Problem Set 3

Problems marked (T) are for discussions in Tutorial sessions.

- 1. Draw and illustrate in \mathbb{R}^2 .
 - (a) $\mathbf{e}_1 + \{ n\mathbf{e}_2 | n \in \mathbb{N} \}.$
 - (b) $\mathbf{e}_1 + \{\alpha \mathbf{e}_2 | \alpha \in \mathbb{R}\}.$
- 2. In \mathbb{R}^2 , Is $\{\alpha \mathbf{e}_1 | \alpha \in \mathbb{R}\} + \{\alpha \mathbf{e}_2 | \alpha \in \mathbb{R}\} = \mathbb{R}^2$? What about $\{\alpha \mathbf{e}_1 | \alpha \in \mathbb{R}\} + \{\alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix} | \alpha \in \mathbb{R}\} = \mathbb{R}^2$?
- 3. In \mathbb{R}^3 prove that $\left\{\alpha \begin{bmatrix} 2\\1\\1 \end{bmatrix} | \alpha \in \mathbb{R} \right\} + \left\{\alpha \begin{bmatrix} 1\\1\\0 \end{bmatrix} | \alpha \in \mathbb{R} \right\} + \left\{\alpha \begin{bmatrix} 0\\1\\1 \end{bmatrix} | \alpha \in \mathbb{R} \right\} = \mathbb{R}^3$. Do you use Gauss-Jordan Elimination (GJE) method somewhere?
- 4. Let L_1 and L_2 be two nonparallel lines passing through origin in \mathbb{R}^3 . What is $L_1 + L_2$?
- 5. (T) Let L_1 and L_2 be two skewed (non parallel, nonintersecting) lines in \mathbb{R}^3 ? What is $L_1 + L_2$?
- 6. (T) Fix a non-negative integer n and let $\mathbb{R}[x;n]$ be the set of polynomials with real coefficients and degree less than or equal to n. That is, $\mathbb{R}[x;n] = \{\sum_{i=0}^{n} c_i x^i : c_0, c_1, \cdots, c_n \in \mathbb{R}\}$. Show that $\mathbb{R}[x;n]$ is a vector space over \mathbb{R} with respect to the usual addition and scalar multiplication.
- 7. Show that the space of all real $m \times n$ matrices is a vector space over \mathbb{R} with respect to the usual addition and scalar multiplication.
- 8. Let $\mathbb{M}_n(\mathbb{R})$ be the set of all $n \times n$ real matrices. Then, from above we see that $\mathbb{M}_n(\mathbb{R})$ is a real vector space. Now, prove the following:
 - (a) $\mathbb{S} = \{ A \in \mathbb{M}_n(\mathbb{R}) : A^t = A \text{ is a subspace of } \mathbb{M}_n(\mathbb{R}).$
 - (b) Fix $A \in \mathbb{M}_n(\mathbb{R})$. Define $\mathbb{U} = \{B \in \mathbb{M}_n(\mathbb{R}) : AB = BA\}$. Then, \mathbb{U} is a subspace of $\mathbb{M}_n(\mathbb{R})$.
 - (c) Let $\mathbb{W} = \{a_0I + a_1A + \cdots + a_mA^m : m \text{ is a non-negative integer}, a_i \in \mathbb{R}\}$. Then, \mathbb{W} is a subspace of \mathbb{U} .
- 9. In \mathbb{R} , consider the addition $x \oplus y = x + y 1$ and a.x = a(x 1) + 1. Show that \mathbb{R} is a real vector space with respect to these operations with additive identity 1 (note that 0 is NOT the additive identity).
- 10. (T) Which of the following are subspaces of \mathbb{R}^3 :

(a)
$$\{(x,y,z) \mid x \ge 0\}$$
, (b) $\{(x,y,z) \mid x+y=z\}$, (c) $\{(x,y,z) \mid x=y^2\}$.

- 11. Find the condition on real numbers a, b, c, d so that the set $\{(x, y, z) \mid ax + by + cz = d\}$ is a subspace of \mathbb{R}^3 .
- 12. (T) Let W_1 and W_2 be subspaces of a vector space V such that $W_1 \cup W_2$ is also a subspace. Prove that one of the spaces W_i , i = 1, 2 is contained in the other.

13. Let $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ be n vectors from a vector space V over \mathbb{R} . Define **linear span** of this set of vectors as

$$LS({\mathbf{v_1, v_2, ..., v_n}}) = {c_1\mathbf{v_1} + c_2\mathbf{v_2} + \cdots + c_n\mathbf{v_n} : c_1, c_2, ..., c_n \in \mathbb{R}},$$

that is, the set of all linear combinations of vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$. Show that $LS(\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\})$ is a subspace of V.

- 14. **(T)** Show that $\{(x_1, x_2, x_3, x_4) : x_4 x_3 = x_2 x_1\} = LS(\{(1, 0, 0, -1), (0, 1, 0, 1), (0, 0, 1, 1)\}$ and hence is a subspace of \mathbb{R}^4 .
- 15. Suppose S and T are two subspaces of a vector space V. Define the sum

$$S + T = \{\mathbf{s} + \mathbf{t} : \mathbf{s} \in S, \mathbf{t} \in T\}.$$

Show that S+T satisfies the requirements for a vector space. Moreover, $LS(S \cup T) = S+T$.

- 16. **(T)** Find all the subspaces of \mathbb{R}^2 .
- 17. **(T)** Let $A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$, with $a_{ij} \in \mathbb{C}$. Then, we define the following 4 fundamental subspaces:
 - (a) The column space of A is defined as

$$\operatorname{col}(A) = \{A\mathbf{x} : \mathbf{x} \in \mathbb{C}^n\} = \operatorname{LS}(A(:,1), \dots, A(:,n)) = \operatorname{LS}\left(\left\{\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \dots, \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}\right\}\right)$$

(b) The column space of A^* is defined as

$$col(A^*) = LS(A^*(1,:), \dots, A^*(m,:)) = \{A^*\mathbf{x} : \mathbf{x} \in \mathbb{C}^m\}.$$

(c) The null space of A is defined as

Null Space(A) =
$$\mathcal{N}(A) = \{\mathbf{x} \in \mathbb{C}^n : A\mathbf{x} = \mathbf{0}\}.$$

(d) The null space of A^* is defined as

Null Space
$$(A^*) = \mathcal{N}(A^*) = \{\mathbf{x} \in \mathbb{C}^m : A^*\mathbf{x} = \mathbf{0}\}.$$

Important: In case the matrix A has real entries, the spaces $col(A^*)$ and Null Space (A^*) are called the row-space of A and the left-null space of A, respectively

Now, determine the above 4 mentioned fundamental spaces for the following matrices.

(i)
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
 (ii) $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 2 & 6 & 8 \\ 2 & 8 & 10 \end{bmatrix}$ (iii) $B = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 2 & 0 & 0 & 1 \end{bmatrix}$

- (iv) Suppose B and C are two $m \times n$ matrices and $S = \operatorname{col}(B)$ and $T = \operatorname{col}(C)$, then S + T is a column space of what matrix M?
- 18. Construct a matrix whose column space contains $[1 \ 1 \ 1]^T$ and whose null space is the line of multiples of $[1 \ 1 \ 1]^T$.
- 19. **(T)** Suppose A is an m by n matrix of rank r.
 - (a) If $A\mathbf{x} = \mathbf{b}$ has a solution for every right side **b**, what is the column space of A?
 - (b) In part (a), what are all equations or inequalities that must hold between the numbers m, n and r?
 - (c) Give a specific example of a 3 by 2 matrix A of rank 1 with first row $[2\ 5]$. Describe the column space, col(A), and the null space N(A) completely.
 - (d) Suppose the right side **b** is same as the first column in your example (part c). Find the complete solution to $A\mathbf{x} = \mathbf{b}$.
- 20. Suppose the matrix A has row reduced echelon form R:

$$A = \begin{bmatrix} 1 & 2 & 1 & b \\ 2 & a & 1 & 8 \\ & (row & 3) \end{bmatrix}, \quad R = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

- (a) What can you say immediately about row 3 of A?
- (b) What are the numbers a and b?
- (c) Describe all solutions of $R\mathbf{x} = \mathbf{0}$. Which among row spaces, column spaces and null spaces are the same for A and for R.
- 21. (T) Suppose that A is a 3×3 matrix. What relation is there between the null space of A and the null space of A^2 ? How about the null space of A^3 ?
- 22. Suppose R (an $m \times n$ matrix) is in row reduced echelon form $\begin{pmatrix} I_r & F \\ 0 & 0 \end{pmatrix}$, with r non-zero rows and first r pivot columns. Describe the column space and null space of R.
- 23. **(T)** Let $W_1 = \operatorname{span} \left\{ \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}^T \right\}$ and $W_2 = \operatorname{span} \left\{ \begin{bmatrix} 1 & 0 & 2 \end{bmatrix}^T, \begin{bmatrix} -1 & 0 & 4 \end{bmatrix}^T \right\}$. Show that $W_1 + W_2 = \mathbb{R}^3$. Give an example of a vector $v \in \mathbb{R}^3$ such that v can be written in two different ways in the form $v = v_1 + v_2$, where $v_1 \in W_1, v_2 \in W_2$.