A Series of Tubes: Adding Interactivity to 3D Prints with Hollow Chambers and Pipes

Valkyrie Savage †⋆

Tovi Grossman †

Björn Hartmann *

valkyrie@eecs.berkeley.edu

tovi.grossman@autodesk.com

bjoern@eecs.berkeley.edu

ABSTRACT

This paper is awesome. Don't hate.

Author Keywords

Prototyping; Fabrication; 3D Printing; Electronics

ACM Classification Keywords

H.5.2 [User Interfaces (D.2.2, H.1.2, I.3.6)]: Prototyping.

INTRODUCTION

Hooray!

RELATED WORK

This should be thought about soon!

Fabrication

Printing Electronics

Fluids For Interaction

Routing

The Design Space

A SERIES OF TUBES

Types of Tubes

- open system to user, both ends open
- return system to system, both ends open
- semi-closed system to user, system side open, user side covered (e.g. elastic material)
- fully closed no openings on system or user side (e.g. air bubbles, resonance chambers)

Features of Tubes

- emphasize exterior connection points
- emphasize interior design/path of tubes (for display)

Paste the appropriate copyright statement here. ACM now supports three different copyright statements:

- ACM copyright: ACM holds the copyright on the work. This is the historical approach.
- License: The author(s) retain copyright, but ACM receives an exclusive publication license.
- \bullet Open Access: The author(s) wish to pay for the work to be open access. The additional fee must be paid to ACM.

This text field is large enough to hold the appropriate release statement assuming it is single spaced.

Media in Tubes

- Gas (compressible). Air with smells. Air with fog.
- Liquid (incompressible). Clear, colored, conductive, heated, flavored (smoothie!). Fill or coat.
- Particles. Sparse for haptic feedback. Dense for jamming.
- Threadables. EL wire, conductive wire, fiberoptic cable, muscle wire.

Design, Fabrication, Construction

Two Tools for Design

designing interior paths

designing exterior connection points

Inputs

Flexing

Much like [?], we can sense flexing and bending of prints made on the Objet. We can make prints on the Objet and tunnel through them, though, without making crazytastic silicone molds.

Touch

Capacitance (digital).

Pressure

Pressure (capacitance (ish) or fluid pressure).

Tapping

Tapping (audio/resonance?) carried through particular tubes, like we talked about hard tubes in a soft thing.

Other stuff?

Could be.

Traditional Components

Obviously you can hook up traditional buttons, etc., the same way as always. With copper paint instead of traditional wiring, we can share grounds, and we don't have to solder.

Outputs

Visual

EL wire. Colored liquids. Mechanical motion by pushing light stuff with air.

Aural

Resonance chambers. Air cavity design for sound/amplification (see passive iPhone speakers). I mean, this is basically just 3D printing instruments, which we know has been done.

	Gas	Liquid	Particles	Threadables
Visual	PneUIs, Harrison latex thingy, smoke display	Splash Controllers, paint mixer	clear thing with pop- corn	neon sign
Aural	resonance		CNC maracas	
Tactile/Haptic	PneUIs, haptic textures	Splash Controllers, warm/cold liquid	Jamming UIs, sparse particle hap- tic textures	Otherlab robots
Olfactory/Gustatory	scents	smoothie mixer!		
Touch Input	Harrison latex thingy	Harrison SFCS, injectable capacitive sensors	Jamming UIs	capacitance on wires
Pressure Input	Slyper printed doo- dads	sensors capacitance, flow meter		
Other Input	Slyper (twist, bend, flex, etc.), printed flex sensors			use traditional components

Haptic

Compressible and incompressible fluids for actuation. Recreation of PneUIs. Tactile output. Adding particles to add extra feedback.

Olfactory/Gustatory

Different chambers filled with different scented/flavored fluids. We can mix them using pipes and pressure.

Identity

Resonance chambers for identification.

LIMITATIONS

Issues of drying time for fluids in long tubes. Flexible material doesn't work forever. Water in Objet prints discolors

them. Can be difficult to get certain materials through certain kinds of tubes.

CONCLUSION

In conclusion... beef.

ACKNOWLEDGEMENTS

Yay, money!

REFERENCES

1. Slyper, R., and Hodgins, J. Prototyping robot appearance, movement, and interactions using flexible 3D printing and air pressure sensors. *IEEE Xplore* (2012).

APPENDIX

INJECTION MEASUREMENTS

We injected the copper a distance of 1.16m (according to the spiral length calculator at http://www.giangrandi.ch/soft/spiral/spiral.shtml) in a spiral whose cross-section was a square of area $9mm^2$. I

suspect that is about as far as we can go without using a vacuum at the end.

OBJET 260 CONNEX DIGITAL MATERIALS

Softer materials (concentration of ¿ 65

MATERIAL PROPERTIES

Name	Material	Resistance	Drying Time	Application Notes
CuPro-Cote Coating	Copper	2Ω/inch	O(1 day)	Syringe
Spectra 360 Electrode Gel	Liquid/Electrolytes	125kΩ/inch	O(hours)	Does not conduct dry
Wire Glue	Carbon/Graphite	23.6kΩ/inch	O(minutes)	Syringe, very runny
Bare Conductive Electric Paint	Carbon/Graphite	110Ω/inch	O(days)	Syringe
Homemade Conductive Paint	Carbon/Graphite	120Ω/inch	O(hours)	Too thick for syringe, apply externally with brush
Conductive Thread	Steel	1.8 Ω /inch taut 2.5 Ω /inch loose	N/A	Difficult to feed through turns
Solder Paste	Lead	2Ω /inch	N/A	Too thick for syringe, must bake to conduct