

Instituto Superior Técnico LEEC Sinais e Sistemas

Relatório Laboratório Sinais e Sistemas

Aluno: Henrique Machado 103202 Aluno: Miguel Neves 103462

Grupo: 79

Janeiro 2023

Conteúdo

1	Sinais Sinusoidais	1
2	Notas Musicais	1
3	Impulso e Degrau Unitários	1
4	Sistemas	3
5	Série de Fourier	6
6	Resposta em Frequência	7
7	Filtragem	10
8	Amostragem	11

1 Sinais Sinusoidais

- Q1: As sinusoidais com frequência mais altas correspondem aos sons mais agudos, inversamente, as sinusoidais com frequência mais baixa correspondem aos sons mais graves.
- Q2: A frequência minima que nós conseguimos ouvir foi 55hz e a frequência máxima que conseguimos ouvir foi 18000hz.

2 Notas Musicais

• Q3:

 Mi_4 : 329.63hz

 $Fá_4^{\#}: 370.00hz$

 Sol_4 : 392.00hz

 Si_4 : 493.89hz

Dó₅: 554.37hz

3 Impulso e Degrau Unitários

• Q4: Com base na definição de degrau unitário, u(at+b) pode ser escrito como $u(\pm t-t_0)$ uma vez que: $t_0 = \frac{b}{|a|}$, onde temos que

$$\begin{cases} a > 0, & t > 0 \\ a < 0, & t < 0 \end{cases}$$

Caso a < 0, verifica-se uma inversão no tempo do gráfico de u(t).

• Q5:
$$\delta(at) = \frac{1}{\Delta}[u(at) - u(at - \Delta)] \in \delta(at) = \lim_{\Delta \to 0} \delta_{\Delta}(at)$$
, com $a > 0$
Para $\delta(t)$ Para $\delta(at)$

Figura 1: Comparação entre os gráficos entre $\delta(t)$ e $\delta(at)$

Área =
$$\frac{1}{\Delta} \times \Delta = 1$$
 Área = $\frac{1}{\Delta} \times \frac{\Delta}{a} = \frac{1}{a}$ Logo, $\delta(at) = \frac{1}{a}\delta(t)$, com $a > 0$.

• Q6: Não se verifica nenhuma mudança no gráfico de $\delta(at)$ em relação ao gráfico de $\delta(t)$. No entanto, pelo que foi concluído previamente, o que deveria acontecer seria uma redução da área do impulso devido ao produto pelo termo $\frac{1}{a}$ (sendo a>1) transformação esta que não é visível no visor.

4 Sistemas

• Q7: O sistema apresentado é linear:

$$x_1(t) \to y_1(t) = x_1(t) + 0.5x_1(t - 0.25)$$

$$x_2(t) \to y_2(t) = x_2(t) + 0.5x_2(t - 0.25)$$

$$x_3(t) \to \text{Combinação linear de } x_1(t) \text{ e } x_2(t) : x_3(t) = ax_1(t) + bx_2(t)$$

$$y_3(t) = x_3(t) + 0.5x_3(t + 0.25)$$

$$= ax_1(t) + bx_2(t) + 0.5(ax_1(t - 0.25) + bx_2(t - 0.25))$$

$$= ax_1(t) + bx_2(t) + 0.5ax_1(t - 0.25) + 0.5bx_2(t - 0.25)$$

$$= a(x_1(t) + 0.5x_1(t - 0.25)) + b(x_2(t) + 0.5x_2(t - 0.25))$$

$$= ay_1(t) + by_2(t) \to \text{é linear.}$$
 E é invariante no tempo:

$$\begin{split} y_1(t) &= x_1(t) + 0.5x_1(t-0.25) \\ x_2(t) &= x_1(t-t_0) \to y_2(t) = x_2(t) + 0.5x_2(t-0.25) \\ &= x_1(t-t_0) + 0.5x_1(t-t_0-0.25) \\ y_1(t-t_0) &= x_1(t-t_0) + 0.5x_1(t-t_0-0.25) \\ \log y_2(t) &= y_1(t-t_0) \to \text{\'e} \text{ invariante no tempo.} \end{split}$$

• Q8: Resposta do sistema ao impulso unitário: $\delta(t)y(t) = \delta(t) + 0.5\delta(t - 0.25)$

Figura 2: Visualização dos gráficos

• Q9: O sistema apresentado (y(t)) possui memória visto que não depende apenas do valor de x(t) mas sim de x(t) e de (t-0.25). Para além disso é um sistema causal uma vez que o seu output depende apenas dos valores do presente x(t) e do passado x(t-0.25). Em relação à sua estabilidade, pode-se afirmar que é um sistema estável, visto que não é possível encontrar nenhum input limitado que provocasse um output não limitado:

Sendo a, b números arbitrários que verificam as condições

$$\begin{cases} |x(t)| < a \\ |x(t - 0.25)| < b \end{cases}$$

Então: -a - 0.5b < y(t) < at + 0.5b, o que representa um output limitado.

- Q10: O efeito produzido pelo sistema é um eco (prolongamento do som).
- Q11: $x_2(t) = \cos(44t)$, que pode ser escrito como

$$x_2(t) = \frac{1}{2}e^{j44t} + \frac{1}{2}e^{-j44t}$$

$$y_2(t) = x_2(t) + 0.5x_2(t - 0.25) =$$

$$= \frac{1}{2}e^{j44t} + \frac{1}{2}e^{-j44t} + \frac{1}{2}\left(\frac{1}{2}e^{j44t - 0.25} + \frac{1}{2}e^{-j44t + 0.25}\right)$$

$$= \frac{1}{2}e^{j44t} + \frac{1}{2}e^{-j44t} + \frac{1}{4}e^{j44t - 11} + \frac{1}{4}e^{-j44t + 11}$$

$$= \frac{1}{2}e^{j44t} + \frac{1}{2}e^{-j44t} + \frac{1}{4}e^{j44t} + \frac{e^{11}}{4}e^{-j44t}$$

$$= \frac{2e^{11} + 1}{4e^{11}}e^{j44t} + \frac{2 + e^{11}}{4}e^{-j44t}$$

• Q12: Para avaliarmos estas propriedades deste sistema, testamos o seu comportamento com vários sinais de input.

Para testar a linearidade, testamos com $x_1(t) = u(t)$ e com $x_2(t) = 2tu(t)$. Ao analisarmos os gráficos de saída obtidos, não se verificou que $y_0(t) = 2ty_1(t)$, logo o sistema não é linear.

Em relação à invariância no tempo, utilizámos o mesmo input $x_1(t) = u(t)$, mas agora um $x_2(t) = u(t-1)$. Para o sistema ser invariante no tempo, o gráfico obtido de saída de $y_2(t)$ deveria traduzir-se numa translação do gráfico de $y_1(t)$, algo que não acontece. Assim, conclui-se que o sistema não é variante no tempo.

Para testar a memória, utilizámos os inputs $x_1(t) = 0$ e $x_2(t) = \delta(t)$. Apenas em t = 0, os valores dos sinais de entrada seriam diferentes na hipótese do sistema não ter memória. No entanto verificam-se mais instantes em que isso acontece, logo o sistema tem memória.

No que diz respeito à causalidade, por mais testes que realizássemos para vários sinais de entrada, nunca seria possível concluir nada pois seria necessário testar toda a infinidade de entradas possíveis. No entanto para os testes que efetuamos, aparenta ser um sinal causal.

Por último, testamos o sistema com alguns sinais de entrada limitados, sendo o resultado obtido também limitado. Contudo, tal como a causalidade, não podemos ter a certeza porque o sistema tem de ter este comportamento para todos os inputs possíveis.

5 Série de Fourier

• Q13:
$$w_0 = \frac{2\pi}{T} = \frac{2\pi}{0.4} = 5\pi$$
 $T = 0.4$
$$a_0 = \frac{1}{T} \int_T x(t)dt = \frac{1}{0.4} \times 1.2 = \frac{12}{4} = 3$$

Utilizando as propriedades da série de Fourier:

$$a_k = \frac{1}{T} \int_{-T_1}^{T_1} e^{-jkw_0 t} dt = \frac{\sin(kw_0 T_1)}{k\pi} = \frac{\sin(k \times 5\pi \times 0.2)}{k\pi} = \frac{\sin(k\pi)}{k\pi}$$

Propriedade do deslocamento $\rightarrow b_k = a_k e^{-jk(5\pi)0.1} = a_k e^{-jk0.5\pi}$ Existe um offset que provoca um deslocamento do sinal para cima, que afeta apenas a_0

$$b_k = \begin{cases} 0, & k \neq 0 \\ 4, & k = 0 \end{cases} \qquad e_k = \begin{cases} a_k e^{-jk0.5\pi}, & k \neq 0 \\ a_0 + 4, & k = 0 \end{cases}$$

Propriedade da derivada:

Para $k \neq 0$:

$$e_k = jk(5\pi)dk \Leftrightarrow d_k = \frac{e_k}{5\pi jk} \Leftrightarrow d_k = \frac{a_k e^{-jk0.5\pi}}{5\pi jk} \Leftrightarrow d_k = \frac{\sin(k\pi)e^{-jk0.5\pi}}{5\pi^2 k^2 j}$$

• Q14:

$$x_N(t) = \sum_{k=-N}^{N} a_k e^{jkw_0 t} = \sum_{k=-\inf}^{-1} a_k e^{jkw_0 t} + a_0 + \sum_{k=1}^{+\inf} a_k e^{jkw_0 t}$$

$$= \sum_{k=-\inf}^{-1} a_k (\cos(kw_0 t) - j\sin(kw_0 t)) + a_0 + \sum_{k=1}^{+\inf} a_k (\cos(kw_0 t) + j\sin(kw_0 t))$$

$$= a_0 + \sum_{k=1}^{+\inf} a_k \cos(\varphi_k) \cos(kw_0 t) - a_k \sin(\varphi_k) \sin(kw_0 t)$$

$$= a_0 + \sum_{k=1}^{+\inf} a_k \cos(kw_0 t) - a_k \sin(\varphi_k) \sin(kw_0 t)$$

$$= a_0 + \sum_{k=1}^{+\inf} a_k \cos(kw_0 t) + \varphi_k$$
Sendo $a = a_k \cos(\varphi_k)$ $b = -a_k \sin(\varphi_k)$, então:
$$A_k = \sqrt{(a^2 + b^2)} e \varphi_k = \arctan(-\frac{b}{\epsilon}), A_0 = a_0$$

6 Resposta em Frequência

• Q18: Para determinar o módulo e o argumento da resposta em frequência do sistema H(jw) para cada valor de w, necessitamos de medir experimentalmente no sinal de saída y(t) a amplitude e a fase da frequência w.

Com esses valores conseguimos calcular a transformada de Fourier de y(t) a partir da fórmula:

$$Y(jw) = \int y(t)e^{-jwt}dt$$

Com isso conseguimos calcular o módulo de H(jw) a partir da fórmula:

$$|H(jw)| = \frac{|Y(jw)|}{|X(jw)|}$$

Sendo X(jw)a transformada de Fourier de x(t).

O argumento da resposta em frequência do sistema H(jw) é calculado a partir da fórmula:

$$\angle H(jw) = \angle Y(jw) - \angle X(jw)$$

• Q19: Para calcular o módulo da resposta em frequências do sistema3 usaremos a fórmula

$$|H(jw)| = \frac{|Y(jw)|}{|X(jw)|}$$

em que |Y(jw)| é a amplitude do sinal de saída e |X(jw)| é a amplitude do sinal de entrada dado por $\cos(wt)$.

$$w = 0, |Y(jw)| = 1 \text{ e } |X(jw)| = 1, \log |H(jw)| = \frac{1}{1} = 1$$

$$w = 1, |Y(jw)| = 0.933 \text{ e } |X(jw)| = 1, \log |H(jw)| = \frac{0.933}{1} = 0.933$$

$$w = 3, |Y(jw)| = 0.657 \text{ e } |X(jw)| = 3, \log |H(jw)| = \frac{0.657}{3} = 0.219$$

$$w = 5, |Y(jw)| = 0.463 \text{ e } |X(jw)| = 5, \log |H(jw)| = \frac{0.463}{5} = 0.0926$$

$$w = 10, |Y(jw)| = 0.252 \text{ e } |X(jw)| = 10, \log |H(jw)| = \frac{0.252}{10} = 0.0252$$

$$w = 20, |Y(jw)| = 0.130 \text{ e } |X(jw)| = 20, \log |H(jw)| = \frac{0.130}{20} = 0.0065$$

$$w = 50, |Y(jw)| = 0.065 \text{ e } |X(jw)| = 50, \log |H(jw)| = \frac{0.065}{50} = 0.0013$$

• Q20:

Figura 3: Gráfico do módulo da resposta em frequência

Interpretando o gráfico conseguimos ver que é um filtro passa baixo, pois com as frequênciasmais baixas o módulo é maior. Este filtro não é ideal pois exibe as características de transmissão com distorção.

• Q21: A equação diferencial a que obedece o sistema é:

$$\tau \frac{dy(t)}{dt} + y(t) = x(t)$$

uma vez que se trata de um sistema de primeira ordem, RC.

Sendo
$$\tau > 0$$
 e $x(t) = e^{jwt}$: $\frac{\tau dy(t)}{dt} + y(t) = x(t)$

Sendo $\tau > 0$ e $x(t) = e^{jwt}$: $\frac{\tau dy(t)}{dt} + y(t) = x(t)$ Utilizando os propriedades da transformada da série de Fourier (Propriedade da derivada e linearidade):

$$\Leftrightarrow \tau jwY(jw) + Y(jw) = X(jw) \Leftrightarrow$$

$$\Leftrightarrow \frac{\tau jwY(jw)}{X(jw)} + \frac{Y(jw)}{X(jw)} = 1 \Leftrightarrow \tau jwH(jw) + H(jw) = 1$$

$$\Leftrightarrow H(jw)(\tau jw + 1) = 1$$

$$\Leftrightarrow H(jw) = \frac{1}{\tau jw + 1}, \text{ Sendo } \tau = RC, H(jw) = \frac{1}{RCjw + 1}$$

Sendo a resposta do circuito ao impulso unitário $\delta(t)$ dada por h(t)

$$L\delta(\tau)=1$$

$$y(t) = \frac{\frac{1}{\tau}}{s + \frac{1}{\tau}} e x(t) = L^{-1} \{ y(t) \} = \frac{1}{\tau} e^{-\frac{\tau}{t}}$$

$$\text{Logo, } h(t) = x(t) \times u(t) = \frac{1}{\tau} e^{-\frac{\tau}{t}} \times u(t) = \frac{1}{RC} e^{-\frac{t}{RC}} u(t)$$

$$|H(jw)| = |\frac{1}{RCjw + 1}| = \frac{|1|}{|RCjw + 1|} = \frac{1}{\sqrt{(RCw)^2 + 1}}$$

Para calcularmos o $\angle H(jw)$, podemos apenas calcular graficamente o desfazamento do sinal de entrada x(t) com o sinal de saída y(t):

$$\angle H(jw) = \Delta s \times w$$
, sendo Δs o desfazamento.

Ou de outra forma,
$$\angle H(jw) = -\arctan(wRC)$$

• Q22:

7 Filtragem

- Q23: Sendo que um filtro passa-baixo apenas deixa passar as frequências baixas e rejeita as frequências mais altas, logo este não reproduz bem as zonas de variação rápida do sinal p, mas reproduz bem as zonas de variação lenta.
 - Por sua vez o filtro passa-alto, como é o inverso do filtro passa-baixo, reproduz bem as zonas de variação rápida do sinal p, mas não reproduz bem as zonas de variação lenta.
- Q24: O valor aproximado das frequências dessas sinusóides é no intervalo de 800hz a 1000hz, ou seja o intervalo do filtro.
 Com a aplicação deste mesmo filtro ao sinal p é de esperar que a zona de frequência mais baixa do sinal, ou seja, com frequência menor que 800hz não seja reproduzida. Como a zona de variação rápida do sinal

é composta por infinitos sinais de diversas frequências é de esperar que

quando se aplica este filtro isto se restrinja e apenas alguns sinais sejam reproduzidos, daí a característica sinusoidal.

8 Amostragem

• Q25: O Teorema da Amostragem afirma que, para reconstruir corretamente um sinal contínuo a partir de suas amostras, é necessário que

$$w_s > 2w_{onda}$$

sendo w_s a taxa de amostragem e w_{onda} a frequências da onda. A frequência máxima no nosso caso é de 10π radianos por segundo, logo a taxa de amostragem vai ter de ser maior que 20π amostras por segundo, logo como $w=\frac{2\pi}{T} \Leftrightarrow T=\frac{2\pi}{w}$ temos que a gama de valores terá de ser menor que $T=\frac{2\pi}{20\pi}=\frac{1}{10}=10^{-1}$.

- **Q26:** Os sinais relacionam-se da seguinte maneira: $xd(n) = xc\left(\frac{n}{100}\right)$, isto é, verifica-se um escalamento com coeficiente $a = \frac{1}{100}$ do gráfico de xd(n) em relação ao de xc(n).
- Q27: Período de $y_c = T_{y_c} = 0.1$
- Q28:

Figura 4: Transformação de Fourier de xc1(verde) e yc1(azul)

• Q29: O espectro que obtivemos provem dos processos de amostragem e de reconstrução de sinais. O método de amostragem consiste em obter um sinal formado por várias réplicas da transformada de xc1, réplicas estas que se vão repetindo com uma frequência pré-definida (frequência de amostragem). Posteriormente, efetua-se um escalamento de maneira a que o sinal se converta num sinal discreto.

Neste caso, a condição do Teorema da Amostragem $(w_s > 2w_{onda})$ não se verifica, o que leva ao chamado *aliasing*, provocando diferenças no sinal à saída relativamente ao xc1 (Alguns traços do sinal desaparecem). No que toca à reconstrução de sinais, é possível afirmar que a frequência do sinal é modificada: frequência yc1 = frequência xc1

Figura 5: Função xc1(verde) e yc1(azul)