UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE ENGENHARIA ELÉTRICA

Professor: William Caires Silva Amorim

ELT 227 - Laboratório de Circuitos Elétricos II

Nome:	Mat.:	Data:	/	/

Indutância Mútua e Transformadores

Introdução:

Quando dois circuitos com ou sem contatos entre eles se afetam por meio do campo magnético gerado por um deles, diz-se que são acoplados magneticamente, como o caso das indutâncias mútuas. Por sua vez, os transformadores são um dispositivo elétrico projetado tendo como base o conceito de acoplamento magnético, pois usam bobinas acopladas magneticamente para transferir energia de um circuito para outro.

Objetivos:

Caracterização de circuitos com indutância mútua e transformadores.

Material utilizado:

- Resistores;
- Indutores;
- Capacitores;
- Osciloscópio;
- Fonte c.a.;
- Gerador de sinais;
- Transformador.

Parte teórica e prática:

1) Para o circuito dado abaixo, considere que a resistência de saída seja igual a 9Ω . Pede-se:

- a) Calcular a tensão $v_2(t)$ dado que $v_1(t) = 12\cos(10t)$ (V);
- b) Traçar o diagrama de polos e zeros de H(s) e esboçar o gráfico de resposta em frequência para H(jw);
- c) Simule e encontre a tensão $v_2(t)$;
- d) Em que frequência ocorre a máxima transferência de potência em regime permanente CA? Confirme por meio da simulação do circuito, variando as frequências em torno do valor máximo encontrado e apresentando o resultado de potência medida por meio de um *scope*.

2) O circuito equivalente de uma indutância mutua pode ser representado por indutores e fontes de tensão em série:

- a) Explique o circuito equivalente de uma indutância mútua;
- b) Para o circuito analisado anteriormente, encontre o circuito equivalente da indutância mútua e a tensão de saída v₂(t) para a entrada v₁(t) definida (apresente a montagem do circuito equivalente da indutância mútua com o circuito da questão 1 e o resultado da tensão medida).
- 3) Para o circuito dado abaixo, considere que a resistência de saída seja igual a 19Ω . Pede-se:

- a) Calcule a corrente I_1 e I_2 do circuito apresentado (considere $\omega=1$ rad/s);
- b) Por meio da simulação do circuito, comprove os valores calculados no item a).
- 4) Para o transformador com *tap* central apresentado na Figura 1, Pede-se:
 - a) Explique o princípio de funcionamento e seus principais parâmetros;
 - Por meio da simulação do transformador com tap central, apresente as medições da saída para comprovar seu princípio de funcionamento (defina o valor das relações de espiras e tensão de entrada);
 - c) Sabendo que a Figura 1(a) apresenta a representação típica de um transformador com *tap* central, o que representa as resistências R₁, R₂ e R₃?

Figura 1 - (a) Transformador com tap central. (b) Transformador com tap central conectado à rede elétrica pelos terminais 1 e 2.

(c) Transformador com tap central conectado à um varivolt pelos terminais 3 e 5.

- 5) Em relação aos autotransformadores elevadores e abaixadores, pede-se:
 - a) Apresente a ligação necessária para converter um transformador monofásico com *tap* central em um transformador elevador;
 - b) Apresente a ligação necessária para converter um transformador monofásico com *tap* central em um transformador abaixador;
 - c) Simule um exemplo para o item a) e item b) e comprove seu funcionamento (defina o valor das relações de espiras e tensão de entrada e apresente a montagem da simulação).