Worksheet 7: Inclusion-exclusion and generators and enumerators – solutions

1. (a) 7;

(b) 68.

(The lockers that are open at the end of this process are those labelled with square numbers.)

- 2. (a) There are 2^9 strings that are 1 followed by nine other bits. There are 2^8 strings that are eight bits followed by 00. There are 2^7 strings that are 1 followed by seven bits then 00. The total is $2^9 + 2^8 2^7 = 640$.
 - (b) There are 3333 numbers that are divisible by 3, 2000 that are divisible by 5, and 666 that are divisible by 15. The total is 3333 + 2000 666 = 4667.
- 3. (a) $(1+x+x^2+x^3+x^4+x^5)^3$;
 - (b) $(x + x^2 + x^3 + x^4 + x^5)^3$;
 - (c) $(x^2 + x^3 + x^4 + x^5)(1 + x + x^2 + x^3 + x^4 + x^5)^2$.
- 4. (a) Let d represent the 10¢ (dime) and q represent the 25¢ (quarter). Then $(1+d+d^2+d^3+d^4+d^5)(1+q+q^2)$.
 - (b) $(1+d+d^2+d^3+d^4+d^5)(1+q+q^2)=d^5q^2+d^5q+d^5+d^4q^2+d^4q+d^4+d^3q^2+d^3q+d^3+d^2q^2+d^2q+d^2+dq+d+q^2+q+1$. The two of these that total 50¢ are q^2 and d^5 .
 - (c) Let c represent the 1¢ (cent) and n represent the 5¢ (nikel). Then the number of ways is represented by

$$(1+c+c^2+\cdots+c^{50})(1+n+n^2+\cdots+n^{10})(1+d+d^2+d^3+d^4+d^5)(1+q+q^2).$$

- 5. (a) Given that a corresponds to tile A, and so on: $(1+a)(1+b+b^2+b^3)(1+c)(1+d+d^2+d^3+d^4)$.
 - (b) There are 12 order-3 terms in the expansion: ab^2 , abc, abd, acd, ad^2 , b^3 , b^2c , b^2d , bcd, bd^2 , cd^2 , d^3 .
 - (c) These correspond to ABB, ABC, ABD, ACD, ADD, BBB, BBC, BBD, BCD, BDD, CDD, DDD.
 - (d) The order-3 terms in the expansion can be rearranged as follows.

selection	arrangements
ab^2	$\frac{3!}{2!} = 3$
abc	3! = 6
abd	3! = 6
acd	3! = 6
ad^2	$\frac{3!}{2!} = 3$
b^3	1
b^2c	$\frac{3!}{2!} = 3$
b^2d	$\frac{3!}{2!} = 3$
bcd	3! = 6
bd^2	$\frac{3!}{2!} = 3$
cd^2	$\frac{3!}{2!} = 3$
d^3	1

The sum of the last column is 44, so there are 44 different ways of drawing three tiles

6. (a)
$$(x^6 + x^7 + \dots)(1 + x^2 + x^4 + x^6 + \dots)(1 + x + x^2 + x^3 + \dots)^2$$
.
(b) 50.