Quantum Information Axiomatics

Course Short Content

Introduction

- 1. Quantum approach to information,
- 2. Superpositions, Uncertainties, probabilities, etc
- 3. Quantum gates,
- 4. Quantum algorithms,
- 5. Quantum information with continuous variables,
- 6. Quantum computers and current quantum technologies

Basic Literature

- Michael A. Nielsen, Isaac L. Chuang, Quantum Computation and Quantum Information Cambridge University Press, 2000
- 2. Gregg Jaeger, Quantum Information, An Overview, Springer Science+Business Media, LLC, 2007
- 3. Christopher Gerry, Peter Knight, Introductory Quantum Optics, Cambridge University Press, 2005
- 4. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, 1995.
- 5. D. F. Walls, Gerard J. Milburn, Quantum Optics Springer Science & Business Media, 2008.
- 6. S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics, Oxford, 1997
- 7. Anthony Sudbery. Quantum Mechanics and the Particles of Nature: An Outline for Mathematicians Cambridge University Press 1986

Wave-Particle Dualism

Particle diffraction (wave-particle duality)

Lui de Broglie

 $\Delta p_x = p \sin \varphi$

Particle wave properties
$$\sin \varphi = \lambda/\Delta x \qquad \Delta p_x = p\lambda/\Delta x.$$

$$\Delta x \cdot \Delta p_x = p\lambda = 2\pi\hbar$$

The most probable speed is

$$oldsymbol{\lambda}_{dB} = rac{2\pi\hbar}{\sqrt{2mkoldsymbol{T}}}$$

Hilbert Space

Definition:

H is a complete infinite-dimensional linear vector space with a definite complex scalar product and finite norm.

David Hilbert (1862 – 1943)

Paul Adrien Maurice Dirac (1902 - 1984)

Dirac notation

Bracket = "bra" x "ket"

Notation od quantum state (vector in H) is a ket vector $|\psi
angle$

Any element of the dual space we will call a bra vector $raket{\psi}$

2.B.2

Hilbert space properties

- **1.** The norm is $\left\langle \psi \,\middle|\, \psi \right\rangle = 1$
- **2.** Scalar product for any two vectors $\langle \phi | \psi \rangle = \langle \psi | \phi \rangle$
- 3. Superposition principle

If $|\phi
angle,~|\psi
angle$ are vectors from H , the linear combination is also vector from H $\left|\Psi
ight
angle=C_{_1}\left|\phi
ight
angle+\mathrm{C}_{_2}\left|\psi
ight
angle$

 $C_{\scriptscriptstyle 1},\,\mathrm{C}_{\scriptscriptstyle 2}$ are coefficients which are not equal to 0.

4. Any vector state can be expanded as $\left|\psi
ight
angle = \sum\limits_{j=1}^{D} C_{j}\left|j
ight
angle$

Collection of linearly independent vectors $\left\{\left|j\right\rangle\right\}$ form a basis of H

$$\langle j|k\rangle=\delta_{jk}$$
 $\left\{ egin{array}{ll} \mathbf{0}, & \mbox{if} & j
eq k, \\ \mathbf{1}, & \mbox{if} & j=k. \end{array} \right.$

Matrix representations of H-space elements

It is often convenient to think of $|\psi\rangle$ as represented by a column vector

$$|\psi\rangle = \begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C_n \end{pmatrix} = C_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ \vdots \end{pmatrix} + C_2 \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ \vdots \end{pmatrix} + C_n \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ \vdots \end{pmatrix} + \dots$$

$$\langle \psi | = \begin{pmatrix} C_1^* & C_2^* & \dots & C_n^* & \dots \end{pmatrix}$$

Orthonormal States

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \\ \vdots \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0 \\ 1 \\ \vdots \end{pmatrix} \dots \qquad \langle j|k\rangle = \delta_{jk}$$

Continuous variables in H space

We can associate kets with (wave) functions as in Quantum Mechanics

$$\left| \, \psi
ight> \Leftrightarrow \psi(ec{r})$$
 Continuously vary in space! $\left. \, \psi(ec{r}) = \left| \psi(ec{r})
ight| e^{i heta}$

 $dP=\left|\psi(ec{r})
ight|^{2}dec{r}$. Is probability density to find particle in elementary volume $dec{r}$

$$oldsymbol{P} = \int \limits_{Volume} doldsymbol{P} = \int \limits_{Volume} \left| oldsymbol{\psi}(ec{r})
ight|^2 dec{r} = 1$$

Properties of complex wave function

Norm
$$(\psi,\psi) = \int \psi * (\vec{r}) \psi(\vec{r}) d\vec{r} = \int |\psi(\vec{r})|^2 d\vec{r}$$

Inner product $\langle \phi | \psi \rangle = \int \phi^*(\vec{r}) \psi(\vec{r}) d\vec{r}$

Continuous variable representation

 $\psi(\vec{r}) = \sum_{i} c_i u_i(\vec{r})$ Decomposition

Where $u_i(\vec{r})$ are orthonormal functions $\sum_i u_i *(\vec{r}') u_i(\vec{r}) = \delta(\vec{r} - \vec{r}')$

 $oldsymbol{\delta}(ec{oldsymbol{r}}-ec{oldsymbol{r}}^{\,\prime})$ is Dirac Delta function

Definition of Delta function

$$\int f(x)\delta(x-a)dx = f(a)$$

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{iku} dk = \delta(u)$$

Quantum interference
$$P = \frac{1}{2} \left(P_A + P_B + 2 \sqrt{P_A P_B} \cos(\theta_A - \theta_B) \right)$$
 Classical probability theory
$$P = P_A + P_B$$
 Particle source
$$\Psi = \frac{1}{\sqrt{2}} \left(\psi_A + \psi_B \right)$$
 Screen

Linear operators

- Operators are linear maps of the Hilbert space $\mathcal H$ onto itself. If A is an operator, then for any $|\psi\rangle$ in $\mathcal H$, $A|\psi\rangle$ is another element in $\mathcal H$, and linearity means that
 - $A|\psi\rangle = |\psi'\rangle$ • Linear operator A is defined as:

$$\boldsymbol{A}\!\left[\boldsymbol{c}_{_{\!1}}\!\left|\boldsymbol{\psi}_{_{\!1}}\right\rangle\!+\boldsymbol{c}_{_{\!2}}\!\left|\boldsymbol{\psi}_{_{\!2}}\right\rangle\!\right]\!=\boldsymbol{c}_{_{\!1}}\!\boldsymbol{A}\!\left|\boldsymbol{\psi}_{_{\!1}}\right\rangle\!+\boldsymbol{c}_{_{\!2}}\!\boldsymbol{A}\!\left|\boldsymbol{\psi}_{_{\!2}}\right\rangle$$

- Matrix element of operator A: $\langle \varphi | (A | \psi \rangle)$
- Hermitian operator: $A = A^{\dagger}$

$$\langle \varphi | A | \psi \rangle = \langle \psi | A | \varphi \rangle^*$$

·Hermitian operators play a fundamental role in quantum mechanics (we'll see later)

Charles Hermite (1822 - 1901)

How we can represent Hermitian operators?

Lets consider matrix A

$$m{A} = egin{pmatrix} m{a}_{11} & m{a}_{12} & m{a}_{13} \ m{a}_{21} & m{a}_{22} & m{a}_{23} \ m{a}_{31} & m{a}_{32} & m{a}_{33} \end{pmatrix}$$

Hermitian conjugate is
$$m{A}^\dagger = [m{A}^*]^{tr} = egin{pmatrix} m{a}_{11}^* & m{a}_{21}^* & m{a}_{31}^* \\ m{a}_{12}^* & m{a}_{22}^* & m{a}_{32}^* \\ m{a}_{13}^* & m{a}_{23}^* & m{a}_{33}^* \end{pmatrix}$$

Is Hermitian if

$$[oldsymbol{A}] = [oldsymbol{A}^*]^{tr}$$

 $a_{_{ik}}$ is real It means that

Lets consider an operator

Pls, prove that it is Hermitian

In particular, we should prove that

$$\int \psi^*(x) \widehat{A} \varphi(x) dx = \int [\widehat{A} \psi(x)]^* \varphi(x) dx.$$

Solution

$$\int_{-\infty}^{\infty} \psi^* \widehat{A} \varphi dx = i \int_{-\infty}^{\infty} \psi^* \frac{d\varphi}{dx} dx =$$

$$\int_{-\infty}^{\infty} \psi^* \widehat{A} \varphi dx = i \int_{-\infty}^{\infty} \psi^* \frac{d\varphi}{dx} dx =$$

$$= i \psi^* \varphi \Big|_{-\infty}^{\infty} - i \int_{-\infty}^{\infty} \varphi \frac{d\psi^*}{dx} dx = i \psi^* \varphi \Big|_{-\infty}^{\infty} + \left| \int_{-\infty}^{\infty} \varphi (\widehat{A} \psi)^* dx \right|$$

$$\int \psi^*(x) \widehat{A} \varphi(x) dx = \int [\widehat{A} \psi(x)]^* \varphi(x) dx.$$

Eigenvalue Equation

The ig|nig> is called an eigenvector of a linear operator if:

$$oxed{Aig|nig
angle = oldsymbol{\lambda}_nig|nig
angle} \quad ext{and} \quad ig\langle nig|A^\dagger = ig\langle nig|oldsymbol{\lambda}_n^{\ *}$$

- •This is called an eigenvalue equation (EVEq)
- ig|0ig>,ig|1ig>,...,ig|nig>,... are eigenstates , $ig\{m{\lambda}_nig\}$ is spectrum of operator $m{A}$
 - > Prove that if two arbitrary vectors obey EVEq then $\left\langle n \middle| k \right\rangle = \delta_{nk}$ > Prove that all $\left\{ \lambda_n \right\}$ are real if A is Hermitian

Eigenvalue Equation

Lets A is Hermitian Proof.

$$\int \varphi^* \widehat{A} \varphi dx = \int (\widehat{A} \varphi)^* \varphi dx,$$

$$a \int |\varphi|^2 dx = a^* \int |\varphi|^2 dx,$$

$$a = a^*.$$

Remark If $A \neq A^{\dagger}$, the $\{\lambda_n\}$ could be real!

In this case quantum system possess PT (parity-time) symmetry!

C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40, 2201 (1999) .

Schrodinger Equation

Schrodinger thinking about his equation.

Schrodinger: If electrons are waves, their position and motion in space must obey a wave equation.

Solutions of wave equations yield wavefunctions, Ψ , which contain the information required to describe ALL of the properties of the wave.

Lets consider EVEq for Hamilton operator

$$H\psi(r) = E\psi(r)$$

It Is stationary Schrodinger Equation

$$\frac{\hbar^2}{2m}\Delta\psi(r) + (\boldsymbol{E} - \boldsymbol{U}(r))\psi(r) = 0$$

If we take Hamiltonian $H = -rac{\hbar^2}{2m} \Delta + U(r)$ operator as

$$\boldsymbol{H} = -\frac{\hbar^2}{2\boldsymbol{m}}\,\Delta + \boldsymbol{U}(\boldsymbol{r})$$

Quantum Theory postulates

Second postulate

Every observable attribute of a physical system is described by an Hermitian operator A that acts on the kets $|\psi
angle$ that describe the system.

$$ig|Aig|nig
angle=\lambda_{_{n}}ig|nig
angle$$

 $\{|n\rangle\}$ are eigenstates,

set of $\{\lambda_n\}$ represents measurement outputs of A

Practice

Eigenvalue equations

• Lets for a certain eigenvalue λ :

$$A|n
angle=\lambda_{_{n}}|n
angle$$

Prove that expansion state $\left|\psi\right> = \sum_{i} c_{i} \left|\psi_{i}\right>$

is also eigenvector of the operator A corresponding to the eigenvalue λ for any c_i :

Practice

Eigenvalue equations

• Lets for a certain eigenvalue λ :

$$A|n\rangle = \lambda|n\rangle$$

Prove that the state

$$\left|\psi\right\rangle = \sum_{n} c_{n} \left|n\right\rangle$$

is also eigenvector of the operator A corresponding to the eigenvalue λ for any c_i :

$$\begin{split} A \Big| \psi \Big\rangle &= A {\sum_n c_n} \Big| n \Big\rangle = {\sum_n c_n} A \Big| n \Big\rangle \\ &= {\sum_i c_n} \lambda \Big| n \Big\rangle = \lambda {\sum_n c_n} \Big| n \Big\rangle \\ &= \lambda \Big| \psi \Big\rangle \end{split}$$

2.B.3

Density operator vs Projector

- ullet Let consider arbitrary state $|\psi
 angle$
- Projector operator $P_{\psi} = |\psi\rangle\langle\psi| = \begin{pmatrix} |C_1|^2 & C_1C_2^* & \dots \\ |C_2C_1^*| & |C_2|^2 & \dots \\ \dots & \dots & \dots \end{pmatrix}$

 $P_{\psi} | \phi \rangle = | \psi \rangle \langle \psi | \varphi \rangle = \langle \psi | \varphi \rangle \langle \psi \rangle$

•It projects one ket onto another

In Quantum theory $ho = \left| \psi
ight> \left< \psi
ight|$ Is calling density operator

$$P_{\omega}^2 = P_{\omega}$$

Quantum Theory postulates

Suppose that we would like to measure observable ${\bf A}$

of arbitrary quantum system that possess quantum state $\ket{\psi}$

- 1. We should find solution of Eq. $A\left|n
 ight>=\lambda_{_{n}}\left|n
 ight>$
- 2. We should consider expansion $\left|\psi
 ight
 angle = \sum C_n \left|n
 ight
 angle$

May Born

Born rule

When a measurement of an observable A is made on a arbitrary state $\left|\psi\right\rangle$, the probability of obtaining any eigenvalue λ_{j} from the spectrum of A is given by

 $oldsymbol{P}_{j} \equiv \left| oldsymbol{C}_{j}
ight|^{2} = \left| \left\langle j \middle| \psi
ight
angle
ight|^{2} \qquad oldsymbol{j} = 0, 1, 2, ... oldsymbol{n}, ...$

 $oldsymbol{C}_{j}=\left\langle j\left|\psi
ight
angle
ight.$ Is projection of $\left|\psi
ight
angle
ight.$ onto $\left|j
ight
angle$

Magic Coin

$$|\Psi\rangle = \alpha | \bigcirc\rangle + \beta | \bigcirc\rangle$$

 $p_{lpha}=\left|lpha
ight|^{2}$ - Is probability to obtain heads under the measurement,

 $p_{\beta}=\left|\beta\right|^{2}$ - is probability to obtain tails under the measurement

No tails, No heads before the measurement!

Is classical coin really random?

If we know initial conditions we can Newton's equation determining position of the coin at final state

Conclusion:

Classical uncertainty can be removed in principle, Quantum - NOT!!

У прержите ние. Среднее значение оператора

в состоянии

Quantum averages

Average value of some observable is determined by

$$\langle \widehat{A} \rangle = \langle \psi | \widehat{A} | \psi \rangle$$

$$\langle \psi | \hat{A} | \psi \rangle = \langle \psi | \hat{A} \sum_{i} | i \rangle \langle i | \psi \rangle = \langle \psi | \hat{A} \sum_{i} \langle i | \psi \rangle | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | i \rangle = \langle \psi | \sum_{i} \langle i | \psi \rangle \hat{A} | \psi \rangle \hat{A} | \psi \rangle = \langle \psi | \psi \rangle \hat{A} | \psi$$

$$\begin{split} \left\langle \psi \left| \widehat{A} \right| \psi \right\rangle &= \left\langle \psi \left| \widehat{A} \sum \right| i \right\rangle \left\langle i \right| \psi \right\rangle = \left\langle \psi \left| \widehat{A} \sum \left\langle i \right| \psi \right\rangle \right| i \right\rangle = \left\langle \psi \left| \sum \left\langle i \right| \psi \right\rangle \widehat{A} \right| i \right\rangle = \\ &= \left\langle \psi \left| \sum \left\langle i \right| \psi \right\rangle \alpha_i \right| i \right\rangle = \sum \alpha_i \left\langle i \right| \psi \right\rangle \left\langle \psi \right| i \right\rangle = \sum \left| \left\langle i \right| \psi \right\rangle \right|^2 \alpha_i = \sum W_i \alpha_i = \left\langle \widehat{A} \right\rangle \end{split}$$

$$I = \sum_{j} |j\rangle\langle j|$$
. I is the identity operator, $I|\psi\rangle = |\psi\rangle$ for any $|\psi\rangle$

У пери бение Среднее значение оператора

в состоянии

Quantum Fluctuations

Fluctuation of A observable is $\Delta \widehat{A} = \widehat{A} - \left\langle \widehat{A} \right\rangle$

Dispersion $(A - \langle A \rangle)^2$.

$$\left| \left\langle \left(\Delta \widehat{A} \right)^2 \right\rangle = \left\langle \psi \left| \widehat{A}^2 \right| \psi \right\rangle - \left\langle \psi \left| \widehat{A} \right| \psi \right\rangle^2 \right|$$

$$\left\langle \left(\Delta \widehat{A} \right)^2 \right\rangle = \left\langle \psi \right| \left(\widehat{A} - \left\langle \widehat{A} \right\rangle \right)^2 \left| \psi \right\rangle = \left\langle \psi \right| \widehat{A}^2 \left| \psi \right\rangle - 2 \left\langle \widehat{A} \right\rangle \left\langle \psi \right| \widehat{A} \left| \psi \right\rangle + \left\langle \widehat{A} \right\rangle^2 \left\langle \psi \right| \psi \right\rangle = \left\langle \psi \right| \widehat{A}^2 \left| \psi \right\rangle - \left\langle \widehat{A} \right\rangle^2 \left\langle \psi \right| \psi \right\rangle = \left\langle \psi \right| \widehat{A}^2 \left| \psi \right\rangle - \left\langle \widehat{A} \right\rangle^2 \left\langle \psi \right| \psi \right\rangle = \left\langle \psi \right| \widehat{A}^2 \left| \psi \right\rangle - \left\langle \widehat{A} \right\rangle^2 \left\langle \psi \right| \psi \right\rangle = \left\langle \psi \right| \widehat{A}^2 \left| \psi \right\rangle - \left\langle \widehat{A} \right\rangle^2 \left\langle \psi \right| \psi \right\rangle = \left\langle \psi \right| \widehat{A}^2 \left| \psi \right\rangle - \left\langle \widehat{A} \right\rangle^2 \left\langle \psi \right| \psi \right\rangle = \left\langle \psi \right| \widehat{A}^2 \left| \psi \right\rangle - \left\langle \widehat{A} \right\rangle^2 \left\langle \psi \right| \psi \right\rangle = \left\langle \psi \right| \widehat{A}^2 \left| \psi \right\rangle - \left\langle \widehat{A} \right\rangle^2 \left\langle \psi \right| \psi \right\rangle = \left\langle \psi \right| \widehat{A}^2 \left| \psi \right\rangle - \left\langle \widehat{A} \right\rangle^2 \left\langle \psi \right| \psi \right\rangle = \left\langle \psi \right| \widehat{A}^2 \left| \psi \right\rangle - \left\langle \widehat{A} \right\rangle^2 \left\langle \psi \right| \psi \right\rangle = \left\langle \psi \right| \widehat{A}^2 \left| \psi \right\rangle - \left\langle \widehat{A} \right\rangle^2 \left\langle \psi \right| \psi \right\rangle = \left\langle \psi \right| \widehat{A}^2 \left| \psi \right\rangle - \left\langle \widehat{A} \right\rangle^2 \left\langle \psi \right| \psi \right\rangle = \left\langle \psi \right| \widehat{A}^2 \left| \psi \right\rangle - \left\langle \widehat{A} \right\rangle^2 \left\langle \psi \right| \psi \right\rangle = \left\langle \psi \right| \widehat{A}^2 \left| \psi \right\rangle + \left\langle \widehat{A} \right\rangle^2 \left\langle \psi \right| \psi \right\rangle = \left\langle \psi \right| \widehat{A}^2 \left| \psi \right\rangle + \left\langle \widehat{A} \right\rangle^2 \left\langle \psi \right| \psi \right\rangle = \left\langle \psi \right| \widehat{A}^2 \left| \psi \right\rangle + \left\langle \widehat{A} \right| \psi \right\rangle + \left\langle \widehat{A} \right\rangle + \left\langle \widehat{A} \right| \psi \right\rangle + \left\langle \widehat{A} \right\rangle$$

 $\langle (\Delta \hat{A})^2 \rangle = 0$ If $|\psi\rangle$ is eigenstate

Compatible and incompatible observables

Lets consider problem of measurement of two observables determined by operators A and B

• Product of operators: $(AB)|\psi\rangle = A[B|\psi\rangle$

We can also consider $(BA)|\psi\rangle = B[A|\psi\rangle]$

Or,
$$\frac{1}{2}(BA+AB)|\psi\rangle$$

Lets define commutation relation for two operators

$$[A,B] \equiv AB - BA$$

A and **B** are compatible if AB = BA, and [A, B] = 0

A and **B** are **in**compatible if ${\it AB} \neq {\it BA}$, and ${\it [A,B]} \neq 0$

(1.34a)

Practice

Some operator algebra

Prove that $\left[\hat{B}, \hat{A}\right] = -\left[\hat{A}, \hat{B}\right]$ $\left[\hat{A}, \hat{B}\hat{C}\right] = \left[\hat{A}, \hat{B}\right]\hat{C} + \hat{B}\left[\hat{A}, \hat{C}\right]$

$$(AB)^{\dagger} = B^{\dagger}A^{\dagger} = BA = AB$$

If two operators commute, there is an orthonormal basis with eigenvectors common to both operators

$$\text{IF} \quad \left[A,B\right] = 0 \qquad \text{and } A\big|\psi_1\big> = a_1\big|\psi_1\big> \quad A\big|\psi_2\big> = a_2\big|\psi_2\big> \qquad a_1 \neq a_2$$

Then
$$\langle \psi_1 | AB | \psi_2 \rangle = a_1 \langle \psi_1 | B | \psi_2 \rangle$$
 $\langle \psi_1 | BA | \psi_2 \rangle = a_2 \langle \psi_1 | B | \psi_2 \rangle$

$$\langle \psi_1 | AB | \psi_2 \rangle - \langle \psi_1 | BA | \psi_2 \rangle = (a_1 - a_2) \langle \psi_1 | B | \psi_2 \rangle$$
$$\langle \psi_1 | B | \psi_2 \rangle = 0$$

Heisenberg's Uncertainty Principle

Variable A: $A \cdot \psi_i = a_i \cdot \psi_i$ Variable B: $B \cdot \Phi_i = b_i \cdot \Phi_i$ $[\boldsymbol{A}, \boldsymbol{B}] \neq 0$

Werner Heisenberg

A fundamental incompatibility exists in the measurement of physical variables that are represented by non-commuting operators:

"A measurement of one causes an uncertainty in the other."

The Uncertainty Relation

$$\delta A \cdot \delta B \ge \frac{1}{2} \Big| < [A, B] > \Big|$$

$$oldsymbol{\delta A} \equiv \sqrt{\left\langle \left(\Delta A
ight)^2
ight
angle}, \hspace{0.5cm} oldsymbol{\delta B} \equiv \sqrt{\left\langle \left(\Delta B
ight)^2
ight
angle}$$

Example: Momentum and coordinate

Wave-particle duality $egin{aligned} p = 2\pi\hbarig/\lambda_{dB} \end{aligned}$

Particle wave properties

$$\sin \varphi = \lambda/\Delta x \quad \Delta p_x = p\lambda/\Delta x.$$

$$\Delta x \cdot \Delta p_x = p\lambda = 2\pi\hbar$$

Coordinate operator

$$\hat{x} = x$$

Momentum operator

$$\hat{p}=-i\hbar\,rac{d}{dx}$$

Commutator relation

$$\left[x,p_{x}
ight] =i\hbar$$

$$\delta x \delta p \geq rac{\hbar}{2}$$

Eigenvalue Problem for Momentum

Eigenvalue equation for momentum operator

$$\hat{\boldsymbol{\rho}}_x \, \boldsymbol{\varphi}_{\boldsymbol{\rho}}(x) = \boldsymbol{\rho}_x \, \boldsymbol{\varphi}_{\boldsymbol{\rho}}(x). \quad \Box$$

$$\longrightarrow$$
 $-i\hbar \frac{\partial \varphi}{\partial x} p = p_x \varphi$

Solution

$$\varphi_{p} = \frac{1}{\sqrt{2\pi\hbar}} e^{\frac{i}{\hbar} p_{x}x}.$$

where
$$\dfrac{1}{2\pi\hbar}\int\limits_{-\infty}^{+\infty}e^{irac{x}{\hbar}(p'-p)}dx=\delta(p-p')$$

We can expand any quantum state $\psi(x)$ as

$$\psi(x) = \int\limits_{-\infty}^{+\infty} \overline{\psi}(p) \varphi_p(x) dp = \frac{1}{\sqrt{2\pi\hbar}} \int\limits_{-\infty}^{+\infty} \overline{\psi}(p) e^{\frac{ipx}{\hbar}} dp$$

This is a Fourier transform!

Lets consider inverse Fourier transform

$$ar{\psi}(p) = rac{1}{\sqrt{2\pi\hbar}}\int\limits_{-\infty}^{+\infty} \psi(x)e^{rac{-ipx}{\hbar}}dx$$

is wavefunction in momentum space!

Eigenvalue problem for coordinate

Eigenvalue equation for momentum operator

$$\hat{x}\,\varphi_{x_0}(x) = x_0\,\varphi_{x_0}(x)$$

Since $x\delta(x-x_0)=x_0\delta(x-x_0)$. Pls, prove that

Solution

$$\varphi_{x_0}(x) = \delta(x - x_0),$$

$$\int \delta(x-x_{_0})\delta(x-x_{_0}{}^{_{_1}})dx=\delta(x_{_0}-x_{_0}{}^{_{_1}})$$
 - orthonormal basis

We can expand any quantum state $\,\psi(x)\,$ as

$$\psi(x) = \int \delta(x-x_{_{\scriptscriptstyle{0}}}) \psi(x_{_{\scriptscriptstyle{0}}}) dx_{_{\scriptscriptstyle{0}}}$$

The End