

6- Workshops and Productivity

范登波 Thomas VANDENBOGAERDE, CPIM

Thomas.vandenbogaerde@gmail.com

If any question: WeChat: fandengbo85

Process, Volume, and Variety

Volume

Low Volume

Repetitive Process

High Volume

High Variety one or few units per run, (allows customization)

Changes in Modules modest runs, standardized modules

Changes in Attributes (such as grade, quality, size, thickness, etc.) long runs only

Process Focus

projects, job shops (machine, print, hospitals, restaurants) Arnold Palmer Hospital Mass Customization (difficult to achieve,

but huge rewards)

Dell Computer

Repetitive

(autos, motorcycles, home appliances) *Harley-Davidson*

Poor Strategy (Both fixed and variable costs are high) **Product Focus**

(commercial baked goods, steel, glass, beer) *Frito-Lay*

Process Focus

(low volume, high variety, intermittent processes)
Arnold Palmer Hospital

Many inputs

Layout

(surgeries, sick patients, baby deliveries, emergencies)

Many different outputs (uniquely treated patients)

Repetitive Focus

(modular) Harley Davidson Raw materials and module inputs (multiple engine models, wheel modules)

Modules combined for many
Output options
(many combinations of motorcycles)

Product Focus

(low-volume, high variety, continuous process)

Frito-Lay

Few Inputs
(corn, potatoes, water, seasoning)

Output variations in size, shape, and packaging (3-oz, 5-oz, 24-oz package labeled for each material)

Layout Optimisation Productivity

Product Focus

Layout Optimisation Productivity

Mass Customization

	Number of Choices		
Item	1970s	21st Century	
Vehicle models	140	286	
Vehicle types	18	1,212	
Bicycle types	8	211,000	
Software titles	0	400,000	
Web sites	0	162,000,000	
Movie releases per year	267	765	
New book titles	40,530	300,000	
Houston TV channels	5	185	
Breakfast cereals	160	340	
Items (SKUs) in supermarkets	14,000	150,000	
LCD TVs	0	102	

Mass Customization

(high-volume, high-variety)

Dell Computer

Many parts and component inputs (chips, hard drives, software, cases)

Mass Customization

Accommodating Product and Process Design Modular techniques

Mass Customization

Responsive Supply Chains

Rapid throughput techniques

Effective scheduling techniques

Process-Focused
High variety, low volume
Low utilization (5% to 25%)
General-purpose equipment

Product-Focused
Low variety, high volume
High utilization (70% to 90%)
Specialized equipment

Innovations at McDonald's

- Indoor seating (1950s)
- Drive-through window (1970s)
- Adding breakfast to the menu (1980s)
- Adding play areas (late 1980s)
- Redesign of the kitchens (1990s)
- Self-service kiosk (2004)
- Now three separate dining sections

Six out of the seven are layout decisions!

Layout Strategies

	•	<u> </u>
	Objectives	Examples
Office	Locate workers requiring frequent contact close to one another	Allstate Insurance Microsoft Corp.
Retail	Expose customer to high-margin items	Kroger's Supermarket Walgreen's Bloomingdale's
Warehouse (storage)	Balance low cost storage with low-cost material handling	Federal-Mogul's warehouse The Gap's distribution center
Project (fixed position)	Move material to the limited storage areas around the site	Ingall Ship Building Corp. Trump Plaza Pittsburgh Airport
Job Shop (process oriented)	Manage varied material flow for each product	Arnold Palmer Hospital Hard Rock Cafe Olive Garden
Work Cell (product families)	Identify a product family, build teams, cross train team members	Hallmark Cards Wheeled Coach Standard Aero
Repetitive/ Continuous (product oriented)	Equalize the task time at each workstation	Sony's TV assembly line Toyota Scion

Optimisation Productivity

Office Layout

- Grouping of workers, their equipment, and spaces to provide comfort, safety, and movement of information
- Movement of information is main distinction
- Typically in state of flux due to frequent technological changes

Optimisation > Productivity

Layout

Relationship Chart

Value	CLOSENESS
Α	<u>A</u> bsolutely necessary
Е	Especially important
I	<u>I</u> mportant
0	<u>O</u> rdinary OK
U	<u>U</u> nimportant
Х	Not desirable

ayout Optimisation Productivity

Five Helpful Ideas for Supermarket Layout

- Locate high-draw items around the periphery of the store
- Use prominent locations for high-impulse and highmargin items
- Distribute power items to both sides of an aisle and disperse them to increase viewing of other items
- 4. Use end-aisle locations
- Convey mission of store through careful positioning of lead-off department

Layout Optimisation Productivity

Store Layout

Figure 9.2

yout Optimisation Productivity

Retail Store Shelf Space Planogram

- Computerized tool for shelf-space management
- Generated from store's scanner data on sales
- Often supplied by manufacturer

Optimisation Productivity

Servicescapes

- Ambient conditions background characteristics such as lighting, sound, smell, and temperature
- 2. Spatial layout and functionality which involve customer circulation path planning, aisle characteristics, and product grouping
- 3. Signs, symbols, and artifacts characteristics of building design that carry social significance

Warehousing and Storage Layouts

- Warehouse density tends to vary inversely with the number of different items stored
- Automated Storage and Retrieval Systems (ASRSs) can significantly improve warehouse productivity by an estimated 500%
- Dock location is a key design element

ayout Productivit

Cross-Docking

- Materials are moved directly from receiving to shipping and are not placed in storage in the warehouse
- Requires tight scheduling and accurate shipments, bar code or RFID identification used for advanced shipment notification as materials are unloaded

ayout Optimisation Productivity

Random Stocking

- Typically requires automatic identification systems
 (AISs) and effective information systems
- Random assignment of stocking locations allows more efficient use of space
- Key tasks
 - 1. Maintain list of open locations
 - 2. Maintain accurate records
 - 3. Sequence items to minimize travel, pick time
 - 4. Combine picking orders
 - 5. Assign classes of items to particular areas

Layout Optimisation Productivity

Customizing

- Value-added activities performed at the warehouse
- Enable low cost and rapid response strategies
 - Assembly of components
 - Loading software
 - Repairs
 - Customized labeling and packaging

Warehouse Layout

Traditional Layout

Shipping and receiving docks

Cross-Docking Layout

Shipping and receiving docks

Shipping and receiving docks

Optimisation Productivit

Fixed-Position Layout

- Product remains in one place
- Workers and equipment come to site
- Complicating factors
 - Limited space at site
 - Different materials required at different stages of the project
 - Volume of materials needed is dynamic

Alternative Strategy

- As much of the project as possible is completed offsite in a product-oriented facility
- This can significantly improve efficiency but is only possible when multiple similar units need to be created

Process-Oriented Layout

Layout Optimisation Productivit

Layout at Arnold Palmer Hospital

Work Cells

- Reorganizes people and machines into groups to focus on single products or product groups
- Group technology identifies products that have similar characteristics for particular cells
- Volume must justify cells
- Cells can be reconfigured as designs or volume changes

Advantages of Work Cells

- Reduced work-in-process inventory
- Less floor space required
- Reduced raw material and finished goods inventory
- Reduced direct labor
- Heightened sense of employee participation
- 5. 6. Increased use of equipment and machinery
- Reduced investment in machinery and equipment

Requirements of Work Cells

- Identification of families of products 1.
- A high level of training, flexibility and empowerment of employees
- Being self-contained, with its own equipment and resources 3.
- Test (poka-yoke) at each station in the cell

Improving Layouts Using Work Cells

Current layout - workers in small closed areas.

Improved layout - cross-trained workers can assist each other. May be able to add a third worker as additional output is needed.

Improving Layouts Using Work Cells

Current layout - straight lines make it hard to balance tasks because work may not be divided evenly

Improved layout - in U shape, workers have better access. Four cross-trained workers were reduced.

U-shaped line may reduce employee movement and space requirements while enhancing communication, reducing the number of workers, and facilitating inspection

Flash animations

Product-Oriented Layouts

- **Fabrication line**
 - Builds components on a series of machines
 - **Machine-paced**
 - Require mechanical or engineering changes to balance
- **Assembly line**
 - Puts fabricated parts together at a series of workstations
 - Paced by work tasks
 - Balanced by moving tasks

Both types of lines must be balanced so that the time to perform the work at each station is the same

Product-Oriented Layouts

Advantages

- 1. Low variable cost per unit
- 2. Low material handling costs
- 3. Reduced work-in-process inventories
- 4. Easier training and supervision
- 5. Rapid throughput

Disadvantages

- 1. High volume is required
- 2. Work stoppage at any point ties up the whole operation
- 3. Lack of flexibility in product or production rates

McDonald's Assembly Line

Optimisation

Graphical optimisation (weighted)

25

Facility Number	Facility Name	To New 1 Flow/Unit Cost	Location X Axis	Location Y Axis
Existing 1	A	3600	0	2
Existing 2	В	2500	2	4
Existing 3	C	1800	5	6
Existing 4	D	2200	5	10
Existing 5	E	1000	7	15
Existing 6	F	4500	10	15
Existing 7	G	5600	12	10
Existing 8	H	1400	12	6
Existing 9	1	1800	15	4
Existing 10	J	3000	20	2
New 1	NEW			

Х

- Gates are fixed
- Flows are known and allocation is fixed
- Flows are always the same (but they are no flights in the night, and a lot in the morning and evening)
- It may not be possible to put the luggage picking points in these locations
- Flows are not against straight line
- What if a plane is late?

R=Rectilinear

E=Euclidian
E=Euclidian

- We'll see how to re focus the forecasting energy to immediate results with Lean
- The other solution is through Stochastic simulation

How productive

Is the combination layout / planning?

Times: Little's law

- Throughput time: The time for a unit to move through a process
- Cycle time: The <u>average</u> time between the units of output emerging from a process.
- Work-in-process: The number of units within a process waiting to be processed further (also called work in progress)

Throughput time

= WIP x Cycle time

- Simple but useful
- Works on any <u>stable</u> process

Note: **Takt time**: <u>Demand</u> frequency Takt = Operating time / Required qty

The goal is to synchronize takt time and cycle time

Cycle time 10 min

- Throughput efficiency: relates the throughput time to the real work content done during time time
- Value-added throughput **efficiency**: restricts the concept of work content to only those tasks that are adding value. It usually eliminates activities such as movement, delays, inspections.

Capacities

- **Input measure of capacity**: Focuses on the resources to express a capacity
- Output measure of capacity: Focuses on the product or service to express a capacity
- **Design capacity**: The capacity of a process or facility as it is designed to be, often greater than effective capacity.
- **Effective capacity**: The capacity of a process or facility after maintenance, changeover and other stoppages and loading have been accounted for.
- **Demonstrated capacity:** Proven capacity as achieved in the past

Utilization Actual ouput Design capacity

Efficiency Actual ouput Effective capacity

Operation	Input measure of capacity	Output measure of capacity
Air-conditioner plant	Machine hours available	Number of units per week
Hospital	Beds available	Number of patients treated per week
Theatre	Number of seats	Number of customers entertained per week
University	Number of students	Students graduated per year
Retail store	Sales floor area	Number of items sold per day
Airline	Number of seats available on the sector	Number of passengers per week
Electricity company	Generator size	Megawatts of electricity
Brewery	Volume of fermentation tanks	Litres per week

OEE = Overall Equipment Effectiveness $OEE = A \times P \times Q$

