1

EE 3900 - Assignment 1

VIBHAVASU

CONTENTS

1	Software Installation	1
2	Digital Filter	1
3	Difference Equation	2
4	Z-transform	2
5	Impulse Response	4
6	DFT and FFT	7
7	FFT	8
8	Exercises	11

Abstract—This manual provides a simple introduction to digital signal processing.

1 Software Installation

Run the following commands

sudo apt-get update sudo apt-get install libffi-dev libsndfile1 python3 -scipy python3-numpy python3-matplotlib sudo pip install cffi pysoundfile

2 Digital Filter

2.1 Download the sound file from

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/filter/codes/ Sound Noise.wav

2.2 You will find a spectrogram at https://academo.org/demos/spectrum-analyzer . Upload the sound file that you downloaded in Problem 2.1 in the spectrogram and play. Observe the spectrogram. What do you find?

Solution: There are a lot of yellow lines between 440 Hz to 5.1 KHz. These represent the

- synthesizer key tones. Also, the key strokes are audible along with background noise.
- 2.3 Write the python code for removal of out of band noise and execute the code.

Solution:

```
import soundfile as sf
from scipy import signal
#read .wav file
input signal,fs = sf.read('Sound Noise.wav'
#sampling frequency of Input signal
sampl freq=fs
#order of the filter
order=4
#cutoff frquency 4kHz
cutoff freq=4000.0
#digital frequency
Wn=2*cutoff freq/sampl freq
# b and a are numerator and denominator
   polynomials respectively
b, a = signal.butter(order, Wn, 'low')
#filter the input signal with butterworth filter
output signal = signal.filtfilt(b, a,
   input signal)
#output \ signal = signal.lfilter(b, a,
   input signal)
#write the output signal into .wav file
sf.write('Sound With ReducedNoise.wav',
    output signal, fs)
```

2.4 The output of the python script Problem 2.3 is the audio file Sound With ReducedNoise.wav. Play the file in the spectrogram in Problem 2.2. What do you observe?

Solution: The key strokes as well as background noise is subdued in the audio. Also, the signal is blank for frequencies above 5.1 kHz.

3 DIFFERENCE EQUATION

3.1 Let

$$x(n) = \left\{ 1, 2, 3, 4, 2, 1 \right\} \tag{3.1}$$

Sketch x(n).

3.2 Let

$$y(n) + \frac{1}{2}y(n-1) = x(n) + x(n-2),$$

$$y(n) = 0, n < 0 \quad (3.2)$$

Sketch y(n).

Solution: The following code yields Fig. 3.2.

wget https://github.com/gadepall/EE1310/raw/master/filter/codes/xnyn.py

Fig. 3.2

3.3 Repeat the above exercise using a C code. **Solution:** : C Code

wget https://github.com/DarkWake9/EE3900/blob/main/Assignment%201/e3-3.c

Solution: : Python Code

wget https://github.com/DarkWake9/EE3900/blob/main/Assignment%201/e3-3.py

4 Z-TRANSFORM

4.1 The Z-transform of x(n) is defined as

$$X(z) = \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (4.1)

Show that

$$Z{x(n-1)} = z^{-1}X(z)$$
 (4.2)

and find

$$\mathcal{Z}\{x(n-k)\}\tag{4.3}$$

Solution: From (4.1),

$$Z\{x(n-k)\} = \sum_{n=-\infty}^{\infty} x(n-1)z^{-n}$$

$$= \sum_{n=-\infty}^{\infty} x(n)z^{-n-1} = z^{-1} \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
(4.4)
$$(4.5)$$

resulting in (4.2). Similarly, it can be shown that

$$\mathcal{Z}\{x(n-k)\} = z^{-k}X(z) \tag{4.6}$$

4.2 Obtain X(z) for x(n) defined in problem 3.1.

4.3 Find

$$H(z) = \frac{Y(z)}{X(z)} \tag{4.7}$$

from (3.2) assuming that the Z-transform is a linear operation.

Solution: Applying (4.6) in (3.2),

$$Y(z) + \frac{1}{2}z^{-1}Y(z) = X(z) + z^{-2}X(z)$$
 (4.8)

$$\implies H(z) = \frac{Y(z)}{X(z)} = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
(4.9)

4.4 a) Find the Z transform of

$$\delta(n) = \begin{cases} 1 & n = 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.10)

b) and show that the Z-transform of

$$u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (4.11)

is $U(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1$ (4.12)

Solution: It is easy to show that

$$\delta(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} 1 \tag{4.13}$$

and from (4.11),

$$U(z) = \sum_{n=0}^{\infty} z^{-n}$$
 (4.14)

$$=\frac{1}{1-z^{-1}}, \quad |z| > 1 \tag{4.15}$$

using the fomula for the sum of an infinite geometric progression.

(i) Solution:

$$\Delta(z) = \mathcal{Z}\{\delta[n]\} = \sum_{n=-\infty}^{\infty} \delta(n)z^{-n} = 1 \quad (4.16)$$

(ii) Solution:

$$U(z) = \mathcal{Z}\{\delta(n)\} = \sum_{n=-\infty}^{\infty} u[n]z^{-n}$$
 (4.17)

$$= 1 + z^{-1} + z^{-2} + \dots = \frac{1}{1 - z^{-1}}$$
 (4.18)

4.5 Show that

$$a^n u(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} \frac{1}{1 - az^{-1}} \quad |z| > |a|$$
 (4.19)

Solution:

$$a^{n}u[n] = \begin{cases} a^{n} & n \ge 0\\ 0 & n < 0 \end{cases}$$
 (4.20)

$$U'(z) = \mathcal{Z}\{a^n u[n]\} = \sum_{n=-\infty}^{\infty} a^n u[n] z^{-n}$$
 (4.21)

$$= 1 + az^{-1} + a^2z^{-2} + \cdots$$
 (4.22)

Given: |z| > |a|

$$U'(z) = \frac{1}{1 - az^{-1}} \tag{4.23}$$

4.6 Let

$$H(e^{j\omega}) = H(z = e^{j\omega}).$$
 (4.24)

Plot $|H(e^{j\omega})|$. Is it periodic? If so, find the period. $H(e^{j\omega})$ is known as the *Discret Time Fourier Transform* (DTFT) of h(n).

Solution: The following code plots Fig. 4.6

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/**filter**/codes/dtft. py

Fig. 4.6: $|H(e^{j\omega})|$

Solution: From (4.9) we get

$$H(e^{j\omega}) = \frac{1 + e^{-2j\omega}}{1 + \frac{1}{2}e^{-j\omega}}$$
(4.25)

$$= \frac{e^{J\omega} + e^{-J\omega}}{e^{J\omega} + \frac{1}{2}} = \frac{2\cos(\omega)}{e^{J\omega} + \frac{1}{2}}$$
(4.26)

$$\implies |H(e^{j\omega})| \qquad (4.27)$$

$$= \frac{2\cos\omega}{\sqrt{\left(\cos\omega + \frac{1}{2}\right)^2 + \sin^2\omega}}$$
 (4.28)

$$=\frac{2\cos\omega}{\sqrt{\cos^2\omega+\sin^2\omega+\cos\omega+\frac{1}{4}}}$$
 (4.29)

$$=\frac{2\cos\omega}{\sqrt{\frac{5}{4}+\cos\omega}}\tag{4.30}$$

For a periodic function of period T,

$$f(x) = f(x+T), T \neq 0$$
 (4.31)

Checking if π is a period,

$$\frac{2\cos(\omega+\pi)}{\sqrt{\frac{5}{4}+\cos(\omega+\pi)}}$$
 (4.32)

$$=\frac{-2\cos\omega}{\sqrt{\frac{5}{4}-\cos\omega}} \quad (4.33)$$

$$\implies H\left(e^{J(\omega+\pi)}\right) \neq H\left(e^{J\omega}\right) \quad (4.34)$$

Checking if 2π is a period

$$\frac{2\cos(\omega + 2\pi)}{\sqrt{\frac{5}{4} + \cos(\omega + 2\pi)}} = \frac{2\cos\omega}{\sqrt{\frac{5}{4} + \cos\omega}}$$
 (4.35)

$$\implies H(e^{J(\omega+2\pi)}) = H(e^{J\omega}) \quad (4.36)$$

- \therefore Period of $H(e^{j\omega})$ is 2π
- 4.7 Express h(n) in terms of $H(e^{j\omega})$

Solution:

$$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h(n')e^{-j\omega n'} \qquad (4.37)$$

$$\implies \int_{\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \qquad (4.38)$$

$$=\sum_{n'=-\infty}^{\infty}\int_{-\pi}^{\pi}h(n')e^{-j\omega n'}e^{j\omega n}d\omega \qquad (4.39)$$

$$= \sum_{n'=-\infty}^{\infty} h(n') 2\pi \delta(n'-n) = 2\pi h(n)$$
 (4.40)

$$\therefore h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H\left(e^{j\omega}\right) e^{j\omega} d\omega \qquad (4.41)$$

5 Impulse Response

5.1 Using long division, find

$$h(n), \quad n < 5$$
 (5.1)

for H(z) in (4.9).

Solution: from (4.9)

$$H(z) = (1 + z^{-2}) \left(1 + \frac{1}{2} z^{-1} \right)^{-1}$$
 (5.2)

For ROC:
$$\left| \frac{1}{2} z^{-1} \right| < 1$$
 (5.3)

$$\implies$$
 $|z| > \frac{1}{2}$ is the ROC for this case (5.4)

$$\implies H(z) = \frac{1 + z^{-2}}{1 + \frac{1}{2}z^{-1}} = 1 - \frac{1}{2}z^{-1} + \sum_{n=2}^{\infty} \frac{5}{4}z^{-n}$$

(5.5)

We know that
$$H(z) = \sum_{n=-\infty}^{\infty} h(n)z^{-n}$$
 (5.6)

comparing coefficients: in the ROC $|z| > \frac{1}{2}$

$$h(n) = \begin{cases} 0 & \text{if} \quad n < 0 \\ 1, & \text{if} \quad n = 0 \\ -\frac{1}{2}, & \text{if} \quad n = 1 \\ 5\left(-\frac{1}{2}\right)^{n}, & \text{if} \quad n \ge 2 \end{cases}$$

$$(5.7)$$

$$h(0) = 1, \quad h(1) = -\frac{1}{2}, \quad h(2) = \frac{5}{4}$$

$$(5.8)$$

$$h(3) = -\frac{5}{8}, \quad h(4) = \frac{5}{16}$$

$$(5.9)$$

5.2 Find an expression for h(n) using H(z), given that

$$h(n) \stackrel{\mathcal{Z}}{\rightleftharpoons} H(z)$$
 (5.10)

and there is a one to one relationship between h(n) and H(z). h(n) is known as the *impulse response* of the system defined by (3.2).

Solution: From (4.9),

$$H(z) = \frac{1}{1 + \frac{1}{2}z^{-1}} + \frac{z^{-2}}{1 + \frac{1}{2}z^{-1}}$$
 (5.11)

$$\therefore h(n) = \left(-\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{2}\right)^{n-2} u(n-2)$$
(5.12)

using (4.19) and (4.6).

5.3 Sketch h(n). Is it bounded? Justify theoretically.

Solution: The following code plots Fig. 5.3.

wget https://raw.githubusercontent.com/gadepall/EE1310/master/filter/codes/hn.py

Fig. 5.3: h(n) as the inverse of H(z)

5.4 Convergent? Justify using the ratio test. **Solution:**

$$h(n) = \begin{cases} 0 & \text{if} & n < 0 \\ 1, & \text{if} & n = 0 \\ -\frac{1}{2}, & \text{if} & n = 1 \\ 5\left(-\frac{1}{2}\right)^{n}, & \text{if} & n \ge 2 \end{cases}$$
 (5.13)

Using ratio test:

$$\lim_{n \to \infty} \left| \frac{h(n+1)}{h(n)} \right| = \left| \frac{5\left(-\frac{1}{2}\right)^{n+1}}{5\left(-\frac{1}{2}\right)^n} \right| = \frac{1}{2} < \infty \quad (5.14)$$

 $\implies h(n)$ is convergent

5.5 The system with h(n) is defined to be stable if

$$\sum_{n=-\infty}^{\infty} h(n) < \infty \tag{5.15}$$

Is the system defined by (3.2) stable for the impulse response in (5.10)

Solution:

$$\sum_{n=-\infty}^{\infty} h(n) = 0 + 1 - \frac{1}{2} + 5 \sum_{n=2}^{\infty} \left(-\frac{1}{2} \right)^n$$
 (5.16)

$$= \frac{1}{2} + 5\left(1 - \frac{1}{2} - \left(\frac{1}{1 + \frac{1}{2}}\right)\right) \quad (5.17)$$

$$= \frac{1}{2} + \frac{5}{6} = \frac{8}{6} = 1.333 < \infty \quad (5.18)$$

 $\therefore h(n)$ is Stable

5.6 Verify the above result using a python code.

Solution: The Following code computes and proves the aboves result

wget https://github.com/DarkWake9/EE3900/blob/main/Assignment%201/e5-6.py

5.7 Compute and sketch h(n) using

$$h(n) + \frac{1}{2}h(n-1) = \delta(n) + \delta(n-2), \quad (5.19)$$

This is the definition of h(n).

Solution: The following code plots Fig. 5.7. Note that this is the same as Fig. 5.3.

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/**filter**/codes/hndef .py

5.8 Compute

$$y(n) = x(n) * h(n) = \sum_{n = -\infty}^{\infty} x(k)h(n - k)$$
 (5.20)

Comment. The operation in (5.20) is known as *convolution*.

Solution: The following code plots Fig. 5.8. Note that this is the same as y(n) in Fig. 3.2.

wget https://raw.githubusercontent.com/gadepall/EE1310/master/filter/codes/ynconv.py

Fig. 5.7: h(n) from the definition

Fig. 5.8: y(n) from the definition of convolution

5.9 Express the above convolution using a Teoplitz matrix.

Solution: From (3.1) $x(n) = \{1, 2, 3, 4, 2, 1\}$ From (5.20) y(n) = x(n) * h(n)

5.10 Show that

$$y(n) = \sum_{n=-\infty}^{\infty} x(n-k)h(k)$$
 (5.24)

Solution:

$$X(z) = \mathcal{Z}\{x(n)\} = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$
 (5.25)

$$H(z) = \mathbb{Z}\{h(m)\} = \sum_{m=-\infty}^{\infty} h(m)z^{-m}$$
 (5.26)

$$Y(z) = \mathcal{Z}\{h(m)\} = \sum_{k=-\infty}^{\infty} y(m)z^{-k}$$
 (5.27)

$$X(z)H(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n} \sum_{m=-\infty}^{\infty} h(m)z^{-m} \quad (5.28)$$

$$= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} x[n]h[m]z^{-(n+m)}$$
 (5.29)

Let m = k - n

$$=\sum_{k=-\infty}^{\infty} \left(\sum_{n=-\infty}^{\infty} x[n]h[n-k]\right) z^{-k}$$
 (5.30)

$$= \sum_{k=-\infty}^{\infty} y[n] z^{-k} = Y(z)$$
 (5.31)

$$\implies Y(z) = X(z) \cdot H(z)$$
 (5.32)

now put n + m = k $n = -\infty$

$$\Rightarrow Y(z) = \sum_{k=-\infty}^{\infty} x(m-k) \sum_{m=-\infty}^{\infty} h(m)z^{-k} \quad (5.33)$$
$$= \sum_{k=-\infty}^{\infty} \left(\sum_{m=-k}^{\infty} x[m-k]h[k]\right) z^{-k} \quad (5.34)$$

but
$$Y(z) = \sum_{k=0}^{\infty} y(m)z^{-k}$$
 (5.35)

$$\Rightarrow y(m) = \sum_{m=-\infty}^{\infty} x[m-k]h(k) \quad (5.36)$$

$$\implies y(n) = \sum_{n = -\infty}^{\infty} x(n - k)h(k) \quad (5.37)$$

6 DFT AND FFT

6.1 Compute

$$X(k) \stackrel{\triangle}{=} \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(6.1)

and H(k) using h(n).

Solution:

Fig. 6.1: X(k) and H(k) using DFT

6.2 Compute

$$Y(k) = X(k)H(k) \tag{6.2}$$

Solution:

Fig. 6.2: Y(k) using DFT

6.3 Compute

$$y(n) = \frac{1}{N} \sum_{k=0}^{N-1} Y(k) \cdot e^{j2\pi kn/N}, \quad n = 0, 1, \dots, N-1$$
(6.3)

Solution: The following code plots Fig. 5.8. Note that this is the same as y(n) in Fig. 3.2.

wget https://raw.githubusercontent.com/ gadepall/EE1310/master/**filter**/codes/yndft. py

Fig. 6.3: y(n) from the DFT

6.4 Repeat the previous exercise by computing X(k), H(k) and y(n) through FFT and IFFT. **Solution:** The following code plots Fig. 6.4, and ??.

wget https://github.com/DarkWake9/EE3900/ blob/main/Assignment%201/e6.4.py

Fig. 6.4: X(k), Y(k) and H(k) using FFT

Fig. 6.4: Comparision of y(n) obtained from DFT (above) and IFFT (below)

7 FFT

1. The DFT of x(n) is given by

$$X(k) \triangleq \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N}, \quad k = 0, 1, \dots, N-1$$
(7.1)

2. Let

$$W_N = e^{-j2\pi/N} \tag{7.2}$$

Then the N-point DFT matrix is defined as

$$\mathbf{F}_N = [W_N^{mn}], \quad 0 \le m, n \le N - 1$$
 (7.3)

where W_N^{mn} are the elements of \mathbf{F}_N .

3. Let

$$\mathbf{I}_4 = \begin{pmatrix} \mathbf{e}_4^1 & \mathbf{e}_4^2 & \mathbf{e}_4^3 & \mathbf{e}_4^4 \end{pmatrix} \tag{7.4}$$

be the 4×4 identity matrix. Then the 4 point DFT permutation matrix is defined as

$$\mathbf{P}_4 = \begin{pmatrix} \mathbf{e}_4^1 & \mathbf{e}_4^3 & \mathbf{e}_4^2 & \mathbf{e}_4^4 \end{pmatrix} \tag{7.5}$$

4. The 4 point DFT diagonal matrix is defined as

$$\mathbf{D}_4 = diag \left(W_4^0 \quad W_4^1 \quad W_4^2 \quad W_4^3 \right) \tag{7.6}$$

5. Show that

$$W_N^2 = W_{N/2} (7.7)$$

Solution:

$$W_N = e^{-j2\pi/N}$$
 (7.8)

$$\implies W_{N/2} = e^{-j2\pi/(N/2)}$$
 (7.9)

$$\Longrightarrow W_{N/2} = e^{-j2\pi/(N/2)}$$
 (7.9)

$$\therefore W_N^2 = e^{2(-j2\pi/N)} = e^{-j2\pi/(N/2)} = W_{N/2}$$
 (7.10)

6. Show that

$$\mathbf{F}_4 = \begin{bmatrix} \mathbf{I}_2 & \mathbf{D}_2 \\ \mathbf{I}_2 & -\mathbf{D}_2 \end{bmatrix} \begin{bmatrix} \mathbf{F}_2 & 0 \\ 0 & \mathbf{F}_2 \end{bmatrix} \mathbf{P}_4 \tag{7.11}$$

Solution:

$$\mathbf{F}_2 = \begin{bmatrix} W_2^0 & W_2^0 \\ W_2^0 & W_2^1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 (7.12)

$$\mathbf{D}_{4/2} = \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}$$
 (7.13)

R.H.S =
$$\begin{bmatrix} \mathbf{F}_2 & \mathbf{D}_{4/2} \mathbf{F}_2 \\ \mathbf{F}_2 & -\mathbf{D}_{4/2} \mathbf{F}_2 \end{bmatrix} \mathbf{P}_4$$
 (7.14)

$$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -i & i \\ 1 & 1 & -1 & -1 \\ 1 & -1 & i & -i \end{bmatrix} \mathbf{P}_{4}$$
 (7.15)

$$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix}$$
 (7.16)

$$= \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 & W_4^4 \\ W_4^0 & W_4^2 & W_4^4 & W_4^6 \\ W_4^0 & W_3^3 & W_6^6 & W_9^4 \end{bmatrix} = \mathbf{F}_4 \tag{7.17}$$

7. Show that

$$\mathbf{F}_{N} = \begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix} \mathbf{P}_{N} \quad (7.18)$$

Solution:

$$\mathbf{F}_{N} = \begin{bmatrix} W_{N}^{00} & \cdots & W_{N}^{0(N-1)} \\ \vdots & & \vdots \\ W_{N}^{(N-1)0} & \cdots & W_{N}^{(N-1)(N-1)} \end{bmatrix}$$
(7.19)

Take Even - Odd permutation. i.e, multiply with P_N

$$\mathbf{F}_{N}\mathbf{P}_{N} = \begin{bmatrix} w_{N}^{00} & w_{N}^{02} & \cdots & w_{N}^{01} & w_{N}^{03} & \cdots \\ \vdots & & \vdots & & \vdots \\ w_{N}^{(N-1)0} & w_{N}^{(N-1)2} & \cdots & w_{N}^{(N-1)1} & w_{N}^{(N-1)3} & \cdots \end{bmatrix}$$
(7.20)

abcd

$$= \begin{bmatrix} (W_{N}^{0})^{0} & (W_{N}^{0})^{2} & \cdots & W_{N}^{1}(W_{N}^{0})^{0} & W_{N}^{1}(W_{N}^{0})^{2} & \cdots \\ \vdots & & \vdots & & \vdots \\ (W_{N}^{N-1})^{0} & (W_{N}^{N-1})^{2} & \cdots & W_{N}^{N-1}(W_{N}^{N-1})^{0} & W_{N/2}^{N-1}(W_{N}^{N-1})^{2} & \cdots \end{bmatrix}$$

$$= \begin{bmatrix} (W_{N/2}^{0})^{0} & (W_{N/2}^{0})^{1} & \cdots & W_{N}^{1}(W_{N/2}^{0})^{0} & W_{N/2+1}^{1}(W_{N/2}^{0})^{1} & \cdots \\ \vdots & & & \vdots \\ (W_{N}^{N-1})^{0} & (W_{N}^{N-1})^{2} & \cdots & W_{N}^{N-1}(W_{N/2}^{N-1})^{0} & W_{N}^{N-1}(W_{N/2}^{N-1})^{1} & \cdots \end{bmatrix}$$

$$(7.22)$$

$$\begin{bmatrix} \left(W_{N/2}^{0}\right)^{0} & \left(W_{N/2}^{0}\right)^{1} & \cdots & W_{N/2}^{0}\left(W_{N/2}^{0}\right)^{0} & W_{N/2}^{0}\left(W_{N/2}^{0}\right)^{1} & \cdots \\ \vdots & & \vdots & & & \vdots \\ \left(W_{N/2}^{N/2-1}\right)^{0} & \left(W_{N/2}^{N/2-1}\right)^{1} & \cdots & W_{N}^{N/2-1}\left(W_{N/2}^{N/2+1}\right)^{0} & W_{N}^{N/2-1}\left(W_{N/2}^{N/2-1}\right)^{1} & \cdots \\ \left(W_{N/2}^{N/2+0}\right)^{0} & \left(W_{N/2}^{N/2+0}\right)^{1} & \cdots & W_{N}^{N/2+0}\left(W_{N/2}^{N/2+0}\right)^{0} & W_{N}^{N/2}\left(W_{N/2}^{N/2+0}\right)^{1} & \cdots \\ \vdots & & & \vdots & & \vdots \\ \left(W_{N}^{N-1}\right)^{0} & \left(W_{N}^{N-1}\right)^{2} & \cdots & W_{N}^{N/2+(N/2-1)}\left(W_{N/2}^{N-1}\right)^{0} & W_{N/2+(N/2-1)}^{N-1}\left(W_{N/2}^{N-1}\right)^{1} & \cdots \end{bmatrix}$$

$$(7.23)$$

$$W_N^{N/2+k} = -W_N^k (7.24)$$

$$W_{N/2}^{N/2+k} = W_{N/2}^k (7.25)$$

$$\begin{bmatrix} \left(W_{N/2}^{0}\right)^{0} & \left(W_{N/2}^{0}\right)^{1} & \cdots & W_{N/2}^{0}\left(W_{N/2}^{0}\right)^{0} & W_{N/2}^{0}\left(W_{N/2}^{0}\right)^{1} & \cdots \\ \vdots & & \vdots & & & \vdots \\ \left(W_{N/2}^{N/2-1}\right)^{0} & \left(W_{N/2}^{N/2-1}\right)^{1} & \cdots & W_{N}^{N/2-1}\left(W_{N/2}^{N/2+1}\right)^{0} & W_{N}^{N/2-1}\left(W_{N/2}^{N/2-1}\right)^{1} & \cdots \\ \left(W_{N/2}^{0}\right)^{0} & \left(W_{N/2}^{0}\right)^{1} & \cdots & -W_{N}^{0}\left(W_{N/2}^{0}\right)^{0} & -W_{N}^{0}\left(W_{N/2}^{0}\right)^{1} & \cdots \\ \vdots & & & \vdots \\ \left(W_{N}^{N-1}\right)^{0} & \left(W_{N}^{N-1}\right)^{2} & \cdots & -W_{N}^{N/2-1}\left(W_{N/2}^{N/2-1}\right)^{0} -W_{(N/2-1)}^{N-1}\left(W_{N/2}^{N/2-1}\right)^{1} & \cdots \end{bmatrix}$$

$$(7.26)$$

$$\begin{bmatrix} \begin{bmatrix} \left(W_{N/2}^0 \right)^0 & \left(W_{N/2}^0 \right)^1 & \cdots \\ \vdots & \vdots & & \vdots \\ \left(W_{N/2}^{N/2-1} \right)^0 & \left(W_{N/2}^{N/2-1} \right)^1 & \cdots \end{bmatrix} \begin{bmatrix} W_{N/2}^0 \left(W_{N/2}^0 \right)^0 & W_{N/2}^0 \left(W_{N/2}^0 \right)^1 & \cdots \\ \vdots & \vdots & & \vdots \\ W_{N}^{N/2-1} \left(W_{N/2}^{N/2-1} \right)^0 & W_{N}^{N/2-1} \left(W_{N/2}^{N/2-1} \right)^1 & \cdots \end{bmatrix} \\ \begin{bmatrix} \left(W_{N/2}^0 \right)^0 & \left(W_{N/2}^0 \right)^1 & \cdots \\ \vdots & \vdots & & \vdots \\ W_{N/2}^{N/2-1} \left(W_{N/2}^{N/2-1} \right)^0 & W_{N/2}^0 \left(W_{N/2}^0 \right)^1 & \cdots \\ \vdots & & \vdots & & \vdots \\ W_{N/2}^{N/2-1} \left(W_{N/2}^{N/2-1} \right)^0 & W_{N}^{N/2-1} \left(W_{N/2}^{N/2-1} \right)^1 & \cdots \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{F}_{N/2} & \mathbf{D}_{N/2} \mathbf{F}_{N/2} \\ \mathbf{F}_{N/2} & -\mathbf{D}_{N/2} \mathbf{F}_{N/2} \end{bmatrix}$$
(7.28)

Where

$$\mathbf{D}_{N/2} = diag \left(W_N^0 \quad \cdots \quad W_N^{N/2-1} \right)$$
 (7.29)

$$\mathbf{F}_{N/2} = \begin{bmatrix} \left(w_{N/2}^0 \right)^0 & \left(w_{N/2}^0 \right)^1 & \dots \\ \vdots & \vdots & \vdots \\ \left(w_{N/2}^{N/2-1} \right)^0 & \left(w_{N/2}^{N/2-1} \right)^1 & \dots \end{bmatrix}$$
(7.30)

$$\implies \mathbf{F}_N \mathbf{P}_N = (7.31)$$

$$\begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix}$$
(7.32)

Multiply on both sides by P_N $(P_N)^2 = I$

$$\therefore \mathbf{F}_{N} = \begin{bmatrix} \mathbf{I}_{N/2} & \mathbf{D}_{N/2} \\ \mathbf{I}_{N/2} & -\mathbf{D}_{N/2} \end{bmatrix} \begin{bmatrix} \mathbf{F}_{N/2} & 0 \\ 0 & \mathbf{F}_{N/2} \end{bmatrix} \mathbf{P}_{N} \quad (7.33)$$

8. Find

$$\mathbf{P}_4\mathbf{x} \tag{7.34}$$

Solution:

$$\mathbf{P}_{4} = \begin{pmatrix} \mathbf{e}_{4}^{1} & \mathbf{e}_{4}^{3} & \mathbf{e}_{4}^{2} & \mathbf{e}_{4}^{4} \end{pmatrix}$$
 (7.35)
$$\mathbf{x}_{4} = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$$
 (7.36)
$$\mathbf{P}_{4}\mathbf{x} = \begin{pmatrix} 1 & 3 & 2 & 4 \end{pmatrix}$$
 (7.37)

$$\mathbf{P}_4 \mathbf{x} = \begin{pmatrix} 1 & 3 & 2 & 4 \end{pmatrix} \tag{7.37}$$

9. Show that

$$\mathbf{X} = \mathbf{F}_N \mathbf{x} \tag{7.38}$$

where x, X are the vector representations of x(n), X(k) respectively.

Solution:

$$(\mathbf{F}_N \mathbf{x})_k = \sum_{m=0}^{N-1} W_N^{mk} x(m)$$
 (7.39)

$$= \sum_{m=0}^{N-1} x(m)e^{-j2\pi km/N} = X(k) = \mathbf{X}_k$$
 (7.40)

10. Derive the following Step-by-step visualisation of 8-point FFTs into 4-point FFTs and so on

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \end{bmatrix} = \begin{bmatrix} X_1(0) \\ X_1(1) \\ X_1(2) \\ X_1(3) \end{bmatrix} + \begin{bmatrix} W_8^0 & 0 & 0 & 0 \\ 0 & W_8^1 & 0 & 0 \\ 0 & 0 & W_8^2 & 0 \\ 0 & 0 & 0 & W_8^3 \end{bmatrix} \begin{bmatrix} X_2(0) \\ X_2(1) \\ X_2(2) \\ X_2(3) \end{bmatrix}$$

$$\begin{bmatrix} X(4) \\ X(5) \\ X(6) \\ X(7) \end{bmatrix} = \begin{bmatrix} X_1(0) \\ X_1(1) \\ X_1(2) \\ X_1(3) \end{bmatrix} - \begin{bmatrix} W_8^0 & 0 & 0 & 0 \\ 0 & W_8^1 & 0 & 0 \\ 0 & 0 & W_8^2 & 0 \\ 0 & 0 & 0 & W_8^3 \end{bmatrix} \begin{bmatrix} X_2(0) \\ X_2(1) \\ X_2(2) \\ X_2(3) \end{bmatrix}$$
(7.42)

4-point FFTs into 2-point FFTs

$$\begin{bmatrix} X_1(0) \\ X_1(1) \end{bmatrix} = \begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} + \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix}$$
(7.43)

$$\begin{bmatrix} X_1(2) \\ X_1(3) \end{bmatrix} = \begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} - \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix}$$
 (7.44)

$$\begin{bmatrix} X_2(0) \\ X_2(1) \end{bmatrix} = \begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} + \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix}$$
 (7.45)

$$\begin{bmatrix} X_2(2) \\ X_2(3) \end{bmatrix} = \begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} - \begin{bmatrix} W_4^0 & 0 \\ 0 & W_4^1 \end{bmatrix} \begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix}$$
(7.46)

$$P_{8}\begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \\ x(4) \\ x(5) \\ x(6) \\ x(7) \end{bmatrix} = \begin{bmatrix} x(0) \\ x(2) \\ x(4) \\ x(6) \\ x(1) \\ x(3) \\ x(5) \\ x(7) \end{bmatrix}$$
(7.47)

$$P_{4} \begin{bmatrix} x(0) \\ x(2) \\ x(4) \\ x(6) \end{bmatrix} = \begin{bmatrix} x(0) \\ x(4) \\ x(2) \\ x(6) \end{bmatrix}$$
 (7.48)

$$P_{4} \begin{bmatrix} x(1) \\ x(3) \\ x(5) \\ x(7) \end{bmatrix} = \begin{bmatrix} x(1) \\ x(5) \\ x(3) \\ x(7) \end{bmatrix}$$
 (7.49)

Therefore,

$$\begin{bmatrix} X_3(0) \\ X_3(1) \end{bmatrix} = F_2 \begin{bmatrix} x(0) \\ x(4) \end{bmatrix}$$
 (7.50)

$$\begin{bmatrix} X_4(0) \\ X_4(1) \end{bmatrix} = F_2 \begin{bmatrix} x(2) \\ x(6) \end{bmatrix}$$
 (7.51)

$$\begin{bmatrix} X_5(0) \\ X_5(1) \end{bmatrix} = F_2 \begin{bmatrix} x(1) \\ x(5) \end{bmatrix}$$
 (7.52)

$$\begin{bmatrix} X_6(0) \\ X_6(1) \end{bmatrix} = F_2 \begin{bmatrix} x(3) \\ x(7) \end{bmatrix}$$
 (7.53)

11. For

$$\mathbf{x} = \begin{pmatrix} 1\\2\\3\\4\\2\\1 \end{pmatrix} \tag{7.54}$$

compte the DFT using (7.38)

Solution:

$$\mathbf{X} = \mathbf{F}_6 \mathbf{x} \tag{7.55}$$

$$= \begin{pmatrix} 13 \\ -4 - \sqrt{3}j \\ 1 \\ -1 \\ 1 \\ -4 + \sqrt{3}j \end{pmatrix}$$
 (7.57)

12. Repeat the above exercise using the FFT after zero padding **x**.

Solution:

wget https://github.com/DarkWake9/EE3900/blob/main/Assignment%201/e7.12.py

From the above code we get this output:

$$\begin{bmatrix}
13 \\
-3.1213 - 6.5355j \\
j \\
1.1213 - 0.5355j \\
-1 \\
1.1213 + 0.5355j \\
-j \\
-3.1213 + 6.5355j
\end{bmatrix}$$

13. Write a C program to compute the 8-point FFT.

Solution:

wget https://github.com/DarkWake9/EE3900/blob/main/Assignment%201/e7.13.c

From the above code we get this output:

$$\begin{bmatrix} 13 \\ -3.1327 - j6.5545 \\ j \\ 1.1327 - j0.5545 \\ -1 \\ 1.1327 + j0.5545 \\ -j \\ -3.1327 + j6.5545 \end{bmatrix}$$

8 Exercises

Answer the following questions by looking at the python code in Problem 2.3.

8.1 The command

in Problem 2.3 is executed through the following difference equation

$$\sum_{m=0}^{M} a(m) y(n-m) = \sum_{k=0}^{N} b(k) x(n-k)$$
 (8.1)

where the input signal is x(n) and the output signal is y(n) with initial values all 0. Replace **signal.filtfilt** with your own routine and verify. **Solution:**

wget https://github.com/DarkWake9/EE3900/blob/main/Assignment%201/e8.1.py

- 8.2 Repeat all the exercises in the previous sections for the above a and b.
- 8.3 What is the sampling frequency of the input signal?

Solution: Sampling frequency(fs)=44.1kHZ.

- 8.4 What is type, order and cutoff-frequency of the above butterworth filter
 - **Solution:** The given butterworth filter is low pass with order=2 and cutoff-frequency=4kHz.
- 8.5 Modifying the code with different input parameters and to get the best possible output.