

Research Internship

Generative Replay for Continual Learning in Robotic

28/05/2019 to 09/08/2019

Author: Bunthet SAY Promotion: 2020

Internship Tutor: Natalia Diaz Rodriguez

ENSTA Paris Tutor: David Filliat

Contents

- I. Introduction
- II. Context
 - A. Policy Distillation
 - B. Generative Replay

- A. Training RL models
- B. Training Generative models
- C. Evaluate Generative model
- D. Policy Distillation
- E. Evaluate Distilled model
- IV. Conclusion

Introduction

- "Humans and animals have the ability to continually acquire, fine-tune, and transfer knowledge and skills throughout their lifespan."
 - [German Ignacio Parisi et al. "Continual Lifelong Learning with Neural Networks: A Review"]
- With the arrival of AI and Deep Learning, we have witness greate application in Robotic
- Catastrophic forgetting is a crucial challenge for Continual Reinforcement Learning.
- Three main approaches have contributed to continual learning

Policy distillation

Policy Distillation

Approach: Imitate behavior from pre-trained teacher models

1.
$$\pi_{1} \to D_{\pi_{1}} = \{O_{t}^{1}, P(a|O_{t}^{1})\}\$$
 $\pi_{2} \to D_{\pi_{2}} = \{O_{t}^{2}, P(a|O_{t}^{2})\}\$
 \vdots
 $\pi_{k} \to D_{\pi_{k}} = \{O_{t}^{k}, P(a|O_{t}^{k})\}\$
2. $D_{\pi_{1}} \cup D_{\pi_{2}} \cup ... \cup D_{\pi_{k}} = D_{\pi_{1,2,...,k}} \xrightarrow{PolicyDistillation} \pi_{1,2,...,k}$

- Challenge:
 - Access to the environment is need for a basic policy distillation
 - Dataset stockage

Generative Replay

- Variational AutoEncoder (VAE)
- 2. Conditional Variational AutoEncoder (CVAE)
- 3. Generative Adversarial Network(GAN)
- 4. Conditional Generative Adversarial Network(CGAN)

Generative Replay

Variational AutoEncoder (VAE)

$$l_i(\theta, \phi) = -\mathbb{E}_{z \sim q_{\theta}(z|X_i)}[\log p_{\phi}(X_i \mid z)] + \mathbb{KL}(q_{\theta}(z \mid X_i) \mid\mid p(z))$$

Figure 2.2: Variational Autoencoder schema

Generative Replay

1. Conditional Variational AutoEncoder (CVAE)

$$l_i(\theta, \phi) = -\mathbb{E}_{z \sim q_{\theta}(z|X_i, c_i)}[\log p_{\phi}(X_i \mid z, c_i)] + \mathbb{KL}(q_{\theta}(z \mid X_i, c_i) \mid\mid p(z|c_i))$$

Figure 2.3: Conditional Variational Autoencoder schema

Generative Replay

Generative Adversarial Network(GAN)

Figure 2.4: Generative Adversarial Network schema

The loss function of GAN is the Mini-Max loss between D and G:

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_{x}(z)}[\log(1 - D(G(z)))]$$

Generative Replay

1. Conditional Generative Adversarial Network(CGAN)

Figure 2.5: Conditional Generative Adversarial Network training schema

- Objective: Generate data set from 2 tasks to serve policy distillation
- Method: Generative replay
- 2 main experiments
- Experiments setup: Experiment 1 and 2
 - Environment: Omnirobot_env

Omnirobot_env

Task 1: Target Reaching (TR)

Task 2: Target Circling (TC)

Experiments setup: Experiment 1

1.
$$\{O_t^{Task_1}\}$$
 $\xrightarrow{Train\ SRL}$ $\{s_t^{Task_1}\}$ $\xrightarrow{Train\ RL}$ π_{Task_1}

2. $\{O_t^{Task_1}\}$ $\xrightarrow{Generation\ on\ policy\ \pi_{Task_1}}$ $D_{\pi_{Task_1}} = \{O_t^{Task_1}, P_{\pi_{Task_1}}(a|O_t^{Task_1})\}$

3. $D_{\pi_{Task_1}}$ $\xrightarrow{Training}$ $GM_{\pi_{Task_1}}(z, a, t_{pos})$

4. $GM_{\pi_{Task_1}}(z, a, t_{pos})$ $\xrightarrow{Sampling}$ $\{O^{G_{Task_1}}\}$ \xrightarrow{SRL} $\{s^{G_{Task_1}}\}$ $\xrightarrow{\pi_{Task_1}}$ $D_{GM_{\pi_{Task_1}}}$ where $D_{GM_{\pi_{Task_1}}} = \{O_t^{G_{Task_1}}, P_{\pi_{Task_1}}(a|O_t^{G_{Task_1}})\}$

5. Similarly for $Task_2$, we get: $D_{GM_{\pi_{Task_2}}}$

6. $D_{GM_{\pi_{Task_1}}} \cup D_{GM_{\pi_{Task_2}}}$ $\xrightarrow{Train\ Policy\ Distillation}$ $\pi_{Task_{12}}$

- Experiments setup: Experiment 1 and 2
 - Train SRL model

	Task ₁	Task ₂
name	SRL_Task ₁	SRL_Task ₂
model	srl_plits: autoencoder/inverse/reward	srl_plit: autoencoder/inverse
dimensionality	autoencoder: 198 inverse: 2 reward: 198	autoencoder: 198 autoencoder: 2
Losses' weight	autoencoder:1 inverse:1 reward:1	autoencoder1 inverse:1
Batch size	32	32
State's dimensions	200	200
Training epoch	20	20
optimizer	Adam	Adam
Adam parameters	beta_1=0.5,beta_2=0.9	beta_1=0.5,beta_2=0.9
Learning rate	0.005	0.005

Hyperparameters for SRL model training.

SRL splits model.

- Experiments setup: Experiment 1
 - Generative models architecture:
 - CVAE : Resnet
 - CGAN:
 - Deep Convolutional (DC)
 - Resnet

- Experiments setup: Experiment 1 and 2
 - Train RL model

	$Task_1$	Task ₂	
Algorithm	PPO2	PPO2	
Srl_model	SRL_Task_1	SRL_Task_2	
Number of timesteps	5 millions	5 millions	
Image's size	(3,64,64)	(3,64,64)	
Seed	0	0	

Setting for training RL.

- Experiments setup: Experiment 1 and 2
 - o Train RL model

Task 1: TR Task 1: TC

- Experiments setup: Experiment 1
 - Train Generative model

Hyperparameters	CVAE	CGAN
Batch size	128	128
Training epoch	20	100
optimizer	Adam	Adam (Both G and D)
Adam parameters	$beta_1 = 0.5, beta_2 = 0.9$	beta_1=0.5,beta_2=0.9

Soumit, in his repository, propose several tip and trick to train GAN to stabilize the training and prevent from mode collapse:

- Normalize input
- Use spherical Z
- Batch Normalization
- Avoid sparse gradients: Relu and Maxpool
- Use label smoothing
- Use Adam optimizer
- Use label for training (action and target position in our case)
- Spectral Normalization for both generator and discriminator (on top of Batch Normalization)

- Experiments setup: Experiment 1
 - Train Generative model

CVAE splits losses evolution for Task_1. Ir=0.0002

CVAE splits losses evolution for Task_2. Ir=0.0002

- Experiments setup: Experiment 1
 - Train Generative model

CGAN (Resnet) losses evolution for Task_1. lr_G=5e-5 lr_D=e-5

CGAN (Resnet) losses evolution for Task_2 Ir_G=5e-5 Ir D=e-5

- Experiments setup:
 - Evaluate generative model

1.
$$GM_{\pi_{Task_1}}(z, a, t_{pos}) \xrightarrow{Sampling} O_{z,a,t_{pos}}^{G_{Task_1}}$$

2.
$$O_{z,a,t_{pos}}^{G_{Task_1}} \xrightarrow{Forward to SRL \ model} S_{z,a,t_{pos}}^{G_{Task_1}} \xrightarrow{Forward to \pi_{Task_1}} P_{\pi_{Task_1}}(A_i|O_{z,a,t_{pos}}^{G_{Task_1}})$$
 where $A_i \in \{0,1,2,3\}$

3. We check if $A_i = a$

- Results:
 - Task 1: TR

Model	LR	Overall Accuracy	Accuracy per Action
CVAE	10^{-4}	26.15%	[11.04%, 36.01%, 12.09%, 44.20%]
CVAE split	10^{-4}	25.10%	[07.20%, 39.20%, 14.00%, 40.00%]

Table 3.6: Benchmark of CVAE for $Task_1$ with $Random_seed = 0$.

Model	LR_G	LR_D	Overall Accuracy	Accuracy per Action
DC	2.10^{-4}	2.10^{-4}	26.15%	[19.03%, 33.90%, 38.20%, 13.20%]
DC	10^{-5}	5.10^{-5}	24.90%	[04.10%, 50.60%, 01.40%, 43.50%]
Resnet	2.10^{-4}	2.10^{-4}	25.12%	[98.60%, 00.00%, 00.40%, 01.50%]
Resnet	10^{-5}	5.10^{-5}	24.60%	[03.40%, 58.90%, 25.30%, 10.80%]

Table 3.7: Benchmark of CGAN for $Task_1$ with $Random_seed = 0$.

- Results:
 - Task 1: TC

Model	LR	Overall Accuracy	Accuracy per Action
CVAE	10^{-4}	21.95%	[77.00%, 00.10%, 10.30%, 00.40%]
CVAE split	10^{-4}	21.60%	[73.80%, 00.00%, 12.00%, 00.60%]

Table 3.8: Benchmark of CVAE for $Task_2$ with $Random_seed = 0$.

Model	LR_G	LR_D	Overall Accuracy	Accuracy per Action
DC	2.10^{-4}	2.10^{-4}	25.78%	[05.90%, 02.70%, 00.75%, 93.80%]
DC	10^{-5}	5.10^{-5}	25.57%	[05.30%, 02.70%, 00.55%, 93.75%]
Resnet	2.10^{-4}	2.10^{-4}	24.75%	[00.00%, 34.60%, 62.00%, 02.40%]
Resnet	10^{-5}	5.10^{-5}	24.92%	[00.20%, 20.20%, 78.90%, 00.40%]

Table 3.9: Benchmark of CGAN for $Task_2$ with $Random_seed = 0$.

- Results
 - Some generated observations

Four generated observations of Task_1 by CVAE split model correspond to four target positions: (0.27,-0.63), (0.63,0.48),(-0.34,-0.39),(-0.59,0.46) respectively form left to right and from up to down

Coordinate of the arena

- Results
 - Some generated observations

Some generated observation by CGAN (Resnet) on Task_1 with LR D =5e-5, LR D=e-5

Some generated observation by CGAN (Resnet) on Task_2 with LR_D =5e-5, LR_D=e-5

Experiments setup: Experiment 2 (inspired by result of CVAE in Experiment 1)

1.
$$\{O_t^{Task_1}\} \xrightarrow{Train \ SRL} \{s_t^{Task_1}\} \xrightarrow{Train \ RL} \pi_{Task_1}$$

2.
$$\{O_t^{Task_1}, r_{pos}, t_{pos}\} \xrightarrow{Train\ generative\ model} GM_{Task_1}(z, r_{pos}, t_{pos})$$

3.
$$GM_{Task_1}(z, r_{pos}, t_{pos}) \xrightarrow{Sampling} O^{G_{Task_1}}$$

4.
$$\{O^{G_{Task_1}}\} \xrightarrow{SRL} \{s^{G_{task_1}}\} \xrightarrow{\pi_{Task_1}} D_{GM_{\pi_{Task_1}}}$$

where $D_{GM_{\pi_{Task_1}}} = \{O_t^{G_{Task_1}}, P_{\pi_{Task_1}}(a|O_t^{G_{Task_1}})\}$

5. Similarly for
$$Task_2$$
, we get : $D_{GM_{\pi_{Task_2}}}$

6.
$$D_{GM_{\pi_{Task_1}}} \cup D_{GM_{\pi_{Task_2}}} \xrightarrow{Train\ Policy\ Distillation} \pi_{Task_{12}}$$

- Experiments setup: Experiment 2
 - Train SRL model (the same as in experiment 1)
 - Train RL model (the same as in experiment 1)
 - Train generative model:
 - Model Architecture: CVAE Resnet
 - Training data set :

	$D_{R_{Task_1}}$	$D_{R_{Task_2}}$
Policy	Random	Random
Number of episode	250	250
Image's size	(3,64,64)	(3,64,64)

- Experiments setup: Experiment 2
 - Train generative model:

Hyperparameters	$CVAE_{Task_1}$	$CVAE_{Task_2}$
Training data set	$D_{R_{Task_1}}$	$D_{R_{Task_2}}$
Batch size	128	128
Training epoch	100	80
optimizer	Adam	Adam
Learning Rate	0.005	0.005
State dimension	200	200
Adam parameters	beta_1=0.5,beta_2=0.9	beta_1=0.5,beta_2=0.9
Losses weight	KL_loss: 100	KL_loss: 100
	Reconstruction_loss: 1	Reconstruction_loss: 1

- Experiments setup: Experiment 2
 - Train generative model:

- Results: Experiment 2
 - Some generated observations:

Observations in an episode generated by CVAE_Task1 with a fixed value of latent variable z.The sampled target is at position (0.50,0.49) and the robot's position is sampled with grid walker of step 0.28. With this step there are 25 observations in each episode.

Observations in an episode generated by CVAE_Task2 with a fixed value of latent variable z.The sampled target is at the centre of the arena and the robot's position is sampled with grid walker of step 0.28. With this step there are 25 observations in each episode.

- Train policy distillation
 - o Three step :
 - 1. Generate data set from replay of both tasks
 - 2. Merge data set
 - 3. Train policy distillation

- Train policy distillation : experiment 1
 - 1. Generate data set from replay of both tasks

	Constants of Omnirobot_env
Target's boundary	$Target_MIN_X = -0.7$
	$Target_MAX_X = 0.7$
	$Target_MIN_Y = -0.7$
	$Target_MAX_Y = 0.7$
	$MIN_X = -0.85$
Robot's boundary	$MAX_X = 0.85$
	$MIN_{-}Y = -0.85$
	$MAX_{-}Y = 0.85$

Table 3.10: Constants of Omnirobot_env.

	$D_{\pi_{Task_1}}$	$D_{\pi_{Task_2}}$	
	action "0": 2000		
Number of actions	action "1": 2000		
	action "2": 2000		
	action "3": 2000		
State sampling	$z_i \sim Normal(0, 1)$		
Target's position sampling	$x \sim Uniform[Target_MIN_X, Target_MAX_X]$	x = 0	
	$y \sim Uniform[Target_MIN_Y, Target_MAX_Y)$	y = 0	
Robot's position sampling	$x \sim Uniform[MIN_X, MAX_X]$		
100000 5 position sampling	$y \sim Uniform[MIN_Y, MAX_Y)$		
Image's size	(3,64,64)		
image 5 Size	(5,04,04)		

Table 3.11: Actions sampling and image's size of each generated data set.

- Train policy distillation : experiment 1
 - 1. Merge data set :

```
We merge D_{CVAE_{\pi_{Task_1}}} and D_{CVAE_{\pi_{Task_2}}} as D_{CVAE_{\pi_{Task_{12}}}}.
```

2. Train policy distillation:

Setting:

- Batch size: 8
- Adaptive temperature: False
- Learning rate: e-3
- Training epoch: 20
- Raw pixl
- Policy model: Customs CNN
- Fine Tuning : False

- Train policy distillation : experiment 2
 - 1. Generate data set from replay of both tasks

	Constants of Omnirobot_env
Target's boundary	$Target_MIN_X = -0.7$
	$Target_MAX_X = 0.7$
	$Target_MIN_Y = -0.7$
	$Target_MAX_Y = 0.7$
	$MIN_X = -0.85$
Robot's boundary	$MAX_X = 0.85$
	$MIN_{-}Y = -0.85$
	$MAX_{-}Y = 0.85$

Table 3.10: Constants of Omnirobot_env.

	$D_{\pi_{Task_1}}$	$D_{\pi_{Task_2}}$				
Random seed	0	0				
Number of episode	100	100				
State sampling	$z_i \sim Normal(0, 1)$					
Target's position sampling in each episode	$x \sim Uniform[Target_MIN_X, Target_MAX_X)$ $y \sim Uniform[Target_MIN_Y, Target_MAX_Y)$	$ \begin{aligned} x &= 0 \\ y &= 0 \end{aligned} $				
Robot's position sampling in each episode	grid walker	grid walker				
Grid walker's step	0.1	0.1				
Image's size	(3,64,64)					

Table 3.12: Sampling method of each data set in experiment 2.

- Train policy distillation : experiment 2
 - 1. Merge data set :

```
We merge D_{CVAE_{\pi_{Task_1}}} and D_{CVAE_{\pi_{Task_2}}} as D_{CVAE_{\pi_{Task_{12}}}}.
```

- 2. Train policy distillation:
 - Setting:
 - Batch size: 8
 - Adaptive temperature: False
 - Learning rate: e-3
 - Training epoch: 20
 - Raw pixl
 - Policy model: Customs CNN
 - Fine Tuning : False

- Evaluate distilled model
 - o Task 1: TR

	2 episodes	4 episodes	6 episodes	8 episodes	9 episodes
Teacher π_{Task1}	211.5	201	211.83	216.75	179.22
$Student_experiment_1$	-242.5	-240.75	-241	-241.5	-241
$Student_experiment_2$	-240.5	-243.75	-244.33	-243.75	-244.35

Task 2: TC

	2 episodes	4 episodes	6 episodes	8 episodes	9 episodes
Teacher π_{Task2}	1824.92	1868.9	1874.85	1878	1881.69
$Student_experiment_1$	-24134.34	-24290.95	-24130.59	-24145.42	-24219.86
$Student_experiment_2$	-23758.02	-24261.76	-24111.13	-24129.34	-24150.26

Evaluate distilled model

Conclusion

Experiment 1:

- Non satisfied for policy distillation
- Generate observation with target at any position we want which is indispensable for policy distillation (and it influence experiment 2)
- Train generative model:
 - Without condition
 - With one condition: action
 - With two condition: action and target position

Experiment 2:

Generate observation with target and observation at any position we want in the arena

General

- Scalable model (SRL, RL, Policy Distillation, Generative Replay)
- Image size (3,64,64) instead of (3,224,224) => speed up the training from to 4 to 6 time (depend on the architecture)

Conclusion

- Challenges
 - Experiment 1
 - Training GAN
 - Complicate data set distribution
- Improvement and future work
 - Experiment 1:
 - Try with deterministic policy
 - Implement FID and Inception score for GAN
 - Try with other less realistic environments (ex: mobile_robot_extreme)
 - Evaluate distilled multiple time with different random seed (at least 5) and average them

Question?