Spatio-temporal Clustering for Geographic Events Prepared by Evgeny Noi

Spatial Moran's

$$I=rac{n\sum\sum w_{ij}(a_i-ar{a})(a_j-ar{a})}{\sum\sum w_{ij}(a_i-ar{a})(a_j-ar{a})}$$

where w_{ij} is a spatial weight matrix of 0/1.

$$I_i = rac{z_i \sum_j w_{ij} z_j}{\delta^2}$$

where δ^2 is variance of a and $z_i=(a_i-\bar{a}).$

Extensions to time

- Assume stationarity
- Empirical estimations based on data
- In Betazzon (2003) solved a set of 8 equations, where coefficients were set up as matrices in matrices
- Joining spatial and temporal matrices into one (multiplicative)
- Subject to scaling effects

Difficulties in implementing *space-time* autocorrelation

- Integrating different units in space and time
- how the different levels of non-stationarity in spatial data and in temporal data may exist
- spatial and temporal trends of geographical events may not be symmetrical or always be separable

Typical space-time representation

- Binary matrices based on threshhold (0/1)
- ullet Inverse of distance ($1/d_{ij}, 1/t_{ij}$)

Alternatives: clustering

• Non-parametric spatio-temporal clustering (aka *Scan statistic*). Iterative in nature - repetitive computations.

Global and Local Temporal Moran's ${\it I}$

$$I_t = rac{n\sum\sum w_{ij}(t_i-ar{t})(t_j-ar{t})}{W\sum(t_i-ar{t})(t_j-ar{t})}$$

$$I_{ti} = u_i \sum w_{ij} u_i$$

where
$$u_i=rac{(t_i-ar{t})}{\delta_t^2}$$

Spatio-Temporal Moran's $\it I$

$$I_{st} = rac{n\sum\sum w_{ij}t_{ij}(a_i-ar{a})(a_j-ar{a})}{\sum\sum w_{ij}t_{ij}(a_i-ar{a})(a_j-ar{a})}$$

where
$$t_{ij} = \left| rac{1}{t_i - t_j}
ight|$$
 , and is binary depending on the threshold

$$I_{sti} = rac{z_i \sum v_{ij} z_i}{\delta^2}$$

Assumptions

- Normality the attribute value of each geographic event is considered to be drawn from a normal distribution (as well as timing)
- Randomization equally likely random permutation of n events (Getis & Ord, 1981)

Microblogs autocorrelation (normality)

Figure 2. Distribution of Z scores under normality assumption based inversed distance. (a) Spatial autocorrelation, I. (b) Temporal autocorrelation, I_t . (c) Spatiotemporal autocorrelation, I_{sti} .

7 days temporal window

Table 1. Comparison Among Different Forms of Moran's Index Using Microblogs on Dengue Fever in Guangdong in 2014 Threshold of Date with 7 Days

	classic			t in place of a			$\sum w_{ij}t_{ij}$			$\sum w_{ij} \sum t_{ij}$		
Case#	I	Z_N	Z_R	I_t	Z_N	Z_R	I_{UTI}	Z_N	Z_R	I_{ITI}	Z_N	Z_R
$\overline{w_{ij}} = 1/d_{ij}$	0.063	4.634	4.689	0.080	5.877	5.877	0.099	4.066	4.115	0.120	4.062	4.111
$w_{ij} = 1$ if $d_{ij} < 1$ km	-0.001	-3.056	-3.092	-0.001	-4.083	-4.083	0.000	0.844	0.853	0.000	0.844	0.852
$w_{ij}=1$ if $d_{ij}<2$ km	-0.001	-2.525	-2.554	-0.001	-2.277	-2.277	0.000	0.890	0.899	0.000	0.890	0.899
$w_{ij}=1$ if $d_{ij}<3$ km	-0.001	-2.761	-2.791	-0.001	-2.980	-2.980	0.000	0.675	0.682	0.000	0.675	0.682
$w_{ij}=1$ if $d_{ij}<4$ km	-0.001	-2.723	-2.752	-0.001	-4.162	-4.162	0.000	0.693	0.701	0.000	0.694	0.701
$w_{ij}=1$ if $d_{ij}<5$ km	-0.001	-2.559	-2.584	-0.001	-4.490	-4.490	0.000	0.673	0.680	0.000	0.673	0.680

Note: Bold text indicate statistical significance at the level of: z > 1.96 or z < -1.96.

14 days temporal window

Table 2. Comparison Among Different Forms of Moran's Index Using Microblogs on Dengue Fever in Guangdong in 2014 Threshold of Date with 14 Days

	classic			t in place of a			$\sum w_{ij}t_{ij}$			$\sum w_{ij} \sum t_{ij}$		
Case#	I	Z_N	Z_R	I_t	Z_N	Z_R	I_{UTI}	Z_N	Z_R	I_{ITI}	Z_N	Z_R
$w_{ij} = 1/d_{ij}$	0.063	4.634	4.689	0.080	5.877	5.877	0.086	4.854	4.912	0.094	4.851	4.909
$w_{ij}=1$ if $d_{ij}<1$ km	-0.001	-3.056	-3.092	-0.001	-4.083	-4.083	0.000	1.046	1.054	0.000	1.045	1.053
$w_{ij}=1$ if $d_{ij}<2$ km	-0.001	-2.525	-2.554	-0.001	-2.277	-2.277	0.000	1.097	1.106	0.000	1.097	1.105
$w_{ij}=1$ if $d_{ij}<3$ km	-0.001	-2.761	-2.791	-0.001	-2.980	-2.980	0.000	0.877	0.884	0.000	0.878	0.884
$w_{ij}=1$ if $d_{ij}<4$ km	-0.001	-2.723	-2.752	-0.001	-4.162	-4.162	0.000	0.863	0.869	0.000	0.863	0.870
$w_{ij} = 1$ if $d_{ij} < 5$ km	-0.001	-2.559	-2.584	-0.001	-4.490	-4.490	0.000	0.666	0.672	0.000	0.667	0.672

Note: Bold text indicate statistical significance at the level of: z > 1.96 or z < -1.96.

Microblogs autocorrelation (randomization)

Figure 3. Distribution of Z Scores under Randomization Assumption Based Inversed Distance. (a) Spatial autocorrelation, I. (b) Temporal autocorrelation, I_t . (c) Spatiotemporal autocorrelation, I_{sti} .. [Color figure can be viewed at wileyonlinelibrary.com]

Conclusions

- Different results under normality and randomization
- Multiplicative nature of geographic events
- Time dimension alone cannot explain spatial autocorrelation (temporal effects in geo phenomena are not constant over space)

Critiques

- The authors assessed st autocorrelation on point pattern data only, but not on areal data (which might yeild different results, especially for different contiguity metrics)
- spatio-temporal autocorrelation is only significant for $1/d_{ij}$ and not for binary threshholded variables. Otherwise there could be too many zeroes.

Questions?

Evgeny Noi

" Make Geography Great Again

