

Quantum Error Correction for Quantum Computing and Networking

ARIZONA PHOTONICS DAYS
Jan. 25-27, 2023
Tucson, Arizona

NARAYANAN RENGASWAMY

DEPT. OF ELECTRICAL AND COMPUTER ENGINEERING

UNIVERSITY OF ARIZONA

Quantum Technologies

Superconducting

Trapped Ions

Photonic

Quantum Applications

Networking

Sensing

How to SCALE in the presence of noise?

World Challenges

- Green energy
- Drug discovery
- Digital security

Computing

Networking

Qubits are very fragile

Quantum error correction to the rescue!

Sophisticated math to solve quantum noise!

United
We Stand,
Divided
We Fall!

Error Correction in our Cellphones

Quantum Error Correction (QEC)

QECC: Quantum Error Correcting Code

QEC: Universal Fault-Tolerance

Universal set of gates

Noisy

QECC: Quantum Error Correcting Code

QEC: Syndrome Measurement

Universal set of gates

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$|00\rangle \left\{ |\psi\rangle = \alpha |000\rangle + \beta |111\rangle$$

$$|\eta\rangle = \alpha |100\rangle + \beta |011\rangle$$

Measure the stabilizer generators $S_1 = ZZI$ and $S_2 = IZZ$:

The Surface Code [[$O(L^2)$, 1, L]]

- \square vertex checks (H_X)
- \square plaquette checks (H_Z)

https://arxiv.org/abs/0905.0531

What are "Good" Quantum Codes?

- \square vertex checks (H_X)
- \square plaquette checks (H_Z)

Topological Codes	Optimal QLDPC Codes
$[[n,1,O(\sqrt{n})]]$	[[n, O(n), O(n)]]
High error thresholds	Promising thresholds
~ Linear-time decoder	Linear-time decoder
Logical gates done	Very little research
Nearest-neighbor	Long-range interactions
Not scalable; large overhead	Scalable with constant overhead???

QLDPC: Quantum Low-Density Parity-Check

QEC for Distributed Quantum Computing

Figure 1 | Quantum architectures. Left: a monolithic grid of qubits with neighbours directly connected to enable high fidelity two-qubit operations. (layout from ref. 5.) Such a structure is a plausible goal for some systems, for example, specific superconducting devices²³. Right: For other nascent quantum technologies the network paradigm is appropriate. A single nitrogen-vacancy (NV) centre in diamond, with its electron spin and associated nuclear spin(s)²⁴, would constitute a cell. A small ion trap holding a modest number of ions^{10,25} is another example. Noisy network links with error rates \geq 10% are acceptable. For photonic links this goal is realistic given imperfections like photon loss and instabilities in path lengths or interaction strengths. Similarly, with solid state 'wires' formed by spin chains²⁶, noisy entanglement distribution of this kind is a reasonable goal²⁷.

N. Nickerson, Y. Li, and S. Benjamin, "Topological quantum computing with a very noisy network and local error rates approaching one percent," in Nat. Commun. 4, 1756 (2013)

QEC for Quantum Networks (Repeaters)

Thank you!

narayananr@arizona.edu

https://ece.arizona.edu