Claudio Sacerdoti Coen

<sacerdot@cs.unibo.it>

Universitá di Bologna

21,22.../11/2019

Deduzione naturale: sintassi

$$B, D \land A \vdash A \land (B \Rightarrow C) \Rightarrow C \qquad \frac{ \begin{array}{c} [A \land (B \Rightarrow C)] \\ \hline B \Rightarrow C \end{array} \begin{array}{c} A \land (B \Rightarrow C) \Rightarrow C \\ \hline \hline A \land (B \Rightarrow C) \Rightarrow C \end{array} \Rightarrow_{i} \Rightarrow$$

Un albero di deduzione naturale per $\Gamma \vdash F$ è una struttura dati arborescente tale che

- i nodi sono etichettati con delle formule
- le foglie sono formule scaricate (o cancellate) [G] (ipotesi locali) oppure formule non scaricate G ipotesi (globali)
- la radice è etichettata con F
- le foglie non scaricate sono etichettate con formule appartenenti a Γ
- i nodi interni, oltre alla formula, sono etichettati con delle regole di inferenza

Deduzione naturale: passi di inferenza

Usiamo la seguente sintassi per le regole di inferenza:

$$\frac{F_1 \dots F_n}{F}$$
 (NOME REGOLA)

La formula F è la conclusione della regola. Le formule F_1, \ldots, F_n sono le premesse della regola.

[*A*]

La premessa F_i verrà indicata con \vdots per indicare che è F_i

possibile assumere localmente A per concludere F_i .

Una regola senza premesse (n = 0) si dice assioma.

Deduzione naturale: alberi di deduzione

Gli alberi di deduzione vengono indicati componendo ricorsivamente regole di inferenza. Esempio:

$$\frac{F_{1}...F_{n}}{H_{1}} \frac{(regola-1)}{H} \frac{G_{1}...G_{m}}{H_{l}} \frac{(regola-l)}{(regola-x)}$$

Nell'esempio $\frac{F_1...F_n}{H_1}$ (regola – 1) è un sottoalbero dell'intero albero di deduzione.

La struttura ricorsiva permette di definire funzioni per ricorsione strutturale su alberi di deduzione e di effettuare prove per induzione strutturale.

Deduzione naturale: passi di inferenza

Vi sono due tipi di passi di inferenza:

- Regole di introduzione di un connettivo: ci dicono tutti i modi in cui concludere direttamente una formula con in testa un determinato connettivo come concludo . . . ?
- Regole di eliminazione di un connettivo: ci dicono tutti i modi in cui utilizzare direttamente un'ipotesi con in testa un determinato connettivo cosa ricavo da ...?

Deduzione naturale: passi di inferenza

Ogni passo di inferenza ammette sempre due letture:

- **1** Bottom-up (dalle premesse alla conclusione): date le premesse F_1, \ldots, F_n , posso concludere F
- Top-down (dalla conclusione alle premesse): per concludere F posso ridurmi a dimostrare F₁,...,F_n

Segreto dei matematici:

- Le prove vengono cercate in maniera prevalentemente top-down, riducendo la conclusione a sotto-conclusioni più semplici
- Le prove vengono poi presentate in maniera prevalentemente bottom-up per aumentarne l'eleganza

Deduzione naturale: correttezza

Una regola $\frac{F_1...F_n}{H}$ (nome) è corretta quando $F_1,...,F_n \Vdash H$

Se una premessa contempla ipotesi scaricate, esse vanno integrate tramite applicazioni nella formula finale. Esempio:

è corretta quando $E, F \Rightarrow G \Vdash H$

LE REGOLE CORRETTE DIMOSTRANO SOLO CONSEGUENZE LOGICHE

Deduzione naturale: correttezza e invertibilità

Noi saremo interessati solamente a regole corrette e tutte quelle che vi mosterò sono corrette.

Definizione: una regola $\frac{F_1...F_n}{F}$ è invertibile quando per ogni i si ha $F \Vdash F_i$. Come per la correttezza, eventuali ipotesi scaricate (p.e. H) di F_i vanno integrate con una implicazione (es. $F \Vdash H \Rightarrow F_i$).

L'invertibilità gioca un ruolo importante nella ricerca delle prove: se la regola è invertibile, può essere sempre applicata nella ricerca top-down della prova senza portare a vicoli ciechi. Inoltre non c'è bisogno di fare backtracking su quella regola nel caso il tentativo di dimostrazione precedente non abbia portato da nessuna parte.

Regole di introduzione:

$$\frac{F_1 \quad F_2}{F_1 \wedge F_2} \tag{\wedge_i}$$

Lettura bottom-up: se F_1 e F_2 allora $F_1 \wedge F_2$.

Lettura top-down: per dimostrare $F_1 \wedge F_2$ debbo dimostrare sia F_1 che F_2 .

Scrittura informale (spesso lasciata implicita):

```
...e quindi F_1
...e quindi F_2
[e quindi F_1 \wedge F_2]
```

In Matita:

- ... we proved F_1 (H1)
- ... we proved F_2 (H2)

by H1, H2, conj we proved $F_1 \wedge F_2$

$$\frac{F_1 \quad F_2}{F_1 \wedge F_2} \tag{\wedge_i}$$

Correttezza classica: $F_1, F_2 \Vdash F_1 \land F_2$ in quanto, per ogni mondo v, se $\llbracket F_1 \rrbracket^v = \llbracket F_2 \rrbracket^v = 1$ allora $\llbracket F_1 \land F_2 \rrbracket^v = \min\{\llbracket F_1 \rrbracket^v, \llbracket F_2 \rrbracket^v\} = 1$.

Invertibilità classica: $F_1 \wedge F_2 \Vdash F_i$ per $i \in \{1,2\}$ in quanto, per ogni mondo v, se $\llbracket F_1 \wedge F_2 \rrbracket^v = \min\{\llbracket F_1 \rrbracket^v, \llbracket F_2 \rrbracket^v\} = 1$ allora $\llbracket F_i \rrbracket^v = 1$ per $i \in \{1,2\}$.

Regola di eliminazione:

Lettura bottom-up: se $F_1 \wedge F_2$ e se ipotizzando F_1 e F_2 concludo F_3 , allora F_3 .

Lettura top-down: per dimostrare F_3 data l'ipotesi $F_1 \wedge F_2$ è sufficiente dimostrare F_3 sotto le ipotesi F_1 e F_2 .

Scrittura informale:

```
\dots F_1 \wedge F_2

[supponiamo F_1 e anche F_2]

\dots e quindi F_3

[e quindi F_3]
```

L'applicazione della regola viene sempre lasciata implicita.

In Matita:

```
... we proved (F_1 \wedge F_2) (H) by H we have F_1 (H1) and F_2 (H2)
```

Regola di eliminazione:

$$[F_1][F_2]$$

$$\vdots$$

$$F_1 \wedge F_2 \qquad F_3$$

$$F_3 \qquad (\land e)$$

Nota: un albero di derivazione che termini applicando la regola \wedge_e ha due sotto-alberi immediati. Il primo dimostra $F_1 \wedge F_2$. Il secondo dimostra F_3 usando, fra le altre, le ipotesi F_1 e F_2 NON ANCORA SCARICATE. È l'applicazione della regola che scarica le ipotesi dal sotto-albero.

Regola di eliminazione:

$$[F_1][F_2]$$

$$\vdots$$

$$F_1 \wedge F_2 \qquad F_3$$

$$F_3 \qquad (\land e)$$

Correttezza classica: $F_1 \wedge F_2$, $F_1 \Rightarrow F_2 \Rightarrow F_3 \Vdash F_3$ in quanto, per ogni mondo v tale che $\min\{\llbracket F_1\rrbracket^v, \llbracket F_2\rrbracket^v\} = 1$ (e quindi $\llbracket F_1\rrbracket^v = \llbracket F_2\rrbracket^v = 1$) e $\llbracket F_1 \Rightarrow F_2 \Rightarrow F_3\rrbracket^v = 1$ (e quindi $\max\{1 - \llbracket F_1\rrbracket^v, 1 - \llbracket F_2\rrbracket^v, \llbracket F_3\rrbracket^v\} = \max\{0, 0, \llbracket F_3\rrbracket^v\} = 1$) si ha $\llbracket F_3\rrbracket^v = 1$.

Regola di eliminazione:

$$[F_1][F_2]$$

$$\vdots$$

$$F_1 \wedge F_2 \qquad F_3$$

$$F_3 \qquad (\wedge_e)$$

La regola non è invertibile. Esempio: $F_3 = \top$ e $F_1, F_2 = \bot$: si ha $\top \not \Vdash \bot \land \bot$ La regola è invertibile se si assume $F_1 \land F_2$: ovvio in quanto $F_3 \Vdash F_1 \Rightarrow F_2 \Rightarrow F_3$

Regole alternative di eliminazione:

$$\frac{F_1 \wedge F_2}{F_1} \tag{\wedge_{e_1}}$$

$$\frac{F_1 \wedge F_2}{F_2} \tag{\wedge_{e_2}}$$

Lettura bottom-up: se $F_1 \wedge F_2$ allora F_1 (e F_2). Lettura top-down: per dimostrare F_1 (o F_2) basta dimostrare $F_1 \wedge F_2$. Scrittura informale:

...e quindi $F_1 \wedge F_2$

[e quindi F_1]

Le due regole vengono quasi sempre omesse.

Regole alternative di eliminazione:

$$\frac{F_1 \wedge F_2}{F_1} \tag{\wedge_{e_1}}$$

$$\frac{F_1 \wedge F_2}{F_2} \tag{$\wedge_{\mathfrak{S}_2}$}$$

Correttezza classica $F_1 \wedge F_2 \Vdash F_i$ per $i \in \{1,2\}$ in quanto in ogni mondo v tale che $\llbracket F_1 \wedge F_2 \rrbracket^v = \min\{\llbracket F_1 \rrbracket^v, \llbracket F_2 \rrbracket^v\} = 1$ si ha $\llbracket F_i \rrbracket^v = 1$ per $i \in \{1,2\}$

Regole alternative di eliminazione:

$$\frac{F_1 \wedge F_2}{F_1} \tag{\wedge_{e_1}}$$

$$\frac{F_1 \wedge F_2}{F_2} \tag{\wedge_{e_2}}$$

Le due regole non sono invertibili: esempio $F_1 = \top$ e $F_2 = \bot$: si ha $\top \not\Vdash \top \land \bot$.

Le prove si possono cercare in vari modi:

- Bottom-up: partendo dalle ipotesi si applicano in avanti le regole fino a trovare la conclusione.
 - Pro: non si commettono mai errori
 - Cons: è molto difficile vedere le prove così perchè vi sono troppe strade che non portanto alla conclusione cercata
- Top-down: partendo dalla conclusione si applicano indietro le regole fino a ridursi a un sottoinsieme delle ipotesi.
 - Pro: più facile trovare le dimostrazioni se si sta attenti a non sbagliarsi (= ridursi a dimostrare qualcosa di non vero)
 - Cons: è possibile sbagliarsi quando si applicano regole non invertibili
- Strategia mista: si alternano le due strategie, tipicamente partendo con una top-down.

Come evitare errori?

- Dopo l'applicazione top-down di una regola di inferenza non invertibile, accertarsi che la conclusione sia ancora dimostrabile a partire dalle premesse.
 - Esempio: per dimostrare $A \wedge B \vdash A$ si parte da A e lo si riduce a $A \wedge C$. Si ha $A \wedge B \not\Vdash A \wedge C$ (anche se $A \wedge B \Vdash A$).
- Verificare di non essersi ridotti a dimostrare qualcosa che si sta già dimostrando con le stesse ipotesi (ragionamento circolare).

Esempio: per dimostrare A ci si riduce a dimostrare $A \wedge B$ che dimostriamo riducendoci a dimostrare sia A che B.

Esercizi (esempi alla lavagna):

- $A \wedge B \vdash B \wedge A$
- $A \wedge (B \wedge C) \vdash (A \wedge B) \wedge C$
- $(A \wedge B) \wedge (C \wedge D) \vdash A \wedge D \wedge A$
- O Cercare le dimostrazioni usando solo ∧_i e ∧_e
- ② Cercare le dimostrazioni usando solo \wedge_i , \wedge_{e_1} e \wedge_{e_2} .
- Trascrivere la prova usando il linguaggio di Matita

La prova dell'ultima formula evidenzia la difficoltà della ricerca bottom-up delle prove.

Deduzione naturale: derivabilità

Definizione: un insieme di regole \mathcal{R} è derivabile a partire da un insieme di regole \mathcal{S} quando per ogni regola in \mathcal{R} le cui premesse sono F_1, \ldots, F_n e la cui conclusione è F si ha $F_1, \ldots, F_n \vdash F$ usando solamente le regole in \mathcal{S} .

Teorema: se \mathcal{R} è derivabile a partire da \mathcal{S} allora per ogni dimostrazione ottenuta usando solo regole in \mathcal{R} esiste una dimostrazione con le stesse premesse e conclusione che usa solo regole in \mathcal{S} .

Dimostrazione: per induzione strutturale sull'albero di derivazione. In tutti i casi, per ipotesi induttiva esistono alberi di derivazione per ognuna delle premesse che usano solo regole in \mathcal{S} . Per ipotesi esiste un albero di derivazione per la regola sotto esame che usa solo regole in \mathcal{S} . Componendo gli alberi si ottiene la prova voluta.

Deduzione naturale: derivabilità

Teorema: l'insieme $\{\wedge_{e_1}, \wedge_{e_2}\}$ è derivabile a partire dall'insieme $\{\wedge_e\}$ e viceversa.

Dimostrazione:

Prima parte: $\{ \land_{e_1}, \land_{e_2} \}$ è derivabile a partire da $\{ \land_{e} \}$.

$$\frac{F_1 \wedge F_2 \quad [F_1]}{F_1} (\wedge_e) \qquad \frac{F_1 \wedge F_2 \quad [F_2]}{F_2} (\wedge_e)$$

Seconda parte: $\{\wedge_e\}$ è derivabile a partire da $\{\wedge_{e_1}, \wedge_{e_2}\}$.

$$\frac{F_1 \wedge F_2}{F_1} (\wedge_{\theta_1}) \quad \frac{F_1 \wedge F_2}{F_2} (\wedge_{\theta_2}) \\
\vdots \\
F_3$$

Regole di introduzione:

$$\frac{F_1}{F_1 \vee F_2} \tag{\vee_{i_1}}$$

$$\frac{F_2}{F_1 \vee F_2} \tag{\vee_{i_2}}$$

Lettura bottom-up: se F_1 (F_2) vale, allora vale anche $F_1 \vee F_2$

Lettura top-down: per dimostrare $F_1 \vee F_2$ è sufficiente dimostrare $F_1 \vee F_2$)

Scrittura informale: In Matita:

... e quindi F_1 ... we proved F_1 (H)

[e quindi $F_1 \vee F_2$] by or_introl, H we proved $F_1 \vee F_2$

Il passo di deduzione viene spesso omesso.

Regole di introduzione:

$$\frac{F_1}{F_1 \vee F_2} \tag{\vee_{i_1}}$$

$$\frac{F_2}{F_1 \vee F_2} \tag{\vee_{i_2}}$$

Correttezza: $F_i \Vdash F_1 \lor F_2$ per $i \in \{1,2\}$ in quanto in ogni mondo v tale che $\llbracket F_i \rrbracket^v = 1$ si ha $\max\{\llbracket F_1 \rrbracket^v, \llbracket F_2 \rrbracket^v\} = 1$.

Le due regole non sono invertibili: per esempio per $F_1 = \bot$ e $F_2 = \top$ si ha $\bot \lor \top \not \Vdash \bot$.

Lettura bottom-up: se vale $F_1 \vee F_2$ e F_3 vale sia quando vale F_1 che quando vale F_2 , allora necessariamente F_3 vale.

Lettura top-down: per dimostrare qualunque cosa sapendo $F_1 \vee F_2$ è sufficiente procedere per casi, dimostrando la stessa cosa assumendo prima che F_1 valga e poi che valga F_2

Scrittura informale:

...e quindi $F_1 \vee F_2$ procediamo per casi per dimostrare F_3 we proceed by cases on H to prove F_3 caso F_1 : ... e quindi F_3 caso F_2 : ... e quindi F_3 [e quindi F_3]

In Matita:

... we proved $F_1 \vee F_2$ (H) case F_1 : ... we proved F_3 . done case F_2 : ... we proved F_3 . done

Correttezza: si ha $F_1 \lor F_2, F_1 \Rightarrow F_3, F_2 \Rightarrow F_3 \Vdash F_3$ in quanto in ogni mondo v tale che $[\![F_1 \lor F_2]\!]^v = \max\{[\![F_1]\!]^v, [\![F_2]\!]^v\} = 1$ e $[\![F_1 \Rightarrow F_3]\!]^v = \max\{1 - [\![F_1]\!]^v, [\![F_3]\!]^v\} = 1$ e in tal caso $[\![F_1]\!]^v, [\![F_3]\!]^v\} = 1$ e in tal caso $[\![F_1]\!]^v, [\![F_3]\!]^v\} = \max\{1 - [\![F_i]\!]^v, [\![F_3]\!]^v\} = \max\{1 - [\![F_i]\!]^v, [\![F_3]\!]^v\} = \max\{1 - [\![F_i]\!]^v, [\![F_3]\!]^v\} = \max\{0, [\![F_3]\!]^v\} = [\![F_3]\!]^v\}.$

Invertibilità: la regola non è invertibile (controesempio: $F_3 = \top$ e $F_1 = F_2 = \bot$). Tuttavia, quando $F_1 \vee F_2$ è dimostrabile, allora la regola è banalmente invertibile.

Esercizi (esempi alla lavagna):

- $A \wedge B \vdash C \vee A$
- $A \lor B \vdash B \lor A$
- $A \lor (B \lor C) \vdash (C \lor B) \lor A$

L'armonia fra regole di introduzione ed eliminazione

$$\frac{F_1}{F_1 \vee F_2} \tag{\vee_{i_1}}$$

$$\frac{F_2}{F_1 \vee F_2} \tag{\vee_{i_2}}$$

$$\begin{array}{cccc}
F_1 \vee F_2 & F_3 & F_3 \\
F_2 & F_3 & F_3
\end{array}$$
(\vee e)

- ci sono 2 modi diretti per introdurre $F_1 \vee F_2$
- nel modo *i*-esimo si ha come premessa F_i
- la regola di eliminazione analizza come la premessa $F_1 \vee F_2$ viene ricavata
- la regola ha 2 premesse: la i-esima assume F_i

L'armonia fra regole di introduzione ed eliminazione

$$\frac{F_1 \quad F_2}{F_1 \wedge F_2} \tag{\wedge_i}$$

$$[F_1][F_2]$$

$$\vdots$$

$$F_1 \wedge F_2 \qquad F_3$$

$$F_3 \qquad (\wedge_e)$$

- c'è 1 modo diretto per introdurre $F_1 \wedge F_2$
- si ha come premesse F_1 e F_2
- la regola di eliminazione analizza come la premessa $F_1 \wedge F_2$ viene ricavata
- la regola ha 1 premessa e assume sia F_i che F₂

Deduzione naturale: \perp

Regole di introduzione: NESSUNA.

Regole di eliminazione:

$$\frac{\perp}{F}$$
 (\perp_e)

Lettura bottom-up: dal falso segue qualunque cosa.

Lettura top-down: per dimostrare qualunque cosa posso ridurmi a dimostrare un assurdo.

Scrittura informale: In Matita:

 \dots assurdo \dots we proved False (H). e quindi C by (ABSURDUM H) done.

Deduzione naturale: \perp

Regole di introduzione: NESSUNA.

Regole di eliminazione:

$$\frac{\perp}{F}$$
 (\perp_e)

Correttezza: si ha $\bot \Vdash F$

La regola non è invertibile: per esempio quando $F=\top$ si ha $\top \not \Vdash \bot$

Regole di introduzione:

$$\frac{-}{\top}$$
 (\top_i)

Regola di eliminazione (INUTILE):

$$\frac{\top F}{F}$$
 (\top_e)

Lettura bottom-up di \top_i : il \top è vero.

Lettura top-down di \top_i : per dimostrare \top non debbo fare nulla.

Scrittura informale (sempre omessa) In Matita: [⊤ vale] by I done.

Regole di introduzione:

$$\overline{}$$
 (\top_i)

Regola di eliminazione (INUTILE):

$$\frac{\top F}{F}$$
 (\top_e)

Correttezza di \top_i : si ha $\Vdash \top$.

Invertibilità di \top_i : la regola è invertibile.

Regole di introduzione:

$$[F_1]$$

$$\vdots$$

$$F_2$$

$$F_1 \Rightarrow F_2$$

$$(\Rightarrow_i)$$

Lettura bottom-up: se ipotizzando F_1 dimostro F_2 allora $F_1 \Rightarrow F_2$.

Lettura top-down: per dimostrare $F_1 \Rightarrow F_2$ basta assumere F_1 e dimostrare F_2 .

Scrittura informale: In Matita:

supponiamo F_1 suppose F_1 (H) ... e quindi F_2 ... we proved F_2 quindi $F_1 \Rightarrow F_2$ done.

Regole di introduzione:

$$[F_1]$$

$$\vdots$$

$$F_2$$

$$F_1 \Rightarrow F_2$$

$$(\Rightarrow_i)$$

Correttezza e invertibilità: trivialmente $F_1 \Rightarrow F_2 \Vdash F_1 \Rightarrow F_2$

Deduzione naturale: \Rightarrow

Regole di eliminazione:

$$\frac{F_1 \Rightarrow F_2 \quad F_1}{F_2} \quad (\Rightarrow_e \circ \text{MODUS PONENS})$$

Lettura bottom-up: se F_1 e F_2 , allora necessariamente F_2 .

Lettura top-down: per dimostrare F_2 debbo trovare un F_1 che valga e tale per cui $F_1 \Rightarrow F_2$

Scrittura informale: In Matita: da F_1 e $F_1 \Rightarrow F_2$ si ha F_2 by H_1 , H_2 we proved F_2

Regole di eliminazione:

$$\frac{F_1 \Rightarrow F_2 \quad F_1}{F_2} \quad (\Rightarrow_{\theta} \text{ O MODUS PONENS})$$

Correttezza: $F_1 \Rightarrow F_2, F_1 \Vdash F_2$ in quanto in ogni mondo v tale che $[\![F_1]\!]^v = 1$ e $[\![F_1]\!]^v = \max\{1 - [\![F_1]\!]^v, [\![F_2]\!]^v\} = \max\{0, [\![F_2]\!]^v\} = [\![F_2]\!]^v = 1$ si ha $[\![F_2]\!]^v = 1$.

Regole di eliminazione:

$$rac{F_1 \Rightarrow F_2 \quad F_1}{F_2} \quad (\Rightarrow_e \text{ O MODUS PONENS})$$

La regola non è invertibile per esempio quando $F_2 = \top$ e $F_1 = \bot$. Rimane non invertibile anche sapendo che $F_1 \Rightarrow F_2$ valga.

Nota: durante la ricerca top-down della prova la regola di modus ponens è la più difficile da applicare in quanto F_1 non è in genere noto e, anche in presenza di una prova per $F_1 \Rightarrow F_2$, F_1 può non essere dimostrabile.

Deduzione naturale: \Rightarrow

In Matita la sintassi

by
$$H_1, \ldots, H_n$$
 we proved F

applica un numero arbitrario di passi di modus ponens (\Rightarrow_e) ramificati in maniera arbitraria; i rami terminano con le ipotesi (scaricate o meno) etichettate con H_1, \ldots, H_n .

Ovvero: un singolo comando ${\tt by}$ nasconde (sotto-)prove di complessità arbitraria.

Deduzione naturale: ricerca delle prove

Esercizi (esempi alla lavagna):

$$\bullet \vdash (A \Rightarrow B) \Rightarrow (B \Rightarrow C) \Rightarrow A \Rightarrow C$$

$$\bullet \vdash (A \Rightarrow B \Rightarrow C \Rightarrow D) \Rightarrow C \Rightarrow B \Rightarrow A \Rightarrow D$$

$$\bullet \vdash (A \lor B) \Rightarrow (A \Rightarrow C \land D) \Rightarrow (B \Rightarrow D) \Rightarrow D \land (B \lor C)$$

II ¬ come connettivo derivato

In logica classica

$$\neg F \equiv (F \Rightarrow \bot)$$

Infatti in logica classica l'implicazione è vera sse

- \bullet la conclusione \bot è vera (in nessun mondo)
- 2 la premessa F è falsa (o equivalentemente $\neg F$ è vera)

Pertanto possiamo derivare le regole del \neg come caso speciale di quelle del \Rightarrow .

Definiamo $\neg F_1$ come $F_1 \Rightarrow \bot$ per ottenere le regole per il \neg come istanze delle regole per l' \Rightarrow .

Regole di introduzione:

$$\begin{array}{c}
[F_1] \\
\vdots \\
\bot \\
\neg F_1
\end{array} (\neg_i)$$

Lettura bottom-up: se ipotizzando F_1 dimostro l'assurdo allora $\neg F_1$.

Lettura top-down: per dimostrare $\neg F_1$ basta assumere F_1 e dimostrare l'assurdo.

Scrittura informale: In Matita:

we need to prove $\neg F_1$ or equivalently $F_1 \Rightarrow \bot$

supponiamo F_1 suppose F_1 (H) ... assurdo ... we proved False

e quindi $\neg F_1$

Ricordiamoci che $\neg F_1 \equiv F_1 \Rightarrow \bot$ per ottenere le regole per il \neg come istanze delle regole per l' \Rightarrow .

Regole di eliminazione:

$$\frac{\neg F_1 \quad F_1}{\bot} \qquad (\neg_e)$$

Lettura bottom-up: è assurdo avere sia $\neg F_1$ che F_1

Lettura top-down: per dimostrare l'assurdo basta dimostrare qualcosa e il suo contrario.

```
Scrittura informale: In Matita:
```

```
... e quindi \neg F_1 ... we proved \neg F_1 or equivalently F_1 \Rightarrow \text{False } (H_1)
```

... e quindi F_1 ... we proved F_1 (H_2) assurdo! by H_1 , H_2 we proved False

<ロ > < @ > < 重 > < 重 > の < @ へ で へ で の へ で か か へ で か か へ で か か へ で か へ で か か へ で か か へ で か か か れ か か れ か か れ か か れ か か れ か か れ か れ か れ か れ か か れ か

Invertibilità per $l' \neg_i$: segue da quella della regola dell' \Rightarrow_i .

Inoltre, QUANDO CI SI TROVA A DIMOSTRARE IL \bot , DA QUEL MOMENTO IN AVANTI TUTTE LE REGOLE APPLICABILI SONO INVERTIBILI in quanto la conclusione \bot ha come conseguenza logica qualunque formula. In ogni momento, dopo aver accumulato nuove ipotesi e quando si è bloccati, È POSSIBILE TORNARE A DIMOSTRARE \bot PER MEZZO DELLA REGOLA \bot_e . Infine l'intuizione diventa spesso inutile/fuorviante (le ipotesi sono inconsistenti).

Invertibilità per l' \neg_e : ovvia in quanto $\bot \vdash F_1$ e $\bot \vdash \neg F_1$. La regola è comunque di difficile applicazione in quanto se non si sceglie l' F_1 giusto, si è solo duplicato il lavoro inutilmente.

Obiettivi

Abbiamo introdotto la semantica e la deduzione naturale per la logica proposizionale classica.

Vogliamo dimostrare i seguenti due teoremi:

Correttezza:

$$\forall \Gamma, F. \Gamma \vdash F \Rightarrow \Gamma \Vdash F$$

Completezza (forte):

$$\forall \Gamma, F. \Gamma \Vdash F \Rightarrow \Gamma \vdash F$$

Intuizione: teorema di correttezza

Teorema di correttezza: $\forall \Gamma, F, \Gamma \vdash F \Rightarrow \Gamma \Vdash F$

Intuizione: tutte le regole che ho dato sono corrette

Esempio: se aggiungo la regola errata $\frac{A}{A \wedge B}$ posso dimostrare $\top \vdash \bot$, mentre $\top \not \vdash \bot$

Far valere la correttezza è facile: basta non introdurre regole (localmente) scorrette.

Intuizione: teorema di completezza

Teorema di completezza: $\forall \Gamma, F. \Gamma \Vdash F \Rightarrow \Gamma \vdash F$

Intuizione: ho aggiunto tutte le regole che mi servono per catturare sintatticamente un concetto semantico

Esempio: se dimentico la regola $\frac{A \quad B}{A \wedge B}$ non posso più dimostrare $A \Vdash A \wedge A$

La completezza vale solo per logiche semplici, dove il concetto semantico da catturare non è troppo complesso.

La logica del prim'ordine è l'ultima logica per complessità in cui

Teorema di correttezza per la logica classica/intuizionista

Teorema di correttezza per la logica classica/intuizionista: se $\Gamma \vdash F$ (usando solo regole localmente corrette per la logica classica/intuizionista) allora $\Gamma \Vdash F$ in logica classica/intuizionista.

Dimostrazione: per induzione strutturale sull'albero di derivazione $\Gamma \vdash F$.

Caso A: poichè A è una foglia non cancellata, si ha $A \in \Gamma$. Pertanto $\Gamma \Vdash A$.

Caso [A]: impossibile in quanto un'ipotesi viene scaricata solamente da una regola.

Teorema di correttezza per la logica classica/intuizionista

Caso $\frac{T_1...T_n}{E}$ (r) dove $T_1, ..., T_n$ sono i sottoalberi immediati dell'albero di deduzione: Sia T_i la derivazione $\Theta_i \vdash F_i$. Si ha $\Theta_i = \Gamma_i \cup \Delta_i$ dove Δ_i è l'insieme delle ipotesi cancellate in T_i dalla regola r, Γ_i è l'insieme delle ipotesi non cancellate dalla regola $r \in \Gamma \supseteq \bigcup_i \Gamma_i$. Per ipotesi induttiva. $\Theta_i = \Gamma_i \cup \Delta_i \Vdash F_i$ per ogni i. Per correttezza locale della regola r si ha $\Delta_1 \Rightarrow F_1, \dots, \Delta_n \Rightarrow F_n \Vdash F$. Per il teorema di deduzione semantica, da $\Delta_i \cup \Gamma_i \Vdash F_i$ consegue che $\Gamma_i \Vdash \Delta_i \Rightarrow F_i$. Quindi per la transitività della conseguenza semantica, si ottiene $\Gamma \supseteq \bigcup_i \Gamma_i \Vdash F$.

QED.

Fallimento della completezza per la logica classica

Classicamente le seguenti sono tautologie:

È facile convincersi che

- \bigcirc \forall $A \lor \neg A$

Pertanto, le regole date finora non rendono il sistema completo per la logica proposizionale classica.

E quindi?

Piano di azione:

- Trovare quali regole aggiuntive servono per rendere il sistema completo per la logica proposizionale classica (risposta: aggiungiamo la regola RAA)
- Chiedersi se esiste una seconda semantica, non classica, per la quale l'insieme di regole date finora sia completo (risposta: la logica intuizionista)

$$\begin{array}{c}
[\neg F] \\
\vdots \\
\hline
F & (RAA)
\end{array}$$

Lettura bottom-up: Assumiamo per assurdo $\neg F$ Assurdo! Quindi F.

Lettura top-down: Per dimostrare F procediamo per assurdo assumendo $\neg F$ e dimostrando \bot .

$$\begin{array}{c} [\neg F] \\ \vdots \\ \hline F \end{array} (RAA)$$

Correttezza classica: da $\neg F \Rightarrow \bot \Vdash F$. Infatti sia v tale che $\llbracket \neg F \Rightarrow \bot \rrbracket^v = \max\{1 - \llbracket \neg F \rrbracket^v, \llbracket \bot \rrbracket^v\} = \max\{1 - (1 - \llbracket F \rrbracket^v), 0\} = \llbracket F \rrbracket^v = 1$. Si ha $\llbracket F \rrbracket^v = 1$.

Invertibilità classica: $F \Vdash \neg F \Rightarrow \bot$ in quanto in tutti i mondi v in cui $\llbracket F \rrbracket^v = 1$ si ha $\llbracket \neg F \Rightarrow \bot \rrbracket^v = \max\{1 - \llbracket \neg F \rrbracket^v, \llbracket \bot \rrbracket^v\} = \max\{1 - (1 - \llbracket F \rrbracket^v), 0\} = 1$.

ATTENZIONE: non confondere la regola \neg_i con la regola di dimostrazione per assurdo (RAA) che dice qualcosa di diverso:

$$\begin{array}{ccc}
[F] & [\neg F] \\
\vdots & \vdots \\
\frac{\bot}{\neg F} (\neg_i) & \frac{\bot}{F} (RAA)
\end{array}$$

Infatti la regola \neg_i istanziata con $\neg F$ dice solo

$$\neg F$$

$$\vdots$$

$$\frac{\bot}{\neg \neg F} (\neg_i)$$

e $\neg \neg F \equiv F$ solamente classicamente ma non intuizionisticamente.

Nota: la confusione fra \neg_i e RAA è molto frequente presso i matematici e accentua in loro l'impressione che facendo logica intuizionista (ove la RAA non vale) non si riesca a dimostrare quasi nulla.

In verità la \neg_i vale intuizionisticamente e, anzi, sulle proposizioni negate (non informative) sappiamo che le due logiche essenzialmente coincidono.

Deduzione naturale per la logica classica: RAA

Un uso frequente della RAA è il seguente schema

$$\begin{array}{c}
 \begin{bmatrix} \neg A \end{bmatrix} \\
\vdots \\
 A \qquad [\neg A] \\
\hline
 A \qquad (\neg e)
\end{array}$$

$$\begin{array}{c}
 A \qquad (AA)
\end{array}$$

Ovvero, per trovare una prova di A ci si riduce a cercare ancora una prova di A, ma dopo aver assunto $\neg A$.

Esercizio: dimostrare $\vdash (\neg A \Rightarrow A) \Rightarrow A$.

Deduzione naturale per la logica classica: EM

Il principio del terzo escluso (EM) è dimostrabile a partire dalla RAA:

Esercizio: ⊢ *A* ∨ ¬*A*

In generale le dimostrazioni classiche effettuate con il solo ausilio della RAA possono essere laboriose e/o anti-intuitive.

Tuttavia il principio del terzo escluso combinato con l'eliminazione dell'or fornisce uno schema di prova molto potente (analisi per casi su una variabile).

$$\begin{array}{cccc} & & [A] & [\neg A] \\ \vdots & \vdots & \vdots \\ \hline A \lor \neg A & F & F \\ \hline & F & & (\lor_e) \end{array}$$

Deduzione naturale classica vs intuizionista

Vedremo che le dimostrazioni intuizioniste sono sempre migliori (più informative) di quelle classiche.

preferire sempre una prova intuizionista a una classica, se possibile

Inoltre le prove intuizioniste sono anche più semplici.