Binary Arithmetic 2 Introduction to Assembly Language

CS 64: Computer Organization and Design Logic
Lecture #3
Fall 2018

Ziad Matni, Ph.D.

Dept. of Computer Science, UCSB

Administrative Stuff

The class is full – I will not be adding more ppl

- Did you check out the syllabus?
- Did you check out the class website?
- Did you check out Piazza (and get access to it)?
- Did you go to lab yesterday?

Any Questions From Last Lecture?

5-Minute Pop Quiz!!!

YOU MUST SHOW YOUR WORK!!!

1. Calculate and give your answer in hexadecimal:

~(0x3E | 0xFC)

2. Convert from binary to decimal AND to hexadecimal. Use any technique(s) you like:

a) 1001001

b) 10010010

Answers...

1. Calculate and give your answer in hexadecimal:

```
^{\sim}(0x3E \mid 0xFC) = ^{\sim}(0xFE) = 0x01
```

2. Convert from binary to decimal AND hexadecimal. Use any technique you like:

```
a) 1001001 = 0100 1001 = 0x49 = 1 + 8 + 64 = 73
```

Lecture Outline

- Two's complement
- Addition and subtraction in binary
- Carry Out and Overflow bits

Intro to Assembly

Twos Complement Method

- This is how Twos Complement fixes this.
- Let's write out -6₍₁₀₎ in 2s-Complement binary in 4 bits:

First take the unsigned (abs) value (i.e. 6)

and convert to binary: 0110

Then negate it (i.e. do a "NOT" function on it): 1001

Now add 1: 1010

So, $-6_{(10)} = 1010_{(2)}$ according to this rule

Let's do it Backwards... By doing it THE SAME EXACT WAY!

2s-Complement to Decimal method is the same!

- Take 1010 from our previous example
- Negate it and it becomes 0101
- Now add 1 to it & it becomes **0110**, which is $6_{(10)}$

Another View of 2s Complement

NOTE:

In Two's Complement, if the number's MSB is "1", then that means it's a negative number and if it's "0" then the number is positive.

Another View of 2s Complement

NOTE:

Opposite numbers show up as symmetrically opposite each other in the circle.

VERY IMPORTANT:

When we talk of 2s complement, we must also mention the number of bits involved

Ranges

 The range represented by number of bits differs between positive and negative binary numbers

Given N bits, the range represented is:

$$0$$
 to $+2^{N}-1$ for positive numbers

and
$$-2^{N-1}$$
 to $+2^{N-1}-1$

for 2's Complement negative numbers

Addition

- We have an elementary notion of adding single digits, along with an idea of carrying digits
 - Example: when adding 3 to 9, we put forward 2 and carry the 1
 (i.e. to mean 12)
- We can build on this notion to add numbers together that are more than one digit long

Addition in Binary

Same mathematical principal applies

Q: What's being assumed here???

A: That these are purely positive numbers

Theoretically, I can add any binary no. with N1 digits to any other binary no. with N2 digits.

Practically, a CPU must have a defined no. of digits that it's working with.

WHY???

Exercises

Implementing an 8-bit adder:

- What is (0x52) + (0x4B)?
 - Ans: 0x9D, output carry bit = 0

- What is (0xCA) + (0x67)?
 - Ans: 0x31, output carry bit = 1

Black Box Perspective of ANY N-Bit Binary Adder

This is a useful perspective for either writing an N-bit adder function in code, or for designing the actual digital circuit that does this!

Output Carry Bit Significance

- For unsigned (i.e. positive) numbers,
 C_{OUT} = 1 means that the result did not fit into the number of bits allotted
- Could be used as an error condition for software
 - For example, you've designed a 16-bit adder and during some calculation of positive numbers, your carry bit/flag goes to "1". Conclusion?
 - Your result is outside the maximum range allowed by 16 bits.

Carry vs. Overflow

 The carry bit/flag works for – and is looked at – only for unsigned (positive) numbers

A similar bit/flag works is looked at for if *signed* (two's complement) numbers are used in the addition:

Overflow: for Negative Number Addition

- What about if I'm adding two negative numbers?
 Like: 1001 + 1011?
 - Then, I get: 0100 with the extra bit set at 1
 - Sanity Check:
 That's adding (-7) + (-5), so I expected -12, so what's wrong here?
 - The answer is beyond the capability of 4 bits in 2's complement!!!
- The extra bit in this case is called overflow and it indicates that the addition of negative numbers has resulted in a number that's

beyond the range of the given bits.

How Do We Determine if Overflow Has Occurred?

• When adding 2 *signed* numbers: x + y = s

if
$$x, y > 0$$
 AND $s < 0$

OR if x, y < 0 AND s > 0

Then, overflow has occurred

Example 1

Add: -39 and 92 in signed 8-bit binary

Side-note:

What is the range of signed numbers w/ 8 bits?

-2⁷ to (2⁷ – 1), or -128 to 127

That's 53 in signed 8-bits! Looks ok!

There's a carry-out (we don't care)
But there is no overflow (V)
Note that V = 0, while Cout = 1 and Cin_signed_bit = 1

Example 2

V = Cout⊕Cin signed bit

Add: 104 and 45 in signed 8-bit binary

Side-note (again):

What is the range of signed numbers w/ 8 bits?

 -2^7 to $(2^7 - 1)$, or

-128 to 127

That's NOT 149 in signed 8-bits!

There's no carry-out (again, we don't care)

But there **is** overflow!

Given that this binary result is not 149, but actually -107!

Note that V = 1, while Cout = 0 and Cin_signed_bit = 1

YOUR TO-DOs

- Assignment #2
 - Due on Friday!!!

- Next week: Assembly Language!
 - Do your readings!!

