

XII CONGRESO INTERNACIONAL DE INGENIERÍA MECÁNICA, MECATRÓNICA Y AUTOMATIZACIÓN

DISEÑO Y PROTOTIPADO DE UN TÚNEL DE VIENTO PARA PRUEBAS A ESCALA DE TURBINAS TIPO SAVONIUS

Autores:

Nicolas Ardila Vergara, Juan José Benavides Garreta, Laura Catalina Ramirez Villarreal, Mateo Velandia Suarez

> Proyecto "FLUSS" Código Hermes 62804

Universidad Nacional De Colombia, Colombia Núcleo Temático: Energías renovables y fuentes no convencionales.

INTRODUCCIÓN

PROBLEMÁTICA

Con el fin de ahondar más a fondo la investigación de las turbinas tipo Savonius, se desarrolló un túnel de viento para la caracterización hidrodinámica de las mismas.

PALABRAS CLAVE:

Turbina, hidrocinética, savonius, túnel de viento.

Diseño preliminar y cálculos de desempeño

Punto de operación

$$h_{L,total} = h_{L,mayor} + h_{L,menor} = \sum_{i} f_i \frac{L_i}{D_i} \frac{V_i^2}{2g} + \sum_{i} K_L \frac{V_j^2}{2g} \quad (1)$$

Capa limite

Validación del desempeño del tunel frente aun caso benchmark

Adaptación del túnel para ensayos de turbinas

Vista lateral

Vista frontal

Setup experimental

Soporte motor

Montaje de la turbina

Turbinas savonius AR 1 ½ y ⅓

Montaje de la turbina en el túnel

Refrigeración y modificación del ESC

Adaptación del túnel para funcionamiento

adquisiscion de datos

Propuesta de modelo dinámico de la turbina

Propuesta de modelo dinámico de la turbina

Resultados Primeros ensayos

https://youtu.be/QMdxYg5zm-o?si=dhmz1Cvq0xyAbkyk

https://youtu.be/QMdxYg5zm-o?si=KOCj9dZmcQfAikXI

Resultados Primeros ensayos

https://youtu.be/KIURfHuR08Y?si=ImleQsb3eJ62W4uU&t=11

RESULTADOS

RESULTADOS Operación del túnel

Magnitud	Valor
P_1	74.90 kPa
P_2	74.91 kPa
P_3	74.92 kPa
P_{1-2}	7.74 Pa
P_{2-3}	23.22 Pa
P_{1-3}	46.44 Pa
Incertidumbre	0.08 Pa

CONCLUSIONES

Se requieren más experimentos para poder trazar una curva más cercana a la teórica.

Se deben implementar sistemas para bajar la fricción con el objetivo de aumentar el TSR y poder trazar una región mayor de la curva.

Es necesario la implementación de un sistema de adquisición de datos con mayor frecuencia de muestreo.

TRABAJO A FUTURO

- Mejoras del sistema de adquisición de datos del túnel de viento.
- Utilización de una fuente de poder más potente para obtener velocidades más altas en el túnel de viento.
- Realizado de las curvas de desempeño de la turbina prototipo con corrección de fricción.

AGRADECIMIENTOS

Este trabajo fue financiado por la unidad de gestión de la innovación Ingnova de la Universidad Nacional de Colombia bajo la convocatoria Ingenio que transforma 2024, y a los docentes investigadores directores del Proyecto "Fluss" Juan Miguel Mantilla y Néstor Alonso Mancipe.

Contacto:

niardilav@unal.edu.co

+57 3187628596

REFERENCIAS

- J. B. Barlow, W. H. Rae Jr., and A. Pope, Low-Speed Wind Tunnel Testing, 3rd. John Wiley Sons, Inc., 1999.
- · Karassik et al., Pump handbook, McGraw-Hill, 2004.
- McGill, Duct System Design Guide, Air-Flow Corporation, 2003.
- White et al., Mecánica de Fluidos, 5ta Edición, McGraw-Hill/Interamericana de España, S.A.U., 2004.

