SUBJECT CODE:- 253

FACULTY OF ENGINEERING AND TECHNOLOGY

F. E.(ALL) Examination Nov/Dec 2015

Engineering Mathematics - I (Revised)

[Time: Three Hours] [Max. Marks: 80]

"Please check whether you have got the right question paper."

- i) Q.No.1 and Q.No.6 are compulsory.
 - ii) Solve any two questions from Q.2, Q.3, Q.4 and Q.5.
 - iii) Solve any two questions from Q.7, Q.8, Q.9 and Q.10.
 - iv) Figures to the right indicate full marks.
 - v) Assume suitable data, if necessary.

Section- A

- Solve any five questions from the following. Q.1
 - a) Find the locus represented by |z-3|+|z+3|=0
 - b) Find tanhx, if $\sin hx \cos hx = 5$
 - c) Find the nth derivative of $e^{5x}\cos(3x+2)$
 - d) State the Ratio test of series
 - e) Derive the series for f(x)= sinhx using Maclaurin's theorem
 - f) Evaluate $\lim_{n\to\infty} \frac{\log x}{x^n}$, if n>0
 - g) Verify the exactness of differential equation.
 - [1 + 2xy $cosx^2 2xy$] $dx + [sinx^2 x^2] dy = 0$ Reduce the Bernoulli's differential equation $\frac{dy}{dx} + xsin2y = x^3 cos^2 y$ to linear differential equation. h) Reduce the Bernoulli's differential equation 1
- Q.2
- a) Prove that $(x + iy)^{\frac{m}{n}} + (x iy)^{\frac{m}{n}} = 2(x^2 + y^2)^{\frac{m}{2n}} \cos(\frac{m}{n} \tan^{-1} \frac{y}{n})$ 04 06

10

05

05

05

05

05

- b) Find the nth derivative of $\frac{x^4}{(x-1)(x-2)}$ 05
- c) Solve: $y^2 dx + (3xy 1)dy = 0$
- Q.3
- a) Simplify: $-\left[\frac{1+\cos\frac{\pi}{9}+i\sin\frac{\pi}{9}}{1+\cos\frac{\pi}{9}-i\sin\frac{\pi}{9}}\right]^{18}$
- b) Prove that $\tan^{-1}\left[\frac{x\sin\theta}{1-x\cos\theta}\right] = x\sin\theta + \frac{x^2}{2}\sin2\theta + \frac{x^3}{3}\sin3\theta + \cdots \dots$ 05
- c) Solve : $\frac{dy}{dx} = \frac{y-2x}{2y-x}$, y(1) = 2
- Q.4
 - a) If $\sin 6\theta = a\cos^5 \theta \sin \theta + b\cos^3 \theta \sin^3 \theta + c\cos \theta \sin^5 \theta$, find the value of a, b, c.
 - b) Prove that: $\lim_{n \to \infty} \left[\frac{a^{\frac{1}{x}} + b^{\frac{1}{x}} + c^{\frac{1}{x}} + d^{\frac{1}{x}}}{4} \right]^{x} = (abcd)^{\frac{1}{4}}$
 - c) Show that $\frac{g}{n^2}\log(\cos hnt)$ is the distance passed over by a body falling vertically from rest, assuming that the resistance of air is $\frac{n^2}{a}$ times the square of the velocity.

a) Considering the principle value, express $\left(\sqrt{t}\right)^{\sqrt{t}}$ in the form a+ibQ.5 05 06 b) Test the convergence of the series $\sum_{n=1}^{\infty} sin^{\frac{1}{n}}$ 04

c) Find the orthogonal trajectories of the family of curve $x^2 + cy^2 = 1$

Section-B

10

05 05

05

Q.6 Solve any five questions from the following.

- a) Find the equation of asymptote to the curve $y = \frac{x}{1+x^2}$
- b) Write the symmetry of the curve $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$
- c) Find the equations of tangent at pole to the curve $r = 2a \sin \theta$
- d) The length of curve $r = f(\theta)$ from the lines $\theta = a$ to $\theta = \beta$ is given by the formula......

e)
$$if = \log\left[\frac{\sqrt{x^2 + y^2}}{x + y}\right]$$
 find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$

f) If
$$u = lx + my$$
, $v = mx - ly$ then show that $\left(\frac{\partial u}{\partial x}\right)_y \left(\frac{\partial x}{\partial u}\right)_v = \frac{l^2}{l^2 + m^2}$

- g) Find the stationary points of the function $f(x,y) = x^2 + y^2 + 6x + 12$
- h) If $\gamma = \sqrt{x^2 + y^2}$, $= \tan^{-1} \frac{y}{x}$, $find \frac{\partial(\gamma, \theta)}{\partial(x, y)}$
- a) Trace the curve $y^2(a-x) = x^2(a+x)$ with full justification. Q.7 05

a) Trace the curve
$$y^2(a-x)=x^2(a+x)$$
 with full justification.
b) If $z=x^y+y^x$ then show that $\frac{\partial^2 z}{\partial x \partial y}=\frac{\partial^2 z}{\partial y \partial x}$

c) If
$$u = \frac{2yz}{x}$$
, $v = \frac{3zx}{y}$, $w = \frac{4xy}{z}$, find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$

a) Trace the curve $r^2=a^2cos2\theta$ with full justification. Q.8 05

b) Verify Euler's theorem for the function
$$u = \sin^{-1}(\frac{x}{y}) + \tan^{-1}(\frac{y}{x})$$

c) Find the length of the curve $x = a(\cos\theta - \theta\sin\theta)$, $y = a(\sin\theta - \theta\cos\theta)$ from $\theta = 0$ to $\theta = 2\pi$

- a) Trace the curve $x = a \cos^3 t$, $y = b \sin^3 t$ with full justification. Q.9 05

b) If
$$u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$$
, show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$

- c) Find the extreme value of $u = x^3 + 3xy^2 3x^2 3y^2 + 7$
- Q.10 Find total length of perimeter of cardioids $r = a(1 + \cos \theta)$ 05
 - Find the point on the plane ax + by + cz = p at which the function $f = x^2 + y^2 + z^2$ has a minimum 05 value and find this minimum f.
 - c) Find the length of the loop the curve $9y^2 = (x+7)(x+4)^2$ 05