What is claimed is:

1	1. A method of manufacturing a hermetically-sealed optoelectronic package having
2	an optoelectronic device mounted on a first portion of a top surface of an insulating base,
3	a metal layer mounted to a second portion of the top surface of the insulating base, the
4	second portion surrounding the first portion, and a metal cap coupled to the metal layer,
5	the method comprising:
6	supplying a force to push the metal cap against the metal layer;
7	applying a first electrode to the metal cap;
8	applying a second electrode to the metal layer; and
9	supplying a current between the first and second electrodes to weld the metal cap
10	to the metal layer.
1	2. The method of claim 1, wherein the second electrode has multiple fingers
2	to make contact with the metal layer at multiple points.
1	3. The method of claim 2, wherein the multiple fingers of the second
2	electrode are independently positioned on the metal layer.
1	4. The method of claim 2, further comprising:
2	independently adjusting one or more currents provided to the multiple fingers of
3	the second electrode.
1	5. The method of claim 1, wherein the metal cap is coupled to an upper
2	surface of the metal layer and the second electrode is also coupled to the upper surface of
3	the metal layer.

I	6. The method of claim 1, wherein the metal cap is coupled to an upper
2	surface of the metal layer and the second electrode is coupled to a side surface of the
3	metal layer, the side surface being substantially 90 degrees from the upper surface.
1	7. The method of claim 1, wherein the metal cap is coupled to an upper
2	surface of the metal layer and the second electrode is coupled to a bottom surface of the
3	metal layer, the bottom surface being substantially 180 degrees from the top surface.
4	8. The method of claim 1, wherein the second electrode is cone-shaped.
1	9. A method for manufacturing an electronic package, comprising:
2	applying a first electrode to a cap;
3	applying at least one or more second electrodes to a ceramic substrate, wherein
4	the at least one or more second electrodes are applied to at least one or more sidewalls of
5	the ceramic substrate and wherein the ceramic substrate includes a seal disposed on a
6	surface of the ceramic substrate to contact the cap;
7	contacting the cap with the seal of the ceramic substrate; and
8	applying a current between said first electrode and said at least one or more
9	second electrodes to weld the cap to the ceramic substrate.
1	10. A method as claimed in claim 9, wherein the ceramic substrate is a

rectangular structure having at least four sidewalls.

2

1	11. A method as claimed in claim 9, wherein the ceramic substrate has a least one
2	sidewall.
1	12. A method as claimed in claim 9, wherein the substrate has at least one curved
2	sidewall.
1	13. A method as claimed in claim 9, wherein the ceramic substrate includes a
2	radio-frequency circuit disposed thereon.
1	14. A method as claimed in claim 9, further comprising controlling the current in
2	individual ones of the at least one or more second electrodes to provide a hermetic seal
3	between the cap and the ceramic substrate.
1	15. A method as claimed in claim 9, wherein the at least one or more second
2	electrodes include an insulator to contact a base support during said applying a current.
1	16. A method as claimed in claim 9, wherein the ceramic substrate does not
2	include filled vias to pass welding current.
1	17. A method as claimed in claim 9, wherein the ceramic substrate is a
2	rectangular structure having four sidewalls, the at least one or more second electrodes
3	including four second electrodes to be applied to respective sidewalls of the ceramic
4	substrate.

1	18. A method for manufacturing an electronic package, comprising:
2	applying a first electrode to a cap;
3	applying at least one or more second electrodes to an insulator substrate, wherein
4	the at least one or more second electrodes are applied to at least one or more sidewalls of
5	the insulator substrate and wherein the insulator substrate includes a seal disposed on a
6	surface of the isolator substrate to contact the cap;
7	contacting the cap with the seal of insulator substrate; and
8	applying a current between said first electrode and said at least one or more
9	second electrodes to weld the cap to the insulator substrate.
1	19. A method as claimed in claim 18, wherein the insulator substrate has a
2	conductivity of less than 1 (ohm-centimeters) ⁻¹ .
1	20. A method as claimed in claim 18, wherein the insulator substrate is a
2	rectangular structure having four sidewalls, the at least one or more second electrodes
3	including four second electrodes to be applied to respective sidewalls of the insulator
4	substrate.