

Leveraging Machine Learning for Network Traffic Forecasting

Author,

Diane Onguetou, PhD
Independent Consultant
onguetou@umich.edu

Co-Author,
Achintha Maddumabandara, P. Eng.
Principal Data Analyst
Rogers Communications

Co-Author & Presenter,

Jeffrey Lee

Manager, Data Acquisition & Reporting
Rogers Communications

Introduction

Case study

- The Network
- The Dataset

CAGR approach

- Global CAGR
- Global vs. local CAGR estimates
- Predictions from global vs. local CAGR

Machine Learning

- Seasonal decomposition
- Time series forecasting models
- Time series vs. CAGR forecasting

Key Insights

- Main improvements
- Challenges when applying ML
- Summary and recommendations

INTRODUCTION

Network Traffic Forecasting

- Traffic analysis
 [historical patterns, peak demand periods, seasonal variations]
- Growth projections
- Capacity planning
- Performance optimization
- Technology planning
- Leveraging ML for Network Traffic Forecasting
 - Captures complex patterns and dynamics in the data, leading to more effective resource management and improved network performance

- Automate iterative calculations and model attributes such as trends and seasonality, failure events, subsequent interactions between the primary and failover links, and network burst patterns
- Computational power to scale the analysis of multiple variables and high granularity

Main Objective

- Consider a large service provider network and sample traffic for 5 consecutive years
- Analyzes traffic patterns in the first four years and use insights and findings to predict traffic in the fifth year

Logical View

• international • longhaul • metro • other links

Distribution of Connectivity at a Hubsite

CASE STUDY – The Dataset

CAGR APPROACH TO NETWORK TRAFFIC FORECASTING

How to determine global CAGR?

CAGR APPROACH TO NETWORK TRAFFIC FORECASTING

Limitations

- i. Logic behind the choice of reference month
 - Most recent measurement on hands
 - vs. min/average/max over past 12 months
- ii. CAGR model accuracy
- iii. Applying a total-traffic CAGR to individual contributors
 - Global vs. local CAGR estimates
 - Predictions from global vs. local CAGR approaches (next slide)

Global vs. Local CAGR

CAGR APPROACH TO NETWORK TRAFFIC FORECASTING

CAGR is sensitive to period choice.

ML | Example of Time Series Forecasting Models

Seasonal Decomposition (STL)

 Breaks down a time series data into its fundamental components (i.e. trend, seasonality, and residual) to better understand underlying patterns

Seasonal autoregressive integrated moving average (SARIMA)

 Combines autoregressive, differencing, and moving average components along with seasonal components to handle data with both non-seasonal and seasonal patterns

Holt-Winters/Exponential Smoothing (ETS)

• Uses weighted average of past observations to predict future values, considering trend, seasonality, and level components to make accurate predictions for time series data

Total Traffic (additive decomposition)

Example of Internal Longhaul Link (multiplicative)

Example of International Link (additive)

Example of Internal Metro Link (multiplicative)

ML | Time Series Forecasting Models [longhaul link]

ML | Time Series Forecasting Models [international link]

ML | Time Series Forecasting Models [metro link]

CHALLENGES WHEN ADOPTING ML-BASED TRAFFIC MODELLING

KEY INSIGHTS

Good practices

- Invest in quality datasets
- Choose models appropriate to your needs
- Re-evaluate models in a regular basis and track your progress

If CAGR simplicity is still appealing and fits current needs

- Plenty of tools allow to easily build ML pipeline that can support distributed CAGR
- Build a strategy behind the reference value to which the growth factor is applied
- CAGR is tied to time series trend and does not consider seasonality that is more likely to be present in your data

Beyond CAGR...

- Do not be intimidated by the term machine learning.
- Python and R languages offer appropriate libraries that facilitate ML model training and testing
- ML proposes simple and effective models for seasonal decomposition of time series
- ML time series models capture both trend and seasonality for better forecasting
- SARIMA requires parameter tuning to perform
- Holt-Winters is simple enough and shows better results for our use case

Thank you to my co-author:

Achintha Maddumabandara, P. Eng.

Principal Data Analyst

Rogers Communications

Diane Onguetou, PhD Independent Consultant onguetou@umich.edu

