УДК ХХХ.ХХ

Моделирование распространения инфекционных заболеваний на графах с помощью Python и AnyLogic

А. В. Консманов

Крымский федеральный университет им. В. И. Вернадского, e-mail: alexkoshernosieqov@qmail.com

Аннотация. Рассматривается задача построения двух моделей, описывающих распространения лихорадки Эбола. Для построения моделей использовались два различных подхода, реализующие схожие идеи. Модели обучались на одной популяции и тестировались на другой. Анализ точности аппроксимации проводился по графикам и показывает, что модели подобрано верно, работают с разной точностью и могут быть использованы для предсказания характера вспышек лихорадки Эбола.

Ключевые слова: Математическое моделирование, лихордка Эбола, инфекционные заболевания, Python, AnyLogic.

Modeling the spread of infectious diseases on graphs using Python and AnyLogic

A. V. Konsmanov

V. I. Vernadsky Crimean Federal University.

Abstract. Keywords: MSC 2010: XXAXX

Введение

Достигнутые на сегодня успехи в области борьбы с инфекционными заболеваниями не дают эффективного метода полностью предотвратить эпидемию, однако, используя прогностические математические модели, описывающие качественные и количественные характеристики очагов заражения, можно значительно снизить количество заболевших в первые дни вспышки и, тем самым, избежать превращения вспышки в эпидемию. [?, с. 202]

Основные задачи, возникающие при исследовании и прогнозировании распространения инфекционных заболеваний: исследование скорости и масштаба распространения заболевания, последствий инфекционной вспышки, пространственные масштабы заражения, затраты средств и ресурсов, необходимых для изоляции и лечения больных. [?, с. 203] Среди моделей была выбрана мультиагентная модель на графах. Данный класс моделей позволяет учитывать характеристики пространства имитируемой области и отдельных представителей популяции.

1. Стохастическая модель

За основу взят мультиагентный подход, где агенты распределены по локациям, которые в случайном порядке посещаются зараженными агентами. Между здоровыми и больными агентами возможно событие инфицирования, вероятность которого описывается эмпирической формулой

$$P_i = 1 - e^{\tau N_r \ln(1 - rS_i \rho)} \tag{1.1}$$

, где P_i — вероятность инфицирования і-го агента, τ — коэффициент расстояния, важный при передаче заболевания на большие дистанции, например, при межконтинентальных перевозках, (в данной модели предполагается нейтральным по умножению, т.е = 1), N_r — кол-во зараженных данным заболеванием (в данной локации), S_i — восприимчивость индивида і (индивидуальный параметр, требующий итеративной калибровки, в данной модели индивиды популяции имеют распределение, близкое к гамма-распределению), ρ — допустимость, т.е вероятность заражения одного индивида другим за фиксированное время (обычно, 1 минута, в данной модели — одни сутки, т.е время пребывания агента в одной локации).

Переходы по "больным" состояниям, описанным ниже в SEIFDR-модели, представляет собой пуассоновский процесс.

Peaлизация: Python3 + SciPy + GraphX(библиотека для графов) + MatPlotLib(визуализация) + Yandex Static API (визуализация на карте).

Преимущества: простота понимания модели, наличие большого количества готовых решений во всей предметной области, алгоритм допускает параллельную реализацию, скорость работы модели в целом выше, чем у следующей, т.к отсутствует задача численного решения СДУ, исходный код модели, за исключением ресурсных файлов и выходных файлов визуализации, «легче», чем у следующей модели.

Недостатки: отдельные фрагменты требуют долгой реализации, готовая модель требует длительной итеративной калибровки для получения результатов, приближенных к реальным, невозможно заранее установить, будет ли модель выполнять прогностическую функцию или является лишь «подогнанной» к уже произошедшим вспышкам, что требует тестирования на нескольких населенных пунктах; стохастическая природа модели требует мощных и надежных генераторов случайных чисел.

Данная модель уступает в точности следующей, что заметно на графика.

2. Дифференциальная мультиагентная модель на графах

За основу взята модель Кермака-МакКендрика (SIR-модель), модифицированная до SEIFDR-модели. В основе данного подхода лежит формула, разработанная Кермаком и МакКендриком в 193 г. для SIR-модели. Как и в прошлой модели, агенты расположены в локациях, однако в этой модели, агенты могут перемещаться с некоторой динамикой и активно контактировать между собой. Изначальная SIR-модель предполагает, что агенты могут быть в трех состояниях: Suspected — предполагаемое инфицирование или инкубационный период, Infected – агент заразен, Recovered – агент выздоровел и приобрел иммунитет.

Данная модель допускает модификацию до SEIFDR, где Exposed – люди, находящиеся в инкубационном периоде, Funeral – погибшие, еще незахороненные, все еще источник инфекции, Died – погребенные, и описывается СДУ:

$$\begin{cases}
\frac{dS}{dt} = -\beta_i SI + \beta_F SF \\
\frac{dE}{dt} = \beta_I SI + \beta_F SF - \alpha E \\
\frac{dI}{dt} = \alpha E - I \gamma_D ((1 - \delta_D) + \gamma_D \delta_D) \\
\frac{dF}{dt} = \gamma_D \delta_D I - \gamma_F F \\
\frac{dR}{dt} = \gamma_I (1 - \delta_D) I + \gamma_F F
\end{cases} \tag{2.1}$$

, где β_I и β_F — интенсивность контактов между людьми и на похоронах, α — интенсивность инкубационного периода, γ_I интенсивность выздоровления, γ_D интенсивность умирания агентов, γ_F — интенсивность похорон, δ_D — вероятность смертности.

Реализация: в качестве имитационной среды выбран AnyLogic, т.к данное ПО совмещает простоту и вариативность при построении модели, предоставляет широкие и мощные инструменты для численного решения СДУ.

Преимущества: высокая точность дифф.моделей, возможность шире представить воздействующие факторы, более гибкая и настраиваемая модель, наличие готового имитационного ПО, наличие в имитационном ПО встроенных численных методов решения ДУ и СДУ, имеющих гарантированную сходимость, аппроксимацию, устойчивость.

Недостатки: высокая вычислительная трудность в терминах времени и памяти, необходимость многократного повторения эксперимента для подбора точного значения параметров, имеются проблемы, как и в стохастической модели, есть зависимость от генераторов случайных чисел, что порождает аналогичные проблемы.

Данная модель намного лучше аппроксимирует динамику заболеваемости и смертности, что заметно на графиках, представленных ниже.

3. «Обучение» и калибровка моделей

После введения параметров и их примерной настройки по предварительным экспериментам, проводился процесс калибровки. Для этого на каждое изменение параметра приходится 20 итераций. [2, с. 190] [3, с. 873] Для выбора оптимального множества параметров используется минимизация целевой функции, которая рассчитывается следующим образом: пусть каждая точка графика, описывающего реальные показатели заболеваемости и / или смертности, обозначается парой координат $X_i^{\rm целевое}, Y_i^{\rm целевое}$, а каждая точка графика, описывающего работу модели,

4 Математика Информатика Компьютерные науки Моделирование Образование

– $X_i^{\text{моделируемое}}, Y_i^{\text{моделируемое}}, \, i = \overline{1,n}.$ Тогда целевая функция имеет вид

$$Dev(x) = \sum_{i=0}^{n} \sqrt{(X_i^{\text{целевое}} - X_i^{\text{моделируемое}})^2 + (Y_i^{\text{целевое}} - Y_i^{\text{моделируемое}})^2}$$
(3.1)

, что с учетом равенства $X_i^{\text{пелевое}}$ и $X_i^{\text{моделируемое}}$ дает

$$Dev(x) = \sum_{i=0}^{n} \sqrt{(Y_i^{\text{целевое}} - Y_i^{\text{моделируемое}})^2}$$
 (3.2)

и после упрощения

$$Dev(x) = \sum_{i=0}^{n} (Y_i^{\text{целевое}} - Y_i^{\text{моделируемое}})$$
 (3.3)

Для анализа правильности калибровки параметров, модели настраивалась на городе Кенема, затем сравнивались с результатами по Кайлхуну. Анализ проводился по графикам и аналитически по значению функции .

Рис. 1. Вставка рисунка в формате PDF.

Рассмотрим уравнение

$$\int_{-\infty}^{\infty} \dots \tag{3.4}$$

Согласно (3.4) введём

Определение 1.

Учитывая определение 1, получим следующую

Теорема 1. ...

Следствие 1. ...

Заключение

Основным результатом данной работы является теорема 1. Из следствия 1 . . .

Список цитируемых источников

- 1. $\mathit{Be\'unu} H$. Математика в биологии и медицине // М.: Мир. 1970. С.202-205.
- 2. Кондратьев М. А. Применение агентного подхода к имитационному моделированию процесса распространения заболевания // Научно-технические ведомости СПбГПУ. Серия «Наука и образование». 2010. том 2, вып. 2. С. 189—195.
- 3. Кондратьев М. А. Методы прогнозирования и модели распространения заболеваний // Компьютерные исследования и моделирование. 2013. том 5, вып. 5 С. 863-882

Получена 01.03.2018