

Profile Analysis of Multivariate Data Using the profileR Package

Okan Bulut

Centre for Applied Research in Measurement and Evaluation
University of Alberta

bulut@ualberta.ca

Outline

- □ Profile analysis
 - Profiles and profile plots
 - □ Profile analysis for one-sample or by group
 - Pattern and level in profiles

□ The *profile*R package in R

Profile Analysis

■ Profile analysis is a multivariate data analysis technique that is the equivalent of a repeated measures extension of MANOVA.

- □ A profile consists of
 - a set of dependent variables on the same scale or
 - □ the same dependent variable measured at different time points

Profile Plots

Profile Analysis

	T_1	T_2	T_3	T_4	
Group ₁	DV	DV	DV	DV	
Group ₂	DV	DV	DV	DV	

- Profile analysis tells us about whether the groups are similar in
 - □ elevation,
 - □ dispersion,
 - shape,
 - level and pattern

Profile Analysis Hypothesis

Are the profiles for the two groups the same? Are the profiles "parallel"?

(Equivalent of the interaction effect in repeated measures ANOVA)

Centre for Research in Applied Measurement and Evaluation

Profile Analysis Hypothesis

On average does one group score higher than the other? Do the groups have "equal levels"?

(Equivalent of between-subjects main effect in mixed-effect ANOVA)

Profile Analysis Hypothesis

Do all DVs elicit the same average response? Are the profiles "flat"?

(Equivalent of within-subjects main effect in repeated measures ANOVA)

Assumptions

- Sample size needs to be large enough; more subjects in the smallest cell than the number of DVs
- 2. Multivariate normality
- 3. Homogeneity of variance-covariance matrices
- 4. Linearity

Limitations

- 1. All variables should be on the same scale.
- 2. Manipulated group variable is the only source of causality.
- 3. Generalizability is limited to the sample/population being used.

Pattern and Level in a Profile

Centre for Research in Applied Measurement and Evaluation

How to use level and pattern?

1. Criterion-related profile analysis (Davison & Davenport, 2002):

$$Y_p' = ab_v X_{pv} + a$$

- $\square X_{pv}$ is the observed score for person p on variable v
- \square Y_p is the criterion variable
- □ b_v is the regression weight
- □ a is the intercept

How to use level and pattern?

According to Davison and Davenport (2002):

$$Y_p' = (V/k)Cov_p + VbX_{p.} + a$$

 $\square X_{p.}$ = Average person value (i.e., level)

$$\Box Cov_p = (1/V) \mathring{a}_v (X_{pv} - X_{p.})(X_{cv} - X_{c.})$$
 (i.e., pattern)

$$Y'_{p} = b_{1}X_{p1} + b_{2}X_{p2} + b_{3}X_{p3} + b_{4}X_{p4} + a_{5}X_{p4}$$

$$Y'_{p} = \sum_{v} (b_{v} - b_{.}) (X_{pv} - X_{p.}) + \sum_{v} b_{.} X_{p.} + a$$

$$Y'_p = (V/k)Cov_{pc} + VbX_{p.} + a$$

Example

Raw Score and Deviation Score Profiles of 6 Hypothetical Clients Diagnosed as Either Neurotic or Psychotic

		IPMM scale and variable					
Client	A	Н	S	В	N-P	$X_{p.}$	Cov_{pc}
			Raw	score			
1	90	60	90	80	1	80.00	-115.4
2	75	75	85	85	1	80.00	-80.8
3	75	60	95	75	1	76.25	-132.7
4	65	50	115	90	0	80.00	-346.2
5	60	55	100	105	0	80.00	-380.8
6	70	45	100	90	0	76.25	-328.9

Note. IPMM = Inventory of Personality and Mood Manifestations; A = Anxiety; H = Hypochondriasis; S = Schizophrenia; B = Bipolar Disorder; N-P = neurotic versus psychotic criterion variable (1 = neurotic, 0 = psychotic); $X_{p.}$ = the profile level of person p; Cov_{pc} = the covariance between the score profile of person p and the criterion-pattern vector.

How to Use Level and Pattern?

2. Profile reliability (Bulut, 2013):

Centre for Research in Applied Measurement and Evaluation

What else?

 □ Profile analysis via multidimensional scaling (Davison, 1994)

□ Added-value of subscores (Davison et al., 2015)

■ Within-person factor model to derive latent profiles (Davison et al., 2009)

The profileR package in

profileR: Profile Analysis of Multivariate Data in R

Fit profile analytic models. This includes the multivariate methods and data visualization tools to implement profile analysis

Version: 0.3-1

Depends: ggplot2, MASS, RColorBrewer, reshape, methods, lavaan, R ($\geq 3.0.0$)

Published: 2015-10-19

Author: Okan Bulut, Christopher David Desjardins

Maintainer: Christopher David Desjardins <cddesjardins at gmail.com>

License: $\underline{GPL-2} \mid \underline{GPL-3}$ [expanded from: $\underline{GPL} \geq 2$]

NeedsCompilation: no

Materials: README NEWS
In views: Psychometrics
CRAN checks: profileR results

Downloads:

Reference manual: <u>profileR.pdf</u>
Vignettes: <u>User manual</u>

Package source: <u>profileR_0.3-1.tar.gz</u>

Windows binaries: r-devel: profileR 0.3-1.zip, r-release: profileR 0.3-1.zip, r-oldrel: profileR 0.3-1.zip

OS X Snow Leopard binaries: r-release: profileR_0.3.tgz, r-oldrel: profileR_0.2-1.tgz

OS X Mavericks binaries: r-release: <u>profileR_0.3-1.tgz</u>

Old sources: <u>profileR archive</u>

http://CRAN.R-project.org/package=profileR

Centre for Research in Applied Measurement and Evaluation

The profileR package in

- install.packages("profileR")
- □ library("profileR")

Also check out:

□ https://github.com/cddesja/profileR

devtools::install_github(repo = "cddesja/profileR", build_vignettes = TRUE)

Functions in the profileR package

- Criterion-related profile analysis
- \Box Profile analysis with Hotelling's T^2
- Profile analysis by groups
- Profile analysis via multidimensional scaling
- Profile reliability
- □ Within-person random intercept factor model
- □ Profile plots
- □ Moderated profile analysis (experimental!)

*profile*R – Example 1

The spouse data come from a study of love and marriage. A sample of 30 husbands and their wives were asked to respond to the following questions:

- 1. What is the level of passionate love you feel for your partner?
- 2. What is the level of passionate love that your partner feels for you?
- 3. What is the level of companionate love that you feel for your partner?
- 4. What is the level of companionate love that your partner feels for you?

The responses to all four questions are on a five-point Likert scale where 1 indicates "none at all" and 5 indicates "tremendous amount".

ID	item1	item2	item3	item4	spouse
1	2	3	5	5	Husband
2	5	5	4	4	Husband
3	4	5	5	5	Husband
4	4	3	4	4	Husband
5	3	3	5	5	Husband
6	3	3	4	5	Husband

Centre for Research in Applied Measurement and Evaluation


```
> data(spouse)
> mod <- pbg(spouse[,1:4],spouse[,5])</pre>
> summary(mod)
Call:
pbg(x = spouse[, 1:4], y = spouse[, 5])
Hypothesis Tests:
                                   F df1 df2 p-value
Ho: Profiles are parallel 8.016171 3 56
                                              0.06255
Ho: Profiles are coincidental 1.532770 1 58 0.22068
Ho: Profiles are level 24.820709
                                       3 57
                                              0.00015
```

profileR – Example 2

□ Inventory of Personality and Mood Manifestation

```
> data(IPMMc)
> IPMMc
        A        H        S        B       R
1        75        60       50       50       1
2         60        75        45       55       1
3        60        60        55       45       1
4        50        50        75        60       0
5         45        55       60       75       0
6        55        45       60       60       0
```



```
> mod <- cpa(R \sim A + H + S + B, data = IPMMc)
> print(mod)
Call:
cpa(formula = R \sim A + H + S + B, data = IPMMc)
Coefficients
Call: glm(formula = formula, family = family, data = data,
na.action = na.action)
Coefficients:
(Intercept) A
                           Н
                                                        B
```

0.500000 0.009231 0.023077 -0.009231 -0.023077


```
> anova (mod)
```

Call:

cpa(formula =
$$R \sim A + H + S + B$$
, data = IPMMc)

Analysis of Variance Table

	df1	df2	F value	Pr(>F)
R2.full = 0	4	1	7.87500e+00	0.2604188
R2.pat = 0	3	1	1.05000e+01	0.2221903
R2.lvl = 0	1	1	0.00000e+00	1.0000000
R2.full = R2.lvl	3	1	1.05000e+01	0.2221903
R2.full = R2.pat	1	1	-7.21645e-15	1.0000000

profileR – Example 3

■ Entrance Examination for Graduate Studies

- > data(EEGS)
- > EEGS

	$Form1_Q1$	$Form2_Q1$	Form1_Q2	Form2_Q2	Form1_V	Form2_V
[1,]	2	0	2	0	0	0
[2,]	4	9	0	0	3	4
[3,]	4	3	8	6	27	27
[4,]	2	6	0	0	26	29
[5,]	7	4	3	2	8	6
[6 ,]	18	16	1	3	14	15


```
> result <- pr(EEGS[,c(1,3,5)],EEGS[,c(2,4,6)])
```

> print(result)

Subscore Reliability Estimates:

Estimate

```
Level 0.9245548 → Between-person reliability
Pattern 0.9338338 → Within-person reliability
Overall 0.9308374 → Total profile reliability
```


Centre for Research in Applied Measurement and Evaluation

Thank you!

For further information please contact:

bulut@ualberta.ca