Tarefa 3.4 - Análise Exploratória e Estatística Descritiva - Medidas estatísticas utilizando Pyhton

Esta tarefa consiste analisar por meio de métodos de descrição paramétrica (medidas estatísticas) o conjunto de dados *Hourly Wages*. Você deve implementar em Python os itens solicitados abaixo utilizando a biblioteca Pandas e outras que forem necessárias.

Conjunto de dados Hourly Wages

Esse conjunto de dados é popularmente empregado para a tarefa de regressão em Machine Learning. Constrói-se e ajusta-se um modelo de aprendizado de máquina para predizer/estimar o salário de um funcionário em função de suas características (anos de estudos, experiência de trabalho, filiação sindical, região, ocupação e sexo).

- Número de Instâncias: 534
- Número de Atributos: 9 atributos numéricos e o target (wage_per_hour)
- Informações dos Atributos:
 - o union (filiação sindical)
 - o education_yrs (anos de instrução)
 - o experience_yrs (anos de experiência)
 - o age (idade)
 - o female (sexo)
 - o marr (estado civil casado)
 - o south (região)
 - o manufacturing (indústria)
 - o construction (construção)
- · Variável de destino (target): wage_per_hour
- Implementar os itens abaixo:
- a-) Clonar o repositório de dados da disciplina (DSBD) hospedado no GitHUb.

```
!git clone "https://github.com/malegopc/DSBD"

fatal: destination path 'DSBD' already exists and is not an empty directory.
```

b-) Ler o dataset "Hourly_wages/hourly_wages.csv" como dataframe utilizando a biblioteca Pandas e mostrar as 5 primeiras e as 5 últimas linhas do dataset.

```
import pandas as pd
import numpy as np

df = pd.read_csv("DSBD/Datasets/Hourly_wages/hourly_wages.csv", na_values=['?'])
print(df.head(5))
print(df.tail(5))
```

```
education_yrs
   wage per hour
                  union
                                           experience vrs
                                                                  female
                                                                          marr
                                                             age
0
                       0
            5.10
                                        8
                                                        21
                                                              35
                                        9
                                                             57
            4.95
                       0
                                                        42
            6.67
                       0
                                       12
                                                         1
                                                             19
                                                                       0
                                                                              0
3
            4.00
                       0
                                       12
                                                         4
                                                              22
                                                                       0
                                                                              0
4
            7.50
                       0
                                       12
                                                        17
                                                                              1
   south
          manufacturing
                           construction
0
       0
                                       0
2
       0
                        1
                                       0
                       0
                                       0
3
       0
4
                                       0
       0
                       0
     wage_per_hour
                     union
                             education_yrs
                                             experience_yrs
                                                               age
                                                                    female
                                                                             marr
529
              11.36
                         0
                                         18
                                                           5
                                                                29
                                                                          0
                                                                                0
530
               6.10
                         0
                                         12
                                                          33
                                                                51
                                                                          1
                                                                                1
531
              23.25
                                         17
                                                          25
```

532 533		19.88 1 15.38 0	12 16	13 33	31 55	0	1
	south	manufacturing	construction				
529	0	0	0				
530	0	0	0				
531	0	0	0				
532	1	0	0				
533	0	1	0				

v c-) Obter um resumo da estatística descritiva dos dados utilizando um único comando (função).

df.describe()

	wage_per_hour	union education_yr		experience_yrs	age	femal	
count	534.000000	534.000000	534.000000	534.000000	534.000000	534.00000	
mean	9.024064	0.179775	13.018727	17.822097	36.833333	0.45880	
std	5.139097	0.384360	2.615373	12.379710	11.726573	0.49876	
min	1.000000	0.000000	2.000000	0.000000	18.000000	0.00000	
25%	5.250000	0.000000	12.000000	8.000000	28.000000	0.00000	
50%	7.780000	0.000000	12.000000	15.000000	35.000000	0.00000	
75%	11.250000	0.000000	15.000000	26.000000	44.000000	1.00000	
max	44.500000	1.000000	18.000000	55.000000	64.000000	1.00000	

d-) Calcule a proporção de funcionários de sexo masculino e feminino.

df.female.value_counts()

dtype: int64

∨ e-) Calcule a proporção de casados e solteiros.

df.marr.value counts()

dtype: int64

f-) Calcule as médias de cada uma das variáveis: anos de educação, anos de experiência e idade

```
print('Média da variável anos de educação: ',df['education_yrs'].mean())
print('Média da variávl anos de experiência: ',df['experience_yrs'].mean())
print('Média da variável idade:', df['age'].mean())

Média da variável anos de educação: 13.0187265917603
    Média da variávl anos de experiência: 17.822097378277153
    Média da variável idade: 36.8333333333333333
```

🗸 g-) Calcule as medianas de cada uma das variáveis: anos de educação, anos de experiência e idade.

```
print('Mediana da variável anos de educação: ',df['education_yrs'].median())
print('Mediana da variávl anos de experiência: ',df['experience_yrs'].median())
print('Mediana da variável idade:', df['age'].median())
```

```
Mediana da variável anos de educação: 12.0
     Mediana da variávl anos de experiência: 15.0
     Mediana da variável idade: 35.0
h-) Calcule as modas de cada uma das variáveis: anos de educação, anos de experiência e idade.
print('Moda da variável anos de educação: ',df['education_yrs'].mode())
print('Moda da variávl anos de experiência: ',df['experience_yrs'].mode())
print('Moda da variável idade:', df['age'].mode())
Moda da variável anos de educação: 0
     Name: education_yrs, dtype: int64
     Moda da variávl anos de experiência: 0
     Name: experience_yrs, dtype: int64
     Moda da variável idade: 0
     Name: age, dtype: int64
   i-) Analisando especificamente a variável idade, responda: qual é a idade do conjunto de dados em que 70% dos
   funcionários apresentam idade inferior?
print('70% dos funcionários tem idade igual ou inferior a:', np.percentile(df['age'], 70))
    70% dos funcionários tem idade igual ou inferior a: 42.0
   j-) Analisando especificamente a variável anos de experiência, responda: qual é a quantidade de anos de experiência no
   conjunto de dados em que 10% dos funcionários ainda não possuem?
yrs_exp = np.percentile(df['experience_yrs'], 10)
print(f'10\% \ dos \ funcion\'arios \ ainda \ n\~ao \ alcançaram \ \{yrs\_exp\} \ anos \ de \ experiência!')
💮 10% dos funcionários ainda não alcançaram 3.0 anos de experiência!
k-) Calcule o desvio-padrão de cada um dos atributos: anos de educação, anos de experiência e idade.
print('Desvio Padrão da variável anos de educação:', df['education yrs'].std())
print('Desvio Padrão da variável anos de experiência:', df['experience_yrs'].std())
print('Desvio Padrão da variável idade:', df['age'].std())
    Desvio Padrão da variável anos de educação: 2.6153726283543635
     Desvio Padrão da variável anos de experiência: 12.379710087848084
     Desvio Padrão da variável idade: 11.726572722555636
   I-) Determine qual dos três atributos apresenta maior variabilidade: anos de educação, anos de experiência ou idade?
   Justifique a sua resposta.
DP_edu_yrs = df['education_yrs'].std()
DP_exp_yrs = df['experience_yrs'].std()
DP_age = df['age'].std()
if DP_edu_yrs > DP_exp_yrs and DP_edu_yrs > DP_age:
 print("A variável education_yrs possui maior variabilidade, com ", DP_edu_yrs)
if DP_exp_yrs > DP_edu_yrs and DP_exp_yrs > DP_age:
 print("a variável experience_yrs possui maior variabilidade, com ", DP_exp_yrs)
if DP_age > DP_edu_yrs and DP_age > DP_exp_yrs:
 print("A variável age possui maior variabilidade, com ", DP age)
    a variável experience_yrs possui maior variabilidade, com 12.379710087848084

    m-) Leia o conjunto de dados <u>Atlas_Brasil_2014.csv</u>

data = pd.read csv("DSBD/Datasets/Atlas/Atlas Brasil 2014.csv")
n-) Calcule a média do IDHM.
print("A média do IDHM é: ", data['IDHM'].mean())
```

A média do IDMM é: 0.7376296296296296

o-) Qual é a taxa de mortalidade em que 50% dos estados apresentam taxa inferior?

print("50% dos estados apresentam taxa igual ou inferior de :", data['MORT1'].quantile(0.5))

50% dos estados apresentam taxa igual ou inferior de : 16.86

p-) Calcule qual o valor de RDPC (renda per capita) em que 25% dos estados apresentam valor superior.

print("25% dos estados apresentam valor de RDPC acima de :", data['RDPC'].quantile(0.25))

25% dos estados apresentam valor de RDPC acima de : 530.58

q-) Determine dentre as duas variáveis: T_ANALF25M (Taxa de analfabetismo - 25 anos ou mais) ou RDPC (Renda per capita média), qual apresenta maior variabilidade. Justifique a sua resposta.

DP_TA = data["T_ANALF25M"].std()
DP_RDPC = data["RDPC"].std()

if DP_TA > DP_RDPC:
 print("A variável T_ANALF25M possui maior variabilidade, com ", DP_TA)
else:
 print("A variável RDPC possui maior variabilidade, com ", DP_RDPC)

A variável RDPC possui maior variabilidade, com ", DP_RDPC)