주요 확률분포함수

	이항분포	정규분포	표준정규분포
정의	성공확률이 p 인 베르누이 시	전 실구간에서 정의되는 연속	N(0,1)을 따르는 X의 확률분
	행을 n 번 독립적으로 시행하	형 확률변수 X의 확률밀도함	
	였을 때, 성공의 개수 X에 관	수가 아래와 같이 정의됨.	
	한 확률분포 $ ightarrow \mathit{X} \sim \mathit{Bin}(\mathit{n},\mathit{p})$	$\rightarrow X \sim N(\mu, \sigma^2)$	
확률분포함수	$p(x) = {n \choose x} p^{x} (1-p)^{n-x},$ x = 0,1,2,,n	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}},$	$f(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} ,$ $-\infty < z < \infty$
확률분포함수의 개형	p가 0에 가까우면 양의 왜도,	$-\infty < x < \infty$ μ 를 중심으로 완벽한 대칭형	0을 중심으로 완벽한 대칭형
	•	· ·	
	p가 1에 가까우면 음의 왜도	의 종모양. σ의 크기가 분포	의 종모양.
	를 가짐.	의 산포를 결정함.	
특성치	E[X] = np $V[X] = np(1-p)$	$E[X] = \mu$ $V[X] = \sigma^2$	E[Z] = 0 $V[Z] = 1$
그 밖의 성질		선형불변성.	P[Z > 0] = P[Z < 0] = 1/2
		1) 정규 확률변수를 선형변환	$P[Z > a] = P[Z < -a]$ $Z_{1-\alpha} = -Z_{\alpha}$
		해도 정규분포를 가짐.	$z_{1-\alpha}$ z_{α}
		2) 독립인 정규 확률변수의	
		합도 정규분포를 가짐.	
(1 – α)분위수			Z_{lpha}

	카이제곱분포	t분포	F분포
정의	$Z_i \sim N(0,1), i = 1,2,,k \ 0 \ 1$	$Z \sim N(0,1)$ 이며, $X \sim \chi^2(k)$ 이며,	$U \sim \chi^2(k_1)$ 이며, $V \sim \chi^2(k_2)$ 이며,
	$Z_1,, Z_k$ 는 서로 독립일 때,	Z와 X는 서로 독립이라고 할	
	$X = \sum_{i=1}^{k} Z_i^2$ 의 확률분포	때 $T = \frac{Z}{\sqrt{X/k}}$ 의 확률분포 \rightarrow	때, $X = \frac{U/k_1}{V/k_2}$ 의 확률분포 \rightarrow
	$\rightarrow X \sim \chi^2(k)$	$T\sim t(k)$	
확률분포함수	$f(x) = \frac{1}{\Gamma(\frac{1}{2})} \frac{x^{\frac{k}{2}-1}}{2^{\frac{k}{2}}} e^{-\frac{x}{2}},$ $0 < x < \infty$	$f(t) = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{k}{2}\right)} \frac{1}{\sqrt{k\pi}} \frac{1}{\left(1 + \frac{t^2}{k}\right)^{\frac{k+1}{2}}}$	$\frac{X \sim F(k_1, k_2)}{f(x)} = \frac{\Gamma\left(\frac{k_1 + k_2}{2}\right)}{\Gamma\left(\frac{k_1}{2}\right)\Gamma\left(\frac{k_2}{2}\right)} \left(\frac{k_1}{k_2}\right)^{\frac{k_1}{2}} x^{\frac{k_1}{2} - 1} \left(1\right)$
		$-\infty < t < \infty$	$+\frac{k_1}{k_2}x\right)^{-\frac{1}{2}(k_1+k_2)},$ $0 < x < \infty$
확률분포함수의 개형	양의 왜도를 가짐.	표준정규분포와 유사하게 0을	양의 왜도를 가짐.
	k가 커지면 중심위치, 산포	중심으로 대칭형인 종모양을	
	모두 커짐.	가짐.	
		표준정규분포보다 꼬리가 두	
		꺼운데, k가 커지면 표준정규	
		분포로 수렴함.	
특성치	E[X] = k $V[X] = 2k$	E[X] = 0	$E[X] = \frac{k_2}{k_2 - 2}$
	V[X] = ZK	$V[X] = \frac{k}{k-2}$	$V[X] = \frac{2k_2^2(k_1 + k_2 - 2)}{k_1(k_2 - 2)^2(k_2 - 4)}$
그 밖의 성질	가법성 : 서로 독립인 카이제	$t_{1-\alpha,v} = -t_{\alpha,v}$	$X \sim t(v)$ 일 때, $x^2 \sim F(1, v)$
	곱 확률변수의 합은 카이제곱		
	분포를 가짐.		
(1 – α)분위수	$\chi^2_{\alpha,v}$	$t_{lpha,v}$	F_{α,k_1,k_2}