Armazenamento e Indexação

Banco de Dados: Teoria e Prática

André Santanchè e Patrícia Cavoto Instituto de Computação - UNICAMP Setembro de 2016

Recomendações de Leitura

- (Silberschatz, 2006, cap. 11)
- (Ramakrishnan, 2003, cap. 8)
- (Elmasri, 2011, cap. 11 e 12)

Onde Armazenamos Dados?

Onde Armazenamos Dados?

- Memória RAM
- Disco
 - HD
 - CD / DVD
- Fita magnética
- Solid State Drive (SDD)
 - usa circuitos integrados como a memória sem partes mecânicas
 - retém os dados sem a necessidade de energia
 - Interface equivalente a de um disco

Questão 1

- Para cada item abaixo, liste suas vantagens e desvantagens como opção de tecnologia para armazenamento de dados num SGBD. Dê exemplos de dados que se adequariam à tecnologia.
 - a) Memória RAM
 - b) Disco Magnético
 - c) Fita Magnética

Questão 1 Resposta

- a) Memória RAM: rápida/cara. Pequena quantidade de dados, índices, dados temporários etc.
- b) Disco Magnético: relativamente barato/relativamente lento. Grande quantidade de dados, dados institucionais, logs, etc.
- c) Fita Magnética: baixo custo/lenta. Dados de backup, dados históricos, logs, etc.

Hierarquia de Armazenamento

- Armazenamento Primário
 - Operado diretamente pela CPU
 - Exemplos: memória RAM, cache
- Armazenamento Secundário
 - Usualmente mais barato e mais lento
 - Não operado diretamente pela CPU
 - Exigem intermediação de armazenamento primário
 - Exemplos: disco, fita magnética

(Elmasri, 2011)

Estrutura do Disco

By Surachit [http://en.wikipedia.org/w/index.php?title=File:Hard_drive-en.svg]

Estrutura do Disco Trilha

- Círculos magnéticos sobre a superfície
- Local onde são armazenados os dados

Estrutura do Disco Setor

- Unidades de divisão da trilha
- Menor unidade de leitura/gravação

Bloco de Disco ou Página

- Organização feita pelo SO sobre o disco
- Unidade de trabalho para o SO

Armazenamento Secundário intermediado pelo Primário

Operação de Leitura Como Abstraímos

ler(X)

Operação de Leitura Como Acontece

- ler(X)
 - encontra bloco X no disco
 - copia bloco para buffer da memória principal (se ainda não estiver lá)
 - copia o item X do buffer para a variável X da memória principal

(Elmasri, 2010)

Operação de Gravação Como Abstraímos

gravar(X)

Operação de Gravação Como Acontece

- gravar(X)
 - encontra bloco X no disco
 - copia bloco para buffer da memória principal (se ainda não estiver lá)
 - copia variável X da memória principal para o buffer
 - atualiza o buffer no disco
 (Elmasri, 2010)

Arquivos e Registros

 Um arquivo de registros - abstração para SGBD (Ramakrishnan, 2003)

- Arquivo: abstração criada pelo SO para os blocos de disco
- Registro: abstração de subdivisão do arquivo criada pela aplicação ou SGBD para o arquivo

Ordem?

		ld	ls a	Origin Place
		FMNH PR2081	Tyrannosaurus rex	Hell Creek
4		MNHN 1912.20	Triceratops calicornis	Lance Creek
		MNHN 1912.20b	Triceratops horridus	Lance Creek
		MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis
		SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis
		STC223	Plesiosaurus gurgitis	St. Croix

Ordem?

	ld	ls a	Origin Place	
	FMNH PR2081	Tyrannosaurus rex	Hell Creek	
	MNHN 1912.20	Triceratops calicornis	Lance Creek Lance Creek	
	MNHN 1912.20b	Triceratops horridus		
3	MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis	
3	SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis	
3	STC223	Plesiosaurus gurgitis	St. Croix	

ordem? ∢

Sequencial

 Gravação em ordem sequencial de acordo com a chave de busca (Silberschatz, 2006)

	Id	ls a	Origin Place
	FMNH PR2081	Tyrannosaurus rex	Hell Creek
	MNHN 1912.20	Triceratops calicornis	Lance Creek
sequencial	MNHN 1912.20b	Triceratops horridus	Lance Creek
Jequendiai	MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis
	SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis
	STC223	Plesiosaurus gurgitis	St. Croix

Ordem?

		ld	Is a	Origin Place
		MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis
		SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis
ordem?		STC223	Plesiosaurus gurgitis	St. Croix
		MNHN 1912.20	Triceratops calicornis	Lance Creek
		MNHN 1912.20b	Triceratops horridus	Lance Creek
		FMNH PR2081	Tyrannosaurus rex	Hell Creek

Sequencial

 Gravação em ordem sequencial de acordo com a chave de busca (Silberschatz, 2006)

Ordem?

_	Id	Is a	Origin Place	
	STC223	Plesiosaurus gurgitis	St. Croix	
	MNHN 1912.20b	Triceratops horridus	Lance Creek	
	SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis	
	FMNH PR2081	Tyrannosaurus rex	Hell Creek	
	MNHN 1912.20	Triceratops calicornis	Lance Creek	
	MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis	

ordem?≺

Heap

 Sem ordenação; gravação em qualquer posição (Silberschatz, 2006)

		ld	Is a	Origin Place
		STC223	Plesiosaurus gurgitis	St. Croix
		MNHN 1912.20b	Triceratops horridus	Lance Creek
hoan		SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis
heap <		FMNH PR2081	Tyrannosaurus rex	Hell Creek
		MNHN 1912.20	Triceratops calicornis	Lance Creek
		MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis

Ordem?

	ld	ls a	Origin Place			
	FMNH PR2081	Tyrannosaurus rex	Hell Creek			
	MNHN 1912.20b Triceratops horridus		Lance Creek			
	MNHN 1912.20	Triceratops calicornis	Lance Creek			
3	MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis			
3	STC223	Plesiosaurus gurgitis	St. Croix			
3	SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis			

ordem?

Hash

 Cálculo de função de hash sobre atributo para definir posição (Silberschatz, 2006)

ld	ls a	Origin Place	
FMNH PR2081	Tyrannosaurus rex	Hell Creek	
MNHN 1912.20b Triceratops horridus		Lance Creek	
MNHN 1912.20	Triceratops calicornis	Lance Creek	
MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis	
STC223	Plesiosaurus gurgitis	St. Croix	
SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis	

Exercício 1

 Dado o arquivo a seguir, proponha uma função hash para posicionar os registros conforme k.

ld	ls a	Origin Place		
STC223	Plesiosaurus gurgitis	St. Croix		
MNHN 1912.20b	Triceratops horridus	Lance Creek		
SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis		
FMNH PR2081	Tyrannosaurus rex	Hell Creek		
MNHN 1912.20	Triceratops calicornis	Lance Creek		
MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis		

Exercí	cio 1	k	parte num.	soma díg.	soma díg. (pos.)		
		STC223	223	7	7		
	ld	MNHN 1912.20b	1912	13	4	jin Place	
		SIPB R 90	90	9	9		1
	FMNH PR2081	FMNH PR2081	2081	11	2	Creek	2
		MNHN	1912	13	4		3
	MNHN 1912.20t	1912.20	2=22			ce Creek	4
	MNHN 1912.20	MNHN A. C. 8592	8592	24	6	ce Creek	5
	MNHN A. C. 859	Plesiosa	urus dol	ichodeirı	us Lym	ne Regis	6
	STC223	Plesiosa	urus gur	gitis	St.	Croix	7
							8
	SIPB R 90	Plesiosa	urus dol	ichodeiru	us Lym	ne Regis	9

 α

Organização de Arquivos

Heap

- sem ordenação
- gravação em qualquer posição

Sequencial

 gravação em ordem sequencial de acordo com a chave de busca

Hash

 cálculo de função de hash sobre atributo para definir posição

(Silberschatz, 2006)

Índice

Processamento de Consulta

- Dada a consulta:
 SELECT nome FROM Pessoa
 WHERE id=146
- Se os dados estão espalhados em disco, precisaríamos acessar todos os blocos do arquivo da tabela Pessoa
- Índices de BDs ajudam neste processo
- Índices de de BDs funcionam como índices de livros, apontando para a localização do conteúdo

Índice

- Estrutura de dados
- Organiza registros
- Otimiza certas operações de recuperação
 (Ramakrishnan, 2003)

Entrada de Índice

- Entrada de índice (data entry) → registros armazenados em um índice
- Alternativas para a entrada de índice
 - (1) k* registro completo com chave k
 - (2) $(k, rid) \rightarrow rid = id do registro de chave k$
 - (3)(k, rid-list) → rid-list = lista de registros de chave k (Ramakrishnan, 2003)

Entrada de Índice (1)

k*: registro (incluindo chave)

k: chave

ld	Is a	Origin Place	
FMNH PR2081	Tyrannosaurus rex	Hell Creek	
MNHN 1912.20	Triceratops calicornis	Lance Creek	
MNHN 1912.20b	Triceratops horridus	Lance Creek	
MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis	
SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis	
STC223	Plesiosaurus gurgitis	St. Croix	

Entrada de Índice (2)

Entrada de Índice

- Alternativas para a entrada de índice
 - (1) k* registro completo com chave k
 - (2) $(k, rid) \rightarrow rid = id do registro de chave k$
 - (3)(k, rid-list)→ rid-list = lista de registros de chave k (Ramakrishnan, 2003)
- Vantagens das alternativas (2) e (3):
 - mais de um índice para o mesmo arquivo
 - menor: pode-se carregar mais ou inteiro na memória
 - suporta estruturas mais complexas

Exercício 2

- Nas aulas anteriores, discutimos sobre redundância de informação e seus potenciais problemas. Índices são estruturas que introduzem redundância no banco de dados. Descreva o impacto da introdução deste tipo de redundância em termos de:
 - a) Consistência dos dados
 - b) Velocidade de leitura
 - c) Velocidade de gravação

Índices Primários e Secundários

- Índice primário ou de agrupamento
 - arquivo ordenado sequencialmente
 - chave de busca define ordem do arquivo
- Índice secundário
 - indice de não agrupamento
 - indice não necessariamente único

Índice Primário

 Entrada do índice (1): k* - registro completo com chave k

	ld	Is a	Origin Place
	FMNH PR2081	Tyrannosaurus rex	Hell Creek
	MNHN 1912.20	Triceratops calicornis	Lance Creek
sequencial	MNHN 1912.20b	Triceratops horridus	Lance Creek
•	MNHN A. C. 8592	Plesiosaurus dolichodeirus	Lyme Regis
	SIPB R 90	Plesiosaurus dolichodeirus	Lyme Regis
	STC223	Plesiosaurus gurgitis	St. Croix

Índice Primário

Entrada do índice (2): (k, rid)→ rid = id do registro de chave k

k	rid		K
		ld	ls a
Plesiosaurus dolichodeirus		MNHN A. C. 8592	Plesiosaurus dolichodeirus
Plesiosaurus gurgitis		SIPB R 90	Plesiosaurus dolichodeirus
Triceratops horridus		STC223	Plesiosaurus gurgitis
Tyrannosaurus rex		MNHN 1912.20	Triceratops horridus
		MNHN 1912.20b	Triceratops horridus
		FMNH PR2081	Tyrannosaurus rex

Índice Secundário

Entrada do índice (2): (k, rid)→ rid = id do registro de chave k

k rid				
			ld	Is a
FMNH PR2081	\		STC223	Plesiosaurus gurgitis
MNHN 1912.20			MNHN 1912.20b	Triceratops horridus
MNHN 1912.20b			SIPB R 90	Plesiosaurus dolichodeirus
MNHN A. C. 8592			FMNH PR2081	Tyrannosaurus rex
SIPB R 90			MNHN 1912.20	Triceratops calicornis
STC223			MNHN A. C. 8592	Plesiosaurus dolichodeirus

Índices Densos e Esparsos

Denso

uma entrada de índice para cada valor de chave

Esparso

uma entrada índice para mais de um valor de chave

Índice Denso

Uma entrada de índice para cada valor de chave

Índice Denso

Uma entrada de índice para cada valor de chave

Índice Esparso

 Uma entrada índice para mais de um valor de chave

Exercício 3

 Em uma relação com 5 atributos, qual o número máximo possível de índices primários e secundários? Justifique. Hashing

Índice de Hash

Hashing Extensivel

Índices Multiníveis

Hashing Dinâmico

buckets

Perfect Hashing
this slot a hash function from family H

(Demaine, 2003)

Árvores B

Árvores B

- Árvores *n*-árias: mais de um registro por nodo.
- Em uma árvore B de ordem m:
 - página raiz: 1 e 2m registros.
 - demais páginas: no mínimo m registros e m+1 descendentes e no máximo 2m registros e 2m+1 descendentes.
 - páginas folhas: aparecem todas no mesmo nível.
- Registros em ordem crescente da esquerda para a direita.
- Extensão natural da árvore binária de pesquisa.
- Árvore B de ordem m=2 com três níveis:

(Almeida, 2010)

Exemplo de árvore B de ordem 5

Neste caso, cada nó tem no mínimo dois e no máximo cinco registros de informação.

B-Tree Example

50

B-Tree Example (cont)

51

Números mínimos e máximos de registros

Árvore B de ordem 255:

		mínimo	máximo	
nível	nós	registros	nós	registros
1	1	1	1	1×255
2	2	2×127	256^{1}	$256^{1} \times 255$
3	2×128^{1}	$2 \times 128^1 \times 127$	256^{2}	$256^{2} \times 255$
4	2×128^2	$2 \times 128^2 \times 127$	256^{3}	$256^{3} \times 255$
5	2×128^3	$2 \times 128^3 \times 127$	256^{4}	$256^4 \times 255$
Total	4.227.331	536.870.911	4.311.810.305	1.099.511.627.775

Variantes de árvores B

- Árvores B*: o número de registros ocupados de um nó é no mínimo $\frac{2}{3}$ da sua capacidade.
- ► Árvores B⁺:
 - nós internos com chaves apenas para orientar o percurso
 - pares (chave, valor) apenas nas folhas
 - regra de descida:
 - subárvore esquerda: menor
 - subárvore direita: maior ou igual
 - apontadores em lugar de valores tornando mais eficiente a movimentação dos registros durante inserções e remoções
 - ligações facilitando percurso em ordem de chaves

Variantes de árvores B (cont.)

Exemplo de árvore B⁺ de ordem 3:

Setas tracejadas indicam apontadores para os valores da informação. A lista ligada das folhas permite percurso simples e eficiente em ordem de chaves.

Índice Mapa de Bits quando o foco é a análise

OLTP x OLAP

OLTP

- Online Transaction Processing
- Bancos de dados "tradicionais"
- Operações de inserção, atualização e exclusão em pequenas partes do banco

OLAP

- Online Analytical Processing
- Operações de extração, recuperação e análise de dados

Data Warehouse Comparada aos Bancos de Dados Tradicionais

Igual

- Coleção de dados relacionados
- Suportado por um sistema de gerenciamento

Diferente

- Orientada a aplicações de suporte a decisão
- Otimizada para recuperação de dados não OLTP

Índice Mapa de Bits

- Facilita consultas sobre chaves múltiplas
- Cada índice baseado em uma chave
- Mapa de bits sobre atributo A e relação r
 - mapa de bits = array de bits
 - tamanho do array = número registros de r
 - um mapa de bits (array) para cada valor de A

(Silberschatz et al., 2006)

Mapa de Bits

S				
_	S#	SNAME	STATUS	CITY
	51 52 53 54 55	SMITH JONES BLAKE CLARK ADAMS	20 10 30 20 30	London Paris Paris London Athens

Ρ				
P#	PNAME	COLOR	WEIGHT	CITY
P1 P2 P3 P4 P5 P6	NUT BOLT SCREW SCREW CAM COG	RED GREEN BLUE RED BLUE RED	12 17 17 14 12 19	London Paris Rome London Paris London

SF	-		
	S#	P#	QTY
	র্ভারতার ক্রম্মান্ত কর্মনার কর	T AMA MAT NAMA A	300 200 400 200 100 100 300 400 200 200 300 400

S	;	STAT	rus		CITY						
S _b STATUS 10 20 30 40					London	Rome					
S1	0	1	0	0		0	0	0			
S2	-	0	0	0	0	1	0	0			
\$3	0	0	_	0	0	-	0	0			
S4	0	-	0	0	1	0	0	0			
S5	0	0	1	0	0	0	0	0			

Pb	COLOR			WEIGHT						CITY				
	RED	GREEN	BLACK	BLUE	E 10 12 14 17 18 19					19	London	Paris	Athens	Rome
P1		0	0	0	0		0	0	0	0	1	0	0	0
P2	0	1	0	0	0	0	0	1	0	0	0	-	0	0
P3	0	0	0	-	0	0	0		0	0	0	0	0	1
P4		0	0	0	0	0	-	0	0	0	1	0	0	0
P5	0	0	0	1	0	1	0	0	0	0	0	I	0	0
P6	I	0	0	0	0	0	0	0	0	I	1	0	0	0

Fig. 1. (a,b) Binary representation of supplier—part data. (a) Supplier part data base (Date, 1982). (b) Binary representation.*

(Spiegler & Maayan, 1985)

^{*} Supplier and part names and SP relation are not shown to simplify the exposition.

Índice Mapa de Bits Otimizações

- Codificação
 - exemplo: codificação binária de possíveis valores
- Compressão
 - exigem descompressão para operações
 - participam de operações sem descompressão

Compressão de Mapa de Bits

(Koudas, 2000)

Exercício para Casa 1

- Considere a relação Aluno(ra, curso, idade) que armazene estes dados para todos os alunos da Unicamp. Para cada uma das questões a seguir, defina qual o tipo de índice mais indicado.
 - a) select * from Aluno where ra=5.
 - b) select * from Aluno where idade<70.
 - c) select * from Aluno where idade>27 and B<30.
 - d) select avg(idade) from Aluno.
 - e) select idade, count(*) from aluno where curso="Computação" group by idade

Referências

- Almeida, Charles Ornelas, Guerra, Israel; Ziviani, Nivio
 (2010) Projeto de Algoritmos (transparências aula).
- Demaine, Erik. 6.897: Advanced Data Structures Lecture
 2 (notas de aula). Fevereiro, 2003.
- Elmasri, Ramez; Navathe, Shamkant B. (2005) Sistemas de Bancos de Dados. Addison-Wesley, 4ª edição em português.
- Elmasri, Ramez; Navathe, Shamkant B. (2011) Sistemas de Bancos de Dados. Addison-Wesley, 6ª edição em português.

Referências

- Ramakrishnan, Raghu; Gehrke, Johannes (2003) Database
 Management Systems. McGraw-Hill, 3rd edition.
- Sedgewick, Robert; Wayne, Kevin (2008) Princeton University: Algorithms. Maio, 2008.
- Silberschatz, Abraham; Korth, Henry F.; Sudarshan, S.
 (2006) Sistema de Banco de Dados. Elsevier, Tradução da 5a edição.

Referências

- N. Koudas (2000). "Space efficient bitmap indexing". Proceedings of the ninth international conference on Information and knowledge management (CIKM '00). New York, NY, USA: ACM. pp. 194-201. doi:10.1145/354756.354819
- Spiegler I; Maayan R (1985). "Storage and retrieval considerations of binary data bases". Information Processing and Management: an International Journal 21 (3): 233-54. doi:10.1016/0306-4573(85)90108-6

Agradecimentos

- Luiz Celso Gomes Jr (professor desta disciplina em 2014) pela contribuição na disciplina e nos slides. Página do Celso: http://dainf.ct.utfpr.edu.br/~gomesjr/
- Patrícia Cavoto (professora desta disciplina em 2015) pela contribuição na disciplina e nos slides.
- Luana Loubet Borges pelos exercícios.

André Santanchè

http://www.ic.unicamp.br/~santanche

Licença

- Estes slides são concedidos sob uma Licença Creative Commons. Sob as seguintes condições: Atribuição, Uso Não-Comercial e Compartilhamento pela mesma Licença.
- Mais detalhes sobre a referida licença Creative Commons veja no link:

http://creativecommons.org/licenses/by-nc-sa/3.0/

Fotografia da capa e fundo por

http://www.flickr.com/photos/fdecomite/

Ver licença específica em

http://www.flickr.com/photos/fdecomite/1457493536/

Setor
Divisão por Ângulo Fixo seto

Setor Divisão por Densidade Constante

