Sesta Esercitazione

Esercizio 1. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 cittá, le cui distanze reciproche sono indicate in tabella:

cittá	2	3	4	5
1	24	21	20	9
2		23	40	13
3			30	25
4				28

Trovare una valutazione inferiore del valore ottimo calcolando il 5-albero di costo minimo. Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 1. Risolvere il problema con l'algoritmo del $Branch\ and\ Bound$, utilizzando il 5-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili $x_{34},\ x_{24}$ e x_{45} .

Esercizio 2. Si consideri il problema di caricare un container di volume pari a 7 metri cubi e cercando di massimizzare il valore dei beni inseriti (ogni bene puó essere inserito al massimo una volta).

Beni	1	2	3	4
Valori	17	11	18	12
Volumi	6	4	2	5

Calcolare una valutazione inferiore del valore ottimo applicando un algoritmo greedy. Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo $0 \le x_i \le 1$. Risolvere il problema con il "Branch and Bound".

SOLUZIONI

Esercizio 1.

a) Trovare una valutazione inferiore del valore ottimo calcolando il 5-albero di costo minimo.

5–albero: (1,3) (1,4) (1,5) (2,3) (2,5)
$$v_I(P) = 86$$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo pi vicino a partire dal nodo 1.

ciclo:
$$1-5-2-3-4-1$$
 $v_S(P) = 95$

c) Risolvere il problema con l'algoritmo del $Branch\ and\ Bound$, utilizzando il 2-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili $x_{34},\,x_{24}$

Esercizio 2. Si consideri il problema di caricare un container di volume pari a 7 metri cubi e cercando di massimizzare il valore dei beni inseriti (ogni bene pu essere inserito al massimo una volta).

Beni	1	2	3	4
Valori	17	11	18	12
Volumi	6	4	2	5

a) Calcolare una valutazione inferiore del valore ottimo applicando un algoritmo greedy.

sol. ammissibile =
$$(0, 1, 1, 0)$$
 $v_I(P) = 29$

b) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo $0 \le x_i \le 1$.

ottimo rilassamento =
$$(5/6, 0, 1, 0)$$
 $v_S(P) = 32$