TFmini 使用说明书

小型激光雷达模组

www.benewake.com Benewake (Beijing) Co., Ltd.

所述产品

产品型号: TFmini

产品名称: 小型激光雷达模组

制造商

公司: 北醒(北京)光子科技有限公司

地址: 中国 北京 海淀区 信息路 28号

版权声明

本文档受版权保护。其中涉及到的一切权利归北醒公司所有。只允许在版权法的范围内复制本文档的全部或部分内容。未经北醒公司的官方书面许可,不允许对文档进行修改、删减或翻译。

© 北醒公司版权所有

产品认证

前言

尊敬的用户:

您好。感谢您选择北醒光子科技的产品,我们很荣幸参与您解决问题的过程。

为了让产品的使用体验更好,我们特此制定产品使用说明书,帮助您更加便捷的使用产品,从而更好的帮您解决问题。

本说明书中已涵盖常见情况下的使用说明及问题处理措施,但仍不能保证可完全解决您的问题。如果您在使用产品的过程中遇到其他问题,欢迎您咨询我们的技术支持人员(support@benewake.com),我们竭诚为您解决产品使用中的任何问题。您在使用产品过程中有任何意见或建议,可以到官网的留言咨询版块(http://www.benewake.com/feedback.html)反馈给我们,我们期待您的参与。

该产品的各类应用开发例程,可以在 https://github.com/TFmini 上找到,如果该网页上的开发例程不能满足您的需求,您可以通过邮件 (bw@benewake.com) 告知我们,我们会尽快完善开发例程。

我们是北醒,我们立志做最好的机器人眼睛!

目录

1	注意	事项	6		
	1.1	关于文档	6		
	1.2	产品使用	6		
	1.3	产品失效情况	6		
2	功能	及关键参数	6		
	2.1	产品功能	6		
	2.2	测距原理	6		
	2.3	关键特性参数	7		
	2.4	测距特性	7		
3	外观-	与结构	9		
	3.1	产品外观	9		
	3.2	产品结构	9		
4	电气	持性	10		
5	线序	与数据通信协议	10		
	5.1	线序连接说明	10		
	5.2	数据通信协议	10		
	5.3	数据输出格式及编码	11		
	5.4	输出数据说明	11		
6	快速测试步骤1				
	6.1	产品测试所需工具	12		
	6.2	测试步骤	12		
7	自定	义参数配置说明	14		
	7.1	功能简介	14		
	7.2	配置指令编码格式	14		
	7.3	一般参数配置及说明	14		

	7.4	特殊参数配置步骤及说明	16
8	远程升	十级	17
9	故障-原	原因和处理措施	17
10	常见ì	问题及解答	19
附身	₹ — ′	TF 系列上位机使用说明	20
附身	₹ = T	Fmini 在 Arduino 上的开发例程	22
	步骤 1	: 硬件连接	22
	步骤 2	2: 程序编写	22
	步骤3	3: 数据查看	24
附身	是三 TF	mini 在开源飞控 pixhawk 上的应用	26
	a) TF	mini 用于 pixhawk 定高模式下 Mission Planner 配置说明	26
	b) TF	mini 用于 pixhawk 避障模式下 Mission Planner 配置说明	27
	连接F	Pixhawk 的 SERIAL4/5 接口	28

1 注意事项

1.1关于文档

- 本说明书提供产品使用过程中必需的各项信息。
- 请在使用本产品前认真阅读本说明书,并确保您已完全理解说明书内容。

1.2产品使用

- 本产品只能由合格的专业人员维修,且只能使用原厂备件,以保证产品的性能和安全性。
- 产品本身无极性保护和过电压保护,请按说明书内容正确接线和供电。
- 产品的工作温度为 0°℃~60°℃,请勿在此温度范围外使用,以免产生风险。
- 产品的存储温度为 -20℃~75℃, 请勿在此温度范围外存储, 以免产生风险。
- 请勿打开外壳,进行本使用说明以外的装配或保养,以免影响产品性能。

1.3产品失效情况

- 产品在探测高反射率物体,如镜面、光滑地砖时,会有失效的风险。
- 当产品与被测目标之间有透明物体,如玻璃、水时,会有失效的风险。
- 当产品发射与接收透镜被污物覆盖时,会有失效的风险,请保持透镜干净。
- 由于产品线路板直接裸露,请勿直接用手触碰线路板。如有需求,请佩戴静电手环或防静电手套。否则产品会有失效的风险,具体表现为产品无法正常工作。

2 功能及关键参数

2.1产品功能

TFmini 是一款小型激光雷达模组。主要实现实时、无接触式的距离测量功能,具有测量准确、稳定、高速的特点。

2.2测距原理

TFmini 基于 TOF(Time of Flight)即飞行时间原理。具体为产品周期性的向外发出近红外光调制波,调制波遇物体后反射。产品通过测量调制波往返相位差,得到飞行时间,再计算出产品与被测目标之间的相对距离,如图 1 所示。

图 1 时间飞行原理示意图

2.3关键特性参数

表 1 TFmini 关键特性参数指标

参数名称	参数值		
测距范围	0.3m~12m ^①		
测量准确度	±6cm@ (0.3-6m) ^②		
测里/正朔反	±1%@ (6m-12m)		
默认距离单位	cm		
距离分辨力	1cm		
接收半角	1.15°		
发射半角	1.5°		
测量频率	100Hz		

- ① 室内标准白板 (90%反射率) 条件下所能达到的测距范围;
- ② 在 0.3m~2m 内由于测距档位切换,会产生个别点误差在±6cm。

2.4测距特性

图 2 产品测距范围及有效性示意图

TFmini 产品经过光路与算法优化,已最大程度减小外界环境对测距性能的影响。但限于工作原理,测距范围仍会受到环境光照强度和被测目标反射率不同程度的影响。如图 2 所示:

序号①:代表 TFmini 的测距盲区,为 0-30cm,该范围内的数据不可信。

序号②: 代表 TFmini 在极限环境下的测距范围,一般为 0.3-3m,极限条件是指室外强光(夏天正午室外的光照强度约 100klux 左右)下对黑色目标物(10%反射率)探测。

序号③: 代表 TFmini 在一般日照条件下(70klux 左右)测量白色目标物的测距范围,包含②的范围,为 0.3-7m。

序号(4): 代表 TFmini 在室内或环境光很弱的情况下,测距范围为 0.3-12m。

序号⑤:代表不同距离下 TFmini 的有效测距边长,只有当『被测目标边长』大于等于『有效测距边长』时,数据才稳定可靠。该『有效测距边长』由 TFmini 的视场角决定(视场角一般是指接受角和发射角中的较小者),计算公式为:

$$d = 2 \cdot D \cdot \tan \beta$$

其中,d表示有效测距边长,D 表示探测距离, β 为 TFmini 的接收半角 1.15° ,一般的有效测距 边长与探测距离的对应关系,见表 2_\circ

探测 1_m 2m 3m 4m 5m 6m 7m 8m 9m 10m 11m 12m 距离 有效 4cm 8cm 12cm 16cm 20cm 24cm 28cm 32cm 36cm 40cm 44cm 48cm 边长

表 2 测距距离对应的被测目标有效边长

当被测物体边长不满足有效测距边长时,如图 3 所示, TFmini 输出测量值 (Dist) 会介于两物体真实距离之间。使用过程中如果要求精度较高,应尽量避免此类情况,减小测量误差。

图 3 探测两个距离不一的物体

3 外观与结构

3.1产品外观

图 4 TFmini 产品外观

- ① 发射透镜。
- ② 接收透镜。
- ③ 外壳, 为 ABS+PC 材质。
- ④ 安装孔为 2.35mm 通孔,建议使用 ST2.9 自攻螺丝安装固定。
- ⑤ 接线端子,为 GH1.25-4p 卧贴;产品附赠一根 10cm 长的连接线。
- ⑥ 电路板,产品后部无外壳遮蔽。

3.2产品结构

www.benewake.com

4 电气特性

表 3 TFmini 主要电气参数

参数名称	参数值
供电电压	5V
平均电流	≤140mA
峰值电流	800mA
平均功率	≤0.7W
通信电平	LVTTL (3.3V)

本产品无过压保护或者极性保护,请确保接线和供电正常,供电电压允许±0.1V的波动。

平均电流有两种情况,根据产品的工作档位不同而变化,近距离档位平均电流 70mA 左右,远距离档位平均电流 120mA 左右。请保证供电电流能满足瞬时 800mA 的需求,供电电流不足时,产品可能无法正常工作。

5 线序与数据通信协议

5.1线序连接说明

表 4 引脚功能及连接说明

编号	引脚	功能	对应连接项
1	GND	供电	电源地
2	+5V	供电	电源正极
3	RXD	接收	TXD
4	TXD	发送	RXD

接线端子型号: GH1.25-4P。产品包含 10cm 长的连接线,连接线的另一端为普通 1.25-4p 端子 (Molex510210400)。客户可自行延长连接线,为保证数据的有效传输,建议自行焊接的连接线长度不大于 1m。

5.2数据通信协议

TFmini 采用串口数据通信协议,通信协议见表 5。

表 5 TFmini 数据通信协议

通信接口	UART
默认波特率	115200
数据位	8
停止位	1
奇偶校验	None

5.3数据输出格式及编码

TFmini 有两种数据输出格式,标准数据输出格式和 pixhawk 数据格式,两种格式可通过指令代码相互切换。

● 标准数据输出格式 (默认):

数据结构:每个数据包为 9Byte。包含距离信息 (Dist)、信号强度信息 (Strength)、测距档位 (Mode)、数据校验字节 (CheckSum) 等。数据格式为 16 进制 (HEX)。具体数据编码详见表 6。

表 6 数据格式及编码解释

Byte0 -1	Byte2	Byte3	Byte4	Byte5	Byte6	I	Byte7	Byte8		
0x59 59	Dist_L	Dist_H	Strength_L	Strength_H	Mode		0x00	CheckSum		
	数据编码解释									
Byte0	0x59,帧	头,每一	述相同							
Byte1	0x59,帧	头,每一	述相同							
Byte2	Dist_L 距	离值低八位	<u></u>							
Byte3	Dist_H 距	离值高八倍	<u>À</u>							
Byte4	Strength_	L低八位								
Byte5	Strength_	H 高八位								
Byte6	Mode 测距	Mode 测距档位,分别由 02(近距离)和 07(远距离)表示,默认自动切换。								
Byte7	预留字节,默认 00									
Byte8	CheckSun	n 为前 8 字	节数据的累加	1和,取累加	和的低8位	Ż				

● 串口 Pixhawk 数据格式

以字符串形式输出,单位为 m,比如测距为 1.21m,则输出字符串 1.21,后跟转义字符\r\n。

5.4输出数据说明

Dist: 代表 TFmini 测量输出的距离值,默认单位为 cm,解析为十进制的值范围为 0-1200。实际使用过程中,当信号强度值 Strength<20(该值可设置)时,Dist 的测量值被认为不可信,默认输出 FFFF(pixhawk 数据格式下输出-1 或 0)。当 Strength≥20 且实际距离>12m 时,Dist 默认输出值为 1200(cm)。

Strength:指信号强度,默认输出值会在 0-3000 之间。当测距档位一定时,测距越远,信号强度越低;目标物反射率越低,信号强度越低。建议当 Strength 在 20-2000 之间时,认为 Dist 的测量值可信,客户可以根据使用场景自行调整。

Mode: 用来表征产品的测距档位的参数。对于该项参数,不同版本固件会有一定差异,15X版本的固件,分为02和07两个档位,02为近距离工作档位,07为远距离工作档位。默认的自动切换逻辑为:在02测距档位下,当Strength值小于某个值(一般在70-120之间),则测距档位变为07,此时Strength值大幅度提升;在07测距模式下,当Strength值大于某个值(一般在1200-1600之间),则测距档位变为02,此时Strength值大幅度降低。对于,16X版本的固件,分为00,03和07三个档位,00为近距离工作档位,03为中距离工作档位,07为远距离工作档位。三个档位的切换条件与上述两个档位条件类似。

6 快速测试步骤

6.1产品测试所需工具

6.2测试步骤

① 上位机测试软件下载

请到北醒官网(http://www.benewake.com/down.html)下载 TFmini 上位机软件。

注意:解压上位机软件前请关闭杀毒软件软件,避免上位机软件中的文件被当成病毒删除,上位机目前仅支持在 Windows 系统上运行。详见附录一:《TF 上位机使用说明》。

② 设备连接

图 6 正确连接示意图

如错误!未找到引用源。所示,连接『TFmini』、『数据线』、『TTL-USB 转接板』和『USB 线』,确保无松动,再将『USB 线』与『电脑』连接。

③ 上位机连接与读数

如图 7, 打开 TF 上位机,选择『① Benewake TFmini』,并选择自动识别的占用串口(这里是『② COM9』)。

然后,点击『CONNECT』进行上位机连接。连接成功后,右侧『④ TIME LINE CHART』区域会出现连续输出的数据图像,下方『⑥ REAL TIME DATA』区实时显示当前测试距离(Dist)、每秒有效数据量(Effective Points)和信号强度(Strength)。

图 7 上位机界面及显示

说明:

- a) 如果『④ TIME LINE CHART』区没有数据,请检查连接和线序,TFmini 上电成功,正面看发射 诱镜内会有微弱的红光。
- b) 如果 TFmini 是 Pixhawk 格式输出,需先勾选『③ Pix Mode』,『④ TIME LINE CHART』区才会正常输出数据图像。勾选 Pix Mode 后,距离单位变为 m。
- c) 距离输出 Dist 值,跟据输出单位不同会有所区别,默认单位为 cm。如果通过指令修改 TFmini 的距离单位为 mm,上位机并不能区分,『④ TIME LINE CHART』单位仍为 cm。例如,TFmini 实际测量距离为 1m,以 mm 为单位则输出 1000,通过该上位机读取的数值为 1000,但上位机上的单位不会变化,仍显示 cm。

7 自定义参数配置说明

7.1功能简介

为了让 TFmini 可以更灵活的解决您的问题,特开放用户自定义配置产品参数的功能。用户可通过发送相关指令来修改产品的原有参数,如输出数据格式、输出周期等。参数配置成功后,配置参数会保存在 Flash 中,断电重启无须重新配置。

请根据需求修改产品配置,切勿频繁尝试不相关指令,以免指令发送错误造成不必要的损失; 请务必按照本说明书所列指令进行产品配置,切勿发送未声明的指令。

7.2配置指令编码格式

注意: 所有配置指令均为 16 进制数 (HEX) 发送。

Byte0 Byte4 Byte1 Byte2 Byte3 Byte5 Byte6 Byte7 0x420x570x02DD EE FF GG HH 指令编码解释 0x42 0x57, 帧头, 每一帧都相同 Byte0-1 默认 0x02 Byte2 指令发送时默认 0x00 Byte3 指令发送完成后会出现回显,0x01表示成功,0xff表示错误指令,0x0f表示输入参数错误 EE FF 双字节参数, EE 为低 8 位, FF 为高 8 位 Byte4-5 GG 单字节参数 Byte6 HH 指令码 Byte7

表 7 指令编码格式及详细描述

7.3一般参数配置及说明

设置 TFmini 的相关参数,请先将 TFmini 与 PC 建立连接,连接方式参考 6.2 中的测试连接,通过 TF 上位机或者其他串口调试软件,给产品发送相关配置指令;客户也可以通过自己的上位机自行发送相关指令。

- a) 进入配置模式,发送: 42 57 02 00 00 00 01 02 回显: 42 57 02 01 00 00 01 02 表示成功发送;
- b) 配置产品参数, 发送: 42 57 02 00 EE FF GG HH (表 8) 回显: 42 57 02 01 EE FF GG HH 表示成功发送;
- c) 退出配置模式,发送: 42 57 02 00 00 00 00 02 回显: 42 57 02 01 00 00 00 2 表示成功发送;

图 8 一般参数配置流程图

表 8 一般参数配置指令列表

序号	可配置项	指令列表	说明	出厂配置	
	<i>t</i> △.1.1¥/;+□.4 <i>/</i> ; 1	42 57 02 00 00 00 01 06	标准格式, 如表 6	\checkmark	
1	输出数据格式	42 57 02 00 00 00 04 06	"Pixhawk"数据格式	/	
2	数据输出周期	42 57 02 00 EE FF 00 07	EE FF:输出周期设置 (ms) 仅支持 10ms 的整数倍设置	10ms/100H z	
		42 57 02 00 00 00 00 1A	距离数据输出单位为 mm	/	
3	距离数据单位	42 57 02 00 00 00 01 1A	距离数据输出单位为 cm	$\sqrt{}$	
	\@\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	42 57 02 00 00 00 00 14	测距档位自动变换	$\sqrt{}$	
	测距模式	42 57 02 00 00 00 01 14	测距档位固定		
	测距档位设置	42 57 02 00 00 00 00 11	近距离档位,0-2m 适用(16X 固件)		
4			42 57 02 00 00 00 03 11	中距离档位, 0.5-5m 适用 (16X 固件)	/
		42 57 02 00 00 00 02 11	近距离档位,0-5m 适用(15X 固件)		
		42 57 02 00 00 00 07 11	远距离档位,1-12m适用		
	量程输出限制 设置	42 57 02 00 00 00 00 19	关闭量程限制	/	
5		42 57 02 00 EE FF 01 19	开启量程限制 EE FF:量程限制阈值(mm)	量程限制 12m	
6	信号强度阈值 最低点设置	EE:信号强度阈值最低点设置 信号强度阈值 42 57 02 00 EE 00 00 20 该值时距离值输出 FF FE.用		阈值最低点 20(DEC)	
7	信号强度阈值 42 57 02 00 EE FF GG 21 最高点设置		EE FF:信号强度阈值最高点设置。 GG:输出距离值(cm)	/	

解释说明:

- ① 标准数据输出格式见表 6, "Pixhawk"数据格式主要用于连接 Pixhawk 时使用,该模式下数据输出为十进制字符串。
- ② 该配置项主要用于调整产品的输出频率,注意 EE FF 的值必须是 10 的整数倍,否则指令无效。输出频率最快为 10ms 输出一次(即 100Hz),最慢为 65530ms 输出一次。该配置并不影响测量频率,仅代表输出数据的频率,无法通过该指令达到省电的目的。
- ③ 距离输出单位一般默认 cm 输出,可修改为 mm。当改成 mm 为单位后,可以在近距离感知 mm 级距离变化,一般在目标单一、测量精度要求较高的场景下使用。
- ④ TFmini 内置两种测距模式,默认自动切换不同测距模式。模式切换过程中误差稍大,对于精度要求较高、测距范围不大的客户,可尝试使用固定测距模式。使用过程中,请先发送固定测距模式的指令,然后再发送相应档位的配置指令。在测距模式自动切换时,档位配置指令无效。注意针对不同版本的固件(15X表示固件版本号以152,156等15X结尾的固件;16X表示固件版本号以160、162等16X结尾的固件),档位配置指令有所区别。
- ⑤ 默认开启 12m 的量程输出限制,关闭限制后,距离值可输出 0-15m 的数据,但是大于 12m 后的数据为拟合数据,误差较大。量程限制的阈值可以根据客户需求修改,修改后所

有测量反馈大于该阈值的值都会以设定的阈值输出。

- ⑥ 信号强度阈值最低点设置,仅在⑤开启时生效,默认是 20,即当信号强度(Strength)小于 20 时,距离值会输出 FF FF。为了提高距离测量值的可靠性,客户可适当增加该阈值,但注意最大不可超过 70,否则会引起雷达工作异常。也可以减小该阈值,从而提高TFmini 的测量范围。
- ⑦ 信号强度阈值最高点设置,仅在⑤开启时生效,该功能可用于近距离数据锁定。当客户无法避免 TFmini 在盲区范围内使用时,为了保证数据稳定,可以通过该指令将盲区内的数据设定为一个固定值。

7.4特殊参数配置步骤及说明

特殊参数配置与一般参数配置步骤相同,但不需要发送退出配置的指令。操作步骤如下:

a) 进入配置模式,发送 42 57 02 00 00 00 01 02 回显: 42 57 02 01 00 00 01 02 表示成功发送;

b) 发送配置指令,发送: 42 57 02 00 EE FF GG HH (具体指令见表 9)

回显: 42 57 02 01 EE FF GG HH, 具体数值与发送指令对应

表 9 特殊参数配置指令列表

序号	可配置项 指令列表		说明	出厂配置
8	波特率设置	42 57 02 00 00 00 GG 08	GG 对应的波特率见表 10	115200
	触发源设置	42 57 02 00 00 00 01 40	内部触发,默认 100Hz	$\sqrt{}$
9		42 57 02 00 00 00 00 40	外部触发	
	外部触发指令	42 57 02 00 00 00 00 41	单次测量触发指令	/
10	恢复出厂配置	42 57 02 00 FF FF FF FF	所有配置恢复出厂配置	/

解释说明:

- ⑧ 波特率设置,客户可依据自己的通信需求自行配置。
- ⑨ TFmini 的测量有两种触发模式,默认是内部计时器触发,10ms 测量一次。客户可修改成外部触发模式,通过给 TFmini 发送"外部触发指令"使 TFmini 启动测距。请注意 TFmini 外部触发频率最高不可超过 80Hz。
- ⑩ 恢复出厂配置,发送该指令后,所有可调的配置将恢复成出厂默认的配置,请客户谨慎使用。

表 10 波特率设置对应表

GG	0x00	0x01	0x02	0x03	0x04	0x05	0x06
波特率	9600	14400	19200	38400	56000	57600	115200
GG	0x07	0x08	0x09	0x0a	0x0b	0x0c	/
波特率	128000	230400	256000	460800	500000	512000	/

8 远程升级

TFmini 支持远程升级,当用户产品不能满足当前的使用需求,且北醒官方有相应的固件更新后,用户可通过"TFmini 远程升级上位机"更新产品固件。

通过远程升级上位机可获取程序版本号和产品序列号,并自行判断产品是否需要更新,压缩包中包含升级所需要的固件,上位机可实现自动选择需要更新固件。

图 8 TFmini 固件升级上位机

TFmini 固件升级所需要的工具与_快速测试步骤中描述的基本一致,同样需要 TTL-USB 板建立 TFmini 与电脑的连接。

连接好后,打开 TFmini 远程升级上位机,选择合适的端口,此处为『① COM8』,点击『② CONNECT』,建立 TFmini 与上位机通信;点击『③ CHECK FOR UPDATES』,显示窗会显示该产品的产品编号和固件版本,并提示您是否需要更新。对于某些老版本的产品可能无法读取产品编号和版本信息,但依然支持固件更新的功能。然后点击『④ UPGRADE』即可完成更新。

注意:更新固件前请确认产品通信波特率是为115200,其他波特率情况下TFmini将无法升级。

9 故障-原因和处理措施

(1) 正常使用 TFmini 情况下, 有时距离值会跳变为一个超过量程的固定值。

原因:由于测试环境不同(被测目标的反射率和环境光干扰等),TFmini探测的信号强度会受到不同程度的影响。为保证测量数据的可靠性和稳定性,TFmini内部做了算法剔除,当信号强度不足时,默认状态下TFmini的距离值会反馈FFFF(HEX)作为特殊标志,该值不是TFmini测量数据,仅用于提示用户该数据不可信。

处理措施:请您将此类数值当作触发信号,以保证在 TFmini 输出不可信数据时,您的系统可采用其他可信数据做下一步判断决策。

(2) 雷达输出距离值与实际距离误差较大。

原因①: TFmini 数据通信协议解析错误。

处理措施:检查数据通信解析方式,如错误,请查看数据格式,调整解析方式。

原因②: 限于 TFmini 的物理原理,被测目标为高反射率 (镜面、光滑瓷砖等) 或透明 (玻璃、水等) 物质时,可能出现所述现象。

处理措施: 请尽量避免在此种情况下使用。

原因③:产品透镜处有杂物遮盖。

处理措施: 请用干燥的无尘布轻轻将杂物擦除。

(3) TFmini 没有数据输出。

原因:产品出厂前会经过严格的审检,以保证出厂的产品都可正常使用。因此可能是运输或者使用过程中的意外情况导致工作异常。

处理措施:检查供电是否正常,电压是否在额定电压范围内。如供电正常,TFmini 发射镜头内会有微弱红光。

检查 TFmini 接线顺序是否正确,连接是否可靠。

检查数据解析是否正确,请按照说明书说明的数据格式进行解析。

如仍未解决问题, 请联系技术支持。

(4) 雷达连接上位机后, 无数据输出。

原因①:目前上位机仅支持 Windows 操作系统,其他系统暂不支持。

处理措施: 更换为 Windows 操作系统的 PC。

原因②: TTL-USB 板连接不良。

处理措施: 检查 TTL-USB 板与 TFmini 和 PC 的连接是否正确可靠。

原因③: 串口驱动未正确安装。

处理措施: 重新插拔 USB 连接线, 尝试重新安装驱动, 或去网上直接搜索驱动程序下载安装。

如果仍不能正常使用上位机,请联系我司技术支持。

10 常见问题及解答

Q1:请问 TFmini 是否支持 3.3V 或其他电压供电?

A1: 您好,目前不支持。TFmini 标准供电 5V。如您有其他需求,可联系销售人员咨询定制事

宜。

Q2:请问 TFmini 工作一段时间后会发热,是坏了吗?

A2: 您好, 这是产品正常工作状态。芯片与电路板持续工作后, 轻微发热属于正常现象。

Q3: 请问 TFmini 可以与 Arduino 或树莓派连接使用吗?

A3: 您好,可以。TFmini 使用串口通信协议,只要是支持串口通信的控制板即可通信使用。

总部:

010-57456983

bw@benewake.com

销售合作:

sales@benewake.com

技术支持:

support@benewake.com

附录 — TF 系列上位机使用说明

该上位机目前仅支持在 windows 系统下使用,适用于北醒光子科技有限公司的 TF 系列产品,但仅限于按照串口通信协议输出的产品,具体操作细节见下列说明。

图 1 TF 系列上位机界面

1 产品型号/串口控制区【SETTINGS】

Product Type 产品型号选择:在电脑端通过 TTL-USB 转接板连接相应的雷达型号, 如 图 使用的是本公司产品 TFMini,选择 Benewake TFMini 即可。

Serial Port 串口通信的端口:选择电脑端识别雷达相应的端口号。

CONNECT/DISCONNECT:点击【CONNECT】按钮,建立与雷达的连接;当点击【DISCONNECT】按钮,取消连接。

2 功能区【FUNCTION】

Pix Mode 模式选择:如果是 Pixhawk 版本,勾选之后开启 PIX 模式;取消勾选,恢复默认输出格式。

FREEZE/CLEAR 暂停/取消按钮:点击【FREEZE】之后,可以使上位机暂停,便于分析【4】中的图像;点击【CLEAR】之后,会清除【4】内的绘图曲线,重新开始绘图。

Date Amount 数据总计平均: 默认是 5,即上位机每接收 5 个点,把 5 个点的数值取 平 均 后输出一个点。可按需修改(为防止上位机卡顿,数值最好 ≥ 5),输入数值后, 通过键盘回车键发送命令。

Device Command 串口指令发送区:可通过此窗口对 TF 进行 16 进制串口指令的发送,需要注意的是输入指令完成后点击回车键,然后再点击下方的【SEND COMMAND】。

3 数据录制区【DATA RECORDING】

Record 数据录制栏: 在文本窗口给要保存的数据命名, 输入完毕后敲下回车键, 通过【RECORD】按钮录取 TF 数据, 数据会保存在命名的文本文件中, 再次点击该按钮【FINISHED】, 数据录制结束。

FOLDER 打开文件夹:通过【FOLDER】打开数据保存的文件夹。

4 数据图像显示区【TIME LINE CHART】

上位机根据接收到的数据绘制连续的测距图像,纵坐标表示当前测距,横坐标表示有效点数。

5 实时数据显示区【REAL-TIME DATA】

Dist 测距值:默认单位 cm。

EffectivePoint (per sec): 表示 TF 每秒刷新的有效数据。

Strength 信号强度:在 pix 模式下,由于没有强度输入 Strength 默认为 0。

6 量程标尺【DYNAMIC CURSOR】

依据当前的产品型号实时显示探测的距离值。

附录 二 TFmini 在 Arduino 上的开发例程

本例程以 UNO 和 DUE 板作为示例, 主要帮助客户快速熟悉我公司雷达, 减少产品研发周期。 关于 Arduino 的详细介绍和学习请参考以下两个网站:

中文社区: http://www.arduino.cn/

英文官网: https://www.arduino.cc/

步骤 1: 硬件连接

图 1 TFmini 与 uno 板的接线示意图

图 2 TFmini 与 DUE 板的接线示意图

步骤 2: 程序编写

该例程功能的实现至少需要 Arduino 的两个串口,一个接收雷达的数据,另一个用于将数据

输出到电脑端显示出来。可以复制以下代码粘贴到 IDE 程序编辑窗口,也可直接打开相应附件文件。

```
/*本程序为 TFmini 产品标准输出协议的在 arduino 上的解析例程
 详细说明见产品规格书
 对于只有一个串口的 arduino 板如 UNO 板,使用软件虚拟串口的函数
*/
#include<SoftwareSerial.h>//软串口头文件
SoftwareSerial Serial1(2,3); //定义软串口名称为 Serial1, 并把 pin2 定为 RX, pin3 定为 TX
/*对于有多个串口的 arduino 板如 DUE 板,注释掉上面两段代码,直接使用 Serial1 串口*/
int dist;//雷达实测距离值
int strength;//雷达信号强度
int check;//校验数值存放
int i;
int uart[9];//存放雷达测量的数据
const int HEADER=0x59;//数据包帧头
void setup()
{
 Serial.begin(9600);//设置 arduino 与电脑连接串口的波特率
 Serial1.begin(115200);//设置雷达与 arduino 连接串口的波特率
}
void loop()
 if (Serial1.available())//查看串口是否有数据输入
 {
   if(Serial1.read()==HEADER)//判断数据包帧头 0x59
   {
     uart[0]=HEADER;
     if(Serial1.read()==HEADER)//判断数据包帧头 0x59
     {
       uart[1]=HEADER;
       for(i=2;i<9;i++)//存储数据到数组
         uart[i]=Serial1.read();
       check=uart[0]+uart[1]+uart[2]+uart[3]+uart[4]+uart[5]+uart[6]+uart[7];
```



```
if(uart[8]==(check&0xff))//按照协议对收到的数据进行校验
{
    dist=uart[2]+uart[3]*256;//计算距离值
    strength=uart[4]+uart[5]*256;//计算信号强度值
    Serial.print("dist = ");
    Serial.print(dist);//输出雷达测试距离值
    Serial.print("\t");
    Serial.print(strength = ");
    Serial.print(strength);//输出信号强度值
    Serial.print("\n");
    }
}
```

步骤 3:数据查看

将程序下载到 Arduino 板, 打开串口监视器,即可看到雷达实时探测的距离值和相应的信号强度,如图 3;

图 3 雷达数据在串口监视器上的显示

另外也可以在串口绘图器上查看数据曲线,但是要把上述有关串口打印(Serial.print)的代码

修改一下:

// Serial.print("dist = ");

Serial.print(dist);//输出雷达测试距离值

Serial.print(' ');

// Serial.print("strength = ");

Serial.print(strength);//输出信号强度值

 $Serial.print('\n');$

重新编译下载到 Arduino 板,打开串口绘图器即可看到代表 dist 和 strength 的两条曲线,如图

4。

图 4 雷达数据在串口绘图器上的图像

附录三 TFmini 在开源飞控 pixhawk 上的应用

pixhawk 为 APM、PX4 的升级版,其中 APM 使用的是普通的 8 位单片机,运算能力有限,PX4 是一个开始使用 STM32F4 的过渡性产品,而 pixhawk 是 PX4 基础上发展的更加完善和可靠的飞控。对于此系列开源飞控的介绍,可详细参考:http://ardupilot.org/,这个网站介绍的非常详细和可靠的介绍了 pixhawk,完全可以按照这个网站来学习了解飞控。

TFmini 可以与 Pixhawk 建立连接并使用,选择 pixhawk 数据输出格式(通过上位机软件程序选择 pixmode 即可,具体可参考上位机使用说明),设置好的 TFmini 可以直接连接 Pixhawk 的串口使用,也可以通过相应的转换器连接 Pixhawk 的其他通信接口(I²C等)使用。飞行器可以使用TFmini 来实现定高或者避障。建议 pixhawk 在定高模式下使用 ArduCopter V3.3.3-V3.5.5 版固件,pixhawk 在避障模式下使用 ArduCopter V3.4.9-V3.5.5 版固件

连接 Pixhawk 方式示例:

图 1 TFmini 连接 Pixhawk 的 TELEM2(串口 2)接口示意图

a)TFmini 用于 pixhawk 定高模式下 Mission Planner 配置说明

将飞控连至 MP,在下面的【CONFIG/TUNING】栏里面选择左侧的【Full Parameter List】,找到并修改下面几个参数:

AVOID MARGIN=2

 $SERIAL2_PROTOCOL = 9 (Lidar)$

SERIAL2 BAUD = 115

RNGFND_TYPE = 8 (LightWareSerial)

 $RNGFND_SCALING = 1$

RNGFND MIN CM = 30

 $RNGFND_MAX_CM = 1200$

RNGFND_GNDCLEAR = 15 (单位是 cm,取决于模块安装高度)

RNGFND_ORIENT=25

PRX_TYPE=0

PRX_YAW_CORR=22

设置好这几个参数后,点击软件右侧的【Write Params】即可。

如果出现"Bad Lidar Health"错误,请检查是否连接正确、供电是否正常、是否为 pix 格式。

b)TFmini 用于 pixhawk 避障模式下 Mission Planner 配置说明

将飞控连至 MP,在下面的【CONFIG/TUNING】栏里面选择左侧的【Full Parameter List】,找到并修改下面几个参数:

AVOID_MARGIN=3(单位: m, 根据需要设置避障距离)

SERIAL2_PROTOCOL = 9 (Lidar)

 $SERIAL2_BAUD = 115$

RNGFND_TYPE = 8 (LightWareSerial)

RNGFND SCALING = 1

 $RNGFND_MIN_CM = 30$

RNGFND_MAX_CM = 600 (单位: cm,可以根据需求设置测距高度,室外 TFmini 建议设置距离≤600)

RNGFND_GNDCLEAR = 15 (单位是: cm, 取决于模块安装高度)

RNGFND_GAIN=0.8

RNGFND_ORIENT=0

PRX_TYPE=4

PRX_YAW_CORR=0

设置好这几个参数后,点击软件右侧的【Write Params】即可。

如果出现"Bad Lidar Health"错误,请检查是否连接正确、供电是否正常、是否为 pix 格式。

连接 Pixhawk 的 SERIAL4/5 接口

图 2 TFmini 连接 Pixhawk 的 SERIAL4/5(串口 4/5)接口示意图

将飞控连至 MP,在下面的【CONFIG/TUNING】栏里面选择左侧的【Full Parameter List】,找到并修改下面几个参数:

 $SERIAL4_PROTOCOL = 9 (Lidar)$

 $SERIAL4_BAUD = 115$

其他参数配置同 TFmini 连接 Pixhawk 的 TELEM2(串口 2)在定高/避障模式下 Mission Planner 配置说明,设置好参数后,点击软件右侧的【Write Params】即可。