Simulating Nanodisc Behavior using LAMMPS

Pushpita Sarker

Alex Hernandez

Studying membrane proteins requires mimetic systems

Native lipid-bilayer

Mimetic lipid-bilayer (Nanodisc)

Nanodisc size has been shown to affect protein behavior

Pre-transition effects mediate forces of assembly between transmembrane proteins

Shachi Katira^{1†}, Kranthi K Mandadapu^{2,2†}, Suriyanarayanan Vaikuntanathan^{4†}, Berend Smit^{1,3,5}, David Chandler^{1*}

Can the Orderphobic Effect explain protein behavior in nanodisc?

Project Outline

 Aim 1: Write a LAMMPS input script which will simulate the previously published "Orderphobic Effect"

 Aim 2: Introduce fixed "Orderphobic" boundaries which will simulate nanodiscs of variable sizes

 Aim 3: Expand complexity to increase the accuracy of the simulated results


```
#Number of lipid particles.
variable npart equal 1000
units
dimension 2
atom style
               atomic
boundary
               ррр
#Neighbor particles within a range of 6.
               6 bin
neighbor
neigh modify
               every 1 delay 0 check yes
region box block -20 20 -20 20 -0.1 0.1
create box 2 box
fix 2d all enforce2d
#Create lipid particles at random positions.
create_atoms 1 random ${npart} 324523 safe
mass 1 1
pair style hybrid lj/cut 2.5
pair_coeff 1 1 lj/cut 1.0 1.0 2.5
velocity all create 1.0 34234123 dist gaussian
#Energy minimization to remove overlapping particles.
minimize 1e-4 1e-4 1000 1000
reset timestep 0
timestep
              0.0005
```



```
#Create lipid particles at random positions.
create_atoms 1 random ${npart} 324523 safe

#Create protein particle.
create_atoms 2 single 0 0 0

#Lipid particles have mass 1. Protein particle has mass 40.
mass 1 1
mass 2 40

#Hybrid lj/cut and soft interactions between particles.
#Soft interactions used to create disorder in lipids.
pair_style hybrid lj/cut 2.5 soft 15.0
pair_coeff 1 1 lj/cut 1.0 1.0 2.5
pair_coeff 2 2 lj/cut 2.0 5.0 3.0
```



```
#Create lipid particles at random positions.
create_atoms 1 random ${npart} 324523 safe

#Create protein particle.
create_atoms 2 single 0 0 0

#Lipid particles have mass 1. Protein particle has mass 40.
mass 1 1
mass 2 40

#Hybrid lj/cut and soft interactions between particles.
#Soft interactions used to create disorder in lipids.
pair_style hybrid lj/cut 2.5 soft 15.0
pair_coeff 1 1 lj/cut 1.0 1.0 2.5
pair_coeff 2 2 lj/cut 2.0 5.0 3.0
```


Aim 2 – Introducing the Nanodisc

Aim 2 – Introducing the Nanodisc

25x25 20x20 15x15

Aim 3 – Increasing Complexity

Conclusion

The Orderphobic Effect may result in undesirable protein aggregation in small nanodiscs

Future Directions

Switch to GROMACS

Increase complexity of membrane composition

 Write Python script to quantify simulation results

