Quasirandom Permutations Are Characterised by 4-Point Densities

Dan Král' and Oleg Pikhurko

University of Warwick

▶ When does H look as a random graph $G_{n,1/2}$?

- ▶ When does H look as a random graph $G_{n,1/2}$?
- ► Chung-Graham-Wilson'89: Equivalent definitions

- ▶ When does *H* look as a random graph $G_{n,1/2}$?
- Chung-Graham-Wilson'89: Equivalent definitions
 - Edge distribution

- ▶ When does H look as a random graph $G_{n,1/2}$?
- Chung-Graham-Wilson'89: Equivalent definitions
 - Edge distribution
 - Spectral properties

- ▶ When does H look as a random graph $G_{n,1/2}$?
- Chung-Graham-Wilson'89: Equivalent definitions
 - Edge distribution
 - Spectral properties
 - ▶ \forall *F* densities of *F* in *H* and $G_{n,1/2}$ are close

- ▶ When does H look as a random graph $G_{n,1/2}$?
- Chung-Graham-Wilson'89: Equivalent definitions
 - Edge distribution
 - Spectral properties
 - ▶ \forall *F* densities of *F* in *H* and $G_{n,1/2}$ are close
 - ▶ Enough to check K_2 and C_4 only

- ▶ When does H look as a random graph $G_{n,1/2}$?
- Chung-Graham-Wilson'89: Equivalent definitions
 - Edge distribution
 - Spectral properties
 - ▶ \forall *F* densities of *F* in *H* and $G_{n,1/2}$ are close
 - ► Enough to check K₂ and C₄ only
- Derandomisation

- ▶ When does H look as a random graph $G_{n,1/2}$?
- Chung-Graham-Wilson'89: Equivalent definitions
 - Edge distribution
 - Spectral properties
 - ▶ \forall *F* densities of *F* in *H* and $G_{n,1/2}$ are close
 - ► Enough to check K₂ and C₄ only
- Derandomisation, regularity lemma...

- ▶ When does H look as a random graph $G_{n,1/2}$?
- Chung-Graham-Wilson'89: Equivalent definitions
 - Edge distribution
 - Spectral properties
 - ▶ \forall *F* densities of *F* in *H* and $G_{n,1/2}$ are close
 - Enough to check K₂ and C₄ only
- Derandomisation, regularity lemma...
- Quasirandomness for other structures:

- ▶ When does H look as a random graph $G_{n,1/2}$?
- Chung-Graham-Wilson'89: Equivalent definitions
 - Edge distribution
 - Spectral properties
 - ▶ \forall *F* densities of *F* in *H* and $G_{n,1/2}$ are close
 - Enough to check K₂ and C₄ only
- Derandomisation, regularity lemma...
- Quasirandomness for other structures:
 - Tournaments

- ▶ When does H look as a random graph $G_{n,1/2}$?
- Chung-Graham-Wilson'89: Equivalent definitions
 - Edge distribution
 - Spectral properties
 - ▶ \forall *F* densities of *F* in *H* and $G_{n,1/2}$ are close
 - Enough to check K₂ and C₄ only
- Derandomisation, regularity lemma...
- Quasirandomness for other structures:
 - Tournaments
 - Subsets of Z_n

- ▶ When does H look as a random graph $G_{n,1/2}$?
- Chung-Graham-Wilson'89: Equivalent definitions
 - Edge distribution
 - Spectral properties
 - ▶ \forall *F* densities of *F* in *H* and $G_{n,1/2}$ are close
 - Enough to check K₂ and C₄ only
- Derandomisation, regularity lemma...
- Quasirandomness for other structures:
 - Tournaments
 - ▶ Subsets of \mathbb{Z}_n
 - Hypergraphs

- ▶ When does H look as a random graph $G_{n,1/2}$?
- Chung-Graham-Wilson'89: Equivalent definitions
 - Edge distribution
 - Spectral properties
 - ▶ \forall *F* densities of *F* in *H* and $G_{n,1/2}$ are close
 - Enough to check K₂ and C₄ only
- Derandomisation, regularity lemma...
- Quasirandomness for other structures:
 - Tournaments
 - ▶ Subsets of Z_n
 - Hypergraphs
 - Groups

- ▶ When does H look as a random graph $G_{n,1/2}$?
- Chung-Graham-Wilson'89: Equivalent definitions
 - Edge distribution
 - Spectral properties
 - ▶ \forall *F* densities of *F* in *H* and $G_{n,1/2}$ are close
 - Enough to check K₂ and C₄ only
- Derandomisation, regularity lemma...
- Quasirandomness for other structures:
 - Tournaments
 - ▶ Subsets of Z_n
 - Hypergraphs
 - Groups
 - **>**

▶ $[n] := \{1, ..., n\}$

- $[n] := \{1, \ldots, n\}$
- $S_n := \{ \text{bijections } [n] \rightarrow [n] \}$

- ▶ $[n] := \{1, ..., n\}$
- ▶ $S_n := \{ \text{bijections } [n] \rightarrow [n] \}$
- ► Subpermutation: 453216 → 213

```
▶ [n] := \{1, ..., n\}
```

- ▶ $S_n := \{ \text{bijections } [n] \rightarrow [n] \}$
- ► Subpermutation: 4<u>53</u>21<u>6</u> → 213
- $t(\sigma, \Pi)$: the density of σ in Π

```
▶ [n] := \{1, ..., n\}
```

- $S_n := \{ \text{bijections } [n] \rightarrow [n] \}$
- ► Subpermutation: 4<u>53</u>21<u>6</u> → 213
- ▶ $t(\sigma, \Pi)$: the density of σ in Π
- ► E.g.

$$t(213,453216) = 9/\binom{6}{3}$$

```
► [n] := \{1, ..., n\}
► S_n := \{\text{bijections } [n] \to [n]\}
► Subpermutation: 4\underline{53}21\underline{6} \longrightarrow 213
► t(\sigma, \Pi): the density of \sigma in \Pi
► E.g.
t(213, 453216) = 9/\binom{6}{3}
t(123, 453216) = 1/\binom{6}{3}
```

$$\forall \ \sigma \in \mathcal{S}_k \ t(\sigma, \Pi_n) \to 1/k!$$

▶ A sequence (Π_n) of permutations has Property P(k):

$$\forall \ \sigma \in \mathcal{S}_k \ t(\sigma, \Pi_n) \to 1/k!$$

▶ Quasirandom: $\forall k P(k)$

$$\forall \ \sigma \in \mathcal{S}_k \ t(\sigma, \Pi_n) \to 1/k!$$

- ▶ Quasirandom: $\forall k P(k)$
- Cooper'04: Equivalent definitions

$$\forall \ \sigma \in \mathcal{S}_k \ t(\sigma, \Pi_n) \to 1/k!$$

- ▶ Quasirandom: $\forall k P(k)$
- Cooper'04: Equivalent definitions
- ► Graham: $\exists m \text{ st } P(m) \Rightarrow \text{ quasirandom ?}$

$$\forall \ \sigma \in \mathcal{S}_k \ t(\sigma, \Pi_n) \to 1/k!$$

- Quasirandom: ∀ k P(k)
- Cooper'04: Equivalent definitions
- ▶ Graham: $\exists m \text{ st } P(m) \Rightarrow \text{ quasirandom ?}$
- ► Easy: $P(k+1) \Rightarrow P(k)$

$$\forall \ \sigma \in \mathcal{S}_k \ t(\sigma, \Pi_n) \to 1/k!$$

- Quasirandom: ∀ k P(k)
- Cooper'04: Equivalent definitions
- ▶ Graham: $\exists m \text{ st } P(m) \Rightarrow \text{ quasirandom } ?$
- ► Easy: $P(k+1) \Rightarrow P(k)$
- ► Chung'01, Cooper-Petrarca'08: $P(3) \neq P(4)$

$$\forall \ \sigma \in \mathcal{S}_k \ t(\sigma, \Pi_n) \to 1/k!$$

- ▶ Quasirandom: $\forall k P(k)$
- Cooper'04: Equivalent definitions
- ► Graham: $\exists m \text{ st } P(m) \Rightarrow \text{ quasirandom ?}$
- ► Easy: $P(k+1) \Rightarrow P(k)$
- ► Chung'01, Cooper-Petrarca'08: $P(3) \neq P(4)$
- ▶ Kráľ-P. >'13: m = 4 suffices

▶ (Π_n) converges if $\forall \sigma \exists \lim_{n\to\infty} t(\sigma, \Pi_n)$

- ▶ (Π_n) converges if $\forall \sigma \exists \lim_{n\to\infty} t(\sigma, \Pi_n)$
- ▶ Limit μ :

- ▶ (Π_n) converges if $\forall \sigma \exists \lim_{n\to\infty} t(\sigma, \Pi_n)$
- ▶ Limit μ :
 - ▶ Input: $\sigma \in S_k$

- ▶ (Π_n) converges if $\forall \sigma \exists \lim_{n\to\infty} t(\sigma, \Pi_n)$
- ▶ Limit μ :
 - ▶ Input: $\sigma \in S_k$
 - ▶ Output: $\lim_{n\to\infty} t(\sigma, \Pi_n)$

- ▶ (Π_n) converges if $\forall \sigma \exists \lim_{n\to\infty} t(\sigma, \Pi_n)$
- \blacktriangleright Limit μ :
 - ▶ Input: $\sigma \in S_k$
 - ▶ Output: $\lim_{n\to\infty} t(\sigma, \Pi_n)$
- ▶ $\Pi \in S_m \mapsto$ measure μ_{Π} on $m \times m$ chessboard

- ▶ (Π_n) converges if $\forall \sigma \exists \lim_{n\to\infty} t(\sigma, \Pi_n)$
- ▶ Limit μ :
 - ▶ Input: $\sigma \in S_k$
 - ▶ Output: $\lim_{n\to\infty} t(\sigma, \Pi_n)$
- ▶ $\Pi \in S_m \mapsto$ measure μ_{Π} on $m \times m$ chessboard

- ▶ (Π_n) converges if $\forall \sigma \exists \lim_{n\to\infty} t(\sigma, \Pi_n)$
- \blacktriangleright Limit μ :
 - ▶ Input: $\sigma \in S_k$
 - ▶ Output: $\lim_{n\to\infty} t(\sigma, \Pi_n)$
- ▶ $\Pi \in S_m \mapsto$ measure μ_{Π} on $m \times m$ chessboard

▶ Sample i.i.d. $V_1, \ldots, V_k \sim \mu_{\Pi}$

- ▶ (Π_n) converges if $\forall \sigma \exists \lim_{n\to\infty} t(\sigma, \Pi_n)$
- ▶ Limit μ :
 - ▶ Input: $\sigma \in S_k$
 - ▶ Output: $\lim_{n\to\infty} t(\sigma, \Pi_n)$
- ▶ $\Pi \in S_m \mapsto$ measure μ_{Π} on $m \times m$ chessboard

- ▶ Sample i.i.d. $V_1, \ldots, V_k \sim \mu_{\Pi}$
- ▶ **Prob**{no two in same square} = $1 O(k^2/m)$

- ▶ (Π_n) converges if $\forall \sigma \exists \lim_{n\to\infty} t(\sigma, \Pi_n)$
- \blacktriangleright Limit μ :
 - ▶ Input: $\sigma \in S_k$
 - ▶ Output: $\lim_{n\to\infty} t(\sigma, \Pi_n)$
- ▶ $\Pi \in S_m \mapsto$ measure μ_{Π} on $m \times m$ chessboard

- ▶ Sample i.i.d. $V_1, \ldots, V_k \sim \mu_{\Pi}$
- ▶ **Prob**{no two in same square} = $1 O(k^2/m)$
- Conditioned on this: Uniform k-subset of squares

- \blacktriangleright (Π_n) converges if $\forall \sigma \exists \lim_{n \to \infty} t(\sigma, \Pi_n)$
- \blacktriangleright Limit μ :
 - ▶ Input: $\sigma \in S_k$
 - ▶ Output: $\lim_{n\to\infty} t(\sigma, \Pi_n)$
- ▶ $\Pi \in S_m \mapsto$ measure μ_{Π} on $m \times m$ chessboard

- ▶ Sample i.i.d. $V_1, \ldots, V_k \sim \mu_{\Pi}$
- ▶ **Prob**{no two in same square} = $1 O(k^2/m)$
- Conditioned on this: Uniform k-subset of squares
- ▶ Prokhorov'56: subsequence of μ_{Π_n} → some μ weakly

▶ $Z := \{ \text{r.v.} (X, Y) : X, Y \sim \text{uniform}([0, 1]) \}$

▶ $Z := \{ \text{r.v.}(X, Y) : X, Y \sim \text{uniform}([0, 1]) \} = \{ \text{prob measures on } [0, 1]^2 \text{ with uniform marginals} \}$

- ▶ $\mathbb{Z} := \{ \text{r.v.} (X, Y) : X, Y \sim \text{uniform}([0, 1]) \} = \{ \text{prob measures on } [0, 1]^2 \text{ with uniform marginals} \}$
- ▶ Density of $\sigma \in S_k$ in $\mu \in \mathcal{Z}$:

- ▶ \mathbb{Z} := $\{ \text{r.v. } (X, Y) : X, Y \sim \text{uniform}([0, 1]) \} = \{ \text{prob measures on } [0, 1]^2 \text{ with uniform marginals} \}$
- ▶ Density of $\sigma \in S_k$ in $\mu \in \mathcal{Z}$:

```
t(\sigma, \mu) := \mathsf{Prob}\{\mathsf{profile} \ \mathsf{of} \ \mathsf{i.i.d.} \ V_1, \ldots, V_k \sim \mu \ \mathsf{is} \ \sigma\}
```

- ▶ \mathbb{Z} := $\{ \text{r.v.} (X, Y) : X, Y \sim \text{uniform}([0, 1]) \} = \{ \text{prob measures on } [0, 1]^2 \text{ with uniform marginals} \}$
- ▶ Density of $\sigma \in S_k$ in $\mu \in \mathcal{Z}$:

$$\textit{t}(\sigma,\mu) := \textbf{Prob}\{\text{profile of i.i.d. } \textit{V}_1,\ldots,\textit{V}_k \sim \mu \text{ is } \sigma\}$$

- ▶ \mathbb{Z} := $\{ \text{r.v.} (X, Y) : X, Y \sim \text{uniform}([0, 1]) \} = \{ \text{prob measures on } [0, 1]^2 \text{ with uniform marginals} \}$
- ▶ Density of $\sigma \in S_k$ in $\mu \in \mathcal{Z}$:

$$t(\sigma, \mu) := \mathsf{Prob}\{\mathsf{profile} \ \mathsf{of} \ \mathsf{i.i.d.} \ V_1, \ldots, V_k \sim \mu \ \mathsf{is} \ \sigma\}$$

- ► Hoppen-Kohayakawa-Moreira-Rath-Sampaio'12: \forall convergent (Π_n) \exists ! limit $\mu \in \mathcal{Z}$

- ▶ \mathbb{Z} := $\{ \text{r.v.} (X, Y) : X, Y \sim \text{uniform}([0, 1]) \} = \{ \text{prob measures on } [0, 1]^2 \text{ with uniform marginals} \}$
- ▶ Density of $\sigma \in S_k$ in $\mu \in \mathcal{Z}$:

$$t(\sigma, \mu) := \mathsf{Prob}\{\mathsf{profile} \ \mathsf{of} \ \mathsf{i.i.d.} \ V_1, \ldots, V_k \sim \mu \ \mathsf{is} \ \sigma\}$$

- $ightharpoonup \Pi_n
 ightharpoonup \mu$: $\forall \sigma \text{ lim } t(\sigma, \Pi_n) = t(\sigma, \mu)$
- ► Hoppen-Kohayakawa-Moreira-Rath-Sampaio'12: \forall convergent (Π_n) \exists ! limit $\mu \in \mathcal{Z}$
- Motivated by graph limits (Lovász-Szegedy-...)

 \triangleright λ : uniform measure on $[0, 1]^2$

- λ: uniform measure on [0, 1]²
- ▶ $\Pi_n \to \lambda$ iff quasirandom

- \triangleright λ : uniform measure on $[0, 1]^2$
- ▶ $\Pi_n \to \lambda$ iff quasirandom

- \triangleright λ : uniform measure on $[0, 1]^2$
- ▶ $\Pi_n \to \lambda$ iff quasirandom

Further examples:

- \triangleright λ : uniform measure on $[0, 1]^2$
- ▶ $\Pi_n \to \lambda$ iff quasirandom

Further examples:

- \triangleright λ : uniform measure on $[0, 1]^2$
- ▶ $\Pi_n \to \lambda$ iff quasirandom

► Further examples:

- \triangleright λ : uniform measure on $[0, 1]^2$
- ▶ $\Pi_n \to \lambda$ iff quasirandom

Further examples:

 \blacktriangleright $(\Pi_n) \rightarrow \mu$:

- $\rightarrow \lambda$: uniform measure on $[0, 1]^2$
- ▶ $\Pi_n \to \lambda$ iff quasirandom

Further examples:

- \blacktriangleright $(\Pi_n) \rightarrow \mu$:
 - ▶ Property $P(k) \iff \forall \sigma \in S_k \ t(\sigma, \mu) = 1/k!$

▶ k = 1, 2: easy

- ▶ k = 1,2: easy
- ► Chung'01, Cooper-Petrarca'08: *k* = 3

- ▶ k = 1,2: easy
- ► Chung'01, Cooper-Petrarca'08: *k* = 3
- ► Kráľ-P. ≥'13: k = 3

- k = 1,2: easy
- ► Chung'01, Cooper-Petrarca'08: k = 3
- ► Kráľ-P. ≥'13: k = 3
 - Permutation limits

- ▶ k = 1,2: easy
- ► Chung'01, Cooper-Petrarca'08: k = 3
- ► Kráľ-P. ≥'13: k = 3
 - Permutation limits

- ▶ k = 1,2: easy
- ► Chung'01, Cooper-Petrarca'08: k = 3
- ▶ Kráľ-P. >'13: k = 3
 - Permutation limits

- ▶ k = 1,2: easy
- ► Chung'01, Cooper-Petrarca'08: k = 3
- ▶ Kráľ-P. >'13: k = 3
 - Permutation limits

- ▶ k = 1, 2: easy
- ► Chung'01, Cooper-Petrarca'08: k = 3
- ▶ Kráľ-P. >'13: k = 3
 - Permutation limits

▶ 123-density is

- ▶ k = 1, 2: easy
- ► Chung'01, Cooper-Petrarca'08: k = 3
- ▶ Kráľ-P. >'13: k = 3
 - Permutation limits

▶ 123-density is

- ▶ k = 1, 2: easy
- ► Chung'01, Cooper-Petrarca'08: k = 3
- ▶ Kráľ-P. >'13: k = 3
 - Permutation limits

▶ 123-density is

<u>1</u>

 $\frac{1}{4}$

- ▶ k = 1, 2: easy
- ► Chung'01, Cooper-Petrarca'08: k = 3
- ▶ Kráľ-P. >'13: k = 3
 - Permutation limits

- ▶ 123-density is $\frac{1}{8}$
- Can achieve

<u>1</u>

- k = 1, 2: easy
- Chung'01, Cooper-Petrarca'08: k = 3
- ▶ Kráľ-P. >'13: k = 3
 - Permutation limits

- ▶ 123-density is
- Can achieve
- Symmetries

 $\frac{1}{31}$

Examples of $P(k) \not\Rightarrow P(k+1)$

- ▶ k = 1, 2: easy
- ► Chung'01, Cooper-Petrarca'08: k = 3
- ▶ Kráľ-P. >'13: k = 3
 - Permutation limits

- ▶ 123-density is $\frac{1}{8}$
- Can achieve
- ► Symmetries \Rightarrow $\forall \sigma \in S_3$ $t(\sigma, \mu) = \frac{1}{3!}$

Examples of $P(k) \not\Rightarrow P(k+1)$

- k = 1,2: easy
- ► Chung'01, Cooper-Petrarca'08: *k* = 3
- ▶ Kráľ-P. >'13: k = 3
 - Permutation limits

- ▶ 123-density is $\frac{1}{8}$
- Can achieve
- ► Symmetries \Rightarrow $\forall \sigma \in S_3$ $t(\sigma, \mu) = \frac{1}{3!}$
- P(4) does not hold

▶ Arbitrary $\mu \in \mathcal{Z}$ such that $\forall \sigma \in S_5$ $t(\sigma, \mu) = \frac{1}{5!}$

- ▶ Arbitrary $\mu \in \mathcal{Z}$ such that $\forall \sigma \in S_5$ $t(\sigma, \mu) = \frac{1}{5!}$
- Aim: $\mu = \lambda$ (the uniform measure)

- ▶ Arbitrary $\mu \in \mathcal{Z}$ such that $\forall \sigma \in S_5$ $t(\sigma, \mu) = \frac{1}{5!}$
- Aim: $\mu = \lambda$ (the uniform measure)
- $F_{\mu}(a,b) := \mu([0,a) \times [0,b))$

- ▶ Arbitrary $\mu \in \mathcal{Z}$ such that $\forall \sigma \in S_5$ $t(\sigma, \mu) = \frac{1}{5!}$
- Aim: $\mu = \lambda$ (the uniform measure)
- ho $F_{\mu}(a,b) := \mu([0,a) \times [0,b))$
- $ightharpoonup F_{\lambda}(a,b)=ab$

$$ightharpoonup \int F_{\mu}(X_1, Y_1) d\mu$$

$$ightharpoonup \int F_{\mu}(X_1, Y_1) \, \mathrm{d}\mu = \int \left(\int_{X_2 < X_1, Y_2 < Y_1} \, \mathrm{d}\mu \right) \mathrm{d}\mu$$

$$\int F_{\mu}(X_1, Y_1) \, \mathrm{d}\mu = \int \left(\int_{X_2 < X_1, Y_2 < Y_1} \, \mathrm{d}\mu \right) \mathrm{d}\mu = \int_{X_2 < X_1, Y_2 < Y_1} \, \mathrm{d}\mu^2$$

$$\int F_{\mu}(X_1, Y_1) d\mu = \int \left(\int_{X_2 < X_1, Y_2 < Y_1} d\mu \right) d\mu = \int_{X_2 < X_1, Y_2 < Y_1} d\mu^2 = \frac{1}{2} t(12, \mu)$$

$$\int F_{\mu}(X_1, Y_1) d\mu = \int \left(\int_{X_2 < X_1, Y_2 < Y_1} d\mu \right) d\mu = \int_{X_2 < X_1, Y_2 < Y_1} d\mu^2 = \frac{1}{2} t(12, \mu) = \frac{1}{4}$$

$$\int F_{\mu}(X_1, Y_1) \, \mathrm{d}\mu = \int \left(\int_{X_2 < X_1, Y_2 < Y_1} \, \mathrm{d}\mu \right) \, \mathrm{d}\mu = \int_{X_2 < X_1, Y_2 < Y_1} \, \mathrm{d}\mu^2 = \frac{1}{2} \, t(12, \mu) = \frac{1}{4}$$

$$ightharpoonup \int F_{\mu}(x,y) \, \mathrm{d}\lambda$$

- $\int F_{\mu}(X_1, Y_1) d\mu = \int \left(\int_{X_2 < X_1, Y_2 < Y_1} d\mu \right) d\mu = \int_{X_2 < X_1, Y_2 < Y_1} d\mu^2 = \frac{1}{2} t(12, \mu) = \frac{1}{4}$

$$\int F_{\mu}(X_{1}, Y_{1}) d\mu = \int \left(\int_{X_{2} < X_{1}, Y_{2} < Y_{1}} d\mu \right) d\mu = \int_{X_{2} < X_{1}, Y_{2} < Y_{1}} d\mu^{2} = \frac{1}{2} t(12, \mu) = \frac{1}{4}$$

•
$$\int F_{\mu}(x,y) \, d\lambda = \int \left(\int_{X_1 < x, Y_1 < y} d\mu \right) d\lambda = \int_{X_1 < X_2, Y_1 < Y_3} d\mu^3$$

$$\int F_{\mu}(X_{1}, Y_{1}) d\mu = \int \left(\int_{X_{2} < X_{1}, Y_{2} < Y_{1}} d\mu \right) d\mu = \int_{X_{2} < X_{1}, Y_{2} < Y_{1}} d\mu^{2} = \frac{1}{2} t(12, \mu) = \frac{1}{4}$$

•
$$\int F_{\mu}(x,y) d\lambda = \int \left(\int_{X_1 < x, Y_1 < y} d\mu \right) d\lambda = \int_{X_1 < X_2, Y_1 < Y_3} d\mu^3$$

• \Rightarrow Unchanged if we replace F_{μ} by F_{λ}

$$\int F_{\mu}(X_{1}, Y_{1}) d\mu = \int \left(\int_{X_{2} < X_{1}, Y_{2} < Y_{1}} d\mu \right) d\mu = \int_{X_{2} < X_{1}, Y_{2} < Y_{1}} d\mu^{2} = \frac{1}{2} t(12, \mu) = \frac{1}{4}$$

- - \rightarrow Unchanged if we replace F_{μ} by F_{λ}
 - $\Rightarrow \int F_{\mu}(x,y) \, \mathrm{d}\lambda = \int xy \, \mathrm{d}\lambda$

$$\int F_{\mu}(X_{1}, Y_{1}) d\mu = \int \left(\int_{X_{2} < X_{1}, Y_{2} < Y_{1}} d\mu \right) d\mu = \int_{X_{2} < X_{1}, Y_{2} < Y_{1}} d\mu^{2} = \frac{1}{2} t(12, \mu) = \frac{1}{4}$$

- - ▶ \Rightarrow Unchanged if we replace F_{μ} by F_{λ}
 - $ightharpoonup
 ightharpoonup \int F_{\mu}(x,y) \, \mathrm{d}\lambda = \int xy \, \mathrm{d}\lambda = 1/4$

$P(5) \Rightarrow \text{Quasirandom (cont)}$

$P(5) \Rightarrow Quasirandom (cont)$

$$\left(\int F_{\mu}(x,y)xy\,\mathrm{d}\lambda\right)^{2} \leq \left(\int F_{\mu}(x,y)^{2}\,\mathrm{d}\lambda\right)\left(\int x^{2}y^{2}\,\mathrm{d}\lambda\right)$$

$$P(5) \Rightarrow Quasirandom (cont)$$

$$\left(\int F_{\mu}(x,y)xy\,\mathrm{d}\lambda\right)^2 \leq \left(\int F_{\mu}(x,y)^2\,\mathrm{d}\lambda\right)\left(\int x^2y^2\,\mathrm{d}\lambda\right)$$

• Evaluate: $\frac{1}{81} \leq \frac{1}{81}$

$$P(5) \Rightarrow Quasirandom (cont)$$

$$\left(\int F_{\mu}(x,y)xy\,\mathrm{d}\lambda\right)^2 \leq \left(\int F_{\mu}(x,y)^2\,\mathrm{d}\lambda\right)\left(\int x^2y^2\,\mathrm{d}\lambda\right)$$

- Evaluate: $\frac{1}{81} \leq \frac{1}{81}$
- Equality

$$P(5) \Rightarrow Quasirandom (cont)$$

$$\left(\int F_{\mu}(x,y)xy\,\mathrm{d}\lambda\right)^2 \leq \left(\int F_{\mu}(x,y)^2\,\mathrm{d}\lambda\right)\left(\int x^2y^2\,\mathrm{d}\lambda\right)$$

- Evaluate: $\frac{1}{81} \leq \frac{1}{81}$
- Equality \Rightarrow $F_{\mu}(x,y) = cxy$ a.e.

$$P(5) \Rightarrow Quasirandom (cont)$$

$$\left(\int F_{\mu}(x,y)xy\,\mathrm{d}\lambda\right)^{2} \leq \left(\int F_{\mu}(x,y)^{2}\,\mathrm{d}\lambda\right)\left(\int x^{2}y^{2}\,\mathrm{d}\lambda\right)$$

- ▶ Evaluate: $\frac{1}{81} \le \frac{1}{81}$
- Equality \Rightarrow $F_{\mu}(x,y) = cxy$ a.e. \Rightarrow $F_{\mu}(x,y) = xy$

$$P(5) \Rightarrow Quasirandom (cont)$$

$$\left(\int F_{\mu}(x,y)xy\,\mathrm{d}\lambda\right)^{2} \leq \left(\int F_{\mu}(x,y)^{2}\,\mathrm{d}\lambda\right)\left(\int x^{2}y^{2}\,\mathrm{d}\lambda\right)$$

- Evaluate: $\frac{1}{81} \leq \frac{1}{81}$
- ▶ Equality \Rightarrow $F_{\mu}(x,y) = cxy$ a.e. \Rightarrow $F_{\mu}(x,y) = xy$
- $ightharpoonup F_{\mu} = F_{\lambda} \Rightarrow \mu = \lambda$

$$\frac{1}{81} = \left(\int F_{\mu}(X,Y)XY \, d\mu\right)^{2}$$

$$\leq \left(\int F_{\mu}(X,Y)^{2} \, d\mu\right) \cdot \left(\int X^{2}Y^{2} \, d\mu\right)$$

$$= \frac{1}{9} \left(4 \cdot \int F_{\mu}(x,y)xy \, d\lambda - \int (1 - X^{2} - X^{2}) \, d\mu\right)$$

$$\leq \frac{4}{9} \sqrt{\int F_{\mu}(x,y) \, d\lambda} \cdot \sqrt{\int x^{2}y^{2} \, d\lambda} - \frac{1}{27} = \frac{1}{81}$$

Lovász-Szegedy'06: Graphs

- Lovász-Szegedy'06: Graphs
 - Measurable $W: [0,1]^2 \rightarrow [0,1]$

- Lovász-Szegedy'06: Graphs
 - Measurable $W:[0,1]^2 \rightarrow [0,1]$
 - $\qquad \qquad W(x,y) = W(y,x)$

- Lovász-Szegedy'06: Graphs
 - ▶ Measurable $W: [0,1]^2 \rightarrow [0,1]$
 - V(x,y) = W(y,x)
- ► Elek-Szegedy'12: *k*-Uniform hypergraphs

- Lovász-Szegedy'06: Graphs
 - ▶ Measurable $W : [0, 1]^2 \to [0, 1]$
 - V(x,y) = W(y,x)
- Elek-Szegedy'12: k-Uniform hypergraphs
 - Measurable $W: [0,1]^{2^k-2} \rightarrow [0,1]$

- Lovász-Szegedy'06: Graphs
 - ▶ Measurable $W : [0, 1]^2 \to [0, 1]$
 - V(x,y) = W(y,x)
- Elek-Szegedy'12: k-Uniform hypergraphs
 - Measurable $W: [0,1]^{2^k-2} \to [0,1]$
 - \triangleright S_k -invariance

- Lovász-Szegedy'06: Graphs
 - ▶ Measurable $W : [0, 1]^2 \to [0, 1]$
 - V(x,y) = W(y,x)
- ► Elek-Szegedy'12: k-Uniform hypergraphs
 - Measurable $W: [0,1]^{2^k-2} \to [0,1]$
 - \triangleright S_k -invariance
- Janson'11, Hladký-Máthé-P.-Patel ≥'13: Partially ordered sets

- Lovász-Szegedy'06: Graphs
 - ▶ Measurable $W : [0, 1]^2 \to [0, 1]$
 - V(x,y) = W(y,x)
- ► Elek-Szegedy'12: k-Uniform hypergraphs
 - Measurable $W: [0,1]^{2^k-2} \to [0,1]$
 - ▶ S_k-invariance
- Janson'11, Hladký-Máthé-P.-Patel ≥'13: Partially ordered sets
 - $W: [0,1]^2 \to [0,1]$

- Lovász-Szegedy'06: Graphs
 - ▶ Measurable $W : [0, 1]^2 \to [0, 1]$
 - V(x,y) = W(y,x)
- ► Elek-Szegedy'12: k-Uniform hypergraphs
 - Measurable $W: [0,1]^{2^k-2} \to [0,1]$
 - \triangleright S_k -invariance
- Janson'11, Hladký-Máthé-P.-Patel ≥'13: Partially ordered sets
 - $W: [0,1]^2 \to [0,1]$
 - W(x,y) = 0 for $x \ge y$

- Lovász-Szegedy'06: Graphs
 - ▶ Measurable $W : [0, 1]^2 \to [0, 1]$
 - V(x,y) = W(y,x)
- ► Elek-Szegedy'12: k-Uniform hypergraphs
 - ▶ Measurable $W: [0,1]^{2^k-2} \to [0,1]$
 - ▶ S_k-invariance
- Janson'11, Hladký-Máthé-P.-Patel ≥'13: Partially ordered sets
 - $W: [0,1]^2 \to [0,1]$
 - W(x,y) = 0 for $x \ge y$
 - $W(x,y) > 0 \& W(y,z) > 0 \Rightarrow W(x,z) = 1$

Thank you!