

Université Abdelmalek Essaadi Ecole Nationale des Sciences Appliquées- Al Hoceima

Cours de :

Résistance Des Matériaux 2 (R.D.M 2)

Filière: Génie Civil 1-S2

Pr Abderrahim BOULANOUAR

PLAN

CHAPITRE I: LA FLEXION DES POUTRES EN UTILISANT LES FONCTIONS DE SINGULARITÉS

CHAPITRE II: LES MÉTHODES ÉNERGÉTIQUES

CHAPITRE III: INSTABILITÉ DE FLAMBEMENT

Cette matière constitue une suite à la Résistance de matériaux enseignée en premier semestre, on abordera la flexion des poutres en utilisant les fonctions de singularités, les méthodes énergétiques et l'Instabilité de Flambement.

Connaissances préalables recommandées

Résistance des matériaux 1, Mathématique

OBJECTIFS

- ✓ Etudier la flexion en utilisant la méthode de singularité.
- ✓ Développer les formules d'énergie de déformation qui s'appliquent aux cas particuliers étudiés en RDM; la tension et la flexion.
- ✓ Etudier ensuite le théorème de réciprocité, lequel permettra entre autre d'aborder le théorème de Castigliano.
- ✓ Poursuivre l'étude d'une forme d'instabilité, à savoir le flambement

CHAPITRE I: LA FLEXION DES POUTRES EN UTILISANT LES FONCTIONS DE SINGULARITÉS

- Rappel de la «Méthode de la double intégration».
- Méthode des fonctions de singularités.
- Caractéristiques des fonctions de singularités
- Diagrammes de T et de M par fonctions de singularités
- L'expression de la flèche de la poutre en tout point

CHAPITRE I: LA FLEXION DES POUTRES EN UTILISANT LES FONCTIONS DE SINGULARITÉS

La fonction de singularité est définie:

Cette fonction obéit à la loi d'intégration

$$\int_{-\infty}^{x} \langle y - a \rangle^{n} dy = \frac{\langle x - a \rangle^{n+1}}{n+1} \quad pour \ n \ge 0$$

$$\int_{-\infty}^{x} \langle y - a \rangle^{n} dy = \langle x - a \rangle^{n+1} \quad pour \ n < 0$$

	Fonction de Singularité	Représentation
couple	$p(x) = C\langle x - a \rangle^{-2}$	o Z
force	$p(x) = F\langle x - a \rangle^{-1}$	0 F X
charge uniformément répartie	$p(x) = p\langle x - a \rangle^0$	0 p
charge variant linéairement	$p(x) = \frac{dp}{dx} \left\langle x - a \right\rangle^1$	0 dp/dx

Nota: Le tableau explicite « les actions extérieures » appliquées. Par exemple, d'après notre convention de signes, le couple (C) dans le tableau « tourne » dans le sens négatif, il provoque un moment fléchissant positif dans la section de droite du tronçon de gauche.

$$E.I.\frac{d^2v}{dx^2} = M$$

On calcul la flèche $\, {\cal U} \,$

Déterminer l'expression de la pente $\frac{d\upsilon}{d\upsilon} = \theta$

CHAPITRE II: LES MÉTHODES ÉNERGÉTIQUES

- Energie de déformation
- Théorèmes pour les structures avec un comportement élastique linéaire:
 - > Théorème de Clapeyron
 - Théorème de Castigliano
 - **▶**Théorème de réciprocité de Maxwell-Betti
 - Principe du travail virtuel

CHAPITRE II: LES MÉTHODES ÉNERGÉTIQUES

* Théorème de Clapeyron permet de calculer le travail des forces extérieurs

$$W_{ext} = \frac{1}{2}F.x + \frac{1}{2}C\theta$$

Energie de déformation totale:

$$W_{d} = \frac{1}{2E} \int \frac{N^{2}}{S} dx + \frac{1}{2\mu} \int \frac{T_{y}^{2}}{S} dx + \frac{1}{2E} \int \frac{M_{z}^{2}}{I_{z}} dx + \frac{1}{2\mu} \int \frac{M_{x}^{2}}{I_{0}} dx$$

effort normal + effort tranchant + moment fléchissant + moment de torsion

CHAPITRE II: LES MÉTHODES ÉNERGÉTIQUES

* Théorème de Castigliano permet de calculer directement le déplacement

$$\frac{\partial W_d}{\partial F} = x_B$$

* Théorème de réciprocité de Maxwell - Betti

CHAPITRE III: INSTABILITÉ DE FLAMBEMENT

- Définir le flambage
- Equation vérifiée par la flèche
- Elancement, Rayon de giration
- Charge critique de flambage :
 - Rotule-rotule soumise à une charge excentrée
 - Flambement d'une colonne avec différents conditions aux limites

CHAPITRE III: INSTABILITÉ DE FLAMBEMENT

Le flambement est une sollicitation composée de compression et de flexion. C'est un phénomène rapidement destructif

CHARGE CRITIQUE D'EULER

$$F_{cr} = rac{\pi^2.E.I}{L^2}$$
 La longueur libre de flambement

ELANCEMENT

$$\lambda = \frac{L}{\rho}$$

> RAYON DE GIRATION DE LA SECTION

$$\rho = \sqrt{\frac{I}{S}}$$

TRAVAUX PRATIQUES

OBJECTIFS:

- Se familiariser avec le logiciel RDM6 qui permettre de faire comme son nom l'indique de la Résistance Des Matériaux.
- Bien maitriser les étapes qui mènent à d'étude des différents essais.
- ➤ Savoir exploiter les connaissances théoriques acquises du cours RDM1 et RDM2.

TP-1: TRACTION-COMPRESSION

TP-2: FLEXION SIMPLE

TP-3-FLAMBEMENT

TRAVAUX DIRIGÉS

CHAPITRE I: LA FLEXION DES POUTRES EN UTILISANT LES FONCTIONS DE SINGULARITÉS

CHAPITRE II: LES MÉTHODES ÉNERGÉTIQUES

CHAPITRE III: INSTABILITÉ DE FLAMBEMENT

CHAPITRE I: LA FLEXION DES POUTRES EN UTILISANT LES FONCTIONS DE SINGULARITÉS

Rappel de la «Méthode de double intégration»

On donne la poutre représentée par la figure ci-dessous.

Déterminer:

- 1. Les actions de contact en A et en D
- 2. Les efforts tranchants T.
- 3. Les moments de flexion
- 4. L'expression de la pente et celle de la flèche.
- 5. La flèche de la poutre au point C.