Recettori adrenergici Trasduzione del segnale

1 Introduzione

Gli effetti di **adrenalina** e **noradrenalina** sono mediati da una specifica classe di recettori di membrana.

Si tratta di GPCR le cui proteine G accoppiate hanno come effettori **adenilato ciclasi** o **fosfolipasi C**.

2 Classificazione

Le famiglie note sono:

- α_1 , con le sottofamiglie A, B e C
- $\bullet~\alpha_2,$ con le sottofamiglie A, B e C
- β₁
- \bullet β_2
- \bullet β_3

αsono maggiormente affini a **noradrenalina**, βad **adrenalina**.

3 Struttura

Sono costituiti da una singola catena polipeptidica di 400-500 residui, con tre loop intracellulari, tre extracellulari e 7TMS idrofobici.

Le regioni N- e C-ter variano per lunghezza e sequenza, conferendo specificità di ligando ed effettore.

I sette segmenti idrofobici formano inoltre una tasca che partecipa al legame con il ligando

L'estremità N-ter contiene siti di glicosilazione, quella C-ter è fosforilabile da parte di PKA o altre chinasi.

3.1 N-glicosilazione

Interessa residui caratterizzati dalla sequenza consenso Asn-X-Ser presenti ad N-ter di tutti gli AR.

La mancata aggiunta del polisaccaride non parrebbe alterare il legame del ligando o la capacità trasduttiva, ma riduce la densità di espressione in membrana di alcune classi.

3.2 Palmitoilazione

Gli AR sono palmitoilati presso un residuo di **cisteina** posto immediatamente dopo il settimo dominio TMS.

Tale modificazione promuove l'interazione del complesso del recettore attivato con l'adenilato ciclasi, e la sua mancanza è associata a una maggiore fosforilazione.

3.3 Formazione di ponti disolfuro

Almeno un legame disolfuro è essenziale all'interazione con il ligando, che è infatti compromessa dalla sua riduzione.

4 Legame del ligando e trasduzione

Il ligando interagisce prevalentemente con i 7 TMS e solo in minima parte con le porzioni N-ter e C-ter.

Le regioni prossime al ligando possiedono residui coinvolti nell'associazione con esso e nell'interazione con la proteina G.

4.1 Interazione con il ligando

Fra i primi troviamo $\mathbf{Asp^{113}}$ nel terzo TMS, il cui carbossilato attrae il gruppo amminico della catecolammina.

Nell'interazione con essa sono coinvolti anche Ser^{204} e Ser^{207} , le cui posizioni sono conservate fra tutti gli AR.

4.2 Trasduzione

La trasduzione coinvolge $\mathbf{Asp^{79}}$, $\mathbf{Tyr^{316}}$ $\mathbf{Asn^{312}}$. L'attivazione della $\mathbf{G_s}$ è probabilmente mediata dalla formazione di un legame H fra Tyr e Asn.

La proteina G accoppiata è trimerica e agisce in modalità analoga a quella associata agli altri GPCR. Molti AR interagiscono con G_s ; alcuni, come α_1 attivano invece G_q e quindi una PLC, con produzione di IP3; altri infine, come gli α_2 , attivano G_i bloccando AC.

5 Regolazione

La fosforilazione dei recettori attivati, in presenza di eccesso di agonista, porta ad una desensibilizzazione della via ed è mediata dalle β -ARK agenti su residui di serina e treonina posti sul C-ter di AR.

In alternativa AR può essere fosforilato da **RTK** presso un apposito sito C-terminale, portando a marcata desensibilizzazione del recettore.

6 Effetti fisiologici

La distribuzione delle varie classi di AR è diversa fra gli organi, ed è quindi diversa la risposta alle catecolammine.

L'esposizione prolungata a queste ultime porta a refrattarietà alle stesse per desensibilizzazione fosforilativa.

La risposta prepara a reazioni di **attacco-fuga**, aumentando vigilanza, vascolarizzazione, ossigenazione e glicemia.

6.1 Sistemici

Le catecolammine agiscono sul cuore aumentando la frequenza cardiaca, la velocità di conduzione e l'eccitabilità, conseguenti in aumento della gittata.

NA causa inoltre vasocostrizione generalizzata aumentando la pressione arteriosa e inducendo bradicardia; l'adrenalina provoca invece vasocostrizione periferica e vasodilatazione muscolare, coronarica ed epatica, senza alterare la pressione.

Determinano inoltre broncodilatazione, rilassamento GI con contrazione degli sfinteri e midriasi.

L'effetto complessivo è di tipo **antifatica** e potenzia la contrazione muscolare.

6.2 Metabolici

Le catecolammine hanno azione **iperglicemizzante**, attivando lipolisi, glicocenolisi e gluconeogenesi in fegato e muscolo e inibendo la captazione periferica del glucosio. Aumentano inoltre il metabolismo basale con effetto calorigeno.