Write your name here Surname	Other n	ames
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Chemistry Advanced Unit 6: Chemistry Lak		I
Tuesday 27 January 2015 – Time: 1 hour 15 minutes	Afternoon	Paper Reference WCH06/01
Candidates may use a calcula	tor.	Total Marks

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 5 0 4 6 A 0 1 1 6

Turn over ▶

W	white solid, ${f A}$, has one metal cation, and an anion containing two non-metallic ele	ments
(a)	A flame test is carried out on A .	
	(i) Describe how you would carry out this flame test in the laboratory.	(3)
	(ii) A yellow flame is seen. Give the formula of the metal ion present.	(1)
(b)	Solid A dissolves in water to form a colourless solution.	
	This solution decolorises a dilute aqueous solution of iodine.	
	Dilute hydrochloric acid is added to a fresh solution of A . A very pale yellow precipitate, B , forms slowly and an acidic gas, C , is given off.	
	Gas C turns acidified sodium dichromate(VI) from orange to green.	
	(i) Identify, by name or formula, the precipitate B and the gas C .	(2)
ecipi	tate, B	
s, C		

(ii) What is the colour of a dilute aqueous solution of iodine?	(1)
(iii) Give the name of the anion in compound A .	(1)
(iv) Give the formula of compound A .	(1)
(Total for	Question 1 = 9 marks)

(2)

2	A white solid, \mathbf{D} , is formed when ethanoyl chloride is added to a concentrated solution of ammonia. The molecular formula of \mathbf{D} is C_2H_5ON .	
	When solid ${\bf D}$ is heated with excess aqueous sodium hydroxide solution, ammonia gas is given off and a solution, ${\bf E}$, is formed.	
	(a) Ammonia has a distinctive smell. Give two other tests, each of a different type, which could be used to show the presence of ammonia. Give the result of each test.	3)
Te	st 1	
Te	st 2	
	(b) Excess dilute sulfuric acid is added to solution E and an organic liquid, F , is distilled from the mixture.	
	(i) Draw a labelled diagram of the apparatus used for this distillation.	

(ii)	(ii) Addition of pure liquid F to aqueous sodium carbonate gives effervescence.	
	Identify liquid F by name or formula.	(1)
	Give the name and displayed formula of solid D .	(2)
Name Displayed		
(ii)	Write an equation for the formation of solid D from ethanoyl chloride and concentrated ammonia solution. State symbols are not required.	(1)
	(Total for Question 2 = 9 ma	rks)

3 This is an experiment to determine the oxidation number of vanadium in a purple solution, **T**, of a vanadium compound.

Preparation of solution T

Solution **T** was formed when 25.00 cm³ of a 0.100 mol dm⁻³ solution of sodium vanadate(V), NaVO₃, was reduced by heating with excess zinc and dilute sulfuric acid.

When the reduction was complete, the yellow NaVO₃ solution had turned purple.

Titration of solution T

The mixture was filtered through glass wool, directly into 50.00 cm³ of 0.0200 mol dm⁻³ potassium manganate(VII), KMnO₄, solution.

Further potassium manganate(VII) solution of the same concentration was added from a burette to this reaction mixture, which was kept at a temperature of about 80°C. The end point is reached when all the vanadium ions had been oxidized back into vanadate(V) ions by the manganate(VII) ions.

The end point occurred when a further 25.00 cm³ had been added.

(a) (i) Draw a diagram of the apparatus for carrying out the titration, while **keeping** the titration mixture at about 80°C.

(2)

(ii) What is removed from the reaction mixture by filtering through glass wool?	(1)
(iii) Suggest why the mixture is filtered directly into potassium manganate(VII) solution before carrying out the rest of the titration.	(1)
(iv) Explain why an indicator is not required for this titration.	(1)
(b) (i) Calculate the number of moles of vanadate(V) ions, VO ₃ , in 25.00 cm ³ of a 0.100 mol dm ⁻³ solution of sodium vanadate(V), NaVO ₃ .	(1)
(ii) Calculate the total volume of potassium manganate(VII) solution. Hence the total number of moles of potassium manganate(VII) used to oxidize the purple vanadium solution, T .	(2)

(iii) Complete the half equ	uation for the reduction	of manganate(VII) ions to
manganese(II) ions.		

(1)

$$MnO_4^- + \dots H^+ + \dots H_2O$$

(iv) By considering either the number of electrons transferred or by using the changes in oxidation numbers, calculate the oxidation number of vanadium in the purple solution, **T**.

You **must** show your working.

(3)

(c) In acidic solution, the vanadate ions, VO_3^- are changed into VO_2^+ . Write an ionic equation for this reaction. State symbols are not required.

(1)

(d) Some standard electrode potentials of tin and v	vanadium are given below.	
$Sn^{2+}(aq) Sn(s)$	-0.14 V	
$V^{2+}(aq) V(s)$	–1.18 V	
$V^{3+}(aq), V^{2+}(aq) \mid Pt$	-0.26 V	
$[VO^{2+}(aq) + 2H^{+}(aq)], [V^{3+}(aq) + H_2O(I)] Pt$	+0.34 V	
$[VO_2^+(aq) + 2H^+(aq)], [VO^{2+}(aq) + H_2O(I)] Pt$	+1.00 V	
Use these values to predict the lowest oxidation		
produced from VO ₂ using tin as the reducing ag	gent. Explain your reasoning.	(2)
		(-)
	(Total for Question 3 = 15 ma	rks)
	(,

BLANK PAGE

- **4** Cholesteryl benzoate was the first liquid crystal to be discovered. It can be prepared by the following procedure.
 - **Step 1** Dissolve 1.0 g of cholesterol in 3 cm³ of pyridine in a conical flask.
 - **Step 2** Add 0.40 cm³ of benzoyl chloride.
 - **Step 3** Heat the mixture on a steam bath for about 10 minutes.
 - **Step 4** Cool the mixture, and add 15 cm³ of methanol.
 - **Step 5** Collect the solid cholesteryl benzoate by suction filtration. Rinse the flask and the crude crystals with a little cold methanol.
 - **Step 6** Recrystallize the cholesteryl benzoate using ethyl ethanoate as the solvent.

Some physical data for the chemicals involved are shown below.

	Molar mass / g mol ⁻¹	Density / g cm ⁻³	Melting temperature / K	Boiling temperature / K
Cholesterol	386.7			633
Benzoyl chloride	140.6	1.21		470
Cholesteryl benzoate	490.8		423	
Pyridine	79.1			388
Ethyl ethanoate	88.1		190	350

(a) Suggest the apparatus you would use to measure the volume of benzoyl chloride.

(1)

(b) The warning symbols on a bottle of benzoyl chloride are shown below. Write the meaning of each symbol in the space provided.

(2)

(c) 1 mol of cholesterol reacts with 1 mol of benzoyl chloride to form 1 mol of cholesteryl benzoate.	
(i) Determine which reactant is in excess by calculating how many moles of cholesterol and of benzoyl chloride are used in the preparation.	(3)
(ii) Calculate the percentage yield when 0.65 g of cholesteryl benzoate is obtained.	(2)
(d) Suggest how the mixture is cooled in Step 4 .	(1)
(e) Suggest why methanol is added to the cooled mixture in Step 4 .	(1)

Describe how to carry out the recrystallization cholesteryl benzoate in Step 6 .	on to obtain pure dry crystals of	(5)
		(5)
) How would you show that the recrystallized are purer than the crude crystals obtained in		(2)
	(Total for Question 4 = 17	marks)
	TOTAL FOR PAPER = 50	MARKS
	TOTAL FOR PAPER = 50	MARKS
	TOTAL FOR PAPER = 50	MARKS

BLANK PAGE

	4	3
	č	Ę
	č	2
	Ξ	Ę
:	-	į
L	_	1
١	t	5
	a	į
-	Ì	3
-	π	ŝ
ŀ	מכת	-
		١
:	Ξ	5
	בוסטווג)
•	Ž	=
(2	_
	a	,
	4	=
Ì		-

0 (8)

	_			_				_			_			_	_			_										
(40)	(01)	He 4.0	2	20.2	Ne	neon	10	39.9	Ar	argon 18	83.8	Ā	krypton	36	131.3	Xe	xenon	24	[222]	R	radon 86		ted					
			(17)	19.0	Ŀ	fluorine	6	35.5	บ	chlorine 17	6.62	Br	bromine	35	126.9	-	iodine	53	[210]	At	astatine 85		een repor			175	Ľ	lutetium 71
			(16)	16.0	0	oxygen	∞	32.1	S	sulfur 16	0.62	Se	selenium	34	127.6	Ъ	tellurium	52	[506]	8	polonium 84		116 have b	ticated		173	ХÞ	ytterbium 70
			(15)	14.0	z	nitrogen	7	31.0	۵	phosphorus 15	74.9	As	arsenic	33	33 121.8 Sb antimony 51 51 209.0 Bi bismuth 83	Elements with atomic numbers 112-116 have been reported	but not fully authenticated		169	H	thulium 69							
			(14)	12.0	U	carbon	9	28.1	Si	silicon 14	72.6	Ge	germanium	32	118.7	Sn	tin	50	207.2	Ъ	lead 82		atomic nu	but not f		167	ᆸ	erbium 68
			(13)	10.8	В	boron	5	27.0	A	aluminium 13	69.7	Ga	gallium	31	114.8	드	indium	46	204.4	F	thallium 81		nents with			165	유	holmium 67
										(12)	65.4	Zn	zinc	30	112.4	5	cadmium	48	200.6	Η̈́	mercury 80					163	ρ	dysprosium 66
										(11)	63.5	Cu	copper	29	107.9	Ag	silver	47	197.0	Αn	gold 79	[272]	Rg	roentgenium	111	159		terbium 65
										(10)	58.7	z	nickel	28	106.4	Pd	palladium	46	195.1	£	platinum 78	[271]	Ds	darmstadtium	110	157		gadolinium 64
										(6)	58.9	ဝိ	cobalt	27	102.9	R	rhodium	45	192.2	<u>_</u>	iridium 77	[268]	Mt	9	109	152	Eu	europium 63
	1.0	H hydrogen	-							(8)	55.8	Fe	iron	26	101.1	Ru	ruthenium	44	190.2	os	osmium 76	[277]	Hs	hassium	108	150	Sm	samarium 62
<u> </u>										(2)	54.9	Mn	manganese	25	[86]	'n	molybdenum technetium ruthenium	43	186.2	Re	rhenium 75	[264]	Bh	bohrium	107	[147]	Pm	promethium 61
				mass	pol		number			(9)	52.0	ប៉	vanadium chromium manganese	24	62.6	Wo	molybdenum	42	183.8	≯	tungsten 74	[596]	Sg	seaborgium	106	144	PN	præeodymium neodymium promethium samarium europium 59 60 61 65 63
			Key	relative atomic mass	atomic symbol	name	atomic (proton) number			(2)	50.9	>	vanadium	23	92.9	å	niobium	41	180.9	Ta	tantalum 73	[292]	В	Ε	105	141	P	praseodymium 59
				relat	ato		atomic			(4)	47.9	F	titanium	22	91.2	Zr	zirconium	40	178.5		hafnium 72	[261]	Æ	nutherfordium	104	140	S	cerium 58
										(3)	45.0	Sc	scandium	21	88.9	>	yttrium	39	138.9	La*	lanthanum 57	[227]	Ac*	actinium	88		es	
ı			(2)	9.0	Be	beryllium	4	24.3	Wg	magnesium 12	40.1	S	calcium	20	97.6	Sr	strontium	38	137.3	Ba	barium 56	[526]	Ra	radium	88		* Lanthanide series	* Actinide series
			(1)	6.9	:5	lithium	3	23.0		=	39.1	¥	potassium	19	85.5	&	rubidium	37	132.9	ర	caesium 55	[223]	Ŧ	francium	87		* Lanth	* Actin

^{*} Lanthanide series

