IO1 : espaces vectoriel, application linéaire

Sujet 1:

Question de cours :

Soit E un espace vectoriel et F un sous ensemble de E. Ecrire la définition de « F est un sous espace vectoriel de E »

Application:

1. Montrer que l'ensemble F défini par $F = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \text{ tels que } x_1 + x_2 - x_3 = 0 \text{ et } 2x_1 + 3x_2 + x_3 = 0\}$ est un sous espace vectoriel.

Ecrire F comme un sous espace vectoriel engendré par une famille de vecteurs.

2. Soit $E = \{ M \in \mathcal{M}_5(R) \text{ telles que } M - {}^tM = I_5 \}$. E est-il un sous espace vectoriel de $\mathcal{M}_5(R)$?

Exercice 1:

On se place dans $\mathcal{M}_3(R)$ et on pose $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

Soit $F = \{ M \in \mathcal{M}_3(R) \text{ telles que } 2M - {}^tM = AM \}.$

- **1.** Montrer que F est un sous espace vectoriel de $\mathcal{M}_3(R)$.
- **2.** Caractériser par leurs coefficients les matrices M de F. En déduire une famille génératrice de F.
- 3. Cette famille est-elle une base de F?

Exercice 2:

On considère $A \in \mathcal{M}_3(R)$ et les ensembles suivants :

 $E_1(A) = \{ M \in \mathcal{M}_3(R) \text{ telles que AM} = M \} \text{ et } E_2(A) = \{ M \in \mathcal{M}_3(R) \text{ telles que } A^2M = AM \}.$

- **1.** Montrer que $E_1(A)$ et $E_2(A)$ sont des sous espace vectoriel de $\mathcal{M}_3(R)$.
- **2.** Montrer que $E_1(A) \subset E_2(A)$.
- **3.** Montrer que si A est inversible, $E_1(A) = E_2(A)$.

Sujet 2:

Question de cours :

Soit $(\overrightarrow{f_1},\overrightarrow{f_2},...,\overrightarrow{f_n})$ une famille de vecteur. Ecrire la définition du sous espace vectoriel engendré par $(\overrightarrow{f_1},\overrightarrow{f_2},...,\overrightarrow{f_n})$.

Exercice 1

Ecrire
$$\vec{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ comme combinaison linéaire de la famille $\overset{\rightarrow}{f_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\overset{\rightarrow}{f_2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$,

Exercice 2:

Soit les deux ensembles E et I : $E = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \text{ tels que x + y = 0} \right\}$

et I = {
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 tels que x + y = 0 et z = y}

Ecrire E comme un sous espace vectoriel engendré par une famille de vecteurs.

Faire de même avec I.

Exercice 3:

Soit F = {
$$\begin{pmatrix} x \\ y \end{pmatrix}$$
 tels que x + y = 1}

L'ensemble F ci-dessous est-il un espace vectoriel?

Exercice 4:

On se place dans $\mathcal{M}_3(R)$ et on pose $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$

Soit $F = \{ M \in \mathcal{M}_3(R) \text{ telles que } 2M - {}^tM = AM \}.$

- 1. Montrer que F est un sous espace vectoriel de $\mathcal{M}_3(R)$.
- 2. Caractériser par leurs coefficients les matrices M de F. En déduire une famille génératrice de F.

2

3. Cette famille est-elle une base de F?

Sujet 3:

Question de cours :

Soient E et F deux espaces vectoriels. Soit f une application linéaire de E dans F. Ecrire la définition du noyau de f. De quel espace vectoriel est-il un sous espace vectoriel ?

Exercice 1:

Soit f l'application
$$\mathfrak{M}_{3,1}(R) \to \mathfrak{M}_{3,1}(R)$$
 définie par f $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ = $\begin{pmatrix} x - y + z \\ x + y + 5z \\ -x - 3z \end{pmatrix}$.

Montrer que f est une application linéaire et déterminer sa matrice.

Déterminer Ker(f), puis déterminer une base de Ker(f)

Exercice 2:

Soit E = $\mathfrak{M}_{2,1}(R)$ et soit $(\overrightarrow{e_1}, \overrightarrow{e_2})$ sa base canonique. Soit f l'application de E dans E définie par :

$$\forall (x,y) \in R^2$$
, $f(x\stackrel{\rightarrow}{e_1} + y\stackrel{\rightarrow}{e_2}) = (2x + y)\stackrel{\rightarrow}{e_1} + (x - y)\stackrel{\rightarrow}{e_2}$.

Montrer que f est une application linéaire. Déterminer sa matrice.

Exercice 3:

Soit f l'application de $R_2[X]$ dans R^3 définie, pour tout polynôme P de $R_2[X]$ par :

$$f(P) = (P(0), P(1), P(2))$$

- 1. Montrer que f est une application linéaire de R₂[X] dans R³
- **2.** Déterminer Ker(f)
- 3. Donner une base de R₂[X]
- **4.** Ecrire la matrice de f dans la base canonique.

Exercice 4:

On considère $A \in \mathcal{M}_3(R)$ et les ensembles suivants :

 $E_1(A) = \{ M \in \mathcal{M}_3(R) \text{ telles que AM} = M \} \text{ et } E_2(A) = \{ M \in \mathcal{M}_3(R) \text{ telles que } A^2M = AM \}.$

- **1.** Montrer que $E_1(A)$ et $E_2(A)$ sont des sous espace vectoriel de $\mathcal{M}_3(R)$.
- **2.** Montrer que $E_1(A) \subset E_2(A)$.
- **3.** Montrer que si A est inversible, $E_1(A) = E_2(A)$.