23. Современные подходы к оцениванию состояния динамических систем

Рассмотрим дискретный случай. Динамическая система представляет собой математический объект, задаваемый уравнением системы (1) и уравнением наблюдения (2).

$$\mathbf{x}(k+1) = \mathbf{F}\,\mathbf{x}(k) + \mathbf{B}\,\mathbf{u}(k) + \mathbf{w}(k) \quad , \tag{1}$$

$$\mathbf{y}(k) = \mathbf{H} \, \mathbf{x}(k) + \mathbf{n}(k) \quad , \tag{2}$$

- где $\mathbf{x}(k)$ состояние системы на k-ом шаге, которое в общем случае представляет собой вектор параметров;
- $\mathbf{u}(k)$ управляющее воздействие, так же являющееся вектором;
- y(k) выход системы или т. н. наблюдение, в общем случае векторная величина, отражающая параметры системы, которые мы наблюдаем и по которым можем косвенно делать выводы о состоянии системы:
- ${f F}$ оператор, воздействующий на состояние системы при дискретном переходе с шага k на шаг k+1, описывающий изменение состояния системы во времени
- В оператор, описывающий влияние управляющего воздействия на состояние системы
- ${f H}$ оператор, описывающий связь между наблюдаемыми параметрами и состоянием системы;
- $\mathbf{w}(k)$ шум системы; $\mathbf{n}(k)$ шум наблюдения.

Подходы к оцениванию состояния динамических систем

Метод	Краткое описание	Преимущества/недостат ки
1. Рекуррентный метод наименьших квадратов	Используется минимизация суммы квадратов разностей между измеренными значениями параметров и их априорной оценкой	Удовлетворительные результаты только в случае высокой степени соответствия между моделью и данными
2. Авторегрессионные модели	Модели временных рядов, в которых каждый последующий член линейно выражается через предыдущий.	1 1
3. Рекуррентные алгоритмы оценивания параметров		
Калмана (Linear Kalman Filter) и оптимальный Байесовский фильтр (Optimal Bayesian estimator)	моделью эволюции осуществляется экстраполяция вектора параметров, а на втором уточнение с соответствии с поступившим наблюдением. Байесовский фильтр основан оценке плотности вероятности распределения параметров при	представляют собой нелинейные операторы, вследствие чего оптимальные подходы к оцениванию состояния, такие как ЛФК не могут использоваться. Шум должен быть белым и

	наблюдения. Он сводится к линейному фильтру Калмана в случае линейных систем.	
	Основано на аппроксимации нелинейных операторов пр помощи рядов Тейлора	1 1 1
в) Сигма-точечный фильтр Калмана (Unscented Kalman filter)	Основано на сигма-точечном преобразовании	Качество оценок чуть лучше или чуть хуже, чем для EKF в зависимости от модели. Требует реализацию разложения Холецкого (корень из матрицы). Работает немного медленнее
	Оснаван на численном моделировании плотности вероятности распределения параметров	Оценки как правило более точные, но требует значительных вычислительных ресурсов для численного моделирования плотностей вероятностей