Iceberg of data science

A Titanic Journey into High level Data Science and Engineering

TOPICS OF INTEREST

Layered Approach

Data Collection

Data Processing

Data Storage

What is High-Level Data Engineering?

- High-Level Data Engineering focuses on designing and building end-to-end data systems that handle data at scale.
- It involves collecting, processing, storing, and analyzing data to generate actionable insights for decision-making.
- The goal is to build scalable, fault-tolerant, and maintainable data infrastructure.

What is a Layered Approach?

- A layered framework divides the data lifecycle into distinct layers, making the system more modular and scalable.
- Each layer focuses on a specific function (e.g., collection, processing, storage).
- Advantages:
 - Modularity: Easier maintenance
 - Scalability: Seamless growth
 - Reusability: Shared components
 - Fault Tolerance: Isolated failures

Types of Data Collected

STRU CTURE D

S E M I
S T R U
C T U R
E D

UNS TrU CTURe (

Methods of Data Collection

- **Batch Ingestion**: Data is collected at scheduled intervals, typically used when immediate access is not required, reducing resource usage.
- **Real-Time Streaming**: Data is ingested continuously as it is generated, enabling immediate processing and insights for time-sensitive applications.
- **Event-Driven Collection**: Data is gathered when specific events occur, allowing systems to respond dynamically to triggers or changes in conditions.

Challenges in Data Collection

- Data Quality: Ensuring completeness, accuracy, and reliability of data to avoid errors and improve decision-making.
- Diverse Formats: Handling various types of data, including structured, semi-structured, and unstructured formats, to ensure compatibility across systems.
- Scalability: Managing large volumes of incoming data efficiently to prevent bottlenecks and ensure smooth operation.

Tools for Data Collection

 Scrapy: An open-source web scraping framework that efficiently extracts data from websites for various applications.

 Flume: A tool designed for collecting, aggregating, and transferring large volumes of log data to storage systems.

- The Data Processing Layer is where raw data is cleaned, transformed, and prepared for further use.
- This layer ensures that data quality and integrity are maintained.
- Tasks include:
 - Data cleaning: Handling missing values, duplicates
 - Data transformation: Changing formats, aggregating data
 - Data validation: Ensuring accuracy and consistency.

Steps in Data Processing

1. Data Ingestion: The initial step of collecting raw data from various sources for processing.

Data can be collected from various sources:

- Databases (SQL, NoSQL)
- Files (CSV, JSON, XML)
 - Sensors

Steps in Data Processing

 Data cleaning: Identifying and correcting errors, inconsistencies, and missing values in the data to improve accuracy.

Common Issues In Data Cleaning:

- Missing values
- Duplicate Entries
- Inconsistent Formats
 - Irrelevant Data
- Typographical Errors

Dataset Before Cleaning

Transaction_ID	Customer_Name	Amount	Date	Product_ID
1	John Smith	500	2023-01-01	101
2	Jane Doe		01-01-2023	102
3	John Smith	500	2023-01-01	101
5	NULL	700	2023-01-03	104

Transaction_ID	Customer_Name	Amount	Date	Product_ID
1	John Smith	500.0	2023-01-01	101
2	Jane Doe	600.0	2023-01-01	102
5	Unknown	700.0	2023-01-03	104

Steps in Data Processing

 Data Transformation: Converting data into usable formats, aggregating it, and applying business rules to make it analysis-ready.

Key Steps:

- Data Conversion
- Data Aggregation
- Feature Engineering
 - Encoding
- Applying Business Rules

Original Dataset

Transaction_ID	Customer_Name	Amount	Date	Product_Category
1	John Smith	500	2023-01-01	Electronics
2	Jane Doe	300	2023-01-02	Clothing
3	Alice Brown	200	2023-01-02	Electronics
4	Bob Johnson	400	2023-01-03	Furniture

Dataset After Feature Engineering

Transaction_ID	Customer_Name	Amount	Date	Product_Category	Day_of_Week
1	John Smith	500	2023-01-01	Electronics	Sunday
2	Jane Doe	300	2023-01-02	Clothing	Monday
3	Alice Brown	200	2023-01-02	Electronics	Monday
4	Bob Johnson	400	2023-01-03	Furniture	Tuesday

Dataset After Encoding

Transaction_ID	Customer_Name	Amount	Date	Day_of_Week	Normalized_Amount	Product_Category_Clothing	Product_Category_Electronics	Product_Category_Furniture
1	John Smith	500	2023- 01-01	Sunday	1.0	0	1	0
2	Jane Doe	300	2023- 01-02	Monday	0.25	1	0	0
3	Alice Brown	200	2023- 01-02	Monday	0.0	0	1	0
4	Bob Johnson	400	2023- 01-03	Tuesday	0.5	0	0	1

Dataset Before Applying Business Rules:

Order ID	Customer Name	Total Order Value (\$)	Order Date
101	Alice	45	2025-01-20
102	Bob	120	2025-01-21
103	Charlie	550	2025-01-22
104	Diana	30	2025-01-23
105	Eve	500	2025-01-24

Dataset After Applying Business Rules:

Order ID	Customer Name	Total Order Value (\$)	Order Date	Customer Category
102	Bob	120	2025-01-21	Regular
103	Charlie	550	2025-01-22	Premium
105	Eve	500	2025-01-24	Regular

Steps in Data Processing

• Data Validation: Ensuring that processed data meets accuracy, consistency, and completeness standards.

Example:

A company is preparing a customer database for a marketing campaign. Data must be ensured of:

- Accuracy
- Consistency
- Completeness

Steps in Data Processing

 Data Enrichment: Enhancing datasets by adding relevant external data to provide more context and value

Types of Data Enrichment:

- Demographic
- Geographic
- Behavioral
- External Data

Initial Dataset (Before Enrichment):

Customer ID	Name	Email	City
1	Alice	alice@example.com	New York
2	Bob	bob@example.com	Los Angeles
3	Charlie	charlie@example.com	Chicago
4	Diana	diana@example.com	Houston

Enrichment Data (External Source):

City	Population	Median Income (\$)	Region
New York	8,336,817	68,486	Northeast
Los Angeles	3,979,576	62,474	West
Chicago	2,693,976	55,295	Midwest
Houston	2,320,268	52,338	South

Dataset After Enrichment:

Customer ID	Name	Email	City	Population	Median Income (\$)	Region
1	Alice	alice@example.com	New York	8,336,817	68,486	Northeast
2	Bob	bob@example.com	Los Angeles	3,979,576	62,474	West
3	Charlie	charlie@example.com	Chicago	2,693,976	55,295	Midwest
4	Diana	diana@example.com	Houston	2,320,268	52,338	South

Types of Data Processing

• Stream Processing: Continuously processing data as it is generated, suitable for real-time analytics and monitoring systems.

Challenges in Data Processing

- Scalability: Ensuring that the system can handle growing volumes of data without performance degradation.
- Data Quality: Maintaining the accuracy, completeness, and consistency of data throughout the processing stages.
- Fault Tolerance: Ensuring the system can recover from hardware failures, network issues, or software bugs without data loss.

Tools for Data Processing

 A powerful distributed processing engine that handles large-scale data processing tasks across clusters.

 A workflow orchestration tool that automates the scheduling and execution of data pipelines.

 Python library for data manipulation and analysis, suitable for handling structured data.

Overview of the Data Storage Layer

- The Data Storage Layer is responsible for storing raw, processed, and analytical data in a secure and accessible manner.
- It ensures that data is available for future use, supports querying, and maintains data security and compliance.
- Types of storage:
 - Data warehouses: Optimized for storing structured data for analytics and reporting.
 - Data lakes: Designed to store raw, unstructured, and semi-structured data for flexible exploration.
 - Databases: Used for transactional data storage and ensuring fast, reliable access to structured data.

Stream Processing

- Data Warehouse: Structured storage systems designed for analytics, examples include Snowflake and Amazon Redshift.
- Data Lake: Flexible storage solutions that keep data in its original format, examples include AWS S3 and Azure Data Lake.
- Databases: SQL-based databases like PostgreSQL and MySQL that store structured data and Non-relational databases like MongoDB and Cassandra that are optimized for handling unstructured and semi-structured data.

Challenges in Data Storage

- Data Security: Ensuring that sensitive data is protected from unauthorized access and breaches.
- Scalability: Managing the growing volume of data while maintaining performance and availability.
- Data Governance: Ensuring compliance with regulations and maintaining control over data access and usage.

- Snowflake: A cloud-based data warehouse that provides scalability and supports complex queries.
- S3: A scalable object storage service that provides secure and durable data storage.
- Databases: SQL based Dbs like postgresql, mysql, etc. and NoSQL Dbs like MongoDB, Cassandra or Graph Dbs like Neo4j and more.

Q1: Which of the following best describes the Event-Driven Collection method?

- A. Collects data at regular, scheduled intervals.
- B. Continuously ingests data as it is generated.
- C. Collects data when specific events or triggers occur.
- D. Processes data in distributed systems across multiple nodes.

Q2: Which tool is commonly used for real-time data streaming in the data collection layer?

- A. Flume
- B. Kafka
- C. Logstash
- D. Scrapy

Q3: What is a primary challenge in the data processing layer?

- A. Ensuring data encryption
- B. Handling diverse data formats
- C. Reducing latency in real-time processing
- D. Storing raw and analytical data

Q4: Which type of data storage system is best suited for storing unstructured or semi-structured data in its original format?

- A. Data Warehouse
- B. Relational Database
- C. NoSQL Database
- D. Data Lake

Q5: Which of the following is a best practice in the data storage layer?

- A. Automate ingestion workflows to reduce manual intervention.
- B. Use real-time monitoring to track incoming data.
- C. Implement data validation at the source.
- D. Ensure data encryption to protect sensitive information.

