Name:	Student ID:	

Signals and Systems Homework 6 Due Time: 23:59 April 27, 2018 Submitted to blackboard online (photos or electronic documents) and to the box in front of SIST 1C 403E (the instructor's office).

Throughout this problem set, the n-th Fourier series coefficient of some function f of period T means $\frac{1}{T}\int_{t_0}^{t_0+T}f(t)e^{-j2\pi nt/T}\mathrm{d}t$

- 1. (20') Review the trick to solve the Problem 4 in Mid-Term Exam and solve the following questions:
 - (a) (10') Find the Fourier series coefficients a_n of function f(t) of period 2 with $f(t) = \frac{1}{2}(t|t|-t)$ for $t \in [-1,1]$. You can use, without proof, the fact that the Fourier series coefficients of g(t) of period 2 with g(t) = |t| for $t \in [-1,1]$ are:

$$b_n = \begin{cases} \frac{-2}{n^2 \pi^2} & \text{if } n \text{ is odd} \\ 0 & \text{if } n \neq 0 \text{ is even} \\ \frac{1}{2} & \text{if } n = 0 \end{cases}$$

if necessary.

(b) (10') Evaluate $\sum_{m=1}^{\infty} m^{-6}$. (Provide your reasoning, or you will receive 0 credits)

- 2. (40') Let $g_{\alpha,\beta}(t) = \alpha e^{-\beta t^2}$, where α and β are positive real numbers. The following 2 facts can be used without proof when solving the following questions:
 - For all positive real numbers α and β , there exist $\alpha' > 0$ and $\beta' > 0$ such that $g_{\alpha',\beta'}(\omega)$ is equal to the Fourier transform $G_{\alpha,\beta}(j\omega)$ of $g_{\alpha,\beta}(t)$;
 - $\bullet \int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}.$
 - (a) (5') Establish a differential equation containing $g_{\alpha,\beta}(t)$ and its derivative $g'_{\alpha,\beta}(t)$.
 - (b) (5') Establish a differential equation containing the Fourier transform $G_{\alpha,\beta}(j\omega)$ of $g_{\alpha,\beta}(t)$ and its derivative $G'_{\alpha,\beta}(j\omega)$.
 - (c) (10') Compare the results from (a) and (b) and determine the Fourier transform $G_{\alpha,\beta}(j\omega)$ of $g_{\alpha,\beta}$ by finding $\alpha' > 0$ and $\beta' > 0$ such that $g_{\alpha',\beta'} = G_{\alpha,\beta}$.
 - (d) (20') Verify your answers obtained in the previous questions by computing $g_{\alpha_1,\beta_1} * g_{\alpha_2,\beta_2}$ in the following two ways:
 - i. (10') Compute $g_{\alpha_1,\beta_1} * g_{\alpha_2,\beta_2}$ by definition;
 - ii. (10') Compute $g_{\alpha_1,\beta_1} * g_{\alpha_2,\beta_2}$ by the convolution property.

- 3. (40') Let $f_a(x) = e^{-a|x|}$ where a > 0.
 - (a) (10') Determine the Fourier transform $F_a(j\omega)$ of $f_a(x)$.
 - (b) (10') Consider $\widetilde{f}_a(x) = \sum_{n=-\infty}^{\infty} f_a(x+n)$. Derive the expression of $\widetilde{f}_a(x)$ and write down the fundamental period of $\widetilde{f}_a(x)$ if it exists.
 - (c) (10') Decide the Fourier series coefficients c_n of $\widetilde{f}_a(x)$ if $\widetilde{f}_a(x)$ is periodic.
 - (d) (10') How are c_n and $F_a(j\omega)$ related? (Hint: Observe $F_a(j2\pi n)$)
 - (e) (0') If you have taken a course on *Mathematical Analysis*, think about why the your observation is valid. (*Hint: Weierstrass M-test*)