Hassan Khosravi's Booklet

Alireza Arzehgar

<alirezaarzehgar82@gmail.com>
 Islamic Azad University, Mashhad

May 10, 2024

Copyright 2024 Alireza Arzehgar.

Contents

Preface														v											
1	Limit																1								
2	Deri	vative																							3
	2.1	Defini	itic	n	L																				3
	2.2	Comm	no	n	fo	rn	าน	las	s																3
		2.2.1	1																						3
		2.2.2	2																						4
		2.2.3	3	,																					4
		2.2.4	4	:																					4
		2.2.5	5	,																					5
		2.2.6	6)																					5
		2.2.7	7	,																					5
		2.2.8	1	6																					6
		2.2.9	1	7																					6
		2.2.10	1	8																					6
		2.2.11	1	9																					6
	2.3	Trigon	າວາ	me	etı	ric	de	er	iv	at	iv	es	3												6
		2.3.1		1																					6
		2.3.2	2	2																					6
		2.3.3	2	3																					6
		2.3.4	2	4																					7
		2.3.5	2	5																					7
		2.3.6	2	6																					7
	2.4	Deriva	ati	ve) (Che	eat	t S	Sh	ee	ŧ														8
3	Integral													9											

iv CONTENTS

Preface

I decided to fair copy my hand written general mathematics booklet using LATEX. This book is completely Open Source. You can contribute to this book and help to improve it. For additional information visist this repository. My main goal for writing this book is learning LATEX and create collaborative platform to write and improve technical documents on Azad University.

Chapter 1

Limit

Chapter 2

Derivative

2.1 Definition

Derivative limit definition:

$$\frac{df}{dx} = f'(x)$$

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Proof of the Derivative of Constant: $\frac{df}{dx}(c)$

$$f(x) = c$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{c - c}{h}$$

$$= \lim_{h \to 0} 0 = 0$$

2.2 Common formulas

2.2.1 1

$$(y=c) \to y'=0$$

Example:

$$(\sqrt{2})' = (\frac{3}{2})' = (\sin^{-1}\frac{1}{10})' = 0$$

Note: $(\sin \infty)'$ does not exists.¹

2.2.2 2

$$(ax^n)' = a(x^n)' = anx^{n-1}$$

Note: The n coefficient have no effect on derivative. Examples:

$$(3x^{7})' = 21x^{6}$$

$$(2x^{-9})' = -18x^{-10}$$

$$(x^{2}\sqrt[7]{x^{3}})' = (x^{2}x^{\frac{3}{7}})' = (x^{\frac{17}{7}})' = \frac{17}{7}x^{\frac{10}{7}}$$

2.2.3 3

$$(u \pm v)' = u' \pm v'$$

Example:

$$(z+1)' = (z)' + (1)' = 1 + 0 = 1$$

2.2.4 4

$$(uv)' = u'v + uv'$$

Example:

$$(x\sin_u x)' = u'v + uv' = \begin{cases} u' = 1\\ v' = \cos x \end{cases}$$

¹https://math.stackexchange.com/questions/635135/infinite-derivatives-of-a-trigonometric-function

2.2.5 5

$$(au^n)' = a(u^n)' = anu^{n-1}u'$$

Example:

$$(3(x^2 - x^{-2} + \sqrt{3})^{10})' = anu^{n-1}u' = 3(u^9u') \rightarrow u' = 2x + 2x^{-3} + 0$$

Example for derivation with radical:

$$(3\sqrt[7]{(x^{-3} + \frac{1}{x})^2})' = anu^{n-1}u'$$

$$= 3((x^{-3} + \frac{1}{x})^2)^{\frac{2}{7}} \to$$

$$u' = x^{-3} \times \frac{1}{x} = \underbrace{x^{-3}}_{w_1} \times \underbrace{x^{-1}}_{w_2}$$

$$= w'_1 w_2 + w_1 w'_2 = \begin{cases} w'_1 = -3x^{-4} \\ w'_2 = -x^{-2} \end{cases}$$

2.2.6 6

$$(\frac{u}{v})' = \frac{u'v - uv'}{v^2} \to (\frac{1}{x})' = \frac{-1}{x^2}$$

Example:

$$(\overbrace{\frac{1-2x^{-7}}{2x^3-\frac{2}{\sqrt{3}}}}^{u})' = \frac{u'v-uv'}{v^2} \to \begin{cases} u'=0+14x^{-8}=14x^{-8}\\ v'=6x^2-0=6x^2 \end{cases}$$

2.2.7 7

$$(\sqrt{u})' = \frac{u'}{2\sqrt{u}} \to (\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

Example:

$$(\sqrt{\frac{x^2 - x + x^{-4}}{u}})' = \frac{u'}{2\sqrt{u}}$$
$$u' = 2z - 1 - 4x^{-5}$$

2.2.8 16

$$(\ln u)' = \frac{u'}{u} \to (\ln x)' = \frac{1}{x}$$

2.2.9 17

$$(a^u)' \xrightarrow{a>0} u'a^u \ln a \to (a^x)' = a^x \ln a$$

2.2.10 18

$$(e^{u})' = u'e^{u} \ln e = u'e^{u} \rightarrow (e^{ax+b})' = ae^{ax+b}$$

2.2.11 19

$$(u^{v})' \xrightarrow{u>0} u^{v}(v' \ln u + \frac{u'v}{u}) \to (x^{x})' = (1 + \ln x)$$

2.3 Trigonometric derivatives

2.3.1 21

$$(\sin u)' = u' \cos u \longrightarrow (\sin(ax + b))' = a \cos(ax + b) \longrightarrow (\sin x)' = \cos x$$

Example:

$$(\sin(\ln x))' = (\sin u)' = u'\cos u \to u' = \frac{1}{x}$$

2.3.2 22

$$(\cos u)' = -u'\sin u \longrightarrow (\cos(ax+b))' = -a\sin(ax+b) \longrightarrow (\cos x)' = -\sin x$$
$$(\cos^n x) = (\cos x)^n$$

Example:

$$((\cos x)^3)' = (u^3)' = 3u^2u' \rightarrow u' = -\sin x$$

2.3.3 23

$$(\tan u)' = u'(1 + \tan^2 u) = u' \sec^2 u \rightarrow (\tan x)' = 1 + \tan^2 x = \sec^2 x$$

2.3.4 24

$$(\cot u)' = -u'(1 + \cot^2 u) = -u'\csc^2 u \to (\cot x)' = -(1 + \cot^2 x) = -\csc^2 x$$

2.3.5 25

$$(\sec u)' = u' \cdot \sec u \cdot \tan u \rightarrow (\sec x)' = x' \sec x \cdot \tan x$$

Example:

$$(\sec(\csc x))' = (\sec u)' = u' \sec u \tan u \rightarrow u' = -\cot x \csc x$$

2.3.6 26

$$(cscu)' = -u' \cdot csc u \cdot cot u \rightarrow (csc x)' = -cot x \cdot csc x$$

2.4 Derivative Cheat Sheet

$$(y = c) \to y' = 0$$

$$(ax^{n})' = a(x^{n})' = anx^{n-1}$$

$$(u \pm v)' = u' \pm v'$$

$$(uv)' = u'v + uv'$$

$$(au^{n})' = a(u^{n})' = anu^{n-1}u'$$

$$(\frac{u}{v})' = \frac{u'v - uv'}{v^{2}} \to (\frac{1}{x})' = \frac{-1}{x^{2}}$$

$$(\sqrt{u})' = \frac{u'}{2\sqrt{u}} \to (\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

$$(\ln u)' = \frac{u'}{u} \to (\ln x)' = \frac{1}{x}$$

$$(a^{u})' \xrightarrow{a>0} u'a^{u} \ln a \to (a^{x})' = a^{x} \ln a$$

$$(e^{u})' = u'e^{u} \ln e = u'e^{u} \to (e^{ax+b})' = ae^{ax+b}$$

$$(u^{v})' \xrightarrow{u>0} u^{v}(v' \ln u + \frac{u'v}{u}) \to (x^{x})' = (1 + \ln x)$$

$$(\sin u)' = u' \cos u \to (\sin(ax + b))' = a \cos(ax + b) \to (\sin x)' = \cos x$$

$$(\tan u)' = u'(1 + \tan^{2} u) = u' \sec^{2} u \to (\tan x)' = 1 + \tan^{2} x = \sec^{2} x$$

$$(\cot u)' = -u'(1 + \cot^{2} u) = -u'csc^{2}u \to (\cot x)' = -(1 + \cot^{2} x) = -csc^{2}x$$

$$(\sec u)' = u' \sec u \tan u \to (\sec x)' = x' \sec x \tan x$$

$$(\csc u)' = -u'. \csc u. \cot u \to (\csc x)' = -\cot x. \csc x$$

Chapter 3 Integral