Álgebra lineal I, Grado en Matemáticas

Septiembre 2018

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora. Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

Importante: utilice una única cara para las cuatro definiciones. Si utiliza más espacio no se tendrá en cuenta.

- (a) Matriz de cambio de base.
- (b) Dependencia e independencia lineal de vectores.
- (c) Aplicación lineal.
- (d) Proyección y simetría.

Ejercicio 1: (2 puntos)

Sean A y B dos matrices tales que existe el producto AB. Demuestre la siguiente propiedad del rango:

$$rg(AB) \le min\{rg(A), rg(B)\}\$$

Ejercicio 2: (2 puntos)

Sea W subespacio vectorial de \mathbb{R}^4 dado por las ecuaciones

$$W \equiv \begin{cases} x_1 + x_2 - x_3 + 2x_4 = 0 \\ x_1 - x_2 + 3x_3 + 6x_4 = 0 \end{cases}$$

Determine unas ecuaciones implícitas de un subespacio suplementario de W que no contenga a la recta $R \equiv \{x_1 = 0, x_2 = 0, x_3 - x_4 = 0\}$ e interseque al plano $P \equiv \{x_1 + x_2 + x_3 = 0, x_3 - x_4 = 0\}$ en una recta.

Ejercicio 3: (4 puntos)

Sea $\mathbb{R}_2[x]$ el espacio vectorial de los polinomios con coeficientes reales, de grado menor o igual que 2, en la indeterminada x. Se considera el endomorfismo $f: \mathbb{R}_2[x] \to \mathbb{R}_2[x]$ definido por

$$f(p(x)) = (x+1) p'(x)$$

donde p'(x) denota la derivada del polinomio p(x).

- (a) Determine la matriz de f respecto de la base $\mathcal{B} = \{1, x, x^2\}$.
- (b) Determine los subespacios núcleo e imagen de f.
- (c) Determine la matriz de f respecto de la base $\mathcal{B}' = \{1 + x, x + x^2, x^2\}$.

Ejercicio 1: Sean A y B dos matrices tales que existe el producto AB. Demuestre la siguiente propiedad del rango:

$$rg(AB) \le min\{rg(A), rg(B)\}$$

Un forma de demostrarlo se encuentra en el Teorema 1.53, página 35.

Ejercicio 2:

Sea W subespacio vectorial de \mathbb{R}^4 dado por las ecuaciones

$$W \equiv \begin{cases} x_1 + x_2 - x_3 + 2x_4 = 0 \\ x_1 - x_2 + 3x_3 + 6x_4 = 0 \end{cases}$$

Determine unas ecuaciones implícitas de un subespacio suplementario de W que no contenga a la recta $R \equiv \{x_1 = 0, x_2 = 0, x_3 - x_4 = 0\}$ e interseque al plano $P \equiv \{x_1 + x_2 + x_3 = 0, x_3 - x_4 = 0\}$ en una recta.

Solución: En primer lugar observamos que la dimensión de W es 2 ya que está determinado por dos ecuaciones lineales homogéneas no redundantes. Resolvemos el sistema para obtener las ecuaciones paramétricas y así una base de W.

Restando a la segunda ecuación la primera, tenemos el sistema escalonado equivalente

$$W \equiv \begin{cases} x_1 + x_2 - x_3 + 2x_4 = 0 \\ -2x_2 + 4x_3 + 4x_4 = 0 \end{cases}$$

Las incógnitas principales son x_1 y x_2 , las correspondientes a los pivotes, y las secundarias o parámetros $x_3 = \mu$ y $x_4 = \lambda$. Se obtienen las ecuaciones paramétricas

$$W \equiv \begin{cases} x_1 = -\mu & -4\lambda \\ x_2 = 2\mu & +2\lambda \\ x_3 = \mu & \Rightarrow W = L((-1, 2, 1, 0), (-4, 2, 0, 1)) \\ x_4 = \lambda & \lambda \end{cases}$$

Un subespacio U es suplementario de Wsi y sólo si dim $U=2, W\cap U=\{0\}$ y $\mathbb{R}^4=W+U$. Un suplementario de W se puede generar con dos vectores u_1 y u_2 que añadidos a dos vectores de una base de W formen una base de \mathbb{R}^4 . Como el plano U tiene que intersecar a P podemos tomar un vector de P como u_1 y añadir un segundo vector de modo que $\{w_1, w_2, u_1, u_2\}$ sean linealmente independientes. Además hay que asegurar que la recta R=L((0,0,1,1)) no esté contenida en U.

Vamos trabajando con los vectores como las filas de una matriz para que sea más sencillo. Primero transformamos la base de W en un sistema de vectores equivalente que determine una matriz esclonada:

$$\left(\begin{array}{cccc} -1 & 2 & 1 & 0 \\ -4 & 2 & 0 & 1 \end{array}\right) \sim \left(\begin{array}{ccccc} -1 & 2 & 1 & 0 \\ 0 & -6 & -4 & 1 \end{array}\right| \left.\begin{array}{ccccc} w_1 \\ w_2 \end{array}\right)$$

añadimos un vector u_1 de P que sea linealmente independiente de los anteriores

$$\left(\begin{array}{ccc|cccc}
-1 & 2 & 1 & 0 & w_1 \\
0 & -6 & -4 & 1 & w_2 \\
0 & 1 & -1 & 1 & u_1
\end{array}\right)$$

en el último paso añadimos un cuarto vector u_2 que no pertenezca a P y sea linealmente independiente de los anteriores y tal que R no esté contenida en $U = L(u_1, u_2)$.

$$\left(\begin{array}{ccc|cccc}
-1 & 2 & 1 & 0 & w_1 \\
0 & -6 & -4 & 1 & w_2 \\
0 & 1 & -1 & 1 & u_1 \\
0 & 0 & 0 & 1 & u_2
\end{array}\right)$$

Un suplementario de W en las condiciones pedidas es $U = L((0, 1, -1, 1), (0, 0, 0, 1)) \equiv \{x_1 = 0, x_2 + x_3 = 0\}$ ya que $U \cap P = L(u_1)$ y la recta R no está contenida en U.

Ejercicio 3:

Sea $\mathbb{R}_2[x]$ el espacio vectorial de los polinomios con coeficientes reales, de grado menor o igual que 2, en la indeterminada x. Se considera el endomorfismo $f: \mathbb{R}_2[x] \to \mathbb{R}_2[x]$ definido por

$$f(p(x)) = (x+1)p'(x)$$

donde p'(x) denota la derivada del polinomio p(x).

- (a) Determine la matriz de f respecto de la base $\mathcal{B} = \{1, x, x^2\}$.
- (b) Determine los subespacios núcleo e imagen de f.
- (c) Determine la matriz de f respecto de la base $\mathcal{B}' = \{1 + x, x + x^2, x^2\}$.

Solución:

(a) Las columnas de la matriz de f respecto de la base $\mathcal{B} = \{1, x, x^2\}$ están formadas por las coordenadas en \mathcal{B} de los vectores f(1), f(x) y $f(x^2)$.

$$f(1) = (x+1) \cdot 0 = 0 = (0,0,0)_{\mathcal{B}}, \ f(x) = (x+1) \cdot 1 = (1,1,0)_{\mathcal{B}}, \ f(x^2) = (x+1) \cdot 2x = 2x^2 + 2x = (0,2,2)_{\mathcal{B}}$$

luego la matriz pedida es

$$\mathfrak{M}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

(b) El subespacio núcleo de f está formado por los vectores de $\mathbb{R}_2[x]$ cuya imagen por f es el 0 de $\mathbb{R}_2[x]$

$$\operatorname{Ker}(f) = \{p(x) \in \mathbb{R}_2[x] : f(p(x)) = 0\} = \{p(x) \in \mathbb{R}_2[x] : (x - 1)p'(x) = 0\} = \{p(x) \in \mathbb{R}_2[x] : p'(x) = 0\}$$

Es decir Ker(f) está formado por todos los polinomios de grado 0 o constantes.

El subespacio imagen de f está generado por las imágenes por f de los vectores de una base de f.

$$\operatorname{Im}(f) = L(f(1), f(x), f(x^2)) = L(0, 1+x, 2x+2x^2) = L(1+x, 2x+2x^2)$$

Unas ecuaciones paramétricas de Im(f) son:

$$Im(f) = \{ \lambda(1+x) + \mu(2x+x^2) : \lambda, \mu \in \mathbb{R} \} = \{ \lambda + (\lambda + 2\mu)x + \mu x^2 : \lambda, \mu \in \mathbb{R} \}$$

(c) Las columnas de la matriz de f respecto de la base $\mathcal{B}' = \{1 + x, x + x^2, x^2\}$ están formadas por las coordenadas respecto de \mathcal{B}' de los vectores f(1+x), $f(x+x^2)$ y $f(x^2)$. Las calculamos:

$$f(x+1) = (x+1)(x+1)' = x+1 = 1 \cdot (1+x) + 0 \cdot (x+x^2) + 0 \cdot (x^2) = (1,0,0)_{\mathcal{B}'}$$

$$f(x+x^2) = (x+1)(x+x^2)' = 1 + 3x + 2x^2 = 1 \cdot (1+x) + 2 \cdot (x+x^2) + 0 \cdot (x^2) = (1,2,0)_{\mathcal{B}'}$$

$$f(x^2) = (x+1)(x^2)' = 2x + 2x^2 = 0 \cdot (1+x) + 2 \cdot (x+x^2) + 0 \cdot (x^2) = (0,2,0)_{\mathcal{B}'}$$

luego la matriz pedida es

$$\mathfrak{M}_{\mathcal{B}'}(f) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Para comprobar que la matriz es correcta podemos verificar que se cumpla

$$\mathfrak{M}_{\mathcal{B}'}(f) = \mathfrak{M}_{\mathcal{B}\mathcal{B}'} \, \mathfrak{M}_{\mathcal{B}}(f) \, \mathfrak{M}_{\mathcal{B}'\mathcal{B}} \qquad (*)$$

Si llamamos $P = \mathfrak{M}_{\mathcal{B}'\mathcal{B}}$ a la matriz de cambio de coordenadas de \mathcal{B}' a \mathcal{B} , entonces $P^{-1} = \mathfrak{M}_{\mathcal{B}\mathcal{B}'}$ y la comprobación anterior es equivalente a

$$\mathfrak{M}_{\mathcal{B}'}(f) = P^{-1}\mathfrak{M}_{\mathcal{B}}(f)P \iff P\mathfrak{M}_{\mathcal{B}'}(f) = \mathfrak{M}_{\mathcal{B}}(f)P$$

$$P\mathfrak{M}_{\mathcal{B}'}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 3 & 2 \\ 0 & 2 & 2 \end{pmatrix} = \mathfrak{M}_{\mathcal{B}}(f)P$$

La ecuación (*) es otro método de cálculo de la matriz pedida en este apartado.