

# A Comparative Study of Machine Learning Algorithms for Industry-Specific Freight Generation Model

Hyeonsup Lim, Majbah Uddin, Yuandong Liu, Shih-Miao Chin, and Ho-Ling Hwang
Oak Ridge National Laboratory (ORNL)



#### Introduction & Data Source

#### **Motivation**

- Traditionally, freight generation (FG) modeling approaches are based on OLS regression.
- This study proposed industry-specific freight generation models based on industry-related factors such as number of establishments.

#### **Data Source**

- This study utilized tonnage and value from the most recently released
   2017 CFS data for 24 industry sectors as dependent variables.
- For the independent variables, the study utilized the two county-level industry data products by Census, i.e., Economic Census (EC) and County Business Pattern (CBP) data.

#### **Summary Statistics of the Input Data**

| NAICS  | tonna | ge (1,000 | tons)  | valu | ie (millio | n \$)  | numb<br>establisi | •     | numl<br>employ | er of  | _     | annual payroll (million \$) |        | receipt total<br>(million \$) |  |
|--------|-------|-----------|--------|------|------------|--------|-------------------|-------|----------------|--------|-------|-----------------------------|--------|-------------------------------|--|
| 111100 | N     | mean      | std.   | N    | mean       | std.   | mean              | std.  | mean           | std.   | mean  | std.                        | mean   | std.                          |  |
| 212    | 119   | 23,570    | 34,993 | 118  | 710        | 1,308  | 34                | 35    | 1,127          | 1,741  | 76    | 128                         | N/A    | N/A                           |  |
| 311    | 123   | 4,865     | 6,957  | 127  | 6,255      | 7,447  | 199               | 241   | 11,466         | 12,584 |       | 579                         | 4,392  | 5,726                         |  |
| 312    | 108   | 1,284     | 2,077  | 112  | 1,372      | 2,938  | 62                | 110   | 1,628          | 2,689  | 80    | 160                         | 666    | 1,339                         |  |
| 313    | 86    | 69        | 166    | 101  | 284        | 629    | 11                | 28    | 577            | 1,604  |       | 64                          | 121    | 393                           |  |
| 314    | 99    | 43        | 176    | 116  | 214        | 656    | 35                | 46    | 687            | 1,604  | 25    | 66                          | 114    | 521                           |  |
| 315    | 81    | 5         | 19     | 101  | 135        | 472    | 42                | 226   | 686            | 3,092  | 18    | 84                          | 65     | 364                           |  |
| 316    | 74    | 7         | 22     | 83   | 52         | 79     | 6                 | 12    | 146            | 352    | 5     | 12                          | 12     | 36                            |  |
| 321    | 113   | 1,939     | 2,876  | 125  | 889        | 1,142  | 103               | 108   | 3,047          | 3,593  | 121   | 142                         | 610    | 810                           |  |
| 322    | 113   | 1,399     | 1,824  | 113  | 1,665      | 1,969  | 26                | 34    | 2,103          | 2,873  | 124   | 177                         | 686    | 1,076                         |  |
| 323    | 112   | 158       | 249    | 126  | 675        | 838    | 182               | 221   | 3,469          | 4,140  | 155   | 204                         | 535    | 751                           |  |
| 324    | 98    | 12,687    | 24,707 | 112  | 4,623      | 11,030 | 10                | 13    | 655            | 1,363  | 68    | 154                         | 2,067  | 6,675                         |  |
| 325    | 122   | 5,694     | 11,200 | 127  | 5,741      | 9,853  | 93                | 117   | 5,618          | 7,089  | 439   | 636                         | 4,296  | 9,013                         |  |
| 326    | 121   | 493       | 615    | 129  | 1,869      | 2,205  | 86                | 105   | 5,456          | 6,696  | 260   | 316                         | 1,391  | 1,868                         |  |
| 327    | 106   | 6,675     | 6,988  | 129  | 993        | 931    | 103               | 85    | 2,897          | 2,594  | 149   | 138                         | 730    | 753                           |  |
| 331    | 106   | 1,545     | 2,726  | 112  | 1,915      | 2,512  | 27                | 37    | 2,346          | 3,460  | 149   | 239                         | 1,011  | 1,881                         |  |
| 332    | 114   | 899       | 1,284  | 130  | 2,700      | 3,016  | 402               | 463   | 10,917         | 12,494 | 558   | 663                         | 2,423  | 2,860                         |  |
| 333    | 108   | 308       | 471    | 125  | 2,959      | 3,377  | 169               | 200   | 7,815          | 8,438  | 488   | 550                         | 2,268  | 2,774                         |  |
| 334    | 87    | 28        | 45     | 118  | 2,660      | 4,972  | 89                | 160   | 6,052          | 10,593 | 521   | 1,029                       | 1,811  | 3,814                         |  |
| 335    | 100   | 150       | 218    | 115  | 1,098      | 1,256  | 36                | 57    | 2,138          | 2,938  | 135   | 208                         | 503    | 881                           |  |
| 336    | 98    | 1,058     | 2,315  | 112  | 8,093      | 13,983 | 81                | 104   | 11,616         | 16,517 | 749   | 1,144                       | 4,736  | 10,549                        |  |
| 337    | 120   | 117       | 176    | 126  | 610        | 889    | 101               | 124   | 2,729          | 4,096  | 113   | 172                         | 424    | 785                           |  |
| 339    | 104   | 63        | 80     | 124  | 1,274      | 1,743  | 203               | 270   | 4,250          | 5,928  | 234   | 386                         | 952    | 1,652                         |  |
| 423    | 118   | 7,665     | 10,109 | 132  | 23,600     | 36,419 | 1,791             | 2,381 | 27,453         | 35,257 | 1,882 | 2,947                       | 19,660 | 33,376                        |  |
| 424    | 128   | 25,620    | 33,416 | 130  | 28,256     | 36,715 | 961               | 1,651 | 18,405         | 26,483 | 1,178 | 2,047                       | 20,662 | 39,837                        |  |

### Data Processing and Model Selection

#### 1. Imputation of missing data (for CBP/EC)

Imputed the number of employments based on employment size range (*EMPFLAG*).

#### 4. Variables and Hyperparameters

Find the best variable selection and hyperparameter settings for each model:

Ordinary Least Squares (OLS, the baseline)

Least Absolute Shrinkage and Selection Operator (Lasso)

Decision Tree Regression (DTR)

Random Forest Regression (RFR)

Gradient Boosting Regression (GBR)

Support Vector Regression (SVR)

Gaussian Process Regression (GPR)

Multi-layer Perceptron Regression (MLP)

### 2. Data Transformation

No transform vs Log-transform

#### 3. Normalization

A simple min-max normalization

#### 5. Model Performance and Final Model Selection

Since the MAEs and RMSEs may not be directly comparable across different NAICS, the relative differences of MAE and RMSE were compared to the OLS.

### Example of Not Significantly Improved by ML Methods – NAICS 315 Tonnage For the NAICS 315 tonnage estimation, all the ML algorithms have the third quartile of their MAE higher than the average MAE by OLS.













**Key Contributions:** 

Conclusions

423 SVR

424 SVR

- Built a framework to conduct the industry-specific model selection.
- Evaluated the significance of model improvements when using the ML algorithms over the OLS for the freight generation modeling.
- Suggested the use of OLS regression for certain industry sectors when the MAE reductions by the ML algorithms are not statistically significant.
- Utilized all combinations of available variables in the CBP & EC data tables for model selections.

## Final Model Selection by Industry

The below tables summarize the final model suggestion for each NAICS code, which was determined based on two statistical tests, paired T-test and Wilcoxon, for the difference of MAE between the OLS and the alternative method for each NAICS.

**Challenges:** 

from the CFS areas.

number of shipments.

Limited to the freight shipments originated

different if one applies the same

variables, such as truck volume and

The model selection results might be quite

framework to estimate different dependent

#### **Final Freight Generation Model Selection by Tonnage**

| <u>·inai i</u> | -reignt | Generation i  | vioae    | <u>sı 26</u> | ectioi   | n by i | onnage                                   | F  |
|----------------|---------|---------------|----------|--------------|----------|--------|------------------------------------------|----|
| IAICS          | Model   | Log-transform | ESTAB    | <i>EMP</i>   | PAYANN   | RCPTO  | TRegression parameters / Hyperparameters | NA |
| 212            | SVR     | No            | <b>V</b> | V            | <b>V</b> |        | epsilon: 0, kernel: sigmoid, C: 1.9      | 2  |
| 311            | SVR     | No            | ٧        | V            |          | ٧      | epsilon: 0, kernel: rbf, C: 1.1          | 3  |
| 312            | SVR     | Yes           | ٧        |              | ٧        |        | epsilon: 0.06, kernel: poly, C: 2.1      | 3  |
| 313            | SVR     | No            |          | ٧            | ٧        | ٧      | epsilon: 0, kernel: rbf, C: 2.1          | 3  |
| 314            | SVR     | Yes           | ٧        | ٧            |          | ٧      | epsilon: 0.1, kernel: linear, C: 1.5     | 3  |
| 315            | OLS     | No            |          | ٧            |          |        | $0.008 + 0.938 \times EMP$               | 3  |
| 316            | SVR     | Yes           | ٧        |              | ٧        | ٧      | epsilon: 0.12, kernel: rbf, C: 2.1       | 3  |
| 321            | SVR     | Yes           | ٧        | ٧            | ٧        | ٧      | epsilon: 0.2, kernel: rbf, C: 1.9        | 3  |
| 322            | SVR     | Yes           | ٧        | ٧            |          |        | epsilon: 0.2, kernel: linear, C: 1.9     | 3  |
| 323            | GPR     | Yes           | ٧        | ٧            |          |        | sigma:0.5, noise level:1, alpha: 1e-9    | 3  |
| 324            | SVR     | No            |          | ٧            |          | ٧      | epsilon: 0, kernel: sigmoid, C: 2.1      | 3  |
| 325            | SVR     | No            |          |              | ٧        | ٧      | epsilon: 0, kernel: poly, C: 2.1         | 3  |
| 326            | SVR     | Yes           | ٧        | ٧            |          |        | epsilon: 0, kernel: linear, C: 1.1       | 3  |
| 327            | OLS     | Yes           | ٧        |              |          |        | exp(-0.457) × <i>ESTAB</i> ^0.805        | 3  |
| 331            | GPR     | Yes           | ٧        | ٧            | ٧        | ٧      | sigma:0.5, noise level:1, alpha: 1e-11   | 3  |
| 332            | SVR     | Yes           |          |              | ٧        | ٧      | epsilon: 0.08, kernel: linear, C: 2.1    | 3  |
| 333            | SVR     | No            | ٧        | ٧            | ٧        |        | epsilon: 0.02, kernel: linear, C: 2.1    | 3  |
| 334            | SVR     | No            |          |              | ٧        |        | epsilon: 0.02, kernel: sigmoid, C: 1.7   | 3  |
| 335            | SVR     | Yes           |          | V            | ٧        |        | epsilon: 0.08, kernel: linear, C: 2.1    | 3  |
| 336            | GPR     | Yes           | ٧        | ٧            | ٧        | ٧      | sigma:1, noise level:1, alpha: 1e-9      | 3  |
| 337            | SVR     | Yes           | ٧        | ٧            |          | ٧      | epsilon: 0.06, kernel: linear, C: 2.1    | 3  |
| 339            | SVR     | Yes           |          | V            |          |        | epsilon: 0.04, kernel: poly, C: 0.1      | 3  |
|                |         |               |          |              |          |        |                                          |    |

epsilon: 0, kernel: linear, C: 1.9

epsilon: 0.2, kernel: poly, C: 1.7

#### Final Freight Generation Model Selection by Value

| 212 | SVR | Yes |   |          | V |   | epsilon: 0.04, kernel: linear, C: 0.3    |
|-----|-----|-----|---|----------|---|---|------------------------------------------|
| 311 | GPR | Yes | ٧ |          | ٧ | ٧ | sigma:1.5, noise level:1.5, alpha: 1e-9  |
| 312 | SVR | Yes | ٧ | V        | ٧ |   | epsilon: 0.08, kernel: linear, C: 1.1    |
| 313 | SVR | Yes | ٧ | V        |   |   | epsilon: 0.14, kernel: linear, C: 2.1    |
| 314 | GPR | No  | ٧ | V        |   | ٧ | sigma:0.5, noise level:0.5, alpha: 1e-9  |
| 315 | SVR | No  | ٧ |          | ٧ | ٧ | epsilon: 0, kernel: linear, C: 1.9       |
| 316 | SVR | Yes |   |          | ٧ |   | epsilon: 0.2, kernel: linear, C: 0.5     |
| 321 | SVR | Yes | ٧ | ٧        | ٧ | ٧ | epsilon: 0, kernel: linear, C: 2.1       |
| 322 | SVR | Yes | ٧ |          | ٧ |   | epsilon: 0.16, kernel: linear, C: 1.7    |
| 323 | GPR | Yes | ٧ | ٧        |   |   | sigma:1.5, noise level:1.5, alpha: 1e-9  |
| 324 | GPR | Yes | ٧ |          | ٧ |   | sigma:1.5, noise level:1.5, alpha: 1e-11 |
| 325 | SVR | No  | ٧ |          |   | ٧ | epsilon: 0, kernel: linear, C: 1.5       |
| 326 | GPR | Yes | ٧ | ٧        | ٧ |   | sigma:1, noise level:1.5, alpha: 1e-10   |
| 327 | SVR | No  |   | ٧        | ٧ |   | epsilon: 0, kernel: rbf, C: 0.7          |
| 331 | SVR | No  | ٧ | ٧        | ٧ | ٧ | epsilon: 0.02, kernel: linear, C: 1.3    |
| 332 | OLS | Yes |   |          |   | ٧ | $exp(0.062) \times RCPTOT^1.009$         |
| 333 | SVR | No  | ٧ | ٧        | ٧ |   | epsilon: 0, kernel: linear, C: 1.3       |
| 334 | GPR | No  |   |          | ٧ |   | sigma:1.5, noise level:1, alpha: 1e-9    |
| 335 | SVR | Yes | ٧ | V        |   | ٧ | epsilon: 0.18, kernel: linear, C: 0.7    |
| 336 | SVR | No  | ٧ | V        | ٧ | ٧ | epsilon: 0, kernel: linear, C: 0.9       |
| 337 | SVR | No  | ٧ |          | ٧ |   | epsilon: 0, kernel: sigmoid, C: 2.1      |
| 339 | SVR | No  | ٧ | ٧        | ٧ |   | epsilon: 0, kernel: rbf, C: 2.1          |
| 423 | SVR | No  |   | ٧        |   |   | epsilon: 0, kernel: rbf, C: 2.1          |
| 424 | SVR | No  | ٧ | <b>V</b> |   | ٧ | epsilon: 0, kernel: sigmoid, C: 2.1      |

### Acknowledgement

This research effort was sponsored by the Federal Highway Administration (FHWA) and the Bureau of Transportation Statistics (BTS), under U.S. Department of Transportation.

### **Contact Information**

Hyeonsup Lim, ORNL <a href="mailto:limh@ornl.gov">limh@ornl.gov</a>