

planetmath.org

Math for the people, by the people.

vanish at infinity

Canonical name VanishAtInfinity
Date of creation 2013-03-22 17:50:57
Last modified on 2013-03-22 17:50:57
Owner asteroid (17536)
Last modified by asteroid (17536)

Numerical id 6

Author asteroid (17536)

Entry type Definition
Classification msc 54D45
Classification msc 54C35
Synonym zero at infinity
Synonym vanishes at infinity
Related topic RegularAtInfinity

Related topic ApplicationsOfUrysohnsLemmaToLocallyCompactHausdorffSpaces

Defines C_0

Let X be a locally compact space. A function $f: X \longrightarrow \mathbb{C}$ is said to vanish at infinity if, for every $\epsilon > 0$, there is a compact set $K \subseteq X$ such that $|f(x)| < \epsilon$ for every $x \in X - K$, where $\|\cdot\|$ denotes the standard http://planetmath.org/Norm2norm on \mathbb{C} .

If X is non-compact, let $X \cup \{\infty\}$ be the one-point compactification of X. The above definition can be rephrased as: The extension of f to $X \cup \{\infty\}$ satisfying $f(\infty) = 0$ is continuous at the point ∞ .

The set of continuous functions $X \longrightarrow \mathbb{C}$ that vanish at infinity is an algebra over the complex field and is usually denoted by $C_0(X)$.

0.0.1 Remarks

• When X is compact, all functions $X \longrightarrow \mathbb{C}$ vanish at infinity. Hence, $C_0(X) = C(X)$.