Bios 6301: Assignment 3

Valerie Welty

Due Tuesday, 11 October, 1:00 PM

50 points total.

 $5^{n=day}$ points taken off for each day late.

This assignment includes turning in the first two assignments. All three should include knitr files (named homework1.rmd, homework2.rmd, homework3.rmd) along with valid PDF output files. Inside each file, clearly indicate which parts of your responses go with which problems (you may use the original homework document as a template). Add your name as author to the file's metadata section. Raw R code/output or word processor files are not acceptable.

Failure to properly name files or include author name may result in 5 points taken off.

Question 1

10 points

- 1. Use GitHub to turn in the first three homework assignments. Make sure the teacher (couthcommander) and TA (chipmanj) are collaborators. (5 points)
- 2. Commit each assignment individually. This means your repository should have at least three commits. (5 points)

Question 2

15 points

Write a simulation to calculate the power for the following study design. The study has two variables, treatment group and outcome. There are two treatment groups (0, 1) and they should be assigned randomly with equal probability. The outcome should be a random normal variable with a mean of 60 and standard deviation of 20. If a patient is in the treatment group, add 5 to the outcome. 5 is the true treatment effect. Create a linear model for the outcome by the treatment group, and extract the p-value (hint: see assignment1). Test if the p-value is less than or equal to the alpha level, which should be set to 0.05.

Repeat this procedure 1000 times. The power is calculated by finding the percentage of times the p-value is less than or equal to the alpha level. Use the **set.seed** command so that the professor can reproduce your results.

1. Find the power when the sample size is 100 patients. (10 points)

```
set.seed(12345)
n <- 100
loops <- 1000
alpha <- 0.05

x <- as.data.frame(matrix(data = NA, nrow = n, ncol = 2))
head <- c("treatment", "outcome")
names(x) = head
treat <- c(0, 1)</pre>
```

```
sig <- vector(mode = "integer", length = loops)</pre>
for (j in 1:loops) {
    for (i in 1:n) {
        x[i, 1] = sample(treat, 1)
         if (x[i, 1] == 0) {
             x[i, 2] = rnorm(1, 60, 20)
        } else if (x[i, 1] == 1) {
             x[i, 2] = rnorm(1, 60, 20) + 5
         }
    }
    aggregate(x[, 2], list(x$treatment), mean)
    mod \leftarrow lm(outcome \sim treatment, dat = x)
    summary(mod)
    (p_val <- coef(summary(mod))[2, 4])</pre>
    if (p_val < alpha) {</pre>
        sig[j] = 1
    }
power <- sum(sig)/loops</pre>
power
```

[1] 0.244

1. Find the power when the sample size is 1000 patients. (5 points)

```
set.seed(12345)
n <- 1000
loops <- 1000
alpha <- 0.05
x <- as.data.frame(matrix(data = NA, nrow = n, ncol = 2))
head <- c("treatment", "outcome")</pre>
names(x) = head
treat \leftarrow c(0, 1)
sig <- vector(mode = "integer", length = loops)</pre>
for (j in 1:loops) {
    for (i in 1:n) {
        x[i, 1] = sample(treat, 1)
        if (x[i, 1] == 0) {
             x[i, 2] = rnorm(1, 60, 20)
        } else if (x[i, 1] == 1) {
             x[i, 2] = rnorm(1, 60, 20) + 5
        }
    }
    aggregate(x[, 2], list(x$treatment), mean)
    mod \leftarrow lm(outcome \sim treatment, dat = x)
    summary(mod)
    est <- coef(summary(mod))</pre>
```

```
(p_val <- 2 * pt(est[2, 3], df = n - 2, lower.tail = FALSE))
if (p_val <= alpha) {
    sig[j] = 1
  }
}
power <- sum(sig)/loops
power</pre>
```

[1] 0.971

Question 3

15 points

Obtain a copy of the football-values lecture. Save the 2016/proj_wr16.csv file in your working directory. Read in the data set and remove the first two columns.

```
football.df <- as.data.frame(read.csv("proj_wr16.csv"))
football.df.2 <- subset(football.df, select = -c(fumbles,fpts))</pre>
```

1. Show the correlation matrix of this data set. (3 points)

1. Generate a data set with 30 rows that has a similar correlation structure. Repeat the procedure 10,000 times and return the mean correlation matrix. (10 points)

```
mu <- c(0,0,0,0,0,0)
sum <- matrix(data=0, nrow=6, ncol=6)

library(MASS)
for (i in 1:10000) {
  mat <- mvrnorm(30, Sigma = cor.mat, mu = mu, empirical = FALSE)
  sum = sum + cor(mat)
}
(mean <- sum/10000)</pre>
```

```
## rush_att rush_yds rush_tds rec_att rec_yds rec_tds
## rush_att 1.0000000 0.9901827 0.88249497 0.19442170 0.14278737 0.13359147
## rush_yds 0.9901827 1.0000000 0.90970958 0.18513351 0.13601470 0.12614829
```

rec_tds 0.1354900 0.1277233 0.03163468 0.96757796 0.98209522 1.00000000

```
## rush_tds 0.8824950 0.9097096 1.00000000 0.06977174 0.03244584 0.03282482 ## rec_att 0.1944217 0.1851335 0.06977174 1.00000000 0.98964853 0.96650912 ## rec_yds 0.1427874 0.1360147 0.03244584 0.98964853 1.00000000 0.98150776 ## rec_tds 0.1335915 0.1261483 0.03282482 0.96650912 0.98150776 1.00000000
```

1. Generate a data set with 30 rows that has the exact correlation structure as the original data set. (2 points)

```
mu <- c(0,0,0,0,0,0,0)
all.corr <- NULL
library(MASS)
mat <- mvrnorm(30, Sigma = cor.mat, mu = mu, empirical = TRUE)
print(cor(mat))</pre>
```

```
## rush_att rush_yds rush_tds rec_att rec_yds rec_tds
## rush_att 1.000000 0.9906030 0.88608205 0.19706851 0.14473723 0.13548999
## rush_yds 0.9906030 1.0000000 0.91252627 0.18745520 0.13765791 0.12772327
## rush_tds 0.8860820 0.9125263 1.00000000 0.06914613 0.03114206 0.03163468
## rec_att 0.1970685 0.1874552 0.06914613 1.00000000 0.99002712 0.96757796
## rec_yds 0.1447372 0.1376579 0.03114206 0.99002712 1.00000000 0.98209522
## rec tds 0.1354900 0.1277233 0.03163468 0.96757796 0.98209522 1.00000000
```

Question 4

10 points

Use LATEX to create the following expressions.

1. Hint: \Rightarrow (4 points)

$$P(B) = \sum_{i} P(B|A_i)P(A_i), \Rightarrow P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{j} P(B|A_j)P(A_j)}$$

2. Hint: \zeta (3 points)

$$\hat{f}(\zeta) = \int_{-\infty}^{\infty} f(x)e^{-2\pi ix\zeta}dx$$

3. Hint: \partial (3 points)

$$\mathbf{J} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial x_1} & \cdots & \frac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$