EC1340-Fall 2023 Midterm solutions October 25, 2023 Matt Turner

- 1. Idiosyncratic
- 2. Idiosyncratic
- 3. Let

 $C\sim$ Tons of Carbon mitigation $p_c\sim$ unit cost of mitigation $p_cC\sim$ Total cost of mitigation

The first two problems should have resulted in an estimate of C and p_cC for your policy. Use C to calculate the implied change in climate from your policy.

1ppm C is 2.12 GtC and of each ton of emissions, 0.55 stays in the atmosphere. Thus 1 ton of emissions results in $\frac{0.55}{2.12\times10^9}\approx\frac{1}{3.8\times10^9}$ ppm. Thus, C tons results in a change in concentration of $\approx\frac{C}{3.8\times10^9}$ ppm.

Using Nordhaus' estimate of climate sensitivity, doubling atmospheric concentration from 280 to 560ppm give 3 degrees Celsius of warming by 2100.

Thus, C tons of emissions gives $\frac{C}{3.8\times10^9}\times\frac{3}{280}$ degrees of warming by 2100. Call this change ΔT^*

4. Calculate the flow of damages from this ΔT^* . You can either use Nordhaus' damage function, given in slides #4 slide 50, or $\gamma=0.01$ from slide 55 of slides #5. The second way is easier.

From the equation 6 of BDICE

$$c_2 = [(1+r) - (\delta T^*)]I$$

= $[1+r - \gamma(\delta T^*)]I$

so ΔT^* causes a $0.01\Delta T^*$ percent decrease in future consumption.

Let W_1 denote future consumption. This should be a value calculated from current GDP. For example, if g=1.03 and we are thinking about W_1 happening in 80 years, then $W_1\approx 1.03^{80}\times \text{Current GDP}$.

Let the annual cost/benefit of your policy starting in 2100 be $0.01 \times \Delta T^* \times W_1 \equiv \Delta W_1^*$.

5. Suppose we experience the benefit ΔW_1^* every year from 2100 on. Then the discount present value of this flow of benefits is

$$V^* = \sum_{t=78}^{\infty} \delta^t \Delta W_1^*$$
$$= \delta^{78} \sum_{t=0}^{\infty} \delta^t \Delta W_1^*$$
$$= \frac{\delta^{78}}{1 - \delta} \Delta W_1^*$$

You should evaluate this last expression for r=0.03 (or some other particular r, or $\delta=1/(1.03)$

Thus,
$$V^* \approx (0.97)^{78} \frac{1}{1-1.03} \Delta W_1^*$$

A policy is a good idea if the discount present value of benefits, V^* is large compared to the total value of the policy, p_cC that you calculated in part 2. If your policy has a price per ton of mitigation above 400tC, the highest tax on Carbon tax that any of Stern/Gor/Nordhaus propose, then it is probably not a good idea.