$\mathbf{SII}\ \mathrm{DM}_1$

Hugo SALOU
Antoine VILLOTEAU
Thomas LEGUÉRÉ

Question 4:

Question 5:

Question 6:

En environ 2 secondes, on a $\varepsilon(2) = -0.156^{\circ}$. Pour cette situation, c'est très précis. Non, le gain du correcteur ne modifie pas la précision du système.

Question 7:

 $5\% \times 90^{\circ} = 4, 5^{\circ}$ À t = 0.57s, on a $\theta_p = 85.30^{\circ}$.

À t = 0.58s, on a $\theta_p = 85.56$ °.

Le temps de réponse est d'environ $\Delta t = 0.58$ s.

Plus le gain du correcteur est grand, plus le temps de réponse diminue.

$$(K_r = 10 \quad K_r = 5 \quad K_r = 1 \quad K_r = 0.5).$$

$$y = \theta_p(t)$$

Ici, $\tau \simeq 0.195s$.

Question 8:

À $t=2.94 \mathrm{s},\, U_m=100 \mathrm{V}.\,$ À $t=2.95 \mathrm{s},\, U_m=97.6 \mathrm{V}.\,$ On a donc $t_s\simeq 2.95 \mathrm{s}.\,$

Question 9:

À t=0s, la vitesse ω_m passe directement à 200 rad/s. L'acceleration n'est pas progressive. On peut peu à peu augmenter la consigne pour avoir une accélération plus progressive. Au lieu d'utiliser un échelon, on peut utiliser une rampe.

Question 10:

On a $t_r = 2.99$ s. On utilise donc

- une rampe infinie avec une pente $\frac{\theta_{\mathrm{max}}}{t_r}$ et un démarrage à t=0 s
- une rampe infinie avec une pente $-\frac{\theta_{\mathrm{max}}}{t_r}$ et un démarrage à $t=t_r$

Question 11:

Pas de saturation, la tension du moteur reste en dessous de 100 V.

La tangente à l'origine du déplacement est horizontale, l'accélération est donc progressive (donc confortable).

Question 12:

Question 13:

Au maximum, on a $\varepsilon_t = 9$ rad pour t = 2.5s.

 $(K_r = 2 \quad K_r = 1 \quad K_r = 0.5).$

En augmentant K_r , on diminue ε_t .

Question 14:

En régime permanent, le système est très précis: en $\Delta t = 5.0s$, on atteint $\theta_p = 89.999^\circ$. Pour son utilisation, c'est largement suffisant.

Question 15:

On a $t_r = 3.01s$ avec $K_r = 1$. Mais, augmenter K_r permet d'atteindre ce critère à 5% plus rapidement.

$$(K_r = 4 \quad K_r = 1).$$