DISCIPLINA: Álgebra Linear I Professor: José Luiz Neto

Matrizes e Determinantes

- **1.** Considere as matrizes $A = (a_{ij})_{2\times 2}$, tal que $a_{ij} = \begin{cases} i+j, & se \ i = j \\ 0, & se \ i \neq j \end{cases}$ e $B = (b_{ij})_{2\times 2}$, tal que $b_{ij} = 2i 3j$. Determine A + B.
- **2.** Determine o produto x.y para que se tenha $\begin{pmatrix} 1 & x-2y \\ x+18 & 4 \end{pmatrix} = \begin{pmatrix} 1 & y+1 \\ y-3x & 4 \end{pmatrix}$.
- **3.** Sejam $A = \begin{pmatrix} -1 & -4 \\ 1 & -2 \end{pmatrix}$ e $B = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$, então det (A + B) pertence ao intervalo: (a)(-2,0) (b)[0,5] $(c)(\frac{1}{2},3)$ $(d)(-\frac{1}{3},\frac{12}{2}]$ (e)(6,10].
- **4.** Verdadeiro ou falso? As matrizes $A = \begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix}$ e $B = \begin{pmatrix} 5 & 0 \\ -6 & 7 \end{pmatrix}$ comutam.
- **5.** Considere as matrizes $D = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ e $E = \begin{pmatrix} 5 & 4 \\ 6 & 11 \end{pmatrix}$. Escolha a alternativa verdadeira;
 - (a) $\det D = 10$
 - $(b) \det(DE) = 62$
 - (c) As matrizes $D \in E$ comutam
 - $(d) \det(D+E) = 29$
 - $(e) \det E = -31$
- **6.** Determine, se possível, $x \in R$ para que a matriz $\begin{bmatrix} 0 & 2x & 1 \\ x^2 & 0 & -4x \\ x+1 & x^3 & 0 \end{bmatrix}$ seja:
 - (a) Simétrica (b) Anti-simétrica .
- 7. Seja $A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$. Ache <u>uma</u> matriz $B = (b_{ij})_{2\times 3}$, com todos os elementos distintos, tal que AB = 0.
- **8.** Sejam $A^{-1} = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$ e $B = \begin{pmatrix} -1 & 0 \\ 2 & -1 \end{pmatrix}$. Determine, se possível, a matriz X tal que $(A^TX)^{-1} = (B^{-1})^{-1}$.

- 9. Sejam $a, b \in R$, com $a \neq 0$ e $b \neq 0$. $\begin{vmatrix} 0 & a & b & 1 \\ 0 & 1 & 0 & 0 \\ a & a & 0 & b \\ 1 & b & a & 0 \end{vmatrix}$ se anula para algum par ordenado (a, b)? Justifique.
- **10.** A soma de todos os elementos da inversa da matriz $A = \begin{bmatrix} 2 & 5 & -1 \\ 4 & -1 & 2 \\ 0 & 4 & 1 \end{bmatrix}$ é igual a:
 - (a) $\frac{14}{27}$ (b) $\frac{7}{27}$ (c) $\frac{1}{6}$ (d) $\frac{2}{6}$ (e) $\frac{33}{54}$.

Respostas: Matrizes e Determinantes

1.
$$\begin{pmatrix} 1 & -4 \\ 1 & 2 \end{pmatrix}$$
.

3.
$$(d)\left(-\frac{1}{3},\frac{12}{2}\right]$$
.

5.
$$(c)$$
 As matrizes $D \in E$ comutam.

6. (a) Simétrica:
$$x = 0$$
 (b) Anti-simétrica: $x = -2$

7.
$$B = \begin{pmatrix} 2 & 4 & 6 \\ -1 & -2 & -3 \end{pmatrix}$$
 (Uma resposta. Tem outras)

8.
$$X = \begin{pmatrix} -1 & 0 \\ -5 & -1 \end{pmatrix}$$
.

9. Não. O valor do determinante é igual a:
$$a^2 + b^2$$
.

10.
$$(e) \frac{33}{54}$$
.