Business Problem

Our goal is to create a model that can help predict a species of a penguin based on physical attributes, then we can use that model to help researchers classify penguins in the field, instead of needing an experienced biologist

```
In [1]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
In [2]:
         df = pd.read_csv("penguins_size.csv")
          df.head()
Out[2]:
                         island culmen_length_mm culmen_depth_mm
                                                                     flipper_length_mm
                                                                                        body_mass_g
             species
               Adelie
                      Torgersen
                                              39.1
                                                                18.7
                                                                                  181.0
                                                                                               3750.0
          1
               Adelie
                      Torgersen
                                              39.5
                                                                17.4
                                                                                  186.0
                                                                                               3800.0
          2
                      Torgersen
                                              40.3
                                                                18.0
                                                                                  195.0
                                                                                               3250.0
               Adelie
          3
               Adelie
                      Torgersen
                                              NaN
                                                                NaN
                                                                                   NaN
                                                                                                 NaN
                                                                                  193.0
               Adelie Torgersen
                                              36.7
                                                                19.3
                                                                                               3450.0
```

"Palmer Penguins" dataset Summary:

- species: penguin species (Chinstrap, Adélie, or Gentoo)
 - culmen_length_mm: culmen length (mm)
 - culmen_depth_mm: culmen depth (mm)
 - flipper length mm: flipper length (mm)
 - body mass g: body mass (g)
 - island: island name (Dream, Torgersen, or Biscoe) in the Palmer Archipelago (Antarctica)
 - sex: penguin sex

```
In [3]: | df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 344 entries, 0 to 343
        Data columns (total 7 columns):
                                 Non-Null Count Dtype
             Column
         0
             species
                                 344 non-null
                                                  object
             island
         1
                                                  object
                                 344 non-null
         2
             culmen_length_mm 342 non-null
                                                  float64
         3
             culmen_depth_mm
                                 342 non-null
                                                  float64
         4
             flipper_length_mm 342 non-null
                                                  float64
         5
             body_mass_g
                                 342 non-null
                                                  float64
         6
                                 334 non-null
                                                  object
        dtypes: float64(4), object(3)
        memory usage: 18.9+ KB
In [4]:
        df.isnull().sum()
Out[4]: species
                               0
        island
                               0
                               2
        culmen_length_mm
                               2
        culmen depth mm
                               2
        flipper_length_mm
                               2
        body_mass_g
                              10
        sex
        dtype: int64
```

Data Preprocessing

EDA

Feature Engineering

```
In [5]: #Droping the missing values
df = df.dropna()

In [6]: #shape of data after dropping missing values
df.shape

Out[6]: (334, 7)
```

```
In [7]: df = df[df['sex']!='.']
    df.shape

Out[7]: (333, 7)
```

X & y

```
In [8]: X = pd.get_dummies(df.drop('species',axis=1),drop_first=True)
y = df['species']
```

Train Test Split

```
In [9]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, rando
m_state=101)
```

Modelling

Random Forest Classifier with default parameters

Evaluation

```
In [15]: from sklearn.metrics import accuracy_score
  print("Train accuracy:",accuracy_score(ypred_train,y_train))
  print("Test accuracy:",accuracy_score(ypred_test,y_test))
```

Train accuracy: 1.0 Test accuracy: 0.99

In [16]: # Cross validation
 from sklearn.model_selection import cross_val_score
 scores = cross_val_score(model,X,y,cv=5)
 print(scores)
 scores.mean()

[1. 0.98507463 0.98507463 0.98484848 1.]

Out[16]: 0.9909995477159657

In [17]: from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(model,X_test,y_test) plt.show()

In [18]: from sklearn.metrics import classification_report
 print(classification_report(y_test,ypred_test))

	precision	recall	f1-score	support
Adelie	0.98	1.00	0.99	40
	0.90	1.00		40
Chinstrap	1.00	0.96	0.98	27
Gentoo	1.00	1.00	1.00	33
accuracy			0.99	100
macro avg	0.99	0.99	0.99	100
weighted avg	0.99	0.99	0.99	100

Feature Importance

Very useful attribute of the trained model!

HyperParameter Tuning

```
In [20]: | from sklearn.model_selection import GridSearchCV
In [21]: # model
         estimator = RandomForestClassifier()
         # parameters (which you want to tune and identify the best)
         param grid = {'n estimators':list(range(1,101))}
In [22]: grid = GridSearchCV(estimator,param grid, scoring="accuracy",cv=5)
In [23]: | grid.fit(X train,y train)
Out[23]: GridSearchCV(cv=5, estimator=RandomForestClassifier(),
                      param_grid={'n_estimators': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
         12,
                                                    13, 14, 15, 16, 17, 18, 19, 20, 21,
                                                    22, 23, 24, 25, 26, 27, 28, 29, 30,
         ...]},
                      scoring='accuracy')
In [24]: | grid.best_params_
Out[24]: {'n_estimators': 14}
```

Final Model with best parameters

```
In [25]: # Modelling
    final_model = RandomForestClassifier(n_estimators=14)
    final_model.fit(X_train,y_train)

Out[25]: RandomForestClassifier(n_estimators=8)

In [26]: # prediction
    predictions = final_model.predict(X_test)
```

```
In [27]: accuracy_score(predictions,y_test)
```

Out[27]: 0.99

In [28]: plot_confusion_matrix(final_model,X_test,y_test)
 plt.show()

