Lecture 6

Dot Products and Projections

DSC 40A, Spring 2024

Announcements

- Homework 2 is due **tonight**. Remember that using the Overleaf template is required for Homework 2 (and only Homework 2).
- Check out the new FAQs page and the tutor-created supplemental resources on the course website.
 - \circ The proof that we were going to cover last class (that $R_{
 m sq}(w_0^*,w_1^*)=\sigma_v^2(1-r^2)$) is now in the FAQs page, under Week 3.

DSC Undergraduate Town Hall Monday, April 22nd, 1-3PM HDSI 123

Come ask questions and voice your feedback about the undergraduate program, while socializing with faculty!

Your favorite professors will be there - and so will free cookies!

Scan me to RSVP!

Agenda

- Recap: Friends of simple linear regression.
- Dot products.
- Spans and projections.

Answer at q.dsc40a.com

Remember, you can always ask questions at q.dsc40a.com!

If the direct link doesn't work, click the " > Lecture Questions" link in the top right corner of dsc40a.com.

Recap: Friends of simple linear regression

Predicted Commute Time = 142.25 - 8.19 * Departure Hour

Simple linear regression

- Model: $H(x) = w_0 + w_1 x$.
- ullet Loss function: squared loss, i.e. $L_{
 m sq}(y_i,H(x_i))=(y_i-H(x_i))^2$.
- Average loss, i.e. empirical risk:

$$R_{ ext{sq}}(w_0,w_1) = rac{1}{n} \sum_{i=1}^n \left(y_i - (w_0 + w_1 x_i)
ight)^2.$$

Optimal model parameters, found by minimizing empirical risk:

$$w_1^* = rac{\displaystyle\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\displaystyle\sum_{i=1}^n (x_i - ar{x})^2} = r rac{\sigma_y}{\sigma_x} \qquad \qquad w_0^* = ar{y} - w_1^* ar{x}$$

Friends of simple linear regression

- Suppose we use squared loss throughout.
- If our model is $H(x)=w_1x$, it is a line that is forced through the origin, (0,0).

$$w_1^* = rac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2}$$

• If our model is $H(x)=w_0$, it is a line that is forced to have a slope of 0, i.e. a horizontal line. This is the same as the constant model from before.

$$w_0^* = \operatorname{Mean}(y_1, y_2, \dots, y_n)$$

• **Key idea**: w_0^* above is **not** necessarily equal to w_0^* for the simple linear regression model!

Comparing mean squared errors

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n \left(y_i - H(x_i)
ight)^2$$

- The MSE of the best simple linear regression model is pprox 97.
- ullet The MSE of the best constant model is pprox 167.
- The simple linear regression model is a more flexible version of the constant model.

Dot products

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature.
 - Example: Predicting commute times using departure hour and temperature.
- Thinking about linear regression in terms of **matrices and vectors** will allow us to find hypothesis functions that:
 - Use multiple features (input variables).
 - \circ Are non-linear, e.g. $H(x)=w_0+w_1x+w_2x^2$.
- Before we dive in, let's review.

Spans of vectors

- One of the most important ideas you'll need to remember from linear algebra is the concept of the **span** of one or more vectors.
- To jump start our review of linear algebra, let's start by watching ## this video by 3blue1brown.

Warning **!**

- We're not going to cover every single detail from your linear algebra course.
- There will be facts that you're expected to remember that we won't explicitly say.
 - \circ For example, if A and B are two matrices, then AB
 eq BA.
 - This is the kind of fact that we will only mention explicitly if it's directly relevant to what we're studying.
 - But you still need to know it, and it may come up in homework questions.
- We will review the topics that you really need to know well.

Vectors

- A vector in \mathbb{R}^n is an ordered collection of n numbers.
- We use lower-case letters with an arrow on top to represent vectors, and we usually write vectors as columns.

$$ec{v} = egin{bmatrix} 8 \ 3 \ -2 \ 5 \end{bmatrix}$$

- Another way of writing the above vector is $\vec{v} = [8, 3, -2, 5]^\intercal$.
- Since $ec{v}$ has four **components**, we say $ec{v} \in \mathbb{R}^4$.

The geometric interpretation of a vector

- A vector $ec{v}=egin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$ is an arrow to the point (v_1,v_2,\ldots,v_n) from the origin.
 - The **length**, or L_2 **norm**, of \vec{v} is:

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$

 A vector is sometimes described as an object with a magnitude/length and direction.

Dot product: coordinate definition

• The **dot product** of two vectors \vec{u} and \vec{v} in \mathbb{R}^n is written as:

$$ec{u} \cdot ec{v} = ec{u}^\intercal ec{v}$$

• The computational definition of the dot product:

$$ec{u}\cdotec{v}=\sum_{i=1}^n u_iv_i=u_1v_1+u_2v_2+\ldots+u_nv_n$$

• The result is a **scalar**, i.e. a single number.

Question 👺

Answer at q.dsc40a.com

Which of these is another expression for the length of \vec{v} ?

- A. $\vec{v} \cdot \vec{v}$
- ullet B. $\sqrt{ec{v}^2}$
- C. $\sqrt{\vec{v}\cdot\vec{v}}$
- ullet D. $ec{v}^2$
- E. More than one of the above.

Dot product: geometric definition

The computational definition of the dot product:

$$ec{u}\cdotec{v}=\sum_{i=1}^n u_iv_i=u_1v_1+u_2v_2+\ldots+u_nv_n$$

• The geometric definition of the dot product:

$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta$$

where θ is the angle between \vec{u} and \vec{v} .

• The two definitions are equivalent! This equivalence allows us to find the angle θ between two vectors.

Question 👺

Answer at q.dsc40a.com

What is the value of θ in the plot to the right?

Orthogonal vectors

- Recall: $\cos 90^{\circ} = 0$.
- Since $\vec{u}\cdot\vec{v}=\|\vec{u}\|\|\vec{v}\|\cos\theta$, if the angle between two vectors is $90^{\rm o}$, their dot product is $\|\vec{u}\|\|\vec{v}\|\cos90^{\rm o}=0$.
- \bullet If the angle between two vectors is $90^{\rm o}$, we say they are perpendicular, or more generally, $\mbox{orthogonal}.$
- Key idea:

two vectors are **orthogonal** $\iff \vec{u} \cdot \vec{v} = 0$

Exercise

Find a non-zero vector in \mathbb{R}^3 orthogonal to:

$$ec{v} = egin{bmatrix} 2 \ 5 \ -8 \end{bmatrix}$$

Spans and projections

Adding and scaling vectors

• The sum of two vectors \vec{u} and \vec{v} in \mathbb{R}^n is the element-wise sum of their components:

$$ec{u}+ec{v}=egin{bmatrix} u_1+v_1\ u_2+v_2\ dots\ u_n+v_n \end{bmatrix}$$

• If *c* is a scalar, then:

$$cec{v} = egin{bmatrix} cv_1 \ cv_2 \ dots \ cv_n \end{bmatrix}$$

Linear combinations

- Let \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_n all be vectors in \mathbb{R}^n .
- A linear combination of $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ is any vector of the form:

$$a_1\vec{v}_1+a_2\vec{v}_2+\ldots+a_n\vec{v}_n$$

where $a_1, a_2, ..., a_n$ are all scalars.

Span

- Let \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_n all be vectors in \mathbb{R}^n .
- The **span** of \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_n is the set of all vectors that can be created using linear combinations of those vectors.
- Formal definition:

$$\mathrm{span}(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n) = \{a_1\vec{v}_1 + a_2\vec{v}_2 + \dots + a_n\vec{v}_n : a_1, a_2, \dots, a_n \in \mathbb{R}\}$$

Exercise

Let
$$ec{v}_1=egin{bmatrix}2\\-3\end{bmatrix}$$
 and let $ec{v}_2=egin{bmatrix}-1\\4\end{bmatrix}$. Is $ec{y}=egin{bmatrix}9\\1\end{bmatrix}$ in $\mathrm{span}(ec{v_1},ec{v_2})$?

If so, write \vec{y} as a linear combination of $\vec{v_1}$ and $\vec{v_2}$.

Projecting onto a single vector

- Let \vec{x} and \vec{y} be two vectors in \mathbb{R}^n .
- The span of \vec{x} is the set of all vectors of the form:

 $w\vec{x}$

where $w \in \mathbb{R}$ is a scalar.

- Question: What vector in $\operatorname{span}(\vec{x})$ is closest to \vec{y} ?
- The vector in $\operatorname{span}(\vec{x})$ that is closest to \vec{y} is the projection of \vec{y} onto $\operatorname{span}(\vec{x})$.

Projection error

- Let $\vec{e} = \vec{y} w\vec{x}$ be the **projection** error: that is, the vector that connects \vec{y} to $\mathrm{span}(\vec{x})$.
- Goal: Find the w that makes \overrightarrow{e} as short as possible.
 - That is, minimize:

$$\| \vec{e} \|$$

o Equivalently, minimize:

$$\| \vec{\pmb{y}} - w\vec{\pmb{x}} \|$$

• Idea: To make \vec{e} has short as possible, it should be orthogonal to $w\vec{x}$.

Minimizing projection error

- Goal: Find the w that makes $\vec{e} = \vec{y} w\vec{x}$ as short as possible.
- Idea: To make \vec{e} as short as possible, it should be orthogonal to $w\vec{x}$.
- Can we prove that making \vec{e} orthogonal to $w\vec{x}$ minimizes $\|\vec{e}\|$?

Minimizing projection error

- Goal: Find the w that makes $\vec{e} = \vec{y} w\vec{x}$ as short as possible.
- Now we know that to minimize $\|\vec{e}\|$, \vec{e} must be orthogonal to $w\vec{x}$.
- Given this fact, how can we solve for w?

Orthogonal projection

- Question: What vector in $\operatorname{span}(\vec{x})$ is closest to \vec{y} ?
- **Answer**: It is the vector $w^*\vec{x}$, where:

$$w^* = rac{ec{x} \cdot ec{y}}{ec{x} \cdot ec{x}}$$

• Note that w^* is the solution to a minimization problem, specifically, this one:

$$\operatorname{error}(w) = \| \vec{e} \| = \| \vec{y} - w\vec{x} \|$$

- We call $w^*\vec{x}$ the orthogonal projection of \vec{y} onto $\mathrm{span}(\vec{x})$.
 - \circ Think of $w^*\vec{x}$ as the "shadow" of \vec{y} .

Exercise

Let
$$ec{a} = egin{bmatrix} 5 \\ 2 \end{bmatrix}$$
 and $ec{b} = egin{bmatrix} -1 \\ 9 \end{bmatrix}$.

What is the orthogonal projection of \vec{a} onto $\mathrm{span}(\vec{b})$?

Your answer should be of the form $w^*\vec{b}$, where w^* is a scalar.

Moving to multiple dimensions

- Let's now consider three vectors, \vec{y} , $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$, all in \mathbb{R}^n .
- Question: What vector in $\mathrm{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
 - \circ Vectors in $\mathrm{span}(ec x^{(1)},ec x^{(2)})$ are of the form $w_1ec x^{(1)}+w_2ec x^{(2)}$, where $w_1,w_2\in\mathbb{R}$ are scalars.
- Before trying to answer, let's watch ## this animation that Jack, one of our tutors,
 made.

Minimizing projection error in multiple dimensions

- Question: What vector in $\mathrm{span}(\vec{x}^{(1)}, \vec{x}^{(2)})$ is closest to \vec{y} ?
 - \circ That is, what vector minimizes $||\vec{e}||$, where:

$$ec{e} = ec{y} - w_1 ec{x}^{(1)} - w_2 ec{x}^{(2)}$$

- Answer: It's the vector such that $w_1\vec{x}^{(1)} + w_2\vec{x}^{(2)}$ is orthogonal to \vec{e} .
- Issue: Solving for w_1 and w_2 in the following equation is difficult:

$$\left(w_1\vec{x}^{(1)} + w_2\vec{x}^{(2)}\right) \cdot \underbrace{\left(\vec{y} - w_1\vec{x}^{(1)} - w_2\vec{x}^{(2)}\right)}_{\vec{e}} = 0$$

What's next?

• It's hard for us to solve for w_1 and w_2 in:

$$\left(w_1\vec{x}^{(1)} + w_2\vec{x}^{(2)}\right) \cdot \underbrace{\left(\vec{y} - w_1\vec{x}^{(1)} - w_2\vec{x}^{(2)}\right)}_{\vec{e}} = 0$$

- Solution: Combine $\vec{x}^{(1)}$ and $\vec{x}^{(2)}$ into a single matrix, X, and express $w_1\vec{x}^{(1)}+w_2\vec{x}^{(2)}$ as a matrix-vector multiplication, Xw.
- Next time: Formulate linear regression in terms of matrices and vectors!