Name: Student No.: Date: Cryptanalysis

KASISKI EXAMINATION

It is method to break **polyalphabetic substitution ciphers** such as the Vigenère cipher.

In the Vigenère cipher, **the key is repeated**, which **can cause repeating sequences** in the ciphertext.

This method finds these repeating sequences to help determine the key length.

Friedrich Kasiski

Directions: Crack the code and guess the song!

The ciphertext given to you in Google Classroom contains lyrics from a song by one of Billboard's 25 greatest pop stars of the 21st century.

The message was encrypted using the **Vigenère cipher** with a **4-letter key**, which is the **artist's code** from the list below:

Artist	Code	Artist	Code	Artist	Code
Adele	ADLE	Eminem	EMNM	Nicki Minaj	NKMJ
Ariana Grande	ARGR	Jay-Z	JAYZ	One Direction	ONDR
Bad Bunny	BDBY	Justin Bieber	JBIB	Rihanna	RIHN
Beyoncé	BEYC	Justin Timberlake	JTBK	Shakira	SHKR
Britney Spears	BRSP	Kanye West	KAWT	Taylor Swift	TSWF
Bruno Mars	BRMS	Katy Perry	KTPY	The Weeknd	TWKD
BTS	BTSX	Lady Gaga	LGGA	Usher	USHR
Drake	DRKE	Lil Wayne	LIWN		
Ed Sheeran	EDSH	Miley Cyrus	MYCY		

In this worksheet, we'll first **verify that the key length used is indeed 4**, then we'll **use frequency analysis to help determine the actual key.**

Step 1: Get your ciphertext from Google Classroom.

Write it down clearly.

ı	Exam	ple	

FZCTZAFGSI GO MSMMJR LQX MK UVVPQVRBGE FW APYP GNFPCDI ZCCC G EBR QG<mark>F CMW</mark>S LYNP

CMW LRMY ZSSTF QW UBZGP HVYE

CMW SI CXFVWVIMLI J RCGE ELF NSPG
JXQ YSMRVFR YNM STGS CMWS JYEF
FYDZ M ACO JCGM CMWS LYNP
TPCZ MR YPRR HBHC CXEW
K DEL HFIJ APYP JBPM JBPM JBPM

K DEL UFI WQVV FCMS FCMS FCMS

FCMW

CMWS

MWSL

APYP

BPMJ

- Step 2: Scan the QR code to access the online Kasiski Examination tool.
- Step 3: Paste your ciphertext in the "Intercept" box and click "Find Repeated Sequences".

A table of repeated sequences will appear below.

2 3 4 5 6 7 8 2 Y Y Y Y Y Y 3 Y Y Y Y Y Y Y

Example:

- The first column lists the repeated sequences.
- The second column represents the distances between occurrences of these repeated sequences.
- The remaining columns contain the factors of each respective distance.

- **Step 4: Find five unique repeated sequences** with **different distances**.
- **Step 5: Find the factors of each distance.**

You can use an online Factoring Calculator.

example:	Examp	le:
----------	-------	-----

		-
Repeated Sequence	Distance	Factors
FCMW	32	1, 2, 4, 8, 16, 32
CMWS	76	1, 2, 4, 19, 38, 76
MSWL	96	1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96
APYP	152	1, 2, 4, 8, 19, 38, 76, 152
JBPM	4	1, 2, 4

Repeated Sequence	Distance	Factors

Step 6: Check the first repeated sequence in your table.

In your ciphertext above, **use boxes to find the repeated sequence** where the distance between the first letters of the first and second occurrences **matches the distance shown in the tool.**

Example:

- The first repeated sequence in the table is "FCMW"
- Check the ciphertext you have written.
- Starting from the letter after the first occurrence of "FCMW", there are 32 letters to reach the first letter of the next "FCMW".

Step 7: Check all the common factors in your table.

✓ What common factors did you find?

/	Based on the common factors, is it possible that the key length is 4?
	□ YES
	□ NO

FREQUENCY ANALYSIS

It is a method used to break substitution ciphers by **counting how often each letter appears in the text.**

The most frequent letters in the ciphertext are assumed to match the most common letters in English (E, T, A, O, I, and N).

Now, let's find your 4-letter key!

- Step 7: In the "Finding the Key" of the Kasiski Examination tool, set the "Keyword Length" to 4.
- **Step 8:** In "**Keyword Letters**", **L1 to L4** represent **first to fourth subkeys.**
- Step 9: Click "L1" (first subkey), and two bar graphs will appear:
 - Red graph shows letter frequencies in English alphabet.
 - Blue graph shows letter frequencies from your ciphertext by examining every fourth letter, starting from the first letter.
- Step 10: Adjust the "Shift" value until the blue graph pattern looks similar to the red graph.
 - You can try shifting the most frequent letter in your ciphertext
 to "E" to find a possible key, though it doesn't always work.
 - Finding the right key is a trial-and-error process.

Step 11: Repeat Steps 9 and 10 for "L2", "L3", and "L4". **Step 12: Screenshot, print, and paste the letter frequencies in each box.** Step 13: For each subkey, draw a box around the area where the blue and red graph trends look similar after shifting. **Example:** • The first subkey was shifted by 1, which corresponds to the letter "B". • The second subkey was shifted by 4, which corresponds to the letter "E". H I J K L M N O P Q R S T U V W X Y Z A B C D • The third subkey was shifted by 24. which corresponds to the letter "Y".

Content Curated by Pollux M. Rey

✓ Second subkey letter:
V Second Subrey letter

✓ Third subkey letter:	
✓ Fourth subkey letter:	
√ What is your Vigenère key?	

- **Step 14:** Once you find the key, select "**Ciphertext**" in the Kasiski Examination tool to see the **decrypted plaintext**.
- Step 15: Add spaces between the words in the plaintext, then search it online to identify the song's title.

Example:

Ciphertext:

everywhereimlookinnowimsurroundedbyyourembracebabyicanseeyourhaloyou knowyouremysavingraceyoureeverythingineedandmoreitswrittenalloveryou rfacebabyicanfeelyourhaloprayitwontfadeawayicanfeelyourhalohaloi canseeyourhalohalohalo

Formatted plaintext:

everywhere im lookin now im surrounded by your embrace baby I can see your halo you know youre my savin grace youre everything I need and more its written all over your face baby I can feel your halo pray it wont fade away I can feel your halo halo i can see your halo halo

Song:

Genius

https://genius.com > Beyonce-halo-lyrics :

Halo Lyrics - Beyoncé

Everywhere I'm lookin' now. I'm surrounded by your embrace \cdot You know you're my savin' grace. You're everything I need and more \cdot It's written all over your face

End of the worksheet

Tip: If you're struggling to find your key, try a brute-force attack. 😊