Temelji digitalne obrade slika

Sven Lončarić

http://www.fer.hr/predmet/obrinf

Pregled tema

- Elementi vizualne percepcije
- Čovjekov vizualni sustav
- Svjetlo i elektromagnetski spektar
- Osnove digitalne geometrije

- Čovjek nesvjesno obavlja vrlo komplicirane procese percepcije slike
- Na koji način se ti kognitivni procesi odvijaju?
- Odgovor na ovo pitanje omogućio bi:
 - Razvoj umjetnih sustava za vid (tehnika računalni vid)
 - Liječenje zdravstvenih problema

- Vizualna percepcija je proces zaključivanja o objektima i događajima u okolini na temelju slika scena
- Slike scena su dobivene snimanjem svjetla koje objekti emitiraju ili koje je reflektirano od objekata u sceni

Orijentacija prema vanjskom svijetu

- Vizualna percepcija je temeljena na:
 - Slici scene (koju vidimo)
 - A priori znanju o objektima u scenama
 - O subjektivnom iskustvu promatrača

- Važan aspekt vizualne percepcije je da je to proces obrade informacija:
 - Ekstrakcija značajki iz slika
 - Obrada i analiza informacija na temelju značajki

- U evoluciji vrsta vizualna percepcija je važna jer povećava šanse za opstanak
 - Traženje hrane
 - Traženje zakloništa
 - Traženje partnera za reprodukciju
 - Izbjegavanje opasnih situacija i predatora
- Sva osjetila doprinose tim ciljevima ali kod čovjeka vid je najvažniji

Svojstva sustava za vizualnu percepciju

- Sustav za vizualnu percepciju kod čovjeka je vrlo složen
- U pojedinim situacijama ne dobivamo točan rezultat percepcije
- Vizualne iluzije pokazuju da sustav vizualne percepcije nije savršen
- Vizualne iluzije mogu pomoći kod razumijevanja načina rada vizualnog sustava

 Pokazuju da je rezultat percepcije osim slikom temeljen i na radu našeg vizualnog sustava koji nekad griješi

Vizualne iluzije

- Subjektivne konture
- Hermann-ov raster

- Jedna slika može biti temelj za više različitih percepcija
- Percepcije su međusobno isključive (samo jedna se može percepirati u jednom trenu)

 Naučeni modeli okoline pomažu nam u analizi scene

 Dokaz – efekt vizualnog "dopunjavanja" objekata

 Vidimo kvadrat krug i pravokutnik iako vidimo samo elemente iz B

Percepcija kao modeliranje

 Čovjekov vizualni sustav nadopunjava nepostojeću informaciju na temelju a priori znanja o objektima

Nemogući objekti

 Modeli nam pomažu da iz ovih slika inicijalno prepoznamo regularne 3D objekte, no objekti nisu fizikalno mogući

Struktura ljudskog oka l

- promjer 20 mm
- rožnica štiti prednji (vanjski) dio oka
- žilnica je unutarnja membrana sa mrežom krvnih žila koje hrane oko; crno pigmentirana (melanin) da smanji količinu raspršenih zraka unutar oka
- zjenica regulira količinu svjetla (dubinsku oštrinu)
- cilijarni mišić mijenja geometriju leće (dioptriju)
- mrežnica je na stražnjem dijelu oka i sadrži fotoosjetljive receptore (štapiće i čunjiće)

Mrežnica: čunjići

- čunjića ima oko 6-7 miliona
- nalaze se na središnjoj poziciji mrežnice (žuta pjega, fovea), promjer 1.5 mm
- čunjići su osjetljivi na boju
- svaki je povezan na svoj vlastiti živac
- omogućuju oštru i detaljnu sliku na jakom svjetlu
- engl. photopic ili bright-light vision

- štapića ima puno više: 75-150 miliona
- štapići su raspršeni periferalno (izvan fovee)
- nekoliko štapića je povezano na jedan živac što smanjuje oštrinu vida
- daju generalnu, široku sliku scene
- nisu osjetljivi na boju i služe pri slabom svjetlu
- engl. scotopic ili dim-light vision
- zato se pri slabom svjetlu ne raspoznaju boje

Mrežnica: periferija

- dio mrežnice izvan žute pjege
- zauzima 97.25 % površine mrežnice
- pokriven najvećim djelom sa štapićima
- čunjići su raspoređeni heksagonalno
- štapići popunjavaju prostor između čunjića
- gustoća (frekvencija otipkavanja) je najveća kod žute pjege, opada na periferiji

Distribucija
 štapića i
 čunjića u
 ovisnosti o
 vidnom kutu (u
 odnosu na
 foveu)

• udaljenost od leće do mrežnice je 17 mm

Ljudski vizualni sustav

Obrada slike
 počinje u očima i
 nastavlja se u
 mozgu gdje se
 prenosi pomoću
 optičkog živca

Karakteristike ljudskog vizualnog sustava

- U nastavku navodimo nekoliko karakteristika ljudskog vizualnog sustava
 - Dinamički opseg svjetla
 - Adaptacija na svjetlinu
 - Osjetljivost na kontrast

Svjetlina: Prilagođavanje i razlikovanje

- Raspon svjetline na koji se ljudsko oko može prilagoditi je ogroman: 10¹⁰
- Vizualni sistem ne radi istovremeno u cijelom rasponu svjetline
- Prilagođavanje na svjetlinu (engl. brightness adaptation)
- Raspon svjetlina koje se mogu razlikovati istovremeno je malen

- engl. brightness adaption
- Kratki graf pokazuje raspon subjektivne svjetline na nekom nivou
- Niži dio krivulje predstavlja crno

 △ I se povećava od nule sve dok se ne primijeti razlika u svjetlini između kruga i pozadine

Weber-ov koeficijent

- Kvocjent $\Delta I_c/I$, gdje ΔI_c minimalni razlučivi ΔI se zove Weberov koeficijent
- Mali Weberov koeficijent daje dobru razlučivost svjetline
- Veliki Weberov koeficijent znači da je razlučivost svjetline loša

- Dvije krivulje pokazuju osjetljivost ljudskog vizualnog sustava za slabo svjetlo (štapići) i jako svjetlo (čunjići)
- Može se vidjeti da je razlučivost loša na slabom svjetlu

- Prema Weber-ovom zakonu ljudski vid je osjetljiv na kontrast tj. relativni odnos a ne na apsolutni iznos luminancije
- Efekt istovremenog konstrasta se objašnjava na taj način

Rubovi dijelova slike različitih luminancija se više ističu

• Efekt pokazuje da svjetlina nije monotona (čak ni bezmemorijska) funkcija luminancije.

 Modulacijska transfer funkcija (MTF) prikazuje iznos minimalnog razlučivog kontrasta u ovisnosti o prostornoj frekvenciji

- Svjetlo je elektromagnetsko zračenje koje je vidljivo ljudskom oku
- Vidljivo svjetlo je u rasponu od 0.43 μm (ljubičasto) do 0.79 μm (crveno)
- Spektar boja se može rastaviti u šest dijelova: ljubičasti, plavi, zeleni, žuti, narančasti, crveni

- Da bi snimili svjetlosno zračenje u određenom rasponu valnih duljina potreban nam je senzor koji može detektirati zračenje u tom istom rasponu
- Da bi mogli vidjeti neki objekt valna duljina svjetla mora biti manja nego što je veličina objekta

- Tri osnovne značajke izvora svjetla su snaga zračenja, luminancija i svjetlina
- Snaga zračenja (engl. radiance) je snaga izvora zračenja i mjeri se u W
- Luminancija se mjeri u lumenima (lm) i predstavlja energiju koju je osjetio (vidio) promatrač
 - Zavisno od spektralne osjetljivosti promatrača, dva izvora iste snage zračenja mogu imati različite luminancije
 - Luminancija ovisi o osjetljivosti promatrača

• Luminancija (ili intenzitet) prostorno distribuiranog objekta sa distribucijom zračenja $I(x, y, \lambda)$ dana je izrazom:

$$f(x,y) = \int_{-\infty}^{\infty} I(x,y,\lambda)V(\lambda)d\lambda$$

gdje je $V(\lambda)$ relativna luminancijska funkcija efikasnosti vizualnog sustava

Luminancijska efikasnost Ijudskog vizualnog sustava

 Različita za jako svjetlo (čunjići) i za slabo svjetlo (štapići)

Luminancija je svojstvo objekta

- Luminancija (ili intenzitet) nekog objekta ne ovisi o luminanciji okolnih objekata
- Luminancija je svojstvo samog objekta i ovisi samo o funkciji svjetlosne distribucije zračenja I i funkciji relativne luminancijske efikasnosti V

- Svjetlina (engl. brightness) objekta je subjektivni doživljaj luminancije i ona ovisi o luminanciji okoline
- Dva objekta sa različitim pozadinama istih luminancija mogu imati različite svjetline
- Kontrast je razlika dvaju svjetlina

- Da bi sliku mogli obrađivati pomoću računala potrebno je obaviti akviziciju slike pomoću senzora
- Senzor mjeri svjetlo koji koje se odbija od objekata u sceni:
 - Scena može biti osvijetljena elektromagnetskim zračenjem kao što je radar, IR, vidljivo ili rendgensko zračenje
 - Osvjetljenje može biti i ultrazvukom
 - Objekti mogu biti makroskopskih dimenzija ili npr. molekule

- Tri osnovna prostorna rasporeda su:
 - Točkasti senzor (foto dioda)
 - Linijski senzor
 - 2-D senzor

- Linijski senzor koristi niz individualnih senzora raspoređenih uzduž linije
- Danas postoje linijski CCD senzori koji imaju 4000 i više piksela
- Linijski senzori se koriste kod:
 - snimanja iz aviona gdje je linijski senzor postavljen okomito na smjer leta
 - vizualne inspekcije u industriji (npr. pokretne trake)

2-D senzor

- 2-D senzori su CCD ili CMOS senzori koji mogu imati rezolucije >20 miliona piksela
- Vrijednost piksela je proporcionalna integralu ulaznog svjetla
- Kod slabog osvjetljenja slika se može snimati nekoliko minuta ili sati da bi se smanjio šum

Interakcija svjetla i objekata

 Različiti materijali imaju različita svojstva prozirnosti, apsorpcije i refleksije

Matte Surface Specular Surface

- Refleksija svjetla od objekata ovisi o svojstvima površine objekta (materijala):
 - Mat površine (refleksija u svim smjerovima)
 - Spekularne površine (refleksija pod kutem jednakim upadnom kutu)

- Uređaji za snimanje:
 - Foto aparati, kamere, mikroskopi, itd.
 - Ljudsko oko
- Svaki uređaj za snimanje sadrži:
 - Sustav za formiranje slike objekta (npr. objektiv foto aparata)
 - Senzor (pretvornik) koji vrši pretvorbu informacije iz optičkog u npr. električni oblik

Model formiranja slike

 Slika f(x,y) je dvodimenzionalna funkcija intenziteta svjetla

$$f(x, y), \quad 0 < f(x, y) < \infty$$

- Objekti oko nas osvjetljeni su nekim izvorom svjetlosti
- Slike koje vidimo su svjetlo reflektirano od objekata

- Reflektirano svjetlo ovisi o dvije komponente:
 - Intenzitetu svjetla kojim je scena osvjetljena: i(x,y)
 - Koeficijentu refleksije materijala: r(x,y)
- Intenzitet reflektiranog svjetla f(x,y) dan je produktom:

$$f(x, y) = i(x, y)r(x, y)$$

gdje je:

$$0 < i(x, y) < \infty, \quad 0 < r(x, y) < 1$$

- Optički sustav (oko) radi projekciju 3D scene u 2D sliku
- Svaka točka u 3D prostoru se preslikava u jednu točku u 2D slici
- Takva projekcija zove se perspektivna projekcija

- Perspektivnom projekcijom gubi se 3D informacija jer je rezultat 2D slika:
 - Jedna točka na retini može nastati od beskonačno puno točaka u prostoru (uzduž jednog pravca)
 - Jedna linija na retini može biti rezultat više mogućih linija u 3D prostoru

- Čovjek koristi dva oka jer je pomoću dva pogleda moguće rekonstruirati dubinu scene (3D informaciju)
- Čak i kod vida s jednim okom moguće je zahvaljujući znanju procijeniti udaljenost objekta od promatrača

Vidno polje

- Zec (lijevo) manje binokularno područje, širi vidni kut
- Čovjek veće binokularno područje, manji kut

 Zadatak vizualne percepcije je da iz dvije 2D slike rekonstruira izgled 3D okoline koja je generirala te dvije slike

- U nastavku uvodimo osnovne pojmove iz digitalne (diskretne) geometrije:
 - Susjedstvo
 - Relacija susjedstva
 - Put
 - Povezanost
 - Funkcije udaljenosti

4-susjedstvo

- Točka (piksel) p na lokaciji (x, y) ima četiri horizontalna i vertikalna susjeda na koordinatama: (x+1, y), (x-1, y), (x, y+1), (x, y-1)
- Ovaj skup susjeda zove se 4-susjedstvo piksela p i označava se s $N_4(p)$
- Četiri dijagonalna susjeda od p su: (x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)
- Skup dijagonalnih susjeda označava se s $N_{\rm D}(p)$

4-susjedstvo

- Skup piksela koji se sastoji od 4-susjeda i dijagonalnih susjeda zove se 8-susjedstvo i označava se s $N_8(p)$
- Ako se piksel p nalazi na granici slike neki od 4- or 8-susjeda će biti izvan granica slike

8-susjedstvo

N₈(p)

Relacija susjedstva

- Neka je S skup svih piksela u slici
- Relacija je podskup Kartezijevog produkta skupova SxS
- Dva piksela p i q su 4-susjedi ako je $q \in N_4(p)$
- Dva piksela p i q su 8-susjedi ako je $q \in N_8(p)$

Put

Put između dvaju piksela na koordinatama (x, y) i
 (s, t) je niz susjednih piksela s koordinatama:

$$(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$$

tako da je $(x_0, y_0) = (x, y)$ i $(x_n, y_n) = (s, t)$ a pikseli (x_i, y_i) i (x_{i-1}, y_{i-1}) su susjedi za svaki $i, 1 \le i \le n$

- Možemo imati 4-put ili 8-put zavisno od korištene relacije susjedstva
- Napomena: vrijednost piksela nije važna

4-put i 8-put

4-put (i 8-put)

8-

8-put

- Neka je S podskup piksela u slici
- Dva piksela p i q su povezana u skupu S ako postoji put između njih, koji se sastoji isključivo od piksela iz skupa S
- Za svaki piksel $p \in S$ skup svih piksela koji su povezani s pikselom p zove se povezana komponenta od S
- Ako skup S ima samo jednu povezanu komponentu tada se skup S naziva povezani skup

- Neka su p, q, i z pikseli s koordinatama (x, y), (s, t), i
 (v, w). D je funkcija udaljenosti ako vrijedi:
 - 1. $D(p, q) \ge 0$ $(D(p, q) = 0 \Leftrightarrow p = q)$
 - 2. D(p, q) = D(q, p)
 - 3. $D(p, z) \le D(p, q) + D(q, z)$

Funkcije udaljenosti: Euklidska

• $D_{\rm e}$ udaljenost (Euklidska udaljenost) je definirana izrazom:

$$D_{\rm e}(p, q) = [(x - s)^2 + (y - t)^2]^{1/2}$$

- D_4 udaljenost (city-block) je definirana kao: $D_4(p, q) = |x - s| + |y - t|$
- Primjer D_4 udaljenosti: Pikseli s D_4 = 1 su 4-susjedi od p (centralnog piksela)

Funkcije udaljenosti : Chessboard

- D_8 udaljenost (šahovska ploča) je definirana kao: $D_8(p, q) = \max(|x s|, |y t|)$
- Pikseli s D_8 = 1 su 8-susjedi od p (centralnog piksela)

2 2 2 2 2

2 1 1 1 2

2 1 0 1 2

2 1 1 1 2

2 2 2 2 2

Zaključak

- Prezentiran je pregled nekih temeljnih aspekata obrade slike i računalnog vida:
 - Osnovne karakteristike ljudskog vizualnog sustava
 - Svjetlo, luminancija, svjetlina, kontrast
 - Vizualna percepcija, iluzije
 - Osnove digitalne geometrije