Differentiable manifolds and the Hairy Ball Theorem

Jonathan Lau

February 28, 2023

Table of Contents

Manifolds

2 Integration of Differential *n*-Forms

Table of Contents

Manifolds

2 Integration of Differential *n*-Forms

Stokes' Theorem

Stokes' Theorem:

$$\int_{M}d\omega=\int_{\partial M}\omega$$

Special cases:

$$\int_{\partial D} P dx + Q dy = \int_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$
$$\int_{\partial V} F \cdot dS = \int_{V} \text{div} F$$

Upper Half Space

The upper half space is $\mathcal{H}^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_n >= 0\}$. Its boundary is $\partial \mathcal{H}^n = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_n = 0\}$.

Charts

A chart on a topological space M is a pair (U,ϕ) consisting of an open $U\subset M$ and a homeomorphism $\phi:U\to V\subset \mathbb{H}^n$.

We can express ϕ as (x_1, \ldots, x_n) .

Example: sphere

Manifolds with boundary

A n dimensional manifold with boundary M is a subset of \mathbb{R}^ℓ together with a collection of charts $\mathcal A$ that cover M such that for all charts (U,ϕ) , (V,ψ) , the maps $\psi\circ\phi^{-1}$ and $\phi\circ\psi^{-1}$ are smooth on $\phi(U\cap V)$ and $\psi(U\cap V)$ respectively. Such a collection is called an atlas.

Boundary

Let M be a manifold with boundary. A point p is a boundary point if for some chart (U,ϕ) , $\phi(p)\in\partial\mathcal{H}^n$. The set of all boundary points is the boundary ∂M .

Manifold

A manifold with boundary M with empty boundary is called a manifold.

Proposition: Boundary is manifold

Let M be a manifold with boundary. Then, ∂M is a manifold.

proof: Let \mathcal{A} be an atlas on M. For each $(U, x_1, \ldots, x_n) \in \mathcal{A}$, we construct a chart on $(U \cap \partial M, x_1|_{\partial M}, \ldots, x_{n-1}|_{\partial M})$ on ∂M .

Tangent Space

Let M be a manifold. Given a point $p\in M$ and a smooth curve $\gamma:(-1,1)\to M$ in M such that $\gamma(0)=p$, its velocity vector is $\frac{d\gamma}{dt}|_{t=0}$. The set of all velocity vectors at p is the tangent space at p, denoted T_pM .

Let (U, ϕ) with $\phi(p) = 0$, and let $\gamma_i : t \mapsto \phi^{-1} \circ \iota_i(t)$. Then, $e_i = \frac{\partial \gamma_i}{\partial t}$ form a basis for $T_p M$. We call this the basis induced by ϕ .

Smooth Functions

Let N,M be manifolds. A continuous function $F:N\to M$ is smooth if for all charts (U,ϕ) on N and (V,ψ) on $M,\,\psi\circ F\circ\phi^{-1}$ is smooth.

Differential

Let $F: N \to M$ be a smooth function, $p \in N$, and (U, x_1, \dots, x_n) , (V, y_1, \dots, y_m) are charts on N and M. Let $v \in T_p M$. Then, there exists a curve γ such that $\frac{d\gamma}{dt} = v$. We define the differential $F_*(v) = \frac{dF \circ \gamma}{dt}$.

In the bases induced by ϕ, ψ , the differential $F_*: T_pM \to T_{F(p)}N$ at p is a linear transformation represented by the matrix $J(\psi \circ F \circ \phi^{-1})$, where $J(f) = \left(\frac{\partial f_i}{\partial x_i}\right)$ is the mby *n* Jacobian matrix.

Example: $F: S^2 \to \mathbb{R}^3, (x, y, z) \mapsto (2x, y, z), p = 1/3(1, 2, 2), \phi: (x, y, z) \mapsto (x, y),$ $\psi: (x, y, z) \mapsto (x, y).$

1-form

Let (U, ϕ) be a chart on M. A 1-form ω is a linear function from T_pM to \mathbb{R} .

 $\mathsf{Hom}(T_pM,\mathbb{R})\equiv\mathbb{R}^n$. Fixing a basis for T_pM , we define $(dx_i)_p(a_1,\ldots,a_n)=a_i$.

k-form

Let (U, ϕ) be a chart on M. A k-form ω is an alternating multilinear function from $(T_p M)^k$ to \mathbb{R} .

Wedge Product

The wedge product of k 1-forms $\omega_1, \ldots, \omega_k$ is the k-form $\omega_1 \wedge \cdots \wedge \omega_k(v_1, \ldots, v_k) = \det(\omega_i(v_j))$.

On $T_p\mathbb{R}^5$, $dx_1\wedge dx_3((0,0,1),(2,2,2))=\det\begin{pmatrix}0&2\\1&2\end{pmatrix}$. This is the same as projecting (0,0,1),(2,2,2) onto the x-z plane, then calculating it's area.

Theorem.

 $\{(dx_{i_1})_p \wedge \cdots \wedge (dx_{i_k})_p | 1 \leq i_i < \cdots < i_k \leq n\}$ is a basis for $\Lambda^k(T_pM)$, the set of alternating multilinear functions on $(T_pM)^k$.

So, $(dx_1)_p, \ldots, (dx_n)_p$ is a basis for $\text{Hom}(T_pM, \mathbb{R})$, and $(dx_1)_p \wedge \cdots \wedge (dx_n)_p$ is a basis for $\Lambda^n(T_pM)$, i.e. every $\omega \in \Lambda^n(T_pM)$ is a multiple of $(dx_1)_p \wedge \cdots \wedge (dx_n)_p$.

Differential Forms

A differential k-form ω is a function $\omega: p \in M \mapsto \omega_p \in \Lambda^k T_p M$, and for all charts (U, x_1, \ldots, x_n) , $\omega_p = \sum_l f_l(p) dx_l$ on U for some smooth f_i 's.

Example: dx_l is a differential k-form.

The d operator

Let $f: M \to \mathbb{R}$ be a smooth function. We define a differential 1-form df as $\sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i$. Given a differential form ω on M and a chart (U, ϕ) , $\omega = \sum_I f dx_I$ on U. Then, on U, $d\omega$ is defined as $\sum_I df \wedge dx_I$.

Table of Contents

Manifolds

2 Integration of Differential *n*-Forms

Orientation

An orientation on a manifold with boundary is a non-vanishing differential *n*-form.

Oriented Atlas

An oriented atlas is an atlas $\mathcal A$ such that for all $(U,\phi),(V,\psi)\in\mathcal A$, $\det(J(\psi\circ\phi^{-1}))>0$.

Theorem

Orientations \iff Oriented atlas

$$\omega \iff \omega_p(e_1,\ldots,e_n) > 0,$$

where e_1, \ldots, e_n is the basis induced by (U, ϕ) .

Integration on a \mathbb{R}^n

Let ω be a *n*-form on (U, ϕ) , where $U \subset \mathbb{R}^n$. Then $\omega = f(x)dx_1 \wedge \cdots \wedge dx_n$ for some smooth f. The integral of ω over U is $\int_U \omega = \int_U f$.

Pullback

Let $\omega_p \in \Lambda^k T_p M$ and $F: N \to M$. The pullback of ω_p by F is $F^*(\omega_p) \in \Lambda^k T_p N$, defined as

$$F^*(\omega_p)(v_1,\ldots,v_k)=\omega_p(F_*(v_1),\ldots,F_*(v_k)).$$

The pullback of a differential form ω is defined as $(F^*\omega)_p = F^*(\omega_p)$.

Integration on a chart

Let ω be a *n*-form on (U, ϕ) . The integral of ω over U is $\int_U \omega = \int_{\phi(U)} (\phi^{-1})^* \omega$.

Partition of Unity

A partition of Unity on a manifold M is a collection of nonnegative smooth functions $\{\rho_\alpha:M\to\mathbb{R}\}_{\alpha\in A}$ such that

- the collection of supports, $\{\operatorname{supp} \rho_{\alpha}\}_{{\alpha}\in A}$, is locally finite,

Integration on a Manifold

Let ω be a *n*-form on M. The integral of ω over M, denoted by $\int_M \omega$, is defined to be $\sum_{\alpha \in A} \int_{U_\alpha} \rho_\alpha \omega$.

Stokes' theorem on \mathcal{H}^n

 $\mathsf{stuff}\, \dots$

Stokes' theorem on Manifolds

 $\mathsf{stuff}\, \dots$