

Plataformas de Programação Paralela

Programação Paralela

Aula 5 Alessandro L. Koerich

> Pontificia Universidade Católica do Paraná (PUCPR) Ciência da Computação – 6º Período

Aula Anterior

- * SISD
- * SIMD
- * MISD
- * MIMD

- * Acessando um espaço de dados compartilhado
- * Troca de mensagens

rogramação Paralela - Curso de Ciência da Computação -2004

Plano de Aula

- * Organização Física de Plataformas Paralelas
 - * Arquitetura ideal
 - * Arquiteturas convencionais
 - * Topologias de rede

Computador Paralelo Ideal

- Uma extensão natural do modelo serial de computação (RAM) consiste em:
 - * p processadores
 - Memória global de tamanho ilimitado acessível a todos os processadores
 - * Todos os processadores acessam o mesmo espaço de endereçamento
 - * Compartilham um *clock* comum, mas podem executar instruções diferentes em cada ciclo

Programação Paralela - Curso de Ciência da Computação -2004

ssandro L. Koerich (alekoe@ppgia.pucpr.bi

Computador Paralelo Ideal

- Este modelo ideal é chamado de PRAM (Parallel Random Access Machine)
- * Como PRAMs permitem acesso concorrente a várias posições de memória, dependendo de como estes acessos simultâneos são tratados, PRAMs podem ser divididos em 4 subclasses.
 - ***** EREW
 - *CREW
 - ***** ERCW
 - *CRCW

Koerich (alekoe@ppgia.pucpr.br)

Programação Paralela - Curso de Ciência da Computação -2004

Subclasses PRAM

- * O acesso a uma posição de memória é exclusivo
- * Operações Read e Write concorrentes não são permitidas
- * É o modelo PRAM mais fraco, permitindo concorrência mínima no acesso a memória

Koerich (alekoe@ppgia.pucpr.br

Programação Paralela - Curso de Ciência da Computação -2004

Subclasses PRAM

- * CREW: concurrente-read, exclusive-write
 - * São permitidos múltiplos acessos de leitura a uma posição de memória
 - * Acessos múltiplos de escritura a uma posição de memória são serializados

Subclasses PRAM

- * ERCW: exclusive-read, concurrente-write
 - * São permitidos múltiplos acessos de escrita leitura a uma posição de memória
 - * Acessos múltiplos de leitura a uma posição de memória são serializados

Subclasses PRAM

- CRCW: concurrente-read, concurrente-write
 - * São permitidos múltiplos acessos de leitura e escrita leitura a uma posição de memória
 - Este é o modelo PRAM mais poderoso

Complexidade Arquitetural

- * Considerando a implementação de um EREW PRAM como um computador de memória compartilhada com:
 - *p processadores
 - **☀** memória global de m palavras
- * Os processadores estão conectados a memória através de um conjunto de chaves (*switches*)
- Estes switches determinam a palavra da memória sendo acessada por cada processador

. Koerich (alekoe@ppgia.pucpr.br)

Programação Paralela - Curso de Ciência da Computação -2004

Alessand

L. Koerich (alekoe@ppgia.pucpr.br

Programação Paralela - Curso de Ciência da Computação -2004

1

Complexidade Arquitetural

- Em um EREW PRAM, cada um dos p processadores no conjunto pode acessar qualquer palavra da memória
- * Para garantir a conectividade, o número total de chaves (*switches*) deve ser *m.p*
- * Para um tamanho de memória razoável, a construção de uma rede de chaveamento (*switching*) desta complexidade é muito caro
- Então..... Modelos de computação PRAM são impossíveis de serem realizados na prática

Redes de Interconexão: Organização Física

* Fornecem mecanismos para a transferência de dados entre nós de processamento e módulos de memória

Redes de Interconexão: Organização Física

- Redes de interconexão podem ser construídas tipicamente usando links e switches
- **Link**: meio físico composto por um conjunto de fios ou fibras capazes de transportar informação
- comprimento.

Programação Paralela - Curso de Ciência da Computação -2004

Redes de Interconexão: Organização Física

- * Classificação: estáticas ou dinâmicas
 - * Estáticas: links de comunicação ponto a ponto entre nós de processamento. a.k.a. ⇒ redes diretas
 - * Dinâmicas: são construídas utilizando switches e links de comunicação. Links de comunicação estão conectados dinamicamente pelos switches para estabelecer caminhos entre nós de processamento e bancos de memória. a.k.a ⇒ redes indiretas

Koerich (alekoe@ppgia.pucpr.br

Programação Paralela - Curso de Ciência da Computação -2004

Redes de Interconexão: Organização Física

Rede Estática

- 4 elementos de processamento (nós)
- Configuração *Mesh*: cada ⇒2 outros nós

Rede Dinâmica

4 nós conectados via uma rede de *switches* a outros nós

Redes de Interconexão: Organização Física

- * Switch um conjunto de portas de entrada e um conjunto de portas saída
- * Funcionalidade mínima: mapeamento das portas de entrada para as portas de saída
- * Mas também podem fazer:
 - * Buferização interna: quanto uma porta de saída requisitada está ocupada
 - * Roteamento: para aliviar o congestionamento na rede
 - * Multicast: mesma saída em portas múltiplas

Redes de Interconexão: Organização Física

- O mapeamento das portas de entrada para as portas de saída pode ser feito utilizando—se uma variedade de mecanismos:
 - * Barras transversais físicas (crossbars)
 - Multiplexador—Demultiplexador
 - Bus multiplexados
- * A conectividade entre nós e a rede é feita através de uma interface de rede.

L. Koerich (alekoe@ppgia.pucpr.br)

Programação Paralela - Curso de Ciência da Computação -2004

1

PUCPF

Redes de Interconexão: Organização Física

- * A interface de rede tem portas de entrada e saída, que colocam os dados dentro e fora da rede.
- * A interface de rede tem as responsabilidades de:
 - Empacotar os dados;
 - * Computar informações da rota;
 - Buferizar dados chegando e partindo de modo a compatibilizar as velocidades da rede e elementos de processamento
 - * Checagem de erro.

. Koerich (alekoe@ppgia.pu

Programação Paralela - Curso de Ciência da Computação -2004

18

Topologias de Rede

- Uma grande variedade de topologias tem sido utilizadas para interconectar redes.
- * Objetivo: buscar um compromisso entre o custo, escalabilidade e performance.

Topologias de Rede

- * Tipos:
 - * Baseadas em Bus
 - * Crossbar (barra transversal)
 - Multiestágio
 - * Completamente Conectadas
 - * Conectadas em Estrela
 - * Arranjo Linear
 - * Malha
 - **☀** Malhas *k*−*d*
 - Baseadas em Árvores

Programação Paralela - Curso de Ciência da Computação -2004

Alessandro I. Koerich (alekoe@ppgia.pucpr.h

Redes Baseadas em BUS

- * Tipo mais simples de rede
- * Consiste em um meio compartilhado que é comum a todos os nós
- * BUS (ou Barramento): propriedade desejável ⇒ custo da rede cresce linearmente com o número de nós p.
- Este custo esta associado com a interface do BUS.

Redes Baseadas em BUS

- * Bus também são ideais para o broadcast de informações entre os nós
- * Como o meio de transmissão é compartilhado, existe um overhead comparado a transferência de mensagens ponto a ponto.

Redes Baseadas em BUS

- A limitação da largura de banda impõe uma limitação na performance global quando o número de nós cresce.
- * Tipicamente, máquinas baseadas em bus são limitadas a dúzias de CPUs.
- * Ex: Servidores Sun Enterprise e Pentium Intel multiprocessador

Redes Baseadas em BUS

- * As exigências da largura de banda podem ser reduzidas utilizando-se um cache para cada nó.
- * Dados privados são "cacheados" nos nós e somente dados remotos são acessados através do BUS.

PUCPR

Redes Baseadas em BUS

Redes *Crossbar* (ou barra transversal)

- * Uma maneira simples de conectar *p* processadores a *b* bancos de memória.
- * Uma rede **crossbar** utiliza um **grid** de switches.
- * É uma rede "não blocante"
- * A conexão de um nó de processamento à um banco de memória <u>não bloqueia</u> a conexão entre qualquer outro nó de processamento e outro banco de memória.

lessandro L. Koerich (alekoe@ppgia.pucpr.br)

Programação Paralela - Curso de Ciência da Computação -2004

PUCPR

Redes Crossbar

- O número total de nós de chaveamento necessários para implementar tal rede é p.b.
- * É razoável assumir que o número de bancos de memória (b) é pelo menos p.
- * Caso contrário, haverão alguns nós de processamento que não serão capazes de acessar um banco de memória.
- Com o crescimento do número de nós de processamento, é difícil de obter um chaveamento rápido ⇒ não muito escaláveis em termos de custo

PUCPR.

Redes Crossbar

* Ex: Sun Ultra HPC Server, Fujitsu VPP500, TOP1

lessandro L. Koerich (alekoe@ppgia.pucpr.br)

Programação Paralela - Curso de Ciência da Computação -2004

Alessandro L. Koerich (alekoe@ppgia.pucpr.br)

Redes Crossbar x Bus

Crossbar

Bus Compartilhado

- Escalável em termos de performance
- Não escalável em termos de performance
- Não escalável em termos de custo
- Escalável em termos de custo

Redes Multiestágios

- * Uma classe intermediária de rede que recai entre *bus* e *crossbar*
- * Consiste de *p* processadores e *b* bancos de memória
- * Uma rede de conexão multiestágios comumente utilizada é a rede Omega.

L. Koerich (alekoe@ppgia.pucpr.br)

Programação Paralela - Curso de Ciência da Computação -2004

Alessa

L. Koerich (alekoe@ppgia.pucpr.br

Programação Paralela - Curso de Ciência da Computação -2004

Redes Multiestágios

Um esquema de uma rede de interconexão multiestágios típica.

Redes Multiestágios

- * A rede Omega consiste em *log p* estágios, onde *p* é o número de nós de processamento (entradas) e também o número de bancos de memória (saídas).
- * Cada estágio da rede consiste em um padrão de interconexão que conecta *p* entradas e *p* saídas.

Redes Multiestágios

* Existe um link entre entradas i e saídas j se o seguinte for verdadeiro:

$$j = \begin{cases} 2i & 0 \le i \le p/2 - 1 \\ 2i + 1 - p & p/2 \le i \le p - 1 \end{cases}$$

- * Esta equação representa uma operação de rotação à esquerda sobre a representação binária de *i* para obter *j*.
- * Este padrão de interconexão é chamado de "perfect shuffle"

L. Koerich (alekoe@ppgia.pucpr.br)

Programação Paralela - Curso de Ciência da Computação -2004

Redes Multiestágios

* "perfect shuffle" interconectando 8 entradas e saídas.

L. Koerich (alekoe@ppgia.pucpr.br)

Programação Paralela - Curso de Ciência da Computação -2004

PUCPR

Redes Multiestágios

* Cada switch tem dois modos de conexão:

- Conexão pass-through: entradas passam direto a saída;
- * Conexão *cross-over*: entradas são cruzadas e então enviadas a saída

Redes Multiestágios

- \bullet Uma rede Ômega tem $p/2 \times log p$ nós de chaveamento.
- **☀** O custo de tal rede cresce com *p log p*.

 Uma rede Ômega completa conectando 8 entradas e 8 saídas.

Redes Multiestágios

Roteamento de dados:

- * s quer escrever em t
 - * 1º nó de chaveamento:
 - * se os bits mais significantes de s e t forem iguais \Rightarrow modo pass-through.
 - * se forem diferentes \Rightarrow modo cross-over
 - * Outros nós: mesmo critério, porém utilizando o próximo bit mais significativo

ro L. Koerich (alekoe@ppgia.pucpr.br)

banco de memória 4 (100)

001

Programação Paralela - Curso de Ciência da Computação -2004

de memória 7 (111) e processador 6 (110) para o

Koerich (alekoe@ppgia.pucpr.br)

Redes Multiestágios

- **★** Importante: Link de comunicação AB é utilizado por ambos caminhos de comunicação.
- * O acesso de um desabilita o acesso do outro.
- * Rede com bloqueio

Redes Multiestágios

Redes Multiestágios

- Exemplos:
 - * BBN *Butterfly* (1989);
 - * NYU Ultracomputer (1983);
 - * IBM RP3 (1985).

Redes Completamente Interconectadas

Cada nó tem um *link* de comunicação direto com todos os outros nós na rede.

* Esta rede é ideal no sentido que um nó pode enviar uma mensagem para outro nó em uma única etapa, pois existe um link entre eles.

L. Koerich (alekoe@ppgia.pucpr.br)

Programação Paralela - Curso de Ciência da Computação -2004

.

Redes Conectadas em Estrela

* O processador central é o gargalo na topologia estrela.

Alessandro L.

L. Koerich (alekoe@ppgia.pucpr.br

Programação Paralela - Curso de Ciência da Computação -2004

4

Arranjos Lineares, Malhas e Malhas *k*-d

* Devido ao grande número de *links* nas redes completamente conectadas, redes esparsas são geralmente utilizadas na construção de computadores paralelos

⇒ Arranjos lineares e hipercubos

Arranjos Lineares, Malhas e Malhas *k*-d

* Arranjo linear: rede estática na qual cada nó (exceto os dois nós extremos) possui dois vizinhos, um a direita e um a esquerda.

* Uma extensão simples do arranjo linear é a topologia em anel ou *tórica* 1D (*torus*). Esta topologia tem uma conexão entre as extremidades do arranjo linear.

Arranjos Lineares, Malhas e Malhas k-d

- Uma malha 2D é uma extensão do arranjo linear para 2 dimensões.
- ★ Cada dimensão tem p¹/² nós onde um nó é identificado por um par (i, j).
- * Cada nó (exceto os da periferia) está conectado a quatros outros nós cujos índices diferem em 1 em qualquer dimensão

Programação Paralela - Curso de Ciência da Computação -2004

Arranjos Lineares, Malhas e Malhas k-d

- * Uma malha 2D tem a propriedade de poder ser arranjada em um espaço 2D, tornando-a atrativa do ponto de vista das ligações.
- * Malhas 2D são frequentemente utilizadas para interconectar máquinas paralelas
- * Malhas 2D podem crescer com ligações em anel formando topologias tóricas 2D (torus).

Koerich (alekoe@ppgia.pucpr.br

Programação Paralela - Curso de Ciência da Computação -2004

Arranjos Lineares, Malhas e Malhas k-d

- Cubo 3D é uma generalização de malhas 2D para 3 dimensões.
- * Cada nó em um cubo 3D está conectado à seis outros nós (exceto os da periferia), dois ao longo de cada dimensão.

Arranjos Lineares, Malhas e Malhas k-d

- * Uma variedade de simulações físicas comumente executadas em máquinas paralelas podem ser mapeadas naturalmente para topologias de rede 3D (modelamento de estruturas).
- * Por esta razão, cubos 3D são utilizados comumente como redes de interconexão em computadores paralelos.

Exemplo: Cray T3E

Arranjos Lineares, Malhas e Malhas k-d

- ★ A classe geral de malhas k-d refere-se as topologias que consistem em d dimensões com k nós ao longo de cada dimensão.
- * **Topologia Hipercubo**: temos 2 nós ao longo de cada dimensão e *log p* dimensões.
- * A construção de um hipercubo é ilustrada a seguir....

ndro L. Koerich (alekoe@ppgia.pucpr.br)

Programação Paralela - Curso de Ciência da Computação -2004

49

Alessandro L. Koerich (alekoe@ppgia.pucpr.br

Programação Paralela - Curso de Ciência da Computação -2004

.

Arranjos Lineares, Malhas e Malhas k-d

Programação Paralela - Curso de Ciência da Computação -2004

Programação Paralela - Curso de Ciência da Computação -2004

--

PUCPR

Arranjos Lineares, Malhas e Malhas *k*-d

- * Um hipercubo de dimensão o (zero) consiste de 2º nós.
- * Um hipercubo de dimensão 1 é construído a partir de dois hipercubos de dimensão o (zero).
- ★ Em geral, um hipercubo de dimensão d é construído pela conexão dos nós de 2 hipercubos de dimensão (d-1).

Arranjos Lineares, Malhas e Malhas k-d

- * Exemplo de máquinas Malha (Mesh):
 - **☀** Cray T3E.
- * Exemplo de máquinas Malha 2D (Mesh):
 - Intel Paragon XP/S (1991);
 - * Mosaic C (1992).
- * Exemplo de máquinas Malha 3D (Mesh):
 - * *MIT J Machine* (1992).
- * Exemplo de máquinas hipercubo:
 - * Cosmic Cube (1985);
 - * nCUBE2 (1990);
 - Intel iPSC-1, iPSC-2, e iPSC/860;
 - * SGI Origin 2000.

Redes Baseadas em Árvores

- * Em uma rede em árvore há somente um único caminho entre um par de nós.
- * Arranjos lineares e redes conectadas em estrela são casos particulares de redes em árvore.
- * Redes estáticas em árvore têm um elemento de processamento em cada nó.
- * Redes dinâmicas em árvore têm nós intermediários de chaveamento e as folhas são os nós de processamento.

L. Koerich (alekoe@ppgia.pucpr.br)

Programação Paralela - Curso de Ciência da Computação -2004

53

PUCPR

Redes Baseadas em Árvores

Figura: Redes completas em árvore binária, sendo estática e dinâmica.

* Para rotear uma mensagem em uma árvore, o nó fonte manda uma mensagem árvore acima, até que ela atinja o nó da raiz da menor subárvore, contendo tanto os nós fonte e destino.

Alessandro L. Koerich (alekoe@ppgia.pucpr

Programação Paralela - Curso de Ciência da Computação -2004

5

Redes Baseadas em Árvores

- * Rede em árvore sofrem de gargalos de comunicação nos níveis superiores da árvore.
- * Ex: quando vários nós do lado direito querem se comunicar com nós do lado esquerdo.
- * Este problema pode ser minimizado em árvores dinâmicas aumentando—se o número de links de comunicação e nós de chaveamento próximos a raiz. (*Fat Tree*)

Redes Baseadas em Árvores

Figura: Exemplo de uma "Fat Tree"

ro L. Koerich (alekoe@ppgia.pucpr.br)

PUCPR

Redes Baseadas em Árvores

- * Exemplos:
 - * DADO (1986) utiliza árvore binária completa de profundidade 10;
 - ★ Thinking Machines CM-5 (1991) utiliza uma fattree.

Próxima Aula

- * Avaliação de Redes de Interconexão Estáticas
- * Avaliação de Redes de Interconexão Dinâmicas
- * Coerência de *Cache* em Sistemas com Multiprocessadores.

essandro L. Koerich (alekoe@ppgia.pucpr.br)

Programação Paralela - Curso de Ciência da Computação -2004

essandro L. Koerich (alekoe@ppgia.pucpr.br)

Programação Paralela - Curso de Ciência da Computação -2004

г.