Mohamed Imran

-Data Scientist Ganit Inc.

Data Preprocessing

Real World Data

Any Problem?

S.No	Credit_rati	Age	Income	Credit_car
	ng			ds
1	0.00	21	10000	у
2	1.0		2500	n
3	2.0	62	-500	у
4	100.012	42		n
5	yes	200	1	у
6	30	0	Seventy thousand	No

Data Preprocessing

- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation

Data Cleaning

- 1. Missing Data
- Central Imputation
- KNN Imputation
- 2. Noisy Data
- Smoothing
- Clustering
- 1. Outlier Removal
- Using Boxplot

company name	furigana	postal code	address	telephone number
AlphaPurchase Co,. Ltd	Alpha Purchase	107- 0061	Aoyama Building 12th floor, 1-2-3, Kita-Aoy ama, Minato-ku, Tokyo	03-5772-7801
AAA Foundation	AAA	1500002	Kami-meguro, Meguro-ku X-X-X	0312345678
BBBB, Inc.	BBBB	123	Minami-Azabu, Minato-ku XX-1-1	03(1234)9876

company name	juridical personality	furigana	postal code	all prefectures	address	telephone number
Alpha Purchase	Co,. Ltd	Alpha Purchase	1070 061	Tokyo	Aoyama Building 12th floor, 1-2-3, Kita-Aoy ama, Minato-ku	035772780 1
AAA	Foundation	AAA	1500 002	Tokyo	Kami-meguro, Meguro-ku X-X-X	031234567 8
BBBB	Inc.	BBBB	1230 001	Tokyo	Minami-Azabu, Minato-ku XX-1-1	031234987 6

Imputation

- Replace with mean or a median
- When to use mean?
- Replace with nearest neighbour
- How much nearest to see?

S.No	Qualification	Age	Income
1	B.Tech	25	30k
2	M.Tech	30	50k
3	B.Tech	26	32k
4	B.Tech	25	?
5	M.Tech	29	60k
6	B.Tech	?	30k

Outlier

BoxPlot

Data Transformation

Normalization

Min-max normalization

- 1. Min Max Normalization
- 2. Z Score Normalization
- Decimal scaling

Decimal scaling v= v/10⁴

Normalization: Example II

- Min-Max normalization on an employee database
 - max distance for salary: 100000-19000 = 81000
 - max distance for age: 52-27 = 25
 - New min for age and salary = 0; new max for age and salary = 1

$$x'_{i} = \frac{x_{i} - \min x_{i}}{\max x_{i} - \min x_{i}} (new \max - new \min) + new \min$$

ID	Gender	Age	Salary
1	F	27	19,000
2	M	51	64,000
3	M	52	100,000
4	F	33	55,000
5	M	45	45,000

		_	
ID	Gender	Age	Salary
1	1	0.00	0.00
2	0	0.96	0.56
3	0	1.00	1.00
4	1	0.24	0.44
5	0	0.72	0.32

Normalization: Example

- z-score normalization: v' = (v Mean) / Stdev
- Example: normalizing the "Humidity" attribute:

2

Data Integration

- Check for correlation
- Remove uncorrelated data

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2 \sum (y - \overline{y})^2}}$$

Data Reduction

Data Cube Aggregation

Figure 2.13 Sales data for a given branch of AllElectronics for the years 2002 to 2004. On the left, the sales are shown per quarter. On the right, the data are aggregated to provide the annual sales.

Relationship

Y = ????????

X	<u>Y</u>
2	8
6	20
4	14
3	11
7	23
4	14
2	8
5	17

Relationship

$$Y = 2 + 3(X)$$

<u>X</u>	<u>Y</u>
2	8
6	20
4	14
3	11
7	23
4	14
2	8
5	17

What is 2 here?

$$Y = 2 + 3(X)$$

X	<u>Y</u>
2	8
6	20
4	14
3	11
7	23
4	14
2	8
5	17

Find the Y in?

$$Y = 2 + 3(X)$$

X	<u>Y</u>
2	8
6	20
4	14
3	11
7	23
4	14
2	8
5	17
10	?
1	?

Value for Y with given X

$$Y = 2 + 3(X)$$

<u>X</u>	<u>Y</u>
2	8
6	20
4	14
3	11
7	23
4	14
2	8
5	17
10	32
1	5

$$Y = 2 + 3(X)$$

Y = Model

<u>X</u>	<u>Y</u>
2	8
6	20
4	14
3	11
7	23
4	14
2	8
5	17
10	32
1	5

$$Y = 2 + 3(X)$$

Y = Model

2 = Intercept

<u>X</u>	<u>Y</u>
2	8
6	20
4	14
3	11
7	23
4	14
2	8
5	17
10	32
1	5

$$Y = 2 + 3(X)$$

Y = Model

2 = Intercept

3 = Slope

<u>X</u>	<u>Y</u>
2	8
6	20
4	14
3	11
7	23
4	14
2	8
5	17
10	32
1	5

$$Y = 2 + 3(X)$$

Y = Model

2 = Intercept

3 = Slope

X = input

<u>X</u>	<u>Y</u>
2	8
6	20
4	14
3	11
7	23
4	14
2	8
5	17
10	32
1	5

Formula for a line

Linear regression equation

(without error)

Linear Regression

Welcome to the world of data science

What is linear?

What is linear?

A Straight line

What is Regression?

What is Regression?

Relationship between two points

What is Linear Regression?

What is Linear Regression?

A Straight line that attempts to predict the relationship between two points

Help me in finding the relationship?

X	у
1	1
2	3
4	3
3	2
5	5

y = B0 + B1 * x

B1 =
$$sum((xi-mean(x)) * (yi-mean(y))) / sum((xi - mean(x))^2)$$

х	mean(x)	x - mean(x)		у	mean(y)	y - mean(y)
1	3	-2	D4 0440	1	2.8	-1.8
2	3	-1	B1 = 8 / 10	3	2.8	0.2
4	3	1	B1 = 0.8	3	2.8	0.2
3	3	0	B1 = 0.0	2	2.8	-0.8
5	3	2	B0 = mean(y) - B1 * mean(x)	5	2.8	2.2
x - mean(x)	y - mean(y)	Multiplicati	or B0 = 2.8 - 0.8 * 3 or			
,(,,,	,(y)	on			x - mean(x)	squared
-2	-1.8	3.6	B0 = 0.4		-2	4
-1	0.2	-0.2	D0 D4 #		-1	1
1	0.2	0.2	y = B0 + B1 * x		1	1
0	-0.8	0	or		0	0
2	2.2	4.4			2	4
		8	y = 0.4 + 0.8 * x			10

X	у	predicted y
1	1	1.2
2	3	2
4	3	3.6
3	2	2.8
5	5	4.4

RMSE = 0.692

Gradient Descent

Finding the optimum relationship where the error is minimal.

Finding the intercept and coefficients value.

Find the solution?

Any Suggestions?

Line of best fit

Ordinary least square line

best fit crosses the Y-axis. (unexplained variance)

and each observation

a = point at which line of

Least squares criterion

Cost Function

Error_(m,b) =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - (mx_i + b))^2$$

Gradient Descent

Learning Rate

Momentum

Partial Derivative

Finding the direction of coefficient and slope moves in.

$$\frac{\partial}{\partial \mathbf{m}} = \frac{2}{N} \sum_{i=1}^{N} -x_i (y_i - (mx_i + b))$$

$$\frac{\partial}{\partial \mathbf{b}} = \frac{2}{N} \sum_{i=1}^{N} -(y_i - (mx_i + b))$$

Error Metrics for Regression

ion $MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$

$$n = \frac{1}{j=1}$$

$$\frac{n}{j}$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

 $r^2 = 1 - \frac{SS \ Error}{SS \ Total} = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \tilde{y}_i)^2}$

$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

Iteration	Error
1	9.556915033600001
2	9.514033718864932
3	9.471355093177891
4	9.42887819847207
5	9.302648387373978
10	9.302648387373978
20	9.260968926175824
30	8.775918820666949
40	8.392252947074406
50	8.02634104901006
60	7.677361561773854
100	6.160260505649477
200	4.018554474422596
300	2.685046327855845
400	1.854748522005687
800	0.6906129091698867
1000	0.5644839798882763
1600	0.4891352315933852

import statement:

```
1 from sklearn import linear_model
```

Step 2

I have the height and weight data of some people. Let's use this data to do linear regression and try to predict the weight of other people.

```
height=[[4.0],[4.5],[5.0],[5.2],[5.4],[5.8],[6.1],[6.2],[6.4],[6.8]]
weight=[ 42 , 44 , 49, 55 , 53 , 58 , 60 , 64 , 66 , 69]

print("height weight")
for row in zip(height, weight):
    print(row[0][0],"->",row[1])
```

import statement to plot graph using matplotlib:

```
1 import matplotlib.pyplot as plt
```

Plotting the height and weight data:

```
plt.scatter(height, weight, color='black')
plt.xlabel("height")
plt.ylabel("weight")
```

Output:

Declaring the linear regression function and call the fit method to learn from data:

```
1 reg=linear_model.LinearRegression()
2 reg.fit(height, weight)
```

Slope and intercept:

```
1 m=reg.coef_[0]
2 b=reg.intercept_
3 print("slope=",m, "intercept=",b)
```

Output:

```
1 slope= 10.1936218679 intercept= -0.4726651480
```

Using the values of slope and intercept to construct the line to fit our data points:

```
plt.scatter(height, weight, color='black')
predicted_values = [reg.coef_ * i + reg.intercept_ for i in height]
plt.plot(height, predicted_values, 'b')
plt.xlabel("height")
plt.ylabel("weight")
```

Output:

Advantage of Linear Regression

- Linear regression implements a statistical model that, when relationships between the independent variables and the dependent variable are almost linear, shows optimal results.
- Best place to understand the data analysis
- Easily Explicable

Disadvantages

- Linear regression is often inappropriately used to model nonlinear relationships.
- Linear regression is limited to predicting numeric output.
- A lack of explanation about what has been learned can be a problem.
- Prone to bias variance problem

How to evaluate our model?

Overfitting vs Underfitting

Overfitting vs Underfitting

Training Data (More Error)

Testing (Still More Error)

Variance and Bias Trade off

Ideal Model should have Low varinance and Low Bias

Low High Model Complexity