Variational forms for systems of PDEs

Hans Petter Langtangen^{1,2}

¹Center for Biomedical Computing, Simula Research Laboratory ²Department of Informatics, University of Oslo

Oct 16, 2015

PRELIMINARY VERSION

Contents

1	Variational forms 1.1 Sequence of scalar PDEs formulation	2 2 2
2	A worked example	3
3	Identical function spaces for the unknowns 3.1 Variational form of each individual PDE 3.2 Compound scalar variational form 3.3 Decoupled linear systems 3.4 Coupled linear systems	3 4 4 5 6
4	Different function spaces for the unknowns	7
5	Computations in 1D	8
R	References	
Index		11

Many mathematical models involve m+1 unknown functions governed by a system of m+1differential equations. In abstract form we may denote the unknowns by $u^{(0)}, \dots, u^{(m)}$ and write the governing equations as

$$\mathcal{L}_0(u^{(0)}, \dots, u^{(m)}) = 0,$$

 \vdots
 $\mathcal{L}_m(u^{(0)}, \dots, u^{(m)}) = 0,$

where \mathcal{L}_i is some differential operator defining differential equation number i.

1 Variational forms

There are basically two ways of formulating a variational form for a system of differential equations. The first method treats each equation independently as a scalar equation, while the other method views the total system as a vector equation with a vector function as unknown.

1.1 Sequence of scalar PDEs formulation

Let us start with the approach that treats one equation at a time. We multiply equation number i by some test function $v^{(i)} \in V^{(i)}$ and integrate over the domain:

$$\int_{\Omega} \mathcal{L}^{(0)}(u^{(0)}, \dots, u^{(m)})v^{(0)} \, \mathrm{d}x = 0, \tag{1}$$

$$\int_{\Omega} \mathcal{L}^{(m)}(u^{(0)}, \dots, u^{(m)}) v^{(m)} dx = 0.$$
(2)

Terms with second-order derivatives may be integrated by parts, with Neumann conditions inserted in boundary integrals. Let

$$V^{(i)} = \text{span}\{\psi_0^{(i)}, \dots, \psi_{N_i}^{(i)}\},\$$

such that

$$u^{(i)} = B^{(i)}(\boldsymbol{x}) + \sum_{i=0}^{N_i} c_j^{(i)} \psi_j^{(i)}(\boldsymbol{x}),$$

where $B^{(i)}$ is a boundary function to handle nonzero Dirichlet conditions. Observe that different unknowns live in different spaces with different basis functions and numbers of degrees of freedom.

From the m equations in the variational forms we can derive m coupled systems of algebraic equations for the $\prod_{i=0}^{m} N_i$ unknown coefficients $c_i^{(i)}$, $j=0,\ldots,N_i$, $i=0,\ldots,m$.

1.2 Vector PDE formulation

The alternative method for deriving a variational form for a system of differential equations introduces a vector of unknown functions

$$\mathbf{u} = (u^{(0)}, \dots, u^{(m)}),$$

a vector of test functions

$$\boldsymbol{v} = (u^{(0)}, \dots, u^{(m)}),$$

with

$$\boldsymbol{u}.\,\boldsymbol{v}\in\boldsymbol{V}=V^{(0)}\times\cdots\times V^{(m)}$$

With nonzero Dirichlet conditions, we have a vector $\mathbf{B} = (B^{(0)}, \dots, B^{(m)})$ with boundary functions and then it is u - B that lies in V, not u itself.

The governing system of differential equations is written

2

$$\mathcal{L}(\mathbf{u}) = 0$$
,

where

$$\mathcal{L}(u) = (\mathcal{L}^{(0)}(u), \dots, \mathcal{L}^{(m)}(u))$$

The variational form is derived by taking the inner product of the vector of equations and the test function vector:

$$\int_{\Omega} \mathcal{L}(u) \cdot v = 0 \quad \forall v \in V.$$
(4)

Observe that (4) is one scalar equation. To derive systems of algebraic equations for the unknown coefficients in the expansions of the unknown functions, one chooses m linearly independent \boldsymbol{v} vectors to generate m independent variational forms from (4). The particular choice $\boldsymbol{v}=(v^{(0)},0,\ldots,0)$ recovers (1), $\boldsymbol{v}=(0,\ldots,0,v^{(m)}$ recovers (3), and $\boldsymbol{v}=(0,\ldots,0,v^{(i)},0,\ldots,0)$ recovers the variational form number $i,\int_{\Omega}\mathcal{L}^{(i)}v^{(i)}\,\mathrm{d}x=0$, in (1)-(3).

2 A worked example

We now consider a specific system of two partial differential equations in two space dimensions:

$$\mu \nabla^2 w = -\beta, \tag{5}$$

$$\kappa \nabla^2 T = -\mu ||\nabla w||^2. \tag{6}$$

The unknown functions w(x,y) and T(x,y) are defined in a domain Ω , while μ , β , and κ are given constants. The norm in (6) is the standard Euclidean norm:

$$||\nabla w||^2 = \nabla w \cdot \nabla w = w_x^2 + w_y^2$$
.

The boundary conditions associated with (5)-(6) are w=0 on $\partial\Omega$ and $T=T_0$ on $\partial\Omega$. Each of the equations (5) and (6) needs one condition at each point on the boundary.

The system (5)-(6) arises from fluid flow in a straight pipe, with the z axis in the direction of the pipe. The domain Ω is a cross section of the pipe, w is the velocity in the z direction, μ is the viscosity of the fluid, β is the pressure gradient along the pipe, T is the temperature, and κ is the heat conduction coefficient of the fluid. The equation (5) comes from the Navier-Stokes equations, and (6) follows from the energy equation. The term $-\mu ||\nabla w||^2$ models heating of the fluid due to internal friction.

Observe that the system (5)-(6) has only a one-way coupling: T depends on w, but w does not depend on T, because we can solve (5) with respect to w and then (6) with respect to T. Some may argue that this is not a real system of PDEs, but just two scalar PDEs. Nevertheless, the one-way coupling is convenient when comparing different variational forms and different implementations.

3 Identical function spaces for the unknowns

Let us first apply the same function space V for w and T (or more precisely, $w \in V$ and $T - T_0 \in V$). With

3

 $V = \text{span}\{\psi_0(x, y), \dots, \psi_N(x, y)\}.$

we write

$$w = \sum_{j=0}^{N} c_j^{(w)} \psi_j, \quad T = T_0 + \sum_{j=0}^{N} c_j^{(T)} \psi_j.$$
 (7)

Note that w and T in (5)-(6) denote the exact solution of the PDEs, while w and T (7) are the discrete functions that approximate the exact solution. It should be clear from the context whether a symbol means the exact or approximate solution, but when we need both at the same time, we use a subscript e to denote the exact solution.

3.1 Variational form of each individual PDE

Inserting the expansions (7) in the governing PDEs, results in a residual in each equation,

$$R_w = \mu \nabla^2 w + \beta, \tag{8}$$

$$R_T = \kappa \nabla^2 T + \mu ||\nabla w||^2. \tag{9}$$

A Galerkin method demands R_w and R_T do be orthogonal to V:

$$\int_{\Omega} R_w v \, \mathrm{d}x = 0 \quad \forall v \in V,$$

$$\int_{\Omega} R_T v \, \mathrm{d}x = 0 \quad \forall v \in V.$$

Because of the Dirichlet conditions, v=0 on $\partial\Omega$. We integrate the Laplace terms by parts and note that the boundary terms vanish since v=0 on $\partial\Omega$:

$$\int_{\Omega} \mu \nabla w \cdot \nabla v \, dx = \int_{\Omega} \beta v \, dx \quad \forall v \in V, \tag{10}$$

$$\int_{\Omega} \kappa \nabla T \cdot \nabla v \, dx = \int_{\Omega} \mu \nabla w \cdot \nabla w \, v \, dx \quad \forall v \in V.$$
(11)

3.2 Compound scalar variational form

The alternative way of deriving the variational from is to introduce a test vector function $v \in V = V \times V$ and take the inner product of v and the residuals, integrated over the domain:

$$\int_{\Omega} (R_w, R_T) \cdot \boldsymbol{v} \, \mathrm{d}x = 0 \quad \forall \boldsymbol{v} \in \boldsymbol{V}.$$

With $\mathbf{v} = (v_0, v_1)$ we get

$$\int_{\Omega} (R_w v_0 + R_T v_1) \, \mathrm{d}x = 0 \quad \forall \boldsymbol{v} \in \boldsymbol{V} \,.$$

Integrating the Laplace terms by parts results in

$$\int_{\Omega} (\mu \nabla w \cdot \nabla v_0 + \kappa \nabla T \cdot \nabla v_1) \, dx = \int_{\Omega} (\beta v_0 + \mu \nabla w \cdot \nabla w \, v_1) \, dx, \quad \forall v \in \mathbf{V}.$$
 (12)

Choosing $v_0 = v$ and $v_1 = 0$ gives the variational form (10), while $v_0 = 0$ and $v_1 = v$ gives (11). With the inner product notation, $(p, q) = \int_{\Omega} pq \, dx$, we can alternatively write (10) and (11) as

$$(\mu \nabla w, \nabla v) = (\beta, v) \quad \forall v \in V,$$

$$(\kappa \nabla T, \nabla v) = (\mu \nabla w \cdot \nabla w, v) \quad \forall v \in V,$$

or since μ and κ are considered constant,

$$\mu(\nabla w, \nabla v) = (\beta, v) \quad \forall v \in V,$$
 (13)

$$\kappa(\nabla T, \nabla v) = \mu(\nabla w \cdot \nabla w, v) \quad \forall v \in V.$$
 (14)

3.3 Decoupled linear systems

The linear systems governing the coefficients $c_j^{(w)}$ and $c_j^{(T)}$, $j=0,\ldots,N$, are derived by inserting the expansions (7) in (10) and (11), and choosing $v=\psi_i$ for $i=0,\ldots,N$. The result becomes

$$\sum_{j=0}^{N} A_{i,j}^{(w)} c_j^{(w)} = b_i^{(w)}, \quad i = 0, \dots, N,$$
(15)

$$\sum_{i=0}^{N} A_{i,j}^{(T)} c_j^{(T)} = b_i^{(T)}, \quad i = 0, \dots, N,$$
(16)

$$A_{i,j}^{(w)} = \mu(\nabla \psi_j, \nabla \psi_i), \tag{17}$$

$$b_i^{(w)} = (\beta, \psi_i), \tag{18}$$

$$A_{i,i}^{(T)} = \kappa(\nabla \psi_i, \nabla \psi_i), \tag{19}$$

$$b_i^{(T)} = \mu((\sum_i c_j^{(w)} \nabla \psi_j) \cdot (\sum_k c_k^{(w)} \nabla \psi_k), \psi_i).$$
 (20)

It can also be instructive to write the linear systems using matrices and vectors. Define K as the matrix corresponding to the Laplace operator ∇^2 . That is, $K_{i,j} = (\nabla \psi_j, \nabla \psi_i)$. Let us introduce the vectors

$$\begin{aligned} b^{(w)} &= (b_0^{(w)}, \dots, b_N^{(w)}), \\ b^{(T)} &= (b_0^{(T)}, \dots, b_N^{(T)}), \\ c^{(w)} &= (c_0^{(w)}, \dots, c_N^{(w)}), \\ c^{(T)} &= (c_0^{(T)}, \dots, c_N^{(T)}). \end{aligned}$$

5

The system (15)-(16) can now be expressed in matrix-vector form as

$$\mu K c^{(w)} = b^{(w)},$$
 (21)

$$\kappa K c^{(T)} = b^{(T)}. \tag{22}$$

We can solve the first system for $c^{(w)}$, and then the right-hand side $b^{(T)}$ is known such that we can solve the second system for $c^{(T)}$.

3.4 Coupled linear systems

Despite the fact that w can be computed first, without knowing T, we shall now pretend that w and T enter a two-way coupling such that we need to derive the algebraic equations as one system for all the unknowns $c_j^{(w)}$ and $c_j^{(T)}$, $j=0,\ldots,N$. This system is nonlinear in $c_j^{(w)}$ because of the $\nabla w \cdot \nabla w$ product. To remove this nonlinearity, imagine that we introduce an iteration method where we replace $\nabla w \cdot \nabla w$ by $\nabla w_- \cdot \nabla w$, w_- being the w computed in the previous iteration. Then the term $\nabla w_- \cdot \nabla w$ is linear in w since w_- is known. The total linear system becomes

$$\sum_{j=0}^{N} A_{i,j}^{(w,w)} c_j^{(w)} + \sum_{j=0}^{N} A_{i,j}^{(w,T)} c_j^{(T)} = b_i^{(w)}, \quad i = 0, \dots, N,$$
(23)

$$\sum_{j=0}^{N} A_{i,j}^{(T,w)} c_j^{(w)} + \sum_{j=0}^{N} A_{i,j}^{(T,T)} c_j^{(T)} = b_i^{(T)}, \quad i = 0, \dots, N,$$
 (24)

$$A_{i,j}^{(w,w)} = \mu(\nabla \psi_j, \psi_i), \tag{25}$$

$$A_{i,j}^{(w,T)} = 0, (26)$$

$$b_i^{(w)} = (\beta, \psi_i), \tag{27}$$

$$A_{i,j}^{(w,T)} = \mu((\nabla \psi w_{-}) \cdot \nabla \psi_j), \psi_i), \tag{28}$$

$$A_{i,j}^{(T,T)} = \kappa(\nabla \psi_j, \psi_i), \tag{29}$$

$$b_i^{(T)} = 0$$
. (30)

This system can alternatively be written in matrix-vector form as

$$\mu K c^{(w)} = b^{(w)},$$
 (31)

$$Lc^{(w)} + \kappa Kc^{(T)} = 0,$$
 (32)

with L as the matrix from the $\nabla w_- \cdot \nabla$ operator: $L_{i,j} = A_{i,j}^{(w,T)}$

The matrix-vector equations are often conveniently written in block form:

$$\left(\begin{array}{cc} \mu K & 0 \\ L & \kappa K \end{array}\right) \left(\begin{array}{c} c^{(w)} \\ c^{(T)} \end{array}\right) = \left(\begin{array}{c} b^{(w)} \\ 0 \end{array}\right),$$

Note that in the general case where all unknowns enter all equations, we have to solve the compound system (23)-(24) since then we cannot utilize the special property that (15) does not involve T and can be solved first.

When the viscosity depends on the temperature, the $\mu \nabla^2 w$ term must be replaced by $\nabla \cdot (\mu(T)\nabla w)$, and then T enters the equation for w. Now we have a two-way coupling since

both equations contain w and T and therefore must be solved simultaneously Th equation $\nabla \cdot (\mu(T)\nabla w) = -\beta$ is nonlinear, and if some iteration procedure is invoked, where we use a previously computed T_{-} in the viscosity $(\mu(T_{-}))$, the coefficient is known, and the equation involves only one unknown, w. In that case we are back to the one-way coupled set of PDEs.

We may also formulate our PDE system as a vector equation. To this end, we introduce the vector of unknowns $\boldsymbol{u} = (u^{(0)}, u^{(1)})$, where $u^{(0)} = w$ and $u^{(1)} = T$. We then have

$$\nabla^2 \mathbf{u} = \begin{pmatrix} -\mu^{-1}\beta \\ -\kappa^{-1}\mu\nabla u^{(0)} \cdot \nabla u^{(0)} \end{pmatrix}.$$

Different function spaces for the unknowns

It is easy to generalize the previous formulation to the case where $w \in V^{(w)}$ and $T \in V^{(T)}$, where $V^{(w)}$ and $V^{(T)}$ can be different spaces with different numbers of degrees of freedom. For example, we may use quadratic basis functions for w and linear for T. Approximation of the unknowns by different finite element spaces is known as mixed finite element methods.

We write

$$V^{(w)} = \operatorname{span}\{\psi_0^{(w)}, \dots, \psi_{N_w}^{(w)}\}\$$
$$V^{(T)} = \operatorname{span}\{\psi_0^{(T)}, \dots, \psi_{N_w}^{(T)}\}\$$

The next step is to multiply (5) by a test function $v^{(w)} \in V^{(w)}$ and (6) by a $v^{(T)} \in V^{(T)}$, integrate by parts and arrive at

$$\int_{\Omega} \mu \nabla w \cdot \nabla v^{(w)} \, \mathrm{d}x = \int_{\Omega} \beta v^{(w)} \, \mathrm{d}x \quad \forall v^{(w)} \in V^{(w)}, \tag{33}$$

$$\int_{\Omega} \kappa \nabla T \cdot \nabla v^{(T)} dx = \int_{\Omega} \mu \nabla w \cdot \nabla w v^{(T)} dx \quad \forall v^{(T)} \in V^{(T)}.$$
(34)

The compound scalar variational formulation applies a test vector function $\mathbf{v} = (v^{(w)}, v^{(T)})$ and reads

$$\int_{\Omega} (\mu \nabla w \cdot \nabla v^{(w)} + \kappa \nabla T \cdot \nabla v^{(T)}) \, \mathrm{d}x = \int_{\Omega} (\beta v^{(w)} + \mu \nabla w \cdot \nabla w \, v^{(T)}) \, \mathrm{d}x, \tag{35}$$

valid $\forall \boldsymbol{v} \in \boldsymbol{V} = V^{(w)} \times V^{(T)}$.

The associated linear system is similar to (15)-(16) or (23)-(24), except that we need to distinguish between $\psi_i^{(w)}$ and $\psi_i^{(T)}$, and the range in the sums over j must match the number of degrees of freedom in the spaces $V^{(w)}$ and $V^{(T)}$. The formulas become

$$\sum_{j=0}^{N_w} A_{i,j}^{(w)} c_j^{(w)} = b_i^{(w)}, \quad i = 0, \dots, N_w,$$
(36)

$$\sum_{j=0}^{N_T} A_{i,j}^{(T)} c_j^{(T)} = b_i^{(T)}, \quad i = 0, \dots, N_T,$$
(37)

$$A_{i,j}^{(w)} = \mu(\nabla \psi_j^{(w)}, \psi_i^{(w)}), \tag{38}$$

$$b_i^{(w)} = (\beta, \psi_i^{(w)}),$$
 (39)

$$A_{i,j}^{(T)} = \kappa(\nabla \psi_i^{(T)}, \psi_i^{(T)}), \tag{40}$$

$$b_i^{(T)} = \mu(\nabla w_-, \psi_i^{(T)}).$$
 (41)

In the case we formulate one compound linear system involving both $c_i^{(w)}$, $j=0,\ldots,N_w$, and $c_i^{(T)}, j = 0, \dots, N_T, (23)$ -(24) becomes

$$\sum_{j=0}^{N_w} A_{i,j}^{(w,w)} c_j^{(w)} + \sum_{j=0}^{N_T} A_{i,j}^{(w,T)} c_j^{(T)} = b_i^{(w)}, \quad i = 0, \dots, N_w,$$
(42)

$$\sum_{j=0}^{N_w} A_{i,j}^{(T,w)} c_j^{(w)} + \sum_{j=0}^{N_T} A_{i,j}^{(T,T)} c_j^{(T)} = b_i^{(T)}, \quad i = 0, \dots, N_T,$$
(43)

$$A_{i,j}^{(w,w)} = \mu(\nabla \psi_i^{(w)}, \psi_i^{(w)}),$$
 (44)

$$A_{i,j}^{(w,w)} = \mu(\nabla \psi_j^{(w)}, \psi_i^{(w)}),$$

$$A_{i,j}^{(w,T)} = 0,$$
(44)

$$b_i^{(w)} = (\beta, \psi_i^{(w)}),$$
 (46)

$$A_{i,j}^{(w,T)} = \mu(\nabla w_- \cdot \nabla \psi_j^{(w)}), \psi_i^{(T)}), \tag{47}$$

$$A_{i,i}^{(T,T)} = \kappa(\nabla \psi_i^{(T)}, \psi_i^{(T)}),$$
 (48)

$$b_i^{(T)} = 0. (49)$$

The corresponding block form

$$\left(\begin{array}{cc} \mu K^{(w)} & 0 \\ L & \kappa K^{(T)} \end{array} \right) \left(\begin{array}{c} c^{(w)} \\ c^{(T)} \end{array} \right) = \left(\begin{array}{c} b^{(w)} \\ 0 \end{array} \right),$$

has square and rectangular block matrices: $K^{(w)}$ is $N_w \times N_w$, $K^{(T)}$ is $N_T \times N_T$, while L is $N_T \times N_w$,

Computations in 1D

We can reduce the system (5)-(6) to one space dimension, which corresponds to flow in a channel between two flat plates. Alternatively, one may consider flow in a circular pipe, introduce cylindrical coordinates, and utilize the radial symmetry to reduce the equations to a onedimensional problem in the radial coordinate. The former model becomes

$$\mu w_{xx} = -\beta, \tag{50}$$

$$\kappa T_{xx} = -\mu w_x^2,\tag{51}$$

while the model in the radial coordinate r reads

$$\mu \frac{1}{r} \frac{d}{dr} \left(r \frac{dw}{dr} \right) = -\beta, \tag{52}$$

$$\mu \frac{1}{r} \frac{d}{dr} \left(r \frac{dw}{dr} \right) = -\beta,$$

$$\kappa \frac{1}{r} \frac{d}{dr} \left(r \frac{dT}{dr} \right) = -\mu \left(\frac{dw}{dr} \right)^{2}.$$
(52)

The domain for (50)-(51) is $\Omega=[0,H]$, with boundary conditions w(0)=w(H)=0 and $T(0)=T(H)=T_0$. For (52)-(53) the domain is [0,R] (R being the radius of the pipe) and the boundary conditions are du/dr = dT/dr = 0 for r = 0, u(R) = 0, and $T(R) = T_0$.

Calculations to be continued...

References

Index

mixed finite elements, 7