H18T2A5

Gegeben sei das autonome System

$$x' = y$$
$$y' = -x^3 - y$$

Zeige, dass dieses System den Nullpunkt als einzige Ruhelage hat und dass die Nulllösung stabil ist.

Hinweis: Suche eine Ljapunow-Funktion der Form $V(x,y) = \alpha x^4 + \beta y^2$ mit Konstanten $\alpha, \beta > 0$.

Zur Erinnerung: Eine Ljapunow-Funktion für das Vektorfeld f(x,y) auf \mathbb{R}^2 ist eine stetig differenzierbare Funktion V(x,y), die längs jeder Integralkurve von f fällt; d.h. $\langle \operatorname{grad} V(x,y), f(x,y) \rangle \leq 0$.

Lösung

Wir definieren zunächst

$$\begin{array}{cccc} f: & \mathbb{R}^2 & \to & \mathbb{R}^2 \\ & (x,y) & \mapsto & \begin{pmatrix} y \\ -x^3 - y \end{pmatrix} \end{array}.$$

Die obige Differentialgleichung wird daher zu

$$\binom{x}{y}' = f(x, y)$$

und die Ruhelagen sind gerade die Nullstellen von f. Wegen $f(0,0) = \underline{0}$ ist der Nullpunkt eine Ruhelage des Systems. Ist nun $(x,y) \in \mathbb{R}^2$ eine Ruhelage des Systems, so folgt y=0 und $0=-x^3-y=-x^3$, also (x,y)=(0,0). Damit ist der Nullpunkt die einzige Ruhelage.

Zur Untersuchung der Stabilität der Nulllösung folgen wir dem Hinweis und machen den Ansatz $V: \mathbb{R}^2 \to \mathbb{R}$ chen den Ansatz $(x,y) \mapsto \alpha x^4 + \beta y^2$. Damit $V \in C^1(\mathbb{R}^2)$ Ljapunow-Funktion ist, muss gelten:

$$0 \ge \langle \operatorname{grad} V(x,y), f(x,y) \rangle = \left\langle \begin{pmatrix} 4\alpha x^3 \\ 2\beta y \end{pmatrix}, \begin{pmatrix} y \\ -x^3 - y \end{pmatrix} \right\rangle = (4\alpha - 2\beta)x^3y - 2\beta y^2$$

Mit der Wahl $\beta = \frac{1}{2}$, $\alpha = \frac{1}{4}$, folgt dann $\langle \operatorname{grad} V(x,y), f(x,y) \rangle = -y^2 \leq 0$. Um mithilfe der Ljapunow-Funktion zu zeigen, dass $\underline{0}$ stabile Ruhelage des obigen Systems ist, müssen wir prüfen:

- 1. f ist lokal Lipschitzstetig. Da $f \in C^1(\mathbb{R}^2, \mathbb{R}^2)$, ist dies erfüllt.
- 2. V(0,0) = 0 dies ist offensichtlich der Fall.
- 3. Es gibt eine Umgebung U von (0,0), sodass V(x,y) > 0 für alle $(x,y) \in U$. Für $(x,y) \in K(0,1) := \{(x,y) \in \mathbb{R}^2 \mid 0 < x^2 + y^2 < 1\}, (x,y) \neq (0,0)$ gilt:

$$V(x,y) = \frac{1}{4}x^4 + \frac{1}{2}y^2 \ge \frac{1}{4} \cdot (x^4 + y^4) > 0 = V(0,0)$$

Damit ist auch dieser Punkt erfüllt und die Nulllösung stabil.