MAS439 Lecture 7 Isomorphism Theorem

October 13th

Last week we motivated and defined the quotient ring R/I, proved it was a ring, and looked at some examples.

Today is centred around the first isomorphism theorem, which states that for any homomorphism

 $\varphi: R \to S$, $\operatorname{Im}(\varphi) \cong R / \ker(\varphi)$. However, the possibly new to you part, and a main player, is the Universal Property of quotient rings.

The Universal Property for Quotient rings

Suppose that $\varphi:R\to S$ is a ring homomorphism such that $I\subset \ker(\varphi)$, and let $p:R\to R/I$ be the quotient map. Then there exists a unique ring homomorphism $\overline{\varphi}:R/I\to S$ satisfying $\varphi=\overline{\varphi}\circ p$.

Put another way

The following diagram commutes:

$$R \xrightarrow{f} S$$

$$p \downarrow \qquad \qquad \downarrow \uparrow \\ R/I$$

What the universal property "really means"

Universal property as a slogan:

Maps out of R/I are the same thing as maps out of R whose kernel contains I

This property *defines* the quotient ring R/I.

Categorical thinking as a slogan:

Understand an object by understanding how it relates to other objects. As an example, if you know all the maps out of an object, you know the object.

Proof of the Universal Property

Uniqueness of $\overline{\varphi}$:

If $[r] \in R/I$, we want to know $\overline{\varphi}([r])$. Noting that [r] = p(r), we see that having $\varphi = \overline{\varphi} \circ p$ is equivalent to:

$$\overline{\varphi}([r]) = \overline{\varphi}(p(r)) = \varphi(r)$$

Thus, we take as a definition $\overline{\varphi}([r]):=\varphi(r)$ to guarantee $\varphi=\overline{\varphi}\circ p$.

What's left?

- Show $\overline{\varphi}$ is a homomorphism;
- ▶ We are defining what $\overline{\varphi}$ in terms of representatives, so we must show it's well defined.

Proof of the Universal Property

 $\overline{\varphi}$ is a ring homomorphism:

We check addition:

$$\begin{split} \overline{\varphi}([s] + [r]) &= \overline{\varphi}([r+s]) \\ &= \varphi(r+s) \\ &= \varphi(r) + \varphi(s) \\ &= \overline{\varphi}([r]) + \overline{\varphi}([s]) \end{split}$$

Multiplication and unit are similar.

Proof of the Universal Property

$\overline{\varphi}$ is well defined:

Suppose that $r\sim s$; we must show $\overline{\varphi}([s])=\overline{\varphi}([r])$, i.e., that $\varphi(r)=\varphi(s)$.

But $r \sim s$ means r = s + i for $i \in I$, so

$$\varphi(r) = \varphi(s+i) = \varphi(s) + \varphi(i) = \varphi(s)$$

since $I \subset \ker(\varphi)$.

Digging old tools out of the shed

To prove the isomorphism theorem, we are going to use the following two facts we've already seen:

- ▶ Any ring homomorphism $\varphi : R \to S$ factors as the surjection from $\varphi : R \to \operatorname{Im}(\varphi)$ and the inclusion $i : \operatorname{Im}(\varphi) \to S$
- ▶ A homomorphism φ is injective if and only if $\ker(\varphi) = 0$.

Isomorphism Theorem Restated

Any ring homomorphism $\varphi:R o S$ can be written uniquely in the form

$$\varphi = i \circ \overline{\varphi}' \circ p$$

where

- ▶ $p: R \to R / \ker \varphi$ is the quotient map
- ▶ $\overline{\varphi}'$: $R / \ker(\varphi) \to \operatorname{Im}(\varphi)$ is an isomorphism
- $i: \operatorname{Im}(\varphi) \to S$ is the inclusion

$$egin{aligned} R & \stackrel{arphi}{----} & S \ & \downarrow^p & \uparrow^i \ R / \ker arphi & \stackrel{\overline{arphi}'}{----} & \operatorname{Im}(arphi) \end{aligned}$$

Proof of the First isomorphism theorem

From the toolshed, we have a surjective map $\tilde{\varphi}: R \to \operatorname{Im}(\varphi)$ with $\varphi = i \circ \tilde{\varphi}$. That is, we have the upper right triangle commutes:

Furthermore, since i is injective, we have $\ker \tilde{\varphi} = \ker i \circ \varphi = \ker \varphi$

Proof of the first isomorphism theorem

To get the bottom triangle, we apply the universal property of $R/\ker \varphi$ to $\widetilde{\varphi}$ to construct the map $\overline{\varphi}'$.

- Bottom triangle commutes by universal property
- $ightharpoonup \overline{\phi}'$ surjective since $\widetilde{\phi}$ is
- $ightharpoonup \overline{\phi}'$ injective since:

$$\overline{\varphi}'([r]) = 0 \iff \tilde{\varphi}(r) = 0 \iff r \in \ker(\tilde{\varphi}) \iff r \sim 0_R$$

- ♣ Let's all go to the lobby ♣
- Let's all go to the lobby →(2 minute intermission)

Application of Isomorphism theorem: $\mathbb{R}[x]/(x^2+1) \cong \mathbb{C}$

Evaluation at i gives a map

$$f: \mathbb{R}[x] \to \mathbb{C}$$
 $f: p \mapsto p(i)$

- ▶ We have $x^2 + 1 \in \ker(f)$, and so by definition $(x^2 + 1) \in \ker(f)$
- lacktriangle By universal property, get a map $\overline{f}:R[x]/(x^2+1) o \mathbb{C}$
- ► First isomorphism theorem says this map is an \cong if $ker(f) = (x^2 + 1)$
- ▶ If $g \notin (x^2 + 1)$, can see $g \notin \ker(f)$ using division algorithm:

$$g = (x^2 + 1)p(x) + ax + b \implies f(g) = ai + b$$

The pullback of an ideal is an ideal

Lemma

Let f:R o S a map, $I\subset S$ an ideal. Then $f^{-1}(I)\subset R$ an ideal

Proof.

Suppose $a, b \in f^{-1}(I), r \in R$

- $f^{-1}(I)$ is nonempty since it contains 0.
- ▶ We have $a + b \in f^{-1}(I)$ since

$$f(a+b) = f(a) + f(b) \in I$$

▶ We have $r \cdot a \in f^{-1}(I)$ since

$$f(ar) = f(a)f(r) \in I$$

Lemma

If $I \subset J \subset R$ are two ideals, then

$$J/I = \{ [r] \in R/I : r \in J \}$$

is an ideal in R/I.

Proof.

Need to check:

- ▶ Well defined: i.e., if $[r_1] = [r_2]$ then $[r_1] \in J/I \iff [r_2] \in J/I$.
- nonempty
- Closed under addition
- \triangleright closed under multiplication by elements of R/I.

The lemmas give us maps back and forth between ideals of R containing I and ideals of R/I:

- ▶ If $K \subset R/I$ an ideal, then $I \subset p^{-1}(K) \subset R$ an ideal.
- ▶ If $I \subset J \subset K$, then J/I an ideal of R/i.

Lemma

The above maps are inverse

The fact that $p^{-1}(J/I) = J$ is exactly the definition.

Now suppose $K \subset R/I$ an ideal; we must show $p^{-1}(K)/I = K$.

- ▶ If $[a] \in p^{-1}(K)$, then $a \in p^{-1}(K)$, so $p(a) = [a] \in K$.
- ▶ If $[a] \in K$, then $a \in p^{-1}(K)$, and so $[a] \in p^{-1}(K)/I$

A corollary

Lemma

If R is a principal ideal domain, then R/I is a principal ideal domain.

Proof.

Suppose that KR/I is an ideal. Then K is of the form J/I for some ideal $I \subset J \subset R$. Since R is a principal ideal domain, J = (r). But then ([r]) generates J/I.

Since \mathbb{Z} is a principal ideal domain, we have \mathbb{Z}/k is.

Third isomorphism theorem

Theorem

If $I \subset J \subset R$ ideals, then $R/J \cong (R/I) \cong (J/I)$

Proof.

We construct a map $f: R/J \to R/I$ by taking $f([r]_{R/J}) = [r]_{R/I}$. Need to check:

- Well defined
- Surjective
- ring homomorphism
- $ightharpoonup \ker(f) = J/I$

Then it follows from first isomorphism theorem.

Examples

▶ What do we get from $(2) \subset (8) \subset \mathbb{Z}$?

$$(\mathbb{Z}/8)/(2) \cong \mathbb{Z}/2$$

▶ What do we get from $(2) \subset (2, x^2 + x + 1) \subset \mathbb{Z}[x]$?

$$\mathbb{Z}[x]/(2, x^2 + x + 1) \cong (\mathbb{Z}[x]/(2))/(2, x^2 + x + 1)$$
$$\cong \mathbb{F}_2[x]/(x^2 + x + 1)$$
$$\cong \mathbb{F}_4$$