7-channel Power Management IC

RN5T564

Development Specifications

Rev. 1.4

2009.06.25

RICOH COMPANY, LTD. Electronic Devices Company

This specification is subject to change without notice.

Table of Contents

1.		Outli	ne	
2.			ıre	
۷.		геан		
3.		Pin (Configuration	4
4.		Block	« diagram	5
5.		Pin D	Description	6
6.		Powe	er ON/OFF Operation	7
	6.1	Po	wer ON/OFF Operation	
	6.2	UV	/LO (Under Voltage Lock Out) Electrical Characteristics	8
	6.3	Th	ermal Shutdown Circuit Electrical Characteristics	8
7.		Reset	t Function	g
8.		FUN	CTION Blocks	10
	8.1		OO, DCDC Table	
	8.2		00	
		2.1	LDO1, 2, 3 Electrical Characteristics	
		2.2	LDO4, 5 Electrical Characteristics	
	8.3		ep-down DC/DC Converter	
		3.1	Step-down DC/DC Converter1 Electrical Characteristics	
		3.2	Step-down DC/DC Converter2 Electrical Characteristics	
	8.3	3.3	Step-down DC/DC Converter2 Output Voltage Setting	16
9.		CPU	Interface	17
	9.1	I20	BUS	17
	9.	1.1	Method of I2C-Bus Transfer	17
	9.	1.2	I2C-Bus Slave Address	18
	9.	1.3	I2C-Bus Data Transmission Format	19
	9.	1.4	I2C-Bus SDA and SCL Bus Line characteristics	21
10		Regis	ster	23
	10.1	Re	gister Map	23
	10.2		gister Description	
	10	0.2.1	PWRON Register (Address: 00h)	24

10.2	2.2 MODE Register (Address: 01h)	24
10.2	2.3 LDO Setting Voltage Register (Address: 02h)	25
11. I	Electrical Characteristics	26
11.1	Absolute Maximum Ratings	26
11.2	Recommendation of Operation Conditions	26
11.3	System Consumption Current	26
12. I	Electrical Characteristics of Digital Input/Output Pin	27
12.1	VDD system CMOS Schmitt Input Pin	
12.1 12.2		27
	VDD system CMOS Schmitt Input Pin	27
12.2	VDD system CMOS Schmitt Input Pin VDD system Nch Open Drain Output Pin	27 27
12.2 12.3	VDD system CMOS Schmitt Input Pin VDD system Nch Open Drain Output Pin VIND system CMOS Schmitt Input Pin	27 27 27

1. Outline

RN5T564 is the power management IC for GPS. It integrates 2 high-efficiency Step-down DCDC controllers, 5 Low dropout regulators, Power control logic, Reset Detection, I2C interface and etc.

2. Feature

- High Efficiency Synchronous Step-down DCDC Converters
- •DC/DC1 0.9 to 1.6V by trimming @ 500mA (for Core) PWM/VFM mode
- •DC/DC2 0.9 to 3.3V by external resistor @ 500mA (for Memory)
- * When DCDC1 is OFF, DCDC2 must not be loaded the current of 50mA or more
- Low Drop Voltage Regulator
- •LDO1,LDO2,LDO3 1.2 to 3.3V by trimming @ 150mA
- •LDO4,LDO5 Programmable 1.2 to 3.3V @ 300mA with ECO Mode
- Over current Protection (All Regulators)
- I2C-Bus (Max 400kHz)
- Address = 64h
- •ON/OFF control
- Individual LDOs voltage value setting
- Others
- Soft-start circuit (DCDC1,2)
- Short-circuit Protection and Thermal Protection
- UVLO Function
- Package
- •28pin Thin QFN package (Body size: 4 x 4 x 0.8mm)
- Process
- CMOS process

3. Pin Configuration

Pin No.	Name	Pin No.	Name	Pin No.	Name	Pin No.	Name
1	GNDD	8	VINL2	15	VO1	22	GNDP1
2	VFB2	9	VO4	16	VIND	23	LX1
3	PSHOLD	10	VREF	17	RESETI	24	VINP1
4	SCL	11	GNDA	18	RESETO	25	VINA
5	SDA	12	VO3	19	DC1EXON	26	GNDP2
6	VDD	13	VO2	20	PWRON	27	LX2
7	VO5	14	VINL1	21	VFB1	28	VINP2

Fig 3-1 Pin Configuration

4. Block diagram

Fig 4-1 Block Diagram

5. Pin Description

No.	Name	I/O	Function	I/F Level	Notes
1	GNDD	G	Ground	GND	
2	VFB2	I	Output voltage feedback input of DCDC converter	-	
3	PSHOLD	I	Input signal to maintain power on	VDD	
4	SCL	I	I2C interface clock input	VDD	
5	SDA	I/O	I2C interface data input	VDD	
6	VDD	PWR	Power supply for Interface	VDD	
7	VO5	О	LDO5 output	-	
8	VINL2	PWR	Power supply	VIN	
9	VO4	О	LDO4 output	-	
10	VREF	О	Bypass capacitor connecting pin	-	Connect only Capacitor load
11	GNDA	G	Ground	GND	_
12	VO3	О	LDO3 output	-	
13	VO2	О	LDO2 output	-	
14	VINL1	PWR	Power supply	VIN	
15	VO1	О	LDO1 output	-	
16	VIND	PWR	Power supply	VIN	
17	RESETI	I	RESET in	VIN	
18	RESETO	О	RESET out	VIN	Open Drain
19	DC1EXON	I	DCDC1 ON/OFF input	VIN	
20	PWRON	I	Power ON signal input	VIN	
21	VFB1	I	Output voltage feedback input of DCDC converter	-	
22	GNDP1	G	Ground	GND	
23	LX1	О	DCDC converter switch output	_	
24	VINP1	PWR	Power supply for LDOs	VIN	
25	VINA	PWR	Power supply	VIN	
26	GNDP2	G	Ground	GND	
27	LX2	О	DCDC converter switch output	-	
28	VINP2	PWR	Power supply	VIN	

Table 5-1 Pin Description

6. Power ON/OFF Operation

6.1 Power ON/OFF Operation

Power on/off Operation: Both "1ms" and "10ms" period of the following timing are min standards.

Note*1: Generating "L" pulse can be selected by trimming.

Fig 6-1 Power ON/OFF Timing

(a) Power ON by external signal: PWRON pin

When PWRON pin becomes "H" in synchronization with the internal clock, the power-on sequence starts.

DCDC1, DCDC2, LDO1, LDO 2 and LDO 3 power on following the power-on sequence in the above timing chart.

After "L" pulse output of RESETO signal for 1ms, it need to push PSHOLD signal "H".

The power-on state can be held by PSHOLD signal="H" during PWRON="H"

Note*: The default of DC1ON (Refer to Table 10-1, 2) is "H".

When both DC1ON and DC1EXON are "H", DCDC1 turns on.

The power-on sequence will be the following. (Refer to Fig. 6-1)

(b) Power OFF operation

If PSHOLD signal goes "L", Power-off sequence will be asserted, and then DCDC1, LDO1, LDO2, LDO3, LDO4 and LDO5 turn off immediately. However, DCDC2 will turn off with 100 us of delay time.

6.2 UVLO (Under Voltage Lock Out) Electrical Characteristics

Operating Conditions (unless otherwise specified)

 $T_a = 25$ °C

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{Release}	Under voltage lock out threshold	VCCVIN rising		2.80		V
V_{Detect}	Under voltage lock out threshold	VCCVIN falling		2.70		V
V_{HYS}	UVLO Hysteresis	-		100		mV

Table 6-1 UVLO Electrical Characteristics

6.3 Thermal Shutdown Circuit Electrical Characteristics

Operating Conditions (unless otherwise specified)

VIND = 3.6V

Symbol	Parameter	Condition	Min	Тур	Max	Units
T_{DET}	Detected Temperature	1		140		°C
T_{RET}	Return Temperature	1		110		လ

Table 6-2 Thermal Shutdown Circuit Electrical Characteristics

7. Reset Function

After DCDC2 output is rising, RESETO signal will be "H" after 100ms from the detection voltage detected. (Refer to 6.1.1 Power ON/OFF Operation)

Fig 7-1 RESETO Timing

When it is generated either of the following 3 states, the power-on sequence and the register will be forced to be reset and 5T564 can not power on as long as this state is released.

In addition, if it is generated either one of the above-mentioned 3 states during the power-on, 5T564 will power off immediately.

- When VIND pin voltage is below UVLO detection voltage.
- When the thermal shutdown detects overheating.
- When the over current detection state of DCDC1 and 2 continues over the protection delay time (1.5ms).

The power-on sequence circuit and the register are forced to be reset if:

VDD voltage decreases and RESETI pin is under 2.70V.

In order to power on 5T564 again, it needs to input "H" to PWRON pin.

If the above case is generated during the power-on, 5T564 will power off immdeately.

Once PWRON sequence or PWROFF sequence has started, the sequence operation will not be affected by PWRON and PSHOLD signals.

8. FUNCTION Blocks

8.1 LDO, DCDC Table

	LDO1	LDO2	LDO3	LDO4	LDO5	DCDC1	DCDC2
	(PLL)	(AVDD I/O)	(CPU Core)	(-)	(-)	(CPU Core)	(CPU I/O)
Current Capability	150mA	150mA	150mA	300mA	300mA	500mA	500mA (*1)
Initial Value	1.2V	1.3V	3.3V	3.0V	3.0V	1.30V	3.3V
Mode	Normal	Normal	Normal	Normal / ECO	Normal / ECO	PWM / VFM	One Shot PWM
Output Voltage Range	1.25	~3.3V by trimr	ning		1.2/1.3/1.4/1.8/ 2.5/2.7/3.0//3.3 by register	0.9~1.6V by trimming	0.9~3.3V by external resistor
Initial State	ON	ON	ON	OFF	OFF	ON	ON
ON/OFF Control	I2C	I2C	I2C	I2C	I2C	I2C /Pin	I2C
Bypass Capacitance (C _{OUT})	1.0uF	1.0uF	1.0uF	2.2uF	2.2uF	10uF 4.7uH	4.7uF 2.2uH

Table 8-1 LDO, DCDC Table

Note*1: Refer to page3

8.2 LDO

Outline

LDO1, 2, 3 in Normal mode, LDO4, 5 in Normal and ECO mode and VREF circuit are integrated.

LDO1, 2, 3 are default ON and turned on power on sequence.

LDO integrates the limit circuit and controls the current under Ioutmax at short-circuited

ECO mode is only for light load such as standby and it operates at low current.

The switching between Normal mode and ECO mode is performed after the period of the overlap (150 us).

During the overlap period, LDO will operate with the characteristics of ECO mode. And also it is prohibited to change the mode during this term.

VREF circuit is only for the internal reference voltage, so it can not be used as the external reference voltage.

The timing operation mode switching is shown below.

Table 8-2 LDO4, 5 Mode Change Timing

8.2.1 LDO1, 2, 3 Electrical Characteristics

Operating Conditions (unless otherwise specified)

 $VINL = 3.6V, C_{REFO} = 1.0 \mu F, T_a = 25$ °C

Symbol	Parameter	Condition	Min	Тур	Max	Units
VOUT1,2,3	Output Voltage	Iload=50uA & VINL=4.5V Iload=150mA & VINL=3.1V VOUT1,2,3+0.3V≦VINL≦4.5V	-3%	1.2 ~ 3.30*1	+3%	V
IOUT1,2,3	Output Current	-			150	mA
ILIM1,2,3	Current Limit	VOUT1,2,3=1.2V		400		mA
VDRP1,2,3	Drop-out Voltage	IOUT1,2,3=150mA, T _a =85°C		300		mV
<u>ΔVOUT1,2,3</u> ΔVIN	Line Regulation	$VOUT1,2,3+0.3V \le V_{BATT}(VIN) \le 4.5V$ IOUT1,2,3=75mA		3		mV
<u>ΔVOUT1,2,3</u> ΔΙΟUT1,2,3	Load Regulation	50μA < IOUT1,2,3 < 150mA		25		mV
$\Delta VOUT1,2,3 \ \Delta T_a$	Output Voltage Temperature Coefficient	-40°C≦T _a ≦85°C		<u>+</u> 100		ppm/
RR1,2,3	Ripple Rejection	f=10Hz-10kHz, C _{out} =1.0μF IOUT1,2,3=30mA,VOUT≦3.0V		60		dB
ISS1,2,3	Supply Current	Normal OFF		70	1	μΑ

Table 8-3 LDO1, 2, 3 Electrical Characteristics

Note*1: The output voltage will be fixed (with 0.05V step) by trimming at shipment.

Note*: Bypass capacitor: 1.0uF, in mounted state.

For optimized phase compensation, the bypass capacitor must be ceramic type.

8.2.2 LDO4, 5 Electrical Characteristics

Operating Conditions (unless otherwise specified)

 $VINL = 3.6V, C_{REFO} = 2.2 \mu F, T_a = 25$ °C

Symbol	Parameter	Condition	Min	Тур	Max	Units
VOUT4,5	Output Voltage	Iload=50uA & VINL=4.5V Iload=150mA & VINL=3.1V VOUT4,5+0.3V≦VINL≦4.5V	-3%	1.2 ~ 3.30	+3%	V
IOUT4,5	Output Current	-			300	mA
ILIM4,5	Current Limit	VOUT4,5=3.3V		500		mA
VDRP4,5	Drop-out Voltage	IOUT4,5=300mA, T _a =85°C		300		mV
$\Delta VOUT4,5$ ΔVIN	Line Regulation	VOUT4,5+0.3V \leq V _{BATT} (VIN) \leq 4.5V IOUT4,5=150mA		3		mV
$\Delta VOUT4,5$ $\Delta IOUT4,5$	Load Regulation	50μA < IOUT4,5 < 300mA		35		mV
$\Delta VOUT4,5 \ \Delta T_a$	Output Voltage Temperature Coefficient	-40°C≦T _a ≤85°C		<u>+</u> 100		ppm/°C
RR4,5	Ripple Rejection	f=10Hz-10kHz, C_{out} =2.2 μ F IOUT4,5=30mA, VOUT \leq 3.0V		60		dB
1004.5	Committee Committee	Normal		50		
ISS4,5	Supply Current	OFF			1	μΑ
POUT4,5	Programmable Output Voltage	IOUT4, 5=300mA	-3%	1.2 1.3 1.4 1.8 2.5 2.7 3.0 3.3	+3%	V

Table 8-4 LDO4, 5 Normal Mode Electrical Characteristics

Note*: Bypass capacitor: 2.2uF, in mounted state.

For optimized phase compensation, the bypass capacitor must be ceramic type.

2) ECO mode

Operating Conditions (unless otherwise specified)

 $VINL = 3.6V, T_a = 25$ °C

Symbol	Parameter	Condition	Min	Тур	Max	Units
VOUT4,5	Output Voltage	IOUT4,5= 5mA	-3%	3.3	+3%	V
IOUT4,5	Output Current	-			5	mA
Iss	Supply Current	IOUT= 0mA		5		uA

Table 8-5 LDO4, 5 ECO Mode Electrical Characteristics

8.3 Step-down DC/DC Converter

8.3.1 Step-down DC/DC Converter1 Electrical Characteristics

PWM Mode

Vin=3.6V, Cout= $10\mu F$, L= $4.7\mu H$

Symbol	Parameter	Condition	Min	Тур	Max	Units
Vin	Input Voltage	-	3.1		4.5	V
Vout	Output Voltage Range	-	0.9	1.3	1.6	V
Vacc	Output Voltage Accuracy	10μA≦Iout≦600mA	Vout -35		Vout +35	mV
Vstep	Setup Voltage Step	-		5		mV
ΔV/ΔΤ	Output Voltage Temperature Coefficient	-40°C≦Ta≦85°C		±40	±150	ppm /°C
Fosc	Switching Frequency	-	1.2	1.5	1.8	MHz
Iout	Maximum Output Current	-	600			mA
Ilimit	Limit Current	Peak Current	800	1000	1200	mA
Vpeak	Load Transient Response	Vout=1.3V Iout=1mA⇔600mA、Δt=3μs		±50		mV
VripO	Ripple Voltage	Iout=300mA		±5		mV
Eff	Efficiency	Vout=1.3V, Iout=100mA		80		%
Tprot	Protect Delay Time	Vin=3.6V		1.5		msec
Tri	Rising Time	Vout=1.3V (0→90%), Iout=0mA			0.2	msec
Tfa	Falling Time	Vout=1.3V(1.3→0.3V), Iout=0mA			0.5	msec
Iss	Supply Current	Open Loop(VFB=Vin) Iout=0mA		200		uA
Isd	Standby Current	OFF state		0.1		uA

Table 8-6 Step-down DC/DC Converter1 PWM Mode Electrical Characteristics

VFM Mode

Vin=3.1V~4.5V, Cout=10μF, L=4.7μH

Symbol	Parameter	Condition	Min	Тур	Max	Units
Vin	Input Voltage	-	3.1		4.5	V
Vout	Output Voltage Range	-	0.9	1.3	1.6	V
Vacc	Output Voltage Accuracy	10μA≦Iout≦50mA	Vout-35		Vout+35	mV
Vstep	Setup Voltage Step	-		5		mV
ΔV/ΔΤ	Output Voltage Temperature Coefficient	-40°C≦Ta≦85°C		±40	±150	ppm /°C
Iout	Maximum Output Current	-	50			mA
VripO	Ripple Voltage	Iout=25mA	-50		+50	mV
Eff	Efficiency	Vout=1.3V, Iout=1mA		60		%
Ilimit	Limit Current	Vin=3.6V		300		mA
Tfa	Falling Time	Vout=1.3V(1.3→0.3V), Iout=0mA			0.5	msec
Iss	Supply Current	Open Loop(VFB=Vin) Iout=0mA		20		μΑ

Table 8-7 Step-down DC/DC Converter1 VFM Mode Electrical Characteristics

8.3.2 Step-down DC/DC Converter2 Electrical Characteristics

Operating Conditions (unless otherwise specified) VINA, VINP = 3.6V, $T_a = 25$ °C L1=2.2uH, C_{OUT} =4.7uF

Symbol	Parameter	Condition	Min	Тур	Max	Units
-	Input Voltage Range	VINA, VINP pin	3.1		4.5	V
DVOUT1	Output Voltage Range	-	0.9		3.3	V
DIOUT1	Output current	VINA=VINP=3.1~4.5V			500	mA
DISS1	Consumption Current	VINA=VINP=VFB=3.6V DIOUT1=0mA, no switching		70		uA
DIOFF1	Standby Current	VINA=VINP=4.5V OFF state			1	uA
DILIM1	Limit detection Current	-	800			mA
VFB1	FB Voltage	DIOUT1=1mA~500mA	-1.5%	0.608	+1.5%	V
$\frac{\Delta VFB1}{\Delta VIN}$	FB Line Regulation	VINA=VINP=3.1~4.5V DIOUT=DIOUTmax / 2		TBD		mV
<u>ΔVFB1</u> ΔΤ	FB Voltage Temperature Coefficient	-40°C≦Ta≦+85°C		±100		ppm/°C
t_r^{*1}	Soft-start Time	-		120		us
T_{Onmin}	Minimum-On-Time			120		ns

Table 8-8 Step-down DC/DC Converter2 Electrical Characteristics

Note*: Load Regulation, which is determined by DC resistance (DCR) on inductor, is given by:

Load Regulation (Typ) = DCR (Ω) ×DIOUT (A).

Note*1: When all regulators are off, Soft-start time will be added up with UVLO output delay time for release.

 $t_r(Typ) = 120 \text{ us} + 10 \text{us} (UVLO \text{ output delay time for release}).$

8.3.3 Step-down DC/DC Converter2 Output Voltage Setting

External components example

- DVOUT=1.2V. $R1{=}220k\Omega,\,R2{=}220k\Omega,\,C_f{=}100pF$

- DVOUT=1.8V. $R1{=}220k\Omega,\,R2{=}110k\Omega,\,C_f{=}100pF$

- DVOUT=3.3V. $R1{=}220k\Omega,\,R2{=}48.9k\Omega,\,C_f{=}100pF$

Table 8-9 Step-down DC/DC Converter 2 Output Voltage Setting

9. CPU Interface

RN5T564 uses I2C-Bus system for CPU connection through 2-wires.

9.1 I2C BUS

I2C-Bus is the interface which is communicated by 2-wire of SCL (Serial Clock) and SDA (Serial Data). Connection and transfer system of I2C-Bus are described in the following sections.

9.1.1 Method of I2C-Bus Transfer

(1) Availability of Data

When data transmission, SDA should be kept in the certain state during SCL="H". Only when SCL is "L", SDA state can be changed its state except the start condition and the stop condition.

Fig 9-1 I2C-Bus Data Transmission

(2) Start condition and Stop condition

When the data transmision is not performed, both SCL and SDA are "H". At that time, if SDA state is changed "H" to "L", it will be the start condition then start transmitting data. And also if SDA state is changed "L" to "H" during SCL="H", it will be the stop condition then the master can stop the transmitting data. Only the master can generate the start and stop conditions.

Fig 9-2 Start Condition and Stop Condition

(3) Data Transmitting

After the start condition, the data is transmitted by 1 byte (8bits). The receiver must send an acknowledge signal to the transmitter whenever 8bit data is transmitted.

When the master is the transmitter, it will release SDA after sending a byte and then the slave will pull SDA down to "L" as an acknowledge signal. And, when the slave is the transmitter, it will release SDA ("H") after sending a byte then the master will pull SDA down to "L" as an acknowledge if it will keep receiving data.

If the master wants to stop receiving data from the slave, it will inform the end of the data transmission by not generating acknowledge.

Fig 9-3 I2C-Bus Data Transmission and Acknowledge

9.1.2 I2C-Bus Slave Address

The slave address of I2C-Bus INTERFACE will be MSB first 7 bit of the first byte after the start condition (S) or the retransmission (Sr).

The construction of address is shown below:

A7~A1 Slave Address

The slave address of A7~A1 are specified at 0110010b.

9.1.3 I2C-Bus Data Transmission Format

When the data is transmitted through I2C-Bus, the transmission format is shown for each mode.

The transmitting data is performed by the 2 formats shown below. It should start at the start condition and stop at the stop condition.

Note*: There is no high rate (Serial) R/W mixed format.

When the master transmits data, it needs to transmit a byte of the data from MSB first and the following data in sequence.

When it receives the data from the slave, the slave needs to transmit the data from MSB first as well.

Note*: User register address should be specified within the range of 00h~02h.

It is prohibited to setting the invalid address 03h~FFh.

(1) Normal Writing Format

Fig 9-4 I2C-Bus Data Transmission Format

(2) Normal Reading Format

Fig 9-5 I2C-Bus Data Read Format

9.1.4 I2C-Bus SDA and SCL Bus Line characteristics

AC Characteristics

VDD=1.8~4.5V,Ta=-40~85°C

Parameter	Symbol	Condition	Min	Max	Unit
SCL clock frequency	fSCL	-	0	400	kHz
Bus free time between stop condition and start condition	tBUF	-	1.3		μs
Hold time (retransmission) start condition	tHD;STA	-	0.6		μs
Low state hold time of SCL clock	tLOW	-	1.3		μs
High state hold time of SCL clock	tHIGH	-	0.6		μs
Set up time of retransmission start condition	tSU;STA	-	0.6		μs
Set up time of stop condition	tSU;STO	-	0.6		μs
Data hold time	tHD;DAT	-	0		μs
Data set up time	tSU;DAT	-	100 *1		ns
Rising time of SDA and SCL signal	tR	-		300	ns
Falling time of SDA and SCL signal	tF	-		300	ns
Rejection spike pulse range by input filter	tSP	-		50	ns
Capacitive load for each bus line	Cb*2	-		400	pF

Table 9-1 I2C-Bus AC Characteristics

All of the above-mentioned values are corresponding to VIHmin and VILmaxlevel.

Note*1: This is the high rate mode I2C-Bus spec. The standard mode is allowed in I2C-Bus system, but it need to satisfy the condition; tSU;DAT≥250ns.

Note*2: Cb = Total capacitance of 1 bus line (Unit pF)

I2C-Bus Timing Chart

Fig 9-6 I2C-Bus Timing Chart

Internal Register Timing

Reading

Fig 9-7 Internal Register Timing

(Codicil)

The 2 wires of SCL and SDA, which connected to I2C-Bus, are used for transmitting clock pulse and data individually. All Ics connected to these two lines are designed not to be clamped even though the voltage, which exceeds its power supply voltage, is supplied through the input and output. (The output is open-drain-circuited).

This construction allows the communication of signals between Ics, which have different supply voltages, by adding a pull-up resistor to each signal line.

10. Register

The register, which is readable/ writable through I2C, controls and monitors the state of DCDC and LDO.

The register will be reset in the conditions below:

- DCDC1, 2 over current detection
- Overheating detection of thermal shutdown (TSHUT)
- VIND voltage decrease detection of UVLO
- VDD voltage decrease detection of RESET_DET

When PWRON pin is "L", the writing register is prohibited.

The writing in the address 03h~FFh is prohibited.

10.1 Register Map

add	Name	R/W	D7	D6	D5	D4	D3	D2	D1	D0
00h	PWRON	R/W	DC2ON	DC10N	-	LDO5ON	LDO4ON	LDO3ON	LDO2ON	LDO10N
01h	MODE	R/W	-	DC1MD	-	LDO5MD	LDO4MD	-	-	-
02h	L45VSEL	R/W	-	LDO5D2	LDO5D1	LDO5D0	-	LDO4D2	LDO4D1	LDO4D0

Table 10-1 Register Map

10.2 Register Description

10.2.1 PWRON Register (Address: 00h)

The register controls ON/OFF of LDO 1-5 and DCDC1, 2.

Bit	Name	R/W	Function	1	0	Initial value
7	DC2ON	R/W	DCDC2 ON/OFF control bit	ON	OFF	1
6	DC10N	R/W	DCDC1 ON/OFF control bit	ON	OFF	1
5	-	-	Reserved	-	-	0
4	LDO5ON	R/W	LDO5 ON/OFF control bit	ON	OFF	0
3	LDO4ON	R/W	LDO4 ON/OFF control bit	ON	OFF	0
2	LDO3ON	R/W	LDO3 ON/OFF control bit	ON	OFF	1
1	LDO2ON	R/W	LDO2 ON/OFF control bit	ON	OFF	1
0	LDO10N	R/W	LDO1 ON/OFF control bit	ON	OFF	1

Table 10-2 PWRON Register

10.2.2 MODE Register (Address: 01h)

The register sets the operation mode of LDO and DCDC.

Bit	Name	R/W	Function	1	0	Initial value
7	-	-	-	-	-	0
6	DC1MD	R/W	DCDC1 Mode control bit	VFM	PWM	0
5	-	-	-	-	-	0
4	LDO5MD	R/W	LDO5 Mode control bit	ECO	Normal	0
3	LDO4MD	R/W	LDO4 Mode control bit	ECO	Normal	0
0-2	-	-	-	-	-	000

Table 10-3 MODE Register

10.2.3 LDO Setting Voltage Register (Address: 02h)

The register sets the output voltage of LDO4 and 5.

Bit	Name	R/W	Function	1	0	Initial value
7	-	-	Reserved	-	0	
6-4	LDO5D[2:0]	R/W	As below	As below		110
3	-	-	Reserved	-		0
2-0	LDO4D[2:0]	R/W	As below	As b	elow	110

Table 10-4 LDO Setting Voltage Register

LDO4D [2:0] LDO5D [2:0]

LDO4D[2]	LDO4D[1]	LDO4D[0]	LDO4 Voltage	LDO5D[2]	LDO5D[1]	LDO5D[0]	LDO5 Voltage
1	1	1	3.3V	1	1	1	3.3V
1	1	0	3.0V	1	1	0	3.0V
1	0	1	2.7V	1	0	1	2.7V
1	0	0	2.5V	1	0	0	2.5V
0	1	1	1.8V	0	1	1	1.8V
0	1	0	1.4V	0	1	0	1.4V
0	0	1	1.3V	0	0	1	1.3V
0	0	0	1.2V	0	0	0	1.2V

11. Electrical Characteristics

11.1 Absolute Maximum Ratings

The operation exceeding "Absolute Maximum Ratings" below may cause not only permanent damage to the device, but also reliability and safeness of its equipment. The operation of the device within the stated ratings below is not guaranteed.

Symbol	Parameter	Condition	Rated Value	Units
$V_{\rm IN}$	Power Input Voltage	VINP*, VIN*, VDD	-0.3~6.0	V
V	V _{PIN} Signal Input Voltage Range	SCL, SDA, PSHOLD	-0.3~VDD+0.3	V
V_{PIN}		PWRON, DC1EXON	-0.3~VIND+0.3	V
PD	Package Allowable Dissipation	Mounted on Board, $T_a = 70$ °C	1500	mW
T_{stg}	Storage Temperature	-	-55~+125	°C

11.2 Recommendation of Operation Conditions

Symbol	Parameter	Condition	Min	Тур	Max	Units
VIN	Power Supply Voltage1	Battery Voltage Input Pins	3.1	3.6	4.5	V
VDD	Power Supply Voltage	-	1.8	3.3	4.5	V
Ta	Temperature of Operation	-	-40		+85	°C

11.3 System Consumption Current

Operating Conditions (unless otherwise specified) VIND = 3.6V

Symbol	Parameter	Condition	Min	Тур	Max	Units
Iccd	Consumption current at power on	PWRON=H, VIND Input Current (UVLO, RESET_DET, TSHUT,OSC)		30		uA
Iccs	Consumption current at power off	PWRON=L, VIND Input Current (Standby Current)		1		uA

12. Electrical Characteristics of Digital Input/Output Pin

12.1 VDD system CMOS Schmitt Input Pin

Operating Conditions (unless otherwise specified) VIND = 3.6V, Ta = 25°C

Applicable pin: SCL, SDA

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input leakage	ILI	Vin=0∼VDD	-1		1	μΑ
Input rising threshold voltage	VT+	-	VDD×0.5		VDD×0.7	V
Input falling threshold voltage	VT-	-	VDD×0.3		VDD×0.5	V
Hysteresis range	ΔVT	-	VDD×0.1			V

12.2 VDD system Nch Open Drain Output Pin

Applicable pin: SDA

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Output voltage L level	VOL	Iout=-3mA			0.4	V

12.3 VIND system CMOS Schmitt Input Pin

Applicable pin: PWRON

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input leakage	ILI	Vin=0∼VIND	-1		1	μΑ
Input rising threshold voltage	VT+	-	VIND×0.5		VIND×0.8	V
Input falling threshold voltage	VT-	-	VIND×0.2		VIND×0.5	V
Hysteresis range	ΔVΤ	-	VIND×0.1			V

Applicable pin: DC1EXON

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input leakage	ILI	Vin=0~VIND	-1		1	μΑ
Input rising threshold voltage	VT+	-	0.6	1.2	1.8	V
Input falling threshold voltage	VT-	-	0.4	0.8	1.2	V
Hysteresis range	ΔVT	-	0.1	0.4	0.7	V

12.4 VDD system CMOS Input pin

Applicable pin: PSHOLD

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Input leakage	ILI	Vin=0~VDD	-1		1	μA
Input voltage H level	VIH	-	VDD×0.7			V
Input voltage L level	VIL	-			VDD×0.3	V

12.5 VIND system NchOpen Drain Output Pin

Applicable pin: RESETO

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Output voltage L level	VOL	Iout=-3mA			0.4	V

13. Package Information

