## Student Pre-Activity Assessment of Flu Fighters Activity

- I. For each of the following statements, indicate if the statement is correct or incorrect. If the statement is incorrect, explain why in 1-2 sentences.
  - a. All viral genes/proteins (Figure below: H1N1 virion and proteins) may be used to design a vaccine against influenza infections. False, only antigenic proteins or glycoproteins such as hemagglutinin and neuraminidase should be used to make a vaccine against influenza infections.



Credit:ViralZone

- b. In humans, a vaccine cannot protect against an influenza infection. False, In humans, a vaccine protects against an influenza infection and an annual vaccination is recommended.
- c. Mutations may not impact the effectiveness of influenza vaccines. False, Mutations especially non-synonymous ones may impact the effectiveness of influenza vaccines

## II. Multiple Choice

- i. Which of the following best describes the central dogma of molecular biology?
  - a) DNA -> RNA -> Protein
  - b) Protein -> RNA -> DNA
  - c) RNA -> DNA -> Protein
  - d) DNA -> Protein -> RNA

- ii. Which of the following is the correct description of a codon?
  - a) A sequence of three nucleotides in tRNA that pairs with the mRNA codon
  - b) A sequence of three nucleotides in mRNA that specifies a particular amino acid
  - c) A sequence of amino acids in a protein that determines its function
  - d) A sequence of nucleotides in DNA that codes for a tRNA molecule
- iv. Which level of protein structure is defined by the sequence of amino acids in the polypeptide chain?
  - a) Primary structure
  - b) Secondary structure
  - c) Tertiary structure
  - d) Quaternary structure
- iii. Which of the following is true about Influenza vaccines:
  - a) Influenza is caused by bacteria
  - b) Influenza viruses are never involved in epidemics
  - c) Minor changes in the surface antigens of influenza viruses may occur every year
  - d) The burden of influenza disease is mostly in children
- iv. Which of the following is true about Influenza vaccines:
  - a) Influenza vaccines must be given annually
  - b) Influenza vaccines must be given once in a lifetime
  - c) Most of the vaccines are prepared from bacteria grown in embryonated hens' eggs
- iv. Which of the following is the most specific characteristic of the adaptive immune system?
  - a) Antibodies
  - b) Antigens
  - c) A small a foreign substance
  - d) A big carbohydrate molecule
- v. Which of the following is true about the adaptive immune response?
  - a) It is similar to the innate immune response
  - b) It happens immediately after viral infections
  - c) It is composed of humoral and cellular responses
  - d) It is only present in insects

- vi. What is herd immunity?
  - a) The number of disease-fighting white blood cells in a person
  - b) The protection the whole population has against a disease because a threshold number of individuals are immune to the disease
  - c) Immunity in a herd of dogs
  - d) The number of people that opt out of getting vaccinations

## III. Short-Answers

Using your knowledge of the central dogma, convert the nucleotide sequence into an mRNA, and the mRNA into a protein, naming each step of the process. You can refer to the codon chart on this page to help.

 $5' \mathtt{A} \mathtt{T} \mathtt{G} \mathtt{G} \mathtt{C} \mathtt{T} \mathtt{G} \mathtt{C} \mathtt{T} \mathtt{G} \mathtt{T} \mathtt{T} \mathtt{G} \mathtt{T} \mathtt{C} \mathtt{C} \mathtt{A} \mathtt{A} \mathtt{C} \mathtt{A} \mathtt{G} \mathtt{A} \mathtt{A} \mathtt{C} \mathtt{G} \mathtt{A} \mathtt{C} \mathtt{C} \mathtt{T} \mathtt{A} \mathtt{3}'$ 

1. Nucleotide to mRNA

Name of the process: transcription

5' A U G G C U G C U G U U G U C C A A C A G A A C G A C C U A 3'

2. mRNA to protein

Name of the process: translation

MAAVVQQNDL

| Second mRNA base                  |   |       |                     |                  |            |                  |            |                  |            |   |                 |
|-----------------------------------|---|-------|---------------------|------------------|------------|------------------|------------|------------------|------------|---|-----------------|
|                                   | U |       |                     | C                |            | Α                |            | G                |            |   |                 |
|                                   | U | טטט 🏻 | Phe<br>(F)          | ucu -            | Ser<br>(S) | UAU <sup>-</sup> | Tyr        | ugu <sup>-</sup> | Cys        | U |                 |
|                                   |   | ບບင 📗 |                     | ucc              |            | UAC .            | (Ý)        | UGC              | (Ċ)        | С |                 |
|                                   |   | UUA 🗌 | Leu<br>(L)          | UCA              |            | UAA              | Stop       | UGA              | Stop       | Α |                 |
|                                   |   | uug _ |                     | UCG _            |            | UAG              | Stop       | UGG              | Trp (W)    | G |                 |
| First mRNA base (5' end of codon) | С | CUU ] | Leu<br>(L)          | ccu -            | Pro<br>(P) | CAU              | His        | cgu -            | ]          | U | (uo             |
|                                   |   | cuc   |                     | ccc              |            | CAC              | (H)<br>Gln | CGC              | Arg<br>(R) | С | of codon        |
|                                   |   | CUA   |                     | CCA              |            | CAA              |            | CGA              |            | Α | of              |
|                                   |   | cug ] |                     | ccg _            |            | CAG              | (Q)        | CGG .            |            | G | end             |
|                                   | A | AUU 7 | Ile<br>(I)          | ACU -            | Thr<br>(T) | AAU -            | Asn        | AGU              | Ser<br>(S) | U | (3,             |
|                                   |   | AUC   |                     | ACC              |            | AAC              | (N)        | AGC              |            | С | se              |
|                                   |   | AUA _ |                     | ACA              |            | AAA              | Lys<br>(K) | AGA              | Arg<br>(R) | Α | A ba            |
|                                   |   |       | Met (M)<br>or start | ACG _            |            | AAG _            |            | AGG .            |            | G | Third mRNA base |
|                                   | G | GUU ] |                     | GCU <sup>-</sup> | Ala<br>(A) | GAU              | Asp        | GGU              | ]          | U | rd n            |
|                                   |   | GUC   | Val<br>(V)          | GCC              |            | GAC              | (D)        | GGC              | Gly        | С | Thi             |
|                                   |   | GUA   |                     | GCA              |            | GAA              | Glu        | GGA              | (G)        | Α |                 |
|                                   |   | GUG _ |                     | GCG _            |            | GAG .            | (E)        | GGG              |            | G |                 |