CSC165 Assignment 1

Axel Steingrimsson 999707143,

axel.steingrimsson@mail.utoronto.ca

October 17, 2015

Question 1

1.1 a)

$$\forall k \in \mathbb{Z} : k \ge 1 \Rightarrow \frac{1}{(k+1)^2} < \frac{1}{k} - \frac{1}{k+1} < \frac{1}{(k+0)^2}$$

1.2 b)

$$\forall k \in \mathbb{Z} : k \ge 1 \Rightarrow \frac{1}{(k+2)^2} < \frac{1}{k+1} - \frac{1}{k+2} < \frac{1}{(k+0)^2}$$

1.3 c)

$$\forall k \in \mathbb{Z} : k \ge 1 \Rightarrow (k-2)^2 < k^2 + k < (k+2)^2$$

1.4 d)

Prove A:
$$\forall k \in \mathbb{Z} : k \ge 1 \Rightarrow \frac{1}{(k+1)^2} < \frac{1}{k} - \frac{1}{k+1} < \frac{1}{(k+0)^2}$$

Assume
$$1 \le k \in \mathbb{Z}$$

Let $k \in \mathbb{Z}$

Then
$$k \le k + k$$

 $\le k^2$

$$< k^2 + k^2$$

$$< k^2 + 2k \# 1 \le k \in \mathbb{Z}$$
 then 2k will always be larger than k

Then
$$k^2 + k < k^2 + 2k$$

Then k + k < k + 2kThen $\frac{1}{k^2 + k} > \frac{1}{k^2 + 2k}$ # The larger denominator is the smaller number.

Then $\frac{1}{k} > \frac{1}{k^2 + k} > \frac{1}{k^2 + 2k}$ Then $\frac{1}{k} > \frac{1}{k^2 + k} > \frac{1}{k^2 + 2k + 1}$ Then $\frac{1}{(k+0)^2} > \frac{1}{k} - \frac{1}{k+1} > \frac{1}{(k+1)^2}$

Then
$$\frac{1}{k} > \frac{1}{k^2 + k} > \frac{1}{k^2 + 2k}$$

Then
$$\frac{1}{k} > \frac{1}{k^2 + k} > \frac{1}{k^2 + 2k + 1}$$

Then
$$\frac{1}{(k+0)^2} > \frac{1}{k} - \frac{1}{k+1} > \frac{1}{(k+1)^2}$$

Prove C:
$$\forall k \in \mathbb{Z} : k \ge 1 \Rightarrow (k-2)^2 < k^2 + k < (k+2)^2$$

Assume $1 \le k \in \mathbb{Z}$
Let $k \in \mathbb{Z}$
Then $k \le k + k$
 $\le k^2$
 $\le k^2 + k$
 $> k^2 - k \# 1 \le k \in \mathbb{Z}$ k is always positive
Then $k^2 - k < k^2 + k < k^2 + 2k$
Then $k^2 - 4k < k^2 + k < k^2 + 4k$
Then $k^2 - 4k < k^2 + k < k^2 + 4k$
Then $(k-2)^2 < k^2 + k < (k+2)^2 \# \text{Algebra}$

Weaker A

Disproof:
$$\forall k \in \mathbb{Z} : k \ge -2 \Rightarrow \frac{1}{(k+1)^2} < \frac{1}{k} - \frac{1}{k+1} < \frac{1}{(k+0)^2}$$

Assume
$$-2 \le k \in \mathbb{Z}$$

Let k=-2 # For 0, and -1 the middle rational functions of the inequality becomes undefined.

Then
$$\frac{1}{(-2+1)^2} < \frac{1}{-2} - \frac{1}{-2+1} < \frac{1}{(-2+0)^2}$$

= $\frac{1}{1} \nleq \frac{1}{2} \nleq \frac{1}{4}$

Weaker C

Disproof:
$$\forall k \in \mathbb{Z} : k \ge 0 \Rightarrow (k-2)^2 < k^2 + k < (k+2)^2$$

Assume
$$0 \le k \in \mathbb{Z}$$

Let
$$k = 0$$

Then
$$(0-2)^2 < 0^2 + k < (0+2)^2$$

= $4 \not< 0 < 4$

Stronger A

Prove:
$$\forall k \in \mathbb{Z} : k \ge 2 \Rightarrow \frac{1}{(k+1)^2} < \frac{1}{k} - \frac{1}{k+1} < \frac{1}{(k+0)^2}$$

Assume $2 \le k \in \mathbb{Z} \land (k \ge 1 \Rightarrow \frac{1}{(k+1)^2} < \frac{1}{k} - \frac{1}{k+1} < \frac{1}{(k+0)^2})$

Assume
$$2 \le k \in \mathbb{Z} \land (k \ge 1 \Rightarrow \frac{1}{(k+1)^2} < \frac{1}{k} - \frac{1}{k+1} < \frac{1}{(k+0)^2})$$

Then
$$k \geq 2 \geq 1$$

Then
$$k \ge 2 \ge 1$$

Then $\frac{1}{(2+1)^2} < \frac{1}{2} - \frac{1}{2+1} < \frac{1}{(2+0)^2}$

Then
$$\frac{1}{9} < \frac{1}{6} < \frac{1}{4}$$

Then
$$\frac{1}{9} < \frac{1}{6} < \frac{1}{4}$$

Therefore $(k \ge 1 \Rightarrow \frac{1}{(k+1)^2} < \frac{1}{k} - \frac{1}{k+1} < \frac{1}{(k+0)^2}) \Rightarrow (k \ge 2 \Rightarrow \frac{1}{(k+1)^2} < \frac{1}{k} - \frac{1}{k+1} < \frac{1}$

$\frac{1}{(k+0)^2}$ Stronger C

Prove:
$$\forall k \in \mathbb{Z} : k > 2 \Rightarrow (k-2)^2 < k^2 + k < (k+2)^2$$

Assume
$$2 \le k \in \mathbb{Z} \land (k \ge 1 \Rightarrow (k-2)^2 < k^2 + k < (k+2)^2)$$

Then
$$k \geq 2 \geq 1$$

Then
$$(2-2)^2 < 2^2 + 2 < (2+2)^2$$

Then
$$0 < 6 < 16$$

Therefore
$$(k \ge 1 \Rightarrow (k-2)^2 < k^2 + k < (k+2)^2) \Rightarrow (k \ge 2 \Rightarrow (k-2)^2 < k^2 + k < (k+2)^2)$$

1.5 e)

Prove B:
$$\forall k \in \mathbb{Z} : k \ge 1 \Rightarrow \frac{1}{(k+2)^2} < \frac{1}{k+1} - \frac{1}{k+2} < \frac{1}{(k+0)^2}$$

Assume $(k \ge 1 \land \frac{1}{(k+1)^2} < \frac{1}{k} - \frac{1}{k+1} < \frac{1}{(k+0)^2})$
Let $k \in \mathbb{Z}$
Then $\frac{1}{(k+1)^2} < \frac{1}{k} - \frac{1}{k+1}$
Then $\frac{1}{(k+1)^2} < \frac{1}{k} - \frac{1}{k+2}$
Then $\frac{1}{(k+1)^2} \nleq \frac{1}{k+1} - \frac{1}{k+2} \#$ when $k = 1$
Then $\frac{1}{(k+2)^2} < \frac{1}{k+1} - \frac{1}{k+2}$
Then $\frac{1}{(k+2)^2} < \frac{1}{k+1} - \frac{1}{k+2}$

2 Question

2.1 a)

```
Prove \forall x \in \mathbb{R} : [Q(x) \Rightarrow Q(x+1)]

Assume Q(x)

Let x \in \mathbb{R}

Let p, q \in \mathbb{Z}

Let m \in \mathbb{Q}

Then x = \frac{p}{q} \# Definition of Rational Number

Then 1 = \frac{1}{1} = \frac{p}{q} \in \mathbb{Q}

Then x \wedge 1 \in \mathbb{Q}

Then (x+1) = m \in (Q) \# The properties of addition of Rational numbers

Therefore (x+1) \in (Q)
```

2.2 b)

```
Prove \forall x \in \mathbb{R} : [\neg Q(x) \Rightarrow \neg Q(x+1)]

Proof by Contradiction

Assume \neg Q(x) \land Q(x+1)

Let x \in \mathbb{R}

Let p, q \in \mathbb{Z}

Let m \in \mathbb{Q}

Then x+1=\frac{p}{q}

Then x=\frac{p}{q}-1

Then x = \frac{p}{q}-\frac{1}{1}

Then x \in \mathbb{Q} # The properties of subtraction of Rational numbers

Therefore Q(x) \land \neg Q(x) # Contradiction
```

2.3 c)

```
Prove: \forall x, y \in \mathbb{R} : [[\neg Q(x) \land \neg Q(y)] \Rightarrow \neg Q(xy)]

Disproof: \exists x, y \in \mathbb{R} : [[\neg Q(x) \land \neg Q(y)] \Rightarrow Q(xy)]

Assume \neg Q(x) \land \neg Q(y)

Let x = \sqrt{2} \in \mathbb{R}

Let y = \sqrt{2} \in \mathbb{R}

Then xy = \sqrt{2} \cdot \sqrt{2} = 2

Then 2 = \frac{2}{1} \in \mathbb{Q}

Therefore \neg Q(x) \land \neg Q(y) \Rightarrow Q(xy)
```

2.4 d)

```
Prove: \forall x, y \in \mathbb{R} : [[\neg Q(xy)] \Rightarrow Q(x) \land \neg Q(y)]

Assume [Q(x) \land \neg Q(y)] \land Q(xy)

Let x \in \mathbb{R}

Let y \in \neg \mathbb{Q}

Let p, q, s, t \in \mathbb{Z}

Then x = \frac{p}{q}

Then xy = \frac{s}{t} \# Properties of Rational numbers

Then y \cdot \frac{p}{q} = \frac{s}{t} \# Substitution

Then y = \frac{sq}{tp} \in \mathbb{Q} \# Algebra

Then Q(y) \# Which is a contradiction
```

2.5 d) Converse

```
Prove: \forall x, y \in \mathbb{R} : [[Q(x) \land \neg Q(y)] \Rightarrow \neg Q(xy)]

Disproof: \exists x, y \in \mathbb{R} : [[Q(x) \land \neg Q(y)] \Rightarrow Q(xy)]

Assume [Q(x) \land \neg Q(y)]

Let x = 0, y = \sqrt{2}

Then xy = 0 \cdot \sqrt{2} = 0

Then 0 = \frac{0}{0} \land 0 \in \mathbb{Z}

Then 0 \in \mathbb{Q}

Therefore Q(xy)
```