IARK BO)X
POINTS	
36	
6	
2	
8	
8	
8	
8	
8	
8	
8	
100	
	36 6 2 8 8 8 8 8 8

NAME:
SSN:
please check the box of your section below
Section 003 (MW 9:05 pm)
or
Section 004 (MW 10:10 pm)

INSTRUCTIONS:

- (1) To receive credit you must:
 - (a) work in a logical fashion, show all your work, indicate your reasoning; no credit will be given for an answer that *just appears*; such explanations help with partial credit
 - (b) when applicable put your answer on/in the line/box provided
 - (c) if no such line/box is provided, then box your answer
- (2) The MARK BOX indicates the problems along with their points. Check that your copy of the exam has all of the problems.
- (3) You may **not** use a calculator, books, personal notes.
- (4) During this exam, do not leave your seat. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down, and raise your hand.
- (5) This exam covers (from Calculus by Anton, Bivens, Davis $8^{\rm th}$ ed.): Sections 10.1-10.6 .

Problem Inspiration:

- 1-3. a course handout you were warned
- **4-6.** homework from § 10.1
 - 7. homework from $\S 10.3$
- **8-10.** homework from § 10.6

Solutions will be available on the course homepage later this afternoon.

For problems 1, 2, and 3, fill in the blanks.

- **1.** For problem 1, let $\sum a_n$ be a **positive-termed** series (i.e. $a_n \geq 0$ for each $n \in \mathbb{N}$).
- **1a. Integral Test** Let $f: [1, \infty) \to \mathbb{R}$ be so that
 - $a_n = f(\underline{\hspace{1cm}})$ for each $n \in \mathbb{N}$
 - ullet f is a _____ function
 - ullet f is a _____ function
 - \bullet f is a _____ function .

Then $\sum a_n$ converges if and only if ______ converges.

- 1b. Comparison Test
 - If $0 \le a_n \le b_n$ for all $n \in \mathbb{N}$ and $\sum b_n$ _____, then $\sum a_n$ _____
 - If $0 \le b_n \le a_n$ for all $n \in \mathbb{N}$ and $\sum b_n$ _____, then $\sum a_n$ _____
- 1c. Limit Comparison Test Let $b_n > 0$ and $\lim_{n\to\infty} \frac{a_n}{b_n} = L$. If ______ < L < ______, then $\sum a_n$ converges if and only if ______ .
- 1d. Ratio Test Let $\rho = \lim_{n\to\infty} \frac{a_{n+1}}{a_n}$.
 - If $\rho < \underline{\hspace{1cm}}$ then $\sum a_n$ converges.
 - If $\rho > \underline{\hspace{1cm}}$ then $\sum a_n$ diverges.
 - If $\rho =$ _____ then the test is inconclusive.
- 1e. Root Test Let $\rho = \lim_{n\to\infty} (a_n)^{\frac{1}{n}}$.
 - If $\rho < \underline{\hspace{1cm}}$ then $\sum a_n$ converges.
 - If $\rho > \underline{\hspace{1cm}}$ then $\sum a_n$ diverges.
 - If $\rho = \underline{\hspace{1cm}}$ then the test is inconclusive.
- **2.** For problem 2, we now have an **alternating series**, i.e., $\sum (-1)^n a_n$ where $a_n > 0$ for each $n \in \mathbb{N}$.

Alternating Series Test: If

- $a_n = a_{n+1}$ for each $n \in \mathbb{N}$
- $\lim_{n\to\infty} a_n = \underline{\hspace{1cm}}$

then $\sum (-1)^n a_n$

3. For problem 3, we now have an arbitrary series $\sum a_n$ (some terms might be positive, some might be negative, all might be positive, etc ...).

 n^{th} -term test If $\lim_{n\to\infty} a_n \neq 0$ or $\lim_{n\to\infty} a_n$ does not exist, then $\sum a_n$ ______.

4.

$$\lim_{n \to \infty} \frac{4n^3 + 6n^2 - 17n + 9}{-5n^3 + 7n^2 - 9n - 18} =$$

5.

$$\lim_{n \to \infty} \frac{7n^2 + 9}{-5n + 2} =$$

Hint: watch your plus and minus.

6.

$$\lim_{n \to \infty} \frac{\ln(n)}{n} =$$

Hint: L'Hopital

7. Geometric Series

7a. If |r| < 1, then

$$\sum_{n=0}^{\infty} r^n =$$

Notice (a polite hint for problem 7b), if |r| <, then

$$\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + r^3 + r^4 + \dots$$

7b. Find the sum of the below series. (Note that the sum begins at n = 10 instead of n = 0.)

$$\sum_{n=10}^{\infty} \left(\frac{1}{3}\right)^{n-2} =$$

You only have to carry the algebra out as far as I indicated in class.

On problems 8 - 10, check the correct box and then indicte your reasoning below. A correctly checked box without appropriate explanation will receive no points.

absolutely convergent

- 8. $\sum_{n=1}^{\infty} (-1)^n \left(\frac{\pi}{e}\right)^n$
- conditionally convergent
- Hint: $\frac{\pi}{e} \approx \frac{3.14}{2.7} \approx 1.16$.

9. $\sum_{n=17}^{\infty} (-1)^n \frac{1}{n!}$

absolutely convergent

conditionally convergent

divergent

More space for problem 10