BUNDESREPUBLIK DEUTSCHLAND

CERTIFIED COPY OF PRIORITY DOCUMENT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 58 301.7

Anmeldetag:

12. Dezember 2003

Anmelder/Inhaber:

IRWIN Industrial Tools GmbH,

85399 Hallbergmoos/DE

Bezeichnung:

Anordnung mit Mechanismus zum Laden von Antriebsenergie, Spann- und/oder Spreizwerkzeug

IPC:

B 25 B 5/06

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 29. September 2005 Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

Brosig

BOEHMERT & BOEHMERT ANWALTSSOZIETÄT

Boehmert & Boehmert • P.O.B. 15 03 08 • D-80043 München

Deutsches Patent- und Markenamt Zweibrückenstraße 12 80297 München DR. DIG. KARL BOEHMERT, PA(1979-1971)
DIPL-ING. ALBERT BOEHMERT, PA(1970-1972)
WILHELM J. H. STAHLBERG, AA. Dremm
DR.-DRG. WALTER HOORMANN, PA. Brown
DR.-DRG. WALTER HOORMANN, PA. Brown
DR.-DRG. ROLLAND LESSEGANG, PA. Mendre. Bamphal
DR.-DRG. ROLLAND LESSEGANG, PA. Mendre. Bamphal
DR.-DRG. ROLLAND LESSEGANG, PA. Mendre.
DIPL.-PHYS. ROBERT MONZHUBER, PA(1921-1972)
DR. LLDWIG KOUKER, NA Brown
DR. LUDWIG KOUKER, NA Brown
DR. LUDWIG KOUKER, NA Brown
DR. LUDWIG KOUKER, NA Brown
DR. LOTHER WALTER STANDARD TO PART DEPARTMENT OF THE DEP

PA - Petentanwalt/Petent Attorney RA - Rechtsanwalt/Attorney at Law

- European Pater - Maitre en Droi
- Licencié en Dro
- Diplôme d'Etudes Approfondies en Conception de Produits

Alle zugelannen zur Vertrubung vor dem Europäinehen Markenanzt, Aliena Professional Reprocestation at the Community Trademark Office, Alienza PROF. DR. WILHELM NORDEMANN, A. Pandem
DPIL-PHYS. EDIDARD BAUMANN, PA. Hambeninens
DR. ING. GERALD KLOPSCH, PA. Pomenier
DPI.-ING. HANN W. GROENING, PA. Membra
DPI.-ING. SINGFREID SCHIRMER, PA. Sainfeld
DPI.-ING. DR. PANDER SCHIRMER, PA. SAINFELD
DPI.-ING. DR. JAN TONNIES, PA. SAINFELD
DR. ALOREAS DUSTMANN, LL.M., A. Panden
DR. ALOREAS DUSTMANN, LL.M., A. Panden
DR. LORIAN SCHIVAR, LL.M., SAINFELD
DR. FORDER
DR. SAINFELD
DR. JORGE DR. DR. MARKUS ENGELHARD, PA. Membra
DPI.-CHEM DR. KARL-HEINZ B. METTEN, PA., Femalter
DPI.-CHEM DR. JORK ZWICKER, PA. Membra
DR. CRISTIAN MESSNER, RA Membra
DR. CRISTIAN MESSNER, RA Membra

In Zusammenarbeit mit/in cooperation with DIPL-CHEM. DR. HANS ULRICH MAY, PA*, Manch

Ihr Zeichen Your ref. Ihr Schreiben Your letter of Unser Zeichen Our ref.

München,

Neuanmeldung

I30146

12. Dezember 2003

IRWIN Industrial Tools GmbH Lilienthalstraße 7 85399 Hallbergmoos

Anordnung mit Mechanismus zum Laden von Antriebsenergie, Spann- und/oder Spreizwerk-

zeug

Die Erfindung betrifft eine Anordnung mit einem Antrieb für ein Spann- und/oder Spreizwerkzeug, der zum Verlagern einer an einem Träger des Spann- und/oder Spreizwerkzeugs beweglich gelagerten Schub- oder Zugstange mit einer daran fest angebrachten, beweglichen Backe relativ zu dem eine ortsfeste Backe haltenden Träger in Längsrichtung der Schub- oder Zugstange ausgelegt ist, einem Speicher für Antriebsenergie und einem Mechanismus zum Laden von Antriebsenergie in den Speicher.

- 64.356 -

Ein Spannwerkzeug mit einer derartigen Anordnung ist aus dem US-Patent 6,568,667 bekannt. Das US-Patent offenbart ein Spannwerkzeug, das eine Spiraldruckfeder zum schnellen Verschließen der beweglichen Backe aufweist. Die Freigabe von in der Spiraldruckfeder gespeicherten potentiellen Energie wird durch eine Verlagerungssperre behindert. Liegen die Spannbacken aneinander, so ist die in der Spiraldruckfeder gespeicherte Antriebsenergie erschöpft. Zum Laden der Antriebsenergie in die Spiraldruckfeder ist die Schubstange samt beweglicher Backe von dem Träger zu entfernen, womit die Spiraldruckfeder zusammengedrückt und gespannt wird.

Das in dem US-Patent vorgeschlagene Spannwerkzeug kann nicht ausschließlich mit einer Hand bedient werden, da eine zweite Hand der Bedienperson notwendig ist, um die bewegliche Backe zum Spannen der Spiraldruckfeder von dem Träger wegzuziehen. Des weiteren besitzt das bekannte Spannwerkzeug einen Nachteil dahingehend, daß bei sehr schmalen zu spannenden Gegenständen kaum noch Antriebsenergie in der Spiraldruckfeder gespeichert ist, so daß eine Schließbewegung durch die Spiraldruckfeder nicht mehr oder auf eine nicht ausreichende Weise bereitstellbar ist.

Es ist Aufgabe der Erfindung, den Nachteil des Standes der Technik zu überwinden, insbesondere die Ergonomie des Spann- und/oder Spreizwerkzeugs zu verbessern, insbesondere eine Anordnung mit einem Antrieb für ein Spann- und/oder Spreizwerkzeug, einem Speicher für Antriebsenergie und einem Mechanismus zum Laden von Antriebsenergie in den Speicher zu schaffen, welche insbesondere die Funktionsweise für eine einhändige Bedienbarkeit des Spann- und/oder Spreizwerkzeugs erweitert, insbesondere Antriebsenergie in annähernd allen Betriebsstellungen des Spann- und/oder Spreizwerkzeugs zur Verfügung stellt.

Diese Aufgabe wird durch die Merkmale von Anspruch 1 gelöst. Danach ist der Mechanismus dazu ausgelegt, Antriebsenergie in den Speicher bei einer Verlagerung der Schub- oder Zugstange in deren Schließrichtung zu verlagern. Als Schließrichtung ist die Richtung zu verstehen, bei der sich im Falle der Spannkonfiguration des Spann- und/oder Spreizwerkzeugs die bewegliche Backe auf die ortsfeste Backe zubewegt. Genauso muß unter Schließrichtung

diejenige Richtung verstanden werden, bei der im Falle einer Spreizkonfiguration des Spannund/oder Spreizwerkzeugs die bewegliche Backe von der ortsfesten Backe entfernt wird.

Mit der erfindungsgemäßen Maßnahme wird gewährleistet, daß der Bedienperson nicht nur Antriebsenergie zur Verfügung steht, wenn sich die bewegliche Spannbacke in einer gegenüber der ortsfesten Backe geöffneten Position befindet, sondern auch dann, wenn sie an der ortsfesten Backe anliegt. Mit der zur Verfügungstellung von Antriebsenergie in jeder Betriebsstellung und –konfiguration des Spann- und/oder Spreizwerkzeugs wird eine Bedienbarkeit für letzteres bereitgestellt, die ein einhändiges Betätigen des Spann- und/oder Spreizwerkzeugs sowohl zum Greifen des zu spannenden Gegenstands als auch zum Aufbringen von hohen Spannkräften auf den zu spannenden Gegenstand als auch zum Lösen des zu spannenden Gegenstands als auch zum Öffnen und Freigeben des zu spannenden Gegenstands als auch zum Verbringen der beweglichen Backe in eine Ausgangsstellung, in der das Spannund/oder Spreizwerkzeug für einen erneuten Einsatz, insbesondere zum Spannen eines neuen Gegenstands, bereit ist.

Des weiteren läßt die erfindungsgemäße Maßnahme zu, Antriebsenergie nicht nur für einen Schnellschlußmechanismus sondern auch für einen schnellen Öffnungsmechanismus der Spannbacken zur Verfügung zu stellen. Sollten für die beiden unterschiedlichen Verlagerungsrichtungen unterschiedliche Antriebe eingesetzt werden, kann der Lademechanismus derart ausgestaltet sein, daß ein Speicher für den ersten Antrieb beim Schließen der Spannbacken und ein Speicher des anderen Antriebs beim Öffnen der Spannbacken mit Energie geladen werden.

Bei einer bevorzugten Ausführung der Erfindung ist der Lademechanismus ein drehbar angetriebenes Getriebeelement. Dem Getriebeelement wird das erforderliche Drehmoment zum Ladevorgang beispielsweise dadurch mitgeteilt, daß ein reib- oder formschlüssiger Kontakt zwischen der Schub- oder Zugstange und dem Getriebeelement hergestellt wird. Das Getriebeelement kann mit einer Kraftmaschine, insbesondere einer Drehfeder, des Antriebs derart gekoppelt sein, daß durch die Drehbewegung des Getriebeelements die Kraftmaschine ge-

spannt wird. Bei einer als Drehfeder ausgebildeten Kraftmaschine ist der Speicher für Antriebsenergie sowie eine Einrichtung zum Umwandeln der Drehbewegung des Getriebeelements in Drehantriebsenergie in einem Bauteil integriert.

Bei einer bevorzugten Ausführung ist für den Antrieb in beide Verlagerungsrichtungen nur eine Kraftmaschine insbesondere in Form einer Drehfeder vorgesehen. Um den Ladevorgang durch den Lademechanismus in beide Verlagerungsrichtungen sicherzustellen, ist bei einer Weiterbildung der Erfindung ein Drehrichtungswechsler vorgesehen, der bei einem Wechsel der Verlagerungsrichtung der Schub- oder Zugstange die Drehbewegung des Getriebeelements in eine für die Einrichtung zum Umwandeln der Drehbewegung erforderliche Drehladebewegung ändert. Dies beispielsweise kann dadurch realisiert werden, daß zwischen dem drehantreibbaren Getriebeelement und der Schub- oder Zugstange ein Zwischengetriebeelement vorgesehen ist, welches über einen Schaltmechanismus in Eingriff zwischen der Schuboder Zugstange und dem Getriebeelement bringbar ist, was einen Drehrichtungswechsel bewirkt.

Bei der Weiterbildung der Erfindung ist der Drehrichtungswechsler, insbesondere die Schaltung zum Bringen eines Zwischengetriebeelements in Eingriff mit dem Getriebeelement, manuell betätigbar.

Bei einer bevorzugten Weiterbildung der Erfindung ist der Drehrichtungswechsler automatisch ausgeführt, d. h. dieser wird dann aktiviert, wenn die Verlagerungsrichtung der Schuboder Zugstange beispielsweise durch Aufbringen von einer externen Druck- oder Zugkraft an der Schub- oder Zugstange gewechselt wird.

Bei einer Weiterbildung des erfindungsgemäßen Lademechanismus ist eine Energiefreigabeblockade vorgesehen. Diese ist während des Ladevorgangs aktiviert, damit die in den Speicher eingebrachte Antriebsenergie nicht freigegeben wird und zu dem Zeitpunkt von der Bedienperson freigebbar ist, wenn die Antriebsenergie benötigt wird.

Die Energiefreigabeblockade kann vorzugsweise manuell von der Bedienperson gelöst werden.

In einer besonderen Ausführung der Energiefreigabeblockade ist eine Klinkensperranordnung vorgesehen, welche eine Antriebsbewegung einer Drehfeder blockiert, insbesondere in Eingriff mit dem Getriebeelement oder der Drehfeder kommen kann.

Außerdem betrifft die Erfindung ein Spann- und/oder Spreizwerkzeug mit einer erfindungsgemäßen Anordnung.

Weitere Vorteile, Merkmale und Eigenschaften der Erfindung werden durch die folgende Beschreibung bevorzugter Ausführungen der Erfindung anhand der beiliegenden Zeichnungen deutlich, in denen zeigen:

- Figur 1a eine Seitenansicht einer Ausführung eines erfindungsgemäßen Spann- und/oder Spreizwerkzeugs mit einer geöffneten Spannbackenstellung;
- Figur 1b eine Querschnittsansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 1a entlang der Schnittlinie A-A;
- Figur 2 eine Seitenansicht einer weiteren erfindungsgemäßen Ausführung eines Spannund/oder Spreizwerkzeugs mit geöffneter Spannbackenstellung, wobei ein erfindungsgemäßer Antrieb in seinem Antriebsbetrieb zum Öffnen der Spannbacken gezeigt ist;
- Figur 3 eine Seitenansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 2, wobei der erfindungsgemäße Antrieb in seinem Antriebsbetrieb zum Schließen der Spannbacken gezeigt ist;

Figur 4 eine Seitenansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 2 mit einem deaktivierten Antrieb, wobei ein erfindungsgemäßer Mechanismus zum Laden von Antriebsenergie bei einer Schließbewegung der Backen gezeigt ist; eine Seitenansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 2 mit Figur 5 einem deaktivierten Antrieb, wobei der erfindungsgemäße Mechanismus zum Laden von Antriebsenergie bei einer Öffnungsbewegung der Spannbacken gezeigt ist; eine Seitenansicht einer weiteren erfindungsgemäßen Ausführung eines Spann-Figur 6a und/oder Spreizwerkzeugs mit Spannbacken im einspannenden Zustand; Figur 6b eine Stirnansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 6a; Figur 7a eine Seitenansicht der erfindungsgemäßen Ausführung des Spann- und/oder Spreizwerkzeugs gemäß Figuren 6a, 6b mit einer geöffneten Spannbackenkonfiguration; eine Querschnittsansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 7a Figur 7b entlang der Schnittlinie B-B; Figur 8a eine Seitenansicht des Spann- und/oder Spreizwerkzeugs gemäß den Figuren. 6a bis 7b in einem Betriebsmodus des Schließens der Spannbacken; Figur 8b eine Stirnansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 8a; Figur 9a eine Seitenansicht einer weiteren erfindungsgemäßen Ausführung eines Spannund/oder Spreizwerkzeugs mit einer geöffneten Spannbackenkonfiguration;

eine Draufsicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 9a;

Figur 9b

BOEHMERT & BOEHMERT

- 7 -

Figur 9c eine vergrößerte Detailansicht des Bereichs C gemäß Figur 9b;

Figur 9d eine Stirnansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 9a.

Die in den Figuren 1a und 1b dargestellte bevorzugte Ausführung eines Spann- und/oder Spreizwerkzeugs 1 umfaßt eine Schub- oder Zugstange 3, die an einem Träger 5 in deren Längsrichtung beweglich gelagert ist. Der Träger 5 umfaßt ein geschlossenes Gehäuse 7, wobei auf einer Spannseite 9 der Schub- oder Zugstange 3 eine feste Spannbacke 11 vorgesehen ist, die einer beweglichen Spannbacke 13 diametral gegenüberliegt, welche an einem Ende 14 der Schub- oder Zugstange 3 lösbar befestigt ist.

In Figur 1a ist der Spannbetriebsmodus des Spann- und/oder Spreizwerkzeugs 1 dargestellt. Ist die bewegliche Backe 13 an dem gegenüberliegenden Ende 16 der Schub- oder Zugstange 3 befestigt, besitzt das Spann- und/oder Spreizwerkzeugs 1 einen Spreizbetriebsmodus.

Auf der der Spannseite 9 gegenüberliegenden Betätigungsseite 15 der Zug- oder Schubstange 3 ist an dem Träger 5 ein Griff 17 zum Halten des Spann- und/oder Spreizwerkzeugs mit einer Hand einstückig befestigt. Zudem ist an dem Träger 5 ein Schrittgetriebe 19 gelagert, das später im Detail erläutert wird. Das Gehäuse 7 des Trägers 5 umfaßt und schützt einen erfindungsgemäßen Antrieb 21, der durch eine Drehfeder 23, die eine Rotationsachse aufweist, und ein drehbar gelagertes Antriebsrad 25 gebildet ist, dessen Drehachse mit der Rotationsachse der Drehfeder 23 zusammenfällt.

Das Antriebsrad 25 steht kraftübertragend mit einem Längsrand 27 der Schub- oder Zugstange 3 im Eingriff. In Figur 1a ist der drehmomentübertragende Eingriff durch Reibungsschluß zwischen Antriebsrad 5 und Schub- oder Zugstange 3 gebildet.

Das Antriebsrad 25 ist derart an dem Träger 5 gelagert, daß in jeder Verlagerungsposition der Schub- oder Zugstange 3 ein Eingriff des Antriebsrads 25 mit der Schub- oder Zugstange 3 gewährleistet ist. Das Antriebsrad 25 ist aus einem Gummi enthaltenden Werkstoff gebildet,

wobei die Schub- oder Zugstange 3 zum Antriebsrad 25 derart liegt, daß eine eine Normalkraft erzeugende Vorspannung zwischen den beiden Bauteilen wirkt.

Mit dieser Ausführung eines drehantreibbaren Getriebeelements in Form eines Antriebsrads 25 und einer Drehfeder 23 als Motor und Energiespeicher wird der Schub- oder Zugstange 3 in jeder ihrer Verlagerungspositionen eine Antriebskraft zum Schließen der Spannbacken 11, 13 mitgeteilt, also eine Antriebskraft zum Bewegen der Schub- oder Zugstange 3 von rechts nach links, wie in Figur 1a durch den Pfeil S, wie Schließrichtung, angezeigt ist.

Aufgrund des ständigen Eingriffs des Antriebsrads 25 mit der Schub- oder Zugstange 3 ist weiterhin gewährleistet, daß bei einer Öffnungsbewegung der Spannbacke 13, d.h. bei einer Bewegung der Schub- oder Zugstange 3 von links nach rechts, die Drehfeder 23 gespannt wird, um für den anschließenden Öffnungsvorgang ausreichende potentielle Energie zum erneuten Öffnen des Spann- und/oder Spreizwerkzeugs 1 bereitzustellen.

Eine Drehfeder 23 als Kraftmaschine ist insofern von Vorteil, als sie für eine im wesentlichen kontinuierliche Drehmoment-Bereitstellung sorgt, so daß ein kontinuierlicher Schließvorgang mit gleichmäßiger Schließkraft und Schließgeschwindigkeit bereitgestellt ist.

Die Reibungskraft, welche zur Übertragung des Drehmoments von dem Antriebsrad 25 auf die Schub- oder Zugstange 3 notwendig ist, ist derart insbesondere durch Wahl eines hohen Reibungskoeffizienten einzustellen, daß es bei einem Stillstand der Schub- oder Zugstange 3 nicht zu einem Durchdrehen des Antriebsrads 25 kommt. Auf diese Weise ist gewährleistet, daß sich die potentielle Energie der Drehfeder 23 nicht selbständig durch Durchrutschen des Antriebsrads 25 löst.

Das anhand der Figuren 1a und 1b beschriebene Spann- und/oder Spreizwerkzeug weist explizit keinen Mechanismus zum Laden eines Energiespeichers beim Schließen der beweglichen Spannbacke auf, allerdings soll hiermit verdeutlicht werden, daß der erfindungsgemäße Mechanismus zum Laden des Energiespeichers beim Schließen des Spann- und/oder Spreiz-

werkzeugs mit den oben ausgebildeten Spann- und/oder Spreizwerkzeugs kombiniert werden kann.

Die Ausführung gemäß den Figuren 2 und 3 stellt ein Spann- und/oder Spreizwerkzeug dar, die sich im wesentlichen von dem Spann- und/oder Spreizwerkzeug gemäß Figur 1a und 1b darin unterscheidet, daß eine alternative Ausführung eines erfindungsgemäßen Antriebs für das Spann- und/oder Spreizwerkzeug vorgesehen ist. Zur besseren Lesbarkeit der Figurenbeschreibung werden für identische und ähnliche Bauteile zur Ausführung gemäß den Figuren 1a und 1b identische Bezugszeichen verwendet, die um 100 erhöht sind, wobei es einer erneuten Erläuterung der Funktionsweise der Bauteile nicht bedarf.

Die Figuren 2 und 3 zeigen zwei unterschiedliche Antriebskonfigurationen eines Getriebes eines erfindungsgemäßen Antriebs. In beiden Konfigurationen ist der Antrieb durch eine Freistellung einer Klinke 131 aus einer Klinkenverzahnung 133 aktiviert.

Bei der Getriebekonfiguration gemäß Figur 2 wird ein Öffnen der Spannbacken 111 und 113 realisiert. Die Öffnungsrichtung der Verlagerung der Schub- und/oder Zugstange 103 ist mit O angedeutet.

Der erfindungsgemäße Antrieb 121 umfaßt ein drehantreibbares Getriebeelement, das als Antriebsrad 135 über eine Drehfeder 123 angetrieben ist. Die Drehfeder 123 ist derart montiert, daß eine Drehung des Antriebsrads 135 im Uhrzeigersinn bewirkt wird.

Ein mit dem Antriebsrad 135 drehmomentübertragend gekoppeltes Zwischengetrieberad 137 wird entgegen dem Uhrzeigersinn durch das Antriebsrad 135 gedreht, wobei das Zwischengetrieberad 137 drehmomentübertragend ein als Getriebebauteil zum Umsetzen einer Drehbewegung in eine translatorische Bewegung ausgebildetes Abtriebsrad 139 antreibt. Das Abtriebsrad 139 kommt mit dem der Betätigungsseite 115 zugewandten Rand 127 der Schuboder Zugstange 103 kraftübertragend in Eingriff. Da das Abtriebsrad 139 in einer Drehbewegung im Uhrzeigersinn angetrieben ist, wird der Schub- oder Zugstange 103 eine Translati-

onszugkraft mitgeteilt, welche die bewegliche Backe 113 in Öffnungsrichtung O von der ortsfesten Backe 111 entfernen läßt.

Sämtliche Drehmomentübertragungen können entweder durch Reibschluß oder durch Formschluß in Form von Verzahnungen oder durch eine Kombination aus beiden realisiert werden.

Im Anschluß wird nun eine bevorzugte Weiterbildung der Erfindung erläutert, die einen Mechanismus zum Wechseln der Verlagerungsrichtung von einer Öffnungsverlagerung, wie in Figur 2 dargestellt ist, in eine Schließverlagerung und umgekehrt betrifft, welcher Betriebsmodus in Figur 3 dargestellt ist.

Der Mechanismus zum Wechseln der Verlagerungsrichtung weist eine Schaltung auf, welche durch eine Rückdrücksperre betätigbar ist. Die Rückdrücksperre stellt eine Blockade gegen das Verlagern der Schub- oder Zugstange entgegen der Vorschubrichtung des Schrittgetriebes dar, die durch den Pfeil V angedeutet ist. Die Sperrwirkung der Rückdrücksperre wird durch die Verkantung eines Durchgangsbereichs eines Freigabehebels 141 mit der Schub- oder Zugstange 103 bewerkstelligt.

Soll also die Schub- oder Zugstange 103 in Öffnungsrichtung O (Figur 2), die der Vorschubrichtung V des Schrittgetriebes 119 entgegengesetzt ist, verlagert werden, so ist zum einen der Freigabehebel 141 zu betätigen, um die in Öffnungsrichtung O wirkende Sperrwirkung des Freigabehebels 141, die aufgrund der Verkantung des Freigabehebels 141 mit der Schub- oder Zugstange 103 besteht, zu lösen. Die Betätigung des Freigabehebels 141 ist in Figur 2 nicht näher dargestellt. Es reicht ein leichtes Kippen des Freigabehebels 141, um die Sperrwirkung in Öffnungsrichtung O aufzuheben.

Soll nun die Verlagerungsrichtung von O nach S gewechselt werden, ist der Freigabehebel 141 derart stark zu drücken (Figur 3), daß eine Schalteinrichtung aktiviert wird, die durch einen in seiner Längsrichtung verlagerbaren Druckstab 143 gebildet ist, der auf ein Lager 145 für das Abtriebsrad 139 drückt. Das Lager 145 gewährleistet eine Verschiebung des Abtriebs-

BOEHMERT & BOEHMERT

- 11 -

rads 139 in Längsrichtung, nämlich in Schließrichtung S, der Schub- oder Zugstange 103. Eine nicht dargestellte Vorspannung, insbesondere eine Druckfeder, für das Lager drückt das Abtriebsrad 139 in die in Figur 2 dargestellte Position, in der Abtriebsrad 139 mit dem Zwischengetrieberad 137 in Eingriff steht.

Bei Betätigung des Druckstabs 143, also bei Aktivierung der Schaltung, wird das Lager 145 des Abtriebsrads 139 derart verschoben, daß das Abtriebsrad 139 von dem Zwischengetrieberad 137 freikommt und in einen unmittelbaren drehmomentübertragenden Kontakt mit dem Antriebsrad 135 gelangt. Mit diesem strukturellen Aufbau ist ein Drehrichtungswechsler in dem Antrieb integriert, der einen Wechsel der Drehrichtung des Abtriebsrads 139 realisiert. Im geschaltenen Zustand (Figur 3) treibt die Drehbewegung des von der Drehfeder 123 angetriebenen Antriebsrads 135 das Abtriebsrad 139 entgegen dem Uhrzeigersinn an, wodurch die Schub- oder Zugstange 103 in Schließrichtung S kontinuierlich verlagert wird.

In beiden in den Figuren 2 und 3 dargestellten Getriebekonfigurationen sind Antriebsrad, Zwischengetrieberad und Abtriebsrad an ihren Drehmomentübertragungspunkten derart vorgespannt, daß eine ausreichende Normalkraft zur Bildung der erforderlichen Reibungskraft zur Drehmomentübertragung erzeugt ist. Die erforderliche Andrückkraft des Abtriebsrads 139 gegen die Schub- oder Zugstange 103 wird bei dem Öffnungsmechanismus gemäß Figur 2 aufgrund der Vorspannung des Lagers 143 sichergestellt, wobei die erforderliche Andruckkraft im Schließmechanismus gemäß Figur 3 durch die dem Druckstab 143 an dem Freigabehebel 141 mitgeteilte Betätigungskraft gewährleistet ist.

In den Figuren 4 und 5 ist ein Spann- und/oder Spreizwerkzeug 101 dargestellt, das im Hinblick auf den strukturellen Aufbau des Spann und/oder Spreizwerkzeugs gemäß den Figuren 2 und 3 im wesentlichen identisch ist. Zur besseren Lesbarkeit der Figurenbeschreibung werden identische Bezugszeichen für identische oder ähnliche Bauteile verwendet. Einer erneuten Erläuterung der identischen oder ähnlichen Bauteile bedarf es nicht.

Das Spann- und/oder Spreizwerkzeug 101 gemäß den Figuren 4 und 5 unterscheidet sich in dem Betriebszustand des Antriebs gegenüber dem Spann- und/oder Spreizwerkzeug gemäß den Figuren 2 und 3. Der Antrieb ist nämlich durch die Sperrklinke 131 deaktiviert, die in einer an dem Antriebsrad 135 radial außen liegenden Verzahnung 133 eingerastet ist und somit die Freigabe der in der Drehfeder 123 gespeicherten Drehantriebsenergie blockiert.

In diesem Betriebsmodus wird der Drehfeder 123 die zum Schließen und Öffnen notwendige Drehantriebsenergie zugeführt. Durch die Bewegung der Schub- oder Zugstange 103 wird über das zwischen der Schub- oder Zugstange 103 und der Drehfeder 123 angeordnete Getriebe eine Drehbewegung am Antriebsrad 135 entgegen dem Uhrzeigersinn induziert, wodurch die Drehfeder 123 gespannt wird.

Mit Hilfe des oben beschriebenen Mechanismus zum Wechseln der Verlagerungsrichtung kann der Spannvorgang unabhängig von einer bestimmten Verlagerungsrichtung der Schuboder Zugstange realisiert werden.

In Figur 4 ist der Lademechanismus in einer Betriebskonstellation dargestellt, bei der ein Spannen der Drehfeder 123 durch Schließen der Backen 111, 113 realisiert ist. Bei der Bewegung der Schub- oder Zugstange 103 von rechts nach links, also in Schließrichtung S, wird dem Abtriebrad 139 eine Drehbewegung entgegen dem Uhrzeigersinn induziert, wobei dem Zwischengetrieberad 137 eine Drehbewegung in dem Uhrzeigersinn mitgeteilt wird. Durch Drehung des Antriebsrads 135 entgegen dem Uhrzeigersinn wird die Drehfeder 123 gegen den Uhrzeigersinn gespannt oder aufgezogen.

Da ohnehin zum Öffnen der Spannbacken, also für eine Bewegung der Schub- oder Zugstange von links nach rechts, die Rückdrücksperre durch den Freigabehebel 141 betätigt werden muß, ist bei vollständiger Betätigung des Freigabehebels 141 automatisch sichergestellt, daß über den Druckstab 143 der Drehrichtungswechsler aktiviert ist und das Abtriebsrad 139 aus dem Eingriff mit dem Zwischengetrieberad befreit ist.

Auf diese Weise ist es mit dem erfindungsgemäßen Antrieb möglich, ein Laden von potentieller Energie in den Speicher für Antriebsenergie bereitzustellen, wobei ein Ladevorgang sowohl beim Öffnen als auch beim Schließen durchführbar ist. Wird also die bewegliche Backe auf die ortsfeste Backe mittels des Schrittgetriebes zubewegt, wird automatisch die Drehfeder des Antriebs gespannt. Ein Aufladen durch Hin- und Herbewegen der Schub- oder Zugstange ist möglich.

In den Figuren 6a, 6b, 7a, 7b, 8a und 8b ist eine weitere Ausführung eines erfindungsgemäßen Spann- und/oder Spreizwerkzeugs mit einer alternativen Ausführung eines Antriebs zur kontinuierlichen Verlagerung einer Schub- oder Zugstange dargestellt. Zur besseren Lesbarkeit sind identische oder ähnliche Bauteile zu den vorstehenden Ausführungen mit der gleichen Bezugsziffer versehen, die um 100 oder 200 erhöht ist. Einer erneuten Erläuterung der identischen oder ähnlichen Bauteile wie deren Funktionsweise bedarf es nicht.

Die Ausführung gemäß den Figuren 6a bis 8b unterscheidet sich von den oben stehenden Ausführungen in der Ausgestaltung des Antriebs. Eine Einrichtung zum Ziehen der Schuboder Zugstange von einer offenen Stellung, wie sie in den Figuren 7a dargestellt ist, in eine geschlossenen Stellung, wie sie in Figur 6a dargestellt ist, ist vorgesehen. Die Zugeinrichtung ist bei der Ausführung gemäß den Figuren 6a bis 8b durch eine Drehfeder 223 gebildet, die mit einem wickelbaren Strang 245 gekoppelt ist. Der wickelbare Strang 245 ist an seinem freien Ende an der Schub- oder Zugstange 203 befestigt. Hierfür ist eine Befestigungseinrichtung 247 vorgesehen, welche über einen Freigabeknopf 248 von der Schub- oder Zugstange 203 lösbar ist, um die Befestigungseinrichtung 247 des wickelbaren Strangs 245 längs der Schub- oder Zugstange 203 umsetzen zu können. Beispielsweise bei Spann- und/oder Spreizwerkzeugen für besonders breite Gegenstände 249 ist eine sehr lange Schub- oder Zugstange (hier nicht dargestellt) vorgesehen. Um nicht eine ebenso lange Zugeinrichtung einsetzen zu müssen, kann die Befestigungseinrichtung 247 näher zum Träger 205 gerückt werden.

Für den wickelbaren Strang 245 ist eine Spule 251 vorgesehen, auf die der wickelbare Strang 245 beim Zuziehen der Spannbacke 213 wickelbar ist. Der Wickelstrang 245 erstreckt sich

von der Spule 251 über eine in der Nähe der Spule in Richtung auf die bewegliche Backe 213 versetzte Führung 253, welche den Wickelstrang 245 in eine Vertiefung 255 der Schub- oder Zugstange 203 leitet. Von der Führung 253 läuft der Wickelstrang 245 längs der Schub- oder Zugstange 203 in deren Vertiefung 255 zur Befestigungseinrichtung 247.

Der Wickelstrang 245 kann als Faden oder als ein metallisch verstärkter Stoffaden gebildet sein. Auch Nylonschnüre mit kleinem Querschnitt sind als Wickelstrang einsetzbar.

Die Schub- oder Zugstange 203 mit der Vertiefung 255 zur Aufnahme des Wickelstrangs 245 ist, wie in Figur 7b ersichtlich ist, als I-Träger mit zwei seitlichen Vertiefungen 255 ausgeführt. Die Vertiefungen sind derart bemessen, daß der Wickelstrang berührungsfrei hinsichtlich des Gehäuses 207 des Trägers 205 entlanggleiten kann.

Eine besondere erfinderische Maßnahme besteht darin, der drehbar gelagerten Spule 251, die mit der Drehfeder 223 drehantreibend gekoppelt ist, eine Dämpfungseinrichtung 257 zuzuordnen, die schematisch in den Figuren 6a, 7a und 8a angedeutet ist.

Die Dämpfungseinrichtung 257 ist dazu ausgelegt, die durch die Zugkraft der Zugeinrichtung auf die bewegliche Backe 213 wirkenden Kraft derart zu dämpfen, daß eine kontrollierbare Schließgeschwindigkeit der beweglichen Backe 213 gewährleistet ist. Die gewünschte Schließgeschwindigkeit hängt von den Wünschen der das Spann- und/oder Spreizwerkzeug 201 benutzenden Personen ab. Die Dämpfungseinrichtung 257 kann auf einem Reibungsverlust- oder Pantschverlustprinzip eines Arbeitsfluids basieren.

Die Dämpfungseinrichtung 257 ist insbesondere vorteilhaft, sollte eine Drehfeder verwendet werden, welche eine nicht lineare Kraftbereitstellung bietet. Die Dämpfungseinrichtung 257 kann derart auf die Drehfeder abgestimmt sein, daß ein lineare Kraftvermittlung erzielt wird.

In dem in den Figuren 6a bis 8b gezeigten erfindungsgemäßen Antrieb ist ein Mechanismus zum Speichern und Laden von Energie durch die Drehfeder realisiert. Den niedrigsten Niveauwert im Speicher enthält die Drehfeder 223 dann, wenn die Spannbacken 211 und 213

geschlossen sind. Durch Wegziehen der Spannbacke 213 von der ortsfesten Backe 211 bei leichter Betätigung des Freigabehebels 241 der Rückdrücksperre zum Lösen des Spannund/oder Spreizwerkzeugs wird die Drehfeder 223 über den Wickelstrang 245 gespannt. Bei Freigabe des Freigabehebels 241 verbringen Federn 259 und 261 den Freigabehebel 241 in eine gegenüber der Schub- oder Zugstange 203 verkantete Stellung. Die in der verkanteten Stellung auftretenden Reibungs- und Verkantungskräfte sind derart groß, daß ein selbständiges Schließen der Spannbacke 213 durch die Zugeinrichtung nicht möglich ist. Die dafür erforderliche Reibungs- oder Verkantkraft an dem Freigabehebel 241 kann unter Berücksichtigung der Federkonstanten der Federn 259 und 261 eingestellt werden.

Betätigt die Bedienperson den Freigabehebel 241, so werden die Reibungs- oder Verkantungskräfte an der Schub- oder Zugstange gelöst, wodurch die Drehantriebsenergie in der Drehfeder 223 freigegeben wird und die bewegliche Backe über den Wickelstrang 245 zur ortsfesten Backe 211 hin gezogen wird. Der Betriebszustand des Schließens ist in den Figuren 8a und 8b dargestellt. Die Zugeinrichtung wirkt so lange, bis der Gegenstand 249 von den Backen 211, 213 ergriffen ist (Figur 6a, 6b) und die Zugkraft der Drehfeder 223 nicht mehr ausreicht, ein weiteres Verlagern der Schub- oder Zugstange 203 in Schließrichtung S zu bewirken.

Nach dem Beenden des Schnellschließvorgangs durch die erfindungsgemäße Zugeinrichtung können über das Schrittgetriebe 219 dem Gegenstand 249 hohe Spannkräfte mitgeteilt werden, welches Schrittgetriebe kleiner Schrittweite später detaillierter beschrieben wird.

In den Figuren 9a bis 9d ist ein weiteres erfindungsgemäßes Spann- und/oder Spreizwerkzeug gezeigt, wobei zur besseren Lesbarkeit der Figurenbeschreibung für identische oder ähnliche Bauteile die gleichen Bezugsziffern verwendet werden, die um 100, 200 oder 300 erhöht sind, wobei es einer erneuten Erläuterung der identischen oder ähnliche Bauteile nicht bedarf.

Die Ausführung des Spann- und/oder Spreizwerkzeugs 301 gemäß den Figuren 9a bis 9d unterscheidet sich von der Ausführung des Spann- und/oder Spreizwerkzeugs gemäß den Figu-

ren 6a bis 8b darin, daß die Einrichtung zum Ziehen der beweglichen Backe 313 auf die ortsfeste Backe 311 ausschließlich mit einer Drehfeder 323 bewerkstelligt wird, d.h. ohne Nutzung eines Wickelstranges, welcher die Drehfeder mit der Schub- oder Zugstange 303 oder der beweglichen Backe 313 verbindet.

Die Drehfeder 323 gemäß der Ausführung der Figuren 9a bis 9d ist eine Spiralbandfeder, welche drehbar im Gehäuse 207 des Trägers 205 gelagert ist. Zur Speicherung der Drehantriebsenergie kann die Spiralbandfeder abgewickelt werden, wobei der abgewickelte Abschnitt 365 in der Vertiefung 355 der Schub- oder Zugstange aufgenommen ist. Die Basis 367 der Spiralbandfeder ist zum Aufwickeln des abgewickelten Spiralbandabschnitts 365 drehbar am Träger 305 gelagert. Das freie Ende des abwickelbaren Spiralbandabschnitts 365 ist an der Schub- oder Zugstange 303 oder an der beweglichen Backe 313 befestigt. Die hierfür notwendige Befestigungseinrichtung (hier nicht dargestellt) für den Spiralbandabschnitt 365 ist lösbar, wobei die Befestigungseinrichtung längs der Schub- oder Zugstange 303 umsetzbar ist, insbesondere um bei großen zu spannenden Gegenständen (hier nicht näher dargestellt) kein zu starkes Abwickeln der Spiralbandfeder zu bedingen.

Der besondere Vorteil der Spiralbandfeder liegt darin, eine unabhängig vom zurückgelegten Weg gleichmäßige lineare Antriebskraft der beweglichen Backe 313 oder der Schub- oder Zugstange 303 mitzuteilen.

Somit erfüllt die Spiralbandfeder sowohl die Aufgabe einer Zugeinrichtung als auch die einer Dämpfungseinrichtung zum Erzeugen gleichmäßiger Schließgeschwindigkeiten.

Zur Aufnahme der mit dem Spiralbandabschnitt 365 gewickelten Spiralbandbasis 367 kann das Gehäuse 307 eine seitliche Öffnung aufweisen, durch welche die Basis 367 samt gewikkeltem Spiralbandabschnitt 365 ragen kann, was in den Figuren 9b und 9c dargestellt ist.

Der Schließbetriebsmodus sowie die Bedienung des Spann- und/oder Spreizwerkzeugs 303 mit der Spiralbandfeder entspricht im wesentlichen dem Spann- und/oder Spreizwerkzeug

BOEHMERT & BOEHMERT

- 17 -

203, das gemäß den Figuren 6a bis 8b anhand der dort verwendeten Zugeinrichtung mit Wikkelstrang beschrieben ist.

Auch die beiden in den Figuren 6a bis 8b und 9a bis 9d beschriebenen Spann- und/oder Spreizwerkzeugausführungen können mit einem nicht näher dargestellten Mechanismus zum Laden eines Energiespeichers beim Schließen der Einhandzwinge versehen sein. Diese Kombination von Lademechanismen ist insbesondere dann erforderlich, wenn auch ein zusätzlicher Antrieb in den Spannwerkzeugen gemäß den Figuren 6a bis 8b und 9a bis 9d integriert ist, um insbesondere eine Verlagerung der Schub- oder Zugstange in beiden Längsrichtungen vorentziehen zu können.

Nach der durch die Spiralbandfeder bewirkte Schließbewegung der beweglichen Backe 313 kann mittels des Schrittgetriebes 319 kleiner Schrittweite die gewünschte hohe Spannkraft zwischen den Backen 311 und 313 aufgebaut werden.

Im folgenden wird der Aufbau sowie die Funktionsweise des Schrittgetriebes kleiner Schrittweiten beschrieben, welches Schrittgetriebe im wesentlichen dem entspricht, das in der deutschen Patentanmeldung DE 10335365.8 von der Anmelderin angegeben wird.

Das Schrittgetriebe 19 bis 319 ist dazu ausgelegt, einen Kraftbetrieb des Spann- und/oder Spreizwerkzeugs 1 bis 301 bereitzustellen, bei dem die Schub- oder Zugstange 3 bis 303 in Vorschubrichtung V mit kleinen Schrittweiten verlagerbar ist. In diesem Kraftbetrieb ist ein Wirkhebel eines Antriebsarms 71 bis 371 wirksam, welcher Wirkhebel durch den Abstand eines Schwenklagers 73 bis 373 des Antriebsarm 71 bis 371 und eines Krafteintragsbolzens 75 bis 375 definiert ist. Da der Betätigungshebel des Antriebsarms 71 bis 371 weit größer ist als der Wirkhebel, können Spannkräfte erzeugt werden, die um das 10-fache höher sind als die, die mit dem Schrittgetriebe gemäß dem US-Patent 6,568,667 möglich sind.

Durch eine im Gehäuse 307 gelagerte Druckfeder 77 bis 377 wird ein Mitnahmeschieber 79 bis 379 stets an den Krafteintragsbolzen 75 bis 375 des Antriebsarms 71 bis 371 gedrückt.

Weiterhin dient die Druckfeder 77 bis 377 dazu, den Mitnahmeschieber 79 bis 379 in eine stets gegenüber der Schub- oder Zugstange 3 bis 303 verkanteten Stellung zu bringen. Dies wird dadurch erreicht, daß die Druckkrafteintragsstelle der Druckfeder 77 bis 377 näher zur Schub- oder Zugstange 3 bis 303 liegt als der Krafteintragsbolzen 75 bis 375, wodurch der Mitnahmeschieber 79 bis 379 um den Krafteintragsbolzen 75 bis 375 gegen den Uhrzeigersinn geschwenkt wird, bis der Mitnahmeschieber 79 bis 379 mit der Schub- oder Zugstange 3 bis 303 verkantet. Damit ist gewährleistet, daß bei Betätigung des Antriebsarms 71 bis 371 in einer Schwenkbewegung um das Schwenklager 73 bis 373 unmittelbar eine Verlagerung der Schub- oder Zugstange bewirkt wird, womit unmittelbar Spannkräfte zwischen den Spannbacken 13, 15 bis 313, 315 hervorgerufen werden können. Nach einem Hub des Antriebsarms 71 bis 371 ist letzterer von der Bedienperson freizugeben, wodurch die Druckfeder 77 bis 377 die Mitnehmerverkantung des Mitnahmeschiebers 79 bis 379 gegenüber der Schub- oder Zugstange 3 bis 303 freigibt und der Antriebsarm 71 bis 371 in die in der Figur 9a beispielsweise dargestellte Ausgangsstellung zurückgeführt ist.

Die günstigen Hebelverhältnisse für das Schrittgetriebe kleiner Schrittweite wird vor allem dadurch realisiert, daß sowohl das Schwenklager 73 bis 373 als auch der Krafteintragsbolzen 375 auf der Spannseite 9 bis 309 liegen.

Die in der vorstehenden Beschreibung, den Figuren und den Ansprüchen offenbarten Merkmale können sowohl einzeln als auch in beliebiger Kombination für die Realisierung de Erfindung in den verschiedenen Ausgestaltungen von Bedeutung sein. Beispielsweise ist es möglich, die unterschiedlichen Antriebsmechanismen untereinander auszutauschen und zu kombinieren. Zum Beispiel ist es durchaus im erfindungsgemäßen Gedanken, die Dämpfungseinrichtung (257) mit Drehfederantrieben, wie in den Figuren 1a und 1b oder 2 bis 5 dargestellt, zu kombinieren.

Bezugszeichenliste

1, 101, 201, 301	Spann- und/oder Spreizwerkzeug
3, 103, 203, 303	Schub- oder Zugstange
5, 105, 205, 305	Träger
7, 107, 207, 307	Gehäuse
9, 109, 209, 309	Spannseite
11, 111, 211, 311	feste Spannbacke
13, 113, 213, 313	bewegliche Spannbacke
14, 114, 214, 314	Ende der Schub- oder Zugstange
15, 115, 215, 315	Betätigungsseite der Schub- oder Zugstange
16, 116, 216, 316	Ende der Schub- oder Zugstange
17, 117, 217, 317	Griff
19, 119, 219, 319	Schrittgetriebe
21, 121, 221, 321	Antrieb
23, 123, 223, 323	Drehfeder
25	Antriebsrad
27, 127, 227, 327	Längsrand der Schub- oder Zugstange
41, 141, 241, 341	Freigabehebel
55, 155, 255, 355	Vertiefung
71, 171, 271, 371	Antriebsarm
73, 173, 273, 373	Schwenklager
75, 175, 275, 375	Krafteintragsbolzen
77, 177, 277, 377	Druckfeder
79, 179, 279, 379	Mitnahmeschieber
131	Sperrklinke
133	Klinkenverzahnung
135	Antriebsrad
137	Zwischengetrieberad
139	Abtriebsrad
143	Druckstab
144	Lager

245	wickelbarer Strang
247	Befestigungseinrichtung
248	Freigabeknopf
249	einzuspannender Gegenstand
251	Spule
253	Führung
255, 355	Vertiefung
257	Dämpfungseinrichtung
259	Feder
261	Feder
365	Spiralbandabschnitt
367	Basis
0	Öffnungsrichtung
S *	Schließrichtung
V	Vorschubrichtung des Schrittgetriebes

BOEHMERT & BOEHMERT **ANWALTSSOZIETÄT**

Boehmert & Boehmert • P.O.B. 15 03 08 • D-80043 Mi

Deutsches Patent- und Markenamt Zweibrückenstraße 12 80297 München

DR. ING. KARL BOEHMERT, PA (1899-1973) DIPL-ING. ALBERT BOEHMERT, PA (1902-WILHELM J. H. STAHLBERG, RA. Bremen DR.-ING. WALTER HOORMANN, PA*, Brem DIFL-PHYS. DR. HEINZ GODDAR, PA., Melecke, Sh.
DR. NDG, ROLAND LESSEGANG, PA., Melecke
WOLF-DIETER KUNTZE, RA, Breeze, Administ
DIFL-PHYS. ROBERT MONZHUBER, PA. (1931-1972)
DR. LUDWYG KOUKER, RA, Breeze,
DR. (CHEM) ANDREAS WINKLER, PA. Breeze,
DR. (CHEM) ANDREAS WINKLER, PA. Breeze,
DR. LOPHYS. DR. MARION TONNARDT, PA. Desert
DIFL-PHYS. DR. MARION TONNARDT, PA. Desert
DR. ANDREAS EBERT-WEIDDFFLLER, RA, Breeze,
DIFL-DNG, EVA LIESEGANG, PA. Modellar
DIFL-DNG, EVA LIESEGANG, PA. MODEL DIFL.-DIG. EVA LIESEGANG, PA'. Menutes
DIFL.-PHYS. DR. DOROTHÉE WERE-BRUIS, P.
DIFL.-PHYS. DR. DOROTHÉE WERE-BRUIS, P.
DIFL.-PHYS. DR. STEFAN SCHOFTE, PA'. Albenton.
DR. -DIG. MATTHIAS PHILIPP, PA'. Paineled
DR. DETMAR SCHAFER, PA. Devene
DR. DETMAR SCHAFER, PA. Devene
DR. AN BERND NORDEMANN, LL. M., PA. Berko
DR. CARRISTIAN CZYCHOWSKI, PA. Device
DR. CARRISTIAN CZYCHOWSKI, PA. Menceden
DIFL.-PHYS. CHRISTIAN W. APPELT, PA'. Menceden
DIFL.-PHYS. DR. -PIG. UNE MANASSE, PA. DEVENDIFL.-PHYS. DR. -PIG. UNE MANASSE, PA. DEVENDIFL.-PHYS. DR. THOMAS L. BITTNER, PA'. DEPL.
DIFL.-PHYS. DR. THOMAS L. BITTNER, PA'. DEVENDIFL. PHYS. DR. THOMAS L. BUTTNER, PA'. DEVENDIFL. PHYS. SCHMITZ, M. JUNIET (OXIFOTA), DANS
DR. VOLKER SCHMITZ, M. JUNIET (DXIFOTA), DANS
DR. VOLKER SCHMITZ, DANS
DR. VOLKER SCHMITZ, DANS

neconsanwalt/Attorney at Law European Patent Attorney Maitre on Droit Licencia

PROF. DR. WILHELM NORDEMANN, BA. PR.
DDFL-PHYS. EDUARD BAUMANN, PA. 186
DDFL-NG, GERALD KLDFSCH, PA. Demoster
DDFL-ING, HANS W. GROENDIG, PA. 186
DDFL-ING, SIEGFREID SCHIRMER, PA. 186
DDFL-HYS. LOREAR MASE WINKEL, PA. 18
DDFL-PHYS. LOREAR MASE WINKEL, PA. 18
DDFL-PHYS. CRESTAN BEBLI, PA. 186
DDFL-PHYS. CRESTAN BEBLI, PA. 186
DR. ANKE NORDEMANN-SCHIFFEL, EAS, PA.
R. KLAUS THAS BROCKER, EA. 186
DR. ANDREAS DUSTMANN, LL.M., RA. 7866
DDFL_DFL, DR. 187 T. P. SCHLON, LL.M., RA. 7866
DDFL_DFL, DR. 187 T. P. SCHLON, LL.M., RA. 7866
DDFL_DFL, DR. 187 T. P. SCHLON, LL.M., RA. 7866
DDFL_DFL, DR. 187 T. P. SCHLON, LL.M., RA. 7866 DIPL.-ING. NILS T. F. SCHMUL, N. A. Mandam Par P. FLORIAN SCHWAB, LLM, A. A. Matchello DIPL.-BIOCHEM. DR. MARKUS ENGELHARD, DIPL.-CHEM. DR. KARL-HEINZ B. METTEN, PA PASCAL DECKER, As Beria DIPL.-CHEM. DR. VOLKER SCHOLZ, PA. Mandam DIPL.-CHEM. DR. VOLKER SCHOLZ, PA. Mandam DR. CHRISTIAN MESSENER, RA. Mandam DIPL.-PHYS. DR. MICHAEL HARTIG, PA. Mandam DIPL.-PHYS. DR. MICHAEL HARTIG, PA. Mandam

In Zusammenarbeit mit/in cooperation with DIPL.-CHEM. DR. HANS ULRICH MAY, PA*.

Ihr Zeichen Your ref.

Ihr Schreiben Your letter of Unser Zeichen Our ref.

München,

Neuanmeldung

I30146

Dezember 2003

IRWIN Industrial Tools GmbH Lilienthalstraße 7 85399 Hallbergmoos

Anordnung mit Mechanismus zum Laden von Antriebsenergie, Spann- und/oder Spreizwerk-

zeug

Ansprüche

Anordnung mit einem Antrieb für ein Spann- und/oder Spreizwerkzeug, der zum Verlagern einer an einem Träger des Spann- und/oder Spreizwerkzeugs beweglich gelagerten Schub- oder Zugstange mit einer daran fest angebrachten, beweglichen Backe relativ zu dem eine ortsfeste Backe haltenden Träger in Längsrichtung der Schub- oder Zugstange ausgelegt ist, einem Speicher für Antriebsenergie und einem Mechanismus

- 64.356 -

zum Laden von Antriebsenergie in den Speicher, dadurch gekennzeichnet, daß der Mechanismus Antriebsenergie in den Speicher bei einer Verlagerung der Schub- oder Zugstange in deren Schließrichtung lädt, bei der sich im Falle einer Spannfunktion des Spann- und/oder Spreizwerkzeugs die bewegliche Backe auf die ortsfeste Backe zubewegt oder bei der sich im Falle einer Spreizfunktion des Spann- und/oder Spreizwerkzeugs die bewegliche Backe von der ortsfesten Backe entfernt.

- 2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß der Mechanismus Antriebsenergie auch in der Schließrichtung entgegengesetzten Öffnungsrichtung in den Speicher lädt.
- 3. Anordnung nach einem der vorangegangenen Ansprüche, dadurch gekennzeich, daß der Lademechanismus ein drehantreibbares Getriebeelement aufweist, das zu dessen Drehantrieb mit der bewegten Schub- oder Zugstange zusammenwirkt, und insbesondere eine Einrichtung zum Umwandeln der Drehbewegung des Getriebeelements in Drehantriebsenergie für den Speicher aufweist.
- 4. Anordnung nach Anspruch 3, dadurch gekennzeichnet, daß ein Drehrichtungswechsler vorgesehen ist, der bei einem Wechsel der Verlagerungsrichtung der Schub- oder Zugstange die Drehbewegung des Getriebeelements in eine für die Einrichtung zum Umwandeln der Drehbewegung erforderliche Drehbewegung umwandelt.
- 5. Anordnung nach Anspruch 4, dadurch gekennzeichnet, daß der Drehrichtungswechsler manuell betätigbar ist.
- 6. Anordnung nach Anspruch 4, dadurch gekennzeichnet, daß der Drehrichtungswechsler dann aktiviert ist, wenn die Verlagerungsrichtung der Schub- oder Zugstange gewechselt wird.

BOEHMERT & BOEHMERT

- 3 -

- 7. Anordnung nach einem der vorangegangenen Ansprüche, gekennzeichnet durch eine Energiefreigabeblockade, die während des Ladevorgangs aktiviert ist.
- 8. Anordnung nach Anspruch 7, dadurch gekennzeichnet, daß die Energiefreigabeblockade manuell lösbar ist.
- 9. Anordnung nach Anspruch 7 und 8, dadurch gekennzeichnet, daß die Energiefreigabeblockade eine Klinkensperrenanordnung ist, welche eine Drehantriebsbewegung einer Drehfeder blockiert.
- 10. Spann- und/oder Spreizwerkzeug mit einer nach einem der Ansprüche 1 bis 9 ausgebildeten Anordnung.

Zusammenfassung

Bei einer Anordnung mit einem Antrieb für ein Spann- und/oder Spreizwerkzeug, der zum Verlagern einer an einem Träger des Spann- und/oder Spreizwerkzeugs beweglich gelagerten Schub- oder Zugstange mit einer daran fest angebrachten, beweglichen Backe relativ zu dem eine ortsfeste Backe haltenden Träger in Längsrichtung der Schub- oder Zugstange ausgelegt ist, einem Speicher für Antriebsenergie und einem Mechanismus zum Laden von Antriebsenergie in den Speicher, ist vorgesehen, daß der Mechanismus Antriebsenergie in den Speicher bei einer Verlagerung der Schub- oder Zugstange in deren Schließrichtung lädt, bei der sich im Falle einer Spannfunktion des Spann- und/oder Spreizwerkzeugs die bewegliche Backe auf die ortsfeste Backe zubewegt oder bei der sich im Falle einer Spreizfunktion des Spann- und/oder Spreizwerkzeugs die bewegliche Backe entfernt.

