Optimal use of Labor

L	TP	MP	MRP
0	0		
1	15	15	450
2	27	12	360
3	37	10	300
4	44	7	210
5	47	3	90
6	49	2	60
7	48	-1	-30
8	45	-3	-90

Rule: If $MRP_1 > P_1$ Increase use of labor

 $= P_L = 90$: Stop hiring

We know the firm has hired the optimum number of workers

when the MRP_L = P_L

 $< P_L = 90$: hire **less** L

 $< P_L = 90$: hire **less** L

Rule: If $MRP_{l} < P_{L}$, decrease use of labor $< P_L = 90$: hire **less** L

Optimal use of Labor

L	TP	MP	MRP
0	0		
1	15	15	450
2	27	12	360
3	37	10	300
4	44	7	210
5	47	3	90 =
6	49	2	60
7	48	-1	-30
8	45	-3	-90

Rule: If $MRP_{L} > P_{L}$

Increase use of labor

Rule: If $MRP_L < P_L$,

decrease use of labor

We know the firm has hired the optimum number of workers when the MRP_L = P_L

P_L = 90 Stop hiring

Optimal use of Capital

K	TP	MP	MRP
0	0		
1	15	15	150
2	28	13	130
3	40	12	120
4	51	11	110
5	61	10	100
6	70	9	90
7	78	8	80
8	85	7	70