

YCLE 1

MISE EN ŒUVRE DES DEMARCHES DE RESOLUTION POUR

DETERMINER LES PERFORMANCES DES SYSTEMES EN STATIQUE

TP

VALIDATION DU CHOIX DU MOTEUR DU PORTAIL

Compétences Visées :

- Analyser : Conduire l'analyse du système
- Modéliser : Proposer une modèle du système
 - Modéliser les actions mécaniques
- ☐ Résoudre : Déterminer les actions mécaniques
- ☐ Expérimenter : mettre en œuvre un protocole expérimental et vérifier sa validité
- Communiquer: Mettre en œuvre une communication

1 CONTEXTE DU TP

Problématique:

Afin de ne pas blesser des utilisateurs ou de ne pas détériorer le portail, on souhaite que l'effort en bout de portail ne dépasse jamais les 60 N.

On cherche donc à savoir :

- sans limiteur de couple, quel doit être le couple à fournir par le moteur pour ne pas dépasser cette contrainte?
- Avec limiteur de couple : analyser en quoi le limiteur de couple permet de répondre à la problématique. Comment réaliser d'éventuels réglages.

2 Presentation du TP

2.1 Objectif

L'objectif principal de ce TP est de répondre à la problématique. On s'intéressera en particulier à savoir si le couple que peut fournir le moteur au démarrage est compatible avec les résultats issus du modèle ou de l'expérimentation.

2.2 Ressources

- Sujet.
- Document ressource sur le fonctionnement du système.
- Résultats théoriques issus d'une modélisation cinématique et statique du MaxPID.
- Modèle 3D SolidWorks.

2.3 Déroulement du TP

□ Organisation des séances :

- 2 séances de 2h30 de modélisation, d'expérimentation et de synthèse des résultats ;
- 1 séance de présentation des TP.

☐ Répartition des rôles :

- Équipe de 3 :
 - 1 chef de projet Modélisateur ;
 - 1 Modélisateur ;
 - 1 expérimentateur.

Équipe de 4 :

- 1 chef de projet ;
- 2 modélisateurs ;
- 1 expérimentateur.

2.4 Tâches à réaliser

La présentation du TP devra faire clairement apparaître :								
	La présentation interne et externe du système.							
	La présentation de la problématique.							
	Les résultats issus de la modélisation :							
	 le couple à fournir par le moteur en utilisant SolidWorks ; 							
	 le couple à fournir par le moteur en utilisant les résultats théoriques. 							
	Les résultats issus de l'expérimentation :							
	 le couple à fournir par le moteur au vu des essais. 							
	La superposition des courbes issues de la modélisation et de l'expérimentation.							
	La critique des écarts entre le modèle et l'expérimentation.							
	Une réponse à la problématique.							

3 DETAIL DES ACTIVITES

3.	1	Ohi	ectifs	du	chef	de	nroi	iet
J.			CCIII 3	uu	CHEL	ue	PIU	CI

- ☐ Réaliser l'analyse interne et externe du système.
- □ Coordonner les tâches et les activités des expérimentateurs et des modélisateurs en s'assurant qu'ils sont en mesure de fournir des courbes réalisées dans les mêmes circonstances.
- □ Expliquer le fonctionnement du limiteur de couple.
- □ Préparer la présentation.
- ☐ Conclure sur la problématique et sur les écarts observés
 - Écarts entre les résultats de la modélisation et des essais ;
 - o Écarts entre le besoin du cahier des charges, le modèle et le système de laboratoire.

3.2 Objectif de l'expérimentateur

- Analyser les constituants du portail (en mettant en évidence le rôle du limiteur de couple et du réducteur).
- Déterminer pour plusieurs orientations du portail la relation entre le couple en sortie du limiteur de couple et l'effort en bout de portail.
- ☐ Analyser l'effet du réglage de la position du bras «2 » sur l'effort en bout de ventail.
- Dans la présentation : expliquer le protocole expérimental.

3.3 Objectif du (ou des) modélisateurs

Travail à réaliser sur SolidWorks :

- réaliser les modélisations nécessaires sur Méca3D pour tracer le couple moteur en fonction de l'angle du bras.;
- □ tracer la courbe théorique du couple à fournir par en sortie du limiteur de couple en fonction de l'angle du bras ;
- en déduire le couple théorique à fournir par le moteur.
- Analyser l'effet du réglage de la position du bras «2 » sur le couple à fournir en sortie du moteur..

Travail à réaliser dans Python :

- ☐ Modifier le programme Python pour afficher le couple à fournir par le moteur en fonction de l'effort en bout de portail
- ☐ Analyser l'effet du réglage de la position du bras «2 » sur le couple à fournir en sortie du moteur.

3.4 Activités supplémentaires

Redémontrer la relation existant entre le couple moteur et l'effort en bout de portail.

4 ÉLEMENTS DE MODELISATION DU PORTAIL

4.1 Relation entre l'effort de serrage et le couple à la limite du glissement

$$C = \frac{2}{3} \cdot \frac{R^3 - r^3}{R^2 - r^2} Ffn$$

Avec:

- \square n: nombre de surfaces frottantes ;
- \Box f = 0.2: facteur de frottement;
- \Box *F* : effort presseur ;
- \Box *C* : couple à la limite du glissement.

4.2 Loi entrée-sortie géométrique et résolution à l'aide de Python

On a:

$$\overrightarrow{OA} = a\overrightarrow{x_1} - f\overrightarrow{x_1}$$

$$\overrightarrow{AB} = b\overrightarrow{x_2}$$

$$\overrightarrow{BC} = -c\overrightarrow{x_3}$$

$$\overrightarrow{OC} = -a\overrightarrow{x_0} - e\overrightarrow{y_0}$$

L'exécution du programme Python permet de générer les courbes de lois entrée sortie pour une fermeture du portail $\theta_1 \in [-90^\circ, 0^\circ]$:

- \square l'angle θ_1 est stocké dans la variable **t1_res** ;
- \square l'angle θ_2 est stocké dans la variable **t2_res** ;
- lacktriangle l'angle $heta_3$ est stocké dans la variable ${f t3_res}$;
- $\ \square$ l'angle θ_4 est stocké dans la variable **t4_res**.

4.3 Détermination de l'effort à fournir par le moteur en fonction d'un effort en bout de portail

On montre que:

$$C_m = -\frac{cFL\sin\theta_3}{a\sin\theta_2 + f\cos\theta_2}$$