Master Theorem

Introduction:

- Master's Thm States:

Let a = 1 and b > 1 be constants.

Let fin be an asymptotically positive function.

Let Ton = a T(f) + O(fin) be a

recurrence relation.

Then:

1. If $f(n) = O(n^{\log_b a} - \varepsilon)$ for some constant $\varepsilon > 0$, then $T(n) = O(n^{\log_b a})$

- 2. If $f(n) = \Theta(n^{\log_b a} \cdot \log^k n)$ for some constant $k \ge 0$, then $T(n) = O(n^{\log_b a} \log^{k+1} n)$
- 3. If $f(n) = \Omega (n^{\log_b a} + \varepsilon)$ for some constant $\varepsilon > 0$ and $\varepsilon < \varepsilon$ satisfies the regularity condition then $T(n) = O(\varepsilon(n))$

The regularity condition states that: For some constant C<1 and all sufficiently large n, a - F(f) & c . F(n)

Examples: 1. $T(n) \leq 9T(\frac{2}{3}) + n$

> a=9, b=3, f(n)=n, $\log b^a = \log 3^9 = 2$ We see that $n^{\log b^a} = n^2$. Hence, $f(n) = O(n^{\log b^a} - E)$, where E=1 in this case. $T(n) = O(n^2)$

2. $T(n) \leq T(\frac{2n}{3}) + 1$

a = 1, $b = \frac{2}{3}$, f(n) = 1, $\log b^{\alpha} = 0$

We see that $f(n) = n^{\log_b a}$. We can see that case 2 applies if k=0.

:- T(n) = O(n logn)

3. T(n) ≤ 2 T(=2) +n/g(n)

a=2, f(n)=nlg(n), $log_b a=log_2 = l$

None of the cases apply here. While find is larger than n logba or n, it is not polynomially larger.

nlgn = lg(m)

For case 3, we need $f(n) = \Lambda \left(n^{\log_b \alpha} + \epsilon \right)$ = $\Lambda \left(n^{\log_b \alpha} \cdot n^{\epsilon} \right)$

and Igen) is asymptotically less than n E for any positive E.

4. Tan = 2T(=)+06)

Note: This is the run time for the divide and conquer soln to max subarray.

a=2, b=2, f(m)=O(n), $logb^a=0$. This would fall under case 2, for k=0. T(m)=O(n|gn)

5. Tim = 7(T(=1)+0(n2)

Note: This is the run time for Strassen's algo.

a = 7, b = 2, $f(n) = O(n^2)$, $\log b^a = \log_2 7$ ≈ 2.8

The case applies as $f(n) = O(n^{\log_2 7} - \epsilon)$ where $\epsilon = 0.8$.

:. $T(n) = O(n^{\log_b a})$ = $O(n^{\log_2 7})$