and } S_2\}$ is a modular supervisor of G w.r.t. E_1 , E_2
 - Otherwise, the problem is unsolvable by RW modular control theory
 - But we can compute a coordinator to solve the conflicting part of $(S_1 \land S_2)/G$

Inadequacy of RW Modular Control Theory (MCT)

- More on implementation simplicity than synthesis simplicity
 - It is computationally expensive to verify the condition $\sup C(G, E_1)$ and $\sup C(G, E_2)$ are nonconflicting
 - If the condition doesn't hold, RWMCT doesn't tell what to do next?

Example – Resource Competition

User 1: G_1

Resource A: R_A

User 2: G₂

Resource B: R_B

Specification

• Deadlock should not happen.

A "Naive" Modular Supervisor

Facts

- S_A is a proper supervisor of $G_1 \times G_2 \times R_A$
- S_B is a proper supervisor of $G_1 \times G_2 \times R_B$
- Nevertheless, $L_m(S_A)$ and $L_m(S_B)$ are conflicting.
- We can check that $G_1 \times G_2 \times R_A \times R_B \times S_A \times S_B$ has deadlock!

Outline

- Motivation
- Ramadge-Wonham Modular Supervisory Control
- Queiroz-Cury Extension
- Coordinated Modular Supervisory Control
- Example
- Interface-based Approach
- Conclusions

An Extended Architecture

Main Result

- (Product) Plant: $\{G_i \in \phi(\Sigma_i) \mid i \in I \land (\forall j \in I) \ j \neq i \Rightarrow \sum_i \cap \sum_j = \emptyset\}$
- Specifications: $\{E_i \in \phi(\Sigma_i) | i \in I\}$
- Let $G = \times_{i \in I} G_i$ and $E = \times_{i \in I} E_i$
- Let S_i be a proper supervisor of G_i with respect to E_i
- Theorem 3 (Queiroz-Cury)
 - $\wedge_{i \in I} S_i$ is a proper supervisor of G with respect to E if $\wedge_{i \in I} S_i$ is nonblocking and $\{L_m(S_i/G_i)|i \in I\}$ is (synchronously) nonconflicting.
 - Furthermore, if $\{\sup C(G_i, E_i) | i \in I\}$ is (synchronously) nonconflicting then $\sup C(G, E) = \|_{i \in I} \sup C(G_i, E_i)$

The inadequacy of RW modular control theory still exists!

But we can do something about it ...

One Solution to The Inadequacy

Outline

- Motivation
- Ramadge-Wonham Modular Supervisory Control
- Queiroz-Cury Extension
- Coordinated Modular Supervisory Control
- Example
- Interface-based Approach
- Conclusions

Example – Resource Competition Revisit

 $S_A \land S_B \land C$ is a proper supervisor of $G_1 \times G_2 \times R_A \times R_B$

The Concept of L-observer

- Given $L \subseteq \Sigma^*$ and $\Sigma' \subseteq \Sigma$, let $P: \Sigma^* \to \Sigma'^*$ be the natural projection
- P is called an L-observer if

$$(\forall t \in P(L))(\forall s \in \overline{L}) P(s) \le t \Rightarrow (\exists u \in \Sigma^*) su \in L \land P(su) = t$$

The Main Property of L-observer (MPLO)

- $\Sigma_1 \cap \Sigma_2 \subseteq \Sigma' \subseteq \Sigma_1 \cup \Sigma_2$
- If
 - $-P_1:\Sigma_1^* \to (\Sigma_1 \cap \Sigma')^*$ is L_1 -observer
 - $-P_2:\Sigma_2^* \to (\Sigma_2 \cap \Sigma')^*$ is L_2 -observer
- then
 - $-P:(\Sigma_1 \cup \Sigma_2)^* \to \Sigma'^* \text{ is } L_1 || L_2 \text{-observer}$

Application of MPLO

- Given $L\subseteq\Sigma^*$ and $\Sigma'\subseteq\Sigma$, let $P:\Sigma^*\to\Sigma'^*$ be the L-observer.
- Let $\Sigma'' \subseteq \Sigma'$ and $L'' \subseteq \Sigma''^*$, then

P(L) and L'' is nonconflicting \Leftrightarrow L and L'' is nonconflicting

Coordinated Modular Supervisory Control

- Given Σ , let $\phi(\Sigma)$ denote the set of all FSAs over Σ .
- Given two alphabets Σ_1 and Σ_2 , let $G_1 \in \phi(\Sigma_1)$ and $G_2 \in \phi(\Sigma_2)$.
- Let S_i be a proper supervisor of G_i (i=1,2).
- Let $\Sigma' \subseteq \Sigma_1 \cup \Sigma_2$ with $\Sigma_1 \cap \Sigma_2 \subseteq \Sigma'$.
- Suppose $P_i: \Sigma_i^* \to (\Sigma_i \cap \Sigma')^*$ be an $L_m(S_i/G_i)$ -observer, where i=1,2.
- Let $P_1(S_1/G_1)$ denote an automaton, where
 - $L(P_1(S_1/G_1)) = P_1(L(S_1/G_1))$ and $L_m(P_1(S_1/G_1)) = P_1(L_m(S_1/G_1))$
- Let $G := P_1(S_1/G_1) \times P_2(S_2/G_2)$
- Compute a coordinator $C \in \phi(\Sigma')$ such that C/G is nonblocking

Theorem 4

- Given the above setup, $S_1 \wedge S_2 \wedge C$ is a proper supervisor of $G_1 \times G_2$.

Illustration of Coordinator Synthesis

Multi-Level Coordinators

Outline

- Motivation
- Ramadge-Wonham Modular Supervisory Control
- Queiroz-Cury Extension
- Coordinated Modular Supervisory Control
- Example
- Interface-based Approach
- Conclusions

Simple Transfer Line (STL)

Component Models

Buffer Specifications

Partition of STL

Local Synthesis with TCT

• PlANT₁ =
$$M_1 \times M_2 \times M_3 \times TU$$
 (use Sync) (16, 72)

• PlANT₂ =
$$M_3 \times M_4 \times TU$$
 (8, 28)

• SPEC₁ = Selfloop(Sync(
$$B_1, B_2$$
), {1,6,9,10}) (4,42)

• SPEC₂ = Selfloop(Sync(
$$B_3, B_4$$
), {5,10,12}) (9,51)

•
$$SUPER_1 = Supcon(PLANT_1, SPEC_1)$$
 (48, 146)

•
$$SUPER_2 = Supcon(PLANT_2, SPEC_2)$$
 (50, 137)

• SUPER₁ and SUPER₂ are conflicting

Create an Coordinator

Coordinator Synthesis

Preparation

- Set the coordinator's alphabet as $\Sigma_c = \{1,5,6,9,10,12\}$
- We can check that both P_1 and P_2 are observers.
- Create local abstractions
 - PPLANT₁=Project(SUPER₁, $\{1,5,6,9,10,12\}$) (14, 40)
 - PPLANT₂=Project(SUPER₂, $\{5,6,9,10,12\}$) (18, 41)
- Create a specification SPEC, recognizing Σ_c^* .
- Synthesis
 - PPLANT=Sync(PPLANT₁,PPLANT₂) (63, 168)
 - -C = Supcon(PPLANT,SPEC) (59, 158)

Verification

• C, SUPER₁ and SUPER₂ are nonconflicting

Monolithic Supervisor Synthesis

•
$$PLANT = Sync(PLANT_1, PLANT_2)$$
 (32, 176)

• SPEC = Selfloop(Sync(Sync(Sync(
$$B_1, B_2, B_3, B_4$$
), {1,10}) (54,414)

•
$$SUPER = Supcon(PLANT, SPEC)$$
 (568, 1927)

Isomorphic(Sync(C,Sync(SUPER₁,SUPER₂)),SUPER)=true

Comparison

Monolithic Approach

- Plant: (32, 176)
- Supervisor : (568, 1927)
- The largest intermediate computational result: (568, 1927)

Coordinated Modular Approach

- Local Plants: (16, 72), (8, 28)
- Local Supervisors : (48, 146), (50, 137)
- Coordinator: (59, 158)
- The largest intermediate computational result: (63, 168)

Outline

- Motivation
- Ramadge-Wonham Modular Supervisory Control
- Queiroz-Cury Extension
- Coordinated Modular Supervisory Control
- Example
- Interface-based Approach
- Conclusions

Motivations

- Each component has a fixed interface
- Each component's internal behaviour is unseen to outsiders
- Components communicate with each other through interfaces

Example 1 – Digital Circuit

Example 2 – Component-Based Software

Our Goal

• Use interfaces to separate components, allowing local synthesis

The System Architecture

High-Level Component $G_H \in \phi(\Sigma_H)$ (where $\phi(\Sigma_H)$ contains all FSAs over Σ_H)

Interfaces

 $G_{I1} \in \phi(\Sigma_{I1})$

$$\bigcirc$$

$$G_{L1} \in \phi(\Sigma_{L1})$$

• • •

$$G_{I1} \in \phi(\Sigma_{I1})$$

 $G_{Ln} \in \phi(\Sigma_{Ln})$

- For any $i,j \in \{H,L1,...,Ln\}$
 - $\Sigma_{i} = \Sigma_{i,c} \cup \Sigma_{i,uc}$
 - $-i \neq j \Rightarrow \Sigma_{i,c} \cap \Sigma_{j,uc} = \emptyset$
- For any $i,j \in \{L1,...,Ln\}$
 - $\Sigma_{\mathrm{H}} \cap \Sigma_{\mathrm{Li}} = \Sigma_{\mathrm{Ii}}$
 - $-i \neq j \Longrightarrow \Sigma_{Li} \cap \Sigma_{Lj} = \Sigma_{Ii} \cap \Sigma_{Ij}$

Low-Level Components

Separable Requirements

• At the high level: $E_H \in \phi(\Sigma_H)$

• At the low level: $\{E_{Li} \in \phi(\Sigma_{Li}) \mid i=1,...,n\}$

A requirement can "touch" different components via interface events!

A Supervisor Synthesis Problem

- Compute an interface-based modular (IBM) supervisor $\{S_H, S_{L1}, \dots, S_{Ln}\}$,
 - Requirements: $L_m(S_H/G_H) \subseteq L_m(E_H) \land (\forall i \in \{1,...,n\}) \ L_m(S_{Li}/G_{Li}) \subseteq L_m(E_{li})$
 - Nonblockingness : $\overline{L_m(S/G)} = L(S/G)$ where
 - $L_m(G) = L_m(G_H) || L_m(G_{L1}) || ... || L_m(G_{Ln})$ and $L(G) = L(G_H) || L(G_{L1}) || ... || L(G_{Ln})$
 - $L_m(S) = L_m(S_H) ||L_m(S_{L1})||...||L_m(S_{Ln})$ and $L(S) = L(S_H) ||L(S_{L1})||...||L(S_{Ln})||$
 - Controllability: $L(S/G)Σ_{uc} \cap L(G) \subseteq L(S/G)$
 - Interface Invariance:

$$(\forall i \in \{1,...,n\}) P_i(L_m(S_{Li}/G_{Li})) = L_m(G_{Ii})$$

where $P_i : \Sigma_{Li}^* \to \Sigma_{Ii}^*$ is an $L_m(S_{Li}/G_{Li})$ -observer

Theorem 1:

Given $G = \{G_H, G_{Li}, G_{Ii} \mid i=1,...,n\}$ and $E = \{E_H, E_{Li} \mid i=1,...,n\}$, the largest IBM supervisor, denoted as the supremal IBM supervisor, in terms of component-wise set inclusion exists.

Local Supervisor Synthesis (1)

At the high level

- Plant : $G = G_H \times G_{I1} \times ... \times G_{In}$
- Requirement : E_H
- Synthesize $S_H \in \phi(\Sigma_H)$, where
 - $L_m(S_H/G) \subseteq L_m(E_H)$
 - $L_m(S_H/G) = L(S_H/G)$
 - $L(S_H/G)\Sigma_{H,uc} \cap L(G) \subseteq L(S_H/G)$

Local Supervisor Synthesis (2)

- At the low level, for each local component G_{Li} ($i \in \{1,...,n\}$)
 - Plant : G_{Li}
 - Requirement : E_{Li}
 - Synthesize $S_{Li} \in \phi(\Sigma_{Li})$, where
 - 1. $L_m(S_{Li}/G_{Li}) \subseteq L_m(E_{Li})$
 - 2. $L_m(S_{Li}/G_{Li}) = L(S_{Li}/G_{Li})$
 - 3. $L(S_{Li}/G_{Li})\Sigma_{Li,uc} \cap L(G_{Li}) \subseteq L(S_{Li}/G_{Li})$
 - 4. $P_i(L_m(S_{Li}/G_{Li})) = L_m(G_{Ii})$, where $P_i : \Sigma_{Li}^* \to \Sigma_{Ii}^*$ is an $L_m(S_{Li}/G_{Li})$ -observer

Theorem 2:

The largest language $L_m(S_{Li}/G_{Li})$ satisfying conditions 1-4 exists.

(Why?)

• The largest language $L_m(S_{Li}/G_{Li})$ in Theorem 2 is computable.

Theorem 3:

 $\{S_H,\,S_{L1},\,\ldots\,,\,S_{Ln}\}$ is the supremal IBM supervisor w.r.t. $\mathcal G$ and $\mathcal E$.

Conclusions

- Advantages of Modular Supervisory Control
 - It is easy to present a system in a modular way
 - It is computationally tractable compared to the monolithic approach
 - It possesses a certain level of implementation flexibility
- Disadvantage of Modular Supervisory Control
 - Modular control is more conservative than centralized control (why?)
 - The observer property is required during model abstraction