

2.

PARAMETRY SENZORŮ

Přednášející: prof. Ing. Miroslav Husák, CSc.

husak@fel.cvut.cz

tel.: 2 2435 2267

http://micro.feld.cvut.cz

Cvičící: Ing. Adam Bouřa, Ph.D.

Ing. Tomáš Teplý

Ing. Alexandr Laposa, Ph.D.

Parametry senzorů

Senzor ≡ elektronická součástka (převodník)

Základní typy parametrů:

- Statické
- Dynamické
- Prostředí

? Napište základní typy parametrů charakterizujících senzor (3 typy)

STATICKÉ parametry senzorů

Základní statické parametry

- Přesnost
- Rozlišovací schopnost
- Citlivost
- Selektivita
- Práh citlivosti
- Práh měření
- Linearita
- Zkreslení

- Šum
- Hystereze
- Reprodukovatelnost
- Výstupní impedance
- Nestabilita a drift
- Rozsah měření
-

? Vyjmenujte alespoň 5 základních statických parametrů charakterizujících senzor

Převodní charakteristika

Obecná statická převodní charakteristika

$$y = f(x)$$

Ideální lineární převodní charakteristika

$$y = konst \cdot x$$

? Nakreslete obecnou a ideální převodní charakteristiku senzoru, napište základní rovnice popisující charakteristiky

Aditivní a multiplikativní chyby

? Nakreslete princip vzniku aditivní a multiplikativní chyby

Nelinearita a kalibrace

Přesnost vyjádřená graficky (kalibrace (cejchování) = zvýšení přesnosti)

odchylka skutečné od teoretické hodnoty

▲ odchylka teoretické od tolerančního pásma

$$\delta = X_m - X_t$$

? Nakreslete princip kalibrace nelineárních senzorů

Přesnost

Přesnost (relativní chyba senzoru)

$$\varepsilon_{a} = 100 \cdot \frac{X_{m} - X_{t}}{X_{t}} \qquad (\%)$$

m measurement,

t true (skutečná)

Přesnost vyjádřená na plný rozsah výstupu

$$\varepsilon_{\rm f} = 100 \cdot \frac{X_{\rm m} - X_{\rm t}}{X_{\rm FSO}} \qquad (\%)$$

FSO ... Full Scale Output

? Napište matematické vztahy pro definice přesnosti

Rozlišovací schopnost

Rozlišovací schopnost

$$R_{\text{max}} = 100 \cdot \frac{\Delta X_{\text{min}}}{X_{\text{max}} - X_{\text{min}}} \qquad (\%)$$

? Napište matematický vztah pro rozlišovací schopnost

Průměrná rozlišovací schopnost

$$R_{av} = 100 \cdot \frac{\sum_{i=1}^{n} \Delta X_{i}}{n \cdot (X_{max} - X_{min})_{i}}$$
 (%)

? Napište matematický vztah pro průměrnou rozlišovací schopnost

n - počet úseků

Citlivost, selektivita

$$S = \frac{\Delta y}{\Delta x}$$

platí v daném pracovním bodě Po

Selektivita

$$S_{\alpha} = \frac{\Delta y}{\Delta x_{\alpha}}$$

 \mathbf{x}_{α} je působící fyzikální veličina α

 S_{α} je citlivost na veličinu α

Citlivost multisenzorového systému

$$S_{\alpha\beta} = \frac{\Delta y_{\beta}}{\Delta x_{\alpha}}$$

α - působící fyzikální veličina

β - β-itý senzor

? Napište matematické vztahy pro citlivost, selektivitu, citlivost multisenzorového systému

Minimální detekovatelný signál

Minimální detekovatelný signál (MDS=minimum detecable signal)

? Napište vztah pro minimální detekovatelný signál

Hystereze, reprodukovatelnost

Hystereze

Reprodukovatelnost

? Nakreslete křivky vyjadřující hysterezi a reprodukovatelnost

Zkou

Hystereze, reprodukovatelnost – vzájemné propojení

Možnosti kombinace obou parametrů u jednoho senzoru

Elektrické impedanční modely senzorů

Senzor s napěťovým výstupem

senzor elektronické obvody

? Nakreslete elektrický model senzoru s napěťovým výstupem a připojením zátěže, napište podmínky mezi výstupní impedancí senzoru s napěťovým výstupem a vstupní impedancí zátěže

Senzor s proudovým výstupem

? Nakreslete elektrický model senzoru s proudovým výstupem a připojením zátěže, napište podmínky mezi výstupní impedancí senzoru s proudovým výstupem a vstupní impedancí zátěže

Další statické parametry senzorů

DYNAMICKÉ parametry senzorů

Dynamická odezva výstupního signálu senzoru

Různý tvar časového průběhu (závisí na vlastnostech senzoru)

Dynamická odezva senzoru (vliv tlumení)

Typický příklad výstupního signálu - Útlum kmitání výstupního signálu

Dynamický signál (buzení a odezva na teplotní impuls)

Senzor se chová jako filtr

Doba odezvy, doba regenerace

Doba odezvy

čas, při skokové změně veličiny z nuly (hodnota R_a) na hodnotu R_g . Vzhledem k exponenciálnímu charakteru a dlouhé době ustálení odezvy bývá často stanovován při dosažení 90 % z hodnoty odezvy

Doba regenerace

čas návratu signálu po detekci zpět na výchozí hodnotu

VLIV PROSTŘEDÍ na chyby senzorů

Senzor je zatížený chybami

? Nakreslete model senzoru jako black-box s příkladem vstupního a výstupního zpětného působení

Hlavní, vedlejší a chybové veličiny působící na senzor

METODY zmenšováni chyb senzorů

Kompenzační metoda

Princip: Použití v případě, že lze rušivou veličinu snímat dalším senzorem /např. teplota). Vyhodnocení veličiny a korekce ve výstupním členu.

? Nakreslete princip kompenzační metody ke zmenšení chyb (např. vyloučení vlivu teploty na měření)

Diferenciální zapojení

Princip: Dva stejné senzory. Statické charakteristiky jsou totožné. Vstupní signál vstupuje do druhého senzoru s opačným znaménkem. Rušivé signály vstupují se shodným znaménkem.

? Nakreslete princip diferenciální metody ke zmenšení

chyb (např. vyloučení vlivu posunutí na měření)

Zpětnovazební metoda

Princip: Kompenzace měřené veličiny zpětnou vazbou. Umožňuj potlačit chybu nelinearit senzorů.

? Nakreslete blokově princip zpětnovazební metody pro zmenšování chyb

Linearizace sériovým členem

Princip: Linearizační člen kompenzuje nelinearitu senzoru, tj. na výstupu teoreticky dostáváme lineární závislost veličiny Y

? Nakreslete blokově princip linearizace sériovým členem pro zmenšování chyb

Linearizace v digitálním tvaru

Princip: Využití uložení konstant v pevné paměti ROM.

Nevýhoda: Výměnou senzoru je nutné vyměnit data v ROM

Výhoda: Větší přesnost v porovnání s analogovou linearizací

Filtrace rušivých signálů

a) rušivé kmitočty jiné než aktivní signál – lze odstranit filtry

- b) rušivé kmitočty ve spektru aktivního signálu -
 - vznikají v senzoru lze řešit pouze pro periodické signály
 - 2) vznikají v měřicím řetězci, tj. v elektr. signálu lze řešit amplitudovou modulací a demodulací

Princip: Potlačení rušivých kmitočtů.

Korekce dynamické charakteristiky senzoru

Princip: Korekce kmitočtové charakteristiky

Realizace: např. RC členy (pásmová, dolní nebo horní propust)

? Nakreslete blokově princip korekce dynamické charakteristiky senzoru

Můstky

(pro informaci)

Měřicí můstky

Principially used to measure

Resistance

Capacitance-Frequency

Rovnováha na můstku

$$U_{A} = U_{cc} \frac{R_{a}}{R_{a} + R_{a}}$$

$$U_{B} = U_{cc} \frac{R_{d}}{R_{c} + R_{d}}$$

$$U_{A} = U_{B}$$

$$\frac{R_b}{R_a} = \frac{R_c}{R_d}$$

Inductance

Inductance

SCHERING BRIDGE

Inductance

Otázky - 02 parametry senzorů

- 1. Napište základní typy parametrů charakterizujících senzor (3 typy)
- 2. Vyjmenujte alespoň 5 základních statických parametrů charakterizujících senzor
- 3. Nakreslete obecnou a ideální převodní charakteristiku senzoru, napište základní rovnice popisující charakteristiky
- 4. Nakreslete princip vzniku aditivní a multiplikativní chyby
- 5. Nakreslete princip kalibrace nelineárních senzorů
- 6. Napište matematický vztah pro definice přesnosti
- 7. Napište matematický vztah pro rozlišovací schopnost
- 8. Napište matematický vztah pro průměrnou rozlišovací schopnost
- 9. Napište matematické vztahy pro citlivost, selektivitu, citlivost multisenzorového systému
- 10. Napište vztah pro minimální detekovatelný signál
- 11. Nakreslete křivky vyjadřující hysterezi a reprodukovatelnost
- 12. Nakreslete elektrický model senzoru s napěťovým výstupem a připojením zátěže, napište podmínky mezi výstupní impedancí senzoru s napěťovým výstupem a vstupní impedancí zátěže
- 13. Nakreslete elektrický model senzoru s proudovým výstupem a připojením zátěže, napište podmínky mezi výstupní impedancí senzoru s proudovým výstupem a vstupní impedancí zátěže
- 14. Nakreslete a popište charakteristiky včetně os: pracovní rozsah senzoru, práh měření
- 15. Nakreslete model senzoru jako black-box s příkladem vstupního a výstupního zpětného působení
- 16. Nakreslete model senzoru s působením chybových veličin: uveďte příklady chybových veličin, hlavních a vedlejších vstupních veličin
- 17. Nakreslete princip kompenzační metody ke zmenšení chyb (např. vyloučení vlivu teploty na měření)
- 18. Nakreslete princip diferenciální metody ke zmenšení chyb (např. vyloučení vlivu posunutí na měření)
- 19. Nakreslete blokově princip zpětnovazební metody pro zmenšování chyb
- 20. Nakreslete blokově princip linearizace sériovým členem pro zmenšování chyb
- 21. Nakreslete blokově princip korekce dynamické charakteristiky senzoru