

รายวิชา 568352 สารสนเทศศาสตร์สำหรับบุคลากรสุขภาพ

DATA ANALYSIS WITH

STATISTICAL SOFTWARE

(บรรยาย)

รศ.ดร.ลาวัลย์ ศรัทธาพุทธ

ภาควิชาสารสนเทศศาสตร์ทางสุขภาพ คณะเภสัชศาสตร์ มหาวิทยาลัยศิลปากร

วัตถุประสงค์

• ให้มีความรู้ความเข้าใจเกี่ยวกับ

- หลักการสถิติเบื้องต้น (ทบทวน)
- —เครื่องมือช่วยวิเคราะห์ข้อมูลเชิงสถิติ PSPP
- ให้มีทักษะด้าน
 - -การประยุกต์โปรแกรมสถิติ PSPP ในการวิเคราะห์ข้อมูลสุขภาพ

โครงสร้างเนื้อหา

- Part I: Basic Statistics (ทบทวน)
- Part II: Introduction to PSPP
- Part III: PSPP: Data Preparation and Transformation
- Part IV: PSPP: Descriptive Statistics
- Part V: PSPP: Compare Means

รายการอ้างอิง

- รศ.ศศิธร สุวิรัชวิทยกิจ สถิติสำหรับวิทยาศาสตร์และนักวิทยาศาสตร์ประยุกต์ เล่ม 1, เล่ม 2 มหาวิทยาลัยศิลปากร
- Elementary Statistics: A Step by Step Approach, 8th edition, Allan G. Bluman ,McGraw-Hill, 2009.

รายการอ้างอิง

5

 ผศ. ดร.ลาวัลย์ ศรัทธาพุทธ คู่มือ การใช้ซอฟต์แวร์เสรีทางสถิติ PSPP สำหรับผู้เริ่มต้น, โรงพิมพ์ มหาวิทยาลัยศิลปากร, 2012.

Basic Statistics

ความหมายของสถิติ

- คือ ศาสตร์ที่เรียนเกี่ยวกับ
 - —การเก็บรวบรวมข้อมูล (Collection of data)
 - —การวิเคราะห์ข้อมูล (Analysis of data)
 - —การให้ความหมายข้อมูล (Interpretation of data)
 - —การนำเสนอข้อมูล (Presentation of data)
- คือ การวิเคราะห์เพื่อนำผลสรุปไปใช้ในการตัดสินใจ
- คือ ตัวเลข ที่แสดงลักษณะสำคัญของข้อมูลชุดหนึ่งๆ

ประเภทของข้อมูลสถิติ

- แบ่งตามแหล่งที่มาของข้อมูล
 - ข้อมูลปฐมภูมิ, ข้อมูลทุติยภูมิ
- แบ่งตามลักษณะของข้อมูล
 - ข้อมูลคุณภาพ, ข้อมูลปริมาณ
- แบ่งตามระดับการวัดของข้อมูล
 - ข้อมูลระดับนามบัญญัติ, ข้อมูลระดับเรียงลำดับ/จัดอันดับ, ข้อมูลระดับช่วง/ภาคชั้น,
 ข้อมูลระดับอัตราส่วน

ระดับการวัดของข้อมูล

ข้อมูลระดับนามบัญญัติ

• ข้อมูลระดับนามบัญญัติ (Nominal Scale)

คือ ข้อมูลที่บอกการจำแนกข้อมูลออกเป็นกลุ่ม โดยอาศัยลักษณะที่มีร่วมกัน จำแนก เช่น

- จำแนกตามเพศ
- จำแนกตามศาสนา
- ถึงแม้จะมีการกำหนดตัวเลขให้ตัวแปรก็ตาม จะนำตัวเลขเหล่านี้มา บวก ลบ คูณ หาร กันไม่ได้เพราะผลลัพธ์ที่ได้ไม่ให้ความหมายอะไร
- การกำหนดตัวเลขเพื่อเข้า computer หรือใช้นับจำนวนได้อย่างเดียว

ข้อมูลระดับเรียงลำดับ

- ข้อมูลระดับเรียงลำดับ/จัดอันดับ (Ordinal Scale)
- คือ ข้อมูลที่บอกการจำแนกข้อมูลออกเป็นกลุ่ม และบอกความแตกต่างระหว่าง กลุ่มได้ แต่ไม่บอกว่าแตกต่างกันเท่าไหร่ เช่น
 - ความชอบ, ความสวย
 - เกรด
- ตัวเลขที่แสดงไว้มีความหมายเพียงแสดงลำดับที่เท่านั้น ไม่นิยมนำไป บวก ลบ คูณ หรือหาร เพราะผลลัพธ์ที่ได้ไม่ให้ความหมายอะไร
- ระยะห่างระหว่างตัวเลขแต่ละช่วงมีระยะเท่ากันหรือไม่ก็ได้

ข้อมูลระดับช่วง

• ข้อมูลระดับช่วง/ภาคชั้น (Interval Scale)

คือ ข้อมูลที่บอกการจำแนกข้อมูลออกเป็นกลุ่ม และบอกความแตกต่างระหว่าง กลุ่มเป็นปริมาณหรือตัวเลขได้ แต่จุดเริ่มต้นของระดับข้อมูลไม่คงที่ สามารถเปลี่ยนได้ตาม หน่วยของการวัด (ไม่มี '0' ที่แท้จริง คือค่า '0' ไม่ได้หมายถึงไม่มีสิ่งนั้น) เช่น

- อุณหภูมิ 0°C ไม่ได้แปลว่าไม่มีความร้อนเลย
- ระยะห่างระหว่างตัวเลขแต่ละช่วงมีระยะเท่ากัน

ข้อมูลระดับอัตราส่วน

13

• ข้อมูลระดับอัตราส่วน (Ratio Scale)

้คือ ข้อมูลที่บอกการจำแนกข้อมูลออกเป็นกลุ่ม และบอกความแตกต่าง ระหว่างกลุ่มเป็นปริมาณหรือตัวเลขได้ และยังมีจุดเริ่มต้นที่คงที่ ไม่เปลี่ยนตาม หน่วยของการวัด (มี '0' ที่แท้จริง หรือมี absolute zero) เช่น

- น้ำหนัก
- ปริมาณคลอเรสเตอรอล
- สามารถเปรียบเทียบเป็นอัตราส่วนกันได้ด้วย

วิธีการทางสถิติ

- สถิติเชิงพรรณนาหรือสถิติบรรยาย (Descriptive Statistics) = สถิติ สำหรับบรรยาย
- สถิติเชิงอนุมานหรือสถิติอ้างอิง (Inference Statistics)
 - = สถิติสำหรับอ้างอิง
- สถิติสำหรับทดสอบเครื่องมือ (Test Statistics)

สถิติเชิงพรรณนา

- สถิติเชิงพรรณนาหรือสถิติบรรยาย (Descriptive Statistics)
- เป็นสถิติที่ใช้ข้อมูลที่เก็บรวบรวมมาทั้งหมดซึ่งอาจเป็นกลุ่มประชากรหรือกลุ่ม ตัวอย่าง มาทำการวิเคราะห์เพื่อมุ่งบรรยายลักษณะหรือสรุปผลเฉพาะของกลุ่มที่ เก็บมา ไม่มีการนำไปใช้อ้างอิงกับกลุ่มอื่น

สถิติเชิงพรรณนา

- วิธีการบรรยายลักษณะข้อมูล มีดังนี้
 - การนำเสนอข้อมูล (Presentation)
 - บทความบรรยาย, ตาราง, กราฟ
 - การแจกแจงความถี่ (Frequencies)
 - จำนวนข้อมูล, ร้อยละ
 - การหาค่าแนวโน้มเข้าสู่ส่วนกลาง (Measure Central of Tendency) หรือการ หาค่ากลาง
 - Mean, Mode, Median
 - การหาค่าการกระจายของข้อมูล (Dispersion)
 - Range, Standard Deviation, Variance, Quartile Deviation

สถิติเชิงอนุมาน

17 |•|||

- สถิติเชิงอนุมานหรือสถิติอ้างอิง (Inference Statistics)
- เป็นสถิติที่ใช้ข้อมูลที่ได้จากกลุ่มตัวอย่างมาทำการวิเคราะห์โดยใช้วิธีการของสถิติ บรรยายมาช่วย เพื่ออธิบายคุณลักษณะของสิ่งที่ต้องการศึกษาในกลุ่มนั้น แล้ว อ้างอิงไปยังกลุ่มอื่น โดยใช้**หลักของความน่าจะเป็น**มาทดสอบสมมติฐาน
- เช่น การทดสอบสมมติฐาน
 - ค่าเฉลี่ย
 - ค่าสัดส่วน
 - ค่าความแปรปรวน

ประเภทของสถิติเชิงอนุมาน

- แบบอิงพารามิเตอร์ (Parametric Inference) สำหรับข้อมูลที่มีคุณสมบัติเป็นไปตาม เงื่อนไขดังนี้
 - ระดับการวัดของข้อมูลควรอยู่ในระดับ interval หรือ ratio
 - ข้อมูลได้จากการสุ่มที่มีความเป็นอิสระต่อกัน
 - -ข้อมูลมีการแจกแจงแบบปกติ (Normal distribution)
- แบบไม่อิงพารามิเตอร์ (Non-Parametric Inference) สำหรับข้อมูลไม่มีคุณสมบัติ เป็นไปตามเงื่อนไขดังกล่าว หรือกลุ่มข้อมูลที่มีขนาดเล็กหรือมีจำนวนน้อย

ความน่าจะเป็น

• ความน่าจะเป็น (Probability) คือ อัตราส่วนระหว่างจำนวนสมาชิกของ เหตุการณ์ที่สนใจ (n) กับจำนวนสมาชิกที่เป็นไปได้ทั้งหมด (N)

$$P(E) = \frac{n}{N}$$

การแจกแจงความน่าจะเป็น

• การแจกแจงความน่าจะเป็น (Probability distribution) หรือ ฟังก์ชันของความ น่าจะเป็น (Probability function) คือ ค่าฟังก์ชันที่แสดงถึงค่าของตัวแปรสุ่มค่า หนึ่งว่าจะมีค่าความน่าจะเป็นเท่าใด

การแจกแจงความน่าจะเป็น

• เช่น การแจกแจงความน่าจะเป็นของการสำรวจ<mark>จำนวนบุตรชาย</mark>ในครอบครัวที่มี บุตร 2 คน

			<u> </u>	
Χ	0	1	2	total
P(X=x _i)	1/4	2/4	/ 1/4	1
		,4		

$$P(X = x_i) = \frac{{}^{n}C_x}{4} = \left(\frac{n!}{x!(n-x)!}\right)/4;....example = \frac{2!}{1!(2-1)!}/4 = \frac{2}{4}$$

Recall: 0! =1

การแจกแจงแบบปกติ

• การแจกแจงแบบปกติ (Normal Distribution) คือ การแจกแจงของตัว แปรสุ่ม x ที่มีค่าเฉลี่ยเลขคณิตคือ μ (mu) และค่าส่วนเบี่ยงเบนมาตรฐาน คือ σ (sigma)

$$f(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-1/2\left(\frac{x-\mu}{\sigma}\right)^2}; -\infty < x < \infty$$

• เป็นการแจกแจงที่สำคัญที่สุดเนื่องจาก ทฤษฎีต่างๆทางสถิติ จะตั้งอยู่บน พื้นฐานการแจกแจงแบบนี้

คุณลักษณะของการแจกแจงแบบปกติ

Normal and Skewed Distributions

คุณลักษณะของการแจกแจงแบบปกติ

- สมมาตรกันที่แกน x = μ
- ที่ x = μ จะให้ค่าความถี่สูงสุดเพียงจุดเดียว
- มีค่า mean, median, และ mode เท่ากัน
- มีพื้นที่ใต้เส้นโค้งเหนือแกน x เท่ากับ 1 หน่วย (100%)

คุณลักษณะของการแจกแจงแบบปกติ

- ถ้าลากเส้นตรงตั้งฉากกับแกน \times ที่ระยะห่างจาก μ ถึงเส้นตั้งฉากนี้ เป็นระยะ เท่ากับ $\pm 1\sigma$ จะมีพื้นที่ใต้กราฟประมาณ 68% และ
- ถ้าห่างไปจาก μ เป็นระยะเท่ากับ $\pm 2\sigma$ หน่วย จะมีพื้นที่ใต้กราฟประมาณ 95% และ
- ถ้าห่างไปจาก μ เป็นระยะเท่ากับ $\pm 3\sigma$ หน่วย จะมีพื้นที่ใต้กราฟประมาณ 99.7%

คุณลักษณะของการแจกแจงแบบปกติ

Areas Under a Normal Distribution Curve

คุณลักษณะของการแจกแจงแบบปกติ

• การสร้างเส้นโค้งปกติโดยใช้ parameter μ และ σ —ถ้าให้ μ มีค่าคงที่ แล้วเปลี่ยนแปลงค่า σ กราฟจะสูงต่ำ ดังรูป

(a) Same means but different standard deviations

คุณลักษณะของการแจกแจงแบบปกติ

- ullet การสร้างเส้นโค้งปกติโดยใช้ parameter μ และ σ
 - -ถ้าให้ σ มีค่าคงที่ แล้วเปลี่ยนแปลงค่า μ กราฟจะเลื่อนไปตามแกน imes ดังรูป

(b) Different means but same standard deviations

คุณลักษณะของการแจกแจงแบบปกติ

• เมื่อเปลี่ยนเป็นค่ามาตรฐานแล้ว ค่าเฉลี่ยเลขคณิต(μ) และค่าส่วนเบี่ยงเบน มาตรฐาน (σ) ของค่ามาตรฐานมีค่า 0 และ 1 ตามลำดับ

การแจกแจงแบบปกติมาตรฐาน

• การแจกแจงแบบปกติมาตรฐาน (Standard Normal Distribution) คือ การ แจกแจงของตัวแปรสุ่มปกติ x ที่มีค่าเฉลี่ยเลขคณิตเป็น 0 และค่าส่วนเบี่ยงเบน มาตรฐาน เป็น 1

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}; -\infty < z < \infty$$

การแจกแจงปกติมาตรฐาน

• All normally distributed variables can be transformed into the standard normally distributed variable by using the formula for the standard score:

$$Z = \frac{X_i - \mu}{\sigma}$$

• ค่าเฉลี่ย และค่าส่วนเบี่ยงเบนมาตรฐาน ของค่ามาตรฐาน Z จะมีค่า 0 และ 1 ตามลำดับ

การแจกแจงแบบปกติมาตรฐาน

• Standard Normal Distribution

การทดสอบสมมติฐาน

- 33
- **การทดสอบสมมติฐาน** (Hypothesis testing) คือกระบวนการตัดสินใจว่าจะ ยอมรับหรือปฏิเสธสมมติฐาน (H_o) ที่ตั้งขึ้น เพื่อสรุปการอ้างอิงค่า**ตัวสถิติ** (ของ ตัวอย่าง) ไปสู่ค่า**พารามิเตอร์** (ของประชากร)
- สมมติฐานทางสถิติ (Statistical hypothesis) คือข้อสมมติเกี่ยวกับ ค่าพารามิเตอร์ของประชากร

ทบทวนนิยามศัพท์

- พารามิเตอร์ (Parameter) คือค่าคงที่ที่แสดงคุณลักษณะบางประการของ ประชากรที่ไม่ทราบค่าที่แท้จริง
- ตัวสถิติ (Statistic) คือ ค่าที่วัดมาจากหน่วยตัวอย่างต่างๆ ที่ถูกเลือกขึ้นมา เป็นตัวอย่าง ซึ่งมีค่าแตกต่างกันไปตามตัวอย่างที่สุ่มมาได้
 - —ค่าของตัวสถิติที่คำนวณออกมาเป็นตัวเลขจะใช้เป็นค่าประมาณ (Estimate) ของ พารามิเตอร์ต่อไป

สัญลักษณ์

• การกำหนดสัญลักษณ์ที่แตกต่างกันของตัวสถิติและพารามิเตอร์

การวิเคราะห์	ตัวสถิติ	พารามิเตอร์
Mean	$\overline{\mathbf{x}}$	μ
Proportion	р	π
Standard deviation	S	σ
Correlation	r	ρ
Regression	b	β

สมมติฐานทางสถิติ (Hypothesis)

การตั้งสมมติฐานทางสถิติ

- **สมมติฐานว่าง** (Null Hypothesis, H_o) คือสมมติฐานที่บอกถึง<u>ค่าของพารามิเตอร์</u>ของ ประชากรที่มาจาก**ความเชื่อที่ต้องการพิสูจน์**
- สมมติฐานทางเลือก (Alternative Hypothesis, H_1 หรือ H_3) คือสมมติฐานที่ตรงกันข้าม กับ H_{Λ} ซึ่งเป็นสมมติฐานของความเชื่อที่ผู้วิจัยสนใจ
- เช่น

$$H_0: \mu = 200 \qquad H_1: \mu \neq 200$$

$$H_{_{0}}: \; \mu_{_{1}} = \mu_{_{2}} \qquad \quad H_{_{1}}: \; \mu_{_{1}}
eq \mu_{_{2}}$$
หรือ $\mu_{_{1}} > \mu_{_{2}}$ หรือ $\mu_{_{1}} < \mu_{_{2}}$

$$H_0: \; \mu_1^- \; \mu_2^- = 0 \; \quad H_1: \; \mu_1^- \; \mu_2^- \neq 0 \;$$
 หรือ $\mu_1^- \mu_2^- > 0 \;$ หรือ $\mu_1^- \mu_2^- < 0 \;$

ชนิดของความผิดพลาด (ความคลาดเคลื่อน)

• ชนิดของความผิดพลาด (Type of Error)

การตัดสินใจ	สมมติฐาน H _o จริง	สมมติฐาน H₀ ไม่จริง
ไม่ปฏิเสธ	ไม่มีความผิดพลาด	ความผิดพลาดชนิดที่ 2
สมมติฐาน H ₀	(1-α)	(β-error)
ปฏิเสธ	ความผิดพลาดชนิดที่ 1	ไม่มีความผิดพลาด
สมมติฐาน H ₀	(α-error)	(1-β)

บริเวณวิกฤต (Critical Region)

- บริเวณที่ปฏิเสธ H_0 (Rejection region, Critical region) คือพื้นที่ใต้โค้งที่มี ค่าเท่ากับ α
- บริเวณไม่ปฏิเสธ H_0 (Non-rejection region, Noncritical region) คือ พื้นที่ส่วนที่เหลือซึ่งมีค่าเท่ากับ 1- α
- ค่าวิกฤต (Critical value) คือ ค่าที่แบ่งบริเวณที่ปฏิเสธ H_o กับบริเวณไม่ ปฏิเสธ H_o นี้

Two-tailed test

• Acceptance region and Rejection regions for the hypothesis test

Right-tailed test

• Acceptance region and Rejection regions for the hypothesis test

Left-tailed test

• Acceptance region and Rejection regions for the hypothesis test

ทบทวนนิยามศัพท์

- ค่าวิกฤติ (Critical value) คือค่าสถิติที่ได้จากการ<u>เปิดตาราง</u>สถิติ เช่น Z_{table}

วิธีการทดสอบสมมติฐาน

- วิธีการทดสอบสมมติฐาน (Hypothesis testing method) มี 3 วิธี ได้แก่
 - 1. Statistic value method

- 2. P-value method
- 3. Confidence interval method

ระดับนัยสำคัญที่สังเกตได้ (p-value)

- 45
- ระดับนัยสำคัญที่สังเกตได้ (Observed significance level, p-value) คือ ความน่าจะเป็นซึ่งได้จากค่าสถิติทดสอบที่<u>ได้จากการคำนวณ</u> => ค่าสถิติที่ได้ จากการคำนวณจากตัวอย่าง ไปเปิดตารางหาค่าความน่าจะเป็น (p-value)
- ค่า p-value
 - —คือโอกาสที่เกิดขึ้นได้ของ Null hypothesis
 - -คือโอกาสที่ Null hypothesis เป็นจริง
 - —ใช้ค่า p-value เป็นหลักฐานที่จะยอมรับหรือปฏิเสธสมมติฐาน ${
 m H_0}$

Hypothesis testing

P-value Method

- 1. กำหนดสมมติฐาน
- 2. กำหนดระดับนัยสำคัญ (significance level) lpha
- 3. คำนวณค่าสถิติทดสอบ (test value) ของวิธีสถิติที่เลือก
- 4. นำค่าสถิติทดสอบไปเปิดตารางหาค่า p-value
- 5. ตัดสินใจว่าจะ reject $\mathsf{H}_{\scriptscriptstyle n}$ หรือไม่โดยเปรียบเทียบค่า p-value กับค่า \pmb{lpha}
- 6. สรุปและแปลผล

P-value Method

- Decision Rule
- กรณี Two-tailed Test
 - ปฏิเสธ H_0 เมื่อ p-value $\leq lpha$ /2 หรือ
 - ปฏิเสธ H_0 เมื่อ p-value x 2 $\leq \alpha$ กรณีนี้ p-value คือ p-value(1-tailed) (หนังสือสถิติมักให้ค่านี้)
 - ปฏิเสธ H_0 เมื่อ p-value $\leq \alpha$ กรณีนี้ p-value คือ p-value(2-tailed) (โปรแกรมสถิติมักให้ค่านี้)

P-value Method

- Decision Rule
- กรณี One-tailed Test
 - ปฏิเสธ H_0 เมื่อ p-value $\leq \alpha$ กรณีนี้ p-value คือ p-value(1-tailed) (หนังสือสถิติมักให้ค่านี้)
 - ปฏิเสธ H_0 เมื่อ p-value / 2 $\leq \alpha$ หรือ
 - ปฏิเสธ H_0 เมื่อ p-value $\leq \alpha \times 2$ กรณีนี้ p-value คือ p-value(2-tailed) (โปรแกรมสถิติมักให้ค่านี้)
- Note: กรณี one-tailed test จะต้อง check เครื่องหมายของ test value ให้สอดคล้องกับ H₁ ด้วยเนื่องจากมี แบบ Right-tailed (+) และ Left-tailed (-)

ตัวอย่างตาราง T-test

Table F	The t Distribution		
	Confidence intervals	80%	90%
	One tail, α	0.10	0.05
d.f.	Two tails, α	0.20	0.10
1		3.078	6.314
2		1.886	2.920

การทดสอบสมมติฐานของค่าเฉลี่ย

• เป็นการทดสอบความแตกต่างของค่าเฉลี่ยระหว่างค่าที่ได้จากตัวอย่างกับค่า คาดหวังของประชากร หรือระหว่างตัวอย่างกับตัวอย่าง ว่ามีนัยสำคัญหรือไม่

ข้อตกลงเบื้องต้น

- การทดสอบค่าเฉลี่ยที่จะใช้สถิติเชิงอนุมานแบบอิงพารามิเตอร์ได้ก็ต่อเมื่อข้อมูลที่ นำมาทดสอบจะต้อง
 - -เป็นข้อมูลระดับช่วงหรืออัตราส่วน
 - เป็นข้อมูลที่ได้จากการสุ่มที่มีความเป็นอิสระต่อกัน
 - เป็นข้อมูลที่มีการแจกแจงแบบปกติหรือใกล้เคียง (ถ้าไม่เป็นตามนี้จะต้องเก็บข้อมูลมากขึ้น ตามทฤษฏี Central Limit Theorem)
- Central Limit Theorem คือถ้าข้อมูลจำนวนมากๆ (มากกว่า 30 ตัวอย่าง) จะทำ ให้ข้อมูลตัวอย่างมีการแจกแจงใกล้เคียงแบบปกติ

การทดสอบสมมติฐานของค่าเฉลี่ย

- สำหรับ 1 ประชากร
 - เป็นการศึกษาเพื่อตรวจสอบคุณลักษณะของข้อมูล โดยการหาค่าเฉลี่ยแล้วนำมาเปรียบเทียบ กับค่าที่คาดหวังว่ามีความแตกต่างกันหรือไม่
- สำหรับ 2 ประชากร
 - เป็นการศึกษาเพื่อตรวจสอบคุณลักษณะของข้อมูล 2 กลุ่ม โดยการหาค่าเฉลี่ยแล้วนำมา เปรียบเทียบกันว่ามีความแตกต่างกันหรือไม่
- สำหรับ ≥3 ประชากร
 - เป็นการตรวจสอบว่าคุณลักษณะใดของข้อมูลตั้งแต่ 3 กลุ่มขึ้นไป มีความแตกต่างกันหรือไม่ และถ้าแตกต่างกันจะแตกต่างกันอย่างไร

การทดสอบค่าเฉลี่ยของ 1 ประชากร

• กรณี<mark>ทราบ</mark>ค่าความแปรปรวนของประชากร ($\mathbf{\sigma}^2$) ใช้ z-test สูตรดังนี้

$$Z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

• กรณี<mark>ไม่ทราบ</mark>ค่าความแปรปรวนของประชากร ($\mathbf{\sigma}^2$) ใช้ t-test สูตรดังนี้

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} df = n-1$$

ค่า μ₀ คือค่าคาดหวังหรือค่าตัวเลขที่กำหนดไว้ในสมมติฐาน

การทดสอบค่าเฉลี่ยของ 2 ประชากร

- การทดสอบความแตกต่างของค่าเฉลี่ยสำหรับข้อมูล 2 กลุ่มซึ่งจำแนกออกเป็น 2 กรณี คือ
 - –กรณีตัวอย่างเป็นอิสระต่อกัน (Independent Sample)
 - -กรณีตัวอย่างไม่เป็นอิสระต่อกัน (Dependent Sample)

Independent Sample

• กรณี<mark>ทราบ</mark>ค่าความแปรปรวนของประชากรทั้ง 2 กลุ่ม ใช้ z-test

$$Z = \frac{\overline{X}_{1} - \overline{X}_{2}}{\sqrt{\frac{\sigma_{1}^{2} + \frac{\sigma_{2}^{2}}{n_{1}}}{n_{1}}}}$$

Independent Sample

- กรณ<mark>ีไม่ทราบ</mark>ค่าความแปรปรวนของประชากรทั้ง 2 กลุ่ม ใช้ t-test ซึ่งมี 2 กรณีคือ
 - กรณีความแปรปรวนของทั้ง 2 กลุ่มแตกต่างกัน
 - กรณีความแปรปรวนของทั้ง 2 กลุ่มไม่แตกต่างกัน

Independent Sample

• เมื่อความแปรปรวนของทั้ง 2 กลุ่มแตกต่างกัน ใช้สูตร

$$t = \frac{\overline{X}_1 - \overline{X}_2}{S_p} \qquad \text{Ind} \quad df = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{S_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{S_2^2}{n_2}\right)^2} - 2$$

$$S_p = \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$$

Independent Sample

• เมื่อความแปรปรวนของทั้ง 2 กลุ่มไม่แตกต่างกัน ใช้สูตร

$$t = \frac{\overline{X}_1 - \overline{X}_2}{S_p}$$
 โดย $d.f. = n_1 + n_2 - 2$

$$S_p = \sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \left[\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}\right]}$$

การทดสอบค่าความแปรปรวน

• การทดสอบค่าความแปรปรวน

$$\mathsf{H}_0: \sigma_1^2 = \sigma_2^2$$

$$\mathsf{H}: \sigma^2 \neq \sigma^2$$

 $H_1: \sigma_1^2 \neq \sigma_2^2$

• สำหรับ 2 กลุ่มตัวอย่าง ใช้ F-test

$$F = \frac{S_1^2}{S_2^2}$$

$$df = n_1 - 1, n_2 - 1$$

$$S_1^2 > S_2^2$$

การทดสอบค่าความแปรปรวน

- 61
- ullet จากค่า F ที่ได้ หาค่า P-value แล้วสรุปผลเมื่อกำหนด lpha ดังนี้
 - —ถ้า P-value $\leq lpha$ แสดงว่าปฏิเสธ H_0 หมายถึง 2 กลุ่มตัวอย่างมีความแปรปรวนแตกต่างกัน
 - —ถ้า P-value > $oldsymbol{lpha}$ แสดงว่าไม่ปฏิเสธ $oldsymbol{H}_0$ หมายถึง 2 กลุ่มตัวอย่างมีความแปรปรวนไม่แตกต่างกัน

Dependent Sample

• เป็นการทดสอบความแตกต่างเป็นคู่ๆ จึงอาจเรียกว่า การทดสอบความแตกต่าง แบบจับคู่ (Paired Difference Tests)

$$t = \frac{\overline{d}}{s_d/\sqrt{n}}, d.f. = n-1$$

$$\overline{d} = \frac{\sum d_i}{n} \qquad s_d = \sqrt{\frac{1}{n-1} \left[\sum d_i^2 - \frac{(\sum d_i)^2}{n} \right]}$$

เมื่อ n = จำนวนคุ

การทดสอบค่าเฉลี่ยของหลายประชากร

- การทดสอบมี 2 วิธี ได้แก่
 - —โดยการวิเคราะห์ความแปรปรวนแบบทางเดียว (One-Way Analysis of Variance)
 - เป็นการวิเคราะห์ความแปรปรวนที่ใช้กับข้อมูลที่ได้จากการแบ่งกลุ่มโดยใช้หลักเกณฑ์ปัจจัย เดียว
 - -โดยการวิเคราะห์ความแปรปรวนแบบสองทาง (Two-Way Analysis of Variance)
 - เป็นการวิเคราะห์ความแปรปรวนที่ใช้กับข้อมูลที่ได้จากการแบ่งกลุ่มโดยใช้หลักเกณฑ์สอง ปัจจัย

ANOVA additional assumption

- ข้อตกลงในการใช้ ANOVA เพิ่มเติมจากข้อตกลงของ Parametric Inference ได้แก่
 - —ความแปรปรวนเท่ากันทุกกลุ่ม (Homogeneity of variance)

(All variances are not necessarily equal, but not significantly different)

One Way ANOVA

• แผนผังข้อมูลเพื่อการวิเคราะห์มีดังนี้

-			กลุ่มที่			
	1	2	3		k	
	X_{11}	x ₂₁	X ₃₁		k_{k1}	
	X ₁₂	X ₂₂	X ₃₂		k_{k2}	
		•		•	•	
		•		•	•	
	•	•		•		
	X _{1n}	X _{2n}	X _{3n}		k _{kn}	
ผลรวม	T_1	T_2	T_3		T_k	Т
ค่าเฉลี่ย	X ₁	X ₂	X ₃		X _k	Х

One Way ANOVA

• เปรียบเทียบค่าเฉลี่ยทั้ง k กลุ่ม

$$H_0: \mu_1 = \mu_2 = ... = \mu_k$$

 $H_{_1}$: มี $\mu_{_i}$ อย่างน้อย 1 คู่ แตกต่างกัน

• ตารางวิเคราะห์ความแปรปรวนดังนี้

—————————————————————————————————————	SS	DF	MS	F
-				1466/1465
ระหว่างกลุ่ม	SSC	k-1	MSC	MSC/MSE
ภายในกลุ่ม	SSE	n-k	MSE	
รวม	SST	n-1		

One Way ANOVA

- การคำนวณ ดังนี้
- Correction term (CT)

$$CT = \frac{T^2}{n} = \frac{\left(\sum x_{ij}\right)^2}{n}$$

• Total sum of squares (SST)

$$SST = \sum_{i=1} \sum_{j=1} X_{ij}^2 - CT$$

One Way ANOVA

- การคำนวณ ดังนี้
- Sum of squares for treatments (SSC)

$$SSC = \sum_{i=1}^{} \frac{T_i^2}{n_i} - CT$$

• Error sum of squares (SSE)

$$SSE = SST-SSC$$

One Way ANOVA

- การคำนวณ ดังนี้
- Mean square of treatment (MSC)

$$MSC = SSC/(k-1)$$

Mean square of error (MSE)

$$MSE = SSE/(n-k)$$

One Way ANOVA

- F= MSC/MSE
- ullet จากค่า F ที่ได้ หาค่า p-value แล้วสรุปผลเมื่อกำหนด $oldsymbol{lpha}$ ดังนี้
 - -ถ้า p-value $\leq lpha$ แสดงว่าปฏิเสธ $_0$ (มีค่าเฉลี่ยแตกต่างกันอย่างน้อย 1 คู่)
 - —ถ้า p-value > α แสดงว่าไม่ปฏิเสธ H_n (มีค่าเฉลี่ยเท่ากันทุกกลุ่ม)
- ถ้าผลของการวิเคราะห์ทราบว่ามีค่าเฉลี่ยอย่างน้อย 1 คู่ ที่แตกต่างกัน ก็สามารถ หาคู่ที่แตกต่างกันได้

การทดสอบค่าเฉลี่ยด้วยโปรแกรมสถิติ

- โปรแกรมสถิติ PSPP สำหรับการทดสอบค่าเฉลี่ยดังนี้
- เมนู Compare Mean ประกอบด้วยคำสั่ง
 - One Sample T Test
 - Independent Sample T Test
 - Paired Sample T Test
 - One Way ANOVA

ข้อสังเกตการทดสอบค่าเฉลี่ย

- 1. ในทางทฤษฎี จะใช้ t- test เมื่อไม่รู้ค่าความแปรปรวนของประชากร (**σ**²) หรือกลุ่มตัวอย่างมีขนาดเล็ก (n<30) **แต่ในทางปฏิบัติ**จะใช้ t-test กับกลุ่ม ตัวอย่างขนาดใดก็ได้ขอเพียงแต่ให้กลุ่มตัวอย่างที่สุ่ม มาจากประชากรที่มีการ แจกแจงปกติ หรือเข้าใกล้การแจกแจงปกติ (Weiss. 1995:537)
- 2. ในทางปฏิบัติ t-test มีโอกาสใช้มากกว่า z-test เนื่องจากการ**ในความเป็น จริงเราไม่มีโอกาสรู้ค่าความแปรปรวนของประชากร** (σ^2) ดังนั้นจึงต้อง ประมาณค่า σ^2 ด้วยความแปรปรวนของตัวอย่าง (s^2) ดังนั้น ค่าสถิติทดสอบจะ มีการแจกแจงแบบ t มากกว่าการแจกแจงแบบ z นั่นคือ ถ้าแทนค่าความ แปรปรวนด้วย s^2 แล้วควรใช้ t-test (Homell. 1989:191)

Case Study

ตัวอย่าง 1

 ข้อมูลของซีรั่มอามิเลสในคนปกติ 16 ราย ได้ค่าเฉลี่ยเท่ากับ 110 units/100 ml และ ส่วนเบี่ยงเบนมาตรฐานเท่ากับ 35 unit/100 ml อยากทราบว่าจะแตกต่างจากค่าเฉลี่ย ทั่วไป ซึ่งมีค่า 120 units/100 ml หรือไม่ (X = .05)

$$H_0: \mu = 120$$

$$H_1 : \mu \neq 120$$

$$\overline{x} = 110, \mu_0 = 120, s = 35, n = 16$$

$$t = \frac{110 - 120}{35/\sqrt{16}} = -1.1429, d.f. = 15$$

- จากตาราง t ได้ค่า p-value (two-tailed) = 0.2710
- กำหนด α = 0.05
- p-value > α
- สรุป ไม่ปฏิเสธ H₀
- แปลว่า ค่าเฉลี่ยซีรั่มอามิเลส 16 ราย ไม่มีความแตกต่างจาก 120 units/100 ml อย่างมี นัยสำคัญเชื่อมั่นได้ถึง 95%

ตัวอย่าง 2

$$H_0: \mu = 50$$

$$H_1: \mu < 50$$

$$\overline{x} = 42, \mu_0 = 50, s = 11.9, n = 12$$

ตัวอย่าง 2

$$t = \frac{42-50}{11.9/\sqrt{12}} = -2.33, d.f. = 11$$

- จากตาราง t ได้ค่า p-value (two-tailed) = 0.0399
- กำหนด α = 0.05
- p-value/2 < α
- สรุป ปฏิเสธ H_0
- แปลว่า เครื่องตรวจใหม่ใช้เวลาน้อยกว่า 50 วินาที อย่างมีนัยสำคัญเชื่อมั่นได้ถึง 95%

ตัวอย่าง 3

• ในการทำวิจัยโรคภูมิแพ้ ต้องการเปรียบเทียบค่าเฉลี่ยอีโอซิโนฟิลในเลือดของผู้ชายและ ผู้หญิงว่าแตกต่างกันหรือไม่ (α =.05) โดยพบว่า

เพศ	n	$\overline{\mathbf{x}}$	S
ชาย	14	584	225
หญิง	16	695	185

$$H_0: \mu_1 = \mu_2$$

$$H_1: \mu_1 \neq \mu_2$$

• ขั้นตอนที่ 1: เปรียบเทียบความแปรปรวน ด้วย F-test

$$H_0: \sigma_1^2 = \sigma_2^2$$

$$H_1: \sigma_1^2 \neq \sigma_2^2$$

ตัวอย่าง 3

$$F = \frac{s_1^2}{s_2^2} = \frac{(225)^2}{(185)^2} = 1.4792, d.f. = 13,15$$

- จากตาราง F ได้ค่า p-value = 0.2322
- กำหนด α = 0.05
- p-value > α
- สรุป ไม่ปฏิเสธ H₀
- แปลว่า ค่าความแปรปรวนทั้ง 2 กลุ่มไม่แตกต่างกันอย่างมีนัยสำคัญเชื่อมั่นได้ 95%

ตัวอย่าง 3

• ขั้นตอนที่ 2: เปรียบเทียบค่าเฉลี่ย เมื่อข้อมูลอิสระต่อกัน และความแปรปรวน ของทั้ง 2 กลุ่มไม่แตกต่างกัน ด้วย t-test

$$s_p = \sqrt{\left(\frac{1}{14} + \frac{1}{16}\right) \left[\frac{13(255)^2 + 15(185)^2}{14 + 16 - 2}\right]} = \sqrt{5603.4758} = 74.8564$$

$$t = \frac{584 - 695}{74.8564}$$
, d.f. = 14 + 16 - 2

$$t = -1.4828$$
, $d.f. = 28$

ตัวอย่าง 3

- จากตาราง t ได้ค่า p-value (two-tailed) = 0.1493
- กำหนด α = 0.05
- p-value > α
- สรุป ไม่ปฏิเสธ H_o
- แปลว่า ค่าเฉลี่ยอีโอซิโนฟิลในเลือดไม่แตกต่างกันระหว่างชายและหญิงอย่างมี นัยสำคัญทางสถิติเชื่อมั่นได้ 95%

ผู้ป่วยทั่วไป 20 คน พักรักษาตัวในโรงพยาบาลเฉลี่ย 7 วันและส่วนเบี่ยงเบนมาตรฐาน 2 วัน ผู้ป่วยมะเร็ง 24 คน พบว่าค่าเฉลี่ยจำนวนวันพักรักษาตัว 36 วัน และส่วนเบี่ยงเบน มาตรฐาน 10 วัน ผู้ป่วยมะเร็งพักรักษาตัวนานกว่าหรือไม่ (α =.05)

$$H_0 : \mu_G = \mu_C$$

 $H_1 : \mu_G < \mu_C$

ตัวอย่าง 4

• ขั้นตอนที่ 1: เปรียบเทียบความแปรปรวน ด้วย F-test

$$\mathsf{H}_0: \sigma_1^2 = \sigma_2^2$$

$$\mathsf{H}_1:\sigma_1^2\neq\sigma_2^2$$

ตัวอย่าง 4

$$F = \frac{s_1^2}{s_2^2} = \frac{(10)^2}{(2)^2} = 25, d.f. = 23,19$$

- จากตาราง F ได้ค่า p-value < 0.0001
- กำหนด α = 0.05
- p-value $< \alpha$
- สรุป ปฏิเสธ H_0
- แปลว่า ค่าความแปรปรวนทั้ง 2 กลุ่ม แตกต่างกันอย่างมีนัยสำคัญเชื่อมั่นได้ 95%

ตัวอย่าง 4

• ขั้นตอนที่ 2: เปรียบเทียบค่าเฉลี่ย เมื่อข้อมูลอิสระต่อกัน และ ความแปรปรวน ของทั้ง 2 กลุ่มแตกต่างกัน ด้วย t-test

$$s_p = \sqrt{\frac{2^2}{20} + \frac{10^2}{24}} = 2.0897$$

$$df = \frac{\left(4.3667\right)^2}{\frac{1}{21} \left(\frac{4}{20}\right)^2 + \frac{1}{25} \left(\frac{100}{24}\right)^2} - 2 = 25.38 \cong 25$$

$$t = \frac{7-36}{2.0897} = -13.8776, d.f. = 25$$

- จากตาราง t ได้ค่า p-value (two-tailed) < 0.0001
- กำหนด α = 0.05
- p-value/2 < α
- สรุป ปฏิเสธ H_ก
- แปลว่า ผู้ป่วยมะเร็งจะพักรักษาตัวนานกว่าผู้ป่วยทั่วไปอย่างมีนัยสำคัญทาง สถิติด้วยความเชื่อมั่นได้ 95%

ตัวอย่าง 5

• ต้องการเปรียบเทียบปริมาณคลอเลสเตอรอลของผู้ใช้โปรแกรมอาหารชนิดหนึ่งว่าทำให้ คลอเลสเตอรอลลดลงหรือไม่ (α = 0.05)

		เลสเตอรอล	ปริมาณคลอ	_
d _i ²	di	หลัง	ก่อน	คนที่
1	-1	200	201	1
25	5	236	231	2
25	-5	216	221	3
729	-27	233	260	4
16	-4	224	228	5
441	-21	216	237	6
900	-30	296	326	7
1600	-40	195	235	8
1089	-33	207	240	9
400	-20	247	267	10
5476	-74	210	284	11
64	8	209	201	12
10766	-242			

ตัวอย่าง 5

• สมมติฐาน

$$H_0: \mu_d = 0$$

 $H_1: \mu_d < 0$

หมายถึง H₁: μหลัง - μก่อน < 0

$$\overline{d} = \frac{-242}{12} = -20.17$$

$$s_d = \sqrt{\frac{1}{11} \left[10766 - \frac{(-242)^2}{12} \right]} = 23.13$$

ตัวอย่าง 5

$$t = \frac{-20.17}{23.13/\sqrt{12}} = -3.02, d.f. = 11$$

- จากตาราง t ได้ค่า p-value (two-tailed) = 0.0117
- กำหนด α = 0.05
- p-value/2 < α
- สรุป ปฏิเสธ H₀
- แปลว่าโปรแกรมอาหารทำให้ปริมาณคลอเลสเตอรอลเฉลี่ยลดลงจริงอย่างมีนัยสำคัญ ทางสถิติด้วยความเชื่อมั่นได้ 95%

• ต้องการเปรียบเทียบอัตราการเต้นของหัวใจต่อนาทีของผู้ป่วย 4 โรค ดังนี้ (โดยความ แปรปรวนทั้ง 4 กลุ่ม ไม่แตกต่างกัน) ($\mathbf{\alpha} = 0.05$)

	Α	В	С	D	Total
	83	81	75	61	
	61	65	68	75	
	80	77	80	78	
	63	87	80	80	
	67	95	74	68	
n _i	5	5	5	5	
Sx _i	354	405	377	362	1498
Sx _i ²	25468	33309	28525	26454	113756
Sx _i Sx _i ² (Sx _i) ²	125316	164025	142129	131044	
X _i	70.8	81	75.4	72.4	
s2	101.2	125.89	24.8	61.31	

ตัวอย่าง 6

• เปรียบเทียบค่าเฉลี่ยทั้ง 4 กลุ่ม

$$H_0: \mu_A = \mu_B = \mu_C = \mu_D$$

 $H_{_1}$: มี μ_{i} อย่างน้อย 1 คู่ แตกต่างกัน

ตาราง ANOVA

ความแปรปรวน	SS	DF	MS	F _{3,16}
ระหว่างกลุ่ม	302.6	3	100.87	1.2878
ภายในกลุ่ม	1253.2	16	78.325	
รวม	1555.8	19		

ตัวอย่าง 6

• การคำนวณ

$$CT = \frac{(1498)^2}{20} = 112200.2$$

$$SST = 113756 - 112200.2 = 1555.8$$

$$SSC = \frac{(354)^2}{5} + \frac{(405)^2}{5} + \frac{(377)^2}{5} + \frac{(362)^2}{5} - 112200.2 = 302.6$$

ตัวอย่าง 6

- จากตาราง F ได้ค่า p-value = 0.3125
- กำหนด α = 0.05
- p-value > α
- สรุป ไม่ปฏิเสธ H_o
- แปลว่า อัตราการเต้นของหัวใจของคนที่เป็นโรคทั้ง 4 โรคนี้ไม่มีความแตกต่าง กันอย่างมีนัยสำคัญทางสถิติด้วยความเชื่อมั่นได้ 95%