Multimedia

§9 Video-Compression

Prof. Dr. Georg Umlauf

Content

- §9.1 Basics of motion perception
- §9.2 Code-Formats

§9.1 Basics of motion perception

Perception of motion

- Complex function of the human sensors.
- Dependent on physiological factors
 - Interdependence of adjacent light sensory cells in the retina.
 - Foveal object tracking (auto-tracking of the eye).
 - Vergence and accommodation.
- Dependent on psychological factors
 - Elimination of uniform motions by the brain.
 - Linked to motion and acceleration perception (vestibular system).

Content

§9.1 Basics of motion perception

§9.2 Code-Formats

PAL

(Phase Alternation Line)

- Analog video technique:
 - Row-wise sampling of single frames
 - Serializing of pixels using line interlacing
- Properties:
 - Video refresh rate 25 Hz
 - Image resolution 720×576 pixel
 - Color depth: 8 bit
 - Color space subsampling: 4:2:2
 - Interlacing: Two interlaced half-imaged every 1/50s.
 - Band width: $(720 \times 576 \times 25 \times 8) + 2 \times (360 \times 576 \times 25 \times 8) = 166 \text{Mbps}$ Luminance pixel Chrominance pixel

HDTV

(High Definition Television)

- Properties:
 - Video refresh rate up to 60 Hz
 - Image resolution e.g. 1920×1080 pixel
 - Color depth: 8 bit
 - Color space subsampling: 4:2:2
 - Band width: $(1920 \times 1080 \times 60 \times 8) + 2 \times (960 \times 1980 \times 60 \times 8) = 1,99$ Gbps

 Luminance pixel Chrominance pixel

Compression of video signals

- Video sequences contain usually much redundant information
 - Spatial redundancy: Intra-frame-compression, i.e. within one frame
 - Temporal redundancy: Inter-frame-compression, i.e. between subsequent frames.
- High data reduction for video coding.
- Grouping: Consider groups of images (GOP), that are compressed together.
- General approach:

Video compression algorithm

- simple: limited color table, RLE, etc.
- interpolating:
 - Store only a subset of the pixel and compute the missing pixels to restore the complete image via interpolation.
 - Storage of differences of the original image to the interpolated image.
 - Application: many image areas change over time only marginally.

predictive:

- Background is static, only one object in the foreground moves.
- Objects and object motions must be detected.
- Cause for a change in the image of a video sequence is often a motion of the camera (translation, rotation, scaling).
- Motion compensation eliminates motions of the camera.
- Transformation: e.g. DCT
- static: e.g. Huffman-coding

Video compression as defined by MPEG

Codecs and compression methods

MPEG-1 (1)

Principal structure

MPEG-1 (2)

1. Change of color space: Conversation to YCrCb (4:2:2, 4:2:0)

2. Block comparison:

- a) Blocking of single images in slices of macroblocks
 - 16×16 pixel luminance (macro-block)
 - 8×8 pixel chrominance (block)

b) Prediction of motion

- Compare luminance-macro-blocks of subsequent frames.
- Change of position of luminance-macro-blocks are coded as vectors.
- Quality depends on size of search space.

Image n and image n+1

Moved object

Vector of motion

MPEG-1 (3)

- 3. **DCT** of different image types
 - I-Frame: complete single image (intra-picture),
 - compressed as a still image,
 - no motion prediction,
 - first image of a sequence of images (at least every 12th frame),
 - reference image for subsequent images.
 - P-Frame: Uses motion prediction,
 - relative to the previous I-Frame (predicted picture).
 - B-Frame: Uses motion prediction,
 - relative to the previous and subsequent P- or I-Frame (bi-directional picture).
 - Order and repetition of I-/P-/B-Frames is arbitrary.

MPEG-1 (4) I-/P-/B-Frame-Coding

MPEG-1 (5)

P-Frame-Coding

MPEG-1 (6) B-Frame-Coding

MPEG-1 (7) Example: Motion prediction

Elephants Dream, Blender, 2006.

MPEG-1 (8) Example: Motion prediction

Source: Wikipedia

Motion vectors of a single frame from *Elephants Dream*.

MPEG characteristics (1)

MPEG-1

- Band width: 1.25 MBit/s Video + 2 Audio channels, i.e. ≤1.82 MBit/s
- Resolution: 360×288×25 (CIF Europe), 352×240×30 (CIF USA)
- No interlacing (TV-recordings)

MPEG-2

- Band width: 2 MBit/s 80 MBit/s
- Resolution: up to HDTV (1,920×1,080) theoretically up to
 - 16,383×16,383
- Subsampling: 4:4:4 or 4:2:2
- Interlacing possible
- Compression rate up to 60:1 possible.

MPEG characteristics (2)

- MPEG-4 AVC, H.264, ISO-14496
 - Interactive multimedia applications
 - Decomposition of a scene
 - in different audio- and video-media-objects,
 - that are compressed separately and
 - have each their own spatial/temporal position and dimension.
 - Hierarchical B-Frames.
 - Transform blocks for camera panning.
 - Decomposition of a scene in foreground and background and separate compression.

MPEG extensions (1)

- MVC (multi-view coding)
 - Extension to mpeg4.
 - Stereo interlacing: spatial multiplexing of different views to form one picture (top-bottom, side-by-side, row-wise, column-wise, checkerboard).
 - Inter-view prediction: similar to motion prediction but in the spatial dimensions between different views.

MPEG extensions (2)

- HEVC (high efficiency view coding), H.265, MPEG-H
 - Enhancement of mpeg4.
 - Block size between 4×4 to 64×64 .
 - Four sizes for transform blocks.
 - Current improvement in compression rate at 20%...
 - Many patent claims...

Goal

- What are temporal and spatial redundancy for video data?
- What are the main building blocks of MPEG1-video-coding?
- What are I-, P-, B-Frames?
- What is motion prediction?