처리장치와 데이터 처리

컴퓨터과학과 김강현 교수

3강 처리장치와 데이터 처리

컴퓨터과학과 김강현 교수

- 1 처리장치
- 2 수치데이터의 표현
- 3 문자데이터의 표현
- 4 주기억장치 주소와 데이터 저장
- 5 주기억장치의 발달과정과 반도체 기억장치
- 6 입력·처리·출력의 데이터 처리과정

1 처리장치

1 처리장치

- * CPU(Central Processing Unit)와 주기억장치(main memory)
- ★ CPU: 제어장치(control unit)와 레지스터,
 산술논리연산장치(ALU: Arithmetic and Logic Unit)

2 중앙처리장치(CPU)

★ 중앙처리장치: 처리를 실행하는 전자회로, 레지스터가 들어 있다. 프로그램의 명령어를 해석하고 명령어가 명시한 대로 계산하고 데 이터를 이동시키며, 시스템의 입력과 출력을 제어

• 산술논리연산장치: 가감승제 및 논리명령(논리, 비교,Shift)을 수

행하는 전자회로가 있다.

 제어장치: 컴퓨터시스템 전체를 지시 감독 하며 조정. 입력과 출력제어, 연산 제어, 데 이터 이동.

• 프로세서 레지스터: 처리할 명령어 저장

Microprocessor: 연산장치와 제어장치를 1개의 작은 실리콘 칩에 집적시킨 처리장치

세라믹 PGA의 <mark>인텔 80486DX2</mark> 마 🗗 이크로프로세서

- * 중앙처리장치와 주기억장치의 발달로 인터넷, 멀티미디어, 통신, 방송 등 모든 형태의 정보기술이 하나로 통합
- × 1971년, 인텔 마이크로프로세서 4004: 크기는 3×4mm, 성능은 ENIAC 10배
 - > 1946년, ENIAC: 무게 30톤, 길이 25m, 높이 2.5m, 폭 1m
- ★ 1998년, 컴팩(Compaq)사 알파 21264: 1990년대 슈퍼컴퓨터의 성능, UNIVAC I 보다 10억대 1의 가격 및 성능

- 2000년 대: 인텔 고성능의 멀티 코어i2 ... i7
- 2022년 현재 12세대 i9 프로세서까지 발전
 - 성능향상, 메모리 지원, 전력소비량 감소, 그래픽 향상 등

컴퓨터 중앙처리장치(CPU)의 발전 과정

2 수치데이터의 표현

1 데이터의 저장

- ★ 컴퓨터 시스템의 전자회로는 전자신호인 임펄스(impulse) 의 유무를 감지한다.
- × 데이터의 기본단위는 비트(bit: binary digit)
- × 1(on 상태) 또는 0(off 상태)으로 저장, 전류가 흐르면(1), 흐르지 않으면(0)

이진수	전하	상태
1	0	ON
0	•	OFF

× 보통 8개의 비트(1바이트byte)를 모아 정보를 표현

2 수치 데이터의 표현

×10진법

$$253 = 2 \times 100 + 5 \times 10 + 3 \times 1$$
$$= 2 \times 10^{2} + 5 \times 10^{1} + 3 \times 10^{0}$$

$10=1\times10^{1}+0\times10^{0}$

10진법 : 10은 기저(base)를 나타낸다.

×2진법

0 0 0 0 1 0 1 0

$$(1010)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

= 1 \times 8 + 0 \times 4 + 1 \times 2 + 0 \times 1
= 8 + 0 + 2 + 0 = (10)_{10}

2진법:

2는 기저(base)를 나타낸다. 2진수를 10진수로 바꿀 수 있다.

2 수치데이터의 표현

정수 표현

$$= 2^{31} - 1 = 2,147,483,647$$

$$1$$
word = 4 byte = 32 bit

2 수치데이터의 표현

× 10진법, 2진법, 8진법, 16진법간의 관계:

16진법의 경우 10은 A, 11은 B . . . 15는 F로 표시

지번 대비표

10 진법	2 진법	16 진법	8 진법
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	8	10
9	1001	9	11
10	1010	A	12
11	1011	В	13
12	1100	С	14
13	1101	D	15
14	1110	E	16
15	1111	F	17

3 문자데이터의 표현

A 1 0 0 0 0 0 0 1

1Byte

1 문자 데이터의 표현

- ×6비트: 64개(26), 7비트: 128개(27), 8비트: 256개(28)
- ×6비트 BCD(Binary Coded Decimal)
- ★ASCII(American Standard Code for Information Interchange): 7비트 + 1비트(검증)

1 문자 데이터의 표현

★ASCII는 미국 정보교환 표준코드로 개인용 컴퓨터 및 데이터 통신용으로 가장 많이 사용

1 0 0 0 0 0 0 1 2⁸

XUNICODE: 16비트로 확장, 세계의 모든 언어들을 표현

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2¹⁶

ASCII의 일부 코드표

-1		10 0.	Hexa	Binary				Binary				
Char	zone	digit		Character	Zone	Digit	Hexadecimal	Character	Zone	Digit	Hexadecimal	
				0	011	0000	30	the lands	100	1001	49	
0	011	0000	30	1	011	0001	31	J	100	1010	4A	
				2	011	0010	32	K	100	1011	48	
				3	011	0011	33	L	100	1100	4C	
				4	011	0100	34	M	100	1101	4D	
		•		5	011	0101	35	N	100	1110	4E	
		0001	41	6	011	0110	36	0	100	1111	4F	
	100			7	011	0111	37	P	101	0000	50	
Λ				8	011	1000	38	Q	101	0001	51	
Α	100			9	011	1001	39	R	101	0010	52	
				A	100	0001	41	S	101	0011	53	
				В	100	0010	42	T	101	0100	54	
		•		C	100	0011	43	U	101	0101	55	
				D	100	0100	44	V	101	0110	56	
Z	101	1010	5 A	E	100	0101	45	W	101	0111	57	
				F	100	0110	46	X	101	1000	58	
				G	100	0111	47	Y	101	1001	59	
				н	100	1000	48	Z	101	1010	5A	

3 UNICODE

- ★ 1991년 IBM, 마이크로소프트 등 유명 컴퓨터업체들로 구성 된 컨소시엄이 개발한 16비트 인코딩 시스템
- × 2¹⁶ = 65,536개, 한글, 한자, 히브리어, 일본어, 그리스어의 대소문자 등과 같은 세계의 모든 언어들을 표현
- ×세계의 모든 국가들이 국제적인 통신교류가 가능
- × 언어의 한계없이 소프트웨어를 개발할 수 있다

į.	AC00						Н	angul	Syllabl	es						ACFF
	AC0	AC1	AC2	AC3	AC4	AC5	AC6	AC7	AC8	AC9	ACA	ACB	ACC	ACD	ACE	ACF
0	가	감	갶	从	걀	ᆦ		7	검	겐	겠	결	冯	<u>곐</u>	17 ACE0	고 ACFO
1	각	갑	갡	갱	걁	걑	建	건 ACP1	겁 #281	겑	겡	겱 *281	곁	곑	ACE!	급 ACFI
2	갂	값 ACI2	갢	갲	걂	걒	걢 AO82	걲	겂	겒	겢	겲 ***	곂 *82	굂	뀨	값 ADF2
3	갃	갓	갣	갲	걃	걓	<i>컗</i>	걳	것	겓	겣	겳	곃	곓 ADDS	곣	곳
4	간	弘	갤 AGM	갤 ACM	ジ	걔	걤 AGM	건	겄	겔 ***	겤	겴	계	곔	근 ACEA	곴
5	갅	な AC15	ᅫ	갵	걅	ᆧ	걥	걵	겅 ***	겕 ***	겥	建	계 ****	곕 A005	공	O ACF5
6	갆	マ マ る	갦	갶 ***	걆	非	胡	걶	겆	겖 ***	겦	超級	곆	祖	<u>フ</u> しる 4088	곳
7	간	갗 AUT	갦	갷	걇	視	現	건	겇	겖	겧	겷	곇	ク		곷
8	갈	订章	갨	フト ACSS	걈	进	規	건 ∰	겈	겘	万型	꼄₹	곈 🛭	겠 A008	神 🖁	곡
9	갉	같	갩	갹	걉	걙	フ B ACBB	검	겉	겙	打翼	겹	识*************************************	곙	FIE 및	굍
А	갊	감 AGIA	翌	갺	럆	걚	걪	걺	갶	궲	겪	祖	곊 ACCA	곚	금 ACEA	TT SE ACFA
В	갋	갛	깷	갻	ジャ ペラ	걛 ACSB	걪	걺	겋	겛	祝	겻	곋 408	곛 ACDB	品出	고
С	弘	개	갬	갼		걜	걬	걼	게	겜	견	烈	곌	<u>계</u>	곬	JZ}-
D		객	갭	갽	걍	胡	걭	걽	겍	겝	冯	경	곍	곝	元	곽
		-13	-13	→1		-13	-13	-1	-11	-1)	-3	-7	-37	-33	- Marie Control	7

한글: KSC 5601(완성형): 한글11,172자

- ×기억용량단위: bit, byte, word 등
- × 1Byte = 8 bits(한 문자 표현, 유니코드 제외)
- × 1KB(킬로바이트) = 2¹⁰ 바이트(1,024 Bytes)
- ×1MB(메가바이트) = 2²⁰ 바이트(1,024 KB)
- ×1GB(기가바이트) = 230 바이트(1,024 MB)
- ×1TB(테라바이트) = 240 바이트(1,024 GB)
- × 1PB(페타바이트) = 2⁵⁰ 바이트(1,024 TB)

★호출시간 단위: 컴퓨터의 속도.

예) µsec : 초당 100만 개의 자료를 호출한다.

- ×1msec(밀리초) = 1/10³ 초
- × 1µsec(마이크로초) = 1/ 10⁶ 초
- × 1nsec(나노초) = 1/10⁹ 초
- ×1psec(피코초) = 1/10¹² 초

좋은 기억소자: 비트 당 가격이 저렴, 호출시간이 짧고, 부피가 작고, 가벼우며, 전력의 소모가 적고, 비트 상태의 안전성이 좋아야 한다.

- *주기억장치의 각 바이트는 단일 주소를 갖는다.
- ★숫자, 영문자, 특수문자가 입력장치에서 읽혀 주기억장치로 보내지면, 비트의 형태로 바뀌어 기억된다.
- ★한 번 데이터가 수록되면 그 내용이 바뀔 때까지 남아 있게 된다. **CPU**
- ×고급언어로 작성한 프로그램
 - >기계어로 번역
 - >주기억장치에 저장
 - >처리기 전자회로가 해석하고 실행

100	
101	
102	
:	
150	

2 기계어명령어의 형식

명령부 오퍼랜드부(주소부)

- × 명령부: 실행될 동작을 명시
- ×오퍼랜드부: 레지스터명칭, 데이터 주소, 데이터의 길이 등

CPU

명령어 레지스터

ALU 레지스터

* 예) SUM := A+B;

MOV AX, A ··· ①

ADD AX, B ··· ②

MOV SUM, AX ··· ③

	MOV AX, A	
	ADD AX, B	
	MOV SUM, AX	
•		
150	100 (A)	
154	10 (B)	
158	110 (SUM)	

5 주기억장치의 발달과정과 반도체 기억장치

1 주기억장치의 발달과정

×진공관

최초의 주기억장치로 사용된 진공관: 크고, 약하며, 열이 많이 발생, 신뢰성이 떨어지고 많은 전류를 필요로 하였다.

*자기코어 기억장치: 1950년대 포레스터(Jay W. Forrester) 가 개발, 20년 동안 사용, 컴퓨터의 발전에 큰 공헌.

2 주기억장치의 발달과정

- ★ 자기코어: 기억소자로 지름이 0.3~0.5mm인 작은 고리 모양 의 자성 물질, 주로 페라이트로 제작.
- ★ 전류가 오른쪽으로 흐르면(1), 왼쪽으로 흐르면(0), 전원이 꺼진 후에도 기억된다.

3 반도체 기억장치(semiconductor memory)

- × 반도체 칩 속에 집적회로로 만들어 넣은 기억장치
- > 빠르며 경제적이고 열을 많이 발산하지 않는다
- ★ 신뢰성이 높으며 간편하다
- ※ 경제적이고 많은 용량을 갖는 기억장치는 반도체기술에 의해 실현되었다
- × 트랜지스터의 발명 후 소형화 추세가 시작되었다

3 반도체 기억장치(semiconductor memory)

- × 1960년대 중반: 한 칩에 1,000개 회로소자 집적
- × 1970년대 중반: 15,000개 이상 회로소자를 집적
- × 1980년대: 1/4인치 칩 에 100만개 소자 집적
- × 2000년대: 1,000억 개 이상의 소자를 집적
- ★ 전자현미경, 다이아몬드 톱, 섭씨 0.5도 등의 제반 기술여건이 경제적이고 신뢰성 있게 대형 생산체제로 칩을 만들 수 있도록

하고 있다

3 반도체 기억장치(semiconductor memory)

- ※ 앞으로 광소자나 조셉슨소자, 갈륨비소소자 등의 사용으로 집적도는 더욱 높아질 예상
- ★ 자기코어에 기억된 데이터에 대한 접근속도: 마이크로초 $(1/10^6)$, 반도체 기억장치에 기억된 데이터에 대한 접근속도는 나노초(1/10⁹)
- > 자기코어에 비해 반도체 기억장치는 계속적으로 일정한 전류 의 공급이 필요하다
- 단점: 전기가 꺼지거나 방해를 받는 경우 데이터를 잃어버린다

4 RAM(Random Access Memory)

- ➤ SRAM(Static RAM): 전원이 공급되는 한 내용이 그대로 유지된다.
- ➤ DRAM(Dynamic RAM): 전원이 공급되더라도 내용의 소멸을 방지하기 위해 계속적으로 리프레싱(refreshing)을 해야 한다
- × SRAM은 캐시메모리(Cache Memory)로 이용되고
- ★ DRAM은 주기억장치로 많이 이용되고 있다.

5 ROM(Read Only Memory)

➤ ROM(Read Only Memory): 메모리가 제작될 때 데이터 를 이 안에 기록한다

➤ PROM(Programmable ROM): ROM과 같은 기능, 이용 자가 PROM을 조립해 넣기 전에 프로그램이나 데이터를

기록할 수 있다

6 메모리 기술

- *삼성전자에서 2019년 7월, 세계 최초 나노 12GB 모바일 D램 LPDDR5 양산
- ×2021년 512GB DRAM 메모리 모듈 양산
- ★플래시메모리(flash memory): 비파괴 메모리 기술, 전력이 필요 없는 메모리, 충격에 강함
- ★ 캐시메모리: 빠르나 값이 비싸다

A USB flash drive. The chip on the left is the flash memory. The controller is on the right

6 입력·처리·출력의 데이터 처리과정

1 데이터 처리

- ★ 필드: 데이터를 구성하는 하나의 단위
- ※ 레코드: 여러 필드의 모임, 하나의 처리단위
- × 파일: 레코드들이 모여 하나의 파일을 구성
- ★ 예) 편지 봉투

필드: 받는 사람의 우편번호, 주소, 이름

- → 주소 레코드 → 주소 파일
- × 기록매체: OMR(Optical Mark Recognition) / OCR(Optical Character Recognition)카드, 자기테이프 및 자기디스크
- 한 번에 한 레코드씩 주기억장치로 읽어 들여진다

2 필드, 레코드, 파일의 관계

★ 필드가 모여 레코드가 되고 레코드가 모여 파일을 이룬다

3 기본적인 자료 처리과정

★입력장치를 통해 수집된 데이터가 처리장치에 전달되면, 처리장치는 데이터를 가공하여 정보를 만들어 출력장치로 보낸다.

4 데이터 입력/ 결과출력

- ★주기억장치에 입력하는 방법: 음성, 키보드, 마우스, 펜, 터치 스크린(직접입력),OMR, OCR, MICR 카드, 자기테이프, 자기디스크, HDD, CD-ROM, DVD, USB 메모리 등
- *출력방법: 프린터, CRT, LCD 터미널, 자기테이프나 자기 디스크, HDD, CD-ROM, DVD, USB 메모리 등

보조기억장치

하드디스크

컴퓨터 명령어의 수행과정

다음강의 예고

컴퓨터의 입출력

컴퓨터과학과 김강현 교수