1) Compute the number of typical operations of this code ?What is the complexity of this algo

```
int a = 0;
for (i = 0; i < N; i++) {
  for (j = N; j > i; j--) {
     a = a + i + j;
  }
}
                                           // 1
int a = 0:
       for (j = N; i++) {
for (j = N; j > i; j--) {
for (i = 0; i < N; i++) {
                                          // 1 + 2N
                                          // 1 + 2(N^2 - C) với C = 1+2+3....+ N
                                          // C = N(N+1)/2
                                          // 3(N^2 - C)
     a = a + i + j;
  }
}
\Rightarrow The number of typical oper = 5N^2 + 2N + 3 - 5C
```

2) Prove that T(n) = a0 + a1n + a2n2 + a3n3 is O(n3) using the formal definition of the Big-O notation

$$\begin{split} G(n) &= a0 + a1n + a2n^2 + a3n^3 \\ \text{Tổn tại một hằng số C1 và n0 để G1(n)} &= a0 + a1.n <= C1.n \text{ với n} >= n0 \\ &\Rightarrow \text{T1(n)} = O(G1) = n \\ \text{Tương tự như vậy với G2(n)} &= a2n^2 => O(G2) = n^2; \text{G3(n)} = a3n^3 => O(G3) = n^3 \\ \text{Quy tắc cộng Big O thì} &=> O(G) = O(G1) + O(G2) + O(G3) = n^3 \end{split}$$

3) Determine dominants term and O in the following table

Expression	Dominant term(s)	$O(\ldots)$
$5 + 0.001n^3 + 0.025n$	n3	n3
$500n + 100n^{1.5} + 50n \log_{10} n$	n1.5	n1.5
$0.3n + 5n^{1.5} + 2.5 \cdot n^{1.75}$	n1.75	n1.75
$n^2 \log_2 n + n(\log_2 n)^2$	n2.log2(n)	n2.log(n)
$n\log_3 n + n\log_2 n$	nlog2(n)	nlog(n)
$3\log_8 n + \log_2 \log_2 \log_2 n$	log8(n)	log(n)
$100n + 0.01n^2$	n2	n2
$0.01n + 100n^2$	n2	n2
$2n + n^{0.5} + 0.5n^{1.25}$	n1.25	n1.25
$0.01n\log_2 n + n(\log_2 n)^2$	n(log2(n))2	n(log(n))2
$100n \log_3 n + n^3 + 100n$	n3	n3
$0.003\log_4 n + \log_2\log_2 n$	log4(n)	log(n)

4) Fill the following table

Statement	Is it TRUE or FALSE?	If it is FALSE then write the correct formula
Rule of sums: $O(f+g) = O(f) + O(g)$	False	O(f+g) = O(max(O(f), O(g))
Rule of products: $O(f \cdot g) = O(f) \cdot O(g)$	True	
Transitivity: if $g = O(f)$ and $h = O(f)$ then $g = O(h)$	False	if $g = O(f)$ and $f = O(h)$ then $g = O(h)$
$5n + 8n^2 + 100n^3 = O(n^4)$	False	O(n3)
$5n + 8n^2 + 100n^3 = O(n^2 \log n)$	False	O(n3)