Cat Scan II Big Dog Risk & Vulnerabilities Report

Zehra Nur Ozer May 2024

Video Presentation

The link for the video presentation is below.

https://drive.google.com/file/d/175ueZ6yvRQYhe3iT3k9dlK0WH13RZ5MM/view?usp=drive_link

Executive summary

This report presents the findings of evaluating various sensors within Big Dog's network environment. The sensors that have been analyzed help us prioritize assets, vulnerabilities, treatments, and risks. After describing the sensors and their impacts, our assessment included Indicators of Compromise (IoCs) to help better understand the compromises. We have identified the Security Impact Levels (SILs) based on associated risks and vulnerabilities. A rationale was provided for each IoC, with a priority (SIL) set for each sensor. All findings and recommendations have been provided in the last section.

Table of Sensors

Sensor	Description	System	loCs	Rationale	Priority	Thresholds/Assumptions
HTTP Load	The time it	Win server	It could be	Unexpected	Medium	20% warning
Time	takes to		increasing	changes in load		25% high
	download and		outgoing network	time anomalies		30% critical
	display an HTTP		traffic.	could be		
	request			essential		
	(pingdomcom)					
HTTP Load	A queue of	Linux	High latency, slow	Considering	High	CVE-2018-17199
Time	requests in the		response time or	Linux as the		*Figure 1
	storage layer		unexplained	production		
	that leads to		delays might be a	system, it is		
	increased		sign of DDoS	essential to		
	latency		attack	optimize		
	(site24x7com)			website		
				performance		
MySQL	Monitors	Win server	Abnormal	Indicates a	High	Abnormal query patterns or
Database	execution time		behaviour, like	compromise or a		a high volume of queries
Query	of MySQL		increased	significant risk to		indicate potential
Sensor	database		database read	data		compromise.
	queries		volume, could be			Exp. Setting a warning if
			brute force attacks			execution time exceeds 2
			or unauthorized			seconds.
			access attempts.			*Figure 2
MSSQL	Tracks the	Win	Abnormal	Indicates a	High	Abnormal query patterns or
Database	execution time	server/Linux	behaviour, like	compromise or a		a high volume of queries
Query			increased	significant risk to		indicate potential
Sensor			database read	data		compromise.
			volume, could be			Exp. Setting a warning if
			brute force attacks			execution time exceeds 2
			or unauthorized			seconds. (paessler)
			access attempts.			
SSH Sensor	Detects and	All	Unusual session	SSH is a	Medium	Multiple attempts and fails
	logs secure		durations,	common target		to log in, and the
	shell access		unauthorized	for brute force		configuration could be as
	attempts and		access, or	attacks and		Upper Error Limit
	activity.		configuration	unauthorized		Upper Warning Limit
			changes might	access attempts.		Lower Warning Limit

Sensor	Description	System	IoCs	Rationale	Priority	Thresholds/Assumptions
			indicate a malware attack.	Monitoring SSH activity can help detect and prevent such security incidents. (appviewxcom)		Lower Error Limit (paessler) *Figure 3
File Sensor	Monitors changes and access to files within a system.	Win server/Linux.	Many requests for the same file or unauthorized access, data exfiltration	File system monitoring helps to detect suspicious file activities and malware infections.	Medium	Unauthorized file modifications or access events may signify insider threats or compromised credentials, such as file existence, size, modification time, or file count. An SSH brute force attack is a hacking technique that involves repeatedly trying different username and password combinations until the attacker gains access to the remote server. (trendmicro)
Windows Event Log Sensor	Captures Windows event log entries	Win server	Access control changes, such as modifications to file permissions or registry settings	It captures and analyzes event log entries, providing valuable insights into system events, errors, and potential security threats.	High	It may be configured for events indicating potential security breaches, such as failed authentication attempts.
Windows Event Log Sensor	Captures Windows event log entries	Windows1	Unusual sign-in attempts (microsoftcom)	It monitors Windows event logs on specified systems for security events and anomalies.	High	For example, trigger an alert if any events with a severity level of "Error" or "Critical" are detected in the event log.
Bandwidth Usage Sensor	Measures network bandwidth consumption	All	Data exfiltration, sudden increase in bandwidth usage indicates DDoS attacks	The Bandwidth Usage Sensor is essential for optimizing network performance and managing bandwidth resources effectively.	Medium	Anomalies in bandwidth usage pattern

₩CVE-2018-17199 Detail

MODIFIED

This vulnerability has been modified since it was last analyzed by the NVD. It is awaiting reanalysis which may result in further changes to the information provided.

Description

In Apache HTTP Server 2.4 release 2.4.37 and prior, mod_session checks the session expiry time before decoding the session. This causes session expiry time to be ignored for mod_session_cookie sessions since the expiry time is loaded when the session is decoded.

Figure 1 - CVE-2018-17199 Description from NIST

Figure 2 - PRTG MySQL Sensor

DS0029	Network Traffic	Network Connection Creation	Monitor for newly constructed network connections (typically port 22) that may use Valid Accounts to log into remote machines using Secure Shell (SSH). Use of SSH may be legitimate depending on the environment and how it's used. Other factors, such as access patterns and activity that occurs after a remote login, may indicate suspicious or malicious behavior with SSH.
			Network Analysis Frameworks such as Zeek can be used to capture, decode, and alert on network traffic. Accordingly, they can be used to look for the creation of SSH network connections.

Figure 3 - Example of SSH from MITRA

Discussion

In Big Dog Organization's infrastructure, each sensor has been chosen to identify and alert specific risks that threaten the company's operations. These sensors are expected to be strategically positioned throughout the network and scan irregularities that could signify a potential breach.

The sensors given to analyze have been searched for potentials and explicitly monitored for risk and vulnerabilities. The sensors are prioritized based on their potential security impact. Additionally, the thresholds and assumptions ensure that security incidents are detected.

Recommendations

First, continuous monitoring and scanning should be implemented to identify incidents promptly. Additionally, effective alert thresholds will establish an appropriate practice for hunting incidents. Finally, prioritizing SIL Sensors would be critical in detecting and responding to a potential security threat and will secure data integrity, confidentiality, and availability. In addition to general recommendations, individual recommendations for prevention are listed below.

HTTP Load Sensor:

- Use caching mechanisms to reduce the load on the server for frequently accessed resources.
- Regularly monitor server performance metrics and scale resources to handle increasing loads.

MySQL Database Sensor:

- Implement robust authentication mechanisms, such as two-factor authentication (2FA), to prevent unauthorized access
- Monitor database activity for unusual or unauthorized queries and connections.

SSH Sensor:

- Implement key-based authentication instead of password authentication for increased security.
- Monitor SSH login attempts and implement mechanisms to detect and block brute-force attacks.
- Regularly audit SSH configurations and user accounts to ensure compliance with security policies.

File Sensor:

- Encrypt sensitive files to prevent unauthorized access in case of a data breach.
- Regularly scan files for malware and other malicious content using antivirus or endpoint protection solutions.

Windows Event Log Sensor:

- Regularly review and analyze event logs for signs of suspicious or malicious activity.
- Configure alerts and notifications for specific event IDs associated with security incidents.

Bandwidth Sensor:

- Monitor bandwidth usage in real-time and establish baseline metrics to identify abnormal spikes or drops.
- Regularly review and optimize network configurations to ensure efficient use of available bandwidth resources.

References

- (n.d.). Retrieved from https://www.pingdom.com/blog/page-load-time-vs-response-time-what-is-the-difference/#:~:text=Load%20time%20is%20a%20simpler,%2C%20and%20third%2Dparty%20resources.
- (n.d.). Retrieved from https://www.microsoft.com/en-ca/security/business/security-101/what-are-indicators-of-compromise-ioc
- (n.d.). Retrieved from https://www.site24x7.com/learn/linux/troubleshoot-high-io-wait.html
- (n.d.). Retrieved from https://www.appviewx.com/blogs/identifying-and-mitigating-secure-socket-shell-ssh-key-security-vulnerabilities/
- (n.d.). Retrieved from https://www.nist.gov/
- (n.d.). Retrieved from https://kb.paessler.com/en/topic/70618-how-to-set-up-the-sql-v2-sensors-in-prtg-is-there-a-guide
- (n.d.). Retrieved from https://www.trendmicro.com/en_ca/forHome.html