Devoir à la maison n° 9

À rendre le 9 décembre

On note $\mathscr{P}_f(\mathbb{N})$ l'ensemble des parties finies de \mathbb{N} .

- 1) a) Montrer que la relation d'inclusion \subset est une relation d'ordre sur $\mathscr{P}_f(\mathbb{N})$.
 - **b)** La relation \subset est-elle totale sur $\mathscr{P}_f(\mathbb{N})$? (N'oubliez pas de justifier votre réponse!)
- 2) On note $A_1 = \{0; 4\}$, $A_2 = \{4; 5\}$ et $A_3 = \{0; 2; 4\}$, ainsi que $\mathscr{A} = \{A_1; A_2; A_3\}$.
 - a) Soit $X \in \mathscr{P}_f(\mathbb{N})$. Écrire de manière quantifiée la proposition « X minore \mathscr{A} pour \subset », ainsi que sa négation.
 - b) Montrer que \mathcal{A} n'admet pas de plus petit élément.
 - c) Déterminer l'ensemble des minorants de \mathscr{A} dans $\mathscr{P}_f(\mathbb{N})$.
 - d) Montrer que \mathscr{A} admet une borne inférieure dans $\mathscr{P}_f(\mathbb{N})$, que l'on précisera. Indication : on pourra remarquer que cette borne inférieure X est « la plus grande partie finie de \mathbb{N} contenue dans A_1 , A_2 et A_3 ».
 - e) Donner, sans démonstration, la borne supérieure de \mathscr{A} pour \subset .
- 3) a) Soit $n \in \mathbb{N}^*$, A_1, \ldots, A_n des parties finies de \mathbb{N} , soit $\mathscr{A} = \{A_1, \ldots, A_n\}$.

 Remarque : \mathscr{A} est donc une partie finie quelconque de $\mathscr{P}_f(\mathbb{N})$ Montrer que \mathscr{A} possède une borne supérieure dans $\mathscr{P}_f(\mathbb{N})$ pour \subset , que l'on précisera.
 - b) Soit I un ensemble, $(A_i)_{i\in I}$ une famille de parties finies de \mathbb{N} et $\mathscr{A} = \{A_i \mid i \in I\}$. Remarque : \mathscr{A} est donc une partie quelconque de $\mathscr{P}_f(\mathbb{N})$ Montrer que \mathscr{A} possède une borne inférieure dans $\mathscr{P}_f(\mathbb{N})$ pour \subset , que l'on précisera.
 - c) Montrer qu'il existe au moins une partie de $\mathscr{P}_f(\mathbb{N})$ n'admettant pas de borne supérieure dans $\mathscr{P}_f(\mathbb{N})$ pour \subset .
 - d) L'ensemble ordonné $(\mathscr{P}_f(\mathbb{N}), \subset)$ vérifie-t-il la propriété de la borne supérieure?

— FIN —