HAUSAUFGABE 3 - BLATT 8, 9 & 10

SARAH KÖHLER UND MATTHIAS LOIBL

Aufgabe 3 - Hennessy-Milner Logik: Modellierung. (Proc
, Act, $\{\overset{a}{\to} | a \in \mathsf{Act}\})$

Act
$$\}$$
)
Proc = $\{p_1, p_2, p_3\}$
Act = $\{a, b, c, d\}$

$$\stackrel{a}{\rightarrow} = \{(p_1, p_2)\}$$

$$\stackrel{b}{\rightarrow} = \{(p_2, p_1)\}$$

$$\stackrel{c}{\rightarrow} = \{(p_2, p_2)\}$$

$$\stackrel{d}{\rightarrow} = \{(p_1, p_3)\}$$

Es gilt: $p_1 \models F_1 \wedge F_2 \wedge F_3 \wedge F_4 \wedge F_5$

Aufgabe 4 - Unterscheidende Formeln.

a)
$$r_1 \not\sim q_1$$
Eine unterscheidende Formel ist F_1 :
$$F_1 = [a] \langle c \rangle tt$$

$$r_1 \models F_1, \text{ aber } q_1 \not\models F_1$$
b)
$$q_3 \not\sim p_5$$
Eine unterscheidende Formel ist F_2 :
$$F_2 = \langle b \rangle \langle a \rangle \langle a \rangle \langle a \rangle t$$

$$q_3 \models F_2, \text{ aber } p_5 \not\models F_2$$

c)
$$r_3 \not\sim q_2$$
 Eine unterscheidende Formel ist F_3 :
$$F_3 = \langle b \rangle \langle a \rangle \ t$$

$$r_3 \models F_3, \ \text{aber} \ q_2 \not\models F_3$$

d) Es existiert keine unterscheidende Formel, da $p_6 \sim p_2$ gilt.

Aufgabe 5 - Unterscheidende Formeln.

a)

Es existiert keine unterscheidende Formel, da der Unterschied zwischen den beiden Prozessen nicht durch HML-Formeln beschrieben werden kann. In A und B ist zu jeder Zeit ein a-Schritt möglich. Für beliebige $n \in \mathbb{N}$ sind die beiden Prozesse also n-Schritt-bisimilar: $A \sim_n B$.

Das Hennessy-Milner-Theorem ist nicht anwendbar, da es voraussetzt, dass beide betrachteten Prozesse bild-endlich sind. A ist aber nicht bild-endlich, da die Menge der durch a erreichbaren Nachfolger von A unendlich ist: $\#(Der(A, a) \notin \mathbb{N})$.

b)

Eine unterscheidende Formel ist:

 $F_1 = \langle a \rangle^{11} t t$

Es gilt: $B \models F_1$, aber $C \not\models F_1$.

c)

Eine unterscheidende Formel ist:

 $F_2 = \langle a \rangle [a] f$

Es gilt: $Y \models F_2$, aber $X \not\models F_2$.

d)

Es existiert keine unterscheidende Formel, da der Unterschied zwischen den beiden Prozessen nicht durch HML-Formeln beschrieben werden kann. In X und Z sind zu jeder Zeit a-, \overline{a} - oder τ -Schritte möglich. Für beliebige $n \in \mathbb{N}$ sind die beiden Prozesse also n-Schritt-bisimilar: $X \sim_n Z$.

Das Hennessy-Milner-Theorem ist nicht anwendbar, da es voraussetzt, dass beide betrachteten Prozesse bild-endlich sind. X ist aber nicht bild-endlich, da die Mengen der durch a, \overline{a} und τ erreichbaren Nachfolger von X unendlich sind:

 $\#(Der(X, a) \notin \mathbb{N}.$

 $\#(Der(X, \overline{a}) \notin \mathbb{N}.$

 $\#(Der(X,\tau) \not\in \mathbb{N}.$

Aufgabe 7 - Monotonie von O. Zu zeigen: \mathcal{O}_F ist monoton $\forall F \in \mathcal{M}_{\{X\}}$. Seien $S_1, S_2 \subseteq \text{Proc}$ und es gelte $S_1 \subseteq S_2$.

Um die Monotonie von \mathcal{O}_F für beliebige F zu beweisen, muss also gezeigt werden, dass $\mathcal{O}_F(S_1) \subseteq \mathcal{O}_F(S_2)$ für alle $F \in \mathcal{M}$ gilt.

Beweis per struktureller Induktion über den Aufbau von F:

Induktionsanfang

Induktionsanfang sind die atomaren Formeln # und #:

$$\mathcal{O}_{t}(S_1) = \operatorname{Proc} \subseteq \operatorname{Proc}$$
 $Def.\mathcal{O}$
= $\mathcal{O}_{t}(S_2)$ $Def.\mathcal{O}$

$$\mathcal{O}_{f}(S_1) = \operatorname{Proc} \subseteq \operatorname{Proc}$$
 $Def.\mathcal{O}$
= $\mathcal{O}_{f}(S_2)$ $Def.\mathcal{O}$

Induktions voraus setzung

Seien $F, G \in \mathcal{M}$ so, dass $\mathcal{O}_F(S_1) \subseteq \mathcal{O}_F(S_2)$ und $\mathcal{O}_G(S_1) \subseteq \mathcal{O}_G(S_2)$ gelten.

Induktions behauptung I

Dann gilt auch: $\mathcal{O}_{F\vee G}(S_1)\subseteq\mathcal{O}_{F\vee G}(S_2)$

$Induktionsschritt\ I$

$$\begin{split} \mathcal{O}_{F\vee G}(S_1) = & \mathcal{O}_F(S_1) \cup \mathcal{O}_G(S_1) & Def.\mathcal{O} \\ = & \{p \in \operatorname{Proc} | p \in \mathcal{O}_F(S_1) \vee p \in \mathcal{O}_G(S_1)\} & Def. \cup \\ \subseteq & \{p \in \operatorname{Proc} | p \in \mathcal{O}_F(S_2) \vee p \in \mathcal{O}_G(S_2)\} & (*) \\ = & \{p \in \operatorname{Proc} | p \in \mathcal{O}_F(S_1)\} \cup \{p \in \operatorname{Proc} | p \in \mathcal{O}_G(S_1)\} & Def. \cup \\ = & \mathcal{O}_F(S_2) \cup \mathcal{O}_G(S_2) & Def. \mathcal{O} \\ = & \mathcal{O}_{F\vee G}(S_2) & Def. \mathcal{O} \end{split}$$

(*) Aus der I.V. folgt:

$$\begin{split} p &\in \mathcal{O}_G(S_1) \Rightarrow p \in \mathcal{O}_G(S_2) \\ p &\in \mathcal{O}_F(S_1) \Rightarrow p \in \mathcal{O}_F(S_2) \\ &\Rightarrow \{ p \in \operatorname{Proc} | p \in \mathcal{O}_F(S_1) \lor p \in \mathcal{O}_G(S_1) \} \subseteq \{ p \in \operatorname{Proc} | p \in \mathcal{O}_F(S_1) \lor p \in \mathcal{O}_G(S_1) \} \end{split}$$

Induktionsbehauptung II

Sei $a \in Act$. Dann gilt auch: $\mathcal{O}_{[a]F}(S_1) \subseteq \mathcal{O}_{[a]F}(S_2)$

Induktionsschritt II

$$\mathcal{O}_{[a]F}(S_1) = [\cdot a \cdot] \mathcal{O}_F(S_1) \qquad Def.\mathcal{O}$$

$$\mathcal{O}_{[a]F}(S_2) = [\cdot a \cdot] \mathcal{O}_F(S_2) \qquad Def.\mathcal{O}$$

Es sind zwei Fälle zu unterscheiden:

I. Alle $p \in \mathsf{Proc} \ \mathrm{mit} \ p \not\xrightarrow{q}$.

Sei $P = \{ p \in \mathsf{Proc} \mid p \not\xrightarrow{s} \}.$

Nach Definition von $[\cdot a \cdot]$ sind alle Prozesse $p \in P$ in der Menge $\mathcal{O}_{[a]F}(S_1) = [\cdot a \cdot] \mathcal{O}_F(S_1)$ enthalten, d.h. $P \subseteq \mathcal{O}_{[a]F}(S_1)$.

Analog gilt ebenso, dass alle $p \in P$ in der Menge $\mathcal{O}_{[a]F}(S_2) = [\cdot a \cdot] \mathcal{O}_F(S_2)$ enthalten sind, also $P \subseteq \mathcal{O}_{[a]F}(S_2)$.

II. Alle $q \in \text{Proc mit } q \stackrel{a}{\to}$.

Für alle Prozesse q, die a-Übergänge haben, gilt nach Definition von $[\cdot a \cdot]$, dass sie dann in $\mathcal{O}_{[a]F}(S_1)$ enthalten sind, wenn ein Übergang $q \stackrel{a}{\to} q'$ mit $q' \in \mathcal{O}_F(S_1)$ existiert. Sei $Q = \{q \in \operatorname{Proc} | q \stackrel{a}{\to} q' \wedge q' \in \mathcal{O}_F(S_1)\}$. Es gilt also $Q \subseteq \mathcal{O}_F(S_1)$.

Da nach I.V $\mathcal{O}_F(S_1) \subseteq \mathcal{O}_F(S_2)$ gilt, folgt daraus direkt, dass $Q \subseteq \mathcal{O}_{[a]F}(S_2)$, da jeder a-Nachfolger, der in $\mathcal{O}_F(S_2)$ enthalten ist, auch in $\mathcal{O}_F(S_2)$ enthalten sein muss.

Da jeder Prozess aus $\mathcal{O}_{[a]F}(S_1)$ entweder in P oder in Q enthalten sein muss, ist $\mathcal{O}_{[a]F}(S_1) = P \cup Q$. Wir haben bereits gezeigt, dass $P \subseteq \mathcal{O}_{[a]F}(S_2)$ und $Q \subseteq \mathcal{O}_{[a]F}(S_2)$. Aus der Definition der Vereinigung folgt dann direkt, dass auch $P \cup Q \subseteq \mathcal{O}_{[a]F}(S_2)$. Es gilt also auch $\mathcal{O}_{[a]F}(S_1) \subseteq \mathcal{O}_{[a]F}(S_2)$.

Schluss

Da wir gezeigt haben, dass die Behauptung für atomare Formeln F gilt und induktiv auch über die Struktur von F, gilt die Behautung für alle Formeln $F \in \mathcal{M}$.

Aufgabe 8 - HML mit Rekursion.

a)

Die gegebene Aussage wird durch folgende Formel formalisiert: $F_{\{X\}} = \langle\,b\,\rangle\langle\,c\,\rangle\, t\!\!t \wedge \!\![\,a\,]\, X$ $X \stackrel{\text{max}}{=} \langle\,a\,\rangle X \wedge [\,b\,]\, f\!\!f$

b)

Die gegebene Aussage wird durch folgende Formel formalisiert:

$$F_{\{Y\}} = Y$$

$$Y \stackrel{\min}{=} [\text{Act }] Y \vee (\langle a \rangle t \land [b] f) \vee \langle b \rangle \langle b \rangle t$$

Aufgabe 9 - HML mit Rekursion.

a) Die zugrunde liegende Formel ist $X \stackrel{\text{min}}{=} (\langle a \rangle t t \vee \langle c \rangle t) \wedge [Act] X$.

$$\begin{split} \mathcal{O}_{(\langle a \rangle \, t \, \vee \langle \, c \, \rangle \, t) \wedge [\, Act \,] \, X}(\emptyset) = & (\langle \cdot a \cdot \rangle \, \mathsf{Proc} \, \cup \langle \cdot c \cdot \rangle \, \mathsf{Proc}) \, \cap \, ([\cdot a \cdot] \emptyset \, \cap [\cdot b \cdot] \emptyset \, \cap [\cdot c \cdot] \emptyset) \\ = & (\{p_1, p_2, p_6, p_7, p_8\} \, \cup \, \{p_4, p_6, p_7\}) \cap \\ & (\{p_3, p_4, p_5, p_9\} \, \cap \, \{p_1, p_3, p_5, p_7, p_8, p_9\} \, \cap \, \{p_1, p_2, p_3, p_5, p_8, p_9\}) \\ = & \{p_1, p_2, p_4, p_6, p_7, p_8\} \, \cap \, \{p_3, p_5, p_9\} \\ = & \emptyset \end{split}$$

An dieser Stelle haben wir einen Fixpunkt erreicht, da $\mathcal{O}_{(\langle a \rangle t \vee \langle c \rangle t) \wedge [Act] X}(\emptyset) = \emptyset$.

b) Die zugrunde liegende Formel ist $X \stackrel{\text{max}}{=} (\langle a \rangle t t \vee \langle c \rangle t) \wedge \langle Act \rangle X$.

$$\begin{split} \mathcal{O}_{(\langle a \rangle \, t\! t \, \vee \langle \, c \, \rangle \, t\!) \, \wedge \langle \, Act \, \rangle X}(\mathsf{Proc}) &= (\langle \cdot a \cdot \rangle \, \mathsf{Proc} \, \cup \langle \cdot c \cdot \rangle \, \mathsf{Proc}) \, \cap \, (\langle \cdot a \cdot \rangle \, \mathsf{Proc} \, \cap \langle \cdot b \cdot \rangle \, \mathsf{Proc} \, \cap \langle \cdot c \cdot \rangle \, \mathsf{Proc}) \\ &= (\{p_1, p_2, p_6, p_7, p_8\} \, \cup \, \{p_4, p_6, p_7\}) \, \cap \\ &\qquad \qquad (\{p_1, p_2, p_6, p_7, p_8\} \, \cup \, \{p_2, p_4, p_6\}) \, \cup \, \{p_4, p_6, p_7\}) \, \cup \\ &= \{p_1, p_2, p_4, p_6, p_7, p_8\} \, \cap \, \mathsf{Proc} \, \backslash \{p_3, p_5, p_9\} \\ &= \{p_1, p_2, p_4, p_6, p_7, p_8\} \end{split}$$

$$(\mathcal{O}_{(\langle a \rangle t \lor \langle c \rangle t) \land \langle Act \rangle X})^{2}(\mathsf{Proc}) = \mathcal{O}_{(\langle a \rangle t \lor \langle c \rangle t) \land \langle Act \rangle X}(\{p_{1}, p_{2}, p_{4}, p_{6}, p_{7}, p_{8}\}))$$

$$= (\langle \cdot a \cdot \rangle \mathsf{Proc} \cup \langle \cdot c \cdot \rangle \mathsf{Proc}) \cap$$

$$(\langle \cdot a \cdot \rangle \{p_{1}, p_{2}, p_{4}, p_{6}, p_{7}, p_{8}\} \cup$$

$$\langle \cdot b \cdot \rangle \{p_{1}, p_{2}, p_{4}, p_{6}, p_{7}, p_{8}\} \cup$$

$$\langle \cdot c \cdot \rangle \{p_{1}, p_{2}, p_{4}, p_{6}, p_{7}, p_{8}\})$$

$$= (\{p_{1}, p_{2}, p_{6}, p_{7}, p_{8}\} \cup \{p_{4}, p_{6}, p_{7}\}) \cap$$

$$(\{p_{6}, p_{8}\} \cup \{p_{2}, p_{6}\} \cup \{p_{4}, p_{7}\})$$

$$= \{p_{1}, p_{2}, p_{4}, p_{6}, p_{7}, p_{8}\} \cap \{p_{2}, p_{4}, p_{6}, p_{7}, p_{8}\}$$

$$= \{p_{2}, p_{4}, p_{6}, p_{7}, p_{8}\}$$

$$\begin{split} (\mathcal{O}_{(\langle a \rangle \, t \vee \langle c \rangle \, t) \wedge \langle Act \rangle X})^{3}(\mathsf{Proc}) = & \mathcal{O}_{(\langle a \rangle \, t \vee \langle c \rangle \, t) \wedge \langle Act \rangle X}(\{p_{2}, p_{4}, p_{6}, p_{7}, p_{8}\}) \\ = & (\langle \cdot a \cdot \rangle \, \mathsf{Proc} \, \cup \langle \cdot c \cdot \rangle \, \mathsf{Proc}) \cap \\ & (\langle \cdot a \cdot \rangle \{p_{2}, p_{4}, p_{6}, p_{7}, p_{8}\} \cap \\ & \langle \cdot b \cdot \rangle \{p_{2}, p_{4}, p_{6}, p_{7}, p_{8}\} \cap \\ & \langle \cdot c \cdot \rangle \{p_{2}, p_{4}, p_{6}, p_{7}, p_{8}\}) \\ = & (\{p_{1}, p_{2}, p_{6}, p_{7}, p_{8}\} \, \cup \, \{p_{4}, p_{6}, p_{7}\}) \cap \\ & (\{p_{6}, p_{8}\} \, \cup \, \{p_{6}\} \, \cup \, \{p_{4}, p_{6}, p_{7}, p_{8}\} \\ = & \{p_{4}, p_{6}, p_{7}, p_{8}\} \end{split}$$

$$\begin{split} (\mathcal{O}_{(\langle a \rangle \ t \lor \langle c \rangle \ t) \land \langle Act \rangle X})^{4}(\mathsf{Proc}) = & \mathcal{O}_{(\langle a \rangle \ t \lor \langle c \rangle \ t) \land \langle Act \rangle X}(\{p_{4}, p_{6}, p_{7}, p_{8}\}) \\ = & (\langle \cdot a \cdot \rangle \, \mathsf{Proc} \, \cup \langle \cdot c \cdot \rangle \, \mathsf{Proc}) \cap \\ & (\langle \cdot a \cdot \rangle \{p_{4}, p_{6}, p_{7}, p_{8}\} \, \cap \langle \cdot b \cdot \rangle \{p_{4}, p_{6}, p_{7}, p_{8}\} \, \cap \langle \cdot c \cdot \rangle \{p_{4}, p_{6}, p_{7}, p_{8}\}) \\ = & (\{p_{1}, p_{2}, p_{6}, p_{7}, p_{8}\} \, \cup \{p_{4}, p_{6}, p_{7}\}) \cap \\ & (\{p_{6}, p_{8}\} \, \cup \{p_{6}\} \, \cup \{p_{7}\}) \\ = & \{p_{1}, p_{2}, p_{4}, p_{6}, p_{7}, p_{8}\} \, \cap \{p_{6}, p_{7}, p_{8}\} \\ = & \{p_{6}, p_{7}, p_{8}\} \end{split}$$

An dieser Stelle haben wir einen Fixpunkt erreicht, da $\mathcal{O}_{(\langle a \rangle t \lor \langle c \rangle t) \land [Act] X}(\{p_6, p_7, p_8\}) = \{p_6, p_7, p_8\}.$