Timer/counter

The AVR microcontroller and embedded systems using assembly and c

Wave characteristics

- Period
 - Frequency

$$f = \frac{1}{T}$$

Duty cycle

duty cycle =
$$\frac{t_0}{T} \times 100 = \frac{t_0}{t_0 + t_1} \times 100$$

Amplitude

A counter register

A simple design (counting people) First design

A simple design (counting people) Second design

A simple design (making delay)

A generic timer/counter

- Delay generating
- Counting
- Wave-form generating
- Capturing

Timers in AVR

- 1 to 6 timers
 - 3 timers in ATmega32
- 8-bit and 16-bit timers
 - two 8-bit timers and one 16-bit timer in ATmega32

Source: ATmega48/88/168328P datasheet

Timer in AVR

- **TCNTn** (Timer/Counter register)
- TOVn (Timer Overflow flag)

- Oscillator

 External source

 Counter/Timer

 Counter register

 Flag
- TCCRn (Timer Counter control register)
- OCRn (output compare register)
- OCFn (output compare match flag)

Comment:

All of the timer registers are byte-addressable I/O registers

Timer 0 (an 8-bit timer)

The AVR microcontroller and embedded systems using assembly and c

Timer 0

WGM00	WGM01	Comment
0	0	Normal
0	1	CTC (Clear T
1	0	PWM, phase
1	1	Fast PWM

Normal mode

TOV0: 1

Example 1: Write a program that waits 14 machine cycles in Normal mode.

Generating Large Delays

- Using loop
- Prescaler
- Bigger counters

source

- Peripheral Features
 - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
 - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode

© 2018 Microchip Technology Inc.

Data Sheet Complete

DS40002061A-page 1

ATmega48A/PA/88A/PA/168A/PA/328/P

- Real Time Counter with Separate Oscillator
- Six PWM Channels

Source: ATmega48/88/168328P datasheet

DEMO #1

Toggle GPIO Pin with Timer Overflow Interrupt (Normal Mode)

CTC (Clear Timer on Compare match) mode

TOV0:

OCF0: 1

DEMO #2

Toggle GPIO Pin with Compare Match Interrupt (CTC mode)

Timer2

Timer0

Timer2

 OCF2
 TOV2
 ICF1
 OCF1A
 OCF1B
 TOV1
 OCF0
 TOV0
 TIFR

The difference between Timer0 and Timer2

Timer0

Timer2

CS02	CS01	CS00	Comment
0	0	0	Timer/Counter stopped
0	0	1	clk (No Prescaling)
0	1	0	clk / 8
0	1	1	clk / 64
1	0	0	clk / 256
1	0	1	clk / 1024
1	1	0	External clock (falling edge)
1	1	1	External clock (rising edge)

CS22	CS21	CS20	Comment	
0	0	0	Timer/Counter stopped	
0	0	1	clk (No Prescaling)	
0	1	0	clk / 8	
0	1	1	clk / 32	
1	0	0	clk / 64	
1	0	1	clk / 128	
1	1	0	clk / 256	
1	1	1	clk / 1024	

Timer 1

	Mode	WGM13	WGM12 (CTC1)	WGM11 (PWM11)	WGM10 (PWM10)
Ī	0	0	0	0	
	1	0	0	0	
	2	0	0	1	
	3	0	0	1	
	4	0	1	0	
	5	0	1	0	
	6	0	1	1	
	7	0	1	1	
	8	1	0	0	
	9	1	0	0	
	10	1	0	1	
	11	1	0	1	
	12	1	1	0	
	13	1	1	0	
	14	1	1	1	
	15	1	1	1	

Counting

The AVR microcontroller and embedded systems using assembly and c

Counting

DEMO #3

Count the number of times a button is pressed and display on LEDs with Timer 1

Wave generating and Capturing

The AVR microcontroller and embedded systems using assembly and c

Waveform Generator

Waveform Generator

Assuming XTAL = 8 MHz, make a pulse with duty cycle = 50% and frequency = 500KHz

$$F_{OC0} = \frac{f_{Clk}}{2N(OCR0+1)} \longrightarrow 500KHz = \frac{8MHz}{2N(OCR0+1)} \longrightarrow N(OCR0+1) = \frac{8MHz}{1MHz}$$

$$N(OCR0+1) = 8 \longrightarrow \begin{cases} N = 1 \text{ and } OCR0 = 7 \\ N = 8 \text{ and } OCR0 = 0 \end{cases}$$

Waveform generators in ATmega32

DEMO #4

Toggle GPIO Pin with Timer (Waveform Generator)

Capturing in Timer/counter 1

The AVR microcontroller and embedded systems using assembly and c

Capturing

- Usages
 - Measuring duty cycle
 - Measuring period
- Period
 - Frequency

$$f = \frac{1}{T}$$

Duty cycle

duty cycle =
$$\frac{t_0}{T} \times 100 = \frac{t_0}{t_0 + t_1} \times 100$$

Capturing & Comparator

ICNC1: Input Capture Noise Canceller

0:disabled

1:Enabled (captures after 4 successive equal valued samples)

ICSES1: Input Capture Edge Select

0: Falling edge1: Rising edge

ACIC: Analog Comparator Input Capture Enable

0: ICP1 provides the capture signal

1: analog comparator is connected to the capturer

Measuring duty cycle and period

DEMO #5

Measure the duration of button press (Input Capture Pin)