PRÁCTICA 3 grupo L1B

Bloques jerárquicos y modulaciones lineales en GNURADIO

Autores	Daniel Felipe Suarez Blanco
	Código: 2180406.

Juan Sebastián Morales Merchán. Código: 2170468.

Grupo de laboratorio: L1B

Subgrupo de clase Grupo 03

INFORME DE RESULTADOS

DESARROLLO DEL OBJETIVO 1. PRESENTE A CONTINUACIÓN LOS RESULTADOS DEL OBJETIVO 1.

Figura1.Montaje del Bloque Jerárquico

Nota: el bloque que presenta no estar conectado es debido a que la imagen fue tomada en GNU radio desde un computador personal, donde no poseemos los bloques del profesor, pero el experimento fue satisfactoriamente realizado en el laboratorio.

DESARROLLO DEL OBJETIVO 2. PRESENTE A CONTINUACIÓN LOS RESULTADOS DEL OBJETIVO 2.

Punto A)

Amplitud	Potencia Lineal [W]	Potencia Logaritmica [dBm]	Potencia Logaritmica [dBW]
15	112,5	50,511509	20,511507
21	220,50015	53,434074	23,434069
31	480,500092	56,816929	26,816946
69	2380,5	63,766678	33,76682
100	5000,000488	66,9897	36,989693

Tabla1. Tabulación de potencia para diferentes amplitudes.

Punto B) Para realizar el cálculo analítico de la potencia, usaremos la fórmula para sinusoidal pura, así mismo realizaremos las conversiones que necesitemos para hallar los valores y el cálculo del error porcentual.

La potencia medida en dB o dBW se calcula a partir de la fórmula:

(ejemplo con una amplitud de 1)

P=1^2/2=0.5 [W]

P[dBW]=10log(P[W])/(1[W])

P[dBW]=10log(0.5[W])/(1[W])

P[dBW]=-3[dBW]

de dB a dBm sumaremos 30 en escala logarítmica.

P[dBm] = -3 + 30 = 27[dBm]

Para una Amplitud de 15:

$$P[dBm] = -20.5115 + 30 = 50.5115 [dBm]$$

Comparando con los valores de la tabla hallaremos tres errores, tomando como teóricos los valores calculados y los de la tabla como experimentales:

$$e\% = rac{|teorico-experimental|}{Teorico}*100$$
 $e\%_{(W)} = 0\%$
 $e\%_{(dBW)} = 0\%$
 $e\%_{(dbm)} = 0\%$

Para una Amplitud de 21:

$$P[dBm] = -23.4242 + 30 = 53.4242 [dBm]$$

$$e\%=rac{|teorico-experimental|}{Teorico}*100$$
 $e\%_{(W)}=0.00006\%$
 $e\%_{(dBW)}=0.041\%$
 $e\%_{(dbm)}=0.018\%$

Para una Amplitud de 31:

$$P[dBm]=-23.4242+30=56.8169[dBm]$$

ERRORES:

$$e\% = \frac{|teorico - experimental|}{Teorico} * 100$$

$$e\%_{(W)} = 0\%$$

$$e\%_{(dBW)} = 0\%$$

$$e\%_{(dbm)} = 0\%$$

Para una Amplitud de 69:

$$P[dBm]=-23.4242+30=63.7668 [dBm]$$

$$e\% = \frac{|teorico - experimental|}{Teorico} * 100$$

$$e\%_{(W)} = 0\%$$

$$e\%_{(dBW)} = 0\%$$

$$e\%_{(dbm)} = 0\%$$

Para una Amplitud de 100:

$$P[dBm]=-23.4242+30=66.9897 [dBm]$$

ERRORES:

$$e\% = \frac{|teorico - experimental|}{Teorico} * 100$$

$$e\%_{(W)} = 0\%$$

$$e\%_{(dBW)} = 0.0002\%$$

$$e\%_{(dbm)} = 0\%$$

Segunda parte del punto B)

Para la onda cuadrada:

Amplitud	Potencia Lineal [W]	Potencia Logaritmica [dBm]	Potencia Logaritmica [dBW]
27	364,4983	55,616900	25,6169
47	1104,4949	60,431641	30,431639
67	2244,489746	63,511181	33,511177

Para una Amplitud de 27:

$$P[dBm] = -25.6169 + 30 = 55.6169 [dBm]$$

ERRORES:

$$e\% = \frac{|teorico - experimental|}{Teorico} * 100$$

$$e\%_{(W)} = 0.0004\%$$

$$e\%_{(dBW)} = 0\%$$

$$e\%_{(dbm)} = 0\%$$

Para una Amplitud de 47:

$$P[dBm] = -30.431657 + 30 = 60.4316572 [dBm]$$

$$e\% = \frac{|teorico - experimental|}{Teorico} * 100$$

$$e\%_{(W)} = 0.0009\%$$

$$e\%_{(dBW)} = 0.00005\%$$

$$e\%_{(dbm)} = 0\%$$

Para una Amplitud de 67:

$$P[dBm] = -33.511196 + 30 = 63.511196 [dBm]$$

ERRORES:

$$e\% = \frac{|teorico - experimental|}{Teorico} * 100$$

$$e\%_{(W)} = 0\%$$

$$e\%_{(dBW)} = 0\%$$

$$e\%_{(dbm)} = 0\%$$

Para la señal Triangular:

Amplitud	Potencia Lineal [W]	Potencia Logaritmica [dBm]	Potencia Logaritmica [dBW]
27	243,47349	53,864525	23,864538
47	737,768066	58,679207	28.679.209
67	1499,249146	61,758747	31,758751

En esta parte debido a que la señal es triangular

Para una Amplitud de 27:

$$P[dBm] = -23.85606 + 30 = 53.85606 [dBm]$$

ERRORES:

$$e\% = \frac{|teorico - experimental|}{Teorico} * 100$$

$$e\%_{(W)} = 0.2\%$$

$$e\%_{(dBW)} = 0.035\%$$

$$e\%_{(dbm)} = 0.015\%$$

Para una Amplitud de 47:

$$P[dBm] = -28.6707 + 30 = 58.6707 [dBm]$$

$$e\% = \frac{|teorico - experimental|}{Teorico} * 100$$

$$e\%_{(W)} = 019\%$$

$$e\%_{(dBW)} = 0.087\%$$

$$e\%_{(dbm)} = 0.01\%$$

Para una Amplitud de 67:

$$P[dBm] = -25.6169 + 30 = 61.750 [dBm]$$

ERRORES:

$$e\% = \frac{|teorico - experimental|}{Teorico} * 100$$

$$e\%_{(W)} = 019\%$$

$$e\%_{(dBW)} = 0.027\%$$

$$e\%_{(dbm)} = 0.01\%$$

Para una señal diente de sierra:

Amplitud	Potencia Lineal [W]	Potencia Logaritmica [dBm]	Potencia Logaritmica [dBW]
27	231,7269	53,649746	23,648754
47	702,17395	58,464447	28,464449
67	1426,91687	61,543983	31,543391

Para una Amplitud de 47:

$$P[dBm]=-23.6272 +30 = 58.4419 [dBm]$$

ERRORES:

$$e\% = \frac{|teorico - experimental|}{Teorico} * 100$$

$$e\%_{(W)} = 0.51\%$$

$$e\%_{(dBW)} = 0.03\%$$

$$e\%_{(dbm)} = 0.08\%$$

Para una Amplitud de 47:

$$P[dBm]=-23.6272 +30 = 53.6272 [dBm]$$

$$e\% = \frac{|teorico - experimental|}{Teorico} * 100$$

$$e\%_{(W)} = 0.5\%$$

$$e\%_{(dBW)} = 0.03\%$$

$$e\%_{(dbm)} = 0.03\%$$

Para una Amplitud de 67:

$$P[dBm] = -31.5214 + 30 = 61.5214 [dBm]$$

ERRORES:

$$e\% = \frac{|teorico - experimental|}{Teorico} * 100$$

$$e\%_{(W)} = 0.5\%$$

$$e\%_{(dBW)} = 0.04\%$$

$$e\%_{(dhm)} = 0.003\%$$

2.C

A partir del Teorema de Parseval determinamos el valor de la potencia para la señal $|x(t)|=\cos(2\pi(8320\text{KHz})t)=\cos(52.27*10^6\pi t)$

El periodo de la señal está definido por la señal cuadrada reemplazando estos valores se obtiene:

$$P[W] = \frac{1}{1/(60*10^3)} \int_0^{1/(60*10^3)} |Cos(52.27*10^6 \, \pi t)|^2 dt = 60.000 \int_0^{1/(60*10^3)} |Cos(52.27*10^6 \, \pi t)|^2 dt$$

Como el coseno es una función real en todo su dominio su magnitud al cuadrado, es igual a su propio valor al cuadrado.

$$P[W] = 60000 \int_{0}^{1/(60 \cdot 10^{3})} |Cos(52.27 \cdot 10^{6}\pi t)|^{2} dt = 0.88[W]$$

pasando a dB y dBm

$$P_{[dB]} = 10log_{10}(\frac{P[W]}{1W}) = 10log_{10}(\frac{0.2597}{1W}) = -0.55 + 30[dB]: 29.45[dBm]$$

Y quedaría resuelto el ejercicio.

DESARROLLO DEL OBJETIVO 3. PRESENTE A CONTINUACIÓN LOS RESULTADOS DEL OBJETIVO 3.

Modulación AM:

Parte a)

Para k=0.5

Para K=1

Conclusiones:

- Para el primer y segundo punto se observa la presencia de un error mínimo, esto nos permite corroborar que el laboratorio fue desarrollado de manera satisfactoria y que la presencia de esos errores mínimos puede deberse al ruido de los canales.
- Para el cálculo de potencia de los diferentes tipos de señal (triangular, rectangular y diente de sierra) pudimos notar que el despeje de la integral de potencia (que obviamos por la teoría vista en clase) corrobora la teoría con la practica, pues los valores fueron muy acertados y preservaron errores menores al 0.5%