[Paper Review]

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

ECCV 2022

Index

1. Introduction

2. Related work

3. Methodology

4. Experiments

5. Conclusion

Introduction

Long-tailed distribution in Real-world

- 소수의 head class가 데이터의 대부분을 차지하고, 나머지 tail class는 데이터가 부족한 long-tailed 분포를 띈다.
- 데이터 수가 많은 head class에 편향이 생기고, 데이터가 적은 tail class로 인해 성능이 떨어지게 됨
- Long-tailed 문제 해결하기 위한 Previous work
 - 1) re-sampling the training data
 - 2) re-weighting the loss functions
 - 3) transfer learning methods..

→ 기존의 연구는 image modality 에만 의존한 solution 이고, text modal을 불균형 문제에 통합한 시도는 거의 없다.

Introduction

❖ Language modality 활용 가능성

Image modality

- 구체적이고, low-level 특징을 표현한다. (ex. 모양, 색, 질감 ..)

Language modality

- 추상적이고, high-level 특징까지 표현 가능하다.
- 전문가에 의한 사전지식이 포함할 수 있다.
- => class 별 표현 학습에 필요한 이미지가 충분하지 않을 때 활용해볼 수 있다

VL-LTR

- : Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition
- → 본 논문은 long-tailed recognition을 위한 visual-linguistic framework인 VL-LTR을 소개한다.

Introduction

- Main Component
- 1) Class-wise visual-linguistic pre-training (CVLP)
- 클래스 별 visual-linguistic 관련성을 학습하는 pre-training 과정
 - 기존의 pre-train visual-linguistic 모델과 달리, **클래스 별로 표현 학습**함으로써 long-tailed visual recognition 성능을 향상시킴
- 2) Language-guided recognition (LGR)

사전학습된 visual-linguistic 표현에 기반한 long-tailed recognition 수행

- Visual recognition에 언어 정보 활용, noisy text 에 강한 method

Contribution

- 1) long-tailed visual recognition에서 텍스트 정보가 이미지 정보를 보충하는 새로운 방법론 제시
- 2) long-tailed visual recognition의 새로운 프레임워크 제시
 - " class-wise text-image pre-training (CVLP) + language-guided recognition (LGR) "
- 3) 다양한 long-tailed recognition benchmarks (ImageNet-LT, Places-LT, and iNaturalist 2018)에서 SOTA 달성

Related Work

Class re-balanced Strategy

1) Data Resampling

head나 tail의 sample 비율을 조정하여 균형을 맞추는 방식
 ex) over/under sampling, smote..

그러나, augment 된 소수 클래스에서 overfitting 가능성 높음

• overfitting 완화하기 위해, 다수 클래스의 feature space 에서 소수 클래스를 up-sampling 하거나, 다수 클래스의 데이터를 소수 클래스 데이터로 변형하여 소수 클래스를 up-sampling 하는 접근 방식 연구됨

Related Work

2) Re-weighting loss function

- 클래스 별 반영 비율을 loss function을 통해 조정하는 방법
 - ex) **Focal loss** : 높은 probability로 예측한 sample의 loss에 가중치를 주어 어려운 sample을 보다 잘 학습할 수 있도록 도움 $\mathcal{L}_{\mathrm{focal}}:=(1-h_i)^{\gamma}\mathcal{L}_{CE}=-(1-h_i)^{\gamma}log(h_i)$
 - ex) LDAM loss: 속한 데이터 개수가 작은 few-shot class가 더 넓은 margin을 가지게 함

3) Transfer learning

- 충분한 데이터를 포함한 head class에서 얻은 feature을 이용해, tail class의 representation learning에 이용하는 방법
- → 세 가지 Class re-balanced strategy 모두 image modality에 한정된 rebalancing method 이다.

Related Work

- Previous Visual-Linguistic Model
 - Image classification에서의 기존 visual-linguistic 접근 방식
 - -〉image-text 간 표현 격차 해소에 한계 존재
 - 최근 pre-trained Visual-linguistic 모델은 다양한 vision/multimodal task에서 좋은 성능을 보임
 ex. Vinvl, Oscar, VI-bert ..
 - 또한, contrastive learning을 통해 visual-linguistic 표현을 효율적으로 학습한 거대 pre-trained 모델 등장했다.
 ex. CLIP, ALIGN

→ 본 논문에서는 <mark>visual recognition task에서 linguistic modality를 효율적으로 활용하는 VL-LTR</mark>를 소개한다.

Overall Architecture

VL-LTR은 two-stage 프레임워크를 갖는다.

Stage 1) Class-wise Visual-Linguistic Pre-training (CVLP)

Contrastive Learning 기반 표현 학습을 활용하여 long-tailed data 에서도 효율적인 학습을 목표로 한다.

- Pre-training 목표
 - Visual-Linguistic representation을 학습하여, 클래스 별 언어적 정보를 visual recognition에 활용

$$\mathcal{L}_{pre} = \lambda \mathcal{L}_{ccl} + (1-\lambda) \mathcal{L}_{dis}, \label{eq:pre}$$

λ: 두 loss의 비율을 조절하기 위한 하이퍼파라미터

Pre-train Loss 함수 Lpre는 Lccl 와 Ldis 로 이루어져있다.

Stage 1) Class-wise Visual-Linguistic Pre-training (CVLP)

$$\begin{split} \mathcal{L}_{\text{ccl}} = & \mathcal{L}_{\text{vis}} + \mathcal{L}_{\text{lin}} \\ = & -\frac{1}{|\mathcal{T}_i^+|} \sum_{T_i \in \mathcal{T}_i^+} \log \frac{\exp(S_{i,j}/\tau)}{\sum_{T_k \in \mathcal{T}} \exp(S_{i,k}/\tau)} - \frac{1}{|\mathcal{I}_i^+|} \sum_{I_j \in \mathcal{I}_i^+} \log \frac{\exp(S_{j,i}/\tau)}{\sum_{I_k \in \mathcal{I}} \exp(S_{k,i}/\tau)}, \end{split}$$

• Pre-training Process

1) batch별 image, text 샘플링 하여 각각 visual,linguistic encoder를 통해 이미지, 텍스트 임베딩을 생성한다.

$$E_i^I = \mathcal{E}_{\text{vis}}(I_i), \quad E_i^T = \mathcal{E}_{\text{lin}}(T_i),$$

- 2) $E_i^I E_i^T$ 간의 코사인 유사도 Si,j 를 구한다.
- 3) 구한 Si,j 통해 Visual loss와 Linguistic loss 정의하여 최종 \mathcal{L}_{ccl} 를 정의한다.
- =〉 <mark>구한 loss를 통해 visual / linguistic 인코더 optimizing</mark>

Stage 1) Class-wise Visual-Linguistic Pre-training (CVLP)

Distillation

제한된 text corpus로 인한 overfitting 방지하기 위해, CLIP에서 pre-train 된 정보를 활용한다.

$$\Rightarrow$$
 \mathcal{L}_{dis} 정의

$$\mathcal{L}_{\mathrm{dis}} = -\frac{\exp(S'_{i,i}/\tau)}{\sum_{T_j \in \mathcal{T}} \exp(S'_{i,j}/\tau)} \log \frac{\exp(S_{i,i}/\tau)}{\sum_{T_k \in \mathcal{T}} \exp(S_{i,k}/\tau)}$$
 S' = CLIP 기반 코사인 유사도 matrix
$$-\frac{\exp(S'_{i,i}/\tau)}{\sum_{I_j \in \mathcal{I}} \exp(S'_{j,i}/\tau)} \log \frac{\exp(S_{i,i}/\tau)}{\sum_{I_k \in \mathcal{I}} \exp(S_{k,i}/\tau)}.$$
 S = class-wise contrastive learning of the second secon

S = class-wise contrastive learning (CCL)에서 구한 코사인 유사도 matrix

Stage 1) Class-wise Visual-Linguistic Pre-training (CVLP)

• 최종 Pre loss function

$$\mathcal{L}_{\mathrm{pre}} = \lambda \mathcal{L}_{\mathrm{ccl}} + (1 - \lambda) \mathcal{L}_{\mathrm{dis}},$$
 λ : 두 loss의 비율을 조절하기 위한 하이퍼파라미터

pre-training framework 장점

class level 이미지 샘플에 대한 text는 독립적이고, 매 반복마다 달라질 수 있다.

-> fixed image-text pair로 학습할 때보다 정규화된 모델 얻을 수 있고, noisy text에 강하다.

Stage 2) Language-Guided Recognition (LGR)

학습된 visual-linguistic representation 활용하여 image classification 진행할 수 있도록 fine-tuning 하는 과정

(1) Anchor Sentence Selection

- 인터넷에서 수집한 noise text는 recognition 성능 저해하므로, 가장 구별되는 중심 문장을 선별한다.

Process

- 1) 클래스 당 최대 50개의 이미지 갖는 image batch I' 생성한다.
- 2) l' 와 text T 사이의 $\mathcal{L}_{ ext{lin}}$ 계산 ($\mathcal{L}_{ ext{lin}}$ = stage1에서 정의한 코사인 유사도 기반 Linguistic loss)
- 3) 각 이미지에서 \mathcal{L}_{lin} 값이 가장 작은 M개의 text sentences => "Anchor sentences"

Stage 2) Language-Guided Recognition (LGR)

(2) Language-Guided Recognition Head

- LGR Head를 optimizing 하기 위해, 이미지와 문장의 attention score를 구한다.
 - Q, K, V = Attention 연산에서의 query, key, value
 - Image의 Q와 Anchor sentence의 K,V 를 사용하여 attention score 연산
 - G = M개의 Anchor sentences에 대한 attention score

$$\begin{split} Q &= \operatorname{Linear}(\operatorname{LayerNorm}(E^I)), \\ K &= \operatorname{Linear}(\operatorname{LayerNorm}(E^T)), \quad V = E^T, \\ G &= \sigma(\frac{QK^\mathsf{T}}{\sqrt{D}})V, \end{split}$$

• PI, PT = Visual / Linguistic representation에 기반한 classification 확률

Attention score(G) 와 Image embedding 간 코사인 유사도
$$P=P^I+P^T=\sigma(\mathrm{MLP}(E^I))+\sigma(\left\langle E^I,G\right\rangle/ au).$$

Stage 2) Language-Guided Recognition (LGR)

• 최종 rec loss function

Visual / Linguistic Representation에 기반한 확률 (PI, PT)과 **ground truth label (y)**의 Cross Entropy 연산을 통해 구한 최종 \mathcal{L}_{rec}

$$\mathcal{L}_{\text{rec}} = \mathcal{L}_{\text{CE}}(P^I, \mathbf{y}) + \mathcal{L}_{\text{CE}}(P^T, \mathbf{y}).$$

stage 2 (LGR) 에서는,

- 1) 앵커 문장 선택 후
- 2) 구한 앵커 문장과 이미지와의 attention score에 기반한 loss값을 통해 LGR Head를 optimizing 한다.

Datasets

- 세 가지 long-tailed visual recognition benchmarks을 사용했다.
 - ImageNet-LT, Places-LT, iNaturalist 2018
- 추가적으로, 세 가지 datasets 에 대한 class-level text descriptions 을 수집하였다.
 - Wikipedia 에서 class 에 대한 descriptions 수집 후 전처리

Settings

- visual encoder : ResNet-50 또는 ViT-Base/16
- linguistic encoder: 12-layer Transformer
- optimizer : AdamW
- pre-training
 - o CLIP의 pre-trained weights 사용 (50 epochs, mini-batch size = 256)
- fine-tuning
 - o class 마다 64 sentences 선별 (50 epochs, mini-batch size = 128)

Results (ImageNet-LT)

I. 대표적인 long-tailed recognition methods 와 비교

Made 1	D. H.	Accuracy (%)				
Method	Backbone	Overall Many		Medium	Few	
Cross Entropy [26]	ResNeXt-50	44.4	65.9	37.5	7.7	
OLTR [29]	ResNeXt-50	46.3	-	-	-	
SSD [26]	ResNeXt-50	56.0	66.8	53.1	35.4	
RIDE (4 Experts) [48]	ResNeXt-50	56.8	68.2	53.8	36.0	
TADE [53]	ResNeXt-50	58.8	66.5	57.0	43.5	
smDRAGON [39]	ResNeXt-50	50.1	-	2 -	-	
ResLT [6]	ResNeXt-101	55.1	63.3	53.3	40.3	
PaCo [7]	ResNeXt-101	60.0	68.2	58.7	41.0	
NCM [21]	ResNeXt-152	51.3	60.3	49.0	33.6	
cRT [21]	ResNeXt-152	52.4	64.7	49.1	29.4	
τ -normalized [21]	ResNeXt-152	52.8	62.2	50.1	35.8	
LWS [21]	ResNeXt-152	53.3	63.5	50.4	34.2	
NCM [21]	ResNet-50*	49.2	58.9	46.6	31.1	
cRT [21]	ResNet-50*	50.8	63.3	47.2	27.8	
τ -normalized [21]	ResNet50*	51.2	60.9	48.4	33.8	
LWS [21]	ResNet-50*	51.5	62.2	48.6	31.8	
Zero-Shot CLIP [37]	ResNet-50*	59.8	60.8	59.3	58.6	
Baseline	ResNet-50*	60.5	74.4	56.9	34.5	
VL-LTR (ours)	ResNet-50*	70.1	77.8	67.0	50.8	
VL-LTR (ours)	ViT-Base*	77.2	84.5	74.6	59.3	

- ResNet-50 backbone 적용 시(70.1%),
 - baseline(60.5%) 보다 9.6% 나은 성능 보임
 - 기존 best model PaCo(60.0%) 보다 10.1% 나은 성능
- few-shot 에서 baseline 보다 16.3% 나은 성능 보임
- ViT-Base/16 backbone 적용 시 77.2%
 - o ImageNet-LT 에서 SOTA 달성

(*) = initialized with CLIP weights

- Results (ImageNet-LT)
- II. baseline과 비교했을 때, class 별 성능 개선도
- * baseline = VL-LTR method 에서 *visual modality 정보만* 반영한 버전

- tail classes에서 더 좋은 accuracy 점수 달성
 - -> class별 text descriptions 사용이 Long-tailed 문제를 완화하는데 기여했다고 볼 수 있다.

❖ Results (Places-LT)

Method	Backbone		cy (%)		
Method	Backbone	Overall	Many	Medium	Few
OLTR [29]	ResNet-152	35.9	44.7	37.0	25.3
ResLT [6]	ResNet-152	39.8	39.8	43.6	31.4
TADE [53]	ResNet-152	40.9	40.4	43.2	36.8
PaCo [7]	ResNet-152	41.2	36.1	47.9	35.3
NCM [21]	ResNet-152	36.4	40.4	37.1	27.3
cRT [21]	ResNet-152	36.7	42.0	37.6	24.9
τ -normalized [21]	ResNet-152	37.9	37.8	40.7	31.8
LWS [21]	ResNet-152	37.6	40.6	39.1	28.6
smDRAGON [39]	ResNet-50	38.1	-	-	1-1
NCM [21]	ResNet-50*	30.8	37.1	30.6	19.9
cRT [21]	ResNet-50*	30.5	38.5	29.7	17.6
τ -normalized [21]	ResNet-50*	31.0	34.5	31.4	23.6
LWS [21]	ResNet-50*	31.3	36.0	32.1	20.7
Zero-Shot CLIP [37]	ResNet-50*	38.0	37.5	37.5	40.1
Baseline	ResNet-50*	39.7	50.8	38.6	22.7
VL-LTR (ours)	ResNet-50*	48.0	51.9	47.2	38.4
VL-LTR (ours)	ViT-Base*	50.1	54.2	48.5	42.0

실험 setting은 ImageNet-LT와 동일하다.

ResNet-50 backbone 적용 시 (48.0%),

○ 기존 SOTA 모델 PaCo(41.2%) 보다 나은 성능 보임

ViT-Base/16 backbone 적용 시 (50.1%)

○ Places-LT 에서 SOTA 달성

medium, few-shot classes 에서도 좋은 성능 보임

Results: iNaturalist 2018

Method	Backbone	Accuracy (%)
CB-Focal [2]	ResNet-50	61.1
LDAM+DRW [2]	ResNet-50	68.0
BBN [56]	ResNet-50	69.6
SSD [26]	ResNet-50	71.5
RIDE (4 experts) [48]	ResNet-50	72.6
smDRAGON [39]	ResNet-50	69.1
ResLT [6]	ResNet-50	72.3
TADE [53]	ResNet-50	72.9
PaCo [7]	ResNet-50	73.2
NCM [21]	ResNet-50	63.1
cRT [21]	ResNet-50	67.6
τ -normalized [21]	ResNet-50	69.3
LWS [21]	ResNet-50	69.5
NCM [21]	ResNet-50*	65.3
cRT [21]	ResNet-50*	69.9
τ -normalized [21]	ResNet-50*	71.2
LWS [21]	ResNet-50*	71.0
Zero-Shot CLIP [37]	ResNet-50*	3.4
Baseline	ResNet-50*	72.6
VL-LTR (ours)	ResNet-50*	74.6
PaCo [7]	ResNet-152	75.2
DeiT-B/16 [45]	111111111111111111111111111111111111111	73.2
DeiT-B/16-384 [45]	-	79.5
VL-LTR (ours)	ViT-Base*	76.8
VL-LTR-384 (ours)	ViT-Base*	81.0

- pre-trained for 100 epochs, and fine-tuned for 360 epochs
- ResNet-50 backbone 적용 시 (74.6%), 기존 모델보다 나은 성능
- ViT-Base/16 backbone 적용 시 (76.8%)
 - 기존 SOTA 모델 PaCo(75.2%) 보다 나은 성능 보임

Ablation Study

Class-wise Visual-Linguistic 사전학습을 수행하지 않았을 때의 결과와 비교하는 실험을 진행했다.

# CLIP	Pre-training		Fine-tuning		Accuracy	
#	Weights	w/o L _{dis}	w/ L _{dis}	Head	SS	(%)
1	✓	-	✓	LGR	AnSS	70.1
2	√	_	-	LGR	AnSS	62.8
3	2	✓	3 <u>=</u> 3	LGR	AnSS	46.8
4	V	√	-	LGR	AnSS	66.2
5	√	-	✓	FC	-	62.1
6	V	-	√	KNN	-	63.9
7	√	-	√	LGR	Cut Off	69.7

CVLP framework 제거했을 때 성능이 떨어지는 것을 확인할 수 있다.

- VL-LTR vs CLIP
 - o rare 한 컨셉을 인식할 때, (ex. "spot", "stick"), class level에서 pre-train 한 VL-LTR이 CLIP보다 잘 맞추는 것을 확인할 수 있다.

Ablation Study: CLIP Pre-trained Weights & Distillation Loss

" CLIP	CLIP	Pre-training		Fine-tuning		Accuracy
#	Weights	w/o L _{dis}	w/ L _{dis}	Head	SS	(%)
1	√	-	√	LGR	AnSS	70.1
2	\	5	(T	LGR	AnSS	62.8
3	Ŧ.,	✓	0.75	LGR	AnSS	46.8
4	✓	✓	-	LGR	AnSS	66.2
5	√	-	√	FC		62.1
6	✓	22	√	KNN	-	63.9
7	1	-	V	LGR	Cut Off	69.7

- CLIP의 pre-trained weights를 적용한 VL-LTR 모델의 성능이 더 좋은 것을 확인 (#1, #3)
- Distillation을 수행한 모델의 성능이 더 높음 (#1, #4)
- training 과 validation loss 비교 (오른쪽 그림)
 - o Fine tuning 단계에서 CLIP pre-trained weights와 Distillation Loss가 overfitting을 완화시킨다.
 - ImageNet-LT의 text description 만으론 text corpus가 제한적이기 때문

Ablation Study: Anchor Sentence Selection

#	CLIP	Pre-training		Fine-tuning		Accuracy
	Weights	w/o L _{dis}	w/ L _{dis}	Head	SS	(%)
1	√	-	√	LGR	AnSS	70.1
2	√		-	LGR	AnSS	62.8
3		✓	1.5	LGR	AnSS	46.8
4	✓	✓	-	LGR	AnSS	66.2
5	✓	_	√	FC	-	62.1
6	✓	2	√	KNN	-	63.9
7	√	-	√	LGR	Cut Off	69.7

- AnSS(Anchor Sentence Selection) 을 "Cuf Off"로 대체 (= 단순히 처음 M개의 문장을 앵커문장으로 선별) 했을 때, 성능이 떨어짐
 - o AnSS가 noisy한 문장을 필터링 한 것을 보여준다.
 - o "AnSS"는 training-free module 이므로, noisy problem을 해결 할 수 있는 새로운 가능성 제시

Conclusion

Summerization

VL-LTR

- Long-tailed recognition에서 새로운 visual-linguistic framework를 제안한다.
 - 1) class-level visual-linguistic pre-training (CVLP)
 - => 이미지와 설명텍스트를 class level에서 matching시켜서 학습한다.
 - 2) language-guided recognition (LGR) head
 - => Visual recognition에 visual-linguistic representation을 활용한다.
- image, text 두 modal을 사용하여 class imbalance 문제를 해결한 새로운 접근 방식으로,
 다양한 long-tailed recognition benchmarks 에서 기존의 vision-based methods 보다 좋은 성능 달성했다.

Limitations

- 언어적 표현 학습시킬 때 기존의 pre-trained model (CLIP)에 의존해야 하므로 Text corpus가 제한적이다.
- Two-stage LTR method를 발전시켜, end-to-end 학습 방법에 대한 연구가 필요해보인다.