WINTER SEMESTER 2021-2022

Activity Sheet -7- Normal Distribution

NAME: G.NARAYANEE NIMESHIKA

REG NUM: 20BPS1111

I Find the area under the standard Normal Curve

AIM : To find the area under the standard Normal Curve and the distribution value

1.P (0 < Z < 1.25)

CODE:

x=seq(-3,3,length=200)
y=dnorm(x,mean=0,sd=1)
plot(x,y,type="l")
x=seq(0,1.25,length=100)
y=dnorm(x,mean=0,sd=1)
polygon(c(0,x,1.25),c(0,y,0),col="red")
pnorm(1.25,mean=0,sd=1,lower.tail = TRUE)


```
> x=seq(-3,3,length=200)
> y=dnorm(x,mean=0,sd=1)
> plot(x,y,type="l")
> x=seq(0,1.25,length=100)
> y=dnorm(x,mean=0,sd=1)
> polygon(c(0,x,1.25),c(0,y,0),col="red")
> pnorm(1.25,mean=0,sd=1)-pnorm(0,mean=0,sd=1)
[1] 0.3943502
> |
```

2.P(-1.25 < Z < 0)

CODE:

```
x=seq(-3,3,length=200)
y=dnorm(x,mean=0,sd=1)
plot(x,y,type="l")
x=seq(-1.25,0,length=100)
y=dnorm(x,mean=0,sd=1)
polygon(c(-1.25,x,0),c(0,y,0),col="red")
pnorm(1.25,mean=0,sd=1)-pnorm(0,mean=0,sd=1)
```



```
> x=seq(-3,3,length=200)
> y=dnorm(x,mean=0,sd=1)
> plot(x,y,type="1")
> x=seq(-1.25,0,length=100)
> y=dnorm(x,mean=0,sd=1)
> polygon(c(-1.25,x,0),c(0,y,0),col="red")
> pnorm(1.25,mean=0,sd=1)-pnorm(0,mean=0,sd=1)
[1] 0.3943502
> |
```

3.P(0.6 < Z < 1.25)

CODE:

```
x=seq(-3,3,length=200)
y=dnorm(x,mean=0,sd=1)
plot(x,y,type="l")
x=seq(0.6,1.25,length=100)
y=dnorm(x,mean=0,sd=1)
polygon(c(0.6,x,1.25),c(0,y,0),col="red")
pnorm(1.25,mean=0,sd=1)-pnorm(0.6,mean=0,sd=1)
```



```
> x=seq(-3,3,length=200)
> y=dnorm(x,mean=0,sd=1)
> plot(x,y,type="1")
> x=seq(0.6,1.25,length=100)
> y=dnorm(x,mean=0,sd=1)
> polygon(c(0.6,x,1.25),c(0,y,0),col="red")
> pnorm(1.25,mean=0,sd=1)-pnorm(0.6,mean=0,sd=1)
[1] 0.1686033
```

4.P(Z > 2.5)

CODE:

```
x=seq(-3,3,length=200)
y=dnorm(x,mean=0,sd=1)
plot(x,y,type="l")
x=seq(2.5,3,length=100)
y=dnorm(x,mean=0,sd=1)
polygon(c(2.5,x,3),c(0,y,0),col="red")
pnorm(2.5,mean=0,sd=1,lower.tail=FALSE)
```



```
> x=seq(-3,3,length=200)
> y=dnorm(x,mean=0,sd=1)
> plot(x,y,type="l")
> x=seq(2.5,3,length=100)
> y=dnorm(x,mean=0,sd=1)
> polygon(c(2.5,x,3),c(0,y,0),col="red")
> pnorm(2.5,mean=0,sd=1,lower.tail=FALSE)
[1] 0.006209665
> |
```

5.P(Z < 2.5)

CODE:

x=seq(-3,3,length=200)
y=dnorm(x,mean=0,sd=1)
plot(x,y,type="l")
x=seq(-3,2.5,length=100)
y=dnorm(x,mean=0,sd=1)
polygon(c(-3,x,2.5),c(0,y,0),col="red")
pnorm(2.5,mean=0,sd=1,lower.tail=TRUE)


```
> x=seq(-3,3,length=200)
> y=dnorm(x,mean=0,sd=1)
> plot(x,y,type="1")
> x=seq(-3,2.5,length=100)
> y=dnorm(x,mean=0,sd=1)
> polygon(c(-3,x,2.5),c(0,y,0),col="red")
> pnorm(2.5,mean=0,sd=1,lower.tail=TRUE)
[1] 0.9937903
> |
```

6.P(Z > -2.5)

CODE:

```
x=seq(-3,3,length=200)
y=dnorm(x,mean=0,sd=1)
plot(x,y,type="l")
x=seq(-2.5,3,length=100)
y=dnorm(x,mean=0,sd=1)
polygon(c(-2.5,x,3),c(0,y,0),col="red")
pnorm(-2.5,mean=0,sd=1,lower.tail=FALSE)
```



```
> x=seq(-3,3,length=200)
> y=dnorm(x,mean=0,sd=1)
> plot(x,y,type="1")
> x=seq(-2.5,3,length=100)
> y=dnorm(x,mean=0,sd=1)
> polygon(c(-2.5,x,3),c(0,y,0),col="red")
> pnorm(-2.5,mean=0,sd=1,lower.tail=FALSE)
[1] 0.9937903
> |
```

7.P(Z < -2.5)

CODE:

```
x=seq(-3,3,length=200)
y=dnorm(x,mean=0,sd=1)
plot(x,y,type="l")
x=seq(-3,-2.5,length=100)
y=dnorm(x,mean=0,sd=1)
polygon(c(-3,x,-2.5),c(0,y,0),col="red")
pnorm(-2.5,mean=0,sd=1,lower.tail=TRUE)
```



```
> x=seq(-3,3,length=200)
> y=dnorm(x,mean=0,sd=1)
> plot(x,y,type="1")
> x=seq(-3,-2.5,length=100)
> y=dnorm(x,mean=0,sd=1)
> polygon(c(-3,x,-2.5),c(0,y,0),col="red")
> pnorm(-2.5,mean=0,sd=1,lower.tail=TRUE)
[1] 0.006209665
```

II) If $X \sim N$ (50, 10^2) ,find the probability that the value of the random variable X will be greater than 60.

CODE:

```
x=seq(-300,300,length=200)
y=dnorm(x,mean=50,sd=100)
plot(x,y,type="l")
x=seq(60,300,length=100)
y=dnorm(x,mean=50,sd=100)
polygon(c(60,x,300),c(0,y,0),col="red")
pnorm(60,mean=50,sd=100,lower.tail=FALSE)
```



```
> x=seq(-300,300,length=200)
> y=dnorm(x,mean=50,sd=100)
> plot(x,y,type="1")
> x=seq(60,300,length=100)
> y=dnorm(x,mean=50,sd=100)
> polygon(c(60,x,300),c(0,y,0),col="red")
> pnorm(60,mean=50,sd=100,lower.tail=FALSE)
[1] 0.4601722
> |
```

- III) The weekly wage of 2000 workmen is normally distribution with mean wage of Rs 70 and wage standard deviation of Rs 5. Estimate the number of workers whose weekly wages are
- (a) between Rs 70 and Rs 71 (b) between Rs 69 and Rs 73
- (c) more than Rs 72 (d) less than Rs 65

AIM: To find the area under the standard Normal Curve and the distribution value

CODE:

```
x=seq(-3,3,length=200)
y=dnorm(x,mean=0,sd=1)
plot(x,y,type="I")
x=seq(0,0.2,length=100)
y=dnorm(x,mean=0,sd=1)
polygon(c(0,x,0.2),c(0,y,0),col="red")
ans=(pnorm(0.2,mean=0,sd=1)-pnorm(0,mean=0,sd=1))*2000
ans
```

OUTPUT:


```
> x=seq(-3,3,length=200)
> y=dnorm(x,mean=0,sd=1)
> plot(x,y,type="l")
> x=seq(0,0.2,length=100)
> y=dnorm(x,mean=0,sd=1)
> polygon(c(0,x,0.2),c(0,y,0),col="red")
> ans=(pnorm(0.2,mean=0,sd=1)-pnorm(0,mean=0,sd=1))*2000
> ans
[1] 158.5194
> |
```

CODE:

```
x=seq(-3,3,length=200)
y=dnorm(x,mean=0,sd=1)
plot(x,y,type="l")
x=seq(-0.2,0.6,length=100)
y=dnorm(x,mean=0,sd=1)
polygon(c(-0.2,x,0.6),c(0,y,0),col="red")
ans=(pnorm(-0.2,mean=0,sd=1)-pnorm(0.6,mean=0,sd=1))*-(2000)
ans
```

OUTPUT:


```
> x=seq(-3,3,length=200)
> y=dnorm(x,mean=0,sd=1)
> plot(x,y,type="1")
> x=seq(-0.2,0.6,length=100)
> y=dnorm(x,mean=0,sd=1)
> polygon(c(-0.2,x,0.6),c(0,y,0),col="red")
> ans=(pnorm(-0.2,mean=0,sd=1)-pnorm(0.6,mean=0,sd=1))*-(2000)
> ans
[1] 610.0132
> |
```

CODE:

```
x=seq(-3,3,length=200)
y=dnorm(x,mean=0,sd=1)
plot(x,y,type="l")
x=seq(0.4,3,length=100)
y=dnorm(x,mean=0,sd=1)
```

polygon(c(0.4,x,3),c(0,y,0),col="red")
ans=pnorm(0.4,mean=0,sd=1,lower.tail=FALSE)*2000
ans


```
> x=seq(-3,3,length=200)
> y=dnorm(x,mean=0,sd=1)
> plot(x,y,type="l")
> x=seq(0.4,3,length=100)
> y=dnorm(x,mean=0,sd=1)
> polygon(c(0.4,x,3),c(0,y,0),col="red")
> ans=pnorm(0.4,mean=0,sd=1,lower.tail=FALSE)*2000
> ans
[1] 689.1565
> |
```

CODE:

```
x=seq(-3,3,length=200)
y=dnorm(x,mean=0,sd=1)
plot(x,y,type="l")
x=seq(-3,-1,length=100)
y=dnorm(x,mean=0,sd=1)
polygon(c(-3,x,-1),c(0,y,0),col="red")
ans=pnorm(-1,mean=0,sd=1,lower.tail=TRUE)*2000
ans
```



```
> x=seq(-3,3,length=200)
> y=dnorm(x,mean=0,sd=1)
> plot(x,y,type="l")
> x=seq(-3,-1,length=100)
> y=dnorm(x,mean=0,sd=1)
> polygon(c(-3,x,-1),c(0,y,0),col="red")
> ans=pnorm(-1,mean=0,sd=1,lower.tail=TRUE)*2000
> ans
[1] 317.3105
> |
```