Appendix M

Princeion EP cover MAY '91

RESEARCH FOCUS

\sim 2kW to \sim 30 kW

- * Anode losses are dominant
- Frozen flow losses are present* Cathode erosion is important

\sim 30 kW to \sim 200 kW

- * Anode losses are important
- * Frozen flow losses are important
- * Cathode erosion is important

≥200 kW-

- * Frozen flow losses are dominant
- Anode losses; an engineering challenge
- * Cathode erosion is important

Princeton EP #4 MAY '91

MPD Thruster Power Partitioning

PAST ACCOMPLISHMENTS

- 1. Detailed kinetic description of electrostatic and electromagnetic stability of current-carrying, collisional and flowing plasma.
- 2. Dispersion tensor reveals dominant unstable modes of the self-field MPD thruster.
- 3. Experiments confirm linear current-driven instabilities at levels below "critical" total current.
- 4. kW-level experiments confirm these instabilities.

CURRENT RESEARCH

- 1. Estimations of momentum and energy exchange rates between particles and unstable waves.
- 2. Improved transport models include plasma turbulence effects.
- 3. Numerical model (2-D MHD vectorized code) of MPD thruster.
- 4. Evaluation of turbulence suppression by:
 - a. Propellant choice and seeding

 - b. Better magnetic field topology
 c. Geometry-induced scaling of current density
 - d. Active radio frequency turbulence suppression

Princeton EP #12 MAY '91

Processor ET #15 MAY No.

Process IP • + MA- +