

## Задание

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

#### Ход работы, содержание отчета и контрольные вопросы описаны в методических указаниях

| Введит                                                                                                    | е номер                                                                                                        | 6011                                                                                                                         |                                                                                                              |                                                                 |      |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------|
| 2D8:<br>2D9:<br>2DA:<br>2DB:<br>2DC:<br>4<br>2DD:<br>2DE:<br>2E0:<br>2E1:<br>2E2:<br>2E3:<br>2E4:<br>2E5: | 02F0<br>0200<br>4000<br>E000<br>- AF80<br>0740<br>0680<br>EEF8<br>AF05<br>EEF8<br>4EF5<br>EEF5<br>ABF4<br>0480 | 2E6:<br>  2E7:<br>  2E8:<br>  2E9:<br>  2EA:<br>  2EC:<br>  2EC:<br>  2EC:<br>  2EF:<br>  2F6:<br>  2F1:<br>  2F1:<br>  2F2: | 0380<br>F405<br>0380<br>0400<br>7EF0<br>F901<br>EEEE<br>82DA<br>CEF5<br>0100<br>0741<br>0601<br>0C01<br>1200 | 2F4:<br> <br> | 0200 |

<u>Цель работы</u> - изучение способов организации циклических программ и исследование порядка функционирования БЭВМ при выполнении циклических программ и обработки одномерных массивов.

Задание. По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

Подготовка к выполнению работы.

Получить у преподавателя номер варианта к лабораторной работе. Изучить способы и средства организации циклических программ с использованием системы команд базовой ЭВМ (приложение В, п.1.7). Восстановить текст заданного варианта программы. Составить описание программы.

Порядок выполнения работы. Получить допуск к лабораторной работе, предъявив преподавателю подготовленные материалы. Получить у преподавателя новые исходные данные. Значения элементов массива из задания используются только для определения функциональности программы! Занести в память базовой ЭВМ заданный вариант программы, новые исходные данные и заполнить таблицу трассировки, выполняя эту программу по командам.

Содержание отчета по работе. Отчет по работе должен быть составлен аналогично лабораторной работе №2, за исключением п. 4 (разработка программы с сокращенным числом команд). Необходимо привести диапазон всех ячеек памяти, где может размещаться массив исходных данных.

## Выполнение

## Исходные данные

| Адрес | Код команды | Мнемоника     | Комментарии                                                       |  |
|-------|-------------|---------------|-------------------------------------------------------------------|--|
| 2D8   | 02F0        | start_index   | Адрес начала массива                                              |  |
| 2D9   | 0200        | current_index | Адрес текущего элемента (изначально 2F5)                          |  |
| 2DA   | 4000        | arr_length    | Кол-во повторов цикла (или же количество элементов массива)       |  |
| 2DB   | E000        | result        | Результат (изначально 7FFF)                                       |  |
| 2DC   | AF80        | LD #80        | Прямая загрузка FF80 -> AC                                        |  |
| 2DD   | 0740        | DEC           | AC – 1 -> AC                                                      |  |
| 2DE   | 0680        | SWAB          | AC7AC0 <-> AC15AC8                                                |  |
| 2DF   | EEFB        | ST (IP-5)     | Прямое относительное сохранение AC -> M (2DB)                     |  |
| 2E0   | AF05        | LD #05        | Прямая загрузка 0005 -> АС                                        |  |
| 2E1   | EEF8        | ST (IP-8)     | Прямое относительное сохранение AC -> M (2DA)                     |  |
| 2E2   | 4EF5        | ADD (IP-11)   | Прямое относительное сложение AC + M (2D8) -> AC                  |  |
| 2E3   | EEF5        | ST (IP-11)    | Прямое относительное сохранение AC -> M (2D9)                     |  |
| 2E4   | ABF4        | LD –(IP-12)   | Косвенная автодекрементальная загрузка: М (2D9)-=1; М (2D9) -> AC |  |
| 2E5   | 0480        | ROR           | Циклический сдвиг вправо                                          |  |
| 2E6   | 0380        | CMC           | (^C) -> C                                                         |  |
| 2E7   | F405        | BCS (IP+5)    | Если C==1, то IP + 5 + 1 -> IP                                    |  |
| 2E8   | 0380        | CMC           | (^C) -> C                                                         |  |
| 2E9   | 0400        | ROL           | Циклический сдвиг влево                                           |  |
| 2EA   | 7EF0        | CMP (IP-16)   | Прямая относительная установка флагов по результату АС – М (2DB)  |  |
| 2EB   | F901        | BGE (IP+1)    | Если N==V, то IP + 1 + 1 -> IP                                    |  |
| 2EC   | EEEE        | ST (IP-18)    | Прямое относительное сохранение AC -> M (2DB)                     |  |
| 2ED   | 82DA        | LOOP 2DA      | M − 1 -> M; Если M <= 0, то IP + 1 -> IP                          |  |
| 2EE   | CEF5        | JUMP (IP-11)  | Прямой относительный прыжок IP — 11 + 1 -> IP                     |  |
| 2EF   | 0100        | HLT           | Останов                                                           |  |
| 2F0   | 0741        |               |                                                                   |  |
| 2F1   | 0601        |               |                                                                   |  |
| 2F2   | 0C01        |               | Элементы массива                                                  |  |
| 2F3   | 1200        |               |                                                                   |  |
| 2F4   | 0200        |               |                                                                   |  |

### Описание программы

### Назначение программы

Поиск наименьшего значения нечетного элемента, которое меньше 2^15 – 1

#### Область представления

- start\_index, current\_index 11-разрядные целые числа, адрес БЭВМ
- arr\_length 16-ти разрядные целые числа, беззнаковые
- элементы массива, result 16-разрядные целые числа, знаковые

#### Область допустимых значений

```
-2^{15} <= элементы массива <= 2^{15} - 1
-2^{15} <= result <= 2^{15} - 1
Далее возможно 2 случая:
```

1) Массив находится после команд:

 $0 < arr\_length <= 510_{(16)}$  (так как первая ячейка массива (2F0) в сумме с arr\\_length должна давать число не больше максимального возможного адреса неслужебной ячейки (7FF) + 1 (+1 из-за автодекрементации))

```
2F0 <= start_index <= 7FF - arr_length
2F0 <= current_index <= arr_length + start_index
```

2) Массив находится до команд:

```
0 < arr_length <= 2D8
0 <= start_index <= 2D8 - arr_length
0 <= current_index <= arr_length + start_index</pre>
```

#### Расположение данных в памяти

```
2F0-2F4 — исходные данные
2D9 — промежуточный результат
2DB — результат
2DC-2EE — команды
```

### Адреса первой и последней исполняемой команды

Адрес первой команды – 2DC Адрес последней команды – 2EE

# Вывод

В процессе выполнения лабораторной работы я изучил команды ветвления, новые для меня методы адресации, например: прямая относительная, косвенная относительная, косвенная автоинкрементная, косвенная автодекрементная, с прямой загрузкой операнда. Также я познакомился с циклами и массивами в рамках БЭВМ.