Convolutional Neural Networks in Medical Imaging

Mitchell Finzel

Division of Science and Mathematics University of Minnesota, Morris Morris, Minnesota, USA

15 April 2017, Senior Seminar Conference

- Convolutional neural networks or CNNs, have seen a rise in popularity in image related fields.
- CNNs have been having great success in biological segmentation tasks.
- These tasks include:
 - The automated detection of lymph nodes
 - Segmentation of knee cartilage
 - Detection of Alzheimer's

- Convolutional neural networks or CNNs, have seen a rise in popularity in image related fields.
- CNNs have been having great success in biological segmentation tasks.
- These tasks include:
 - The automated detection of lymph nodes
 - Segmentation of knee cartilage
 - Detection of Alzheimer's

2/22

- Convolutional neural networks or CNNs, have seen a rise in popularity in image related fields.
- CNNs have been having great success in biological segmentation tasks.
- These tasks include:
 - The automated detection of lymph nodes
 - Segmentation of knee cartilage
 - Detection of Alzheimer's

- Convolutional neural networks or CNNs, have seen a rise in popularity in image related fields.
- CNNs have been having great success in biological segmentation tasks.
- These tasks include:
 - The automated detection of lymph nodes
 - Segmentation of knee cartilage
 - Detection of Alzheimer's

- Convolutional neural networks or CNNs, have seen a rise in popularity in image related fields.
- CNNs have been having great success in biological segmentation tasks.
- These tasks include:
 - The automated detection of lymph nodes
 - Segmentation of knee cartilage
 - Detection of Alzheimer's

Introduction Continued

- We will be looking at two approaches to brain MRI segmentation.
- The goal of this work is to provide unsegmented MRIs to the network and receive properly segmented MRIs as output.
- Currently this requires time consuming labor from a skilled medical professional.

Introduction Continued

- We will be looking at two approaches to brain MRI segmentation.
- The goal of this work is to provide unsegmented MRIs to the network and receive properly segmented MRIs as output.
- Currently this requires time consuming labor from a skilled medical professional.

Input Output Example

Outline

- Background Information about basic structural concepts for CNNs
- Methods used by Havaei, et al.
- Methods used by Kamnitsas, et al.
- Results
- Conclusions

5/22

- Segmentation is the process of identifying the boundaries of different structures and classifying them
- Segmentation is loosely defined and can have a wide range of granularities.
 - Rough graularity such as identifying the different bones in a leg xray.
 - Smooth granularity such as determining the differing regions of a tumor.

- Segmentation is the process of identifying the boundaries of different structures and classifying them
- Segmentation is loosely defined and can have a wide range of granularities.
 - Rough graularity such as identifying the different bones in a leg xray.
 - Smooth granularity such as determining the differing regions of a tumor.

- Segmentation is the process of identifying the boundaries of different structures and classifying them
- Segmentation is loosely defined and can have a wide range of granularities.
 - Rough graularity such as identifying the different bones in a leg xray.
 - Smooth granularity such as determining the differing regions of a tumor.

- Segmentation is the process of identifying the boundaries of different structures and classifying them
- Segmentation is loosely defined and can have a wide range of granularities.
 - Rough graularity such as identifying the different bones in a leg xray.
 - Smooth granularity such as determining the differing regions of a tumor.

6/22

Neural Networks

- Neural Networks are a form of machine learning
- Neural Networks can be thought of as pattern recognizers.
- They are loosely based on the neuronal structure of the cerebral cortex, the part of the brain that takes in sensory data.

Neural Networks

- Neural Networks are a form of machine learning
- Neural Networks can be thought of as pattern recognizers.
- They are loosely based on the neuronal structure of the cerebral cortex, the part of the brain that takes in sensory data.

Neural Networks

- Neural Networks are a form of machine learning
- Neural Networks can be thought of as pattern recognizers.
- They are loosely based on the neuronal structure of the cerebral cortex, the part of the brain that takes in sensory data.

Comprised of layers of nodes

- Each node has an activation function that triggers when it recognizes something in the input.
- These activations are then passed to neighboring nodes through weighted connections eventually leading to some type of output.
- The network can 'learn' by altering the weights of its connections based on the accuracy of the output to the goal result.

- Comprised of layers of nodes
- Each node has an activation function that triggers when it recognizes something in the input.
- These activations are then passed to neighboring nodes through weighted connections eventually leading to some type of output.
- The network can 'learn' by altering the weights of its connections based on the accuracy of the output to the goal result.

- Comprised of layers of nodes
- Each node has an activation function that triggers when it recognizes something in the input.
- These activations are then passed to neighboring nodes through weighted connections eventually leading to some type of output.
- The network can 'learn' by altering the weights of its connections based on the accuracy of the output to the goal result.

8/22

- Comprised of layers of nodes
- Each node has an activation function that triggers when it recognizes something in the input.
- These activations are then passed to neighboring nodes through weighted connections eventually leading to some type of output.
- The network can 'learn' by altering the weights of its connections based on the accuracy of the output to the goal result.

Kernels

- Kernels, neurons and filters are interchangeable names
- Kernels are an array based representation of image features

Kernels

- Kernels, neurons and filters are interchangeable names
- Kernels are an array based representation of image features

Kernels

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

https://adeshpande3.github.io/

Visualization of a curve detector filter

- Convolutional Layers are where CNNs get their name
- Every CNN starts with a convolutional layer
- The Kernel slides or "convolves" around the input image
- The results of the convolutions are stored in the feature map

- Convolutional Layers are where CNNs get their name
- Every CNN starts with a convolutional layer
- The Kernel slides or "convolves" around the input image
- The results of the convolutions are stored in the feature map

- Convolutional Layers are where CNNs get their name
- Every CNN starts with a convolutional layer
- The Kernel slides or "convolves" around the input image
- The results of the convolutions are stored in the feature map

- Convolutional Layers are where CNNs get their name
- Every CNN starts with a convolutional layer
- The Kernel slides or "convolves" around the input image
- The results of the convolutions are stored in the feature map

input neurons

Visualization of 5 x 5 filter convolving around an input volume and producing an activation map

Feature Map

https://adeshpande3.github.io/

Fully Connected Layers

- Can be thought of as the final layers in the network
- Their job is to convert the feature maps from previous layers into label probabilities.
- these probabilities come in the form of a vector that adds up to 1.

Fully Connected Layers

- Can be thought of as the final layers in the network
- Their job is to convert the feature maps from previous layers into label probabilities.
- these probabilities come in the form of a vector that adds up to 1.

Fully Connected Layers

- Can be thought of as the final layers in the network
- Their job is to convert the feature maps from previous layers into label probabilities.
- these probabilities come in the form of a vector that adds up to 1.

Training

- Training is the crux that makes everything work
- Training requires data that has already been properly segmented
- Network is initialized with random kernel weights
- Training has four main steps:
 - The forward pass
 - The loss calculation
 - The backward pass
 - Weight update

Training

- Training is the crux that makes everything work
- Training requires data that has already been properly segmented.
- Network is initialized with random kernel weights
- Training has four main steps:
 - The forward pass
 - The loss calculation
 - The backward pass
 - Weight update

Training

- Training is the crux that makes everything work
- Training requires data that has already been properly segmented.
- Network is initialized with random kernel weights
- Training has four main steps:
 - The forward pass
 - The loss calculation
 - The backward pass
 - Weight update

- Training is the crux that makes everything work
- Training requires data that has already been properly segmented.
- Network is initialized with random kernel weights
- Training has four main steps:
 - The forward pass
 - The loss calculation
 - The backward pass
 - Weight update

- Training is the crux that makes everything work
- Training requires data that has already been properly segmented.
- Network is initialized with random kernel weights
- Training has four main steps:
 - The forward pass
 - The loss calculation
 - The backward pass
 - Weight update

- Training is the crux that makes everything work
- Training requires data that has already been properly segmented.
- Network is initialized with random kernel weights
- Training has four main steps:
 - The forward pass
 - The loss calculation
 - The backward pass
 - Weight update

- Training is the crux that makes everything work
- Training requires data that has already been properly segmented.
- Network is initialized with random kernel weights
- Training has four main steps:
 - The forward pass
 - The loss calculation
 - The backward pass
 - Weight update

- Training is the crux that makes everything work
- Training requires data that has already been properly segmented.
- Network is initialized with random kernel weights
- Training has four main steps:
 - The forward pass
 - The loss calculation
 - The backward pass
 - Weight update

- Havaei, et al proposes a two pathway approach to the BRATS 2013 brain tumor segmentation challenge.
- Their approach has three main components
 - Two pathways
 - Two CNNs concatenated together
 - A two phase approach to training

- Havaei, et al proposes a two pathway approach to the BRATS 2013 brain tumor segmentation challenge.
- Their approach has three main components
 - Two pathways
 - Two CNNs concatenated together
 - A two phase approach to training

- Havaei, et al proposes a two pathway approach to the BRATS 2013 brain tumor segmentation challenge.
- Their approach has three main components
 - Two pathways
 - Two CNNs concatenated together
 - A two phase approach to training

- Havaei, et al proposes a two pathway approach to the BRATS 2013 brain tumor segmentation challenge.
- Their approach has three main components
 - Two pathways
 - Two CNNs concatenated together
 - A two phase approach to training

- Havaei, et al proposes a two pathway approach to the BRATS 2013 brain tumor segmentation challenge.
- Their approach has three main components
 - Two pathways
 - Two CNNs concatenated together
 - A two phase approach to training

- Havaei, et al. setup their network with two pathways
 - The local pathway with a smaller 7x7 receptive field'
 - The global pathway with a larger 13x13 receptive field.
- These two pathways allow the combination of finite detail with greater locational context.

- Havaei, et al. setup their network with two pathways
 - The local pathway with a smaller 7x7 receptive field'
 - The global pathway with a larger 13x13 receptive field.
- These two pathways allow the combination of finite detail with greater locational context.

- Havaei, et al. setup their network with two pathways
 - The local pathway with a smaller 7x7 receptive field'
 - The global pathway with a larger 13x13 receptive field.
- These two pathways allow the combination of finite detail with greater locational context.

- The second approach implemented by Havaei, et al. is their use of a 'cascaded architecture'.
- In this approach they take the output one of one CNN and concatenate it into a layer of another.
- The goal is to allow for joint segmentation models where different labels are allowed to correlate with one another.

- The second approach implemented by Havaei, et al. is their use of a 'cascaded architecture'.
- In this approach they take the output one of one CNN and concatenate it into a layer of another.
- The goal is to allow for joint segmentation models where different labels are allowed to correlate with one another.

- The second approach implemented by Havaei, et al. is their use of a 'cascaded architecture'.
- In this approach they take the output one of one CNN and concatenate it into a layer of another.
- The goal is to allow for joint segmentation models where different labels are allowed to correlate with one another.

(c) Cascaded architecture, using pre-output concatenation, which is an architecture with properties similar to that of learning using a limited number of mean-field inference iterations in a CRF (MFCASCADECNN).

- The last approach implemented by Havaei, et al. is a two phase training system.
- This is done to alleviate the relative abundance of healthy tissue versus the small quantity of tumor tissue in each image.
- The two phases consist of:
 - First they train the network on image patches where the probability of each label being present is equal.
 - Then they retrain the final layer with the relative probabilities of each label.
- This allows for better label discrimination while maintaining proper output probabilities.

- The last approach implemented by Havaei, et al. is a two phase training system.
- This is done to alleviate the relative abundance of healthy tissue versus the small quantity of tumor tissue in each image.
- The two phases consist of:
 - First they train the network on image patches where the probability of each label being present is equal.
 - Then they retrain the final layer with the relative probabilities of each label.
- This allows for better label discrimination while maintaining proper output probabilities.

- The last approach implemented by Havaei, et al. is a two phase training system.
- This is done to alleviate the relative abundance of healthy tissue versus the small quantity of tumor tissue in each image.
- The two phases consist of:
 - First they train the network on image patches where the probability of each label being present is equal.
 - Then they retrain the final layer with the relative probabilities of each label.
- This allows for better label discrimination while maintaining proper output probabilities.

- The last approach implemented by Havaei, et al. is a two phase training system.
- This is done to alleviate the relative abundance of healthy tissue versus the small quantity of tumor tissue in each image.
- The two phases consist of:
 - First they train the network on image patches where the probability of each label being present is equal.
 - Then they retrain the final layer with the relative probabilities of each label.
- This allows for better label discrimination while maintaining proper output probabilities.

- Kamnitsas, et al have five different architecture approaches
 - 3D kernels
 - Dense training
 - Two pathways
 - Deeper networks
 - 3D conditional random fields on the output

- Kamnitsas, et al have five different architecture approaches
 - 3D kernels
 - Dense training
 - Two pathways
 - Deeper networks
 - 3D conditional random fields on the output

- Kamnitsas, et al have five different architecture approaches
 - 3D kernels
 - Dense training
 - Two pathways
 - Deeper networks
 - 3D conditional random fields on the output

- Kamnitsas, et al have five different architecture approaches
 - 3D kernels
 - Dense training
 - Two pathways
 - Deeper networks
 - 3D conditional random fields on the output

- Kamnitsas, et al have five different architecture approaches
 - 3D kernels
 - Dense training
 - Two pathways
 - Deeper networks
 - 3D conditional random fields on the output

- Kamnitsas, et al have five different architecture approaches
 - 3D kernels
 - Dense training
 - Two pathways
 - Deeper networks
 - 3D conditional random fields on the output

