MA2202S Homework 2

1

Claim that $(\mu_n, \times) \simeq (\mathbb{Z}/n\mathbb{Z}, +)$. Define $\phi: \mu_n \to \mathbb{Z}/n\mathbb{Z}$, with the knowledge that

$$\mu_n = \left\{\,e^{2\pi i \, k/n} : k \in \left\{\,0,\ldots,n-1\,\right\}\,\right\}$$

so we can define

$$\phi(z) = \frac{n \log z}{2\pi i}$$

such that ϕ satisfies

$$\phi(e^{2\pi i k/n}) = k.$$

Then we can observe that $\phi^{-1}: \mathbb{Z}/n\mathbb{Z} \to \mu_n$ is given by

$$\phi^{-1}(k) = e^{2\pi i k/n}.$$

Let H be a subgroup of (μ_n, \times) . If H is a trivial subgroup, we are done, so suppose it's not trivial.

Consider $H' = \phi(H)$ the subgroup of $\mathbb{Z}/n\mathbb{Z}$. Let d denote the smallest number in $H' \setminus \{0\}$.

Claim. $d \mid n$ and $H' = \{0, d, 2d, \dots, n-d\}$ exactly. Suppose on the contrary that $d \nmid n$, then there exists $q \in \mathbb{Z}_0^+, r \in \{1, \dots, d-1\}$ such that

$$n = qd + r$$

$$n - \underbrace{d - d - \cdots - d}_{q \text{ times}} = r$$

which implies that $r \in H'$, contradicting minimality of d. So $d \mid n$ which shows that $\{0,d,2d,\ldots,n-d\} \subseteq H'$.

For second part of claim, suppose on the contrary we have $H' \supsetneq D = \{0,d,2d,\dots,n-d\}$. We take $k \in H' \setminus D$, then divide k by d, because $k \notin D$, we have $q \in \mathbb{Z}_0^+, r \in \{1,\dots,d-1\}$ such that

$$k = qd + r$$

then by a similar argument as just now, $r \in H'$ which contradicts minimality of d.

Letting $r \in \mathbb{Z}^+$ such that dr = n, we have $H' = \{0, d, 2d, \dots, (r-1)d\}$, unravel ϕ to get

$$H = \left\{\,1, e^{2\pi i d/n}, e^{2\pi i 2 d/n}, \ldots, e^{2\pi i (r-1)d/n}\,\right\}$$

as r = n/d,

$$H = \left\{\,1, e^{2\pi i/r}, e^{2\pi i 2/r}, \ldots, e^{2\pi i (e-1)/r}\,\right\}$$

then it can be observed that $H = \mu_r$ with $r \mid n$.

Conversely suppose $H=\mu_r$ where $r\mid n$, let $d\in\mathbb{N}$, rd=n. Elements of μ_r can be enumerated as

$$\mu_r = \left\{\,1, e^{2\pi i/r}, e^{2\pi i 2/r}, \ldots, e^{2\pi i (r-1)/r}\,\right\}$$

as r = n/d,

$$\mu_r = \left\{\,1, e^{2\pi i d/n}, e^{2\pi i 2 d/n}, \ldots, e^{2\pi i (r-1)d/n}\,\right\} \subseteq \mu_n$$

take $e^{2\pi i a d/n}, e^{2\pi i b d/n} \in \mu_r$ where $a,b \in \{\,0,\ldots,r-1\,\}$, then

$$e^{2\pi i a d/n} e^{2\pi i b d/n} = e^{2\pi i (a+b)d/n}$$
$$= e^{2\pi i (a+b-r)d/n}$$

as $e^{2\pi i r d/n} = e^{2\pi i} = 1$, so in both cases $a+b \geq r$ and a+b < r, we have $e^{2\pi i a d/n} e^{2\pi i b d/n} \in \mu_r$, so μ_r is a subgroup.

2

Factors of 15 are 1,3,5,15. Using question 1, we have trivial subgroups $\{0\}$ and $\langle 1 \rangle = \mathbb{Z}/15\mathbb{Z}$, we also have the non-trivial subgroups $\langle 3 \rangle$ and $\langle 5 \rangle$.

3

i. $H=\operatorname{Stab}_{G}\left(s_{0}\right)$ is a subgroup of G.

Take $h_1,h_2\in H$, then

$$\begin{split} \pi\left(h_1h_2,s_0\right) &= \pi\left(h_1,\pi\left(h_2,s_0\right)\right) \\ &= \pi\left(h_1,s_0\right) \\ &= s_0 \end{split}$$

so $h_1h_2\in H$.

Also let $h \in H$,

$$\begin{split} s_0 &= \pi \left({e,s_0 } \right) \\ &= \pi \left({h^{ - 1} h,s_0 } \right) \\ &= \pi \left({h^{ - 1} ,\pi \left({h,s_0 } \right)} \right) \\ &= \pi \left({h^{ - 1} ,s_0 } \right) \end{split}$$

then $h^{-1} \in H$. Therefore H is a subgroup.

ii.

$$\pi\left(g_{1},s_{0}\right)=\pi\left(g_{2},s_{0}\right) \text{ if and only if }g_{1}\in g_{2}H.$$

Suppose $\pi\left(g_{1},s_{0}\right)=\pi\left(g_{2},s_{0}\right)$, then

$$\begin{split} \pi\left(g_{2}^{-1}, \pi\left(g_{1}, s_{0}\right)\right) &= \pi\left(g_{2}^{-1}, \pi\left(g_{2}, s_{0}\right)\right) \\ \pi\left(g_{2}^{-1} g_{1}, s_{0}\right) &= \pi\left(g_{2}^{-1} g_{2}, s_{0}\right) \\ &= \pi\left(e, s_{0}\right) \\ &= s_{0} \end{split}$$

so $g_2^{-1}g_1 \in H$ which implies $g_1 \in g_2H$.

Conversely suppose $g_1 \in g_2H$, then $g_2^{-1}g_1 \in H$,

$$\begin{split} \pi\left(g_{1},s_{0}\right) &= \pi\left(g_{1},\pi\left(g_{1}^{-1}g_{2},s_{0}\right)\right) \\ &= \pi\left(g_{1},\pi\left(g_{1}^{-1},\pi\left(g_{2},s_{0}\right)\right)\right) \\ &= \pi\left(g_{1}g_{1}^{-1},\pi\left(g_{2},s_{0}\right)\right) \\ &= \pi\left(e,\pi\left(g_{2},s_{0}\right)\right) \\ &= \pi\left(g_{2},s_{0}\right) \end{split}$$

iii. Show f is well-defined and injective

where f is defined as

$$\begin{split} f:G/H \to S \\ gH \mapsto \pi\left(g,s_0\right). \end{split}$$

Let $g, g' \in G$,

$$\begin{split} gH &= g'H \\ \iff g \in g'H & \text{by tutorial 3A Q1} \\ \iff \pi\left(g,s_0\right) &= \pi\left(g',s_0\right) & \text{by part ii} \\ \iff f(gH) &= f(g'H) & \text{by definition of } f \end{split}$$

the \Rightarrow argument gives well-definedness and the \Leftarrow argument gives injectivity.

iv.
$$|G| = |O| |H|$$
.

Since G is finite, by theorem 38 we have

$$|G/H| = \frac{|G|}{|H|}.$$

Consider $f':G/H\to O$ defined by f'(gH)=f(gH), which is just f contracted to its image. As f is already an injection, restricting it to its image will make f' a bijection, then we have

$$\frac{|G|}{|H|} = |G/H| = |O|$$
$$|G| = |H| |O|.$$