4.2 Mudança de variáveis em integrais duplos

Transformações de \mathbb{R}^2 para \mathbb{R}^2 Sistema de coordenadas polares

Mudança de variáveis num integral duplo Coordenadas polares

MIEInf-2018'19 1 / 17

Transformações de \mathbb{R}^2 para \mathbb{R}^2

- $ightharpoonup D^*$ um subconjunto \mathbb{R}^2 ;
- $ightharpoonup T: D^* \longrightarrow \mathbb{R}^2$ uma aplicação bijectiva e derivável;
- ▶ $T(D^*) = D$, isto é, para cada $(u, v) \in D^*$ existe um único $(x, y) \in D$ tal que T(u, v) = (x, y).
- ightharpoonup Como é que T "deforma" D^* ?

MIEInf-2018'19 2 / 17

► [Mudança de coordenadas]

Seja $D^* \subset \mathbb{R}^n$. Diz-se que uma função (vetorial)

$$T:D^*\longrightarrow \mathbb{R}^n$$

é uma mudança de coordenadas em D^{*} se verificar as seguintes condições:

- T é de classe \mathscr{C}^1 ;
- T é injetiva (exceto eventualmente na fronteira de D^*);
- $\det JT(t) \neq 0, \ t \in D^*$.

MIEInf-2018'19 3 / 17

Propriedades

- 1. Se $T:D^*\longrightarrow \mathbb{R}^n$ é de classe \mathscr{C}^1 , injetiva e $\det JT\neq 0$ então T transforma a fronteira de D^* na fronteira de D.
- 2. Se $T:D^*\longrightarrow \mathbb{R}^n$ é uma transformação linear

$$T(x) = Ax, \qquad x \in \mathbb{R}^n$$

onde A é uma matriz real tal que $\det A \neq 0$ então T transforma paralelogramos em paralelogramos e vértices em vértices.

 $^{^1\}mathrm{A}$ transformação T é bijectiva se e só se $\det A \neq 0$ $_{\text{MIEInf-2018'19}}$

Exemplo

1. Seja $D^*=[-1,1]\times [-1,1].$ Determine a imagem de D^* por $T:D^*\longrightarrow \mathbb{R}^2$ quando

$$T(u,v) = (\frac{u+v}{2}, \frac{u-v}{2}).$$

2. Seja $D^*=[0,1]\times [0,1].$ Determine a imagem de D^* por $T:D^*\longrightarrow \mathbb{R}^2$ quando

$$T(u, v) = (u^2 - v^2, 2uv).$$

MIEInf-2018'19 5 / 17

Sistema de coordenadas polares

► [Definição]

- ullet origem do referencial O, um eixo e um ângulo;
- r é a distância a O;
- \bullet $\,\theta$ ângulo entre o eixo polar e a horizontal.

[Exemplo] Marcar os pontos de coordenadas polares $(1,\pi)$ e $(2,\pi/2)$

MIEInf-2018'19 6 / 17

Observação

- 1. A descrição de um ponto em coordenadas polares não é única. Por isso toma-se $\theta \in [\,0,2\pi\,[\,.$
- 2. Assim, no sistema de coordenadas polares

$$r \in [0, +\infty[$$
 e $\theta \in [0, 2\pi[$.

3. As coordenadas polares são indicadas para descrever regiões circulares (no plano)

MIEInf-2018'19 7 / 17

► Coordenadas cartesianas vs coordenadas polares

Coordenadas cartesianas

Coordenadas polares

- origem do referencial O e dois eixos;
- x distância na horizontal a O;
- y distância na vertical a O.

- origem do referencial O, um eixo e um ângulo;
- r é a distância a O;
- θ ângulo entre o eixo polar e a horizontal.

MIEInf-2018'19 8 / 17

Coordenadas cartesianas

$$P = (r, \theta)$$

P = (x, y)

• Da trigonometria do retângulo vem

$$\begin{cases} x = r \cos \theta & r \in [0 + \infty[\\ y = r \sin \theta & \theta \in [0, +\infty[.]] \end{cases}$$

Logo

$$x^2+y^2=(r\,\cos\theta)^2+(r\,\sin\theta)^2=r^2\Longrightarrow r=\sqrt{x^2+y^2}$$
e para $x\neq 0$
$$\frac{y}{x}=\tan\theta\Rightarrow\theta=\arctan\frac{y}{x}$$

MIEInf-2018'19 9 / 17

Assim, para passar de coordenadas polares a cartesianas

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases} \qquad \begin{aligned} r \in [0 + \infty[\\ \theta \in [0, 2\pi[\, . \,]] \end{cases}$$

Para passar de coordenadas cartesianas a polares

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = \arctan \frac{y}{x}, \quad x \neq 0 \end{cases}$$

MIEInf-2018'19 10 / 17 [Mudança de coordenadas polares para cartesianas]

Seja $T:D^*\subset\mathbb{R}^2\longrightarrow\mathbb{R}^2$ a função vetorial definida por

$$T(r,\theta) = (r\cos\theta, r\sin\theta)$$

onde $D^* = [0, +\infty[\times [0, 2\pi[$, isto é,

$$T: [0, +\infty[\times[0, 2\pi[\longrightarrow \mathbb{R}^2 \\ (r, \theta) \longmapsto T(r, \theta) = (r\cos\theta, r\sin\theta)]$$

A função T é de classe \mathscr{C}^1 e a sua matriz Jacobiana é

$$JT(r,\theta) = \begin{pmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{pmatrix}$$

e det $JT(r, \theta) = r$.

- A função T define uma mudança de coordenadas de coordenadas no plano $rO\theta$.
- A função T^{-1} define uma mudança de coordenadas de coordenadas no plano xOy.

MIEInf-2018'19 11 / 17

Exemplo

▶ Seja $D^* = [0,1] \times [0,2\pi]$. Determine a imagem de D^* por $T:D^* \longrightarrow \mathbb{R}^2$ quando

$$T(r, \theta) = (r \cos \theta, r \sin \theta).$$

MIEInf-2018'19 12 / 17

Mudança de variáveis num integral duplo

Sejam

- $ightharpoonup D^*$ e D regiões do tipo I ou II do plano uv e do plano xy, respetivamente;
- ightharpoonup T uma transformação injectiva e de classe \mathscr{C}^1 tal que
 - $\det JT(u,v) \neq 0$ para todo $(u,v) \in int(D^*)$;
 - transforma² a região D^* na região D:

$$T(u,v) = (x(u,v), y(u,v));$$

ightharpoonup f uma função contínua em D.

Então

$$\iint_D f(x,y) \, dx dy = \iint_{D^*} (f \circ T)(u,v) \, |\det JT(u,v)| \, du \, dv.$$

²Isto é, $T(D^*) = D$

MIEInf-2018'19

13 / 17

Observação

 $lackbox{ O Jacobiano, } \det JT$, mede como a transformação T deforma a área do seu domínio.

MIEInf-2018'19 14 / 17

Exemplo

Seja P o paralelogramo definido por y=2x, y=2x-2, y=x e y=x+1. Fazendo a mudança de variáveis definida x=u-v, y=2u-v calcule o integral

$$\iint_P xy \, dx \, dy.$$

MIEInf-2018'19 15 / 17

► [Caso particular: coordenadas polares]

Seja D^* uma região do plano $rO\theta$ e D uma região do plano xOy.

Considere-se a mudança de coordenadas definida por

$$T(r,\theta) = (r\cos\theta, r\sin\theta)$$

Se $T(D^*)=D$, então

$$\iint_D f(x,y) dxdy = \iint_{D^*} \mathbf{r} f(r\cos\theta, r\sin\theta) dr d\theta.$$

MIEInf-2018'19 16 / 17

Exemplo

1. Calcular

$$\iint_D (x^2 + y^2) \, dA$$

onde

$$D = \{(x, y) : 1 \le x^2 + y^2 \le 4, x \ge 0, y \ge 0\}.$$

MIEInf-2018'19 17 / 17