Introduction to Deep Learning Calculus behind Backpropagation

Lecturer: Dongyu Yao

Forward propagation (short notation, with bias nodes)

- For input layer: $v^{(0)} = [x; 1]$
- For each hidden layer l = 1: L 1

$$z^{(l)} = W^{(l)}v^{(l-1)}$$
 and $v^{(l)} = [\varphi(z^{(l)}); 1]$

For output layer:

$$f = W^{(L)} v^{(L-1)}$$

• Predict y = f for regression, or $y = \arg \max_{j} f_{j}$ for classification

Computing the gradient

In order to apply SGD, need to compute

$$\nabla_{\mathbf{W}}\ell(\mathbf{W};\mathbf{x},\mathbf{y})$$

I.e., for each weight between any two connected units i and j on layer l need

$$\frac{\partial}{\partial_{w_{i,j}^{(l)}}}\ell(W;x,y)$$

Simple example

ANN with 1 output, 1 hidden and 1 input unit: $f(x; W) = f(x; [w, w']) = w\varphi(w'x)$

$$x$$
 w' y f

Derivatives of activation functions

Sigmoid:
$$\varphi(z) = \frac{1}{1 + \exp(-z)}$$

$$\varphi'(z) = \frac{-1}{(1 + e^{-z})^2} \cdot e^{-z} \cdot (-1) = \frac{e^{-z}}{(1 + e^{-z})^2}$$

$$= \frac{e^{-z}}{(1 + e^{-z})} \cdot \frac{1}{(1 + e^{-z})} = \frac{1 - \varphi(z)}{(1 - v)} \cdot \varphi(z)$$

$$+ \varphi'(z) \text{ is easy to compute given } \varphi(z) = v$$

$$+ \varphi'(z) \neq 0 \quad \forall z \text{ defined everythere}$$

$$- \varphi'(z) \neq 0 \quad \forall z \text{ defined everythere}$$

$$- \varphi'(z) \neq 0 \quad \forall z \text{ defined everythere}$$

Derivatives of activation functions

Rectified Linear Unit (ReLU): $\varphi(z) = \max(z, 0)$

- not diffiable at 2=0 doesn't matter much in practice; e.g. simply define \$1(0):=0

+ even easier to compate than signoid
+ \$0 \$770

Recall: Jacobians & multivariate chain rule

For a function $f: \mathbb{R}^n \to \mathbb{R}^m$ its Jacobian at x is given by

$$\frac{d}{dx}f(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{pmatrix} =: J_f(x) =: \frac{\partial f}{\partial x}$$

Multivariate Taylor series: Given differentiable f, it holds that

$$f(x) = f(x_0) + J_f(x_0)(x - x_0) + o(||x - x_0||)$$

Multivariate chain rule: Given differentiable $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^p$, it holds that

$$\frac{d}{dx}g(f(x)) = J_{g \circ f}(x) = J_g(f(x))J_f(x) = \frac{\partial g}{\partial f}\frac{\partial f}{\partial x}$$

Examples

mples
$$2 = 2(k) = Wx \qquad \Rightarrow \int_{2}^{22} (k) = W \qquad \text{diag}(\varphi(x)) = [\varphi(x) - \varphi(x)]$$

$$\varphi(x) = [\varphi(x)] \Rightarrow \int_{\varphi(x)} (k) = (\varphi(x)) = (\varphi(x)) \Rightarrow \int_{\varphi(x)} (\varphi(x)) = (\varphi(x)) \Rightarrow \int$$

Backpropagation

Consider neural network f(x; W) with weights $W = [W^{(1)}, W^{(2)}, ..., W^{(L)}]$

Want to compute gradient of loss $\ell(W; x, y)$ w.r.t., weights $W^{(\ell)}$

ŧ

$$\left(\nabla_{W^{(l)}} \ell\right)^{T} = \frac{\partial \ell}{\partial W^{(l)}} = \frac{\partial \ell}{\partial f} \frac{\partial f}{\partial z^{(L-1)}} \frac{\partial z^{(L-1)}}{\partial z^{(L-2)}} \dots \frac{\partial z^{(l+1)}}{\partial z^{(l)}} \frac{\partial z^{(l)}}{\partial W^{(l)}}$$

Key insight: Can reuse computations from forward propagation and from layer i+1 to compute $W^{(l)}$