with th	ran unknown population parameter θ (e.g. μ) and a fixed value θ_0 (e.g. 5), the ring three cases have to be distinguished: $ \begin{array}{c c c c c c c c c c c c c c c c c c c $
neithe	k 10.2.1 Note that we have not considered the following situation: H 0 : $\theta = /\theta 0$, H 1 : $\theta = \theta 0$. In general, he tests described in this chapter, we cannot prove the equality of a parameter to a predefined value and r can we prove the equality of two parameters, as in H 0: $\theta 1 = /\theta 2$, H 1: $\theta 1 = \theta 2$. And Type 2 Error
• • The <u>s</u>	The hypothesis H_0 is true but is rejected; this error is called type I error . The hypothesis H_0 is not rejected although it is wrong; this is called type II error . ignificance level is the probability of type I error, $P(H 1 \mid H 0) = \alpha$, which is the probability of rejecting H pting H 1) if H 0 is true.
actuall H 0 is r	<u>e</u> : 'It can be interpreted as the probability of observing results equal to, or more extreme than those y observed if the null hypothesis was true. Then, the decision rule is, rejected if the p-value is smaller than the prespecified significance level α. Otherwise, H 0 cannot be rejected.
is P H 0 (2*(1- p	-distributed under H 0 . The significance level is $\alpha = 0.05$. If we observe, for example, $t = 3$, then the p-value $(\mid T \mid \geq 3)$. This can be calculated in R as onorm(3)). We have to multiply with two because we are dealing with a two-sided hypothesis. or the Mean When the Variance is Known (One-Sample Gauss Test)
	$t(x) = \frac{\bar{x} - \mu_0}{\sigma_0} \sqrt{n}.$
	Aras of extense volus for the test z statisfic; Sufficient Case H_0 H_1 Critical region K $Reject H_0, If (a) \mu = \mu_0 \mu \neq \mu_0 K = (-\infty, -z_{1-\alpha/2}) \cup (z_{1-\alpha/2}, \infty) H(x) > 2_{2-\alpha/2} (b) \mu \leq \mu_0 \mu > \mu_0 K = (z_{1-\alpha}, \infty) f(z) \leq z_{1-\alpha/2} (c) \mu \geq \mu_0 \mu < \mu_0 \mu$
of the tes tistic give difference g. 10.1. In	with H_0 : $\mu = \mu_0$ and H_1 : $\mu \neq \mu_0$, we are interested in extreme t statistic on both tails: very small values and very large values of the cus evidence that H_0 is wrong (because the statistic is mainly driven the of the sample mean and the test value μ_0 for a fixed variance), a such a two-sided test, when the distribution of the test statistic is divide the critical region into two equal parts and assign each region
xtreme va le values t	the left and right tails of the distribution. For $\alpha = 0.05, 2.5\%$ of the alues towards the right end of the distribution and 2.5% of the most towards the left end of the distribution give us enough evidence that d can be rejected and that H_1 is accepted. It is also clear why α is
$z_{\alpha/2} = -$	$z_{1-lpha/2}$
expect import assume	le 10.3.1 A bakery supplies loaves of bread to supermarkets. The stated selling weight (and therefore the required minimum ed weight) is $\mu = 2$ kg. However, not every package weighs exactly 2kg because there is variability in the weights. It is therefore ant to find out if the average weight of the loaves is significantly smaller than 2kg. The weight X (measured in kg) of the loaves is ed to be normally distributed. We assume that the variance $\sigma = 0.12$ is known from experience. A supermarket draws a sample
are, on kg. The	20 loaves and weighs them. The average weight is calculated as $\bar{x} = 1.97$ kg. Since the supermarket wants to be sure that the weights average, not lower than 2kg, a one-sided hypothesis is appropriate and is formulated as H 0 : $\mu \ge \mu$ 0 = 2 kg versus H 1 : $\mu < \mu$ 0 = 2 significance level is specified as $\alpha = 0.05$, and therefore, z 1- $\alpha = 1.64$. The test statistic is calculated as $t(x) = \frac{\bar{x} - \mu_0}{\sigma_0} \sqrt{n} = \frac{1.97 - 2}{0.1} \sqrt{20} = -1.34.$ The null hypothesis is not rejected, since $t(x) = -1.34 > -1.64 = -z_{1-0.05} = -1.005$
But the a $N(n = 2)$	pretation: The sample average $\bar{x} = 1.97$ kg is below the target value of $\mu = 2$ kg. here is not enough evidence to reject the hypothesis that the sample comes from $(2, 0.1^2)$ -distributed population. The probability to observe a sample of size $(2, 0.1^2)$ with an average of at most $(2, 0.1^2)$ -distributed population is
value Test fo	er than $\alpha=0.05=5\%$. The difference between $\bar{x}=1.97$ kg and the target $\mu=2$ kg is not statistically significant. or the Mean When the Variance is Unknown Sample t-Test)
	iased estimator of σ^2 is the sample variance $S_X^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2.$ Expression test statistic is therefore
kno Cri	$T(\mathbf{X}) = \frac{\bar{X} - \mu_0}{S_X} \sqrt{n},$ ch follows a <i>t</i> -distribution with $n-1$ degrees of freedom if H_0 is true, as we we from Theorem 8.3.2. tical regions and test decisions ce $T(\mathbf{X})$ follows a <i>t</i> -distribution under H_0 , the critical regions refer to the regions
	the t-distribution which are unlikely to be observed under H_0 : $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	The hypothesis H_0 is rejected if the realized test statistic, i.e. $t(x) = \frac{\bar{x} - \mu_0}{s_X} \sqrt{n},$ is into the critical region. The critical regions are based on the appropriate quantiles
Ехатр	the t-distribution with $(n-1)$ degrees of freedom, as outlined in Table 10.2. Table 10.3.2 We again consider Example 10.3.1. Now we assume that the vari- of the loaves is unknown. Suppose a random sample of size $n=20$ has an
test wl	tetic mean of $\bar{x}=1.9668$ and a sample variance of $s^2=0.0927^2$. We want to nether this result contradicts the two-sided hypothesis H_0 : $\mu=2$, that is case the significance level is fixed at $\alpha=0.05$. For the realized test statistic $t(x)$, we have $t(x)=\frac{\bar{x}-\mu_0}{s_X}\sqrt{n}=\frac{1.9668-2}{0.0927}\sqrt{20}=-1.60$.
•	aring the Means of Two Independent Samples Case 1: The variances are known (two-sample Gauss test).
	$t(x, y) = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{\sigma_X^2}{n_1} + \frac{\sigma_Y^2}{n_2}}}.$
	Case 2: The variances are unknown, but equal (two-sample t-test). We denote the unknown variance of both distributions as σ^2 (i.e. both the populations are assumed to have variance σ^2). We estimate σ^2 by using the pooled sample variance where each sample is assigned weights relative to the sample size: $S^2 = \frac{(n_1 - 1)S_X^2 + (n_2 - 1)S_Y^2}{n_1 + n_2 - 2}.$ (10.3)
	The test statistic $T(\mathbf{X}, \mathbf{Y}) = \frac{\bar{X} - \bar{Y}}{S} \sqrt{\frac{n_1 \cdot n_2}{n_1 + n_2}} $ (10.4) with S as in (10.3) follows a t -distribution with $n_1 + n_2 - 2$ degrees of freedom if H_0 is true. The realized test statistic is
3) ($t(x,y) = \frac{\bar{x} - \bar{y}}{s} \sqrt{\frac{n_1 \cdot n_2}{n_1 + n_2}}. \tag{10.5}$ Case 3: The variances are unknown and unequal (Welch test). We test H_0 : $\mu_X = \mu_Y$ versus H_1 : $\mu_X \neq \mu_Y$ given $\sigma_X^2 \neq \sigma_Y^2$ and both σ_X^2 and σ_Y^2 are unknown. This problem is also known as the Behrens–Fisher problem and is the
r c	nost frequently used test when comparing two means in practice. The test statistic can be written as $T(\mathbf{X}, \mathbf{Y}) = \frac{\left \bar{X} - \bar{Y}\right }{\sqrt{\frac{S_X^2}{n_1} + \frac{S_Y^2}{n_2}}},$ (10.6)
V	which is approximately t-distributed with v degrees of freedom: $v = \left(\frac{s_x^2}{n_1} + \frac{s_y^2}{n_2}\right)^2 / \left(\frac{\left(s_x^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_y^2/n_2\right)^2}{n_2 - 1}\right) \tag{10.7}$
	Example 10.3.3 A small bakery sells cookies in packages of 500 g. The cookies are handmade and the packaging is either done by the baker himself or his wife. Some customers conjecture that the wife is more generous than the baker. One customer does an experiment: he buys packages of cookies packed by the baker and his wife on 16 different days and weighs the packages. He gets the following two samples (one for the baker, one for his wife).
	Weight (wife) (X) $\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	with the following simple hypotheses: $H_0: \mu_x = \mu_y \text{versus} H_1: \mu_x \neq \mu_y,$ i.e. we only want to test whether the weights are different, not that the wife is making heavier cookie packages. Since the variances are unknown, we assume that case 3 is the right choice. We calculate and obtain $\bar{x} = 519.625$, $\bar{y} = 502.875$, $s_X^2 = 192.268$,
	and $s_Y^2 = 73.554$. The test statistic is: $t(x, y) = \frac{ \bar{x} - \bar{y} }{\sqrt{\frac{s_X^2}{n_1} + \frac{s_Y^2}{n_2}}} = \frac{ 519.625 - 502.875 }{\sqrt{\frac{192.268}{8} + \frac{73.554}{8}}} \approx 2.91.$ The degrees of freedom are:
	$v = \left(\frac{192.268}{8} + \frac{73.554}{8}\right)^2 / \left(\frac{(192.268/8)^2}{7} + \frac{(73.554/8)^2}{7}\right) \approx 11.67 \approx 12.$
	Since $ t(x) = 2.91 > 2.18 = t_{12;0.975}$, it follows that H_0 is rejected. Therefore, H_1 is statistically significant. This means that the mean weight of the wife's packages is
	Since $ t(x) = 2.91 > 2.18 = t_{12;0.975}$, it follows that H_0 is rejected. Therefore, H_1 is
• 1	Since $ t(x) = 2.91 > 2.18 = t_{12;0.975}$, it follows that H_0 is rejected. Therefore, H_1 is statistically significant. This means that the mean weight of the wife's packages is different from the mean weight of the baker's packages. Let us refine the hypothesis and try to find out whether the wife's packages have a higher mean weight. The hypotheses are now: $H_0: \mu_x \leq \mu_y \text{ versus } H_1: \mu_x > \mu_y.$
• 1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Since $ r(x) = 2.91 > 2.18 = t_{12;0.975}$, it follows that H_0 is rejected. Therefore, H_1 is statistically significant. This means that the mean weight of the wife's packages is different from the mean weight of the baker's packages. Let us refine the hypothesis and try to find out whether the wife's packages have a higher mean weight. The hypotheses are now: $H_0: \mu_x \leq \mu_y \text{versus} H_1: \mu_x > \mu_y.$ F-tests in R any kind of t-test can be calculated with the t.test command: for example, the two-sample t-test requires to specify the option rar.equal=TRUE while the Welch test is calculated when the (default) option var.equal=FALSE is set. We can also conduct a one-ample t-test. Suppose we are interested in whether the mean
• Test f • T • S • L	Since $ r(x) = 2.91 > 2.18 = t_{12;0.975}$, it follows that H_0 is rejected. Therefore, H_1 is statistically significant. This means that the mean weight of the wife's packages is different from the mean weight of the baker's packages. Let us refine the hypothesis and try to find out whether the wife's packages have a higher mean weight. The hypotheses are now: $H_0: \mu_x \leq \mu_y \text{versus} H_1: \mu_x > \mu_y.$ 7-tests in R way kind of t-test can be calculated with the t.test command: for example, the two-sample t-test requires to specify the option rar-equal=TRUE while the Welch test is calculated when the (default) option var-equal=FALSE is set. We can also conduct a one-ample t-test. Suppose we are interested in whether the mean For Comparing the Means of Two Dependent Samples (Paired t-Test) They could be dependent because we measure the same variable twice on the same subjects at different times. Since the same variable is measured twice on the same subject, it makes sense to calculate a difference between the two respective value at $D = X - Y$ denote the random variable "difference of X and Y" $T(X, Y) = T(D) = \frac{\bar{D}}{S_D} \sqrt{n} \qquad (10.9)$ st-distributed with $n - 1$ degrees of freedom. The sample mean is $\bar{D} = \sum_{i=1}^n D_i n $
• Test f	Since $ r(x) = 2.91 > 2.18 = t_{12:0.975}$, it follows that H_0 is rejected. Therefore, H_1 is statistically significant. This means that the mean weight of the wife's packages is different from the mean weight of the baker's packages. Let us refine the hypothesis and try to find out whether the wife's packages have a higher mean weight. The hypotheses are now: $H_0: \mu_x \leq \mu_y \text{versus} H_1: \mu_x > \mu_y.$ F-tests in R Any kind of t-test can be calculated with the t-test command: for example, the two-sample t-test requires to specify the option are equal=TRUE while the Welch test is calculated when the (default) option var equal=FALSE is set. We can also conduct a one-ample t-test. Suppose we are interested in whether the mean For Comparing the Means of Two Dependent Samples (Paired t-Test) They could be dependent because we measure the same variable twice on the same subjects at different times. Since the same variable is measured twice on the same subject, it makes sense to calculate a difference between the two respective value at $D = X - Y$ denote the random variable "difference of X and Y" $T(X,Y) = T(D) = \frac{\bar{D}}{S_D} \sqrt{n} \qquad (10.9)$
• Test f • T • S • L i i i i i i i i i i i i i i i i i i i	Since $ r(x) = 2.91 > 2.18 = r_{12:0.975}$, it follows that H_0 is rejected. Therefore, H_1 is statistically significant. This means that the mean weight of the wife's packages is different from the mean weight of the baker's packages. Let us refine the hypothesis and try to find out whether the wife's packages have a higher mean weight. The hypotheses are now: $H_0: \mu_x \leq \mu_y \text{versus} H_1: \mu_x > \mu_y.$ Fr-tests in R Introduce the calculated with the t.test command: for example, the two-sample t-test requires to specify the option are equal=TRUE while the Welch test is calculated when the (default) option var-equal=FALSE is set. We can also conduct a one-ample t-test. Suppose we are interested in whether the mean $\frac{\partial F}{\partial x} = \frac{\partial F}{\partial$
• Test f • T • S • L ii	Since $ t(x) = 2.91 > 2.18 = I_{12,0.975}$, it follows that H_0 is rejected. Therefore, H_1 is statistically significant. This means that the mean weight of the wife's packages is different from the mean weight of the baker's packages. Let us refine the hypothesis and try to find out whether the wife's packages have a higher mean weight. The hypotheses are now: $H_0: \mu_x \leq \mu_y \text{versus} H_1: \mu_x > \mu_y.$ F-tests in R why kind of t-test can be calculated with the t.test command: for example, the two-sample t-test requires to specify the option ar equal=TRUE while the Welch test is calculated when the (default) option var equal=FALSE is set. We can also conduct a one-ample t-test. Suppose we are interested in whether the mean For Comparing the Means of Two Dependent Samples (Paired t-Test) They could be dependent because we measure the same variable twice on the same subjects at different times, since the same variable is measured twice on the same subject, it makes sense to calculate a difference between the two respective value at $D=X-Y$ denote the random variable "difference of X and Y" $T(X,Y) = T(D) = \frac{\bar{D}}{S_D}\sqrt{n} \qquad (10.9)$ str-distributed with $n-1$ degrees of freedom. The sample mean is $\bar{D} = \sum_{i=1}^n /D_i n$ and the sample variance is $S_D^2 = \frac{\sum_{i=1}^n (D_i - \bar{D})^2}{n-1}$ compare the test statistic (t = -3.35) with the critical value (1.83, obtained via qt(0.95,9)).
• Test f • T • S • L i i i i i i i i i i i i i i i i i i i	Since $ r(x) = 2.91 > 2.18 = t_{12.0.975}$, it follows that H_0 is rejected. Therefore, H_1 is statistically significant. This means that the mean weight of the wife's packages is different from the mean weight of the baker's packages. Let us refine the hypothesis and try to find out whether the wife's packages have a higher mean weight. The hypotheses are now: $H_0: \mu_x \leq \mu_y \text{versus} H_1: \mu_x > \mu_y.$ F-tests in R Noy kind of t-test can be calculated with the t.test command: for example, the two-sample t-test requires to specify the option are equal=FRUE while the Welch test is calculated when the (default) option var equal=FALSE is set. We can also conduct a one-ample t-test, Suppose we are interested in whether the mean For Comparing the Means of Two Dependent Samples (Paired t-Test) They could be dependent because we measure the same variable twice on the same subjects at different times, since the same variable is measured twice on the same subject, it makes sense to calculate a difference between the two respective value at $D = X - Y$ denote the random variable "difference of X and Y" $T(X,Y) = T(D) = \frac{\bar{D}}{S_D} \sqrt{n} \qquad (10.9)$ Solutionary of the sample variance is $S_D^2 = \frac{\sum_{i=1}^n (D_i - \bar{D})^2}{n-1}$ The compare the test statistic (t = -3.35) with the critical value (1.83, obtained via qt(0.95,9)). Evaluate whether the p-value (0.008468) is smaller than the significance = 0.05. Evaluate whether the confidence interval for the mean difference covers "0" or not.
F-Test follow the α/ or if where	Since $ r(x) = 2.91 > 2.18 = r_{12.0.075}$, it follows that H_0 is rejected. Therefore, H_1 is statistically significant. This means that the mean weight of the wife's packages is different from the mean weight of the baker's packages. Let us refine the hypothesis and try to find out whether the wife's packages have a higher mean weight. The hypothesis are now: $H_0: \mu_k \leq \mu_F \text{versus} H_1: \mu_k > \mu_F.$ **Tetests in R** why kind of tests can be calculated with the Litest command: for example, the two-sample t-test requires to specify the option are equal=TRUE while the Welch test is calculated when the (default) option var.equal=FALSE is set. We can also conduct a one-ample t-test. Suppose we are interested in whether the mean **Or Comparing the Means of Two Dependent Samples (Paired t-Test)* hely could be dependent because we measure the same variable twice on the same subject, it makes sense to calculate a difference between the two respective value at D = X - Y denote the random variable "difference of X and V" $T(X,Y) = T(D) = \frac{\hat{D}}{S_D} \sqrt{n} \qquad (10.9)$ straintificated with $n-1$ degrees of freedom. The sample mean is $\hat{D} = \sum_{i=1}^n /D_i n$ and the sample variance is $s_D^2 = \sum_{i=1}^n (D_i - \hat{D})^2$ compare the test statistic (t = -3.35) with the critical value (1.83, obtained via qt(0.95,9)). evaluate whether the p-value (0.008468) is smaller than the significance $= 0.05.$ evaluate whether the confidence interval for the mean difference covers "0" or not. **Effecting Variances** **Item Variance
F-Tes The te follow the α/ or if where the test the variatery alevel α α α with the α/ or if where the test the variatery alevel α α α with the α/ or if	Since $ r(x) = 2.91 > 2.18 = r_{12.0035}$, it follows that H_0 is rejected. Therefore, H_1 is statistically significant. This means that the mean weight of the wife's packages is different from the mean weight of the buffer spackage. Law s refine the hypothesis and try to find out whether the wife's package have a higher mean weight. The hypothesis are more than the surple of the phypothesis are more than the phypothesis are more than the surple of the phypothesis are more than the phypothesis are phypothesis are more than the phypothesis are more than the phypothesis are more than the phypothesis are phy
F-Test follow the α/ or if where the test the variation of the α/ when α when α when α when α two po	Since $ r(x) = 2.91 > 2.18 = I_{12,0075}$, it follows that H_0 is rejected. Therefore, H_1 is statistically significant. This means that the mean weight of the wife's packages is different from the nean weight of the baker's package. Lat us refine the hypothesis and try to find out whether the wife's packages have a higher mean weight. The hypothesis are not: $H_0: \mu_a \leq \mu_g \text{ versus } H_1: \mu_a > \mu_g.$ $H_0: \mu_a \leq \mu_g \text{ versus } H_1: \mu_g > \mu_g.$ $H_0: \mu_a \leq \mu_g \text{ versus } H_1: \mu_g > \mu_g.$ $H_0: \mu_a \leq \mu_g \text{ versus } H_1: \mu_g > \mu_g.$ $H_0: \mu_a \leq \mu_g \text{ versus } H_1: \mu_g > \mu_g.$ $H_0: \mu_g = \mu_g \text{ versus } H_1: \mu_g > \mu_g.$ $H_0: \mu_g = \mu_g \text{ versus } H_1: \mu_g > \mu_g.$ $H_0: \mu_g = \mu_g \text{ versus } H_1: \mu_g > \mu_g.$ $H_0: \mu_g = \mu_g \text{ versus } H_1: \mu_g > \mu_g.$ $H_0: \mu_g = \mu_g = \mu_g \text{ versus } H_1: \mu_g > \mu_g.$ $H_0: \mu_g = \mu_g = \mu_g = \mu_g.$ $H_0: \mu_g = \mu_g = \mu_g.$
(i) We (ii) We (iii) We level α (iiii) We the test the t	Since $ f(x) = 201 - 2.18 = r_{x_1,x_2,x_3}$, it follows that H_0 is rejected. Therefore, H_1 is statistically significant. This means take the mean verigin to the visit's probages is different from the mean weight of the balan's peckages. Let us retine the hypothesis and try to find out whether the wife's packages have a higher mean weight. The hypothesis and try to find out whether the wife's packages have a higher mean weight. The hypothesis and rate of the balan's peckages have a higher mean weight. The hypothesis are now: $H_0: \mu_x \leq \mu_y \cdot \text{versus} \ H_1: \mu_x > \mu_x.$ **Cets is in R** wy kind of t-test can be calculated with the t-test command: for example, the two-sample t-test requires to specify the option are required by white the Welch test is calculated when the (default) option var equal=FALSE is set. We can also conduct a one-ample t-test. Suppose we are interested in whether the mean $\text{core} = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{$
(i) We (ii) We level α (iii) We follow the α/ The test follow the α/ or if where the test the value of α with the α/ The the X and Test State Let The the X and Test State Let The test state and Test State Let The the X and Test State Let The Test	Since $ t(x) = 2J(1) - 2J(8 - x_{L}) \log x_{L} \log x_{L}$
(i) We (ii) We level α (iii) We follow the α/ The test	Since $Y(x) = 2.91 \times 2.18 = x_{12,20}$, at follows that H_1 is respected. Therefore, H_1 is manifoldly significant. This means that the none veight of the visit's peckages is different from the mean veight of the baker's pinchages. Let us refine the hypothesis and try to find our whether the wife's peckages have a lighter mean veight. The hypothesis and try to find our whether the wife's peckages have a lighter mean veight. The hypothesis and try to find our better the veight of the state
Test f The t	Since $f(u) = 20 \sim 2.0$ is $-r_{20,200}$, it follows that H_0 is rejected. Therefore, H_1 is statistically significant. This means which the mean weight of the black's packages. Let us refine the hypothesis and try to find out whether the weight surgages have a higher mean weight. The hypothesis and try to find out whether the weight suggests have a higher mean weight. The hypothesis and try to find out steels on the calculated with the Litest command; for example, the two-sample t-test requires to specify the option are causal-TRUE while the Weight has it is calculated when the (default) option var equal-FALSE is set. We can also conduct a one-ample, t-test. Suppose we are interested in whether the mean of the control of th
Test f The test f T	Since $x(y) = 2.91 \times 2.18 = x_1$ yours, a follows that f is expected. Therefore, f is statistically spiniture. This is rouse that the near weight of the Wilson Spalage is different from the mean weight of the balan's packages. Let us refine the hyperheise and try to find or whether the wife's packages have a higher mean weight. The hyperheise was a work of the properties and try to find or whether the wife's packages. Let us refine the hyperheise and only to find the state of the hyperheise was a work. **Receipt FINE While the Welch East's calculated when the (default) option var-regular ALSE is set. We can also conduct a one-ample titlet. Suppose we are interested in whether the mean and the final packages and the final packages and the final packages. The final packages are also conduct a one-ample titlet. Suppose we are interested in whether the mean was between the two endough the could be dependent because we measure the same variable trace on the same subjects at different times. Since the same variable is measured whose on the same subject. Thanks some to calculate a difference between the two respective value of $D \times X$ denote the random variable "difference of X and Y" of X and Y and X and Y and X and X and Y and X and
F-Test follow the α/ or if where the test the variatery alevel α α when α two por follow For The the X and Test St Which of free X 2-G The χ 2 χ 2-G The χ 2 χ 2-Test The the X 2 χ 2-Test The the X 2 χ 2-Test The X 2 χ 2-Test The X 3 Test St Te	Since $y(x_1) = 2.9 \times 2.18 \times x_1 \times x_2 \times x_3$, if follows that H_0 is represented by specimical and section of the mean whether the means that the mean weight of the white you changes. Let us reflect the hypothesis and ray to the double whether the white is pulsaries have a lighter mean weight. The whole the problems of the probl
F-Test follow the α/ or if where the test the variative of two portions of two portions of two portions of the α/ Test St. Let of size The X and Test St. Let of size The X and Test St. Let of free X 2-G The χ 2 χ 2-test The X and Test St. Let of size The X and Test St. Let of size The X and Test St.	Since $x(t) \ge 2.9 \times 2.11 = x_{1,2,2,3,4}$ is action with R_t^2 is required. Therefore, R_t^2 is statistically significant from the more eight of the side R_t^2 is related to the significant from the more eight of the side R_t^2 is related to the dependence of the problems are eight of the side R_t^2 is related to the second of the side R_t^2 is R_t^2 in $R_$
F-Test follow the α/ or if where the test the variative portion of free the follow For The the X and Test St. Let of size The X are the X a	Since $x(x) \ge 2.9 \times 2.18 = x_{\rm control}$ is followed that R_0 is rejected. Therefore, R_1 is statistically significant from the mean to the term weight of the wide yeakpage is difficient from the mean weight of the wide yeakpage is a difficient from the mean weight of the wide yeakpage is a difficient from the mean weight of the wide yeakpage is a difficient from the mean weight of the wide yeakpage is a difficient from the mean weight of the wide is a probability of the probabilities of the probabilit
F-Test (i) We (ii) We (iii) We level α (iii) We for the test follow the α/ or if where the test the va interval a va when α the va when α the va the va interval a va Test Si A	Since a facility $2 \le 2 $
F-Test (i) We (ii) We (iii) We level α (iii) We f-Test follow the α/ or if where the test the test the val interval evel α The the X and Test Si when α two po follow For The the X and Test Si when α two po follow For The the X and Test Si The fi With Exam pea p experi	Since $x_{i+1} = 20.3 \times 2.19 $
(i) We do not see the test the variation of free the variation of	Since $2 \cos 2 (24 - 2.08 + c_{10}) + c_{10} \cos 2 (4) + c_{$
F-Test (i) We (ii) We (iii) We level α (iii) We for the test the variation of the test the variation of free the variation of f	Since $z(x) > 2(1) = 2.15 \times z_{10} \times z_{10}$ and the mass for the mass of the form was also decided by a single of the wide frequency in different to a form which produces the single decided by a single of the wide frequency in different to a form which produces the single decided by the single decided by the single of the produces are single from the single decided by t
F-Test (i) We (ii) We (iii) We level α (iii) We level α (iii) We retain the variation of the test the variation of free the test the variation of free the test that and the following for the test that are the following for the test that are the	Since $j > 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2$
F-Test (i) We (ii) We (iii) We (iv) (iii) We (iv) F-Test (iiii) We (iv) F-Test (iv) (iv) F-T	The property of the services of the property
(i) We (ii) We (iii) We (iiii) We (iiiii) We (iiiii) We (iiiiii) We (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	The pipe of 200 is the regions of the control of t
F-Test (i) We (ii) We (iii) We (iii) We (iii) We (iv) F-Test follow the α/ or if where the test the va interval a/2 win F-Test when α two po follow For The th X and Test Si Capan peaper Which of free X 2-G The The Since Stati In R X 2-In If we are indepen expean For The Since Stati In R X 2-In If we are indepen expean For The For For For For For For For Fo	The property of the content of the
F-Test (i) We (ii) We level α (iii) We f-Test follow the α/ or if where the test t	Standards a patient. The control of
F-Test (i) We (ii) We (iii) We (iii) We (iv)	State of the Part of the State of Fundamental Relationship to the State of the Sta
Test of section of free the test the variation of free the v	We consider the second contract of the secon
Test f (i) We d (ii) We d (iii) We delevel a d (iiii) We delevel	Supplies of \$1 - 28 in a growth filteration for insight of money and processing of the content
Test of (i) We (ii) We (iii) We (iiii) We (iiii) We (iiii) We (iiii) We (iiiii) We (iiiii) We (iiiiii) We (iiiiiiiiii) We (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	The contribution of the c
Test f (i) We d (ii) We d (iii) We delevel a d (iv) We del	The state of the
Test for the standard of three	The control of the co