Matematik ve İstatistik: Gözden Geçirme Ekonometri I

Dr. Ömer Kara¹

¹İktisat Bölümü Eskişehir Osmangazi Üniversitesi

6 Ağustos 2021

Taslak

- Motivasyon
- Temel Matematiksel Araçlar
 - Toplam Operatörü ve Betimsel İstatistikler
 - Değişkenlerde Değişim
 - Doğrusal ve Doğrusal Olmayan Fonksiyonlar
 - Esneklik
 - Fonksiyonel Form
- Olasılık ve Dağılım Teorisi
- İstatistiksel Çıkarsama

Motivasyon

Bu bölümde, sırasıyla aşağıdaki konular incelenecektir.

- Temel matematiksel araçlar
- Olasılık ve dağılım teorisine ait temel bilgiler
- İstatiksel çıkarsama

Toplam Operatörü ve Özellikleri

Toplam Operatörü

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$$

burada *i* indeks; *n* ise gözlem sayısıdır.

- a, b, ve c sabit sayılar olmak üzere
 - Sabit bir sayının toplamı:

$$\sum_{i=1}^{n} c = nc$$

Sabit sayı ile çarpılan bir serinin toplamı:

$$\sum_{i=1}^{n} c = nc$$

Toplam Operatörü ve Özellikleri

Sabit sayı ile çarpılan iki farklı serinin toplamı:

$$\sum_{i=1}^{n} ax_i + by_i = a\sum_{i=1}^{n} x_i + b\sum_{i=1}^{n} y_i$$

İki serinin bölümünün toplamı ile toplamlarının bölümü:

$$\sum_{i=1}^{n} \frac{x_i}{y_i} \neq \frac{\sum_{i=1}^{n} x_i}{\sum_{i=1}^{n} y_i}$$

Serinin karesinin toplamı ile toplamının karesis:

$$\sum_{i=1}^{n} x_i^2 \neq \left(\sum_{i=1}^{n} x_i\right)^2$$

Bazı Betimsel İstatistikler

Örneklem Ortalaması

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

burada n gözlem sayısı, \bar{x} ise örneklem ortalamasıdır.

Ortalamadan sapmaların toplamı sıfırdır.

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0$$

İspat:

$$\sum_{i=1}^{n} (x_i - \bar{x}) = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \bar{x} = \sum_{i=1}^{n} x_i - n\bar{x} = n\bar{x} - n\bar{x}$$

$$= 0$$

Bazı Betimsel İstatistikler

Ortalamadan sapmaların kareleri toplamı (tek seri için):

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - n(\bar{x})^2$$

İspat:

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} (x_i^2 - 2x_i \bar{x} + \bar{x}^2)$$

$$= \sum_{i=1}^{n} x_i^2 - 2\bar{x} \sum_{i=1}^{n} x_i + n(\bar{x})^2$$

$$= \sum_{i=1}^{n} x_i^2 - 2n(\bar{x})^2 + n(\bar{x})^2$$

$$= \sum_{i=1}^{n} x_i^2 - n(\bar{x})^2$$

Bazı Betimsel İstatistikler

Ortalamadan sapmaların kareleri toplamı (çift seri için):

$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i + n\bar{x}\bar{y}$$
 (Özellik 2.1)

$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} x_i (y_i - \bar{y})$$
 (Özellik 2.2)

$$\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} (x_i - \bar{x})y_i$$
 (Özellik 2.3)

Değişkenlerde Değişim

Başlangıç değeri x_0 ve son değeri ise x_1 olan bir x değişkeninde

Oransal Değişim (Proportional Change)

$$\frac{(x_1-x_0)}{x_0}=\frac{\Delta x}{x_0}$$

Yüzdesel Değişim (Percentage Change)

$$\%\Delta x = 100(\Delta x/x_0)$$

Yüzdesel Puan Değişimi (Percentage Point Change) Oransal şekilde ifade edilen bir değişkendeki mutlak değişimdir.

$$\%\Delta x_1 - \%\Delta x_0$$

Örnek: Enflasyon %30'dan sonra %45'e yükseldiğinde, %45 - %30 = %15 puan değişmiş olur. Oysa, yüzdesel değişim, $\%\Delta x = 100(45 - 30)/30 = \%50$ olacaktır.

• **Doğrusal fonksiyonlar** (linear functions), yorumlanması ve manipüle edilmesi basit oldukları için ekonometride önemli bir rol oynar.

Doğrusal (Lineer) Fonksiyon

Eğer x ve y değişkenleri aşağıdaki gibi ilişkili ise y, x'in doğrusal bir fonksiyonudur.

$$y = \beta_0 + \beta_1 x$$

 β_0 ve β_1 , y ve x değişkenleri arasındaki ilişkiyi tanımlayan rakamsal parametrelerdir.

- β_0 kesim (sabit) parametresi ($x_1 = 0$ olduğunda y'nin değerini belirtir), β_1 ise eğim parametresi olarak bilinir.
- Doğrusal fonksiyonun tanımlayıcı özelliği y'deki değişim her zaman β_1 çarpı x'deki değişim çarpı kadar olmasıdır. Diğer bir deyişle, x'in y üzerindeki **marjinal etki**si (marginal effect) sabittir ve β_1 'e eşittir.

$$\Delta y = \beta_1 \Delta x$$

 Aylık ev harcaması ve gelir arasındaki ilişki aşağıdaki doğrusal fonksiyonla gösterildiğini varsayalım.

Doğrusal Fonksiyon: Ev Harcaması vs. Gelir

$$housing = \beta_0 + \beta_1 income$$

$$housing = 164 + 0.27 income$$

housing: ev için yapılan harcama; income: gelir

- Fonksiyona göre her 1 dolarlık ekstra gelir için, 27 centlik ev harcaması yapılıyor. Örneğin, eğer ailenin geliri \$200 artarsa, bu durumda ev harcaması 0.27 * 200 = \$54 artar.
- Bu doğrusal fonksiyona ait grafik Şekil 1'de gösterilmiştir.

- Lineer fonksiyonlar ikiden fazla değişken kullanılarak da kolayca tanımlanabilir.
- y'nin x_1 ve x_2 gibi iki farklı değişkene bağlı olduğunu varsaydığımız doğrusal fonksiyonun genel formu aşağıdaki gibi olacaktır.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

- Üç-boyutlu grafiği olan bu fonksiyonu iki boyutlu düzlemde göstermek zor olsa da
 - β_0 hala kesim (sabit) parametresidir ($x_1 = 0$ ve $x_2 = 0$ iken y'nin değerini belirtir).
 - β_1 ve β_2 ise x_1 ve x_2 değişkenlerine ait eğim parametresi olarak bilinir.
- Fonksiyon denklemi kullanarak, x_1 ve x_2 'deki değişikliklere karşılık gelen y'deki değişim aşağıdaki gibi hesaplanabilir.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$
$$\Delta y = \beta_1 \Delta x_1 + \beta_2 \Delta x_1$$

• Eğer, x_2 sabit ise, yani $\Delta x_2 = 0$ ise, y'deki değişim:

$$\Delta y = \beta_1 \Delta x_1 + \beta_2 \Delta x_1$$
$$\Delta y = \beta_1 \Delta x_1 \quad \text{eğer} \quad \Delta x_2 = 0$$

- β_1, x_1 ile y arasındaki ilişkiyi belirten eğim parametresidir.
- β_1 , x_2 'i sabit tutuğumuzda x_1 'deki değişime karşılık y'nin nasıl değiştiğini gösterdiğinden x_1 'in y üzerindeki **kısmi etki**si (partial effect) olarak da adlandırılır.

$$\beta_1 = \frac{\Delta y}{\Delta x_1}$$
 eğer $\Delta x_2 = 0$

- Kısmi etki diğer faktörlerin sabit tutulmasını içerdiğinden dolayı ceteris paribus kavramıyla yakından ilişkilidir.
- β_2 parametresin de yorumlamasi benzerdir. β_2 , α_2 'in α_2 üzerindeki kısmi etkisini gösterir.

$$\beta_2 = \frac{\Delta y}{\Delta x_2}$$
 eğer $\Delta x_1 = 0$

Doğrusal Olmayan Fonksiyonlar

• Doğrusal fonksiyonlarda, denklemin sağ tarafında bulunan x'deki bir birimlik değişim denklemin sol tarafındaki y'de x'in başlangıç değerinden bağımsız olarak her zaman aynı etkiye sahiptir. Yani, x'in y üzerindeki marjinal etkisi sabittir.

$$y = \beta_0 + \beta_1 x \longrightarrow \beta_1 = \frac{\Delta y}{\Delta x_1}$$

- Bu durum, birçok iktisadi değişken arasındaki ilişki için gerçekçi değildir, örneğin azalan marjinal getiri (diminishing marginal returns).
- İktisadi değişkenler arasındaki bu tarz farklı ilişkileri de modelleyebilmek için doğrusal olmayan fonksiyonları (nonlinear functions) kullanmamız gerekir.
- Doğrusal olmayan fonksiyonlardaki temel mantık, x'deki bir birimlik değişim y'de x'in başlangıç değerine bağlı olarak etki yapar. Yani, x'in y üzerindeki marjinal etkisi x'in başlangıç değerine göre değişir.
- Ekonometride bazı doğrusal olmayan fonksiyonlar sıklıkla kullanılır ve bu nedenle bu fonksiyonların nasıl yorumlanacağının bilinmesi çok önemlidir.

Karesel Fonksiyonlar

 Değişen marjinal etkiyi modelleyebilmek için ekonometride doğrusal olmayan fonksiyon olarak sıklıkla **karesel fonksiyonlar** (quadratic functions) kullanılır.

Karesel Fonksiyon

x ve y değişkenleri aşağıdaki gibi ilişkili ise y, x'in doğrusal olmayan bir fonksiyonudur.

$$y = \beta_0 + \beta_1 + \beta_2 x^2$$

 β_0 , β_1 , ve β_2 y ve x değişkenleri arasındaki ilişkiyi tanımlayan rakamsal parametrelerdir.

• y'nin x'e göre kısmi türevini alarak karasel fonksiyonun eğimi m yaklaşık olarak aşağıdaki gibi hesaplanabilir.

$$m = \frac{\Delta y}{\Delta x} \cong \beta_1 x + 2\beta_2 x$$

 Burada dikkat edilmesi gereken nokta, yukarıdaki eğim hesabı yaklaşıktır. Kesin bir hesaplama için ilk ve son x değerlerini bilmek gerekir.

Karesel Fonksiyonlar

- Karesel fonksiyona ait grafik β_1 ve β_2 parametrelerin işaretine göre değişir.
 - Örneğin, $\beta_1 > 0$ ve $\beta_2 < 0$ olduğunda y ve x arasındaki ilişki Şekil 2'deki gibi parabolik bir şekil alacaktır.
- $\beta_1 > 0$ ve $\beta_2 < 0$ olduğunda, fonksiyonu maksimum yapan, yani eğimin sıfır olduğu (m = 0), x^* değeri aşağıdaki gibi hesaplanabilir.

$$\frac{\Delta y}{\Delta x} \cong \beta_1 + 2\beta_2 x = 0 \longrightarrow x^* = \frac{\beta_1}{-2\beta_2}$$

• Örneğin, Şekil 2'deki karesel fonksiyonu maksimum (y = 14) yapan x^* değeri 2'dir.

$$\beta_0 = 6, \ \beta_1 = 8, \ \beta_2 = -2 \longrightarrow y = 6 + 8x - 2x^2 \longrightarrow x^* = \frac{\beta_1}{-2\beta_2} = 2$$

- Şekil 2'deki karesel fonksiyon incelendiğinde x'in y üzerindeki azalan marjinal etkisi (diminishing marginal effect) açıkça gözlenmektedir. Başka bir deyişle fonksiyonun eğimi x arttıkça azalmaktadır.
 - Karesel fonksiyon β_1 ve β_2 parametrelerin işaretlerine göre farklı şekillerde olabilir.
 - Örneğin, $\beta_1 < 0$ ve $\beta_2 > 0$ olduğunda, karesel fonksiyon "U" şeklinde olur ve x'in y üzerindeki artan marjinal etkisi (increasing marginal effect) gözlenir.

Karesel Fonksiyonlar

Şekil 2: Karesel Fonksiyon: $y = 6 + 8x - 2x^2$

Kaynak: Wooldridge (2016)

Doğal Eksponansiyel Fonksiyon

- Ekonometrik analizde sıklıkla kullanılan bir diğer doğrusal olmayan fonksiyon ise doğal eksponansiyel fonksiyondur (natural exponential function).
- Doğal eksponansiyel fonksiyon "exp" ya da "e" (euler sayısı) ile gösterilir.
- Euler sayıs $e \approx 2.71$ 'nin çıkarılışını incelemek için "Ek Bilgi" butonuna basınız.

Doğal Eksponansiyel Fonksiyon

$$y = exp(x) = e^x$$

Doğal eksponansiyel fonksiyon Slayt 21'de gösterilen doğal logaritmanın tersidir.

$$e^{\ln x} = x$$
 eğer $x > 0$ ve $\ln(e^x) = x$
 $y = exp(\beta_0 + \beta_1 x) = e^{\beta_0 + \beta_1 x} \longrightarrow \ln y = \beta_0 + \beta_1 x$

• Şekil 3'de grafiği verilen doğal eksponansiyel fonksiyonun özellikleri:

$$e^{0} = 1$$
 $e^{1} = 2.7183$ $e^{x+y} = e^{x}e^{y}$ $e^{xy} = (e^{x})^{y}$ $e^{c \ln x} = x^{c}$ $\frac{\partial e^{x}}{\partial x} = e^{x}$

Doğal Eksponansiyel Fonksiyon

Şekil 3: Doğal Eksponansiyel Fonksiyon: $y = e^x$

Kaynak: Wooldridge (2016)

Doğal Logaritma

- Ekonometrik analizde en önemli rolü oynayan doğrusal olmayan fonksiyon doğal **logaritma**dır (natural logaritm), yani *e* tabanında logaritmadır.
- Doğal logaritma için "log," ya da "ln" kullanılır. Fakat biz "ln" ile göstereceğiz.

Doğal Logaritma

$$y = \log_e x = \ln x$$

sadece x > 0 durumda tanımlıdır.

• Şekil 4'de grafiği verilen doğal logaritmanın özellikleri:

$$\ln x = \begin{cases} -\infty & \text{eğer} & x \le 0 \\ < 0 & \text{eğer} & 0 < x < 1 \\ 0 & \text{eğer} & x = 1 \\ > 0 & \text{eğer} & x > 1 \end{cases} \qquad \frac{\ln x_1 x_2 = 1}{\ln x_1 / x_2 = 1}$$

$$\frac{\partial \ln x}{\partial x} = \frac{1}{x}$$

$$\ln x_1 x_2 = \ln x_1 + \ln x_2, \quad x_1, x_2 > 0$$

$$\ln x_1 / x_2 = \ln x_1 - \ln x_2, \quad x_1, x_2 > 0$$

$$\ln x^c = c \ln x, \quad x > 0 \text{ ve } c \in \mathbb{R}$$

Doğal Logaritma

Şekil 4: Doğal Logaritma: $y = \ln x$

Kaynak: Wooldridge (2016)

Doğal Logaritma

- Doğal logaritma Slayt 19'de gösterilen doğal exponansiyel fonksiyonun tersidir.
- Doğal logaritmada x arttıkça eğim azalarak gittikçe sıfıra yaklaşır fakat hiçbir zaman sıfır ve negatif olmaz. Bir başka deyişle x'in y üzerindeki marjinal etkisi azalır fakat hiçbir zaman sıfır veya negatif olmaz.
- Fakat, karesel fonksiyonda β_1 ve β_2 parametrelerin işaretlerine göre bu etki sıfır veya negatif olabilir, Şekil 2'deki gibi.
- Logaritmik yakınsama özelliği ile logaritmik formdaki veride oluşan küçük değişimler, düzey formundaki veride oransal ya da yüzdesel değişim olarak yorumlanabilir. x_0 ve x_1 pozitif sayılar olduğunda:

$$\ln x_1 - \ln x_0 \approx (x_1 - x_0)/x_0$$
 (logaritmik yakınsama)
 $\Delta \ln x \approx \Delta x/x_0$ (oransal değişim)
 $100 \Delta \ln x \approx 100 \Delta x/x_0$ (100 ile çarpım)
 $100 \Delta \ln x \approx \% \Delta x$ (yüzdesel değişim)

 Logaritmik yakınsama sadece küçük değişimler için kullanılmalıdır. Büyük değişimlerde logaritmik yakınsama doğru sonuç vermez.

Esneklik

- Eğer sadece küçük değişimler için geçerli ise Slayt 23'de verilen logaritmik yakınsama özelliğine ekonometrik analizlerde neden ihtiyaç duyuyoruz?
- Bu soruyu cevaplamak için uygulamalı ekonometrinin birçok alanında kritik önemi olan **esneklik** (elasticity) kavramını inceleyelim.

Esneklik

y'nin x'e göre esnekliği x'de %1'lik bir artış olduğunda y'de meydana gelen yüzdesel değişmeyi ifade eder.

$$E = \frac{\% \Delta y}{\% \Delta x} = \frac{\Delta y}{\Delta x} \frac{x}{y}$$

• Slayt 23'de verilen logaritmik yakınsama özelliğini kullanarak yaklaşık esneklik formülünü yazabiliriz.

$$E = \frac{\% \Delta y}{\% \Delta x} \approx \frac{100 \, \Delta \ln y}{100 \, \Delta \ln x} = \frac{\Delta \ln y}{\Delta \ln x}$$

• Ekonometride sıklıkla tercih edilen 4 farklı **fonksiyonel form** (functional form) ile y ve x değişkenleri arasındaki ilişkiyi yorumlayıp esnekliği hesaplayalım.

Düzey-Düzey Fonksiyonel Formu

$$y = \beta_0 + \beta_1 x$$
 (fonksiyon)

$$\frac{\Delta y}{\Delta x} = \beta_1 \tag{türev}$$

$$\Delta y = \beta_1 \Delta x \qquad \text{(yorumlama)}$$

ceteris paribus koşulu altında, x'deki 1 birimlik artış, y'de β_1 birim kadar değişime neden olur.

$$E = \frac{\Delta y}{\Delta x} \frac{x}{y} = \beta_1 \frac{x}{y} = \beta_1 \frac{x}{\beta_0 + \beta_1 x}$$
 (esneklik)

y'nin x'e göre esnekliği hem parametreler β_0 ve β_1 'e hem de x'e bağlıdır, yani esneklik sabit değildir. Uygulamada esnekliği sabit bir değer olarak hesaplamak için yukarıdaki formülde genellikle verilerin ortalaması kullanılır, yani \bar{x} ve \bar{y} .

Düzey-Log Fonksiyonel Formu

$$y = \beta_0 + \beta_1 \ln x$$
 (fonksiyon)

$$\frac{\Delta y}{\Delta \ln x} = \beta_1$$
 (türev)

$$\frac{\Delta y}{\Delta \ln x} = \frac{100 \,\Delta y}{100 \,\Delta \ln x} \approx \frac{100 \,\Delta y}{\% \Delta x} \approx \beta_1 \quad \longrightarrow \quad \Delta y_t \approx (\beta_1/100)\% \Delta x_t \quad \text{(yorumlama)}$$

ceteris paribus koşulu altında, x'deki %1'lik artış, y'de $\beta_1/100$ birim kadar değişime neden olur.

$$E = \frac{\Delta y}{\Delta x} \frac{x}{y} = \frac{\Delta y}{\Delta x/x} \frac{1}{y} = \frac{\Delta y}{\Delta \ln x} \frac{1}{y} = \frac{\beta_1}{y} = \frac{\beta_1}{\beta_0 + \beta_1 \ln x}$$
 (esneklik)

y'nin x'e göre esnekliği hem parametreler β_0 ve β_1 'e hem de x'e bağlıdır, yani esneklik sabit değildir. Uygulamada esnekliği sabit bir değer olarak hesaplamak için yukarıdaki formülde genellikle verilerin ortalaması kullanılır, yani \bar{x} ve \bar{y} .

Log-Düzey Fonksiyonel Formu

$$ln y = \beta_0 + \beta_1 x$$
(fonksiyon)

$$\frac{\Delta \ln y}{\Delta x} = \beta_1$$
 (türev)

$$\frac{\Delta \ln y}{\Delta x} = \frac{100 \,\Delta \ln y}{100 \,\Delta x} \approx \frac{\% \Delta y}{100 \,\Delta x} \approx \beta_1 \quad \longrightarrow \quad \% \Delta y \approx (100 \,\beta_1) \Delta x \quad \text{(yorumlama)}$$

ceteris paribus koşulu altında, x'deki 1 birimlik artış, y'de %100 β_1 kadar değişime neden olur. 100 β_1 , y'nin x'e göre **yarı-esnekliği** (semi elasticity) olarak adlandırılır ve y ve x gibi verilere bağlı olmadığı için sabittir.

$$E = \frac{\Delta y}{\Delta x} \frac{x}{y} = \frac{\Delta y/y}{\Delta x} x = \frac{\Delta \ln y}{\Delta x} x = \beta_1 x$$
 (esneklik)

u'nin x'e göre esnekliği hem parametre β_1 'e hem de x'e bağlıdır, yani esneklik sabit değildir. Uygulamada esnekliği sabit bir değer olarak hesaplamak için yukarıdaki formülde genellikle verilerin ortalaması kullanılır, yani \bar{x} ve \bar{y} .

Log-Log Fonksiyonel Formu

$$ln y = \beta_0 + \beta_1 \ln x$$
(fonksiyon)

$$\frac{\Delta \ln y}{\Delta \ln x} = \beta_1 \tag{türev}$$

$$\frac{\Delta \ln y}{\Delta \ln x} = \frac{100 \, \Delta \ln y}{100 \, \Delta \ln x} \cong \frac{\% \Delta y}{\% \Delta x} = \beta_1 \quad \longrightarrow \quad \% \Delta y \cong \beta_1 \% \Delta x \quad \text{(yorumlama)}$$

ceteris paribus koşulu altında, x'deki %1'lik artış, y'de β_1 kadar değişime neden olur. β_1 , y'nin x'e göre esnekliğini yaklaşık olarak verir. y ve x gibi verilere bağlı olmadığı için sabittir. Bu nedenle **sabit esneklik** (constant elasticity) olarak adlandırılır.

$$E = \frac{\% \Delta y}{\% \Delta x} \approx \frac{100 \, \Delta \ln y}{100 \, \Delta \ln x} = \frac{\Delta \ln y}{\Delta \ln x} = \beta_1$$
 (esneklik)

y'nin x'e göre esnekliği (yaklaşık) sadece parametre β_1 'e bağlıdır, yani esneklik sabittir. Bu nedenle Log-Log fonksiyonel formu sabit esneklik modeli olarak da bilinir.

Kaynaklar

Gujarati, D.N. (2009). Basic Econometrics. Tata McGraw-Hill Education.

Stock, J.H. ve M.W. Watson (2015). Introduction to Econometrics.

Tastan, H. (2020). Lecture on Econometrics I. Personal Collection of H. Tastan. Retrieved from Online.

Wooldridge, J.M. (2016). Introductory Econometrics: A Modern Approach. Nelson Education.

Ek Bilgiler

• Euler sayısı *e*'yi hesaplayabilmek için birleşik faiz hesabını kullanacağız.

$$A = P(1+r)^n$$

A dönem sonu miktar; P anapara miktarı; r faiz oranı; n ise dönem sayısıdır.

- Varsayalım ki 1 TL anaparanız var ve yıllık faiz oranı %100.
 - Anaparanızı yıllık faize verdiğinizde, faiz oranı $\frac{1}{1} = \%100$ olacak ve yıl sonunda elde edeceğiniz miktar: $A = 1\left(1 + \frac{1}{1}\right)^1 = 2$ TL
 - Aynı miktarı aylık faize verdiğinizde, faiz oranı $\frac{1}{12}$ = %8.33 olacak ve yıl sonunda elde edeceğiniz miktar: $A = 1\left(1 + \frac{1}{12}\right)^{12} = 2.61 \text{ TL}$
 - Aynı miktarı günlük faize verdiğinizde, faiz oranı $\frac{1}{365} = \%0.27$ olacak ve yıl sonunda elde edeceğiniz miktar: $A = 1\left(1 + \frac{1}{365}\right)^{365} = 2.71$ TL
 - Aynı miktar sürekli faiz işleyecek şekilde yatırılırsa, yıl sonunda elde edeceğiniz miktar: $A = 1 \left(1 + \frac{1}{n}\right)^n = 2.718281828...$ TL
- Kısaca euler sayıs *e* şu şekilde hesaplanabilir.

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \cdots$$