

Experimental Methods in Systems Biology

Part of the Coursera Certificate in Systems Biology

Marc Birtwistle, PhD
Department of Pharmacology & Systems Therapeutics
Fall 2014, Week 7b, Interpreting Dynamic and Single
Cell Experiments

Outline

- Where gene lists and networks are limited
- Dynamical models
 - Differential equations
 - Stochastic processes
- Important relationship between dynamic processes and single cell data—a variety of studies
- Case Study—Interpreting Flow Cytometry Data with Stochastic Dynamical Models

Where gene lists and networks are limited

- Magnitude of Effects on D
 - A strong; C weak → D up
 - A weak; C strong → D down
- Dynamics of Interactions with D
 - A slow; C fast → D down then up
 - A fast; C slow → D up then down
- Localization with D
 - A local; C distant → D up
 - A distant; C local → D down

Dynamical Models Allow Us To Keep Track of These Kinds of Properties in Complex Systems

Example of Chemical Kinetics to Describe Gene Expression or Drug Action

Problems with Population Average Measurements in Dynamic or Noisy Systems

Classic experiment: add progesterone to Xenopus oocytes, measure MAPK

Population response: gradual increase in MAPK with progesterone

Bistability in Xenopus oocytes?

What happens when MAPK is measured in each cell?

Ferrell & Machleder (1998) *Science* 280:895-898.

With ↑ progesterone, oocytes switch from low state to high state

At intermediate [progesterone] both high and low states are present

This kind of issue comes up even without considering dynamics

Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis

Sabrina L. Spencer^{1,2}*, Suzanne Gaudet¹†*, John G. Albeck¹, John M. Burke¹ & Peter K. Sorger¹

Nol 459 | 21 May 2009 | doi:10.1038/nature 08012

"We show that naturally occurring differences in the levels or states of proteins regulating receptor-mediated apoptosis are the primary causes of cell-tocell variability in the timing and probability of death in human cell lines."

Oscillatory responses of p53

Batchelor et al., Nat Reviews Cancer, 2009

Stochastic Growth Factor Signaling and Cell Cycle Entry

Albeck et al., Mol Cell, 2013

