

Faculty of Engineering – Cairo University

Computer Engineering Department

Third Year - Mainstream

Cryptography

Project

Name	Section	BN	ID
محمد يحي الأحمد العمر	2	14	9213024
مصطفي محمد السيد توفيق	2	23	
مصطفي هاني مصطفي محمد	2	24	9211206
منة الله أحمد	2	25	

Part2

CTF – 1 (Cryptanalysis)

- **1. Caesar Cipher Shift**: Attempted to decrypt the text using a Caesar cipher by trying all possible shift values, but it didn't yield any recognizable plaintext.
- **2. Affine Cipher Shift:** Similarly, Tried using an affine cipher, which involves a combination of multiplication and addition in modular arithmetic, but again, didn't get the original text.
- **3. Single Letter Frequency Analysis:** Analyzed the frequency of individual letters in the cipher text using python code to plot the histogram. Ex, found that 'e' is the most common letter.
- **4. Trigram & Bigram Frequency Analysis:** calculated the frequencies of trigrams (sequences of three letters) in the cipher text. Ex, found that "khi" is the most frequent trigram. This is a significant clue because "The" is a common word in English, second one is "vhi" which is "she" then "emo" which doesn't contain "i" so I understand that it's "and".
- **5. Substitution:** use a substitution cipher. In a substitution cipher, each letter in the plaintext is replaced with another letter based on a predetermined mapping.

A	В	С	D	Ε	F	G	Н	I	J	K	L	М	Ν	0	Р	Q	R	S	Τ	U	٧	W	Χ	Υ	Z
C	R	Г	М	Α	J	Р	Н	Ε	О	Т	K	Z	F	D	0	V	_	G	В	Χ	S	Υ	U	W	Z

Link for the code and decrypted text:

https://drive.google.com/drive/folders/1ZA2fO-gZQ_vUZ16tlhFje8whllwfC6LL?usp=drive_link

CTF - 2 (Packet Analysis)

- **1. Open the Packet Capture File:** Use Wireshark to open the packet capture file "packets.pcapng".
- **2. Analyze Protocol Hierarchy:** Navigate to the protocol hierarchy in Wireshark to identify the relevant packets containing text data.
- **3. Locate Text Data:** Within the protocol hierarchy, identify the packets containing line-based text data. This is where you might have hidden the flag.
- **4. Catch Encrypted Flag:** Upon finding the text data, notice that the flag is encrypted or manipulated in some way to make it difficult to read.

"Gur synt vf cvpbPGS{c33xno00 1 f33 h grngorrs}"

5. Decrypt the Flag: Apply decryption techniques to reveal the original text of the flag. Using Caesar Cipher with shift=13

The flag is picoCTF{p33kab00_1_s33_u_deadbeef}

CTF - 3 (Image Manipulation)

- **1. XOR Operation:** Developed a Python script to perform XOR operation on the images "first.png" and "second.png" to reveal potential hidden information.
- **2. Make Flag Clear:** Enhanced flag visibility by adjusting the color scheme of the XOR output, allowing for clear identification and extraction of the flag.
- 3. Catch The Flag

picoCTF{d72ea4af}

Link for the code and images output:

https://drive.google.com/drive/folders/1e65cqhLM1M9Wwn04_YReffNYYouN6TNp?usp=drive_link

CTF – 4 (Bit Shifting)

- 1. Noticed the hint that we want to shift even though we have same chars in the file. Tried to convert it to hexa and shift but it didn't work
- 3. Finally, I tried to convert text to binary first then I used this [tool] (https://www.prepostseo.com/tool/binary-translator) and tried different shifting values to the binary text and noticed the output text until I found this one through *shift right by 6 bits
- 4. The text found is
 - Hello and welcome to file 99 forensic challenge (This is just filler text to make it longer fastctf {a_bit_tricky}.
- 5. Catch The Flag

fastctf {a_bit_tricky}

CTF – 5 (Search)

- 1. Open Command Prompt
- 2. Navigate To The Directory Where The "logs" File Is Located.
- 3. Using This Command To Search For The Flag Within The "logs" File.

4 .Catch The Flag

picoCTF{grep_is_good_to_find_things_dba08a45}

CTF – 6 (New Encryption)

1. The encryption scheme implemented in the provided code involves two steps:

Encoding in Base16 (hexadecimal), then Caesar Shift Encryption

2. To decrypt the ciphertext, we need to reverse the process using the code:

Reverse the Caesar shift encryption, then decode the Base16 encoded string back to plaintext.

3. Catch the flag

The enemies are making a move. We need to act fast.

Link for the code and images output:

https://drive.google.com/drive/folders/1MG1FjMDYa lvLB9z3473DJM33kdv77bC?usp=drive link

CTF – 7 (Steganography)

- **1. Installing Steghide:** To ensure I had the necessary tool for steganography analysis, I installed Steghide using the package manager. In my case, as I use Ubuntu, Using the following command: sudo apt-get install steghide.
- **2. Extracting The Hidden Data:** I proceeded to extract any concealed data from the image. Utilizing the terminal, I executed the following command: steghide extract -sf pepo_evil.jpg , Using paraphrase: HIDING (Understood from problem).
- 3. Catch The Flag

Hello, the flag is CMPN{Spring2024}

CTF – 8 (Can You Help Me?)

- **1. Identification of Morse code:** Recognized Morse code patterns within the sound file, noting its characteristic short and long signals
- 2. Extracted Morse code signals from the sound file

3. Catch The Flag

The Russian terrorists are the ones who started this. They are the key.

Please, you must extract me.