Math 215 – Fall 2017

Practice Homework 17 – Assigned November 13th, due November 16th **Note:** Remember that you must show your work to get full credit for a problem.

1. Consider the following false proof that $Card(\mathbb{N}) \neq Card(\mathbb{Q})$. (This is a revised version of the first problem on Practice HW #16.)

Proof. [FALSE]

We proceed by contradiction. Suppose there is a bijection $f: \mathbb{N} \to \mathbb{Q}$.

Then we create a number z as follows. We will define $z = .z_1 z_2 z_3 \cdots$ where z_n is a single digit number and represents the n^{th} number after the decimal point.

We define z_n to be 1 if the n^{th} decimal place of f(n) is not 1, and define z_n to be 0 if the n^{th} decimal place of f(n) is 1.

Then by construction z is not in the image of f and thus f is not a bijection.

Thus no bijection exists from \mathbb{N} to \mathbb{Q} .

Thus $Card(\mathbb{N}) \neq Card(\mathbb{Q})$.

State the logical error(s) in the prove and explain why the proof fails.

- 2. Let $f: A \to B$ be a function.
 - (a) Prove that for all $C \subseteq B$, we have $f(f^{-1}(C)) \subseteq C$.
 - (b) Find a function $f: \mathbb{R} \to \mathbb{R}$ and a set $C \subseteq \mathbb{R}$ such that $f(f^{-1}(C)) \neq C$.
 - (c) Prove that for all $C \subseteq A$, we have $C \subseteq f^{-1}(f(C))$.
 - (d) Find a function $f: \mathbb{R} \to \mathbb{R}$ and a set $C \subseteq \mathbb{R}$ such that $C \neq f^{-1}(f(C))$.