Table 6. Photon energies $(E_{_D}$'s) used to construct the photon energy energy distribution (PED) in Fig. 12.

n_{i}	$n_f = 5$	$n_f = 6$		$n_f = 7$		$n_f = 8$	
6	15 <i>1341.2</i>						
7	2 2149.9	18 808. 7					
8		15 <i>1333.6</i>	($(\text{Low } E_p)$			
9		11 1693.5	17	884.8		$(\text{Low } E_p)$	
10		4 1950.9	16	1142.2	19	617.3	
11		2 2141.3	15	1332.6	18	807. 7	
12			14	1477.5		952.6	
13			13	1590.2		1065.3	
14			12	1679.6		1154.8	
15			9	1751.8		1226.9	
16			8	1810.9		1286.0	
17			7	1859.8		1334.9	
18			6	1900.8		1375.9	
19			5	1935.6		1410.7	
20			3	1965.2		1440.3	
21				1990.7		1465.8	
22				2012.8		1487.9	
23				2032.1		1507.2	
24				2049.0		1524.1	
25				2064.0		1539.1	
26				2077.2		1552.3	
\downarrow				\downarrow		\downarrow	
∞			1	2239.5	10	1714.6	

A set of principal quantum numbers $(n_p n_i)$ defines a transition in the hydrogen atom.

The column of integers on the far left contains values of n_i , the initial quantum number for the transition. The row of integers along the top contains values of n_f , the final quantum number for the transition. A photon energy E_p is the number listed under each n_f and in a row where the initial quantum number is n_i . $E_p(n_f n_i)$ is in units of cm⁻¹.

Bolded, italicized E_p 's are assigned to individual satellites and ring inner edges in Saturn's satellite system. The number to the left of each of these E_p 's is the number assigned to a satellite or ring edge in Table 7. The E_p 's that are not bolded or italicized contribute to either the A or E ring of Saturn.

The E_p 's range from 617.3 to 2239.5 cm⁻¹. This is the range covered by Table 7 and Fig. 12 (Low E_p) is indicated for $E_p(7,8)$ and $E_p(8,9)$ because they are out of the range of E_p 's used in Fig. 12. E_p values corresponding to $n_f = 9$ or larger are not included. Apparently they did not create resonance. Many E_p 's in the columns under $n_f = 5$ and 6 are not listed because their values are above 2239.5 cm⁻¹.