Conjuntos Abstractos

Los ejercicios de esta sección se deben resolver en la categoría de conjuntos abstractos, \mathscr{S} , a menos que se indique lo contrario.

Ej. 1. Sea $f: A \to B$. Definimos la gráfica de f como

$$A \stackrel{p_A}{\longleftarrow} A \times B \stackrel{p_B}{\longrightarrow} B$$

$$A \stackrel{id}{\longleftarrow} G_f \stackrel{f}{\longleftarrow} A.$$

Demuestra que G_f es mono.

- **Ej. 2.** Sean $f, g: A \to B$ tales que $G_f = G_g$. Demuestra que f = g.
- **Ej. 3.** Demuestra que $A + 0 \cong A$.
- **Ej. 4.** Demuestra que toda flecha de la forma $0 \to A$ es inyectiva (por lo tanto mono). Además muestra que si A no tiene un elementos globales, entonces $0 \to A$ es biyectiva (por lo tanto iso).
- **Ej. 5.** Una flecha $f: A \to B$ es constante si se factoriza a través de 1, es decir, existe $b: 1 \to B$ tal que el siguiente diagrama conmuta:

Demuestra que f es constante si y sólo si para cualesquiera $a_1, a_2 \colon 1 \to A$ se satisface $fa_1 = fa_2$.

- **Ej. 6.** Demuestra que las inclusiones a un coproducto son monos. Esto es, si $i_A: A \to A + B \leftarrow B: i_B$ es un diagrama de coproducto, entonces i_A es mono.
- Ej. 7. Sea m: $T \rightarrow B$ un subobjeto y f: $A \rightarrow B$. Encuentra la flecha característica de la imagen inversa de m.
- **Ej. 8.** Sea **A** una categoría. Considera flechas $f: A \to B$ y $r, s: B \to A$ tales que $rf = id_A$ y $fs = id_B$. Demuestra que r = s.
- Ej. 9. Sea A una categoría. Si $fs = id_B y f$ es mono, entonces s es inversa, por los dos lados, de f.
- Ej. 10. Sea $f: A \to B$. La fibra de $b: 1 \to B$ es el producto fibrado

$$\begin{array}{ccc}
f^{-1}(b) & \xrightarrow{m} & 1 \\
\downarrow & & \downarrow_{b} \\
A & \xrightarrow{f} & B.
\end{array}$$

Demuestra que si s es una sección de f, entonces $sb \in_A m$, pra todo $b: 1 \to B$.

1

Ej. 11. Demuestra las siguientes leyes exponenciales:

I)
$$A^0 = 1$$
 II) $A^1 = A$ III) $A^{B+C} \cong A^B \times A^C$ IV) $A^{B\times C} \cong (A^B)^C$

Ej. 12. Sea A una categoría localmente pequeña con coproductos. Demuestra que

$$\mathbf{A}(A, C) \times \mathbf{A}(B, C) \cong \mathbf{A}(A + B, C).$$

Ej. 13. Demuestra que $f: A \to B$ es epi si y sólo si $\Omega^f: \Omega^B \to \Omega^A$ es mono.

Conjuntos

- **Ej. 15.** Demuestra que el enunciado $\varphi \leftrightharpoons \forall x \exists y (x \in y \land \forall z \forall w ((z \in w \land w \in y) \rightarrow z \in y))$ implica el axioma de unión. *Indica claramente cuáles axiomas de ZFC utilizas en la demostración*.
- Ej. 16. Sea $\psi(x)$ una fórmula de la teoría de conjuntos. Demuestre que, si $z := \{y \mid \exists x \, (\psi(x) \to y \in x)\}$ es un conjunto, entonces $\{x \mid \psi(x)\}$ es un conjunto. *Indica claramente cuáles axiomas de ZFC utilizas en la demostración*.
- Ej. 17. Demuestra que toda relación es una unión de funciones.
- Ej. 18. Sean $f: \omega \to 2$ y $P := \{f \mid n \in \mathscr{P}(\omega \times 2) \mid n \in \omega\}$. Demuestra que (P, \subseteq) es un conjunto bien ordenado.
- Ej. 19. Prueba que 2^{ω} y ω^{ω} son equipotentes.
- **Ej. 20.** Sean (B, <) un conjunto bien ordenado y x, A conjuntos con x \subseteq A. Prueba que, si existe f: B \rightarrow A sobreyectiva, entonces x \leq B.
- Ej. 21. Sea (A, <) una retícula (latiz). Demuestra que si (A, <) no es distributiva, entonces existe un subconjunto $B = \{a, b, c, d, e\} \subseteq A$ de modo que $< \upharpoonright B$ es alguno de los siguientes:
 - a) Diamante: $\{(a, b), (b, e), (a, c), (c, e), (a, d), (d, e), (a, e)\}$
 - b) Pentagono: $\{(a, e), (a, d), (d, e), (a, c), (c, e), (a, b), (b, c), (b, e)\}$
- **Ej. 22.** Pruebe que si un orden parcial (P,<) es fuertemente inductivo, entonces cada $A\subseteq P$ no vacío posee un <-minimal.
- **Ej. 23.** Sean $f: X \to \omega$ y $Y \subseteq X$ cualesquiera. Demuestra que si para cada $x \in X$ se satisface la proposición: $\forall y \in X (f(y) < f(x) \to y \in Y) \to x \in Y$, entonces Y = X.
- Ej. 24. Un conjunto X es Tarski-finito si y sólo si para cada $A \subseteq X$ no vacío, existe $y \in A$ de modo que para cada $a \in A$, no ocurre $y \subseteq a$. Demuestra que todo natural $n \in \omega$ es Tarski-finito.
- Ej. 25. Sea X un conjunto. Una \in , X-cadena es una función f con dominio algún natural $n \in \omega$ que cumple: $f(0) \in X$; y, para cualesquiera $m, k \in n$ con m < k, se cumple $f(k) \in f(m)$. Es un hecho que $C = \bigcup \{ima(f) \mid f \text{ es } \in$, X cadena $\}$ es un conjunto. Pruebe que C es un conjunto transitivo tal que $X \subseteq C$.

- **Ej. 26.** Utilizando *únicamente* el Primer Teorema de Recursión (1TR), demuestre que existe una función $F: \omega \to \omega$ de modo que F(0) = 1; y, para cada $n \in \omega$, $F(s(n)) = s(n) \cdot F(n)$.
 - Hint: Considere $X := \omega \times \omega$ en el 1TR, con el punto inicial (1,1) y defina una dinámica adecuada $g: X \to X$ de modo que al proyectar g a la primera entrada, consiga la función F.
- **Ej. 27.** Sean X un conjunto y $f: X \to X$. Demuestre que existe una función $g: \omega \times X \to X$ de modo que para cada $(n, x) \in \omega \times X$ se cumplen g(0, x) = x y g(s(n), x) = g(n, f(x)).
- Ej. 28. Sea $f: X \to X$ una función $y A \subseteq X$. Consideremos, mediante el teorema de recursión, la (única) función $g: N \to \mathscr{P}(X)$ de modo que g(0) = A y, para cada $n \in \omega$, $g(s(n)) = g(n) \cup f[g(n)]$. Definimos a los conjuntos $A_* = \bigcup im(g)$, $y A^* = \bigcap \{B \subseteq X \mid A \subseteq B \land f[B] \subseteq B\}$ (llamados las cerraduras inferiores y superiores de A bajo f, respectivamente). Demuestra que:

$$A^* = A_*$$
, $A \subseteq A^*$ y $f[A^*] \subseteq A^*$