ESP32-PICO-D4 技术规格书

版本 1.3

Espressif Systems

关于本文档

本文档为用户提供 ESP32-PICO-D4 模组的技术规格信息。

修订历史

请至文档最后页查看修订历史。

文档变更通知

用户可以通过 乐鑫官网 订阅技术文档变更的电子邮件通知。

证书下载

用户可以通过 乐鑫官网 下载产品证书。

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。版权归 © 2018 乐鑫所有。保留所有权利。

目录

ı	大大	1
2 2.1	管脚定义 ^{管脚布局}	3
2.2	管脚描述	3
2.3	Strapping 管脚	5
3	功能描述	7
3.1	CPU 和片上存储	7
3.2	外部 Flash 和 SRAM	7
3.3	晶振	7
3.4	RTC 和低功耗管理	8
4	外设接口和传感器	9
5	电气特性	10
5.1	绝对最大额定值	10
5.2	建议工作条件	10
5.3	直流电气特性 (3.3V, 25°C)	10
5.4	Wi-Fi 射频	11
5.5	低功耗蓝牙射频	11
	5.5.1 接收器 5.5.2 发射器	11 12
5.6	回流焊温度曲线	13
6		
6	原理图	14
7	外围设计原理图	15
8	封装信息	17
9	学习资源	18
9.1	必读资料	18
9.2	必备资源	18
修	订历史	19

表格

1	ESP32-PICO-D4 产品规格	1
2	管脚定义	3
3	Strapping 管脚	5
4	不同功耗模式下的功耗	8
5	绝对最大额定值	10
6	建议工作条件	10
7	直流电气特性	10
8	Wi-Fi 射频特性	11
9	低功耗蓝牙接收器特性	11
10	低功耗蓝牙发射器特性	12

插图

1	ESP32-PICO-D4 管脚布局图	3
2	回流焊温度曲线	13
3	ESP32-PICO-D4 模组原理图	14
4	ESP32-PICO-D4 模组外围设计原理图	15
5	ESP32-PICO-D4 封裝信息	17

1. 概述

ESP32-PICO-D4 是一款基于 ESP32 的系统级封装 (SIP) 模组,可提供完整的 Wi-Fi 和蓝牙功能。该模组的外观尺寸仅为 (7.0 ± 0.1) mm × (7.0 ± 0.1) mm × (0.94 ± 0.1) mm,整体占用的 PCB 面积最小,已集成 1 个 4 MB 串行外围设备接口 (SPI) flash。

ESP32-PICO-D4 的核心是 ESP32 芯片 *。ESP32 是集成 2.4 GHz Wi-Fi 和蓝牙双模的单芯片方案,采用台积电 (TSMC) 超低功耗的 40 纳米工艺。ESP32-PICO-D4 模组已将晶振、flash、滤波电容、RF 匹配链路等所有外围器件无缝集成进封装内,不再需要外围元器件即可工作。此时,由于无需外围器件,模组焊接和测试过程也可以避免,因此 ESP32-PICO-D4 可以大大降低供应链的复杂程度并提升管控效率。

ESP32-PICO-D4 具备体积紧凑、性能强劲及功耗低等特点,适用于任何空间有限或电池供电的设备,比如可穿戴设备、医疗设备、传感器及其他 IoT 设备。

说明:

* 更多有关 ESP32 的信息,请参考 _《ESP32 技术规格书》。

表 1 列出了 ESP32-PICO-D4 的产品规格。

表 1: ESP32-PICO-D4 产品规格

类别	项目	产品规格
	14. 2/7	802.11 b/g/n (802.11n 的速度高达 150 Mbps)
Wi-Fi	协议	支持 A-MPDU 和 A-MSDU 聚合;支持 0.4 μs 保护间隔
	频率范围	2.4 GHz ~ 2.5 GHz
	协议	蓝牙 V4.2 BR/EDR 和 BLE 标准
		NZIF 接收器,灵敏度达-97 dBm
蓝牙	射频	Class-1、Class-2 和 Class-3 发射器
		AFH
	音频	CVSD 和 SBC
		ADC、DAC、触摸传感器、SD/SDIO/MMC 主机控制器、
	模组接口	SPI、SDIO/SPI 从机控制器、EMAC、电机 PWM、LED
		PWM、UART、I2C、I2S、红外远程控制器、GPIO
	片上传感器	霍尔传感器
	板上时钟	40 MHz 晶振
硬件	工作电压/供电电压	2.7V ~ 3.6V
52.11	工作电流	平均: 80 mA
	供电电流	最小: 500 mA
	建议工作温度范围	-40°C ~ 85°C
	封装尺寸	$(7.0\pm0.1) \text{ mm} \times (7.0\pm0.1) \text{ mm} \times (0.94\pm0.1) \text{ mm}$

类别	项目	产品规格
	Wi-Fi 模式	Station/SoftAP/SoftAP+Station/P2P
	Wi-Fi 安全机制	WPA/WPA2/WPA2-Enterprise/WPS
	加密类型	AES/RSA/ECC/SHA
软件	固件升级	UART 下载/OTA(通过网络/通过主机下载和写固件)
	软件开发	支持云服务器开发/SDK,用于用户固件开发
	网络协议	IPv4、IPv6、SSL、TCP/UDP/HTTP/FTP/MQTT
	用户配置	AT+ 指令集、云服务器、安卓/iOS app

2. 管脚定义

2.1 管脚布局

图 1: ESP32-PICO-D4 管脚布局图

2.2 管脚描述

ESP32-PICO-D4 模组共有 48 个管脚, 具体描述参见表 2.

表 2: 管脚定义

名称	序号	类型	功能
VDDA	1	Р	模拟电源 (2.3V ~ 3.6V)
LNA_IN	2	I/O	射频输入输出
VDDA3P3	3	Р	模拟电源 (2.3V ~ 3.6V)
VDDA3P3	4	Р	模拟电源 (2.3V ~ 3.6V)
SENSOR_VP	5	I	GPIO36、ADC1_CH0、RTC_GPIO0
SENSOR_CAPP	6	I	GPIO37、ADC1_CH1、RTC_GPIO1
SENSOR_CAPN	7	I	GPIO38、ADC1_CH2、RTC_GPIO2
SENSOR_VN	8	I	GPIO39、ADC1_CH3、RTC_GPIO3
			高电平: 模组使能;
EN	9	1	低电平:模组复位;
			注意:不能让这个管脚浮空。

名称	序号	类型	功能	
IO34	10	1	ADC1_CH6、RTC_GPIO4	
IO35	11	1	ADC1_CH7、RTC_GPIO5	
IO32	12	I/O	32K_XP(32.768 kHz 晶振输人)、ADC1_CH4、TOUCH9、RTC_GPIO9	
IO33	13	I/O	32K_XN(32.768 kHz 晶振输出)、ADC1_CH5、TOUCH8、RTC_GPIO8	
IO25	14	I/O	GPIO25, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXD0	
IO26	15	I/O	GPIO26, DAC_2, ADC2_CH9, RTC_GPIO7, EMAC_RXD1	
1027	16	I/O	GPIO27, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV	
.02.		,, 0	ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK, HS2_CLK,	
IO14	17	I/O	SD_CLK、EMAC_TXD2	
			ADC2_CH5、TOUCH5、RTC_GPIO15、MTDI、HSPIQ、HS2_DATA2、	
IO12	18	I/O	SD_DATA2、EMAC_TXD3	
VDD3P3 RTC	19	Р	RTC IO 电源输入 (2.3V ~ 3.6V)	
VBB01 0_1110	10	'	ADC2_CH4、TOUCH4、RTC_GPIO14、MTCK、HSPID、HS2_DATA3、	
IO13	20	I/O	SD_DATA3、EMAC_RX_ER	
			ADC2_CH3, TOUCH3, RTC_GPIO13, MTDO, HSPICS0, HS2_CMD,	
IO15	21	I/O	SD CMD, EMAC RXD3	
			ADC2_CH2、TOUCH2、RTC_GPIO12、HSPIWP、HS2_DATA0、	
102	22	I/O	SD_DATA0	
100	23	I/O	ADC2_CH1、TOUCH1、RTC_GPIO11、CLK_OUT1、EMAC_TX_CLK	
100	23	1/0		
IO4	24	I/O	ADC2_CH0、TOUCH0、RTC_GPIO10、HSPIHD、HS2_DATA1、	
1040	0.5	1/0	SD_DATA1、EMAC_TX_ER	
IO16	25	I/O	GPIO16、HS1_DATA4、U2RXD、EMAC_CLK_OUT	
VDD_SDIO	26	P	VDD3P3_RTC 电源输出	
IO17	27	1/0	GPIO17、HS1_DATA5、U2TXD、EMAC_CLK_OUT_180	
SD2	28	I/O	GPIO9、SD_DATA2、SPIHD、HS1_DATA2、U1RXD	
SD3	29	I/O	GPIO10, SD_DATA3, SPIWP, HS1_DATA3, U1TXD	
CMD	30	I/O	GPIO11、SD_CMD、SPICSO、HS1_CMD、U1RTS	
CLK	31	I/O	GPIO6、SD_CLK、SPICLK、HS1_CLK、U1CTS	
SD0	32	I/O	GPIO7、SD_DATA0、SPIQ、HS1_DATA0、U2RTS	
SD1	33	I/O	GPIO8、SD_DATA1、SPID、HS1_DATA1、U2CTS	
105	34	I/O	GPIO5、VSPICS0、HS1_DATA6、EMAC_RX_CLK	
IO18	35	I/O	GPIO18、VSPICLK、HS1_DATA7	
1023	36	I/O	GPIO23、VSPID、HS1_STROBE	
VDD3P3_CPU	37	Р	CPU IO 电源输入 (1.8V ~ 3.6V)	
IO19	38	I/O	GPIO19、VSPIQ、U0CTS、EMAC_TXD0	
1022	39	I/O	GPIO22、VSPIWP、UORTS、EMAC_TXD1	
U0RXD	40	I/O	GPIO3、U0RXD、CLK_OUT2	
U0TXD	41	I/O	GPIO1、U0TXD、CLK_OUT3、EMAC_RXD2	
IO21	42	I/O	GPIO21、VSPIHD、EMAC_TX_EN	
VDDA	43	Р	模拟电源 (2.3V ~ 3.6V)	
XTAL_N_NC	44	-	NC	
XTAL_P_NC	45	-	NC	
VDDA	46	Р	模拟电源 (2.3V ~ 3.6V)	
CAP2_NC	47	-	NC ,	
_	1	1		

名称	序号	类型	功能
CAP1_NC	48	-	NC

注意:

ESP32-PICO-D4 的管脚 IO16、IO17、CMD、CLK、SD0 和 SD1 用于连接嵌入式 flash,不建议用于其他功能。

2.3 Strapping 管脚

ESP32 共有 5 个 Strapping 管脚,可参考章节 6 电路原理图:

- MTDI
- GPI00
- GPIO2
- MTDO
- GPI05

软件可以读取寄存器 "GPIO_STRAPPING"中这 5 个管脚 strapping 的值。

在芯片的系统复位(上电复位、RTC 看门狗复位、欠压复位)过程中,Strapping 管脚对电平采样并存储到锁存器中,锁存为"0"或"1",并一直保持到芯片掉电或关闭。

每一个 Strapping 管脚都会连接内部上拉/下拉。如果一个 Strapping 管脚没有外部连接或者连接的外部线路处于高阻抗状态,内部弱上拉/下拉将决定 Strapping 管脚输入电平的默认值。

为改变 Strapping 的值,用户可以应用外部下拉/上拉电阻,或者应用主机 MCU 的 GPIO 控制 ESP32 上电复位时的 Strapping 管脚电平。

复位后, Strapping 管脚和普通管脚功能相同。

配置 Strapping 管脚的详细启动模式请参阅表 3。

表 3: Strapping 管脚

内置 LDO (VDD_SDIO) 电压						
管脚	默认	3.3V	1.8V			
MTDI	下拉	0	1			
		系统启动模式				
管脚	默认	SPI 启动模式	下载启动模式			
GPIO0	上拉	1	0			
GPIO2	下拉	无关项	0			
		系统启动过程中,控制 U0TXD 打!	印			
管脚	管脚 默认 UOTXD 正常打印 UOTXD 上电不打印					
MTDO	上拉	1	0			
	SDIO 从机信号输入输出时序					

管脚	默认	下降沿输人 下降沿输出	下降沿输入 上升沿输出	上升沿输入 下降沿输出	上升沿输入 上升沿输出
MTDO	上拉	0	0	1	1
GPIO5	上拉	0	1	0	1

说明:

- 固件可以通过配置一些寄存器比特位,在启动后改变"内置 LDO (VDD_SDIO) 电压"和"SDIO 从机信号输入输出时序"的设定。
- ESP32-PICO-D4 集成的外部 SPI flash 工作电压为 3.3V, 因此在上电复位过程中需保持 Strapping 管脚 MTDI 为低电平。

3. 功能描述

本章描述 ESP32-PICO-D4 的具体功能。

3.1 CPU 和片上存储

ESP32-PICO-D4 搭载 2 个低功耗 Xtensa® 32-bit LX6 微处理器。

ESP32-PICO-D4 片上存储包括:

- 448 kB 的 ROM, 用于程序启动和内核功能调用
- 用于数据和指令存储的 520 kB 片上 SRAM
- RTC 快速存储器,为 8 kB 的 SRAM,可以在 Deep-sleep 模式下 RTC 启动时用于数据存储以及被主 CPU 访问
- RTC 慢速存储器,为 8 kB的 SRAM,可以在 Deep-sleep 模式下被协处理器访问
- 1 kbit 的 eFuse, 其中 256 bit 为系统专用 (MAC 地址和芯片设置); 其余 768 bit 保留给用户程序, 这些程序包括 flash 加密和芯片 ID

3.2 外部 Flash 和 SRAM

ESP32 支持多个外部 QSPI flash 和静态随机存储器 (SRAM)。详情可参考<u>《ESP32 技术参考手册》</u>中的 SPI 章节。ESP32 还支持基于 AES 的硬件加解密功能,从而保护开发者 flash 中的程序和数据。

ESP32 可通过高速缓存访问外部 QSPI flash 和 SRAM:

- 外部 flash 可以同时映射到 CPU 指令和只读数据空间。外部 flash 最大可支持 16 MB。
 - 当映射到 CPU 指令空间时,一次最多可映射 11 MB+248 KB。如果一次映射超过 3 MB+248 KB,则 cache 性能可能由于 CPU 的推测性读取而降低。
 - 当映射到只读数据空间时, 一次最多可以映射 4 MB。支持 8-bit、16-bit 和 32-bit 读取。
- 外部 SRAM 可映射到 CPU 数据空间。外部 SRAM 最大可支持 8 MB。一次最多可映射 4 MB。支持 8-bit、 16-bit 和 32-bit 访问。

ESP32-PICO-D4 集成了 4 MB 的外部 SPI flash,可以映射到 CPU 代码空间,支持 8-bit、16-bit 和 32-bit 访问,并可执行代码。

3.3 晶振

ESP32-PICO-D4 已集成 40 MHz 晶振。

3.4 RTC 和低功耗管理

ESP32 采用了先进的电源管理技术,可以在不同的功耗模式之间切换。

• 功耗模式

- Active 模式: 芯片射频处于工作状态。芯片可以接收、发射和侦听信号。
- Modem-sleep 模式: CPU 可运行, 时钟可被配置。Wi-Fi/蓝牙基带和射频关闭。
- Light-sleep 模式: CPU 暂停运行。RTC 存储器和外设以及 ULP 协处理器运行。任何唤醒事件 (MAC、主机、RTC 定时器或外部中断) 都会唤醒芯片。
- Deep-sleep 模式: CPU 和大部分外设都会掉电, 只有 RTC 存储器和 RTC 外设处于工作状态。Wi-Fi 和蓝牙连接数据存储在 RTC 中。ULP 协处理器可以工作。
- Hibernation 模式: 内置的 8 MHz 振荡器和 ULP 协处理器均被禁用。RTC 内存恢复电源被切断。只有 1 个位于低速时钟上的 RTC 时钟定时器和某些 RTC GPIO 在工作。RTC 时钟定时器或 RTC GPIO 可以将芯片从 Hibernation 模式中唤醒。

设备在不同的功耗模式下有不同的电流消耗,详情请见下表。

功耗模式 描述 功耗 Wi-Fi Tx packet Wi-Fi/BT Tx packet Active (射频工作) 详见《ESP32 技术规格书》 Wi-Fi/BT Rx 和侦听 最大速度 (240 MHz): 30 mA ~ 50 mA Modem-sleep CPU 处于工作状态 正常速度 (80 MHz): 20 mA ~ 25 mA 慢速 (2 MHz): 2 mA ~ 4 mA Light-sleep 0.8 mA ULP 协处理器处于工作状态 150 μ A 超低功耗传感器监测方式 100 μA @1% duty Deep-sleep RTC 定时器 +RTC 存储器 10 μA Hibernation 仅有 RTC 定时器处于工作状态 $5 \mu A$ 关闭 CHIP_PU 脚拉低,芯片处于关闭状态 $0.1 \ \mu A$

表 4: 不同功耗模式下的功耗

说明:

- 在 Wi-Fi 开启的场景中, 芯片会在 Active 和 Modem-sleep 模式之间切换, 功耗也会在两种模式间变化。
- Modem-sleep 模式下, CPU 频率自动变化, 频率取决于 CPU 负载和使用的外设。
- Deep-sleep 模式下,仅 ULP 协处理器处于工作状态时,可以操作 GPIO 及低功耗 I2C。
- 当系统处于超低功耗传感器监测模式时,ULP 协处理器和传感器周期性工作,ADC 以 1% 占空比工作,系统功 耗典型值为 100 μ A。

4. 外设接口和传感器

详见_《ESP32 技术规格书》中外设接口和传感器章节。

说明:

GPIO16、17 已用于连接模组上集成的 SPI flash, 其它外设可以使用除 GPIO16、17 以外的任一 GPIO, 详见 6 原理图。

5. 电气特性

5.1 绝对最大额定值

超出绝对最大额定值表可能导致器件永久性损坏。这只是强调的额定值,不涉及器件在这些或其它条件下超出本技术规格指标的功能性操作。

表 5: 绝对最大额定值

符号	参数	最小值	最大值	单位
VDD33	-	-0.3	3.6	V
T_{store}	存储温度	-40	150	°C

5.2 建议工作条件

表 6: 建议工作条件

符号	参数	最小值	典型值	最大值	单位
VDD33	-	2.7	3.3	3.6	V
I_{VDD}	外部电源的供电电流	0.5	-	-	А
Т	工作温度	-40	-	85	°C

5.3 直流电气特性 (3.3V, 25°C)

表 7: 直流电气特性

符号	参数	最小值	典型值	最大值	单位
C_{IN}	管脚电容	-	2	-	pF
V_{IH}	高电平输入电压	$0.75 \times VDD^1$	-	VDD + 0.3	V
V_{IL}	低电平输入电压	-0.3	-	0.25 × VDD	V
$ \cdot _{IH}$	高电平输入电流	-	-	50	nA
_{IL}	低电平输入电流	-	-	50	nA
V_{OH}	高电平输出电压	0.8 × VDD	_	-	V
V_{OL}	低电平输出电压	-	-	0.1 × VDD	V
$ I_{OH} $	高电平拉电流 (VDD = 3.3V, V_{OH} = 2.64V, PAD_DRIVER = 3)	-	40	-	mA
I_{OL}	低电平灌电流 (VDD = 3.3V, V_{OL} = 0.495V, PAD_DRIVER = 3)	-	28	-	mA
R_{PU}	上拉电阻	-	45	-	kΩ
R_{PD}	下拉电阻	-	45	-	kΩ
V_{IL_nRST}	EN 复位模组的低电平输入电压	-	-	0.6	V

^{1.} VDD 是 I/O 的供电电源,具体请参考<u>《ESP32 技术规格书》</u> 附录中表 IO_MUX。

5.4 Wi-Fi 射频

表 8: Wi-Fi 射频特性

参数	最小值	典型值	最大值	单位			
输入频率	2412	-	2484	MHz			
输出阻抗	-	50	-	Ω			
	输出功率						
72.2 Mbps PA 输出功率	13	14	15	dBm			
11b 模式下 PA 输出功率	19.5	20	20.5	dBm			
	灵敏度						
DSSS, 1 Mbps	-	-98	-	dBm			
CCK, 11 Mbps	-	-91	-	dBm			
OFDM, 6 Mbps	-	-93	-	dBm			
OFDM, 54 Mbps	-	−75	-	dBm			
HT20, MCS0	-	-93	-	dBm			
HT20, MCS7	-	-73	-	dBm			
HT40, MCS0	-	-90	-	dBm			
HT40, MCS7	-	-70	-	dBm			
MCS32	-	-89	-	dBm			
邻道抑制							
OFDM, 6 Mbps	-	37	-	dB			
OFDM, 54 Mbps	-	21	-	dB			
HT20, MCS0	-	37	-	dB			
HT20, MCS7	-	20	-	dB			

5.5 低功耗蓝牙射频

5.5.1 接收器

表 9: 低功耗蓝牙接收器特性

参数	条件	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	-	-	-97	-	dBm
最大接收信号 @30.8% PER	-	0	-	-	dBm
共信道抑制比 C/I	-	-	+10	-	dB
	F = F0 + 1 MHz	-	-5	-	dB
	F = F0 -1 MHz	-	-5	-	dB
 邻道抑制比 C/I	F = F0 + 2 MHz	-	-25	-	dB
マル垣 1 中間 に O/I	F = F0 -2 MHz	-	-35	-	dB
	F = F0 + 3 MHz	-	-25	-	dB
	F = F0 –3 MHz	-	-45	-	dB
	30 MHz ~ 2000 MHz	-10	-	-	dBm
 帯外阻塞	2000 MHz ~ 2400 MHz	-27	-	-	dBm
竹外阻塞	2500 MHz ~ 3000 MHz	-27	-	-	dBm
	3000 MHz ~ 12.5 GHz	-10	-	-	dBm
互调	-	-36	-	-	dBm

5.5.2 发射器

表 10: 低功耗蓝牙发射器特性

参数	条件	最小值	典型值	最大值	单位
射频发射功率	-	-	0	-	dBm
增益控制步长	-	-	3	_	dBm
射频功率控制范围	-	-12	-	+12	dBm
	$F = F0 \pm 2 MHz$	-	-52	-	dBm
邻道发射功率	$F = F0 \pm 3 MHz$	-	-58	_	dBm
	$F = F0 \pm > 3 MHz$	-	-60	_	dBm
$\Delta f1$ avg	-	-	-	265	kHz
$\Delta f2_{max}$	-	247	-	_	kHz
$\Delta f 2_{\text{avg}}/\Delta f 1_{\text{avg}}$	-	-	-0.92	_	-
ICFT	-	-	-10	_	kHz
漂移速率	-	-	0.7	-	kHz/50 μs
偏移	-	-	2	-	kHz

5.6 回流焊温度曲线

图 2: 回流焊温度曲线

6. 原理图

0

原理图

图 3: ESP32-PICO-D4 模组原理图

7. 外围设计原理图

外围设计原理图

图 4: ESP32-PICO-D4 模组外围设计原理图

说明:

- 在需要快速反复开关 VDDA3P3,且 VDDA3P3 外围电路上有大电容的场景中,需要使用放电电路。详情请参考《ESP32-WROOM-32 技术规格书》中**外围原理图**章节。
- 当使用电池给 ESP32 系列芯片和模组供电时,为避免电池电压过低导致芯片进入异常状态不能正常启动,一般推荐外接 Power Supply Supervisor。建议检测到供给 ESP32 的 电压低于 2.3V 时将 ESP32 的 CHIP_PU 脚拉低。复位电路请见 《ESP32-WROOM-32 技术规格书》 中**外围原理图**章节。

外围设计原理图

8. 封装信息

图 5: ESP32-PICO-D4 封装信息

9. 学习资源

9.1 必读资料

访问以下链接可下载有关 ESP32 的文档资料。

• 《ESP32 技术规格书》

本文档为用户提供 ESP32 硬件技术规格简介,包括概述、管脚定义、功能描述、外设接口、电气特性等。

《ESP-IDF 编程指南》

ESP32 相关开发文档的汇总平台,包含硬件手册,软件 API 介绍等。

• 《ESP32 技术参考手册》

该手册提供了关于 ESP32 的具体信息,包括各个功能模块的内部架构、功能描述和寄存器配置等。

• ESP32 硬件资源

压缩包提供了 ESP32 模组和开发板的硬件原理图, PCB 布局图, 制造规范和物料清单。

• 《ESP32 硬件设计指南》

该手册提供了 ESP32 系列产品的硬件信息,包括 ESP32 芯片,ESP32 模组以及开发板。

• 《ESP32 AT 指令集与使用示例》

该文档描述 ESP32 AT 指令集功能以及使用方法,并介绍几种常见的 AT 指令使用示例。其中 AT 指令包括基础 AT 指令, Wi-Fi 功能 AT 指令, TCP/IP 相关 AT 指令等;使用示例包括单连接 TCP 客户端,UDP 传输,透传,多连接 TCP 服务器等。

• 《乐鑫产品订购信息》

9.2 必备资源

以下为有关 ESP32 的必备资源。

• ESP32 在线社区

工程师对工程师 (E2E) 的社区,用户可以在这里提出问题,分享知识,探索观点,并与其他工程师一起解决问题。

• ESP32 GitHub

乐鑫在 GitHub 上有众多开源的开发项目。

• ESP32 工具

ESP32 flash 下载工具以及《ESP32 认证测试指南》。

• ESP-IDF

ESP32 所有版本 IDF。

• ESP32 资源合集

ESP32 相关的所有文档和工具资源。

修订历史

日期	版本	发布说明
2018.06	V1.3	 将表 2 管脚描述中 VDD3P3_RTC 电压范围由 1.8-3.6V 改为 2.3-3.6V; 将表 2 管脚描述中 VDD_SDIO 电压范围由 "1.8V 或 VDD3P3_RTC 电源输出"改为 "VDD3P3_RTC 电源输出"; 删除有关温度传感器、LNA 前置放大器的内容; 更新章节 3 功能描述; 更新章节 4 外设接口和传感器中的说明; 删除章节 7 外围设计原理图中关于管脚 49 的说明,新增两条说明; 电气特性相关的更新: 更新表 5 绝对最大额定值; 增加表 6 建议工作条件; 增加表 7 DC 直流电气特性; 更新表 10 低功耗蓝牙发射器特性中"增益控制步长","邻道发射功率"参数。
2018.03	V1.2	更新章节 2.2 中有关 VDD_SDIO 的管脚描述; 更新章节 2.1 中的 ESP32-PICO-D4 管脚布局图; 更新章节 6 中的 ESP32-PICO-D4 模组原理图; 更新章节 7 中的 ESP32-PICO-D4 模组外围设计参考图。
2017.09	V1.1	更新工作电压/供电电压范围为 2.7V ~ 3.6V; 更新章节 7,增加一条说明。
2017.08	V1.0	首次发布。