

LEIC-T 2023/2024

Aprendizagem - Machine Learning Homework 3

Deadline 20/10/2024 20:00

Submit on Fenix as pdf

I) Polynomial Regression (3 pts)

Consider a training set with 5 observations (sample) with dimension D = 1

$$x_1$$
=-0.8, x_2 =1, x_3 =-1.2, x_4 =1.4, x_5 =1.9

With targets

$$t_1$$
=-20, t_2 =20, t_3 =-10, t_4 =13, t_5 =12

Consider as well the basis function

$$\phi_i(x) = x^j$$

which can lead to a polynomial regression of the third degree

$$y(x, \mathbf{w}) = \sum_{j=0}^{3} w_j \cdot \phi_j(x) = w_0 + w_1 \cdot x + w_2 \cdot x^2 + w_3 \cdot x^3.$$

(a) (1 pts)

Compute the design matrix Φ .

(b) (1 pts)

Compute the polynomial regression weights.

(c) (1 pts)

LASSO regression (11 regularization) lacks a closed form solution, why?

II) Neural Network NN (4 pts)

Given the weights.:

LEIC-T 2023/2024

Aprendizagem - Machine Learning Homework 3

Deadline 20/10/2024 20:00

Submit on Fenix as pdf

$$b^{[1]} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$W^{[2]} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$b^{[2]} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

and the activation function ReLU

Rectifier also known as a ramp function

$$f(x) = \max(0, x). \tag{12.3}$$

is defined as the positive part of its argument [Jarrett et al. (2009)], [Nair and Hinton (2009)], [Goodfellow et al. (2016)]. The function is non-differentiable at zero; however, it is differentiable anywhere else and we can use the subderivative with sgn_0 function

$$f'(x) = sgn_0(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$
 (12.4)

of the hidden layer and SoftMax of the output layer using the cross entropy error loss do a stochastic gradient descent update (with learning rate $\eta = 0.1$) for the training example:

$$\mathbf{x} = (1,1,1,1,1)^{\mathrm{T}}$$
 and the target $\mathbf{t} = (1,0)^{\mathrm{T}}$,

III Software Experiments (3pts)

Download the jupyter notebook HM3 NN.ipynb.

Split the data using the command (in the notebook)

LEIC-T 2023/2024 Aprendizagem - Machine Learning Homework 3 Deadline 20/10/2024 20:00

Submit on Fenix as pdf

digits = datasets.load_digits()
X, y = digits.data, digits.target
X train, X test, y train, y test = train test split(X, y, train size=0.7, stratify=y, random state=your group number)

Compare the accuracy on the test set of Logistic Regression with NN.

MLPClassifier(hidden_layer_sizes=(10,4), random_state= your_group number, activation ='relu', solver='sgd')

Layer size 10, 4 means two hidden layers, first layer 10 neurons and second hidden layer 4 neurons.

Can you improve accuracy on the test set by changing the parameters of hidden_layer_size? Indicate your best parameters of the hidden layer size? Indicate the loss curve. What is your conclusion concer?

Pls do not spend too much time on the experiments!!