Foundations of Machine Learning

Module 3: Instance Based Learning and Feature Reduction

Part C: Feature Extraction

Sudeshna Sarkar IIT Kharagpur

Feature extraction - definition

• Given a set of features $F = \{x_1, ..., x_N\}$ the Feature Extraction("Construction") problem is is to map F to some feature set F'' that maximizes the learner's ability to classify patterns

Feature Extraction

- Find a projection matrix w from N-dimensional to Mdimensional vectors that keeps error low
- Assume that N features are linear combination of M < N vectors

$$z_i = w_{i1}x_{i1} + \dots + w_{id}x_{iN}$$
$$z = w^T x$$

- What we expect from such basis
 - Uncorrelated, cannot be reduced further
 - Have large variance or otherwise bear no information

Geometric picture of principal components (PCs)

Geometric picture of principal components (PCs)

Geometric picture of principal components (PCs)

Algebraic definition of PCs

Given a sample of p observations on a vector of N variables

$$\{x_1, x_2, \cdots, x_n\} \in \mathbb{R}^N$$

define the first principal component of the sample by the linear transformation

$$z_1 = w_1^T x_j = \sum_{i=1}^N w_{i1} x_{ij}, \quad j = 1, 2, \dots, p.$$

where the vector

$$W_1 = (W_{11}, W_{21}, \cdots, W_{N1})$$

$$x_{j} = (x_{1j}, x_{2j}, \dots, x_{Nj})$$

is chosen such that $var[z_1]$ is maximum.

PCA

PCA

- Choose directions such that a total variance of data will be maximum
 - 1. Maximize Total Variance
- Choose directions that are orthogonal
 - 2. Minimize correlation
- Choose M < N orthogonal directions which maximize total variance

PCA

- *N*-dimensional feature space
- $N \times N$ symmetric covariance matrix estimated from samples $Cov(x) = \Sigma$
- Select M largest eigenvalue of the covariance matrix and associated M eigenvectors
- The first eigenvector will be a direction with largest variance

PCA for image compression

p=4

p=8

p=32

p=64

p=100

Original Image

Is PCA a good criterion for classification?

- Data variation determines the projection direction
- What's missing?
 - Class information

What is a good projection?

- Similarly, what is a good criterion?
 - Separating different classes

separated

What class information may be useful?

- Between-class distance
 - Distance between the centroids of different classes

Between-class distance

What class information may be useful?

- Between-class distance
 - Distance between the centroids of different classes
- Within-class distance
 - Accumulated distance of an instance to the centroid of its class
- Linear discriminant analysis (LDA) finds most discriminant projection by
 - maximizing between-class distance
 - and minimizing within-class distance

Linear Discriminant Analysis

Find a low-dimensional space such that when
 x is projected, classes are well-separated

Means and Scatter after projection

$$m_1 = \frac{\sum_t \mathbf{w}^T \mathbf{x}^t r^t}{\sum_t r^t} = \mathbf{w}^T \mathbf{m}_1$$

$$m_2 = \frac{\sum_t \mathbf{w}^T \mathbf{x}^t (1 - r^t)}{\sum_t (1 - r^t)} = \mathbf{w}^T \mathbf{m}_2$$

$$s_1^2 = \sum_{t} (\mathbf{w}^T \mathbf{x}^t - m_1)^2 r^t$$

$$s_2^2 = \sum_{t} (\mathbf{w}^T \mathbf{x}^t - m_2)^2 (1 - r^t)$$

Good Projection

- Means are as far away as possible
- Scatter is small as possible
- Fisher Linear Discriminant

$$J(\mathbf{w}) = \frac{(m_1 - m_2)^2}{s_1^2 + s_2^2}$$

Multiple Classes

• For c classes, compute c-1 discriminants, project N-dimensional features into c-1 space.

FIGURE 3.6. Three three-dimensional distributions are projected onto two-dimensional subspaces, described by a normal vectors \mathbf{W}_1 and \mathbf{W}_2 . Informally, multiple discriminant methods seek the optimum such subspace, that is, the one with the greatest separation of the projected distributions for a given total within-scatter matrix, here as associated with \mathbf{W}_1 .

Thank You