Exam 23 December 2015

Choose three of the four exercises.

- 1. Consider the function families $\mathcal{F} = \{f_k : \mathcal{X}_k \to \mathcal{Y}_k\}_{k \in \mathcal{K}}$, $\mathcal{G} = \{g_k : \mathcal{X}_k \to \mathcal{Z}_k\}_{k \in \mathcal{K}}$ and $\mathcal{H} = \{h_k : \mathcal{X}_k \to \mathcal{Y}_k \times \mathcal{Z}_k\}_{k \in \mathcal{K}}$, where $h_k(x) = (f_k(x), g_k(x))$. Show whether the following implications are true or false (by giving either a reduction or a counterexample):
 - (a) \mathcal{H} is one-way implies \mathcal{F} is also one-way.
 - (b) \mathcal{F} is one-way implies \mathcal{H} is also one-way.

Assume now that each \mathcal{X}_k is a cyclic group (in additive notation) and $\mathcal{F} = \{f_k : \mathcal{X}_k \to \mathcal{X}_k\}_{k \in \mathcal{K}}$ are group homomorphisms, and define the composition $\mathcal{F} \circ \mathcal{F} = \{f_k \circ f_k : \mathcal{X}_k \to \mathcal{X}_k\}_{k \in \mathcal{K}}$. Prove that:

- (c) \mathcal{F} is one-way implies $\mathcal{F} \circ \mathcal{F}$ is also one-way.
- (d) $\mathcal{F} \circ \mathcal{F}$ is one-way implies \mathcal{F} is also one-way (**Hint:** perhaps the reduction will make two calls to the adversary inverting \mathcal{F} , beware the independence!).
- 2. Let \mathcal{G} be a cyclic group of prime order q, and consider a generator $g \in \mathcal{G}$. We define the 2-SCasc public key encryption scheme as follows:
 - **Key Generation:** As in ElGamal encryption scheme, $y = g^x$ is the public key, and x is the secret key.
 - **Encryption:** A ciphertext for $m \in \mathcal{G}$ is computed as $c = (g^r, g^s y^r, m y^s)$, for random $r, s \in \mathbb{Z}_q^{\times}$.
 - (a) Give a decryption procedure for 2-SCasc PKE.
 - (b) Give the homomorphic properties of the encryption scheme. Consider the strong homomorphic case (i.e., the resulting ciphertext has the proper probability distribution, and it is independent of the input ciphertexts).
 - (c) Write a game between a challenger and an adversary showing the OW-CPA security definition.
 - (d) Show a reduction from OW-CPA security of 2-SCasc to the CDH problem, and analyze the success probabilities (**Hint:** perhaps the reduction will make two calls to the CDH solver, beware the independence!).

- 3. Let us consider the Schnorr signature scheme and two variants of it. The three schemes have the same mathematical setting. The key generation protocol always produces a secret key $x \in_R \mathbb{Z}_p$, a public key $y = g^x$ and a hash function $H : \{0,1\}^* \to \mathbb{Z}_p$. For Variant 1, furthermore, there is an additional public key value $y_2 = y^x$. Regarding the signature and verification protocols, the three schemes work as follows:
 - Schnorr: to sign m, choose $r \in_R \mathbb{Z}_p$ and output $\sigma = (R, s)$, where $R = g^r$ and $s = r + x \cdot H(m, R) \mod p$. To verify a signature $\sigma = (R, s)$ on a message m for a public key y, check if the equation $g^s = R \cdot y^{H(m,R)}$ holds.
 - Variant 1: to sign m, choose $r \in_R \mathbb{Z}_p$ and output $\sigma = (R, s)$, where $R = y^r$ and $s = r + x \cdot H(m, R) \mod p$. To verify a signature $\sigma = (R, s)$ on a message m for a public key (y, y_2) , check if the equation $y^s = R \cdot y_2^{H(m,R)}$ holds.
 - Variant 2: to sign m, choose $r \in_R \mathbb{Z}_p$ and output $\sigma = (R, s)$, where $R = g^r$ and $s = (r + x) \cdot H(m, R) \mod p$. To verify a signature $\sigma = (R, s)$ on a message m for a public key y, check if the equation $g^s = (R \cdot y)^{H(m,R)}$ holds.

The goal is to decide whether Variants 1 and 2 are secure signature schemes.

- (a) The three signature schemes are obtained by applying the Fiat-Shamir heuristic to some zero-knowledge proof of knowledge (with 3 steps) of the discrete logarithm of y (in the case of Variant 1, the value $y_2 = y^x$ is also part of the public description of the language). Write these zero-knowledge proofs of knowledge for the case of Variants 1 and 2.
- (b) Do these two protocols satisfy the three properties required for a zero-knowledge proof of knowledge? Prove them, if the answer is yes.
- (c) In case some of the protocols does not satisfy all the three properties, this may mean that the corresponding signature scheme is NOT secure. Try to find an attack against it. [Hint: a single query to the signing oracle should suffice to produce a valid forgery.]
- 4. Let p be a prime and let $q=p^r$ for some positive integer $r\in\mathbb{Z}^+$. Let \mathcal{P} be a set of participants and $\Gamma\subset 2^{\mathcal{P}}$ be a monotone increasing access structure.
 - (a) Prove that if Γ admits a vector space secret sharing scheme over \mathbb{F}_p , then Γ admits a vector space secret sharing scheme over GF(q). [Hint: consider $GF(q) = \mathbb{F}_p[x]/g(x)$, for some irreducible polynomial $g(x) \in \mathbb{F}_p[x]$ of degree r.]
 - (b) To prove that the opposite implication is not true, consider the threshold access structure for n = 4 and t = 2. Show that this access structure cannot admit a vector space secret sharing scheme over \mathbb{F}_2 , but it admits a vector space secret sharing scheme (which one?) over $GF(2^3)$.
 - (c) For the access structure Γ of part (b), let us define the adversary structure $\mathcal{A} = \Gamma^c = \{B \subset \mathcal{P} \mid B \notin \Gamma\}$. Which kind of adversaries can you tolerate if you want to design a multiparty computation protocol secure against an adversary who can corrupt one subset of players in \mathcal{A} ?