Understanding Branch Prediction in Datacenter Applications

PRESENTER:

Muhammed Ugur

- Modern datacenter applications consist of large instruction footprints, increasingly complex logic, and deep software stacks [1]
- ❖ This complexity makes it more difficult for online branch predictors to learn intricate patterns and correlations in branch history
- We propose the use of offline profiling and hardware/software co-design to tackle these growing challenges in branch prediction

PROPOSED MECHANISM

- The Context Cache stores encoded global history patterns that were deemed hard-topredict from application profiles
- Contexts are encoded by concatenating the two least significant bits of the last 32 branches in the Last Branch Record

DATACENTER WORKLOADS

Workload	Description
Cassandra	NoSQL DBMS used by Netflix/Uber
Drupal	PHP-based CMS (Facebook's OSS-performance)
Finagle- Chirper	Micro-blogging service (Java Renaissance)
Finagle-HTTP	HTTP server (Java Renaissance)
Kafka	Apache's stream-processing platform used by Uber/LinkedIn/Airbnb
Mediawiki	Open-source Wiki engine (Facebook's OSS-performance)
Tomcat	Apache's open-source Java web server
Verilator	Tool for simulating custom hardware designs used by Intel/ARM
Wordpress	PHP-based CMS (Facebook's OSS-performance)

Prefetching branch metadata through hardware/software co-design and profiling significantly reduces MPKI

CONSIDERING OVERHEAD

- ❖ ~50% of the ideal MPKI reduction can be gained by targeting the most impactful contexts, reducing storage overhead
- Re-evaluating the size of each context (64 bits) can also significantly reduce storage

ADDITIONAL EVALUATION

❖ Evaluating our datacenter traces on the software-only Big-BranchNet [2] provided 10.41% avg. MPKI reduction compared to our design's 12.36% avg. on 64KB TAGE-SC-L

e Contexts
1799
11876
12527
466
15718
176
26216
55
22520

Muhammed Ugur Tanvir Ahmed Khan Krishnendra Nathella Dam Sunwoo Daniel A. Jiménez

Baris Kasikci

UNIVERSITY OF MICHIGAN

- 1] Khan, T. A., Brown, N., Sriraman, A., Soundararajan, N. K., Kumar, R., Devietti, J., Subramoney, S., Pokam, G. A., Litz, H., & Kasikci, B. (2021). Twig: Profile-Guided BTB Prefetching for Data Center Applications. *MICRO-54: 54th Annual IEEE/ACM International*
- [2] Zangeneh, S., Pruett, S., Lym, S., & Patt, Y. N. (2020). BranchNet: A Convolutional Neural Network to Predict Hard-To-Predict Branches. 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 118–130.

Symposium on Microarchitecture, 816–829.