Trustworthy Boolean Reasoning 1B: Unsatisfiability Proofs

Randal E. Bryant

Carnegie Mellon University

June, 2022

Important Ideas for These Lectures

- SAT solvers are useful tools
 - Many practical problems reducible to SAT
 - Need to learn effective encoding techniques
- ▶ For many applications, formulas should be unsatisfiable
 - Program should generate a checkable proof
 - ► There is a well-developed proof infrastructure
- Binary Decision Diagrams (BDDs) can play important role
 - In supplementing current SAT algorithms
 - In proof generation

Example Formula

DIMACS Format

- Standard for all solvers
- Positive integers for variables
- Negative integers for their negations
- Lists terminated with 0

ID	Clause	DIMACS Encoding
		p cnf 4 6
1	$\overline{a} \lor \overline{b} \lor \overline{c}$	-1 -2 -3 0
2	$\overline{a} \lor \overline{b} \lor c$	-1 -2 3 0
3	$a ee \overline{d}$	1 -4 0
4	$a \lor d$	1 4 0
5	$b ee \overline{d}$	2 -4 0
6	$b \lor d$	2 4 0

Example Proof

▶ Derive empty clause ⊥ through set of resolution steps

But how can a program find such a proof?

Unit Propagation

Unit clauses

- ▶ If formula contains clause (x), then x must be assigned 1.
- ▶ If formula contains clause (\overline{x}) , then x must be assigned 0.

Propagating Unit Literal ℓ

- ▶ If $\ell \in C$ and $\ell = 0$, then $C \leftarrow C \{\ell\}$
- ▶ If $\ell \in C$ and $\ell = 1$, then C satisfied
- ▶ If any clause becomes unit, then iterate

Step	Formula	Units
1	$(\mathbf{a} ee \overline{\mathbf{c}}) \wedge (\overline{\mathbf{a}} ee \overline{\mathbf{b}} ee \overline{\mathbf{c}}) \wedge (\mathbf{a} ee \mathbf{b} ee \mathbf{c}) \wedge (\mathbf{c})$	c = 1
2	$(a \lor \overline{c}) \land (\overline{a} \lor \overline{b} \lor \overline{c}) \land (a \lor b \lor c) \land (c)$	a = 1
3	$({\color{red} a} \lor \overline{c}) \land (\overline{a} \lor \overline{b} \lor \overline{c}) \land ({\color{red} a} \lor {\color{red} b} \lor {\color{red} c}) \land ({\color{red} c})$	b = 0
_	$(a \lor \overline{c}) \land (\overline{a} \lor \overline{b} \lor \overline{c}) \land (a \lor b \lor c) \land (c)$	

Basic CDCL Operation

Conflict-Driven Clause Learning

- Algorithm in state-of-the art solvers
- Search, but learn from dead ends

```
while(True):
    depth \leftarrow 0
    while(True):
         UnitPropagate()
         if all clauses satisfied
              return solution
         if ConflictDetected():
              Generate conflict clause
              break
         Choose variable and assign 0 or 1
         depth \leftarrow depth + 1
    if depth = 0:
         return UNSAT
```

▶ No initial unit propagations

•

ID	Clause	UProp?
1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
2	$\overline{a} \lor \overline{b} \lor c$	
3	$a ee \overline{d}$	
4	$a \lor d$	
5	$b \vee \overline{d}$	
6	$b \lor d$	

▶ Setting b = 0 causes conflict. Learn clause b.

ID	Clause	UProp?
1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
2	$\overline{a} \lor \overline{b} \lor c$	
3	$a ee \overline{d}$	
4	$a \lor d$	
5	$b \vee \overline{d}$	*
6	$b \lor d$	*
7	Ь	

▶ Unit propagate b. No conflict

ID	Clause	UProp?
1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
2	$\overline{a} \lor \overline{b} \lor c$	
3	$a \lor \overline{d}$	
4	$a \lor d$	
5	$b ee \overline{d}$	
6	$b \lor d$	
7	Ь	

▶ Setting c = 1 causes conflict. Learn clause \overline{c} .

ID	Clause	UProp?
1	$\overline{a} \lor \overline{b} \lor \overline{c}$	*
2	$\overline{a} \lor \overline{b} \lor c$	
3	$a ee \overline{d}$	*
4	$a \lor d$	*
5	$b ee \overline{d}$	
6	$b \lor d$	
7	Ь	*
8	<u></u> <u> </u>	

▶ Unit propagate b and \overline{c} . Causes conflict. UNSAT!

ID	Clause	UProp?
1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
2	$\overline{a} \lor \overline{b} \lor c$	*
3	$a ee \overline{d}$	*
4	$a \lor d$	*
5	$b ee \overline{d}$	
6	$b \lor d$	
7	Ь	*
8	<u></u> <u> </u> <u></u>	*
9	\perp	

Proof from CDCL Run

Proof Follows Branching Structure of CDCL

Reverse Unit Propagation (RUP)

Purpose

- Simple and efficient rule for use by proof checkers
- Good match to operation of CDCL solvers

Operation

- ► Each RUP application forms one step of unsatisfiability proof
- ▶ Performs a linear sequence of resolutions steps + subsumption

Objective

- ▶ $C = \{\ell_1, \ell_2, \dots, \ell_m\}$ Clause to be added to proof
- ▶ $D_1, D_2, ..., D_k$ Previous clauses ("Antecedents")
- ▶ Prove: $D_1 \wedge D_2 \wedge \cdots \wedge D_k \rightarrow C$

Reverse Unit Propagation (RUP)

Objective

- $ightharpoonup C = \{\ell_1, \ell_2, \dots, \ell_m\}$ Clause to be added to proof
- ▶ $D_1, D_2, ..., D_k$ Previous clauses ("Antecedents")
- ▶ Prove: $D_1 \land D_2 \land \cdots \land D_k \rightarrow C$

Method

- Assume $\neg C = \overline{\ell}_1 \wedge \overline{\ell}_2 \wedge \cdots \wedge \overline{\ell}_m$
 - m unit clauses!
- ▶ Show contradiction with $D_1 \wedge D_2 \wedge \cdots \wedge D_k$
 - ightharpoonup Accumulate unit clauses, starting with those for $\neg C$.
 - Accrue more unit clauses from D_1, D_2, \dots, D_{k-1} .
 - \triangleright When encounter D_k , should have contradiction

ID	Clause	Antecedents
C_1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
C_2	$\overline{a} \lor \overline{b} \lor c$	
C_3	$a \vee \overline{d}$	
C_4	$a \lor d$	
C_5	$b ee \overline{d}$	
<i>C</i> ₆	$b \lor d$	

ID	Clause	Antecedents
C_1	$\overline{a} \vee \overline{b} \vee \overline{c}$	
C_2	$\overline{a} \lor \overline{b} \lor c$	
C_3	$a ee \overline{d}$	
C_4	$a \lor d$	
C_5	$b ee \overline{d}$	
C_6	$b \lor d$	
C ₇	b	C_5, C_6

$$b \mid \frac{\overline{b}}{C_5} \qquad \frac{\overline{d}}{C_6} \qquad \bot$$

	ID	Clause	Antecedents
	C_1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
	C_2	$\overline{a} \lor \overline{b} \lor c$	
	C_3	$a \vee \overline{d}$	
	C_4	$a \lor d$	
	C_5	$b ee \overline{d}$	
	C_6	$b \lor d$	
	C ₇	Ь	C_5, C_6
	<i>C</i> ₈	\overline{c}	C_7, C_1, C_3, C_4
C		b ā	\overline{d} \perp
	C_7	C_1	C_3 C_4

ID	Clause	Antecedents
C_1	$\overline{a} \vee \overline{b} \vee \overline{c}$	
C_2	$\overline{a} \lor \overline{b} \lor c$	
C_3	$a ee \overline{d}$	
C_4	$a \lor d$	
C_5	$b ee \overline{d}$	
C_6	$b \lor d$	
C ₇	b	C_5, C_6
<i>C</i> ₈	<u>c</u>	C_7, C_1, C_3, C_4
C_9	\perp	C_7, C_8, C_2, C_3, C_4
	b \overline{c}	\overline{a} \overline{d}
C ₇	C ₈	C_2 C_3 C_4

Proof File Examples

Proof	
C ₇ b	C_5, C_6
$C_8 \overline{c}$	C_7, C_1, C_3, C_4
C_9 \perp	C_7, C_8, C_2, C_3, C_4
DRAT Proof File	
2 0	
-3 0	
0	

LRAT F	Proof File	
7	2 0	5 6 0
8	-3 0	7 1 3 4 0
9	0	7 8 2 3 4 0

Proof Checking Infrastructure

Operation:

- ▶ Drat-Trim adds antecedents to proof steps
- ► LRAT checker simply checks each proof step

LRAT Checkers:

- ► LRAT-CHECK written in C.
 - ► Fast and high capacity
 - ▶ Designed to be simple enough to easily understand
- ► Formally verified ones. Built on ACL2, Coq, HOL, ...
 - ▶ Integrity not compromised if solver or DRAT-TRIM has bug

Resolution and CDCL

$CDCL \approx Resolution$

- ► Strength: CDCL solver can readily generate resolution proofs
- ► Weakness: Lower bound on performance

Example: Pigeonhole Principle(PHP)

- Problem:
 - \triangleright *n* holes, n+1 pigeons
 - Assign pigeons to holes:
 - Each pigeon is assigned to some hole
 - ► Each hole has at most one pigeon
- SAT Encoding:
 - ▶ Variables: $p_{i,j}$: Pigeon j in hole i. $1 \le i \le n$, $1 \le j \le n+1$.
 - \triangleright n+1 at-least-one constraints
 - n at-most-one constraints
 - ► O(n³) total clauses
- ightharpoonup PHP(n) resolution proofs are exponential in n [Haken, 1985]

Parity Benchmark

- ► Chew and Heule, SAT 2020
- ▶ For random permtuation π :

```
x_1 \oplus x_2 \oplus \cdots \oplus x_n = 1 Odd parity x_{\pi(1)} \oplus x_{\pi(2)} \oplus \cdots \oplus x_{\pi(n)} = 0 Even parity
```

- Conjunction unsatisfiable
- Very challenging for CDCL solvers
- Unit propagation of limited value
 - ► *k*-way parity constraint
 - ▶ Only propagate when k-1 variables assigned

Parity Benchmark Runtime

- ► KISSAT: State-of-the-art CDCL solver
- ► Tried 3-different seeds for each value of n
- ▶ Limited to $n \le 42$ within 600 seconds

Extended Resolution

Tseitin, 1967

Can introduce extension variables

- Variable z that has not yet occurred in proof
- Must add defining clauses
 - ▶ Encode constraint of form $z \leftrightarrow F$
 - ▶ Boolean formula z over input and earlier extension variables

Extension variable z becomes shorthand for formula F

Repeated use can yield exponentially smaller proof

Similar to use of encoding variables in SAT formulas

- ► That's why they're called "Tseitin variables"
- ▶ But here they become part of proof, not of input formula

Extended RUP Proof Example

ID	Clause	Antecedents
C_1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
C_2	$\overline{a} \lor \overline{b} \lor c$	
C_3	$a ee \overline{d}$	
C_4	$a \lor d$	
C_5	$b \vee \overline{d}$	
<i>C</i> ₆	$b \lor d$	

Strategy

▶ Use z to encode $a \land b$.

▶ E.g., C_1 becomes $\overline{z} \vee \overline{c}$.

Extended RUP Proof Example

ID	Clause	Antecedents
C_1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
C_2	$\overline{a} \lor \overline{b} \lor c$	
C_3	$a ee \overline{d}$	
C_4	$a \lor d$	
C_5	$b ee \overline{d}$	
C_6	$b \lor d$	
C ₇	$\overline{z} \lor a$	Defining Clauses
C ₈	$\overline{z} \lor b$	
C_9	$z ee \overline{a} ee \overline{b}$	

Extended RUP Proof Example

ID	Clause	Antecedents
C_1	$\overline{a} \lor \overline{b} \lor \overline{c}$	
C_2	$\overline{a} \lor \overline{b} \lor c$	
C_3	$a ee \overline{d}$	
C_4	$a \lor d$	
C_5	$b ee \overline{d}$	
C_6	$b \lor d$	
<i>C</i> ₇	$\overline{z} \lor a$	Defining Clauses
<i>C</i> ₈	$\overline{z} \lor b$	
C_9	$z \vee \overline{a} \vee \overline{b}$	
C_{10}	$\overline{z} \vee \overline{c}$	C_7, C_8, C_1
C_{11}	\overline{Z}	C_7, C_8, C_2, C_{10}
C_{12}	d	C_4, C_6, C_9, C_{11}
C_{13}	\perp	$C_{12}, C_3, C_5, C_9, C_{11}$

Bryant: SSFT22 $19 \ / \ 20$

Can Extended Resolution Yield Faster SAT Solvers?

PHP Proof Complexity

- Exponential for ordinary resolution
- ▶ $O(n^4)$ for extended resolution [Cook, 1976]

Use in SAT?

- No clear way to choose which formulas to abbreviate
- No clear way to shorten search by using abbreviations