Дискретные структуры

осень 2013

Александр Дайняк

www.dainiak.com

Поле: определение

Поле — это множество \mathbb{F} с двумя бинарными ассоциативными u коммутативными операциями + и \cdot , такими, что

- F является группой относительно + Нейтральный элемент этой группы обозначается 0.
- $\mathbb{F} \setminus \{0\}$ является группой относительно · Нейтральный элемент этой группы обозначается 1.
- Операция · дистрибутивна относительно +: $\forall a, b, c \in F$ $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

Примеры полей

Полями являются:

• Множества \mathbb{Q} , \mathbb{R} , \mathbb{C} относительно +,

Полями не являются:

- Множества №, ℤ
- Множество $\mathbb{R}^{n \times n}$ относительно сложения и умножения матриц

Примеры полей

Кроме \mathbb{Q} , \mathbb{R} , \mathbb{C} есть и другие бесконечные поля, например, поле дробно-рациональных функций, т.е.

$$\left\{ f \mid f = \frac{A(x)}{B(x)} \right\}$$

где A(x) и B(x) — многочлены с целыми коэффициентами, и $B(x) \not\equiv 0$.

Примеры свойств полей, выводимых из аксиом

Утверждение.

Если $\mathbb F$ поле, то для любого $a\in\mathbb F$ выполнено

$$a \cdot 0 = 0$$

Доказательство:

Обозначим $z \coloneqq a \cdot 0$.

Имеем

$$z + z = a \cdot 0 + a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 = z$$

Отсюда

$$z = 0 + z = (-z) + z + z = (-z) + z = 0$$

Примеры свойств полей, выводимых из аксиом

Утверждение.

Если $\mathbb F$ поле, то для любого $a \in \mathbb F$ выполнено $(-1) \cdot a = -a$

Доказательство:

Обозначим $b \coloneqq (-1) \cdot a$.

Получаем

$$b + a = b + 1 \cdot a = (-1) \cdot a + 1 \cdot a = ((-1) + 1) \cdot a = 0 \cdot a = 0$$

Поле: другое определение

Поле — это множество $\mathbb F$ с двумя бинарными ассоциативными операциями + и \cdot и двумя специальными элементами 0 и 1, такими, что

- $\forall a, b \quad a + b = b + a, \quad a \cdot b = b \cdot a$
- $\forall a, b, c \in \mathbb{F}$ $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$
- $\forall a \in \mathbb{F} \quad 0 + a = a + 0 = a$
- $\forall a \in \mathbb{F} \setminus \{0\}$ $1 \cdot a = a \cdot 1 = a$
- $\forall a, b \in \mathbb{F}$ $\exists x: a + x = b$
- $\forall a, b \in \mathbb{F} \setminus \{0\} \quad \exists x: \quad a \cdot x = b$

Поле: третье определение (для конечного поля)

Конечное поле — это множество

$$\mathbb{F} = \{a_1, \dots, a_n\}$$

с бинарными ассоциативными коммутативными операциями + и · и элементами 0 и 1, такими, что

- $\forall a, b, c \in \mathbb{F}$ $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
- $\forall a \in \mathbb{F}$ 0 + a = a + 0 = a
- $\forall a \in \mathbb{F} \setminus \{0\}$ $1 \cdot a = a \cdot 1 = a$
- $\forall a$ элементы $a + a_1, ..., a + a_n$ все различны
- $\forall a \neq 0$ элементы $a \cdot a_1, \dots, a \cdot a_n$ все различны

Утверждение.

Для любого простого p множество \mathbb{Z}_p образует поле относительно операций сложения и умножения по модулю p.

Доказательство:

То, что $(\mathbb{Z}_p, \bigoplus)$ и $(\mathbb{Z}_p \setminus \{0\}, \bigcirc)$ — группы, доказано ранее.

Дистрибутивность умножения по модулю относительно сложения по модулю очевидна.

Многочлены: определение

Mногочлен (полином) от переменных x_1, \dots, x_m с коэффициентами из множества K — это конечная сумма одночленов (мономов) т.е. произведений вида

$$c \cdot x_{i_1}^{t_1} \cdot \ldots \cdot x_{i_r}^{t_m}$$

где

$$c \in K$$

$$t_1, \dots, t_m \in \mathbb{N}_0$$

$$i_1, \dots, i_r \in \{1, \dots, m\}$$

Если r=0, то это свободный член.

Степени

Степень монома
$$T=c\cdot x_{i_1}^{t_1}\cdot ...\cdot x_{i_r}^{t_m}$$
 — это $\deg T\coloneqq t_1+\dots+t_m$

Степень полинома Р определяется так:

$$\deg P \coloneqq \max\{\deg T \mid T - \text{ моном } P\}$$

Степень *нулевого* (тождественно равного нулю) многочлена считается равной $-\infty$

Степени

Степень монома $T=c\cdot x_{i_1}^{t_1}\cdot ...\cdot x_{i_r}^{t_m}$ по переменной x_k — это показатель, с которым x_k входит в произведение T. Обозначение:

$$\deg_{x_k} T$$

Степень полинома P по переменной x_k равна $\deg_{x_k} P \coloneqq \max \{ \deg_{x_k} T \mid T - \text{моном } P \}$

Если $P \equiv 0$, то полагаем $\deg_{x_k} P \coloneqq -\infty$.

Степени

Утверждение.

Если P' и P'' — многочлены, то

- $\deg(P' + P'') \le \max\{\deg P', \deg P''\}$
- $\deg(P' \cdot P'') = \deg P' + \deg P''$

То же и для степеней по переменным:

- $\deg_{x_k}(P' + P'') \le \max\{\deg_{x_k} P', \deg_{x_k} P''\}$
- $\deg_{x_k}(P' \cdot P'') = \deg_{x_k} P' + \deg_{x_k} P''$

Доказательство: прямая проверка.

Многочлены с коэффициентами из заданного множества

Если коэффициенты многочлена P от переменных x_1, \dots, x_m берутся из множества K, то пишут

$$P \in K[x_1, \dots, x_m]$$

Если $\forall a, b \in K$ выполнено $(a + b), (a \cdot b) \in K$, то и множество $K[x_1, ..., x_m]$ тоже замкнуто относительно сложения и умножения.

Чаще всего в качестве K рассматривают некоторое *поле*. Тогда обычно пишут

$$P \in \mathbb{F}[x_1, \dots, x_m]$$

Нормированные многочлены

Многочлен $P \in \mathbb{F}[x]$, у которого коэффициент при мономе старшей степени равен 1, называется *нормированным*.

Кратко будем называть нормированные многочлены нормногочлеными.

Очевидно, любой многочлен можно получить из некоторого нормногочлена умножением на константу.

Деление многочленов с остатком

Утверждение.

Для любых многочленов $P,Q \in \mathbb{F}[x]$ при $Q \not\equiv 0$ существуют и однозначно определены многочлены S и R, такие, что

- $P = Q \cdot S + R$
- $\deg R < \deg Q$

R — $ocmamo\kappa$ от деления P на Q

Доказательство: всё аналогично делению целых чисел с остатком.

Пример деления многочленов «в столбик»

Итог:

$$x^5 - 2x^4 + 5x + 3 = (x^3 - 2x^2 + 7x - 14) \cdot (x^2 - 7) + (54x - 95)$$

Вычисления по модулю многочлена

Если R — остаток от деления P на Q, будем писать $R = P \bmod Q$

Если $P_1 \mod Q = P_2 \mod Q$, то пишем $P_1 \equiv P_2 \pmod Q$

ИЛИ

$$P_1 \stackrel{Q}{=} P_2$$

Вычисления по модулю многочлена

Утверждение.

Если
$$P_1 \stackrel{Q}{=} P_2$$
 и $P_3 \stackrel{Q}{=} P_4$, то

$$\bullet \ P_1 + P_3 \stackrel{Q}{=} P_2 + P_4$$

$$\bullet \ P_1 \cdot P_3 \stackrel{Q}{=} P_2 \cdot P_4$$

•
$$(P_1)^k \stackrel{Q}{=} (P_2)^k$$
 для любого $k \in \mathbb{N}$

Доказательство: упражнение.

Пример вычислений по модулю многочлена

Найдём остаток от деления многочлена

$$P := (x^5 + 2x^3 + 4)^4 \cdot (x^3 + 3) + x$$

на многочлен $Q\coloneqq x^2+2$, где все многочлены принадлежат $\mathbb{Z}_5[x]$.

Решение:

$$x^{5} + 2x^{3} + 4 = (x^{2} + 2)x^{3} + 4 \stackrel{Q}{=} 4 \stackrel{\mathbb{Z}_{5}}{=} -1$$
$$x^{3} + 3 = (x^{2} + 2)x - 2x + 3 \stackrel{Q}{=} -2x + 3$$

Отсюда

$$P \stackrel{Q}{=} (-1)^4 \cdot (-2x+3) + x = -x+3 = 4x+3$$

Малая теорема Безу

Утверждение.

Если
$$P \in \mathbb{F}[x]$$
 и $a \in \mathbb{F}$, то
$$P(a) = P \bmod (x - a)$$

Следствие.

Если a — корень многочлена $P \in \mathbb{F}[x]$, то P без остатка делится на (x-a).

Неприводимые многочлены

Многочлен $P \in \mathbb{F}[x]$ называется н*еприводимым/неразложимым/простым* (*над* \mathbb{F}), если не существует $Q,S \in \mathbb{F}[x]$, таких, что $P = Q \cdot S$, $\deg Q \geq 1$, $\deg S \geq 1$

Примеры:

- $x^2 + x + 1$ простой над \mathbb{R} , так как если бы его можно было разложить на множители, то у него были бы корни в \mathbb{R} .
- $P = x^4 + 2x^3 + 3x^2 + 2x + 1$ не является простым над \mathbb{R} , так как $P = (x^2 + x + 1)^2$. Заметьте, что корней из \mathbb{R} у P нет.

Неприводимые многочлены

Ещё примеры:

- $x^2 + x + 1$ простой над \mathbb{Z}_2 , так как ни 0, ни 1 не являются его корнями (если вычисления выполнять по модулю 2)
- x^2+x+1 не является простым над \mathbb{Z}_3 , так как

$$x^2 + x + 1 = x^2 + 4x + 4 = (x + 2)^2$$

Теорема о разложении

Теорема.

Любой многочлен $P \in \mathbb{F}[x]$ может быть единственным образом (с точностью до перестановки сомножителей) представлен в виде $P = c \cdot P_1 \cdot ... \cdot P_k$

где $P_1, ..., P_k$ — простые нормногочлены (не обязательно различные).

Доказательство аналогично доказательству основной теоремы арифметики

Утверждения о делимости многочленов

Утверждения.

- Если $P_1 \cdot P_2$ делится на Q, и Q простой, то хотя бы один из многочленов P_1, P_2 делится на Q
- Если P делится на различные простые многочлены Q_1 и Q_2 , то P делится на $Q_1 \cdot Q_2$

Доказательства аналогичны доказательствам аналогичных теорем арифметики

Поле: третье определение (для конечного поля)

Конечное поле — это множество

$$\mathbb{F} = \{a_1, \dots, a_n\}$$

с бинарными ассоциативными коммутативными операциями + и · и элементами 0 и 1, такими, что

- $\forall a, b, c \in \mathbb{F}$ $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
- $\forall a \in \mathbb{F}$ 0 + a = a + 0 = a
- $\forall a \in \mathbb{F} \setminus \{0\}$ $1 \cdot a = a \cdot 1 = a$
- $\forall a$ элементы $a + a_1, ..., a + a_n$ все различны
- $\forall a \neq 0$ элементы $a \cdot a_1, \dots, a \cdot a_n$ все различны

Пусть p — простое число.

Пусть Q — простой многочлен из $\mathbb{Z}_p[x]$.

Через $\mathbb{Z}_p[x]/Q$ обозначим множество всех многочленов из $\mathbb{Z}_p[x]$, степень которых строго меньше $\deg Q$.

На множестве $\mathbb{Z}_p[x]/Q$ определим операции сложения и умножения:

$$P_1 \bigoplus P_2 \coloneqq (P_1 + P_2) \mod Q$$

 $P_1 \odot P_2 \coloneqq (P_1 \cdot P_2) \mod Q$

Утверждение.

Множество $\mathbb{Z}_p[x]/Q$ является полем относительно введённых операций сложения и умножения многочленов по модулю Q.

- Доказательство:
- Ассоциативность, коммутативность, дистрибутивность очевидна
- Существование нуля и единицы очевидно

Ещё нужно доказать, что:

• $\forall P, P_1, P_2 \in \mathbb{Z}_p[x]/Q$ если $P_1 \neq P_2$, то $P \oplus P_1 \neq P \oplus P_2$ Это так, т.к.

$$P \oplus P_1 = P \oplus P_2 \quad \Rightarrow \quad P + P_1 \stackrel{Q}{=} P + P_2 \quad \Rightarrow \quad P_1 \stackrel{Q}{=} P_2 \quad \Rightarrow \quad P_1 = P_2$$

Осталось доказать, что:

• $\forall P, P_1, P_2 \in \mathbb{Z}_p[x]/Q$ если $P_1 \neq P_2$ и $P \not\equiv 0$, то $P \odot P_1 \neq P \odot P_2$

Если
$$P\odot P_1=P\odot P_2$$
, то
$$P\cdot P_1\stackrel{Q}{=}P\cdot P_2\quad\Rightarrow\quad P\cdot (P_1-P_2)\stackrel{Q}{=}0$$

Т.к. Q простой, то либо P делится на Q, либо (P_1-P_2) делится на Q.

По условию, $P \not\equiv 0$, а значит

$$(P_1 - P_2) \stackrel{Q}{=} 0 \Rightarrow P_1 \stackrel{Q}{=} P_2 \Rightarrow P_1 = P_2$$

Количество неприводимых многочленов над \mathbb{Z}_p

Теорема (доказательство — весной).

Количество неприводимых над \mathbb{Z}_p нормногочленов степени n равно количеству непериодических циклических слов длины n в p-символьном алфавите.

Следствие.

При каждом p и при каждом $n \geq 2$ существует хотя бы один неприводимый над \mathbb{Z}_p нормногочлен степени n.

Резюме

- Многочлены похожи на числа: их можно делить столбиком, определить простые многочлены и доказать аналоги теорем из арифметики
- Для любого простого p и любого $\alpha \in \mathbb{N}$ существует конечное поле порядка p^{α} .

При $\alpha=1$ это просто \mathbb{Z}_p , при $\alpha>1$ это множество многочленов из $\mathbb{Z}_p[x]$ степени $\leq \alpha-1$, сложение и умножение которых проводится по модулю некоторого простого многочлена Q, $\deg Q=\alpha$

Некоторые факты о конечных полях (без доказательства)

- Любое конечное поле изоморфно полю многочленов $\mathbb{Z}_p[x]/Q$ для некоторого простого числа p и многочлена Q, неприводимого над \mathbb{Z}_p .
- В любом конечном поле все ненулевые элементы образуют циклическую группу относительно умножения.