

21	UDE	IVI	IV.	UV		

MULTIMEDIA UNIVERSITY

SUPPLEMENTARY EXAMINATION

TRIMESTER 1, 2015/2016

DIM5068 - MATHEMATICAL TECHNIQUES 2

(For Diploma Students Only)

18 NOV 2015 2.30 PM - 4.30 PM (2 HOURS)

INSTRUCTIONS TO STUDENTS

- 1. This Question paper consists of 2 pages excluding cover page and appendix.
- 2. Attempt ALL **FIVE** questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.
- 4. Key formulae are given in the Appendix.

Please answer ALL questions and show the necessary working steps. Each question is 20 marks.

Question 1

- a. Simplify the given expression, $(4+2i)^2 7(3i+1)$. (2 marks)
- b. Given $z = 18(\cos 60^\circ + i \sin 60^\circ)$. Write an expression for z in rectangular form. (5 marks)
- c. Find the complex zeros of polynomial function $f(x) = 2x^3 3x^2 + 18x 27$ and write the answer in factored form. (5 marks)
- d. Evaluate the following limits.

i.
$$\lim_{h \to 4} \frac{h - 4}{\sqrt{h} - 2}$$
 (4 marks)

ii.
$$\lim_{x \to \infty} \frac{4 + x^2}{5x^2 - 3x + 1}$$
 (4 marks)

[TOTAL 20 MARKS]

Question 2

a. Find the derivatives of the function,
$$y = \frac{x\sqrt{x^2 + 1}}{(x+1)^{\frac{2}{3}}}$$
. (10 marks)

b. A manufacturer wants to design an open box having a square base and a surface area of 108 square inches. What dimensions will produce a box with maximum volume?

(10 marks)

[TOTAL 20 MARKS]

Question 3

a. Find the integral

i.
$$\int_0^5 (2x^3 + 6x^2 - 3x + 1) dx$$
 (2 marks)

ii.
$$\int 7t^2e^tdt$$
 (8 marks)

b. Find the volume of the solid generated when the region enclosed by x = y + 2 and $y = x^2 - 2$ is revolved about the x-axis. (10 marks)

[TOTAL 20 MARKS]

Continued.....

Question 4

- a. Solve the differential equation $5\frac{dp}{dq} = \frac{p(q^3 9q)}{q}$ by using **separable method**. (4 marks)
- b. For the differential equation $x^2 \frac{dy}{dx} + 4xy = \frac{\sin x}{x^2} 3x^3$, prove that the solution is $y = -\frac{\cos x}{x^4} \frac{x^2}{2} + C$. [Hint: use **method of integrating factors**, μ] (10 marks)
- c. Find the **general solution** of the differential equation 2y'' 4y' + 5y = 0. (6 marks)

[TOTAL 20 MARKS]

Question 5

a. In Cartesian coordinates, vector \vec{A} is directed from the origin to point $Q_1 = (-2, 0, -6)$, and vector \vec{B} is directed from Q_1 to point $Q_2(0, 4, -2)$. Find

i. vector \vec{A} (1 mark)

ii. vector \vec{B} (2 marks)

iii. unit vector \hat{a} (3 marks)

iv. the angle between \vec{A} and \vec{B} (5 marks)

b. Given points A = (2,1,0), B = (3,5,7) and C = (4,3,10).

i. Find a vector orthogonal to the plane through points A, B and C. (7 marks)

ii. Find the area of the triangle ABC. (2 marks)

[TOTAL 20 MARKS]

APPENDIX

Derivatives:
$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Differentiation Rules

General Formulae

1.
$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$

3.
$$\frac{d}{dx}(x^n) = nx^{n-1}$$

1.
$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$
 2. $\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$

4.
$$\frac{d}{dx}[g(x)]^n = n[g(x)]^{n-1} \cdot g'(x)$$

Exponential and Logarithmic Functions

1.
$$\frac{d}{dx}(e^x) = e^x$$

$$3. \frac{d}{dx} (\ln x) = \frac{1}{x}$$

$$2. \frac{d}{dx}(a^x) = a^x \ln a$$

4.
$$\frac{d}{dx}(\log_a x) = \frac{1}{x \ln a}$$

Trigonometric Functions

1.
$$\frac{d}{dx}(\sin x) = \cos x$$

3.
$$\frac{d}{dx}(\tan x) = \sec^2 x$$

5.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

2.
$$\frac{d}{dx}(\cos x) = -\sin x$$

4.
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

6.
$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

Table of Integrals

1.
$$\int u \, dv = uv - \int v \, du$$

$$3. \int \frac{du}{u} = \ln|u| + C$$

$$5. \int \sin u \ du = -\cos u + C$$

7.
$$\int \sec^2 u \ du = \tan u + C$$

9.
$$\int \sec u \tan u \ du = \sec u + C$$

2.
$$\int u^n du = \frac{u^{n+1}}{n+1} + C, \quad n \neq -1$$

$$4. \int e^u du = e^u + C$$

6.
$$\int \cos u \, du = \sin u + C$$

$$8. \int \csc^2 u \ du = -\cot u + C$$

10.
$$\int \csc u \cot u \ du = -\csc u + C$$

Application of Integrals:

Areas between Curve,
$$A = \int_{a}^{b} [f(x) - g(x)] dx$$

Differential Equations

Linear Differential Equations

$$\frac{dy}{dx} + p(x)y = q(x)$$
 \Rightarrow $\mu y = \int \mu q(x) dx$, where $\mu = e^{\int p(x) dx}$

Constant Coefficient of Homogeneous Equations

Roots of Auxiliary Equation,
$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

General Solutions to the Auxiliary Equation:

2 Real & Unequal Roots (
$$b^2 - 4ac > 0$$
)
$$y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$
Repeated Roots ($b^2 - 4ac = 0$)
$$y = c_1 e^{r_1 x} + c_2 x e^{r_2 x}$$

2 Complex Roots
$$(b^2 - 4ac < 0)$$
 $y = e^{ax}(c_1 \cos bx + c_2 \sin bx)$

Constant Coefficient of Non-Homogeneous Equations

$$y = y_c + y_p$$
 [y_c : complementary solution, y_p : particular solution]

Vector

Length of Vector

The length of the vector
$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle$$
 is $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$.

Dot Product

If
$$\theta$$
 is the angle between the vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3 = |\mathbf{a}||\mathbf{b}|\cos\theta$

Cross Product

If
$$\theta$$
 is the angle between the vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, then $\mathbf{a} \times \mathbf{b} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$ $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}| \sin \theta$

Area for parallelogram PQRS

Area for parallelogram
$$PQRS$$
 Area for triangle PQR

$$= \begin{vmatrix} \vec{P}Q \times \vec{P}R \end{vmatrix} = \frac{1}{2} \begin{vmatrix} \vec{P}Q \times \vec{P}R \end{vmatrix}$$

Equation of Lines

Vector equation:
$$\mathbf{r} = \mathbf{r}_0 + \mathbf{t}\mathbf{v}$$

Parametric equations: $x = x_0 + at$ $y = y_0 + bt$ $z = z_0 + at$

Symmetric equation:
$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

Equation of Planes

Vector equation:
$$\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{r}_0$$

Scalar equations:
$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

Linear equation:
$$ax + by + cz + d = 0$$

Angle between Two Planes:
$$\cos \theta = \frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1| |\mathbf{n}_2|}$$

ii/ii NHA/MSM