Analysis of Algorithms

Data Structures and Algorithms for Computa (ISCL-BA-07) nal Linguistics III

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

Winter Semester 2020/21

How to determine running time of an algorithm?

- A possible approach:
 - Implement the algorithm
 Test with varying input
 Analyze the results
- A few issues with this approach:
 Implementing something that does not work is not fun work is not fun

 - It is often not possible cover all potential
 - it is often not possible cover all potential inputs
 If your version takes 10 seconds less than a version reported 10 years ago, do you really have an improvement? · A formal approach offers some help here

Some functions to know about

A few facts about logarithms . Logarithm is the inverse of exponentiation:

- $x \log_b n \iff b^x n$
- We will mostly use base-2 logarithms. For us, no-base means base-2 Additional properties
 - $\log xy = \log x + \log y$

$$\log \frac{x}{y} = \log x - \log y$$

$$\log x^{\alpha} = \alpha \log x$$

$$\log_b x = \frac{\log_k x}{\log_k b}$$

* Logarithmic functions grow (much) slower than linear for

Combinations and permutations

- $n! = n \times (n-1) \times ... \times 2 \times 1$ · Permutations:
 - $P(n, k) = n \times (n 1) \times ... \times (n k 1) = \frac{n!}{(n k)!}$
 - · Combinations 'n choose k':

$$C(n,k) = \binom{n}{k} = \frac{P(n,k)}{P(k,k)} = \frac{n!}{(n-k)! \times k!}$$

Proof by induction

ow that 1 + 2 + 3 +

 Base case, for n=1 $(1 \times 2)/2 = 1$

we need to show that

Assuming

 $\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$

 $\frac{n(n+1)}{2} + (n+1) - \frac{n(n+1) + 2(n+1)}{2} - \frac{(n+1)(n+2)}{4}$

What are we analyzing?

- . So far, we frequently asked: 'can we do better?' Now, we turn to the questions of - what is better?
 - how do we know an algorithm is better than the other?
- There are many properties that we may want to improve
 - robustness
 simplicity
 - In this lecture, efficiency will be our focus
 in particular time efficiency/complexity

Some functions to know about

Family	Definition
Constant	f(n) = c
Logarithmic	$f(n) = \log_n n$
Linear	f(n) = n
N log N	$f(n) = n \log n$
Quadratic	$f(n) = n^2$
Cubic	$f(n) = n^3$
Other polynomials	$f(n) = n^k$, for $k > 3$
Exponential	$f(n) = b^n$, for $b > 1$
Factorial	f(n) = n!

· We will use

Polynomials

Proof by induction

- * A degree-0 polynomial is a constant * A degree-1 is linear (f(n) = n + c)nt function (f(n) - c)
- * A degree-2 is quadratic $(f(n) = n^2 + n + c)$
- \star We generally drop the lower order terms (soon we'll explain why)
- Sometimes it will be useful to remember that

$$1+2+3+\ldots+n=\frac{n(n+1)}{2}$$

* Induction is an important proof technique

- $\ast\,$ It is often used for both proving the correctness and running times of
- It works if we can enumerate the steps of an algorithm (loops, recursion) Show that base case holds
 Assume the result is correct for n, show that it also holds for n + 1

Formal analysis of algorithm running time

- ${\ensuremath{\bullet}}$ We are focusing on characterizing running time of algorith
- * The running time is characterized as a function of input size We are aiming for an analysis method
- independent of hardware / software environme
 does not require implementation before analysis
 considers all inputs possible

RAM model: an example How much hardware independence? Processing unit does basic operations in constant time R_o · Characterized by random access memory (RAM) (e.g., in comparison to a Any memory cell with the address sequential memory, like a tape) R₂ can be accessed in equal (constant) We assume the system can perform some primitive operations (addition comparison) in constant time

- The data and the instructions are stored in the RAM . The processor fetches them as needed, and executes following the
- instructions
- . This is largely true for any computing system we use in practice

Formal analysis of running time

- Primitive operations include:
- Assignment
 Arithmetic operations
 Comparing primitive data types (e.g., numbers)
 Accessing a single memory location
 Function calls, return from functions

Counting primitive operations

of shortest_distance(points):

n = len(points)
sin = 0 range(n):
for i sarage(n):
for j is range(s):
d distance(points[i], points[j])
if sin > di
sin = d

 $T(n) = 2 + (1 + 2 + 3 + ... + n - 1) \times 3 + 1$ $=3\times\frac{(n-1)(n-2)}{2}+3$

Big-O example 10.000 8.000 6.000 4,000 2 000

Big-O, yet another example

Rules of thumb

In the big-O notation, we drop the co

 Any polynomial degree d is O(n^d)
 10n³ + 4n² + n + 100 is O(n³)

- Drop any lower order terms 2ⁿ + 10n² is O(2ⁿ)
- $\begin{tabular}{ll} \bullet & Use the simplest expression: \\ & -5n+100 \ is \ O(5n), \ but \ we \ prefer \ O(n) \\ & -4n^2+n+100 \ is \ O(n^3), \end{tabular}$
 - sitivity: if f(n) = O(g(n)), and g(n) = O(h(n)), then f(n) = O(h(n))
- Additivity: if both f(n) and g(n) are O(h(n)) f(n) + g(n) is O(h(n))

Modern processing units often also employ a 'cache'

Focus on the worst case

- · Algorithms are generally faster on certain input than oth . In most cases, we are interested in the worst case analysis
- in most cases, we are interested in the items the analyses

 Guaranteeing worst case is important

 It is also relatively easier: we need to identify the worst-case input
- Average case analysis is also useful, but
 requires defining a distribution over possible inputs
 often more challenging

Big-O notation

. Big-O notation is used for indicating an upper bound on running time of an algorithm as a function of running time

- If running time of an algorithm is O(f(n)), its running time grows proportional to f(n) as the input size n grows
- More formally, given functions f(n) and g(n), we say that f(n) is O(g(n)) if there is a constant c > 0 and integer $n_0 \geqslant 1$ such that

 $f(n) \le c \times q(n)$ for $n \ge n_0$ * Sometimes the notation f(n) = O(g(n)) is also used, but beware: this equal

sign is not symmetric

Back to the function classes

Family	Definition
Constant	f(n) = c
Logarithmic	$f(n) = \log_n n$
Linear	f(n) = n
N log N	$f(n) = n \log n$
Quadratic	$f(n) = n^2$
Cubic	$f(n) = n^3$
Other polynomials	$f(n) = n^k$, for $k > 3$
Exponential	$f(n) = b^n$, for $b > 1$
Factorial	f(n) = n!

. None of these functions can be expressed as a constant factor of another

Rules of thumb

f(n)	O(f(n))
7n - 2	n
$n^3 - 2n^2 + 5$	n^3
$3\log n + 5$	logn
$\log n + 2^n$	
$10n^{5} + 2^{n}$	2 ^m
$\log 2^n$	n
$2^{n} + 4^{n}$	
100×2^{n}	2n
n2n	$n2^n$
log n!	nlogn

```
Big-O: back to nearest points
                                                                                                                               Big-O examples
     def shortest_distance(points):
    n = len(points)
    nin = 0
    for i in range(n):
                                                                                                                                                                                    . What is the worst-case running time?

    2. 2 assignments
    3. 2n comparisons, n increment
    7. 1 return statement
                i in range(n):
for j in range(i):
    d = distance(points[i], points[j])
    if min > d:
        min = d
                                                                                                                                       linear_search(seq, val):
i, n = 0, len(seq)
while i < n:
                                                                                                                                                                                      T(n) = 3n + 3 = O(n)
                                                                                                                                         while i < n:
if seq[i] == val:

    What is the average-case running tis

    2. 2 assignments
    3. 2(n/2) comparisons, n/2 increment, 1

                                                                                                                                            return i
                       T(n) = 2 + (1 + 2 + 3 + ... + n - 1) \times 3 + 1
                                                                                                                                               rn None
                              =2\times\frac{(n-1)(n-2)}{3}+3=3/2(n^2-3n+2)+3
                                                                                                                                                                                      T(n) = 3/2n + 3 = O(n)
                                                                                                                                                                                    . What about best case? O(1)
                                                                                                                                   Note: do not confuse the big-O with the worst case analysis
                                                                                                                               Why asymptotic analysis is important?
Recursive example
                                                * Counting is not easy, but realize that T(n) = c + T(n/2)
  def rbs(a, x, L=0, R=n):
if L > R:
       if L > R:
return None
W = (L + R) // 2
if aRM == x:
return M
if aRM >= x:
return M
if aRM >= x:
return rbs(a, x, L,
... N - 1)
else:
return rbs(a, x, M +
... i, R)
                                                                                                                                        . We get a better computer, which runs 1024 times faster
                                                 . This is a recursive call it means
                                                  T(n/2) = c + T(n/4),

T(n/4) = c + T(n/8),

    New problem size we can solve in the same time

                                                                                                                                                                   Complexity new problem size
                                                • So T(n) = 2c + T(n/4) = 3c + T(n/8)
                                                                                                                                                                   Linear (n)
                                                                                                                                                                   Quadratic (n<sup>2</sup>)
                                                • More generally, T(n) = ic + T(n/2^t)
                                                                                                                                                                                              m.+ 10
                                                                                                                                                                   Exponential (2<sup>n</sup>)
                                                • Recursion terminates when n/2^4 = 1 or n = 2^4
                                                                                                                                                                   rates the gap between polynomial and exponential
                                                   the good news: i - \log n

    This also demonst

                                                • T(n) = c \log n + T(1) = O(\log n)
                                                                                                                                          algorithms:

    with a exp
    problem s

                                                                                                                                                        exponential algorithm fast hardware does not help
om size for exponential algorithms does not scale with faster comput
          You do not always need to prove: for most recurrence relations, a theorem provides quick solution. (we are not going to cover it further, see Appendix)
         provides quick so
Worst case and asymptotic analysis
                                                                                                                              Big-O relatives
pros and con
                                                                                                                                       * Big-O (upper bound): f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

    We typically compare algorithms based on their worst-case performance
pro it is easier, and we get a (very) strong guarantee: we know that the algorithm
won't perform worse than the bound

                                                                                                                                                                           f(n) \le co(n) for n > n_0
            con a (very) strong guarantee: in some (many?) problems, worst case examples are
                                                                                                                                       * Big-Omega (lower bound): f(n) is \Omega(g(n)) if f(n) is asymptotically greater than or equal to g(n)
                                                                                                                                                                           f(n) \geqslant cg(n) for n > n_0
         . Our analyses are based on asymptotic behavior
            pro for a 'large enough' input asymptotic analysis is correct
con constant or lower order factors are not always unimportant
— A constant factor of 100 to should probably not be ignored
                                                                                                                                       * Big-Theta (upper/lower bound): f(n) is \Theta(g(n)) if f(n) is asymptotically equal to g(n)
                                                                                                                                                                   f(n) is O(g(n)) and f(n) is \Omega(g(n))
                                                                                                                              Summary
Big-O, Big-Ω, Big-Θ: an example
                                                                                                                                        · Algorithmic analysis mainly focuses on worst-case asymptotic running times
                                                                                                                                       . Sublinear (e.g., logarithmic), Linear and N log N algorithms are good
                                          2 × n
                                  40
                                                                                                                                       · Polynomial algorithms may be acceptable in some cases
                                                                                                                                       . Exponential algorithms are bad

    We will return to concepts from this lecture while studying var.

                                  20
                                                                                                                                         algorithms

    Reading for this lectures: Goodrich, Tamassia, and Goldwasser (2013.

                                                                                                                                         chapter 3)

    Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12) – up to 12.7

Acknowledgments, credits, references
                                                                                                                               A(nother) view of computational complexity
                                                                                                                              P.NP.NP-come

    A major division of complexity classes according to Big-O notation is

         . Some of the slides are based on the previous year's course by Corina Dima
                                                                                                                                            P polynomial time algorithm
                                                                                                                                                 non-deterministic polynomial time algorith
                                                                                                                                        * A big question in computing is whether P=NF

    All problems in NP can be reduced in polynomial time to a problem in a subclass of NP (NP-complete)
    Solving an NP complete problem in P would mean proving

     Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013).
          Data Structures and Algorithms in Python. John Wiley & St
9781118476734.
                                                                                                                                                                                         P - NP
                                                                                                                                   Video from https://www.youtube.com/watch?v=YX40hbAHx3s
Exercise
                                                                                                                               Recurrence relations
```

 $T(n) = \begin{cases} O(n^d) \\ O(n^{\log_2 n} \end{cases}$ if $a < b^d$ log n! if $a = b^d$ log 2" The theorem is more general than most cases where g = b * But the theorem is not general for all recurrences: it requires equal splits

log 5°

og log n

log n 1000

 $n \log(n)$ 5ⁿ

log n

 $\log n^{1/\log n}$ logn

 $\log 2^n/n$

. Given a recurrence relation

a number of sub-problems b reduction factor or the input and amount of work to create and

 $T(n) = \alpha T\left(\frac{n}{h}\right) + O(n^d)$

 $\int O(n^d \log(n))$ if $a = b^d$

