

PROPOSTA DE TESTE N.º 4

MATEMÁTICA A - 11.º ANO - MARÇO DE 2015

"Conhece a Matemática e dominarás o Mundo." Galileu Galilei

GRUPO I – ITENS DE ESCOLHA MÚLTIPLA

1. Considere a função g, de domínio $\left[-\frac{2\pi}{3}, \frac{\pi}{6}\right]$, definida por $g(x) = \sin x$?

Seja h, a função definida por h(x) = k - (k+1)g(2x), $k \in \mathbb{R}^+$, cujo contradomínio é]1,7]. Qual é o valor de k?

A 2

D 5

2. Na figura estão representados os vectores \vec{u} e \vec{v} , tal que $\|\vec{u}\| = 6$ e $\|\vec{v}\| = 5$

Sabe-se que:

• α é a amplitude do ângulo obtuso AOB.

Qual é o valor de $\vec{u} \cdot (2\vec{v} - \vec{u})$?

B 0

C 12

D 14

3. Considere, num referencial o.n. xOy, os planos $\alpha \in \beta$, perpendiculares, definidos respectivamente por:

$$\alpha : ax + (a+1)y + (a+1)z = 2$$

e
$$\beta: (b+1)x - (2b+1)y + (b+1)z = 0$$
, $a,b \in \mathbb{R}$

Qual das seguintes afirmações é necessariamente verdadeira?

f A O ponto de coordenadas (a,b) pertence à bissectriz dos quadrantes ímpares.

B
$$a = 1$$
 e $b = -1$

 $oxed{C}$ O ponto de coordenadas (a,b) pertence à bissectriz dos quadrantes pares.

D
$$a = b = 1$$

4. Na figura está representado em referencial o.n. xOy parte do gráfico da função g, de domínio, $\mathbb{R}\setminus\{-1\}$, definida por uma expressão do tipo $g\left(x\right)=a+\frac{c}{x-b}$, com $a,b,c\in\mathbb{R}$ e as rectas r e s, assimptotas do gráfico de g.

Qual das afirmações é verdadeira?

A
$$a > 0$$
, $b = 1$ e $c < 0$

B
$$a > 0$$
, $b = -1$ e $c > 0$

$$a < 0, b = -1 e c < 0$$

$$D \quad a > 0, b = -1 e c < 0$$

5. Seja
$$h$$
 a função definida por $h(x) = \frac{x^3 - x}{ax^4 + bx^3 + ax + b}$, com $a, b \in \mathbb{R} \setminus \{0\}$.

No máximo, quantos zeros tem a função h?

- A zero
- B um

- **C** dois
- **D** três

GRUPO II – ITENS DE RESPOSTA ABERTA

- **1.** Considere a função f , de domínio \mathbb{R} , definida por $f(x) = 4 \sin x + 4 \sin x \cos x$.
 - **1.1.** Determine as soluções da equação $f(x) = 2 \operatorname{sen} x$ pertencentes ao intervalo $\left[-\pi, \frac{3\pi}{2} \right]$.
 - **1.2.** Na figura estão representado dois trapézios isósceles [ADEF] e [BCEF].

Sabe-se que:

- os triângulos $\lceil ABF \rceil$ e $\lceil ABF \rceil$ são isósceles
- $\overline{AF} = \overline{EF} = \overline{DE} = 2$

Seja α a amplitude em radianos do ângulo GAB, $\alpha \in \left[\frac{\pi}{2}, \frac{2\pi}{3}\right]$.

- a) Mostre que a área do trapézio [BCEF] é dada em função de α por $f(\alpha)$.
- b) Determine $f\left(\frac{\pi}{2}\right)$ e $f\left(\frac{2\pi}{3}\right)$ e interprete geometricamente o resultado obtido no contexto do problema.
- c) Para um certo valor de α tem-se $\operatorname{tg}(-\alpha \pi) = 2$. Para esse valor de α determine o valor exacto da área do trapézio ADEF.
- 2. Na figura está representada em referencial o.n. Oxyz a pirâmide triangular $\begin{bmatrix} ABCD \end{bmatrix}$

Sabe-se que:

- a face [ABC] está contida no plano xOy
- os pontos A e C pertencem ao eixo Ox
- uma equação do plano ABD é 3x + y + z = 9
- uma equação do plano BCD é x-3y-z=-7
- o ponto de coordenadas (-1,-2,-10) pertence ao plano ACD

- **2.1.** Escreva as equações cartesianas da recta *BD*.
- **2.2.** Mostre que uma condição que define o plano $ACD \notin 5y z = 0$.
- **2.3.** Determine o volume da pirâmide [ABCD].

Sugestão: Comece por calcular o valor de $\overrightarrow{AB} \cdot \overrightarrow{BC}$.

3. Na figura está representado em referencial o.n. xOy parte do gráfico da função f, de domínio $\mathbb{R}\setminus\{d\}$, definida por uma expressão do tipo $f(x)=ax+b+\frac{c}{x+d}$, com $a,b,c,d\in\mathbb{R}$. Considere ainda a função g, de domínio \mathbb{R} , definida por $g(x)=x^2-x$.

Sabe-se que:

• a recta r é assimptota oblíqua do gráfico de f e a recta s, de equação x=2, é assimptota vertical do gráfico de f

• o gráfico de f intersecta o eixo Ox nos pontos de coordenadas $\left(-\frac{1}{2},0\right)$ e $\left(3,0\right)$

b) Determine o valor de $(f-g)(-4)-(f\times g)(5)$.

a) Mostre que
$$f(x) = \frac{2x^2 - 5x - 3}{x - 2}$$
.

- **4.** Considere as funções $h \in g$, definidas respectivamente por $h(x) = \frac{x^3 + 1}{x^2 x 2} \in g(x) = 4 \frac{3}{x 2}$.
 - **4.1.** Estude a função h quanto à existência de assimptotas do seu gráfico e, caso seja possível, apresente uma simplificação da sua expressão analítica.
 - **4.2.** Indique a assimptotas do gráfico da função f, definida por f(x) = 2 2g(x+1).
 - **4.3.** Caracterize a função h+g . Apresente a expressão analítica de h+g na forma de um polinómio de grau 1.
 - **4.4.** Na figura está representado em referencial o.n. xOy parte do gráfico da função g e o triângulo $\begin{bmatrix} ABC \end{bmatrix}$.

Sabe-se que:

- ullet o ponto C pertence ao gráfico de g
- ullet o ponto B tem a mesma abcissa que o ponto C

Determine as coordenadas de C de modo que a área do triângulo $\begin{bmatrix} ABC \end{bmatrix}$ seja igual a 9.

Sugestão: comece que mostrar que a área do triângulo [ABC] é dada em função de a por $\frac{4a^2 - 7a - 11}{2a - 4}$

SOLUCIONÁRIO

GRUPO I - ITENS DE ESCOLHA MÚLTIPLA

- 1. I
- 2.
- 3. A
- **л** г
- . (

GRUPO II - ITENS DE RESPOSTA ABERTA

1.1.
$$\left\{-\frac{2\pi}{3}, 0, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}\right\}$$

1.2. $f\left(\frac{\pi}{2}\right) = 2$; Quando $\alpha = \frac{\pi}{2}$ o trapézio $\left[BCEF\right]$ transforma-se num quadrado de lado 2 cuja área é 4.

 $f\left(\frac{2\pi}{3}\right) = \sqrt{3}$; Quando $\alpha = \frac{\pi}{2}$ os pontos B e C coincidem pelo que o trapézio $\left[BCEF\right]$ transforma-se num triângulo equilátero de lado 2 cuja área é $\sqrt{3}$.

- 1.3. c) $\frac{8\sqrt{5}+8}{5}$
- **2.1.** Por exemplo: $x = \frac{y+1}{2} = \frac{10-z}{5}$

2.3. 25

3.1. $\left[-\frac{1}{2}, 0 \right] \cup \left[1, 2 \right[\cup \right] 3, +\infty \left[-\frac{1}{2}, 0 \right] = 0$

- 3.2. d = -2
- **3.3**. **b)** –238

- 3.3. c) $]-\infty,1[\,\cup\,]2,4[$
- **4.1.** $D_h = \mathbb{R} \setminus \{-1, 2\}$; $h(x) = \frac{x^2 x + 1}{x 2}$; A.V.: x = 2; A.O.: y = x + 1, quando $x \to \pm \infty$.
- **4.2.** A.V.: x = 1; A.H.: y = -6, quando $x \rightarrow \pm \infty$.
- **4.3.** $D_{h+g} = \mathbb{R} \setminus \{-1,2\}$; (h+g)(x) = x+5
- **4.4.** a=5; Para a=5 as coordenadas do ponto C são (5,g(5))=(5,3).