

planetmath.org

Math for the people, by the people.

resolvent function is analytic

Canonical name ResolventFunctionIsAnalytic

Date of creation 2013-03-22 17:29:36 Last modified on 2013-03-22 17:29:36 Owner asteroid (17536) Last modified by asteroid (17536)

Numerical id 8

Author asteroid (17536)

Entry type Theorem Classification msc 46H05 Classification msc 47A10 **Theorem -** Let \mathcal{A} be a complex Banach algebra with identity element e. Let $x \in \mathcal{A}$ and $\sigma(x)$ denote its spectrum.

Then, the http://planetmath.org/ResolventMatrixresolvent function

 $R_x: \mathbb{C}-\sigma(x) \longrightarrow \mathcal{A}$ defined by $R_x(\lambda) = (x-\lambda e)^{-1}$ is http://planetmath.org/BanachSpaceValued Moreover, for each $\lambda_0 \in \mathbb{C} - \sigma(x)$ it has the power series

$$R_x(\lambda) = \sum_{n=0}^{\infty} R_x(\lambda_0)^{n+1} (\lambda - \lambda_0)^n$$
 (1)

where the series converges absolutely for each λ in the open disk centered in λ_0 given by

$$|\lambda - \lambda_0| < \frac{1}{\|R_x(\lambda_0)\|} \tag{2}$$

Proof: Analyticity is defined for functions whose domain is open.

Thus, we start by proving that $\mathbb{C} - \sigma(x)$ is an open set in \mathbb{C} . To do so it is enough to prove that for every $\lambda_0 \in \mathbb{C} - \sigma(x)$ the open disk defined by (2) above is contained in $\mathbb{C} - \sigma(x)$.

Let $\lambda_0 \in \mathbb{C} - \sigma(x)$ and λ be such that

$$|\lambda - \lambda_0| < \frac{1}{\|R_x(\lambda_0)\|}$$

Then $\|(\lambda - \lambda_0)R_x(\lambda_0)\| < 1$ and by the http://planetmath.org/NeumannSeriesInBanachAlgereseries $e - (\lambda - \lambda_0)R_x(\lambda_0)$ is invertible.

Since $\lambda_0 \notin \sigma(x)$ it follows that $(x - \lambda_0 e)$ is invertible.

Hence, from the equality

$$x - \lambda e = x - \lambda_0 e - (\lambda - \lambda_0) e = (x - \lambda_0 e) \cdot [e - (\lambda - \lambda_0) R_x(\lambda_0)]$$
 (3)

we conclude that $x - \lambda e$ is also invertible, i.e. $\lambda \in \mathbb{C} - \sigma(x)$. Thus $\mathbb{C} - \sigma(x)$ is open.

The above proof also pointed out that for every $\lambda_0 \in \mathbb{C}$, R_x is defined in the open disk of radius $\frac{1}{\|R_x(\lambda_0)\|}$ centered in λ_0 .

We now prove the analyticity of the .

Taking inverses on the equality (3) above one obtains

$$R_x(\lambda) = (e - (\lambda - \lambda_0)R_x(\lambda_0))^{-1} \cdot R_x(\lambda_0)$$

Again, by the ${\tt http://planetmath.org/NeumannSeriesInBanachAlgebras}$ Neumann series, one obtains

$$R_x(\lambda) = \left[\sum_{n=0}^{\infty} R_x(\lambda_0)^n (\lambda - \lambda_0)^n\right] \cdot R_x(\lambda_0) = \sum_{n=0}^{\infty} R_x(\lambda_0)^{n+1} (\lambda - \lambda_0)^n \quad \Box$$