MP	Sciences Industrielles de l'Ingénieur	Date : 07/11/2020
Devoir de Maison DM1	CINEMATIQUE	Date retour : 11/11/2020

Présentation:

Le NAUTILUS est un sous marin imaginé par Jules Verne en 1869. Il est, pour l'époque, technologiquement très avancé, ainsi pendant 7 mois, il couvre la distance de 20000 lieues (111000 km)

Pour célébrer l'année Jules Verne, une société a créé des manèges inspirés des sous-marin Nautilus ; Le Nautilus a une masse propre de 116Kg et peut accueillir 6 enfants, avec une masse totale de 422 Kg.

Pour rendre les manèges plus attractifs, les systèmes sont posés sur un élévateur permettant de soulever des sujets plus lourds en assurant l'horizontalité du sujet de manège

Fonctionnement du système (figure 1)

Le système est constitué:

- *) d'un plateau de manège S1, en rotation par rapport au bâti, autour de l'axe vertical (Oo, zo), la rotation est entrainée par un moteur électrique muni d'une boite de vitesse automatique pour réduire et adapter la vitesse.
- *) d'un élévateur composé principalement de bras, de bielles et une embase ; l'élévateur, placé sur le plateau S1, permet de guider la nacelle S et d'assurer son horizontalité, le déplacement est assuré par un vérin hydraulique.

Figure 2 : système à l'arrêt, Nacelle en position basse.

Figure 3 : une position au cours du soulèvement de la nacelle.

Figure 4 : une position au cours de la rotation de la nacelle.

Paramétrage: voir document annexe 1.

Cahier de charge pa	<u>rtiel</u>
Fonction	Critère .
Déplacer la nacelle	La masse de la nacelle maxi : 422Kg La course en hauteur de la nacelle mini : 1,5m Vitesse linéaire maxi : 4,3m/s Accélération maximale : 6,2m/s ²
Déplacer la nacelle	La course en hauteur de la nacelle mini : 1,5 Vitesse linéaire maxi : 4,3m/s

F.A.S.T. partiel

Question 1 : A partir du fonctionnement du système et du FAST partiel , Donner les solutions : ST1, ST2 et ST3

PARTIE I : Etude géométrique (voir document annexe 1)

Objectif: Déterminer la course du vérin

Question 2 : Déterminer λ en fonction de L, e, a et α

La nacelle se déplace entre la position basse, repérée par h=0 et la position haute, repérée par h=a+b

Question 3 : Déterminer le déplacement maximal : λ max puis la course du vérin : $\mathbf{c} = \lambda$ max – λ mini

Si on conçoit le système avec une valeur de la distance « a » plus petite.

Question 4 : Quelle est l'influence de la diminution de la distance « a » sur λmax et sur la course **c**

PARTIE II : Répondre sur le document réponse DR1

L'objectif est de déterminer **graphiquement** la vitesse de translation de la tige S5 du vérin par rapport au corps S4 dans la position représentée sur le document réponse DR1

Paramétrage: voir document annexe 1

On donne : II $\overline{V(G/S1)}$ II = 50 mm/s Le sens d'étude : la montée de la nacelle

Question 5: Donner la direction de $V(C \in S_2/S_1)$ et la direction de $V(D \in S_2'/S_1)$;
Question 6: Représenter $V(G \in S/S_1)$ et $V(C \in S_2/S_1)$ Question 7: Déterminer $V(B \in S_2/S_1)$ Question 8: Donner la relation entre $V(B \in S_5/S_4)$, $V(B \in S_4/S_1)$ et $V(B \in S_2/S_1)$ Question 9: Déterminer la vitesse de translation de la tige du vérin S_5 par rapport

au corps S4

PARTIE III: Hyperstatisme (document annexe 2)

L'objectif de cette partie est de choisir l'une des deux solutions technologiques proposées

Hypothèse: toutes les liaisons sont parfaites

Etude de la solution 1 (document annexe 2, figure 1)

Question 10:

10-1) Donner la liaison équivalente entre S2 et S1.

10-2) Donner le degré de mobilité « m » du système. **Préciser** ces mobilités

10-3) En déduire le degré d'hyperstatisme « h » du système

Etude de la solution 2 (document annexe 2, figure 2)

Ouestion 11:

11-1)Donner le degré de mobilité « m » du système. <u>Préciser</u> ces mobilités 11-2)En déduire le degré d'hyperstatisme « h » du système 11-3)Le constructeur a choisi la solution 2, pourquoi?

DOCUMENT ANNEXE 1

Ro(Oo, xo, yo, zo) repère lié à So, supposé galiléen (n'est représenté sur le schéma)

 $R(Oo, \overline{x}, \overline{y}, \overline{z})$ repère lié au plateau S1 du manège, en liaison pivot par rapport à Ro, tel que : $\overline{zo} = \overline{z}$, $\theta = (\overline{xo}, \overline{x}) = (\overline{yo}, \overline{y})$, \overline{z} : axe vertical ascendant

 $R_2(O_2, \overline{x}, \overline{y_2}, \overline{z_2})$ repère <u>lié</u> au bras S_2 en liaison pivot avec S_1 , d'axe O_2, \overline{x} tel que : $O_2, \overline{y_2}$ = $O_2, \overline{y_2}$ et $O_2, \overline{$

 $R_4(A, \overrightarrow{x}, \overrightarrow{y_4}, \overrightarrow{z_4})$ repère lié au corps du vérin S4, en liaison pivot avec S1, d'axe (A, \overrightarrow{x}) ; tel que $\overrightarrow{AO2} = \overrightarrow{Ly} + e \overrightarrow{z}$, $\beta = (\overrightarrow{y}, \overrightarrow{y_4}) = (\overrightarrow{z}, \overrightarrow{z_4})$

La tige du vérin S5 est en liaison pivot glissant avec le corps du vérin S4, d'axe (A, \overline{y} 4), et en liaison rotule avec S2 en B, tel que : $\overline{AB} = \lambda(t) \overline{y}$ 4 ; $\overline{O2B} = a \overline{z}$ 2 et $\overline{BC} = b \overline{z}$ 2 ;

Le bras S2' (identique à S2) en liaison pivot d'axe (E, x) avec S1; et en liaison pivot d'axe (D, x) avec (D

On donne : $\overrightarrow{O2C} \cdot \overrightarrow{z} = h(t)$; $\overrightarrow{O2E} = \overrightarrow{CD} = 2.\overrightarrow{dy}$ $\overrightarrow{O2C} = \overrightarrow{ED}$ G centre d'inertie de la nacelle S ; $\overrightarrow{CG} = \overrightarrow{dy} + \overrightarrow{y} + \overrightarrow{uz}$

L, e, a, b, d, u : des constantes positives

DOCUMENT ANNEXE 2

DOCUMENT REPONSE DR1

Echelle: 3 mm ---->2 mm/s

Q5) Direction de $\overrightarrow{V}(C \in S_2/S_1)$ et la direction de $\overrightarrow{V}(D \in S_2'/S_1)$
Q6) Représenter $\overrightarrow{V}(G \in S/S1)$ et $\overrightarrow{V}(C \in S2/S1)$
Q7) V(B € S2/S1)
Q8) la relation entre $V(B \in S_5/S_4)$, $V(B \in S_4/S_1)$ et $V(B \in S_2/S_1)$
Q9) La vitesse de translation
Nacelle S +G
racence 5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Plateau du manège S1