INDIAN INSTITUTE OF TECHNOLOGY KANPUR

Introduction and Background

- Introduction to panel data methods
- Issues with the OLS model in the presence of panel data
- Panel data: Least squares dummy variable (LSDV) method
- Panel data: First difference (FD) estimators
- Panel data: Fixed effects (FE) estimators
- Panel data: Random effects (RE) estimators
- Panel data: FE vs. RE estimators
- Summary and concluding remarks

Introduction to Panel Data Methods

Relationship between security returns r_{it} and order imbalance OIB_{it}

- Here $OIB_{it} = \frac{Buy_{Volume} Sell_{Volume}}{Buy_{Volume} + Sell_{Volume}}$
- $r_{it} = a_0 + a_1 OIB_{it} + v_t + \alpha_i + \mu_{it}$
- Assume 10 years and 100 securities
- $v_t + \alpha_i + \mu_{it}$ are our error terms; let us discuss them one by one
- v_t ('t' from 1...T) is solely time dependent term, e.g., broad market-wide changes
- These time-dependent terms don't vary across the city, and can be accounted for by 'n-1' (10-1 = 9) dummy variables [i.e., least square dummy variable estimation]

Introduction to Panel Data Methods

Relationship between security returns r_{it} and order imbalance OIB_{it}

- $r_{it} = a_0 + a_1 OIB_{it} + v_t + \alpha_i + \mu_{it}$
- α_i ('i' from 1...n) is the security-specific variable like firm size, firm beta, industry, etc., and not changing frequently overtime
- Usually, T: number of periods is small, and N: number of individual entities is large
- So, accounting for α_i through dummy variable method can make the model extremely inefficient
- So, what if we do not account for this α_i

Fitting OLS Through Scattered Data Points

Fitting OLS with Panel Data

Pooled OLS Estimation with Panel Data

Relationship between security returns r_{it} and order imbalance OIB_{it}

- $r_{it} = a_0 + a_1 OIB_{it} + v_t + \alpha_i + \mu_{it}$
- $n_{it} = \alpha_i + \mu_{it} [\alpha_i$: Unobserved heterogeneity]
- $Cov(n_{it}, OIB_{it}) \neq 0$ [Problem of endogeneity]
- Cov (n_{it},n_{it+1}) =Cov $(u_{it}+\alpha_i,u_{it+1}+\alpha_i)\neq 0$ [Problem of autocorrelation]
- Pooled OLS estimates will be biased and inconsistent

LSDV Estimators

Relationship between security returns r_{it} and order imbalance OIB_{it}

- Assuming that time-varying effects can be modeled using time-dummies
- $r_{it} = a_0 + a_1 OIB_{it} + \alpha_i + \mu_{it}$ (1)
- Include 'N-1' dummy variable for 'N' securities $(S_2, S_3, ..., S_N)$ as follows
- $r_{it} = a_0 + a_1 OIB_{it} + \sum_{n=2}^{N} a_n S_n + \mu_{it}$ (2)
- Here, S_2 is a dummy variable that takes a value of 1 for security 2, and 0 otherwise; and so on for securities 3, 4,..., N
- Thus, we are explicitly accounting for the unobserved heterogeneity for each security individually

LSDV Estimators

$$r_{it} = a_0 + a_1 OIB_{it} + \sum_{n=2}^{N} a_n S_n + \mu_{it}$$

- The estimates of a_n are consistent under the following conditions
- $Cov(u_{it}, OIB_{it}) = 0$; no serial correlation in errors; homoscedasticity in error terms
- Theoretically, under these assumptions, the estimates from LSDV are the same as fixed-effects (FE) estimate
- However, dummy variables allow estimating this α_i explicitly, unlike FE estimators
- However, the model is not parsimonious with large N

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

First Differences Estimators

Relationship between security returns r_{it} and order imbalance OIB_{it}

- Assuming that time-varying effects can be modeled using time-dummies
- $r_{it} = a_0 + a_1 OIB_{it} + \alpha_i + \mu_{it}$ (1)
- $r_{it-1} = a_0 + a_1 OIB_{it-1} + \alpha_i + \mu_{it-1}$ (2)
- Subtract (1) (2)
- $Cov(\Delta \mu_{it}, \Delta OIB_{it}) = 0$
- This model can be estimated with OLS estimation.

First Differences (FD) Estimators

Relationship between security returns r_{it} and order imbalance OIB_{it}

$$\Delta r_{it} = a_1 \Delta O I B_{it} + \Delta \mu_{it}$$
 (3)

- $Cov(\Delta u_{it}, \Delta u_{it-1}) = Cov(u_{it} u_{it-1}, u_{it-1} u_{it-2})$
- However, these is an issue of auto-correlation due to first differencing
- Differencing leads to small variation in variables and therefore considerable increase in standard error of estimates
- Loss of observation
- Time independent factors can not be estimated

First Differences (FD) Estimators

Relationship between security returns r_{it} and order imbalance OIB_{it}

All those terms with no variance across time will be eliminated;
 so, we need the dependent and independent variables to have
 some variation across time and city

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

Fixed-Effects Estimators

•
$$r_{it} = a_0 + a_1 OIB_{it} + \boldsymbol{\alpha_i} + \boldsymbol{\mu_{it}}$$
 (1)

- Time-demean equation (1) $\frac{1}{T}\sum_{t=1}^{T}r_{it} \forall i$'s = 1, 2, 3...N
- $\overline{r_i} = a_0 + a_1 \overline{OIB_i} + \alpha_i + \overline{u_i}$ (2)
- Substract (1) (2)
- r_{it} - $\overline{r_i} = a_1(OIB_{it}$ - $\overline{OIB_i})+(\mu_{it}$ - $\overline{u_i})$
- $\tilde{r}_{it} = a_1 * \widetilde{OIB}_{it} + U_{it}$;
- Here, $Cov(\widetilde{OIB}_{it}, U_{it}) = 0$, and pooled OLS estimates will be consistent

Fixed-Effects Estimators

- $\tilde{r}_{it} = a_1 * \widetilde{OIB}_{it} + U_{it}$;
- Fixed effects remove any time-constant terms
- Fixed effects are costly (due to transformation of original data)

- $\tilde{r}_{it} = a_1 * \widetilde{OIB}_{it} + U_{it}$;
- For T = 2, FD = FE
- For T > 2, FD ≠ FE
- With the assumptions that (a) large sample $N \rightarrow \infty$ (b) error term (μ_{it}) is uncorrelated with the independent variable (e.g., OIB_{it}) (c) sample is random, and (d) sufficient variance in variables, the following is held
- $E[\widehat{a_1}_{FD}] = E[\widehat{a_1}_{FE}] = a_1$ (both FE and FD estimates of a_1 are unbiased)
- $\widehat{a_1}_{FD} \xrightarrow{p} \beta$; $\widehat{a_1}_{FE} \xrightarrow{p} a_1$ (both the estimators are consistent)

- $r_{it} = a_0 + a_1 OIB_{it} + \alpha_i + \mu_{it}$
- (A) $Cov(\mu_{it}, \mu_{it-1}) = 0$: error terms (μ_{it}) are serially uncorrelated
- First differencing introducing serial correlation in error terms
- Due to this, the standard error of estimates for FE estimators are lower (more efficient) than FD estimators: $se(\hat{a}_{1_{FE}}) < se(\hat{a}_{1_{FD}})$
- (B) $\mu_{it} = \mu_{it-1} + e_{it}$: i.e., $\Delta \mu_{it-1} = e_{it}$
- Random walk structure in error term or strong autocorrelation in errors
- $se(\hat{a}_{1_{FE}}) > se(\hat{a}_{1_{FD}})$

- $r_{it} = a_0 + a_1 OIB_{it} + \alpha_i + \mu_{it}$
- (C) $\mu_{it} = \rho \mu_{it-1} + e_{it}$: AR(1) structure in error terms
- ρ is close to '1,' then the FD estimator is more efficient
- ρ is close to '0,' then the FE estimator is more efficient
- One solution is to examine the autocorrelation structure in FD errors
- If FD errors have a negative autocorrelation, that indicates original errors have no autocorrelation; hence FE is more appropriate
- If FD errors have a very small correlation, that indicates original errors have random walk; hence FD estimator is more appropriate

• $r_{it} = a_0 + a_1OIB_{it} + \alpha_i + \mu_{it}$

One solution is to examine the autocorrelation structure in FD errors

 For scenarios in between, one can estimate both FD and FE and compare

For non-stationary process, first differences are more useful

For small sample sizes, FD is more appropriate

For data with large time dimension FE estimators are more appropriate

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

- $r_{it} = a_0 + a_1 OIB_{it} + \alpha_i + \mu_{it}$
- Recall that the model would have an issue of endogeneity if the unobserved heterogeneity (α_i) is correlated with one of the independent variables:
 Cov(OIB_{it}, α_i)≠0
- Thus, pooled OLS is not effective, and we used FD/FE methods to remove α_i from the model
- However, if $Cov(OIB_{it}, \alpha_i)$ is reasonably close to '0' then, we need not apply FD/FE as they involve a heavy transformation in data
- E.g., FE leads to loss of observations (T-1 periods instead of T)

- $r_{it} = a_0 + a_1 OIB_{it} + \alpha_i + \mu_{it}$;
- $Cov(OIB_{it}, \alpha_i) = 0$; is a reasonable assumption in following cases
 - All the relevant variables are accounted for
 - α_i is very small relative to other variables
- In this scenario, pooled OLS provides consistent estimates
- However, the errors may still be serially correlated: $Cov(\alpha_i + \mu_{it}, \alpha_i + \mu_{is}) \neq 0$
- This serial correlation can be corrected through RE estimation without putting a heavy cost of data (as in FD/FE)
- RE is more efficient than Pooled OLS and FE

- If you believe that sufficient variables have been entered in the model and $Cov(OIB_{it}, \alpha_i) \neq 0$ [Problem of Endogeneity] has been resolved
- Then RE is better than FE and OLS
- r_{it} - $\lambda \overline{r_i} = a_0(1-\lambda) + a_1(OIB_{it}-\lambda \overline{OIB_i}) + (n_{it}-\lambda \overline{n_i})$, where $n_{it} = \alpha_i + \mu_{it}$
- The above random effect is the pooled estimation of the above transformation
- λ=0, then RE ≈ Pooled OLS
- $\lambda = 1$, then RE \approx FE

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

- r_{it} - $\lambda \overline{r_i} = a_0(1-\lambda) + a_1(OIB_{it}-\lambda \overline{OIB_i}) + (n_{it}-\lambda \overline{n_i})$, where $n_{it} = \alpha_i + \mu_{it}$
- Typically, 0≤ λ≤1, hence RE is somewhere between pooled OLS and FE
- What is λ ?
- $\lambda = 1 \left(\frac{\sigma_u^2}{\sigma_u^2 + T\sigma_a^2}\right)^{0.5}$; here σ_u^2 is the variance of error term, σ_a^2 is the variance of α_i
- If $\sigma_a^2 = 0$, then $\lambda = 0$; that is α_i is insignificant/not important: RE converges to pool
- $T\sigma_a^2 >>> \sigma_u^2$, $\lambda = 1$, RE converges to FE
- Thus, unlike FE (fully time-demean) RE is quasi time-demean
- RE also allows to estimate time-constant terms

•
$$r_{it}$$
- $\lambda \overline{r_i} = a_0 (1 - \lambda) + a_1 (OIB_{it} - \lambda \overline{OIB_i}) + (n_{it} - \lambda \overline{n_i})$ (2)

• where $n_{it} = \alpha_i + \mu_{it}$

•
$$\lambda = 1 - \left(\frac{\sigma_u^2}{\sigma_u^2 + T\sigma_a^2}\right)^{0.5}$$

- 1. First step is to estimate $\hat{\lambda}$: this requires estimation of Eq. (1) through FE or pooled OLS methods
- 2. Then estimate the transformed Eq. (2) using $\hat{\lambda}$ using pooled OLS
- The combined system set-up is RE method of estimation

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

Assumptions of RE

The following assumptions are made for RE estimators to be consistent, i.e.,

$$\widehat{a_1}_{RE} \xrightarrow{p} a_1 \text{ (as N} \to \infty)$$

- $Cov(OIB_{it}, \alpha_i) = 0$
- Each cross section is randomly sampled
- $E[u_{it}|X_{it},\alpha_i]=0$
- No perfect multicollinearity
- The last three assumptions are applicable to FE/FD also
- Only the first assumption is specific to RE

Estimating Time Constant Variables with RE

Recall the transformed model

- r_{it} - $\lambda \overline{r_i} = a_0(1 \lambda) + a_1(OIB_{it} \lambda \overline{OIB_i}) + n_{it} \lambda \overline{n_i}$
- In this model let us assume a time constant term $Size_i$, then the resulting model
- $r_{it} \lambda \overline{r_i} = a_0 (1 \lambda) + a_1 (OIB_{it} \lambda \overline{OIB_i}) + a_2 * Size_i (1 \lambda) + (n_{it} \lambda \overline{n_i})$
- As long as $\lambda \neq 0$, we can estimate a_2 , the effect of time constant variable $Size_i$
- However, for these estimates to remain consistent, the assumption pertaining to RE need to be held [e.g., $Cov(Size_i, OIB_{it})$] = 0

FE vs. RE

$Cov(\alpha_i, X_{it})=0$

- Both FE and RE estimates are consistent
- SE (RE estimate) < SE (FE estimate): Efficiency
- RE effect estimation allows for the effect of time-constant variables on dependent variables (For FE, that is not possible)

$Cov(\alpha_i, X_{it}) \neq 0$

- Only the FE estimate is consistent
- SE (RE estimate) < SE (FE estimate)
- Hausman test can be employed to select between the two

Hausman Test

Hausman test statistic tests this hypothesis

- Null $H_0 => Cov(\alpha_i, X_{it}) = 0$ We should be able to use RE
- Estimate W = $\frac{(\widehat{\beta_{FE}} \widehat{\beta_{RE}})^2}{Var(\widehat{\beta_{FE}}) Var(\widehat{\beta_{RE}})}$ is distributed as chi-square with one df
- If H₀ is true, the numerator is small (both estimates are consistent), but the denominator is large, the statistic W is close to 0: Fail to reject the null, use RE estimator
- If null is false, the numerator is large, W is away from zero [Cov(α_i, X_{it})≠0]: reject the null, use fixed effect estimator
- Essentially this estimator compares consistency (in numerator) relative to efficiency (in denominator)

- As compared to simple cross-sectional or time-series data, panel data with longitudinal properties is rich in granularity, and the information it offers
- However, it also entails a number of issues related to the estimation
- One of the important issues is the role of unobserved heterogeneity
- That is, the individual-specific time-invariant effects
- Though there are also only time-varying effects, they can be easily modeled by applying 'T-1' time dummies for T time periods

- Usually, there are many individual units as compared to time periods; therefore, accounting for these units explicitly through dummies can make the model extremely non-parsimonious
- One simple approach is to estimate such models using the FD method, which is simply differencing the series by one lag and then applying pooled OLS
- A more evolved FE approach is to estimate time-demeaned series with pooled OLS
- Both FD and FE methods, though useful, put a heavy cost on data due to the extreme nature of data transformation
- A less exacting approach is that of the RE method, which is a compromise between two extremes of FE and pooled OLS approach

- RE method is more appropriate when the assumption that unobserved heterogeneity is not correlated with the dependent variable $[Cov(\alpha_i, X_{it})=0]$ can be held
- Cov(α_i , X_{it})=0: Both RE and FE are consistent by RE is more efficient
- Cov(α_i , X_{it}) \neq 0: Only FE is consistent
- The decision to select FE vs. RE is taken through Hausman test (HT) statistic
- HT statistic essentially is a test of gains in consistency at the cost of efficiency while choosing FE vs. RE method

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

Introduction

- Application of Panel data algorithm in prediction of security prices
- Prediction of Broad marketwide returns
- Data Visualization
- Pool vs. Panel models (Fixed and Random effects)
- Interpret the output from different models
- Examine the cross-sectional/serial correlation in errors
- Obtain coefficients using robust standard errors

- Broad market wide indices are known to reflect the growth of economy and are often correlated with macroeconomic factors such as GDP
- This strategy to invest in market-index based on forecasts related to factors such as GDP has become a very prevalent strategy known as factor investing
- However, this exercise may be vitiated by unobserved heterogeneities such as country specific factors

 In this case study, we will employ panel data methods to forecast the market index prices

Sr	Country	Year	GDP	Return
1	Α	1990	21.01801	27.8%
2	Α	1991	-21.3649	32.1%
3	А	1992	-16.2345	36.3%
4	А	1993	21.69623	24.6%
5	А	1994	21.82465	42.5%
6	А	1995	21.89562	47.7%
7	А	1996	21.73732	50.0%
8	Α	1997	21.74277	5.2%
9	А	1998	21.94626	36.6%
10	Α	1999	17.49863	39.6%
11	В	1990	-22.5041	-8.2%
12	В	1991	-20.3831	10.6%

- The data includes, information about the country, year, GDP, log scaled mean deviated form, and returns
- Using different panel data methods, the relationship between GDP and returns to be modeled
- The subsequent slides provide the problem statement

The following tasks need to be performed:

Visualize the data

- Plot year wise market returns for each country
- Plot year wise GDP for each country
- Using the box plot show the heterogeneity in GDP and returns across countries and years
- What do we infer

- Model the relationship of GDP with index returns using simple pooled OLS: what are the problems with this approach
- Through visual approach show the fitted line with actual data
- Follow the LSDV approach and model the relationship after adding countrywide dummies

- Convert the data into panel format with country and year as the data identifiers (index)
- Model the data using fixed effect, using individual, time, and both the effects
- Perform the tests of poolability to show whether these fixed effects are significant

- Using the modeled fixed effect object from the panel data, extract the time and individual fixed effects
- Next model the data with random effects, examine the output and comment on individual and idiosyncratic heterogeneity
- Comment whether the random effects transformation is closer to pool and fixed effect
- Conduct the tests to examine whether random or fixed effects method is more appropriate

- Examine the cross-sectional and serial correlation in errors for pool, fixed, and random effects method
- Using robust standard errors, estimate coefficients that are robust to autocorrelation and heteroscedasticity in the model

- Broad marketwide returns are modelled with GDP factor
- First, data is visualized to see the individual and time effects
- Fixed and random effects models are estimated
- We performed residual diagnostics for cross-sectional and serial correlation in errors
- Estimate coefficients using robust standard errors

