${\bf Numeerinen\ nopeus valits in\ {\bf Fortranilla}}$

Eino Kleemola 015264608

$14.\ joulukuuta\ 2022$

Sisältö

Lorentzin voima Nopeusvalitsin etelmät lman rakenne
etelmät
lman valranna
man rakenne
Moduulit
3.1.1 main
3.1.2 moveParticle
3.1.3 getData
3.1.4 writeToFile

1 Johdanto

Työssä mallinnetaan nopeusvalitsinta, jossa ortogonaaliset sähkö- ja magneettikentät aiheuttavat hiukkaseen Lorentzin voiman. Tämän seurauksena vain tietyn nopeuksiset hiukkaset läpäisevät suodattimen. Nopeusvalitsimien yleinen sovelluskohde on massaspektrometri, mutta niitä on myös käytetty elektronisuihkun hajaantumisentasaimina [1]

1.1 Lorentzin voima

Lorentzin voima on Maxwellin yhtälöiden seurauksena:

$$F = q\left(E + v \times B\right) \tag{1}$$

Nähdään, että magneettinen voima on verrannollinen nopeuteen, kun taas sähköinen voima on vakio.

1.2 Nopeusvalitsin

Hiukkanen on tasapainossa silloin, kun Lorentzin voiman sähköinen ja magneettinen komponentti kumoavat toisensa. Näin käy ainoastaan silloin, kun nopeus on täsmälleen:

$$v = \frac{E}{B} \tag{2}$$

Missä nopeuden suunta on ortogonaalinen sähkö- ja magneettikenttään nähden. Hiukkaset joiden nopeus on alle tämän rajan, kulkevat sähkökentän määrittämään suuntaan. Jos hiukkanen on liian nopea, on magneettinen voima suurempi. Tällöin hiukkanen ajautuu vastakkaiseen suuntaan.

2 Menetelmät

Ohjelmassa hiukkasen paikan päivitys suoritetaan newPosition moduulissa yksinkertaisella Euler metodilla. Ensin määritetään hiukkaseen kohdistuva voima, josta saadaan kiihtyvyys:

$$F = q(E + v \times B) \tag{3}$$

$$a = \frac{F}{m} \tag{4}$$

Kiihtyvyyden ja aika-askeleen avulla voidaan ratkaista uusi nopeus hiukkaselle. Tämän uuden nopeuden perusteella päivitetään hiukkasen sijainti:

$$\mathbf{v}_{\text{uusi}} = \mathbf{v}_{\text{vanha}} + \mathbf{a}dt \tag{5}$$

$$\boldsymbol{x}_{\text{uusi}} = \boldsymbol{x}_{\text{vanha}} + \boldsymbol{v}_{\text{uusi}} dt \tag{6}$$

On syytä huomioida, että tämä menetelmä ei ole erityisen tarkka, mutta se on riittävä tähän käyttöön.

3 Ohjelman rakenne

3.1 Moduulit

3.1.1 main

Pääohjelma kutsuu moduuleja ja kirjoittaa joka aika-askeleen päätteeksi hiukkasen paikan tiedostoon. newPosition funktiota kutsutaan, kunnes hiukkanen osuu ennalta määrättyihin seiniin, tai aika loppuu.

3.1.2 moveParticle

Tämä moduuli sisältää funktion newPosition, jonka argumentteina ovat hiukkasen indeksi ja aika-askel. Näillä tiedoilla funktio laskee hiukkaselle uuden paikan, ja palauttaa sen.

3.1.3 getData

getData moduuli hakee käyttäjän antamat parametrit tiedostosta ja komentoriviargumentteina. Syötetiedoston ja komentoriviargumenttien muotoilu on selostettu readme tiedostossa.

3.1.4 writeToFile

Tämä moduuli sisältää aliohjelmia, jotka kirjoittavat haluttua dataa tiedostoihin.

4 Tulokset

Ohjelman tuloksien tarkkuutta arvioitiin vertaamalla Ledererin tuloksiin. Lederer ratkaisi Wienin suodattimessa kulkevan elektronin liikeyhtälön. Tästä nähtiin, että elektronilla tulisi olla liike-energiaa 10eV, jotta se pääsisi suotimen läpi suoraan. Sähkökentän voimakkuus oli 250V/m ja magneettikentän voimakkuus 1.3 gauss. Ledererin liikeyhtälöstä nähdään, että elektronin kulkiessa suoraan suodattimen läpi, sen nopeus on tasan $v = \frac{E}{B}$. Edellä mainituilla sähkö- ja magneettikentän arvoilla tämä nopeus vastaisi $\approx 10.5 \, \mathrm{eV}$ energiaa. Kuvassa 2 on esitetty numeerisesti määritetyt ja Ledererin analyyttisesti määrittämät hiukkasten radat. Huomataan, että numeerisessa ja analyyttisessa menetelmässä on ero. Ledererin mallissa elektroni joka läpäisee suodattimen suoraan omaa liike-energiaa 10eV, kun taas numeerisessa mallissa se on 10.5eV. Kuitenkin hiukkasten ratojen muoto on sama, joka puhuu numeerisen mallin oikeellisuuden puolesta.

4.1 Varauksen merkin muuttaminen

Kun simulaatioparametrit ovat:

$$E = 10 \frac{V}{m}$$

 $B = 10T$

Vain hiukkaset, joiden nopeus on tasan v=1 tulisi pääästä läpi. Simuloidaan seuraavat hiukkaset:

$$v_1 = 1, m_1 = 1, q_1 = 1$$

 $v_2 = 0.5, m_2 = 1, q_2 = 1$
 $v_3 = 0.5, m_3 = 1, q_2 = -1$

Näiden radat näyttävät seuraavalta:

Kuva 1: Hiukkasten radat.

Nähdään, että jos hiukkasen varaus on negatiivinen, se kaartuu alaspäin johtuen siitä, että sähkökentän suunta on ylöspäin.

Kuva 2: Vasemmalla elektronien radat määritetty numeerisesti. Keskimmäisen elektronin liike-energia on 10.5eV. Sen yläpuolelle kaartuvat elektronit ovat nopeampia, ja alapuolelle kaartuvat hitaampia. Toisessa kuvassa on esitetty Ledererin analyyttisesti ratkaistut elektronien liikeradat. Tässä keskimmäisen suoraan suodattimen läpäisevän elektronin liike-energia on 10eV. Kuvien elektronien energiat eivät vastaa toisiaan, mutta radat ovat analogiset

Viitteet

[1] Lederer, Jackson, "Electron Beam Dispersion Compensator Using a Wien Filter" (2021). Honors Theses, University of Nebraska-Lincoln. 368.