Recovery from Disasters

May 16, 2022

1. Vietnam: adding repeated exposure interaction

$$100 * ln(y_{it}) = \sum_{l=0}^{5} (\beta_{1l}Storm_{i,t-l} + \beta_{2l}Storm_{i,t-l} \times Rep_{i,t}) + \beta_3Rep_{i,t} + \alpha_i + \gamma_t + \varepsilon_{it}, \quad (1)$$

where y_{it} is an outcome of a firm i in year t. $Storm_{i,t-l}$ is a measure of storm (speed or number of storms) aggregated at an ADM2 level, lagged 5 times. $Rep_{i,t-l}$ is a discrete variable from 0 to 5 that shows how many years out of last 5 was that area exposed to storms (at least some populated area gets a storm). α_i is plant/firm fixed effect, γ_t is year fixed effect. We cluster standard errors ε_{it} at the plant/firm and region-by-year level.

Regression Results for Logged Labor X 100, interacted with number of storms in previous 5 years

Regression Results for Logged Capital X 100, interacted with number of storms in previous 5 years

Regression Results for Logged Labor Cost X 100, interacted with number of storms in previous 5 years

ರ

Regression Results for Logged Sales X 100, interacted with number of storms in previous 5 years

Regression Results for Logged Total Wage X 100, interacted with number of storms in previous 5 years

Regression Results for Logged Average Wage X 100, interacted with number of storms in previous 5 years

 \neg

Regression Results for Logged Labor X 100, interacted with number of storms in previous 5 years

9

Regression Results for Logged Capital X 100, interacted with number of storms in previous 5 years

Regression Results for Logged Labor Cost X 100, interacted with number of storms in previous 5 years

Regression Results for Logged Sales X 100, interacted with number of storms in previous 5 years

Regression Results for Logged Total Wage X 100, interacted with number of storms in previous 5 years

Regression Results for Logged Average Wage X 100, interacted with number of storms in previous 5 years

2. India: plotting storms

