

818181181818

Profesores:

Tomás Lara Valdovinos – t.lara@uandresbello.edu Jessica Meza-Jaque – je.meza@uandresbello.edu

OBJETIVOS DE LA SESIÓN

- Conocer el concepto de grafo.
- Identificar problemas que podemos representar usando grafos.
- Especificar características de los elementos de un grafo.
- Aprender a representar grafos

CONTENIDOS DE LA SESIÓN

- Concepto de grafo
- Profundización de los conceptos y características
- Ejemplos de problemas llevados a grafos

¿Qué es un grafo?

¿Qué es un grafo?

- Es una abstracción utilizada para modelar un sistema que contiene elementos discretos interconectados.
- Esos elementos los podemos llamar nodos o vértices.
- Y las interconexiones podemos llamarlas aristas o arcos.

Ejemplo

 Rutas entre ciudades, donde:

 Las ciudades representan los nodos.

• Y los caminos entre ellas son las aristas.

Otro Ejemplo

• Una red social, donde:

• Los nodos representan a las personas.

• Y una arista entre 2 de ellas representa si ellos son "amigos".

¿Otros Ejemplos?

- En algunos grafos, las aristas poseen diferentes medidas, comúnmente conocidas como **Peso** o **Costo**.
- Estas medidas representan datos tanto cualitativos como cuantitativos.

 A un grafo compuesto de aristas con estas características lo llamaremos Grafo Ponderado.

• En las rutas entre ciudades este costo podría representar la distancia entre ciudades o el tiempo de viaje.

• En la red social, si el tipo de contacto es familiar o profesional.

- Las aristas podrían ser dirigidas o no dirigidas
- Generando relaciones unidireccionales o bidireccionales

- Un grafo compuesto de aristas dirigidas lo llamaremos Grafo Dirigido
- Un grafo compuesto de aristas no dirigidas lo llamaremos Grafo no-dirigido

- La relación de amistad en la red social podríamos representarla con una arista no dirigida:
- Si A es amigo de B, entonces B es amigo de A

 Y en las rutas podríamos indicar con aristas dirigidas las calles que sólo tienen un sentido.

Aplicaciones de grafos

• Un ejemplo útil de resolver un problema utilizando grafos:

- Reducir el problema del mundo real a una instancia de un problema de grafos.
- Aplicar un algoritmo de grafos para computar el resultado eficientemente.
- Interpretar el resultado de la computación en términos de una solución al problema original.

Representación de grafos

 Gráficamente un grafo lo podemos expresar como círculos u otro elemento para los nodos y líneas uniendo estos círculos como las aristas.

Representación de grafos

• Esta representación nos ayuda a definir y entender el problema que estamos representando.

Representación de grafos

- En código existen diversas estructuras de datos para representar un Grafo:
- Por ejemplo:
 - Listas de adyacencias
 - Matrices de adyacencias

Listas de adyacencias

• Sea el siguiente grafo ponderado y dirigido

Listas de adyacencia

• Representaremos el grafo con listas de adyacencia de la siguiente manera:

Listas de adyacencia

- Para el gráfico anterior:
 - La lista vertical representa todos los nodos en el grafo
 - Las listas contenidas (Lista horizontal) corresponde a las aristas como una estructura de datos conteniendo el peso/costo, el nodo relacionado y la siguiente relación.

Puede ser usado tanto para grafos dirigidos como no-dirigidos

Matriz de adyacencia

 Utilizando el mismo grafo del ejemplo anterior, podemos representarlo como matriz de adyacencia de la siguiente manera:

	v5	v4	v3	v2	v1	v0	
	0	0	0	0	0	0	v0
	0	0	0	6	0	18	v1
	0	0	0	0	0	0	v2
	0	0	0	0	0	0	v3
— A[4][5]	9	0	0	0	0	0	v4
	0	12	0	0	0	0	v5

Matriz de adyacencia

- Esta representación de grafos utiliza una matriz de n-por-n enteros
- La entrada A[i][j] almacena el peso de la arista desde el vértice v_i al v_j
- Cuando A[i][j] = 0 no existe relación entre ambos vértices.

Puede ser usado tanto para grafos dirigidos como no-dirigidos

Consideraciones especiales

- Obtener la relación entre 2 vértices **usando matriz de adyacencia** es llevado a cabo con una complejidad constante, O(1).
- Las listas de adyacencia requieren el **espacio en memoria acotado** para almacenar los vértices y relaciones.
- Para grafos con muchísimos vértices el uso de matriz de adyacencia requiere gran cantidad de memoria, ya que la cantidad de almacenes tiene el orden de n², donde n es la cantidad de vértices.

Consideraciones especiales

- Para grafos no-dirigidos el uso de listas de adyacencia puede reducir en gran medida el uso de almacenamiento.
- Para grafos en los cuales los vértices tienen gran cantidad de relaciones, llamados Grafos densos, el uso de matrices de adyacencia suele ajustar mejor el almacenamiento requerido.
- Para grafos con baja cantidad de relaciones, llamados Grafos dispersos, el uso de memoria se optimiza usando listas de adyacencia.

Otros ejemplos

 Ahora que hemos especificado el concepto de grafo,

¿Qué otros usos podríamos darle a esta estructura de dato?

CHECK - OBJETIVOS DE LA SESIÓN

- Conocer el concepto de grafo.
- Identificar problemas que podemos representar usando grafos.
- Especificar características de los elementos de un grafo.
- Aprender a representar grafos

CHECK

818181181818

Profesores:

Tomás Lara Valdovinos – t.lara@uandresbello.edu Jessica Meza-Jaque – je.meza@uandresbello.edu