A Handbook on Electrical Engineering

3

Power Electronics

CONTENTS

1.	Power Semiconductor Diodes & Transistors	101 -	102
2.	Diode Circuits and Rectifiers	103 -	111
3.	Thyristor Commutation Techniques	112 -	114
4.	Phase Controlled Rectifiers	115 -	119
5.	Choppers	120 -	121
6.	Inverters	122 -	125
7.	AC Voltage Controllers	126 -	127
8.	Electric Drives	128 -	131

DC DRIVES

Separately-excited DC motor

Voltage across field winding For field circuit

$$V_f = I_f \cdot r_f$$

where $I_f = \text{Field winding current}$, A $-\frac{1}{2}$

 R_f = Field circuit resistance, Ω

$$V_t = E_a + I_a r_a$$

I_a = Armature current, A where

 r_a = Armature circuit resistance, Ω

 E_a° = Back emf, V V V V V V = Armature terminal voltage, V

■ Motor back emf

$$\mathsf{E}_{\mathsf{a}} = \mathsf{k}_{\mathsf{a}} \phi \, \omega_{\mathsf{m}} = \mathsf{k}_{\mathsf{m}} \omega_{\mathsf{m}}$$

 ϕ = Field flux per pole, Wb where

 $\omega_{\rm m}$ = Angular speed of motor, rad/sec.

 $k_m = k_a \phi = \text{torque constant}, Nm/A$

■ Motor torque

$$T_e = k_m I_a$$

Angular speed of motor

$$\omega_{m} = \frac{V_{t} - I_{a} r_{a}}{k_{m}}$$

DC Series motor

Motor terminal voltage

$$V_t = E_a + I_a(r_a + r_s)$$

A Handbook on Electrical Engineering

9

Digital Electronics

CONTENTS

1.	Number System and Codes	292-293
2.	Logic Gates	294-300
3.	Boolean Algebra & Reduction Techniques	301-303
4.	Arithmetic Operation and Circuits	304-306
5.	Code Converters, Multiplexers and Demultiplexers	307-311
6.	Sequential Circuits (FFs and Latches)	312-316
7.	Shift Registers	317-318
8.	Counters	319-322
9.	Digital ICs Family	323-326
10	D.ADCs and DACs	327-330

DIGITAL LOGIC CIRCUITS

Combinational circuits

- Output do not depends on previous value of input.
- No feedback is required.
- It consists of inptu variables, logic gate and output variables.
- No memory is required.

Sequential circuits

- Output depends on the present as well previous value of inputs.
- It consists input variables, Flip-flops, registers and output.
- Memory is required.

HALF ADDER (H.A)

A logic circuit for the addition of two one-bit numbers is referred to as an "HALF ADDER (H.A)".

Symbol and Truth table

	Inputs		Outputs	
	Α	В	Sum(S)	Carry(C)
\	0	0	0	0
4	0	1	1	0
	1	0	1	0
	1	1	0	1

□ Logical expression

Sum,
$$S = \overline{A} B + A \overline{B} = A \oplus B$$

- Total number of NAND-gates required to implement half adder = 5
- Total number of NOR-gates required to implement half adder = 5
- Implement the H.A circuit by minimum number of logic gates if we have all gates except EXOR and EXNOR is "3".

FULL ADDER (F.A.)

- It performs the arithmetic sum of the three input bits i.e. addend bit, augend bit and carry bit.
 - □ Logical expression

Sum,
$$S = A \oplus B \oplus C$$

Carry,
$$C = AB + BC + CA = AB + C(A \oplus B)$$

- A F.A. can be implemented by two H.A. and one OR-gate
- Total number of NAND-gate/NOR-gate required to implement a F.A is equals to "9".

HALF SUBTRACTOR (H.S)

Difference,
$$D = \overline{A} B + A \overline{B} = A \oplus B$$

Borrow,
$$B = \overline{A} B$$

 Total number of NAND/NOR gates required to implement the H.S is equals to "5".

FULL SUBTRACTOR (F.S)

- It is a circuit which performs a subtraction between two bits taking into account that a '1' may have been borrowed by a lower significant stage.
 - Logical expression

Difference,
$$D = A \oplus B \oplus C$$

Borrow,
$$B = \overline{A}B + \overline{A}C + BC = \overline{A}B + (\overline{A \oplus B}) \cdot C$$

- A F.S. can be implemented with two H.S. and one OR gate.
- Number of NAND/NOR gates required to implement the F.S is equals to "9".
- In paraller adder n F.A. or {(n − 1) F.A. and 1 H.A.} or {(2n − 1) H.A and (n − 1) OR-gate} are required to add two n bit numbers.

A Handbook on Electrical Engineering

CONTENTS

1.	Circuits Elements and Signal Waveform	182 -	186
2.	Network Laws and Theorems	187 -	192
3.	Graph Theory	193 -	195
4.	Laplace Transform Analysis and Circuit Transients	196 -	200
5.	Resonance	201 -	203
6.	Two Port Network	. 204-	206