Overheads: - Outline

Recap Friday: S_N2 vs S_N1 Reactions

 $S_N 1$ $S_N 2$ VS - one step - two steps - C⁺ intermediate (♠ can rearrange!) - no C^+ - rate = $k[R-LG][Nu^{-}]$ - rate = k[R-LG](bimolecular) (unimolecular) - stereochem = inverted - stereochem = racemic - $1^{\circ} > 2^{\circ}$ (no 3°) {steric hinderance} $-3^{\circ} > 2^{\circ} \text{ (no } 1^{\circ}\text{)} \{C^{+} \text{ stability}\}$ - needs good LG - needs good LG - needs strong Nu (high conc. helps) - weak Nu: ok

2) Vinyl & Aryl Halides

or

Role of Equilibrium in $S_N1 \& S_N2$

$$R - Br + I^{\Theta} = \frac{\text{solvent}}{\text{acetone}} R - I + Br^{\Theta} = \frac{\text{is Keq big or small?}}{\text{(ie products or reactants favored)}}$$

 \rightarrow Whis is better LG? I-> Br-

 \rightarrow Which is better Nu-? aprotic :: Br->I-

General Rule: Stronger base kicks out weaker base

BUT – can shift eq'm by adding or removing reactants / products ⇒ LeChatellier

⇒if [I] >> [Br] can "force" reaction to go forward

(as long as I- & Br- have similar LG ability)

Solvents for Substitution Reactions:

- ⇒ need polar solvent
 - ⇒ to dissolve charged species (Nu etc)
 - ⇒ to <u>stabilize</u> charged species

solvation / H-bonding / dipole-dipole interactions

Two types of Polar Solvents:

 \Rightarrow protic solvent favors $S_N 1$

 \Rightarrow polar aprotic solvent favors $S_N 2$

Predicting
$$S_N 1 \ vs \ S_N 2$$

$$2^{\circ}$$
 / CH₂-X harder to predict

Depends on:

1) Nu strength (S_N2 needs strong Nu)

2) $[Nu^{-}]$ – higher conc. increases rate of $S_N 2$ but not $S_N 1!$

3) Solvent: protic = S_N1 ; aprotic = S_N2

e.g.
$$\frac{\text{high conc. OH}^-}{\text{DMSO}}$$
 $\frac{\text{high conc. OH}^-}{\text{DMSO}}$ $\frac{\text{HO}_{\text{IM}_{N}}}{\text{DMSO}}$ $\frac{\text{HO}_{\text{IM}_{N}}}{\text{S}_{N}2: inversion}$ $\frac{\text{HO}_{\text{IM}_{N}}}{\text{HO}_{\text{IM}_{N}}}$ $\frac{\text{HO}_{\text{IM}_{N}}}{\text{HO}_{N}}$ $\frac{\text{HO}_{\text{IM}_{N}}}{\text{HO}_{N}}$ $\frac{\text{HO}_{\text{IM}_{N}}}{\text{HO}_{N}}$ $\frac{\text{HO}_{\text{IM}_{N}}}{\text{HO}_{N}}$ $\frac{\text{HO}_{\text{IM}_{N}}}{\text{HO}_{N}}$ $\frac{\text{HO}_{\text{IM}_{N}}}{\text{HO}_{N}}$ $\frac{\text{HO}_{N}}}{\text{HO}_{N}}$ $\frac{\text{HO}_{\text{IM}_{N}}}{\text{HO}_{N}}$ $\frac{\text{HO}_{\text{IM}_{N}}}{\text{HO}_{N}}$ $\frac{\text{HO}_{N}}$ $\frac{\text{HO}_{\text{IM}_{N}}}{\text{HO}_{$

Q: Why do we care?

 \Rightarrow S_N2 generally better:

- 1) control stereochemistry if chiral
- 2) no rearrangements
- 3) higher yields

So why don't we always do S_N2 ?

 \Rightarrow S_N1 uses cheaper solvents and Nu⁻ (H₂O vs NaOH/DMSO

⇒ easier to do

Intermolecular & Intramolecular Reactions

between 2 molecules within one molecule

⇒ compare to intermural *vs* intramural sports

⇒ If Nu and LG are in the same molecule:

Intermolecular

Intramolecular usually favored \Rightarrow doesn't need to find 2^{nd} molecule (low conc. favors intra)

Ring size: 5-6 membered rings favor Intramolecular

3-4 membered rings ⇒ ring strain favor Intermolecular

7+ rings ⇒ ends far apart