

MLFA MINI-PROJECT 2

Effect of change in lambda on win regressions

Name – Bhosale Ratnesh Sambhajirao Roll No. – 19MF10010

Instructor – Prof. Adway Mitra

1.1 Problem Statement

Try out different kinds of regularized functions on regression problems, either of synthetic datasets or standard/public datasets. Explore the impacts of changing the "lambda" parameter on the structure of "w" and on the least-square error. In addition to ridge and LASSO, you may try out i) elastic net regularization, ii) mixed-norm or group-sparsity regularization.

1.2 Dataset Description

Dataset has been created manually. Input array is defined with angles from 60° to 300° converted to radians. Dataset looks similar to sine curve with some noise. The sine function using polynomial regression with powers of x from 1 to 15 has been estimated. Column for each power up to 15 has been added in the data frame.

Fig. 1. Dataset

Table 1. A column for each power up to 15 in DataFrame (head)

	X	y	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_10	x_11	x_12	x_13	x_14	x_15
0	1	1.1	1.1	1.1	1.2	1.3	1.3	1.4	1.4	1.5	1.6	1.7	1.7	1.8	1.9	2
1	1.1	1	1.2	1.4	1.6	1.7	1.9	2.2	2.4	2.7	3	3.4	3.8	4.2	4.7	5.3
2	1.2	0.7	1.4	1.7	2	2.4	2.8	3.3	3.9	4.7	5.5	6.6	7.8	9.3	11	13
3	1.3	0.95	1.6	2	2.5	3.1	3.9	4.9	6.2	7.8	9.8	12	16	19	24	31
4	1.3	1.1	1.8	2.3	3.1	4.1	5.4	7.2	9.6	13	17	22	30	39	52	69

Source: Notebook

1.3 Linear Regression

1.3.1 Brief Introduction to Linear Regression

The representation is a linear equation that combines a specific set of input values (x) the solution to which is the predicted output for that set of input values (y). As such, both the input values (x) and the output value are numeric.

$$Y = B_0 + B_1 x$$

1.3.2 Variation in Errors

MAE, MSE, RMSE and R^2 score has been calculated for each index to find out the trend of errors with power of polynomial regressor.

Table 2. Variation of errors with power of regressor.

Power	MAE	MSE	RMSE	R2 score
1	0.192	0.054	0.233	0.902
2	0.193	0.054	0.233	0.902
3	0.105	0.018	0.135	0.969
4	0.105	0.017	0.134	0.969
5	0.1006	0.016	0.13	0.971
6	0.098	0.016	0.128	0.972
7	0.093	0.015	0.124	0.974
8	0.093	0.015	0.123	0.974
9	0.094	0.014	0.12	0.975
10	0.094	0.014	0.12	0.975
11	0.093	0.014	0.12	0.975
12	0.093	0.014	0.12	0.975

Fig. 2. Variation of Mean Absolute Error (MAE) for linear regression As the graph shows, MAE is decreasing with the increase in model complexity.

Fig. 3. Variation of Root Mean Absolute Error (RMSE) for linear regression As the graph shows, RMSE is decreasing with the increase in model complexity.

Fig. 4. Variation of R² Score for linear regression

As the graph shows, \mathbb{R}^2 score is increasing with the increase in model complexity.

We would expect the models with increasing complexity to better fit the data and result in lower RSS values. This can be verified by looking at the plots generated for 6 models:

Fig. 5. Fit line with change in power.

1.3.3 Variation in w

Changes is w or coefficients of x can be seen in the table below:

Table 3. Change in rss, intercept and w with power

	rs	inter	coef_	coef_	coef_	coef_											
	s	cept	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_10	x_11	x_12	x_13	x_14	x_15
model_p ow_1	3. 3	2	-0.62	NaN	NaN	NaN	NaN										
model_p ow_2	3.	1.9	-0.58	0.006	NaN	NaN	NaN	NaN									
model_p ow_3	1. 1	-1.1	3	-1.3	0.14	NaN	NaN	NaN	NaN								
model_p ow_4	1. 1	-0.27	1.7	-0.53	0.036	0.014	NaN	NaN	NaN	NaN							
model_p ow_5	1	3	-5.1	4.7	-1.9	0.33	0.021	NaN	NaN	NaN	NaN						
model_p ow_6	0. 99	-2.8	9.5	-9.7	5.2	-1.6	0.23	0.014	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
model_p ow_7	0. 93	19	-56	69	-45	17	-3.5	0.4	0.019	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
model_p ow_8	0. 92	43	1.40e +02	1.80e +02	1.30e +02	58	-15	2.4	-0.21	0.007 7	NaN	NaN	NaN	NaN	NaN	NaN	NaN
model_p ow_9	0. 87	1.70e +02	6.10e +02	9.60e +02	8.50e +02	4.60e +02	1.60e +02	37	-5.2	0.42	0.015	NaN	NaN	NaN	NaN	NaN	NaN
model_p ow_10	0. 87	1.40e +02	4.90e +02	7.30e +02	6.00e +02	2.90e +02	-87	15	-0.81	-0.14	0.026	0.001	NaN	NaN	NaN	NaN	NaN
model_p ow_11	0. 87	-75	5.10e +02	1.30e +03	1.90e +03	1.60e +03	9.10e +02	3.50e +02	91	-16	1.8	-0.12	0.003 4	NaN	NaN	NaN	NaN
model_p ow_12	0. 87	3.40e +02	1.90e +03	4.40e +03	6.00e +03	5.20e +03	3.10e +03	1.30e +03	3.80e +02	-80	12	-1.1	0.062	0.001 6	NaN	NaN	NaN
model_p ow_13	0. 86	3.20e +03	1.80e +04	4.50e +04	6.70e +04	6.60e +04	4.60e +04	2.30e +04	8.50e +03	2.30e +03	4.50e +02	62	-5.7	0.31	0.007 8	NaN	NaN
model_p ow_14	0. 79	2.40e +04	1.40e +05	3.80e +05	6.10e +05	6.60e +05	5.00e +05	2.80e +05	1.20e +05	3.70e +04	8.50e +03	1.50e +03	1.80e +02	15	-0.73	0.017	NaN
model_p ow_15	0. 7	3.60e +04	2.40e +05	7.50e +05	1.40e +06	1.70e +06	1.50e +06	1.00e +06	5.00e +05	1.90e +05	5.40e +04	1.20e +04	1.90e +03	2.20e +02	17	-0.81	0.018

It is clearly evident that the size of coefficients increases exponentially with increase in model complexity. Large coefficient signifies that we're putting a lot of emphasis on that feature, *i.e.*, the particular feature is a good predictor for the outcome. When it becomes too large, the algorithm starts modelling intricate relations to estimate the output and ends up overfitting to the particular training data.

1.4 Ridge Regression

1.4.1 Brief Introduction to Ridge Regression

Ridge regression performs 'L2 regularization', i.e., it adds a factor of sum of squares of coefficients in the optimization objective. Thus, ridge regression optimizes the following:

Objective = $RSS + \lambda * (sum \ of \ square \ of \ coefficients)$

Here, λ (Lambda) is the parameter which balances the amount of emphasis given to minimizing RSS vs minimizing sum of square of coefficients. λ can take various values:

- $\lambda = 0$:
 - o The objective becomes same as simple linear regression.
 - o We'll get the same coefficients as simple linear regression.
- $\lambda = \infty$:
 - o The coefficients will be zero. Because of infinite weightage on square of coefficients, anything less than zero will make the objective infinite.
- $0 < \lambda < \infty$:
 - o The magnitude of λ will decide the weightage given to different parts of objective.
 - The coefficients will be somewhere between 0 and ones for simple linear regression.

1.4.2 Variation in Error

MAE, MSE, RMSE and R^2 score has been calculated for each index to find out the trend of errors with λ .

Lambda MAE **MSE RMSE** R2 Score 1.00E-15 0.09432 0.01455 0.1206 0.9757 1.00E-10 0.09355 0.9743 0.01537 0.124 1.00E-08 0.09466 0.01582 0.1257 0.9736 0.0001 0.09577 0.01603 0.1266 0.9732 0.001 0.09997 0.16696 0.1292 0.9718 0.01 0.12383 0.02392 0.1546 0.9587 1 0.2702 0.09414 0.3068 0.7322 5 0.4302 0.23063 4.80E-01 -2.57E-01 **10** 0.48781 3.00E-01 5.48E-01 -1.68E+00 20 0.55913 3.79E-01 6.15E-01 -5.87E+00

Table 4. Variation of Errors with λ .

Source: Notebook

Fig. 6. Variation of Mean Absolute Error (MAE) with λ for Ridge regression

Fig. 7. Variation of Root Mean Absolute Error (RMSE) with λ

As the graph shows, RMSE is increasing with the increase in λ .

Fig. 8. Variation of R^2 Score with λ

As the graph shows, R^2 Score is decreasing with the increase in λ . Model fit with increase in λ can be visualize by following graphs:

Fig. 9. Effect of increment in λ in Ridge Regression

1.4.3 Variation in w

Changes is w or coefficients of x can be seen in the table below:

Table 5. Change in rss, intercept and w with power

	r ss	inte rce pt	coef _x_ 1	coef _x_ 2	coef _x_ 3	coe f_x _4	coe f_x _5	coe f_x _6	coe f_x _7	coe f_x _8	coe f_x _9	coef _x_ 10	coef _x_ 11	coef _x_ 12	coef _x_ 13	coef _x_ 14	coef _x_ 15
lambd a_1e- 15	0. 8 7	95	3.00 E+0 2	3.80 E+0 2	2.30 E+0 2	63	2.1	-5	0.6	0.1 7	0.0 31	0.00 51	0.00 085	0.00 024	6.10 E- 05	4.50 E- 06	9.30 E- 08
lambd a_1e- 10	0. 9 2	11	-29	31	-15	2.9	0.1 7	0.0 91	0.0 11	0.0 02	0.0 006 4	2.40 E- 05	2.00 E- 05	4.20 E- 06	2.20 E- 07	2.30 E- 07	2.30 E- 08
lambd a_1e- 08	0. 9 5	1.3	-1.5	1.7	0.68	0.0 39	0.0 16	0.0 001 6	0.0 003 6	5.4 0E- 05	2.9 0E- 07	1.10 E- 06	1.90 E- 07	2.00 E- 08	3.90 E- 09	8.20 E- 10	4.60 E- 10
lambd a_0.00 01	0. 9 6	0.5 6	0.55	0.13	0.02 6	0.0 028	0.0 001 1	4.1 0E- 05	1.5 0E- 05	3.7 0E- 06	7.4 0E- 07	1.30 E- 07	1.90 E- 08	1.90 E- 09	1.30 E- 10	1.50 E- 10	6.20 E- 11

lambd a_0.00 1	1	0.8	0.31	- 0.08 7	0.02	- 0.0 028	0.0 002 2	1.8 0E- 05	1.2 0E- 05	3.4 0E- 06	7.3 0E- 07	1.30 E- 07	1.90 E- 08	1.70 E- 09	1.50 E- 10	1.40 E- 10	5.20 E- 11
lambd a_0.01	1. 4	1.3	0.08 8	0.05	0.01	0.0 014	0.0 001 3	7.2 0E- 07	4.1 0E- 06	1.3 0E- 06	3.0 0E- 07	5.60 E- 08	9.00 E- 09	1.10 E- 09	4.30 E- 11	3.10 E- 11	- 1.50 E- 11
lambd a_1	5. 6	0.9 7	0.14	0.01 9	0.00 3	0.0 004 7	7.0 0E- 05	9.9 0E- 06	1.3 0E- 06	1.4 0E- 07	9.3 0E- 09	1.30 E- 09	7.80 E- 10	2.40 E- 10	6.20 E- 11	1.40 E- 11	3.20 E- 12
						-	-	-	-	-	-	-	-	-	-	-	-
lambd a_5	1 4	0.5 5	0.05	0.00 85	0.00 14	0.0 002 4	4.1 0E- 05	6.9 0E- 06	1.1 0E- 06	1.9 0E- 07	3.1 0E- 08	5.10 E- 09	8.20 E- 10	1.30 E- 10	2.00 E- 11	3.00 E- 12	4.20 E- 13
	_					002	0E-	0E-	0E-	0E-	0E-	E-	E-	E-	E-	E-	E-

The RSS increases with increase in lambda, this model complexity reduces. A lambda as small as 1e-15 gives us significant reduction in magnitude of coefficients. High lambda values can lead to significant underfitting.

1.5 Lasso Regression

1.5.1 Brief Introduction to Lasso Regression

Lasso regression performs L1 regularization, i.e., it adds a factor of sum of absolute value of coefficients in the optimization objective. Thus, lasso regression optimizes the following:

Objective =
$$RSS + \lambda * (sum of absolute value of coefficients)$$

Like that of ridge, α can take various values.

- $\lambda = 0$: Same coefficients as simple linear regression
- $\lambda = \infty$: All coefficients zero (same logic as before)
- $0 < \lambda < \infty$: coefficients between 0 and that of simple linear regression

1.5.2 Variation in Error

Table 6. Variation of Errors with λ .

Lambda	MAE	MSE	RMSE	R ² Score
1.00E-15	0.09509	0.01594	0.1262	0.9734
1.00E-10	0.09509	0.01594	0.1262	0.9734
1.00E-08	0.09509	0.01594	0.1262	0.9734

1.00E-05	0.09598	0.01602	0.1265	0.9732
0.0001	0.10254	0.01721	0.1311	0.9709
0.001	0.13401	0.02798	0.1672	0.9507
0.01	0.20569	0.06065	0.2462	0.8655
1	0.72200	0.61580	0.7847	0.0
5	0.72200	0.61580	0.7847	0.0
10	0.72200	0.61580	0.7847	0.0

Fig. 10. Variation of Mean Absolute Error (MAE) with λ for Lasso regression As the graph shows, MAE is increasing with the increase in λ .

Fig. 11. Variation of Root Mean Absolute Error (RMSE) with $\boldsymbol{\lambda}$

As the graph shows, RMSE is increasing with the increase in λ .

Fig. 12. Variation of R^2 Score with λ

Model fit with increase in λ can be visualize by following graphs:

Fig. 13. Effect of increment in λ in Lasso Regression

1.5.3 Variation in w

Changes is w or coefficients of x can be seen in the table below:

Table 7. Change in rss, intercept and w with power

	rs s	inter cept	coef_ x_1	coef_ x_2	coef_ x_3	coef_ x_4	coef_ x_5	coef_ x_6	coef_ x_7	coef_ x_8	coef_ x_9	coef_ x_10	coef_ x_11	coef_ x_12	coef_ x_13	coef_ x_14	coef_ x_15
lambda_ 1e-15	0. 96	0.22	1.1	-0.37	0.00 089	0.00 16	0.00 012	6.40 E-05	6.30 E-06	1.40 E-06	7.80 E-07	2.10E -07	4.00E -08	5.40E -09	1.80E -10	2.00E -10	9.20E -11
lambda_ 1e-10	0. 96	0.22	1.1	-0.37	0.00 088	0.00 16	0.00 012	6.40 E-05	6.30 E-06	1.40 E-06	7.80 E-07	2.10E -07	4.00E -08	5.40E -09	1.80E -10	2.00E -10	9.20E -11
lambda_ 1e-08	0. 96	0.22	1.1	-0.37	0.00 077	0.00 16	0.00 011	6.40 E-05	6.30 E-06	1.40 E-06	7.80 E-07	2.10E -07	4.00E -08	5.30E -09	2.00E -10	1.90E -10	9.30E -11
lambda_ 1e-05	0. 96	0.5	0.6	-0.13	0.03 8	0	0	0	0	7.70 E-06	1.00 E-06	7.70E -08	0	0	0	0	7.00E -11
lambda_ 0.0001	1	0.9	0.17	0	0.04 8	0	0	0	0	9.50 E-06	5.10 E-07	0	0	0	0	0	4.40E -11
lambda_ 0.001	1. 7	1.3	0	-0.13	0	0	0	0	0	0	0	0	1.50E -08	7.50E -10	0	0	0
lambda_ 0.01	3. 6	1.8	-0.55	0.000 56	0	0	0	0	0	0	0	0	0	0	0	0	0
lambda_ 1	37	0.038	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lambda_ 5	37	0.038	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lambda_ 10	37	0.038	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- For the same values of lambda, the coefficients of lasso regression are much smaller as compared to that of ridge regression.
- For the same lambda, lasso has higher RSS (poorer fit) as compared to ridge regression
- Many of the coefficients are zero even for very small values of lambda

1.6 Elastic Net Regression

1.6.1 Brief Introduction

Elastic net is a popular type of regularized linear regression that combines two popular penalties, specifically the L1 and L2 penalty functions.

Objective = RSS + λ * (sum of absolute value of coefficients) + λ *((sum of square of coefficients))

$$L_{enet}(\hat{\beta}) = \frac{\sum_{i=1}^{n} (y_i - x_i' \hat{\beta})^2}{2n} + \lambda (\frac{1-\alpha}{2} \sum_{j=1}^{m} \hat{\beta}_j^2 + \alpha \sum_{j=1}^{m} |\hat{\beta}_j|),$$

where α is the mixing parameter between ridge ($\alpha = 0$) and lasso ($\alpha = 1$).

1.6.2 Variation in Error

Table 8. Variation of Errors with λ .

Lambda	MAE	MSE	RMSE	R2 Score
1.00E-15	0.09509	0.01594	0.1262	0.9734
1.00E-10	0.09509	0.01594	0.1262	0.9734

1.00E-08	0.09510	0.01594	0.1262	0.9734
1.00E-05	0.09693	0.01616	0.1271	0.9729
0.0001	0.11305	0.02027	0.1423	0.9654
0.001	0.14019	0.03017	0.1737	0.9459
0.01	0.23089	0.07095	0.2663	0.8263
1	0.72200	0.61580	0.7847	0.0
5	0.72200	0.61580	0.7847	0.0
10	0.72200	0.61580	0.7847	0.0

Fig. 14. Variation of Mean Absolute Error (MAE) with λ for Elastic Net regression

As the graph shows, MAE is increasing with the increase in λ .

Fig. 15. Variation of Root Mean Absolute Error (RMSE) with λ

As the graph shows, RMSE is increasing with the increase in λ .

Fig. 16. Variation of \mathbb{R}^2 Score with λ

Model fit with increase in λ can be visualize by following graphs:

Fig. 13. Effect of increment in λ in Elastic Net Regression

1.5.3 Variation in w

Changes is w or coefficients of x can be seen in the table below:

Table 9. Change in rss, intercept and w with λ

rss	interc ept	coef_ x_1	coef_ x_2	coef_ x_3	coef_ x_4	coef_ x_5	coef_ x_6	coef_ x_7	coef_ x_8	coef_ x_9	coef_x _10	coef_x _11	coef_x _12	coef_x _13	coef_x _14	coef_x _15	
lambda_1 e-15	0.96	0.22	1.1	-0.37	0.000 89	0.001 6	0.000 12	6.40E -05	6.30E -06	1.40E -06	7.80E- 07	2.10E- 07	4.00E- 08	5.40E- 09	1.80E- 10	2.00E- 10	9.20 E- 11
lambda_1 e-10	0.96	0.22	1.1	-0.37	0.000 87	0.001 6	0.000 12	6.40E -05	6.30E -06	1.40E -06	7.80E- 07	2.10E- 07	4.00E- 08	5.40E- 09	1.80E- 10	2.00E- 10	9.20 E- 11
lambda_1 e-08	0.96	0.23	1.1	-0.36	0.000 35	0.001	0.000 1	- 6.30E -05	- 6.20E -06	1.40E -06	7.80E- 07	2.10E- 07	4.00E- 08	5.30E- 09	1.90E- 10	1.90E- 10	9.20 E- 11
lambda_1 e-05	0.97	0.67	0.44	-0.1	-0.025	-0.003	9.40E -05	1.50E -05	1.40E -05	4.00E -06	8.10E- 07	1.40E- 07	1.70E- 08	7.20E- 10	0	1.30E- 10	6.10 E- 11
lambda_0. 0001	1.2	1.1	0.06	-0.063	-0.015	-0.002	7.80E -05	0	6.40E -06	2.20E -06	5.00E- 07	8.60E- 08	1.10E- 08	3.70E- 10	0	4.20E- 11	3.00 E- 11
lambda_0. 001	1.8	1.4	-0.22	-0.042	0.006 4	0.000 69	1.20E -05	0	0	0	5.90E- 08	2.00E- 08	4.50E- 09	8.60E- 10	1.40E- 10	1.70E- 11	1.00 E- 12
lambda_0. 01	4.3	1.2	-0.21	-0.027	0.003 5	0.000 35	5.40E -06	0	0	0	0	0	0	0	7.10E- 12	7.80E- 12	2.60 E- 12
lambda_1	37	0.038	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lambda_5	37	0.038	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lambda_1 0	37	0.038	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- Increment in value of lambda underfits the data
- For the same lambda, lasso has higher RSS (poorer fit) as compared to ridge regression, and Elastic Net regression
- Many of the coefficients are zero even for very small values of lambda

1.7 RidgeCV

1.7.1 Brief Introduction

RidgeCV implements ridge regression with built-in cross-validation of alpha parameter. It almost works in same way excepts it defaults to Leave-One-Out cross validation.

1.7.2 Variation in Error

Table 10. Variation of Errors with λ .

Lambda	MAE	MSE	RMSE	R2 Score
1.00E-15	5.07438	43.62436	6.60487	-0.20901
1.00E-10	0.09354	0.01537	0.12400	0.97437
1.00E-08	0.09466	0.01582	0.12578	0.97362
0.0001	0.09577	0.01603	0.12662	0.97322
0.001	0.09997	0.01669	0.12921	0.97187
0.01	0.12383	0.02392	0.15469	0.95875
1	0.27020	0.09414	0.30683	0.73228

5	0.43020	0.23063	0.48024	-0.25693
10	0.48781	0.30041	0.54810	-1.68158
20	0.55913	0.37867	0.61536	-5.87431

Fig. 14. Variation of Mean Absolute Error (MAE) with λ for RidgeCV

As the graph shows, MAE is first decreased and then increased with the increase in λ .

Fig. 15. Variation of Root Mean Absolute Error (RMSE) with $\boldsymbol{\lambda}$

As the graph shows, RMSE is first decreased and then increased with the increase in λ .

Fig. 12. Variation of R^2 Score with λ

Model fit with increase in $\boldsymbol{\lambda}$ can be visualize by following graphs:

Fig. 13. Effect of increment in λ in RidgeCV

1.7.3 Variation in w

Changes is w or coefficients of x can be seen in the table below:

Table 11. Change in rss, intercept and w with λ

	rss	inter cept	coef_ x 1	coef_ x 2	coef_ x 3	coef x 4	coef x 5	coef x 6	coef _x_7	coef x 8	coef _x_9	coef_ x 10	coef_ x 11	coef_ x 12	coef_ x 13	coef_ x 14	coef_ x 15
lambda_ 1e-15	2.60 E+03	88	3.00 E+02	3.80 E+02	2.30 E+02	_x_4 65	0.87	-4.6	0.56	0.16	- 0.02 6	0.005 9	0.000 98	0.000 19	5.00E -05	3.30E -06	4.50E -08
lambda_ 1e-10	0.92	11	-29	31	-15	2.9	0.17	0.09 1	0.01 1	0.00	0.00 064	2.40E -05	2.00E -05	- 4.20E -06	2.20E -07	2.30E -07	2.30E -08
lambda_ 1e-08	0.95	1.3	-1.5	1.7	-0.68	0.03 9	0.01 6	0.00 016	0.00 036	5.40 E-05	2.90 E-07	1.10E -06	1.90E -07	2.00E -08	3.90E -09	8.20E -10	4.60E -10
lambda_ 0.0001	0.96	0.56	0.55	-0.13	0.026	0.00 28	0.00 011	4.10 E-05	1.50 E-05	3.70 E-06	7.40 E-07	1.30E -07	1.90E -08	1.90E -09	1.30E -10	1.50E -10	6.20E -11
lambda_ 0.001	1	0.82	0.31	0.087	-0.02	0.00 28	0.00 022	1.80 E-05	1.20 E-05	3.40 E-06	7.30 E-07	1.30E -07	1.90E -08	1.70E -09	1.50E -10	1.40E -10	5.20E -11
lambda_ 0.01	1.4	1.3	0.088	0.052	-0.01	0.00 14	0.00 013	7.20 E-07	4.10 E-06	1.30 E-06	3.00 E-07	5.60E -08	9.00E -09	1.10E -09	4.30E -11	3.10E -11	1.50E -11
lambda_ 1	5.6	0.97	-0.14	0.019	0.003	0.00 047	7.00 E-05	9.90 E-06	1.30 E-06	1.40 E-07	9.30 E-09	1.30E -09	7.80E -10	2.40E -10	6.20E -11	1.40E -11	3.20E -12
lambda_ 5	14	0.55	0.059	0.008	0.001 4	0.00 024	4.10 E-05	6.90 E-06	1.10 E-06	1.90 E-07	3.10 E-08	5.10E -09	8.20E -10	1.30E -10	2.00E -11	3.00E -12	4.20E -13
lambda_ 10	18	0.4	0.037	0.005	0.000 95	0.00 017	3.00 E-05	5.20 E-06	9.20 E-07	1.60 E-07	2.90 E-08	5.10E -09	9.10E -10	1.60E -10	2.90E -11	5.10E -12	9.10E -13
lambda_ 20	23	0.28	0.022	0.003 4	0.000 6	0.00 011	2.00 E-05	3.60 E-06	6.60 E-07	1.20 E-07	2.20 E-08	- 4.00E -09	7.50E -10	- 1.40E -10	2.50E -11	- 4.70E -12	8.70E -13

Source: Notebook

- For very small lambda / alpha, model is underfitting
- For lambda or alpha > 5, it is also underfitting

1.8 Lasso Least Angle Regression (LassoLARS)

1.7.1 Brief Introduction

Least-angle regression (LARS) is a regression algorithm for high-dimensional data. LARS is similar to forward stepwise regression. At each step, it finds the feature most correlated with the target. When there are multiple features having equal correlation, instead of continuing along the same feature, it proceeds in a direction equiangular between the features.

1.7.2 Variation in Error

Table 12. Variation of Errors with λ.

Lambda	MAE	MSE	RMSE	R2 Score
1.00E-15	0.09493	0.01586	0.1259	0.9735
1.00E-10	0.09493	0.01586	0.1259	0.9735
1.00E-08	0.09493	0.01586	0.1259	0.9735
0.0001	0.10257	0.01725	0.1313	0.9708
0.001	0.13360	0.02788	0.1670	0.9509

0.01	0.20572	0.06065	0.2462	0.8655
1	0.72200	0.61580	0.7847	0.0
5	0.72200	0.61580	0.7847	0.0
10	0.72200	0.61580	0.7847	0.0
20	0.72200	0.61580	0.7847	0.0

Fig. 14. Variation of Mean Absolute Error (MAE) with λ for LassoLARS

As the graph shows, MAE is increased with the increase in λ .

Fig. 15. Variation of Root Mean Absolute Error (RMSE) with λ

As the graph shows, RMSE increased with the increase in $\boldsymbol{\lambda}.$

Fig. 16. Variation of R^2 Score with λ

Model fit with increase in λ can be visualize by following graphs:

Fig. 17. Effect of increment in λ in LassoLARS

1.7.3 Variation in w

Changes is w or coefficients of x can be seen in the table below:

Table 13. Change in rss, intercept and w with λ

	rs s	inter cept	coef_ x_1	coef_ x_2	coef_ x_3	coef_ x_4	coef_ x_5	coef_ x_6	coef_ x_7	coef_ x_8	coef_ x_9	coef_ x_10	coef_ x_11	coef_ x_12	coef_ x_13	coef_ x_14	coef_ x_15
lambda_ 1e-15	0. 95	0.36	0.67	0	-0.11	0	0.00 41	0	0	0	5.40 E-06	0	0	0	1.70E -08	0	4.50E -10
lambda_ 1e-10	0. 95	0.36	0.67	0	-0.11	0	0.00 41	0	0	0	5.40 E-06	0	0	0	1.70E -08	0	4.50E -10
lambda_ 1e-08	0. 95	0.36	0.67	0	-0.11	0	0.00 41	0	0	0	5.40 E-06	0	0	0	1.70E -08	0	4.50E -10
lambda_ 0.0001	1	0.95	0.13	0	0.04	0	0	0	0	0	2.40 E-06	0	0	0	0	0	5.70E -11
lambda_ 0.001	1. 7	1.3	0	-0.13	0	0	0	0	0	0	0	0	1.90E -08	0	0	0	0
lambda_ 0.01	3. 6	1.8	-0.55	0.000 84	0	0	0	0	0	0	0	0	0	0	0	0	0
lambda_ 1	37	0.038	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lambda_ 5	37	0.038	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lambda_ 10	37	0.038	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lambda_ 20	37	0.038	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Source: Notebook

As value of lambda(alpha) increases, model is underfitting i.e., bias is increasing.

1.9 Hubber Regressor

1.9.1 Brief Introduction

The Huber Regressor is different to Ridge because it applies a linear loss to samples that are classified as outliers. A sample is classified as an inlier if the absolute error of that sample is lesser than a certain threshold.

$$\min_{w,\sigma} \sum_{i=1}^{n} \left(\sigma + H_{\epsilon} \left(\frac{X_i w - y_i}{\sigma} \right) \sigma \right) + \alpha ||w||_2^2$$

1.9.2 Variation in Error

Table 14. Variation of Errors with λ .

Lambda	MAE	MSE	RMSE	R2 Score
1.00E-15	0.43125	0.34314	0.58578	-1.15179
1.00E-10	0.43125	0.34314	0.58578	-1.15179
1.00E-08	0.43125	0.34314	0.58578	-1.15179
0.0001	0.43125	0.34314	0.58578	-1.15179
0.001	0.43125	0.34314	0.58578	-1.15179

0.01	0.43125	0.34314	0.58578	-1.15179
1	0.43125	0.34314	0.58578	-1.15179
5	0.43125	0.34314	0.58578	-1.15179
10	0.43125	0.34314	0.58578	-1.15179
20	0.43125	0.34314	0.58578	-1.15179

Fig. 18. Variation of Mean Absolute Error (MAE) with λ for Hubber Regressor As the graph shows, MAE shows no change.

Fig. 19. Variation of Root Mean Absolute Error (RMSE) with $\boldsymbol{\lambda}$

As the graph shows, RMSE shows no change.

Fig. 20. Variation of R^2 Score with λ

Model fit with increase in $\boldsymbol{\lambda}$ can be visualize by following graphs:

Fig. 21. Effect of increment in λ in Hubber Regressor

1.9.3 Variation in w

Changes is w or coefficients of x can be seen in the table below:

Table 15. Change in rss, intercept and \boldsymbol{w} with λ

rss	inter cept	coef _x_1	coef _x_2	coef _x_3	coef _x_4	coef _x_5	coef _x_6	coef _x_7	coef _x_8	coef _x_9	coef_ x_10	coef_ x_11	coef_ x_12	coef_ x_13	coef_ x_14	coef_ x_15	
lambda_ 1e-15	21	2.00 E-13	2.70 E-13	1.60 E-13	9.30 E-13	6.40 E-12	3.00 E-11	1.20 E-10	4.40 E-10	1.60 E-09	5.20E -09	1.60E -08	4.40E -08	9.80E -08	1.40E -07	6.70E -08	7.0 0E- 09
lambda_ 1e-10	21	2.00 E-13	2.70 E-13	1.60 E-13	9.30 E-13	6.40 E-12	3.00 E-11	1.20 E-10	4.40 E-10	1.60 E-09	5.20E -09	1.60E -08	4.40E -08	9.80E -08	1.40E -07	6.70E -08	7.0 0E- 09
lambda_ 1e-08	21	2.00 E-13	2.70 E-13	1.60 E-13	9.30 E-13	6.40 E-12	3.00 E-11	1.20 E-10	4.40 E-10	1.60 E-09	5.20E -09	1.60E -08	4.40E -08	9.80E -08	1.40E -07	6.70E -08	7.0 0E- 09
lambda_ 0.0001	21	2.00 E-13	2.70 E-13	1.60 E-13	9.30 E-13	6.40 E-12	3.00 E-11	1.20 E-10	4.40 E-10	1.60 E-09	5.20E -09	1.60E -08	4.40E -08	9.80E -08	1.40E -07	6.70E -08	7.0 0E- 09
lambda_ 0.001	21	2.00 E-13	2.70 E-13	1.60 E-13	9.30 E-13	6.40 E-12	3.00 E-11	1.20 E-10	4.40 E-10	1.60 E-09	5.20E -09	1.60E -08	4.40E -08	9.80E -08	1.40E -07	6.70E -08	7.0 0E- 09
lambda_ 0.01	21	2.00 E-13	2.70 E-13	1.60 E-13	9.30 E-13	6.40 E-12	3.00 E-11	1.20 E-10	4.40 E-10	1.60 E-09	5.20E -09	1.60E -08	4.40E -08	9.80E -08	1.40E -07	6.70E -08	7.0 0E- 09
lambda_ 1	21	2.00 E-13	2.70 E-13	1.60 E-13	9.30 E-13	6.40 E-12	3.00 E-11	1.20 E-10	4.40 E-10	1.60 E-09	5.20E -09	1.60E -08	4.40E -08	9.80E -08	1.40E -07	6.70E -08	7.0 0E- 09
lambda_ 5	21	2.00 E-13	2.70 E-13	1.60 E-13	9.30 E-13	6.40 E-12	3.00 E-11	1.20 E-10	4.40 E-10	1.60 E-09	5.20E -09	1.60E -08	4.40E -08	9.80E -08	1.40E -07	6.70E -08	7.0 0E- 09
lambda_ 10	21	2.00 E-13	2.70 E-13	1.60 E-13	9.30 E-13	6.40 E-12	3.00 E-11	1.20 E-10	4.40 E-10	1.60 E-09	5.20E -09	1.60E -08	4.40E -08	9.80E -08	1.40E -07	6.70E -08	7.0 0E- 09
lambda_ 20	21	2.00 E-13	2.70 E-13	1.60 E-13	9.30 E-13	6.40 E-12	3.00 E-11	1.20 E-10	4.40 E-10	1.60 E-09	5.20E -09	1.60E -08	4.40E -08	9.80E -08	1.40E -07	6.70E -08	7.0 0E- 09

As value of lambda(alpha) increases, model shows no change.