

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 09037125 A

(43) Date of publication of application: 07 . 02 . 97

(51) Int. Cl H04N 5/225		
(21) Application number: 07200243	(71) Applicant: CANON IN	C
(22) Date of filing: 14 . 07 . 95	(72) Inventor: TAMURA \$	SHUICHI

(54) CAMERA

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a camera which can be efficiently used and formed while sufficiently considering the use convenience of a user in order to miniaturize and lighten the power source of the camera.

SOLUTION: Concerning the camera with which an image electronically fetched into the camera is temporarily stored in a storage device 4 and that image is transferred (5) to another device by radio wave, light or others, this camera is provided with a power supply switch 9 for enabling the image fetching operation of this camera and only when this switch is turned off, the image can be transferred. Thus, the drop of a power supply voltage can be reduced.

COPYRIGHT: (C)1997,JPO

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-37125

(43)公開日 平成9年(1997)2月7日

(51) Int.Cl.⁶ H 0 4 N 5/225 識別記号 庁内整理番号 FΙ

技術表示箇所

H 0 4 N 5/225

Z

審査請求 未請求 請求項の数8 FD (全 7 頁)

(21)出願番号

特願平7-200243

(22)出顧日

平成7年(1995)7月14日

(71)出顧人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 田村 秀一

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 弁理士 田北 嵩晴

(54) 【発明の名称】 カメラ

(57)【要約】

(修正有)

【課題】 カメラの電源を小型軽量におさえるため、効 率良く使い、しかも使用者の利便性をも充分考慮して成 されたカメラを提供することを目的とする。

【解決手段】 カメラ内に電子的に取り込んだ画像を一 旦記憶装置4に格納し、その画像を電波あるいは光、そ の他により他の装置に転送する(5)カメラにおいて、 該カメラの画像取り込み動作を可能にする電源スイッチ 9を有し、該スイッチをオフにした時のみ画像転送を可 能とする。この構成によれば、電源電圧の低下を少なく できる。

10

【特許請求の範囲】

【請求項1】 カメラ内に電子的に取り込んだ画像を一 且記憶装置に格納し、その画像を電波あるいは光、その 他により他の装置に転送するカメラにおいて、該カメラ の画像取り込み動作を可能にする電源スイッチを有し、 該スイッチをオフにした時のみ画像転送を可能とするこ とを特徴とするカメラ。

【請求項2】 請求項1記載のカメラにおいて、前記カメラの電源スイッチをオフにした動作に連動して、画像 転送の準備動作を開始することを特徴とするカメラ。

【請求項3】 被写体像を電子画像として取り込む光電変換素子と、光電変換した画像信号を記憶する記憶装置と、該記憶装置に記憶した画像信号を転送する転送装置とを備え、前記各々の装置のための電源供給を単一の電源装置により行うカメラにおいて、この電源装置の電池残量が減少してきた際に、画像の取り込み動作の禁止に先立ち画像の転送動作の禁止を行うことを特徴とするカメラ。

【請求項4】 請求項1記載のカメラにおいて、該画像 転送動作に先立ち該画像の転送動作の完了に必要な電池 20 容量が残っているかどうかを判別し、不充分と判定した 場合には転送動作を禁止する手段を有することを特徴と するカメラ。

【請求項5】 被写体像を取り込む光電変換素子と、光電変換した画像信号を記憶する記憶装置と、該記憶装置に記憶した画像信号を転送する転送装置とを備えた電子カメラにおいて、画像の転送前であれば、該画像の転送の要否を設定可能とし、転送開始動作に応答して転送要と設定した画像のみ転送することを特徴とするカメラ。

【請求項6】 請求項5記載のカメラにおいて、画像転 30 送を完了した画像については、そのファイルに画像転送 済の職別信号を付加することを特徴とするカメラ。

【請求項7】 被写体像を取り込む光電変換素子と、光電変換した画像信号を記憶する記憶装置と、該記憶装置に記憶した画像信号を転送する転送装置とを備えたカメラにおいて、該画像の転送前に予め転送完了が確認された時点で、該画像ファイルを消去するかそのまま保持するかを設定可能とした構成を有することを特徴とするカメラ。

【請求項8】 請求項7記載のカメラにおいて、前記画 40 像転送後のファイルの保存の要否を示す信号を各画像ファイル各々に設定可能とし、画像の転送前であれば設定変更可能とした構成を有することを特徴とするカメラ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、CCD等の光電変換素子を用いて画像の取り込みを行い、それを一旦記憶した後、他への転送を行う電子カメラに関するものである。

[0002]

2

【従来の技術】従来より、電子カメラに画像の伝送装置を備える提案は多数なされている。例えば特開平4-170881号等があるが、電子カメラで取り込んだ画像をいかにして送るかという点で出願されているものがほとんどである。

[0003]

【発明が解決しようとする課題】しかしながら、このような携帯機器においては、その携帯性が重要要素であり、その小型化、軽量化が商品性を大きく左右する。その中で、電源をどのようにするかも非常に重要なテーマである。

【0004】本発明は、その電源を小型軽量におさえる ため、効率良く使い、しかも使用者の利便性をも充分考 慮して成されたカメラを提供することを目的とする。

[0005]

【課題を解決するための手段】上記の目的を達成するために、本発明においては、電池の使用の効率化を図るため、複数の機能の動作を時系列に行う。また、画像転送の開始前に充分チェックして無駄を生じさせないようにする(途中で打ち切ると、それまでに送った分が無駄になる)。

[0006]

【発明の実施の形態】本出願に係る発明の目的を実現する構成は、請求項1に記載のように、カメラ内に電子的に取り込んだ画像を一旦記憶装置に格納し、その画像を電波あるいは光、その他により他の装置に転送するカメラにおいて、該カメラの画像取り込み動作を可能にする電源スイッチを有し、該スイッチをオフにした時のみ画像転送を可能とするものである。この構成によれば、電源電圧の低下を少なくすることができる。

【0007】本出願に係る発明の目的を実現する具体的な構成は、請求項2に記載のように、カメラの電源スイッチをオフにした動作に連動して、画像転送の準備動作を開始するものである。この構成によれば、速やかに画像転送を行うことができる。

【0008】本出願に係る発明の目的を実現する他の具体的な構成は、請求項3に記載のように、電源装置の電池残量が減少してきた際に、画像の取り込み動作の禁止に先立ち画像の転送動作の禁止を行うものである。この構成によれば、画像の取り込みは優先的に行うことができる。

【0009】本出願に係る発明の目的を実現するさらに他の具体的な構成は、請求項4に記載のように、画像転送動作に先立ち該画像の転送動作の完了に必要な電池容量が残っているかどうかを判別し、不充分と判定した場合には転送動作を禁止するものである。この構成によれば、電池電圧の低下を防ぐことができる。

【0010】本出願に係る発明の目的を実現する構成は、請求項5に記載のように、画像の転送前であれば、 該画像の転送の要否を設定可能とし、転送開始動作に応

20

30

する。

答して転送要と設定した画像のみ転送するものである。 この構成によれば、転送が必要な画像のみを転送することができる。

【0011】本出願に係る発明の目的を実現する具体的な構成は、請求項6に記載のように、画像転送を完了した画像については、そのファイルに画像転送済の識別信号を付加するものである。この構成によれば、転送済の画像を識別することができる。

【0012】本出願に係る発明の目的を実現する具体的な構成は、請求項7に記載のように、画像の転送前に予め転送完了が確認された時点で、該画像ファイルを消去するかそのまま保持するかを設定可能とした構成を有するものである。この構成によれば、画像ファイルを不必要に保存することはない。

【0013】本出願に係る発明の目的を実現する具体的な構成は、請求項8に記載のように、画像転送後のファイルの保存の要否を示す信号を各画像ファイル各々に設定可能とし、画像の転送前であれば設定変更可能とした構成を有するものである。この構成によれば、画像ファイルの保存を確実に行うことができる。

[0014]

【実施例】

(第1の実施例) 図1は、本発明の概略を示すプロック図である。図1において、1はCCD等の光電変換素子を用いた画像センサ、2はこの画像センサ1からの出力を受け、適宜増幅した後、タイミング良く画像信号をデジタルに変換するA/Dコンバータ、3はデジタル化された画像信号を高画質化する各種の処理、例えば画像の γ 変換等を行って、さらに記憶するための画像信号の圧縮処理(例えばJPEG等の規格に則った)を行う。4は画像信号を記憶するメモリ、例えばノートパソコン等に用いられているICカード等でも良い。5はこのメモリ4に蓄積された画像信号を伝送するための装置で、シリアルに読み出した画像信号を伝送するのに適した信号に変調するモデムと呼ばれる部分と、無線電話の部分とを有する。

【0015】6はカメラ全体のシーケンスを司る中央演算処理装置で、所謂マイコンと呼ばれるものである。7は本カメラ全体の電源供給のための電源装置で各部への電源供給のオン、オフ、電圧の安定化、電池残量の監視40等を行っている。8は電源の供給源であるバッテリ、9はカメラの電源スイッチ、10は自動伝送の設定スイッチである。

【0016】図2は本発明の第1の実施例の動作の概略を示すフローチャートである。なお、各ステップをSと略す。まず、カメラの撮影動作から説明する。撮影に先立ち、電源スイッチをオンにする(S1)。伝送装置5を除いてその他の回路に電源が供給され、図示しない機構により、レンズカバーが開く等の撮影準備動作が行われる。撮影したい被写体に向け、レリーズボタンを押す50

と(S2)、オートフォーカス等が動作し、適当な露光 動作が行われる(S3)。その画像信号がCCD1から A/Dコンバータ2でデジタル変換され、画像処理回路 3で画像処理され、圧縮された後メモリ4に送られ記憶 される。

【0017】その後、必要に応じて複数枚撮影し、各々 メモリ4に格納される。このメモリ4に格納できる画像 の枚数は使用するメモリの容量に依存するが、少なくと も10枚程度は保存可能に設定する。撮影が一段落した 時に、カメラの電源をオフにする(S4)。この時、画 像の自動転送スイッチ10がオンになっているか否かを 判断し(S5)、オンになっていれば、CPU6の指令 で伝送装置5に電源が入り、予め設定した手順に従って 設定してある画像の転送先にダイヤルして自動的に画像 ファイルの転送を行うのであるが、この時、転送すべき ファイルの容量と回線の転送スピードから転送に必要な バッテリ残量を予測し、伝送装置に電源が投入された時 点でチェックしたバッテリ8の残量とを比較し(S 6) 、転送完了に充分であれば画像ファイルの伝送を行 い、転送完了に充分でないとの予測がされた場合にはダ イヤルせずに、転送不可の表示を出して(S8)、終了

【0018】 (第2の実施例) 次に、ファイルの転送を 選択可能とした本発明の第2の実施例について説明す る。

【0019】図3は第2の実施例の概略プロック図である。基本的構成は第1の実施例と同様である。第1の実施例と異なる点は、新たにLCD表示器11と、モード切換スイッチ12が付加されている点であるが、このモード切換スイッチ12は撮影後、その画像を伝送する必要があるかどうかの設定と、転送後ファイルの削除を行うかどうかの設定を行うスイッチである。これは、大量に写真を撮った中から選別して転送し、転送したらその画像をメモリから削除し、新たに撮影画像をメモリに取り込むことにより次々と撮影可能となる。また、重要な写真で万一トラブルが生じた場合にも回復可能にするために、画像データを転送後もメモリに残しておきたい場合もある。

【0020】そこで、この第2の実施例ではモードスイッチ12で予め転送画像をメモリに残すかどうかを設定可能とした。

【0021】その動作を図4に示したフローチャートを用いて説明する。撮影に先立ち、LCD表示器11に出る文字をみながら画像転送完了後にそのファイルを消去するか、あるいはそのまま残すかをモードスイッチ12を使って設定する(S11)。その後、電源スイッチ9を投入し(S12)、第1の実施例と同様にして撮影が行われる。その後、LCD表示部の表示をみながら(S13)、モード切換スイッチ12を使い、撮影した画像の転送の要否、及びファイル保存の要否を設定する(S

14)。

【0022】その後、カメラの電源をオフにし(S1 数の5)、画像の自動転送スイッチ10がオンになっているか否か判断し(S16)、この時転送すべきファイルの容量と回線の転送スピードから転送に必要なバッテリ残量を予測し、伝送装置に電源が投入された時点でチェックしたバッテリ8の残量とを比較し(S18)、転送完了に充分であれば、画像ファイルの伝送を行う(S1 9)。また、転送完了に充分でないとの予測がされた場合には終了する。次に、ファイルを削除すべきか否かので認を行い(S20)、削除してよい場合はファイルを削除して(S21)終了する。S13におけるしてD表示11の表示例を図5に示す。

【0023】図5において、カウンタ数字の隣の○×は画像転送の要否を表わし、さらにその隣の○×は最終的に保存しておく必要があるかどうかを表わしている。例えば、1枚目は画像を転送しその後も保存しておくもの、2枚目は画像の転送は必要ないがそのファイルは保存しておくもの、3枚目は画像の転送を行うが、転送が完了したらファイルは削除する、等を表わしている。

【0024】これらは初期値を予め設定してあり、操作しなければ初期設定の通りに電源スイッチがオフになった時に処理される。

[0025]

【発明の効果】以上説明したように、本発明の各請求項によれば、携帯機器として許される小型の電源装置を最大限有効に活用することが可能であり、さらに操作性良く、画像の転送を行うことが可能になる。その上、画像をメモリするメモリ手段の有効活用も可能となり、小型の電子カメラの有効活用を徹底的に追求したものとなる。

*【0026】また、電池の使用の効率化を図るため、複数の機能の動作を時系列に行うことができる。

【0027】さらに、得に画像転送においては途中で打ち切ると、その後継続させることが難しく、それまでに送った分が無駄になる可能性が大である。そこで開始的に充分チェックをしてその無駄を生じさせないようにすることが重要であり、それが可能である。

【図面の簡単な説明】

【図1】本発明の第1の実施例の概略ブロック図である。

【図2】本発明の第1の実施例の動作フローを示すフローチャートである。

【図3】本発明の第2の実施例の概略プロック図である。

【図4】本発明の第2の実施例の動作フローを示すフローチャートである。

【図5】本発明の第2の実施例のLCD表示の例を示す 図である。

【符号の説明】

- 20 1 画像取り込みのCCD
 - 2 A/Dコンバータ
 - 3 画像処理回路
 - 4 画像メモリ
 - 5 デジタル信号伝送装置
 - 6 制御用マイコン
 - 7 電源装置
 - 8 バッテリ
 - 9 カメラの電源スイッチ
 - 10 自動伝送設定スイッチ
 - 11 LCD表示
 - 12 モードスイッチ

【図5】

30

図1]

【図3】

