Autor: Vojtěch Fiala <xfiala61>

1. Dokažte redukcí, že následující jazyk L není ani částečně rozhodnutelný:

$$L = \{ \langle M_1 \rangle \# \langle M_2 \rangle \mid M_1 \text{ a } M_2 \text{ jsou Turingovy stroje takové, že } L(M_1) \leq L(M_2) \}$$

Jelikož je úkolem dokázat, že jazyk L není ani částečně rozhodnutelný, bude redukce probíhat z jazyka co-HP (komplementu jazyka Halting problému), o kterém je dokázáno, že ani částečně rozhodnutelný není, tedy co-HP ≤ L.

Redukční funkce φ bude mít signaturu:

$$\varphi: \{0,1,\#\}^* \to \{0,1,\#\}^*$$

Pokud je na vstupu jiný řetězec než $\langle M \rangle$ # $\langle w \rangle$, kde $\langle M \rangle$ je validní kód Turingova stroje a $\langle w \rangle$ je kód řetězce, pak redukční funkce ϕ vrátí výstup $\langle M_1 \rangle$ # $\langle M_2 \rangle$, kde $\langle M_1 \rangle$ a $\langle M_2 \rangle$ jsou kódy Turingova stroje takové, že L $(M_1) = \sum^*$ a L $(M_2) = \{\}$, kde $\sum = \{0,1\}$. Je zřejmé, že pravidlo L $(M_1) \leq$ L (M_2) bude v tomto případě porušeno, protože pro redukční funkci ϕ musí mmj. platit:

$$\forall w \in \Sigma^* : w \in L(M_1) \Leftrightarrow \varphi(w) \in L(M_2).$$

Toto tvrzení je zde však zřejmě porušeno, neboť zřejmě pro žádné slovo z jazyka $L(M_1)$ neexistuje odpovídající slovo, které by patřilo do jazyka $L(M_2)$ a tedy neplatí, že $\sum^* \leq \{\}$.

Pokud je na vstupu validní řetězec, tedy $\langle M \rangle \# \langle w \rangle$, ϕ se zachová takto:

$$\varphi(\langle M \rangle \# \langle w \rangle) = \langle M_1 \rangle \# \langle M_2 \rangle$$

Dále se napevno se zafixuje, že $L(M_2) = \{\}$. Chování M_1 nad abecedou $\Sigma = \{0,1\}$ v případě, když mu přijde nějaký vstup w' (tedy w' $\in \Sigma^*$) bude následující:

Turingův stroj M_1 bude ignorovat svůj vstup w'. Následně Turingův stroj M_1 spustí simulaci Turingova stroje M nad slovem w (kódy Turingova stroje M, tedy $\langle M \rangle$ a slova w, tedy $\langle w \rangle$, jsou zakódovány ve stavovém řízení Turingova stroje M_1). Pokud tato simulace cyklí, cyklí i M_1 . Pokud simulace TS M zastaví, M_1 akceptuje.

Z toho plynou následující skutečnosti (HP a co-HP značí jazyky Halting problému a jeho komplementu):

$$\langle M \rangle \# \langle w \rangle \in \text{co-HP} \Rightarrow (L(M_1) = \{\} \land L(M_2) = \{\}) \Rightarrow L(M_1) \leq L(M_2) \Rightarrow \langle M_1 \rangle \# \langle M_2 \rangle \in L.$$

Výše popsané je možné, jelikož jazyk TS M_2 , tedy $L(M_2)$, byl zafixován na $\{\}$ a výstup jazyka $L(M_1)$ je, v případě, že $\langle M \rangle \# \langle w \rangle \in \text{co-HP}$, taktéž $\{\}$. Platí, že $\{\} \le \{\}$, neboť existuje totální, rekurzivně vyčíslitelná redukční funkce ϕ taková, že: $\forall w \in \Sigma^* \colon w \in A \Leftrightarrow \phi(w) \in B$, neboť nad libovolnou abecedou Σ zřejmě platí, že neexistuje žádné slovo w, které by patřilo do prázdného jazyka a tedy se mohlo zobrazit do jiného prázdného jazyka.

Dále platí následující (posloupnost symbolů X !≤ Y značí, že jazyk X není redukovatelný na jazyk Y):

$$\langle M \rangle \# \langle w \rangle \in \mathsf{HP} \Rightarrow (\mathsf{L}(M_1) = \textstyle \sum^* \wedge \mathsf{L}(M_2) = \{\}) \Rightarrow \mathsf{L}(M_1) \mathrel{!} \leq \mathsf{L}(M_2) \Rightarrow \langle M_1 \rangle \# \langle M_2 \rangle \not\in \mathsf{L}.$$

 $\langle M\rangle \# \langle w\rangle \not\in \text{co-HP} \Rightarrow (\mathsf{L}(M_1) = \textstyle \sum^* \wedge \mathsf{L}(M_2) = \{\}) \Rightarrow \mathsf{L}(M_1) \mathrel{!} \leq \mathsf{L}(M_2) \Rightarrow \langle M_1\rangle \# \langle M_2\rangle \not\in \mathsf{L}.$

Důkaz, že neplatí $\Sigma^* \leq \{\}$, byl popsán již na počátku řešení tohoto úkolu.

Je tedy možné říci, že:

 $(\langle M\rangle \# \langle w\rangle \in \text{co-HP} \Leftrightarrow \phi(\langle M\rangle \# \langle w\rangle) \in L) \Rightarrow \text{co-HP} \leq L \Rightarrow \textbf{L} \text{ není ani částečně rozhodnutelný}.$