MATH3424 Regression Analysis

Assignment 3

1. Using the following data set

x_1	x_2	y	x_1	x_2	y
1	2	12	5	9	19
1	3	13	6	7	25
2	1	6	6	8	16
2	1	3	8	9	30
2	1	5	9	9	30
3	2	13	10	11	33
3	2	8	10	11	28
4	5	14	10	11	40
5	6	16	11	14	40
5	6	14	12	15	45

with summary statistics:

$$n = 20,$$
 $\sum_{i=1}^{20} x_{i1} = 115,$ $\sum_{i=1}^{20} x_{i2} = 133,$ $\sum_{i=1}^{20} y_{i} = 410,$ $\sum_{i=1}^{20} x_{i1}^{2} = 905,$ $\sum_{i=1}^{20} x_{i1}x_{i2} = 1055,$ $\sum_{i=1}^{20} x_{i2}^{2} = 1261,$ $\sum_{i=1}^{20} x_{i1}y_{i} = 3163,$ $\sum_{i=1}^{20} x_{i2}y_{i} = 3729,$ $\sum_{i=1}^{20} y_{i}^{2} = 11404,$ $S_{x_{1}x_{1}} = 243.75,$ $S_{x_{1}x_{2}} = 290.25,$ $S_{x_{2}x_{2}} = 376.55,$ $S_{x_{1}y} = 805.5,$ $S_{x_{2}y} = 1002.5,$ $S_{yy} = 2999.$

and

$$\begin{pmatrix} 243.75 & 290.25 \\ 290.25 & 376.55 \end{pmatrix}^{-1} = \begin{pmatrix} 0.049947 & -0.038450 \\ -0.038450 & 0.032332 \end{pmatrix},$$

to fit a model of y on x_1 and x_2 , i.e., do the following regression model,

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + e_i, \quad e_i \sim N(0, \sigma^2).$$

From the previous calculation, it is known that $\hat{\beta}_0 = 1.774373$, $\hat{\beta}_1 = 1.636212$ and $\hat{\beta}_2 = 1.401114$.

- (a) Re-write the model to a centered model in matrix form. Define \mathcal{X} and \mathcal{X} in terms of data. Write down $\mathcal{X}^T \mathcal{X}$, $(\mathcal{X}^T \mathcal{X})^{-1}$ and $\mathcal{X}^T \mathcal{Y}$ in terms of values of summary statistics.
- (b) Find Residual Sum of Squares and Pure Error Sum of Squares.

(c) Fill the following table.

Source	Sum of Squares	D.F.	Mean Squares	F value
Regression				
Residual				_
Lack of fit				
Pure error				_
Total			_	_

- i. Conduct a lack of fit test at $\alpha = 0.05$. Write down your test statistic, critical value and your conclusions clearly.
- ii. Find the unbiased estimate of σ^2 based on the conclusion from the lack of fit test above.
- iii. Test H_0 : $\beta_1 = \beta_2 = 0$ at significance level of $\alpha = 0.05$. Write down your test statistic, critical value and your conclusions clearly.
- iv. Calculate the coefficient of determination.
- (d) Construct the 95% predication interval for individual value of y at $x_1 = 5$ and $x_2 = 5$.
- (e) Test the null hypothesis that $H_0: \beta_1 = \beta_2$ against the alternative hypothesis that $H_1: \beta_1 \neq \beta_2$ by F test at the significance level of $\alpha = 0.05$.
 - i. Find the Residual Sum of Squares of the model under the null hypothesis.
 - ii. Construct the test statistic in terms of "Increase in Regression Sum of Squares". Write down the test statistic, the critical value and your conclusion clearly.
- (f) Test $H_0: \beta_0 = 1$ against the alternative hypothesis $H_1: \beta_0 \neq 1$ by <u>t-test</u> at the significance level of $\alpha = 0.05$. Write down the test statistic, the critical value and your conclusion clearly.

(g) Test $H_0: \beta_1 + \beta_2 = 2$ against the alternative hypothesis that $H_1: \beta_1 + \beta_2 \neq 2$ by F test for the General Linear Hypothesis at the significance level of $\alpha = 0.05$. Write down the test statistic, the critical value and your conclusion clearly.

Hint: Write down the null hypothesis as $H_0: \mathcal{CB} = \mathcal{d}$.

- (h) Assume that $\beta_0 = 1$. Estimate the unbiased estimate of the unknown parameter σ^2 . No need to show that it is unbiased.
- (i) Assume that $\beta_0 = 1$ and $\beta_1 = \beta_2$. Find the least squares estimate of the unknown parameter in the model. Then, write down the fitted line. Estimate the unbiased estimate of the unknown parameter σ^2 . No need to show that it is unbiased.
- 2. Three catalysts are used in a chemical process. The following are yield data from the process:

	Catalyst				
	1	2	3		
	79.5	81.5	78.1		
	82.0	82.3	80.2		
	80.6	81.4	81.5		
	84.9	79.5	83.0		
	81.0	83.0	82.1		
Mean	81.6000	81.5400	80.9800		
Variance	4.2050	1.7230	3.6270		

Given that the overall sample variance is 2.8135.

- (a) Write down a regression model (a model in terms of dummy variables) for the analysis of the above data set. Define the variables clearly.
- (b) Write down a one-way classification model (a model in terms of population means of catalysts) for the analysis of the above data set. Define the variables clearly.
- (c) Estimate the unknown parameters in part 2.
- (d) Hence or otherwise, estimate the unknown parameters in part 1.
- (e) Test all population means of catalysts are equal at $\alpha = 0.05$. Write down the test statistic, the critical value and your conclusion clearly.