Álgebra Booleana

Teoremas de Múltiples Variables

$$x+y=y+x \\ x \cdot y = y \cdot x \\ x+(y+z)=(x+y)+z=x+y+z \\ x(yz)=(xy)z=xyz \\ x(y+z)=xy+xz \\ (w+x)(y+z)=wy+xy+wz+xz \\ x+xy=x \\ x+xy=x \\ x+\overline{x}y=x+y \\ \overline{x}+xy=\overline{x}+y$$

Teoremas de Morgan

$$\frac{\overline{(x+y)} = \overline{x} \cdot \overline{y}}{(x \cdot y) = \overline{x} + \overline{y}}$$

Teoremas de una Variable

AND OR

$$x \cdot 0 = 0$$
 $x + 0 = x$
 $x \cdot 1 = 1$ $x + 1 = x$
 $x \cdot x = x$ $x + x = x$
 $x \cdot \overline{x} = 0$ $x + \overline{x} = 1$

Números Binarios

Binario a Decimal

BCD (Binary-coded decimal)

4 bits representan un entero del 0 al 9

Circuitos Lógicos

	Definición	Símbolo	Compuerta
NOT	$\overline{\mathbf{x}}$	~	->
OR	x+y	~	
AND	x·y	~	
XOR	$ (x+y)(\bar{x}+\bar{y}) x\bar{y}+\bar{x}y $	x ⊕y	
NOR	$\overline{x+y} = \overline{x} \cdot \overline{y}$	x↓y	
NAND	$\overline{\mathbf{x}\cdot\mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$	x † y	
XNOR	$(x+\overline{y})(\overline{x}+y) \\ xy+\overline{x}\overline{y}$	x⊙y	

Universalidad de las Compuertas NAND y NOR

Operación	NAND	NOR
NOT	$\overline{\mathbf{A} \cdot \mathbf{A}}$	A+A
OR	$\overline{\overline{ m A}\cdot \overline{ m B}}$	$\overline{\overline{A} + B}$
AND	$\overline{\overline{ ext{A} \cdot ext{B}}}$	$\overline{\overline{\mathbf{A}}}$ + $\overline{\overline{\mathbf{B}}}$
XOR	$\overline{\overline{(\mathbf{A}\!\cdot\!\mathbf{B})}\overline{(\overline{\mathbf{A}}\!\cdot\!\mathbf{B})}}$	$\overline{(A+B)}+\overline{(\overline{A}+\overline{B})}$
NOR	$\overline{\overline{f A} \cdot f B}$	~
NAND	~	$\overline{\overline{f A}+ar{f B}}$
XNOR	$\overline{(A \cdot B) \cdot (\overline{A} \cdot \overline{B})}$	$\overline{(A+\overline{B})+(\overline{A}+B)}$

Notación de Suma

$$f(\underbrace{x,y,z}_{\text{Variables}}) = \underbrace{\sum_{\text{Valores de activación}} m(0,4,5,6)}_{\text{Valores de activación}} + \underbrace{\sum_{\text{Redundancía}} d(9,14)}_{\text{Redundancía}}$$

Mapa de Karnaugh

renglones=columnas=\	2 ^{variables}

Número de Variables es Par

Número de Variables Impar columnas= $\sqrt{2^{\text{variables}+1}}$ renglones= $\frac{\text{columnas}}{2}$

Construcción del Mapa-K

					ABCD		ABCD	
AB CD	00	01	11	10	0000	0	1000	8
00	0	1	3	2	0001	1	1001	9
01	4	5	7	6	0010	2	1010	10
11	12	13	15	14	0011	3	1011	11
10	8	9	11	10	0100	4	1100	12
10	0	<i>J</i>	11	10	0101	5	1101	13
					0110	6	1110	14
					0111	7	1111	15

Tablas de Diseño de Flip-Flops

Flip-Flop SR

$Q^n \to Q^{n+1}$	S	R
0 → 0	0	X
0 → 1	1	0
1 → 0	0	1
1 → 1	X	0

Flip-Flop JK

$Q^n \to Q^{n+1}$	J	K
0 → 0	0	X
0 → 1	1	X
1 → 0	X	1
1 → 1	X	0

Flip-Flop D

$Q^n \to Q^{n+1}$	D
0 → 0	0
0 → 1	1
1 → 0	0
1 → 1	1

Flip-Flop D

$Q^n \to Q^{n+1}$	D
0 → 0	0
0 → 1	1
1 → 0	1
1 → 1	0

7-Segment Display

DEC	BIN	SEGMENTOS
0	0000	ABCEDF
1	0001	ВС
2	0010	ABCDEG
3	0011	ABCDG
4	0100	BCFG
5	0101	ACDFG
6	0110	ACDEFG
7	0111	ABC
8	1000	ABCDEFG
9	1001	ABCFG

Sistemas Numéricos

DEC	CUA	ОСТ	HEX	BIN	Gray	COMP ₁	-COMP ₂
0	0	0	0	0000	0000	1111	00000
1	1	1	1	0001	0001	1110	11111
2	2	2	2	0010	0011	1101	11110
3	3	3	3	0011	0010	1100	11101
4	10	4	4	0100	0110	1011	11100
5	11	5	5	0101	0111	1010	11011
6	12	6	6	0110	0101	1001	11010
7	13	7	7	0111	0100	1000	11001
8	20	10	8	1000	1100	0111	11000
9	21	11	9	1001	1101	0110	10111
10	22	12	Α	1010	1111	0101	10110
11	23	13	В	1011	1110	0100	10101
12	30	14	С	1100	1010	0011	10100
13	31	15	D	1101	1011	0010	10011
14	32	16	E	1110	1001	0001	10010
15	33	17	F	1111	1000	0000	10001

Tablas de Verdad

Dos variables

AB	XOR	NOR	NAND	XNOR
00	0	1	1	1
01	1	0	1	0
10	1	0	1	0
11	0	0	0	1

Tres variables

ABC	XOR	NOR	NAND	XNOR
000	0	1	1	1
001	1	0	1	0
010	1	0	1	0
011	0	0	1	1
100	1	0	1	0
101	0	0	1	1
110	0	0	1	1
111	1	0	0	0