

Introduzione e strumenti

Le specifiche di progetto

- Le specifiche come "desiderata"
- Specifiche di stabilità e di stabilità robusta
- Specifiche sul comportamento in regime permanente
- Specifiche sulla risposta in transitorio
- Altre specifiche

Le specifiche come "desiderata"

Introduzione (1/2)

- Il problema del controllo è stato definito come l'imposizione di un funzionamento desiderato ad un processo assegnato
- Il funzionamento desiderato è stato espresso richiedendo che l'andamento nel tempo della variabile controllata (uscita) coincida il più possibile con quello di un opportuno segnale di riferimento (variabile o costante)

Introduzione (2/2)

Nella realtà non è possibile avere l'esatta coincidenza fra uscita e riferimento: l'uscita insegue il riferimento entro tolleranze, tali da garantire comunque il corretto funzionamento del sistema dal punto di vista pratico

> Le **specifiche di progetto** definiscono il "modo in cui l'uscita deve inseguire il riferimento"

Le specifiche come "desiderata"

- Le condizioni che dovranno essere soddisfatte, affinché nella pratica l'inseguimento risulti soddisfacente, vengono definite dalle specifiche di progetto tenendo conto
 - Dei desiderata imposti dal particolare compito che deve essere eseguito
 - Della presenza di disturbi e di vincoli tecnologici nel sistema

Le principali specifiche

- Le principali specifiche di progetto riguardano:
 - La stabilità del sistema controllato
 - La robustezza della stabilità e del controllo in generale
 - La precisione dell'inseguimento (in regime permanente e durante il transitorio)
 - La capacità di reiettare disturbi
 - La "forma" della risposta del sistema in transitorio
 - L'attività sulla variabile di comando
- Opportune specifiche possono essere formulate anche in riferimento alla risposta in frequenza del sistema controllato

Specifiche di stabilità e di stabilità robusta

Specifiche di stabilità (1/2)

- Condizione necessaria affinché l'uscita possa inseguire il riferimento assegnato è che il sistema controllato sia asintoticamente stabile
 - La semplice stabilità non è sufficiente: qualunque perturbazione parametrica, seppure di piccola entità, potrebbe impedire all'uscita di tornare a "coincidere" con il riferimento

Specifiche di stabilità (2/2)

Nel caso di un sistema in retroazione, la funzione di trasferimento ad anello chiuso W_y(s) deve pertanto essere asintoticamente stabile

Tutti i poli di W_y(s) devono avere parte reale strettamente minore di zero

Specifiche di stabilità robusta (1/2)

- L'asintotica stabilità del sistema controllato deve essere mantenuta anche in presenza di perturbazioni e variazioni dei parametri del sistema, che possano alterarne l'effettivo comportamento rispetto al modello utilizzato per il progetto del compensatore: si parla in tal caso di stabilità robusta
- Per quantificare la robustezza del controllo, saranno introdotti opportuni indicatori di robustezza (parametri, funzioni), oggetto di possibili specifiche di progetto

Specifiche di stabilità robusta (2/2)

Variazioni dei parametri della F(s); scarsa accuratezza del modello del processo

Variazioni dei parametri della C(s); problemi nella realizzazione pratica del compensatore

Definizione di margini di stabilità e della sensibilità rispetto alle variazioni

Specifiche sul comportamento in regime permanente

Specifiche in regime permanente: precisione

- L'imposizione della stabilità del sistema controllato garantisce il raggiungimento della condizione di regime permanente
- La precisione con cui l'uscita insegue il riferimento in tale condizione è oggetto di specifica
- Le specifiche di precisione in regime permanente vengono definite rispetto a famiglie di segnali canonici di riferimento di interesse pratico, quali i segnali polinomiali ed i segnali sinusoidali

Specifiche di precisione: esempi (1/2)

Esempio: richiesta di errore di inseguimento nullo in regime permanente ad un riferimento costante (gradino)

Specifiche di precisione: esempi (2/2)

Esempio: richiesta di errore di inseguimento limitato in regime permanente ad un riferimento costante (gradino)

Reiezione di disturbi in regime permanente

- Il comportamento del sistema può essere influenzato dalla presenza di disturbi (agenti sul processo, di misura, di attuazione, ecc.)
- Effetti indesiderati dei disturbi possono rimanere anche in regime permanente, alterando le caratteristiche di precisione del sistema
- Opportune specifiche possono essere definite sulla capacità del sistema in regime permanente
 - Di reiettare completamente gli effetti dei disturbi
 - Di limitarne gli effetti entro valori limite accettabili

Specifiche sulla risposta in transitorio

Specifiche sulla risposta in transitorio

- Le specifiche sul comportamento della risposta del sistema durante il transitorio possono:
 - Essere definite senza considerare un particolare riferimento
 - Essere formulate rispetto ad un segnale di riferimento considerato "critico" nella valutazione delle prestazioni del sistema controllato, quale il riferimento a gradino (solitamente assunto unitario per semplicità)

Specifiche sulla precisione in transitorio

Una specifica sulla precisione durante il transitorio si traduce nella richiesta che l'errore di inseguimento non superi mai in modulo un valore prefissato:

Specifiche sulla risposta al gradino (1/4)

Le principali specifiche sul comportamento della risposta al gradino unitario durante il transitorio possono riguardare:

La presenza di oscillazioni:sovraelongazione massima

$$\mathbf{\hat{s}} = \frac{\mathbf{y}_{\mathsf{max}} - \mathbf{y}_{\infty}}{\mathbf{y}_{\infty}}$$

Specifiche sulla risposta al gradino (2/4)

Le principali specifiche sul comportamento della risposta al gradino unitario durante il transitorio possono riguardare:

 La prontezza di risposta del sistema:

tempo di salita

$$t_r = t_{90\%} - t_{10\%}$$
1a definizione

Specifiche sulla risposta al gradino (3/4)

Le principali specifiche sul comportamento della risposta al gradino unitario durante il transitorio possono riguardare:

tempo di salita

$$t_s = min(t : y(t_s) = y_{\infty})$$

2a definizione

Specifiche sulla risposta al gradino (4/4)

- Le principali specifiche sul comportamento della risposta al gradino unitario durante il transitorio possono riguardare:
 - Il tempo impiegato per raggiungere "in pratica" il regime permanente: tempo di assestamento

Altre specifiche

Specifiche sulla risposta in frequenza (1/2)

Possono essere assegnate specifiche di progetto direttamente sul comportamento in frequenza del sistema controllato, rappresentato dalla funzione

risposta in frequenza del sistema ad anello chiuso

 Il sistema controllato è visto in tal caso come un filtro (generalmente passabasso, a volte passabanda), di cui si vogliono assegnare le principali caratteristiche, quali banda passante, picco di risonanza, ecc.

Specifiche sulla risposta in frequenza (2/2)

- Obiettivi principali della assegnazione di specifiche sul comportamento in frequenza del sistema controllato possono essere:
 - Un buon inseguimento di segnali di riferimento sinusoidali entro una pulsazione massima e/o in generale di segnali aventi contenuto in frequenza entro una banda di interesse
 - L'attenuazione di disturbi sinusoidali e/o a banda larga, mediante specifiche sulla fdt fra il disturbo e l'uscita del sistema

Specifiche sulla attività sul comando

- Le caratteristiche tecnologiche dell'azionamento possono determinare vincoli e limitazioni sull'andamento della variabile di comando, quali
 - Valore massimo in modulo della variabile di comando, con conseguente saturazione del comando
 - "Slew rate" massimo (velocità massima di variazione della variabile di comando)
- Tali limitazioni devono essere tenute in conto nel progetto del controllore, che genera la variabile di controllo applicata all'azionamento