Am25LS374A • Am54LS/74LS374A Am25LS534 • Am54LS/74LS534

8-Bit Registers with Three-State Outputs

DISTINCTIVE CHARACTERISTICS

- · 8-bit, high-speed parallel registers
- Positive, edge-triggered, D-type flip-flops
- Buffered common clock and buffered common three-state control
- Am25LS/54LS have I_{OL} = 24mA over full military temperature range
- Am25LS devices offer the following improvements over Am54/74LS
 - Twice the fan-out over military range
- 100% product assurance screening to MIL-STD-883 requirements

FUNCTIONAL DESCRIPTION

The Am25LS374A and Am54LS/74LS374A are 8-bit registers built using advanced Low-Power Schottky technology. These registers consist of eight D-type flip-flops with a buffered common clock and a buffered three-state output control. When the output enable (OE) input is LOW, the eight outputs are enabled. When the OE input is HIGH, the outputs are in the three-state condition. The Am25LS/54LS/74LS534 provide the inverting version of the same function.

Input data meeting the set-up and hold time requirements of the D inputs is transferred to the Y ouputs on the LOW-to-HIGH transition of the clock input.

The device is packaged in a space-saving (0.3-inch row spacing) 20-pin package.

LOGIC DIAGRAM

Am25LS/54LS/74LS374A

Ouputs Y₀ through Y₇ are inverted on the Am25LS/54LS/74LS534

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation. Ouputs $\rm Y_0$ through $\rm Y_7$ are inverted on the Am25LS/54LS/74LS534

LOGIC SYMBOL

 $V_{CC}=$ Pin 20 GND = Pin 10 Outputs Y_0 through Y_7 are inverted on the Am25LS/54LS/74LS534

Am25LS374A/534

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

COM'L $T_A = 0^{\circ}C$ to $+70^{\circ}C$ $V_{CC} = 5.0 \text{ V} \cdot 15\%$ MIN. = 4.75 V MAX. = 5.25 V $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = 5.0 \text{ V} \cdot 10\%$ MIN. = 4.50 V MAX. = 5.50 V

DC CHARACTERISTICS OVER OREDATING DANCE

Parameters	Description	Test Coi	Test Conditions (Note 1)			Typ. (Note 2)	Max.	Units
v oH	Output HIGH Voltage	V _{CC} = MIN.	I _{OH} = -1.0m.	A, MIL	2.4	3.4		
-04		V _{IN} = V _{IH} or V _{IL}	I _{OH} = -2.6m	A, COM'L	2.4	3.4		Volts
V _{OL} Output LOW Voltage		V _{CC} = MIN. I _{OL} = 12mA					0.4	Volts
	V _{IN} = V _{IH} or V _{IL}		I _{OL} = 24mA				0.5	Voits
VIH	Input HIGH Level	Guaranteed input lovoltage for all inputs			2.0			Volts
VIL	Input LOW Level	Guaranteed input log		MIL			0.7	
- 1		voltage for all inputs		COM, F			0.8	Volts
V _I	Input Clamp Voltage	V _{CC} = MIN., I _{IN} = -18mA					-1.5	Volts
կլ	Input LOW Current	V _{CC} = MAX., V _{IN} = 0.4 V					4	mA
ЧН	Input HIGH Current	V _{CC} = MAX., V _{IN} = 2.7 V					20	μА
Ц	Input HIGH Current	V _{CC} = MAX., V _{IN} =	7.0 V				0.1	mA
loz	Off-State (High-Impedance)	V _{CC} = MAX.	V _O = 0.4 V				-20	
-02	Output Current	V _O = 2.7V					20	μА
Isc	Output Short Circuit Current (Note 3)	V _{CC} = MAX.	-		-30		85	mA
Icc	Power Supply Current (Note 4)	V _{CC} = MAX.				27	40	mA

lotes: 1. For conditions shown as MIN, or MAX,, use the appropriate value specified under Electrical Characteristics for the applicable device type.

- 2. Typical limits are at $V_{CC} = 5.0 \,\text{V}$, $25^{\circ} \,\text{C}$ ambient and maximum loading.
- Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
 All outputs open; all D_i inputs and OE = 4.5V. Apply momentary ground, then 4.5V to clock input.

Am25LS • Am54LS/74LS

MAXIMIIM RATINGS (Above which the useful life may be impaired)

MAXINION ITATINGS (Above which the userul life may be imparred)	
Storage Temperature	−65°C to +150°C
Femperature (Ambient) Under Bias	-55°C to +125°C
Supply Voltage to Ground Potential Continuous	-0.5 V to +7.0 V
DC Voltage Applied to Outputs for High Output State	-0.5 V to +V _{CC} max.
C Input Voltage	-0.5 V to +7.0 V
DC Output Current, Into Outputs	30 mA
C Input Current	-30 mA to +5 0 mA

Am25LS • Am54LS/74LS LOW-POWER SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown.

Am25LS/54LS/74LS374A/534

Am54LS/74LS374A/LS534

ELECTRICAL CHARACTERISTICS

The Following Conditions Apply Unless Otherwise Specified:

COM'L $T_{\Delta} = 0^{\circ} C \text{ to } +70^{\circ} C$ MIL

V_{CC} = 5.0 V +5% $T_A = -55^{\circ} C \text{ to } +125^{\circ} C$ $V_{CC} = 5.0 \text{ V} \pm 10\%$ MIN. = 4.50 V MAX. = 5.50 V

MIN. = 4.75 V MAX. = 5.25 V

DC CHARACTERISTICS OVER OPERATING RANGE

arameters	Description	Test Conditions (Note 1)				Typ. (Note 2)	Max.	Unit
.,	Output HIGH Voltage	V _{CC} = MIN.	l _{OH} = -1.0mA	H = -1.0mA MIL		3.4		Volt
v _{он}	Output HIGH Voltage	VIN = VIH or VIL	I _{OH} = -2.6mA	COM'L	2.4	3.4		7 0011.
	O : ALOW Votes as	V _{CC} = MIN.	AII, I _{OL} = 12mA				0.4	Volts
V _{OL}	Output LOW Voltage	VIN = VIH or VIL	74LS only, IOL	= 2 4 mA			0.5]
VIH	Input HIGH Level	Guaranteed input log voltage for all inputs	2.0			Volt		
		Guaranteed input logical LOW MIL		MIL			0.7	Volts
VIL	Input LOW Level	voltage for all inputs	COM'L			8.0	Voit	
V _I	Input Clamp Voltage	V _{CC} = MIN., I _{IN} = -			-1.5	Volt		
I _{IL}	Input LOW Current	V _{CC} = MAX., V _{IN} =			-0.4	m/		
чн	Input HIGH Current	V _{CC} = MAX., V _{IN} =			20	μА		
l _l	Input HIGH Current	V _{CC} = MAX., V _{IN} =	7.0 V				0.1	m.A
	Off-State (High-Impedance)	v _{CC} = MAX. V _O = 0.5V			20			
loz	Output Current	VCC - MAX.			20	μА		
I _{SC}	Output Short Circuit Current (Note 3)	V _{CC} = MAX.			-30		-130	m/
¹cc	Power Supply Current (Note 4)	V _{CC} = MAX.		27	40	m/		

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical limits are at V_{CC} = 5.0 V, 25°C ambient and maximum loading.

3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

4. All outputs open; all D_i inputs and \overline{OE} = 4.5V. Apply momentary ground, then 4.5V to clock input.

DEFINITION OF FUNCTIONAL TERMS

- Di The D flip-flop data inputs.
- Clock Pulse for the register. Enters data on the LOW-to-HIGH transition.
- The register three-state outputs.
- OE Output Control. An active-LOW three-state control used to enable the outputs. A HIGH level input forces the outputs to the high impedance (off) state.

FUNCTION TABLE

FUNCTION	INPUTS			INTERNAL	OUTPUTS
FUNCTION	OE	Clock	Di	Qi	Yi
	Н	L	×	NC	Z
Hi-Z	н	н	×	NC	Z
	L	†	L	L	L
LOAD	L	1	н	н	н
REGISTER	н	1	L	L	Z
	н	1	н	H	z

H = HIGH L = LOW X = Don't Care NC = No Change

Z = High Impedance

↑ = LOW-to-HIGH transition

SWITCHING CHARACTERISTICS

 $(T_A = +25^{\circ}C, V_{CC} = 5.0V)$

			Am25LS			Ar	n54LS/74	ILS .		Test
Parameters	Description	on	Min	Тур	Max	Min	Тур	Max	Units	Conditions
^t PLH	Clock to Yi				28	1		28		
tPHL				29			28	ns		
tow	Clock Pulse Width	LOW	15			15				
t _{PW}	HIGH		15			15			ns	C _L = 45pF
t _s	Data Data		20 💣			20			ns	$H_L = 667\Omega$
t _h			01			0			ns	
^t zH	ŌĒ to Y _i				20			20		
1 _{ZL}			3.0		20			20	ns	
t _{HZ}	$\overline{\text{OE}}$ to Y _i (Note 2)		Ī		20			20		C _L = 5.0pF
¹LZ	OL 10 11 (NOTE 2)			25			25	ns	$H_L = 667\Omega$	
f _{max}	Maximum Clock Freque	ency (Note 1)	35	50		35	50		MHz	

Notes: 1. Per industry convention, f_{max} is the worst case value of the maximum device operating frequency with no constraints on t_r, t_f, pulse width or duty cycle.

Because of interlead capacitance the rising edge of OE is coupled Y₀, thereby, increasing the apparent t_{HZ} for Y₀ by 5ns for plastic package device
and 10ns for Cerdip. The die geometry for Y₀ is the same as other outputs and no spec difference is required for users of dice.

Am25LS ONLY SWITCHING CHARACTERISTICS OVER OPERATING RANGE			Am25LS T _A = 0 t V _{CC} = 5	o +70°C	Am25LS MIL $T_C = -55 \text{ to } +125^{\circ}\text{C}$ $V_{CC} = 5.0V \pm 10\%$			Test
Parameters	Parameters Description		Min	Max	Min	Max	Units	Conditions
t _{PLH}	Clock to Yi			30	\	38		
t _{PHL}	CIOCK to 1			1 30		38	ns	
	Clock Pulse Width	LOW	10		10			
t _{PW}		HIGH	19		28		ns	$C_L = 45pF$
t _s	Data		20		20		ns	$R_L = 667\Omega$
^t h	Data	4	0		0		ns	
t _{ZH}	OE to Y _i			25		30		
t _{ZL}	OE to 1			25		30	ns	
t _{HZ}	OE to Y _i (Note 2)			25		30		C _L = 5.0pF
t _{LZ}	OL to 1 ₁ (Note 2)		25		28	ns	$R_L = 667\Omega$	
f _{max}	Maximum Clock Freque	ency (Note 1)	35		30		MHz	

^{*}AC performance over the operating temperatuare range is guaranteed by testing defined in Group A, Subgroup 9.

Note 2. Because of interlead capacitance the rising edge of \overline{OE} is coupled into Y_0 , thereby, increasing the apparent t_{HZ} for Y_0 by 5ns for plastic package device and 10ns for cerdip. The die geometry for Y_0 is the same as other outputs and no spec difference is required for users of dice.

ORDERING	INFORMATION

Package Type	Temperature Range	Am25LS374A Order Number	Am54LS/ 74LS374A Order Number	Am25LS534 Order Number	Am54LS/ 74LS534 Order Number
Molded DIP	0 to +70°C	AM25LS374APC	SN74LS374AN	AM25LS534PC	SN74LS534N
Hermetic DIP	0 to +70°C	AM25LS374ADC	SN74LS374AJ	AM25LS534DC	SN74LS534J
Dice	0 to +70°C	AM25LS374AXC	SN74LS374AX	AM25LS534XC	SN74LS534X
Hermetic DIP	-55°C to +125°C	AM25LS374ADM	SN54LS374AJ	AM25LS534DM	SN54LS534J
Hermetic Flat Pak	-55°C to +125°C	AM25LS374AFM	SN54LS374AW	AM25LS534FM	SN54LS534W
Dice	-55°C to +125°C	AM25LS374AXM	SN54LS374AX	AM25LS534XM	SN54LS534X

METALLIZATION AND PAD LAYOUTS

Am25LS/54LS/74LS374A

Am25LS/54LS/74LS534

DIE SIZE 0.077" X 0.047"

DIE SIZE 0.077" X 0.047"

APPLICATIONS

Two Am25LS374s can be used as a bidirectional bus driver/register. The above connetion shows separate clocks and three-state controls.