

Ref.: Data Mining: Concepts and Techniques

Plassification

Prediction Problems: Classification vs. Numeric Prediction

Classification

- predicts categorical class labels (discrete or nominal)
- classifies data (constructs a model) based on the training set and the values (class labels) in a classifying attribute and uses it in classifying new data

Numeric Prediction

- models continuous-valued functions, i.e., predicts unknown or missing values
- Typical applications
 - Credit/loan approval:
 - Medical diagnosis: if a tumor is cancerous or benign
 - Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is training set
 - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set (otherwise overfitting)
 - If the accuracy is acceptable, use the model to classify new data
- Note: If the test set is used to select models, it is called validation (test) set

Process (1): Model Construction

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

Classification Algorithms

Classifier (Model)

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

Process (2): Using the Model in Prediction

NAME	RANK	YEARS	TENURED
Tom	Assistant Prof	2	no
Merlisa	Associate Prof	7	no
George	Professor	5	yes
Joseph	Assistant Prof	7	yes

Decision Tree Induction: An Example

- □ Training data set: Buys_computer
- □ The data set follows an example of Quinlan's ID3 (Playing Tennis)
- □ Resulting tree:

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Decision Tree Induction - Basics

Decision tree builds classification or regression models in the form of a tree structure. It breaks down a dataset into smaller and smaller subsets while at the same time an associated decision tree is incrementally developed. The final result is a tree with decision nodes and leaf nodes. A decision node (e.g., Outlook) has two or more branches (e.g., Sunny, Overcast and Rainy). Leaf node (e.g., Play) represents a classification or decision. The topmost decision node in a tree which corresponds to the best predictor called root node. Decision trees can handle both categorical and numerical data.

	Pre	dictors		Target		
				_	Δ	Decision Tre
Outlook	Temp.	Humidity	Windy	Play Golf		Outlook
Rainy	Hot	High	False	No]	
Rainy	Hot	High	True	No	Ţ	
Overoast	Hot	High	False	Yes	Ţ	Sunny Overcast Rainy
Sunny	Mild	High	Falce	Yes	1	Sunny Overcast Rainy
8unny	Cool	Normal	False	Yes		
Sunny	Cool	Normal	True	No	I	
Overoast	Cool	Normal	True	Yes		Windy Yes Humidity
Rainy	MIId	High	Falce	No		
Rainy	Cool	Normal	Falce	Yes	T	
8unny	Mild	Normal	Falce	Yes	brack I	FALSE TRUE High Norma
Rainy	Mild	Normal	True	Yes	brack I	
Overoast	Mild	High	True	Yes	brack I	
Overoast	Hot	Normal	Falce	Yes		Yes No No Yes
Sunny	Mild	High	True	No	I	

Decision Tree - Entropy

A decision tree is built top-down from a root node and involves partitioning the data into subsets that contain instances with similar values (homogenous). ID3 algorithm uses entropy to calculate the homogeneity of a sample. If the sample is completely homogeneous the entropy is zero and if the sample is an equally divided it has entropy of one.

To build a decision tree, we need to calculate two types of entropy using frequency tables as follows:

Entropy = $-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$

a) Entropy using the frequency table of one attribute: b) Entropy using the frequency table of two attributes:

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

$$E(T, X) = \sum_{c \in X} P(c)E(c)$$

			Yes	No			
		Sunny	3	2	5		
	Outlook	Overcast	4	0	4		
		Rainy	2	3	5		
					14		
1							
E(PlayGolf, Outl	E(PlayGolf, Outlook) = P(Sunny)*E(3,2) + P(Overcast)*E(4,0) + P(Rainy)*E(2,3)						
= (5/14)*0.971 + (4/14)*0.0 + (5/14)*0.971							
= 0.6	= 0.693						

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D: $Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$
- Information needed (after using A to split D into v partitions) to classify D: $Info_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$
- Information gained by branching on attribute A $Gain(A) = Info(D) Info_{4}(D)$

Attribute Selection: Information Gain

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

Info (D) =
$$I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Info_{age} (D) =
$$\frac{5}{14}I(2,3) + \frac{4}{14}I(4,0)$$

+ $\frac{5}{14}I(3,2) = 0.694$

$$\frac{5}{14}I(2,3)$$
 means "age <= 30" has 5 out of 14 samples, with 2 yes'es and 3 no's. Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Similarly,

$$Gain(income) = 0.029$$

 $Gain(student) = 0.151$

$$Gain(credit_rating) = 0.048$$

Computation of Gini Index

Ex. D has 9 tuples in buys_computer = "yes" and 5 in "no"

$$gin(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

Suppose the attribute income partitions D into 10 in D_1 : {low, medium} and 4 in D_2 (10) C_1 (4) C_2 (7)

$$gini_{income \in \{low, medium\}}(D) = \left(\frac{10}{14}\right)Gini(D_1) + \left(\frac{4}{14}\right)Gini(D_2)$$

$$= \frac{10}{14} \left(1 - \left(\frac{7}{10} \right)^2 - \left(\frac{3}{10} \right)^2 \right) + \frac{4}{14} \left(1 - \left(\frac{2}{4} \right)^2 - \left(\frac{2}{4} \right)^2 \right)$$
$$= 0.443$$

 $= Gini_{income \in \{high\}}(D).$

Gini_{low,high} is 0.458; Gini_{medium,high} is 0.450. Thus, split on the {low,medium} (and {high}) since it has the lowest Gini index

- All attributes are assumed continuous-valued
- May need other tools, e.g., clustering, to get the possible split values
- Can be modified for categorical attributes

Comparing Attribute Selection Measures

- ▶ The three measures, in general, return good results:
 - Information gain:
 - biased towards multivalued attributes
 - Gain ratio:
 - tends to prefer unbalanced splits in which one partition is much smaller than the others
 - Gini index:
 - biased to multivalued attributes
 - has difficulty when # of classes is large
 - tends to favor tests that result in equal-sized partitions and purity in both partitions

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early-do not split a node if this would result in the goodness measure falling below a threshold
 - · Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Evaluation

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	a (TP)	b (FN)		
CLASS	Class=No	c (FP)	d (TN)		

Accuracy =
$$\frac{TP+TN}{TP+FN+TN+FP}$$

Precision =
$$\frac{TP}{TP+FP}$$

$$Recall = \frac{TP}{TP + FN}$$

F-measure =
$$\frac{2 \cdot TP}{2 \cdot TP + FN + FP}$$

$$Cost = TP \times Cost_{TP} + FN \times Cost_{FN}$$

$$+TN \times Cost_{TN} + FP \times Cost_{FP}$$

Sensitivity = Recall

Specificity =
$$1 - \frac{FP}{FP + TN} = \frac{TN}{TN + FP}$$

False Positive Rate = 1 - Specificity

