

UNIVERSIDADE ESTADUAL PAULISTA "JULIO DE MESQUITA FILHO"

INSTITUTO DE GEOCIÊNCIAS E CIÊNCIAS EXATAS Bacharelado em Ciências da Computação

Segunda Lista de Exercícios de Teoria da Computação – Linguagens Formais

Rio Claro, 22 de abril de 2010

Prof. Dr. Eraldo P. Marinho

Parte I: Exercícios.

- 1. Apresente um AFD para cada expressão regular a seguir:
 - (a) $a^*b \cup ab^*$;
 - (b) $a(a \cup b)^* \cup b^+$;
 - (c) $a(c \cup b(\varepsilon \cup c))$;
- 2. Apresente um AFN para cada expressão do exercício anterior.
- 3. Define-se fecho ε , de um estado q de um AFN, como sendo o conjunto, fch- $\varepsilon(q) = \{p \in Q \mid p \in \Delta(q, \varepsilon)\}$, dos estados obtidos a partir de q transições sem consumo de símbolo de entrada. Obviamente, permanecer no estado q não consome entrada e, portanto, $p \in \text{fch-}\varepsilon(q)$. Como extensão, define-se de modo semelhante o fecho ε de um conjunto de estados $R = \{q_{j_1}, q_{j_2}, ... q_{j_k}\}$ como sendo

$$fch-\varepsilon(R) = \bigcup_{i=1}^{k} fch-\varepsilon(q_{j_i})$$

Nestes termos, encontre o fecho ε para os estados dos AFNs do Exercício 2.

4. Encontre fch-ε para cada estado do AFN, sobre o alfabeto {a,b}, dado pelo seguinte diagrama:

- 5. Apresente a tabela de transição Δ para o diagrama do exercício anterior.
- 6. Transforme o autômato do Exercício 4 em um AFD.
- 7. Seja Σ um alfabeto composto de m marcas (tokens) distintas. Quantas palavras de comprimento n podem ser obtidas a partir dos símbolos deste alfabeto?
- 8. Tire suas conclusões se o alfabeto do exercício anterior fossem palavras distintas, formadas por um alfabeto mais primitivo Σ_0 , que pudessem ter prefixos (sufixos) comuns, como por exemplo {a, b, ab, aab, abb}.
- 9. Encontre uma gramática regular para o autômato do Exercício 4.
- 10. Escreva a gramática que gera os identificadores Pascal, definidos como palavras sobre o alfabeto Σ={A, B, ..., Z, 0, 1, ..., 9}, que iniciam com letra e podem vir seguidos de concatenações quaisquer de letras e dígitos.

UNIVERSIDADE ESTADUAL PAULISTA "JULIO DE MESQUITA FILHO"

INSTITUTO DE GEOCIÊNCIAS E CIÊNCIAS EXATAS Bacharelado em Ciências da Computação

Parte II: Pesquisa.

- 1. Mostre que, se Σ é um alfabeto, Σ^{∞} não é uma linguagem formal. Isso compromete a idéia de infinitude do fecho de Kleene? Justifique.
- 2. Admita que o conjunto A seja enumerável, então A* também é enumerável? Justifique.
- 3. Se Σ é infinitamente enumerável, podemos ter Σ como alfabeto de uma linguagem formal? Justifique sua resposta.
- 4. Se Σ é infinito enumerável, podemos dizer que Σ^* também é enumerável? Justifique.
- 5. Qualquer linguagem regular pode ser utilizada como alfabeto de uma outra linguagem qualquer? Justifique.
- 6. Interprete o Lema do Bombeamento para Linguagens Regulares, explicando, ou justificando, cada um dos itens (i) a (iii) abaixo:
 - "Seja L uma linguagem regular. Neste caso, existe um inteiro positivo n de forma que é possível encontrar uma palavra w, com $|w| \ge n$, que pode ser decomposta como w = xvy, tal que:
 - (i) $xv^iy \in L, \forall i \geq 0;$
 - (ii) $|v| \ge 1$;
 - (iii) $|xv| \leq n$.
- 7. Se uma máquina *M* possui *n* estados, incluindo o estado inicial, qual o maior comprimento possível de uma palavra ser aceita por esta máquina sem que algum dos seus *n* estados seja repetido?
- 8. Caso um autômato finito determinístico possua estados que são repetidos ao longo das transições, podemos afirmar que a linguagem aceita por este autômato é infinita? Justifique sua resposta com argumentos plausíveis.
- 9. Ilustre o Lema de Arden num diagrama de estados de autômatos finitos generalizados (aqueles que incorparam expressões regulares a uma única transição).
- 10. De que modo uma expressão regular *w* pode ser transcrita para um AFN? Podemos usar o mesmo procedimento para AFDs? Justifique.