Kann SAS Ihre Handschrift lesen? Machine Learning am Beispiel von Stacked Denoising Autoencoders

21. KSFE, Krefeld, 9.-10. März 2017 Gerhard Svolba

Die Vortragsfolien sind online → Google: Gerhard SAS Samples

SAS Analytik Plattform

Unterschiedliche Layer aus konzeptioneller Sicht

SAS Analytik Plattform

Advanced Analytic Layer

Business Intelligence

Statistical Analysis

Forecasting

Text Analytics

Datenmanagement

Concepts when Handling Big Data

- Using advanced machine learning methods to describe the relationships in your data
- Understanding specifics of complex systems by performing Monte Carlo simulations
- Executing your analysis processes in distributed in-memory mode (SAS High Performance Analytics, SAS Viya)

Machine Learning

SUPERVISED LEARNING

- -Regression
 - LASSO regression Logistic regression Ridge regression
- Decision tree
- Gradient boosting Random forests
- Neural networks
- -SVM
- Naïve Bayes
- Neighbors
- Gaussian processes

UNSUPERVISED LEARNING

- A priori rules
- Clustering
 - k-means clustering
 Mean shift clustering
 Spectral clustering
- Kernel density estimation
- Nonnegative matrix factorization
- PCA
 - Kernel PCA Sparse PCA
- Singular value decomposition
- SOM

SEMI-SUPERVISED LEARNING

- Prediction and classification*
- -Clustering*
- -EM
- -TSVM
- Manifold regularization
- Autoencoders
- Multilayer perceptron Restricted Boltzmann machines

TRANSDUCTION

REINFORCEMENT LEARNING

DEVELOPMENTAL LEARNING

*In semi-supervised learning, supervised prediction and classification algorithms are often combined with clustering.

Handwritten Digits as Training Data

- Classic MNIST training data
- 784 features from a 28x28 digital grid
- Greyscale features range from 0 to 255
- 60,000 labeled training images
 (785 variables, including 1 nominal target)
- 10,000 unlabeled test images (784 input variables)

Semi-Supervised Learning

- Extract a few representative features to discriminate the digits 0-9
- Compress information of 784 variables into 2 features
- Use a convolutional neural network (deep learning)

4					
	digit	pix1	pix2	 pix784	TARGET (LABEL)
	1	0	8	 0	4
	2	0	3	 0	3
	3	244	1	 0	2
	4	78	3	 3	7
	5	0	0	 4	8
	42000	3	0	 	9

Deep-Learning using a

Stacked
De-noising
Autoencoder

Using SAS Code to Solve the Problem

Studying a certain section in detail

Edge Weights of the 5th layer are "loaded" with discriminative information

Visualization of the separation of the two middle hidden layers

Our method results in much better separation than simple principal components analysis

Summary: Semi-Supervised Learning

- Extremely accurate predictions using deep neural networks.
- "Target Variable" Digit 0-9 has not been used in the model!
- "Feature Extraction" as pre-step in predictive modeling
- Requires Model-Tuning
- The most common applications of deep learning involve **pattern recognition** in unstructured data, such as **text**, **photos**, **videos** and **sound**.

Bildanalyse mit SAS

Analyseprozess

Image analysis

IMAGE PREPROCESSING/DATA REDUCTION

Contour detection

Bilateral filtering

Contour approximation

Thresholding

Bounding box

Edge detection

Group bounding box

Bildauswertung in der Versicherung **AUS BILDERN WERDEN ZAHLEN**

Größe standardisieren

Rauschen entfernen und Binärdaten erzeugen

Kanten erkennen

Beispiel Bildauswertung in der Versicherung

Integration in Geschäftsprozesse realisiert erst den Nutzen

