MA 106 : LINEAR ALGEBRA : SPRING 2023 LINEAR EQUATIONS AND GAUSS ELIMINATION

1. Tutorial Problems

(1) Solve the following system of linear equations in the unknowns x_1, \ldots, x_5 by GEM

$$\begin{aligned}
-2x_4 & +x_5 &= 2\\ 2x_2 & -2x_3 & +14x_4 & -x_5 &= 2\\ 2x_2 & +3x_3 & +13x_4 & +x_5 &= 3
\end{aligned}$$

- (2) The n^{th} Hilbert matrix H_n is defined as the $n \times n$ matrix whose $(i,j)^{\text{th}}$ entry is $\frac{1}{i+j-1}$. Obtain H_3^{-1} by the Gauss-Jordan elimination Method.
- (3) Find the point in \mathbb{R}^3 where the line joining the points (1, -1, 0) and (-2, 1, 1) pierces the plane defined by 3x y + z 1 = 0.
- (4) Let $A = \begin{bmatrix} 1 & 2 \\ 4 & 9 \end{bmatrix}$. Write A = EH where E is an elementary matrix and H is a symmetric matrix.
- (5) Find the null space of $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$.
- (6) Show that an $n \times n$ matrix is invertible if and only if its column vectors are linearly independent.

2. Practice Problems

(7) Find the inverse of the following matrix using elementary row-operations:

$$\left[\begin{array}{ccc} 1 & 3 & -2 \\ 2 & 5 & -7 \\ 0 & 1 & -4 \end{array}\right].$$

(8) Solve the following system of linear equations in the unknowns x_1, \ldots, x_5 by GEM

(i)
$$2x_3 -2x_4 +x_5 = 2$$
 (ii) $2x_1 -2x_2 +x_3 +x_4 = 1$ $2x_2 -8x_3 +14x_4 -5x_5 = 2$ $-2x_2 +x_3 -x_4 = 2$ (iii) $-2x_4 +x_5 = 2$ (iv) $2x_1 -2x_2 +4x_3 -2x_4 = -2$ (iii) $-2x_4 +x_5 = 2$ (iv) $2x_1 -2x_2 +x_3 +x_4 = 1$ $2x_2 -2x_3 +14x_4 -x_5 = 2$ $-2x_2 +x_3 -x_4 = 2$ $2x_2 +3x_3 +13x_4 +x_5 = 3$ $3x_1 -x_2 +4x_3 -2x_4 = -2$

- (9) Find all solutions of the equation x + y + 2z u = 3. Express them as a linear span of linearly independent vectors.
- (10) Prove that every invertible 2×2 matrix is a product of at most four elementary matrices.
- (11) Let A be a square matrix. Prove that there is a set of elementary matrices E_1, E_2, \ldots, E_n such that $E_n \ldots E_1 A$ is either the identity matrix or its bottom row is zero.