Optimal predictive maintenance policy for multi-component systems

Tiffany Cherchi

Camille Baysse, Benoîte de Saporta, François Dufour

Rencontres Sherbrooke-Montpellier 2019

Introduction

Introduction

Maintenance optimization problem

Industrial context MDP model of the system Numerical results

Optimization

Tiffany. Cherchi - THALES

Non standard optimization problem Discretization of the state space

Conclusions and perspectives

Evolution of maintenance

Maintenance optimization

Equipments

- with several components
- required for missions,
- subject to random failures.

Find a maintenance policy ..

- what action : mission / workshop (repair or change)?
- ▶ when?

.. in order to optimize some criterion

- minimize maintenance costs
- maximize availability

Non-trivial compromise

5 / 30

Our approach

- 1. Define a *simplified* version of the industrial problem.
- 2. Propose a mathematical model for the evolution of the system by using the formalism of a Markov Decision Processes (MDP).
 - System degradation modeling.
 - Explicit the cost functions.
- 3. Simulate the process under different reference maintenance policies (corrective or preventive) and compare their costs.
- 4. Compute an approximation of the optimal cost and policy over the whole space Π of admissible policies:
 - Discretize the state space,
 - Use simulation-based optimisation algorithm to compute the optimal cost and policy.

Introduction

Maintenance optimization problem

Industrial context
MDP model of the system
Numerical results

Optimization

Non standard optimization problem Discretization of the state space

Conclusions and perspectives

Introduction

Introduction

Maintenance optimization problem

Industrial context

MDP model of the system Numerical results

Optimization

Non standard optimization problem Discretization of the state space

Conclusions and perspectives

Industrial context

Missions

- System required for fixed frequencies and durations missions,
- Over a finite time horizon.
- ▶ When the system is not functioning, it can not degrade or fail.

Equipments with several components

ightharpoonup Component i : stable $\xrightarrow{\text{Weib}(\alpha_i, \beta_i)}$ degraded $\xrightarrow{\text{Exp}(\lambda_i)}$ failed .

Global equipment state

- stable stable if all its components are in a stable mode,
- failed if at least one of its component is in failed mode,
- and degraded otherwise.

- Nothing: in stable, degraded and failed states,
- repair : in stable and degraded states,
- change : in stable, degraded and failed states.

Workshop

Introduction

- Immobilize the entire system,
- As good as new (stable state, functioning times reset to 0).

Costs

- Maintenances : repair , change ,
- Penalties in failed state: failed missions, unavailability.
- repair < change < unavailability < failure</p>

Introduction

Maintenance optimization problem

MDP model of the system

Optimization

Tiffany. Cherchi - THALES

Maintenance optimization problem Markov Decision Processes (MDP)

A MDP is defined by the following parameters:

$$(X; A; \{A(x) \mid x \in X\}; Q; c)$$

- A state space X, $\mathbb{X} = \{(e_i, r_i); e_i \in \{\text{stable}, \frac{\text{degraded}}{\text{failed}}\}, r_i \in \mathbb{R}^+\}.$
- An action space A, $\mathbb{A} = \{a = (a_1, a_2, a_3), a_i \in \{\text{nothing, repair, change}\}\}.$
- $\mathbb{K} = \{(x; a) \mid x \in \mathbb{X}; a \in \mathbb{A}(x)\} \neq \emptyset$, where $\mathbb{A}(x)$ representing the set of admissible actions when the system is in state x;
- A Markov transition kernel $Q(\cdot \mid x, a)$ which provides the distribution of the next state of the system, when the current state is $x \in X$ and the action $a \in A(x)$;
- \blacktriangleright A cost function $c: \mathbb{K} \to \mathbb{R}$ depending on the state-action pair

Introduction

Construction of controlled trajectories

Conclusions and perspectives

Optimization problem

Maintenance optimization problem

The total **cost** until the finite horizon N, with initial state $x \in \mathbb{X}$ and under the policy π :

$$V_N(\pi,x) = \mathbb{E}_x^{\pi} \Big[\sum_{n=0}^N c(x_n,a_n) \Big].$$

The optimal control problem associated to a MDP is to *minimize*, over all admissible policies Π , the function $\pi \to V_N(\pi, x)$.

The optimum is called the *value function* and is given by

$$V(x) = \inf_{\pi \in \Pi} V_N(\pi; x).$$

A strategy $\pi^* \in \Pi$ is called *optimal* if it satisfies

$$V_N(\pi^*, x) = V(x).$$

Maintenance optimization problem

Numerical results

Reference policies

Policy without any intervention : π_1

Maintenance optimization problem

There is **no maintenance intervention** (no change, no repair) during the studied period.

Corrective maintenance policy : π_2

After 1 day spent in a failed state, the system is sent back to the workshop,

- change each component in failed state,
- repair each component in degraded state.

Preventive maintenance policy: π_3

After 1 day spent in a degraded or failed state, the system is sent back to the workshop,

- change each component in failed state,
- repair each component in degraded state.

Policy Comparisons

Maintenance optimization problem

We compare the performances of these reference policies. Their *cost* was evaluated through 10⁵ Monte Carlo simulations.

Policy	cost	95% CI
π_1	22892	[22884, 22900]
π_2	18134	[18121, 18147]
π_3	15435	[15423, 15447]

Table – Costs of the reference policies

As expected, a preventive maintenance policy π_3 effectively reduces maintenance costs by intervening on the system before the failure.

This yields a *relative gain* with respect to the uncontrolled policy π_1 of 33% and 15% with respect to the corrective policy π_2 .

Introduction

Maintenance optimization problem

Industrial context
MDP model of the system
Numerical results

Optimization

Non standard optimization problem Discretization of the state space

Conclusions and perspectives

Introduction

Maintenance optimization problem

Industrial context MDP model of the system Numerical results

Optimization

Non standard optimization problem

Discretization of the state space

Conclusions and perspectives

Conclusions and perspectives

Optimization problem

Maintenance optimization problem

The total **cost** until the finite horizon N, with initial state $x \in \mathbb{X}$ and under the policy π :

$$V_N(\pi,x) = \mathbb{E}_x^{\pi} \Big[\sum_{n=0}^N c(x_n,a_n) \Big].$$

The optimal control problem associated to a MDP is to *minimize*, over all admissible policies Π , the function $\pi \to V_N(\pi, x)$.

The optimum is called the *value function* and is given by

$$V(x) = \inf_{\pi \in \Pi} V_N(\pi; x).$$

A strategy $\pi^* \in \Pi$ is called *optimal* if it satisfies

$$V_N(\pi^*, x) = V(x).$$

Dynamic programming

Algorithm 1: Dynamic programming

```
Input: X, A, Q, costs
Output: v^*, \pi^*
begin
      for all x \in \mathbb{X} do
        | v_N(x) = C_N(x)
      for k de N - 1   0 do
            forall x \in \mathbb{X} do
                  v_k(x) = \min_{a \in \mathbb{A}(x)} \left[ c(x, a) + \int_{\mathbb{T}} v_{k+1}(y) Q(dy \mid x, a) \right]
                  \pi_k^*(x) = \underset{a \in \mathbb{A}(x)}{\operatorname{argmin}} \left[ c(x, a) + \int_{\mathbb{X}} v_{k+1}(y) Q(dy \mid x, a) \right]
      return v_0, \pi^*
```

Non standard optimization problem

State space

▶ Discrete variables and *continuous variables* (functioning times of the components): the state space is *not finite*.

Transition kernel Q(dy|x,a)

Not analytically explicit, it can be simulated.

Different time scales

- Physical phenomenon (continuous time),
- Sequential decisions (discrete time), fixed by missions frequency,
- Workshop (discrete time).

22 / 30

Table of Contents

Introduction

Maintenance optimization problem

Industrial context MDP model of the system Numerical results

Optimization

Non standard optimization problem Discretization of the state space

Conclusions and perspectives

Discretization of the state space

Maintenance optimization problem

State space

$$\mathbb{X} = \{x = (e_1, e_2, r_1, r_2); e_i \in \{\text{stable}, \text{degraded}, \text{failed}\}, r_i \in \mathbb{R}^+\}$$

Discretize the state space, as a compromise between:

- precision of the approximation
- numerical complexity

Reference policy costs will be used to assess the impact of discretization on costing.

Problems:

- No "universal method"
- No theoritical result

Conclusions and perspectives

ightharpoonup Component i : stable $\xrightarrow{U(a_i,b_i)}$ degraded $\xrightarrow{Geo(\lambda_i)}$ failed

With (a_i, b_i) resp (λ_i) choosen as expectation of Weib(α_i, β_i) resp Exp(λ_i)

Discretization errors:

► Less than 1 %

Problems:

- The state space is not finite
- The kernel is not analytically explicit
- → Non standard optimization problem

25 / 30

Conclusions and perspectives

Example: Fixed Grid

State space

$$\mathbb{X} = \{x = (e_1, e_2, r_1, r_2); e_i \in \{\text{stable}, \text{degraded}, \text{failed}\}, r_i \in \mathbb{R}^+\}$$

Propose a fixed grid

▶ Find δ such as $r_i \in D = \{\delta, 2\delta, \dots, k\delta\}$

Where k must be a tradeoff between

- precision
- numerical complexity

26 / 30

Quantization

Approximate X by \hat{X} taking finitely many values such that $||X - \hat{X}||_p$ is minimum

Find a finite grid with K points

```
Input: nb of points K, nb of runs NR, Séquence (\gamma_n), Simulator
       of target law \nu, initial Grid
```

Output: Optimized Grids (Γ_n^*) 0 < n < N

begin

```
for m \leftarrow 0 to NR-1 do
     simulate x according to law \nu
     select y as the closest neighbor of x in \Gamma^m
    set y' = y - \gamma_{n+1}(y - x_n)
   \Gamma^{m+1} \leftarrow \Gamma^m \cup \{y'\} \setminus \{y\}
```

return Optimized grid Γ*

Conclusions and perspectives

Example : $\mathcal{N}(0; I_2)$:

Figure - Quantization grid (200 points).

Introduction

Conclusions and perspectives

Conclusions and perspectives

Maintenance optimization problem

Conclusions

- 1. Define a *simplified* version of the industrial problem.
- 2. Propose a mathematical model for the evolution of the system by using the formalism of a Markov Decision Processes (MDP).
 - System degradation modeling,
 - Explicit the cost functions.
- 3. Simulate the process under different reference maintenance policies (corrective or preventive) and compare their costs.

Perspectives

Compute an approximation of the optimal cost and policy over the whole space Π of admissible policies:

- Discretize the state space,
- Use simulation-based optimisation algorithm to compute the optimal cost and policy.

