On the Causal Structure of Spacetime

Muhammad Hashir Hassan Khan

28 April 2023

Why Study Causal Structure?

 We do not study a particular solution to Einstein's equations but the global structure of spacetime itself, allowing us to derive general results.

Why Study Causal Structure?

- We do not study a particular solution to Einstein's equations but the global structure of spacetime itself, allowing us to derive general results.
- Important applications in the study of singularity theorems, black holes, wormholes and the possibilities in spacetime.

Why Study Causal Structure?

- We do not study a particular solution to Einstein's equations but the global structure of spacetime itself, allowing us to derive general results.
- Important applications in the study of singularity theorems, black holes, wormholes and the possibilities in spacetime.

Procedure

Why Study Causal Structure?

- We do not study a particular solution to Einstein's equations but the global structure of spacetime itself, allowing us to derive general results.
- Important applications in the study of singularity theorems, black holes, wormholes and the possibilities in spacetime.

Procedure

• Impose physically reasonable conditions on a spacetime.

Why Study Causal Structure?

- We do not study a particular solution to Einstein's equations but the global structure of spacetime itself, allowing us to derive general results.
- Important applications in the study of singularity theorems, black holes, wormholes and the possibilities in spacetime.

Procedure

- Impose physically reasonable conditions on a spacetime.
- Formulate them in precise mathematical terms.

Why Study Causal Structure?

- We do not study a particular solution to Einstein's equations but the global structure of spacetime itself, allowing us to derive general results.
- Important applications in the study of singularity theorems, black holes, wormholes and the possibilities in spacetime.

Procedure

- Impose physically reasonable conditions on a spacetime.
- Formulate them in precise mathematical terms.
- Derive important properties and *physical* consequences.

Time Orientation

Definition

A time-orientable Lorentzian manifold if a continuous, non-contradictory choice of a future (or equivalently, past) light cone can be made throughout it. It is equivalent to the existence of a non-vanishing timelike vector field t^{α} on M.

Figure 1. An example of a non-time-orientable manifold. The arrow represents the direction of the future light cone.

Time Orientation

Definition

A time-orientable Lorentzian manifold if a continuous, non-contradictory choice of a future (or equivalently, past) light cone can be made throughout it. It is equivalent to the existence of a non-vanishing timelike vector field t^{α} on M.

Figure 1. An example of a non-time-orientable manifold. The arrow represents the direction of the future light cone.

Theorem

Every Lorentzian manifold (M, g) has a time-orientable double cover (\tilde{M}, \tilde{g}) .

Domains of Influence

Definition

A differentiable curve $\gamma: \mathbb{R} \to M$ is called *future-directed timelike* (resp. *causal*) if the tangent vector at every point $p \in \gamma$ is a future-directed timelike vector (resp. timelike or null vector).

Figure 2. $I^+(p)$ denotes the interior of the light cone at p. $J^+(p)$ includes the boundaries as well.

Domains of Influence

Definition

A differentiable curve $\gamma: \mathbb{R} \to M$ is called *future-directed timelike* (resp. *causal*) if the tangent vector at every point $p \in \gamma$ is a future-directed timelike vector (resp. timelike or null vector).

Definition

The chronological future $I^+(p)$ (resp. causal future $J^+(p)$) of a point $p \in M$ is the set of points $q \in M$ such that a future-directed timelike (resp. causal) curve exists between p and q.

Figure 2. $I^+(p)$ denotes the interior of the light cone at p. $J^+(p)$ includes the boundaries as well.

Domains of Dependence

Definition

A set $S \subset M$ is called *achronal* if no two points in S can be connected by a timelike curve.

Figure 3. $D^+(S)$ denotes the interior of the cone. $H^+(S)$ is the boundary of said cone.

Domains of Dependence

Definition

A set $S \subset M$ is called *achronal* if no two points in S can be connected by a timelike curve.

Definition

The future domain of dependence of S, $D^+(S)$, of a closed achronal set $S \subset M$ is the set of points $p \in M$ such that every past inextendible causal curve through p intersects S. The boundary of $D^+(S)$ is called the future Cauchy horizon $H^+(S)$.

Figure 3. $D^+(S)$ denotes the interior of the cone. $H^+(S)$ is the boundary of said cone.

A Hierarchy of Increasingly Causal Spacetimes

• A *non-totally vicious* spacetime does not have a closed timelike curve at every point.

A Hierarchy of Increasingly Causal Spacetimes

- A *non-totally vicious* spacetime does not have a closed timelike curve at every point.
- A chronological spacetime has no closed timelike curves.

A Hierarchy of Increasingly Causal Spacetimes

- A *non-totally vicious* spacetime does not have a closed timelike curve at every point.
- A *chronological* spacetime has no closed timelike curves.
- A causal spacetime has no closed causal curves.

A Hierarchy of Increasingly Causal Spacetimes

- A *non-totally vicious* spacetime does not have a closed timelike curve at every point.
- A chronological spacetime has no closed timelike curves.
- A causal spacetime has no closed causal curves.
- A future-distinguishing spacetime has the property that $I^+(p) = I^+(q) \implies p = q$.

The Hierarchy Continued

• A strongly causal spacetime has a neighbourhood $V \subset O$ for every neighbourhood O of every point p such that any causal curve with endpoints in V lies completely in O. There are no causal curves that come arbitrarily close to intersecting themselves.

The Hierarchy Continued

- A strongly causal spacetime has a neighbourhood $V \subset O$ for every neighbourhood O of every point p such that any causal curve with endpoints in V lies completely in O. There are no causal curves that come arbitrarily close to intersecting themselves.
- A *stably causal* spacetime has a cosmic time function i.e. a function whose gradient is everywhere timelike. Intuitively, if you slightly open the light cones, there will still be no closed timelike curves.

Definition

A Cauchy surface Σ is a closed achronal set for which $D(\Sigma) = M$.

Definition

A Cauchy surface Σ is a closed achronal set for which $D(\Sigma) = M$.

Definition

A globally hyperbolic spacetime has a Cauchy surface.

Definition

A Cauchy surface Σ is a closed achronal set for which $D(\Sigma) = M$.

Definition

A globally hyperbolic spacetime has a Cauchy surface.

Consequences

Definition

A Cauchy surface Σ is a closed achronal set for which $D(\Sigma) = M$.

Definition

A globally hyperbolic spacetime has a Cauchy surface.

Consequences

Global hyperbolicity is the strongest causality condition.

Definition

A Cauchy surface Σ is a closed achronal set for which $D(\Sigma) = M$.

Definition

A globally hyperbolic spacetime has a Cauchy surface.

Consequences

- Global hyperbolicity is the strongest causality condition.
- The existence of a Cauchy surface Σ allows one to hypothetically evaluate the entire past and future evolution of the manifold given initial conditions on Σ .

References

- Minguzzi, E.; Sanchez, M. "The causal heirarchy of spacetimes", in H. Baum and D. Alekseevsky (eds.), vol. Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., (Eur. Math. Soc. Publ. House, Zurich, 2008), p. 299 – 358, ISBN=978-3-03719-051-7.
- Hawking, S. W.; Ellis, G. F. R. (1973). "The Large Scale Structure of Space—Time". Cambridge University Press.