Chapter 9: Hypothesis Testing With One Sample

Part Two: Perform the Hypothesis Test

Objectives: By the end of this lecture, a student should be able to:

- Conduct and interpret hypothesis tests for a **single population mean**, when **the population standard deviation is known**
- Conduct and interpret hypothesis tests for a **single population mean**, when the **population standard deviation is unknown**
- Conduct and interpret hypothesis tests for a single population proportion
- Utilize the **p-value method** of hypothesis testing
- Utilize the **critical value method** of hypothesis testing

Important Reminders:

- The claim may belong to the null hypothesis (H_0) or the alternative hypothesis (H_a)
- Claim is a statement about a **population parameter**
- Equality is always assigned to the null hypothesis
- The **tail of the test** corresponds to the inequality symbol in the alternative hypothesis
- Interpret your results in a meaningful way using full sentences that reference the claim

Recall: Summarize the Results/State the Conclusion

Interpret the results of the test in a meaningful way. Use full sentences that restate the claim and the significance level of the hypothesis test. The claim may be either H_0 or H_a .

•	Claim 0	is H_0 Reject H_0 : "At the% significance level, there is enough evidence to reject the claim that"
	0	Do Not Reject H_0 : "At the% significance level, there is not enough evidence to reject the claim that"
_	Claim	in II .

- Claim is H_a :
 - \circ Reject H_0 : "At the ____% significance level, there is enough evidence to support the claim that ..."
 - \circ Do Not Reject H_0 : "At the ____% significance level, there is not enough evidence to support the claim that ..."

Note:

- We cannot say that the claim is true. We can only say that there is enough evident to support the claim.
- We **cannot say that the claim is false**. We can only say that there is not enough evidence to support the claim.

Example 1:

A medical researcher claims that less than 25% of adults in America are vegetarian. In a random sample of 200 American adults, 18.5% say that they are vegetarian. At α = .05, test the researcher's claim.

Step 1: Write the claim in symbol form

Step 2: Assign the claim to either H_0 (Null Hypothesis has equality) or H_a

Claim:	H_0	H_a

Step 3: State level of significance and circle the type of test it is.

 $\alpha =$

Left-tailed

Right-tailed

Two-tailed

ZTest

Step 4: Determine the sampling distribution.

Is the distribution normal or approximatly normal?

1-propZTest

TTest

Step 5: Draw a diagram. Determine the critical value of the rejection region.

Step 6: Find the test statistic. Label the test statistic on the diagram.

Step 7: Find the p-value of the test statistic. (Probability value)									
p-value =									
Step 8: Circle conclusion:	Reject Ho	Do Not Reject Ho							
Reason: p-value	_ α OR test statistic	critical value							
Note:									
• When our reason uses	the p-value compared to alph	na (α), we are using the							

- When our reason uses the p-value compared to alpha (α), we are using the **p-value method** of testing
- When our reason uses the test statistic compared to the critical value, we are using the **critical** value method of testing
- Both methods are valid for drawing conclusions during hypothesis testing

Step 9: Translate the conclusion into a formal sentence.

Summary: Process for Hypothesis Testing

- 1) Set up **two contradictory hypotheses**, the null hypothesis and the alternative hypothesis
- 2) Determine the **correct sampling distribution** to perform the calculations
- 3) Assuming that the null hypothesis is true, **calculate the probability** of getting sample data like that observed from the sample
- 4) If this probability is sufficiently small, **reject the null hypothesis**
- 5) **Interpret the decision** to write a meaningful conclusion, i.e. interpret the decision to answer the original question