gesis

Leibniz-Institut für Sozialwissenschaften

Multi-class and Multi-label Text Classification in Python

Lukas Birkenmaier Workshop for Ukraine, 22.02.2024

About me

RWTHAACHEN UNIVERSITY

Universität Konstanz

Agenda

- Introduction
- Classification Basics
 - Machine Learning
 - Validation (Accuracy, Precision, Recall, F1 Score)
- Multi-class Classification
 - Model Architecture
 - Validation
 - Live-Coding
- Multi-label Classification
 - Model Architecture
 - Validation
 - Live-Coding

Disclaimer

- This is an applied course!
 - Some knowledge of Python is useful. However, you can run the scripts and interpret the output without any python knowledge
 - No mathematical deep-dive, focus on applied setting
 - You are invited to go your own pace (e.g., adapting the scripts to a new dataset)

! The materials are designed so that you can look at them later and copy / paste certain code snippets for your own work!

By the end of this course, you will have...

- learned the basic terminology around text classification
- understood the difference between multi-class and multi-label classification
- learned the fundamental strategies to evaluate classification tasks
- have applied two classification tasks using python code
- had some evening fun ②

Introduction

Text Classification

Text Classification

"Classification is the process of accurately classifying previously undiscovered data"

3

Text Classification

"Classification is the process of accurately classifying previously undiscovered data"

3

Many practical applications, e.g.,

- Spam filtering
- Hate Speech Detection
- Language Identification
- Policy Issue Classification
- Sentiment Analysis

"Great appointment with @ThorstenKlute in <u>Bad Salzuflen</u> during the visit of the holiday language course FIT in German, a pilot project of the #NRW state government, where <u>15 very motivated refugee children</u> can improve their language skills for two weeks."

Serap Güler @SerapGueler

Schöner Termin mit @ThorstenKlute in Bad Salzuflen beim Besuch des Feriensprachkurses FIT in Deutsch, ein Pilotprojekt der #NRW Landesregierung, an dem hier 15 sehr motivierte Flüchtlingskinder zwei Wochen ihre Sprachkenntnisse verbessern können.

...

"The city of <u>Gütersloh</u> prefers <u>migrants</u> in the allocation of building plots & explicitly wishes for a <u>'social and</u> <u>multicultural mixing' of certain areas...</u> This 'mixing' has worked out well so far in Germany..."

•••

Die Stadt Gütersloh bevorzugt Migranten bei der Vergabe von Baugrundstücken & wünscht sich ausdrücklich "eine soziale und multikulturelle Durchmischung" bestimmter Gebiete... 2 2 Hat ja bisher gut funktioniert, diese "Durchmischung" in Deutschland...

guetersloh.de/de-wAssets/doc...

domesticsecurity ‡	economy ‡	education ‡	environment ‡	event ‡	foreign_policy ‡	healthcare ‡	immigration_asylum 💠	infrastru
0.00846947	0.01213120	0.00303444	0.00365524	0.08787690	0.00814045	0.00984293	0.00361202	0.0
0.49173900	0.00862222	0.02396040	0.00722634	0.02777380	0.06010910	0.04110670	0.02433700	0.0
0.00207624	0.84491000	0.00554972	0.02222480	0.00462421	0.00792736	0.01402210	0.00224846	0.0
0.22862300	0.01242660	0.03978020	0.01281590	0.02577220	0.11836900	0.06211580	0.14245400	0.0
0.00511126	0.03454080	0.00846039	0.83044300	0.00420553	0.00625391	0.00853137	0.00338545	0.0
0.00511126	0.03454080	0.00846039	0.83044300	0.00420553	0.00625391	0.00853137	0.00338545	0.0
0.00435295	0.01014710	0.00135177	0.00442443	0.12319500	0.00590515	0.00495645	0.00260760	0.0
0.00702387	0.01145560	0.00168932	0.00467323	0.14338500	0.00775695	0.00697157	0.00317667	0.0
0.00796364	0.01158170	0.00564254	0.01338690	0.00484134	0.00790940	0.00498853	0.00672930	0.0
0.00470961	0.00748688	0.00133547	0.00365910	0.23994900	0.00369224	0.00488763	0.00210484	0.0
0.01782000	0.03557480	0.02762700	0.00729218	0.03514410	0.00532206	0.68964800	0.01338570	0.0
0.00465674	0.01040610	0.00125193	0.00424651	0.16369100	0.00526372	0.00579288	0.00251573	0.0
0.00620032	0.01251060	0.00180104	0.00453758	0.11416200	0.00662017	0.00665563	0.00304615	0.0
0.39065300	0.00464934	0.01538650	0.00697752	0.01480330	0.32360300	0.02635410	0.06719360	0.0
0.00552299	0.00635472	0.00126635	0.00347297	0.30504100	0.00373231	0.00436245	0.00197498	0.0
0.03917740	0.02858820	0.21272500	0.00915515	0.06832960	0.10566500	0.07544480	0.03515130	0.0
0.00752966	0.00798649	0.00198276	0.00385448	0.27171200	0.00458332	0.00559928	0.00233327	0.0
0.00613405	0.01431040	0.00191910	0.00552868	0.08412830	0.00834662	0.00627282	0.00285583	0.0

In the dataset, each row represents a Tweet that mentions a place (e.g., a city or a region) Probabilities for belonging to the topic "Immigration"

mesticsecurity ‡	economy ‡	education ‡	environment ‡	event ‡	foreign_policy ‡	healthcare	immigration_asylum ‡	infrastru
0.00846947	0.01213120	0.00303444	0.00365524	0.08787690	0.00814045	0.00984293	0.00361202	0.0
0.49173900	0.00862222	0.02396040	0.00722634	0.02777380	0.06010910	0.04110670	0.02433700	0.0
0.00207624	0.84491000	0.00554972	0.02222480	0.00462421	0.00792736	0.01402210	0.00224846	0.0
0.22862300	0.01242660	0.03978020	0.01281590	0.02577220	0.11836900	0.06211580	0.14245400	0.0
0.00511126	0.03454080	0.00846039	0.83044300	0.00420553	0.00625391	0.0085313	0.00338545	0.0
0.00511126	0.03454080	0.00846039	0.83044300	0.00420553	0.00625391	0.00853137	0.00338545	0.0
0.00435295	0.01014710	0.00135177	0.00442443	0.12319500	0.00590515	0.0049564!	0.00260760	0.0
0.00702387	0.01145560	0.00168932	0.00467323	0.14338500	0.00775695	0.00697157	0.00317667	0.0
0.00796364	0.01158170	0.00564254	0.01338690	0.00484134	0.00790940	0.0049885	0.00672930	0.0
0.00470961	0.00748688	0.00133547	0.00365910	0.23994900	0.00369224	0.0048876	0.00210484	0.0
0.01782000	0.03557480	0.02762700	0.00729218	0.03514410	0.00532206	0.68964800	0.01338570	0.0
0.00465674	0.01040610	0.00125193	0.00424651	0.16369100	0.00526372	0.00579288	0.00251573	0.0
0.00620032	0.01251060	0.00180104	0.00453758	0.11416200	0.00662017	0.0066556	0.00304615	0.0
0.39065300	0.00464934	0.01538650	0.00697752	0.01480330	0.32360300	0.02635410	0.06719360	0.0
0.00552299	0.00635472	0.00126635	0.00347297	0.30504100	0.00373231	0.0043624!	0.00197498	0.0
0.03917740	0.02858820	0.21272500	0.00915515	0.06832960	0.10566500	0.07544480	0.03515130	0.0
0.00752966	0.00798649	0.00198276	0.00385448	0.27171200	0.00458332	0.00559928	0.00233327	0.0
0.00613405	0.01431040	0.00191910	0.00552868	0.08412830	0.00834662	0 00627282	0.00285583	0.0

Practical Application: Policy Issue and Places*

Local Issue Emphasis: Immigration

Practical Application: Policy Issue and

Local Issue Emphasis: Immigration

We could further apply sentiment analysis to classify the tweets into "negative", "neutral", or "positive"

Practical Application: Policy Issue and Places*

Local Issue Emphasis: Healthcare

*Ongoing work

General Overview Classification

General Overview Classification

E.g., what is the topic of the text
(against immigration / in favor of immigration / not talking about immigration)

Binary

Multi-class

"Digital
Technologies can
help children to
understand our
ecosystem better"

"Digital
Technologies can
help children to
understand our
ecosystem better"

Topic: Environment?

"Digital
Technologies can
help children to
understand our
ecosystem better"

Topic: Digitization?

"Digital
Technologies can
help children to
understand our
ecosystem better"

Topic: Education?

General Overview Classification

Classification Basics

Machine Learning and LLM

Basics

- For supervised text classification, we usually need:
 - Machine Learning Model
 - Labeled Data
 - Training Data
 - Test / Validation Data
 - (Feature Extraction Method)

Supervised Vs Unsupervised Learning, Explained

Supervised

Un-Supervised

No Target

Basic Idea behind Machine Learning

Text classifiers have the following structure

Feature extractor

- Makes the text machinereadable
- Either manually defined or learned (e.g., with neural networks)
- <u>Same</u> for multi-class and multi-label classification

Classifier

- Assigns class probabilities given feature representation of a text
- <u>Different</u> for multi-class and multi-label classification

Neural Networks

Neural Networks

Token Embeddings

Embeddings

```
Token String Token ID Embedded Token Vector
     '<s>' -> 0 -> [ 0.1150, -0.1438, 0.0555, ... ]
   '<pad>' -> 1 -> [ 0.1149, -0.1438, 0.0547, ... ]
    '</s>' -> 2 -> [ 0.0010, -0.0922, 0.1025, ... ]
   '<unk>' -> 3 -> [ 0.1149, -0.1439, 0.0548, ... ]
     '.' -> 4 -> [-0.0651, -0.0622, -0.0002, ... ]
    ' the' -> 5 -> [-0.0340, 0.0068, -0.0844, ...]
      ',' -> 6 -> [ 0.0483, -0.0214, -0.0927, ... ]
     'to'-> 7-> [-0.0439, 0.0201, 0.0189, ...]
    ' and' -> 8 -> [ 0.0523, -0.0208, -0.0254, ... ]
     ' of' -> 9 -> [-0.0732, 0.0070, -0.0286, ...]
      ' a' -> 10 -> [-0.0194, 0.0302, -0.0838, ... ]
```

36

Classification Method

Feature Extraction

GESIS Leibniz-Institut für Sozialwissenschaften

Embeddings

- Input of modern machine learning models (LLMs)
- Basic idea: Words which frequently appear in similar contexts have similar meaning (distributional hypotheses)
- Embeddings:
 - Numerical representations of words/token in highdimensional vectors
 - Vectors have fixed length
 - Information about words semantic properties and syntactic functions are distributed across dimensions
 - Words that are close to each other semantically (e.g., "cat" and "kitten") are close in the vector space

Classification Method

Feature Extraction

Feature Extraction: Word-embeddings

GESIS Leibniz-Institut für Sozialwissenschaften

Feature Extraction: Word-embeddings

Usually, we do not know what the dimensions stand for $(n_{dim}>700)$

Feature Extraction

Feature Extraction: Word-embeddings

- For feature extraction, we feed the embeddings of the input tokens to a neural network
- The neural network gives us a vector representation of the input text
- Ultimately, this vector is used for classification.

Classification Method

Feature Extraction

Feature Extraction: Word-embeddings

- For feature extraction, we feed the embeddings of the input tokens to a neural network
- The neural network gives us a vector representation of the input text
- Ultimately, this vector is used for classification.

- Validation is critical task for any classification task
- Making sure that the classification has
 - Little error (random)
 - Free from Bias (systematic)
- Two broad categories
 - Internal Validation (i.e., evaluating the measures and model features, error analysis etc.)
 - External Validation (i.e., comparing with gold-standard data)
- Especially for multi-dimensional social science constructs, validation should be taken seriously!

For more information:

https://www.tandfonline.c om/doi/full/10.1080/1931 2458.2023.2285765

I. Substantive Evidence

Focus: Outline the theoretical underpinning of the measurement

Conceptual Foundation

Construct definition and operationalization

The definition and operationalization of the construct is based on theory

Design decisions

Design decisions build upon the conceptualization of the analytical construct

II. Structural Evidence

Focus: Examine and evaluate the properties of the model and its output

Model Properties

Model feature inspection

Characteristics and features of the model are plausible indicators for the construct

Model metrics evaluation

Method-specific metrics and common thresholds are met

Model Output

Output inspection

The measures and their descriptive statistics look plausible

Error Analysis

Systematic biases and errors are considered and evaluated

Systematic Testing

The output of the model suffices further semantic and computational tests

III. External Evidence

Focus: Test for how the measures relates to other independent information or criteria.

Measure Interrelation

Human-annotated test set comparison

Correspondence to heldout test set of human annotated labels

Surrogate label comparison

Correspondence to surrogate data labels

Criterion Prediction

Criterion PredictionPrediction of external

criteria or real-world phenomena

IV. Robustness Checks
Robustness to contextual or model-specific factors

I. Substantive Evidence

Focus: Outline the theoretical underpinning of the measurement

Conceptual Foundation

Construct definition and operationalization

The definition and operationalization of the construct is based on theory

Design decisions

Design decisions build upon the conceptualization of the analytical construct

II. Structural Evidence

Focus: Examine and evaluate the properties of the model and its output

Model Properties

Model feature inspection

Characteristics and features of the model are plausible indicators for the construct

Model metrics evaluation

Method-specific metrics and common thresholds are met

Model Output

Output inspection

The measures and their descriptive statistics look plausible

Error Analysis

Systematic biases and errors are considered and evaluated

Systematic Testing

The output of the model suffices further semantic and computational tests

III. External Evidence

Focus: Test for how the measures relates to other independent information or criteria.

Measure Interrelation

Human-annotated test set comparison

Correspondence to heldout test set of human annotated labels

Surrogate label comparison

Correspondence to surrogate data labels

Criterion Prediction

Criterion Prediction Prediction of external criteria or real-world phenomena

Validation: Comparison with Labels

- Use Case: We want to classify a text as either having "positive" or "negative" tone
- We therefore compare our predictions against some "actual values" and document our guesses in a Confusion Matrix

Evaluation Metrics

$$\begin{array}{ll} precision & = & \frac{TP}{TP + FP} \\ \\ recall & = & \frac{TP}{TP + FN} \\ \\ F1 & = & \frac{2 \times precision \times recall}{precision + recall} \\ \\ accuracy & = & \frac{TP + TN}{TP + FN + TN + FP} \\ \\ specificity & = & \frac{TN}{TN + FP} \end{array}$$

Evaluation Metrics

$$\begin{array}{ll} precision & = & \frac{TP}{TP + FP} \\ recall & = & \frac{TP}{TP + FN} \\ F1 & = & \frac{2 \times precision \times recall}{precision + recall} \\ accuracy & = & \frac{TP + TN}{TP + FN + TN + FP} \\ specificity & = & \frac{TN}{TN + FP} \end{array}$$

$accuracy = \frac{TP + TN}{TP + FN + TN + FP}$

Accuracy

 We can first calculate the overall *accuracy* of our classifier

Predicted

Accuracy =	TP + TN				
	TP + TN + FP + FN				

 0
 1

 0
 30
 12

 1
 8
 56

Actual

$$accuracy = \frac{TP + TN}{TP + FN + TN + FP}$$

Why we need different metrics

- E.g., for imbalanced data, accuracy does not give the full picture
- When everything is classified as red, our classifier would have an accuracy of 90%
 - True positive = 0 (we never predict the positive class)
 - True negative = 9 (we always predict the negative class)
 - False positive = 0 (we never predict the positive class)
 - False Negative = 1 (we labeled the positive class as neg)

But is this a good classifier?What about the predictions on the blue classes?

Precision and Recall

Precision (Positive Predictive Value)

- Definition: The ratio of correctly predicted positive observations to the total predicted positive observations.
- Importance: Critical in scenarios where the cost of false positives is high (e.g., pregnancy test)
- Recall (Sensitivity, True Positive Rate)
- Definition: The ratio of correctly predicted positive observations to all observations that are positive
- Importance: Essential in situations where missing a positive case has a significant consequence (e.g., COVID-test at the beginning of the pandemic)

F1 Score

- The F1 score is the harmonic mean of precision and recall
- It thus symmetrically represents both precision and recall in one metric

F1 Score =
$$\frac{2}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}}$$
$$= \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

Take-aways Validation

- Calculating (average) accuracy, precision, recall, and F1-score is possible for both multi-class and multi-label classification (we will soon see how)
- Provide immediate metrics of model performance
- Software automates calculation
- More validation is required if the quality (truthfulness) of your predictions is important

Multi-Class Classification

Definitions

- Multi-class classification is a classification task with more than two classes where each sample can only be labeled as one class.
- Labels are mutually exclusive
- Can be seen as an extension of binary classification
- Requires (usually) no problem transformation
- Probabilities for each class add up to 100%
- E.g., sentiment of a text (positive, neutral, negative)

Classification Method

Feature Extraction

Multi-Class Classification

Main Take-away: For both multi-class and multi-label classification, we need to calculate average performance metrics!

Multi-Class Confusion Matrix

Multi-Class Confusion Matrix

Multi-Class Confusion Matrix

Both for **multi-class** and **multi-label** classification, we need to average the metrics across classes

Micro-averaged:

all samples equally contribute to the final averaged metric

$$\text{Micro-averaged Precision} = \frac{TP_{total}}{TP_{total} + FP_{total}} = \frac{7}{7+2} = 0.7777$$

	TP	FP	FN	Precision	Number of samples
bird	1	0	1	1	2
cat	4	1	0	0.8	4
dog	2	1	1	0.667	3
TOTAL	7	2	2		

 Macroaveraged: all classes equally contribute to the final averaged metric

$$\begin{split} \text{Macro-averaged Precision} &= \frac{1}{3} \textit{Precision}_{\textit{birds}} + \textit{Precision}_{\textit{cats}} + \textit{Precision}_{\textit{dogs}} \\ &= \frac{1}{3} \big(1 + 0.8 + 0.6666 \big) = 0.8222 \end{split}$$

 Weightedaveraged: each v classes's contribution to the average is weighted by its size

$$\text{Weighted-averaged Precision} = \frac{Precision_{birds}*N_{birds} + Precision_{cats}*N_{birds} + Precision_{dogs}*N_{birds}}{\text{Total number of samples}} \\ = \frac{1*2+0.8*4+0.6666*3}{2+4+3} = 0.8$$

Tutorials

- Multi-class classification
 - https://colab.research.google.com/github/lukasbirki/Workshop-Classification/blob/main/Multi-Class%20Classification.ipynb

Multi-Label Classification

Definitions

- Multi-label classification is a classification task labeling each sample with m labels from $n_{classes}$, with $0 \le m \le n_{classes}$
- Labels are not mutually exclusive
- Can be seen as an extension of multi-class classification
- Can require problem transformation
- Separate probabilities for each output class
- E.g., mentions of characters in a specific book chapter

expected	predicted
A, C	A, B
С	С
A, B, C	B, C

expected	predicted
1 0 1	1 1 0
0 0 1	0 0 1
1 1 1	0 1 1

Precision = TP / (TP + FP)

Class A
$$1/(1+0) = 1$$

Recall = TP / (TP + FN)

 $1/(1+1) = 0.5$

F1-Score = 0.667

expected	predicted
1 0 1	1 1 0
0 0 1	0 0 1
1 1 1	0 1 1

Precision = TP / (TP + FP)

Class A
$$1/(1+0) = 1$$

Recall = TP / (TP + FN)

 $1/(1+1) = 0.5$

F1-Score = 0.667

expected	predicted
1 0 1	1 1 0
0 0 1	0 0 1
1 1 1	0 1 1

Class A: 1 0 1 1

Precision = TP / (TP + FP)

Class A
$$1/(1+0) = 1$$

expected predicted
A, C A, B
C C
A, B, C B, C

Class A: 1 0 1 1

Precision = TP / (TP + FP)

Class A 1/(1+0) = 1Recall = TP / (TP + FN) 1/(1+1) = 0.5F1-Score = 0.667

Class B Precision = 0.5
Recall = 1.0
F1-score = 0.667

Class C Precision = 1.0 Recall = 0.667 F1-score = 0.8

Both for **multi-class** and **multi-label** classification, we need to average the metrics across classes

- Microaveraged: all samples equally contribute to the final averaged metric
- $\text{Micro-averaged Precision} = \frac{TP_{total}}{TP_{total} + FP_{total}} = \frac{7}{7+2} = 0.7777$

- Macroaveraged: all classes equally contribute to the final averaged metric
- $$\begin{split} \text{Macro-averaged Precision} &= \frac{1}{3} \textit{Precision}_{\textit{birds}} + \textit{Precision}_{\textit{cats}} + \textit{Precision}_{\textit{dogs}} \\ &= \frac{1}{3} \left(1 + 0.8 + 0.6666 \right) = 0.8222 \end{split}$$
- Weightedaveraged: each classes's contribution to the average is weighted by its size
- $\text{Weighted-averaged Precision} = \frac{Precision_{birds}*N_{birds} + Precision_{cats}*N_{birds} + Precision_{dogs}*N_{birds}}{\text{Total number of samples}} \\ = \frac{1*2+0.8*4+0.6666*3}{2+4+3} = 0.8$

GESIS Leibniz-Institut für Sozialwissenschaften

Tutorials

- Multi-label classification
 - https://colab.research.google.com/github/lukasbirki/Workshop-Classification/blob/main/Multi-Label%20Classification.ipynb

Annotaation

Types of Annotation

Annotations are required for

- Training / Finetuning
- Evaluation!

Multiple ways to annotate text

- experts
- trained coders
- crowd workers (since ~2010)
- "Zero-Shot Classification of other LLMs/GPT"?
- (you already have labelled data, but this is often not the case (i))

- see Krippendorff "Content Analysis: An Introduction to Its Methodology" on experts and trained coders
- see Benoit et al. (2016) for optimistic view on crowd coding
 - more opinions: <u>here</u>, <u>here</u>, <u>here</u>
- research on LLMs for annotation: <u>here</u>, <u>here</u>, <u>here</u>, <u>here</u>, and <u>here</u> (but still *many* open meth. questions)

Best Practices

Main Take away:

If humans are unsure how to classify texts, computational methods will fail as well!

Best Practices

- Concept development
- Codebooks & instructions
- Coder training
- Quality assurance

Read <u>here</u> for practical guidance

Text data are very context-dependent!

Always inspect your data critically to reflect how your constructs reflect themselves in the text!

Concept development

For instance, concept "populist/non-populist" https://doi.org/10.1017/pan.2022.32

- Level of annotation
 - **document** ⇒ "holistic grading"
 - paragraph ⇒ sequence classification (1+ label per para.)
 - sentence ⇒ sequence classification (1+ label per sent.)
 - pairs of sentences (see here)
 - word ⇒ "token classification" (1 label per word, see here)

Quality assurance & assessment

Annotation quality

- important for supervised learning
 - bad annotation result in "noisy" labels
 - noisy labels impair ability to learn the relevant signal
- related to replicability: if coders can agree, task should be replicable
- commonly quantified with inter-coder reliability metrics

Inter-coder reliability

- just % agreement is not enough (need to adjust for baseline)
- compute "chanceadjusted" agreement metrics
 - Krippendorff's alpha
 - Cohen's kappa
- read <u>here</u> and <u>here</u>
- https://github.com/Tol oka/crowd-kit

Thank you!

Leibniz-Institut für Sozialwissenschaften

Backup

Classification Method

Feature Extraction

6

3

3

2

Feature Extraction: Bag of Words

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

Classification Method

Feature Extraction

Feature Extraction: Bag of Words

- One-Hot Encoding
- Assumption: word order does not matter
- Limitations
 - Discarding word context
 - Discarding grammatical structure
 - Vocabulary inconsistencies (e.g., grammatical errors, conjunctions)
 - Computationally inefficient (sparse matrix with most elements being 0)

• • • •

GESIS Leibniz-Institut für Sozialwissenschaften

Classification Method

> Feature Extraction

Document-term matrix

In [114]:	df2											
Out[114]:												
		aa	aabb	aahl	aaptiv	aaron	aavitsland	ab	ababa	abaca	abad	
	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	564	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	565	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	566	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	567	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	568	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

569 rows x 13794 columns

Feature Extraction: Word-embeddings

- Word embeddings capture similarities in words' meaning and function
 - fixed-length & low-dimensional
 - real-valued ("dense") ⇒ word vectors have no zero entries
 - distributed: information about words semantic properties and syntactic functions distributed across dimensions
- Static vs contextual word embeddings

	Static	Contextualized
Representation	static	dynamic
Context-	agnostic	aware
Models	pre-trained, non- adaptable	finetuning
Examples	Word2Vec, GloVe	BERT, GPT-[X]