Lecture 8: Cyclic codes. BCH codes.

Course instructor: Alexey Frolov al.frolov@skoltech.ru

Teaching Assistant: Stanislav Kruglik stanislav.kruglik@skolkovotech.ru

February 16, 2017

Outline

Cyclic codes

2 BCH codes

3 Bounded minimum distance decoding

Outline

Cyclic codes

2 BCH codes

3 Bounded minimum distance decoding

Ideal, principal ideal, principal ideal ring

Here and in what follows by K we denote a commutative ring with 1.

Definition

 $J \subseteq K$ is an ideal if $KJ \subset J$, i.e.

$$\forall a \in K, j \in J : aj \in J.$$

Ideal, principal ideal, principal ideal ring

Here and in what follows by K we denote a commutative ring with 1.

Definition

An ideal J is called a principal ideal if it is generated by one element

$$\exists g \in J : \forall j \in J \ j = bg$$
, where $b \in K$

Notation

$$J=(g).$$

Definition

The ring in which any ideal is principal is called a principal ideal ring.

$\mathbb{F}[x]$ is a principal ideal ring

Theorem

Let \mathbb{F} be a field, then $\mathbb{F}[x]$ is a principal ideal ring.

Proof.

Let $J \subseteq \mathbb{F}[x]$ and $g \in J$ be a normalized polynomial of minimal degree.

For any other polynomial $f \in J$

$$f = hg + r$$
, $\deg r < \deg g$.

As
$$r = f - hg \in J$$
, then $r = 0$.

Quotient ring

Let J be an ideal, then K/J is a quotient ring.

$$[f] + [g] = (f + J) + (g + J) = [f + g]$$

 $[f][g] = (f + J)(g + J) = [fg]$

Quotient ring, that we need

We need such a quotient ring, which is also a vector space.

$$K/J = \mathbb{F}_q[x]/(x^n-1) = \langle 1, x, x^2, \dots, x^{n-1} \rangle.$$

Polynomial code

Definition

A linear code $C \subseteq \mathbb{F}_q[x]/(x^n-1)$ is called a polynomial code if C is an ideal.

The codewords of polynomial code are polynomials

$$a_0 + a_1x + \ldots + a_{n-1}x^{n-1} \Leftrightarrow (a_0, a_1, \ldots, a_{n-1})$$

- \mathcal{C} is an ideal $\Rightarrow \mathcal{C}$ is a linear code
- $\mathcal C$ is a linear code $eq \mathcal C$ is an ideal $\mathcal C=\langle 1,x\rangle$ is not an ideal in $\mathbb F_2[x]/(x^3+1)$

Cyclic code

Definition

The code $\mathcal C$ is cyclic if

$$(a_0, a_1, \ldots, a_{n-1}) \in \mathcal{C} \Leftarrow (a_{n-1}, a_0, \ldots, a_{n-2}) \in \mathcal{C}$$

$$\mathcal{C} = \{001, 010, 100\}.$$

Equivalence of polynomial and cyclic codes

Theorem

Let C be a linear code in $K = \mathbb{F}_q[x]/(x^n-1)$. C is cyclic iff C is an ideal.

Sufficient condition.

$$c(x) = c_0 + c_1 x + \ldots + c_{n-1} x^{n-1}$$

Note, that

$$xc(x) = c_{n-1} + c_0x + c_1x^2 + \ldots + c_{n-1}(x^n - 1) = (c_{n-1}, c_0, \ldots, c_{n-2}).$$

Equivalence of polynomial and cyclic codes

Necessary condition.

$$c(x) = c_0 + c_1 x + \ldots + c_{n-1} x^{n-1}$$

Note, that

$$xc(x), x^2c(x), \ldots, x^{n-1}c(x) \in \mathcal{C}.$$

Thus,

$$(\sum_{j}b_{j}x^{j})c(x)\in\mathcal{C}.$$

Generator polynomial

Definition

g(x) is a generator polynomial of C if g(x) is a normalized polynomial of smallest degree in C.

$$\deg g(x) = n - k \Rightarrow \mathcal{C} = (g) = \{ag : \deg a \le k - 1\}$$

 $a(x) = a_0 + a_1 x + \ldots + a_{k-1} x^{k-1}$ is an information polynomial, c(x) = a(x)g(x) is a code polynomial.

Generator polynomial

Theorem

Let g(x) be a generator polynomial of cyclic code $C \subseteq \mathbb{F}_q[x]/(x^n-1)$. Then $g(x)|x^n-1$.

Proof.

Assume $g(x) / x^n - 1$, then

$$x^n - 1 = g(x)h(x) + r(x).$$

As we see $r(x) \in \mathcal{C}$ and we come to contradiction.

Check polynomial

$$h(x) = \frac{x^n - 1}{g(x)}.$$

- $\bullet \deg g(x) = n k$
- $\deg h(x) = k$
- $g(x)h(x) = 0 \mod x^n 1$
- $c(x) \in \mathcal{C} \Rightarrow c(x)h(x) = 0 \mod x^n 1$

Generator matrix

Theorem

$$C = \langle g(x), xg(x), \dots, x^{k-1}g(x) \rangle.$$

$$G = G_{k \times n} = \left(\begin{array}{ccccccc} g_0 & g_1 & \cdots & g_{n-k} & 0 & 0 & \cdots & 0 \\ 0 & g_0 & \cdots & g_{n-k-1} & g_{n-k} & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 & g_0 & g_1 & \cdots & g_{n-k} \end{array}\right)$$

Parity check matrix

$$H = H_{(n-k)\times n} = \begin{pmatrix} h_k & h_{k-1} & \dots & h_0 & 0 & 0 & \dots & 0 \\ 0 & h_k & \dots & h_1 & h_0 & 0 & \dots & 0 \\ \dots & \dots \\ 0 & 0 & \dots & 0 & h_k & h_{k-1} & \dots & h_0 \end{pmatrix}$$

$$(\sum_{i}g_{i}x^{i})(\sum_{j}h_{j}x^{j})=\sum_{i}x^{m}(\sum_{i+j=m}g_{i}h_{j}).$$

$$C^{\perp} \neq (h), C^{\perp} = (\hat{h}), \text{ where } \hat{h}(x) = x^k h(1/x).$$

Encoding

Non-systematic

$$c(x) = a(x)g(x)$$

Systematic

$$a'(x) = x^{n-k}a(x) = g(x)b(x) + r(x).$$
$$c(x) = a'(x) - r(x) \in \mathcal{C}.$$

Syndrome

$$S(x) = S_{y(x)} = y(x) \mod g(x).$$

Properties

$$S_{xy(x)}(x) = xS_{y(x)} \mod g(x)$$

Burst of errors

Burst of errors is a sequence of L consequent bits with errors (errors at margins are mandatory).

$$e(x) = 000001101101000000, L = 7.$$

Burst of errors

Theorem

Let C be a cyclic code, then it detects any error burst of length $\leq n - k$.

Proof.

Assume e(x) is not detected. Then $g(x)|x^{j}b(x)$.

Note, that as $g(x)|x^n-1$, then $(g(x),x^k)=1$.

This means, that g(x)|b(x), but deg $b(x) \le L - 1 = n - k - 1$.

Primitive cyclic codes

For a code over \mathbb{F}_q a length $n=q^m-1$, where $m\in\mathbb{N}$ is called primitive. A cyclic code of primitive length is called primitive.

- Let $\mathcal{C}=(g)$ and $\beta_1,\ldots,\beta_{n-k}$ are the roots of g, the $\beta_i\in\mathbb{F}_q^m$;
- $c(x) \in \mathcal{C} \Rightarrow c(\beta_i) = 0$
- Any primitive cyclic code can be described by the roots of g.
- Let $\alpha_1, \ldots, \alpha_s$ be the elements of extension field and let $m_j(x)$ be a minimal polynomial of $\alpha_j \in \mathbb{F}_q$.

$$g(x) = LCM(m_1(x), \ldots, m_s(x)).$$

Cyclic Hamming code

$$\mathbb{F}_{8} = \mathbb{F}_{2}[x]/(x^{3} + x + 1)$$

$$\alpha^{3} = \alpha + 1$$

$$0 \mid 000$$

$$1 \mid 001$$

$$\alpha \mid 010$$

$$\alpha^{2} \mid 100$$

$$\alpha^{3} \mid 011$$

$$\alpha^{4} \mid 110$$

$$\alpha^{5} \mid 111$$

$$\alpha^{6} \mid 101$$

$$h(x) = x^{4} + x^{2} + x + 1$$

$$H = (1 \quad \alpha \quad \alpha^{2} \quad \alpha^{3} \quad \alpha^{4} \quad \alpha^{5} \quad \alpha^{6})$$

$$= \begin{pmatrix} 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \\ 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \\ 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \\ 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \\ 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 1 \end{pmatrix}$$

CRC code

Definition

Let $p(x) \in \mathbb{F}_2[x]$ be a primitive polynomial of degree m. CRC code is defined by

$$g(x) = (x+1)p(x).$$

•
$$n = 2^m - 1$$

•
$$\deg g = m + 1$$

•
$$k = 2^m - m - 2$$

$$\bullet \ \mathbf{H} = \left[\begin{array}{cccc} 1 & \alpha & \cdots & \alpha^{n-1} \\ 1 & 1 & \cdots & 1 \end{array} \right]$$

•
$$d = 4$$

•
$$L = n - k = m + 1$$
.

Check if the code is cyclic

$$G'H=0$$
.

Outline

Cyclic codes

2 BCH codes

3 Bounded minimum distance decoding

BCH codes

- R. C. Bose, D. K. Ray-Chaudhury, 1960; A. Hocquenghem, 1959.
- BCH code is a cyclic code over \mathbb{F}_a
- Parameters: length n, designed distance d, $b \in \mathbb{N}$
- m minimal number, such that $n|q^m-1$

$$\exists \beta \in \mathbb{F}_q^* : |\beta| = n.$$

BCH codes

Definition

BCH code is defined by the roots of generator polynomial

$$\beta^b, \beta^{b+1}, \ldots, \beta^{b+d-2}$$
.

$$g(x) = LCM(m_b(x), \ldots, m_{b+d-2}(x)).$$

BCH codes

Definition

- $b = 1 \Rightarrow$ narrow sense BCH code;
- $n = q^m 1 \Rightarrow$ primitive BCH code;
- m = 1, $n = q 1 \Rightarrow RS$ code.

Parity check matrix

$$H = \begin{pmatrix} 1 & \beta^b & (\beta^b)^2 & \dots & (\beta^b)^{n-1} \\ 1 & \beta^{b+1} & (\beta^{b+1})^2 & \dots & (\beta^{b+1})^{n-1} \\ \dots & \dots & \dots & \dots & \dots \\ 1 & \beta^{b+d-2} & (\beta^{b+d-2})^2 & \dots & (\beta^{b+d-2})^{n-1} \end{pmatrix}.$$

$$q = 2$$
, $n = 15$, $t = 2$, $b = 1$

- the code is primitive as $15 = 2^4 1$;
- m = 4

- d = 5
- Roots: α , α^2 , α^3 , α^4
- $m_{\alpha}(x) = m_{\alpha^2}(x) = m_{\alpha^4}(x) = x^4 + x + 1$
- $m_{\alpha^3}(x) = x^4 + x^3 + x^2 + x + 1$
- $g(x) = x^8 + x^7 + x^6 + x^4 + 1$

$$H = \begin{pmatrix} 1 & \alpha & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 & \alpha^7 & \alpha^8 & \alpha^9 & \alpha^{10} & \alpha^{11} & \alpha^{12} & \alpha^{13} & \alpha^{14} \\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^8 & \alpha^{10} & \alpha^{12} & \alpha^{14} & \alpha^1 & \alpha^3 & \alpha^5 & \alpha^7 & \alpha^9 & \alpha^{11} & \alpha^{13} \\ 1 & \alpha^3 & \alpha^6 & \alpha^9 & \alpha^{12} & 1 & \alpha^3 & \alpha^6 & \alpha^9 & \alpha^{12} & 1 & \alpha^3 & \alpha^6 & \alpha^9 & \alpha^{12} \\ 1 & \alpha^4 & \alpha^8 & \alpha^{12} & \alpha^1 & \alpha^5 & \alpha^9 & \alpha^{13} & \alpha^2 & \alpha^6 & \alpha^{10} & \alpha^{14} & \alpha^3 & \alpha^7 & \alpha^{11} \end{pmatrix}$$

Outline

Cyclic codes

2 BCH codes

3 Bounded minimum distance decoding

Notations

Let us consider a situation when t errors $\{e_{j_1}, e_{j_2}, \dots, e_{j_t}\}$. We introduce a notation of error locator

$$X_i = \alpha^{\mathbf{e}_{j_i}}, i = 1, \ldots, t.$$

and error values $Y_i = e_{j_i}$, i = 1, ..., t.

Let $\mathbf{S} = (S_1, S_2, \dots, S_{2t})$. The syndrome can be calculated as follows

$$S_1 = Y_1X_1 + Y_2X_2 + ... + Y_tX_t$$

$$S_2 = Y_1X_1^2 + Y_2X_2^2 + ... + Y_tX_t^2$$
...
$$S_{2t} = Y_1X_1^t + Y_2X_2^t + ... + Y_tX_t^t$$

Polynomials

Syndrome polynomial

$$S(z) = \sum_{j=1}^{2t} S_j z^{j-1}$$

Error locator polynomial

$$\sigma(z) = \prod_{i=1}^{t} (X_i z - 1)$$

Error value polynomial

$$\omega(z) = \sum_{i=1}^t Y_i X_i \prod_{l=1, l\neq i}^t (X_l z - 1).$$

Additional (unnamed) polynomial

$$\Phi(z) = \sum_{i=1}^{t} Y_i X_i^{2t+1} \prod_{l=1, l \neq i}^{t} (X_l z - 1).$$

Key equation

$$S(z)\sigma(z) = z^{2t}\Phi(z) - \omega(z)$$

To solve the equation use extended Euclidean algorithm. Start with polynomial z^{2t} and S(z), stop when the degree of residue is less or equal t-1 for the first time. Use extended Euclidean algorithm to find $\sigma(z)$ and $\omega(z)$

Chien search

We know $\sigma(z)$, find X_i by exhaustive search over all the elements of \mathbb{F}_q .

Forney's algorithm

$$Y_i = \frac{\omega(X_i^{-1})}{\sigma_z'(X_i^{-1})} \quad i = 1, \dots, t.$$

Thank you for your attention!