Decision Model

Introduction

- ตัวแบบการตัดสินใจ(Decision Model) เป็นวิธีการทางวิทยาศาสตร์อย่าง หนึ่งที่นำมาใช้ช่วยในการตัดสินใจ โดยอาศัยรูปแบบทางคณิตศาสตร์มาช่วยอธิบาย ถึงสภาพของปัญหาที่ต้องตัดสินใจ แสดงทางเลือก ตลอดจนผลของทางเลือกนั้นๆ
- การตัดสินใจที่ดีจะต้องมีลักษณะ ดังนี้:
 - อยู่บนพื้นฐานของตรรกศาสตร์(Logic)
 - ตัดสินใจโดยพิจารณาจากทางเลือกทั้งหมดที่เป็นไปได้
 - พิจารณาข้อมูลทั้งหมดที่มีเกี่ยวกับเหตุการณ์ที่จะเกิดขึ้นได้ในอนาคต
 - นำตัวแบบในการตัดสินใจมาประยุกต์ใช้

ลักษณะการแสดงข้อมูล

•เมทริกซ์การตัดสินใจ(Decision matrix)

แถวนอน(i) แสดงทางเลือกต่างๆที่มีอยู่
แถวตั้ง(j)แสดงถึงเหตุการณ์ต่างๆที่จะเกิดขึ้น
หลังจากที่มีการตัดสินใจแล้ว

ผลตอบแทนของทางเลือกที่ i เมื่อเกิดเหตุการณ์ j จะ แสดงด้วยค่า C_{ij}

เหตุการณ์	1	2	n
ทางเลือก			
1	C ₁₁	C ₁₂	C_{1n}
2	C_{21}	C ₂₂	C_{2n}
m	C_{m1}	C _{m2}	C _{mn}

•แขนงการตัดสินใจ(Decision tree)

แสดงการเกิดเหตุการณ์ต่างๆ

--- แสดงทางเลือกในการตัดสินใจและ เหตุการณ์ที่จะเกิดขึ้นหลังการเลือกทางเลือกนั้นๆ

ขั้นตอนในการตัดสินใจ

- 1. กำหนดปัญหาที่ต้องการตัดสินใจให้ชัดเจน
- 2. กำหนดทางเลือก
- 3. ระบุเหตุการณ์ที่จะเกิดขึ้นในอนาคต(State of Nature)
- 4. คำนวณผลตอบแทน(Payoff)ของแต่ละทางเลือก
- 5. ตัดสินใจเลือกทางเลือกที่ต้องการ

Types Of Decision Making Environments

- Type 1: การตัดสินใจภายใต้สภาวะความแน่นอน ในสภาวการณ์นี้ผู้ตัดสินใจจะ ทราบแน่นอนว่าจะเกิดเหตุการณ์ใด และจากข้อมูลผลตอบแทนของแต่ละทางเลือก ที่มีอยู่แล้ว การตัดสินใจจะทำได้ง่าย
- Type 2: การตัดสินใจภายใต้สภาวะความเลี่ยง หมายถึงการที่ผู้ตัดสินใจไม่ทราบ แน่ชัดว่าเหตุการณ์ใดจะเกิดขึ้น แต่สามารถทราบโอกาสหรือความน่าจะเป็น (Probability)ที่จะเกิดเหตุการณ์เหล่านั้นได้ โดยอาศัยข้อมูลในอดีต ประสบการณ์ หรือวิจารณญาณของผู้ตัดสินใจ
- Type 3: การตัดสินใจภายใต้สภาวะความไม่แน่นอน หมายถึงผู้ตัดสินใจไม่สามารถ ทราบได้ว่าเหตุการณ์ใดจะเกิดขึ้นภายหลังจากที่ตัดสินใจแล้ว และไม่อาจกำหนด หรือประมาณค่าความน่าจะเป็นในการเกิดเหตุการณ์เหล่านั้นได้เลย

การตัดสินใจภายใต้สภาวะความแน่นอน

	กำไร(ล้านบาท)				
ทางเลือก	ขายบัตรหมด	ขายบัตรได้ 50%			
โครงการขนาดเล็ก	8	4			
โครงการขนาดกลาง	15	12*			
โครงการขนาดใหญ่	25*	10			

• ถ้าผู้ตัดสินใจทราบแน่นอนว่าจะเกิดเหตุการณ์ใดแน่ ก็จะสามารถ เลือกทางเลือกที่ให้กำไรสูงสุดได้ทันที อย่างไรก็ตามการตัดสินใจ ภายใต้ความแน่นอนไม่เกิดขึ้นบ่อยนัก ส่วนใหญ่มีความไม่ แน่นอนหรือความเสี่ยงเข้ามาเกี่ยวข้องด้วยเสมอ

วิเคราะห์

ตัวแบบตัดสินใจ

ภายใต้

สภาวะความเสี่ยง

1. วิเคราะห์ข้อมูลเหตุการณ์ที่เกิดขึ้น

เหตุการณ์ความต้องการดอกกุหลาบ ของลูกค้า (ดอก)	จำนวนวันที่ขายได้ (วัน)
1,000	18
1,100	36
1,200	27
1,300	9
รวม	90

2. คำนวณหาค่าความน่าจะเป็นการเกิดขึ้นเหตุการณ์

เหตุการณ์ความต้องการดอก	จำนวนวันที่ขายได้ (วัน)	ความน่าจะเป็น	
กุหลาบ		การเกิดเหตุการณ์	
ของลูกค้า			
(ดอก)			
1,000	18	18 / 90 = 0.2	
1,100	36	36 / 90 = 0.4	
1,200	27	27 / 90 = 0.3	
1,300	9	9 / 90 = 0.1	
รวม	90	1.0	

3. แจกแจงทางเลือกและเหตุการณ์ทั้งหมดที่เป็นไปได้

4. ถ้าขายดอกไม้ราคาดอกละ 8 บาท ต้นทุนดอกละ 3 บาท จะคำนวณผลตอบแทน

กำไรระบุลงตารางได้จากสูตร กำไร = (จำนวนดอกที่ขายได้ X ราคาขายต่อดอก) -

(จำนวนดอกที่ขายได้ X ต้นทุนต่อดอก)

	ตารางผลตอบแทน				
	เหตุกา	เหตุการณ์ความต้องการของลูกค้า			
ทางเลือก ในการสั่ง ดอกไม้	1000 1100 1200 1300				
	1000	1100	1200	1300	
1000	5000	5000	5000	5000	
1100	4700	5500	5500	5500	
1200	4400	5200	6000	6000	
1300	4100	4900	5700	6500	
ความน่าจะเป็น	0.2	0.4	0.3	0.1	

5. คำนวณค่าคาดคะเนของผลตอบแทน(Expected Monetary Value ; EMV หรือ EV)

จากสูตร ค่าคาดคะเนผลตอบแทน = ผลตอบแทน Xความน่าจะเป็นการเกิดเหตุการณ์ ดังนั้นจากตารางจะได้ว่า ค่า Max EV = 5,360 บาท (ค่าคาดคะเนของกำไรที่มากที่สุด)

		ตารางผลตอบแทน			
	เหตุกา	ารณ์ความต่	<mark>้องการของ</mark>	ลูกค้า	
ทางเลือก ในการสั่ง					EV ค่าคาดคะเนของ
ดอกไม้	1000	1100	1200	1300	ผลตอบแทน
1000	5000(0.2)+	5000(0.4)+	5000(0.3)+	5000(0.1)=	5000
1100	4700(0.2)+	5500(0.4)+	5500(0.3)+	5500(0.1)=	5 <mark>34</mark> 0
1200	4400(0.2)+	5200(0.4)+	6000(0.3)+	6000(0.1)=	5360
1300	4100(0.2)+	4900(0.4)+	5700(0.3)+	6500(0.1)=	5140
ความน่าจะเป็น	0.2	0.4	0.3	0.1	

6. คำนวณค่าคาดคะเนของผลตอบแทนเมื่อมีข่าวสารสมบูรณ์ หรือ Expected Profit

with Perfect Information (EPPI) = 1,000 + 2,200 + 1,800 + 650 = 5,650 บาท

ตารางผลตอบแทน เหตุการณ์ความต้องการของลูกค้า ทางเลือก ในการสัง ดอกไม้ 1000 1100 1200 1300 5000(0.2) 5000(0.4) 5000(0.3) 5000(0.1) 1000 =1000 =2000 =1500 =5004700(0.2) 5500(0.4) 5500(0.3) 5500(0.1) 1100 =940=1650=2200 =5505200(0.4) 6000(0.3) 6000(0.1) 4400(0.2) 1200 =880=2080 =1800 =6006500(0.1) 5700(0.3) 4100(0.2) 4900(0.4) 1300 =1710=820=1960=650ความน่าจะเป็น 0.2 0.40.3 0.1

7. คำนวณมูลค่าของข่าวสารที่สมบูรณ์หรือที่เรียกว่าค่าคาดคะเน ของข่าวสารที่สมบูรณ์ (Expected Value of Perfect Information : EVPI) ได้จากสูตร

EVPI = EPPI - Max EV = 5,650 - 5,360 = 290

8. อีกกรณีสามารถ คำนวณหาค่า EVPI จากสูตร

EVPI = Min EOL

โดยที่ Min EOL คือ ค่าเสียโอกาสคาดคะเนน้อยที่สุด หรือ Expected Opportunity Loss สามารถหาค่า EOL ได้ดังนี้ 8. EOL (ต่อ) คำนวณค่าเสียโอกาสของแต่ละทางเลือก เมื่อเกิดเหตุการณ์ต่าง ๆกัน โดยพิจารณาเลือกผลตอบแทนมากที่สุดจากทางเลือกทั้งหมดภายใต้เหตุการณ์หนึ่ง ๆ เป็นตัวตั้ง ลบออกด้วยผลตอบแทนของแต่ละทางเลือกนั้น

	ตารางผลตอบแทน				
	เหตุกา	เหตุการณ์ความต้องการของลูกค้า			
ทางเลือก ในการสั่ง ดอกไม้	1000 1100 1200 1300				
1000	5000	5000	5000	5000	
1100	4700	5500	5500	5500	
1200	4400	5200	6000	6000	
1300	4100	4900	5700	6500	
ความน่าจะเป็น	0.2	0.4	0.3	0.1	

8. EOL (ต่อ) ระบุค่าเสียโอกาสทั้งหมด ดังนี้

	ตารางค่าเสียโอกาส				
	เหตุกา	เหตุการณ์ความต้องการของลูกค้า			
ทางเลือก					
ในการสั่งดอกไม้	1000	1100	1200	1300	
	5000-5000	5500-5000	6000-5000	6500-5000	
1000	=0	=500	=1000	=1500	
	5000-4700	5500-5500	6000-5500	6500-5500	
1100	=300	=0	=500	=1000	
	5000-4400	5500-5200	6000-6000	6500-6000	
1200	=600	=300	=0	=500	
	5000-4100	5500-4900	6000-5700	6500-6500	
1300	=900	=600	=300	=0	

8. EOL (ต่อ) ระบุค่า EOL ลงตาราง จากสูตร

ค่าเสียโอกาสคาดคะเน = ค่าเสียโอกาสที่เราสนใจ X ความน่าจะเป็นเกิดเหตุการณ์

		ตารางค่าเ			
	เหตุกา	รณ์ความต่	<mark>้องการของ</mark>	ลูกค้า	
ทางเลือก ในการสั่งดอกไม้	1000	1100	1200	1300	EOL ค่าคาดคะเนของ ค่าเสียโอกาส
1000	0(0.2) =0	500(0.4) =200	1000(0.3) =300	1500(0.1) =150	650
1100	300(0.2) =60	0(0.4) =0	500(0.3) =150	1000(0.1) =100	310
1200	600(0.2) =120	300(0.4) =120	0(0.3) =0	500(0.1) =50	290
1300	900(0.2) =180	600(0.4) =240	300(0.3) =90	0(0.1) =0	510
ความน่าจะเป็น	0.2	0.4	0.3	0.1	

9. สรุปค่า EVPI = Min EOL

โดยที่ Min EOL มีค่าเท่ากับ 290 บาท

ดังนั้น

EVPI = Min EOL

= EPPI - Max EV

Thompson Lumber Company

Step 1. กำหนดปัญหา: ควรขยายสายการผลิตโดยการผลิตและทำการตลาด สินค้าตัวใหม่ "backyard storage sheds" หรือไม่

Step 2. กำหนดทางเลือก:

- (1) สร้างโรงงานขนาดใหญ่เพื่อผลิตสินค้าใหม่
- (2) สร้างโรงงานขนาดเล็กเพื่อผลิตสินค้าใหม่ หรือ
- (3) ไม่สร้างโรงงานใหม่
- Step 3. ระบุเหตุการณ์ที่จะเกิดขึ้นในอนาคตของทางเลือกต่างๆ

Thompson Lumber Company

Step 4. คำนวณผลตอบแทนที่จะได้รับจากแต่ละทางเลือก โดยมีวัตถุประสงค์ เพื่อให้เกิดกำไรสูงสุด

Step 5. เลือกตัวแบบที่จะนำมาใช้ในการตัดสินใจ

สำหรับปัญหานี้ กำหนดค่าผลตอบแทนที่จะได้รับในแต่ละทางเลือกภายใต้ เหตุการณ์ต่างๆดังนี้

	STATE OF NATURE				
ALTERNATIVE	FAVOR ABLE MARKET (\$)	UNFAVORABLE MARKET (\$)			
Construct a large plant	200,000	-180,000			
Construct a small plant	100.000	-20,000			
Do nothing	0	0			

Expected Monetary Value (EMV) Decision Thompson Lumber Company

- การคำนวณหาค่าคาดคะเนของผลตอบแทน(EMV) ทำได้ดังตาราง
- กำหนดให้ความน่าจะเป็นที่ตลาดจะชอบ/ไม่ชอบสินค้าใหม่เท่ากัน
- คังนั้นแต่ละเหตุการณ์มีความน่าจะเป็นเท่ากับ 0.50
- ในการใช้เกณฑ์ค่าคาดคะเน **จะเลือกทางเลือกที่มีค่าคาดคะเนของผลตอบแทน(EMV)**สูงที่สุด ในตัวอย่างนี้ได้แก่ การเลือกสร้างโรงงานขนาดเล็ก ซึ่งมีค่า EMV สูงที่สุด คือ \$40,000

	STATE	OF NATURE	
ALTERNATIVE	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)	EMV COMPUTED (\$)
Construct a large plant	200,000	-180,000	(0.5)(200,000) + (0.5)(-180,000) = 10,000
Construct a small plant	100,000	-20,000	(0.5)(100,000) + (0.5)(-20,000) = 40,000
Do nothing	0	0	(0.5)(0) + (0.5)(0) = 0
Probabilities	0.50	0.50	Maximum —

Expected Opportunity Loss (EOL) Decision

Thompson Lumber Company

- ullet การคำนวณหาค่าเสียโอกาสที่คาดคะเนของค่าเสียโอกาส(EOL) ทำได้ดังตาราง
- ในการใช้เกณฑ์ค่าเสียโอกาส จะเลือกทางเลือกที่มีค่าคาดคะเนของค่าเสียโอกาส (\mathbf{EOL}) ต่ำที่สุดในตัวอย่างนี้ได้แก่ การเลือกสร้างโรงงานขนาดเล็ก ซึ่งมีค่า \mathbf{EOL} ต่ำที่สุด คือ \$60,000
- ข้อสังเกต ไม่ว่าผู้ตัดสินใจจะใช้เกณฑ์ค่าคาดคะเนของผลตอบแทน(EMV)สูงสุด หรือเกณฑ์ ค่าคาดคะเนของค่าเสียโอกาส(EOL)ต่ำสุด จะได้ผลการตัดสินใจที่เหมือนกันเสมอ

STATE	OF NATURE		
ALTERNATIVE	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)	EOL COMPUTED (\$)
Construct a large plant	0	180,000	(0.5)(0) + (0.5)(180,000) = 90,000
Construct a small plant	100,000	20,000	$(0.5)(100,000) + (0.5)(20,000) = \boxed{60,000} \leftarrow$
Do nothing	200,000	0	(0.5)(200,000) + (0.5)(0) = 100,000
Probabilities	0.50	0.50	Minimum —

EV with PI and EVPI

ผลลัพธ์ที่ดีที่สุดภายใต้เหตุการณ์ "ตลาดพอใจสินค้า" คือ "สร้างโรงงานขนาดใหญ่" โดยให้ ผลตอบแทน \$200,000

ผลลัพธ์ที่ดีที่สุดภายใต้เหตุการณ์ " ตลาดไม่พอใจสินค้า " คือ " ไม่สร้างโรงงาน" โดยให้ ผลตอบแทน \$0

สามารถคำนวณค่าคาดคะเนเมื่อมีข่าวสารสมบูรณ์ได้ ดังนี้

ค่าคาดคะเนของผลตอบแทนเมื่อมีข่าวสารสมบูรณ์(EPPI)

= (\$200,000)(0.50) + (\$0)(0.50) = \$100,000

หากผู้ตัดสินใจมีข่าวสารสมบูรณ์ จะได้ผลตอบแทนเฉลี่ยเท่ากับ \$100,000

และค่าผลกำไรคาดคะเน(EMV) หรือที่เราเรียกว่าค่าคาดคะเนเมื่อไม่มีข่าวสารที่สมบูรณ์ที่มีค่า มากที่สุด มีค่าเท่ากับ $\$40,\!000$ จึงสามารถคำนวณค่า EVPI ได้ ดังนี้

Using Excel to Solve Decision Making Problems Under Risk Formulas View

If function is used to identify best alternative.

		(20.00)				
	Α	В	С	D	E	
1	Thomps	on Lumber (D	ecision Makin	g Under Risk)		
2		,				
3	PAYOFFS	States	of Nature			
4	Alternatives	Favorable market	Unfavorable market	EM∨	Choice	
5	Large plant	200000	-180000	=SUMPRODUCT(B5:C5,B\$8:C\$8)	=IF(D5=MAX(D\$5:D\$7),"Best","")	
6	Small plant	100000	-20000	=SUMPRODUCT(B6:C6,B\$8:C\$8)	=IF(D6=MAX(D\$5:D\$7),"Best","")	
7	Do nothing	0	0	=SUMPRODUCT(B7:C7,B\$8:C\$8)	=IF(D7=MAX(D\$5:D\$7),"Best","")	
8	Probability	0.5	0.5	(5)	(D) in the difference between	
9	Best outcome	=MAX(B5:B7)	=MAX(C5:C7)		/PI is the difference between /wPI and best EMV.	
10				E	WEI and best civiv.	
11	Expected Value	ue WITH Perfect Inform	mation (EVwPI) =		=SUMPRODUCT(B9:C9,B8:C8)	
12	Best Expected	d Monetary Value (EN	1 √) =	Best EMV)	=MAX(D5:D7)	
13	Expected Value	ue OF Perfect Informa	tion (EVPI) =		=E11-E12	
14						
15	REGRET	States	of Nature			
16	Alternatives	Favorable market	Unfavorable market	EOL	Choice	
17	Large plant	=MAX(B\$5:B\$7)-B5	=MAX(C\$5:C\$7)-C5	=SUMPRODUCT(B17:C17,B\$20:C\$20)	=IF(D17=MIN(D\$17:D\$19),"Best","")	
18	Small plant	=MAX(B\$5:B\$7)-B6	=MAX(C\$5:C\$7)-C6	=SUMPRODUCT(B18:C18,B\$20:C\$20)	=IF(D18=MIN(D\$17:D\$19),"Best","")	
19	Do nothing	=MAX(B\$5:B\$7)-B7	=MAX(C\$5:C\$7)-C7	=SUMPRODUCT(B19:C19,B\$20:C\$20)	=IF(D19=MIN(D\$17:D\$19),"Best","")	
20	Probability	0.5	0.5			
						

This is the best payoff for each state of nature, used in calculating regret values and EVwPI. The SUMPRODUCT formula is used in column D to compute EMV and EOL for each alternative.

Using Excel to Solve Decision Making Problems Under Risk Formulas View

Known probability values for each state of nature

วิเคราะห์

ตัวแบบตัดสินใจ

ภายใต้

สภาวะไม่แน่นอน

1. เกณฑ์ตัดสินใจประเภทผลได้อย่างมาก (Maximax)

มีสมมติฐานในด้านดี โดยเปรียบเทียบกำไรสูงสุดของแต่ละทางเลือก และเลือก

ทางเลือกที่ให้กำไรสูงที่สุด

ทางเลือก		ผลลัพธ์			
	ଶ୍ୱଏ	ปานกลาง	ต่ำ	111 1	เกณฑ์ Maximax
ขยายโรงงาน	50	25	-25	-45	50
สร้างโรงงาน ^{**}	70	30	-40	-80	70**
จ้างบริษัทอื่น	30	15	- 1	-10	30

2. เกณฑ์ตัดสินใจประเภทผลได้อย่างต่ำ (Maximin)

เป็นเกณฑ์ของผู้ที่มีความระมัดระวัง โดยพิจารณาค่ากำไรต่ำสุดของแต่ละทางเลือก แล้วเลือกทางที่ให้กำไรสูงสุด

ทางเลือก		ผลลัพธ์			
	ଶ୍ୱ	ปานกลาง	ต่ำ	12 12	เกณฑ์ Maximin
ขยายโรงงาน	50	25	- 25	- 45	-45
สร้างโรงงาน	70	30	-40	-80	-80
จ้างบริษัทอื่น ^{**}	30	15	-1	-10	-10**

3. เกณฑ์ตัดสินใจประเภทผลเสียอย่างสูงของค่าเสียโอกาส

(Minimax Regret) โดยพิจารณาตารางแสดงผลตอบแทนเดิม

เหตุการณ์ความต้องการตลาด	ଶ୍ମୁଏ	ปานกลาง	ต่ำ	122
ทางเลือกบริษัท				
ขยายโรงงาน	50	25	-25	- 45
สร้างโรงงาน	70	30	-40	-80
จ้างบริษัทอื่น	30	15	-1	-10

3. Minimax Regret (ต่อ) คำนวณค่าเสียโอกาสของแต่ละ

เหตุการณ์

ทางเลือก	เหตุการณ์ความต้องการตลาด					
	ଶ୍ମୁଏ	ปานกลาง	ตำ	ไม่ปี		
ขยายโรงงาน	70 – 50 = 20	30 - 25 = 5	-1 - (-25) = 24	-10 – (-45) = 35		
สร้างโรงงาน	70 – 70 = 0	30 – 30 = 0	-1 - (-40) = 39	-10 - (-80) = 70		
จ้างบริษัทอื่น	70 – 30 = 40	30 – 15 = 15	-1 - (-1) = 0	-10 - (-10) = 0		

3. Minimax Regret (ต่อ)พิจารณาค่าเสียโอกาสสูงที่สุดของแต่ละ

ทางเลือก แล้วเลือกทางเลือกที่มีค่าเสียโอกาสต่ำที่สุด

ทางเลือก		ผลลัพธ์			
					เกณฑ์ Minimax
	ଶ୍ୱ	ปานกลาง	ตำ	ไม่มี	Regret
ขยายโรงงาน ้	20	5	24	35	35**
สร้างโรงงาน	0	0	39	70	70
จ้างบริษัทอื่น	40	15	0	0	40

4. เกณฑ์ตัดสินใจประเภทแบ่งเท่ากัน หรือ

Equally Likely หรือ Laplace คำนวณหาผลตอบแทนเฉลี่ย แล้วใช้

เกณฑ์ผลตอบแทนเฉลี่ยสูงสุด

ทางเลือก		ผลลัพธ์			
					เกณฑ์ Laplace
	ଶ୍ୱ୍ୟ	ปานกลาง	ต่ำ	ไม่มี	
ขยายโรงงาน	50	25	-25	-45	1.25
สร้างโรงงาน	70	30	-40	-80	-5
จ้างบริษัทอื่น ^{**}	30	15	-1	-10	8.5**

(50+25-25-45)/4

สร้างโรงงาน

5. เกณฑ์ตัดสินใจประเภทหลักการความเป็นจริง หรือ

Criterion of Realism หรือ Hervictz ผู้ตัดสินใจกำหนดระดับการเล็งผลเลิศด้วยค่า α

ถ้า α อยู่ใกล้ 0 แสดงว่าผู้ตัดสินใจมีแนวคิดไปทางวิธี Maximin

ถ้า lpha อยู่ใกล้ 1 แสดงว่าผู้ตัดสินใจมีแนวคิดไปทางวิธี Maximax

70

30

ผลตอบแทนเฉลี่ยถ่วงน้ำหนัก = α (ผลตอบแทนสูงสุด) + $(1-\alpha)$ (ผลตอบแทนต่ำสุด)

30

15

ทางเลือก	เหตุการณ์ความต้องการตลาด	ผลลัพธ์
	(0.7)*(50)+(0.3)*(-45)	เกณฑ์ Hervictz
	สูง ปานกลาง ต่ำ ไม่มี	
ขยายโรงงาน	50 25 -25 -45	21.5

-40

 $\alpha = 0.$

25*

18

-80

-10

Maximax Criterion Thompson Lumber Company

- *Maximax* criterion selects alternative that *maximizes* maximum payoff over all alternatives.
- First alternative, "construct a large plant", \$200,000 payoff is maximum of maximum payoffs for each decision alternative.

	STATES (
ALTERNATIVE	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)	MAXIMUM IN ROW (\$)
Construct a large plant	200,000	- 180,000	(200,000) Maximax
Construct a small plant	100,000	-20,000	100,000
Do nothing	0	0	0

Maximin Criterion

Thompson Lumber Company

- *Maximin* criterion finds alternative *maximizes minimum* payoff over all alternatives.
- First locate minimum payoff for each alternative, and select alternative with maximum number.

	STATES	OF NATURE	
ALTERNATIVE	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)	MINIMUM IN ROW (\$)
Construct a large plant	200,000	-180,000	-180,000
Construct a small plant	100,000	-20,000	-20,000
Do nothing	0	0	0}← Maximin —

Minimax Regret Criterion

Thompson Lumber Company

• Table illustrates computations and shows complete opportunity loss table.

	STATES OF NATURE					
ALTERNATIVE	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)				
Construct a large plant	200,000 - 200,000 = 0	0 - (-180,000) = 180,000				
Construct a small plant	200,000 - 100,000 = 100,000	0 - (-20,000) = 20,000				
Do nothing	200,000 - 0 = 200,000	0 - 0 = 0				

Minimax Regret Criterion

Thompson Lumber Company

- Once opportunity loss table has been constructed, locate maximum opportunity loss within each alternative.
- Pick alternative with minimum number.
- Minimax regret choice is second alternative, "construct a small plant." Regret of \$100,000 is minimum of maximum regrets over all alternatives.

	STATES		
ALTERNATIVE	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)	MAXIMUM IN ROW (\$)
Construct a large plant	0	180,000	180,000
Construct a small plant	100,000	20,000	(100,000) Minimax
Do nothing	200,000	0	200,000

Equally Likely (Laplace) Criterion

- *Equally likely* criterion finds decision alternative with highest average payoff.
- Calculate average payoff for every alternative.
- Pick alternative with maximum average payoff.

	STATES			
ALTERNATIVES	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)	ROW AVERAGE (\$)	
Construct a large plant	200,000	-180,000	10,000	
Construct a small plant	100,000	-20,000	Equally likely	
Do nothing	0	0	0	

Criterion of Realism (Hurwicz)

- Coefficient of realism $\alpha = 0.80$.
- \$124,000 = (0.80)(\$200,000) + (0.20)(-\$180,000).

	STATES O	F NATURE			
ALTERNATIVE	FAVORABLE MARKET (\$)	UNFAVORABLE MARKET (\$)	CRITERION OF REALISM OR WEIGHTED AVERAGE (α = 0.8) \$		
Construct a large plant	200,000	- 180,000	(124,000) ← Realism		
Construct a small plant	100,000	-20,000	76,000		
Do nothing	0	0	0		

Using Excel to Solve Decision Making Problems Under Uncertainty Formulas

If function is used to identify best alternative.

Earge plant 200000							(_			
PAYOFFS States of Nature Maximax Maximin		В	С	D		E		F	G	
Alternatives Favorable market Unfavorable market Max payoff Choice Min payoff	ompson Lumber (Decision Making Under Uncertainty)									
Alternatives Favorable market Unfavorable market Max payoff Choice Min payoff							7			
S	FS	States	of Nature		Maximax			Maximin		
Small plant 100000	tives Fav	es Favorable market	Unfavorable market	Max payo	ff	Choice		Min payoff	Choice	
7 Do nothing 0 0 0 MAX(B7:C7) =IF(D7=MAX(D\$5:D\$7),"Best","") =MIN(B7:C7) =IF(F7=MAX MAX(B7:C7) =IF(F7=MAX(B7:C7) =IF(F7=MAX MAX(B7:C7) =IF(F7=MAX(B7:C7) =IF(F7=MAX	lant 2000	200000	-180000	=MAX(B5:C5)		=IF(D5=MAX(D\$5:D\$7),*Best	(",")	=MIN(B5:C5)	=IF(F5=MAX(F\$5:F\$7),"Bes	
PAYOFFS States of Nature Equally likely Hurwicz	ant 1000	100000	-20000	=MAX(B6:C6)		=IF(D6=MAX(D\$5:D\$7),*Best	(",")	=MIN(B6:C6)	=IF(F6=MAX(F\$5:F\$7),"Bes	
Atternatives Favorable market Unfavorable market Average payoff Choice Reafism criterion Choice	ing 0	0	0	=MAX(B7:C7)		=IF(D7=MAX(D\$5:D\$7),*Best	t",")	=MIN(B7:C7)	=IF(F7=MAX(F\$5:F\$7),"Bes	
Atternatives Favorable market Unfavorable market Average payoff Choice Reafism criterion Choice										
Large plant 200000	FS	States	of Nature		Equally likely			Hurwicz		
Small plant 100000	tives Fav	es Favorable market	Unfavorable market	Average pa	yoff	Choice		Realism criterion	Choice	
Do nothing Do	lant 2000	200000	-180000	=AVERAGE(B1	1:011)	=IF(D11=MAX(D\$11:D\$13),*E	Best","")	=G\$14*MAX(B11:C11)+(1-G\$14)*MIN(B11:C11)	=IF(F11=MAX(F\$11:F\$13),"	
Max regret Choice This is the formula Value or	ant 1000	100000	-20000	=AVERAGE(B1	2:C12)	=IF(D12=MAX(D\$11:D\$13),*E	Best","")	=G\$14*MAX(B12:C12)+(1-G\$14)*MIN(B12:C12)	"IF(F12=MAX(F\$11:F\$13),"	
15 REGRET States of Nature Minimax	ing 0	0	0	=AVERAGE(B1	3:C13)	=IF(D13=MAX(D\$11:D\$13),*E	Best","")	=G\$14"MAX(B13:C13)+(1-G\$14)"MIN(B13:C13)	=IF(F13=MAX(F\$11:F\$13),"	
REGRET States of Nature Minimax								α= /	0.8	
17 Atternatives Favorable market Unfavorable market Max regret Choice This is the formula								/		
18 Large plant =MAX(B\$5:B\$7)-B5 =MAX(C\$5:C\$7)-C5 =MAX(B18:C18) =IF(D18=MIN(D\$18:D\$20),"Best","") for coefficient of	Г	States	of Nature	Minimax						
18 Large plant =MAX(B\$5:B\$7)-B5 =MAX(C\$5:C\$7)-C5 =MAX(B18:C18) =IF(D18=MIN(D\$18:D\$20),"Best","") for coefficient of	tives Fav	es Favorable market	Unfavorable market	Max regre	et	Choice		This is the formula	Value of α	
is Small plant =MAX(0\$3.0\$7)-00 =MAX(0\$3.0\$7)-00 =MAX(0\$3.0\$7)-00 =MAX(0\$3.0\$7)-00						=IF(D18=MN(D\$18:D\$20),"Bo	est","")		13130 01 0	
20 Do nothing =MAX(B\$5:B\$7)-B7 =MAX(C\$5:C\$7)-C7 =MAX(B20:C20) =IF(D20=MN(D\$18:D\$20),"Best","") realism criterion.					- 1	=IF(D19=MN(D\$18:D\$20), 'Be	est","")			
Today in the last	ing =MA	=MAX(B\$5:B\$7)-B7	=MAX(C\$5:C\$7)-C7	=MAX(B20:C20)	=IF(D20=MN(D\$18:D\$20), 'Be	est","")	realism criterion.		

Formula to calculate regret values. AVERAGE function is used to calculate equally likely payoffs.

Using Excel to Solve Decision Making Problems Under Uncertainty Solutions

	А	В	С	D	E	F	G	Н	
1	Thomps	on Lun	nber (De	cision M	laking	g Under	Unc	ertainty)	
2	•		1						
3	PAYOFFS	States of Nature		Maxim	ax	Maxin	nin		
		Favorable	Unfavorable						
4	Alternatives	market	market	Max payoff	Choice	Min payoff	Choice		
5	Large plant	\$200,000	-\$180,000	\$200,000	Best	-\$180,000			Best alternative
6	Small plant	\$100,000	-\$20,000	\$100,000		-\$20,000			for maximin
7	Do nothing	\$0	\$0	\$0		\$0	Best		ior maximin
8									
9	PAYOFFS	States	of Nature	Equally I	ikely	Hurwi	icz		
		Favorable	Unfavorable	Average		Realism			
10	Alternatives	market	market	payoff	Choice		Choice		Best alternative
11	Large plant	\$200,000	-\$180,000	\$10,000		\$124,000	Best		with $\alpha = 0.8$
12	Small plant	\$100,000	-\$20,000	\$40,000	Best	\$76,000			
13	Do nothing	\$0	\$0	\$0		\$0			
14						α=	0.8		
15							1		
16	REGRET	States	of Nature	Minim	ax			<u> </u>	
		Favorable	Unfavorable			Coefficie	ent of r	ealism)	
17	Alternatives	market	market	Max regret	Choice				
18	Large plant	\$0	\$180,000	\$180,000		Bes	st alten	native	
19	Small plant	\$100,000	\$20,000	\$100,000	Best	for	minima	ax regret 🔏	
20	Do nothing	\$200,000	\$0	\$200,000					

Regret table, computed from the payoff table

วิเคราะห์

ตัวแบบตัดสินใจ

ด้วย

แขนงตัดสินใจ

แขนงตัดสินใจ

ส่วนประกอบแขนงตัดสินใจ

- 1. จุดเริ่มต้น
- 2. จุดสิ้นสุดหรือปลายแขนง
- 3. ผลตอบแทนที่ปลายแขนง
- 4. จุดเชื่อมที่เป็นจุดตัดสินใจ
- 5. จุดเชื่อมที่เป็นเหตุการณ์
- 6. เส้นเชื่อมระหว่างจุดเชื่อม

ขั้นตอนคำนวณแขนงตัดสินใจ

1. เปลี่ยนตารางแสดงผลตอบแทนเป็นแขนงตัดสินใจ

เหตุการณ์ความต้องการตลาด	ଶ୍ୱ	ปานกลาง	ต่ำ
ทางเลือกบริษัท			
ขยายโรงงาน	50	25	-25
สร้างโรงงาน	70	30	-40
จ้างบริษัทอื่น	30	15	- 1

ขั้นตอนแขนงตัดสินใจ (ต่อ)

2. แจกแจงทางเลือกและเหตุการณ์ที่เป็นไปได้ทั้งหมด

จากตารางแสดงผลตอบแทนดังกล่าว

แขนงตัดสินใจ

ผลตอบแทน 3. ลากเส้นเชื่อมเหตุการณ์ไปยังผลตอบแทนปลายแขนง (ล้านบาท) ความต้องการตลาดอัตราสูง (0.3) 50 ขยายโรงงาน ความต้องการตลาดอัตราปานกลาง (0.4) 25 ความต้องการตลาดอัตราต่ำ (0.3)-25 สร้างโรงงาน ความต้องการตลาดอัตราสูง (0.3) 70 ความต้องการตลาดอัตราปานกลาง (0.4) 30 ความต้องการตลาดอัตราต่ำ (0.3)-40 จ้างบริษัทอื่น ความต้องการตลาดอัตราสูง (0.3) -25 ความต้องการตลาดอัตราปานกลาง (0.4) -40 ความต้องการตลาดอัตราตำ

หมายเหตุ : ค่าที่อยู่ในวงเล็บ คือ ค่าความน่าจะเป็นการเกิดของเหตุการณ์

แขนงตัดสินใจ

ขั้นตอนแขนงตัดสินใจ (ต่อ)

4. เลือกทางเลือกตัดสินใจที่ดีที่สุด โดยพิจารณาทางเลือกที่มีมูลค่าการตัดสินใจสูง

ที่สุด กล่าวคือ

```
ผลตอบแทนคาดหวังขยายโรงงาน = (0.3 X 50) + (0.4 X 25) + (0.3 X -25)
= 17.5 ล้านบาท
ผลตอบแทนคาดหวังสร้างโรงงาน = (0.3 X 70) + (0.4 X 30) + (0.3 X -40)
= 21 ล้านบาท
ผลตอบแทนคาดหวังจ้างบริษัทอื่น = (0.3 X -25) + (0.4 X -40) + (0.3 X -1)
```

สรุปได้ว่า ผลตอบแทนคาดหวังของทางเลือกสร้างโรงงานมีค่ามากที่สุด เท่ากับ 21 ล้านบาท ดังนั้นทางเลือกดังกล่าวจึงเป็นทางเลือกที่ดีที่สุดนั่นเอง

= -23.8 ล้านบาท

Decision Tree

- Tree usually begins with decision node.
- Decision is determine whether to construct large plant, small plant, or no plant.
- Once decision is made, one of two possible states of nature (favorable or unfavorable market) will occur.

Folding Back a Decision Tree

- In folding back decision tree, use following two rules:
 - At each state of nature (or chance) node, compute expected value using probabilities of all possible outcomes at that node and payoffs associated with outcomes.
 - At each decision node, select alternative that yields better expected value or payoff.

Reduced Decision Tree

- Using rule for decision nodes, select alternative with highest EMV.
- Corresponds to alternative to build small plant.
- Resulting EMV is \$40,000.

Using TREEPLAN To Solve Decision Tree Problems With Excel

• Use TreePlan, an add-in for Excel, to set up and solve decision tree problems.

Creating a Decision Tree Using TreePlan

 Once TreePlan is installed and loaded, follow these steps to set up and solve decision tree problem.

1. Starting TreePlan.

- Start Excel and open blank worksheet.
- Place cursor in any blank cell (say, cell A1).
- Select *Tools/Decision Tree* from Excel's main menu.

Using TREEPLAN

2. Starting a new tree.

Select New Tree.

3. Adding decision nodes, state of nature nodes, decision alternative branches, and state of nature branches.

To bring up TreePlan menu, either select *Tools/Decision Tree* or press Control (Ctrl) and T keys at same time.

Actual TreePlan menu that appears each time depends on location of cursor when menu is accessed.

Using TREEPLAN

Using TREEPLAN

Solving Using TreePlan

Solved Decision Tree

Summary

- Introduced decision theory to study decision making.
- Studied (1) decision making under certainty, (2) decision making under uncertainty, and (3) decision making under risk.
- Identified best alternatives using criteria: maximax, maximin, equally likely, criterion of realism, and minimax regret.
- Discussed computation and use: expected monetary value (EMV), expected opportunity loss (EOL), and expected value of perfect information (EVPI).
- Decision trees were used for larger decision problems in which decisions had to be made in sequence.
- Computed expected value of sample information (EVSI).
- Bayesian analysis used to revise or update probability values.
- Discussed how decision trees can be set up and solved using TreePlan, an Excel add-in.