389I: Healthcare & Al

ter.ps/389iweek1

Topics

- Syllabus Week + Intro to ML Algorithms
- Machine Learning for Healthcare
- Early Disease Detection
- Electronic Health Records (EHRs)
- Drug Discovery
- Telemedicine
- Mental Health

Learning Outcomes

- Understand the central role of data in improving healthcare
- Understand healthcare data-specific ethics and challenges
- Be able to apply basic ML techniques to analyze healthcare datasets

Assignments

- Lectures
 - Overview of relevant AI algorithms & domain specific case studies
- Quizzes
 - In class on lecture content or assigned readings
- Codelabs
 - Guided projects on analyzing specific datasets to achieve set results
- Final project
 - Chose a dataset in a relevant domain to analyze & present findings to class

Codelabs

- We will provide datasets in a specific domain to analyze
- Given starter code with directions in Jupyter notebook
- Apply ML techniques & write analysis
- 2 this semester + final project

Instructors

- Max Leiserson
 - mdml@cs.umd.edu
 - o <u>website</u>
- Sanna Madan
 - o smadan12@umd.edu
- Kyle Liu
 - o kliu1234@umd.edu
- Office Hours
 - TBD / by appointment
- Piazza

Machine Learning

What is machine learning?

- "Labeling machine." Teaching a computer how to classify.
 - complex, hard-to-see patterns
- More specifically:

training of a model from data that generalizes a decision against a performance measure.

What is "artificial intelligence"?

Much broader than machine learning

- Computers mimicking the cognitive functions of humans
 - intelligence
- We're not quite there yet

Machine learning

- Focuses on learning from datasets provided to the computer
- Identify patterns and make decisions from these datasets
- Self driving cars, Netflix recommendations, fraud detection, etc.

Deep learning

• Even deeper - a subset of machine learning

- Multi-layer machine learning model with hidden layers
- Blackbox
 - o is this ideal for healthcare?
- Needs much larger datasets, often millions of samples

In this course, we are focusing on **machine learning**. Not deep learning, not Al.

Why?

Supervised learning

- Most practical machine learning is supervised
- Input variables and output variables are given: Y = F(x)
- Learns mapping function from input → output
- Labels are known beforehand

• Classification, regression

Unsupervised learning

- Only input data, with no corresponding output labels: ? = F(x)
- No correct answers to learn from
- Algorithms find their own "structures" in the data instead
- Clustering, association

Data

- Machine learning doesn't matter if the data is of poor quality!!!!!!!
- If the data is flawed, then the machine learning will be flawed
- Cleansing data may even take up most of the "machine learning" process
- To trust the insights of the data, you must first trust the data

Quality datasets are therefore the first step to ML.

Data cont'd

Amount of data is also crucial

More is more

Large datasets in healthcare/bio once rare, now up and coming

Data cont'd

Bias in data must also be considered

- e.g., people who get their DNA sequenced tend to be wealthier
- Machine may be getting a skewed perception of reality

Summary

- Machine learning is only a subset of artificial intelligence
- There are many different approaches to machine learning
- Quality, quantity, and bias in data are crucial considerations

Links

- Github
- Survey
- Slides: <u>ter.ps/389iweek1</u>
- <u>Tips for ML</u>