CS 445

Shortest Paths in Graphs Bellman-Ford Algorithm

Slides courtesy of Erik Demaine and Carola Wenk

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist.

Example:

Bellman-Ford algorithm: Finds all shortest-path lengths from a *source* $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

Bellman-Ford and Undirected graphs

Bellman-Ford algorithm is designed for **directed** graphs.

If *G* is undirected, replace every edge (u,v) with two directed edges (u,v) and (v,u), both with weight w(u,v)

Bellman-Ford algorithm

```
d[s] \leftarrow 0
\mathbf{for} \ \text{each} \ v \in V - \{s\}
\mathbf{do} \ d[v] \leftarrow \infty
\mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ |V| - 1 \ \mathbf{do}
\mathbf{for} \ \text{each} \ \text{edge} \ (u, v) \in E \ \mathbf{do}
\mathbf{if} \ d[v] > d[u] + w(u, v) \ \mathbf{then}
d[v] \leftarrow d[u] + w(u, v)
\pi[v] \leftarrow u
\mathbf{for} \ \text{each} \ \text{edge} \ (u, v) \in E
\mathbf{do} \ \mathbf{if} \ d[v] > d[u] + w(u, v)
\mathbf{then} \ \text{report} \ \text{that} \ \mathbf{a} \ \text{negative-weight cycle} \ \text{exists}
```

At the end, $d[v] = \delta(s, v)$. Time = O(|V|/E|).

Example of Bellman-Ford

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

A	B	C	D	\boldsymbol{E}
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	D	\boldsymbol{E}
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

A	В	\boldsymbol{C}	D	\boldsymbol{E}
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1
0	-1	2	-2	1

Example of Bellman-Ford

Order of edges: (B,E), (D,B), (B,D), (A,B), (A,C), (D,C), (B,C), (E,D)

Note: Values decrease monotonically.

\boldsymbol{A}	B	\boldsymbol{C}	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1
0	-1	2	-2	1

Correctness

Theorem. If G = (V, E) contains no negative-weight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$. *Proof.* Let $v \in V$ be any vertex, and consider a shortest path p from s to v with the minimum number of edges.

Since p is a shortest path, we have

$$\delta(s, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i) \quad \text{for every } i.$$

Correctness (continued)

Initially, $d[v_0] = 0 = \delta(s, v_0)$, and d[s] is unchanged by subsequent relaxations (because of the lemma from last lecture that $d[v] \ge \delta(s, v)$ and $\delta(s, s) \ge 0$ (why?)).

- After 1 pass through E, we have $d[v_1] = \delta(s, v_1)$.
- After 2 passes through E, we have $d[v_2] = \delta(s, v_2)$.
- After *k* passes through *E*, we have $d[v_k] = \delta(s, v_k)$.

Since G contains no negative-weight cycles, p is simple. Longest simple path has $\leq |V| - 1$ edges.

Detection of negative-weight cycles

Corollary. If a value d[v] fails to converge after |V| - 1 passes, there exists a negative-weight cycle in G reachable from s.

DAG shortest paths

If the graph is a *directed acyclic graph* (*DAG*), we first *topologically sort* the vertices.

- Determine $f: V \to \{1, 2, ..., |V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u) < f(v)$.
- O(V + E) time using depth-first search.

Walk through the vertices $u \in V$ in this order, relaxing the edges in Adj[u], thereby obtaining the shortest paths from s in a total of O(V + E) time.