## CuWISP

A Massively Parallel Implementation of WISP for Nvidia GPUs

### Andy Stokely

## September 2021

## 1 Theory

- CuWISP uses a novel variation of Hedetniemi's algorithm to find suboptimal paths.
- A brief overview of Hedetniemi's algorithm is provided below.

#### 1.1 Hedetniemi's Algorithm

1. Let A be the adjacency matrix representation of a non-negative weighted undirected graph G (Figure 1).

$$a_{ij} = \begin{cases} 0 & i = j \\ w_{ij} & i \neq j \text{ if there is an edge connecting node i } (n_i) \text{ and node j } (n_j). \\ \infty & i \neq j \text{ if there is not an edge connecting } n_i \text{ and } n_j. \end{cases}$$
(1)

- 2.  $C^n$  is an all pairs shortest paths matrix for G.
  - Denoted as  $C^n = A \dashv \vdash A$ , where  $A = C^{n-1}$ .
  - Each path has at most n edges.

$$c_{ij}^{(n)} = \min(a_{i0} + a_{0j}, \ a_{i1} + a_{1j}, \ a_{i2} + a_{2j}, \ \cdots, \ a_{im} + a_{mj}),$$
  
where  $C$  is a m × m matrix and  $A = C^{n-1}$  (Figure 2). (2)

3. If the longest (in terms of edges) shortest path has n edges,  $C^n$  is a "complete" all pairs shortest paths matrix for G.



$$A = \begin{pmatrix} 0 & 5 & 1 & \infty & 3 & \infty \\ 5 & 0 & \infty & 6 & \infty & \infty \\ 1 & \infty & 0 & 4 & 3 & \infty \\ \infty & 6 & 4 & 0 & 8 & 2 \\ 3 & \infty & 3 & 8 & 0 & \infty \\ \infty & \infty & \infty & 2 & \infty & 0 \end{pmatrix}$$

Figure 1: Graph G and it's adjacency matrix representation A. The weight of the edge composed of node i and node j is the matrix element  $a_{ij} \in A$ .

$$A = \begin{pmatrix} \mathbf{0} & \mathbf{5} & \mathbf{1} & \mathbf{\infty} & \mathbf{3} & \mathbf{\infty} \\ 5 & 0 & \infty & \mathbf{6} & \infty & \infty \\ 1 & \infty & 0 & \mathbf{4} & \mathbf{3} & \infty \\ \infty & \mathbf{6} & \mathbf{4} & \mathbf{0} & \mathbf{8} & 2 \\ 3 & \infty & \mathbf{3} & \mathbf{8} & 0 & \infty \\ \infty & \infty & \infty & \mathbf{2} & \infty & \mathbf{0} \end{pmatrix}$$

$$c_{03}^{(2)} = \min \begin{pmatrix} \begin{bmatrix} 0 \\ 5 \\ 1 \\ \infty \\ 3 \\ \infty \end{bmatrix} + \begin{bmatrix} \infty \\ 6 \\ 4 \\ 0 \\ 8 \\ 2 \end{bmatrix} \end{pmatrix} = \min \begin{pmatrix} \begin{bmatrix} \infty \\ 11 \\ 5 \\ \infty \\ 11 \\ \infty \end{bmatrix} = 5$$

Figure 2: The shortest path from node 0 to node 3 with two or fewer edges has a length of 5.

- 4. If  $C^n = C^{n-1}$ , the longest shortest path for G has n-1 edges.
- 5. Equation (2) is embarrassingly parallel.

- Each of the sums can be computed in parallel.
- 6. In the worst case,  $C^n$  has to be computed m 1 times given G has m edges.
- 7. However, the calculation can be terminated once  $C^n = C^{n-1}$ .
- 8. The CUDA version of Hedetniemi's algorithm is roughly  $100 \times$  faster than NetworkX's python implementation of Bellman Ford's algorithm.
- 9. The single shortest path between  $n_i$  and  $n_j$  ( $SSP_{ij}$ ) can be recovered from  $C^n$  as follows.
  - (a) Define the source node as  $n_i$ .
  - (b) Define the sink node as  $n_j$ .
  - (c) The length of  $SSP_{ij}$  is equal to matrix element  $c_{ij}^{(n)} \in C^n$ .
  - (d)  $n_{k1}$  is the node in  $SSP_{ij}$  that shares an edge with  $n_j$ , where  $k_1$  is the column and row index of A and  $C^n$  respectively, that satisfies the condition

$$c_{ij}^{(n)} = c_{k_1j}^{(n)} + a_{ik_1}. (3)$$

- (e)  $k_1$  is appended to a list  $(L_n)$  that stores  $SSP_{ij}$ 's node indices.
- (f)  $a_{ik_1}$  is appended to a list  $(L_w)$  that stores  $SSP_{ij}$ 's edge weights.
- (g) The index  $(k_2)$  of the node in  $SSP_{ij}$  that shares an edge with  $n_{k_1}$  is now computed.

$$c_{k_1j}^{(n)} = c_{k_2j}^{(n)} + a_{ik_2}. (4)$$

- (h)  $k_2$  is appended to  $L_n$ .
- (i)  $a_{ik_2}$  is appended to  $L_w$ .
- (j) Once  $||L_w||_1 = c_{ij}^{(n)1}$ , the procedure is terminated.
- (k)  $L_n$  is an ordered list of all node indices in  $SSP_{ij}$ .
- (l) This step can be partially parallelized using a parallel reduction.

# 1.2 Hedetniemi Suboptimal Paths Finding (HSPF) Algorithm

- 1. Hedetniemi's algorithm can be used to find "important" suboptimal paths between a source and sink node in a graph.
- 2. The user defines the "importance" criteria by setting the maximum number of suboptimal paths  $(sp_{max})$  they want the algorithm to find.
- 3. The HSPF algorithm proceeds as follows.

 $<sup>^{1}\|</sup>L_{w}\|_{1}$  is the euclidean 1-norm, or sum of  $L_{w}$ .

- The single shortest path (ssp) between the source node  $(n_{src})$  and sink node  $(n_{sink})$  is calculated.
- The edges in the ssp are added to a deque (D).
  - The way the edges are added to D depends on which path finding round is being run.
    - \* Round 0: Edges are appended in order to the end of D and popped from the end.

$$D = \mathbf{deque}([E_a, E_b, E_c])$$

$$SSP = (E_d, E_e, E_f, E_g, E_h)$$

$$\mathbf{append:} \ D = \mathbf{deque}([E_a, E_b, E_c, E_d, E_e, E_f, E_g, E_h])$$

$$\mathbf{pop:} \ D = \mathbf{deque}([E_a, E_b, E_c, E_d, E_e, E_f, E_g, \cancel{E_h}])$$

$$\longrightarrow E_h = (n_x, n_y) \longrightarrow c_{xy}^{(n)} = \infty, \ c_{xy}^{(n)} \in C^n$$

\* **Round 1**: Edges are appended in order to the middle of *D* and popped from the middle.

$$D = \mathbf{deque}([E_a, E_b, E_c])$$

$$SSP = (E_d, E_e, E_f, E_g, E_h)$$

$$\mathbf{append:} \ D = \mathbf{deque}([E_a, E_d, E_e, E_f, E_g, E_h, E_b, E_c])$$

$$\mathbf{pop:} \ D = \mathbf{deque}([E_a, E_d, E_e, \cancel{E_f}, E_g, E_h, E_b, E_c])$$

$$\longrightarrow E_f = (n_x, n_y) \longrightarrow c_{xy}^{(n)} = \infty, \ c_{xy}^{(n)} \in C^n$$

\* Round 2: Edges are appended in order to the end of D and popped from the beginning.

$$D = \mathbf{deque}([E_a, E_b, E_c])$$

$$SSP = (E_d, E_e, E_f, E_g, E_h)$$

$$\mathbf{append:} \ D = \mathbf{deque}([E_a, E_b, E_c, E_d, E_e, E_f, E_g, E_h])$$

$$\mathbf{pop:} \ D = \mathbf{deque}([\cancel{E_a}, E_b, E_c, E_d, E_e, E_f, E_g, E_h])$$

$$\longrightarrow E_a = (n_x, n_y) \longrightarrow c_{xy}^{(n)} = \infty, \ c_{xy}^{(n)} \in C^n$$

\* Round 3: Edges are appended in order to the middle of D and popped from the beginning.

$$D = \mathbf{deque}([E_a, E_b, E_c])$$

$$SSP = (E_d, E_e, E_f, E_g, E_h)$$

$$\mathbf{append:} \ D = \mathbf{deque}([E_a, E_d, E_e, E_f, E_g, E_h, E_b, E_c])$$

$$\mathbf{pop:} \ D = \mathbf{deque}([\cancel{E_a}, E_d, E_e, E_f, E_g, E_h, E_b, E_c])$$

$$\longrightarrow E_a = (n_x, n_y) \longrightarrow c_{xy}^{(n)} = \infty, \ c_{xy}^{(n)} \in C^n$$

\* Round 4: Edges are appended in order to the middle of D and popped from the end.

$$\begin{split} D &= \mathbf{deque}([E_a,\ E_b,\ E_c]) \\ SSP &= \big(E_d,\ E_e,\ E_f,\ E_g,\ E_h\big) \\ \mathbf{append:}\ D &= \mathbf{deque}([E_a,\ E_d,\ E_e,\ E_f,\ E_g,\ E_h,\ E_b,\ E_c]) \\ \mathbf{pop:}\ D &= \mathbf{deque}([E_a,\ E_d,\ E_e,\ E_f,\ E_g,\ E_h,\ E_b,\ E_c]) \\ \longrightarrow E_c &= (n_x,n_y) \longrightarrow c_{xy}^{(n)} = \infty,\ c_{xy}^{(n)} \in C^n \end{split}$$

- The ssp is added to a list that stores suboptimal paths  $(L_{sp})$ .
- Each edge is a tuple of it's node indices.
- An edge is either popped from the beginning, middle, or end of *D* based on the path finding round.
- The matrix element in  $C^n$  that represents the popped edge is set equal to infinity.
- This edge is now inaccessible.
- ullet The ssp of the new  $C^n$  matrix is computed.
- ullet The edges of the new ssp are either appended to middle or end of D based on the path finding round.
  - If an edge is already in D, it is not added.
- This procedure is repeated until D is either empty or the number of paths found is greater than  $sp_{max}$ .
- 4. The HSPF algorithm is embarrassingly parallel, as the path finding rounds can be run concurrently with each other.
- 5. Multi-GPU compute platforms can increase calculation performance by a factor of n, where n is the number of GPUs.