

Для участия в конкурсе

ПЛАНИРОВАНИЕ

ABTOP

СЦЕНАРИЙ

РАСКАДРОВКА

РИДАМИНА

Depthcore, Behance, DeviantArt Depthcore, Behance, DeviantArt ArtStation + (?)

РЕАЛИЗАЦИЯ

Основа для работы – эффект Parallax* для достижения 2.5D анимации

ОСОБЕННОСТИ СТИЛЯ

Акварель

Техника закраски, простота, необычность

Скетч

Простота, скорость, движение

Детали

Важная для этого стиля часть в скоростном рисовании (speedpaint)

АУДИТОРИЯ

Shestakovo Field Trip Report 2016/2017

Table of contents

Shallow marine Shallow mountain Depositional plain

Location

Between Callovian and Oxfordian

Probability estimation

Probability estimation

where, range min – minimal size in that direction

N – total amount of models in cluster

range max – maximal size

i – current model number

Acknowledgements

HWU staff

Vladimir Vasin HWU staff

Vitaliy Petin HWU staff

Dmitriy Petin

HWU staff

Valeriy

Vasin

Groupmate

Dmitri Vasin HWU staff

Polina Petina

FIELD EVALUATION PROJECT

Field Y

Team B

Ivan Gusev

Alina Utkina

Evgeniia Solovey

Alexei Mitrokhin

Timur Trofimov

Sergey Voronin

2017

Table of content

- Architecture and sedimentological concept
- 2. Seismic interpretation
- 3. Petrophysics
- 4. Well testing
- 5. Geological model
- 6. STOIIP estimation
- 7. Simulation model
- 8. Development plan
- 9. Economics
- 10. Uncertainties, management and conclusion

Tools for environment interpretation

- Regional paleomaps
- Core and log data analysis
- Conceptual model
- Seismic data
- Analogue fields

Log input data

Tarakan lank	Well ID									
Logging tool	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y8	Y9	Y10
Spontaneous Potential		X	X	X	X	X	X	X	X	X
Gamma Ray	X	X	X	x	X	X	X	X	X	X
Laterolog	X	X	x	x	X	X	X	X	X	X
Induction log	X	X	X	x	X	X	X	X	X	X
Potential log				x	X	X				
Neutron Gamma Ray		X	X	x	X	X	X	X	X	X
Thermal Neutron	X									
High-frequency logging		x	x	x	x	x	x		x	x
Reversed lateral				X	X	X			X	X
Caliper	х									

Core input data

Well ID	Amo	unt of sar	Core length, m		
	Total	Mel 1	Mel 2	Mel 1	Mel 2
Y1	38	21	17	8	7
Y6	102	51	50	19	16
Y7	67	12	54	14	44

$$S_w = S_{whc} * 0.622$$

Khasanov M.M. 2005

where, S_{whc} - water-holding capacity S_{w} - water saturation

Summary Porosity Permeability

13.5

0.3

Total h

19.1

Well

Interval

2424.3 - 2443.4

2	2450.5 - 2477.5	27	Х	X	Х
3	2733.3 - 2747.5	14.2	15.8	3.7	39.7
4	2844.8 - 2868.1	23.3	18.1	8.9	35.3
5	2583.5 - 2610.1	26.6	16.2	8.3	37.5
6	2465.1 - 2486.5	21.4	15.3	2.6	38.8
7	2424.1 - 2439.9	15.8	13.5	2.4	41.3
8	2405.5 - 2426.5	21	12.6	0.8	44.1
9	2463 - 2496.1	33.1	Χ	Х	Х
		Average	15.0	3.8	39.8
Well	Interval	Total h	Porosity	Permeability	Saturation
1	2446 -2479.4	33.4	14.2	0.5	38.3
2	2481.5 - 2578.5	97	Χ	Х	Χ
3	2755 - 2796.9	41.9	17.7	17.2	29.9
4	2873 – 2955	82	13.2	4.8	39.7
5	2619.4 - 2685.5	66.1	14.2	9.9	38.9
6	2497.1 - 2556.4	59.3	16.6	17.4	31.6
7	2448.5 - 2536.9	88.4	17.4	29.8	30.6
8	2436.5 - 2510.5	74	13.8	3.4	39.7
9	2498.4 - 2522	23.6	15.8	2.3	39.8
		Average	15.3	10.7	36.1

Mel 1

Saturation

42.1

Mel 2

STOIIP estimation

$$STOIIP = \frac{GRV \times NTG \times \phi \times (1 - S_w)}{B_0}$$

- GRV 9 m from seismic interpretation
- NTG SD form 3D model
- Ø SD form 3D model
- Bo range from PVT data
- Sw uncertainties form core data