Tarea 4

Álgebra Lineal

Espacios con producto interno

- 1. Si $V = \mathcal{M}^{n,n}(\mathbb{R})$ el espacio de matrices $n \times n$, mostrar que $\langle A, B \rangle = tr(AB^T)$ es un producto interno.
- 2. Calcular la norma y el ángulo formado por las matrices $A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ respecto al producto interno del ejercicio anterior.
- 3. Sea $V = \mathbb{R}_2[x]$. Calcular las normas y la distancia entre los vectores $p_1(t) = 1$, $p_2(t) = t$ y $p_3(t) = t^2$ con el producto $\langle p,q \rangle = \int_0^1 p(s)q(s)ds$.
- 4. Sea $V = \mathbb{R}^2$, definamos el siguiente producto $\langle \vec{x}, \vec{y} \rangle_2 = 2x_1y_1 + 3x_2y_2$.
- a) Demostrar es un producto interno. b) Encontrar una matriz A tal que $\langle \vec{x}, \vec{y} \rangle_2 = x^T A y$.
 - 5. Determinar si las siguientes funciones son productos internos o bien especificar que propiedad del producto interno no se cumple

a)
$$V = C([0,1]; \mathbb{R}) \text{ y } \langle f, g \rangle = \int_0^1 f(s)g(s)e^{-t}ds$$

b)
$$V = \mathbb{R}_3[x] \text{ y } \langle p, q \rangle = \int_0^1 p(s)q(s)ds + \int_0^1 p'(s)q'(s)ds$$

c)
$$V = \mathbb{R}^3[x]$$
 y $\langle p, q \rangle = \int_0^1 \frac{dp}{ds}(s) \frac{dq}{ds}(s) ds$

d)
$$V = \mathbb{R}^2 \text{ y } \langle \mathbf{x}, \mathbf{y} \rangle = \det([\mathbf{x}, \mathbf{y}])$$

e)
$$V = \mathbb{R}_2[x]$$
 y $\langle p, q \rangle = p(0)q(0) + p(1)q(1)$

- 6. Establezca si una de las siguientes funciones es un producto interno en \mathbb{R}^3 , si $\vec{a}=(a_1,a_2,a_3)$ y $\vec{b}=(b_1,b_2,b_3)$
- $\langle \vec{a}, \vec{b} \rangle = a_1b_1 + a_2b_2 + a_3b_3 + 2a_2b_3 2a_3b_2$

Ortogonalidad

7. Obtener una base ortonormal (considerando al producto punto) para el siguiente subespacio

$$W = \{(x, y, z) \in \mathbb{R}^3 : x - y + z = 0\}$$

8. Obtener una base ortonormal para el subespacio generado por los vectores

$$\begin{pmatrix} 1\\1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 2\\1\\-1\\1 \end{pmatrix}, \begin{pmatrix} -1\\2\\2\\1 \end{pmatrix}$$

9. Considerando al producto punto en \mathbb{R}^4 use el proceso de ortogonalización de Gram-Schmidt para obtener una base ortonormal a partir de la base $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ con

$$\mathbf{u}_1 = (0, 2, 1, 0) \ \mathbf{u}_2 = (1, 1, 0, 0), \ \mathbf{u}_3 = (1, 2, 0, -1) \ \mathbf{u}_5 = (1, 0, 0, 1)$$

- 10. Sea $V = \mathbb{R}_2[x]$ con el producto interno $\langle f, g \rangle = \int_0^1 f(s)g(s)ds$, verificar si algunas de las bases es una base ortonormal con respecto al producto interno definido.
- b) $\{1, 2\sqrt{3}(t \frac{1}{2}, 6\sqrt{5}(t^2 t + \frac{1}{6}))\}$, c) $\{1, t \frac{1}{2}, t^2 t + \frac{1}{6}\}$
- 11. Sea P la proyección ortogonal sobre la recta y=3x o equivalentemente, sobre $\omega=(1,3)$, si ${\bf u}=(2,5)$ y ${\bf v}=(x,10)$; cuál es el valor de x para que $P_{\omega}\mathbf{u} = P_{\omega}\mathbf{v}$.
- 12. Sea $V = \mathbb{R}^4$ y \langle , \rangle su producto interno, sean $v1 = (1, 0, 1, 0), v_2 = (1, 1, 2, 1)$ y $v_3 = (0, 1, 1, 2)$ probar que
- a) El conjunto $A = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ es un conjunto de vectores linealmente independientes. Posteriormente, complete a A para que sea una base de \mathbb{R}^4 .
- b) Use el proceso de Gram-Schmidt para encontrar una base ortonormal \mathcal{B}' a partir de $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$.
- c) Calcular la matriz cambio de base entre la base ortonormal de b) y la base canónica, así como la matriz cambio de base entre la base canónica a la base ortonormal de b).
- 13. Encuentra una base ortonormal para cada uno de los siguientes subespacios $W \subset \mathbb{R}^4$ con el producto interno igual al producto punto.
- a. $W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 + x_3 + x_4 = 0\}$
- b. $W = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = x_2, x_3 = x_4\}$
- 14. Considere a W como el subespacio generado por las columnas de la matriz

$$A = \begin{pmatrix} 1 & -1 & 2 & -3 \\ -1 & 1 & -3 & 2 \\ 2 & -2 & 5 & -5 \end{pmatrix}$$

- a) Encontrar una base para W.
 - b) A partir de esta base, encontrar una base ortonormal de W.

Provecciones ortogonales

Si W es un subespacio, y $\mathcal{B}_0 = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ es una base **ortogonal** de W, si $\mathbf{v}_0 \notin W$, definimos la proyección ortogonal sobre W como

$$P_W \mathbf{v}_0 = \sum_{i=1}^m \frac{\langle \mathbf{v}_0, \mathbf{v}_i \rangle}{\|\mathbf{v}_i\|^2} \mathbf{v}_i$$

- a) Si $V = \mathbb{R}^2$ y $\mathbf{u} = (2,6)$ y $W = \{(x,y) \in \mathbb{R}^2 : y = 4x\}$ (aquí una base es cualquier vector dirección de la recta)
- b) Si $V = \mathbb{R}^3$ y $\mathbf{u} = (2,1,3)$ y $W = \{(x,y) \in \mathbb{R}^3 : x + 3y z = 0\}$ (calcular primero una base de W, aplicar el proceso de Gram-Schmidt y finalmente la proyección sobre esa base)
- c) Sea $V = C([0,1]; \mathbb{R})$ con el producto interno usual $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$, sea $W = \mathcal{S}(t, \sqrt{t})$.
- Encuentre una base ortonormal de W (es decir aplique el proceso de Gram-Schmidt a t, \sqrt{t}),
- Calcule la proyección de $y(t) = e^{-t}$ sobre W.
- d) Sea $V = \mathbb{R}[x]$ con $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$, si $v = 4 + 3x 2x^2$, calcular la proyección sobre $W = \{p(t) \in V : p(t) = \alpha_0 + \alpha_1 t\}$ (considere a la base usual de W, $\mathcal{B} = \{1, t\}$ y aplique Gram-Schmidt para obtener una base ortogonal)

Cambios de base

1.- a) Encuentra la matriz P de transición de la base \mathcal{B} canónica de \mathbb{R}^3 a la base \mathcal{B}' .

$$\mathcal{B}' = \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

- b) Obtener las nuevas coordenadas del vector $\mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$
- 2.- a) Encuentra la matriz P cambio de base base de \mathcal{B} la base canónica de \mathbb{R}^3 a la base \mathcal{B}' dada por

$$\mathcal{B}' = \left\{ \begin{pmatrix} 1\\1\\-2 \end{pmatrix}, \begin{pmatrix} 1\\2\\-1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}$$

- b) Obtener las nuevas coordenadas del vector $\mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$
- 3.- Encontrar la matriz cambio de base en cada uno de los casos

a)
$$\mathcal{B} = \{(1,1,0), (-1,1,1), (0,1,2)\}, \mathcal{B}' = \{(2,1,1), (0,0,1), (-1,1,1)\}.$$

b)
$$\mathcal{B} = \{(3,2,1), (0,-2,5), (1,1,2)\}, \mathcal{B}' = \{(1,1,0), (-1,2,4), (2,-1,1)\}.$$

4.- Determinar la matriz cambio de base de la siguiente base $\mathcal B$

$$\{(1,0,0,1),(0,0,0,1),(1,1,0,0),(0,1,1,0)\}$$

- a la base canónica en \mathbb{R}^4
- 5.- Considere a los vectores

$$\mathbf{v}_1 = (1, 2)$$
 $\mathbf{v}_2 = (1, 3)$

- a) Verificar si $\{\mathbf{v}_1, \mathbf{v}_2\}$ es una base de \mathbf{R}^2 .
 - b) Representar a $\mathbf{v} = (1,1)$ como combinación lineal de la nueva base, \mathcal{B}' , .
 - c) Encontrar la matriz cambio de base P. ¿cómo se relacionan (1,1) y las nuevas coordenadas del vector en la base \mathcal{B}' .
- 6.- Determinar la matriz cambio de base de $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ en \mathbb{R}^3 a la base $\{(1, 1, 0), (0, 1, 1), (2, 1, -2)\}$
- 7.- Determinar la matriz cambio de base de $\{e_i\}_{\{i\leq 3\}}$ a la base $\{(1,2,-1), (2,0,5), (0,-1,2)\}$
- 8.- Si

$$\begin{bmatrix} 1 & -1 & 1 \\ 2 & 2 & 1 \\ 0 & -1 & 2 \end{bmatrix}$$

es la matriz inversa de la matriz de transición de una base \mathcal{B} a otra, \mathcal{B}' encontrar las nuevas coordenadas que corresponden al vector con coordenadas en \mathcal{B} , (1,-1,1), (2,1,1), (-2,1,3).

Rango de una matriz

 $\mathbf 1$ Determinar a las columnas básicas de A

$$A = \begin{pmatrix} 1 & 2 & 1 & 1 & 5 \\ -2 & -4 & 0 & 4 & -2 \\ 1 & 2 & 2 & 4 & 9 \end{pmatrix}$$

Calcular el rango de A.

 $\mathbf 2$ Determinar al rango de A

$$A = \begin{pmatrix} 0 & 2 & 4 & 2 & 2 \\ 4 & 4 & 4 & 8 & 0 \\ 8 & 2 & 0 & 10 & 2 \\ 6 & 3 & 2 & 9 & 1 \end{pmatrix}$$

3 Calcular el rango de las siguientes matrices

$$1)A = \begin{pmatrix} 2 & 5 & -1 & 4 & 3 \\ -3 & 1 & 2 & 0 & 1 \\ 4 & 1 & 6 & -1 & -1 \\ -2 & 3 & 0 & 4 & -9 \end{pmatrix}$$

$$2)B = \begin{pmatrix} -3 & 2 & 0 & 1 & 4 \\ -1 & 5 & 2 & 3 & 5 \\ 6 & -12 & 3 & -7 & -8 \\ -3 & 7 & 9 & 4 & 15 \end{pmatrix}$$