Problem 8: Let P be a ranked poset with the LYM property. A regular covering of chains of P is a family C of maximal chains such that any two elements of P with the same rank are in the same number of chains in C. Prove that, for any real valued function $f: P \longrightarrow \mathbb{R}$ and every subset $X \subset P$,

(1)
$$\sum_{x \in X} \frac{f(x)}{|P_{r(x)}|} \le \max_{c \in \mathcal{C}} \sum_{x \in X \cap c} f(x)$$

Deduce the following theorem of Erdős: If \mathcal{A} is a family of subsets of [n] such that the longest chain in \mathcal{A} has length at most k, then

$$|\mathcal{A}| \le \sum_{i=0}^{k-1} \binom{n}{\lfloor (n+i)/2 \rfloor}$$

[Hint: For the first inequality consider the function F: $\mathcal{C} \to \mathbb{R}$ definded as $F(c) = \sum_{x \in c} f(x)$ and use double counting. For the second inequality, chose $f(x) = |P_{r(x)}|$.]

Solution (by Ferran Espuña): Every element of P_k is in the same number of chains of \mathcal{C} for all k. Conversely, every chain in \mathcal{C} is maximal, so it contains one element of each P_k . Therefore, every element $x \in P_{r(x)}$ is contained in exactly $\frac{|\mathcal{C}|}{|P_{r(x)}|}$ chains of \mathcal{C} . Therefore,

(3)
$$\sum_{c \in \mathcal{C}} \sum_{x \in X \cap c} f(x) = \sum_{x \in X} \frac{|\mathcal{C}|f(x)}{|P_{r(x)}|} = |\mathcal{C}| \sum_{x \in X} \frac{f(x)}{|P_{r(x)}|}$$

However,

(4)
$$\sum_{c \in \mathcal{C}} \sum_{x \in X \cap c} f(x) \le |\mathcal{C}| \max_{c \in \mathcal{C}} \sum_{x \in X \cap c} f(x)$$

Putting these two equations together, and dividing by $|\mathcal{C}|$, we get (1).

To get Erdős' theorem, we take P to be the poset of subsets of [n] ordered by inclusion. To get a regular covering of P, we just take \mathcal{C} to be the family of all maximal chains. This is a regular covering because every element of P_k is in exactly k!(n-k)! chains. We will apply (1) to the set $X=\mathcal{A}$. We define $f(x)=|P_{r(x)}|$, so that the left hand side of (1) is just $\sum_{x\in X}1=|\mathcal{A}|$. Because $|P_j|=\binom{n}{j}$, and chains don't have elements of the same rank, the right hand side of (1) is the sum of at most k binomial coefficients $\binom{n}{j}$ for different j. Taking the k largest ones (and recalling that $\binom{n}{j}=\binom{n}{n-j}$), we get Erdős' theorem.

Remark 1. (2) is a generalization of Sperner's theorem, which we can recover by taking k = 1 so that \mathcal{A} is an antichain.

Remark 2. The LYM property wasn't used in the proof, so (1) holds for any ranked poset with a regular covering. In fact, we can recover the LYM property by repeating the same argument with $f(x) \equiv 1$ and letting \mathcal{A} be an antichain so that the right hand side of (1) is 1. let us state this formally:

Proposition 0.1. Let P be a ranked poset. If there exists a regular covering of P, then P has the LYM property.