Arquitectura de Computadores Departamento de Arquitectura de Computadores

Nombre: <u>Liang Liang Chen Xu</u>	Grupo: <u>12</u>
Nombre:	
Hoja de respuesta al Estudio Previo	
1. Hacer "inlining" de una función significa:	
Es una optimización que consiste en reemplaza la misma eliminando la necesidad de invocar a la fu rendimiento ya que evita los cambios de contexto, sa	nción en tiempo de ejecución, mejorando el
2. La opción específica de compilación de gcc que per todas las funciones simples es (especifica si se activ ra qué sirve la opción -finline-limit?:	=
La opción específica es –finline-functions y no se limit establece un límite en el tamaño de las funcio	
3. Explica una forma práctica de saber si en un pro "Pepito" y cómo averiguar si, además de existir, e	
Hacer un grep –n "Pedrito" programa.s y ver si "Pedr función(Pedrito:). Para ver si está invocada grep –n "	· · · · · · · · · · · · · · · · · · ·
4. El primer código ensamblador tiene:	
Instr. estáticas: 5	Instr. dinámicas: 5.143.533
Si la ejecución tarda 12 ms y 15000000 de ciclos:	
MIPS: 428.628 IPC: 0.34 CF	2.92
Frecuencia: 1.25 GHz	
5. El segundo código (compilado con -O) tiene:	
Instr. estáticas: 4	Instr. dinámicas: 5.143.528
Si la ejecución tarda 4 ms y 5000000 de ciclos:	
MIPS: 1285.89 CPI: 0.97	Frecuencia: 1.25 GHz
Speedup: 3	

Las igualdades y diferencias observadas respecto al apartado anterior se deben a:

En esta segunda versión observamos que se han reducido las instrucciones estáticas y dinámicas ligeramente. El tiempo de ejecución y los ciclos se han reducido en un 77%, de esta manera aumentando los MIPS. Al haber reducido los ciclos y el número de instrucciones hace que este disminuya. La frecuencia se mantiene y llegamos a la conclusión que el programa optimizado es 3x mas rápido que el original.

6.	FΙ	programa	total	puede	obtener	un S	needun	de:
o.		programa	totai	pucuc	Obtener	ull	pecaup	uc.

Si el código es instantáneo: 1.06 Si se compila con -O: 1.02

7. Una forma práctica para medir el rendimiento (MIPS e IPC) del programa en C que acabamos de ver es:

En primer lugar podemos obtener el número de instrucciones a partir del comando \$valgrind —tool=lackey ./miprograma, seguidamente con el programa tiempo.c podemos utilizar la función GetTime() para obtener el tiempo total en ms y con la librería cycle.h obtenemos el número de ciclos para poder calcular el IPC. De esta manera aplicamos la fórmula del Mips ya que disponemos de todas las variables y calculamos el IPC como num_instr/num_ciclos.

8. Dadas 5 ejecuciones de 10 ms, 8ms, 13 ms, 8ms y 2ms. Su media:

Geométrica: 6.98 Aritmética: 8.2

Descartando los valores extremos su media es:

Geométrica: 8.61 Aritmética: 8.6

Se observa que:

Al descartar los valores extremos la media geométrica y aritmética no presentan casi diferencia y por lo tanto es bastante preciso.

ombre:									(Grupo:_		
ombre:												
loja de resp	uestas	de la	prá	áctica								
1. Instruccione	s dinám	nicas del	l códi	igo de e	ejem	plo Simple	.c:					
	Sin op	otimizar				Optimi	zad	0:				
Explicación												
Explicacion	de los r	esurtau	05:									
2. Rellena la si	guiente	tabla so	bre (el prog	ram	a Poker.c	:					
		Tiemp	1 .	Ci al a a	l		م ما	unc l	CDI	l -	l c	
-00			00 (Ciclos	ins	strucciones I		MIPS CPI		Frec.	Speedu	
-00			+									
-02 + "inl	ining"											
3. Rellena la si el printfo									d cuida	ido de i	no incluir	
-	los Pro			los ruti	-				Speedup teórico máximo			
-00			Cicios ruen			70 00 01010						
-02												
			۲۰۰									
Las variacio	nes entr	e las do	os fila	ıs dei a	part	ado anterior	se	deber	า a: 			
-												