الگوريتمهاي تقريبي

نيمسال اول ۴۰۴-۳۰۹۳

مدرس: حميد ضرابيزاده

تمرین سری اول زمان تحویل: ۸ آبان

مسئلهی ۱. تأمین کنندگان

گراف کامل متریک G با مجموعه رئوس V به همراه عدد صحیح k داده شده است. رئوس گراف به دو دسته K تأمین کننده ها K و مشتریان K افراز شدهاند. هدف این است که K تأمین کننده پیدا کنیم طوری که بیشترین فاصله ی تأمین کنندگان تا مشتریان به حداقل برسد. به عبارت دیگر، می خواهیم مجموعه ی K با اندازه ی K اندازه ی K بیابیم که عبارت K و K مینه کند. الگوریتمی چند جمله ای با ضریب تقریب K برای این مسئله ارائه دهید.

مسئلهی ۲. برش بیشینه

 S_1,\ldots,S_k و عدد صحیح k داده شده است. می خواهیم افرازی از V به مجموعه های G=(V,E) بیابیم که تعداد یال های رو به جلو بیشینه شود. یال رو به جلو یالی است که اندیس مجموعه ی حاوی راس مبدا آن از اندیس مجموعه ی شامل راس مقصد آن اکیدا کمتر باشد. الگوریتمی چند جمله ای با ضریب تقریب $\frac{1}{V}(1-\frac{1}{k})$ برای این مسئله ارائه دهید.

مسئلهی ۳. فروشندهی دورهگرد

گراف کامل بدون جهت G را در نظر بگیرید، طوری که وزن تمام یالها ۱ یا ۲ است. میخواهیم مسئله ی فروشنده ی دورهگرد را در این گراف خاص حل کنیم. الگوریتمی چندجمله ای با ضریب تقریب $\frac{\pi}{4}$ برای این مسئله ارائه دهید. (میتوانید فرض کنید که ۲_عامل کمینه ی گراف را میتوان در زمان چندجمله ای پیدا کرد. یک ۲_عامل زیرمجموعه ای از یال ها است که درجه ی هر راس در آن دقیقا برابر ۲ است.)

مسئلهی ۴. درخت اشتاینر جهتدار

در مسئله ی درخت اشتاینر جهتدار، گراف جهتدار و وزندار G=(V,E) ، رأس دلخواه $r\in V$ و زیرمجموعه ی در مسئله ی درخت اشتاینر جهتدار، گراف جهتدار و وزندار (Required) داده شده است. هدف یافتن زیرگرافی با کمترین وزن است طوری که از r به تمام رأسهای موردنیاز مسیری وجود داشته باشد. اگر n برابر با تعداد رئوس مورد نیاز باشد، نشان که از r به تمام رأسهای درخت اشتاینر جهتدار با ضریب $o(\log n)$ قابل تقریب نیست. (راهنمایی: میتوانید از این موضوع استفاده کنید که مسئله ی پوشش مجموعه ای ضریب تقریب تقریب $o(\log n)$ ندارد.)

مسئلهی ۵. پوشش مجموعهای بیشینه

 $U=\{1,\ldots,n\}$ در مسئله ی پوشش مجموعه ای بیشینه، m زیرمجموعه ی $S=\{S_1,S_7,\ldots,S_m\}$ از مجموعه ی $I\subseteq\{1,\ldots,m\}$ به همراه عدد طبیعی I داده شده است. هدف یافتن زیرمجموعه ای مانند $I\subseteq\{1,\ldots,m\}$ با اندازه ی I است، طوری که $I=\{1,\ldots,m\}$ بیشینه شود. الگوریتم حریصانه ی زیر برای محاسبه ی I ارائه شده است.

 $C=\emptyset$ و $I=\emptyset$. ۱

:k تا i از ۱ تا i

را بیشینه می کند. $x_i = |S_j \setminus (C \cap S_j)|$ و ابرابر با اندیسی از $[m] \setminus I$ قرار بده که عبارت j

$$I \leftarrow I \cup \{j\} \ \bullet$$

$$C \leftarrow C \cup S_j \bullet$$

۳. مجموعهی I را برگردان.

فرض کنید OPT نشان دهنده ی تعداد عناصر پوشش یافته در جواب بهینه باشد.

الف) با فرض $y_i = \sum_{j=1}^i x_j$ نشان دهید:

$$x_{i+1} \geqslant \frac{\text{OPT} - y_i}{k}.$$

$$\mathrm{OPT} - y_i \leqslant \left(1 - \frac{1}{k}\right)^i \mathrm{OPT}$$
ب نشان دهید

ج) نشان دهید الگوریتم ارائه شده دارای ضریب تقریب
$$\frac{1}{e}$$
 است.