Studentpad

Set theory, relations and functions 2022-23

Time: 90 Min Maths: Set Theory, Relations and Functions

01) Consider $f(\theta) = \sin \theta (\sin \theta + \sin 3\theta)$. Then, $f(\theta)$

A) ≥ 0 , only when $\theta \geq 0$

B) ≤ 0 , only when $\theta \leq 0$

C) ≥ 0 , for all real θ

D) ≤ 0 , for all real θ

02) The domain of the function

$$f(x) = \sqrt{x - x^2} + \sqrt{4 + x} + \sqrt{4 - x}$$
 is

A) [0, 1]

B) [0, 4]

C) [-4, 4]

D) $[-4, \infty)$

03) The function $f(x) = \sin(\log(x + \sqrt{x^2 + 1}))$ is

A) odd function.

B) even function.

C) periodic function.

D) neither even nor odd.

04) A survey shows that 63% of the Indians like mangoes while 76% like apples. x% of the Indians like both mangoes and apples. Then find the value of x.

A) x = 63

B) $39 \le x \le 63$

C) x = 39

D) None of these

05) The function $f:[0,3] \rightarrow [1,29]$, defined by

 $f(x) = 2x^3 - 15x^2 + 36x + 1$, is which of the following?

A) One-one but not onto

B) Onto but not one-one

C) One-one and onto

D) Neither one-one nor onto

06) If $f(x) = \sin x + \cos x$, $g(x) = x^2 - 1$, then $g\{f(x)\}\$ is invertible in which domain?

C) $[0, \pi]$

07) What is the domain of R if

 $R = \{(x, y) \mid x, y \in Z, x^2 + y^2 \le 4\}$ is a relation in Z?

A) {0, 1, 2}

B) {- 2, - 1, 0, 1, 2}

C) $\{0, -1, -2\}$

D) None of these

08) Consider $f(x) = x^2$ and $g(x) = \sin x$ for all $x \in R$. Then, determine the set of all x satisfying (fogogof)(x) = (gogof)(x), where (fog)(x) = f(g(x)).

Marks: 120

A) $\pm \sqrt{n \pi}, n \in \{0, 1, 2,\}$

B) $\pm \sqrt{n \pi}, n \in \{1, 2, ...\}$

C) $2n \pi, n \in \{..., -2, -1, 0, 1, 2, ...\}$

D) $\pi/2 + 2n\pi, n \in \{..., -2, -1, 0, 1, 2, ...\}$

09) Which of the following function is even function?

D) $f(x) = \sin x$

10) Let n(A) = 3, n(B) = 6 and $A \subseteq B$. Then how many elements are there in $A \cap B$?

A) 9

B) 6

C) 3

D) None of these

11) Two finite sets have m and n elements. The total number of subjects of the first set is 48 more than the total number of subjects of the second set. What are the respective values of m and n?

A) 7, 6

B) 7, 4

C) 6, 4

D) 6, 3

12) If $f(x) = \cos(\log x)$, then the value of

 $f(x).f(4) - \frac{1}{2} \int f(\frac{x}{4}) + f(4x)$

A) ± 1

B) -1

C) 0

13) Suppose R and S be two equivalence relations on a set A, then _____.

A) $R \cup S$ is an equivalence relation on A

B) R-S is an equivalence relation on A

C) $R \cap S$ is an equivalence relation on A

D) None of these

- 14) If co-ordination is R, then find out which of the following functions is not a surjective (onto) function?
- A) $f(x) = x + cos(\pi[x]), (where[.]denotes the G.I.F)$
- B)
- $f(x) = \log_e |\log_e (-[x])|, (where [.] denotes the G.I.F)$
- C) $f(x) = \tan^{-1} x \frac{x}{\sqrt{1+x^2}}$
- D) $f(x) = \frac{x}{x^2 1}$
- 15) Suppose $f(x) = (x+1)^2$ for $x \ge -1$. If g(x) is the function whose graph is reflection of the graph of f(x) with respect to the line y = x, then what is g(x).
- A) $\sqrt{x+1}$, $x \ge -1$
- B) $\frac{1}{(x+1)^2}, x > -1$
- C) $-\sqrt{x} 1, x \ge 0$
- D) $\sqrt{x}-1, x\geq 0$
- 16) If $f(x) = \sin x + \cos x$, $g(x) = x^2 1$, then in the domain, g(f(x)) is invertible?
- A) $[0,\pi]$
- B) $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
- C) $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- D) $\left[0, \frac{\pi}{2}\right]$
- 17) Which of the following is the void relation on set A?
- A) Reflexive
- B) Reflexive and symmetric
- C) Symmetric and transitive
- D) Reflexive and transitive
- 18) Let n be a fixed +ve integer. Define a relation R on set Z of integers by, $aRb \Leftrightarrow n \mid a-b \mid$. Then R is
- A) transitive
- B) reflexive
- C) symmetric
- D) all of above
- 19) If A, B and C are any three sets, then A -
- $(\mathsf{B} \cup \mathsf{C}) = \underline{\hspace{1cm}}.$
- A) (A B) ∩ (A C)
- B) $(A B) \cup (A C)$
- C) $(A B) \cup C$
- D) $(A B) \cap C$
- 20) If $f(x) = \log_a x$ and $F(x) = a^x$, then F[f(x)] is
- A) f[F(2x)]
- B) f[F(x)]
- C) $F \mid f(2x) \mid$

- D) F[(x)]
- 21) If $A = \{1, 2, 3\}$, $B = \{1, 3, 5\}$. A relation $R: A \rightarrow B$ is defined by $R = \{(1, 3), (1, 5), (2, 1)\}$.

Then R^{-1} is represented as:

- A) {(1, 2), (5, 1), (3, 1)}
- B) {(1,2), (3,1), (1,3), (1,5)}
- C) $\{(1, 2), (3, 1), (2, 1)\}$
- D) None of these
- 22) Let A is set of even natural numbers less than 8 and B is set of prime numbers less than 7. Then what is the number of relations from A to B?
- A) 2^{9-1}
- B) 3^2
- C) 9^2
- D) 2^9
- 23) If $N_a = \{an : n \in \mathbb{N}\}$, then $N_3 \cap N_4 =$
- A) N₁₂
- B) N₇
- C) N_4
- D) N₃
- 24) If A={a, b, c}, B={b, c, d}, C={a, b, d, e}, then find $A \cap (B \cup C)$.
- A) $\{b, c, d\}$
- B) {a, b, c}
- C) $\{a, b, d, e\}$
- D) {e}
- 25) If $X = \{4^n 3n 1 : n \in N\}$ and
- $Y = \{9(n-1) : n \in N\}, \text{ then } X \cup Y = \underline{\hspace{1cm}}.$
- A) N
- B) X
- C) Y
- D) None of these
- 26) In a group of 1000 people there are 750 who can speak Hindi and 400 who can speack Bengali. Estimate the number of people those can speack Bengali only.
- 27) The set A has 3 elements and B has 6 elements. The minimum number of elements of $A \cup B$ can be ____.
- 28) Given the relation $R = \{(1,2),(2,3)\}$ on the set $\{1,2,3\}$, what is the minimum number of ordered pairs which when added to R make it an equivalence relation?
- 29) Let $S = \{1, 2, 3, 4\}$. What is the total number of unordered pairs of disjoint subsets of S?
- 30) In a survey of 200 students of a higher secondary school it was found that 120 studied Mathematics (M), 90 studied Physics (P) and 70 studies Chemistry (C), 40 studied M and P, 30 studied P and C, 50 studied C and M, and 20 studied none of these subjects. Estimate the number of students who studied all three subjects.