Lecture 4 DFS and complexity #Initialization Step Spore = [5,1,2,--,] Nodes List Next = [] List pred = $[\infty, \infty, ..., \infty]$ LiJt Vi sited = [] 1.5+ Crutht 11 (/ # Visiting S Lehte visited, append (S) +1 For all neighbors of S: +4*(2) Next. append (u)
pred [v) > s pred[s]=0 24 + 2 Space complex ty Time Complexity $)FS = O(h^2)$ DFS = D(n)

while Next is nonempty, nx (1+1+nx2)

current-Next pop[-1]

visited-appendicument)

For all heighborsyof current: nx(2)

if V is not in visited;

Pued [v] = current +1

Next. append (v) +1

return pred

Nodes =
$$ES, 1, 2, 3, 4$$
]
Next = E]
Pred = $E \times \infty, \infty, \infty, \infty, \infty$]
Visited = E]
Next = E [1,3]
Pred = E [0,5, ∞ ,5, ∞]
Current = 3
Next = E [1]
Visited = E [5,3]
Pred = E [6,5, ∞ ,5,3]
Pred = E [6,4]

Current = 2

Next = CIIVisited = Cs, 3, 4, 2Pred = Cs, 2, 4, 5, 3Current = INext = CIINext = Cs, 2, 3, 4, 5, 3Visited = Cs, 3, 4, 2, 1

(omplexity

(Also

Let
$$f(n)$$
, $g(n)$ be functions
with positive integer in pats.
we say $g(n) = O(f(n))$ if $f(x) = O(f(n))$ of $f(x) = O(f(n))$

Ex. 1 Let
$$f(n) = n$$

Let $g(n) = n^2 - 4$

Note: $N=4$, $f(4)=4$, $g(4)=12$

So. $N \le 1(4^2-4) + 4 = 4$

 $n = ()(n^2-4)$

n= O(n) ph= ()(n), n= (h!)

EX2. Let f(n) = n-1. Let g(n)= n-3 n -1 < h-3 n-1 & n-3 Try Changing (C = 2 $h-1 \leq 2(h-3)$ n-1 < 2n-6 h+5 525 548 POSE 1 > 100 105 £ 200 and nts grows stomer than 24 => n-1=0 (n-3)

Suppose
$$f(h) = \frac{a}{5}C_{i}h^{i}$$
 and suppose $f(h) = \frac{b}{5}C_{i}h^{i}$ $f(h) = \frac{b}{5}C_{i}h^{i}$

Then
$$(f(n)) \leq C |g(n)|$$

$$\Rightarrow \int \frac{|f(n)|}{|g(n)|} \leq C$$

$$Iff(n) = O(9(h))$$

$$\Rightarrow deg(f(h)) = a = deg(g(h))$$

So if
$$f(n), g(n)$$
 are Polynomials
$$f(n) = O(g(n)) \text{ if}$$

$$deg(f(n)) \leq deg(g(n))$$

ex3. Onsider $F(n) = 1(2n^2 + 3n^3 + 2n^4)$ Then $f(n) = O(n^4)$ $f(n) = O(n^5)$ $f(n) \neq O(n^3)$

We also use 0 to absorb terms eg. $f(n) = 1(2n^2 + 3n^3 + 2n^4 = 2n^4 + 0(n^3)$

Suffore Suff

We have to be careful for some pie cewike functions.

ex. f(n) = Shi if hiseren (n-) if hisold

of (4) = O(n2)

as both the even and oddparts

are O(n2). Voy aways take the

worst (se scanario,

If your function of has multiple in Puts, i.e. f(n,m). then we say f(n,m) = O(g(n,m)) if $\exists C > 0$, and the gens V, M > 0 $S \cdot f \cdot (f(n,m)) \leq C(g(n,m))$

 $\frac{2(x-f(n,n))-n^2+nn+n^2\leq n^2+nn+n^2}{f(n,m)=O(n^2+nn+n^2)}$ $f(n,m)=O((n+m)^2)$ $f(n,m)=O(n^2+m^2)$ Note $nm\leq n^2$ or $nm\leq m^2$

Time and Space comprexity is measured using O-notation.

•