Academia's Influence on Policymakers

Paul Laliberte'

Amit Khandelwal (Columbia Business School)

David Atkin (MIT)

CBS - Summer Research

August 1, 2017

Statement

• **Statement:** To inspect whether there exists a disconnect between economic policy proposed by academic and non-academic institutions.

How: Sentimental analysis of published articles.

Methodology

Methodology:

- **1** Data Collection and Cleaning:
 - Collecting data through web scraping.
 - Cleaning for punctuation and translating foreign text.
- Machine Learning Methods:
 - Stochastic Gradient Descent.
 - Support Vector Classifier.
 - Evaluation Metrics.
- Natural Language Processing:
 - Term Frequency Inverse Document Frequency (tf-idf).
 - Latent Dirichlet Allocation (LDA) Topic Models.
- Omain Expertise in Economics:
 - · Amit and David.

Data Collection and Cleaning

• Web scraping:

• Final dataset consisted of 2.5 million articles from academic journals and institutional working papers.

Cleaning and Translation:

- Removing punctuation.
- Translate all articles into a common language (English).

Machine Learning

 Stochastic Gradient Descent (SGD) and Support Vector Classifier (SVC):

Source: Hong, K. (n.d.): n. pag. Web. 24 July 2017. https://bogotobogo.com.

- SGD was used to train the SVC quicker.
- SVC used to predict JEL Codes (D, E, F, G, H, I, J, K, L, and O).

Machine Learning (Continued)

- Evaluation Metric: ROC curve.
 - Working papers:

Journals:

Natural Language Processing

Tf-Idf:

- Tf: the number of times a term t appears in a document (article).
- Idf: $\log \left(\frac{\text{total number of documents in corpus}}{\text{number of documents with term } t} \right)$.
- Tf-Idf = $Tf \times Idf$.

n-grams:

- Example: New York is the best city.
 - Unigrams: {New, York, is, the, best, city}.
 - Bigrams: {New_York, York_is, is_the, the_best, best_city}.
 - Trigrams: {New_York_is, York_is_the, is_the_best, the_best_city}.
- Stemming: reducing words to their derived stem root.
 - Example: {learning, learns, learned} $\stackrel{\text{reduced to}}{=\!=\!=\!=}$ {learn}.

Natural Language Processing (Continued)

LDA Topic Model:

- $\bullet \ \, \text{Work in reverse: } \{\text{collection of documents}\} \longrightarrow \{\text{inferred topics}\}.$
- Use of the Dirichlet distribution.
- Simplified probability:

$$P(T|t,d) = \frac{\text{total number of tokens } t \text{ in topic } T}{\text{total number of tokens in } T + \beta} \cdot (\text{total words in } d \text{ that belong in } T + \alpha),$$

where β and α are non-zero constants.

Example:

Source: David M. Blei. "Probabilistic Topic Models." Communications of the ACM, v. 55, n.4, April 2012.

Domain Expertise

- Results still need to be interpreted.
 - What is the actual topic?
 - Are the tokens representing a topic even meaningful?
- Example:

genome	evolutionary	host	models
dna	species	bacteria	information
genetic	organisms	diseases	data
genes	life	resistance	computers
sequence	origin	bacterial	system
gene	biology	new	network
molecular	groups	strains	systems
sequencing	phylogenetic	control	model
map	living	infectious	parallel
information	diversity	malaria	methods
genetics	group	parasite	networks
mapping	new	parasites	software
project	two	united	new
sequences	common	tuberculosis	simulations

Source: David M. Blei. "Probabilistic Topic Models." Communications of the ACM, v. 55, n.4, April 2012.

Results

- We separated the 2.5 million articles into two groups:
 - Written by an individual(s) who spends the majority of their time at an academic institution.
 - 2 Those who do not fall into category 1 (FED, Brookings Institute, ect.).

 Results consisted of overall frequencies, frequencies and tf-idf of individual JEL Code, and a topic model.

JEL Code Frequency

Not any distinct differences.

Frequencies and Tf-Idf

Table 1: F Code Frequencies					
Academia:	Count	Non-Academia Batch #1:	Count	Non-Academia Batch #2:	Count
exchang_rate	5247	exchang.rate	4753	exchang.rate	6820
develop.countri	2579	intern.trade	2222	develop.countri	3478
intern_trade	2450	direct_invest	2048	intern_trade	3385
direct invest	2018	foreign.direct	1950	direct.invest	2619
foreign_direct	1915	foreign_direct_invest	1941	foreign_direct	2454
unit_state	1607	develop.countri	1842	foreign_direct_invest	2434
free_trade	1603	free_trade	1247	free_trade	2110
trade.agreement	1450	trade.polici	1170	trade.agreement	2102
trade-polici	1346	long-run	1141	trade-polici	1909
real.exchang	1321	unit.state	1136	real.exchang	1696
real.exchang.rate	1314	foreign.exchang	1112	real exchang rate	1687
european.union	1184	trade.agreement	1013	european.union	1610
trade_liber	1172	real.exchang	993	trade.liber	1533
long_run	1136	real_exchang_rate	987	world.trade	1442
foreign.exchang	1112	foreign_trade	913	trade_flow	1400
world_trade	1111	european.union	910	foreign.exchang	1392
econom-growth	963	world-trade	900	long-run	1383
trade.flow	918	invest.fdi	882	econom.growth	1227
foreign_trade	892	direct invest fdi	877	latin america	1173

Academia:	Count	Non-Academia Batch #1:	Count	Non-Academia Batch #2:	Count
exchange.rate	11331	exchange.rate	8977	exchange.rate	1421
international_trade	3338	international_trade	2933	developing.countries	4558
developing countries	3277	direct investment	2909	international trade	4482
exchange_rates	3091	exchange_rates	2789	exchange_rates	3904
direct.investment	2837	foreign_direct_investment	2662	direct investment	3718
oreign.direct.investment	2559	developing.countries	2209	foreign_direct_investment	3292
free.trade	2502	free.trade	1930	free.trade	3193
real.exchange.rate	2088	foreign.exchange	1638	real.exchange.rate	2693
current.account	1805	foreign.trade	1402	current.account	2650
foreign-exchange	1643	real-exchange-rate	1378	trade-policy	2312
trade.policy	1604	economic.growth	1334	foreign.exchange	2160
european.union	1536	trade.policy	1320	trade agreements	2151
economic.growth	1500	current.account	1289	european.union	2042
trade.agreements	1466	european.union	1227	economic.growth	1760
foreign_trade	1302	trade.agreements	938	foreign.trade	1545
terms-of-trade	1063	terms-of-trade	915	terms-of-trade	1454
comparative.advantage	907	trade.balance	811	economic integration	1284
economic integration	843	purchasing.power	784	comparative advantage	1101
trade.balance	721	purchasing power parity	723	balance.of.payments	847
foreign.investment	680	foreign investment	674	foreign investment	835

Academia:	Tf-Idf	Non-Academia:	Tf-Idf
trade_wto	0.9303	india_trade	1.0
corpor_govern	0.9081	even_high	1.0
trade_credit	0.8971	eu_access	1.0
human_right	0.8840	semin_contribut	1.0
energi_intens	0.8792	air_servic	0.9633
state_aid	0.8750	human_right	0.9177
currenc_reserv	0.8650	trade_mark	0.9048
humanitarian_emerg	0.8642	gold_exchang	0.9030
knowledg_exchang	0.8507	corpor_govern	0.9018
fair_trade	0.8390	mega_ftas	0.8953
humanitarian_aid	0.8352	foreign_languag	0.8921
price_foreign	0.8228	health_insur	0.8916
foreign_offici	0.8126	trade_secret	0.8879
loss_avers	0.8104	antidump_duti	0.8777
big_mac	0.8087	neo_liber	0.8744
steel_import	0.8062	trade_credit	0.8718
civil_war	0.8049	exit_cost	0.8716
australia_china	0.8045	softwood_lumber	0.8706
payment_balanc	0.8035	energi_subsidi	0.8641
domin_posit	0.8020	state_aid	0.8629

Economic Topic Model

 http://nbviewer.jupyter.org/github/PaulLaliberte/ jupyter_notebooks/blob/master/topic_model.ipynb

Next Steps

word2vec

- Take a sentence and create a vector of word embeddings.
- Example: {england has kings and queens} \Rightarrow {0.2, 0.0, 0.4, 0.0, 0.4}.
- word2vec embeddings can be used for:
 - Similarity of sentences.
 - Finding odd-word-out.
 - Advanced classification: model.most_similar('man', 'queen') = "king."
 - Underlying probability of sentences within a topic.