Retrofitting Word Vectors to Semantic Lexicons

NAACL2015

Manaal Faruqui, Jesse Dodge Sujay K. Jauhar, Chris Dyer Eduard Hovy, Noah A. Smith

Carnegie Mellon University

2015年5月12日

Outline

- 论文方法概述
- 传统词向量生成工具
 - Glove, Skip-Gram, Global Context, Multilingual Vectors
- 语义词典(Semantic Lexicon)
 - PPDB, WordNet, FrameNet
- 实验
 - 数据集
 - Word Similarity: WS-353, RG-65, MEN
 - Syntactic Relations, Synonym Selection, Sentiment Analysis
 - 顺序模型: Retrofitting with Semantic Lexicons
 - 联合模型: Semantic Lexicons during Learning
 - lazy method, periodic method
 - 实验分析

Summary

论文方法概述

- 把语义信息加入词向量: 语义相关的单词词向量有更大的相似性
- 两类方法
 - 顺序模型: 先使用传统词向量生成工具, 再使用语义信息修正词向量
 - 联合模型: 修正传统词向量训练时的目标函数, 在其中加入语义信息

传统词向量生成工具

传统词向量生成工具 tools

Glove

- stanford:Jeffrey
 Pennington, Richard
 Socher
- 收集单词对的共线情况

word2vec

Skip-Gram Vectors

Global Context Vector

 ${\it tree-RNN + local \ and \ global} \\ {\it (document) \ context \ features}$

Multilingual Vector

SVD + CCA

语义词典

Semantic Lexicon

PPDB

- 复述 (paraphrase) 预料集
- 220 million paraphrase pairs
- 6 个版本: S,M,L,XL,XXL,XXXL, 容量依次增大, 质量依次降低
- [VBN] ||| pruned ||| cropped ||| p(e|f)=4.33 p(f|e)=4.88 ... ||| 0-0

FrameNet

- tree-RNN + local and global (document) context features
- frame: $Cause_change_of_position_on_a_scale$ $\leftrightarrow push, raise, ..., growth$

实验时 $\alpha_i = 1, \beta_{ij} = degree(i)^{-1}$

WordNet

 WN_{syn} : 只对同义词连边 WN_{all} : 同义词、上位词、下位词都连边

实验数据集

Word Similarity

WS-353

- 353 个英语单词对(200 个 13 个人标, 153 个 16 个人标)
- 相似度: 0-10 (可 0.5)

RG-65

• 65 对英语名词

MEN

• 3000 对单词(共现700次)

Word Similarity

WS-353

- 353 个英语单词对(200 个 13 个人标, 153 个 16 个人标)
- 相似度: 0-10 (可 0.5)

RG-65

• 65 对英语名词

MEN

• 3000 对单词(共现 700 次)

评价结果好坏采用斯皮尔曼等级相关系数

$$\rho = \frac{\sum_i (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_i (x_i - \bar{x})^2 \sum_i (y_i - \bar{y})^2}} \in [-1, 1]$$

Syntactic Relation(SYN-REL)

- Mikolov 给出(word2vec)
- 给定 a,b,c, 找到最合适的 d, 满足: a is to b as c is to d
- 实验时找和 $(q_q-q_b+q_c)$ 余弦相似度最大的单词作为 q_d

Synonym Selection(TOEFL)

• 80 个问题,找出候选中与目标最相近的单词 $rug \rightarrow \{sofa, ottoman, \mathbf{carpet}, hallway\}$

Sentiment Analysis (SA)

- Socher 给出 (Glove)
- 6920(train)+872(dev)+1821(text) 个句子, 正负情感极性

实验

顺序模型

Retrofitting with Semantic Lexicons

Notation

 $V = \{w_1, w_2, ..., w_n\}$: vocabulary

 $E = \{(w_i, w_j), ...\} \subseteq V \times V$: edges

 $\Omega = (V, E)$: ontology

 $\hat{q}_i, q_i \in \mathbb{R}^d$: word vector

 $\hat{Q}=(\hat{q_1},...,\hat{q_n})$: original matrix

 $Q = (q_1, ..., q_n)$: target matrix;

Notation

 $V = \{w_1, w_2, ..., w_n\}$: vocabulary

$$E = \{(w_i, w_j), ...\} \subseteq V \times V$$
: edges

 $\Omega = (V, E)$: ontology

 $\hat{q}_i, q_i \in \mathbb{R}^d$: word vector

 $\hat{Q}=(\hat{q_1},...,\hat{q_n})$: original matrix

 $Q = (q_1, ..., q_n)$: target matrix;

- ① 传统工具 (word2vec) 生成初始向量空间 \hat{Q}
- ② 根据语义字典生成 Ω
- ③ 最优化 $\Psi(Q) =$

$$\left| \sum_{i=1}^{n} \left| \alpha_{i} \| q_{i} - \hat{q}_{i} \|^{2} + \sum_{(i,j) \in E} \beta_{ij} \| q_{i} - q_{j} \|^{2} \right| \right|$$

Notation

 $V = \{w_1, w_2, ..., w_n\}$: vocabulary

$$E = \{(w_i, w_j), ...\} \subseteq V \times V$$
: edges

 $\Omega = (V, E)$: ontology

 $\hat{q}_i, q_i \in \mathbb{R}^d$: word vector

 $\hat{Q} = (\hat{q}_1, ..., \hat{q}_n)$: original matrix

 $Q = (q_1, ..., q_n)$: target matrix;

- 传统工具 (word2vec) 生成初始向量空间 Q
- ② 根据语义字典生成 Ω
- ③ 最优化 $\Psi(Q) =$

$$\sum_{i=1}^{n} \left[\alpha_{i} \| q_{i} - \hat{q}_{i} \|^{2} + \sum_{(i,j) \in E} \beta_{ij} \| q_{i} - q_{j} \|^{2} \right]$$

• (?) $\Psi(Q)$ 是凸函数 \Rightarrow 沿切线 更新 \Rightarrow $q_i = \frac{\sum_{j:(i,j)\in E} \beta_{ij}q_j + \alpha_i\hat{q}_i}{\sum_{j:(i,j)\in E} \beta_{ij} + \alpha_i}$

Notation

 $V = \{w_1, w_2, ..., w_n\}$: vocabulary

$$E = \{(w_i, w_j), ...\} \subseteq V \times V$$
: edges

 $\Omega = (V, E)$: ontology

 $\hat{q}_i, q_i \in \mathbb{R}^d$: word vector

 $\hat{Q} = (\hat{q}_1, ..., \hat{q}_n)$: original matrix

 $Q = (q_1, ..., q_n)$: target matrix;

- 传统工具 (word2vec) 生成初始向量空间 Q
- ② 根据语义字典生成 Ω
- ③ 最优化 $\Psi(Q) =$

$$\sum_{i=1}^{n} \left[\alpha_{i} \| q_{i} - \hat{q}_{i} \|^{2} + \sum_{(i,j) \in E} \beta_{ij} \| q_{i} - q_{j} \|^{2} \right]$$

Agrange Agrang

- (?) $\Psi(Q)$ 是凸函数 \Rightarrow 沿切线 更新 \Rightarrow $q_i = \frac{\sum_{j:(i,j)\in E} \beta_{ij} q_j + \alpha_i \hat{q}_i}{\sum_{j:(i,j)\in E} \beta_{ij} + \alpha_i}$
- 10 次迭代收敛 ((?) 邻接矩阵 距离小于 10⁻²)

顺序模型 (Retrofitting with Semantic Lexicons)

Lexicon	MEN-3k	RG-65	WS-353	TOEFL	SYN-REL	SA
Glove	73.7	76.7	60.5	89.7	67.0	79.6
+PPDB	1.4	2.9	-1.2	5.1	-0.4	1.6
+WN _{syn}	0.0	2.7	0.5	5.1	-12.4	0.7
+WN _{all}	2.2	7.5	0.7	2.6	-8.4	0.5
+FN	-3.6	-1.0	-5.3	2.6	-7.0	0.0
SG	67.8	72.8	65.6	85.3	73.9	81.2
+PPDB	5.4	3.5	4.4	10.7	-2.3	0.9
+WN _{syn}	0.7	3.9	0.0	9.3	-13.6	0.7
+WN _{all}	2.5	5.0	1.9	9.3	-10.7	-0.3
+FN	-3.2	2.6	-4.9	1.3	-7.3	0.5
GC	31.3	62.8	62.3	60.8	10.9	67.8
+PPDB	7.0	6.1	2.0	13.1	5.3	1.1
+WN _{syn}	3.6	6.4	0.6	7.3	-1.7	0.0
+WN _{all}	6.7	10.2	2.3	4.4	-0.6	0.2
+FN	1.8	4.0	0.0	4.4	-0.6	0.2
Multi	75.8	75.5	68.1	84.0	45.5	81.0
+PPDB	3.8	4.0	6.0	12.0	4.3	0.6
+WN _{syn}	1.2	0.2	2.2	6.6	-12.3	1.4
+WN _{all}	2.9	8.5	4.3	6.6	-10.6	1.4
+FN	1.8	4.0	0.0	4.4	-0.6	0.2

- frameNet 数据少, 效果差
- [Append:A] 语义:
 Glove 好, 句法:
 word2vec 好
- PPDB, WN_{all} 好
- retrofitting 对于句法 信息没有提升效果

联合模型: Semantic Lexicons during Learning

修改传统模型的训练过程, 加入语义信息

lazy mode

核心思想: 在传统模型的目标函数中加入体现语义信息的正则项

Q 的先验:
$$p(Q) \propto \exp\left(-\gamma \sum_{i=1}^{n} \sum_{j:(i,j)\in E} \beta_{ij} ||q_i - q_j||^2\right)$$

- p(Q) 加入目标函数中
- ② 每次更新 k 个单词的向量 (lazy update)

periodic mode

核心思想: 递归的过程中每更新 k 个词后使用下式更新所有的单词向量

$$q_i = \frac{\sum_{j:(i,j) \in E} \beta_{ij} q_j + \alpha_i \hat{q}_i}{\sum_{j:(i,j) \in E} \beta_{ij} + \alpha_i}$$

联合模型效果测试

• log-bilinear (LBL) vectors 为基准 (Mnih and Teh, 2012)

• lazy Mode: k=100,000

Method	k, γ	MEN-3k	RG-65	WS-353	TOEFL	SYN-REL	SA
LBL (Baseline)	$k = \infty, \gamma = 0$	58.0	42.7	53.6	66.7	31.5	72.5
	$\gamma = 1$	-0.4	4.2	0.6	-0.1	0.6	1.2
LBL + Lazy	$\gamma = 0.1$	0.7	8.1	0.4	-1.4	0.7	0.8
	$\gamma = 0.01$	0.7	9.5	1.7	2.6	1.9	0.4
	k = 100M	3.8	18.4	3.6	12.0	4.8	1.3
LBL + Periodic	k = 50M	3.4	19.5	4.4	18.6	0.6	1.9
	k = 25M	0.5	18.1	2.7	21.3	-3.7	0.8
LBL + Retrofitting	_	5.7	15.6	5.5	18.6	14.7	0.9

对比实验

Yu and Dredze (2014)

word2vec(CBOW)+retrofitting(PPDB)

Corpus	Vector Training	MEN-3k	RG-65	WS-353	TOEFL	SYN-REL	SA
	CBOW	55.2	44.8	54.7	73.3	40.8	74.1
WMT-11	Yu and Dredze (2014)	50.1	47.1	53.7	61.3	29.9	71.5
	CBOW + Retrofitting	60.5	57.7	58.4	81.3	52.5	75.7

Xu et al. (2014)

word2vec(CBOW)+retrofitting(PPDB)

	SG	76.1	66.7	68.6	72.0	40.3	73.1
Wikipedia	Xu et al. (2014)	_	_	68.3	_	44.4	_
	SG + Retrofitting	65.7	73.9	67.5	86.0	49.9	74.6

多语言效果实验(每种语言 独立测试)

• retrofitting(WN_{all})

Language	Task	SG	Retrofitted SG
German	RG-65	53.4	60.3
French	RG-65	46.7	60.6
Spanish	MC-30	54.0	59.1

多语言效果实验(每种语言 独立测试)

• retrofitting(WN_{all})

Language	Task	SG	Retrofitted SG
German	RG-65	53.4	60.3
French	RG-65	46.7	60.6
Spanish	MC-30	54.0	59.1

retrofitting 和向量长度效用实验

可视化

利用 PCA 从 SG 训练得到的 100 维向量压缩为 2 维。左右图分别为使用 retrofitting 前后的向量位置

谢谢

大多数数据集可以在上面找到: http://www.cs.cmu.edu/ mfaruqui/suite.html

Han Zhe (icst@pku) Retrofitting 2015 年 5 月 12 日 20 / 21

Append:A

GloVe vs word2vec

Model	Semantic	Syntactic	Total	
GloVe (W+C)	79.6	61.0	69.4	
word2vec (W)	72.7	65.8	68.9	

https://docs.google.com/document/d/1ydlujJ7ETSZ688RGfU5IMJJsbxAi-kRl8czSwpti15s/mobilebasic and the state of the state o