ALBERT LUDWIGS UNIVERSITY FREIBURG DEPARTMENT OF COMPUTER SCIENCE BIOINFORMATICS GROUP FREIBURG

MASTER THESIS CALCULATIONS

5TH SEPTEMBER 2018

CALCULATIONS

AUTHOR:

ALEXANDER MATTHEIS

SUPERVISORS:

DR. MARTIN RADEN

PD DR. HANS-PETER KAHLE

CROSS-DATING ABSOLUTE TO NORMALIZED COORDINATES

given

$$Y = \langle 5, 3, 2 \rangle$$

$$mean(Y) = \frac{10}{3}$$

$$sd(y) = \sqrt{\frac{\sum_{i=1}^{3} (y_i - mean(Y))^2}{n-1}}$$

$$= \sqrt{\frac{\left(5 - \frac{10}{3}\right)^2 + \left(3 - \frac{10}{3}\right)^2 + \left(2 - \frac{10}{3}\right)^2}{2}} \approx 1.527525$$

$$y_1^{std} = \frac{5 - \frac{10}{3}}{1.527525} \approx 1.09109$$

$$y_2^{std} = \frac{3 - \frac{10}{3}}{1.527525} \approx -0.2182179$$

$$y_3^{std} = \frac{2 - \frac{10}{3}}{1.527525} \approx -0.8728717$$

CROSS-DATING DOUBLE WEIGHTING - SINGLE COLUMN

given

```
sampleLength = 3

bestYears = \langle 1992, 1502, 1493, 1801, 1723 \rangle (sorted by rank)
```

calculation

```
output = \langle 1992, 1992, 1992, 1502, 1502, 1493, 1801, 1723 \rangle
```

```
1992 has rank 1 \Rightarrow 3 times in list
```

1502 has rank $2 \Rightarrow 2$ times ...

1493 has rank $3 \Rightarrow$ once ...

1801, 1723 no ranks lower $1 \Rightarrow$ once ...

CROSS-DATING APEAKS

CROSS-DATING EMPIRICAL DISTRIBUTION

given

$$\mathbf{S}_{S}^{C} = \{ \zeta_1 = 2, \zeta_2 = 15, \zeta_3 = 5, \zeta_4 = 52, \zeta_5 = 3 \}$$

calculation

$$\hat{F}(\varsigma = 2) = \frac{1}{5} \cdot (1) = \frac{1}{5}$$

$$\hat{F}(\varsigma = 3) = \frac{1}{5} \cdot (1 + 0 + 0 + 0 + 1) = \frac{2}{5}$$

$$\hat{F}(\varsigma = 5) = \frac{1}{5} \cdot (1 + 0 + 1 + 0 + 1) = \frac{3}{5}$$

...

given

Sample: ABCD[-gap-]XYZ

calculation

first sample:

1	2	3	4	5	6	7	8	9	10
A	В	, C	D						

Shift	Profil A	Profil B	Profil C	Profil D
1	0.5	0.6	0.7	0.8
2				
3				

given

Sample: ABCD[-gap-]XYZ

calculation

first sample:

1	2	3	4	5	6	7	8	9	10
	Α	В	C	D					

Shift	Profil A	Profil B	Profil C	Profil D
1	0.5	0.6	0.7	0.8
2	0.9	1.0	1.1	1.2
3				

given

Sample: ABCD[-gap-]XYZ

calculation

first sample:

1	2	3	4	5	6	7	8	9	10
		Α	В	C	D				

Shift	Profil A	Profil B	Profil C	Profil D
1	0.5	0.6	0.7	0.8
2	0.9	1.0	1.1	1.2
3	1.3	1.4	1.5	1.6

given

Sample: ABCD[-gap-]XYZ

calculation

second sample:

1	2	3	4	5	6	7	8	9	10
					Х	Υ	Z		
			_						

Shift	Profil A	Profil B	Profil C	Profil D
1	0.5	0.6	0.7	0.8
2	0.9	1.0	1.1	1.2
3	1.3	1.4	1.5	1.6

Shift	Profil X	Profil Y	Profil Z
1	1.6	1.7	1.8
2			
3			

given

Sample: ABCD[-gap-]XYZ

calculation

second sample:

1	2	3	4	5	6	7	8	9	10
						Х	Υ	Z	

Shift	Profil A	Profil B	Profil C	Profil D
1	0.5	0.6	0.7	0.8
2	0.9	1.0	1.1	1.2
3	1.3	1.4	1.5	1.6

Shift	Profil X	Profil Y	Profil Z
1	1.6	1.7	1.8
2	1.9	2.0	2.1
3			

given

Sample: ABCD[-gap-]XYZ

calculation

second sample:

1	2	3	4	5	6	7	8	9	10
							X	Υ	Z

Shift	Profil A	Profil B	Profil C	Profil D
1	0.5	0.6	0.7	0.8
2	0.9	1.0	1.1	1.2
3	1.3	1.4	1.5	1.6

Shift	Profil X	Profil Y	Profil Z
1	1.6	1.7	1.8
2	1.9	2.0	2.1
3	2.2	2.3	2.4

calculation

GAP-SIZE = 3

1	2	3	4	5	6	7	8	9	10
Α	В	С	D				Χ	Y	Z

Shift	Profil A	Profil B	Profil C	Profil D
1	0.5	0.6	0.7	0.8
2	0.9	1.0	1.1	1.2
3	1.3	1.4	1.5	1.6

Shift	Profil X	Profil Y	Profil Z
1	1.6	1.7	1.8
2	1.9	2.0	2.1
3	2.2	2.3	2.4

Score = 0.5 + 0.6 + 0.7 + 0.8 + 0 + 0 + 0 + 2.2 + 2.3 + 2.4

CROSS-DATING INTERPOLATION

given

$$\alpha_k(P) = \widehat{P}$$

given

```
V_{\cdot}^{a} = \cdots
```

$V^b = \cdots$

for i < j

 $\begin{array}{llll} \textit{concordant:} & v_i^a < v_j^a \wedge v_i^b < v_j^b & | & v_i^a > v_j^a \wedge v_i^b > v_j^b & \text{(sort order agreement)} \\ \textit{discordant:} & v_i^a < v_j^a \wedge v_i^b > v_j^b & | & v_i^a > v_j^a \wedge v_i^b < v_j^b & \text{(sort order disagreement)} \\ \textit{T}_a: & v_i^a = v_j^a \wedge v_i^b \neq v_j^b & \text{(tie in a)} \\ \textit{T}_b: & v_i^a \neq v_i^a \wedge v_i^b = v_i^b & \text{(tie in b)} \\ \end{array}$

$r(v_i^a)$	1	2	3.5	3.5	5	6	7	8
$r(v_i^{b})$	2	3	5	1	4	7.5	7.5	6

calculation

$r(v_i^a)$	1	2	3.5	3.5	5	6	7	8
$r(v_i^b)$	2	3	5	1	4	7.5	7.5	6

it holds

if

$$r(v_i^b) - r(v_i^b) < 0$$

then

concordant because $r(v_i^a) - r(v_j^a) < 0$ holds

(ranks $r(v_i^a)$ are sorted in ascending order)

else if

$$r(v_i^b) - r(v_i^b) > 0$$

then

discordant

else...

$r(v_i^a)$	1	2	3.5	3.5	5	6	7	8
$r(v_i^b)$	2	3	5	1	4	7.5	7.5	6

1-2	1-3.5	1-3.5	1-5	1-6	1-7	1-8
2-3	2-5	2-1	2-4	2-7.5	2-7.5	2-6
+	+	-	+	+	+	+

$r(v_i^a)$	1	2	3.5	3.5	5	6	7	8
$r(v_i^b)$	2	3	5	1	4	7.5	7.5	6
1-2	1-3.5	1-3.	.5	1-5	1-6	1-7	1-	-8
2-3	2-5	2-1		2-4	2-7.5	2-7.5	2-	-6
+	+		-	+	+		+	+
2-3.5	2-3.5	2-5		2-6	2-7	2-8		
3-5	3-1	3-4		3-7.5	3-7.5	3-6		
+	_		+	+	+		+	

$r(v_i^a)$	1	2	3.5	3.5	5	6	7	8
$r(v_i^b)$	2	3	5	1	4	7.5	7.5	6
1-2	1-3.5	1-3.	.5	1-5	1-6	1-7	1-	8
2-3	2-5	2-1		2-4	2-7.5	2-7.5	2-	6
+	+		-	+	+		+	+
2-3.5	2-3.5	2-5		2-6	2-7	2-8		
3-5	3-1	3-4		3-7.5	3-7.5	3-6		
+	-		+	+	+		+	
3.5-3.5	3.5-5	3.5-	6	3.5-7	3.5-8			
5-1	5-4	5-7.	5	5-7.5	5-6			
a	+		_	-	_			

calculation

1-2	1-3.5	1-3.5	1-5	1-6	1-7
2-3	2-5	2-1	2-4	2-7.5	2-7.5
+	+	-	+	+	+
2.2.5	2.2.5	2.5	2 (2.7	2.0
2-3.5	2-3.5	2-5	2-6	2-7	2-8
3-5	3-1	3-4	3-7.5	3-7.5	3-6
+	-	+	+	+	+
3.5-3.5	3.5-5	3.5-6	3.5-7	3.5-8	

3.5-3.5	3.5-5	3.5-6	3.5-7	3.5-8
5-1	5-4	5-7.5	5-7.5	5-6
a	-	+	+	+

•

•

calculation

3.5-5	3.5-6	3.5-7	3.5-8
1-4	1-7.5	1-7.5	1-6
+	+	+	+

5-6	5-7	5-8
4-7.5	4-7.5	4-6
+	+	+

6-7	6-8
7.5-7.5	7.5-6
b	-

$$N_{conc}$$
: 21 N_{disc} : 5 N_{ties}^{a} : 1 N_{ties}^{b} : 1
$$\tau = \frac{N_{conc} - N_{disc}}{\sqrt{(N_{conc} + N_{disc} + N_{ties}^{a}) \cdot (N_{conc} + N_{disc} + N_{ties}^{b})}} = \frac{21 - 5}{\sqrt{27 \cdot 27}}$$

 ≈ 0.5925926

CROSS-DATING MEAN-DISTANCE

given

$$Y^a = \langle 2, 3, 5 \rangle$$

$$Y^b = \langle 3, 1, 2 \rangle$$

$$\operatorname{dist}_{avg}^{y}(P^{a}, P^{b}) = \frac{1}{n} \cdot \sum_{i=1}^{n} |y_{i}^{a} - y_{i}^{b}| = \frac{|2 - 3| + |3 - 1| + |5 - 2|}{3} = \frac{1 + 2 + 3}{3} = 2$$

CROSS-DATING MEAN-DISTANCE

given

$$\mathbf{R} = \{r_1 = 1, r_2 = 6, r_3 = 7, r_4 = 23, r_5 = 65, r_6 = 76\}$$

with $r_1 \le r_2 \le \cdots \le r_u$

$$u = 6$$

$$\begin{aligned} & \operatorname{median}(\mathbf{R}) = \begin{cases} r_{\underline{u+1}} &, & u \text{ odd} \\ \frac{1}{2} \left(r_{\underline{u}} + r_{\underline{u}+1} \right) &, & u \text{ even} \end{cases} \\ & = \frac{1}{2} \left(r_{\underline{6}} + r_{\underline{6}+1} \right) \\ & = \frac{1}{2} \left(r_{3} + r_{4} \right) \\ & = \frac{1}{2} \left(7 + 23 \right) = 15 \end{aligned}$$

CROSS-DATING NORMALIZATION OF COORDINATES

given

$$Y = \langle 2 \quad 3 \quad 6 \rangle$$

$$y_1^{std} = \frac{2 - \text{mean}(Y)}{\sigma(Y)}$$

$$=\frac{2-\frac{11}{3}}{\sqrt{\frac{1}{2}\cdot\sqrt{\left(2-\frac{11}{3}\right)^2+\left(3-\frac{11}{3}\right)^2+\left(6-\frac{11}{3}\right)^2}}}$$

$$=\frac{-\frac{5}{3}}{\sqrt{\frac{1}{2}}\cdot\sqrt{\left(-\frac{5}{3}\right)^2+\left(-\frac{2}{3}\right)^2+\left(\frac{7}{3}\right)^2}}$$

$$\approx -0.801$$

CROSS-DATING POWERSET TABLE

given

year	score1	score2	score3
1992	0.1	0.2	0.3
1993	0.4	0.5	0.6
1994	0.7	0.8	0.9

year	score1	score2	score3	score1 + score2	score1 + score3		score1 + score2 + score3
1992	0.1	0.2	0.3	0.3	0.4	0.5	0.6
1993	0.4	0.5	0.6	0.9	1.0	1.1	1.5
1994	0.7	0.8	0.9	1.5	1.6	1.7	2.4

CROSS-DATING SPEARMAN RANK CORRELATION COEFFICIENT

given

$$V^{a} = \langle 4, 2, 3 \rangle$$
$$V^{b} = \langle 2, 5, 6 \rangle$$

$$\varrho(V^{a}, V^{b})$$

$$= \rho(r(V^{a}), r(V^{b}))$$

$$= \rho((3,1,2), (1,2,3))$$

$$= \frac{(1,-1,0) \cdot (-1,0,1)}{2} = \frac{-1+0+0}{2} = -0.5$$

CROSS-DATING TUKEY'S BIWEIGHT ROBUST MEAN

given

$$\mathbf{V}_{\leq} = \{2, 3, 5\}_{\leq}$$
 $c_{tun} = 9$

calculation

median = 3

$$MAD_v = median\{|2 - 3|, |3 - 3|, |5 - 3|\} = median\{0, 1, 2\} = 1$$

$$\zeta_1 = \frac{v - \tilde{v}}{c_{tun} \cdot \text{MAD}_v + \varepsilon} = \frac{2 - 3}{9 \cdot 1 + 0.0001} = \frac{-1}{9.0001} \approx -0.111$$

$$\zeta_2 = \frac{3 - 3}{9 \cdot 1 + 0.0001} = 0$$

$$\zeta_3 = \frac{5-3}{9\cdot 1 + 0.0001} = \frac{2}{9.0001} \approx 0.222$$

CROSS-DATING TUKEY'S BIWEIGHT ROBUST MEAN

$$w(\zeta_1) = \begin{cases} (1 - \zeta_1^2)^2, |\zeta_1| \le 1 \\ 0, |\zeta_1| > 1 \end{cases} = \left(1 - \left(\frac{-1}{9.0001}\right)^2\right)^2 \approx 0.975$$

$$w(\zeta_2) = (1 - 0^2)^2 = 1$$

$$w(\zeta_3) = \left(1 - \left(\frac{2}{9.0001}\right)^2\right)^2 \approx 0.904$$

$$\bar{y} = \frac{w(\zeta_1) \cdot 2 + w(\zeta_2) \cdot 3 + w(\zeta_3) \cdot 5}{w(\zeta_1) + w(\zeta_2) + w(\zeta_3)} = 3.288936942$$

SOURCES

- ☐ [1] Mattheis Alexander «Cross-Dating of Intra-annual Wood Density Series».

 Master Thesis. 2018
- ☐ [2] **Affymetrix** «Statistical algorithms description document». Technical Paper. 2002, pp. 22-23