Day 2 - 1/18/2024

Unit Vectors

Vectors $\vec{i}=\langle 1,0\rangle$ and $\vec{j}=\langle 0,1\rangle$ both have the same length of $\|\vec{i}\|=\|\vec{j}\|=1$

Finding the Unit Vector of \vec{v}

We can find the unit vector in the direction of \vec{v} by dividing \vec{v} by its magnitude.

Example:

$$\vec{v} = \langle 3, 4 \rangle$$
, Unit vector of \vec{v} is:
$$\|\vec{v}\| = \sqrt{3^2 + 4^2} = 5$$
$$\|\vec{v}\| = \frac{\vec{v}}{5} = \frac{\langle 3, 4 \rangle}{5} = \frac{\langle 3, \frac{4}{5} \rangle}{5}$$

Vector from Angle α

Given an angle $\alpha = \frac{\pi}{3}$ and a length of the vector \vec{v} , $||\vec{v}|| = 3$, we can use trigonometric identities to determine \vec{v} .

The unit vector of \vec{v} will necessarily be defined as $\langle \cos(\alpha), \sin(\alpha) \rangle$, we can then define the vector from before to be $\vec{v} = \langle \|\vec{v}\| \cos(\alpha), \|\vec{v}\| \sin(a) \rangle$. We can solve this to find \vec{v} :

$$\vec{v} = \left\langle 3\cos\left(\frac{\pi}{3}\right), 3\sin\left(\frac{\pi}{3}\right) \right\rangle = \left\langle \frac{3}{2}, \frac{3\sqrt{3}}{2} \right\rangle$$

Examples of Vector-Valued Quantities

- Newtons $(N = \text{kg} \cdot \frac{m}{s^2})$
- Velocity $(\frac{m}{s})$
- Acceleration $(\frac{m}{s^2})$
- Position (m)

3-Dimensional Vectors

3-Dimensional vectors contain an extra z component, making them defined as $\langle x,y,z\rangle$.

xy Planes

An important concept is the xy plane, a 2-dimensional slice along the z axis in a 3-dimensional space.

For any given plane will have the plane P(x, y, z):

yz plane
$$\Leftrightarrow x = 0$$

 $xy \Leftrightarrow z = 9$
 $zx \Leftrightarrow y = 0$

For any given 3 points there is a plane. For example:

The three points (1, 2, 3), (-4, 4, 3), and (-5.3.3):

Note that all points have z = 0, :: z = 0

z=0 is the equation for a plane that contains these points

Length

The length of a 3-dimensional vector \overrightarrow{PQ} is defined as:

$$\sqrt{{(P_x - Q_x)}^2 + {(P_y - Q_y)}^2 + {(P_z - Q_z)}^2}$$

Midpoints

The midpoint of a *vector* \vec{v} is defined as:

$$\frac{\vec{v}}{2}$$

The midpoint of any segment PQ is defined as:

$$\left(\frac{P_x + Q_x}{2}, \frac{P_y + Q_y}{2}, \frac{P_z + Q_z}{2}\right)$$