Анализ неопределенности и внутренних представлений языковых моделей для определения искуственной природы текста

Анастасия Евгеньевна Вознюк Научный руководитель: к.ф.-м.н. А. В. Грабовой

Кафедра интеллектуальных систем ФПМИ МФТИ Специализация: Интеллектуальный анализ данных Направление: 01.03.02 Прикладные математика и информатика

Цель работы

Исследуется проблема определения природы текста.

Цель работы

Построение методов поиска сгенерированных фрагментов с помощью подсчет неопределенности в тексте, а также с помощью анализа внутренних представлений языковых моделей.

Общая постановка задачи

Определим документ как конечную последовательность символов из заданного алфавита \mathbf{W} . Пространство документов:

$$\mathbb{D} = \Big\{ \Big[t_j \Big]_{j=1}^n \mid t_j \in \mathbf{W}, n \in \mathbb{N} \Big\}.$$

Дан набор из N документов

$$\mathbf{D} = \bigcup_{i=1}^N D^i, D^i \in \mathbb{D}.$$

Определим множество авторов, тексты которых встречаются в наборе \mathbf{D} :

$$\mathbf{C} = \{0, \dots, k-1\}.$$

Тогда задача классификации автора документа записывается как:

$$\phi: \mathbb{D} \to \mathbf{C} \tag{1}$$

Анализ неопределенности

 $oldsymbol{ heta}$ - параметры нашей модели f .

$$y_k = f(D, y_1, \dots, y_{k-1} \mid \boldsymbol{\theta})$$

 $\boldsymbol{y} = [y_1, \dots, y_n]^T$

Maxiumum Sequence Probability

$$MSP(\boldsymbol{y}|D,\boldsymbol{\theta}) = 1 - P(\boldsymbol{y}|D,\boldsymbol{\theta})$$
 (2)

Perplexity

$$P(\mathbf{y}|D,\boldsymbol{\theta}) = \exp\{-\frac{1}{|D|}\log P(\mathbf{y}|D,\boldsymbol{\theta})\}$$
(3)

Mean Token Entropy

$$\mathcal{H}_{T}(\mathbf{y}, D; \boldsymbol{\theta}) = \frac{1}{|D|} \sum_{l=1}^{|D|} \mathcal{H}(y_{l} \mid \mathbf{y}_{< l}, D, \boldsymbol{\theta})$$
(4)

Вычислительный эксперимент

Было взято 1000 человеческих текстов и 1000 текстов и на них были посчитаны фнукции, описанные на предыдущем слайде.

Использование топологических признаков текста

Основной подход основан на использовании понятий персисентной гомологии конечного набора точек $\mathcal M$ в метрическом пространстве с метрикой d.

$$E_t = \{(v, u) : v, u \in \mathcal{M}, \quad d(v, u) \le t\} \quad \forall t \in (0, \infty)$$

Персисентная гомология PH_i определена набором признаков размерности i, так PH_0 задается компонентами связности, PH_1 - циклами, и т.д.

Внутреняя размерность

У каждого признака есть своя *продолжительность жизни*, это пара $(t_{\rm birth}, t_{\rm death})$, когда данный признак появляется, и когда исчезает.

Введем α -взвешенную сумму, $I(\gamma)$ - продолжительность жизни признака γ .

$$E_{\alpha}^{i}(X) := \sum_{\gamma \in PH_{i}(X)} |I(\gamma)|^{\alpha}$$
 (5)

$$E^0_{\alpha}(X) \sim Cn^{\frac{d-\alpha}{d}}, n \to \infty \Leftrightarrow \alpha < d$$
 (6)

$$\dim_{\mathrm{PH}}(\mathcal{M}) = \inf \left\{ d \mid \exists C \quad E_d^0(X) \leq C \quad \forall X \subset \mathcal{M}, |X| < \infty \right\}. \tag{7}$$

Гипотеза

Внутренняя размерность $\dim_{\mathrm{PH}}(\mathcal{M})$ показывает количество степеней свободы у точки в \mathcal{M} .

Персисентная гомологическая размерность (PHD) - метрика, основанная на внутренней размерности текстов, показала себя статистически значимой метрикой для разделения текстов разной природы для первых языковых моделей 1. Однако для более новых моделей разделимость уже не такая хорошая.

Гипотеза

Можно адаптировать PHD для новых моделей, так что она все еще будет статистической метрикой разделимости текстов.

¹Tulchinskii et al. Intrinsic Dimension Estimation for Robust Detection of Al-Generated Texts, NeurIPS 2023

Вычислительный эксперимент

Dataset	PHD _{human}	$PHD_{machine}$	
OutFox	8.96 ± 1.21	11.48 ± 1.13	
SemEval24 Mono	9.11 ± 1.19	9.41 ± 1.2	
SemEval24 Multi	9.65 ± 1.81	9.42 ± 1.44	
DAGPap22	8.35 ± 1.33	7.48 ± 2.01	
PAN24	9.4 ± 1.05	8.52 ± 1.59	
MGT-1 Mono	9.19 ± 1.75	8.96 ± 2.24	
MGT-1 Multi	8.76 ± 1.85	8.6 ± 2.29	

Новый способ подсчитывать внимание

Пусть N - длина текстовй последовательности. Выделим в тексте "якоря" $d_1,...,d_n$, в которых содержится основной смысл текста. Рассмотрим голову внимания h со слоя I модели M. Определим QK-score $S_{QK}^{(I,h)}(d_i)$ и Attention-score $S_{Att}^{(I,h)}(d_i)$:

$$S_{QK}^{(l,h)}(d_i) = q_N^{(l,h)\top} k_{t_i}^{(l,h)}, \quad S_{Att}^{(l,h)}(d_i) = a_{N,t_i}^{(l,h)}, \quad i \in \{1, 2, ..., n\}$$
(8)

Гипотеза

QK-score на некоторых задач может лучше определять паттерны и решать задачу чем стандартный подсчет внимания.

Вычислительный эксперимент

Данные два подхода подсчета внимания сравнивались на задаче ответов на тестовые вопросы MMLU.

LLaMA					
Method	2-13B	2-70B	3-8B	3-70B	
Baseline, Acc	47.4	57.7	60.5	78.2	
Baseline, PA	34.6	45.9	47.7	70.1	
QK-score, Acc	49.7	58.9	63.0	77.9	
QK-score, PA	38.3	47.1	49.3	67.9	

Таблица: Comparison of different base models in zero-shot setup on various Q&A datasets. Reported metrics are Accuracy (Acc) and Permutation Accuracy (PA). Best results are highlighted in **bold**.

Итоги НИР за семестр и планы на следующий семестр

Результаты

- 1. Опубликована 1 работа на A* конференции, еще 1 принята к публикации, еще 2 в состоянии препринта и ожидают оценки ревьюеров;
- 2. Получены первые результаты с анализом PHD для сгенерированных текстов и с оценкой неопределенности на них;

Планы

- 1. Необходимо модифицировать PHD чтобы добиться разделимости по текстам от более новых моделей;
- 2. Применить QK-Score для новых задач;

Список работ автора по теме НИР

Публикации

- 1. Listening to the Wise Few: Select-and-Copy Attention Heads for Multiple-Choice QA. *arXiv* preprint:2410.02343
- 2. Advacheck at GenAl Detection Task 1: Al Detection Powered by Domain-Aware Multi-Tasking, *Proceedings of Workshop on Detecting Al Generated Content at COLING 2025*
- Are Al Detectors Good Enough? A Survey on Quality of Datasets With Machine-Generated Texts, arXiv preprint:2410.14677

Выступления с докладом

1. DeepPavlov 1.0: Your Gateway to Advanced NLP Models Backed by Transformers and Transfer Learning.// EMNLP, Miami, Florida