Name: Shubhadeep Das

Roll No: 171146.

MTH517A: Time Series Analysis Quiz #1; Full Marks-20

 $\{\varepsilon_i\}, \{\delta_i\}$ are two mutually independent i.i.d. sequence of random variables such that $\varepsilon_t \sim N(0, \sigma^2)$ and $\delta_t \sim N(0, \sigma^2)$. Let $\{Y_t\}$ be such that $Y_t = (\alpha + \beta t)S_t^2 + \nabla \varepsilon_t$; S_t is a seasonal component with period 4. Prove or disprove the following statements:

(a) V, Y, is Gaussian.

(b) $\nabla \nabla_4 Y_i$ does not have any trend and seasonal component.

(c) $\nabla_4^2 Y_i$ is covariance stationary.

(d) $Cov(\nabla_4^2 Y_{t+h}, \nabla_4^2 Y_t) = 0; \forall |h| > 8.$

(e) $(\nabla \varepsilon_t + \delta_t + \delta_{t-1})$ is white noise.

(t) $(\varepsilon_{2t} - \varepsilon_{3t} + \nabla \delta_t)$ is strict stationary.

SE+3, {S+3 are mutually independent- iid seq of r.v. s.t. $\in_{\mathsf{t}} \stackrel{\text{iid}}{\sim} \mathsf{N}(0,\sigma^2)$ and $\delta_{\mathsf{t}} \stackrel{\text{iid}}{\sim} \mathsf{N}(0,\sigma^2)$.

De Let. Yt = (x+Bt) St + VEt = (x+Bt) St + Et - Et-1 St is seasonal component with period 4.

$$= >$$
 = $S_{t-8} = S_{t-4} = S_t = S_{t+4} = S_{t+8} = ...$

=)
$$S_{t-8} = S_{t-4}^2 = S_{t+4}^2 = S_{t+8}^2 = ...$$

(a)
$$\lambda d^{-1}$$
, $Z_{t} = \nabla_{t} Y_{t} = Y_{t} - Y_{t-1}$

$$= (\lambda + \beta t) S_{t}^{2} + \text{PRO}_{t} (\xi_{t} - \xi_{t-1})$$

$$- \{\lambda + \beta (t-1)\} S_{t-1}^{2}$$

$$- (\xi_{t-1} + \xi_{t-2})$$

$$= \lambda (S_{t}^{2} - S_{t-1}^{2}) + \beta t (S_{t}^{2} - S_{t-1}^{2})$$

$$+ 4\beta S_{t-1}^{2} + \xi_{t} - \xi_{t-1} - \xi_{t-1}$$

$$+ \xi_{t-2}$$

$$Z_{t} = 4\beta S_{t-1}^{2} + \xi_{t} - \xi_{t-1} - \xi_{t-1} + \xi_{t-2}$$

me: Shubhadeep Das 1011 NO: 171146.

MTH517A: Time Series Analysis Quiz #2; Full Marks-20

Let
$$X_{i} = \begin{pmatrix} X_{1,i} \\ X_{2,i} \end{pmatrix}$$
, $X_{1,i} = 0.5 (1 + X_{1,i-1}) + \varepsilon_{1,i}$ and $X_{2,i} = 0.25 (1 + X_{2,i-1}) + \varepsilon_{2,i}$; $Cov(\varepsilon_{i,i}, X_{i,i-j}) = 0, i = 1, 2$ and

$$\forall j > 0$$
; $\underline{\varepsilon}_t = \begin{pmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{pmatrix}$ is an independent sequence of $N_2(\underline{0}, 2I_2)$. Consider a random sample

$$\begin{pmatrix} X_{1,1} \\ X_{2,1} \end{pmatrix}, \begin{pmatrix} X_{1,2} \\ X_{2,2} \end{pmatrix}, \dots, \begin{pmatrix} X_{1,n} \\ X_{2,n} \end{pmatrix}$$
 from the above bivariate time series.

(1) Prove or disprove the following statements:

A:
$$\underline{\eta}_t = \left(\varepsilon_{1,t}, \varepsilon_{2,t}, \varepsilon_{1,t-1}\right)^T \sim VWN$$

B: X_i can be expressed as a covariance stationary VAR(1)

C: $Cov(X_t, X_{t+3})$ is a positive definite diagonal matrix

D:
$$\overline{X}_{1(n)} \left(= n^{-1} \sum_{t=1}^{n} X_{1,t} \right) \xrightarrow{m.s.} 0.5$$

(2) Find $\lim_{n\to\infty} nV(\overline{Y}_{(n)})$; $\overline{Y}_{(n)}$ is the sample mean of $Y_i = X_{1,i} + X_{2,i}$

$$\frac{1}{\sqrt{n}} = \frac{1}{n} \sum_{t=1}^{n} (x_{1,t} + x_{2,t})$$

(8.5 0 X1, +1

2. Lim n.
$$V(\overline{Y}_{(n)}) = g_{\gamma}(1)$$
 where $g_{\gamma}(\cdot)$ is the ACGF

 $n \to \infty$ where $g_{\gamma}(\cdot)$ is the ACGF

$$g_{x}(1) = g_{x_{1}}(1) + g_{x_{2}}(1)$$
 (*).

Now,
$$X_{1,+} = 0.5 + 0.5 X_{1,+-1} + \epsilon_{1,+} \longrightarrow An AR(1) process.$$

and,
$$X_{2,t} = 0.25 + 0.25 \times_{2,t-1} + \epsilon_{2,t} \longrightarrow An AR(i)$$
 procen

with
$$\phi_2(B) = 1 - 0.25B$$
.

$$g_{x_1}(1) = \frac{\sigma^2}{\phi_1(1) \phi_1(1^{-1})} = \frac{2}{\frac{1}{2} \times \frac{1}{2}} = 8.$$

and,
$$g_{x_2}(1) = \frac{\sigma^2}{\phi_2(1) \phi_2(1^{-1})} = \frac{2}{\frac{3}{4} \cdot \frac{3}{4}} = \frac{32}{9}$$

$$g_{y}(1) = 8 + \frac{32}{9} = \frac{104}{9}$$

MTH 517: Time Series Analysis

Mid semester examination; Full Marks-60

Date: September 18, 2018

(a) Let $\{X_t\}$ be a time series given by $X_t = e^Y t^2 + \varepsilon_t$; $\varepsilon_t \sim WN(0, \sigma^2)$ and $Y \sim U(0, 1)$. If $Z_t = \Delta^2 X_t$, find $Cov(Z_t, Z_{t+h})$ for $h = 0, \pm 1, \pm 2, \ldots$ and verify whether $\{Z_t\}$ is covariance stationary or not.

- (b) Consider a Gaussian process $\{X_t\}$ with $E(X_t) = 0 \,\forall t$ and $Cov(X_t, X_{t+s}) = e^{-|t-s|} \,\forall t, s$. Let $Y_t = e^{X_t}$. Prove or disprove the following statements:
 - (i) $\{\Delta X_i\}$ is strict stationary.
 - (ii) $\{Y_i\}$ is a Gaussian process.
 - (iii) $\{Y_i\}$ is covariance stationary.

ARMA(2,1) 18 (6+12) marks

Consider a covariance stationary $X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \varepsilon_t - 0.2 \varepsilon_{t-1}; \varepsilon_t \sim WN(0,1)$. For the $\{X_t\}$ time series, $\gamma_3/\gamma_1 = 1/4, \gamma_3/\gamma_2 = 1/2, \gamma_3/\gamma_4 = 1/2 \text{ and } \gamma_3/\gamma_5 = 4/7$.

- (a) Find explicitly (i.e. NOT in terms of other $\gamma_i s$ and $\phi_i s$) γ_6/γ_5 .
- (b) Is it possible to explicitly calculate γ_0 and γ_1 from the given values of $\gamma_i/\gamma_j s$? If yes, find γ_1^o . If no, explain why it is not possible.

12 (6+6) marks

[3] (a) Let $\{X_t\}$ be a zero mean covariance stationary complex valued time series given by $X_t = U_t + i V_t$. Prove or disprove " $E[X_{t+h} - X_t]^2 = 2 \operatorname{Re}(\gamma_0 - \gamma_h) \ \forall h$, where $\operatorname{Re}(x) = \operatorname{real}$ part of x".

(b) Let $X_t + \varepsilon_{t-1} = \Delta \varepsilon_t$; $\varepsilon_t \sim WN(0, \sigma^2)$ and $Y_t - X_t = \sum_{j=1}^{\infty} (0.5)^j X_{t-j}$. Prove or disprove "

 $\{Y_i\}$ is a covariance stationary White noise"

12 (6+6) marks

[4] Let $\{X_t\}$ be a Gaussian $WN(0, \sigma^2)$ process. Consider, $\tilde{\gamma}_h = \frac{1}{n} \sum_{t=1}^{n-h} X_t X_{t+h}$ as an estimator for γ_h .

- (a) Prove or disprove, "As an estimator for γ_h , $\tilde{\gamma}_h$ is unbiased in the limit".
- (b) Find $Cov(\tilde{\gamma}_r, \tilde{\gamma}_s)$.

8 (2+6) marks

[5] $\{X_t\}$ be a covariance stationary AR(1) process $X_t = \phi X_{t-1} + \varepsilon_t, |\phi| < 1$, $\varepsilon_t \sim WN(0, \sigma_{\varepsilon}^2)$ and $Y_t = X_t + 0.5 X_{t-1} + 0.25 X_{t-2} + \delta_t$; $\delta_t \sim WN(0, \sigma_{\delta}^2)$. Further, $\{\varepsilon_t\}$ and $\{\delta_t\}$ are independently distributed.

(a) Find ACGF of $\{Y_t\}$ in terms of ACGFs of $\{\varepsilon_t\}$ and $\{\delta_t\}$.

(b) Using the ACGF of $\{Y_t\}$, derived in 5(a) above, find $Cov(Y_5, Y_6)$.

10 (6+4) marks

MTH 517: Time Series Analysis End semester examination; Full Marks-100

Date: November 24, 2018

[1] (a) Can there exist a covariance stationary AR(2) process with autocorrelations

 $\rho_1 = 1/2, \rho_2 = 1/6 \text{ and } \rho_3 = 2/27?$ (b) Let $\{X_t\}$ be a covariance stationary AR(3) process $X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \phi_3 X_{t-3} + \varepsilon_t$, $\varepsilon_t \sim WN(0,\sigma^2)$ and $Y_t = \sum_{i=0}^{L} X_{t-j}$. Prove or disprove " $\{Y_t\}$ is causal and invertible ARMA

(c) Let $X_1, ..., X_n$ be a random sample from a zero mean covariance stationary time series. Prove or give a counter example "If $Cov(X_n, \overline{X}_n) \to 0$ as $n \to \infty$ then $\sum_{h=-\infty}^{\infty} |\gamma_X(h)| < \infty$ ". [2] (a) Let $\{X_i\}$ be an MA(1) process $X_i = \varepsilon_i + \theta \varepsilon_{i-1}$; $\varepsilon_i \sim WN(0, \sigma^2)$, $|\theta| > 1$. Define $\{Y_i\}$ as

[2] (a) Let $\{X_i\}$ be an MA(I) process X_i .

(Constitution of the following process of the following process of the following process of the following process of the following process. In the following process of the following process.

- (b) Let $\{X_t\}$ be an MA(1) process $X_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}$, where $|\theta| < 1$ and $\varepsilon_t \sim WN(0, \sigma^2)$. Find $\lim_{k\to\infty} E\left(X_t + \sum_{i=1}^k (-\theta)^i X_{t-i} - \varepsilon_t - \mu \sum_{i=1}^k (-\theta)^i\right)^2$.
- (c) Let X_1, \dots, X_n be a random sample from a Gaussian invertible MA(1) model $X_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}$, where $|\theta| < 1$ and $\varepsilon_t \sim i.i.d.N(0, \sigma^2)$. Prove or disprove "conditional MLE of μ and θ , conditional on ε_0 at it's expected value, can be obtained by minimizing $\sum_{i=1}^{n} \left(\sum_{i=1}^{l} (X_i - \mu) (-\theta)^{l-i} \right)^2$ with respect to μ and θ ". 20 (6+7+7) marks

[3] Let X, be a 2-variate covariance stationary VAR(2) process, $X_t = \Phi_1 X_{t-1} + \Phi_2 X_{t-2} + \varepsilon_t$; $\varepsilon_t \sim VWN(0, \Sigma), \Sigma > 0$. Prove or disprove the following statements:

Statement A: $\begin{pmatrix} X_i \\ 2X_{i-1} \end{pmatrix}$ is a covariance stationary VAR(1) process.

Statement B: $\begin{pmatrix} \underline{\varepsilon}_t \\ 2\underline{\varepsilon}_{t-1} \end{pmatrix}$ is a covariance stationary VWN process.

12 (8+4) marks

$$\sqrt{(\epsilon_{\psi}(\lambda))} = E(\epsilon_{\uparrow}^{*} \leq \epsilon_{\downarrow}^{*}) \cdot \sigma^{2} \sigma^{2} \cdot \sigma^{4}$$

$$\int_{X} (\lambda) = \frac{1}{2\pi} \sum_{h=0}^{\infty} e^{-i\lambda h} Y_{\chi}(h) \qquad \overline{\sigma}^{h} \qquad \frac{\operatorname{cov}(X_{f} Y_{f}, X_{f+h} Y_{f+h})}{\sigma^{h}}$$

- [4] Let $X_t = \varepsilon_t \varepsilon_{t-1}$ and $Y_t = \delta_t + \delta_{t-1}$; $\{\varepsilon_t\}$ and $\{\delta_t\}$ are independent white noise $WN(0, \sigma^2)$ processes. Define $Z_t = X_t(1+Y_t)$ and $P_t = \begin{pmatrix} X_t + Y_t \\ Z_t X_{t-1} \end{pmatrix}$.
 - (a) Express the spectral density of $\{Z_i\}$ as function of only spectral densities of $\{X_i\}$ and $\{Y_i\}$ (without any summation in the expression of the resultant spectral density) and hence find the value of $f_z(0)$.
 - **(b)** Prove or disprove " $f_{XZ}(\lambda) = f_{ZX}(\lambda) \ \forall \lambda \in [-\pi, \pi]$ ".
 - (c) Prove or disprove " $f_{X_{\varepsilon}}(\lambda) = f_{\varepsilon X}(\lambda) \ \forall \lambda \in [-\pi, \pi]$ ".
 - (d) Does there exist a K such that $Cov(P_t, P_{t+h}) = 0$, $\forall |h| > K$? If yes, find the smallest value of K.

26 (8+6+6+6) marks

- Let $\{X_t\}$ and $\{Y_t\}$ be two AR(1) processes given by $X_t = \delta_X + \phi_X X_{t-1} + Z_t$ and $Y_t = \delta_Y + \phi_Y Y_{t-1} + Z_t + U_t$; where, $\{Z_t\} \sim WN\left(0, \sigma_Z^2\right), \{U_t\} \sim WN\left(0, \sigma_U^2\right); \{Z_t\}$ and $\{U_t\}$ are independent; $|\phi_X| < 1$ and $|\phi_Y| < 1$.
 - (a) Derive the BLP of X_{t+1} based on Y_t .
 - (b) Find PACF at lag 2 of the time series $\{Q_i\}$, $Q_i = (1 + Z_i)(1 U_i)$.

11 (6+5) marks

- Let $X_i = A\cos(\pi t/2) + B\sin(\pi t/2) + C + \varepsilon_i + \varepsilon_{i+2}$; $\varepsilon_i \sim WN(0, \sigma^2)$, A, B, C are three mutually independent random variables with mean 0 and variance σ^2 . Further, the sequence $\{\varepsilon_i\}$ and A, B and C are mutually independent.
 - (a) the spectral distribution function of $\{X_i\}$,
 - (b) $\gamma_{x}(0)$ using the spectral distribution function derived in (a) and
 - (c) the continuous and/or discrete spectra associated with spectral distribution function derived in (a).

14 marks