CS/MATH 111, Discrete Structures - Winter 2019. Discussion 9 - Graphs and Tree introduction

Andres, Sara, Elena

University of California, Riverside

March 11, 2019

Outline

Bipartite graph

Perfect matching

Planar graphs

Kuratowski's theorem

Trees

Bipartite graph

Definition 1.1

A simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint sets V_1 and V_2 such that every edge in the graph connects a vertex in V_1 and a vertex in V_2 .

Bipartite graph

- ▶ Bipartite graphs are equivalent to two-colorable graphs.
- ► All acyclic graphs are bipartite.
- ► A cyclic graph is bipartite iff all its cycles are of even length.

Bipartite graph

G: Yes (See $\{a,b,d\}$ and $\{c,e,f,g\}$).

H: No (See $\{a, b, f\}$)

Figure: Complete Bipartite Graphs.

Outline

Bipartite graph

Perfect matching

Planar graphs

Kuratowski's theorem

Trees

Perfect matching

- ▶ A perfect matching of a graph is a matching (i.e., an independent edge set) in which every vertex of the graph is incident to exactly one edge of the matching.
- ▶ A perfect matching is therefore a matching containing $\frac{n}{2}$ edges (the largest possible)¹, meaning perfect matchings are only possible on graphs with an even number of vertices.

http://mathworld.wolfram.com/PerfectMatching.html

Figure: Modeling Job Assignments for Which Employees Have Been Trained.

Hall's Theorem²

Theorem 1

Let G = (X,Y) be a bipartite graph. Then X has a perfect macthing into Y iif for all $T \subseteq X$, the inequality $|T| \le |N(T)|$ holds. Where N(T) is the set of all neighbors of the vertices in T. In other words, $y \in Y$ is an element of N(T) iif there is a vertex $x \in T$ so that (x,y) is an edge.

²Proof available at [Rosen, 2015. pg 660].

Let $T = \{B, C\}$, $N(T) = \{3\}$, |T| = 2 and |N(T)| = 1. Violates Hall's theorem.

Let $T=\{B,C,D\}, \quad N(T)=\{1,3\}, \quad |T|=3 \text{ and } |N(T)|=2.$ Violates Hall's theorem.

You are given two bipartite graph G and H below. For each graph determine whether it has a perfect matching. Justify your answer, either by listing the edges that are in the matching or use Hall's Theorem to show that the graph does not have a perfect matching.

- G: Yes, see $\{0, a\}, \{1, b\}, \{2, d\}, \{3, c\}, \{4, f\}$ and $\{5, e\}$.
- H: No, Let $T = \{a, c, e\}$, then $N(T) = \{0, 2\}$, therefore $|T| \nleq |N(T)|$ which violates Hall's theorem.

Outline

Bipartite graph

Perfect matching

Planar graphs

Kuratowski's theorem

Trees

Planar graphs

Is it possible to join these houses and utilities so that none of the connections cross?

Planar graphs

Definition 3.1

A graph is called planar if it can be drawn in the plane without any edges crossing. Such a drawing is called a planar representation of the graph.

Figure: The K_4 graph and its drawn with no crossings.

Figure: A Q_3 graph.

Figure: The planar representation of a Q_3 graph.

- ► A planar representation of a graph splits the plane into regions³ (including an unbounded region.)
- ► Euler showed that all planar representations of a graph split the plane into the same number of regions.
- ▶ There is a relationship between the number of regions, vertices and edges.

Figure: The Regions of the Planar Representation of a Graph.

Theorem 2

Let G be a connected planar simple graph with e edges and v vertices. Let r be the number of regions in a planar representation of G. Then r = e - v + 2.

Corollary 3

If G is a connected planar simple graph with m edges and n vertices, and $n \geq 3$ and no circuits of length 3, then $m \leq 2n - 4$.

- ightharpoonup G divides the plane into regions, say r of them.
- ► The degree of each region is at least four⁴
- Note that the sum of the degrees of the regions is exactly twice the number of edges in the graph⁵.
- ▶ Because each region has degree greater than or equal to 4, it follows that: $2m = \sum deg(R) \ge 4r$.
- ▶ Hence, $2m \ge 4r$ or simply $r \le \frac{m}{2}$. Using Euler's formula, we obtain $m n + 2 \le \frac{m}{2}$.
- ▶ It follows that $\frac{m}{2} \le n-2$. This shows that $m \le 2n-4$.

because each edge occurs on the boundary of a region exactly twice ➤ ◆ ● ➤ ◆ ■ ➤ ◆ ■ ◆ ● ◆

⁴ no multiple edges, no loops and no simple cycles of length 3

- ightharpoonup G divides the plane into regions, say r of them.
- ► The degree of each region is at least four⁴.
- Note that the sum of the degrees of the regions is exactly twice the number of edges in the graph⁵.
- ▶ Because each region has degree greater than or equal to 4, it follows that: $2m = \sum deg(R) \ge 4r$.
- ▶ Hence, $2m \ge 4r$ or simply $r \le \frac{m}{2}$. Using Euler's formula, we obtain $m n + 2 \le \frac{m}{2}$.
- ▶ It follows that $\frac{m}{2} \le n-2$. This shows that $m \le 2n-4$.

because each edge occurs on the boundary of a region exactly $\mathsf{twice} \mapsto \mathsf{d} \to \mathsf{d}$

 $^{^4}$ no multiple edges, no loops and no simple cycles of length 3

- ightharpoonup G divides the plane into regions, say r of them.
- ► The degree of each region is at least four⁴.
- ▶ Note that the sum of the degrees of the regions is exactly twice the number of edges in the graph⁵.
- ▶ Because each region has degree greater than or equal to 4, it follows that: $2m = \sum deg(R) \ge 4r$.
- ▶ Hence, $2m \ge 4r$ or simply $r \le \frac{m}{2}$. Using Euler's formula, we obtain $m n + 2 \le \frac{m}{2}$.
- ▶ It follows that $\frac{m}{2} \le n-2$. This shows that $m \le 2n-4$.

⁴ no multiple edges, no loops and no simple cycles of length 3

- ightharpoonup G divides the plane into regions, say r of them.
- ► The degree of each region is at least four⁴.
- ▶ Note that the sum of the degrees of the regions is exactly twice the number of edges in the graph⁵.
- ▶ Because each region has degree greater than or equal to 4, it follows that: $2m = \sum deg(R) \ge 4r$.
- ▶ Hence, $2m \ge 4r$ or simply $r \le \frac{m}{2}$. Using Euler's formula, we obtain $m n + 2 \le \frac{m}{2}$.
- ▶ It follows that $\frac{m}{2} \le n-2$. This shows that $m \le 2n-4$.

⁴ no multiple edges, no loops and no simple cycles of length 3

- \triangleright G divides the plane into regions, say r of them.
- ► The degree of each region is at least four⁴.
- Note that the sum of the degrees of the regions is exactly twice the number of edges in the graph⁵.
- ▶ Because each region has degree greater than or equal to 4, it follows that: $2m = \sum deg(R) \ge 4r$.
- ▶ Hence, $2m \ge 4r$ or simply $r \le \frac{m}{2}$. Using Euler's formula, we obtain $m n + 2 \le \frac{m}{2}$.
- ▶ It follows that $\frac{m}{2} \le n-2$. This shows that $m \le 2n-4$.

⁴ no multiple edges, no loops and no simple cycles of length 3

- \triangleright G divides the plane into regions, say r of them.
- ► The degree of each region is at least four⁴.
- Note that the sum of the degrees of the regions is exactly twice the number of edges in the graph⁵.
- ▶ Because each region has degree greater than or equal to 4, it follows that: $2m = \sum deg(R) \ge 4r$.
- ▶ Hence, $2m \ge 4r$ or simply $r \le \frac{m}{2}$. Using Euler's formula, we obtain $m n + 2 \le \frac{m}{2}$.
- ▶ It follows that $\frac{m}{2} \le n-2$. This shows that $m \le 2n-4$.

⁵ because each edge occurs on the boundary of a region exactly twice \triangleright \triangleleft \bigcirc \triangleright \triangleleft \bigcirc \triangleright \triangleleft \bigcirc \triangleright \bigcirc \bigcirc \bigcirc \bigcirc

⁴ no multiple edges, no loops and no simple cycles of length 3

Outline

Bipartite graph

Perfect matching

Planar graphs

Kuratowski's theorem

Trees

Kuratowski's theorem

Theorem 4

A graph is nonplanar if and only if it contains a subgraph homeomorphic to $K_{3,3}$ or K_5 .

Some examples 6

 $^{^6{\}rm Taken~from~https://tinyurl.com/yyd5cq8g}$

Some examples

Some examples

Example $K_{3,3}$

Example $K_{3,3}$

This graph is nonplanar, since it contains $K_{3,3}$ as a subgraph: the parts are $\{a, g, d\}$ and $\{b, c, e\}$.

Outline

Bipartite graph

Perfect matching

Planar graphs

Kuratowski's theorem

Trees

Trees

Lemma 5

If T is a tree, and has n vertices, then its number of edges is m = n - 1.

1. Basis step:

When n = 1, a tree with n = 1 vertex has no edges. Indeed, m = n - 1 = 0.

2. Assumption step

Let's assume that every tree with n = k vertices has m = k - 1 edges, where k is a positive integer.

- Suppose that a tree T has n = k + 1 vertices, we want to prove that T has k edges.
- Let's suppose that v is a leaf' of T. Let w be the parent of v
- ightharpoonup Remove v from T and the edge connecting w to v. It produces a tree T' with k vertices⁸.
- By the assumption hypothesis, as T' has k vertices, it has k-1 edges
- It follows that T has k edges because it has one more edge than T' (the edge connecting v and w).

 $^{^{\}prime}$ It must exist because the tree is finite

 $^{^8}T^{\prime}$ is still connected and has no simple circuits.

1. Basis step:

When n=1, a tree with n=1 vertex has no edges. Indeed, m=n-1=0.

1. Basis step:

When n=1, a tree with n=1 vertex has no edges. Indeed, m=n-1=0.

2. Assumption step:

1. Basis step:

When n=1, a tree with n=1 vertex has no edges. Indeed, m=n-1=0.

2. Assumption step:

Let's assume that every tree with n = k vertices has m = k - 1 edges, where k is a positive integer.

1. Basis step:

When n = 1, a tree with n = 1 vertex has no edges. Indeed, m = n - 1 = 0.

2. Assumption step:

Let's assume that every tree with n = k vertices has m = k - 1 edges, where k is a positive integer.

- Suppose that a tree T has n = k + 1 vertices, we want to prove that T has k edges.
- Let's suppose that v is a leaf⁷ of T. Let w be the parent of v.
- Remove v from T and the edge connecting w to v. It produces a tree T' with k vertices⁸.
- ightharpoonup By the assumption hypothesis, as T' has k vertices, it has k-1 edges.
- lt follows that T has k edges because it has one more edge than T' (the edge connecting v and w).

 $^{^{7}}$ It must exist because the tree is finite

T' is still connected and has no simple circuits.

1. Basis step:

When n = 1, a tree with n = 1 vertex has no edges. Indeed, m = n - 1 = 0.

2. Assumption step:

Let's assume that every tree with n = k vertices has m = k - 1 edges, where k is a positive integer.

- Suppose that a tree T has n = k + 1 vertices, we want to prove that T has k edges.
- Let's suppose that v is a leaf⁷ of T. Let w be the parent of v.
- Remove v from T and the edge connecting w to v. It produces a tree T' with k vertices⁸.
- ightharpoonup By the assumption hypothesis, as T' has k vertices, it has k-1 edges.
- It follows that T has k edges because it has one more edge than T' (the edge connecting v and w).

⁷ It must exist because the tree is finite

T' is still connected and has no simple circuits.

1. Basis step:

When n = 1, a tree with n = 1 vertex has no edges. Indeed, m = n - 1 = 0.

2. Assumption step:

Let's assume that every tree with n = k vertices has m = k - 1 edges, where k is a positive integer.

- Suppose that a tree T has n = k + 1 vertices, we want to prove that T has k edges.
- Let's suppose that v is a leaf⁷ of T. Let w be the parent of v.
- Remove v from T and the edge connecting w to v. It produces a tree T' with k vertices⁸.
- ightharpoonup By the assumption hypothesis, as T' has k vertices, it has k-1 edges.
- It follows that T has k edges because it has one more edge than T' (the edge connecting v and w).

⁷It must exist because the tree is finite

T' is still connected and has no simple circuits.

1. Basis step:

When n=1, a tree with n=1 vertex has no edges. Indeed, m=n-1=0.

2. Assumption step:

Let's assume that every tree with n = k vertices has m = k - 1 edges, where k is a positive integer.

- Suppose that a tree T has n = k + 1 vertices, we want to prove that T has k edges.
- Let's suppose that v is a leaf⁷ of T. Let w be the parent of v.
- ▶ Remove v from T and the edge connecting w to v. It produces a tree T' with k vertices⁸.
- ightharpoonup By the assumption hypothesis, as T' has k vertices, it has k-1 edges.
- It follows that T has k edges because it has one more edge than T' (the edge connecting v and w).

⁷It must exist because the tree is finite

 $^{^8}T'$ is still connected and has no simple circuits.

1. Basis step:

When n = 1, a tree with n = 1 vertex has no edges. Indeed, m = n - 1 = 0.

2. Assumption step:

Let's assume that every tree with n = k vertices has m = k - 1 edges, where k is a positive integer.

3. Inductive step:

- Suppose that a tree T has n = k + 1 vertices, we want to prove that T has k edges.
- Let's suppose that v is a leaf⁷ of T. Let w be the parent of v.
- ▶ Remove v from T and the edge connecting w to v. It produces a tree T' with k vertices⁸.
- ▶ By the assumption hypothesis, as T' has k vertices, it has k-1 edges.
- ▶ It follows that T has k edges because it has one more edge than T' (the edge connecting v and w).

43 / 44

⁷It must exist because the tree is finite

 $^{^8}T'$ is still connected and has no simple circuits.

1. Basis step:

When n = 1, a tree with n = 1 vertex has no edges. Indeed, m = n - 1 = 0.

2. Assumption step:

Let's assume that every tree with n = k vertices has m = k - 1 edges, where k is a positive integer.

- ▶ Suppose that a tree T has n = k + 1 vertices, we want to prove that T has k edges.
- Let's suppose that v is a leaf⁷ of T. Let w be the parent of v.
- ▶ Remove v from T and the edge connecting w to v. It produces a tree T' with k vertices⁸.
- ▶ By the assumption hypothesis, as T' has k vertices, it has k-1 edges.
- It follows that T has k edges because it has one more edge than T' (the edge connecting v and w).

⁷It must exist because the tree is finite

 $^{^8}T'$ is still connected and has no simple circuits.

Reference

- ▶ Discrete Mathematics and Its Applications. Rosen, K.H. 2012. McGraw-Hill.
 - ► Chapter 10. Graphs: Section 10.2: Graph Terminology and Special Types of Graphs. Section 10.7: Planar Graphs.
 - ► Chapter 11. Trees: Section 11.1: Introduction to Trees.