Exercise 1 (6 points). Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{3p}}$. For what values of $p \in \mathbb{R}$ does the series **converge**?

Exercise 2 (6 points). Suppose $q \in \mathbb{R}$ and consider the geometric series $\sum_{n=1}^{\infty} \frac{2^{qn}}{3^n}$.

Find the common ratio and determine for what values of q does the series converge. [Your answer should be an inequality depending of q.]

Exercise 3 (8 points). The series $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$ is divergent. Explain why it diverges using one of the convergence tests we've seen in class. [Hint: $\sqrt[n]{n} \to 1$ as $n \to \infty$.]