Licence 1ere année Mathématiques et calcul 1er semestre

Lionel Moisan

Université Paris Descartes

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

1

5. Fonctions usuelles

Fonctions usuelles

- Fonctions logarithme, exponentielle et puissance
 - La fonction logarithme
 - La fonction exponentielle
 - Dérivée d'une fonction réciproque
 - Graphe d'une fonction réciproque
 - Les fonctions puissance
 - La fonction exponentielle de base a
 - Croissances comparées
- Fonctions trigonométriques réciproques
 - La fonction Arcsinus
 - La fonction Arccosinus
 - La fonction Arctangente
 - Équations trigonométriques
 - Valeurs remarquables de Arcsin, Arccos, Arctan
- Fonctions hyperboliques
 - Les fonctions sinus et cosinus hyperboliques
 - La fonction tangente hyperbolique
 - Équations hyperboliques et fonctions réciproques
 - Exercices (fonctions hyperboliques)

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

3

Fonctions usuelles

Fonctions logarithme, exponentielle et puissance

La fonction logarithme

Théorème : Il existe une unique fonction (notée ln) définie sur $]0, +\infty[$ telle que ln(1) = 0 et

$$\forall x > 0, \quad \ln'(x) = \frac{1}{x}.$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

5

Fonctions usuelles

La fonction logarithme

Propriétés du logarithme

- ightharpoonup orall a, $b \in \mathbb{R}_+^*$, $\ln(a.b) = \ln a + \ln b$
- ▶ $\forall a, b \in \mathbb{R}_{+}^{*}$, $\ln(a/b) = \ln(a) \ln(b)$, $\ln(1/a) = -\ln(a)$
- ▶ $\forall a \in \mathbb{R}_+^*$, $\forall n \in \mathbb{Z}$, $\ln(a^n) = n$. $\ln a$
- ▶ La fonction logarithme est une bijection continue et strictement croissante de $]0, +\infty[$ sur \mathbb{R} .
- $\lim_{x\to 0}\frac{\ln(1+x)}{x}=1$
- $\forall x > 0, \quad \ln x \le x 1$

▶ Tangente en x = 1:

$$\lim_{h\to 0} \frac{\ln(1+h)}{h} = \ln'(1) = \frac{1}{1} = 1$$

ou encore,

$$ln(1+h) \sim_{h\to 0} h$$

► Position par rapport à la tangente :

$$\forall h \in]-1, +\infty[, \ln(1+h) \leq h.$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

16

Fonctions usuelles

La fonction logarithme

Graphe de la fonction logarithme

Exercice: Donner les limites suivantes:

1.
$$\lim_{x \to +\infty} \ln \left(\frac{2x+1}{2x-5} \right)$$

$$2. \lim_{x \to +\infty} \ln \left(\frac{x^2 + 1}{e^x} \right)$$

3.
$$\lim_{x \to +\infty} \frac{2 \ln(x) + 1}{x}$$

4.
$$\lim_{x \to +\infty} x \ln \left(1 + \frac{1}{x} \right)$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

18

Fonctions usuelles

La fonction exponentielle

La fonction exponentielle

La fonction réciproque de la fonction logarithme s'appelle la fonction exponentielle.

Notation : exp(x) ou e^x

exp est une fonction continue et strictement croissante définie sur $\mathbb R$ et à valeurs dans $]0, +\infty[$

On a :
$$\begin{cases} \exp(\ln x) = x & \forall x > 0 \\ \ln(\exp(x)) = x & \forall x \in \mathbb{R} \end{cases}$$

Propriétés de la fonction exponentielle

- ▶ $\forall a, b \in \mathbb{R}$, $\exp(a+b) = \exp(a)$. $\exp(b)$
- ▶ $\forall a, b \in \mathbb{R}$, $\exp(a-b) = \exp(a)/\exp(b)$
- ightharpoonup exp(0) = 1
- ▶ $\forall a \in \mathbb{R}$, $\exp(-a) = 1/\exp(a)$
- ▶ $\forall a \in \mathbb{R}, \ \forall n \in \mathbb{Z}, \ \exp(n.a) = (\exp(a))^n$
- ▶ exp' = exp

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

22

Fonctions usuelles

Dérivée d'une fonction réciproque

Dérivée d'une fonction réciproque

Théorème. Soit I un intervalle ouvert et $f: I \longrightarrow f(I) = J$ une fonction dérivable dont la dérivée reste de signe constant et ne s'annule pas sur I. Alors :

- f est bijective (et strictement monotone);
- ▶ sa fonction réciproque $f^{-1}: J \longrightarrow I$ est dérivable et

$$\left(f^{-1}\right)' = \frac{1}{f' \circ f^{-1}}$$

Justification de la formule : en notant $g = f^{-1}$ la fonction réciproque de f, on peut écrire

$$\forall x \in J$$
, $(f \circ g)(x) = x$

donc
$$(f \circ g)'(x) = f'(g(x)).g'(x) = 1 \implies g'(x) = \frac{1}{f'(g(x))}$$

Dérivée de l'exponentielle

$$(\operatorname{In} \circ \operatorname{exp})(x) = x$$

$$(\operatorname{In} \circ \operatorname{exp})'(x) = \operatorname{In}'(\operatorname{exp}(x)). \operatorname{exp}'(x) = 1$$

Donc:
$$\exp'(x) = \frac{1}{\ln'(\exp(x))} = \frac{1}{\frac{1}{\exp(x)}} = \exp(x)$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

24

Fonctions usuelles

Dérivée d'une fonction réciproque

Limites de l'exponentielle

On a:

$$\lim_{x \to -\infty} e^x = 0 \qquad \lim_{x \to +\infty} e^x = +\infty \qquad \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Exercice: Montrer ces limites, en utilisant ce que l'on sait de la fonction logarithme.

Exercice: Montrer que la fonction

$$f: x \mapsto \begin{cases} e^{-\frac{1}{x}} & \text{si } x > 0, \\ 0 & \text{sinon,} \end{cases}$$

est continue et dérivable, de dérivée continue.

Graphe d'une fonction réciproque

Si f est bijective, on a :

$$\forall x$$
, $(f \circ f^{-1})(x) = x$ et $(f^{-1} \circ f)(x) = x$.
 $donc \quad y = f(x) \iff x = f^{-1}(y)$

Soit $G_f = \{(x, f(x)) \mid x \in I\}$ le graphe de la fonction f:

$$(x,y) \in G_f \iff (y,x) = (y,f^{-1}(y)) \in G_{f^{-1}}$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

26

Fonctions usuelles

Graphe d'une fonction réciproque

Graphe d'une fonction réciproque

Graphe de la fonction exponentielle

UNIVERSITÉ PARIS DESCARTES

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

28

Fonctions usuelles

Les fonctions puissance

La fonction puissance b

Soit a > 0 et $b \in \mathbb{R}$ on appelle « a puissance b » le nombre réel définit par :

$$a^b = \exp(b. \ln a)$$

Propriétés:

$$1^b = 1 = a^0$$

$$\rightarrow a^b \times a^c = a^{b+c}$$

$$a^b/a^c = a^{b-c}$$

▶
$$1/a^b = a^{-b}$$

$$(a^b)^c = a^{bc}$$

$$a^b \times c^b = (ac)^b$$

$$(a^b)/(c^b) = (a/c)^b$$

La fonction puissance b

Soit $b \in \mathbb{R}$, la fonction :

$$u:]0, +\infty[\longrightarrow \mathbb{R}$$

 $x \longmapsto u(x) = x^b = \exp(b. \ln x)$

s'appelle la fonction puissance b.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

30

Fonctions usuelles

Les fonctions puissance

Dérivées des fonctions puissance

$$u(x) = x^b = \exp(b. \ln x)$$

$$u'(x) = \exp'(b. \ln x).(b. \ln' x) = \exp(b. \ln x) \frac{b}{x}$$

$$u'(x) = b. \exp(-\ln x). \exp(b. \ln x) = b. \exp((b-1). \ln x)$$

$$u'(x) = bx^{b-1}$$

Propriétés des fonctions puissance

$$b \in \mathbb{R}, x \in]0, +\infty[, u(x) = x^b = \exp(b. \ln x), u'(x) = bx^{b-1}]$$

- \triangleright b > 0
 - $u'(x) = b \exp((b-1) \ln x) > 0$: la fonction puissance b est strictement croissante.
 - $\lim_{x \to +\infty} (b. \ln x) = +\infty \quad \Rightarrow \quad \lim_{x \to +\infty} x^b = +\infty$
 - $\lim_{x\to 0} (b.\ln x) = -\infty \quad \Rightarrow \quad \lim_{x\to 0} x^b = 0 :$

la fonction puissance b se prolonge par continuité en 0 en posant : u(0) = 0

Si b > 1: $\lim_{x \to 0} \frac{u(x)}{x} = \lim_{x \to 0} x^{b-1} = \lim_{x \to 0} \exp((b-1)\ln x) = 0$:

la fonction puissance b est dérivable à droite en 0, $u'_d(0) = 0$, et la tangente au graphe est horizontale.

► Si 0 < b < 1: $\lim_{x \to 0} \frac{u(x)}{x} = \lim_{x \to 0} x^{b-1} = \lim_{x \to 0} \exp((b-1)\ln x) = +\infty$:

la fonction puissance *b* n'est pas dérivable en 0, la tangente au graphe est verticale.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

32

Fonctions usuelles

Les fonctions puissance

Propriétés des fonctions puissance

$$b \in \mathbb{R}, x \in]0, +\infty[, u(x) = x^b = exp(b, \ln x), u'(x) = bx^{b-1}]$$

- ▶ *b* < 0
 - $u'(x) = b \exp((b-1) \ln x) < 0$: la fonction puissance b est strictement décroissante.

$$\lim_{x \to +\infty} (b. \ln x) = -\infty \quad \Rightarrow \quad \lim_{x \to +\infty} x^b = 0$$

- $\lim_{x\to 0}(b.\ln x)=+\infty \quad \Rightarrow \quad \lim_{x\to 0}x^b=+\infty$
- ightharpoonup b = 0. La fonction puissance 0 est constante de valeur 1.

Graphes des fonctions puissance

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

34

Fonctions usuelles

Les fonctions puissance

Exercice : Associer chacune des équations suivantes avec une des courbes :

$$y = x^2$$
 ; $y = x^5$; $y = x^8$

Exponentielle de base a

Soit a > 0. La fonction

$$v : \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto v(x) = a^x = \exp(x. \ln(a))$

s'appelle la fonction exponentielle de base a

$$v'(x) = \ln(a). \exp(x. \ln(a)) = \ln(a).a^x$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

36

Fonctions usuelles

La fonction exponentielle de base a

Propriétés de l'exponentielle de base a $v(x) = a^x = \exp(x. \ln(a))$ $v'(x) = \ln(a).a^x$

- ► Si *a* > 1 :
 - 1. $\ln a > 0$, donc $\forall x \in \mathbb{R}$, v'(x) > 0 la fonction exponentielle de base a est strictement croissante.
 - 2. $\lim_{x \to +\infty} x \cdot \ln(a) = +\infty \implies \lim_{x \to +\infty} \exp(x \cdot \ln(a)) = +\infty$
 - 3. $\lim_{x \to -\infty} x \cdot \ln(a) = -\infty \implies \lim_{x \to -\infty} \exp(x \cdot \ln(a)) = 0$
- ► Si *a* < 1 :
 - 1. $\ln a < 0$, donc $\forall x \in \mathbb{R}$, v'(x) < 0 la fonction exponentielle de base a est strictement décroissante.
 - 2. $\lim_{x \to +\infty} x \cdot \ln(a) = -\infty \implies \lim_{x \to +\infty} \exp(x \cdot \ln(a)) = 0$
 - 3. $\lim_{x \to -\infty} x \cdot \ln(a) = +\infty \implies \lim_{x \to -\infty} \exp(x \cdot \ln(a)) = +\infty$

Graphe de l'exponentielle de base a

UNIVERSITÉ PARIS DESCARTES

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

38

Fonctions usuelles

La fonction exponentielle de base a

Exercice : Associer chacune des équations suivantes avec une des courbes :

$$y = 3x$$
 ; $y = x^3$; $y = 3^x$; $y = x^{\frac{1}{3}}$

$$\lim_{x\to +\infty}\frac{\ln x}{x}=0$$

$$\forall x > 0$$
, $\ln x < x \Rightarrow \ln(\sqrt{x}) < \sqrt{x}$

$$\forall x > 1: \quad 0 \le \frac{\ln x}{x} = \frac{2\ln\left(\sqrt{x}\right)}{x} = 2\frac{\ln\left(\sqrt{x}\right)}{\sqrt{x}} \frac{1}{\sqrt{x}} \le \frac{2}{\sqrt{x}}$$

$$\lim_{x\to +\infty}\frac{\ln x}{x}=0$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

Croissances comparées

40

Fonctions usuelles

$$\lim_{X\to +\infty}\frac{e^X}{X}=+\infty$$

Si
$$u(x) = e^x$$
: $\lim_{x \to +\infty} u(x) = +\infty$

$$\lim_{x \to +\infty} \frac{\ln(u(x))}{u(x)} = 0 \quad \Rightarrow \quad \lim_{x \to +\infty} \frac{\ln e^x}{e^x} = \lim_{x \to +\infty} \frac{x}{e^x} = 0$$

$$\lim_{x\to+\infty}\frac{e^x}{x}=+\infty$$

$$a > 0, b > 0, \lim_{x \to +\infty} \frac{(\ln(x))^b}{x^a} = 0$$

$$\frac{\left(\ln(x)\right)^b}{x^a} = \left(\frac{\ln x}{x^{\frac{a}{b}}}\right)^b = \left(\frac{\frac{b}{a}\ln x^{\frac{a}{b}}}{x^{\frac{a}{b}}}\right)^b = \left(\frac{b}{a}\right)^b \left(\frac{\ln x^{\frac{a}{b}}}{x^{\frac{a}{b}}}\right)^b$$

En posant $u(x) = x^{\frac{a}{b}}$: $\lim_{x \to +\infty} u(x) = +\infty$

$$\lim_{x \to +\infty} \frac{\left(\ln(x)\right)^b}{x^a} = 0$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

42

Fonctions usuelles

Croissances comparées

Exercice: Montrer les limites suivantes:

- 1. Pour a > 0, b > 0, $\lim_{x \to 0} x^a |\ln x|^b = 0$
- 2. Pour a > 0, b > 0, $\lim_{x \to +\infty} \frac{\exp(ax)}{x^b} = +\infty$
- 3. Pour a > 0, b > 0, $\lim_{x \to -\infty} |x|^b \exp(ax) = 0$
- 4. Pour a > 0, b > 0, $\lim_{x \to +\infty} \frac{\exp(ax)}{(\ln(x))^b} = +\infty$

Exercice: Donner les limites des fonctions suivantes en $+\infty$ et en $-\infty$.

1.
$$f(x) = x^{-5} \ln(|x|) - x^2 + \ln(|x|)$$

2.
$$f(x) = x^{-5}e^{2x} + x^{-2}e^{-x} - 3x^4 - 2x^2$$

3.
$$f(x) = x^{-3} \ln(|x|) - x^2 + \ln(|x|) + e^x + e^{-x}$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

44

Fonctions usuelles

Fonctions trigonométriques réciproques

Fonctions trigonométriques et théorie du signal

Signal : quantité variant avec le temps. Permet de coder musique, films, etc...

Théorie de Fourier : Tout signal périodique de période T est, à une approximation près, un mélange de fonctions trigonométriques $\sin(\frac{2k\pi t}{T})$ et $\cos(\frac{2k\pi t}{T})$ $(k \in \mathbb{Z})$.

Plus le nombre de fonctions trigonométriques utilisées est important, plus l'approximation est bonne

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

46

Fonctions usuelles

La fonction Arcsinus

La fonction sinus sur] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [

La fonction sinus est continue et dérivable sur] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [.

$$\lim_{x\to 0}\frac{\sin x}{x}=1$$

$$\sin' x = \cos x > 0$$

Fonctions usuelles

La fonction Arcsinus

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

48

Fonctions usuelles

La fonction Arcsinus

La dérivée de la fonction sinus

$$\sin' x_0 = \lim_{x \to x_0} \frac{\sin x - \sin x_0}{x - x_0} = \cos x_0$$

$$sin x - sin x_0 = 2 sin \left(\frac{x - x_0}{2}\right) \cdot cos \left(\frac{x + x_0}{2}\right)
\frac{sin x - sin x_0}{x - x_0} = \frac{2}{x - x_0} sin \left(\frac{x - x_0}{2}\right) \cdot cos \left(\frac{x + x_0}{2}\right)
\lim_{x \to x_0} \frac{2}{x - x_0} sin \left(\frac{x - x_0}{2}\right) = 1 \qquad \lim_{x \to x_0} cos \left(\frac{x + x_0}{2}\right) = cos x_0$$

La fonction sinus sur] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [

La fonction sinus est continue et dérivable sur] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [, à valeurs dans l'intervalle] -1, 1[

$$\sin' x = \cos x > 0$$
 puisque $x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$

La fonction sinus est donc continue et strictement croissante sur] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [, c'est donc une bijection de cet intervalle sur l'intervalle] -1, 1[.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

52

Fonctions usuelles

La fonction Arcsinus

La fonction Arcsinus

La restriction de la fonction sinus à $]-\frac{\pi}{2},\frac{\pi}{2}[$ admet une réciproque, la fonction Arcsin : $]-1,1[\longrightarrow]-\frac{\pi}{2},\frac{\pi}{2}[$, qui vérifie :

- Arcsin est continue et strictement croissante
- $\begin{cases} \sin(\operatorname{Arcsin} x) = x & \forall x \in]-1,1[\\ \operatorname{Arcsin}(\sin x) = x & \forall x \in]-\frac{\pi}{2},\frac{\pi}{2}[\end{cases}$

Attention, bien que les deux termes soient toujours définis, on n'a pas Arcsin(sin x) = x pour tout x réel!

► $\forall x \in]-1, 1[, \cos(Arcsin x) = \sqrt{1-x^2}$

Preuve: on a $\cos^2(\operatorname{Arcsin} x) = 1 - \sin^2(\operatorname{Arcsin} x) = 1 - x^2$ avec $\operatorname{Arcsin} x \in]-\frac{\pi}{2}, \frac{\pi}{2}[\Rightarrow \cos(\operatorname{Arcsin} x) > 0.$

La dérivée de Arcsinus

Sur l'intervalle] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [, la dérivée de la fonction sinus (cos) est de signe constant et ne s'annule pas, donc la fonction Arcsinus est dérivable sur] -1, 1[et

$$\operatorname{Arcsin}'(x) = \frac{1}{\sin'(\operatorname{Arcsin} x)} = \frac{1}{\cos(\operatorname{Arcsin} x)}$$

donc
$$\forall x \in]-1, 1[$$
, $Arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

54

Fonctions usuelles

La fonction Arcsinus

Définition de Arcsinus sur [-1, 1]

La fonction sinus est aussi une bijection continue de $[-\pi/2, \pi/2]$ vers [-1, 1], ce qui permet d'étendre la fonction Arcsinus comme une bijection continue de [-1, 1] vers $[-\pi/2, \pi/2]$.

Attention: Arcsinus n'est pas dérivable en -1 et en 1.

Les graphes de Sinus et Arcsinus

UNIVERSITÉ PARIS DESCARTES

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

56

Fonctions usuelles

La fonction Arccosinus

La fonction cosinus sur $]0, \pi[$

La fonction cosinus est continue et dérivable sur]0, π [, à valeurs dans] — 1, 1[

$$\cos' x = -\sin x < 0$$
 puisque $x \in]0$, $\pi[$

La fonction cosinus est donc continue et strictement décroissante sur $]0,\pi[$, c'est donc bijection de cet intervalle sur l'intervalle]-1,1[.

La fonction Arccosinus

La restriction de la fonction cosinus à $]0, \pi[$ admet une réciproque, la fonction Arccos $:]-1, 1[\longrightarrow]0, \pi[$, qui vérifie :

- Arccos est continue et strictement décroissante
- $\begin{cases}
 \cos(\operatorname{Arccos} x) = x & \forall x \in]-1, 1[\\
 \operatorname{Arccos}(\cos x) = x & \forall x \in]0, \pi[
 \end{cases}$
- $\forall x \in]-1,1[, \sin(\operatorname{Arccos} x) = \sqrt{1-x^2}$
- ▶ $\forall \alpha$, $\cos(\frac{\pi}{2} \alpha) = \sin \alpha$
 - $\Rightarrow \cos(\frac{\pi}{2} \operatorname{Arcsin} x) = \sin(\operatorname{Arcsin} x) = x$
 - \Rightarrow Arccos $\left(\cos\left(\frac{\pi}{2} Arcsin x\right)\right) = Arccos(x)$
 - $\Rightarrow \frac{\pi}{2} \operatorname{Arcsin} x = \operatorname{Arccos}(x) \operatorname{car} \frac{\pi}{2} \operatorname{Arcsin} x \in]0, \pi[$

donc
$$\forall x \in]-1, 1[$$
, $Arccos x + Arcsin x = \frac{\pi}{2}$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

58

Fonctions usuelles

La fonction Arccosinus

La dérivée de Arccosinus

La fonction Arccosinus est dérivable sur]-1,1[et :

$$\operatorname{Arccos} x + \operatorname{Arcsin} x = \frac{\pi}{2} \Rightarrow \operatorname{Arccos}'(x) = -\operatorname{Arcsin}' x$$

$$\operatorname{Arccos}'(x) = -\frac{1}{\sqrt{1-x^2}}$$

Définition de Arccosinus sur [-1, 1]

La fonction cosinus est aussi une bijection continue de $[0, \pi]$ vers [-1, 1], ce qui permet d'étendre la fonction Arccosinus comme une bijection continue de [-1, 1] vers $[0, \pi]$.

Attention: Arccosinus n'est pas dérivable en -1 et en 1.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

60

Fonctions usuelles

La fonction Arccosinus

Les graphes de Cosinus et Arccosinus

La fonction tangente sur] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [

La fonction tangente est définie par :

$$\tan x = \frac{\sin x}{\cos x} \qquad \forall x \notin \frac{\pi}{2} + \pi \mathbb{Z}$$

$$\lim_{x \to -\frac{\pi}{2}^+} \tan x = -\infty \quad \text{et} \quad \lim_{x \to \frac{\pi}{2}^-} \tan x = +\infty$$

La fonction tangente est périodique de période π .

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

62

Fonctions usuelles

La fonction Arctangente

La dérivée de la fonction tangente

La fonction tangente est continue et dérivable, comme quotient de fonction continues et dérivables, sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ et à valeurs dans \mathbb{R} .

$$\tan' x = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = 1 + \tan^2 x$$

La fonction tangente est donc continue et strictement croissante sur] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [, c'est donc une bijection de cet intervalle sur \mathbb{R} .

La fonction Arctangente

La restriction de la fonction tangente à $]-\frac{\pi}{2},\frac{\pi}{2}[$ admet une réciproque, la fonction Arctan : $\mathbb{R}\longrightarrow]-\frac{\pi}{2},\frac{\pi}{2}[$, qui vérifie :

- Arctan est continue et strictement croissante
- $\begin{cases} \tan(\operatorname{Arctan} x) = x & \forall x \in \mathbb{R} \\ \operatorname{Arctan}(\tan x) = x & \forall x \in] -\frac{\pi}{2}, \frac{\pi}{2}[\end{cases}$
- ► $\lim_{x \to +\infty} \operatorname{Arctan} x = \frac{\pi}{2}$ $\lim_{x \to -\infty} \operatorname{Arctan} x = -\frac{\pi}{2}$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

64

Fonctions usuelles

La fonction Arctangente

La dérivée de Arctangente

 $\forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ tan $x \neq 0$, donc la fonction Arctangente est dérivable sur \mathbb{R} et :

$$\operatorname{Arctan}' x = \frac{1}{1 + \tan^2(\operatorname{Arctan} x)} = \frac{1}{1 + x^2}$$

Fonctions usuelles

La fonction Arctangente

Les graphes de Tangente et Arctangente

UNIVERSITE PARIS DESCARTES

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

66

Fonctions usuelles

Équations trigonométriques

Équations trigonométriques

Équation $\sin x = a$, $a \in [-1, 1]$

 $a \in [-1, 1] \iff \exists \alpha \in [-\frac{\pi}{2}, \frac{\pi}{2}] \quad \alpha = \operatorname{Arcsin} a$

L'équation s'écrit : $\sin x = \sin \alpha$

$$\sin x - \sin \alpha = 2 \sin \left(\frac{x-\alpha}{2}\right) \cos \left(\frac{x+\alpha}{2}\right) = 0$$

$$\begin{cases} \sin\left(\frac{x-\alpha}{2}\right) &= 0 \iff x &= \alpha+2k\pi, \quad k \in \mathbb{Z} \\ \text{ou} \\ \cos\left(\frac{x+\alpha}{2}\right) &= 0 \iff x &= \pi-\alpha+2k\pi, \quad k \in \mathbb{Z} \end{cases}$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

68

Fonctions usuelles

Équations trigonométriques

Équation $\cos x = a$, $a \in [-1, 1]$

$$a \in [-1, 1] \iff \exists \alpha \in [0, \pi] \quad \alpha = \operatorname{Arccos} a$$

L'équation s'écrit : $\cos x = \cos \alpha$

$$\cos x - \cos \alpha = -2\sin\left(\frac{x-\alpha}{2}\right)\sin\left(\frac{x+\alpha}{2}\right) = 0$$

$$\begin{cases} & \sin\left(\frac{x-\alpha}{2}\right) = 0 \iff x = \alpha + 2k\pi, \quad k \in \mathbb{Z} \\ & \text{ou} \\ & \sin\left(\frac{x+\alpha}{2}\right) = 0 \iff x = -\alpha + 2k\pi, \quad k \in \mathbb{Z} \end{cases}$$

Équation $\tan x = a$, $a \in \mathbb{R}$

En posant $\alpha = \operatorname{Arctan}(a)$, l'équation s'écrit : $\tan x = \tan \alpha$

Comme la fonction tangente est bijective sur] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [et π -périodique, l'ensemble des solutions de l'équation tan x=aest donc

$$\{\alpha + k\pi, k \in \mathbb{Z}\}$$
 avec $\alpha = Arctan(a)$.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

70

Fonctions usuelles

Valeurs remarquables de Arcsin, Arccos, Arctan

Valeurs remarquables pour Arcsin

t	Arcsin t
1	$\frac{\pi}{2}$
<u>√3</u> 2	$\frac{\pi}{3}$
$\frac{\sqrt{2}}{2}$	$\frac{\pi}{4}$
1/2	$\frac{\pi}{6}$
0	0
$-\frac{1}{2}$	$-\frac{\pi}{6}$
$-\frac{\sqrt{2}}{2}$	$-\frac{\pi}{4}$
$-\frac{\sqrt{3}}{2}$	$-\frac{\pi}{3}$
-1	$-\frac{\pi}{2}$

Valeurs remarquables pour Arccos

t	Arccos t
1	0
<u>√3</u> 2	$\frac{\pi}{6}$
$\frac{\sqrt{2}}{2}$	$\frac{\pi}{4}$
1/2	<u>π</u> 3
0	$\frac{\pi}{2}$
$-\frac{1}{2}$	$\frac{2\pi}{3}$
$-\frac{\sqrt{2}}{2}$	$\frac{3\pi}{4}$
$-\frac{\sqrt{3}}{2}$	<u>5π</u> 6
-1	π

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

72

Fonctions usuelles

Valeurs remarquables de Arcsin, Arccos, Arctan

Valeurs remarquables pour Arctan

t	Arctan t
√3	$\frac{\pi}{3}$
1	$\frac{\pi}{4}$
<u>1</u> √3	$\frac{\pi}{6}$
0	0
$-\frac{1}{\sqrt{3}}$	$-\frac{\pi}{6}$
-1	$-\frac{\pi}{4}$
-√ 3	$-\frac{\pi}{3}$

Exercice: Résoudre l'équation $cos(x) = -\frac{\sqrt{3}}{2}$.

Exercice : Résoudre l'équation $sin(x) = \frac{1}{2}$.

Exercice : Résoudre l'équation $tan(x) = \sqrt{3}$.

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

74

Fonctions usuelles

Fonctions hyperboliques

Les fonctions sinus et cosinus hyperboliques

On définit la fonction sinus hyperbolique par :

$$\forall x \in \mathbb{R} \quad \operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}$$

On définit la fonction cosinus hyperbolique par :

$$\forall x \in \mathbb{R} \quad \operatorname{ch}(x) = \frac{e^x + e^{-x}}{2}$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

76

Fonctions usuelles

Les fonctions sinus et cosinus hyperboliques

Propriétés des fonctions sh et ch

$$sh(x) = \frac{e^{x} - e^{-x}}{2}$$
 $ch(x) = \frac{e^{x} + e^{-x}}{2}$

- ▶ $\forall x \in \mathbb{R}$ sh(-x) = -sh(x): la fonction sh est impaire
- ▶ $\forall x \in \mathbb{R}$ ch(-x) = ch(x): la fonction ch est paire
- ho ch(x) + sh(x) = e^x et ch(x) sh(x) = e^{-x}
- ho ch²(x) sh²(x) = (ch(x) + sh(x))(ch(x) sh(x)) = 1

Fonctions circulaires et fonctions hyperboliques

Les fonction cos et sin permettrent de représenter le cercle unité d'équation $\chi^2 + \chi^2 = 1$ sous forme paramétrique :

$$\begin{cases} X = \cos(t) \\ Y = \sin(t) \end{cases}, t \in [0, 2\pi].$$

Il en va de même des fonctions ch et sh, qui permettent de représenter la branche X > 0 de l'hyperbole d'équation $X^2 - Y^2 = 1$ sous forme paramétrique :

$$\begin{cases} X = \operatorname{ch}(t) \\ Y = \operatorname{sh}(t) \end{cases}, t \in \mathbb{R}.$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

78

Fonctions usuelles

Les fonctions sinus et cosinus hyperboliques

Représentation paramétrique du cercle

Représentation paramétrique de l'hyperbole

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

80

Fonctions usuelles

Les fonctions sinus et cosinus hyperboliques

Dérivées et variations de sh et ch

►
$$sh'(x) = \frac{e^x + e^{-x}}{2} = ch(x)$$

►
$$ch'(x) = \frac{e^x - e^{-x}}{2} = sh(x)$$

 $\forall x \in \mathbb{R}$ sh'(x) = ch(x) > 0: sh est strictement croissante.

Si
$$x > 0$$
 $x > -x \Rightarrow e^x > e^{-x}$ donc :

Si x>0 sh(x)>0 \Rightarrow ch croissante Par imparité Si x<0 sh(x)<0 \Rightarrow ch décroissante ch(0)=1 \Rightarrow $\forall x\neq 0$ ch(x)>1

Limites des fonctions sh et ch

$$\lim_{x\to +\infty} e^x = +\infty \qquad \text{et} \qquad \lim_{x\to +\infty} e^{-x} = 0$$

►
$$\lim_{x \to +\infty} \operatorname{sh}(x) = +\infty$$
 $\lim_{x \to -\infty} \operatorname{sh}(x) = -\infty$

►
$$\lim_{x \to +\infty} \operatorname{ch}(x) = +\infty$$
 $\lim_{x \to -\infty} \operatorname{ch}(x) = +\infty$

$$\forall x \in \mathbb{R} \operatorname{ch}(x) - \operatorname{sh}(x) = e^{-x} > 0 \quad \Rightarrow \begin{cases} \operatorname{ch}(x) > \operatorname{sh}(x) \\ \lim_{x \to +\infty} (\operatorname{ch}(x) - \operatorname{sh}(x)) = 0 \end{cases}$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

82

Fonctions usuelles

Les fonctions sinus et cosinus hyperboliques

Les graphes de sh et ch

La fonction tangente hyperbolique

On définit la fonction tangente hyperbolique par :

$$\forall x \in \mathbb{R} \quad \text{th}(x) = \frac{\text{sh}(x)}{\text{ch}(x)}$$

Dérivée:

$$th'(x) = \frac{sh'(x) ch(x) - sh(x) ch'(x)}{ch^{2}(x)} = \frac{ch^{2}(x) - sh^{2}(x)}{ch^{2}(x)}$$

$$th'(x) = 1 - th^{2}(x) = \frac{1}{ch^{2}(x)}$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

84

Fonctions usuelles

La fonction tangente hyperbolique

Variations et limites de th(x)

$$\mathsf{th}'(x) = \frac{1}{\mathsf{ch}^2(x)} > 0$$

La fonction tangente hyperbolique est donc strictement croissante sur ${\mathbb R}$

$$th(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^x (1 - e^{-2x})}{e^x (1 + e^{-2x})} = \frac{1 - e^{-2x}}{1 + e^{-2x}}$$

$$\lim_{x \to +\infty} e^{-2x} = 0 \quad \Rightarrow \quad \lim_{x \to +\infty} \operatorname{th}(x) = 1$$

La fonction th étant impaire : $\lim_{x\to -\infty} th(x) = -1$

Graphe de tangente hyperbolique

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

86

Fonctions usuelles

Équations hyperboliques et fonctions réciproques

Équation $\operatorname{sh} x = a \quad a \in \mathbb{R}$

$$sh(x) = a \iff e^{x} - e^{-x} = 2a \iff (e^{x})^{2} - 2ae^{x} - 1 = 0$$

L'équation $X^2 - 2aX - 1 = 0$ a une seule racine positive : $a + \sqrt{a^2 + 1}$.

$$sh(x) = a \Leftrightarrow x = ln(a + \sqrt{a^2 + 1})$$

 \hookrightarrow la réciproque de la bijection sh : $\mathbb{R} \to \mathbb{R}$ est la fonction

$$\operatorname{argsh}(y) = \ln\left(y + \sqrt{y^2 + 1}\right)$$

Équation $ch x = a \quad a \ge 1$

$$ch(x) = a \Leftrightarrow e^x + e^{-x} = 2a \Leftrightarrow (e^x)^2 - 2ae^x + 1 = 0$$

L'équation $X^2 - 2aX + 1 = 0$ a deux racines positives :

$$u=a+\sqrt{a^2-1}$$
 et $v=a-\sqrt{a^2-1}$ qui vérifient : $uv=1$

$$ch(x) = a \Leftrightarrow x = \pm \ln(a + \sqrt{a^2 - 1})$$

 \hookrightarrow la réciproque de la bijection ch : $\mathbb{R}^+ \to [1, +\infty[$ est la fonction

$$\operatorname{argch}(y) = \ln\left(y + \sqrt{y^2 - 1}\right)$$

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

88

Fonctions usuelles

Équations hyperboliques et fonctions réciproques

Équation thx = a $a \in]-1,1[$

th(x) =
$$\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

thx = a \Leftrightarrow $e^{2x} - 1 = a(e^{2x} + 1) \Leftrightarrow e^{2x} = \frac{1 + a}{1 - a}$

$$\frac{1+a}{1-a} > 0:$$

$$thx = a \iff x = \frac{1}{2} \ln \left(\frac{1+a}{1-a} \right)$$

 \hookrightarrow la réciproque de la bijection th : $\mathbb{R} \rightarrow]-1,1[$ est la fonction

$$\operatorname{argth}(y) = \frac{1}{2} \ln \left(\frac{1+y}{1-y} \right)$$

Exercice

- 1) Développer, pour $x, y \in \mathbb{R}$:
- a) ch(x) sh(y) b) ch(x) ch(y) c) sh(x) sh(y)
- 2) En déduire les identités suivantes :
 - $ightharpoonup \operatorname{sh}(x+y) = \operatorname{sh}(x) \operatorname{ch}(y) + \operatorname{ch}(x) \operatorname{sh}(y)$
 - ch(x+y) = ch(x) ch(y) + sh(x) sh(y)
- 3) En déduire directement :
 - $ightharpoonup \operatorname{sh}(x-y) = \operatorname{sh}(x) \operatorname{ch}(y) \operatorname{ch}(x) \operatorname{sh}(y)$
 - ightharpoonup sh(2x) = 2 sh(x) ch(x)
 - ch(x-y) = ch(x) ch(y) sh(x) sh(y)
 - ▶ $1 = ch^2(x) sh^2(x)$
 - ho ch(2x) = 2 ch²(x) 1 = 1 + 2 sh²(x)

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

90

Fonctions usuelles

Exercices (fonctions hyperboliques)

Exercice

Démontrer l'identité suivante pour $x, y \in \mathbb{R}$:

$$\mathsf{th}(x+y) = \frac{\mathsf{th}(x) + \mathsf{th}(y)}{1 + \mathsf{th}(x) \, \mathsf{th}(y)}$$

puis en déduire directement :

a)
$$th(x-y) = \frac{th(x) - th(y)}{1 - th(x)th(y)}$$

b)
$$th(2x) = \frac{2 th(x)}{1 + th^2(x)}$$

Fonctions circulaires et hyperboliques sur C (hors programme)

On peut généraliser les définitions connues pour $z \in \mathbb{C}$:

$$cos(z) = \frac{e^{iz} + e^{-iz}}{2}, sin(z) = \frac{e^{iz} - e^{-iz}}{2i},$$

 $e^{z} + e^{-z}$ $e^{z} - e^{-z}$

$$ch(z) = \frac{e^z + e^{-z}}{2}$$
, $sh(z) = \frac{e^z - e^{-z}}{2}$.

On a alors immédiatement les identités :

$$ch(iz) = cos(z)$$
, $sh(iz) = i sin(z)$, $th(iz) = i tan(z)$.

Ces identités permettent de retrouver les identités hyperboliques à partir des identités circulaires (et réciproquement).

Université Paris Descartes

2019-2020

Mathématiques et calcul 1

92

Fonctions usuelles

Exercices (fonctions hyperboliques)

Fonctions circulaires et hyperboliques sur C (hors programme)

$$ch(iz) = cos(z)$$
, $sh(iz) = i sin(z)$, $th(iz) = i tan(z)$.

$$\cos^{2}(z) + \sin^{2}(z) = 1$$

$$\Rightarrow \cosh^{2}(iz) + \left(\frac{1}{i}\sinh(iz)\right)^{2} = 1$$

$$\Rightarrow \cosh^{2}(iz) - \sinh^{2}(iz) = 1.$$

$$ch(iz+iz') = cos(z+z')$$

$$= cos(z)cos(z') - sin(z)sin(z')$$

$$= cos(z)cos(z') + i^{2}sin(z)sin(z')$$

$$= ch(iz)ch(iz') + sh(iz)sh(iz').$$

