Московский физико-технический институт (государственный университет) Факультет общей и прикладной физики

Лабораторная работа № 1.1

(Общая физика: квантовая физика)

Экспериментальная проверка уравнения Эйнштейна для фотоэффекта и определение постоянной Планка

Работу выполнил: Иванов Кирилл, 625 группа

г. Долгопрудный 2018 год

Цель работы: Исследовать зависимость фототока от величины задерживающего потенциала и частоты падающего излучения, что позволяет вычислить величину постоянной Планка.

1. Теоретическое введение

Фотоэффект — явление испускания электронов фотокатодом, облучаемым светом, Это явление хорошо объясняется фотонной теорией света. Взаимодействие монохроматического света с веществом можно описывать как взаимодействие с веществом частиц, называемых фотонами, которые обладают энергией $\hbar\omega$ и импульсом $\hbar\omega/c$. При столкновении фотона с электроном фотокатода энергия отона полностью передается электрону, и фотон прекращает свое существование. Энергетический баланс этого взаимодействия для вылетающих электронов описывается уравнением

$$\hbar\omega = E_{max} + W \tag{1}$$

Рис. 1: Зависимость фототока от напряжения на аноде фотоэлемента

Здесь E_{max} — максимальная кинетическая энергия электрона после выхода из фотокатода, W — работа выхода электрона из катода. Реально энергетический спектр вылетевших из фотокатода электронов непрерывен — он простирается от нуля до E_max .

Для измерения энергии вылетевших фотоэлектронов вблизи фотокатода обычно располагается второй электрод (анод), на который подается задерживающий (V < 0) или ускоряющий (V > 0) потенциал. При достаточно больших ускоряющих напряжениях фототок достигает насыщения (рис. 1): все испущенные электроны попадают на анод.

При задерживающих потенциалах на анод попадают лишь электроны, обладающие достаточно большой кинетической энергией, в то время как медленно движущиеся электроны завора-

чиваются полем и возвращаются на катод. При некотором значении V=-V0 (потенциал запирания) даже наиболее быстрые фотоэлектроны не могут достичь анода. Максимальная кинетическая энергия E_{max} электронов связана с запирающим потенциалом V0 очевидным соотношением $E_{max}=eV_0$. Тогда (1) примет вид, называемый уравнением Эйнштейна:

$$eV_0\hbar\omega - W \tag{2}$$

Чтобы определить величину запирающего напряжения, нам надо правильно экстраполировать получаемую токовую зависимость к нулю, т. е. определить, какова функциональная зависимость I(V). Расчет для простейшей геометрии — плоский катод, освещаемый светом, и параллельный ему анод — приводит к зависимости

$$\sqrt{I} \propto V_0 - V \tag{3}$$

т. е. корень квадратный из фототока линейно зависит от запирающего напряжения. Эта зависимость хорошо описывает экспериментальные данные.

В работе изучается зависимость фототока из фотоэлемента от величины задерживающего потенциала V для различных частот света ω , лежащих в видимой области спектра. С целью экспериментальной проверки уравнения Эйнштейна определяются потенциалы запирания V_0 при разных частотах света и строится зависимость $V_0(\omega)$, которая, как это следует из (2), должна иметь вид

$$V_0(\omega) = \frac{\hbar\omega - W}{e} \tag{4}$$

Потенциал запирания V_0 для любого катода линейно зависит от частоты света ω . По наклону прямой на графике $V_0(\omega)$ (рис. 2) можно определить постоянную Планка:

$$\frac{dV_0}{d\omega} = \frac{\hbar}{e} \tag{5}$$

Как показывает формула (5), угол наклона прямой $V_0(\omega)$ не зависит от рода вещества, из которого изготовлен фотокатод. От рода вещества, однако, зависит величина фототока, работа выхода W и форма кривой I(V) (рис. 1). Все это определяет выбор пригодных для опыта катодов.

Рис. 2: Зависимость запирающего потенциала от частоты света

2. Выполнение работы

Сначала выполним градуировку монохроматора. Проведем серию измерений для линий спектра неона, снимая зависимость длины волны света от параметра θ барабана монохроматора. Результаты занесем в таблицу и построим график зависимости, профитировав функцию $\lambda(\theta)$ многочленом второй степени в силу нелинейности.

Таблица 2: Фит рис. 3 функцией $y = ax^2 + bx + c$

	Estimate	Standard Error
c	7931.34	249.707
b	-3.99555	0.221236
a	0.00141429	0.0000489127

Теперь проведем 5 серий измерений зависимости фототока от напряжения для разных длин волн падающего света, изменяя на монохроматоре параметр θ и переводя его в длину волны с помощью градуировки. Ток приведен в безразмерных единицах в силу работы установки.

Результаты измерений сведем в таблицы. Для первой выбранной длины волны ($\theta = 2174^{\circ}$, $\lambda = 6944\mathring{A}$) проведем измерения во всем спектре возможных напряжений, а для остальных — лишь при достаточно малых значениях тока и напряжения (т.е. вблизи потенциала запирания, где искомая зависимость описывается формулой (3)). Согласно этой формуле (3), построим графики

Таблица 1: Градуировка монохроматора

№ линии	θ , °	$\lambda,\ \mathring{A}$
23	1872	5400
22	2130	5828
21	2146	5885
20	2174	5944
19	2192	5975
18	2218	6030
17	2235	6074
16	2248	6096
15	2266	6143
14	2274	6163
13	2298	6217
12	2318	6266
11	2334	6304
10	2346	6334
9	2363	6382
8	2372	6402
7	2412	6506
6	2418	6532
5	2440	6598
4	2466	6678
3	2478	6717
2	2544	6929
1	2575	7032

зависимости в координатах $\sqrt{I}(V)$ и аппроксимируем линейные участки прямой. Экстраполируя прямую к нулю, получим значения потенциала запирания для каждой серии измерения (длины волны). Результаты сведем в таблицу.

Рис. 3: Градуировка монохроматора

Рис. 4: Зависимость фототока от напряжения для $\theta = 2174^\circ$

Таблица 3: Зависимость фототока от напряжения для $\theta = 2174^\circ$

		I	_
$N_{\overline{0}}$	V, B	I	\sqrt{I}
1.	6.797	0.586	0.766
2.	6.223	0.582	0.763
3.	5.782	0.577	0.76
4.	5.235	0.571	0.756
5.	4.701	0.563	0.75
6.	4.2	0.556	0.746
7.	3.64	0.545	0.738
8.	3.06	0.531	0.729
9.	2.565	0.515	0.718
10.	2.1	0.489	0.699
11.	1.43	0.44	0.663
12.	0.9	0.34	0.583
13.	0.41	0.173	0.416
14.	0.02	0.069	0.263
15.	-0.02	0.057	0.239
16.	-0.18	0.034	0.184
17.	-0.3	0.015	0.122
18.	-1.125	-0.005	-0.071
19.	-1.75	-0.005	-0.071
20.	-3.04	-0.005	-0.071

Таблица 4: Зависимость фототока от напряжения для разных длин волн

№	<i>V</i> , B	I	\sqrt{I}		
	Для $\theta=2235$				
1.	0.939	0.328	0.573		
2.	0.645	0.248	0.498		
3.	0.24	0.119	0.345		
4.	0.399	0.178	0.422		
5.	0.695	0.282	0.531		
6.	0.077	0.081	0.285		
7.	0.02	0.069	0.263		
8.	-0.835	0.003	0.055		
	Для	$\theta = 2412$	2		
1.	0.899	0.362	0.602		
2.	0.654	0.282	0.531		
3.	0.415	0.189	0.435		
4.	0.24	0.13	0.361		
5.	0.01	0.055	0.235		
6.	-0.372	0.002	0.045		
	Для $\theta = 2318$				
1.	0.77	0.29	0.539		
2.	0.55	0.23	0.48		
3.	0.358	0.16	0.4		
4.	0.083	0.077	0.277		
5.	-0.022	0.052	0.228		
6.	-0.147	0.027	0.164		
7.	-0.45	0.003	0.055		
	Для $\theta=1872$				
1.	1.417	0.322	0.567		
2.	1.07	0.253	0.503		
3.	0.76	0.182	0.427		
4.	0.41	0.117	0.342		
5.	0.12	0.075	0.274		
6.	0.	0.04	0.2		
7.	-0.128	0.025	0.158		
8.	-0.754	-0.016	-0.126		

Рис. 5: Зависимость фототока от напряжения для $\theta = 2235^\circ$

Рис. 6: Зависимость фототока от напряжения для $\theta = 2412^\circ$

Рис. 7: Зависимость фототока от напряжения для $\theta = 2318^\circ$

Рис. 8: Зависимость фототока от напряжения для $\theta=1872^\circ$

Таблица 5: Результаты измерений для разных длин волн, параметры фитов для y = ax + b

$N_{\overline{0}}$	θ , °	$\lambda,\ \mathring{A}$	$\omega, 10^{15} c$	a	b	V_0 , B	σ_{V_0}, B
1	2174	5944	3.16958	0.381001 ± 0.0140678	$0.248515 \pm 0,0093133$	0.792	0.059
2	2235	6074	3.10175	0.355079 ± 0.0202219	0.263619 ± 0.0108196	0.742	0.056
3	2412	6506	2.89579	0.445597 ± 0.0233336	0.230778 ± 0.0120653	0.518	0.039
4	2318	6266	3.0067	0.412892 ± 0.0170772	0.238741 ± 0.00953726	0.578	0.043
5	1872	5400	3.48889	0.262064 ± 0.0155836	0.216402 ± 0.0116755	0.826	0.062

Рис. 9: Зависимость запирающего потенциала от частоты света

Теперь построим график зависимости $V_0(\omega)$. Согласно (4) профитируем это прямой.

Таблица 6: Фит рис. 9 функцией y = ax + b

	Estimate	Standard Error
b	-0.949185	0.450717
a	0.593702	0.155446

Из наклона прямой согласно (5) получаем значение постоянной Планка:

$$\frac{dV_0}{d\omega} = \frac{\hbar}{e} \implies \hbar = 0.5237 \cdot 10^{-15} \cdot 1,602 \cdot 10^{-19} \approx (0.9511 \pm 0.2376) \cdot 10^{-34} \, \text{Дж} \cdot \text{с}$$

В пределах погрешности это согласуется с табличным значением $\hbar=1{,}054\cdot 10^{-34}$ Дж \cdot с. Нетрудно также оценить красную границу спектра:

$$\omega_{\kappa} = (1.812 \pm 0.625) \cdot 10^{15} \text{ c}^{-1} \implies \lambda_{\kappa} = \frac{2\pi c}{\omega_{\kappa}} = 9860 \pm 3401 \mathring{A}$$

И найти работу выхода

$$W = \hbar \omega_{\kappa} = 1.03 \pm 0.34 \; \mathrm{9B}$$

3. Вывод

Таким образом, в ходе выполнения работы мы убедились в явлении фотоэффекта и с помощью уравнения Эйнштейна измерили постоянную Планка, а также оценили красную границу спектра и работу выхода для нашей установки. Результаты вполне согласуются с табличными.