XGBoost

Contents

```
1
1 Vorhersage der Upload-Raten
  1
1.2
  3
  4
6
1.6 Parametrisierung der Lernalgorithmen mit den gefundenen Hyperparametern . . . . . . . .
1.7
  8
13
Vorhersage der Download-Raten
                           15
15
  16
  Parametrisierung der Lernalgorithmen mit den gefundenen Hyperparametern . . . . . . . .
2.5
  18
  Vorhersage der eNodeB-Verbindungsdauern
                           24
3.4 Parametrisierung der Lernalgorithmen mit den gefundenen Hyperparametern . . . . . . . .
  library(tidyverse)
library(ggplot2)
library(mlr3)
library(mlr3learners)
library(mlr3pipelines)
library(mlr3tuning)
library(mlr3filters)
library(paradox)
future::plan("multiprocess")
```

1 Vorhersage der Upload-Raten

1.1 Einlesen der Daten

```
data_dir = "../datasets/"
results_dir = "../prediction_results/"
```

```
dataset_ul = read_csv(
 str_c(data_dir, "dataset_ul.csv"),
 col_types = cols(
   drive_id = col_integer(),
   scenario = col_factor(),
   provider = col_factor(),
   ci = col_factor(),
   enodeb = col factor()
 )
) %>% select(
 drive_id,
 timestamp,
 scenario,
 provider,
 velocity_mps,
 rsrp_dbm,
 rsrq_db,
 rssnr_db,
 cqi,
 ta,
 enodeb,
 f_mhz,
 payload_mb,
 throughput_mbits
) %>% drop_na() %>% rowid_to_column(var="row_id_original")
dataset_ul_o2 = filter(dataset_ul, provider=="o2")
glimpse(dataset_ul_o2)
## Rows: 2,039
## Columns: 15
## $ row_id_original <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,...
## $ drive_id
                    <dttm> 2018-12-10 09:08:57, 2018-12-10 09:09:08, 2018-12...
## $ timestamp
## $ scenario
                    <fct> campus, campus, campus, campus, campus, campus, ca...
## $ provider
                    ## $ velocity_mps
                    <dbl> 11.80, 11.49, 7.93, 10.44, 10.92, 12.02, 10.28, 0....
                    <dbl> -99, -97, -96, -82, -101, -106, -112, -99, -98, -9...
## $ rsrp_dbm
                    <dbl> -9, -12, -12, -11, -14, -13, -18, -15, -15, -14, -...
## $ rsrq_db
                    <dbl> -1, -2, 5, 11, -3, -3, -6, -4, -6, -4, -6, -3, -2,...
## $ rssnr_db
                    <dbl> 8, 9, 5, 15, 6, 6, 3, 4, 7, 4, 4, 5, 6, 5, 1, 4, 6...
## $ cqi
                    <dbl> 9, 7, 7, 7, 7, 7, 12, 13, 13, 13, 13, 11, 13, 1...
## $ ta
## $ enodeb
                    <fct> 54016, 52410, 52410, 52410, 52410, 52410, 52410, 5...
## $ f_mhz
                    <dbl> 1750, 1750, 1750, 1750, 1750, 1750, 1750, 880, 880...
## $ payload_mb
                    <dbl> 1.0, 6.0, 5.0, 7.0, 5.0, 8.0, 9.0, 7.0, 10.0, 2.0,...
## $ throughput mbits <dbl> 4.66, 3.97, 6.52, 1.37, 0.80, 1.04, 2.34, 4.09, 2....
dataset_ul_tmobile = filter(dataset_ul, provider=="tmobile")
glimpse(dataset_ul_tmobile)
## Rows: 2.301
## Columns: 15
## $ row_id_original <int> 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 20...
## $ drive_id
                    ## $ timestamp
                    <dttm> 2018-12-10 09:08:57, 2018-12-10 09:09:07, 2018-12...
```

```
## $ scenario
                    <fct> campus, campus, campus, campus, campus, campus, ca...
## $ provider
                    <fct> tmobile, tmobile, tmobile, tmobile, tmobile, tmobile...
## $ velocity_mps
                    <dbl> 11.83, 11.45, 8.15, 9.42, 10.61, 11.84, 9.75, 0.00...
                    <dbl> -85, -84, -74, -92, -90, -101, -93, -94, -94, -94,...
## $ rsrp_dbm
## $ rsrq_db
                    <dbl> -5, -6, -5, -6, -6, -10, -8, -11, -11, -10, -9, -1...
                    <dbl> 22, 11, 29, 13, 16, 13, 7, 0, 8, 2, 24, 10, 22, 15...
## $ rssnr db
## $ cqi
                    <dbl> 10, 13, 15, 12, 9, 15, 10, 9, 9, 7, 10, 9, 12, 15,...
                    ## $ ta
## $ enodeb
                    <fct> 103068, 114809, 114809, 114809, 114809, 114809, 11...
## $ f_mhz
                    <dbl> 1720, 1720, 1720, 1720, 1720, 1720, 1720, 1720, 17...
## $ payload_mb
                    <dbl> 4.0, 2.0, 4.0, 9.0, 8.0, 6.0, 5.0, 4.0, 3.0, 2.0, ...
## $ throughput_mbits <dbl> 24.52, 14.86, 16.27, 12.68, 14.59, 13.13, 16.37, 1...
dataset ul vodafone = filter(dataset ul, provider=="vodafone")
glimpse(dataset_ul_vodafone)
## Rows: 1,828
## Columns: 15
## $ row_id_original <int> 4341, 4342, 4343, 4344, 4345, 4346, 4347, 4348, 43...
## $ drive_id
                    <dttm> 2018-12-10 09:09:03, 2018-12-10 09:09:21, 2018-12...
## $ timestamp
## $ scenario
                    <fct> campus, campus, campus, campus, campus, campus, ca...
## $ provider
                    <fct> vodafone, vodafone, vodafone, vodafone, ...
                    <dbl> 11.70, 8.22, 8.00, 10.30, 12.28, 0.00, 0.00, 0.00,...
## $ velocity_mps
## $ rsrp_dbm
                    <dbl> -121, -108, -111, -106, -110, -94, -95, -92, -98, ...
                    <dbl> -15, -9, -13, -8, -9, -7, -7, -8, -6, -10, -7, -8,...
## $ rsrq_db
## $ rssnr_db
                    <dbl> -8, 2, 6, 5, 9, 23, 23, 24, 14, 1, 14, 12, 14, 7, ...
## $ cqi
                    <dbl> 4, 2, 6, 11, 10, 15, 12, 15, 12, 6, 15, 10, 11, 7,...
                    ## $ ta
## $ enodeb
                    <fct> 51044, 52316, 50026, 50026, 50026, 50026, 50026, 5...
## $ f_mhz
                    <dbl> 1770, 1770, 1770, 1770, 1770, 1770, 1770, 1770, 1770, 17...
## $ payload_mb
                    <dbl> 6.0, 10.0, 0.1, 2.0, 6.0, 0.1, 0.1, 0.5, 7.0, 0.1,...
## $ throughput_mbits <dbl> 1.29, 3.18, 0.05, 2.93, 8.79, 5.16, 4.73, 10.13, 1...
```

1.2 Vorhersage-Tasks für jeden Provider

Im Folgenden wird mit dem mlr3 Paket gearbeitet. Dieses setzt voraus, dass für eine Vorhersage ein sogenannter Task erzeugt wird, was im Folgenden geschieht.

```
make_task = function(dataset, task_id, target="throughput_mbits") {
  task = TaskRegr$new(
    id = task_id,
    backend = dataset %>% select(-drive_id, -timestamp, -provider, -scenario),
    target = target
)

task$col_roles$name = "row_id_original"
  task$col_roles$feature = setdiff(task$col_roles$feature, "row_id_original")

return(task)
}

task_ul_o2 = make_task(dataset_ul_o2, "task_ul_o2")
task_ul_o2
```

<TaskRegr:task_ul_o2> (2039 x 10)

```
## * Target: throughput_mbits
## * Properties: -
## * Features (9):
     - dbl (8): cqi, f_mhz, payload_mb, rsrp_dbm, rsrq_db, rssnr_db, ta,
##
       velocity_mps
     - fct (1): enodeb
##
task_ul_tmobile = make_task(dataset_ul_tmobile, "task_ul_tmobile")
task ul tmobile
## <TaskRegr:task_ul_tmobile> (2301 x 10)
## * Target: throughput_mbits
## * Properties: -
## * Features (9):
     - dbl (8): cqi, f_mhz, payload_mb, rsrp_dbm, rsrq_db, rssnr_db, ta,
##
##
       velocity_mps
##
     - fct (1): enodeb
task ul vodafone = make task(dataset ul vodafone, "task ul vodafone")
task ul vodafone
## <TaskRegr:task ul vodafone> (1828 x 10)
## * Target: throughput_mbits
## * Properties: -
## * Features (9):
##
    - dbl (8): cqi, f_mhz, payload_mb, rsrp_dbm, rsrq_db, rssnr_db, ta,
##
       velocity mps
     - fct (1): enodeb
##
```

1.3 Splitting Strategien für das Validierungsverfahren

Das "outer resampling" beschreibt die Aufteilung in einen Trainings- und einen Testdatensatz. Im konkreten Fall werden für die Trainingsdaten die Fahrten 1-7 und für die Testdaten die Fahrten 8-10 eingesetzt.

```
get_row_ids_by_drive_ids = function(task, dataset, drive_ids) {
  result = (tibble(task$row_names) %>%
    inner_join(dataset, by=c("row_name"="row_id_original")) %>%
    filter(drive_id %in% drive_ids))$row_id
  return(result)
}
make outer resampling = function(task, dataset, drive ids train, drive ids test) {
 row_ids_train = get_row_ids_by_drive_ids(task, dataset, drive_ids_train)
  row_ids_test = get_row_ids_by_drive_ids(task, dataset, drive_ids_test)
 result = rsmp("custom")
 result$instantiate(
   task.
   train_sets=list(row_ids_train),
    test_sets=list(row_ids_test)
  )
  return(result)
```

Das "inner resampling" implementiert das an die Zeitreihenkreuzvalidierung angelehnte Verfahren, welches

beim Parametertuning zum Einsatz kommt:

```
make_inner_resampling = function(task, dataset, last_drive_id) {
    train_sets = list()

for (cur_last_drive_id_train in 2:(last_drive_id-1)) {
    drive_ids_train = 1:cur_last_drive_id_train
    drive_ids_test = cur_last_drive_id_train + 1

    row_ids_train = get_row_ids_by_drive_ids(task, dataset, drive_ids_train)
    row_ids_test = get_row_ids_by_drive_ids(task, dataset, drive_ids_test)

    train_sets[[length(train_sets)+1]] = row_ids_train
    test_sets[[length(test_sets)+1]] = row_ids_test
}

result = rsmp("custom")
result$instantiate(task, train_sets=train_sets, test_sets=test_sets)

return(result)
}
```

1.4 Erzeugung der Vorhersagepipeline

```
make_learner = function(nrounds=100, eta=NULL, gamma=NULL, lambda=NULL) {
  factor_encoding = po(
    "encode",
   method = "one-hot",
   affect_columns = selector_type("factor")
  xgboost = lrn("regr.xgboost")
  if (!is.null(nrounds)) {
   xgboost$param_set$values = mlr3misc::insert_named(
      xgboost$param_set$values,
      list(nrounds=nrounds)
   )
  }
  if (!is.null(eta)) {
   xgboost$param_set$values = mlr3misc::insert_named(
      xgboost$param_set$values,
      list(eta=eta)
    )
  }
  if (!is.null(gamma)) {
   xgboost$param_set$values = mlr3misc::insert_named(
      xgboost$param_set$values,
      list(gamma=gamma)
   )
  }
  if (!is.null(lambda)) {
   xgboost$param_set$values = mlr3misc::insert_named(
      xgboost$param_set$values,
```

```
list(lambda=lambda)
)

pipe = factor_encoding %>>% PipeOpLearner$new(xgboost)
learner = GraphLearner$new(pipe)
return(learner)
}
```

Hier ist die Vorhersage-Pipeline einmal schematisch dargestellt. Bevor der xgboost Algorithmus eingesetzt werden kann, müssen allerdings Faktorstufen kodiert werden. Dies geschieht hier mit der one-hot-encoding Methode.

```
make_learner()$graph$plot()
```


1.5 Parameter Tuning

Der Suchraum wird wie folgt definiert:

```
parameter_space = ParamSet$new(list(
   ParamInt$new("regr.xgboost.nrounds", lower=100, upper=1000),
   ParamDbl$new("regr.xgboost.eta", lower=0.01, upper=1),
   ParamDbl$new("regr.xgboost.gamma", lower=0, upper=10),
   ParamDbl$new("regr.xgboost.lambda", lower=0, upper=10)
))
```

Die folgende Funktion führt das Parameter-Tuning für einen gegebenen Datensatz durch:

```
get_tuning_result = function(task, dataset, grid_resolution, n_evals) {
   tuning_instance = TuningInstanceSingleCrit$new(
        task = task,
        learner = make_learner(),
        resampling = make_inner_resampling(task, dataset, last_drive_id=7),
        measure = msr("regr.mae"),
        terminator = trm("evals", n_evals=n_evals),
        search_space = parameter_space$clone(deep = TRUE),
        store_benchmark_result = TRUE,
        check_values = TRUE
   )

   tuner = tnr("grid_search", resolution = grid_resolution)
   tuner$optimize(tuning_instance)

   return(tuning_instance)
}
```

Nun kann der Tuning-Prozess für jeden Provider gestartet werden:

```
tuning_evals_ul = 50
tuning_result_ul_o2 = get_tuning_result(
 task_ul_o2,
 dataset ul,
 grid_resolution = 20,
 n_evals = tuning_evals_ul
tuning_result_ul_tmobile = get_tuning_result(
 task_ul_tmobile,
 dataset ul,
  grid_resolution = 20,
 n_evals = tuning_evals_ul
tuning_result_ul_vodafone = get_tuning_result(
 task_ul_vodafone,
 dataset_ul,
 grid_resolution = 20,
 n_evals = tuning_evals_ul
```

Die resultierenden Hyperparameter seien im Folgenden aufgeführt:

```
tuning_result_ul = bind_rows(
   tibble(tuning_result_ul_o2$result) %>% mutate(provider="o2"),
   tibble(tuning_result_ul_tmobile$result) %>% mutate(provider="tmobile"),
   tibble(tuning_result_ul_vodafone$result) %>% mutate(provider="vodafone"),
) %>% select(
   "provider",
   "regr.xgboost.nrounds",
   "regr.xgboost.eta",
   "regr.xgboost.gamma",
   "regr.xgboost.lambda"
)
```

knitr::kable(tuning_result_ul)

provider	regr.xgboost.nrounds	regr.xgboost.eta	regr.xgboost.gamma	regr.xgboost.lambda
o2	858	0.0100000	6.842105	10.000000
tmobile	716	0.0621053	4.210526	1.578947
vodafone	953	0.0621053	8.947368	10.000000

1.6 Parametrisierung der Lernalgorithmen mit den gefundenen Hyperparametern

```
learner_ul_o2 = make_learner(
    nrounds = tuning_result_ul_o2$result$regr.xgboost.nrounds,
    eta = tuning_result_ul_o2$result$regr.xgboost.eta,
    gamma = tuning_result_ul_o2$result$regr.xgboost.gamma,
    lambda = tuning_result_ul_o2$result$regr.xgboost.lambda
)

learner_ul_tmobile = make_learner(
    nrounds = tuning_result_ul_tmobile$result$regr.xgboost.nrounds,
    eta = tuning_result_ul_tmobile$result$regr.xgboost.eta,
    gamma = tuning_result_ul_tmobile$result$regr.xgboost.gamma,
    lambda = tuning_result_ul_tmobile$result$regr.xgboost.lambda
)

learner_ul_vodafone = make_learner(
    nrounds = tuning_result_ul_vodafone$result$regr.xgboost.nrounds,
    eta = tuning_result_ul_vodafone$result$regr.xgboost.eta,
    gamma = tuning_result_ul_vodafone$result$regr.xgboost.eta,
    gamma = tuning_result_ul_vodafone$result$regr.xgboost.eta,
    gamma = tuning_result_ul_vodafone$result$regr.xgboost.lambda
)
```

1.7 Validierung

```
resampling_result_ul_o2 = resample(
  task = task_ul_o2,
  learner = learner_ul_o2,
  resampling = make_outer_resampling(
    task_ul_o2,
    dataset_ul,
    drive_ids_train=1:7,
    drive_ids_test=8:10
  ),
  store_models = TRUE
resampling_result_ul_tmobile = resample(
  task = task_ul_tmobile,
  learner = learner_ul_tmobile,
  resampling = make_outer_resampling(
    task ul tmobile,
    dataset_ul,
```

```
drive_ids_train=1:7,
    drive_ids_test=8:10
),
store_models = TRUE
)

resampling_result_ul_vodafone = resample(
    task = task_ul_vodafone,
    learner = learner_ul_vodafone,
    resampling = make_outer_resampling(
        task_ul_vodafone,
        dataset_ul,
        drive_ids_train=1:7,
        drive_ids_test=8:10
),
store_models = TRUE
)
```

Im Folgenden werden die im Zuge der Validierung ermittelten Out-of-Sample Resultate zur späteren Berechnung der Performance-Maße als neue Spalte an die Original-Datensätze angehängt:

```
predictions_ul_o2 = as.data.table(resampling_result_ul_o2$prediction())
glimpse(tibble(predictions_ul_o2))
## Rows: 615
## Columns: 3
## $ row id <int> 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148...
## $ truth
              <dbl> 4.47, 2.59, 2.26, 1.09, 0.77, 0.19, 0.26, 0.65, 1.45, 1.12...
## $ response <dbl> 3.1357160, 2.7078483, 3.7341022, 2.8291116, 3.5331557, 1.4...
predictions_ul_tmobile = as.data.table(resampling_result_ul_tmobile$prediction())
predictions_ul_vodafone = as.data.table(resampling_result_ul_vodafone$prediction())
validation_results_ul = bind_rows(
 tibble(predictions_ul_o2) %>%
    inner_join(tibble(task_ul_o2$row_names), by="row_id") %>%
    inner_join(dataset_ul, by=c("row_name"="row_id_original")),
  tibble(predictions_ul_tmobile) %>%
    inner join(tibble(task ul tmobile$row names), by="row id") %>%
    inner_join(dataset_ul, by=c("row_name"="row_id_original")),
  tibble(predictions_ul_vodafone) %>%
    inner_join(tibble(task_ul_vodafone$row_names), by="row_id") %>%
    inner_join(dataset_ul, by=c("row_name"="row_id_original"))
glimpse(validation_results_ul)
## Rows: 1,840
```

```
## Columns: 18
## $ row_id
                 <int> 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, ...
## $ truth
                 <dbl> 4.47, 2.59, 2.26, 1.09, 0.77, 0.19, 0.26, 0.65, 1....
## $ response
                 <dbl> 3.1357160, 2.7078483, 3.7341022, 2.8291116, 3.5331...
                 <int> 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, ...
## $ row_name
## $ drive id
                 ## $ timestamp
                 <dttm> 2018-12-11 09:04:11, 2018-12-11 09:04:22, 2018-12...
                 <fct> campus, campus, campus, campus, campus, campus, ca...
## $ scenario
                 ## $ provider
```

```
## $ velocity_mps
                  <dbl> 0.00, 6.11, 9.39, 8.45, 11.68, 0.00, 0.00, 0.00, 4...
## $ rsrp_dbm
                  <dbl> -89, -92, -94, -98, -102, -100, -101, -101, -100, ...
## $ rsrq db
                  <dbl> -9, -12, -14, -15, -16, -17, -16, -16, -17, -14, -...
                  <dbl> 13, 3, -1, -3, -5, -7, -6, -5, -8, 1, -7, -1, -2, ...
## $ rssnr_db
                  <dbl> 11, 5, 5, 4, 2, 3, 4, 4, 4, 6, 3, 5, 5, 2, 4, 6, 3...
## $ cqi
## $ ta
                  ## $ enodeb
                  <fct> 52410, 52410, 52410, 52410, 52410, 52900, 52900, 5...
## $ f mhz
                   ## $ payload_mb
                  <dbl> 0.1, 0.5, 3.0, 9.0, 7.0, 3.0, 2.0, 2.0, 6.0, 3.0, ...
## $ throughput_mbits <dbl> 4.47, 2.59, 2.26, 1.09, 0.77, 0.19, 0.26, 0.65, 1....
all(validation_results_ul$truth == validation_results_ul$throughput_mbits)
```

[1] TRUE

Diese können dann optional als .csv Datei gespeichert werden.

```
validation_results_ul = validation_results_ul %>%
    rename(prediction_xgboost=response) %>%
    select(-truth, -row_id, -row_name)

# write_csv(validation_results_ul, str_c(results_dir, "predictions_xgboost_ul.csv"))
```

1.7.1 Scatter Plots

```
ggplot(
  filter(validation_results_ul, provider=="02"),
  aes(x=throughput_mbits, y=prediction_xgboost)
) +
  geom_point(aes(color=scenario, shape=scenario)) +
  xlab("Measured Data Rate [MBit/s]") +
  ylab("Predicted Data Rate [MBit/s]") +
  ggtitle("Upload-Rate Predictions for Provider 02")
```



```
ggplot(
   filter(validation_results_ul, provider=="tmobile"),
   aes(x=throughput_mbits, y=prediction_xgboost)
) +
   geom_point(aes(color=scenario, shape=scenario)) +
   xlab("Measured Data Rate [MBit/s]") +
   ylab("Predicted Data Rate [MBit/s]") +
   ggtitle("Upload-Rate Predictions for Provider T-Mobile")
```



```
ggplot(
  filter(validation_results_ul, provider=="vodafone"),
  aes(x=throughput_mbits, y=prediction_xgboost)
) +
  geom_point(aes(color=scenario, shape=scenario)) +
  xlab("Measured Data Rate [MBit/s]") +
  ylab("Predicted Data Rate [MBit/s]") +
  ggtitle("Upload-Rate Predictions for Provider Vodafone")
```


1.8 Relevanz der Kovariablen

1.8.1 Permutation Feature Importance

Die folgende Funktion ist ein kleiner "Hack", welcher dafür sorgt, dass das in mlr3 implementierte Permutation Feature Imortance Maß auch mit einem custom resampling funktioniert.

```
uninstantiate_resampling = function(resampling) {
  new_resampling = new.env()
  class(new_resampling) = class(resampling)
  for (val in ls(resampling, all.names = TRUE)) {
    if (val != "is_instantiated") {
      assign(val, get(val, envir=resampling), envir = new_resampling)
   }
  }
  new_resampling$is_instantiated = FALSE
  return(new_resampling)
num_permutation_sims_ul = 5
filter_permutation_o2_ul = flt("permutation",
 learner = learner_ul_o2$clone(),
  resampling = uninstantiate_resampling(
   make_outer_resampling(
      task_ul_o2,
```

```
dataset_ul,
      drive_ids_train=1:7,
      drive ids test=8:10
   )
  ),
  measure = msr("regr.mae"),
  standardize = TRUE,
  nmc=num_permutation_sims_ul
filter_permutation_o2_ul$calculate(task_ul_o2)
permutation_ul_o2 = tibble(
  as.data.table(filter_permutation_o2_ul)
) %>% mutate(provider="o2")
filter_permutation_tmobile_ul = flt("permutation",
  learner = learner_ul_tmobile$clone(),
  resampling = uninstantiate_resampling(
   make_outer_resampling(
      task_ul_tmobile,
      dataset_ul,
      drive_ids_train=1:7,
      drive ids test=8:10
   )
  ),
  measure = msr("regr.mae"),
  standardize = TRUE,
  nmc=num_permutation_sims_ul
filter_permutation_tmobile_ul$calculate(task_ul_tmobile)
permutation_ul_tmobile = tibble(
  as.data.table(filter_permutation_tmobile_ul)
) %>% mutate(provider="tmobile")
filter_permutation_vodafone_ul = flt("permutation",
 learner = learner_ul_vodafone$clone(),
  resampling = uninstantiate_resampling(
   make_outer_resampling(
      task_ul_vodafone,
     dataset ul,
      drive_ids_train=1:7,
      drive_ids_test=8:10
   )
  ),
  measure = msr("regr.mae"),
  standardize = TRUE,
  nmc=num_permutation_sims_ul
filter_permutation_vodafone_ul$calculate(task_ul_vodafone)
permutation_ul_vodafone = tibble(
  as.data.table(filter_permutation_vodafone_ul)
) %>% mutate(provider="vodafone")
permutation_ul = bind_rows(
```

```
permutation_ul_o2,
permutation_ul_tmobile,
permutation_ul_vodafone
)
```

Die ermittelten Werte können dann zur weiteren Analyse gespeichert werden.

```
# write_csv(permutation_ul, str_c(results_dir, "feature_importance_xqboost_ul.csv"))
```

2 Vorhersage der Download-Raten

Bei der Vorhersage der Download-Raten ist das Vorgehen analog.

2.1 Einlesen der Daten

```
dataset dl = read csv(
 str_c(data_dir, "dataset_dl.csv"),
 col_types = cols(
   drive_id = col_integer(),
   scenario = col_factor(),
   provider = col_factor(),
   ci = col factor(),
   enodeb = col_factor()
) %>% select(
 drive_id,
 timestamp,
 scenario,
 provider,
 velocity_mps,
 rsrp_dbm,
 rsrq_db,
 rssnr_db,
 cqi,
 ta,
 enodeb,
 f_mhz,
 payload_mb,
 throughput mbits
) %>% drop_na() %>% rowid_to_column(var="row_id_original")
dataset_dl_o2 = filter(dataset_dl, provider=="o2")
glimpse(dataset_dl_o2)
## Rows: 2,033
## Columns: 15
## $ row_id_original <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,...
## $ drive_id
                    ## $ timestamp
                    <dttm> 2018-12-10 09:08:56, 2018-12-10 09:09:15, 2018-12...
## $ scenario
                    <fct> campus, campus, campus, campus, campus, campus, ca...
## $ provider
                    ## $ velocity_mps
                   <dbl> 11.80, 8.02, 7.93, 10.08, 12.44, 12.03, 11.52, 0.0...
## $ rsrp_dbm
                    <dbl> -99, -96, -96, -100, -101, -105, -112, -99, -98, -...
## $ rsrq_db
                   <dbl> -9, -12, -12, -13, -14, -15, -18, -15, -13, -14, -...
```

```
## $ rssnr db
                    <dbl> -1, 5, 5, -1, -3, -4, -6, -4, -6, -4, -6, -3, -2, ...
## $ cqi
                    <dbl> 8, 5, 5, 7, 5, 5, 3, 4, 6, 4, 5, 5, 6, 5, 1, 4, 6,...
## $ ta
                    <dbl> 9, 7, 7, 7, 7, 7, 12, 13, 13, 13, 13, 11, 13, 1...
## $ enodeb
                    <fct> 54016, 52410, 52410, 52410, 52410, 52410, 52410, 5...
## $ f mhz
                    <dbl> 1845, 1845, 1845, 1845, 1845, 1845, 1845, 850, 850...
                    <dbl> 6.0, 10.0, 7.0, 7.0, 9.0, 3.0, 3.0, 0.5, 5.0, 2.0,...
## $ payload mb
## $ throughput_mbits <dbl> 2.38, 0.90, 1.09, 0.45, 0.51, 0.42, 0.71, 0.63, 0....
dataset_dl_tmobile = filter(dataset_dl, provider=="tmobile")
glimpse(dataset_dl_tmobile)
## Rows: 2,300
## Columns: 15
                    <int> 2034, 2035, 2036, 2037, 2038, 2039, 2040, 2041, 20...
## $ row_id_original
## $ drive_id
                    ## $ timestamp
                    <dttm> 2018-12-10 09:08:57, 2018-12-10 09:09:08, 2018-12...
## $ scenario
                    <fct> campus, campus, campus, campus, campus, campus, ca...
## $ provider
                    <fct> tmobile, tmobile, tmobile, tmobile, tmobile, tmobile...
## $ velocity_mps
                    <dbl> 11.83, 11.45, 8.15, 9.42, 10.61, 11.84, 9.75, 0.00...
                    <dbl> -85, -84, -74, -92, -90, -101, -93, -94, -94, -94,...
## $ rsrp_dbm
## $ rsrq_db
                    <dbl> -5, -6, -5, -6, -6, -10, -8, -11, -11, -10, -9, -1...
                    <dbl> 22, 11, 29, 13, 16, 13, 7, 0, 8, 2, 24, 10, 22, 15...
## $ rssnr db
## $ cqi
                    <dbl> 10, 13, 15, 12, 9, 15, 10, 9, 9, 7, 10, 9, 12, 15,...
## $ ta
                    ## $ enodeb
                    <fct> 103068, 114809, 114809, 114809, 114809, 114809, 11...
                    <dbl> 1815, 1815, 1815, 1815, 1815, 1815, 1815, 1815, 18...
## $ f_mhz
                    <dbl> 0.1, 2.0, 2.0, 3.0, 5.0, 8.0, 3.0, 0.1, 5.0, 9.0, ...
## $ payload mb
## $ throughput_mbits <dbl> 6.84, 9.71, 7.31, 3.95, 8.55, 11.30, 6.78, 4.30, 1...
dataset dl vodafone = filter(dataset dl, provider=="vodafone")
glimpse(dataset_dl_vodafone)
## Rows: 2,170
## Columns: 15
## $ row_id_original <int> 4334, 4335, 4336, 4337, 4338, 4339, 4340, 4341, 43...
## $ drive_id
                    ## $ timestamp
                    <dttm> 2018-12-10 09:09:03, 2018-12-10 09:09:21, 2018-12...
## $ scenario
                    <fct> campus, campus, campus, campus, campus, campus, ca...
## $ provider
                    <fct> vodafone, vodafone, vodafone, vodafone, ...
## $ velocity_mps
                    <dbl> 11.70, 8.22, 8.00, 10.60, 10.30, 12.28, 11.45, 0.0...
                    <dbl> -121, -108, -111, -113, -106, -110, -93, -94, -95,...
## $ rsrp_dbm
## $ rsrq db
                    <dbl> -15, -9, -13, -11, -8, -9, -5, -7, -7, -8, -6, -6,...
## $ rssnr db
                    <dbl> -8, 2, 6, 1, 5, 9, 21, 23, 23, 24, 14, 23, 13, 1, ...
## $ cqi
                    <dbl> 4, 2, 6, 6, 11, 10, 14, 15, 12, 15, 12, 14, 15, 6,...
## $ ta
                    ## $ enodeb
                    <fct> 51044, 52316, 50026, 50026, 50026, 50026, 50026, 5...
## $ f_mhz
                    <dbl> 1865, 1865, 1865, 1865, 1865, 1865, 1865, 1865, 18...
                    <dbl> 0.1, 5.0, 1.0, 3.0, 8.0, 4.0, 0.5, 5.0, 6.0, 0.5, ...
## $ payload mb
## $ throughput_mbits <dbl> 3.54, 18.57, 5.22, 3.97, 11.68, 35.91, 25.32, 62.7...
```

2.2 Vorhersage-Tasks für jeden Provider

```
task_dl_o2 = make_task(dataset_dl_o2, "task_dl_o2")
task_dl_o2
```

```
## <TaskRegr:task_dl_o2> (2033 x 10)
## * Target: throughput_mbits
## * Properties: -
## * Features (9):
##
    - dbl (8): cqi, f_mhz, payload_mb, rsrp_dbm, rsrq_db, rssnr_db, ta,
##
       velocity mps
     - fct (1): enodeb
task dl tmobile = make task(dataset dl tmobile, "task dl tmobile")
task dl tmobile
## <TaskRegr:task_dl_tmobile> (2300 x 10)
## * Target: throughput_mbits
## * Properties: -
## * Features (9):
##
    - dbl (8): cqi, f_mhz, payload_mb, rsrp_dbm, rsrq_db, rssnr_db, ta,
##
       velocity mps
     - fct (1): enodeb
task_dl_vodafone = make_task(dataset_dl_vodafone, "task_dl_vodafone")
task dl vodafone
## <TaskRegr:task_dl_vodafone> (2170 x 10)
## * Target: throughput_mbits
## * Properties: -
## * Features (9):
   - dbl (8): cqi, f_mhz, payload_mb, rsrp_dbm, rsrq_db, rssnr_db, ta,
##
       velocity_mps
##
    - fct (1): enodeb
##
```

2.3 Parameter Tuning

```
tuning_evals_dl = 50
tuning_result_dl_o2 = get_tuning_result(
  task dl o2,
  dataset_dl,
 grid resolution = 20,
  n_evals = tuning_evals_dl
tuning_result_dl_tmobile = get_tuning_result(
  task dl tmobile,
  dataset_dl,
  grid_resolution = 20,
  n_evals = tuning_evals_dl
tuning_result_dl_vodafone = get_tuning_result(
  task_dl_vodafone,
  dataset_dl,
  grid_resolution = 20,
  n_evals = tuning_evals_dl
tuning_result_dl = bind_rows(
 tibble(tuning_result_dl_o2$result) %>% mutate(provider="o2"),
```

```
tibble(tuning_result_dl_tmobile$result) %>% mutate(provider="tmobile"),
  tibble(tuning_result_dl_vodafone$result) %>% mutate(provider="vodafone"),
) %>% select(
  "provider",
  "regr.xgboost.nrounds",
  "regr.xgboost.eta",
  "regr.xgboost.gamma",
  "regr.xgboost.lambda"
)
knitr::kable(tuning_result_dl)
```

provider	regr.xgboost.nrounds	regr.xgboost.eta	regr.xgboost.gamma	regr.xgboost.lambda
o2	574	0.0621053	4.736842	9.473684
tmobile	337	0.0100000	8.421053	9.473684
vodafone	574	0.0100000	4.736842	0.000000

2.4 Parametrisierung der Lernalgorithmen mit den gefundenen Hyperparametern

```
learner_dl_o2 = make_learner(
  nrounds = tuning result dl o2$result$regr.xgboost.nrounds,
  eta = tuning_result_dl_o2$result$regr.xgboost.eta,
  gamma = tuning result dl o2$result$regr.xgboost.gamma,
  lambda = tuning_result_dl_o2$result$regr.xgboost.lambda
learner dl tmobile = make learner(
  nrounds = tuning_result_dl_tmobile$result$regr.xgboost.nrounds,
  eta = tuning_result_dl_tmobile$result$regr.xgboost.eta,
  gamma = tuning_result_dl_tmobile$result$regr.xgboost.gamma,
  lambda = tuning_result_dl_tmobile$result$regr.xgboost.lambda
)
learner_dl_vodafone = make_learner(
  nrounds = tuning_result_dl_vodafone$result$regr.xgboost.nrounds,
  eta = tuning_result_dl_vodafone$result$regr.xgboost.eta,
  gamma = tuning_result_dl_vodafone$result$regr.xgboost.gamma,
  lambda = tuning_result_dl_vodafone$result$regr.xgboost.lambda
)
```

2.5 Validierung

```
resampling_result_dl_o2 = resample(
  task = task_dl_o2,
  learner = learner_dl_o2,
  resampling = make_outer_resampling(
    task_dl_o2,
    dataset_dl,
    drive_ids_train=1:7,
    drive_ids_test=8:10
```

```
),
  store models = TRUE
resampling_result_dl_tmobile = resample(
  task = task_dl_tmobile,
  learner = learner_dl_tmobile,
 resampling = make outer resampling(
    task dl tmobile,
    dataset dl,
    drive_ids_train=1:7,
    drive_ids_test=8:10
  ),
  store_models = TRUE
resampling_result_dl_vodafone = resample(
  task = task_dl_vodafone,
  learner = learner_dl_vodafone,
  resampling = make_outer_resampling(
    task_dl_vodafone,
    dataset_dl,
    drive_ids_train=1:7,
    drive_ids_test=8:10
  ),
  store models = TRUE
predictions_dl_o2 = as.data.table(resampling_result_dl_o2$prediction())
glimpse(tibble(predictions dl o2))
## Rows: 609
## Columns: 3
## $ row id
             <int> 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157...
              <dbl> 3.72, 2.56, 0.69, 0.36, 0.55, 0.36, 0.37, 0.28, 0.12, 1.36...
## $ truth
## $ response <dbl> 8.0897350, 1.4053173, 3.7108042, 0.4917478, 0.3968158, 0.6...
predictions_dl_tmobile = as.data.table(resampling_result_dl_tmobile$prediction())
predictions_dl_vodafone = as.data.table(resampling_result_dl_vodafone$prediction())
validation_results_dl = bind_rows(
  tibble(predictions dl o2) %>%
    inner_join(tibble(task_dl_o2$row_names), by="row_id") %>%
    inner_join(dataset_dl, by=c("row_name"="row_id_original")),
  tibble(predictions_dl_tmobile) %>%
    inner_join(tibble(task_dl_tmobile$row_names), by="row_id") %>%
    inner_join(dataset_dl, by=c("row_name"="row_id_original")),
  tibble(predictions_dl_vodafone) %>%
    inner_join(tibble(task_dl_vodafone$row_names), by="row_id") %>%
    inner_join(dataset_dl, by=c("row_name"="row_id_original"))
)
glimpse(validation_results_dl)
## Rows: 1,923
## Columns: 18
```

```
<int> 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, ...
## $ row id
## $ truth
                    <dbl> 3.72, 2.56, 0.69, 0.36, 0.55, 0.36, 0.37, 0.28, 0....
## $ response
                    <dbl> 8.0897350, 1.4053173, 3.7108042, 0.4917478, 0.3968...
                    <int> 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, ...
## $ row_name
## $ drive id
                    <int> 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, ...
## $ timestamp
                    <dttm> 2018-12-11 09:04:12, 2018-12-11 09:04:23, 2018-12...
## $ scenario
                    <fct> campus, campus, campus, campus, campus, campus, ca...
## $ provider
                    ## $ velocity_mps
                    <dbl> 0.00, 7.20, 8.74, 9.01, 9.00, 11.68, 0.00, 0.00, 1...
                    <dbl> -89, -92, -88, -99, -105, -102, -100, -101, -100, ...
## $ rsrp_dbm
## $ rsrq_db
                    <dbl> -9, -12, -12, -15, -16, -16, -17, -16, -14, -16, -...
                    <dbl> 13, 3, 7, -4, -3, -5, -7, -5, 1, -4, -7, -6, 0, -2...
## $ rssnr_db
## $ cqi
                    <dbl> 11, 5, 6, 4, 3, 2, 3, 4, 6, 5, 3, 4, 5, 6, 5, 6, 4...
## $ ta
                    <dbl> 7, 7, 7, 7, 7, 7, 12, 12, 12, 7, 12, 12, 12, 12, 12, 1...
## $ enodeb
                    <fct> 52410, 52410, 52410, 52410, 52410, 52410, 52900, 5...
## $ f_mhz
                    <dbl> 6.0, 2.0, 7.0, 2.0, 8.0, 2.0, 8.0, 6.0, 0.5, 1.0, ...
## $ payload_mb
## $ throughput_mbits <dbl> 3.72, 2.56, 0.69, 0.36, 0.55, 0.36, 0.37, 0.28, 0....
all(validation_results_dl$truth == validation_results_dl$throughput_mbits)
## [1] TRUE
validation_results_dl = validation_results_dl %>%
 rename(prediction_xgboost=response) %>%
 select(-truth, -row_id, -row_name)
# write_csv(validation_results_dl, str_c(results_dir, "predictions_xgboost_dl.csv"))
```

2.5.1 Scatter Plots

```
ggplot(
  filter(validation_results_dl, provider=="o2"),
  aes(x=throughput_mbits, y=prediction_xgboost)
) +
  geom_point(aes(color=scenario, shape=scenario)) +
  xlab("Measured Data Rate [MBit/s]") +
  ylab("Predicted Data Rate [MBit/s]") +
  ggtitle("Download-Rate Predictions for Provider O2")
```

Download-Rate Predictions for Provider O2


```
ggplot(
   filter(validation_results_dl, provider=="tmobile"),
   aes(x=throughput_mbits, y=prediction_xgboost)
) +
   geom_point(aes(color=scenario, shape=scenario)) +
   xlab("Measured Data Rate [MBit/s]") +
   ylab("Predicted Data Rate [MBit/s]") +
   ggtitle("Download-Rate Predictions for Provider T-Mobile")
```



```
ggplot(
  filter(validation_results_dl, provider=="vodafone"),
  aes(x=throughput_mbits, y=prediction_xgboost)
) +
  geom_point(aes(color=scenario, shape=scenario)) +
  xlab("Measured Data Rate [MBit/s]") +
  ylab("Predicted Data Rate [MBit/s]") +
  ggtitle("Download-Rate Predictions for Provider Vodafone")
```

Download-Rate Predictions for Provider Vodafone

2.6 Relevanz der Kovariablen

2.6.1 Permutation Feature Importance

```
num_permutation_sims_dl = 5
filter_permutation_o2_dl = flt("permutation",
  learner = learner dl o2$clone(),
  resampling = uninstantiate_resampling(
    make_outer_resampling(
      task_dl_o2,
      dataset_dl,
      drive_ids_train=1:7,
      drive_ids_test=8:10
    )
  ),
  measure = msr("regr.mae"),
  standardize = TRUE,
  nmc = num_permutation_sims_dl
filter_permutation_o2_dl$calculate(task_dl_o2)
permutation_dl_o2 = tibble(
  as.data.table(filter_permutation_o2_dl)
) %>% mutate(provider="o2")
filter_permutation_tmobile_dl = flt("permutation",
```

```
learner = learner_dl_tmobile$clone(),
  resampling = uninstantiate_resampling(
    make_outer_resampling(
      task_dl_tmobile,
      dataset_dl,
      drive_ids_train=1:7,
      drive_ids_test=8:10
    )
  ),
  measure = msr("regr.mae"),
  standardize = TRUE,
  nmc = num_permutation_sims_dl
filter_permutation_tmobile_dl$calculate(task_dl_tmobile)
permutation_dl_tmobile = tibble(
  as.data.table(filter_permutation_tmobile_dl)
) %>% mutate(provider="tmobile")
filter_permutation_vodafone_dl = flt("permutation",
  learner = learner_dl_vodafone$clone(),
  resampling = uninstantiate_resampling(
    make_outer_resampling(
      task_dl_vodafone,
      dataset_dl,
      drive ids train=1:7,
      drive ids test=8:10
    )
  ),
  measure = msr("regr.mae"),
  standardize = TRUE,
  nmc = num_permutation_sims_dl
filter_permutation_vodafone_dl$calculate(task_dl_vodafone)
permutation_dl_vodafone = tibble(
  as.data.table(filter_permutation_vodafone_dl)
) %>% mutate(provider="vodafone")
permutation_dl = bind_rows(
  permutation_dl_o2,
  permutation_dl_tmobile,
  permutation_dl_vodafone
```

 $\textit{\# write_csv(permutation_dl, str_c(results_dir, "feature_importance_xgboost_dl.csv"))} \\$

3 Vorhersage der eNodeB-Verbindungsdauern

3.1 Einlesen der Daten

```
dataset_linklifetime = read_csv(
   str_c(data_dir, "dataset_context.csv"),
   col_types = cols(
        drive_id = col_integer(),
```

```
scenario = col_factor(),
   provider = col_factor(),
   ci = col_factor(),
   enodeb = col_factor()
 )
) %>% select(
 drive_id,
 timestamp,
 scenario,
 provider,
 velocity_mps,
 rsrp_dbm,
 rsrq_db,
 rssnr_db,
 cqi,
 ta,
 enodeb,
 rsrp_neighbor,
 rsrq_neighbor,
 link_lifetime
) %>% drop_na() %>% rowid_to_column(var="row_id_original")
dataset_linklifetime_o2 = filter(dataset_linklifetime, provider=="o2")
glimpse(dataset_linklifetime_o2)
## Rows: 22,040
## Columns: 15
## $ row_id_original <int> 1, 2, 4, 6, 8, 10, 12, 15, 18, 21, 24, 27, 30, 33, ...
## $ drive id
                   ## $ timestamp
                   <dttm> 2018-12-10 09:08:46, 2018-12-10 09:08:47, 2018-12-...
## $ scenario
                   <fct> campus, campus, campus, campus, campus, campus, cam...
## $ provider
                   ## $ velocity_mps
                   <dbl> 6.76, 7.65, 8.57, 10.08, 10.73, 10.93, 11.19, 11.66...
                   <dbl> -98, -101, -101, -94, -94, -98, -98, -94, -94, -94, ...
## $ rsrp_dbm
                   <dbl> -10, -12, -12, -9, -9, -8, -8, -9, -9, -9, -9, -9, ...
## $ rsrq_db
                   <dbl> -1, -1, -1, 5, 5, 1, 1, -2, -2, -2, -1, -1, -3, -3,...
## $ rssnr_db
## $ cqi
                   <dbl> 9, 6, 6, 12, 12, 10, 10, 5, 5, 5, 8, 8, 6, 6, 5, 5,...
## $ ta
                   <fct> 54016, 54016, 54016, 54016, 54016, 54016, 54016, 54...
## $ enodeb
                   <dbl> -99, -104, -104, -100, -100, -98, -98, -98, -98, -9...
## $ rsrp_neighbor
## $ rsrq_neighbor
                   <dbl> -12, -14, -14, -17, -17, -11, -11, -11, -11, -11, -...
                   <dbl> 18.01, 17.00, 16.00, 15.00, 14.00, 13.00, 12.00, 11...
## $ link_lifetime
dataset_linklifetime_tmobile = filter(dataset_linklifetime, provider=="tmobile")
glimpse(dataset_linklifetime_tmobile)
## Rows: 23,741
## Columns: 15
## $ row_id_original <int> 3, 5, 7, 9, 11, 13, 16, 19, 22, 25, 28, 31, 34, 37,...
## $ drive id
                   <dttm> 2018-12-10 09:08:47, 2018-12-10 09:08:48, 2018-12-...
## $ timestamp
## $ scenario
                   <fct> campus, campus, campus, campus, campus, campus, cam...
                   <fct> tmobile, tmobile, tmobile, tmobile, tmobile, tmobil...
## $ provider
## $ velocity_mps
                   <dbl> 3.35, 3.81, 9.01, 10.84, 11.14, 11.22, 11.44, 11.75...
## $ rsrp_dbm
                   <dbl> -91, -91, -88, -88, -88, -86, -86, -88, -88, -85, -...
```

```
<dbl> -6, -6, -6, -6, -6, -6, -7, -7, -5, -5, -5, -5, ...
## $ rsrq db
## $ rssnr_db
                                                       <dbl> 12, 12, 18, 18, 18, 20, 20, 19, 19, 22, 22, 18, 18,...
## $ cqi
                                                       <dbl> 11, 11, 15, 15, 15, 12, 12, 15, 15, 10, 10, 10, 10, ...
                                                       ## $ ta
## $ enodeb
                                                       <fct> 103068, 103068, 103068, 103068, 103068, 103068, 103...
                                                       <dbl> -Inf, -
## $ rsrp neighbor
                                                       <dbl> -Inf, -
## $ rsrq neighbor
                                                       <dbl> 19.01, 18.00, 16.99, 16.00, 15.00, 14.01, 13.01, 12...
## $ link lifetime
dataset_linklifetime_vodafone = filter(dataset_linklifetime, provider=="vodafone")
glimpse(dataset linklifetime vodafone)
## Rows: 22,553
## Columns: 15
## $ row_id_original <int> 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 57, 60,...
## $ drive_id
                                                       ## $ timestamp
                                                       <dttm> 2018-12-10 09:08:52, 2018-12-10 09:08:53, 2018-12-...
## $ scenario
                                                       <fct> campus, campus, campus, campus, campus, campus, cam...
## $ provider
                                                       <fct> vodafone, vodafone, vodafone, vodafone, v...
## $ velocity_mps
                                                       <dbl> 3.45, 3.45, 3.88, 9.69, 10.89, 11.01, 11.33, 11.63,...
## $ rsrp_dbm
                                                       <dbl> -109, -114, -114, -120, -120, -117, -117, -118, -11...
                                                       <dbl> -9, -10, -10, -18, -18, -11, -11, -11, -11, -15, -1...
## $ rsrq db
## $ rssnr_db
                                                       <dbl> 3, 7, 7, -4, -4, -6, -6, -16, -16, -8, -8, -5, -5, ...
## $ cqi
                                                       <dbl> 10, 10, 10, 4, 4, 7, 7, 3, 3, 4, 4, 6, 6, 6, 6, 6, ...
## $ ta
                                                       <dbl> 24, 24, 24, 63, 63, 63, 63, 63, 63, 63, 63, 17, 17,...
                                                       <fct> 52316, 52316, 52316, 51044, 51044, 51044, 51044, 51...
## $ enodeb
## $ rsrp_neighbor
                                                       <dbl> -Inf, -115, -115, -111, -111, -111, -111, -119, -11...
## $ rsrq neighbor
                                                       <dbl> -Inf, -12, -12, -13, -13, -13, -14, -14, -13, ...
## $ link_lifetime
                                                       <dbl> 3.01, 2.00, 1.00, 13.00, 12.00, 11.00, 10.00, 9.00,...
               Vorhersage-Tasks für jeden Provider
task_linklifetime_o2 = make_task(
     dataset_linklifetime_o2,
     "task_linklifetime_o2",
     target = "link_lifetime"
task_linklifetime_o2
## <TaskRegr:task_linklifetime_o2> (22040 x 10)
## * Target: link_lifetime
## * Properties: -
## * Features (9):
            - dbl (8): cqi, rsrp_dbm, rsrp_neighbor, rsrq_db, rsrq_neighbor,
##
##
                  rssnr_db, ta, velocity_mps
             - fct (1): enodeb
task_linklifetime_tmobile = make_task(
     dataset_linklifetime_tmobile,
     "task_linklifetime_tmobile",
    target = "link_lifetime"
task_linklifetime_tmobile
```

<TaskRegr:task_linklifetime_tmobile> (23741 x 10)

```
## * Target: link_lifetime
## * Properties: -
## * Features (9):
     - dbl (8): cqi, rsrp_dbm, rsrp_neighbor, rsrq_db, rsrq_neighbor,
       rssnr_db, ta, velocity_mps
##
     - fct (1): enodeb
task_linklifetime_vodafone = make_task(
 dataset linklifetime vodafone,
 "task linklifetime vodafone",
 target = "link_lifetime"
task_linklifetime_vodafone
## <TaskRegr:task_linklifetime_vodafone> (22553 x 10)
## * Target: link lifetime
## * Properties: -
## * Features (9):
    - dbl (8): cqi, rsrp_dbm, rsrp_neighbor, rsrq_db, rsrq_neighbor,
##
       rssnr_db, ta, velocity_mps
    - fct (1): enodeb
##
```

3.3 Parameter Tuning

```
tuning_evals_linklifetime = 50
tuning_result_linklifetime_o2 = get_tuning_result(
 task linklifetime o2,
 dataset_linklifetime,
 grid resolution = 20,
 n_evals = tuning_evals_linklifetime
tuning_result_linklifetime_tmobile = get_tuning_result(
 task_linklifetime_tmobile,
 dataset_linklifetime,
 grid_resolution = 20,
 n_evals = tuning_evals_linklifetime
tuning_result_linklifetime_vodafone = get_tuning_result(
  task_linklifetime_vodafone,
 dataset_linklifetime,
  grid_resolution = 20,
 n_evals = tuning_evals_linklifetime
tuning_result_linklifetime = bind_rows(
  tibble(tuning_result_linklifetime_o2$result) %>% mutate(provider="o2"),
  tibble(tuning_result_linklifetime_tmobile$result) %>% mutate(provider="tmobile"),
 tibble(tuning_result_linklifetime_vodafone$result) %>% mutate(provider="vodafone"),
) %>% select(
  "provider",
  "regr.xgboost.nrounds",
  "regr.xgboost.eta",
```

```
"regr.xgboost.gamma",
    "regr.xgboost.lambda"
)
knitr::kable(tuning_result_linklifetime)
```

provider	regr.xgboost.nrounds	regr.xgboost.eta	regr.xgboost.gamma	regr.xgboost.lambda
o2	384	0.1142105	2.631579	7.894737
tmobile	1000	0.0621053	7.894737	2.105263
vodafone	100	0.2705263	4.210526	4.736842

3.4 Parametrisierung der Lernalgorithmen mit den gefundenen Hyperparametern

```
learner_linklifetime_o2 = make_learner(
    nrounds = tuning_result_linklifetime_o2$result$regr.xgboost.nrounds,
    eta = tuning_result_linklifetime_o2$result$regr.xgboost.eta,
    gamma = tuning_result_linklifetime_o2$result$regr.xgboost.gamma,
    lambda = tuning_result_linklifetime_o2$result$regr.xgboost.lambda
)

learner_linklifetime_tmobile = make_learner(
    nrounds = tuning_result_linklifetime_tmobile$result$regr.xgboost.nrounds,
    eta = tuning_result_linklifetime_tmobile$result$regr.xgboost.eta,
    gamma = tuning_result_linklifetime_tmobile$result$regr.xgboost.gamma,
    lambda = tuning_result_linklifetime_tmobile$result$regr.xgboost.lambda
)

learner_linklifetime_vodafone = make_learner(
    nrounds = tuning_result_linklifetime_vodafone$result$regr.xgboost.nrounds,
    eta = tuning_result_linklifetime_vodafone$result$regr.xgboost.eta,
    gamma = tuning_result_linklifetime_vodafone$result$regr.xgboost.eta,
    gamma = tuning_result_linklifetime_vodafone$result$regr.xgboost.eta,
    gamma = tuning_result_linklifetime_vodafone$result$regr.xgboost.lambda
)
```

3.5 Validierung

```
resampling_result_linklifetime_o2 = resample(
  task = task_linklifetime_o2,
  learner = learner_linklifetime_o2,
  resampling = make_outer_resampling(
    task_linklifetime_o2,
    dataset_linklifetime,
    drive_ids_train=1:7,
    drive_ids_test=8:10
  ),
  store_models = TRUE
)

resampling_result_linklifetime_tmobile = resample(
  task = task_linklifetime_tmobile,
```

```
learner = learner_linklifetime_tmobile,
  resampling = make_outer_resampling(
   task linklifetime tmobile,
   dataset linklifetime,
   drive_ids_train=1:7,
   drive_ids_test=8:10
 ),
  store_models = TRUE
resampling_result_linklifetime_vodafone = resample(
  task = task_linklifetime_vodafone,
  learner = learner_linklifetime_vodafone,
  resampling = make_outer_resampling(
   task_linklifetime_vodafone,
   dataset_linklifetime,
   drive_ids_train=1:7,
   drive_ids_test=8:10
  ),
  store_models = TRUE
predictions_linklifetime_o2 = as.data.table(
  resampling_result_linklifetime_o2\( prediction()
glimpse(tibble(predictions_linklifetime_o2))
## Rows: 6,610
## Columns: 3
## $ row_id
              <int> 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1734, 1735, 1736...
              <dbl> 59.01, 58.01, 57.00, 56.00, 55.00, 54.01, 53.01, 52.01, 51...
## $ truth
## $ response <dbl> 56.91211, 56.91211, 71.43980, 71.43980, 71.43980, 69.54551...
predictions linklifetime tmobile = as.data.table(
 resampling_result_linklifetime_tmobile$prediction()
predictions_linklifetime_vodafone = as.data.table(
  resampling_result_linklifetime_vodafone$prediction()
validation_results_linklifetime = bind_rows(
  tibble(predictions_linklifetime_o2) %>%
    inner_join(tibble(task_linklifetime_o2$row_names), by="row_id") %>%
    inner_join(dataset_linklifetime, by=c("row_name"="row_id_original")),
  tibble(predictions_linklifetime_tmobile) %>%
    inner_join(tibble(task_linklifetime_tmobile$row_names), by="row_id") %>%
    inner_join(dataset_linklifetime, by=c("row_name"="row_id_original")),
  tibble(predictions_linklifetime_vodafone) %>%
    inner_join(tibble(task_linklifetime_vodafone$row_names), by="row_id") %>%
    inner_join(dataset_linklifetime, by=c("row_name"="row_id_original"))
glimpse(validation_results_linklifetime)
## Rows: 20,207
## Columns: 18
```

```
<int> 1727, 1728, 1729, 1730, 1731, 1732, 1733, 1734, 1735,...
## $ row id
## $ truth
               <dbl> 59.01, 58.01, 57.00, 56.00, 55.00, 54.01, 53.01, 52.0...
## $ response
               <dbl> 56.91211, 56.91211, 71.43980, 71.43980, 71.43980, 69....
               <int> 6247, 6250, 6253, 6256, 6259, 6262, 6265, 6268, 6271,...
## $ row_name
## $ drive id
               <dttm> 2018-12-11 09:04:04, 2018-12-11 09:04:05, 2018-12-11...
## $ timestamp
## $ scenario
               <fct> campus, campus, campus, campus, campus, campus, campus...
               ## $ provider
## $ velocity_mps
              <dbl> 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, ...
## $ rsrp_dbm
               <dbl> -88, -88, -89, -89, -89, -89, -89, -86, -86, -91, -91...
## $ rsrq_db
               <dbl> -11, -11, -8, -8, -8, -9, -9, -7, -7, -9, -9, -13, -1...
               <dbl> 7, 7, 12, 12, 12, 13, 13, 11, 11, 6, 6, 4, 4, 4, 4, 3...
## $ rssnr_db
## $ cqi
               <dbl> 2, 2, 8, 8, 8, 11, 11, 9, 9, 7, 7, 6, 6, 6, 6, 6, 6, ...
## $ ta
               ## $ enodeb
               <fct> 52410, 52410, 52410, 52410, 52410, 52410, 52410, 52410...
## $ link_lifetime <dbl> 59.01, 58.01, 57.00, 56.00, 55.00, 54.01, 53.01, 52.0...
all(validation_results_linklifetime$truth == validation_results_linklifetime$link_lifetime)
## [1] TRUE
validation_results_linklifetime = validation_results_linklifetime %>%
 rename(prediction_xgboost=response) %>%
 select(-truth, -row_id, -row_name)
# write_csv(
# validation_results_linklifetime,
  str_c(results_dir, "predictions_xqboost_linklifetime.csv")
```

3.5.1 Scatter Plots

```
ggplot(
  filter(validation_results_linklifetime, provider=="02"),
  aes(x=link_lifetime, y=prediction_xgboost)
) +
  geom_point(aes(color=scenario, shape=scenario)) +
  xlab("Measured Link-Lifetime [s]") +
  ylab("Predicted Link-Lifetime [s]") +
  ggtitle("Link-Lifetime Predictions for Provider 02")
```



```
ggplot(
   filter(validation_results_linklifetime, provider=="tmobile"),
   aes(x=link_lifetime, y=prediction_xgboost)
) +
   geom_point(aes(color=scenario, shape=scenario)) +
   xlab("Measured Link-Lifetime [s]") +
   ylab("Predicted Link-Lifetime [s]") +
   ggtitle("Link-Lifetime Predictions for Provider T-Mobile")
```



```
ggplot(
   filter(validation_results_linklifetime, provider=="vodafone"),
   aes(x=link_lifetime, y=prediction_xgboost)
) +
   geom_point(aes(color=scenario, shape=scenario)) +
   xlab("Measured Link-Lifetime [s]") +
   ylab("Predicted Link-Lifetime [s]") +
   ggtitle("Link-Lifetime Predictions for Provider Vodafone")
```


3.6 Relevanz der Kovariablen

3.6.1 Permutation Feature Importance

```
num_permutation_sims_linklifetime = 5
filter_permutation_o2_linklifetime = flt("permutation",
  learner = learner linklifetime o2$clone(),
  resampling = uninstantiate_resampling(
    make_outer_resampling(
      task_linklifetime_o2,
      dataset_linklifetime,
      drive_ids_train=1:7,
      drive_ids_test=8:10
    )
  ),
  measure = msr("regr.mae"),
  standardize = TRUE,
  nmc = num_permutation_sims_linklifetime
filter_permutation_o2_linklifetime$calculate(task_linklifetime_o2)
permutation_linklifetime_o2 = tibble(
  as.data.table(filter_permutation_o2_linklifetime)
) %>% mutate(provider="o2")
filter_permutation_tmobile_linklifetime = flt("permutation",
```

```
learner = learner_linklifetime_tmobile$clone(),
  resampling = uninstantiate_resampling(
    make_outer_resampling(
      task_linklifetime_tmobile,
      dataset_linklifetime,
      drive_ids_train=1:7,
      drive_ids_test=8:10
    )
  ),
  measure = msr("regr.mae"),
  standardize = TRUE,
  nmc = num_permutation_sims_linklifetime
filter_permutation_tmobile_linklifetime$calculate(task_linklifetime_tmobile)
permutation_linklifetime_tmobile = tibble(
  as.data.table(filter_permutation_tmobile_linklifetime)
) %>% mutate(provider="tmobile")
filter_permutation_vodafone_linklifetime = flt("permutation",
  learner = learner_linklifetime_vodafone$clone(),
  resampling = uninstantiate_resampling(
    make_outer_resampling(
      task_linklifetime_vodafone,
      dataset_linklifetime,
      drive ids train=1:7,
      drive ids test=8:10
    )
  ),
  measure = msr("regr.mae"),
  standardize = TRUE,
  nmc = num_permutation_sims_linklifetime
filter_permutation_vodafone_linklifetime$calculate(task_linklifetime_vodafone)
permutation_linklifetime_vodafone = tibble(
  as.data.table(filter_permutation_vodafone_linklifetime)
) %>% mutate(provider="vodafone")
permutation_linklifetime = bind_rows(
  permutation_linklifetime_o2,
  permutation_linklifetime_tmobile,
  permutation_linklifetime_vodafone
)
# write_csv(
# permutation_linklifetime,
   str_c(results_dir, "feature_importance_xgboost_linklifetime.csv")
```