

Complejidad Algorítmica

Unidad 2: Algoritmos voraces, programación dinámica y problemas P-NP

Módulo 12: Programación Dinámica - Casos de Uso

Complejidad Algorítmica

Semana 12

Objetivos

 Examinar casos de uso de la Programación Dinámica

MÓDULO 12: Programación Dinámica - Casos de Uso

- 1. Aplicaciones de la Programación Dinámica
 - o Caso de la Mochila
 - Caso del Cambio Mínimo de Monedas

Existen muchos problemas que se resuelven utilizando un enfoque de programación dinámica para encontrar la solución óptima.

A continuación, conoceremos los siguientes casos de uso:

El problema del Cambio Mínimo de Monedas.

6. Programación Dinámica

¿Cómo resolver problemas de programación dinámica?

Cuando se trata de encontrar la solución al problema utilizando la programación dinámica, a continuación se detallan algunos pasos que debe considerar seguir:

2) Identificar las variables del problema

4) Identificar el caso base

6) Añadir memorización

1) Reconocer el problema de DP

3) Expresar la relación de recurrencia

5) Decidir el enfoque iterativo o recursivo para resolver el problema

El problema de la Mochila

- El problema de la mochila es el ejemplo perfecto de un algoritmo de programación dinámica y la pregunta más frecuente en una entrevista técnica de empresas basadas en productos.
- Como datos tenemos las ganancias y los pesos de N artículos, y debemos colocar estos artículos en una mochila con la capacidad 'W', por tanto, debemos encontrar (seleccionar) la cantidad de artículos que sea menor o igual a la capacidad de la mochila.

PLANTEAMIENTO DEL PROBLEMA

Dada una bolsa con capacidad **W**, y una lista de artículos junto con sus pesos y ganancias asociadas con ellos. La tarea es llenar la mochila de manera eficiente, de modo que se logre el máximo beneficio.

El problema de la Mochila

EJEMPLO:

Capacidad de la mochila: 11kg

Nro. Productos: 5

Producto	1	2	3	4	5
Pesos	1	2	5	6	7
Precios	1	6	18	22	28

Donde:

Capacidad de la Mochila = W

Lista de pesos : wt = [] Lista de precios : pr = [] No. De productos = N

El problema de la Mochila

PASOS A SEGUIR

- 1. Crear una tabla **dp[][]** y considerar todos los pesos posibles de 1 a W como columnas y pesos posibles a elegir como filas.
- 2. El estado /celda **dp[i][j]** en la tabla representa la ganancia máxima alcanzable si **'j'** es la capacidad de la mochila y los primeros elementos **'i'** se incluyen en la matriz peso/artículo.

 Por lo tanto, la última celda representará el estado de respuesta.
- 3. Solo se pueden incluir artículos si su peso es inferior a la capacidad de la mochila.
- Existen dos posibilidades para la condición en la que puede completar todas las columnas que tienen 'peso> peso [i-1]'.

El problema de la Mochila

EJEMPLO #1: El problema de la Mochila

Estado Inicial: mochila vacía

Estado Final: cualquier combinación de objetos en la

mochila

Operadores: meter o sacar objetos de la

mochila

Heurística: $max \sum_{i} Valor_{i}$ o $max \sum_{i} \frac{Valor_{i}}{Peso_{i}}$

El problema de la Mochila

EJEMPLO #1: El problema de la Mochila

Capacidad de la mochila = 8kg

Artículos = 6

1kg	-	2€
2kg	-	5€
4kg	-	6€

5kg - 10€

7kg - 13€

8kg - 16€

Etapa	Artículo	Dimensión (Kg)	Ganancia (€)	0	1	2	3	4	5	6	7	8	0 – 8 kg. (máximo)
0		Estado inicial		0	0	0	0	0	0	0	0	0	Estado inicial: Mochila va
1	А	1	2										
2	В	2	5										
3	С	4	6										
4	D	5	10										
5	Е	7	13										
6	F	8	16										

Etapa #0: El estado de la mochila esta vacía y la ganancia es 0.

Evaluamos 6 etapas porque solo hay 6 objetos (de A-F, existe solo 1 und. x cada objeto). Los colocamos en la tabla en orden creciente en dimensión con su respectiva ganancia.

El problema de la Mochila

1kg - 2€
2kg - 5€
4kg - 6€
5kg - 10€
7kg - 13€
8kg - 16€

Etapa	Artículo	Dimensión (Kg)	Ganancia (€)	0	1	2	3	4	5	6	7	8	0 – 8 kg. (máximo)
0		Estado inicial		0	0	0	0	0	0	0	0	0	Estado inicial: Mochila vacía
1	^	1	2		2	2	2	2	2	2	2	2	
1	А	1	2	0	Α	Α	Α	Α	Α	Α	Α	Α	
2	В	2	Г		2	5	7	7	7	7	7	7	
	В	2	5	0	Α	В	A+B	A+B	A+B	A+B	A+B	A+B	

Etapa #1: Introducimos el objeto A en el casillero de 1kg con la ganancia asociada igual a 2.

Como no hay otro objeto a introducir perteneciente a etapas previas, copiamos esta casilla en las restantes (de la casilla 2 a la de 8kg).

Etapa #2:

- Introducimos el objeto B en el casillero de 2kg con la ganancia asociada igual a 5, manteniendo los valores de las casilla 0-1 de la etapa #1.
- En el siguiente casillero, verificamos si podemos introducir uno o mas objetos que totalicen 3kg => A + B cumplen la condición con una ganancia de 2+5 = 7.
- Colocamos 7 en el casillero 3(kg) haciendo referencia a los objetos A+B y copiamos este valor al resto de casillas porque ya no hay mas objetos que introducir.

El problema de la Mochila

1kg - 2€ 2kg - 5€ 4kg - 6€ 5kg - 10€ 7kg - 13€ 8kg - 16€

						GA	NANCIA	S EN DI	MENSIO	N (Kg.)			
Etapa	Artículo	Dimensión (Kg)	Ganancia (€)	0	1	2	3	4	5	6	7	8	0 – 8 kg. (máximo)
0		Estado inicial		0	0	0	0	0	0	0	0	0	Estado inicial: Mochila vacía
1	^	1	า		2	2	2	2	2	2	2	2	
1	А	1	2	0	Α	Α	Α	Α	Α	Α	Α	Α	
2	В	2	Г		2	5	7	7	7	7	7	7	
2	Б	2	5	0	Α	В	A+B	A+B	A+B	A+B	A+B	A+B	
3	С	4	6	0	2	5	7	7	8	11	13	13	
					Α	В	A+B	A+B	A+C	B+C	A+B+C	A+B+C]

Etapa #3: No introducimos el objeto C en el casillero de 4kg con la ganancia asociada igual a 6 porque la ganancia de la etapa #2 para el casillero 4 fue de 7 (mayor a 6, por tanto, lo dejamos en 7).

Evaluamos que otros objetos podemos introducir en los siguientes casilleros mayores a 4kg:

- En la casilla de 5kg podemos colocar los objetos A y C (5Kg) que totalizan una ganancia 8 (mayor a 7 de la etapa anterior)
- En la casilla de 6kg podemos colocar los objetos B y C (6kg) que totalizan una ganancia de 11 (mayor a 7 de la etapa anterior)
- En la casilla de 7kg podemos colocar los objetos A, B y C (7kg) que totalizan una ganancia de 13 (mayor a 7 de la etapa anterior)
- En la casilla de 8kg ya no podemos colocar mas objetos, por tanto copiamos el resultado de la casilla de 7kg.

El problema de la Mochila

1kg - 2€ 2kg - 5€ 4kg - 6€ 5kg - 10€ 7kg - 13€ 8kg - 16€

Etapa	Artículo	Dimensión (Kg)	Ganancia (€)	0	1	2	3	4	5	6	7	8	0 – 8 kg. (máximo)
0		Estado inicial		0	0	0	0	0	0	0	0	0	Estado inicial: Mochila vacía
1	۸	1	2		2	2	2	2	2	2	2	2	
1	А	1	2	0	Α	Α	Α	Α	Α	Α	Α	Α	
2	В	,	5		2	5	7	7	7	7	7	7	
2	Б	2	J	0	Α	В	A+B	A+B	A+B	A+B	A+B	A+B	
3	С	4	6	0	2	5	7	7	8	11	13	13	
		•			Α	В	A+B	A+B	A+C	B+C	A+B+C	A+B+C	
4	D		10	0	2	5	7	7	10	12	15	17	
4	D D	3	10		Α	В	A+B	A+B	D	A+D	B+D	A+B+D	

Etapa #4: Introducimos el objeto D en el casillero de 5kg con la ganancia asociada igual a 10, manteniendo los valores de las casilla 0-4 de la etapa #3.

Evaluamos que otros objetos podemos introducir en los siguientes casilleros mayores a 5kg:

- En la casilla de 6kg podemos colocar los objetos A y D (6Kg) que totalizan una ganancia 12 (mayor a 11 de la etapa anterior)
- En la casilla de 7kg podemos colocar los objetos B y D (7kg) que totalizan una ganancia de 15 (mayor a 13 de la etapa anterior)
- En la casilla de 8kg podemos colocar los objetos A, B y D (8kg) que totalizan una ganancia de 17 (mayor a 13 de la etapa anterior)

El problema de la Mochila

1kg - 2€ 2kg - 5€ 4kg - 6€ 5kg - 10€ 7kg - 13€ 8kg - 16€

						GA	NANCIA	S EN DI	MENSIO	N (Kg.)			
Etapa	Artículo	Dimensión (Kg)	Ganancia (€)	0	1	2	3	4	5	6	7	8	0 – 8 kg. (máximo)
0		Estado inicial		0	0	0	0	0	0	0	0	0	Estado inicial: Mochila vacía
1	۸	1	2		2	2	2	2	2	2	2	2	
1	A	1	2	0	Α	Α	Α	Α	Α	Α	Α	Α	
2	В	2	5		2	5	7	7	7	7	7	7	
	В	2	5	0	Α	В	A+B	A+B	A+B	A+B	A+B	A+B	
3	C	4	6	0	2	5	7	7	8	11	13	13	
			-		Α	В	A+B	A+B	A+C	B+C	A+B+C	A+B+C	
4	D	5	10	0	2	5	7	7	10	12	15	17	
4	U	5	10	U	Α	В	A+B	A+B	D	A+D	B+D	A+B+D	
5	E	7	13	0	2	5	7	7	10	12	15	17	
		/	13		Α	В	A+B	A+B	D	A+D	B+D	A+B+D	

Etapa #5: No introducimos el objeto E en el casillero de 7kg con la ganancia asociada igual a 13 porque la ganancia de la etapa #4 para el casillero 7 fue de 15 (mayor a 13, por tanto, lo dejamos en 15).

Evaluamos que otros objetos podemos introducir en los siguientes casilleros mayores a 7kg:

• En la casilla de 8kg podemos colocar los objetos A y E que totalizan una ganancia de 15 (menor a 17 de la etapa anterior). Lo dejamos con 17.

El problema de la Mochila

1kg - 2€ 2kg - 5€ 4kg - 6€ 5kg - 10€ 7kg - 13€ 8kg - 16€

Etapa	Artículo	Dimensión (Kg)	Ganancia (€)	0	1	2	3	4	5	6	7	8	0 – 8 kg. (máximo)
0		Estado inicial		0	0	0	0	0	0	0	0	0	Estado inicial: Mochila vac
1	А	1	2		2	2	2	2	2	2	2	2	
		_		0	Α	Α	Α	Α	Α	Α	Α	Α	
2	В	2	5		2	5	7	7	7	7	7	7	
	D	2	5	0	Α	В	A+B	A+B	A+B	A+B	A+B	A+B	
3	C	4	6	0	2	5	7	7	8	11	13	13	
			-		Α	В	A+B	A+B	A+C	B+C	A+B+C	A+B+C	
4	D	5	10		2	5	7	7	10	12	15	17	
4	U	5	10	0	Α	В	A+B	A+B	D	A+D	B+D	A+B+D	
_	_	7	12		2	5	7	7	10	12	15	17	
5	E	7	13	0	Α	В	A+B	A+B	D	A+D	B+D	A+B+D	
	_	0	16		2	5	7	7	10	12	15	17	
6	F	8	16	0	Α	В	A+B	A+B	D	A+D	B+D	A+B+D	

Etapa #6: No introducimos el objeto F en el casillero de 8kg con la ganancia asociada igual a 16 porque la ganancia de la etapa #5 para el casillero 8 fue de 17 (mayor a 16, por tanto, lo dejamos en 17).

El problema del Cambio mínimo de Monedas

- Este es uno de los famosos problemas de programación dinámica que se pregunta principalmente en las entrevistas técnicas para ingresar a las principales empresas.
- El problema consiste en hacer un cambio del valor dado de centavos donde se tiene un suministro infinito de cada una de las monedas valoradas en C = {c1, c2,....cm}.

PLANTEAMIENTO DEL PROBLEMA

Dado un conjunto de denominaciones de monedas disponibles y un precio objetivo. Encuentre la cantidad mínima de monedas requeridas para pagar lo mismo.

El problema del Cambio mínimo de Monedas

PASOS A SEGUIR

- 1. Podemos comenzar la solución con suma = N centavos.
- 2. En cada iteración, encontramos las monedas mínimas requeridas dividiendo el problema original en subproblemas.
- 3. Consideramos una moneda de { 1, c2,...cm} y reducimos la suma repetidamente dependiendo de la moneda de la denominación que se elija.
- 4. Repetir el mismo proceso hasta que N se convierta en 0, y en este punto, encontramos la solución.

El problema del Cambio mínimo de Monedas

Ejemplo: Analicemos el caso de Perú que tiene las monedas de céntimos.

Ahora imaginemos que existiera una moneda más de 25 céntimos:

El problema del Cambio mínimo de Monedas

Ejemplo: Analicemos el caso de Perú que tiene las monedas de céntimos.

Ahora imaginemos que existiera una moneda más de 25 céntimos:

La solución no consiste

• En tomar siempre las monedas de mayor valor hasta llegar al número (como lo hicimos en el enfoque codicioso).

En DP debemos generalizar el problema

- Las denominaciones serán d₁, d₂, d₃, ..., d_k
- Estas denominaciones estarán ordenadas, es decir:

$$d_1 < d_2 < d_3 < ... < d_k$$

Así, el último ejemplo tiene:

$$d_1 = 1$$
, $d_2 = 5$, $d_3 = 10$, $d_4 = 20$, $d_5 = 25$, $d_6 = 50$

El problema del Cambio mínimo de Monedas

Resolveremos este problema en 4 pasos.

Pasos a seguir

Paso #1: Describir la estructura de una solución optima

- La mejor solución al problema tiene la mejor solución a sus subproblemas.
- Por ejemplo, para 85 céntimos, el óptimo es (10,25,50):

óptimo

óptimo

Ambas soluciones son optimas

El problema del Cambio mínimo de Monedas

Pasos a seguir

Paso #2: Definir recursivamente el valor de una solución

- Voy a almacenar en C[p], la cantidad mínima de monedas para cambiar p centavos.
- ¿Cuál es mi caso base?
 C[0] = 0
- ¿Cómo calculamos otros C[p] para otros p?
 C[p] = min i: d_i≤ p {1+C[p d_i]}
- Luego, para construir la solución, guardamos en S[p] la moneda escogida.

• **Ejemplo:** Si quiero calcular el mínimo de monedas para n = 85 con las monedas:

• Dijimos que: C[p] = min i: $d_i \le p \{1+C[p - d_i]\}$

 $C[85] = min\{1+d[84], 1+d[80], 1+d[75], 1+d[65], 1+d[60], 1+d[35]\}$

El problema del Cambio mínimo de Monedas

Pasos a seguir

Paso #2: Definir recursivamente el valor de una solución

• La GENERALIZACION quedaría así:

C[p]
$$0, \text{ si p = 0} \\ \min_{i:di \le p} \{1+C[p-d_i]\}, \text{ si p } \neq 0$$

Sencillar(d[], n)

El problema del Cambio mínimo de Monedas

Pasos a seguir

Paso #3: Hallar el valor de una solución optima.

```
d[] = lista de denominaciones de monedasn = cantidad a sencillark = cantidad de denominaciones de monedas
```

El problema del Cambio mínimo de Monedas

Pasos a seguir

Paso #4: Construir la solución optima.

• Ya tenemos un valor óptimo en C[p], ahora debemos construir la solución con S[]

```
Reportar(S, d, n)
   Imprimir "Número mínimo de monedas: " + C[n] + " y son: "
   While n > 0 do
        Imprimir d[Sol[n]] + ", "
        n ← n - d[Sol[n]]
```

Resolvimos el problema del cambio mínimo de monedas con la construcción de una solución optima.

CONCLUSIONES

- 1. La complejidad del tiempo de ejecución del problema de la mochila es **O(N*W)** donde N es el número de artículos dados y W es la capacidad de la mochila.
- La complejidad del tiempo de ejecución del problema mínimo de cambio de moneda es O(m*n), donde m es el número de monedas y n es el cambio requerido.
- 3. El registro tabular de los resultados simplifican realizar cálculos desde el inicio
- 4. Hemos aprendido a manejar y desarrollar los principios del paradigma de programación dinámica.

PREGUNTAS

Dudas y opiniones