```
import pandas as pd
import seaborn as sb
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

df=pd.read_excel('/content/LAB 4.xlsx')
df
```

| ₽ |    | No. | Outdoor_temp_x | Supply_temp_y |
|---|----|-----|----------------|---------------|
|   | 0  | 1   | 7.8            | 32.1          |
|   | 1  | 2   | 7.3            | 32.6          |
|   | 2  | 3   | 2.7            | 37.4          |
|   | 3  | 4   | 2.0            | 38.3          |
|   | 4  | 5   | 2.9            | 37.3          |
|   | 5  | 6   | 3.7            | 36.5          |
|   | 6  | 7   | 4.1            | 36.1          |
|   | 7  | 8   | 4.3            | 35.8          |
|   | 8  | 9   | 4.4            | 35.7          |
|   | 9  | 10  | 4.3            | 35.7          |
|   | 10 | 11  | 5.7            | 34.4          |
|   | 11 | 12  | 4.6            | 35.5          |
|   | 12 | 13  | 7.5            | 32.4          |
|   | 13 | 14  | 9.6            | 30.2          |

```
xmean=df.mean()['Outdoor_temp_x']
ymean=df.mean()['Supply_temp_y']
df.mean()
```

No. 7.500000 Outdoor\_temp\_x 5.064286 Supply\_temp\_y 35.000000 dtype: float64

## y=mx+c written as y=w1x+w0

```
df['y-ymean']=df['Supply_temp_y']-ymean
df['x-xmean']=df['Outdoor_temp_x']-xmean
df['(y-ymean)^2']=df['y-ymean']**2
df['(x-xmean)^2']=df['x-xmean']**2
df['(y-ymean)(x-xmean)']=df['y-ymean']*df['x-xmean']
df
```

-0.232143

0.25

0.215561

```
(y-
                                                                             (x-
                                                                                 (y-ymean)
         No. Outdoor_temp_x Supply_temp_y
                                                     x-xmean
                                            ymean
                                                             ymean)^2
                                                                        xmean)^2 (x-xmean)
      0
                                                                        7.484133 -7.933571
           1
                         7.8
                                       32.1
                                               -2.9 2.735714
                                                                  8.41
                                               0.4 0.005744
                                                                        1 000 110
df.plot.scatter(x='Outdoor_temp_x', y='Supply_temp_y', c='No.', colormap='rainbow')
```

<matplotlib.axes.\_subplots.AxesSubplot at 0x7fc2f33e5790>



x=df.drop(['No.'], axis=1) y=df['Supply\_temp\_y'] model=LinearRegression() model.fit(x, y)

y\_pred = model.predict(x) #predicted values

```
df['y-ymean']=df['Supply_temp_y']-ymean
df['x-xmean']=df['Outdoor_temp_x']-xmean
df['(y-ymean)^2']=df['y-ymean']**2
df['(x-xmean)^2']=df['x-xmean']**2
df['(y-ymean)(x-xmean)']=df['y-ymean']*df['x-xmean']
df['y_pred']=y_pred
df
```

|    | No. | Outdoor_temp_x | Supply_temp_y | y-ymean | x-xmean   | (y-ymean)^2 | (x-xmean)^2 | (y-ymean)(x-xmean) | y_pred |
|----|-----|----------------|---------------|---------|-----------|-------------|-------------|--------------------|--------|
| 0  | 1   | 7.8            | 32.1          | -2.9    | 2.735714  | 8.41        | 7.484133    | -7.933571          | 32.1   |
| 1  | 2   | 7.3            | 32.6          | -2.4    | 2.235714  | 5.76        | 4.998418    | -5.365714          | 32.6   |
| 2  | 3   | 2.7            | 37.4          | 2.4     | -2.364286 | 5.76        | 5.589847    | -5.674286          | 37.4   |
| 3  | 4   | 2.0            | 38.3          | 3.3     | -3.064286 | 10.89       | 9.389847    | -10.112143         | 38.3   |
| 4  | 5   | 2.9            | 37.3          | 2.3     | -2.164286 | 5.29        | 4.684133    | -4.977857          | 37.3   |
| 5  | 6   | 3.7            | 36.5          | 1.5     | -1.364286 | 2.25        | 1.861276    | -2.046429          | 36.5   |
| 6  | 7   | 4.1            | 36.1          | 1.1     | -0.964286 | 1.21        | 0.929847    | -1.060714          | 36.1   |
| 7  | 8   | 4.3            | 35.8          | 0.8     | -0.764286 | 0.64        | 0.584133    | -0.611429          | 35.8   |
| 8  | 9   | 4.4            | 35.7          | 0.7     | -0.664286 | 0.49        | 0.441276    | -0.465000          | 35.7   |
| 9  | 10  | 4.3            | 35.7          | 0.7     | -0.764286 | 0.49        | 0.584133    | -0.535000          | 35.7   |
| 10 | 11  | 5.7            | 34.4          | -0.6    | 0.635714  | 0.36        | 0.404133    | -0.381429          | 34.4   |
| 11 | 12  | 4.6            | 35.5          | 0.5     | -0.464286 | 0.25        | 0.215561    | -0.232143          | 35.5   |
| 12 | 13  | 7.5            | 32.4          | -2.6    | 2.435714  | 6.76        | 5.932704    | -6.332857          | 32.4   |
| 13 | 14  | 9.6            | 30.2          | -4.8    | 4.535714  | 23.04       | 20.572704   | -21.771429         | 30.2   |

```
sb.regplot(x = 'Outdoor_temp_x', y = "Supply_temp_y", data = df)
```

<matplotlib.axes.\_subplots.AxesSubplot at 0x7fc2f32e3760>



Colab paid products - Cancel contracts here