

03 (3,7	G/H=Us since we can define a function that is
	Dispertive and homomorphic so long as
	4=(01234-)
	(1-1 Hai Has How Hard)
A3	G=Dy H= {Ro, R} Ro= (1234) R= (3412) 1234
	D= Se, do b2 b sab sab sab 3 = { Ro, R, R, R, Ry R, R, Ry
	G/H = {R_0R_2} {R_1R_3} {R_2} {R_3} {R_4} {R_5} {R_5} {R_6} {R_7}
	(RR) (RR) (RR) (RR) (RR) =? need more
	18 (3) (RK3) (RoR) (Ro R2) (Ry R3) = 7 details!
	need to show the rotations in a table
· · · Ay	G=Dy H= 12 D, Ry R3 NTS HRI HRY HRG compositions.
	9/H 14 & Ry R3 3 18, R3 R6 R73 = H, X
	H H &
	ST H W P
AS	(0,0) (0,1) (0,0) (20) (30) (30) (30) (30)
	G= 14×72 H- ((0,0)) = 1(0,0) (0,0)3 9H= 2(0,0) (0,0)3 2(1,0) (0,0)3 2(2,0)3 2 (3,0) (3,0)3
Λ.	G/4 H a (20) (20) (3,0)
14.7	19 19 a 6 c
	6 C H
	1 1 A
	H a b
	217 8

33 a) H= { (x,y) = 2x 3 say (a,b) (c,d) + H then (a,b+(s,d) = (a+c,b+d) + H furthermore (-x,-2x) EH, thus H is a subgroup and is normal since it is a subgroup of an abelian group Tels! Hi work of less in 3 for every x66, 3 an integer n s.t. x'eH; then every clanest of 9H has finite order. Conversely if every clament 4H has finite order, then for every x66 there is an integer is s.t x EH If x+6, (xH)=x"H=H, thus we can find some integer k 5.b. (x")"=e, thus x"H=H. Hence 6/H is at most n'h or finite
Say , let xH & 6/H of Finite order. Thus for some integer in x"H= (xH)"=H, thus x"+H. Hence x" is finite 813

(7 a) Suppose GAI is abolian. Let a, b+ b, and y= aH y= bH xy=yx, so ablt=baH and ab=bah for some heH then head b'abEH 6) Hah, hab => Hab GIHEHEIGEL, this The chand the Abolian scaps yeild abolian subgroups need to show H! 2/3 CHIGA3 22 and 50/{ EBS3 f= { 6000 1 5 1 3 Rer(f) = {E, a, B} = any octation by FHT $V_z = \frac{5}{2} \frac{1}{2} \frac{1}{2$ $45 \ 23 \ and \ 23 \ 20 \ 20 \ 100$ herf = {(0,0)(1,1)(2,1)}

f generals 73, thus 23+21/11=73 8/3

Question C2

- (\rightarrow) Clearly $e \in K$ (theorem 1). However if $\exists a \in K$ where $a \neq e$, f(a) = e, f is not injective. Thus $K = \{e\}$.
- (\leftarrow) Let $a, b \in K$ and f(a) = f(b). Thus $f(a) \cdot [f(b)]^{-1} = e$. By theorem 1, $[f(b)]^{-1} = f(b^{-1})$. Then $f(a) \cdot f(b^{-1}) = e$. Since f is homomorphic, $f(ab^{-1}) = e$, $ab^{-1} \in K$. Since $K = \{e\}$. Thus $ab^{-1} = e$. a = b

Question D3

Denote the center of the group C.

LEMMA C forms a subgroup.

- (1) $e \in C$
- (2) If $a, b \in C$, then $\forall x \in G$ ax = xa, bx = xb. abx = axb = xab. Thus $ab \in C$. C is closed under multiplication.
- (3) If $a \in C$ then $\forall x \in G$ ax = xa, $x = a^{-1}xa$, $xa^{-1} = a^{-1}x$. Thus $a^{-1} \in C$. C is closed under inverses.

 $\forall a \in C, \forall g \in G \text{ we have } gag^{-1} = agg^{-1} = a \in C. C \text{ is a normal subgroup.}$

Question D5

- (\rightarrow) H is normal. $a \in G$ $h \in H$ then $aha^{-1} \in H$ namely $h' = aha^{-1}$ then h'a = ah. Thus Ha = aH.
- (\leftarrow) aH = Ha. Then $aHa^{-1} = H$. Hence $\forall h \in H$, $aha^{-1} \in H$. H is normal.

313

Question A1

 $G/H=\{\{0,5\},\{1,6\},\{2,7\},\{3,8\},\{4,9\}\}\}$. $G/H\cong\mathbb{Z}_5$ because we can find a bijection $f:G/H\to\mathbb{Z}_5$ such that $f(\{a,b\})=a$ need to demonstrate in a table.

Question A3

 $G/H = \{\{R_0, R_2\}, \{R_1, R_3\}, \{R_4, R_5\}, \{R_6, R_7\}\}$ Some here 214

Question A4

 $G/H = \{\{R_0, R_2, R_4, R_5\}, \{R_1, R_3, R_7, R_6\}\}\$

Question A5

 $G/H = \{\{(0,0),(0,1)\},\{(1,0),(1,1)\},\{(2,0),(2,1)\},\{(3,0),(3,1)\}\}$

Question B3

- (a) Since $\mathbb{R} \times \mathbb{R}$ is abelian, H is normal.
- (b) G/H contains all lines on the plane parallel to y=2x
- (c) Shift a line which is parallel to y = 2x up and down and preserve the slope.

Question C3

 $\forall x \in G$ we have $xH \in G/H$. $x^n \in H$ thus $x^nH = H$ by theorem 5. Also $x^nH = (xH)^n$ by definition. Thus $xH \in G/H$ has finite orders.

Conversely, if $(xH)^n = H$, we know that $x^nH = H$. Hence $x^n \in H$ by theorem 5 (ii).

Question C7

- (a) Let $a,b\in G$ abH=baH. Since $e\in H,\ \exists n\in H$ such that abe=ban, $n=a^{-1}b^{-1}ab,\,n\in H$
- (b) Let $a, b \in K$, K is a subgroup of G so $a, b \in G$. G/H is abelian then, abH = baH. Therefore K/H is abelian.

What about Cilk 1.5/3