YΣ13 - Computer Security

Data Privacy

Κώστας Χατζηκοκολάκης

Context

- Data is everywhere
- Can be exploited for numerous purposes:
 - Medical research
 - Transportation
 - Business insights
 - Policy, planning
 - Public safety
 - Weather prediction
 - Energy allocation
 - ...
- But: always a privacy risk

Context

The "nothing to hide" argument

Eric Schmidt on privacy:

"If you have something that you don't want anyone to know, maybe you shouldn't be doing it in the first place."

Counter-arguments?

The "nothing to hide" argument

Eric Schmidt on privacy:

"If you have something that you don't want anyone to know, maybe you shouldn't be doing it in the first place."

Counter-arguments?

- "Obvious" things
- Surveillance
- Control, exclusion
- Errors, carelesness, guilty by association, social norms, ...

The "nothing to hide" argument

Are these concerns relevant in the real world?

Inside China's Dystopian Dreams: A.I., Shame and Lots of Cameras

General Data Protection Regulation (GDPR)

What will be the key changes?

- A 'right to be forgotten' will help you manage data protection risks online. When you no longer want your data to be processed and there are no legitimate grounds for retaining it, the data will be deleted. The rules are about empowering individuals, not about erasing past events, re-writing history or restricting the freedom of the press.
- $\boldsymbol{\cdot}$ Easier access to your own personal data.
- · A right to transfer personal data from one service provider to another.
- · When your consent is required, you must be asked to give it by means of a clear affirmative action.
- · More transparency about how your data is handled, with easy-to-understand information, especially for children.
- Businesses and organisations will need to inform you about data breaches that could adversely affect you without
 undue delay. They will also have to notify the relevant data protection supervisory authority.
- Better enforcement of data protection rights through improved administrative and judicial remedies in cases of violations
- Increased responsibility and accountability for those processing personal data through data protection risk assessments, data protection officers, and the principles of 'data protection by design' and 'data protection by default'.

The problem of privacy

- In general, the problem of privacy is to protect the disclosure of sensitive information of individuals when a collection of data about these individuals (dataset) is made publicly available
- The process of transforming the dataset in order to avoid such disclosure is called sanitization

Privacy via anonymization

Nowadays, many institutions and companies that collect data use anonymization, i.e., they remove all personal identifiers: name, address, SSN, ...

"We don't have any raw data on the identifiable individual. Everything is anonymous" (CEO of NebuAd, a U.S. company that offers targeted advertising based on browsing histories)

Similar practices are used by Facebook, MySpace, Twitter. . . .

Privacy via anonymization

GDPR, Art. 5

Purpose specification ('personal data shall be collected for **specified**, explicit and legitimate **purposes** and **not further processed** in a manner that is incompatible with those purposes')

GDPR, Art. 6(4)

[...] the existence of appropriate **safeguards**, which may include encryption or **pseudonymisation**.')

Privacy via anonymization

However, anonymity-based sanitization has been shown to be **highly ineffective:**Several de-anonymization attacks have been carried out in the last decade

- The quasi-identifiers allow to retrieve the identity in a large number of cases.
- More sophisticated methods (k-anonymity, \(\ell\)-diversity, ...) take care of the quasi-identifiers, but they are still prone to composition attacks

Naive anonymization

- This is the most obvious solution: remove the identity of individuals from the database, so that the sensitive information cannot be directly linked to the individual
- Example: assume that we have a medical database, where the sensitive information is disease that has been diagnosed
- For instance, Jorah Mormont may not want to reveal that he is affected by greyscale.

			1
	Name	age	Disease
1	Jon Snow	30	cold
2	Jamie Lannister	39	amputed hand
3	Arya Stark	16	stomac ache
4	Bran Stark	14	crippled
5	Sandor Clegane	45	ignifobia
6	Jorah Mormont	48	gleyscale
7	Eddad Stark	32	headache
8	Ramsay Bolton	32	psychopath
9	Daenerys Targaryen	25	mania of grandeur

Naive anonymization

- Anonymization removes the column of the name, so that, for instance, the grayscale disease cannot be directly linked to Jorah Mormont
- Hystorically the first method, still used nowadays
- However, this solution has been (already several years ago) shown to be very weak and prone to deanonymization attacks

	Name	age	Disease
1	-	30	cold
2	-	39	amputed hand
3	-	16	stomac ache
4	-	14	crippled
5	-	45	ignifobia
6	-	48	gleyscale
7	-	32	headache
8	-	32	psychopath
9	-	25	mania of grandeur

Famous deanonymization attacks : AOL

- In 2006, AOL Research released a text file containing twenty million search keywords for over 650,000 users, intended for research purposes.
- The file was anonymized (names where substituted by numbers as pseudonyms), but personally identifiable information was present in many of the queries. The NYT was able to locate an individual from the search records by cross referencing them with phonebook listings
- From the report: The subject conducted hundreds of searches over a three-month period on topics ranging from "numb fingers" to "60 y.o. single men" to "dog that urinates on everything.", "landscapers in Lilburn, Ga", several people with the last name Arnold and "homes sold in shadow lake". It did not take much to identify the subject as Thelma Arnold, a 62-year-old widow with three dogs who lives in Lilburn. Ga.

Naive anonymization

GDPR, Recital 26

"...determine whether a natural person is identifiable, account should be taken of all the means reasonably likely to be used, such as singling out, either by the controller or by another person to identify the natural person directly or indirectly."

GDPR, Art. 11(2)

"where, ..., the controller is **able to demonstrate that it is not in a position to identify the data subject**, the controller shall inform the data subject accordingly, if possible. In such cases, Articles 15 to 20 shall not apply ..."

Famous deanonymization attacks: Medical records

Famous deanonymization attacks: Medical records

 $87\ \%$ of US population is uniquely identifiable by 5-digit ZIP, gender, DOB

This attack has lead to the proposal of k-anonymity (that I will present later)

- Quasi-identifier: Set of attributes that can be linked with external data to uniquely identify individuals
- Make every record in the table indistinguishable from a least k-1 other records with respect to quasi-identifiers. This can be done by:
 - suppression of attributes, and/or
 - generalization of attributes, and/or
 - · addition of dummy records
- Linking on quasi-identifiers yields at least k records for each possible value of the quasi-identifier

Principle: group anonymity

 Ensure that each individual is indistinguishable within a group by removing individual differences

- Of course, the larger are the groups, the better the individuals are protected (within the group)
- k-anonymity ensure that the size of each group is at least k

k-anonymity

Example: 4-anonymity w.r.t. the quasi-identifiers (nationality, ZIP, age)

• achieved by suppressing the nationality and generalizing ZIP and age

		No.	on-Se	nsitive	Sensitive
		Zip Code	Age	Nationality	Condition
	1	13053	28	Russian	Heart Disease
	2	13068	29	American	Heart Disease
	3	13068	21	Japanese	Viral Infection
	4	13053	23	American	Viral Infection
	5	14853	50	Indian	Cancer
	б	14853	55	Russian	Heart Disease
	7	14850	47	American	Viral Infection
_	0	14950	40	American	Visal Infantion
	9	13053	31	American	Cancer
	10	13053	37	Indian	Cancer
	11	13068	36	Japanese	Cancer
	12	13068	35	American	Cancer

	l N	Von-Sen	sitive	Sensitive
	Zip Code	Age	Nationality	Condition
1	130**	< 30	*	Heart Disease
2	130**	< 30	*	Heart Disease
3	130**	< 30	*	Viral Infection
4	130**	< 30	*	Viral Infection
5	1485*	≥ 40	*	Cancer
6	1485*	≥ 40	*	Heart Disease
7	1485*	≥ 40	*	Viral Infection
0	1/105*	> 40		Viral Infaction
9	130**	3*	*	Cancer
10	130**	3*	*	Cancer
11	130**	3*	*	Cancer
	130**	3*		Cancer

Figure 1. Inpatient Microdata

Figure 2. 4-anonymous Inpatient Microdata

Problems with k-anonymity

- Problem: in the sanitized dataset, all the individual in a group may the same value for the sensitive data
- Clearly, the people in that group are not protected from the revelation of their disease
- Example: suppose that John's employer knows that John is less than 40, that he lives in a town with ZIP code 12032, and that he visits the hospital. He can learn that John has cancer.

		Sensitive			
	Rase	Age	Sex	Zip Code	Disease
1	*	< 40	*	120**	Cancer
2	*	< 40	*	120**	Cancer
3	*	< 40	*	120**	Cancer
4	*	< 40	*	120**	Cancer
5	*	≥ 50	*	151**	Hemophilia
6	*	≥ 50	*	151**	Cancer
7	*	≥ 50	*	151**	Virus
8	*	≥ 50	*	151**	Virus
9	*	4*	*	120**	Hemophilia
10	*	4*	*	120**	Hemophilia
11	*	4*	*	120**	Virus
12	*	4*	*	120**	Virus

Table 2: 4-anonymous inpatient microdata.

l-diversity

- A solution: ℓ -diversity.
- The idea is to form the groups in such a way that each group contains a variety of values for the sensitive data
- It's computationally heavy: To find the optimal solution is a combinatorial problem with exponential complexity

		Sensitive			
	Rase	Age	Sex	Zip Code	Disease
1	*	≤ 50	*	120**	Cancer
2	*	≤ 50	*	120**	Cancer
9	*	≤ 50	*	120**	Hemophilia
11	*	≤ 50	*	120**	Virus
5	*	> 50	*	151**	Hemophilia
6	*	> 50	*	151**	Cancer
7	*	> 50	*	151**	Virus
8	*	> 50	*	151**	Virus
3	*	≤ 50	*	120**	Cancer
4	*	≤ 50	*	120**	Cancer
10	*	≤ 50	*	120**	Hemophilia
12	*	≤ 50	*	120**	Virus

- A solution: ℓ -diversity.
- The idea is to form the groups in such a way that each group contains a variety of values for the sensitive data
- It's computationally heavy: To find the optimal solution is a combinatorial problem with exponential complexity

		Sensitive			
	Rase	Age	Sex	Zip Code	Disease
1	*	≤ 50	*	120**	Cancer
2	*	≤ 50	*	120**	Cancer
9	*	≤ 50	*	120**	Hemophilia
11	*	≤ 50	*	120**	Virus
5	*	> 50	*	151**	Hemophilia
6	*	> 50	*	151**	Cancer
7	*	> 50	*	151**	Virus
8	*	> 50	*	151**	Virus
3	*	≤ 50	*	120**	Cancer
4	*	≤ 50	*	120**	Cancer
10	*	≤ 50	*	120**	Hemophilia
12	*	≤ 50	*	120**	Virus

t-closeness : the distribution in each group should also be close to that of the general population

Problems with *k*-anonymity and similar methods

- Composition attacks
 - Combination of knowledge coming from different sources (linking attacks)
 - Open world: Even if present data are protected, in the future there may be some new knowledge available
- Everything can potentially be a quasi-identifier
 - Especially in high-dimensional and sparse databases

Problems with k-anonymity and similar methods

Alice is 28 years old, lives in 13012 and visits both hospitals. Can we learn something about her?

	Zip code	Age	Nationality	Condition
1	130**	<30		AIDS
2	130**	<30	•	Heart Disease
3	130**	<30		Viral Infection
4	130**	<30		Viral Infection
5	130**	≥40		Cancer
6	130**	>40		Heart Disease
7	130**	≥40	•	Viral Infection
8	130**	≥40	•	Viral Infection
9	130**	3,		Cancer
10	130**	3.		Cancer
11	130**	3,	•	Cancer
12	130**	3,		Cancer

	(a)					
	No.	Sensitive				
	Zip code	Age	Nationality	Condition		
1	130**	<35	•	AIDS		
2	130**	<35		Tuberculosis		
3	130**	<35		Flu		
4	130**	<35		Tuberculosis		
5	130**	<35		Cancer		
6	130**	<35		Cancer		
7	130**	>35		Cancer		
8	130**	≥35		Cancer		
9	130**	≥35		Cancer		
10	130**	≥35		Tuberculosis		
11	130**	≥35		Viral Infection		
12	130**	≥35	•	Viral Infection		

Famous deanonymization attacks: Netflix

Robust De-anonymization of Large Sparse Datasets. Narayanan and Shmatikov, 2008.

Showed the limitations of K-anonymity

De-anonymization of the **Netflix Prize dataset** (500,000 anonymous records of movie ratings), using **IMDB** as the source of background knowledge.

They demonstrated that an adversary who knows just a few preferences about an individual subscriber can identify his record in the dataset.

Famous deanonymization attacks: Twitter

De-anonymizing Social Networks. Narayanan and Shmatikov, 200

By using only the network topology, they were able to show that 33% of the users who had accounts on both **Twitter** and **Flickr** could be re-identified in the anonymous Twitter graph with only a 12% error rate.

Database access via a query interface

- Do not make the microdata available, but only aggregated information, by querying the interface.
- **Example:** Statistical Databases (SDB), often used for research purposes. For example, a medical SDB can be used to study the correlation between certain diseases and other attributes like: age, sex, weight, etc.

- One can only retrieve aggregated information, not personal records
 - "What is the average weight of people affected by the disease?"

"Does Don have the disease ?"

Problem 1: correlation

- "what is the median age of cancer patients"
- Statistics are still correlated to personal information
- Inference could be possible

- A medical database D1 containing correlation between a certain disease and age.
- Query: "what is the minimal age of a person with the disease"

name	age	disease
Alice	30	no
Bob	30	no
Carl	40	no
Don	40	yes
Ellie	50	no
Frank	50	yes

D1 is 2-anonymous with respect to the query. Namely, every possible answer partitions the records in groups of at least 2 elements

Alice	Bob
Carl	Don
Ellie	Frank

- A medical database D2 containing correlation between the disease and weight.
- Query: "what is the minimal weight of a person with the disease"

name	weight	disease
Alice	60	no
Bob	90	no
Carl	90	no
Don	100	yes
Ellie	60	no
Frank	100	yes

Also D2 is 2-anonymous

Alice	Bob
Carl	Don
Ellie	Frank

Combine with the two queries: minimal weight and the minimal age of a person with the disease Answers: 40, 100. **Unique!**

name	age	disease
Alice	30	no
Bob	30	no
Carl	40	no
Don	40	yes
Ellie	50	no
Frank	50	yes

Alice	60	no
Bob	90	no
Carl	90	no
Don	100	yes
Ellie	60	no
Frank	100	yes

Alice	Bob
Carl	Don
Ellie	Frank

Composition attacks are a general problem of **Deterministic approaches:** They are all based on the principle that one observation corresponds to many possible values of the secret (group anonymity)

Problem of the deterministic approaches: the combination of observations determines smaller and smaller intersections on the domain of the secrets, and eventually result in singletones

Problem of the deterministic approaches: the combination of observations determines smaller and smaller intersections on the domain of the secrets, and eventually result in singletones

Solution

Randomization!

Every secret can generate any observable, according to a certain probability distribution.

By the Bayes law $p(s|o) \propto p(o|s)$

• Add noise to query answer before reporting

minimal age:

40 with probability 1/2

30 with probability 1/4

50 with probability 1/4

name	age	disease
Alice	30	no
Bob	30	no
Carl	40	no
Don	40	yes
Ellie	50	no
Frank	50	yes

Alice	Bob
Carl	Don
Ellie	Frank

minimal weight: 100 with prob. 4/7 90 with prob. 2/7 60 with prob. 1/7

name	weight	disease
Alice	60	no
Bob	90	no
Carl	90	no
Don	100	yes
Ellie	60	no
Frank	100	yes

Alice	Bob
Carl	Don
Ellie	Frank

Even if he combines the answers, the adversary cannot tell for sure whether a certain person has the disease

name	age	disease
Alice	30	no
Bob	30	no
Carl	40	no
Don	40	yes
Ellie	50	no
Frank	50	yes

name	weight	disease
Alice	60	no
Bob	90	no
Carl	90	no
Don	100	yes
Ellie	60	no
Frank	100	yes

Alice	Bob
Carl	Don
Ellie	Frank

Questions to investigate

- How can we define privacy for noisy queries?
- What kind of noise do we need?

Differential Privacy

A rigorous definition of privacy for data analysis.

Main idea

Datasets differing in a single individual should produce "similar" results (all answers should be produced with almost the same probability).

Differential Privacy

Main idea

Datasets differing in a single individual should produce "similar" results (all answers should be produced with almost the same probability).

Definition

Mechanism K satisfies ϵ -differential privacy iff

$$\frac{Pr[\ K(x) = z]}{Pr[\ K(x') = z]} \le e^{\epsilon} \quad \text{for all} \quad x \sim x', z$$

 $x \sim x'$: differing in a single individual

Differential Privacy

Two important properties:

- Independence from the prior
- Compositionality

Independence from the prior

- Prior (initial) knowledge on the database
 - the height of Alice, etc

Independence from the prior

- Prior (initial) knowledge on the database
 - the height of Alice, etc
- The definition of DP does makes no assumptions about it
- So we can prove/disprove the privacy of K without such assumptions

Independence from the prior

- Prior (initial) knowledge on the database
 - the height of Alice, etc
- The definition of DP does makes no assumptions about it
- So we can prove/disprove the privacy of K without such assumptions
- Important: this does not mean that prior knowledge does not help the adversary

Theorem

If K_1 , K_2 satisfy ϵ_1 , ϵ_2 -diff. privacy then their composition $K_1 \times K_2$ satisfies $\epsilon_1 + \epsilon_2$ -diff. privacy.

Theorem

If K_1 , K_2 satisfy ϵ_1 , ϵ_2 -diff. privacy then their composition $K_1 \times K_2$ satisfies $\epsilon_1 + \epsilon_2$ -diff. privacy.

• How does this compare to *k*-anonymity?

Theorem

If K_1 , K_2 satisfy ϵ_1 , ϵ_2 -diff. privacy then their composition $K_1 \times K_2$ satisfies $\epsilon_1 + \epsilon_2$ -diff. privacy.

- How does this compare to *k*-anonymity?
- What about repeating the same mechanism?

Theorem

If K_1 , K_2 satisfy ϵ_1 , ϵ_2 -diff. privacy then their composition $K_1 \times K_2$ satisfies $\epsilon_1 + \epsilon_2$ -diff. privacy.

- How does this compare to *k*-anonymity?
- What about repeating the same mechanism?
- Privacy budget: the analyst start with an initial budget, each time he asks a question the budget is decreased by ϵ . When it is exhausted, he cannot ask more queries.

Solution 1: Randomized response

• Query: "what is the average height?". Assume integer values 50..250.

Solution 1: Randomized response

- Query: "what is the average height?". Assume integer values 50..250.
- Compute the true answer y = f(x)

Solution 1: Randomized response

- Query: "what is the average height?". Assume integer values 50..250.
- Compute the true answer y = f(x)
- Flip a (biased) coin
 - with pb $\lambda/200+\lambda$ report y
 - otherwise, report some $y' \neq y$ randomly (uniform)

Solution 1: Randomized response

- Query: "what is the average height?". Assume integer values 50..250.
- Compute the true answer y = f(x)
- · Flip a (biased) coin
 - with pb $\lambda/200+\lambda$ report y
 - otherwise, report some $y' \neq y$ randomly (uniform)
- Does this mechanism satisfy differential privacy? For which epsilon?

$$\frac{Pr[\ K(x) = 50\]}{Pr[\ K(x') = 50\]} \le \frac{\lambda/200 + \lambda}{1/200 + \lambda} = e^{\ln \lambda}$$

Solution 2: Laplace mechanism (the most widely used)

- Numerical queries $f: \mathcal{X} \to \mathbb{R}$
- Sensitivity (How "statistical" / "sensitive to individual data" is a query?)
 - $\Delta f = \max_{\mathbf{X} \sim \mathbf{X}'} |f(\mathbf{X}) f(\mathbf{X}')|$
 - High: needs more noise ("what is the height of Bob?")
 - Low: needs a less noise ("what is the average height?")

Solution 2: Laplace mechanism (the most widely used)

- Numerical queries $f: \mathcal{X} \to \mathbb{R}$
- Sensitivity (How "statistical" / "sensitive to individual data" is a query?)
 - $\Delta f = \max_{\mathbf{X} \sim \mathbf{X}'} |f(\mathbf{X}) f(\mathbf{X}')|$
 - High: needs more noise ("what is the height of Bob?")
 - Low: needs a less noise ("what is the average height?")
- Compute y = f(x)
- Draw value from Lap $(y, \frac{\Delta f}{\epsilon})$

Solution 2: Laplace mechanism (the most widely used)

- Numerical queries $f: \mathcal{X} \to \mathbb{R}$
- Sensitivity (How "statistical" / "sensitive to individual data" is a query?)
 - $\Delta f = \max_{\mathbf{x} \sim \mathbf{x}'} |f(\mathbf{x}) f(\mathbf{x}')|$
 - High: needs more noise ("what is the height of Bob?")
 - Low: needs a less noise ("what is the average height?")
- Compute y = f(x)
- Draw value from Lap $(y, \frac{\Delta f}{\epsilon})$
 - Draw a, b uniformly in (0, 1)
 - Report $z = y + \frac{\Delta f}{\epsilon} \log \frac{a}{b}$

References

- Why Privacy Matters Even if You Have 'Nothing to Hide
- "Anonymized" data really isn't—and here's why not
- k-Anonymity: A Model for Protecting Privacy
- Robust De-anonymization of Large Sparse Datasets
- An introduction to differential privacy