RANDOM GRAPHS AND QUASI-RANDOM GRAPHS: AN INTRODUCTION

CHANGWOO LEE

ABSTRACT. This article is written to spark novices' interest in the theory of quasi-random graphs. We introduce the notion of quasi-randomness, explain the gap between graphs and random graphs, and bridge this gap with the aid of quasi-random graphs.

1. Introduction

For each positive integer n, our sample space Ω_n consists of all labeled graphs G of order n with vertex set $\{1, \ldots, n\}$. Thus the cardinality of Ω_n is 2^N , where $N = \binom{n}{2}$. Also specified is a number p, with 0 , called the "edge probability". Then the probability function <math>P for this sample space is defined by

$$Pr(G) = p^{M}(1-p)^{N-M},$$

where M is the number of edges of G. Thus the sample space consists of the outcome of N Bernoulli trials. If p = 1/2, our sample space Ω_n becomes a uniform space with each particular graph having probability $2^{-\binom{n}{2}}$. In this article, the edge probability p is always 1/2.

A subset \mathcal{A}_n of Ω_n describes a graph property Q if it is closed under isomorphism, i.e., if $G \in \mathcal{A}_n$ and $H \cong G$, then $H \in \mathcal{A}_n$. For example, if \mathcal{A}_n consists of all connected graphs in Ω_n , then \mathcal{A}_n describes the graph property of connectedness. It may happen that

$$Pr(\mathcal{A}_n) \to 1$$
 as $n \to \infty$,

in which case we say almost all graphs have property Q or the random graph has property Q almost surely. And a typical graph in Ω_n , which we denote by $G_{1/2}(n)$, will have property Q with overwhelming probability as n gets large. For example, $G_{1/2}(n)$ is connected almost surely (see [Le00] or [Bo85]). For a much fuller discussion of these concepts, the reader can consult [Pa85], [Bo85] or [AIES92].

One would like to construct graphs that behave just like a random graph $G_{1/2}(n)$. Of course, it is logically impossible to construct a truly random graph. Thus Chung, Graham, and Wilson defined in [ChGW89] "quasi-random graphs", which simulate $G_{1/2}(n)$ without much deviation.

In this article we will try to present just enough about quasi-random graphs as they apply to graphs to illustrate bridging the gap between graphs and random graphs. To do this we introduce a graph property A_2 , show this property is a

 $Key\ words\ and\ phrases.$ Random graph, quasi-random graph, Paley graph, property $A_2.$ Received February 10, 2001.

²⁰⁰⁰ Mathematics Subject Classification. 05C80.

"random graph property", i.e., almost all graphs have property A_2 , and construct a graph having this property with the aid of quasi-random graphs.

Notice that almost all materials in this article refer to [ChGW89] and [Pa9x].

2. Notation and Definitions

First, we introduce some notation. Let G = (V, E) denote a graph with vertex set V and edge set E. We use the notation G(n) (and G(n, e)) to denote that G has n vertices (and e edges). For $X \subseteq V$, we let $X|_G$ denote the subgraph of G induced by X, and we let e(X) denote the number of edges of $X|_G$. For $v \in V$, define

$$nd(v) = \{x \in V : \{v, x\} \in E\}$$
 and $deg(v) = |nd(v)|$.

If G'=(V',E') is another graph, we let $N_G^*(G')$ denote the number of labeled occurrences of G' as an induced subgraph of G. In other words, $N_G^*(G')$ is the number of injections $\lambda:V'\to V$ such that $\lambda(V')|_G\cong G'$. We will often just write $N^*(G')$ if G is understood. Finally, we let $N_G(G')$ denote the number of occurrences of G' as a (not necessarily induced) subgraph of G. Thus, if G'=(V',E') then

$$N_G(G') = \sum_{H} N_G^*(H)$$

where the sum is taken over all $H = (V', E_H)$ such that $E_H \supseteq E'$.

Now, to define so-called quasi-random graphs, we list a set of graph properties which a graph G = G(n) might satisfy.

 $\mathbf{P_1}(\mathbf{s})$: For all graphs M(s) on s vertices,

$$N_G^*(M(s)) = (1 + o(1))n^s 2^{-\binom{s}{2}}.$$

Let C_t denote the cycle with t edges.

 $P_2(t)$:

$$e(G) \ge (1 + o(1))\frac{n^2}{4}, \qquad N_G(C_t) \le (1 + o(1))\left(\frac{n}{2}\right)^t.$$

Let $A = A(G) = (a(v, v'))_{v,v' \in V}$ denote the adjacency matrix of G, that is, a(v, v') = 1 if $\{v, v'\} \in E$, and 0 otherwise. Order the eigenvalues λ_i of A (which of course are real) so that $|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n|$.

 P_3 :

$$e(G) \ge (1 + o(1))\frac{n^2}{4}, \qquad \lambda_1 = (1 + o(1))\frac{n}{2}, \qquad \lambda_2 = o(n).$$

 $\mathbf{P_4}$: For each subset $S \subseteq V$,

$$e(S) = \frac{1}{4}|S|^2 + o(n^2).$$

P₅: For each subset $S \subseteq V$ with $|S| = \lfloor \frac{n}{2} \rfloor$,

$$e(S) = \left(\frac{1}{16} + o(1)\right)n^2.$$

For $v, v' \in V$, define

$$s(v, v') = |\{y \in V : a(v, y) = a(v', y)\}|.$$

 P_6 :

$$\sum_{v,v'} \left| s(v,v') - \frac{n}{2} \right| = o(n^3).$$

 P_7 :

$$\sum_{v,v'} \left| |nd(v) \cap nd(v')| - \frac{n}{4} \right| = o(n^3).$$

Theorem 1. [ChGW89] For $s \geq 4$ and even $t \geq 4$, all the properties are equivalent.

Definition 2. A family $\{G(n)\}$ of graphs (or simply a graph G(n)) is quasi-random if G(n) satisfies any (and therefore, all) of these properties.

A weaker property of G(n) is the following.

 P_0 :

$$\sum_{v} \left| \deg(v) - \frac{n}{2} \right| = o(n^2).$$

It follows easily that the following property is equivalent to P_0 :

 $\mathbf{P_0'}$: All but o(n) vertices of G have degree $(1+o(1))\frac{n}{2}$. In this case we say that G is almost regular.

3. Background for the Definition

In this section we will step in the background of the definition. The philosophy of this definition can be described as follows:

- 1. Define various properties of graphs P_1, P_2, \ldots, P_k all shared by $G_{1/2}(n)$.
- 2. Show that all the properties defined are equivalent, i.e., if G(n) has property P_i , then G(n) has property P_j also.
- 3. Typically, it is easy to show that a particular family $\{G(n)\}$ satisfies some P_i . We called these properties quasi-random.

Our spirit is to make quasi-random graphs imitate a typical random graph $G_{1/2}(n)$ without much deviation. Thus we would like to see how much quasi-random graphs deviate from $G_{1/2}(n)$. Recall that our sample space is Ω_n with edge probability p = 1/2.

 $P_1(s)$: (Induced s-subgraph property) Let M(s) be a graph on s vertices and s fixed. We know that almost all $G_{1/2}(n)$ contain $(1+o(1))n^s2^{-\binom{s}{2}}$ induced copies of M(s) as $n\to\infty$ [Bo85]. The content of $P_1(s)$ is that all of the $2^{\binom{s}{2}}$ labeled graphs M(s) on s vertices occur asymptotically the same number of times in G.

 $P_2(t)$: (t-cycle property) It is easy to see that for almost all random graphs $G_{1/2}(n)$,

$$e(G_{1/2}(n)) = (1+o(1))\frac{\binom{n}{2}}{2} = (1+o(1))\frac{n^2}{4}$$

and that almost all $G_{1/2}(n)$ contain

$$\frac{\langle n \rangle_t}{2^t} = (1 + o(1)) \left(\frac{n}{2}\right)^t$$

induced copies of C_t as $n \to \infty$, where $\langle n \rangle_t$ denotes the falling factorial. Thus, the property $P_2(t)$ is a slight generalization of these two facts.

 P_3 : (Separated eigenvalue property) A result of Juhász [J78] shows that almost all random graphs $G_{1/2}(n)$ have

$$\lambda_1 = (1 + o(1)) \frac{n}{2}$$

and

$$\lambda_2 = o(n^{\frac{1}{2} + \epsilon})$$

for any fixed $\epsilon > 0$. Thus, $\lambda_2 = o(n)$.

 P_4 : (Uniform edge density property) For almost all random graphs $G_{1/2}(n)$ and each subset $S \subseteq V(G_{1/2}(n))$,

$$e(S) = \frac{\binom{|S|}{2}}{2} = \frac{1}{4}|S|^2 + o(n^2).$$

 P_5 : (Uniform edge density property for bisectors) Once we take $|S| = \lfloor \frac{n}{2} \rfloor$ in the uniform edge density property, we have

$$e(S) = \left(\frac{1}{16} + o(1)\right)n^2$$

for each subset $S \subseteq V(G_{1/2}(n))$ with $|S| = \lfloor \frac{n}{2} \rfloor$.

 $P_6\colon$ (Sameness property) For almost all random graphs $G_{1/2}(n)$ and $v,v'\in V(G_{1/2}(n)),$

$$s(v, v') = (1 + o(1))\frac{n}{2}$$
 and $|\{(v, v') : v, v' \in V(G_{1/2}(n))\}| = n^2$.

Thus,

$$\sum_{v,v'} \left| s(v,v') - \frac{n}{2} \right| = n^2 o(n) = o(n^3).$$

 P_7 : (Common neighborhood property) For almost all random graphs $G_{1/2}(n)$ and $v, v' \in V(G_{1/2}(n))$,

$$|nd(v) \cap nd(v')| = (1 + o(1))\frac{n}{4}$$
 and $|\{(v, v') : v, v' \in V(G_{1/2}(n))\}| = n^2$.

Thus,

$$\sum_{v,v'} \left| \left| nd(v) \cap nd(v') \right| - \frac{n}{4} \right| = n^2 o(n) = o(n^3).$$

 P_0 and P_0' : (Degree property) For almost all random graphs $G_{1/2}(n)$ and $v \in V(G_{1/2}(n))$,

$$\deg(v) = (1 + o(1))\frac{n}{2}.$$

4. Example

Our next illustration revolves around a purely graph-theoretic question: does there exist a graph G with the property that for any disjoint pair of 2-subsets of vertices, say $\{u_1, u_2\}$ and $\{v_1, v_2\}$, there exists a vertex w adjacent to both u_1 and u_2 but not adjacent to v_1 and v_2 ? Let us call this graph property A_2 . The reader is sure to see that the construction of such a graph may be a formidable problem. We showed in [Le00] the following theorem. However, we sketch again the proof for the sake of further explanation.

Theorem 3. There exist graphs of every order $n \geq 345$ with property A_2 . Furthermore, almost all graphs have property A_2 .

Proof. Let \mathcal{A}_n be the set of graphs in our sample space Ω_n with property A_2 . Our goal is to show that $Pr(\mathcal{A}_n) > 0$ for some value of n. We define the random variable X(G) to be the number of disjoint pairs of 2-subsets for which there is no other vertex adjacent to both vertices of the first 2-subset and to neither vertex of the second 2-subset. Then the event \mathcal{A}_n consists of all graphs G in Ω_n with X(G) = 0, that is,

$$Pr(\mathcal{A}_n) = Pr(X=0).$$

Since X has non-negative values, we have

$$Pr(X \ge 1) \le E[X].$$

And since X has only integer values, E[X] < 1 implies Pr(X = 0) > 0. Here is the formula for the expectation:

(4.1)
$$E[X] = {n \choose 2, 2, n-4} (1-p^2(1-p)^2)^{n-4}.$$

A little calculus shows that the right side (4.1) is smallest for p = 1/2 and so we would like a solution of the inequality:

(4.2)
$$\frac{n(n-1)(n-2)(n-3)}{4} \left(1 - \frac{1}{16}\right)^{n-4} < 1.$$

After a few minutes of computer job we found that for n=344, the left side of (4.2) was $1.0157\cdots$ but at n=345, it drops to $.9634\cdots$. This shows that for every $n\geq 345$, there exists a graph with property A_2 . Furthermore, the left side of (4.2) regarded as a function of n approaches 0 as $n\to\infty$. Hence $Pr(X=0)\to 1$ as $n\to\infty$ and so the overwhelming majority of graphs have property A_2 when n is large.

But the method provides no help in constructing examples except by random creation. It follows from (4.2) that with n = 400,

$$Pr(X \ge 1) < .050151 \cdots$$

and so Pr(X=0) is at least .95. Otherwise put, at least 95% of all graphs have property A_2 . Suppose we create a random graph H with n=400 and edge probability p=1/2. The worst case complexity of an algorithm that tests H for property A_2 is $\mathcal{O}(n^5)$. So an example could be found in reasonable time. Thus we are faced with the irony that examples are omnipresent but the method provides no way to describe in a constructive way just one example for each value of n, where n is large. We summarize the issue raised as follows:

Question: Construct a graph with property A_2 of each order for which they exist.

To answer this question, try to dig out quasi-random graphs and select one with property A_2 . Fortunately a family, called the Paley graphs, turns out to be a quasi-random graph having property A_2 .

To define the Paley graphs, let q be a prime power congruent to 1 modulo 4. Hence -1 is a square (quadratic residue) in the finite field \mathbb{F}_q . The Paley graph P_q has the field \mathbb{F}_q as its vertex set and vertices x and y are adjacent whenever x-y is a square. For details, see [BoT81] and any elementary number theory text.

Theorem 4. [ChGW89] The family of the Paley graphs P_q is quasi-random.

Proof. First, observe that a vertex z is adjacent to both, or non-adjacent to both, of a pair x, y of distinct vertices of P_q if and only if the quotient (z-x)/(z-y) is a square. But for any of the (q-1)/2-1 squares a other than 1, there is unique z such that

$$\frac{z-x}{z-y} = 1 + \frac{y-x}{z-y} = a.$$

Thus, s(x,y) = (q-3)/2 so that P_6 holds.

Theorem 5. [BoT81] For all q sufficiently large, the Paley graphs P_q have property A_2 .

Theorem 5 means that there is a positive integer N such that P_q has property A_2 for all $q \geq N$ and q is a prime power congruent to 1 modulo 4. But a question still remains: for what value of q, does the Paley graph P_q have property A_2 ? Ron Read [Re93] wrote a computer program to test Paley graphs for property A_2 and found that P_{61} was the smallest. Let a_2 be the smallest integer for which there is a graph with a_2 vertices and property A_2 . Thus Read showed that $a_2 \leq 61$. How about a decent lower bound? There is also the problem of determining all the values of n between a_2 and 344 for which graphs exist with property A_2 .

We should not conclude this section without a word of caution: there are perfectly nice quasi-random families that are a bit too quasi to have property A_2 . For each n, let V_n consist of all the n-subsets of $\{1,\ldots,2n\}$. Then G_n is the graph with vertex set V_n in which x and y in V_n are adjacent iff $|x \cap y|$ is even. It can be shown that this family satisfies the quasi-random criterion [ChGW89]. However, none of the G_n have property A_2 . To see this let $x = \{1,\ldots,n\}$ and $y = \{n+1,\ldots,2n\}$. For any vertex $w \in V_n$, we have

$$(4.3) n = |w| = |w \cap x| + |w \cap y|.$$

If G_n has property A_2 , there must be a vertex w_1 , adjacent to both x and y. So $|w_1 \cap x|$ and $|w_1 \cap y|$ are both even. Equation (4.3) implies that n is even. But there must also be a vertex w_2 adjacent to x but not y. Thus $|w_2 \cap x|$ is even and $|w_2 \cap y|$ is odd. Now equation (4.3) implies n is odd, a contradiction.

5. Suggestions for Readers

For further study of quasi-random graphs, we introduce some materials. Elementary graph theory texts might be [Ha69], [ChL86], and [We96]. For an easy introduction to random graphs with an appendix of basic probability theory, the reader may see the book [Pa85]. And for a more advanced treatment there are the

research monographs [Bo85], [AlES92], and [Ko99]. It is also essential to become familiar with a standard probability text such as [Fe57]. For a full discussion of quasirandom graphs, the reader can consult [ChGW88], [ChGW89], and [ChG92a] first. And next discuss with [Ch90], [Ch91], [ChG90], [ChG91a], [ChG91b], [ChG91c], and [ChG92b].

References

- [AlES92] N. Alan, P. Erdös and J.H. Spencer, The probabilistic method, Wiley Inter-Science, New York (1992).
- [Bo85] B. Bollobás, Random Graphs, Academic, London (1985).
- [BoT81] B. Bollobás and A. Thomason, Graphs which contain all small graphs, Europ. J. Combinatorics 2 (1981) 13-15.
- [Ch90] F.R.K. Chung, Quasi-random Classes of Hypergraphs, Random Struct. Alg. 1 (1990) 363-382.
- [Ch91] F.R.K. Chung, Regularity Lemmas for Hypergraphs and Quasi-randomness, Random Struct. Alg. 2 (1991) 241-252.
- [ChG90] F.R.K. Chung and R.L. Graham, Quasi-Random Hypergraphs, Random Struct. Alg., 1 (1990) 105-124.
- [ChG91a] F.R.K. Chung and R.L. Graham, On graphs not containing prescribed induced subgraphs, In A Tribute to Paul Erdös (A. Baker, B. Bollobás, and A. Hajnal, eds.), Cambridge Univ. Press, Cambridge (1991) 111-120.
- [ChG91b] F.R.K. Chung and R.L. Graham, Quasi-Random Tournaments, J. Graph Theory, 15 (1991) 173-198.
- [ChG91c] F.R.K. Chung and R.L. Graham, Quasi-Random Set Systems, J. AMS, 4 (1991) 151-196.
- [ChG92a] F.R.K. Chung and R.L. Graham, Maximum cuts and quasirandom graphs, Random Graphs, vol 2 (A. Frieze and T. Luczak, eds.) Wiley, New York (1992) 23-33.
- [ChG92b] F.R.K. Chung and R.L. Graham, Quasi-Random Subsets of \mathbb{Z}_n , J. Combin. Theory Ser. A, **61** (1992) 64-86.
- [ChGW88] F.R.K. Chung, R.L. Graham and R.M. Wilson, Quasi-random graphs, Proc. Natl. Acad. Sci. USA 85 (1988) 969-970.
- [ChGW89] F.R.K. Chung, R.L. Graham and R.M. Wilson, Quasi-random graphs, Combinatorica 9 (1989) 345-362.
- [ChL86] G. Chartrand and L. Lesniak, Graphs and Digraphs, Wadsworth, Pacific Grove, CA (1986).
- [Fe57] W. Feller, An introduction to probability theory and its applications, 2nd edn., Wiley, New York (1957).
- [Ha69] F. Harary, Graph Theory, Addison-Wesley, Reading (1969).
- [J78] F. Juhász, On the spectrum of a random graph, Colloq. Math. Soc. János Bolyai 25, Algebraic Method in Graph Theory, Szeged (1978), 313-316.
- [Ko99] V.F. Kolchin, Random Graphs, Cambridge Univ. Press, New York (1999).
- [Le00] C. Lee, An Invitation to the Theory of Random Graphs, Trends in Math. 3 (2000) 132-140.
- [Pa85] E.M. Palmer, Graphical Evolution: an introduction to the theory of random graphs, Wiley Inter-Science, New York (1985).
- [Pa9x] E.M. Palmer, Graphs and Random Graphs, preprint.
- [Re93] R.C. Read, Prospects for graph theory algorithms, Quo Vadis Graph Theory? Ann. Discrete Math. 55 (1993) 201-210.
- [We96] D.B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River (1999).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SEOUL, SEOUL 130-743, KOREA E-mail address: chlee@uoscc.uos.ac.kr