

ELSEVIER

Respiration Physiology 122 (2000) 285–286

www.elsevier.com/locate/resphysiol

Author index of volume 122

Aaron, E.A., see Powell, F.L. 122 (2000) 271.
Abadie, V., see Fortin, G. 122 (2000) 247.
Adams, L., see Moosavi, S.H. 122 (2000) 45.
Auriant, I., see Calabrese, P. 122 (2000) 1.

Banzett, R.B., see Moosavi, S.H. 122 (2000) 45.
Benchetrit, G., Breathing pattern in humans: diversity and individuality 122 (2000) 123.
Benchetrit, G., see Calabrese, P. 122 (2000) 1.
Berger, A.J., Determinants of respiratory motoneuron output 122 (2000) 259.
Bishop, B., see Kondo, T. 122 (2000) 35.
Brown, R., see Moosavi, S.H. 122 (2000) 45.
Burton, M.D. and H. Kazemi, Neurotransmitters in central respiratory control 122 (2000) 111.
Butera, R.J., Jr. see Smith, J.C. 122 (2000) 131.

Calabrese, P., N. Grayspeert, I. Auriant, C. Fromageot, J.-C. Raphaël, F. Lofaso and G. Benchetrit, Postural breathing pattern changes in patients with myotonic dystrophy 122 (2000) 1.
Champagnat, J., see Fortin, G. 122 (2000) 247.

Del Negro, C., see Smith, J.C. 122 (2000) 131.
del Toro, E.D., see Fortin, G. 122 (2000) 247.
Denavit-Saubié, M., see Fortin, G. 122 (2000) 247.
Duffin, J., G.-F. Tian and J.H. Peever, Functional synaptic connections among respiratory neurons 122 (2000) 237.
Dwinell, M.R., see Powell, F.L. 122 (2000) 271.

Fenelon, K., E.L. Seifert and J.P. Mortola, Hypoxic depression of circadian oscillations in sino-aortic denervated rats 122 (2000) 61.
Fortin, G., E.D. del Toro, V. Abadie, L. Guimarães, A.S. Foutz, M. Denavit-Saubié, F. Rouyer and J. Champagnat, Genetic and developmental models for the neural control of breathing in vertebrates 122 (2000) 247.
Foutz, A.S., see Fortin, G. 122 (2000) 247.
Fromageot, C., see Calabrese, P. 122 (2000) 1.

Grayspeert, N., see Calabrese, P. 122 (2000) 1.
Guimarães, L., see Fortin, G. 122 (2000) 247.
Hafer, A., see Moosavi, S.H. 122 (2000) 45.

Iscoe, S., Segmental responses of abdominal motoneurons in decerebrate cats 122 (2000) 27.

Johnson, S.M., see Smith, J.C. 122 (2000) 131.

Kazemi, H., see Burton, M.D. 122 (2000) 111.
Khoo, M.C.K., Determinants of ventilatory instability and variability 122 (2000) 167.
Kondo, T., M. Kumagai, Y. Ohta and B. Bishop, Ventilatory responses to hypercapnia and hypoxia following chronic hypercapnia in the rat 122 (2000) 35.
Koshiya, N., see Smith, J.C. 122 (2000) 131.
Kumagai, M., see Kondo, T. 122 (2000) 35.

Lahiri, S., see Roy, A. 122 (2000) 15.
Lansing, R.W., see Moosavi, S.H. 122 (2000) 45.
Lindsey, B.G., K.F. Morris, L.S. Segers and R. Shannon, Respiratory neuronal assemblies 122 (2000) 183.
Lofaso, F., see Calabrese, P. 122 (2000) 1.
Lukowiak, K., see Taylor, B.E. 122 (2000) 197.

Mokashi, A., see Roy, A. 122 (2000) 15.
Moosavi, S.H., G.P. Topulos, A. Hafer, R.W. Lansing, L. Adams, R. Brown and R.B. Banzett, Acute partial paralysis alters perceptions of air hunger, work and effort at constant P_{CO_2} and V_T 122 (2000) 45.
Morris, K.F., see Lindsey, B.G. 122 (2000) 183.
Mortola, J.P., see Fenelon, K. 122 (2000) 61.

Nattie, E., Multiple sites for central chemoreception: their roles in response sensitivity and in sleep and wakefulness 122 (2000) 223.

O'Brien, K.M., H. Xue and B.D. Sidell, Quantification of diffusion distance within the spongy myocardium of hearts from antarctic fishes 122 (2000) 71.
Ohta, Y., see Kondo, T. 122 (2000) 35.
Overholt, J.L., see Prabhakar, N.R. 122 (2000) 209.

Peever, J.H., see Duffin, J. 122 (2000) 237.
Poon, C.-S. and M.S. Sinaia, Plasticity of cardiorespiratory neural processing: classification and computational functions 122 (2000) 83.

Powell, F.L., M.R. Dwinell and E.A. Aaron, Measuring ventilatory acclimatization to hypoxia: comparative aspects 122 (2000) 271.

Prabhakar, N.R. and J.L. Overholt, Cellular mechanisms of oxygen sensing at the carotid body: heme proteins and ion channels 122 (2000) 209.

Raphaël, J.-C., see Calabrese, P. 122 (2000) 1.

Rouyer, F., see Fortin, G. 122 (2000) 247.

Roy, A., C. Rozanov, A. Mokashi and S. Lahiri, P_{O_2} - P_{CO_2} stimulus interaction in $[Ca^{2+}]_i$ and CSN activity in the adult rat carotid body 122 (2000) 15.

Rozanov, C., see Roy, A. 122 (2000) 15.

Segers, L.S., see Lindsey, B.G. 122 (2000) 183.

Seifert, E.L., see Fenelon, K. 122 (2000) 61.

Shannon, R., see Lindsey, B.G. 122 (2000) 183.

Sidell, B.D., see O'Brien, K.M. 122 (2000) 71.

Siniaia, M.S., see Poon, C.-S. 122 (2000) 83.

Smith, J.C., R.J. Butera, Jr., N. Koshiya, C. Del Negro, C.G. Wilson and S.M. Johnson, Respiratory rhythm generation in neonatal and adult mammals: the hybrid pacemaker-network model 122 (2000) 131.

Taylor, B.E. and K. Lukowiak, The respiratory central pattern generator of *Lymnaea*: a model, measured and malleable 122 (2000) 197.

Tian, G.-F., see Duffin, J. 122 (2000) 237.

Topulos, G.P., see Moosavi, S.H. 122 (2000) 45.

Ward, S.A., Control of the exercise hyperpnoea in humans: a modeling perspective 122 (2000) 149.

Wilson, C.G., see Smith, J.C. 122 (2000) 131.

Xue, H., see O'Brien, K.M. 122 (2000) 71.

ELSEVIER

Respiration Physiology 122 (2000) 287–288

www.elsevier.com/locate/resphysiol

Subject index of volume 122

Acclimatization
 CO₂, 35

Adaptations
 breathing, environment, gene expression, 247

Apnea
 sleep, 167

Birds
 duck, 271

Carbon dioxide
 chronic exposure, ventilation, 35
 interaction with hypoxia, 271
 response, central, 223

Cardio-respiratory system
 control, plasticity, 83

Carotid body
 exercise hyperpnea, 149
 glomus cells, O₂–CO₂ interaction, 15
 O₂ sensing, 209

Channels
 K⁺, 209

Chemoreceptors
 peripheral, circadian rhythm, 61

Chemosensitivity
 brainstem, network, 183
 central, neurotransmission, 111
 central, widespread, 223
 central, peripheral, exercise hyperpnea, 149

Control of breathing
 afferent integration, 183
 central chemosensitivity, 223
 central respiratory drive, 111
 CO₂ acclimatization, 35
 exercise, chemoreflex, 149
 gene function, 247
 hypoglossal motoneurons, 259
 hypoxic ventilatory response, 271
 loop gain, periodic breathing, 167
 peripheral response, 15
 personal pattern of breathing, 123
 respiratory reflexes, 27
 respiratory network, 237
 rhythm generation, 131

Depression
 short-term, long-term, 83

Diffusion
 myocardium, 71

Disease
 myotonic, dystrophy, 1

Exercise
 hyperpnea, models, 149

Fish
 antarctic (*Gobionotothen gibberifrons*, *Chionodraco rastrospinosus*, *Chaenocephalus aceratus*), 71

Gene
 expression, adaptation, environment, 247

Glomus cells
 O₂–CO₂ interaction, Ca²⁺ response, 15

Heart
 myocardial diffusion distance, 71

Hyperpnea
 volitional, 45

Hypoxia
 central, neurotransmission, 111
 circadian oscillations, 61
 sensing, carotid body, 209
 ventilatory response, 271

Ion channels
 hypoglossal motoneurons, 259

Learning
 respiratory behavior, 197

Mammals
 cat, 27, 237
 humans, 1, 45, 123, 271
 rat, 15, 35, 61, 271

Mediators
 ACh, 111
 GABA, 111
 glutamate, 111
 taurine, 111

Medulla
 ventro-lateral, pre-Bötzinger, 131

Metabolism
 circadian rhythm, hypoxia, 61

Methods
 stereology, 71

Model
 exercise hyperpnea, 149
 hybrid pacemaker-network, 131
 respiratory pattern, 197

Mollusc
 snail (*Lymnea stagnalis*), 197

Muscle
 cardiac, diffusion distance, 71
 respiratory, innervation, 27

Nerve
 carotid sinus, 15

Network
 neuronal, plasticity, 197
 neuronal, respiration, 237

Neurons
 respiratory motor, 259

Neurotransmission
 fast-acting, 111

Oxygen
 binding proteins (antarctic fish), 71
 consumption, 61
 reactive species, 209

Paralysis
 respiratory sensations, 45

Pattern of breathing
 chronic CO₂ exposure, 35

Plasticity
 neuronal network, 197
 posture, myotonic dystrophy, 1
 variability, individuality, 123
 variability, mechanisms, 167

Potentiation
 short-term, long-term, 83

Receptors
 chemo, baro, noci, cough, 183

Reflex
 central integration, 183
 muscle, exercise hyperpnea, 149

Sensation
 respiratory, central motor control, 45

Stimulation
 electrical, segmental responses, 27

Temperature
 body, circadian rhythm, hypoxia, 61

Transduction
 carotid body, 209

