

$$\frac{\sum \text{xercice} \ 1}{\sum_{i=1}^{n} (x_{i}, y_{i})} = 2x_{i}y_{i} - 3x_{i}y_{i} - 3x_{i}$$

Iraquité de Cauchy Schwarz:

4 (x,y) ∈ R'× R', |b(x,y)| € (b(x,x). (b(y,y))

4. Y(P,Q) E ROCX] × ROCX], P(X) = W+ W, X+ W, X2

b(P,Q)=(00+01) Bo + (00+301)B, + 302 B2

\[\frac{1}{\sum_{\text{2}}} \z_{\text{1}} \cdot \left\ \frac{1}{\sum_{\text{2}}} \z_{\text{1}} \\ \frac{1}{\sum_{\text{2}}} \z_{\text{2}} \\ \frac{1}{\sum_{\text{2}}} \\ \frac{1}{\sum_{\tex

Q(X)=Bo+B,X+B,X2

Exercice 2: $\forall (A, D) \in (T_{A}(R))^{2}$, $\langle A, B \rangle = tr(A^{T}B)$ $tr(A^{T}B) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}b_{ij}$ J. Cf. ex 1 TD 4 (A FATRE) $\Rightarrow biliniair$ symitrique: b(A, B) $\Rightarrow A b(A, A| \ge 0 \Rightarrow A = Q_{A}(R)$ $\Rightarrow b(A, A| = 0 \Rightarrow A = Q_{A}(R)$ \Rightarrow

<=> tr(AB) 2 & tr(A). tr(B2)

Exercice 3:
J. E = C'([0,1], R), <4, g>= 4(0) g(0) + ['4'(+)g'(+) d+
Symptoie:
Soit $f,g \in E$, $\langle f,g \rangle = f(0)g(0) + \int_0^1 f(t)g(t)dt$
$= q(0)^{2}(0) + \int_{0}^{1} q'(1) f'(1) d1$
= < q, t > donc < > sym
bilinesik
Soit Bit, gee, KER
< \lambda \text{\formal}
= 13(0)g(0)+ 3(0) q(0)+ / 18(4)q(+)+ 8(4)q(+) d+
= 18(0) g(0) + 4(0) g(0) +1/4(Hg(+)d++ / 4(H)g(+)d+
= K <k,q> + <k,q></k,q></k,q>
Donc <., > lineaire à gauche, et comme <., > sym alors <., >
bilineare.
positivite:
Soft 4 € €; <8,4>= \$(0)\$(0)+ [1\$(A)(1)d+
= f(0) 2 + [f(t) 2 dt
Car carre et postivité de l'integrale
$\frac{1}{4}(t)^2 \geq 0 \Rightarrow \frac{1}{4}(t)^2 dt \geq 0$
D' W (4,8>>0
déthie:
< 1, 1 > = 0 <=> 1(0)=0 et (1(+1)2) dt =0
f(0)=0 et f'(+)=0 car on intègre une fx° continue sur [0,1].
D'où f constante avec $f(0)=0$ on obtient $f=0$
,
Conclusion: bilineane, symetrique, dostrice positive; donc clest un p.s.

Exercice 4: <.,.> p.s. b: ExE→IR KEIR
b(2e, y)= (2e, y) + k (2e, 2) (y, 2)
-2 = 1=11=1 > < 2, => < 1=11=1 = 1=1=1=1=1=1=1=1=1=1=1=1=1=1=
a dividure
· b(y,x)= (y,x)+ k(y,2> (20, 2)
= <x,y>+ k <x,2><y,2) <.,.="" comme=""> P.J.</y,2)></x,2></x,y>
= \(\(\sigma_{\ell} \)
. 0
· \(\(\alpha\)= <\(\alpha\) + \(\alpha\)
= <20,20>+ 6<20,2>
En particulier == 2; b(3,2)= <3,2>+ k <3,2>2
= 1+k come a unitaire
a unitaire 2 = 0 donc b(3,2)>0 1+k>0
No condition recognize 1+k>0

On peut mg b est une f.b. sym. · On veut b did positive, the b(x,x) = <x,x>+k(x,2>2 > on await marké blx,x1≥0 tx b(x,x)=0 <=> x=0 & k+1>0

· Rantrons & k+1>0, alors b est dest. pas. k>-1. · 8 k > 0 · * On a along the b(x,x)>0

· b(x,x)=0, conne on a une E de termes @, chacun destermes doit être = 0.

Airesi <2, x>=0 donc x=0

CJ.11.22

· & k €] -1,0[: On while in. C.s:
(<2,2>) < (<2,2>) . (<3,2> danc <2,2>° < <2,2>. <4,2>
Car a critice
D'0) < 2,3 > 2 5 (2, 2)
Come k<0, k<2,0\$ > k<2,0\$ et donc.
$b(x,x) = \langle x,x \rangle + k \langle x,a \rangle^2 \geqslant \langle x,x \rangle + k \langle x,x \rangle = (\lambda+k) \langle x,x \rangle$
D'à b(x,x) >0.
8. b(x,x)=0 c'est donc que (1+k) <x,x> ≤0 ((ar on avait b(x,x)>0)</x,x>
3056 (1+k)<20
Comme 1+k+0 Donc <2,20=0 et 2=0.

Donc on a Egalité si till, ai=aj

(=)
$$\sqrt{8} < \frac{1}{2}$$
 = 1 par hypothise

Commu
$$\sum_{i=1}^{n} 2_i = 1$$
; alors $2_i = \frac{1}{2}$ 4_i alore 4_i , $4_i = 1$.

Exercice 6:

$$Rq: x \in \mathbb{R}^{n} : X = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} \in T_{n,1}(\mathbb{R}) : \langle x, x \rangle = X^{T}X$$

$$A \in T_{n}(\mathbb{R}) : A \times e T_{n,1}(\mathbb{R}) \in \mathbb{R}^{n}$$

$$A \in T_{n}(\mathbb{R}) : A \times e T_{n,1}(\mathbb{R}) \in \mathbb{R}^{n}$$

$$A \in T_{n}(\mathbb{R}) : A \times e T_{n,1}(\mathbb{R}) \in \mathbb{R}^{n}$$

$$A = A \times e T_{n,1}(\mathbb{R}) : A \times e T_{n,1}(\mathbb{R}) = (A^{T}X)^{T} : A^{T}X = X^{T}AA^{T}X = \langle x, AA^{T}X \rangle$$

$$A = A \times e T_{n,1}(\mathbb{R}) : A \times e T_{n,1}(\mathbb{R})$$

$$\frac{\sum \ker(x_1 - x_1)}{x_1} = \frac{1}{x_1} = \frac{1}{x_1} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_2} = \frac{1}{x_1} = \frac{1}{x_2} = \frac{1$$

$$DOUC < \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = (x+4+5)^{\frac{1}{2}} = \frac{19}{2}$$

$$= (x+4+5)^{\frac{1}{2}} = \frac{19}{2}$$

Exercice 8:

U continue of the cord,
$$J(h) > 0$$

When $J_{e} = \int_{0}^{h} o^{\mu}(h)dh$
 $J_{e} = \frac{T_{en}}{T_{e}}$ then $J_{e} = \int_{0}^{h} o^{\mu}(h)dh$

To began definite of $J_{e} = \int_{0}^{h} o^{\mu}(h)dh$

Par large $J_{e} = \int_{0}^{h} o^{\mu}(h)dh$

To work may $J_{e} = \int_{0}^{h} o^{\mu}(h)dh$

To work may $J_{e} = \int_{0}^{h} o^{\mu}(h)dh$
 $J_{e} = J_{e} =$

Exercise 9:

$$E = C(E_{a},b_{1},R^{*})$$

On a f_{a}^{*} continue sur E_{a},b_{1}^{*} of e_{a}^{*} on f_{a}^{*} sur E_{a},b_{1}^{*} . Done do signe cite.

On perh prends:

 f_{a}^{*} f_{a

il admet une borne int.

On a Eggsite de C.S.: 2.
$$\frac{\lambda}{(4)(4)} = \frac{\lambda}{(4)(4)}$$
 4t.

Done 4t u(t)=
$$L$$
 on a Egalite pour fx° constante.
On dotient alors $\int_{a}^{b} L dt = (b-a)^{\circ}$

Exercice 10. => On suppose x et y athogonoux 4LER, 11x+Ly112 = < x+Ly, x+Ly> = < x, x > + < < y, x > + < < x, y > + < y, y > = ||x|| + 2/ < x,y> + ||y|| cor pr ym a <2,4>=0 pr hyp. Dore 12+14112=1121141112 > 112112 = On spose 112+ Ly112 > 112112 On 2 alors ||x+/4||2= ||x||2+2/(x,y>+/2||4||2=||x||2 => /2/ly/12+ &x<x,y>>0 · P(K) = / 2 | 1411 + 2/ < x,y> \(\lambda\), P(1)>0 donc P a or one racine or arome racine Donc 150 05 1=4<20,45'-4119112050 = 4 < x, y > ^e < 0 Et done D=0 co 4<x,y>2 >0. Done <x,y>=0.

Exercice 11: 1. TQ ACB => B+ CA+ B+={2EE, txEB, <x,2>=0} ACB. Sit yEB+, txEB, cx,y>=0 Donc tx EA < 2, y> = 0 comme ACD. Donc yEA' => B'CA+ 2. (AUB) = ATOST C On a toyour . A C AUB 00A - B. Donc d'après q.1, on a (AUB) + c A+ ex (AUB) + c B+ donc (AUB) CATOR > Ra AtABt C (AUB) . Soit x E ATABT (on west ma x = (A)B) càd y = A)B < x, y > = 0) Soit xe A'not et y E A UB Bay to Aary <=> 8UAap. & yea, alors conne xe A' ND'; alors <x,y>=0 & yes, slors comme & EATABT; along < x,y>=0 D'ai par yeaus, <2,y>=0 donc ze (108) Done A'ND' = (AUB)" 3. $A^{\perp} = \text{vect}(A^{\perp})$ Rappel: vect (A) = lens. des c.l des elen. de A. On a tir Acrect(A) C d'après q. 1 vect (A) * c A*

On vert my ty evect(A), alors ye(A+) · Soit $y \in \text{vect}(A)$. Alors for det. $y = \sum_{i=1}^{n} \lambda_i a_i$ to $a_i \in A$

$$\forall b \in A^{\perp}$$
, alors $\forall i < b, a_i > = 0$. Donc $\sum_{i=1}^{n} \lambda_i < b, a_i > = 0$

sof
$$\langle b, \frac{2}{2}, \lambda_{(2i)} \rangle = 0$$
 done $\langle b, y \rangle = 0$ comme bet along $y \in (A^4)^{\frac{1}{2}}$

Exercia 12: Fet G SEV non vide Rappel: F+G = | z=v+v arec v EF et v EG } Sev de E λ . $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$ C On vert mg tzelF+6), ze F+nG+. 80it 2€ (F+6)+ Or verting the type , <2,x>=0 et <2,y>=0 treet et tyes, on a <2, xxy>=0 et en portionier por 2=00 : an 2 alos <2,4>=0 et donc 2 e G1 por y=066: 01 2 Hars cz, x>=0 or danc zeFt Alusi ZEBINF DO vest mg tre FTAG', re (F+6) in tyefte cr,y>=0 Soit 2 E F'N 6' et y EF+6, shors y=U+V avec UEF et UEG dar <2,4> = <2,0+1> = <2,0>+<2,1> Or <2,2>= 0 Cx JEF of SEF+ (2,1)=0 C2 1EG et 2EG+ Da <2,4>=0 or 2€ (+6)+ &. F + 6 - (Fn 6) twe F1+61, on test my we (FNG)1, ie treFNG < w, 2>=0 Soit WEF+6+ et DE FAG (REF et DEG), ON a: <u, x>= <0+1, x> are 0 = F1 et 1 e 61 = <3,2> + <3,2> =0