1 Prove or Disprove

Prove or disprove each of the following statements. For each proof, state which of the proof types (as discussed in Note 2) you used.

- (a) For all natural numbers n, if n is odd then $n^2 + 3n$ is even.
- (b) For all real numbers a, b, if a + b > 20 then a > 17 or b > 3.
- (c) For all real numbers r, if r is irrational then r+1 is irrational.
- (d) For all natural numbers n, $10n^3 > n!$.
- (e) For all natural numbers a where a^5 is odd, then a is odd.

Solution:

1. True/False: For all natural numbers n, if n is odd then $n^2 + 3n$ is even.

True.

Proof: We will use a direct proof. Assume n is odd. By the definition of odd numbers, n = 2k + 1 for some natural number k. Substituting into the expression $n^2 + 3n$, we get $(2k + 1)^2 + 3 \times (2k + 1)$. Simplifying the expression yields $4k^2 + 10k + 4$. This can be rewritten as $2 \times (2k^2 + 5k + 2)$. Since $2k^2 + 5k + 2$ is a natural number, by the definition of even numbers, $n^2 + 3n$ is even.

2. True/False: For all real numbers a, b, if $a + b \ge 20$ then $a \ge 17$ or $b \ge 3$.

True.

Proof: We will use a proof by contraposition. Suppose that a < 17 and b < 3 (note that this is equivalent to $\neg(a \ge 17 \lor b \ge 3)$). Since a < 17 and b < 3, a+b < 20 (note that a+b < 20 is equivalent to $\neg(a+b \ge 20)$). Thus, if $a+b \ge 20$, then $a \ge 17$ or $b \ge 3$ (or both, as "or" is not "exclusive or" in this case). By contraposition, for all real numbers a,b, if $a+b \ge 20$ then $a \ge 17$ or $b \ge 3$.

3. True/False: For all real numbers r, if r is irrational then r+1 is irrational.

True.

Proof: We will use a proof by contraposition. Assume that r+1 is rational. Since r+1 is rational, it can be written in the form a/b where a and b are integers. Then r can be written as (a-b)/b. By the definition of rational numbers, r is a rational number, since both a-b and b are integers. By contraposition, if r is irrational, then r+1 is irrational.

CS 70, Fall 2021, DIS 1B

4. True/False: For all natural numbers n, $10n^3 > n!$.

False.

Proof: We will use proof by counterexample. Let n = 10. $10 \times 10^3 = 10,000$. (10!) = 3,628,800. Since $10n^3 < n!$, the claim is false.

5. True/False: For all natural numbers a where a^5 is odd, then a is odd.

True.

Proof: This will be proof by contraposition. The contrapositive is "If a is even, then a^5 is even." Let a be even. By the definition of even, a = 2k. Then $a^5 = (2k)^5 = 2(16k^5)$, which implies a^5 even. By contraposition, for all natural numbers a where a^5 is odd, then a is odd.

2 Twin Primes

- (a) Let p > 3 be a prime. Prove that p is of the form 3k + 1 or 3k 1 for some integer k.
- (b) Twin primes are pairs of prime numbers p and q that have a difference of 2. Use part (a) to prove that 5 is the only prime number that takes part in two different twin prime pairs.

Solution:

- (a) First we note that any integer can be written in one of the forms 3k, 3k + 1, or 3k + 2. (Note that 3k + 2 is equal to 3(k + 1) 1. Since k is arbitary, we can treat these as equivalent forms). We can now prove the contrapositive: that any integer m > 3 of the form 3k must be composite. Any such integer is divisible by 3, so this is true right away. Thus our original claim is true as well.
- (b) We can check all the primes up to 5 to see that of these, only 5 takes part in two twin prime pairs (3,5 and 5,7). What about primes > 5?

For any prime m > 5, we can check if m + 2 and m - 2 are both prime. Note that if m > 5, then m + 2 > 3 and m - 2 > 3 so we can apply part (a) and we can do a proof by cases based on the two forms from part (a).

Case 1: m is of the form 3k + 1. Then m + 2 = 3k + 3, which is divisible by 3. So m + 2 is not prime.

Case 2: m is of the form 3k-1. Then m-2=3k-3, which is divisible by 3. So m-2 is not prime.

So in either case, at least one of m+2 and m-2 is not prime.

CS 70, Fall 2021, DIS 1B 2

3 Induction

Prove the following using induction:

- (a) For all natural numbers n > 2, $2^n > 2n + 1$.
- (b) For all positive integers n, $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.
- (c) For all positive natural numbers n, $\frac{5}{4} \cdot 8^n + 3^{3n-1}$ is divisible by 19.

Solution:

(a) The inequality is true for n = 3 because 8 > 7. Let the inequality be true for n = k, such that $2^k > 2k + 1$. Then,

$$2^{k+1} = 2 \cdot 2^k > 2 \cdot (2k+1) = 4k+2$$

We know 2k > 1 because k is a positive integer. Thus:

$$4k+2=2k+2k+2>2k+1+2=2k+3=2(k+1)+1$$

We've shown that $2^{k+1} > 2(k+1) + 1$, which completes the inductive step.

(b) We can verify that the statement is true for n = 1. Assume the statement holds for n = k, so that

$$\sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}.$$

Then we can write

$$\sum_{i=1}^{k+1} i^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2$$

$$= (k+1) \left(\frac{k(2k+1)}{6} + (k+1) \right)$$

$$= (k+1) \left(\frac{2k^2 + k + 6k + 6}{6} \right)$$

$$= (k+1) \left(\frac{2k^2 + 7k + 6}{6} \right)$$

$$= (k+1) \left(\frac{(2k+3)(k+2)}{6} \right)$$

$$= \frac{(k+1)(2(k+1)+1)((k+1)+1)}{6},$$

as desired. Since we've shown that the statement holds for n = k + 1, our proof is complete.

(c) For n = 1, the statement is "10+9 is divisible by 19", which is true. Assume that the statement holds for n = k, such that $\frac{5}{4} \cdot 8^k + 3^{3k-1}$ is divisible by 19. Then,

$$\frac{5}{4} \cdot 8^{k+1} + 3^{3(k+1)-1} = \frac{5}{4} \cdot 8 \cdot 8^k + 3^{3k+2}$$

$$= 8 \cdot \frac{5}{4} \cdot 8^k + 3^3 \cdot 3^{3k-1}$$

$$= 8 \cdot \frac{5}{4} \cdot 8^k + 8 \cdot 3^{3k-1} + 19 \cdot 3^{3k-1}$$

$$= 8 \left(\frac{5}{4} \cdot 8^k + 3^{3k-1}\right) + 19 \cdot 3^{3k-1}$$

The first term is divisible by the inductive hypothesis, and the second term is clearly divisible by 19. This completes our proof, as we've shown the statement holds for k+1.

4 Make It Stronger

Suppose that the sequence $a_1, a_2,...$ is defined by $a_1 = 1$ and $a_{n+1} = 3a_n^2$ for $n \ge 1$. We want to prove that

$$a_n < 3^{(2^n)}$$

for every positive integer n.

- (a) Suppose that we want to prove this statement using induction. Can we let our inductive hypothesis be simply $a_n \leq 3^{(2^n)}$? Attempt an induction proof with this hypothesis to show why this does not work.
- (b) Try to instead prove the statement $a_n \le 3^{(2^n-1)}$ using induction.
- (c) Why does the hypothesis in part (b) imply the conclusion from part (a)?

Solution:

(a) Let's try to prove that for every $n \ge 1$, we have $a_n \le 3^{2^n}$ by induction.

Base Case: For n = 1 we have $a_1 = 1 \le 3^{2^1} = 9$.

Inductive Step: For some $n \ge 1$, we assume $a_n \le 3^{2^n}$. Now, consider n + 1. We can write:

$$a_{n+1} = 3a_n^2 \le 3(3^{2^n})^2 = 3 \times 3^{2 \times 2^n} = 3 \times 3^{2^{n+1}} = 3^{2^{n+1}+1}.$$

However, what we wanted was to get an inequality of the form: $a_{n+1} \le 3^{2^{n+1}}$. There is an extra +1 in the exponent of what we derived.

(b) This time the induction works.

<u>Base Case</u>: For n = 1 we have $a_1 = 1 \le 3^{2-1} = 3$. <u>Inductive Step</u>: For some $n \ge 1$ we assume $a_n \le 3^{2^n-1}$. Now, consider n + 1. We can write:

$$a_{n+1} = 3a_n^2 \le 3 \times (3^{2^n-1})^2 = 3 \times 3^{2 \times (2^n-1)} = 3 \times 3^{2^{n+1}-2} = 3^{2^{n+1}-1}.$$

This is exactly the induction hypothesis for n + 1.

(c) For every $n \ge 1$, we have $2^n - 1 \le 2^n$ and therefore $3^{2^n - 1} \le 3^{2^n}$. This means that our modified hypothesis which we proved in part (b) does indeed imply what we wanted to prove in part (a).

CS 70, Fall 2021, DIS 1B 5