Project Development Phase Model Performance Test

Date	November 2023
Team ID	Team-592444
Project Name	Anticipating Business Bankruptcy
Maximum Marks	10 Marks

Model Performance Testing:

Accuracy Scores:

• DECISION TREE CLASSIFIER:

```
# Accuracies
    dtc_test_acc = accuracy_score(dtc_y_test, dtc_prediction)
    dtc_train_acc = accuracy_score(dtc_y_train, dtc_train_prediction)

print(f"Test Accuracy = {dtc_test_acc}")
    print(f"Train Accuracy = {dtc_train_acc}")

... Test Accuracy = 0.8969035890218157
    Train Accuracy = 1.0
```

• RANDOM FOREST CLASSIFIER

```
# Accuracies
    rfc_test_acc = accuracy_score(rfc_y_test, rfc_prediction)
    rfc_train_acc = accuracy_score(rfc_y_train, rfc_train_prediction)

    print(f"Test Accuracy = {rfc_test_acc}")
    print(f"Train Accuracy = {rfc_train_acc}")

... Test Accuracy = 0.952146375791696
    Train Accuracy = 1.0
```

XGB CLASSIFIER

```
# Accuracies
    xgb_test_acc = accuracy_score(xgb_y_test, xgb_prediction)
    xgb_train_acc = accuracy_score(xgb_y_train, xgb_train_prediction)

print(f"Test Accuracy = {xgb_test_acc}")
    print(f"Train Accuracy = {xgb_train_acc}")

... Test Accuracy = 0.9499178981937603
    Train Accuracy = 0.9955719773613677
```

Confusion Matrix:

• DECISION TREE CLASSIFIER

• RANDOM FOREST CLASSIFIER

• XGB CLASSIFIER

Classification Report:

• DECISION TREE CLASSIFIER

[46]	print(clas	ssification_r	report(dto	_y_test, d	tc_predict	ion))
		precision	recall	f1-score	support	
	0	0.98	0.91	0.94	8111	
	1	0.28	0.69	0.40	415	
	accuracy			0.90	8526	
	macro avg	0.63	0.80	0.67	8526	
	weighted avg	0.95	0.90	0.92	8526	

• RANDOM FOREST CLASSIFIER

	<pre>print(classification_report(rfc_y_test, rfc_prediction))</pre>										
		precision	recall	f1-score	support						
	_		2 27	2 27							
	0	0.98	0.97	0.97	8111						
	1	0.51	0.69	0.59	415						
accura	асу			0.95	8526						
macro a	avg	0.75	0.83	0.78	8526						
weighted a	avg	0.96	0.95	0.96	8526						

• XGB CLASSIFIER

```
print(classification_report(xgb_y_test, xgb_prediction))
             precision recall f1-score support
          0
                 0.98
                           0.96
                                    0.97
                                             8111
                 0.49
                           0.70
                                    0.58
                                    0.95
                                             8526
   accuracy
  macro avg
                 0.74
                           0.83
                                    0.77
                                             8526
weighted avg
                 0.96
                           0.95
                                    0.95
                                             8526
```

Comparison:

```
pd.DataFrame({
              'Model': [
                  'Decision Tree', 'Random Forest', 'XGBoost'
              'Test Accuracy': [
                  round(dtc_test_acc * 100, 2),
                  round(rfc_test_acc * 100, 2),
                  round(xgb_test_acc * 100, 2)
              ],
              'Train Accuracy': [
                  round(dtc_train_acc * 100, 2),
                  round(rfc_train_acc * 100, 2),
                  round(xgb_train_acc * 100, 2)
              'Selected Features': [
                  dtc_selected_features,
                  rfc_selected_features,
                  xgb_selected_features
         })
[60]
                 Model
                          Test Accuracy
                                         Train Accuracy
                                                                                Selected Features
      0
           Decision Tree
                                  89.69
                                                 100.00 [Attr4, Attr5, Attr20, Attr27, Attr34, Attr41,...
          Random Forest
                                                          [Attr5, Attr9, Attr24, Attr27, Attr34, Attr39,...
                                  95.21
                                                 100.00
      2
                XGBoost
                                  94.99
                                                  99.56
                                                          [Attr5, Attr6, Attr26, Attr27, Attr34, Attr35,...
```

We can conclude that the Extreme Gradient Boosting Classifier emerges as the most promising choice. Its ability to maintain high test accuracy while avoiding overfitting, as evident in the training data, highlights its robustness and suitability for this binary classification task. Consequently, we conclude that the Extreme Gradient Boosting Classifier is the most effective and reliable model among the evaluated classifiers, providing superior results for this specific problem.