Introduction to Databases

What is a Database?

A **Database** is an organized collection of **structured information** or **data**, typically stored electronically in a computer system. It enables efficient data storage, retrieval, and management.

Example: Think of a **library** where books are organized by topic, author, and title. Similarly, a database organizes data for easy access and management.

Why Do We Need Databases?

- Store, manage, and retrieve large volumes of data efficiently
- Prevent data duplication and maintain data integrity
- V Support multi-user access to the same data simultaneously
- Enable secure, structured, and consistent data operations

What is SQL?

SQL (Structured Query Language) is the standard language used to **interact with relational** databases.

Common SQL Operations (CRUD):

Operation	SQL Command	Description
Create	INSERT	Add new records
Read	SELECT	Retrieve data

Update UPDATE Modify existing data

Delete DELETE Remove records

CRUD = Create, Read, Update, Delete — the four basic operations for managing database records.

Databases vs Excel

Feature	Excel	Database
Data Storage	Single file	Multiple related tables
Structure	Rows & columns	Tables with schemas
Data Types	Not strictly enforced	Strong data type enforcement
Relationships	Manual	Defined using keys
Query Capability	Basic formulas	Powerful SQL queries
Multi-user Access	Limited	Fully supported
Scalability	Limited	Highly scalable

Think of a database as a more powerful and structured version of Excel for handling data.

Relational vs Non-relational Databases

Feature	Relational (SQL)	Non-relational (NoSQL)
Structure	Tables (Rows & Columns)	Documents, Key-Value, Graphs
Query Language	SQL	Varies (Mongo Query, etc.)
Schema	Fixed	Flexible

Examples MySQL, PostgreSQL, Oracle MongoDB, Firebase,

Cassandra

Best for Structured data & complex Unstructured data & scalability

queries

✓ Use Relational Databases for structured and interrelated data.

✓ Use Non-relational Databases when flexibility and scalability are key.

What is DBMS?

A **Database Management System (DBMS)** is software that manages the interaction between the **user**, **application**, and the **database**.

Functions of DBMS:

Data storage and retrieval

Pata security and access control

Hackup and recovery

• Representation Query processing and optimization

Examples: MySQL, PostgreSQL, Oracle, SQLite, MS SQL Server

What is MySQL?

MySQL is an open-source Relational Database Management System (RDBMS) that uses SQL.

Key Features:

- d High performance and reliability

Powers popular platforms (WordPress, early Facebook, YouTube)

Real-World Use Cases of Databases

- **E-commerce**: Managing product listings, orders, and customer info
- **Banking**: Securing and processing financial transactions
- Social Networks: Storing user profiles, messages, and posts
- ## Healthcare: Managing patient records and appointments
- In Analytics: Handling large datasets for reporting and insights

Summary

- **SQL** is the language used to communicate with relational databases.
- NySQL is a powerful and widely-used open-source RDBMS.
- End Knowing how to work with databases is a must-have skill for developers and data analysts.