CS 580 ALGORITHM DESIGN AND ANALYSIS

Greedy Algorithms 1: Shortest Paths (cf. KT 4.4, 6.8)

Vassilis Zikas

GREEDY ALGORITHMS

- Build a solution by myopically doing the best thing you can
 - There is a local structure that can be exploited to give global optimality
- Non-trivial problems solved by greedy algorithms are few and far between

- <u>Problem:</u> Given a directed graph G = (V, E) and two node s, t, what is the length of the shortest path from s to t?
- Length?
- If we're just counting the number of edges, we already know how to do this!
 - Breadth First Search!
 - Would DFS work?
- More general version: each edge e has a length $\ell_e \ge 0$

Replace with 8 vertices

Now run BFS!

- Run time?
- The number of nodes in the new graph depends on the length of the edges in the original graph
 - With *n*-bits we can write the number $2^n!$
- Almost there...

Dijkstra's algorithm

Instructor's favorite quote:
The question of whether computers can think is like the question of whether submarines can swim

- In the previous reduction, think of an alarm going off every time BFS reaches a "real" vertex
- Nothing interesting can possibly happen between alarms!
- Main idea: simulate alarms (with a shortcut, in order to avoid exponential time)

- 1. Maintain a set of explored vertices *S*
 - For each $u \in S$ we have determined the shortest path distance d(u) from s
 - These are the vertices whose "alarm" has gone off
- 2. Initialize $S = \{s\}$ and d(s) = 0
- 3. Repeatedly choose an unexplored node *v* that minimizes

$$\pi(v) = \min_{e=(u,v): u \in S} d(u) + \ell_e$$

• Add v to S and set $d(v) = \pi(v)$

Current estimated distance $\pi(v)$

A: 0 D: 6 B: 3 E: 7

A: 0 D: 5 B: 3 E: 6 C: 2

A: 0 D: 5 B: 3 E: 6 C: 2

- TODO:
 - Correctness
 - Implementation and running time

- We want to show that the distance labels are correct
 - Proof by induction
- Base case of |S| = 1 is trivial
- Assume true for |S| = k
- Let v be the next node the algorithm chooses to add to S, with e = (u, v) the corresponding edge
- Suffices to show that the shortest path is the path to *u* plus *e*; consider any other path *P* from *s* to *v*
- Let (x, y) be the first edge on P such that $y \notin S$ and let P' be the subpath to x
 - P is already too long!

$$\ell(P) \ge \ell(P') + \ell_{(x,y)}$$

- We want to show that the distance labels are correct
 - Proof by induction
- Base case of |S| = 1 is trivial
- Assume true for |S| = k
- Let v be the next node the algorithm chooses to add to S, with e = (u, v) the corresponding edge
- Suffices to show that the shortest path is the path to *u* plus *e*; consider any other path *P* from *s* to *v*
- Let (x, y) be the first edge on P such that $y \notin S$ and let P' be the subpath to x
 - *P* is already too long!

$$\ell(P) \ge \ell(P') + \ell_{(x,y)}$$

Threw out the remaining path from y to v (non negative weights!)

- We want to show that the distance labels are correct
 - Proof by induction
- Base case of |S| = 1 is trivial
- Assume true for |S| = k
- Let v be the next node the algorithm chooses to add to S, with e = (u, v) the corresponding edge
- Suffices to show that the shortest path is the path to u plus e; consider any other path P from s to v
- Let (x, y) be the first edge on P such that $y \notin S$ and let P' be the subpath to x
 - P is already too long!

$$\ell(P) \ge \ell(P') + \ell_{(x,y)} \ge d(x) + \ell_{(x,y)}$$

Inductive hypothesis

- We want to show that the distance labels are correct
 - Proof by induction
- Base case of |S| = 1 is trivial
- Assume true for |S| = k
- Let v be the next node the algorithm chooses to add to S, with e = (u, v) the corresponding edge
- Suffices to show that the shortest path is the path to u plus e; consider any other path P from s to v
- Let (x, y) be the first edge on P such that $y \notin S$ and let P' be the subpath to x
 - *P* is already too long!

$$\ell(P) \ge \ell(P') + \ell_{(x,y)} \ge d(x) + \ell_{(x,y)} \ge \pi(y)$$

Definition of $\pi(y)$

- We want to show that the distance labels are correct
 - Proof by induction
- Base case of |S| = 1 is trivial
- Assume true for |S| = k
- Let v be the next node the algorithm chooses to add to S, with e = (u, v) the corresponding edge
- Suffices to show that the shortest path is the path to u plus e; consider any other path P from s to v
- Let (x, y) be the first edge on P such that $y \notin S$ and let P' be the subpath to x
 - *P* is already too long!

$$\ell(P) \ge \ell(P') + \ell_{(x,y)} \ge d(x) + \ell_{(x,y)} \ge \pi(y) \ge \pi(u)$$

The algorithm picked (the path to) *u* over (the path to) *y* to put in S

DIJKSTRA'S ALGORITHM: IMPLEMENTATION

- Bottleneck: $\pi(v) = \min_{e=(u,v):u\in S} d(u) + \ell_e$
- First idea: in each iteration, so through all $u \in S$ and all neighbors $v \notin S$, write down the estimated distance and pick the smallest
 - Running time $O(m \cdot n)$, so pretty good already
 - Pretty obvious we can do better
- Data structures!
- We want a data structure that stores estimated distances from nodes in S to nodes not in S
 - We need to be able to insert, remove the smallest and update
- Priority queues!

DIJKSTRA'S ALGORITHM: IMPLEMENTATION

- Put all $v \in V \setminus \{s\}$ in the priority queue with $\ker \pi(v) = \infty$
- At every iteration we remove the element with the smallest key: time O(logn)
- UpdateKey: time O(logn)
 - Consider a node $w \notin S$ whose estimate we need to update after adding some node u in S
 - ∘ If $(u, w) \notin E$ we don't need to do anything
 - ∘ If (u, w) ∈ E we need to set $\pi(w)$ equal to the minimum of $\pi(w)$ and $d(u) + \ell_{(u,w)}$
 - Find *w* in the priority queue (remember it's an array)
 - Update key and Heapify-up

DIJKSTRA'S ALGORITHM: RUNNING TIME

- We get a total of n ExtractMin operations and m UpdateKey operations
 - Total running time O(mlog(n))
- Running time depends on implementation
- E.g. using a simple array, one can have ExtractMin take O(n) time, but UpdateKey take only O(1) time
 - Total time $O(n^2)$
 - Could be better than O(mlogn) for dense graphs
- Using a Fibonacci heap the running time is O(nlogn + m)

- Dijkstra's algorithm crucially uses the fact that edges are not negative
 - As you explore, there is no way that you find a shorter path to someone in S
- With negative edges, for all you know even the distance d(s) = 0 is wrong!
 - e = (s, u) with $\ell_e = 1$
 - e' = (u, s) with $\ell_{e'} = -10$
- Is this problem even well defined?

- A puzzle!
- I have an electronic lock that takes an 8-digit password
- But, it's a very bizarre lock
- If you put a sequence it's just going to ignore all the wrong stuff
- Example:
 - Password is 12345678
 - You enter 1234181556798
 - Door opens!
- What's the shortest sequence you can enter to guarantee opening the door?

• Puzzle solution:

01234567890123456789...
 8 times

Puzzle solution:

01234567890123456789...

8 times

• Sufficient:

 We'll get the first digit in the first 10, the second digit in the second 10, and so on

Necessary:

- My password could be 00000000, so you better have eight zeros
- My password could be 11111111, so you better have eight ones
- And so on. Therefore, you need at least 80 digits

- Different view of Dijkstra: the algorithm updates along edges
- Update(e = (u, v)):
 - $\circ \pi(v) = \min\{\pi(v), \pi(u) + \ell_e\}$
- Important properties:
 - \circ At all times, $\pi(v)$ is an overestimate of the truth
 - If the true shortest path uses (u, v) as the last edge, and you have a correct value for $\pi(u)$, then you have computed a correct value for $\pi(v)$

• Say that the true shortest path from s to t is $s \rightarrow u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_k \rightarrow t$

Look at the edges updated by the algorithm:

- \circ $e_1, e_2, e_3, ...$
- If this sequence includes (s, u_1) , (u_1, u_2) , ..., (u_k, t) in <u>this order</u> (but not necessarily consecutively) we have computed the distance from s to t correctly!
- How do we know which edges to update??
- Same answer as the puzzle
 - \circ All of them, n-1 times (the total number of edges in the shortest path is at most n-1)

BELLMAN FORD ALGORITHM

- For all $v \in V$: $\pi(v) = \infty$
- Repeat n-1 times:
 - ∘ For all $e = (u, v) \in E$:
 - Update(e): $\pi(v) = \min{\{\pi(v), \pi(u) + \ell_e\}}$
- (Almost...)

BELLMAN FORD ALGORITHM

- Order of edges:
 (s, A), (s, B), (A, B), (B, A), (A, t), (B, t)
- $\pi(A) = \infty$
- $\pi(B) = \infty$
- $\pi(t) = \infty$

- Order of edges: (*s*, *A*), (*s*, *B*), (*A*, *B*), (*B*, *A*), (*A*, *t*), (*B*, *t*)
- $\pi(A) = 5$
- $\pi(B) = \infty$
- $\pi(t) = \infty$

- Order of edges: (s, A), (s, B), (A, B), (B, A), (A, t), (B, t)
- $\pi(A) = 5$
- $\pi(B) = -2$
- $\pi(t) = \infty$

- Order of edges: (*s*, *A*), (*s*, *B*), (*A*, *B*), (*B*, *A*), (*A*, *t*), (*B*, *t*)
- $\pi(A) = 5$
- $\pi(B) = -2$
- $\pi(t) = \infty$

- Order of edges: (*s*, *A*), (*s*, *B*), (*A*, *B*), (*B*, *A*), (*A*, *t*), (*B*, *t*)
- $\pi(A) = -3$
- $\pi(B) = -2$
- $\pi(t) = \infty$

- Order of edges: (s, A), (s, B), (A, B), (B, A), (A, t), (B, t)
- $\pi(A) = -3$
- $\pi(B) = -2$
- $\pi(t) = -2$

- Order of edges:
 (s, A), (s, B), (A, B), (B, A), (A, t), (B, t)
- $\pi(A) = -3$
- $\pi(B) = -2$
- $\pi(t) = -3$

- Order of edges: (*s*, *A*), (*s*, *B*), (*A*, *B*), (*B*, *A*), (*A*, *t*), (*B*, *t*)
- $\pi(A) = -3$
- $\pi(B) = -2$
- $\pi(t) = -3$

- Order of edges:
 (s, A), (s, B), (A, B), (B, A), (A, t), (B, t)
- $\pi(A) = -3$
- $\pi(B) = -2$
- $\pi(t) = -3$

- Order of edges: (*s*, *A*), (*s*, *B*), (*A*, *B*), (*B*, *A*), (*A*, *t*), (*B*, *t*)
- $\pi(A) = -3$
- $\pi(B) = -2$
- $\pi(t) = -3$

- Order of edges: (*s*, *A*), (*s*, *B*), (*A*, *B*), (*B*, *A*), (*A*, *t*), (*B*, *t*)
- $\pi(A) = -3$
- $\pi(B) = -2$
- $\pi(t) = -3$

- Order of edges: (*s*, *A*), (*s*, *B*), (*A*, *B*), (*B*, *A*), (*A*, *t*), (*B*, *t*)
- $\pi(A) = -3$
- $\pi(B) = -2$
- $\pi(t) = -3$

- Order of edges:
 (s, A), (s, B), (A, B), (B, A), (A, t), (B, t)
- $\pi(A) = -3$
- $\pi(B) = -2$
- $\pi(t) = -3$

- Order of edges:
 (s, A), (s, B), (A, B), (B, A), (A, t), (B, t)
- $\pi(A) = -3, \pi(B) = -2, \pi(t) = -3$
- Since nothing changed in the last iteration there's no point in repeating

What about the "well defined" business?

• If there's a negative cycle there is no shortest path!

- If there are no negative cycles, is there a shortest path?
- It will be implied by the correctness of Bellman-Ford
- But first, how do we find negative cycles?
- Trick:
 - If there's a negative cycle $u_1 \to \cdots \to u_k$ then update(e) should make $\pi(u_i)$ smaller and smaller if we keep repeating the loop
 - Do the loop one more time!

- For all $v \in V$: $\pi(v) = \infty$
- Repeat n-1 times:
 - ∘ For all $e = (u, v) \in E$:
 - Update(e): $\pi(v) = \min{\{\pi(v), \pi(u) + \ell_e\}}$
- //Check for negative cycles
- For all $e = (u, v) \in E$:
 - If $\pi(v) > \pi(u) + \ell_e$:
 - Exit; negative cycle detected

- Order of edges: (*s*, *A*), (*s*, *B*), (*A*, *B*), (*B*, *A*), (*A*, *t*), (*B*, *t*)
- $\pi(A) = \infty$
- $\pi(B) = \infty$
- $\pi(t) = \infty$

- Order of edges: (s, A), (s, B), (A, B), (B, A), (A, t), (B, t)
- $\pi(A) = 5$
- $\pi(B) = \infty$
- $\pi(t) = \infty$

- Order of edges: (*s*, *A*), (*s*, *B*), (*A*, *B*), (*B*, *A*), (*A*, *t*), (*B*, *t*)
- $\pi(A) = 5$
- $\pi(B) = -2$
- $\pi(t) = \infty$

- Order of edges: (s, A), (s, B), (A, B), (B, A), (A, t), (B, t)
- $\pi(A) = 5$
- $\pi(B) = -2$
- $\pi(t) = \infty$

- Order of edges: (*s*, *A*), (*s*, *B*), (*A*, *B*), (*B*, *A*), (*A*, *t*), (*B*, *t*)
- $\pi(A) = -6$
- $\pi(B) = -2$
- $\pi(t) = \infty$

- Order of edges: (*s*, *A*), (*s*, *B*), (*A*, *B*), (*B*, *A*), (*A*, *t*), (*B*, *t*)
- $\pi(A) = -6$
- $\pi(B) = -2$
- $\pi(t) = -5$

- Order of edges: (*s*, *A*), (*s*, *B*), (*A*, *B*), (*B*, *A*), (*A*, *t*), (*B*, *t*)
- $\pi(A) = -6$
- $\pi(B) = -2$
- $\pi(t) = -6$

- Order of edges:
 (s, A), (s, B), (A, B), (B, A), (A, t), (B, t)
- $\pi(A) = -6$
- $\pi(B) = -2$
- $\pi(t) = -6$

- Order of edges: (s, A), (s, B), (A, B), (B, A), (A, t), (B, t)
- $\pi(A) = -6$
- $\pi(B) = -2$
- $\pi(t) = -6$

- Order of edges: (*s*, *A*), (*s*, *B*), (*A*, *B*), (*B*, *A*), (*A*, *t*), (*B*, *t*)
- $\pi(A) = -6$
- $\bullet (\pi(B) = -3)$
- $\pi(t) = -6$

- Order of edges: (*s*, *A*), (*s*, *B*), (*A*, *B*), (*B*, *A*), (*A*, *t*), (*B*, *t*)
- $\bullet (\pi(A) = -7)$
- $\pi(B) = -3$
- $\pi(t) = -6$

• $\pi(A)$, $\pi(B)$ and $\pi(t)$ will keep getting smaller and smaller until we stop

BELLMAN FORD ALGORITHM: CORRECTNESS

- Lemma: If there is a negative cycle we will find it
- Proof
- Suppose $v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k$ is a negative cycle, where $v_0 = v_k$
- Suppose that $\pi(v_i) \le \pi(v_{i-1}) + \ell_{(v_{i-1},v_i)}$ for all i at the last pass of the algorithm
- Summing up over all i we have

$$\sum_{i=1}^{k} \pi(v_i) \le \sum_{i=1}^{k} \pi(v_{i-1}) + \sum_{i=1}^{k} \ell_{(v_{i-1}, v_i)}$$

LIMAN FORD ALGORIT CORRECTNESS

$$\sum_{i=1}^{k} \pi(v_i) \le \sum_{i=1}^{k} \pi(v_{i-1}) + \sum_{i=1}^{k} \ell_{(v_{i-1}, v_i)}$$

•
$$\pi(v_0) = \pi(v_k)$$
, since $v_0 = v_k$. Therefore
$$\sum_{i=1}^k \pi(v_{i-1}) = \pi(v_0) + \sum_{i=1}^{k-1} \pi(v_i) = \sum_{i=1}^k \pi(v_i)$$

Plugging in above we get

$$\sum_{i=1}^{k} \ell_{(v_{i-1},v_i)} \ge 0$$

I.e. the cycle is not negative. Contradiction

BELLMAN FORD ALGORITHM: CORRECTNESS

- Lemma: If the graph has no negative cycles, then the shortest paths are computed correctly
- We will show that $\pi_k(v)$, the estimate of the distance at the k-th iteration, is the weight of the minimum weight path from s to v that uses $\leq k$ edges
- Then, for k = n 1, this would imply correctness since n 1 is an upper bound on the length of the shortest path
 - If a vertex is repeated, there must be a cycle
 - The cycle can't be negative by assumption, so removing it makes the path shorter

BELLMAN FORD ALGORITHM: CORRECTNESS

- k = 0. Trivially true: no length from s to itself
- Suppose true for k-1
- Let v be some node and P be the shortest path with length k. Let u be the vertex right before v on P
 - $\circ \quad s \to v_1 \to \cdots \to u \to v$
- Following P to go from s to u would give the shortest path to u on k-1 edges
 - \circ Otherwise, we could come up with a shorter path to v
- By the inductive hypothesis, $\pi_{k-1}(u)$ is correct
- At iteration k, at some point we encounter the edge (u,v)
 - We set $\pi_k(v) = \min\{ \pi_{k-1}(v), \ \pi_{k-1}(u) + \ell_{(u,v)} \}$
 - Therefore $\pi_k(v)$ is at most the weight of P (which is equal to $\pi_{k-1}(u) + \ell_{(u,v)}$)

SUMMARY

- Shortest path algorithms
 - Non-negative weights: Dijkstra
 - Negative weights: Bellman-Ford