1.13 Nerozhodnutelnost

1.13.1 Kód Turingova stroje. Každý Turingův stroj M lze zakódovat jako binární slovo. Mějme Turingův stroj M s množinou stavů $Q = \{q_1, q_2, \ldots, q_n\}$, množinou vstupních symbolů $\Sigma = \{0, 1\}$, množinou páskových symbolů $\Gamma = \{X_1, X_2, \ldots, X_m\}$, kde $X_1 = 0$, $X_2 = 1$ a $X_3 = B$. Dále počáteční stav je stav q_1 , koncový stav je q_2 . Označme D_1 pohyb hlavy doprava a D_2 pohyb hlavy doleva. (Tj. $D_1 = R$ a $D_2 = L$.)

Jeden přechod stroje M

$$\delta(q_i, X_j) = (q_k, X_l, D_r)$$

zakódujeme slovem

$$w = 0^{i}10^{j}10^{k}10^{l}10^{r}$$
.

které nazýváme Kód Turingova stroje M, značíme jej $\langle M \rangle$, je

$$\langle M \rangle = 111 \, w_1 \, 11 \, w_2 \, 11 \dots 11 \, w_p \, 111,$$

Kde w_1, \ldots, w_p jsou slova odpovídající všem přechodům stroje M.

1.13.2 Binární slova můžeme uspořádat do posloupnosti a tudíž je očíslovat. K binárnímu slovu w utvoříme 1w a toto chápeme jako binární zápis přirozeného čísla.

Tedy např. ϵ je první slovo, 0 je druhé slovo, 1 je třetí slovo, atd, 100110 je 1100110 = 64 + 32 + 4 + 2 = 102, tj. 100110 je 102-hé slovo. V dalším textu o binárním slovu na místě i mluvíme jako o slovu w_i . Tedy $w_1 = \epsilon$, $w_{102} = 100110$.

Jedná se vlastně o uspořádání slov nejprve podle délky a mezi slovy stejné délky o lexikografické uspořádání.

1.13.3 Diagonální jazyk L_d . Nejprve uděláme následující úmluvu. Jestliže binární slovo w nemá tvar z 1.13.1, považujeme ho za kód Turingova stroje M, který nepřijímá žádné slovo. Tj. $L(M) = \emptyset$.

Jazyk L_d se skládá ze všech binárních slov w takových, že Turingův stroj s kódem w nepřijímá slovo w. (Tedy L_d obsahuje i všechna slova w, která neodpovídají kódům nějakého Turingova stroje, ovšem obsahuje i další binární slova.)

1.13.4 Věta. Neexistuje Turingův stroj, který by přijímal jazyk L_d . Jinými slovy, $L_d \neq L(M)$ pro každý Turingův stroj M.

Nástin důkazu. Postupujeme sporem. Kdyby existoval Turingův stroj M takový, že $L_d = L(M)$, pak by tento Turingův stroj měl kód roven nějakému binárnímu slovu, tj. $\langle M \rangle = w_i$ pro nějaké i.

Na otázku, zda toto slovo w_i patří nebo nepatří do jazyka L_d , nemůžeme dát odpověď, která by nevedla ke sporu.

Kdyby $w_i \in L_d$, pak w_i splňuje podmínku: Turingův stroj s kódem w_i nepřijímá slovo w_i . Ale $L_d = L(M)$ kde $w_i = \langle M \rangle$ — spor.

Kdyby $w_i \notin L_d$, pak Turingův stroj s kódem w_i nepřijímá slovo w_i . Ale to je podmínka pro to, aby slovo w_i patřilo do L_d — spor.

Proto neexistuje Turingův stroj, který by přijímal jazyk L_d .

1.13.5 Rekursivní jazyky. Řekneme, že jazyk L je rekursivní, jestliže existuje Turingův stroj M, který rozhoduje jazyk L.

Připomeňme, že Turingův stroj M rozhoduje jazyk L znamená, že jej přijímá a na každém vstupu se zastaví (buď úspěwně nebo neúspěšně).

1.13.6 Rekursivně spočetné jazyky. Řekneme, že jazyk L je rekursivně spočetný, jestliže existuje Turingův stroj M, který tento jazyk přijímá.

Jinými slovy, M se pro každé slovo w, které patří do L, úspěšně zastaví a pro slovo w, které nepatří do L se buď zastaví neúspěšně nebo se nezastaví vůbec.

1.13.7 Poznámka. Jazykům, které nejsou rekursivní, také říkáme, že jsou algoritmicky neřešitelné nebo nerozhodnutelné. Obdobně mluvíme o úlohách, které jsou nerozhodnutelné nebo algoritmicky neřešitelné. První pojem se užívá častěji pro rozhodovací úlohy, druhý i pro úlohy konstrukční či optimalizační.

Každý rekursivní jazyk je též rekursivně spočetný. Ukážeme, že naopak to neplatí, tj. existují rekursivně spočetné jazyky, které nejsou rekursivní.

- ${\bf 1.13.8}~{\bf Tvrzení.}~{\bf Jestliže}$ jazykL je rekursivní, pak je rekursivní i jeho doplněk $\overline{L}.$
- **1.13.9 Tvrzení.** Jestliže jazyk L i jeho doplněk \overline{L} jsou oba rekursivně spočetné, pak L je rekursivní.
- **1.13.10** Tvrzení. Pro jazyk L může nastat jedna z následujících možností:
 - 1. L i \overline{L} jsou oba rekursivní.
 - 2. Jeden z L a \overline{L} je rekursivně spočetný a druhý není rekursivně spočetný.
 - 3. L i \overline{L} nejsou rekursivně spočetné.
- **1.13.11** Univerzální jazyk. *Univerzální jazyk* L_u je množina slov tvaru $\langle M \rangle \# w$, kde $\langle M \rangle$ je kód Turingova stroje a $w \in \{0,1\}^*$ je binární slovo takové, že $w \in L(M)$.
- **1.13.12** Univerzální Turingův stroj. Popíšeme, velmi zhruba, Turingův stroj, který přijímá univerzální jazyk L_u . Tomuto Turingovu stroji se říká univrzální Turingův stroj a značíme ho U.

Univerzální Turingův stroj U má 4 pásky. První páska obsahuje vstupní slovo $\langle M \rangle \# w$, druhá páska simuluje pásku Turingova stroje M a třetí páska obsahuje kód stavu, ve kterém se Turingův stroj M nachází. Dále má U má čtvrtou, pomocnou pásku.

Na začátku práce Turingova stroje M je na první pásce vstupní slovo $\langle M \rangle \# w$, ostatní pásky obsahují pouze B, blanky. Připomeňme, že kód Turingova stroje získáme takto. Předpokládejme, že Turingův stroj M se skládá z $(Q,\{0,1\},\{0,1,B\},\delta,q_1,\{q_2\})$, kde $Q=\{q_1,q_2,\ldots,q_n\}$. Označme 0 jako X_1 , 1 jako X_2 , B jako X_3 , pohyb doprava R jako D_1 , pohyb doleva L jako D_2 . Pak jednotlivé přechody $\delta(q_i,X_i)=(q_k,X_l,D_m)$ kódujeme

 $t = 0^i 10^j 10^k 10^l 10^m, \ \ \text{kde} \ \ 1 \leq i, k \leq n, 1 \leq j, l \leq 3, 1 \leq m \leq 2.$

Turingův stroj M má kód

$$111 t_1 11 t_2 11 \dots 11 t_r 111.$$

Turingův stroj U neprve zkontroluje, že vstup je opravdu kódem Turingova stroje M následovaný binárním slovem. Jestliže není, U se neúspěšně zastaví.

V případě, že vstupní slovo je tvaru kód Turingova stroje M následovaný binárním slovem w, U přepíše slovo w na druhou pásku a na třetí pásku napíše 0. To je proto, že Turingův stroj je na začátku práce ve stavu q_1 kódovaném jako 0.

Nyní Turingův stroj U simuluje kroky Turingova stroje M s tím, že kdykoli se stroj M dostane do stavu q_2 (koncový "přijímací" stav M), U se úspěšně zastaví. Toto poznáme tak, že na třetí pásce se objeví 00 předcházené a následované B, blanky.)

Poznamenejme, že je třeba ještě dalších technických detailů. Např. při přepisování slova w na druhou pásku to děláme tak, že za 0 ve vstupním slově w na pásku napíšeme 10, za 1 ve w na druhou pásku zapíšeme 100. Je-li na druhou pásku potřeba (vzhledem k přechodové funkci Turingova stroj M na druhou pásku napsat B, napíšeme 1000. Čtvrtá páska slouží k tomu, abychom na druhou pásku byli schopni vždy napsat stav pásky TM M.

1.13.13 Důsledek. Univerzální jazyk L_u je rekursivně spočetný.

1.13.14 Tvrzení. Univerzální jazyk L_u není rekursivní.

Kdyby totiž L_u byl rekursivní, existoval by Turingův stroj M, který rozhodne L_u . Tj. M se vždy zastaví a na slovech z jazyka L_u se úspěšně zastaví, na slovech neležících v L_u se neúspěšně zastaví. Na základě tohtoto Turingova stroje M bychom byli schopni rozhodnout diagonální jazyk L_d , o kterém víme, že není ani rekursivně spočetný, viz 1.13.4.

Marie Demlová: Teorie algoritmů Před. 17: 10/5/2012