PATENT ABSTRACTS OF JAPAN

(11)Publication number:

52-002822

(43) Date of publication of application: 10.01.1977

(51)Int.CI.

C22C 38/22

(21)Application number: 50-078628

(71)Applicant: KOMATSU LTD

(22) Date of filing:

26.06.1975

(72)Inventor: SATSUMABAYASHI KAZUMI

IKEDA HIROSHI TAGAWA TOMIHIRO

(54) WEAR RESISTANT STEEL

(57)Abstract:

PURPOSE: To manufacture wear resistant steel at low cost having excellent wear resistance, hardness and toughness at high temperature suitable for drilling shovel blade in construction equipment such as ripper point.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(9日本国特許庁(JP)

① 特許出願公告

許 公 報 (B2) 特

昭55-12177

(5) Int.Cl.3

識別記号

广内整理番号

❷❸公告 昭和55年(7980) 3 月31日 14 1. モン・ヨン ラドス 作為 みのや 競技

C 22 C 38 / 22

CBH CBH

スポットに、発明の数(1)・ファヴェルデース

医乳腺性性病 人名斯伊斯克 化二溴锑酸 · [/] [] (全4頁)

匈耐摩耗鋼

②特 昭 50---78628

昭 50(1975)6月26日 ❷出

1000

昭 52-2822

❸昭 52(1977)1月10日

者 薩摩林和美

長岡京市八条ケ丘2の1

者 池田宏 勿発 皗

京都府綴喜郡八幡町大字八幡荘字 10

石不動 110

明 者 田川富啓

枚方市田口1-59-5

砂出 願 人 株式会社小松製作所

弁理士 米原正章

外1名

団特許請求の範囲

1 C: 0.25~0.40%, Si: 1.5~2.5% Mn:1.6%以下、Cr:3.0~5.0%、Mo:20 るとともに焼戻軟化抵抗確保のためには1.5~2.5 0.5~1.20 名で残部Feよりなる耐摩耗鋼。 発明の詳細な説明

本発明は土工機のリッパポイントなど建設機械 の掘削用切刃材に用いる高温用の耐摩耗鋼に関す ろものである。

第2図は弾性波速度の高い硬岩盤を掘削したと きのリッパポイントaの岩盤との摩擦熱により昇 温した刃先部の温度分布例である。

※ 岩盤掘削に必要な耐摩耗鋼の機械的性質として 以上、シャルビー衝撃値 5 kg ボンcil 均尖上が要求 されるため、従来の耐摩耗鋼はNi一CェーMo 系の材質が広ぐ一般に使用されているが提削作業。 中リッパポイント先端部が第2図のような温度に 更に、Moは炭化物生成による2次硬化のため が大きく摩耗の進行が激しくをつていた。 ※ このような条件下でも良好な耐摩耗性を保持す

るためには高温における硬さの低下の少をい材料 べであることが必要となる。 ()

2、《大·黄岭特益·维尔·斯萨尔·克达·维尔·瓦达·斯尔

本発明はどの点に鑑みなされたものであつて、 その目的とするところは高温での耐摩耗性が著し 5 くしかも高い靱性を有し安価な耐摩耗鋼を提供す ることにある。

以下、本発明を説明する。

大学 95 电设置数据 1960 gr

医医乳腺病

本発明の耐摩耗鋼は次の基本組成を有するもの المعادية والمحارين である。

C: 0.25~0.40%

*Si: 1.5 ~ 2.5 %

Mn: 1.6 %以下

Cr: 3.0 ~ 5.0 %

 $M_0: 0.5 \sim 1.20\%$

東京都港区赤坂2丁目3番6号 15 残部Feと微量の不純物。Cは硬さHRC60以 上確保のためと勧性の点で0.25~0.40%とし た。0.4 男以上になるとシャルビー衝撃値が 5 kg m / cm² 以下になる。

> また、Siは、素地中に固溶し素地強度を高め 名が最適範囲であり、Si量が25名以上になる と靱性の低下が著しくなり、1.5%未満では焼戻 軟化抵抗が不充分で高温時の硬さが保証されない ものである。

また、Mnにおいては、高Si含有量でのMn 25 の共存は軟性の低下を招くことが知られているが Moが共存した場合には軟性が改良され1.6%ま で許容できるため、Mn量を1.6%以下とした。 また、Crは焼火性確保と焼戻軟化抵抗確保の は引張強さ150kg/mg 以上、硬さHRで5030ためで30~50多の範囲にした。で子量か5.0 %以上になればシャルビー衝撃値で5kg m / cold は確保できないし、3%未満では高温での硬さの 確保ができない。シャングは中心には多くと

上昇すれば第2回に点線で示すごとく硬さの低下 35°0.5~1.2 多の範囲とした。Mo量が 0.5 第末構 では2次硬化不足であり、12%以上では性が低 『不じ価格を高くつく。 ペーパング コディック

本発明の詳細な製造方法は次のとおりである。 * る時は、その要求する品質にあわせて焼戻し温度 銃鉄及び屑鉄を主原料とし、これにFe-SiFe-Mn, Fe-Cr, Fe-Mo 等を加え、電気炉で 溶解し、分塊圧延をへて鋼材を製造する。リッパ ポイントを製造する時には、鍛造用として適切な s 成と熱処理条件により作成し、この高温耐摩耗鋼 径に分塊圧延された鋼材を製造しようとするリッ パポイントの大きさに合せて任意に切断する。と の鍛造用に切断された素材を、1100℃から 1300℃の範囲の適切な温度に昇温した加熱炉 にて十分加熱し、その後加熱炉より取出し、リッ 10 パポイントの形状に鍛造する。この鍛造は短時間 に行なわねばならない。

熱処理はこの耐摩耗鋼の特徴をリツパポイント に十分生かすため、950℃前後で焼入し、500 てで焼戻すのが最適である。

なおこの耐摩耗鋼を他の部品に使用しようとす®

を決めなければならない。 実施例

本発明による耐摩耗鋼を第1表の上段に示す組 で製作したリツパポイントを、弾性波速度が 3000m/s以上の硬岩盤で掘削実験を行なつ

この結果を第4図に実線で示す。

なお、第4図に点線に示すものは従来網により 製作したリツパポイントを同条件下で掘削実験し た結果であり、従来郷の組成および熱処理条件は 第1表下段に示す。

また、第2表は上述した本発明による耐摩耗鋼 15 の機械的性質を表すものである。

表
:

•	С	Si	Mn	Ni	Cr	Мо	v	熱 処 理	硬さ HRC
本発明の 耐摩耗鍋	0.3 3	1.7-1	0.7 9	_	3.7 7	0.98		9 5 0 ℃焼入 5 0 0 ℃焼戻	5 1.0
従来鋼 (Ni-Cr-Mo)	0.3 1	0.30	0.8 4	0.6 5	0.5 8	0.20		8 5 0 C焼入 2 0 0 C焼戻	5 0.0

	第	2	表
引張強さ (k <i>g / mi</i> t)	伸び (%)	紋(労	シャルピー 衝撃 値 (kg . m /cm²)
177	124	37	6.3

第4図から、本発明による耐摩耗鋼は従来鋼に 比較して侵れた耐摩耗性を有することが判明した。 これはリッパポイント先端部が岩盤との摩擦熱 35 となる。また合金工具鋼の如くNi, V, W等高 により昇温しても硬さの低下が少ないためである。

なお掘削寒験中測温したところリンパポイント 失端部はたえず550~6500にまでなつてい

0.4%、Si:1.5~2.5%、Mn:1.6%以下、 .Cr: 3.0~ 5.0 %、Mo: 0.5~ 1.2 0 %で残 部Feょりなる耐摩耗鋼である。

したがつて、従来鋼(Ni-Cr-Mo鋼)に

比べて高温での耐摩耗性が著しく合金工具鋼以上 であり、しかも従来鋼と同等の靱性を有するもの 価な合金元素を含まないので安価になる。更に焼 入温度も低く、2次硬化現象もある。

図面の簡単な説明

第1図はリッパ装置の側面図、第2図はリッパ 本発明は以上詳述したように、C: 0.25~ 40 ポイントの刃先部の温度分布の説明図、第3図は 本発明による耐摩耗鋼をよび従来鋼(NiーCr -Mo鋼)の焼臭温度と硬さの関係図、第4図は 本発明による耐摩耗鋼でのリッパポイントと従来 鋼でのリッパポイントの掘削作業時間と摩耗重量 5

との関係図である。

第2図

