Minimum Spanning Tree (MST)

Algorithms

MST Properties

- 1. A MST for connected graph has exactly **V 1** edges
- 2. **OMST** is **acyclic** (it's a tree)
- 3. A MST is **connected** (all vertices reachable)
- 4. State Total cost of MST is **minimum**
- 5. For disconnected graph we get a **forest** (multiple trees)

Prim's Algorithm

Main Idea:

A greedy algorithm that grows a tree from one starting vertex

At each step, it adds the minimum-weight edge connecting the tree to a vertex outside the tree

Mow it works:

- 1. 🚀 Start from any vertex
- 2. Y Add it to the tree
- 3. \bigcirc Find the minimum edge connecting the tree to an outside vertex
- 4. Add this edge and vertex to the tree
- 5. Repeat until all vertices are in the tree

Data Structures:

- **Priority Queue (Min-Heap)** store edges efficiently
- **Set** track vertices already in the tree

Time Complexity:

- $O((V + E) \log V)$
- Space Complexity: O(V + E)

Best for:

- Dense graphs (many edges)
- III Graphs represented as adjacency matrices

🧩 Kruskal's Algorithm

Main Idea:

A greedy algorithm that **sorts all edges by weight** and adds them **one by one** if they don't create a cycle

Now it works:

- 1. Sort all edges by weight (ascending)
- 2. Carata Take the minimum edge
- 3. \times If it creates a cycle \rightarrow skip
- 4. \bigvee If not \rightarrow add to MST
- 5. **☑** Repeat until MST has V–1 edges

Data Structures:

- Ø Disjoint Set Union (DSU) detect cycles efficiently
- | Sorted list of edges

DSU Optimizations:

- | Path compression flatten tree structure during find
- **III** Union by rank merge smaller tree into larger

Time Complexity:

- Sorting edges: **O(E log E)**
- DSU operations: **O(E \alpha(V))** where $\alpha(V) \approx \text{constant}$
- Total: O(E log E)
- Space Complexity: O(V + E)

Best for:

- **Frame Sparse graphs** (few edges)
- **I** Graph as edge list
- When edges are already sorted

X Comparison

Aspect	Prim	Kruskal
Complexity	O((V+E) log V)	O(E log E)
Best for	Dense graphs	Sparse graphs
Data Structure	Heap + Adjacency List	Sorted Edges + DSU
Implementation	Medium difficulty	Simpler

№ Dense graph (E ≈ V²):

• Prim: O(V² log V)

• Kruskal: $O(V^2 \log V^2) = O(V^2 \log V)$

Almost equal, Prim slightly better

∜ Sparse graph (E ≈ V):

• Prim: O(V log V)

• Kruskal: O(V log V)

■ Almost equal, Kruskal simpler

Theory and In Practice

in Theory

Prim algorithm

Sparse graph($E \approx V$):T(V,E)=(V+E)log₂(V) = 2Vlog₂(V)

Dense graph($E \approx V^2$): $T(V,E)=(V+V^2)log_2(V)=V^2log_2(V)$

V	log₂(V)	2·V·log ₂ (V)	V²log₂(V)		
		Sparse graph (E ≈ V)	Dense graph (E ≈ V²)		
		count of operations	count of operations		
1	0	0	0		
10	3.32	66.43	332.19		
100	6.64	1328.77	66,438.56		
1000	9.96	19931.56	9,965,784.28		
10000	13.28	265754	1,328,771,237.95		

Sparse graphs:

Dense graphs:

Kruskal algorithm

Sparse graph(E \approx V):T(V,E) = (Elog₂E) = Vlog₂V

Dense graph(E \approx V²):T(V,E) = (Elog₂E) = V²log₂V²

V	log ₂ V	Elog ₂E(sparse)	log ₂ V ²	V²log₂V²(dense)
1	0	0	0	0
10	3.32	33.2	6.64	664
100	6.64	664	13.29	132900
1000	9.97	9970	19.93	19930000
10000	13.29	132900	26.58	2658000000

Sparse graph:

Dense graph:

Practice

Prim algorithm

V	2·V·log ₂ (V)	V²log₂(V)		
	Sparse graph (E ≈ V)	Dense graph (E ≈ V²)		
	count of operations	count of operations		
1	0	0		
10	80	no data		
100	1400	no data		
1000	20000	no data		
10000	280000	no data		

Sparse graph in practice:

Dense graph in practice:

I cant do it cause it is difficult to create such a graph with a large number of vertices, and if possible, it would not be a correct comparison. So I simply abandoned this idea and decided to see the difference in a sparse graph

Kruskal algorithm

V	Elog ₂E(sparse)	V ² log ₂ V ²
1	0	0
10	114	no data
100	1787	no data
1000	23907	no data
10000	318359	no data

Sparse graph in practice:

For the same reason as above

***** Conclusions

Both Prim's and Kruskal's algorithms build a correct Minimum Spanning Tree (MST), but their performance depends on graph density, data structure, and implementation

1. Graph Density

- ✓ Sparse graphs (E ~ V) → Kruskal is usually faster
 It sorts existing edges and efficiently uses the DSU structure
- Poense graphs (E ≈ V²) → Prim performs better
 With a binary heap and adjacency list, it handles many edges efficiently

2. Edge Representation

- Prim's algorithm works best with an adjacency list/matrix
- & Kruskal's algorithm suits an edge list, since it relies on sorting edges

3. Implementation Complexity

- 📃 Kruskal is simpler to implement and understand
- \rightarrow Prim is more complex but can be optimized with a heap for better speed on dense graphs

4. Performance Comparison

• Theoretical complexity:

- Prim (Binary Heap): O((V + E) log V)
- Kruskal: O(E log E)
- Practical results:
 - o Prim → better on large dense graphs
 - ♠ Kruskal → better on small or sparse graphs

Final Conclusion

We can see that in practice, time complexity will be greater than in theory, because in theory we do not take constants into account. However, the data does not differ greatly from each other.

Metrics I relied on during the assignment

===	=== METRICS FOR CHARTS ===							
ID	V I	Ξ	Prim_Cost	Kruskal_Cost	Prim_Ops	Kruskal_Ops	Prim_Time_ms	Kruskal_Time_ms
1	1	0	0	0	0	0	2,8160	13,9762
2	10	10	226	226	80	44	2,2995	0,1629
3	100	100	2340	2340	1400	487	0,5134	0,3936
4	1000	1000	24945	24945	20000	4907	3,3036	1,8366
5	10000	10000	253988	253988	280000	48359	17,9568	12,9900