# 肌肉记忆U盘 ·生物信号存档与复刻系统

编号: 6

姓名: 应逸雯

导师: 张宏



## 项目背景

●人类动作的学习只能靠演示模仿?怎么学都学不会?



●人体肌群信号能不能像传输文件一样,压缩,克隆,迭代?

各种运动里面的零帧起手假动作

简洁高效 5个只需一次触球就能摆脱对手

□ 全球不知道・1-6

的足球过人技巧教学

训练计划 涵盖运球/投射/终结技术 26..

手把手教你踢出和C罗一样惊艳四座的电 C

# 核心技术原理——物理层(高精度肌电采集系统)

- 纳米级柔性电极阵列
  - 厚度薄, 拉伸率高, **贴合皮肤褶皱**
  - 电极表面涂覆多巴胺仿生粘附层, **降低运动伪影**
  - 动态匹配阻抗,根据皮下组织湿度自动调整, **保证出汗时仍能工作**
  - 通过相邻电极对的相位反转消除环境电磁干扰
- 多模态信号融合
  - 采用柔性应变片采集肌肉形变
  - 采用微型热电偶采集温度
  - 根据多模态数据,计算抵消机械压力对肌电信号的衰减效应 Chemical adsorption of Lithium polysulfide



## 核心技术原理——算法层(动作解构系统)

- 信号预处理,分离其他信号
  - 真实肌电成分(频段20-500Hz)
  - ●运动伪影(低频 < 5Hz,如电极滑动噪声);心电干扰(特征QRS波检测后消除)
- 动作动力学建模
  - 空间维度特征提取: 肌肉协同矩阵 , 多肌群协调
  - 时间维度特征提取: 肌电-关节角度-地面反作用力跨模态LSTM

## • 个性化优化

- 构建肌肉-骨骼生物力学仿真环境,用强化学习算法寻找最优激活方案,保证动作效果 前提下,**最小化关节负载**
- ●神经适应性预测,基于用户髓鞘形成速率,预测达到目标肌电模式所需训练次数,<mark>动</mark> **态调整TES刺激强度**



## 核心技术原理——控制层(神经重放系统)

### ● 产生刺激脉冲序列

◆特定频率,低频增强力量,高频提升耐力;双相不对称脉冲,减少组织极化

#### ● 闭环反馈控制

- 实时监测肌肉力学响应, 动态调节经皮神经电刺激参数
- 收缩过低,增加脉冲幅值;疲劳,低频恢复



### • 多刺激融合

- ●释放经颅直流电刺激,增强LTP效应(Long-term potentiation,长时程增强)
- 经过骨传导耳机,播放伽马波音频同步刺激,**促进神经网络振荡**



# 应用场景——运动员损伤后复建

- ●运动员——受伤频繁:
  - 每1000人次注册运动员损伤率为123.9

LIU Hong-wei, LI Jian-jun, YANG Ming-liang, ZHANG Xin, SHEN Min-xin, GAO Feng, QIN Chuan. Analysis of Sports Injuries from Winter Olympic and Winter Youth Olympic Games [J]. 《Chinese Journal of Rehabilitation Theory and Practice》, 2020, 26(10): 1209-1216.







● 手术和修养完成后,需要迅速复健回到原来的动作状态

## 应用场景——运动员损伤后复建

- ●运动员生涯年限本就有限,因伤耽误一年 半年损失惨重
- 实际上不少运动员因为受伤更早退役,抱憾结束职业生涯

● 预期加速受伤后康复流程,快速投入到下 一场比赛的备战



# 应用场景——运动员损伤后复建

## ●康复时:

●监测肌肉情况,无实物发力,防止肌肉萎缩



## ●康复后:

- ●由于长时间的康复,训练减少,肌肉记忆消失,难以回到巅峰状态
- ●平日练习时,找到最佳的感觉,**录制肌电数据保存**
- ●肌肉记忆消失后,**用电刺激配合找回肌肉记忆**,感应当前发力点的差别, 供运动员了解与改变

## 应用场景——智能教练

●正常动作的学习和模仿依赖主观感受和想象, 意会不到, 学不会





- ●人类教练录制数据,处理后转换为电刺激给学员,加速学会
- 传感器监测肌电信号,发现动作之下的隐形问题,**及时纠正错误发力点**
- ●使用他人的优秀数据,获得全世界的老师

## 应用场景——智能教练

- 防止锻炼时受伤的智能教练,监测肌肉状态,**避免过度疲劳、拉伸**
- ●肌肉疲劳、发力过于用力并超出极限,可能带来受伤、肌肉溶解......
  - 横纹肌溶解症是由运动过度引起的,会导致肌肉细胞破裂。此时,一种名为肌红蛋白的蛋白质会释放到血液中。如果肌红蛋白大量释放,肾脏就无法快速将其从血液中清除,从而通过排尿将其排出体外。肾脏承受的额外压力会损害这些重要器官,从而导致肾功能衰竭和死亡。
  - 肌肉溶解症状主要是酸疼、浑身乏力,与正常锻炼 疲惫后产生的症状类似,难以被发现。



●传感器及时发现肌肉状态超出极限,提醒用户停止锻炼

# 应用场景——智能教练

- 个人数据的强化学习模型,**找到最合适的训练计划**
- 个人运动后肌肉的反应记录,识别针对个体的各动作效果
- ●建立个人数据的模型,在仿真中不断试验,找到能够产生最好效果的各动作合并序列和组数
- 得到合适的训练计划,**最轻松的达到训练效果**

|     |    |               |           |     |      |         | 无比赛的发      | 展性年度训练计 | 计划      |           |        |            |            |
|-----|----|---------------|-----------|-----|------|---------|------------|---------|---------|-----------|--------|------------|------------|
| )   | 1  | 8             | 9         | 10  | 11   | 12      | 1          | 2       | 3       | 4         | 5      | 6          | 7          |
| 模型1 | 时期 | 准备期           |           |     |      |         |            |         |         |           |        |            |            |
|     | 阶段 | 一般准备阶段        |           |     |      |         |            |         | 专项准备阶段  |           |        |            | 过渡期<br>过渡期 |
|     |    |               |           |     |      |         | 单赛季发       | 展年度训练计划 | 刨       |           |        |            |            |
| 模型2 | 时期 | 准备期 竞赛期       |           |     |      |         |            |         |         |           |        |            | 过渡期        |
|     | 阶段 |               | 一般者       | 备阶段 |      | 专项准     | 专项准备阶段 赛前  |         | f<br>阶段 | 比赛阶段      |        |            | 过渡其        |
| 模型3 | 时期 | 准备期           |           |     |      |         |            |         |         |           |        | 过渡其        |            |
|     | 阶段 |               |           | 一般准 | 备阶段  |         | 专项准备阶段     |         | 赛前      | 阶段        | 比赛阶段   |            | 过渡期        |
| 模型4 | 时期 | 准备期           |           |     |      |         |            |         |         |           | 竞赛期    |            | 过渡期        |
|     | 阶段 | 一般准备阶段        |           |     |      |         | 专项准备阶段     |         |         | 赛前阶段 比赛阶段 |        | 过渡         |            |
|     |    |               |           |     |      |         | 多赛季发       | 展年度训练计划 | थ       |           |        |            |            |
| 月   |    | 8             | 9         | 10  | 11   | 12      | 1          | 2       | 3       | 4         | . 5    | 6          | 7          |
| 模型5 | 时期 | 准备期           |           |     |      | 竞赛期 过渡期 |            | 准备期     | 竞赛期     |           | 过渡基    |            |            |
|     | 阶段 | 一般准备阶段 专项准备阶段 |           |     |      | 賽前阶段    | 比赛阶段       | 过渡期     | 专项准备    | 赛前阶段      | 比赛     | 下阶段        | 过渡期        |
| 模型6 | 时期 | 准备期           |           | 竞赛  | 期    | 过渡期 准备期 |            | 竞赛期     | 过渡期     | 准备期       | 竞装     | <b>『</b> 期 | 过渡其        |
|     | 阶段 | 一般准备          | 赛前        | 阶段  | 比赛阶段 | 过渡期     | 专项准备阶段     | 竞赛期     | 过渡期     | 专项准备阶段    | 竞装     | 序期         | 过渡期        |
| 模型7 | 时期 | 准备期           | 作备期 竞赛期   |     |      | 准备期     |            |         | 竞赛期     |           | 过渡期 准行 |            | 备期         |
|     | 阶段 | 专项准备<br>阶段    | 赛前阶段 比赛阶段 |     |      | 一般准备    | 一般准备阶段 专项社 |         | 竞赛期     |           | 过渡期    | 度期 一般准备阶段  |            |

#### 高中橄榄球(足球)运动员建议的四年制计划

| 年度训练计划 | 第1年                       | 第2年                     | 第3年                                        | 第4年                      |
|--------|---------------------------|-------------------------|--------------------------------------------|--------------------------|
| 学年     | 新生                        | 二年级                     | 三年级                                        | 四年级                      |
| 等级     | 基础发展                      | 继续发展                    | 运动表现发展                                     | 巅峰运动表现                   |
| 目标     | 发展与橄榄球<br>相关的关键通<br>用动作模式 | 发展与橄榄球<br>相关动作的关<br>键组合 | 发展与橄榄球<br>相关的,以及对<br>橄榄球专和<br>激的阅读和<br>应能力 | 优化足球的专<br>项竞技能力          |
| 时期     | 准备期                       | 准备期                     | 准备期到竞赛期                                    | 准备期到竞赛期                  |
| 阶段     | 一般准备期                     | 一般到专项准<br>备期            | 一般准备到专<br>项准备到赛前<br>到竞赛期                   | 一般准备到专<br>项准备到赛前<br>和竞赛期 |

## 应用场景——肌肉记忆生成



- ●形体类任务大多需要形成肌肉记忆, 而正常人只能通过日复一日的练习, 非常疲惫且乏味
- ●运动员、舞者等职业,通过肌电记 【它U盘,**快速学会一个动作的定点** 执行,辅助工作,加快工作效率
- ●已训练过的肌肉记忆有朝一日忘记, 也容易**从数据库中读取并恢复**

## 应用场景——肌肉记忆生成

- ●体操、舞蹈等动作编排,不仅要考虑美观,更要考虑可行性
- 发力点的连贯性、体力的分配,只能通过本人不断尝试和试错
- AI也可以根据个人传感器数据对应的动作,编排新的动作
- 辅以肌肉记忆生成功能, 将动作授予用户



## 项目整体效果

- ●高精度肌电采集系统+动作解构系 统+神经重放系统
- ●形成了完整的肌电信号获取分析到 反馈的过程
- ●人体肌群信号被复制、改进,促进 人类形体运动



# 感谢您的观看与聆听

汇报人: 应逸雯