In the claims:

1. (withdrawn) A polymer comprising a repeating unit of the formula

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

 R^1 is $C_{6\text{-}24}$ aryl or $C_{2\text{-}20}$ heteroaryl each of which optionally can be substituted, and R^2 is H,

 X^1 and X^2 are independently of each other a divalent linking group.

2. (withdrawn) A polymer according to claim 1, wherein X^1 and X^2 are independently of each other a

group of the formula
$$R^{16}$$
, R^{14} , R^{16} , or R^{7} , R^{6} , R^{6} , R^{7} , R^{7} , R^{6} , R^{7} , R^{7} , R^{8} , R^{7} , R^{8} , R

$$\begin{array}{c|c}
R^{6} & R^{7} \\
N & R^{6}
\end{array}$$

$$\begin{array}{c|c}
R^{6} & R^{7} \\
N & R^{6}
\end{array}$$

$$\begin{array}{c|c}
R^{6} & R^{7} \\
R^{7} & R^{14}
\end{array}$$

$$\begin{array}{c|c}
R^{7} & R^{14} & R^{7} \\
R^{15} & R^{14}
\end{array}$$

$$\begin{array}{c|c}
R^{7} & R^{14} & R^{7} \\
R^{15} & R^{14}
\end{array}$$

$$\begin{array}{c|c}
R^{7} & R^{14} & R^{7} \\
R^{15} & R^{14}
\end{array}$$

$$\begin{array}{c|c}
R^{7} & R^{14} & R^{7} \\
R^{15} & R^{14}
\end{array}$$

$$\begin{array}{c|c}
R^{7} & R^{14} & R^{15}
\end{array}$$

$$\begin{array}{c|c}
R^{15} & R^{15} & R^{15}$$

$$\begin{array}{c|c}
R^{15} & R^{15} & R^{15}
\end{array}$$

$$\begin{array}{c|c}
R^{15} & R^{15} & R^{15}
\end{array}$$

$$\begin{array}{c|c}
R^{15} & R^{15} & R^{15}$$

$$\begin{array}{c|c}
R^{15} & R^{15} & R^{15}$$

$$\begin{array}{c|c}
R^{15} & R^{15} & R^{15}
\end{array}$$

n1, n2, n3, n4, n5, n6 and n7 are integers of 1 to 10, R^6 and R^7 are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl, which is substituted by E, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkoxy which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, or -CO- R^{28} ,

 R^8 is C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, or C_7 - C_{25} aralkyl,

 R^9 and R^{10} are independently of each other C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl, or R^9 and R^{10} form a ring, which may optionally be substituted by R^6 ,

 $R^{14'}$ and $R^{15'}$ are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, or C_2 - C_{20} heteroaryl which is substituted by E,

D is -CO-, -COO-, -S-, -SO-, -SO₂-, -O-, -NR²⁵-, -SiR³⁰R³¹-, -POR³²-, -CR²³=CR²⁴-, or -C \equiv C-, and E is -OR²⁹, -SR²⁹, -NR²⁵R²⁶, -COR²⁸, -COR²⁷, -CONR²⁵R²⁶, -CN, -OCOOR²⁷, or halogen, wherein

 R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by -O-, or

 R^{25} and R^{26} together form a five or six membered ring, R^{27} and R^{28} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by -O-,

10/531,779 - 3 - EL/2-22875/A/PCT

 R^{29} is H, C_6 - C_{18} aryl, C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, and

 R^{32} is C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl.

3. (withdrawn) A polymer according claim 2, wherein R¹ and R² are independently of each other H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₂-C₁₈alkenyl, C₂-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D, C₁₈alkoxy by D, C₁₈alkoxy which is substituted by E and/or interrupted by D, C₁₈alkoxy by D, C

$$R^{14'}$$
 X^4 X^4 $X^{15'}$ X^5 , X^5 , X^6 X^5 , X^6 X^7 X^8 , X^8 X^8 , X^8 , X^8 X^8 , X^8 X^8 , X^8 X^8 , X^8 X^8 , X^8

 X^4 is C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, which optionally can be substituted,

 X^5 is C_1 - C_{18} alkyl, C_6 - C_{24} aryl, C_6 - C_{24} aryl substituted by -OC₁- C_{18} alkyl or -OC₆- C_{24} aryl.

4. (currently amended) A polymer according to claim 1, comprising a repeating unit of the formula

$$\begin{bmatrix}
R^{1} & N & N \\
 & X^{2} & X^{2}
\end{bmatrix}$$
(I); wherein

 R^1 and R^2 , are independently of each other an organic substituent, is C_{6-24} aryl or C_{2-20} heteroaryl each of which optionally can be substituted, and R^2 is H,

X¹ and X² are independently of each other a divalent linking group which co-polymer also

ir Ad

comprises a co-monomer T which is selected from the group consisting of

 R^{16} is H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl, C_7 - C_{25} aralkyl, or C_1 - C_{18} alkyl which is interrupted by -O-,

p is an integer from 1 to 10,

q is an integer from 1 to 10,

s is an integer from 1 to 10,

10/531,779 - 5 - EL/2-22875/A/PCT

 R^6 and R^7 are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_5 - C_{12} cycloalkyl, C_5 - C_{12} cycloalkyl, which is substituted by E, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, C_7 - C_{25} aralkyl, or -CO- R^{28} ,

 R^8 is C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, or C_7 - C_{25} aralkyl,

 R^9 and R^{10} are independently of each other C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkynyl, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl, or

 R^9 and R^{10} form a five- or six-membered ring, which may optionally be substituted by R^6 , $R^{14'}$ and $R^{15'}$ are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{20} heteroaryl which is substituted by E,

 R^{23} , R^{24} , R^{25} and R^{26} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkoxy, C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by -O-, or

 R^{25} and R^{26} together form a five or six membered ring, R^{27} and R^{28} are independently of each other H, C_6 - C_{18} aryl, C_6 - C_{18} aryl which is substituted by C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by $-O_7$,

 R^{29} is H, C_6 - C_{18} aryl, C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, C_1 - C_{18} alkyl, or C_1 - C_{18} alkyl which is interrupted by -O-,

 R^{30} and R^{31} are independently of each other C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, and

 R^{32} is C_1 - C_{18} alkyl, C_6 - C_{18} aryl, or C_6 - C_{18} aryl, which is substituted by C_1 - C_{18} alkyl, or

R⁹ and R¹⁰ together form a group of formula =CR¹⁰⁰R¹⁰¹, wherein

10/531,779 - 6 - EL/2-22875/A/PCT

 R^{100} and R^{101} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, or C_2 - C_{20} heteroaryl which is substituted by E, and

 R^{14} and R^{15} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, or C_2 - C_{20} heteroaryl, C_2 - C_{20} heteroaryl which is substituted by E.

5. (withdrawn) A polymer according to claim 1, comprising repeating units of formula la or lb,

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

wherein R1 is a group of formula

wherein R² is H,

 R^6 and R^7 are independently of each other H, C_1 - C_{12} alkyl, C_5 - C_{12} cycloalkyl, C_6 - C_{24} aryl, which can be substituted by -O- C_1 - C_{12} alkyl, or C_1 - C_{18} alkoxy,

 R^8 is C_1 - C_{18} alkyl, C_1 - C_{18} alkyl interrupted by one or two oxygen atoms, or C_6 - C_{12} aryl, which optionally can be substituted by C_1 - C_{12} alkyl, or C_1 - C_{12} alkoxy,

 R^9 and R^{10} are independently of each other H, C_1 - C_{12} alkyl, or C_1 - C_{12} alkoxy,

 R^9 and R^{10} are independently of each other C_1 - C_{18} alkyl, especially C_4 - C_{12} alkyl, which can be interrupted by one or two oxygen atoms.

10/531,779 - 7 - EL/2-22875/A/PCT

6.(previously presented) A polymer according to claim 4, comprising a co-monomer T which is selected from the group consisting of

 R^9 and R^{10} are independently of each other C_1 - C_{18} alkyl, which can be interrupted by one or two oxygen atoms, or

 R^9 and R^{10} form a five or six membered carbocyclic ring, which optionally can be substituted by C_1 - C_8 alkyl.

7. (curently amended) A polymer according to claim 4, comprising a repeating unit of formula

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

x is in the range of 0.005 to 1- 0.4 to 0.6, and y is in the range of 0.005 to 0.6 to 0.4, wherein the sum of x and y is 1,

 R^1 is a group of formula R' , or X^6 is H, C_1 - C_{18} alkyl, cyclohexyl, or C_1 - C_{18} alkoxy, R^2 is H,

$$\mathbb{R}^{7}$$
 , or

X¹ and X² are independently of each other a group of formula

$$\mathbb{R}^6$$
 \mathbb{R}^6 \mathbb{R}^6 \mathbb{R}^7 and

T is a group of formula R^3 R^{10} , wherein s is one or two, and R^9 and R^{10} are independently of each other C_1 - C_{18} alkyl, which can be interrupted by one or two oxygen atoms, and

 R^6 and R^7 are independently of each other H, C_1 - C_{12} alkyl, C_5 - C_{12} cycloalkyl, C_6 - C_{24} aryl, which can be substituted by -O- C_1 - C_{12} alkyl, or C_1 - C_{18} alkoxy.

8-11. (cancelled)

- **12.** (withdrawn) An optical device or a component therefore, comprising a substrate and a polymer according to claim 1.
- **13** .(withdrawn) An optical device according to claim 12, wherein the optical device comprises an electroluminescent device.

10/531,779 - 9 - EL/2-22875/A/PCT

- **14** .(withdrawn) An optical device according to claim 13, wherein the electroluminescent device comprises
 - (a) a charge injecting layer for injecting positive charge carriers,
 - (b) a charge injecting layer for injecting negative charge carriers,
 - (c) a light-emissive layer located between the layers (a) and (b) comprising a polymer according to claim 1.

15. (cancelled)

16. (withdrawn) A polymer according to claim 3, wherein when R¹ or R² is F

- = X^5 , C_6 - C_{24} aryl or C_2 - C_{20} heteroaryl, it is selected from the group consisting of the formulae

wherein m1, m2, m3, m4, m5, m6 and m7 are integers of 1 to 10,

 X^6 is H, C₁-C₁₈alkyl, C₁-C₁₈alkyl which is substituted by E and/or interrupted by D, C₆-C₃₀aryl, which optionally can be substituted, C₂-C₂₆heteroaryl, which optionally can be substituted, C₂-C₁₈alkenyl, C₂-C₁₈alkynyl, C₁-C₁₈alkoxy, C₁-C₁₈alkoxy which is substituted by E and/or interrupted by D, or C₇-C₂₅aralkyl,

 R^{11} , R^{12} and R^{13} are independently of each other H, C_1 - C_{18} alkyl, C_1 - C_{18} alkyl which is substituted by E and/or interrupted by D, C_6 - C_{24} aryl, C_6 - C_{24} aryl which is substituted by E, C_2 - C_{18} alkenyl, C_2 - C_{18} alkoxy, C_1 - C_{18} alkoxy which is substituted by E and/or interrupted by D, or C_7 - C_{25} aralkyl.

17-21. (cancelled)

10/531,779 - 11 - EL/2-22875/A/PCT