ST2132

AY23/24 SEM 1

github/jovyntls

01. PROBABILITY

Expectation

discrete: (mass)
$$E(X) := \sum_{i=1}^{n} x_i p_i$$

continuous: (density)

$$E(X) := \sum_{i=1}^{n} x_i p_i \qquad E(X) := \int_{-\infty}^{\infty} x f(x) dx$$

expectation of a function h(X)

$$E\{h(X)\} = \begin{cases} \sum_{i=1}^n h(x_i) p_i & X \text{ is discrete} \\ \int_{-\infty}^\infty h(x) f(x) \, dx & X \text{ is continuous} \end{cases}$$

Variance

variance,
$$\operatorname{var}(X) := E\{(X - \mu)^2\}$$

= $E(X^2) - E(X)^2$

standard deviation, $SD(X) := \sqrt{\operatorname{var}(X)}$

useful cases

- $E\{X(X \mu)\} = E(X^2) \mu^2$
- var(X c) = var(X)
- · variance of sum = sum of variances $\operatorname{var}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \operatorname{var}(x_i)$

Law of Large Numbers

LLN: for a function h, as realisations $r \to \infty$.

$$\frac{1}{r} \sum_{i=1}^{r} h(x_i) \to E\{h(X)\}$$
$$\bar{x} \to E(X), \quad v \to \text{var}(X)$$

Monte Carlo approximation

simulate x_1, \ldots, x_r from X. by LLN, as $r \to \infty$, the approximation becomes exact

$$E\{h(X)\} \approx \frac{1}{r} \sum_{i=1}^{r} h(x_i)$$

Joint Distribution

(discrete) mass function:

$$P(X=x_i,Y=y_j)=p_{ij}$$

(continuous) density function:

$$f: \mathbb{R}^2 \to [0, \infty), \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = 1$$

(expectation) for $h: \mathbb{R}^2 \to \mathbb{R}$,

$$\begin{split} E\{h(X,Y)\} &= \\ \begin{cases} \sum_{i=1}^{I} \sum_{j=1}^{J} h(x_i,y_j) p_{ij} & X \text{ is discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y) f(x,y) \, dx \, dy & Y \text{ is continuous} \end{cases} \end{split}$$

Covariance

let $\mu_X = E(X), \, \mu_Y = E(Y).$

covariance

$$cov(X,Y) = E\{(X - \mu_X)(Y - \mu_Y)\}$$

$$= E(XY) - \mu_X \mu_Y$$

$$= cov(Y,X)$$

$$cov(W, aX + bY + c) = a cov(W,X) + b cov(W,Y)$$

$$\begin{aligned} \operatorname{var}(X) &= \operatorname{cov}(X, X) \\ \operatorname{var}(\sum_{i=1}^{N} a_{i}X_{i}) &= \\ \sum_{i=1}^{N} a_{i}^{2} \operatorname{var}(X_{i}) + 2 \sum_{1 < i < j < N} a_{i}a_{j} \operatorname{cov}(X_{i}, X_{j}) \end{aligned}$$

joint = marginal \times conditional distributions

$$f(x,y) = f_X(x)f_Y(y|x)$$

= $f_Y(y)f_X(x|y), \quad x, y \in \mathbb{R}$

- f(x, y) is the joint density
- $f_X(x)$, $f_Y(y)$ are the marginal densities
- $f_X(\cdot|y)$ is the **conditional** density of X given Y=y
- for discrete case, density \equiv probability, $x \equiv x_i, y \equiv y_i$

Independence

- X, Y are independent $\iff \forall x, y \in \mathbb{R}$,
 - 1. $f(x,y) = f_X(x)f_Y(y)$
 - 2. $f_Y(y|x) = f_Y(y)$
 - 3. $f_X(x|y) = f_Y(x)$
- X, Y are independent \Rightarrow
 - E(XY) = E(X)E(Y)• cov(X, Y) = 0

(the converse does not hold)

Conditional expectation

discrete case

let $f_Y(\cdot|x_i)$ be the conditional pmf of Y given $X = x_i$.

$$E[Y|x_i] := \sum_{j=1}^J y_j f_Y(y_j|x_i)$$

$$var[Y|x_i] := \sum_{j=1}^{J} (y_j - E[Y|x_i])^2 f_Y(y_j|x_i)$$

 $E[Y|x_i]$ is like E(Y), with conditional distribution replacing marginal distribution $f_Y(\cdot)$. likewise, $var[Y|x_i]$ like var(Y).

continuous case

$$E[Y|x] := \int_{-\infty}^{\infty} y f_Y(y|x) \, dy$$

$$var[Y|x] := \int_{-\infty}^{\infty} (y - E[Y|x])^2 f_Y(y|x) \, dy$$
$$= E(Y^2|x) - \{E(Y|x)\}^2$$

Distributions

if X is iid with expectation μ , SD σ and $S_n = \sum_{i=1}^n X_i$,

distribution of X	E(X)	var(X)
Bernoulli(p)	p	p(1-p)
Binomial(n,p)	np	np(1-p)
Geometric(n, p)	1/p	$(1-p)/p^2$
$Multinomial(n, \mathbf{p})$	$\begin{bmatrix} {}^{n}p_{1} \\ {}^{n}p_{2} \\ \vdots \\ {}^{n}p_{k} \end{bmatrix}$	$ \begin{aligned} & \operatorname{var}(X_i) = n p_i (1 - p_i) \\ & \operatorname{var}(X) = \operatorname{covariance matrix} M \\ & \text{with} \qquad m_{ij} \qquad = \\ & \left\{ \operatorname{var}(X_i) & \text{if } i = j \\ & \operatorname{cov}(X_i, X_j) & \text{if } i \neq j \\ \end{aligned} \right. $

- binomial: n coin flips (bernoulli) with probability p
 - $X \sim Bin(n, p) \Rightarrow X_i \stackrel{i.i.d.}{\sim} Bernoulli(p)$
 - $P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}$
 - $\operatorname{cov}(X, n X) = -\operatorname{var}(X)$
- multinomial: tally of k possible outcomes (n events)
 - $\operatorname{cov}(X_i, X_i) < 0$
- $X_i \sim Bin(n, p_i)$
- $X_i + X_j \sim Bin(n, p_i + p_j)$

02. PROBABILITY (2)

Mean Square Error (MSE)

$$MSE = E\{(Y-c)^2\}$$

$$= var(Y) + \{E(Y) - c\}^2$$

$$\min MSE = var(Y) \text{ when } c = E(Y)$$
if Y and X are correlated:
$$MSE = var[Y|x] + \{E[Y|x] - c\}^2$$

mean MSE

$$\frac{1}{n} \sum_{i=1}^{n} \text{var}[Y|x_i] \approx E\{\text{var}[Y|X]\}$$

random conditional expectations

- E[Y|X] is a r.v. which takes value E[Y|x] with probability/density $f_X(x)$
- var[Y|X] is a r.v. which takes value var[Y|x] with probability/density $f_X(x)$

$$E(E[X_2|X_1]) = E(X_2) var(E[X_2|X_1]) + E(var[X_2|X_1]) = var(X_2)$$

CDF (cumulative distribution function)

for r.v. X, let $F(x) = P(X \le x)$

• domain: \mathbb{R} ; codomain: [0,1]

$$F(x) = \int_{-\infty}^{\infty} f(x) \, dx$$

Standard Normal Distribution

$$Z\sim N(0,1) \text{ has density function}$$

$$\phi(z)=\frac{1}{\sqrt{2\pi}}\exp\{-\frac{z^2}{2}\},\quad -\infty < z < \infty$$

$$E(Z) = 0$$
, $var(Z) = 1$

CDF,
$$\Phi(x) = P(Z \le x) = \int_{-\infty}^{x} \phi(z) \, dz$$

• $E(Z^2) = 1$

general normal distribution

standardisation: $\frac{X-\mu}{2} \sim N(0,1)$

- density, $f_W(w) = \frac{d}{dw} F_W(w)$
- CDF, $F_W(w) = P(X \leq \frac{w-a}{b}) = \Phi(\frac{w-a}{b})$

Central Limit Theorem

as $n \to \infty$, the distribution of the standardised $S_n = \frac{S_n - n\mu}{\sqrt{n}\sigma}$ converges to N(0,1)for large n, approximately $S_n \sim N(n\mu, n\sigma^2)$

Distributions

chi-square (χ^2)

let $Z \sim N(0,1)$. \Rightarrow then $Z^2 \sim \chi^2_1$ (1 degree of freedom)

$$ullet$$
 degrees of freedom = number of RVs in the sum

$$E(Z^2) = 1, \quad E(Z^4) = 3$$

 $var(Z^2) = E(Z^4) - \{E(Z^2)\}^2 = 2$

let
$$V_1,\ldots,V_n \overset{i.i.d.}{\sim} \chi_1^2$$
 and $V = \sum_{i=1}^n V_i$. then $V \sim \chi_n^2$
$$E(V) = n \quad \mathrm{var}(V) = 2n$$

gamma

let shape parameter $\alpha > 0$, rate parameter $\lambda > 0$. The $Gamma(\alpha, \lambda)$ density is $\frac{\lambda^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x}, \quad x > 0$

 $\Gamma(\alpha)$ is a number that makes density integrate to 1

$$E(X) = \frac{\alpha}{\lambda}, \quad \text{var}(X) = \frac{\alpha}{\lambda^2}$$

 $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$

• if $X_1 \sim Gamma(\alpha_1, \lambda)$ and $X_2 \sim Gamma(\alpha_2, \lambda)$ are independent, then $X_1 + X_2 \sim Gamma(\alpha_1 + \alpha_2, \lambda)$

t distribution

let $Z \sim N(0,1)$ and $V \sim \chi_n^2$ be independent.

$$\frac{Z}{\sqrt{V/n}} \sim t_n$$

has a t distribution with n degrees of freedom.

- t distribution is symmetric around 0
- $t_n \to Z$ as $n \to \infty$ (because $\frac{V}{n} \to 1$)

F distribution

let $V \sim \chi_m^2$ and $W \sim \chi_n^2$ be independent.

$$\frac{V/m}{W/n} \sim F_{m,n}$$

has an F distribution with (m, n) degrees of freedom.

• even if m = n, still two RVs V, W as they are independent

IID Random Variables

let X_1, \ldots, X_n be iid RVs with mean \bar{X} .

sample variance,
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

$$E(S^2) = \sigma^2 \quad \text{but} \quad E(S) < \sigma$$

more distributions:

$$\frac{\frac{(n-1)S^2}{\sigma^2}}{\sigma^2} \sim \chi^2_{n-1}$$
 \bar{X} and S^2 are independent

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$
$$\frac{\bar{X} - \mu}{S / \sqrt{n}} \sim t_{n-1}$$

Multivariate Normal Distribution

let μ be a $k \times 1$ vector and Σ be a *positive-definite* symmetric $k \times k$ matrix.

> the random vector $\mathbf{X} = (X_1, \dots, X_k)'$ has a multivariate normal distribution $N(\mu, \Sigma)$ $E(X) = \mu$, $var(X) = \Sigma$

• two multinomial normal random vectors X_1 and X_2 , sizes h and k, are independent if $cov(X_1, X_2) = \mathbf{0}_{h \times k}$

03. POINT ESTIMATION

for a variable v in population N.

$$\mu = \frac{1}{N} \sum_{i=1}^{N} v_i$$
 $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (v_i - \mu)^2$

• μ , σ^2 are **parameters** (unknown constants)

draws with replacement

random sample mean,
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$E(\bar{X}) = \mu, \, \mathrm{var}(\bar{X}) = \frac{\sigma^2}{n}$$

$$E(X_i) = \mu, \quad \mathrm{var}(X_i) = \sigma^2$$

- same distribution: x_i, X_i , population distribution
- the error in \bar{x} is $\mu \bar{x}$; it cannot be estimated

representativeness

- X_1, \ldots, X_n is **representative** of the population
- as n gets larger, \bar{X} gets closer to μ
- x_1, \ldots, x_n are *likely* representative of the population

Point estimation of mean

a population (size N) has unknown mean μ , variance σ^2 .

standard error

SE is a constant by definition: $SE = SD(\hat{X}) = \frac{\sigma}{\sqrt{n}}$ point estimation of mean: SE (\bar{x}) is estimated as $\frac{s}{\sqrt{n}}$

Simple random sampling (SRS)

n random draws without replacement from a population

for
$$i \neq j$$
, $cov(X_i, X_j) = -\frac{\sigma^2}{N-1}$

• if n/N is relatively large, account for $cov(X_i, X_j)$

$$E(\bar{X}) = \mu, \quad \text{var}(\bar{X}) = \frac{N-n}{N-1} \frac{\sigma^2}{n}$$

• if $n \ll N$, then SRS is like sampling with replace*ment* (treat the data as IID RVs X_1, \ldots, X_n)

$$E(\bar{X}) = \mu, \quad \text{var}(\bar{X}) = \frac{\sigma^2}{n}$$

estimating proportion p

- the estimate of σ is $\hat{\sigma}$, not s
- unbiased estimator \hat{p}

•
$$E(\hat{p}) = p$$
, $var(\hat{p}) = \frac{p(1-p)}{n}$, $SE = SD(\hat{p})$

04. ESTIMATION (SE, bias, MSE)

for random draws X_1, \ldots, X_n with replacement

MSE and bias

suppose measurements were from a population with mean w+b where b is a constant: $x_i=w+b+\epsilon_i$

- $E(\bar{X}) = w + b$, $SD(\bar{X}) = \frac{\sigma}{\sqrt{n}}$
- $SE=rac{\sigma}{\sqrt{n}}$ measures how far $ar{x}$ is from w+b, not w if b
 eq 0, then $ar{x}$ is a biased estimate for w
- $MSE = E\{(\bar{X} w)^2\} = \frac{\sigma^2}{2} + b^2$

general case

let θ be a parameter and $\hat{\theta}$ be an estimator (RV). $SE = SD(\hat{\theta}), \quad \text{bias} = E(\hat{\theta}) - \theta,$ $MSE = E\{(\hat{\theta} - \theta)^2\} = SE^2 + bias^2$ as $n \to \infty$, $MSE \to b^2$

05. INTERVAL ESTIMATION

let x_1, \ldots, x_n be realisations of IID RVs X_1, \ldots, X_n with unknown $\mu = E(X_i)$ and $\sigma^2 = \text{var}(X_i)$.

point estimation: $\mu \approx \bar{x} \pm \frac{s}{\sqrt{n}}$

interval estimation: interval contains u with some confidence level

interval estimation works well if

- X_i has a normal distribution, for any n>1
- X_i has any other distribution but n is large

normal "upper-tail quantile" z_p

let
$$Z \sim N(0,1)$$
. let z_p be the $(1-p)$ -quantile of Z . $p = \Pr(Z > z_p)$

(case 1) normal distribution with known σ^2

$$\begin{array}{l} X_1,\dots,X_n \overset{i.i.d.}{\sim} N(0,1) \text{ with known } \sigma^2. \\ \text{for } 0 < \alpha < 1, \ \Pr(-z_{\frac{\alpha}{2}} \leq Z \leq z_{\frac{\alpha}{2}}) = 1 - \alpha \end{array}$$

confidence interval for μ **:** the random interval

$$\left(\bar{X} - z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

contains μ with probability (confidence level) $1-\alpha$

(case 2) normal distribution with unknown σ^2

replace σ with S and use t distribution:

for
$$0 , let $t_{p,n}$ be such that $\Pr(t_n > t_{p,n}) = p$ as $n \to \infty$, $t_{n,n} \to z_n$$$

the random interval
$$\left(\bar{X}-t_{\frac{\alpha}{2},n-1}\frac{S}{\sqrt{n}},\bar{X}+t_{\frac{\alpha}{2},n-1}\frac{S}{\sqrt{n}}\right)$$
 contains μ with probability $1-\alpha$.

(case 3) general distribution with unknown σ^2

- CLT: for large n, approximately $\frac{S_n n\mu}{\sqrt{n}\sigma} \sim N(0,1)$
- since $\frac{S_n n\mu}{\sqrt{n}\sigma} = \frac{\bar{X} \mu}{\sigma/\sqrt{n}}$,

for large n, the random interval $\left(\bar{X}-z_{\frac{\alpha}{2}}\frac{S}{\sqrt{n}},\bar{X}+z_{\frac{\alpha}{2}}\frac{S}{\sqrt{n}}\right)$ contains μ with probability $\approx 1 - \alpha$

- for SRS, multiply SE by correction factor $\sqrt{\frac{N-n}{N-1}}$
- contains μ with probability $< 1 \alpha$
- probability $\rightarrow 1 \alpha$ as $n \rightarrow \infty$
- exception: for Bernoulli, $\sigma = \sqrt{p(1-p)}$ is not estimated by s, but by replacing p with the sample proportion

06. METHOD OF MOMENTS

modified notation of mass/density functions:

- bernoulli: $f(x|p) = p^x(1-p)^{1-x}, x = 0, 1$ • parameter space is (0, 1)
- poisson: $f(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, \dots$ • parameter space is \mathbb{R}_{+}

parameter estimation

assuming data x_1, \ldots, x_n are realisations of IID RVs X_1, \ldots, X_n with mass/density function $f(x|\theta)$, where θ is unknown in parameter space Θ .

- 2 methods to estimate θ :
 - · method of moments (MOM)
 - method of maximum likelihood (MLE)
- the estimate of θ is a realisation of an estimator $\hat{\theta}$
- parameter space Θ : set of values that can be used to estimate the real parameter value θ
 - e.g. for $N(\mu, \sigma^2)$, parameter space $\Theta = \mathbb{R} \times \mathbb{R}_+$

Moments of an RV

the
$$k$$
-th moment of an RV X is $\mu_k = E(X^k), \quad k = 1, 2, \dots$

estimating moments

let X_1, \ldots, X_n be IID with the same distribution as X.

the
$$k$$
-th sample moment is
$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k \\ E(\hat{\mu}_k) = E(\frac{1}{n} \sum_{i=1}^n x_i^k) = \mu_k \quad \Rightarrow \text{unbiased!}$$

MOM: general

let $X \sim Distribution(\theta)$. to obtain \bar{x} and SE:

- 1. $\mu = \mu_1$, $\sigma^2 = \mu_2 \mu_1^2$
- 2. express parameters in terms of moments
- 3. estimate MOM estimator using sample mean \bar{x} : $\hat{\theta}$ =
- 4. obtain $SE = SD(\hat{\theta}) = \sqrt{\operatorname{var}(\hat{\theta})} = \sqrt{\frac{1}{n}\operatorname{var}(X)}$ $\theta \approx \bar{x} \pm \sqrt{\frac{\text{var}(X)}{1}}$

07. MLE

Likelihood function

let x_1, \ldots, x_n be realisations of iid rvs X_1, \ldots, X_n with density $f(x|\theta), \ \theta \in \Theta \subset \mathbb{R}^k$.

likelihood function $L:\Theta\to\mathbb{R}_+$ is

$$L(\theta) = \prod_{i=1}^{n} f(x_i|\theta)$$
$$= f(x_1|\theta) \times \dots \times f(x_n|\theta)$$

loglikelihood function $\ell:\Theta\to\mathbb{R}$ is

$$\ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log f(x_n | \theta)$$

(can omit additive constants (ℓ) /constant factors (L))

Maximum Likelihood Estimation (MLE)

- **maximiser** of $L \to \text{the maximum likelihood estimate of } \theta$ (a realisation of the MLEstimator $\hat{\theta}$)
 - maximiser of loglikelihood $\ell = \log L$ over Θ

find the value of θ that maximises (log)likelihood:

- 1. calculate likelihood L, loglikelihood ℓ
- 2. differentiate loglikelihood ℓ : $\ell'(\theta) = 0$
- 3. confirm max point: $\ell''(\theta) < 0$

ML vs MOM

- MOM estimates can always be written in terms of the data (sample moments)
 - ML uses *
- · ML has better (smaller) SE and bias than MOM
- · MOM/ML estimates are asymptotically unbiased
 - as $n \to \infty$, $E(\hat{\theta}_n) \to \theta$

Kullback-Liebler divergence (KL)

let $\mathbf{q} = (q_1, \dots, q_k)$ and $\mathbf{p} = (p_1, \dots, p_k)$ be strictly positive probability vectors.

the KL divergence between q and p is

$$d_{KL}(\mathbf{q}, \mathbf{p}) = \sum_{i=1}^{k} q_i \log(\frac{q_i}{p_i})$$

- $d_{KL}(\mathbf{q}, \mathbf{p}) \ge 0$ (equality $\iff \mathbf{q} = \mathbf{p}$) • $d_{KL}(\mathbf{q}, \mathbf{p}) \neq d_{KL}(\mathbf{p}, \mathbf{q})$
- used to maximise ℓ to find MLE for multinomial
- let q be the MOM estimate for p. for any p,

$$\ell(\mathbf{q}) - \ell(\mathbf{p}) = \sum_{i=1}^{k} x_i \log q_i - \sum_{i=1}^{k} x_i \log p_i$$
$$= n d_{KL}(\mathbf{q}, \mathbf{p}) \ge 0$$

•
$$\ell(\mathbf{q}) - \ell(\mathbf{p}) = 0 \iff \mathbf{p} = \mathbf{q} = \frac{\mathbf{x}}{n}$$

Hardy-Weinberg equilibrium (HWE)

let θ be the proportion of a.

the population is in **HWE** if $f(aa) = \theta^2$, $f(aA) = 2\theta(1-\theta)$, $f(AA) = (1-\theta)^2$

- (e.g. genotypes) Under HWE, the number of a alleles in an individual has a $Binom(2, \theta)$ distribution
- for n randomly chosen people, number of a alleles $(AA, Aa, aa) \sim Multinomial(n, \theta)$

Multinomial ML estimation

for $(X_1,X_2,X_3)\sim Multinomial(n,\mathbf{p})$ where $p_1=(1-\theta)^2,\,p_2=2\theta(1-\theta),\,p_3=\theta^2$

• $L(\theta) = p_1^{x_1} p_2^{x_2} p_3^{x_3} = 2^{x_2} (1 - \theta)^{2x_1 + x_2} \theta^{x_2 + 2x_3}$

• $\ell(\theta) = x_2 \log 2 + (2x_1 + x_2) \log(1 - \theta) + (x_2 + 2x_3) \log \theta$

• ML estimator: $\hat{\theta} = \frac{X_2 + 2X_3}{2n}$

• SE estimation: $\sqrt{\frac{\theta(1-\theta)}{2n}}$

• X_2+2X_3 is the number of a alleles: $Binom(2n,\theta)$ $\Rightarrow var(\hat{\theta}) = \frac{\theta(1-\theta)}{2n}$

08. LARGE-SAMPLE DISTRIBUTION OF MLEs

asymptotic normality of ML estimator

let $\hat{\theta}_n$ be the ML estimator of $\theta\in\Theta\subset\mathbb{R}$, based on iid RVs X_1,\ldots,X_n with density $f(x|\theta)$.

for large n, approximately $\hat{\theta}_n \sim N(\theta, \frac{\mathcal{I}(\theta)^{-1}}{n})$

Fisher Information

let X have density $f(x|\theta)$, $\theta \in \Theta \subset \mathbb{R}^k$.

the **Fisher information** is the $k \times k$ matrix $\mathcal{I}(\theta) = -E \left[\frac{d^2 \log f(X|\theta)}{d\theta^2} \right]$

- $\mathcal{I}(\theta)$ is symmetric, with (ij)-entry $-E\left\lceil \frac{\delta^2 \log f(X|\theta)}{\delta \theta_i \delta \theta_j} \right\rceil$
- $\mathcal{I}(\theta)$ measures the information about θ in one sample X.

Asymptotic normality: general

1. obtain **fisher information**,

$$\mathcal{I}(\theta) = -E\left(\frac{d^2 \log f(X|\theta)}{d\theta^2}\right)$$

2. **asymptotic normality**: for large n, approximately $\hat{\theta}_n \sim N(\theta, \frac{\mathcal{I}(\theta)^{-1}}{n})$ (not necessarily exact)

Approximate CI with ML estimate

 $\hat{\theta}_n$ is the ML estimator of θ based on iid RVs X_1,\dots,X_n .

- for large n, approximately $\hat{\theta}_n \sim N(\theta, \frac{\mathcal{I}(\theta)^{-1}}{n})$.
- · the random interval

$$\left(\hat{\theta}_n - z_{\frac{\alpha}{2}} \sqrt{\frac{\mathcal{I}(\theta)^{-1}}{n}}, \hat{\theta}_n + z_{\frac{\alpha}{2}} \sqrt{\frac{\mathcal{I}(\theta)^{-1}}{n}} \right)$$
 covers θ with probability $\approx 1 - \alpha$

Scope of asymptotic normality of ML estimators

• let $\hat{\theta}^n$ be the ML estimator of θ . For strictly increasing or strictly decreasing $h:\Theta\to\mathbb{R},\,h(\hat{\theta}^n)$ is the ML estimator of $h(\theta)$. for large $n,\,h(\hat{\theta}^n)$ is approximately normal

population mean vs parameter

for n random draws with replacement from a population with mean μ and variance $\sigma^2,$

Estimator	E	var	Distribution
random sample mean, $\hat{\mu}$	μ	$\frac{\sigma^2}{n}$	pprox normal
ML estimator, $\hat{ heta}_n$	$\approx \theta$	$pprox rac{\mathcal{I}(heta)^{-1}}{n}$	$\approx \text{normal}$

 $\hat{\theta}_n$ is not normal (but may approach normal for large n)

Cramér-Rao inequality

if $\hat{\theta}_n$ is unbiased, then $\mathrm{var}(\hat{\theta}_n) \geq \frac{\mathcal{I}(\theta)^{-1}}{n}$ efficient \iff equality

 $E(\frac{d\log f(X|\lambda)}{d\lambda}) = 0$

09. HYPOTHESIS TESTING

let x_1, \ldots, x_n be realisations of IID $N(\mu, \sigma^2)$ RVs X_1, \ldots, X_n where μ is a parameter and σ is known.

 $\begin{array}{l} \text{null hypothesis},\, H_0: \mu = \mu_0 \\ \text{alternative hypothesis},\, H_1: \mu = \mu_1 \end{array}$

if σ is unknown or $x_1, \ldots, x_n \not\sim N(\mu, \sigma^2)$, we can use CLT

09.1. Rejection region

one-tailed test: $H_0: \mu=\mu_0, \quad H_1: \mu=\mu_1>\mu_0$ two-tailed test: $H_0: \mu=\mu_0, \quad H_1: \mu=\mu_1\neq\mu_0$

- 1. state hypotheses H_0, H_1 .
- 2. reject H_0 if $\bar{x} \mu_0 > c$ (or $|\bar{x} \mu_0| > c$)
- 3. $c=z_{\alpha(/2)}\frac{\sigma}{\sqrt{n}}$ by normalising $\alpha=P_{H_0}(\bar{X}>\mu_0+c)$
 - since under H_0 , $X \sim N(\mu_0, \frac{\sigma^2}{n})$.
- 4. **rejection region**: reject H_0 if . . .
 - $\bar{x} \in (\mu_0 + c, \infty)$
 - $\bar{x} \in (-\infty, \mu_0 c) \cup (\mu_0 + c, \infty)$

composite H_1 : (does not change rejection region) one-tailed test: $H_0: \mu = \mu_0, \quad H_1: \mu > \mu_0$ two-tailed test: $H_0: \mu = \mu_0, \quad H_1: \mu \neq \mu_0$

Size and power

Hypothesis	$\bar{x} < \mu_0 + c$	$\bar{x} > \mu_0 + c$
H_0	\checkmark not reject H_0	$\times (I)$ reject H_0
H_1	$\times (II)$ not reject H_0	\checkmark reject H_0

- type I error: rejecting H_0 when it is true
- type II error: not rejecting H_0 when it is false
- size of a test \rightarrow (aka level) probability of a Type I error
 - $\alpha := P_{H_0}(\bar{X} > \mu_0 + c)$
 - corresponds to a $(1-\alpha)$ -Cl for μ
- **power** of a test $\rightarrow 1-$ probability of a Type II error
 - $\beta := P_{H_1}(\bar{X} > \mu_0 + c) \Rightarrow \mathsf{power} = 1 \beta$
- as $n \to \infty$, power $\to 1$
- $\uparrow c: \downarrow \alpha, \downarrow \beta \ (\downarrow \text{ type } I \text{ error, } \uparrow \text{ type } II \text{ error)}$

P-value

P-value → the probability under H₀ that the random test statistic is more extreme than the observed test statistic
 small p-value = more "extreme" (more doubt)

- reject H_0 at level $\alpha \iff P < \alpha$
- generally, P-value for two-tailed test is double that of one-tailed test

formulae for P-value

$$\begin{split} H_1 : \mu > \mu_0 \\ P &= P_{H_0}(\bar{X} > \bar{x}) = \Pr\left(Z > \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}\right) \\ H_1 : \mu < \mu_0 \\ P &= P_{H_0}(\bar{X} < \bar{x}) = \Pr\left(Z < \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}\right) \\ H_1 : \mu \neq \mu_0 \\ P &= P_{H_0}(|\bar{X} - \mu_0| > |\bar{x} - \mu_0|) = \Pr\left(|Z| > \frac{|\bar{x} - \mu_0|}{\sigma / \sqrt{n}}\right) \end{split}$$

10. GOODNESS-OF-FIT

- likelihood ratio (LR) test → based on the ratio of likelihoods
 - \bullet P-value can be approximated using χ^2 distribution for a large sample size

multinomial

let $X \sim Trinomial(n,\mathbf{p})$. by HWE, \mathbf{p} is a function of θ as follows: $p_1 = (1-\theta)^2, \; p_2 = 2\theta(1-\theta), \; p_3 = \theta^2$ let L_1 and L_0 be the maximum likelihood value for the general model $(Trinomial(n,\mathbf{p}))$ and the HWE.

- $L_1 \ge L_0$ (L_0 is the maximum over a subset of L_1)
 - general trinomial
 - likelihood, $L(\mathbf{p}) = p_1^{x_1} p_2^{x_2} p_3^{x_3}$
 - ML estimate of \mathbf{p} is $\frac{x}{2}$
 - $\log L_1 = x_1 \log(\frac{x_1}{n}) + x_2 \log(\frac{x_2}{n}) + x_3 \log(\frac{x_3}{n})$
 - HWE:
 - likelihood, $L(\theta) = p_1(\theta)^{x_1} p_2(\theta)^{x_2} p_3(\theta)^{x_3}$
 - ML estimate of θ is $\frac{x_2+2x_3}{2n}$
- larger $L_1/L_0 \Rightarrow$ poorer fit for HWE

LR test

null hypothesis: HWE holds

$$H_0: p_1 = (1 - \theta)^2, \ p_2 = 2\theta(1 - \theta), \ p_3 = \theta^2$$

- LR test statistic: $2\log\left(\frac{L_1}{L_0}\right) = 2(\log L_1 \log L_0)$
- degree of freedom = difference in the number of parameters between the models
- general model has 2 params, HWE has 1 param
- P-value = $\Pr\left(\chi_1^2 > 2\log(\frac{L_1}{L_0})\right)$

Nested models

the set of all $Trinomial(n,\mathbf{p})$ distributions can be represented by

$$\Omega_1 = \left\{ (p_1, p_2, p_3) : p_i > 0, \sum_{i=1}^3 p_i = 1 \right\}$$
which has dimension 2 (dim $\Omega_1 = 2$)

• by HWE, **p** is in the subset

$$\Omega_0 = \{((1-\theta)^2, 2\theta(1-\theta), \theta^2) : 0 < \theta < 1\}$$
 (dim $\Omega_0 = 1$)

- Ω_0 is **nested** in Ω_1
- measure goodness-of-fit of HWE by testing $H_0: \mathbf{p} \in \Omega_0$

General Multinomial LR test

let $(X_1, \ldots, X_k) \sim Multinomial(n, \mathbf{p})$. then $\mathbf{p} \in \Omega_1$, the set of all positive probability vectors of length k.

to test if p is in a subspace

$$\Omega_0 = \{(p_1(\theta), \dots, p_k(\theta)) : \theta \in \Theta \subset \mathbb{R}^h\}$$

with $\dim \Omega_0 < \dim \Omega_1 = k-1$

let L_j be the maximum likelihood value under Ω_j . To test $H_0: \mathbf{p} \in \Omega_0$, we use the **LR statistic**,

$$G = 2\log(\frac{L_1}{L_0})$$

- for Ω_1 : $\log L_1 = \sum_{i=1}^k X_i \log(\frac{X_i}{n})$
- for Ω_0 : $\log L_0 = \sum_{i=1}^k X_i \log p_i(\hat{\theta})$

$$G = 2\sum_{i=1}^{k} X_i \log \left(\frac{X_i}{np_i(\hat{\theta})}\right)$$

given data (x_1,\ldots,x_n) , let g be a realisation of G. P-value $P_{H_0}(G>g)$ is approximately $\Pr(\chi^2_{k-1-\dim\Omega_0}>g)$ for large n.

- to compute q, replace
 - X_i with observed count x_i
 - $np_i(\hat{\theta})$ with expected count, calculated using ML estimate of θ

Test of independence

for a population with attributes q and r, let p_{ij} be the population proportion of people with $q=q_i$ and $r=r_j$. for any $i,j,p_{ij}=q_i\times r_j$.

- let $(X_{ij}, 1 \le i \le I, 1 \le j \le J) \sim Multinomial(n, \mathbf{p})$. $\mathbf{p} \in \Omega_1$, where $\dim \Omega_1 = IJ - 1 = k - 1$.
- H_0 : the two categories q, r are independent
- if q,r are independent, then \exists positive numbers $\sum_{i=1}^{I}q_i=\sum_{j=1}^{J}r_j=1$ such that $p_{ij}=q_i\times r_j$, $1\leq i\leq I, 1\leq j\leq J$
- $\dim \Omega_0 = (I-1) + (J-1) = I + J 2$
- $\dim \Omega_1 \dim \Omega_0 = (I-1)(J-1)$
- under independence (H_0) , for large n, approximately $G \sim \chi^2_{(I-1)(I-1)}$

G statistic

for any i, let $X_{i+} = \sum_{j=1}^{J} X_{ij}$.

for any j, let $X_{+j} = \sum_{i=1}^{I} X_{ij}$.

•
$$\Omega_1$$
: $\log L_1 = \sum_{ij} X_{ij} \log \left(\frac{X_{ij}}{n}\right)$

• Ω₀ :

$$\log L_0 = \sum_{i} X_{i+1} \log \left(\frac{X_{i+1}}{n} \right) + \sum_{j+1} X_{j+1} \log \left(\frac{X_{j+1}}{n} \right)$$

- $G = 2(\log L_1 \log L_0) = 2\sum_{ij} X_{ij} \log \left(\frac{X_{ij}}{X_{i+}X_{+j}/n}\right)$
- the data x_{ij} are the observed counts • the data $x_{i+}x_{+i}/n$ are the expected counts
- P-value = $\Pr\left(\chi^2_{(I-1)(I-1)} > g\right)$

General LR test

we have n iid RVs with density defined by $\theta \in \Omega_1$ of dimension k_1 ; nested in Ω_1 is a smaller model Ω_0 of dimension k_0 .

$$\begin{array}{c} H_0:\theta\in\Omega_0 & H_1:\theta\in\Omega_1\backslash\Omega_0\\ \text{to test } H_0:\theta\in\Omega_0, \text{we use LR statistic}\\ G=2\log\left(\frac{L_1}{L_0}\right) \end{array}$$

where L_i is the maximum likelihood value over Ω_i . for large n, the P-value can be approximately computed, because:

$$\label{eq:theta} \text{if } \theta \in \Omega_0 \text{, as } n \to \infty, \\ \text{the distribution of } G \text{ converges to } \chi^2_{k_1-k_0}$$

Normal LR test

 x_1, \ldots, x_n are form iid $N(\mu, \sigma^2)$ RVs. to test $H_0: \mu = 0$: \mathbb{R} {0} known unknown $\mathbb{R} \times \mathbb{R}_+ \mid 2 \mid \{0\} \times \mathbb{R}_+ \mid 1$

under H_0 , for large n, approximately $G \sim \chi_1^2$

- case 1: σ known
- Ω_1 : $\log L_1 = -\frac{n\hat{\sigma}^2}{2\sigma^2}$ Ω_0 : $\log L_0 = -\frac{n\hat{\mu}^2}{2\sigma^2}$
- $G = 2(\log L_1 \log L_0) = \frac{n\bar{X}^2}{\sigma^2}$
 - if H_0 holds ($\mu=0$), then $\bar{X}\sim N(0,\frac{\sigma^2}{n})$. for any $n, G \sim \chi_1^2$ exactly.
- case 2: σ unknown
- $\Omega_1 : \log L_1 = -\frac{n}{2} \log \hat{\sigma}^2 \frac{n}{2}$ $\Omega_0 : \log L_0 = -\frac{n}{2} \log \hat{\mu}_2 \frac{n}{2}$
- $G = 2(\log L_1 \log L_0) = n \log(\frac{\hat{\mu}_2}{\hat{\sigma}^2})$
- if H_0 holds ($\mu = 0$), for large $n, G \sim \chi_1^2$ approximately

Summary

- · LR test applies when the investigator wants to know the goodness-of-fit of a model relative to a larger model, of dimensions $k_0 < k_1$.
- test statistic, $G = 2 \log \left(\frac{L_1}{L_0}\right)$
 - L_0, L_1 are the maximum likelihood value under the small and large models
- if n is large, the P-value $\Pr(G > q)$ (computed provided H_0 is true) can be approximated by a $\chi^2_{k_1-k_0}$ distribution