Тема 1. Алгоритмы и их сложности

1.4. Рекуррентные соотношения

Анализ рекурсивных алгоритмов обычно приводит к соотношениям, которые называются *рекуррентными*. В них время выполнения алгоритма выражается через время выполнения того же алгоритма на входах меньшего размера. В качестве примера рассмотрим рекурсивную функцию FACT вычисления n! для целых чисел от 0 до n включительно, представленную алгоритмом 1.4. Очевидно, что размером входа является значение n.

```
function FACT(n)

if n \le 1

then FACT \leftarrow 1

else FACT \leftarrow n \times FACT(n-1)

return
```

Алгоритм 1.4. Рекурсивное вычисление факториала

Проверка условия в операторе **if** и выполнение присваивания в его **then**-части требуют времени порядка O(1) (обозначенного константой a_1). Время выполнения оператора в **else**-части складывается из времени работы функции FACT(n-1) и постоянной составляющей (обозначенной константой a_2) порядка O(1), которая включает в себя проверку условия, вызов функции, умножение и присваивание. Следовательно, время работы алгоритма описывается рекуррентным соотношением

$$T(n) = \begin{cases} a_1, & \text{если } n \le 1, \\ T(n-1) + a_2, & \text{если } n > 1. \end{cases}$$
 (1.1)

Рассмотрим три способа решения рекуррентных соотношений: метод подстановки, метод итераций и общий метод [9].

Метод подстановки. Идея метода заключается в нахождении такой функции f(n), чтобы для всех n выполнялось неравенство $T(n) \le f(n)$. Тогда функция f(n) будет верхней границей скорости роста T(n), т. е. T(n) = O(f(n)). Другими словами, следует отгадать ответ и затем доказать его по индукции.

В качестве примера определим верхнюю оценку рекуррентного соотношения (1.1). Вероятнее всего, T(n) = O(n), т. е. $T(n) \le cn$ для некоторой константы c > 0. При n = 0 это условие не выполняется, поскольку cn равно нулю, независимо от значения c. Применим функцию f(n) = cn + d, т. е. $T(n) \le cn + d$, где d > 0. Теперь при $n \le 1$ условие выполняется, если $d \ge a_1$ и c > 0. Пусть n > 1. Должно выполняться условие

$$T(n) = T(n-1) + a_2 \le cn + d$$
.

Пусть эта оценка верна для n-1, т. е. $T(n-1) \le c(n-1) + d$. Подставив ее в рекуррентное соотношение, получим

$$T(n) \le c(n-1) + d + a_2 = cn - c + d + a_2 \le cn + d$$
.

Данное неравенство выполняется, если $c \ge a_2$. Таким образом, оценка $T(n) \le cn + d$ будет справедлива, если $d \ge a_1$ и $c \ge a_2$. Если положить $d = a_1$ и $c = a_2$, т. е. определить константы пропорциональности функции f(n) = cn + d, то для всех $n \ge 0$ выполняется неравенство $T(n) \le a_2 n + a_1$. Следовательно, T(n) = O(n).

Рассмотрим более сложное рекуррентное соотношение

$$T(n) = \begin{cases} a_1, & \text{если } n = 1, \\ 2T(n/2) + a_2 n, & \text{если } n > 1, \end{cases}$$
 (1.2)

где a_1 и a_2 — некоторые положительные константы. Предположим, что $T(n) \le cn \log n$. При n=1 отношение не выполняется, так как в этом случае выражение $cn \log n$ всегда равно нулю. Применим функцию $T(n) \le cn \log n + d$. Теперь при n=1 эта оценка справедлива, если $d \ge a_1$. Пусть n>1. Должно выполняться условие $T(n) = 2 T(n/2) + a_2 n \le cn \log n + d$. Пусть эта оценка верна для n/2, т. е. $T(n/2) \le c (n/2) \log (n/2) + d$. Подставив ее в рекуррентное соотношение, получим

$$T(n) \le 2(c(n/2)\log(n/2) + d) + a_2n =$$

= $cn\log n - cn\log 2 + 2d + a_2n =$
= $cn\log n - cn + 2d + a_2n \le cn\log n + d$.

Данное неравенство выполняется, если $c \ge a_2 + d$. Если положить $d = a_1$ и $c = a_1 + a_2$, то для всех n > 0 выполняется неравенство $T(n) \le (a_1 + a_2) n \log n + a_1$. Следовательно, $T(n) = O(n \log n)$.

В ряде случаев сложные рекуррентные соотношения можно упростить, если применить известный в математике прием — замену переменных. В качестве примера рассмотрим соотношение

$$T(n) = \begin{cases} a_1, & \text{если } n = 1, \\ 2T(\sqrt{n}) + a_2 \log n, & \text{если } n > 1. \end{cases}$$

Выполним замену переменной m на $\log n$, т. е. $m = \log n$. В результате получим

$$T(2^m) = 2T(2^{m/2}) + a_2 m$$
.

Замена $T(2^m)$ на S(m) приводит к соотношению

$$S(m) = 2S(m/2) + a_2m,$$

которое соответствует рекуррентной части соотношения (1.2) и, следовательно, имеет решение $S(m) = O(m \log m)$. Возвращаясь к обозначению T(n) вместо S(m), получим

$$T(n) = T(2^m) = S(m) = O(m \log m) = O(\log n \log \log n).$$

Метод итераций. Заключается в итерации рекуррентного соотношения, т. е. подстановки его в самого себя до тех пор, пока из правой части не исключатся рекурсивные обращения.

Рассмотрим соотношение (1.1).

$$T(n) = \begin{cases} a_1, & \text{если } n \le 1, \\ T(n-1) + a_2, & \text{если } n > 1. \end{cases}$$

Подставляя его самого в себя, получим

$$T(n) = T(n-1) + a_2 = T(n-2) + 2a_2 = T(n-3) + 3a_2.$$

Продолжая этот процесс, в общем случае для некоторого i < n получаем $T(n) = T(n-i) + i a_2$. Положив в последнем выражении i = n-1, окончательно получаем

$$T(n) = T(1) + a_2(n-1) = a_2(n-1) + a_1 = O(n).$$

Рассмотрим этот метод для соотношения (1.2).

$$T(n) = \begin{cases} a_1, & \text{если } n = 1, \\ 2T(n/2) + a_2n, & \text{если } n > 1, \end{cases}$$

Подставляя его самого в себя, получим

$$T(n) = 2T(n/2) + a_2 n = 2(2T(n/4) + a_2 n/2) + a_2 n$$

= $4T(n/4) + 2a_2 n = 8T(n/8) + 3a_2 n$.

Продолжая этот процесс, в общем случае для некоторого i < n, получаем $T(n) = 2^i T(n/2^i) + i a_2 n$.

Пусть $n = 2^k$, т. е. является степенью числа 2. Тогда при i = k процесс подстановок завершается подстановкой T(1)

$$T(n) = 2^k T(1) + k a_2 n.$$

Поскольку $k = \log n$ и $T(1) = a_1$, окончательно получаем

$$T(n) = a_2 n \log n + a_1 n = O(n \log n).$$

Общий метод. Этот метод позволяет получить асимптотические оценки для рекуррентных соотношений вида

$$T(1) = d,$$

 $T(n) = aT(n/b) + f(n),$ (1.3)

где $a \ge 1$, b > 1 и d > 0 — некоторые константы, а f(n) — положительная функция. Данное соотношение обычно получается, когда алгоритм разбивает исходную задачу размера n на a подзадач размера n/b. Подзадачи решаются рекурсивно каждая за время T(n/b) и результаты объединяются за время f(n). Такой подход к проектированию эффективных алгоритмов называется $memodom\ dekomnosuyuu\ (или\ методом\ разбиения).$

Пусть n является натуральной степенью числа b, т. е. $n = b^k$. Применим метод итераций, выполняя последовательную подстановку рекуррентного соотношения самого в себя

$$T(n) = f(n) + aT(n/b) = f(n) + af(n/b) + a^{2}T(n/b^{2}) =$$

= $f(n) + af(n/b) + a^{2}f(n/b^{2}) + ... + a^{k-1}f(n/b^{k-1}) + a^{k}T(1),$

где $k = \log_b n$. Поскольку $a^k = a^{\log_b n} = n^{\log_b a}$, получаем

$$T(n) = d n^{\log_b a} + \sum_{j=0}^{k-1} a^j f(n/b^j).$$
 (1.4)

Таким образом, рекуррентное соотношение можно представить в виде суммы, вычисление которой позволит определить временную сложность алгоритма. Например, в соотношении (1.2) имеем $d = a_1$, a = b = 2, $f(n) = a_2 n$, $k = \log n$, поэтому

$$T(n) = a_1 n + \sum_{j=0}^{k-1} 2^j a_2 n / 2^j = a_1 n + a_2 n \sum_{j=0}^{k-1} 1 =$$

$$= a_1 n + a_2 n k = a_2 n \log n + a_1 n = O(n \log n).$$

Часто преобразование рекуррентного соотношения в сумму приводит к довольно сложным выражениям. Если требуется определить только асимптотические оценки, общий метод решения рекуррентных соотношений позволяет получить их более простым способом для достаточно широкого класса функций f(n).

Рассмотрим влияние каждого выражения в формуле (1.4) на оценку функции T(n). Асимптотическая оценка первого выражения очевидна и составляет $O(n^{\log_b a})$ Рассмотрим функцию

$$g(n) = \sum_{j=0}^{k-1} a^j f(n/b^j)$$
.

С точки зрения анализа алгоритмов наибольший интерес представляют ряды, образуемые функцией f(n) вида $c\,n^{\,\alpha}$, где c>0 и $\alpha\geq 0$ — некоторые константы. Тогда ряд представляет собой геометрическую прогрессию

$$g(n) = cn^{\alpha} + ac(n/b)^{\alpha} + a^{2}c(n/b^{2})^{\alpha} + \dots + a^{k-1}c(n/b^{k-1})^{\alpha}$$

с числом членов $k = \log_b n$ и знаменателем $q = a/b^{\alpha}$.

Возможны следующие ситуации:

1) если $a > b^{\alpha}$, т. е. $\alpha < \log_b a$ или $\alpha = \log_b a - \varepsilon$ для некоторой константы $\varepsilon > 0$, то знаменатель q > 1. Для такой возрастающей прогрессии сумма асимптотически равна последнему члену, т. е. $g(n) = O(a^{k-1}) = O(a^{\log_b n - 1}) = O(n^{\log_b a} / a)$. Таким образом,

$$T(n) = O(n^{\log_b a}) + O(n^{\log_b a}/a) = O(n^{\log_b a});$$

2) если $a = b^{\alpha}$, т. е. $\alpha = \log_b a$, то знаменатель q = 1 (все члены прогрессии равны). Число членов есть $\log_b n$, поэтому сумма равна $c n^{\log_b a} \log_b n$, т. е. $g(n) = O(n^{\log_b a} \log n)$. Следовательно,

$$T(n) = O(n^{\log_b a}) + O(n^{\log_b a} \log n) = O(n^{\log_b a} \log n);$$

3) если $a < b^{\alpha}$, т. е. $\alpha > \log_b a$ или $\alpha = \log_b a + \varepsilon$ для некоторой константы $\varepsilon > 0$, то знаменатель меньше единицы. Для такой убывающей прогрессии сумма асимптотически равна первому члену, т. е. $g(n) = O(n^{\alpha})$. В этом случае, поскольку $\alpha > \log_b a$,

$$T(n) = O(n^{\log_b a}) + O(n^{\alpha}) = O(n^{\alpha}) = O(f(n)).$$

Таким образом, метод асимптотической оценки рекуррентных соотношений вида (1.3)

$$T(1) = d,$$

$$T(n) = aT(n/b) + f(n),$$

для функций f(n) вида cn^{α} формулируется следующим образом:

$$T(n) = \begin{cases} O(n^{\log_b a}), & \text{если } a > b^{\alpha}, \\ O(n^{\log_b a} \log n), & \text{если } a = b^{\alpha}, \\ O(f(n)), & \text{если } a < b^{\alpha}. \end{cases}$$
 (1.5)

Например, в соотношении (1.2)

$$T(n) = \begin{cases} a_1, & \text{если } n = 1, \\ 2T(n/2) + a_2n, & \text{если } n > 1, \end{cases}$$

имеем a = b = 2, $f(n) = a_2 n$, т. е. $\alpha = 1$. Поскольку $2 = 2^1$, т. е. подходит второй случай, получаем $T(n) = O(n \log n)$.

Более общий метод решения рекуррентных соотношений вида (1.3) формулируется следующим образом [9]:

- 1) если $f(n) = O(n^{\log_b a \varepsilon})$ для некоторой величины $\varepsilon > 0$, то $T(n) = \Theta(n^{\log_b a})$;
- 2) если $f(n) = \Theta(n^{\log_b a})$, то $T(n) = \Theta(n^{\log_b a} \log n)$;
- 3) если $f(n) = \Omega(n^{\log_b a + \varepsilon})$ для некоторой величины $\varepsilon > 0$ и если $af(n/b) \le cf(n)$ для некоторой константы c < 1 и достаточно больших n, то $T(n) = \Theta(f(n))$.

Следует отметить, что в первом случае недостаточно, чтобы функция f(n) была асимптотически меньше, чем $n^{\log_b a}$, а необходим некоторый зазор размера n^{ε} для некоторого $\varepsilon > 0$. Аналогично в третьем случае функция f(n) должна быть асимптотически больше $n^{\log_b a}$ с зазором n^{ε} , кроме того, должно удовлетворяться условие $af(n/b) \le cf(n)$.

В качестве примера применения общего метода рассмотрим рекуррентное соотношение $T(n) = 3 T(n/4) + n \log n$ с начальным значением T(1) = 1. Имеем a = 3, b = 4, $f(n) = n \log n$; при этом $n^{\log_b a} = n^{\log_4 3} < n^{0,8}$. Функция f(n) асимптотически больше, чем $n^{\log_b a}$, так как отношение $f(n)/n^{\log_b a} = (n \log n)/n^{0,8} = n^{0,2} \log n$ оценивается снизу величиной $n^{0,2}$, т. е. имеется зазор $n^{0,2}$. Проверим условие $af(n/b) \le cf(n)$: $3(n/4) \log (n/4) \le c n \log n$. Условие выполняется для c = 3/4. Таким образом, согласно третьему условию, $T(n) = \Theta(n \log n)$.

Существуют и другие типы рекуррентных соотношений, для которых не подходит рассмотренный общий метод решения, например, $T(n) = 2 T(n/2) + n \log n$ с начальным значением T(1) = 1. Попробуем применить общий метод. Имеем a = b = 2, $f(n) = n \log n$, $n^{\log_b a} = n$. Очевидно, что $f(n) = n \log n$ асимптотически больше, чем $n^{\log_b a} = n$. Однако зазор недостаточен, поскольку отношение $f(n)/n^{\log_b a} = (n \log n)/n = \log n$ не оценивается снизу величиной n^{ε} ни для какого $\varepsilon > 0$. Таким образом, применить общий метод не удается. Тем не менее, это соотношение легко можно решить по формуле (1.4)

$$T(n) = n + \sum_{j=0}^{k-1} 2^{j} (n/2^{j}) \log(n/2^{j}) = n + n \sum_{j=0}^{k-1} (\log n - j) =$$

= $n + n \log n (\log n + 1) / 2 = O(n \log^{2} n).$

В рассмотренных выше методах решения рекуррентных соотношений предполагалось, что n является целой степенью числа b, т. е. $n = b^k$. Для произвольных значений n в рекуррентных соотношениях должны рассматриваться только целые части, поскольку функция T(n) определена только для целых n. Например, рекуррентная соотношения (1.2) должна записываться часть виде $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + a_2 n$, а в соотношении (1.3) под выражением n/bдолжно пониматься либо $\lceil n/b \rceil$, либо $\lfloor n/b \rfloor$. Во многих случаях оценки, полученные в предположении, что $n = b^k$, распространяются и на произвольные значения n. Это объясняется тем, что задачу размера n можно вложить в задачу размера n', где n' — наименьшая степень числа b, большая или равная n, а затем решить рекуррентное соотношение для задачи размера n'. Однако следует быть внимательным к деталям, связанным с округлением до целого сверху или снизу, поскольку возможны случаи (пусть и достаточно редкие), когда оценки для $n = b^k$ могут отличаться от оценок для других значений n.