Linear models vignette

Contents

9	Quadratic term	8
	8.3 Plots for confidence and prediction intervals	7
	v 1	
	8.1 One prediction	6
8	Predictions	6
7	Diagnostics	5
6	Linear Model in scatter plot	4
	5.1 Explore the model	3
5	Plot it (scatter plot)	2
4	Load some data	2
3	Libraries	2
2	Reference	1
1	Purpose	1

1 Purpose

This vignette aims to introduce you liner models using R.

2 Reference

 $Dr.\ Bharatendra\ https://www.youtube.com/watch?v=rsfV57N7Uns\&list=PL34t5iLfZddtUUABMikey6NtL05hPAp42\&index=7$

3 Libraries

4 Load some data

Look at 'roller' dataset from DAAG library.

```
# Example the roller dataset
str(roller)

## 'data.frame': 10 obs. of 2 variables:
## $ weight : num 1.9 3.1 3.3 4.8 5.3 6.1 6.4 7.6 9.8 12.4
## $ depression: num 2 1 5 5 20 20 23 10 30 25
```

5 Plot it (scatter plot)

```
ggplot(roller, aes(x=weight, y=depression)) +
  geom_point()
```


Linear model lm{stats}

Reference: Dr. Bharatendra https://youtube.com/watch?v=utjaosw7wi0&si=EnSIkaIECMiOmarE

```
# lm model, with formula y \sim x..., and dataset name
# here dependent var will be depression, inde variable weight from dataset roller
model <- lm(depression ~ weight, roller)</pre>
# Get the summary
summary(model)
##
## Call:
## lm(formula = depression ~ weight, data = roller)
##
## Residuals:
     Min
              1Q Median
                            3Q
                                  Max
## -8.180 -5.580 -1.346 5.920 8.020
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.0871
                            4.7543 -0.439 0.67227
## weight
                 2.6667
                            0.7002
                                   3.808 0.00518 **
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6.735 on 8 degrees of freedom
## Multiple R-squared: 0.6445, Adjusted R-squared: 0.6001
## F-statistic: 14.5 on 1 and 8 DF, p-value: 0.005175
```

5.1 Explore the model

5.1.1 What the model has

```
names(model)
```

```
## [1] "coefficients" "residuals" "effects" "rank"

## [5] "fitted.values" "assign" "qr" "df.residual"

## [9] "xlevels" "call" "terms" "model"
```

5.1.2 Look at coefficients only

```
coef(model)
```

```
## (Intercept) weight
## -2.087148 2.666746
```

5.1.3 look at the residuals

Residuals = Observed - Predicted

```
residuals(model)
```

```
## 1 2 3 4 5 6 7
## -0.9796695 -5.1797646 -1.7131138 -5.7132327 7.9533944 5.8199976 8.0199738
## 8 9 10
## -8.1801213 5.9530377 -5.9805017
```

5.1.4 Look at predictions (i.e. the fitted model)

In stats terms we say the 'fitted model' while in machine learning we say 'prediciton', same thing.

5.1.5 What that means

24.046962 30.980502

Look at the prediction (fit) and calculate the residual by hand. Compare.

```
# Residual from the first prediction
r1 <- residuals(model)[1]

# Actual number
a1 <- roller[1,]

# This result must be zero (or super close to zero)
residual_test = (a1[2] - f[1]) - r1</pre>
```

6 Linear Model in scatter plot

Shows the 95% confidence intervals.

```
ggplot(roller, aes(x=weight, y=depression)) +
  geom_point() +
  geom_smooth(method = 'lm') +
  ggtitle('Depression vs Weight', 'Source: Roller data from DAAG')
```

```
## 'geom_smooth()' using formula = 'y ~ x'
```

Depression vs Weight

Source: Roller data from DAAG

7 Diagnostics

```
par(mfrow=c(2, 2))
plot(model)
```


8 Predictions

8.1 One prediction

```
# Here the independent variable is 'weight'
predict(model, data.frame(weight=7))
## 1
```

8.2 Many predictions

16.58007

```
predict(model, data.frame(weight=c(7, 8, 9)))
## 1 2 3
## 16.58007 19.24682 21.91357
```

8.2.1 Confidence intervals

8.2.2 Prediction intervals

```
## fit lwr upr
## 1 16.58007 0.2208492 32.93930
## 2 19.24682 2.6612368 35.83240
## 3 21.91357 4.9502581 38.87687
```

Some time confidence intervals are called narrow intervals, while prediction intervals are called wider intervals.

You use it depending on the context.

If the context is about a single value then use prediciton interval, and if the context is about a wider average then use confidence interval.

8.3 Plots for confidence and prediction intervals

8.3.1 Plot for prediction interval

```
# First make a dataset

p <- predict(model, interval = 'prediction')</pre>
```

8.3.1.1 make a data.frame

Warning in predict.lm(model, interval = "prediction"): predictions on current data refer to _future_

```
# combine data
data <- cbind(roller, p)
str(data)</pre>
```

```
## 'data.frame': 10 obs. of 5 variables:
## $ weight : num 1.9 3.1 3.3 4.8 5.3 6.1 6.4 7.6 9.8 12.4
## $ depression: num 2 1 5 5 20 20 23 10 30 25
## $ fit : num 2.98 6.18 6.71 10.71 12.05 ...
## $ lwr : num -14.65 -10.8 -10.18 -5.71 -4.29 ...
## $ upr : num 20.6 23.2 23.6 27.1 28.4 ...
```

```
# Add the prediction intervals with geom_line()
ggplot(data, aes(x=weight, y=depression)) +
  geom_point() +
  geom_smooth(method = 'lm') +
  ggtitle('Depression vs Weight', 'Source: Roller data from DAAG') +
  geom_line(aes(y=lwr), color='red', linetype='dashed', lwd=2) +
  geom_line(aes(y=upr), color='red', linetype='dashed', lwd=2)
```

8.3.1.2 Plot it

'geom_smooth()' using formula = 'y ~ x'

Depression vs Weight

Source: Roller data from DAAG

9 Quadratic term

A way to help the model

```
model1 <- lm(depression ~ weight + I(weight^2), roller)
summary(model1)</pre>
```

```
##
## Call:
## lm(formula = depression ~ weight + I(weight^2), data = roller)
## Residuals:
      Min
               1Q Median
                              ЗQ
                                    Max
## -10.699 -3.192
                  1.244
                          4.792
                                   6.163
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -12.1247
                       9.3821 -1.292
                                          0.2373
## weight
                        2.9822 2.090 0.0749 .
          6.2337
## I(weight^2) -0.2519 0.2051 -1.228 0.2590
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 6.531 on 7 degrees of freedom
## Multiple R-squared: 0.7075, Adjusted R-squared: 0.624
## F-statistic: 8.467 on 2 and 7 DF, p-value: 0.01353
```