

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

практикума на ЭВМ по курсу «Оптимальное управление» 3-е задание

Студент 315 группы А.В. Свиреденко

Pуководитель практикума к.ф.-м.н., доцент П. А. Точилин

Содержание

1	Постановка задачи	3
2	Теоретическая часть	4
3	Алгоритм численного решения	6
4	Используемые средства	6
5	Примеры	7
6	Библиография	10

1 Постановка задачи

Задано обыкновенное дифференциальное уравнение:

$$\ddot{x} + \dot{x} + 2x + x\sin(x^2) - 2x^2\cos(x) = u \tag{1}$$

где $x \in R, u \in R$. На возможные значения управляющего параметра u наложено ограничение: $u \in [-\alpha, \alpha]$. Задан начальный момент времени $t_0 = 0$ и начальная позиция $x(t_0) = \dot{x}(t_0) = 0$. Необходимо построить множество достижимости $X(t,t_0,x(t_0),\dot{x}(t_0))$ (множество пар $(x(t),\dot{x}(t)))$ в классе программных управлений в заданный момент времени $t \geq t_0$. 1)Необходимо написать в среде Matlab функцию reachset(alpha,t), которая по заданным параметрам $\alpha > 0, t \geq t_0$ рассчитывает приближенно множество достижимости $X(t,t_0,x(t_0),\dot{x}(t_0))$. На выходе функции - два массива X,Y с упорядоченными координатами точек многоугольника,образующего границу искомого множества. Точки в этих массивах должны быть упорядочены так , чтобы результаты работы функции без дополнительной обработки можно было подовать на вход функциям визуализации(пример plot). Предусмотреть такой режим работы функции, при котором она возвращает также координаты линий переключения оптимального управления (с возможностью их визуализации).

- 2)Необходимо реализовать функцию $reachset dyn(\alpha, t_1, t_2, N, filename)$, которая, используя функцию $reachset(\alpha, t)$, строит множества достижимости для моментов времени $\tau_i = t_1 + \frac{(t_2 t_1)i}{N}, i = 0, 1, ..., N$. Здесь $t_2 \ge t_1 \ge t_0$, N-натуральное число. Для каждого момента τ_i функция должна отобразить многоугольник, аппроксимирущий границу множество достижимости. Результаты работы функции должен быть сохранен в виде видео-файла filename. avi. Необходимо также предусмотреть вариант работы функции (при отсуствии параметра filename) без сохранения в файл, с выводом непосредственно на экран. Как частный случай, функция должна иметь возможность строить границу множества достижимости в один фиксированный момент времени (при $t_2 = t_1$).
- 3)В соответствующем заданию отчете необходимо привести все теоритические выкладки , сделанные в ходе построения множества достижимости, описать схему алгоритма построения множества достижимости программой,привести примеры построенных множеств достижимости (с иллюстрациями), исследовать зависимость множества достижимости от велечины параметра α .Все вспомогательные утверждения (кроме ПМП),должны быть доказаны.

2 Теоретическая часть

Перепишем уравнение (1) в виде системы двух обыкновенных дифференциальных уравнений первого порядка:

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = u - x_2 + 2x_1 + x_1 \sin(x_1^2) - 2x_1^2 \cos(x_2). \end{cases}$$
 (2)

Начальные условия примут вид $x_1(0) = x_2(0) = 0$.

Определение 1. Множество достижимости $\mathcal{X}(T,t_0,x_0)$ называется множество всех таких точек $x \in \mathcal{R}^2$, что существует такое измеримое управление u, что $\forall t \in [t_0,T], u(t) \in \mathcal{P}$ и под действием управления и система (2) переходит за время $T-t_0$ из точки x_0 в точку x.

Выпишем для нашей задачи функционал Гамильтона-Понтрягина

$$H(x, u, t, \psi) = \psi_1 x_2 + \psi_2 (u - x_2 + 2x_1 + x_1 \sin(x_1^2) - 2x_1^2 \cos(x_1))$$

и сопряженную систему

$$\begin{cases} \dot{\psi}_1 = -2\psi_2 - \psi_2 \sin(x_1^2) - 2\psi_2 x_1^2 \cos(x_1^2) + 4\psi_2 x_1 \cos(x_1) - 2x_1^2 \sin(x_1) \\ \dot{\psi}_2 = -\psi_1 + \psi_2 \end{cases}$$
 (3)

Теорема 1. Принцип максимума Понтрягина обеспечивает для оптимальной пары (x(),u()) существование функции $\psi(\cdot)$, такой что

- 1. $\psi(\cdot)$ является решением сопряженной системы (2)
- 2. Вектор-функций $\psi(\cdot)$ не является тривиальной, т.е. $\psi \not\equiv 0$
- 3. Выполнено условие максимума

$$\forall t \in [t_0, T] \ \mathcal{H}(x(t), u^*(t), t, \psi(t)) = \max_{u \in \mathcal{P}} \mathcal{H}(x(t), u(t), \psi(t))$$

4. Вдоль оптимальной траектории функция Гамильтона-Понтрягина постоянна и неотрицательна ,т.е.

$$\forall t \in [t_0, T] \ M(x(t), t, \psi(t)) = \max_{u \in \mathcal{P}} \mathcal{H}(x(t), u, t, \psi(t)) \ge 0$$

Теорема 2. Пусть измеримое управление $u(\cdot)$ удовлетворяет принципу максимума Понтрягину, $x(\cdot) = (x_1(\cdot), x_2(\cdot))$ -соответствующая ему траектория, а $\psi(\cdot) = (\psi_1, \psi_2)$ -решение сопряженной системы на $[t_0, T]$. Пусть τ_1, τ_2 -такие моменты, что $t_0 \leq \tau_1 < \tau_2 \leq T$.

Тогда справедливы следующие четыре утверждения:

- 1. $ecnu \ \psi_2(\tau_1) = \psi_2(\tau_2) = 0, x_2(\tau_1) = 0, mo \ x_2(\tau_2) = 0;$
- 2. $\psi_2(\tau_1) = \psi_2(\tau_2) = 0, \psi_2(t) \neq 0$ на интервале (τ_1, τ_2) и если $x_2(\tau_1) \neq 0$, то $x_2(\tau_2) \neq 0$, но функция $x_2(\cdot)$ имеет нуль на интервале (τ_1, τ_2) ;
- 3. Если $x_2(\tau_1)=x_2(\tau_2)=0, x_2(t)\neq 0$ на интервале (τ_1,τ_2) и если $\psi_2(\tau_1)=0,$ то $\psi_2(\tau_2)=0$
- 4. Если $x_2(\tau_1) = x_2(\tau_2) = 0, x_2(t) \neq 0$ на интервале (τ_1, τ_2) и если $\psi_2(\tau_1) \neq 0$, то $\psi_2(\tau_2) \neq 0$, но функция $\psi_2(\cdot)$ имеет нуль на интервале (τ_1, τ_2) .

Доказательство.

1. Пусть $\psi_2(\tau_1) = \psi_2(\tau_2) = 0$.Так как $\forall t \in [t_0, T]$ $M(x(0), \psi(0)) = M(x(t), \psi(t)) = \psi_1(t)x_2(t) + \psi_2(u - x_2 + 2x_1 + x_1 sin(x_1^2) - 2x_1^2 cos(x_1))$,то

$$\psi_1(\tau_1)x_2(\tau_1) = \psi(\tau_2)x_2(\tau_2) \ge 0$$

При этом $\psi_1(\tau_1) \neq 0, \psi_1(\tau_2) \neq 0$. Это означает, что $x_2(\tau_1) = 0 \Leftrightarrow x_2(\tau_2) = 0$.

- 2. Так как τ_1 и τ_2 -последовательные нули функции $\psi_2(\cdot)$,то $\psi_1(\tau_1)\psi_1(\tau_2) < 0$.Тогда $x_2(\cdot)$ имеет нуль на интервале (τ_1, τ_2) .
- 3. Пусть теперь $x_2(\tau_1)=x_2(\tau_2)=0$ и $x_2(t)\neq 0$ на интервале (τ_1,τ_2) и $\psi_2(\tau_1)=0$.Из утверждения пункта 1 следует,что $\psi_2(t)\neq 0$ на интервале (τ_1,τ_2) . Значит, $x_2(\cdot)\in C^2$ на интервале $[\tau_1,\tau_2]$

$$\frac{d}{dt}(\psi_1 x_2 + \psi_2 \dot{x}_2) = 0$$

Отсюда

$$\dot{x}_2(\tau_1)\psi_2(\tau_1) = \dot{x}_2(\tau_2)\psi_2(\tau_2) \tag{4}$$

В силу единственности решение задачи Коши,получаем $x_2(t) = 0 \ \forall t \in [\tau_1, \tau_2]$. Так как $\psi_2(\tau_1) = 0$,то $\psi_2(\tau_2) = 0$.

4. Пусть $x_2(\tau_1) = x_2(\tau_2) = 0$ и $x_2(t) \neq 0$ на интервале (τ_1, τ_2) и $\psi_2(\tau_1) \neq 0$. Тогда из 4,получаем $\psi_2(\tau_2) \neq 0$. Если предположить $\psi_2(t)$ нигде на отрезке не обращается в нуль,тогда $\dot{x}_2(\tau_1)\dot{x}_2(\tau_2) > 0$, что невозможно ,так как τ_1 и τ_2 - последовательные нули.

Предложение 1. Для рассматриваемой задачи множество достижимости $\mathcal{X}(T,t_0,x_0)$ монотонно по включению , то есть , если $T_1 \leq T_2$, то $\mathcal{X}(T_1,t_0,x_0) \subseteq \mathcal{X}(T_2,t_0,x_0)$

Доказательство. Пусть $x \in \mathcal{X}(T_1, t_0, x_0)$. Тогда $\exists u(\cdot)$, такое что под действием управления $u(\cdot)$ автономная система 2 за время $T_1 - t_0$ переходит из $(0,0)^T$ в точку х. Введем на отрезке $[t_0, T_2]$ управление

$$u^{0} = \begin{cases} 0, & t \in [t_{0}, t_{0} + T_{2} - T_{1}] \\ u(t), & t \in (t_{0} + T_{2} - T_{1}, T_{2}] \end{cases}$$

Так как $x_0 = 0$, то под действием нового управления система перейдет в точку х. Следовательно, $x \in \mathcal{X}(T_2, t_0, x_0)$.

Предложение 2. Пусть $\psi(\cdot)$ - ненулевое решение сопряженной системы. Тогда $\psi_2(\cdot)$ имеет конечное число нулей на $[t_0, T]$.

Доказательство. Предположим противное: пусть множество нулей $\psi_2(\cdot)$ бесконечно. Так оно содержится в компакте , то оно имеет предельную точку $\tilde{t} \in [t_0, T]$. Тогда можем выделить сходящуюся последовательность t_i . Для каждого $i \; \exists \tau_i \in [t_i, t_{i+1}]$, т.ч. $\dot{\psi}_2(\tau_i) = \frac{\psi_2(t_{i+1}) - \psi_2(t_i)}{t_{i+1} - t_i} = 0$ При этом $\tau_i \to \tilde{t}$. Тогда, в силу непрерывности $\psi_2(), \dot{\psi}_2() \Rightarrow \psi_1(\tilde{t}) = 0$. Получаем $\psi \equiv 0$. Противоречье.

3 Алгоритм численного решения

Рассмотрим систему:

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = \alpha \cdot \operatorname{sign}(\psi_2) - x_2 + 2x_1 + x_1 \sin(x_1^2) - 2x_1^2 \cos(x_1) \\ \dot{\psi}_1 = -2\psi_2 - \psi_2 \sin(x_1^2) - 2\psi_2 x_1^2 \cos(x_1^2) + 4\psi_2 x_1 \cos(x_1) - 2x_1^2 \sin(x_1) \\ \dot{\psi}_2 = -\psi_1 + \psi_2 \end{cases}$$
 (5)

и подсистему:

$$\begin{cases} \dot{x}_1 = x_2, \\ \dot{x}_2 = \alpha \cdot \operatorname{sign}(\psi_2) - x_2 + 2x_1 + x_1 \sin(x_1^2) - 2x_1^2 \cos(x_1) \end{cases}$$
 (6)

Для начальной траектории у нас два варианта либо $u = \alpha$ либо $u = -\alpha$.

- 1. Решаем систему (6) для $u=\alpha$ с нулевыми начальными условиями до времени $t^*: x_2(t^*)=0$ либо $t^*=T$,в зависимости ,что произойдет раньше.
- 2. Организовать перебор по времени переключения $t_1 \in [0, t^*]$.(Разбиваем наше время на сетку ,и находим каждую точку на кривой $x(t_1) = (x_1(t_1), x_2(t_1))$.
- 3. Для каждой точки, делаем предположение, что переключение произошло именно в ней. Решаем систему (5) для u с противоположнеым знаком с начальными условиями $x_1(t_1), x_2(t_1), \psi_1(t_1) = 1, \psi_2(t_1) = 0$ до времени t^{**} где либо произойдет следущее переключение либо t > T.
- 4. Повтроять алгоритм 3 до тех пор пока t < T
- 5. Проделать аналогичные действия для системы с начальным управлением $u = -\alpha$.
- 6. Выделаяем контур.

4 Используемые средства

- Пишем программу в среде Matlab
- Используем функцию ode45 с опцией прерывания Event. Нам понадобиться один Event на переключение $\psi_2(t) = 0$,второе на $x_2(T) = 0$.
- Используем boundary- для вырасовки контура.

5 Примеры

Рис. 1: $\alpha=1, T=1$. Желтый цвет- траектории от нашей 'дороги', красные-зеленые точки - части главной дороги для положительного и отрицательного управления соотвественно

.

Рис. 2: $\alpha=1.1, T=0.5$. Желтый цвет- траектории от нашей 'дороги' ,красные-зеленые точки - части главной дороги для положительного и отрицательного начального управления соотвественно

Рассмотрим, что просходит при изменение параметра α . При увелечение α наше множество достижимости расшираяется.(Рис.3, Рис.4)

При увеличение параметра T происходят аналогичные действия . То есть множество достижимости расширяется. (Рис.5)

Рис. 3: $\alpha = 0.1, T = 1$. Желтый цвет- траектории от нашей

Рис. 4: $\alpha=1, T=1$. Желтый цвет- траектории от нашей

Нарисуем изменение графика от времени:

Рис. 5: $\alpha=1.$ Черное при T=0.3, красное при T=0.5, зеленое при T=1

6 Библиография

Список литературы

[1] Комаров Юрий, лекции по оптимальному управлению. ВМК МГУ, Москва, 2nd edition, 2021.