Методы оптимизации. Семинар 5. Субдифференциал.

Александр Катруца

Московский физико-технический институт

29 сентября 2020 г.

Напоминание

- Выпуклая функция
- Надграфик и множество подуровня функции
- ▶ Критерии выпуклости функции
- ▶ Неравенство Йенсена

Мотивация

Зачем?

Важным свойством непрерывной выпуклой функции f является то, что в выбранной точке ${\bf x}$ для всех ${\bf y} \in {\sf dom}\ f$ выполнено неравенство:

$$f(\mathbf{y}) - f(\mathbf{x}) \ge \langle \mathbf{a}, \mathbf{y} - \mathbf{x} \rangle$$

для некоторого вектора ${\bf a}$, то есть касательная к графику функции является глобальной оценкой снизу для функции.

- ▶ Если f дифференцируема, то $\mathbf{a} = f'(\mathbf{x})$.
- ▶ Что делать, если f недифференцируема?

Определение

Субградиент

Вектор ${\bf a}$ называется субградиентом функции $f: {\mathcal X} \to {\mathbb R}$ в точке ${\bf x}$, если

$$f(\mathbf{y}) - f(\mathbf{x}) \ge \langle \mathbf{a}, \mathbf{y} - \mathbf{x} \rangle$$

для всех $\mathbf{y} \in \mathcal{X}$.

Субдифференциал

Множество субградиентов функции f в точке ${\bf x}$ называется субдифференциалом f в ${\bf x}$ и обозначается $\partial f({\bf x})$.

Геометрическая интерпретация

Существование

Q: когда субдифференциал непустое множество?

Существование

Q: когда субдифференциал непустое множество?

Теорема

Если f выпуклая функция, то в любой точке $\mathbf{x} \in \mathrm{int}\,(\mathrm{dom}\;f)$ выполнено $\partial f(\mathbf{x}) \neq \varnothing$

Полезные факты

Теорема Моро-Рокафеллара

Пусть $f_i(\mathbf{x})$ — выпуклые функции на выпуклых множествах $\mathcal{X}_i,\ i=1,\dots,n.$ Тогда, если $\bigcap^n \mathrm{relint}\,(\mathcal{X}_i) \neq \varnothing$ то функция

$$f(\mathbf{x}) = \sum\limits_{i=1}^n a_i f_i(\mathbf{x}), \ a_i > 0$$
 имеет субдифференциал $\partial_{\mathcal{X}} f(\mathbf{x})$

на множестве
$$\mathcal{X} = \bigcap_{i=1}^n \mathcal{X}_i$$
 и $\partial_{\mathcal{X}} f(\mathbf{x}) = \sum_{i=1}^n a_i \partial_{\mathcal{X}_i} f_i(\mathbf{x}).$

Если функция — максимум

Если
$$f(\mathbf{x}) = \max_{i=1,\dots,m}(f_i(\mathbf{x}))$$
, где $f_i(\mathbf{x})$ выпуклы, тогда

Полезные факты

Теорема Моро-Рокафеллара

Пусть $f_i(\mathbf{x})$ — выпуклые функции на выпуклых множествах $\mathcal{X}_i,\ i=1,\dots,n.$ Тогда, если $\bigcap^n \mathrm{relint}\,(\mathcal{X}_i) \neq \varnothing$ то функция

$$f(\mathbf{x}) = \sum_{i=1}^n a_i f_i(\mathbf{x}), \ a_i > 0$$
 имеет субдифференциал $\partial_{\mathcal{X}} f(\mathbf{x})$

на множестве
$$\mathcal{X}=\bigcap\limits_{i=1}^n\mathcal{X}_i$$
 и $\partial_{\mathcal{X}}f(\mathbf{x})=\sum\limits_{i=1}^na_i\partial_{\mathcal{X}_i}f_i(\mathbf{x}).$

Если функция — максимум

Если $f(\mathbf{x}) = \max_{i=1,\dots,m}(f_i(\mathbf{x}))$, где $f_i(\mathbf{x})$ выпуклы, тогда

$$\partial_{\mathcal{X}} f(\mathbf{x}) = \operatorname{conv}\left(igcup_{i \in \mathcal{J}(\mathbf{x})} \partial_{\mathcal{X}} f_i(\mathbf{x})
ight)$$
, где $\mathcal{J}(\mathbf{x}) = \{i = 1, \dots, m \mid f_i(\mathbf{x}) = f(\mathbf{x})\}$

Примеры

Найдите субдифференциалы следующих функций.

- ▶ Модуль: f(x) = |x|
- ▶ Норма: $f(\mathbf{x}) = \|\mathbf{x}\|$
- Скалярный максимум: $f(x) = \max(e^x, 1 x)$
- ▶ Векторный максимум: $f(\mathbf{x}) = |\mathbf{c}^{\top}\mathbf{x}|$
- $f(\mathbf{x}) = |\mathbf{c}_1^{\mathsf{T}} \mathbf{x}| + |\mathbf{c}_2^{\mathsf{T}} \mathbf{x}|$

Условный субдифференциал

Определение

Множество $\{\mathbf{a} \mid f(\mathbf{x}) - f(\mathbf{x}_0) \geq \langle \mathbf{a}, \mathbf{x} - \mathbf{x}_0 \rangle, \ \forall \mathbf{x} \in \mathcal{X} \}$ называется субдифференциалом f в \mathbf{x}_0 на множестве \mathcal{X} и обозначается $\partial_{\mathcal{X}} f(\mathbf{x}_0)$.

От безусловного субдифференциала к условному

Если f выпуклая функция, то рассмотрим функцию $g(\mathbf{x}) = f(\mathbf{x}) + \delta(\mathbf{x} \mid \mathcal{X})$, которая тоже выпуклая. Тогда

$$\partial g(\mathbf{x}_0) = \partial_{\mathcal{X}} f(\mathbf{x}_0) = \partial f(\mathbf{x}_0) + \partial \delta(\mathbf{x}_0 \mid \mathcal{X}).$$

Найдём $\partial \delta(\mathbf{x}_0 \mid X)$:

$$\delta(\mathbf{x} \mid \mathcal{X}) - \delta(\mathbf{x}_0 \mid \mathcal{X}) \stackrel{\mathbf{x} \in \mathcal{X}}{=} 0 \ge \langle \mathbf{a}, \mathbf{x} - \mathbf{x}_0 \rangle$$

Нормальный конус

Множество $N(\mathbf{x}_0 \mid \mathcal{X}) = \{\mathbf{a} \mid \langle \mathbf{a}, \mathbf{x} - \mathbf{x}_0 \rangle \leq 0, \ \forall \mathbf{x} \in \mathcal{X}\}$ называется нормальным конусом к множеству \mathcal{X} в точке \mathbf{x}_0 .

Тогда
$$\partial_{\mathcal{X}} f(\mathbf{x}_0) = \partial f(\mathbf{x}_0) + N(\mathbf{x}_0 \mid \mathcal{X})$$

Примеры

$$f(x) = |x|, X = \{-1 \le x \le 1\}$$

$$f(\mathbf{x}) = |x_1 - x_2|, X = {\mathbf{x} \mid ||\mathbf{x}||_2^2 \le 2}$$

Резюме

- Субградиент
- Субдифференциал
- Условный субдифференциал
- Методы вычислений