数字逻辑与处理器基础实验

实验二 反应速度测试仪

反应速度测试仪可以测量人体对信号的反应时间,用于为判断疲劳程度或相关医学 诊断作为参考。

设计要求:

- (1) 系统复位后,延时 1 秒,点亮某 LED,被测试者观察到 LED 点亮后,立即按动按钮 S2。电路测量自 LED 亮起到按钮按下之间的时间差,并显示在数码管上,按按钮 S4 后,系统复位,并重复上述测试过程。
- (2) 采用全同步设计,即电路中所有触发器的时钟均为系统时钟。
- (3) 采用 4 位七段数码管显示,量程为 0.0ms~999.9ms。
- (4) 报告中给出占用逻辑资源和时序性能。
- (5) 输入输出及管脚绑定

信号或器件	1/0	管脚绑定	信号描述
sysclk	Input	P17	全局时钟信号,100MHz
LED	Output	F6	LED 灯,输出高电平,LED 亮起表示 测试开始
S2	Input	R15	被测者观察到 LED 点亮后按下,按 下后电平为高电平
S4	Input	U4	异步复位信号
Cathodes[7:0]	Output	B4, A4, A3, B1, A1, B3, B2, D5	数码管 7 段输入,高电平点亮,顺序 为{CA,CB,CC,CD,CE,CF,CG,DP},
AN[3:0]	Output	G2, C2, C1, H1	扫描输入,高电平点亮,顺序为 {AN3,AN2,AN1,AN0}

(6) 如果仿真运行较慢,可以将所有信号的频率提高 1000 倍。即测量量程调整 为 0.0us~999.9us。