

Kiwii Project

Kahori Kita Yoshiyuki Sato John Rocamora Frank Schumann Scott Yang

Motivation

Which joints are more important for balancing?

 Is vision or proprioception more important for balancing?

Setup

Raw KINECT data

Calibration

Spectrogram of Center of Pressure (Wii)

MPF of CoM(Wii) - eyes open/eyes closed

But the classification across postures is not trivial.

Classify Eye's Open / Closed

Kalman filter & LQR

 $ml^2\ddot{\theta} \simeq mgl \theta + u$

$$X_{t} = \begin{bmatrix} 1 & \Delta t \\ \frac{g}{l} \Delta t & 1 \end{bmatrix} X_{t-1} + \begin{bmatrix} 0 \\ \frac{\Delta t}{ml^{2}} \end{bmatrix} u_{t-1} + w_{t} \qquad w_{t} \sim N(0, \begin{bmatrix} 0 & 0 \\ 0 & \sigma_{motor}^{2} \end{bmatrix})$$

$$Y_t = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} X_t + v_t$$

state

$$X = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}$$

observation of θ $Y = \begin{vmatrix} y_{vis} \\ y_{vro} \end{vmatrix}$

$$Y = \begin{bmatrix} y_{vis} \\ y_{pro} \end{bmatrix}$$

$$\begin{array}{c|cccc}
u_{t-1} & u_t & u_{t+1} \\
\hline
X_{t-1} & X_t & X_{t+1} \\
\hline
Y_{t-1} & Y_t & Y_{t+1}
\end{array}$$

$$w_t \sim N(0, \begin{bmatrix} 0 & 0 \\ 0 & \sigma_{motor}^2 \end{bmatrix})$$

$$v_t \sim N(0, \begin{bmatrix} \sigma_{vis}^2 & 0 \\ 0 & \sigma_{pro}^2 \end{bmatrix})$$

Conclusion

Which joints are more important for balancing?

 Is vision or proprioception more important for balancing?

Thank

You!