Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа 2.1.1	К работе допущен	
Студент Батманов Д. Е.	Работа выполнена	
Преподаватель Горбенко А. П.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе № 3.07

Изучение свойств ферромагнетика

1. Цель работы.

- 1. Измерение зависимости магнитной индукции в ферромагнетике от напряженности магнитного поля B = B(H)
- 2. Определение по предельной петле гистерезиса индукции насы- щения, остаточной индукции и коэрцитивной силы
- 3. Получение зависимости магнитной проницаемости от напряжен- ности магнитного поля $\mu = \mu(H)$ и оценка максимального значения величины магнитной проницаемости
- 4. Расчет мощности потерь энергии в ферромагнетике в процессе его перемагничивания

2. Задачи, решаемые при выполнении работы.

- 1. Значение коэрцитивной силы, остаточной индукции и магнит- ной проницаемости в состоянии насыщения.
- 2. Мощность потерь на перемагничивание ферромагнетика (с оцен- кой величины ее погрешности).
- 3. Графики зависимостей магнитной индукции и проницаемости от напряженности: B = B(H) и $\mu = \mu(H)$.
- 4. Максимальное значение проницаемости μ_{max} и напряженность поля, при которой она наблюдается.

3. Объект исследования.

Сердечник (магнитопровод) трансформатора, размещённый на лабораторном стенде. Объект измерений имеет прямоугольную форму с прямоугольным же поперечным сечением

4. Метод экспериментального исследования.

Многократное измерение координат пересечения петли гистерезиса с осями координат на разных входных данных

5. Рабочие формулы и исходные данные.

Коэффициент α : $\alpha = N_1/(lR_1)$

Коэффициент β : $\alpha = C_1 R_2 / (N_2 S)$

Магнитная проницаемость μ : $\mu = B_m/(\mu_0 H_m)$

Коэффициент χ : $\chi = K_x K_y * (N_1 R_2 C_1)/(N_2 R_1) * f$

Остаточная индукция $B \colon B = \beta \cdot Ky \cdot Y$

Коэрцитивная сила $H: H = \alpha \cdot Kx \cdot X$

Мощность потерь на перемагничивание образца: $P = \chi \cdot S \pi$

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Цифровой осцилограф	Цифровой	-	-

7. Схема установки (перечень схем, которые составляют Приложение 1).

- 1. Генератор сигналов АКИП-3409/2
- 2. Стенд с образцом
- 3. Цифровой запоминающий осциллограф (ЦЗО)

Принципиальная схема установки

В лабораторной работе в качестве образца для изучения магнитных свойств ферромагнитного материала выбран сердечник (магнитопровод) трансформатора, размещенного на лабораторном стенде.

Объект измерений имеет прямоугольную форму с

Объект измерений имеет прямоугольную форму с прямоугольным же поперечным сечением.

Параметры установки

R_1	68 Om	
R ₂	470 кОм	
C ₁	0,47 мкФ	

Параметры трансформатора

S	0,64 cm ²	
L	7,8 см	
Nı	1665 вит	
N ₂	970 BUT	

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

 $\label{eq:thm:constraint} \begin{tabular}{ll} Tаблица 1-$\underline{https://docs.google.com/spreadsheets/d/1Vjkep2eX09SLhpNSq7Vu6UXfv2OFqhv-JZHxMiouBYE/edit\#gid=0} \end{tabular}$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

H m = 109,86 м A Bm = 0,51 Тл $\mu max = 1986,6 \text{ при } H = 86,64 \text{ A/m}.$

 $P = 0.0615 B_{\rm T}$

10. Расчет погрешностей:

Все вычисления внутри гугл-таблицы

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1.

График 2.

13. Выводы и анализ результатов работы.

В ходе выполнения лабораторной работы была измерена зависимость магнитной индукции в ферромагнетике от напряженности магнитного поля B=B(H), определена по предельной петле гистерезиса индукции насыщения, остаточной индукции и коэрцитивной силы, получена зависимость магнитной проницаемости от напряженности магнитного поля $\mu=\mu(H)$ и оценка максимального значения величины магнитной проницаемости, а также проведен расчет мощности потерь энергии в ферромагнетике в процессе его перемагничивания.