Network Architectures and Topologies for IoT

COMP5047 - Lecture 05

Anusha Withana

The School of Computer Science The University of Sydney

How should we connect things?

https://assignmentstudio.net/what-are-networks/

Things to consider

- Application needs
 - What kind of connectivity needed?
- Resources
 - How much resources available
- Context
 - Where and environmental factors
- Scalability
 - How many devices? What will happen in future?
- Safety
 - What can go wrong?

IFO3315 - HCI

Networking Architectures

- So many aspects to consider
 - Hardware
 - Protocols
 - Software and APIs
 - Manufacturers
 - Users
- How we make sure interoperability/scalability?

Open Systems Interconnection (OSI)

- A conceptual model that describes the universal standard of communication functions.
 - No regard to the system's underlying internal technology.
- Assure the interoperability of all diverse communication systems through:
 - encapsulation and de-encapsulation of data

Open Systems Interconnection (OSI)

https://community.fs.com/

Adapted from Wikipedia

Network Topologies

How different parts are connected?

Point-to-Point

- Possibly the simplest
- Simple wiring
- But only two devices connect to each other

Line

- Extended point to point
- Simple wiring
- One node failure can disconnect the network

Ring Topology

- Simple wiring
 - Connects device to device
- One link failure will not affect the network
- One device failure doesn't mean the network is broken if bidirectional

Bus Topology

- Simple wiring
- Connects many devices together
- Performance depends on the bus
 - Speed
 - Failure

Star or Hub-and-Spoke Topology

- Simple wiring
 - But complicated than bus
- Connects many devices to a hub
 - E.g. your microcontroller to peripheral
- Scalability is low
 - Need many connections to the hub

Mesh Topology

- Can be a fully or partially connected mesh
 - Most practical networks are partially connected
 - Some redundancy
- Complicated wiring
 - Debugging could be hard

Images: https://en.wikipedia.org/

Tree Topology

- Hierarchical wiring
- Good for edge computing

One hub failure could lead to loss of the whole branch

Hybrid Topologies

Many real networks are hybrid

How to decide the topology?

- Application Context and Needs
- Capabilities of the devices
- Scalability
- Safety

Technologies for Networking

- Once you decide the topology, how to connect them?
- Two main approaches
 - Wired
 - Wireless

Wired Networking

- We discuss many approaches already
 - COM port
 - ADC / Digital IO / PWM
 - SPI, I²C
- Some other methods
 - Ethernet
 - USB
 - Optical
 - Communication over power lines

Wireless Networking

- Some commonly used wireless methods
 - Bluetooth
 - Wi-Fi
 - Zigbee
 - LoRa
- Some other methods
 - Analog
 - E.g. VHF/UHF TV, AM/FM Radio
 - Digital
 - 3G/ 4G / 5G / LTE-M / Z-Wave

Wireless Networking

	Bluetooth LE	Wi-Fi	ZigBee	LoRa
Range	Typical ~10m (some ~100m)	~100m	~100m	2-5 Km (urban areas), 15 Km (suburban areas)
Data Rate	~1Mbps	Upto 1.3Gbps	250kbps	0.3 to 100 Kbps
Power	Medium	High	Low	Low
Context	Indoor/Outdoor	Indoor	Indoor/Outdoor	Outdoor
Application	Personal Area Network (PAN)	Local Area Network (LAN)	LAN/PAN	LAN

Homework: Read up about each of these network methods

Higher Level Communication Protocols

- IoT devices are powerful enough to use high level protocols
 - This was not the case 10 years ago
- Some popular protocols
 - Web HTTP
 - Pub/Sub services MQTT

Hypertext Transfer Protocol (HTTP)

- Application layer protocol
- Text based lines of text
- A message has two parts
 - header and body separated by a blank line
 - The header has the message type (GET, PUT,...) and parameters.
 - The body has content.
- Mainly for web content, but now used for others

https://www.oreilly.com/

Try out HTTPie:

Publish/Subscribe Services

- The pub/sub architecture allows devices to "publish" data to a central server or a "broker" under a "topic".
- Other applications can "subscribe" to that "topic" and receive data whenever a new value is published.
- The are many Pub/Sub systems. Some use web protocols, others are lower level.
- Some Pub/Sub systems use HTTP to carry messages.

MQTT (Message Queuing Telemetry Transport)

- A simple and lightweight Pub/Sub protocol
- IoT devices can
 - Publish data (e.g. sensing)
 - Subscribe (e.g. output)
- MQTT is available for many platforms and languages including arduino, python, javascript, node-red

Summary

- Understand layered architecture used in networks
- Understand different topologies and when to use them
- Knowledge of different wired and wireless networking technologies
- Some basics of high level protocols

Here is a problem to solve

Remember: Write a program to control the LED through Bluetooth.

- Check out section "10.4 Bluetooth Tutorial"
 - https://wiki.dfrobot.com/FireBeetle_Board_ESP32_E_SKU_DF R0654#target_24