

Learning With Errors

Introduction to Homomorphic Cryptosystems – Lecture 2

Learning Without Errors

Solve for x_1, \dots, x_4 :

$$34x_1 + 2x_2 + 4x_3 + 67x_4 = 5297$$

$$6x_1 + 25x_2 + 71x_3 + 33x_4 = 6439$$

$$42x_1 + 88x_2 + 64x_3 + 52x_4 = 8790$$

$$13x_1 + 9x_2 + 93x_3 + 49x_4 = 8454$$

No problem using the tools of linear algebra:

$$x = \begin{pmatrix} 5\\18\\50\\73 \end{pmatrix}$$

Adding Error

Let's add a random secret error:

$$34x_1 + 2x_2 + 4x_3 + 67x_4 = 5297 - 4$$

$$6x_1 + 25x_2 + 71x_3 + 33x_4 = 6439 + 1$$

$$42x_1 + 88x_2 + 64x_3 + 52x_4 = 8790 + 3$$

$$13x_1 + 9x_2 + 93x_3 + 49x_4 = 8454 - 2$$

Which gives us these equations:

$$34x_1 + 2x_2 + 4x_3 + 67x_4 = 5293$$

$$6x_1 + 25x_2 + 71x_3 + 33x_4 = 6440$$

$$42x_1 + 88x_2 + 64x_3 + 52x_4 = 8793$$

$$13x_1 + 9x_2 + 93x_3 + 49x_4 = 8452$$

Now solve for x_1, \dots, x_4

MODULAR ARITHMETIC

Modular arithmetic is a system of arithmetic for integers.

The numbers "wrap around" when reaching a certain value, called **modulus.**

Example: 12-hour clock

Congurence

Given an integer $m \ge 1$, two integers a, b are congruent modulo m if there is an integer k such that

$$a - b = km$$

You can write this relation as:

$$a \equiv b \pmod{m}$$

Example

$$5 \equiv 17 \pmod{12}$$
, because $5 - 17 = -12 = -1 * 12$

Congurence classes

The set of all integers of the form

$$a + km$$

is called the congruence class (or residue class) of a modulo m.

Notation

$$(a \bmod m)$$

$$\bar{a}_m$$

$$[a]_m$$

Example

$$\overline{4}_{12} = \{4, 16, 28, 40, \dots\}$$

Integers modulo m

The set of all congurence classes modulo m is called the ring of integers modulo m.

Notation

$$\mathbb{Z}/m\mathbb{Z} = {\overline{a}_m | a \in \mathbb{Z}} = {\overline{0}_m, \overline{1}_m, \overline{2}_m, \dots, \overline{m-1}_m}$$

More on that in future lectures!

LWE DEFINITION

Learning with Errors

$$\mathbf{a_1} = (34,2,4,67)^{\perp}$$
 $\mathbf{a_2} = (6,25,71,33)^{\perp}$
 $\mathbf{a_3} = (42,88,64,52)^{\perp}$
 $\mathbf{a_4} = (13,9,93,49)^{\perp}$

$$b_1 = \langle s, a_1 \rangle + e_1$$

$$b_2 = \langle s, a_2 \rangle + e_2$$

$$b_3 = \langle s, a_3 \rangle + e_3$$

$$b_4 = \langle s, a_4 \rangle + e_4$$

$$34x_1 + 2x_2 + 4x_3 + 67x_4 = 5297 - 4$$

$$6x_1 + 25x_2 + 71x_3 + 33x_4 = 6439 + 1$$

$$42x_1 + 88x_2 + 64x_3 + 52x_4 = 8790 + 3$$

$$13x_1 + 9x_2 + 93x_3 + 49x_4 = 8454 - 2$$

$$e = (e_1, e_2, e_3, e_4)^{\perp} = (-4, 1, 3, -2)^{\perp}$$

Learning with Errors

 $\mathbb{Z}_a^n = n$ -dimensional integer vectors modulo q

$$\langle v, w \rangle \coloneqq \text{inner product of the vectors } v, w$$

$$\langle v, w \rangle \coloneqq \sum_{i=1}^{n} v_i, w_i$$

$$\mathbf{a}_1 \leftarrow \mathbb{Z}_q^n, \qquad \mathbf{b}_1 = \langle s, a_1 \rangle + \mathbf{e}_1 \in \mathbb{Z}_q \qquad \mathbf{r}$$

$$\mathbf{a}_2 \leftarrow \mathbb{Z}_q^n, \qquad \mathbf{b}_2 = \langle s, a_2 \rangle + \mathbf{e}_2 \in \mathbb{Z}_q$$

Parameters

dimension n

modulus q = poly(n)

error distribution χ

$$\mathbf{a}_1 \leftarrow \mathbb{Z}_q^n,$$
 $\mathbf{a}_2 \leftarrow \mathbb{Z}_q^n,$

$$\frac{b_2}{b_2} = \langle s, a_2 \rangle + e_2 \in \mathbb{Z}_q$$

uniform random

$$\mathbf{A} = \begin{pmatrix} \mathbf{I} & \mathbf{I} \\ a_1 & a_2 & \dots \\ \mathbf{I} & \mathbf{I} \end{pmatrix}$$

$$\mathbf{b}^{\perp} = (b_1, b_2, \dots) \approx \mathbf{s}^T A$$

 \mathbb{Z}_q = integers modulo q

Search Problem

Find secret $s \in \mathbb{Z}_q^n$ given

A and $b^{\perp} \approx s^{\perp} A$

Decision Problem

Distinguish (A, b) from uniform (A, b)

BUILD A CRYPTOSYSTEM FROM THE LWE PROBLEM

Symmetric vs Antisymmetric Cryptosystem

Symmetric cryptosystem

There is one key shared with both parties. The key is used to encrypt the data.

Advantages

Simple, easy to implement and calculate

Disadvantages

Key has to be shared between the parties

Antisymmetric cryptosystem

Every party has two keys (public and private key). Messages encrypted with the public key can be decrypted with the private key.

Advantages

The public key can be shared without a problem as it can be only used for encryption

Disadvantages

More complex calculations.
Security comes from the assumption,
that it is hard to get the private key from
the public key

A Symmetric LWE Cryptosystem

Encryption

choose

$$\mathbf{s}^{T} = (s_{0}, ..., s_{n-1}) \in \{0,1\}^{n}$$

 $\mathbf{a}^{T} = (a_{0}, ..., a_{n-1}) \in \mathbb{Z}_{q}^{n}$

bit modular integer real in an interval

Encryption of a message m:

$$Enc(m) = (a_0, ..., a_{n-1}, b) = (\mathbf{a}^T, b) = c$$
 where

$$b = \langle a, s \rangle + e + Encoding(m)$$

drawn from error distribution. This the LWE definition and provides security

Decryption

$$Dec(c) = b - \langle a, s \rangle = Encoding(m) + e$$

Encoding and Error

Parameters

modulus q=12 number of different messages p=4 set of possible messages $\mathcal{M}=\{0,1,2,3\}$ 'distance' between messages $\Delta=\frac{q}{p}=3$

Encoding

We choose a message $m \in \mathcal{M}$

 $Encoding(m) = m * \Delta$

This scales the message to leave enough place for the error but is no encryption!

Error

must be in the range Δ around the encoded message

$$|e|<\frac{\Delta}{2}=1,5$$

Encoding and Error: Example

Example

We want to send the message m = 3

Encoding(m) = 9

We draw the error e = -1

Encoding(m) + e = 8

Homomorphic Properties of the Symmetric Cryptosystem

Take two encrypted messages:

$$Enc(m) = \left(\boldsymbol{a}^{\mathrm{T}}, \boldsymbol{b}\right) = c$$

$$b = \langle a, s \rangle + e + \Delta m$$

$$Enc(m') = (\boldsymbol{a}'^{\mathrm{T}}, \boldsymbol{b}') = c'$$

$$b' = \langle \boldsymbol{a}', \boldsymbol{s} \rangle + \boldsymbol{e} + \Delta m'$$

The inner product is distributive over vector addition

$$Dec(c) = \mathbf{b} - \langle \mathbf{a}, \mathbf{s} \rangle$$

$$\langle a+b,c\rangle = \langle a,c\rangle + \langle b,c\rangle$$

Addition

$$Dec(c + c') = Dec((a^{T} + a'^{T}, b + b')) = b + b' - \langle a + a', s \rangle =$$

$$= \langle a, s \rangle + \langle a', s \rangle - \langle a + a', s \rangle + 2e + \Delta(m + m') = 2e + \Delta(m + m')$$

Constant Multiplication

The error increases!

The error increases!

Public-Key Cryptosystem from LWE

UNI WÜ Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. 2008. Trapdoors for hard lattices and new cryptographic constructions.

Public-Key Cryptosystem from LWE

Eve can observe A u b b'

But according to the LWE problem, she cannot distinguish between

$$(A, u), (b, b')$$

and uniform
 $(A, u), (b, b')$

LATTICE PROBLEMS

What is a Lattice?

A **lattice** in the real coordinate space \mathbb{R}^n is an infinite set of points (or vectors).

Properties:

- Coordinate-wise addition or subtraction of two points in the lattice produce another lattice point
- All lattice points are separated by some minimum distance

Mathematical definition

Let $b_1, b_2, ..., b_m$ be linearly independent vectors in \mathbb{R}^n .

$$L := \{ \sum_{i=1}^m g_i \boldsymbol{b_i} | g_i \in \mathbb{Z} \}$$

is called a lattice with basis $B = \{b_1, b_2, ..., b_m\}$.

The length of the shortest non-zero vector in the lattice L is defined as

$$\lambda(L) = \min_{\mathbf{x} \in L \setminus \{0\}} ||\mathbf{x}||_{N}$$

What is a Lattice?

The operation of the group is also commutative:

$$x + y = y + x$$

Mathematical description

A lattice is a free abelian group of dimension n which spans the vector space \mathbb{R}^n .

A free group has a basis *B* with the property, that every element of the group can be uniquely expressed as a linear combination of finite many basis elements.

The following groups are also free abelian groups

Positive rational numbers

 \triangleright (Q⁺,*) with the prime numbers as B

Shortest Vector Problem (SVP)

Parameters

A basis *B* which defines a lattice *L* Norm *N* (usually the Euclidean norm)

Problem

Find a non-zero vector $v \in L$ such that

$$||\boldsymbol{\nu}||_{N} = \lambda(L)$$

GapSVP

Given β , which can be a fixed function of the dimension of the lattice, decide whether

$$\lambda(L) \leq 1 \text{ or } \lambda(L) > \beta$$

Closest Vector Problem (CVP)

Parameters

A basis B of a vector space V which defines a lattice L Metric M (usually the Euclidean norm) Vector $x \in V$

Problem

Find the vector $v \in L$ closest to x (as measured by M).

GapCVP

Given β , which can be a fixed function of the dimension of the lattice, decide whether

- > there is a lattice vector such that the distance between it and x is at most 1, or
- \triangleright every lattice vector is at a distance greater than β away from x.

LWE is a Lattice Problem

Reminder LWE Definition

$$\mathbf{a_1} \leftarrow \mathbb{Z}_q^n, \qquad \mathbf{b_1} = \langle s, a_1 \rangle + \mathbf{e_1} \in \mathbb{Z}_q \qquad \mathbf{A} = \begin{pmatrix} 1 & 1 \\ a_1 & a_2 & \dots \\ 1 & 1 \end{pmatrix}$$

$$\mathbf{a_2} \leftarrow \mathbb{Z}_q^n, \qquad \mathbf{b_2} = \langle s, a_2 \rangle + \mathbf{e_2} \in \mathbb{Z}_q$$

$$\mathbf{b}^T = (b_1, b_2, \dots) \approx s^t A$$

LWE lattice

$$L(\mathbf{A}) = \{ \mathbf{z} \in \mathbb{Z}^m | \mathbf{z}^T \equiv \mathbf{s}^T \mathbf{A} \bmod q \}$$

LWE as a lattice problem

Given L(A) and $\mathbf{b}^T \approx \mathbf{v}^T = \mathbf{s}^T \mathbf{A} \in L(A)$, find \mathbf{v} .

b is guaranteed to be 'very close' to a lattice point, which makes LWE a bounded distance decoding problem

Similar to CVP, but the distance from the given vector to the lattice is at most $\lambda(L)/2$

Lattice Problems in Cryptography

- SVP, CVP and LWE are all in the same category of hardness (NP-hard)
- No efficient (quantum-) algorithms are known for lattice related problems
- Lattice based cryptosystems are often algorithmically simple and highly parallelizable
 - Mainly linear operations on vectors
 - Matrices modulo small integers

- Famous lattice-based schemes
 - NTRUEncrypt
 - Kyber
 - TFHE

LWE is the base problem for (almost) every HE cryptosystem!

Summary – What did we learn today?

LWE

What is the learning with errors problem?
We can build symmetric and public key
cryptosystems based on LWE.

Modular arithmetic

In modular arithmetic the numbers 'wrap around' when reaching a certain modulus.

 $a \equiv b \pmod{m}$ tells us that a and b have the same remainder when divided by m.

The LWE problem is the challenge to find the solution to a linear system of equations, which is altered by a small error.

Lattice Problems

Shortest Vector Problem (SVP)

Closest Vector Problem (CVP)

LWE is also a lattice problem and therefore as hard to solve.

Lattice-based cryptography seems to be a solution for the post-quantum era.

