

MinMaxScaling

Scales the variable between 0 and 1

$$X_{scaled} = \frac{X - min(X)}{max(X) - min(X)}$$

MinMaxScaling: example

Price
100
90
50
40
20
100
50
60
120
40
200

Max = 200
Min = 20
Range = 200 – 20 = 180

Obs. - Min

Range

Price
0.44
0.39
0.17
0.11
0.00
0.44
0.17
0.22
0.56
0.11
1.00

MinMaxScaling: summary

- Mean varies
- Variance varies
- May alter shape of the original distribution
- Minimum and maximum values within [0;1]
- Preserves outliers

MinMaxScaling: Notebook

MinMaxScaling: Notebook

Accompanying Jupyter Notebook

Read the accompanying
Jupyter Notebook

MinMaxScaling with Scikit-learn

THANK YOU

www.trainindata.com