

Claims

1. Method for automated measurement of the ohmic rotor
5 resistance (R_r) of an asynchronous machine
controlled via an inverter while being acted upon
by a non-rotating field, the method comprising
 - a. measuring the ohmic stator resistance (R_s), the
10 leakage inductances (L_{os} , L_{or}) and the main in-
ductance (L_m) of the asynchronous machine,
 - b. applying a testing signal (U_{sa}) consisting of a
15 predetermined direct signal with a superimposed
alternating signal to a phase winding (a) of
the asynchronous machine, the frequency of the
alternating signal corresponding approximately
to a nominal slip frequency (f_s) of the asyn-
chronous machine,
 - c. measuring the amplitude and the phase (ϕ) of
20 the phase signal (I_{sa}) resulting from the test-
ing signal, and
 - d. calculating the ohmic rotor resistance (R_r) from
the measured values according to steps a) and
c).
- 25 2. Method according to claim 1, in which an ohmic ro-
tor resistance (R'_r) transformed to the stator side
is determined first, and the actual ohmic rotor re-
sistance (R_r) is calculated by means of the meas-
ured values according to steps a) and c).
- 30 3. Method according to claim 1 in which the frequency
(f_s) of the alternating signal is in the range from
1 to 8 Hz.

4. Method according to claim 1 in which the direct signal is a direct voltage which generates a direct current having an amplitude of less than half a nominal magnetising current (I_{mn}) of the asynchronous machine.

5

10

5. Method according to claim 4, in which the direct current is such that the dynamic main inductance (L_{Dm}) is approximately equal to the static main inductance (L_m) of the asynchronous machine, whereby the dynamic main inductance can be expressed by the equation

$$L_{Dm} = \frac{dL_m}{dI_m} \cdot I_m + L_m$$

15

in which L_{Dm} is the dynamic main inductance, L_m the static main inductance and I_m the magnetising current.

20

6. Method according to claim 1 in which the testing signal is a phase voltage (U_{sa}) having a reference (U_{ref}) set on the basis of a previously measured characteristic, stored in a memory, the characteristic describing the relation between the phase current (I_{sa}) and the reference.

25