Cyclic Primary Decomposition for Vector Spaces

Ang Yan Sheng

In this note, we prove the cyclic primary decomposition theorem for a linear operator α on a finite-dimensional vector space V, for the case where $m_{\alpha}(x) = f(x)^k$ for some irreducible $f(x) \in F[x]$ and $k \in \mathbb{Z}^+$.

Lemma 1. If $V/U = \sum_{i} \operatorname{span}(b_i + U)$, then $V = U + \sum_{i} \operatorname{span}(b_i)$.

Proof. For any
$$v \in V$$
, let $v + U = \sum_{i} \lambda_{i}(b_{i} + U)$. Then $v - \sum_{i} \lambda_{i}b_{i} \in U$.

Lemma 2. If $\sum_i \langle f(\alpha)(v_i') \rangle_{\alpha}$ is direct, and none of the summands are $\{0\}$, then $\sum_i \langle v_i' \rangle_{\alpha}$ is also direct.

Proof. If we choose $u_i \in \langle v_i' \rangle_{\alpha}$ such that $\sum_i u_i = 0$, then $f(\alpha)(u_i) \in \langle f(\alpha)(v_i') \rangle_{\alpha}$ and $\sum_i f(\alpha)(u_i) = f(\alpha)(0) = 0$ implies $f(\alpha)(u_i) = 0$ for all i.

Now $u_i \in \langle v_i' \rangle_{\alpha}$ implies $u_i = P_i(\alpha)(v_i')$ for some polynomials P_i , and therefore $f(x)^2 \mid m_{\alpha,v_i'}(x) \mid f(x)P_i(x)$. Hence $f(x) \mid P_i(x)$, so $u_i \in \langle f(\alpha)(v_i') \rangle_{\alpha}$, and $\sum_i u_i = 0$ implies $u_i = 0$ for all i, as desired.

Lemma 3. Let $U = \ker f(\alpha)$. If Z is an α -invariant subspace of U, then there exists v_i such that $U = Z \oplus \bigoplus_i \langle v_i \rangle_{\alpha}$.

Proof. Induction on dim U – dim Z. If dim U = dim Z then there is nothing to prove. If not, choose any $v_1 \in U \setminus Z$. If $P(\alpha)(v_1) = z \in Z$ for some polynomial P coprime with f, then choose polynomials A, B such that AP + Bf = 1, so that

$$v_1 = A(\alpha)P(\alpha)(v_1) + B(\alpha)f(\alpha)(v_1) = A(\alpha)(z) \in Z$$

contradiction. Hence $\langle v_1 \rangle_{\alpha} \cap Z = \{0\}$, so induction hypothesis on $Z \oplus \langle v_1 \rangle_{\alpha}$ gives some v_2, \ldots, v_m such that $U = (Z \oplus \langle v_1 \rangle_{\alpha}) \bigoplus_{i>1} \langle v_i \rangle_{\alpha} = Z \oplus \bigoplus_i \langle v_i \rangle_{\alpha}$, as desired. \square

Lemma 4. If V = U + W and $U = (U \cap W) \oplus X$ then $V = W \oplus X$.

Proof. Clearly $V = W + (U \cap W) + X = W + X$, so the statement follows from $\dim W + \dim X = \dim W + \dim U - \dim(U \cap W)$ = $\dim W + \dim U - (\dim U + \dim W - \dim V) = \dim V$.

Theorem. There exists $v_1, \ldots, v_s \in V \setminus \{0\}$ such that $V = \bigoplus_{i=1}^s \langle v_i \rangle_{\alpha}$. Furthermore, for any such decomposition, the multiset $\{m_{\alpha,v_i}(x)\}$ is uniquely determined.

Proof. Induction on k. For k=1, existence follows from Lemma 3 with $Z=\{0\}$. Now $m_{\alpha,v_i}(x)=f(x)$ for all i, and $\dim \langle v_i \rangle_{\alpha}=\deg f$, so the number of v_i is $\frac{\dim V}{\deg f}$ for any decomposition, and we are done.

If k > 1, let $U = \ker f(\alpha)$. By the first isomorphism theorem we have $V/U \cong \operatorname{Im} f(\alpha)$. Note that $m_{\alpha|_{\operatorname{Im} f(\alpha)}}(x) = f(x)^{k-1}$, so by induction hypothesis we may write $\operatorname{Im} f(\alpha) = \bigoplus_i \langle f(\alpha)(v_i') \rangle$.

Now the natural isomorphism $\phi : \text{Im } f(\alpha) \to V/U \text{ maps } f(\alpha)(v) \text{ to } v + U, \text{ so it maps } \alpha^j f(\alpha)(v_i') \text{ to } \alpha^j v_i' + U.$ If we let $\deg m_{\alpha, f(\alpha)(v_i')} = d_i$, then

$$\operatorname{Im} f(\alpha) = \sum_{i} \langle f(\alpha)(v'_{i}) \rangle_{\alpha}$$

$$= \sum_{i} \sum_{j=0}^{d_{i}-1} \operatorname{span}(\alpha^{j} f(\alpha)(v'_{i}))$$

$$\Longrightarrow V/U = \sum_{i} \sum_{j=0}^{d_{i}-1} \operatorname{span}(\alpha^{j} v'_{i} + U)$$

$$\Longrightarrow V = U + \sum_{i} \sum_{j=0}^{d_{i}-1} \operatorname{span}(\alpha^{j} v'_{i}) \quad \text{(Lemma 1)}$$

$$\subseteq U + \sum_{i} \langle v'_{i} \rangle_{\alpha}$$

$$\Longrightarrow V = U + \bigoplus_{i} \langle v'_{i} \rangle_{\alpha}. \quad \text{(Lemma 2)}$$

Now Lemma 3 with $X = U \cap \bigoplus_i \langle v_i' \rangle_{\alpha}$ gives some v_i'' such that

$$U = \left(U \cap \bigoplus_{i} \langle v_i' \rangle_{\alpha} \right) \oplus \bigoplus_{i} \langle v_i'' \rangle_{\alpha},$$

so by Lemma 4 we have $V = \bigoplus_i \langle v_i' \rangle_{\alpha} \oplus \bigoplus_i \langle v_i'' \rangle_{\alpha}$, as desired.

Now we look at $f(\alpha)$ restricted to a subspace of the form $\langle v \rangle_{\alpha}$. If $m_{\alpha,v} = f(x)^e$, then by Lemma 4.49, $\langle v \rangle_{\alpha} \cap \ker(f(\alpha)^j)$ has the basis $\bigcup_{i=e-j}^{e-1} \{f(\alpha)^i(v)\}_{\alpha}^{\deg f}$ for $1 \leq j \leq e$. In particular,

$$\dim \left(\langle v \rangle_{\alpha} \cap \ker(f(\alpha)^{j}) \right) = \min(j, e) \deg f.$$
Thus if $V = \bigoplus_{i} \langle v_{i} \rangle_{\alpha}$ with $m_{\alpha, v_{i}} = f(x)^{e_{i}}$, then
$$\frac{\dim(\ker(f(\alpha)^{j+1}) - \dim(\ker(f(\alpha)^{j}))}{\deg f} = \sum_{i} (\min(j+1, e_{i}) - \min(j, e_{i}))$$

$$= \sum_{i} \mathbb{1}_{e_{i} > j}$$

$$= \sum_{e \geq i} \#\{i \mid e_{i} = e\},$$

from which we have

$$\#\{i \mid e_i = j\} = \frac{\operatorname{null}(f(\alpha)^j) - \operatorname{null}(f(\alpha)^{j-1})}{\deg f} - \frac{\operatorname{null}(f(\alpha)^{j+1}) - \operatorname{null}(f(\alpha)^j)}{\deg f}.$$

Since the RHS is independent of the decomposition, so is the LHS, and thus so is the multiset $\{m_{\alpha,v_i}(x)\}$.