1. Consideramos la sucesión $a_n = 2^{2n}/3^n$. Se cumple que

- $\begin{array}{l} \textcircled{a} \; \sum_{n=1}^{\infty} a_n \; \text{no converge.} \\ b) \; \sum_{n=1}^{\infty} a_n = 3^4. \\ c) \; \sum_{n=1}^{\infty} a_n = 0. \end{array}$

02. La serie

- a) Converge para cualquier α.⁷
- b) Converge para $\alpha < 0$ y no converge para $\alpha \ge 0$.
- No converge para $\alpha \ge 1$ y converge para $\alpha < 1$.

A 3. La recta tangente a la gráfica de la función $f(x) = \log(e + \sin x)$ en x = 0 es

(a)
$$y = e^{-1}x + 1$$

b)
$$y = x + 1$$

$$y = e^{-1}x + 1.$$
b) $y = x + 1.$

$$y - 1 = \frac{1}{\log(e+1)}(x - 0)$$

C 4. La función

$$f(x) = \begin{cases} e^{1/(x^2-1)} & \text{si } |x| < 1 \\ \sqrt{x^2-1} & \text{si } |x| \ge 1 \end{cases}$$

- a) No es continua en el punto x = 0.
- (b) Es continua en todos los puntos.
- No es continua en el punto x = 1.

 $\sqrt{5}$. La ecuación $x^3 = 2 + 4x$ tiene como solución algún x en el intervalo

- a) (3,4).
- b) (-1/2,0).
- **○** (-2,-1).

6. Si derivamos $f(x^2 + x)$ dos veces obtenemos

- (9) $f''(x^2 + x)$.
- b) $(2x+1)^2 f''(x)$.
- c) $2f'(x^2 + x) + (2x + 1)^2 f''(x^2 + x)$.