MATHEMATICS-I

Anushaya Mohapatra

Department of Mathematics
BITS PILANI K K Birla Goa Campus, Goa

August 2, 2024

Text Book:

• Thomas' Calculus by M.D. Weir, J. Hass and F.R. Giordano, Pearson Education 12th Edition, 2015/16.

References:

- Essential Calculus Early Transcendentals by J. Stewart, Thomson Learning, 2014.
- A First Course in Calculus by Searge Lang, Springer-Verlag 5th Edition, 2009.
- Advanced Engineering Mathematics by Erwin Kreyszig, Wiley 10h edition, 2015.
- Calculus Vol 1 & 2, by T M Apostol, 2nd edition, 2007.
- Basic Multivariable Calculus by Jerrold E. Marsden, Anthony Tromba, Alan Weinstein, 3rd edition, 1993.

Teachers:

- Prof. Saranya Nair (IC)
- **Prof. Anushaya Mohapatra** (A-404)
- Prof. Gunja Sachdev
- Prof. Amit Setia
- **o** Prof. Prasanna Kumar
- Prof. Shilpa Gondhali
- Prof. Mukesh Kumar Nagar

Evaluation Scheme:

	Components	Duration	Marks	Nature
1.	Mid-term	1Hr. 30 Min.	105	СВ
2.	Compre.	3 Hrs.	120	СВ
3.	Quizzes: AQ1 and AQ2	1 Hrs.	75	OB

- Chamber consultation hour: TBA.
 email ID: anushayam@goa.bits-pilani.ac.in
- Make-up Policy: Make-up will be given only for very genuine cases and prior permission has to be obtained from Instruction Division and I/C.
- Notices: All notices regarding the course MATH F111 will be displayed on online course platform; QUANTA.

Lecture 1

Polar Coordinates

Text book chapter: 11.3

Polar coordinates

To define polar coordinates for a point, fix an origin O, called the pole, and an initial ray from O. (initial ray is called polar axis). (r, θ) represent the polar coordinate of the point P, where r is the directed distance from O to P and θ is the directed angle from the initial ray to OP.

Polar Coordinates

Some of the common fields that have the application of polar coordinates are:

- Navigation
- Quantum Dynamics
- Biomedical Imaging
- Sonar and Radar Systems

Conventions

- **Positive** θ : It is measured in the counterclockwise direction from the polar axis.
- **Negative** θ : It is measured in the clockwise direction from the polar axis.
- **Positive r**: It is measured in the same direction of the initial ray OP form the origin O.
- **Negative r**: It is measured in the reverse direction of the initial ray OP from the origin O.

Polar coordinates

- If P = 0, then r = 0, the point (r, θ) represents the pole for any value of θ .
- The points (r, θ) and $(-r, \theta)$ lie on the same line through O and at the same distance from O but on opposite sides of O.
- Note that $(-r, \theta)$ represent the same point as $(r, \theta + \pi)$.

Polar coordinates

- If r > 0, the point (r, θ) lies in the same quadrant as θ .
- If r < 0, the point (r, θ) lies on the opposite side of the pole.

Examples

Plot the points whose polar coordinates are given.

- a. $(1, 5\pi/4)$
- b. $(2,3\pi)$
- c. $(2, -2\pi/3)$
- d. $(-3,3\pi/4)$

Examples

© Thomson Higher Education

Examples

Cartesian vs Polar

 In cartesian system, each point has only one representation, however in polar system each point has many representation.

Cartesian and Polar

If the point P has Cartesian coordinates (x, y) and polar coordinates (r, θ) , then we have

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$

Polar to Cartesian

$$r^2 = x^2 + y^2$$
, $\tan \theta = \frac{y}{x}$

Example-1

Convert the point $(2, \pi/3)$ from polar to Cartesian coordinates:

$$x = r\cos\theta = 2\cos\frac{\pi}{3} = 2 \cdot \frac{1}{2} = 1$$
$$y = r\sin\theta = 2\sin\frac{\pi}{3} = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3}$$

So $(1, \sqrt{3})$ is the cartesian coordinate.

Example-2

• Represent the point with Cartesian coordinates (-1, -1) in terms of polar coordinates.

$$r = \sqrt{x^2 + y^2} = \sqrt{2}$$

 $tan(\theta) = \frac{y}{x} = 1$, So one possibility is $\theta = \frac{\pi}{4}$. Thus, one possible answer is: $(\sqrt{2}, \pi/4)$. Is the answer correct?