Example 12

 $\triangle ABC$ is an isosceles right triangle with $\angle A=90^\circ$. Points P and Q are points on sides AB and AC, respectively. BP=AQ. Show that $\triangle PDQ$ is also an isosceles right triangle if D is the midpoint of BC.

Solution: Draw the median AD.

Since $\triangle ABC$ is an isosceles right triangle and D is the midpoint of $BC, AD \perp BC, \angle ADC = 90^{\circ}$.

By Theorem 1.3, $AD = BD = DC \angle DAQ = \angle A = 45^{\circ}$.

Since BP = AQ, $\triangle BPD \cong \triangle AQD$. Thus, $PD = QD . \angle ADQ = \angle BDP = \alpha$. We see that $\angle ADQ = \alpha + \beta = 90^{\circ}$. So $\angle PDQ = \alpha + \beta = 90^{\circ}$. We also know that PD = QD. Thus $\triangle PDQ$ is an isosceles right triangle.