Question Number	Answer		Mark
19(a)	Calculation of mass difference	(1)	
	Conversion from u to kg, using a conversion factor of $1.66 \times 10^{-27} \text{ kg u}^{-1}$	(1)	
	Use of $\Delta E = c^2 \Delta m$	(1)	
	Conversion of energy to eV	(1)	
	$\Delta E = 5.61 \text{ (MeV)}$	(1)	5
	Example of calculation		
	Mass difference = $237.999089 \text{ u} - 233.991578 \text{ u} - 4.001506 \text{ u} = 6.005 \times 10^{-3} \text{ u}$		
	Mass difference = $6.005 \times 10^{-3} \text{ u} \times 1.66 \times 10^{-27} \text{ kg} = 9.9683 \times 10^{-30} \text{ kg u}^{-1}$		
	$\Delta E = c^2 \Delta m = (3.00 \times 10^8 \text{ m s}^{-1})^2 \times 9.9683 \times 10^{-30} \text{ kg} = 8.9715 \times 10^{-13} \text{ J}$		
	$\Delta E = \frac{8.9715 \times 10^{-13} \text{ J}}{1.60 \times 10^{-13} \text{ J MeV}^{-1}} = 5.607 \text{ MeV}$		
19(b)	Convert α-particle energy from MeV to J	(1)	
	Use of $\lambda = \frac{\ln 2}{t_{1/2}}$	(1)	
	Use of $A = A_0 e^{-\lambda t}$	(1)	
	Use of $P = \frac{\Delta E}{\Delta t}$	(1) (1)	
	P = 0.083 (W)	(1)	5
	Example of calculation		
	$5.6 \text{ MeV} = 5.6 \times 1.60 \times 10^{-19} \text{ J MeV}^{-1} = 8.96 \times 10^{-13} \text{ J}$		
	$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{0.693}{87.7 \text{ year}} = 7.90 \times 10^{-3} \text{ year}^{-1}$		
	$6.75 \times 10^{10} \text{ Bq} = A_0 e^{-7.90 \times 10^{-3} \text{ year}^{-1} \times 40 \text{ year}}$		
	$\therefore A_0 = 9.26 \times 10^{10} \text{ Bq}$		
	$So P = 9.26 \times 10^{10} \text{s}^{-1} \times 8.96 \times 10^{-13} \text{ J} = 0.0830 \text{ W}$		

	Total for question 19		13
	MP3 dependent on MP1 and MP2		
	Conclusion that 0.5 cm polyethylene would be sufficient	(1)	3
	Or max. energy for 0.5 cm polyethylene read from graph.2 (in range $1000 \text{ keV} \rightarrow 1200 \text{ keV}$)	(1)	
	Beta particle range read from graph 2 (in range $0.05 \text{ cm} \rightarrow 0.08 \text{ cm}$)		
19(c)	Maximum energy of beta particles read from graph 1 (in range 210 keV \rightarrow 225 keV)	(1)	