German University in Cairo Department of Computer Science Dr. Haythem O. Ismail

CSEN 1003 Compiler, Spring Term 2017 Practice Assignment 1

Discussion: 04.02.17 - 09.02.17

Exercise 1-1

Answer the following general questions:

a) What are the advantages of an interpreter over a testing compiler?

Solution:

An interpreter would give better error-diagnostics than a compiler, because it executes the source program statement by statement. It is also machine independent.

Interpreter does not produce target program as a translation, directly execute the operations specified in the source program, on inputs supplied by the user.

b) What are the advantages of a compiler over an interpreter?

Solution:

The machine-language target program produced by a compiler is usually much faster than an interpreter when mapping inputs to outputs, more suitable for code optimization.

Exercise 1-2

DFA Design

Give state diagrams of DFAs recognizing the following languages. The alphabet is $\{0,1\}$

a) $\{w | w \text{ begins with a 1 and ends with a 0} \}$

 $^{^{0}}$ The exercises are due to Dr. Carmen Gervet and Sipser textbook

b) $\{w|\ w$ contains the substring 0101 $\}$

Solution:

c) $\{w | \text{ every odd position of } w \text{ is a } \mathbf{1} \ \}$

Solution:

d) $\{w|\ w$ contains at least two 0s and at most one 1 $\}$

Exercise 1-3

Consider the following NFA:

a) Indicate all the paths labeled: aabb

Solution:

0000,0111,1111,1222,12220,1223,12200,12000

b) Indicate all the accepting paths labeled: aabb

Solution:

1223

Exercise 1-4

Convert the following regular expression to NFA $\,$

a) $(0 \cup 1)*000(0 \cup 1)*$

Exercise 1-5

Convert the following NFAs to equivalent DFAs

${\bf Solution:}$

Exercise 1-6

Regular expressions

Give regular expressions generating the languages of Exercise 1-2

Solution:

- a) $1(0 \cup 1)^*0 = 1\Sigma^*0$
- b) $\Sigma^* 0101 \Sigma^*$
- c) $(1\Sigma)^* \cup (1\Sigma)^* 1 \equiv (1\Sigma)^* (\varepsilon \cup 1)$
- d) $00^+ \cup 00^+10^* \cup 0^*100^+ \cup 0^+10^+$

Exercise 1-7

Regular expressions

Describe the set of patterns (ie. The language) denoted by the following regular expressions:

a) $(a|b)^*(a|b)$

Solution:

equivalent to $(a|b)^+$. This is the language of all strings drawn from the alphabet $\Sigma = \{a,b\}$ containing at least one character.

b) $a(a|b)^*a$

Solution:

language of strings drawn from the alphabet $\Sigma = \{a, b\}$ that start and end with a, and contain at least 2 characters.

c) $((\varepsilon|a)b^*)^*$

Solution:

This denotes the language of all strings drawn from the alphabet $\Sigma = \{a, b\}$ including the empty string ε .

The fact that the whole formula contains a union of a two characters alphabet within ()* implies that this expression has no fixed prefix or suffix, and can contain a or b in any order. It can be reformulated as: $(b^*|ab^*)^*$ which includes the language $(b^*|a)^*$, itself including the language $(b|a)^*$.