Exemplo

- Considerando o algoritmo de ordenação Quicksort, ordene o vetor 23, 32, 54, 92, 74, 23, 1, 43, 63 e 12
 - Utilize o critério crescente de ordenação
 - Aplique os particionamentos de Hoare e Lomuto
 - Execute passo a passo cada etapa dos algoritmos

Exercício

- A empresa de desenvolvimento de sistemas Poxim Tech está realizando um experimento para determinar qual variante do algoritmo de ordenação crescente do Quicksort apresenta o melhor resultado para um determinado conjunto de sequências numéricas
 - Neste experimento foram utilizadas as seguintes variantes: Lomuto padrão (LP), Lomuto por mediana de 3 (LM), Lomuto por pivô aleatório (LA), Hoare padrão (HP), Hoare por mediana de 3 (HM) e Hoare por pivô aleatório (HA).
 - Técnicas de escolha do pivô
 - Mediana de 3: $V_1 = V\left[\frac{n}{4}\right]$, $V_2 = V\left[\frac{n}{2}\right]$, $V_3 = V\left[\frac{3n}{4}\right]$
 - Aleatório: $V_a = V[ini + |V[ini]| \mod n]$

Exercício

- Formato de arquivo de entrada
 - ► [#n total de vetores]
 - ► [#N1 números do vetor 1]
 - $ightharpoonup [E_1] \cdots [E_{N1}]$
 - ...
 - ► [#Nn números do vetor n]
 - \triangleright $[E_1] \cdots [E_{Nn}]$

Exercício

- Formato de arquivo de saída
 - Para cada vetor é impressa a quantidade total de números
 N e a sequência com ordenação estável contendo o número de trocas e de chamadas

```
0:N(6),LP(15),HP(16),LM(19),HM(19),HA(20),LA(22)

1:N(4),LP(10),HP(10),LM(11),LA(11),HM(12),HA(12)

2:N(7),HP(17),LM(18),LP(23),HM(26),HA(27),LA(30)

3:N(10),LM(28),HP(28),LP(33),HA(35),HM(37),LA(38)
```