

planetmath.org

Math for the people, by the people.

Donaldson Freedman exotic R4

Canonical name DonaldsonFreedmanExoticR4

Date of creation 2013-03-22 15:37:36 Last modified on 2013-03-22 15:37:36

Owner $\frac{1}{2}$ whm22 (2009) Last modified by $\frac{1}{2}$ whm22 (2009)

Numerical id 13

Author whm22 (2009)
Entry type Application
Classification msc 57R12
Classification msc 14J80

Related topic Donaldsonstheorem

Related topic exoticR4s Related topic ExoticR4s

Related topic DonaldsonsTheorem

Let K denote the simply connected closed 4- manifold given by

$$K = \{x : y : z : w \in \mathbb{C}P^3 | x^4 + y^4 + z^4 + w^4 = 0\}$$

Let E_8 denote the unique rank 8 unimodular symmetric bilinear form over \mathbb{Z} , which is positive definite and with respect to which, the norm of any vector is even. Let B denote the rank 2 bilinear form over \mathbb{Z} which may be represented by the matrix

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Then we may regard $H_2(K; \mathbb{Z})$ as a direct sum $M \oplus N$, where the cup product induces the form $E_8 \oplus E_8$ on M and $B \oplus B \oplus B$ on N and we have M orthogonal to N. (This does not contradict Donaldson's theorem as B has 1 and -1 as eigenvalues.)

We may choose a (topological) open ball, U, in $\#_3S^2 \times S^2$ which contains a (topological) closed ball, V, such that we have a smooth embedding, $f: \#_3S^2 \times S^2 - V \to K$ satisfying the following property:

The map f induces an isomorphism from $H_2(\#_3S^2\times S^2-U;\mathbb{Z})$ into the summand N .

If we could smoothly embed S^3 into U-V, enclosing V, then by replacing the outside of the embedded S^3 with a copy of B^4 , and regarding U-V as lying in K, we obtain a smooth simply connected closed 4- manifold, with bilinear form $E_8 \oplus E_8$ induced by the cup product. This contradicts Donaldson's theorem.

Therefore, U has the property of containing a compact set which is not enclosed by any smoothly embedded S^3 . Hence U is an exotic \mathbb{R}^4 .

By considering the three copies of B one at a time, we could have obtained our exotic \mathbb{R}^4 as an open subset of $S^2 \times S^2$.