L_0 Regularization for the estimation of piecewise constant hazard

Joint work with O. Bouaziz¹ and G. Nuel²

Vivien Goepp 1

MAP5 (CNRS 8145), Université Paris Descartes
 LPMA (CNRS 7599), Université Pierre et Marie Curie

July 4, 2017

Classic setting: $\lambda(t) = \lim_{dt \to 0} \frac{1}{dt} \mathbb{P}(t < T < t + dt | T > t)$

Classic setting:
$$\lambda(t) = \lim_{dt \to 0} \frac{1}{dt} \mathbb{P}(t < T < t + dt | T > t)$$

With cohort effect:

$$\lambda_c(t) = \lim_{dt \to 0} \frac{1}{dt} \mathbb{P}(t < T < t + dt | T > t, \text{cohort} = c)$$

Classic setting: $\lambda(t) = \lim_{dt \to 0} \frac{1}{dt} \mathbb{P}(t < T < t + dt | T > t)$

With cohort effect:

$$\lambda_c(t) = \lim_{dt \to 0} \frac{1}{dt} \mathbb{P}(t < T < t + dt | T > t, \text{cohort} = c)$$

Problem: with a discretization (t_0, \ldots, t_J) and (c_0, \ldots, c_K) , estimate

$$\lambda_{j,k} = \lambda_c(t)$$
 such that $t \in [t_{j-1}, t_j], c \in [c_{k-1}, c_k]$

Classic setting: $\lambda(t) = \lim_{dt \to 0} \frac{1}{dt} \mathbb{P}(t < T < t + dt | T > t)$

With cohort effect:

$$\lambda_c(t) = \lim_{dt \to 0} \frac{1}{dt} \mathbb{P}(t < T < t + dt | T > t, \text{cohort} = c)$$

Problem: with a discretization (t_0, \ldots, t_J) and (c_0, \ldots, c_K) , estimate

$$\lambda_{j,k} = \lambda_c(t)$$
 such that $t \in [t_{j-1}, t_j], c \in [c_{k-1}, c_k]$

Notation:

cohort = date of birth
period = date of event
age = age of patient at event

Age-Period Diagram

Figure 1: Lexis diagram: age and period

Age-Cohort Diagram

Figure 2: Age-Cohort diagram

Existing models

Age-Cohort model:
$$\lambda_{j,k} = \exp\left(\mu + \underbrace{\alpha_j}_{\text{age effet}} + \underbrace{\beta_k}_{\text{cohort effect}}\right)$$

- Regularizing $(J + K \text{ parameters instead of } J \times K)$
- Strong a priori on the data

Existing models

Age-Cohort model:
$$\lambda_{j,k} = \exp\left(\mu + \underbrace{\alpha_j}_{\text{age effet}} + \underbrace{\beta_k}_{\text{cohort effect}}\right)$$

- Regularizing (J + K) parameters instead of $J \times K$
- Strong a priori on the data

Age-Period-Cohort model:
$$\lambda_{j,k} = \exp\left(\mu + \alpha_j + \beta_k + \underbrace{\gamma_{j+k-1}}_{\text{period effect}}\right)$$

- Not identifiable (period = age + cohort)
- Strong a priori on the data

Existing models

Age-Cohort model:
$$\lambda_{j,k} = \exp\left(\mu + \underbrace{\alpha_j}_{\text{age effet}} + \underbrace{\beta_k}_{\text{cohort effect}}\right)$$
:

- Regularizing (J + K) parameters instead of $J \times K$
- Strong a priori on the data

Age-Period-Cohort model:
$$\lambda_{j,k} = \exp\left(\mu + \alpha_j + \beta_k + \underbrace{\gamma_{j+k-1}}_{\text{period effect}}\right)$$

- Not identifiable (period = age + cohort)
- Strong *a priori* on the data

We want a regularizing model without any *a priori* of age, cohort or period effet.

Vivien Goepp L_0 Regularization July 4, 2017 5 / 17

Maximum Likelihood Estimation

Parametrization: $\lambda_{j,k} = \exp(\eta_{j,k})$.

Negative log-likelihood:¹

$$\ell(\boldsymbol{\eta}) = \sum_{j=1}^{J} \sum_{k=1}^{K} \exp(\eta_{j,k}) R_{j}^{k} - \eta_{j,k} O_{j}^{k}.$$
 (1)

6 / 17

Explicit estimator:

$$\eta_{j,k} = \log\left(\frac{O_j^k}{R_j^k}\right).$$

 O_i^k : number of events in rectangle (j,k)

 R_i^k : total time at risk in rectangle (j,k)

Vivien Goepp L_0 Regularization July 4, 2017

¹Aalen, Borgan, and Gjessing, Survival and Event History Analysis, p 224.

Likelihood Penalization

Penalization:

$$\begin{array}{lcl} \ell^{\mathrm{pen}}(\boldsymbol{\eta}) = \ell(\boldsymbol{\eta}) & + & \frac{\mathrm{pen}}{2} \sum_{j=1}^{J-1} \sum_{k=1}^{K} v_{j,k} \left(\eta_{j+1,k} - \eta_{j,k} \right)^{2} \\ & + & \frac{\mathrm{pen}}{2} \sum_{j=1}^{J} \sum_{k=1}^{K-1} w_{j,k} \left(\eta_{j,k+1} - \eta_{j,k} \right)^{2} \end{array}$$

Likelihood Penalization

Penalization:

$$\begin{array}{lcl} \ell^{\mathrm{pen}}(\boldsymbol{\eta}) = \ell(\boldsymbol{\eta}) & + & \frac{\mathrm{pen}}{2} \sum_{j=1}^{J-1} \sum_{k=1}^{K} v_{j,k} \left(\eta_{j+1,k} - \eta_{j,k} \right)^{2} \\ & + & \frac{\mathrm{pen}}{2} \sum_{j=1}^{J} \sum_{k=1}^{K-1} w_{j,k} \left(\eta_{j,k+1} - \eta_{j,k} \right)^{2} \end{array}$$

- For Ridge regularization: v = w = 1
- For L_0 norm regularization, the weights are adapted iteratively:

$$v_{j,k}^{(m)} = \frac{1}{\left(\eta_{j+1,k}^{(m)} - \eta_{j,k}^{(m)}\right)^2 + \varepsilon^2} \quad w_{j,k}^{(m)} = \frac{1}{\left(\eta_{j,k+1}^{(m)} - \eta_{j,k}^{(m)}\right)^2 + \varepsilon^2}$$

Principle of Adaptive Ridge

At convergence:²

$$v_{j,k} \left(\eta_{j+1,k} - \eta_{j,k} \right)^2 \simeq \begin{cases} 0 & \text{if} \quad |\eta_{j+1,k} - \eta_{j,k}| < \varepsilon \\ 1 & \text{if} \quad |\eta_{j+1,k} - \eta_{j,k}| > \varepsilon \end{cases} \simeq \left\| \eta_{j+1,k} - \eta_{j,k} \right\|_0$$

This approximates the L_0 norm with a **convex** and **differentiable** function.

Remark: This work extends the univariate case³.

Vivien Goepp L_0 Regularization July 4, 2017

8 / 17

²Frommlet and Nuel, "An Adaptive Ridge Procedure for L0 Regularization."

³Bouaziz and Nuel, "L0 Regularisation for the Estimation of Piecewise Constant Hazard Rates in Survival Analysis."

Algorithmic procedure

```
\begin{split} &\textbf{Algorithm:} \text{ Newton-Raphson} \\ &\textbf{Data:} \ \text{ data, pen, } \boldsymbol{v}, \, \boldsymbol{w} \\ &\textbf{Result:} \ \widehat{\boldsymbol{\eta}} = \arg\min \ell^{\text{pen}}(\boldsymbol{\eta}) \\ &\boldsymbol{\eta} \leftarrow \boldsymbol{0}; \\ &\textbf{while } not \ converge \ \textbf{do} \\ &\boldsymbol{\eta}_{\text{new}} \leftarrow \boldsymbol{\eta} - \\ &\boldsymbol{Hess}^{-1}(\boldsymbol{\eta}, \text{data, pen, } \boldsymbol{v}, \boldsymbol{w}) S(\boldsymbol{\eta}, \text{data, pen, } \boldsymbol{v}, \boldsymbol{w}); \\ &\boldsymbol{\eta} \leftarrow \boldsymbol{\eta}_{\text{new}}; \\ &\textbf{end} \end{split}
```

Algorithmic procedure

```
\begin{split} & \textbf{Algorithm:} \text{ Newton-Raphson} \\ & \textbf{Data:} \text{ data, pen, } \boldsymbol{v}, \boldsymbol{w} \\ & \textbf{Result: } \widehat{\boldsymbol{\eta}} = \arg\min\ell^{\text{pen}}(\boldsymbol{\eta}) \\ & \boldsymbol{\eta} \leftarrow 0; \\ & \textbf{while } not \ converge \ \textbf{do} \\ & \boldsymbol{\eta}_{\text{new}} \leftarrow \boldsymbol{\eta} - \\ & \boldsymbol{Hess}^{-1}(\boldsymbol{\eta}, \text{data, pen, } \boldsymbol{v}, \boldsymbol{w}) S(\boldsymbol{\eta}, \text{data, pen, } \boldsymbol{v}, \boldsymbol{w}); \\ & \boldsymbol{\eta} \leftarrow \boldsymbol{\eta}_{\text{new}}; \\ & \textbf{end} \end{split}
```

The hessian is a band matrix:inversion in $O(JK^2)$ instead of $O(J^3K^3)$

Algorithmic procedure

```
Algorithm: Newton-Raphson  
Data: data, pen, v, w  
Result: \hat{\eta} = \arg\min \ell^{\mathrm{pen}}(\eta)  
\eta \leftarrow 0;  
while not converge do  
\eta_{\mathrm{new}} \leftarrow \eta - Hess^{-1}(\eta, \mathrm{data}, \mathrm{pen}, v, w)S(\eta, \mathrm{data}, \mathrm{pen}, v, w);  
\eta \leftarrow \eta_{\mathrm{new}}; end  
The hessian is a band matrix:inversion in \mathcal{O}(JK^2) instead of \mathcal{O}(J^3K^3)
```

```
Algorithm: Adaptive Ridge
Data: data, pen
Result: \hat{\eta}^{sel}
v \leftarrow w \leftarrow 1:
\eta \leftarrow 0:
while not converge do
          \eta^{\text{new}} \leftarrow \text{NR}(\eta, \text{data}, \text{pen}, v, w);
       v_{j,k} \leftarrow \frac{1}{\left(\eta_{j+1,k}^{\text{new}} - \eta_{j,k}^{\text{new}}\right)^2 + \varepsilon^2};
w_{j,k} \leftarrow \frac{1}{\left(\eta_{j,k+1}^{\text{new}} - \eta_{j,k}^{\text{new}}\right)^2 + \varepsilon^2};
          \eta \leftarrow \eta_{\text{new}}:
end
region \leftarrow selection(\eta, v, w);
\widehat{\boldsymbol{\eta}}^{\text{sel}} \leftarrow \frac{O^{\text{region}}}{D^{\text{region}}};
```

Results on simulated data

True piecewise constant hazard

Simulating 5000 points with censoring $\sim \mathcal{U}([75, 100])$

Vivien Goepp L_0 Regularization July 4, 2017 10 / 17

Estimated Hazard

Real data application: The E3N Cohort⁴

Sample size: 91992 (women)

Cohort $\in [1925, 1950]$

 $Period \in [1990, 2010]$

The event of interest is the outbreak of breast cancer.

Percentage of censored events: 93%

Cohort	[1925, 1930)	[1930, 1935)	[1935, 1940)	[1940, 1945)	[1945, 1950]
Number of cancers	374	808	1322	1604	1785
Total time at risk	538402.1	852763.2	1184437	1422128	1829870

Summary of E3N Data

⁴Clavel-Chapelon, "Cohort Profile of the French E3n Cohort Study."

Visualization of the E3N Data

Figure 3: In the period-cohort plane

Visualization of the E3N Data

Figure 3: In the period-cohort plane

Figure 4: In the age-cohort plane

Results: Ridge

$$J = K = 40$$

Regularization path

Results: Ridge

$$J = K = 40$$

Results: Adaptive Ridge

Regularization path

Results: Adaptive Ridge

Regularization path

BIC Selected Model (42 parameters)

Summary & Perspectives

What we have done:

- Regularized estimation of λ without APC-type a priori
- Ridge regularization with constant weights
- \bullet L_0 regularization with adapted weights

Summary & Perspectives

What we have done:

- Regularized estimation of λ without APC-type a priori
- Ridge regularization with constant weights
- \bullet L_0 regularization with adapted weights

Upcoming work

- K-fold cross-validation for Ridge regularization
- Confidence intervals using resampling

16 / 17

Thank you for your attention

Vivien Goepp

Aalen, Odd, Ornulf Borgan, and Hakon Gjessing. Survival and Event History Analysis: A Process Point of View. Springer Science & Business Media, 2008.

Bouaziz, Olivier, and Grégory Nuel. "L0 Regularisation for the Estimation of Piecewise Constant Hazard Rates in Survival Analysis." ArXiv Preprint ArXiv:1609.04595, 2016.

Clavel-Chapelon, Françoise. "Cohort Profile of the French E3n Cohort Study." *International Journal of Epidemiology* 44, no. 3 (2014): 801–9.

Frommlet, Florian, and Grégory Nuel. "An Adaptive Ridge Procedure for L0 Regularization." $PLOS\ ONE\ 11$, no. 2 (February 2016): 1–23. doi:10.1371/journal.pone.0148620.

Nuel, Gregory, and Gilles Monneret. Bandsolve: Fast Solver for Symetric Band Matrix, 2016R package version 1.2.3.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2015. https://www.R-project.org/