Department of Medical Physics and Biomedical Engineering

Centre for Medical Image Computing (CMIC)

Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS)

Deep Learning

MPHY0041 Machine Learning in Medical Imaging

Yipeng Hu yipeng.hu@ucl.ac.uk

Network Architecture | Width and Depth

Network Architecture | Width and Depth

Neural Networks | Multilayer Perceptron

Universal Approximation Theorem

Any continuous functions on bounded and closed functions or between finite

dimensional discrete space

Width and Depth

Efficiency

Hierarchical representation learning

Empirical results

An example using an absolute value rectification

Network Architecture | Branching, Joining and Skipping

Branching and Joining

"Inception"

Multi-stream

Figure 1: Two-stream architecture for video classification.

Multi-task learning*

Skipping (shortcuts, skip layers and residual connections)

The ResNet

$$\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}.$$

Network Architecture | Convolutional Neural Networks

Neural Networks | Multilayer Perceptron

Convolutional Neural Networks

Convolutional Layer

Convolutional Neural Networks

$$\begin{pmatrix} x1 & x2 & x3 \\ x4 & x5 & x6 \\ x7 & x8 & x9 \end{pmatrix} \begin{pmatrix} k1 & k2 \\ k3 & k4 \end{pmatrix} = \begin{pmatrix} k1x1 + k2x2 + k3x4 + k4x5 \\ k1x2 + k2x3 + k3x5 + k4x6 \\ k1x4 + k2x5 + k3x7 + k4x8 \\ k1x5 + k2x6 + k3x8 + k4x9 \end{pmatrix}$$

Convolutional Layer

Input
$$\rightarrow$$
 H1: $i \rightarrow j$

$$z_j^1 = \sigma_j^1 \left[\left(\mathbf{w}_j^0 \right)^T \mathbf{x} + b_j^1 \right]$$

$$H1 \rightarrow H2: j \rightarrow k$$
$$z_k^2 = \sigma_k^1 \left[\left(\mathbf{w}_k^1 \right)^{\mathrm{T}} \mathbf{z}^1 + b_k^1 \right]$$

$$H2 \rightarrow Output: k \rightarrow I$$

$$y_k = \sigma_l^1 \left[\left(\mathbf{w}_l^2 \right)^{\mathrm{T}} \mathbf{z}^2 + b_l^2 \right]$$

Convolutional Layers + Fully Connected Layers

Convolutional Lavers + Fully Connected Lavers

Network Architecture | Convolutional Neural Networks

Network Architecture | Sampling

Down-sampling and up-sampling (Encoding and Decoding)

AlexNet / VGG
Fully convolutional
Global and local pooling

Dense prediction

Down-sampling and up-sampling 2D/3D feature maps

Transpose convolution and "un-pooling"

Linear sampling

Transpose convolution

Q: is transpose convolution necessary?

Network Architecture | Examples

Autoencoder

PointNet

$$f(\{x_1,\ldots,x_n\})\approx g(h(x_1),\ldots,h(x_n))$$

Permutation-Invariant Functions

Network Architecture | Examples

Attention Mechanism

Network Architecture | Examples

AUC

Vision Transformer

Network Architecture | Recurrent Neural Networks

Sequential data

$$x_1$$
 x_2 x_3 x_4

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \prod_{n=1}^N p(\mathbf{x}_n|\mathbf{x}_1,\ldots,\mathbf{x}_{n-1})$$

Q: examples in medical imaging?

Unfolding neural networks

Unfolding neural networks

(Truncated) backpropagation through time (BPTT)

Network Architecture | Recurrent Neural Networks

LSTM (gated methods and cell state, "a belt for information flow")

Network Architecture

How to design and choose

Application requirements

- Input / output dimensionalities
- Data format, feature vectors, images, time series

Practice

- Baseline and ablation experiments
- "Do no harm" principles
- Complicated relationship with data and training strategies
- An art?