Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО» (УНИВЕРСИТЕТ ИТМО)

Факультет «Систем управления и робототехники»

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №2

По дисциплине «Частотные методы» на тему: «Преобразования фурье»

Студент: Охрименко Ева

Преподаватели: Догадин Егор Витальевич Пашенко Артем Витальевич

> г. Санкт-Петербург 2025

Содержание

1	Ben	цественное задание
	1.1	Краткое условие
	1.2	Прямоугольная функция
		1.2.1 Аналитика
		1.2.2 Код
		1.2.3 Вывод
	1.3	Треугольная функция
		1.3.1 Аналитика
		1.3.2 Код
		1.3.3 Вывод
	1.4	Кардинальный синус
		1.4.1 Аналитика
		1.4.2 Код
		1.4.3 Вывод
	1.5	Функция Гаусса
		1.5.1 Аналитика
		1.5.2 Код
		1.5.3 Вывод
	1.6	Двустороннее затухание
		1.6.1 Аналитика
		1.6.2 Код
		1.6.3 Вывод
2	Kon	мплексное задание 1
	2.1	Краткое условие
	2.2	Аналитика
	2.3	Код
	2.4	Вывод
3	Mv	зыкальное задание 1
	3.1	Краткое условие
	3.2	Код
	3.3	Вывод
4	При	имечания 1

1 Вещественное задание

1.1 Краткое условие

Для каждой из функций f(t) провести исследование её Фурье-образа $\hat{f}(\omega)$:

- Привести аналитические выражения для f(t) и $\hat{f}(\omega)$.
 - Для прямоугольной, треугольной и двустороннего затухания функций с выкладками.
 - Для кардинального синуса и функции Гаусса только результат.
- Выбрать три набора значений a, b > 0.
- Построить графики f(t) и $\hat{f}(\omega)$ для выбранных параметров.
- Проверить равенство Парсеваля.
- Сделать выводы о влиянии параметров а и b.

1.2 Прямоугольная функция

1.2.1 Аналитика

Исходная функция:

$$f(t) = \begin{cases} a, & |t| \le b, \\ 0, & |t| > b. \end{cases}$$

Фурье-образ вычисляется по формуле:

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-b}^{b} a e^{-i\omega t} dt = \frac{a}{\sqrt{2\pi}} \left[\frac{e^{-i\omega t}}{-i\omega} \right]_{-b}^{b} = \frac{a}{\sqrt{2\pi}} \cdot \frac{e^{-i\omega b} - e^{i\omega b}}{-i\omega} = \frac{a}{\sqrt{2\pi}} \cdot \frac{-2i\sin(\omega b)}{-i\omega} = \frac{2a\sin(\omega b)}{\omega\sqrt{2\pi}}.$$

Таким образом, Фурье-образ прямоугольной функции:

$$\hat{f}(\omega) = \frac{2a\sin(\omega b)}{\omega\sqrt{2\pi}}.$$

Для параметров (a, b) = (1, 1):

$$\hat{f}(\omega) = \sqrt{\frac{2}{\pi}} \cdot \frac{\sin(\omega)}{\omega}.$$

Для параметров (a, b) = (2, 2):

$$\hat{f}(\omega) = 2\sqrt{\frac{2}{\pi}} \cdot \frac{\sin(2\omega)}{\omega}.$$

Для параметров (a, b) = (5, 4):

$$\hat{f}(\omega) = 5\sqrt{\frac{2}{\pi}} \cdot \frac{\sin(4\omega)}{\omega}.$$

2

1.2.2 Код

```
f[t_,a_,b_]:=Piecewise[{{a,Abs[t]<=b},{0,Abs[t]>b}}]
  a=1;
  b=1;
  fourier=FourierTransform[f[t,a,b],t,w]
  Plot[f[t,a,b], {t,-5,5}, PlotRange->All, PlotStyle->Thick, AxesLabel->{"t", "f(t)
     "}, PlotLabel -> "Прямоугольная функция", Exclusions -> None]
  Plot [Re[fourier], {w,-10,10}, PlotRange->All, PlotStyle->Thick, AxesLabel->{"\[
     Omega]", "F(\[Omega])"}, PlotLabel -> "Фурьеобраз - прямоугольной функции"]
11
  energyTimeDomain = Integrate[Abs[f[t, a, b]]^2, {t, -Infinity, Infinity}];
12
13
  energyFrequencyDomain = Integrate[Abs[fourier]^2, {w, -Infinity, Infinity}];
15
  Print["\Проверкаn равенства Парсеваля:"]
  Print["\[Integral]|f(t)|\.b2 dt = ", energyTimeDomain]
  Print["\[Integral]|F(\[Omega])|\.b2 d\[Omega] = ", energyFrequencyDomain]
  Print["Результат: ", energyTimeDomain == energyFrequencyDomain]
```

Листинг 1: Фурье-образ прямоугольной функции и проверка равенства Парсеваля

Этот код определяет прямоугольную функцию, вычисляет её Фурье-образ, строит графики и проверяет равенство Парсеваля.

1.2.3 Вывод

Теперь посмотрим на вывод кода. Я построю графики прямоугольной функции и Фурье-образа для выбранных значений.

Параметры a и b определяют форму прямоугольной функции и её Фурье-образ. В исходной функции b задаёт длину прямоугольника, а a — его высоту. При увеличении a амплитуда Фурье-образа возрастает, так как преобразование Фурье линейно, и умножение функции на константу a приводит к пропорциональному увеличению её Фурье-образа.

При увеличении b прямоугольник становится длиннее, что приводит к более "частым"и "узким"колебаниям в Фурье-образе. Это происходит из-за того, что преобразование Фурье сохраняет энергию сигнала, и увеличение ширины прямоугольника во временной области вызывает сжатие его спектра в частотной области..

Также в моем коде присутствует проверка равенства Парсерваля. Для любых (a,b) проверка вернула True следовательно равенство выполнено.

1.3 Треугольная функция

1.3.1 Аналитика

Исходная функция:

$$f(t) = \begin{cases} a - \left| \frac{at}{b} \right|, & |t| \le b, \\ 0, & |t| > b. \end{cases}$$

Фурье-образ вычисляется по формуле:

$$\begin{split} \hat{f}(\omega) &= \frac{1}{\sqrt{2\pi}} \int_{-b}^{b} \left(a - \left| \frac{at}{b} \right| \right) e^{-i\omega t} dt = \frac{a}{\sqrt{2\pi}} \left(\int_{0}^{b} \left(1 - \frac{t}{b} \right) e^{-i\omega t} dt + \int_{-b}^{0} \left(1 + \frac{t}{b} \right) e^{-i\omega t} dt \right) = \\ &= \frac{a}{\sqrt{2\pi}} \left(\frac{e^{-i\omega b} - 1 + i\omega b}{b\omega^2} + \frac{1 + i\omega b - e^{i\omega b}}{b\omega^2} \right) = \frac{a}{\sqrt{2\pi}} \left(\frac{e^{-i\omega b} + e^{i\omega b} - 2}{b\omega^2} \right) = \frac{2a(1 - \cos(\omega b))}{\sqrt{2\pi}b\omega^2} \\ &\text{Для параметров } (a, b) = (1, 1): \\ &\qquad \qquad \frac{2 - 2\cos(w)}{\sqrt{2\pi}w^2} \\ &\qquad \qquad \mathcal{A}$$
Для параметров $(a, b) = (2, 2):$

$$&\qquad \qquad \frac{4 - 4\cos(2w)}{2\sqrt{2\pi}w^2} \\ &\qquad \qquad \mathcal{A}$$
Для параметров $(a, b) = (5, 4):$

1.3.2 Код

```
1 f[t_, a_, b_] :=
   Piecewise [\{\{a - Abs[a t/b], Abs[t] \le b\}, \{0, Abs[t] > b\}\}]
  a = 5;
  b = 4;
  fourier = FourierTransform[f[t, a, b], t, w]
  Plot[f[t, a, b], {t, -5, 5}, PlotRange -> All, PlotStyle -> Thick,
   AxesLabel -> {"t", "f(t)"}, PlotLabel -> "Треугольная функция"]
11
  Plot[Re[fourier], {w, -10, 10}, PlotRange -> All, PlotStyle -> Thick,
   AxesLabel -> {"\[Omega]", "F(\[Omega])"},
   PlotLabel -> "Фурьеобраз- треугольной функции"]
14
  energyTimeDomain =
16
    Integrate[Abs[f[t, a, b]]^2, {t, -Infinity, Infinity}];
17
18
  energyFrequencyDomain =
19
    Integrate[Abs[fourier]^2, {w, -Infinity, Infinity}];
  Print["\Проверкап равенства Парсеваля:"]
  Print["\[Integral]|f(t)|\.b2 dt = ", energyTimeDomain]
  Print["\[Integral]|F(\[Omega])|\.b2 d\[Omega] = ", \
  energyFrequencyDomain]
  Print["Результат: ", energyTimeDomain == energyFrequencyDomain]
```

Листинг 2: Фурье-образ треугольной функции и проверка равенства Парсеваля

Этот код определяет треугольную функцию, вычисляет её Фурье-образ, строит графики и проверяет равенство Парсеваля.

1.3.3 Вывод

Теперь посмотрим на вывод кода. Я построю графики треугольной функции и Фурьеобраза для выбранных значений.

Параметры a и b влияют на форму треугольной функции и её Фурье-образ. В исходной функции b задаёт ширину основания треугольника, а a — его высоту. При увеличении a амплитуда Фурье-образа увеличивается, потому что преобразование Фурье линейно, и умножение функции на константу a приводит к умножению её Фурье-образа на ту же константу.

При увеличении b основание треугольника становится шире, что приводит к более "частым"и "узким"колебаниям в Фурье-образе, потому что преобразование Фурье сохраняет энергию сигнала, и расширение во временной области компенсируется сжатием в частотной области.

Также в моем коде присутствует проверка равенства Парсерваля. Для любых (a,b) проверка вернула True следовательно равенство выполнено.

```
Проверка равенства Парсеваля: Проверка равенства Парсеваля: \int |f(t)|^2 dt = \frac{2}{3} \int |f(t)|^2 dt = \frac{16}{3} \int |f(t)|^2 d\omega = \frac{2}{3} \int |F(\omega)|^2 d\omega = \frac{16}{3} \int |F(\omega)|^2 d\omega = \frac{200}{3} Результат: True \int |f(t)|^2 dt = \frac{200}{3} \int |F(\omega)|^2 d\omega = \frac{200}{3} \int |F(\omega)|^2 d\omega
```

1.4 Кардинальный синус

1.4.1 Аналитика

Исходная функция

$$f(t) = a \cdot \operatorname{sinc}(bt) = a \cdot \frac{\sin(bt)}{bt}.$$

Фурье-образ функции f(t):

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt = a \cdot \frac{\pi}{b} \cdot \operatorname{rect}\left(\frac{\omega}{2\pi b}\right),$$

где $\mathrm{rect}(x)$ — прямоугольная функция, равная 1 при $|x| \leq \frac{1}{2}$ и 0 в остальных случаях.

1.4.2 Код

```
f[t_, a_, b_] := a Sinc[b t]
  a = 5;
  b = 4;
  fourier = FourierTransform[f[t, a, b], t, w]
  Plot[f[t, a, b], {t, -10, 10}, PlotRange -> All, PlotStyle -> Thick,
    AxesLabel -> {"t", "f(t)"},
   PlotLabel -> "Функция кардинального синуса"]
  Plot[Re[fourier], {w, -10, 10}, PlotRange -> All, PlotStyle -> Thick,
   AxesLabel -> {"\[Omega]", "F(\[Omega])"},
   PlotLabel -> "Фурьеобраз- функции кардинального синуса",
   Exclusions -> None]
  energyTimeDomain =
17
   Integrate[Abs[f[t, a, b]]^2, {t, -Infinity, Infinity}]
18
  energyFrequencyDomain =
20
   Integrate[Abs[fourier]^2, {w, -Infinity, Infinity}]
21
  Print["\Проверкап равенства Парсеваля:"]
 Print["\[Integral]|f(t)|\.b2 dt = ", energyTimeDomain]
 Print["\[Integral]|F(\[Omega])|\.b2 d\[Omega] = ", \
  energyFrequencyDomain]
  Print["Результат: ", energyTimeDomain == energyFrequencyDomain]
```

Листинг 3: Фурье-образ кардинального синуса и проверка равенства Парсеваля

Этот код определяет функцию кардинального синуса, вычисляет его Фурье-образ, строит графики и проверяет равенство Парсеваля.

1.4.3 Вывод

Теперь посмотрим на вывод кода. Я построю графики кардинального и Фурье-образа для выбранных значений.

Функция $f(t) = a \cdot \sin(bt)$ имеет Фурье-образ, который определяется свойствами преобразования Фурье. Параметр a влияет на амплитуду функции и её Фурье-образа: при увеличении a амплитуда Фурье-образа увеличивается пропорционально, потому что преобразование Фурье линейно, и умножение функции на константу a приводит к умножению её Фурье-образа на ту же константу.

Параметр b влияет на масштабирование функции по оси времени: при увеличении b функция $\mathrm{sinc}(bt)$ становится более "сжатой" во временной области, потому что аргумент

функции sinc(bt) увеличивается, что приводит к более быстрому затуханию колебаний. Это приводит к "растяжению" её Фурье-образа в частотной области, потому что преобразование Фурье сохраняет энергию сигнала, и сжатие во временной области компенсируется расширением в частотной области.

Таким образом, при увеличении b Фурье-образ становится более широким, потому что сжатие функции во временной области приводит к расширению её спектра в частотной области, а при уменьшении b — более узким, потому что расширение функции во временной области приводит к сжатию её спектра в частотной области.

Также в моем коде присутствует проверка равенства Парсерваля. Для любых (a,b) проверка вернула True следовательно равенство выполнено.

(a,b) = (1,1)	(a,b) = (2,2)	(a,b) = (5,4)
	Результат: True	Результат: True
Результат: True		$\int F(\omega) ^2 d\omega = \frac{25 \pi}{4}$
$\int F(\omega) ^2 d\omega = \pi$	$\int F(\omega) ^2 d\omega = 2\pi$	
$\int f(t) ^2 dt = \pi$	$\int f(t) ^2 dt = 2\pi$	$\int f(t) ^2 dt = \frac{25 \pi}{4}$
Проверка равенства Парсеваля:	Проверка равенства Парсеваля:	Проверка равенства Парсеваля: 25π

1.5 Функция Гаусса

1.5.1 Аналитика

Исходная функция:

$$f(t) = a \cdot e^{-bt^2}.$$

Фурье-образ функции f(t):

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt = a \cdot \sqrt{\frac{\pi}{b}} \cdot e^{-\frac{\omega^2}{4b}},$$

где a и b — параметры функции Гаусса, определяющие её амплитуду и ширину.

1.5.2 Код

```
f[t_{, a_{, b_{, l}}} := a Exp[-b t^2]
  a = 2;
  b = 1;
  fourier = FourierTransform[f[t, a, b], t, w]
  Plot[f[t, a, b], {t, -5, 5}, PlotRange -> All, PlotStyle -> Thick,
   AxesLabel -> {"t", "f(t)"}, PlotLabel -> "Функция Гаусса"]
  Plot[Re[fourier], {w, -10, 10}, PlotRange -> All, PlotStyle -> Thick,
11
   AxesLabel -> {"\[Omega]", "F(\[Omega])"},
   PlotLabel -> "Фурьеобраз- функции Гаусса"]
13
14
  energyTimeDomain =
15
  Integrate[Abs[f[t, a, b]]^2, {t, -Infinity, Infinity}]
16
17
  energyFrequencyDomain =
   Integrate[Abs[fourier]^2, {w, -Infinity, Infinity}]
19
```

```
Print["\Проверкап равенства Парсеваля:"]

Print["\[Integral]|f(t)|\.b2 dt = ", energyTimeDomain]

Print["\[Integral]|F(\[Omega])|\.b2 d\[Omega] = ", \
energyFrequencyDomain]

Print["Результат: ", energyTimeDomain == energyFrequencyDomain]
```

Листинг 4: Фурье-образ Гауссовой функции и проверка равенства Парсеваля

Этот код определяет функцию Гаусса, вычисляет ее Фурье-образ, строит графики и проверяет равенство Парсеваля.

1.5.3 Вывод

Теперь посмотрим на вывод кода. Я построю графики функции Гаусса и Фурье-образа для выбранных значений.

Функция $f(t) = a \cdot e^{-bt^2}$ имеет Фурье-образ, который также является функцией Гаусса. Параметр a влияет на амплитуду функции и её Фурье-образа: при увеличении a амплитуда Фурье-образа увеличивается пропорционально, потому что преобразование Фурье линейно, и умножение функции на константу a приводит к умножению её Фурье-образа на ту же константу.

Параметр b влияет на ширину функции Гаусса во временной области: при увеличении b функция становится более "узкой" (быстрее затухает), потому что экспонента e^{-bt^2} убывает быстрее. Это приводит к "расширению" её Фурье-образа в частотной области, потому что преобразование Фурье сохраняет энергию сигнала, и сжатие во временной области компенсируется расширением в частотной области.

Таким образом, при увеличении b Фурье-образ становится более широким, потому что сжатие функции во временной области приводит к расширению её спектра в частотной области, а при уменьшении b — более узким, потому что расширение функции во временной области приводит к сжатию её спектра в частотной области.

Также в моем коде присутствует проверка равенства Парсерваля. Для любых (a,b) проверка вернула True следовательно равенство выполнено.

1.6 Двустороннее затухание

1.6.1 Аналитика

Исходная функция:

$$f(t) = a \cdot e^{-b|t|}.$$

Фурье-образ вычисляется по формуле:

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} ae^{-b|t|} e^{-i\omega t} dt = \frac{a}{\sqrt{2\pi}} \left(\int_{-\infty}^{0} e^{(b-i\omega)t} dt + \int_{0}^{\infty} e^{-(b+i\omega)t} dt \right).$$

$$\int_{-\infty}^{0} e^{(b-i\omega)t} dt = \left[\frac{e^{(b-i\omega)t}}{b-i\omega} \right]_{-\infty}^{0} = \frac{1}{b-i\omega},$$

$$\int_{0}^{\infty} e^{-(b+i\omega)t} dt = \left[\frac{e^{-(b+i\omega)t}}{-(b+i\omega)} \right]_{0}^{\infty} = \frac{1}{b+i\omega}.$$

$$\hat{f}(\omega) = \frac{a}{\sqrt{2\pi}} \left(\frac{1}{b-i\omega} + \frac{1}{b+i\omega} \right) = \frac{a}{\sqrt{2\pi}} \cdot \frac{2b}{b^2+\omega^2}.$$

Таким образом, Фурье-образ функции двустороннего затухания:

$$\hat{f}(\omega) = \frac{2ab}{\sqrt{2\pi}(b^2 + \omega^2)}.$$

Для параметров (a, b) = (1, 1):

$$\hat{f}(\omega) = \frac{2}{\sqrt{2\pi}(1+\omega^2)}.$$

Для параметров (a, b) = (2, 2):

$$\hat{f}(\omega) = \frac{8}{\sqrt{2\pi}(4+\omega^2)}.$$

Для параметров (a, b) = (5, 4):

$$\hat{f}(\omega) = \frac{40}{\sqrt{2\pi}(16 + \omega^2)}.$$

1.6.2 Код

```
f[t_, a_, b_] := a Exp[-b Abs[t]]
 a = 1;
 fourier = FourierTransform[f[t, a, b], t, w]
 PlotLabel -> "Функция с двусторонним затуханием"]
  Plot[Re[fourier], {w, -10, 10}, PlotRange -> All, PlotStyle -> Thick,
  AxesLabel -> {"\[Omega]", "F(\[Omega])"},
  PlotLabel -> "Фурьеобраз- функции с двусторонним затуханием"]
  energyTimeDomain =
  Integrate[Abs[f[t, a, b]]^2, {t, -Infinity, Infinity}]
17
  energyFrequencyDomain =
19
  Integrate[Abs[fourier]^2, {w, -Infinity, Infinity}]
20
 Print["\Проверкап равенства Парсеваля:"]
 Print["\[Integral]|f(t)|\.b2 dt = ", energyTimeDomain]
Print["\[Integral]|F(\[Omega])|\.b2 d\[Omega] = ", \
25 energyFrequencyDomain]
 Print["Pesymьтaт: ", energyTimeDomain == energyFrequencyDomain]
```

Листинг 5: Фурье-образ двустороннего затухания и проверка равенства Парсеваля

Этот код определяет функцию двустороннего затухания, вычисляет ее Фурье-образ, строит графики и проверяет равенство Парсеваля.

1.6.3 Вывод

Теперь посмотрим на вывод кода. Я построю графики функции двустороннего затухания и Фурье-образа для выбранных значений.

Функция $f(t)=a\cdot e^{-b|t|}$ имеет Фурье-образ, который определяется свойствами преобразования Фурье. Параметр a влияет на амплитуду функции и её Фурье-образа: при увеличении a амплитуда Фурье-образа увеличивается пропорционально, потому что преобразование Фурье линейно, и умножение функции на константу a приводит к умножению её Фурье-образа на ту же константу.

Параметр b влияет на скорость затухания функции: при увеличении b функция становится более "узкой" (быстрее затухает), потому что экспонента $e^{-b|t|}$ убывает быстрее. Это приводит к "расширению" её Фурье-образа в частотной области, потому что преобразование Фурье сохраняет энергию сигнала, и сжатие во временной области компенсируется расширением в частотной области.

Таким образом, при увеличении b Фурье-образ становится более широким, потому что сжатие функции во временной области приводит к расширению её спектра в частотной

области, а при уменьшении b — более узким, потому что расширение функции во временной области приводит к сжатию её спектра в частотной области.

Также в моем коде присутствует проверка равенства Парсерваля. Для любых (a,b) проверка вернула True следовательно равенство выполнено.

2 Комплексное задание

2.1 Краткое условие

Выбрать одну функцию f(t) из задания 1 и один набор параметров a,b. Рассмотреть сдвинутую функцию g(t) = f(t+c) и провести исследование её Фурье-образа $\beta(\omega)$:

- Привести аналитическое выражение для Фурье-образа $\beta(\omega)$.
- Выбрать три значения параметра $c \neq 0$ и построить графики g(t). Проанализировать влияние c на оригинал функции.
- ullet Для выбранных значений c построить:
 - Графики вещественной и мнимой компонент Фурье-образа: $\operatorname{Re}(\beta(\omega))$ и $\operatorname{Im}(\beta(\omega))$.
 - График модуля Фурье-образа: $|\beta(\omega)|$.
- ullet Проанализировать влияние параметра c на компоненты и модуль Фурье-образа.
- Сделать выводы.

2.2 Аналитика

Рассмотрим функцию $f(t)=ae^{-b|t|}$, где a=1 и b=1. Определим сдвинутую функцию g(t,c)=f(t+c), где c принимает значения из набора $c=\{1,2,3\}$. Тогда:

$$q(t,c) = ae^{-b|t+c|}.$$

Фурье-образ функции g(t,c) вычисляется следующим образом:

$$\hat{g}(\omega, c) = F\{g(t, c)\}(\omega) = \int_{-\infty}^{\infty} ae^{-b|t+c|} e^{-i\omega t} dt.$$

Используя свойство сдвига Фурье-преобразования, получаем:

$$\hat{g}(\omega, c) = e^{i\omega c} \cdot F\{f(t)\}(\omega).$$

Фурье-образ исходной функции $f(t) = ae^{-b|t|}$ известен и равен:

$$\hat{f}(\omega) = \frac{2ab}{b^2 + \omega^2}.$$

Таким образом, Фурье-образ сдвинутой функции g(t,c) выражается как:

$$\hat{g}(\omega, c) = e^{i\omega c} \cdot \frac{2ab}{b^2 + \omega^2}.$$

2.3 Код

```
a = 1;
  b = 1;
  f[t_] := a Exp[-b Abs[t]];
  cValues = \{1, 2, 3\};
  g[t_{-}, c_{-}] := f[t + c];
  fourierTransforms =
    Table[FourierTransform[g[t, c], t, \[Omega]], {c, cValues}];
  Plot[Evaluate[Table[g[t, c], {c, cValues}]], {t, -10, 5},
11
   PlotLabel -> "Графики g(t) для c = \{1, 2, 3\}"
12
   PlotLegends -> Table["c = " <> ToString[c], {c, cValues}],
13
   PlotRange -> {Automatic, {0, 1}}]
14
  plotsReIm =
   Table[Plot[{Re[fourierTransforms[[c]]],
17
      Im[fourierTransforms[[c]]]}, {\[Omega], -10, 10},
18
     \label{eq:plotLegends} $$ -> {\tt "Re(g(\[Omega]))", "Im(g(\[Omega]))"}, $$ $$
19
     PlotLabel ->
20
      "Re и Im Фурьеобраза- для c = " <> ToString[cValues[[c]]]], {c,
21
     Length[cValues]}]
22
23
  plotsAbs =
24
   Plot[Evaluate[
25
     Table[Abs[fourierTransforms[[c]]], {c,
       Length[cValues]}]], {\[Omega], -10, 10},
27
    PlotLabel -> "Модуль Фурьеобраза- для c = \{1, 2, 3\}",
28
    PlotLegends ->
     Table["c = " <> ToString[cValues[[c]]], {c, Length[cValues]}]]
```

Код задаёт $a=1,\ b=1,\ c=\{1,2,3\}$ и функцию $f(t)=2e^{-2|t|}$. Для g(t,c)=f(t+c) вычисляет Фурье-образы и строит графики g(t,c), действительной и мнимой частей Фурье-образа, а также их модуля.

2.4 Вывод

Теперь посмотрим и проанализируем графики, которые выдал мой код. В этом задании, я решила не делать много картинок и что было целесообразно нарисовала на одном графике.

Анализ показывает, что амплитуды действительной и мнимой частей Фурье-образа сохраняются при сдвиге c, так как сдвиг влияет только на фазу, но не на амплитуду. Это следует из свойства Фурье-преобразования:

$$\hat{g}_c(\omega) = e^{i\omega c} \cdot \hat{g}(\omega),$$

где $e^{i\omega c}$ — фазовый множитель. С увеличением |c| частота колебаний $\mathrm{Re}\,\hat{g}(\omega)$ и $\mathrm{Im}\,\hat{g}(\omega)$ возрастает, что связано с линейным изменением фазы.

Знак c определяет положение мнимой части: при c>0 она смещается вправо. Действительная часть остаётся симметричной, так как Фурье-образ действительной функции имеет чётную действительную часть.

Модуль Фурье-образа инвариантен относительно сдвигов. Его форма совпадает с модулем Фурье-образа несдвинутой функции.

Рис. 1: g(t) для $c = \{1, 2, 3\}$

Рис. 2: Re и Im Фурье-образа для $c = \{1, 2, 3\}$

Рис. 3: Модуль Фурье-образа для $c = \{1, 2, 3\}$

3 Музыкальное задание

3.1 Краткое условие

Требуется:

- Преобразовать запись музыкального аккорда в массив f(t).
- Построить график f(t).
- Найти Фурье-образ $f(\nu)$ с помощью численного интегрирования
- Построить график модуля Фурье-образа $|f(\nu)|$.
- Определить основные частоты и соотнести их с музыкальными нотами.

Для этого задания я выбрала 22 запись.

3.2 Код

Данный код выполняет анализ аудиосигнала, загруженного из файла в формате .wav. Основные этапы анализа включают построение графиков во временной и частотной областях, а также поиск основных частот в сигнале.

Функция load_audio загружает аудиофайл и извлекает данные и частоту дискретизапии.

Функция plot_time_domain строит график амплитуды сигнала в зависимости от времени:

$$f(t) =$$
Амплитуда сигнала

Функция compute_fourier_transform вычисляет преобразование Фурье для перехода в частотную область:

$$F(\nu) = \frac{1}{N} \sum_{k=0}^{N-1} f(k) e^{-i2\pi\nu k/N}$$

где N — количество отсчётов, ν — частота.

Функция plot_frequency_domain строит график амплитуды спектра в зависимости от частоты:

$$|F(\nu)| =$$
Амплитуда спектра

Функция find_peak_frequencies находит основные частоты в спектре сигнала, используя метод поиска пиков.

```
import numpy as np
  import matplotlib.pyplot as plt
  from scipy.io.wavfile import read
  from scipy.signal import find_peaks
  def load_audio(file_path):
      sample_rate, audio_data = read(file_path)
      if len(audio_data.shape) > 1:
          audio_data = audio_data[:, 0]
          return sample_rate, audio_data
10
11
 def plot_time_domain(sample_rate, audio_data):
      time = np.arange(0, len(audio_data)) / sample_rate
13
      plt.figure(figsize=(10, 4))
14
      plt.plot(time, audio_data)
```

```
plt.title("График f(t)")
      plt.xlabel("Время с()")
17
      plt.ylabel("Амплитуда")
18
      plt.grid()
19
      plt.show()
20
21
  def compute_fourier_transform(audio_data, sample_rate):
22
      n = len(audio_data)
23
      frequencies = np.fft.fftfreq(n, d=1/sample_rate)
24
      fourier_transform = np.fft.fft(audio_data) / n
25
      return frequencies[:n // 2], fourier_transform[:n // 2]
26
2.7
  def plot_frequency_domain(frequencies, fourier_transform):
28
      plt.figure(figsize=(10, 4))
29
      plt.plot(frequencies, np.abs(fourier_transform))
30
      plt.title("График |f()|")
31
      plt.xlabel("Частота Гц()")
32
      plt.ylabel("Амплитуда")
33
      plt.grid()
34
      plt.show()
35
  def find_peak_frequencies(frequencies, fourier_transform, num_peaks=3):
37
      peaks, _ = find_peaks(np.abs(fourier_transform), height=np.max(np.abs(
38
     fourier_transform)) * 0.1)
      peak_indices = np.argsort(np.abs(fourier_transform[peaks]))[-num_peaks:]
39
40
      return frequencies[peaks[peak_indices]]
41
  def main(file_path):
42
      sample_rate, audio_data = load_audio(file_path)
43
      plot_time_domain(sample_rate, audio_data)
44
      frequencies, fourier_transform = compute_fourier_transform(audio_data,
45
     sample_rate)
      plot_frequency_domain(frequencies, fourier_transform)
46
      peak_frequencies = find_peak_frequencies(frequencies, fourier_transform)
47
      print("Основные частоты:", peak_frequencies)
48
49
  if __name__ == "__main__":
50
      file_path = "/home/evaДокументы//itmo/2_course/chMetods/lab2/audio.wav"
51
      main(file_path)
```

Листинг 6: Обработка аудиосигнала с использованием преобразования Фурье

3.3 Вывод

А теперь посмотрим, что за графики и частоты вывел мой код.

```
Основные частоты: [329.38063667 261.53756019 440.2298894 ]
```

Листинг 7: Вывод основных частот аккорды

Частоты 329.38 Гц, 261.54 Гц и 440.23 Гц соответствуют аккорду Ля-минор. Аккорд состоит из нот:

- Ля (А): 440.23 Гц
- До (С): 261.54 Гц
- Ми (Е): 329.38 Гц

Рис. 4: График амплитуды от времени

Рис. 5: Модуль Фурье-образа звука

4 Примечания

- ullet Для заданий 1,2 был использован язык Wolfram Matematica, 3 задание написано на python.
- Репозиторий github сисходным кодом и tex-проектом.