Claims

WHAT IS CLAIMED IS:

1

1	1. A method for filtering one or more messages for transmission to a subscriber
2	computing system according to an individual information request criteria, the method comprising:
3	constructing a binary decision diagram implication graph for each individual information
4	request criteria specified for each subscriber;
5	identifying logical implications from one or more nodes in a binary decision diagram from a
6	first information request criteria to one or more corresponding binary decision diagrams within a
7	second information request criteria;
8	receiving one or more messages to be filtered;
9	evaluating a first information request criteria based upon information within the received
.0	messages;
.1	evaluating one or more information request criteria based upon information within the
.2	received messages using the identified logical implications between one or more binary decision
13	diagrams within the information request criteria being evaluated and one or more binary decision
.4	diagrams previously evaluated; and
.5	transmitting the received message to the subscriber computing system corresponding to an
.6	information request criteria evaluated to be satisfied by information contained within the received
17	message.

The method according to claim 1, wherein the binary decision diagrams include an

2.

1

11

messages;

Patent Application

Page 34

evaluating one or more information request criteria based upon information within the

12

1	11.	The computer program product according to claim 9, wherein permissible				
2	implications for a node M with successor node N include:					
3	if noo	de N is equal to the low successor low(M), and				
4		if ! p(M) implies p(N), then remove N and set the low(M) equal to high(N); and				
5		if ! p(M) implies ! p(N), then remove N and set low(M) equal to low(N).				
1	12.	The computer program product according to claim 9, wherein the evaluating steps				
2	further comp	rises:				
3	deten	mining if a current node is a leaf node in the binary decision diagram;				
4	if the	current node is a leaf node, marking the information request criteria as being decided				
5	and returning the value of the current node;					
5	if the	current node is not a leaf node, determining a value of the expression for the node				
7	p(X);					
₩ ≟ 8	if the	value of the expression of the node is true				
= 9		setting $X' = high(X)$ otherwise $X' = low(X)$;				
10		inserting X' into the rank; and				
11		visiting the targets of node X' to compare the current node with the target node;				
12		if the target node is lower than the current node according to a predicate order, update				
13	the current node.					
1	13.	A publication-subscription broker server computing system for filtering one or more				
2	messages to	be transmitted to a subscriber computing system according to an individual information				
3	request criter	ia, the broker server computing system comprises:				

4	a memory module;
5	a mass storage system; and
6	a programmable processing module, the programmable processing module performing a
7	sequence of operations to implement the following:
8	constructing a binary decision diagram implication graph for each individual
9	information request criteria specified for each subscriber;
10	identifying logical implications from one or more nodes in a binary decision diagram
11	from a first information request criteria to one or more corresponding binary decision
12	diagrams within a second information request criteria;
13	receiving one or more messages to be filtered;
1 2 3 4 1 1 5	evaluating a first information request criteria based upon information within the
15	received messages;
16	evaluating one or more information request criteria based upon information within the
≟ ≟17	received messages using the identified logical implications between one or more binary
1 8	decision diagrams within the information request criteria being evaluated and one or more
19	binary decision diagrams previously evaluated; and
20	transmitting the received message to the subscriber computing system corresponding
21	to an information request criteria evaluated to be satisfied by information contained within
22	the received message.
23	14. The broker server computing system according to claim 13, wherein the binary
24	decision diagrams include an expression of an information request criteria in an if-then-else normal
25	form.

	1		15.	The broker server computing system according to claim 13, wherein the constructing			
	2	the implication graph further comprises:					
	3		recurs	ively visiting the high and low successors for each node in the binary decision			
	4	diagrams;					
	5		while	visiting each node, determine the precondition pre(X') for each successor and compute			
	6	the target t(X') for all visited nodes and apply permissible implications; and					
	7		iterate	the processing for all implications.			
	1		16.	The broker server computing system according to claim 14, wherein permissible			
	2	implications for a node M with successor node N include:					
12	3		if nod	e N is equal to the high successor high(M), and			
	4			if $p(M)$ implies $p(N)$, then remove N and set the high(M) equal to high(N); and			
				if p(M) implies ! p(N), then remove N and set high(M) equal to low(N).			
	1	17.	The b	roker server computing system according to claim 15, wherein permissible implications			
	2	for a node M with successor node N include:					
	3		if nod	e N is equal to the low successor low(M), and			
	4			if ! p(M) implies p(N), then remove N and set the low(M) equal to high(N); and			
	5			if ! p(M) implies ! p(N), then remove N and set low(M) equal to low(N).			
	1	18.	The b	roker server computing system according to claim 15, wherein the evaluating steps			
	2	furthe	further comprises:				
	3		deterr	mining if a current node is a leaf node in the binary decision diagram;			

if the current node is a leaf node, marking the information request efficial as being decided					
turning the value of the current node;					
if the current node is not a leaf node, determining a value of the expression for the node					
if the value of the expression of the node is true					
setting $X' = high(X)$ otherwise $X' = low(X)$;					
inserting X' into the rank; and					
visiting the targets of node X' to compare the current node with the target node;					
if the target node is lower than the current node according to a predicate order, update					
arrent node.					