Direction des Examens et de l'Evaluation Service des Examens

Baccalauréat 2013

Session Complémentaire رمضان 1434 هـ

Séries : Science de la Nature **Epreuve: Mathématiques** Durée: 4 heures Coefficient: 6

Honneur - Fraternité - Justice

Exercice 1(3 points)

On considère la suite arithmétique (U_n) de raison r=3 et de premier terme $U_0=15$.

Pour chaque question, parmi les réponses proposées, une seule réponse est exacte.

N°	Question	Réponse A	Réponse B	Réponse C	
1	Le terme général de la suite (U_n) est :	$U_n = 3 + 15n$	$U_n = 15 + 3n$	$U_n = 3n + 12$	(0,5pt)
2	La valeur de U ₁₀ est :	$U_{10} = 153$	$U_{10} = 13$	$U_{10} = 45$	(0,5pt)
3	Si $U_0 + U_1 + \cdots$ 204 alors:	n = 204	n = 30	n = 7	(0,5pt)
4	La suite (V_n) de terme général $V_n = \frac{1}{U_n}$ est:	convergente	croissante	géométrique	(0,5pt)
5	La suite (T_n) de terme général $T_n = e^{U_n}$ est :	arithmétique	géométrique	majorée	(0,5pt)
6	Si (W_n) est une suite numérique telle que pour tout $n: V_n \le W_n \le U_n$, alors (W_n) est:	minorée	décroissante	divergente	(0,5pt)

Recopie sur la feuille de réponse et complète le tableau suivant en choisissant la bonne réponse. Aucune justification n'est demandée.

Question n°	1	2	3	4	5	6
Réponse						

Exercice 2(5 points)

2) Résoudre dans l'ensemble des nombres complexes
$$\mathbb{C}$$
 l'équation (E') : $z^2 - 2\sqrt{3}z + 4 = 0$.

3) Ecrire sous forme trigonométrique et exponentielle chacun des nombres :

$$u = 3 + 3i$$
 et $v = \sqrt{3} - i$. (1 pt)

4) On pose $w = (3+3i)(\sqrt{3}-i)$.

c) En déduire les valeurs exactes de
$$\cos \frac{\pi}{12}$$
 et $\sin \frac{\pi}{12}$. (0,5 pt)

Exercice 3 (6 points) On considère la fonction numérique f définie sur l'intervalle I =]−1;+∞[par:				
on considere in function numerique i definite sur i intervance $1 = -1, +\infty$ par. $f(x) = x - 2 + \ln(x + 1).$				
1.a) Montrer que: $\lim_{x \to -1^+} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$.	(0,75 pt)			
b) Calculer $\lim_{x\to +\infty} \frac{f(x)}{x}$ et $\lim_{x\to +\infty} (f(x)-x)$. Interpréter graphiquement.	(0,75 pt)			
2. Calculer f'(x) et dresser le tableau de variation de f.				
3.a) Montrer que la fonction f réalise une bijection de I sur un intervalle J que l'on déterminera. b) Montrer que l'équation $f(x) = 0$ admet dans I une unique solution α . Vérifier que : 1,2< α <1,3	(0,75 pt) (0,75 pt)			
c) Construire la courbe (C) représentative de f dans un repère orthonormé (O; ,,).	(0.5 pt)			
4) Pour tout $x > -1$; on pose $u(x) = (x+1)\ln(x+1)$.				
a) Calculer $u'(x)$ et montrer que pour tout $x > -1$ on a $f(x) = u'(x) + x - 3$.	(0,5 pt)			
b) En déduire la primitive F de la fonction f sur $-1;+\infty$ qui vérifie F(0) = 0.	(0,25 pt)			
c) Calculer l'aire du domaine plan limité par la courbe (C) de f et les droites d'équations $x = 0$ et $x = \alpha$.	(0,25 pt)			
5) Soit f ⁻¹ la réciproque de f. (C') sa courbe représentative dans le repère précédent.				
a) Déduire de ce qui précède les limites : $\lim_{x \to -\infty} f^{-1}(x)$, $\lim_{x \to +\infty} f^{-1}(x)$ et $\lim_{x \to +\infty} \frac{f^{-1}(x)}{x}$.	(0, 5 pt)			
b) Calculer $(f^{-1})'(-2)$ et donner l'équation de la tangente à la courbe (C') au point d'abscisse $x_0 = -2$	(0,25 pt)			
Exercice 4 (6 points)				
1) On considère la fonction numérique g définie par : $g(x) = (2x+3)e^{x+1} + 1$	(0,5 pt)			
a) Justifier que $\lim_{x \to +\infty} g(x) = +\infty$ et $\lim_{x \to -\infty} g(x) = 1$.	(0,75 pt)			
b) Calculer g'(x) et dresser le tableau de variation de g.	(0,25 pt)			
c) En déduire que pour tout réel x ; g(x)>0.				
2) On considère la fonction numérique f définie par : $f(x) = x-3+(2x+1)e^{x+1}$				
Soit (C) sa courbe représentative dans un repère orthonormé (O;1,1,1.	(0,5 pt)			
a) Montrer que $\lim_{x\to\infty} f(x) = -\infty$ et $\lim_{x\to+\infty} f(x) = +\infty$.	(0,5 pt)			
a) Montrer que $\lim_{x \to \infty} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$. b) Calculer et interpréter graphiquement $\lim_{x \to +\infty} \frac{f(x)}{x}$.	(0,5 pt)			
c) Montre que la droite D d'équation $y = x - 3$ est une asymptote oblique à (C) au voisinage de $-\infty$ puis déterminer leurs positions relatives.	(0,5 pt)			
3.a) Ecrire $f'(x)$ en fonction de $g(x)$.	(0,5 pt)			
b) Dresser le tableau de variation de f .	(0,5 pt)			
4.a) Montrer que f réalise une bijection de $\mathbb R$ sur un intervalle J que l'on déterminera.	(0,5 pt)			
b) Montrer que l'équation $f(x) = 0$ admet une unique solution α puis vérifier que $0 < \alpha < 0,1$.	(0,5 pt)			
c) Montrer que la solution α vérifie l'égalité $\ln\left(\frac{3-\alpha}{2\alpha+1}\right) - \alpha = 1$	(0,25 pt)			
5.a) Montrer qu'il existe un unique point A auquel la tangente T à (C) est parallèle à l'asymptote	(0,25 pt)			
oblique d'équation $y = x - 3$. Donner une équation de T.	(0,25 pt) (0,25 pt)			
b) Construire la courbe (C), la tangente T et l'asymptote D.				
c) Discuter graphiquement suivant les valeurs du paramètre m le nombre de solutions de l'équation $(2x+1)e^{x+1}$ -m-3 = 0.	(0,25 pt)			

Fin.