Diszkrét matematika I. Előadas

1. előadás

Egy kis matematikai logika . . .

Logikai műveletek

A logikában az állításokat logikai műveletekkel tudjuk összekapcsolni:

- Tagadás (negáció), jele: ¬A.
- És (konjunkció), jele: $A \wedge B$.
- Vagy (megengedő vagy/diszjunkció), jele: A ∨ B.
- Ha ..., akkor ... (implikáció), jele: $A \Rightarrow B$.
- ... pontosan akkor, ha ... (ekvivalencia), jele: $A \Leftrightarrow B$.

Igazságtáblázat

Α	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$
	- 1	Н	ı	I	I	I
Π	Н	Н	Н	ı	Н	Н
Н	ı	I	Н	I I		Н
Н	Н	I	Н	Н	I	I

Logikai műveletek: a vagy fajtái

A köznyelvben a **vagy** háromféle értelemmel bírhat:

- Megengedő vagy: A V B pontosan akkor igaz, ha A és B közül legalább az egyik igaz.
 - Pl. "Átok reá ki gyávaságból vagy lomhaságból elmarad,..."
- Kizáró vagy: $A \oplus B$ pontosan akkor igaz, ha A és B közül pontosan az egyik igaz.
 - Pl. "Most jobbra vagy balra kell fordulnunk."
- Összeférhetetlen vagy: A||B| pontosan akkor igaz, ha A és B közül legfeljebb egyik igaz.
 - Pl. "Iszik vagy vezet!"

Α	В	$A \vee B$	$A \oplus B$	A B
Т	I	I	Н	Н
Ι	Н	I	I	I
Н	ı	I	I	ı
Н	Н	Н	Н	I

Logikai műveletek

Az implikáció $(A \Rightarrow B)$ csak *logikai* összefüggést jelent és nem okozatit!

Α	В	$A \Rightarrow B$
ı	I	I
ı	Н	Н
Н	I	I
Н	Ι	I

Példa

- $2 \cdot 2 = 4 \Rightarrow i^2 = -1$
- $2 \cdot 2 = -3 \Rightarrow A$ kutya emlős állat.

Hamis állításból minden következik:

Példa

•
$$2 \cdot 2 = 5 \Rightarrow i^2 = -2$$

Adott logikai művelet más módon is kifejezhető: $(A \Rightarrow B) \Leftrightarrow (\neg A \lor B)$

A logikai műveletek tulajdonságai, ítéletlogikai tételek

Állítás

- $\bullet A \land (B \lor C) \Leftrightarrow (A \land B) \lor (A \land C), A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$ (disztributivitás)

- **1** $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$ (kontrapozíció tétele)

Bizonyítás.

Példa:

③ $A \lor (B \lor C) \Leftrightarrow (A \lor B) \lor C$ (a logikai vagy asszociativitása)

Α	В	С	B∨C	A ∨ (B ∨ C)	A ∨ B	(A ∨ B) ∨ C	$A \lor (B \lor C) \Leftrightarrow (A \lor B) \lor C$
Π	I	I	I	I	ı	I	
ı	I	Н	I		ı	I	
П	Н	I	I		I	I	I
I	Н	Н	Н		I	I	I
Н	ı	I	I				I
Н	ı	Н	I				I
Н	Н	- 1	I		Н		I
Н	Н	Н	Н	Н	Н	Н	I

Kvantorok

Kvantorok

- • ∃ (egzisztenciális kvantor): "létezik", "van olyan".
- ∀ (univerzális kvantor): "bármely", "minden".

Példák

- $\exists x \in \mathbb{R} : x^2 = 5$ "Van olyan x valós szám, melyre $x^2 = 5$."
- ② $\forall x \in \mathbb{R} : x^2 \ge 0$ "Minden x valós számra $x^2 \ge 0$."

Halmazok

Egy nevezetes paradoxon a naív halmazelméletben

Russell paradoxon (Bertrand Russell, 1872 - 1970)

Nevezzünk minden olyan halmazt, amely nem eleme önmagának jó halmaznak, és minden olyan halmazt, amely eleme önmagának, rossz halmaznak. Legyen A az összes jó halmazok halmaza. Jó vagy rossz halmaz-e A?

- A jó halmaz. \Rightarrow (A definíciója alapján) A eleme önmagának. \Rightarrow A rossz halmaz f
- $A \operatorname{rossz}$ halmaz. \Rightarrow ($A \operatorname{definiciója}$ alapján) $A \operatorname{nem}$ eleme önmagának. $\Rightarrow A \operatorname{j\acute{o}}$ halmaz. \checkmark

Körül kell bástyázni a halmazok definiálásának lehetséges módjait \Rightarrow **Axiomatikus halmazelmélet:** Zermelo-Fraenkel-féle axiómarendszer

Halmazok

Halmazelméletben az alapvető fogalmak (ún. predikátumok), nem definiáljuk őket:

- Halmaz (rendszer, osztály, összesség, ...): Informálisan elképzelhető úgy, mint elemeinek gondolati burka.
- $x \in A$, ha az x eleme az A halmaznak.

A halmazok alapvető tulajdonságai axiómák, nem bizonyítjuk őket.

Példa

Meghatározottsági axióma.

Egy halmazt az elemei egyértelműen meghatároznak.

- Két halmaz pontosan akkor egyenlő, ha ugyanazok az elemeik.
- Egy halmaznak egy elem csak egyszer lehet eleme.

Halmazok

Halmaz megadása elemei felsorolásával:

Véges halmazt definiálhatunk elemei $\{\}$ között történő felsorolásával. Például: Annak a halmaznak, melynek csak az a elem az eleme a jelölése: $\{a\}$. Annak a halmaznak, melynek pontosan az a és b az elemei a jelölése: $\{a,b\}$. (Speciálisan, ha a=b, akkor $\{a\}=\{a,b\}=\{b\}$.) . . .

Definíció (üres halmaz)

Azt a halmazt, melynek nincs eleme, üres halmaznak nevezzük. Jele: \emptyset vagy $\{\}$.

Megjegyzés

- Figyelem! $\emptyset \neq \{\emptyset\}$.
- A meghatározottsági axióma alapján az üres halmaz egyértelmű.

Részhalmaz fogalma

Definíció (részhalmaz)

Az A halmaz részhalmaza a B halmaznak: $A \subseteq B$, ha A minden eleme B-nek is eleme, azaz

$$\forall x (x \in A \Rightarrow x \in B).$$

Ha $A \subseteq B$ -nek, de $A \neq B$, akkor A valódi részhalmaza B-nek: $A \subsetneq B$.

Megjegyzés:

- Az üres halmaz minden halmaznak részhalmaza.
- Minden halmaz részhalmaza önmagának, de nem valódi részhalmaza.

Állítás (A részhalmaz reláció tulajdonságai; Biz. HF)

- \bullet $\forall A \ (A \subseteq A) \ (reflexivitás).$

Részhalmaz definiálása formula segítségével

Definíció (Részhalmaz axióma)

Legyen A egy halmaz és $\mathscr{F}(x)$ egy formula (azaz \mathscr{F} egy olyan tulajdonság, amely leírható formálisan, a logika nyelvén). Ekkor létezik az a halmaz, amely A-nak pontosan azon x elemeit tartalmazza, melyekre $\mathscr{F}(x)$ igaz (azaz amelyekre az \mathscr{F} tulajdonság teljesül). Ezt a halmazt $\{x \in A : \mathscr{F}(x)\} = \{x \in A \mid \mathscr{F}(x)\}$ jelöli.

Megjegyzés: $\{x \in A : \mathscr{F}(x)\}$ helyett az $\{x : x \in A \land \mathscr{F}(x)\}$ vagy $\{x : x \in A, \mathscr{F}(x)\}$ jelölés is szokásos.

Példa

- $\{n \in \mathbb{Z} : \exists m \ (m \in \mathbb{Z} \land n = m^2)\}$: a négyzetszámok halmaza.
- $\{x \in \mathbb{R} : x^2 = 3\}$: az $x^2 = 3$ egyenlet valós megoldásainak halmaza, azaz $\{\sqrt{3}, -\sqrt{3}\}$.

Műveletek halmazokkal: halmazok uniója

Definíció (halmazok uniója)

Az A és B halmazok uniója: $A \cup B$ az a halmaz, mely pontosan A és B összes elemét tartalmazza: $A \cup B = \{x \mid x \in A \lor x \in B\}$.

Általában: Legyen \mathscr{A} egy olyan halmaz, melynek az elemei is halmazok (halmazrendszer). Ekkor $\bigcup \mathscr{A} = \bigcup \{A : A \in \mathscr{A}\} = \bigcup_{A \in \mathscr{A}} A$ az a halmaz, mely \mathscr{A} összes elemének elemeit tartalmazza:

$$\cup \mathscr{A} = \{ x \mid \exists A \in \mathscr{A} : x \in A \}.$$

Speciálisan: $A \cup B = \cup \{A, B\}$.

Példák

- $\{a, b, c\} \cup \{b, c, d\} = \{a, b, c, d\}$
- $\{x \in \mathbb{R} : 0 < x\} \cup \{x \in \mathbb{R} : x < 0\} = \{x \in \mathbb{R} : x \neq 0\}$

Műveletek halmazokkal: az unió tulajdonságai

Állítás (Az unió tulajdonságai)

Minden A, B, C halmazra:

- 3 $A \cup B = B \cup A$ (kommutativitás)
- $A \cup A = A$ (idempotencia)

Bizonyítás.

- 2-höz hasonló.
- 2-höz hasonló.
- **③** ⇒: $A \subseteq B \Rightarrow A \cup B \subseteq B$, de $B \subseteq A \cup B$ mindig teljesül, így $A \cup B = B$. \Leftarrow : Ha $A \cup B = B$, akkor A minden eleme eleme B-nek.

Műveletek halmazokkal: halmazok metszete

Definíció (halmazok metszete)

Az A és B halmazok metszete: $A \cap B$ az a halmaz, mely pontosan az A és B közös elemeit tartalmazza: $A \cap B = \{x \mid x \in A \land x \in B\}$. Általában: Legyen $\mathscr A$ egy olyan halmaz, melynek az elemei is halmazok (halmazrendszer). Ekkor $\cap \mathscr A = \cap \{A : A \in \mathscr A\} = \cap_{A \in \mathscr A} A$ a következő halmaz:

$$\cap \mathscr{A} = \{ x \mid \forall A \in \mathscr{A} : x \in A \}.$$

Speciálisan: $A \cap B = \cap \{A, B\}$.

Példa

- $\{a, b, c\} \cap \{b, c, d\} = \{b, c\}.$
- Ha $I_n = \{x \in \mathbb{R} : n \le x \le n+1\}$, $\forall n \in \mathbb{Z}$ -re és $\mathscr{I} = \{I_n : n \in \mathbb{Z}\}$, akkor
 - $I_2 \cap I_3 = \{3\}$
 - $I_8 \cap I_{11} = \emptyset$
 - $I_n \cap I_{n+1} = \{n+1\}$
 - $\cap \mathscr{I} = \emptyset$

Diszjunkt és páronként diszjunkt halmazrendszerek

Definíció ((páronként) diszjunkt halmazrendszer)

Ha $A \cap B = \emptyset$, akkor A és B diszjunktak.

Általánosabban: Ha \mathscr{A} egy halmazrendszer, és $\cap \mathscr{A} = \emptyset$, akkor \mathscr{A} diszjunkt, illetve \mathscr{A} elemei diszjunktak.

Ha $\mathscr A$ egy halmazrendszer, és $\mathscr A$ bármely két eleme diszjunkt, akkor $\mathscr A$ elemei páronként diszjunktak.

Példa

- Az {1,2} és {3,4} halmazok diszjunktak.
- Az {1,2}, {2,3} és {1,3} halmazok diszjunktak, de nem páronként diszjunktak.
- Az $\{1,2\}$, $\{3,4\}$ és $\{5,6\}$ halmazok páronként diszjunktak.
- Ha I_n = {x ∈ R : n ≤ x ≤ n + 1}, ∀ n ∈ Z-re és 𝒴 = {I_n : n ∈ Z}, akkor 𝗾 diszjunkt halmazrendszer, de elemei nem páronként diszjunktak.

Műveletek halmazokkal: a metszet tulajdonságai

Állítás (A metszet tulajdonságai; Biz. HF)

Minden A, B, C halmazra:

Disztributivitás

Állítás (Az unió és metszet disztributivitási tulajdonságai)

- $\bullet A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Bizonyítás.

- 4 HF. hasonló

Halmazok különbsége, komplementere

Definíció (halmazok különbsége)

Az A és B halmazok különbsége az $A \setminus B = \{x \in A : x \notin B\}$ halmaz.

Definíció (halmaz komplementere)

Egy rögzített X alaphalmaz és $A\subseteq X$ részhalmaz esetén az A halmaz komplementere az $\overline{A}=A'=X\setminus A$ halmaz.

Állítás (Különbség kifejezése komplementer segítségével)

$$A \setminus B = A \cap \overline{B}$$
.

Bizonyítás.

$$x \in A \setminus B \Leftrightarrow x \in A \land x \notin B \Leftrightarrow x \in A \land x \in \overline{B} \Leftrightarrow x \in A \cap \overline{B}$$

Komplementer tulajdonságai

Állítás (Komplementer tulajdonságai; Biz. HF)

Legyen X az alaphalmaz. Ekkor minden $A, B \subseteq X$ halmazra:

- $A \cap \overline{A} = \emptyset;$
- $\bullet A \subseteq B \Leftrightarrow \overline{B} \subseteq \overline{A};$

A 7. és 8. összefüggések az ún. de Morgan szabályok.

Komplementer tulajdonságai

Bizonyítás.

Példa

:

:

Halmazok szimmetrikus differenciája

Definíció (szimmetrikus differencia)

Az A és B halmazok szimmetrikus differenciája az

$$A\triangle B = (A \setminus B) \cup (B \setminus A)$$

halmaz.

Állítás (Szimmetrikus differencia másik előállítása; Biz. HF)

$$A\triangle B=(A\cup B)\setminus (B\cap A).$$

Halmaz hatványhalmaza

Definíció (hatványhalmaz)

Ha A egy halmaz, akkor azt a halmazrendszert, melynek elemei pontosan az A halmaz részhalmazai az A hatványhalmazának mondjuk, és 2^A -val jelöljük. (A $\mathscr{P}(A)$ jelölés is szokásos.)

- $A = \emptyset$, $2^{\emptyset} = {\emptyset}$
- $A = \{a\}, 2^{\{a\}} = \{\emptyset, \{a\}\}$
- $A = \{a, b\}, 2^{\{a,b\}} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

Jelölés: Egy véges A halmaz elemszámát |A| jelöli.

Állítás (Hatványhalmaz elemszáma; biz. később)

Tetszőleges A véges halmazra: $|2^A| = 2^{|A|}$.