Making Numerical Program Analysis Fast

Gagandeep Singh Markus Püschel Martin Vechev

Department of Computer Science

ETH Zürich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

```
public static void verify() {
  int[] ptr = new int[8];
  int start = 0;
  for(int i0 = 0; i0 < 8; ++i0) {
    int x1 = i0 | start;
    for(int x2 = 0; x2<100000;++x2) {
        int y3 = 2*x1;
        int index4 = 0;
        if (y3 == 0) { index4 = 1; }
        if (y3 == 49) { index4 = 8; }
        if (y3 == 36) { index4 = 8; }
        if (y3 == -1) { index4 = 0; }
        if (y3 == 50) { index4 = 9; }
        ptr[index4] = 1;
    }
}</pre>
```

Abstract Domains

Abstract Domains

Abstract Domains

→ Buffer Overflow

→ Division by Zero

→ Integer Overflow

→ Alias Analysis

→ Data Races

Octagon Abstract Domain

(Miné, HOSC, 2006)

- Octagonal Inequalities:
 - Binary: $\pm x \pm y \le c$, $x \ne y$
 - Unary: $\pm 2x \le 2d$
 - c, $d \in \mathbb{R} \cup \{\infty\}$

Octagon Abstract Domain

(Miné, HOSC, 2006)

- Octagonal Inequalities:
 - Binary: $\pm x \pm y \le c$, $x \ne y$
 - Unary: $\pm 2x \le 2d$
 - c, $d \in \mathbb{R} \cup \{\infty\}$

Octagon

Octagon Abstract Domain

(Miné, HOSC, 2006)

- Octagonal Inequalities:
 - Binary: $\pm x \pm y \le c$, $x \ne y$
 - Unary: $\pm 2x \le 2d$
 - c, $d \in \mathbb{R} \cup \{\infty\}$

	x^+	x^{-}	y^{\dagger}	⁺ y ⁻
<i>x</i> +	0	4	3	2
x^{-}	2	0	2	1
<i>y</i> +	1	2	0	2
<i>y</i> ⁻	2	3	4	0

Difference Bound Matrix (DBM)

Octagon

Example: Static analyzer for TouchDevelop

(Brutschy et al. OOPSLA, 2014)

Using APRON

Single Core

Example: Static analyzer for TouchDevelop

(Brutschy et al. OOPSLA, 2014)

Using APRON

Single Core

Single Core

Example: Static analyzer for TouchDevelop (Brutschy et al. OOPSLA, 2014)

Using APRON

Single Core

Single Core

Example: Static analyzer for TouchDevelop (Brutschy et al. OOPSLA, 2014)

Using APRON

Single Core

Our Contribution: drop-in replacement for APRON

- Octagon Speedup: 26x
- Overall Speedup: 19x
- No loss in precision

Single Core

```
y = 1;

y = x;

while (x <= m)

x = x + 1;

y = y + x;

assert (y >= m);
```


}

 m^{-}

0

 $\{2x \le 2, -2x \le -2\}$

$$\{2x \le 2, -2x \le -2\}$$

$$\{2x \le 2, -2x \le -2\}$$

$$\{2x \le 2, -2x \le -2, y - x \le 0, x - y \le 0\}$$

```
x = 1;
y = x;
while (x <= m)
x = x + 1;
y = y + x;
assert (y >= m);
```


$$\{2x \le 2, -2x \le -2, y - x \le 0, x - y \le 0\}$$

$$\{2x \le 2, -2x \le -2, y - x \le 0, x - y \le 0\}$$

$$\{2x \le 2, -2x \le -2, y - x \le 0, x - y \le 0, x - m \le 0\}$$

Closure (*) increases precision of Join (□ (operator

Closure (*) increases precision of Join (□ (operator

 $\{2x \le 2, -2x \le -2, y - x \le 0, x - y \le 0\}$

Closure (*) increases precision of Join (□ (operator

 $\{2x \le 2, -2x \le -2, y - x \le 0, x - y \le 0\}$

$$\{2x \le 2, -2x \le -2, y - x \le 0, x - y \le 0, -x - y \le -2, x + y \le 2, -2y \le -2, 2y \le 2\}$$

Time Complexity of Octagon Operators

Octagon Operator	Time Complexity
Meet (□)	$O(n^2)$
Join (⊔)	$O(n^2)$
Inclusion (⊆)	$O(n^2)$
Equality (=)	$O(n^2)$
Widening (▽)	$O(n^2)$
Closure (*)	$O(n^3)$

Key Idea: Online Decomposition

 m^{-}

- The set of program variables can be partitioned into disjoint subsets called independent components.
- Each independent component corresponds to a smaller octagon.
- Transitive closure can be applied independently on smaller octagons.
- Maintain the decomposition dynamically throughout the analysis.

Other Improvements

- We reduced operation count of closure by half.
- We designed sparse closure for very sparse matrices that runs in $O(n^2)$ time.
- We performed cache optimizations and vectorization for all octagon operators.
- If the matrix becomes dense, keeping decomposition is not feasible.
 - We designed different octagon types and their corresponding operators.
 - We keep track of sparsity and switch dynamically between different types.

Implementation

- ELINA is implemented in C using double precision.
- Provides interface for analyzing program written in C++ and Java.
- Supports SSE and AVX intrinsics.
- Can be directly plugged into any existing static analyzer using APRON.

Experimental Evaluation

- CPAchecker (Beyer et al. CAV, 2011)
 - participates in software verification competitions.
- TOUCHBOOST (Brutschy et al. OOPSLA, 2014)
 - analyzes eventdriven TouchDevelop applications.
- DPS (Raychev et al. SAS, 2013)
 - analyzes parallel programs and introduces synchronization for determinism.
- DIZY (Partush et al. SAS, 2013)
 - computes semantic differences between a program and its patched version.

(Beyer et al., CAV, 2011)

Using APRON

(Beyer et al., CAV, 2011)

(Beyer et al., CAV, 2011)

(Beyer et al., CAV, 2011)

Using APRON

Single Core

Using ELINA

• Closure Speedup: 8.4x

• Octagon Speedup: 6x

• Overall Speedup: 3.7x

Single Core

(Raychev et al, SAS, 2013)

Using APRON

(Raychev et al, SAS, 2013)

Using APRON

Single Core

(Raychev et al, SAS, 2013)

Using APRON Other 31s Other Octagon 115 s Closure Single Core

Single Core

(Raychev et al, SAS, 2013)

Using APRON

Single Core

Using ELINA

• Closure Speedup: 665x

• Octagon Speedup: 146x

• Overall Speedup: 4.2x

Single Core

Related Work

- Variable Packing (Venet et al. PLDI, 2004)
 - Loses precision, may take more iterations to converge.
- Octagon operators on GPUs (Banterle et al. SAS, 2007)
 - Our optimized library will run much faster on GPUs.

Conclusion

Closure (*) increases precision of Join (□) operator

Octagon Analysis is Expensive

