Title: PWARI-G Halo Formation and Comparison to Observed Galaxy Rotation Curves

Objective: To test whether the PWARI-G framework, under different initial soliton conditions, can reproduce dark matter halo profiles observed in galaxies, specifically matching or diverging from Burkert and NFW expectations.

Approach:

1. **Core Hypothesis:** In PWARI-G, dark matter is modeled as stationary solitons, while visible matter consists of moving solitons that emit twist fields. Halo profiles emerge dynamically from wave interactions rather than imposed potentials.

2. Galaxy Matching Strategy:

- Use SPARC rotation curve data (e.g., 2MASSJ00385299-5529210) to inform the seeding distribution.
- Perform decomposition using photometric f.prof files to isolate residual dark matter
- Fit Burkert and NFW profiles to both observational data and simulated halos.

3. Simulation Parameters:

o Grid: 1024x1024

Spatial resolution: 0.109 kpc/grid unit

• Time evolution: 10,000 steps

Soliton count: 120,000Moving ratio: 10%

Snap threshold: 1.5 (moving), 2.0 (stationary)

Experiments Conducted:

A. Reproduction of 2MASSJ00385299-5529210

- Used Burkert-inspired radial distribution for stationary solitons.
- Simulation yielded a rotation curve that matched the observed galaxy extremely well by step 9500.
- Final radial density profile also matched Burkert with low RMSE.

B. NFW Seeding Experiment

- Modified initial conditions to follow an NFW density falloff.
- Final profile did not match NFW or Burkert exactly.
- Showed intermediate behavior: regulated core with a steep outer drop.
- NFW and Burkert both yielded higher RMSE than the curve itself.

Comparison Results:

Configuration	Best Fit Profile	RMSE (Burkert)	RMSE (NFW)
Real Galaxy Seeding	Burkert	Low (~0.03)	High
NFW Seeding	Neither	Medium	Medium-High

Conclusions:

- 1. **PWARI-G can reproduce real galaxy halos:** When seeded with light-distribution-matching soliton conditions, the final halo profile agrees with SPARC observations and is well-fit by a Burkert profile.
- 2. **Halo shapes are emergent, not forced:** Changing the initial condition to an NFW distribution does not guarantee an NFW outcome. The field self-organizes, and soliton interactions regulate central steepening.
- Implication for dark matter theory: PWARI-G does not require exotic particles. It
 naturally produces cored or intermediate halos depending on wave-based field
 dynamics.
- 4. Next directions:
 - Explore further galaxies with known poor Burkert fits.
 - o Quantify halo diversity across a broader soliton configuration space.
 - Test longer simulations for stability and late-time behavior.

Supporting Tools and Outputs:

- Rotation curve decompositions from SPARC profiles (rc.prof, f.prof).
- Automated RMSE calculator for Burkert vs. NFW.
- Standalone profile extractor and halo overlay tools.