Bio393: Genetic Analysis

Recombination and mapping

William Bateson

William Bateson

Reginald Punnett William Bateson

Reginald Punnett William Bateson

Bateson and Punnett's pea crosses

Phenotype	Expected number	Expected ratio
Purple long	215	9
Purple round	71	3
Red long	71	3
red round	24	1

P= purple flower

p= red flower

L= long pollen

I= short pollen

Bateson and Punnett's pea crosses

Phenotype	Expected number	Expected ratio
Purple long	215	9
Purple round	71	3
Red long	71	3
red round	24	1

P= purple flower

p= red flower

L= long pollen

I= short pollen

Which are recombinant and parental offspring?

Bateson and Punnett's pea crosses

Phenotype	Expected number	Expected ratio	Observed number
Purple long	215	9	284
Purple round	71	3	21
Red long	71	3	21
red round	24	1	55

P= purple flower

p= red flower

L= long pollen

I= short pollen

Which are recombinant and parental offspring?

The fly room at Columbia

Purple vestigial cross

Alfred Sturtevant

Alfred Sturtevant

$$\frac{\text{Number of recombinants}}{\text{Total progeny}} \quad \times \quad 100 = \frac{\text{Recombination}}{\text{frequency}}$$

Alfred Sturtevant

$$\frac{\text{Number of recombinants}}{\text{Total progeny}} \quad \times \quad 100 = \frac{\text{Recombination}}{\text{frequency}}$$

1% RF = 1 map unit = 1 centiMorgan

A three-factor cross

Eye Phenotype	Crossvein Phenotype	Cut Phenotype	Number of offspring
Red	No crossvein	Cut wing	580
Vermillion	Crossvein	Normal wing	592
Red	Crossvein	Cut wing	40
Vermillion	No crossvein	Normal wing	45
Red	Crossvein	Normal wing	94
Vermillion	No crossvein	Cut wing	89
Red	No crossvein	Normal wing	5
Vermillion	Crossvein	Cut wing	3

v = vermillion eyes

ct = cut wings

cv= crossveinless wings

+ = red eyes and normal wings

What do regions of more or less recombination spots do to linkage map?

What do regions of more or less recombination spots do to linkage map?

Molecular markers are often used for genetic mapping

- Single nucleotide variants
- Microsatellite repeats
- Insertion/deletion variants

Molecular markers are often used for genetic mapping

