## Lógica para Programação LEIC-Tagus 2° Semestre, 2020/2021



The Trial Version

imeira Ordem – sistema dedutivo Luísa Coheur

hente baseados nos slides gentilmente cedidos pela Professora Inês Lynce. Qualquer gralha é da minha

responsabilidade)

### Pré-aula: sugestões de leitura



#### **Programa**

- Conceitos Básicos (Livro: 1.1)
- Lógica Proposicional (ou Cálculo de Predicados) sistema dedutivo (2.1, 2.2.1, 2.2.2 e 2.2.4)
- Lógica Proposicional (ou Cálculo de Predicados) resolução (3.1)
- pdfelement Lógica (6) The Trial Version

Ordem – sistema dedutivo (4.1, 4.2)

Ordem - resolução (5.1 e 5.2)

dice A: manual de sobrevivência em Prolog)

- Lógica Proposicional (ou de Predicados) sistema semântico (2.3, 2.4, 3.2)
- Lógica de Primeira Ordem sistema semântico (4.3 e 4.4)

#### Lógica de Primeira Ordem

- Em lógica clássica existem duas alternativas para a definição de uma linguagem
  - Lógica Proposicional
  - Lógica de Primeira Ordem



nal é baseada em proposições

o frases declarativas que fazem afirmações sobre (até agora, representadas por P, Q, R, ...)

Ordem permite criar fórmulas mais ricas,

com estrutura interna

#### Limitações da lógica proposicional

- Como representar: "O João tem o número 53118", "A Maria tem o número 89999" e "Todos os alunos têm exactamente um número"?
  - Conjunção de símbolos proposicionais: Aluno\_João ∧ Número\_53118 ∧ TemNúmero\_João\_ 53118
  - Como referir "todos" e "exactamente um"?
  - Como generalizar para todos os alunos e qualquer número?





## Linguagem da Lógica de Primeira Ordem ( $\mathcal{L}_{LPO}$ )

• Necessidade de uma nova definição de fórmula bem formada



The Trial Version

#### Alfabeto básico

- Símbolos de pontuação: , ( ) [ ]
- Símbolos lógicos:  $\neg, \land, \lor, \rightarrow, \forall, \exists$ 
  - O símbolo  $\neg$  lê-se "não" e corresponde ao operador de negação
  - $-\,$  O símbolo  $\wedge$  lê-se "e" e corresponde ao operador de conjunção
    - O símbolo X/ lâ-se "ou" e corresponde ao operador de disjunção
      - e-se "implica" e corresponde ao operador de



The Trial Version

se "para todo" e corresponde ao operador de niversal

quantificação existencial

## Alfabeto básico (cont.) – voltaremos aqui

- Letras de função com n argumentos (aridade n), para  $n \ge 0$  e i > 1:  $f_i^n$
- Letras de predicado com aridade n, para n > 0 e i > 1:  $P_i^n$ is para i > 1:  $x_i$ pdfelement
- sentam objectos constantes, variáveis e blicadas a termos são termos)
- The Trial Version

## Fórmulas bem formadas (fbfs) – voltaremos aqui

- Se  $t_1, t_2, \ldots, t_n$  são termos, então  $P_i^n(t_1, t_2, \ldots, t_n)$  é uma fbf (atómica)
- Se  $\alpha$  é uma fbf então  $(\neg \alpha)$  é uma fbf



então  $(\alpha \lor \beta)$ ,  $(\alpha \land \beta)$  e  $(\alpha \to \beta)$  são fbfs ntendo zero ou mais ocorrências da variável  $\mathbf{x}[\alpha]$  são fbfs fbf

## E também existe um sistema de dedução natural para a LPO?

Of course!



#### Sistema de dedução natural

The Trial Version

Regras para lógica proposicional continuam válidas rodução/eliminação de quantificadores

## Mas (há sempre um mas)...

- Mas antes temos de perceber bem os conceitos de:
  - domínio de um quantificador
  - substituição (e termo livre)





#### Domínio dos quantificadores



- Nas expressões ∀x[α] e ∃x[α] a fbf α é chamada domínio do quantificador (∀ ou ∃)
- $\alpha$  não tem de conter a variável x; nesse caso  $\forall x[\alpha]$  e  $\exists x[\alpha]$

 $\alpha$ 



The Trial Version

m lpha se não for quantificada; caso contrário

vres diz-se fechada

#### Domínio dos quantificadores – exemplos

- $\forall x[A(x)]$  contém a variável ligada x
- $A(y) \rightarrow \exists y[B(y)]$  contém:
- pdfelement

The Trial Version

- de x livre (em A(x))
- de x ligada (em B(x))

#### Substituição

con substituin x for to

• Uma substituição s é um conjunto finito de pares ordenados  $\{t_1/x_1,\ldots,t_n/x_n\}$ , em que:

é um termo (lembrar que um termo pode ser

**pdf**element

The Trial Version

é uma variável

ayn L

### Aplicação de uma substituição a uma fórmula

• A aplicação da substituição s a fbf  $\alpha$  (denotado por  $\alpha \circ s$ )

corresponde a brobtida a partir de  $\alpha$  substituindo todas as

a followent substituição s a fbf  $\alpha$  (denotado por  $\alpha \circ s$ )



The Trial Version

#### Aplicação de uma substituição a uma fórmula – exemplos

$$P(x, f(a, y)) \circ \{a/x, f(a, b)/y\} = P(a, f(a, f(a, b)))$$

$$x, f(a, b)/y, c/z\} = P(a, f(a, f(a, b)))$$

$$A(x, f(a, b)/y, c/z\} = P(a, f(a, f(a, b)))$$

$$A(x, f(a, b)/y, c/z\} = A(a) \rightarrow \forall_x [B(x)]$$
The Trial Version

#### Atenção:

- Nenhuma das variáveis pode ser igual ao termo correspondente
  - Sejam x, y, z variáveis e f função
  - OK:  $\{f(x)/x, z/y\}$



ariáveis e f, g, h funções de um argumento  $)/y, f(g(h(b)))/z\}$   $)/y, \frac{b}{x}, f(g(h(b)))/z\}$ 

têm de ser diferentes

#### Problema com as substituições

- $\forall_x [P(x, f(a, y))] \circ \{x/y\} = \forall_x [P(x, f(a, x)))]$ 
  - Efeito colateral indesejável
    - Alteração do significado da fbf: y era variável livre e o termo que a substitui inclui a variável x que não é livre





#### Solução para o problema com as substituições

- Nova abordagem: nem todas as substituições de variáveis livres fazem sentido
- Novo conceito: termo livre para uma variável numa fbf



#### Termo livre para uma variável numa fbf

• Se  $\alpha$  for uma fbf e t um termo, dizemos que t é livre para a variável x em  $\alpha$  se nenhuma ocorrência livre de x em  $\alpha$  domínio do quantificador  $\forall y$  (ou  $\exists y$ ) em pdfelement vel em t.

The Trial Version

## Substituição (cont.)

•  $\alpha(x_1, ..., x_n)$  indica que a fbf  $\alpha$  tem  $x_1, ..., x_n$  como variáveis livres (pode ter outras além destas)



The Trial Version

 $x_i$  foram substituídas por t livre para  $x_i$  em ocorrência de uma variável em t deixa de

$$\{t / x_1, \ldots, t_n / x_n\} = \alpha(t_1, \ldots, t_n)$$

#### Termo livre para uma variável

- Exemplo: termo g(y, f(b))
  - É livre para x na fbf P(x, y) (se substituir x por g(y, f(b)),
- pdfelement
  The Trial Version

a x na fbf  $\forall y[P(x,y)]$  (se substituir x por ariável y, livre no termo g(y,f(b)), passa a ós a substituição)

# Podemos avançar para o sistema dedutivo da LPO? (suspiro)





### Eliminação de ∀





The Trial Version t to t, desde que t seja livre para t em t em t concluir que t e ivre para t em t

#### Introdução de ∀

 $\frac{n}{|x_0|}$ 

m  $\alpha(x_0)$   $\alpha(x)$   $\alpha(x)$   $\alpha(x)$   $\alpha(x)$   $\alpha(x)$   $\alpha(x)$   $\alpha(x)$   $\alpha(x)$ 



The Trial Version aniavel nova, que nunca apareceu anteriormente;

então, pelo facto de  $x_0$  ser uma variável que representa qualquer objecto, podemos derivar  $\forall_x [\alpha(x)]$ 

```
Exemplo: \{\forall_x [P(x) \to Q(x)], \forall_x [Q(x) \to R(x)]\} \vdash
\forall_x [P(x) \to R(x)]
     1 ta [P(n) + Q(a)
     2. tr [Q(z) - R(x) | Prem
      pdfelement
    The Trial Version > R (20) ] 3 -9
          [P(x) - R(x)]
```

#### Introdução de ∃

```
\begin{array}{ll} n & \alpha(t) \\ \vdots & \vdots \\ m & \exists x[\alpha(x)] & \text{I}\exists, \ n \end{array}
```



 $\frac{1}{2}[lpha(x)]$  a partir de lpha(t) n mais informação do que  $\exists_x[lpha(x)]$ , pois: ica que lpha(x) se verifica para um valor de x não

 $-\alpha(t)$  significa que  $\alpha(x)$  se verifica para um termo específico t

Exemplo:  $\{\forall_x [P(x)]\} \vdash \exists_x [P(x)]$   $\Lambda \quad \forall x [\Gamma(x)] \quad \text{from}$   $2 \quad \Gamma(t) \quad \exists t \in T$ 





The Trial Version ladeiro então  $\alpha(x)$  é verdadeiro para pelo menos um valor de x

Se ao assumir α(x<sub>0</sub>) para uma variável nova x<sub>0</sub> conseguimos obter β que não inclui x<sub>0</sub> então podemos inferir β independentemente do valor x<sub>0</sub> que satisfaz α(x)

Exemplo:  $\exists_x [P(x)] \to \neg \forall_x [\neg P(x)]$ Fx [r(x)] him [ + 2 [7 P(2)] hy 7p(x0) E+3\ P(20) Rit 2 TAR [7 P(x)] = B E3 1, 2-6 **pdf**element The Trial Version 8 Fr[P(x)] - 7 +2 [7P(x)] エュルーテ

## Momento de Aprendizagem Activa





The Trial Version

#### Representação em Lógica de Primeira Ordem (LPO)

 Há muito a dizer sobre a LPO como linguagem de representação do conhecimento!



#### Alfabeto básico – disse que voltaríamos aqui

- Letras de função com n argumentos (aridade n), para n ≥ 0 e
   i ≥ 1: f<sub>i</sub><sup>n</sup>
- Letres do predicado com aridade n, para  $n \ge 0$  e  $i \ge 1$ :  $P_i^n$  is para  $i \ge 1$ :  $x_i$
- The Trial Version near a pli

sentam objectos — constantes, variáveis e plicadas a termos são termos)

## Alfabeto básico (cont.)

- Letras de função com n argumentos (aridade n), para n ≥ 0 e
   i ≥ 1: f<sub>i</sub><sup>n</sup>
  - Representam funções sobre os elementos da linguagem
  - $-f_i^0$  corresponde a funções de aridade zero que representam



uma capacidade ilimitada para criar novos

The Trial Version

Version for confuso, usamos  $a,b,c,\ldots$  para representar constantes et  $g,h,\ldots$  para representar as letras de função que não são constantes

# Alfabeto básico (cont.)

- Letras de predicado com aridade n, para  $n \ge 0$  e  $i \ge 1$ :  $P_i^n$ 
  - Representam relações sobre elementos da linguagem,



**pdf**element

The Trial Version

ores lógicos fuso, usamos  $P,Q,R,\ldots$  para representar as cado

# Alfabeto básico (cont.)

• Variáveis individuais para  $i \ge 1$ :  $x_i$ 

Têm como domínio os objectos da conceptualização Se não for confuso, usamos  $x,y,z,\ldots$  para representar as



The Trial Version

## Exemplos

- Consideremos
  - P letra de predicado com aridade 2
  - Q letra de predicado com aridade 1
  - A e B letras de predicado com aridade 0
  - f letra de função com aridade 1
  - g letra de função com aridade 3



Parêntesis redundantes podem ser eliminados

### Exemplos



#### **Termos**

- Termos representam objectos; correspondem a sintagmas nominais em linguagem natural
- São definidos recursivamente
  - Cada letra de função com aridade zero (letra de constante) é



ground term)

um termo , são termos, então  $f_i^n(t_1,t_2,\ldots,t_n)$  é um termo m termo

is é chamado um termo chão (do Inglês

## Exemplos

- Termos (com letras de função)
  - Portugal
  - capital(Portugal)
  - pai(Maria)
  - pai(pai(pai(Maria)))



The Trial Version a (com letras de relação)

erdade se x é a capital de y

- pai(x, y): verdade se x é o pai de y
- pai(João, Maria): verdade se João é o pai da Maria

## Representação em LPO - vamos lá fazer uns exercícios



### Exercício 1

Constantes:

Pedro, Cálculo (Cal), Álgebra (AL)

Predicados:

Aluno(x) = x é aluno

Freq(x, y) = x frequenta a cadeira y

**pdf**element

The Trial Version

no.

enta Cálculo.

Cálculo e Álgebra.

- 4. O Pedro frequenta Cálculo ou Álgebra (ou ambos).
- 5. O Pedro frequenta Cálculo ou Álgebra (mas não ambos).

## Representação em LPO - dica

- $\forall$  é usado com  $\rightarrow$
- ∃ é usado com ∧
- agramas de Venn) pdfelement as são inteligentes s inteligentes

The Trial Version

#### Exercício 2

Predicados: Aluno(x), Inteligente(x), Gosta(x,y), Diferente (x,y)

- Existe um aluno.
- 2. Existe um aluno inteligente.
- Todos os alunos são inteligentes.
- pdfelement

The Trial Version

ostam de algum aluno.

ostam de algum outro aluno.

e quem gostam todos os outros alunos.

7. Nenhum aluno gosta do Pedro.

### Exercício 3

Predicados: Irm $\tilde{a}(x,y)$ , Aluno(x), Frequenta(x,y), Reprovou(x,y), Diferente (x,y)

- 1. O Pedro tem pelo menos uma irmã.
- 2. O Pedro tem exactamente uma irmã.
- 3. O Pedro tem pelo menos duas irmãs.
- pdfelement s que frequentam Cálculo também frequentam

The Trial Version rovou a Álgebra.

- 6. Pelo menos um aluno reprovou a Cálculo.
- 7. Só um aluno reprovou a Cálculo.

# Momento de Aprendizagem Activa





The Trial Version