1 ESPAÇOS MENSURÁVEIS

Definição 1.1. Uma **álgebra** de subconjuntos de X é uma família \mathcal{B} de subconjuntos de X que é fechada para as operações elementares de conjuntos, ou seja:

- (i) Se $A \in \mathcal{B}$, então $A^c \in \mathcal{B}$
- (ii) Se $A, B \in \mathcal{B}$, então $A \cup B \in \mathcal{B}$

Note que como $A \cap B = (A^c \cup B^c)^c$ e $A \setminus B = A \cap B^c$ para quaisquer $A, B \in \mathcal{B}$, então tais operações de conjuntos também são fechadas em \mathcal{B} , além disso como $\emptyset = X \cap X^c$ e $X = A \cup A^c$, nós também temos que $\emptyset \in \mathcal{B}$ e $X \in \mathcal{B}$. Note também que, por associatividade, a união e intercecção de qualquer número finito de elementos de \mathcal{B} está em \mathcal{B} .

Definição 1.2. Uma σ -álgebra é uma álgebra de subconjuntos de X que também é fechada para a união enumerável de subconjutos de \mathcal{B} , ou seja:

(iii) Se
$$A_j \in \mathcal{B}, j = \{1, 2, ...\},$$
 então $\bigcup_{j=1}^{\infty} A_j \in \mathcal{B}$

Note que como $\bigcap_{j=1}^{\infty} A_j = \Big(\bigcup_{j=1}^{\infty} A_j^c\Big)^c$, nós também temos que as σ -álgebras são fechadas para as intersecções enumeráveis.

Abaixo seguem alguns exemplos de σ -álgebra.

Exemplo 1.1. Seja $X = \{a, b, c, d\}$, $\mathcal{B}_0 = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$ é uma σ -álgebra, da mesma forma que $\mathcal{B}_1 = \{\emptyset, X\}$ e $\mathcal{B}_2 = 2^X$ também são σ -álgebras, ainda mais, \mathcal{B}_1 e \mathcal{B}_2 são σ -álgebras para qualquer conjunto X, sendo $\{\emptyset, X\}$ a menor e 2^X a maior σ -álgebra de qualquer conjunto X.

Exemplo 1.2. Seja *X* um conjunto não enumerável, então

$$\mathcal{B} = \{ A \in X : A \text{ \'e enumer\'avel ou } A^c \text{ \'e enumer\'avel} \}$$

é uma σ -álgebra.

Demonstração. Tome $A \in \mathcal{B}$, A é enumerável ou o A^c é enumerável, se A for enumerável, nós teremos que o $(A^c)^c$ é enumerável logo $(A^c) \in \mathcal{B}$, se A não for enumerável, então A^c é enumerável e logo A^c também é elemento de \mathcal{B} , e a primeira propriedade foi verificada.

Agora tome quaisquer $A_j \in \mathcal{B}$ tais que A_j eles são contáveis, então $\bigcup_{i=1}^{\infty} A_j$ é enumerável já que a união enumerável de conjuntos contáveis é enumerável. Tome agora $A_j \in \mathcal{B}$ tal que pelo ou menos um $A_{j_0}^c$ é enumerável , logo $(\bigcup_{i=1}^{\infty} A_j)^c = \bigcap_{i=1}^{\infty} A_j^c \subseteq A_{j_0}^c$, logo $\bigcup_{i=1}^{\infty} A_j \in \mathcal{B}$ e provamos todas as propriedades

Lema 1.1. A intercecção de uma família de σ -álgebras é uma σ -álgebra

Demonstração. Seja $\{\mathcal{B}_i: i \in \mathcal{I}\}$ uma família não vazia de *σ*-álgebras, de uma conjunto X queremos mostrar que $\mathcal{B} = \bigcap \mathcal{B}_i$ é uma *σ*-álgebra.

Tome $A \in \mathcal{B}$, então $A \in \mathcal{B}_i, \forall i \in \mathcal{I}$ e $A^c \in \mathcal{B}_i, \forall i \in \mathcal{I}$, portanto $A^c \in \mathcal{B}$. Temos também que se $\forall j \in \mathbb{N}, A_j \in \bigcap_{i \in \mathcal{I}} \mathcal{B}_i$ então $\bigcup_{j=1}^{i \in \mathcal{I}} A_j \in \bigcap_{i \in \mathcal{I}} \mathcal{B}_i$ e demonstramos as duas propriedades de σ -álgebra, logo \mathcal{B} é uma σ -álgebra.

Definição 1.3. Um **espaço mensurável** é uma dupla (X, \mathcal{B}) , onde X é um conjunto e \mathcal{B} uma σ -álgebra de subconjuntos de X. Os elementos de \mathcal{B} são chamados conjuntos mensuráveis.

Definição 1.4. Uma σ -álgebra gerada por uma família \mathcal{E} de subcontos de X é a menor σ -álgebra de X que contém \mathcal{E} e será denotada por $\sigma(\mathcal{E})$. Por construção, podemos definir tal σ -álgebra da seguinte forma

$$\sigma(\mathcal{E}) = \bigcap_{i \in \mathcal{I}} \{ \mathcal{B}_i : \mathcal{B}_i \text{ \'e uma } \sigma\text{-\'algebra e } \mathcal{E} \subseteq \mathcal{B}_i \}$$

Note que $\sigma(\sigma(\mathcal{E})) = \sigma(\mathcal{E})$

Definição 1.5. Se X é um espaço métrico, a σ -álgebra gerada pela família de subconjuntos abertos de X é chamada de σ -álgebra de Borel. A σ -álgebra de Borel na Reta e será denotada como $\mathcal{B}_{\mathbb{R}}$

Lema 1.2. Se
$$\mathcal{E} \in \sigma(\mathcal{F})$$
 então $\sigma(\mathcal{E}) \subseteq \sigma(\mathcal{F})$

Demonstração. $\mathcal E$ e $\mathcal F$ são famílias de subconjuntos de algum conjunto X. Note que se $\mathcal E$ está em $\sigma(\mathcal F)$ então os elementos de $\mathcal E$ estão em $\mathcal F$ e $\mathcal E\subseteq \mathcal F$, o que implica que então $\sigma(\mathcal E)\subseteq \sigma(\mathcal F)$

Proposição 1.1. A σ -álgebra de Borel em $\mathbb R$ pode ser gerada com

- (i) Os intervalos abertos $\mathcal{E}_1 = \{(a, b) : a, b \in \mathbb{R}\}$
- (ii) Os intervalos fechados $\mathcal{E}_2 = \{[a, b] : a, b \in \mathbb{R}\}$
- (iii) Os intervalos semi-abertos $\mathcal{E}_3 = \{(a, b] : a, b \in \mathbb{R}\}\ e\ \mathcal{E}_4 = \{[a, b) : a, b \in \mathbb{R}\}\$
- (iv) Os intervalos abertos ilimitados $\mathcal{E}_5 = \{(a, \infty) : a \in \mathbb{R}\}\ e\ \mathcal{E}_5 = \{(\infty, a) : a \in \mathbb{R}\}$
- (v) Os intervalos fechados e ilimitados $\mathcal{E}_6 = \{(\infty, a] : a \in \mathbb{R}\}$ e $\mathcal{E}_7 = \{[a, \infty) : a \in \mathbb{R}\}$

Demonstração. Seja τ a família dos conjuntos abertos de \mathbb{R} , por definição $\sigma(\tau)$ é a σ -álgebra de Borel. Provaremos cada item individualmente.

(i) Como todos os elementos de \mathcal{E}_1 são abertos, então nós temos que $\mathcal{E}_1 \subseteq \tau$, logo $\sigma(\mathcal{E}_1) \subseteq \sigma(\tau)$.

Para a inclusão inversa, basta lembrar que qualquer conjunto aberto de \mathbb{R} pode ser escrito como a união enumerável de intervalos abertos de \mathbb{R} , portanto todos os elementos de τ estão contidos em $\sigma(\mathcal{E}_1)$ e pelo Lema 1.2 nós temos que $\tau \in \sigma(\mathcal{E}_1)$ então $\sigma(\tau) \subseteq \sigma(\mathcal{E}_1) = \sigma(\mathcal{E}_1)$.

Portanto $\sigma(\tau) = \sigma(\mathcal{E}_1)$.

- (ii) Para todo $a,b\in\mathbb{R}, a< b$ nós temos que $(a,b)=\bigcup_{n=1}^{\infty}[a+n^{-1},b-n^{-1}]\in\sigma(\mathcal{E}_2)$, logo $\mathcal{E}_1\in\sigma(\mathcal{E}_2)$ e portanto $\sigma(\mathcal{E}_1)\subseteq\sigma(\mathcal{E}_2)$. Também temos que $[a,b]=\bigcup_{n=1}^{\infty}(a+n^{-1},b-n^{-1})$ e implicará que $\sigma(\mathcal{E}_2)\subseteq\sigma(\mathcal{E}_1)$. Portanto $\sigma(\tau)=\sigma(\mathcal{E}_2)$.
- (iii) Tomando $(a,b] = \bigcup_{n=1}^{\infty} (a,b-n^{-1})$ implicará que $\sigma(\mathcal{E}_3) \subseteq \sigma(\mathcal{E}_1)$ e tomando $(a,b) = \bigcap_{n=1}^{\infty} (a,b-n^{-1}]$ implica que $\sigma(\mathcal{E}_1) \subseteq \sigma(\mathcal{E}_3)$. Portanto $\sigma(\tau) = \sigma(\mathcal{E}_3)$. A demonstração para $\sigma(\mathcal{E}_4)$ é análoga.
- (iv) Tomando $(a, \infty) = \bigcup_{n=1}^{\infty} (a, b + n)$ implica que $\sigma(\mathcal{E}_5) \subseteq \sigma(\mathcal{E}_1)$ e tomando $(a, b) = (a, \infty) (b, \infty)$ implica que $\sigma(\mathcal{E}_1) \subseteq \sigma(\mathcal{E}_5)$. Portanto $\sigma(\tau) = \sigma(\mathcal{E}_5)$. A demonstração para $\sigma(\mathcal{E}_6)$ é análoga.
- (v) Tomando $[a, \infty) = \bigcup_{n=1}^{\infty} [a, b+n]$ implica que $\sigma(\mathcal{E}_6) \subseteq \sigma(\mathcal{E}_2)$ e tomando $[a, b] = [a, \infty) [b, \infty)$ implica que $\sigma(\mathcal{E}_2) \subseteq \sigma(\mathcal{E}_6)$. Portanto $\sigma(\tau) = \sigma(\mathcal{E}_6)$. A demonstração para $\sigma(\mathcal{E}_7)$ é análoga.

2 ESPAÇOS DE MEDIDA

Definição 2.1. Uma **medida** em um espaço mensurável (X, \mathcal{B}) é uma função $\mu : \longrightarrow [\mathcal{B}, +\infty]$ tal que:

- (i) $\mu(\emptyset) = 0$;
- (ii) (σ -aditividade): $\mu(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} \mu(A_j)$ para quaisquer $A_j \in \mathcal{B}$ disjuntos dois a dois.

Uma medida é finitamente aditiva se:

$$\mu(\bigcup_{j=1}^n A_j) = \sum_{j=1}^n \mu(A_j)$$

onde $n \in \mathbb{N}$.

Definição 2.2. Um **espaço de medida** é uma tripla (X, \mathcal{B}, μ) , onde μ é uma medida no espaço mensurável (X, \mathcal{B})

Teorema 2.1. Seja (X, \mathcal{B}, μ) um espaço de medida.

- (i) (Monotonicidade) Se A, $B \in \mathcal{B}$ e $A \subset B$, então $\mu(A) \leq \mu(B)$.
- (ii) (Subaditividade) Se $\{A_n\}_1^\infty \in \mathcal{B}$, então $\mu(\bigcup_{k=1}^\infty A_k) \leq \sum_{k=1}^\infty \mu(A_k)$.
- (iii) (Continuidade por baixo) Se $\{A_n\}_1^{\infty} \in \mathcal{B} \text{ e } A_1 \subset A_2 \subset ..., \text{ então } \mu(\bigcup_{k=1}^{\infty} A_k) = \lim_{k \to \infty} \mu(A_k).$
- (iv) (Continuidade por cima) Se $\{A_n\}_1^\infty \in \mathcal{B} \ e \ E_1 \supset E_2 \supset ... \ e \ \mu(A_1) < \infty$, então $\mu(\bigcap_{k=1}^\infty A_k) = \lim_{k \to \infty} \mu(A_k)$.
- Demonstração. (i) $A \subset B$, então $B = B \setminus A \cup A$ onde $B \setminus A \cap A = \emptyset$, portanto $\mu(B) = \mu(B \setminus A) + \mu(A) \ge \mu(A)$ pois $\mu(B \setminus A) \ge 0$.
 - (ii) Seja $B_1 = A_1$ e $B_k = A_k \ cup_{j=1}^{k-1} A_j$ para k > 1. Temos que $B_m \cap B_n = \emptyset$ se $m \neq n$ e $\bigcup_{j=1}^n A_j = \bigcup_{j=1}^n B_j$ para todo n, ou seja, $\bigcup_{j=1}^\infty A_j = \bigcup_{j=1}^\infty B_j$. Portanto, pelo item anterior, $\mu(\bigcup_{j=1}^\infty A_j) = \mu(\bigcup_{j=1}^\infty B_j) \le \sum_{j=1}^\infty \mu(B_j) \le \sum_{j=1}^\infty \mu(A_j)$.

(iii) Seja
$$B_j = A_j \setminus A_{j-1}$$
, temos que $\bigcup_{j=1}^{\infty} B_j = \bigcup_{j=1}^{\infty} A_j$ e $B_m \cap B_n = \emptyset$ para todo $m \neq n$. Assim

$$\mu(\bigcup_{j=1}^{\infty} A_j) = \mu(\bigcup_{j=1}^{\infty} B_j) = \sum_{j=1}^{\infty} \mu(B_j) = \lim_{k \to \infty} \sum_{j=1}^{k} \mu(B_j) = \lim_{k \to \infty} \sum_{j=1}^{k} \mu(A_j \setminus A_{j-1})$$

$$= \lim_{k \to \infty} \sum_{j=1}^{k} \mu(A_j) - \mu(A_{j-1}) = \lim_{k \to \infty} A_j.$$

(iv) Seja $B_j = A_1 \setminus A_j$, já que $B_j \cap A_j = \emptyset$, então $\mu(A_1) = \mu(B_j \cup A_j) = \mu(B_j) + \mu(A_j)$ e $\bigcup_{j=1}^{\infty} B_j = A_1 \setminus \bigcap_{j=1}^{\infty} A_j$, ou seja $\bigcap_{j=1}^{\infty} A_j = A_1 \setminus \bigcup_{j=1}^{\infty} B_j$, e como $B_1 \subset B_2 \subset ...$, pelo item anterior nós temos que $\mu(\bigcup_{j=1}^{\infty} B_j) = \lim_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \mu(A_1) - \mu(A_n)$. Portanto, como $\mu(A_1) < \infty$, nós obtemos que

$$\mu(\bigcap_{j=1}^{\infty}A_j)=\mu(A_1)-\mu(\bigcup_{j=1}^{\infty}B_j)=\mu(A_1)+\lim_{n\longrightarrow\infty}\mu(A_1)-\mu(A_n)=\lim_{n\longrightarrow\infty}\mu(A_n).$$

Definição 2.3. Uma medida é completa se o seu domínio contém todos os subconjuntos do conjunto nulo, ou seja, (X, \mathcal{B}, μ) um espaço de medida, μ é completa se, e somente se, $A \subseteq N \in \mathcal{B}$ e $\mu(N) = 0$, então $A \in \mathcal{B}$.

Teorema 2.2. Seja (X, \mathcal{B}, μ) um espaço de medida, $\mathcal{N} = \{N\mathcal{B} : \mu(N) = 0\}$ e $\widetilde{\mathcal{M}} = \{A \cup B : A \in \mathcal{M} \ e \ B \in \mathcal{N}\}$. Então $\widetilde{\mathcal{M}}$ é uma σ -álgebra e existe uma única extensão $\widetilde{\mu}$ de μ para uma medida completa de $\widetilde{\mathcal{M}}$

Definição 2.4. Uma **medida exterior** em um conjunto não vazio X é uma função $\mu*: 2^X \longrightarrow [0,\infty]$ tal que

- (i) $\mu^*(\emptyset) = 0$;
- (ii) (Monótona) $A \subseteq B$, então $\mu^*(A) \le \mu^*(B)$;
- (iii) (Subaditividade enumerável) $\mu^*(\bigcup_{i=1}^\infty A_i) \leq \sum_{i=1}^\infty \mu^*(A_i)$

Proposição 2.1. Seja $\mathcal{E} \subseteq 2^X$ uma família elementar e seja $\rho : \mathcal{E} \longrightarrow [0, \infty]$ tal que $\emptyset \in \mathcal{E}, X \in \mathcal{E}$ e $\rho(\emptyset) = 0$. Para todo $A \in X$, seja

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \rho(E_i) : E_i \in \mathcal{E} \ e \ A \subseteq \bigcup_{i=1}^{\infty} E_i \right\}$$

Então μ^* é uma medida exterior.

Demonstração. $\mu^*(\emptyset) = 0$ pois basta tomar $E_i = \emptyset$ para todo j. Agora se $A \subseteq B$, então

$$A' = \left\{ \sum_{j=1}^{\infty} \rho(E_j) : E_j \in \mathcal{E} \text{ e } A \subseteq \bigcup_{j=1}^{\infty} E_j \right\} \supseteq \left\{ \sum_{j=1}^{\infty} \rho(E_j) : E_j \in \mathcal{E} \text{ e } A \subseteq B \subseteq \bigcup_{j=1}^{\infty} E_j \right\} = B'$$

Como $A'\supseteq B'$ então inf $A'\le \inf B'$, ou seja, $\mu^*(A)\le \mu^*(B)$ Agora suponha que $\{A_j\}_{j=1}^\infty\subseteq 2^X$ e fixe $\epsilon>0$. Pela definição de μ^* , para cada um dos j existe $\{E_j^k\}_{k=1}^\infty\subseteq \mathcal{E}$ tal que $A_j\subseteq \bigcup_{k=1}^\infty E_j^k$ e, pela definição de infimo, temos que $\sum_{k=1}^\infty \rho(E_j^k)\le \mu^*(A_j)+\epsilon 2^{-j}$. Tomando $A=\bigcup_{j=1}^\infty A_j$ nós temos que $A\subseteq \bigcup_{j=1}^\infty\bigcup_{k=1}^\infty E_j^k$ e $\sum_{j=1}^\infty\sum_{k=1}^\infty\rho(E_j^k)\le \sum_{j=1}^\infty\mu^*(A_j)+\sum_{j=1}^\infty\epsilon 2^{-j}$ mas então $\mu^*(A)\le \sum_{j=1}^\infty\mu^*(A_j)+\epsilon$ e como a escolha de ϵ foi arbitrária, nós concluímos a demonstração.

Definição 2.5. Seja μ^* uma medida exterior em X, um conjunto $A\subseteq X$ é chamado de μ^* mensurável se, para todo $E\subseteq X$

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

Teorema 2.3. Se μ^* é uma medida exterior em X, a família \mathcal{M} de conjuntos μ^* mensuráveis é uma σ -álgebra e a restrição de μ^* em \mathcal{M} é uma medida completa.

Definição 2.6. Uma **pré-medida** em uma álgebra $A \subseteq 2^X$ é uma função $\mu_0 : A \longrightarrow [0, \infty]$ tal que

- (i) $\mu_0(\emptyset) = 0$;
- (ii) (σ -aditividade) $\{A_j\}_{j=1}^{\infty}$ uma sequência de conjuntos disjuntos dois a dois de $\mathcal A$ tais que $\bigcup_{i=1}^{\infty} A_i \in \mathcal A$, então $\mu_0(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu_0(A_i)$.

Proposição 2.2. Seja μ_0 uma pré-medida em \mathcal{A} e μ^* definida assim como na proposição 2.1 mas sobre μ_0 ao invés de ρ e sobre \mathcal{A} ao invés de \mathcal{E} . Teremos então que

- (i) μ^* restrita em \mathcal{A} é igual a μ_0 ;
- (ii) Todo conjunto em $A \in \mu^*$ mensurável.

Demonstração. (i) Seja $E \in \mathcal{A}$ qualquer, temos que existe uma sequência de conjunto $\{A_j\}_1^\infty$ em \mathcal{A} tal que $E \subseteq \bigcup_{j=1}^\infty A_j$. Seja $B_n = E \cap (A_n \setminus \bigcup_{j=1}^{n-1} A_j)$, então $B_r \cap B_s = \emptyset$ se $r \neq s$ e $E = \bigcup_{j=1}^\infty B_j$. Assim, $\mu_0(E) = \sum_{j=1}^\infty \mu_0(B_j) \le \sum_{j=1}^\infty \mu_0(A_j)$ pois $\bigcup_{j=1}^\infty B_j \subseteq \bigcup_{j=1}^\infty A_j$ e pré-medidas são monótonas (a demonstração de tal fato é análoga a demonstração do

item (i) do teorema 2.1 . Portanto $\mu_0(E) \leq \mu^*(E)$. Para a igualdade inversa, note que $E \subseteq E \cup \emptyset \cup \emptyset \cup ...$, e pela definição de μ^* nós finalmente obtemos que $\mu^*(E) \leq \mu_0(E)$.

(ii) Seja $A \in \mathcal{A}$ qualquer e $E \subseteq X$, fixe $\epsilon > 0$, temos que existe uma sequência de conjunto $\{A_j\}_1^\infty$ em \mathcal{A} tal que $E \subseteq \bigcup_{j=1}^\infty A_j$ e, pela definição de infimo, $\sum_{j=1}^\infty \mu_0(A_j) \le \mu^*(E) + \epsilon$. Como μ_0 é aditiva em \mathcal{A} e como $(A_j \cap A) \cap (A_j \cap A^c) = \emptyset$ com $(A_j \cap A) \subseteq A$ e $(A_j \cap A^c) \subseteq A$, então

$$\mu^*(E) + \epsilon \ge \sum_{j=1}^{\infty} \mu_0(A_j) \ge \sum_{j=1}^{\infty} \mu_0((A_j \cap A) \cup (A_j \cap A^c))$$

$$\ge \sum_{j=1}^{\infty} \mu_0(B_j \cap A) + \sum_{j=1}^{\infty} \mu_0(A_j \cap A^c)$$

$$\ge \mu^*(A_i \cap A) + \mu^*(A_i \cap A^c)$$

Como a escolha de ϵ foi arbitrária, nós obtemos um lado da igualdade. Quando ao outro lado da desigualde, como $E \subseteq (A_j \cap A) \cup (A_j \cap A^c)$ e como μ^* é aditiva, então $\mu^*(E) \leq \mu^*(A_i \cap A) + \mu^*(A_j \cap A^c)$

Definição 2.7. Seja (X, \mathcal{B}, μ) um espaço de medida. μ é dita **finita** se $\mu(X) < \infty$. μ é dita σ -finita se $\exists A_1, A_2, ... \in \mathcal{B}$ tal que $X = \bigcup_{j=1}^{\infty} A_j$, onde $\mu(A_j) < \infty, \forall j = 1, 2, ...$

Teorema 2.4. Seja $\mathcal{A} \subseteq 2^X$ uma álgebra, μ_0 uma pré-medida em \mathcal{A} e \mathcal{M} σ -álgebra gerada por \mathcal{A} . Então existe uma medida μ em \mathcal{M} cuja restrição em \mathcal{A} é igual a μ_0 . Além disso, qualquer outra medida ν em \mathcal{M} que extende μ_0 será tal que $\nu(E) \leq \mu(E)$ para todo $E \in \mathcal{M}$, sendo igual caso $\mu(E) < \infty$. Se μ_0 for σ -finita, então existe uma única extensão de μ_0 para uma medida de \mathcal{M}

3 MEDIDA DE BOREL

Definição 3.1. Uma **medida de Borel** é uma medida cujo domínio é uma σ -álgebra de Borel.

Definição 3.2. Seja μ uma medida de Borel em \mathbb{R} , a *função de distribuição de* μ é definida como

$$F_{\mu}: \mathbb{R} \longrightarrow \overline{\mathbb{R}}$$

$$x \mapsto \mu((-\infty, x]).$$

Proposição 3.1. Seja F uma medida de distribuição de μ , então F é crescente e contínua à direita.

Demonstração. Seja $x, y \in \mathbb{R}$ tal que x < y, assim $(-\infty, x] \subset (-\infty, y]$ e pelo item (i) teorema 2.1 do último capítulo, $\mu((-\infty, x]) \leq \mu((-\infty, y])$. Portanto $F(x) = \mu((-\infty, x]) \leq \mu((-\infty, y]) = F(y)$ e F é crescente.

Seja $\{x_n\}_1^\infty\subset\mathbb{R}$ uma sequência convergente a x pela direita, ou seja, $x_{j+1}\leq x_j$ para todo j. Mas então $(-\infty,x_{j+1}]\subseteq(-\infty,x_j]$ para todo j e, pelo item (iv) do teorema 2.1 do capítulo anterior, $\lim_{n\to\infty}\mu((-\infty,x_n])=\mu(\bigcap_{j=1}(-\infty,x_j])=\mu((-\infty,x_j])=F(x)$. Como a escolha de $\{x_n\}_1^\infty$ foi arbitrária, então F(x) é contínua.

Proposição 3.2. Seja $\mathcal{E} = \{(a,b], (a,\infty), \emptyset : -\infty \leq a < b < \infty ; a,b \in \overline{\mathbb{R}}\}$ o conjunto dos intervalos semi-abertos à esquerda de \mathbb{R} . Então o conjunto \mathcal{A} da união contável de elementos de \mathcal{E} , ou seja, $\mathcal{A} = \{\bigcup_{i=1}^n \mathcal{E}_i : \mathcal{E}_i \in \mathcal{E} \text{ onde } \mathcal{E}_k \cap \mathcal{E}_l = \emptyset, \forall k \neq l\}$ é uma álgebra e a σ -álgebra gerada por \mathcal{A} é a σ -álgebra de Borel.

Demonstração. Já que $\mathbb{R}=(a,\infty)$ onde $a=-\infty$, então $\mathbb{R}\in\mathcal{A}$, o conjunto \emptyset está em \mathcal{A} pois $\emptyset\cup\emptyset\in\mathcal{A}$.

Agora tome $A = \bigcup_{i=1}^m \mathcal{E}_i^0 \in \mathcal{A}$ e $B = \bigcup_{i=1}^n \mathcal{E}_i^1 \in \mathcal{A}$ disjuntos, ou seja $\mathcal{E}_r \neq \mathcal{E}_s$, $\forall r \neq s$. Reindexe os elementos de A e de B da seguinte forma $\mathcal{E}_1^0 = \mathcal{E}_1, ..., \mathcal{E}_m^0 = \mathcal{E}_m$ e $\mathcal{E}_1^1 = \mathcal{E}_{m+1}, ..., \mathcal{E}_n^1 = \mathcal{E}_{m+n}$. Assim é claro que $A \cup B = \bigcup_{i=1}^m \mathcal{E}_i$ e A é fechado pela união de elementos disjuntos.

Para provar que A é fechado no complemento, primeiro notemos que

$$(a,b] \cap (c,d] = \begin{cases} \emptyset \text{ , se } b < c \\ (c,b] \text{ , se } b > c \end{cases} , \quad (a,b] \cap (c,\infty) = \begin{cases} \emptyset \text{ , se } b < c \\ (c,b] \text{ , se } b > c \end{cases}$$

$$(a,\infty) \cap (b,\infty) = \begin{cases} (a,\infty) \text{ , se } a > b \\ (b,\infty) \text{ , se } a < b \end{cases} , \quad \emptyset \cap \mathcal{E}_i = \emptyset$$

O que mostra que \mathcal{E} é fechado sob a intersecção finita. Portanto $A^c = \bigcap_{i=1}^n \mathcal{E}_i^c \in \mathcal{E}$ o que implica que $A^c \cup \emptyset \in \mathcal{A}$, concluindo que \mathcal{A} é fechado sob o complementar. Pela Proposição 1 do capítulo 1 (1.1), nós temos que $\{(a,b]: a < b; a,b \in \mathbb{R}\}$ e $\{(a,\infty): a \in \mathbb{R}\}$ geram a σ -álgebra de Borel na reta, e como \mathcal{E} é a união desses conjuntos, então \mathcal{E} também o gera.

Proposição 3.3. Seja $F: \mathbb{R} \longrightarrow \mathbb{R}$ crescente e contínua à direita, sejam $(a_j, b_j] \in \mathcal{A}$ para todo j = 1, ..., n tais que $(a_k, b_k] \cap (a_l, b_l] = \emptyset$, $\forall k \neq l$, e seja $\mu_0: \mathcal{A} \longrightarrow \mathbb{R}$ definida como

$$\mu_0\left(\bigcup_{i=1}^n (a_i, b_i)\right) = \sum_{i=1}^n [F(a_i) - F(b_i)]$$

onde $\mu_0(\emptyset)$ = 0. Então μ_0 é uma pré-medida na álgebra $\mathcal A$

Demonstração. Primeiro, devemos mostrar que μ_0 é bem definida.

O primeiro caso que analisaremos será o caso onde $\bigcup I_{i=1}^n = I = (a, b]$ ou $I = (a, \infty)$. Como \mathbb{R} é totalmente ordernado sob a operação \leq , e como os $I_i's$ são disjuntos, então podemos re-indexá-los de forma que $a = a_1 < b_1 = a_2 < b_2 = ... < b_n = b$, daí

$$\mu_0(I) = F(a) - F(b) = \sum_{j=1}^n [F(b_j) - F(a_j)] = \sum_{j=1}^n \mu_0((a_j, b_j)) = \sum_{j=1}^n \mu_0(I_j)$$

Agora, no caso geral, seja $\bigcup_{i=1}^n I_i = \bigcup_{j=1}^m J_j$, assim, para cada i=1,...,n nós temos que $I_i = \bigcup_{j=1}^m (I_i \cap J_j)$

e, como mostrado no caso acima, temos que $\mu_0(I_i) = \sum_{i=1}^m \mu_0(I_i \cap J_i)$. Portanto

$$\sum_{i=1}^n \mu_0(I_i) = \sum_{j=1}^m \sum_{i=1}^n \mu_0(I_i \cap J_j) = \sum_{j=1}^m \mu_0(J_j)$$

e μ_0 é bem definida em ${\cal A}$

Seja $\bigcup_{j=1}^{n}I_{j}\in\mathcal{A}$, I_{j} 's intervalos semi-abertos à esquerda e disjuntos dois a dois. Então, pela

definição de A, $\exists n \in \mathbb{N}$ e $\exists J_1, ..., J_n \in \mathcal{E}$ onde $\bigcup_{i=1}^{\infty} I_i = \bigcup_{j=1}^{n} J_j$. Note que agora que basta provar

que $\mu_0(J_j) = \sum_{i=1}^{\infty} \mu_0(J_j \cap I_i)$, pois se tal igualdade for verdadeira, nós obtemos

$$\mu_0\left(\bigcup_{i=1}^{\infty} I_i\right) = \mu_0\left(\bigcup_{j=1}^{n} J_j\right) = \sum_{j=1}^{n} \mu_0(J_j) = \sum_{i=1}^{\infty} \sum_{j=1}^{n} \mu_0(J_j \cap I_i)$$
$$= \sum_{i=1}^{\infty} \mu_0\left(\bigcup_{j=1}^{n} J_j \cap I_i\right) = \sum_{i=1}^{\infty} \mu_0(I_i)$$

Assim, ja que J_i é um intervalo semi-aberto à esquerda, renomearemos-o de I e façamos

$$\mu_0(I) = \mu_0(\bigcup_{i=1}^n I_i) + \mu_0(I \setminus \bigcup_{i=1}^n I_i) \ge \mu_0(\bigcup_{i=1}^n I_i) = \sum_{i=1}^n \mu_0(I_i)$$

E conforme $n \to \infty$ nós obtemos $\mu_0(I) = \sum_{i=1}^{\infty} \mu_0(I_i)$

Agora para a desigualde reversa, assuma que I=(a,b], com a e b finitos e fixe $\epsilon>0$. Como F é contínua à direita, temos que existe algum $\delta>0$ tal que $F(a+\delta)-F(a)<\epsilon$, e para $I_i=(a_i,b_i]$ existe algum $\delta_i>0$ tal que $F(b_i+\delta_i)-F(b_i)<\epsilon 2^{-i}$. Além disso, note também que como $\bigcup_{i=1}^{\infty}(a_i,b_i]=(a,b]$ então nós temos que, ou existe algum a_i igual a a, ou existe alguma subsequência de a_i 's que convergem para a, o mesmo para b e os b_i 's. Portanto temos que os intervalos abertos $(a_i,b_i+\delta_i)$ cobrem o compacto $[a+\delta,b]$ e assim existe uma subcobertura finita. Seja $(a_1,b_1+\delta_1),...,(a_N,b_N+\delta_N)$ tal subcobertura finita, onde foram descartados todos os intervalos que eram subconjunto próprio de outro intervalo e também os índices i's foram devidamente reindexados. Teremos então que $b_i+\delta_i\in(a_{i+1},b_{i+1}+\delta_{i+1})$ para todo i=1,...,N-1. Finalmente, então

$$\mu_{0}(I) < F(b) - F(a + \delta) + \epsilon$$

$$\leq F(b_{n} + \delta_{N}) - F(a_{1}) + \epsilon$$

$$= F(b_{n} + \delta_{N}) - F(a_{N}) + \sum_{i=1}^{N-1} [F(a_{i+1}) - F(a_{i})] + \epsilon$$

$$\leq F(b_{n} + \delta_{N}) - F(a_{N}) + \sum_{i=1}^{N-1} [F(b_{i} + \delta_{i}) - F(a_{i})] + \epsilon$$

$$< \sum_{i=1}^{N} [F(b_{i}) + \epsilon 2^{-i} - F(a_{i})] + \epsilon$$

$$< \sum_{i=1}^{N} [F(b_{i}) - F(a_{i})] + 2\epsilon$$

$$\leq \sum_{i=1}^{\infty} \mu_{0}(I_{i}) + 2\epsilon$$

E nós obtemos a desigualdade reversa já que a escolha de ϵ foi arbitrária. Agora para o caso onde $a = -\infty$, para qualquer $M < \infty$ os intervalos $(a_i, b_i + \delta_i)$ cobrem o compacto [-M, b], e por um argumento análogo ao anterior, nós obtemos que $F(b) - F(-M) = \sum_{i=1}^{\infty} \mu_0(I_i) + 2\epsilon$ e como F é contínuo em $-\infty$, nós temos que conforme $\epsilon \to 0$ e $M \to \infty$, $\mu((-\infty,b)) =$ $F(b) - F(-\infty) \le \sum_{i=1}^{\infty} \mu_0(I_i)$. O mesmo para o caso onde $b = +\infty$, para qualquer $M < \infty$ os

intervalos $(a_i, b_i + \delta_i)$ cobrem o compacto [a, M] e nós obtemos $F(M) - F(a) = \sum_{i=1}^{\infty} \mu_0(I_i) + 2\epsilon$ e conforme $\epsilon \to 0$ e $M \to \infty$, com um argumento análogo ao primeiro e ao segundo caso nós obtemos $\mu((a,\infty)) = F(+\infty) - F(a) \leq \sum_{i=1}^\infty \mu_0(I_i)$ Portanto μ_0 é σ -aditiva e nós concluímos que μ_0 é uma pré-medida

Teorema 3.1. Se $F: \mathbb{R} \longrightarrow \mathbb{R}$ é uma função crescente e contínua à direita, então existe apenas uma μ_F medida de Borel em $\mathbb R$ tal que $\mu_F((a,b]) = F(b) - F(a), \forall a,b \in \mathbb R, a < b$. Se $G: \mathbb{R} \longrightarrow \mathbb{R}$ é outra função crescente e contínua à direita, então $\mu_F = \mu_G$ se, e somente se, ${\it F-G}$ é constante. Por outro lado, se μ é uma medida de Borel na reta que é finita em todos os conjuntos de Borel limitados, $F:\mathbb{R}\longrightarrow\mathbb{R}$ definida como

$$F(x) = \begin{cases} \mu((0, x]) & , se \ x > 0, \\ 0 & , se \ x = 0, \\ -\mu((x, 0]) & , se \ x < 0 \end{cases}$$

então F é crescente, contínua à direita e $\mu = \mu_F$

Demonstração. Pela proposição 3.3, a medida $\mu_F(a,b] = F(b) - F(a)$ é uma pré-medida na álgebra A, e pela proposição 3.2, a σ -álgebra gerada por A é a σ -álgebra de Borel, além disso $μ_F$ é σ-finita pois $\mathbb{R} = \bigcup (j, j+1]$ e portanto, pelo teorema 4 do capítulo 2, existe uma única extensão de μ_F para uma medida de $\mathcal{B}_{\mathbb{R}}$. Se $\mu_G = \mu_F$, note que $\forall x \in \mathbb{R}, \mu_G((0, x]) = \mu_F((0, x])$, então $(F-G)(x)=(F-G)(0)=k\in\mathbb{R}$; por outro lado, se F(x)=G(x)+k então F(b)-F(a)= $G(b) - G(a), \forall a, b \in \mathbb{R} \text{ e } \mu_F = \mu_G.$

Para a volta, seja μ uma medida de Borel e F como definida no enunciado. Como μ é monótona então F é crescente em $[0,\infty)$ e também é crescente em $(-\infty,0]$, e já que para qualquer $x,y \in \mathbb{R}$ tal que $x < 0 \le y$ nós temos que $F(x) = -\mu((x,0]) \le \mu((0,y]) = F(y)$ então F é crescente em todo \mathbb{R} . Seja $a \in \mathbb{R}$, se a > 0 então para toda sequência de pontos $x_n \to a^+$ nós temos que $F(a) = \mu((0, a]) = \lim_{x_n \to a^+} \mu((0, x_n])$ pela continuidade de μ_0 por cima, e se a < 0então $F(a) = -\mu((x,0]) = \lim_{x_n \to a^+} -\mu((x_n,0])$ pela continuidade por baixo de μ . Portanto F é contínua à direita. A igualdade $\mu = \mu_F$ é óbvia em \mathcal{A} , logo segue do teorema 4 do capítulo 2 (2.4) que existe uma única extensão de μ para $\mathcal{B}_{\mathbb{R}}$, portanto $\mu = \mu_F$ em $\mathcal{B}_{\mathbb{R}}$.

Definição 3.3. A **medida de Lebesgue-Stieltjes** associada a função F (F crescente e contínua à direita) é o completamento da medida μ_F . Denotaremos tal medida de Lebesgue-Stieltjes simplismente como μ , e seu domínio como μ como \mathcal{M}_{μ} . Para todo $E \in \mathcal{M}_{\mu}$ nós teremos:

$$\mu(E) = \inf \left\{ \sum_{j=1}^{\infty} \mu((a_j, b_j]) : E \subset \bigcup_{j=1}^{\infty} (a_j, b_j] \right\}$$

Lema 3.1. Se $E \in \mathcal{M}_u$, então

$$\mu(E) = \inf \left\{ \sum_{j=1}^{\infty} \mu((a_j, b_j)) : E \subset \bigcup_{j=1}^{\infty} (a_j, b_j) \right\}$$

Demonstração. Seja $E \subseteq \bigcup_{i=1}^{\infty} (a_i,b_i)$ e denote o lado direito da igualdade como $\nu(E)$. Temos que para cada i=1,2,...; $(a_i,b_i)=\bigcup_{i=1}^{\infty} I_j^k$ onde $I_j^k=(c_j^k,c_j^{k+1}]$ são intervalos semi-abertos a esquerda e disjuntos dois a dois tais que $c_j^1=a_j$ e c_j^k é crescente e convergente para b_j conforme $k\to\infty$. Assim $E\subseteq \bigcup_{i,k=1}^{\infty} I_j^k$ e então

$$\sum_{i=1}^{\infty} \mu((a_i, b_i)) = \sum_{j,k=1}^{\infty} \mu(I_j^k) \geq \mu(E)$$

Portanto, $\mu(E) \leq \nu(E)$. Agora fixe $\epsilon > 0$ qualquer. Temos que existe $\{(a_i,b_i]\}_1^\infty$ onde $E \subseteq \bigcup_{i=1}^\infty (a_i,b_i]$ e $\sum_{i=1}^\infty \mu((a_i,b_i]) \leq \mu(E) + \epsilon$, e como F é contínua à direita, para cada i=1,2,..., existe $\delta_i > 0$ tal que $F(b_i+\delta_i) - F(b_i) < \epsilon 2^{-i}$. Mas então $E \subseteq \bigcup_{i=1}^\infty (a_i,b_i+\delta_i)$ e

$$\sum_{i=1}^{\infty} \mu((a_i, b_i + \delta_i)) \leq \sum_{i=1}^{\infty} \mu((a_i, b_i]) + \epsilon \leq \mu(E) + \epsilon$$

Como a escolha de ϵ foi arbitrária, nós obtemos que $\nu(E) \leq \mu(E)$

Teorema 3.2. Se $E \in \mathcal{M}_u$, então

$$\mu(E) = \inf\{\mu(U) : U \supseteq E \ e \ U \ \'e \ aberto\}$$

$$= \sup\{\mu(K) : K \subseteq E \ e \ K \ \'e \ compacto\}$$

Demonstração. Seja U aberto tal que $E\subseteq U$, então $\mu(E)\leq \mu(U)$ pois μ é monotona. Agora dado $\epsilon>0$ qualquer, pelo lema 3.1 sabemos que existe uma cobertura $U=\bigcup_{i=1}^{\infty}(a_i,b_i)$ tal que

 $E \subseteq U$ e $\mu(U) \le \mu(E) + \epsilon$, e como a união enumerável de abertos é aberta, então U é aberto. E com isso nós concluímos a primeira igualdade.

Quanto a segunda igualdade, como $K\subseteq E$ e como $K\in \mathcal{B}_{\mathbb{R}}$, então pela monôtonicidade de μ , $\mu(K)\leq \mu(E)$. Para a desigualdade reversa, dividiremos em casos. Se E for limitado e fechado, então E é compacto e a igualdade é valida. Se E for aberto, então E^c é fechado e \overline{E} é compacto, logo $\overline{E}\cap E^c$ é compacto. Pela primeira igualdade nós sabemos que, para todo $\epsilon>0$, existe um aberto $U\supset \overline{E}\setminus E$ tal que

$$\mu(U) \le \mu(\overline{E} \setminus E) + \epsilon \tag{3.1}$$

Tome $K = \overline{E} \setminus U$, daí

$$K = \overline{E} \setminus U = \overline{E} \cap U^c \subset \overline{E} \cap (\overline{E} \cup E) = \emptyset \cup (\overline{E} \cap E) = \emptyset \cup E = E$$

Então $K \subseteq E$. Além disso, como $E = K \cup (E \setminus K)$, onde $K \cap (E \setminus K) = \emptyset$ então

$$\mu(K) = \mu(E) - \mu(E \setminus K) \tag{3.2}$$

Agora note que

$$E \setminus K = E \setminus (\overline{E} \setminus U) = E \cap (\overline{E} \setminus U)^c = E \cap (\overline{E} \cap U^c)^c = E \cap (\overline{E}^c \cup U) = (E \cap \overline{E}^c) \cup (E \cap U) = E \cup U$$
(3.3)

Substituindo (3.3) em (3.2) nós obtemos

$$\mu(K) = \mu(E) - \mu(E \cap U) \tag{3.4}$$

Mas como $U = (E \cap U) \cup (U \cap E^c)$, então $\mu(E \cap U) = \mu(U) - \mu(U \setminus E)$, substituindo isso em (3.4) nós obtemos

$$\mu(K) = \mu(E) - [\mu(U) - \mu(U \setminus E)] \tag{3.5}$$

Lembremos agora que a nossa escolha de U foi tal que $U \supset \overline{E} \setminus E$, então $U \setminus E \supset (\overline{E} \setminus E)$ e pela monotonicidade de μ juntamente com a igualdade (3.5) nós teremos

$$\mu(K) = \mu(E) - \mu(U) + \mu(U \setminus E)$$

$$\geq \mu(E) - \mu(U) + \mu(\overline{E} \setminus E)$$
(3.6)

Agora, pela desigualdade (3.1) nós temos que $\mu(\overline{E} \setminus E) - \mu(U) \ge -\epsilon$ e pela desigualdade (3.6),

nós teremos

$$\mu(K) \ge \mu(E) - \mu(U) + \mu(\overline{E} \setminus E)$$

$$\ge \mu(E) - \epsilon \tag{3.7}$$

E nós obtemos a igualdade caso E for aberto e limitado.

Nos resta o caso onde E não é limitado. Nesse caso, seja $E_j = E \cap (j, j+1]$, como visto acima, sabemos que para qualquer $\epsilon > 0$ existe um compacto $K_j \subset E_j$ tal que $\mu(K_j) \geq \mu(E_j) - \epsilon 2^{-j}$. Seja $H_n = \bigcup_{j=-n}^n K_j$, então H_n é compacto e $H_n \subset E$, pois então $\mu(H_n) \geq \mu(\bigcup_{j=-n}^n E_j) - \epsilon$ e conforme $n \to \infty$, nós obtemos a desigualdade que desejavamos, concluindo, por final, que a segunda desigualdade é verdadeira.

Definição 3.4. A **medida de Lebesgue** é a medida de Lebesgue-Stieltjes associada a função F(x) = x. A partir desse momento, nos referiremos como medida a medida de Lebesgue e a denotaremos tal medida por m.

Exemplo 3.1. A medida dos números racionais é zero.

Demonstração. Como o conjunto dos racionais é enumerável, então para cada racional r_j , dado $\epsilon>0$ qualquer, nós temos que $r_j\in \left(r_j,r_j+\epsilon 2^{-j}\right)$ e que $\mathbb{Q}\subset \left\{\bigcup_{j=1}^{\infty}\left(r_j,r_j+\epsilon 2^{-j}\right):\forall r_j\in\mathbb{Q}\right\}$. Portanto, para todo $r_j\in\mathbb{Q}$ nós temos $0\leq m(\mathbb{Q})\leq \sum_{j=1}^{\infty}m\left(r_j,r_j+\epsilon 2^{-j}\right)=\sum_{j=1}^{\infty}\left(r_j+\epsilon 2^{-j}-r_j\right)=\epsilon$. Como a escolha de ϵ foi arbitrária, então $m(\mathbb{Q})=0$.

Exemplo 3.2. A medida do conjunto de cantor é zero.

Demonstração. Seja C o conjunto de cantor, C é construído a partir do intervalo [0, 1], removendo o segundo terço aberto do intervalo, e fazendo o mesmo para cada um dos intervalos subsequentes. Note que o conjunto C' dos intervalos removidos é enumerável, então

$$m(C) = m([0,1]) - m(C') = 1 - \sum_{j=0}^{\infty} \frac{2^j}{3^{j+1}} = 1 - \frac{1}{3} \cdot \frac{1}{1 - (2/3)} = 0.$$