

§8.3 傅立叶变换的性质

- 一、基本性质
- 二、卷积与卷积定理
- *三、利用 Matlab 实现 Fourier 变换

- 在下面给出的基本性质中,所涉及到的函数的 Fourier 变换均存在,且 $F(\omega) = \mathcal{F}[f(t)]$, $G(\omega) = \mathcal{F}[g(t)]$.
- 对于涉及到的一些运算(如<u>求导</u>、<u>积分、极限及求和</u>等) 的次序交换问题,均不另作说明。 □

直接进入基本性质汇总?

1. 线性性质

性质 设 a,b 为常数,则

$$\mathcal{F}[af(t)+bg(t)]=aF(\omega)+bG(\omega).$$

证明(略)

2. 位移性质

性质 设 t_0, ω_0 为实常数,则

(1)
$$\mathcal{F}[f(t-t_0)] = e^{-j\omega t_0} F(\omega)$$
; (时移性质)

(2)
$$\mathcal{F}^{-1}[F(\omega-\omega_0)] = e^{j\omega_0 t} f(t)$$
. (频移性质)

证明 (1)
$$\mathcal{F}[f(t-t_0)] = \int_{-\infty}^{+\infty} f(t-t_0) e^{-j\omega t} dt$$

$$\frac{\stackrel{\text{deg}}{=} x = t - t_0}{=} \int_{-\infty}^{+\infty} f(x) e^{-j\omega x} \cdot e^{-j\omega t_0} dx$$
$$= e^{-j\omega t_0} F(\omega);$$

(2) 同理,可得到频移性质。

2. 位移性质

性质 设 t_0, ω_0 为实常数,则

(1)
$$\mathcal{F}[f(t-t_0)] = e^{-j\omega t_0} F(\omega)$$
; (时移性质)

(2)
$$\mathcal{F}^{-1}[F(\omega-\omega_0)] = e^{j\omega_0 t} f(t)$$
. (频移性质)

- 时移性质表明:当一个信号沿时间轴移动后,各频率成份的大小不发生改变,但相位发生变化;
- 频移性质则被用来进行频谱搬移,这一技术在通信系统中 得到了广泛应用。

3. 相似性质

性质 设 a 为非零常数,则 $\mathcal{F}[f(at)] = \frac{1}{|a|} F\left(\frac{\omega}{a}\right)$.

证明 (1) 当a > 0 时,

$$\mathcal{F}[f(at)] = \int_{-\infty}^{+\infty} f(at) e^{-j\omega t} dt$$

$$\stackrel{\text{result}}{=} \frac{1}{a} \int_{-\infty}^{+\infty} f(x) e^{-j\frac{\omega}{a}x} dx = \frac{1}{a} F\left(\frac{\omega}{a}\right);$$

(2) 当a < 0 时,

同理可得
$$\mathcal{F}[f(at)] = -\frac{1}{a}F\left(\frac{\omega}{a}\right)$$
.

3. 相似性质

性质 设 a 为非零常数,则 $\mathcal{F}[f(at)] = \frac{1}{|a|} F\left(\frac{\omega}{a}\right)$.

- 相似性质表明,若信号被压缩 (a > 1), 则其频谱被扩展; 若信号被扩展 (a < 1), 则其频谱被压缩。
- 事实上,在对矩形脉冲函数的频谱分析中(§8.1)已知,脉冲越窄,则其频谱(主瓣)越宽;

脉冲越宽,则其频谱(主瓣)越窄。

相似性质正好体现了脉冲宽度与频带宽度之间的反比关系。

3. 相似性质

性质 设 a 为非零常数,则 $\mathcal{F}[f(at)] = \frac{1}{|a|} F\left(\frac{\omega}{a}\right)$.

• 在电信通讯中,

为了迅速地传递信号,希望信号的脉冲宽度要小; 为了有效地利用信道,希望信号的频带宽度要窄。

相似性质表明这两者是矛盾的,因为同时压缩脉冲宽度和 频带宽度是不可能的。

4. 微分性质

性质 若
$$\lim_{|t|\to+\infty} f(t) = 0$$
, $\mathcal{F}[f'(t)] = j\omega F(\omega)$.

证明 由
$$\lim_{|t|\to+\infty} f(t) = 0$$
,有 $\lim_{|t|\to+\infty} f(t)e^{-j\omega t} = 0$,

$$\mathcal{F}[f'(t)] = \int_{-\infty}^{+\infty} f'(t) e^{-j\omega t} dt$$

$$= f(t) e^{-j\omega t} \Big|_{-\infty}^{+\infty} + j\omega \int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt$$

$$= j\omega F(\omega).$$

4. 微分性质

性质 若
$$\lim_{|t|\to+\infty} f(t) = 0$$
, $\mathcal{F}[f'(t)] = j\omega F(\omega)$.

一般地,若
$$\lim_{|t|\to+\infty} f^{(k)}(t) = 0$$
, $(k = 0,1,2,\dots,n-1)$,

则
$$\mathcal{F}[f^{(n)}(t)] = (j\omega)^n F(\omega).$$

记忆 由
$$f(t) = \int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega$$
,

$$\Rightarrow f'(t) = \int_{-\infty}^{+\infty} j\omega F(\omega) e^{j\omega t} d\omega;$$

$$\Rightarrow f^{(n)}(t) = \int_{-\infty}^{+\infty} (j\omega)^n F(\omega) e^{j\omega t} d\omega.$$

4. 微分性质

● 同理,可得到<u>像函数的导数公式</u>

$$\mathcal{F}^{-1}[F'(\omega)] = -jtf(t);$$
$$\mathcal{F}^{-1}[F^{(n)}(\omega)] = (-jt)^n f(t).$$

• 上式可用来求 $t^n f(t)$ 的 Fourier 变换.

记忆 由
$$F(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt$$
,
$$\Rightarrow F'(\omega) = \int_{-\infty}^{+\infty} (-jt) f(t) e^{-j\omega t} dt;$$

$$\Rightarrow F^{(n)}(\omega) = \int_{-\infty}^{+\infty} (-jt)^n f(t) e^{-j\omega t} dt.$$

5. 积分性质

性质 若
$$\lim_{t\to +\infty} \int_{-\infty}^t f(t) dt = 0$$
, 则 $\mathcal{F}\left[\int_{-\infty}^t f(t) dt\right] = \frac{1}{j\omega} F(\omega)$.

由微分性质有 $\mathcal{F}[g'(t)] = j\omega G(\omega)$,

又
$$g'(t) = f(t)$$
, 有 $\mathcal{F}[f(t)] = j\omega \mathcal{F}[g(t)]$,

即得
$$\mathcal{F}\left[\int_{-\infty}^{t} f(t) dt\right] = \frac{1}{j\omega} F(\omega).$$

6. 帕塞瓦尔 (Parseval) 等
$$\int_{-\infty}^{+\infty} f^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |F(\omega)|^2 d\omega.$$

证明 由
$$F(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-j\omega t} dt$$
,有 $\overline{F(\omega)} = \int_{-\infty}^{+\infty} f(t) e^{j\omega t} dt$,

右边 =
$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) \cdot \overline{F(\omega)} d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\omega) \left[\int_{-\infty}^{+\infty} f(t) e^{j\omega t} dt \right] d\omega$$

$$= \int_{-\infty}^{+\infty} f(t) \frac{1}{2\pi} \left[\int_{-\infty}^{+\infty} F(\omega) e^{j\omega t} d\omega \right] dt$$

$$= \int_{-\infty}^{+\infty} f^2(t) \, \mathrm{d}t = \pm i \, 2 \, .$$

一、基本性质(汇总)

线性性质 $\mathcal{F}[af(t)+bg(t)]=aF(\omega)+bG(\omega)$.

位移性质 $\mathcal{F}[f(t-t_0)] = e^{-j\omega t_0}F(\omega);$ (<u>时移性质</u>)

$$\mathcal{F}^{-1}[F(\omega-\omega_0)] = e^{j\omega_0 t} f(t)$$
. (频移性质)

相似性质
$$\mathcal{F}[f(at)] = \frac{1}{|a|} F\left(\frac{\omega}{a}\right)$$
.

一、基本性质 (汇总)

微分性质
$$\mathcal{F}[f^{(n)}(t)] = (j\omega)^n F(\omega);$$

$$\mathcal{F}^{-1}[F^{(n)}(\omega)] = (-jt)^n f(t).$$

积分性质
$$\mathcal{F}\left[\int_{-\infty}^{t} f(t) dt\right] = \frac{1}{j\omega} F(\omega).$$

Parseval 等式
$$\int_{-\infty}^{+\infty} f^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |F(\omega)|^2 d\omega$$
.

(直接进入 Parseval 等式举例?)

例 设 $f(t) = u(t) \cdot 2\cos\omega_0 t$, $\mathcal{F}[f_{\mathcal{R}})$].

解 已知 $\mathcal{F}[u(t)] = \frac{1}{j\omega} + \pi\delta(\omega)$,

$$\sum f(t) = u(t) \cdot (e^{j\omega_0 t} + e^{-j\omega_0 t}),$$

根据线性性质和频移性质有

$$\mathcal{F}[f(t)] = \frac{1}{j(\omega - \omega_0)} + \pi \delta(\omega + \omega_0) + \frac{1}{j(\omega + \omega_0)} + \pi \delta(\omega - \omega_0)$$

$$=\frac{2j\omega}{\omega_0^2-\omega^2}+\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)].$$

例 已知抽样信号 $f(t) = \frac{\sin 2t}{\pi t}$ 的频谱为 $F(\omega) = \begin{cases} 1, & |\omega| \leq 2, \\ 0, & |\omega| > 2. \end{cases}$

求信号 g(t) = f(2t) 的频谱 $G(\omega)$. P199 例 8.11 修改

解根据相似性质有

$$G(\omega) = \mathcal{F}[g(t)] = \mathcal{F}[f(2t)]$$

$$=\frac{1}{2}F\left(\frac{\omega}{2}\right)=\begin{cases}1/2, & |\omega|\leq 4,\\ 0, & |\omega|>4.\end{cases}$$

例 设 $f(t) = t^2 \cos t$, $\mathcal{F} \not \sqsubseteq (t)$].

又已知 $G(\omega) = \mathcal{F}[\cos t] = \pi \delta(\omega - 1) + \pi \delta(\omega + 1)$,

根据<u>微分性质</u> $\mathcal{F}_{-}^{-1}[G''(\omega)] = (-jt)^2 g(t)$,有

$$\mathcal{F}[f(t)] = \mathcal{F}[t^2 g(t)] = -G''(\omega)$$
$$= -\pi \delta''(\omega - 1) - \pi \delta''(\omega + 1).$$

例 求积分 $\int_0^{+\infty} \frac{\sin^2 \omega}{\omega^2} d\omega$ 的值。 P201 例 8.12

解 设矩形脉冲函数 $f(t) = \begin{cases} 1, & |t| \leq 1, \\ 0, & |t| > 1, \end{cases}$

已知
$$f(t)$$
 的频谱 $\mathcal{F}(\omega) = \frac{2\sin\omega}{\omega}$,

由 Parserval 等式有 $\int_{-\infty}^{+\infty} |F(\omega)|^2 d\omega = 2\pi \int_{-\infty}^{+\infty} f^2(t) dt$.

$$\Rightarrow \int_{-\infty}^{+\infty} \frac{4 \sin^2 \omega}{\omega^2} d\omega = 2\pi \int_{-1}^{1} 1^2 dt = 4\pi.$$

由于被积函数为偶函数故有 $\int_0^{+\infty} \frac{\sin^2 \omega}{\omega^2} d\omega = \frac{\pi}{2}$.

1. 卷积的概念与运算性质

P201

定义 广义积分 $\int_{-\infty}^{+\infty} f_1(\tau) f_2(t-\tau) d\tau$ 对任何实数 t **鄭** 收象

它在 $(-\infty, +\infty)$ 上定义了一个自变量为 t 的

函数为 $f_1(t)$ 与(t) 的卷积,说 $(t)*f_2(t)$,即 为

$$f_1(t) * f_2(t) = \int_{-\infty}^{+\infty} f_1(\tau) f_2(t-\tau) d\tau.$$

1. 卷积的概念与运算性质

性质 (1) 交換律_

P202

$$f_1(t) * f_2(t) = f_2(t) * f_1(t).$$

(2) 结合律

$$f_1(t) * [f_2(t) * f_3(t)] = [f_1(t) * f_2(t)] * f_3(t).$$

(3) 分配律

$$f_1(t) * [f_2(t) + f_3(t)] = f_1(t) * f_2(t) + f_1(t) * f_3(t).$$

章

傅里叶变换

例 设 $f(t) = e^{-\alpha t}u(t)$, $g(t) = e^{-\beta t}u(t)$, 其中, $\alpha > 0$, $\beta > 0$,

8.13

 P^{202} 且 $\alpha \neq \beta$, 求函数 f(t) 和 g(t) 的卷积。

 $\mathbf{g}(t) * g(t) = \int_{-\infty}^{+\infty} f(\tau)g(t-\tau) d\tau,$

- (1) 当 $t \le 0$ 时f(t) * g(t) = 0.
- (2) 当t > 0 时.

$$f(t) * g(t) = \int_0^t f(\tau)g(t-\tau) d\tau$$

$$= \int_0^t e^{-\alpha \tau} e^{-\beta (t-\tau)} d\tau \quad g(t g(\tau)\tau)$$

$$=\frac{e^{-\beta\tau}-e^{-\alpha\tau}}{\alpha-\beta}.$$

 $g(\tau)$

- 从上面的例子可以看出 P204
 - (1) 在计算一些分段函数的卷积时,如何确定积分限是解别的关键。如果采用图形方式则比较容易确定积分限。
 - (2) 卷积由反褶、平移、相乘、积分四个部分组成即首先将函数 $g(\tau)$ 反褶并平移到 t , 得到 $-\tau$) = $g(-(\tau t))$, 再与函数f(t) 相乘后求积分得到卷积f(t)*g(t) . 因此,卷积又称为褶积或卷乘。
- 另外,利用卷积满足交换律这一性质,适当地选择两个函数的卷积次序,还可以使积分限的确定更直观一些。

*HIDT

例 求函数 f(t) 和 g(t) 的卷积, 其中,

$$\frac{P203 \, \text{ 例 } 8.14 \, \text{ 修改}}{f(t) = t^2 u(t), \ \ g(t) = \begin{cases} 2, & 1 \le t \le 2, \\ 0, & 其它. \end{cases}$$

解 由卷积的定义及性质有

$$f(t) * g(t) = \int_{-\infty}^{+\infty} f(\tau)g(t-\tau) d\tau$$
$$= \int_{-\infty}^{+\infty} g(\tau)f(t-\tau) d\tau.$$

 $(1) 当 t \le 1 \quad \text{时},$ f(t) * g(t) = 0.

第、章

傅里叶变换

M 求函数 f(t) 和 g(t) 的卷积,其中,

$$f(t)=t^2u(t), \ g(t)=\begin{cases} 2, & 1 \leq t \leq 2, \\ 0, & \exists \geq 1. \end{cases}$$

<mark>解</mark> 由卷积的定义及性质有

$$f(t) * g(t) = \int_{-\infty}^{+\infty} f(\tau)g(t-\tau) d\tau$$
$$= \int_{-\infty}^{+\infty} g(\tau)f(t-\tau) d\tau.$$

(2) 当1 < t < 2 时, $f(t) * g(t) = \int_{1}^{t} 2 \cdot (t - \tau)^{2} d\tau$ $= \frac{2}{3} (t - 1)^{3}.$

第、章

傅里叶变换

M 求函数 f(t) 和 g(t) 的卷积,其中,

$$f(t)=t^2u(t), \ g(t)=\begin{cases} 2, & 1\leq t\leq 2, \\ 0, & \exists \dot{\Xi}. \end{cases}$$

解 由卷积的定义及性质有

$$f(t) * g(t) = \int_{-\infty}^{+\infty} f(\tau)g(t-\tau) d\tau$$
$$= \int_{-\infty}^{+\infty} g(\tau)f(t-\tau) d\tau.$$

(3) 当 $t \ge 2$ 时, $f(t) * g(t) = \int_{1}^{2} 2 \cdot (t - \tau)^{2} d\tau$ $= \frac{2}{2} [(t - 1)^{3} - (t - 2)^{3}].$

列 求函数 f(t) 和 g(t) 的卷积,其中,

$$f(t)=t^2u(t), \ g(t)=\begin{cases} 2, & 1 \leq t \leq 2, \\ 0, & \exists \geq 1. \end{cases}$$

解 由卷积的定义及性质有

$$f(t) * g(t) = \int_{-\infty}^{+\infty} f(\tau)g(t-\tau) d\tau$$
$$= \int_{-\infty}^{+\infty} g(\tau)f(t-\tau) d\tau.$$

综合得

$$f(t) * g(t) = \begin{cases} 0, & t \le 1, \\ 2(t-1)^3/3, & 1 < t < 2, \\ 2[(t-1)^3 - (t-2)^3]/3, & t \ge 2. \end{cases}$$

2. 卷积定理

定理 设 $\mathcal{F}[f_1(t)] = F_1(\omega)$, $\mathcal{F}[f_2(t)] = F_2(\omega)$, 则有

$$\mathcal{F}[f_1(t) * f_2(t)] = F_1(\omega) \cdot F_2(\omega); \tag{A}$$

$$\mathcal{F}^{-1}[F_1(\omega) * F_2(\omega)] = 2\pi f_1(t) \cdot f_2(t).$$
 (B)

证明
$$\mathcal{F}[f_1(t) * f_2(t)] = \int_{-\infty}^{+\infty} f_1(t) * f_2(t) e^{-j\omega t} dt$$

$$= \int_{-\infty}^{+\infty} \left[\int_{-\infty}^{+\infty} f_1(\tau) f_2(t-\tau) d\tau \right] e^{-j\omega t} dt$$

$$= \int_{-\infty}^{+\infty} f_1(\tau) e^{-j\omega\tau} \left[\int_{-\infty}^{+\infty} f_2(t-\tau) e^{-j\omega(t-\tau)} dt \right] d\tau = F_1(\omega) \cdot F_2(\omega);$$

同理可证 (B) 式。

- *3. 卷积的物理意义 (跳过?)
- 背景 (1) 如何从收到的实际信号中分离出"想要"的某个频 内的信号。
 - (2) 如何从收到的实际信号中消除在传输过程中加入的 高频干扰噪声。
- 问题 设有某信号为f(t),试将该信号的低频成份完全保留,而高频成份完全去掉,即对其进行理想低通滤波。

*3. 卷积的物理意义

方法 方法一 在频率域中实现

(1) 求出信号f(t) 频谱函数 ω).

- (3) 将 $F(\omega)$ **塔**(ω) 相乘,**得到** = $F(\omega) \cdot H(\omega)$.
- (4) 对 $\widetilde{F}(\omega)$ 作 Fourier 逆变换, 簿倒 = $\mathcal{F}^{-1}[\widetilde{F}(\omega)]$.
- 显然,新的信号 $\widetilde{f}(t)$ 中完全保留了原信号f(t) 中频率低于 a 的频率成份,而去掉了频率高于 a 的频率成份。

*3. 卷积的物理意义

方法 方法二 在时间域中实现

- (3) 计算卷积 $\tilde{\tilde{f}}(t) = f(t) * h(t)$.
- ullet 由卷积定理,信号 $\widetilde{f}(t)$ 与<u>方法一</u>中信号 $\widetilde{f}(t)$ 是一样的, 这正是卷积的意义和价值。
- 注 $H(\omega)$ 与 h(t) 分别又称为<u>频率响应函数</u>与<u>冲激响应函数</u>。

例 求函数 h(t) 和 $\delta(t)$ 的卷积。

解 方法—
$$h(t)*\delta(t) = \int_{-\infty}^{+\infty} h(\tau)\delta(t-\tau)d\tau = h(t).$$

方法二 已知 $\delta(t)$ 的 Fourier 变换**为** ω)= $\mathcal{F}[\delta(t)]=1$, 令 $H(\omega)=\mathcal{F}[h(t)]$,根据<u>卷积定理</u>有

$$h(t) * \delta(t) = \mathcal{F}^{-1}[H(\omega) \cdot D(\omega)]$$
$$= \mathcal{F}^{-1}[H(\omega)] = h(t).$$

- 注 (1) 一般地, $\hbar(t)*\delta(t-t_0)=h(t-t_0)$.
 - (2) 本例的结论被用来获取或者检测系统的<u>冲激响应函数</u>。

例 设函数 $f(t) = \frac{\sin at}{\pi t}$, $g(t) = \frac{\sin bt}{\pi t}$, 其中, a > 0, b > 0,

求函数 f(t) 和 g(t) 的卷积。 P204 例 8.15

解 函数 f(t) 和(t) 均为抽样信**共**频谱分别为

$$F(\omega) = \begin{cases} 1, & |\omega| \le a, \\ 0, & |\omega| > a, \end{cases} \quad G(\omega) = \begin{cases} 1, & |\omega| \le b, \\ 0, & |\omega| > b. \end{cases}$$

根据卷积定理有

$$f_1(t) * f_2(t) = \mathcal{F}^{-1}[F_1(\omega) \cdot F_2(\omega)] = \frac{\sin ct}{\pi t}.$$

例 求 $f(t) = e^{-at}u(t)\cos bt$ (a > 0) 的 Fourier 变换。 P205 例 8.16

(跳过?)

解 方法一 利用卷积定理求解

$$\Rightarrow g(t) = e^{-at} u(t), \quad h(t) = \cos bt,$$

则
$$G(\omega) = \mathcal{F}[g(t)] = \frac{1}{a+j\omega}$$

$$H(\omega) = \mathcal{F}[h(t)] = \pi[\delta(\omega+b) + \delta(\omega-b)],$$

$$\mathcal{F}[f(t)] = \mathcal{F}[g(t) \cdot h(t)] = \frac{1}{2\pi} G(\omega) * H(\omega)$$

$$=\frac{\pi}{2\pi}[G(\omega)*\delta(\omega+b)+G(\omega)*\delta(\omega-b)]$$

$$=\frac{1}{2}\left[\frac{1}{a+j(\omega+b)}+\frac{1}{a+j(\omega-b)}\right]=\frac{a+j\omega}{(a+j\omega)^2+b^2}.$$

例 求 $f(t) = e^{-at}u(t)\cos bt$ (a > 0) 的 Fourier 变换。

解 方法二 利用频移性质求解

$$\nabla f(t) = \frac{1}{2} [g(t)e^{-jbt} + g(t)e^{jbt}],$$

根据频移性质有

$$\mathcal{F}[f(t)] = \frac{1}{2}[G(\omega+b)+G(\omega-b)]$$

$$=\frac{1}{2}\left[\frac{1}{a+j(\omega+b)}+\frac{1}{a+j(\omega-b)}\right]=\frac{a+j\omega}{(a+j\omega)^2+b^2}.$$

*三、利用 Matlab 实现 Fourier 变 🙌 💛 (跳过?)

- 在数学软件 Matlab 的符号演算工具箱中,提供了专用函来进行 Fourier 变换与 Fourier 逆变换。
 - (1) F = fourier(f) 对函数 f(x) 进行 Fourier 变换, 对并返回结果 F(w)。
 - (2) f = ifourier(F) 对函数 F(w) 进行 Fourier 逆变换, 对并返回结果 f(x)。

求函数 $f(x) = \cos ax$ 的 Fourier 变换。

Matlab 程序

clear;

syms a real;

syms x;

f = cos(a*x);

F = fourier(f);

输出 F = pi * Dirac(w - a) + pi * Dirac(w + a)

其中, Dirac 为 函数 p_i 代表 π .

即 $F(\omega) = \pi[\delta(\omega - a) + \delta(\omega + a)].$

例 求函数 $f(x) = \frac{a}{\pi} \left(\frac{\sin ax}{ax} \right)$

的 Fourier 变换。

解 Matlab 程序

clear;

syms a real;

syms x;

f = a*sin(a*x)/(pi*a*x);

F = fourier(f);

输出 F=1/pi*(1/2*pi*(Heaviside(-w+a)-Heaviside(w-a))
-1/2*pi*(Heaviside(-w-a)-Heaviside(w+a)))

其中,Heaviside 为单位阶跃函数pi 代表 π .

例 求函数 $f(x) = \frac{a}{\pi} \left(\frac{\sin ax}{ax} \right)$

的 Fourier 变换。

解 输出 F=1/pi*(1/2*pi*(Heaviside(-w+a)-Heaviside(w-a))

-1/2*pi*(Heaviside(-w-a)-Heaviside(w+a)))

其中, Heaviside 为单位阶跃函数 pi 代表 π .

$$\mathbb{P} F(\omega) = \frac{1}{\pi} (\frac{\pi}{2} (u(-\omega + a) - u(\omega - a)) - \frac{\pi}{2} (u(-\omega - a) - u(\omega + a))$$

$$= \frac{1}{2} (u(\omega + a) - u(\omega - a) + u(-\omega + a) - u(-\omega - a))$$

$$= \begin{cases} 1, & |\omega| \le a, \\ 0, & |\omega| > a. \end{cases}$$

例 已知函数f(x) 频谱f(x) 频谱f(x) , f(x) , f(x) , f(x) 。 求

解 Matlab 程序

输出 $f = \exp(-a * x) * Heaviside(x)$

其中, Heaviside 为单位阶跃函数 exp 为指数函数。

$$\mathbb{P} f(x) = e^{-ax}u(x) = \begin{cases} e^{-\alpha x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

休息一下