Supplementary Information:

Directed evolution of mesophilic HNA polymerases providing insight into DNA polymerase mechanisms.

Authors and affiliations:

Paola Handal-Marquez^{1,2}, Leticia L. Torres¹ and Vitor B. Pinheiro^{2*}

¹ University College London, Department of Structural and Molecular Biology, Gower Street, WC1E 6BT, London, UK

² KU Leuven, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, Herestraat, 49 – box 1041, 3000 Leuven, Belgium

^{*} Corresponding author: e-mail: v.pinheiro@kuleuven.be

Table of Contents:

Figure S1. Phi29 DNAP homologues in public databases
Figure S2. InDel distribution and composition and sequencing depth analysis4
Figure S3. HNA synthesis time courses by D12A-THR and p562del with different templates and protein concentrations6
Figure S4. Phi29 DNAP P562del reduced DNA binding capacity long time course8
Figure S5. Phi29 DNAP P562del reduced fidelity and increased InDel incorporations rate9
Figure S6. Transition and transversion hotspots introduced by phi29 DNAP variants11
Figure S7. Location of most abundant InDel introductions by each mutant during isothermal DNA replication
Table S1. Sequences ^a of all the plasmids used in this study 14
Table S2. Sequences ^a of the oligonucleotides and templates used in this study 19
Table S3. Analysis by next generation sequencing of the Exo loop library recovered sequences
Table S4. Analysis by next generation sequencing of the TPR2 loop library recovered sequences
Table S5. Analysis by next generation sequencing of the Thumb loop library recovered sequences23
Supplementary references24

Figure S1. Phi29 DNAP homologues in public databases.

Sequences with >80% sequence identity and >80% query cover from a blast search of the Phi29 DNAP protein sequence were selected, aligned using the NCBI Multiple Alignment Tool¹ and viewed using the NCBI'S Sequence Viewer². Mismatches relative to the query (Phi29 DNAP sequence) are shown in red and insertions are indicated by a blue bracket. Only 20 sequences show significant similarity to phi29 DNAP.

Ex	Exo counts		TPR2 counts			Th	Thumb counts		
InDel size	R0	R1	InDel size	R0	R1	InDel size	R0	R1	
0	543	155	0	366	954	0	195	531	
1	472	62	1	11520	10330	1	107	124	
2	14927	2081	2	83	78	2	473	615	
3	13238	1716	3	5405	6867	3	8104	10630	
-1	26	8	-1	57750	54713	-1	143	453	
-2	2421	416	-2	75	117	-2	2048	3001	
-3	195	31	-3	46	68	-3	11328	14260	
						-4	12944	16918	
Others	580	75		450	392		507	375	
Total	32402	4544		75695	73519		35849	46907	

	Exo		TP	TPR2		Thumb	
	R0	R1	R0	R1	R0	R1	
Matching*	1414	1414	1353	1353	2452	2452	
Matching	22299	4150	74144	71630	33424	43767	
Unique*	4903	364	1246	1138	1909	1931	
Unique	10103	394	1551	1889	2425	3140	
Total	32402	4544	75695	73519	35849	46907	
% Match	68.8	91.3	98.0	97.4	93.2	93.3	

Figure S2. InDel distribution and composition and sequencing depth analysis. (A) Total number of counts of each insertion and deletion pre- (R0) and post-selection (R1) for each library. Deletions are indicated with a negative sign and 'Others' corresponds to the sum of unintended mutation potentially from sequencing errors. (B) Number of

sequences that appear in both pre- (R0) and post-selection (R1) datasets (matching) or appear either on the R0 or R1 datasets (unique). The "*" shows the same matching or unique sequences found with their respective abundance disregarded (deduped). Most of the unique sequences contained stop codons which could be a result of sequencing errors. (**C**) Amino acid combinations identified across 1, 2 and 3 insertion mutants. The theoretical maximum amino acid combinations for each insertion size are shown in parenthesis. (**D**) Enrichment stability of P562del across different sequencing depths. Assuming the total number of sequences obtained from NGS as 100% sequencing depth, samples of different sizes from the thumb library pre- and post-selection were randomly extracted and the statistics re-calculated. The left Y-axis shows the enrichment of P562del, which is stable and close to the true score (dotted black line) at around 30% of the sequencing depth. The right Y-axis shows the corresponding ranking based on the EC score, indicating fluctuations between the top 3 variants but relatively close to the true ranking (dotted pink line). All calculations were done using the *InDel_Quantification.ipynb* Julia notebook (**Supplementary Information S3**).

Figure S3. HNA synthesis time courses by D12A-THR and p562del with different templates and protein concentrations. Products from primer extensions by $0.06~\mu M$ D12A-THR and P562 mutants on the TempN-exoR (Table S2) template with incubation

times from 4 to 16 h (**A**) as well as on the TempN_2.7_ExoR template (Table S2) with incubation times from 0 to 1 h (**B**) were separated by denaturing PAGE. The TempN_2.7_ExoR template is a modified version of TempN-exoR with 4 substitutions and 1 deletion that reduces the probability of secondary structure formation. Fully extended products (57 hNTP incorporations) are shown. HNA migrates slower than DNA in denaturing PAGE³. (**C**) 15 min primer extensions with different protein concentrations of each mutant on TempN-exoR, as well as 15 min primer extension with 0.22 µM of each protein on either TempN_2.7_ExoR (T_2.7) or TempN_1T_ExoR (T_1T, Table S2) templates. TempN_1T_ExoR is another TempN_ExoR derivative with 4 substitutions that remove nucleotide repeats.

Figure S4. Phi29 DNAP P562del reduced DNA binding capacity long time course. EMSA assays were carried out with **c**ommercial (NEB) phi29 DNAP (Phi29(wt)), D12A-THR or P562del incubated with a fluorescently labelled primer pre-annealed to a ssDNA template. (**A**) Reactions with 60nM protein concentration of each variant. (**B**) Fraction of intermediate Pol-DNA complex), and (**C**) the fraction of stable Pol-DNA complex by D12A-THR (orange) and P562del (blue) over time of reactions from (**A**). 2 biological repeats were performed.

Figure S5. Phi29 DNAP P562del reduced fidelity and increased InDel incorporations rate. (A) Workflow of the isothermal polymerase fidelity assay. The red dot marks the

nicking site for single stranded plasmid generation, the non-complementary overhang of the primer for downstream amplification is shown in green and 1 bp mismatches are shown in black. The primer is extended, captured, and purified through biotin-streptavidin pulldown and used as template in a secondary PCR amplification step. (B) Distribution and quantification of error (misincorporation) types introduced by each mutant during isothermal DNA replication. Each error type was identified by comparing the isothermal amplification products post-deep sequencing and after their alignment to the Fidelity_ref (Table S2) on a base-to-base manner. The sum of each error type was divided by the total number of misincorporations and multiplied times a 100 to yield the error type percentage displayed. (C) The total percentage of inversions and transversions introduced by each mutant.

Figure S6. Transition and transversion hotspots introduced by phi29 DNAP variants. The products from the isothermal DNA replication fidelity assays generated by Exo+THR, D12A-THR and p562del were deep sequenced, filtered by quality, trimmed, and aligned. The MSA alignments were used to quantify the abundance of transitions and transversions per position by comparing each of the aligned reads to the Fidelity_ref (table S2) sequence within each the alignment in a base-by-base manner. The total number of transitions and transversions per position was divided by the number of reads to obtain overall frequency scores. Only positions with transitions or transversions with overall frequency scores above 0.5% were selected for visualization. The scores of each error type were divided by the sum of both scores to obtain the frequency value per position and were plotted against the Fidelity ref length.

Figure S7. Location of most abundant InDel introductions by each mutant during isothermal DNA replication. Location of deletions (blue to green dots) and insertions (orange to yellow dots) appearing with >5% frequency relative to all the insertions or deletions identified in the MSA of the isothermal amplification products generated by each mutant. The x-axis indicates the sequence length of the template used in the assay/analysis. Blue or orange dots indicate the 'start' of the deletion or insertion respectively, and the green or yellow dots indicate the 'end' of the deletion or insertion

respectively. The percentage values adjacent to the 'end' dots represent the abundance of deletions or insertions relative to the total number of deletions or insertions respectively. The percentage values are followed the location of the particular InDel in a range format.

Table S1. Sequences of all the plasmids used in this study.

pET23-P2-D12A-THR

acgcgccctgtagcggcgcattaagcgcggccgctgtggtggttacgcgcagcgtgaccgctacacttgccagcgc ctagegeegeteetttegetttetteetttettegeeaegttegeeggettteeegteaagetetaaategggggetee ctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatc gccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaactggaacaacact caaccetateteggtetattettttgatttataagggattttgeegattteggeetattggttaaaaaatgagetgatttaacaa aaatttaacgcgaattttaacaaaatattaacgtttacaatttcaggtggcacttttcggggaaatgtgcgcggaacccct atttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaa ggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgctcacccagaaa cgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatctcaacagcggta agatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcc cgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtca cagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgcg gccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactc gccttgatcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgcagcaat gcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctacacgacgggg agtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattggtaactgtca gaccaagtttactcatatatactttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataat ctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttga agctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtacttctagtgtagccgtagt taggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtg gcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacgggg ggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaa gcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcac gagggagettccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgt

gatgctcgtcagggggggggggggcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctgcgtt atcccctgattctgtggccttttgcgcgtctgcgttatcccctgattctgatgttctttcctgcgttatcccctgattctgtggataa ccgtattaccgcctttgagtgagctgcgttatcccctgattctgctgataccgctcgccgcagccgaacgaccgagcgca gcgagtcagtgagcgaggaagcggaatatcgcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgc aatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagtatacactccgctatcgctacgtgactgggt catggctgcgccccgacacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatccgcttaca gacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcgaggcagctgc ggtaaagctcatcagcgtggtcgtgaagcgattcacagatgtctgcctgttcatccgcgtccagctcgttgagtttctccag aagcgttaatgtctggcttctgataaagcgggccatgttaagggcggttttttcctgtttggtcactgatgcctccgtgtaagg gggatttctgttcatgggggtaatgataccgatgaaacgagaggatgctcacgatacgggttactgatgatgaacat gcccggttactggaacgttgtgagggtaaacaactggcggtatggatgcggcgggaccagagaaaaatcactcagg gtcaatgccagcgcttcgttaatacagatgtaggtgttccacagggtagccagcagcatcctgcgatgcagatccgga acataatggtgcagggcgctgacttccgcgtttccagactttacgaaacacggaaaccgaagaccattcatgttgttgct ccccgccagcctagccgggtcctcaacgacaggagcacgatcatgcgcacccgtggccaggacccaacgctgccc gagatctcgatcccgcgaaattaatacgactcactatagggagaccacaacggtttccctctagaaataattttgtttaac tttaagaaggagatataccatggatcctctagagtcgacctgcaggcatgcaagcttgcggccacacaggagatagtc atacatgaaacacatgcctcgcaaaaggtatagctgcgcttttgaaaccaccaccaaagttgaagattgtcgtgtttggg catatggctatatgaacattgaagatcacagcgagtataaaatcggcaatagcctggatgaatttatggcatgggctctga a agt t cagg ccg at ctg t at tt caca at ctg a a at ttg at g t g t cat tat ta a ctg g ctg g a a c g cat t g t t tat ta a ctg g ctg g a a c g cat t g t tat ta a ctg g ctg g a a c g cat t g t tat ta a ctg g ctg g a a c g cat t g t tat t a ctg g ctg g a a c g cat t g t tat t a ctg g ctg g a a c g cat t g t tat t a ctg g ctg g a a c g cat t g t tat t a ctg g ctg g a a c g cat t g t tat t a ctg g ctg g a a c g cat t g t a ctg g ctg g a a c g cat t g t a ctg g ctg g a a c g cat t g t a ctg g ctg g a a c g cat t g t a ctg g ctg g a a c g cat t g t a ctg g ctg g a a c g cat t g t a ctg g ctg g a a c g cat t g c t a ctg g ctg g a a c g cat t g c t a ctg g ctg g a a c g cat t g c t a ctg g ctg g a a c g cat t g c t a ctg g ctg g a a c g cat t g c t a ctg g c t g c a c g c a ctg g c t g c a c ggttataaaggcaaacgcaaaattcataccgtgatctatgacagcctgaaaaaactgccgtttccggtgaaaaaaatcg ccaaagatttcaaactgaccgtgctgaaaggcgatatcgattatcacaaagaacgtccggttggctacaaaattacac cggaagaatatgcctacatcaaaaacgacattcagattattgcagaagccctgctgattcagtttaaacagggtctggat cgtatgaccgcaggtagcgatagcctgaaagattttaaagatatcattaccaccaaaaaaattcaaaaaagtgttcccga ccctgagcctgggcctggataaaaaagttcgttacgcatatcgcggtggttttacctggctgaatgatcgctttaaagaaa aagaaattggcgagggcatggtgtttgatgttaatagcctgtatccggcacagatgtatagccgtctgctgccgtatggtg aaccgattgtttttgaaggtaaatatgtgtgggatgaggattatccgctgcatattcagcatattcgttgcgaatttgaactga aagaaggctatattccgaccattcagatcaaacgtagccgcttctataaaggtaacgagtatctgaaaagcagcggtg gtgaaattgcagatctgtggctgagcaatgttgatctggaactgatgaaagaacactacgatctgtacaacgtggaatat atcagcggtctgaaattcaaagcaaccaccggtctgttcaaagacttcattgataaatggacctatatcaaaaccacctc

pET23_KOD_DA_Mut

tggcgaatgggacgccctgtagcggcgcattaagcgcggccgctgtggtggttacgcgcagcgtgaccgctacac tcgggggctccctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgt agtgggccatcgcctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttccaaact ggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcggcctattggttaaaaaatgag ctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgtttacaatttcaggtggcacttttcggggaaatgtgcg cggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaatgcttcaata atattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgct cacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaactggatct caacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggc gcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcatacactattctcagaatgacttggttgagta ctcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtga taacactgcggccaacttacttctgacaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatggggga ctggatggaggggataaagttgcaggaccacttctgcgctcggcccttccggctggtttattgctgataaatctgg agccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagttatctaca cgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaagcattgg ttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaagg ggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtacttctagtgt agccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctg ctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggct gaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagct atgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacagga gagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcg tcgatttttgtgatgctcgtcagggggggggggcctatggaaaaacgccagcaacgcggcctttttacggttcctggcctt ttgctgcgttatcccctgattctgtggccttttgcgcgtctgcgttatcccctgattctgatgttctttcctgcgttatcccctgattct gtggataaccgtattaccgcctttgagtgagctgcgttatcccctgattctgctgataccgctcgccgcagccgaacgacc gagcgcagcgagtcagtgagcgaggaagcggaatatcgcctgatgcggtatttctccttacgcatctgtgcggtatttc acaccgcaatggtgcactctcagtacaatctgctctgatgccgcatagttaagccagtatacactccgctatcgctacgt gactgggtcatggctgcgccccgacacccgccaacacccgctgacgcgcctgacgggcttgtctgctcccggcatc cgcttacagacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccgaaacgcgcgag gcagctgcggtaaagctcatcagcgtggtcgtgaagcgattcacagatgtctgcctgttcatccgcgtccagctcgttga gtttctccagaagcgttaatgtctggcttctgataaagcgggccatgttaagggcggttttttcctgtttggtcactgatgcctc cgtgtaagggggatttctgttcatgggggtaatgataccgatgaaacgagagaggatgctcacgatacgggttactgat gatgaacatgcccggttactggaacgttgtgagggtaaacaactggcggtatggatgcggcgggaccagagaaaaa tcactcagggtcaatgccagcgcttcgttaatacagatgtaggtgttccacagggtagccagcagcatatggtgcaggg cgctgacttccgcgtttccagactttacgaaacacggaaaccgaagaccattcatgttgttgctcaggtcgcagacgtttt cgggtcctcaacgacaggagcacgatcatgcgcacccgtggccaggacccaacgctgcccgagatctcgatcccg cgaaattaatacgactcactatagggagaccacaacggtttccctctagaaataattttgtttaactttaagaaggagata taccatggatcctctagagtcgacctgcaggcatgcaagcttgcggccacacaggagatagtcatacatgaaacaca aagaggagaaattaactatgagaggatctcaccatcaccatcaccatacggatccaagcggcctggtgccgcgcgg cagcatgatcctcgacactgactacataaccgaggatggaaagcctgtcataagaattttcaagaaggaaaacggcg agtttaagattgagtacgaccggacttttgaaccctacttctacgccctcctgaaggacgattctgccattgaggaagtca agaagataaccgccgagaggcacgggacggttgtaacggttaagcgggttgaaaaggttcagaagaagttcctagg gagaccagttgaggtctggaaactctactttactcatccgcaggacgaaccagcgataagggacaagatacgagag catccagcagttattgacatctacgagtacgacatacccttcgccaagcgctacctcatagacaagggattagtgccaa

tggaaggcgacgaggagctgaaaatgctcgccttcgcgattgcgactctctaccatgagggcgaggagttcgccgag gggccaatccttatgataagctacgccgacgaggaaggggccagggtgataacttggaagaacgtggatctccccta cgttgacgtcgtctcgacggagaggagatgataaagcgcttcctccgtgttgtgaaggagaaagacccggacgttct cataacctacaacggcgacaacttcgacttcgcctatctgaaaaagcgctgtgaaaagctcggaataaacttcgccct cggaagggatggaagcgagccgaagattcagaggatgggcgacaggtttgccgtcgaagtgaagggacggatac acttcgatctctatcctgtgataagacggacgataaacctgcccacatacacgcttgaggccgtttatgaagccgtcttcg gtcagccgaaggagaaggtttacgctgaggaaataaccacagcctgggaaaccggcgagaaccttgagagagtcg cttaatcggccagtccctctgggacgtctcccgctccagcactggcaacctcgttgagtggttcctcctcaggaaggcct atgagaggaatgagctggccccgaacaagcccgatgaaaaggagctggccagaagacggcagagctatgaagg aggctatgtaaaagagcccgagagagggttgtgggagaacatagtgtacctagattttagatccctgtacccctcaatc atcatcacccacaacgtctcgccggatacgctcaacagagaaggatgcaaggaatatgacgttgccccacaggtcg gccaccgcttctgcaaggacttcccaggatttatcccgagcctgctaggagacctcctagaggagaggcagaagata aagaagaagatgaaggccacgattgacccgatcgagaggaagctcctcgattacaggcagaggttgatcaagatcc tggcaaacagctactacggttactacggctatgcaagggcgcgctggtactgcaaggagtgtgcagagagcgtaacg gcctggggaagggagtacataacgatgaccatcaaggagatagaggaaaagtacggctttaaggtaatctacagcg acaccgacggattttttgccacaatacctggagccgatgctgaaaccgtcaaaaagaaggctatggagttcctcaagt atatcaacgccaaacttccgggcgcgcttgagctcgagtacgagggcttctacaaacgcggcttcttcgtcacgaaga agaagtatgcggtgatagacgaggaaggcaagataacaacgcgcggacttgagattgtgaggcgtgactggagcg agatagcgaaagacgcaggcgagggttcttgaagctttgctaaaggacggtgacgtcgagaaggccgtgaggat agtcaaagaagttaccgaaaagctgagcaagtacgaggttccgccggagaagctggtgatccacgagcagataac gagggatttaaaggactacaaggcaaccggtccccacgttgccgttgccaagaggttggccgcgagaggagtcaaa atacgccctggaacggtgataagctacatcgtgctcaagggctctgggaggataggcgacagggcgataccgttcga cgagttcgacccgacgaagcacaagtacgacgccgagtactacattgagaaccaggttctcccagccgttgagaga caccaccaccaccactgagatccggctgctaacaaagcccgaaaggaagctgagttggctgctgccaccgctg agcaataactagcataaccccttggggcctctaaacgggtcttgaggggttttttgctgaaaggaggaactatatccgga t

^aAll sequences are written in the 5'→3' direction

Table S2. Sequences^a of the oligonucleotides and templates used in this study.

Category	Name	Sequence ^b
Exo loop InDel	Exo_loop_R	TTCAACTTTGGTGGTGGTTTC
mutagenesis	Exo_loop_INS1	NNSGATTGTCGTGTTTTGGGCATATG
	Exo_loop_INS2	NNSNNSGATTGTCGTGTTTGGGCATATG
	Exo_loop_INS3	NNSNNSGATTGTCGTGTTTGGG
	Exo_loop_DEL1	TGTCGTGTTTGGGCATATGG
	Exo_loop_DEL2	CGTGTTTGGGCATATGGCTATATG
	Exo_loop_DEL3	GTTTGGGCATATGGCTATATGAAC
TPR2 loop	TPR2_loop_R	TTCTTTCAGATAAGGAACTTTACC
mutagenesis	TPR2_loop_INS2	NNSNNSAATGGTGCACTGGGT
	TPR2_loop_INS1	NNSAATGGTGCACTGGG
	TPR2_loop_INS3	NNSNNSAATGGTGCACTGGG
	TPR2_loop_DEL1	GGTGCACTGGGTTTTC
	TPR2_loop_DEL2	GCACTGGGTTTTCGTC
Thumb loop	Thumb_loop_R	AACCTGAACCGGTTTCGGTTTC
mutagenesis	Thumb_loop_INS2	NNSNNSCCGGGTGGTGTTC
	Thumb_loop_INS1	NNSCCGGGTGGTGTTCTG
	Thumb_loop_INS3	NNSNNSCCGGGTGGTGTTC

	Thumb_loop_DEL1	GGTGGTGTTCTGGTTGATGATAC
	Thumb_loop_DEL2	GGTGTTGTTCTGGTTGATGATACCTTTAC
	Thumb_loop_DEL3	GTTGTTCTGGTTGATGATACCTTTACGATC
	Thumb_loop_DEL4	GTTCTGGTTGATGATACCTTTACGATCAAA
	Seq_Exo_F1	GAGATCTCGATCCCGCGAAATT
	Seq_Exo_R3	CCATTGCGTTCCAGCCAGTTAA
NGS amplicon	Seq_TPR2_F1	TGAAATTCAAAGCAACCACCGGT
generation	Seq_TPR2_R2	CGGAATTTCGGTGCCGGTC
	Seq_Thumb_F1	CATCTGACCGGCACCGAAATTC
	Seq_Thumb_R1	CAGCCAACTCAGCTTCCTTTCG
CST selection	CST_04(7)exoR	/5BiotinTEG/ACC*G*C*A
P562del	p2_thumb_loop_R	AACCTGAACCGGTTTCGGTTTC
mutant	p2_thumb_loop_DEL1	GGTGGTGTTCTGGTTGATGATAC
Exo+THR	iPCR_P2_Exo+_F1	GTATAGCTGCGATTTTGAAACC
mutant	iPCR_P2_Exo+_R1	CTTTTGCGAGGCATGTG
Primer	TempN-exoR	TGGTCCAGCATCGTGAGATCGATTACCGAA
extension		CAGCACTACGTGGCTAAGTGCTTATCTCCTA
assay		GCTTAAACGGAT*C*C*G
	TempN_2.7_ExoR	TGGTCCAGCATCGTGAGATCCCTTACTGAA
		CAGACTACATGGCTAAGTGCTTATCTCCTAG
		CTTAAACGGAT*C*C*G

	TempN_1T_ExoR	TGGTCCAGCATCGTGAGATCGAgTACCGgA
		CAGCACTACGTGGCTcAGTGCcTATCTCCTA
		GCTTAAACGGAT*C*C*G
RCA assay	P2_RCA_N8_ExoR	NNNNN*N*N
NCA assay	PZ_NOA_NO_EXON	INININININININININININININININININININ
Fidelity	PH_pET23_DA_Biotin	/5BiotinTEG/CCCCTTATTAGCGTTTGCCAGC
assay	3	TCTTCCACTCAGGGTtAATGCCAGC
	outnest 1	CCCCTTATTAGCGTTTGCCA
	P2_fidelity_inestR1	CTGTGTGGCCGCAAG
	Fidelity_ref	agggttaatgccagcgcttcgttaatacagatgtaggtgttccac
		agggtagccagcagcatatggtgcagggcgctgacttccgcgtt
		tccagactttacgaaacacggaaaccgaagaccattcatgttgtt
		gctcaggtcgcagacgttttgcagcagcagtcgcttcacgttcgc
		tcgcgtatcggtgattcattctgctaaccagtaaggcaaccccgc
		cagcctagccgggtcctcaacgacaggagcacgatcatgcgc
		acccgtggccaggacccaacgctgcccgagatctcgatcccg
		cgaaattaatacgactcactatagggagaccacaacggtttccc
		tctagaaataattttgtttaactttaagaaggagatataccatggat
		cctctagagtcgacctgcaggcatgcaagcttgcggccacaca
		g

^aAll sequences are written in the 5'→3' direction

^bN: A/C/G/T; S:G/C

/5BiotinTEG/: Biotin with a 15 atom triethylene glycol (TEG) spacer

^{*:} phosphorothioate bond

Table S3. Analysis by next generation sequencing of the Exo loop library recovered sequences. Total read number obtained and the impact of the analysis pipeline are

shown. *Number of sequences used in downstream analysis.

Pipeline step	Sequences output R0	Sequences output R1
Total reads	83722	14804
Total paired reads	74730 (89%)	13254 (90%)
Quality filtering	64091 (77%)	11524 (78%)
Filtering by 3' and 5' sequence	32402* (39%)	4544* (31%)
Unique sequences	6317	1778

Table S4. Analysis by next generation sequencing of the TPR2 loop library recovered sequences. Total read number obtained and the impact of the analysis pipeline are shown. *Number of sequences used in downstream analysis.

Pipeline step	Sequences output R0	Sequences output R1
Total reads	120696	114835
Total paired reads	113404 (94%)	107659 (94%)
Quality filtering	96873 (80%)	91684 (80%)
Filtering by 3' and 5' sequence	75695* (63%)	73519* (64%)
Unique sequences	2599	2491

Table S5. Analysis by next generation sequencing of the Thumb loop library recovered sequences. Total read number obtained and the impact of the analysis pipeline are shown. *Number of sequences used in downstream analysis.

Pipeline step	Sequences output R0	Sequences output R1
Total reads	82357	107946
Total paired reads	73898 (90%)	96904 (90%)
Quality filtering	57373 (70%)	75303 (70%)
Filtering by 3' and 5' sequence	35849* (44%)	46907* (44%)
Unique sequences	4361	4383

Supplementary references

- (1) Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; Lipman, D. J. Basic Local Alignment Search Tool. *J Mol Biol* **1990**, *215* (3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2.
- (2) Rangwala, S. H.; Kuznetsov, A.; Ananiev, V.; Asztalos, A.; Borodin, E.; Evgeniev, V.; Joukov, V.; Lotov, V.; Pannu, R.; Rudnev, D.; Shkeda, A.; Weitz, E. M.; Schneider, V. A. Accessing NCBI Data Using the NCBI Sequence Viewer and Genome Data Viewer (GDV). Genome Res 2021, 31 (1), 159–169. https://doi.org/10.1101/gr.266932.120.
- (3) Torres, L. L.; Pinheiro, V. B. Xenobiotic Nucleic Acid (XNA) Synthesis by Phi29 DNA Polymerase. *Curr Protoc Chem Biol* **2018**, *10* (2), e41. https://doi.org/10.1002/cpch.41.