Cross-talk Free Control of Multimode Cavities with Conditional Displacements

Motivation

- Weak coupling -> slower gates but less error propagation
- Strong Coupling -> faster gates but more error propagation
- Maintain weak coupling but $\chi \alpha_0$ schemes enhance effective interaction strength

Motivation

- Large displacement also increases contrast between interaction with target mode and that with non target modes.
- Gate Speed $g_{gate} = \chi \alpha_{max}$
- Coherent Errors: $\epsilon_{coh} = \frac{N\chi}{g_{gate}} = \frac{N}{N}$

 α_{max}

*assuming all chis's same

Prev. Work: Echoed Cond. Disp.

Parameter Optimization

- Assume only $H = \chi(\alpha a^+ + \alpha^* a)\sigma_z + \Omega \frac{\sigma_x}{2}$
- Optimize Sequences of Conditional Displacements (\vec{eta}) followed by qubit rotations to realize desired operation

Pulse Optimization

- Echo out unwanted terms $(\chi |\alpha|^2 \sigma_z$ and $\chi a^+ a \sigma_z$) by constructing symmetric pulses for cavity drive.
- Use semi-classical phase space treajectory method to find pulses which realize target displacements $\vec{\beta}$

Prev. Work: Echoed Cond. Disp.

A. Eickbusch, ..., R. Schoelkopf, M. Devoret. ArXiv preprint arXiv:2111.06414 (2021)

Prev Work: ECD: Evolution in Phase Space

Multimode ECD

- Universal Control for Two Modes
- Not simultaneously driving each mode to prevent heating of modes [1,2]

[1] Diringer, Asaf A., et al. arXiv preprint arXiv:2301.09831 (2023). [2] Alec Eickbusch, et al. W34. 00005. APS March Meeting (2022).

Two Mode ECD: Unwanted Cross Kerr Terms

$$\chi_{ab}a^+ab^+b$$

Displaced Frame Transformation

$$\chi_{ab}(a^+ + \alpha^*)(a + \alpha)(b^+ + \beta^*)(b + \beta)$$

Terms of form:

 $\chi_{ab}\alpha\beta a^+b^+$

 $\chi_{ab} |\alpha|^2 \beta b^+$

 $\chi_{ab} |\alpha|^2 b^+ b$

How to avoid:

 α, β should not be simultaneously nonzero

Echoed out when β flips

Make
$$\chi_{ab} \ll \chi_a$$
, $\chi_b \approx 10$ kHz
Note $\chi_{ab} = \sqrt{\kappa_a \kappa_b} = \frac{\chi_a \chi_b}{\alpha\prime} \approx 0.33$ Hz ... good!
($\alpha' \leq$ 300 MHz for transmons)

Two Mode ECD: State Transfer

$$g \otimes |0n\rangle \rightarrow g \otimes |n0\rangle$$

Two Mode ECD: State Transfer

$$g \otimes (|n0\rangle \rightarrow |0n\rangle)$$

$$g \otimes (|0\rangle \rightarrow |n\rangle)$$

$$g \otimes (|n\rangle \rightarrow |0\rangle)$$

Multimode ECD: Error Budget

Transmon Relaxation

• Reduction in Errors if use better qubits i.e. fluxonium

Circle Grape

- Continuous version
- Currently uses simulatenous drives
- Phase Space Dynamics

$$H = \chi a^{+} a \sigma_{z} + \chi (\alpha_{0} a^{+} + \alpha_{0}^{*} a) \sigma_{z} + \chi |\alpha_{0}|^{2} \sigma_{z} + \Omega(t) \sigma_{x}$$

Sent to Optimizer

Comparing Grape and MECD

Circle Grape Results

Conclusions and Future Work

- Suppression of cross-talk errors by chi alpha schemes
- Multimode schemes limited to 1/chi alphase instead of the squared for driving modes separately

Multimode ECD

$$MECD(\beta, \gamma) = \begin{pmatrix} D_1 \left(-\frac{\beta}{2} \right) D_2 \left(\frac{\gamma}{2} \right) & 0 \\ 0 & D_1 \left(\frac{\beta}{2} \right) D_2 \left(-\frac{\gamma}{2} \right) \end{pmatrix}$$