# Ejercicios propuestos (Compiladores 2020-1)

Juan Sebastián Díaz Osorio, Universidad EAFIT

## 1. Gramáticas lineales por la izquierda

a) Para una gramática lineal por la izquierda  $G_1$ , obtener una gramática lineal por la derecha  $G'_1$  tal que  $L(G_1) \equiv L(G'_1)$ :

$$G_1: S \to Ab \mid Sb$$

$$A \to Aa \mid Ab \mid B$$

$$B \to Bc \mid Bd \mid \epsilon$$

b) Para una gramática lineal por la izquierda  $G_2$ , obtener una gramática lineal por la derecha  $G_2'$  tal que  $L(G_2) \equiv L(G_2')$ :

$$\begin{aligned} G_2: S &\to C \\ C &\to Ca \mid Cb \mid B \mid Bc \\ B &\to Ba \mid Bb \mid Ac \mid A \\ A &\to Aa \mid Ab \mid \epsilon \end{aligned}$$

# 2. Método Brzozowski McCluskey (BMC)

a) Utilice BMC para obtener la expresión regular  $r_1$  del siguiente autómata  $M_1$  tal que  $L(r_1) \equiv L(M_1)$ :



b) Utilice BMC para obtener la expresión regular  $r_2$  del siguiente autómata  $M_2$  tal que  $L(r_2) \equiv L(M_2)$ :



#### 3. Eliminación del no determinismo

a) Dado el autómata no determinista  $M_3$ , construya un nuevo autómata determinista  $M'_3$  tal que  $L(M_3) \equiv L(M'_3)$ , por medio de la eliminación de movimientos espontáneos y, posteriormente, el método del conjunto potencia.



b) (Opcional) Obtenga la expresión regular del anterior autómata por medio del método BMC.

### 4. Método estructural de Thompson

- a) Dada la expresión regular  $(a \mid b)c^*$ , obtener su autómata por el método de Thompson.
- b) (Opcional) Del autómata obtenido  $M_4$ , genere una gramática lineal por la derecha.
- c) Dada la expresión regular  $b(ac \mid d)^*b$ , obtener su autómata por el método de Thompson.

### 5. Método Glushkov, McNaughton y Yamada (GMY)

- a) Dada la expresión regular  $a^*bc^*(d \mid e)^*$ , obtener su autómata por el método GMY.
- b) Dada la expresión regular  $b(cc \mid b)^+c$ , obtener su autómata por el método GMY.
- c) (Opcional) Convierte las expresiones regulares de la sección de Thompson en autómatas por el método GMY.

## 6. Método Berry Sethi (BS)<sup>1</sup>

- a) Dada la expresión regular  $(ab \mid ac)^*$ , obtener su autómata por el método BS.
- b) Dada la expresión regular  $(a \mid b)^+(a \mid c)^*$ , obtener su autómata por el método GMY.
- c) Dado el autómata finito no determinista  $M_5$ , aplique BS para obtener un autómata  $M_5'$  tal que  $L(M_5) \equiv L(M_5')$ :



d) (Opcional) Convierte las expresiones regulares de las secciones de Thompson y GMY en autómatas por el método BS.

<sup>&</sup>lt;sup>1</sup>Recuerde utilizar los formalismos en los cálculos. Es decir, calcular los conjuntos locales Ini, Fin y Dig de manera formal.

#### 7. Reconocedores de autómatas

- a) Dada la expresión regular  $r_3 = b(aa)^+b$ , construir el autómata correspondiente que lea el complemento de esta (es decir  $\neg r_3$ ).
  - Nota: Utilizar cualquier método conocido (Thompson, GMY o BS), conseguir el autómata determinista, y aplicar los pasos necesarios para leer el complemento.
- b) Dadas las expresiones regulares  $r_4 = a^*b$  y  $r_5 = a^*b^*$ , construir el autómata correspondiente que lea  $r_4 \ r_5$  (es decir la diferencia de conjuntos).
  - **Nota:** Utilizar cualquier método conocido (Thompson, GMY o BS), conseguir los autómatas deterministas, y aplicar los pasos necesarios para leer:  $r_4 \setminus r_5 \equiv r_4 \cap \neg r_5 \equiv \neg (\neg r_4 \cup r_5)$ .

## 8. Autómatas de pila

a) Construir un autómata de pila a partir de la gramática  $G_3$  y que lea su mismo lenguaje. Durante la solución, cree la tabla de transiciones con los comandos respectivos (push, pop, shift):

$$G_3: S \rightarrow abC$$
 
$$C \rightarrow aBB \mid bc$$
 
$$B \rightarrow A \mid dB \mid \epsilon$$
 
$$A \rightarrow Aa \mid a$$

- b) Construir un autómata de pila que lea la expresión regular  $yy^*zy$ . Pruebe su autómata con las cadenas yyzy y yyyz.
- c) Construir un autómata de pila cuyo lenguaje sea  $L(M) = \{a^n b^m \mid n > 0\}.$
- d) Construir un autómata de pila cuyo lenguaje sea  $L(M) = \{a^n b^m c^{n+m} \mid n > 0, m > 0\}.$
- e) (Opcional) Dado el autómata de pila  $M_6$ , obtenga una gramática  $G_4$  tal que  $L(M_6) \equiv L(G_4)$  utilizando el método para convertir un autómata de pila a una gramática libre de contexto:

