Physical Opties (Diffraction)

If we replace the monochromatic source with $\lambda_2 = 4800 \text{Å}$ then at the same place say mth order maxima is seen whose condition is dsino = m λ_2

a. deint = $n\lambda_1 = m\lambda_2$ yields $m = \frac{n\lambda_1}{\lambda_2} = \frac{12 \times 6000}{4800}$

So 15th order interference maximor will be visible with 4800 Å source at the same place where 12th order interference maxima was seen through a 6000 Å source.

(b) Given that the central maxima contains 9 fringes, meaning 4 equidistant bright bands on both side of the centrals bright line.

As the celtral fringe is bright, we have $\frac{2b}{a} + 1 = 9$ where d = a + b = distance between two slits is a is the slitwidth.

Slitwidth. $\frac{2b}{a} = \frac{4}{8}$ or b = 4a π d = 5a

which corresponds to 1,2,3 - orders of diffraction dark bands. This means that within first & second minima (diffraction dark band) only 6th, 7th, 8th & 9th order inderference maxima (fringes) will be visible.

We know the condition for nt order interference maxima is dsintly = n a. or $\theta_n = \sin^{-1}\left(\frac{n\lambda}{d}\right) = \sin^{-1}\left(\frac{n\lambda}{5a}\right)$. So the angles where fringes will appear will be $\theta_0 = \sin^{-1}\left(\frac{6\lambda}{5a}\right)$, $\theta_1 = \sin^{-1}\left(\frac{7\lambda}{5a}\right)$, $\theta_2 = \sin^{-1}\left(\frac{8\lambda}{5a}\right)$ and $\theta_3 = \sin^{-1}\left(\frac{9\lambda}{5a}\right)$ respectively.

(2) (a) Given, for the inthorder (say) diffraction spectra of a wavelength $A_1 = 540 \text{ nm} = 540 \times 10^{-9} \text{ m}$ super imposes with the (in+1)th order of another wavelength $A_2 = 405 \text{ nm}$ = $500 \times 10^{-9} \text{ m}$ at normal incidence of a plane transmission grating. I being the Grating element.

from the condition of secondary maxima, we have $d \sin \theta = m\lambda_1 = (m+1)\lambda_2 \quad \text{is} \quad m = \frac{\lambda_2}{\lambda_1 - \lambda_2} = \frac{405}{540-405} = 3.$

Given, angle of diffraction 0 = 30°.

80 the grating element 6 324 × 10 m.

(b) Given for a plane transmission grating,

slit width a = 0.001 mmopaque space b = 0.002 mm & wowelength of monochromatic

source $\lambda = 500 \text{ mm}$.

As singo=1 so the maximum angle of diffraction is 90°.

Let m be the maximum number of order of spectrum that

can be observed.

from the condition of secondary maxima, we have $d \sin \theta = m\lambda$ where grating element $d = a + b = 0.003 \, \text{mn}$ $a m = \frac{d}{\lambda} = \frac{0.003 \times 10^{-9}}{500 \times 10^{-9}} = \frac{6}{500}$

Now we need to account for the missing grating spectral that happens for mth principal maxima (condition drind = ma) to wincide with nth minimum intensity (condition asino = na)

i. $\frac{m\lambda}{d} = \frac{n\lambda}{a}$ is $m = \frac{a+b}{a}n = \frac{0.003}{0.001}n = 3n$. So 3^{7d} , 6^{th} order will be missing from the grating spectra and only upto 5th order spectrum is visible.

(c) Given, the number of rulings of the grating N= 820/cm. 6 Grating element $d = \frac{1}{N} = \frac{1}{820}$ cm.

Wavelength of Na-D lines $A_{D_1} = 5890 \, \text{Å}$, $A_{D_2} = 5896 \, \text{Å}$ Let the least-width of the grating be ω .

We know that the resolving power of a grating is given by

 $\frac{\partial}{\partial \lambda} = Mn$, n = order of the spectrum; $d\lambda = \lambda_0 - \lambda_0 A$. = 2. M = # of rulings in the grating.

 $\frac{\partial}{\partial t} M = \frac{\lambda}{n \, da} = \frac{(\lambda_{D_1} + \lambda_{D_2})/2}{2(\lambda_{D_2} - \lambda_{D_1})} = \frac{5893}{2 \times 6} \approx 491$

i. Least-width of the grating $w = Md = 491 \times \frac{1}{820}$ cm = 0.599 cm.

to vissolve the Na-Dline speetra.

(d) Given, the number of rulings of the grating N = 3000/an.. Grating constant $d = \frac{1}{N} = \frac{1}{3000} \text{ cm} = 3.333 \times 10^{-4} \text{ cm}$ No obtain the direction of the 1st order (m=1) of the Na-Dlines $\lambda_{D_1} = 5890 \,\text{Å}$ and $\lambda_{D_2} = 5896 \,\text{Å}$ with average wavelest $A = \frac{1}{2}(A_{D_1} + A_{D_2}) = 5893 Å$, we know the condition of secondary maxima doint = ma, we home $D = \sin^{-1}\left(\frac{m\lambda}{d}\right) = \sin^{-1}\left(\frac{1 \times 5893 \times 10^{-8}}{3.333 \times 10^{-4}}\right) = 10.18^{\circ}$ This is the required direction of the 1st order grating spectra. Now from the relation for resolving power $\frac{\lambda}{d\lambda} = Mm$, where M is the number of rulings in the grotting and m is the order of the spectrum, we have $M = \frac{\lambda}{m d\lambda} = \frac{5893}{1 \times 6} = 982.16 \approx 983$ So the least-width of the grating is $Md = \frac{983}{3000}$ an = 0.32 cm. (e) Given, least-width of grating Md = 4 cm and number of rulings N = 4000 lines/cm. Wavelength of monochromatic source $\lambda = 5900 \,\text{Å}$, M = # of rulings in the grating. s. Grating constant $d = \frac{1}{N} = \frac{1}{4000}$ an. $\frac{M}{6000} = 4 \Rightarrow \frac{M}{4000} = 4 \Rightarrow M = 16000$ while order of spectrum m=1, the required resolving power $\frac{A}{Ja} = mM = 1 \times 16000 = 16000$. while $\left(\frac{A}{d\lambda}\right)_{Na} = \frac{5893}{6} = \frac{982}{6}$ which is way smaller than the computed above resolving power, so this grating can separate the Na-doublet.

- (f) Width of one transmission grating G_1 is $W_1 = M_1 d_1 = 3 \text{ cm}$ with # of rulings $M_1 = 3000$. Width of another grating G_2 is $W_2 = M_2 d_2 = 2 \text{ cm}$ with # of rulings $M_2 = 2000$. Resolving power of a grating $\frac{\partial}{\partial x} = mM$ So for the same order ratio of R.P. of $G_1 \& G_2$ is mM_1 ; $mM_2 = 3000: 2000 = 3:2$.
- (3)(a) Given, two points on Moon is resolved by a telescope of diameter $D=500~\rm cm=5m$. Most sensitive wavelength of light to eye is $A=5500~\rm \AA=5500~\rm X10^{-10}$ m, and distance of moon to surface of Earth $d=3.8\times10^{5}\rm km=3.8\times10^{8}~m$. The angular separation (inverse of resolving power) of
 - the two points is $d\theta = \frac{1.22 \, \text{A}}{2} = \frac{1.22 \, \text{X}}{5500 \, \text{X} \, 10^{-10}} = 1.342 \, \text{X} \, 10^{-7} \, \text{M}$ So from the geometry of arclayth, separation between the points on Moon will be $dd\theta = 3.8 \, \text{X} \, 10^8 \, \text{X} \, 1.342 \, \text{X} \, 10^{-7} \, \text{M}$ $= 51 \, \text{M}$.
- (b) Given, the resolving power of eye =1 are. Let Do, Dep, De be the diameters of the telescope objective, telescope eyepiece and human eye. Wavelength 7 = 6000 Å.

Given, the magnification $\frac{D_o}{D_{ep}} = 80$ where $D_o = 8$ cm $^{\circ}$ 0. Dep = 0.1 cm=1mm. We know R.P. of eye $\frac{1}{d\theta_e} = \frac{D_e}{1.222}$

 $\frac{De}{1.227} = \frac{1}{1} = \frac{\pi}{60 \times 180}$ rad. or $De = \frac{1.22 \times 6000 \times 10^{-10}}{\pi/(60 \times 180)}$

For telescope, the angular resolving power is $do_T = \frac{1.227}{D_0}$

 $= \frac{1.22 \times 6000 \times 10^{-8}}{8} \text{ ad} = \frac{1.22 \times 6000 \times 10^{-8}}{8} \times \frac{180}{\pi} = \frac{1.22 \times 6000 \times 10^{-8}}{8} \times \frac$

while $d\theta_e = 1' = 60''$ and magnification = 80, so normally human eye's resolving power is $\frac{60''}{80} = 0.75''$ which is way smaller than the Telescope's resolving power 1.887''.

Therefore, the resolvable angular separation of stars using this refracting telescope is 1.887".

(4) We know that n^{th} dark ring in Newton's ring interference experiment is $r_n = \sqrt{n} \lambda R$ where λ is wavelength of monochromatic source and R is the radius of curvature of the plano convex lens = 2m.

So radius of the 1st dark ring which is also the radius of the 1st dark ring of the zone plate is $\tau_1 = \sqrt{2\lambda}$.

Now we know that the focal length of mth order of a zoneplate is $f_{m} = \frac{\gamma_{m}^{2}}{m\lambda}$. So at 1st order, $f_{1} = \frac{\gamma_{1}^{2}}{\lambda} = \frac{2\lambda}{\lambda} = \frac{2m}{\lambda}$.

20 The first focal lengte of the zone plate is 2 metres.