Detection of Fake Spammer and Genuine Accounts on Instagram

0

Team Member: Ellen Dong / Mark Du / Winci Liang / Laurie Ye

TABLE OF CONTENTS

01

Problem & Significance

What is the problem? Why it is interesting?

03

Methodology

What are the approaches you plan to explore?

02

Dataset Selection

Which dataset do you plan to use?

04

Methodologies and Limitations

Why are these approaches reasonable to consider? Include any limitations.

Problem & O1 Significance

Problem: As artificial intelligence and technology continue to advance, the growth of social media platforms like Instagram has brought an increasing concern regarding the prevalence of fake and spam accounts.

- Distort engagement metrics
- Spread misinformation
- Degrade the overall user experience

Goal: Aim to develop a robust machine learning model to classify Instagram accounts as either authentic or spam based on various account features.

Outcome: Enhance the reliability of online interactions, the integrity of social media analytics, and mitigating the negative consequence of false online behavior. Foster a safe online community for users.

Domains: Social media platforms, marketing & advertising, and others

Dataset Selection

02

Dataset: Instagram Fake Spammer and Genuine Accounts

- Downloaded from <u>Kaggle</u>
- Data collected using a crawler from 15-19, March 2019
- Contains 12 variables, 696
 observations (half spammer and half non-spammer)

Independent Variable	Description	
Profile Pic	Indicates whether the user has a profile picture $(1 = Yes, 0 = No)$	
Nums/Length Username	Ratio of the number of numerical characters in the username to its length	
Fullname Words	Full name represented in word tokens	
Nums/Length Fullname	Ratio of the number of numerical characters in the full name to its length	
Name == Username	Indicates whether the username and full name are the same $(1 = Yes, 0 = No)$	
Description Length	Length of the bio in characters	
External URL	Indicates whether the account has an external URL $(1 = Yes, 0 = No)$	
Private	Indicates whether the account is private $(1 = Yes, 0 = No)$	
#Posts	Total number of posts made by the account	
#Followers	Number of followers the account has	
#Follows	Number of accounts the user follows	
Dependent Variable		
Fake	Class indicating whether the account is genuine (0) or spam (1)	

Methodology 03

Machine Learning Model Development

01

02

03

04

05

Regression-based

Tree-based

Boosting Method

Support Vector Neural Network

Logistic Regression:

- Baseline model for binary classification
- Linear and high interpretability

Decision Trees:

- Non-linear method that splits data based on feature value
- Easy interpretability but can overfit

Random Forest:

 Ensemble method, reducing overfitting, improving generalizability

Gradient Boosting Machines (GBM), XGBoost and AdaBoost:

 More powerful ensemble method, capturing more nuances

Support Vector Machines (SVM):

- More powerful, non-linear model, effective in high-dimensional data
- Find the optimal hyperplane for classification

Sequential Neural Network:

Most complex, captures highly intricate patterns, least interpretable

Evaluation Strategies

Feature Importance Analysis

Regularization Techniques

Cross-Validation & Hyperparameter Tuning

Model Evaluation

Lasso (L1) Regularization:

- Help prevent overfitting
- Improves model interpretability

Ridge (L2) Regularization:

Reduce model complexity

Elastic Net:

Combined Lasso and Ridge

Use Cross-Validation for:

- Hyperparameter tuning
- Further feature engineering
- Employ bootstrap methods
- -> identify the best prediction model

Assess model performance using:

- Accuracy
- Precision
- Recall
- F1-Score
- ROC-AUC

Limitations 04

Reasons & Limitation

Reasonable Approaches to Consider

- Diverse Methodologies: combination of regression, tree-based methods, boosting techniques, and neural networks allows for capturing a wide range of patterns in the data -> improving classification accuracy.
- Flexibility and Robustness:
 - Regularization: prevent overfitting and enhances interpretability.
 - Cross-Validation: validates model on unseen data, to reduce overfitting and improving generalization.
 - Ensemble Methods: Techniques in gradient boosting improve performance by combining multiple weak learners for error correction.

Limitations

Small Dataset Size:
 With only around 700 instances, the model may struggle to generalize effectively to unseen data.

• Risk of Overfitting:

Even with regularization, complex models (like deep neural networks) may still overfit the training data if not managed properly.

• Feature Sensitivity:

Algorithms like Decision Trees are sensitive to irrelevant features, necessitating thorough feature selection. Tree-based methods may misinterpret correlations between features, affecting accuracy.

Timeline

Time: Approximate 6 weeks until full presentation

Task	Duration	Team Member
Data Preprocessing and EDA	2 weeks	4
Model Development	2 weeks	2
Model Evaluation and Optimization	1 week	2/3
Report Writing and Presentation	1 week	4

Thank you!