UNIVERSITY OF CALIFORNIA, SANTA BARBARA

Department of Electrical and Computer Engineering

ECE 139

Probability and Statistics

Spring 2019

Homework Assignment #2

(Due on Wednesday 4/17/2019 by 5 pm in the Homework Box)

Problem # 1. A fair die is rolled. Let A_k denote the event that the number of dots facing up is k, and let B_k denote the event that this number is less than k, for k = 1, ..., 6. Let E and O denote the events that the number is even or odd, respectively. Find the probabilities:

- a) $P[O|B_4]$
- b) $P[A_2 \cup A_4 | B_5]$
- c) $P[B_4|O]$
- d) $P[B_4|B_5]$
- e) $P[E \cap B_5|B_6]$

Problem # 2. Next consider the roll of a pair of fair dice. Find the probabilities of the events:

- a) A_k : the *total* number of dots facing up is k, for k = 2, ..., 12. (There are 11 such events)
- b) B: the two dice show different outcomes

Problem # 3. Let the sample space be $S = \{a, b, c\}$. You are informed of the probabilities of two events: $P[\{a, c\}] = 0.6$, and $P[\{b, c\}] = 0.8$. Use the axioms of probability to determine the probability of each of the outcomes a, b and c.

Problem # 4. A statistical survey found that 20% of cars are red, and 10% are electric cars. It was further discovered that of all cars that are either red or electric, 50% are both red and electric.

- a) What is the probability $P[R \cap E]$ that a car is both red and electric?
- b) What is the conditional probability P[E|R] that a red car is electric?
- c) What is the conditional probability P[R|E] that an electric car is red?

Problem # 5. Show that the probability that exactly one of the two events A or B occurs is given by

$$P[A] + P[B] - 2P[A \cap B]$$

Problem # 6. Show that

$$P[A \cap B \cap C] = P[A|B \cap C] P[B|C] P[C]$$

Problem # 7. A missile can be accidentally launched if two relays A and B both have failed. The probabilities of failure of A and B are known to be 0.01 and 0.03, respectively. It is further known that if A fails then B is more likely to fail (specifically at probability 0.06).

- a) What is the probability of an accidental launch?
- b) What is the probability that A fails given that B fails?