

⑯ BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ Offenlegungsschrift

⑯ DE 195 12 663 A 1

⑯ Int. Cl. 6:

D 21 H 19/38

D 21 H 27/00

⑯ Anmelder:

Kämmerer GmbH, 49090 Osnabrück, DE

⑯ Vertreter:

Cohausz & Florack, 40472 Düsseldorf

⑯ Erfinder:

Reinhardt, Bernd, Dr.-Ing., 49082 Osnabrück, DE

⑯ Entgegenhaltungen:

EP 03 96 789 A1
Coating 10/87, S. 366-372 (1987);
JP 49-1 32 305 A. In: Derwent-WPI-Abstracts,
Nr. 75- 48400W(29);

Prüfungsantrag gem. § 44 PatG ist gestellt

⑯ Trennrohpapiere mit Pigmentstrichen auf der Basis von Aluminiumhydroxiden

⑯ Ein Trennrohpapier für die Beschichtung mit einem dehäsiven Siliconauftrag, bei dem ein Bindemittel enthaltender Pigmentstrich auf dem Papier ausgebildet ist, weist Aluminiumhydroxid als einziges Pigment oder ein Pigmentgemisch mit Aluminiumhydroxid als Hauptbestandteil auf.

DE 195 12 663 A 1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

BUNDESDRUCKEREI 08. 96 602 041/245

13/25

DE 195 12 663 A 1

Beschreibung

5 Herkömmliche pigmentgestrichene Trennrohpapiere weisen eine ein- oder beidseitige Beschichtung von Pigment/Bindemittel-Gemischen auf, wobei als Pigmente Clay (Kaolin), Talcum oder Calciumcarbonat allein oder in Kombination und als Bindemittel vorwiegend Polymerdispersionen, oft in Abmischung mit modifizierten Stärkeprodukten, verwendet werden. Die bessere Glättbarkeit und damit höhere Oberflächendichtheit gestatten plättchenförmige Pigmente wie Clay oder auch begrenzt Talcum.

10 Im allgemeinen werden deshalb diese pigmentgestrichenen Trennrohpapiere als "clay coated papers" bezeichnet, wodurch bereits auf das hauptsächlich verwendete Streichpigment hingewiesen wird (Coating, 1987, Heft 10, S. 366–372 und Heft 11, S. 396–398).

15 Gegenüber unpigmentierten Papierbeschichtungen weisen diese Papierqualitäten wirtschaftliche und qualitative Vorteile auf, wie

- bessere Glättbarkeit
- geringere Porosität
- geringere Strichrauheit
- höhere Oberflächendichtheit
- höheren Glanz
- höheren "silicone hold out"

20 und damit einen teilweise geringeren Siliconverbrauch zum Erreichen eines weitgehend geschlossenen Siliconfilms hoher Dehäsivwirkung.

Neuere Entwicklungen auf dem Gebiet der Auftragstechnologie, die auf der direkten oder indirekten Filmtransfer-Technik basieren, gestatten bereits das Aufbringen dünner Pigmentstriche unter 5 g/m² (fest) innerhalb der Papiermaschine auf das Rohpapier. Für diese on line-Pigmentierung werden vorwiegend Walzenauftragswerke mit volumetrischer Vordosierung (Gate-Roll- und Blade-Metering-FilmPressen oder Klingenschreibaggregate mit Vordosiereinrichtung: High Special Metering Dosertechnik wie Billblade HSM, LAS, HSM und Twin-HSM) verwendet (s. Das Papier, 1991, Heft 10 A, S. V 120–V 124, Wochenblatt für Papierfabrikation, 1993, Heft 10, S. 390–393 und 1994, Heft 17, S. 671–676).

30 Ziel dieser Beschichtungen ist vorwiegend die Verbesserung der Bedruckbarkeit von Papier, insbesondere im Offsetdruck.

35 Diese neue Auftragstechnologie, auch oft als Dünstrichtchnologie bezeichnet, wird deshalb ebenfalls für die Herstellung pigmentgestrichener Trennrohpapiere mit geringen Strichaufträgen genutzt.

40 Im Gegensatz zu bisherigen Einsatzgebieten, bei denen im allgemeinen die Bedruckbarkeit durch gezielte Einstellung der Strichporosität und Strichsaugfähigkeit von Papieren im Vordergrund steht, liegt nun aber der Schwerpunkt im Erzielen einer weitgehend geschlossenen Papieroberfläche bei möglichst geringem Strichauftrag. Nur so kann ebenso wie bei den bereits erwähnten klassischen "clay coated"-Trennrohpapiere mit oft höherem Strichauftrag die Penetrationsneigung von Siliconharzen bei der nachfolgenden Beschichtung zu Trennpapieren in Grenzen gehalten werden.

45 Mittels Dünstrichtchnologie hergestellte pigmentgestrichene Trennrohpapiere mit Strichaufträgen von etwa 5 g/m² (fest) werden seit 1994 hergestellt. Als Pigmente finden hauptsächlich spezielle Claymischungen mit definierter Teilchengrößenverteilung und möglichst ausgeprägter plättchenförmiger Struktur Anwendung. Es hat auch nicht an Versuchen gefehlt, das ebenfalls plättchenförmige Talcum oder Calciumcarbonat als Streichpigment dafür einzusetzen. Letzt genanntes Pigment genügt jedoch aufgrund seiner kugelförmigen Struktur nicht ausreichend den gestellten Anforderungen bezüglich Oberflächendichtheit und Transparenz und wird deshalb meistens nur in Kombination mit Clay oder Talcum verwendet.

50 Bei der Beschichtung von Trennrohpapiere mittels Siliconharzen zur Herstellung von Trennpapieren werden höchste Anforderungen an die Gleichmäßigkeit des Siliconauftrags gestellt, da es sonst zu unvertretbar hohen Abweichungen im Trennverhalten der siliconisierten Papiere und damit beispielsweise zu Störungen beim Etikettierprozeß kommt. Üblicherweise wird die Gleichmäßigkeit des Siliconauftrags durch Röntgenfluoreszenzmessung des Siliciums als Hauptbestandteil eines Siliconharzes ermittelt, wobei die Eindringtiefe der Röntgenstrahlen in den Papierquerschnitt auf etwa 5 µm begrenzt ist.

55 Clay (natürliches Aluminiumsilicat) oder Talcum (natürliches Magnesiumsilicat) stören jedoch aufgrund ihres Siliciumanteils die exakte Bestimmung des Siliconauftragsgewichts beträchtlich bzw. machen sie bei den klassischen "clay coated"-Trennrohpapiere mit höheren Pigmentstrichaufträgen über 5 g/m² (fest) unmöglich.

60 Im letzteren Fall bleibt meistens nur die volumetrische Messung des Siliconverbrauchs über einen längeren Produktionszeitraum, die aber keine Aussage über die Gleichmäßigkeit des Siliconauftrags in Längs- und Querrichtung des Papiers zuläßt.

Bei pigmentgestrichenen Trennrohpapiere mit einem Strichauftrag unter 5 g/m² können Strichgewichtsschwankungen von bis $\pm 0,3$ g/m² bis $\pm 0,5$ g/m² auftreten, die sich in den Bereich üblicher Siliconaufträge von 0,5 bis 0,8 g/m² bei Verwendung lösungsmittelhaltiger Siliconharze oder 0,8 bis 1,2 g/m² bei Verwendung lösungsmittelfreier Siliconharze bereits sehr störend auf eine exakte Siliconauftragsbestimmung mittels Röntgenfluoreszenzmessung bemerkbar machen.

65 Das ist einer der Gründe, warum solche mit Clay oder Talcum als Basispigmente nach der Dünstrichtchnologie hergestellten Trennrohpapiere mit Strichaufträgen unter 8 g/m², meistens unter 5 g/m² nicht oder nur sehr zögerlich Anwendung in der Praxis finden.

Ein weiterer Grund ist der störende Einfluß von permanentem Alkali im Pigmentstrich auf die Siliconverankerung und Siliconvernetzung, vor allem bei längerer Lagerung von Verbundmaterial (Verbund von siliconisiertem

Basispapier und Klebstoff beschichtetem Oberlagenpapier, z. B. Etiketten), der allgemein unter Fachleuten als "post rub off" bezeichnet wird.

Zur Vollständigen Dispergierung und Stabilisierung von Streichpigmenten in Wasser und damit zum Einstellen der gewünschten niedrigen Viskosität der Streichmasse wird aber vorwiegend Natronlauge in Kombination mit speziellen Dispergiermitteln verwendet. 5

Aufgabe der Erfindung ist es deshalb, pigmentgestrichene Trennrohpapiere mit möglichst niedrigen Strichaufträgen bereitzustellen, die keine Störungen der Siliconverankerung und Siliconvernetzung ("post rub off"), keine Beeinträchtigung der Siliciumbestimmung mittels Röntgenfluoreszenzmessung aufweisen und die ebenfalls den hohen Anforderung bezüglich Geschlossenheit der Strichoberfläche und damit niedrigem "silicone hold out" genügen. 10

Gelöst wird diese Aufgabe durch ein Trennrohpapier für die Beschichtung mit einem dehäsiven Siliconauftrag, wobei auf dem Papier ein Pigmentstrich aus Aluminiumhydroxid allein oder als Hauptbestandteil bei Pigmentgemischen ausgebildet ist. 10

Aluminiumhydroxide sind plättchenförmige Pigmente, die im Vergleich zu üblicherweise eingesetzten Streichpigmenten die Verarbeitbarkeit von Streichmassen bei höheren Konzentrationen und höheren Bindemittelanteilen beeinträchtigen können. Es war deshalb überraschend, daß im Vergleich zu Clay oder Talcum als alleinige Streichpigmente gleiche oder sogar leicht bessere Oberflächendichtigkeiten der erfundungsgemäß pigmentgestrichenen Trennrohpapiere bei gleichzeitig besserer Haftung der nachfolgenden Siliconbeschichtungen erzielt wurden. Erhebliche Verbesserungen im "silicone hold out" und damit im Siliconbedarf zum Erreichen vorgegebener Trenneigenschaften des siliconisierten Papiers wurden dann aber nach der Siliconbeschichtung erreicht. Außerdem zeigten mit 100% Aluminiumhydroxid gestrichene Trennrohpapiere keinerlei Verankerungs- oder Vernetzungsstörungen ("post rub off") des Siliconfilms über eine Lagerzeit von mehreren Wochen. 15

Der Pigmentstrich enthält ein Bindemittel. Geeignete Bindemittel sind alle in der Papierstreicherei üblichen wasserlöslichen Polymere wie Stärkederivate, Caboxymethylcellulose oder Polyvinylalkohole und wäßrige Polymerdispersionen (Latices) auf der Basis von Acrylsäure, Acrylsäureestern, Acrylnitril, Vinylacetat, Butadien und Styrol allein oder in Gemischen. Bindemittel oder Bindemittelgemisch sind im Pigmentstrich in einem Pigment/Bindemittel-Verhältnis von 1 : 0,3 bis 1 : 2,3, vorzugsweise von 1 : 0,35 bis 1 : 0,45 vorhanden. 25

Gemäß einer bevorzugten Ausführungsform ist der Pigmentstrich auf dem Trennrohpapier in einer Stärke von 3 bis 10 g/m² ausgebildet. Der Pigmentstrich kann auf einem oberflächengeleimten Papier oder aber auch auf einem Papier ohne Oberflächenleimung ausgebildet sein. Er kann in einem oder zwei Arbeitsgängen ein- oder beidseitig auf das Papier aufgebracht sein. 30

Das erfundungsgemäß Trennpapier enthält auf dem oben beschriebenen Pigmentstrich einen Siliconauftrag, der vorzugsweise in einer Menge von 0,9 bis 1,0 g/m² aufgebracht ist. Durch den Siliconauftrag werden die dehäsiven Eigenschaften verliehen. 30

Geeignete organische Siliconpolymere mit dehäsiven Eigenschaften sind dem Fachmann bekannt, sie umfassen beispielsweise kettenförmige Dimethylpolysiloxane mit endständigen Hydroxylgruppen, die unter der Einwirkung erhöhter Temperatur und in Gegenwart von Organozinnsalzen als Katalysator mit Kieselsäureestern kondensiert werden, oder auf dem Wege der Additionsvernetzung durch Reaktion von kettenförmigen Polymeren mit Vinylendgruppen mit Wasserstoffsiloxanen unter Temperatureinwirkung in Gegenwart von Platin-Katalysatoren erhalten werden. Für die Beschichtung des Trennrohpapiers können die bereits genannten Auftragsverfahren eingesetzt werden. 40

Die Erfindung wird nun anhand von Beispielen näher erläutert.

Beispiel 1

Auswahl von Pigment-Bindemittel-Kombinationen

Streichmassenherstellung

Als bekannte geeignete Clay-Streichpigmente hinsichtlich einer weitgehend geschlossenen Strichoberfläche aufgrund ihrer ausgeprägten hexagonalen Plättchenstruktur hatten sich in der Praxis Clay-Mischungen definierter Teilchengröße bewährt. 50

Als typische Vertreter der ebenfalls plättchenförmigen Aluminiumhydroxid (Al(OH)₃)-Pigmente wurden die im Handel erhältlichen Typen I und II, die sich in ihrer Korngrößenverteilung und ihrer spezifischen Oberfläche deutlich unterscheiden, für die vergleichenden Untersuchungen ausgewählt. Ein Vergleich der Eigenschaften dieser Streichpigmente ist in der Tabelle 1 vorgenommen worden. 55

Für die Herstellung der Streichmassen wurde ein Pigment/Bindemittel-Verhältnis von 1 : 0,44 (fest) gewählt, bei dem nahezu alle Hohlräume in der Claymatrix mit Bindemittel ausgefüllt sind. Diese sogenannte kritische Pigmentvolumenkonzentration (KVPK) wurde mittels der Ölzahl in g Leinöl/100 g Pigment bestimmt, einer in der Lackindustrie üblichen Prüfmethode zur Ermittlung des etwaigen Bindemittelbedarfs. Die KVPK definiert demnach die maximal mögliche Packungsdichte eines Pigments. Die verwendeten Al(OH)₃-Pigmente weisen dagegen eine niedrigere Ölzahl als die Clay-Mischung gemäß Tabelle 1 auf. Das heißt, daß bei dem gewählten Pigment/Bindemittel-Verhältnis von 1 : 0,44 (fest) ein unterkritisch mit Al(OH)₃ pigmentierter Film vorliegt, bei dem alle Hohlräume in der Pigmentmatrix gefüllt sind. Diese Unterschiede in der Ölzahl und damit in der KVPK zwischen beiden Streichpigmenttypen lassen Bindemittelleinsparungen bei Verwendung von Al(OH)₃-Pigment erwarten. 65

Für die Herstellung der Streichmassen wurden die in Tabelle 2 aufgeführten Bindemittel verwendet, wobei sich die kationische Stärke (Stärke A) als anteilige Bindemittelkomponente bei Clay-Mischungen in Praxisversu-

chen bereits als besonders geeignet herausgestellt hat. Die Verwendung einer anionischen Stärke (Stärke B) in einer Clay-Streichmasse bewirkt zwar eine deutliche Viskositätsreduzierung, jedoch ist die Lagerstabilität (Viskositätsdifferenz zwischen Sofortmessung und Messung nach 24 h) schlechter.

5 Aluminiumhydroxid-Pigmente zeigen dagegen überraschenderweise ein völlig anderes Verhalten in solchen Streichmassen. Durch den Austausch der kationischen Stärke (Stärke A) durch die anionische Stärke (Stärke B) erhöht sich die Streichmassenviskosität bei gleichzeitig verbessertem Wasserrückhaltevermögen (WRV) deutlich. Niedrigere WRV-Werte in g/m² bzw. höhere WRV-Werte in s bedeuten ein verbessertes Rückhaltevermögen der Streichmasse bei Oberflächenauftrag auf Papier und damit eine geringere Penetration von Wasser und Bindemittel in das Rohpapier. Damit erhöht sich dann die Geschlossenheit der Strichoberfläche, bei gleichem Bindemittelleinsatz.

10 Für die folgenden Streichversuche wurde deshalb die anionische Stärke (Stärke B) bei Verwendung von Al(OH)_3 als alleiniges Streichpigment, dagegen die kationische Stärke (Stärke A) bei Verwendung von Clay eingesetzt. Damit war die Voraussetzung zum Einsatz von Al(OH)_3 als alleiniges Streichpigment gegeben.

15 Der Feststoffgehalt dieser Streichmassen betrug 45%, bei dem noch eine gute Verstreichpapier auf dem Rohpapier gegeben war.

Beispiel 2

20 Auf ein nicht oberflächengeleimtes Rohpapier mit einer flächenbezogenen Masse von 62 g/m² wurden mittels eines Laborrakelgeräts Streichmassen der Zusammensetzung gemäß Tabelle 3 aufgetragen. Der Strichauftrag (fest) betrug 3 und 5 g/m².

25 Im Vergleich zu Clay-Streichmassen führt die Verwendung von Al(OH)_3 Typ II gemäß Tabelle 1 als Vertreter der Al(OH)_3 -Typen zu einer etwas offeneren Strichoberfläche (höhere SCAN-Porosität, höhere Ölabsorption) aber zu einer etwas geringeren Mikrorauheit.

30 Die niedrigeren Glanzwerte bei Verwendung von Al(OH)_3 als alleinigem Streichpigment weisen auf eine nicht so ausgeprägte Plättchenstruktur und damit nicht so gute planparallele Ausrichtung der Pigmente zur Papieroberfläche unter dem Einfluß der Satinage hin.

35 Grundsätzlich wurde jedoch mit diesem Versuch der Beweis erbracht, daß Al(OH)_3 als alleiniges Streichpigment in pigmentierten Streichmassen für Trennrohpapiere mit gutem Erfolg einsetzbar ist.

Beispiel 3

40 Ein nicht oberflächengeleimtes Trennrohpapier eines Flächengewichts von 62 g/m² gemäß Beispiel 2 wurde mit Clay und Al(OH)_3 enthaltenden Streichmassen gemäß Tabelle 4 beschichtet. Durch die zusätzliche Verwendung eines Gemisches der Al(OH)_3 Typen I und II gemäß Tabelle 1 wurde eine Erhöhung des Wasserrückhaltevermögens der Streichmasse erreicht.

45 Bei einer Maschinengeschwindigkeit von 600 m/Min. wurden mittels einer Filmpresse einseitig 3 bzw. 5 g/m² (fest) der Streichmassen aufgebracht und anschließend die so pigmentgestrichenen Papiere satiniert.

50 Wie die Ergebnisse in Tabelle 5 belegen, werden durch die Verwendung von Al(OH)_3 als Streichpigment im Vergleich zu Clay gleiche (Glätte, Mikrorauheit) bzw. sogar bessere (Ölabsorption, Farbdurchschlag, Penetration) Papiereigenschaften erzielt. Lediglich der Strichglanz fällt durch den Clayeinsatz etwas höher aus, was wiederum mit der weniger ausgeprägten Plättchenstruktur der Al(OH)_3 -Pigmente erklärt werden kann. Diese Ergebnisse lassen den Schluß zu, daß Al(OH)_3 -Streichpigmente auch allein in Streichmassen eingesetzt und mit Clay-Streichpigmenten vergleichbare Papiereigenschaften erzielen können.

Beispiel 4

55 Auf einer Papiermaschine mit eingebauter Filmpresse wurden Trennrohpapiere von 60 bis 62 g/m² bei einer Maschinengeschwindigkeit von etwa 550 m/Min. einseitig oberflächengeleimt bzw. pigmentgestrichen. Die Rückseite wurde einheitlich mit einer Stärkelösung beschichtet (etwa 1 g/m² fest). Die Streichmassenrezepturen sind der Tabelle 4 zu entnehmen. Die Oberflächen veredelten Trennrohpapiere wurden gemäß üblicher Praxisbedingungen anschließend auf etwa 12% vorgefeuchtet und danach einer Satinage in einem 16-Walzen-Superkalander unterworfen.

60 Im Vergleich zu dem hochsatinierten oberflächengeleimten Trennrohpapier vom Glassine-Typ weisen pigmentgestrichene Papiere bessere Oberflächeneigenschaften auf. Das gilt insbesondere hinsichtlich Glätte, Glanz, Mikrorauheit und Ölabsorption. Auch die Mikroporosität verringert sich durch die Pigmentierung wie die in Tabelle 6 dargestellten Ergebnisse zeigen.

Überraschend zeigt das Al(OH)_3 im Vergleich zu Clay Qualitätsvorteile, wenn optimale Satinagebedingungen vorherrschen. Das gilt insbesondere für den Strichglanz.

Beispiel 5

65 Die Praxispapiere gemäß Tabelle 6 wurden unter Verwendung eines 5-Walzen-Auftragswerks (bei lösungsmittelfreiem (LF) Siliconsystem) bzw. eines Akkugravur-Walzenauftragswerks (bei Siliconemulsion) bei Maschinengeschwindigkeiten von 150 m/Min. beschichtet. Das Clay-gestrichene Papier wurde lediglich in einem Fall (LF I-Siliconsystem) als Referenzmuster eingesetzt. Es lagen bereits genügend statistisch gesicherte Ergebnisse vor, daß mit Clay-gestrichene Trennrohpapiere eine maximal 10 bis 15%ige Einsparung an Silicon im Vergleich zu klassischen Glassine-Papieren bei vergleichbarer Dehäsivwirkung möglich ist. Der Siliconauftrag wurde

dabei zwischen 0,5 und 1,0 g/m² (fest) variiert. Mittels eines Methylenblau-Farbtests wurde die Geschlossenheit der aufgebrachten Siliconfilme bestimmt. Je geringer die Farbmaßzahl ausfällt, um so geschlossener ist der gebildete Siliconfilm und um so höher müßte demnach die Dehäsivwirkung gegen Klebstoffe sein. Die Ergebnisse sind der Tabelle 7 zu entnehmen.

Bei etwa vergleichbarem Siliconauftrag von 0,8 bis 0,9 g/m² liegen die an pigmentgestrichenen Papieren — mit Ausnahme der emulsionssiliconisierten Papiere — ermittelten Farbmaßzahlen bedeutend niedriger. Ebenso fallen Glanz und Mikrorauheit bei den pigmentgestrichenen Trennrohpapieren signifikant besser aus.

Ein Vergleich der Clay- und Al(OH)₃-gestrichenen Trennrohpapiere bei 0,6 g/m² Siliconauftrag (LF-Siliconsystem I) weist eindeutige Vorteile für Al(OH)₃-Beschichtungen bezüglich Farbmaßzahl aus.

Auf die Problematik der absoluten Siliconauftragsbestimmung mittels der üblicherweise verwendeten Röntgenfluoreszenzmessung bei Clay-gestrichenen Trennrohpapieren sei hier zusätzlich verwiesen.

Während Pigmentstriche von 3 bis 5 g/m² bei Clay-Einsatz ein "Untergrundrauschen" der unsiliconisierten Bahn von etwa 0,9 bis 1,3 g/m² an Silicium mit Abweichungen bis zu $\pm 0,10$ bis 0,15 g/m² über das Längs- und Querprofil der Papierbahn aufweisen, kann bei Verwendung von Al(OH)₃-Streichpigmenten das "Untergrundrauschen" völlig unterdrückt werden. Dazu ist es nur erforderlich, ein heute immer mehr verwendetes Röhrengerät anstatt eines Isotopengerätes einzusetzen und die Meßbreite (Window) auf 1,65—1,85 keV anstatt der sonst üblichen 1,506—1,978 keV einzuengen.

Damit wird dem Siliconbeschichter die Möglichkeit einer exakten, absoluten Bestimmung des Siliconauftrages und der Auftragsschwankungen und damit einer besseren Voraussage bzw. Kontrolle der Dehäsiveigenschaften der so pigmentgestrichenen und siliconisierten Papiere gegeben.

Bei Clay-gestrichenen Trennrohpapieren muß dagegen die Bestimmung des auf das Papier aufgebrachten Silicons über eine Differenzmessung (Abzug des "Untergrundrauschen") erfolgen, wie auch in unseren Fällen (Tabelle 7 und 8) geschehen.

Eindeutige Vorteile, auch gegenüber dem Clay-gestrichenen Referenzpapier, weisen die erfundungsgemäß mit Al(OH)₃-gestrichenen Trennrohpapiere hinsichtlich der Dehäsiveigenschaften nach Siliconisierung auf, wie Tabelle 8 zu entnehmen ist.

Die Ergebnisse von low speed-Trennkraftmessungen mit Testklebebändern sind nach allgemeiner Erfahrung der Siliconbeschichter aussagekräftiger als high speed-Messungen. Das gilt besonders dann, wenn Differenzierungen zwischen verschiedenen Siliconoberflächen vorgenommen werden sollen.

Bereits bei etwa vergleichbarem Siliconauftrag von 0,8 bis 0,9 g/m² zeigen die erfundungsgemäß mit Al(OH)₃ gestrichenen Papiere deutlich niedrigere Trennwerte, unabhängig vom verwendeten Siliconsystem.

Selbst bei niedrigstem LF-Siliconauftrag von 0,55 g/m² stellen sich Trennkräfte ein, die noch niedriger liegen als die bei Standard-Glassine-Papieren üblichen Siliconauftragsmengen von 0,9 bis 1,0 g/m². Daraus errechnen sich Reduzierungen im Siliconauftrag bei vergleichbarem Trennkraftniveau von mindestens 30%. Irgendwelche Haftungs- oder Vernetzungsstörungen des Siliconfilms auf mit Al(OH)₃ pigmentgestrichenen Trennrohpapieren wurden nicht festgestellt.

Das Clay-gestrichene Referenzpapier erreicht nicht diese überraschend guten Resultate von Al(OH)₃-Strichen.

Die Einsparungen an Silicon bei Verwendung der erfundungsgemäß Al(OH)₃ gestrichenen Trennrohpapiere heben bei weitem die höheren Pigmentkosten im Vergleich zu Clay auf.

Dabei sind noch nicht einmal die großen Möglichkeiten zur Bindemittelreduzierung bis zum Erreichen der KPVK in der Al(OH)₃-Pigmentmatrix berücksichtigt worden.

5

10

15

20

25

30

35

40

45

50

55

60

65

Tabelle 1: GEGENÜBERSTELLUNG AUSGEWÄHLTER STREICHPIGMENTE

5
10
15
20
25
30
35
40
45
50
55
60
65

Pigment-eigenschaften	Clay-Mischung	Al (OH) ₃ -Mischung	
		I	II
Feststoffgehalt, %	68,3	65,9	67,5
pH-Wert	7,4	10,0	9,1
Brookfield-Viskosität, mPa·s (100 U/min, 20 °C)	390	600	850
Korngrößenverteilung (sedigraph), %			
< 2 µm	81	99	89
< 0,2 µm	25	19	4
mittlerer Teilchen-durchmesser, µm	0,49	0,47	0,88
spezifische Oberfläche (BET) m ² /g	15,6	14,4	6,3
Ölzähle g/100 g	43	36	34
Plättchenform			pseudo-hexagonal

Tabelle 2:
VERGLEICH VON LABORSTREICHMASSEN
MIT UNTERSCHIEDLICHEN PIGMENTEN UND STÄRKEBINDERN
- Laborversuche -

Bindemittel: 25,5 Teile (fest) Styrol-Butadien-Latex
16,0 Teile (fest) modifizierte Stärken
(A - kationisch, B - anionisch)
2,5 Teile (fest) Carboxymethylcellulose

Eigenschaften der Streichmasse	Clay-Mischung		Al(OH) ₃ , II	
	Stärke A	Stärke B	Stärke A	Stärke B
Feststoffgehalt, %	40,3	39,8	40,5	40,2
pH-Wert	7,8	8,3	8,5	8,3
Wasserrückhalte- vermögen				
- unter Druck, g/m ²	93,5	78,5	69,0	43,5
- statisch, s	84	-	3	30
Brookfield-Viskosität, mPa·s (100 U/min, 40 °C)				
sofort	2240	1260	490	840
nach 24 h Lagerung	2480	1900	470	1450
Haake-Viskosität, mPa·s (D = 10 ⁴ · s ⁻¹ , 30 °C)				
sofort	33,77	22,79	17,45	25,10
nach 24 h Lagerung	36,58	56,18	21,39	28,14

5

10

15

20

25

30

35

40

45

50

55

60

65

Tabelle 3

VERGLEICH
 5 EINSEITIG PIGMENTGESTRICHENER
 TRENNROHPAPIERE
 - Laborversuche -

10 **Streichmasse:** Feststoffgehalt 45 %
 pH-Wert 8,5
 15 Pigment/Bindemittel-Verhältnis
 1:0,44 (fest)

Papiereigenschaften (Rohpapier 62 g/m ²)		Clay-Mischung		Al (OH) ₃ II	
Strichauftrag, g/m ²	ca. 3	ca. 5	ca. 3	ca. 5	
Transparenz, %					
unsatiniert	30,4	30,3	28,1	28,4	
satiniert	35,8	35,8	34,3	34,9	
Mikrorauheit (PPS), µm					
unsatiniert	8,42	8,34	8,31	7,93	
satiniert	1,96	1,85	1,87	1,83	
Glanz (75 °), %					
satiniert	37,4	44,3	33,3	37,2	
SCAN-Porosität, cm ³ /m ² .s					
unsatiniert	1210	113	3210	1000	
satiniert	246	27	642	203	
Ölabsorption, g/m ²					
unsatiniert	3,26	11,5	10,40	2,73	
satiniert	0,79	0,15	2,49	0,75	
Penetration, s					
unsatiniert	137	140	141	138	
satiniert	119	120	115	118	

Tabelle 4:
VERGLEICH VON STREICHMASSEN
MIT UNTERSCHIEDLICHEN PIGMENTEN UND STÄRKEBÜNDERN
Technikumsversuche -

Bindemittel:

25,5 Teile (fest) Styrol-Butadien-Latex

16,0 Teile (fest) modifizierte Stärken

(A - kationisch, B - anionisch)

2,5 Teile (fest) Carboxymethylcellulose

Eigenschaften der Streichmasse	Clay-Mischung Stärke A	Al (OH) ₃ II Stärke B	Al (OH) ₃ -Mischung (I/II = 50/50 %) Stärke B
Feststoffgehalt, %	43,0	41,9	43,5
pH-Wert	8,1	8,1	7,7
Brookfield-Viskosität, mPa·s (100 U/min, Spindel 30 °C)	1770	1630	1450
Haake-Viskosität, mPa·s (RV 3, 30 °C)	21,0	20,4	25,8
Wasserrückhaltevermögen, s (Druckpenetration)	nicht messbar	680	1075

5
10
15
20
25
30
35
40
45
50
55
60
65

5
10
15
20
25
30
35
40
45
50
55
60
65

Tabelle 5:
VERGLEICH
EINSETZIG PIGMENTGESTRICHIENER TRENNPAPIERE
UNTER VARIERTEN SATINAGEBEDINGUNGEN
- Technikumversuche -

Pigment/Bindemittel-Verhältnis 1:0,43

Papier Eigenschaften (Rohpapier 62 g/m ²)	Clay-Mischung	A1 (OH), I	A1 (OH), -Mischung (I/II = 50/50 %)
Strichauftrag, g/m ²	3	5	5
Glätte nach Bekk, s			
TS	280	470	410
LS	1210	1740	1610
Mikrorauhheit (PPS), µm			
US	0,8	0,3	0,5
TS		2,6	2,7
LS	2,1	1,9	2,0
Glanz (75 °), %			
TS	7	12	8,1
LS	13	10	7,7
Ölabsorption, g/m ²			
US	4,9	1,2	1,4
TS	1,6	0,4	0,6
LS	0,8	0,3	0,7
Farbdurchschlag (LII)			
Note 1 - ohne	6	2	3
Note 6 - stark			
Penetration, s			
TS	8	20	35
LS	11	19	47

Satinage: US - unsatiniert TS - Technikumssatinage
LS - Laborsatinage
(10-Walzen-Superkal.
6 % Vorfuehrta., 220 kNm,
90 °C, 400 m/min
7 1/4 Vorfeuchte, 100 °C

Tabelle 6:
VERGLEICH
EINSEITIG OBERFLÄCHENVERDEELTER TRENNROHHPAPIERE
(SATINIERT)
- Praxisversuche -

Satinage:
16-Walzen-Superkalander, Vorfeuchtung ca. 12 %
340 kN/m, 140 °C, 410 m/min

Papereigenschaften	oberflächengeleimt (Standard) Glassine-Typ	pigmentgestrichen	
		Pigment/Bindemittel-Verhältnis 1:0,44 (fest)	Al(OH) ₃ -Mischung (I/II = 50/50 %)
flächenbezogene Masse, g/m ²	62	62	60
Strichauftrag, g/m ² (Oberseite)	ca. 1	ca. 6	ca. 6
Rohdichte, g/cm ³	1,11	1,13	1,15
Transparenz, %	45	45	45
Glätte nach Bekk, s			
OS	1300	2500	2500
SS	500	600	400
Glanz (75 °), %	45,8	52,0	55,3
Mikrorauheit (PPS), µm	1,9	1,7	1,6
SCAN-Porosität, cm ³ /m ² .s	60	20	30
ÖlabSORPTION, g/m ² (OS)	1,0	0,4	0,4

OS - Oberseite SS - Siebseite

OS SS

50 35 30 25 20 15 10 5

55 35 30 25 20 15 10 5

60 40 35 30 25 20 15 10 5

65

Tabelle 7:
VERGLEICH SILICONISIERTER TRENNROHHPAPIERE

Papier (62 g/m ²)	Silicon- system	Silicium- auftrag g/m ²	Glasur (75 °C) %	Mikro- trichter (1925) mm	Farbmahlzahl ΔY (Nothylenblau, 60 s)
A (Standard)	Emulsion	0,96	24,0	2,14	10,5
B	(11,6 %ig)	0,89 0,73	37,1 35,1	1,55 1,66	13,0 15,4
A (Standard)		0,80	38,7	1,71	12,0
B	MF 1	0,91 0,69 0,55	51,1 47,3 43,9	1,35 1,38 1,74	2,1 2,6 4,1
C		0,60	40,5	1,40	11,9
A (Standard)	MF 11	0,82	39,3	1,90	22,2
		0,94 0,63 0,55	51,2 44,9 42,0	1,52 1,68 1,76	1,7 4,0 4,5

A - Glassine-Typ B - pigmentgestrichen mit Al(OH)₃-Mischung (1/11 = 50/50 %)C - pigmentgestrichen mit Clay-Mischung
B,C - Pigment/Bindemittel-Verhältnis 1:0,44 (fast),
Strichauftrag ca. 6 g/m²

Tabelle 8: VERGLEICH SILICONISIERTER TRENNRÖHPAPIERE

		Trennkraft (low speed)					
Papier (62 g/m ²)	Silicon- system	Silicon- auftrag g/m ²	TESA 4154 CN/4 cm	TESA A 7475 CN/2 cm	TESA K 7476 CN/2 cm		
A (Standard)	Emulsion I	0,96	10	16	35		
	B (11,6 %ig)	0,89 0,73	7 7	17 15	24 26		
A (Standard)	UF I	0,80	5	22	10		
	B	0,91 0,69 0,55	4 5 5	10 11 15	11 13 16		
C		0,60	9	18	56		
	A (Standard)	UF II	0,82	6	15	27	
	B	0,94 0,63 0,55	4 5 6	8 12 13	16 19 22		

Patentansprüche

1. Trennröhpapier für die Beschichtung mit einem dehäsiven Siliconauftrag, bei dem ein Bindemittel enthaltender Pigmentstrich auf dem Papier ausgebildet ist, dadurch gekennzeichnet, daß der Pigmentstrich Aluminiumhydroxid als einziges Pigment oder ein Pigmentgemisch mit Aluminiumhydroxid als Hauptbestandteil enthält.
2. Trennröhpapier nach Anspruch 1, dadurch gekennzeichnet, daß Aluminiumhydroxide unterschiedlicher Korngrößenverteilung im Pigmentstrich enthalten sind.
3. Trennröhpapier nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Bindemittel alle in der Papierstreicherei üblichen wasserlöslichen Polymere wie Stärkederivate, Carboxymethylcellulose oder Polyvinylalkohole und wäßrige Polymerdispersionen auf der Basis von Acrylsäure, Acrylsäureestern, Acrylnitril, Vinylacetat, Butadien und Styrol allein oder in Gemischen eingesetzt werden.
4. Trennröhpapier nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß das Bindemittel oder Bindemittelgemisch in einem Pigment/Bindemittel-Verhältnis von 1 : 0,35 bis 1 : 0,45 (fest gerechnet) vorliegt.
5. Trennröhpapier nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Pigmentstrich in

A - Glassine-Typ
 B - pigmentgestrichen mit Al(OH)₃-Mischung (I/II = 50/50 %)
 C - pigmentgestrichen mit Clay-Mischung
 B,C - Pigment (Bindemittel-Verhältnis 1:0,44 (fest), Strichauftrag ca. 6 g/m²)

5
10
15
20
25
30
35
40
45
50
55
60
65

DE 195 12 663 A1

einer Stärke von 3 bis 10 g/m² auf dem Papier ausgebildet ist.

6. Trennrohpapier nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Pigments-

trich auf einem oberflächengeleimten Papier ausgebildet ist.

7. Trennrohpapier nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Pigments-

trich beidseitig aufgebracht ist.

8. Trennpapier mit einem dehäsiven Siliconauftrag, dadurch gekennzeichnet, daß der Siliconauftrag auf

einem Trennrohpapier nach einem der Ansprüche 1 bis 7 ausgebildet ist.

10

15

20

25

30

35

40

45

50

55

60

65