Interrogation écrite n°11

NOM: Prénom: Note:

1. Soit E un espace vectoriel de dimension 3 et $\mathfrak{u}\in\mathcal{L}(\mathsf{E})$ tel que $\mathfrak{u}^2=0$ et $\mathfrak{u}\neq0$. Déterminer le rang de \mathfrak{u} .

2. On note E l'ensemble des fonctions continues sur [0,1]. Montrer que l'ensemble H des fonctions $f \in E$ telles que $\int_0^1 f(t) \ dt = 0$ est un hyperplan de E. Donner un supplémentaire de H dans E.

3. On considère $\mathbb C$ comme un $\mathbb R$ -espace vectoriel. Montrer que l'application s: $\left\{ \begin{array}{ccc} \mathbb C & \longrightarrow & \mathbb C \\ z & \longmapsto & \overline z \end{array} \right.$ est une symétrie par rapport à un sous-espace vectoriel $\mathbb F$ et parallélement à un sous-espace vectoriel $\mathbb G$ que l'on précisera.

4. Déterminer l'ensemble F des polynômes $P \in \mathbb{R}[X]$ tels que $P(X^2) = XP(X)$ puis montrer que F est un sous-espace vectoriel de $\mathbb{R}[X]$ dont on déterminera une base.