

목차

- Problem Statement
- > Exploration
 - ✓ Domain Exploration (Literature Review)
 - ✓ Data Exploration
- Methods & Results
 - ✓ Overall Approach
 - ✓ Summary: Models & Results
- Conclusion

Problem Statement

Predict CO concentration levels from 16 gas sensor data

Domain Exploration (1/2) by Literature Review

• (General) In-Lab Mixed Gas Test Environment

1 Mixed air injection 2 Fresh air injection

8 300 1000 2000 3000 4000 5000

- Delayed sensor response due to:
 - 1) Remaining gas in the chamber (before fully exhausted)
 - 2) Sensor array structure
 - 3) Sensor internal characteristics (∵ analog lowpass filter)
 - Need to align measured signals with reference CO

*Ref.: Yonghui Xu, et al., "Research on a Mixed Gas Recognition and Concentration Detection Algorithm Based on a Metal Oxide Semiconductor Olfactory System Sensor Array," Sensors, 2018

Domain Exploration (2/2) by Literature Review

Nonlinearity in Cross-sensitivity characteristics & Mixed response

*Ref.: Datasheets (Sensor specifications) of FIGARO TGS Series Sensors

*Ref.: Yonghui Xu, et al., "Research on a Mixed Gas Recognition and Concentration Detection Algorithm Based on a Metal Oxide Semiconductor Olfactory System Sensor Array," Sensors, 2018

Data Exploration (1/3)

- Cross-Correlation Analysis: ① Sensor Failure @ "s2" → Exclusion?
 - ② Similar Sensors → Selection or Merge?

Data Exploration (2/3)

■ Need of Signal Shifts → 2000 samples shifted!

*Measured signal = Lowpass-filtered form of target signal **Poor ability to track abrupt change in CO concentration level

Data Exploration (3/3)

■ Need of Signal Conditioning → Zero-Phase Lowpass Filter Applied!

Overall Approach

Pre- & Post-processing (79.5 % MAE reduced w/ LR)

Summary: (Combined) Models & Results

Conclusion

"No Free Lunch"

Linear regression

- ✓ Simple but powerful (∵ highly correlated data)
- ✓ Limited performance (∵ only linear relationship)

XGBoost

- √ Good for classification (than regression tasks)
- ✓ Poor at extrapolation (depends on training set)

CNN

✓ Good for data with spatial relationship

MLP - Achieved the best performance

- ✓ Good for time-series prediction (w/ tabular data)
- ✓ But too many parameters (∵ full connection)

Further Works

Different time shifts per sensors (columns)

	s1	s11	s13	s15
Optimal Time Shift*	4700	2700	2300	2200

*determined by the maximum cross-correlation

- Use CNN w/ spatial representation (e.g., spectrum)
- Use RNN models e.g., LSTM, Transformer
- Ensemble model

^{*}Ref.: Towards Data Science, "Why XGBoost Can't Solve All Your Problems"

^{*}Ref.: MachineLearningMastery, "When to use MLP, CNN, and RNN neural networks"