時間序列 HW4

0853411 劉書維

1. Generate the first 200 data points from the following GARCH model

我運用 R 語言來模擬資料,利用 garchSim 來生成 AR(2)+GARCH(1,1)的資料。程式碼如下:

spec = garchSpec(model = list(ar = c(0.3,-0.3)+0.1, alpha = c(0.12)+0.1, beta = c(0.09)), cond.dist = "snorm") #生成資料資訊 data = garchSim(spec, n = 200) #生成資料個數

2. Draw the ACF graphs for the simulated r_t , r_t^2 , and $|r_t|$.

利用 acf 即可產生繪圖。程式碼如下:

library(TSA) #引入套件

acf(data) #第一期資料有顯著相關

acf(data^2) #前幾期資料有顯著相關

acf(abs(data)) #前幾期資料有顯著相關

圖形如下圖:

3. PSuppose you know the mean function is in an ARMA(p,q) form, but you don't know p and q. Fit the mean function.

利用 auto.arima 即可分析出可能的 p 和 q。程式碼如下:

auto.arima(data, trace=TRUE)

產生分析如下圖:

```
Now re-fitting the best model(s) without approximations.

ARIMA(3,0,1) with zero mean : -2103.192
```

Best model: ARIMA(3,0,1) with zero mean

5eries: data

ARIMA(3,0,1) with zero mean

Coefficients:

所以是 ARIMA(3,0,1)的組合。

4. Now, based on the mean function you obtained in 3., fit the GARCH

model.

可以知道是 GARCH(1,1)且知道係數。

5. Do a forecasting of r_t and σ_t^2 for t = 201 to 210.

利用 fGarch 可以模擬 data 中的資料,並產生 10 筆衍生資料。程式碼如

下:

library(fGarch)

model = garchFit(formula = ~ garch(1, 1), data = data, cond.dist = "norm",

include.mean = TRUE)

fcst= predict(model,n.ahead=10)

mean.fcst=fcst\$meanForecast

結果如下圖:

•	meanForecast $^{\scriptsize \scriptsize $	meanError [‡]	standardDeviation $^{\circ}$
1	-0.0001349447	0.001081675	0.001081675
2	-0.0001349447	0.001223580	0.001223580
3	-0.0001349447	0.001285945	0.001285945
4	-0.0001349447	0.001314736	0.001314736
5	-0.0001349447	0.001328291	0.001328291
6	-0.0001349447	0.001334727	0.001334727
7	-0.0001349447	0.001337795	0.001337795
8	-0.0001349447	0.001339260	0.001339260
9	-0.0001349447	0.001339961	0.001339961
10	-0.0001349447	0.001340296	0.001340296