

Eur päisches
Patentamt

European
Patent Office

Office européen
des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

02021176.9

Der Präsident des Europäischen Patentamts:
Im Auftrag

For the President of the European Patent Office
Le Président de l'Office européen des brevets
p.o.

R C van Dijk

Europäisches
Patentamt

Eur pean
Patent Offic

Offic eur péen
des br vets

Anmeldung Nr:
Application no.: 02021176.9
Demande no:

Anmeldetag:
Date of filing: 24.09.02
Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Agfa-Gevaert AG
Kaiser-Wilhelm-Allee
51373 Leverkusen
ALLEMAGNE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention:
(Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung.
If no title is shown please refer to the description.
Si aucun titre n'est indiqué se referer à la description.)

Bildverarbeitungsverfahren zur automatischen Kontrastmodifikation digitaler
Bilddaten

In Anspruch genommene Priorität(en) / Priority(ies) claimed /Priorité(s)
revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/
Classification internationale des brevets:

HO4N/

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of
filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

Agfa-Gevaert
Aktiengesellschaft

Kaiser-Wilhelm-Allee
51373 Leverkusen

Patentabteilung

5

19.09.02

gt-rs

10

**Bildverarbeitungsverfahren zur automatischen Kontrastmodifikation
digitaler Bilddaten**

15

Die Erfindung betrifft ein Bildverarbeitungsverfahren zur automatischen Kontrastmodifikation digitaler Bilddaten, nach dem Oberbegriff von Anspruch 1.

20

Digitale Bilddaten weisen oft sehr große Helligkeitsunterschiede auf und sind deshalb sehr schwer auf Fotopapier wiederzugeben, da diese Materialien einen zu geringen Kontrastumfang aufweisen. So sind die Kopien derartiger Bilder dann entweder in den hellen Bereichen über- oder aber in den dunklen Bereichen unterbelichtet. Einzelne Details sind dann in den entsprechenden unter- bzw. überbelichteten Bereichen der Kopie nur noch sehr schlecht oder gar nicht mehr zu erkennen. Klassisches Beispiel hierfür ist die fotografische Aufnahme eines beschatteten Torbagens mit extrem hellem Hintergrund. Um bei derartigen Kopien digitaler Bilddaten die Qualität solcher kontrastreicher Aufnahmen auf den Papierbildern zu verbessern, wurden Verfahren zur Kontrastmodifikation entwickelt.

25

Ein derartiges Verfahren, bei dem insbesondere der globale Kontrast (Gradation) von digitalen Bilddaten modifiziert wird, ist in der DE 3629409 C2 beschrieben. Dieses Kontrastmodifikationsverfahren basiert darauf, die digitalen Bilddaten einer

30

- 2 -

Frequenzfilterung zu unterziehen, in der diese in einen Tiefpass- und einen Hochpassanteil aufgespalten werden. Um den globalen Kontrast zu optimieren, werden die Tiefpass-Signale entsprechend einer nicht linearen Gradationstrennlinie modifiziert. Die so modifizierten Tiefpass-Signale werden dann wiederum mit den

- 5 Hochpass-Signalen addiert, wobei im allgemeinen die Hochpass-Signale ebenfalls modifiziert werden, um beispielsweise eine Verschärfung der im Bild enthaltenen Detailinformationen vorzunehmen. Die Modifikation des Kontrastes wird jedoch ausschließlich im Tiefpassanteil realisiert, da der Hochpassanteil keine Einflussnahme auf globale Bildgrößen zulässt.

10

Bei der Anwendung derartiger Bildverarbeitungsverfahren zur Kontrastmodifikation hat es sich jedoch gezeigt, dass bei bestimmten Motiven unerwünschte Artefakte ausgelöst werden. So wird beispielsweise ein dunkles Motiv vor einem Hintergrund mittlerer Dichte, nach einer Kontrastmodifikation des Bildes, so wiedergegeben, dass um das dunkle Motiv herum ein sehr heller Rand entsteht, der sich erst in größerem Abstand von dem Motiv, der Dichte des Hintergrunds anpasst. Eine derartige Erscheinung wird auf Grund seines Aussehens auch "white halo" genannt. Bei einer entgegengesetzt gearteten Dichtekonstellation kann es ebenso zu sogenannten "black halos" kommen, wenn ein helles Motiv vor einem Hintergrund mittlerer Dichte wiedergegeben werden soll.

- 20 Dieses Problem ist von Kontrastmodifikationsverfahren, bei der herkömmlichen Kopie von fotografischen Filmen auf Fotopapier, bereits bekannt. Bei diesem herkömmlichen Verfahren wird der Kontrast modifiziert, indem das Kopierlicht, welches das Negativ beleuchtet, mittels einer digital erzeugten, durch ein LCD realisierten, Maske lokal beeinflusst wird. Die Maske gibt dabei ein stark verunschärftes, invertiertes Abbild des zu kopierenden Motivs wieder. Bei diesem Verfahren wird das Phänomen der Halos dadurch gelöst, dass die sehr starken Hell/Dunkelübergänge, welche diese Phänomene hervorrufen, in der Maske leicht verschoben werden. Die Verschiebung erfolgt in Bereiche, in denen das Fotopapier entweder sehr stark oder sehr gering belichtet wird, da in diesen Bereichen die Empfindlichkeit des Papiers gegenüber kleinen Dichteabstufungen sehr gering ist. Dadurch wird bewirkt, dass die starken Kontrastübergänge in nahezu nicht

sichtbare Bereiche der Dichten verschoben werden. Ein derartiges Verfahren ist beispielsweise in der DE 197 03 063 C2 beschrieben. Diese Vorgehensweise, zur Vermeidung der unerwünschten Halos, ist jedoch bei einem Bildverarbeitungsverfahren für digitale Bilddaten, wie dem in der DE 3629409 C2 beschriebenen,

- 5 nicht anwendbar, da bei diesem Verfahren nicht explizit eine unscharfe Maske berechnet wird, welche bei starken Hell/Dunkelübergängen modifiziert werden könnte.

Es war deshalb Aufgabe der Erfindung, ein Bildverarbeitungsverfahren zur Kontrastmodifikation für digitale Bilddaten so zu realisieren, dass die beschriebenen "Halo"-Erscheinungen vermieden oder zumindest reduziert werden können.

Gelöst wird diese Aufgabe, gemäß der Erfindung, durch ein Bildverarbeitungsverfahren zur automatischen Kontrastmodifikation digitaler Bilddaten mit den 15 Merkmalen von Anspruch 1.

Erfindungsgemäß wird die Tiefpassbildung, welche innerhalb des Bildverarbeitungsverfahrens für digitale Bilddaten zur Kontrastmodifikation erfolgt, abhängig von hochfrequenten Anteilen der digitalen Bilddaten, vorgenommen. In Bildbereichen, in denen hohe Frequenzen großer Amplituden auftreten, befinden sich Dichtesprünge im Bildinhalt. Bei herkömmlichen Kontrastmodifikationsverfahren treten in diesen Bereichen großer Dichtesprünge die Halo-Erscheinungen auf. Es zeigte sich, dass diese störenden Erscheinungen bei der Kontrastmodifikation digitaler Bilddaten ebenfalls auftreten. Es konnte gezeigt werden, dass sie durch Überschwingungen, im Bereich der Dichtesprünge, verursacht werden. Diese Überschwingungen werden erfindungsgemäß dadurch vermieden bzw. zumindest reduziert, indem der zu modifizierende Tiefpassanteil des Bildsignals, im Bereich der kritischen Stellen, mit einem Hochpassanteil des Signals beaufschlagt wird. Wird nun der so modifizierte Tiefpass reduziert, um eine Kontrastmodifikation vorzunehmen, und schließlich wieder mit dem Hochpass-Signal vereint, so können die Überschwingungen deutlich reduziert, im Idealfall sogar vermieden werden. Dieses Ergebnis wird dadurch erzielt, dass durch das Hinzufügen eines Hochpassanteils, im Bereich der Dichtesprünge zum Tiefpassanteil, gewissermaßen in die-

sem Bereich, an Stelle einer unscharfen, eine scharfe Maske gebildet wird. So kann der Kontrast lokal an jeder Seite des Dichtesprungs bzw. der Kante, ohne negative Einflussnahme der an der anderen Seite der Kante vorherrschenden Dichte, verändert werden. Die Mittelung, welche gewissermaßen der Tiefpassbildung entspricht, findet nämlich im Bereich der Kante somit erfindungsgemäß nur über wenige Bilddatenpunkte statt. Die Kante wird also im Idealfall (unter Hinzunahme des gesamten Hochpassanteils) exakt wiedergegeben.

Vorteilhafterweise erfolgt die Bildung des Tiefpass-Signals erfindungsgemäß so, dass die zur Bildung des Tiefpass-Signals verwendete Filterfrequenz im Bereich großer Dichtesprünge anders gewählt wird, als in dichtehomogeneren Bildbereichen. Bei der Kontrastmodifikation kommt also eine lokal, in Abhängigkeit vom lokalen Kontrastumfang variierte Filterfrequenz, für die Bildung des Tiefpass-Signals, zum Einsatz. Wie in den bereits bekannten Bildverarbeitungsverfahren zur Kontrastmodifikation wird dieses Tiefpass-Signal nun zur Bildung der höherfrequenten Signalanteile verwendet, mit denen es nach seiner Reduzierung wieder zusammengeführt wird.

Eine weitere vorteilhafte Ausführungsform der Erfindung besteht darin, die Bildung des tieffrequenten Signalanteils wie bisher mit einer konstanten Filterfrequenz vorzunehmen, aber anschließend zum Tiefpass-Signal im Bereich von Dichtesprüngen einen höherfrequenten Anteil hinzu zu addieren, um so einen modifizierten Tiefpass zu erhalten, an dem schließlich die Reduzierung des Kontrastes vorgenommen wird. Dieses Vorgehen ist insbesondere dann vorteilhaft, wenn im Rahmen des Bildverarbeitungsverfahrens das Bildsignal nicht nur in einen hoch- und einen tieffrequenten Anteil aufgespalten wird, sondern zusätzlich noch mittelfrequente Signalanteile abgespalten werden. In diesem Fall werden vorteilhafterweise mittelfrequente Signalanteile zum tieffrequenten Signal hinzugefügt, wo Dichtesprünge in den Bilddaten vorliegen.

In einer besonders vorteilhaften Ausführungsform werden die hochfrequenten Bildanteile, also die Dichtesprünge, bei denen das Tiefpass-Signal modifiziert gebildet wird, anhand eines sogenannten Kantendetektionsverfahrens ermittelt. Die

- Detektion von Kanten im Bildinhalt erfolgt im Allgemeinen bei Bildverarbeitungsverfahren von digitalen Bilddaten ohnehin im Rahmen der Bildverschärfung. Um einen schärferen, präziseren Bildeindruck entstehen zu lassen, werden im Rahmen der digitalen Bildbearbeitung diese Kanten aufgestellt. Der zusätzliche Rechenaufwand, zur Ermittlung der hochfrequenten Bildanteile, ist also geringer, wenn diese, aus der Bildverschärfung bereits bekannte Information, genutzt wird. Es müssen lediglich die Kanten der relevanten Frequenzbereiche ausgewählt werden.
- 10 Insbesondere dann, wenn keine Bildverschärfung durchgeführt werden soll oder wenn der Bildverarbeitungsschritt Verschärfung erst nach dem Bildverarbeitungsschritt Kontrastmodifikation erfolgt, liegt diese Kanteninformation jedoch nicht vor. In diesem Fall können die hochfrequenten Bildanteile aus der Fouriertransformierten der Bilddaten ermittelt werden.
- 15 Da die Fouriertransformation von digitalen Bilddaten jedoch ein relativ aufwendiger Rechenschritt ist, besteht eine besonders vorteilhafte Ausführungsform der Erfindung darin, die hochfrequenten Bildanteile aus der komprimierten Form der Bilddaten zu ermitteln. Dazu werden die komprimierten Bilddaten soweit dekomprimiert bis das Frequenzspektrum der Bilddaten vorliegt, d. h. die Dekompression der Daten wird angehalten, bevor die Rücktransformation in den Ortsraum erfolgt. Die nach dem Rückgängigmachen der Codierung vorliegenden Bilddaten im Frequenzspektrum sind in Blöcke aufgeteilt, welche sich bestimmten Bildpositionen zuordnen lassen. In Blöcken, in denen eine Vielzahl hoher Frequenzen vertreten
- 20 ist, werden in den entsprechenden Bildbereichen viele Dichtesprünge zu beobachten sein. Erfindungsgemäß werden nun Bilddaten dieser Blöcke mit einem anderen Frequenzfilter gefiltert als solche Blöcke, die im Bereich hoher Frequenzen nur Nullen aufweisen. Die Filterfrequenz zur Bildung des Tiefpass-Signals wird also, abhängig von der Besetzung der hohen Frequenzen, innerhalb der
- 25 Blöcke der komprimierten Bilddaten vorgenommen. Die Verwendung der komprimierten Bilddaten ist besonders vorteilhaft, da hierbei ein Frequenzspektrum ausgewertet werden kann ohne aufwändige Rechenschritte, wie eine Fouriertransformation, vornehmen zu müssen.

- 6 -

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus den Unteran- sprüchen im Zusammenhang mit der Beschreibung eines Ausführungsbeispiels, das anhand der Zeichnungen eingehend erläutert wird.

5

Es zeigen:

Fig. 1 Ein Ablaufdiagramm eines erfindungsgemäßen Kontrastmodifikati-
onsverfahrens komprimierter digitaler Bilddaten,

10

Fig. 2 Ein Ablaufdiagramm eines erfindungsgemäßen Kontrastmodifikati-
onsverfahrens, welches mit einem Verfahren zur Bildverschärfung
kombiniert wird und

15

Fig. 3 und 4 Diagramme zur Veranschaulichung der erfindungsgemäß gelösten
Problematik der Halo-Entstehung.

20

Fig. 1 gibt einen Überblick über den Ablauf eines Bildverarbeitungsverfahrens zur
automatischen Kontrastmodifikation digitaler Bilddaten, bei dem die Erfindung
realisiert ist. Die zu bearbeitenden komprimiert eingehenden Bilddaten liegen in 1
in binärer Form vor. In einem Bildverarbeitungsschritt 2 werden diese Bilddaten
decodiert. Im Rahmen dieses Decodierverfahrens wird der eingegebene Bitstrom,
ein eindimensionaler Vektor, in eine zweidimensionale Matrix, mit unterschiedli-
chen Werten, zurückverwandelt. Genau genommen liegen nach dem Decodieren
drei Matrizen, eine Y-Komponente für die Helligkeit, eine Cb-Komponente für eine
Farbe und eine Cr-Komponente für eine weitere Farbe vor. Derartige Decodier-
verfahren sind bekannt und können als freie Software bezogen werden. Im Falle
von derzeit gängigen, im JPEG-Verfahren komprimierten Bilddaten ist jede der
30 Matrizen in Werteblocke des Formats 8x8 aufgeteilt. Das JPEG-Verfahren wird
hier im Ausführungsbeispiel beispielhaft verwendet, die Erfindung lässt sich je-
doch auch für andere Komprimierverfahren verwenden, bei denen die kompri-
mierten Bilddaten im Frequenzspektrum vorliegen und eine Zuordnung zum Ort im

- 7 -

Bilddatensatz möglich ist. So kann die Erfindung z. B. auch auf JPEG 2000 komprimierte Bilddaten angewandt werden. Voraussetzung ist, dass die Lage der Blöcke, innerhalb der Matrix, einer bestimmbar Position der zugehörigen Bild-

daten im Ausgangsbild entspricht, wie das bei JPEG-komprimierten Bilddaten der

5 Fall ist. Bei diesem Komprimierverfahren weist jeder Block eine DC-Komponente auf, die mit dem Blockmittelwert besetzt ist und sich links oben im Block befindet.

Diese Komponente gibt Aufschluss über die Bilddichte im Bereich des

8x8-Blockes. Die weiteren Werte der Matrizen, die AC-Komponenten, sind Frequenzwerte, wobei sich die AC-Komponenten der tieferen Frequenzen in der Nähe

10 der DC-Komponente befinden, die AC-Komponenten höherer Frequenzen liegen am Blockrand, die Frequenz nimmt also mit der Entfernung zur

DC-Komponente zu. Befinden sich also beispielsweise im rechten unteren Quadranten eines Blockes nur Nullen, so heißt das, dass im Bildbereich, der diesem Block entspricht, keine großen Farb- oder Helligkeitsunterschiede, je nach analy-

15 sierter Matrix, auftreten. Häufen sich dagegen hohe Werte der AC-Komponenten, an den der DC-Komponente abgewandten Rändern, so weist der Bildinhalt an den entsprechenden Positionen Dichtesprünge auf. Hohe Werte der

AC-Komponenten in der Matrix, der Y-Komponente, sind ein Anzeichen für starke Helligkeitsunterschiede, deuten also auf kritische Bildstellen hin, an denen bei der

20 Kontrastmodifikation die Gefahr einer Halo-Erscheinung sehr groß ist. Hohe AC-Komponentenwerte in den Matrizen, die die Farbkomponenten wiedergeben, sind dann relevant, wenn eine Modifikation im Farbenkontrast vorgenommen werden soll. Geht es dagegen nur um eine Kontrastmodifikation in der Bildhelligkeit,

so genügt es, die Matrix der Y-Komponente zu betrachten. Aus den Werten, mit

25 denen die AC-Komponenten in den Blöcken besetzt sind, lassen sich also Sprünge in der Helligkeit bzw. die hochfrequenten Bildanteile ermitteln:

Damit ist bekannt, in welchen Blöcken die Bildinformation weitgehend dichtehomogen ist und in welchen Blöcken sich Helligkeitssprünge im Bildinhalt zeigen.

30 Diese Information wird genutzt, um in einem Schritt 4 die Filterfrequenz für die Tiefpassfilterung zu bilden. Diese Filterfrequenz wird jeweils so gewählt, dass im Bereich der sehr homogene Bilddaten repräsentierender Blöcke eine sehr niedrige Frequenz gewählt wird, so dass im Tiefpass-Signal ausschließlich sehr tiefe

Frequenzen enthalten sind. Für Bilddaten, die durch Blöcke repräsentiert werden, welche sehr hohe AC-Komponenten im Randbereich aufweisen, wird hingegen eine sehr hohe Filterfrequenz gewählt, so dass das zu bildende Tiefpass-Signal später einen vergleichsweise großen Anteil hoher Frequenzen enthält. Das Tiefpass-Signal, welches in einem Schritt 6 gebildet wird, nachdem die Bilddaten in einem Schritt 5 dekomprimiert wurden, gibt also in eher homogenen Bildbereichen das Bild nur sehr unscharf wieder, wo hingegen es in Bildbereichen, welche Dichtesprünge aufweisen ein vergleichsweise scharfes Abbild des Bildinhalts entsteht. Durch Subtraktion des Tiefpass-Signals vom gesamten Bildsignal wird nun 10 in einem Schritt 7 das Hochpass-Signal abgeleitet.

Im Schritt 8 erfolgt die eigentliche Kontrastmodifikation, indem das in Schritt 6 gebildete Tiefpass-Signal mit einer nicht linearen Kennlinie beaufschlagt wird. Hierdurch wird der gesamte Tiefpassanteil des Bildsignals reduziert, der Kontrastumfang wird stark verringert. In einem letzten Bildverarbeitungsschritt 9 wird schließlich dieses reduzierte Tiefpass-Signal wieder mit dem Hochpass-Signal addiert. Durch die Addition erhält man ein kontrastreduziertes Gesamt signal, in dem die Detailinformation des Bildinhalts, welche vom Hochpass-Signal repräsentiert wird, erhalten blieb. Insbesondere zeigen die Bilddaten dieses Gesamt signals keine störenden Halo-Erscheinungen. Diese werden dadurch vermieden, dass der Tiefpassanteil im Bereich von Dichtesprüngen sehr hohe Frequenzen erhält, was bewirkt, dass der Tiefpassanteil hier den Verlauf des ursprünglichen Gesamt signals sehr gut repräsentiert. Dieser Zusammenhang wird in Fig. 3 und 4, nach der Schilderung eines weiteren Ausführungsbeispiels, eingehend erläutert.

In dem in Fig. 2 skizzierten weiteren Ausführungsbeispiel wird ein weiteres vorteilhaftes Verfahren geschildert, welches zur erfindungsgemäßen Tiefpassbildung verwendet werden kann. Hierbei wird von nicht komprimierten digitalen Bilddaten ausgegangen, welche in einem Schritt 11 eingehen. Diese Bilddaten werden in einem Schritt 12 mit einer vorgewählten Filterfrequenz in ein Hochpass- und ein Tiefpass-Signal aufgespalten. In einem Bildverarbeitungsschritt 13 werden im Hochpass-Signal Dichtesprünge, also sogenannte Kanten detektiert. Derartige Kantendetektionsverfahren sind im Bereich der Bildverarbeitung, insbesondere

der Bildverschärfung hinreichend bekannt. Das Ergebnis, dieses zur Bildver-
schärfung verwendete Kantendetektionsverfahren, erfährt vorteilhafterweise eine
zweite Anwendung. Entsprechend der gängigen Bildverarbeitung wird das Kan-
tendetektionsverfahren aber auch verwendet, um in einem Schritt 14 eine Ver-
5 schärfung des Hochpass-Signals vorzunehmen. Je nach Aufbau der Software und
Hardware, mit welcher das Bildverarbeitungsverfahren realisiert wird, kann es
vorteilhafter sein, die Schritte in der beschriebenen Reihenfolge auszuführen oder
aber diese und folgende Schritte in anderer Reihenfolge oder parallel zueinander
vorzunehmen. In serieller Reihenfolge schließt sich in einem Bildverarbeitungs-
10 schritt 15 nun das Aufspalten des Tiefpass-Signals in ein weiteres Tiefen- und ein
Mittensignal an. Hierdurch entsteht ein Tiefensignal für die Kontrastmodifikation,
welches nur die tiefsten Frequenzen des Bildes enthält und eine extreme Modifi-
kation des Kontrastumfangs zulässt. Auf das Mittensignal kann ebenfalls Einfluss
genommen werden, es kann aber auch in seiner originalen Form belassen wer-
15 den. Diese Aufspaltung in mehrere Höhen-, Mitten- und Tiefensignale wird in eini-
gen Bildverarbeitungsverfahren angewandt, in denen ein differenzierteres Vorge-
hen in der Kontrast- und Schärfebeeinflussung der Bilddaten wünschenswert ist.

Erfindungsgemäß wird im Bildverarbeitungsschritt 16 in den als Kanten erkannten
20 Bildbereichen ein Anteil des Mittensignals zum Tiefpass-Signal addiert, so dass
sich für die Kontrastmodifikation ein kanten- also bildinhaltsabhängiges Tief-
pass-Signal ergibt, welches im Bereich der Dichtesprünge auch höhere Frequen-
zen beinhaltet. In einem Schritt 17 wird nun der Kontrastumfang reduziert, indem
25 dieses in Schritt 16 gebildete, modifizierte Tiefpass-Signal mit einer nicht linearen
Kennlinie multipliziert wird. Somit ergibt sich der kontrastreduzierte Tiefpassanteil,
welcher erfindungsgemäß im Bereich von Dichtesprüngen, auf Grund des enthal-
tenen hochfrequenten Anteils, den Verlauf der Kanten verhältnismäßig scharf
wiedergibt.

30 Der Anteil des Mittensignals, welcher zur Bildung des modifizierten Tief-
pass-Signals verwendet wurde, muss nun in einem Bildverarbeitungsschritt 18,
vor dem zusammenführen von Tiefen- und Mittensignal mit dem modifizierten
Hochpass-Signal, wieder berücksichtigt werden. Um zu vermeiden, dass dieser

- 10 -

Anteil doppelt eingeht, wird er vom Mittensignal subtrahiert. Schließlich ergibt sich in einem Bildverarbeitungsschritt 19 das verbesserte Gesamtsignal, indem das verschärzte Hochpass-Signal, das modifizierte, kontrastreduzierte Tiefpass-Signal sowie das angepasste Mittensignals addiert werden.

5

Dieses Verfahren kann beliebig erweitert werden, indem das ursprüngliche Signal in beliebig viele Frequenzanteile aufgespalten wird, welche, je nach zu erreichendem Bildergebnis, verschärft oder in ihrem Umfang reduziert werden, was allein von der Wahl der Kennlinie, mit der Sie beaufschlagt werden, abhängt. Erfin-

10 dungsgemäß wird dabei vorteilhafterweise bei der Bildung der Frequenzanteile nicht jeweils ein konstanter Filterwert verwendet, sondern es wird die Filterfrequenz für das jeweilige Band in Abhängigkeit von hochfrequenten Bildanteilen bzw. Dichtesprüngen oder Kanten gebildet. Das im Ausführungsbeispiel nach Fig. 2 vorgeschlagene Verfahren kann erweitert werden, indem im Bereich von 15 Dichtesprüngen sehr großen Umfangs sogar Signalanteile mehrerer Frequenzbänder zusammengefasst werden.

In Fig. 3 und 4 wird nun schematisch erläutert, welche Auswirkung die erfundungsgemäß vom hochfrequenten Bildanteil abhängig gemachte Tiefpassbildung 20 im Rahmen der Kontrastmodifikation hat, um so die Lösung des Problems der Halo-Erscheinungen bildhaft darzustellen. Um die Entstehung von Halo-Erscheinungen nachzuvoltziehen, wird schematisch der Verlauf eines Dichtesprungs im Helligkeitsprofil des Bildinhalts dargestellt. Ein solcher sprunghafter Dichteverlauf 31 ist in Fig. 3 zu sehen. Im Rahmen eines automatischen Kon- 25 trastmodifikationsverfahrens wird, beispielsweise durch Frequenzfilterung, der Tiefpass 32 gebildet. Dieser Tiefpass 32 wird vom originalen Dichtesignal 31 subtrahiert, so dass als Ergebnis der Hochpassanteil 33 übrigbleibt. Um einen Kontrastausgleich der Bilddaten vorzunehmen, wird nun in herkömmlichen Verfahren 30 der Tiefpassanteil 32 reduziert, indem er mit einer nicht linearen Kennlinie multipliziert wird. In der vereinfachten schematischen Darstellung, zur Erläuterung der Erfindung, wurde der Tiefpass beispielsweise mit einer konstanten Kennlinie von 2/3 multipliziert, so dass sich der reduzierte Tiefpass 34 ergibt. Wird dieser im Kontrastumfang nun reduzierte Tiefpass 34 mit dem Hochpass-Signal 33 addiert,

um so ein Bildsignal zu kreieren, bei dem die Detailinformation identisch erhalten bleibt, der Großflächenkontrast, der sich beispielsweise bei Schlagschatten in Gesichtern negativ bemerkbar macht, aber verringert ist. So ergibt sich die kontrastreduzierte Funktion 35. Bei diesem kontrastreduzierten Dichtevelauf 35 zeigt

5 sich nun nicht mehr der konstante Dichtevelauf des Ausgangssignals 31, sondern ein Über- bzw. Unterschreiten des jeweils konstanten Dichtewerts im Umfeld der Kante. Diese sogenannten Überschwinger machen sich im Bild als störende Ha-los entlang der Kante bemerkbar. Ihr Erscheinungsbild wird vor allem deshalb so störend empfunden, da sie weit in den homogenen Bildbereich hin sichtbar sind.

10 Durch den Einsatz kantenabhängiger Tiefpass-Signale bei der Kontrastmodifikati-
on kann dieses Phänomen vermieden werden. So wird der Tiefpass erfindungs-
gemäß an den Kanten, also im Bereich starker hochfrequenter Bildanteile mit ei-
nem stark hochfrequenten Anteil beaufschlagt, indem entweder die Filterfrequenz
hochgesetzt wird oder ein Anteil des Hochpass-Signals zum Tiefpass-Signal ad-
diert wird. In den kantenfernen Bildanteilen wird weiterhin ein rein tieffrequentes

15 Tiefpass-Signal gebildet, die Filterfrequenz kann unter Umständen sogar tiefer gewählt werden als in herkömmlichen Verfahren. Bei diesem erfindungsgemäßen Vorgehen ergibt sich dann aus dem in Fig. 4 dargestellten originalen Bildsignal 41 das Tiefpass-Signal 42, welches die Kante des Dichtesprungs deutlich besser

20 wiedergibt als das in Fig. 3 dargestellte Tiefpass-Signal 32. Zieht man nun dieses Tiefpass-Signal 42 von den Originaldaten 41 ab, so ergibt sich das Hoch-
pass-Signal 43, dessen Abfall auf den direkten Umgebungsbereich Erkannte be-
schränkt ist. Das reduzierte Tiefpass-Signal, das sich bei diesem erfindungsge-
mäßen Vorgehen ergibt, ist in Fig. 4 mit 44 bezeichnet. Wird dieses reduzierte

25 Tiefpass-Signal 44 nunmehr zum Hochpass-Signal 43 addiert, so ergibt sich das im Kontrast reduzierte Bildsignal 45. Da durch diesen hochfrequenteren Tief-
pass-Signalanteil im Bereich des Dichtesprungs die Kante nicht bis weit in den homogenen Bildbereich hineingezogen wird, sind wie in 45 zu sehen ist, die noch entstehenden Überschwinger deutlich schmäler als bei dem in Fig. 3 dargestellten

30 herkömmlichen Verfahren. Werden zum Tiefpass-Signal noch hochfrequenteren Anteile hinzugefügt, so kann das Ausmaß der Überschwinger noch weiter einge-
schränkt werden. Im Bildeindruck ergibt sich damit nur noch ein sehr schmaler

- 12 -

Bereich der Dichteunter- oder Überschreitung im Bereich der Kante. Da das Auge jedoch auf den größeren Dichtesprung fixiert ist, wird diese kleine Über- bzw. Unterschreitung nicht wahrgenommen, solange sie sich nicht bis weit in den homogenen Dichtebereich hinein erstreckt. Die in Fig. 3 schematisch dargestellten

5 störenden Halo-Erscheinungen können also durch das in Fig. 4 schematisch dargestellte erfindungsgemäße Verfahren der kantenabhängigen Tiefpassbildung zur Kontrastmodifikation weitgehend eingeschränkt werden, so dass auch bei einer starken Beschränkung des Kontrastumfangs keine störenden Artefakte an den Dichtesprüngen sichtbar werden.

10 Das beschriebene Verfahren lässt sich selbstverständlich ebenso, wie auf die Helligkeitskomponente der digitalen Bilddatenauch auf die Farbkomponenten anwenden. Auch bei einer Modifikation des Farbkontrastes, welche notwendig wird, wenn im Ausgabegerät zu wenig Farbstufen zur Verfügung stehen, kann das er-
15 findungsgemäße Verfahren vorteilhaft eingesetzt werden.

Hierzu 4 Blatt Zeichnungen

20

Patentansprüche:

1. Bildverarbeitungsverfahren zur automatischen Kontrastmodifikation digitaler Bilddaten, bei dem vom Bildsignal der Bilddaten wenigstens ein tief- und ein hochfrequenter Signalanteil gebildet, der tieffrequente Signalanteil mittels einer Kennlinie modifiziert und der modifizierte, tieffrequente Signalanteil wieder mit dem hochfrequenten Signalanteil addiert wird, dadurch gekennzeichnet, dass die Bildung des zu modifizierenden, tieffrequenten Signalanteils in Abhängigkeit von hochfrequenten Bildanteilen erfolgt.

10

2. Bildverarbeitungsverfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Filterfrequenz zur Bildung des tieffrequenten Signalanteils in Abhängigkeit von den hochfrequenten Bildanteilen variiert wird.

15

3. Bildverarbeitungsverfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Filterfrequenz zur Bildung des tieffrequenten Signalanteils abhängig vom lokalen Frequenzspektrum des Bildes variiert wird.

20

4. Bildverarbeitungsverfahren nach Anspruch 1, dadurch gekennzeichnet, dass im Bereich von hochfrequenten Bildanteilen zum tieffrequenten Signalanteil ein höherfrequenter Signalanteil addiert wird.

25

5. Bildverarbeitungsverfahren nach einem der Ansprüche 1-4, dadurch gekennzeichnet, dass die hochfrequenten Bildanteile durch ein Kantendetektionsverfahren ermittelt werden.

30

6. Bildverarbeitungsverfahren nach einem der Ansprüche 1-4, dadurch gekennzeichnet, dass die hochfrequenten Bildanteile aus der Fouriertransformierten der digitalen Bilddaten ermittelt werden.

7. Bildverarbeitungsverfahren nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass die hochfrequenten Bildanteile aus den komprimierten Bilddaten ermittelt werden.

Bildverarbeitungsverfahren zur automatischen Kontrastmodifikation digitaler Bilddaten

5

Z U S A M M E N F A S S U N G

- 10 Die Erfindung betrifft ein Bildverarbeitungsverfahren zur automatischen Kontrastmodifikation digitaler Bilddaten. Ausgehend vom digitalen Bildsignal der Bilddaten wird wenigstens ein tief- und ein hochfrequenter Signalanteil gebildet, der tieffrequente Signalanteil mittels einer Kennlinie modifiziert und der modifizierte, tieffrequente Signalanteil wieder mit dem hochfrequenten Signalanteil addiert. Um dabei
15 die Entstehung störender Artefakte, sogenannter Halos, zu vermeiden erfolgt die Bildung des zu modifizierenden, tieffrequenten Signalanteils in Abhängigkeit von hochfrequenten Bildanteilen.

Fig. 1

20

1/4

FIG. 1

2/4

FIG. 2

FIG. 3

FIG. 4

