Luxottica Churn Prediction Report

1. Introduction

This report details the process and results of predicting customer churn for Luxottica. The project includes steps from data collection, pre-processing, feature selection, model training, evaluation, and deployment, along with detailed statistical analysis and exploratory data analysis (EDA).

2. Data Collection

2.1 Data Source

- Dataset: luxottica eyewear Master.csv
- **Description**: Contains customer data including demographics, purchase history, customer support interactions, and churn status.

2.2 Data Overview

- **Total Records**: 100,015
- Total Features: 35 (including target variable Churn)

3. Data Pre-processing

3.1 Handling Missing Values

• Applied forward fill method to handle missing values ensuring no loss of data.

3.2 Encoding Categorical Variables

• Converted categorical variables into numerical format using one-hot encoding.

3.3 Balancing Target Variable

• Used SMOTE (Synthetic Minority Over-sampling Technique) to balance the target variable Churn and address class imbalance.

4. Statistical Analysis

4.1 ANOVA Test

• Used to determine if there are any statistically significant differences between the means of three or more independent (unrelated) groups.

4.2 T-Test

• Conducted independent t-tests to compare the means of two groups (churn vs non-churn).

4.3 Logit OLS Method

 Applied Logistic Regression (Logit) using Ordinary Least Squares (OLS) method to assess the relationship between the dependent variable (churn) and independent variables.

4.4 Variance Inflation Factor (VIF)

• Calculated VIF to check for multicollinearity among features.

4.5 Normal Distribution

• Assessed the normality of data distribution using histograms and Q-Q plots.

4.6 Standard Normal Distribution

• Standardized the dataset and checked for normal distribution using Z-scores.

4.7 Pearson Correlation Coefficient

• Calculated Pearson correlation coefficients to assess the strength and direction of relationships between pairs of variables.

4.8 Central Tendency

• Evaluated mean, median, and mode to understand the central tendency of numerical variables.

4.9 Outlier Detection

• Identified outliers using box plots and Z-score method.

5. Exploratory Data Analysis (EDA)

5.1 Univariate Analysis

- **Distribution Plots**: Visualized the distribution of individual features using histograms and density plots.
- Box Plots: Used to identify outliers and understand the spread of data.
- Central Tendency Measures: Calculated mean, median, and mode for numerical features.

5.2 Bivariate Analysis

• Scatter Plots: Visualized relationships between pairs of numerical variables.

- **Heatmaps**: Displayed correlation matrices to identify strong relationships between features.
- **Box Plots**: Compared distributions of numerical features against the target variable (churn).
- **Bar Plots**: Compared categorical feature distributions against the target variable (churn).

6. Feature Selection

6.1 Methodology

• Used SelectKBest with f_classif to identify the top 10 features most relevant to the target variable Churn.

6.2 Selected Features

- Customer_Support_Interactions
- Customer_Satisfaction
- Purchase Frequency
- Lifetime_Value
- Average Order Value
- Number_of_Product_Categories_Purchased
- Loyalty_Program_Participation_Inactive
- Engagement_with_Promotions_Low
- Engagement_with_Promotions_Medium
- Age

6.3 All Variables in Dataset

- Customer ID
- Age
- Gender
- State
- Store Location
- Income Level
- Date of First Purchase
- Last Purchase Date
- Type of Eyewear
- Brand
- Model
- Price
- Discount Amount
- Last Interaction Type
- Churn
- Customer Satisfaction
- Product Usage
- Return/Exchange History
- Customer Support Interactions
- Social Media Engagement

- Referral Source
- Number of Product Categories Purchased
- Loyalty Program Participation
- Sales Driver Index
- Purchase Frequency
- Subscription Status
- Engagement with Promotions
- Customer Segmentation
- Complaint History
- Product Return Rate
- Cross-Sell/Upsell Success Rate
- Purchase Channel Loyalty
- Lifetime Value
- Average Order Value
- Feedback

7. Model Training

7.1 Data Splitting

Training Set: 75%Testing Set: 25%

7.2 Applied Algorithms

- Random Forest Classifier
- Logistic Regression
- Decision Tree Classifier
- K-Nearest Neighbors
- Support Vector Machine
- Gradient Boosting Classifier
- Naive Bayes

8. Model Evaluation

8.1 Accuracy Scores

Random Forest: 99.81%Logistic Regression: 99.68%

• **Decision Tree**: 99.72%

8.2 Confusion Matrix

• Random Forest:

True Positives: 6589
True Negatives: 17143
False Positives: 44
False Negatives: 0

8.3 ROC-AUC Scores

Random Forest: 0.9973Logistic Regression: 0.9998

• **Decision Tree**: 0.9968

8.4 Classification Reports

• Detailed precision, recall, and F1-score metrics for each model.

9. Key Findings

- Customer_Support_Interactions and Customer_Satisfaction are significant predictors of churn.
- Customers with low **Engagement with Promotions** and inactive in **Loyalty Programs** are more likely to churn.
- High Lifetime Value and Average Order Value correlate with lower churn rates.
- Date consistency verified ensuring that Last Purchase Date is always after First Purchase Date.

10. Model Deployment

10.1 Model Selection

• Random Forest Classifier was selected for deployment due to its highest accuracy and ROC-AUC score.

10.2 Saving the Model

• The trained model was serialized and saved as a pickle file for deployment.

10.3 Deployment Strategy

• The model will be integrated into the customer management system to predict churn probability in real-time, allowing for proactive customer retention strategies.

10.4 Future Enhancements

- Continuous monitoring and retraining of the model with new data to maintain accuracy.
- Integration of more customer interaction data to further improve model performance.

11. Conclusion

This project successfully developed and deployed a machine learning model to predict customer churn for Luxottica. The model demonstrates high accuracy and robustness, providing actionable insights to reduce churn rates and improve customer retention strategies.