${\scriptstyle \rhd}\, Size\text{-adaptive math: } {\sf leftX...} {\sf rightX}$

	(x)	parantheses
	[x]	brackets
	x	absolute value
	$ x ^2$	absolute value squared
{}	[x, y]	commutator
	$\langle x \rangle$	mean value

⊳ Fixed-size math (for quickly changing from adaptive style)

	(x)	big parantheses
	(x)	Big parantheses
	$\begin{bmatrix} x \end{bmatrix}$	big brackets
	x	Big brackets
	x	big absolute value
	x	Big absolute value
	$ x _2^2$	big absolute value squared
	$ x ^2$	Big absolute value squared
{}	[x,y]	big commutator
{}	[x,y]	Big commutator
	$\langle x \rangle$	big mean value
	$\langle x \rangle$	Big mean value

▷ Braket notation

	$\langle x $	bra
	$ x\rangle$	ket
{}	$\langle x y\rangle$	scalar product
{}	$ x\rangle\langle y $	ket-bra operator

{}{}	$\langle x y z\rangle$	matrix element
$\strut_{\ldots} \$	$\langle x y z\rangle$	small matrix element
Special functions		
	$\delta(x)$	delta function
	$\theta(x)$	theta function
	$\exp(x)$	exponential function
	e^x	exponential function
	Re(x)	real part, function form
	Im(x)	imaginary part, function form
\Re	Re	real part
\Im	Im	imaginary part
Named states		
\ketPsi	$ \Psi angle$	
\ketpsi	$ \psi angle$	
\ketphi	arphi angle	
\ketup	$ \!\!\uparrow\rangle$	spin up
\ketdn	$ \downarrow\rangle$	spin down
\ketzero	$ 0\rangle$	
\ketone	$ 1\rangle$	
\ketg	g angle	ground state
\kete	$ e\rangle$	excited state
\vac	$ { m vac}\rangle$	vacuum
⊳ Pauli matrices		
\sx	σ^x	
\sy	σ^y	

\sz	σ^z	
\splus	σ^+	
\sminus	σ^{-}	
> Vectors		
\vecr	\mathbf{r}	
\vecrone	$\mathbf{r_1}$	
\vecrtwo	$\mathbf{r_2}$	
\vecrn	$\mathbf{r_N}$	
\vecri	$\mathbf{r_{i}}$	
\vecrj	r_{j}	
\vecR	\mathbf{R}	
\vecx	X	
\vecy	y	
\vecz	${f z}$	
\vecxi	$\mathbf{x_i}$	
\vecxj	$\mathbf{x_j}$	
\veck	k	
\vecq	\mathbf{q}	
\vecp	p	
\vecd	d	
\vecmu	μ	
\vecsigma	σ	
Differentiation		
	$\frac{\partial}{\partial x}$	partial differentiation
\laplace	$ abla^2$	laplace operator

⊳ Integration

	$\int dx$	integral
{}{}	$\int\limits_{x}^{y}\!\mathrm{d}z$	integral with boundaries
{}	$\int \frac{\mathrm{d}x}{y}$	integral with fraction
\intvol	$\int \! \mathrm{d}^3 r$	integral over r space
\intvolp	$\int \! \mathrm{d}^3 r'$	integral over r' space
\intvold	$\int \! \mathrm{d}^3 r \int \! \mathrm{d}^3 r'$	double integral over space
\intk	$\int \! \mathrm{d}^3 k$	integral over k space
\intkp	$\int \! \mathrm{d}^3 k'$	integral over k' space
\intkn	$\int \frac{\mathrm{d}^3 k}{(2\pi)^3}$	normalized integral over k space
\intkpn	$\int \frac{\mathrm{d}^3 k'}{(2\pi)^3}$	normalized integral over k' space

⊳ Special symbols

\hc	h.c.	hermitian conjugate
\hamil	Ĥ	Hamilton operator
\hastobe	<u>!</u>	has to be
\eqhat	_	corresponds to, is equivalent
\id	1	identity matrix
\const	const.	hermitian conjugate
\goesto	\longrightarrow	maps to, asymptotically goes to

> Second quantization

\aop	a	annihilation operator
\aopd	a^{\dagger}	creation operator
\bop	b	annihilation operator
\bopd	b^{\dagger}	creation operator
\cop	c	annihilation operator
\copd	c^{\dagger}	creation operator

\nop	n	number operator
\psiop	$\hat{\psi}$	field operator
\psiopd	$\hat{\psi}^{\dagger}$	
\PsiOp	$\hat{\Psi}$	
\PsiOpd	$\hat{\Psi}^{\dagger}$	

Differences

\Dx	Δx
\Dy	Δy
\Dt	Δt

⊳ Trigonometry

\asin	asin	
\acos	acos	
\atan	atan	

⊳ Figures

<pre>\igopt(2 arguments)</pre>	options, filename
\ig(2 arguments)	width in units of textwidth, filename
\figopt(4 arguments)	width, filename, caption, placement (h, t, ht)
\fig(3 arguments)	width, filename, caption
\doublefigopt(8 arguments)	w1,f1,c1,w2,f2,c2,main caption, placement
\doublefig(7 arguments)	w1, f1, c1, w2, f2, c2, main caption