

13 ANSI C 63.19-2011 LIMITS

WD RF audio interference level categories in logarithmic units

Emission categories	< 960 MHz			
	E-field emissions			
Category M1	50 to 55	dB (V/m)		
Category M2	45 to 50	dB (V/m)		
Category M3	40 to 45	dB (V/m)		
Category M4	< 40	dB (V/m)		
Emission categories	> 96	> 960 MHz		
	E-field e	missions		
Category M1	40 to 45	dB (V/m)		
Category M2	35 to 40	dB (V/m)		
Category M3	30 to 35	dB (V/m)		
Category M4	< 30	dB (V/m)		

14 MEASUREMENT UNCERTAINTY

No.	Error source	Туре	Uncertainty Value (%)	Prob. Dist.	k	Ci E	Standard Uncertainty (%) $u_i^{'}$ (%) E	Degree of freedom V_{eff} or v_i
Meas	surement System							
1	Probe Calibration	В	5.1	N	1	1	5.1	8
2	Axial Isotropy	В	4.7	R	$\sqrt{3}$	1	2.7	∞
3	Sensor Displacement	В	16.5	R	$\sqrt{3}$	1	9.5	8
4	Boundary Effects	В	2.4	R	$\sqrt{3}$	1	1.4	∞
5	Linearity	В	4.7	R	$\sqrt{3}$	1	2.7	∞
6	Scaling to Peak Envelope Power	В	2.0	R	$\sqrt{3}$	1	1.2	∞
7	System Detection Limit	В	1.0	R	$\sqrt{3}$	1	0.6	∞
8	Readout Electronics	В	0.3	N	1	1	0.3	∞
9	Response Time	В	0.8	R	$\sqrt{3}$	1	0.5	∞
10	Integration Time	В	2.6	R	$\sqrt{3}$	1	1.5	∞
11	RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.7	8
12	RF Reflections	В	12.0	R	$\sqrt{3}$	1	6.9	∞
13	Probe Positioner	В	1.2	R	$\sqrt{3}$	1	0.7	∞
14	Probe Positioning	А	4.7	R	$\sqrt{3}$	1	2.7	∞
15	Extra. And Interpolation	В	1.0	R	$\sqrt{3}$	1	0.6	∞
Test	Sample Related							
16	Device Positioning Vertical	В	4.7	R	$\sqrt{3}$	1	2.7	∞
17	Device Positioning Lateral	В	1.0	R	$\sqrt{3}$	1	0.6	8
18	Device Holder and Phantom	В	2.4	R	$\sqrt{3}$	1	1.4	∞
19	Power Drift	В	5.0	R	$\sqrt{3}$	1	2.9	∞

20	AIA measurement	В	12	R	$\sqrt{3}$	1	6.9	∞
Pha	ntom and Setup related							
21	Phantom Thickness	В	2.4	R	$\sqrt{3}$	1	1.4	8
Coml	Combined standard uncertainty(%) 16.2							
-	nded uncertainty idence interval of 95 %)	ι	$u_e = 2u_c$	N	k=	2	32.4	

15 MAIN TEST INSTRUMENTS

Table 1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Signal Generator	E4438C	MY49071430	February 01, 2016	One Year
02	Power meter	NRVD	102196	March 03, 2016	One year
03	Power sensor	NRV-Z5	100596	March 03, 2016	One year
04	Amplifier	60S1G4	0331848	No Calibration Re	quested
05	E-Field Probe	ER3DV6	2272	January 19, 2016	One year
06	HAC Dipole	CD835V3	1023	August 20, 2015	One year
07	HAC Dipole	CD1880V3	1018	August 20, 2015	One year
08	BTS	E5515C	MY50263375	January 30, 2016	One year
09	DAE	SPEAG DAE4	777	August 26, 2015	One year
10	AIA	SE UMS 170 CB	1029	No Calibration Re	quested

16 CONCLUSION

The HAC measurement indicates that the EUT complies with the HAC limits of the ANSI C63.19-2011. The total M-rating is **M3.**

END OF REPORT BODY

ANNEX A TEST LAYOUT

Picture A1: HAC RF System Layout

ANNEX B TEST PLOTS

HAC RF E-Field GSM 850 High

Date: 2016-4-23

Electronics: DAE4 Sn771

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature:22.3°C

Communication System: GSM 900; Frequency: 914.8 MHz; Duty Cycle: 1:8.3

Probe: ER3DV6 - SN2272;ConvF(1, 1, 1)

GSM850/E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 81.71 V/m; Power Drift = -0.04 dB

Applied MIF = 3.48 dB

RF audio interference level = 39.93 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
39.61 dBV/m	39.84 dBV/m	39.32 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
39.7 dBV/m	39.93 dBV/m	39.45 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
39.51 dBV/m	39.78 dBV/m	39.34 dBV/m

0 dB = 99.46 V/m = 39.95 dBV/m

Fig B.1 HAC RF E-Field GSM 850 High

HAC RF E-Field GSM 850 Middle

Date: 2016-4-23

Electronics: DAE4 Sn771

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature:22.3°C

Communication System: GSM 900; Frequency: 897.4 MHz; Duty Cycle: 1:8.3

Probe: ER3DV6 - SN2272;ConvF(1, 1, 1)

GSM850/E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device 2/Hearing

Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 70.43 V/m; Power Drift = -0.13 dB

Applied MIF = 3.46 dB

RF audio interference level = 38.60 dBV/m

Emission category: M4

MIF scaled E-field

Grid 1 M4	Grid 2 M4	Grid 3 M4
38.31 dBV/m	38.53 dBV/m	37.97 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
38.4 dBV/m	38.6 dBV/m	38.13 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
38.23 dBV/m	38.46 dBV/m	38.04 dBV/m

0 dB = 85.43 V/m = 38.63 dBV/m

Fig B.2 HAC RF E-Field GSM 850 Middle

HAC RF E-Field GSM 850 Low

Date: 2016-4-23

Electronics: DAE4 Sn771

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature:22.3°C

Communication System: GSM 900; Frequency: 880.2 MHz; Duty Cycle: 1:8.3

Probe: ER3DV6 - SN2272;ConvF(1, 1, 1)

GSM850/E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device 3/Hearing Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 61.31 V/m; Power Drift = -0.05 dB

Applied MIF = 3.44 dB

RF audio interference level = 37.39 dBV/m

Emission category: M4

Grid 1 M4	Grid 2 M4	Grid 3 M4
37.05 dBV/m	37.28 dBV/m	36.73 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
37.15 dBV/m	37.39 dBV/m	36.89 dBV/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
37.03 dBV/m	37.26 dBV/m	36.81 dBV/m

Fig B.3 HAC RF E-Field GSM 850 Low

HAC RF E-Field GSM 1900 High

Date: 2016-4-23

Electronics: DAE4 Sn777

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature:23.0°C

Communication System: DCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Probe: ER3DV6 - SN2272;ConvF(1, 1, 1)

GSM1900/E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device/Hearing

Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 35.97 V/m; Power Drift = -0.08 dB

Applied MIF = 3.50 dB

RF audio interference level = 34.13 dBV/m

Emission category: M3

Grid 1 M3	Grid 2 M3	Grid 3 M3
33.37 dBV/m	34.91 dBV/m	34.71 dBV/m
Grid 4 M3	Grid 5 M3	Grid 6 M3
32 dBV/m	34.13 dBV/m	34.02 dBV/m
Grid 7 M3	Grid 8 M3	Grid 9 M3
30.39 dBV/m	30.07 dBV/m	30.11 dBV/m

0 dB = 55.65 V/m = 34.91 dBV/m

Fig B.4 HAC RF E-Field GSM 1900 High

HAC RF E-Field GSM 1900 Middle

Date: 2016-4-23

Electronics: DAE4 Sn777

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature:23.0°C

Communication System: DCS 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Probe: ER3DV6 - SN2272;ConvF(1, 1, 1)

GSM1900/E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device 2/Hearing

Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 34.25 V/m; Power Drift = 0.06 dB

Applied MIF = 3.47 dB

RF audio interference level = 34.04 dBV/m

Emission category: M3

Grid 1 M3	Grid 2 M3	Grid 3 M3
33.1 dBV/m	34.75 dBV/m	34.6 dBV/m
Grid 4 M3	Grid 5 M3	Grid 6 M3
31.85 dBV/m	34.04 dBV/m	33.95 dBV/m
Grid 7 M4	Grid 8 M3	Grid 9 M3
29.83 dBV/m	30.29 dBV/m	30.29 dBV/m

Fig B.5 HAC RF E-Field GSM 1900 Middle

HAC RF E-Field GSM 1900 Low

Date: 2016-4-23

Electronics: DAE4 Sn777

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Ambient Temperature:23.0°C

Communication System: DCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Probe: ER3DV6 - SN2272;ConvF(1, 1, 1)

GSM1900/E Scan - ER3DV6 - 2011: 15 mm from Probe Center to the Device 3/Hearing

Aid Compatibility Test (101x101x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 34.59 V/m; Power Drift = -0.02 dB

Applied MIF = 3.41 dB

RF audio interference level = 33.98 dBV/m

Emission category: M3

Grid 1 M3	Grid 2 M3	Grid 3 M3
33.11 dBV/m	34.75 dBV/m	34.53 dBV/m
Grid 4 M3	Grid 5 M3	Grid 6 M3
31.81 dBV/m	33.98 dBV/m	33.88 dBV/m
Grid 7 M4	Grid 8 M3	Grid 9 M3
29.87 dBV/m	30.21 dBV/m	30.21 dBV/m

Fig B.6 HAC RF E-Field GSM 1900 Low

ANNEX C SYSTEM VALIDATION RESULT

E SCAN of Dipole 835 MHz

Date: 2016-4-23

Electronics: DAE4 Sn777

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon r = 1$; $\rho = 1000$ kg/m3 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Probe: ER3DV6 - SN2272;ConvF(1, 1, 1)

E Scan - measurement distance from the probe sensor center to CD835 Dipole = 15mm/Hearing Aid Compatibility Test (41x361x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 118.6 V/m; Power Drift = 0.08 dB

Applied MIF = 0.00 dB

RF audio interference level = 40.53 dBV/m

Emission category: M3

Grid 1 M3	Grid 2 M3	Grid 3 M3
40.38 dBV/m	40.53 dBV/m	40.46 dBV/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
35.59 dBV/m	35.89 dBV/m	35.87 dBV/m
Grid 7 M3	Grid 8 M3	Grid 9 M3
40.02 dBV/m	40.29 dBV/m	40.23 dBV/m

0 dB = 40.53 dBV/m

E SCAN of Dipole 1880 MHz

Date: 2016-4-23

Electronics: DAE4 Sn777

Medium: Air

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Probe: ER3DV6 - SN2272;ConvF(1, 1, 1)

E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 15mm/Hearing Aid Compatibility Test (41x181x1): Interpolated grid: dx=0.5000 mm,

dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 142.9 V/m; Power Drift = -0.03 dB

Applied MIF = 0.00 dB

RF audio interference level = 39.22 dBV/m

Emission category: M2

Grid 1 M2	Grid 2 M2	Grid 3 M2
39.09 dBV/m	39.22 dBV/m	39.19 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
36.75 dBV/m	36.95 dBV/m	36.89 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
39.13 dBV/m	39.27 dB V/m	39.16 dBV/m

0 dB = 39.22 dBV/m

ANNEX D PROBE CALIBRATION CERTIFICATE

E_Probe ER3DV6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CTTL (Auden)

Certificate No: ER3-2272_Jan16

CALIBRATION CERTIFICATE

Object ER3DV6 - SN:2272

Calibration procedure(s) QA CAL-02.v8, QA CAL-25.v6

Calibration procedure for E-field probes optimized for close near field

evaluations in air

Calibration date: January 19, 2016

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-15 (No. 217-02128)	Mar-16
Power sensor E4412A	MY41498087	01-Apr-15 (No. 217-02128)	Mar-16
Reference 3 dB Attenuator	SN: S5054 (3c)	01-Apr-15 (No. 217-02129)	Mar-16
Reference 20 dB Attenuator	SN: S5277 (20x)	01-Apr-15 (No. 217-02132)	Mar-16
Reference 30 dB Attenuator	SN: S5129 (30b)	01-Apr-15 (No. 217-02133)	Mar-16
Reference Probe ER3DV6	SN: 2328	12-Oct-15 (No. ER3-2328_Oct15)	Oct-16
DAE4	SN: 789	16-Mar-15 (No. DAE4-789_Mar15)	Mar-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Michael Weber Calibrated by: Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: January 20, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ER3-2272_Jan16 Page 1 of 10

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z sensitivity in free space
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization ϕ ϕ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005

b) CTIA Test Plan for Hearing Aid Compatibility, Rev 3.0, November 2013

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

ER3DV6 - SN:2272

January 19, 2016

Probe ER3DV6

SN:2272

Manufactured: Calibrated:

November 29, 2001 January 19, 2016

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ER3-2272_Jan16

Page 3 of 10

ER3DV6 - SN:2272

January 19, 2016

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2272

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)$	1.66	1.71	1.78	± 10.1 %
DCP (mV) ^B	100.4	99.4	100.7	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	198.9	±3.8 %
		Y	0.0	0.0	1.0		165.5	
		Z	0.0	0.0	1.0		196.7	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ER3-2272_Jan16

B Numerical linearization parameter: uncertainty not required.
E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ER3DV6 - SN:2272

January 19, 2016

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ER3-2272_Jan16

Page 5 of 10

ER3DV6 – SN:2272 January 19, 2016

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$

Certificate No: ER3-2272_Jan16

Page 6 of 10

ER3DV6 – SN:2272 January 19, 2016

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ER3-2272_Jan16

Page 7 of 10