The ancient art of sieves

$$\mathbf{P}\Big(\bigcup_{j} A_{j}\Big) \leq \sum_{j} \mathbf{P}(A_{j})$$

$$\mathbf{P}\Big(\bigcup_{j} A_{j}\Big) \leq \sum_{j} \mathbf{P}(A_{j})$$

Two regions where the bound becomes interesting:

$$\mathbf{P}\Big(\bigcup_{j} A_{j}\Big) \leq \sum_{j} \mathbf{P}(A_{j})$$

Two regions where the bound becomes interesting:

* The sum on the right is small (but not zero).

$$\mathbf{P}\Big(\bigcup_{j} A_{j}\Big) \leq \sum_{j} \mathbf{P}(A_{j})$$

Two regions where the bound becomes interesting:

- * The sum on the right is small (but not zero).
- * The sum on the right is large (but not one).

$$\mathbf{P}\Big(\bigcup_{j} A_{j}\Big) \leq \sum_{j} \mathbf{P}(A_{j})$$

Two regions where the bound becomes interesting:

- * The sum on the right is small (but not zero).
- * The sum on the right is large (but not one).

- * 'Bad' events: A_j
- * 'Good' events: (A_j)^c

$$\mathbf{P}\Big(\bigcup_{j} A_{j}\Big) \leq \sum_{j} \mathbf{P}(A_{j})$$

Two regions where the bound becomes interesting:

- * The sum on the right is small (but not zero).
- * The sum on the right is large (but not one).

- * 'Bad' events: Ai
- * 'Good' events: (A_j)^c

$$\bigcup_{j} A_{j} := a \text{ bad event occurs}$$

$$\mathbf{P}\Big(\bigcup_{j} A_{j}\Big) \leq \sum_{j} \mathbf{P}(A_{j})$$

Two regions where the bound becomes interesting:

- * The sum on the right is small (but not zero).
- * The sum on the right is large (but not one).

- * 'Bad' events: Ai
- * 'Good' events: (A_j)^c

$$\bigcup_{j} A_{j} := a \text{ bad event occurs}$$

 $\bigcap_{j} A_{j}^{c} := \text{no bad event occurs}$

When Boole's bound is near zero

- * 'Bad' events: Aj
- * 'Good' events: (A_j)^c

$$\mathbf{P}\Big(\bigcup_{j} A_{j}\Big) \leq \sum_{j} \mathbf{P}(A_{j})$$

When Boole's bound is near zero

- * 'Bad' events: A_j
- * 'Good' events: (A_j)^c

$$\mathbf{P}\Big(\bigcup_{j} A_{j}\Big) \leq \sum_{j} \mathbf{P}(A_{j})$$

If
$$\sum_{j} \mathbf{P}(A_{j}) < \varepsilon$$
 then $\mathbf{P}(\bigcap_{j} A_{j}^{c}) = 1 - \mathbf{P}(\bigcup_{j} A_{j}) > 1 - \varepsilon$.

When Boole's bound is near zero

Some colourful terminology:

- * 'Bad' events: Ai
- * 'Good' events: (A_j)^c

$$\mathbf{P}\Big(\bigcup_{j} A_{j}\Big) \leq \sum_{j} \mathbf{P}(A_{j})$$

If
$$\sum_{j} \mathbf{P}(A_{j}) < \varepsilon$$
 then $\mathbf{P}(\bigcap_{j} A_{j}^{c}) = 1 - \mathbf{P}(\bigcup_{j} A_{j}) > 1 - \varepsilon$.

Slogan

If Boole's bound is near zero then *most* outcomes are good.

When Boole's bound is less than one

- * 'Bad' events: Aj
- * 'Good' events: (A_j)^c

$$\mathbf{P}\Big(\bigcup_{j} A_{j}\Big) \leq \sum_{j} \mathbf{P}(A_{j})$$

When Boole's bound is less than one

- * 'Bad' events: A_j
- * 'Good' events: (A_j)^c

$$\mathbf{P}\Big(\bigcup_{j} A_{j}\Big) \leq \sum_{j} \mathbf{P}(A_{j})$$

If
$$\sum_{j} \mathbf{P}(A_j) < 1$$
 then $\mathbf{P}(\bigcap_{j} A_j^c) = 1 - \mathbf{P}(\bigcup_{j} A_j) > 0$.

When Boole's bound is less than one

Some colourful terminology:

- * 'Bad' events: Aj
- * 'Good' events: (A_j)^c

$$\mathbf{P}\Big(\bigcup_{j} A_{j}\Big) \leq \sum_{j} \mathbf{P}(A_{j})$$

If
$$\sum_{j} \mathbf{P}(A_j) < 1$$
 then $\mathbf{P}(\bigcap_{j} A_j^c) = 1 - \mathbf{P}(\bigcup_{j} A_j) > 0$.

Slogan: Boole's sieve

If Boole's bound is less than one then there *exist* good outcomes.

Embedding a cube in a two-coloured sphere