Mineração de Dados Aula 2 – parte 2

Especialização em Ciência de Dados e suas Aplicações

• Ideia básica: agrupar instâncias similares

Espaço

Biologia computacional

Plantas/espécies Dados genéticos (família genética)

WWW

Social *networks* (comunidades de usuários) Buscas similares (melhoraria de buscadores de páginas)

Marketing e *business*

Compras similares Identificação de perfis

Clusterização/agrupamento

É uma classificação não supervisionada: sem classes predefinidas

O que é um cluster?

Quantos clusters?

O que é um cluster?

Quantos clusters?

Dois Clusters

Seis Clusters

Quatro Clusters

O que é um cluster?

Depende da natureza dos dados e dos resultados esperados

Agrupamento hierárquico (aglomerativo)

Agrupamento hierárquico (aglomerativo) UTrpr

Distância geográfica (haversine)

Agrupamento hierárquico (aglomerativo) UTr

Imagem de David Sontag

Agrupamento hierárquico (aglomerativo) UTPPR

Distância euclideana

Agrupamento hierárquico (aglomerativo) Urper

Algoritmo básico:

Computar a matriz de proximidade Considere cada ponto como um cluster

Repetir

Agrupar os dois clusters mais próximos

Atualizar a matriz de proximidade

Até restar um único cluster

→Operação chave! Várias estratégias

Agrupamento hierárquico (aglomerativo) Urper

Algoritmo básico:

Computar a matriz de proximidade Considere cada ponto como um cluster

Complexidade de tempo:

O $(m^2 log m)$

m = # de objetos

Repetir

Agrupar os dois clusters mais próximos

Atualizar a matriz de proximidade.

Até restar um único cluster

→Operação chave! Várias estratégias

Situação inicial

 Clusters contendo pontos individuais e uma matriz de proximidade

Matriz de proximidade

Situação intermediária

Depois do passo de agrupamento, nós temos alguns grupos

	C1	C2	C 3	C4	C5
C1					
C2					
C3					
<u>C4</u>					
C 5					

Matriz de proximidade

Depois do agrupamento

Como atualizar a matriz de proximidade ???

	,		C2 U		
		C1	U C5	C3	C4
	C1		?		
C2 U	C5	?	?	?	?
	C3		?:		
	<u>C4</u>		?		

Matriz de proximidade

Complete linkage – distância entre os pontos mais distantes

Calcula para cada cluster e encontra a menor para agrupar

Single linkage – distância entre os pontos mais perto

Average-likage – distância média entre os pontos de um grupo com todos os pontos de outro grupo

Centroid-linkage – distância entre os centroides dos clusters

Ward's method – similaridade de dois clusters é baseada no aumento no erro ao quadrado (SSE) quando dois clusters são agrupados

Passos:

- Considera o agrupamento de dois clusters.
- Calcula o centroid
- Calcula o SSE

Menos suscetíveis a ruídos

Exemplo: Single Linkage

Exemplo:

Matriz de distância

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Exemplo: Single Linkage

Clusters aninhados

Dendrograma

Vantagens do single linkage

Bom em agrupar formatos não-elípticos

Limitações do single linkage

Três Clusters

Exemplo: Complete Linkage

Matriz de distância:

	p1	p2	р3	p4	p5	p6
p1	0.00	0.24	0.22	0.37	0.34	0.23
p2	0.24	0.00	0.15	0.20	0.14	0.25
р3	0.22	0.15	0.00	0.15	0.28	0.11
p4	0.37	0.20	0.15	0.00	0.29	0.22
p5	0.34	0.14	0.28	0.29	0.00	0.39
p6	0.23	0.25	0.11	0.22	0.39	0.00

Exemplo: Complete Linkage

Clusters aninhados

Dendrograma

Vantagens do complete linkage

Menos susceptível a ruídos

Limitações do complete linkage

- Tende a quebrar grupos largos
- Tende a formar clusters globulares (esféricos)

Exemplo

Agrupando cidades similares

Normalizamos cada matriz de transição (City Image) e criamos um vetor {t1, t2, ... t81}, onde cada posição é uma célula da matriz de transição

Calculamos a distância euclideana entre cada vetor

Realizamos uma clusterização hierárquica

City image

Agrupando cidades similares

(a) Day – weekday

(b) Night – weekend

Agrupando cidades similares

Table IV. Clustering results for weekend during the night.

Cluster	Cities				
1	Kuwait, Singapore, Kuala Lumpur,				
	Manila, Bangkok				
2	Tokyo, Osaka				
3	Seoul, Jakarta, Bandung, Semarang,				
	Surabaya				
4	Rio, Belo Horizonte, Sao Paulo				
5	Istanbul, Moscow				
6	Santiago				
7	Los Angeles, Chicago, San Francisco, New				
	York, Melbourne, Sydney, Paris, Madrid,				
	London, Barcelona, Buenos Aires, Mexico				
	City				

Agrupamento baseado em protótipo: k-means

k-means

Algoritmo básico do k-means

- Inicialização: Escolher k pontos aleatórios para serem o centro do cluster
- Alternar:
 - 1. Atribuir os pontos para o centro mais próximo
 - 2. Mudar o centro do cluster para a *média* dos pontos atribuídos
- Parar quando não haver mudanças significativas

Tipicamente

k-means

Algoritmo básico do k-means

- Inicialização: Escolher k po l = # de iterações para convergir centro do cluster
- Alternar:
 - 1. Atribuir os pontos para I é tipicamente pequeno, assim k-means
 - 2. Mudar o centro do clus é considerado linear em m atribuídos

Complexidade de tempo:

 $O(I \times K \times m \times n)$

m = # de objetos n = # de atributos

Parar quando não haver mudanças significativas

Tipicamente

Escolher k=2 pontos aleatórios

Atribuir os pontos para o centro mais próximo

Mudar o centro do cluster para a média dos pontos atribuídos

Repetir até convergir

Considerações sobre o K-means

Os centroides iniciais são escolhidos, tipicamente, aleatoriamente

O centroid é, tipicamente, a média de todos os pontos do cluster

'Proximidade' é medida pela distância euclideana, similaridade do cosseno, etc.

Limitações do K-means

- K-means apresenta problemas quando clusters possuem diferentes:
 - Tamanhos
 - Densidades
 - Formatos não-esféricos
- K-means apresenta problemas com ruídos.

Limitações do K-means

- A cada rodada o resultado pode ser diferente
- Na prática é comum inicializar o algoritmo várias vezes (50 – 100), para encontrar uma rodada com melhor resultado

Limitações: tamanhos diferentes

Pontos originais

Limitações: tamanhos diferentes

Pontos originais

K-means (3 Clusters)

Limitações: diferentes densidades

Pontos originais

Limitações: diferentes densidades

Pontos originais

K-means (3 Clusters)

Limitações: formatos não-esféricos

Pontos originais

Limitações: formatos não-esféricos

Pontos originais

K-means (2 Clusters)

Grupos baseados em protótipos

Medidas de Avaliação = coesão e separação

Coesão (individual)

Mede o quanto os objetos dentro de um grupo se aglomeram perto do **centro do grupo**

Separação (inter grupos)

Mede o quanto os centros dos grupos estão bem separados entre si

Grupos baseados em protótipos

Coesão(C_i) =
$$\sum_{x \in C_i} proximidade(x,m_i)$$

m_i = centroide de C_i

$$SSE(C_i) = \Sigma \quad dist(x,m_i)^2$$

$$\times \varepsilon C_i$$

Separação(
$$C_i, C_j$$
) = proximidade(c_i, c_j)

Proximidade : noção que pode variar dependendo da aplicação

Coesão e separação

Como utilizar coesão e separação para "melhorar" a clusterização

- Um cluster com baixo grau de coesão pode ser dividido em 2 subclusters.
- Dois clusters que têm boa coesão mas que não tem bom grau de separação podem ser juntados para formar um único cluster.

□ Medida que combina coesão e separação

Coeficiente silhueta de um objeto t:

Dado um conjunto de Clusters $C = \{C_1, ..., C_k\}$ e um objeto t

Calcule a_t -> distância média de t a todos os objetos de seu cluster

Calcule b_t->

Para cada cluster C' não contendo t, calcule t(C') a distância média entre t e todos os objetos de C' $b_t = min \{t(C') \mid C' \text{ não contém t }\}$

Coeficiente Silhueta (t) = $(b_t - a_t) / max(a_t, b_t)$

Coeficiente de Silhueta varia de -1 a 1

Valores negativos: $a_t > b_t$ (não desejados)

 Pois distância média de t a objetos de seu cluster é maior que distância média de t a objetos de outros clusters

Valores Ideais

- Valores positivos
- a₁ bem próximo de zero
- Coeficiente de silhueta bem próximo de 1

Dados agrupados em 10 clusters e os coeficientes de silhueta dos pontos

Como selecionar o k no k-means?

Como selecionar o k no k-means?

Teste diferentes **k**, olhando as alterações na distância média ao centroide com o aumento de k (SSE)

A média cai rapidamente até o k ideal, após

muda pouco

$$SSE = \sum_{i=1}^{n} (X_i - \overline{X})^2$$

Número ideal; distâncias curtas

Técnica 2

Executar o algoritmo K-means diversas vezes com diferentes números de clusters.

Calcular o **coeficiente de silhueta global** de cada clusterização obtida.

Plotar os valores dos coeficientes de silhueta (eixo y) por número de clusters (eixo x)

O número ideal de clusters corresponde a um momento onde se atinge um pico no gráfico.

Curva SSE para um dataset mais complicado

SSE de clusters usando o Kmeans

Agrupamento de áreas dentro da cidade

Comparando com dados do World Value Survey

A similaridade é muito boa!

Agradecimentos

Alguns slides foram derivados/inspirados em:

- Livro Introduction to Data Mining - Tan, Steinbach, Kumar.