Materiais Elétricos e Magnéticos para Engenharia

Professor: Marcus V. Batistuta

Laboratório #5 Sensor Hall

1º Semestre de 2018

FGA - Universidade de Brasília

Efeito Hall

Força de Lorentz

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} imes \mathbf{B})$$

$$F_x = q(E_x + v_y B_z - v_z B_y)$$

$$F_y = q(E_y + v_z B_x - v_x B_z)$$

$$F_z = q(E_z + v_x B_y - v_y B_x)$$

http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/magfor.html

Efeito Hall

$$p_0 + N_D^+ = n_0 + N_A^-$$

$$V_H = R_H J_P B_z$$

$$R_{H} = \frac{p\mu_{h}^{2} - n\mu_{e}^{2}}{e(p\mu_{h} + n\mu_{e})^{2}}$$

Sensor Hall Integrado

Densidade de Fluxo Magnético Terrestre

Intensidade: 25 to 65 μ T (0.25 to 0.65 G)

1 tesla = 10.000 gauss

$$T = V \cdot s \cdot m^{-2} = N \cdot A^{-1} \cdot m^{-1} = Wb \cdot m^{-2} = kg \cdot C^{-1} \cdot s^{-1} = kg \cdot A^{-1} \cdot s^{-2} = N \cdot s \cdot C^{-1} \cdot m^{-1}$$

$$A = \text{ampere} \qquad m = \text{meter} \qquad T = \text{tesla}$$

$$C = \text{coulomb} \qquad N = \text{newton} \qquad V = \text{volt}$$

$$kg = \text{kilogram} \qquad s = \text{second} \qquad Wb = \text{weber}$$

- 31.869 μ T (3.1 × 10⁻⁵ T) strength of Earth's magnetic field at 0° latitude, 0° longitude
- 5 mT the strength of a typical refrigerator magnet
- 0.3 T the strength of solar sunspots
- 1.25 T magnetic field intensity at the surface of a neodymium magnet
- 1 T to 2.4 T coil gap of a typical loudspeaker magnet
- 1.5 T to 3 T strength of medical magnetic resonance imaging systems in practice, experimentally up to 17 T
- 4 T strength of the superconducting magnet built around the CMS detector at CERN
- 8 T the strength of LHC magnets.

Campo Magnético Terrestre

Sensor Hall (SS495A)

Name	No	Status	Description
Vdd	1	P	Power Supply
Gnd	2	P	IC Ground
Output	3	О	Output

Sensor Hall (SS495A)

Electrical Characteristics (TA = 25°C, VCC = 5.0V)

Parameter	Symbol	Test Conditions	ions Min Ty		Max	Units
Operating Voltage	V_{CC}	Operating 4.5		5	10.5	V
Supply Current	I_{CC}	Average		5	8.0	mA
Output Current	I _{OUT}		1.0	1.5		mA
Response Time	Tack			3		uS
Quiescent Output Voltage	Vo	B=0G		2.5		V
Sensitivity	△Vout	TA=25℃	3.0	3.3	3.6	mV/G
Min Output Voltage		B=-700G		0.2		V
Max Output Voltage		B=700G		4.8		V

Absolute Maximum Ratings

Parameter	Symbol	Value	Units
Supply Voltage (operating)	V_{CC}	10.5	V
Output Current	I _{OUT}	2	mA
Operating Temperature Range	$T_{\mathbf{A}}$	-40~150	$^{\circ}$ C
Storage Temperature Range	Ts	-65~150	$^{\circ}$ C

Sensor Hall (SS495A)

TRANSFER CHARACTERISTICS V_s 5.0 VDC

Tecnologia de Sensores Hall

Circuito de Medidas

Magneto

$$B_z = B_0$$

Rotação do Magneto

Medidas com o Sensor Hall

Transferidor com Magneto em "U"

Modelo Físico

$$B_z(\theta) = B_0 \cos(\theta)$$

$$\begin{split} V_H = & \frac{IB_z(\theta)}{ep_0A} = \frac{J_PB_z(\theta)}{ep_0} = R_HJ_PB_z(\theta) = k_HB_z(\theta) \\ & \int V_s = GV_H + V_{so} \end{split}$$
 Tipo-p

$$V_{so} = V_{s}\big|_{B_{z}=0}$$

$$V_s = Gk_H B_z(\theta) + V_{so} = Gk_H B_0 \cos(\theta) + V_{so}$$

$$V_s = k_s B_0 \cos(\theta) + V_{so}$$

Determinando B_0

$$V_s = k_s B_0 \cos(\theta) + V_{so}$$

$$\theta = 0 \Longrightarrow V_{s_{\text{max}}} = k_s B_0 + V_{so}$$

$$B_0 = \frac{V_{s_{-}\max} - V_{so}}{k_s}$$

$$k_{s} \cong 3.125[mV/G]$$