

<151>

<150>

1999-09-03

60/151,114

<151> 1999-08-27

SEQUENCE LISTING

RECEIVED SER 30 2003 CONTROL OF THE CEIVED

```
Behan, Dominic P.
         Chalmers, Derek T.
        Lin, I-Lin
        Liaw, Chen W.
        Lehman-Bruinsma, Karin
        Lowitz, Kevin P.
        Dang, Huong T.
        Chen, Ruoping
        Gore, Martin
        White, Carol
 <120> Non-Endogenous Constitutively Activated Human G Protein Coupled
        Receptors
 <130>
        AREN-0240
 <140>
        09/416,760
 <141>
        1999-10-12
 <150>
        09/170,496
 <151>
        1998-10-13
 <150>
        60/110,060
 <151>
        1998-11-27
 <150>
        60/120,416
 <151>
       1999-02-16
<150>
        60/121,852
<151>
       1999-02-26
<150>
       60/109,213
<151> 1998-11-20
<150> 60/123,944
<151> 1999-03-12
<150>
       60/123,945
<151> 1999-03-12
<150>
       60/123,948
<151>
      1999-03-12
<150>
      60/123,951
<151>
      1999-03-12
<150>
       60/123,946
<151>
       1999-03-12
<150>
       60/123,949
<151>
      1999-03-12
<150>
      60/152,524
```

Page 1

```
<150> 60/108,029
  <151> 1998-11-12
 <150>
       60/136,436
 <151> 1999-05-28
 <150>
        60/136,439
 <151> 1999-05-28
 <150>
        60/136,567
 <151>
       1999-05-28
 <150> 60/137,127
 <151> 1999-05-28
 <150> 60/137,131
 <151> 1999-05-28
 <150> 60/141,448
 <151> 1999-06-29
 <150> 60/136,437
 <151> 1999-05-28
 <150>
       60/156,555
 <151> 1999-09-29
 <150>
       60/156,634
 <151> 1999-09-29
<150> 60/156,653
<151> 1999-09-29
<150> 60/157,280
<151> 1999-10-01
<150> 60/157,294
<151> 1999-10-01
<150> 60/157,281
<151> 1999-10-01
<150> 60/157,282
<151> 1999-10-01
<150> 60/156,633
<151> 1999-09-29
<150> 60/157,293
<151> 1999-10-01
<160> 148
<170> PatentIn version 3.2
<210> 1
<211> 1260
<212> DNA
<213> Homo sapiens
```

<400> 1						
					aacatttgtc	60
gtgtatgaaa	acacctacat	gaatattaca	ctccctccac	cattccagca	tcctgacctc	120
agtccattgc	: ttagatatag	ttttgaaacc	atggctccca	ctggtttgag	ttccttgacc	180
gtgaatagta	cagctgtgcc	cacaacacca	gcagcattta	agagcctaaa	cttgcctctt	240
cagatcaccc	tttctgctat	aatgatattc	attctgtttg	tgtcttttct	tgggaacttg	300
gttgtttgcc	tcatggttta	ccaaaaagct	gccatgaggt	ctgcaattaa	catcctcctt	360
gccagcctag	cttttgcaga	catgttgctt	gcagtgctga	acatgccctt	tgccctggta	420
actattctta	ctacccgatg	gatttttggg	aaattcttct	gtagggtatc	tgctatgttt	480
ttctggttat	ttgtgataga	aggagtagcc	atcctgctca	tcattagcat	agataggttc	540
cttattatag	tccagaggca	ggataagcta	aacccatata	gagctaaggt	tctgattgca	600
gtttcttggg	caacttcctt	ttgtgtagct	tttcctttag	ccgtaggaaa	ccccgacctg	660
cagatacctt	cccgagctcc	ccagtgtgtg	tttgggtaca	caaccaatcc	aggctaccag	720
gcttatgtga	ttttgatttc	tctcatttct	ttcttcatac	ccttcctggt	aatactgtac	780
tcatttatgg	gcatactcaa	caccettegg	cacaatgcct	tgaggatcca	tagctaccct	840
gaaggtatat	gcctcagcca	ggccagcaaa	ctgggtctca	tgagtctgca	gagacctttc	900
cagatgagca	ttgacatggg	ctttaaaaca	cgtgccttca	ccactatttt	gattctcttt	960
gctgtcttca	ttgtctgctg	ggccccattc	accacttaca	gccttgtggc	aacattcagt	1020
aagcactttt	actatcagca	caacttttt	gagattagca	cctggctact	gtggctctgc	1080
tacctcaagt	ctgcattgaa	tccgctgatc	tactactgga	ggattaagaa	attccatgat	1140
gcttgcctgg	acatgatgcc	taagtccttc	aagtttttgc	cgcagctccc	tggtcacaca	1200
aagcgacgga	tacgtcctag	tgctgtctat	gtgtgtgggg	aacatcggac	ggtggtgtga	1260

<210> 2 <211> 419 <212> PRT

Met Val Phe Ser Ala Val Leu Thr Ala Phe His Thr Gly Thr Ser Asn 5

Thr Thr Phe Val Val Tyr Glu Asn Thr Tyr Met Asn Ile Thr Leu Pro 20 25

Pro Pro Phe Gln His Pro Asp Leu Ser Pro Leu Leu Arg Tyr Ser Phe Page 3

<213> Homo sapiens

<400> 2

Glu Thr Met Ala Pro Thr Gly Leu Ser Ser Leu Thr Val Asn Ser Thr 50 55 60

45

Ala Val Pro Thr Thr Pro Ala Ala Phe Lys Ser Leu Asn Leu Pro Leu 65 70 75 80

Gln Ile Thr Leu Ser Ala Ile Met Ile Phe Ile Leu Phe Val Ser Phe 85 90 95

Leu Gly Asn Leu Val Val Cys Leu Met Val Tyr Gln Lys Ala Ala Met 100 105 110

Arg Ser Ala Ile Asn Ile Leu Leu Ala Ser Leu Ala Phe Ala Asp Met 115 120 125

Leu Leu Ala Val Leu Asn Met Pro Phe Ala Leu Val Thr Ile Leu Thr 130 135 140

Thr Arg Trp Ile Phe Gly Lys Phe Phe Cys Arg Val Ser Ala Met Phe 145 150 155 160

Phe Trp Leu Phe Val Ile Glu Gly Val Ala Ile Leu Leu Ile Ile Ser 165 170 175

Ile Asp Arg Phe Leu Ile Ile Val Gln Arg Gln Asp Lys Leu Asn Pro 180 185 190

Tyr Arg Ala Lys Val Leu Ile Ala Val Ser Trp Ala Thr Ser Phe Cys 195 200 205

Val Ala Phe Pro Leu Ala Val Gly Asn Pro Asp Leu Gln Ile Pro Ser 210 215 220

Arg Ala Pro Gln Cys Val Phe Gly Tyr Thr Thr Asn Pro Gly Tyr Gln 225 230 235

Ala Tyr Val Ile Leu Ile Ser Leu Ile Ser Phe Phe Ile Pro Phe Leu 245 250 255

Ala Leu Arg Ile His Ser Tyr Pro Glu Gly Ile Cys Leu Ser Gln Ala Page 4

275 280 285

Ser Lys Leu Gly Leu Met Ser Leu Gln Arg Pro Phe Gln Met Ser Ile 295 Asp Met Gly Phe Lys Thr Arg Ala Phe Thr Thr Ile Leu Ile Leu Phe 310 Ala Val Phe Ile Val Cys Trp Ala Pro Phe Thr Thr Tyr Ser Leu Val 325 Ala Thr Phe Ser Lys His Phe Tyr Tyr Gln His Asn Phe Phe Glu Ile 340 Ser Thr Trp Leu Leu Trp Leu Cys Tyr Leu Lys Ser Ala Leu Asn Pro 355 Leu Ile Tyr Tyr Trp Arg Ile Lys Lys Phe His Asp Ala Cys Leu Asp 370 Met Met Pro Lys Ser Phe Lys Phe Leu Pro Gln Leu Pro Gly His Thr 385 390 395 400 Lys Arg Arg Ile Arg Pro Ser Ala Val Tyr Val Cys Gly Glu His Arg 415 Thr Val Val <210> 3 <211> 1119 <212> DNA <213> Homo sapiens <400> atgttagcca acagctcctc aaccaacagt tctgttctcc cgtgtcctga ctaccgacct acccaccgcc tgcacttggt ggtctacagc ttggtgctgg ctgccgggct cccctcaac gcgctagccc tctgggtctt cctgcgcgcg ctgcgcgtgc actcggtggt gagcgtgtac atgtgtaacc tggcggccag cgacctgctc ttcaccctct cgctgcccgt tcgtctctcc tactacgcac tgcaccactg gcccttcccc gacctcctgt gccagacgac gggcgccatc ttccagatga acatgtacgg cagctgcatc ttcctgatgc tcatcaacgt ggaccgctac

Page 5

gccgccatcg tgcacccgct gcgactgcgc cacctgcggc ggccccgcgt ggcgcggctg

ctctgcctgg gcgtgtgggc gctcatcctg gtgtttgccg tgcccgccgc ccgcgtgcac

60

120

180

240

300

360

420

480

aggccctcgc	gttgccgcta	ccgggacctc	gaggtgcgcc	tatgcttcga	gagcttcagc	540
gacgagctgt	ggaaaggcag	gctgctgccc	ctcgtgctgc	tggccgaggc	gctgggcttc	600
ctgctgcccc	tggcggcggt	ggtctactcg	tcgggccgag	tcttctggac	gctggcgcgc	660
cccgacgcca	cgcagagcca	gcggcggcgg	aagaccgtgc	gcctcctgct	ggctaacctc	720
gtcatcttcc	tgctgtgctt	cgtgccctac	aacagcacgc	tggcggtcta	cgggctgctg	780
cggagcaagc	tggtggcggc	cagcgtgcct	gcccgcgatc	gcgtgcgcgg	ggtgctgatg	840
gtgatggtgc	tgctggccgg	cgccaactgc	gtgctggacc	cgctggtgta	ctactttagc	900
gccgagggct	tccgcaacac	cctgcgcggc	ctgggcactc	cgcaccgggc	caggacctcg	960
gccaccaacg	ggacgcgggc	ggcgctcgcg	caatccgaaa	ggtccgccgt	caccaccgac	1020
gccaccaggc	cggatgccgc	cagtcagggg	ctgctccgac	cctccgactc	ccactctctg	1080
tcttccttca	cacagtgtcc	ccaggattcc	gccctctga			1119

<210> 4

<211> 372

<212> PRT

<213> Homo sapiens

<400> 4

Asp Tyr Arg Pro Thr His Arg Leu His Leu Val Val Tyr Ser Leu Val 20 25 30

Leu Ala Ala Gly Leu Pro Leu Asn Ala Leu Ala Leu Trp Val Phe Leu 35 40 45

Arg Ala Leu Arg Val His Ser Val Val Ser Val Tyr Met Cys Asn Leu 50 55 60

Ala Ala Ser Asp Leu Leu Phe Thr Leu Ser Leu Pro Val Arg Leu Ser 65 70 75

Tyr Tyr Ala Leu His His Trp Pro Phe Pro Asp Leu Leu Cys Gln Thr 85 90 95

Thr Gly Ala Ile Phe Gln Met Asn Met Tyr Gly Ser Cys Ile Phe Leu 100 105 110

Met Leu Ile Asn Val Asp Arg Tyr Ala Ala Ile Val His Pro Leu Arg Page 6

Leu Arg His Leu Arg Arg Pro Arg Val Ala Arg Leu Leu Cys Leu Gly

115

130 135 140

Arg Pro Ser Arg Cys Arg Tyr Arg Asp Leu Glu Val Arg Leu Cys Phe 165 170 175

Glu Ser Phe Ser Asp Glu Leu Trp Lys Gly Arg Leu Leu Pro Leu Val

Leu Leu Ala Glu Ala Leu Gly Phe Leu Leu Pro Leu Ala Ala Val Val 195 200 205

Tyr Ser Ser Gly Arg Val Phe Trp Thr Leu Ala Arg Pro Asp Ala Thr 210 215 220

Gln Ser Gln Arg Arg Arg Lys Thr Val Arg Leu Leu Leu Ala Asn Leu 225 230 235 240

Val Ile Phe Leu Cys Phe Val Pro Tyr Asn Ser Thr Leu Ala Val 245 250 255

Tyr Gly Leu Leu Arg Ser Lys Leu Val Ala Ala Ser Val Pro Ala Arg 260 265 270

Asp Arg Val Arg Gly Val Leu Met Val Met Val Leu Leu Ala Gly Ala 275 280 285

Asn Cys Val Leu Asp Pro Leu Val Tyr Tyr Phe Ser Ala Glu Gly Phe 290 295 300

Arg Asn Thr Leu Arg Gly Leu Gly Thr Pro His Arg Ala Arg Thr Ser 305 310 315 320

Ala Thr Asn Gly Thr Arg Ala Ala Leu Ala Gln Ser Glu Arg Ser Ala 325 330 335

Val Thr Thr Asp Ala Thr Arg Pro Asp Ala Ala Ser Gln Gly Leu Leu 340 345 350

Arg Pro Ser Asp Ser His Ser Leu Ser Ser Phe Thr Gln Cys Pro Gln Page 7

Asp Ser Ala Leu 370

<210> 5 <211> 1107 <212> DNA <213> Homo sapiens <400> 5 atggccaact ccacagggct gaacgcctca gaagtcgcag gctcgttggg gttgatcctg 60 gcagctgtcg tggaggtggg ggcactgctg ggcaacggcg cgctgctggt cgtggtgctg 120 cgcacgccgg gactgcgca cgcgctctac ctggcgcacc tgtgcgtcgt ggacctgctg 180 geggeegeet ceateatgee getgggeetg etggeegeac egeegeeegg getgggeege 240 gtgcgcctgg gccccgcgcc atgccgcgcc gctcgcttcc tctccgccgc tctgctgccg 300 gcctgcacgc tcggggtggc cgcacttggc ctggcacgct accgcctcat cgtgcacccg 360 ctgcggccag gctcgcggcc gccgcctgtg ctcgtgctca ccgccgtgtg ggccgcggcg 420 ggactgctgg gcgcgctctc cctgctcggc ccgccgcccg caccgccccc tgctcctgct 480 cgctgctcgg tcctggctgg gggcctcggg cccttccggc cgctctgggc cctgctggcc 540 ttcgcgctgc ccgccctcct gctgctcggc gcctacggcg gcatcttcgt ggtggcgcgt 600 egegetgeee tgaggeeece aeggeeggeg egegggteee gaeteegete ggaetetetg 660 gatageegee ttteeatett geegeegete eggeetegee tgeeegggg caaggeggee 720 ctggccccag cgctggccgt gggccaattt gcagcctgct ggctgcctta tggctgcgcg 780 tgcctggcgc ccgcagcgcg ggccgcggaa gccgaagcgg ctgtcacctg ggtcgcctac 840 teggeetteg eggeteacce etteetgtae gggetgetge agegeeegt gegettggea 900 ctgggccgcc tctctcgccg tgcactgcct ggacctgtgc gggcctgcac tccgcaagcc 960 tggcacccgc gggcactctt gcaatgcctc cagagacccc cagagggccc tgccgtaggc 1020 ccttctgagg ctccagaaca gacccccgag ttggcaggag ggcggagccc cgcataccag 1080 gggccacctg agagttctct ctcctga 1107

<210> 6 <211> 368 <212> PRT

<213> Homo sapiens

<400> 6

Met Ala Asn Ser Thr Gly Leu Asn Ala Ser Glu Val Ala Gly Ser Leu Page 8

Gly Leu Ile Leu Ala Ala Val Val Glu Val Gly Ala Leu Leu Gly Asn 20 25 30

10

Gly Ala Leu Leu Val Val Val Leu Arg Thr Pro Gly Leu Arg Asp Ala 35 40 45

Leu Tyr Leu Ala His Leu Cys Val Val Asp Leu Leu Ala Ala Ala Ser 50 55 60

Ile Met Pro Leu Gly Leu Leu Ala Ala Pro Pro Pro Gly Leu Gly Arg
65 70 75 80

Val Arg Leu Gly Pro Ala Pro Cys Arg Ala Ala Arg Phe Leu Ser Ala 85 90 95

Ala Leu Leu Pro Ala Cys Thr Leu Gly Val Ala Ala Leu Gly Leu Ala 100 105 110

Arg Tyr Arg Leu Ile Val His Pro Leu Arg Pro Gly Ser Arg Pro Pro 115 120 125

Pro Val Leu Val Leu Thr Ala Val Trp Ala Ala Ala Gly Leu Leu Gly 130 135 140

Ala Leu Ser Leu Leu Gly Pro Pro Pro Ala Pro Pro Pro Ala Pro Ala 145 150 155 160

Arg Cys Ser Val Leu Ala Gly Gly Leu Gly Pro Phe Arg Pro Leu Trp 165 170 175

Ala Leu Leu Ala Phe Ala Leu Pro Ala Leu Leu Leu Gly Ala Tyr 180 185 190

Gly Gly Ile Phe Val Val Ala Arg Arg Ala Ala Leu Arg Pro Pro Arg 195 200 205

Pro Ala Arg Gly Ser Arg Leu Arg Ser Asp Ser Leu Asp Ser Arg Leu 210 215 220

Ser Ile Leu Pro Pro Leu Arg Pro Arg Leu Pro Gly Gly Lys Ala Ala 225 230 235 240

Leu Ala Pro Ala Leu Ala Val Gly Gln Phe Ala Ala Cys Trp Leu Pro Page 9

245 250	255	5
---------	-----	---

Tyr Gly Cys Ala Cys Leu Ala Pro Ala Ala Arg Ala Ala Glu Ala Glu 265 Ala Ala Val Thr Trp Val Ala Tyr Ser Ala Phe Ala Ala His Pro Phe 275 280 Leu Tyr Gly Leu Leu Gln Arg Pro Val Arg Leu Ala Leu Gly Arg Leu 295 Ser Arg Arg Ala Leu Pro Gly Pro Val Arg Ala Cys Thr Pro Gln Ala 310 315 Trp His Pro Arg Ala Leu Leu Gln Cys Leu Gln Arg Pro Pro Glu Gly 325 Pro Ala Val Gly Pro Ser Glu Ala Pro Glu Gln Thr Pro Glu Leu Ala 340 Gly Gly Arg Ser Pro Ala Tyr Gln Gly Pro Pro Glu Ser Ser Leu Ser 355 <210> 7 <211> 1008 <212> DNA <213> Homo sapiens <400> 7 atggaatcat ctttctcatt tggagtgatc cttgctgtcc tggcctccct catcattgct 60 actaacacac tagtggctgt ggctgtgctg ctgttgatcc acaagaatga tggtgtcagt 120 ctctgcttca ccttgaatct ggctgtggct gacaccttga ttggtgtggc catctctggc 180 ctactcacag accagetete cagecettet eggeecacae agaagaeeet gtgeageetg 240 cggatggcat ttgtcacttc ctccgcagct gcctctgtcc tcacggtcat gctgatcacc 300 tttgacaggt accttgccat caagcagccc ttccgctact tgaagatcat gagtgggttc 360 gtggccgggg cctgcattgc cgggctgtgg ttagtgtctt acctcattgg cttcctccca 420 ctcggaatcc ccatgttcca gcagactgcc tacaaagggc agtgcagctt ctttgctgta 480 tttcaccctc acttcgtgct gaccctctcc tgcgttggct tcttcccagc catgctcctc 540 tttgtcttct tctactgcga catgctcaag attgcctcca tgcacagcca gcagattcga 600 aagatggaac atgcaggagc catggctgga ggttatcgat ccccacggac tcccagcgac

Page 10

ttcaaagctc tccgtactgt gtctgttctc attgggagct ttgctctatc ctggaccccc

660

720

ttccttatca	ctggcattgt	gcaggtggcc	tgccaggagt	gtcacctcta	cctagtgctg	780
gaacggtacc	tgtggctgct	cggcgtgggc	aactccctgc	tcaacccact	catctatgcc	840
tattggcaga	aggaggtgcg	actgcagctc	taccacatgg	ccctaggagt	gaagaaggtg	900
ctcacctcat	tcctcctctt	tctctcggcc	aggaattgtg	gcccagagag	gcccagggaa	960
agttcctgtc	acatcgtcac	tatctccagc	tcagagtttg	atggctaa		1008

<210> 8

<211> 335

<212> PRT

<213> Homo sapiens

<400> 8

Leu Ile Ile Ala Thr Asn Thr Leu Val Ala Val Ala Val Leu Leu Leu 20 25 30

Ile His Lys Asn Asp Gly Val Ser Leu Cys Phe Thr Leu Asn Leu Ala 35 40 45

Val Ala Asp Thr Leu Ile Gly Val Ala Ile Ser Gly Leu Leu Thr Asp 50 55 60

Gln Leu Ser Ser Pro Ser Arg Pro Thr Gln Lys Thr Leu Cys Ser Leu 65 70 75 80

Arg Met Ala Phe Val Thr Ser Ser Ala Ala Ala Ser Val Leu Thr Val 85 90 95

Met Leu Ile Thr Phe Asp Arg Tyr Leu Ala Ile Lys Gln Pro Phe Arg 100 105 110

Tyr Leu Lys Ile Met Ser Gly Phe Val Ala Gly Ala Cys Ile Ala Gly 115 120 125

Leu Trp Leu Val Ser Tyr Leu Ile Gly Phe Leu Pro Leu Gly Ile Pro 130 135 140

Met Phe Gln Gln Thr Ala Tyr Lys Gly Gln Cys Ser Phe Phe Ala Val 145 150 155 160

Phe His Pro His Phe Val Leu Thr Leu Ser Cys Val Gly Phe Phe Pro Page 11

. 65	170	175
------	-----	-----

Ala Met Leu Leu Phe Val Phe Phe Tyr Cys Asp Met Leu Lys Ile Ala 180 185 190

Ser	Met	His 195	Ser	Gln	Gln	Ile	Arg 200	Lys	Met	Glu	His	Ala 205	Gly	Ala	Met	
Ala	Gly 210	Gly	Tyr	Arg	Ser	Pro 215	Arg	Thr	Pro	Ser	Asp 220	Phe	Lys	Ala	Leu	
Arg 225	Thr	Val	Ser	Val	Leu 230	Ile	Gly	Ser	Phe	Ala 235	Leu	Ser	Trp	Thr	Pro 240	
Phe	Leu	Ile	Thr	Gly 245	Ile	Val	Gln	Val	Ala 250	Cys	Gln	Glu	Cys	His 255	Leu	
Tyr	Leu	Val	Leu 260	Glu	Arg	Tyr	Leu	Trp 265	Leu	Leu	Gly	Val	Gly 270	Asn	Ser	
Leu	Leu	Asn 275	Pro	Leu	Ile	Tyr	Ala 280	Tyr	Trp	Gln	Lys	Glu 285	Val	Arg	Leu	
Gln	Leu 290	Tyr	His	Met	Ala	Leu 295	Gly	Val	Lys	Lys	Val 300	Leu	Thr	Ser	Phe	
Leu 305	Leu	Phe	Leu	Ser	Ala 310	Arg	Asn	Cys	Gly	Pro 315	Glu	Arg	Pro		Glu 320	
Ser	Ser	Cys	His	Ile 325	Val	Thr	Ile	Ser	Ser 330	Ser	Glu	Phe 1		Gly 335		
<210 <211 <212 <213	> 1 > Di	413 NA omo s	sapie	ens												
<400:		ta co	na t aa	3 2 2 6 6	a + a.											
															agctt	60
															gctg	120
															gcat	180
															gttc	240
																300
<i>J</i> -	J	- 50	- 500				.cca	cyyg		ge 1:		cct	c cg	gcct	cttc	360

ctgctggccg	ccctcagcct	cgaccgctgc	ctgctggcgc	tgtgcccaca	ctggtaccct	420
gggcaccgcc	cagtccgcct	gcccctctgg	gtctgcgccg	gtgtctgggt	gctggccaca	480
ctcttcagcg	tgccctggct	ggtcttcccc	gaggctgccg	tctggtggta	cgacctggtc	540
atctgcctgg	acttctggga	cagcgaggag	ctgtcgctga	ggatgctgga	ggtcctgggg	600
ggcttcctgc	ctttcctcct	gctgctcgtc	tgccacgtgc	tcacccaggc	cacagcctgt	660
cgcacctgcc	accgccaaca	gcagcccgca	gcctgccggg	gcttcgcccg	tgtggccagg	720
accattctgt	cagcctatgt	ggtcctgagg	ctgccctacc	agctggccca	gctgctctac	780
ctggccttcc	tgtgggacgt	ctactctggc	tacctgctct	gggaggccct	ggtctactcc	840
gactacctga	tcctactcaa	cagctgcctc	agccccttcc	tctgcctcat	ggccagtgcc	900
gacctccgga	ccctgctgcg	ctccgtgctc	tcgtccttcg	cggcagctct	ctgcgaggag	960
cggccgggca	gcttcacgcc	cactgagcca	cagacccagc	tagattctga	gggtccaact	1020
ctgccagagc	cgatggcaga	ggcccagtca	cagatggatc	ctgtggccca	gcctcaggtg	1080
aaccccacac	tccagccacg	atcggatccc	acagctcagc	cacagctgaa	ccctacggcc	1140
cagccacagt	cggatcccac	agcccagcca	cagctgaacc	tcatggccca	gccacagtca	1200
gattctgtgg	cccagccaca	ggcagacact	aacgtccaga	cccctgcacc	tgctgccagt	1260
tctgtgccca	gtccctgtga	tgaagcttcc	ccaaccccat	cctcgcatcc	taccccaggg	1320
gcccttgagg	acccagccac	acctcctgcc	tctgaaggag	aaagccccag	cagcaccccg	1380
ccagaggcgg	ccccgggcgc	aggccccacg	tga			1413

<210> 10 <211> 468 <212> PRT

<213> Homo sapiens

<400> 10

Met Asp Thr Thr Met Glu Ala Asp Leu Gly Ala Thr Gly His Arg Pro 5 15

Arg Thr Glu Leu Asp Asp Glu Asp Ser Tyr Pro Gln Gly Gly Trp Asp 20

Thr Val Phe Leu Val Ala Leu Leu Leu Gly Leu Pro Ala Asn Gly 35 40

Leu Met Ala Trp Leu Ala Gly Ser Gln Ala Arg His Gly Ala Gly Thr 50

Ar 65	g Le	eu A.	la L	eu Le	u Lei 70	u Le	u Se:	r Le	u Al	a Le 75	u Se	r As	p Ph	e Le	u Phe 80
Le	u Al	a A	la Al	la Al 85	a Phe	e Gli	n Ile	e Lei	ı Gl 90	u Il	e Ar	g Hi	s Gl	y Gl 95	y His
Tr	p Pr	o Le	eu Gl 10	y Th	r Ala	a Ala	a Cys	Arg 105	g Phe	е Ту:	т Туі	r Ph	e Lei 110		Gly
Va	l Se	r Ty 11	r Se .5	r Se	r Gly	/ Lei	1 Phe	e Leu	ı Leı	ı Ala	a Ala	Lei 12!		: Lei	ı Asp
Arg	g Cy. 13	s Le O	u Le	u Ala	a Leu	Cys 135	Pro	His	Trp	Туг	Pro 140	Gl ₃	/ His	s Arg	Pro
Va] 145	l Ar	g Le	u Pr	o Lei	ı Trp 150	Val	Cys	Ala	Gly	Val 155	Trp	Val	. Leu	ı Ala	Thr 160
Leu	≀ Ph∈	e Se	r Va	l Pro 165	Trp	Leu	Val	Phe	Pro 170	Glu	Ala	Ala	Val	Trp 175	
Tyr	Asp	Le	u Va 180	l Il∈ O	e Cys	Leu	Asp	Phe 185	Trp	Asp	Ser	Glu	Glu 190	Leu	Ser
Leu	Arg	Met 195	t Lei	ı Glu	Val	Leu	Gly 200	Gly	Phe	Leu	Pro	Phe 205	Leu	Leu	Leu
Leu	Val 210	Суз	s His	8 Val	Leu	Thr 215	Gln	Ala	Thr	Arg	Thr 220	Cys	His	Arg	Gln
Gln 225	Gln	Pro	Ala	Ala	Cys 230	Arg	Gly	Phe	Ala	Arg 235	Val	Ala	Arg	Thr	Ile 240
Leu	Ser	Ala	Tyr	Val 245	Val	Leu	Arg	Leu	Pro 250	Tyr	Gln	Leu	Ala	Gln 255	Leu
Leu	Tyr	Leu	Ala 260	Phe	Leu	Trp	Asp	Val 265	Tyr	Ser	Gly	Tyr	Leu 270	Leu	Trp
Glu	Ala	Leu 275	Val	Tyr	Ser	Asp	Tyr 280	Leu	Ile	Leu	Leu	Asn 285	Ser	Cys	Leu
Ser	Pro 290	Phe	Leu	Cys	Leu i	Met . 295	Ala :	Ser /	Ala	Asp	Leu . 300	Arg	Thr	Leu	Leu

Arc 305	j Ser	: Val	Leu	Ser	Ser 310	Phe	Ala	Ala	Ala	Leu 315	Cys	Glu	Glu	Arg	Pro 320	
Gly	'Ser	Phe	Thr	Pro 325	Thr	Glu	Pro	Gln	Thr 330	Gln	Leu	Asp	Ser	Glu 335	Gly	
Pro	Thr	Leu	Pro 340	Glu	Pro	Met	Ala	Glu 345	Ala	Gln	Ser	Gln	Met 350	Asp	Pro	
Val	Ala	Gln 355	Pro	Gln	Val	Asn	Pro 360	Thr	Leu	Gln	Pro	Arg 365	Ser	Asp	Pro	
Thr	Ala 370	Gln	Pro	Gln	Leu	Asn 375	Pro	Thr	Ala	Gln	Pro 380	Gln	Ser	Asp	Pro	
Thr 385	Ala	Gln	Pro	Gln	Leu 390	Asn	Leu	Met	Ala	Gln 395	Pro	Gln	Ser	Asp	Ser 400	
Val	Ala	Gln	Pro	Gln 405	Ala	Asp	Thr	Asn	Val 410	Gln	Thr	Pro	Ala	Pro 415	Ala	
Ala	Ser	Ser	Val 420	Pro	Ser	Pro	Cys	Asp 425	Glu	Ala	Ser	Pro	Thr 430	Pro	Ser	
Ser	His	Pro 435	Thr	Pro	Gly	Ala	Leu 440	Glu	Asp	Pro	Ala	Thr 445	Pro	Pro	Ala	
Ser	Glu 450	Gly	Glu	Ser	Pro	Ser 455	Ser	Thr	Pro	Pro	Glu 460	Ala	Ala	Pro	Gly	
Ala 465	Gly	Pro '	Thr													
<210 <211 <212 <213	> 1 > D	1 248 NA omo s	sapie	ens												
<400 atgt		_	ggaaa	aaact	: tca	agaat	act	tcci	tagai	ict a	accad	מרפת	aa a	at a o	aagat	60
															ctcgg	60 120-
															ggtc	180
															cacc	240
aacta									ctcct		cctg					300

ctggaggtct	atgagatgtg	g gcgcaactac	cctttcttgt	tcgggcccgt	gggctgctac	360
ttcaagacgg	r ccctctttga	gaccgtgtgc	: ttcgcctcca	tcctcagcat	caccaccgtc	420
agcgtggagc	gctacgtggc	: catcctacac	ccgttccgcg	ccaaactgca	gagcacccgg	480
cgccgggccc	tcaggatcct	cggcatcgtc	tggggcttct	ccgtgctctt	ctccctgccc	540
aacaccagca	tccatggcat	caagttccac	tacttcccca	atgggtccct	ggtcccaggt	600
tcggccacct	gtacggtcat	caagcccatg	tggatctaca	atttcatcat	ccaggtcacc	660
tccttcctat	tctacctcct	ccccatgact	gtcatcagtg	tcctctacta	cctcatggca	720
ctcagactaa	agaaagacaa	atctcttgag	gcagatgaag	ggaatgcaaa	tattcaaaga	780
ccctgcagaa	aatcagtcaa	caagatgctg	tttgtcttgg	tcttagtgtt	tgctatctgt	840
tgggccccgt	tccacattga	ccgactcttc	ttcagctttg	tggaggagtg	gagtgaatcc	900
ctggctgctg	tgttcaacct	cgtccatgtg	gtgtcaggtg	tcttcttcta	cctgagctca	960
gctgtcaacc	ccattatcta	taacctactg	tctcgccgct	tccaggcagc	attccagaat	1020
gtgatctctt	ctttccacaa	acagtggcac	tcccagcatg	acccacagtt	gccacctgcc	1080
cagcggaaca	tcttcctgac	agaatgccac	tttgtggagc	tgaccgaaga	tataggtccc	1140
caattcccat	gtcagtcatc	catgcacaac	tctcacctcc	caacagccct	ctctagtgaa	1200
cagatgtcaa	gaacaaacta	tcaaagcttc	cactttaaca	aaacctga		1248

<210> 12 <211> 415 <212> PRT

<213> Homo sapiens

<400> 12

Met Ser Gly Met Glu Lys Leu Gln Asn Ala Ser Trp Ile Tyr Gln Gln

Lys Leu Glu Asp Pro Phe Gln Lys His Leu Asn Ser Thr Glu Glu Tyr 20 25

Leu Ala Phe Leu Cys Gly Pro Arg Arg Ser His Phe Phe Leu Pro Val 35 40

Ser Val Val Tyr Val Pro Ile Phe Val Val Gly Val Ile Gly Asn Val 50 55

Leu Val Cys Leu Val Ile Leu Gln His Gln Ala Met Lys Thr Pro Thr 65

As	n Ty	r Ty	yr L∈	eu Pl 85	ne Se	r Le	u Al	a Va	al Se 90	er As	sp Le	eu L∈	u Va	l Le 95		∍u
Le	u Gl	у Ме	et Pr 10	:o L∈)0	eu Gl	u Va	1 Ту	r Gl 10	.u M∈ 15	et Tr	cp Ar	g As	n Ty 11		o Ph	ne
Le	u Ph	e Gl 11	y Pr .5	o Va	l Gl	у Суз	5 Ty	r Ph O	е Ly	s Th	ır Al	a Le 12	u Ph 5	e Gl	u Th	ır
Va	l Cy.	s Ph O	e Al	a Se	r Ile	e Leu 135	se:	r Il	e Th	r Th	r Va 14	l Se O	r Va	l Gl	u Ar	g
Ту: 145	r Vai	l Al	a Il	e Le	u His 150	s Pro	Phe	e Ar	g Al	a Ly 15	s Lei 5	u Gla	n Sei	r Th:	r Ar 16	
Arq	y Arq	g Al	a Le	u Ar	g Ile 5	e Leu	Gly	/ Ile	e Va. 17	l Tr	p Gly	y Phe	e Ser	Va:		u
Ph∈	e Ser	Lei	u Pro 180	o Asi	ı Thr	Ser	Ile	His 185	Gl <u>y</u>	y Ile	e Lys	5 Ph∈	His		r Ph€	Э
Pro	Asn	Gly 195	y Sei	: Lei	ı Val	Pro	Gly 200	' Ser	: Ala	a Thi	r Cys	Thr 205	Val	Ile	Lys	5
Pro	Met 210	Trp) Ile	e Tyr	Asn	Phe 215	Ile	Ile	Gln	n Val	Thr 220	Ser	Phe	Leu	Ph∈)
Tyr 225	Leu	Leu	Pro	Met	Thr 230	Val	Ile	Ser	Val	Leu 235	Tyr	Tyr	Leu	Met	Ala 240	
Leu	Arg	Leu	Lys	Lys 245	Asp	Lys	Ser	Leu	Glu 250	Ala	Asp	Glu	Gly	Asn 255	Ala	
Asn	Ile	Gln	Arg 260	Pro	Cys	Arg	Lys	Ser 265	Val	Asn	Lys	Met	Leu 270	Phe	Val	
Leu	Val	Leu 275	Val	Phe	Ala	Ile	Cys 280	Trp	Ala	Pro	Phe	His 285	Ile	Asp	Arg	
Leu	Phe 290	Phe	Ser	Phe	Val	Glu 295	Glu	Trp	Ser	Glu	Ser 300	Leu	Ala	Ala	Val	
Phe 305	Asn	Leu	Val	His	Val 310	Val:	Ser	Gly	Val	Phe 315	Phe	Tyr	Leu	Ser	Ser 320	

Ala Val Asn Pro Ile Ile Tyr Asn Leu Leu Ser Arg Arg Phe Gln Ala 325 330 335	
Ala Phe Gln Asn Val Ile Ser Ser Phe His Lys Gln Trp His Ser Gln 340 345 350	
His Asp Pro Gln Leu Pro Pro Ala Gln Arg Asn Ile Phe Leu Thr Glu 355 360 365	
Cys His Phe Val Glu Leu Thr Glu Asp Ile Gly Pro Gln Phe Pro Cys 370 380	
Gln Ser Ser Met His Asn Ser His Leu Pro Thr Ala Leu Ser Ser Glu 385 390 395 400	
Gln Met Ser Arg Thr Asn Tyr Gln Ser Phe His Phe Asn Lys Thr 405 410 415	
<210> 13 <211> 1173 <212> DNA <213> Homo sapiens	
<400> 13	
atgccagata ctaatagcac aatcaattta tcactaagca ctcgtgttac tttagcattt	60
tttatgtcct tagtagcttt tgctataatg ctaggaaatg ctttggtcat tttagctttt	120
gtggtggaca aaaaccttag acatcgaagt agttatttt ttcttaactt ggccatctct	180
gacttetttg tgggtgtgat etecatteet ttgtacatee eteacaeget gttegaatgg	240
gattttggaa aggaaatctg tgtattttgg ctcactactg actatctgtt atgtacagca	300
tctgtatata acattgtcct catcagctat gatcgatacc tgtcagtctc aaatgctgtg	360
tettatagaa eteaacatae tggggtettg aagattgtta etetgatggt ggeegtttgg	420
gtgctggcct tcttagtgaa tgggccaatg attctagttt cagagtcttg gaaggatgaa	480
ggtagtgaat gtgaacctgg atttttttcg gaatggtaca teettgeeat cacatcatte	540
ttggaattcg tgatcccagt catcttagtc gcttatttca acatgaatat ttattggagc	600
ctgtggaage gtgatcatet cagtaggtge caaagecate etggaetgae tgetgtetet	660
tccaacatct gtggacactc attcagaggt agactatctt caaggagatc tctttctgca	720
togacagaag ttootgoato otttoattoa gagagacaga ggagaaagag tagtotoatg	780
ttttcctcaa gaaccaagat gaatagcaat acaattgctt ccaaaatggg ttccttctcc	840
caatcagatt ctgtagctct tcaccaaagg gaacatgttg aactgcttag agccaggaga Page 18	900

ttagecaagt cactggccat tetettaggg gtttttgetg tttgetggge tecatattet	960
ctgttcacaa ttgtcctttc attttattcc tcagcaacag gtcctaaatc agtttggtat	1020
agaattgcat tttggcttca gtggttcaat tcctttgtca atcctctttt gtatccattg	1080
tgtcacaagc gctttcaaaa ggctttcttg aaaatatttt gtataaaaaa gcaacctcta	1140
ccatcacaac acagtcggtc agtatcttct taa	1173
<210> 14 <211> 390 <212> PRT <213> Homo sapiens	
<400> 14	
Met Pro Asp Thr Asn Ser Thr Ile Asn Leu Ser Leu Ser Thr Arg Val 1 5 10 15	
Thr Leu Ala Phe Phe Met Ser Leu Val Ala Phe Ala Ile Met Leu Gly 20 25 30	
Asn Ala Leu Val Ile Leu Ala Phe Val Val Asp Lys Asn Leu Arg His 35 40 45	
Arg Ser Ser Tyr Phe Phe Leu Asn Leu Ala Ile Ser Asp Phe Phe Val 50 60	
Gly Val Ile Ser Ile Pro Leu Tyr Ile Pro His Thr Leu Phe Glu Trp 75 80	
Asp Phe Gly Lys Glu Ile Cys Val Phe Trp Leu Thr Thr Asp Tyr Leu	

sp Phe Gly Lys Glu Ile Cys Val Phe Trp Leu Thr Thr Asp Tyr Leu 85 90 95

Leu Cys Thr Ala Ser Val Tyr Asn Ile Val Leu Ile Ser Tyr Asp Arg 100

Tyr Leu Ser Val Ser Asn Ala Val Ser Tyr Arg Thr Gln His Thr Gly 115

Val Leu Lys Ile Val Thr Leu Met Val Ala Val Trp Val Leu Ala Phe 130 140

Leu Val Asn Gly Pro Met Ile Leu Val Ser Glu Ser Trp Lys Asp Glu 145 155

Gly Ser Glu Cys Glu Pro Gly Phe Phe Ser Glu Trp Tyr Ile Leu Ala Page 19

Ile Thr Ser Phe Leu Glu Phe Val Ile Pro Val Ile Leu Val Ala Tyr 180 185 190

Phe Asn Met Asn Ile Tyr Trp Ser Leu Trp Lys Arg Asp His Leu Ser 195 200 205

Arg Cys Gln Ser His Pro Gly Leu Thr Ala Val Ser Ser Asn Ile Cys 210 215 220

Gly His Ser Phe Arg Gly Arg Leu Ser Ser Arg Arg Ser Leu Ser Ala 230 235 240

Ser Thr Glu Val Pro Ala Ser Phe His Ser Glu Arg Gln Arg Arg Lys 245 250 255

Ser Ser Leu Met Phe Ser Ser Arg Thr Lys Met Asn Ser Asn Thr Ile 260 265 270

Ala Ser Lys Met Gly Ser Phe Ser Gln Ser Asp Ser Val Ala Leu His 275 280 285

Gln Arg Glu His Val Glu Leu Leu Arg Ala Arg Arg Leu Ala Lys Ser 290 295 300

Leu Ala Ile Leu Leu Gly Val Phe Ala Val Cys Trp Ala Pro Tyr Ser 310 315 320

Leu Phe Thr Ile Val Leu Ser Phe Tyr Ser Ser Ala Thr Gly Pro Lys 325 330 335

Val Asn Pro Leu Leu Tyr Pro Leu Cys His Lys Arg Phe Gln Lys Ala 355 360 365

Phe Leu Lys Ile Phe Cys Ile Lys Lys Gln Pro Leu Pro Ser Gln His 370 375 380

Ser Arg Ser Val Ser Ser 385 390

<210> 15

<211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 15 ggaaagetta aegateecea ggageaacat	30
<210> 16 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 16 ctgggatcct acgagagcat ttttcacaca g	31
<210> 17 <211> 1128 <212> DNA <213> Homo sapiens	
<400> 17 atggcgaacg cgagcgagcc gggtggcagc ggcggcggcgg aggcggccgc cctgggcctc	60
aagctggcca cgctcagcct gctgctgtgc gtgagcctag cgggcaacgt gctgttcgcg	120
ctgctgatcg tgcgggagcg cagcctgcac cgcgccccgt actacctgct gctcgacctg	180
tgcctggccg acgggctgcg cgcgctcgcc tgcctcccgg ccgtcatgct ggcggcgcgg	240
cgtgcggcgg ccgcgggg ggcgccgccg ggcgcgctgg gctgcaagct gctcgccttc	300
ctggccgcgc tcttctgctt ccacgccgcc ttcctgctgc tgggcgtggg cgtcacccgc	360
tacetggcca tegegeacca eegettetat geagagegee tggeeggetg geegtgegee	420
gccatgctgg tgtgcgccgc ctgggcgctg gcgcttggccg cggccttccc gccagtgctg	480
gacggcggtg gcgacgacga ggacgcgccg tgcgccctgg agcagcggcc cgacggcgcc	540
cccggcgcgc tgggcttcct gctgctgctg gccgtggtgg tgggcgccac gcacctcgtc	600
tacctccgcc tgctcttctt catccacgac cgccgcaaga tgcggcccgc gcgcctggtg	660
cccgccgtca gccacgactg gaccttccac ggcccgggcg ccaccggcca ggcggccgcc	720
aactggacgg cgggcttcgg ccgcgggccc acgccgcccg cgcttgtggg catccggccc	780
gcagggccgg gccgcgcgc gcgccgcctc ctcgtgctgg aagaattcaa gacggagaag	840
aggotgtgca agatgttcta cgccgtcacg ctgctcttcc tgctcctctg ggggccctac	900
gtcgtggcca gctacctgcg ggtcctggtg cggcccggcg ccgtccccca ggcctacctg	960

acggeeteeg tgtggetgae ettegegeag geeggeatea acceegtegt gtgetteete
ttcaacaggg agctgaggga ctgcttcagg gcccagttcc cctgctgcca gagcccccgg
accacccagg cgacccatcc ctgcgacctg aaaggcattg gtttatga
<210> 18 <211> 375 <212> PRT <213> Homo sapiens
<400> 18
Met Ala Asn Ala Ser Glu Pro Gly Gly Ser Gly Gly Gly Glu Ala Ala 1 5 10 15
Ala Leu Gly Leu Lys Leu Ala Thr Leu Ser Leu Leu Cys Val Ser 20 25 30
Leu Ala Gly Asn Val Leu Phe Ala Leu Leu Ile Val Arg Glu Arg Ser 35 40 45
Leu His Arg Ala Pro Tyr Tyr Leu Leu Leu Asp Leu Cys Leu Ala Asp 50 55 60
Gly Leu Arg Ala Leu Ala Cys Leu Pro Ala Val Met Leu Ala Ala Arg 65 70 75 80
Arg Ala Ala Ala Ala Gly Ala Pro Pro Gly Ala Leu Gly Cys Lys 85 90 95
Leu Leu Ala Phe Leu Ala Ala Leu Phe Cys Phe His Ala Ala Phe Leu 100 105 110
Leu Leu Gly Val Gly Val Thr Arg Tyr Leu Ala Ile Ala His His Arg 115 120 125
Phe Tyr Ala Glu Arg Leu Ala Gly Trp Pro Cys Ala Ala Met Leu Val 130 135 140
Cys Ala Ala Trp Ala Leu Ala Leu Ala Ala Ala Phe Pro Pro Val Leu 145 150 155 160
Asp Gly Gly Asp Asp Glu Asp Ala Pro Cys Ala Leu Glu Gln Arg 165 170 175
Pro Asp Gly Ala Pro Gly Ala Leu Gly Phe Leu Leu Leu Leu Ala Val

Page 22

180 185 190

Val Val Gly Ala Thr His Leu Val Tyr Leu Arg Leu Leu Phe Phe Ile 195 200 205

His Asp Arg Arg Lys Met Arg Pro Ala Arg Leu Val Pro Ala Val Ser 210 215 220

His Asp Trp Thr Phe His Gly Pro Gly Ala Thr Gly Gln Ala Ala Ala 225 230 235 240

Asn Trp Thr Ala Gly Phe Gly Arg Gly Pro Thr Pro Pro Ala Leu Val

Gly Ile Arg Pro Ala Gly Pro Gly Arg Gly Ala Arg Arg Leu Leu Val

Leu Glu Glu Phe Lys Thr Glu Lys Arg Leu Cys Lys Met Phe Tyr Ala 275 280 285

Val Thr Leu Leu Phe Leu Leu Leu Trp Gly Pro Tyr Val Val Ala Ser 290 295 300

Tyr Leu Arg Val Leu Val Arg Pro Gly Ala Val Pro Gln Ala Tyr Leu 305 310 315

Thr Ala Ser Val Trp Leu Thr Phe Ala Gln Ala Gly Ile Asn Pro Val 325 330 335

Val Cys Phe Leu Phe Asn Arg Glu Leu Arg Asp Cys Phe Arg Ala Gln 340 345 350

Phe Pro Cys Cys Gln Ser Pro Arg Thr Thr Gln Ala Thr His Pro Cys 355

Asp Leu Lys Gly Ile Gly Leu 370

<210> 19

<211> 1002

<212> DNA

<213> Homo sapiens

<400> 19

atgaacacca cagtgatgca aggetteaac agatetgage ggtgeeceag agacactegg 60 atagtacage tggtatteec agecetetae acagtggttt tettgaeegg cateetgetg 120 Page 23

aatactttgg	ctctgtgggt	gtttgttcac	atccccagct	cctccacctt	catcatctac	180
ctcaaaaaca	ctttggtggc	cgacttgata	atgacactca	tgcttccttt	caaaatcctc	240
tctgactcac	acctggcacc	ctggcagctc	agagcttttg	tgtgtcgttt	ttcttcggtg	300
atattttatg	agaccatgta	tgtgggcatc	gtgctgttag	ggctcatagc	ctttgacaga	360
ttcctcaaga	tcatcagacc	tttgagaaat	atttttctaa	aaaaacctgt	ttttgcaaaa	420
acggtctcaa	tcttcatctg	gttctttttg	ttcttcatct	ccctgccaaa	tacgatcttg	480
agcaacaagg	aagcaacacc	atcgtctgtg	aaaaagtgtg	cttccttaaa	ggggcctctg	540
gggctgaaat	ggcatcaaat	ggtaaataac	atatgccagt	ttattttctg	gactgttttt	600
atcctaatgc	ttgtgtttta	tgtggttatt	gcaaaaaaag	tatatgattc	ttatagaaag	660
tccaaaagta	aggacagaaa	aaacaacaaa	aagctggaag	gcaaagtatt	tgttgtcgtg	720
gctgtcttct	ttgtgtgttt	tgctccattt	cattttgcca	gagttccata	tactcacagt	780
caaaccaaca	ataagactga	ctgtagactg	caaaatcaac	tgtttattgc	taaagaaaca	840
actctctttt	tggcagcaac	taacatttgt	atggatccct	taatatacat	attcttatgt	900
aaaaaattca	cagaaaagct	accatgtatg	caagggagaa	agaccacagc	atcaagccaa	960
gaaaatcata	gcagtcagac	agacaacata	accttaggct	ga		1002

<210> 20

<211> 333

<212> PRT

<213> Homo sapiens

<400> 20

Met Asn Thr Thr Val Met Gln Gly Phe Asn Arg Ser Glu Arg Cys Pro $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15 \hspace{1cm} 15 \hspace{1cm}$

Arg Asp Thr Arg Ile Val Gln Leu Val Phe Pro Ala Leu Tyr Thr Val 20 25 30

Val Phe Leu Thr Gly Ile Leu Leu Asn Thr Leu Ala Leu Trp Val Phe 35 40 45

Val His Ile Pro Ser Ser Ser Thr Phe Ile Ile Tyr Leu Lys Asn Thr 50 55 60

Leu Val Ala Asp Leu Ile Met Thr Leu Met Leu Pro Phe Lys Ile Leu 65 70 75 80

Ser Asp Ser His Leu Ala Pro Trp Gln Leu Arg Ala Phe Val Cys Arg Page 24

85	90	95

Phe	Ser	Ser	Val	Ile	Phe	Tyr	Glu	Thr	Met	Tyr	Val	Gly	Ile	Val	Leu
			100					105		-		٠,	110		

- Leu Gly Leu Ile Ala Phe Asp Arg Phe Leu Lys Ile Ile Arg Pro Leu 115 120 125
- Arg Asn Ile Phe Leu Lys Lys Pro Val Phe Ala Lys Thr Val Ser Ile 130 135 140
- Phe Ile Trp Phe Phe Leu Phe Phe Ile Ser Leu Pro Asn Thr Ile Leu 145 150 155 160
- Ser Asn Lys Glu Ala Thr Pro Ser Ser Val Lys Lys Cys Ala Ser Leu 165 170 175
- Lys Gly Pro Leu Gly Leu Lys Trp His Gln Met Val Asn Asn Ile Cys 180 185 190
- Gln Phe Ile Phe Trp Thr Val Phe Ile Leu Met Leu Val Phe Tyr Val 195 200 205
- Val Ile Ala Lys Lys Val Tyr Asp Ser Tyr Arg Lys Ser Lys Ser Lys 210 215 220
- Asp Arg Lys Asn Asn Lys Lys Leu Glu Gly Lys Val Phe Val Val 225 230 235
- Ala Val Phe Phe Val Cys Phe Ala Pro Phe His Phe Ala Arg Val Pro 245 250 255
- Tyr Thr His Ser Gln Thr Asn Asn Lys Thr Asp Cys Arg Leu Gln Asn 260 265 270
- Gln Leu Phe Ile Ala Lys Glu Thr Thr Leu Phe Leu Ala Ala Thr Asn 275 280 285
- Ile Cys Met Asp Pro Leu Ile Tyr Ile Phe Leu Cys Lys Lys Phe Thr 290 295 300
- Glu Lys Leu Pro Cys Met Gln Gly Arg Lys Thr Thr Ala Ser Ser Gln 305 310 315 320
- Glu Asn His Ser Ser Gln Thr Asp Asn Ile Thr Leu Gly Page 25

<210> 21

<211> 1122 <212> DNA <213> Homo sapiens	
<400> 21	
atggccaaca ctaccggaga gcctgaggag gtgagcggcg ctctgtcccc accgtccgca	60
tcagcttatg tgaagctggt actgctggga ctgattatgt gcgtgagcct ggcgggtaac	120
gccatcttgt ccctgctggt gctcaaggag cgtgccctgc acaaggctcc ttactacttc	180
ctgctggacc tgtgcctggc cgatggcata cgctctgccg tctgcttccc ctttgtgctg	240
gettetgtge gecaeggete tteatggace tteagtgeae teagetgeaa gattgtggee	300
tttatggccg tgctcttttg cttccatgcg gccttcatgc tgttctgcat cagcgtcacc	360
cgctacatgg ccatcgccca ccaccgcttc tacgccaagc gcatgacact ctggacatgc	420
gcggctgtca tctgcatggc ctggaccctg tctgtggcca tggccttccc acctgtcttt	480
gacgtgggca cctacaagtt tattcgggag gaggaccagt gcatctttga gcatcgctac	540
ttcaaggcca atgacacgct gggcttcatg cttatgttgg ctgtgctcat ggcagctacc	600
catgetgtet aeggeaaget geteetette gagtategte aeegeaagat gaageeagtg	660
cagatggtgc cagccatcag ccagaactgg acattccatg gtcccggggc caccggccag	720
gctgctgcca actggatcgc cggctttggc cgtgggccca tgccaccaac cctgctgggt	780
atccggcaga atgggcatgc agccagccgg cggctactgg gcatggacga ggtcaagggt	840
gaaaagcagc tgggccgcat gttctacgcg atcacactgc tctttctgct cctctggtca	900
ccctacatcg tggcctgcta ctggcgagtg tttgtgaaag cctgtgctgt gccccaccgc	960
tacctggcca ctgctgtttg gatgagcttc gcccaggctg ccgtcaaccc aattgtctgc	1020
ttoctgotoa acaaggacot caagaagtgo otgaccacto acgooccotg otggggoaca	1080
ggaggtgccc cggctcccag agaaccctac tgtgtcatgt ga	1122
<210> 22 <211> 373 <212> PRT <213> Homo sapiens	
<400> 22	
Met Ala Asn Thr Thr Gly Glu Pro Glu Glu Val Ser Gly Ala Leu Ser	

Pro Pro Ser Ala Ser Ala Tyr Val Lys Leu Val Leu Leu Gly Leu Ile Page 26

Met Cys Val Ser Leu Ala Gly Asn Ala Ile Leu Ser Leu Leu Val Leu

Lys Glu Arg Ala Leu His Lys Ala Pro Tyr Tyr Phe Leu Leu Asp Leu

Cys Leu Ala Asp Gly Ile Arg Ser Ala Val Cys Phe Pro Phe Val Leu

Ala Ser Val Arg His Gly Ser Ser Trp Thr Phe Ser Ala Leu Ser Cys

Lys Ile Val Ala Phe Met Ala Val Leu Phe Cys Phe His Ala Ala Phe

Met Leu Phe Cys Ile Ser Val Thr Arg Tyr Met Ala Ile Ala His His

Arg Phe Tyr Ala Lys Arg Met Thr Leu Trp Thr Cys Ala Ala Val Ile

Cys Met Ala Trp Thr Leu Ser Val Ala Met Ala Phe Pro Pro Val Phe

Asp Val Gly Thr Tyr Lys Phe Ile Arg Glu Glu Asp Gln Cys Ile Phe

Glu His Arg Tyr Phe Lys Ala Asn Asp Thr Leu Gly Phe Met Leu Met

Leu Ala Val Leu Met Ala Ala Thr His Ala Val Tyr Gly Lys Leu Leu

Leu Phe Glu Tyr Arg His Arg Lys Met Lys Pro Val Gln Met Val Pro

Ala Ile Ser Gln Asn Trp Thr Phe His Gly Pro Gly Ala Thr Gly Gln

Ala Ala Ala Asn Trp Ile Ala Gly Phe Gly Arg Gly Pro Met Pro Pro

Thr Leu Leu Gly Ile Arg Gln Asn Gly His Ala Ala Ser Arg Arg Leu Page 27

Leu Gly Met Asp Glu Val Lys Gly Glu Lys Gln Leu Gly Arg Met Phe 280

Tyr Ala Ile Thr Leu Leu Phe Leu Leu Leu Trp Ser Pro Tyr Ile Val 295

Ala Cys Tyr Trp Arg Val Phe Val Lys Ala Cys Ala Val Pro His Arg 305 310 315

Tyr Leu Ala Thr Ala Val Trp Met Ser Phe Ala Gln Ala Ala Val Asn 325

Pro Ile Val Cys Phe Leu Leu Asn Lys Asp Leu Lys Lys Cys Leu Thr 340 345 350

Thr His Ala Pro Cys Trp Gly Thr Gly Gly Ala Pro Ala Pro Arg Glu 355

Pro Tyr Cys Val Met 370

<210> 23

<211> 1053

<212> DNA

<213> Homo sapiens

<400> 23

atggctttgg aacagaacca gtcaacagat tattattatg aggaaaatga aatgaatggc 60 acttatgact acagtcaata tgaattgatc tgtatcaaag aagatgtcag agaatttgca 120 aaagttttcc tccctgtatt cctcacaata gctttcgtca ttggacttgc aggcaattcc 180 atggtagtgg caatttatgc ctattacaag aaacagagaa ccaaaacaga tgtgtacatc 240 ctgaatttgg ctgtagcaga tttactcctt ctattcactc tgcctttttg ggctgttaat 300 gcagttcatg ggtgggtttt agggaaaata atgtgcaaaa taacttcagc cttgtacaca 360 ctaaactttg tctctggaat gcagtttctg gcttgcatca gcatagacag atatgtggca 420 gtaactaatg tccccagcca atcaggagtg ggaaaaccat gctggatcat ctgtttctgt 480 gtctggatgg ctgccatctt gctgagcata ccccagctgg ttttttatac agtaaatgac 540 aatgctaggt gcattcccat tttcccccgc tacctaggaa catcaatgaa agcattgatt 600 caaatgctag agatctgcat tggatttgta gtaccctttc ttattatggg ggtgtgctac 660 tttatcacgg caaggacact catgaagatg ccaaacatta aaatatctcg acccctaaaa 720

gttctg	ctca	cagtcgttat	agttttcatt	gtcactcaac	tgccttataa	cattgtcaag	780
ttctgc	cgag	ccatagacat	catctactcc	ctgatcacca	gctgcaacat	gagcaaacgc	840
atggaca	atcg	ccatccaagt	cacagaaagc	attgcactct	ttcacagctg	cctcaaccca	900
atcctt	tatg	tttttatggg	agcatctttc	aaaaactacg	ttatgaaagt	ggccaagaaa	960
tatggg	tcct	ggagaagaca	gagacaaagt	gtggaggagt	ttccttttga	ttctgagggt	1020
cctacaç	gagc	caaccagtac	ttttagcatt	taa			1053
<210><211><211>	24 350 PRT						

<212> PRT

<213> Homo sapiens

<400> 24

Met Ala Leu Glu Gln Asn Gln Ser Thr Asp Tyr Tyr Tyr Glu Glu Asn

Glu Met Asn Gly Thr Tyr Asp Tyr Ser Gln Tyr Glu Leu Ile Cys Ile 20

Lys Glu Asp Val Arg Glu Phe Ala Lys Val Phe Leu Pro Val Phe Leu 35

Thr Ile Ala Phe Val Ile Gly Leu Ala Gly Asn Ser Met Val Val Ala 50

Ile Tyr Ala Tyr Tyr Lys Lys Gln Arg Thr Lys Thr Asp Val Tyr Ile

Leu Asn Leu Ala Val Ala Asp Leu Leu Leu Phe Thr Leu Pro Phe 95

Trp Ala Val Asn Ala Val His Gly Trp Val Leu Gly Lys Ile Met Cys 100 105 110

Lys Ile Thr Ser Ala Leu Tyr Thr Leu Asn Phe Val Ser Gly Met Gln 115

Phe Leu Ala Cys Ile Ser Ile Asp Arg Tyr Val Ala Val Thr Asn Val 130

Pro Ser Gln Ser Gly Val Gly Lys Pro Cys Trp Ile Ile Cys Phe Cys 145 155

Va.	l Tr	o Met	a Ala	165	ı Ile	e Leu	ı Leu	ı Sei	r Ile 170	e Pr	o Gli	n Lei	ı Val	. Phe	e Tyr	
Th	r Val	l Asr	180	Asn	ı Ala	Arg	ı Cys	Ile 185	e Pro	o Ile	e Ph∈	e Pro	Arg 190		: Leu	
Gl	/ Thr	Ser 195	Met	Lys	Ala	Leu	Ile 200	Gln	Met	: Let	ı Glu	1 Ile 205		Ile	e Gly	
Phe	val 210	Val	Pro	Phe	Leu	Ile 215	Met	Gly	Val	. Cys	5 Tyr 220	Phe	Ile	Thr	Ala	
Arg 225	Thr	Leu	Met	Lys	Met 230	Pro	Asn	Ile	Lys	Ile 235	s Ser	Arg	Pro	Leu	Lys 240	
Val	Leu	Leu	Thr	Val 245	Val	Ile	Val	Phe	Ile 250	Val	Thr	Gln	Leu	Pro 255	Tyr	
Asn	Ile	Val	Lys 260	Phe	Cys	Arg	Ala	Ile 265	Asp	Ile	Ile	Tyr	Ser 270	Leu	Ile	
Thr	Ser	Cys 275	Asn	Met	Ser	Lys	Arg 280	Met	Asp	Ile	Ala	Ile 285	Gln	Val	Thr	
Glu	Ser 290	Ile	Ala	Leu	Phe	His 295	Ser	Cys	Leu	Asn	Pro 300	Ile	Leu	Tyr	Val	
Phe 305	Met	Gly	Ala	Ser	Phe 310	Lys	Asn	Tyr	Val	Met 315	Lys	Val	Ala		Lys 320	
Tyr	Gly	Ser	Trp .	Arg 2 325	Arg	Gln .	Arg (Gln	Ser 330	Val	Glu	Glu	Phe	Pro 335	Phe	
Asp	Ser	Glu	Gly : 340	Pro '	Thr (Glu I	Pro 1	Thr :	Ser	Thr	Phe		Ile 350			
<210 <211 <212 <213	> 1 > Di	116 NA	sapie	ens												
<4000 atgc			cacca	idado	: ant	aacc	racc.	acto	1000	~~+		. 1			ctcc	
															gtac	60
															gtac	120 180
										ge 3			, ,	ر	79	100

caggtactgo	agggcaacgt	gctggccgtc	tacctgctct	gcctggcact	ctgcgaactg	240
ctgtacacac	g gcacgctgcc	actctgggtc	atctatatcc	gcaaccagca	ccgctggacc	300
ctaggcctgc	tggcctcgaa	ggtgaccgcc	tacatcttct	tctgcaacat	ctacgtcagc	360
atcctcttcc	: tgtgctgcat	ctcctgcgac	cgcttcgtgg	ccgtggtgta	cgcgctggag	420
agtcggggcc	geegeegeeg	gaggaccgcc	atcctcatct	ccgcctgcat	cttcatcctc	480
gtcgggatcg	ttcactaccc	ggtgttccag	acggaagaca	aggagacctg	ctttgacatg	540
ctgcagatgg	acagcaggat	tgccgggtac	tactacgcca	ggttcaccgt	tggctttgcc	600
atccctctct	ccatcatcgc	cttcaccaac	caccggattt	tcaggagcat	caagcagagc	660
atgggcttaa	gcgctgccca	gaaggccaag	gtgaagcact	cggccatcgc	ggtggttgtc	720
atcttcctag	tctgcttcgc	cccgtaccac	ctggttctcc	tcgtcaaagc	cgctgccttt	780
tcctactaca	gaggagacag	gaacgccatg	tgcggcttgg	aggaaaggct	gtacacagcc	840
tctgtggtgt	ttctgtgcct	gtccacggtg	aacggcgtgg	ctgaccccat	tatctacgtg	900
ctggccacgg	accattcccg	ccaagaagtg	tccagaatcc	ataaggggtg	gaaagagtgg	960
tccatgaaga	cagacgtcac	caggctcacc	cacagcaggg	acaccgagga	gctgcagtcg	1020
cccgtggccc	ttgcagacca	ctacaccttc	tccaggcccg	tgcacccacc	agggtcacca	1080
tgccctgcaa	agaggctgat	tgaggagtcc	tgctga			1116

<210> 26

<211> 371

<212> PRT

<213> Homo sapiens

<400> 26

Met Pro Gly Asn Ala Thr Pro Val Thr Thr Thr Ala Pro Trp Ala Ser $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Leu Gly Leu Ser Ala Lys Thr Cys Asn Asn Val Ser Phe Glu Glu Ser 20 25 30

Arg Ile Val Leu Val Val Val Tyr Ser Ala Val Cys Thr Leu Gly Val 35

Pro Ala Asn Cys Leu Thr Ala Trp Leu Ala Leu Leu Gln Val Leu Gln 50 55 60

Gly Asn Val Leu Ala Val Tyr Leu Leu Cys Leu Ala Leu Cys Glu Leu 65 70 75 80

Lei	и Ту:	r Th	r Gl	y Th. 85	r Leı	ı Pro	o Lei	ı Tr _l	90	l Ile	э Туг	: Ile	e Arç	g Ası 95	n Gln
His	s Ar	g Tr	9 Th: 100	r Lei	u Gly	/ Le	u Lei	105	a Ser	c Lys	s Val	. Thr	Ala 110		: Ile
Ph€	e Phe	e Cys 115	s Asr 5	ı Ile	e Tyr	: Val	l Ser 120	: Ile	e Leu	ı Phe	e Leu	Cys 125		: Ile	e Ser
Cys	3 Asp 130	Arg	g Phe	e Val	l Ala	Val	l Val	Туг	: Ala	a Leu	Glu 140		Arg	Gly	' Arg
Arg 145	Arg	J Arg	g Arç	Thr	Ala 150	Ile	e Leu	Ile	: Ser	Ala 155	Cys	Ile	Phe	Ile	Leu 160
Val	Gly	' Ile	e Val	His 165	Tyr	Pro	Val	Phe	Gln 170	Thr	Glu	Asp	Lys	Glu 175	Thr
Cys	Phe	Asp	Met 180	Leu	Gln	Met	Asp	Ser 185	Arg	Ile	Ala	Gly	Tyr 190	Tyr	Tyr
Ala	Arg	Phe 195	Thr	Val	Gly	Phe	Ala 200	Ile	Pro	Leu	Ser	Ile 205	Ile	Ala	Phe
Thr	Asn 210	His	Arg	Ile	Phe	Arg 215	Ser	Ile	Lys	Gln	Ser 220	Met	Gly	Leu	Ser
Ala 225	Ala	Gln	Lys	Ala	Lys 230	Val	Lys	His	Ser	Ala 235	Ile	Ala	Val	Val	Val 240
Ile	Phe	Leu	Val	Cys 245	Phe	Ala	Pro	Tyr	His 250	Leu	Val	Leu	Leu	Val 255	Lys
Ala	Ala	Ala	Phe 260	Ser	Tyr	Tyr	Arg	Gly 265	Asp	Arg	Asn	Ala	Met 270	Cys	Gly
Leu	Glu	Glu 275	Arg	Leu	Tyr	Thr	Ala 280	Ser	Val	Val	Phe	Leu 285	Cys	Leu	Ser
Thr	Val 290	Asn	Gly	Val	Ala	Asp 295	Pro	Ile	Ile	Tyr	Val 300	Leu	Ala	Thr	Asp
His 305	Ser	Arg	Gln	Glu	Val 310	Ser	Arg	Ile	His	Lys 315	Gly	Trp	Lys		Trp 320

Ser Met Lys Thr Asp Val Thr Arg Leu Thr His Ser Arg Asp Thr Glu 330

Glu Leu Gln Ser Pro Val Ala Leu Ala Asp His Tyr Thr Phe Ser Arg 345

Pro Val His Pro Pro Gly Ser Pro Cys Pro Ala Lys Arg Leu Ile Glu

Glu Ser Cys 370

<400> 27

<210> 27 <211> 1113 <212> DNA <213>

Homo sapiens

atggcgaact atagccatgc agctgacaac attttgcaaa atctctcgcc tctaacagcc 60 tttctgaaac tgacttcctt gggtttcata ataggagtca gcgtggtggg caacctcctg 120 atctccattt tgctagtgaa agataagacc ttgcatagag caccttacta cttcctgttg 180 gatctttgct gttcagatat cctcagatct gcaatttgtt tcccatttgt gttcaactct 240 gtcaaaaatg gctctacctg gacttatggg actctgactt gcaaagtgat tgcctttctg 300 ggggttttgt cctgtttcca cactgctttc atgctcttct gcatcagtgt caccagatac 360 ttagctatcg cccatcaccg cttctataca aagaggctga ccttttggac gtgtctggct 420 gtgatctgta tggtgtggac tctgtctgtg gccatggcat ttcccccggt tttagacgtg 480 ggcacttact cattcattag ggaggaagat caatgcacct tccaacaccg ctccttcagg 540 gctaatgatt ccttaggatt tatgctgctt cttgctctca tcctcctagc cacacagctt 600 gtctacctca agctgatatt tttcgtccac gatcgaagaa aaatgaagcc agtccagttt 660 gtagcagcag tcagccagaa ctggactttt catggtcctg gagccagtgg ccaggcagct 720 gccaattggc tagcaggatt tggaaggggt cccacaccac ccaccttgct gggcatcagg 780 caaaatgcaa acaccacagg cagaagaagg ctattggtct tagacgagtt caaaatggag 840 aaaagaatca gcagaatgtt ctatataatg acttttctgt ttctaacctt gtggggcccc 900 tacctggtgg cctgttattg gagagttttt gcaagagggc ctgtagtacc agggggattt 960 ctaacagctg ctgtctggat gagttttgcc caagcaggaa tcaatccttt tgtctgcatt 1020 ttctcaaaca gggagctgag gcgctgtttc agcacaaccc ttctttactg cagaaaatcc 1080 aggttaccaa gggaacctta ctgtgttata tga 1113

<210> 28 <211> 370 <212> PRT <213> Homo sapiens <400> 28 Met Ala Asn Tyr Ser His Ala Ala Asp Asn Ile Leu Gln Asn Leu Ser Pro Leu Thr Ala Phe Leu Lys Leu Thr Ser Leu Gly Phe Ile Gly Val Ser Val Val Gly Asn Leu Leu Ile Ser Ile Leu Leu Val Lys Asp Lys Thr Leu His Arg Ala Pro Tyr Tyr Phe Leu Leu Asp Leu Cys Cys Ser Asp Ile Leu Arg Ser Ala Ile Cys Phe Pro Phe Val Phe Asn Ser Val Lys Asn Gly Ser Thr Trp Thr Tyr Gly Thr Leu Thr Cys Lys Val 95 Ile Ala Phe Leu Gly Val Leu Ser Cys Phe His Thr Ala Phe Met Leu 105 Phe Cys Ile Ser Val Thr Arg Tyr Leu Ala Ile Ala His His Arg Phe 115 Tyr Thr Lys Arg Leu Thr Phe Trp Thr Cys Leu Ala Val Ile Cys Met 130 Val Trp Thr Leu Ser Val Ala Met Ala Phe Pro Pro Val Leu Asp Val 145 150 155 Gly Thr Tyr Ser Phe Ile Arg Glu Glu Asp Gln Cys Thr Phe Gln His 165 170

Arg Ser Phe Arg Ala Asn Asp Ser Leu Gly Phe Met Leu Leu Ala

Leu Ile Leu Leu Ala Thr Gln Leu Val Tyr Leu Lys Leu Ile Phe Phe

180

195

Val	l His 210	Asp	Arg	Arg	J Lys	Met 215	Lys	Pro	Val	l Glr	n Phe 220	e Val	Ala	Ala	a Val	
Sei 225	Gln	Asn	Trp	Thr	230	His	Gly	Pro	Gly	/ Ala 235	Ser	Gly	Gln	Ala	Ala 240	
Ala	Asn	Trp	Leu	Ala 245	Gly	Phe	Gly	Arg	G1y 250	Pro	Thr	Pro	Pro	Thr 255	Leu	
Leu	Gly	Ile	Arg 260	Gln	Asn	Ala	Asn	Thr 265	Thr	Gly	Arg	Arg	Arg 270	Leu	Leu	
Val	Leu	Asp 275	Glu	Phe	Lys	Met	Glu 280	Lys	Arg	Ile	Ser	Arg 285	Met	Phe	Tyr	
Ile	Met 290	Thr	Phe	Leu	Phe	Leu 295	Thr	Leu	Trp	Gly	Pro 300	Tyr	Leu	Val	Ala	
Cys 305	Tyr	Trp	Arg	Val	Phe 310	Ala	Arg	Gly	Pro	Val 315	Val	Pro	Gly	Gly	Phe 320	
Leu	Thr	Ala	Ala	Val 325	Trp	Met	Ser	Phe	Ala 330	Gln	Ala	Gly		Asn 335	Pro	
Phe	Val	Cys	Ile 340	Phe	Ser	Asn	Arg	Glu 345	Leu	Arg	Arg	Cys	Phe 350	Ser	Thr	
Thr	Leu	Leu ' 355	Tyr (Cys .	Arg	Lys	Ser 360	Arg	Leu	Pro	Arg	Glu 365	Pro '	Tyr	Cys	
Val	Ile 370															
<210 <211 <212 <213	> 10 > DN	080 AN	sapie	ens												
<400: atgc			iaaca	acac	רמר	icccc	1020	2200		~~- 4						
gcgat															acccg	60
aacct																120
ttcat																180
tacta																300
										ge 35		J	9	-596	9400	300

gtggcctttt	acgcaaacat	gtattccagc	atcctcacca	tgacctgtat	cagcgtggag	360
cgcttcctgg	gggtcctgta	cccgctcagc	tccaagcgct	ggcgccgccg	tcgttacgcg	420
gtggccgcgt	gtgcagggac	ctggctgctg	ctcctgaccg	ccctgtgccc	gctggcgcgc	480
accgatctca	cctacccggt	gcacgccctg	ggcatcatca	cctgcttcga	cgtcctcaag	540
tggacgatgc	tccccagcgt	ggccatgtgg	gccgtgttcc	tcttcaccat	cttcatcctg	600
ctgttcctca	tcccgttcgt	gatcaccgtg	gcttgttaca	cggccaccat	cctcaagctg	660
ttgcgcacgg	aggaggcgca	cggccgggag	cagcggaggc	gcgcggtggg	cctggccgcg	720
gtggtcttgc	tggcctttgt	cacctgcttc	gcccccaaca	acttcgtgct	cctggcgcac	780
atcgtgagcc	gcctgttcta	cggcaagagc	tactaccacg	tgtacaagct	cacgctgtgt	840
ctcagctgcc	tcaacaactg	tctggacccg	tttgtttatt	actttgcgtc	ccgggaattc	900
cagctgcgcc	tgcgggaata	tttgggctgc	cgccgggtgc	ccagagacac	cctggacacg	960
cgccgcgaga	gcctcttctc	cgccaggacc	acgtccgtgc	gctccgaggc	cggtgcgcac	1020
cctgaaggga	tggagggagc	caccaggccc	ggcctccaga	ggcaggagag	tgtgttctga	1080

<210> 30

<211> 359

<212> PRT

<213> Homo sapiens

<400> 30

Leu Arg Asn Pro Ala Ile Ala Val Ala Leu Pro Val Val Tyr Ser Leu 20 25 30

Val Ala Ala Val Ser Ile Pro Gly Asn Leu Phe Ser Leu Trp Val Leu $35 \hspace{1cm} 40 \hspace{1cm} 45$

Cys Arg Arg Met Gly Pro Arg Ser Pro Ser Val Ile Phe Met Ile Asn 50 55 60

Leu Ser Val Thr Asp Leu Met Leu Ala Ser Val Leu Pro Phe Gln Ile 70 75 80

Tyr Tyr His Cys Asn Arg His His Trp Val Phe Gly Val Leu Leu Cys 85 90 95

Asn Val Val Thr Val Ala Phe Tyr Ala Asn Met Tyr Ser Ser Ile Leu Page 36 100 105 110

Leu Ser Ser Lys Arg Trp Arg Arg Arg Arg Tyr Ala Val Ala Ala Cys 130 140

Ala Gly Thr Trp Leu Leu Leu Leu Thr Ala Leu Cys Pro Leu Ala Arg 145 150 155 160

Thr Asp Leu Thr Tyr Pro Val His Ala Leu Gly Ile Ile Thr Cys Phe 165 170 175

Asp Val Leu Lys Trp Thr Met Leu Pro Ser Val Ala Met Trp Ala Val 180 185 190

Phe Leu Phe Thr Ile Phe Ile Leu Leu Phe Leu Ile Pro Phe Val Ile 195 200 205

Thr Val Ala Cys Tyr Thr Ala Thr Ile Leu Lys Leu Leu Arg Thr Glu 210 215 220

Glu Ala His Gly Arg Glu Gln Arg Arg Arg Ala Val Gly Leu Ala Ala 225 230 235 240

Val Val Leu Leu Ala Phe Val Thr Cys Phe Ala Pro Asn Asn Phe Val 245 250 250

Leu Leu Ala His Ile Val Ser Arg Leu Phe Tyr Gly Lys Ser Tyr Tyr 260 265 270

His Val Tyr Lys Leu Thr Leu Cys Leu Ser Cys Leu Asn Asn Cys Leu 275

Asp Pro Phe Val Tyr Tyr Phe Ala Ser Arg Glu Phe Gln Leu Arg Leu 290 295 300

Arg Glu Tyr Leu Gly Cys Arg Arg Val Pro Arg Asp Thr Leu Asp Thr 305 310 315

Arg Arg Glu Ser Leu Phe Ser Ala Arg Thr Thr Ser Val Arg Ser Glu 325 330 335

Ala Gly Ala His Pro Glu Gly Met Glu Gly Ala Thr Arg Pro Gly Leu Page 37 340 345 350

Gln Arg Gln Glu Ser Val Phe 355

<210> 31 <211> 1503 <212> DNA <213> Homo sapiens

<400> 31

atggagegte eetgggagga cageecagge eeggagggg cagetgaggg etegeetgtg 60 ccagtcgccg ccggggcgcg ctccggtgcc gcggcgagtg gcacaggctg gcagccatgg 120 gctgagtgcc cgggacccaa ggggaggggg caactgctgg cgaccgccgg ccctttgcgt 180 cgctggcccg ccccctcgcc tgccagctcc agccccgccc ccggagcggc gtccgctcac 240 teggtteaag geagegegae tgegggtgge geaegaeeag ggegeagaee ttggggegeg 300 cggcccatgg agtcggggct gctgcggccg gcgccggtga gcgaggtcat cgtcctgcat 360 tacaactaca ccggcaagct ccgcggtgcg agctaccagc cgggtgccgg cctgcgcgcc 420 gacgccgtgg tgtgcctggc ggtgtgcgcc ttcatcgtgc tagagaatct agccgtgttg 480 ttggtgeteg gaegeeacce gegetteeac geteecatgt teetgeteet gggeageete 540 acgttgtcgg atctgctggc aggcgccgcc tacgccgcca acatcctact gtcggggccg 600 ctcacgctga aactgtcccc cgcgctctgg ttcgcacggg agggaggcgt cttcgtggca 660 ctcactgcgt ccgtgctgag cctcctggcc atcgcgctgg agcgcagcct caccatggcg 720 cgcagggggc ccgcgcccgt ctccagtcgg gggcgcacgc tggcgatggc agccgcggcc 780 tggggcgtgt cgctgctcct cgggctcctg ccagcgctgg gctggaattg cctgggtcgc 840 ctggacgctt gctccactgt cttgccgctc tacgccaagg cctacgtgct cttctgcgtg 900 ctegeetteg tgggeateet ggeegegate tgtgeaetet aegegegeat etaetgeeag 960 gtacgcgcca acgcgcggcg cctgccggca cggcccggga ctgcggggac cacctcgacc 1020 cgggcgcgtc gcaagccgcg ctctctggcc ttgctgcgca cgctcagcgt ggtgctcctg 1080 gcctttgtgg catgttgggg ccccctcttc ctgctgctgt tgctcgacgt ggcgtgcccg 1140 gcgcgcacct gtcctgtact cctgcaggcc gatcccttcc tgggactggc catggccaac 1200 teacttetga acceeateat etacaegete accaaeegeg acetgegeea egegeteetg 1260 cgcctggtct gctgcggacg ccactcctgc ggcagagacc cgagtggctc ccagcagtcg 1320 gcgagcgcgg ctgaggcttc cgggggcctg cgccgctgcc tgcccccggg ccttgatggg 1380 agetteageg geteggageg eteategeee eagegegaeg ggetggaeae eageggetee 1440

acaggo	agcc c	cggtgc	cacc	caca	gccg	cc c	ggac	tctg	g ta	tcag	aacc	ggc	tgcagac
tga													
<210> <211> <212> <213>	32 500 PRT Homo	sapien	s										
<400>	32												
Met Glu 1	Arg	Pro Tr 5	p Glı	ı Asp	Se:	r Pro	Gl ₂	y Pro	o Glu	ı Gl	y Ala	a Ala 15	a Glu
Gly Ser	Pro :	Val Pro 20	o Val	l Ala	Ala	a Gly 25	/ Ala	a Arg	g Ser	Gly	y Ala 30	a Ala	a Ala
Ser Gly	Thr (Gly Tr	o Glr	Pro	Trp 40	> Ala	Glu	ı Cys	Pro	Gl ₃ 45	/ Pro	Lys	Gly
Arg Gly 50	Gln I	Seu Lei	ı Ala	Thr 55	Ala	Gly	Pro	Leu	Arg 60	Arg	Trp	Pro	Ala
Pro Ser 65	Pro A	ala Ser	Ser 70	Ser	Pro	Ala	Pro	Gly 75	Ala	Ala	Ser	Ala	His 80
Ser Val	Gln G	ly Ser 85	Ala	Thr	Ala	Gly	Gly 90	Ala	Arg	Pro	Gly	Arg 95	Arg
Pro Trp	Gly A 1	la Arg 00	Pro	Met	Glu	Ser 105	Gly	Leu	Leu	Arg	110		Pro
Val Ser	Glu V 115	al Ile	Val	Leu	His 120	Tyr	Asn	Tyr	Thr	Gly 125	Lys		Arg
Gly Ala 130	Ser T	yr Gln	Pro	Gly 135	Ala	Gly	Leu	Arg	Ala 140	Asp	Ala	Val	Val
Cys Leu . 145	Ala Va	al Cys	Ala 150	Phe	Ile	Val	Leu	Glu 155	Asn	Leu	Ala	Val	Leu 160
Leu Val :	Leu Gl	y Arg 165	His	Pro .	Arg	Phe	His 170	Ala	Pro	Met		Leu 175	Leu
Leu Gly S	Ser Le 18	u Thr	Leu	Ser A	Asp	Leu : 185	Leu	Ala	Gly /		Ala 190	Tyr .	Ala

Ala Asn Ile Leu Leu Ser Gly Pro Leu Thr Leu Lys Leu Ser Pro Ala 200 Leu Trp Phe Ala Arg Glu Gly Gly Val Phe Val Ala Leu Thr Ala Ser Val Leu Ser Leu Leu Ala Ile Ala Leu Glu Arg Ser Leu Thr Met Ala 230 Arg Arg Gly Pro Ala Pro Val Ser Ser Arg Gly Arg Thr Leu Ala Met 245 255 Ala Ala Ala Trp Gly Val Ser Leu Leu Gly Leu Leu Pro Ala 260 Leu Gly Trp Asn Cys Leu Gly Arg Leu Asp Ala Cys Ser Thr Val Leu Pro Leu Tyr Ala Lys Ala Tyr Val Leu Phe Cys Val Leu Ala Phe Val Gly Ile Leu Ala Ala Ile Cys Ala Leu Tyr Ala Arg Ile Tyr Cys Gln Val Arg Ala Asn Ala Arg Arg Leu Pro Ala Arg Pro Gly Thr Ala Gly Thr Thr Ser Thr Arg Ala Arg Arg Lys Pro Arg Ser Leu Ala Leu Leu 340 345 Arg Thr Leu Ser Val Val Leu Leu Ala Phe Val Ala Cys Trp Gly Pro 355 Leu Phe Leu Leu Leu Leu Asp Val Ala Cys Pro Ala Arg Thr Cys 370 Pro Val Leu Leu Gln Ala Asp Pro Phe Leu Gly Leu Ala Met Ala Asn 385 390 395 Ser Leu Leu Asn Pro Ile Ile Tyr Thr Leu Thr Asn Arg Asp Leu Arg His Ala Leu Leu Arg Leu Val Cys Cys Gly Arg His Ser Cys Gly Arg

425

420

Asp Pro Ser Gly Ser Gln Gln Ser Ala Ser Ala Ala Glu Ala Ser Gly 440 Gly Leu Arg Arg Cys Leu Pro Pro Gly Leu Asp Gly Ser Phe Ser Gly 455 Ser Glu Arg Ser Ser Pro Gln Arg Asp Gly Leu Asp Thr Ser Gly Ser 470 475 480 Thr Gly Ser Pro Gly Ala Pro Thr Ala Ala Arg Thr Leu Val Ser Glu Pro Ala Ala Asp 500 <210> 33 1029 DNA

<211> <212> <213> Homo sapiens

<400> 33 atgcaagccg tcgacaatct cacctctgcg cctgggaaca ccagtctgtg caccagagac 60 tacaaaatca cccaggtcct cttcccactg ctctacactg tcctgttttt tgttggactt 120 atcacaaatg gcctggcgat gaggattttc tttcaaatcc ggagtaaatc aaactttatt 180 atttttctta agaacacagt catttctgat cttctcatga ttctgacttt tccattcaaa 240 attcttagtg atgccaaact gggaacagga ccactgagaa cttttgtgtg tcaagttacc 300 tccgtcatat tttatttcac aatgtatatc agtatttcat tcctgggact gataactatc 360 gatcgctacc agaagaccac caggccattt aaaacatcca accccaaaaa tctcttgggg 420 gctaagattc tctctgttgt catctgggca ttcatgttct tactctcttt gcctaacatg 480 attctgacca acaggcagcc gagagacaag aatgtgaaga aatgctcttt ccttaaatca 540 gagttcggtc tagtctggca tgaaatagta aattacatct gtcaagtcat tttctggatt 600 aatttcttaa ttgttattgt atgttataca ctcattacaa aagaactgta ccggtcatac 660 gtaagaacga ggggtgtagg taaagtcccc aggaaaaagg tgaacgtcaa agttttcatt 720 atcattgctg tattctttat ttgttttgtt cctttccatt ttgcccgaat tccttacacc 780 ctgagccaaa cccgggatgt ctttgactgc actgctgaaa atactctgtt ctatgtgaaa 840 gagagcactc tgtggttaac ttccttaaat gcatgcctgg atccgttcat ctatttttc 900 ctttgcaagt ccttcagaaa ttccttgata agtatgctga agtgccccaa ttctgcaaca 960 tctctgtccc aggacaatag gaaaaaagaa caggatggtg gtgacccaaa tgaagagact 1020

ccaatgtaa 1029

<210> 34

<211> 342

<212> PRT

<213> Homo sapiens

<400> 34

Met Gln Ala Val Asp Asn Leu Thr Ser Ala Pro Gly Asn Thr Ser Leu $1 \ \ \,$

Cys Thr Arg Asp Tyr Lys Ile Thr Gln Val Leu Phe Pro Leu Leu Tyr 20 25 30

Thr Val Leu Phe Phe Val Gly Leu Ile Thr Asn Gly Leu Ala Met Arg 35 40 45

Ile Phe Phe Gln Ile Arg Ser Lys Ser Asn Phe Ile Ile Phe Leu Lys 50 55 60

Asn Thr Val Ile Ser Asp Leu Leu Met Ile Leu Thr Phe Pro Phe Lys 70 75 80

Ile Leu Ser Asp Ala Lys Leu Gly Thr Gly Pro Leu Arg Thr Phe Val 85 90 95

Cys Gln Val Thr Ser Val Ile Phe Tyr Phe Thr Met Tyr Ile Ser Ile 100 105 110

Ser Phe Leu Gly Leu Ile Thr Ile Asp Arg Tyr Gln Lys Thr Thr Arg 115 120 125

Pro Phe Lys Thr Ser Asn Pro Lys Asn Leu Leu Gly Ala Lys Ile Leu 130 135 140

Ser Val Val Ile Trp Ala Phe Met Phe Leu Leu Ser Leu Pro Asn Met 145 150 155 160

Ile Leu Thr Asn Arg Gln Pro Arg Asp Lys Asn Val Lys Lys Cys Ser 165 170 175

Phe Leu Lys Ser Glu Phe Gly Leu Val Trp His Glu Ile Val Asn Tyr 180 185 190

Ile Cys Gln Val Ile Phe Trp Ile Asn Phe Leu Ile Val Ile Val Cys Page 42

195 200 205

Tyr Thr Leu Ile Thr Lys Glu Leu Tyr Arg Ser Tyr Val Arg Thr Arg 215 Gly Val Gly Lys Val Pro Arg Lys Lys Val Asn Val Lys Val Phe Ile 225 230 235 240 Ile Ile Ala Val Phe Phe Ile Cys Phe Val Pro Phe His Phe Ala Arg 245 250 255 Ile Pro Tyr Thr Leu Ser Gln Thr Arg Asp Val Phe Asp Cys Thr Ala 260 265 270 Glu Asn Thr Leu Phe Tyr Val Lys Glu Ser Thr Leu Trp Leu Thr Ser 275 280 285 Leu Asn Ala Cys Leu Asp Pro Phe Ile Tyr Phe Phe Leu Cys Lys Ser 290 295 300 Phe Arg Asn Ser Leu Ile Ser Met Leu Lys Cys Pro Asn Ser Ala Thr 305 310 315 Ser Leu Ser Gln Asp Asn Arg Lys Lys Glu Gln Asp Gly Gly Asp Pro 325 330 335 Asn Glu Glu Thr Pro Met 340 <210> 35 <211> 1077 <212> DNA <213> Homo sapiens <400> atgtcggtct gctaccgtcc cccagggaac gagacactgc tgagctggaa gacttcgcgg 60 gccacaggca cagcetteet getgetggeg gegetgetgg ggetgeetgg caacggette 120 gtggtgtgga gcttggcggg ctggcggcct gcacggggc gaccgctggc ggccacgctt 180 gtgctgcacc tggcgctggc cgacggcgcg gtgctgctgc tcacgccgct ctttgtggcc 240 ttcctgaccc ggcaggcctg gccgctgggc caggcgggct gcaaggcggt gtactacgtg 300 tgcgcgctca gcatgtacgc cagcgtgctg ctcaccggcc tgctcagcct gcagcgctgc 360 ctcgcagtca cccgccctt cctggcgcct cggctgcgca gcccggccct ggcccgccgc 420 ctgctgctgg cggtctggct ggccgccctg ttgctcgccg tcccggccgc cgtctaccgc 480 Page 43

cacctgtgga	gggaccgcgt	atgccagctg	tgccacccgt	cgccggtcca	cgccgccgcc	540
cacctgagcc	tggagactct	gaccgctttc	gtgcttcctt	tcgggctgat	gctcggctgc	600
tacagcgtga	cgctggcacg	gctgcggggc	gcccgctggg	gctccgggcg	gcacggggcg	660
cgggtgggcc	ggctggtgag	cgccatcgtg	cttgccttcg	gcttgctctg	ggccccctac	720
cacgcagtca	accttctgca	ggcggtcgca	gcgctggctc	caccggaagg	ggccttggcg	780
aagctgggcg	gagccggcca	ggcggcgcga	gcgggaacta	cggccttggc	cttcttcagt	840
tctagcgtca	acccggtgct	ctacgtcttc	accgctggag	atctgctgcc	ccgggcaggt	900
ccccgtttcc	tcacgcggct	cttcgaaggc	tctggggagg	cccgaggggg	cggccgctct	960
agggaaggga	ccatggagct	ccgaactacc	cctcagctga	aagtggtggg	gcagggccgc	1020
ggcaatggag	acccgggggg	tgggatggag	aaggacggtc	cggaatggga	cctttga	1077

<211> 358

<212> PRT

<213> Homo sapiens

<400> 36

Met Ser Val Cys Tyr Arg Pro Pro Gly Asn Glu Thr Leu Leu Ser Trp $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Lys Thr Ser Arg Ala Thr Gly Thr Ala Phe Leu Leu Leu Ala Ala Leu 20 25 30

Leu Gly Leu Pro Gly Asn Gly Phe Val Val Trp Ser Leu Ala Gly Trp 35 40 45

Arg Pro Ala Arg Gly Arg Pro Leu Ala Ala Thr Leu Val Leu His Leu 50 55 60

Ala Leu Ala Asp Gly Ala Val Leu Leu Leu Thr Pro Leu Phe Val Ala 65 70 75 80

Phe Leu Thr Arg Gln Ala Trp Pro Leu Gly Gln Ala Gly Cys Lys Ala 85 90 95

Val Tyr Tyr Val Cys Ala Leu Ser Met Tyr Ala Ser Val Leu Leu Thr

Gly Leu Ser Leu Gln Arg Cys Leu Ala Val Thr Arg Pro Phe Leu 115 120 125

Ala	a Pro 130	o Ar O	g Le	u Ar	g Sei	2 Pro 13!	o Ala	a Lei	u Ala	a Aro	9 Arg 140		ı Le	ı Leı	ı Ala
Val 145	l Trp	o Le	u Ala	a Ala	150	ı Leı)	ı Leı	ı Ala	a Val	l Pro 155	Ala	a Ala	a Val	l Tyr	Arg 160
His	s Lei	ı Tr <u>ı</u>	o Arg	g Asp 165	Arg	y Val	Cys	Glr	1 Leu 170		His	s Pro	Ser	Pro 175	Val
His	s Ala	a Ala	a Ala 180	a His	Leu	Ser	: Leu	Glu 185	ı Thr	Leu	Thr	: Ala	Phe 190		Leu
Pro	Phe	e Gly 195	/ Leu	ı Met	: Leu	Gly	Cys 200	Туг	Ser	. Val	Thr	Leu 205		Arg	Leu
Arg	Gly 210	Ala	a Arg	Trp	Gly	Ser 215	Gly	Arg	His	Gly	Ala 220		Val	Gly	Arg
Leu 225	Val	Ser	Ala	Ile	Val 230	Leu	Ala	Phe	Gly	Leu 235		Trp	Ala	Pro	Tyr 240
His	Ala	Val	Asn	Leu 245	Leu	Gln	Ala	Val	Ala 250	Ala	Leu	Ala	Pro	Pro 255	Glu
Gly	Ala	Leu	Ala 260	Lys	Leu	Gly	Gly	Ala 265	Gly	Gln	Ala	Ala	Arg 270	Ala	Gly
Thr	Thr	Ala 275	Leu	Ala	Phe	Phe	Ser 280	Ser	Ser	Val	Asn	Pro 285	Val	Leu	Tyr
Val	Phe 290	Thr	Ala	Gly	Asp	Leu 295	Leu		Arg				Arg	Phe	Leu
Thr 305	Arg	Leu	Phe	Glu	Gly 310	Ser	Gly	Glu	Ala	Arg 315	Gly	Gly	Gly	Arg	Ser 320
Arg	Glu	Gly	Thr	Met 325	Glu	Leu	Arg	Thr	Thr 330	Pro	Gln	Leu	Lys	Val 335	Val
Gly	Gln	Gly	Arg 340	Gly	Asn	Gly	Asp	Pro 345	Gly	Gly	Gly	Met	Glu 350	Lys	Asp
Gly	Pro	Glu 355	Trp	Asp	Leu										

```
atgctgggga tcatggcatg gaatgcaact tgcaaaaact ggctggcagc agaggctgcc
 ctggaaaagt actacctttc catttttat gggattgagt tcgttgtggg agtccttgga
 aataccattg ttgtttacgg ctacatcttc tctctgaaga actggaacag cagtaatatt
 tatetettta acctetetgt etetgaetta gettttetgt geaccetece eatgetgata
 aggagttatg ccaatggaaa ctggatatat ggagacgtgc tctgcataag caaccgatat
 gtgcttcatg ccaacctcta taccagcatt ctctttctca cttttatcag catagatcga
 tacttgataa ttaagtatcc tttccgagaa caccttctgc aaaagaaaga gtttgctatt
 ttaatctcct tggccatttg ggttttagta accttagagt tactacccat acttcccctt
 ataaatcctg ttataactga caatggcacc acctgtaatg attttgcaag ttctggagac
 cccaactaca acctcattta cagcatgtgt ctaacactgt tggggttcct tattcctctt
 tttgtgatgt gtttctttta ttacaagatt gctctcttcc taaagcagag gaataggcag
 gttgctactg ctctgcccct tgaaaagcct ctcaacttgg tcatcatggc agtggtaatc
                                                                       720
 ttctctgtgc tttttacacc ctatcacgtc atgcggaatg tgaggatcgc ttcacgcctg
                                                                       780
gggagttgga agcagtatca gtgcactcag gtcgtcatca actcctttta cattgtgaca
                                                                       840
cggcctttgg cctttctgaa cagtgtcatc aaccctgtct tctattttct tttgggagat
                                                                       900
cacttcaggg acatgctgat gaatcaactg agacacaact tcaaatccct tacatccttt
                                                                      960
agcagatggg ctcatgaact cctactttca ttcagagaaa agtga
                                                                     1005
<210>
       38
<211>
       334
<212>
       PRT
<213>
       Homo sapiens
<400>
Met Leu Gly Ile Met Ala Trp Asn Ala Thr Cys Lys Asn Trp Leu Ala
Ala Glu Ala Ala Leu Glu Lys Tyr Tyr Leu Ser Ile Phe Tyr Gly Ile
            20
Glu Phe Val Val Gly Val Leu Gly Asn Thr Ile Val Val Tyr Gly Tyr
```

60

120

180

240

300

360

420

480

540

600

660

<210>

<211>

<212>

<213>

<400>

37

1005

Homo sapiens

DNA

Il	e Ph 50	e Se	er Le	u Ly	s Ası	n Try 55	o Ası	n Se.	r Se	r As:	n Ile 60	е Ту	r Le	u Ph	e Asn
Le 65	u Se	r Va	ıl Se	r As	p Lei 70	ı Alá	a Phe	e Lei	ı Cy:	s Th: 75	r Lei	ı Pro	o Me		u Ile 80
Ar	g Se	т Ту	r Al	a Ası 85	n Gly	/ Asn	ı Trp) Ile	€ Tyı 90	r Gly	y Asp	Va:	l Lei	u Cy: 95	s Ile
Sei	Ası	n Ar	g Ty 10	r Val	l Leu	His	: Ala	Asr 105	ı Leı	ı Tyr	Thr	; Sei	116 110		ı Phe
Lei	ı Thi	r Ph 11	e Ile 5	e Sei	: Ile	Asp	Arg 120	Туг	Leu	ı Ile	e Ile	Lys 125	5 Туг 5	r Pro) Phe
Arç	Glu 130	ı Hi	s Lei	ı Lev	ı Gln	Lys 135	Lys	Glu	Phe	: Ala	Ile 140		ı Ile	e Ser	Leu
Ala 145	Ile	e Tr	o Val	l Leu	. Val 150	Thr	Leu	Glu	Leu	Leu 155	Pro	Ile	Leu	ı Pro	Leu 160
Ile	Asn	Pro	o Val	Ile 165	Thr	Asp	Asn	Gly	Thr 170	Thr	Cys	Asn	Asp	Phe	Ala
Ser	Ser	Gly	/ Asp 180	Pro	Asn	Tyr	Asn	Leu 185	Ile	Tyr	Ser	Met	Cys 190		Thr
Leu	Leu	Gly 195	Phe	Leu	Ile	Pro	Leu 200	Phe	Val	Met	Cys	Phe 205	Phe	Tyr	Tyr
Lys	Ile 210	Ala	Leu	Phe	Leu	Lys 215	Gln	Arg	Asn	Arg	Gln 220	Val	Ala	Thr	Ala
Leu 225	Pro	Leu	Glu	Lys	Pro 230	Leu	Asn	Leu	Val	Ile 235	Met	Ala	Val	Val	Ile 240
Phe	Ser	Val	Leu	Phe 245	Thr	Pro	Tyr	His	Val 250	Met	Arg	Asn	Val	Arg 255	Ile
Ala	Ser	Arg	Leu 260	Gly	Ser	Trp	Lys	Gln 265	Tyr	Gln	Cys	Thr	Gln 270	Val	Val
Ile	Asn	Ser 275	Phe	Tyr	Ile	Val '	Thr . 280	Arg	Pro	Leu		Phe 285	Leu	Asn	Ser

Val Ile Asn Pro Val Phe Tyr Phe Leu Leu Gly Asp His Phe Arg Asp 290 295 300

Met Leu Met Asn Gln Leu Arg His Asn Phe Lys Ser Leu Thr Ser Phe 305 310 315 320

Ser Arg Trp Ala His Glu Leu Leu Leu Ser Phe Arg Glu Lys 325 330

<210> 39

<211> 1296

<212> DNA

<213> Homo sapiens

<400> 39

atgcaggcgc ttaacattac cccggagcag ttctctcggc tgctgcggga ccacaacctg 60 acgcgggagc agttcatcgc tctgtaccgg ctgcgaccgc tcgtctacac cccagagctg 120 ccgggacgcg ccaagctggc cctcgtgctc accggcgtgc tcatcttcgc cctggcgctc 180 tttggcaatg ctctggtgtt ctacgtggtg acccgcagca aggccatgcg caccgtcacc 240 aacatcttta tctgctcctt ggcgctcagt gacctgctca tcaccttctt ctgcattccc 300 gtcaccatgc tccagaacat ttccgacaac tggctggggg gtgctttcat ttgcaagatg 360 gtgccatttg tccagtctac cgctgttgtg acagaaatgc tcactatgac ctgcattgct 420 gtggaaaggc accagggact tgtgcatcct tttaaaatga agtggcaata caccaaccga 480 agggctttca caatgctagg tgtggtctgg ctggtggcag tcatcgtagg atcacccatg 540 tggcacgtgc aacaacttga gatcaaatat gacttcctat atgaaaagga acacatctgc 600 tgcttagaag agtggaccag ccctgtgcac cagaagatct acaccacctt catccttgtc 660 atcctcttcc tcctgcctct tatggtgatg cttattctgt acagtaaaat tggttatgaa 720 ctttggataa agaaaagagt tggggatggt tcagtgcttc gaactattca tggaaaagaa 780 atgtccaaaa tagccaggaa gaagaaacga gctgtcatta tgatggtgac agtggtggct 840 ctctttgctg tgtgctgggc accattccat gttgtccata tgatgattga atacagtaat 900 tttgaaaagg aatatgatga tgtcacaatc aagatgattt ttgctatcgt gcaaattatt 960 ggattttcca actccatctg taatcccatt gtctatgcat ttatgaatga aaacttcaaa 1020 aaaaatgttt tgtctgcagt ttgttattgc atagtaaata aaaccttctc tccagcacaa 1080 aggcatggaa attcaggaat tacaatgatg cggaagaaag caaagttttc cctcagagag 1140 aatccagtgg aggaaaccaa aggagaagca ttcagtgatg gcaacattga agtcaaattg 1200 tgtgaacaga cagaggagaa gaaaaagctc aaacgacatc ttgctctctt taggtctgaa 1260

<211> 431

<212> PRT

<213> Homo sapiens

<400> 40

Met Gln Ala Leu Asn Ile Thr Pro Glu Gln Phe Ser Arg Leu Leu Arg 1 5 10 15

Asp His Asn Leu Thr Arg Glu Gln Phe Ile Ala Leu Tyr Arg Leu Arg 20 25 30

Pro Leu Val Tyr Thr Pro Glu Leu Pro Gly Arg Ala Lys Leu Ala Leu 35

Val Leu Thr Gly Val Leu Ile Phe Ala Leu Ala Leu Phe Gly Asn Ala 50 60

Leu Val Phe Tyr Val Val Thr Arg Ser Lys Ala Met Arg Thr Val Thr 65 70 75 80

Asn Ile Phe Ile Cys Ser Leu Ala Leu Ser Asp Leu Leu Ile Thr Phe 85 90 95

Phe Cys Ile Pro Val Thr Met Leu Gln Asn Ile Ser Asp Asn Trp Leu 100 105 110

Val Val Thr Glu Met Leu Thr Met Thr Cys Ile Ala Val Glu Arg His

Gln Gly Leu Val His Pro Phe Lys Met Lys Trp Gln Tyr Thr Asn Arg 145 150 155 160

Arg Ala Phe Thr Met Leu Gly Val Val Trp Leu Val Ala Val Ile Val 165 170 175

Gly Ser Pro Met Trp His Val Gln Gln Leu Glu Ile Lys Tyr Asp Phe 180 185 190

Leu Tyr Glu Lys Glu His Ile Cys Cys Leu Glu Glu Trp Thr Ser Pro Page 49

Val His Gln Lys Ile Tyr Thr Thr Phe Ile Leu Val Ile Leu Phe Leu 210 215 220

Leu Pro Leu Met Val Met Leu Ile Leu Tyr Ser Lys Ile Gly Tyr Glu 235 235 240

Leu Trp Ile Lys Lys Arg Val Gly Asp Gly Ser Val Leu Arg Thr Ile 245 250 250

His Gly Lys Glu Met Ser Lys Ile Ala Arg Lys Lys Lys Arg Ala Val 260 265 270

Ile Met Wet Val Thr Val Val Ala Leu Phe Ala Val Cys Trp Ala Pro 275 280 285

Phe His Val Val His Met Met Ile Glu Tyr Ser Asn Phe Glu Lys Glu 290 295 300

Tyr Asp Asp Val Thr Ile Lys Met Ile Phe Ala Ile Val Gln Ile Ile 305 310315315

Met Met Arg Lys Lys Ala Lys Phe Ser Leu Arg Glu Asn Pro Val Glu 370 375 380

Glu Thr Lys Gly Glu Ala Phe Ser Asp Gly Asn Ile Glu Val Lys Leu 385 390 395 400

Cys Glu Gln Thr Glu Glu Lys Lys Lys Leu Lys Arg His Leu Ala Leu 405 410 415

Phe Arg Ser Glu Leu Ala Glu Asn Ser Pro Leu Asp Ser Gly His 420 425 430

<210> 41

```
<211>
        24
  <212> DNA
  <213> Artificial Sequence
 <220>
 <223> Novel Sequence
 <400> 41
 ctgtgtacag cagttcgcag agtg
                                                                        24
 <210> 42
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Novel Sequence
 <400> 42
 gagtgccagg cagagcaggt agac
                                                                       24
 <210> 43
 <211> 31
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Novel Sequence
 <400> 43
cccgaattcc tgcttgctcc cagcttggcc c
                                                                       31
<210> 44
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 44
tgtggatcct gctgtcaaag gtcccattcc gg
                                                                       32
<210> 45
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223>
      Novel Sequence
<400> 45
tcacaatgct aggtgtggtc
                                                                      20
<210> 46
```

<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220> <223>		
<400>	46 agaca atgggattac ag	
- 5 - 2 - 3	agada acgggactac ag	22
<210>	47	
<211>		
<212>		
<213>	Homo sapiens	
<400>	47	
	atgct aggtgtggtc tggctggtgg cagtcatcgt aggatcaccc atgtggcacg	60
	caact tgagatcaaa tatgacttcc tatatgaaaa ggaacacatc tgctgcttag	120
	ggac cagecetgtg caceagaaga tetacaceae etteateett gteateetet	180
tcctcc	tgcc tettatggtg atgettatte tgtaegtaaa attggttatg aactttggat	240
aaagaa	laaga gttggggatg gttcagtgct tcgaactatt catggaaaag aaatgtccaa	300
aatagc	cagg aagaagaaac gagctgtcat tatgatggtg acagtggtgg ctctctttgc	360
tgtgtg	ctgg gcaccattcc atgttgtcca tatgatgatt gaatacagta attttgaaaa	420
ggaata	tgat gatgtcacaa tcaagatgat ttttgctatc gtgcaaatta ttggattttc	480
caactc	catc tgtaatccca ttgtctatgc a	511
<210>	40	
<211>	48 21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Novel Sequence	
<400>	48	
ctgctta	agaa gagtggacca g	21
<21.0×	40	
<210> <211>	49 22	
_	DNA	
	Artificial Sequence	
<220>		
·	Novel Sequence	
	49	
rgtgca	cca gaagatctac ac	22

	DNA	
<213>	Artificial Sequence	
<220> <223>		
<400> caagg	50 atgaa ggtggtgtag a	21
<210><211><212><212><213>	23	
<220> <223>		
<400> gtgtag	51 gatct tetggtgeae agg	23
<210> <211> <212> <213>		
<220> <223>	Novel Sequence	
<400> gcaatg	52 cagg tcatagtgag c	21
<210><211><212><212><213>	27	
<220> <223>	Novel Sequence	
<400> tggagc	53 atgg tgacgggaat gcagaag	27
<210> <211> <212> <213>	54 27 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gtgatga	54 agca ggtcactgag cgccaag	27

<220>		
<400> gcaat	55 geagg egettaacat tae	23
<220> <223>		
<400> ttggg	56 ttaca atctgaaggg ca	22
<210><211><211><212><213>	23 DNA	
<220> <223>	Novel Sequence	
<400> actccg	57 gtgtc cagcaggact ctg	23
<210><211><211><212><213>	24 DNA	
<220> <223>	Novel Sequence	
<400> tgcgtg	58 ttcc tggaccctca cgtg	24
<210> <211> <212> <213>	59 29 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> caggcct	59 tgg attttaatgt cagggatgg	29

<220> <223>	>	
<400> ggaga		27
<220> <223>		
<400> tgatg	61 tgatg ccagatacta atagcac	27
<210><211><212><212><213>	27 DNA	
<220> <223>		
<400> cctgat	62 Etcat ttaggtgaga ttgagac	27
<210><211><211><212><213>	26 DNA	
<220> <223>	Novel Sequence	
<400> cccaag	63 cttc cccaggtgta tttgat	26
<210><211><211><212><213>	64 26 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gttgga	64 tcca cataatgcat tttctc	26

```
<210>
         65
 <211>
        1080
 <212>
        DNA
 <213>
        Homo sapiens
 <400> 65
 atgattetea actettetae tgaagatggt attaaaagaa teeaagatga ttgteecaaa
                                                                         60
 gctggaaggc ataattacat atttgtcatg attcctactt tatacagtat catctttgtg
                                                                        120
 gtgggaatat ttggaaacag cttggtggtg atagtcattt acttttatat gaagctgaag
                                                                        180
 actgtggcca gtgtttttct tttgaattta gcactggctg acttatgctt tttactgact
                                                                        240
 ttgccactat gggctgtcta cacagctatg gaataccgct ggccctttgg caattaccta
                                                                        300
 tgtaagattg cttcagccag cgtcagtttc aacctgtacg ctagtgtgtt tctactcacg
                                                                        360
 tgtctcagca ttgatcgata cctggctatt gttcacccaa tgaagtcccg ccttcgacgc
                                                                       420
 acaatgettg tagecaaagt cacetgeate ateatttgge tgetggeagg ettggeeagt
                                                                       480
 ttgccagcta taatccatcg aaatgtattt ttcattgaga acaccaatat tacagtttgt
                                                                       540
 gctttccatt atgagtccca aaattcaacc cttccgatag ggctgggcct gaccaaaaat
                                                                       600
atactgggtt tcctgtttcc ttttctgatc attcttacaa gttatactct tatttggaag
                                                                       660
gccctaaaga aggcttatga aattcagaag aacaaaccaa gaaatgatga tattttaag
                                                                       720
ataattatgg caattgtgct tttcttttc ttttcctgga ttccccacca aatattcact
                                                                       780
tttctggatg tattgattca actaggcatc atacgtgact gtagaattgc agatattgtg
                                                                       840
gacacggcca tgcctatcac catttgtata gcttatttta acaattgcct gaatcctctt
                                                                       900
ttttatggct ttctggggaa aaaatttaaa agatattttc tccagcttct aaaatatatt
                                                                       960
cccccaaaag ccaaatccca ctcaaacctt tcaacaaaaa tgagcacgct ttcctaccgc
                                                                      1020
ccctcagata atgtaagctc atccaccaag aagcctgcac catgttttga ggttgagtga
                                                                      1080
<210>
       66
<211>
       359
<212>
       PRT
<213>
       Homo sapiens
<400>
       66
Met Ile Leu Asn Ser Ser Thr Glu Asp Gly Ile Lys Arg Ile Gln Asp
```

Asp Cys Pro Lys Ala Gly Arg His Asn Tyr Ile Phe Val Met Ile Pro

25

20

Thr Leu Tyr Ser Ile Ile Phe Val Val Gly Ile Phe Gly Asn Ser Leu 35 40

Va	l Va 50	1 I]	le Va	1 II	е Ту	r Ph	е Ту	r Me	t Ly	s Le	u Ly: 60	s Th	r Va	l Al	a Ser
Va 65	l Ph	e Le	eu Le	u As	n Le	u Ala	a Le	u Ala	a As _l	p Lei 75	ı Cys	s Phe	e Le	u Lei	ı Thr 80
Le	u Pr	o Le	u Tr	p Al 85	a Vai	1 Ту	c Thi	r Ala	a Met 90	: Glu	1 Туг	Arq	J Trị	95) Phe
Gl <u>y</u>	y As:	n Ty	r Le 10	u Cya	s Lys	s Il∈	e Ala	a Sei 105	Ala	a Ser	. Val	. Ser	Phe 11(e Asr	ı Leu
Туі	c Ala	a Se 11	r Va. 5	l Ph€	e Leu	ı Lev	Thr 120	Cys	. Leu	Ser	: Ile	Asp 125		ј Туг	Leu
Ala	11e 130	e Va	l His	s Pro	Met	Lys 135	Ser	· Arg	Leu	Arg	Arg		Met	Leu	Val
Ala 145	Lys	s Vai	l Thi	c Cys	Ile 150	lle	Ile	Trp	Leu	Leu 155	Ala	Gly	Leu	Ala	Ser 160
Leu	Pro	Ala	a Ile	: Ile 165	His	Arg	Asn	Val	Phe 170	Phe	Ile	Glu	Asn	Thr 175	Asn
Ile	Thr	Va]	Cys 180	Ala	Phe	His	Tyr	Glu 185	Ser	Gln	Asn	Ser	Thr 190	Leu	Pro
Ile	Gly	Leu 195	Gly	Leu	Thr	Lys	Asn 200	Ile	Leu	Gly	Phe	Leu 205	Phe	Pro	Phe
Leu	Ile 210	Ile	Leu	Thr	Ser	Tyr 215	Thr	Leu	Ile	Trp	Lys 220	Ala	Leu	Lys	Lys
Ala 225	Tyr	Glu	Ile	Gln	Lys 230	Asn	Lys	Pro	Arg	Asn 235	Asp	Asp	Ile	Phe	Lys 240
Ile	Ile	Met	Ala	Ile 245	Val	Leu	Phe	Phe	Phe 250	Phe	Ser	Trp	Ile	Pro 255	His
Gln	Ile	Phe	Thr 260	Phe	Leu	Asp	Val	Leu 265	Ile	Gln	Leu	Gly	Ile 270	Ile	Arg
Asp	Cys	Arg 275	Ile	Ala	Asp	Ile	Val 280	Asp	Thr	Ala		Pro 285	Ile	Thr	Ile

Page 57

Cys Ile Ala Tyr Phe Asn Asn Cys Leu Asn Pro Leu Phe Tyr Gly Phe 290 295 300	
Leu Gly Lys Lys Phe Lys Arg Tyr Phe Leu Gln Leu Leu Lys Tyr Ile 305 310 315 320	
Pro Pro Lys Ala Lys Ser His Ser Asn Leu Ser Thr Lys Met Ser Thr 325 330 335	
Leu Ser Tyr Arg Pro Ser Asp Asn Val Ser Ser Ser Thr Lys Lys Pro 340 345 350	
Ala Pro Cys Phe Glu Val Glu 355	
<210> 67 <211> 27 <212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 67 accatgggca gcccctggaa cggcagc	27
<210> 68 <211> 39 <212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 68	
agaaccacca ccagcaggac gcggacggtc tgccggtgg	39
<210> 69 <211> 39	
<211> 39 <212> DNA	
<213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 69 gtccgcgtcc tgctggtggt ggttctggca tttataatt	39
<210> 70 <211> 33	

<212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 70 cctggatcct tatcccatcg tcttcacgtt agc	33
<210> 71 <211> 26 <212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 71 ctggaattct cctgccagca tggtga	26
<210> 72 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 72 gcaggatcct atattgcgtg ctctgtcccc	30
<210> 73 <211> 999 <212> DNA <213> Homo sapiens	
<400> 73 atggtgaact ccacccaccg tgggatggag acttatatas and t	
atggtgaact ccaccaccg tgggatgcac acttetetgc acetetggaa ccgcagcagt	60
tacagactgc acagcaatgc cagtgagtcc cttggaaaag gctactctga tggagggtgc	120
tacgagcaac tttttgtctc tcctgaggtg tttgtgactc tgggtgtcat cagcttgttg	180
gagaatatet tagtgattgt ggcaatagee aagaacaaga atetgeatte acceatgtae	240
tttttcatct gcagcttggc tgtggctgat atgctggtga gcgtttcaaa tggatcagaa	300
accattatca tcaccctatt aaacagtaca gatacggatg cacagagttt cacagtgaat	360
attgataatg tcattgactc ggtgatctgt agctccttgc ttgcatccat ttgcagcctg	420
ctttcaattg cagtggacag gtactttact atcttctatg ctctccagta ccataacatt	480
atgacagtta agegggttgg gateageata agttgtatet gggeagettg caeggtttea	540
ggcattttgt tcatcattta ctcagatagt agtgctgtca tcatctgct catcaccatg	600

ttcttcacca	tgctggctct	catggcttct	ctctatgtcc	acatgttcct	gatggccagg	660
cttcacatta	agaggattgc	tgtcctcccc	ggcactggtg	ccatccgcca	aggtgccaat	720
atgaagggag	cgattacctt	gaccatcctg	attggcgtct	ttgttgtctg	ctgggcccca	780
ttcttcctcc	acttaatatt	ctacatctct	tgtcctcaga	atccatattg	tgtgtgcttc	840
atgtctcact	ttaacttgta	tctcatactg	atcatgtgta	attcaatcat	cgatcctctg	900
atttatgcac	tccggagtca	agaactgagg	aaaaccttca	aagagatcat	ctgttgctat	960
cccctgggag	gcctttgtga	cttgtctagc	agatattaa			999

<211> 332

<212> PRT

<213> Homo sapiens

<400> 74

Met Val Asn Ser Thr His Arg Gly Met His Thr Ser Leu His Leu Trp $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Asn Arg Ser Ser Tyr Arg Leu His Ser Asn Ala Ser Glu Ser Leu Gly 20 25 30

Lys Gly Tyr Ser Asp Gly Gly Cys Tyr Glu Gln Leu Phe Val Ser Pro 35 40 45

Glu Val Phe Val Thr Leu Gly Val Ile Ser Leu Leu Glu Asn Ile Leu 50 55 60

Val Ile Val Ala Ile Ala Lys Asn Lys Asn Leu His Ser Pro Met Tyr 65 70 75 80

Phe Phe Ile Cys Ser Leu Ala Val Ala Asp Met Leu Val Ser Val Ser 85 90 95

Asn Gly Ser Glu Thr Ile Ile Ile Thr Leu Leu Asn Ser Thr Asp Thr $100 \\ 0.5 \\ 105 \\ 110$

Asp Ala Gln Ser Phe Thr Val Asn Ile Asp Asn Val Ile Asp Ser Val 115 120 125

Ile Cys Ser Ser Leu Leu Ala Ser Ile Cys Ser Leu Leu Ser Ile Ala 130 135 140

Val Asp Arg Tyr Phe Thr Ile Phe Tyr Ala Leu Gln Tyr His Asn Ile 145 150 155 160

Met Thr Val Lys Arg Val Gly Ile Ser Ile Ser Cys Ile Trp Ala Ala Cys Thr Val Ser Gly Ile Leu Phe Ile Ile Tyr Ser Asp Ser Ser Ala 185 Val Ile Ile Cys Leu Ile Thr Met Phe Phe Thr Met Leu Ala Leu Met 200 Ala Ser Leu Tyr Val His Met Phe Leu Met Ala Arg Leu His Ile Lys 215 Arg Ile Ala Val Leu Pro Gly Thr Gly Ala Ile Arg Gln Gly Ala Asn 235 Met Lys Gly Ala Ile Thr Leu Thr Ile Leu Ile Gly Val Phe Val Val 250 Cys Trp Ala Pro Phe Phe Leu His Leu Ile Phe Tyr Ile Ser Cys Pro 265 Gln Asn Pro Tyr Cys Val Cys Phe Met Ser His Phe Asn Leu Tyr Leu 280 Ile Leu Ile Met Cys Asn Ser Ile Ile Asp Pro Leu Ile Tyr Ala Leu 295 Arg Ser Gln Glu Leu Arg Lys Thr Phe Lys Glu Ile Ile Cys Cys Tyr 310 315 Pro Leu Gly Gly Leu Cys Asp Leu Ser Ser Arg Tyr 325 <210> 75 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> Novel Sequence <400> 75 ccgaagcttc gagctgagta aggcggcggg ct 32 <210> 76 <211> 31

```
<212>
         DNA
  <213>
         Artificial Sequence
  <220>
  <223>
        Novel Sequence
 <400> 76
 gtggaattca tttgccctgc ctcaaccccc a
                                                                         31
 <210>
        77
 <211>
        1344
 <212>
        DNA
 <213>
        Homo sapiens
 <400> 77
 atggagetge taaagetgaa eeggagegtg eagggaaceg gaceegggee gggggettee
                                                                        60
 ctgtgccgcc cgggggcgcc tctcctcaac agcagcagtg tgggcaacct cagctgcgag
                                                                       120
 ccccctcgca ttcgcggagc cgggacacga gaattggagc tggccattag aatcactctt
                                                                       180
 tacgcagtga tcttcctgat gagcgttgga ggaaatatgc tcatcatcgt ggtcctggga
                                                                       240
 ctgagecgcc gcctgaggac tgtcaccaat gccttcctcc tctcactggc agtcagegac
                                                                       300
 ctcctgctgg ctgtggcttg catgcccttc accctcctgc ccaatctcat gggcacattc
                                                                       360
atctttggca ccgtcatctg caaggcggtt tcctacctca tgggggtgtc tgtgagtgtg
                                                                       420
tccacgctaa gcctcgtggc catcgcactg gagcgatata gcgccatctg ccgaccactg
                                                                       480
caggcacgag tgtggcagac gcgctcccac gcggctcgcg tgattgtagc cacgtggctg
                                                                       540
ctgtccggac tactcatggt gccctacccc gtgtacactg tcgtgcaacc agtggggcct
                                                                       600
cgtgtgctgc agtgcgtgca tcgctggccc agtgcgcggg tccgccagac ctggtccgta
                                                                       660
ctgctgcttc tgctcttgtt cttcatccca ggtgtggtta tggccgtggc ctacgggctt
                                                                       720
atctctcgcg agctctactt agggcttcgc tttgacggcg acagtgacag cgacagccaa
                                                                      780
agcagggtcc gaaaccaagg cgggctgcca ggggctgttc accagaacgg gcgttgccgg
                                                                      840
cctgagactg gcgcggttgg caaagacagc gatggctgct acgtgcaact tccacgttcc
                                                                      900
cggcctgccc tggagctgac ggcgctgacg gctcctgggc cgggatccgg ctcccggccc
                                                                      960
acccaggcca agctgctggc taagaagcgc gtggtgcgaa tgttgctggt gatcgttgtg
                                                                     1020
ctttttttc tgtgttggtt gccagtttat agtgccaaca cgtggcgcgc ctttgatggc
                                                                     1080
ccgggtgcac accgagcact ctcgggtgct cctatctcct tcattcactt gctgagctac
                                                                     1140
gcctcggcct gtgtcaaccc cctggtctac tgcttcatgc accgtcgctt tcgccaggcc
                                                                     1200
tgcctggaaa cttgcgctcg ctgctgccc cggcctccac gagctcgccc cagggctctt
                                                                     1260
cccgatgagg acceteceae tecetecatt gettegetgt ecaggettag etacaceaee
```

1320

<211> 447

<212> PRT

<213> Homo sapiens

<400> 78

Pro Gly Ala Ser Leu Cys Arg Pro Gly Ala Pro Leu Leu Asn Ser Ser 25 30

Ser Val Gly Asn Leu Ser Cys Glu Pro Pro Arg Ile Arg Gly Ala Gly 35 40 45

Thr Arg Glu Leu Glu Leu Ala Ile Arg Ile Thr Leu Tyr Ala Val Ile 50 55 60

Phe Leu Met Ser Val Gly Gly Asn Met Leu Ile Ile Val Val Leu Gly 65 70 75 80

Leu Ser Arg Arg Leu Arg Thr Val Thr Asn Ala Phe Leu Leu Ser Leu 85 90 95

Ala Val Ser Asp Leu Leu Leu Ala Val Ala Cys Met Pro Phe Thr Leu 100 105 110

Leu Pro Asn Leu Met Gly Thr Phe Ile Phe Gly Thr Val Ile Cys Lys 115 120 125

Ala Val Ser Tyr Leu Met Gly Val Ser Val Ser Val Ser Thr Leu Ser 130

Leu Val Ala Ile Ala Leu Glu Arg Tyr Ser Ala Ile Cys Arg Pro Leu 145 150 155 160

Gln Ala Arg Val Trp Gln Thr Arg Ser His Ala Ala Arg Val Ile Val 165 170 175

Ala Thr Trp Leu Leu Ser Gly Leu Leu Met Val Pro Tyr Pro Val Tyr 180 185 190

Thr Val Val Gln Pro Val Gly Pro Arg Val Leu Gln Cys Val His Arg
195 200 205

Tr	p Pr 21	o Se O	er Al	a Ar	g Va	l Ar 21	g G1: 5	n Th	r Tr	p Se	r Va 22	l Le	u Le	u Lei	ı Leu
Le ²	u Le 5	u Ph	e Ph	e Il	e Pro 230	o Gl O	y Va.	l Va	l Me	t Al. 23.	a Vai	l Ala	а Туг	r Gly	/ Leu 240
Il	e Se	r Ar	g Gl	u Le: 24	и Туі 5	Le	u Gly	y Le	u Are 250	g Phe	e Asp	o Gly	/ Asp	Ser 255	Asp
Sei	r As _l	o Se	r Gl: 26	n Sei	r Arg	y Val	l Arç	g Ası 265	n Gli 5	n Gly	y Gly	/ Leu	Pro 270		'Ala
Val	l His	s Gl: 27	n Ası 5	n Gly	y Arg	г Суз	280	pro	o Glu	ı Thı	Gly	' Ala 285		. Gly	Lys
Asp	Sei 290	As _l	o Gly	, Cys	s Tyr	Val 295	. Gln	Leu	ı Pro	Arg	Ser 300	Arg	Pro	Ala	Leu
Glu 305	Leu	ı Thi	r Ala	ı Lev	Thr 310	Ala	Pro	Gly	Pro	Gly 315	Ser	Gly	Ser	Arg	Pro 320
Thr	Gln	ı Ala	ı Lys	Leu 325	Leu	Ala	Lys	Lys	Arg 330	Val	Val	Arg	Met	Leu 335	Leu
Val	Ile	Val	. Val 340	Leu	Phe	Phe	Leu	Cys 345	Trp	Leu	Pro	Val	Tyr 350	Ser	Ala
Asn	Thr	Trp 355	Arg	Ala	Phe	Asp	Gly 360	Pro	Gly	Ala	His	Arg 365	Ala	Leu	Ser
Val	Ala 370	Pro	Ile	Ser	Phe	Ile 375	His	Leu	Leu	Ser	Tyr 380	Ala	Ser	Ala	Cys
Val 385	Asn	Pro	Leu	Val	Tyr 390	Cys	Phe	Met	His	Arg 395	Arg	Phe	Arg	Gln	Ala 400
Cys	Leu	Glu	Thr	Cys 405	Ala	Arg	Cys	Cys	Pro 410	Arg	Pro	Pro	Arg	Ala 415	Arg
Pro	Arg	Ala	Leu 420	Pro	Asp	Glu	Asp	Pro 425	Pro	Thr	Pro	Ser	Ile 430	Ala	Ser
Leu	Ser	Arg 435	Leu	Ser	Tyr	Thr	Thr 440	Ile	Ser	Thr	Leu	Gly 445	Pro	Gly	

Page 64

<210> 79 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 79 tgcaagctta aaaaggaaaa aatgaacagc	30
<210> 80 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 80 taaggateee tteeetteaa aacateettg	30
<210> 81 <211> 1014 <212> DNA <213> Homo sapiens	
<400> 81 atgaacagca catgtattga agaacagcat gacctggatc actatttgtt tcccattgtt	60
tacatctttg tgattatagt cagcattcca gccaatattg gatctctgtg tgtgtctttc	120
ctgcaaccca agaaggaaag tgaactagga atttacctct tcagtttgtc actatcagat	180
ttactctatg cattaactct ccctttatgg attgattata cttggaataa agacaactgg	240
actttctctc ctgccttgtg caaagggagt gcttttctca tgtacatgaa gttttacagc	300
agcacagcat tecteacetg cattgeegtt gateggtatt tggetgttgt etaccetttg	360
aagtttttt tootaaggao aagaagaatt goactoatgg toagootgto catotggata	420
ttggaaacca tcttcaatgc tgtcatgttg tgggaagatg aaacagttgt tgaatattgc	480
gatgccgaaa agtctaattt tactttatgc tatgacaaat accctttaga gaaatggcaa	540
atcaacctca acttgttcag gacgtgtaca ggctatgcaa tacctttggt caccatcctg	600
atctgtaacc ggaaagtcta ccaagctgtg cggcacaata aagccacgga aaacaaggaa	660
aagaagagaa tcataaaact acttgtcagc atcacagtta cttttgtctt atgctttact	720
ccctttcatg tgatgttgct gattcgctgc attttagagc atgctgtgaa cttcgaagac	780
cacagcaatt ctgggaagcg aacttacaca atgtatagaa tcacggttgc attaacaagt	840

tt	aaat	tgtg	r ttg	ctga	tcc	aatt	ctgt	ac t	gttt	tgtt	a co	gaaa	cagg	aag	atatgat
															aagaaaa
						aaaa									
														,	9
<2 <2	10> 11> 12> 13>	82 337 PRT Hom	o sa	pien	s										
<4	00>	82													
Me 1	t As	n Se	r Thi	r Cys 5	s Il	e Glı	ı Glı	ı Glı	n His 10	s As	p Lei	u Ası	o His	ту: 15	r Leu
Phe	e Pro	o Ile	e Val 20	L Туі	: Ile	e Phe	e Val	l Il∈ 25	∍ Il∈	e Vai	l Sei	r Ile	Pro	> Ala	a Asn
Il€	e Gly	7 Sei 35	Leu	ı Cys	s Val	l Ser	Phe 40	e Leu	ı Gln	Pro	D Lys	Lys 45	s Glu	Ser	Glu
Leu	ı Gly 50	/ Ile	e Tyr	Leu	Phe	Ser 55	Leu	. Ser	Leu	Ser	Asp) Leu	Leu	Туг	Ala
Leu 65	Thr	Leu	Pro	Leu	Trp	lle	Asp	Tyr	Thr	Trp 75	Asn	Lys	Asp	Asn	Trp 80
Thr	Phe	Ser	Pro	Ala 85	Leu	Cys	Lys	Gly	Ser 90	Ala	Phe	Leu	Met	Tyr 95	Met
Lys	Phe	Tyr	Ser 100	Ser	Thr	Ala	Phe	Leu 105	Thr	Cys	Ile	Ala	Val 110	Asp	Arg
Tyr	Leu	Ala 115	Val	Val	Tyr	Pro	Leu 120	Lys	Phe	Phe	Phe	Leu 125	Arg	Thr	Arg
Arg	Ile 130	Ala	Leu	Met	Val	Ser 135	Leu	Ser	Ile	Trp	Ile 140	Leu	Glu	Thr	Ile
Phe 145	Asn	Ala	Val	Met	Leu 150	Trp	Glu	Asp	Glu	Thr 155	Val	Val	Glu	Tyr	Cys 160
Asp	Ala	Glu	Lys	Ser 165	Asn	Phe	Thr	Leu	Cys 170	Tyr	Asp	Lys	Tyr	Pro 175	Leu
Glu	Lys	Trp	Gln 180	Ile	Asn	Leu .	Asn	Leu 185		Arg		Cys	Thr 190	Gly	Tyr
									£C	ye I	00				

Ala Ile Pro Leu Val Thr Ile Leu Ile Cys Asn Arg Lys Val Tyr Gln 195 Ala Val Arg His Asn Lys Ala Thr Glu Asn Lys Glu Lys Lys Arg Ile Ile Lys Leu Leu Val Ser Ile Thr Val Thr Phe Val Leu Cys Phe Thr 235 Pro Phe His Val Met Leu Leu Ile Arg Cys Ile Leu Glu His Ala Val 245 Asn Phe Glu Asp His Ser Asn Ser Gly Lys Arg Thr Tyr Thr Met Tyr Arg Ile Thr Val Ala Leu Thr Ser Leu Asn Cys Val Ala Asp Pro Ile 275 Leu Tyr Cys Phe Val Thr Glu Thr Gly Arg Tyr Asp Met Trp Asn Ile Leu Lys Phe Cys Thr Gly Arg Cys Asn Thr Ser Gln Arg Gln Arg Lys 315 320 Arg Ile Leu Ser Val Ser Thr Lys Asp Thr Met Glu Leu Glu Val Leu 330 335 Glu <210> 83 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Novel Sequence <400> 83 caggaagaag aaacgagctg tcattatgat ggtgacagtg 40 <210> 84 <211> 40 <212> DNA <213> Artificial Sequence

<220>

```
<223> Novel Sequence
 <400> 84
 cactgtcacc atcataatga cagctcgttt cttcttcctg
                                                                       40
 <210> 85
 <211> 30
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Novel Sequence
 <400> 85
 ggccaccggc agaccaaacg cgtcctgctg
                                                                       30
 <210> 86
 <211> 31
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Novel Sequence
 <400> 86
 ctccttcggt cctcctatcg ttgtcagaag t
                                                                       31
<210> 87
 <211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 87
ggaaaagaag agaatcaaaa aactacttgt cagcatc
                                                                      37
<210> 88
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 88
ctccttcggt cctcctatcg ttgtcagaag t
                                                                      31
<210> 89
<211> 1080
<212> DNA
<213> Homo sapiens
<400> 89
```

```
atgattetea aetettetae tgaagatggt attaaaagaa teeaagatga ttgteecaaa
                                                                        60
 gctggaaggc ataattacat atttgtcatg attcctactt tatacagtat catctttgtg
                                                                       120
gtgggaatat ttggaaacag cttggtggtg atagtcattt acttttatat gaagctgaag
                                                                       180
actgtggcca gtgttttct tttgaattta gcactggctg acttatgctt tttactgact
                                                                       240
ttgccactat gggctgtcta cacagctatg gaataccgct ggccctttgg caattaccta
                                                                       300
tgtaagattg cttcagccag cgtcagtttc aacctgtacg ctagtgtgtt tctactcacg
                                                                       360
tgtctcagca ttgatcgata cctggctatt gttcacccaa tgaagtcccg ccttcgacgc
                                                                       420
acaatgcttg tagccaaagt cacctgcatc atcatttggc tgctggcagg cttggccagt
                                                                       480
ttgccagcta taatccatcg aaatgtattt ttcattgaga acaccaatat tacagtttgt
                                                                      540
gctttccatt atgagtccca aaattcaacc cttccgatag ggctgggcct gaccaaaaat
                                                                      600
atactgggtt tcctgtttcc ttttctgatc attcttacaa gttatactct tatttggaag
                                                                      660
gccctaaaga aggcttatga aattcagaag aacaaaccaa gaaatgatga tattaaaaag
                                                                      720
ataattatgg caattgtgct tttcttttc ttttcctgga ttccccacca aatattcact
                                                                      780
tttctggatg tattgattca actaggcatc atacgtgact gtagaattgc agatattgtg
                                                                      840
gacacggcca tgcctatcac catttgtata gcttatttta acaattgcct gaatcctctt
                                                                      900
ttttatggct ttctggggaa aaaatttaaa agatattttc tccagcttct aaaatatatt
                                                                      960
cccccaaaag ccaaatccca ctcaaacctt tcaacaaaaa tgagcacgct ttcctaccgc
                                                                     1020
ccctcagata atgtaagctc atccaccaag aagcctgcac catgttttga ggttgagtga
                                                                     1080
```

<400> 90

Met Ile Leu Asn Ser Ser Thr Glu Asp Gly Ile Lys Arg Ile Gln Asp 1 10 15

Asp Cys Pro Lys Ala Gly Arg His Asn Tyr Ile Phe Val Met Ile Pro 20 25 30

Thr Leu Tyr Ser Ile Ile Phe Val Val Gly Ile Phe Gly Asn Ser Leu 35 40 45

Val Val Ile Val Ile Tyr Phe Tyr Met Lys Leu Lys Thr Val Ala Ser 50 55 60

<210> 90

<211> 359

<212> PRT

<213> Homo sapiens

Va 65	.1 Pi	ne	Leu	ı Le	u As	n Le 70	u Al	a Le	u Al	a As	р Le 75	eu Cy i	s Ph	e Le	u Le	u Thr 80
Le	u Pr	o :	Leu	Tr	9 Al 85	a Va	1 Ту	r Th	r Al	a Me 90	t Gl	и Ту	r Ar	g Tr	p Pr 95	o Phe
Gl	y As	n '	Гуr	Le: 10(ı Су)	s Ly	s Il	e Al	a Se. 10	r Ala	a Se	r Va	l Se	r Ph 11		n Leu
Ту	r Al	a 9	Ser 115	Va]	. Ph	e Le	ı Le	u Th:	r Cys	s Lei	ı Se	r Ile	e Asp 125		g Ty:	r Leu
Ala	a Il 13	e V 0	/al	His	Pro	o Met	Lys 135	s Sei 5	Arg	g Leu	ı Ar	g Arc	g Thr	: Me	t Lei	ı Val
Ala 145	a Ly	s V	al	Thr	Cys	150	e Ile)	∋ Ile	e Trp) Leu	Le:	ı Ala	Gly	' Lei	ı Ala	Ser 160
Leu	ı Pro	οА	la	Ile	Ile 165	e His	: Arg	g Asn	Val	. Phe 170	Phe	e Ile	Glu	Asr	17hr	Asn
Ile	Thi	c V	al	Cys 180	Ala	Phe	His	Tyr	Glu 185	Ser	Glr	ı Asn	Ser	Thr 190	Leu	Pro
Ile	Gl ₂	/ L	eu 95	Gly	Leu	Thr	Lys	Asn 200	Ile	Leu	Gly	Phe	Leu 205	Phe	Pro	Phe
Leu	Ile 210	: I.	le	Leu	Thr	Ser	Tyr 215	Thr	Leu	Ile	Trp	Lys 220	Ala	Leu	Lys	Lys
Ala 225	Tyr	G.	lu	Ile	Gln	Lys 230	Asn	Lys	Pro	Arg	Asn 235	Asp	Asp	Ile	Lys	Lys 240
Ile	Ile	M∈	et i	Ala	Ile 245	Val	Leu	Phe	Phe	Phe 250	Phe	Ser	Trp	Ile	Pro 255	His
Gln	Ile	Ph	ie :	Thr 260	Phe	Leu	Asp	Val	Leu 265	Ile	Gln	Leu	Gly	Ile 270	Ile	Arg
Asp	Cys	Ar 27	g 1 5	(le	Ala	Asp	Ile	Val 280	Asp	Thr	Ala	Met	Pro 285	Ile	Thr	Ile
Cys	Ile 290	Al	a T	yr	Phe	Asn	Asn 295	Cys	Leu	Asn	Pro	Leu 300	Phe	Tyr	Gly	Phe

Leu Gly Lys Lys Phe Lys Arg Tyr Phe Leu Gln Leu Leu Lys Tyr Ile 305 310 315 320									
Pro Pro Lys Ala Lys Ser His Ser Asn Leu Ser Thr Lys Met Ser Thr 325 330 335									
Leu Ser Tyr Arg Pro Ser Asp Asn Val Ser Ser Ser Thr Lys Lys Pro 340 345 350									
· Ala Pro Cys Phe Glu Val Glu 355									
<210> 91 <211> 35 <212> DNA <213> Artificial Sequence									
<220> <223> Novel Sequence									
<400> 91 ccaagaaatg atgatattaa aaagataatt atggc	35								
<210> 92 <211> 31 <212> DNA <213> Artificial Sequence									
<220> <223> Novel Sequence									
<400> 92 ctccttcggt cctcctatcg ttgtcagaag t	31								
<210> 93 <211> 1080 <212> DNA <213> Homo sapiens									
<400> 93 atgattetea aetettetae tgaagatggt attaaaagaa teeaagatga ttgteecaaa	60								
gctggaaggc ataattacat atttgtcatg attcctactt tatacagtat catctttgtg	120								
gtgggaatat ttggaaacag cttggtggtg atagtcattt acttttatat gaagctgaag	180								
actgtggcca gtgttttct tttgaattta gcactggctg acttatgctt tttactgact	240								
ttgccactat gggctgtcta cacagctatg gaataccgct ggccctttgg caattaccta	300								
tgtaagattg cttcagccag cgtcagtttc gccctgtacg ctagtgtgtt tctactcacg	360								
tgtctcagca ttgatcgata cctggctatt gttcacccaa tgaagtcccg ccttcgacgc	420								

acaatgcttg	tagccaaagt	cacctgcatc	atcatttggc	tgctggcagg	cttggccagt	480
ttgccagcta	taatccatcg	aaatgtattt	ttcattgaga	acaccaatat	tacagtttgt	540
gctttccatt	atgagtccca	aaattcaacc	cttccgatag	ggctgggcct	gaccaaaaat	600
atactgggtt	tcctgtttcc	ttttctgatc	attcttacaa	gttatactct	tatttggaag	660
gccctaaaga	aggcttatga	aattcagaag	aacaaaccaa	gaaatgatga	tatttttaag	720
ataattatgg	caattgtgct	tttcttttc	ttttcctgga	ttccccacca	aatattcact	780
tttctggatg	tattgattca	actaggcatc	atacgtgact	gtagaattgc	agatattgtg	840
gacacggcca	tgcctatcac	catttgtata	gcttatttta	acaattgcct	gaatcctctt	900
ttttatggct	ttctggggaa	aaaatttaaa	agatattttc	tccagcttct	aaaatatatt	960
ccccaaaag	ccaaatccca	ctcaaacctt	tcaacaaaaa	tgagcacgct	ttcctaccgc	1020
ccctcagata	atgtaagctc	atccaccaag	aagcctgcac	catgttttga	ggttgagtga	1080

<211> 359

<212> PRT

<213> Homo sapiens

<400> 94

Met Ile Leu Asn Ser Ser Thr Glu Asp Gly Ile Lys Arg Ile Gln Asp 1 5 10 15

Asp Cys Pro Lys Ala Gly Arg His Asn Tyr Ile Phe Val Met Ile Pro 20 25 30

Thr Leu Tyr Ser Ile Ile Phe Val Val Gly Ile Phe Gly Asn Ser Leu 35 40 45

Val Val Ile Val Ile Tyr Phe Tyr Met Lys Leu Lys Thr Val Ala Ser 50 55 60

Val Phe Leu Leu Asn Leu Ala Leu Ala Asp Leu Cys Phe Leu Leu Thr 65 70 75 80

Leu Pro Leu Trp Ala Val Tyr Thr Ala Met Glu Tyr Arg Trp Pro Phe 85 90 95

Gly Asn Tyr Leu Cys Lys Ile Ala Ser Ala Ser Val Ser Phe Ala Leu 100 105 110

Tyr Ala Ser Val Phe Leu Leu Thr Cys Leu Ser Ile Asp Arg Tyr Leu 115 120 125

Ala	130	e Val	l His	s Pro) Met	Lys 135	Ser	Arg	Leu	Arg	Arg 140		Met	Leu	Val
Ala 145	Lys	s Val	l Thi	Cys	Ile 150	Ile	Ile	Trp	Leu	Leu 155	Ala	Gly	Leu	Ala	Ser 160
Leu	Pro	Ala	ı Ile	11e 165	His	Arg	Asn	Val	Phe 170	Phe	Ile	Glu	Asn	Thr 175	Asn
Ile	Thr	· Val	. Cys	Ala	Phe	His	Tyr	Glu 185	Ser	Gln	Asn	Ser	Thr 190		Pro
Ile	Gly	Leu 195	Gly	Leu	Thr	Lys	Asn 200	Ile	Leu	Gly	Phe	Leu 205	Phe	Pro	Phe
Leu	Ile 210	Ile	Leu	Thr	Ser	Tyr 215	Thr	Leu	Ile	Trp	Lys 220	Ala	Leu	Lys	Lys
Ala 225	Tyr	Glu	Ile	Gln	Lys 230	Asn	Lys	Pro	Arg	Asn 235	Asp	Asp	Ile	Phe	Lys 240
Ile	Ile	Met	Ala	Ile 245	Val	Leu	Phe	Phe	Phe 250	Phe	Ser	Trp	Ile	Pro 255	His
Gln	Ile	Phe	Thr 260	Phe	Leu	Asp	Val	Leu 265	Ile	Gln	Leu	Gly	Ile 270	Ile	Arg
Asp	Cys	Arg 275	Ile	Ala	Asp	Ile	Val 280	Asp	Thr	Ala	Met	Pro 285	Ile	Thr	Ile
Cys	Ile 290	Ala	Tyr	Phe	Asn	Asn 295	Cys	Leu	Asn		Leu 300		Tyr	Gly	Phe
Leu 305	Gly	Lys	Lys	Phe	Lys 310	Arg	Tyr	Phe	Leu	Gln 315	Leu	Leu	Lys		Ile 320
Pro	Pro	Lys	Ala	Lys 325	Ser	His	Ser	Asn	Leu 330	Ser	Thr	Lys	Met	Ser 335	Thr
Leu	Ser	Tyr	Arg 340	Pro	Ser	Asp	Asn	Val 345	Ser	Ser	Ser		Lys 350	Lys	Pro
Ala	Pro	Cys 355	Phe	Glu	Val	Glu									

```
<210> 95
 <211>
       26
 <212> DNA
 <213>
        Artificial Sequence
 <220>
 <223>
       Novel Sequence
 <400> 95
 cccaagcttc cccaggtgta tttgat
                                                                       26
 <210> 96
 <211> 29
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Novel Sequence
 <400> 96
 cctgcaggcg aaactgactc tggctgaag
                                                                       29
<210> 97
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 97
ctgtacgcta gtgtgtttct actcacgtgt ctcagcattg at
                                                                       42
<210> 98
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 98
gttggatcca cataatgcat tttctc
                                                                       26
<210> 99
<211> 1080
<212> DNA
<213> Homo sapiens
<400> 99
atgattctca actcttctac tgaagatggt attaaaagaa tccaagatga ttgtcccaaa
                                                                      60
gctggaaggc ataattacat atttgtcatg attcctactt tatacagtat catctttgtg
                                                                     120
```

```
gtgggaatat ttggaaacag cttggtggtg atagtcattt acttttatat gaagctgaag
                                                                      180
actgtggcca gtgttttct tttgaattta gcactggctg acttatgctt tttactgact
                                                                      240
ttgccactat gggctgtcta cacagctatg gaataccgct ggccctttgg caattaccta
                                                                      300
tgtaagattg cttcagccag cgtcagtttc aacctgtacg ctagtgtgtt tctactcacg
                                                                      360
tgtctcagca ttgatcgata cctggctatt gttcacccaa tgaagtcccg ccttcgacgc
                                                                      420
acaatgcttg tagccaaagt cacctgcatc atcatttggc tgctggcagg cttggccagt
                                                                      480
ttgccagcta taatccatcg aaatgtattt ttcattgaga acaccaatat tacagtttgt
                                                                      540
gctttccatt atgagtccca aaattcaacc cttccgatag ggctgggcct gaccaaaaat
                                                                      600
atactgggtt tcctgtttcc ttttctgatc attcttacaa gttattttgg aattcgaaaa
                                                                      660
cacttactga agacgaatag ctatgggaag aacaggataa cccgtgacca agttaagaag
                                                                      720
ataattatgg caattgtgct tttcttttc ttttcctgga ttccccacca aatattcact
                                                                      780
tttctggatg tattgattca actaggcatc atacgtgact gtagaattgc agatattgtg
                                                                      840
gacacggcca tgcctatcac catttgtata gcttatttta acaattgcct gaatcctctt
                                                                      900
ttttatggct ttctggggaa aaaatttaaa agatatttc tccagcttct aaaatatatt
                                                                      960
cccccaaaag ccaaatccca ctcaaacctt tcaacaaaaa tgagcacgct ttcctaccgc
                                                                     1020
ccctcagata atgtaagctc atccaccaag aagcctgcac catgttttga ggttgagtga
                                                                     1080
```

<210> 100

<211> 359

<212> PRT

<213> Homo sapiens

<400> 100

Met Ile Leu Asn Ser Ser Thr Glu Asp Gly Ile Lys Arg Ile Gln Asp 1 5 10 15

Asp Cys Pro Lys Ala Gly Arg His Asn Tyr Ile Phe Val Met Ile Pro 20 25 30

Thr Leu Tyr Ser Ile Ile Phe Val Val Gly Ile Phe Gly Asn Ser Leu 35 40 45

Val Val Ile Val Ile Tyr Phe Tyr Met Lys Leu Lys Thr Val Ala Ser 50 55 60

Val Phe Leu Leu Asn Leu Ala Leu Ala Asp Leu Cys Phe Leu Leu Thr 65 70 75 80

тес	i PLC	ь ьег	ırr	85 85	a val	- Туі	r Thr	: Ala	Met 90	: Glu	ı Tyr	r Arg	J Trp	95) Phe
Gly	/ Asr	ı Tyr	Leu 100	ı Cys	s Lys	: Il∈	e Ala	Ser 105		a Ser	. Val	. Ser	Phe 110		Leu
Tyr	Ala	Ser 115	Val	. Phe	e Leu	Leu	Thr 120	Cys	Leu	ser	: Ile	2 Asp		Туг	Leu
Ala	Ile 130	val	His	Pro	Met	Lys 135	Ser	Arg	Leu	. Arg	Arg 140		Met	Leu	Val
Ala 145	Lys	Val	Thr	Cys	Ile 150	Ile	Ile	Trp	Leu	Leu 155		Gly	Leu	Ala	Ser 160
Leu	Pro	Ala	Ile	Ile 165	His	Arg	Asn	Val	Phe 170		Ile	Glu	Asn	Thr 175	Asn
Ile	Thr	Val	Cys 180	Ala	Phe	His	Tyr	Glu 185	Ser	Gln	Asn	Ser	Thr 190	Leu	Pro
Ile	Gly	Leu 195	Gly	Leu	Thr	Lys	Asn 200	Ile	Leu	Gly	Phe	Leu 205	Phe	Pro	Phe
Leu	Ile 210	Ile	Leu	Thr	Ser	Tyr 215	Phe	Gly	Ile	Arg	Lys 220	His	Leu	Leu	Lys
Thr 225	Asn	Ser	Tyr	Gly	Lys 230	Asn	Arg	Ile	Thr	Arg 235	Asp	Gln	Val	Lys	Lys 240
Ile	Ile	Met	Ala	Ile 245	Val	Leu	Phe	Phe	Phe 250	Phe	Ser	Trp	Ile	Pro 255	His
Gln	Ile	Phe	Thr 260	Phe	Leu	Asp	Val	Leu 265	Ile	Gln	Leu	Gly	Ile 270	Ile	Arg
Asp	Cys	Arg 275	Ile	Ala	Asp	Ile	Val 280	Asp	Thr	Ala	Met	Pro 285	Ile	Thr	Ile
Cys	Ile 290	Ala	Tyr	Phe	Asn	Asn 295	Cys	Leu	Asn	Pro	Leu 300	Phe	Tyr	Gly	Phe
Leu 305	Gly	Lys	Lys	Phe	Lys 310	Arg	Tyr	Phe	Leu	Gln 315	Leu	Leu	Lys	Tyr	Ile 320

Pro Pro Lys Ala Lys Ser His Ser Asn Leu S 325 330	er Thr Lys Met Ser Thr 335
Leu Ser Tyr Arg Pro Ser Asp Asn Val Ser S 340 345	er Ser Thr Lys Lys Pro 350
Ala Pro Cys Phe Glu Val Glu 355	
<210> 101 <211> 37 <212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 101 tccgaattcc aaaataactt gtaagaatga tcagaaa	37
<210> 102 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 102 agatcttaag aagataatta tggcaattgt gct	33
<210> 103 <211> 62 <212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 103 aattcgaaaa cacttactga agacgaatag ctatgggaa	g aacaggataa cccgtgacca 60
ag	62
<210> 104 <211> 62 <212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 104 ttaacttggt cacgggttat cctgttcttc ccatagctat Page	

cq 62 <210> 105 <211> 1083 <212> DNA <213> Homo sapiens <400> 105 atgattetea aetettetae tgaagatggt attaaaagaa tecaagatga ttgteecaaa 60 gctggaaggc ataattacat atttgtcatg attcctactt tatacagtat catctttgtg 120 gtgggaatat ttggaaacag cttggtggtg atagtcattt acttttatat gaagctgaag 180 actgtggcca gtgtttttct tttgaattta gcactggctg acttatgctt tttactgact 240 ttgccactat gggctgtcta cacagctatg gaataccgct ggccctttgg caattaccta 300 tgtaagattg cttcagccag cgtcagtttc aacctgtacg ctagtgtgtt tctactcacg 360 tgtctcagca ttgatcgata cctggctatt gttcacccaa tgaagtcccg ccttcgacgc 420 acaatgcttg tagccaaagt cacctgcatc atcatttggc tgctggcagg cttggccagt 480 ttgccagcta taatccatcg aaatgtattt ttcattgaga acaccaatat tacagtttgt 540 gctttccatt atgagtccca aaattcaacc cttccgatag ggctgggcct gaccaaaaat 600 atactgggtt teetgtttee tittetgate attettaeaa gttataetet tatttggaag 660 gccctaaaga aggcttatga aattcagaag aacaaaccaa gaaatgatga tatttttaag 720 ataattatgg cagcaattgt gcttttcttt ttcttttcct ggattcccca ccaaatattc 780 acttttctgg atgtattgat tcaactaggc atcatacgtg actgtagaat tgcagatatt 840 gtggacacgg ccatgcctat caccatttgt atagcttatt ttaacaattg cctgaatcct 900 cttttttatg gctttctggg gaaaaaattt aaaagatatt ttctccagct tctaaaatat 960 attececcaa aagecaaate eeacteaaae ettteaacaa aaatgageae gettteetae 1020 cgcccctcag ataatgtaag ctcatccacc aagaagcctg caccatgttt tgaggttgag 1080 tga 1083 <210> 106 <211> 360

```
<211> 360
<212> PRT
<213> Homo sapiens
<400> 106

Met Ile Leu Asn Ser Ser Thr Glu Asp Gly Ile Lys Arg Ile Gln Asp
1 5 10 15
```

Asp	суѕ	s Pro	о Lys 20	s Ala	a Gly	/ Arc	η His	Asr 25	туг	: Ile	e Phe	e Val	. Met 30	: Ile	e Pro
Thr	Leu	1 Tyr 35	Sei	: Ile	e Ile	Phe	val 40	. Val	Gly	/ I1e	∍ Phe	e Gly 45	Asr	n Ser	Leu
Val	Val 50	. Ile	e Val	Ile	e Tyr	Phe 55	туг	Met	Lys	: Leu	Lys 60	Thr	Val	. Ala	. Ser
Val 65	Phe	Leu	Leu	ı Asn	Leu 70	ı Ala	Leu	. Ala	Asp	Leu 75	ı Cys	: Phe	Leu	ı Leu	Thr 80
Leu	Pro	Leu	Trp	Ala 85	Val	Tyr	Thr	Ala	Met 90	Glu	Tyr	Arg	Trp	95	Phe
Gly	Asn	Tyr	Leu 100	Cys	Lys	Ile	Ala	Ser 105		Ser	Val	Ser	Phe 110		Leu
Tyr	Ala	Ser 115	Val	Phe	Leu	Leu	Thr 120	Cys	Leu	Ser	Ile	Asp 125	Arg	Tyr	Leu
Ala	Ile 130	Val	His	Pro	Met	Lys 135	Ser	Arg	Leu	Arg	Arg 140	Thr	Met	Leu	Val
Ala 145	Lys	Val	Thr	Cys	Ile 150	Ile	Ile	Trp	Leu	Leu 155	Ala	Gly	Leu	Ala	Ser 160
Leu	Pro	Ala	Ile	Ile 165	His	Arg	Asn	Val	Phe 170	Phe	Ile	Glu	Asn	Thr 175	Asn
Ile	Thr	Val	Cys 180	Ala	Phe	His	Tyr	Glu 185	Ser	Gln	Asn	Ser	Thr 190	Leu	Pro
Ile	Gly	Leu 195	Gly	Leu	Thr	Lys	Asn 200	Ile	Leu	Gly	Phe	Leu 205	Phe	Pro	Phe
Leu	Ile 210	Ile	Leu	Thr	Ser	Tyr 215	Thr	Leu	Ile	Trp	Lys 220	Ala	Leu	Lys	Lys
Ala 225	Tyr	Glu	Ile	Gln	Lys 230	Asn	Lys	Pro	Arg	Asn 235	Asp	Asp	Ile	Phe	Lys 240
Ile	Ile	Met	Ala	Ala 245	Ile	Val	Leu	Phe	Phe 250	Phe	Phe	Ser	Trp	Ile 255	Pro

HIS G	ın ile	260	Thr	Phe	Leu	Asp	Val 265	Leu	Ile	Gln	Leu	Gly 270	Ile	Ile	
Arg A	sp Cys 275	Arg	Ile	Ala	Asp	Ile 280	Val	Asp	Thr	Ala	Met 285	Pro	Ile	Thr	
Ile Cy 25	ys Ile 90	Ala	Tyr	Phe	Asn 295	Asn	Cys	Leu	Asn	Pro 300	Leu	Phe	Tyr	Gly	
Phe Le	eu Gly	Lys	Lys	Phe 310	Lys	Arg	Tyr	Phe	Leu 315	Gln	Leu	Leu	Lys	Tyr 320	
Ile Pr	o Pro	Lys	Ala 325	Lys	Ser	His	Ser	Asn 330	Leu	Ser	Thr	Lys	Met 335	Ser	
Thr Le	eu Ser	Tyr 340	Arg	Pro	Ser	Asp	Asn 345	Val	Ser	Ser	Ser	Thr 350	Lys	Lys	
Pro Al	a Pro 355	Cys	Phe	Glu	Val	Glu 360									
<210> <211> <212> <213>	107 26 DNA Artif	ficia	ıl Se	equen	ce										
<220> <223>	Novel	L Seq	luenc	:e											
<400> cccaag	107 cttc c	ccag	gtgt	a tt	tgat										26
<210><211><211><212><213>	108 38 DNA Artif	icia	l Se	quen	ce										
<220> <223>	Novel	Seq	uenc	е											
<400> aagcac	108 aatt g	ctgc	ataa	t ta	tctt	aaaa	ata [.]	tcat	С						38
<210><211><211><212><213>	109 39 DNA Artif	icia	l Se	quen	се										
<220> <223>	Novel	Sequ	uence	е											

<400> 109 aagataatta tggcagc	aat tgtgcttttc tttttcttt	39
<210> 110 <211> 26 <212> DNA <213> Artificial S	Sequence	
<220> <223> Novel Seque	nce	
<400> 110 gttggatcca cataatgo	cat tttctc	26
<210> 111 <211> 1344 <212> DNA <213> Homo sapiens	S	
<400> 111		
	gaa ccggagcgtg cagggaaccg gacccgggcc gggggcttco	
ctgtgccgcc cgggggcg	gec tetecteaac ageageagtg tgggeaacet cagetgegag	120
ccccctcgca ttcgcgga	agc cgggacacga gaattggagc tggccattag aatcactctt	180
tacgcagtga tcttcctg	gat gagogttgga ggaaatatgo toatoatogt ggtootggga	240
ctgagccgcc gcctgagg	gac tgtcaccaat gccttcctcc tctcactggc agtcagcgac	: 300
ctcctgctgg ctgtggct	tg catgeeette accetectge ccaateteat gggeacatte	360
	tg caaggeggtt teetacetea tgggggtgte tgtgagtgtg	
	gc categeactg gagegatata gegecatetg eegaceactg	
	ac gcgctcccac gcggctcgcg tgattgtagc cacgtggctg	
	gt gccctacccc gtgtacactg tcgtgcaacc agtggggcct	
	ca tegetggece agtgegeggg teegecagae etggteegta	660
	tt cttcatccca ggtgtggtta tggccgtggc ctacgggctt	720
	tt agggettege tttgaeggeg acagtgaeag egaeageeaa	780
	gg cgggctgcca ggggctgttc accagaacgg gcgttgccgg	840
	gg caaagacage gatggetget acgtgcaact tecacgttee	
		900
	ac ggcgctgacg gctcctgggc cgggatccgg ctcccggccc	960
	gc taagaagcgc gtgaaacgaa tgttgctggt gatcgttgtg	1020
ctttttttc tgtgttggt	tt gccagtttat agtgccaaca cgtggcgcgc ctttgatggc	1080
ccgggtgcac accgagcac	ct ctcgggtgct cctatctcct tcattcactt gctgagctac	1140

gco	ctcg	gcct	gtgt	caac	cc c	cctg	gtcta	ac to	gctto	catgo	c acc	egte	gctt	tcgc	ccaggcc
tgo	cctg	gaaa	cttç	geget	cg c	ctgct	gccc	c cg	gcct	ccad	gaç	geteg	gccc	cago	gctctt
ccc	gato	gagg	acco	ctccc	ac t	ccct	ccat	t go	etteg	gctgt	cca	aggct	tag	ctac	caccacc
ato	cagca	acac	tggg	gccct	.gg c	tga									
<21 <21 <21 <21	.1>	112 447 PRT Homo	sap	oiens											
<40	0>	112													
Met 1	Glu	ı Leu	Leu	Lys 5	Leu	Asn	Arg	Ser	Val 10	Gln	. Gly	Thr	Gly	Pro	Gly
Pro	Gly	' Ala	Ser 20	Leu	Cys	Arg	Pro	Gly 25	Ala	Pro	Leu	Leu	Asn 30	Ser	Ser
Ser	Val	Gly 35	Asn	Leu	Ser	Cys	Glu 40	Pro	Pro	Arg	Ile	Arg 45	Gly	Ala	Gly
Thr	Arg 50	Glu	Leu	Glu	Leu	Ala 55	Ile	Arg	Ile	Thr	Leu 60	Tyr	Ala	Val	Ile
Phe 65	Leu	Met	Ser	Val	Gly 70	Gly	Asn	Met	Leu	Ile 75	Ile	Val	Val	Leu	Gly 80
Leu	Ser	Arg	Arg	Leu 85	Arg	Thr	Val	Thr	Asn 90	Ala	Phe	Leu	Leu	Ser 95	Leu
Ala	Val	Ser	Asp 100	Leu	Leu	Leu	Ala	Val 105	Ala	Cys	Met	Pro	Phe 110	Thr	Leu
Leu	Pro	Asn 115	Leu	Met	Gly	Thr	Phe 120	Ile	Phe	Gly	Thr	Val 125	Ile	Cys	Lys
Ala	Val 130	Ser	Tyr	Leu	Met	Gly 135	Val	Ser	Val	Ser	Val 140	Ser	Thr	Leu	Ser
Leu 145	Val	Ala	Ile	Ala	Leu 150	Glu	Arg	Tyr	Ser	Ala 155	Ile	Cys	Arg	Pro	Leu 160
Gln	Ala	Arg	Val	Trp 165	Gln	Thr	Arg	Ser	His 170	Ala	Ala	Arg	Val	Ile 175	Val

Ala	a Thi	r Tr	p Le ^s 18	u Lei 0	u Sei	r Gl	y Lei	Lei 185	ı Met	t Vai	l Pro	ту:	r Pro 190		l Tyr
Thi	r Vai	l Va: 19:	l Gli 5	n Pro	o Val	l Gly	y Pro 200	o Arg	y Val	l Lei	ı Glr	Cys 205		l His	s Arg
Trp	210	Sei	c Ala	a Aro	g Val	Arç 215	g Glr	n Thr	Trp	Ser	220		ı Leı	ı Leı	ı Leu
Let 225	ı Let	ı Phe	e Ph∈	e Ile	Pro 230	Gly	v Val	. Val	. Met	235		Ala	а Туг	: Gly	/ Leu 240
Ile	e Ser	Arg	g Glu	ı Leu 245	ı Tyr	Leu	ı Gly	Leu	Arg 250	Phe	a Asp	Gly	/ Asp	Ser 255	Asp
Ser	Asp	Ser	Glr 260	n Ser	: Arg	Val	Arg	Asn 265	Gln	Gly	Gly	Leu	Pro 270		' Ala
Val	His	Gln 275	Asn	ı Gly	' Arg	Cys	Arg 280	Pro	Glu	Thr	Gly	Ala 285		Gly	. Lys
Asp	Ser 290	Asp	Gly	Cys	Tyr	Val 295	Gln	Leu	Pro	Arg	Ser 300	Arg	Pro	Ala	Leu
Glu 305	Leu	Thr	Ala	Leu	Thr 310	Ala	Pro	Gly	Pro	Gly 315	Ser	Gly	Ser	Arg	Pro 320
Thr	Gln	Ala	Lys	Leu 325	Leu	Ala	Lys	Lys	Arg 330	Val	Lys	Arg	Met	Leu 335	Leu
Val	Ile	Val	Val 340	Leu	Phe	Phe	Leu	Cys 345	Trp	Leu	Pro	Val	Tyr 350	Ser	Ala
Asn	Thr	Trp 355	Arg	Ala	Phe	Asp	Gly 360	Pro	Gly	Ala	His	Arg 365	Ala	Leu	Ser
Val	Ala 370	Pro	Ile	Ser	Phe	Ile 375	His	Leu	Leu	Ser	Tyr 380	Ala	Ser	Ala	Cys
Val 385	Asn	Pro	Leu	Val	Tyr 390	Cys	Phe	Met	His	Arg 395	Arg	Phe	Arg	Gln	Ala 400
Cys	Leu	Glu	Thr	Cys 405	Ala	Arg	Cys	Cys	Pro 410	Arg	Pro	Pro	Arg	Ala 415	Arg

```
Pro Arg Ala Leu Pro Asp Glu Asp Pro Pro Thr Pro Ser Ile Ala Ser
              420
  Leu Ser Arg Leu Ser Tyr Thr Thr Ile Ser Thr Leu Gly Pro Gly
                              440
  <210> 113
  <211> 34
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Novel Sequence
  <400> 113
  cagcagcatg cgcttcacgc gcttcttagc ccag
                                                                        34
 <210> 114
 <211> 35
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Novel Sequence
<400> 114
 agaagcgcgt gaagcgcatg ctgctggtga tcgtt
                                                                        35
 <210> 115
 <211> 33
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Novel Sequence
 <400> 115
 atggagaaaa gaatcaaaag aatgttctat ata
                                                                       33
 <210> 116
<211> 33
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Novel Sequence
 <400> 116
 tatatagaac attcttttga ttcttttctc cat
                                                                       33
 <210> 117
 <211> 30
 <212> DNA
 <213> Artificial Sequence
```

```
<220>
 <223> Novel Sequence
 <400> 117
 cgctctctgg ccttgaagcg cacgctcagc
                                                                        30
 <210> 118
 <211> 30
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Novel Sequence
 <400> 118
 gctgagcgtg cgcttcaagg ccagagagcg
                                                                        30
<210> 119
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 119
cccaggaaaa aggtgaaagt caaagttttc
                                                                        30
<210> 120
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 120
gaaaactttg actttcacct ttttcctqqq
                                                                        30
<210> 121
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 121
ggggcgcggg tgaaacggct ggtgagc
                                                                       27
<210> 122
<211> 27
<212> DNA
<213> Artificial Sequence
```

```
<220>
 <223> Novel Sequence
 <400> 122
 gctcaccagc cgtttcaccc gcgcccc
                                                                         27
 <210> 123
 <211> 30
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Novel Sequence
 <400> 123
 ccccttgaaa agcctaagaa cttqqtcatc
                                                                         30
<210> 124
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 124
gatgaccaag ttcttaggct tttcaagggg
                                                                         30
<210> 125
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 125
gatctctaga atgaacagca catgtattga ag
                                                                        32
<210> 126
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 126
ctagggtacc cgctcaagga cctctaattc catag
                                                                        35
<210> 127
<211> 1296
<212> DNA
<213> Homo sapiens
```

<400> 127		000000				
			ttctctcggc			60
acgcgggagc	: agttcatcgc	tctgtaccgg	ctgcgaccgc	tcgtctacac	cccagagctg	120
ccgggacgcg	ccaagetgge	cctcgtgctc	accggcgtgc	tcatcttcgc	cctggcgctc	180
tttggcaatg	ctctggtgtt	ctacgtggtg	acccgcagca	aggccatgcg	caccgtcacc	240
aacatcttta	tctgctcctt	ggcgctcagt	gacctgctca	tcaccttctt	ctgcattccc	300
gtcaccatgo	tccagaacat	ttccgacaac	tggctggggg	gtgctttcat	ttgcaagatg	360
gtgccatttg	tccagtctac	cgctgttgtg	acagaaatgc	tcactatgac	ctgcattgct	420
gtggaaaggc	accagggact	tgtgcatcct	tttaaaatga	agtggcaata	caccaaccga	480
agggctttca	caatgctagg	tgtggtctgg	ctggtggcag	tcatcgtagg	atcacccatg	540
tggcacgtgc	aacaacttga	gatcaaatat	gacttcctat	atgaaaagga	acacatctgc	600
tgcttagaag	agtggaccag	ccctgtgcac	cagaagatct	acaccacctt	catccttgtc	660
atcctcttcc	tcctgcctct	tatggtgatg	cttattctgt	acagtaaaat	tggttatgaa	720
ctttggataa	agaaaagagt	tggggatggt	tcagtgcttc	gaactattca	tggaaaagaa	780
atgtccaaaa	tagccaggaa	gaagaaacga	gctaagatta	tgatggtgac	agtggtggct	840
ctctttgctg	tgtgctgggc	accattccat	gttgtccata	tgatgattga	atacagtaat	900
tttgaaaagg	aatatgatga	tgtcacaatc	aagatgattt	ttgctatcgt	gcaaattatt	960
ggattttcca	actccatctg	taatcccatt	gtctatgcat	ttatgaatga	aaacttcaaa	1020
aaaaatgttt	tgtctgcagt	ttgttattgc	atagtaaata	aaaccttctc	tccagcacaa	1080
aggcatggaa	attcaggaat	tacaatgatg	cggaagaaag	caaagttttc	cctcagagag	1140
aatccagtgg	aggaaaccaa	aggagaagca	ttcagtgatg	gcaacattga	agtcaaattg	1200
tgtgaacaga	cagaggagaa	gaaaaagctc	aaacgacatc	ttgctctctt	taggtctgaa	1260
ctggctgaga	attctccttt	agacagtggg	cattaa			1296

```
<210> 128
<211> 431
<212> PRT
<213> Homo sapiens
```

<400> 128

Met Gln Ala Leu Asn Ile Thr Pro Glu Gln Phe Ser Arg Leu Leu Arg 1 $$ 5 $$ 10 $$ 15

Asp His Asn Leu Thr Arg Glu Gln Phe Ile Ala Leu Tyr Arg Leu Arg 20 25 30

Pro Leu Val Tyr Thr Pro Glu Leu Pro Gly Arg Ala Lys Leu Ala Leu Val Leu Thr Gly Val Leu Ile Phe Ala Leu Ala Leu Phe Gly Asn Ala Leu Val Phe Tyr Val Val Thr Arg Ser Lys Ala Met Arg Thr Val Thr Asn Ile Phe Ile Cys Ser Leu Ala Leu Ser Asp Leu Leu Ile Thr Phe Phe Cys Ile Pro Val Thr Met Leu Gln Asn Ile Ser Asp Asn Trp Leu 105 Gly Gly Ala Phe Ile Cys Lys Met Val Pro Phe Val Gln Ser Thr Ala 120 125 Val Val Thr Glu Met Leu Thr Met Thr Cys Ile Ala Val Glu Arg His 135 140 Gln Gly Leu Val His Pro Phe Lys Met Lys Trp Gln Tyr Thr Asn Arg 150 155 Arg Ala Phe Thr Met Leu Gly Val Val Trp Leu Val Ala Val Ile Val 165 170 Gly Ser Pro Met Trp His Val Gln Gln Leu Glu Ile Lys Tyr Asp Phe 180 185 Leu Tyr Glu Lys Glu His Ile Cys Cys Leu Glu Glu Trp Thr Ser Pro 200 Val His Gln Lys Ile Tyr Thr Thr Phe Ile Leu Val Ile Leu Phe Leu 210 215 Leu Pro Leu Met Val Met Leu Ile Leu Tyr Ser Lys Ile Gly Tyr Glu 225 230 Leu Trp Ile Lys Lys Arg Val Gly Asp Gly Ser Val Leu Arg Thr Ile 250 255 His Gly Lys Glu Met Ser Lys Ile Ala Arg Lys Lys Lys Arg Ala Lys

265

Ile	Met	Met 275	Val	Thr	Val	Val	Ala 280	Leu	Phe	Ala	Val	Cys 285	Trp	Ala	Pro	
Phe	His 290	Val	Val	His	Met	Met 295	Ile	Glu	Tyr	Ser	Asn 300	Phe	Glu	Lys	Glu	
Tyr 305	Asp	Asp	Val	Thr	Ile 310	Lys	Met	Ile	Phe	Ala 315	Ile	Val	Gln	Ile	Ile 320	
Gly	Phe	Ser	Asn	Ser 325	Ile	Cys	Asn	Pro	Ile 330	Val	Tyr	Ala	Phe	Met 335	Asn	
Glu	Asn	Phe	Lys 340	Lys	Asn	Val	Leu	Ser 345	Ala	Val	Cys	Tyr	Cys 350	Ile	Val	
Asn	Lys	Thr 355	Phe	Ser	Pro	Ala	Gln 360	Arg	His	Gly	Asn	Ser 365	Gly	Ile	Thr	
Met	Met 370	Arg	Lys	Lys	Ala	Lys 375	Phe	Ser	Leu	Arg	Glu 380	Asn	Pro	Val	Glu	
Glu 385	Thr	Lys	Gly	Glu	Ala 390	Phe	Ser	Asp	Gly	Asn 395	Ile	Glu	Val	Lys	Leu 400	
Cys	Glu	Gln	Thr	Glu 405	Glu	Lys	Lys	Lys	Leu 410	Lys	Arg	His	Leu	Ala 415	Leu	
Phe	Arg	Ser	Glu 420	Leu	Ala	Glu		Ser 425	Pro	Leu	Asp	Ser	Gly 430	His		
<210 <211 <212 <213	> 2 > D	29 040 NA omo	sapi	ens												
<400 atgg		29 cc c	ctgg	aacq	g ca	gcga	caac	ccc	gagg	aaa	caca	aaaa	ככ מ	ccat	ggccc	60
															tgccg	
															ccgtg	
															gcatg	
															ggcgc	300
															agggc	
		-	_	_	-		-					,	۰ <u>۳</u>	2275	- 2 2 2 2 -	500

tgcacctacg ccacgctgct g	gcacatgacc	gcgctcagcg	tcgagcgcta	cctggccatc	420
tgccgcccgc tccgcgcccg c	gtcttggtc	acccggcgcc	gcgtccgcgc	gctcatcgct	480
gtgctctggg ccgtggcgct g	ctctctgcc	ggtcccttct	tgttcctggt	gggcgtcgag	540
caggaccccg gcatctccgt a	gtcccgggc	ctcaatggca	ccgcgcggat	cgcctcctcg	600
cctctcgcct cgtcgccgcc t	ctctggctc	tcgcgggcgc	caccgccgtc	cccgccgtcg	660
gggcccgaga ccgcggaggc c	gcggcgctg	ttcagccgcg	aatgccggcc	gagccccgcg	720
cagetgggeg egetgegtgt e	atgctgtgg	gtcaccaccg	cctacttctt	cctgcccttt	780
ctgtgcctca gcatcctcta c	gggctcatc	gggcgggagc	tgtggagcag	ccggcggccg	840
ctgcgaggcc cggccgcctc g	gggcgggag	agaggccacc	ggcagaccaa	acgcgtcctg	900
cgtaagtgga gccgccgtgg t	tccaaagac	gcctgcctgc	agtccgcccc	gccggggacc	960
gcgcaaacgc tgggtcccct to	cccctgctc	gcccagctct	gggcgccgct	tccagctccc	1020
tttcctattt cgattccagc c	tccacccgc	cggtacttcc	catcccccga	gaaaaccatg	1080
tectgteece caggagetet go	ggggacccc	agggcgcttt	gagggtggga	tccccggatc	1140
cgattcagta accagcagtg c	ttttccaga	gcctctgaga	ccagaaagga	gagttggtaa	1200
ttcttaatcc aaccacctgt ta	agatgccac	aaatgaggag	tcctcacagt	gctcttgaga	1260
agacgaggga gatttcatta ag	gctaaaatt	ttttatttaa	tgttaagtga	tgctgaaggc	1320
taaagtaaac cttgctcgta to	caaaaagta	aagattgtgc	agacctgttg	tagaattctt	1380
ttcaacagag aacagaaaac tt	tgtctccga	agtgggtttg	tggaaggaag	cctgccaagg	1440
cggcttgttc agagaaattg ct	tccttctgg	tttatgtcca	gccttgataa	cacatatggg	1500
agcctactat gcagttttaa ag	gcaagtatc	catgcagcct	gcagcctggt	cattttttct	1560
ggggtgagga tctgcctagg ta	agaagtttt	ctctaattta	ttttgctgtt	acttgttatt	1620
gcagatggtt ccttgtcggg gt	ggggggtt	tatttgcttc	ccaatgcttt	tgttaatccc	1680
ggtgctgtgt cttatgttgc ag	gtggtggtg (gttctggcat	ttataatttg	ctggttgccc	1740
ttccacgttg gcagaatcat tt	acataaac a	acggaagatt	cgcggatgat	gtacttctct	1800
cagtacttta acatcgtcgc to	ctgcaactt (ttctatctga	gcgcatctat	caacccaatc	1860
ctctacaacc tcatttcaaa ga	agtacaga (geggeggeet	ttaaactgct	gctcgcaagg	1920
aagtccaggc cgagaggctt cc	acagaage a	agggacactg	cgggggaagt	tgcaggggac	1980
actggaggag acacggtggg ct	acaccgag a	acaagcgcta a	acgtgaagac	gatgggataa	2040

<210> 130

<211> 412

<212> PRT

<213> Homo sapiens

<400> 130

Pro Pro Trp Pro Ala Leu Pro Pro Cys Asp Glu Arg Arg Cys Ser Pro 20 25 30

Phe Pro Leu Gly Ala Leu Val Pro Val Thr Ala Val Cys Leu Cys Leu 35 40 45

Phe Val Val Gly Val Ser Gly Asn Val Val Thr Val Met Leu Ile Gly 50 55 60

Arg Tyr Arg Asp Met Arg Thr Thr Thr Asn Leu Tyr Leu Gly Ser Met 65 70 75 80

Ala Val Ser Asp Leu Leu Ile Leu Leu Gly Leu Pro Phe Asp Leu Tyr 85 90 95

Arg Leu Trp Arg Ser Arg Pro Trp Val Phe Gly Pro Leu Cys Arg 100 105 110

Leu Ser Leu Tyr Val Gly Glu Gly Cys Thr Tyr Ala Thr Leu Leu His 115 120 125

Met Thr Ala Leu Ser Val Glu Arg Tyr Leu Ala Ile Cys Arg Pro Leu 130 135 140

Arg Ala Arg Val Leu Val Thr Arg Arg Arg Val Arg Ala Leu Ile Ala 145 150 155 160

Val Leu Trp Ala Val Ala Leu Leu Ser Ala Gly Pro Phe Leu Phe Leu 165 170 175

Val Gly Val Glu Gln Asp Pro Gly Ile Ser Val Val Pro Gly Leu Asn 180 185 190

Gly Thr Ala Arg Ile Ala Ser Ser Pro Leu Ala Ser Ser Pro Pro Leu 195 200 205

Trp Leu Ser Arg Ala Pro Pro Pro Ser Pro Pro Ser Gly Pro Glu Thr 210 215 220

Ala 225	Glu	Ala	Ala	Ala	Leu 230	Phe	Ser	Arg	g Glu	Cys 235	a Arg	Pro	Ser	Pro	Ala 240	
Gln	Leu	Gly	Ala	Leu 245	Arg	Val	Met	Leu	Trp 250	Val	. Thr	Thr	Ala	Tyr 255	Phe	
Phe	Leu	Pro	Phe 260	Leu	Cys	Leu	Ser	Ile 265	Leu	Tyr	Gly	Leu	Ile 270	Gly	Arg	
Glu	Leu	Trp 275	Ser	Ser	Arg	Arg	Pro 280	Leu	Arg	Gly	Pro	Ala 285	Ala	Ser	Gly	
Arg	Glu 290	Arg	Gly	His	Arg	Gln 295	Thr	Lys	Arg	Val	Leu 300	Leu	Val	Val	Val	
Leu 305	Ala	Phe	Ile	Ile	Cys 310	Trp	Leu	Pro	Phe	His 315	Val	Gly	Arg	Ile	Ile 320	
Tyr	Ile	Asn	Thr	Glu 325	Asp	Ser	Arg	Met	Met 330	Tyr	Phe	Ser	Gln	Tyr 335	Phe	
Asn	Ile	Val	Ala 340	Leu	Gln	Leu	Phe	Tyr 345	Leu	Ser	Ala	Ser	Ile 350	Asn	Pro	
Ile	Leu	Tyr 355	Asn	Leu	Ile	Ser	Lys 360	Lys	Tyr	Arg	Ala	Ala 365	Ala	Phe	Lys	
Leu	Leu 370	Leu	Ala	Arg	Lys	Ser 375	Arg	Pro	Arg	Gly	Phe 380	His	Arg	Ser	Arg	
Asp 385	Thr	Ala	Gly	Glu	Val 390	Ala	Gly	Asp	Thr	Gly 395	Gly	Asp	Thr	Val	Gly 400	
Tyr	Thr	Glu	Thr	Ser 405	Ala	Asn	Val	Lys	Thr 410	Met	Gly					
<210 <211 <212 <213	> 1 > D	31 344 NA omo	sapi	en <i>s</i>												
<400: atgg:		31 gc t	aaaq	ctga	a cc	aaaa	cata	caq	ggaa	cca	gacc	caaa	CC (4)	aaaa	cttcc	60
															gcgag	
															ctctt	

tacgcagtga	tcttcctgat	gagcgttgga	ggaaatatgc	tcatcatcgt	ggtcctggga	240
ctgagccgcc	gcctgaggac	tgtcaccaat	gccttcctcc	tctcactggc	agtcagcgac	300
ctcctgctgg	ctgtggcttg	catgcccttc	accctcctgc	ccaatctcat	gggcacattc	360
atctttggca	ccgtcatctg	caaggcggtt	tcctacctca	tgggggtgtc	tgtgagtgtg	420
tccacgctaa	gcctcgtggc	catcgcactg	gagcgatata	gcgccatctg	ccgaccactg	480
caggcacgag	tgtggcagac	gcgctcccac	geggetegeg	tgattgtagc	cacgtggctg	540
ctgtccggac	tactcatggt	gccctacccc	gtgtacactg	tcgtgcaacc	agtggggcct	600
cgtgtgctgc	agtgcgtgca	tcgctggccc	agtgcgcggg	tccgccagac	ctggtccgta	660
ctgctgcttc	tgctcttgtt	cttcatccca	ggtgtggtta	tggccgtggc	ctacgggctt	720
atctctcgcg	agctctactt	agggcttcgc	tttgacggcg	acagtgacag	cgacagccaa	780
agcagggtcc	gaaaccaagg	cgggctgcca	ggggctgttc	accagaacgg	gcgttgccgg	840
cctgagactg	gcgcggttgg	caaagacagc	gatggctgct	acgtgcaact	tccacgttcc	900
cggcctgccc	tggagctgac	ggcgctgacg	gctcctgggc	cgggatccgg	ctcccggccc	960
acccaggcca	agctgctggc	taagaagcgc	gtgaaacgaa	tgttgctggt	gatcgttgtg	1020
ctttttttc	tgtgttggtt	gccagtttat	agtgccaaca	cgtggcgcgc	ctttgatggc	1080
ccgggtgcac	accgagcact	ctcgggtgct	cctatctcct	tcattcactt	gctgagctac	1140
gcctcggcct	gtgtcaaccc	cctggtctac	tgcttcatgc	accgtcgctt	tcgccaggcc	1200
tgcctggaaa	cttgcgctcg	ctgctgcccc	cggcctccac	gagctcgccc	cagggctctt	1260
cccgatgagg	accctcccac	tccctccatt	gcttcgctgt	ccaggcttag	ctacaccacc	1320
atcagcacac	tgggccctgg	ctga				1344

```
<210> 132
<211> 447
<212> PRT
```

<213> Homo sapiens

<400> 132

Pro Gly Ala Ser Leu Cys Arg Pro Gly Ala Pro Leu Leu Asn Ser Ser 20 25 30

Ser Val Gly Asn Leu Ser Cys Glu Pro Pro Arg Ile Arg Gly Ala Gly 35 40 45

Thi	Arg 50	g Gli	u Lei	ı Glı	ı Leı	a Ala 55	a Ile	e Aro	g Il€	e Thi	: Let 60	і Туг	Ala	a Val	Ile
Phe 65	e Lei	ı Met	t Sei	: Vai	l Gly 70	/ Gly	y Asr	n Met	. Lei	ı Ile 75	e Ile	e Val	. Val	Leu	Gly 80
Leu	ı Sei	Arç	g Arg	Let 85	ı Arg	Thr	r Val	. Thr	Asn 90	ı Ala	Phe	e Leu	ı Leu	Ser 95	Leu
Ala	val	. Ser	Asp 100	Let	ı Leu	Leu	ı Ala	Val 105	. Ala	Cys	Met	Pro	Phe 110		Leu
Leu	Pro	Asn 115	ı Leu	Met	Gly	Thr	Phe 120	Ile	Phe	Gly	Thr	Val 125		Cys	Lys
Ala	Val 130	Ser	Tyr	Leu	Met	Gly 135	Val	Ser	Val	Ser	Val 140		Thr	Leu	Ser
Leu 145	Val	Ala	Ile	Ala	Leu 150	Glu	Arg	Tyr	Ser	Ala 155	Ile	Cys	Arg	Pro	Leu 160
Gln	Ala	Arg	Val	Trp 165	Gln	Thr	Arg	Ser	His 170	Ala	Ala	Arg	Val	Ile 175	Val
Ala	Thr	Trp	Leu 180	Leu	Ser	Gly	Leu	Leu 185	Met	Val	Pro	Tyr	Pro 190	Val	Tyr
Thr	Val	Val 195	Gln	Pro	Val	Gly	Pro 200	Arg	Val	Leu	Gln	Cys 205	Val	His	Arg
Trp	Pro 210	Ser	Ala	Arg	Val	Arg 215	Gln	Thr	Trp	Ser	Val 220	Leu	Leu	Leu	Leu
Leu 225	Leu	Phe	Phe	Ile	Pro 230	Gly	Val	Val	Met	Ala 235	Val	Ala	Tyr	Gly	Leu 240
Ile	Ser	Arg	Glu	Leu 245	Tyr	Leu	Gly	Leu	Arg 250	Phe	Asp	Gly	Asp	Ser 255	Asp
Ser	Asp	Ser	Gln 260	Ser	Arg	Val	Arg	Asn 265	Gln	Gly	Gly	Leu	Pro 270	Gly	Ala
Val	His	Gln 275	Asn	Gly	Arg	Cys	Arg 280	Pro	Glu	Thr	Gly	Ala 285	Val	Gly	Lys

Asp	290	Asp	GIY	Cys	Tyr	Val 295		Leu	Pro	Arg	Ser 300	Arg	Pro	Ala	Leu	
Glu 305	Leu	Thr	Ala	Leu	Thr 310	Ala	Pro	Gly	Pro	Gly 315	Ser	Gly	Ser	Arg	Pro 320	
Thr	Gln	Ala	Lys	Leu 325	Leu	Ala	Lys	Lys	Arg 330	Val	Lys	Arg	Met	Leu 335	Leu	
Val	Ile	Val	Val 340	Leu	Phe	Phe	Leu	Cys 345	Trp	Leu	Pro	Val	Tyr 350	Ser	Ala	
Asn	Thr	Trp 355	Arg	Ala	Phe	Asp	Gly 360	Pro	Gly	Ala	His	Arg 365	Ala	Leu	Ser	
Val	Ala 370	Pro	Ile	Ser	Phe	Ile 375	His	Leu	Leu	Ser	Tyr 380	Ala	Ser	Ala	Cys	
Val 385	Asn	Pro	Leu	Val	Tyr 390	Cys	Phe	Met	His	Arg 395	Arg	Phe	Arg	Gln	Ala 400	
Cys	Leu	Glu	Thr	Cys 405	Ala	Arg	Cys	Cys	Pro 410	Arg	Pro	Pro	Arg	Ala 415	Arg	
Pro	Arg	Ala	Leu 420	Pro	Asp	Glu	Asp	Pro 425	Pro	Thr	Pro	Ser	Ile 430	Ala	Ser	
Leu	Ser	Arg 435	Leu	Ser	Tyr	Thr	Thr 440	Ile	Ser	Thr	Leu	Gly 445	Pro	Gly		
<210 <211 <212 <213	> 1 > D	33 014 NA	sapi	ens												
<400 atga		33 ca c	atgt	attg	a ag	aaca	gcat	gac	ctqq	atc	acta	ttta	tt t	ccca	ttgtt	60
															ctttc	120
															cagat	180
ttac	tcta	tg c	atta	actc	t cc	cttt	atgg	att	gatt	ata	cttg	gaat	aa a	gaca	actgg	240
actt	tctc	tc c	tgcc [.]	ttgt	g ca	aagg	gagt	gct	tttc	tca	tgta	catg	aa t	tttt	acagc	300
agca	cage	at t	cctc	acct	g ca	ttgc	cgtt	gat	cggt	att	tggc	tgtt	gt c	tacc	ctttg	360
aagt	tttt	tt t	ccta	agga	c aa	gaag	attt	gca	ctca	tgg	tcaq	ccta	tc c	atcto	ggata	420

ttggaaacca	tcttcaatgc	tgtcatgttg	tgggaagatg	aaacagttgt	tgaatattgc	480
gatgccgaaa	agtctaattt	tactttatgc	tatgacaaat	accctttaga	gaaatggcaa	540
atcaacctca	acttgttcag	gacgtgtaca	ggctatgcaa	tacctttggt	caccatcctg	600
atctgtaacc	ggaaagtcta	ccaagctgtg	cggcacaata	aagccacgga	aaacaaggaa	660
aagaagagaa	tcaaaaaact	acttgtcagc	atcacagtta	cttttgtctt	atgctttact	720
ccctttcatg	tgatgttgct	gattcgctgc	attttagagc	atgctgtgaa	cttcgaagac	780
cacagcaatt	ctgggaagcg	aacttacaca	atgtatagaa	tcacggttgc	attaacaagt	840
ttaaattgtg	ttgctgatcc	aattctgtac	tgttttgtta	ccgaaacagg	aagatatgat	900
atgtggaata	tattaaaatt	ctgcactggg	aggtgtaata	catcacaaag	acaaagaaaa	960
cgcatacttt	ctgtgtctac	aaaagatact	atggaattag	aggtccttga	gtag	1014

<210> 134

<211> 337

<212> PRT

<213> Homo sapiens

<400> 134

Met Asn Ser Thr Cys Ile Glu Glu Gln His Asp Leu Asp His Tyr Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ile Gly Ser Leu Cys Val Ser Phe Leu Gln Ala Lys Lys Glu Ser Glu 35 40 45

Leu Gly Ile Tyr Leu Phe Ser Leu Ser Leu Ser Asp Leu Leu Tyr Ala 50 60

Leu Thr Leu Pro Leu Trp Ile Asp Tyr Thr Trp Asn Lys Asp Asn Trp 65 70 70 80

Thr Phe Ser Pro Ala Leu Cys Lys Gly Ser Ala Phe Leu Met Tyr Met 85 90 95

Asn Phe Tyr Ser Ser Thr Ala Phe Leu Thr Cys Ile Ala Val Asp Arg 100 105 110

Tyr Leu Ala Val Val Tyr Pro Leu Lys Phe Phe Phe Leu Arg Thr Arg 115 120 125

Arg	Phe 130	Ala	Leu	Met	. Val	Ser 135	Leu	ı Ser	: Ile	e Trp	140		ı Glu	Thr	Ile
Phe 145	Asn	Ala	Val	Met	Leu 150	Trp	Glu	ı Asp	Glu	Thr 155		Val	Glu	Tyr	Cys 160
Asp	Ala	Glu	Lys	Ser 165	Asn	Phe	Thr	Leu	Cys 170	Tyr	Asp	Lys	Tyr	Pro 175	Leu
Glu	Lys	Trp	Gln 180	Ile	Asn	Leu	Asn	Leu 185	Phe	Arg	Thr	Cys	Thr 190	Gly	Tyr
Ala	Ile	Pro 195	Leu	Val	Thr	Ile	Leu 200	Ile	Cys	Asn	Arg	Lys 205	Val	Tyr	Gln
Ala	Val 210	Arg	His	Asn	Lys	Ala 215	Thr	Glu	Asn	Lys	Glu 220	Lys	Lys	Arg	Ile
Lys 225	Lys	Leu	Leu	Val	Ser 230	Ile	Thr	Val	Thr	Phe 235	Val	Leu	Cys	Phe	Thr 240
Pro	Phe	His	Val	Met 245	Leu	Leu	Ile	Arg	Cys 250	Ile	Leu	Glu	His	Ala 255	Val
Asn	Phe	Glu	Asp 260	His	Ser	Asn	Ser	Gly 265	Lys	Arg	Thr	Tyr	Thr 270	Met	Tyr
Arg	Ile	Thr 275	Val	Ala	Leu	Thr	Ser 280	Leu	Asn	Cys	Val	Ala 285	Asp	Pro	Ile
Leu	Tyr 290	Cys	Phe	Val	Thr	Glu 295	Thr	Gly	Arg	Tyr	Asp 300	Met	Trp	Asn	Ile
Leu 305	Lys	Phe	Cys	Thr	Gly 310	Arg	Cys	Asn	Thr	Ser 315	Gln	Arg	Gln	Arg	Lys 320
Arg	Ile	Leu	Ser	Val 325	Ser	Thr	Lys	Asp	Thr 330	Met	Glu	Leu	Glu	Val 335	Leu
Glu															
<210: <211: <212:	> 9	35 99 NA													

<213> Homo sapiens

```
<400> 135
atggtgaact ccacccaccg tgggatgcac acttetetgc acetetggaa ccgcagcagt
                                                                        60
tacagactgc acagcaatgc cagtgagtcc cttggaaaag gctactctga tggagggtgc
                                                                       120
tacgagcaac tttttgtctc tcctgaggtg tttgtgactc tgggtgtcat cagcttgttg
                                                                       180
gagaatatet tagtgattgt ggcaatagee aagaacaaga atetgeatte acceatgtae
                                                                       240
tttttcatct gcagcttggc tgtggctgat atgctggtga gcgtttcaaa tggatcagaa
                                                                       300
accattatca tcaccctatt aaacagtaca gatacggatg cacagagttt cacagtgaat
                                                                       360
attgataatg tcattgactc ggtgatctgt agctccttgc ttgcatccat ttgcagcctg
                                                                       420
ctttcaattg cagtggacag gtactttact atcttctatg ctctccagta ccataacatt
                                                                      480
atgacagtta agcgggttgg gatcagcata agttgtatct gggcagcttg cacggtttca
                                                                      540
ggcattttgt tcatcattta ctcagatagt agtgctgtca tcatctgcct catcaccatg
                                                                      600
ttcttcacca tgctggctct catggcttct ctctatgtcc acatgttcct gatggccagg
                                                                      660
cttcacatta agaggattgc tgtcctcccc ggcactggtg ccatccgcca aggtgccaat
                                                                      720
atgaagggaa aaattacctt gaccatcctg attggcgtct ttgttgtctg ctgggcccca
                                                                      780
ttcttcctcc acttaatatt ctacatctct tgtcctcaga atccatattg tgtgtgcttc
                                                                      840
atgtctcact ttaacttgta tctcatactg atcatgtgta attcaatcat cgatcctctg
                                                                      900
atttatgcac tccggagtca agaactgagg aaaaccttca aagagatcat ctgttgctat
                                                                      960
cccctgggag gcctttgtga cttgtctagc agatattaa
                                                                      999
```

```
<210> 136
<211> 332
```

<212> PRT

<213> Homo sapiens

<400> 136

Met Val Asn Ser Thr His Arg Gly Met His Thr Ser Leu His Leu Trp 1 5 10 15

Asn Arg Ser Ser Tyr Arg Leu His Ser Asn Ala Ser Glu Ser Leu Gly 20 25 30

Lys Gly Tyr Ser Asp Gly Gly Cys Tyr Glu Gln Leu Phe Val Ser Pro 35 40 45

Glu Val Phe Val Thr Leu Gly Val Ile Ser Leu Leu Glu Asn Ile Leu 50 55 60

Va: 65	l Ile	e Va	l Ala	a Ile	e Ala 70	a Lys	s Ası	n Lys	s Ası	n Let 75	ı His	s Sei	Pro	Met	Tyr 80
Ph€	e Ph∈	e Il	e Cys	S Sei 85	c Lei	ı Ala	a Val	Ala	a Asp 90) Met	Let	ı Val	. Ser	7 Val 95	Ser
Asr	n Gly	/ Se:	r Glu 100	ı Thr	: Ile	e Ile	e Ile	Thr 105	Leu S	ı Lev	ı Asn	. Ser	Thr 110		Thr
Asp	Ala	Glr 115	n Ser	r Ph∈	e Thr	· Val	. Asn 120	ı Ile	e Asp	Asn	. Val	Ile 125		Ser	Val
Ile	Cys	Sei	Ser	Leu	ı Leu	Ala 135	Ser	Ile	: Cys	Ser	Leu 140		Ser	Ile	Ala
Val 145	Asp	Arc	J Tyr	Phe	Thr 150	Ile	Phe	Tyr	Ala	Leu 155	Gln	Tyr	His	Asn	Ile 160
Met	Thr	Val	. Lys	Arg 165	Val	Gly	Ile	Ser	Ile 170	Ser	Cys	Ile	Trp	Ala 175	Ala
Cys	Thr	Val	Ser 180	Gly	Ile	Leu	Phe	Ile 185	Ile	Tyr	Ser	Asp	Ser 190	Ser	Ala
Val	Ile	Ile 195	Cys	Leu	Ile	Thr	Met 200	Phe	Phe	Thr	Met	Leu 205	Ala	Leu	Met
Ala	Ser 210	Leu	Tyr	Val	His	Met 215	Phe	Leu	Met	Ala	Arg 220	Leu	His	Ile	Lys
Arg 225	Ile	Ala	Val	Leu	Pro 230	Gly	Thr	Gly	Ala	Ile 235	Arg	Gln	Gly	Ala	Asn 240
Met	Lys	Gly	Lys	Ile 245	Thr	Leu	Thr	Ile	Leu 250	Ile	Gly	Val	Phe	Val 255	Val
Cys	Trp	Ala	Pro 260	Phe	Phe	Leu	His	Leu 265	Ile	Phe	Tyr	Ile	Ser 270	Cys	Pro
Gln	Asn	Pro 275	Tyr	Cys	Val	Cys	Phe 280	Met	Ser	His	Phe	Asn 285	Leu	Tyr	Leu
Ile	Leu 290	Ile	Met	Cys	Asn	Ser 295	Ile	Ile	Asp	Pro	Leu 300	Ile	Tyr	Ala	Leu

Arg Ser Gln Glu Leu Arg Lys Thr Phe Lys Glu Ile Ile Cys Cys Tyr 305 310 315 320	
Pro Leu Gly Gly Leu Cys Asp Leu Ser Ser Arg Tyr 325 330	
<210> 137 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 137 gccaatatga agggaaaaat taccttgacc atc	33
<210> 138 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> Novel Sequence	
<400> 138 ctccttcggt cctcctatcg ttgtcagaag t	31
<210> 139 <211> 1842 <212> DNA <213> Homo sapiens	
<400> 139 atggggccca ccctagcggt tcccaccccc tatggctgta ttggctgtaa gctaccccag	60
ccagaatacc caccggctct aatcatcttt atgttctgcg cgatggttat caccatcgtt	120
gtagacctaa tcggcaactc catggtcatt ttggctgtga cgaagaacaa gaagctccgg	180
aattetggea acatettegt ggteagtete tetgtggeeg atatgetggt ggeeatetae	240
ccataccctt tgatgctgca tgccatgtcc attgggggct gggatctgag ccagttacag	300
tgccagatgg tcgggttcat cacagggctg agtgtggtcg gctccatctt caacatcgtg	360
gcaatcgcta tcaaccgtta ctgctacatc tgccacagcc tccagtacga acggatcttc	420
agtgtgcgca atacctgcat ctacctggtc atcacctgga tcatgaccgt cctggctgtc	480
ctgcccaaca tgtacattgg caccatcgag tacgatcctc gcacctacac ctgcatcttc	540
aactatctga acaaccctgt cttcactgtt accatcgtct gcatccactt cgtcctccct	600
ctcctcatcg tgggtttctg ctacgtgagg atctggacca aagtgctggc ggcccgtgac	660

```
cctgcagggc agaatcctga caaccaactt gctgaggttc gcaattttct aaccatgttt
                                                                       720
gtgatcttcc tcctctttgc agtgtgctgg tgccctatca acgtgctcac tgtcttggtg
                                                                       780
gctgtcagtc cgaaggagat ggcaggcaag atccccaact ggctttatct tgcagcctac
                                                                       840
ttcatagcct acttcaacag ctgcctcaac gctgtgatct acgggctcct caatgagaat
                                                                       900
ttccgaagag aatactggac catcttccat gctatgcggc accctatcat attcttccct
                                                                       960
ggcctcatca gtgatattcg tgagatgcag gaggcccgta ccctggcccg cgcccgtgcc
                                                                     1020
catgctcgcg accaagctcg tgaacaagac cgtgcccatg cctgtcctgc tgtggaggaa
                                                                     1080
accccgatga atgtccggaa tgttccatta cctggtgatg ctgcagctgg ccaccccgac
                                                                     1140
cgtgcctctg gccaccctaa gccccattcc agatcctcct ctgcctatcg caaatctgcc
                                                                     1200
tetacceace acaagtetgt etttageeac tecaaggetg eetetggtea eeteaageet
                                                                     1260
gtctctggcc actccaagcc tgcctctggt caccccaagt ctgccactgt ctaccctaag
                                                                     1320
cctgcctctg tccatttcaa gggtgactct gtccatttca agggtgactc tgtccatttc
                                                                     1380
aagcctgact ctgttcattt caagcctgct tccagcaacc ccaagcccat cactggccac
                                                                     1440
catgtctctg ctggcagcca ctccaagtct gccttcagtg ctgccaccag ccaccctaaa
                                                                     1500
cccatcaagc cagctaccag ccatgctgag cccaccactg ctgactatcc caagcctgcc
                                                                     1560
actaccagee accetaagee egetgetget gacaaccetg agetetetge eteccattge
                                                                     1620
cccgagatec etgecattge ceaccetgtg tetgacgaea gtgacetece tgagteggee
                                                                     1680
tctagccctg ccgctgggcc caccaagcct gctgccagcc agctggagtc tgacaccatc
                                                                     1740
gctgaccttc ctgaccctac tgtagtcact accagtacca atgattacca tgatgtcgtg
                                                                     1800
gttgttgatg ttgaagatga tcctgatgaa atggctgtgt ga
                                                                     1842
```

```
<210> 140
<211> 613
<212> PRT
<213> Homo sapiens
```

-

<400> 140

Lys Leu Pro Gln Pro Glu Tyr Pro Pro Ala Leu Ile Ile Phe Met Phe 20 25 30

Cys Ala Met Val Ile Thr Ile Val Val Asp Leu Ile Gly Asn Ser Met 35 40 45

Ile 65	e Phe	e Va.	l Vai	l Sei	r Leu 70	ı Sei	r Val	l Ala	a Asp	75	t Lei	ı Va:	l Alá	a Ile	e Tyr 80
Pro	туі	r Pro	o Lei	ı Met 85	. Leu	His	s Alá	a Met	Ser 90	r Ile	e Gly	/ Gly	y Trp	Asp 95) Leu
Sei	Glr	ı Leı	ı Glr 100	n Cys)	s Gln	Met	: Val	. Gly 105	y Ph∈	e Ile	e Thr	Gly	/ Leu		: Val
Val	. Gly	7 Ser 115	î Il∈	e Ph∈	e Asn	Ile	val 120	Ala	Ile	e Ala	ı Ile	e Asr 125		Туг	Cys
Tyr	Ile 130	: Cys	B His	Ser	Leu	Gln 135	Tyr	Glu	Arg	, Ile	Phe		· Val	Arg	Asn
Thr 145	Cys	Ile	e Tyr	Leu	Val 150	Ile	Thr	Trp	Ile	Met 155	Thr	Val	Leu	Ala	Val 160
Leu	Pro	Asn	Met	Tyr 165	Ile	Gly	Thr	Ile	Glu 170	Tyr	Asp	Pro	Arg	Thr 175	
Thr	Cys	Ile	Phe 180	Asn	Tyr	Leu	Asn	Asn 185	Pro	Val	Phe	Thr	Val 190	Thr	Ile
Val	Cys	Ile 195	His	Phe	Val	Leu	Pro 200	Leu	Leu	Ile	Val	Gly 205	Phe	Cys	Tyr
Val	Arg 210	Ile	Trp	Thr	Lys	Val 215	Leu	Ala	Ala	Arg	Asp 220	Pro	Ala	Gly	Gln
Asn 225	Pro	Asp	Asn	Gln	Leu 230	Ala	Glu	Val	Arg	Asn 235	Phe	Leu	Thr	Met	Phe 240
Val	Ile	Phe	Leu	Leu 245	Phe	Ala	Val	Cys	Trp 250	Cys	Pro	Ile	Asn	Val 255	Leu
Thr	Val	Leu	Val 260	Ala	Val	Ser	Pro	Lys 265	Glu	Met	Ala	Gly	Lys 270	Ile	Pro
Asn	Trp	Leu 275	Tyr	Leu	Ala	Ala	Tyr 280	Phe	Ile	Ala	Tyr	Phe 285	Asn	Ser	Cys

Val Ile Leu Ala Val Thr Lys Asn Lys Lys Leu Arg Asn Ser Gly Asn 50 55 60

Le	1 Asr 290	n Ala	a Val	l Ile	э Туг	Gly 295	y Let	ı Lei	u Ası	n Glı	a Asr 300		e Aro	g Aro	g Glu
Ту: 305	Trp	Th:	r Ile	e Phe	His 310	s Ala	a Met	: Ar	g His	s Pro 315	o Ile	e Ile	∋ Phe	Phe	Pro 320
Gly	/ Leu	ı Ile	e Ser	325	o Ile	e Arg	g Glu	1 Met	Glr 330	n Glu)	ı Ala	ı Arg	g Thr	Leu 335	
Arg	, Ala	Arg	340	His	s Ala	Arg	, Asp	Glr 345	n Ala	a Arç	g Glu	Gln	Asp 350		Ala
His	Ala	. Cys 355	Pro	Ala	Val	Glu	Glu 360	Thr	Pro) Met	Asn	Val 365		Asn	Val
Pro	Leu 370	Pro	Gly	Asp	Ala	Ala 375	Ala	Gly	His	Pro	Asp 380		Ala	Ser	Gly
His 385	Pro	Lys	Pro	His	Ser 390	Arg	Ser	Ser	Ser	Ala 395		Arg	Lys	Ser	Ala 400
Ser	Thr	His	His	Lys 405	Ser	Val	Phe	Ser	His 410	Ser	Lys	Ala	Ala	Ser 415	Gly
His	Leu	Lys	Pro 420	Val	Ser	Gly	His	Ser 425	Lys	Pro	Ala	Ser	Gly 430	His	Pro
Lys	Ser	Ala 435	Thr	Val	Tyr	Pro	Lys 440	Pro	Ala	Ser	Val	His 445	Phe	Lys	Gly
Asp	Ser 450	Val	His	Phe	Lys	Gly 455	Asp	Ser	Val	His	Phe 460	Lys	Pro	Asp	Ser
Val 465	His	Phe	Lys	Pro	Ala 470	Ser	Ser	Asn	Pro	Lys 475	Pro	Ile	Thr	Gly	His 480
His	Val	Ser	Ala	Gly 485	Ser	His	Ser	Lys	Ser 490	Ala	Phe	Ser	Ala	Ala 495	Thr
Ser	His	Pro	Lys 500	Pro	Ile	Lys	Pro	Ala 505	Thr	Ser	His	Ala	Glu 510	Pro	Thr
Thr	Ala	Asp 515	Tyr	Pro	Lys	Pro	Ala 520	Thr	Thr	Ser	His	Pro 525	Lys	Pro	Ala

Ala Ala Asp Asn Pro Glu Leu Ser Ala Ser His Cys Pro Glu Ile Pro 530 540

Ala Ile Ala His Pro Val Ser Asp Asp Ser Asp Leu Pro Glu Ser Ala 545 550 555 560

Ser Ser Pro Ala Ala Gly Pro Thr Lys Pro Ala Ala Ser Gln Leu Glu 565 570 575

Ser Asp Thr Ile Ala Asp Leu Pro Asp Pro Thr Val Val Thr Thr Ser 580 590

Thr Asn Asp Tyr His Asp Val Val Val Val Asp Val Glu Asp Asp Pro 595 600 605

Asp Glu Met Ala Val 610

<210> 141

<211> 1842

<212> DNA

<213> Homo sapiens

<400> 141

atggggccca ccctagcggt tcccacccc tatggctgta ttggctgtaa gctaccccag 60 ccagaatacc caccggctct aatcatcttt atgttctgcg cgatggttat caccatcgtt 120 gtagacctaa tcggcaactc catggtcatt ttggctgtga cgaagaacaa gaagctccgg 180 aattctggca acatcttcgt ggtcagtctc tctgtggccg atatgctggt ggccatctac 240 ccataccett tgatgetgea tgccatgtee attggggget gggatetgag ccagttacag 300 tgccagatgg tcgggttcat cacagggctg agtgtggtcg gctccatctt caacatcgtg 360 gcaatcgcta tcaaccgtta ctgctacatc tgccacagcc tccagtacga acggatcttc 420 agtgtgcgca atacctgcat ctacctggtc atcacctgga tcatgaccgt cctggctgtc 480 ctgcccaaca tgtacattgg caccatcgag tacgatcctc gcacctacac ctgcatcttc 540 aactatctga acaaccctgt cttcactgtt accatcgtct gcatccactt cgtcctccct 600 ctcctcatcg tgggtttctg ctacgtgagg atctggacca aagtgctggc ggcccgtgac 660 cctgcagggc agaatcctga caaccaactt gctgaggttc gcaataaact aaccatgttt 720 gtgatcttcc tcctctttgc agtgtgctgg tgccctatca acgtgctcac tgtcttggtg 780 gctgtcagtc cgaaggagat ggcaggcaag atccccaact ggctttatct tgcagcctac 840 ttcatagcct acttcaacag ctgcctcaac gctgtgatct acgggctcct caatgagaat 900

```
ttccgaagag aatactggac catcttccat gctatgcggc accctatcat attcttctct
                                                                      960
ggcctcatca gtgatattcg tgagatgcag gaggcccgta ccctggcccg cgcccgtgcc
                                                                     1020
catgctcgcg accaagctcg tgaacaagac cgtgcccatg cctgtcctgc tgtggaggaa
                                                                     1080
accccgatga atgtccggaa tgttccatta cctggtgatg ctgcagctgg ccaccccgac
                                                                     1140
cgtgcctctg gccaccctaa gccccattcc agatcctcct ctgcctatcg caaatctgcc
                                                                     1200
tctacccacc acaagtctgt ctttagccac tccaaggctg cctctggtca cctcaagcct
                                                                     1260
gtctctggcc actccaagcc tgcctctggt caccccaagt ctgccactgt ctaccctaag
                                                                     1320
cctgcctctg tccatttcaa ggctgactct gtccatttca agggtgactc tgtccatttc
                                                                     1380
aageetgaet etgtteattt caageetget teeageaace ceaageeeat caetggeeae
                                                                     1440
catgtetetg etggeageea etecaagtet geetteaatg etgecaceag ecaceetaaa
                                                                     1500
cccatcaagc cagctaccag ccatgctgag cccaccactg ctgactatcc caagcctgcc
                                                                     1560
actaccagec accetaagee egetgetget gacaaccetg agetetetge eteccattge
                                                                     1620
cccgagatcc ctgccattgc ccaccctgtg tctgacgaca gtgacctccc tgagtcggcc
                                                                     1680
tctagccctg ccgctgggcc caccaagcct gctgccagcc agctggagtc tgacaccatc
                                                                     1740
gctgaccttc ctgaccctac tgtagtcact accagtacca atgattacca tgatgtcgtg
                                                                     1800
gttgttgatg ttgaagatga tcctgatgaa atggctgtgt ga
                                                                     1842
```

<210> 142

<211> 613

<212> PRT

<213> Homo sapiens

<400> 142

Met Gly Pro Thr Leu Ala Val Pro Thr Pro Tyr Gly Cys Ile Gly Cys 1 5 10 15

Lys Leu Pro Gln Pro Glu Tyr Pro Pro Ala Leu Ile Ile Phe Met Phe 20 25 30

Cys Ala Met Val Ile Thr Ile Val Val Asp Leu Ile Gly Asn Ser Met 35 40 45

Val Ile Leu Ala Val Thr Lys Asn Lys Lys Leu Arg Asn Ser Gly Asn 50 55 60

Ile Phe Val Val Ser Leu Ser Val Ala Asp Met Leu Val Ala Ile Tyr 70 75 80

Pro	э Туі	r Pro) Let	Met 85	c Leu	His	s Ala	ı Met	Ser 90	: Ile	e Gly	Gly	7 Trp	Asp 95	Leu
Ser	Glr	ı Leu	Glr 100	Cys	s Gln	Met	: Val	Gly 105	Phe	e Ile	Thr	Gly	Leu 110		. Val
Val	Gly /	/ Ser 115	: Ile	Ph∈	e Asn	Ile	val 120	Ala	Ile	e Ala	Ile	Asn 125		Туг	Cys
Tyr	130	cys	His	Ser	Leu	Gln 135	Tyr	Glu	Arg	Ile	Phe 140	Ser	Val	Arg	Asn
Thr 145	Cys	Ile	Tyr	Leu	Val 150	Ile	Thr	Trp	Ile	Met 155	Thr	Val	Leu	Ala	Val 160
Leu	Pro	Asn	Met	Tyr 165	Ile	Gly	Thr	Ile	Glu 170	Tyr	Asp	Pro	Arg	Thr 175	Tyr
Thr	Cys	Ile	Phe 180	Asn	Tyr	Leu	Asn	Asn 185	Pro	Val	Phe	Thr	Val 190	Thr	Ile
Val	Cys	Ile 195	His	Phe	Val	Leu	Pro 200	Leu	Leu	Ile	Val	Gly 205	Phe	Cys	Tyr
Val	Arg 210	Ile	Trp	Thr	Lys	Val 215	Leu	Ala	Ala	Arg	Asp 220	Pro	Ala	Gly	Gln
Asn 225	Pro	Asp	Asn	Gln	Leu 230	Ala	Glu	Val	Arg	Asn 235	Lys	Leu	Thr	Met	Phe 240
Val	Ile	Phe	Leu	Leu 245	Phe	Ala	Val	Cys	Trp 250	Cys	Pro	Ile	Asn	Val 255	Leu
Thr	Val	Leu	Val 260	Ala	Val	Ser	Pro	Lys 265	Glu	Met	Ala	Gly	Lys 270	Ile	Pro
Asn	Trp	Leu 275	Tyr	Leu	Ala	Ala	Tyr 280	Phe	Ile	Ala	Tyr	Phe 285	Asn	Ser	Cys
Leu	Asn 290	Ala	Val	Ile	Tyr	Gly 295	Leu	Leu	Asn	Glu	Asn 300	Phe	Arg	Arg	Glu
Tyr 305	Trp	Thr	Ile	Phe	His 310	Ala	Met	Arg	His	Pro 315	Ile	Ile	Phe	Phe	Ser 320

Gly	/ Le	ı Ile	e Sei	325	o Il∈	e Arg	g Glu	Met	: Glr 330	ı Glu	Ala	Arg	g Thr	Let 335	ı Ala
Arg	j Alá	a Arg	g Ala 340	His	s Ala	. Arg	Asp	Gln 345	Ala	Arg	Glu	Glr	350		j Ala
His	: Ala	355	s Pro	Ala	ı Val	Glu	Glu 360	Thr	Pro	Met	Asn	Val 365		Asn	ı Val
Pro	1 Leu 370	Pro	Gly	Asp	Ala	Ala 375	Ala	Gly	His	Pro	Asp 380	Arg	Ala	Ser	Gly
His 385	Pro	Lys	Pro	His	Ser 390	Arg	Ser	Ser	Ser	Ala 395	Tyr	Arg	Lys	Ser	Ala 400
Ser	Thr	His	His	Lys 405	Ser	Val	Phe	Ser	His 410	Ser	Lys	Ala	Ala	Ser 415	Gly
His	Leu	Lys	Pro 420	Val	Ser	Gly	His	Ser 425	Lys	Pro	Ala	Ser	Gly 430	His	Pro
Lys	Ser	Ala 435	Thr	Val	Tyr	Pro	Lys 440	Pro	Ala	Ser	Val	His 445	Phe	Lys	Ala
Asp	Ser 450	Val	His	Phe	Lys	Gly 455	Asp	Ser	Val	His	Phe 460	Lys	Pro	Asp	Ser
Val 465	His	Phe	Lys	Pro	Ala 470	Ser	Ser	Asn	Pro	Lys 475	Pro	Ile	Thr	Gly	His 480
His	Val	Ser	Ala	Gly 485	Ser	His	Ser	Lys	Ser 490	Ala	Phe	Asn	Ala	Ala 495	Thr
Ser	His	Pro	Lys 500	Pro	Ile	Lys	Pro	Ala 505	Thr	Ser	His	Ala	Glu 510	Pro	Thr
Thr	Ala	Asp 515	Tyr	Pro	Lys	Pro	Ala 520	Thr	Thr	Ser	His	Pro 525	Lys	Pro	Ala
Ala	Ala 530	Asp	Asn	Pro	Glu	Leu 535	Ser	Ala	Ser	His	Cys 540	Pro	Glu	Ile	Pro
Ala 545	Ile	Ala	His	Pro	Val 550	Ser	Asp	Asp	Ser	Asp 555	Leu	Pro	Glu	Ser	Ala 560

```
Ser Ser Pro Ala Ala Gly Pro Thr Lys Pro Ala Ala Ser Gln Leu Glu
                 565
 Ser Asp Thr Ile Ala Asp Leu Pro Asp Pro Thr Val Val Thr Thr Ser
                                585
 Thr Asn Asp Tyr His Asp Val Val Val Val Asp Val Glu Asp Asp Pro
                             600
 Asp Glu Met Ala Val
     610
<210> 143
<211> 33
 <212> DNA
<213> Artificial Sequence
 <220>
<223> Novel Sequence
<400> 143
gctgaggttc gcaataaact aaccatgttt gtg
                                                                       33
<210> 144
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 144
ctccttcggt cctcctatcg ttgtcagaag t
                                                                       31
<210> 145
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
<400> 145
ttagatatcg gggcccaccc tagcggt
                                                                       27
<210> 146
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Novel Sequence
```

<400> ggtacc	146 ccca cagccatttc atcaggatc	29
<210><211><211><212><213>	147 31 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gatctg	147 gagt accccattga cgtcaatggg g	31
<210> <211> <212> <213>	148 31 DNA Artificial Sequence	
<220> <223>	Novel Sequence	
<400> gatccc	148 ccat tgacgtcaat ggggtactcc a	31