ECON 6170 Section 9

TA: Patrick Ferguson

November 1, 2024

Implicit Function Theorem

Theorem 6 (Implicit function theorem). *Suppose* $f: X \times Y \subseteq \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}^m$ *is* C^1 *and* $X \times Y$ *is open.*¹ *Let* $(x_0, y_0) \in X \times Y$ *be a point at which*

- (i) $f(x_0, y_0) = 0$;
- (ii) $D_y f(x_0, y_0)$ is invertible.

Then:

- (i) There exists $B_{\varepsilon_x}(x_0) \subseteq X$ and $B_{\varepsilon_y}(y_0) \subseteq Y$ such that for all $x \in B_{\varepsilon_x}(x_0)$ there exists a unique $y \in B_{\varepsilon_y}(y_0)$ such that f(x,y) = 0.
- (ii) So there exists a function $g: B_{\varepsilon_x}(x_0) \to B_{\varepsilon_y}(y_0)$ that satisfies
 - (a) $g(x_0) = y_0$;
 - (b) f(x,g(x)) = 0 for all $x \in B_{\varepsilon_x}(x_0)$;
 - (c) g is C^1 , with derivative

$$Dg(x) = -(D_y f(x, g(x)))^{-1} D_x f(x, g(x))$$

Example 1. Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ is given by $f(x,y) := x - y^2$. The level set $\{(x,y) \mid f(x,y) = 0\}$ is shown below. The graph of the implicit function $g: B_{\varepsilon_x}(x_0) \to B_{\varepsilon_y}(y_0)$ is given by the red subset of the level set. Note that g maps *into* but not necessarily *onto* $B_{\varepsilon_y}(y_0)$, that is, there may be some $y \in B_{\varepsilon_y}(y_0)$ that are not in the range $g[B_{\varepsilon_x}(x_0)]$.

¹To be explicit, we mean $X \subseteq \mathbb{R}^d$ and $Y \subseteq \mathbb{R}^m$.

Note also that if we took $x_0=y_0=0$, then $D_y f(0,0)=\frac{\partial f(0,0)}{\partial y}=-2\cdot 0=0$, violating hypothesis (ii). Indeed, for any $\varepsilon_x>0$, any function defined on $B_{\varepsilon_x}(0)$ must violate f(x,g(x))=0 for x<0. Similarly, at the graphed $(x_0,y_0)\gg 0$, we must choose ε_x small enough that it excludes x<0.

Exercise 19. Prove the inverse function theorem: Suppose $f: X \subseteq \mathbb{R}^d \to Y \subseteq \mathbb{R}^d$ is C^1 , $x_0 \in \operatorname{int} X$, and define $y_0 := f(x_0)$. If

(i) $Df(x_0)$ is invertible.

Then:

- (i) There exists $B_{\varepsilon_x}(x_0) \subseteq X$ and $B_{\varepsilon_y}(y_0) \subseteq Y$ such that for all $y \in B_{\varepsilon_y}(y_0)$ there exists a unique $x \in B_{\varepsilon_x}(x_0)$ such that f(x) = y.
- (ii) So there exists a function $g: B_{\varepsilon_x}(x_0) \to B_{\varepsilon_y}(y_0)$ that satisfies
 - (a) $(f \circ g)(y) = y$ for all $y \in B_{\varepsilon_y}(y_0)$;
 - (b) g is C^1 , with derivative

$$Dg(y) = (Df(g(y)))^{-1}$$

Write

$$F(x,y) := y - f(x)$$

Then F is C^1 , $F(x_0, y_0) = 0$, and $D_x F(x_0, y_0) = -Df(x_0)$ is invertible. It is WLOG to assume that $X \times Y$ is open.²

It follows that we can apply the implicit function theorem to obtain:

- (i) There exists $B_{\varepsilon_y}(y_0) \subseteq Y$ and $B_{\varepsilon_x}(x_0) \subseteq X$ such that for all $y \in B_{\varepsilon_y}(y_0)$ there exists a unique $x \in B_{\varepsilon_x}(x_0)$ such that F(x,y) = 0. That is, y = f(x).
- (ii) So there exists a function $g: B_{\varepsilon_y}(y_0) \to B_{\varepsilon_x}(x_0)$ that satisfies
 - (a) $g(y_0) = x_0$;
 - (b) F(g(y), y) = 0 for all $y \in B_{\varepsilon_y}(y_0)$; that is, $y = (f \circ g)(y)$;

²Because $x_0 \in \text{int } X$, Y can be extended to \mathbb{R}^d , and the Cartesian product of open sets is open.

(c) g is C^1 , with derivative

$$Dg(y) = -(D_x F(g(y), y))^{-1} D_y F(g(y), y)$$

$$= -(D_x (y - f(g(y))))^{-1} D_y (y - f(g(y)))$$

$$= -(-Df(g(y)))^{-1} I$$

$$= (Df(g(y)))^{-1}$$

Static Optimisation

Theorem 3 (Necessity). Let $f : \mathbb{R}^d \to \mathbb{R}$, $h_k : \mathbb{R}^d \to \mathbb{R}$, and $g_j : \mathbb{R}^d \to \mathbb{R}$ be C^1 for each $k \in \{1, ..., K\}$ and each $j \in \{1, ..., J\}$. Suppose x^* is a local maximum of f on the constraint set

$$\Gamma := \left\{ x \in \mathbb{R}^d \mid h_k(x) = 0 \text{ for } k = 1, \dots, K \text{ and } g_j(x) \geq 0 \text{ for } j = 1, \dots, J \right\}$$

Let $E \subseteq \{1, ..., J\}$ denote the set of binding constraints at x^* and let $g_E := (g_i)_{i \in E}$. Suppose that

$$\operatorname{rank}\left(D\left[\begin{array}{c}h\left(x^{*}\right)\\g_{E}\left(x^{*}\right)\end{array}\right]\right) = K + |E|. \tag{9}$$

Then, there exists $\mu^* \in \mathbb{R}^K$ and $\lambda^* \in \mathbb{R}^J$ such that

$$\lambda_i^* \ge 0 \text{ for all } j \in \{1, \dots, J\}, \tag{10}$$

$$\lambda_{i}^{*}g_{i}(x^{*}) = 0 \text{ for all } i \in \{1, \dots, J\},$$
 (11)

$$\nabla f(x^*) + \sum_{k=1}^{K} \mu_k^* \nabla h_k(x^*) + \sum_{j=1}^{J} \lambda_j^* \nabla g_j(x^*) = 0^{\mathsf{T}}.$$
 (12)

Section Exercise 1. Show that Theorems 1 and 2 are special cases of Theorem 3.

Theorem 1 is the case of only (*K*) equality constraints. The constraint qualification (9) then becomes

$$\operatorname{rank} Dh(x^*) = K$$

and the conclusion omits (10) and (11), and changes (12) to

$$\nabla f(x^*) + \sum_{k=1}^{K} \mu_k^* \nabla h_k(x^*) = 0^{\mathsf{T}}$$

Theorem 2 is the case of only (*J*) inequality constraints. The constraint qualification then becomes

$$\operatorname{rank} Dg_E(x^*) = |E|$$

The nonnegativity constraints (10) and complementary slackness conditions (11) are unchanged. The FOC becomes

$$\nabla f(x^*) + \sum_{i=1}^J \lambda_j^* \nabla g_j(x^*) = 0^\mathsf{T}$$

Section Exercise 2 (From MT3 2023 Q3). Let $f : \mathbb{R}^d \to \mathbb{R}$ and $g_j : \mathbb{R}^d \to \mathbb{R}$ for j = 1, ..., J all be C^1 . Consider the following problem:

$$\max_{x \in X} f(x)$$
 st $g_j(x) \ge 0$ for $j = 1, \dots, J$

Suppose x^* is a local maximum that satisfies the constraints.

- (i) Suppose $g_1(\cdot) = g_j(\cdot)$ for j = 2, ..., J. Can the constraint qualification be satisfied? If not, what can we do?
 - Not in general. It follows from the question that $Dg_1(\cdot) = Dg_j(\cdot)$ for j = 2, ..., J. Moreover either all the constraints bind or none binds. It follows that if $J \ge 2$ and the constraints bind, rank $Dg_E(x^*) = 1 < J = |E|$. If we remove all but the first constraint, the optimisation problem is unchanged, but the constraint qualification can be satisfied.
- (ii) Suppose $g_1(\cdot) = -g_2(\cdot)$. Can the constraint qualification be satisfied? If not, what can we do? No. We know that $Dg_1(\cdot) = -Dg_2(\cdot)$. Moreover, $g_1(x^*) \ge 0$ and $-g_1(x^*) \ge 0$ imply that $g_1(x^*) = 0$, so both constraints bind. It follows that rank $Dg_E(x^*) \le |E| 1 < |E|$. We can resolve this by replacing the two inequality constraints with one equality constraint, $g_1(x) = 0$, and using the Theorem of Lagrange.

Section Exercise 3.

(i) Specialise Theorem 3 to the unconstrained case.

Proposition 2. Let $f: \mathbb{R}^d \to \mathbb{R}$ be C^1 . Suppose x^* is a local maximum of f on \mathbb{R}^d . Then,

$$\nabla f\left(x^{*}\right) = 0^{\mathsf{T}}.$$

- (ii) Let $X \subseteq \mathbb{R}^d$ be open and define $f|_X : X \to \mathbb{R}$ by $f|_X(x) = x$ for all $x \in X$. Show that $x^* \in X$ is a local maximum of $f|_X$ on X iff it is a local maximum of f on \mathbb{R}^d .
 - If X is open and $x^* \in X$, then there exists a sufficiently small $\varepsilon > 0$ such that $B := B_{\varepsilon}(x^*) \subseteq X$. Then x^* is a local maximum of $f|_X$ on $X \iff f(x^*) \ge f(x)$ for all $x \in B_{\delta}(x^*) \cap X \iff f(x^*) \ge f(x)$ for all $x \in B_{\delta}(x^*)$ with $\delta < \varepsilon \iff x^*$ is a local maximum of f on \mathbb{R}^d .
- (iii) Show that it suffices in Proposition 1, that f be continuously differentiable at x^* (as opposed to everywhere in \mathbb{R}^d).

Note that the solution to part (ii) implies that the behaviour of f outside of $B_{\delta}(x^*)$ is irrelevant to whether x^* is a local maximum of f. But δ is an arbitrary positive real number. Suppose it were necessary that f be C^1 at $x \neq x^*$. Then choose $\delta < \|x - x^*\|$ to obtain a contradiction.

Exercise 1. Consider the equality-constrained problem from class notes:

$$\max_{x \in \mathbb{R}^d} f(x) \text{ st } h(x) = 0 \tag{1}$$

where $f: \mathbb{R}^d \to \mathbb{R}$ and $h_k: \mathbb{R}^d \to \mathbb{R}$, k = 1, ..., K are all C^1 . Define $\mathcal{L}: \mathbb{R}^d \times \mathbb{R}^K \to \mathbb{R}$ by

$$\mathcal{L}(x,\mu) := f(x) + \sum_{k=1}^{K} \mu_k h_k(x)$$

Let

$$S := \{(x, \mu) \mid \nabla \mathcal{L}(x, \mu) = 0\}$$

and define S_X as the projection of S onto the first d components of S, i.e.,

$$S_X := \{x \mid \text{ there exists } \mu \text{ such that } (x, \mu) \in S\}$$

Now consider the following problem:

$$\max_{x \in S_X} f(x) \tag{2}$$

(i) Show that if problem (1) attains a global maximum at $x^* \in \mathbb{R}^d$ and the constraint qualification holds at x^* , then a x° that solves (2) is also a global maximum of (1).

If problem (1) attains a global maximum at x^* and the constraint qualification holds, then by the Theorem of Lagrange, there exists $\mu^* \in \mathbb{R}^K$ such that

$$\nabla f(x^*) + \sum_{k=1}^K \mu_k^* \cdot \nabla h_k(x^*) = 0$$

But the left-hand side is just $\nabla_x \mathcal{L}(x^*, \mu^*)$. Moreover, the constraints imply $\nabla_\mu \mathcal{L}(x^*, \mu^*) = h(x^*) = 0$. Taken together, we have

$$\nabla \mathcal{L}(x^*, \mu^*) = 0$$

So $(x^*, \mu^*) \in S$ and $x^* \in S_X$. It follows that $f(x^\circ) \ge f(x^*)$. Moreover, $x^\circ \in S_X$ implies that there exists μ° such that $\nabla \mathcal{L}(x^\circ, \mu^\circ) = 0$. But $\nabla_\mu \mathcal{L}(x^\circ, \mu^\circ) = 0$ implies that x° satisfies the constraints. Therefore, x° is also a global maximiser for problem (1).

(ii) Show that (2) is equivalent to

$$\max_{(x,\mu)\in\mathbb{R}^d\times\mathbb{R}^K} \mathcal{L}(x,\mu) \tag{3}$$

if the latter has a solution.³

Let (x', μ') solve (3). Then Proposition 1 on unconstrained optimisation implies that $(x', \mu') \in S$, so $x' \in S_X$. Moreover, by definition of (x', μ') ,

$$\mathcal{L}(x',\mu') = f(x') + \sum \mu'_k h_k(x') \ge f(x^\circ) + \sum \mu^\circ_k h_k(x^\circ) = \mathcal{L}(x^\circ,\mu^\circ)$$

where x° maximises (2). But $x', x^{\circ} \in S_X$ implies $h(x') = h(x^{\circ}) = 0$.It follows that

$$f(x') \ge f(x^\circ)$$

so x' is also a solution to (2). Conversely, $x' \in S_X$ and the definition of x° imply

$$f(x^\circ) \ge f(x')$$

Moreover, we know that $h(x^{\circ}) = h(x') = 0$ so

$$\mathcal{L}(x^{\circ}, \mu^{\circ}) = f(x^{\circ}) + \sum \mu_k^{\circ} h_k(x^{\circ}) \ge f(x') + \sum \mu_k' h_k(x') = \mathcal{L}(x', \mu')$$

for any μ° . It follows that (x°, μ°) solves (3).

³The text in red has been added—the result does not go through in its absence. Thank you to Wanxi for pointing this out.

Exercise 2. Consider the problem

$$\max_{x,y} f(x,y) \text{ st } h(x,y) = 0$$

where f(x,y) := -y and $h(x,y) := y^3 - x^2$. Show that the unique solution to the problem is at 0; that the constraint qualification is violated at 0; and that there does not exist $\mu \in \mathbb{R}$ satisfying

$$\nabla f(x^*) + \sum_{k=1}^K \mu_k^* \nabla h_k(x^*) = 0$$

The equation $y^3 - x^2 = 0$ is equivalent to $y^3 = x^2$. In particular, this implies that $y \ge 0$. Maximising -y is equivalent to minimising y, which is achieved by choosing y = 0. The constraint then implies that the optimal $x = y^{3/2} = 0$.

$$Dh(0,0) = \begin{bmatrix} \frac{\partial h(0,0)}{\partial x} & \frac{\partial h(0,0)}{\partial y} \end{bmatrix} = \begin{bmatrix} -2 \cdot 0 & 3 \cdot 0^2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

and the constraint qualification is that rank Dh(x,y)=1. The rank of a matrix is the maximal number of its rows (or columns) that can comprise a linearly independent set. Here, we have one row, which is a zero vector, and the set $\{0\}$ is not linearly independent. Therefore rank Dh(x,y)=0, violating the constraint qualification.

Note also that for any $\mu \in \mathbb{R}$,

$$\nabla f(0,0) + \mu \nabla h(0,0) = \begin{bmatrix} 0 & -1 \end{bmatrix} + \mu \begin{bmatrix} 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \end{bmatrix}$$