

is shown by color on the grid. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

connections to active external aquifers can be accounted for by adapting the values for the boundary conditions accordingly. Some connections might even change throughout the year, depending on rainfall. The flux across model boundaries might influence the CO_2 plume dynamics during and after injection. To simulate such effects, we changed the left boundary pressure by adding an uncertain additional pressure value Δp that varies between 0 and $\mathrm{LOO}_{\mathrm{Par}}$.

As a scenario assumption, this pressure value is added at the start of injection, i.e., the pressure distribution is not at a steady state when the simulation starts, and this triggers a corresponding transient brine flow. We do so in order to analyze the effect of transient groundwater effects on the system. This may seem an

arbitrary choice, but assuming a steady-state would also be arbitrary to some extent.

The overall process for sensitivity analysis, uncertainty propagation, and risk assessment starts by specifying probability information for the uncertain parameters. Next, one has to design and choose the simulation cases required to obtain the expansion coefficients in the approximating polynomial. However, in our study, we had access to the set of SAIGUP geological realizations and simulation results that had been designed without the considerations possible with the aPC. The computing time for each SAIGUP realization was about 2 h on a 2.4 GHz Intel Xeon CPU, and we decided to recycle these highly expensive simulations in our study. The large computing times are a key motivation to build a cheaper surrogate model for further analysis. Hence, we assume the histograms of uncertain parameters such that they result in collocation points that coincide with the SAIGUP designed values. Therefore, the histograms used in this study are almost uniform, as shown in Fig. 7. In fact, these input distributions could also be handled with the gPC method already mentioned in the introduction, and would correspond to the use of Legendre polynomials. In our case, we use the aPC to avoid the step of modeling the input distributions as exactly uniform. Consequently, the polynomials resulting from the aPC approach are very close to Legendre polynomials. The aPC, however, could be used for any type of histograms and so provides the freedom in other studies to adapt to arbitrary input statistics.

The main concern here is not a unique probability description of the input geological parameters, but rather we perform an uncertainty analysis practice, relying on a scenario assumption of probability distributions. Thus, no general geological conclusion is expected from this study, and results might change by feeding the work-flow with a different probability description.

Fig. 7. The histograms of geological variables used in this study are sampled from uniform distributions.

Please cite this article in press as: Ashraf, M., et al., Geological storage of CO₂: Application, feasibility and efficiency of global sensitivity analysis and risk assessment using the arbitrary polynomial chaos. Int. J. Greenhouse Gas Control (2013), http://dx.doi.org/10.1016/j.ijggc.2013.03.023