REC'D 16 DEC 2004

PCT

WIPO

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年11月21日

出 願 番 号 Application Number:

特願2003-391914

[ST. 10/C]:

[JP2003-391914]

出 願 人 Applicant(s):

日本ゼオン株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年10月22日

)· "

【書類名】 特許願 【整理番号】 NZN903

【提出日】平成15年11月21日【あて先】特許庁長官 殿【国際特許分類】B29C 41/00C08L 13/00

CO8L 13/00 A41D 13/10

【発明者】

【住所又は居所】 東京都千代田区丸の内二丁目6番1号 日本ゼオン株式会社内 【氏名】 児玉 和美

【発明者】

【住所又は居所】 東京都千代田区丸の内二丁目6番1号 日本ゼオン株式会社内 【氏名】 荒井 健次

【発明者】

【住所又は居所】 東京都千代田区丸の内二丁目6番1号 日本ゼオン株式会社内 【氏名】 鬼武 智美

【発明者】

【住所又は居所】 東京都千代田区丸の内二丁目6番1号 日本ゼオン株式会社内 【氏名】 太田 久紀

【特許出願人】

【識別番号】 000229117

【氏名又は名称】 日本ゼオン株式会社

【代理人】

【識別番号】 100092934

【弁理士】

【氏名又は名称】 塚脇 正博

【選任した代理人】

【識別番号】 100078732

【弁理士】

【氏名又は名称】 大谷 保

【選任した代理人】

【識別番号】 100081765

【弁理士】

【氏名又は名称】 東平 正道

【手数料の表示】

【予納台帳番号】 153775 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 要約書 1

【書類名】特許請求の範囲

【請求項1】

共役ジエンゴムラテックスおよび有機過酸化物からなるディップ成形用組成物であって、該有機過酸化物の10時間半減期温度を $X(\mathbb{C})$ とし、該有機過酸化物のオクタノールー水分配係数をYとした時、該有機過酸化物が下記式(1)および(2)を満足するものであることを特徴とするディップ成形用組成物。

$$\begin{array}{ll}
1 & 1 \ge Y \ge 2 \\
1 & 0 & 0 - 2 & Y \ge X \ge 7 & 0 - 2 & Y
\end{array} \tag{1}$$

【請求項2】

共役ジエンゴムラテックスの固形分100重量部に対して、有機過酸化物 0.01~5 重量部を含有する請求項1記載のディップ成形用組成物。

【請求項3】

共役ジエンゴムラテックスが、共役ジエン単量体 $30\sim90$ 重量%、エチレン性不飽和酸単量体 $0.5\sim10$ 重量% およびこれらと共重合可能な他の単量体 $0\sim69.5$ 重量% からなる単量体混合物を乳化重合して得られたものである請求項 1 または 2 に記載のディップ成形用組成物。

【請求項4】

請求項1~3のいずれか一に記載のディップ成形用組成物をディップ成形して得られる ディップ成形品。

【請求項5】

手袋である請求項4記載のディップ成形品。

【書類名】明細書

【発明の名称】ディップ成形用組成物及びディップ成形品

【技術分野】

[0001]

本発明は、ディップ成形用組成物及びディップ成形品に関する。

【背景技術】

[0002]

ゴム手袋は、家事用、食品工業や電子部品製造業などの種々の工業用および医療用などに、幅広く使用されている。ゴム手袋には、長時間にわたり着用しても手が疲れないように、指の動きに合わせてより小さな力で手袋が伸びること(風合いがよいこと)、作業中に破れたりしないこと(十分な引張強度を有すること)など様々な特性が要求されている

また、特に薄手のゴム手袋の場合、それを着用して指を動かしながら作業を継続すると、指の股部分に微小亀裂が発生してしまう(耐屈曲疲労性に劣る。)問題が発生することがあった。

[0003]

従来、引張強度が高く、耐油性にも優れるゴム手袋として、カルボキシ変性アクリロニトリルーブタジエン共重合体ラテックスに硫黄および加硫促進剤を配合したディップ成形 用組成物をディップ成形して得られるものが多用されている。

例えば、特許文献1には、カルボキシ変性アクリロニトリルーブタジエンゴムラテックス、酸化亜鉛、硫黄および加硫促進剤を含有するディップ成形用組成物からディップ成形されたゴム手袋が開示されている。しかしながら、このような手袋は、風合いに優れるものの、引張強度が不十分で着用中に破れる懸念がある。

[0004]

また、特許文献 2 には、酸化亜鉛を含有しないで、カルボキシ変性アクリロニトリループタジエン共重合体ラテックス、硫黄および加硫促進剤を含有するディップ成形用組成物からディップ成形された手袋が開示されている。このような手袋は、引張強度が高く着用中に破れる懸念が少ないものの、風合いが不十分である。

[0005]

さらに、特許文献3には、特定量のカルボキシル基を含有するアクリロニトリルーブタジエン共重合体ラテックス、少量の酸化亜鉛、比較的多量の硫黄および加硫促進剤を含有するディップ成形用組成物からディップ成形されたゴム手袋が開示されている。しかしながら、このような手袋を着用して作業を継続した場合、手袋自体が着色して、その商品価値を著しく低下させる場合があった。

[0006]

加えて、上記のような硫黄および加硫促進剤を必須成分として配合したディップ成形用 組成物を用いて、ディップ成形して得られるゴム手袋は、耐屈曲疲労性には比較的優れる ものの、その手袋を着用して作業を継続した場合、手袋自体が着色して、その商品価値を 著しく低下させる場合があった。

[0007]

一方、硫黄および加硫促進剤を用いずに、有機過酸化物を架橋剤として用いて、ディップ成形品を得る検討が行なわれている。

例えば、特許文献4には、天然ゴムや合成ゴムのラテックスに、ジクミルパーオキサイドやジーtープチルパーオキサイドなどの有機過酸化物を配合したディップ成形用組成物をディップ成形し、かなり高温の化学的に不活性な溶融塩バス中で架橋反応させて得られたディップ成形品が開示されている。しかしながら、このようなゴム手袋は、風合いが良好で、引張強度も十分であるものの、製造時に高温にさらされるので着色してしまったり、耐屈曲疲労性に劣り、2~3時間の着用により、指の股部分に微小亀裂が発生してしまったりする問題があった。

[0008]

【特許文献1】米国特許5,014,362号明細書

【特許文献2】国際公開第WO97/48765号パンフレット

【特許文献3】国際公開第WO00/21451号パンフレット

【特許文献4】国際公開第WO01/77210号パンフレット

【発明の開示】

【発明が解決しようとする課題】

[0009]

本発明の目的は、上記事情に鑑み、風合いが良好で、引張強度に優れ、かつ耐屈曲疲労性に優れるディップ成形品であり、それを着用して作業を継続しても成形品自体の着色が発生しにくいディップ成形品および該ディップ成形品を与え得るディップ成形用組成物を提供することにある。

【課題を解決するための手段】

[0010]

本発明者等は、有機過酸化物を架橋剤として用いて得られるディップ成形品に着目して、鋭意検討した結果、共役ジエンゴムラテックスおよび特定の有機過酸化物からなるディップ成形用組成物を用いると、上記目的を達成できることを見出し、この知見に基づき、本発明を完成した。

かくして、本発明によれば、共役ジエンゴムラテックスおよび有機過酸化物からなるディップ成形用組成物であって、該有機過酸化物の10時間半減期温度をX(℃)とし、該有機過酸化物のオクタノールー水分配係数をYとした時、該有機過酸化物が下記式(1)および(2)を満足するものであることを特徴とするディップ成形用組成物が提供される

 $1 \ 1 \ge Y \ge 2 \tag{1}$

 $1 \ 0 \ 0 - 2 \ Y \ge X \ge 7 \ 0 - 2 \ Y \tag{2}$

また、本発明によれば、前記のディップ成形用組成物をディップ成形して得られるディップ成形品が提供される。

【発明の効果】

[0011]

本発明によれば、風合いが良好で、引張強度に優れ、かつ耐屈曲疲労性に優れるディップ成形品であり、それを着用して作業を継続しても成形品自体の着色が発生しにくいディップ成形品および該ディップ成形品を与え得るディップ成形用組成物が提供される。

【発明を実施するための最良の形態】

[0012]

以下、本発明を詳細に説明する。

本発明のディップ成形用組成物は、共役ジエンゴムラテックスおよび特定の有機過酸化物からなる。

[0013]

(共役ジエンゴムラテックス)

本発明で用いる共役ジエンゴムラテックスとしては、共役ジエン単量体単位を含有する 共役ジエンゴムのラテックスであれば特に制限されないが、例えば、天然ゴムラテックス および共役ジエン単量体を必須で含む単量体を乳化重合して得られる合成ゴムラテックス が挙げられる。なかでも、ディップ成形品の諸特性を任意に調整できる点から、合成ゴム ラテックスが好ましく使用できる。

[0014]

合成ゴムラテックスとしては、共役ジエン単量体、エチレン性不飽和酸単量体およびこれらと共重合可能な他の単量体からなる単量体混合物を乳化重合して得られる共役ジエンゴムラテックスが好ましい。エチレン性不飽和酸単量体を必須で用いると、引張強度により優れるディップ成形品が得られる。

[0015]

共役ジエン単量体としては、例えば、1,3-プタジエン、イソプレン、2,3-ジメ

チルー1, 3 ーブタジエン、2 ーエチルー1, 3 ーブタジエン、1, 3 ーペンタジエンおよびクロロプレンなどが挙げられる。なかでも、1, 3 ーブタジエンおよびイソプレンが好ましく、1, 3 ーブタジエンがより好ましい。これらの共役ジエン単量体は単独で又は2 種以上を組み合せて用いることができる。

共役ジエン単量体の使用量は、全単量体に対して、好ましくは30~90重量%、より好ましくは50~84重量%、特に好ましくは55~81重量%である。この量が少なすぎると風合いに劣る傾向があり、逆に多すぎると引張強度に劣る傾向がある。

[0016]

エチレン性不飽和酸単量体としては、例えば、カルボン酸基含有エチレン性不飽和単量体、スルホン酸基含有エチレン性不飽和単量体、リン酸基含有エチレン性不飽和単量体などが挙げられる。

カルボン酸基含有エチレン性不飽和単量体としては、例えば、アクリル酸、メタクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸;フマル酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸等のエチレン性不飽和多価カルボン酸及びその無水物;マレイン酸メチル、イタコン酸メチル等のエチレン性不飽和多価カルボン酸の部分エステル化物などが挙げられる。

スルホン酸基含有エチレン性不飽和単量体としては、例えば、ビニルスルホン酸、メチルビニルスルホン酸、スチレンスルホン酸、(メタ) アリルスルホン酸、(メタ) アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-ヒドロキシプロパンスルホン酸などが挙げられる。

リン酸基含有エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸-3-クロロ-2-リン酸プロピル、(メタ)アクリル酸-2-リン酸エチル、3-アリロキシー2-ヒドロキシプロパンリン酸などが挙げられる。

これらのエチレン性不飽和酸単量体は、アルカリ金属塩又はアンモニウム塩として用いることもでき、単独で又は2種以上を組み合せて用いることもできる。

上記のエチレン性不飽和酸単量体のなかでも、カルボン酸基含有エチレン性不飽和単量 体が好ましく、エチレン性不飽和モノカルボン酸がより好ましく、メタクリル酸が特に好 ましく用いることができる。

[0017]

エチレン性不飽和酸単量体の使用量は、全単量体に対して、好ましくは 0.5~10重量%、より好ましくは 1~9重量%、特に好ましくは 2~8重量%である。この量が少なくすぎると引張強度に劣る傾向があり、逆に多すぎると風合いに劣る傾向がある。

[0018]

共役ジエン単量体およびエチレン性不飽和酸単量体と共重合可能な他の単量体としては 、特に制限されるものではないが、例えば、スチレン、αーメチルスチレン、モノクロル スチレン、ジクロルスチレン、トリクロルスチレン、モノメチルスチレン、ジメチルスチ レン、トリメチルスチレン、ヒドロキシメチルスチレンなどの芳香族ビニル単量体;アク リロニトリル、メタクリロニトリル、2-クロロプロペンニトリル、2-ブテンニトリル などのエチレン性不飽和ニトリル単量体;アクリルアミド、メタクリルアミド、N, N-ジメチルアクリルアミド、N-メチロールアクリルアミド等のエチレン性不飽和カルボン 酸アミド単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アク リル酸ブチル、(メタ)アクリル酸2-エチルヘキシルなどのエチレン性不飽和カルボン 酸アルキルエステル単量体;酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニルな どのカルボン酸ビニルエステル単量体;塩化ビニル、塩化ビニリデン、フッ化ビニル、フ ッ化ビニリデンなどのハロゲン化ビニル単量体;エチレン、プロピレン、1ープテン、イ ソプテンなどのオレフィン単量体;メチルビニルエーテル、n-プロピルビニルエーテル 、イソプチルビニルエーテル、ドデシルビニルエーテルなどのビニルエーテル単量体;酢 酸アリル、酢酸メタリル、塩化アリル、塩化メタリルなどの(メタ)アリル化合物;ビニ ルトリメトキシシランなどのビニルシリル化合物;ジビニルベンゼン、ポリエチレングリ コールジ (メタ) アクリレート、ポリプロピレングリコールジ (メタ) アクリレート、トリメチロールプロパントリ (メタ) アクリレート、ペンタエリスリトールトリ (メタ) アクリレートなどの架橋性単量体;ビニルピリジン、Nービニルピロリドンなどを挙げることができる。これらは、単独で、または2種以上を組み合わせて用いることができる。

これらの他の単量体のなかでも、芳香族ビニル単量体、エチレン性不飽和ニトリル単量体、およびエチレン性不飽和カルボン酸アルキルエステル単量体が好ましく使用できる。 引張強度により優れるディップ成形品が得られる点で、芳香族ビニル単量体およびエチレン性不飽和ニトリル単量体が好ましく、さらに耐油性にも優れるディップ成形品が得られる点で、エチレン性不飽和ニトリル単量体がより好ましく使用できる。

[0019]

上記の他の単量体の使用量は、全単量体に対して、好ましくは0~69.5重量%、より好ましくは7~49重量%、特に好ましくは11~43重量%である。この使用量範囲であれば、引張強度、耐油性および風合いを良好に維持できる。

[0020]

本発明で用いることができる合成ゴムラテックスは、上記の単量体混合物を乳化重合して得られるものである。乳化重合方法としては、従来公知の方法を特に制限なく採用できる。

[0021]

上記の単量体混合物を乳化重合するに際し、通常用いられる、乳化剤、重合開始剤、分子量調整剤等の重合副資材を使用することができる。これら重合副資材の添加方法は特に限定されず、初期一括添加法、分割添加法、連続添加法などいずれの方法でも採用することができる。

[0022]

乳化剤としては、特に限定されないが、例えば、アルキルベンゼンスルホン酸塩、脂肪族スルホン酸塩、高級アルコールの硫酸エステル塩等のアニオン性乳化剤;ポリエチレングリコールアルキルエーテル型、ポリエチレングリコールアルキルフェニルエーテル型等のノニオン性乳化剤;アニオン部分としてカルボン酸塩、硫酸エステル塩、スルホン酸塩、リン酸塩又はリン酸エステル塩等を、カチオン部分としてアミン塩又は第4級アンモニウム塩等を持つ両性乳化剤等を挙げることができる。なかでも、アニオン性乳化剤が好ましく使用できる。

乳化剤の使用量は、全単量体100重量部に対して、通常、0.5~10重量部、好ましくは1~8重量部、より好ましくは2~5重量部である。

[0023]

重合開始剤としては、特に限定されないが、例えば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物; t ーブチルパーオキサイド、クメンハイドロパーオキサイド、pーメンタンハイドロパーオキサイド、ジー t ーブチルパーオキサイド、t ーブチルクミルパーオキサイド、アセチルパーオキサイド、イソブチリルパーオキサイド、オクタノイルパーオキサイド、ジベンゾイルパーオキサイド、3,5,5ートリメチルへキサノイルパーオキサイド、tープチルパーオキシイソブチレート等の有機過酸化物;アゾビスイソブチロニトリル、アゾビスー2,4ージメチルバレロニトリル、アゾビスシクロへキサンカルボニトリル、アゾビスイソ酪酸メチル等のアゾ化合物等を挙げることができる。これらの重合開始剤は、それぞれ単独で、あるいは2種類以上を組み合わせて使用することができる。過酸化物は重亜硫酸ナトリウム等の還元剤と組み合わせて、レドックス系重合開始剤として使用することもできる。重合開始剤としては、無機または有機の過酸化物が好ましく、無機過酸化物がより好ましく、過硫酸塩が特に好ましく使用できる。

重合開始剤の使用量は、全単量体100重量部に対して、通常、0.01~2重量部、好ましくは0.05~1.5重量部である。

[0024]

分子量調整剤は、特に限定されないが、例えば、α-メチルスチレンダイマー; t-ド 出証特2004-3095947 デシルメルカプタン、 n ードデシルメルカプタン、オクチルメルカプタン等のメルカプタン類;四塩化炭素、塩化メチレン、臭化メチレン等のハロゲン化炭化水素;テトラエチルチウラムダイサルファイド、ジペンタメチレンチウラムダイサルファイド、ジイソプロピルキサントゲンダイサルファイド等の含硫黄化合物等が挙げられる。これらは、それぞれ単独で、あるいは2種類以上組み合わせて併用することもできる。なかでも、メルカプタン類が好ましく、 t ードデシルメルカプタンがより好ましく使用できる。

分子量調整剤の使用量は、その種類によって異なるが、全単量体100重量部に対して、好ましくは $0.1\sim0.8$ 重量部、より好ましくは $0.2\sim0.7$ 重量部の範囲である

[0025]

単量体の添加方法としては、例えば、反応容器に使用する単量体を一括して添加する方法、重合の進行に従って連続的または断続的に添加する方法、単量体の一部を添加して特定の転化率まで反応させ、その後、残りの単量体を連続的または断続的に添加して重合する方法等が挙げられ、いずれの方法を採用してもよい。単量体を混合して連続的または断続的に添加する場合、混合物の組成は、一定としても、あるいは変化させてもよい。

また、各単量体は、使用する各種単量体を予め混合してから反応容器に添加しても、あるいは別々に反応容器に添加してもよい。

[0026]

乳化重合は、通常、水中で行なわれる。水の使用量は、全単量体100重量部に対して、通常、80~500重量部、好ましくは100~200重量部である。

[0027]

さらに、必要に応じて、キレート剤、分散剤、pH調整剤、脱酸素剤、粒子径調整剤等の重合副資材を用いることができ、これらは種類、使用量とも特に限定されない。

[0028]

重合温度は特に限定されないが、通常、0~95℃、好ましくは5~70℃である。

[0029]

以上のように単量体混合物を乳化重合し、所定の重合転化率に達した時点で、重合系を冷却したり、重合停止剤を添加したりして、重合反応を停止する。

重合反応を停止する際の重合転化率は、好ましくは90重量%以上、より好ましくは93重量%以上である。

[0030]

重合反応を停止した後、所望により、未反応の単量体を除去し、固形分濃度やpHを調整して合成ゴムラテックスを得る。

[0031]

本発明で用いる共役ジエンゴムラテックスには、必要に応じて、老化防止剤、防腐剤、抗菌剤、分散剤、紫外線吸収剤、pH調整剤などを適宜添加してもよい。

[0032]

(有機過酸化物)

本発明においては、有機過酸化物の10時間半減期温度をX(℃)とし、該有機過酸化物のオクタノールー水分配係数をYとした時、下記式(1)および(2)を満足する有機過酸化物を用いることを特徴とする。

$$\begin{array}{ll}
1 & 1 \ge Y \ge 2 \\
1 & 0 & 0 - 2 & Y \ge X \ge 7 & 0 - 2 & Y
\end{array} \tag{1}$$

かかる有機過酸化物の中でも下記式 (3) および (4) を満足するものが好ましく、下記式 (5) および (6) を満足するものがより好ましい。

$$\begin{array}{lll}
1 & 0 \ge Y \ge 2 \\
9 & 5 - 2 & Y \ge X \ge 7 & 2 - 2 & Y \\
7 \ge Y \ge 2 \\
8 & 8 - 2 & Y \ge X \ge 7 & 4 - 2 & Y
\end{array} \tag{3}$$

前記の規定を満足しない有機過酸化物を用いると、本発明の効果を得ることができない

[0033]

10時間半減期温度(℃)は、加熱による有機過酸化物の分解反応により、当初の有機 過酸化物の量が10時間で半分になる時の温度をいう。

この温度が低いほど分解しやすく、高いほど分解しにくいことを示す。

[0034]

オクタノール-水分配係数とは、対象とする化合物の1ーオクタノールへの溶解濃度を $Co(\mu g/m 1)$ とし、該化合物の水への溶解濃度を $Cw(\mu g/m 1)$ とした時、1og(Co/Cw)で計算される数値であり、該化合物の親水性ー親油性バランスを表す ものである。

なお、本発明においては、オクタノール-水分配係数として、有機過酸化物の構造に基 づき、ソフトウェア ACD/LogP DB (version6.00:Advanc ed Chemistry Development, Inc. 製) により計算される数 値を用いる。

[0035]

本発明で用いる有機過酸化物の具体例を以下に例示する。なお、括弧内に各有機過酸化 物の10時間半減期温度 (X:℃) とオクタノールー水分配係数 (Y) を併記する。

ジベンゾイルパーオキサイド (X=73.6,Y=3.46)

ベンゾイル (3-メチルベンゾイル) パーオキサイド (X=73.1,Y=3.93) $\vec{v} - n - \vec{x} - \vec{y} = 0$

1, 1, 3, 3-テトラメチルブチルパーオキシー2-エチルヘキサノエート(<math>X=65. $3 \cdot Y = 6.34$)

t-ヘキシルパーオキシー 2-エチルヘキサノエート(X=69.9、Y=5.65) ジ (4-メチルベンゾイル) パーオキサイド (X=70.6,Y=4.39)

t -プチルパーオキシー 2 -エチルヘキサノエート(X = 72.1、Y = 4.59)

t -プチルパーオキシイソブチレート (X = 77.3、Y = 2.46)

1, 1-ジ (t-プチルパーオキシ) -2-メチルーシクロヘキサン (X=83.2、Y = 5.88

ジ (3, 5, 5ートリメチルヘキサノイル) パーオキサイド ($X = 59.4 \times Y = 6.$ 31)

2, 5-ジメチル-2, 5-ジ(2-エチルヘキサノイルパーオキシ) ヘキサン(<math>X =66.2, Y=8.87

ジラウロイルパーオキサイド (X=61.6,Y=10.6)

有機過酸化物としては、得られたディップ成形品の物性バランスに優れる点で、ジベン ゾイルパーオキサイドが好ましく使用できる。

[0036]

前記の規定を満足しない有機過酸化物としては、例えば、ジクミルパーオキサイド(X =116.4、Y=5.71)、ジーtープチルパーオキサイド(X=123.7、Y=3. 19) などが例示される。

[0037]

(ディップ成形用組成物)

本発明のディップ成形用組成物は、前記共役ジエンゴムラテックスおよび前記の有機過 酸化物からなる。

有機過酸化物の含有量は、前記共役ジエンゴムラテックスの固形分100重量部に対し て、好ましくは0.01~5重量部、より好ましくは0.05~3重量部、特に好ましく は $0.1\sim2$ 重量部である。この量が少なすぎると耐屈曲疲労性に劣る傾向があり、逆に 多すぎると風合いおよび引張強度に劣る傾向にある。

[0038]

有機過酸化物の共役ジエンゴムラテックスへの添加方法としては、特に制限されないが 、例えば、(1)粉末状または液状の有機過酸化物を共役ジエンゴムラテックスに添加す

る方法、(2)有機過酸化物を溶解した有機溶剤溶液を共役ジエンゴムラテックスに添加 する方法、(3)有機過酸化物を溶解した有機溶剤溶液を、乳化剤を用いて、水中で乳化 して得られた乳化物を共役ジエンゴムラテックスに添加する方法、などが採用できる。な お、有機過酸化物は、取り扱いを容易にする目的で、予め無機充填剤と混合して粉末状に したものも用いることができる。

[0039]

前記の有機過酸化物を溶解させる有機溶剤としては、該有機過酸化物を溶解し得るもの であれば特に制限されず、例えば、アセトン、テトラヒドロフラン、ジオキサン、ジエチ ルエーテル、酢酸エチル、ヘキサン、シクロヘキサン、ベンゼン、トルエンなどが挙げら れる。

また、有機過酸化物を有機溶剤に溶解させる際には、該有機過酸化物の分解が急激に起 こらない範囲内であれば、加温して行なうこともできる。

[0040]

有機過酸化物を添加する際の共役ジエンゴムラテックスの p H は、8.5以上とするこ とが好ましく、9~11の範囲とすることが好ましい。この範囲の p H であれば、添加の 際の粗大凝集物の発生が抑制できる点で好ましい。

[0041]

本発明のディップ成形用組成物は、前記の有機過酸化物を架橋剤として含有するもので あるので、該組成物に、通常使用される、硫黄、加硫促進剤および酸化亜鉛を配合すると 得られたディップ成形品の物性バランスが悪化する傾向にある。

従って、硫黄、加硫促進剤および酸化亜鉛の配合量は、前記共役ジエンゴムラテックス の固形分100重量部に対して、それぞれ、0.5重量部以下、0.3重量部以下および 1重量部以下とするのが好ましく、0.3重量部以下、0.1重量部以下および0.5重 量部以下とすることがより好ましい。ディップ成形品の物性バランスを考慮すると、硫黄 、加硫促進剤および酸化亜鉛を配合しないことが最も好ましい。

[0042]

本発明のディップ成形用組成物には、硫黄、加硫促進剤および酸化亜鉛を除き、ディッ プ成形用組成物に通常配合される無機顔料、着色剤、分散剤、 p H 調整剤、湿潤剤、防腐 剤、抗菌剤などの添加剤を適宜配合することができる。

[0043]

ディップ成形用組成物の固形分濃度は、好ましくは20~40重量%、より好ましくは 25~35重量%である。

ディップ成形用組成物のpHは、8.5以上とすることが好ましく、9~11の範囲と することがより好ましい。

上記範囲の固形分濃度および p Hのディップ成形用組成物を用いると、均一な膜厚を有 するディップ成形品が容易に製造される。

[0044]

(ディップ成形品)

本発明のディップ成形品は、前記のディップ成形用組成物をディップ成形して得られる

ディップ成形方法としては、従来公知のディップ成形方法を採用でき、例えば、直接浸 漬法、アノード凝着浸漬法、ティーグ凝着浸漬法などが挙げられる。なかでも、均一な厚 みを有するディップ成形品が得られやすい点で、アノード凝着浸漬法が好ましい。

[0045]

アノード凝着浸漬法の場合、例えば、ディップ成形用型を凝固剤溶液に浸漬して、該型 表面に凝固剤を付着させた後、それをディップ成形用組成物に浸漬して、該型表面にディ ップ成形層を形成する。

[0046]

凝固剤としては、例えば、塩化バリウム、塩化カルシウム、塩化マグネシウム、塩化亜 鉛、塩化アルミニウムなどのハロゲン化金属;硝酸バリウム、硝酸カルシウム、硝酸亜鉛

などの硝酸塩;酢酸バリウム、酢酸カルシウム、酢酸亜鉛など酢酸塩;硫酸カルシウム、 硫酸マグネシウム、硫酸アルミニウムなどの硫酸塩などが挙げられる。なかでも、塩化カ ルシウム、硝酸カルシウムが好ましい。

凝固剤は、通常、水、アルコール、またはそれらの混合物の溶液として使用する。凝固 剤濃度は、通常、5~70重量%、好ましくは10~50重量%である。

[0047]

得られたディップ成形層は、通常、加熱処理を施し架橋する(架橋工程)。

加熱処理を施す前に、水、好ましくは30~70℃の温水、に1~60分程度浸漬し、 水溶性不純物(例えば、余剰の乳化剤や凝固剤など)を除去してもよい。この操作は、デ ィップ成形層を加熱処理した後に行ってもよいが、より効率的に水溶性不純物を除去でき る点から、熱処理前に行うのが好ましい。

[0048]

このようにして得られたディップ成形層は、100~140℃の温度で、5~120分 間の加熱処理を施し、架橋する。架橋工程の前に、40~95℃で、5~60分間の乾燥 工程を加えることもできる。

加熱の方法としては、赤外線や熱空気による外部加熱または高周波による内部加熱によ る方法が採用できる。なかでも、熱空気による加熱が好ましい。

[0049]

架橋したディップ成形層をディップ成形用型から脱着することによって、ディップ成形 品が得られる。脱着方法は、手で成形用型から剥がしたり、水圧や圧縮空気の圧力により 剥がしたりする方法が採用できる。

[0050]

脱着後、さらに60~120℃の温度で、10~120分の加熱処理(後架橋工程)を 行ってもよい。

[0051]

ディップ成形品は、さらに、その内側および/または外側の表面に、表面処理層を形成 してあってもよい。

[0052]

本発明のディップ成形品は、厚みが約0.1~約3ミリのものが製造でき、特に厚みが $0.1 \sim 0.3$ ミリの薄手のものに好適に使用できる。具体的には、哺乳瓶用乳首、スポ イト、導管、水枕などの医療用品;風船、人形、ボールなどの玩具や運動具;加圧成形用 バッグ、ガス貯蔵用バッグなどの工業用品;手術用、家庭用、農業用、漁業用および工業 用の手袋;指サックなどが挙げられる。手袋の場合、サポート型であっても、アンサポー ト型であってもよい。上記のなかでも、薄手の手術用手袋に好適である。

【実施例】

[0053]

以下に、実施例および比較例を挙げて、本発明についてさらに具体的に説明するが、本 発明はこれらの実施例に限定されるものではない。また、これらの例における部および% は、特に断りのない限り重量基準である。

[0054]

(製造例1:NBRラテックスの製造)

重合反応器に、アクリロニトリル28部、1,3-ブタジエン66部、メタクリル酸6 部、 t ードデシルメルカプタン 0. 3部、イオン交換水 1 3 2部、ドデシルベンゼンスル ホン酸ナトリウム 3 部、 β - ナフタリンスルホン酸ホルマリン縮合物ナトリウム塩 0 . 5部,過硫酸カリウム 0.3部及びエチレンジアミン四酢酸ナトリウム塩 0.05部を仕込 み、重合温度を37℃に保持して重合を開始した。

重合転化率が60%になった時点で、tードデシルメルカプタン0.15部を添加して 、重合温度を40℃に昇温し、その後、重合転化率が80%になった時点で、t-ドデシ ルメルカプタン0.15部を添加して重合反応を継続し、重合転化率が94%に達するま で反応させた。その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム 0.1

部を添加して重合反応を停止した。

得られた共重合体ラテックスから未反応単量体を除去した後、共重合体ラテックスの p H 及び固形分濃度を調整して、固形分濃度 4 0 %、 p H 8 の共役ジエンゴムラテックス A を得た。

[0055]

(製造例2:SBRラテックスの製造)

重合反応器に、スチレン42部、1,3ープタジエン54部、メタクリル酸4部、t-ドデシルメルカプタン0.3部、イオン交換水132部、ドデシルベンゼンスルホン酸ナトリウム3部、 $\beta-$ ナフタリンスルホン酸ホルマリン縮合物ナトリウム塩0.5部、過硫酸カリウム0.3部及びエチレンジアミン四酢酸ナトリウム塩0.05部を仕込み、重合温度を60 に保持して重合を開始した。

重合転化率が60%になった時点で、t-ドデシルメルカプタン0.15部を添加して、重合温度を70%に昇温し、その後、重合転化率が80%になった時点で、t-ドデシルメルカプタン0.15部を添加して重合反応を継続し、重合転化率が95%に達するまで反応させた。その後、重合停止剤としてジメチルジチオカルバミン酸ナトリウム0.1部を添加して重合反応を停止した。

得られた共重合体ラテックスから未反応単量体を除去した後、共重合体ラテックスの p H 及び固形分濃度を調整して、固形分濃度 4 0 %、 p H 8 の共役ジエンゴムラテックス B を得た。

[0056]

(実施例1)

トルエン10部にジベンゾイルパーオキサイド5部を添加し、45℃で溶解した。攪拌しながら、該溶液に、1.7%ドデシルベンゼンスルホン酸ナトリウム水溶液15部を添加して、ジベンゾイルパーオキサイドの乳化物を得た。

共役ジエンゴムラテックスAに5%水酸化カリウム水溶液を添加し、pHe10に調整し、45 C に加温しながら、このラテックスに、ラテックス固形分100 部に対して、ジベンゾイルパーオキサイド1 部になる量の前記乳化物を添加した。さらにイオン交換水を添加して、固形分濃度が30%、pHが10のディップ成形用組成物を得た。

[0057]

硝酸カルシウム 20 部、ノニオン性乳化剤のポリオキシエチレンオクチルフェニルエーテル 0.05 部及び水 80 部を混合した凝固剤水溶液に手袋型を 5 秒浸漬し、引き上げた後、50 で 10 分間乾燥して、凝固剤を手袋型に付着させた。

次に、凝固剤の付着した手袋型を、上記のディップ成形用組成物に6秒間浸漬し、引き上げた後、そのディップ成形層が形成された手袋型を50℃で10分間乾燥し、次いで40℃の温水に3分間浸漬して、水溶性不純物を溶出させた。

次いで、その手袋型を70℃で10分間乾燥し、引続き、120℃で20分間加熱処理 してディップ成形層を架橋させた。最後に架橋したディップ成形層を手袋型から剥し、厚 みが0.1mmのゴム手袋を得た。

[0058]

得られたゴム手袋の物性を以下に示す方法で評価し、その結果を表1に示す。

(風合い、引張強度および伸び)

得られたゴム手袋から、ダンベル変形 2 号 (小型) を用いて、ダンベル形状の試験片を作製した。

前記試験片を、引張速度500mm/分で引っ張り、伸び率が300%の時の引張応力(Md300%:MPa)、破断時の引張強度(MPa)および破断時の伸び(%)を測定した。

Md300%が小さいほど、風合いに優れている。

(耐屈曲疲労性)

得られたゴム手袋を被験者10人が着用し、軽作業を行なった。

ゴム手袋を着用した後、1時間経過する毎に、ゴム手袋の指の股部分を観察し、微小亀

出証特2004-3095947

裂の発生の有無を確認した。

各被験者のゴム手袋に微小亀裂が発生するまでの時間を測定した後、最短および最長の時間を除き、単純平均した時間で示す。なお、この着用試験は、最大6時間まで行なった

前記の時間が長い程、耐屈曲疲労性に優れることを示す。

(銅イオン変色性)

得られたゴム手袋を3%硫酸銅水溶液に30秒間浸漬し、1時間後のゴム手袋の変色度 合いを目視にて判定し、以下のように示す。

ゴム手袋は変色していない : ○

ゴム手袋の変色が認められる:×

上記試験で変色が認められるゴム手袋は、それを長時間に亘って着用した際に、ゴム手袋自体が着色し易い。

[0059]

(実施例2)

ジベンゾイルパーオキサイドの添加量を、ラテックス固形分100部に対して、0.5 部に変更する以外は、実施例1と同様にして、ゴム手袋を得た。

[0060]

(実施例3)

共役ジエンゴムラテックスAに5%水酸化カリウム水溶液を添加し、pH10に調整した後、イオン交換水を添加して固形分濃度を30%に調整した。このラテックス固形分100部に、ジベンゾイルパーオキサイド1部を添加してディップ成形用組成物を得た。

このディップ成形用組成物を用い、架橋条件を120℃で30分間に変更する以外は、 実施例1と同様にしてゴム手袋を得た。

この手袋の物性を評価し、その結果を表1に示す。

[0061]

(実施例4)

共役ジエンゴムラテックスAに代えて共役ジエンゴムラテックスBを用い、架橋条件を 120℃で30分間に変更する以外は、実施例1と同様にしてゴム手袋を得た。

この手袋の物性を評価し、その結果を表1に示す。

[0062]

(比較例1)

ジベンゾイルパーオキサイドに代えて、ジクミルパーオキサイドを用いる以外は、実施 例1と同様にしてゴム手袋を得た。

この手袋の物性を評価し、その結果を表1に示す。

(比較例2)

ジベンゾイルパーオキサイドに代えて、ジサクシニックアシドパーオキサイドを用いる 以外は、実施例1と同様にしてゴム手袋を得た。

この手袋の物性を評価し、その結果を表1に示す。

(比較例3)

ジベンソイルパーオキサイドに代えて、2,4-ジクロロベンゾイルパーオキサイドを 用いる以外は、実施例1と同様にしてゴム手袋を得た。

この手袋の物性を評価し、その結果を表1に示す。

[0063]

(比較例4)

硫黄1.5部、ジプチルジチオカルバミン酸亜鉛塩1部、酸化亜鉛1部、酸化チタン1.5部、水酸化カリウム0.03部および水5.03部を混合して、固形分濃度50%の加硫剤溶液10.06部を調製した。

共役ジエンゴムラテックスAの固形分100部に対して、前記の加硫剤溶液10.06部を添加した後、5%水酸化カリウム水溶液およびイオン交換水を添加して、pHが10、固形分濃度が30%のディップ成形用組成物を得た。

上記のディップ成形用組成物を用いる以外は、実施例1と同様にしてゴム手袋を得た。 この手袋の物性を評価し、その結果を表1に示す。

[0064]

【表1】

**								
		実施例	5例			比較例	2例	
	1	2	3	4	1	2	ဗ	4
配合処方(部)								
+ 役ジェンゴムラテックス種類	∢	∢	∢	മ	∢	∢	∢	<
ラテックス固形分	100	100	100	100	100	100	100	100
有機過酸化物								
ッペンジイアパーオキサイド	y- -	0.5	-	_	1	1	1	I
ジクミルパーオキサイド	ł	ı	I	1	-	1	I	ı
ジサクシーックアシドパーオキサイド	1	ł	ı	l	l	_	1	I
2, 4ージクロロベンゾイルパーオキサイド	l	1	1	ı	1	ı	-	1
	i	1	1	1	ł	1	1	
加硫促進剤	1	ł	i	I	ı	1	1	-
酸化亜鉛	l	l	ı	ì	l	l	1	-
酸化チタン	ì	ì	ı		I	1	.]	1.5
有機過酸化物の特性								
10時間半減期温度(°C)	73.6	73.6	73.6	73.6	116.4	64. 9	52.8	l
オクタノールー水分配係数	3.46	3, 46	3.46	3.46	5. 72	-0.42	5.37	1
ディップ成形品の特性							1	1
300%Md(MPa)	2.3	2.2	2. 4		-	2. 4	2. 2	6. 1
引張強度(MPa)	27	56	30	24	28	29	28	27
(4次(%)	099	650	029	520	099	640	650	530
個イオン変色性	0	0	0	0	0	0	0	×
耐屈曲疲労性(時間)	王 然9	6以上	6以上	6以上	2.5	2	2.5	6以上

-米

> 【0065】 表1から次のようなことがわかる。

本発明で規定する範囲から外れる有機過酸化物を用いて得られたゴム手袋は、耐屈曲疲労性に劣り、2~3時間の着用で、指の股部分に亀裂が発生してしまう(比較例1~3) 硫黄、加硫促進剤および酸化亜鉛を配合したディップ成形用組成物を用いて得られたゴム手袋は、風合いに劣り、それを着用して作業を継続した場合に、ゴム手袋自体が着色し易いものである(比較例4)。

これらの比較例に対して、本発明のディップ成形用組成物を用いて得られたゴム手袋は、風合いが良好で、引張強度に優れ、かつ耐屈曲疲労性に優れるディップ成形品であり、それを着用して作業を継続しても手袋自体の着色が発生しにくいものである(実施例1~4)。

【書類名】要約書

【要約】

【課題】 風合いが良好で、引張強度に優れ、かつ屈曲疲労性に優れるディップ成形品であり、それを着用して作業を継続しても成形品自体の着色が発生しにくいディップ成形品および該ディップ成形品を与え得るディップ成形用組成物を提供すること。

【解決手段】 共役ジエンゴムラテックスおよび有機過酸化物からなるディップ成形用組成物であって、該有機過酸化物の10時間半減期温度を $X(\mathbb{C})$ とし、該有機過酸化物のオクタノールー水分配係数をYとした時、該有機過酸化物が下記式(1)および(2)を満足するディップ成形用組成物、ならびに該組成物より得られるディップ成形品。

$$\begin{array}{ll}
1 & 1 \ge Y \ge 2 \\
1 & 0 & 0 - 2 & Y \ge X \ge 7 & 0 - 2 & Y
\end{array} \tag{1}$$

【選択図】 なし

出願人履歴情報

識別番号

[000229117]

1. 変更年月日 [変更理由]

1990年 8月22日

住所

新規登録

氏 名

東京都千代田区丸の内2丁目6番1号 日本ゼオン株式会社