CS:1010 DISCRETE STRUCTURES

PRACTICE QUESTIONS LECTURE 12

Instructions

- Try these questions before class. Do not submit!
- (1) Suppose that the function f satisfies the recurrence relation

$$f(n) = 2f(\sqrt{n}) + \log n,$$

whenever n is a perfect square greater than 1 and f(2) = 1.

- (a) Find f(16).
- (b) Find a big- \mathcal{O} estimate for f(n). [Hint: Make the substitution $m = \log n$.]
- (2) Find a closed form for the generating function for each of these sequences. A closed form means an algebraic expression not involving a summation over a range of values or the use of ellipses. For each sequence, use the most obvious choice of a sequence that follows the pattern of the initial terms listed.
 - (a) $0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, \dots$
 - (b) $0, 0, 0, 1, 1, 1, 1, 1, \dots$
 - (c) $0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, \dots$
 - (d) $2, 4, 8, 16, 32, 64, 128, \ldots$
 - (e) $\binom{7}{0}$, $\binom{7}{1}$, $\binom{7}{2}$, ..., $\binom{7}{7}$, 0, 0, 0, 0, 0, ... (f) 2, -2, 2, -2, 2, -2, 2, ...

 - (g) $1, 1, 0, 1, 1, 1, 1, 1, 1, \dots$
 - (h) $0, 0, 0, 1, 2, 3, 4, \dots$
- (3) Use generating functions to find the number of ways to choose a dozen bagels from three varietiesegg, salty, and plainif at least two bagels of each kind but no more than three salty bagels are chosen.
- (4) Use generating functions to solve the recurrence relation $a_k = 4a_{k-1} 4a_{k-2} +$ k^2 with initial conditions $a_0 = 2$ and $a_1 = 5$.
- (5) Use generating functions to prove Pascal's identity: C(n,r) = C(n-1,r) +C(n-1,r-1) when n and r are positive integers with r < n. Hint: use the identity,

$$(1+x)^n = (1+x)^{n-1} + x(1+x)^{n-1}.$$

February 12, 2021; Dept of CSE, IIT Hyderabad