Estimate

Chterion

13.1, 13.2, 13.3, 13.4, 13.11, 13.13, 13.18, 13.19, 13.28, 14.16

$$\frac{1}{2} \sum_{i=1}^{n} X_{i} (Y_{i} - X_{i}^{T} \beta) = 0$$

$$\frac{1}{2} \sum_{i=1}^{n} X_{i} (Y_{i} - X_{i}^{T} \beta) = 0$$

$$e^2 = 2^1 \Upsilon + n$$

$$e^2 - 2' Y = n$$

$$W = (2^{1}2)^{-1} \quad E[e^{2}12] = \sigma^{2}$$

$$Consider \quad E[2e] = E[2] = E[2] = E[2\cdot0] = 0$$

$$\bar{q}_{n}(g) = \frac{1}{n} \sum_{i=1}^{n} \bar{z}_{i} (\gamma_{i} - \chi_{i}^{i} g) - 0$$

$$\frac{1}{N} (\hat{B} - B) = \left(\left(\frac{1}{N} X^{1} \frac{1}{B} \right)^{-1} \left(\frac{1}{N} \frac{1}{B^{1}} X^{1} \right)^{-1} \left(\frac{1}{N} \frac{1}{A^{1}} \frac{1}{B^{1}} \frac{1}{B$$

By the LLN and CMT, and since β is consistent $\hat{W} \rightarrow p \in [\exists z' (Y-X'\beta')]^{-1}$ = E[22' e2]-1

13.4 $V = (0'wQ)^{-1} Q'W \Omega W Q (Q'WQ)^{-1}$ a. W= 12

$$A^{0} = (G_{1} \nabla_{-1} G_{2})_{-1} G_{1} \nabla_{-1} \nabla_{-1} O (G_{1} \nabla_{-1} G_{2})_{-1}$$

$$A = \nabla_{-1}$$

$$A = C_{1} MG_{1} G_{2} M T M G_{2} G_{1} MG_{3}$$

= (0'2'0)' 0'2'0 (0'2'4)-= (0'2-10)-1

b. Let
$$A = WQ(Q'WQ)^{-1}$$
 and

B = 12-10 (0, 12-10)-1

Then

 $V = A' \Omega A = (Q'WQ)^{-1} Q'W \Omega W Q (Q'WQ)^{-1}$ and VA = B' DB = (Q' D-10)-1

C.
$$B^{1}\Omega A = (Q^{1}\Omega^{-1}Q)^{-1}Q^{-1}\Omega$$

as if bn=0.

J=
$$ngn(\hat{B})'\hat{\Omega}^{-1}gn(\hat{B})$$

a. Let H be an orthonormal matrix and Δ be a diagonal matrix such that $\Omega = H\Delta H$.

Let $C = H\Delta^{1/2}$. Then $\Omega^{-1} = H\Delta^{-1}H^{-1} = CC^{-1}$.

Since c is inversible, $\Omega = c^{1-1}c^{-1}$

b. Since C is invertible,

=n(c'gn(B))c" 1 c"(c'gn(B)) = n (c'an(B) (c'Ac) (c'an(B))

= e- X(B-B)

= Dn C'gn(B)

= = Z'X →p E [ZiXi] KX13 -> E[X; si]

Dn ->p IL C'E[&; xi'](E[xi*i] & C'E[&; xi]) E[xi*i] & c'c' c'-1

= Il - R(R'R)"R' where R=C'E[=X']

d. First note 2 -p 1 = 2-1 c-1

Then by the CMT,

(= e - X(x | £ | £ | £ | 2 | 2 | e |

= c' = z'e - + c'z'x (x'z.ñ'z'x) (xb.ñ-'z'e) =[IL-c'z'x(x'z)[x'z'x](xbî-'c')]c'+z'e

J=ngn(B) _ (B) qn(B)

c. First nate ê=Y-xB

Then c'(gn(B)) = c' \ z'ê

gn= | Z; =(=(Y- X'B)

13.13. Y=X'B+e, E[ze]=0

Let
$$\hat{\Omega}$$
 be a consistent estimator of Ω .
Then $\hat{\beta}$ simm = $(X^1 \neq \hat{\Omega}^{-1} \neq X)^{-1} (X^{\prime} \neq \hat{\Omega}^{-1} \neq Y)$

$$\Omega = \mathbb{E}[g_i(u)g_i(u)]^{T}$$

$$= \begin{bmatrix} var(y_i) & cov(y_i,x_i) \\ cov(y_i,x_i) & var(x_i) \end{bmatrix}$$

$$= \begin{bmatrix} \sigma^2 y & \sigma xy \\ \sigma xy & \sigma^2 x \end{bmatrix}$$

$$J'(\hat{\mu}) = 0 \rightarrow -2\sigma_X^2(\bar{y}-\hat{\mu}) + 2\sigma_{Xy}\bar{x} = 0$$

$$\rightarrow \hat{\mu} = \bar{y} - \sigma_{Xy}\bar{x}$$

$$= \bar{y} - \hat{\sigma}_{Xy}\bar{x}$$

$$\hat{\sigma}_{x}^2$$

where oxy and ox are consistent estimators for oxy and ox.

13.28,

a. 2SLS:

		Robust				
lwage	Coef.	Std. Err.	Z	P> z	[95% Conf.	. Interval]
edu	.1610916	.0404709	3.98	0.000	.0817702	.2404131
exp	.1193108	.0181653	6.57	0.000	.0837075	.1549141
exp2per	2305416	.0367518	-6.27	0.000	3025738	1585094
south	0950355	.0217387	-4.37	0.000	1376427	0524283
black	1017274	.0439722	-2.31	0.021	1879113	0155435
urban	.1164481	.02627	4.43	0.000	.0649599	.1679363
cons	3.268014	.6821174	4.79	0.000	1.931088	4.604939

Instrumented: edu

Instruments: exp exp2per south black urban public private

PWW:

Instrumental varia	bles (GMM)	regression	Number of obs	=	3,010
			Wald chi2(6)	=	715.88
			Prob > chi2	=	0.0000
			R-squared	=	0.1433
GMM weight matrix:	Robust		Root MSE	=	.41071

lwage	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
edu	.1615162	.0405052	3.99	0.000	.0821275	.2409049
exp	.1195553	.018182	6.58	0.000	.0839192	.1551913
exp2per	2315108	.036812	-6.29	0.000	3036609	1593607
south	0953557	.0217546	-4.38	0.000	1379939	0527175
black	1011997	.0440045	-2.30	0.021	187447	0149524
urban	.1150211	.0262525	4.38	0.000	.0635671	.1664751
cons	3.261881	.6827035	4.78	0.000	1.923806	4.599955

Instrumented: edu

Instruments: exp exp2per south black urban public private

2SLS: **b**.

Instrumental variables (2SLS) regression

Number of obs 3,010 Wald chi2(6) 1018.86 = Prob > chi2 0.0000 R-squared 0.2891 =

0.000

Root MSE .37412 Robust lwage Coef. Std. Err. P> z [95% Conf. Interval] 0.000 edu .0825386 .0062178 13.27 .070352 .0947252 .087094 .0070498 12.35 0.000 .0732766 .1009115 exp -7.03 0.000 -.2873872 exp2per -.2247205 .0319734 -.1620538 south -.1219401 .0154109 -7.91 0.000 -.152145 -.0917352 black -.1810215 .0180273 -10.04 0.000 -.2163544 -.1456887 urban .1570178 .0152781 10.28 0.000 .1270732 .1869623

41.49

edu Instrumented: exp exp2per south black urban public private pubage pubage2 Instruments:

.1106351

GMM:

_cons

Instrumented:

Instrumental variables (GMM) regression

GMM weight matrix: Robust

edu

4.590107

Wald chi2(6) 1020.21 Prob > chi2 = 0.0000 R-squared 0.2886

Root MSE

Number of obs

4.373266

4.806948

3,010

.37425

Robust lwage Coef. Std. Err. P> | z | [95% Conf. Interval] edu .0838525 .0062069 13.51 0.000 .0716872 .0960177 .0876355 .0070531 12.43 0.000 .0738116 .1014594 exp exp2per -.2249305 .0320052 -7.03 0.000 -.2876595 -.1622015 -.1244904 .0153914 -8.09 south 0.000 -.1546571 -.0943237 black -.1774914 .017986 -9.87 0.000 -.2127433 -.1422396 urban .152938 .0152107 10.05 0.000 .1231255 .1827505 _cons 4.569933 .1105307 41.35 0.000 4.353296 4.786569

exp exp2per south black urban public private pubage pubage2 Instruments:

C. For (a) the fest of over 1D had Hansen's J 22 = 0.869, p=0.3511. For (6) the test of over10 had Hansen's $T \chi^2 = 10.4389$, p = 0.0152. This may be due to small sample size or a need to revise the model.

17.15.

	dynamic pane	l-data estim	ation		of obs		751
	Group variable: id					=	146
Time variable:	year			01			
				Obs per	-		
						n =	5 254204
						_	5.364286
					ma	x =	7
Number of inst	ruments =	29		Wald ch	i2(1)	=	77.63
					chi2		0.0000
One-step resul	ts						
		(Std. Err	. adjuste	d for clu	ster	ing on id)
				****			1 2 2 2 2
		Robust					
k	Coef.	Std. Err.	z	P> z	[95% C	onf.	Interval
	Coef.		Z	P> z	[95% C	onf.	Interval]
k		Std. Err.					
	Coef.		z 8.81	P> z 0.000	[95% C		Interval]
k L1.	.9357448	Std. Err.	8.81	0.000	.72759	23	1.143897
k		Std. Err.	8.81	0.000		23	
k L1. _cons	.9357448	.1062022 .0439518	8.81	0.000	.72759	23	1.143897
k L1. _cons	.9357448062468	.1062022 .0439518 d equation	8.81	0.000	.72759	23	1.143897
k L1cons	.9357448062468 or difference	.1062022 .0439518 d equation	8.81	0.000	.72759	23	1.143897

b.	System dynamic	•	estimation		Number			
D .	Group variable Time variable:				Number	ot group)S =	146
	Time variable:	year			Obs per	anoun:		
					ous per		nin =	6
								6.364286
							nax =	0.304200
						"	iax -	•
	Number of inst	ruments =	36		Wald ch	i2(1)	=	2213.64
					Prob >	chi2	=	0.0000
	One-step results							
		100	Robust					200
	k	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval
	k							
	L1.	1.100816	.0233971	47.05	0.000	1.054	1958	1.146673
	133773							
	cons	.0057373	.0173146	0.33	0.740	0281	986	.0396732
	_cons			0.33	0.740	0281	.986	.03967
	GMM-type: L(2/.).k Instruments for level equation							
		pe: LD.k						

C. A-B has a weak instrument if the true coefficient ≈1. Since our model has a coefficient close to 1, this may be a potential issul.

The B-B estimator adds an assumption of stationarity but avoids a weak instrument problem. The standard deviation for B-B is small compared to A-B, which is because of the potential weak instrument in the A-B widel.