Math 595: Geometric Analysis

Jacob Reznikov

September 14, 2023

Abstract

My course notes for the Geometric Analysis course.

1 ABP and Basic Geometry

1.1 Classic Isoperimetric inequality

The classic Isoperimetric inequality states that for any domain $\Omega \in \mathbb{R}^n$ we have

$$\frac{|\partial\Omega|^n}{|\Omega|^{n-1}} \ge \frac{|\partial B|^n}{|B|^{n-1}}$$

where B is the unit ball. We want to prove this inequality using the help of PDEs, we thus set up the following PDE

$$\Delta u = c \quad \text{in } \Omega$$

$$\frac{\partial u}{\partial \nu} = 1$$
 on $\partial \Omega$

If this is true then by divergence theorem we have

$$|\partial\Omega| = \int_{\partial\Omega} \frac{\partial u}{\partial\nu} = \int_{\Omega} \Delta u = \int_{\Omega} c = c|\Omega|$$

and so we set $c = \frac{|\partial\Omega|}{|\Omega|}$.

For such a map we set $T = \nabla u$ to be the gradient map $\Omega \to \mathbb{R}^n$. We now want a characterization of the 'extremal' points of u as a graph, we define

$$\Gamma_u^- = \left\{ x \in \Omega : u(y) \geq u(x) + \nabla u(x) \cdot (y-x) \forall y \in \Omega \right\}.$$

In other words Γ_u^- are the points of Ω where the tangent plane lies entirely below the graph of u.

This set is called the 'contact' set.

Remark 1.1.1. For any point x in the contact set we have $\nabla^2 u(x) \geq 0$ where ∇^2 is the Hessian, if some eigenvalue of the Hessian was negative then in a small enough neighborhood the condition for being in the contact set would be violated.

Claim 1.1.2 (ABP). For a solution u of the PDE above, we have $T(\Gamma_u^-)$ (the collection of all gradients at all contact points) contains $B_1 \setminus \partial B_1$

Proof. Take a vector $v \in B_1 \setminus \partial B_1$ and consider the function $\tilde{u} = u - v \cdot x$. We have that since $\frac{\partial \tilde{u}}{\partial \nu} > 1 - |v| > 0$ and so \tilde{u} cannot attain its minimum on the boundary. Thus it attains it on its interior where then must have $\nabla \tilde{u}(x) = 0$ and so $\nabla u(x) = v$.

To see that x is a contact point we calculate

$$\tilde{u}(y) \geq \tilde{u}(x) \implies u(y) - v \cdot y \geq u(x) - v \cdot x \implies u(y) \geq u(x) + v \cdot (y - x)$$

Claim 1.1.3. If a solution u to the above PDE exists then we have

$$\frac{|\partial\Omega|^n}{|\Omega|^{n-1}} \ge \frac{|\partial B|^n}{|B|^{n-1}}$$

Proof. Then

$$|B_{1}| \leq |T(\Gamma_{u}^{-})| \leq \int_{\Gamma_{u}^{-}} J_{T} = \int_{\Gamma_{u}^{-}} \det(\nabla^{2}u)$$

$$= \int_{\Gamma_{u}^{-}} \lambda_{1} \lambda_{2} \cdots \lambda_{n}$$

$$\leq \int_{\Gamma_{u}^{-}} \left(\frac{\lambda_{1} + \cdots + \lambda_{n}}{n}\right)^{n} \quad \text{Since all the eigenvalues are positive.}$$

$$\leq \int_{\Gamma_{u}^{-}} \left(\frac{\Delta u}{n}\right)^{n}$$

$$\leq \int_{\Omega} \left(\frac{\Delta u}{n}\right)^{n}$$

$$\leq \left(\frac{|\partial \Omega|}{n|\Omega|}\right)^{n} |\Omega| = \frac{|\partial \Omega|^{n}}{n^{n}|\Omega|^{n-1}}$$

and since $|B| = \frac{1}{n} |\partial B|$ we get the desired result.

We now want to show existence of a solution to the PDE above. Let us consider the general linear PDE

$$\Delta u = f \quad \text{in } \Omega$$

$$\frac{\partial u}{\partial \nu} = h \quad \text{on } \partial \Omega$$

then a necessary condition for existence is

$$\int_{\Omega} f = \int_{\Omega} \Delta u = \int_{\partial \Omega} \frac{\partial u}{\partial \nu} = \int_{\partial \Omega} h.$$

Claim 1.1.4. The above condition is sufficient.

Proof. Assume first that h=0. Thus the condition above becomes $\int_{\Omega} F=0$. Then take the positive definite symmetric bilinear form $B(u,v)=\int_{\Omega} \nabla u \nabla v$ and notice

$$B(u, v) = (Lu, v)$$

and so L is a self-adjoint operator. Now in $W^{2,1}(\Omega)$ we know that the range of a self-adjoint operator is orthogonal to its kernel, so the PDE is solvable iff $F \perp \ker L$.

Now we know that for any g in the kernel we have by our boundary conditions

$$0 = \int_{\Omega} gLg = \int_{\Omega} |\nabla g|^2$$

and so g is a constant function.

Thus we have a solution if and only if

$$\int_{\Omega} F = 0$$

Now for $h \neq 0$ assume that $\partial\Omega$ is C^2 then $\rho(x) = d(x,\partial\Omega)$ is C^2 in Ω near $\partial\Omega$, we then choose a cutoff function η satisfying $\eta(x) = 1$ if $\rho(x) \leq \frac{\varepsilon}{4}$ and $\eta(x) = 0$ if $\rho(x) \geq \frac{\varepsilon}{2}$. Then $\gamma = \eta \cdot \rho$ is C^2 everywhere on Ω and as we approach the boundary we will have $\frac{\partial \gamma}{\partial \nu} = -1$. Now define $U(x) := u(x) + h(x)\gamma(x)$, we have $\frac{\partial U}{\partial \nu} = 0$ and $\Delta U = \Delta u + \Delta(h\gamma)$. We then see that a solution for U exists if and only if

$$0 = \int_{\Omega} \Delta U = \int_{\Omega} \Delta u + \Delta (h\gamma) = \int_{\Omega} f + \int_{\partial \Omega} \frac{\partial (h\gamma)}{\partial \nu} = \int_{\Omega} f - \int_{\partial \Omega} h$$

and so we get our desired result.

1.2 Deeper into ABP

Last class we used ABP method to prove

$$\frac{|\Omega|^{n-1}}{|\partial\Omega|^n} \le \frac{|B|^{n-1}}{|\partial B|^n}$$

Now we study ABP further, if $u \in C(\Omega)$ then we set

$$\Gamma_u^+ = \{ x \in \Omega | u(y) \le u(x) + P \cdot (y - x) | \exists P \in \mathbb{R}^n, \forall y \in \Omega \},$$

we call this the 'upper contact' set, notice that we no longer require u to be differentiable. In conjuction with the upper contact set we have generalized gradient map given by

$$T_u(x) = \{ p \in \mathbb{R}^n | u(y) \le u(x) + p \cdot (y - x), \forall x \in \Omega \}.$$

Essentially it is the set of gradients of hyperplanes that touch our function from above.

Remark 1.2.1. If $u \in C^1$ then we can only have $T_u(x) = \nabla u$.

Remark 1.2.2. If $u \in C^2$ and $x \in \Gamma_u^+$ then $\nabla^2 u(x) \leq 0$.

Example 1.2.3. $z \in \mathbb{R}^n$, R > 0, a > 0 then $u(x) = a(1 - \frac{|x-z|}{R})$. This is the graph of a cone in \mathbb{R}^{n+1} .

We then have for all $x \neq z$ that the function is differentiable and so

$$T_u(x) = \nabla u(x) = -\frac{a}{R} \frac{x-z}{|x-z|}.$$

For x = z we have

$$u(y) \le u(z) + P \cdot (y - z)$$

$$a\left(1 - \frac{|y - z|}{R}\right) \le a + P \cdot (y - z)$$

$$-\frac{a}{R} \le P \cdot \frac{y - z}{|y - z|}$$

But we know that $\frac{y-z}{|y-z|}$ is a unit vector and so this is equivalent to

$$|P| \le \frac{a}{B}$$

and so

$$T_u(x) = B_{a/R}(0)$$

Now let us assume $u \in C(\overline{\Omega}) \cap C^2(\Omega)$.

Lemma 1.2.4.

$$\sup_{\Omega} u \leq \sup_{\partial \Omega} + \frac{d(\Omega)}{\omega_n^{1/n}} \left(\int_{\Gamma_u^+} |\det(\nabla^2)| \right)^{1/n}$$

Proof. Set $v = u - \sup_{\partial\Omega} u$ and suppose $\max_{\overline{\Omega}} v = v(x_0)$ with $v(x_0) \ge 0$ (if $v(x_0) < 0$ then the statement follows trivially).

Now consider Γ_v^+ , we have

$$T(\Gamma_v^+) \le \int_{\Gamma_v^+} |J_{\nabla v}| = \int_{\Gamma_v^+} |\det(\nabla^2 v)|.$$

Now let h(x) be defined of Ω such that (x, h(x)) be the cone with vertex at $(x_0, v(x_0))$ and base $\partial\Omega$. Then we must have $T_v(\Omega) \supseteq T_h(\Omega)$. to see this take a hyperplane P given by a function l(x) that touches this cone, then it is easy to see that it must touch it at $(x, v(x_0))$, it is easy to see that on the boundary we have $v(x) = h(x) \le l(x)$. We then have $v(x) - l(x) \le 0$ on the boundary.

On the other hand we have $\nabla(v-l)(x_0) \neq 0$ so v-l must be positive at some point close to x_0 , thus v-l must achieve its maximum somewhere on the interior of Ω where we would then have $\nabla v = \nabla l$.

Next we have $T_h(\Omega) \supseteq T_{\tilde{h}}(B_d(x_0))$ where \tilde{h} is given by

$$\tilde{h}(x) = v(x_0) \left(1 - \frac{x - x_0}{d} \right).$$

We can see this because \tilde{h} is just a cone with a wider base than h and thus its supporting hyperplanes must have smaller gradients.

But we know from the example above that

$$T_{\tilde{h}}(B_d(x_0)) = \left(\frac{v(x_0)}{d}\right)^n \omega_n$$

and so we get

$$|T_v(\Omega)| \ge |T_{\tilde{h}}(B_d(x_0))| = \left(\frac{v(x_0)}{d}\right)^n \omega_n$$

which then gives us

$$\left(\frac{v(x_0)}{d}\right)\omega_n^{1/n} \le |T_v(\Gamma_v^+)|^{\frac{1}{n}} \le \left(\int_{\Gamma_v^+} |\det(\nabla^2 u)|\right)^{1/n}$$

Now we move on to more general elliptic equations, lets say we have $\lambda I \leq a_{ij}(x) \leq \Lambda I$ with $0 < \lambda < \Lambda < \infty$ and

$$Lu = \sum_{i,j} a_{ij}(x)u_{ij}(x) \ge f$$
 in Ω

Lemma 1.2.5. Suppose $u \in C(\overline{\Omega}) \cap C^2(\Omega)$ and satisfies the above, then

$$u(x) \le \sup_{\partial \Omega} u + \frac{d(\Omega)}{n\omega_n^{1/n}} \left(\int_{\Gamma_u^+} \left(\frac{-f}{\det^{1/n}(a_{ij})} \right)^n \right)^{1/n}$$

Remark 1.2.6. If $x \in \Gamma_u^+$ then $-(\nabla^2 u) \ge 0$ and so $0 \le -Lu \le -f$.

We need a small linear algebra lemma to prove the results.

Lemma 1.2.7. For symmetric positive matrices A, B we have

$$\det(A)\det(B) \le \left(\frac{\operatorname{tr}(AB)}{n}\right)^n$$

Proof. Left side is equal to product of all eigenvalues, $\lambda_1 \tilde{\lambda}_1 \cdots \lambda_n \tilde{\lambda}_n$. $\operatorname{tr}(AB)$ is equal to sum of products of eigenvalues, $\lambda_1 \tilde{\lambda}_1 + \cdots + \lambda_n \tilde{\lambda}_n$. Then by arithmetic-geometric mean inequality we get the desired result.

Proof. Now to prove the main lemma, set $B = -\nabla^2 u \ge 0$ and $A = (a_i j) > 0$ then

$$-f = -Lu = \operatorname{tr}(AB) \ge n(\det(A))^{\frac{1}{n}} (\det(B))^{\frac{1}{n}} = n(\det(a_i j))^{1/n} (\det(-\nabla^2 u))^{1/n}$$

which then gives us

$$\det(-\nabla^2 u) \le \frac{-f}{\det^{1/n}(a_{ij})}$$

which together with the lemma before that gives us the desired result.

This lemma is sometimes called the weak maximum principle.

Remark 1.2.8. There is a more general result with more general elliptic operators

$$Lu = \sum_{i,j} a_{ij}(x)u_{ij}(x) + \sum_{k} b_{k}(x)u_{k}(x) + c(x)u(x)$$

the only thing that changes is that the constant in front of the integral now depends on the coefficients b_k and c.

1.3 Introduction to Riemannian Geometry

Let M^n be an *n*-dimensional manifold, every point $p \in M^n$ has a tangent space T^pM , then a metric g on M^n is a choice of inner product on T_pM for every $p \in M$ which varies smoothly in p. A manifold with a metric is called a Riemannian Manifold.

In any local coordinate chart (x_1, \ldots, x_n) we define the 'components' of g to be

$$g_{jk} = \left\langle \frac{\partial}{\partial x_j}, \frac{\partial}{\partial x_k} \right\rangle.$$

Then if at some point p we have two vectors

$$X = \sum_{j=1}^{N} a_j(x) \frac{\partial}{\partial x_j}, \quad Y = \sum_{k=1}^{N} b_k(x) \frac{\partial}{\partial x_k}$$

then their inner product is given by

$$\langle X, Y \rangle_g = \left\langle \sum_{j=1}^N a_j(x) \frac{\partial}{\partial x_j}, \sum_{k=1}^N b_k(x) \frac{\partial}{\partial x_k} \right\rangle = \sum_{j,k} a_j(x) b_k(x) \left\langle \frac{\partial}{\partial x_j}, \frac{\partial}{\partial x_k} \right\rangle$$
$$= \sum_{j,k} a_j(x) b_k(x) g_{jk}(x)$$

More formally, let dx_i be the dual frame to $\frac{\partial}{\partial x_i}$, as in

$$dx_i \left(\frac{\partial}{\partial x_i} \right) = \delta_i^j,$$

then we can write the metric as

$$g = \sum_{i,j} g_{ij} dx_i \otimes dx_j.$$

We define $\mathfrak{X}(M)$ to be the set of smooth vector fields on M.

If $e_1, \ldots, e_n \in T_pM$ is an orthonormal basis, that is $\langle e_i, e_j \rangle_g = \delta_{ij}$. Set $\omega_1, \ldots, \omega_n$ to be its dual basis. We then get a top-form $\omega_1 \wedge \cdots \wedge \omega_n$.

If

$$e_j = \sum_k a_j^k \frac{\partial}{\partial x_k}$$

where $A = a_j^k$ is a matrix, then by standard linear algebra we have that

$$\omega_1 \wedge \cdots \wedge \omega_n = \det(A^{-1}) dx_1 \wedge \cdots \wedge dx_n$$

Claim 1.3.1.

$$|\det(A^{-1})| = \sqrt{\det g}$$

Proof.

$$\delta_{ij} = (e_i, e_j) = a_j^k a_i^l g_{kl}$$

this implies that

$$I = A^T g A$$

where A is the transpose.

Thus

$$1 = \det(A^T g A) = \det(A^2) \det(g)$$

and so

$$\sqrt{\det(g)} = \det A^{-1}$$

Claim 1.3.2. The top-form $dV = \sqrt{\det g} dx_1 \wedge \cdots \wedge dx_n$ is coordinate change invariant.

Proof. Let us assume that $(\tilde{x}_1, \dots, \tilde{x}_n)$ are coordinates given by the transition function $\tilde{x}_{\alpha} = \phi(x_{\alpha})$ with jacobian J_{ϕ} , we know that in these coordinates we have

$$\tilde{g} = \left(\frac{\partial(x_1, \dots, x_n)}{\partial(\tilde{x}_1, \dots, \tilde{x}_n)}\right)^T g\left(\frac{\partial(x_1, \dots, x_n)}{\partial(\tilde{x}_1, \dots, \tilde{x}_n)}\right) = \left(J_{\phi}^{-1}\right)^T g\left(J_{\phi}^{-1}\right)$$

and so

$$\sqrt{\det \tilde{g}} = \det J^{-1} \sqrt{\det g}.$$

On the other hand we have

$$d\tilde{x}_1 \wedge \cdots \wedge d\tilde{x}_n = \det J dx_1 \wedge \cdots \wedge dx_n$$

and so

$$\sqrt{\tilde{g}}d\tilde{x}_1 \wedge \dots \wedge d\tilde{x}_n = \det J^{-1}\sqrt{\det g} \det Jdx_1 \wedge \dots \wedge dx_n = \sqrt{\det g}dx_1 \wedge \dots \wedge dx_n$$

Definition 1.3.3. An affine connection is a map $\nabla : \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ satisfying the following properties for any smooth functions $f_1, f_2 \in C^{\infty}(M)$ and any smooth vector fields $X, Y, Z \in \mathfrak{X}(M)$

- $\nabla_{f_1X+f_2Y}Z = f_1\nabla_XZ + f_2\nabla_YZ$
- $\nabla_X Z + Y = \nabla_X Z + \nabla_X Y$
- $\nabla_X f_1 Y = X(f_1)Y + f \nabla_X Y$

Definition 1.3.4. A Levi-Civita connection is an affine connection which also satisfies

- Symmetry: $\nabla_X Y \nabla_Y X = [X, Y]$
- Compatability with $g: X(\langle Y, Z \rangle_g) = \langle \nabla_X Y, Z \rangle_g + \langle Y, \nabla_X Z \rangle_g$

Remark 1.3.5. Compatability with g is essentially like the product rule.

Theorem 1.3.6 (Fundamental theorem of Riemannian Geometry). For every Riemannian manifold there exists a unique Levi-Civita Connection.

Proof. Take any smooth vector fields X, Y, Z, we know that the following are true

$$\begin{split} X(\langle Y, Z \rangle_g) &= \langle \nabla_X Y, Z \rangle_g + \langle Y, \nabla_X Z \rangle_g \\ Y(\langle Z, X \rangle_g) &= \langle \nabla_Y Z, X \rangle_g + \langle Z, \nabla_Y X \rangle_g \\ Z(\langle X, Y \rangle_g) &= \langle \nabla_Z X, Y \rangle_g + \langle X, \nabla_Z Y \rangle_g \end{split}$$

then by adding the first two equations and subtracting the third we get

$$\begin{split} X(\langle Y,Z\rangle_g) + Y(\langle Z,X\rangle_g) - Z(\langle X,Y\rangle_g) &= \langle Y,\nabla_XZ\rangle_g - \langle \nabla_ZX,Y\rangle_g \\ &+ \langle \nabla_YZ,X\rangle_g - \langle X,\nabla_ZY\rangle_g \\ &+ \langle \nabla_XY,Z\rangle_g + \langle Z,\nabla_YX\rangle_g \end{split}$$

using the symmetry of the connection we get

$$\begin{split} X(\langle Y,Z\rangle_g) + Y(\langle Z,X\rangle_g) - Z(\langle X,Y\rangle_g) &= \langle Y,[X,Z]\rangle_g + \langle [Y,Z],X\rangle_g + \langle [X,Y],Z\rangle_g \\ &+ 2\,\langle Z,\nabla_YX\rangle_g \end{split}$$

from here we can solve for $\langle Z, \nabla_Y X \rangle_g$ giving us the connection since as a vector, $\nabla_Y X$ is fully determined by its inner products with all other vectors.

One can check that in a coordinate chart that the Levi Civita connection has the form

$$\nabla_X Y = \nabla_{\sum_i a_i(x)} \frac{\partial}{\partial x_i} \sum_j b_j(x) \frac{\partial}{\partial x_j}$$

$$= \sum_i a_i(x) \left(\nabla_{\frac{\partial}{\partial x_i}} \sum_j b_j(x) \frac{\partial}{\partial x_j} \right)$$

$$= \sum_{i,j} a_i(x) \left(\left(\frac{\partial}{\partial x_i} b_j(x) \right) \frac{\partial}{\partial x_j} + b_j(x) \nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} \right).$$

Now we know that for some coefficients Γ_{ij}^k we have

$$\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} = \sum_k \Gamma_{ij}^k \frac{\partial}{\partial x_k}$$

and so

$$\left\langle \nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j}, \frac{\partial}{\partial x_\ell} \right\rangle_g = \sum_k \Gamma_{ij}^k g_{k\ell}$$

Now by the previous proof and the fact that coordinate vector fields have vanishing brackets we have that

$$2\left\langle \nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial x_{\ell}} \right\rangle_{g} = \frac{\partial}{\partial x_{j}} \left(\left\langle \frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{\ell}} \right\rangle_{g} \right) + \frac{\partial}{\partial x_{i}} \left(\left\langle \frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial x_{\ell}} \right\rangle_{g} \right) - \frac{\partial}{\partial x_{\ell}} \left(\left\langle \frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}} \right\rangle_{g} \right)$$
$$= \frac{\partial}{\partial x_{j}} \left(g_{i\ell} \right) + \frac{\partial}{\partial x_{i}} \left(g_{j\ell} \right) - \frac{\partial}{\partial x_{\ell}} \left(g_{ij} \right)$$

and so by using the inverse of the metric we get

$$\Gamma_{ij}^{k} = \frac{1}{2} g^{k\ell} \left(\frac{\partial}{\partial x_{i}} \left(g_{i\ell} \right) + \frac{\partial}{\partial x_{i}} \left(g_{j\ell} \right) - \frac{\partial}{\partial x_{\ell}} \left(g_{ij} \right) \right).$$

The coefficients Γ are often called the Christoffel Symbols of g in these coordinates.

Claim 1.3.7. At any point p there exists a local coordinate chart (x_1, \ldots, x_n) such that

$$g_{ij}(p) = \delta_{ij}, \quad \frac{\partial}{\partial x_i} (g_{jk}) (p) = 0$$

Proof. We have $g_{ij}(x) = g_{ij}(0) + \sum_k a_{ij}^k x_k + O(|X|^2)$, we can always change variables so that $g_{ij}(0) = \delta_{ij}$. The tricky part is eliminating the first derivatives, for that we do a change of coordinates

$$y_{\alpha} = \phi(x_{\alpha}) = x_{\alpha} + \frac{1}{2}b_{\alpha}^{k\ell}x_{k}x_{\ell} + O(|X|^{3}).$$

The jacobian of this transformation is

$$J_{\phi^{-1}} = I - b_{\alpha}^{k\ell} x_{\ell} + O(|X|^3)$$

and so the new metric is

$$\tilde{g}_{\alpha\beta} = J_{\phi^{-1}}^T g J_{\phi^{-1}} = (I - b_{\alpha}^{i\ell} x_{\ell} + O(|X|^3))^T (I + a_{ij}^m x_m) (I - b_{\beta}^{j\ell} x_{\ell} + O(|X|^3))$$
$$= I - 2b_{\alpha}^{i\ell} g_{i\beta} + a_{ij}^{\ell} x_{\ell} + O(|X|)^2,$$

then from here you can solve for b.

Geometric constructions

We now have several natural constructions once we fix a metric on our manifold. Consider a vector field X and a point p on a Riemannian manifold, the map $P: T_p(M) \to$

Consider a vector field X and a point p on a Riemannian manifold, the map $P: I_p(M) \to T_p(M)$, given by

$$v \mapsto \nabla_v X$$

is a linear map. We define its trace to be the divergence of X, denoted $\operatorname{div}(X)$. In a local orthonormal chart at p, if we write $X = \sum_j a_j(x) \frac{\partial}{\partial x_j}$, then

$$\operatorname{div}(X)_{p} = \sum_{i} \left\langle \nabla_{\frac{\partial}{\partial x_{i}}} X, \frac{\partial}{\partial x_{i}} \right\rangle_{g} = \sum_{i} \sum_{j} \left\langle \nabla_{\frac{\partial}{\partial x_{i}}} a_{j}(x) \frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial x_{i}} \right\rangle_{g}$$

$$= \sum_{i} \sum_{j} \nabla_{\frac{\partial}{\partial x_{i}}} a_{j}(x) \left\langle \frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial x_{i}} \right\rangle_{g} = \sum_{i} \sum_{j} \nabla_{\frac{\partial}{\partial x_{i}}} a_{j}(x) \delta_{ij} = \sum_{i} \nabla_{\frac{\partial}{\partial x_{i}}} a_{i}(x)$$

$$= \sum_{i} \frac{\partial a_{i}(x)}{\partial x_{i}}$$

Where we used the fact that in an orthonormal frame $\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} = 0$. We see then that in an orthonormal frame the divergence matches our 'classical' definition of the divergence.

Next consider a function $f \in C^{\infty}(M)$, we define the gradient to be a map grad : $C^{\infty}(M) \to \mathfrak{X}(M)$ defined by

$$\langle \operatorname{grad} f, v \rangle_g = df(v)$$

for every tangent vector v.

In a local (not necessarily orthonormal) chart we have

grad
$$f = \sum_{i} a_{j}(x) \frac{\partial}{\partial x_{j}}, df = \sum_{k} \frac{\partial f}{\partial x_{k}} dx_{k},$$

then for any $v = \sum_{\ell} b_{\ell} \frac{\partial}{\partial x_{\ell}}$ we have

$$\langle \operatorname{grad} f, v \rangle_g = \sum_{j,\ell} a_j g_{j\ell} b_\ell$$

but we also have

$$df(v) = \sum_{k \neq \ell} \frac{\partial f}{\partial x_k} b_\ell dx_k \left(\frac{\partial}{\partial x_\ell} \right) = \sum_k \frac{\partial f}{\partial x_k} b_k.$$

Now lets choose $b=(0,0,\ldots,1,\ldots,0,0)$ with a 1 in the m-th position then

$$\langle \operatorname{grad} f, v \rangle_g = \sum_j a_j g_{jm}$$

and

$$df(v) = \frac{\partial f}{\partial x_m}$$

so since these are equal we can multiply both by the inverse of the metric g^{mi} to get

$$a_i = \sum_{j,m} a_j g_{jm} g^{mi} = \sum_m \frac{\partial f}{\partial x_m} g^{mi}$$

and thus

$$\operatorname{grad} f = \sum_{i} a_{i} \frac{\partial}{\partial x_{i}} = \sum_{m,i} \frac{\partial f}{\partial x_{m}} g^{mi} \frac{\partial}{\partial x_{i}}$$

Finally again for a function $f \in C^{\infty}(M)$, the hessian is defined as the map $Hess : \mathfrak{X}(M) \to \mathfrak{X}(M)$ given by

$$X \mapsto \nabla_X(\operatorname{grad} f)$$

Let us write $X = \sum_j a_j(x) \frac{\partial}{\partial x_j}$ then we have by the previous results that in an orthonormal

chart around p

$$\nabla_{X}(\operatorname{grad} f) = \nabla_{X} \left(\sum_{m,i} \frac{\partial f}{\partial x_{m}} g^{mi} \frac{\partial}{\partial x_{i}} \right)$$

$$= \nabla_{X} \left(\sum_{i} \frac{\partial f}{\partial x_{i}} \frac{\partial}{\partial x_{i}} \right) \quad \text{(because } g^{mi} = \delta^{mi} \text{ at } p \text{ in orthonormal chart)}$$

$$= \sum_{j,i} a_{j}(x) \left(\frac{\partial}{\partial x_{j}} \left(\frac{\partial f}{\partial x_{i}} \right) \frac{\partial}{\partial x_{i}} + \frac{\partial f}{\partial x_{i}} \Gamma_{ij}^{k} \frac{\partial}{\partial x_{k}} \right)$$

$$= \sum_{j,i} a_{j}(x) \left(\left(\frac{\partial f}{\partial x_{j} \partial x_{i}} \right) \frac{\partial}{\partial x_{i}} \right) \quad \text{(because } \Gamma_{ij}^{k} = 0 \text{ at } p \text{ in orthonormal chart)}$$

and so if $Y = \sum_{\ell} b_{\ell}(x) \frac{\partial}{\partial x_{\ell}}$ we have

$$\langle \nabla_X(\operatorname{grad} f), Y \rangle_g = \sum_{j,\ell} a_j(x) \left(\frac{\partial f}{\partial x_j \partial x_i} \right) b_\ell(x).$$

Importantly notice that if we exchange a and b then this expression does not change and so $\langle \nabla_X(\operatorname{grad} f), Y \rangle_g = \langle \nabla_Y(\operatorname{grad} f), X \rangle_g$ and so as an operator Hess is symmetric. We also get that the form in orthonormal coordinates for the operator is the matrix

$$\frac{\partial f}{\partial x_j \partial x_i}$$

Now we consider the trace of the modified hessian operator, given by $\operatorname{div}(h \cdot \operatorname{grad} f)$. Notice that we have, in an orthonormal chart,

$$\operatorname{div}(h \cdot \operatorname{grad} f) = \sum_{i} \frac{\partial}{\partial x_{i}} E_{i} = \sum_{i} \frac{\partial}{\partial x_{i}} \left(h \sum_{k} g^{jk} \frac{\partial f}{\partial x_{k}} \right)$$

Claim 1.3.8. In a general local chart,

$$\operatorname{div}(h \cdot \operatorname{grad} f) = (\det g)^{-1/2} \sum_{i,j} \frac{\partial}{\partial x_j} \left(h(\det g)^{1/2} g^{ij} \frac{\partial f}{\partial x_i} \right)$$

Proof. It is enough to show that the expression on the right is coordinate invariant, since then plugging in an orthonormal chart gives us the desired result.

To see this consider a different chart $(\tilde{x}_1, \dots, \tilde{x}_n)$ and set

$$Q = (\det g)^{-1/2} \sum_{i,j} \frac{\partial}{\partial x_j} \left(h(\det g)^{1/2} g^{ij} \frac{\partial f}{\partial x_i} \right)$$

$$\tilde{Q} = (\det \tilde{g})^{-1/2} \sum_{i,j} \frac{\partial}{\partial \tilde{x}_j} \left(h(\det \tilde{g})^{1/2} \tilde{g}^{ij} \frac{\partial f}{\partial \tilde{x}_i} \right)$$

then consider the set of functions η with support contained within both charts, if

$$\int_{\Omega} Q\eta dV = \int_{\Omega} \tilde{Q}\eta dV$$

then $Q = \tilde{Q}$.

Now we plug in our known expressions and get

$$\int_{\Omega} Q\eta dV = \int_{\Omega} \eta \sum_{i} \frac{\partial}{\partial x_{i}} \left(h(\det g)^{1/2} \sum_{i} g^{ij} \frac{\partial f}{\partial x_{i}} \right) dx_{1} dx_{2} \dots dx_{n}$$

then we notice that we have the a divergence term in the integral. Then by using integration by parts we can remove that divergence and instead take the gradient of η , the boundary term then dissapears by compactness of η . All together this gives us

$$\int_{\Omega} Q\eta dV = -\int_{\Omega} \sum_{j} \left(\frac{\partial \eta}{\partial x_{j}}\right) \left(h(\det g)^{1/2} \sum_{i} g^{ij} \frac{\partial f}{\partial x_{i}}\right) dx_{1} dx_{2} \dots dx_{n}$$

$$= -\int_{\Omega} h \sum_{j,i} \left(g^{ij} \frac{\partial \eta}{\partial x_{j}} \frac{\partial f}{\partial x_{i}}\right) (\det g)^{1/2} dx_{1} dx_{2} \dots dx_{n}$$

$$= -\int_{\Omega} h \left\langle \operatorname{grad} \eta, \operatorname{grad} f \right\rangle_{g} dV$$

now notice that the same calculation holds in the second chart, and so we get

$$\int_{\Omega} Q\eta dV = \int_{\Omega} Q'\eta dV$$

Theorem 1.3.9 (Divergence theorem). Suppose that $\Omega \subseteq M$ is a compact domain with a smooth boundary $\partial \Omega$, then $\forall f, h \in C^{\infty}(M)$ we have

$$\int_{\Omega} \operatorname{div}(h \operatorname{grad} f) dV = \int_{\partial \Omega} \langle h \operatorname{grad} f, \nu \rangle_g d\tilde{V}$$

where ν is the normal vector and $d\tilde{V}$ is the induced volume form on the metric.

Proof. Find a partition of unity for some neighborhood of Ω , that is a collection of functions ρ_k with $\sum_k \rho_k = 1$ and the support of each ρ_k being contained in a single chart U_k . Now we have

$$\int_{\Omega} \operatorname{div}(h \operatorname{grad} f) dV = \sum_{k} \int_{\Omega} \operatorname{div}(\rho_{k} h \operatorname{grad} f) dV = \sum_{k} \int_{\Omega \cap U_{k}} \operatorname{div}(\rho_{k} h \operatorname{grad} f) dV$$

now for each of these smaller integrals we have

$$\int_{\Omega \cap U_k} \operatorname{div}(\rho_k h \operatorname{grad} f) dV = \int_{\Omega \cap U_k} \sum_j \frac{\partial}{\partial x_j} \left(\rho_k h (\det g)^{1/2} \sum_i g^{ij} \frac{\partial f}{\partial x_i} \right) dx_1 dx_2 \dots dx_n.$$

We will now apply IBP to this integral, note that the interior term will contain a derivative of 1 and so will vanish, the boundary term will only be non-zero outside of the boundary of U_k , that is it will be non-zero only on $\partial\Omega \cap U_k$.

So this integral becomes

$$\int_{\partial\Omega\cap U_k} \sum_j \nu_j \left(\rho_k h(\det g)^{1/2} \sum_i g^{ij} \frac{\partial f}{\partial x_i} \right) d\tilde{x}_1 d\tilde{x}_2 \dots d\tilde{x}_{n-1},$$

which simplifies to

$$\int_{\partial\Omega\cap U_{k}}\left\langle \operatorname{grad}f,\nu\right\rangle _{g}\left(\rho_{k}h\right)d\tilde{V}.$$

This then gets summed up over k to give

$$\sum_{k} \int_{\partial \Omega \cap U_{k}} \langle \rho_{k} h \operatorname{grad} f, \nu \rangle_{g} d\tilde{V} = \sum_{k} \int_{\partial \Omega} \langle \rho_{k} h \operatorname{grad} f, \nu \rangle_{g} d\tilde{V} = \int_{\partial \Omega} \langle h \operatorname{grad} f, \nu \rangle_{g} d\tilde{V}$$

Theorem 1.3.10. $\forall h \in C^{\infty}(M)$ with h > 0 in Ω a compact connected open set, the system

$$\operatorname{div}(h\operatorname{grad} u) = f \quad \in \Omega$$
$$\frac{\partial u}{\partial \nu} = g \quad \in \partial \Omega$$

is solvable if and only if $\int_{\Omega} f = \int_{\partial \Omega} hg$.

Proof. We follow a similar proof to 1.1.4, first assume g = 0, then we have in the space of functions in $W^{2,1}(\Omega)$ that are zero on the boundary the image of the operator $u \mapsto \operatorname{div}(h \operatorname{grad} u)$ is orthogonal to its kernel. Now the set of functions in the kernel are those satisfying

$$\operatorname{div}(h\operatorname{grad} u) = 0 \quad \in \Omega$$
$$\frac{\partial u}{\partial \nu} = 0 \quad \in \partial \Omega$$

and so for those functions by the divergence theorem we get

$$0 = \int_{\Omega} u \operatorname{div}(h \operatorname{grad} u) dV = -\int_{\Omega} h |\operatorname{grad} u|^2 dV$$

and so since h > 0 we get grad u = 0 everywhere on Ω and so it is constant on Ω . Thus the image is those functions f that are orthogonal to constant functions, that is the system is solvable if and only if

$$\int_{\Omega} f dV = 0$$

Next we identically construct a function γ which is C^2 everywhere on Ω and satisfying $\frac{\partial \gamma}{\partial \nu} = -1$. We then define $U(x) = u(x) + \gamma(x)g(x)$ and notice that since

 $\operatorname{div}(h\operatorname{grad} U) = \operatorname{div}(h\operatorname{grad}(u(x) + \gamma(x)g(x))) = \operatorname{div}(h\operatorname{grad} u(x)) + \operatorname{div}(h\operatorname{grad}(\gamma(x)g(x)))$

and

$$\frac{\partial U}{\partial \nu} = \frac{\partial u}{\partial \nu} + \frac{\partial (\gamma \cdot g)}{\partial \nu} = g - g = 0$$

then we have a solution U if and only if

$$0 = \int_{\Omega} \operatorname{div}(h \operatorname{grad} U) dV = \int_{\Omega} \operatorname{div}(h \operatorname{grad} u) dV + \int_{\Omega} \operatorname{div}(h \operatorname{grad}(\gamma(x)g(x))) dV$$
$$= \int_{\Omega} f dV + \int_{\partial\Omega} h \frac{\partial(\gamma \cdot g)}{\partial \nu} d\tilde{V} = \int_{\Omega} f dV + \int_{\partial\Omega} -hg d\tilde{V}$$