Lecture 4: Using Integrals in Physics

Warm-Up Activity

How is acceleration symbolically related to velocity?

- (A) Velocity is acceleration times t.
- (B) Acceleration is velocity times t.
- (C) Acceleration is the derivative of velocity.
- (D) Velocity is the derivative of acceleration.

L4-1: Vax'ildan's Acceleration

- Vax'ildan Vessar is initially located at position x_i , running to the right with initial speed v_i .
- At t = 0, Vax clicks his boots of haste, which provide an acceleration:

 $\vec{a}(t) = a_0 \left(1 - \frac{t}{T} \right) \hat{x}$

- Our goals are:
 - Find how much time it takes for Vax to return to his initial velocity.
 - Find Vax's position at this time.

Solving an ARCS Problem

1. Analyze and Represent

- 1a. **Understand the problem** identify quantities by symbol and number.
- 1b. **Identify Assumptions** identify important simplifications and assumptions.
- 1c. **Represent physically** draw and label one or more appropriate diagrams and/or graphs that might help you solve the problem.

2. Calculate

- 2a. Represent principles identify relevant concepts, laws, or definitions.
- 2b. **Find unknown(s) symbolically** without numbers, find any unknown(s) in terms of symbols representing known quantities.
- 2c. **Plug in numbers** plug numbers (with units) into your symbolic answer!

3. Sensemake

- 3a. **Units** check that the units of your answer agree with the units you expect 3b. **Numbers** compare your answer to other numbers in the problem or in the everyday world; if relevant, check the sign or direction.
- 3c. **Symbols** use a strategy like covariation or special cases to check that your answer makes physical sense.

Note that, when we plug in t=T, we find that $\vec{a}(T)=0\hat{x}$, so the acceleration burst stops after T passes, at which point the acceleration changes direction to bring Vax back to his initial velocity. As such, T can be thought of as the duration of the acceleration burst.

Since $\left(1 - \frac{t}{T}\right)\hat{x}$ is unitless, the overall units of the right hand side come from a_0 . We need the right hand side to be an acceleration to match the left, so a_0 has units of m/s².

Note that, when we plug in t = 0 s, we find that $\vec{a}(0 \text{ s}) = a_0 \hat{x}$, so a_0 is the magnitude of the initial acceleration.

The unit vector \hat{x} carries all of the direction information. It tells us that the acceleration is in the x-direction (though left or right depends on the sign).

Understand and Plan

Knowns

- Initial Position: $x_i = 0 \text{ m (sim-plifying assumption)}$
- Initial Velocity: $v_i = 2 \text{ m/s}$ (a reasonable speed to estimate for a half-elf)
- T = 6 s (rounds in *Dungeons* & *Dragons* last six seconds)

• $a_0 = 0.5 \text{ m/s}^2$ (significantly less than free-fall acceleration)

Unknowns

- When Vax returns to his initial velocity: t_f
- Vax's final position: x_f
- Equations of motion for velocity and position: $\vec{v}(t)$ and $\vec{x}(t)$

Identify Assumptions

- Particle Model
 - We do not wish to handle the complexities of how Vax's arms, legs, and wings move as he runs, so we will treat him as a point mass.
- 1-D Motion
 - We will assume Vax is travelling over relatively level ground so we do not have to consider Vax's vertical motion.
- Vax is not obstructed in his movement.
 - If Vax were to bump into something, that brief interaction would alter his motion in additional ways that the acceleration of the boots does not account for.

Represent Physically

L4-1: Vax'ildan's Acceleration – Calculate

• At t = 0, Vax clicks his boots of haste, which provide an acceleration:

$$\vec{a}(t) = a_0 \left(1 - \frac{t}{T} \right) \hat{x}$$

- First find a symbolic expression for Vax's velocity as a function of time.
- Use your expression to find when Vax's velocity is equal to v_i .
- Estimate any quantities to find numerical answers.

Note that, when we plug in t=T, we find that $\vec{a}(T)=0\hat{x}$, so the acceleration burst stops after T passes, at which point the acceleration changes direction to bring Vax back to his initial velocity. As such, T can be thought of as the duration of the acceleration burst.

Since $(1 - \frac{t}{T})\hat{x}$ is unitless, the overall units of the right hand side come from a_0 . We need the right hand side to be an acceleration to match the left, so a_0 has units of m/s².

Note that, when we plug in t = 0 s, we find that $\vec{a}(0 \text{ s}) = a_0 \hat{x}$, so a_0 is the magnitude of the initial acceleration.

The unit vector \hat{x} carries all of the direction information. It tells us that the acceleration is in the x-direction (though left or right depends on the sign).

Understand and Plan

Knowns

- Initial Position: $x_i = 0 \text{ m (sim-plifying assumption)}$
- Initial Velocity: $v_i = 2 \text{ m/s}$ (a reasonable speed to estimate for a half-elf)
- T = 6 s (rounds in *Dungeons* & *Dragons* last six seconds)

• $a_0 = 0.5 \text{ m/s}^2$ (significantly less than free-fall acceleration)

Unknowns

- When Vax returns to his initial velocity: t_f
- Vax's final position: x_f
- Equations of motion for velocity and position: $\vec{v}(t)$ and $\vec{x}(t)$

Identify Assumptions

- Particle Model
 - We do not wish to handle the complexities of how Vax's arms, legs, and wings move as he runs, so we will treat him as a point mass.
- 1-D Motion
 - We will assume Vax is travelling over relatively level ground so we do not have to consider Vax's vertical motion.
- Vax is not obstructed in his movement.
 - If Vax were to bump into something, that brief interaction would alter his motion in additional ways that the acceleration of the boots does not account for.

Represent Physically

L4-1: Vax'ildan's Acceleration – Calculate

• At t = 0, Vax clicks his boots of haste, which provide an acceleration:

$$\vec{a}(t) = a_0 \left(1 - \frac{t}{T} \right) \hat{x}$$

• His velocity as a function of time is

$$\vec{v}(t) = \left[v_i + a_0 \left(t - \frac{t^2}{2T} \right) \right] \hat{x},$$

and he returns to his initial velocity at $t_f = 2T$.

- Now find a symbolic expression for Vax's position as a function of time and use it to find Vax's position at t_f .

Note that, when we plug in t=T, we find that $\vec{a}(T)=0\hat{x}$, so the acceleration burst stops after T passes, at which point the acceleration changes direction to bring Vax back to his initial velocity. As such, T can be thought of as the duration of the acceleration burst.

Since $(1 - \frac{t}{T})\hat{x}$ is unitless, the overall units of the right hand side come from a_0 . We need the right hand side to be an acceleration to match the left, so a_0 has units of m/s².

Note that, when we plug in t = 0 s, we find that $\vec{a}(0 \text{ s}) = a_0 \hat{x}$, so a_0 is the magnitude of the initial acceleration.

The unit vector \hat{x} carries all of the direction information. It tells us that the acceleration is in the x-direction (though left or right depends on the sign).

Understand and Plan

Knowns

- Initial Position: $x_i = 0 \text{ m (simplifying assumption)}$
- Initial Velocity: $v_i = 2 \text{ m/s}$ (a reasonable speed to estimate for a half-elf)
- T = 6 s (rounds in *Dungeons* & *Dragons* last six seconds)

• $a_0 = 0.5 \text{ m/s}^2$ (significantly less than free-fall acceleration)

Unknowns

- When Vax returns to his initial velocity: t_f
- Vax's final position: x_f
- Equations of motion for velocity and position: $\vec{v}(t)$ and $\vec{x}(t)$

Identify Assumptions

- Particle Model
 - We do not wish to handle the complexities of how Vax's arms, legs, and wings move as he runs, so we will treat him as a point mass.
- 1-D Motion
 - We will assume Vax is travelling over relatively level ground so we do not have to consider Vax's vertical motion.
- Vax is not obstructed in his movement.
 - If Vax were to bump into something, that brief interaction would alter his motion in additional ways that the acceleration of the boots does not account for.

Represent Physically

L4-1: Vax'ildan's Acceleration – Sensemake

• At t=0, Vax clicks his boots of haste, which provide an acceleration:

$$\vec{a}(t) = a_0 \left(1 - \frac{t}{T} \right) \hat{x}$$

- How can we make sense of these equations?

$$\vec{v}(t) = \left[v_i + a_0 \left(t - \frac{t^2}{2T}\right)\right] \hat{x} \quad \vec{x}(t) = \left[x_i + v_i t + a_0 \left(\frac{t^2}{2} - \frac{t^3}{6T}\right)\right] \hat{x}$$

$$t_f = 2T \qquad \qquad \vec{x}_f = \left[x_i + 2v_i T + \frac{2}{3}a_0 T^2\right] \hat{x}$$

Note that, when we plug in t=T, we find that $\vec{a}(T)=0\hat{x}$, so the acceleration burst stops after T passes, at which point the acceleration changes direction to bring Vax back to his initial velocity. As such, T can be thought of as the duration of the acceleration burst.

Since $(1 - \frac{t}{T})\hat{x}$ is unitless, the overall units of the right hand side come from a_0 . We need the right hand side to be an acceleration to match the left, so a_0 has units of m/s^2 .

Note that, when we plug in t = 0 s, we find that $\vec{a}(0 \text{ s}) = a_0 \hat{x}$, so a_0 is the magnitude of the initial acceleration.

The unit vector \hat{x} carries all of the direction information. It tells us that the acceleration is in the x-direction (though left or right depends on the sign).

Understand and Plan

Knowns

- Initial Position: $x_i = 0$ m (simplifying assumption)
- Initial Velocity: $v_i = 2 \text{ m/s}$ (a reasonable speed to estimate for a half-elf)
- T = 6 s (rounds in *Dungeons* & *Dragons* last six seconds)

• $a_0 = 0.5 \text{ m/s}^2$ (significantly less than free-fall acceleration)

Unknowns

- When Vax returns to his initial velocity: t_f
- Vax's final position: x_f
- Equations of motion for velocity and position: $\vec{v}(t)$ and $\vec{x}(t)$

Identify Assumptions

- Particle Model
 - We do not wish to handle the complexities of how Vax's arms, legs, and wings move as he runs, so we will treat him as a point mass.
- 1-D Motion
 - We will assume Vax is travelling over relatively level ground so we do not have to consider Vax's vertical motion.
- Vax is not obstructed in his movement.
 - If Vax were to bump into something, that brief interaction would alter his motion in additional ways that the acceleration of the boots does not account for.

Represent Physically

L4-1: Vax'ildan's Acceleration – Sensemake

• How can we make sense of these equations?

$$\vec{v}(t) = \left[v_i + a_0 \left(t - \frac{t^2}{2T}\right)\right] \hat{x} \quad \vec{x}(t) = \left[x_i + v_i t + a_0 \left(\frac{t^2}{2} - \frac{t^3}{6T}\right)\right] \hat{x}$$

$$t_f = 2T \qquad \qquad \vec{x}_f = \left[x_i + 2v_i T + \frac{2}{3}a_0 T^2\right] \hat{x}$$

- Are the units correct?
- Which things are vectors?
- What do the graphs of $\vec{v}(t)$ and $\vec{x}(t)$ look like?
- What happens if you change a_0 or T?
- Try plugging in some reasonable numbers: $v_i = 2 \text{ m/s}$, T = 8 s, $a_0 = 0.5 \text{ m/s}^2$, $x_i = 15 \text{ m}$.

Note that, when we plug in t=T, we find that $\vec{a}(T)=0\hat{x}$, so the acceleration burst stops after T passes, at which point the acceleration changes direction to bring Vax back to his initial velocity. As such, T can be thought of as the duration of the acceleration burst.

Since $(1 - \frac{t}{T})\hat{x}$ is unitless, the overall units of the right hand side come from a_0 . We need the right hand side to be an acceleration to match the left, so a_0 has units of m/s^2 .

Note that, when we plug in t = 0 s, we find that $\vec{a}(0 \text{ s}) = a_0 \hat{x}$, so a_0 is the magnitude of the initial acceleration.

The unit vector \hat{x} carries all of the direction information. It tells us that the acceleration is in the x-direction (though left or right depends on the sign).

Understand and Plan

Knowns

- Initial Position: $x_i = 0 \text{ m (simplifying assumption)}$
- Initial Velocity: $v_i = 2 \text{ m/s}$ (a reasonable speed to estimate for a half-elf)
- T = 6 s (rounds in *Dungeons* & *Dragons* last six seconds)

• $a_0 = 0.5 \text{ m/s}^2$ (significantly less than free-fall acceleration)

Unknowns

- When Vax returns to his initial velocity: t_f
- Vax's final position: x_f
- Equations of motion for velocity and position: $\vec{v}(t)$ and $\vec{x}(t)$

Identify Assumptions

- Particle Model
 - We do not wish to handle the complexities of how Vax's arms, legs, and wings move as he runs, so we will treat him as a point mass.
- 1-D Motion
 - We will assume Vax is travelling over relatively level ground so we do not have to consider Vax's vertical motion.
- Vax is not obstructed in his movement.
 - If Vax were to bump into something, that brief interaction would alter his motion in additional ways that the acceleration of the boots does not account for.

Represent Physically

L4-2: Constant Acceleration

• What if Vax's acceleration had been constant?

$$\vec{a}(t) = a\hat{x}$$

Main Ideas

- If we know the acceleration of an object as a function of time, we can determine the velocity as a function of time.
- If we know the velocity as a function of time, we can determine the position as a function of time.