MO640/MC668

Guilherme P. Telles

IC-Unicamp

Avisado está

- Estes slides são incompletos.
- Estes slides contêm erros.

Parte I

Alinhamento múltiplo de cadeias

Alinhamento múltiplo de seqüências

- Generalização do alinhamento para duas seqüências.
- Um alinhamento múltiplo entre as cadeias s_1, \ldots, s_k é obtido inserindo espaços nas cadeias de tal forma que elas tenham o mesmo tamanho e nenhuma coluna do alinhamento tenha apenas espaços.

M-QPIALLLG M-LR-ALL-G M-K-IALLLG MWPPVA--LG

Motivação

- Identificar blocos conservados e padrões em um conjunto de cadeias que são biologicamente relacionadas.
- Analisar história evolutiva.
- Caracterizar famílias de moléculas.

Pontuação

- Vamos considerar que pontuação do alinhamento é dada pela soma das pontuações das colunas.
- Para cada coluna, uma função de pontuação teria que mapear colunas nos reais. O domínio é grande ($(|\Sigma|-1)^k/(|\Sigma|-1)!$), logo não é simples definir.

Sum-of-pairs

- Um esquema bastante usado é o sum-of-pairs, SP.
- Simples.
- Satisfaz
 - Independência da ordem dos aminoácidos nas colunas.
 - Valoriza a presença de aminoácidos iguais ou parecidos.
 - Penaliza a presença de buracos e aminoácidos pouco relacionados.
- Usa outros esquemas de pontuação (PAM, BLOSUM, etc) como base.

Alinhamento induzido

- ullet Seja ${\mathcal A}$ um alinhamento múltiplo.
- Um alinhamento \mathcal{A}_{ij} induzido por \mathcal{A} é o alinhamento entre s_i e s_j que resulta da remoção das linhas correspondetes às cadeias $s_k \neq s_i, s_j$ de \mathcal{A} .
- A_{ij} também é chamado de projeção do alinhamento múltiplo.

SP

- A pontuação SP de uma coluna k de um alinhamento múltiplo é a soma das pontuações de todos os pares de símbolos na coluna k.
- Por exemplo:

$$SP(I, -, I, V) = p(I, -) + p(I, I) + p(I, V) + p(-, I) + p(-, V) + p(I, V)$$

- A pontuação *SP* de um alinhamento é a soma das pontuações *SP* das colunas dele.
- ullet Se p(-,-)=0, então a pontuação do alinhamento ${\cal A}$ satisfaz

$$SP(A) = \sum_{i < j} score(A_{ij}).$$

Programação dinâmica

- A solução por PD para o problema com duas cadeias pode ser naturalmente generalizada para k cadeias. Supondo que $|s_1| = |s_2| = \ldots = |s_k| = n$,
 - A matriz tem tamanho $O(n^k)$.
 - ▶ Cada entrada depende de 2^k-1 outras, uma para cada composição possível da coluna, considerando espaço ou caractere de cada cadeia e excluindo o caso com k buracos.
 - lacktriangle Para computar o SP faz-se uma soma de $O(k^2)$ elementos.
 - ullet É preciso calcular o máximo para chegar ao valor de $A[i_1,\ldots,i_k]$.
 - $ightharpoonup O(n^k 2^k k^2)$, NP-completo.

Programação dinâmica

• Fazendo $\mathbf{s}=s_1,\ldots,s_k$, $\mathbf{i}=i_1,\ldots,i_k$, e sendo \mathbf{b} um vetor binário de tamanho k, a expressão geral para preenchimento da matriz é

$$A[\mathbf{i}] = \max_{b \neq \mathbf{0}} \{ A[\mathbf{i} - \mathbf{b}] + SP(col(\mathbf{s}, \mathbf{i}, \mathbf{b})) \}$$

onde
$$col(\mathbf{s}, \mathbf{i}, \mathbf{b}) = (c_1, \dots, c_k)$$
 e

$$c_j = \begin{cases} s_j[i_j] & \text{se} \quad b_j = 1\\ - & \text{se} \quad b_j = 0 \end{cases}$$

para $1 \leq j \leq k$.

Heurística de projeções

- Dado um alinhamento múltiplo \mathcal{A} , a projeção \mathcal{A}_{ij} é o alinhamento entre s_i e s_j induzido por \mathcal{A} com as colunas (-,-) removidas.
- Se conhecemos o alinhamento múltiplo ótimo entre várias cadeias e olhamos para a projeção das cadeias 1 e 2 então
 - o alinhamento ótimo entre 1 e 2 e o alinhamento projetado entre elas não precisa ser igual, mas
 - a pontuação do alinhamento ótimo entre 1 e 2 é maior ou igual à pontuação da projeção.

Heurística de projeções

- ullet Usa um limite inferior L da pontuação do alinhamento ótimo para preencher apenas células relevanes da matriz.
- O limite L pode ser a pontuação de um alinhamento qualquer (não-ótimo).
- Células relevantes são células que melhoram a pontuação do alinhamento em relação a ${\cal L}.$
- Funciona apenas para pontuação SP.
- É uma heurística porque no pior caso preenche toda a matriz.

Projeção vs. alinhamento ótimo

- 1 ...AT...
- 2 ...A-...
- 3 ...-T...
- 4 ...AT...
- 5 ...AT...
- 2 ...A-...
- 3 ...-T...
- 2 ...A...
- 3 ...T...

Heurística de projeções

- A heurística de projeções limita o preenchimento da matriz a uma região do hipercubo que pode conter o alinhamento ótimo.
- As células preenchidas são aquelas que são percorridas por pelo menos um caminho que tem, em todas as projeções dele, custo menor que um limite.

Matriz de cortes

- Usando PD podemos construir a matriz de similaridades de prefixos e também a de sufixos.
- ullet Somando as duas matrizes obtemos a matriz C.
- Cada célula de C guarda a melhor pontuação de um alinhamento que contém um corte(i,j).
- Um corte(i,j) em um alinhamento ótimo $\mathcal A$ é a divisão de $\mathcal A$ em dois sub-alinhamentos,

$$\begin{aligned} &\mathcal{A}_1: s_1[1..i], s_2[1..j] \\ &\mathcal{A}_2: s_1[i+1..|s_1|], s_2[j+1..|s_2|] \end{aligned}$$

• A_1 é o melhor alinhamento possível dos prefixos e A_2 é o melhor alinhamento possível dos sufixos definidos pelo corte.

Matriz de prefixos

		G	Α	Т	Т	С
	0	-2	-4	-6	-8	-10
Α	-2	-1	-1	-3	-5	-7
Т	-4	-3	-2	0	-2	-4
Т	-6	-5	-4	-1	1	-1
С	-8	-7	-6	-3	-1	2
G	-10	-7	-8	-5	-3	0
G	-12	-9	-8	-7	-5	-2

Matriz de sufixos

	G	Α	Т	Т	С	
Α	-2	0	-3	-6	-9	-12
Т	-5	-3	-1	-4	-7	-10
Т	-6	-4	-3	-2	-5	-8
С	-7	-5	-3	-4	-3	-6
G	-6	-6	-4	-2	3	-4
G	-7	-7	-5	-3	-1	-2
	-10	-8	-6	-4	-2	0

Matriz de cortes

		G	Α	Т	Т	С
	-2	-2	-7	-12	-17	-22
Α	-7	-4	-2	-7	-12	-17
Т	-10	-7	-5	-2	-7	-12
Т	-13	-10	-7	-5	-2	-7
С	-14	-13	-10	-5	-4	-2
G	-17	-14	-13	-8	-4	-2
G	-22	-17	-14	-11	-7	-2

Teste de relevância

- ullet Vamos supor que conhecemos um limite inferior L para a pontuação de um alinhamento múltiplo ótimo.
- Teorema: Seja $\mathcal A$ um alinhamento ótimo entre s_1,\dots,s_k . Se $SP(\mathcal A)\geq L$ então

$$score(A_{ij}) \ge L - \sum_{x < y, (x,y) \ne (i,j)} sim(s_x, s_y).$$

Teste de relevância

Vamos denotar

$$L - \sum_{x < y, (x,y) \neq (i,j)} sim(s_x, s_y) = L_{ij}.$$

- L_{ij} é um limite inferior para a pontuação da projeção.
- A célula $\mathbf{i} = (i_1, \dots, i_k)$ é relevante para o alinhamento ótimo com relação ao limite L se todas as suas projeções satisfazem ao teorema.
- Em outras palavras, i é relevante se

$$C_{xy}[i_x, i_y] \ge L_{xy}$$

para todo x e y tais que $1 \le x < y \le k$.

Implementação

- A implementação eficiente da heurística começa da célula 0 e preenche as células relevantes por propagação a partir de 0.
- Uma célula i influencia uma célula j se i é usada para computar o valor de a[j]. Nesse caso dizemos também que j depende de i.
- As células são mantidas em uma fila de prioridades pela ordem lexicográfica das células.
 - Uma célula entra na fila quando depende de uma que já está na file e é inicializada nesse momento.
 - Quando uma célula sai da fila seu valor ótimo já foi calculado e todas as que dependem dela diretamente são atualiadas.

Heurística

```
ALIGN(s_1,\ldots,s_k,L)
       for every x and y, 1 \le x < y \le k
              Compute C_{xy}, the total score array for s_x and s_y
       for every x and y, 1 \le x < y \le k
              L_{xy} = L - \sum_{i < j, (x,y) \neq (i,j)} sim(s_i, s_j)
     pool = \{\mathbf{0}\}
       while pool \neq \emptyset
              i = remove the lexicographically smallest cell in pool
  8
              if C_{xy}[i_x, i_y] \ge L_{xy}, \forall x, y, 1 \le x < y \le k
  9
                     for every j dependent on i
                            if i \notin pool
10
11
                                   pool = pool \cup i
                                   a[\mathbf{i}] = a[\mathbf{i}] + SP(col(\mathbf{s}, \mathbf{i}, \mathbf{i} - \mathbf{i}))
12
13
                            else
                                   a[\mathbf{j}] = \max(a[\mathbf{j}], a[\mathbf{i}] + SP(col(\mathbf{s}, \mathbf{i}, \mathbf{j} - \mathbf{i}))
14
15
       return a[n_1,...,n_k]
```

Heurística

- Pára quando $A[n_1, \ldots, n_k]$ for retirada do pool.
- A complexidade de tempo e espaço são proporcionais ao número de células relevantes. Quanto melhor for L, menor o número de células.
- Uma possibilidade para obter L é a pontuação de um alinhamento qualquer entre as cadeias.
- Para obter o alinhamento é necessário registrar as atualizações das células. Uma maneira possível é usando um grafo.

Alinhamento por heurística em árvore

- Seja $S = \{s_1, \ldots, S_k\}$ um conjunto de cadeias e seja T uma árvore com k nós em que cada nó está rotulado por uma cadeia distinta de S.
- Um alinhamento múltiplo de S, \mathcal{M} , é consistente com T se a projeção de todo par de cadeias s_i, s_j tem pontuação igual a $sim(s_i, s_j)$.

Alinhamento por heurística em árvore

- A heurística constrói o alinhamento entre duas seqüências adjacentes e depois acrescenta uma outra seqüência adjacente, fazendo um alinhamento de duas sequencias e incorporando no bloco
- ullet Um alinhamento múltiplo de S será consistente com T.

Alinhamento em árvore

• Encontrar a seqüência que maximiza a pontuação é NP-completo.

Heurística: alinhamento estrela

- Se não tivermos a árvore, podemos usar o alinhamento estrela: a árvore é uma estrela.
- O centro é escolhido como a cadeia que maximiza a soma das similaridades com as demais.
- (Ou usamos cada uma como centro e ficamos com o melhor alinhamento.)
- Não é difícil mostrar que o alinhamento estrela para pontuação que é uma distância (métrica) obtém uma pontuação que é no máximo 2 vezes maior que a pontuação do alinhamento ótimo.

Soluções práticas

- mátodos progressivos.
- métodos iterativos.

Alinhamento progressivo

- Simples, requer poucos recursos, guloso e sensível ao esquema de pontuação.
- Três passos principais: calcular alinhamentos par-a-par, construir uma árvore para as cadeias e depois usa a árvore para alinhar cadeias ou alinhamentos.
- Os algoritmos diferem na implementação de cada um desses passos.

Alinhamento de alinhamentos

- Pode ser resolvido por uma aplicação do algoritmo de programação dinâmica.
- A pontuação entre duas colunas pode ser calculada pela soma-de-pares para a nova coluna.
- Para k colunas a complexidade é $O(nmk^2)$.

Alinhamento iterativo

- Consiste em refinar um alinhamento existente em várias iterações.
- Uma parte dos algoritmos nessa classe retira cada cadeia do conjunto, refaz os alinhamentos de depois combina todos eles.
- Requer muito tempo e depende de outros métodos para produzir alinhamentos múltiplos.

Heurística: CLUSTAL W

- Heurística para alinhamento em árvore.
- Constrói a árvore usando neighbor-joining a partir de distâncias dadas por alinhamentos de pares de cadeias.
- Varia o esquema de pontuação e penalidades de buracos para lidar melhor com cadeias com divergência variada.

Heurística: CLUSTAL W

- Três passos principais:
 - Construção da matriz de distâncias entre as cadeias.
 - 2 Construção da árvore.
 - Onstrução do alinhamento usando a árvore como guia. Cadeias muito divergentes (menos de 40% de similaridade) são deixadas por último.

Matriz de distâncias

- Cálculo das pontuações entre as cadeias. A pontuação é o número de identidades no melhor alinhamento dividido pela soma dos tamanhos das cadeias. Dois métodos de contagem:
 - Pontuação da PD usando uma matriz de substituições, penalidade para abrir um novo buraco e penalidade para estender um buraco ou
 - Ocontagem de cadeias de colunas com letras iguais (1 ou 2 para proteínas, 2 a 4 para DNA) subtraindo uma penalidade para cada buraco (mais rápido).
- A pontuação é dividida por 100 e subtraída de 1, se tornando uma distância.

Construção da árvore

- A árvore é construída usando neighbor-joining.
- A idéia básica é
 - Começar com uma estrela com todas as cadeias como folhas.
 - Acrescentar um ancestral entre as folhas s_i e s_j mais próximas entre si que das demais e estimar o tamanho dos ramos.
 - ▶ Remover s_i e s_j e acrescentar s_{ij} .
 - Repetir até que restem apenas três grupos.
 - Para três grupos, construir a árvore diretamente.
- A árvore não tem raiz. Uma raiz é colocada no ponto em que a média dos tamanhos dos ramos de ambos os lados é igual.
- O alinhamento é construído das folhas em direção à raiz, nós mais próximos primeiro.

Árvore

Produção do alinhamento múltiplo

- As cadeias ou alinhamentos já existentes são alinhadas usando PD com uma matriz de substituições, uma penalidade para abrir buracos e uma para estender buracos.
- As matrizes são reescaladas para ter como menor pontuação o valor 0.
- A pontuação entre duas posições que são colunas de alinhamentos é calculada pela somas dos scores de cada par ponderado pelo peso das cadeias dividida pelo número de cadeias.
- Todo par com buraco recebe pontuação 0.

Pesos

- Os pesos são calculados normalizando as distâncias na árvore de tal forma que a maior distância seja 1.0.
- O peso altera o esquema de pontuação de tal forma que cadeias que são muito próximas de alguma outra recebam peso pequeno e cadeias que são pouco relacionadas com outras recebem peso maior.

Penalidades iniciais de buracos

- Os valores de penalidades $(GOP \ e \ GEP)$ para buracos iniciais são escolhidos pelo usuário.
- Os valores iniciais são alterados em função:
 - da matriz de pontuação (valor de mismatch médio p)
 - da similaridade entre as cadeias (o percentual de identidade entre as cadeias ou grupos s)
 - do tamanho das cadeias (logaritmo do tamanho da menor cadeia ou da diferença entre os tamanhos)

$$GOP = (GOP_i + \log(\min(m, n))) * p * s.$$

$$GEP = (GEP_i + (1.0 + \log(\min(m/n)))).$$

Penalidades de buracos por posição

- Os valores de penalidades GOP_i e GEP_i são usados para gerar uma matriz de penalidades de buracos modificadas em função da posição em que o buraco aparece.
- Se já existe um buraco na posição, a penalidade é reduzida:

$$GOP = GOP*0.3* \frac{\text{no de seqs sem buraco}}{\text{no de seqs}}$$

$$GEP = \frac{GEP}{2}$$

Penalidades de buracos por posição

 Se não existem buraco próximos a uma posição, a penalidade é aumentada:

$$GOP = GOP * (2 + (8 - distancia de algum buraco * 2)/8)$$

 Se não houver buracos e houver uma cadeia de aminoácidos hidrofílicos de tamanho pelo menos cinco em alguma seqüencia, a penalidade é reduzida.

$$GOP = \frac{GOP}{3}$$

Penalidades de buracos por posição

 Se não houver buracos e não houver uma cadeia de aminoácidos hidrofílicos (D, E, G, K, N, Q, P, R e S)de tamanho pelo menos cinco em alguma seqüencia, a penalidade é modificada em função de um valor específico por aminoácido ou pela média dos valores na coluna.

Matrizes de substituição

 As matrizes de substituição podem ser PAM ou BLOSUM. A matriz é escolhida em função da distância entre as cadeias ou grupos de cadeias.

80-100%	PAM20
60-80%	PAM60
40-60%	PAM120
0-40%	PAM350

BLOSUM80			
BLOSUM62			
BLOSUM45			
BLOSUM30			