```
In [10]:
         import pandas as pd
         import numpy as np
         import text normalizer as tn
         import model evaluation utils as meu
         np.set printoptions(precision=2, linewidth=80)
In [12]: dataset = pd.read csv(r'movie reviews.csv')
In [14]: | reviews = np.array(dataset['review'])
         sentiments = np.array(dataset['sentiment'])
         # build train and test datasets
         train reviews = reviews[:35000]
         train sentiments = sentiments[:35000]
         test reviews = reviews[35000:]
         test_sentiments = sentiments[35000:]
         # normalize datasets
         norm train reviews = tn.normalize corpus(train reviews)
         norm test reviews = tn.normalize corpus(test reviews)
In [15]: | tokenized_train = [tn.tokenizer.tokenize(text) for text in norm_train_reviews]
         tokenized test = [tn.tokenizer.tokenize(text) for text in norm test reviews]
In [16]: from collections import Counter
         # build word to index vocabulary
         token counter = Counter([token for review in tokenized train for token in review
         vocab map = {item[0]: index+1 for index, item in enumerate(dict(token counter).i
         max index = np.max(list(vocab map.values()))
         vocab map['PAD INDEX'] = 0
         vocab_map['NOT_FOUND_INDEX'] = max_index+1
         vocab size = len(vocab map)
         # view vocabulary size and part of the vocabulary map
         print('Vocabulary Size:', vocab_size)
         print('Sample slice of vocabulary map:', dict(list(vocab map.items())[10:20]))
         Vocabulary Size: 77811
         Sample slice of vocabulary map: {'bore': 11, 'terribly': 12, 'predictable': 13,
         'interesting': 14, 'start': 15, 'middle': 16, 'film': 17, 'little': 18, 'socia
         l': 19, 'drama': 20}
```

```
In [17]: from keras.preprocessing import sequence
         from sklearn.preprocessing import LabelEncoder
         # get max length of train corpus and initialize label encoder
         le = LabelEncoder()
         num_classes=2 # positive -> 1, negative -> 0
         max len = np.max([len(review) for review in tokenized train])
         ## Train reviews data corpus
         # Convert tokenized text reviews to numeric vectors
         train X = [[vocab map[token] for token in tokenized review] for tokenized review
         train_X = sequence.pad_sequences(train_X, maxlen=max_len) # pad
         ## Train prediction class labels
         # Convert text sentiment labels (negative\positive) to binary encodings (0/1)
         train y = le.fit transform(train sentiments)
         ## Test reviews data corpus
         # Convert tokenized text reviews to numeric vectors
         test_X = [[vocab_map[token] if vocab_map.get(token) else vocab_map['NOT_FOUND_IN[
                    for token in tokenized review]
                       for tokenized review in tokenized test]
         test_X = sequence.pad_sequences(test_X, maxlen=max_len)
         ## Test prediction class labels
         # Convert text sentiment labels (negative\positive) to binary encodings (0/1)
         test y = le.transform(test sentiments)
         # view vector shapes
         print('Max length of train review vectors:', max_len)
         print('Train review vectors shape:', train X.shape, ' Test review vectors shape:
         Using TensorFlow backend.
```

```
Max length of train review vectors: 1115
Train review vectors shape: (35000, 1115) Test review vectors shape: (15000, 1115)
```

WARNING:tensorflow:From c:\users\mglewis\appdata\local\programs\python\python37 \lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.

Instructions for updating:

Colocations handled automatically by placer.

WARNING:tensorflow:From c:\users\mglewis\appdata\local\programs\python\python37 \lib\site-packages\keras\backend\tensorflow_backend.py:3445: calling dropout (f rom tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be remo ved in a future version.

Instructions for updating:

Please use `rate` instead of `keep_prob`. Rate should be set to `rate = $1 - \text{kee} p_prob$ `.

In [19]: print(model.summary())

Layer (type)	Output Shape	Param #
embedding_1 (Embedding)	(None, 1115, 128)	9959808
spatial_dropout1d_1 (Spatial	(None, 1115, 128)	0
lstm_1 (LSTM)	(None, 64)	49408
dense_1 (Dense)	(None, 1)	65
_		=======

Total params: 10,009,281 Trainable params: 10,009,281 Non-trainable params: 0

None

```
In [23]:
         batch size = 100
         model.fit(train_X, train_y, epochs=5, batch_size=batch_size,
                   shuffle=True, validation split=0.1, verbose=1)
         1s - loss: 0.0736 - acc: 0.97 - ETA: 50s - loss: 0.0736 - acc: 0.97 - ETA: 48
         s - loss: 0.0736 - acc: 0.97 - ETA: 46s - loss: 0.0736 - acc: 0.97 - ETA: 44s
         - loss: 0.0736 - acc: 0.97 - ETA: 43s - loss: 0.0734 - acc: 0.97 - ETA: 41s -
         loss: 0.0735 - acc: 0.97 - ETA: 39s - loss: 0.0737 - acc: 0.97 - ETA: 38s - 1
         oss: 0.0738 - acc: 0.97 - ETA: 36s - loss: 0.0740 - acc: 0.97 - ETA: 34s - lo
         ss: 0.0738 - acc: 0.97 - ETA: 32s - loss: 0.0739 - acc: 0.97 - ETA: 31s - los
         s: 0.0738 - acc: 0.97 - ETA: 29s - loss: 0.0741 - acc: 0.97 - ETA: 27s - los
         s: 0.0741 - acc: 0.97 - ETA: 25s - loss: 0.0743 - acc: 0.97 - ETA: 24s - los
         s: 0.0742 - acc: 0.97 - ETA: 22s - loss: 0.0741 - acc: 0.97 - ETA: 20s - los
         s: 0.0745 - acc: 0.97 - ETA: 19s - loss: 0.0748 - acc: 0.97 - ETA: 17s - los
         s: 0.0750 - acc: 0.97 - ETA: 15s - loss: 0.0748 - acc: 0.97 - ETA: 13s - los
         s: 0.0747 - acc: 0.97 - ETA: 12s - loss: 0.0746 - acc: 0.97 - ETA: 10s - los
         s: 0.0745 - acc: 0.97 - ETA: 8s - loss: 0.0745 - acc: 0.9752 - ETA: 6s - los
         s: 0.0744 - acc: 0.975 - ETA: 5s - loss: 0.0744 - acc: 0.975 - ETA: 3s - los
         s: 0.0744 - acc: 0.975 - ETA: 1s - loss: 0.0746 - acc: 0.975 - 554s 18ms/step
         - loss: 0.0748 - acc: 0.9750 - val loss: 0.3772 - val acc: 0.8786
Out[23]: <keras.callbacks.History at 0x230b678d8d0>
In [24]:
         pred test = model.predict classes(test X)
         predictions = le.inverse transform(pred test.flatten())
```

In [25]: meu.display model performance metrics(true labels=test sentiments, predicted labels classes=['positive', 'negative'])

Model Performance metrics:

Accuracy: 0.8789 Precision: 0.8789 Recall: 0.8789 F1 Score: 0.8789

Model Classification report:

	precision	recall	f1-score	support
positive	0.88	0.88	0.88	7587
negative	0.88	0.88	0.88	7413
micro avg	0.88	0.88	0.88	15000
macro avg	0.88	0.88	0.88	15000
weighted avg	0.88	0.88	0.88	15000

Prediction Confusion Matrix:

C:\code\ML York\ML1010_InClass-master\ML1010_InClass-master\Week 5\model_evalua tion_utils.py:61: FutureWarning: the 'labels' keyword is deprecated, use 'code s' instead

labels=level_labels),

C:\code\ML York\ML1010 InClass-master\ML1010 InClass-master\Week 5\model evalua tion_utils.py:63: FutureWarning: the 'labels' keyword is deprecated, use 'code s' instead

labels=level labels))

Predicted:

positive negative

Actual: positive 6680 907 910 6503 negative

In []: