Algorithms

Graph-1

Introduction

Graph Theory

■ 1736, Euler's Koenigsberg bridge problem

Leonhard Euler

Read Euler, read Euler, he is the master of us all

He ceased to calculate and to live

Immanuel Kant

Two things fill the mind with ever new and increasing admiration and awe, the more often and steadily we reflect upon them:

The starry heavens above me and the moral law within me.

Terminology of Graph

- Graph: G=(V, E), V: a set of vertices, E: a set of edges
- Edge (arc): a pair (v,w), where v, $w \in V$
- Adjacent: w is adjacent to v if $(v, w) \in E$
- Directed graph (Digraph): graph if pairs are ordered (directed edge)
- Undirected graph: if $(v,w) \in E$, (v,w)=(w,v)

Undirected vs. Directed

Terminology of Graph (Cont.)

- Path: a sequence of vertices $w_1, w_2, w_3, ..., w_N$ where $(w_i, w_{i+1}) \in E, \forall 1 \le i \le N$.
- Length of a path: number of edges on the path.
- **Loop:** an edge (v, v) from vertex to itself
- Simple path: a path where all vertices are distinct except the first and last.
- □ Cycle in a directed graph: a path such that $w_1 = w_N$
- Acyclic graph (DAG): a directed graph which has no cycles.

Simple Path

 $1 \rightarrow 4 \rightarrow 3 \rightarrow 1$: simple path

 $1 \rightarrow 4 \rightarrow 2 \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 1$: Non-simple path

Terminology of Graph (Cont.)

- Connected: an undirected graph if there is a path from every vertex to every vertex.
- Strongly connected: a directed graph if there is a path from every vertex to every vertex.
- Weakly connected: a directed graph which is not strongly connected, but the underlying graph is connected.
- Complete graph: a graph in which there is an edge between every pair of vertices.

Connected Graph

connected

strongly connected

3 4 5

weakly connected

M. K. Shan, CS, NCCU

Complete Graph

(ref: https://en.wikipedia.org/wiki/Complete_graph)

Representation of Graphs

- Data structures for representation of graphs
 - □ adjacency matrix representation
 - □ adjacency list representation

Adjacency Matrix Representation

	1	2	3	4	5	6	7
1	0	1	1	1	0	0	0
2	0	0	0	1	1	0	0
3	0	0	0	0	0	1	0
4	0	0	1	0	0	1	1
5	0	0	0	1	0	0	1
6	0	0	0	0	0	0	0
7	0	0	0	0	0	1	0

- Space: $\Theta(|V|^2)$, good for dense, not for sparse
- * Undirected graph: symmetric matrix

Adjacency List Representation

Space: O(|V|+|E|) good for sparse

Graph Traversal

(pp. 189~199)

Graph Traversal

- **■** Traverse: visiting the vertices in graph
- **■** Traversal algorithms
 - □ Depth-First Search (DFS): 先深後廣
 - □ Breadth-First Search (BFS): 先廣後深

Depth-First Search

Depth-First Search

```
Algorithm DFS(G,v);

Begin

mark v;

for all edges (v,w) do

if w is unmarked then DFS(w)

End
```


Lemma 7.1

- If G is connected
 Then
 - (1) all its vertices will be marked by algorithm DFS
 - (2) all its edges will be looked at least once during the execution of algorithm DFS

Generalized Depth-First Search

```
Algorithm DFS(G,v);
Begin
   mark v;
   prework(v)
  for all edges (v,w) do
     if w is unmarked then DFS(w)
     postwork(v,w)
End
                                      B
 prework: mark time
 postwork
                                            G
 (1) backtrack
 (2) w is a marked vertex
                                                M. K. Shan, CS, NCCU
```

Finding Connected Components

```
Algorithm Connected Components (G)
Input: G(=(V,E)
Output: assignment of component number
Begin
  component no:=1;
  while there is an unmarked vertex v do
     DFS(G, v); {prework v.component:=component no}
     component no:=component no+1;
                                        Algorithm DFS(G,v);
End
                                        Begin
                                          mark v;
                                          v.component:=component no;
                                          for all edges (v,w) do
                                            if w is unmarked then DFS(w)
                                        End
```

DFS Numbering

```
Algorithm DFS Numbering (G, v)
Begin
  Initialize DFS Number := 1;
  DFS(G, v)
End
Algorithm DFS(G,v);
Begin
  mark v;
  v.DFS := DFS Number;
  DFS Number := DFS Number + 1;
  for all edges (v,w) do
    if w is unmarked then DFS(w)
    postwork(v,w)
End
```

Build DFS Tree

Lemma 7.2 (for Undirected DFS Trees)

Let G = (V, E) a connected <u>undirected</u> graph T = (V, F) a DFS tree of G then every edge $e \in E$ either belongs to T (yellow edges) or connects two vertices of G, one of which is the ancestor of the other in T. (white edges)

M. K. Shan, CS, NCCU

Lemma 7.3 (for directed DFS Trees)

Let G = (V, E) a <u>directed</u> graph

T = (V, F) a DFS tree of G

If (v, w) ∈ E and v.DFS_Number < w.DFS_Number,
then v is the ancestor of w in the tree T

Four Types of Edges

- **■** tree edges
- back edges
- **■** forward edges
- **cross edges**

- * In undirected DFS trees, there exists no cross edges
- * In directed DFS trees, cross edge must cross from right to left)

Lemma 7.4

Let G = (V, E) be a directed graph

T be a DFS tree of G

Then G contains a directed cycle

iff G contains a back edge

Find_a_Cycle

```
Algorithm Find a Cycle(G, v)
Begin
  for each vertex v
     v.on the path:=false
  DFS(G, v)
End
Algorithm DFS(G,v);
Begin
  mark v;
  v.on_the_path:=true;
  for all edges (v,w) do
     if w is unmarked then DFS(w)
     if w.on the path then Find a Cycle:=true; halt;
  v.on_the_path:=false;
```

End

M. K. Shan, CS, NCCU

Breadth First Search

- Breadth First search (BFS): level order tree traversal
- BFS algorithm: using queue

Breadth-First Search

Algorithm of BFS

```
Algorithm BFS
Begin
  mark v;
  put v in queue;
  while queue is not empty do
     remove the first vertex w from queue;
     prework on w;
     for all edges (w,x) such that x is unmarked do
         mark x;
         add (w,x) to the tree T;
         put x in queue;
```

End

Topological Sorting

(pp. 199~201)

Topological Sorting

■ Topological sorting:

ordering of vertices in a DAG such that
if there is a path from v_i to v_j ,
then v_i appears after v_i in the ordering.

1, 2, 5, 4, 3, 7, 6

Topological Sorting

- If there is a path from v_i to v_j , then v_j appears after v_i in the ordering.
- Prerequisite of Courses
 - \square 2: {1}, 3: {1, 4}, 4:{1, 2, 5}, 5:{2}, 6:{3, 4, 7}, 7:{4, 5}
 - ☐ Ordering of course taking

1, 2, 5, 4, 3, 7, 6

1, 2, 5, 4, 3, 7, 6

Algorithm for Topological Sorting

```
/* O(|V|^2) */
Void Topsort(Graph G)
 int Counter;
 vertex V,W;
 for (Counter=0; Counter < NumVertex; Counter++)
     V=FindNewVertexOfDegreeZero();
    TopNum[V]=Counter;
    For each W adjacent to V
      Indegree [W]--;
```


Improved Algorithm for Topological Sorting

```
void Topsort(Graph G); /* O(|E|+|V|) */
  queue Q;
   int Counter=0;
   vertex V,W;
   Q=CreateQueue(NumVertex); MakeEmpty(Q);
   for each vertex V
      if (Indegree[V] == 0)
          Enqueue(V,Q);
   While (!IsEmpty(Q)) {
       V=Dequeue(Q);
        TopNum[V] = ++Counter;
       for each W adjacent to V
          if (--Indegree[W] == 0)
             Enqueue(W,Q);
   if (Counter != NumVertex)
     Error("Cycle!");
   DisposeQueue(Q);
                                                     M. K. Shan, CS, NCCU
```