Contents

List	of	Sy	mb	ols
------	----	----	----	-----

1	???		1
	1.1	Subproblem Variable Metric	1
Re	eferer	nces	

1 ???

1.1 Subproblem Variable Metric

For comparision: Subproblem proximal bundle

$$\min_{d \in \mathbb{R}^n, \xi \in \mathbb{R}} \xi + \frac{1}{2t_k} \|d\|^2 = \xi + \frac{1}{2} d^\top \left(\frac{1}{t_k} \mathbf{I}\right) d \tag{1}$$

s.t.
$$f(\hat{x}^k) + g^{j^{\top}} d - e_j^k - \xi \le 0, \quad j \in J_k$$
 (2)

Subproblem variable metric:

$$\min_{d \in \mathbb{R}^n, \xi in \mathbb{R}} \xi + \frac{1}{2} d^{\mathsf{T}} D_k d \tag{3}$$

s.t.
$$f(\hat{x}^k) + g^{j^{\top}} d - e_j^k - \xi \le 0, \quad j \in J_k$$
 (4)

These are \mathbb{R}^{n+1} dimensional quadratic optimization problems.

Find out if D_k is diagonal matrix! Think not.

Approaches not so different. Instead of just scaling the identity \rightarrow induce "curvature information" via past subgradients.

Dual proximal subproblem:

$$\min_{\alpha \in \mathbb{R}^{|J_k|}} \frac{1}{2} \left(\sum_{j \in J_k} \alpha_j g^j \right)^{\top} t_k \mathbf{I} \left(\sum_{j \in J_k} \alpha_j g^j \right) + \sum_{j \in J_k} \alpha_j e_j^k$$
 (5)

s.t.
$$\sum_{j \in J_k} \alpha_j = 1 \text{ and } \alpha_j \ge 0 \ j \in J_k$$
 (6)

Dual variable metric subproblem:

$$\min_{\alpha \in \mathbb{R}^{|J_k|}} \frac{1}{2} \left(\sum_{j \in J_k} \alpha_j g^j \right)^{\top} D_k^{-1} \left(\sum_{j \in J_k} \alpha_j g^j \right) + \sum_{j \in J_k} \alpha_j e_j^k \tag{7}$$

s.t.
$$\sum_{j \in J_k} \alpha_j = 1 \text{ and } \alpha_j \ge 0 \ j \in J_k$$
 (8)

These are $\mathbb{R}^{|J_k|}$ dimensional quadratic optimization problems.

check linear independent g^j 's.

References