DIGITAL DESIGN LAB 1

DIVYAM PATEL B20EE082

Work 1: Create a Half Adder. Write its test bench and Simulate

HALF ADDER TRUTH TABLE

INF	PUT	OUTPUT						
Α	В	SUM	CARRY					
0	0	0	0					
0	1	1	0					
1	0	1	0					
1	1	0	1					

Work 2: Use Half Adder to Create a Full Adder

TRUTH TABLE FOR FULL ADDER

	INPUT	OUTPUT						
Α	В	С	SUM	CARRY				
0	0	0	0	0				
0	0	1	1	0				
0	1	0	1	0				
0	1	1	0	1				
1	0	0	1	0				
1	0	1	0	1				
1	1	0	0	1				
1	1	1	1	1				


```
Project Summary × half_adder.v *
                            × test_half_adder.v *
                                                × full adder.v
D:/YEAR 2/SEMESTER 2/DIGITAL DESIGN/LABS/LAB 1/full_adder.v
    `timescale 1ns / 1ps
 3 // Company:
    // Engineer:
    // Create Date: 11.01.2022 16:00:07
 7 ! // Design Name:
    // Module Name: full adder
 9 // Project Name:
10 // Target Devices:
    // Tool Versions:
12 // Description:
    // Dependencies:
16 // Revision:
    // Revision 0.01 - File Created
18 // Additional Comments:
                                                               module full_adder(A,B,C,Sum,Carry);
19 | //
                                                               input A,B,C;
21
                                                               output Sum, Carry;
22
                                                               wire Sum1, Carry1, Carry2;
23 — module full adder(A,B,C,Sum,Carry);
    input A, B, C;
                                                               half_adder H1(A,B,Sum1,Carry1);
    output Sum, Carry;
                                                               half_adder H2(Sum1,C,Sum,Carry2);
    wire Sum1, Carry1, Carry2;
    half adder H1(A,B,Sum1,Carry1);
                                                               assign Carry = Carry1 | Carry2;
    half adder H2 (Sum1, C, Sum, Carry2);
29
    assign Carry = Carry1|Carry2;
30
                                                               endmodule
    endmodule
```

Work 3: Use Full Adder to Create a Four Bit Adder. Write its test bench and

```
► Project Summary × test four bit adder.v
                                   × four bit adder.v
  D:/YEAR 2/SEMESTER 2/DIGITAL DESIGN/LABS/LAB 1/four_bit_adder.v
  Q 💾 🔸 🥕 🐰 🖺 🛣 📈 🎟 🔉
       `timescale 1ns / 1ps
  21
                                                   module four_bit_adder(A,B,S,Carry);
  22
  23 - module four bit adder(A,B,S,Carry);
                                                   input [3:0] A,B;
 24 | input [3:0]A,B;
                                                   output [3:0]S;
      output [3:0]S;
                                                   output Carry;
      output Carry;
                                                   reg C0 = 1'b0;
 27 | reg C0 = 1'b0;
 28 | wire C1, C2, C3;
                                                   wire C1,C2,C3;
 29 | full_adder FA1(A[0],B[0],C0,S[0],C1);
                                                   full_adder FA1 (A[0],B[0],C0,S[0],C1);
 30 | full adder FA2(A[1],B[1],C1,S[1],C2);
                                                   full_adder FA2(A[1],B[1],C1,S[1],C2);
      full_adder FA3(A[2],B[2],C2,S[2],C3);
                                                   full_adder FA3(A[2],B[2],C2,S[2],C3);
      full adder FA4(A[3],B[3],C3,S[3],Carry);
                                                   full_adder FA4(A[3],B[3],C3,S[3],Carry);
 33
      endmodule
                                                   endmodule
```

S U

				2.200 ns															
	Name	Value	0 1	ıs	10	ns	20	ns	3	0 ns	40 ns	s	5	0 ns	60) ns	70 ns		80 ns
	> W A[3:0]	0000		0000		0001	X_	0101	X	0110	<i>/</i>	.001	X	1010	<u>/</u>	1101	$\overline{}$	111	
	> W B[3:0]	0000		0000	\mathbb{Z}	0010	\mathbb{X}	0111	Ж	1000	1	L 01 0	X	1011	K	1110	1	111	
	> W S[3:0]	0000		0000	$\langle -$	0011	\mathbb{X}	1100		1110	0011		X	0101		1011	1110		
	□ Carry	0																	
						12.500 ns													
						121000 110													
	Name	Value	0 n	ıs	10	ns	20	ns	3(0 ns	40 ns	;	⁵⁽	0 ns	60	ns	70 ns	1	80 ns
	> ™ A[3:0]	0001		0000		0001		0101	X	0110	1	001	K	1010		1101		111	
	> 😻 B[3:0]	0010		0000		0010	\mathbb{Z}	0111	Ж	1000	1	010	K	1011	K	1110	1	111	
	> W S[3:0]	0011		0000	0011		\mathbb{Z}	1100		1110	0011		K	0101	1011	1011	1110		
	[™] Carry	0																	
								2	8.4	400 ns									
	Name	Value	0 n	ıs	10	ns	20	ns	31	0 ns	40 ns	; 	5	0 ns	60) ns	70 ns		80 ns
	> W A[3:0]	0101		0000		0001		0101	\mathbb{X}	0110	$\overline{}$.001	K	1010	K	1101	$\overline{}$	111	
	> W B[3:0]	0111		0000		0010	\mathbb{L}	0111	Ж	1000		010	K	1011	K	1110	1	111	
	> W S[3:0]	1100		0000		0011	\mathbb{L}	1100	Ж	1110		1001	K	0101	K	1011	1	110	
	[™] Carry	0																	
_								<u> </u>											

						32.000 ns						
						52.000 RS						
Name	Value	0 ns	10 ns	20 ns	30	ns	40 ns		50 ns	60 ns	70 ns	80 ns
> W A[3:0]	0110	0000	0001	0101		0110	1001		1010	1101	1111	
> W B[3:0]	1000	0000	0010	0111		1000	1010		1011	1110	1111)
> 💆 S[3:0]	1110	0000	0011	1100		1110	0011		0101	1011	1110)
Carry	0											
								4	8.900 ns			
								_	0.900 NS			
Name	Value	0 ns	10 ns	20 ns	30	ns	40 ns		50 ns	60 ns	70 ns	80 ns
> 🍑 A[3:0]	1001	0000	0001	0101	K	0110	1001		1010	1101	1111)
> 💆 B[3:0]	1010	0000	0010	0111	K	1000	1010		1011	1110	1111)
> W S[3:0]	0011	0000	0011	1100	K	1110	0011		0101	1011	1110)
Carry	1											
									50.900 ns			
Name	Value	0 ns	10 ns	20 ns	30	ns	40 ns		5 <mark>0 πs</mark>	60 ns	70 ns	80 ns
> W A[3:0]	1010	0000	0001	0101		0110	1001		1010	1101	1111	
> W B[3:0]	1011	0000	0010	0111		1000	1010		1011	1110	1111	
> 💆 S[3:0]	0101	0000	0011	1100		1110	0011		0101	1011	1110	
18 Carry	1											

THANK YOU