

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: C03C 3/04, H05H 1/24, H01S 3/17

A1 (11) In

(11) International Publication Number:

WO 00/55101

(43) International Publication Date: 21 September 2000 (21.09.00)

(21) International Application Number:

PCT/US00/03602

- (22) International Filing Date:
- 11 February 2000 (11.02.00)
- (30) Priority Data:

09/266,956

12 March 1999 (12.03.99)

US

- (71) Applicant (for all designated States except US): CORNING INCORPORATED [US/US]; 1 Riverfront Plaza, Coming, NY 14831 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): DEJNEKA, Matthew, J. [US/US]; 2378 Ellison Road, Coming, NY 14830 (US). KHRAPKO, Rostislav [RU/RU]; 38 Vavilov Street, Moscow, 117756 (RU).
- (74) Agent: MURPHY, Edward, F.; Patent Department, SP TI 3-1, -Coming Incorporated, Corning, NY 14831 (US):

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(54) Title: SPCVD SILICATE GLASSES

(57) Abstract

These glasses incorporate a combination of F and Al₂O₃ to achieve even wider fluorescence and improved gain flatness. In addition, SPCVD incorporates large amounts of N into low-loss fiber whose high charge has an impact on rare earth behavior. The Surface Plasma Chemical Vapor Deposition (SPCVD) produces fiber preforms with high levels of F, Al₂O₃, and N. These heavily fluorinated glasses provide much broader Er³⁺ emission than Type I or Type II silica for enhanced multichannel amplifiers. SPCVD successfully fluorinates silica with losses below 5 dB/km and increased Er³⁺ emission width.

$FOR\ THE\ PURPOSES\ OF\ INFORMATION\ ONLY$

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia	-
	AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia	
ı	AT	· Austria	FR	France	LU	Luxembourg	SN	Senegal	
	ΑU	Australia	GA	Gabon	LV	Latvia	SZ.	Swaziland	w
	AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad	
ı	BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
	BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan	
	BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	
ı	BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
	BG	Bulgaria	HU	Hungary	ML	Mali	TI.	Trinidad and Tobago	
	BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine	
	BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda	
	BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
ı	CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan	
1	CF	Central African Republic	JP	Japan .	NE	Niger	VN	Viet Nam	
1	CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia	
1	CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	
	CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		•	
	СМ	Cameroon .	•	Republic of Korea	PL	Poland			
	CN	China	KR	Republic of Korea	PT	Portugal			
	CU	Cuba	KZ	Kazakstan	RO	Romania			
	CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
1	DE	Germany	LI	Liechtenstein	SD	Sudan			
	DK	Denmark	LK	Sri Lanka	SE	Sweden			
	EE	Estonia	LR	Liberia	SG	Singapore			

٤

WO 00/55101

5

10

15

20

PCT/US00/03602

SPCVD SILICATE GLASSES

TECHNICAL FIELD

This invention relates to fluorinated and nitrided silicate glasses made by Surface Plasma Chemical Vapor Deposition. The new glasses are useful for gain flattened Er³⁺ fiber amplifiers. The invention includes making rare earth doped fluorine containing glasses using plasma chemical vapor deposition.

BACKGROUND ART

Er³⁺ doped fiber amplifiers have revolutionized optical telecommunications by providing all-optical high-gain, low-noise amplification without the need for costly electronic repeaters. However, current amplifiers are not well suited for multichannel amplification due to the strong dependence of their gain as a function of wavelength. The fluorinated aluminosilicate glasses provide superior gain flatness in the 1530-1560 nm wavelength band over type I and type II silica. This enables simultaneous uniform amplification of multiple wavelengths for a 4-32x increase in bandwidth in both fiber and planar devices. This also makes high data rate communication systems practical and affordable. For example, 16 channels at 10 Gb/s (OC-192 Standard) for 160 Gb/s² or even 32 channels at 2.4 gb/s (OC-48 Standard) for 76.8 Gb/s total capacity are possible.

Recent developments show that fluorinating ${\rm Er}^{3+}$ doped ${\rm SiO}_2$ increases the fluorescence bandwidth emission at 1550 nm. The art also shows that ${\rm Al}_2{\rm O}_3$ additions increase the fluorescence line width and solubility of ${\rm Er}^{3+}$.

25

30

DISCLOSURE OF INVENTION

Our development incorporates a combination of fluorine, Al₂O₃ and/or Ga₂O₃ to achieve even wider Er³⁺ fluorescence and improved gain flatness in the 1550 nm telecom window. In addition, SPCVD can incorporate large amounts of F, Al₂O₃ and N into low-loss fiber all of which impact rare earth behavior. The SPCVD produces fiber preforms with high levels of fluorine, alumina, and nitrogen. These heavily fluorinated glasses provide much

20

25

30

)

broader Er³⁺ emission than Type I or Type II silica for enhanced multichannel amplifiers. SPCVD successfully fluorinates silica with losses below 5 dB/km and increased Er³⁺ emission width.

The rare earth doped glass composition of this invention comprise:

5	Component	Weight Percent
	SiO ₂	0-95
	GeO ₂	0-95
	Al ₂ O ₃	0-15
	Ga ₂ O ₃	0-15
10	F	2-10
	N	0-10
	R ₂ O ₃	0.01-2.0

wherein $SiO_2 + GeO_2$ range from 80-95 wt.%, $Al_2O_3 + Ga_2O_3$ range from 5-15 wt.%, F range from 2 to 10 wt.% and R_2O_3 is a rare earth oxide. The sums such as $SiO_2 + GeO_2$ are fully interchangeable. Furthermore, each of SiO_2 and GeO_2 can range from 0-95% as long as the total $SiO_2 + GeO_2$ is between 80 and 95%.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a graph showing the effect of our invention on Er³⁺ fluorescence.

Fig. 2 is a graph showing microprobe compositional data of our fluorinated and nitrated preform.

BEST MODE OF CARRYING OUT INVENTION

Most attempts to fluorine dope alumino silicate soot made by CVD lead to a stripping of Al_2O_3 and GeO_2 due to the high vapor pressures of AlF_3 and GeF_4 . These attempts can not achieve F dopant levels above about 2 wt%F. However, SPCVD allows for simultaneous co-doping of high levels of fluorine, up to 5 wt%, and Al_2O_3 . This achieves an even greater fluorescence line width and increased rare earth solubility. The SPCVD process deposits dense glass and not soot. Unlike outside vapor deposition (OVD), this prevents the

10

15

20

25

30

J

loss of volatile components such as fluorine. The plasma environment creates a unique chemistry by ionizing the feed stock materials in the plasma. SPCVD also allows for the incorporation of nitrogen whose effects on Er³⁺ provides an advantage by placing the rare earth in a high field environment.

Wide Er fluorescence emission up to 55 nm FWHM has been achieved in crucible melted glasses, but crucible melting has not produced fibers with losses below 100 dB/km. SPCVD makes high fluorine content glasses with high purity and low loss (<5 dB/km) thereby achieving the width of a crucible melted glass with the low-loss of CVD glass.

 ${\rm SiO_2}$ is the main component of the glass to maintain compatibility with existing fibers and processing. Al₂O₃ additions of greater than 3 wt% considerably broaden the Er³⁺ emission, while F additions fill in the 1540 nm region and further broaden the Er³⁺ emission envelope.

Preferably, the amount of F plus N ranges from 2.5 to 5.0 wt.%. The preferred embodiment contemplates only F, only N or the presence of both F and N.

Doping the glasses with a rare earth metal is desirable for enhancing the emission and absorption spectra, as discussed above. Therefore, the glasses of the present invention include an oxide of a rare earth element, such as Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu. Preferably, the rare earth element is Er, Pr, Eu, or Dy. Even more preferably, the rare earth element is Er (e.g., Er₂O₃).

The glasses also may contain various other components. For example, the glasses may further include 0-5 wt.% of other oxides, such as Ta_2O_5 , B_2O_3 , SnO, ZrO_2 , P_2O_5 , Sb_2O_5 , As_2O_3 or Bi_2O_3 .

All optical amplifiers, and particularly erbium doped fiber amplifiers have experienced explosive deployment in fiber optic telecommunication systems because of the well recognized advantages that these types of devices have over repeater type amplification schemes. For example, the erbium doped fiber amplifier (EDFA) conveniently operates in the preferred 1550 nm third telecommunications spectral window, has high polarization-insensitive gain, low cross talk between signals at different wavelengths, good saturation output

power, and a noise figure close to the fundamental quantum limit. The excellent noise characteristics potentially allow hundreds of amplifiers to be incorporated along the length of a fiber telecommunications link which could then span thousands of kilometers. Optical amplifiers, and particularly EDFAs in contrast to electronic repeaters, are also transparent to data rate, signal format and wavelength over a limited range, making them especially useful for wavelength multiplexed communication systems that simultaneously transmit a large number of signals using different wavelength bands for each signal.

10 Example I

5

15

20

30

Fig. 1 shows the normalized Er^{3+} emission intensity as a function of wavelength. The emission spectra of Er^{3+} in pure SiO_2 (curve I) is the narrowest. The additions of fluorine (curve II) and Al_2O_3 (curve III) significantly broaden the emission from 23 nm to 28 and 44 nm FWHM respectively.

Losses of less than 2 dB/km have been achieved in both systems. By combining F and Al₂O₃, the width is further increased to 50 nm (curve IV). By adding appropriate glass modifiers such as CaO and Ta₂O₅ or K₂O and Sb₂O₃ emission FWHM in excess of 55 nm can be achieved. Curve V shows the Er^{3+} fluorescence from a CaO-Ta₂O₅-Al₂O₃-SiO₂ glass

Fig. 2 shows that F, N and Er can be simultaneously doped into the preform. The N^{3-} anion has a high charge that significantly alters the amplification characteristics. The combination of F and N also are beneficial since one F- and one N^{3-} can substitute for two O^{2-} to form a pseudo-oxide structure.

25 Example II (Prior Art)

 Al_2O_3 doping is currently used in Type II EDFA to both increase the Er_{3+} solubility and gain flatness over pure SiO_2 . However, these compositions can only yield a 40 nm band gain ripple of 30% and are prone to devitrification at high levels of Al_2O_3 , greater than a few wt%. The inventive glasses yield a 40 nm band gain ripple of less than 20% and are therefor more desirable for multichannel EDFA's.

10

15

20

25

30

۷

Fluoride glasses such as ZBLAN (53ZrF₄-20BaF₂-4LaF₃-3AlF₃-20NaF in mole %) are also known for their gain flatness and low phonon energy. They must be pumped at 1480 nm due to upconversion, and as a result of the 1480 pumping, they have increased noise. They also are extremely difficult to fiberize, are not fusion sliceable, are prone to devitrification and have poor durability.

These glasses provide a means for producing low-loss rare earth doped fiber with improved gain flatness for increased channel capacity. Fiber produced by this method is fusion spliceable, compatible with existing draw methods and applicable to both fiber and planar amplifiers.

The invention includes making such rare earth doped surface plasma chemical vapor deposition fluorine doped glasses by plasma depositing dense high purity glass wherein loss of volatile glass components is inhibited. A plasma is created and the plasma environment is utilized to ionize the glass component feed stock materials which react and form a dense glass deposit while inhibiting the loss of volatile components, such as fluorine. In addition to providing rare earth doped glasses that have beneficial fluorine levels and fluorine glass compositions since the volatile loss of the volatile fluorine component is inhibited. The invention also includes incorporating nitrogen into such glasses by nitrogen doping using the reactive plasma environment. The making of such rare earth doped surface plasma chemical vapor deposited fluorine doped glasses includes the making of optical waveguide amplifier glass by plasma chemical deposition of rare earth fluorine doped light amplication glass by inhibiting the volatile loss of volatile glass components such as fluorine. Such plasma deposition includes providing beneficial high purity fluorine doped oxide glass chemistry which results in beneficial optical amplification properties such as low loss < 100dB/km; ≤ 5dB/km in the 1550 nm wavelength region and broad Er³⁺ emission spectra with FWHMs greater than 44 nm and 40 nm Er³⁺ band gain ripple less than 20%.

In addition to these embodiments, persons skilled in the art can see that numerous modifications and changes may be made to the above invention without departing from the intended spirit and scope thereof.

WE CLAIM:

30

1. A rare earth doped surface plasma chemical vapor deposition fluorine doped glass comprising:

5	Component	Weight Percent
	SiO ₂	0-95
	GeO ₂	0-95
	Al ₂ O ₃	0-15
	Ga ₂ O ₃	0-15
10	F	2-10
	N	0-10
	R ₂ O ₃	0.01-2.0

with a $SiO_2 + GeO_2$ range from 80-95 wt.%, an $AI_2O_3 + Ga_2O_3$ range from 5-15 wt.%, and R_2O_3 is a rare earth oxide, wherein the fluorine doped glass is a high purity deposited dense glass in which volatile loss of fluorine is prevented.

- 2. A glass according to claim 1 wherein F and N range from 2.5 to 5.0 wt.%.
- 20 3. A glass according to claim 1 wherein said glass has a 1550 nm loss < 100 dB/km.
 - 4. A glass according to claim 1 containing at least 3 weight percent Al₂O₃.
- A glass according to claim 1 wherein R₂O₃ is a rare earth oxide of Y, La,
 Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu.
 - 6. A glass according to claim 1 wherein R is a rare earth oxide of Er, Pr, Eu or Dy.
 - 7. A glass according to claim 1 wherein R_2O_3 is Er_2O_3 .

5.

25

- 8. A glass fiber suitable for use as an optical fiber amplifier comprising the glass of claim 3.
- 9. An optical amplifying device comprising the glass fiber of claim 8.
- 10. An electrical optical device made from the glass of claim 1.
- 11. A rare earth erbium and fluorine doped surface plasma chemical vapor deposition glass comprising:

10	Component	Weight Percent
	SiO ₂	0-95
	GeO ₂	0-95
	Al ₂ O ₃	3-15
	Ga ₂ O ₃	0-12
15	F	2-10
	N	. 0-10
	R_2O_3	0.01-2.0

with a SiO₂ + GeO₂ range from 80-95 wt.%, an Al₂O₃ + Ga₂O₃ range from 5-15 wt.%, and R₂O₃ is Er₂O₃, wherein the glass is a high purity deposited dense fluorinated glass formed from an ionizing plasma wherein a loss of volatile components is prevented.

- 12. A glass according to claim 1 wherein said glass has a 1550 nm loss < 100 dB/km and an Er³⁺ emission spectra with a FWHM > 44 nm.
- 13. A glass according to claim 1 wherein said glass has a 1550 nm loss < 5 dB/km and an Er^{3+} emission spectra with a FWHM \geq 50 nm.
- 14. A glass according to claim 1 wherein said glass has a 1550 nm loss < 5
 30 dB/km and an Er³⁺ emission spectra with a FWHM ≥ 55 nm.
 - 15. A glass according to claim 1 wherein said glass has a 40 nm Er³⁺ band gain ripple less than 20%.

- 16. A glass according to claim 13 wherein said glass has a 40 nm Er³⁺ band gain ripple less than 20%.
- 5 17. A glass according to claim 1 wherein said glass is simultaneously doped with F, N and Er with a F and a N³⁻ substituting for oxygen to form a pseudo-oxide glass structure.
 - 18. An optical amplifier comprising a glass of claim 16.
 - 19. An optical amplifier comprising a glass of claim 11, said glass having a 1550 nm loss < 5 dB/km, an Er³⁺ emmission spectra with a FWHM > 44 nm and a 40 nm Er³⁺ band gain ripple less than 20%.
- 15 20. A method of making a rare earth doped glass that includes providing rare earth dopant feedstocks and fluorine feedstocks, forming a reaction plasm, ionizing the feedstocks in the plasma and depositing a dense rare earth fluorine doped glass wherein the loss of volatile fluorine is prevented.
- 21. A method of making a rare earth doped optical waveguide amplifier glass with a broad Er³⁺ emission spectra FWHM > 44nm and 1550 nm loss < 100 dB/km, that includes providing rare earth dopant feedstocks and fluorine feedstocks, forming a reaction plasm, ionizing the feedstocks in the plasma and depositing a dense rare earth fluorine doped glass wherein the loss of volatile fluorine is prevented.

WAVELENGTH (nm)

FIG. 2

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/03602

A. CLASSIFICATION OF SUBJECT MATTER				
IPC(7) :C03C 3/04; H05H 1/24; H01S 3/17				
	US CL: Please See Extra Sheet. According to International Patent Classification (IPC) or to both national classification and IPC			
	LDS SEARCHED	nadonar (Cassification and 11 C	
	documentation searched (classification system follower	t by class	ification symbols)	
			-	
0.3.	359/341; 427/569, 576, 578, 579, 163.2; 501/37, 42	2, 43, 34,	37, 64, 66, 73	
Documenta	tion searched other than minimum documentation to the	extent tha	at such documents are included	in the fields searched
	·			
Electronic o	data base consulted during the international search (na	me of dat	a base and, where practicabl	e, search terms used)
G P00	WINDS CONCIDENCE TO BE DELEVINE			·
C. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap	propriate,	of the relevant passages	Relevant to claim No.
	TIO 5 700 206 + (DIGITALION TO C		FT077 1000	4.0
Α	US 5,798,306 A (DICKINSON, JR) 2:	AUG	UST 1998.	1-19
٨	WO 00/50004 A (CITTL of al.) 20 DEC	יכונים בייני	n 1009	1 10
Α	WO 98/58884 A (CHU et al.) 30 DEC	EMBE	K 1998.	1-19
A	JP 04092825 A (TANAKA et al.) 25 M	AADCE	1 1002	1-21
A.	11 0-032023 A (TANAKA C. al.) 23 I	AARCI.	1 1772.	1-21
	_			
	•			
			•	
:	·			
				.:
Further documents are listed in the continuation of Box C. See patent family annex.				
• Sp	pocial categories of cited documents:	<u></u>	later document published after the in	ternational filing date or priority
'A' do	ocument defining the general state of the art which is not considered		date and not in conflict with the app the principle or theory underlying the	plication but cited to understand
	be of particular relevance	•x•	document of particular relevance; the	
	rlier document published on or after the international filing date scument which may throw doubts on priority claim(s) or which is		considered novel or cannot be considered when the document is taken alone	
cit	ted to establish the publication date of another citation or other ecial reason (as specified)	· Y•	document of particular relevance; the	he claimed invention cannot be
O document referring to an oral disclosure, use, exhibition or other			considered to involve an inventive	e step when the document is
	cans		being obvious to a person skilled in	the art
P document published prior to the international filing date but later than '&' document member of the same patent family the priority date claimed			nt funily	
Date of the	actual completion of the international search	Date of 1	mailing of the international se	earch report
10 MAY 2000 06 JUN 2000				
Name and	mailing address of the ISA/US oner of Patents and Trademarks	Authoriz	ed officer	DEBORAH THOMAS DUT
Box PCT		DEBORAH I HOMASIZE DAVID SAMPLE PARALEGAL SPECIALIST		
Washington, D.C. 20231 Facsimile No. (703) 305-3230		Telephor		

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/03602

A. CLASSIFICATION OF SUBJECT MATTER: US CL :	
359/341; 427/569, 576, 578, 579, 163.2; 501/37, 42, 43, 54, 57, 64; 68, 73	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потигр.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.