Задачи к семинару «Связанные состояния. Мелкая яма»

Упражнения (15 баллов)

Упражнение 1. Измерение (5 баллов)

Состояние трёхмерной частицы описывается нормированной волновой функцией $\psi(x,y,z)$. Какова вероятность того, что частица находится в интервале $z_1 < z < z_2$, а её импульс — в интервале $p_1 < p_y < p_2$?

Упражнение 2. Прямоугольная яма (10 баллов)

В стандартном курсе квантовой механики вы наверняка сталкивались с задачей о частице в прямоугольной яме:

$$U(x) = \begin{cases} -U_0, & -\frac{a}{2} \le x \le \frac{a}{2} \\ 0, & \text{otherwise} \end{cases}$$
 (1)

Продемонстрируйте, что в случае, когда эта яма — мелкая, точное решение совпадает с приближённой формулой для мелкой ямы.

Задачи (85 баллов)

Задача 1. Каноническое квантование (10 баллов)

Один из способов построения квантовой механики заключается в постулировании коммутационных соотношений, связанных с классической скобкой Пуассона: $[\hat{A},\hat{B}]\mapsto i\hbar\{A,B\}$; для канонически сопряжённых операторов координаты и импульса это даёт $[\hat{x},\hat{p}]=i\hbar$.

Пусть известно, что у оператора \hat{x} имеется непрерывный спектр собственных значений \mathbb{R} , а также известны коммутационные соотношения $[\hat{x},\hat{p}]=i\hbar$. Продемонстрируйте, что только этих знаний достаточно, чтобы вывести явный вид оператора импульса в координатном представлении $\hat{p}=-i\hbar\frac{\partial}{\partial x}$.

 \mathcal{A} ополнительно: покажите, что не существует конечномерных представлений этой алгебры: операторы \hat{x} и \hat{p} , определённые таким образом, не могут действовать в гильбертовом пространстве конечной размерности.

Указания:

- 1. Вычислите по индукции $[\hat{x}, \hat{p}^n]$.
- 2. Оператор трансляции определим стандартным образом как $\hat{T}_a = e^{i\hat{p}a/\hbar}$. Используя предыдущий пункт, вычислите коммутатор $[\hat{x},\hat{T}_a]$.
- 3. Пусть $|x\rangle$ базис собственных состояний оператора \hat{x} , так что $\hat{x}\,|x\rangle=x\,|x\rangle$. Покажите, что построенный оператор \hat{T}_a действительно является оператором трансляции: $\hat{T}_a\,|x\rangle=|x-a\rangle$.
- 4. Используя матричный элемент $\langle x|\hat{T}_a|\psi\rangle$ для инфинитезимальной трансляции $a\to 0$, найдите матричный элемент $\langle x|\hat{p}|\psi\rangle\equiv\hat{p}\psi(x)$.

Задача 2. Преобразование Галлилея (10 баллов)

Пусть частица находится в потенциале, который движется со скоростью v:

$$\hat{H}(t) = \frac{\hat{p}^2}{2m} + V(\hat{x} - vt) \tag{2}$$

Придумайте унитарное преобразование $\hat{U}(t)$ («преобразование Галлилея»), которое приведёт Гамильтониан к аналогичному, но независящему от времени виду:

$$\hat{H}'(t) \equiv \hat{U}(t)\hat{H}(t)\hat{U}^{\dagger}(t) = \frac{\hat{p}^2}{2m} + V(\hat{x})$$
(3)

Запишите явно его действие на произвольную волновую функцию $\langle x|\hat{U}(t)|\psi(t)\rangle$.

Задача 3. Туннельное расщепление (10 баллов)

Рассмотрите две мелкие ямы, моделируемые следующим потенциалом:

$$U(x) = -\frac{\hbar^2 \kappa}{m} (\delta(x + L/2) + \delta(x - L/2)) \tag{4}$$

Такая задача включена в стандартный курс квантовой механики; предлагается провести её исследование.

- 1. Нарисуйте (схематично, но со всеми ключевыми особенностями) зависимость уровней энергии связанных состояний от расстояния между ямами L.
- 2. Пусть расстояние между ямами много больше характерного масштаба волновых функций для каждой из отдельных ям (туннельный режим), $L \gg \kappa^{-1}$. Определите расщепление между связанными состояниями.
- 3. Эта задача может быть рассмотрена как модель ковалентной связи. Считая теперь L классической динамической переменной, определите силу (в туннельном режиме) и характер взаимодействия между ямами, если частица находится в основном состоянии.

Задача 3.1. Модель сильной связи (15 баллов)

В туннельном режиме, данная задача может также служить иллюстрацией для модели сильной связи, которая описывает пару нижних уровней энергии. Все вычисления в этой задаче необходимо проводить в ведущем приближении по параметру $L \gg \kappa^{-1}$.

- 1. Спроецируйте гамильтониан на линейное подпространство, натянутое на собственные функции каждой из ям по отдельности: $\{\psi_0(x+\frac{L}{2}),\psi_0(x-\frac{L}{2})\}$. Выпишите соответствующую ему матрицу 2×2 в этом базисе
- 2. Обратите внимание, что базисные вектора не являются ортогональными. Вычислите матрицу Грама для этого базиса (матрица скалярных произведений $G_{ij} = \langle \psi_i | \psi_j \rangle$.
- 3. Характеристическое уравнение, определяющее собственные числа для неортонормированного базиса, имеет вид $\det(\hat{H} E \cdot \hat{G}) = 0$. Найдите собственные уровни энергии в заданном приближении.

Уже исходя из ответа, выясните, какие величины (на самом деле) не было необходимости считать.

Задача 4*. Глубокая мелкая яма (40 баллов)

Найдите энергию основного состояния в яме, описываемой потенциалом $U(x) = -U_0 \frac{a}{a+|x|}$, считая яму мелкой $U_0 \ll \hbar^2/ma^2$.

Для любознательных: заметьте, что если зафиксировать $U_0a=\alpha=$ const и устремить $a\to 0$, то яма будет становиться всё «мельче» и «мельче», а потенциал примет стандартный Кулоновский вид $U(x)=-\alpha/|x|$. Более того, для сферически симметричных потенциалов и волновых функций, решение трёхмерного УШ сводится к решению аналогичного одномерного. А у трёхмерного Кулона основное состояние, казалось бы, известно — старый добрый Ридберг, $E_0=-m\alpha^2/2\hbar^2=-13.6 {\rm eV}$. Казалось бы, задача решена.

Беда только в том, что сведение трёхмерного УШ к одномерному производится путём подстановки $\psi_{3\mathrm{D}}(r)=\psi_{1\mathrm{D}}(r)/r$, и *основное* состояние трёхмерного Кулона, $\psi_{3\mathrm{D}}(r)=e^{-r/a}$, соответствует одномерной волновой функции $\psi_{1\mathrm{D}}(r)=re^{-r/a}$. У этой волновой функции имеется ровно один узел, $\psi_{1\mathrm{D}}(r=0)=0$, поэтому по осцилляторной теореме она описывает первое возбуждённое состояние одномерного Кулона! А как же тогда устроено основное?

Оказывается, в одномерии буквально Кулоновский потенциал $U(x) = -\alpha/|x|$ соответствует «падению на центр» и нарушает унитарность — а его основное состояние имеет энергию $E_0 = -\infty$. И для того, чтобы это увидеть, предлагается ввести «обрезку» потенциала на самых маленьких расстояниях, $U(x) = -\begin{cases} \alpha/|x|, & x \gg a \\ \text{const}, & x \lesssim a \end{cases}$, и исследовать поведение энергии основного состояния при $a \to 0$. Что и приводит нас к этой задаче.