Clustering: Unsupervised Learning

IF-3270 Pembelajaran Mesin Teknik Informatika ITB

Modul 7: Clustering

Fariska Z. Ruskanda, S.T., M.T. (fariska@informatika.org)

KK IF -Teknik Informatika - STEI ITB

03 Density-based Clustering

IF3270 - Pembelajaran Mesin (Machine Learning)

Outline

DBSCAN

Density-based Clustering

Example

Density-based Clustering

- Clusters are dense regions in the data space, separated by regions of lower object density
- A cluster is defined as a maximal set of density-connected points

 ε -Neighborhood – Objects within a radius of ε from an object. $N_{\varepsilon}(p):\{q\,|\,d(p,q)\leq \varepsilon\}$

"High density" - ε-Neighborhood of an object contains at least *MinPts* of objects.

 ϵ -Neighborhood of p ϵ -Neighborhood of qDensity of p is "high" (MinPts = 4)

Density of q is "low" (MinPts = 4)

DBSCAN (Density Based Spatial Clustering of Applications with Noise)

- DBSCAN starts with an arbitrary point p and retrieves all points density-reachable from p wrt. Eps and MinPts.
 - If p is a core point, this procedure yields a cluster wrt. Eps and MinPts.
 - If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database.

DBSCAN: Object Type

- The neighborhood within a radius ε of a given object is called the ε-neighborhood of the object.
- If the ε-neighborhood of an object contains at least a minimum number, MinPts, of objects, then the object is called a core object.
- Given a set of objects, D, we say that an object p is directly density-reachable from object q if p is within the ε-neighborhood of q, and q is a core object.
- An object p is density-reachable from object q with respect to ε and MinPts in a set of objects, D, if there is a chain of objects p_1, \ldots, p_n , where $p_1 = q$ and $p_n = p$ such that p_{i+1} is directly density-reachable from p_i with respect to ε and MinPts, for $1 \le i \le n$, $p_i \in D$.
- An object p is density-connected to object q with respect to ε and MinPts in a set of objects, D, if there is an object $oldsymbol{o} \in D$ such that both p and q are density-reachable from $oldsymbol{o}$ with respect to ε and MinPts.

Core, Border, Outlier

 $\varepsilon = 1$ unit, MinPts = 5

Given ε and MinPts, categorize the objects into three exclusive groups.

A point is a core point if it has more than a specified number of points (MinPts) within Eps—These are points that are at the interior of a cluster.

A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point.

A noise point is any point that is not a core point nor a border point.

DBSCAN find clusters

pokonya kalo uda gada thk yg bs ditambah lo ke cluster — berents

DBSCAN searches for clusters by checking the e-neighborhood of each point in the database. If the e-neighborhood of a point *p contains* more than *MinPts, a new cluster with p as a core object is created. DBSCAN then* iteratively collects directly density-reachable objects from these core objects, which may involve the merge of a few density-reachable clusters. The process terminates when no new point can be added to any cluster.

DBSCAN Example

Original Points

Point types: core, border and outliers

DBScan – Example (1)

• If Epsilon is 2 and minpoint is 2, what are the clusters that DBScan would discover with the following 8 examples:

$$A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9).$$

$$|x_1 - x_2|^2 + |y_1 - y_2|^2$$

	A1	A2	А3	Α4	A5	A6	Α7	A8
A1	0	25	72	13	50	52	65	5
A2	25	0	37	18	25	17	10	20
А3	72	37	0	25	2	4	53	41
Α4	13	18	25	0	13	17	52	2
A5	50	25	2	13	0	2	45	25
A6	52	17	4	17	2	0	29	29
Α7	65	10	53	52	45	29	0	58
A8	5	20	41	2	25	29	58	0

DBScan – Example (2)

- Solutions:
- Epsilon neighborhood of each point
 - N2(A1)={};
 - N2(A2)={};
 - N2(A3)={A5, A6}; makin besat ε,
 - $N2(A4)=\{A8\};$
 - $N2(A5)={A3, A6};$
 - $N2(A6)=\{A3, A5\};$
 - N2(A7)={};
 - $N2(A8)=\{A4\}$
 - So A1, A2, and A7 are outliers, while we have two clusters C1={A4, A8} and C2={A3, A5, A6}
- If Epsilon is $10^{1/2}$ then the neighborhood of some points will increase:
 - A1 would join the cluster C1 and A2 would joint with A7 to form cluster C3={A2, A7}.

DBScan – Example (3)

04 Hierarchical Clustering

IF3270 Pembelajaran Mesin

