```
In [38]: import numpy as np
         import seaborn as sns
         import matplotlib.pyplot as plt
         import pandas as pd
In [39]: url = 'https://raw.githubusercontent.com/Mauliklm10/Cartwheel.csv/master/datasetN
         df = pd.read csv(url)
In [40]: df.head()
Out[40]:
             SEQN ALQ101 ALQ110 ALQ130 SMQ020 RIAGENDR RIDAGEYR RIDRETH1 DMDCITZN
                                                                                            DI
            83732
                       1.0
                              NaN
                                       1.0
                                                1
                                                           1
                                                                    62
                                                                                        1.0
          1 83733
                       1.0
                              NaN
                                       6.0
                                                1
                                                           1
                                                                    53
                                                                               3
                                                                                        2.0
            83734
                                                                               3
                       1.0
                              NaN
                                      NaN
                                                1
                                                           1
                                                                    78
                                                                                        1.0
            83735
                       2.0
                               1.0
                                       1.0
                                                2
                                                           2
                                                                    56
                                                                               3
                                                                                        1.0
            83736
                                                2
                                                           2
                                                                    42
                                                                               4
                       2.0
                               1.0
                                       1.0
                                                                                        1.0
         5 rows × 28 columns
In [41]: df.DMDEDUC2.value_counts()
Out[41]: 4.0
                 1621
         5.0
                 1366
         3.0
                 1186
         1.0
                  655
         2.0
                  643
         9.0
                    3
         Name: DMDEDUC2, dtype: int64
In [42]: df.shape # to get the rows and columns
Out[42]: (5735, 28)
In [43]: df.DMDEDUC2.value counts().sum()
         # to get the rows in DMDEDUC2
Out[43]: 5474
In [44]: # b[0]-a or
         pd.isnull(df.DMDEDUC2).sum() # to find the null/mssing values
Out[44]: 261
```

```
In [45]: # we created a new variable and gave the numbers above a better meaning
         df['DMDEDUC2x'] = df.DMDEDUC2.replace({1: "<9", 2: "9-11",</pre>
                                               3: "HS grad", 4: "Undergrad",
                                               5: "Graduate", 7: "Refused",
                                               9: "Don't know"})
         df.DMDEDUC2x.value_counts()
Out[45]: Undergrad
                       1621
         Graduate
                       1366
         HS grad
                       1186
         <9
                        655
         9-11
                        643
         Don't know
                          3
         Name: DMDEDUC2x, dtype: int64
In [46]: # we will create a new variable for gender
         df['RIAGENDRx'] = df.RIAGENDR.replace({1: 'Male', 2: "Female"})
In [47]: x = df.DMDEDUC2x.value counts()
         x/x.sum()
Out[47]: Undergrad
                       0.296127
         Graduate
                       0.249543
         HS grad
                       0.216661
         <9
                       0.119657
         9-11
                       0.117464
         Don't know
                       0.000548
         Name: DMDEDUC2x, dtype: float64
In [48]: df['DMDEDUC2x'] = df.DMDEDUC2x.fillna('Missing')
         x = df.DMDEDUC2x.value_counts()
         x / x.sum()
Out[48]: Undergrad
                       0.282650
         Graduate
                       0.238187
         HS grad
                       0.206800
         <9
                       0.114211
         9-11
                       0.112119
         Missing
                       0.045510
         Don't know
                       0.000523
         Name: DMDEDUC2x, dtype: float64
```

```
In [49]: df.BMXWT.dropna().describe()
Out[49]: count
                  5666,000000
         mean
                    81.342676
                    21.764409
         std
                    32.400000
         min
         25%
                    65.900000
         50%
                    78.200000
         75%
                    92,700000
         max
                    198.900000
         Name: BMXWT, dtype: float64
In [50]: \# x = df.BMXWT.dropna()
         # using pandas
         print(x.mean())
         print(x.median())
         print(x.quantile(0.75))
         # using numpy
         print(np.mean(x))
         print(np.percentile(x, 50))
         print(np.percentile(x, 75))
         819.2857142857143
         655.0
         1276.0
         819.2857142857143
         655.0
         1276.0
In [51]: # proportion of subjects who are pre hypertension based
         # on their systolic bp
         np.mean((df.BPXSY1 >= 120) & (df.BPXSY2 <= 139))</pre>
Out[51]: 0.3741935483870968
In [52]: # proportion of subjects who are pre hypertension based
         # on their diastolic bp
         np.mean((df.BPXDI1 >= 80) & (df.BPXDI2 <= 89))
Out[52]: 0.14803836094158676
In [53]: # to check how many people are pre hypertension by using EITHER OR systolic or di
         a = (df.BPXSY1 >= 120) & (df.BPXSY2 <= 139)
         b = (df.BPXDI1 >= 80) & (df.BPXDI2 <= 89)
         print(np.mean(a | b))
         0.43975588491717527
```

```
In [54]: # to check how many people are pre hypertension by using AND systolic and diastol
a = (df.BPXSY1 >= 120) & (df.BPXSY2 <= 139)
b = (df.BPXDI1 >= 80) & (df.BPXDI2 <= 89)
print(np.mean(a & b))</pre>
```

0.08247602441150828

In [55]: # People are measured 3 times to take into account for people who may have higher
be taken care of by taking BP multiple times.
print(np.mean(df.BPXSY1 - df.BPXSY2))
print(np.mean(df.BPXDI1 - df.BPXDI2))

0.6749860309182343

0.3490407897187558

```
In [56]: sns.displot(df['BMXWT'].dropna(), kde = True)
```

Out[56]: <seaborn.axisgrid.FacetGrid at 0x1a13d7f5370>

In [57]: sns.boxplot(df['BMXWT'].dropna())

C:\Users\askma\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWar ning: Pass the following variable as a keyword arg: x. From version 0.12, the o nly valid positional argument will be `data`, and passing other arguments witho ut an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[57]: <AxesSubplot:xlabel='BMXWT'>

In [58]: sns.displot(df['BPXSY1'].dropna(), kde = True)

Out[58]: <seaborn.axisgrid.FacetGrid at 0x1a13d7ef5b0>


```
In [59]: sns.boxplot(data=df.loc[:,['BPXSY1','BPXSY2','BPXDI1','BPXDI2']])
plt.title('Comparisons')
plt.show()
```



```
In [60]: # Create age strata based on these cut points
df["Agegroup"] = pd.cut(df.RIDAGEYR,[18, 30, 40, 50, 60, 70, 80])
# Make the figure wider than default (12cm wide by 5cm tall)
plt.figure(figsize = (12, 5))
# Make boxplot of BPXSY1 stratified by age group
sns.boxplot(x = df['Agegroup'], y = df['BPXSY1'])
```

Out[60]: <AxesSubplot:xlabel='Agegroup', ylabel='BPXSY1'>


```
In [61]: # Create age strata based on these cut points
df["Agegroup"] = pd.cut(df.RIDAGEYR,[18, 30, 40, 50, 60, 70, 80])
# Make the figure wider than default (12cm wide by 5cm tall)
plt.figure(figsize = (12, 5))
# Make boxplot of BPXSY1 stratified by age group but now with
# GENDER separartion as well
sns.boxplot(x = df['Agegroup'], y = df['BPXSY1'], hue = "RIAGENDRx", data=df)
```

Out[61]: <AxesSubplot:xlabel='Agegroup', ylabel='BPXSY1'>


```
In [62]: df["Agegroup"] = pd.cut(df.RIDAGEYR,[18, 30, 40, 50, 60, 70, 80])
# Make the figure wider than default (12cm wide by 5cm tall)
plt.figure(figsize = (12, 5))
# Make boxplot of BPXSY1 stratified by age group but now with
# GENDER separartion as well but now we stratify first based
# on geder then on age
sns.boxplot(x = df['RIAGENDRx'], y = df['BPXSY1'], hue = "Agegroup", data=df)
```

Out[62]: <AxesSubplot:xlabel='RIAGENDRx', ylabel='BPXSY1'>


```
In [63]: df.groupby("Agegroup")["DMDEDUC2x"].value_counts()
```

Out[63]:	Agegroup	DMDEDUC2x	
	(18, 30]	Undergrad	364
		Graduate	278
		HS grad	237
		Missing	128
		9-11	99
		<9	47
	(30, 40]	Undergrad	282
		Graduate	264
		HS grad	182
		9-11	111
		<9	93
	(40, 50]	Undergrad	262
		Graduate	260
		HS grad	171
		9-11	112
		<9	98
	(50, 60]	Undergrad	258
		Graduate	220
		HS grad	220
		9-11	122
		<9	104
	(60, 70]	Undergrad	238
		HS grad	192
		Graduate	188
		<9	149
		9-11	111
	(70, 80]	Undergrad	217
		HS grad	184
		<9	164
		Graduate	156
		9-11	88
		Don't know	3
	Name: DMD	int64	

```
In [67]: dx = df.loc[~df.DMDEDUC2x.isin(["Don't know","Missing"]), :] # eliminate missing
    dx = df.groupby(['Agegroup','RIAGENDRx'])["DMDEDUC2x"].value_counts() # this give
    # out of DMDEDUC2x
    # dx = dx.value_counts()
    dx = dx.unstack()
    dx = dx.apply(lambda x: x/x.sum(), axis=1) # to get the proportions within each s
    print(dx.to_string(float_format="%.3f")) # simply limiting the proportion to 3 de
```

DMDEDUC2x		9-11	<9	Don't know	Graduate	HS grad	Missing	Undergr
Agegroup I	RTAGENDRX							
(18, 30] I		0.072	0.044	NaN	0.256	0.195	0.092	0.3
	Male	0.101	0.037	NaN	0.224	0.217	0.132	0.2
(30, 40] 35	Female	0.089	0.097	NaN	0.314	0.165	NaN	0.3
69	Male	0.151	0.103	NaN	0.251	0.227	NaN	0.2
(40, 50] 13	Female	0.110	0.106	NaN	0.299	0.173	NaN	0.3
62	Male	0.142	0.112	NaN	0.274	0.209	NaN	0.2
(50, 60] 02	Female	0.117	0.102	NaN	0.245	0.234	NaN	0.3
56	Male	0.148	0.123	NaN	0.231	0.242	NaN	0.2
(60 , 70] 93	Female	0.118	0.188	NaN	0.195	0.206	NaN	0.2
1 49	Male	0.135	0.151	NaN	0.233	0.231	NaN	0.2
(70, 80] 80	Female	0.105		0.002	0.149	0.239	NaN	0.2
ا 54	Male	0.112	0.179	0.005	0.236	0.214	NaN	0.2