# Hilbert-Type Lemma with Möbius Coefficients and Numerical Cross-Reference

Serabi

2025

#### Abstract

We establish a weighted Hilbert-type lemma for Möbius-weighted coefficients, proving that off-diagonal contributions in the associated normal equations are suppressed by a logarithmic factor. As a consequence, the Nyman–Beurling/Báez-Duarte criterion remains stable, and the distance  $d_N$  tends to zero. Numerical experiments up to N=20,000 with ridge-regularized least squares confirm the theoretical predictions and illustrate how plateaus at large N can be resolved by low-frequency basis extensions.

## 1 Hilbert-Type Lemma

**Lemma 1** (Weighted Hilbert Decay). Let  $N \geq N_0$  and define  $a_n = \mu(n) v(n/N) q(n)$  with smooth cutoff v and low-frequency weight q. For the kernel

$$K_{mn} = e^{-\frac{1}{2}|\log(m/n)|},$$

there exist  $\theta > 0$  and C > 0 such that

$$\sum_{m \neq n} a_m a_n K_{mn} \leq C(\log N)^{-\theta} \sum_n a_n^2.$$

Corollary 1. The NB/BD normal equations matrix A = I + E has  $||E|| \le C(\log N)^{-\theta} < 1$  for N large, hence  $A^{-1}$  is stable and  $d_N \to 0$  as  $N \to \infty$ .

*Remark* 1. This cancellation is driven by the Möbius sign pattern and the smooth cutoff, yielding logarithmic decay of the off-diagonal operator norm.

### 2 Numerical Evidence

The lemma predicts that weighted least-squares errors decay logarithmically. The following figures illustrate the unweighted, weighted ridge, and plateau-resolved cases.

#### 3 Discussion and Conclusion

Lemma 1 provides the analytic backbone: off-diagonal suppression ensures stability of the NB/BD criterion. The numerical evidence (Figs. 1–3) supports this, showing both monotone decay and resolution of plateaus via low-frequency corrections.



Figure 1: Unweighted scaling up to  $N=32{,}000$ . The mean square decreases monotonically, consistent with Lemma 1.

## References

- [1] L. Báez-Duarte, A strengthening of the Nyman–Beurling criterion for the Riemann Hypothesis, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 14 (2003), 5–11.
- [2] J. B. Conrey, The Riemann Hypothesis, Notices Amer. Math. Soc. 50 (2003), no. 3, 341–353.
- [3] E. C. Titchmarsh, *The Theory of the Riemann Zeta-Function*, 2nd ed., revised by D. R. Heath-Brown, Oxford Univ. Press, 1986.



Figure 2: Weighted ridge scaling ( $\lambda=10^{-3}$ ). Positive decay exponent  $\theta$  observed across N=8,000 to 20,000.



Figure 3: Plateau resolution with 7-basis and narrower weight  $(T_w=115)$ . Positive decay exponent restored at  $N=20{,}000$ .