permui

Funny.

首而

新随笔

管理

随笔 - 143 文章 - 0 评论 - 7

一般图最大匹配-带花树算法

问题

对于一个图G(V,E),它的匹配M是二元组(u,v)组成的集合,其中 $u,v\in V,(u,v)\in E$,并且M中不存在重复的点。

当|M|最大的时候,我们称M为G的最大匹配。

当G是一个二分图的时候,它的最大匹配可以用经典的匈牙利算法或网络流算法求解。然而当G是一个一般的图时,直接进行增广就变得不可行了,例如下面这个例子(论文中的图):

这个问题出现的原因,就是一个一般图中会含有奇环,即一个点数为2k+1,k>0的环,而如果经过一个奇环,那么会得到两条含有同一个点的匹配边,这其实是不符合定义的。那为什么二分图可以直接增广呢?因为二分图中不可能含有奇环,它所有的环都是偶环。因此,在一般图匹配问题中,我们需要一种改进算法来解决奇环的问题。

算法

基本算法依然是分为n个阶段寻找增广路。问题主要在奇环上,那么我们分析一下这个奇环的性质。首先,奇环中有2k+1个点,所以最多有k组匹配。这就是说,有一个点没有匹配,即这个点在环内两边的连边都不是匹配边,也只有这个点可以向环外连边。

发现了这个性质,我们可以把整个奇环缩成一个点。缩完点后的图如果可以找到一条增广路,那么原图中也可以找到一条增广路,因为如果增广路经过奇环那么奇环内的增广路可以还原出来。

这就是带花树算法的思想。整个求解过程分为n个阶段,每个阶段从没有匹配的s点开始bfs找增广路。搜索的开始,把s点加入队列中,标记它为A类点。如果从x点出发,搜索到了一个未标记的点,有两种情况。如果这个未标记点有匹配,那么把这个点设为B类点,它的匹配点设为A类点,加入队列继续增广。如果这个点没有匹配,又因为我们是从一个未匹配点开始进行搜索的,所以这说明我们找到了一条增广路,沿着过来的边找回去,展开带花树,修改搜索的过程中,如果我们遇到了偶环,那么不管它,因为它不会影响求解。如果遇到了一个奇环,那么我们找到当前点x和找到的点v,求出他们的**最近公共花祖先**,然后把环缩掉。这里我们用并查集实现。

我们在缩环的时候,处理出一个pre数组,表示我们回跳的时候走到这里该往哪一个方向走回去。回跳的时候,每次找到pre,然后修改这条边,接着跳到pre原来的pre和在比处。如果我们倒着进入一个花的时候,上方的边为非匹配边,那么我们会往下走,这个时候pre就应该往下设。中间相遇的位置pre互相连接,

pre[x]=y,pre[y]=x .

算法分为n个阶段,每个阶段最多把整个图遍历一次,每个点会最多被缩n次花,所以总复杂度为 $O(n^3)$ 。

代码

uoj79, 一般图匹配模板题。

#include<cstdio>
#include<cctype>
#include<cstring>

搜索

我的标签

动态规划(26)

数学(14)

线段树(11)

字符串(11)

树(10)

概率与期望(8) 后缀自动机(8)

连通性状压dp(8)

高斯消元(7)

网络流(7)

更多

随笔档案

2018年4月 (1)

2018年1月 (1) 2017年11月 (2)

2017年11月 (2)

2017年10月 (7)

2017年9月 (16) 2017年8月 (19)

2017年7月 (25)

2017年7月 (25) 2017年6月 (1)

2017年5月 (13)

2017年4月 (58)

Teammates

GJS

HGR HJH

LYY

Sdchr

sshockwave

SSR

XJ

ZWL

最新评论

1. Re:可持久化Treap

请问一下,为什么split操作中右子树merge 后 now要pushdown呢

--Adscn

2. Re:bzoj3625-小朋友和二叉树 不过转移fk那里有点问题

--nosta

```
#include<algorithm>
using namespace std;
int read() {
    int x=0, f=1;
    char c=getchar();
    for (;!isdigit(c);c=getchar()) if (c=='-') f=-1;
    for (;isdigit(c);c=getchar()) x=x*10+c-'0';
    return x*f;
const int maxn=505;
const int maxm=maxn*maxn*2;
int n,m,que[maxm],ql,qr,pre[maxn],tim=0;
struct edge {
   int v,nxt;
int h[maxn], tot=0;
int match[maxn],f[maxn],tp[maxn],tic[maxn];
int find(int x) {
    return f[x] == x?f[x]:f[x] = find(f[x]);
void add(int u,int v) {
    e[++tot] = (edge) \{v,h[u]\};
int lca(int x,int y) {
    for (++tim;;swap(x,y)) if (x) {
        if (tic[x]==tim) return x; else tic[x]=tim,x=pre[match[x]];
void shrink(int x,int y,int p) {
    while (find(x)!=p) {
        if (tp[y]==2) tp[y]=1,que[++qr]=y;
        if (find(x) == x) f[x] = p;
        if (find(y) == y) f[y] = p;
bool aug(int s) {
    for (int i=1; i \le n; ++i) f[i]=i;
    memset(tp,0,sizeof tp),memset(pre,0,sizeof pre);
    tp[que[ql=qr=1]=s]=1; // 1: type A ; 2: type B
    int t=0;
    while (ql<=qr) {
        int x=que[ql++];
        for (int i=h[x],v=e[i].v;i;i=e[i].nxt,v=e[i].v) {
             \quad \text{if } (\text{find}(\textbf{v}) == \text{find}(\textbf{x}) \ \mid \mid \ \text{tp}[\textbf{v}] == 2) \ \text{continue}; \\
             if (!tp[v]) {
                 tp[v]=2,pre[v]=x;
                 if (!match[v]) {
                      for (int now=v,last,tmp;now;now=last) {
                      return true;
                 \verb|tp[match[v]]=1, que[++qr]=match[v];|
             } else if (tp[v]==1) {
                 int l=lca(x,v);
    return false;
int main() {
#ifndef ONLINE JUDGE
    freopen("test.in", "r", stdin);
    freopen("my.out", "w", stdout);
#endif
    for (int i=1;i<=m;++i) {</pre>
        int x=read(),y=read();
    int ans=0;
    for (int i=1;i<=n;++i) ans+=(!match[i] && aug(i));</pre>
    printf("%d\n", ans);
    for (int i=1;i<=n;++i) printf("%d ",match[i]);</pre>
```

3. Re:bzoj3625-小朋友和二叉树 受益匪浅!

--nosta

4. Re:斯特林数

@3C_KMnO4已修正,谢谢...

--permui

5. Re:斯特林数

第二类斯特林数的第4条性质有误,应该是 2[^](n-1)-1.如s(2,2)=1;

--3C_KMnO4

阅读排行榜

- 1. 最大流算法-ISAP(4508)
- 2. 一般图最大匹配-带花树算法(4251)
- 3. 最大流算法-最高标号预流推进(HLPP) (4015)
- 4. 斯特林数(2123)
- 5. Lucas定理(1803)

评论排行榜

- 1. bzoj3625-小朋友和二叉树(2)
- 2. 斯特林数(2)
- 3. 最大流算法-最高标号预流推进(HLPP)(1)
- 4. 最大流算法-ISAP(1)
- 5. 可持久化Treap(1)

```
puts("");
    return 0;
     带花树
标签:
            关注我
   好文要顶
                   收藏该文
      permui
      <u> 关注 - 0</u>
                                                                  2
                                                                           0
      粉丝-8
+加关注
```

- «上一篇: 最大流算法-最高标号预流推进(HLPP)
- » 下一篇: bzoj2429- 聪明的猴子

posted @ 2017-05-15 21:19 permui 阅读(4251) 评论(0) 编辑 收藏

刷新评论 刷新页面 返回顶部

注册用户登录后才能发表评论,请 登录 或 注册,访问网站首页。

【推荐】超50万C++/C#源码: 大型实时仿真组态图形源码

【前端】SpreadJS表格控件,可嵌入系统开发的在线Excel

【推荐】码云企业版,高效的企业级软件协作开发管理平台

【推荐】程序员问答平台,解决您开发中遇到的技术难题

相关博文:

- ·【learning】一般图最大匹配——带花树
- ·一般图最大匹配--带花树算法
- ·【Learning】带花树————般图最大匹配
- ·一般图最大匹配——带花树
- ·一般图最大匹配——带花树算法学习小记

最新新闻:

- ·他假装病人住进精神病院,揭开了精神病学诊断的黑历史
- · 谷歌进军电信?拟联手Dish成立美国第四大运营商
- ·新思科技助力,三星5nm/4nm/3nm工艺再加速
- ·华为在泰国手机市场份额增长至20%,鸿蒙没有没有具体时间表
- ·联发科首发旗舰智能电视芯片S900: 支持8K视频解码
- » 更多新闻...

Copyright ©2019 permui