Nome, Cognome, Matricola

Domanda 10 (8 punti)

Si consideri il seguente frammento di codice C:

```
for (i = 0; i < 100; i++) {
    v5[i] = (v1[i]+v2[i]);
    v6[i] = (v2[i]*v3[i]);
    v7[i] = (v2[i]*v3[i])/v4[i];
}</pre>
```

dove i vettori v1[], v2[], v3[], v4[] contengono numeri Floating Point (FP), sono lunghi 100 e sono stati salvati in precedenza nella memoria; gli elementi di v4[] non sono mai 0. Inoltre è stato allocato in memoria lo spazio vuoto per i vettori v5[], v6[] e v7[].

Si eseguano le seguenti operazioni:

- 1) Con riferimento al programma riportato nel seguito, scritto per l'architettura del processore MIPS64 (descritta sotto), ed utilizzando gli spazi a ciò appositamente destinati, si calcoli il numero di colpi di clock richiesti per l'esecuzione dell'intero programma. L'architettura da considerare ha le seguenti caratteristiche:
 - L'unità di moltiplicazione FP è un'unità pipelined a 8 stadi
 - L'unità aritmetica FP è un'unità pipelined a 2 stadi
 - L'unità di divisione FP è un'unico blocco con una latenza pari a 10 colpi di clock
 - Il branch delay slot è pari ad 1 colpo di clock
 - Il delay slot non è abilitato (ossia, la pipeline viene svuotata se il salto viene preso)
 - Il data forwarding è abilitato.

Si assuma che le diverse unità funzionali che compongono lo stadio di EX possano lavorare in parallelo su istruzioni diverse: l'architettura considerata può quindi implementare un meccanismo che permette il completamento out-of-order delle istruzioni.

```
1)
; ****** WinMIPS 64
                                        ********
      for (i = 0; i < 100; i++) {
             v5[i] = (v1[i]+v2[i]);
             v6[i] = (v2[i]*v3[i]);
             v7[i] = (v2[i]*v3[i])/v4[i];
       }
                        Commenti
                                                Colpi di clock
             .data
v1: .double "100 valori"
v2: .double "100 valori"
v4: .double "100 valori"
v5: .double "100 zeri"
v6: .double "100 zeri"
v7: .double "100 zeri"
             .text
main: daddui r1,r0,0
                       r1 <= puntatore
                       r2 <= 100
      daddui r2,r0,100
                       f1 \le v1[i]
loop: l.d fl,v1(r1)
                       f2 \le v2[i]
      1.d f2,v2(r1)
      mul.d f3,f1,f2
                       f3 \le v1[i]*v2[i]
                       f4 \le v3[i]
      1.d f4,v3(r1)
      mul.d f5,f2,f4
                       f5 \le v2[i]*v3[i]
                       f6 \le v4[i]
      1.d f6,v4(r1)
                        f7 \le (v2[i]*v3[i])/v4[i]
      div.d f7,f5,f6
      s.d f3,v5(r1)
      s.d f5,v6(r1)
      s.d f7,v7(r1)
      daddi r2,r2,-1
                       r2 \le r2 - 1
      daddui r1,r1,8
                       r1 <= r1 + 8
      bnez r2,loop
      halt
                 total
```

2)	Si ottimizzi il programma utilizzando la tecnica nota come <i>loop unrolling</i> abilitando il <i>Branch Delay Slot</i> in maniera tale che il programma esegua lo stesso calcolo del programma precedente in un tempo minore. Si calcoli il numero di colpi di clock richiesti per l'esecuzione del nuovo programma.

- 3) Con riferimento all'architettura di un processore MIPS che implementa la strategia multiple-issue con speculazione (descritta sotto), si calcoli il numero di colpi di clock necessari all'esecuzione di 2 cicli del programma proposto. L'architettura da considerare ha le seguenti caratteristiche:
 - può eseguire l'issue di 2 istruzioni per colpo di clock
 - in presenza di un'istruzione di salto, viene eseguita una sola issue
 - può eseguire il commit di 2 istruzioni per colpo di clock
 - sono disponibili le seguenti unità funzionali indipendenti:
 - i. 1 unità Memory address
 - ii. 1 unità per operazioni intere (ALU)
 - iii. 1 unità per il calcolo dei salti
 - iv. 1 unità di moltiplicazione FP pipelined a 8 stadi
 - v. 1 unità di divisione FP no pipelined (latenza 10)
 - vi. 1 unità di somma e sottrazione FP pipelined a 2 stadi
 - la previsione sui salti è sempre corretta
 - le cache non producono mai situazioni di miss
 - sono disponibili due CDB (Common Data Bus).

# iterazione		Issue	EXE	MEM	CDB x2	COMMIT x2
1	l.d f1,v1(r1)					
1	l.d f2,v2(r1)					
1	mul.d f3,f1,f2					
1	l.d f4,v3(r1)					
1	mul.d f5,f2,f4					
1	l.d f6,v4(r1)					
1	div.d f7,f5,f6					
1	s.d f3,v5(r1)					
1	s.d f5,v6(r1)					
1	s.d f7,v7(r1)					
1	daddi r2,r2,-1					
1	daddui r1,r1,8					
1	bnez r2,loop					
2	l.d f1,v1(r1)					
2	l.d f2,v2(r1)					
2 2	mul.d f3,f1,f2					
2	l.d f4,v3(r1)					
2	mul.d f5,f2,f4					
2 2	l.d f6,v4(r1)					
2	div.d f7,f5,f6					
2	s.d f3,v5(r1)					
2	s.d f5,v6(r1)					
2 2	s.d f7,v7(r1)					
2	daddi r2,r2,-1					
2	daddui r1,r1,8					
2	bnez r2,loop					

Ι	primi	2	cicli	sono	eseguiti	in	colpi	di	clo	ock
-	P	_		00110	useg area		- Q-P-			,