Artificial Neural Network Architectures

The following architectures are all based on the concept of a convolutional-recurrent neural network. Simplified, an image is given as input; a feature map is created by one or more convolutional layers; this feature map then provides the input to a recurrent layer, which divides the features map into 32 separate 'stripes', which in turn are each given a token of the class, i.e. a character of the alphabet.

Legend

Input Layer	- takes an image of specified size as input
Conv2D 16 (3,3) ReLU	 convolutional layer with 16 output filters (3,3) sized convolution window ReLU activation
MaxPooling2D (2,2)	- MaxPooling layer with kernel size (2,2)
Dense 32 ReLU	neurone layer with 32 neuronesReLU activation
Dense 27	- neurone layer with 32 neurones
RNN 512	- recurrent layer with 512 cells
LSTM 512	- Long Short-Term Memory layer with 512 cells
GRU 512	- Gated Recurrent Unit with 512 cells
Activation Softmax	- Softmax Activation layer
Reshape	reshape layer, turns higher dimensional data into one dimensional data
Merge	- merge layer, simply adds two inputs together
Concatenate	- concatenate layer, links two sequences together

CNN RNN alternative

CNN LSTM double

CNN LSTM

CNN parallel LSTM

CNN parallel RNN

CNN parallel LSTM RNN

CNN parallel LSTM GRU RNN

CNN RNN

