

<u>Course</u> > <u>Topic 1</u>... > <u>10.6 Ce</u>... > CLT

CLT Video

10.6 Central Limit Theorem

POLL

Let X be a random variable with μ = 10 and σ = 4. If X is sampled 100 times, what is the approximate probability that the sample mean of these 100 observations is less than 9?

RESULTS

0.006 57%

None of the above 16%

0.002 15%

0.004 12%

Submit

Results gathered from 111 respondents.

FEEDBACK

The answer is 0.006.

1

0.0/2.0 points (graded)

For $i \geq 1$, let $X_i \sim G_{1/2}$ be distributed Geometrically with parameter 1/2.

Define

$$Y_n=rac{1}{\sqrt{n}}\sum_{i=1}^n\left(X_i-2
ight)$$

Approximate $P(-1 \leq Y_n \leq 2)$ with large enough n.

? Hint (1 of 1): Note that Y_n is not "properly" normalized.

Next Hint

Submit

You have used 0 of 4 attempts

2

3.0/3.0 points (graded)

A class has 100 students. Each student's score is a random variable with mean $85\,\mathrm{and}$ standard deviation 40. Use the CLT to approximate the proability that the class average score is below 80.

✓ Answer: 0.1056 0.10149 0.10149

Explanation

The class average score $rac{1}{100}\sum_{i=1}^{100}X_i$ has mean 85 and standard deviation $rac{40}{\sqrt{100}}=4$. The probability can be calculated using $\Phi\left(rac{80-85}{4}
ight)=\Phi\left(-1.25
ight)=0.1056$

Submit

You have used 2 of 3 attempts

1 Answers are displayed within the problem

Discussion **Hide Discussion**

Topic: Topic 10 / Central Limit Theorem

Add a Post

Show all posts ▼	by recent activity ▼
Problem 1Questions and comments regarding problem 1.Staff	3
 Problem 2 Questions and comments regarding problem 2. Staff 	1
 General Comments Questions and comments regarding this section. \(\text{Staff} \)	1

© All Rights Reserved