Adaptive Traffic Light Controller Project

$\mathop{\rm ASIC\ TEAM}_{ASU}$

December 8, 2024

Contents

1	Introduction	2					
2	Problem Statement	2					
3	FSM Overview 3.1 States 3.2 Transitions	2					
4	FSM Table						
5	State and Transition Explanations5.1 North-South States5.2 South-North States5.3 East-West States5.4 West-East States	4 5 6					
6	Conclusion	7					

1 Introduction

This project involves designing an **adaptive traffic light controller** for a four-way intersection. The system adapts dynamically to real-time traffic conditions to ensure collision-free operation and prioritize heavily congested lanes.

The traffic light controller is modeled as a **Finite State Machine (FSM)** with 16 states corresponding to each lane's traffic light conditions, including **primary green**, **extended green**, and **yellow** states.

2 Problem Statement

The goal is to develop a **traffic control system** with:

- 1. **Dynamic Timing:** Extend green light duration for congested lanes based on sensor inputs.
- 2. Collision Avoidance: Only one lane can have a green or yellow light at any time.
- 3. **Timer-Based States:** States remain active until the timer expires if no next state is defined.
- 4. **Skipping Idle Lanes:** If no cars are detected in a lane, the FSM skips to the next lane in sequence.
- 5. **Efficient Lane Priority:** Ensure a fair balance between lane priorities while dynamically adjusting for congestion.

3 FSM Overview

3.1 States

The FSM has 16 states encoded using Gray Code to minimize transitions:

- 1. NS_RED, NS_PRIMARY_GREEN, NS_EXTENDED_GREEN, NS_YELLOW.
- 2. SN_RED, SN_PRIMARY_GREEN, SN_EXTENDED_GREEN, SN_YELLOW.
- 3. EW_RED, EW_PRIMARY_GREEN, EW_EXTENDED_GREEN, EW_YELLOW.
- 4. WE_RED, WE_PRIMARY_GREEN, WE_EXTENDED_GREEN, WE_YELLOW.

3.2 Transitions

Transitions are triggered by:

- 1. Sensor Inputs: Vehicles detected (S1 = 1) or congestion (S5 = 1).
- 2. Timer Expiry: States transition when their timers expire.
- 3. **Idle Lane Skipping:** If no vehicles are detected (S1 = 0), the FSM skips to the next lane in sequence.

4 FSM Table

Current State	Condition (Input)	Next State	Output	Timer Exten- sion
ALL_RED	NS_S5 = 1	NS_EXTENDED_GREEN	NS Green; Others Red	Yes
ALL_RED	NS_S1 = 1	NS_PRIMARY_GREEN	NS Green; Others Red	No
ALL_RED	SN_S5 = 1	SN_EXTENDED_GREEN	SN Green; Others Red	Yes
ALL_RED	SN_S1 = 1	SN_PRIMARY_GREEN	SN Green; Others Red	No
ALL_RED	EW_S5 = 1	EW_EXTENDED_GREEN	EW Green; Others Red	Yes
ALL_RED	EW_S1 = 1	EW_PRIMARY_GREEN	EW Green; Others Red	No
ALL_RED	WE_S5 = 1	WE_EXTENDED_GREEN	WE Green; Others Red	Yes
ALL_RED	WE_S1 = 1	WE_PRIMARY_GREEN	WE Green; Others Red	No
ALL_RED	No Input	ALL_RED	All Red	No
NS_PRIMARY_GREEN	Timer not expired	NS_PRIMARY_GREEN	NS Green; Others Red	No
NS_PRIMARY_GREEN	NS_S5 = 1	NS_EXTENDED_GREEN	NS Green; Others Red	Yes
NS_PRIMARY_GREEN	Timer expired & NS_S5 = 0	NS_YELLOW	NS Yellow; Others Red	No
NS_EXTENDED_GREEN	Timer not expired	NS_EXTENDED_GREEN	NS Green; Others Red	Yes
NS_EXTENDED_GREEN	Timer expired	NS_YELLOW	NS Yellow; Others Red	No
NS_YELLOW	Timer not expired	NS_YELLOW	NS Yellow; Others Red	No
NS_YELLOW	Timer expired	SN_RED	All Red	No
SN_PRIMARY_GREEN	Timer not expired	SN_PRIMARY_GREEN	SN Green; Others Red	No
SN_PRIMARY_GREEN	SN_S5 = 1	SN_EXTENDED_GREEN	SN Green; Others Red	Yes
SN_PRIMARY_GREEN	Timer expired & SN_S5 = 0	SN_YELLOW	SN Yellow; Others Red	No
SN_EXTENDED_GREEN	Timer not expired	SN_EXTENDED_GREEN	SN Green; Others Red	Yes
SN_EXTENDED_GREEN	Timer expired	SN_YELLOW	SN Yellow; Others Red	No
SN_YELLOW	Timer not expired	SN_YELLOW	SN Yellow; Others Red	No
SN_YELLOW	Timer expired	EW_RED	All Red	No

Continued on next page

Continued from previous page

Current State	Condition (Input)	Next State	Output	Timer Exten- sion
EW_PRIMARY_GREEN	Timer not expired	EW_PRIMARY_GREEN	EW Green; Others Red	No
EW_PRIMARY_GREEN	EW_S5 = 1	EW_EXTENDED_GREEN	EW Green; Others Red	Yes
EW_PRIMARY_GREEN	Timer expired & EW_S5 = 0	EW_YELLOW	EW Yellow; Others Red	No
EW_EXTENDED_GREEN	Timer not expired	EW_EXTENDED_GREEN	EW Green; Others Red	Yes
EW_EXTENDED_GREEN	Timer expired	EW_YELLOW	EW Yellow; Others Red	No
EW_YELLOW	Timer not expired	EW_YELLOW	EW Yellow; Others Red	No
EW_YELLOW	Timer expired	WE_RED	All Red	No
WE_PRIMARY_GREEN	Timer not expired	WE_PRIMARY_GREEN	WE Green; Others Red	No
WE_PRIMARY_GREEN	WE_S5 = 1	WE_EXTENDED_GREEN	WE Green; Others Red	Yes
WE_PRIMARY_GREEN	Timer expired & WE_S5 = 0	WE_YELLOW	WE Yellow; Others Red	No
WE_EXTENDED_GREEN	Timer not expired	WE_EXTENDED_GREEN	WE Green; Others Red	Yes
WE_EXTENDED_GREEN	Timer expired	WE_YELLOW	WE Yellow; Others Red	No
WE_YELLOW	Timer not expired	WE_YELLOW	WE Yellow; Others Red	No
WE_YELLOW	Timer expired	NS_RED	All Red	No

5 State and Transition Explanations

5.1 North-South States

1. NS_RED:

- Default state for North-South direction.
- If NS_S5 = 1, transition to NS_EXTENDED_GREEN to handle congestion.
- If NS_S1 = 1 and NS_S5 = 0, transition to NS_PRIMARY_GREEN.
- If no input, remain in NS_RED or proceed to SN_RED.

2. NS_PRIMARY_GREEN:

- Activates green light for NS.
- If the timer has not expired, remain in NS_PRIMARY_GREEN.
- If NS_S5 = 1, transition to NS_EXTENDED_GREEN for extended green duration.
- If the timer expires and NS_S5 = 0, transition to NS_YELLOW.

3. NS_EXTENDED_GREEN:

- Extends green light for NS due to congestion.
- Remain in this state while the extended timer is running.
- Transition to NS_YELLOW when the extended timer expires.

4. NS_YELLOW:

- Activates yellow light for NS.
- Remain in this state while the yellow timer is running.
- Transition to SN_RED when the yellow timer expires.

5.2 South-North States

1. SN_RED:

- Default state for South-North direction.
- If SN_S5 = 1, transition to SN_EXTENDED_GREEN to handle congestion.
- If SN_S1 = 1 and SN_S5 = 0, transition to SN_PRIMARY_GREEN.
- If no input, remain in SN_RED or proceed to EW_RED.

2. SN_PRIMARY_GREEN:

- Activates green light for SN.
- If the timer has not expired, remain in SN_PRIMARY_GREEN.
- If SN_S5 = 1, transition to SN_EXTENDED_GREEN.
- If the timer expires and SN_S5 = 0, transition to SN_YELLOW.

3. SN_EXTENDED_GREEN:

- Extends green light for SN due to congestion.
- Remain in this state while the extended timer is running.
- Transition to SN_YELLOW when the extended timer expires.

4. SN_YELLOW:

- Activates yellow light for SN.
- Remain in this state while the yellow timer is running.
- Transition to EW_RED when the yellow timer expires.

5.3 East-West States

1. EW_RED:

- Default state for East-West direction.
- If EW_S5 = 1, transition to EW_EXTENDED_GREEN to handle congestion.
- If EW_S1 = 1 and EW_S5 = 0, transition to EW_PRIMARY_GREEN.
- If no input, remain in EW_RED or proceed to WE_RED.

2. EW_PRIMARY_GREEN:

- Activates green light for EW.
- If the timer has not expired, remain in EW_PRIMARY_GREEN.
- If EW_S5 = 1, transition to EW_EXTENDED_GREEN.
- If the timer expires and $EW_S5 = 0$, transition to EW_YELLOW .

3. EW_EXTENDED_GREEN:

- Extends green light for EW due to congestion.
- Remain in this state while the extended timer is running.
- Transition to EW_YELLOW when the extended timer expires.

4. EW_YELLOW:

- Activates yellow light for EW.
- Remain in this state while the yellow timer is running.
- Transition to WE_RED when the yellow timer expires.

5.4 West-East States

1. WE_RED:

- Default state for West-East direction.
- If WE_S5 = 1, transition to WE_EXTENDED_GREEN to handle congestion.
- If WE_S1 = 1 and WE_S5 = 0, transition to WE_PRIMARY_GREEN.
- If no input, remain in WE_RED or proceed to NS_RED.

2. WE_PRIMARY_GREEN:

- Activates green light for WE.
- If the timer has not expired, remain in WE_PRIMARY_GREEN.
- If WE_S5 = 1, transition to WE_EXTENDED_GREEN.
- If the timer expires and WE_S5 = 0, transition to WE_YELLOW.

3. WE_EXTENDED_GREEN:

• Extends green light for WE due to congestion.

- Remain in this state while the extended timer is running.
- Transition to WE_YELLOW when the extended timer expires.

4. WE_YELLOW:

- Activates yellow light for WE.
- Remain in this state while the yellow timer is running.
- Transition to NS_RED when the yellow timer expires, completing the cycle.

6 Conclusion

This comprehensive FSM design ensures safe, adaptive, and efficient traffic light management for a four-way intersection by dynamically adjusting to real-time traffic conditions. All possible states and transitions have been detailed to provide a clear understanding of the system's operation.