Strutture Dati

Lezione 19 Mergesort

Oggi parleremo di ...

- Limite inferiore per l'ordinamento
- Mergesort
 - algoritmo
 - implementazione
 - iterativa
 - ricorsiva
 - analisi della complessità

Albero decisionale per l'ordinamento

Il numero delle possibili soluzioni è 3!=6.

L'albero non è un albero binario completo di altezza 4: ha meno di $2^{4\cdot 1}$ = 8 nodi terminali.

L'albero decisionale ha un numero di foglie sufficienti per ordinare 3 elementi.

Limite inferiore per l'ordinamento

- Ogni albero decisionale che ordina n elementi distinti ha un'altezza almeno pari a log₂(n!)+1
 - ordinando n elementi, si hanno n! possibili soluzioni
 - ogni albero decisionale deve avere almeno n! foglie
 - se k è l'altezza dell'albero, poiché il numero massimo di foglie di un albero binario è 2^{k-1}, k deve essere tale che 2^{k-1} ≥ n!
 - l'altezza k deve essere maggiore o uguale a log₂(n!)+1
- - nell'albero decisionale esiste un percorso di lunghezza $\log_2(n!)$
 - $n! = n(n-1)(n-2) \dots (3)(2)(1) \ge (n/2)^{(n/2)}$
 - $\log_2(n!) \ge (n/2) \log_2(n/2) \in O(n \log n)$

Ordinamento per fusione (mergesort)

- Il limite inferiore al numero di confronti generato con l'albero di decisione è nlogn
 - il quicksort richiede $O(n\log n)$ confronti nel caso medio: è un algoritmo ottimo in questo caso
 - il quicksort richiede $O(n^2)$ confronti nel caso peggiore.
- La possibilità di raggiungere il limite inferiore dipende dalla partizione dell'insieme, bilanciata in ogni caso!
- L'ordinamento per fusione raggiunge tale limite, operando sempre su insiemi di uguale (o quasi) dimensione.

Ordinamento per fusione (mergesort)

- Suddividere l'insieme in piccoli gruppetti.
- Ordinare i gruppetti separatamente (con un metodo qualsiasi).
- Prendere il primo ed il secondo gruppetto e fonderli per formare un nuovo gruppo ordinato.
- Ripetere l'operazione con tutti gli altri gruppetti presi a coppie, fino ad ottenere un numero di gruppi ordinati pari a metà dei gruppetti originari.
- Fondere i nuovi gruppi a coppie e procedere similmente sino ad ottenere due gruppi ordinati contenenti ciascuno metà degli elementi, che vengono ora fusi per ottenere l'ordinamento.
- Il cuore del metodo di ordinamento è la fusione.

Mergesort: la fusione Fusione di due liste ordinate lista[i], ..., lista[m] e lista[m+1], ..., lista[n] in una sola lista ordinata ordinata[i], ..., ordinata[n] Lista ordinata i m m+1 n 2 4 5 6 1 3 7 8 1 i j k 2 4 5 6 1 3 7 8 1 i j k 2 4 5 6 1 3 7 8 1 i j k 2 4 5 6 1 3 7 8 1 i j k 1 2 3 4 5 k 1 2 3 4 5 k 1 2 3 4 5 6 k 1 2 3 4 5 6 k

Mergesort: versione iterativa

- Siano date n liste ordinate, ciascuna di lunghezza 1.
- Fondere le liste a coppie per ottenere n/2 liste ordinate di dimensione 2.
- Fondere le *n*/2 liste a coppie e così via sino ad ottenere un'unica lista.

```
Mergesort: versione iterativa
14 12 5 6 10 3 7 8 4 2 n=10
14 12
            <u>10</u> 3
                      4 2 lungh = 1
   14 5
         6
           3 10 7
   14 5
         6
                        4 lungh = 2
  6 12 14 3
             7 8 10
                8 10 2 4 lungh = 4
  5 6 7 8 10 12 14 2 4
  5 6 7 8 10 12 14 2 4 lungh = 8
  3 4 5 6 7 8 10 12 14
```

Mergesort: versione iterativa

Singolo passo di fusione: fusione di due file adiacenti di dimensione lungh

Mergesort: versione iterativa

Algoritmo di ordinamento per fusione di una lista di interi rappresentata mediante array: mergesort(lista, n)

Il numero totale di passi per ordinare n elementi è $\lceil \log n \rceil$. La fusione richiede un tempo lineare.

La complessità di mergesort è $O(n \log n)$

Mergesort: versione ricorsiva

Algoritmo di ordinamento per fusione di una lista di interi rappresentata mediante array: mergesort(lista, 0, n-1)

```
void mergesort(elemento lista[], int lower, int upper)
{
    /* ordina la lista lista[lower],...,lista[upper] */
    int medium;

if(lower < upper)
    {
        medium = (lower+upper)/2;
        mergesort(lista, lower, medium);
        mergesort(lista, medium+1, upper);
        merge (lista, lower, medium, upper);
    }
}</pre>
```

Mergesort: versione ricorsiva La complessità del mergesort è descritta dalla seguente relazione di ricorrenza: $T(n) \le cn + 2T(n/2)$ con T(0) = 0La complessità di mergesort è $O(n\log n)$ Il mergesort è un algoritmo di ordinamento ottimo

Mergesort: versione ricorsiva

Algoritmo di ordinamento per fusione di una lista di interi rappresentata mediante lista concatenata:

- il campo di collegamento è un numero intero e non un puntatore.
- il campo link in ogni record è posto inizialmente a -1.

typedef struct{
 int chiave;
 int link;
 } elemento;

Lista iniziale

14	12	5	6	10	3	7	8	4	2	chiave
-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	link

0 1 2 3 4 5 6 7 8 9

Lista ordinata

U	0 I	2	3	4	5	ь	'	8	9	
14	12	5	6	10	3	ୀ	8	4	2	chiave
-1	0	3	6	01	8	07	4	2	5	link

start=9

Mergesort: versione ricorsiva

Algoritmo di ordinamento per fusione di una lista rappresentata mediante concatenamenti: start = rmerge(lista, 0, n-1);

Mergesort: versione ricorsiva

Algoritmo di fusione di due liste rappresentate mediante concatenamenti.