Unit 05 - Proofs

Peter Bauer

Outline

Axioms

Direct Proof

Indirect Proof

Axioms

Definition

Axioms are basic propositions or propositional formulas which are true (hold) from the beginning. They are normally accepted without any proof.

- ► An equivalence relation *R* is reflexive, symmetric, and transitive.
- ► The composition ∧ is associative, commutative, and distributive.

Proof Rules

Proof rules determine how you can make new true formulas from already existing true formulas.

- ► Step-by-step conclusion
- $\blacktriangleright (A \Rightarrow C) \land (C \Rightarrow B) \vdash (A \Rightarrow B)$

- ► Step-by-step conclusion
- $\blacktriangleright (A \Rightarrow C) \land (C \Rightarrow B) \vdash (A \Rightarrow B)$

Example

1. If you own a longhair cat it will lose hairs

- Step-by-step conclusion
- $\blacktriangleright (A \Rightarrow C) \land (C \Rightarrow B) \vdash (A \Rightarrow B)$

- 1. If you own a longhair cat it will lose hairs
- 2. If somebody/something loses hairs, your couch will be (sooner or later) contaminated with hairs

- Step-by-step conclusion
- $(A \Rightarrow C) \land (C \Rightarrow B) \vdash (A \Rightarrow B)$

- 1. If you own a longhair cat it will lose hairs
- 2. If somebody/something loses hairs, your couch will be (sooner or later) contaminated with hairs
- 3. If you own a longhair cat your couch will be (sooner or later) contaminated with hairs

- Step-by-step conclusion
- $\blacktriangleright (A \Rightarrow C) \land (C \Rightarrow B) \vdash (A \Rightarrow B)$

Example

- 1. If you own a longhair cat it will lose hairs
- 2. If somebody/something loses hairs, your couch will be (sooner or later) contaminated with hairs
- 3. If you own a longhair cat your couch will be (sooner or later) contaminated with hairs

Remark

A simplified but famous version of the direct proof is the so-called *Modus Ponens*: $A \land (A \Rightarrow B) \vdash B$

 $ightharpoonup A \Rightarrow B$ has to be proven

- $ightharpoonup A \Rightarrow B$ has to be proven
- ➤ Sometimes this turns out to be hard or even impossible to be proven

- $ightharpoonup A \Rightarrow B$ has to be proven
- Sometimes this turns out to be hard or even impossible to be proven
- ▶ Therefore, we assume that $\neg B$

- $ightharpoonup A \Rightarrow B$ has to be proven
- Sometimes this turns out to be hard or even impossible to be proven
- ▶ Therefore, we assume that $\neg B$
- ▶ Then we try to derive $\neg A$

- $ightharpoonup A \Rightarrow B$ has to be proven
- Sometimes this turns out to be hard or even impossible to be proven
- ▶ Therefore, we assume that $\neg B$
- ▶ Then we try to derive $\neg A$
- $A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

- $ightharpoonup A \Rightarrow B$ has to be proven
- Sometimes this turns out to be hard or even impossible to be proven
- ▶ Therefore, we assume that $\neg B$
- ▶ Then we try to derive $\neg A$
- $ightharpoonup A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

Example

▶ If it is the last school day of the year we get our final certificates.

- $ightharpoonup A \Rightarrow B$ has to be proven
- Sometimes this turns out to be hard or even impossible to be proven
- ▶ Therefore, we assume that $\neg B$
- ▶ Then we try to derive $\neg A$
- $ightharpoonup A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

- ► If it is the last school day of the year we get our final certificates.
- ► This is logically equivalent to

- $ightharpoonup A \Rightarrow B$ has to be proven
- Sometimes this turns out to be hard or even impossible to be proven
- ▶ Therefore, we assume that $\neg B$
- ▶ Then we try to derive $\neg A$
- $ightharpoonup A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

- ▶ If it is the last school day of the year we get our final certificates.
- ► This is logically equivalent to
- ► If we do not get our final certificates it can't be the last school day of the year.

- $ightharpoonup A \Rightarrow B$ has to be proven
- Sometimes this turns out to be hard or even impossible to be proven
- ▶ Therefore, we assume that $\neg B$
- ▶ Then we try to derive $\neg A$
- $ightharpoonup A \Rightarrow B \equiv \neg B \Rightarrow \neg A$

Example

- ▶ If it is the last school day of the year we get our final certificates.
- ► This is logically equivalent to
- ► If we do not get our final certificates it can't be the last school day of the year.

Prove the rule via truth table.

Modus Tollens – A More Formal Example

Example

 $ightharpoonup a \cdot b$ is even $\Rightarrow a$ is even or b is even.

Modus Tollens – A More Formal Example

- $ightharpoonup a \cdot b$ is even $\Rightarrow a$ is even or b is even.
- Assume that a is odd and b is odd

Modus Tollens – A More Formal Example

- $ightharpoonup a \cdot b$ is even $\Rightarrow a$ is even or b is even.
- Assume that a is odd and b is odd
- ▶ Show under this assumption that $a \cdot b$ must be odd

 $ightharpoonup A \Rightarrow B$ has to be proven

- $ightharpoonup A \Rightarrow B$ has to be proven
- ► Assume *A*

- $ightharpoonup A \Rightarrow B$ has to be proven
- ► Assume *A*
- ► Assume $\neg B$

- $ightharpoonup A \Rightarrow B$ has to be proven
- ► Assume *A*
- ▶ Assume $\neg B$
- ▶ Then we try to proof a contradiction

- $ightharpoonup A \Rightarrow B$ has to be proven
- ► Assume *A*
- ightharpoonup Assume $\neg B$
- ► Then we try to proof a contradiction
- $A \Rightarrow B \equiv A \land \neg B \Rightarrow \mathbf{F}$

- $ightharpoonup A \Rightarrow B$ has to be proven
- ► Assume *A*
- ightharpoonup Assume $\neg B$
- ► Then we try to proof a contradiction
- $A \Rightarrow B \equiv A \land \neg B \Rightarrow \mathbf{F}$
- ▶ Prove this rule via a truth table

- $ightharpoonup A \Rightarrow B$ has to be proven
- ► Assume *A*
- ightharpoonup Assume $\neg B$
- ► Then we try to proof a contradiction
- $ightharpoonup A \Rightarrow B \equiv A \land \neg B \Rightarrow \mathbf{F}$
- Prove this rule via a truth table

- ▶ Prove that a^2 is even $\Rightarrow a$ is even
- ightharpoonup Assume that a^2 is even
- Assume for the sake of contradiction that a is odd
- ► Then you can conclude that a^2 is odd, which is in contradiction to our first assumption

A Specific Variant

- Sometimes the proposition to be proven is **not** of the form A ⇒ B
- ▶ Instead only a proposition *S* is to be proven
- This is a short form of K ⇒ S, where K is the already proven knowledge or the axioms about the underlying universe of discourse
- ▶ In this case it is to proof $K \land \neg S \Rightarrow \mathbf{F}$
- ▶ In short: In order to proof S we assume $\neg S$ and show that this leads to "absurdity"

A Specific Variant

- ▶ $\neg(\exists n \in \mathbb{N}, \forall i \in \mathbb{N} : i \leq n)$ aka "There is no greatest natural number"
- ▶ We assume $\exists n \in \mathbb{N}, \forall i \in \mathbb{N} : i \leq n$ aka "There is a greatest natural number"
- Lets take a new natural number k = n + 1 which exists since $n \in \mathbb{N}$ and adding 1 to n is again a natural number (since \mathbb{N} is closed under +).
- Now we have a new natural number k > n which contradicts our assumption
- ► Therefore the initial proposition is proven