. 0	ptimization algorithms	10/10 points (100%)
Qu	iz, 10 questions	
	✓ Congratulations! You passed!	Next Item
~	1/1 points	
1.		
Which minib	notation would you use to denote the 3rd layer's activations when the input is the stch?	7th example from the 8th
\bigcirc		
	a ^{[3][8](7)}	
Corr	ect	
\bigcirc		
	$a^{[8](3](7)}$	
\bigcirc	(2)(2)(0)	
	$a^{[3](7)(8)}$	
\bigcirc	$a^{[8](7)(3)}$	
	a ^{[0](7)(3)}	
•	1/1 points	
0	points	
2. Which	of these statements about mini-batch gradient descent do you agree with?	
\circ	One iteration of mini-batch gradient descent (computing on a single mini-batch) i	is faster than one iteration of
_	batch gradient descent.	
Corr	ect	
\bigcirc	You should implement mini-batch gradient descent without an explicit for-loop o that the algorithm processes all mini-batches at the same time (vectorization).	ver different mini-batches, so
\circ	Training one epoch (one pass through the training set) using mini-batch gradient one epoch using batch gradient descent.	descent is faster than training

← Optimization algorithms	10/10 points (100%)			
3. Quiz, 10 questions				
Why is the best mini-batch size usually not 1 and not m, but instead something in-between?				
,				
If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.				
Correct				
If the mini-batch size is 1, you end up having to process the entire training set before m	aking any progress.			
Un-selected is correct				
on-selected is correct				
If the mini-batch size is m, you end up with batch gradient descent, which has to proces	ss the whole training set			
before making progress.				
A.				
Correct				
If the mini-batch size is m, you end up with stochastic gradient descent, which is usually	slower than mini-batch			
gradient descent.				
Un-selected is correct				

10/10 points (100%)

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Which of the following do you agree with?

0	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.			
\bigcirc	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.			
	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.			
Correct				
0	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.			

10/10 points (100%)

5. Ouiz, 10 questions

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st: $\theta_1 = 10^{o}C$

Jan 2nd: $\theta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta = 0.5$ to track the temperature: $v_0 = 0$, $v_t = \beta v_{t-1} + (1 - \beta)\theta_t$. If v_2 is

the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

Correct

 $v_2 = 10, v_2^{corrected} = 7.5$

 $v_2 = 7.5, v_2^{corrected} = 7.5$

 $v_2 = 10, v_2^{corrected} = 10$

1/1 points

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = e^t \alpha_0$$

Correct

 $\alpha = \frac{1}{\sqrt{t}} \alpha_0$

 $\alpha = 0.95^t \alpha_0$

 $\alpha = \frac{1}{1+2*t}\alpha_0$

Optimization algorithms

10/10 points (100%)

You use an exponentially weighted average on the London temperature dataset. You use the following to track the

temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve

as you vary β ? (Check the two that apply)

Decreasing β will shift the red line slightly to the right.

Un-selected is correct

Increasing β will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Decreasing β will create more oscillation within the red line.

Correct

True, remember that the red line corresponds to $\beta = 0.9$. In lecture we had a yellow line \$\$\beta = 0.98 that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

Un-selected is correct

← Optimization algorithms

10/10 points (100%)

8. Quiz, 10 questions Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent

←	Optimižation algorithms	10/10 points (100%)			
	$ 9. \text{Quiz, 10 questions} \\ Suppose batch gradient descent in a deep network is taking excessively long to find a value of the content $	parameters that achieves			
	a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\dots,W^{[L]},b^{[L]})$. Which of the following techniques could help find				
	parameter values that attain a small value for \mathcal{J} ? (Check all that apply)				
	Try using Adam Correct				
	Try mini-batch gradient descent Correct				
	Try better random initialization for the weights Correct				
	Try initializing all the weights to zero Un-selected is correct				
	Try tuning the learning rate α Correct				
	1/1 points 10. Which of the following statements about Adam is False?				
	Adam should be used with batch gradient computations, not with mini-batches.				
	Correct				
	We usually use "default" values for the hyperparameters eta_1,eta_2 and ϵ in Adam ($eta_1=0.9,eta_2$	$\epsilon = 0.999, \epsilon = 10^{-8}$			
	Adam combines the advantages of RMSProp and momentum				
	The learning rate hyperparameter $lpha$ in Adam usually needs to be tuned.				
		a Q O			