Введение в искусственный интеллект. Современное компьютерное зрение Тема семинара: Несверточные слои

Бабин Д.Н., Иванов И.Е.

кафедра Математической Теории Интеллектуальных Систем

28 февраля 2023 г.

План семинара

- Сведение к свертке
- О сигмоиде
- Сверточные механизмы внимания

ullet Предположим, что мы используем пакет размера ${\cal T}=1$ (здесь и далее опустим этот индекс)

- ullet Предположим, что мы используем пакет размера T=1 (здесь и далее опустим этот индекс)
- ullet Y_{ij}^k трехмерный тензор значений для некоторого слоя, где

- ullet Предположим, что мы используем пакет размера T=1 (здесь и далее опустим этот индекс)
- ullet Y_{ij}^k трехмерный тензор значений для некоторого слоя, где
 - ullet $1 \leq i \leq H, 1 \leq j \leq W$ пространственные координаты (ширина и высота),
 - ullet $k=1\ldots K$ номер карты признаков.

- ullet Предположим, что мы используем пакет размера T=1 (здесь и далее опустим этот индекс)
- ullet Y_{ij}^k трехмерный тензор значений для некоторого слоя, где
 - $1 \le i \le H, 1 \le j \le W$ пространственные координаты (ширина и высота),
 - \bullet $k = 1 \dots K$ номер карты признаков.
- ullet Выход нормализованного слоя: $Z_{ij}^k = \gamma^k rac{Y_{ij}^k \mu_{ ext{avg}}^k}{\sqrt{\sigma_{ ext{avg}}^{2k} + \epsilon}} + eta^k$

• Перепишем формулу в другом виде:

•
$$Z_{ij}^k = \gamma^k \frac{Y_{ij}^k - \mu_{\text{avg}}^k}{\sqrt{\sigma_{\text{avg}}^{2k} + \epsilon}} + \beta^k$$

• Перепишем формулу в другом виде:

$$Z_{ij}^{k} = Y_{ij}^{k} \frac{\gamma^{k}}{\sqrt{\sigma_{\text{avg}}^{2k} + \epsilon}} - \frac{\gamma^{k} \mu_{\text{avg}}^{k}}{\sqrt{\sigma_{\text{avg}}^{2k} + \epsilon}} + \beta^{k}$$

•
$$Z_{ij}^k = \gamma^k \frac{Y_{ij}^k - \mu_{\text{avg}}^k}{\sqrt{\sigma_{\text{avg}}^{2k} + \epsilon}} + \beta^k$$

• Перепишем формулу в другом виде:

$$Z_{ij}^{k} = Y_{ij}^{k} \frac{\gamma^{k}}{\sqrt{\sigma_{\text{avg}}^{2k} + \epsilon}} - \frac{\gamma^{k} \mu_{\text{avg}}^{k}}{\sqrt{\sigma_{\text{avg}}^{2k} + \epsilon}} + \beta^{k}$$

ullet Т.о., получаем $Z^k_{ij}=G^kY^k_{ij}+g^k$, где

•
$$Z_{ij}^k = \gamma^k \frac{Y_{ij}^k - \mu_{\text{avg}}^k}{\sqrt{\sigma_{\text{avg}}^{2k} + \epsilon}} + \beta^k$$

• Перепишем формулу в другом виде:

$$Z_{ij}^{k} = Y_{ij}^{k} \frac{\gamma^{k}}{\sqrt{\sigma_{avg}^{2k} + \epsilon}} - \frac{\gamma^{k} \mu_{avg}^{k}}{\sqrt{\sigma_{avg}^{2k} + \epsilon}} + \beta^{k}$$

- ullet Т.о., получаем $Z^k_{ij}=G^kY^k_{ij}+g^k$, где
 - ullet Мультипликативный член $G^k = rac{\gamma^k}{\sqrt{\sigma_{
 m avg}^{2k} + \epsilon}},$

•
$$Z_{ij}^k = \gamma^k \frac{Y_{ij}^k - \mu_{\text{avg}}^k}{\sqrt{\sigma_{\text{avg}}^{2k} + \epsilon}} + \beta^k$$

• Перепишем формулу в другом виде:

$$Z_{ij}^{k} = Y_{ij}^{k} \frac{\gamma^{k}}{\sqrt{\sigma_{avg}^{2k} + \epsilon}} - \frac{\gamma^{k} \mu_{avg}^{k}}{\sqrt{\sigma_{avg}^{2k} + \epsilon}} + \beta^{k}$$

- ullet Т.о., получаем $Z_{ii}^k = G^k Y_{ii}^k + g^k$, где
 - ullet Мультипликативный член $G^k=rac{\gamma^k}{\sqrt{\sigma_{avg}^{2k}+\epsilon}},$ ullet Аддитивный член $g^k=eta^k-rac{\gamma^k\mu_{avg}^k}{\sqrt{\sigma_{avg}^{2k}+\epsilon}}.$

Пакетная нормализация как свертка

Пакетная нормализация как свертка

• Значит, пакетная нормализация — это поканальная (depthwise, cm. предыдущую лекцию) свертка с ядром размера $1 \times 1!$

Пакетная нормализация как свертка

- Значит, пакетная нормализация это поканальная (depthwise, *см.* предыдущую лекцию) свертка с ядром размера $1 \times 1!$
- А композиция сверток тоже свертка (Упражнение: доказать)

• Обычно: сначала свертка, потом пакетная нормализация

- Обычно: сначала свертка, потом пакетная нормализация
- По слоям:

- Обычно: сначала свертка, потом пакетная нормализация
- По слоям:

$$X_{ij}^m \xrightarrow{F_{uv}^{mk}, b^k} Y_{ij}^k \xrightarrow{G^k, g^k} Z_{ij}^k$$

- Обычно: сначала свертка, потом пакетная нормализация
- По слоям:

$$X_{ij}^m \xrightarrow{F_{uv}^{mk}, b^k} Y_{ij}^k \xrightarrow{G^k, g^k} Z_{ij}^k$$

• Выписываем еще раз формулы для свертки:

- Обычно: сначала свертка, потом пакетная нормализация
- По слоям:

$$X_{ij}^m \xrightarrow{F_{uv}^{mk}, b^k} Y_{ij}^k \xrightarrow{G^k, g^k} Z_{ij}^k$$

• Выписываем еще раз формулы для свертки:

$$Y_{ij}^{k} = \sum_{m=1}^{M} \sum_{u,v=1}^{p,q} X_{i+u-1,j+v-1}^{m} \cdot F_{uv}^{mk} + b^{k}, \quad \forall k = 1 \dots K$$

и для пакетной нормализации:

- Обычно: сначала свертка, потом пакетная нормализация
- По слоям:

$$X_{ij}^m \xrightarrow{F_{uv}^{mk}, b^k} Y_{ij}^k \xrightarrow{G^k, g^k} Z_{ij}^k$$

• Выписываем еще раз формулы для свертки:

$$Y_{ij}^{k} = \sum_{m=1}^{M} \sum_{u,v=1}^{p,q} X_{i+u-1,j+v-1}^{m} \cdot F_{uv}^{mk} + b^{k}, \quad \forall k = 1 \dots K$$

и для пакетной нормализации:

$$Z_{ij}^k = G^k Y_{ij}^k + g^k$$

• Объединяя, получим:

• Объединяя, получим:

$$Z_{ij}^{k} = \sum_{m=1}^{M} \sum_{u,v=1}^{p,q} X_{i+u-1,j+v-1}^{m} \cdot F_{uv}^{mk} \cdot G^{k} + b^{k} + g^{k}, \quad \forall k = 1 \dots K$$

• Т.о., мы получили свертку с параметрами O_{uv}^{mk}, o^k , где (подтягиваем параметры пакетной нормализации):

• Объединяя, получим:

$$Z_{ij}^{k} = \sum_{m=1}^{M} \sum_{u,v=1}^{p,q} X_{i+u-1,j+v-1}^{m} \cdot F_{uv}^{mk} \cdot G^{k} + b^{k} + g^{k}, \quad \forall k = 1 \dots K$$

- Т.о., мы получили свертку с параметрами O_{uv}^{mk}, o^k , где (подтягиваем параметры пакетной нормализации):
 - Ядро $O_{uv}^{mk} = F_{uv}^{mk} \cdot rac{\gamma^k}{\sqrt{\sigma_{avg}^{2k} + \epsilon}},$

• Объединяя, получим:

$$Z_{ij}^{k} = \sum_{m=1}^{M} \sum_{u,v=1}^{p,q} X_{i+u-1,j+v-1}^{m} \cdot F_{uv}^{mk} \cdot G^{k} + b^{k} + g^{k}, \quad \forall k = 1 \dots K$$

- Т.о., мы получили свертку с параметрами O_{uv}^{mk}, o^k , где (подтягиваем параметры пакетной нормализации):
 - Ядро $O_{uv}^{mk} = F_{uv}^{mk} \cdot rac{\gamma^k}{\sqrt{\sigma_{avg}^{2k} + \epsilon}},$
 - ullet Аддитивный член $o^k=b^k+eta^k-rac{\gamma^k\mu_{ ext{avg}}^k}{\sqrt{\sigma_{ ext{avg}}^{2k}+\epsilon}}.$

7 / 18

• Объединяя, получим:

$$Z_{ij}^{k} = \sum_{m=1}^{M} \sum_{u,v=1}^{p,q} X_{i+u-1,j+v-1}^{m} \cdot F_{uv}^{mk} \cdot G^{k} + b^{k} + g^{k}, \quad \forall k = 1 \dots K$$

- Т.о., мы получили свертку с параметрами O_{uv}^{mk}, o^k , где (подтягиваем параметры пакетной нормализации):
 - Ядро $O_{uv}^{mk} = F_{uv}^{mk} \cdot rac{\gamma^k}{\sqrt{\sigma_{avg}^{2k} + \epsilon}},$
 - ullet Аддитивный член $o^k = b^k + eta^k rac{\gamma^k \mu_{ ext{avg}}^k}{\sqrt{\sigma_{ ext{avg}}^{2k} + \epsilon}}.$
- ullet Из $X_{ij}^m \xrightarrow{F_{uv}^{mk}, b^k} Y_{ij}^k \xrightarrow{G^k, g^k} Z_{ij}^k$ получили $X_{ij}^m \xrightarrow{O_{uv}^{mk}, o^k} Z_{ij}^k.$

• Вопрос: Можно ли maxpooling представить как свертку?

- Вопрос: Можно ли maxpooling представить как свертку?
- Ответ: Нет, так как операция взятия максимума нелинейная (в то время как свертка всегда линейна)

- Вопрос: Можно ли maxpooling представить как свертку?
- Ответ: Нет, так как операция взятия максимума нелинейная (в то время как свертка всегда линейна)
- Вопрос: Можно ли average pooling представить как свертку?

- Вопрос: Можно ли maxpooling представить как свертку?
- Ответ: Нет, так как операция взятия максимума нелинейная (в то время как свертка всегда линейна)
- Вопрос: Можно ли average pooling представить как свертку?
- Ответ: Да, и рассмотрим на примере global average pooling (GAP):

- Вопрос: Можно ли maxpooling представить как свертку?
- Ответ: Нет, так как операция взятия максимума нелинейная (в то время как свертка всегда линейна)
- Вопрос: Можно ли average pooling представить как свертку?
- Ответ: Да, и рассмотрим на примере global average pooling (GAP):
 - ullet Пусть двухмерный (не обращаем внимание на карты) вход $X_{ij}, 1 \leq i \leq H, 1 \leq j \leq W$,

- Вопрос: Можно ли maxpooling представить как свертку?
- Ответ: Нет, так как операция взятия максимума нелинейная (в то время как свертка всегда линейна)
- Вопрос: Можно ли average pooling представить как свертку?
- Ответ: Да, и рассмотрим на примере global average pooling (GAP):
 - ullet Пусть двухмерный (не обращаем внимание на карты) вход $X_{ij}, 1 \leq i \leq H, 1 \leq j \leq W$,
 - $GAP2D(X) = \frac{1}{HW} \sum_{i,j=1}^{H,W} X_{ij}$,

- Вопрос: Можно ли maxpooling представить как свертку?
- Ответ: Нет, так как операция взятия максимума нелинейная (в то время как свертка всегда линейна)
- Вопрос: Можно ли average pooling представить как свертку?
- Ответ: Да, и рассмотрим на примере global average pooling (GAP):
 - ullet Пусть двухмерный (не обращаем внимание на карты) вход $X_{ij}, 1 \leq i \leq H, 1 \leq j \leq W$,
 - $GAP2D(X) = \frac{1}{HW} \sum_{i,j=1}^{H,W} X_{ij}$,
 - Тогда свертка, соответствующая GAP2D(X) это свертка с ядром $F_{GAP} = \frac{1}{HW}\mathbbm{1}_{i,j=1}^{H,W}$ без аддитивного члена, с размером, как у входа $H \times W$, применяемая без добивки (паддинга) и в режиме "VALID"

О сигмоиде

• Вспомним три основных вида активации:

О сигмоиде

• Вспомним три основных вида активации:

① Сигмоида
$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$
,

О сигмоиде

- Вспомним три основных вида активации:
 - lacksquare Сигмоида $\sigma(x)=rac{1}{1+\exp(-x)}$,
 - \bigcirc Гиперболический тангенс $\tanh(x) = 2\sigma(2x) 1$,

- Вспомним три основных вида активации:
 - **①** Сигмоида $\sigma(x) = \frac{1}{1 + \exp(-x)}$,
 - ② Гиперболический тангенс $tanh(x) = 2\sigma(2x) 1$,
 - **3** Rectified Linear Unit ReLU(x) = max(0, x).

- Вспомним три основных вида активации:
 - **①** Сигмоида $\sigma(x) = \frac{1}{1 + \exp(-x)}$,
 - ② Гиперболический тангенс $tanh(x) = 2\sigma(2x) 1$,
 - **3** Rectified Linear Unit ReLU(x) = max(0, x).
- Изначально все использовали $\sigma(x)$. Тем не менее, сейчас он почти не встречается. Почему?

9 / 18

- Вспомним три основных вида активации:
 - **1** Сигмоида $\sigma(x) = \frac{1}{1 + \exp(-x)}$,
 - ② Гиперболический тангенс $tanh(x) = 2\sigma(2x) 1$,
 - **3** Rectified Linear Unit ReLU(x) = max(0, x).
- Изначально все использовали $\sigma(x)$. Тем не менее, сейчас он почти не встречается. Почему?
- **Проблема**: выход $\sigma(x)$ не центрирован в нуле.

- Вспомним три основных вида активации:
 - ① Сигмоида $\sigma(x) = \frac{1}{1 + \exp(-x)}$,
 - ② Гиперболический тангенс $tanh(x) = 2\sigma(2x) 1$,
 - 3 Rectified Linear Unit ReLU(x) = max(0, x).
- Изначально все использовали $\sigma(x)$. Тем не менее, сейчас он почти не встречается. Почему?
- **Проблема**: выход $\sigma(x)$ не центрирован в нуле.
- Решение: использовать tanh(x).

- Вспомним три основных вида активации:
 - **①** Сигмоида $\sigma(x) = \frac{1}{1 + \exp(-x)}$,
 - ② Гиперболический тангенс $tanh(x) = 2\sigma(2x) 1$,
 - 3 Rectified Linear Unit ReLU(x) = max(0, x).
- Изначально все использовали $\sigma(x)$. Тем не менее, сейчас он почти не встречается. Почему?
- **Проблема**: выход $\sigma(x)$ не центрирован в нуле.
- Решение: использовать tanh(x).
- Однако это не избавляет от главной проблемы исчезающих градиентов:
 - **1** Производная $\sigma'(x) = \sigma(x)(1 \sigma(x))$,

- Вспомним три основных вида активации:
 - **①** Сигмоида $\sigma(x) = \frac{1}{1 + \exp(-x)}$,
 - ② Гиперболический тангенс $tanh(x) = 2\sigma(2x) 1$,
 - **3** Rectified Linear Unit ReLU(x) = max(0, x).
- Изначально все использовали $\sigma(x)$. Тем не менее, сейчас он почти не встречается. Почему?
- **Проблема**: выход $\sigma(x)$ не центрирован в нуле.
- Решение: использовать tanh(x).
- Однако это не избавляет от главной проблемы исчезающих градиентов:
 - lacksquare Производная $\sigma'(x) = \sigma(x)(1 \sigma(x))$,
 - ② Для любых больших по модулю x $\sigma(x)$ стремится к 1 или 0, и соответственно его производная всегда к нулю.

9 / 18

• $ReLU(x) = \max(0,x)$ дает нулевую производную только при отрицательных x,

Несверточные слои

10 / 18

1https://stats.stackexchange.com/a/422579

- $ReLU(x) = \max(0,x)$ дает нулевую производную только при отрицательных x,
- ReLU(x) при x>0 дает константную производную (равную 1),

10 / 18

¹https://stats.stackexchange.com/a/422579

- $ReLU(x) = \max(0,x)$ дает нулевую производную только при отрицательных x,
- ullet ReLU(x) при x>0 дает константную производную (равную 1),
- ullet ReLU(x) потрясающе эффективен в реализации на конечном устройстве.

10 / 18

¹https://stats.stackexchange.com/a/422579

- $ReLU(x) = \max(0, x)$ дает нулевую производную только при отрицательных x,
- ullet ReLU(x) при x>0 дает константную производную (равную 1),
- ullet ReLU(x) потрясающе эффективен в реализации на конечном устройстве.
- Иллюстрация:

¹https://stats.stackexchange.com/a/422579

- $ReLU(x) = \max(0, x)$ дает нулевую производную только при отрицательных x,
- ReLU(x) при x>0 дает константную производную (равную 1),
- ReLU(x) потрясающе эффективен в реализации на конечном устройстве.
- Иллюстрация:

¹https://stats.stackexchange.com/a/422579

• Вводится механизм внимания на конкретные карты

11 / 18

²Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." 2017

- Вводится механизм внимания на конкретные карты
- ullet Внимание это обычно мультипликативный коэффициент $a \in [0,1]$ (вес)

11 / 18

²Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." 2017

- Вводится механизм внимания на конкретные карты
- ullet Внимание это обычно мультипликативный коэффициент $a \in [0,1]$ (вес)
- ullet Важность карты агрегируется через MaxPool / AvgPool по пространственным размерностям: $F_{agg} = AGG(X), X: C \times H \times W, F_{agg}: C \times 1 \times 1$

11 / 18

- Вводится механизм внимания на конкретные карты
- ullet Внимание это обычно мультипликативный коэффициент $a \in [0,1]$ (вес)
- ullet Важность карты агрегируется через MaxPool / AvgPool по пространственным размерностям: $F_{agg} = AGG(X), X: C \times H \times W, F_{agg}: C \times 1 \times 1$
- После чего применяется двухслойный перцептрон, при этом для уменьшения количества параметров применяется сжимающе-разжимающее отображение с параметром r: $Y_1 = W_1 RELU(W_0 F_{agg}), W_0 : C/r \times C, W_1 : C \times C/r$

11 / 18

- Вводится механизм внимания на конкретные карты
- ullet Внимание это обычно мультипликативный коэффициент $a \in [0,1]$ (вес)
- ullet Важность карты агрегируется через MaxPool / AvgPool по пространственным размерностям: $F_{agg} = AGG(X), X: C \times H \times W, F_{agg}: C \times 1 \times 1$
- После чего применяется двухслойный перцептрон, при этом для уменьшения количества параметров применяется сжимающе-разжимающее отображение с параметром r: $Y_1 = W_1 RELU(W_0 F_{agg}), W_0 : C/r \times C, W_1 : C \times C/r$
- ullet Коэффициент внимания вычисляется через сигмоид: $Y=\sigma(Y_1)$

11 / 18

Сверточные механизмы внимания: поканальный $\left(1\right)$

- Вводится механизм внимания на конкретные карты
- ullet Внимание это обычно мультипликативный коэффициент $a \in [0,1]$ (вес)
- ullet Важность карты агрегируется через MaxPool / AvgPool по пространственным размерностям: $F_{agg} = AGG(X), X: C \times H \times W, F_{agg}: C \times 1 \times 1$
- После чего применяется двухслойный перцептрон, при этом для уменьшения количества параметров применяется сжимающе-разжимающее отображение с параметром $r: Y_1 = W_1 RELU(W_0 F_{agg}), W_0: C/r \times C, W_1: C \times C/r$
- ullet Коэффициент внимания вычисляется через сигмоид: $Y=\sigma(Y_1)$
- В конце исходный тензор $X:C\times H\times W$ в каждой пространственной размерности поэлементно перемножается на тензор внимания $Y:C\times 1\times 1$

11 / 18

- Вводится механизм внимания на конкретные карты
- ullet Внимание это обычно мультипликативный коэффициент $a \in [0,1]$ (вес)
- ullet Важность карты агрегируется через MaxPool / AvgPool по пространственным размерностям: $F_{agg} = AGG(X), X: C \times H \times W, F_{agg}: C \times 1 \times 1$
- После чего применяется двухслойный перцептрон, при этом для уменьшения количества параметров применяется сжимающе-разжимающее отображение с параметром r: $Y_1 = W_1 RELU(W_0 F_{agg}), W_0 : C/r \times C, W_1 : C \times C/r$
- ullet Коэффициент внимания вычисляется через сигмоид: $Y=\sigma(Y_1)$
- В конце исходный тензор $X:C\times H\times W$ в каждой пространственной размерности поэлементно перемножается на тензор внимания $Y:C\times 1\times 1$
- Популярность этод вид внимания приобрел под названием "Squeeze-and-Excitation" 2

11 / 18

²Hu, Jie, Li Shen, and Gang Sun. "Squeeze-and-excitation networks." 2017

- На иллюстрации ниже сделана комбинация MaxPool и AvgPool через сумму
- При этом двухслойный перцептрон один и тот же

• Вводится также механизм внимания на конкретные пространственные позиции (но уже без учета карт!)

13 / 18

³Wang, Fei, et al. "Residual attention network for image classification." 2017 👊 🔻 👙 👙 👙 👙

- Вводится также механизм внимания на конкретные пространственные позиции (но уже без учета карт!)
- Важность позиции агрегируется так же через MaxPool / AvgPool, но уже не по пространственным размерностям, а поканально:

$$F_{agg} = AGG(X), X : C \times H \times W, F_{agg} : 1 \times H \times W$$

13 / 18

³Wang, Fei, et al. "Residual attention network for image classification." 2017 👊 😅 🗸 📚 📚

- Вводится также механизм внимания на конкретные пространственные позиции (но уже без учета карт!)
- Важность позиции агрегируется так же через MaxPool / AvgPool, но уже не по пространственным размерностям, а поканально:

$$F_{agg} = AGG(X), X : C \times H \times W, F_{agg} : 1 \times H \times W$$

ullet После чего применяется обычная двухмерная свертка W размерности k imes k для сглаживания: $Y_1 = W * F_{agg}$

13 / 18

³Wang, Fei, et al. "Residual attention network for image classification." 2017 👊 🔻 👙 👙 👙 👙

- Вводится также механизм внимания на конкретные пространственные позиции (но уже без учета карт!)
- Важность позиции агрегируется так же через MaxPool / AvgPool, но уже не по пространственным размерностям, а поканально:

$$F_{agg} = AGG(X), X : C \times H \times W, F_{agg} : 1 \times H \times W$$

- ullet После чего применяется обычная двухмерная свертка W размерности k imes k для сглаживания: $Y_1 = W * F_{agg}$
- ullet Коэффициент внимания вычисляется через сигмоид: $Y=\sigma(Y_1)$

13 / 18

³Wang, Fei, et al. "Residual attention network for image classification." 2017 💶 🗸 💍 👙 👢 👢

- Вводится также механизм внимания на конкретные пространственные позиции (но уже без учета карт!)
- Важность позиции агрегируется так же через MaxPool / AvgPool, но уже не по пространственным размерностям, а поканально:

$$F_{agg} = AGG(X), X : C \times H \times W, F_{agg} : 1 \times H \times W$$

- ullet После чего применяется обычная двухмерная свертка W размерности k imes k для сглаживания: $Y_1 = W * F_{agg}$
- ullet Коэффициент внимания вычисляется через сигмоид: $Y=\sigma(Y_1)$
- ullet В конце исходный тензор X:C imes H imes W в каждой карте поэлементно перемножается на тензор внимания Y:1 imes H imes W

13 / 18

³Wang, Fei, et al. "Residual attention network for image classification." 2017 ←□ → ←② → ←② → ←② → ← ○ → ← ○ →

- Вводится также механизм внимания на конкретные пространственные позиции (но уже без учета карт!)
- Важность позиции агрегируется так же через MaxPool / AvgPool, но уже не по пространственным размерностям, а поканально:

$$F_{agg} = AGG(X), X : C \times H \times W, F_{agg} : 1 \times H \times W$$

- ullet После чего применяется обычная двухмерная свертка W размерности k imes k для сглаживания: $Y_1 = W * F_{agg}$
- ullet Коэффициент внимания вычисляется через сигмоид: $Y=\sigma(Y_1)$
- ullet В конце исходный тензор X:C imes H imes W в каждой карте поэлементно перемножается на тензор внимания Y:1 imes H imes W
- Одно из первых применений этод вид внимания прошло под названием "Residual Attention"

³Wang, Fei, et al. "Residual attention network for image classification." 2017

- На иллюстрации ниже сделана комбинация MaxPool и AvgPool через конкатенацию карт
- ullet Итоговая свертка имеет размерность уже не 1 imes k imes k, а 2 imes k imes k

Сверточные механизмы внимания: комбинация

• Оказывается, можно комбинировать поканальный и пространственный механизмы внимания

⁴Woo, Sanghyun, et al. "Cbam: Convolutional block attention module." 2018 ← □ → ← ⊘ → ← ≥ → ★ ≥ → ★

Сверточные механизмы внимания: комбинация

- Оказывается, можно комбинировать поканальный и пространственный механизмы внимания
- При этом наилучшие результаты давал подход. где сначала применяется поканальный, а затем — пространственный механизмы внимания

Сверточные механизмы внимания: комбинация

- Оказывается, можно комбинировать поканальный и пространственный механизмы внимания
- При этом наилучшие результаты давал подход. где сначала применяется поканальный, а затем — пространственный механизмы внимания
- Наибольшую известность такой подход получил с названием "Convolutional Block Attention Module" ⁴

Внимание на себя (self-attention)

• Тем не менее, на данный момент наибольшей популярностью ползуется механизм внимания, предназначенный для обработки естественных языков, под названием self-attention⁵

16 / 18

Внимание на себя (self-attention)

- Тем не менее, на данный момент наибольшей популярностью ползуется механизм внимания, предназначенный для обработки естественных языков, под названием self-attention 5
- To be coming soon...

The self-attention calculation in matrix form

16 / 18

Время для вопросов

Спасибо за внимание!

