Image Enhancement and Restoration

>>> In Frequency Domain

#1 Fourier Transform Application

Frequency Filtering

for noise reduction

for contrast enhancement

for texture analysis

for shape analysis

FOURIER TRANSFORM

For Filtering

Filtering in Frequency Domain

$$f(x,y) \longrightarrow \text{Shift} \qquad f'(x,y) \longrightarrow \text{DFT} \qquad F(u,v) \rightarrow \text{H}(u,v) \qquad \text{IDFT}$$

$$(-1)^{x+y}$$

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi \left(\frac{ux}{M} + \frac{vy}{N}\right)}$$

$$e^{-j2\pi st} = \cos(2\pi st) - j \sin(2\pi st)$$

$$F(u,v) = a - jb$$

$$= \sqrt{a^2 + b^2} / \tan^{-1}(b/a)$$

$$g(x,y) = d + je$$

Filter Categories

- Regular Filter
 - Low Pass Filter (LPF)
 - High Pass Filter (HPF)
 - Band Pass Filter (BPF)
 - Band Reject Filter (BRF)
 - High Frequency Emphasis Filter (HFE)
- Inverse Filter
- Wiener Filter (Minimum Mean Square Error Filter)

Matching image and filters

aaaaaaaaa

(c)

Images

- □ Low Pass Filter
 - ผลลัพธ์น่าจะเป็นรูปใด(a), (b), (c)

- High Pass Filter
 - ผลลัพธ์น่าจะเป็นรูปใด(a), (b), (c)

Regular Filter

Low Pass Filter (LPF)

Low Pass Filtering (H(u,v))

Ideal LPF

Frequency

$$H(u,v) = \begin{cases} 1 & r(u,v) \le r_0 \\ 0 & r(u,v) > r_0 \end{cases}$$

Pixel

$$r(u,v) = \sqrt{(u-M/2)^2 + (v-N/2)^2}$$

Butterworth LPF

Frequency

$$H(u,v) = \frac{1}{1 + [r(u,v)/r_0]^{2n}}$$

Pixel

$$r(u,v) = \sqrt{(u - M/2)^2 + (v - N/2)^2}$$

Gaussian LPF

Frequency

$H(u,v) = e^{-r^2(u,v)/2D_0^2}$

Pixel

$$r(u,v) = \sqrt{(u-M/2)^2 + (v-N/2)^2}$$

$$D_0 = r_0$$

Ideal LPF

Butterworth LPF (N=2)

Gaussian LPF

$$r_0 = 15$$

$$r_0 = 15$$

$$r_0 = 15$$

$$r_0 = 30$$

$$r_0 = 30$$

$$r_0 = 30$$

ILPF ripple effects

Butterworth Low Pass Filter (BLPF)

$$H(u,v) = \frac{1}{1 + [r(u,v)/r_0]^{2n}}$$

$$r(u,v) = \sqrt{(u-M/2)^2 + (v-N/2)^2}$$

h(x,y)

n = 1

n=2

n=3 n=4

Applications of Low Pass Filter

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

色点

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Character recognition

Picture Studio Decoration

Regular Filter

High Pass Filter (HPF)

Ideal HPF

Butterworth HPF

Gaussian HPF

$$r(u,v) = \sqrt{(u-M/2)^2 + (v-N/2)^2}$$

$$H(u,v) = \frac{1}{1 + [r_0 / r(u,v)]^{2n}}$$

$$r(u,v) = \sqrt{(u - M/2)^2 + (v - N/2)^2}$$

$$H(u,v) = 1 - e^{-r^2(u,v)/2D_0^2}$$

$$r(u,v) = \sqrt{(u - M/2)^2 + (v - N/2)^2}$$

 $D_0 = r_0$

High Pass Filtering

Ideal	Н	P	F
-------	---	---	---

Butterworth HPF

Gaussian HPF

 $r_0 = 15$

High Frequency Emphasis Filter

Original image

High Freq. filtered Hhp(u,v) image

$$H_{hfe}(u,v) = a + bH_{hp}(u,v)$$

High Frequency Emphasis Filter

BHPF

$$H_{hfe}(u,v) = a + bH_{hp}(u,v)$$

Histogram equalization

Regular Filter

Band Pass Filter (BPF)
Vs
Band Reject Filter (BRF)

Band Reject Filter (BRF)

$$H(u,v) = \begin{cases} 1 & ; & r(u,v) < r_0 - \frac{BW}{2} \\ 0 & ; & r_0 - \frac{BW}{2} \le r(u,v) \le r_0 + \frac{BW}{2} \\ 1 & ; & r(u,v) > r_0 + \frac{BW}{2} \end{cases}$$

Ideal BRF

Butterworth BRF

$$H(u,v) = \frac{1}{1 + \left[\frac{r(u,v).BW}{r^{2}(u,v) - r_{0}^{2}}\right]}$$

Gaussian BRF

$$H(u,v) = 1 - e^{-\frac{1}{2} \left[\frac{r^2(u,v) - r_0^2}{r(u,v).BW} \right]}$$

Matching image and filters

Images

(a)

Filters

- Band Pass Filter
 - ผลลัพธ์น่าจะเป็นรูปใด(a), (b)

- □ Band Reject Pass Filter
 - ผลลัพธ์น่าจะเป็นรูปใด(a), (b)

BRF results

Band Pass Filter (BPF)

