6.006- Introduction to Algorithms

Lecture 5

Plan

- Last lecture: Heap
 - Maintains the max element in a dynamically changing data set
- Today: Binary Search Tree
 - Maintains complete ordering of the data
 - -Bulding block for:
- (a,b) tree, 2-3 tree, 2-3-4 tree, AA tree, AVL tree,

Binary Search Trees (BSTs)

- A tree ...
- ...where each node x has:
 - -a key[x]
 - three pointers:
 - left[x] : points to left child
 - right[x] : points to right child (
 - p[x] : points to parent
- Note: no natural array representation, need to use pointers (unlike heaps)

Binary Search Trees (BSTs)

- **Defining** property (i.e. what makes it a binary SEARCH tree):
- for any node x:
 - for all nodes y in the left subtree of x:

$$\text{key}[y] \leq \text{key}[x]$$

– for all nodes y in the right subtree of x:

$$\text{key}[y] \ge \text{key}[x]$$

BST as a data structure

• Supported Operations:

- insert(k): insert a node with key k at the appropriate location of the tree
- find(k): finds the node containing key k (if it exists)
- delete(k): delete the node containing key k, if such a node exists
- findmin(x): finds the minimum of the tree rooted at x
- deletemin(): finds the minimum of the tree and deletes it
- next-larger(x): finds the node containing the key that is the immediate next of key[x]

Insertion

• insert(k): insert a node with key k at the appropriate location of the tree

Insertion

• insert(k): insert a leaf node with key k at the unique location of the tree

Growing BSTs

- Insert 10
- Insert 12
- Insert 5
- Insert 1
- Insert 6
- Insert 7

Find

• find(k): finds the node containing key k (if it exists)

Delete

• delete(k): delete the node containing key k, if such a node exists

Question: What if we have to delete a node that is internal? How do we fill in the hole? A: next lecture.

Findmin

Findmin(x)

- While $left[x] \neq NIL$ do $x \leftarrow left[x]$
- Return x

minimum(5)=1

Next-larger

next-larger(x):

- If right[x] ≠ NIL then
 return findmin(right[x])
- Otherwise

$$y \leftarrow p[x]$$

While $y\neq NIL$ and x=right[y] do

- x ← y
- $y \leftarrow p[y]$

Return y

$$next-larger(5) = 6$$

$$next-larger(7)$$

Next-larger

next-larger(x):

- If right[x] ≠ NIL then
 return findmin(right[x])
- Otherwise

$$y \leftarrow p[x]$$

While $y\neq NIL$ and x=right[y] do

- x ← y
- $y \leftarrow p[y]$

Return y

$$next-larger(5) = 6$$

$$next-larger(7)$$

Next-larger

next-larger(x):

- If right[x] ≠ NIL then
 return findmin(right[x])
- Otherwise

$$y \leftarrow p[x]$$

While $y\neq NIL$ and x=right[y] do

- x ← y
- $y \leftarrow p[y]$

Return y

$$next-larger(5) = 6$$

$$next-larger(7) = 10$$

Analysis

- We have seen insertion, deletion, search, findmin, etc.
- How much time does any of this take?
- Worst case: O(height)
 - => height really important
- After we insert n elements, what is the worst possible BST height?

Analysis

• n-1

• So, still O(n) per operation

Next lecture: balanced BSTs

