EAIiIB	Piotr Morawiecki, Tymoteusz Paszun		Rok II	Grupa 3a	Zespół 6
Temat: Wahadła fizyczne			Numer ćwiczenia: 0		
Data wykonania:	Data oddania:	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	Ocena:
26.10.2017r.	8.11.2017r.				

1 Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie momentu bezwładności brył sztywnych przez pomiar okresu drgań wahadła oraz na podstawie wymiarów geometrycznych.

2 Wstęp teoretyczny

2.1 Wahadło fizyczne

Wahadłem fizycznym nazywamy bryłę sztywną mogącą obracać się wokół osi obrotu O nie przechodzącej przez środek masy S. Wahadło odchylone od pionu o kąt θ , a następnie puszczone swobodnie będzie wykonywać drgania zwane ruchem wahadłowym. W ruchu tym mamy do czynienia z obrotem bryły sztywnej wokół osi O, opisuje go zatem druga zasada dynamiki dla ruchu obrotowego. Zasada dynamiki dla ruchu obrotowego wyrażona jest wzorem

$$I\varepsilon = M$$

gdzie I - moment bezwładności, ϵ - przyspieszenie kątowe, M - moment siły. Wartość przyspieszenia kątowego opisuje wzór

$$\varepsilon = \frac{d^2\theta}{dt^2}$$

2.2 Moment bezwładności na podstawie okresu drgań

Dla wahadła fizycznego moment siły powstaje pod wpływem siły ciężkości. Dla wychylenia θ jest równy

$$M = mga\sin\theta$$

gdzie a - odległość środka masy S od osi obrotu O. Zatem równanie ruchu wahadła można zapisać jako

$$I_0 \frac{d^2 \theta}{dt^2} = -mga \sin \theta$$

gdzie I_0 - moment bezwładności względem osi obrotu przechodzącej przez punkt zawieszenia O. Jeżeli ograniczyć ruch do małych kątów wychylenia, to sinus kąta można zastąpić samym kątem w mierze łukowej, czyli $\sin\theta\approx\theta$. Przyjmując częstość określoną wzorem $\omega_0^2=\frac{mga}{I_0}$ równanie ruchu przyjmuje postać równania oscylatora harmonicznego

$$\frac{d^2\theta}{dt^2} + \omega_0^2 \theta(t) = 0$$

. Okres drgań związany z częstością wynosi

$$T = 2\pi \sqrt{\frac{I_0}{mga}}$$

Przekształcając wzór otrzymujemy wzór na moment bezwładności

$$I_0 = (\frac{T}{2\pi})^2 mga = \frac{mgaT^2}{4\pi^2}$$

2.3 Moment bezwładności na podstawie prawa Steinera

Dla wyznaczenia momentu bezwładności I_S względem równoległej osi przechodzącej przez środek masy możemy posłużyć się związkiem między I_0 i I_S znanym jako twierdzenie Steinera:

$$I_0 = I_S + ma^2$$

Wzór na moment bezwładności cienkiego pręta względem osi obrotu umieszczonej na końcu pręta to

$$I = \frac{1}{3}mL^2$$

gdzie L - długość pręta.

Wzór na moment bezwładności pierścienia względem osi obrotu przechodzącej przez jego środek to

$$I = \frac{1}{2}m(R^2 + r^2)$$

gdzie R - zewnętrzny promień, r - wewnętrzny promień.

3 Opis doświadczenia

4 Wyniki pomiarów

4.1 Pomiary masy i długości

Tablica 1: Pomiary masy i długości dla prętu

	Wartość	Niepewność
m [g]	1360	1
D_w [mm]	249	1
D_z [mm]	279	1
$R_w [\mathrm{mm}]$	124,5	1
$R_z \; [\mathrm{mm}]$	139,5	1
e [mm]	9,7	0,05
<i>a</i> [mm]	129,8	0,05

Tablica 2: Pomiary masy i długości dla pierścienia

	Wartość	Niepewność
m [g]	40,11	40,11
$l \; [\mathrm{mm}]$	$90,\!39$	50,28
$b \; [\mathrm{mm}]$	$144,\!45$	54,06
<u>a [mm]</u>	193,17	48,72

4.2 Pomiary okresu drgań

Tablica 3: Pomiary okresu drgań dla prętu

Lp.	Liczba okresów \boldsymbol{k}	Czas t dla k okresów [s]	Czas 1 okresu $[s]$
1	30	39,72	1,324
2	30	39,61	1,320
3	30	39,58	1,319
4	30	39,66	1,322
5	30	39,48	1,316
6	30	39,60	1,320
7	30	39,46	1,315
8	30	39,33	1,311
9	50	65,68	1,314
10	50	$65,\!75$	1,315
		Wartość średnia okresu T : 1,318	8
		Niepewność $u(T)$: 0,000015	

Tablica 4: Pomiary okresu drgań dla pierścienia

Lp.	Liczba okresów \boldsymbol{k}	Czas t dla k okresów $[\mathrm{s}]$	Czas 1 okresu [s]
1	30	31,04	1,035
2	30	30,83	1,028
3	30	31,01	1,034
4	30	31,05	1,035
5	30	31,12	1,037
6	30	30,96	1,032
7	30	30,91	1,030
8	30	31,16	1,039
9	30	31,17	1,039
10	30	30,86	1,029
	,	Wartość średnia okresu T : 1,034	4
		Niepewność $u(T)$: 0,000014	

- 5 Opracowanie wyników
- 6 Wnioski