Centro Federal de Educação Tecnológica - CEFET-RJ Terceira Aula de Cálculo Numérico

Método de Eliminação de Gauss

Professor da Disciplina

Wagner Pimentel

Métodos de Resolução para Sistemas Lineares

Existem duas classes de métodos para resolução de sistemas lineares: a classe dos métodos diretos e a classe dos métodos iterativos. Os métodos diretos produzem, a menos de arredondamento, a solução exata do sistema linear. Já os métodos iterativos produzem uma solução aproximada do sistema linear.

Sistema Linear

Um sistema linear consiste de um conjunto de m equações composto por n incognitas e representado da seguinte forma:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m, \end{cases}$$

onde $a_{ij} \in R$ são os coeficientes da i-ésima linha associados à j-ésima coluna da matriz de coeficientes do sistema linear, e ainda, a componente x_j pertence ao vetor solução do sistema linear, $x = (x_1, x_2, \dots, x_n)^t$, e o termo independente b_i corresponde à i-ésima componente do vetor coluna, $b = (b_1, b_2, \dots, b_m)^t$.

Podemos reescrever o sistema linear na forma matricial, Ax = b, ou ainda $\sum_{j=1}^{n} a_{ij}x_j = b_i, i = 1, 2, \dots, m$, onde:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
 é a matriz de coeficientes do sistema;

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
é o vetor solução do sistema e;

$$b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$
 é o vetor de termo independente.

E mais, a matriz aumentada do sistema, [A|b] é representada por:

$$[A|b] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & | & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & | & b_2 \\ \vdots & \vdots & \ddots & \vdots & | & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & | & b_m \end{bmatrix}$$

Sabemos que um sistema linear só admite solução única se a matriz de coeficientes for inversível ou se o seu determinante for diferente de zero, det $A \neq 0$. Neste caso devemos considerar apenas sistemas lineares com matriz de coeficientes quadrada.

Do ponto de vista computacional, não se aplica o processo de cálculo da inversa da matriz de coeficientes, A^{-1} , na solução de sistemas lineares, pois é muito custoso. Neste caso opta-se por aplicar métodos diretos ou métodos iterativos na solução de sistemas lineares. Nesta aula trataremos da aplicação do método de eliminação de Gauss como proposta na solução de sistemas lineares.

Método de Eliminação de Gauss

O Método de Eliminação de Gauss consiste em transformar um sistema linear Ax = b em um sistema triangular equivalente, Ux = g, através da aplicação de escalonamento matricial, utilizando-se operações elementares da álgebra linear. Ao final da transformação, aplica-se o processo de retro-substituição de variáveis para encontrar a solução do sistema.

Seja Ax = b um sistema linear. O Método de Eliminação de Gauss para resolução do sistema consiste da realização das seguintes etapas:

- \bullet Etapa 1: Obtenção da matriz aumentada [A|b] do sistema.
- Etapa 2: Transformação da matriz aumentada [A|b] à uma matriz aumentada [U|g], onde U é uma matriz tringular superior.
- Etapa 3: Resolva o sistema linear [U|g] por retro-substituição.

Considere o sistema linear de ordem n dado por:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n, \end{cases}$$

A matriz aumentada do sistema é

$$[A|b]^{(1)} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & | & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & | & b_2 \\ \vdots & \vdots & \ddots & \vdots & | & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} & | & b_n \end{bmatrix}.$$

Considere a matriz aumentada do sistema equivalente, ao final do processo de escalonamento matricial.

$$[A|b]^{(n-1)} = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} & | & g_1 \\ 0 & u_{22} & \dots & u_{2n} & | & g_2 \\ \vdots & \vdots & \ddots & \vdots & | & \vdots \\ 0 & 0 & \dots & u_{nn} & | & g_n \end{bmatrix}$$

Assim, o sistema linear equivalente, triangular superior de ordem n, é dado por:

$$\begin{cases} u_{11}x_1 + u_{12}x_2 + \dots + u_{1n}x_n = g_1 \\ u_{22}x_2 + \dots + u_{2n}x_n = g_2 \\ \vdots & \ddots & \vdots & \vdots \\ u_{nn}x_n = g_n, \end{cases}$$

Determine as componentes da solução do sistema linear através do processo de retro-substituição, suspondo que $u_{ii} \neq 0, i = 1, 2, ..., n$.

- seja $x_n = \frac{g_n}{u_{nn}}$; e
- para i = n 1 até 1 faça

$$x_i = \frac{g_i - \sum_{j=i+1}^n u_{ij} x_j}{u_{ii}};$$

O que garante a equivalência dos sistemas, Ax = b e Ux = g, é que no processo de escalonamento matricial, utilizamos apenas operações elementares da algebra linear.

Exemplo 1:

Resolva o sistema linear pelo Método de Eliminação de Gauss:

$$\begin{cases} x_1 - x_2 + 2x_3 = 2 \\ 2x_1 + x_2 - x_3 = 1 \\ -2x_1 - 5x_2 + 3x_3 = 3 \end{cases}$$

Etapa 1:

A matriz aumentada do sistema é

$$[A|b]^{(0)} = \begin{bmatrix} 1 & -1 & 2 & | & 2 \\ 2 & 1 & -1 & | & 1 \\ -2 & -5 & 3 & | & 3 \end{bmatrix}.$$

Etapa 2:

Fase 1: Zerar todos os elementos da primeira coluna abaixo da diagonal principal.

Linha pivô =
$$L_1$$
 e $a_{11}=1$ é pivô.
Multiplicadores: $m_{21}=\frac{a_{21}}{a_{11}}=\frac{2}{1}=2$ e $m_{31}=\frac{a_{31}}{a_{11}}=\frac{-2}{1}=-2$

$$\begin{array}{l} \text{Faça: } L_2^{(1)} \leftarrow L_2^{(0)} - m_{21} L_1^{(0)} \\ \text{Faça: } L_3^{(1)} \leftarrow L_3^{(0)} - m_{31} L_1^{(0)} \end{array}$$

Assim,

$$[A|b]^{(1)} = \begin{bmatrix} 1 & -1 & 2 & | & 2 \\ 0 & 3 & -5 & | & -3 \\ 0 & -7 & 7 & | & 7 \end{bmatrix} \quad L_2^{(1)} \leftarrow L_2^{(0)} - 2L_1^{(0)} .$$

Fase 2: Zerar todos os elementos da segunda coluna abaixo da diagonal principal.

Linha pivô =
$$L_2^{(1)}$$
 e pivô = $a_{22}^{(1)}$ = 3.
Multiplicador: $m_{32} = \frac{a_{32}^{(1)}}{a_{22}^{(1)}} = \frac{-7}{3}$

Faça:
$$L_3^{(2)} \leftarrow L_3^{(1)} - m_{32}L_2^{(1)}$$

Assim,

$$[A|b]^{(2)} = \begin{bmatrix} 1 & -1 & 2 & | & 2 \\ 0 & 3 & -5 & | & -3 \\ 0 & 0 & \frac{-14}{3} & | & 0 \end{bmatrix} \quad L_3^{(2)} \leftarrow L_3^{(1)} - (\frac{-7}{3})L_2^{(1)}$$

Etapa 3:

Resolvendo o sistema por retro-substituição de variáveis.

 $[A|b]^{(2)}$ representa o sistema:

$$\begin{cases} x_1 - x_2 + 2x_3 = 2 \\ 3x_2 - 5x_3 = -3 \\ - \frac{14}{3}x_3 = 0 \end{cases}$$

Assim,
$$x_3 = 0$$
; $x_2 = \frac{-3 - (-5x_3)}{3} = -1$; $x_1 = \frac{2 - (-x_2 + 2x_3)}{1} = 1$; Portanto, $x = (1, -1, 0)^t$.

Exemplo 2:

Resolva o sistema linear pelo Método de Eliminação de Gauss:

$$\begin{cases} x_1 - x_2 + 2x_3 = 2 \\ 2x_1 - 2x_2 - x_3 = 4 \\ -2x_1 - 5x_2 + 3x_3 = 3 \end{cases}$$

Etapa 1:

A matriz aumentada do sistema é

$$[A|b]^{(0)} = \begin{bmatrix} 1 & -1 & 2 & | & 2 \\ 2 & -2 & -1 & | & 4 \\ -2 & -5 & 3 & | & 3 \end{bmatrix}.$$

Etapa 2:

Fase 1: Zerar todos os elementos da primeira coluna abaixo da diagonal principal.

$$[A|b]^{(1)} = \begin{bmatrix} 1 & -1 & 2 & | & 2 \\ 0 & 0 & -5 & | & 0 \\ 0 & -7 & 7 & | & 7 \end{bmatrix} \quad L_2^{(1)} \leftarrow L_2^{(0)} - 2L_1^{(0)} .$$

Fase 2: Zerar todos os elementos da segunda coluna abaixo da diagonal principal.

Linha pivô =
$$L_2^{(1)}$$
 e pivô = $a_{22}^{(1)}$ = 0, neste caso não podemos calcular o multiplicador $m_{32} = \frac{a_{32}^{(1)}}{a_{22}^{(1)}} = \frac{-7}{0}$

Dessa forma o algoritmo falha, embora o sistema admita solução única, $x = (1, -1, 0)^t$. Neste caso devemos utilizar a estratégia de pivoteamento parcial.

Método de Eliminação de Gauss com Pivoteamento Parcial

O pivotemento parcial consiste em tomar como pivô o maior elemento em módulo da coluna a ser zerada, ou seja, em cada fase do método de Gauss com pivoteamento parcial o pivô será escolhido da seguinte forma:

$$a_{ii} = \max |a_{ii}|, i = 1, 2, \dots, n-1 \text{ e } j = i, i+1, \dots, n.$$

Se o maior elemento em módulo pertence a linha j, então troca-se a linha j e a linha i, ou seja, faça $L_j \leftarrow L_i$ e $L_i \leftarrow L_j$.

Exemplo 3:

Resolva o sistema linear pelo Método de Eliminação de Gauss com pivoteamento parcial:

$$\begin{cases} x_1 - x_2 + 2x_3 = 2 \\ 2x_1 - 2x_2 - x_3 = 4 \\ -2x_1 - 5x_2 + 3x_3 = 3 \end{cases}$$

Etapa 1:

A matriz aumentada do sistema é

$$[A|b]^{(0)} = \begin{bmatrix} 1 & -1 & 2 & | & 2 \\ 2 & -2 & -1 & | & 4 \\ -2 & -5 & 3 & | & 3 \end{bmatrix},$$

Etapa 2:

escolha o pivô: $a_{11} = \max\{|a_{11}|; |a_{21}|, |a_{31}|\} = \max\{1, 2, 2\}$. Então podemos escolher como pivô: $a_{21} = 2$ ou $a_{31} = -2$.

Escolhendo $a_{21} = 2$ como pivô trocaremos L_1 com L_2 , assim,

$$[A|b]^{(0)'} = \begin{bmatrix} 2 & -2 & -1 & | & 4 \\ 1 & -1 & 2 & | & 2 \\ -2 & -5 & 3 & | & 3 \end{bmatrix},$$

Fase 1: Zerar todos os elementos da primeira coluna abaixo da diagonal principal.

Multiplicadores:
$$m_{21} = \frac{a_{21}}{a_{11}} = \frac{1}{2}$$
 e $m_{31} = \frac{a_{31}}{a_{11}} = -1$

$$[A|b]^{(1)} = \begin{bmatrix} 2 & -2 & -1 & | & 4 \\ 0 & 0 & \frac{5}{2} & | & 0 \\ 0 & -7 & 2 & | & 7 \end{bmatrix} \quad L_2^{(1)} \leftarrow L_2^{(0)} - \frac{1}{2}L_1^{(0)} .$$

Fase 2: Zerar todos os elementos da segunda coluna abaixo da diagonal principal.

Escolha o pivô: $a_{22} = \max\{|a_{22}|, |a_{32}|\} = \max\{0, 7\}.$

Escolhendo $a_{32} = -7$ como pivô trocaremos L_2 com L_3 , assim teremos,

$$[A|b]^{(1)'} = \begin{bmatrix} 2 & -2 & -1 & | & 4 \\ 0 & -7 & 2 & | & 7 \\ 0 & 0 & \frac{5}{2} & | & 0 \end{bmatrix},$$

Multiplicadores:
$$m_{32} = \frac{a_{32}}{a_{22}} = \frac{0}{-7} = 0$$

$$[A|b]^{(2)} = \begin{bmatrix} 2 & -2 & -1 & | & 4 \\ 0 & -7 & 2 & | & 7 \\ 0 & 0 & \frac{5}{2} & | & 0 \end{bmatrix} \quad L_3^{(2)} \leftarrow L_3^{(1)} - 0L_2^{(1)} .$$

Etapa 3:

Resolvendo o sistema por retro-substituição de variáveis.

 $[A|b]^{(2)}$ representa o sistema:

$$\begin{cases} 2x_1 - 2x_2 - x_3 = 4 \\ - 7x_2 + 2x_3 = 7 \\ + \frac{5}{2}x_3 = 0 \end{cases}$$

Assim,
$$x_3 = 0$$
; $x_2 = \frac{7 - (2x_3)}{-7} = -1$; $x_1 = \frac{4 - (-2x_2 - x_3)}{2} = 1$; Portanto, $x = (1, -1, 0)^t$.