TUTORIAL THREE

CPU Scheduling

- 1. State whether each of the following statements are true or false. Justify your answers.
 - (a) A process scheduling discipline is pre-emptive if the CPU cannot be forcibly removed from a process.
 - (b) Real-time systems generally use pre-emptive CPU scheduling.
 - (c) Time-sharing systems generally use nonpre-emptive CPU scheduling.
- Consider the following set of processes, with the length of the CPU-burst time given in milliseconds:

<u>Process</u>	Burst Time	Priority
$\mathbf{P}_{_{1}}$	10	3
$P_{_2}$	1	1
$P_{_3}$	2	3
$P_{_4}$	1	4
P _s	5	2

The process are assumed to have arrived in the order P₁, P₂, P₃, P₄, P₄, all at time 0.

- (a) Draw four Gantt charts illustrating the execution of these processes using FCFS, SJF, a nonpre-emptive priority (a smaller priority number implies a higher priority), and RR (quantum=1) scheduling.
- (b) What is the turnaround time of each process for each of the scheduling algorithm in part (a)?
- (c) What is the waiting time of each process for each of the scheduling algorithms in part (a)?
- (d) Which of the schedulers in part (a) results in the minimal average waiting time (over all processes)?
- 3. Measurements of certain system have shown that the average process runs for a time *T* before blocking on I/O. A process switch requires a time *S*, which is effectively wasted (overhead). Define what is meant by CPU efficiency. For round robin scheduling with quantum *Q*, give a formula for the CPU efficiency for each of the following:
 - (a) $Q \rightarrow \infty$
 - (b) Q > T
 - (c) S < Q < T
 - (d) Q = S
 - (e) $Q \rightarrow 0$