7B 积分速率方程

如我们前面所述,速率方程事实上是一个关于物质浓度的微分方程,因而可以通过数学方法 求解各物质浓度与时间的关系,称为**积分速率方程**.在大多数情形下,这些微分方程都有精确的 解析解¹.我们将在本节讨论常见速率方程及其解.并由此介绍其应用.

7B.1 简单整数级反应的积分速率方程

零级反应

我们从最简单的零级反应入手.零级反应的积分速率方程的推导如下.

Derivation.

考虑零级反应A — P,其速率方程为

$$v = -\frac{\mathrm{d}[\mathbf{A}]}{\mathrm{d}t} = k$$

这是一个再简单不过的微分方程,我们移项可得

$$d[A] = -kdt$$

考虑起始时间为0,A的起始浓度为[A]0,对上式两边积分可得

$$[A] - [A]_0 = -kt$$

即

$$[A] = [A]_0 - kt$$

这表明[A]与时间t成一次函数关系.我们在下图中给出了A的浓度随时间变化的图像.

在A反应完全后,反应便不再进行,保持[A] = 0.

¹即有明确函数表达式的解.

Theorem 7B.1.1 零级反应的积分速率方程

对于零级反应A — P,其积分速率方程为

$$[A] = [A]_0 - kt$$

其中k为速率常数, $[A]_0$ 为A的起始浓度.

一级反应

一级反应的积分速率方程的推导如下.

Derivation.

考虑一级反应A — P.其速率方程为

$$v = -\frac{\mathrm{d}[\mathbf{A}]}{\mathrm{d}t} = k[\mathbf{A}]$$

同样移项可得

$$\frac{\mathrm{d}[\mathbf{A}]}{[\mathbf{A}]} = -k\mathrm{d}t$$

考虑起始时间为0,A的起始浓度为[A]0,对上式两边积分可得

$$\int_{[\mathbf{A}]_0}^{[\mathbf{A}]} \frac{1}{[\mathbf{A}]} \mathrm{d}[\mathbf{A}] = -\int_0^t k \mathrm{d}t$$

注意到 $\int \frac{1}{x} dx = \ln x$,于是上式即

$$\ln[\mathbf{A}] - \ln[\mathbf{A}]_0 = -kt$$

即

$$\ln \frac{[A]}{[A]_0} = -kt$$
 $[A] = [A]_0 e^{-kt}$

如果将 $\ln[A]$ 对t作图,将得到一条斜率为-k,截距为 $\ln[A]_0$ 的直线.

从上面的表达式可以看出,[A]的浓度随时间呈现负指数衰减.我们也在下图中给出了A的浓度随时间变化的图像.

Theorem 7B.1.2 一级反应的积分速率方程

对于一级反应A — P,其积分速率方程为

$$[A] = [A]_0 e^{-kt}$$

其中k为速率常数, $[A]_0$ 为A的起始浓度.

一级反应的速率的一个重要的指示是半衰期.

Definition 7B.1.3 半衰期

对于某个反应,某反应物浓度降低至原来的一半所用的时间为反应的半衰期,记作 $t_{1/2}$ 或 $t_{\frac{1}{8}}$.

一级反应的半衰期是特殊的.

Derivation.

在7B.1.2的推导中有

$$\ln\frac{[\mathbf{A}]}{[\mathbf{A}]_0} = -kt$$

令
$$\frac{[A]}{[A]_0} = \frac{1}{2}$$
,就可以得到

$$kt_{1/2} = \ln 2$$

即 $t_{1/2} = \frac{\ln 2}{k}$.这表明一级反应的半衰期与反应物的起始浓度无关,仅与速率常数有关.

Theorem 7B.1.4 一级反应的半衰期

一级反应的半衰期 $t_{1/2} = \frac{\ln 2}{k}$,是仅与速率常数有关的值.因此,在相同的条件下,反应物浓度每降低一半所用的时间是定值.

我们将在后面看到,除了一级反应外,其余反应的半衰期都是与起始浓度有关的值.因此,有固定的半衰期这一点可以作为判断反应是否是一级的依据.

二级反应

相对而言,二级反应就比较复杂了.我们先讨论由一种反应物生成产物的二级反应.

Derivation.

考虑二级反应A — P,其速率方程为

$$v = -\frac{\mathrm{d}[\mathbf{A}]}{\mathrm{d}t} = k[\mathbf{A}]^2$$

同样移项可得

$$\frac{\mathrm{d}[\mathbf{A}]}{[\mathbf{A}]^2} = -k\mathrm{d}t$$

考虑起始时间为0,A的起始浓度为[A]0,对上式两边积分可得

$$\int_{[A]_0}^{[A]} \frac{1}{[A]^2} d[A] = -\int_0^t k dt$$

注意到 $\int \frac{1}{x^2} dx = -\frac{1}{x}$,于是上式即

$$\frac{1}{[\mathbf{A}]_0} - \frac{1}{[\mathbf{A}]} = -kt$$

即

$$[A] = \frac{[A]_0}{1 + kt[A]_0}$$

如果将 $\frac{1}{[A]}$ 对t作图,将得到一条斜率为k,截距为 $\frac{1}{[A]_0}$ 的直线.

从上面的表达式可以看出,[A]的浓度随时间呈现倒数衰减.我们也在下图中给出了A的浓度随时间变化的图像.

可以看到,A被消耗的速率也随着时间而减缓,并且减缓的速度相对一级反应更大.

如果令
$$[A] = \frac{1}{2}[A]_0$$
,可得

$$t_{1/2} = \frac{1}{k[A]_0}$$

4

可见二级反应的半衰期与反应物浓度成反比例关系.

Theorem 7B.1.5 二级反应的积分速率方程I

对于二级反应A --- P,其积分速率方程为

$$\frac{1}{[\mathbf{A}]} = \frac{1}{[\mathbf{A}]_0} + kt \quad \vec{\boxtimes} \quad [\mathbf{A}] = \frac{[\mathbf{A}]_0}{1 + k[\mathbf{A}]_0 t}$$

其中k为速率常数,[A]o为A的起始浓度.其半衰期为

$$t_{1/2} = \frac{1}{k[\mathbf{A}]}$$

现在让我们考虑更复杂的情形,即有两种反应物的二级反应.

Derivation.

考虑二级反应A+B --- P,其速率方程为

$$v = k[A][B]$$

为了统一变量,不妨令 $\frac{\xi}{V} = x$,这样根据计量数就有

$$[A] = [A]_0 - x$$
 $[B] = [B_0] - x$

于是速率方程即

$$\frac{\mathrm{d}x}{\mathrm{d}t} = k\left([\mathbf{A}]_0 - x\right)\left([\mathbf{B}]_0 - x\right)$$

上式移项即可得

$$\frac{\mathrm{d}x}{\left([\mathbf{A}]_0 - x\right)\left([\mathbf{B}]_0 - x\right)} = k\mathrm{d}t$$

当 $[A]_0 = [B]_0$ 时,情形与一种反应物类似,这里不再赘述.当 $[A]_0 \neq [B]_0$ 时,为了便于求积分,我们对左边的式子稍作拆分即可得

$$\frac{1}{[B]_0 - [A]_0} \left(\frac{1}{[A]_0 - x} - \frac{1}{[B]_0 - x} \right) dx = k dt$$

t=0时x=0,将上式两端求定积分即可得

$$\frac{1}{[\mathbf{B}]_0 - [\mathbf{A}]_0} \left(\ln \frac{[\mathbf{A}]}{[\mathbf{A}]_0 - x} - \ln \frac{[\mathbf{B}]_0}{[\mathbf{B}]_0 - x} \right) = kt$$

我们将 $[A] = [A]_0 - x$ 和 $[B] = [B_0] - x$ 代入上式并整理,就可得

$$\ln \frac{[B]/[B]_0}{[A]/[A]_0} = ([B]_0 - [A]_0) kt$$

因此, $\ln \frac{[B]}{[A]}$ 对时间t作图应当得到一条直线.

Theorem 7B.1.6 二级反应的积分速率方程I

$$\frac{1}{[\mathbf{B}]_0 - [\mathbf{A}]_0} \left(\ln \frac{[\mathbf{A}]}{[\mathbf{A}]_0 - x} - \ln \frac{[\mathbf{B}]_0}{[\mathbf{B}]_0 - x} \right) = kt$$

其中 $x = \frac{\xi}{V}$.上式亦可以写作

$$\ln \frac{[\mathbf{B}]/[\mathbf{B}]_0}{[\mathbf{A}]/[\mathbf{A}]_0} = ([\mathbf{B}]_0 - [\mathbf{A}]_0) \, kt \quad \vec{\boxtimes} \quad \ln \frac{[\mathbf{B}]}{[\mathbf{A}]} = ([\mathbf{B}]_0 - [\mathbf{A}]_0) \, kt + \ln \frac{[\mathbf{B}]_0}{[\mathbf{A}]_0}$$

7B.2 积分速率方程表

一些简单的整数级反应的积分速率方程,我们已经在**7B.1**中介绍得比较清楚了.对于更为复杂的反应,不过是求解更复杂的微分方程,这需要你掌握相当高的数学功底和技巧.因此,我们在这里仅给出一些反应积分速率方程,其推导过程(不要求掌握)附在本节之后以供参考.

Theorem 7B.2.1 积分速率方程表

1. 零级反应A → P

$$v = k \qquad [A] = [A]_0 - kt$$

2. 一级反应A → P

$$v = k[A] \qquad [A] = [A]_0 e^{-kt}$$

3. 二级反应A → P

$$v = k[A]^2$$
 $[A] = \frac{[A]_0}{1 + k[A]_0 t}$

4. 二级反应A + B → P

$$v = k[A][B]$$
 $\ln \frac{[B]/[B]_0}{[A]/[A]_0} = ([B]_0 - [A]_0) kt$

5. n级反应A \longrightarrow $P(n \ge 2)$

$$v = k[A]^n$$
 $\frac{1}{n-1} \left(\frac{1}{[A]^{n-1}} - \frac{1}{[A]_0^{n-1}} \right) = kt$

6. 三级反应 $A + 2B \longrightarrow P$

$$v = k[A][B]^{2} \frac{2[P]}{(2[A]_{0} - [B]_{0})([B]_{0} - 2[P])[B]_{0}} + \frac{1}{(2[A]_{0} - [B]_{0})^{2}} \ln \frac{[A]_{0}([B]_{0} - 2[P])}{([A]_{0} - [P])[B]_{0}}$$

一般而言,掌握前四个就已经足够.我们现在给出5.和6.的证明.

Proof.