

UNIVERSIDADE FEDERAL DO CEARÁ - UFC

Campus de Sobral

Departamento de Engenharia Elétrica

Disciplina: Variáveis Complexas SBL0095

Prof. Ailton Campos

Data: 23/05/2022 Período: 2023.1

Nome:_

3ª Lista de Exercícios

- 1. Fazer todos os exercícios ímpares do capítulo 4 (Integrais) do livro texto.
- 2. Seja u(x,y) uma função harmônica numa região R, uma função v(x,y) de modo que f=u+iv seja analítica em R é chamada a função **harmônica conjugada** da função u e é determinada pelas equações de Cauchy-Riemann. De fato, u e v devem satisfazer

$$v_y = u_x e v_x = -u_y$$

Resolva os seguintes itens.

- a) Sendo f = u + iv uma função analítica numa região R, mostre que u é conjugada harmônica de -v.
- b) Mostre que u = x 5xy é harmônica em todo plano. Determine sua conjugada v e expresse f = u + iv em termos de z = x + iy.
- 3. Integrar as seguintes funções sobre o caminho circular dado por |z|=3 orientado no sentido positivo:
 - a) Log(z-4i).
 - b) $\frac{1}{z-1}$.
 - c) O valor principal de i^{z-3} .
- 4. (O índice de uma curva) Suponha que $\gamma:[0,1]\to\mathbb{C}$ é uma curva suave fechada que não passa pela origem. Definimos o winding number ou o índice da curva γ (em torno de 0) como

$$w(\gamma) := \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z} dz = \frac{1}{2\pi i} \int_{0}^{1} \frac{\gamma'(t)}{\gamma(t)} dt.$$

a) Use o fato que $\exp(2\pi i \mathfrak{a}) = 1$ se, e somente se $\mathfrak{a} \in \mathbb{Z}$, para mostrar que $w(\gamma) \in \mathbb{Z}$, prosseguindo da seguinte forma. Defina $\varphi : [0,1] \to \mathbb{C}$ por

$$\phi(t) = \exp\left(\int_0^t \frac{\gamma'(s)}{\gamma(s)} ds\right), \ t \in [0,1].$$

Para mostrar que $w(\gamma) \in \mathbb{Z}$, basta provar que $\varphi(1) = 1$. Para tanto, calcule $\varphi'(t)$ e use esta expressão para mostrar que φ/γ é constante em [0,1]. Use este fato para concluir que $\varphi(1) = 1$.

- b) Calcule o índice de $\gamma_1:[0,1]\to\mathbb{C}$ dada por $\gamma_1(t)=\exp(2\pi i t),\ t\in[0,1].$
- c) Seja $\mathfrak{m} \in \mathbb{N}$. Calcule o índice de $\gamma_{\mathfrak{m}} : [0,1] \to \mathbb{C}$ dada por $\gamma_{\mathfrak{m}}(t) = \exp(2\pi i \mathfrak{m} t), \ t \in [0,1]$.
- 5. Calcule as integrais dadas.

a)
$$\int_0^{\frac{\pi}{6}} e^{i2t} dt.$$

b)
$$\int_0^\infty e^{-zt} dt \ (\text{Re}z > 0).$$

- 6. Calcule as seguintes integrais curvilíneas.
 - a) $\int_C (z-1) dz$, onde C é o caminho semicircular $z=1+e^{i\theta}, \ \pi \leqslant \theta \leqslant 2\pi$.
 - b) $\int_C \frac{z+2}{z} dz$, onde C é o caminho circular $z = 2e^{i\theta}$, $0 \le \theta \le 2\pi$.
 - c) $\int_{\gamma} \frac{1}{z} dz$, onde γ é o círculo unitário centrado na origem e orientado negativamente.
 - d) $\int_{\gamma} (\overline{z} + z^2 \overline{z}) dz$, onde γ é o quadrado unitário de lado 2 centrado na origem e orientado positivamente.
 - e) $\int_{\gamma} \frac{z}{8+z^2} dz$, onde γ é o triângulo com vértices 1, i, -i e orientado negativamente.
 - f) $\int_{\gamma} \frac{\overline{z}}{8+z} dz$, onde γ é o retângulo com vértices $\pm 3, \pm i$ e orientado positivamente.
- 7. Use a fórmula integral de Cauchy para calcular as integrais.
 - a) $\int_C \frac{z^2+1}{z+2} dz$, onde C é o caminho circular |z|=3.
 - b) $\int_C \frac{\cos z}{z(z^2+8)} dz$, onde C é a fronteira orientada positivamente do quadrado de lados delimitados pelas retas $x=\pm 2$ e $y=\pm 2$.
 - c) $\int_{\gamma} \frac{\exp z}{z-1} dz$, onde γ é o círculo |z|=2 orientado negativamente.
 - d) $\int_{\gamma} \frac{z^2+1}{z^2-1} dz$, onde γ é o círculo |z+1|=1 orientado negativamente.
- 8. (O ramo principal da função z^c). A equação V.P. $z^c = e^{c \text{Log} z}$ também serve para definir o ramo principal da função z^c no domínio |z| > 0, $-\pi < \text{Arg } z < \pi$.

Usando o ramo principal da função potência $f(z)=z^{-1+\mathfrak{i}}$ calcule a integral

$$I = \int_{C} z^{-1+i} dz$$

onde C é o círculo unitário $z=e^{\mathrm{i}\theta},\ -\pi\leqq\theta\leqslant\pi$ em torno da origem e orientado positivamente.

Bom Trabalho!!!