QISKIT CHEAT SHEET

Step 1: Creating Quantum Circuits		
Creating a quantum circuit with 1 qubit	<pre>qc = QuantumCircuit(1)</pre>	
Creating a quantum circuit with n qubits	qc = QuantumCircuit(n)	
Creating a quantum circuit with n qubits and m classical bits	<pre>qc = QuantumCircuit(n, m)</pre>	

Step 2: Quantum Gates		
X gate on qubit 0	qc.x(0)	
X gate on qubit a (indexed by 0)	qc.x(a)	
Z gate on qubit a (indexed by 0)	qc.z(a)	
H gate on qubit a (indexed by 0)	qc.h(a)	
CX gate with qubit a as the control and qubit b as the target	qc.cx(a, b)	

Step 2: Measurement	
Measuring the state of qubit 0 and storing the result in classical bit 0	qc.measure(0, 0)
Measuring the states of qubits 0 and 1 and storing the results in classical bits 0 and 1	qc.measure([0, 1], [0, 1]
Measuring the states of qubits 0, 1, 2 and storing the results in classical bits 0, 1, 2	qc.measure([0, 1, 2], [0, 1, 2]
Measuring the states of qubits 0 on and storing the results in classical bits 0 on	qc.measure([0, 1, 2,], [0, 1, 2,]

Step 3: Visualizing and Running Circuits		
Draw the circuit	qc.draw()	
Visualize the rotation on the Bloch sphere. NOTE: This works for 1 qubit circuits only.	<pre>visualize_transition(qc, trace = True)</pre>	
Simulate using the QASM simulator. You are not responsible for knowing this code, you just need to know how to interpret the results.	<pre># Create a QASM simulator backend = Aer.get_backend('qasm_simulator') # Simulate your specific circuit, make sure # to use the correct variable name (qc here) job = execute(qc, backend=backend, shots=1024) # Get the counts from the simulation result result = job.result() counts = result.get_counts() # Plot the results as a histogram plot_histogram(counts)</pre>	