

MITx: 14.310x Data Analysis for Social Scientists

Heli

■Bookmarks

- Module 1: The Basics of R and Introduction to the Course
- Entrance Survey
- Module 2: Fundamentals of Probability, Random Variables, Distributions, and Joint Distributions
- Module 3: Gathering and Collecting Data,
 Ethics, and Kernel
 Density Estimates
- Module 4: Joint,
 Marginal, and
 Conditional
 Distributions &
 Functions of Random
 Variable

Module 7: Assessing and Deriving Estimators - Confidence Intervals, and Hypothesis Testing > Module 7: Homework > Question 1 - 5

Question 1 - 5

☐ Bookmark this page

Suppose that X_i i.i.d. $U[0,\theta]$. You want to build a 90% confidence interval for θ . To do so, you will need an estimator for θ and you will need to know the estimator's distribution. Let's consider $\hat{\theta} = \frac{n+1}{n} X_{(n)}$. (Remember that $X_{(n)}$ is the nth order statistic.) This estimator is a variant on the MLE. We have used the n^{th} order statistic, which is the MLE, but multiplied it by $\frac{n+1}{n}$ to remove its bias. Its PDF is $\frac{n^{n+1}}{(n+1)^n} \frac{x^{n-1}}{\theta^n}$ for $x \in [0, \frac{n+1}{n}\theta]$ and 0 otherwise.

Question 1

1/1 point (graded)

What is the value a such that 5% of the distribution of $\hat{\theta}$ is to the left of a? (It will be a function of n and θ .)

- \circ a. It is given by $\sqrt[n]{0.1} rac{n}{n+1} heta$
- $^{\circ}$ b. It is given by $\sqrt[n]{0.05} rac{n}{n+1} heta$
- $^{\circ}$ c. It is given by $\sqrt[n]{0.1} rac{n+1}{n} heta$

- Module 5: Moments of a Random Variable,
 Applications to Auctions,
 Intro to Regression
- Module 6: Special
 <u>Distributions, the</u>

 <u>Sample Mean, the</u>
 <u>Central Limit Theorem,</u>
 and Estimation
- Module 7: Assessing and Deriving Estimators - Confidence Intervals, and Hypothesis Testing

<u>Assessing and Deriving</u> Estimators

Finger Exercises due Nov 14, 2016 at 05:00 IST

<u>Confidence Intervals and</u> <u>Hypothesis Testing</u>

Finger Exercises due Nov 14, 2016 at 05:00 IST

Module 7: Homework

• d. It is given by
$$\sqrt[n]{0.05} \frac{n+1}{n} \theta$$

Explanation

We should find the value of a such that:

$$Pr(\hat{ heta} \leq a) = 0.05$$

$$\int_0^a rac{n^{n+1}}{(n+1)^n} rac{x^{n-1}}{ heta^n} dx = 0.05$$

$$rac{n^{n+1}}{\left(n+1
ight)^n}rac{a^n}{n heta^n}=0.05$$

$$a(heta,n)=\sqrt[n]{0.05}rac{n+1}{n} heta$$

Submit

You have used 1 of 2 attempts

✓ Correct (1/1 point)

Question 2

1/1 point (graded)

Exit Survey

What is the value b such that 5% of the distribution of is to the right of b?

- \circ a. It is given by $\sqrt[n]{0.9} \frac{n+1}{n} \theta$
- \circ b. It is given by $\sqrt[n]{0.9} \frac{n}{n+1} \theta$
- c. It is given by $\sqrt[n]{0.95} \frac{n+1}{n} \theta$
- \circ d. It is given by $\sqrt[n]{0.95} rac{n}{n+1} heta$

Explanation

We should find the value of b such that:

$$Pr(\hat{ heta} \geq b) = 0.05$$

$$\int_{b}^{rac{n+1}{n} heta} rac{n^{n+1}}{\left(n+1
ight)^{n}} rac{x^{n-1}}{ heta^{n}} dx = 0.05$$

$$rac{n^{n+1}}{(n+1)^n} \Big(rac{(n+1)^n heta^n}{n^{n+1} heta^n} - rac{b^n}{n heta^n}\Big) = 0.05$$

$$b(heta,n)=\sqrt[n]{0.95}rac{n+1}{n} heta$$

Submit

You have used 1 of 2 attempts

Correct (1/1 point)

Question 3

1/1 point (graded)

Using those values that you found above, what is a probability statement of the form $P(a < \hat{\theta} < b) = .90$ as a function of n and θ .

$ullet$
 a. It is $P\left(\sqrt[n]{0.05}rac{n+1}{n} heta \leq \hat{ heta} \leq \sqrt[n]{0.95}rac{n+1}{n} heta
ight) = 0.9$ 🗸

$$^{\circ}$$
 b. It is $P\left(\sqrt[n]{0.1}rac{n+1}{n} heta \leq \hat{ heta} \leq \sqrt[n]{0.9}rac{n+1}{n} heta
ight) = 0.9$

$$^{\circ}$$
 c. It is $P\left(\sqrt[n]{0.05}rac{n+1}{n} heta \leq \hat{ heta} \leq \sqrt[n]{0.9}rac{n+1}{n} heta
ight) = 0.9$

$$^{\circ}$$
 d. It is $P\left(\sqrt[n]{0.1}rac{n+1}{n} heta \leq \hat{ heta} \leq \sqrt[n]{0.95}rac{n+1}{n} heta
ight)=0.9$

Explanation

We know that $P(a \leq \hat{ heta} \leq b) = 0.9$. So we plug in the values for a(heta,n) and b(heta,n) that we found above.

Submit

You have used 1 of 2 attempts

✓ Correct (1/1 point)

Question 4

1/1 point (graded)

If you rearrange the quantities in the probability statement so that θ is alone in the middle, bracketed by functions of the random sample and known quantities, what would be this probability statement?

a. It is
$$P\left(rac{\hat{ heta}}{\sqrt[n]{0.05}rac{n}{n+1}}\leq heta \leq rac{\hat{ heta}}{\sqrt[n]{0.95}rac{n}{n+1}}
ight)=0.9$$

$ullet$
 b. It is $P\left(rac{\hat{ heta}}{\sqrt[n]{0.95}rac{n}{n+1}}\leq heta \leq rac{\hat{ heta}}{\sqrt[n]{0.05}rac{n}{n+1}}
ight)=0.9$ 🗸

c. It is
$$P\left(rac{\hat{ heta}}{\sqrt[n]{0.9}rac{n}{n+1}}\leq heta \leq rac{\hat{ heta}}{\sqrt[n]{0.1}rac{n}{n+1}}
ight)=0.9$$

d. It is
$$P\left(rac{\hat{ heta}}{\sqrt[n]{0.95}rac{n}{n+1}}\leq heta \leq rac{\hat{ heta}}{\sqrt[n]{0.1}rac{n}{n+1}}
ight)=0.9$$

Explanation

This is your 90% confidence interval for θ . (If you were to draw 100 different samples and construct 100 such confidence intervals, you would expect 90 of them to contain the true value of θ .)

Submit

You have used 1 of 2 attempts

✓ Correct (1/1 point)

We are going to show this in R. We have provided you with this code that demonstrates this.

Question 5

1/1 point (graded)

In the code, there are three symbols standing in for specific values: XXX, YYY, and ZZZ. Which of the following values correspond to XXX, YYY, and ZZZ?

 \circ a. XXX= n, YYY= 2, ZZZ=

• b. XXX= θ , YYY= 1, ZZZ = &

• c. XXX= θ , YYY= $\mathbf{2}$, ZZZ = & \checkmark

- \circ d. XXX= n, YYY= 2, ZZZ = &
- \circ e. XXX= θ , YYY= 1, ZZZ=

Explanation

XXX corresponds to the maximum value of the uniform distribution we are simulating, which should be heta. We are calculating the maximum value through the columns since each column represents a different sample size of size n. Thus, we should use the apply function over the columns. This implies that YYY= 2. Finally, our confidence interval contains the real value of θ if $\theta \geq \frac{\hat{\theta}}{\sqrt[n]{0.95} \frac{n}{n+1}}$ and

 $heta \leq rac{\hat{ heta}}{\sqrt[n]{0.05}rac{n}{n+1}}$. Thus, ZZZ should be equal to &.

Submit

You have used 1 of 2 attempts

✓ Correct (1/1 point)

We invite you to run this code to see that it is true that in 90% of the simulated samples this confidence interval (CI) contains the real value of θ . You can play with the code, changing both the value of θ and the sample size.

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

