✓ Corrigé du baccalauréat S Nouvelle-Calédonie 17 novembre 2016

EXERCICE 1

Commun à tous les candidats

4 points

On considère la fonction f définie et dérivable sur l'intervalle $[0; +\infty[$ par $f(x) = xe^{-x} - 0,1.$

- 1. D'après le cours, on sait que $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$; donc $\lim_{x \to +\infty} x e^{-x} = \lim_{x \to +\infty} \frac{x}{e^x} = 0$ et donc $\lim_{x \to +\infty} f(x) = -0.1$.
- **2.** La fonction f est dérivable sur $[0; +\infty[$ et $f'(x) = 1 \times e^{-x} + x \times (-1)e^{-x} 0 = (1-x)e^{-x}$. Pour tout x, $e^{-x} > 0$ donc f'(x) est du signe de 1-x sur $[0; +\infty[$. $f(0) = -0,1; f(1) = e^{-1} 0,1 \approx 0,27 > 0$ On construit le tableau de variations de f:

3. f(0) = -0.1 < 0 et $f(1) \approx 0.27 > 0$; on complète le tableau de variations

D'après le tableau de variations, l'équation f(x) = 0 admet une unique solution sur l'intervalle [0; 1].

On admet l'existence du nombre réel strictement positif β tel que $\alpha < \beta$ et $f(\beta) = 0$.

On note $\mathscr C$ la courbe représentative de la fonction f sur l'intervalle $[\alpha; \beta]$ dans un repère orthogonal et $\mathscr C'$ la courbe symétrique de $\mathscr C$ par rapport à l'axe des abscisses.

Ces courbes sont utilisées pour délimiter un massif floral en forme de flamme de bougie sur lequel seront plantées des tulipes.

4. Soit *F* la fonction définie sur l'intervalle $[\alpha; \beta]$ par $F(x) = -(x+1)e^{-x} - 0.1x$. La fonction *F* est dérivable sur $[\alpha; \beta]$ et $F'(x) = -1 \times e^{-x} - (x+1) \times (-1)e^{-x} - 0.1 = (-1+x+1)e^{-x} - 0.1 = xe^{-x} - 0.1 = f(x)$ Donc la fonction *F* est une primitive de la fonction f sur $[\alpha; \beta]$.

5. La fonction f est positive sur $[\alpha; \beta]$ donc l'aire du domaine compris entre la courbe \mathscr{C} , l'axe des abscisses et les deux droites d'équations $x = \alpha$ et $x = \beta$ est $\int_{\alpha}^{\beta} f(x) \, \mathrm{d}x$.

Pour des raisons de symétrie, l'aire du domaine compris entre les courbes $\mathscr C$ et $\mathscr C'$ est $\mathscr A=2\int_\alpha^\beta f(x)\,\mathrm dx$.

$$\mathcal{A} = 2 \times \left[F(\beta) - F(\alpha) \right] \approx 2 \times \left[F(3,577) - F(0,112) \right] \approx 1,04$$

L'aire du domaine compris entre les deux courbes est approximativement de 1,04 unité d'aire.

6. L'unité sur chaque axe représente 5 mètres, donc une unité d'aire est égale à 25 m².
L'aire du domaine entre les deux courbes est donc approximativement de 1,04 × 25 = 26 m².
On peut disposer 36 plants de tulipes par mètre carré donc sur 26 m² on en disposera 26 × 36 = 936 plants de tulipes.

EXERCICE 2

Commun à tous les candidats

4 points

La société « Bonne Mamie » utilise une machine pour remplir à la chaà@ne des pots de confiture. On note X la variable aléatoire qui à chaque pot de confiture produit associe la masse de confiture qu'il contient, exprimée en grammes.

Dans le cas oà la machine est correctement réglée, on admet que X suit une loi normale de moyenne $\mu = 125$ et d'écart-type σ .

- **1. a.** La fonction de Gauss est symétrique par rapport à la droite d'équation $x = \mu$ c'est-à -dire x = 125. On a donc, pour tout réel t positif, $P(X \le 125 t) = P(X \ge 125 + t)$.
 - **b.** On sait que 2,3 % des pots de confiture contiennent moins de 121 grammes de confiture, donc P(X < 121) = 0,023.

$$P(121 \le X \le 129) = P\left(\overline{(X < 121) \cup (X > 129)}\right)$$
$$= 1 - P(X < 121) - P(X > 129)$$
$$= 1 - P(X \le 121) - P(X \ge 129)$$

les évènements ($X \le 121$) et ($X \ge 129$) étant incompatibles.

D'après la question précédente, $P(X \le 121) = P(X \le 125 - 4) = P(X \ge 125 + 4) = P(X \ge 129)$; on en déduit : $P(121 \le X \le 129) = 1 - 2P(X \le 125 - 4) = 1 - 2P(X \le 121) = 1 - 0,046 = 0,954$.

2. On cherche une valeur arrondie à l'unité près de σ telle que $P(123 \le X \le 127) = 0,68$. On se ramène à la loi normale centrée réduite de X en posant $Z = \frac{X - 125}{\sigma}$.

$$123 \leqslant X \leqslant 127 \iff 123 - 125 \leqslant X - 125 \leqslant 127 - 125 \iff \frac{-2}{\sigma} \leqslant \frac{X - 125}{\sigma} \leqslant \frac{2}{\sigma}$$

On a alors:
$$P(123 \leqslant X \leqslant 127) = 0.68 \iff P\left(-\frac{2}{\sigma} \leqslant Z \leqslant \frac{2}{\sigma}\right) = 0.68.$$

à€ la calculatrice, on trouve l'intervalle centré en 0 correspondant soit $\frac{2}{\sigma} \approx 0,994$. à€ l'unité près, on prendra donc $\sigma \approx \frac{2}{0.994} \approx 2$ (ce qui est la valeur de σ supposée juste après dans l'énoncé!).

- **3.** On estime qu'un pot de confiture est conforme lorsque la masse de confiture qu'il contient est comprise entre 120 et 130 grammes.
 - **a.** à€ la calculatrice, la probabilité qu'un pot soit conforme correspond à $P(120 \le X \le 130) \approx 0,9876$.
 - **b.** La probabilité qu'un pot ne soit pas conforme parmi ceux qui ont une masse de confiture inférieure à 130 grammes correspond à

$$P_{(X \leqslant 130)}(\overline{120 \leqslant X \leqslant 130}) = \frac{P(\overline{(120 \leqslant X \leqslant 130)} \cap (X \leqslant 130))}{P(X \leqslant 130)}$$
$$= \frac{P(X \leqslant 120)}{P(X \leqslant 130)} \approx \frac{0,00621}{0,992379}$$
$$\approx 6.1 \times 10^{-3}.$$

4. Comme $900 \geqslant 30$, $900 \times 0.988 \geqslant 5$ et $900 \times (1-0.988) \geqslant 5$, les conditions d'application du théorème de Moivre-Laplace sont vérifiées et un intervalle de fluctuation au seuil de 95% est :

$$I_{95\%} = \left[p - 1,96\sqrt{\frac{p(1-p)}{n}}; p + 1,96\sqrt{\frac{p(1-p)}{n}} \right]$$

$$= \left[0,988 - 1,96\sqrt{\frac{0,988(1-0,988)}{900}}; 0,988 + 1,96\sqrt{\frac{0,988(1-0,988)}{900}} \right]$$

$$\approx [0.980; 0.996]$$

Comme $f_{\rm obs} = \frac{871}{900} \approx 0,968 \notin I_{95\%}$, on rejette l'hypothèse « La machine est bien réglée » au seuil des 95%.

EXERCICE 3

Commun à tous les candidats

4 points

On se place dans le plan complexe rapporté au repère $(0, \overrightarrow{u}, \overrightarrow{v})$.

Soit f la transformation qui à tout nombre complexe z non nul associe le nombre complexe f(z) défini par : $f(z) = z + \frac{1}{z}$.

On note \widetilde{M} le point d'affixe z et M' le point d'affixe f(z).

1. On appelle A le point d'affixe $a = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$.

a.
$$|a|^2 = \left(-\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2} + \frac{1}{2} = 1$$
; donc $|a| = 1$

On cherche le réel
$$\alpha$$
 tel que
$$\begin{cases} \cos \alpha = -\frac{\sqrt{2}}{2} \\ \sin \alpha = \frac{\sqrt{2}}{2} \end{cases}$$
 Donc $\alpha = \frac{3\pi}{4} + k2\pi$ avec k entier relatif

La forme exponentielle de a est $e^{\frac{3\pi}{4}i}$.

b. On sait que, pour tout complexe
$$z$$
, $z\overline{z} = |z|^2$ donc $a\overline{a} = |a|^2 = 1$.

$$f(a) = a + \frac{1}{a} = a + \frac{\overline{a}}{a\overline{a}} = a + \overline{a} = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} + \left(-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right) = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2} = -\sqrt{2}$$

La forme algébrique de f(a) est $-\sqrt{2}$.

2. On résout, dans l'ensemble des nombres complexes non nuls, l'équation f(z) = 1:

$$f(z) = 1 \iff z + \frac{1}{z} = 1 \iff \frac{z^2 + 1}{z} = \frac{z}{z} \iff \frac{z^2 - z + 1}{z} = 0 \iff z^2 - z + 1 = 0$$

$$\Delta = 1 - 4 = -3$$
 donc l'équation admet deux solutions conjuguées $z_1 = \frac{1}{2} + i \frac{\sqrt{3}}{2}$ et $z_2 = \frac{1}{2} - i \frac{\sqrt{3}}{2}$.

- **3.** Soit M un point d'affixe z du cercle $\mathscr C$ de centre O et de rayon 1.
 - **a.** Le nombre complexe z s'écrit sous forme exponentielle : |z| e $^{\mathrm{i}\theta}$. Le point M(z) est sur le cercle de centre O et de rayon 1 donc OM=1 ce qui veut dire que |z|=1. Donc z peut s'écrire sous la forme e $^{\mathrm{i}\theta}$.

b.
$$f(z) = z + \frac{1}{z} = e^{i\theta} + \frac{1}{e^{i\theta}} = e^{i\theta} + e^{-i\theta}$$

Les deux nombres complexes $e^{i\theta}$ et $e^{-i\theta}$ sont deux nombres complexes conjugués donc leur somme est un réel (le double de leur partie réelle).

Donc f(z) est un réel.

4. On cherche M(z) tel que f(z) soit réel.

Posons z = x + iy:

$$f(z) = z + \frac{1}{z} = x + iy + \frac{1}{x + iy} = x + iy + \frac{x - iy}{x^2 + y^2} = \frac{x(x^2 + y^2) + iy(x^2 + y^2) + x - iy}{x^2 + y^2}$$
$$= \frac{x(x^2 + y^2 + 1)}{x^2 + y^2} + i\frac{y(x^2 + y^2 - 1)}{x^2 + y^2}$$

f(z) est réel si et seulement si sa partie imaginaire est nulle, autrement dit si $y(x^2 + y^2 - 1) = 0$.

Ce qui signifie que soit y = 0 soit $x^2 + y^2 - 1 = 0$.

- y = 0 veut dire que la partie réelle de z est nulle donc que le point M se trouve sur l'axe des abscisses. Mais il ne faut pas oublier de retirer l'origine O du repère car z doit être non nul.
- $x^2 + y^2 1 = 0 \iff x^2 + y^2 = 1$ est l'équation du cercle de centre O et de rayon 1.

L'ensemble des points M d'affixe z tels que f(z) soit réel est la réunion de l'axe des abscisses privé du point O, et du cercle de centre O et de rayon 1.

EXERCICE 4

Commun à tous les candidats

3 points

On considère le cube ABCDEFGH représenté ci-dessous. On définit les points I et J respectivement par $\overrightarrow{HI} = \frac{3}{4}\overrightarrow{HG}$ et $\overrightarrow{JG} = \frac{1}{4}\overrightarrow{CG}$.

1. On trace la section du cube par le plan (IJK) :

2. On trace la section du cube par le plan (IJL) :

3. On cherche s'il existe un point P de la droite (BF) tel que la section du cube par le plan (IJP) soit un triangle équilatéral.

On regarde la configuration de la question précédente et on se demande s'il n'y a pas une position du point L sur la droite (BF) telle que les points B, F et L soient dans cet ordre, pour laquelle le triangle IJM serait équilatéral.

Soit K le point de [GF] tel que $\overrightarrow{GK} = \frac{1}{4} \overrightarrow{GF}$.

Les trois triangles GIJ, GJK et GIK sont superposables donc IJ = JK = KJ; le triangle IJK est donc équilatéral.

Soit P le point d'intersection des droites (JK) et (BF).

D'après le théorème de Thalès dans les triangles KGJ et KFP, on a $\frac{FP}{GI} = \frac{KF}{KG}$.

Par construction du point K, on a $\frac{KF}{KG}$ = 3 et on sait que, si on appelle a la longueur d'une arête du cube, $GJ = \frac{a}{4}$; on en déduit que $FP = \frac{3a}{4}$.

Le point P tel que le triangle IJK est équilatéral, est défini par la relation vectorielle $\overrightarrow{FP} = \frac{3}{4}\overrightarrow{BF}$.

EXERCICE 5 Candidats n'ayant pas suivi l'enseignement de spécialité 5 points

Un apiculteur étudie l'évolution de sa population d'abeilles. Au début de son étude, il évalue à 10 000 le nombre de ses abeilles.

Chaque année, l'apiculteur observe qu'il perd 20 % des abeilles de l'année précédente.

Il achète un nombre identique de nouvelles abeilles chaque année. On notera c ce nombre exprimé en dizaines de milliers.

On note u_0 le nombre d'abeilles, en dizaines de milliers, de cet apiculteur au début de l'étude.

Pour tout entier naturel n non nul, u_n désigne le nombre d'abeilles, en dizaines de milliers, au bout de la n-ième année. Ainsi, on a $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = 0.8u_n + c$.

Partie A

On suppose dans cette partie seulement que c = 1, donc pour tout entier naturel n, $u_{n+1} = 0.8u_n + 1$.

1. On calcule, à la calculatrice, u_n pour les premières valeurs de n (valeurs de u_n arrondies) :

n	0	1	2	3	4	5	6	7	8	
u_n	1	1,8	2,44	2,95	3,36	3,69	3,95	4,16	4,33	
n		20	21	22	23	24	25	26	27	28
u_n		4,95	4,96	4,97	4,976	4,981	4,985	4,988	4,990	4,992

La suite (u_n) semble croissante et semble converger vers le nombre 5.

- **2.** Soit \mathcal{P}_n la propriété $u_n = 5 4 \times 0.8^n$.
 - Initialisation

Pour n = 0, $u_0 = 1$ et $5 - 4 \times 0.8^0 = 5 - 4 = 1$. Donc la propriété \mathcal{P}_0 est vérifiée.

Hérédité

Soit *n* un entier naturel quelconque.

On suppose que la propriété est vraie pour le rang n c'est-à -dire $u_n = 5 - 4 \times 0.8^n$ (c'est l'hypothèse de récurrence), et on veut démontrer qu'elle est encore vraie pour le rang n + 1.

$$u_{n+1} = 0.8u_n + 1$$
. Or, d'après l'hypothèse de récurrence $u_n = 5 - 4 \times 0.8^n$; donc :

$$u_{n+1} = 0.8(5 - 4 \times 0.8^n) + 1 = 0.8 \times 5 - 4 \times 0.8^{n+1} + 1 = 4 - 4 \times 0.8^{n+1} + 1 = 5 - 4 \times 0.8^{n+1}$$

Donc la propriété est vraie au rang n + 1.

On a démontré que, pour tout entier naturel $n, \mathcal{P}_n \Longrightarrow \mathcal{P}_{n+1}$.

La propriété \mathcal{P}_n est donc héréditaire pour tout n.

Conclusion

La propriété est vraie pour n = 0.

Elle est héréditaire à partir du rang 0.

Donc, d'après le principe de récurrence, la propriété est vraie pour tout entier naturel n.

On a donc démontré que, pour tout entier naturel n, $u_n = 5 - 4 \times 0.8^n$.

3. •
$$u_{n+1} - u_n = (5 - 4 \times 0.8^{n+1}) - (5 - 4 \times 0.8^n) = 5 - 4 \times 0.8^{n+1} - 5 + 4 \times 0.8^n = 4 \times 0.8^n (1 - 0.8)$$

= $4 \times 0.8^n \times 0.2 > 0$

Pour tout n, on a démontré que $u_{n+1} > u_n$ donc la suite (u_n) est croissante.

• -1 < 0.8 < 1 donc la suite géométrique (0.8^n) de raison 0.8 converge vers 0.

$$\lim_{n \to +\infty} 0.8^n = 0 \implies \lim_{n \to +\infty} 4 \times 0.8^n = 0 \implies \lim_{n \to +\infty} 5 - 4 \times 0.8^n = 5$$

Donc la suite (u_n) est convergente vers 5.

On peut donc dire que si l'apiculteur rachète chaque année 10 000 abeilles, le nombre d'abeilles va augmenter chaque année et va tendre vers 50 000.

Partie B

L'apiculteur souhaite que le nombre d'abeilles tende vers 100 000.

On cherche à déterminer la valeur de *c* qui permet d'atteindre cet objectif.

On définit la suite (v_n) par, pour tout entier naturel n, $v_n = u_n - 5c$; donc, pour tout n, $u_n = v_n + 5c$.

1. •
$$v_{n+1} = u_{n+1} - 5c = 0.8u_n + c - 5c = 0.8(v_n + 5c) - 4c = 0.8v_n + 4c - 4c = 0.8v_n$$

•
$$v_0 = u_0 - 5c = 1 - 5c$$

La suite (v_n) est donc géométrique de raison q = 0.8 et de premier terme $v_0 = 1 - 5c$.

2. La suite (v_n) est géométrique de raison q = 0.8 et de premier terme $v_0 = 1 - 5c$ donc, pour tout n,

$$v_n = v_0 \times q^n = (1 - 5c) \, 0.8^n$$
.

3. La suite (v_n) est géométrique de raison 0,8 ; or -1 < 0,8 < 1 donc la suite (v_n) est convergente et a pour limite 0.

Pour tout n, $u_n = v_n + 5c$ donc la suite (u_n) est convergente et a pour limite 5c.

L'apiculteur veut que le nombre d'abeilles tende vers $100\,000$; il faut donc que 5c=10, autrement dit que c=2.

Pour que le nombre d'abeilles tende vers $100\,000$, il faut que l'apiculteur rachète chaque année $20\,000$ abeilles.

EXERCICE 5 Candidats ayant suivi l'enseignement de spécialité 5 points

On observe la taille d'une colonie de fourmis tous les jours.

Pour tout entier naturel n non nul, on note u_n le nombre de fourmis, exprimé en milliers dans cette population au bout du n-ième jour.

Au début de l'étude la colonie compte 5 000 fourmis et au bout d'un jour elle compte 5 100 fourmis. Ainsi, on a $u_0 = 5$ et $u_1 = 5,1$.

On suppose que l'accroissement de la taille de la colonie d'un jour sur l'autre diminue de 10 % chaque jour. En d'autres termes, pour tout entier naturel n, $u_{n+2} - u_{n+1} = 0.9 (u_{n+1} - u_n)$.

- 1. D'après le texte, $u_2 u_1 = 0.9 (u_1 u_0)$ donc $u_2 = 0.9 (5.1 - 5) + 5.1 = 0.9 \times 0.1 + 5.1 = 0.09 + 5.1 = 5.19$
- **2.** Pour tout entier naturel n, on pose $V_n = \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix}$ et $A = \begin{pmatrix} 1.9 & -0.9 \\ 1 & 0 \end{pmatrix}$.
 - $\begin{array}{lll} \textbf{a.} & u_{n+2} u_{n+1} = 0.9 \, (u_{n+1} u_n) \iff u_{n+2} = 0.9 \, u_{n+1} 0.9 \, u_n + u_{n+1} \iff u_{n+2} = 1.9 \, u_{n+1} 0.9 \, u_n \\ & \text{On a:} \left\{ \begin{array}{ll} u_{n+2} & = & 1.9 \, u_{n+1} & & 0.9 \, u_n \\ u_{n+1} & = & u_{n+1} & + & 0 \times u_n \end{array} \right. \text{, système qui s'écrit sous la forme matricielle:} \\ & \left(\begin{array}{ll} u_{n+2} \\ u_{n+1} \end{array} \right) = \left(\begin{array}{ll} 1.9 & -0.9 \\ 1 & 0 \end{array} \right) \left(\begin{array}{ll} u_{n+1} \\ u_n \end{array} \right) \iff V_{n+1} = AV_n \text{, avec } A = \left(\begin{array}{ll} 1.9 & -0.9 \\ 1 & 0 \end{array} \right). \end{aligned}$

On admet alors que, pour tout entier naturel n, $V_n = A^n V_0$.

b. On pose $P = \begin{pmatrix} 0.9 & 1 \\ 1 & 1 \end{pmatrix}$. On admet que la matrice P est inversible. Avec la calculatrice, on trouve $P^{-1} = \begin{pmatrix} -10 & 10 \\ 10 & -9 \end{pmatrix}$. $P^{-1} = \begin{pmatrix} -10 & 10 \\ 10 & -9 \end{pmatrix}$.

$$P^{-1}A = \begin{pmatrix} -10 & 10 \\ 10 & -9 \end{pmatrix} \begin{pmatrix} 1,9 & -0,9 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -10 \times 1,9 + 10 \times 1 & -10 \times (-0,9) + 10 \times 0 \\ 10 \times 1,9 - 9 \times 1 & 10 \times (-0,9) - 9 \times 0 \end{pmatrix} = \begin{pmatrix} -9 & 9 \\ 10 & -9 \end{pmatrix}$$

$$P^{-1}AP = \begin{pmatrix} -9 & 9 \\ 10 & -9 \end{pmatrix} \begin{pmatrix} 0,9 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -9 \times 0,9 + 9 \times 1 & -9 \times 1 + 9 \times 1 \\ 10 \times 0,9 - 9 \times 1 & 10 \times 1 - 9 \times 1 \end{pmatrix} = \begin{pmatrix} 0,9 & 0 \\ 0 & 1 \end{pmatrix}$$

Donc
$$D = \begin{pmatrix} 0.9 & 0 \\ 0 & 1 \end{pmatrix}$$
.

c. Soit \mathscr{P}_n la propriété $A^n = PD^nP^{-1}$.

• Initialisation

On appelle I_2 la matrice identité d'ordre $2:I_2=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. $A^0=I_2$ et $D^0=I_2$ donc $PD^0P^{-1}=PI_2P^{-1}=PP^{-1}=I_2$ Donc la propriété \mathscr{P}_0 est vérifiée.

• Hérédité

Soit n un entier naturel quelconque; supposons que la propriété est vraie au rang n, c'est-à -dire que $A^n = PD^nP^{-1}$ (hypothèse de récurrence).

On veut démontrer que la propriété est vraie au rang n+1.

$$A^{n+1} = A \times A^n = (PDP^{-1})(PD^nP^{-1}) = PD(P^{-1}P)D^nP^{-1} = PD^{n+1}P^{-1}$$

La propriété est donc vraie au rang n + 1.

On a démontré que, pour tout $n, P_n \Longrightarrow P_{n+1}$.

La propriété est donc héréditaire à partir du rang 0.

• Conclusion

La propriété est vraie au rang 0; elle est héréditaire à partir du rang 0, donc, d'après le principe de récurrence, elle est vraie pour tout entier naturel n.

On a donc démontré que, pour tout entier naturel n, $A^n = PD^nP^{-1}$.

Pour tout entier naturel
$$n$$
, on admet que $A^n = \begin{pmatrix} -10 \times 0.9^{n+1} + 10 & 10 \times 0.9^{n+1} - 9 \\ -10 \times 0.9^n + 10 & 10 \times 0.9^n - 9 \end{pmatrix}$.

d. Pour tout entier n, on a $V^n = A^n V_0$ c'est-à -dire $\begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} = A^n \begin{pmatrix} u_1 \\ u_0 \end{pmatrix}$.

D'oà¹:
$$u_n = (-10 \times 0.9^n + 10) \times u_1 + (10 \times 0.9^n - 9) \times u_0$$

= $(-10 \times 0.9^n + 10) \times 5.1 + (10 \times 0.9^n - 9) \times 5$
= $-52 \times 0.9^n + 51 + 50 \times 0.9^n - 45$
= $6 - 0.9^n$

- **3.** La taille de la colonie au bout du $10^{\rm e}$ jour est $u_{10}=6-0.9^{10}\approx 5,651$.
 - Au bout du dixième jour, il y aura donc environ 5 651 fourmis.
- **4.** Comme 0 < 0.9 < 1, $\lim_{n \to +\infty} 0.9^n = 0$.

D'après les théorèmes sur les sommes de limite de suites, la suite (u_n) converge donc vers 6.

Le nombre de fourmis dans la colonie tendra 6000 individus.