Maps Between Manifolds

万思扬

October 4, 2024

Contents

		ap between two manifolds
	1.1	pull-back
	1.2	push-forward
	1.3	pull-back again
2	som	ne examples
	2.1	a simple example
		Lorentz transformation
	2.3	Poincaré transformation
	2.4	left-invariant vector field on the Poincaré group

1 a map between two manifolds

• $\phi: M_1 \to M_2$ 是一个流形间的映射, 如下图所示,

Figure 1: a map between two manifolds

1.1 pull-back

• 将 M_2 上的标量场拉回得到 M_1 上的标量场, 特别地,

$$x = \phi^* x'$$
 i.e. $x'(q) = x'(\phi(p)) = (\phi^* x')(p) = x(p)$ (1.1)

不过要注意, ϕ^*x' 不是 M_1 上的坐标, 因为 ϕ 不是 one-to-one, (一个有帮助的例子是 $\dim M_2 < \dim M_1$).

1.2 push-forward

• 将 M_1 上的矢量场推前得到 M_2 上的矢量场, 特别地,

$$\phi_* \frac{\partial}{\partial x} = \frac{\partial}{\partial x'}$$
 i.e. $\frac{\partial}{\partial x'^{\mu}}(x') = \left(\phi_* \frac{\partial}{\partial x^{\mu}}\right)(x') = \frac{\partial}{\partial x^{\mu}}(\phi^* x') = \frac{\partial}{\partial x^{\mu}}(x)$ (1.2)

1.3 pull-back again

• 将 M_2 上的对偶矢量场拉回得到 M_1 上的对偶矢量场, 特别地,

$$dx = \phi^* dx'$$
 i.e. $dx'^{\mu} \left(\frac{\partial}{\partial x'} \right) = dx'^{\mu} \left(\phi_* \frac{\partial}{\partial x} \right) = (\phi^* dx'^{\mu}) \left(\frac{\partial}{\partial x} \right) = dx^{\mu} \left(\frac{\partial}{\partial x} \right)$ (1.3)

2 some examples

2.1 a simple example

• 考虑 $\phi: \mathbb{R}^3 \to \mathbb{R}^2$, 两个流形上分别有直角坐标和极坐标, 映射具体形式为,

$$\phi(p) = q$$
 s.t. $r(q) = x(p), \theta(q) = y(p)$ (2.1)

如下图所示,

Figure 2: a simple example

• 此时 $x = \{x, y, z\}, x' = \{r, \theta\},$ 并且有,

$$\begin{cases} x = \phi^* r \quad y = \phi^* \theta \\ \phi_* \left(\frac{\partial}{\partial x} + \alpha \frac{\partial}{\partial z} \right) = \frac{\partial}{\partial r} \quad \phi_* \left(\frac{\partial}{\partial y} + \beta \frac{\partial}{\partial z} \right) = \frac{\partial}{\partial \theta} \quad \text{其中 } \alpha, \beta \text{ 是任意实数} \\ dx = \phi^* dr \quad dy = \phi^* d\theta \end{cases}$$
 (2.2)

2.2 Lorentz transformation

• Lorentz 变换 $\phi: M \to M$ (其中 $M = \mathbb{R}^{3,1}$) 的具体形式为,

$$\phi: p \mapsto q \quad \text{s.t.} \quad x(q) = \Lambda^{-1} x(p)$$
 (2.3)

如下图所示,

Figure 3: Lorentz transformation

• 有如下关系,

$$\begin{cases} x = \phi^* x' = \Lambda^{-1} x' \\ \phi_* \frac{\partial}{\partial x} = \frac{\partial}{\partial x'} = \eta \Lambda \eta \frac{\partial}{\partial x} \\ dx = \phi^* dx' = \Lambda^{-1} dx' \end{cases}$$
 (2.4)

calculation:

对于推前映射,

$$\frac{\partial}{\partial x'^{\mu}} = \frac{\partial x^{\nu}}{\partial x'^{\mu}} \frac{\partial}{\partial x^{\nu}} = \Lambda_{\mu}^{\ \nu} \frac{\partial}{\partial x^{\nu}} \tag{2.5}$$

其中, $\frac{\partial x^{\nu}}{\partial x'^{\mu}} = (\Lambda^{-1})^{\nu}_{\ \mu} = \Lambda_{\mu}^{\ \nu} \tag{2.6}$

2.3 Poincaré transformation

• Poincaré 变换 $\phi: M \to M$ (其中 $M = \mathbb{R}^{3,1}$) 的具体形式为,

$$\phi: p \mapsto q \quad \text{s.t.} \quad x(p) = \Lambda x(q) + a$$
 (2.7)

如下图所示,

Figure 4: Poincaré transformation

• 有如下关系,

$$\begin{cases} x = \phi^* x' = \Lambda^{-1} (x' - a) \\ \phi_* \frac{\partial}{\partial x} = \frac{\partial}{\partial x'} = \eta \Lambda \eta \frac{\partial}{\partial x} \\ dx = \phi^* dx' = \Lambda^{-1} dx' \end{cases}$$
 (2.8)

2.4 left-invariant vector field on the Poincaré group

•