Learning Objectives Exam 2

Chapter	2: Students should be able to:	
	Identify and utilize point estimates for various population parameters.	
	Formulate correct null and alternative hypotheses, including numeric expressions relating to the population parameters.	
	Describe what a p-value represents in words.	
	Decide if a relationship is statistically significant given a p-value and a significance level.	
	Identify if an error is a Type 1 or Type 2 error and how the number of either error type relates to the significance level.	
	Use 1 or 2 tail tests in correct situations for testing appropriate alternative hypotheses.	
	Use a provided simulated sample distribution to determine appropriate p-values.	
	List and check necessary conditions for the central limit theorem to hold.	
	Describe the significance of the normal distribution and its importance to statistical inference.	
	Identify and describe the shape and location of the normal distribution given summary statistics of a sample dataset.	
	Standardize normal data by calculating a Z-score.	
	Use both R $\underline{\text{and}}$ a Normal Probability Table to find corresponding percentiles for a Z-score and vice versa.	
	Find percentiles above, below, or between particular Z-scores in a normal distribution.	
	Evaluate if a distribution is normal or what the shape of its distribution is given a qq-plot.	
	Determine a critical value (z^*) for constructing a confidence interval at some percentage (e.g. 95% is 1.96)	
	Construct and interpret confidence intervals.	
	Determine what sort of hypothesis test should be run given the nature of their data and research question.	
Chapter 3: Students should be able to:		
	Identify and calculate a point estimate for a population proportion.	
	List and check conditions for a sampling distribution of proportions to be normal.	
	Calculate standard error values for both single and two-proportion tests.	
	Perform a full hypothesis test for testing both a single proportion and a difference between proportions. This includes:	
	 Determining the needed point estimate. 	
	- Calculating the appropriate standard error.	
	- Determining a Z-score to find a p-value.	
	- Concluding from the p-value the result of the hypothesis test.	
	Realize the appropriate conditions when pooled proportions should be used for the null proportion and use them correctly.	
	Construct and interpret confidence intervals for population proportions.	

Chapter 4: Students should be able to:		
□ De	escribe how a t-distribution differs from a normal distribution and when each should be used.	
□ Lis	st and check conditions for a sampling distribution to assure it will follow a t-distribution.	
□ Ca	alculate standard error values for both single and differences between 2 mean tests.	
	etermine the degrees of freedom for a problem and describe how the number of degrees of freedom tanges the shape of the t-distribution.	
□ Ca	alculate a T-score and use R $\underline{\text{and}}$ a t-Distribution Table to find the corresponding percentiles.	
□ Ca	alculate a critical value (t^*) for constructing a confidence interval at some percentage.	
□ Re	ealize when data is paired and can thus be combined to a single mean.	
□ Pe	erform a full hypothesis test for testing a single (or paired) mean and a difference between means.	
□ Co	onstruct and interpret confidence intervals for population means.	
□ De	escribe in words what an ANOVA test is testing and when it would be applicable.	
\square W	rite null and alternative hypotheses for ANOVA testing.	
□ Li:	st and check conditions necessary for ANOVA testing to be reliable.	
□ In	terpret output from an ANOVA test to make conclusions about the null and alternative hypotheses.	
	xplain why we should use the Bonferroni correction for our significance levels when making multiple emparisons.	
□ De	etermine the value of α^* given a dataset and value of α .	