mercaptoalkyl, alkenyloxy, mercaptoalkenyl, aryloxy, mercaptoaryl, arylalkyloxy, mercaptoarylalkyl, $SC(O)R_6$, $OS(O)R_6$, $OS(O)_2R_6$, $NHC(O)R_6 = NR_4$ or NHR_4 ;

R₄ is QH, alkyl, alkoxy, poly(ethylene glycol), alkenyl, aryl or arylalkyl; and wherein each constituent can be substituted or unsubstituted, straight chain or branched chain, and hydrophobic, hydrophilic or fluorophilic;

provided that:

when R₆ is propyl, R₂ is Br, R₃ is H or Br and R₉ is Br, then Z is other than H, OC(O)CH₃ or OH;

when R_6 is propyl, R_2 is Br, R_3 is H and R is I, then Z is other than OC(O)CH₃ or OH; when R_6 is propyl, R_2 is Br, R_3 is H and R is Cl, then Z is other than OH; when R₆ is propyl, R₂ is H, R₃ and R are Br, then Z is other than H; and when R_6 is propyl, R_2 is R_7 , R_9 is R_7 is R_9 in R_9 in R_9 is R_9 in R_9 in R_9 is R_9 in R_9 in

2. (twice amended) A compound according to formula (Ia):

wherein R₁ is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl;

X is a halogen, OH, OOH, OC(O) R_1 or =O;

R₂ and R₃ are independently or both hydrogen or halogen;

R₉ is halogen; and

wherein each constituent can be substituted or unsubstituted, straight chain or branched chain, and hydrophobic, hydrophilic or fluorophilic;

provided that:

when R₁ is propyl, R₂ is Br, R₃ is H or Br and R₉ is Br, then X is other than OC(O)CH₃ or OH;

when R_1 is propyl, R_2 is Br, R_3 is H and R_9 is I, then X is other than OC(O)CH, or OH;

and

Page 3

Cons.)

when R_1 is propyl, R_2 is Br, R_3 is H, R_9 is Cl, then X is other than OH.

3. (twice amended) A compound according to formula (II):

wherein R₁ is hydrogen, [unsubstituted or substituted, straight chain or branched chain, hydrophobic, hydrophilic or fluorophilic] alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl;

R₂ and R₃ are independently or both hydrogen or halogen;

R₉ is halogen;

 R_4 is selected from halogen, amine, azide, hydroxyl, thiol, or hydrophobic, hydrophilic or fluorophilic alkyl, alkoxy, mercaptoalkylalkenyloxy, mercaptoalkenyl, aryloxy, mercaptoaryl, arylalkyloxy, mercaptoarylalkyl, $OC(O)R_1$, $SC(O)R_1$, $OS(O)R_1$, $OS(O)R_2$, $OS(O)R_3$, $OS(O)R_4$, $OS(O)R_3$, $OS(O)R_4$, $OS(O)R_5$,

wherein each constituent can be substituted or unsubstituted, straight chain or branched chain, and hydrophobic, hydrophilic or fluorophilic;

provided that:

when R_4 is propyl, R_2 is Br, R_3 is H or Br, and R is Br, then R_1 is other than H, OC(O)CH₃ or OH;

when R_4 is propyl, R_2 is Br, R_3 is H, R_9 is I, then R_1 is other than OC(O)CH, or OH; when R_4 is propyl, R_2 is Br, R_3 is H, R_9 is Cl, then R_1 is other that OH; when R_4 is propyl, R_2 is H, R_3 and R_9 are Br, then R_1 is other than H; and when R_4 is propyl, R_2 is Br, R_3 and R_9 are Cl, then R_1 is other than H.

Cost

4. (twice amended) A compound according to formula (III):

$$R_3$$
 R_9
(III)

wherein R₂ and R₃ are independently or both hydrogen or halogen;

 R_5 is OH or the same as R_1 ;

R₉ is halogen;

R₁ is hydrogen, alkyl, álkoxy, oxoalkyl, alkenyl, aryl or arylalkyl; and wherein each constituent can be substituted or unsubstituted, straight chain or branched chain, and hydrophobic, hydrophilic or fluorophilic;

5. (twice amended) A compound according to formula (IV) or (V):

wherein R_1 is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl;

R₂ and R₃ are independently or both hydrogen or halogen;

R9 is halogen;

R₈ is OH, NHR₁, NHC(X)NH₂, NHC(X)NHR₁ or R₁ where X is O, S or NR₁; and wherein each constituent can be substituted or unsubstituted, straight chain or branched chain, and hydrophobic, hydrophilic or fluorophilic.

6. (twice amended) A method for forming a compound of formula (Ia), comprising reacting a fimbrolide with a halogenating agent and/or an oxygenating agent to form the compound of formula (la):

$$R_2$$
 R_3
 R_9
 (Ia)

wherein R₁ is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl;

X is a halogen, OH, OOH, OC(O) R_1 or =O;

R₂ and R₃ are independently or both hydrogen or halogen; and

R₉ is halogen.

9. (twice amended) A method for forming a compound of formula II, comprising displacing and/or functionalizing a halogen or oxygen substituent in the side chain of a fimbrolide compound by treating the fimbrolide compound with a nucleophile or an electrophile to form the compound of formula (II):

$$R_3$$
 R_9
(II)

wherein R₁ is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl;

R₂ and R₃ are independently or both hydrogen or halogen;

R₉ is halogen; and

R₄ is selected from halogen, amine, azide, hydroxyl, thiol, alkyl, alkoxy, mercaptoalkyl, alkenyloxy, mercaptoalkenyl, aryloxy, mercaptoaryl, arylalkyloxy, mercaptoarylalkyl, OC(O)R₁, $SC(O)R_1$, $OS(O)R_1$, $OS(O)_2R_1$, $NHC(O)R_1$, $OC(O)NHR_1$, or =O;

wherein each constituent can be substituted or unsubstituted, straight chain or branched chain, and hydrophobic, hydrophilic or fluorophilic;

provided that when R₄ is propyl, R₂ is Br, R₃ and R₉ are Cl, then R₁ is other than H.

C3

12. (twice amended) A method for forming a compound of formula (III), comprising reacting an hydroxyl substituent in the side chain of a fimbrolide with an oxidising agent to form the compound in accordance with formula (III):

$$R_2$$
 R_3
 R_9
(III)

wherein R_2 and R_3 are independently or both hydrogen or halogen;

 R_5 is OH or the same as R_1 ;

R₉ is halogen;

R₁ is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl; and wherein each constituent can be substituted or unsubstituted, straight chain or branched chain, and hydrophobic, hydrophilic or fluorophilic.

64

15. (twice amended) A method for forming a compound of formula (IV) or (V), comprising reacting an aldehyde or ketone substituent in the side chain $-C(O)R_5$ of compound (III) with an amine to form a compound of formula (IV) or (V),

wherein formula (IV) and (V) are represented by:

Page 7

$$R_3$$
 R_9
 (IV)
 R_8
 R_1
 R_2
 R_3
 R_9
 (V)

wherein R₁ is hydrogen, alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl;

R₂ and R₃ are independently or both hydrogen or halogen;

R₉ is halogen;

R₈ is OH, NHR₁, NHC(X)NH₂, NHC(X)NHR₁ or R₁ where X is O, S or NR₁; and wherein each constituent can be substituted or unsubstituted, straight chain or branched chain, and hydrophobic, hydrophilic or fluorophilic;

and wherein formula (III) is represented by:

$$R_2$$
 R_3
 R_9
(III)

wherein R₂ and R₃ are independently or both hydrogen or halogen;

R₅ is OH or the same as R₁; and

R₉ is halogen.

25. (twice amended) A compound of formula (VI):

C⁵

$$R_3$$
 R_9
 VI

wherein R₁ is alkyl, alkoxy, oxoalkyl, alkenyl, aryl or arylalkyl;

R₂ and R₃ are independently or both hydrogen or halogen;

R₉ is halogen; and

wherein each constituent can be substituted or unsubstituted, straight chain or branched chain, and hydrophobic, hydrophilic or fluorophilic.