PREPARED BY: DATE		SPEC No. LD-17508
8	SHARP	FILE No.
APPROVED BY: DATE		ISSUE: : Jun, 20, 2005
		PAGE: 23 pages
	AVC LIQUID CRYSTAL DISPLAY GROUP	APPLICABLE GROUP
	SHARP CORPORATION	AVC LIQUID CRYSTAL
	SPECIFICATION	DISPLAY GROUP

DEVICE SPECIFICATION FOR

TFT - LCD module

MODEL No. LQ255T3LZ33

CUSTOMER'S	APPROVAL

DATE

	and the second s

BY

PRESENTED

BY K. Janaka

K. TANAKA

Department General manager

Development Engineering Dept. 2, 3

DEVELOPMENT CENTER

AVC LIQUID CRYSTAL DISPLAY GROUP

SHARP CORPORATION

RECORDS OF REVISION

MODEL No.: LQ255T3LZ33

SPEC No.: LD-17508

DATE	NO.	REVISED	PAGE	SUMMARY	NOTE
2005.06.20	LD-17508	-	-	-	1st Issue

1. Application

This specification applies to the color 25.5" Wide XGA TFT-LCD module LQ255T3LZ33.

- * These specification sheets are proprietary products of SHARP CORPORATION ("SHARP") and include materials protected under copyright of SHARP. Do not reproduce or cause any third party to reproduce them in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP.
- * In case of using the device for applications such as control and safety equipment for transportation (aircraft, trains, automobiles, etc.), rescue and security equipment and various safety related equipment which require higher reliability and safety, take into consideration that appropriate measures such as fail-safe functions and redundant system design should be taken.
- * Do not use the device for equipment that requires an extreme level of reliability, such as aerospace applications, telecommunication equipment (trunk lines), nuclear power control equipment and medical or other equipment for life support.
- * SHARP assumes no responsibility for any damage resulting from the use of the device that does not comply with the instructions and the precautions specified in these specification sheets.
- * Contact and consult with a SHARP sales representative for any questions about this device.

2. Overview

This module is a color active matrix LCD module incorporating amorphous silicon TFT ($\underline{\text{Thin }}\underline{\text{Film }}\underline{\text{Transistor}}$). It is composed of a color TFT-LCD panel, driver ICs, control circuit, power supply circuit, inverter circuit and back light system etc. Graphics and texts can be displayed on a 1366 × RGB × 768 dots panel with 16,777,216 colors by using LVDS ($\underline{\text{Low }}\underline{\text{Voltage }}\underline{\text{Differential }}\underline{\text{Signaling}}$) to interface, +12V of DC supply voltages.

This module also includes the DC/AC inverter to drive the CCFT. (+24V of DC supply voltage)

And in order to improve the response time of LCD, this module applies the Over Shoot driving (O/S driving) technology for the control circuit .In the O/S driving technology, signals are being applied to the Liquid Crystal according to a pre-fixed process as an image signal of the present frame when a difference is found between image signal of the previous frame and that of the current frame after comparing them.

By using the captioned process, the image signals of this LCD module are being set so that image response can be completed within one frame, as a result, image blur can be improved and clear image performance can be realized.

3. Mechanical Specifications

Parameter	Specifications	Unit	
Display size	64.8 (Diagonal)	cm	
Display Size	25.5 (Diagonal)	inch	
Active area	564.8 (H) x 317.6 (V)	mm	
Pixel Format	1366 (H) x 768 (V)	nivol	
Pixel Format	(1pixel = R + G + B dot)	pixel	
Pixel pitch	0.4135(H) x 0.4135 (V)	mm	
Pixel configuration	R, G, B vertical stripe		
Display mode	Normally black		
Unit Outline Dimensions (*1)	626.0(W) x 373.0(H) x Max48.0(D)	mm	
Mass	6.4 ± 0.3	kg	
	Anti glare, low reflection coating		
Surface treatment	Hard coating: 2H		
	Haze: 23 +/- 5%		

(*1) Outline dimensions are shown in Fig.1

4. Input Terminals

4-1. TFT panel driving

CN1 (Interface signals and +12V DC power supply) (Shown in Fig.1)

Using connector : SM30B-LDYGLS-01TB (Japan Solderless Terminals MGF. Co., Ltd)

Mating connector : FI-X30H, FI-X30C or FI-X30M (Japan Aviation Electronics Ind., Ltd.)

Mating LVDS transmitter: THC63LVDM83A or equivalent device

Pin No.	Symbol	Function	Remark	
1	VCC	+12V Power Supply		
2	VCC	+12V Power Supply		
3	VCC	+12V Power Supply		
4	VCC	+12V Power Supply		
5	GND	GND		
6	GND	GND		
7	GND	GND		
8	GND	GND		
9	SELLVDS	Select LVDS data order [Note 1]	Pull up Default L:GND	
10	NC			
11	GND	Ground		
12	RIN0-	Negative (-) LVDS differential data input	LVDS	
13	RIN0+	Positive (+) LVDS differential data input	LVDS	
14	GND	Ground		
15	RIN1-	Negative (-) LVDS differential data input	LVDS	
16	RIN1+	Positive (+) LVDS differential data input	LVDS	
17	GND	Ground		
18	RIN2-	Negative (-) LVDS differential data input	LVDS	
19	RIN2+	Positive (+) LVDS differential data input	LVDS	
20	GND	Ground		
21	CLKIN-	Clock Signal(-)	LVDS	
22	CLKIN+	Clock Signal(+)	LVDS	
23	GND	Ground		
24	RIN3-	Negative (-) LVDS differential data input	LVDS	
25	RIN3+	Positive (+) LVDS differential data input	LVDS	
26	GND	Ground		
27	R/L	Horizontal shift direction [Note 2]	Pull down Default L:GND	
28	U/D	Vertical shift direction [Note 2] Pull down Default L:		
29	Reserved	It is required to set non-connection (OPEN)		
30	Reserved	It is required to set non-connection (OPEN)		

[note] GND of a liquid crystal panel drive part has connected with a module chassis.

I note 27-28 pin NC is available as default.

29-30 pin GND is available as open.

[Note1] SELLVDS

Transmitter		SELLVDS		
Pin No	Data	=L(GND) or Open	=H(3.3V)	
51	TA0	R0(LSB)	R2	
52	TA1	R1	R3	
54	TA2	R2	R4	
55	TA3	R3	R5	
56	TA4	R4	R6	
3	TA5	R5	R7(MSB)	
4	TA6	G0(LSB)	G2	
6	TB0	G1	G3	
7	TB1	G2	G4	
11	TB2	G3	G5	
12	TB3	G4	G6	
14	TB4	G5	G7(MSB)	
15	TB5	B0(LSB)	B2	
19	TB6	B1	В3	
20	TC0	B2	B4	
22	TC1	В3	B5	
23	TC2	B4	В6	
24	TC3	B5	B7(MSB)	
27	TC4	NA	NA	
28	TC5	NA	NA	
30	TC6	DE(*)	DE(*)	
50	TD0	R6	R0(LSB)	
2	TD1	R7(MSB)	R1	
8	TD2	G6	G0(LSB)	
10	TD3	G7(MSB)	G1	
16	TD4	В6	B0(LSB)	
18	TD5	B7(MSB)	B1	
25	TD6	NA	NA	

NA: Not Available

^(*) Since the display position is prescribed by the rise of DE (Display Enable) signal, please do not fix DE signal during operation at "High."

Normal (Default)

R/L:L(GND)U/D:L(GND)

Horizontal reverse image

R/L:H(3.3V)U/D:L(GND)

Vertical reverse image

R / L : L (GND) U / D:H (3.3V)

Horizontal and vertical reverse image

R/L:H(3.3V)U/D:H(3.3V)

· Interface block diagram

Corresponding Transmitter: THC63LVDM83R (THine) or equivalent device

• Block Diagram (LCD Module)

SELLVDS= Low(GND) or Open

DE: Display Enable

NA: Not Available (Fixed Low)

CN2 (O/S control) (Shown in Fig.1)

O/S Driving Pin No and function

Using connector : SM07B-SRSS-TB-A (JST)

Mating connector : SHR-07V-S or SHR-07V-S-B (JST)

Pin No.	Symbol	Function	Default
1	Frame	Frame frequency setting H:60Hz, L:50Hz	Pull down 0V
2	O/S set	O/S operation setting H:O/S_ON, L:O/S_OFF	Pull up: 3.3V
3	TEST	Fix to Low level usually.	Pull down 0V
4	Temp3	Data3 of panel surface temperature	Pull up: 3.3V
5	Temp2	Data2 of panel surface temperature	Pull up: 3.3V
6	Temp1	Data1 of panel surface temperature	Pull up: 3.3V
7	GND	GND	

^{*}L: Low level voltage (GND) H: High level voltage(3.3V)

[Note] In case of O/S set setting "L"(O/S_OFF), it should be set the "Temp1 \sim 3" and "Frame" to "L". [Note] CN2 NC is available. .(O/S operation is available. :condition Frame frequency 50Hz, surface temperature 35 and above)

According as the surface temperature of the panel, enter the optimum 3 bit signal into pin No.4,5,6. Measuring the correlation between detected temperature by the sensor on PWB in users side and actual surface temperature of panel at center, convert the temperature detected by the sensor to the surface temperature of panel to enter the 3 bit temperature data.

	Surface temperature of panel							
Pin no.	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35 and
								above
4	L	L	L	L	Н	Н	Н	Н
5	L	L	Н	Н	L	L	Н	Н
6	L	Н	L	Н	L	H	L	Н

^{*}L: Low level voltage (GND) H: High level voltage(3.3V)

4-2. Backlight driving

CN3 (Inverter control and +24V DC power supply) (Shown in Fig.1)

Using connector: S14B-PH-SM3-TB(JST)

Mating connector: PHR-14 (JST)

Pin No.	Symbol	Function	Defalt(open)	Remark
1	V_{INV}	+24V		
2	V_{INV}	+24V		
3	V_{INV}	+24V		
4	V_{INV}	+24V		
5	V_{INV}	+24V		
6	GND	GND		
7	GND	GND		
8	GND	GND		
9	GND	GND		
10	GND	GND		
11	Adim	Brightness Control 1	1.6V: typ. Value	[Note1]
12	Von/off	Inverter ON/OFF	3.3V : pull up Inverter ON	[Note2]
13	Pdim	Brightness Control 2	3.3V : pull up Duty 100%	[Note4]
14	Pdim_sel	PWM selection	3.3V : pull up Selected Analog PWM	[Note3]

^{*}For overlapping temperatures (such as 5 ,10 ,15 ,20 ,25 ,30 ,35) select the optimum parameter, judging from the actual picture image.

*GND of an inverter board is not connected to GND of a module chassis and a liquid crystal panel drive part.

[Note 1] Brightness Control 1 (Amplitude Dimming)

Pin No.11 is used for the dimming control with input voltage from 0 to 3.3V.

	MIN	TYP	MAX	Function
Input voltage [V]	0	1.6	3.3	01/ D l
Brightness ratio [%]	80	100	120	0V: Dark - 3.3V: Bright

[Note 2] Inverter ON/OFF

Pin No.12 is used for the control of the Inverter ON / OFF.

Input voltage	Function
0~1.0V	Inverter : OFF
2.3~3.3V	Inverter : ON

[Note 3] PWM selection

Pin No.14 is used for the selection of dimming control for Pdim pin (Pin No.13).

Input voltage	Pdim
0~1.0V	Pulse PWM
2.3~3.3V	Analog PWM

[Note 4] Brightness Control 2 (PWM Dimming)

1. Pulse PWM

Pin No.13 is used for the control of the PWM duty with input pulse from 100Hz to 350Hz. (when pulse PWM is selected with Pin No.14.)

P	ulse sign	al	Function
MIN	TYP	MAX	DUTY(Ton/T) 20%: Dark - 100%: Bright
100Hz	200Hz	350Hz	DOT1(10N/1) 20%: Dark - 100%: Bright

High: $2.3 \sim 3.3 \text{V}$ / Low: $0 \sim 1.0 \text{V}$

2. Analog PWM

Pin No.13 is used for the dimming control with input voltage from 0 to 3.3V. (when Analog PWM is selected with Pin 14.)

	MIN	TYP	MAX	Function
Input voltage [V]	0	<->	3.3	0V: Dark - 3.3V: Bright
Brightness ratio [%]	20	<->	100	

4-3. The back light system characteristics

The back light system is direct type with 16 CCFTs (Cold Cathode Fluorescent Tube).

The characteristics of the lamp are shown in the following table.

The value mentioned below is at the case of one CCFT.

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Life time	TL	60000	-	-	Hour	[Note]

Note . Lamp life time is defined as the time when brightness becomes 50% of the original value in the continuous operation under the condition of Ta=25 and brightness control.

(Adim:1.6V,Pdim:Duty100%)

• This definition is valid with the condition that the module is placed horizontally. (The wide side of the module should be parallel to the ground.)

5. Absolute Maximum Ratings

Parameter	Symbol	Condition	Ratings	Unit	Remark
Input voltage (for Control)	VI	Ta=25	-0.3 ~ 3.6	V	[Note 1]
12V supply voltage (for Control)	VCC	Ta=25	0 ~ + 15	V	
Input voltage (for Inverter)	Adim,Pdim Von	Ta=25	0 ~ + 6	V	
24V supply voltage (for Inverter)	V_{INV}	Ta=25	0 ~ +29	V	
Storage temperature	Tstg	1	-25 ~ +60		
Operation temperature (Ambient)	Тора	-	0 ~ +50		[Note 2]

[Note 1] SELLVDS, R/L, U/D, TEST, Frame, O/S set, Temp1, Temp2, Temp3

[Note 2] Humidity 95%RH Max.(Ta 40)

Maximum wet-bulb temperature at 39 or less.(Ta>40) No condensation.

6. Electrical Characteristics

6-1. Control circuit driving

Ta=25

Para	ameter	r	Symbol	Min.	Тур.	Max.	Uniit	Remark
+12V supply			Vcc	+11.4	+12.0	+12.6	V	[Note 1]
voltage			Icc	-	330	550	mA	[Note 2]
	Permissible input ripple voltage		Vrp	-	-	100	mV _{P-P}	Vcc = +12.0V
Differential i	nput	High	V_{TH}	-	-	100	mV	$V_{CM} = +1.2V$
threshold vol	tage	Low	V_{TL}	-100	-	-	mV	[Note 6]
Input Lo	ow vo	ltage	$V_{\rm IL}$	-	-	0.7	V	[Note 3]
Input H	igh vo	ltage	VIH	2.6	-	3.3	V	I Note 51
Input look	011444049	t (I ow)	I _{IL1}	-	-	100	μΑ	$V_I = 0V$ [Note 4]
Input leak	curren	t (LOW)	IIL2	-	-	400	μΑ	$V_I = 0V$ [Note 5]
Least hale assured (ITale)			Ііні	-	-	100	μA	V _I =3.3V [Note 4]
Input leak current (High)			I _{IH2}	-	-	400	μA	V _I =3.3V [Note 5]
Termin	al resi	stor	Rт	-	100	-		Differential input

[Note] Vcm: Common mode voltage of LVDS driver.

[Note 1]

Input voltage sequences

0 < t1	10ms	
10ms	t2-1	50ms
t2-2	10ms	
0 < t3	1s	
t4	1s	
t5	200ms	

Dip conditions for supply voltage

b) Vcc < 9.6V

Dip conditions for supply voltage is based on input voltage sequence.

D ata1:CLKIN \pm ,RIN0 \pm ,RIN1 \pm , RIN2 \pm , RIN3 \pm

Data2:R/L,U/D,SELLVDS,Frame,O/Sset,Temp1,2,3

About the relation between data input and back light lighting, please base on the above-mentioned input sequence.

When back light is switched on before panel operation or after a panel operation stop, it may not display normally. But this phenomenon is not based on change of an incoming signal, and does not give damage to a liquid crystal display.

[Note 2] Typical current situation: 256 gray-bar pattern (Vcc = +12.0V) The explanation of RGB gray scale is seen in section 8.

Vcc = 12.0V CK = 82.0MHz $Th = 20.67 \ \mu \ s$

[Note 3] R/L, U/D, SELLVDS, TEST, Frame, O/S set, Temp1, Temp2, Temp3

[Note 4] R/L, U/D

[Note 5] SELLVDS, TEST, Frame, O/S set, Temp1, Temp2, Temp3

[Note 6] CKIN+/CKIN-, RIN0+/RIN0-, RIN1+/RIN1-, RIN2+/RIN2-, RIN3+/RIN3-,

6-2. Inverter driving for back light

The back light system is direct type with 16 CCFTs (Cold Cathode Fluorescent Tube).

Ta=25

	6	7 I	`			,	
	Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Current dissipation		Inv	-	2.8	3.3	A	$V_{INV} = 24V$ Adim= 1.6V, V_{ON} =3.3 V
· 24 V	+ 24V Supply voltage		22.5	24.0	26.2	V	[Note 1]
Per	Permissible input ripple voltage		-	-	200	mV_{p-p}	$V_{INV} = +24V$
It	nput voltage (Low)	V_{ONL}	0	-	1.0	V	Von
Input voltage (High)		V_{ONH}	2.3	-	3.3	V	impedance=24k
Brightness control voltage		Adim	0		3.3	V	Adim impedance=100k

[Note 1] 1)VINV-turn-on condition

2) Vinv-turn-off condition

7. Timing characteristics of input signals

7-1. Timing characteristics

Timing diagrams of input signal are shown in Fig.2

	Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Clock	Frequency	1/Tc	65	82	85	MHz	
	Horizontal period	TH	1560	1696	1940	clock	
Data enable	Horizontai period	111	17.0	20.67	ı	μs	
signal	Horizontal (High)	THd	1366	1366	1366	clock	
Signai	Vertical period	TV	778	806	972	line	
	Vertical period (High)	TVd	768	768	768	line	

[Note] When vertical period is very long, flicker and etc. may occur.

Please turn off the module after it shows the black screen.

Please make sure that length of vertical period should become of an integral multiple of horizontal length of period. Otherwise, the screen may not display properly.

Fig.2 Timing characteristics of input signals

7-2. Input data signal and display position on the screen

Display Position of Data (V,H)

8. Input Signal, Basic Display Colors and Gray Scale of Each Color

		-		Data signal																						
	Colors &	Gray	R0	R1	R2	R3	R4	R5	R6	R7	G0	G1	G2		G4	G5	G6	G7	В0	B1	В2	В3	В4	В5	В6	В7
	Gray scale	Scale																								
	Black	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
or	Green	-	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic Color	Cyan	-	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
asic	Red	-	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
М	Magenta	-	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
р	仓	GS1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
f Re	Darker	GS2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ale o	仓	\downarrow				1	L							`	L							`	L			
Sca	Ω	\downarrow				\	l							`	<u>ا</u>							`	V			
Gray Scale of Red	Brighter	GS253	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Û	GS254	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	GS255	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
en	Û	GS1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gre	Darker	GS2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
le of	Û	V				1	V							`	L							`	V			
Gray Scale of Green	Û	V				\	l _							`	<u>ا</u>							`	ν <u></u>			
ìray	Brighter	GS253	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Û	GS254	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Green	GS255	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Black	GS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1e	Û	GS1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
f Blı	Darker	GS2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
o əlı	Û	V				1	V							`	L							`	V			
Gray Scale of Blue	Û	V				\	l _							`	l							`	l .			
Gray	Brighter	GS253	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	1	1	1
	Û	GS254	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
	Blue	GS255	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

^{0 :} Low level voltage,

Each basic color can be displayed in 256 gray scales from 8 bit data signals. According to the combination of total 24 bit data signals, the 16-million-color display can be achieved on the screen.

^{1:} High level voltage.

9. Optical characteristics

Ta=25 , Vcc = +12V, $V_{INV} = +24V$, Adim:1.6V, Pdim:Duty100%

Timing characteristics of input signals: Typical value

Parar	neter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark	
Viewing angle	Horizontal	21 22	CR 10	70	85	-	Deg.	[Note1,4]	
range	Vertical	11 12	CK 10	70	85	-	Deg.	[Note1,4]	
Contra	st ratio	CRn	=0 deg.	525	700	-		[Note2,4]	
Pagnongo	tima (1)	τd1	-0 dog	-	6	-	me	[Note3-1,4,5]	
Response	time (1)	τr1	=0 deg.	-	6	-	ms	[Notes-1,4,5]	
Response	time (2)	τr2	=0 deg.	-	12	20	ms	[Note3-2,4,5]	
Response	time (2)	τd2	=0 deg.	-	12	20	1118	1 10003-2,4,3	
Luminanc	e of white	X		0.242	0.272	0.302	-		
Lummanc	c or write	Y		0.247	0.277	0.307	-		
Luminan	ce of red	X		0.610	0.640	0.670	-		
Lumman	ec or red	Y		0.300	0.330	0.360	-	[Note 4]	
Luminanc	e of green	X		0.250	0.280	0.310	-	TNOIC 47	
Lummane	e or green	Y		0.570	0.600	0.630	-		
Luminance of blue		X		0.120	0.150	0.180	-		
Lummand	c of blue	Y		0.030	0.060	0.090	-		
Luminanc	Luminance of white		·	400	500		cd/m ²	[Note 4]	
Luminance	Luminance uniformity			-	-	1.25		[Note 6]	

Measurement condition: Set the value of Adim to maximum luminance of white.

[Note] The optical characteristics are measured using the following equipment.

Fig.3-1 Measurement of viewing angle range.

Fig.3-2 Measurement of Contrast, Luminance,
Chromaticity and Response time.
(Contrast, Luminance and Chromaticity: SR-3,
Response time: BM-5A).

^{*}The measurement shall be executed 60 minutes after lighting at rating.

[Note 1] Definitions of viewing angle range :

[Note 2] Definition of contrast ratio :

The contrast ratio is defined as the following.

[Note 3] Definition of response time

3-1. Response time (1)

The response time (τ d1 and τ r1) is defined as the following figure and shall be measured by switching the input signal for "any level of gray (GS0, GS32, GS64, GS96, GS128, GS160, GS192, GS224 and GS255)" and "any level of gray (GS0, GS32, GS64, GS96, GS128, GS160, GS192, GS224 and GS255)".

	GS0	GS32	GS64	GS96	GS128	GS160	GS192	GS224	GS255
GS0		tr:0-32	tr:0-64	tr:0-96	tr:0-128	tr:0-160	tr:0-192	tr:0-224	tr:0-255
GS32	td:32-0		tr:32-64	tr:32-96	tr:32-128	tr:32-160	tr:32-192	tr:32-224	tr:32-255
GS64	td:64-0	td:64-32		tr:64-96	tr:64-128	tr:64-160	tr:64-192	tr:64-224	tr:64-255
GS96	td:96-0	td:96-32	td:96-64		tr:96-128	tr:96-160	tr:96-192	tr:96-224	tr:96-225
GS128	td:128-0	td:128-32	Td:128-64	td:128-96		tr:128-160	tr:128-192	tr:128-224	tr:128-255
GS160	td:160-0	td:160-32	Td:160-64	td:160-96	td:160-128		tr:160-192	tr:160-224	tr:160-255
GS192	td:192-0	td:192-32	Td:192-64	td:192-96	td:192-128	td:192-160		tr:192-224	tr:192-255
GS224	td:224-0	td:224-32	Td:224-64	td:224-96	td:224-128	td:224-160	td:224-192		tr:224-255
GS255	td:255-0	td:255-32	Td:255-64	td:255-96	td:255-128	td:255-160	td:255-192	td:255-224	

t*:x-y...response time from level of gray(x) to level of gray(y)

$$\tau r 1 = \Sigma(tr:x-y)/36$$
, $\tau d 1 = \Sigma(td:x-y)/36$

3-2. Response time (2)

The response time ($\tau d2$ and $\tau r2$) is the maximum value defined as the following figure and shall be measured by switching the input signal for "any level of gray (bright)" and "any level of gray (dark)".

- [Note 4] This shall be measured at center of the screen.
- [Note 5] This value is valid when O/S driving is used at typical input time value.
- [Note 6] Definition of white uniformity;

White uniformity is defined as the following with five measurements. (A \sim E)

10. Handling Precautions of the module

- a) Be sure to turn off the power supply when inserting or disconnecting the cable.
- b) This product is using the parts (inverter, CCFT etc), which generate the high voltage. Therefore, during operating, please don't touch these parts.
- c) Brightness control voltage is switched for "ON" and "OFF", as shown in Fig.4. Voltage difference generated by this switching, VINV, may affect a sound output, etc. when the power supply is shared between the inverter and its surrounding circuit. So, separate the power supply of the inverter circuit with the one of its surrounding circuit.

Fig.4 Brightness control voltage.

- *Since inverter board's GND is not connected to the frame of the LCD module, please connect it with the Customer's GND of inverter power supply.
- d) Be sure to design the cabinet so that the module can be installed without any extra stress such as warp or twist.
- e) Since the front polarizer is easily damaged, pay attention not to scratch it.
- f) Since long contact with water may cause discoloration or spots, wipe off water drop immediately.
- g) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- h) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface. Handle with

care.

- i) Since CMOS LSI is used in this module, take care of static electricity and take the human earth into consideration when handling.
- j) The module has some printed circuit boards (PCBs) on the back side, take care to keep them form any stress or pressure when handling or installing the module; otherwise some of electronic parts on the PCBs may be damaged.
- k) Observe all other precautionary requirements in handling components.
- 1) When some pressure is added onto the module from rear side constantly, it causes display non-uniformity issue, functional defect, etc.. So, please avoid such design.
- m) When giving a touch to the panel at power on supply, it may cause some kinds of degradation. In that case, once turn off the power supply, and turn on after several seconds again, and that is disappear.
- n) When handling LCD modules and assembling them into cabinets, please be noted that long-term storage in the environment of oxidization or deoxidization gas and the use of such materials as reagent, solvent, adhesive, resin, etc. which generate these gasses, may cause corrosion and discoloration of the LCD modules.
- o) Please use user-holes on the long side of and on the backside of the LCD module for installing.
 Then, using only user-holes of the backside and/or stressing user-holes of the backside too much is not allowed.

In case, there is a possibility to transform and break a part of the LCD module.

12. Packing form

- a) Piling number of cartons: 3 maximum
- b) Packing quantity in one carton: 5 pcs.
- c) Carton size: 820 (W) x 420 (D) x 645 (H)
- d) Total mass of one carton filled with full modules: 45 kg(Max)

13. Reliability test item

No.	Test item	Condition
1	High temperature storage test	Ta=60 240h
2	Low temperature storage test	Ta=-25 240h
3	High temperature and high humidity operation test	Ta=40 ; 95%RH 240h (No condensation)
4	High temperature operation test	Ta=50 240h
5	Low temperature operation test	Ta=0 240h
6	Vibration test (non-operation)	Frequency: 10~57Hz/Vibration width (one side): 0.075mm : 58~500Hz/Acceleration: 9.8 m/s2 Sweep time: 11 minutes Test period: 3 hours (1h for each direction of X, Y, Z)
7	Shock test (non-operation)	Maximum acceleration: 490m/s ² Pulse width: 11ms, sinusoidal half wave Direction: +/-X, +/-Y, +/-Z, once for each direction.
8	ESD	* At the following conditions, it is a thing without incorrect operation and destruction. (1)Non-operation: Contact electric discharge ± 10kV Non-contact electric discharge ± 20kV (2)Operation Contact electric discharge ± 8kV Non-contact electric discharge ± 15kV Conditions: 150pF, 330ohm

[Result evaluation criteria]

Under the display quality test condition with normal operation state, there shall be no change, which may affect practical display function.

14. Others

1)Lot No. Label;

The label that displays SHARP, product model (LQ255T3LZ33), a product number and "MADE IN JAPAN" is stuck on the back of the module.

How to express Lot No.

2) Packing Label

Management No. (LQ255T3LZ33)

Lot No. (Date)

Quantity

- 3) Disassembling the module can cause permanent damage and should be strictly avoided.
- 4) Please be careful since image retention may occur when a fixed pattern is displayed for a long time.
- 5) The chemical compound, which causes the destruction of ozone layer, is not being used.
- 6) Label of using material information It is displaying the material of the optical parts with the label in the module back.

MATERIAL INFORMATION

OPTICAL FILM :> PC, PEST, AKUR-X, PC < DIFFUSER SHEET :> PMMA-X,PET < DIFFUSER BOARD:> SMMA,PS < REFLECTOR :> PAK-QD, PET+PMP <

7) Cold cathode fluorescent lamp in LCD PANEL contains a small amount of mercury. Please follow local ordinances or regulations for disposal. This sentence is stamped on the backside of the module.

8) When any question or issue occurs, it shall be solved by mutual discussion.

15. Carton storage condition

Temperature 0 to 40 Humidity 95%RH or less

Reference condition : 20 to 35 , 85%RH or less (summer)

: 5 to 15 , 85% RH or less (winter)

• the total storage time (40 ,95%RH): 240H or less

Sunlight Be sure to shelter a product from the direct sunlight.

Atmosphere Harmful gas, such as acid and alkali which bites electronic components and/or

wires must not be detected.

Notes Be sure to put cartons on palette or base, don't put it on floor, and store them with

removing from wall

Please take care of ventilation in storehouse and around cartons, and control

changing temperature is within limits of natural environment

Storage life 1 year

Fig 4 Packing form

+1.0

TOLERANCE TO BE

NOTE) 1. UNSPECIFIED

