Facultad de Ciencias Exactas, Ingeniería y Agrimensura Departamento de Matemática - Escuela de Ciencias Exactas y Naturales Álgebra Lineal

Examen Final - 22/07/2024

Apellido y nombre:

Legajo: Carrera:

Parte práctica regulares

1. Considere el conjunto

$$W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 - 2x_2 = 0\}.$$

- (a) Pruebe que W es un espacio vectorial con la suma y el producto por escalar usuales de \mathbb{R}^3 .
- (b) Calcule una base \mathfrak{B}_2 y la dimensión de W.
- (c) Explique por qué existe una única transformación lineal $T: \mathbb{R}_1[x] \to W$ tal que

$$T(1-x) = (2,1,0) \text{ y } T(1+x) = (0,0,0).$$

Dé explícitamente la ley de T para $p(x) = ax + b \in \mathbb{R}_1[x]$.

- (d) Calcule la matriz de la transformación T en las bases $\mathfrak{B}_1 = \{1, 1+x\}$ de $\mathbb{R}_1[x]$ y \mathfrak{B}_2 (del ítem 1b) de W.
- 2. En \mathbb{R}^3 , considere la función $\langle \cdot, \cdot \rangle : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ definida por

$$\langle x, y \rangle = 2x_1y_1 + 3x_2y_2 + 2x_3y_3.$$

- (a) Pruebe que $\langle \cdot, \cdot \rangle$ define un producto interno en \mathbb{R}^3 .
- (b) Sea $W = \text{span}\{(1,0,0),(1,1,0)\}$. Aplique el proceso de Gram-Schmidt para obtener bases ortonormales de $W \vee W^{\perp}$.
- (c) Sea v = (4, 2, 1). Calcule $\text{proy}_W v$.
- 3. Considere la matriz

$$A = \begin{pmatrix} 0 & -2 & 0 \\ 0 & 2 & 0 \\ -2 & -2 & 2 \end{pmatrix}.$$

- (a) Calcule los autovalores y autovectores de A.
- (b) Determine si A es diagonalizable. Justifique adecuadamente.
 - i. En caso afirmativo, halle dos matrices P y D tales que $D = PAP^{-1}$ siendo D una matriz diagonal e indique qué matriz de cambio de base es P, identificando las bases correspondientes.
 - ii. Si A no es diagonalizable, halle una forma de Jordan semejante a A.
- 4. Determine si las siguiente afirmaciones son verdaderas o falsas. Justifique su respuesta.
 - (a) Si U_1, U_2, W son subespacios de \mathbb{R}^2 tales que $\mathbb{R}^2 = U_1 \oplus W = U_2 \oplus W$, entonces $U_1 = U_2$.
 - (b) La función $B: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ definida por $B((x_1, x_2), (y_1, y_2)) = (2x_1 + x_2)(2y_1 + y_2)$ es una forma bilineal simétrica y no degenerada.
 - (c) Sea $H = \text{span}\{(-1,3)\}$ un subespacio de \mathbb{R}^2 . La transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$ definida por $T(x,y) = \left(-\frac{4}{5}x \frac{3}{5}y, -\frac{3}{5}x + \frac{4}{5}y\right)$ es una simetría respecto de H.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Departamento de Matemática - Escuela de Ciencias Exactas y Naturales Álgebra Lineal

	Examen Final - 22/07/2024	
Apellido y nombre: Legajo:		Carrera:
	Parto toórica	

- 1. Sea V un F-espacio vectorial, y sea $S \subset V$. Complete las siguientes proposiciones para que sean verdaderas y de una prueba de cada una de ellas:
 - (a) span $(S) = \bigcap \{\dots \}$
 - (b) S es un subespacio vectorial de V sii
- 2. Defina el concepto de matriz de una transformación lineal. Enuncie y demuestre el teorema que explica su utilidad. De un ejemplo no trivial (puede inspirarse en la parte práctica).
- 3. Considere la siguiente proposición. Si es verdadera, de una prueba. Si es falsa, de un contraejemplo y corríjala de modo que sea verdadera, y de una prueba.
 - Sea V un F-espacio vectorial con producto interno y sea $S = \{v_1, \ldots, v_r\}$ un subconjunto ortogonal de V. $Entonces\ S\ es\ linealmente\ independiente.$
- 4. Enuncie y demuestre el teorema de Cayley-Hamilton.
- 5. Pruebe al menos dos de las siguientes afirmaciones.
 - (a) Sea V un \mathbb{C} -espacio vectorial con producto interno, y sea $T \in L(V)$ un endomorfismo para el cual existe una base ortonormal B de V tal que T(B) también es base ortonormal de V. Entonces T es una isometría (recordar: isometría significa que preserva la norma).
 - (b) Sea V un \mathbb{R} -espacio vectorial con producto interno, sea $T \in L(V)$ un endomorfismo ortogonal y $U \subset V$ un subespacio vectorial que es T-invariante. Entonces U^{\perp} también es T-invariante.
 - (c) Sea V un F-espacio vectorial con producto interno de dimensión finita, sea B una base ortonormal y sea $T \in L(V)$ un endomorfismo. Entonces $[T^*]_B = ([T]^*)_B$.