Cours: Intégration

Table des matières

1	Inté	grale de Riemann	1
	1.1	Fonction en escalier, fonction continue par morceaux	1
		Uniforme continuité	
	1.3	Intégrale d'une fonction en escalier	2
	1.4	Intégrale d'une fonction continue par morceaux	:
	1.5	Sommes de Riemann	4
2	Inté	gration et dérivation	4
	2.1	Continuité et dérivabilité	4
	2.2	Primitives	Ę
	2.3	Calcul d'intégrales	Ę
	2.4	Formules de Taylor	6

Proposition 1. Soit τ_1 et τ_2 deux subdivisions d'un même segment [a, b]. Alors, il existe une subdivision plus fine que τ_1 et τ_2 .

Définition 3.

— Soit [a,b] un segment. On dit qu'une fonction $\varphi:[a,b] \to \mathbb{R}$ (ou \mathbb{C}) est une fonction en escalier sur [a,b] lorsqu'il existe une subdivision $\tau: a = x_0 < \cdots < x_n = n$ du segment [a,b] telle que φ soit constante sur chaque intervalle $]x_k, x_{k+1}[$:

$$\forall k \in [0, n-1] \quad \exists c_k \in \mathbb{R} \ (ou \ \mathbb{C}) \quad \forall x \in]x_k, x_{k+1}[\quad \varphi(x) = c_k]$$

— Soit I un intervalle. On dit qu'une fonction $\varphi: I \to \mathbb{R}$ (ou \mathbb{C}) est en escalier sur I lorsque sa restriction à tout segment [a,b] de I est en escalier sur [a,b].

1 Intégrale de Riemann

1.1 Fonction en escalier, fonction continue par morceaux

Définition 1. On appelle subdivision du segment [a,b] toute famille $(x_k)_{0 \le k \le n}$ de réels tels que :

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

Remarques:

 \Rightarrow On appelle pas d'une subdivision $(x_k)_{0 \le k \le n}$ le réel

$$P = \max_{0 \le k \le n-1} (x_{k+1} - x_k)$$

 \Rightarrow On dit qu'une subdivision $(x_k)_{0 \leqslant k \leqslant n}$ est régulière lorsque $x_{k+1} - x_k$ est indépendant de k. Si $n \in \mathbb{N}^*$, la subdivision $(x_k)_{0 \leqslant k \leqslant n}$ de [a,b] définie par

$$\forall k \in [0, n] \quad x_k = a + k \cdot \frac{b - a}{n}$$

est une subdivision régulière de pas (b-a)/n.

 \Rightarrow Se donner une subdivision de [a,b] revient à se donner une partie finie de [a,b] contenant a et b. Cette identification nous permettra de parler (par abus de langage) de l'union de deux subdivisions d'un même segment [a,b].

Définition 2. Soit $\tau = (x_k)_{0 \leqslant k \leqslant n}$ et $\tau' = (y_k)_{0 \leqslant k \leqslant m}$ deux subdivisions d'un même segment [a,b]. On dit que τ' est plus fine que τ lorsque tout élément de la famille τ est élément de la famille τ' :

$$\forall k \in [0, n] \quad \exists i \in [0, m] \quad x_k = y_i$$

Remarques:

 \Rightarrow Si on change la valeur d'une fonction en escalier en un nombre fini de points, elle reste en escalier.

Proposition 2. Soit φ une fonction en escalier sur un segment [a,b]. Alors φ est bornée sur [a,b].

Proposition 3. Soit I un intervalle.

- L'ensemble des fonctions réelles en escalier sur I est une sous-algèbre de $\mathcal{F}(I,\mathbb{R})$.
- L'ensemble des fonctions complexes en escalier sur I est une sous-algèbre de $\mathcal{F}(I,\mathbb{C})$. De plus si φ est une fonction en escalier sur I, il en est de même pour $\overline{\varphi}$ et $|\varphi|$.

Définition 4.

- Soit [a,b] un segment. On dit qu'une fonction $\varphi:[a,b] \to \mathbb{R}$ (ou \mathbb{C}) est une fonction continue par morceaux sur [a,b] lorsqu'il existe une subdivision $\tau: a = x_0 < \cdots < x_n = n$ du segment [a,b] telle que :
 - Pour tout $k \in [0, n-1]$, φ est continue sur $]x_k, x_{k+1}[$.
 - Pour tout $k \in [0, n-1]$, φ admet une limite finie à droite en x_k et à gauche en x_{k+1} . Autrement dit, la restriction de φ à $]x_k, x_{k+1}[$ est prolongeable par continuité sur $[x_k, x_{k+1}]$.
- Soit I un intervalle. On dit qu'une fonction $\varphi: I \to \mathbb{R}$ (ou \mathbb{C}) est une continue par morceaux sur I lorsque sa restriction à tout segment [a,b] de I est continue par morceaux sur [a,b].

Remarques:

⇒ Si on change la valeur d'une fonction continue par morceaux en un nombre fini de points, elle reste continue par morceaux.

Proposition 4. Soit φ une fonction continue par morceaux sur un segment [a,b]. Alors φ est bornée sur [a,b].

Proposition 5. Soit I un intervalle.

- L'ensemble des fonctions réelles continues par morceaux sur I est une sousalgèbre de $\mathcal{F}(I,\mathbb{R})$.
- L'ensemble des fonctions complexes continues par morceaux sur I est une sous-algèbre de $\mathcal{F}(I,\mathbb{C})$. De plus si φ est une fonction continue par morceaux sur I, il en est de même pour $\overline{\varphi}$ et $|\varphi|$.

1.2 Uniforme continuité

Définition 5. On dit qu'une fonction f est uniformément continue lorsque :

$$\forall \varepsilon > 0 \quad \exists \eta > 0 \quad \forall x, y \in \mathcal{D}_f \quad |x - y| \leqslant \eta \Longrightarrow |f(x) - f(y)| \leqslant \varepsilon$$

Remarques:

⇒ Une fonction lipschitzienne est uniformément continue.

Exemples:

 \Rightarrow Montrer que la fonction $x\mapsto \sqrt{x}$ est uniformément continue mais n'est pas lipschitzienne.

Proposition 6. Si f est uniformément continue, alors elle est continue.

${\bf Remarques:}$

 \Rightarrow Soit f une fonction continue. Alors

$$\forall x \in \mathcal{D}_f \quad \forall \varepsilon > 0 \quad \exists \eta > 0 \quad \forall y \in \mathcal{D}_f \quad |x - y| \leqslant \eta \Longrightarrow |f(x) - f(y)| \leqslant \varepsilon$$

Les deux premiers quantificateurs étant de même nature, on peut les échanger, donc

$$\forall \varepsilon > 0 \quad \forall x \in \mathcal{D}_f \quad \exists \eta > 0 \quad \forall y \in \mathcal{D}_f \quad |x - y| \leqslant \eta \Longrightarrow |f(x) - f(y)| \leqslant \varepsilon$$

Une fonction est donc uniformément continue lorsqu'on peut échanger les quantificateurs portant sur x et η , c'est-à-dire lorsqu'il est possible de choisir η indépendamment de x.

Exemples:

 \Rightarrow Montrer que la fonction f définie sur \mathbb{R} par $f(x) = x^2$ n'est pas uniformément continue.

Théorème 1. Sur un segment, toute fonction continue est uniformément continue.

Proposition 7. Soit f une fonction continue par morceaux sur le segment [a,b] et $\varepsilon > 0$. Alors, il existe une fonction en escalier φ définie sur [a,b] telle que :

$$\forall x \in [a, b] \quad |f(x) - \varphi(x)| \leq \varepsilon$$

1.3 Intégrale d'une fonction en escalier

Définition 6. Soit φ une fonction en escalier sur le segment « [a,b] » et $\tau : \min(a,b) = x_0 < \cdots < x_n = \max(a,b)$ une subdivision adaptée à φ . Il existe donc $c_0,\ldots,c_{n-1} \in \mathbb{R}$ (ou \mathbb{C}) tels que :

$$\forall k \in [0, n-1] \quad \forall x \in]x_k, x_{k+1}[\quad \varphi(x) = c_k$$

On définit alors l'intégrale de φ entre a et b par :

$$\int_{a}^{b} \varphi(x) dx = \begin{cases} \sum_{k=0}^{n-1} c_{k} (x_{k+1} - x_{k}) & si \ a \leq b \\ -\int_{b}^{a} \varphi(x) dx & sinon \end{cases}$$

Remarques:

⇒ Si on change la valeur d'une fonction en un nombre fini de points, on ne change pas la valeur de son intégrale.

Proposition 8. Soit φ_1 et φ_2 deux fonctions en escalier sur un intervalle I et $a, b \in I$. Si $\lambda, \mu \in \mathbb{R}$ (ou \mathbb{C}), alors :

$$\int_{a}^{b} \lambda \varphi_{1}(x) + \mu \varphi_{2}(x) dx = \lambda \int_{a}^{b} \varphi_{1}(x) dx + \mu \int_{a}^{b} \varphi_{2}(x) dx$$

Proposition 9. Soit φ une fonction en escalier sur un intervalle I et $a, b, c \in I$. Alors:

$$\int_{a}^{c} \varphi(x) dx = \int_{a}^{b} \varphi(x) dx + \int_{b}^{c} \varphi(x) dx$$

Proposition 10. Soit φ une fonction réelle en escalier sur l'intervalle I et $a, b \in \mathbb{R}$. Si:

$$a \leqslant b$$
 et $[\forall x \in [a, b] \quad \varphi(x) \geqslant 0]$

alors:

$$\int_{a}^{b} \varphi(x) \ dx \geqslant 0$$

Proposition 11. Soit φ une fonction (réelle ou complexe) en escalier sur l'intervalle I et $a, b \in \mathbb{R}$. Si $a \leq b$, alors :

$$\left| \int_{a}^{b} \varphi(x) \ dx \right| \leqslant \int_{a}^{b} |\varphi(x)| \ dx$$

1.4 Intégrale d'une fonction continue par morceaux

Définition 7.

— Soit I un intervalle, f une fonction réelle continue par morceaux sur I et $a,b \in I$. On définit l'intégrale de a à b de f de la manière suivante :

 $-Si \ a \leq b.$

On définit les ensembles A et B par :

$$A = \left\{ \int_{a}^{b} \varphi(x) \ dx : \varphi \ est \ en \ escalier \ sur \ [a, b] \ et \ \varphi \leqslant f \right\}$$

$$B = \left\{ \int_{a}^{b} \varphi(x) \ dx : \varphi \ est \ en \ escalier \ sur \ [a, b] \ et \ f \leqslant \varphi \right\}$$

Alors A admet une borne supérieure et B admet une borne inférieure. De plus sup $A = \inf B$. On pose alors :

$$\int_{a}^{b} f(x) \ dx = \sup A = \inf B$$

 $- Si b \leqslant a.$

 $On \ pose:$

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

— Soit I un intervalle, f une fonction complexe continue par morceaux sur I et $a,b \in I$. On définit l'intégrale de a à b de f par :

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} \operatorname{Re}(f(x)) dx + i \int_{a}^{b} \operatorname{Im}(f(x)) dx$$

Exercices:

⇒ Donner le domaine de définition de la fonction d'expression

$$\int_{\frac{1}{x}}^{x^2} \frac{\mathrm{d}t}{\sqrt[3]{1+t^3}}$$

Proposition 12. Soit f et g deux fonctions continues par morceaux sur un intervalle I, $\lambda, \mu \in \mathbb{R}$ (ou \mathbb{C}) et $a, b \in I$. Alors:

$$\int_{a}^{b} \lambda f(x) + \mu g(x) dx = \lambda \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx$$

Proposition 13. Soit f une fonction continue par morceaux sur I et $a,b,c \in I$. Alors:

$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

Proposition 14. Soit f une fonction réelle continue par morceaux sur l'intervalle I et $a, b \in I$. Si

$$a \leq b$$
 et $[\forall x \in [a, b]$ $f(x) \geq 0]$

alors

$$\int_{a}^{b} f(x) \ dx \geqslant 0$$

Remarques:

 \Rightarrow Soit f et g deux fonctions continues par morceaux telles que : $\forall x \in \langle [a,b] \rangle f(x) \leq g(x)$. Alors, si $a \leq b$, on a

$$\int_{a}^{b} f(x) \, \mathrm{d}x \leqslant \int_{a}^{b} g(x) \, \mathrm{d}x$$

et si $b \leq a$, on a

$$\int_{a}^{b} f(x) \, \mathrm{d}x \geqslant \int_{a}^{b} g(x) \, \mathrm{d}x$$

 \Rightarrow Soit f une fonction continue par morceaux sur le segment [a, b]. On note

$$m = \inf_{x \in [a,b]} f(x)$$
 et $M = \sup_{x \in [a,b]} f(x)$

Alors

$$m(b-a) \leqslant \int_{a}^{b} f(x) dx \leqslant M(b-a)$$

Exercices:

⇒ Calculer la limite, si elle existe, de la suite de terme général

$$\frac{1}{n!} \int_0^1 \operatorname{Arcsin}^n x \, \mathrm{d}x$$

$$\int_0^1 t^n e^t \, \mathrm{d}t$$

 \Rightarrow Soit f une fonction continue sur $\mathbb R$ telle que $f(x) \xrightarrow[x \to +\infty]{} l \in \mathbb R$. Calculer la limite de la suite de terme général

$$\int_{n}^{n+1} f(x) \, \mathrm{d}x$$

Proposition 15. Soit f une fonction réelle continue par morceaux sur le segment [a,b]. Si f est positive sur [a,b] et si il existe $x_0 \in [a,b]$ en lequel f est continue tel que $f(x_0) > 0$, alors :

$$\int_{a}^{b} f(x) \ dx > 0$$

Proposition 16. Soit f une fonction réelle continue sur le segment [a, b] telle que :

$$\int_{a}^{b} f(x) \ dx = 0$$

 $Si\ f\ est\ de\ signe\ constant\ sur\ [a,b]\ alors$:

$$\forall x \in [a, b] \quad f(x) = 0$$

Remarques:

 \Rightarrow Si f est une fonction continue sur [a, b] telle que

$$\int_{a}^{b} f(x) \, \mathrm{d}x = 0$$

alors, il existe $c \in [a, b]$ tel que f(c) = 0.

Exercices:

 \Rightarrow Soit f une fonction continue sur [0,1] telle que

$$\int_0^1 f(x) \, \mathrm{d}x = \frac{1}{2}$$

Montrer qu'il existe $c \in [0, 1]$ tel que f(c) = c.

Proposition 17. Soit f une fonction (réelle ou complexe) continue par morceaux sur l'intervalle I et $a, b \in \mathbb{R}$. Si $a \leq b$, alors :

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx$$

Exercices:

 \Rightarrow Soit f une fonction réelle continue sur \mathbb{R}_+ et 0 < a < b. Montrer que

$$\int_{ax}^{bx} \frac{f(t)}{t} dt \xrightarrow[x > 0]{x \to 0} f(0) \ln\left(\frac{b}{a}\right)$$

 \Rightarrow Soit $f:[0,1] \to \mathbb{R}$ une fonction continue par morceaux. On définit la fonction g sur \mathbb{R} par

$$\forall x \in \mathbb{R} \quad g(x) = \int_{0}^{1} f(t) \sin(xt) dt$$

Montrer que q est lipschitzienne.

 \Rightarrow Montrer que pour tout $n \in \mathbb{N}$

$$\left| \pi - 4 \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \right| \le \frac{4}{2n+3}$$

1.5 Sommes de Riemann

Proposition 18. Soit f une fonction continue par morceaux sur le segment [a,b]. Alors:

$$\frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) \xrightarrow[n \to \infty]{} \int_a^b f\left(x\right) dx$$

Remarques:

 \Rightarrow Si f est continue par morceaux sur le segment [a, b], alors

$$\frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right) \xrightarrow[n \to \infty]{} \int_{a}^{b} f\left(x\right) dx$$

Exercices:

⇒ Calculer la limite de la suite de terme général

$$\sum_{k=1}^{n} \frac{n+k}{n^2+k^2}$$

 \Rightarrow Soit $\alpha \in \mathbb{R}_+^*.$ Trouver un équivalent simple de

$$\sum_{k=0}^{n} k^{\alpha}$$

 \Rightarrow Soit g une fonction convexe sur \mathbb{R} et f une fonction réelle, continue sur [0,1]. Montrer que

$$g\left(\int_{0}^{1} f(t) dt\right) \leqslant \int_{0}^{1} g(f(t)) dt$$

2 Intégration et dérivation

2.1 Continuité et dérivabilité

Proposition 19. Soit f une fonction continue par morceaux sur un intervalle I, $a \in I$ et F la fonction définie sur I par :

$$\forall x \in I \quad F(x) = \int_{a}^{x} f(t) dt$$

On suppose qu'il existe un intervalle $A \subset I$ et un réel $M \in \mathbb{R}_+$ tels que :

$$\forall x \in A \quad |f(x)| \leq M$$

Alors F est M-Lipschitzienne sur A.

Proposition 20. Soit f une fonction continue par morceaux sur un intervalle I et $a \in I$. Soit F la fonction définie sur I par :

$$\forall x \in I \quad F(x) = \int_{a}^{x} f(t) dt$$

Alors F est continue sur I.

Proposition 21. Soit f une fonction continue par morceaux sur un intervalle I et $a \in I$. Soit F la fonction définie sur I par :

$$\forall x \in I \quad F(x) = \int_{a}^{x} f(t) dt$$

Soit $x_0 \in I$. Si f est continue en x_0 , alors F est dérivable en x_0 et :

$$F'\left(x_0\right) = f\left(x_0\right)$$

Remarques:

 \Rightarrow Soit f une fonction continue sur un intervalle I et a,b deux fonctions dérivables sur un intervalle J à valeurs dans I. On définit la fonction g sur J par

$$\forall x \in J \quad g(x) = \int_{a(x)}^{b(x)} f(t) dt$$

Alors g est dérivable sur J et

$$\forall x \in J \quad g'(x) = b'(x) f(b(x)) - a'(x) f(a(x))$$

Exercices:

 \Rightarrow Déterminer les fonctions f, continues de]-1,1[dans \mathbb{R} , telles que :

$$\forall x \in]-1,1[f(x) = 1 + \int_0^x f^2(t) dt$$

2.2 Primitives

Définition 8. Soit f une fonction définie sur une partie \mathcal{D}_f de \mathbb{R} . On appelle primitive de f toute fonction F définie et dérivable sur \mathcal{D}_f telle que :

$$\forall x \in \mathcal{D}_f \quad F'(x) = f(x)$$

Théorème 2. Soit f une fonction continue sur un intervalle I. Alors :

- f admet une primitive.
- Si F_1 est une primitive de f, une fonction F_2 définie sur \mathcal{D}_f est une primitive de f si et seulement si il existe $c \in \mathbb{R}$ (ou \mathbb{C}) tel que :

$$\forall x \in I \quad F_2(x) = F_1(x) + c$$

Proposition 22. Soit I_1, \ldots, I_n n intervalles deux à deux bien disjoints (si $i \neq j$, $I_i \cup I_j$ n'est pas un intervalle) et f une fonction continue sur $\mathcal{D}_f = I_1 \cup \cdots \cup I_n$. Alors:

- f admet une primitive.
- Si F_1 est une primitive de f, une fonction F_2 définie sur \mathcal{D}_f est une primitive de f si et seulement si il existe $c_1, \ldots, c_n \in \mathbb{R}$ (ou \mathbb{C}) tels que :

$$\forall k \in [1, n] \quad \forall x \in I_k \quad F_2(x) = F_1(x) + c_k$$

2.3 Calcul d'intégrales

Proposition 23. Soit f une fonction continue sur un intervalle I, $a,b \in I$ et F une primitive de f sur I. Alors :

$$\int_{a}^{b} f(t) dt = F(b) - F(a)$$

Remarques:

 \Rightarrow Si f est une fonction de classe \mathcal{C}^1 sur l'intervalle I et si il existe $M \in \mathbb{R}_+$ tel que

$$\forall x \in I \quad |f'(x)| \leqslant M$$

alors f est M-Lipschitzienne. On retrouve donc l'inégalité des accroissements finis dans le cas où f est de classe \mathcal{C}^1 .

Exercices:

 \Rightarrow Si $n \in \mathbb{N}^*$, $a \in \mathbb{R}_+^*$ et $x, y \geqslant a$, alors

$$\left|\sqrt[n]{x} - \sqrt[n]{y}\right| \leqslant \frac{1}{na^{\frac{n-1}{n}}} |x - y|$$

Proposition 24. Soit I un intervalle, f une fonction continue sur I et g une fonction de classe C^1 sur I. Si F est une primitive de f, on a :

$$\int_{a}^{b} \underbrace{\widetilde{f(t)}}_{d \text{ fring}} \underbrace{g(t)}_{d \text{ fring}} dt = \left[F(t) g(t)\right]_{a}^{b} - \int_{a}^{b} F(t) g'(t) dt$$

Exercices:

 \Rightarrow Pour tout $n \in \mathbb{N}$, on définit

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, \mathrm{d}x$$

Calculer I_n .

 \Rightarrow Soit f une fonction de classe \mathcal{C}^1 sur le segment [a,b]. Alors

$$\int_{a}^{b} f(x) \sin(nx) dx \xrightarrow[n \to +\infty]{} 0$$

Proposition 25. Soit I et J deux intervalles de \mathbb{R} , \overline{x} une fonction de classe C^1 de I dans J, $x_a, x_b \in J$ et $t_a, t_b \in I$ tels que $\overline{x}(t_a) = x_a$ et $\overline{x}(t_b) = x_b$ et f une fonction continue sur J. Alors:

$$\int_{x_{a}}^{x_{b}}f\left(x\right)\;dx=\int_{t_{a}}^{t_{b}}f\left(\overline{x}\left(t\right)\right)\frac{d\overline{x}}{dt}\left(t\right)\;dt$$

Exercices:

 \Rightarrow Soit $a, b \in \mathbb{R}$ tels que $a \leq b$. Calculer

$$\int_{a}^{b} \sqrt{(x-a)(b-x)} \, \mathrm{d}x$$

 \Rightarrow Soit f une fonction réelle, définie sur \mathbb{R} et continue en 0 telle que

$$\forall x, y \in \mathbb{R} \quad f(x+y) = f(x) + f(y)$$

Montrer que f est linéaire.

Proposition 26.

- Soit $a \ge 0$ et f une fonction continue sur le segment [-a, a].
 - Si f est paire :

$$\int_{-a}^{0} f(x) dx = \int_{0}^{a} f(x) dx$$

En particulier:

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

— Si f est impaire :

$$\int_{-a}^{0} f(x) dx = -\int_{0}^{a} f(x) dx$$

En particulier:

$$\int_{-a}^{a} f(x) \ dx = 0$$

— Soit f une fonction continue sur \mathbb{R} , T-périodique. Alors :

$$\int_{a}^{a+T} f(x) dx$$

ne dépend pas du réel a.

Exercices:

⇒ Donner une équivalent de la suite de terme général

$$\int_0^n |\sin t| \, dt$$

 \Rightarrow Soit $f:[a,b]\to\mathbb{C}$ une fonction continue par morceaux et $g:\mathbb{R}\to\mathbb{R}$ une fonction 1-périodique, continue par morceaux. Montrer que la suite de terme général

$$\int_{a}^{b} f(x) g(nx) dx$$

converge et calculer sa limite.

2.4 Formules de Taylor

2.4.1 Formule de Taylor avec reste intégral

Proposition 27. Soit f une fonction de classe C^{n+1} sur l'intervalle I. — Si $a, b \in I$. Alors:

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \int_{a}^{b} \frac{(b-t)^{n}}{n!} f^{(n+1)}(t) dt$$

— $Si \ x_0 \in I \ et \ h \in \mathbb{R} \ tel \ que \ x_0 + h \in I, \ on \ a$

$$f(x_0 + h) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} h^k + \int_0^h \frac{(h-t)^n}{n!} f^{(n+1)}(x_0 + t) dt$$

Exercices:

⇒ Montrer que

$$\sum_{k=0}^{n} \frac{1}{k!} \xrightarrow[n \to +\infty]{} e$$

 \Rightarrow Soit f une fonction de classe C^2 sur [0,1]. Montrer que :

$$\frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) = \int_0^1 f(t) dt + \frac{f(1) - f(0)}{2n} + \underset{n \to +\infty}{\text{o}} \left(\frac{1}{n}\right)$$

Proposition 28. Soit f une fonction de classe C^{n+1} sur l'intervalle I. On suppose qu'il existe $M \in \mathbb{R}_+$ tel que :

$$\forall t \in I \quad \left| f^{(n+1)}(t) \right| \leqslant M$$

Alors, $si \ x_0 \in I \ et \ h \in \mathbb{R} \ tel \ que \ x_0 + h \in I$, on a :

$$\left| f(x_0 + h) - \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} h^k \right| \leq \frac{M}{(n+1)!} |h|^{n+1}$$

2.4.2 Formule de Taylor-Young

Proposition 29. Soit f une fonction continue sur un intervalle contenant 0. On suppose que f admet un développement limité en 0 à l'ordre n :

$$f(x) = \sum_{k=0}^{n} a_k x^k + \mathop{o}_{x \to 0} (x^n)$$

Si F est une primitive de f, elle admet un développement limité en 0 à l'ordre n+1 donné par :

$$F(x) = F(0) + \sum_{k=0}^{n} \frac{a_k}{k+1} x^{k+1} + \underset{x \to 0}{o} (x^{n+1})$$

Proposition 30. Soit f une fonction de classe C^{n-1} sur intervalle contenant 0 et dérivable n fois en 0. Alors f admet un développement limité en 0 à l'ordre n et :

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + \underset{x \to 0}{o} (x^{n})$$