

Mathématiques

Bac maths Classe:

Série n°1: Nombres complexes

Nom du Prof: Aguir Imed

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1:

5 pts

Le plan complexe est rapporté à un repère orthonormé (O, \vec{u} , \vec{v})

Les questions sont indépendantes.

- 1) z étant un nombre complexe . Montrer l'équivallence : |z+1|=|z|+1, si et seulement si , z est un nombre réel positif .
- 2) Soit $z \in \mathbb{C}^*$. Montrer que si |z| = |z-1| alors arg $(z) + \arg(z-1) \equiv \pi[2\pi]$.
- 3) Soient $z_1, z_2, z_3 \in \mathbb{C}$ tels que $|z_1| = |z_2| = |z_3| = 1$ et $z_1 + z_2 + z_3 \neq 0$.

 Montrer que $\left| \frac{z_1 z_2 + z_2 z_3 + z_1 z_3}{z_1 + z_2 + z_3} \right| = 1$
- 4) Soient a et b deux nombres complexes. Montrer l'équivallence :

$$|a-b| = |1-\overline{a}b| \Leftrightarrow |a| = 1 \text{ ou } |b| = 1.$$

5) Soit $z \in \mathbb{C} \setminus \mathbb{R}_{-}$, montrer que $\left(\frac{z + |z|}{\sqrt{\text{Re}(z) + |z|}}\right)^2 = 2z$

Exercice 2

© 25 min

5 pt

Dans le plan complexe rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) ; on considère le point A d'affixe

(-1) et les points M , N et P d'affixes respectives z , z^2 et z^3 où z est un nombre complexe non nul différent de (-1) et de 1 .

Le but de l'exercice est de déterminer l'ensemble E des points M tels que le triangle MNP est rectangle en P par deux méthodes .

- 1) <u>1^{ère} Méthode</u> :
 - a) Montrer que : (le triangle MNP est rectangle en P) si et seulement si $(\frac{1+z}{z})$ est imaginaire pur)
 - b) On pose z = x + i y où x et y sont des réels . Montrer que $\frac{1+z}{z} = \frac{x^2 + y^2 + x i y}{x^2 + y^2}$

- c) En déduire que l'ensemble (E) est le cercle de diamètre [OA], privé des points O et A
- 2) 2ème Méthode:
 - a) Montrer que : MNP est rectangle en P \Leftrightarrow $|z+1|^2 + |z|^2 = 1$
 - b) Montrer que: $|z+1|^2 + |z|^2 = 1 \iff \left(z+\frac{1}{2}\right) \overline{\left(z+\frac{1}{2}\right)} = \frac{1}{4}$
 - c) En déduire l'ensemble E .

Exercice 3

(5) 25 min

4 pt

Dans la figura ci-dessous, (O, \vec{u}, \vec{v}) est un repère orthonormé direct du plan , \mathscr{C} est le cercle de centre O et de rayon 2 et B est un point d'affixe z_B

- 1) a) Déterminer par une lecture graphique le module et un argument de zB
 - b) En déduire que $z_B = -1 + i\sqrt{3}$
- 2) a) Placer sur la figure le point C d'affixe $z_C = 1 + i\sqrt{3}$
 - b) Montrer que le quadrilatère OACB est un losange
- 3) On se propose de déterminer l'ensemble E des points M d'affixe z tels que $\,z^3\,$ soit un réel positive ou nul .
 - a) Vérifier que les points O, A et B appartiennent à E
 - b) Prouver que tout point M de la demi-droite [OB) appartient à E
 - c) Soit z un nombre complexe non nul , de module r et d'argument θ $\text{Montrer que } z^3 \text{ est un réel positif si et seulement si } \theta = \frac{2k\pi}{3} \; ; \; k \in \mathbb{Z} \, .$
 - d) En déduire que E est la réunion de trois demi-droites que l'on déterminera Représenter E sur la figure .

Exercice 4:

8 pts

Les questions sont indépendantes

Le plan complexe P est rapporté à un repère orthonormé directe $(0,\vec{u},\vec{v})$.

- 1) Soit z un nonmbre complexe tel que |z|=1 et $z^2\neq 1$; Montrer que $\frac{z^2+1}{z^2-1}\in i\mathbb{R}$.
- 2) Montrer que pour tout $z \in \mathbb{C} \setminus \{-i\}$: $Im(z) > 0 \Leftrightarrow \left| \frac{z-i}{z+i} \right| < 1$
- 3) Soit u un nombre complexe tel que u \neq 1 et |u|=1
 - a) Montrer que $Ré\left(\frac{1}{1-u}\right) = \frac{1}{2}$.
 - b) Montrer que si $z \in \mathbb{C} \setminus \mathbb{R}$ alors $\frac{z u\overline{z}}{1 u}$ est un réel.
- 4) Soit z un nombre complexe non nul.
 - a) Montrer que : $\frac{2z-1}{z^2} \in \mathbb{R} \iff z = \overline{z} \text{ ou } z + \overline{z} = 2z\overline{z}.$

- b) Déterminer l'ensemble des points M(z) tel que $\,\frac{2z-1}{z^2}\!\in\!\mathbb{R}\,\,$.
- 5) Soit z un nombre compplexe tel que z $\not\in \mathbb{R}^-$.

Montrer que
$$2 \arg(z+|z|) \equiv \arg(z)[2\pi]$$

6) Soient a et b deux nombres complexes distincts.

Montrer que
$$|a| = |b| \iff \frac{a+b}{a-b} \in i\mathbb{R}$$

- 7) Montrer que si z \in $\mathbb{C} \setminus \mathbb{R}$ tel que $\frac{1+z+z^2}{1-z+z^2} \in \mathbb{R}$ alors |z|=1.
- 8) Soient a , b et c 3 nombres complexes tels que A(a) , B(b) et C(c) sont les sommets d'un triangle.

Montrer que : ABC est équilatéral si et seulement si $a^2 + b^2 + c^2 = ab + bc + ac$

