

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Managing data availability and integrity in federated cloud storage

Zarządzanie dostępnością i integralnością danych w sfederowanych zasobach chmury obliczeniowej.

Krzysztof Styrc

Promotor: dr inż. Marian Bubak (AGH) Konsultant: Piotr Nowakowski (ACC Cyfronet)

Agenda

- Introduction
 - Motivation
 - VPH-Share project background
 - Objectives of the thesis
- State of the art
 - Standard methods for data integrity
 - Approaches to data integrity in the cloud
 - Drawbacks of the existing methods
- Design and implementation
 - DRI service design
 - Validation algorithm
 - DRI service verification
- Summary and future work

Motivation

AGH

- Technology shifts toward cloud computing paradigm
 - good quality–cost ratio and pay as you use
 - scalability, availability and SLAs
 - no IT infrastructure management
- Cloud storage problems
 - data stored on external resources of cloud provider
 - SLA defined as best-effort, return of costs otherwise
 - cloud storage vendor lock-in
 - recent cloud storage failures and security breaches:
 - * deleted mails, blocked accounts in Gmail
 - ★ Amazon S3 downtimes
 - * unauthorized accessto files in GoogleDocs
- Oloud storage data integrity challenges:
 - network latency and bandwidth limits
 - costs assosiated with data retrieval
 - only simple operations available, no possibility to execute code on stored data

Still it is required to ensure that the data is available and not corrupted

VPH-Share project background

▼ VPH-Share data overview

- biomedical data stored in federation of cloud providers to avoid vendor lock-in
- storage entity: dataset (set of files)

Data integrity requirements

- periodical and on-request monitoring of data availability and integrity
- network efficient validation algorithm
- data replication in federated cloud storage environment

Objectives of this thesis

The main objective of this thesis is to create a data reliability and integrity tool (DRI) in form of a web service that would monitor the availability and integrity of data stored in federated cloud storage.

Important aspects of this work

- design and implementation of validation web service prototype
- ★ integration of DRI service with the rest of VPH-Share project
- periodical and on-request validation
- ★ literature research on efficient cloud storage validation algorithm
- ropose network efficient validation algorithm of data in the cloud

Standard methods for data integrity

Data integrity building blocks:

- ★ hash functions (MD5, SHA-1, SHA-256),
- ★ Message Authentication Code(MAC) integrity and authenticity assurance
- Error Correcting Code(ECC) corruption detection and correction

Popular approaches:

- ▼ MD5/SHA-1 checksum for software packages
- ★ integrity checksums for network messages
- ECCs in hardware solution

Cloud storage data integrity challenges:

- huge amounts of data inefficient remote validation
- externally stored over broadband network network limitations

If whole-file content validation is infeasible, then maybe we should try probabilistic validation

Approaches to data integrity in the cloud

Proof of Retrievability (POR) scheme:

- ★ divide a file F into b blocks and apply ECCs
- encrypt the file with appended parity bits
- ★ select m blocks out of M, compute MACs and append them to file

Approaches to data integrity in the cloud

Data integrity proofs (DIP) scheme:

- divide a file F into n blocks and select randomly k bits from every block
- concatenate all selected bits and ecnrypt them
- append encrypted bits to the end of file

Drawbacks of the outlined approaches

- ★ modifications applied to the original file (appending metadata, content encryption)
- assume computing capabilities on the prover side
- ★ do not take into account cloud REST API limitations (no support for multiple HTTP Range requests)

DRI service design

★ stateless REST web service in VPH-Share cloud environment

- periodical and on-request probabilistic validation of data in federated cloud storage
- data replication over cloud providers

Implementation technologies

- Quartz task scheduling
- ★ JAX-RS REST web service
- ★ Java, Guice, Guava, Tomcat

DRIService

+ registerDataset(dataset : ManagedDatasetDescription) : ManagedDatasetI

- + unregisterDataset(id : ManagedDatasetID)
- + replicateDatasetToResource(id : ManagedDatasetID, source : DataSourceII + dereplicateDatasetFromResource(id : ManagedDatasetID, source : DataSource : DataSourc
- + dereplicateDatasetFromResource(id : ManagedDatasetID, source : Datasoi + datasetChanged(id : ManagedDatasetID, dataset : ManagedDatasetDescri
- + validateDataset(id : ManagedDatasetID) : Message + setManagementPolicy(policy : ManagementPolicy)
- + getManagementPolicy(id : ManagedDatasetID) : ManagementPolicy

DRI validation algorithm

Setup phase

- divide file *F* into *n* equal chunks
- compute MAC checksum for every chunk and store

Validation phase:

- randomly select *k* chunks
- compute MAC checksum of selected chunks and compare

Metric	our approach	whole-file approach
E_{det}	$\frac{k}{n}$	1
Nover	$\sim F \times \frac{k}{n}$	$\sim F$
T_{exec}	$\sim k \times (\frac{F}{n \times speed} + latency)$	$\sim \frac{F}{speed} + latency$

Figure: Setup phase

Figure: Validation phase

DRI service verification

DRI Notification Service

Dataset name	Notification status	Execu	ıtion time	Time scheduled
test_dataset	Integrity errors detected	2s		8/10/13 12:52 PM
The dataset test_da	taset is INVALID			
Below is the detaile	d validation report:			
Logical data identifier			Integrity status	
moon.jpg			INVALID	
earth.jpg			INVALID	
time-machine.txt			UNAVAILABLE	
				_
test_dataset	Integrity errors detected	2s		8/10/13 12:51 PM
test_dataset The dataset test_da		2s		
	taset is INVALID	2s		
The dataset test_da	taset is INVALID	2s	Integrity sta	8/10/13 12:51 PM
The dataset test_da	taset is INVALID	25		8/10/13 12:51 PM
The dataset test_da Below is the detaile Logical data iden	taset is INVALID d validation report: tifler	2s	Integrity sta	8/10/13 12:51 PM
The dataset test_da Below is the detaile Logical data iden moon.jpg	taset is INVALID d validation report: tifler	2s	Integrity sta	8/10/13 12:51 PM

Results and future work

Results:

- roposed an efficient algorithm for data validation in the cloud
- proposed methodology to monitor data reliability and integrity in the cloud
- enabled VPH-Share project users to monitor data integrity and notify in case of failures

Future work:

- Design how to combine DRI monitoring service with federated cloud storage data access layer
- Extract DRI component from VPH-Share context and share as open source
- Mesign better data validation algorithm in the cloud

Acknowledgement

More at http://dice.cyfronet.pl/VPH-Share

This thesis was realized partially in the framework of the following projects:

- Virtual Physiological Human: Sharing for Healthcare (VPH-Share) partially funded by the European Commission under the Information Communication Technologies Programme (contract number 269978).
- ♣ Project UDA-POKL.04.01-01-00-367/08-00 "Improvement of didactic potential of computer science specialization at AGH", at the Department of Computer Science, AGH University of Science and Technology, Al. A. Mickiewicza 30, 30-059 Kraków

