I	ndicative content	
•	Ethanol – use of ethanol as a solvent (added to each halogenoalkane / liquid in separate containers)	Allow description of experiment from a labelled diagram
•	Fair test – use of equal volumes/amounts / specified volumes/amounts in each tube or	
	warm the tubes in a water bath / specified temperature / room temperature	
•	Silver nitrate - silver nitrate (solution) / $Ag^+(\underline{aq})$ to each tube (of halogenoalkane)	Ignore nitric acid / HNO₃
•	Time - find the time taken for a precipitate to form	Allow find how quickly the precipitates form
•	Rate - expected trend is 2-jodobutane > 2-bromobutane > 2-chlorobutane	Allow time taken for
	or	2-iodobutane < 2-bromobutane <
	2-iodobutane is the fastest <u>and</u> 2-chlorobutane is the slowest	2-chlorobutane
	slowest	Allow I ⁻ forms first, Cl ⁻ forms last Allow the halogenoalkanes get more
		reactive from chloro to iodo /'down the
		group' Allow reverse trends
•	Bond enthalpy - bond enthalpy C-I <c-br<c-cl <="" td=""><td></td></c-br<c-cl>	
	decreases from C-Cl to C-I / C-Cl is the strongest and C-I is the weakest /C-X bond strength decreases	Allow 'the bond enthalpy decreases down the group' or a comparison of bond
	down the group (of halogens)	enthalpy in 2-iodobutane and
		2-chlorobutane
		Ignore references to bond length / bond
		polarity / electronegativity / effective nuclear charge

Question Number		Acceptable Answers		Additional Guidance	Mark
5(d)(i)	A description t	nat makes reference to the following	points:	Allow these changes if shown on the diagram	(3)
	•	the) thermometer should be opposi- the condenser	ite the (1)	Allow thermometer should be higher up / above the liquid / should measure the temperature of the vapour / out of the mixture/liquid	
	the water in reversed	and out of the condenser should be	(1)	Allow water should enter the bottom (of the condenser)	
	or leave a gap or	ofter the condenser between the condenser and the recomments to be open	ceiver	Ignore just 'vent' / the apparatus should not be completely sealed	
				Ignore references to using a fume cupboard	

Question Number	Acceptable Answer	Additional Guidance	Mark
4(a)	$C_{10}H_{18}O$ (1)	Ignore C ₁₀ H ₁₇ OH	(2)
	154 (g mol ⁻¹) (1)	no TE on incorrect molecular formula except for C ₁₀ H ₁₇ OH	

Question Number	Acceptable Answer	Additional Guidance	Mark
4(b)(i)	furthest peak to right/ highest $m/z = 154$	Ignore just ' highest peak'	(1)
		may be shown on spectrum alone provided 154 stated	
		Allow parent ion/molecular ion/last peak at 154	
		Must see the figure 154 in text or on graph	

Question Number	Acceptable Answer	Additional Guidance	Mark
4(b)(ii)	C₅H9 ⁺ / [C₅H9] ⁺	+ charge is essential, allow charge anywhere on the ion/ outside / inside brackets Allow displayed/structural/skeletal formula or any combination of these. Ignore name of ion even if incorrect (Correct name: 2-methylbut-2-ene ion)	(1)

Question Number	Answer Acceptable	Additional Guidance	Mark
4(c)	alkene and C=C and (IR) peak between 1669 and 1645 (cm ⁻¹)	can be in either order	(2)
	OR alkene and C-H and (IR) peak between 3095 and 3010 OR 3095 and 2995 (cm ⁻¹) (1)	Allow CH (bond)	
	alcohol and O-H and (IR) peak between 3750 and 3200 (cm ⁻¹) (1)	Ignore any qualification of the wavenumber range eg isolated alcohol or phenol	
		Allow Hydroxyl Do not award Hydroxide Allow OH (bond) Do not award -OH /-O-H	
		If both bonds missing and everything else correct, award 1 mark	
		Ignore all references to alkanes Allow single IR value or range within	
		the data book range	

Question Number	Acceptable Answer		Additional Guidance	Mark
4(d)	An answer that makes reference to the following points:		Allow alkene and alcohol in either order. No TE for other groups incorrectly identified in 4c or alkanes Result dependent on correct test for both functional groups	(4)
	Alkene			
	• bromine water/Br ₂ (aq)/bromine	(1)	allow acidified potassium manganate/KMnO4.	
	decolorised or orange/yellow/brown to colourless	(1)	Decolourised (from purple)	
	Alcohol		purpley	
	PCl ₅ /phosphorus pentachloride /phosphorus(V)chloride	(1)	allow (warm with)	
	Misty/steamy/white fumes	(1)	acidified Cr ₂ O ₇ ²⁻	
			turns from orange to green / blue	
			If name and formula, both must be correct	
			sodium (metal) effervescence	
			OR	
			any other workable test and correct result	

Question Number	Answer	Additional Guidance	Mark
5(b)(i)	• diagram showing bond polarity using partial charges $\delta+$ on iodine and $\delta-$ on chlorine	I ^{δ+} CI ^{δ−}	(1)

Question Number	Answer		Additional Guidance	Mark
5(b)(ii)			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3)
	• arrow from double bond to I ^{δ+} and arrow from I-Cl bond to Cl ^{δ-} ((1)	Award M1 if dipoles are reversed in (b)(i) and arrow to Cl $^{\delta+}$ Arrows should come from, or very close to, bonds and go to, or very close to, atoms. Allow arrow to I with no $^{\delta+}$ if given correctly in (i)	
	intermediate secondary carbocation with positive charge on carbon in the 2 position ((1)	Mark is for secondary carbocation so TE from (b)(i) for carbocation from addition of CI first in M1 Do not award δ + instead of +	
	arrow from lone pair on Cl ⁻ to electron deficient carbon of carbocation ((1)	Do not award δ - instead of – If dipole is reversed in (i) award mark for arrow from lone pair on I $^-$ to electron deficient carbon of carbocation Ignore missing final product Allow M1 & M3 for minor product	

Question Number	Answer	Additional Guidance	Mark
7(a)(i)	ethanol is added to dissolve both the halogenoalkane and water / to allow the halogenoalkane and water to mix / to form a homogeneous mixture / to act as a co- solvent	Allow silver nitrate as an alternative to water Allow so the halogenoalkane becomes soluble in water Do not award descriptions of dissolving one of the two reactants but not the other Do not award ethanol is a solvent Do not award to allow the halogens to mix	(1)

Question Number	Answer	Additional Guidance	Mark
7(a)(ii)			(1)
	so they are the same temperature	Allow to ensure the temperature remains constant	
	OR	Allow heat for temperature Ignore constant conditions	
	 so only the type of halogen affects the rate of reaction 	Ignore to make it a fair test (1)	

Question Number	Answer	Additional Guidance	Mark
7(a)(iii)	To ensure the reactants are mixed (thoroughly)	Allow so the mixture is homogeneous Ignore so the particles collide Ignore to form the precipitate Do not award references to kinetic energy of the molecules	(1)

Question Number	Answer	Additional Guidance	Mark
7(b)(i)		Penalise the incorrect use of chlorine, bromine and iodine once only in 7(b)(i) and 7(b)(ii)	(1)
	 chloride white precipitate and 		
	bromide cream precipitate and	Accept Off-white or (very) pale yellow	
	iodide yellow precipitate	Do not award pale yellow	

Question Number	Answer		Additional Guidance	Mark
7(b)(ii)	use of dilute and concentrated ammonia solution / aqueous ammonia silver chloride / precipitate from 1-chlorobutane is soluble in dilute (and concentrated ammonia) and silver bromide / precipitate for 1-bromobutane is soluble only in concentrated ammonia and silver iodide / precipitate from 1-iodobutane is insoluble in both dilute and concentrated ammonia	(1)	Allow partially soluble	(2)

Indicative content:

- IP1 Use equal amounts / numbers of moles / volumes of either halogenoalkane or silver nitrate solution
- IP2 and IP3 Use isomeric primary, secondary and tertiary bromoalkanes

e.g 1-bromobutane or 1-bromo-2-methylpropane

and 2-bromobutane and 2-bromo-2-methylpropane

- IP4 Time how long it takes for a precipitate to form / observe the order in which the precipitates form
- IP5 Shorter the time the faster the rate
- IP6 Correct order of precipitation given / tertiary forms before secondary before primary

Allow ethanol Do not award equal masses Ignore lack of ethanol

Any two scores IP2 All 3 scores IP3 provided they are isomers Accept names or formulae but if both given they must both be correct

 $1 \div time = rate of reaction$

Question Number	Answer		Additional Guidance	Mark
6(d)(i)	An answer that makes reference to the following points:		Mark independently	(2)
	potassium hydroxide / KOH	(1)	Allow sodium hydroxide / NaOH	
	alcohol / ethanol and reflux	(1)	Allow just 'heat' in place of reflux Do not award aqueous ethanol	

Question	Answer	Additional Guidance	Morely
Number 6(d)(ii)		Example of repeat unit	Mark (1)
	repeat unit	H H-C-H	
		H-c-H H-c-H H-c-H	
		H Allow non-displayed methyl groups (-CH ₃) Ignore connectivity of the methyl group Allow n outside brackets	
		Ignore missing brackets / round brackets	

Question Number		Answer	Additional Guidance	Mark
6(d)(iii)			Example of mechanism	(4)
	a	curly arrow from double bond to H of HBr and correct structure of 2-methylpropene (1)	H ₂ C—C = CH ₃ H H ₂ C—C = CH ₃ H H ₄ C — C — H 8- H H ₄ C — C — H	
	a	curly arrow from H-Br bond to Br atom and correct dipole on HBr molecule (1)	ε Br CH3 H	
	а	ntermediate with $+$ on correct Carbon and Br^- (1)	H ₂ C — C — H	
	a	one pair on Br ⁻ and curly arrow from lone pair to C ⁺ (1)	incorrect structure of 2-methylpropene loses M1 only + on incorrect carbon loses M3 only	

Question Number	Answer	Additional Guidance	Mark
9(a)(ii)	An answer that makes reference to the following points: the bond energies in the table are mean / not specific to ammonia	Ignore heat losses	(2)

Question Number	Answer		Additional Guidance	Mark
5(b)(iv)	An answer that makes reference to the following points:			(2)
	98 peak is due to C ₂ H ₄ ³⁵ Cl ₂ ⁺ and		Allow C ₂ H ₄ ³⁵ Cl ³⁵ Cl ⁺	
	102 peak is due to C ₂ H ₄ ³⁷ Cl ₂ ⁺	(1)	Allow C ₂ H ₄ ³⁷ Cl ³⁷ Cl ⁺	
	• 100 peak is due to C ₂ H ₄ ³⁵ Cl ³⁷ Cl ⁺	(1)		
			Allow structural formulae of the molecular ions of either 1,1- or 1,2-dichloroethane or both	
			Allow structures with the positive charge anywhere including outside of brackets of any type.	
			Penalise omission of + once only	

Question Number	Answer	Additional Guidance	Mark
5(b)(v)	An answer that makes reference to the following point	Answer must refer to the isotopes of chlorine. Ignore comments about isotopes of carbon or hydrogen or just isotopes	(1)
	• ³⁵ Cl and ³⁷ Cl atoms are in a 3:1 ratio	Allow a larger proportion of chlorine atoms are chlorine-35 than chlorine-37 Allow the ratio of the peak heights to be 9:6:1 Allow the abundance of chlorine-35 and chlorine-37 are different Allow there are two isotopes of chlorine	

Question Number	Answer		Additional Guidance	Mark
5(b)(vi)	An answer that makes reference to the following points: Either		Allow a diagram showing the fragmentation of 1,1- dichloromethane to form a fragment containing one carbon and two chlorine atoms Allow the use of molecule instead of fragment	(2)
	 the peaks are formed by fragments containing both chlorine atoms attached to one carbon atom or the fragments are CH³⁵Cl³⁷Cl⁺, CH³⁵Cl₂⁺ and CH³⁷Cl₂⁺ 	(1)	Do not award fragments where the number of hydrogens on the carbon changes Allow just CHCl ₂ ⁺ Do not penalise the absence of the positive charge Do not award fragments where the number of hydrogens changes to allow for the different masses	
	 this fragmentation / configuration is only possible from 1,1-dichloroethane / is not possible from 1,2-dichloroethane Or the peaks at 83, 85 and 87 represent the 	(1)	Allow only 1,1-dichloroethane has two chlorines on the same carbon / 1,2-dichlorethane does not have two chlorines on the same carbon	
	only 1,1-dichloroethane has a methyl group	(1)	Allow the peaks are 15 below the molecular ion values so they represent the loss of a CH ₃ group	

Ind	licative content:	
	IP1 add anti-bumping granules	Ignore stated errors which are
1 .	 IP2 to prevent the formation of large bubbles / rapid 	not present
	heating / transfer of reaction mixture to collecting vessel (leading to impure product)	Allow to prevent uneven boiling /
	(leading to impure product)	ensure smooth boiling
		Ignore prevents bumping
		Do not award so reaction does
	man to the constant of the constant of	not explode / shatter glassware /
1 1	 IP3 the thermometer should be opposite the entrance of the condenser 	damage apparatus
		Allow thermometer should be
		measuring the vapour
	IDA collection over the verse temperature cons	temperature not the liquid
1 1	 IP4 collecting over the wrong temperature range (therefore impure or the wrong product) 	temperature
	(orange areas and many product)	Allow collecting impure product
		but must be linked to wrong
		position of thermometer
		Do not award just the temperature is inaccurate
		without mention of vapour
	 IP5 add more ice-water mixture 	
		Allow collection flask should be
	IDS ensure you collect as much product as possible	further in the ice-water mixture
	 IP6 ensure you collect as much product as possible 	
		Allow to ensure greater / quicker
		condensation

Question Number	Acceptable Answer	Additional Guidance	Mark
3(d)(i)	• fully displayed formula of isomer B (butan-2-ol)	Example of displayed formula H H C C C C C H H Allow O-H shown as OH and ignore connectivity unless shown horizontally as -HO Do not award methyl and ethyl groups to be shown as CH3 and C ₂ H ₅	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
3(d)(ii)	• structural formula of butane-1,2-diol	Example of structural formula CH ₃ CH ₂ CH(OH)CH ₂ OH	(1)
		Allow partially displayed formula eg CH ₃ CH ₂ CH CH ₂	

Question Number	Acceptable Answer		Additional Guidance	Mark
4(a)(i)	An answer that makes reference to the following points: • ethanol / ethanol & water mixture is used to ensure all	(1)	Allow ethanol enables halogenoalkane to be soluble	(3)
	reactants mix efficiently / are in same phase same volumes (of each reactant) ensures a fair test	(1)	Allow use the same volume of silver nitrate Allow use the same volume of halogenoalkane Allow alternative wording to 'fair test' such as	
	warm water bath used to speed up reaction Or water bath ensures all reactions carried out at same temperature (fair test)	(1)	improves reliability Allow because the hydrolysis / reaction of chloroalkanes / some halogenoalkanes is (very) slow	

Question Number	Acceptable Answer		Additional Guidance	Mark
4(a)(ii)	An explanation that makes reference any two of the following three points: • (hydrolysis by water) releases halide ions	(1)	Allow a correct equation with / without states Example of equation R-X + H ₂ O → R-OH + X ⁻ + H ⁺ If shown, states must be correct but allow ethanol as solvent	(2)
	halide ions react with silver (ions) to give an insoluble silver halide/ product / ppt	(1)	Do not award use of halogen for halide $ \begin{tabular}{ll} A correct equation with states to score (2) \\ \hline Example of equation \\ X^-(aq) + Ag^+(aq) \to AgX(s) \end{tabular} $	

Question Number	Answer	Mark
4(a)(iii)	The only correct answer is A (X, Y, Z)	(1)

Question Number	Acceptable Answer	Additional Guidance	Mark
4(b)	An answer that makes reference to the following point:		(1)
	tertiary bromoalkanes react fastest OR primary bromoalkanes react slowest	Allow names as identifiers in explaining reason e.g. Allow answers in terms of bond strength, ie C-Br bond is weakest in 2-bromo-2-methylpropane OR strongest in 1-bromobutane Allow primary bromoalkanes are more stable Ignore reference to secondary bromoalkane	

Question Number	Acceptable Answer		Additional Guidance	Mark
4(d)(i)	An answer that makes reference to two of the following points: many organic reactions are equilibria (with a significant equilibrium constant)	(1)	Allow reverse reactions lower yield Allow eqm not achieved, takes too long / slow reaction / high activation energy Reaction stopped before eqm achieved Allow reactions are incomplete	(2)
		(1) (1)	e.g. substitution v elimination Allow reference to by-products/minor products e.g. loss of liquid during transfer between containers, volatility	
	a specific handling loss	(1)	volatility	

Indicative content:

IP1 mention of refluxing (and excess oxidising agent)

IP2 diagram of reflux equipment with vertical condenser and correct water flow

Do not award reference to reflux of butanoic acid

Accept diagram of workable reflux arrangement even if not fully labelled. Allow direct/indirect heating

Ignore method of adding the alcohol, e.g. butan-1-ol may be added down reflux condenser

Allow direct heating with Bunsen burner or electrical heater/ Isomantle/thermomantle etc.
Allow just an arrow labelled heat as shown in the diagram above

IP3 anti-bumping granules and suitable method of heating

IP4 mention of distillation at suitable temperature

IP5 diagram of distillation apparatus with sloping condenser and collecting vessel

Any range or value between 120 °C and the maximum temperature of 170 °C for distillation of butanoic acid
Do not award distillation of the butan-1-ol

Penalise incorrect water flow/unlabelled water flow in condenser once only in IP2 or IP5
Penalise gaps in joints between the equipment once only in IP2 or IP5

IP6 inclusion of thermometer (pocket) on left-hand side (in this diagram) and opening for gaseous escape on righthand side (in this diagram)

> If initial oxidation under reflux is not mentioned then only IP4 and IP6 are obtainable