

Universidad de Guadalajara Centro Universitario de Ciencias Exactas e Ingenierías División de Tecnologías para la Integración Ciber – Humana Programación de sistemas reconfigurables

Tarea 5

Circuito Combinacional (2) - Instancias

Profesor:

Hernández Hernández, Héctor

Alumno:

Martinez Flores, Cassandra Frine

Código: 218456125

Introducción

En el documento se presentará dos circuitos diferentes usando el programa "Quartus" usando lenguaje verilog.

De la tarea 3 se utilizaron los circuitos (circuito 1 y 2 mencionados en el documento) para poder crear un 3er circuito instanciando estos 2, se desarrollara en quartus usando lenguaje verliog, se simulara, y se ejecutara el circuito (también se mostrara el diagrama creado desde el código para verificar que sea lo que se pide).

Objetivos

 Trabajar e implementar el uso del programa "Quartus" para facilitar la creación de circuitos y el como se simulan e instanciarlos

Desarrollo

→ Circuito 1

o Expresión booleana:

$$X = \bar{A}BC + A\overline{BC}$$

○ Tabla de verdad de $X = \overline{A}BC + A\overline{BC}$

A	В	С	$X = \overline{ABC} + A\overline{BC}$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Código

```
      Compilation Report - c_t1
      X

      Image: Compilation Report - c_t1
      X

      Image
```

o Diagrama en el programa

Valores simulados

→ Circuito 2

Tabla de verdad de $X = A + BD + C + \overline{BD}$

A	В	С	D	$X = A + BD + C + \overline{BD}$
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

o Código

o Diagrama en el programa

→ Circuito combinacional

o Tabla de verdad

A	В	С	D	E	F	G	Н	X ₀	a ₁	a ₂	S
0	0	0	0	0	0	0	0	0	1	1	1
1	0	0	0	0	0	0	0	1	1	1	0
1	1	0	0	0	0	0	0	0	1	1	1
1	1	1	0	0	0	0	0	0	1	1	1
0	1	0	1	1	1	0	0	0	1	1	1
1	1	0	1	0	1	0	1	1	1	1	1
1	1	1	1	1	1	1	1	0	1	1	1
0	1	1	1	1	1	1	1	1	1	1	0

o Código

```
💠 cc_inst.v 🗶
                           Compilation Report - cc_inst
       66 (7 | ‡ ∉ | № № № | 0 🐷 | 🔀 | 267 🗏
      module cc_inst
曱(
       input wire A, B, C, D, E, F, G, H, output wire S
wire ts1, ts2, ts3;
      c_t1 inst0
曱(
              .A(A),
.B(B),
.C(C),
.X(ts1)
         );
      ____c_t2 inst1
早<sup>(</sup>
             .A(A),
.B(B),
.C(C),
.D(D),
.a(ts2)
       [);
      c_t2 inst2
早<sup>(</sup>
              .A(E),
.B(F),
.C(G),
.D(H),
.a(ts3)
       [);
      c_t1 inst3
口(
              .A(ts1),
.B(ts2),
.C(ts3),
.X(s)
         endmodule
```

o Diagrama

Simulación

Referencias

- Circuitos proporcionados por el profesor Héctor Hernández
- Tarea anterior