Modèles de sous-espaces pour la découverte d'unités acoustiques

Lucas Ondel, Bolaji Yusuf

Université technique de Brno , Faculté des technologies de l'information Božetěchova 1/2. 612 66 Brno - Královo Pole {iondel,xyusuf00}@fit.vutbr.cz

Découverte d'unités acoustiques

Définition Applications

Etat de l'art

Approches principales Evaluations

Modèles de sous-espace pour la DUA

Motivations Le sous-espace de MMC Le sous-espace hiérarchique de MMC

Découverte d'unités acoustiques

Définition Applications

Etat de l'art

Approches principales Evaluations

Modèles de sous-espace pour la DUA

Monvanons Le sous-espace de MMC Le sous-espace hiérarchique de MM(

Découverte d'unités acoustiques

Définition

Applications

Etat de l'art

Approches principales Evaluations

Modèles de sous-espace pour la DUA

Le sous-espace de MMC Le sous-espace hiérarchique

Définition

- En entrée: enregistrements audios sans transcription
- En sortie:
 - un inventaire de simili-phones (appelés "unités acoustiques")
 - segmentation et transcriptions

Apprendre comme un bébé

Découverte d'unités acoustiques

Définition Applications

Etat de l'art

Approches principales Evaluations

Modèles de sous-espace pour la DUA

Motivations Le sous-espace de MMC Le sous-espace hiérarchique de MM

Documentation des langues en danger

- La diversité culturelle diminue à l'échelle mondiale
 - technologies de la parole sont disponible pour seulement une poignée de langue
 - une majorité des langues sont orales: impossible d'appliquer les technologies actuelles
- Un système efficace de DUA pourrait:
 - aider les linguistes à documenter langues à risques
 - servir de bloc de base pour construire des technologies de la parole pour les langues non écrites
- 2022-2032: Décennie des langues autochtones → UNESCO website

Un modèle de l'apprentissage humain

- Les processus cognitifs d'apprentissage chez l'humain sont mal connus:
 - le cerveau est un organe complexe
 - l'apprentissage de la parole se passe alors que l'enfant ne peux pas communiquer verbalement
- Approche par rétro-ingénierie ("E. Dupoux. 2018")
 - construisons un système capable d'apprendre la parole de manière non supervisée
 - analyse du système pour en tirer des principes généraux sur l'apprentissage

Des alternatives à l'apprentissage profonds

- Le "toujours plus de données" soulève de nombreux problèmes:
 - sociaux/éthiques: monopole des technologies de l'apprentissage par les propriétaires de large base données
 - écologiques: plus de données demande plus d'énergie
- La recherche sur la DUA implique nécessairement des modèles d'apprentissage économes en données

Figure: Consommation d'énergie pour l'entrainement de modèles d'apprentissage profond. Source: Strubell et al, 2019

Découverte d'unités acoustiques

Définition Applications

Etat de l'art

Approches principales
Evaluations

Modèles de sous-espace pour la DUA

Motivations Le sous-espace de MMC Le sous-espace hiérarchique de MMC

Découverte d'unités acoustiques

Définition Applications

Etat de l'art

Approches principales

Modèles de sous-espace pour la DUA

Motivations Le sous-espace de MMC Le sous-espace hiérarchique de MMC

Un bref historique

- modèles basés sur des heuristiques: $\sim 1990 2005$
- modèles bayesiens non-paramétriques : \sim 2005 2020
- modèles basés sur des réseaux de neurones: ~ 2015 − 2020

Modèles basés sur des réseaux de neurones TEIT

- VAE-HMM: Auto-encodeur avec un Modèle de Markov Caché (MMC) comme distribution a priori.
- réseaux de neurones supervisé par des images
- VQ-VAE: Auto-encodeur avec une couche de discrétisation Link

Modèles bayesiens non paramétriques

- Modèles de segmentation des mots Link 1 Link 2
- Processus de Dirichlet MMC (2012)
- Processus de Dirichlet MMC avec inférence variationelle (2016)

Processus de Dirichlet MMC

Découverte d'unités acoustiques

Définition Applications

Etat de l'art

Approches principales
Evaluations

Modèles de sous-espace pour la DUA

Motivations Le sous-espace de MMC Le sous-espace hiérarchique de MMC

Métriques

p1	p2	р3	
au1	au2	au2	

- Partitionnement des segments (clustering):
 - Information Mutuelle Normalisé (IMN): $200 \frac{MI(X,Y)}{H(X)+H(Y)} \%$
 - Mesure la relation statistique en les UA découvertes et la transcription de comparaison
 - 100 % → bijection entre les UAs et les "vrais phones"
 - 0 % → les UAs ne donnent aucune information phonétique
- Segmentation:
 - F-score: moyenne harmonique entre la précision et le rappel entre les frontières des segments
 - \pm 20 ms de tolérance

Expérience

- Data:
 - Mboshi (Congo Brazzaville) 3-4 heures
 - Yoruba (West Africa Nigeria) 10 heures
 - English (TIMIT) 4 heures
- signal d'entrée: MFCCs + Δ + ΔΔ

Résultats

- Version adaptée de "Chorowski et al., 2019"
- Processus de Dirichlet MMC

Corpus	Système	IMN	F-Score	# unités
English	VQ-VAE	29.73	38.59	100
English	MMC	35.47	63.03	95
Mboshi	VQ-VAE 64	26.85	20.22	100
Mboshi	MMC	36.47	47.93	94
Yoruba	VQ-VAE 64	29.36	7.74	100
Yoruba	MMC	36.71	28.47	95

Table: Comparaison entre le modèle de base MMC et le VQ-VAE

Exemple

Résultats

- VQ-WAV2VEC "A. Baevski et al., 2020" trained on 960h of LibriSpeech (unsupervised)
- Processus de Dirichlet MMC

Corpus	Système	IMN	F-Score	# unités
English	VQ-WAV2VEC (Gumbel)	35.20	26.84	12008
English	VQ-WAV2VEC (K-mean)	34.06	25.64	20057
English	MMC	35.47	63.03	95

Exemple

Découverte d'unités acoustiques

Définition Applications

Etat de l'arl

Approches principales

Evaluations

Modèles de sous-espace pour la DUA

Motivations Le sous-espace de MMC Le sous-espace hiérarchique de MMC

Découverte d'unités acoustiques

Définition Applications

Etat de l'art

Approches principales

Evaluations

Modèles de sous-espace pour la DUA

Motivations

Le sous-espace de MMC Le sous-espace hiérarchique de MMC

Motivations

- Les nourissons n'apprennent pas "à partir de rien" (Kuhl et al, 1992):
 - Ils ont une sensibilité innée aux langues humaines
 - Avec le temps, ils deviennent spécialisés dans leur langue maternelle
- Choix de design:
 - Le système de DUA doit être "sensible" à la parole à t = 0, il doit posséder de l'information a priori
 - Le système de DUA doit s'adapter à la langue cible, il doit remettre en question de l'information fourni en amont
- Approche proposée: utilisation des modèles de sous-espaces pour implémenter ces propriétés:
 - Le Sous-espace de Modèle de Markov Caché (SMMC) / Subspace Hidden Markov Model (SHMM)
 - Le sous-espace hiérarchiques de Modèle de Markov Caché (SHMMC) / Hierarchical Subspace Hidden Markov Model (H-SHMM)

Découverte d'unités acoustiques

Définition Applications

Etat de l'art

Approches principales

Evaluations

Modèles de sous-espace pour la DUA

Motivations

Le sous-espace de MMC

Le sous-espace hiérarchique de MMC

Apprentissage d'une unité acoustique

$$p(\eta|\mathbf{X}) = \frac{p(\mathbf{X}|\eta)p(\eta)}{p(\mathbf{X})}$$
(1)

Le sous-espace phonétique

Distribution *a priori* des paramètres des UAs **T**ET

Nous voulons construire une distribution a priori informative sur les paramètres des AU's: $p(\eta)$

$$\mathbf{h} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 (2)

$$\eta = f(\mathbf{Wh} + \mathbf{b}) \tag{3}$$

Sous-espace MMC

Inférence I - apprentissage supervisé

- On estime les paramètres du sous-espace phonétique W, b sur des corpora transcrits
- Le modèle est entraîné par optimisation de la borne inférieure de l'évidence (Evidence Lower-BOund ELBO):

$$\begin{split} \mathcal{L} &= \langle \ln p(\mathbf{X}, |\mathbf{z}, \mathbf{W}, \mathbf{b}, \mathbf{h}_{1:7}) \rangle_{q} \\ &- D_{\mathsf{KL}}(q(\mathbf{z})||p(\mathbf{z})) \\ &- D_{\mathsf{KL}}(q(\mathbf{W})q(\mathbf{b}))||p(\mathbf{W})p(\mathbf{b})) \\ &- D_{\mathsf{KL}}(q(\mathbf{h}_{1:7})||p(\mathbf{h}_{1:7})) \end{split}$$

- L'apprentissage est similaire à un algorithme d'espérance-maximisation:
 - E-step: algorithme de Baum-Welch pour estimer l'occupations des états de la chaine de Markov
 - M-step: Pas de solution analytique, utilisation de montée de gradient stochastique.

Inférence II - apprentissage supervisé DAU

- Les paramètres du sous-espace phonétique W, b sont fixés, on apprend simplement le plongement h sur la langue cible
- Le modèle est entraîné par optimisation de la borne inférieure de l'évidence (Evidence Lower-BOund ELBO):

$$\begin{split} \mathcal{L} &= \langle \ln \mathcal{D}(\mathbf{X}, | \mathbf{z}, \mathbf{W}, \mathbf{b}, \mathbf{h}_{1:T}) \rangle_{q} \\ &- D_{\mathsf{KL}}(q(\mathbf{z}) || \mathcal{D}(\mathbf{z})) \\ &- D_{\mathsf{KL}}(q(\mathbf{h}_{1:T}) || \mathcal{D}(\mathbf{h}_{1:T})) \end{split}$$

- L'apprentissage est similaire à un algorithme d'espérance-maximisation:
 - E-step: algorithme de Baum-Welch pour estimer l'occupations des états de la chaine de Markov
 - M-step: Pas de solution analytique, utilisation de montée de gradient stochastique.

Illustration

Expérience

- Data:
 - Langues sources (transcrites)
 - Français, Allemand, Polonais, Espagnol (Globalphone)
 - 3-4 heures par échantillon pour chaque lange
 - Langues cibles (non transcrites)
 - Mboshi (Congo Brazzaville) 3-4 heures
 - Yoruba (West Africa Nigeria) 10 heures
 - English (TIMIT) 4 heures
- signal d'entrée: MFCCs + Δ + $\Delta\Delta$:

Resultats

Corpus	Système	Entraîné	IMN	F-Score
English	MMC	non	1.74	0.20
English	SMMC	non	20.83	58.94
Mboshi	MMC	non	1.65	0.02
Mboshi	SMMC	non	21.0	39.28
Yoruba	MMC	non	4.43	1.26
Yoruba	SMMC	non	26.1	27.45

Resultats

Corpus	Système	Entraîné	IMN	F-Score
English	MMC	non	1.74	0.20
English	MMC	oui	35.47	63.03
English	SMMC	non	20.83	58.94
English	SMMC	oui	39.66	75.92
Mboshi	MMC	non	1.65	0.02
Mboshi	MMC	oui	36.47	47.93
Mboshi	SMMC	non	21.0	39.28
Mboshi	SMMC	oui	38.42	57.26
Yoruba	HMM	non	4.43	1.26
Yoruba	HMM	oui	35.27	28.83
Yoruba	SMMC	non	26.1	27.45
Yoruba	SMMC	oui	37.56	36.64

Résultats

Corpus	Système	Entraîné	IMN	F-Score
English	MMC	non	1.74	0.20
English	MMC	oui	35.47	63.03
English	SMMC	non	20.83	58.94
English	SMMC	oui	39.66	75.92
English	SMMC (2)	oui	37.46	72.19
Mboshi	MMC	non	1.65	0.02
Mboshi	MMC	oui	36.47	47.93
Mboshi	SMMC	non	21.0	39.28
Mboshi	SMMC	oui	38.42	57.26
Mboshi	SMMC (2)	oui	35.50	51.28
Yoruba	MMC	non	4.43	1.26
Yoruba	MMC	oui	35.27	28.83
Yoruba	SMMC	non	26.1	27.45
Yoruba	SMMC	oui	37.56	36.64
Yoruba	SMMC (2)	oui	35.72	31.34

SMMC (2): le sous-espace est ré-entraîné sur la langue cible.

Table des matières

Découverte d'unités acoustiques

Définition Applications

Etat de l'art

Approches principales

Evaluations

Modèles de sous-espace pour la DUA

Le sous-espace de MMC

Le sous-espace hiérarchique de MMC

Conclusion

- Nous avons assumé auparavant que le sous-espace phonétique est connu et fixe durant la DUA
- Le sous-espace est le même pour toutes les langues cibles

Distribution du sous-espace

 On construit une distribution a priori informative des sous-espaces possibles: p(W, b)

$$\alpha \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 (4)

$$\mathbf{W} = \sum_{i=1}^{Q} \alpha_i \mathbf{M}_i \tag{5}$$

$$\mathbf{b} = \sum_{i=1}^{Q} \alpha_i \mathbf{m}_i \tag{6}$$

$$\mathbf{h} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 (7)

$$\eta = f(\mathbf{Wh} + \mathbf{b}) \tag{8}$$

$$\boldsymbol{\alpha} = \begin{bmatrix} \alpha_1, \alpha_2 \end{bmatrix}^{\top}$$

$$\mathbf{W} = \alpha_1 \mathbf{M}_1 + \alpha_2 \mathbf{M}_2$$
(10)

Inférence I - apprentissage supervisé

- On estime les paramètres du "méta-sous-espace" $\mathbf{M}, \mathbf{m}, \alpha$ sur les corpora transcrits
- Le modèle est entraîné par optimisation de la borne inférieure de l'évidence (Evidence Lower-BOund ELBO):

$$\begin{split} \mathcal{L} &= \langle \text{ln}\, p(\mathbf{X}, |\mathbf{z}, \mathbf{M}_{1:\mathcal{Q}}, \mathbf{m}_{1:\mathcal{Q}}, \mathbf{h}_{1:T}, \boldsymbol{\alpha}) \rangle_{q} \\ &- D_{\text{KL}}(q(\mathbf{z})||p(\mathbf{z})) \\ &- D_{\text{KL}}(q(\mathbf{M}_{1:\mathcal{Q}})q(\mathbf{m}_{1:\mathcal{Q}})||p(\mathbf{M}_{1:\mathcal{Q}})p(\mathbf{m}_{1:\mathcal{Q}})) \\ &- D_{\text{KL}}(q(\mathbf{h}_{1:T})||p(\mathbf{h}_{1:T})) \\ &- D_{\text{KL}}(q(\boldsymbol{\alpha})||p(\boldsymbol{\alpha})) \end{split}$$

- L'apprentissage est similaire à un algorithme d'espérance-maximisation:
 - E-step: algorithme de Baum-Welch pour estimer
 l'occupations des états de la chaine de Markov
 - M-step: Pas de solution analytique, utilisation de montée de gradient stochastique.

Inférence II - apprentissage non supervisé

- Les paramètres du "méta-sous-espace" ${\bf M}, {\bf m}$ sont fixés, on apprends les plongements phonétiques ${\bf h}$ et le plongement de la langue α
- Le modèle est entraîné par optimisation de la borne inférieure de l'évidence (Evidence Lower-BOund ELBO):

$$\begin{split} \mathcal{L} &= \langle \text{ln}\, \mathcal{D}(\mathbf{X}, |\mathbf{z}, \mathbf{M}_{1:\mathcal{Q}}, \mathbf{m}_{1:\mathcal{Q}}, \mathbf{h}_{1:\mathcal{T}}, \boldsymbol{\alpha}) \rangle_{\mathcal{Q}} \\ &- \mathsf{D}_{\mathsf{KL}}(\mathcal{Q}(\mathbf{z})||\mathcal{D}(\mathbf{z})) \\ &- \mathsf{D}_{\mathsf{KL}}(\mathcal{Q}(\mathbf{h}_{1:\mathcal{T}})||\mathcal{D}(\mathbf{h}_{1:\mathcal{T}})) \\ &- \mathsf{D}_{\mathsf{KL}}(\mathcal{Q}(\boldsymbol{\alpha})||\mathcal{D}(\boldsymbol{\alpha})) \end{split}$$

- L'apprentissage est similaire à un algorithme d'espérance-maximisation:
 - E-step: algorithme de Baum-Welch pour estimer l'occupations des états de la chaine de Markov
 - M-step: Pas de solution analytique, utilisation de montée de gradient stochastique.

Illustration

Expérience

- Data:
 - Langues sources (transcrites)
 - Français, Allemand, Polonais, Espagnol (Globalphone)
 - 3-4 heures par échantillon pour chaque langue
 - Langues cibles (non transcrites)
 - Mboshi (Congo Brazzaville) 3-4 heures
 - Yoruba (West Africa Nigeria) 10 heures
 - English (TIMIT) 4 heures
- Features:
 - traditional features: MFCCs + Δ + $\Delta\Delta$

Corpus	Système	IMN	F-Score
English	MMC	35.47	63.03
English	SMMC	39.66	75.92
Ü			
Mboshi	MMC	36.47	47.93
Mboshi	SMMC	38.42	57.26
Yoruba	MMC	35.27	28.83
Yoruba	SMMC	37.56	36.64

Corpus	Système	IMN	F-Score
English	MMC	35.47	63.03
English	SMMC	39.66	75.92
English	SMMC (2)	37.46	72.19
Mboshi	MMC	36.47	47.93
Mboshi	SMMC	38.42	57.26
Mboshi	SMMC (2)	35.50	51.28
Yoruba	MMC	35.27	28.83
Yoruba	SMMC	37.56	36.64
Yoruba	SMMC (2)	35.72	31.34

SMMC (2): le sous-espace est ré-entraîné sur la langue cible.

Corpus	Système	IMN	F-Score
English	MMC	35.47	63.03
English	SMMC	39.66	75.92
English	SMMC (2)	37.46	72.19
English	SHMMC	40.56	78.32
Mboshi	MMC	36.47	47.93
Mboshi	SMMC	38.42	57.26
Mboshi	SMMC (2)	35.50	51.28
Mboshi	SHMMC	41.17	60.82
Yoruba	MMC	35.27	28.83
Yoruba	SMMC	37.56	36.64
Yoruba	SMMC (2)	35.72	31.34
Yoruba	SHMMC	37.88	38.44

SMMC (2): le sous-espace est ré-entraîné sur la langue cible.

Quelques statistiques

Exemple

Table des matières

Découverte d'unités acoustiques

Définition Applications

Etat de l'art

Approches principales

Evaluations

Modèles de sous-espace pour la DUA

Motivations Le sous-espace de MMC Le sous-espace hiérarchique de MMC

Conclusion

En résumé

- Nous avons proposé deux nouveaux modèles pour la DUA:
 - Sous-espace MMC / Subspace Hidden Markov Model
 - Sous-espace hiérarchique MMC / Hierarchical Subspace Hidden Markov Model
- Ces modèles sont inspiré librement de l'apprentissage infantile
- Ils montrent une hausse significative en terme de partitionement et de segmentation
- Le concepte de sous-espace (hierarchique) peut être étendu à une large gamme de modèles
- Reproduire les expériences: https://github.com/beer-asr

A l'horizon...

- La DUA n'est pas un problème résolu!
- Nos modèles souffrent de la forte variabilité de la parole
- Principaux axes de recherche futurs
 - Modèle acoustique: explorer d'autres modèle génératifs que MMC
 - Modèle de langue: la découverte de mots
- En direction du premier modèle qui apprends la parole comme les humains...

Références I

- - Yusuf, Bolaji, Lucas Ondel, Lukás Burget, Jan Cernocký, and Murat Saraclar (2020). "A Hierarchical Subspace Model for Language-Attuned Acoustic Unit Discovery". In: CoRR abs/2011.03115. arXiv: 2011.03115. URL: https://arxiv.org/abs/2011.03115.
- Lucas Ondel, Hari Krishna Vydana, Lukáš Burget, and Jan Černocký (2019). "Bayesian Subspace Hidden Markov Model for Acoustic Unit Discovery". In: Proc. Interspeech 2019, pp. 261–265. URL:

http://dx.doi.org/10.21437/Interspeech.2019-2224.

Lucas Ondel, Pierre Godard, Laurent Besacier, Elin Larsen, Mark Hasegawa-Johnson, Odette Scharenborg, Emmanuel Dupoux, Lukáš Burget, Francois Yvon, and Sanjeev Khudanpur (2018). "Bayesian Models for Unit Discovery on a Very Low Resource Language". In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 5939–5943. URL:

Références II

Lucas Ondel, Lukaš Burget, Santosh Kesiraju, and Jan Černocký (2017). "Bayesian phonotactic language model for acoustic unit discovery". In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 5750–5754. URL: https://www.fit.vut.cz/research/publication/11472/.en.

Lucas Ondel, Lukáš Burget and Jan Černocký (2016).

"Variational inference for acoustic unit discovery". In:

Procedia Computer Science 81, pp. 80–86. URL:

https://www.sciencedirect.com/science/article/pii/S1877050916300473.

Merci pour votre attention.