Projektowanie efektywnych algorytmów

Projekt

Algorytm genetyczny

Damian Koper, 241292

11 stycznia 2020

Spis treści

1	Wst	tęp	3				
2	Pro	Problem komiwojażera					
	2.1	Algorytm genetyczny	3				
3	Pomiary						
	3.1	Wyniki	6				
	3.2	Pomiary dla zmiennego prawdopodobieństwa krzyżowania	9				
4 Podsumowanie		lsumowanie	10				
\mathbf{S}_{1}^{2}	pis	rysunków					
	1	Wykres dla pliku ftv47	7				
	2	Wykres dla pliku ftv170	7				
	3	Wykres dla pliku rbg403	8				
	4	Wykres dla pliku ftv47	9				
	5	Wykres dla pliku ftv170	9				
	6	Wykres dla pliku rbg403	10				
\mathbf{S}_{1}^{2}	pis	tablic					
	1	Błąd w kolejnych iteracjach dla pliku ftv 47. $P=100,\mathrm{PMX},p_c=0.8,p_m=0.01.$	6				
	2	Błąd w kolejnych iteracjach dla pliku ftv 47. $P=100,$ OX, $p_c=0.8,p_m=0.01.$	6				
	3	Błąd w kolejnych iteracjach dla pliku ftv 47. $P=350,\mathrm{PMX},p_c=0.8,p_m=0.01.$	6				
	4	Błąd w kolejnych iteracjach dla pliku ftv 47. $P=350,$ OX, $p_c=0.8,p_m=0.01.$	6				
	5	Porównanie Tabu Search z algorytmem genetycznym	10				

1 Wstęp

Celem projektu było wykonanie programu, który rozwiązywał będzie asymetryczny problem komiwojażera z wykorzystaniem algorytmu genetycznego.

2 Problem komiwojażera

Asymetryczny problem komiwojażera (ATSP - Asynchronous Travelling Salesman Problem) jest problemem optymalizacyjnym należącym do klasy NP-trudnych. Polega on na znalezieniu najkrótszego cyklu Hamiltona w skierowanym grafie ważonym. Instancja problemu reprezentowana jest przez macierz sąsiedztwa, która na przekątnej ma wartości -1.

2.1 Algorytm genetyczny

Algorytm genetyczny bazuje na zjawisku ewolucji w przyrodzie, gdzie każde kolejne pokolenie gatunku jest lepiej przystosowane do warunków panujących w środowisku. Wynika to z faktu, że tylko najlepiej przystosowane osobniki mają szansę na przeżycie. W procesie rozmnażania osobniki przekazują swoje przystosowanie potomstwu tworząc osobnika lepiej przystosowanego, co nie zawsze jednak musi mieć miejsce. U potomstwa mogą również wystąpić losowe zmiany - mutacje, które zmieniają ich przystosowanie na lepsze lub gorsze.

Podstawowe pojęcia związane z algorytmem genetycznym:

- populacja: zbiór osobników określonej liczebności.
- osobnik: zakodowany w postaci chromosomów zbiór parametrów zadania rozwiązanie, punkty przeszukiwanej przestrzeni. Dla TSP jest to ścieżka i jej długość.
- **chromosom(y)**: ciągi kodowe składające się z genów. W TSP analizie podlega tylko jeden chromosom.
- gen: cecha, pojedynczy element genotypu.
- **genotyp**: zespół chromosomów osobnika (struktura osobnika). Osobniki mogą być genotypami lub chromosomami, jeśli gentotyp składa się tylko z jednego chromosomu.
- fenotyp: zestaw wartości odpowiadających danemu genotypowi.
- allel: wartość danego genu (wartość cechy).
- locus: pozycja wskazująca miejsce położenia danego genu w ciągu (chromosomie)

2.1.1Selekcja

Operacja selekcji określa, które z osobników, po operacji krzyżowania i mutacji, zostaną wybrane

jako te najlepiej przystosowane. Na ich podstawie tworzone będą kolejne pokolenia osobników.

W zaimplementowanym algorytmie do kolejnej iteracji wybierane są najlepsze osobniki w ilości

określonej przez rozmiar populacji.

2.1.2Krzyżowanie

Operacja krzyżowania polega na wymianie materiału genetycznego pomiedzy losowo wybranymi

w procesie selekcji rodzicami. Osobnik powstały w wyniku krzyżowania powinien być lepiej przy-

stosowany od swoich rodziców. Krzyżowanie zachodzi z ustalonym prawdopodobieństwem p_c . W

algorytmie zaimplementowano następujące operatory krzyżowania:

• PMX - Partially Mapped Crossover (Goldberg, 1985)

Polega na wytworzeniu i zastosowania mapowania pomiędzy przeniesionymi elementami

pierwszego rodzica z tymi elementami rodzica drugiego, które występują w przeniesionym

fragmencie.

Rodzic 1: 8 4 7 **3 6 2 5 1** 9 0

Rodzic 2: 0 1 2 3 4 5 6 7 8 9

Dziecko: 0 7 4 3 6 2 5 1 8 9

• OX - OX - Ordered Crossover (Davis, 1985)

Polega na przeniesieniu brakujących elementów w kolejności w jakiej występują w drugim

rodzicu.

Rodzic 1: 8 4 7 **3 6 2 5 1** 9 0

Rodzic 2: 0 1-2 3 4 5 6 7 8 9

Dziecko: 0 4 7 3 6 2 5 1 8 9

4

2.1.3 Mutacje

Mutacje są elementem pozwalającym na zwiększenie szansy na wyjście z optimów lokalnych podczas przeszukiwania. Polegają one na niewielkiej zmianie w genotypie osobnika. Zachodzi ona z ustalonym prawdopodobieństwie p_m , które nie powinno być większe niż 0.1. W zaimplementowanym algorytmie mutacja jest przeprowadzona z użyciem operatora sąsiedztwa typu Insert.

$$\pi = \langle \pi(1), ..., \pi(i-1), \frac{\pi(i)}{\pi(j)}, \pi(j), \pi(i+1), ..., \pi(j-1), \pi(j+1), ..., \pi(n) \rangle$$
 (1)

3 Pomiary

Algorytmy i system pomiarowy zostały zaimplementowane wykorzystując podejście obiektowe, elementy biblioteki STL i wersję C++17. Pomiarom podlegał wynik w funkcji czasu określonym liczbą iteracji. Zaimplementowane algorytmy nie posiadają funkcji pomiaru czasu. Bazują one na liczbie iteracji wykonanych do chwili pomiaru.

Pomiary przeprowadzone były dla plików:

- ftv47.atsp
- ftv170.atsp
- rbg403.atsp

Dla każdego z nich uruchomiono algorytm genetyczny. Wynik generowany metodą zachłanną był zawsze umieszczany w generacji początkowej. Pozostałe osobniki były losowane. Użyto operatorów krzyżowania PMX i OX z prawdopodobieństwem $p_c=0.8$ i operatora sąsiedztwa dla mutacji typu Insert z prawdopodobieństwem $p_m=0.01$.

3.1 Wyniki

3.1.1 Plik ftv47 - niektóre wykonania

Iteracja	Błąd [%]
8182	33.28
8740	29.28
12849	28.89
13071	26.69
14858	24.38

Tabela 1: Błąd w kolejnych iteracjach dla pliku ftv47. P = 100, PMX, $p_c = 0.8$, $p_m = 0.01$.

Iteracja	Błąd [%]
2021	32.77
2103	31.42
2227	30.46
3631	29.22
3656	26.24
4582	25.73
7089	25.11
7110	19.48
7706	19.43
8256	18.64
9398	16.78
76566	13.01

Tabela 2: Błąd w kolejnych iteracjach dla pliku ftv47. P = 100, OX, $p_c = 0.8$, $p_m = 0.01$.

Iteracja	Błąd [%]
113	33.50
115	32.26
116	31.02
119	30.91
122	29.67
123	29.62
125	29.17
127	29.11
164	26.63
269	23.87
288	19.88
412	17.46
1337	17.06
1872	16.50
1979	16.33
1983	16.10
2089	12.27
2366	11.71
2419	10.02
4100	9.63

Tabela 3: Błąd w kolejnych iteracjach dla pliku ftv47. P = 350, PMX, $p_c = 0.8$, $p_m = 0.01$.

Iteracja	Błąd [%]
194	30.52
196	29.90
197	28.27
198	26.75
201	24.89
203	24.38
210	23.09
211	22.47
339	21.23
1030	19.54
1053	19.43
1246	19.31
2051	18.92

Tabela 4: Błąd w kolejnych iteracjach dla pliku ftv47. P = 350, OX, $p_c = 0.8$, $p_m = 0.01$.

3.1.2 ftv47

Rysunek 1: Wykres dla pliku ftv47.

Najlepsza ścieżka została znaleziona w iteracji 1464 z błędem 9.85%.

3.1.3 ftv170

Rysunek 2: Wykres dla pliku ftv170.

Najlepsza ścieżka została znaleziona w iteracji **65429** z błędem **34.7**%. Instancja problemu TSP zawarta w tym pliku jest specyficzna i źle obsługiwana przez zaimplementowane algorytmy w tym i poprzednich projektach.

$3.1.4 \quad rbg403$

Rysunek 3: Wykres dla pliku rbg403.

Najlepsza ścieżka została znaleziona w iteracji 45510 z błędem 6.69%.

3.2 Pomiary dla zmiennego prawdopodobieństwa krzyżowania

3.2.1 ftv47

Rysunek 4: Wykres dla pliku ftv47.

3.2.2 ftv170

Rysunek 5: Wykres dla pliku ftv170.

$3.2.3 \quad rbg403$

Rysunek 6: Wykres dla pliku rbg403.

4 Podsumowanie

Plik	Tabu Search	Genetic Algorithm
ftv48	0.17%	9.63%
ftv170	11.36%	34.7%
rbg403	0.57%	6.69%

Tabela 5: Porównanie Tabu Search z algorytmem genetycznym

Z dwóch analizowanych metod zdecydowanie lepiej radzi sobie metoda TabuSearch. Prawdopodobieństwo krzyżowania ma duży wpływ na szybkość uzyskania lepszych wyników. Operator PMX prawie we wszystkich przypadkach radzi sobie lepiej niż operator OX. Rozmiar populacji powinien zależeć od rozmiaru problemu. Zbyt mały nie pozwala wygenerować odpowiednio zróżnicowanej populacji, a zbyt duży generuje niepotrzebną konieczność obliczeń. Prawdopodobieństwo krzyżowania również powinno być odpowiednio dobrane, ponieważ zbyt niskie nie pozwoli populacji uzyskać dużej ilości potomnych osobników. Zbyt wysokie nie pozwoli przetrwać rodzicom, którzy mogą być podstawą lepszego rozwiązania w późniejszym krzyżowaniu.

W algorytmie genetycznym widać większy wpływ czynnika losowego.