

6. Obserwacje x_1, \ldots, x_n pochodzą z rozkładu $U[\theta - d/2, \theta + d/2]$. (a) Znaleźć estymator MLE d parametru d przy założeniu, że znamy wartość parametru θ . (b) Nie znamy wartości tych parametrów. Znaleźć ich estymatory $\hat{d}, \hat{\theta}$. $f(x) = \begin{cases} 1 & 1 \\ 0 & 0 \end{cases} = \begin{cases} 1 & 1 \\ 0 & 0 \end{cases} = \begin{cases} 1 & 1 \\ 0 & 0 \end{cases} = \begin{cases} 1 & 1 \\ 0 & 0 \end{cases} = \begin{cases} 1 & 1 \\ 0 & 0 \end{cases} = \begin{cases} 1 & 1 \\ 0 & 0 \end{cases} = \begin{cases} 1 & 1 \\ 0 & 0 \end{cases} = \begin{cases} 1 & 1 \\ 0 & 0 \end{cases} = \begin{cases} 1 & 1 \\ 0 & 0 \end{cases} = \begin{cases} 1 & 0 \\ 0 & 0 \end{cases}$ a) L(d)= In- I & max 1x: -01 < 27 J-2:max (x;-6) hin X: = 0- 1/2 max x: = 0+ 1/2 d = max x; - mink; 6 mink, + muxx.

7. Niezależne zmienne losowe X_1, \dots, X_n mają rozkład $N(\mu, \sigma^2)$ każda. Wyznaczyć $\mathrm{E}(S_n)$ oraz $\mathrm{V}(S^2)$.															$E(S^2)$				