Small-Signal Model Parameters

• Diode Resistance (r_D)/Diode Conductance (g_D):

$$\mathbf{r}_{\mathrm{D}} = \left(\mathbf{g}_{\mathrm{D}}\right)^{-1} = \left(\frac{\partial \mathbf{I}_{\mathrm{D}}}{\partial \mathbf{V}_{\mathrm{D}}}\right)^{-1} \bigg|_{\mathbf{I}_{\mathrm{D}} = \mathbf{I}_{\mathrm{DO}}} = \frac{\mathbf{V}_{\mathrm{T}}}{\mathbf{I}_{\mathrm{DQ}}}$$

- \triangleright For $I_{DQ} = 1$ mA, $r_D = 26 \Omega$
- > Under forward bias, diode offers very small resistance

• *Diode Capacitance* (C_D):

m: Grading coefficient

(1/2 for abrupt step junction, 1/3 for linearly graded junction)

- Both r_D and C_D appear in parallel across the junction
- The two quasi-neutral resistance r_p and r_n appear in series with this combination

Small-Signal Equivalent

- In absence of r_p and r_n , it's just a parallel RC circuit, and shorts out at high frequency
 - ightharpoonup Diode time constant $\tau_D = r_D C_D = \tau$