Limites

O conceito de limite é usado para descrever o comportamento de uma função f à medida que um valor $x \in I$, com $I \subset \mathbb{R}$, se aproxima se certo valor a, com f(a) não necessariamente pertencendo à Im(f), assim como o comportamento quando valores de $x \in D(f)$ tendem ao infinito.

Definição de Limite

$$\lim_{x \to a} f(x) = A$$

A definição de limite nos diz que quando x tende ao valor a, tanto pela esquerda quanto pela direita de a, a função f(x) tende ao valor A.

Limites Laterais

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) \to \exists \lim_{x \to a} f(x)$$

A condição de existência do limite de f(x) quando $x \to a$ é que os limites laterais existam e sejam iguais. Isso quer dizer que quando $x \to a^+$ (x tende a a por valores que são maiores que a) a função f(x) deve tender ao mesmo valor que quando $x \to a^-$ (x tende a a por valores que são menores que a).

Teorema do confronto

$$f(x) \le g(x) \le h(x)$$

$$a \in D(f), \ D(f) \subseteq \mathbb{R}$$

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = A \to \lim_{x \to a} g(x) = A$$

O teorema do confronto é facilmente entendido quando nos damos conta que se o limite de uma função existe, ele é um número real. Aplicando essa ideia à expressão vemos que se um valor está entre um intervalo $[A;\ A]$ esse valor só pode ser o próprio A.

Assíntotas

Assíntotas no conceito de limites são retas que delimitam uma função f(x) quando $x \to a$. Isso significa que quando $x \to a$ a função f(x) irá cada vez mais se aproximar dessa reta quando ambas tenderem ao infinito, mas nunca irá tocá-la.

Assíntotas Verticais

$$\lim_{x \to a} f(x) = \pm \infty$$

$$\lim_{x \to a^{+}} f(x) = \pm \infty$$

$$\lim_{x \to a^{-}} f(x) = \pm \infty$$

Caso qualquer uma das expressões acima seja verdadeira, então se tem uma assíntota vertical em x=a.

Assíntotas Horizontais

$$\lim_{x \to \pm \infty} f(x) = L$$

Se $f(x) \to L$ quando $x \to \pm \infty$ então a função f tem uma assíntota horizontal em y = L.

Continuidade

Podemos usar limites para definir se uma função é ou não contínua em um ponto x = a. Se $\lim_{x \to a} f(x) = f(a)$, então $a \in D(f)$, e como $\exists \lim_{x \to a} f(x)$ (garante a existência dos limites laterais), logo f(x) é contínua em x = a.

Limite Fundamental

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \cos(x) = 1$$

Propriedades Operatórias dos Limites

Seja $c \in \mathbb{R}$, $\exists \lim_{x \to a} f(x)$ e $\exists \lim_{x \to a} g(x)$.

$$\lim_{x \to a} f(x) = f(a) \to a \in D(f)$$

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x \to a} c = c$$

$$\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$$

$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

$$\lim_{x \to a} f(x)^n = \left[\lim_{x \to a} f(x)\right]^n, \ n \in \mathbb{N}^*$$

$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$

$$\lim_{x \to a} [\log_c f(x)] = \log_c \left[\lim_{x \to a} f(x) \right]$$

$$\lim_{x \to a} e^{f(x)} = e^{\lim_{x \to a} f(x)}$$

$$\lim_{x \to a} f(x) = \frac{c}{"0"} \to Limite\ Infinito$$

$$\lim_{x \to a} f(x) = \frac{0}{"0"} \to Manipulação Algébrica, L'Hôpital$$