UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Matematika – 2. stopnja

Tjaša Vrhovnik

MINIMALNE PLOSKVE

Magistrsko delo

Mentor: prof. dr. Franc Forstnerič

Zahvala

Kazalo

Pı	rogra	m dela	vii
1	Uvo	od	1
2	Osn	ovni pojmi	1
	2.1	Ukrivljenost	3
	2.2	Vektorska polja	4
	2.3	Aproksimacijski izreki za Riemannove ploskve	5
	2.4	Variacija ploščine	6
	2.5	Weierstrassova formula	7
3	Izre	eki o aproksimaciji in interpolaciji minimalnih ploskev	

Program dela

Osnovna literatura

Literatura mora biti tukaj posebej samostojno navedena (po pomembnosti) in ne le citirana. V tem razdelku literature ne oštevilčimo po svoje, ampak uporabljamo okolje itemize in ukaz plancite, saj je celotna literatura oštevilčena na koncu.

[?]

[?]

[?]

[?]

Podpis mentorja:

Minimalne ploskve

Povzetek

Tukaj napišemo	povzetek	vsebine.	Sem	sodi	razlaga	vsebine	in ne	opis	tega,	kako	je
delo organiziran	ο.										

English translation of the title

Abstract

An abstract of the work is written here. This includes a short description of the content and not the structure of your work.

Math. Subj. Class. (2010): oznake kot 74B05, 65N99, na voljo so na naslovu http://www.ams.org/msc/msc2010.html

Ključne besede:

Keywords:

1 Uvod

2 Osnovni pojmi

Definicija 2.1. Naj bo $n \in \mathbb{N}_0$. Topološki prostor M z lastnostmi:

- 1. M je Hausdorffov,
- 2. M je 2-števen,
- 3. M je lokalno evklidski prostor dimenzije n (za vsak $x \in M$ obstajata odprta okolica $U \subset M$ in homeomorfizem $\Phi \colon U \to \Phi(U) \subset \mathbb{R}^n$, kjer je $\Phi(U)$ odprta množica),

imenujemo $topološka \ mnogoterost$ dimenzije n.

Na topološki mnogoterosti M dimenzije n definiramo $atlas \mathcal{U} = \{(U_i, \Phi_i); i \in I\}$ kot družino parov (U_i, Φ_i) , kjer je $\{U_i\}_{i \in I}$ odprto pokritje mnogoterosti M, preslikave $\Phi_i \colon U_i \to \Phi_i(U_i) \subset \mathbb{R}^n$ pa so homeormorfizmi za vse i. Par (U_i, Φ_i) imenujemo lokalna karta. Vzemimo lokalni karti (U_i, Φ_i) in (U_j, Φ_j) , $i \neq j$, za kateri velja $U_{ij} = U_i \cap U_j \neq \emptyset$. Difeomorfizmu $\Phi_{ij} = \Phi_j \circ \Phi_i^{-1} \colon \Phi_i(U_{ij}) \to \Phi_j(U_{ij})$ med odprtima podmnožicama \mathbb{R}^n pravimo prehodna preslikava med lokalnima kartama. Če so prehodne preslikave med vsemi lokalnimi kartami difeomorfizmi razreda \mathcal{C}^r , potem je atlas razreda \mathcal{C}^r . V tem primeru rečemo, da je M mnogoterost razreda \mathcal{C}^r . V posebnem gladek atlas določa gladko mnogoterost.

Naj bosta M in N mnogoterosti dimenzij dim M=m, dim N=n $(m,n\in\mathbb{N})$. Naj bo $r\geq 0$. Pravimo, da je zvezna preslikava $f\colon M\to N$ razreda \mathcal{C}^r v točki $p\in M$, če obstajata taki \mathcal{C}^r karti (U,Φ) na M v okolici točke $p\in M$ in (V,Ψ) na N v okolici točke $f(p)\in N$, da je preslikava $F=\psi\circ f\circ\Phi^{-1}$ razreda \mathcal{C}^r v okolici točke $\Phi(p)$. Če to velja za poljubno točko $p\in M$, je f razreda \mathcal{C}^r ; pišemo $f\in \mathcal{C}^r(M,N)$.

Definirati želimo še tangentni prostor mnogoterosti. Naj bo M gladka mnogoterost in izberimo atlas $\mathcal{U} = \{(U_i, \Phi_i); i \in I\}$ na njej. Naj bo točka $p \in U_i \subset M$ za nek indeks i. Gladki krivulji $\gamma_1, \gamma_2 \colon (-\varepsilon, \varepsilon) \to M$ sta ekvivalentni, če izpolnjujeta pogoja $\gamma_1(0) = \gamma_2(0) = p$ in $\frac{d}{dt}|_{t=0}\Phi_i(\gamma_1(t)) = \frac{d}{dt}|_{t=0}\Phi_i(\gamma_2(t))$ za vse $t \in (-\varepsilon, \varepsilon)$. Označimo $\gamma_1 \sim \gamma_2^{-1}$.

Definicija 2.2. Naj bo M mnogoterost in $p \in M$ točka na njej. Tangentni vektor v_p na M v točki p ustreza ekvivalenčnemu razredu $[\gamma]$ krivulje $\gamma \colon (-\varepsilon, \varepsilon) \to M$, za katero velja $\gamma(0) = p$.

Unija vseh tangentnih vektorjev na M v točki p določa tangentni prostor T_pM mnogoterosti M v točki p.

Vzemimo gladki mnogoterosti M in N ter točko $p \in M$. Diferencial gladke preslikave $f: M \to N$ je linearna preslikava $df: T_pM \to T_{f(p)}N$, definirana s predpisom

$$(df_p)[\gamma] = [f \circ \gamma].$$

 $^{^{1}}$ Relacija \sim je ekvivalenčna relacija.

Definicija 2.3. Naj bo $f: M \to N$ gladka preslikava med gladkima mnogoterostima. Preslikava f se imenuje imerzija, če je njen diferencial df_p injektiven v vsaki točki $p \in M$.

Naj bo M gladka mnogoterost. Za vsako točko $p \in M$ definiramo simetrično pozitivno-definitno bilinearno preslikavo $g_p \colon T_pM \times T_pM \to \mathbb{R}$, ki je gladko odvisna od p. Družino preslikav g_p imenujemo $Riemannova\ metrika\ g$ na mnogoterosti M. Gladki mnogoterosti, opremljeni z Riemannovo metriko, pravimo $Riemannova\ mnogoterost$.

Izkaže se, da vsaka mnogoterost razreda \mathcal{C}^{r+1} premore Riemannovo metriko razreda \mathcal{C}^r .

Naj bo M domena v \mathbb{R}^n s koordinatami $x=(x_1,\ldots,x_n)$. Riemannova metrika na M je tedaj oblike

$$g_p = \sum_{i,j=1}^n g_{i,j}(p) dx_i dx_j, \quad p \in M,$$
(2.1)

kjer je $G(p) = [g_{i,j}(p)]_{i,j=1}^n$ simetrična pozitivno-definitna matrika za vse $p \in M$. Za tangentna vektorja $\xi = (\xi_1, \dots, \xi_n), \ \eta = (\eta_1, \dots, \eta_n) \in \mathbb{R}^n$ velja

$$g_p(\xi, \eta) = \sum_{i,j=1}^n g_{i,j}(p)\xi_i \eta_j = G(p)\xi \cdot \eta.$$
 (2.2)

Vzemimo gladko imerzijo $x \colon M \to \widetilde{M}$ in Riemannovo metriko \widetilde{g} na \widetilde{M} . Povlečena metrika $g = x^*\widetilde{g}$ na M, definirano na paru tangentnih vektorjev $\xi, \eta \in T_pM$, podaja predpis

$$g_p(\xi, \eta) = \tilde{g}_{x(p)}(dx_p(\xi), dx_p(\eta)). \tag{2.3}$$

Če je metrika \tilde{g} razreda \mathcal{C}^r in imerzija x razreda \mathcal{C}^{r+1} , potem je tudi povlečena metrika $g = x^* \tilde{g}$ razreda \mathcal{C}^r .

Oglejmo si primer Riemannove metrike, ki jo bomo v nadaljevanju večkrat uporabili. Na Evklidskem prostoru \mathbb{R}^n s koordinatami $x=(x_1,\ldots,x_n)$ je definirana Evklidska metrika

$$ds^{2} = (dx_{1})^{2} + \dots + (dx_{n})^{2}, \qquad (2.4)$$

to je Riemannova metrika, ki ustreza identični matriki I_n . Naj bo D domena v \mathbb{R}^2 in $x \colon D \to \mathbb{R}^n$ imerzija, podana s predpisom $x(u_1, u_2) = (x_1(u_1, u_2), \dots, x_n(u_1, u_2)),$ $(u_1, u_2) \in D$. Pripadajoča metrika na D je enaka

$$g = x^* ds^2 = g_{1,1} du_1^2 + g_{1,2} du_1 du_2 + g_{2,1} du_2 du_1 + g_{2,2} du_2^2,$$
(2.5)

$$g_{1,1} = |x_{u_1}|^2, \ g_{1,2} = g_{2,1} = x_{u_1} \cdot x_{u_2}, \ g_{2,2} = |x_{u_2}|^2$$
 (2.6)

in jo imenujemo prva fundamentalna forma ploskve M = x(D).

Definicija 2.4. Riemannova ploskev je kompleksna mnogoterost kompleksne dimenzije 1.

2.1 Ukrivljenost

Naj bo M ploskev, $n \geq 3$ in $x \colon M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Izberimo karto (U,ϕ) na M in koordinate $u=(u_1,u_2)\in U$, tako da je zožitev $x|_U \colon U \to \mathbb{R}^n$ vložitev na orientabilno ploskev $S=x(U)\subset \mathbb{R}^n$. Izberimo točko $q\in U$ in označimo $p=x(q)\in S$. Naj bo $t\mapsto (u_1(t),u_2(t))$ parametrizacija vložene krivulje razreda \mathcal{C}^2 v U ter $q=(u_1(t_0),u_2(t_0))$ za nek t_0 . Vsaka krivulja, vložena v S, ki vsebuje točko p, je tedaj oblike

$$\alpha(t) = x(u_1(t), u_2(t)). \tag{2.7}$$

Označimo z s=s(t) ločno dolžino krivulje α . Predpostavimo, da izbrana točka p ustreza $p=\alpha(s_0)\in S$, označimo pripadajoč tangentni vektor $\nu=\alpha'(s_0)\in T_pS$ ter enotsko normalo $N\in N_pS$ v točki p. Količino

$$\kappa^{N}(p,\nu) = \alpha''(s_0) \cdot N \tag{2.8}$$

imenujemo normalna ukrivljenost ploskve S v točki p v tangentni smeri ν in smeri enotske normale N.

Oglejmo si preslikavo $\kappa^N(p,\cdot)$: $\{\nu \in T_pS; \ |\nu|=1\} \to \mathbb{R}, \ \nu \mapsto \kappa^N(p,\nu)$, kjer je $p \in S$ izbrana fiksna točka. Kot zvezna preslikava na kompaktni množici doseže minimalno in maksimalno vrednost,

$$\kappa_1^N(p) = \min_{|\nu|=1} \kappa^N(p, \nu), \quad \kappa_2^N(p) = \max_{|\nu|=1} \kappa^N(p, \nu),$$
(2.9)

katerima pravimo glavni ukrivljenosti.

Definicija 2.5. 1. *Povprečna ukrivljenost* ploskve S v točki p in normalni smeri N je povprečje glavnih ukrivljenosti,

$$H^{N}(p) = \frac{1}{2} \left(\kappa_{1}^{N}(p) + \kappa_{2}^{N}(p) \right). \tag{2.10}$$

2. Njun produkt

$$K^{N}(p) = \kappa_1^{N}(p) \cdot \kappa_2^{N}(p) \tag{2.11}$$

definira Gaussovo ukrivljenost ploskve S v točki p in normalni smeri N.

3. Projekcijo povprečne ukrivljenosti na normalno ravnino N_pS v smeri tangentne ravnine T_pS imenujemo vektor povprečne ukrivljenosti ploskve S v točki p in označimo s \mathbf{H} . Enačba 2.10 se v tej notaciji glasi $H^N(p) = \mathbf{H} \cdot N$ za vsak $N \in N_pS$.

Lema 2.6. Naj bo $x: M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Tedaj velja

$$\Delta x = 2\mathbf{H},\tag{2.12}$$

kjer je Δ Laplaceov operator glede na Riemannovo metriko $g=x^*ds^2$ v točki $q\in M$ in \mathbf{H} vektor povprečne ukrivljenosti v točki $p=x(q)\in S$.

2.2 Vektorska polja

Definicija 2.7. Naj bo $r \geq 1$ ter E in B mnogoterosti razreda \mathcal{C}^r . Surjektivno preslikavo $\pi \colon E \to B$ imenujemo realen *vektorski sveženj* ranga n in razreda \mathcal{C}^r , če

- 1. je vsako vlakno $\pi^{-1}(b) = E_b, b \in B$, n-razsežen realen vektorski prostor: $E_b \cong \mathbb{R}^n$,
- 2. za vsak $b \in B$ obstajata okolica $b \in U \subset B$ in difeomorfizem $\tau : E|_{U} \to U \times \mathbb{R}^{n}$ razreda \mathcal{C}^{r} , tako da je za vsak $x \in U$ preslikava $\tau_{x} : E_{x} \to \{x\} \times \mathbb{R}^{n}$ linearni izomorfizem. Preslikavi τ_{x} pravimo lokalna trivializacija.

Če ima vlakno strukturo kompleksnega vektorskega prostora, na ustreznih mestih v definiciji zamenjamo \mathbb{R}^n s \mathbb{C}^n - v tem primeru dobimo kompleksen vektorski sveženj.

Definicija 2.8. Prerez vektorskega svežnja $\pi: E \to B$ je preslikava $s: B \to E$, za katero velja $\pi \circ s = id_B$. Ekvivalentno, za vsak $b \in B$ je $s(b) \in \pi^{-1}(b) = E_b$, torej prerez vsako točko baznega prostora slika v točko v vlaknu nad b.

Omenimo poseben primer vektorskega svežnja, ki ga bomo v nadaljevanju pogosto potrebovali. Naj bo X mnogoterost razreda \mathcal{C}^r z $r \geq 1$. Njen tangentni sveženj je disjunktna unija tangentnih prostorov na X v točkah $x \in X$:

$$TX = \bigsqcup_{x \in X} T_x X.$$

Tangentni sveženj je vektorski sveženj ranga $n = \dim X$ in razreda \mathcal{C}^{r-1} .

Definicija 2.9. Naj bo $r \geq 1$ in X mnogoterost razreda \mathcal{C}^r . Prerez njenega tangentnega svežnja, ki je funkcija

$$V: X \to TX, \ V(x) = V_x \in T_xX, \ x \in X,$$

je vektorsko polje na X.

Definicija 2.10. Naj bo V vektorsko polje na mnogoterosti X in $x \in X$ točka, v kateri je vektorsko polje neničelno. Pot $\gamma_x \colon (-\varepsilon, \varepsilon) \subset \mathbb{R} \to X$ razreda \mathcal{C}^1 je integralna krivulja vektorskega polja V skozi x, če je $\gamma_x(0) = x$ in

$$\dot{\gamma}_x(t) = V(\gamma_x(t)), \ t \in (-\varepsilon, \varepsilon).$$

Tok vektorskega polja V na odprti podmnožici $U \subset X$ je 1-parametrična družina preslikav $\Phi_t \colon U \to \Phi_t(U)$, definiranih s predpisi $\Phi_t(x) = \gamma_x(t)$.

Vektorsko polje V lahko v lokalnih koordinatah $x=(x_1,\ldots,x_n)$ na odprti podmnožici $U\subset X$ zapišemo kot

$$V(x) = \sum_{i=1}^{n} V_i(x) \frac{\partial}{\partial x_i},$$
(2.13)

kjer so V_i realne funkcije na U, diferenciali $\frac{\partial}{\partial x_i}$ pa v vsaki točki $p \in U$ sestavljajo bazo tangentnega prostora T_pX . Pot $\gamma(t) = (\gamma_1(t), \ldots, \gamma_n(t))$ na X je po definiciji integralna krivulja natanko takrat, ko zadošča enakosti

$$\dot{\gamma}(t) = \sum_{i=1}^{n} V_i(\gamma(t)) \frac{\partial}{\partial x_i}.$$

Rešujemo sistem n navadnih diferencialnih enačb $(i \in \{1, \dots n\})$

$$\dot{\gamma}_i(t) = V_i(\gamma_1(t), \dots, \gamma_n(t)),$$

katerega lokalna rešitev je tok vektorskega polja V na X, $\Phi_t(x)$.

Definicija 2.11. Naj bo X gladka mnogoterost. Dualni sveženj njenega tangentnega svežnja imenujemo $kotangentni\ sveženj$

$$T^*X = (TX)^* = \bigsqcup_{x \in X} T_x^*X.$$
 (2.14)

Tu je T_x^*X kotangentni prostor mnogoterosti X v točki $x \in X$, ki je sestavljen iz linearnih funkcionalov $T_x^*X \to \mathbb{R}$. (Diferencialna) 1-forma na mnogoterosti X je prerez $\alpha \colon X \to T^*X$ kotangentnega svežnja.

Podobno kot vektorska polja lahko tudi 1-forme predstavimo lokalno. Naj bo U odprta podmnožica v X z lokalnimi koordinatami $x=(x_1,\ldots,x_n)$. Če so a_i realne funkcije na U in dx_i diferenciali koordinatnih funkcij, ki v vsaki točki $p \in U$ tvorijo bazo kotangentnega prostora T_p^*X , potem ima poljubna 1-forma na U obliko

$$\alpha = \sum_{i=1}^{n} a_i(x) dx_i. \tag{2.15}$$

2.3 Aproksimacijski izreki za Riemannove ploskve

Izrek 2.12 (Rungejev aproksimacijski izrek za Riemannove ploskve). Naj bo M Riemannova ploskev in K njena kompaktna podmnožica. Potem lahko vsako funkcijo f, ki je holomorfna na okolici K, aproksimiramo enakomerno na K z meromorfnimi funkcijami F na M brez polov na K, ter s holomorfnimi funkcijami na M, če K nima lukenj. Funkcije F lahko izberemo tako, da se z dano funkcijo f na končni množici točk v K ujemajo do izbranega končnega reda in da ima F pole v podmnožici $E \subset M \setminus K$, kjer E vsebuje točko v vsaki luknji množice K.

Definicija 2.13. Naj bo K kompaktna podmnožica Riemannove ploskve M. Njena holomorfna ogrinjača je množica

$$\widehat{K}_{\mathcal{O}(M)} = \{ p \in M; \ |f(p)| \le \max_{K} |f| \text{ za vse } f \in \mathcal{O}(M) \}.$$
 (2.16)

Če velja $K = \widehat{K}_{\mathcal{O}(M)},$ množico K imenujemo Rungejeva množica.

Izrek 2.14 (Bishop-Mergelyanov aproksimacijski izrek). Naj bo M odprta Riemannova ploskev in K njena kompaktna podmnožica brez lukenj (K je Rungejeva v M). Potem lahko vsako funkcijo v A(K) aproksimiramo enakomerno na K s funkcijami v $\mathcal{O}(M)$.

Izrek 2.15 (Weierstrass-Florackov interpolacijski izrek). Naj bo M odprta Riemannova ploskev in K njena Rungejeva podmnožica. Naj bo $A = \{a_i\}_{i=1}^{\infty}$ zaprta diskretna podmnožica v M, U odprta podmnožica M, tako da je $A \cup K \subset U$ in f meromorfna funkcija na U z ničlami in poli le v točkah množice A. Potem za izbrane $\varepsilon > 0$ in števila $k_i \in \mathbb{N}$ obstaja meromorfna funkcija F na M, za katero velja:

- 1. $|F(z) f(z)| < \varepsilon \ za \ vse \ z \in K$,
- 2. v točkah a_i je razlika F f ničelna do reda k_i ,
- 3. F nima ničel in polov na $M \setminus A$.

2.4 Variacija ploščine

Definicija 2.16. 1. Naj bo M gladka kompaktna ploskev z robom, $n \geq 3$ in naj bo preslikava $x: M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Variacija preslikave x s fiksnim robom je 1-parametrična družina \mathcal{C}^2 preslikav

$$x^t \colon M \to \mathbb{R}^n, \ t \in (-\varepsilon, \varepsilon) \subset \mathbb{R},$$
 (2.17)

če je $x^0 = x$ in za vse t z intervala velja $x^t = x$ na bM.

2. Naj bo $p \in M.$ $Variacijsko vektorsko polje preslikave <math display="inline">x^t$ je vektorsko polje, definirano kot

$$E(p,t) = \frac{\partial x^t(p)}{\partial t} \in \mathbb{R}^n.$$
 (2.18)

Opazimo, da je za dovolj majhne vrednosti t preslikava x^t imerzija. Po definiciji je na $bM \times (-\varepsilon, \varepsilon)$ variacijsko vektorsko polje E konstantno ničelno.

Definicija 2.17. Naj bo $x: M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Ploskev M imenujemo minimalna ploskev, če za vsako kompaktno domeno $D \subset M$ z gladkim robom bD in vsako gladko variacijo x^t preslikave x s fiksnim robom velja

$$\frac{d}{dt}\Big|_{t=0} \operatorname{Area}(x^t(D)) = 0. \tag{2.19}$$

Ekvivalentno pravimo, da je minimalna ploskev stacionarna točka ploskovnega funkcionala Area.

Levo stran enakosti 2.19 imenujemo prva variacija ploščine pri t=0. Slednjo z geometrijskimi lastnostmi preslikave x, natančneje ukrivljenostjo, povezuje prva variacijska formula v naslednjem izreku.

Izrek 2.18. Naj bo M gladka kompaktna ploskev z robom, $n \geq 3$ in $x \colon M \to \mathbb{R}^n$ imerzija razreda C^2 . Naj bo $E = \partial x^t/\partial t|_{t=0}$ variacijsko vektorsko polje preslikave x^t pri t=0, \mathbf{H} vektorsko polje povprečne ukrivljenosti preslikave x in dA ploščinski element glede na Riemannovo metriko x^*ds^2 , definirano na M. Potem za vsako gladko variacijo $x^t \colon M \to \mathbb{R}^n$ imerzije x s fiksnim robom velja

$$\frac{d}{dt}\Big|_{t=0} Area(x^t(M)) = -2 \int_M E \cdot \mathbf{H} dA. \tag{2.20}$$

Izrek 2.19. Naj bo $x: M \to \mathbb{R}^n$ imerzija razreda C^2 . Ploskev M je minimalna natanko tedaj, ko je na M vektor povprečne ukrivljenosti \mathbf{H} preslikave x identično enak 0.

S podobnimi tehnikami kot v dokazu Izreka 2.18 izpeljemo $\mathit{drugo}\ \mathit{variacijsko}$ $\mathit{formulo}$

$$\frac{d^2}{dt^2}\Big|_{t=0} \operatorname{Area}(x^t(M)) = \int_M (4|E|^2 K^E + |\nabla E|^2) dA, \tag{2.21}$$

kjer $K^E = K^N$ označuje Gaussovo ukrivljenost ploskve M.

2.5 Weierstrassova formula

Naj bosta (M,g) in $(\widetilde{M},\widetilde{g})$ Riemannovi mnogoterosti z dim $(M) \leq \dim(\widetilde{M})$. Imerzija $x \colon (M,g) \to (\widetilde{M},\widetilde{g})$ se imenuje konformna, če ohranja kote. Z drugimi besedami je povlečena metrika $x^*\widetilde{g}$ konformno ekvivalentna metriki g, kar pomeni, da za pozitivno funkcijo $\mu > 0$ na M velja $x^*\widetilde{g} = \mu g$.

Naj bo ploskev M orientabilna in $x \colon M \to \mathbb{R}^n$ imerzija razreda \mathcal{C}^2 . Potem preslikava x določa enolično strukturo Riemannove ploskve na M, kjer je x konformna imerzija. Zato bomo v nadaljevanju obravnavali Riemannove ploskve in pripadajoče konformne imerzije v Evklidski prostor. Prvi rezultat, ki ga navajamo, opisuje ekvivalentne pogoje minimalnosti ploskve M.

Izrek 2.20. Naj bo M odprta Riemannova ploskev, $n \geq 3$ in $x = (x_1, \ldots, x_n)$: $M \rightarrow \mathbb{R}^n$ konformna imerzija razreda \mathcal{C}^2 . Naslednje trditve so ekvivalentne:

- 1. x je minimalna ploskev.
- 2. Vektorsko polje povprečne ukrivljenosti preslikave x je ničelno, tj. $\mathbf{H} = 0$.
- 3. x je harmonična, tj. $\Delta x = 0$.
- 4. 1-forma $\partial x = (\partial x_1, \dots, \partial x_n)$ z vrednostmi v \mathbb{C}^n je holomorfna in velja

$$(\partial x_1)^2 + \dots + (\partial x_n)^2 = 0. \tag{2.22}$$

5. Naj bo θ holomorfna 1-forma na M, ki ni nikjer enaka 0. Potem je preslikava $f = 2\partial x/\theta \colon M \to \mathbb{C}^n$ holomorfna z vrednostmi v ničelni kvadriki

$$\mathbf{A} = \{ (z_1, \dots, z_n) \in \mathbb{C}^n; \ z_1^2 + \dots + z_n^2 = 0 \}.$$
 (2.23)

Nadalje je Riemannova metrika na M, inducirana s konformno imerzijo x, enaka

$$g = x^* ds^2 = |dx_1|^2 + \dots + |dx_n|^2 = 2(|\partial x_1|^2 + \dots + |\partial x_n|^2).$$
 (2.24)

Definicija 2.21. Naj bo $x: M \to \mathbb{R}^n$ harmonična preslikava. Njen *pretok* je homomorfizem grup $\mathrm{Flux}_x \colon H_1(M,\mathbb{Z}) \to \mathbb{R}^n$, definiran s predpisom

$$Flux_x([C]) = \int_C d^c x.$$
 (2.25)

V definiciji pretoka je $[C] \in H_1(M, \mathbb{Z})$, integral pa je odvisen le od homološkega razreda poti C, zato bomo v nadaljevanju pisali kar $\operatorname{Flux}_x(C)$.

- **Definicija 2.22.** 1. Naj bo M odprta Riemannova ploskev in $n \geq 3$. Holomorfno imerzijo $z = (z_1, \ldots, z_n) \colon M \to \mathbb{C}^n$, za katero velja $(\partial z_1)^2 + \cdots + (\partial z_n)^2 = 0$, imenujemo holomorfna ničelna krivulja v \mathbb{C}^n .
 - 2. Naj bo $z = x + iy \colon M \to \mathbb{C}^n$ holomorfna ničelna krivulja. Njena realni del in imaginarni del, $x, y \colon M \to \mathbb{R}^n$ imenujemo konjugirani minimalni ploskvi.
 - 3. Naj bo $t \in \mathbb{R}$. Predstavnike 1-parametrične družine $x^t = \Re(e^{it}z) \colon M \to \mathbb{R}^n$ imenujemo pridružene minimalne ploskve holomorfne ničelne krivulje z.

Izrek 2.23 (Weierstrassova predstavitev konformnih minimalnih ploskev in holomorfnih ničelnih krivulj). Naj bo $n \geq 3$ in M odprta Riemannova ploskev, na kateri definiramo holomorfno 1-formo $\Phi = (\phi_1, \ldots, \phi_n)$ z vrednostmi v \mathbb{C}^n , ki je povsod neničelna, in zadošča

1.
$$\sum_{i=1}^{n} \phi_i^2 = 0$$
,

2.
$$\Re \int_C \Phi = 0$$
 za vse $[C] \in H_1(M, \mathbb{Z})$.

Potem za poljuben izbor točk $p_0 \in M$ in $x_0 \in \mathbb{R}^n$ predpis $x \colon M \to \mathbb{R}^n$,

$$x(p) = x_0 + \Re \int_{p_0}^p \Phi, \ p \in M,$$
 (2.26)

podaja dobro definirano konformno minimalno imerzijo. Zanjo velja

$$2\partial x = \Phi \quad in \quad g = x^* ds^2 = |dx|^2 = \frac{1}{2} |\Phi|^2.$$
 (2.27)

Če velja še $\int_C \Phi = 0$ za vse $[C] \in H_1(M, \mathbb{Z})$, potem za poljuben izbor točk $p_0 \in M$ in $z_0 \in \mathbb{C}^n$ predpis $z \colon M \to \mathbb{C}^n$,

$$z(p) = z_0 + \int_{p_0}^p \Phi, \ p \in M,$$
 (2.28)

podaja dobro definirano holomorfno ničelno krivuljo. Zanjo velja

$$\partial z = \Phi \quad in \quad z^* ds^2 = |dz|^2 = |\partial z|^2 = |\Phi|^2.$$
 (2.29)

Opomba 2.24. Vsaka konformna minimalna imerzija $x: M \to \mathbb{R}^n$ je oblike 2.26 in vsaka holomorfna ničelna krivulja $z: M \to \mathbb{C}^n$ je oblike 2.28. Prav zato je Weierstrassova predstavitev elegantna metoda za konstrukcijo opisanih preslikav.

Če konformno minimalno imerzijo $x\colon M\to\mathbb{R}^n$ poznamo, potem pripadajočo povsod neničelno holomorfno 1-formo $\Phi=2\partial x$ z vrednostmi v \mathbb{C}^n imenujemo Weierstrassovi podatki preslikave x. Analogno, za holomorfno ničelno krivuljo $z\colon M\to\mathbb{C}^n$ pripadajočo 1-formo $\Phi=\partial z=dz$ imenujemo Weierstrassovi podatki preslikave z.

Definicija 2.25. *Jordanov lok* je pot v ravnini, ki je topološko izomorfna intervalu [0, 1]. *Jordanova krivulja* je ravninska krivulja, ki je topološko ekvivalentna enotski krožnici.

Definicija 2.26. Naj bo M gladka ploskev, K končna unija paroma disjunktnih kompaktnih domen s kosoma zvezno odvedljivimi robovi v M ter $E = S \setminus K^{\circ}$ unija končno mnogo paroma disjunktnih gladkih Jordanovih lokov in zaprtih Jordanovih krivulj, ki se dotikajo K kvečjemu v svojih krajiščih in sekajo rob K transverzalno. Kompaktno podmnožico v M oblike $S = K \cup E$ imenujemo $dopustna \ množica$.

Definicija 2.27. Naj bo M povezana odprta Riemannova ploskev ali kompaktna Riemannova ploskev z robom, na kateri je definirana povsod neničelna holomorfna 1-forma Θ . Konformno minimalno imerzijo $x \colon M \to \mathbb{R}^n$ imenujemo:

- 1. ravna, če je slika x(M) vsebovana v afini ravnini v \mathbb{R}^n ; sicer pravimo, da je x neravna;
- 2. polna, če je preslikava $f = 2\partial x/\Theta \colon M \to \mathbf{A}^{n-1}_*$ polna, tj. \mathbb{C} -linearna ogrinjača slike f(M) je enaka \mathbb{C}^n ;
- 3. neizrojena, če slika x(M) ni vsebovana v nobeni hiperravnini v \mathbb{R}^n .

V dimenziji n=3 za konformno minimalno imerzijo vsi zgornji pojmi sovpadajo. V višjih dimenzijah $(n\geq 4)$ veljata implikaciji

polna \Rightarrow neizrojena \Rightarrow neravna.

3 Izreki o aproksimaciji in interpolaciji minimalnih ploskev

Naj bosta M in X kompleksni mnogoterosti. Prostor holomorfnih presikav $M \to X$ označimo z $\mathcal{O}(M,X)$. Če je K kompaktna podmnožica v M, množico preslikav $K \to X$ razreda $\mathcal{C}^r(M)$, ki so holomorfne v notranjosti $K^{\circ} \subset K$, označimo z $\mathcal{A}^r(K,X)$. V primeru, ko je $X = \mathbb{C}$, ustrezna prostora označimo z $\mathcal{O}(M)$ oziroma $\mathcal{A}^r(K)$.

Naj bo M odprta Riemannova ploskev in $n \geq 3$. Prostor konformnih minimalnih imerzij $M \to \mathbb{R}^n$ označimo s $\mathrm{CMI}(M,\mathbb{R}^n)$, prostor holomorfnih ničelnih imerzij $M \to \mathbb{C}^n$ pa z $\mathrm{NC}(M,\mathbb{C}^n)$. Nadalje $\mathrm{CMI}_{full}(M,\mathbb{R}^n)$ in $\mathrm{CMI}_{nf}(M,\mathbb{R}^n)$ označujeta prostora polnih oziroma neravnih konformnih minimalnih imerzij. Velja inkluzija $\mathrm{CMI}_{full}(M,\mathbb{R}^n) \subset \mathrm{CMI}_{nf}(M,\mathbb{R}^n)$. Podobno je $\mathrm{NC}_{full}(M,\mathbb{C}^n) \subset \mathrm{NC}_{nf}(M,\mathbb{C}^n)$ v primeru polnih ter neravnih holomorfnih ničelnih krivulj.

Če je M kompaktna omejena Riemannova ploskev z nepraznim gladkim robom bM in $r \in \mathbb{N}$, tedaj prostor konformnih minimalnih imerzij $M \to \mathbb{R}^n$ razreda $\mathcal{C}^r(M)$ označimo s $\mathrm{CMI}^r(M,\mathbb{R}^n)$, prostor holomorfnih ničenih imerzij $M \to \mathbb{C}^n$ razreda $\mathcal{A}^r(M)$ pa z $\mathrm{NC}^r(M,\mathbb{C}^n)$.

Lema 3.1. Naj bo M povezana Riemannova ploskev in \mathbf{A}_* punktirana ničelna kvadrika. Holomorfna preslikava $f: M \to \mathbf{A}_*$ je neravna natanko tedaj, ko je linearna ogrinjača tangentnih prostorov $T_{f(p)}A \subset T_{f(p)}\mathbb{C}^n$ po vseh $p \in M$ enaka \mathbb{C}^n .

Dokaz 1. Oglejmo si preslikavo $\Phi \colon \mathbb{C}^n \to \mathbb{C}$, definirano s predpisom $\Phi(z) = \sum_{j=1}^n z_j^2$. Ničelno kvadriko 2.23 tedaj lahko zapišemo v obliki $\mathbf{A} = \Phi^{-1}(\{0\})$. Njen tangentni prostor v točki $z = (z_1, \dots, z_n) \in \mathbb{C}^n$ je enak jedru diferenciala, ki kvadriko določa, zato je

$$T_z \mathbf{A} = \ker(d\Phi_z) = \ker(z \mapsto \sum_{j=1}^n z_j dz_j).$$

Naj bosta $z, w \in \mathbb{C}_*^n$. Potem sta njuna tangentna prostora enaka, $T_z \mathbf{A} = T_w \mathbf{A}$, natanko tedaj, ko je $z_j = \lambda w_j$ za vse $j = 1, \ldots, n$ in nek $\lambda \in \mathbb{C}$, kar je ekvivalentno pogoju, da sta vektorja z in w kolinearna.

Po definiciji je preslikava f neravna, če njena slika f(M) ni vsebovana v nobeni afini kompleksni premici v \mathbb{C}^n . Skupaj z zgornjim je slednje ekvivalnetno $Lin\{T_{f(p)}\mathbf{A};\ p\in M\}=\mathbb{C}^n$, kar smo želeli dokazati.

Definicija 3.2. Naj bo $S = K \cup E$ dopustna podmnožica Riemannove ploskve M in Θ povsod neničelna holomorfna 1-forma, definirana v okolici $S \subset M$. Naj bosta $n \geq 3$ in $r \in \mathbb{N}$. Posplošena konformna minimalna imerzija $S \to \mathbb{R}^n$ razreda \mathcal{C}^r je par $(x, f\Theta)$, kjer je $x \colon S \to \mathbb{R}^n$ preslikava razreda \mathcal{C}^r , njena zožitev na $S^\circ = K^\circ$ je konformna minimalna imerzija in preslikava $f \in \mathcal{A}^{r-1}(S, \mathbf{A}_*)$ zadošča naslednjima pogojema:

- 1. na množici K velja $f\Theta = 2\partial x$;
- 2. za vsako gladko pot α v M, ki parametrizira povezano komponento $E = \overline{S \setminus K}$ velja $\Re(\alpha^*(f\Theta)) = \alpha^*(dx) = d(x \circ \alpha)$.

Posplošena konformna minimalna imerzija $(x, f\Theta)$ je neravna oziroma polna natanko tedaj, ko je preslikava $f \in \mathcal{A}^{r-1}(S, \mathbf{A}_*)$ neravna oziroma polna na vsaki relativno odprti podmnožici S.

Prostor posplošenih konformnih minimalnih imerzij $S \to \mathbb{R}^n$ razreda \mathcal{C}^r označimo z $GCMI^r(S, \mathbb{R}^n)$. Analogno kot v primeru konformnih minimalnih imerzij velja

$$\mathrm{GCMI}^r_{full}(S,\mathbb{R}^n) \subset \mathrm{GCMI}^r_{nf}(S,\mathbb{R}^n) \subset \mathrm{GCMI}^r(S,\mathbb{R}^n).$$

Opomba 3.3. Diferencial d v kompleksnem ima obliko $d = \partial + \bar{\partial}$. Konjugirani difernecial d^c je enak $d^c = i(\bar{\partial} - \partial) = 2\Im(\partial)$. Zato velja $d + id^c = 2\partial$ oziroma drugače, $\Re(2\partial) = dx$. Prvi pogoj iz definicije posplošene konformne minimalne imerzije pravi $f\Theta = 2\partial$, od koder sledi $\Re(f\Theta) = \Re(2\partial) = dx$. Zato je drugi pogoj iz zgornje definicije skladen s prvim.

Tudi za posplošene konformne minimalne imerzije velja Weierstrassova formula. Naj bo S povezana dopustna množica in $(x, f\Theta) \in \operatorname{GCMI}^r(S, \mathbb{R}^n)$. Za poljubno točko $p_0 \in S$ in poznano preslikavo f lahko preslikavo $x \colon S \to \mathbb{R}^n$ konstruiramo s formulo

$$x(p) = x(p_0) + \Re \int_{p_0}^p f\Theta, \ p \in S.$$
 (3.1)

Obratno, če za preslikavo $f \in \mathcal{A}^{r-1}(S, \mathbf{A}_*)$ velja $\Re \int_C f\Theta = 0$ za vsako sklenjeno krivuljo C v S, potem f določa posplošeno konformno minimalno imerzijo, dano z Weierstrassovo formulo 3.1.

Definicija 3.4. Naj bo $S = K \cup E$ dopustna podmnožica Riemannove ploskve M in Θ povsod neničelna holomorfna 1-forma, definirana v okolici $S \subset M$. Naj bosta $n \geq 3$ in $r \in \mathbb{N}$. Posplošena ničelna krivulja $S \to \mathbb{C}^n$ razreda \mathcal{C}^r je par $(z, f\Theta)$, kjer preslikavi $z \in \mathcal{A}^r(S, \mathbb{C}^n)$ in $f \in \mathcal{A}^{r-1}(S, \mathbf{A}_*)$ zadoščata naslednjima pogojema:

- 1. na množici K velja $f\Theta = dz = \partial z$;
- 2. za vsako gladko pot α v M, ki parametrizira povezano komponento $E=\overline{S\setminus K}$ velja $\alpha^*(f\Theta))=\alpha^*(dz)=d(z\circ\alpha).$

Posplošena ničelna krivulja $(z, f\Theta)$ je neravna oziroma polna natanko tedaj, ko je preslikava $f \in \mathcal{A}^{r-1}(S, \mathbf{A}_*)$ neravna oziroma polna na vsaki relativno odprti podmožici S.

Prostori neravnih, polnih in posplošenih ničelnih krivulj ustrezajo verigi inkluzij

$$\mathrm{GNC}^r_{full}(S,\mathbb{C}^n) \subset \mathrm{GNC}^r_{nf}(S,\mathbb{C}^n) \subset \mathrm{GNC}^r(S,\mathbb{C}^n).$$

Za povezano dopustno množico S, $(z, f\Theta) \in \mathrm{GNC}^r(S, \mathbb{C}^n)$, znano preslikavo f in točko $p_0 \in S$ preslikavo $z \colon S \to \mathbb{C}^n$ konstruiramo s pomočjo Weierstrassove formule

$$z(p) = z(p_0) + \int_{p_0}^{p} f\Theta, \ p \in S.$$
 (3.2)

Velja tudi obrat; preslikava $f \in \mathcal{A}^{r-1}(S, \mathbf{A}_*)$, ki zadošča $\int_C f\Theta = 0$ za vsako sklenjeno krivuljo C v S, določa posplošeno ničelno krivuljo, dano z Weierstrassovo formulo 3.2.

Definicija 3.5. Naj bo M povezana odprta Riemannova ploskev. Naj bo Θ fiksna povsod neničelna holomorfna 1-forma na M. Naj bo $\mathcal{C} = \{C_1, \ldots, C_l\}$ družina gladkih orientiranih vloženih lokov in zaprtih Jordanovih krivulj v M ter $C = \bigcup_{i=1}^l C_i$. Družini \mathcal{C} in številu $n \in \mathbb{N}$ priredimo periodno preslikavo

$$\mathcal{P} = (\mathcal{P}_1, \dots, \mathcal{P}_l) \colon \mathcal{C}(C, \mathbb{C}^n) \to (\mathbb{C}^n)^l,$$

$$\mathcal{P}_i(f) = \int_{C_i} f\Theta, \ i = 1, \dots, l.$$
(3.3)

Tu je $f \in \mathcal{C}(C, \mathbb{C}^n)$ in $\mathcal{P}_i(f) \in \mathbb{C}^n$.

Opomba 3.6. Znano je, da vsaka odprta Riemannova ploskev M premore lokalno biholomorfno preslikavo $M \to \mathbb{C}^n$, torej povsod neničelno eksaktno holomorfno 1-formo. Zato je predpostavka o izboru 1-forme v zgornji definiciji smiselna.

Lema 3.7. Naj bo M odprta Riemannova ploskev in $S = K \cup E$ njena dopustna podmnožica. Naj bo $C = \{C_1, \ldots, C_l\}$ taka družina gladkih orientiranih Jordanovih krivulj in lokov v S, da je unija $C = \bigcup_{i=1}^{l} C_i$ Rungejeva v S. Naj za neko število $r \in \mathbb{Z}_+$ preslikava f pripada razredu $\mathcal{A}^r(S, \mathbf{A}_*)$. Nadalje predpostavimo, da vsaka

krivulja $C_i \in \mathcal{C}$ vsebuje netrivialen lok $I_i \in C_i$, disjunkten $z \cup_{i \neq j} C_j$, preslikava $f: I_i \to \mathbf{A}_*$ pa je neravna.

Potem obstaja odprta okolica $U \subset \mathbb{C}^{ln}$ točke 0 in preslikava $\Phi_t \in \mathcal{A}^r(S \times U, \mathbf{A}_*)$, tako da velja $\Phi_t(\cdot, 0) = f$ in je preslikava

$$\frac{\partial}{\partial t}\Big|_{t=0} \mathcal{P}(\Theta_f(\cdot,t)) \colon (\mathbb{C}^n)^l \to (\mathbb{C}^n)^l \text{ izomorfizem.}$$
 (3.4)

Nadalje, za končno podmnožico $P \subset S$ lahko preslikavo Θ_f izberemo tako, da se za $t \in U$ preslikave $\Theta_f(\cdot,t) \colon S \to \mathbf{A}_*$ ujemajo z f v vsaki točki $P \setminus S^{\circ}$, v točkah $P \cap S^{\circ}$ pa se z f ujemajo do danega končnega reda.

Za vsako preslikavo $f_0 \in \mathcal{A}^r(S, \mathbf{A}_*)$, ki zadošča zgornjim predpostavkam, obstaja okolica $\Omega \subset \mathcal{A}^r(S, \mathbf{A}_*)$ in holomorfna preslikava $f \mapsto \Theta_f$, $f \in \Omega$ z zgornjimi lastnostmi.

Definicija 3.8. Preslikavo Θ_f , ki ustreza Lemi 3.7 imenujemo *periodno dominantni* sprej preslikav $S \to \mathbf{A}_*$ za družino krivulj \mathcal{C} z jedrom $\Theta_f(\cdot, 0) = f$. Lastnosti 3.4 pravimo periodno dominantna lastnost.

Dokaz 2. Prvi del leme bomo dokazali tako, da bomo konstruirali periodno dominantni sprej, ki zadošča periodno dominantni lastnosti. Potrebovali bomo Lemo 3.1, Bishop-Mergelyanov izrek o aproksimaciji 2.14 in pojem toka vektorskega polja. Zaradi enostavnosti postavimo r=0 (za r>0 dokaz poteka analogno).

Po predpostavki je za vse $i \in \{1, \ldots, n\}$ lok $I_i \subset C_i \in \mathcal{C}$ netrivialen, za katerega velja $I_i \cap \bigcup_{i \neq j} C_j = \emptyset$ in je zožitev preslikave $f|_{I_i}$ neravna. Po Lemi 3.1 obstajajo točke $p_{i,j} \in I_i$ in holomorfna vektorska polja $V_{i,j}$ na \mathbb{C}^n , $j \in \{1, \ldots, n\}$, ki so tangentna na \mathbf{A} , tako da je $Lin\{V_{i,j}(f(p_{i,j})); j = 1, \ldots, n\} = \mathbb{C}^n$ za vse i.

Za $k=1,\ldots l$ označimo $t_k=(t_{k,1},\ldots,t_{k,n})\in\mathbb{C}^n$ in $t=(t_1,\ldots,t_n)\in\mathbb{C}^{nl}$. Naj $\Phi_t^{i,j}$ označuje tok vektorskega polja $V_{i,j}$. Izberimo tako odprto okolico $U_0\subset\mathbb{C}^{nl}$ točke 0, da za vse $t\in U_0$ in $p\in S$ predpis

$$(p,t) \mapsto \Phi_{t_{1,1}}^{1,1} \circ \cdots \circ \Phi_{t_{1,n}}^{1,n} \circ \Phi_{t_{2,1}}^{2,1} \circ \cdots \circ \Phi_{t_{l,n}}^{l,n}(f(p))$$
 (3.5)

podaja dobro definirano preslikavo $S \times U_0 \to \mathbf{A}_*$. Sedaj za vse pare (i, j) izberimo gladke preslikave $g_{i,j} \colon C \to \mathbb{C}$, pri čemer je nosilec $g_{i,j}$ vsebovan v majhnem delu loka I_i okrog točke $p_{i,j} \in I_i$. Modificirana preslikava 3.5, $\Phi \colon C \times U_1 \to \mathbf{A}_*$,

$$\Phi(p,t) = \Phi_{g_{1,1}(p)t_{1,1}}^{1,1} \circ \cdots \circ \Phi_{g_{l,n}(p)t_{l,n}}^{l,n}(f(p)), \tag{3.6}$$

kjer je $U_1 \subset \mathbb{C}^{nl}$ primerno majhna odprta okolica točke 0, je tedaj dobro definirana, za vse $p \in C$ pa je preslikava $\Phi(p,\cdot) \colon U_1 \to \mathbf{A}_*$ holomorfna. Po lastnostih toka vektorskega polja sledi še $\Phi(p,0) = f(p)$ in

$$\left. \frac{\partial \Phi(p,t)}{\partial t_{m,j}} \right|_{t=0} = g_{m,j}(p) \cdot V_{m,j}(f(p)). \tag{3.7}$$

Naj bo $\mathcal{P} = (\mathcal{P}_1, \dots, \mathcal{P}_n)$ periodna preslikava, prirejena družini krivulj \mathcal{C} . Z uporabo enakosti 3.7 dobimo za vse indekse $i, m \in \{1, \dots, l\}$ in $j \in \{1, \dots, n\}$

$$\frac{\partial \mathcal{P}_i(\Phi(\cdot,t))}{\partial t_{m,i}}\Big|_{t=0} = \frac{\partial}{\partial t_{m,i}}\Big|_{t=0} \int_{C_i} \Phi(\cdot,t) \cdot \Theta = \int_{C_i} g_{m,j} \cdot (V_{m,j} \circ f) \cdot \Theta \in \mathbb{C}^n.$$
 (3.8)

Matrika diferencialov 3.4 iz leme je sestavljena iz blokov velikosti $n \times n$, ki pripadajo indeksom $i, m \in \{1, ..., l\}$. Z ustrezno izbiro preslikav $g_{i,j}$ opisanih zgoraj lahko dosežemo, da je matrika bločno diagonalna z obrnljivimi bloki na diagonali. S tem postane celotna matrika obrnljiva.

V naslednjem koraku bomo modificirali še preslikavo Φ , kar nam bo dalo iskani periodno dominantni prej. Preslikave $g_{i,j}$ so definirane na množici C, ki je po predpostavki Rungejeva v S. Bishop-Mergelyanov izrek o aproksimaciji pove, da vsako funkcijo $g_{i,j}$ lahko enakomerno na C aproksimiramo s holomorfnimi funkcijami $\tilde{g}_{i,j}$ v okolici S.

Definirajmo preslikavo $\Phi_f \colon S \times U \to \mathbf{A}_*$ tako, da v predpisu 3.6 nadomestimo $g_{i,j}$ z novimi funkcijami $\tilde{g}_{i,j}$ in je $U \subset U_1 \subset \mathbb{C}^{nl}$ odprta okolica izhodišča. Po konstrukciji takšna preslikava Φ_f zadošča sklepom leme, zato je periodno dominantni sprej, ki smo ga iskali.

Trditev 3.9. Naj bo M odprta Riemannova ploskev, Θ povsod neničelna holomorfna 1-forma na M, S povezana dopustna množica, ki je Rungejeva v M in $A = \{a_1, \ldots, a_k\} \subset S$. Naj bosta $r, s \in \mathbb{N}$. Potem lahko vsako posplošeno konformno minimalno imerzijo $(x, f\Theta) \in GCMI^r(S, \mathbb{R}^n)$ aproksimiramo s konformnimi minimalnimi imerzijami $X: M \to \mathbb{R}^n$ razreda C^r , za katere velja $Flux_X = Flux_x$.

Izrek 3.10. Naj bo M odprta Riemannova ploskev, Θ povsod neničelna holomorfna 1-forma na M, $n \geq 3$ in $r \geq 1$. Naj bo S dopustna Rungejeva množicca v M in Λ zaprta diskretna podmnožica M. Naj bo $x \colon S \to \mathbb{R}^n$ posplošena konformna minimalna imerzija razreda $C^r(S,\mathbb{R}^n)$, ki je konformna minimalna imerzija v okolici vsake točke iz Λ .

Za izbrane $\varepsilon > 0$, preslikavo $k \colon \Lambda \to \mathbb{N}$ in homomorfizem grup $\mathfrak{p} \colon H_1(M, \mathbb{Z}) \to \mathbb{R}^n$, $\mathfrak{p}|_{H_1(S,\mathbb{Z})} = \operatorname{Flux}_x$, obstaja konformna minimalna imerzija $\tilde{x} \colon M \to \mathbb{R}^n$, za katero velja:

- 1. $||\tilde{x} x||_{\mathcal{C}^r(S)} < \varepsilon;$
- 2. Razlika $\tilde{x} x$ je ničelna do reda k(p) v vsaki točki $p \in \Lambda$;
- 3. $Flux_{\tilde{x}} = \mathfrak{p} \ na \ H_1(M, \mathbb{Z});$
- 4. Če je $n \geq 5$ in je $x \colon \Lambda \to \mathbb{R}^n$ injektivna preslikava, potem je \tilde{x} injektivna imerzija;
- 5. Če je n=4 in ima x enostavne dvojne točke na množici Λ , potem je \tilde{x} imerzija z enostavnimi dvojnimi točkami na Λ .