Package EuropeBiomeIndexModern + EuropeBiomeIndexFossil

EuropeBiomeIndexModern(Name,AssPol,Ages,name)

Inputs – Modern

- File of pollen assemblages through: 1 col site names; 2 col pollen taxons; 3 col Percentage per place
- Variable containing the modern site names
- o Name of your own file after work.

Example: EuropeBiomeIndexModern(EMPD,NameCal,namefile)

EuropeBiomeIndexFossil(Name,AssPol,Ages,name)

Inputs - Fossil

- Names of pollen-taxon records in line (.txt)
- Pollen assemblages (in percentage) with depth=row and pollen-taxon=line (.csv where column names are specified for each pollen name
- Variable of age estimates in different depths
- Name of your own file after work.

Example: EuropeBiomeIndexFossil(Name,AssPol,Ages,namefile)

Library tidyverse and stringr to import before compilation

Classification:

Taxpftpi_Class1.csv biopftpi_Class1.csv

Biomization type:

Modern or fossil initial datasets

Names of pollen-taxon must be written in the same way than this table:

Abies

Acer campestre-type

Alnus glutinosa-type

Alnus

Apiacea

Armeria-type

Artemisia

Betula nana-type

Betula

Boraginaceae

Brassicaceae

Buxus

Calluna vulgaris

Campanulaceae

Carpinus

Caryophyllaceae (periporate excl.

Paronychioideae)

Castanea sativa

Cedrus

Centaurea

Ceratonia siliqua

Chenopodiaceae/Amaranthaceae

Cistus

Asteraceae subf. Cichorioideae

Asteraceae

Corylus

Asteraceae subf. Asteroideae

Crassulaceae

Cyperaceae

Dipsacaceae

Ephedra distachya-type

Ephedra

Ephedra fragilis-type

Ericaceae

Fagaceae

Fagus

Fraxinus excelsior-type

Frangula alnus

Fraxinus ornus

Fraxinus

Hedera

Helianthemum

Hippophae rhamnoides

llex

Juglans

Juniperus

Larix

Mercurialis

Myrtaceae

Olea europaea

Ostrya/Carpinus orientalis

Phillyrea

Picea

Pinus halepensis-type

Pinus

Pistacia

Plantago

Platanus

Plumbaginaceae

Poaceae

Polygonum

Populus

Quercus robur-type

```
Quercus ilex-type
```

Ranunculaceae

Rhamnus-type

Rhus

Rosaceae

Rubiaceae

Rumex

Salix

Sanguisorba minor-type

Saxifragaceae

Scrophulariaceae

Taxus

Thalictrum

Tilia

Ulmus

Urticaceae

Vitis

Zizyphus

Acacia

Arbutus

Dryas octopetala

Plantago lanceolata-type

Zygophyllum

Galiumtuliginosum

Viburnum

Echium

Filipendula

Carduus

Equisetum

Typha

Myriophyllum

Potamogeton

Sparganium-type

Cerealia-type

Secale cereale

Betula pubescens-type

Humulus

Outputs:

Fossil = One file containing the biome scores for each depth (row).

Modern = One file containing the dominant biome for each site (row).

Biomisation - Méthode dérivées des PFTs

Workflow de la méthode

- 1. Biomisation 'classique' par score d'affinité moderne et fossile
- 2. Sous-ensemble de base de données après homogénéisation
- 3. Calibration des scores définies par biome
- 4. Biomisation sans score dominant = moyenne pondérée

Assimilation (i) des taxons à des PFTs (ii) des seuils propres à chaque taxon pionnier

Estimation des scores d'affinité des taxons par spectres fossiles et modernes en matrice propre type covariance

Combinaison des scores des PFTs pour chaque biome + Vectorisation des scores selon dominance taxons entre biome

Estimation des scores d'affinité des biomes par spectre fossile et moderne (scores dominants ou WA par abondance)

 $AS = \sqrt{P. (Abund. - Threshold)}$

Mesure de dissimilarité entre échantillon et biome Assimilation de chaque échantillon par biome

Calibration par matrice de scores de biome

21

CLDE TAIG PION CLMX COCO TEDE COMX WAMX XERO TUND COST WAST CODE **HODE AQUA ANTH**BS PI BEC BCTC CTC1 TSAA TSBS TS TS1 TS2 WTE WTE1 WTE2 EC AA COGS WAGS H SF DF GR SFDF **AQ AN ECPI**

- Contraintes de la dataset moderne par biome et non géographique (choix arbitraire)
 → réduction du nb. de spectres à calibrer
- Forte diversité des PFTs et meilleure résolution de la classification
- Choix des scores d'affinité inter-biomes selon dominance des PFTs
- Meilleure continuité inter-biome par score WA entre les échantillons
- Biomes anthropiques et aquatiques du jeu de calibration

- Biomisation des échantilllons modernes = Relation plante-taxon forte dans biomisation pollen
- Types de végétation non-analogue ?
 Chercher à identifier des paléovégétations
 Cas des conditions steppiques plus actuelles en Europe
- Certains biomes peuvent être associés à des sous-PFTs de plusieurs biomes et traduire des changements brutaux, irréalistes entre les échantillons
- Conditions aux limites et contraintes des biomes -> solution : PDFs des variables climatiques à une valeur seuil par biome

22