Ex. No.: 8b Date: 11/10/24

## A PYTHON PROGRAM TO IMPLEMENT GRADIENT BOOSTING

#### Aim:

To implement a python program using the gradient boosting model.

## Algorithm:

Step 1: Import Necessary Libraries Import

numpy as np.

Import pandas as pd.

Import train test split from sklearn.model selection.

Import DecisionTreeRegressor from sklearn.tree.

Import mean squared error from sklearn.metrics.

Step 2: Prepare the Data

Load your dataset into a DataFrame using pd.read csv('your dataset.csv').

Split the dataset into features (X) and target (y).

Use train\_test\_split to split the data into training and testing sets.

Step 3: Initialize Parameters

Set the number of boosting rounds (e.g., n estimators = 100).

Set the learning rate (e.g., learning rate = 0.1).

Initialize an empty list to store the weak learners (decision trees).

Initialize an empty list to store the learning rates for each round.

Step 4: Initialize the Base Model

Compute the initial prediction as the mean of the target values (e.g., F0 = np.mean(y\_train)).

Initialize the predictions to the base model's prediction (e.g.,  $F = np.full(y\_train.shape, F0)$ ).

Step 5: Iterate Over Boosting Rounds For

each boosting round:

Compute the pseudo-residuals (negative gradient of the loss function) (e.g., residuals = y train - F).

Fit a decision tree to the pseudo-residuals.

Make predictions using the fitted tree (e.g., tree predictions = tree.predict(X train)).

Update the predictions by adding the learning rate multiplied by the tree predictions (e.g., F += learning rate \* tree predictions).

Append the fitted tree and the learning rate to their respective lists.

#### Step 6: Make Predictions on Test Data

Initialize the test predictions with the base model's prediction (e.g., F\_test = np.full(y test.shape, F0)).

For each fitted tree and its learning rate:

Make predictions on the test data using the fitted tree.

Update the test predictions by adding the learning rate multiplied by the tree predictions.

### Step 7: Evaluate the Model

Compute the mean squared error on the training data.

Compute the mean squared error on the test data.

#### **PROGRAM:**

```
import numpy as np import
matplotlib.pyplot as plt
import pandas as pd

np.random.seed(42)
X = np.random.rand(100, 1) - 0.5 y = 3*X[:,
0]**2 + 0.05 * np.random.randn(100)

df = pd.DataFrame()

df['X'] = X.reshape(100)
```

$$df['y'] = y$$

df

| У         | х         |     |
|-----------|-----------|-----|
| 0.051573  | -0.125460 | 0   |
| 0.594480  | 0.450714  | 1   |
| 0.166052  | 0.231994  | 2   |
| -0.070178 | 0.098658  | 3   |
| 0.343986  | -0.343981 | 4   |
|           |           | *** |
| -0.040675 | -0.006204 | 95  |
| -0.002305 | 0.022733  | 96  |
| 0.032809  | -0.072459 | 97  |
| 0.689516  | -0.474581 | 98  |
| 0.502607  | -0.392109 | 99  |

 $\label{eq:plt.scatter} $$ plt.scatter(df['X'],df['y']) \ plt.title('X') $$ vs y') $$$ 

Text(0.5, 1.0, 'X vs y')



df['pred1'] = df['y'].mean() df



100 rows × 3 columns

df['res1'] = df['y'] - df['pred1']

df

| 13]: |     | х         | у         | pred1    | res1      |
|------|-----|-----------|-----------|----------|-----------|
|      | 0   | -0.125460 | 0.051573  | 0.265458 | -0.213885 |
|      | 1   | 0.450714  | 0.594480  | 0.265458 | 0.329021  |
|      | 2   | 0.231994  | 0.166052  | 0.265458 | -0.099407 |
|      | 3   | 0.098658  | -0.070178 | 0.265458 | -0.335636 |
|      | 4   | -0.343981 | 0.343986  | 0.265458 | 0.078528  |
|      | *** | -         | -         |          | -         |
|      | 95  | -0.006204 | -0.040675 | 0.265458 | -0.306133 |
|      | 96  | 0.022733  | -0.002305 | 0.265458 | -0.267763 |
|      | 97  | -0.072459 | 0.032809  | 0.265458 | -0.232650 |
|      | 98  | -0.474581 | 0.689516  | 0.265458 | 0.424057  |
|      | 99  | -0.392109 | 0.502607  | 0.265458 | 0.237148  |

100 rows × 4 columns

 $plt.scatter(df['X'],df['y']) \ plt.plot(df['X'],df['pred1'],color='red') \\$ 



from sklearn.tree import DecisionTreeRegressor

tree1 = DecisionTreeRegressor(max\_leaf\_nodes=8)

tree1.fit(df['X'].values.reshape(100,1),df['res1'].values)

DecisionTreeRegressor(max\_leaf\_nodes=8)

from sklearn.tree import plot\_tree
plot\_tree(tree1) plt.show()



```
X test = np linspace(-0.5, 0.5, 500)

y pred = 0.265458 + tree1 predict(X test reshape(500, 1))

plt figure(figsize=(14,4))

plt subplot(121)

plt plot(X test, y pred, linewidth=2,color='red')

plt scatter(df['X']_df['y'])
```



 $df['pred2'] = 0.265458 + tree1.predict(df['X'].values.reshape(100,1)) \; df$ 

| 92]: |    | X         | У         | pred1    | res1      | pred2    |
|------|----|-----------|-----------|----------|-----------|----------|
|      | 0  | -0.125460 | 0.051573  | 0.265458 | -0.213885 | 0.018319 |
|      | 1  | 0.450714  | 0.594480  | 0.265458 | 0.329021  | 0.605884 |
|      | 2  | 0.231994  | 0.166052  | 0.265458 | -0.099407 | 0.215784 |
|      | 3  | 0.098658  | -0.070178 | 0.265458 | -0.335636 | 0.018319 |
|      | 4  | -0.343981 | 0.343986  | 0.265458 | 0.078528  | 0.305964 |
|      |    | 400       |           |          |           |          |
|      | 95 | -0.006204 | -0.040675 | 0.265458 | -0.306133 | 0.018319 |
|      | 96 | 0.022733  | -0.002305 | 0.265458 | -0.267763 | 0.018319 |
|      | 97 | -0.072459 | 0.032809  | 0.265458 | -0.232650 | 0.018319 |
|      | 98 | -0.474581 | 0.689516  | 0.265458 | 0.424057  | 0.660912 |
|      | 99 | -0.392109 | 0.502607  | 0.265458 | 0.237148  | 0.487796 |

100 rows × 5 columns

df['res2'] = df['y'] - df['pred2'] df

| res2      | pred2    | res1      | pred1    | У         | x         |     |
|-----------|----------|-----------|----------|-----------|-----------|-----|
| 0.033254  | 0.018319 | -0.213885 | 0.265458 | 0.051573  | -0.125460 | 0   |
| -0.011404 | 0.605884 | 0.329021  | 0.265458 | 0.594480  | 0.450714  | 1   |
| -0.049732 | 0.215784 | -0.099407 | 0.265458 | 0.166052  | 0.231994  | 2   |
| -0.088497 | 0.018319 | -0.335636 | 0.265458 | -0.070178 | 0.098658  | 3   |
| 0.038022  | 0.305964 | 0.078528  | 0.265458 | 0.343986  | -0.343981 | 4   |
| 50        | 12       | - 1       | 1        | -         | 7 44      | See |
| -0.058994 | 0.018319 | -0.306133 | 0.265458 | -0.040675 | -0.006204 | 95  |
| -0.020624 | 0.018319 | -0.267763 | 0.265458 | -0.002305 | 0.022733  | 96  |
| 0.014489  | 0.018319 | -0.232650 | 0.265458 | 0.032809  | -0.072459 | 97  |
| 0.028604  | 0.660912 | 0.424057  | 0.265458 | 0.689516  | -0.474581 | 98  |
| 0.014810  | 0.487796 | 0.237148  | 0.265458 | 0.502607  | -0.392109 | 99  |

```
tree2 = DecisionTreeRegressor(max_leaf_nodes=8)

tree2_fit(df['X']_values_reshape(100,1)_df['res2']_values)

DecisionTreeRegressor(max_leaf_nodes=8)

v_pred = 0.265458 + sum(regressor.predict(X_test_reshape(-1, 1)) for regressor in

[tree1_tree2])

plt_figure(figsize=(14,4))

plt_subplot(121)

plt_plot(X_test_v_pred_linewidth=2,color='red')

plt_scatter(df['X']_df['y'])

plt_title('X_vs_y')
```



print(number) plt.figure()
plt.plot(x1, y\_pred, linewidth=2)
plt.plot(X[:, 0], foo,"r") plt.show()

gradient\_boost(X,y,number-1,lr,count+1,regs,foo=foo)

np.random.seed(42) X = np.random.rand(100, 1) - 0.5 y = 3\*X[:, 0]\*\*2 + 0.05 \* np.random.randn(100)gradient boost(X,y,5,lr=1)







# **RESULT:**

Thus, the python program to implement gradient boosting for the standard uniform distribution has been successfully implemented and the results have been verified and analyzed.