法律声明

□ 本课件包括:演示文稿,示例,代码,题库,视频和声音等,小象学院拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意,我们将保留一切通过法律手段追究违反者的权利。

- □ 课程详情请咨询
 - 微信公众号:小象
 - 新浪微博: ChinaHadoop

神经序列模型 VI

主讲人: 史兴 07/28/2017

提纲

- □ Seq2Seq 模型可视化
 - Hidden States 可视化
 - Word Embedding 可视化
 - Attention 可视化

- □ Tensorflow 一般的工作流程
 - 1) "画图": 构造计算图(computation graph)
 - □ **>**□ : placeholder
 - □ 出口:任何一个可以计算的操作(operation)或者中间变量(tensor)
- parameters
- tensor/op
- placeholder

- □ Tensorflow 一般的工作流程
 - 1) "画图": 构造计算图(computation graph)
 - 2) 对图进行"编译": 必要的优化
 - □ 构建图和编译图都是比较耗时的
 - □ 一旦图画好,后续的操作最好不要对图进行更改
- parameters
- tensor/op
- placeholder

- □ Tensorflow 一般的工作流程
 - 3) 进行图计算 session.run(output_feed, input_feed)
 - □ "图"和"外界"交流的唯一途径
 - □ 仅仅进行必要的计算
 - output_feed = [5], input_feed = ?
 - output_feed = [3], input_feed = ?
- parameters
- tensor/op
- placeholder

- □ Tensorflow 一般的工作流程
 - 3) 进行图计算 session.run(output_feed, input_feed)
 - □ 首先调用: session.run([3], [1])
 - □ 然后再要计算5, output_feed = [5], input_feed = ?

- parameters
- tensor/op
- placeholder

- □ Tensorflow 一般的工作流程
 - 3) 进行图计算 session.run(output_feed, input_feed)
 - □ 首先调用: session.run([3], [1])
 - □ 然后再要计算5, output_feed = [5], input_feed = [1,2]
 - 每次调用session.run, 中间变量的都需要重新计算,但是 参数parameter的值不会重新计算
 - 如何改变节省计算量?
- parameters
- ____ tensor/op
- placeholder

- □ Tensorflow 一般的工作流程
 - 方案一:
 - □ 将计算结果从"图"中取出来,保存在"外部"
 - \blacksquare temp = session.run([3],[1])
 - □ 将外部结果再重新输入"图中"
 - session.run([5],[7=temp,2])
- parameters
- tensor/op
- placeholder

- □ Tensorflow 一般的工作流程
 - 方案一:
 - □ 如果3是一个比较大的矩阵?
 - 数据来回复制耗费时间
 - □ 如果"图"在GPU上面呢?
 - 更加耗费时间!
- parameters
- tensor/op
- placeholder

- □ Tensorflow 一般的工作流程
 - 方案二: 将temp作为一个参数放在"图"中

画图: 1 = tf.placeholder; 3 = f(1);

temp = tf.get_variable(); 6=tf.get_variable()

2 = tf.placeholder(); 4 = f(2); 5 = h(temp,6,4)

copy = temp.assign(3)

调用: session.run([3,copy],[1])

session.run([5],[2])

- operation
- parameters
- tensor/op
- placeholder

- □ Tensorflow 一般的工作流程
 - 方案二: 将temp作为一个参数放在"图"中
 - □ 可不可以把temp变成中间变量?

画图: 1 = tf.placeholder; 3 = f(1); temp = ?

- operation
- parameters
- tensor/op
- placeholder

input_feed = [[f1,f2,f3],[_GO,_GO],[b,a]] ?

Single-step Decoder

```
self.top_index
self.top_value
self.eos_value
```

a:0.3 b:0.7 a:0.5 b:0.5

beam_step(index=0)

a:0.3 b:0.7 a:0.5 b:0.5 self.top_index self.top_value self.eos_value

session.run([encoder2before_ops],[[f1,f2,f3]])

session.run([[self.top_index,...],decode2after_ops],[self.inputs]

红色: placeholder

蓝色: variable

箭头: operation

[-1.3, -0.3][-1.2, -0.5]

beam_step(index>0)

a:0.3 b:0.7 a:0.5 b:0.5

self.top_index self.top_value self.eos_value

run.py:beam_decode()

变量:

source_inputs = $[f_1, f_2, f_3]$

	scores	sentences	beam parent	target inputs	top index	top value	eos value
0							
1							

results = [] 存放"熟了"的句子 (w1,..,wi,...,wn=EOS)

sentences: 存放"半熟"的句子: 部分生成的句子(w1,w2,..,w_{i-1})

scores: $logP(w1, w2, ..., w_{i-1})$

top_index: $argmax_{\{w_i\}}P(w_i)$

top_value: $\max P(w_i)$ eos_value: P(EOS)

	scores	sentences	beam parent	target inputs	top index	top value	eos value
0	0.0		0	_GO			
1	0.0		1	_GO			

$$h_0^1: \begin{bmatrix} 0.2, -0.3 \\ 0.2, -0.3 \end{bmatrix} = h_1^1:$$

	scores	sentences	beam parent	target inputs	top index	top value	eos value
0	0.0		0	_GO	b, a	0.7,0.3	0.0001
1	0.0	[]	1	_GO	b, a	0.7,0.3	0.0001

	scores	sentences	beam parent	target inputs	top index	top value	eos value
0	0.0		0	_GO	b, a	0.7,0.3	0.0001
1	0.0		1	_GO	b, a	0.7,0.3	0.0001

```
index = 0

global_queue = [(score, beam_index, word_index)]

= [(0+0.7,0, b),

(0+0.3,0, a)]
```

```
target_inputs = [b, a]
scores = [0.7,0.3]
beam_parent = [0,0]
sentences = [[b], [a]]
```

	scores	sentences	beam parent	target inputs	top index	top value	eos value
0	0.7	[b]	0	b			
1	0.3	[a]	0	a			

$$h_1^1: \begin{bmatrix} 1.0, -3.3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1.0, -3.3 \end{bmatrix} =$$

	scores	sentences	beam parent	target inputs	top index	top value	eos value
0	0.7	[b]	0	b	a, b	0.5,0.5	0.001
1	0.3	[a]	0	a	a, b	0.8,0.2	0.001

$$h_1^1: \begin{bmatrix} 1.0, -3.3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1.0, -3.3 \end{bmatrix} = h_2^1: \begin{bmatrix} -1.3, -0.3 \end{bmatrix}$$

	scores	sentences	beam parent	target inputs	top index	top value	eos value
0	0.7	[b]	0	b	a, b	0.5,0.5	0.001
1	0.3	[a]	0	a	a, b	0.8,0.2	0.001

```
index =1 
global_queue = [(score, beam_index, word_index)] 
= [(0.7*0.5,0, a), (0.7*0.5,0, b), (0.3*0.8,1, a), (0.3*0.2,1, b)]
```

```
target_inputs = [a, b]
scores = [0.35,0.35]
beam_parent = [0,0]
sentences = [[b,a], [b,b]]
```

	scores	sentences	beam parent	target inputs	top index	top value	eos value
0	0.35	[b,a]	0	a			
1	0.35	[b,b]	0	b			

$$h_2^1: \begin{bmatrix} -1.3,-0.3 \end{bmatrix} \longrightarrow \begin{bmatrix} -1.3,-0.3 \end{bmatrix} =$$

	scores	sentences	beam parent	target inputs	top index	top value	eos value
0	0.35	[b,a]	0	a	b, a	0.7,0.3	0.0001
1	0.35	[b,b]	0	b	a, b	0.5,0.5	0.0001

$$h_2^1: \begin{bmatrix} -1.3,-0.3 \end{bmatrix} \longrightarrow \begin{bmatrix} -1.3,-0.3 \end{bmatrix} =$$
 $h_3^1: \begin{bmatrix} -1.5,-2.3 \end{bmatrix}$

	scores	sentences	beam parent	target inputs	top index	top value	eos value
0	0.35	[b,a]	0	a	b, a	0.7,0.3	0.0001
1	0.35	[b,b]	0	b	a, b	0.5,0.5	0.0001

```
index = 2 
global_queue = [(score, beam_index, word_index)] 
= [(0.35*0.7,0, b), (0.35*0.3,0, b), (0.35*0.5,1, a), (0.35*0.5,1, b)]
```

```
target_inputs = [b, a]
scores = [0.245,0.175]
beam_parent = [0,1]
sentences = [[b,a,b], [b,b,a]]
```


	scores	sentences	beam parent	target inputs	top index	top value	eos value
0	0.245	[b,a,b]	0	b	b, a	0.7,0.2	0.1
1	0.175	[b,b,a]	1	a	a, b	0.5,0.3	0.2

$$h_2^1: \begin{bmatrix} -1.5, -2.3 \end{bmatrix} \longrightarrow \begin{bmatrix} -1.5, -2.3 \end{bmatrix} = h_3^1: \begin{bmatrix} 0.4, 2.2 \end{bmatrix}$$

	scores	sentences	beam parent	target inputs	top index	top value	eos value
0	0.245	[b,a,b]	0	b	b, a	0.7,0.2	0.1
1	0.175	[b,b,a]	1	a	a, b	0.5,0.3	0.2

如果top_index是中包含EOS怎么办?

	scores	sentences	beam parent	target inputs	top index	top value	eos value
0	0.35	[b,a]	0	a	EOS, a	0.7,0.2	0.1
1	0.35	[b,b]	0	b	a, b	0.5,0.5	0.0001

Single-step **Decoder**

```
self.top_index
self.top_value
self.eos_value
```

a:0.3 b:0.7 a:0.5 b:0.5

红色: placeholder

蓝色: variable

箭头: operation

[-1.2, -0.5]after2before_ops

[0,0]

- ☐ SeqModel.py
 - init_beam_decoder()#"画"额外的"图"
 - beam_with_buckets() #
 - beam_basic_seq2seq() # Single-step decoder
 - beam_attention_seq2seq() # TODO
 - show_before_state()#调试用
 - show_after_state()#调试用
 - beam_step()
 - get_batch_test()

Seq2Seq 代码实现

Seq2Seq 代码实现

为什么不"画"成这样?

beam_with_buckets()

- □ BLEU score
 - 评价机器翻译的标准

BLEU = min
$$\left(1, \frac{\text{output-length}}{\text{reference-length}}\right) \left(\prod_{i=1}^{4} \text{precision}_i\right)^{\frac{1}{4}}$$

□ BLEU score

Israeli officials responsibility of airport safety SYSTEM A: 2-GRAM MATCH 1-GRAM MATCH

Israeli officials are responsible for airport security REFERENCE:

airport security Israeli officials are responsible SYSTEM B:

2-GRAM MATCH

Metric	System A	System B	
precision (1gram)	3/6	6/6	
precision (2gram)	1/5	4/5	
precision (3gram)	0/4	2/4	
precision (4gram)	0/3	1/3	
brevity penalty	6/7	6/7	
BLEU	0%	52%	

- □ BLEU score
 - bash beam_decode_small.sh
 - bash bleu_small.sh

- □ 高难度, 高价值的作业
 - 实现attention model 的beam search
 - □ beam_attention_seq2seq()
 - □ feed_input是否需要加before_ht_att和after_ht_att
 - □ 一周时间实现,实现成功的有神秘礼物

Seq2Seq 模型可视化

□ Hidden State 可视化

 C_t only involves **element-wise** "+" and "X"

Seq2Seq 模型可视化

□ Hidden State 可视化

Seq2Seq 模型可视化

- □ Hidden State 可视化
 - French-English 机器翻译模型

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象

- 新浪微博: ChinaHadoop

