3 Distance functions and k-nearest-neighbors

3.1 Exercises

In all this section, for $x \in \mathbb{R}^d$, x_i stands for the *i*-th component of x.

Exercise 3.1. (1) Show that the L¹ and L^{∞} distance define for any $x, y \in \mathbb{R}^d$,

$$\mathbf{d}_{1}(x,y) = \|x - y\|_{1} = \sum_{i=1}^{d} |x_{i} - y_{i}| , \quad \mathbf{d}_{\infty}(x,y) = \|x - y\|_{\infty} = \max_{i} |x_{i} - y_{i}| .$$
 (12)

are distance functions.

(2) Show that L^1 , L^2 and L^{∞} distance are pairwise equivalent.

Exercise 3.2. A function $N: \mathbb{R}^d \to \mathbb{R}_+$ is referred to as a norm if for any $x, y \in \mathbb{R}^d$, $\alpha \in \mathbb{R}$, 1. N(x) = 0 if and only if x = 0; 2. $N(x + y) \leq N(x) + N(y)$; 3. $N(\alpha x) = |\alpha| N(x)$. Show that $\mathbf{d}_N(x,y) = N(x-y)$ is a distance function.

Exercise 3.3. We consider that $\mathsf{X} = \mathrm{C}([0,1]\,,\mathbb{R})$ the space of continuous function from [0,1] to \mathbb{R}

(1) Show that

$$(f,g) \in \mathsf{X}^2 \mapsto \sup|f-g| \ , \tag{13}$$

and

$$(f,g) \in \mathsf{X}^2 \mapsto \int_0^1 |f - g| \,\mathrm{d}x \,, \tag{14}$$

are distance functions on X.

(2) Are they equivalent?

Exercise 3.4. (1) For which function $f : \mathbb{R} \to \mathbb{R}$, is $(x, y) \mapsto |f(x) - f(y)|$ a distance function on \mathbb{R} ?

(2) Show that $(x,y) \mapsto |x^{-1} - y^{-1}|$ is a distance function on $\mathbb{R} \setminus \{0\}$.

Exercise 3.5. Show that the function

$$(x,y) \in \mathbb{S}^d \times \mathbb{S}^d \mapsto \langle x,y \rangle ,$$
 (15)

is a discerning similarity function on the d-dimensional sphere $\mathbb{S}^d = \{x \in \mathbb{R}^d : ||x|| = 1\}.$

3.2 Homework

Exercise 3.6 (Homework 1). • Implement a function that computes the edit distance using the dynamic programming approach.

• Estimate the random complexity time of your algorithm with respect to the maximal length of a words. To this end, for varying lengths n, you may generate between 10^5 and 10^6 random words of length n and compute the average computation time of your algorithm to compute the distance between pairs of your samples. Finally, you can plot your estimations as a function of n.

- **Exercise 3.7** (Homework optional). Given some data $\{x_i\} \in \mathbb{R}^d$. Implement the underlying k-d-tree structure and and the search trees seen in the course. Here we may use a number of maximal children equal to 4 or pass it as a parameter.
 - \bullet Download the data on the moodle of the course and compare the average execution time of your algorithm with a naive approach to find the closest neighbour. To do so, you will sample uniformly at random, between 10^5 and 10^6 points and compute the average execution time associated with.