### МИНОБРНАУКИ РОССИИ

# Федеральное государственное бюджетное образовательное учреждение высшего образования «Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова» (БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова»)

| Факультет  | И                    | Информационные и управляющие системы        |         |  |  |  |
|------------|----------------------|---------------------------------------------|---------|--|--|--|
| •          | шифр                 | Наименование                                |         |  |  |  |
| Кафедра    | И9                   | Систем управления и компьютерных технологий |         |  |  |  |
| п          | шифр наименование    |                                             |         |  |  |  |
| Дисциплина | Моделирование систем |                                             |         |  |  |  |
|            |                      |                                             |         |  |  |  |
|            |                      |                                             |         |  |  |  |
|            |                      |                                             |         |  |  |  |
|            |                      |                                             |         |  |  |  |
|            |                      |                                             |         |  |  |  |
|            |                      |                                             |         |  |  |  |
|            |                      |                                             |         |  |  |  |
|            |                      |                                             |         |  |  |  |
|            |                      | Лабораторная работа №8                      |         |  |  |  |
|            |                      |                                             |         |  |  |  |
| на тему    | «Ctati               | истическое имитационное моделирование       |         |  |  |  |
| мно        | гоканат              | ьной СМО с ограниченной очередью»           |         |  |  |  |
| WIIO       | OKullus              | вион стито с ограни тенной о тередвиои      |         |  |  |  |
|            |                      | Вариант №3                                  |         |  |  |  |
|            |                      |                                             |         |  |  |  |
|            |                      |                                             |         |  |  |  |
|            |                      |                                             |         |  |  |  |
|            |                      |                                             |         |  |  |  |
|            |                      |                                             |         |  |  |  |
|            |                      | D                                           | 11077   |  |  |  |
|            |                      | Выполнил студент группы                     | И967    |  |  |  |
|            |                      | Васильев Н.А.                               |         |  |  |  |
|            | Фамилия И.О.         |                                             |         |  |  |  |
|            |                      | ПРЕПОДАВАТЕЛЬ                               |         |  |  |  |
|            |                      | Захаров А.Ю.                                |         |  |  |  |
|            |                      | Фамилия И.О. Подп                           | ись     |  |  |  |
|            |                      |                                             | 2010    |  |  |  |
|            |                      | « »                                         | 2019 г. |  |  |  |

# Основные сведения из теории

Для n-канальной СМО с очередью на m мест ( $m << \infty$ ) множество состояний X включает в себя n+m+1 состояния:

 $x_0$  — все каналы и места в очереди свободны;

 $x_1$  – обслуживанием занят один канал, все места в очереди свободны;

 $x_k (k \le n)$  – обслуживанием заняты k каналов, все места в очереди свободны;

 $x_k (n < k \le n + m)$  – обслуживанием заняты все n каналов, заняты r = k - n мест в очереди.

Граф смены состояний такой СМО приведен на рис. 17.



Основные принципы и допущения, положенные в основу моделей СМО, рассмотрены в описании работы N 7.

В силу ординарности потоков заявок и обслуживания переходы возможны только в «соседние» по графу состояния, отличающиеся от текущего не более чем одним занятым каналом или местом в очереди.

Если обслуживанием заявок параллельно заняты k каналов ( $k \le n$ ), интенсивность обслуживания составляет  $k\mu$ , где  $\mu$  – производительность одного канала.

Укрупненный алгоритм имитационного моделирования процесса в рассматриваемой СМО с учетом рекомендаций к работе № 7 можно построить следующим образом:

- 1. Вводятся и обнуляются счетчики времени t, количества поступивших в систему заявок N, количества обслуженных (поставленных на обслуживание) заявок M, количества занятых каналов k, количества занятых мест в очереди r.
- 2. На основе моделирующего соотношения  $\Delta t_i = -\frac{1}{\lambda} \ln(1-\xi_i)$  генерируется интервал времени до поступления в систему заявки.
- 3. Если k=0, значения N, M и k увеличиваются на единицу, значение текущего времени увеличивается на  $\Delta t_i$ .

Если k>0, генерируется интервал времени до окончания обслуживания заявки на основе моделирующего соотношения  $\Delta \tau_i = -\frac{1}{k\mu} \ln(1-\xi_i)$  и моделируются следующие варианты развития процесса в СМО:

- при  $\Delta t_i < \Delta \tau_i$  значение N увеличивается на единицу, значение текущего времени увеличивается на  $\Delta t_i$ , а также:
- при k < n заявка поступает на обслуживание в свободный канал, значения M и k увеличиваются на единицу;
- при k=n и r < m заявка занимает свободное место в очереди, значения M и r увеличиваются на единицу;
- при k=n и r=m поступающая заявка получает отказ в обслуживании, значения счетчиков M, k и r не изменяются;
  - при  $\Delta t_i > \Delta \tau_i$  значение текущего времени увеличивается на  $\Delta \tau_i$ , а также:
- при r=0 один из занятых каналов освобождается до момента поступления следующей заявки, значение k уменьшается на единицу;
- при r>0 одна из заявок переходит из очереди на обслуживание, освобождая место в очереди до момента поступления следующей заявки, значение r уменьшается на единицу.
  - 4. Пункты 2 3 повторяются необходимое число раз.

Порядок организации статистического эксперимента и получения оценок вероятностей обслуживания или отказа с требуемой точностью соответствуют рассмотренным в описании работы N = 7.

# Содержание задания

В соответствии с индивидуальным вариантом задания (табл. 20) построить имитационную статистическую модель n-канальной системы массового обслуживания с очередью на m заявок. Процесс смены состояний системы считать марковским, поток заявок — простейшим. Интенсивность потока заявок  $\lambda$  и производительность канала  $\mu$  соответствуют варианту задания к работе N 7. Значения n и m указаны в табл. 19.

На основе построенной модели получить оценку для установившегося процесса указанной в табл. 19 характеристики системы x, наблюдая процесс в течение 100 с. Оценить точность результата.

Определить требуемое время наблюдения процесса для оценки искомой характеристики с абсолютной погрешностью не более 0,01. Продолжить моделирование на основе итерационного алгоритма до получения оценки с требуемой точностью.

Для проверки результатов получить значение искомой характеристики аналитическим методом.

| № варианта | n | m | x |
|------------|---|---|---|
| 3          | 1 | 3 | p |

Результат работы программы

| ٨  | 13                  |                      |
|----|---------------------|----------------------|
| μ  | 20                  |                      |
| p  | 0.9917050691244239  |                      |
| m  | 1                   |                      |
| n  | 3                   |                      |
|    | За 100 с.           | Спустя 491 с.        |
| t  | 100                 | 591                  |
| ε* | 0.02218770208673006 | 0.008819088350878617 |
| N  | 1488                | 8813                 |
| M  | 1355                | 8081                 |
| p* | 0.9106182795698925  | 0.9169408827867922   |