74LV4060

14-stage binary ripple counter with oscillator Rev. 4 — 17 March 2016

Product data sheet

General description 1.

The 74LV4060 is a low-voltage Si-gate CMOS device and is pin and function compatible with the 74HC4060; 74HCT4060.

The 74LV4060 is a 14-stage ripple-carry counter/divider and oscillator with three oscillator terminals (RS, RTC and CTC). It has ten buffered outputs (Q3 to Q9 and Q11 to Q13) and an overriding asynchronous master reset (MR). The oscillator configuration allows design of either RC or crystal oscillator circuits. The oscillator can be replaced by an external clock signal at input RS. In this case, keep the oscillator pins (RTC and CTC) floating.

The counter advances on the negative-going transition of RS. A HIGH-level on MR resets the counter (Q3 to Q9 and Q11 to Q13 = LOW), independent of the other input conditions.

2. **Features and benefits**

- Wide operating voltage range from 1.0 V to 5.5 V
- Optimized for low voltage applications from 1.0 V to 3.6 V
- Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V
- Typical V_{OLP} (output ground bounce) < 0.8 V at V_{CC} = 3.3 V; T_{amb} = 25 °C
- Typical V_{OHV} (output V_{OH} undershoot) > 2 V at V_{CC} = 3.3 V; T_{amb} = 25 °C
- All active components on-chip
- RC or crystal oscillator configuration
- Complies with JEDEC standard no. 7A
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115A exceeds 200 V

Applications 3.

- Control counters
- Timers
- Frequency dividers
- Time-delay circuits

14-stage binary ripple counter with oscillator

4. Ordering information

Table 1. Ordering information

Type number	Package							
	Temperature range	Name	Description	Version				
74LV4060D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1				
74LV4060DB	–40 °C to +125 °C	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1				
74LV4060PW	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1				

5. Functional diagram

14-stage binary ripple counter with oscillator

6. Pinning information

6.1 Pinning

14-stage binary ripple counter with oscillator

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
Q11 to Q13	1, 2, 3	counter output
Q3 to Q9	7, 5, 4, 6, 14, 13, 15	counter output
GND	8	ground (0 V)
СТС	9	external capacitor connection
RTC	10	external resistor connection
RS	11	clock input/oscillator pin
MR	12	master reset
V _{CC}	16	supply voltage

7. Functional description

14-stage binary ripple counter with oscillator

8. Limiting values

Table 3. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+7.0	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$	[1]	-	±20	mA
I _{OK}	output clamping current	$V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$	[1]	-	±50	mA
Io	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$		-	±25	mA
I _{CC}	supply current			-	+50	mA
I _{GND}	ground current			-50	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$				
		SO16 package	[2]	-	500	mW
		SSOP16 package	[3]	-	500	mW
		TSSOP16 package	[3]	-	500	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 4. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage	[1]	1.0	3.3	5.5	V
VI	input voltage		0	-	V_{CC}	V
Vo	output voltage		0	-	V_{CC}	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 1.0 V to 2.0 V	-	-	500	ns/V
		V _{CC} = 2.0 V to 2.7 V	-	-	200	ns/V
		V _{CC} = 2.7 V to 3.6 V	-	-	100	ns/V
		V _{CC} = 3.6 V to 5.5 V	-	-	50	ns/V

^[1] The 74LV4060 is guaranteed to function down to V_{CC} = 1.0 V (input levels GND or V_{CC}); DC characteristics are guaranteed from V_{CC} = 1.2 V to V_{CC} = 5.5 V.

^[2] Ptot derates linearly with 8 mW/K above 70 °C.

^[3] Ptot derates linearly with 5.5 mW/K above 60 °C.

14-stage binary ripple counter with oscillator

10. Static characteristics

Table 5. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	-40 °C to +85 °C			-40 °C to +125 °C		
			Min	Typ[1]	Max	Min	Max		
V _{IH}	HIGH-level	MR input							
	input voltage	V _{CC} = 1.2 V	0.9	-	-	0.9	-	V	
		V _{CC} = 2.0 V	1.4	-	-	1.4	-	V	
		V _{CC} = 2.7 V to 3.6 V	2.0	-	-	2.0	-	V	
		V _{CC} = 4.5 V to 5.5 V	0.7V _{CC}	-	-	0.7V _{CC}	-	V	
		RS input							
		V _{CC} = 1.2 V	1.0	-	-	1.0	-	V	
		V _{CC} = 2.0 V	1.6	-	-	1.6	-	V	
		V _{CC} = 2.7 V to 3.6 V	2.4	-	-	2.4	-	V	
		V _{CC} = 4.5 V to 5.5 V	0.8V _{CC}	-	-	0.8V _{CC}	-	V	
V _{IL}	LOW-level	MR input							
	input voltage	V _{CC} = 1.2 V	-	-	0.3	-	0.3	V	
		V _{CC} = 2.0 V	-	-	0.6	-	0.6	V	
		V _{CC} = 2.7 V to 3.6 V	-	-	0.8	-	0.8	V	
		V _{CC} = 4.5 V to 5.5 V	-	-	0.3V _{CC}	-	0.3V _{CC}	V	
		RS input							
		V _{CC} = 1.2 V	-	-	0.2	-	0.2	V	
		V _{CC} = 2.0 V	-	-	0.4	-	0.4	V	
		V _{CC} = 2.7 V to 3.6 V	-	-	0.5	-	0.5	V	
		V _{CC} = 4.5 V to 5.5 V	-	-	0.2V _{CC}	-	0.2V _{CC}	V	
V _{OH}	HIGH-level	RTC output; RS = MR = GND							
	output voltage	$V_{CC} = 1.2 \text{ V}; I_{O} = -3.4 \text{ mA}$	-	-	-	-	-	V	
		$V_{CC} = 2.0 \text{ V}; I_{O} = -3.4 \text{ mA}$	-	-	-	-	-	V	
		$V_{CC} = 2.7 \text{ V}; I_{O} = -3.4 \text{ mA}$	-	-	-	-	-	V	
		$V_{CC} = 3.0 \text{ V}; I_{O} = -3.4 \text{ mA}$	2.40	2.82	-	2.20	-	V	
		$V_{CC} = 4.5 \text{ V}; I_{O} = -3.4 \text{ mA}$	-	-	-	-	-	V	
		RTC output; RS = MR = V _{CC}							
		$V_{CC} = 1.2 \text{ V}; I_{O} = -0.8 \text{ mA}$	-	-	-	-	-	V	
		$V_{CC} = 2.0 \text{ V}; I_{O} = -0.8 \text{ mA}$	-	-	-	-	-	V	
		$V_{CC} = 2.7 \text{ V; } I_{O} = -0.8 \text{ mA}$	-	-	-	-	-	V	
		$V_{CC} = 3.0 \text{ V}; I_{O} = -0.8 \text{ mA}$	2.40	2.82	-	2.20	-	V	
		$V_{CC} = 4.5 \text{ V}; I_{O} = -0.8 \text{ mA}$	-	-	-	-	-	V	

14-stage binary ripple counter with oscillator

Table 5. Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C to +125 °C		Unit
			Min	Typ[1]	Max	Min	Max	
V _{ОН}	HIGH-level	RTC output; RS = MR = GND						
	output voltage	$V_{CC} = 1.2 \text{ V; } I_O = -100 \mu\text{A}$	1.0	1.2	-	1.0	-	V
		$V_{CC} = 2.0 \text{ V}; I_{O} = -100 \mu\text{A}$	1.8	2.0	-	1.8	-	V
		$V_{CC} = 2.7 \text{ V}; I_{O} = -100 \mu\text{A}$	-	-	-	-	-	V
		$V_{CC} = 3.0 \text{ V}; I_{O} = -100 \mu\text{A}$	2.8	3.0	-	2.8	-	V
		$V_{CC} = 4.5 \text{ V}; I_{O} = -100 \mu\text{A}$	-	-	-	-	-	V
		RTC output; RS = MR = V _{CC}						
		$V_{CC} = 1.2 \text{ V; } I_{O} = -100 \mu\text{A}$	1.0	1.2	-	1.0	-	V
		$V_{CC} = 2.0 \text{ V}; I_{O} = -100 \mu\text{A}$	1.8	2.0	-	1.8	-	V
		$V_{CC} = 2.7 \text{ V; } I_{O} = -100 \mu\text{A}$	-	-	-	-	-	٧
		$V_{CC} = 3.0 \text{ V; } I_{O} = -100 \mu\text{A}$	2.8	3.0	-	2.8	-	٧
		$V_{CC} = 4.5 \text{ V; } I_{O} = -100 \mu\text{A}$	-	-	-	-	-	٧
		CTC output; RS = V _{IH} and MR = V _{IL}						
		$V_{CC} = 1.2 \text{ V; } I_{O} = -3.8 \text{ mA}$	-	1.2	-	-	-	٧
	$V_{CC} = 2.0 \text{ V; } I_{O} = -3.8 \text{ mA}$	-	-	-	-	-	V	
		$V_{CC} = 2.7 \text{ V; } I_{O} = -3.8 \text{ mA}$	-	-	-	-	-	V
		$V_{CC} = 3.0 \text{ V; } I_{O} = -3.8 \text{ mA}$	2.40	2.82	-	2.20	-	V
		$V_{CC} = 4.5 \text{ V; } I_{O} = -3.8 \text{ mA}$	-	-	-	-	-	V
		except RTC output; V _I = V _{IH} or V _{IL}						
		$V_{CC} = 1.2 \text{ V}; I_{O} = -100 \mu\text{A}$	1.0	1.2	-	1.0	-	V
		$V_{CC} = 2.0 \text{ V; } I_{O} = -100 \mu\text{A}$	1.8	2.0	-	1.8	-	V
		$V_{CC} = 2.7 \text{ V; } I_{O} = -100 \mu\text{A}$	-	-	-	-	-	V
		$V_{CC} = 3.0 \text{ V}; I_{O} = -100 \mu\text{A}$	2.8	3.0	-	2.8	-	V
		$V_{CC} = 4.5 \text{ V}; I_{O} = -100 \mu\text{A}$	-	-	-	-	-	V
		except RTC and CTC outputs; V _I = V _{IH} or V _{IL}						
		$V_{CC} = 1.2 \text{ V}; I_{O} = -6 \text{ mA}$	-	-	-	-	-	V
		$V_{CC} = 2.0 \text{ V; } I_{O} = -6 \text{ mA}$	-	-	-	-	-	V
		$V_{CC} = 2.7 \text{ V}; I_{O} = -6 \text{ mA}$	-	-	-	-	-	V
		$V_{CC} = 3.0 \text{ V}; I_{O} = -6 \text{ mA}$	2.40	2.82	-	2.20	-	V
		$V_{CC} = 4.5 \text{ V}; I_{O} = -6 \text{ mA}$	-	-	-	-	-	V
OL	LOW-level	RTC output; RS = V _{CC} and MR = GND						
	output voltage	$V_{CC} = 1.2 \text{ V}; I_{O} = -3.4 \text{ mA}$	-	-	-	-	-	V
		$V_{CC} = 2.0 \text{ V}; I_{O} = -3.4 \text{ mA}$	-	-	-	-	-	V
		$V_{CC} = 2.7 \text{ V}; I_{O} = -3.4 \text{ mA}$	-	-	-	-	-	V
		$V_{CC} = 3.0 \text{ V}; I_{O} = -3.4 \text{ mA}$	-	0.25	0.40	-	0.50	V
		$V_{CC} = 4.5 \text{ V}; I_{O} = -3.4 \text{ mA}$	-	-	-	-	_	V

14-stage binary ripple counter with oscillator

Table 5. Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C to	+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
V _{OL}	LOW-level	RTC output; RS = V _{CC} and MR = GND;						
	output voltage	$V_{CC} = 1.2 \text{ V; } I_{O} = -100 \mu\text{A}$	-	0	0.2	-	0.2	V
		$V_{CC} = 2.0 \text{ V; } I_{O} = -100 \mu\text{A}$	-	0	0.2	-	0.2	V
		$V_{CC} = 2.7 \text{ V; } I_{O} = -100 \mu\text{A}$	-	-	-	-	-	V
		$V_{CC} = 3.0 \text{ V; } I_{O} = -100 \mu\text{A}$	-	0	0.2	-	0.2	V
		$V_{CC} = 4.5 \text{ V}; I_{O} = -100 \mu\text{A}$	-	-	-	-	-	V
		CTC output; RS = V _{IH} and MR = V _{IL} ;						
		$V_{CC} = 1.2 \text{ V}; I_{O} = -3.8 \text{ mA}$	-	-	-	-	-	V
		$V_{CC} = 2.0 \text{ V; } I_{O} = -3.8 \text{ mA}$	-	-	-	-	-	V
		$V_{CC} = 2.7 \text{ V; } I_{O} = -3.8 \text{ mA}$	-	-	-	-	-	V
		$V_{CC} = 3.0 \text{ V; } I_{O} = -3.8 \text{ mA}$	-	0.25	-	0.40	0.50	V
		$V_{CC} = 4.5 \text{ V; } I_{O} = -3.8 \text{ mA}$	-	-	-	-	-	V
		except RTC output; V _I = V _{IH} or V _{IL} ;						
		$V_{CC} = 1.2 \text{ V}; I_{O} = -100 \mu\text{A}$	-	0	0.2	-	0.2	V
		$V_{CC} = 2.0 \text{ V; } I_{O} = -100 \mu\text{A}$	-	0	0.2	-	0.2	V
		$V_{CC} = 2.7 \text{ V; } I_{O} = -100 \mu\text{A}$	-	-	-	-	-	V
		$V_{CC} = 3.0 \text{ V; } I_{O} = -100 \mu\text{A}$	-	0	0.2	-	0.2	V
		$V_{CC} = 4.5 \text{ V}; I_{O} = -100 \mu\text{A}$	-	-	-	-	-	V
		except RTC and CTC output; $V_I = V_{IH}$ or V_{IL} ;						
		$V_{CC} = 1.2 \text{ V; } I_{O} = -6 \text{ mA}$	-	-	-	-	-	V
		$V_{CC} = 2.0 \text{ V; } I_{O} = -6 \text{ mA}$	-	-	-	-	-	V
		$V_{CC} = 2.7 \text{ V; } I_{O} = -6 \text{ mA}$	-	0.25	0.40	-	0.50	V
		$V_{CC} = 3.0 \text{ V; } I_{O} = -6 \text{ mA}$	-	-	-	-	-	V
		$V_{CC} = 4.5 \text{ V; } I_{O} = -6 \text{ mA}$	-	-	-	-	-	V
l _l	input leakage current	$V_{CC} = 5.5 \text{ V}; V_I = V_{CC} \text{ or GND}$	-	-	1.0	-	1.0	μΑ
Icc	supply current	$V_{CC} = 3.6 \text{ V}; V_I = V_{CC} \text{ or GND}; I_O = 0 \text{ A}$	-	-	20	-	160	μΑ
		$V_{CC} = 5.5 \text{ V}; V_I = V_{CC} \text{ or GND}; I_O = 0 \text{ A}$	-	-	-	-	80	μΑ
Δl _{CC}	additional supply current	V_{CC} = 2.7 V to 3.6 V; V_I = V_{CC} – 0.6 V; I_O = 0 A	-	-	500	-	850	μΑ
Cı	input capacitance		-	3.5	-	-	-	pF

^[1] All typical values are measured at T_{amb} = 25 °C.

14-stage binary ripple counter with oscillator

11. Dynamic characteristics

Table 6. Dynamic characteristics

GND = 0 V; for test circuit, see Figure 10.

Symbol	Parameter	Conditions		-40	°C to +8	5 °C	-40 °C to +125 °C		Unit
				Min	Typ[1]	Max	Min	Max	Ī
t _{pd}	propagation delay	RS to Q3; see Figure 7 and Figure 9	[2]						
		V _{CC} = 1.2 V		-	180	-	-	-	ns
		V _{CC} = 2.0 V		-	52	84	-	105	ns
		V _{CC} = 2.7 V		-	42	66	-	83	ns
		$V_{CC} = 3.3 \text{ V}; C_L = 15 \text{ pF}$		-	29	-	-	-	ns
		V _{CC} = 3.0 V to 3.6 V	<u>[3]</u>	-	33	53	-	66	ns
		V _{CC} = 4.5 V to 5.5 V	<u>[4]</u>	-	24	39	-	49	ns
		Qn to Qn+1; see Figure 8 and Figure 9							
		V _{CC} = 1.2 V		-	40	-	-	-	ns
		V _{CC} = 2.0 V		-	14	23	-	29	ns
		V _{CC} = 2.7 V		-	10	16	-	20	ns
		$V_{CC} = 3.3 \text{ V}; C_L = 15 \text{ pF}$		-	6	-	-	-	ns
		V _{CC} = 3.0 V to 3.6 V	[3]	-	8	13	-	16	ns
		V _{CC} = 4.5 V to 5.5 V	<u>[4]</u>	-	6	9	-	11	ns
t _{PHL}	HIGH to LOW propagation delay	MR to Qn; see Figure 8 and Figure 9							
		V _{CC} = 1.2 V		-	100	-	-	-	ns
		V _{CC} = 2.0 V		-	29	46	-	58	ns
		V _{CC} = 2.7 V		-	24	39	-	49	ns
		$V_{CC} = 3.3 \text{ V}; C_L = 15 \text{ pF}$		-	16	-	-	-	ns
		V _{CC} = 3.0 V to 3.6 V	[3]	-	19	31	-	39	ns
		V _{CC} = 4.5 V to 5.5 V	<u>[4]</u>	-	14	23	-	29	ns
tw	pulse width	RS HIGH or LOW; see Figure 7							
		V _{CC} = 2.0 V		34	9	-	38	-	ns
		V _{CC} = 2.7 V		25	6	-	30	-	ns
		V _{CC} = 3.0 V to 3.6 V	<u>[3]</u>	20	5	-	24	-	ns
		V _{CC} = 4.5 V to 5.5 V	<u>[4]</u>	16	4	-	20	-	ns
		MR HIGH; see Figure 9							
		V _{CC} = 2.0 V		34	10	-	38	-	ns
		V _{CC} = 2.7 V		25	8	-	30	-	ns
		V _{CC} = 3.0 V to 3.6 V	[3]	20	6	-	24	-	ns
		V _{CC} = 4.5 V to 5.5 V	[4]	16	4	-	20	-	ns

74LV4060 **Nexperia**

14-stage binary ripple counter with oscillator

Dynamic characteristics Table 6.

GND = 0 V; for test circuit, see <u>Figure 10</u>.

Symbol	Parameter	Conditions		-40	°C to +8	5 °C	-40 °C to +125 °C		Unit
				Min	Typ[1]	Max	Min	Max	
t _{rec}	recovery time	MR to RS; see Figure 9							
		V _{CC} = 2.0 V		29	18	-	37	-	ns
		V _{CC} = 2.7 V		26	16	-	32	-	ns
		V _{CC} = 3.0 V to 3.6 V	[3]	18	11	-	23	-	ns
		V _{CC} = 4.5 V to 5.5 V	<u>[4]</u>	12	7	-	15	-	ns
f _{max}	maximum	see Figure 7							
	frequency	V _{CC} = 2.0 V		14	40	-	9	-	MHz
		V _{CC} = 2.7 V		19	70	-	12	-	MHz
		$V_{CC} = 3.3 \text{ V}; C_L = 15 \text{ pF}$		-	99	-	-	-	MHz
		V _{CC} = 3.0 V to 3.6 V	[3]	24	90	-	15	-	MHz
		V _{CC} = 4.5 V to 5.5 V	<u>[4]</u>	30	100	-	19	-	MHz
C_{PD}	power dissipation capacitance	$V_I = GND \text{ to } V_{CC}$	<u>[5]</u>	-	40	-	-	-	pF

- [1] All typical values are measured at T_{amb} = 25 °C.
- [2] t_{pd} is the same as t_{PLH} and t_{PHL} .
- [3] Typical value measured at $V_{CC} = 3.3 \text{ V}$.
- [4] Typical value measured at $V_{CC} = 5.0 \text{ V}$.
- [5] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma (C_L \times V_{CC}{}^2 \times f_o) = sum \ of \ outputs.$

14-stage binary ripple counter with oscillator

12. Waveforms

Measurement points are given in Table 7.

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig 7. Waveforms showing the clock (RS) to output (Qn) propagation delays, the clock pulse width, the output transition times and the maximum frequency

Measurement points are given in <u>Table 7</u>.

 $\ensuremath{V_{OL}}$ and $\ensuremath{V_{OH}}$ are typical voltage output levels that occur with the output load.

Fig 8. Waveforms showing the output Qn to output Qn+1 propagation delays

14-stage binary ripple counter with oscillator

Measurement points are given in Table 7.

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig 9. Waveforms showing the master reset (MR) pulse width, the master reset to output (Qn) propagation delays and the master reset to clock (RS) recovery time

Table 7. Measurement points

Supply voltage	Input	Output
V _{CC}	V _M	V _M
< 2.7 V	0.5V _{CC}	0.5V _{CC}
2.7 V to 3.6 V	1.5 V	1.5 V
≥ 4.5 V	0.5V _{CC}	0.5V _{CC}

Test data is given in Table 8.

Definitions test circuit:

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

 C_L = Load capacitance including jig and probe capacitance.

 R_L = Load resistance.

Fig 10. Test circuit for measuring switching times

14-stage binary ripple counter with oscillator

Table 8. Test data

Supply voltage	Input		Load	Load		
V _{CC}	V _I	t _r , t _f	CL	R _L	t _{PLH} , t _{PHL}	
V _{CC} < 2.7 V	V _{CC}	2.5 ns	50 pF	1 kΩ	open	
2.7 V < V _{CC} < 3.6 V	2.7 V	2.5 ns	15 pF, 50 pF	1 kΩ	open	
$V_{CC} \ge 4.5 \text{ V}$	V _{CC}	2.5 ns	50 pF	1 kΩ	open	

13. Typical forward transconductance

14-stage binary ripple counter with oscillator

14. RC oscillator

14.1 Timing component limitations

The oscillator frequency is mainly determined by $R_t \times C_t$, provided $R2 \approx 2R_t$ and $R2 \times C2$ is much less than $R_t \times C_t$. The function of R2 is to minimize the influence of the forward voltage across the input protection diodes on the frequency. The stray capacitance C2 should be kept as small as possible. In consideration of accuracy, C_t must be larger than the inherent stray capacitance. R_t must be larger than the 'ON' resistance in series with it, which typically is $280~\Omega$ at $V_{CC} = 1.2~V$, $130~\Omega$ at $V_{CC} = 2.0~V$ and $100~\Omega$ at V_{CC} 3.0 V. The recommended values for these components to maintain agreement with the typical oscillation formula are: $C_t > 50~pF$, up to any practical value, $10~k\Omega < R_t < 1~M\Omega$. In order to avoid start-up problems, $R_t \ge 1~k\Omega$.

Typical formula for oscillator frequency: $f_{osc} = \frac{1}{2.5 \times R_t \times C_t}$

Fig 14. Example of an RC oscillator

All information provided in this document is subject to legal disclaimers

14-stage binary ripple counter with oscillator

14.2 Typical crystal oscillator circuit

In <u>Figure 17</u>, R2 is the power limiting resistor. For starting and maintaining oscillation, a minimum transconductance is necessary, so R2 must not be too large. A practical value for R2 is 2.2 k Ω .

Fig 17. External components connection for a typical crystal oscillator

14-stage binary ripple counter with oscillator

15. Package outline

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT109-1	076E07	MS-012			99-12-27 03-02-19	

Fig 18. Package outline SOT109-1 (SO16)

LV4060 All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserve

74LV4060 **Nexperia**

14-stage binary ripple counter with oscillator

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

SOT338-1

UNIT	A max.	A ₁	A ₂	A ₃	b _p	C	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	٧	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.00 0.55	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT338-1		MO-150				99-12-27 03-02-19	

Fig 19. Package outline SOT338-1 (SSOP16)

74LV4060

All information provided in this document is subject to legal disclaimers.

14-stage binary ripple counter with oscillator

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

_							-,												
	UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D (1)	E (2)	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
	mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTL	LINE		REFER	EUROPEAN	ISSUE DATE				
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE			
SOT4	403-1		MO-153				-99-12-27 03-02-18		
SOT4	403-1		MO-153)		

Fig 20. Package outline SOT403-1 (TSSOP16)

74LV4060

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserve

14-stage binary ripple counter with oscillator

16. Abbreviations

Table 9. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

17. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes				
74LV4060 v.4	20160317	Product data sheet	-	74LV4060 v.3				
Modifications:	Type number	er 74LV4060N (SOT38-4) re	moved.					
74LV4060 v.3	20140728	Product data sheet	-	74LV4060 v.2				
Modifications:	Minimum va	alue V _{OH} and V _{OL} corrected	(errata).					
74LV4060 v.2	20140703	Product data sheet	-	74LV4060 v.1				
Modifications:		 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 						
	 Legal texts 	have been adapted to the ne	ew company name whe	ere appropriate.				
74LV4060 v.1	19980623	Product specification	-	-				

14-stage binary ripple counter with oscillator

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

18.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74LV4060

All information provided in this document is subject to legal disclaimers.

14-stage binary ripple counter with oscillator

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

19. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

14-stage binary ripple counter with oscillator

20. Contents

1	General description	1
2	Features and benefits	1
3	Applications	1
4	Ordering information	2
5	Functional diagram	2
6	Pinning information	3
6.1	Pinning	3
6.2	Pin description	4
7	Functional description	4
8	Limiting values	5
9	Recommended operating conditions	5
10	Static characteristics	6
11	Dynamic characteristics	9
12	Waveforms	1
13	Typical forward transconductance 1	3
14	RC oscillator1	4
14.1	Timing component limitations	4
14.2	Typical crystal oscillator circuit	5
15	Package outline	6
16	Abbreviations 1	9
17	Revision history 1	9
18	Legal information	0
18.1	Data sheet status 2	0
18.2	Definitions	0
18.3	Disclaimers	
18.4	Trademarks2	
19	Contact information 2	1
20	Contents	2

[©] Nexperia B.V. 2017. All rights reserved