Assignment -2

Data Visualization and Pre-processing

Assignment Date	24 September 2022
Leader Name	Y.Anjaneyulu
Student Roll Number	MECR19EC162
Maximum Marks	2 Marks

To Perform Below Tasks to complete the assignment:-

Step 1. Download the dataset: <u>Dataset</u>

Step 2. Load the dataset.

import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

df = pd.read_csv('Churn_Modelling.csv')
df.head()

Output:

Step 3. Perform Below Visualizations.

• Univariate Analysis sns.distplot(df.Age)

sns.lineplot(df.Age,df.Exited)

Output:

plt.pie(df.Gender.value_counts(),[0.2,0],colors=['red','green'],labels=['Male','Female'],autopct='%1.1f%%') plt.title('GENDER') plt.show()

Output:

 $sns.barplot(df.NumOfProducts.value_counts().index, df.NumOfProducts.value_counts())$

• Bi - Variate Analysis

def countplot_2(x,hue,title=None,figsize=(6,5)):
plt.figure(figsize=figsize)
sns.countplot(data=df[[x,hue]],x=x,hue=hue
) plt.title(title) plt.show()
countplot_2('IsActiveMember','NumOfProducts','Credit Card Holders Product Details')

Output:

• Multi - Variate Analysis sns.pairplot(df)

Output:

df.corr()

Output:

sns.heatmap(df.corr())

plt.figure(figsize=(16,15))
sns.heatmap(df.corr(),annot=True)
plt.show()

Output:

Step 4. Perform descriptive statistics on the dataset.

df.describe()

Output:

df.info()

Step 5. Handle the Missing values.

 $df = df.drop(columns = ['RowNumber', 'CustomerId', 'Surname']) \ df.isnull().sum() \\$

Output:

df.shape

Output:

Step 6. Find the outliers and replace the outliers

sns.boxplot(df.CreditScore)


```
Q1 = df.CreditScore.quantile(0.25)
Q3 = df.CreditScore.quantile(0.75)
IQR = Q3-Q1
upper_limit = Q3 + (1.5*IQR)
lower_limit = Q1 - (1.5*IQR)
```

$$\label{eq:core} \begin{split} df['CreditScore'] &= np.where(df['CreditScore'] < lower_limit,650, df['CreditScore']) \\ sns.boxplot(df.CreditScore) \end{split}$$

Output:

Step 7. Check for Categorical columns and perform encoding.

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder() df.Geography =
le.fit_transform(df.Geography) df.Gender =
le.fit_transform(df.Gender)
```

df.head()

	CreditScore	Geography	Gender	Apr	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	619	0	. 0	42	. 2	8.00	7.		4	101348.88	- 1
1	608	2	0	41	1	83807.86	1.	0		112542.58	0
2	502	0	0	42	- 8	159660 80	3	1	0	113931.57	1
3	699	0	0	115	1	0.00	2	Π	٥	93826 63	0
4	850	2	. 0	43	2	125510.82	1	t	- 1	79084.10	0

Step 8. Split the data into dependent and independent variables.

X = df.drop(columns=['Exited']) X.head()

Output:

Y = df.Exited Y.head()

Output:

Step 9. Scale the independent variables

from sklearn.preprocessing import MinMaxScaler scale = MinMaxScaler() X_scaled = pd.DataFrame(scale.fit_transform(X),columns=X.columns)

Step 10. Split the data into training and testing

 $from \ sklearn.model_selection \ import \ train_test_split \ x_train \ , \ y_train \ , \ x_test \ , \ y_test = train_test_split(X_scaled,Y,test_size=0.2,random_state=0)$

