Minh họa bài thi giữa kỳ HK1 2022-2023

Câu 1: Tìm giới hạn $L = \lim_{x \to 0} \left[\cos x + \ln(1+x^2)\right]^{\cot^2 x}$.

A.
$$L = 2\sqrt{e}$$
 B. $L = \frac{1}{2}$ **C.** $L = e$

B.
$$L = \frac{1}{2}$$

C.
$$L = \epsilon$$

D.
$$L = \sqrt{e}$$

Câu 2: Cho $f(x) = e^{\frac{x}{2}} - 1 + \ln(1 + \sin^2 2x) + 2\arcsin^3 x$. Khi $x \to 0$ thì

A.
$$f(x) \sim 2x^3$$

A.
$$f(x) \sim 2x^3$$
 B. $f(x) \sim 16x^4$ **C.** $f(x) \sim \frac{x}{2}$ **D.** $f(x) \sim 4x^2$

C.
$$f(x) \sim \frac{x}{2}$$

D.
$$f(x) \sim 4x^2$$

Câu 3: Cho $f(x) = 2^x - 1 + \ln(1 + \sin^2 \frac{x}{2}) + 2 \tan^3 x$. Khi $x \to 0$ thì

A.
$$f(x) \sim \frac{x^2}{2}$$
 B. $f(x) \sim x \ln 2$ **C.** $f(x) \sim 2x^3$ **D.** $f(x) \sim \frac{x^2}{4}$

B.
$$f(x) \sim x \ln 2$$

C.
$$f(x) \sim 2x^3$$

D.
$$f(x) \sim \frac{x^2}{4}$$

Câu 4: Cho hằng số thực k > 0, giá trị của giới hạn $\lim_{x \to 0} \frac{e^{3kx} - e^{6kx}}{\arctan \sqrt{kx}}$ là

A.
$$\sqrt{k}$$

B.
$$-\sqrt{k}$$

C.
$$-3\sqrt{k}$$

D.
$$-2\sqrt{k}$$

Câu 5: Cho hằng số thực $k \neq 0$, giá trị của giới hạn $\lim_{x\to 0} \frac{\ln(1+kx)\sin x^2}{\arcsin 4x}$ là

A.
$$\frac{1}{4k}$$

B.
$$\frac{1}{2k}$$

C.
$$\frac{1}{k}$$

Câu 6: Tìm giới hạn $L = \lim_{x \to 0} \frac{2\sin x - \sin 2x}{2\tan x - \tan 2x}$

A.
$$L = 0$$

B.
$$L = -1$$

C.
$$L = 1$$

D.
$$L = -\frac{1}{2}$$

Câu 7: Tính giới hạn $L = \lim_{x \to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x}$ **A.** L = 1 **B.** L = 2

A.
$$L = 1$$

B.
$$L = 2$$

C.
$$L = 0$$

D.
$$L = -1$$

Câu 8: Tìm giới hạn $L = \lim_{x \to \infty} \left(\frac{x^2 + x + 1}{x^2 - x - 1} \right)^x$.

A.
$$L = 1$$

B.
$$L = +\infty$$

C.
$$L = e^3$$

D.
$$L = e^2$$

Nội dung câu hỏi nhóm (Từ câu 9 **đ**ến câu 10)

Cho tích phân $I = \int_{1}^{\infty} \frac{1}{\sqrt{x^5}} dx$.

Câu 9: Tích phân $\int_{1}^{a} \frac{1}{\sqrt{x^5}} dx$, a > 1, bằng

A.
$$-\frac{2}{3} \left(a^{-\frac{3}{2}} - 1 \right)$$

B.
$$\frac{2}{3} \left(a^{-\frac{3}{2}} - 1 \right)$$

A.
$$-\frac{2}{3}\left(a^{-\frac{3}{2}}-1\right)$$
 B. $\frac{2}{3}\left(a^{-\frac{3}{2}}-1\right)$ **C.** $-\frac{2}{3}(a^{-2/3}-1)$ **D.** $\frac{2}{3}\left(a^{-\frac{2}{3}}-1\right)$

D.
$$\frac{2}{3} \left(a^{-\frac{2}{3}} - 1 \right)$$

Câu 10: Tích phân *I* bằng

A.
$$\frac{2}{3}$$

B.
$$-\frac{2}{3}$$

c.
$$\frac{3}{2}$$

D.
$$\frac{4}{5}$$

Nôi dung câu hỏi nhóm (Từ câu 11 **đ**ến câu 12)

Cho tích phân
$$I = \int_{1}^{2} \frac{dx}{(x-1)^3}$$
.

Câu 11: Tích phân $\int_{-1}^{2} \frac{dx}{(x-1)^3}$, $1 < a \le 2$, bằng

A.
$$\frac{-1}{2} \left(1 - \frac{1}{(a-1)^2} \right)$$

B.
$$\frac{1}{2} \left(1 - \frac{1}{(a-1)^2} \right)$$

C.
$$2(1-(a-1)^2)$$

D.
$$\frac{1}{4}(1-(a-1)^4)$$

Câu 12: Tích phân I bằng

$$\mathbf{c}. +\infty$$

$$\mathbf{p}_{\cdot} - \infty$$

Nội dung câu hỏi nhóm (Từ câu 13 **đ**ến câu 14)

Cho hàm số
$$f(x) = \frac{\arcsin(x^3 + \tan^2 2x) + 2\arctan^3 x}{1 - \cos x + \sin^3 x}$$

Câu 13: Khi $x \rightarrow 0$,

A.
$$f(x) \sim \frac{2 \arctan^3 x}{1 - \cos x}$$

B.
$$f(x) \sim \frac{\arcsin(x^3 + \tan^2 2x)}{\sin^3 x}$$

C.
$$f(x) \sim \frac{2 \arctan^3 x}{\sin^3 x}$$

D.
$$f(x) \sim \frac{\arcsin(x^3 + \tan^2 2x)}{1 - \cos x}$$

Câu 14: Giá trị của $\lim_{x\to 0} f(x)$ là

B.
$$+\infty$$

Nội dung câu hỏi nhóm (Từ câu 15 **đ**ến câu 16)

Cho hàm số
$$f(x) = \frac{\ln(1+3x) - \sin^2 3x}{\sin x + \arcsin^2 2x}$$

Câu 15: Khi $x \rightarrow 0$,

A.
$$f(x) \sim \frac{\ln(1+3x)}{\sin x}$$

C.
$$f(x) \sim \frac{-\sin^2 3x}{\sin x}$$

B.
$$f(x) \sim \frac{\ln(1+3x)}{\arcsin^2 2x}$$

D.
$$f(x) \sim \frac{-\sin^2 3x}{\arcsin^2 2x}$$

Câu 16: Giá trị của $\lim_{x\to 0} f(x)$ là

A.
$$\frac{-3}{2}$$

$$\mathbf{p}_{\cdot} - \infty$$

Nội dung câu hỏi nhóm (Từ câu 17 **đ**ến câu 18)

Cho tích phân
$$I = \int_{1}^{+\infty} \frac{1}{\sqrt[4]{x^3}} dx$$
.

Câu 17: Tích phân $\int_{1}^{a} \frac{1}{\sqrt[4]{x^3}} dx$, a > 1, bằng

A.
$$\frac{1}{4}(a^{\frac{1}{4}}-1)$$

A.
$$\frac{1}{4}(a^{\frac{1}{4}}-1)$$
 B. $-\frac{1}{4}(a^{\frac{1}{4}}-1)$ **C.** $4(a^{\frac{1}{4}}-1)$ **D.** $-4(a^{\frac{1}{4}}-1)$

C.
$$4(a^{\frac{1}{4}}-1)$$

D.
$$-4(a^{\frac{1}{4}}-1)$$

Câu 18: Tích phân *I* bằng

A.
$$\frac{1}{4}$$

$$\mathbf{c}. +\infty$$

$$\mathbf{p}$$
. $-\infty$

Nội dung câu hỏi nhóm (Từ câu 19 **đ**ến câu 20)

Cho tích phân
$$I = \int_0^{\pi/2} \frac{\cos x dx}{\sin^2 x}$$
.

Câu 19: Tích phân $\int_{a}^{\pi/2} \frac{\cos x dx}{\sin^2 x}$, $0 < a < \frac{\pi}{2}$, bằng

A.
$$1 - \frac{1}{\sin a}$$

A.
$$1 - \frac{1}{\sin a}$$
 B. $-1 + \frac{1}{\sin a}$ **C.** $1 - \sin^2 a$

C.
$$1-\sin^2 a$$

D.
$$-(1-\sin^2 a)$$

Câu 20: Tích phân I bằng

$$\mathbf{c.} + \infty$$

=====HÊT=