DETERMINISTIC / NON DETERMINISTIC AUTOMATA

IF 2124 TEORI BAHASA FORMAL OTOMATA

Judhi S.

Deterministic Finite Automata

A DFA is a quintuple

$$A = (Q, \Sigma, \delta, q_0, F)$$

- ullet Q is a finite set of *states*
- Σ is a *finite alphabet* (=input symbols)
- δ is a transition function $(q, a) \mapsto p$
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is a set of *final states*

Example: An automaton A that accepts

$$L = \{x01y : x, y \in \{0, 1\}^*\}$$

The automaton $A = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_1\})$ as a *transition table*:

	0	1
$\rightarrow q_0$	q_2	q_{0}
$\star q_1$	q_1	q_1
q_2	q_2	q_1

The automaton as a transition diagram:

An FA accepts a string $w = a_1 a_2 \cdots a_n$ if there is a path in the transition diagram that

- 1. Begins at a start state
- 2. Ends at an accepting state
- 3. Has sequence of labels $a_1 a_2 \cdots a_n$

Example: The FA

Start
$$q_0$$
 q_1 q_2

accepts e.g. the string 01101

• The transition function δ can be extended to $\hat{\delta}$ that operates on states and strings (as opposed to states and symbols)

Basis:
$$\widehat{\delta}(q,\epsilon) = q$$

Induction:
$$\hat{\delta}(q,xa) = \delta(\hat{\delta}(q,x),a)$$

ullet Now, fomally, the language accepted by A is

$$L(A) = \{ w : \widehat{\delta}(q_0, w) \in F \}$$

• The languages accepted by FA:s are called regular languages

Example: DFA accepting all and only strings with an even number of 0's and an even number of 1's

Tabular representation of the Automaton

	0	1
$\star \rightarrow q_0$	q_2	q_1
q_1	q_3	q_{0}
q_2	q_{0}	q_3
q_3	q_1	q_2

Example

Marble-rolling toy from p. 53 of textbook

A state is represented as sequence of three bits followed by r or a (previous input rejected or accepted)

For instance, 010a, means left, right, left, accepted

Tabular representation of DFA for the toy

А	В
100r	011r
100r	011r
101r	000a
110r	001a
110r	001a
111r	010a
010r	111r
010r	111r
011r	100a
011r	100a
000a	101a
000a	101a
001a	110a
	100r 101r 110r 110r 111r 010r 010r 011r 000a 000a

Nondeterministic Finite Automata

A NFA can be in several states at once, or, viewded another way, it can "guess" which state to go to next

Example: An automaton that accepts all and only strings ending in 01. $W = \times 01$ $\times : \infty$

Here is what happens when the NFA processes the input 00101

Formally, a NFA is a quintuple

$$A = (Q, \Sigma, \delta, q_0, F)$$

- ullet Q is a finite set of states
- \bullet Σ is a finite alphabet
- $q_0 \in Q$ is the start state
- \bullet $F \subseteq Q$ is a set of *final states*

Example: The NFA from the previous slide is

$$(\{q_0,q_1,q_2\},\{0,1\},\delta,q_0,\{q_2\})$$

where δ is the transition function

29

Extended transition function $\hat{\delta}$.

Basis:
$$\widehat{\delta}(q,\epsilon) = \{q\}$$

Induction:

$$\widehat{\delta}(q,xa) = \bigcup_{p \in \widehat{\delta}(q,x)} \delta(p,a) \leftarrow \delta$$

Example: Let's compute $\widehat{\delta}(q_0,00101)$ on the blackboard

 $\bullet\,$ Now, fomally, the language accepted by A is

$$L(A) = \{ w : \widehat{\delta}(q_0, w) \cap F \neq \emptyset \}$$

1.
$$\hat{\delta}(q_0, \epsilon) = \{q_0\}$$

2. $\hat{\delta}(q_0, 0) = \delta(q_0, 0) = \{q_0, q_1\}$
3. $\hat{\delta}(q_0, 0) = \delta(q_0, 0) \cup \delta(q_1, 0) = \{q_0, q_1\}$

$$= \{q_0, q_1\}$$

$$= \{q_0, q_1\} \cup \{q_1, q_2\} = \{q_0, q_1\}$$

$$= \{q_0, q_1\} \cup \{q_2\} = \{q_0, q_2\}$$

§ (q, xa)

Let's prove formally that the NFA

accepts the language $\{x01: x \in \Sigma^*\}$. We'll do a mutual induction on the three statements below

0.
$$w \in \Sigma^* \Rightarrow q_0 \in \widehat{\delta}(q_0, w)$$

1.
$$q_1 \in \hat{\delta}(q_0, w) \Leftrightarrow w = x_0$$

2.
$$q_2 \in \hat{\delta}(q_0, w) \Leftrightarrow w = x01$$

5)
$$\bar{\delta}(q_{0},0010) = \delta(q_{0},0) \cup \delta(q_{2},0) = \{q_{0},q_{1}\}$$

 $\cup \phi = \{q_{0},q_{1}\}$
6) $\bar{\delta}(q_{0},00101) = \delta(q_{0},1) \cup \delta(q_{1},1)$
 $= \{q_{0}\} \cup \{q_{2}\}$
 $= \{q_{0},q_{2}\} \cap F \neq \phi$

Basis: If |w| = 0 then $w = \epsilon$. Then statement (0) follows from def. For (1) and (2) both sides are false for ϵ

Induction: Assume w = xa, where $a \in \{0, 1\}$, |x| = n and statements (0)–(2) hold for x. We will show on the blackboard in class that the statements hold for xa.

Equivalence of DFA and NFA

- NFA's are usually easier to "program" in.
- Surprisingly, for any NFA N there is a DFA D, such that L(D) = L(N), and vice versa.
- ullet This involves the *subset construction*, an important example how an automaton B can be generically constructed from another automaton A.
- Given an NFA

$$N = (Q_N, \Sigma, \delta_N, q_0, F_N)$$

we will construct a DFA

$$D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$$

such that

$$L(D) = L(N)$$

.

The details of the subset construction:

•
$$Q_D = \{S : S \subseteq Q_N\}.$$

Note: $|Q_D|=2^{|Q_N|}$, although most states in Q_D are likely to be garbage.

•
$$F_D = \{S \subseteq Q_N : S \cap F_N \neq \emptyset\}$$

• For every $S \subseteq Q_N$ and $a \in \Sigma$,

$$\delta_D(S, a) = \bigcup_{p \in S} \delta_N(p, a)$$

Let's construct δ_D from the NFA on slide 27

	0	1
Ø	Ø	Ø
$\rightarrow \{q_0\}$	$\{q_0, q_1\}$	$\{q_{0}\}$
$\{q_1\}$	Ø	$\{q_{2}\}$
⋆ {q ₂ }	Ø	Ø
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\star \{q_0, q_2\}$	$\{q_0, q_1\}$	$\{q_{0}\}$
$\star \{q_1, q_2\}$	Ø	$\{q_2\}$
$\star \{q_0, q_1, q_2\}$	$\{q_0,q_1\}$	$\{q_0, q_2\}$

Note: The states of D correspond to subsets of states of N, but we could have denoted the states of D by, say, A-F just as well.

	0	1
\overline{A}	A	A
$\rightarrow B$	E	B
C	A	D
$\star D$	A	A
E	E	F
$\star F$	E	B
$\star G$	A	D
$\star H$	E	F

We can often avoid the exponential blow-up by constructing the transition table for D only for accessible states S as follows:

Basis: $S = \{q_0\}$ is accessible in D

Induction: If state S is accessible, so are the states in $\bigcup_{a\in\Sigma} \delta_D(S,a)$.

Example: The "subset" DFA with accessible states only.

Theorem 2.11: Let D be the "subset" DFA of an NFA N. Then L(D) = L(N).

Proof: First we show on an induction on |w| that

$$\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)$$

Basis: $w = \epsilon$. The claim follows from def.

Induction:

$$\begin{split} \widehat{\delta}_D(\{q_0\},xa) &\stackrel{\text{def}}{=} \delta_D(\widehat{\delta}_D(\{q_0\},x),a) \\ &\stackrel{\text{i.h.}}{=} \delta_D(\widehat{\delta}_N(q_0,x),a) \\ &\stackrel{\text{cst}}{=} \bigcup_{p \in \widehat{\delta}_N(q_0,x)} \delta_N(p,a) \\ &\stackrel{\text{def}}{=} \widehat{\delta}_N(q_0,xa) \end{split}$$

Now (why?) it follows that L(D) = L(N).

Theorem 2.12: A language L is accepted by some DFA if and only if L is accepted by some NFA.

Proof: The "if" part is Theorem 2.11.

For the "only if" part we note that any DFA can be converted to an equivalent NFA by modifying the δ_D to δ_N by the rule

• If $\delta_D(q,a) = p$, then $\delta_N(q,a) = \{p\}$.

By induction on |w| it will be shown in the tutorial that if $\hat{\delta}_D(q_0, w) = p$, then $\hat{\delta}_N(q_0, w) = \{p\}$.

The claim of the theorem follows.