

IT1010 – Introduction to Programming

Lecture 1 - Part 1

Algorithms and Flowcharts

What is a computer?

• A computer is a machine for processing data to produce information.

What can it do?

- Store large amounts of data.
- Process large amount of data quickly.
- Fast access to information and records
- Increase productivity

What can it do?

- What else.....
 - Calculate
 - Process (word, numbers, pictures, sound)
 - Store and retrieve
 - Match / compare / sort
 - Merge
 - And some more.....

How do computers do all these

How do you instruct a computer to do tasks?

- Write a program????
- Program
 - is a set of step-by-step instructions written to perform a specific task...
 - Program consist of a set of instructions
 that are executed by the computer

How do computers do all these...?

- This process of writing programs is called programming
- These programs are written by a programmer
- A set of rules that tell a computer what operations to perform are called *programming language*
- In other words, we can call this program *Software*

How do you write programs

In developing a computer program the programmer must:

- Analysis Understand/Define the problem
- Design plan the solution
- Implement Write/Code the program
- Test Compile, Debug & Test
- Release Implement the program
- Maintain Document the program

What can the computer do?

Analyze / Understand the problem

Problem: Given 2 numbers (say a and b) where a < (is less than) b, I want to find the sum of numbers between a and b

Input : Integers a & b (where a<b)</p>

Task : Find the sum of numbers between a & b

Output : The sum

Planning the solution

- It is important to spend considerable time in planning your solution (program) in order to ensure it is properly structured
- If properly planned and presented, the time and effort in 'coding' the solution, will be minimal
- Use algorithms to prepare a solution

Algorithms

- An algorithm is a complete step-by-step set of instruction of how to solve a problem.
- Consist of
 - The instructions
 - The order of the instructions

How to make a cup of Tea?

- Fill electric tea kettle
- Bring it to a boil
- Pour hot water in cup
- Put teabag in cup
- Steep for 4 minutes
- Remove teabag

Algorithms

- Algorithms is Programming are represented by
 - Flowcharts
 - Pseudo codes

```
Start

Input Temperature

If Temperature < 32

Then Print "Below freezing"

Else

Print "Above Freezing

End
```


Flow charts

- It is a step by step diagrammatic representation of the program
- Each instruction is represented by a Symbol.
- Arrow shows the order in which the instructions are executed.

Flow chart symbols

Symbol	Name	Function
	Start/end	An oval represents a start or end point.
	Arrows	A line is a connector that shows relationships between the representative shapes.
	Input/Output	A parallelogram represents input or ouptut.
	Process	A rectangle represents a process.
	Decision	A diamond indicates a decision.

Flow charts

 Most simple algorithms that you will develop will involve inputting some data, performing some calculation and finally displaying the output.

The Logical Constructs / Control structures

- Three basic constructs that controls the flow of an algorithm;
 - Sequence
 - Selection
 - Iteration

Sequence

- **SEQUENCE** is a <u>linear progression</u> where one task is performed sequentially after another...
- solution steps must follow each other in a logical sequence
- Statements are executed in the same order as they are written.

Example 01

- Put the following steps in correct order and draw a flowchart to show
- "How to arrange a flower vase".
- 1. Cut the selected flower
- 2. Go to the garden
- 3. Arrange the flowers in the vase
- 4. Get the vase
- 5. Select some flowers
- 6. Pour some water into the vase

Example 01 - Solution

Example 02

• Draw a flowchart to input two numbers and find the sum and average.

Example 02 - Solution

Exercise

• Draw a flowchart to input the radius of a circle and calculate and display the area.