FONCTIONS POLYNOMIALES DU SECOND DEGRÉ E02C

EXERCICE N°2 Quelques tableaux de variations (Le corrigé)

Dressez le tableau de variations des fonctions suivantes :

1)
$$f_1: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 3x^2 + 2x - 7 \end{cases}$$

$$f_1(x)$$
 est de la forme ax^2+bx+c avec $a=3>0$; $b=2$ et $c=-7$
Posons $\alpha = \frac{-b}{2a} = \frac{-2}{2\times 6} = -\frac{1}{3}$

et
$$\beta = f_1(\alpha) = -\frac{22}{3}$$

On en déduit le tableau de variations :

x	$-\infty$ $-\frac{1}{3}$ $+\infty$	
$f_1(x)$	$-\frac{22}{3}$	

3)
$$f_3: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -2(x-3)^2 + 5 \end{cases}$$

 $f_3(x)$ est sous la forme canonique $a(x-\alpha)^2 + \beta$ avec a=-2 < 0; $\alpha = 3$ et $\beta = 5$ On en déduit le tableau de variations

x	$-\infty$ 3	+∞
$f_3(x)$	5	_

$$2) f_2: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -4x^2 + 5x - 3 \end{cases}$$

 $f_2(x)$ est de la forme ax^2+bx+c avec a=-4 < 0; b=5 et c=-3

Posons
$$\alpha = \frac{-b}{2a} = \frac{-5}{2 \times (-4)} = \frac{5}{8}$$

et
$$\beta = f_2(\alpha) = -\frac{23}{16}$$

On en déduit le tableau de variations :

x	$-\infty$ $\frac{5}{8}$ +0	0
$f_2(x)$	$-\frac{23}{16}$	

4)
$$f_4: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 2(x+1)(x-2) \end{cases}$$

Pour tout $x \in \mathbb{R}$, $f_4(x) = 2(x^2 - x - 2) = 2x^2 - 2x - 4$

 $f_4(x) = 2(x + x + 2) = 2x + 2x + 1$ $f_4(x)$ est de la forme $ax^2 + bx + c$ avec a = 2 > 0: b = -2 et c = -4

Posons $\alpha = \frac{-b}{2a} = \frac{-(-2)}{2 \times 2} = \frac{1}{2}$

et
$$\beta = f_1(\alpha) = -\frac{9}{2}$$

On en déduit le tableau de variations :

in the deduct to the feature do variations.				
\boldsymbol{x}	$-\infty$ $\frac{1}{2}$	+∞		
$f_2(x)$	$-\frac{9}{2}$	/		