Modern Analysis 1 L5

Jim Liu

September 6, 2023

1

Contents

1 Superposition of Supremum

2	Square Root
1	Superposition of Supremum
	• THM: If $A, B \subseteq \mathbb{R}$ are nonempty and bounded above, then $A+B := \{a+b: a \in A, b \in B\}$ is bounded above and $sup(A+B) = sup(A) + sup(B)$.
	- Proof: Let $\alpha = sup(A), \beta = sup(B)$ For each $a \in A$ and $b \in B$, we have $a \le \alpha, b \le \beta$ So, $a + b \le \alpha + \beta$ (\mathbb{E}) Therefore, $a + b$ is an upper bound for $A + B$. Therefore, $sup(A + B) \le sup(A) + sup(B)$ coz $sup(A) + sup(B)$ is "an" upper bound, and $sup(A + B)$ is the least upper bound. To prove the reverse equality: two approaches.
	* Option 1: show $\alpha + \beta \leq u$ for each upper bound u of $A + B$ Let u be any upper bound for $A + B$ Fix $a \in A$ and let $b \in B$ be arbitrary, Then, $a + b \leq u$ $\therefore b \leq u - a$ for any $b \in B$ $\therefore u - a$ is an upper bound for $B \Rightarrow \beta \leq u - a$ $\therefore a \leq u - \beta$ Now, unfix a , then $u - \beta$ is an upper bound for A .

So,
$$\alpha \leq u - \beta$$

 $\therefore \alpha + \beta \leq u$
 $\therefore \alpha + \beta = \sup(A + B)$.
* Option 2:
Spse $\sup(A + B) < \alpha + \beta$ and then aim at $\Rightarrow \Leftarrow$
Write $\epsilon = \alpha + \beta - \sup(A + B) > 0$
Then, $\alpha - \frac{1}{2}\epsilon < \alpha \Rightarrow \alpha - \frac{1}{2}$ is not an upper bound for A coz $\alpha = \operatorname{lub}(A)$
Thus, $\exists a \in A : \alpha - \frac{1}{2}\epsilon < a$
Similarly, $\exists b \in B : \beta - \frac{1}{2}\epsilon < b$
But now, $a + b > \alpha + \beta - \epsilon = \sup(A + B)$

 $-\mathbb{E} AB = \{ab : a \in A, b \in B\}, sup(AB) = sup(A)sup(B)$. This works if $A, B \subseteq \mathbb{R}^+$ and A, B are nonempty and bounded above.

2 Square Root

- THM: Each positive real number has a unique positive square root.
 - Proof: Let a > 0 $\exists ! \alpha \in \mathbb{R}^+$ s.t. $\alpha \alpha = a$
 - 1. Uniqueness:
 - * Option 1: Spse $\alpha \alpha = a = \alpha' \alpha' \ (\alpha, \alpha' \in \mathbb{R}^+)$ Then $0 = \alpha' \alpha' - \alpha \alpha = (\alpha' + \alpha)(\alpha' - \alpha)$ Since $\alpha' + \alpha > 0$, $\alpha' - \alpha = 0$ So, $0 = \alpha' - \alpha \Rightarrow \alpha' = \alpha$. Hence, uniqueness is proved.
 - * Option 2: Spse $\alpha' \neq \alpha$ and then use trichotomy and aim for $\Rightarrow \Leftarrow$ The above assumption leads to either $\alpha' < \alpha \bigvee \alpha' > \alpha$. This implies that $\alpha' \alpha' < \alpha \alpha \bigvee \alpha' \alpha' > \alpha \alpha$, both of which lead to $\Rightarrow \Leftarrow$.
 - 2. Existence:

Define $A = \{x \in \mathbb{R}^+ : x^2 < a\}$ Then, $A \neq \emptyset$ and bounded above. Here, we need to show **nonempty** and **Bounded above**. * Nonempty:

If
$$a < 1, x = a \cos a^2 < a$$

If $a = 1, x = \frac{1}{2}a$
If $a > 1, x = 1$.

If
$$a = 1, x = \frac{1}{2}a$$

If
$$a > 1, x = \bar{1}$$
.

Therefore, A contains any real x satisfying $0 < x < a \land 1$ (Here, \wedge means take the minimum value.) $x < a \wedge 1 \Rightarrow x^2 < x < a$

$$x < a \land 1 \Rightarrow x^2 < x < a$$

* Bounded above by $a \vee 1$ (Here, \vee means take the maximum value.)

Coming Next Lecture...