Orthogonal projections

Once again, suppose that given $\boldsymbol{x} \in \mathcal{S}$, we want to find the closest point in a subspace \mathcal{T} . Recall that if we have an orthobasis $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_N\}$ for \mathcal{T} , then the closest point $\hat{\boldsymbol{x}}$ can be obtained via the simple formula

$$\hat{oldsymbol{x}} = \sum_{n=1}^N \langle oldsymbol{x}, oldsymbol{v}_n
angle oldsymbol{v}_n.$$

We can also think of \hat{x} as the **orthogonal projection** of x onto \mathcal{T} . Specifically, we will use the notation $P_{\mathcal{T}}[\cdot]$ for the **projection operator** onto \mathcal{T} . $P_{\mathcal{T}}[\cdot]$ takes a signal and returns the signal in \mathcal{T} closest to the input. Using this notation, we have

$$oldsymbol{P}_{\mathcal{T}}[oldsymbol{x}] = \sum_{n=1}^{N} \langle oldsymbol{x}, oldsymbol{v}_n
angle \, oldsymbol{v}_n.$$

We note that, by virtue of being a projection, $P_{\mathcal{T}}$ satisfies a number of useful properties that will come in handy:

1. For any $\boldsymbol{x} \in \mathcal{T}$, $\boldsymbol{P}_{\mathcal{T}}[\boldsymbol{x}] = \boldsymbol{x}$. This can easily be verified by noting that if $\boldsymbol{x} \in \mathcal{T}$ we can write $\boldsymbol{x} = \sum_{n=1}^{N} \alpha_n \boldsymbol{v}_n$ and thus

$$egin{aligned} oldsymbol{P}_{\mathcal{T}}[oldsymbol{x}] &= oldsymbol{P}_{\mathcal{T}}\left[\sum_{n=1}^{N} lpha_n oldsymbol{v}_n
ight] \ &= \sum_{\ell=1}^{N} \left\langle \sum_{n=1}^{N} lpha_n oldsymbol{v}_n, oldsymbol{v}_\ell
ight
angle oldsymbol{v}_\ell \ &= \sum_{\ell=1}^{N} \sum_{n=1}^{N} lpha_n \langle oldsymbol{v}_n, oldsymbol{v}_\ell
angle oldsymbol{v}_\ell = \sum_{n=1}^{N} lpha_n oldsymbol{v}_n. \end{aligned}$$

- 2. As a consequence, we also have that $P_{\mathcal{T}}$ is **idempotent**, meaning that $P_{\mathcal{T}}^2 = P_{\mathcal{T}}$.
- 3. We can also define the complementary projection $Q_{\mathcal{T}} = \mathbf{I} P_{\mathcal{T}}$, which computes the residual $\mathbf{x} P_{\mathcal{T}}[\mathbf{x}]$. From the orthogonality principle we know that for any \mathbf{x} , $P_{\mathcal{T}}[\mathbf{x}]$ and $Q_{\mathcal{T}}[\mathbf{x}]$ are orthogonal. It is not difficult to show that $Q_{\mathcal{T}}$ is also an orthogonal projection. Indeed, $Q_{\mathcal{T}}$ can be constructed similarly to $P_{\mathcal{T}}$ provided we have an orthobasis for the subspace of \mathcal{S} which is orthogonal to \mathcal{T} .

We can say just a little more about the last property. What we are essentially doing here is decomposing the space \mathcal{S} into two orthogonal subspaces, \mathcal{T} and all of the vectors in \mathcal{S} which are orthogonal to \mathcal{T} . We denote this set by $\mathcal{T}^{\perp} = \mathcal{S} \ominus \mathcal{T}$. One can also view this as building up the space \mathcal{S} via the **direct sum** $\mathcal{S} = \mathcal{T} \oplus \mathcal{T}^{\perp}$.

One consequence of the orthogonality between the projections onto \mathcal{T} and \mathcal{T}^{\perp} is that for any $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{S}$, we have that

$$\langle \boldsymbol{P}_{\mathcal{T}}[\boldsymbol{x}], (\mathbf{I} - \boldsymbol{P}_{\mathcal{T}})[\boldsymbol{y}] \rangle = \langle \boldsymbol{P}_{\mathcal{T}}[\boldsymbol{x}], \boldsymbol{y} - \boldsymbol{P}_{\mathcal{T}}[\boldsymbol{y}] \rangle = 0.$$

Similarly,

$$\langle \boldsymbol{x} - \boldsymbol{P}_{\mathcal{T}}[\boldsymbol{x}], \boldsymbol{P}_{\mathcal{T}}[\boldsymbol{y}] \rangle = 0.$$

From these we have the useful and intuitive facts that

$$\langle oldsymbol{P}_{\mathcal{T}}[oldsymbol{x}], oldsymbol{y}
angle = \langle oldsymbol{P}_{\mathcal{T}}[oldsymbol{x}], oldsymbol{P}_{\mathcal{T}}[oldsymbol{y}]
angle = \langle oldsymbol{x}, oldsymbol{P}_{\mathcal{T}}[oldsymbol{y}]
angle.$$

Note also that since \mathcal{T} and \mathcal{T}^{\perp} are orthogonal, if $\|\cdot\|_{S}$ denotes the induced norm, then from Pythagoras we have that for any $\boldsymbol{x} \in \mathcal{S}$,

$$\|\boldsymbol{x}\|_{S}^{2} = \|\boldsymbol{P}_{\mathcal{T}}[\boldsymbol{x}]\|_{S}^{2} + \|(\mathbf{I} - \boldsymbol{P}_{\mathcal{T}})[\boldsymbol{x}]\|_{S}^{2}.$$

Subspace projections and linear approximation

Say $\{\boldsymbol{v}_k\}_{k=0}^{\infty}$ is an orthobasis for a Hilbert space \mathcal{S} . Let \mathcal{T} be the subspace spanned by the first 10 elements of $\{\boldsymbol{v}_k\}$:

$$\mathcal{T} = \operatorname{span}(\{\boldsymbol{v}_0,\ldots,\boldsymbol{v}_9\}).$$

1. Given $\boldsymbol{x} \in \mathcal{S}$, what is the closest point in \mathcal{T} (call it $\hat{\boldsymbol{x}}$) to \boldsymbol{x} ? We have seen that it is given by the projection

$$\hat{oldsymbol{x}} = oldsymbol{P}_{\mathcal{T}}[oldsymbol{x}] = \sum_{k=0}^9 \langle oldsymbol{x}, oldsymbol{v}_k
angle oldsymbol{v}_k.$$

2. How good an approximation is $\hat{\boldsymbol{x}}$ to \boldsymbol{x} ? If we measure this in the induced norm $\|\cdot\|_S$, then

$$egin{aligned} \|oldsymbol{x} - \hat{oldsymbol{x}}\|_S^2 &= \left\|\sum_{k=0}^\infty \langle oldsymbol{x}, oldsymbol{v}_k
angle oldsymbol{v}_k^2 oldsymbol{v}_k - \sum_{k=0}^9 \langle oldsymbol{x}, oldsymbol{v}_k
angle oldsymbol{v}_k^2 \ &= \left\|\sum_{k=10}^\infty \langle oldsymbol{x}, oldsymbol{v}_k
angle oldsymbol{v}_k^2
ight\|_S^2 \ &= \sum_{k=10}^\infty |\langle oldsymbol{x}, oldsymbol{v}_k
angle |^2. \end{aligned}$$

Since we also have

$$\|oldsymbol{x}\|_S^2 = \sum_{k=0}^\infty |\langle oldsymbol{x}, oldsymbol{v}_k
angle|^2$$

the (relative) approximation error for \hat{x} will be small if the first 10 transform coefficients

$$\langle \boldsymbol{x}, \boldsymbol{v}_0 \rangle, \langle \boldsymbol{x}, \boldsymbol{v}_1 \rangle, \ldots, \langle \boldsymbol{x}, \boldsymbol{v}_9 \rangle,$$

contain "most" of the total energy.

Of course, there is nothing special about taking the first 10 coefficients. We can just as easily form a K term approximation using

$$\hat{oldsymbol{x}}_K = \sum_{k=0}^{K-1} \langle oldsymbol{x}, oldsymbol{v}_k
angle$$

which has error

$$\|oldsymbol{x} - \hat{oldsymbol{x}}_K\|_S^2 = \sum_{k=K}^\infty |\langle oldsymbol{x}, oldsymbol{v}_k
angle|^2.$$

If the sum above is small for moderately large K, we can "compress" \boldsymbol{x} by using just the first K terms in the expansion.

This is precisely what is done in image and video compression — more details on this to come soon!

Example:

Any real-valued function on [-1/2, 1/2] with even symmetry can be built up out of harmonic cosines:

$$x(t) = \alpha_0 + \sum_{k=1}^{\infty} \alpha_k \sqrt{2} \cos(2\pi kt).$$

(That this is true follows directly from the observation that every signal on [-1/2, 1/2] that is real-valued and even has a Fourier series which is real-valued and even.) This is an orthobasis expansion in the standard inner product with

$$v_0(t) = 1, \ v_1(t) = \sqrt{2}\cos(2\pi t), \ \dots, \ v_k(t) = \sqrt{2}\cos(2\pi kt), \ \dots$$

It is easy to check that $\langle \boldsymbol{v}_k, \boldsymbol{v}_\ell \rangle = 0, \ k \neq \ell \text{ and } \langle \boldsymbol{v}_k, \boldsymbol{v}_k \rangle = 1.$

For the triangle function below

$$x(t) = \begin{cases} 1 + 2t, & -1/2 \le t \le 0 \\ 1 - 2t, & 0 \le t \le 1/2 \end{cases}$$

the expansion coefficients are

$$\alpha_0 = 1/2,$$

$$\alpha_k = \int_{-1/2}^{1/2} x(t)\sqrt{2}\cos(2\pi kt) dt$$

$$= 2\sqrt{2} \int_0^{1/2} (1 - 2t)\cos(2\pi kt) dt$$

$$= \begin{cases} 0 & k \text{ even, } k \neq 0 \\ \frac{2\sqrt{2}}{\pi^2 k^2} & k \text{ odd} \end{cases}.$$

First, let's compute the norm in time and coefficient space just to make sure they agree:

$$\|\boldsymbol{x}\|_{2}^{2} = \int_{-1/2}^{1/2} |x(t)|^{2} dt = 2 \int_{0}^{1/2} (1 - 2t)^{2} dt = 1/3,$$

and

$$\sum_{k=0}^{\infty} |\alpha_k|^2 = \frac{1}{4} + \frac{8}{\pi^4} \sum_{k'=0}^{\infty} \frac{1}{(1+2k')^4}$$
$$= \frac{1}{4} + \frac{8}{\pi^4} \left(\frac{\pi^4}{96}\right)$$
$$= \frac{1}{3}.$$

When we truncate the expansion at K terms,

$$x_K(t) = \frac{1}{2} + \sum_{k=1}^{K-1} \alpha_k \sqrt{2} \cos(2\pi kt),$$

we can interpret the result as an **approximation** of x(t) that is a member of the K-dimensional subspace span($\{\sqrt{2}\cos(2\pi kt\}_{k=0}^{K-1})$, and we know that it is the best approximation in that subspace.

Here are the approximation for K = 4, 6, 8:

We can compute the error in each of these approximations explicitly, as

$$x(t) - x_K(t) = \sum_{k=0}^{\infty} \alpha_k \sqrt{2} \cos(2\pi kt) - \sum_{k=0}^{K-1} \alpha_k \sqrt{2} \cos(2\pi kt)$$
$$= \sum_{k=K}^{\infty} \alpha_k \sqrt{2} \cos(2\pi kt),$$

and so

$$||x(t) - x_K(t)||_2^2 = \sum_{k=K}^{\infty} |\alpha_k|^2,$$

or, since $x_K(t) \perp x(t) - x_K(t)$,

$$||x(t) - x_K(t)||_2^2 = ||x(t)||_2^2 - ||x_K(t)||_2^2.$$

In the three examples above, we have

$$||x(t) - x_4(t)||_2^2 \approx 1.92 \cdot 10^{-4}, \quad ||x(t) - x_6(t)||_2^2 \approx 6.01 \cdot 10^{-5},$$

 $||x(t) - x_8(t)||_2^2 \approx 2.59 \cdot 10^{-5}.$

The Gram-Schmidt algorithm

We have seen that orthobases for a Hilbert space (or a subspace) have many nice properties. Given any basis $\{v_n\}_{n=1}^N$ for an N-dimensional space (or subspace), we can turn it into and orthobasis using the **Gram-Schmidt algorithm**.

The goal is to take a sequence of signals $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_N\}$ and produce $\{\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_N\}$ such that

$$\operatorname{span}(\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_N\}) = \operatorname{span}(\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_N\})$$

and

$$\langle \boldsymbol{u}_n, \boldsymbol{u}_\ell \rangle = \begin{cases} 1 & n = \ell, \\ 0 & n \neq \ell \end{cases}.$$

That is, $\{u_n\}$ spans the same space as $\{v_n\}$, but it is a orthobasis.

1. Choose $\boldsymbol{w}_1 = \boldsymbol{v}_1$ and normalize it to get¹

$$oldsymbol{u}_1 = rac{oldsymbol{w}_1}{\|oldsymbol{w}_1\|}.$$

Clearly, u_1 is an orthobasis for span($\{v_1\}$).

2. To get u_2 , we subtract from v_2 its projection onto u_1 :

$$egin{aligned} oldsymbol{w}_2 &= oldsymbol{v}_2 - raket{oldsymbol{v}_2, oldsymbol{u}_1}oldsymbol{u}_1 \ oldsymbol{u}_2 &= rac{oldsymbol{w}_2}{\|oldsymbol{w}_2\|} \end{aligned}$$

¹The norm here and below is the one induced by the inner product.

Note that u_2 is orthogonal to u_1 by the orthogonality principle, but just to make sure

$$\langle \boldsymbol{u}_2, \boldsymbol{u}_1 \rangle = \frac{1}{\|\boldsymbol{w}_2\|} \langle \boldsymbol{w}_2, \boldsymbol{u}_1 \rangle$$

$$= \frac{1}{\|\boldsymbol{w}_2\|} (\langle \boldsymbol{v}_2, \boldsymbol{u}_1 \rangle - \langle \boldsymbol{v}_2, \boldsymbol{u}_1 \rangle \langle \boldsymbol{u}_1, \boldsymbol{u}_1 \rangle)$$

$$= 0.$$

So $\{\boldsymbol{u}_1, \boldsymbol{u}_2\}$ is an orthobasis for span $(\{\boldsymbol{v}_1, \boldsymbol{v}_2\})$.

3. At the beginning of the k^{th} step, $\{\boldsymbol{u}_1, \ldots, \boldsymbol{u}_{k-1}\}$ is an orthobasis for span $(\{\boldsymbol{v}_1, \ldots, \boldsymbol{v}_{k-1}\})$. We get \boldsymbol{u}_k by subtracting off its projection onto span $(\{\boldsymbol{u}_1, \ldots, \boldsymbol{u}_{k-1}\})$ and normalizing:

$$egin{aligned} oldsymbol{w}_k &= oldsymbol{v}_k - \sum_{\ell=1}^{k-1} \langle oldsymbol{v}_k, oldsymbol{u}_\ell
angle, \ oldsymbol{u}_k &= rac{oldsymbol{w}_k}{\|oldsymbol{w}_k\|}. \end{aligned}$$

By induction, $\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_k\}$ is and orthobasis for span $(\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k\})$.

Note: If at any point

$$\boldsymbol{v}_k \in \operatorname{span}(\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{k-1}\})$$

(which means the $\{\boldsymbol{v}_n\}$ are linearly dependent — and not a basis), we will have

$$u_k = 0.$$

When this happens, we can simply throw away $\boldsymbol{u}_k, \boldsymbol{v}_k$ and move on. The set of $\{\boldsymbol{u}_k\}$ will be smaller than N, but will still be an orthobasis for span $(\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_N\})$.

Exercise: Let S be the space of piecewise-constant signals on [0,1), [1,2), [2,3] with the standard L_2 inner product. Turn the following basis

into an orthobasis using Gram-Schmidt.