Machine learning (Descision Tree)							
Decision Tree classifier and Decision Tree Regressor							
701 ugguz							
(DTC) (DTR)					8		
f		f3	fu	165, 010 x	Ole.		
Day	outlook	temperature	Humidity	wind	yes/No Decision		
1	sunny	hot	high	weak	No		
2	sunny	hot	high	strong	NO		
3	overcost	hot	high	weak	yes '		
4	rainfall	mild	high	weak	yes		
5	rainfall	cool	normal	strong	yes		
6	overcast	cool	normal	strong-	No		
7	sunny	Cool	normal	weak	yes		
8	rainfall	mild	high	weak	yes		

Purity -> 1 entropy 2) Guini - coff, gini impority Entropy = & P, x log (Pi) 1 0/p (cate) Numbertheature Binary classification 2 class > Y/N

- Pyloa (Pill - D 1 Community Mo) [-Pylog(Py)-PNlog(PN) => 2 class Gini coff (Tree 1 1 1 1 1 2 Pi 2 ous muy Molti-classification 3-class Entropy > C1, C2, C3 Palog(Pa) -Palog(Pa) -Palog(Pa) Gini-impusity > 1 - 5 pi2 MINUL 1 - [Py2 + PN]

Teacher's Signature.

classe :

$$\frac{-3 \log (3) - 0 \log (0)}{3 3 2 (3)}$$

Example: [1] 53 / 5M -> ENBOPY O 1/2) - 1 (uny in

-> entropy

graph wet probability.

Probability

(00°(0)

80-50%

H(s) = 1 -> very impure split:

2 yes / 3 Mo

 $H(3) = -2 \log_2(2) - 3 \log_2(3)$

H(S) = 0.97 NHO (NIO)

Teacher's Signature.....

Guini - impority or Guini- coff:

$$\Rightarrow 1 - \sum_{i=1}^{n} P_{i}^{2}$$

$$\Rightarrow i=1$$

Example: (1)
$$34/3N \rightarrow 6ntropy \Rightarrow H(s) = 1$$
 (very impore)

(2) $34/0N \rightarrow 0$

(3) $24/3N \rightarrow 0.97$

$$= 1 - \left[\left(\frac{3}{6} \right)^2 + \left(\frac{3}{6} \right)^2 \right]$$

$$= 1 - \left[\left(\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right)^2 \right]$$

$$\Rightarrow 1 - \left[\left(\frac{4}{2} \right)^4 + \left(\frac{1}{2} \right)^2 \right]$$

$$=$$
 $1 - \left[\frac{2}{4}\right] = 1 - \frac{1}{2} = \frac{1}{2}$

Teacher's Signature ...

	Date
Expt. No	Page. No
6 364 / Sa X 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	- M3 14 ()
3 [84(2N] 3-10)	_ <= /
$\Rightarrow 1 - \left[\frac{9}{10} \right]^2 + \left(\frac{2}{10} \right)^2$. /
Gini => 0.32	
1 sphi	and 2nd split for no of split
Grain (S, fr) = H(3) - 5 (Sy	
[94.0 + 94.4.3] WAS	•/
To egleulate	information gain
(f) [94 2M]	J.
A CO SOL	
8tep1 + T CUICNET	
[6][2]	(3N) (12) (more)
0 99/5N -	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H(s) => root feature entropy	
=-Py log (Py) -Pn1	og (Pn)
= (9) log (9) -	5 109 (5/14)
= - (0.64) log (0.64)) - (0.35) log (0.35)
2 0. 94 Tead	cher's Signature

	Date
Expt. No	Page. No
(2) 64/2N	punge (H)more
$= -\frac{6}{8} \log \left(\frac{6}{8} \right) - \frac{2}{8} \log \left(\frac{6}{8} \right)$	3 (2)
= 0.81	
(3) 34/3N => H(J) = 1	SY > total no of sample after splitting.
Grain $(s_1f_1) = 0.94 - [8]$	162 + 0. 42]
20049	
2 0.099	7 total no. of sample after splitting
Gain (SIR) = H(S) - 5	S S S S S S S S S S S S S S S S S S S
	S BROOM RESTANDE
212 3 (81) FPO (4)	
	ID3 Method
000	5 6
	(A) (D)
- Ofri storn proba	Teacher's Signature

Grain(f1) > 0.049 NSIRS 47/2N 1 8 (8) 601 9f2 LEANIER [NI) KS x 2 + 18 0 x 8 7 4P 18 - (1912) mora Grain = $0.94 = (6/14) \times 0.65 - (8/14) \times 1$ Grain $(42) = 0.09 \Rightarrow J.G(42)$ (f2) > I. G(f1) this is greater and it is providing