Machine Leaving Lect 3

Gradient Descent

De ·	Peras a Mubberjee
	9 Aug 120
	, ., ,

AND function inflementation using Single Layer Reception Tuch table of AND

1 1 1

1 0 0

0 1 0

0 0 0 0 -> -1 (Label) 1 - 1 (Less!) Vesception MIN Achivation function 0=0 O(yin): 30 yin=0 Initalize weights = 0 W,, Wz, 6=0 Yin = Ewini +5 = 6 + w, n, +w2n2 = 0+0(1)+0(1) y = Q (yin) = 0 y + t a update neights wi (new) = wiold + Lt ni

$$\omega_{1}$$
 new = ω_{1} old $7 L (t-\hat{y}) n_{1}$
 ω_{1} new : $-1 + 1 (-1 - 1) - 1$
 $= -1 + 2 = 1$
 ω_{2} new = ω_{2} old $7 L (t-\hat{y}) n_{2}$
 $= 3 + 1 (-1-1) 1$
 $= 3 - 2 = 1$
 $6 = 3 - 2 = 1$
 $6 = 3 - 2 = 1$
 $6 = 3 - 2 = 1 - 2$
 $6 = 3 - 2 = 1 - 2$

g: -1
g: t) so charge is weight

(v) Yin = -3 +(1) (-1) +1 (-1)

final weights are

Neusian Loundary

n,=0 n2=3 $h_1 = 1$ $y_2 = 2$

nr:2 n2:1

6, = 1 Wz = 1 6 = -3

b f w, w, + wz 92 = 0

MAS'ON fit a daight works for the ach VK = Ewkjnj = yk 2 parameters: slope & is be cept y: f(n,,n) line filling - 30 line 2 slopes ny plane nomponents ny plane y = f(n,, n2 y: 2 Way nj N-d skæight line so many gradients along is dividual planes + bias

not passing exactly the ough Erron values consined some positive Phor & some can be plot regative as a function of 2 valiables w, L No slope intercept narual tenderay is to reach the minima (minimum ever) ener for hest continuos parameters (w, Lwo)

pote state could bet different manihentes out nagrihedes out of the several meninas the surface can exhibit. Only I global minima sust one local ninnas. System adopts d learns to reach best fitment & it reaches global minama a gets trapped at beal noves opposite to the direction of the gradient. het us have pino. I observations

E = ZE E = 12 (to - yo) 2 2,0 7. $y_0 = f_1(n, n_2...n_1)$ $y_1 = f_2(n, n_2...n_1)$ $y_n = f_n (n_n, n_n, \dots)$

$$G = \frac{\partial \mathcal{E}}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}} = \frac{\partial}{\partial w_{ij}}$$

$$\frac{\partial \mathcal{E}}{\partial w_{0i}} = \frac{\partial}{\partial w_{0i}} = \frac{\partial}{\partial$$

J WOL JE (to-yo) ni) wol arh'cular weight Dwoi= (to -4) of firs falling rate of it is fall Woi = Woi + O Woi

1) high it is faster (wight coss closes the winner) linear N-d steat, ght winner) osi late rfw activation I to reach myma / non-linea Curve filling J deed it is to piecenise components complicated · model 50 ln: - linear NON

i) mono brodly in creasing LI) workin wousty differentiable

$$\phi(v_k) = \frac{1}{1+e^{-av_k}}$$
 (Sigmoid)

$$\frac{f(v_k) = 1}{1 + e} - av_k \quad (Sigmoid)$$

$$f(z) = \frac{1}{1 - z}$$

$$7 = \frac{1}{1 + e^{-3}}$$
Quartier pule:
$$(3) = \frac{1}{1 + e^{-3}}$$

$$(3) = \frac{1}{1 + e^{-3}} = \frac{1}{1 + e^{-3}}$$

(1+e-3)2

 $= \frac{c^{-3}}{(1+c^{-3})^2} = \frac{1-1+e^{-3}}{(1+e^{-3})^2}$

= 1+e⁻² - 1 (1+e⁻²) ~ (1+e⁻³) ~

 $= \frac{1}{(1+e^{-3})} \left(1 - \frac{1}{1+e^{-3}}\right)$

= (3) (1-0(3))