Analysis and Differential Equations

Solve every problem.

Problem 1. For $n \ge 1$, we consider the integral

$$I_n = \int_{[0,1]^n} \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}} dx_1 \dots dx_n.$$

Prove that $\lim_{n\to\infty} I_n$ exists.

Problem 2. Let $U \subset \mathbf{C}$ be a non-empty open set and $f: U \to U$ be a non-constant holomorphic function. Prove that, if $f \circ f = f$, then $f(z) \equiv z$ for all $z \in U$.

Problem 3. Let $X \subset \mathbf{R}$ be a set with positive (Lebesgue) measure. Show that we can find an arithmetic progression of 2022 terms in X, *i.e.*, there exists $x_1, \dots, x_{2022} \in X$ so that the $x_{i+1} - x_i$'s are all equal and positive, $i = 1, \dots, 2021$.

Problem 4. Let C([0,1]) be the space of all continuous **C**-valued functions equipped with L^{∞} -norm. Let $\mathbf{P} \subset C([0,1])$ be a closed linear subspace. Assume that the elements of **P** are polynomials. Prove that dim $\mathbf{P} < \infty$.

Problem 5. Let $\Omega \subset \mathbf{R}^3$ be a bounded domain with smooth boundary. Assume that $u \in C(\overline{\mathbf{R}^3 - \Omega})$ is a harmonic function on $\mathbf{R}^3 - \Omega$ so that $u|_{\Omega} = 1$ and $\lim_{|x| \to \infty} |u(x)| = 0$.

Prove that for such u, $\lim_{|x|\to\infty} |x|u(x)$ exists.

Problem 6. Let $f(x,y) \in C^1(\mathbf{R}^2)$. We assume that there exists C > 0 so that for all $(x,y) \in \mathbf{R}^2$, $\left| \frac{\partial f}{\partial y}(x,y) \right| \leq C$. Prove that the following ODE has a globally defined solution for all $y(0) = y_0 \in \mathbf{R}$:

$$\begin{cases} \frac{d}{dx}y(x) = f(x, y(x)), \\ y(0) = y_0. \end{cases}$$
 (1)

In addition, we assume that f is 1-periodic in x, *i.e.*, for all $(x, y) \in \mathbb{R}^2$, we have f(x + 1, y) = f(x, y). Prove that if (1) admits a globally defined bounded solution, then (1) admits a periodic solution.