LMAT1323 Topologie

Examen - 8 janvier 2019

- Le test comporte 5 questions.
- Le test est à livre fermé. Les téléphones portables ainsi que tous les autres moyens de communication ou de stockage de données sont interdits.
- La durée du test est de 2h30.
- 1. (4 points) Les propositions suivantes sont-elles vraies ou fausses? Répondez par vrai ou faux à la fin de la ligne, sans justifier. Chaque mauvaise réponse entraînera l'annulation d'une bonne réponse. Vous pouvez vous abstenir sans être pénalisé.
 - (a) Il n'existe pas de fonction continue $f: \mathbb{R} \to \mathbb{R} \setminus \{0\}$.
 - (b) Toute espace normal ayant une base dénombrable est métrisable.
 - (c) Le compactifié d'Alexandroff d'un espace de Hausdorff compact est un espace de Hausdorff.
 - (d) Soit (X,τ) un espace de Hausdorff compact. Alors un sous-ensemble $V\subseteq X$ est compact si et seulement si il est fermé.
 - (e) Si la fonction $f: (X,\tau) \to (Y,\Delta)$, où Δ est la topologie discrète sur Y, est continue, alors les singletons $\{x\}$ dans X sont ouverts.
 - (f) Si (X,τ) est un espace topologique et \sim une relation d'équivalence sur X, alors l'espace quotient $(X/\sim,\sigma)$ (σ est la topologie quotient) est Hausdorff.
 - (g) Le produit $(X \times Y, \mu)$ des espaces topologiques non vides (X, τ) et (Y, σ) (μ est la topologie produit) est connexe si et seulement si (X, τ) et (Y, σ) le sont.
 - (h) Si A et B sont des sous-ensembles, non vides, connexes de l'espace connexe (X,τ) et $A \cap B \neq \emptyset$, alors $A \cap B$ est connexe.
- 2. (4 points) Montrer que si (X,τ) est un espace topologique connexe et (Y,Δ) est un espace topologique discret, alors toute fonction continue $f\colon X\to Y$ est constante.
- 3. (4 points) Soit (X, ||-||) un espace vectoriel normé et M, N deux sous-ensembles de X tels que :
 - M est un compact de (X, ||-||)
 - N est un fermé de (X, ||-||).

Montrer que le sous-ensemble $M+N=\{m+n\mid m\in M \text{ et } n\in N\}$ est fermé.

- 4. (4 points) Montrer que les produits $(X \times Y, \mu_{\tau,\sigma})$ et $(Y \times X, \mu_{\sigma,\tau})$ des espaces topologiques (X,τ) et (Y,σ) sont homéomorphes (ici $\mu_{\tau,\sigma}$ et $\mu_{\sigma,\tau}$ sont les topologies produit).
- 5. (4 points) Soit $\Sigma = \{1/n | n \in \mathbb{N}_*\} \subset \mathbb{R}$, et soit \mathcal{O} la famille de sous-ensembles $U \subseteq \mathbb{R}$ définis comme suit : pour chaque $x \in U$ il existe des réels a et b tels que une des deux conditions suivantes est satisfaite :

Soit
$$x \in [a,b] \subseteq U$$
, soit $x \in [a,b] \setminus ([a,b] \cap \Sigma) \subseteq U$.

Montrer que

- (a) \mathcal{O} est une topologie sur \mathbb{R} .
- (b) $(\mathbb{R}, \mathcal{O})$ est Hausdorff.

(Vous pouvez répondre à b) sans avoir répondu à a).)