Das Stellenwertsystem

Polynomschreibweise

$$d_n = \mathrm{Ziffer} \in Z_n, R^n = \mathrm{Wertigkeit}$$

$$N_n = d_n R^n + d_{n-1} R^{n-1} + \ldots + d_1 R^1 + d_0 R^0$$

Dezimalsystem

$$R_{10} = 10 \text{ (Basis)}; Z_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Dualsystem

$$R_2 = 2 \text{ (Basis)}; Z_2 = \{0, 1\}$$

Beispiel

$$N_2 = 110 N_2 = 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 4_d + 2_d = 6_d$$

Oktalsystem

$$R_8 = 8 \text{ (Basis)}; Z_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$$

Beispiel

$$N_8 = 110 \; N_8 = 1 \cdot 8^2 + 1 \cdot 8^1 + 0 \cdot 8^0 = 72_d$$

Kommazahlen

$$\mathbb{R}_{10} = 110.13 \ N_{10} = 1 \cdot 10^2 + 1 \cdot 10^1 + 0 \cdot 10^0 + 1 \cdot 10^{-1} + 3 \cdot 10^{-2}$$

$$\begin{array}{l} \mathbb{R}_2 = 101.110 \; N_2 = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 1 \cdot 2^{-1} + 1 \cdot 2^{-2} + 0 \cdot 2^{-3} = 5.75_d \end{array}$$

Subtrahieren durch Addieren

Annahme: Bei 1000 gibt es einen Überlauf.

$$753 + 247 = 0$$
, daraus folgt $753 \equiv -247$

Somit ist
$$620 - 247 \equiv 620 + 753 = 1373 \equiv 373$$
.

Additive Zahl berechnen

Gesucht: Additive Zahl von -247 (, also 753). hhhh

$$999 - 247 = 752$$
 (Neunerkomplement)

$$752 + 1 = 753$$
 (Zehnerkomplement)

Dualzahlen

-1:

 $1 = 0001_2$.

Einerkomplement: 1110_2

Zweierkomplement: $1111_2 = -1$

Unsigned Multiplikation

Die unsigned Multiplikation ist eine Summe von Links-Shifts.

$$a = 3, b = 5$$

$$0011 * 0101 = 0101 + 1010$$

Signed Multiplikation

Die signed Multiplikation funktioniert analog zur unsigned Multiplikation, aber wenn einer der Operanden negativ ist, muss das Zweierkomplement davon gebildet werden:

Beispiel

$$1101 * 0111 ((-3) \cdot 7 = -21)$$

1101 ist negativ, das Zweierkomplement ist 0011.

0011*0111 = 0111 + 01110 = 010101. Das Zweierkomplement davon ist 101011 (= -21).

Indexschreibweise

$$b = 1010$$

$$b_3=1, b_2=0, b_1=1, b_0=0$$

$$b_{3..1} = 101, b[3..1] = 101$$

Subtrahieren

Betrag mit Vorzeichen

$$5-1$$

$$5 = 0101$$

$$-1 = 1001$$

$$0101 - 0001 = 0100 = 4$$

Einerkomplement (b-1)

Von negativen Zahlen wird das Einerkomplement gebildet. Gibt es nach Addition einen Überlauf, muss noch +1 gerechnet werden.

$$5-1$$

$$5 = 0101$$

$$1 = 0001, -1 = 1110$$

$$0101 + 1110 = 10011$$

$$\Rightarrow \ddot{\mathbf{U}} \text{berlauf} \Rightarrow 0011 + 1 = 0100 = 4$$

Zweierkomplement (b-Komplement)

$$5-1$$

$$5=0101$$

$$1=0001, -1=1111$$

$$0101+1111=10100\Rightarrow \ddot{\mathbf{U}}\mathbf{berlauf}\Rightarrow 0100=4$$

Allgemeine Berechnung des b-Komplements

$$C_{b,n}(N) = b^n - N$$

- n = Anzahl Stellen
- b = Basis
- N = Zahl, von welcher das Komplement gebildet werden soll

Beispiel:

•
$$C_{8,2}(6) = 8^2 - 6 = 58_{10} = 72_8$$

Im Dualsystem entspricht dies dem Zweierkomplement.

Excesscode

Der Excesscode, der den Zahlenbereich in zwei gleich grosse Hälften aufteilt, hat einen besonderen Stellenwert. Dabei gehört die 0 zu den negativen Zahlen. Beispiel: Bei vierstelligen Codes würde der Excess-7-Code $C_{\mathrm{Ex},-7,4}(x)$ die Zahlen von –7 bis 8 darstellen. Der Bias ergibt sich dann durch $2^{n-1}-1$.

Um eine Zahl a zu kodieren, wählt man die kleinste Zahl b im Wertebereich und bildet die Differenz d=|a-b|. Beispiel:

$$C_{\rm ex,-4,3}(-1) = ?$$

$$d = |-1 - (-4)| = 3 \Rightarrow 011$$

Fixkommazahlen

 $C_{\mathrm{FK},k,n}(x)$, wobei

• k = Anzahl Nachkommastellen

• n = Länge der binären Schreibweise

Beispiel: $C_{\text{FK},4,16}(453.1234) = 0001'1100'0101'0001$

Absoluter Fehler

$$E_{
m abs} = |x_{
m korrekt} - x_{
m gerundet}|$$

Relativer Fehler

$$E_{
m rel} = rac{|x_{
m korrekt} - x_{
m gerundet}|}{x_{
m korrekt}}$$

Gleitkommazahlen

Bei Gleitkommazahlen wird zusätzlich zum Bitmuster z auch die Stelle k mitgeführt, an der das Komma steht.

• z = Signifikand, Mantisse

• k = Exponent

 $\bullet \ C_{\mathrm{GK},k,n}(z) = z \cdot 2^k$

Beispiel: 6.25.

6 = 0110, 0.25 = 0.01

Fixkommarepräsentation: 0110.01

Gleitkommazahlrepräsentation: $1.1001 \cdot 2^2$

Für die Mantisse wird die Excess-Darstellung verwendet, d.h. bei 8-Bit-Mantisse der $C_{\rm Ex.-127.8}$. Der Exponent 2 wird so zu 10000001.

0 10000001 100100000000000000000000

Vorzeichen Exponent Mantisse

Standard IEEE 754

• Single: 24 Bit Präzision, 8 Bit Exponent

• Double: 53 Bit Präzision, 11 Bit Exponent

• Quadruple: 113 Bit Präzision, 15 Bit Exponent

Addition

1. Wenn Vorzeichen unterschiedlich: Subtraktion

2. Hidden Bits ergänzen

3. Wenn Exponenten unterschiedlich: Signifikand der kleineren Zahl um entsprechend viele Bits nach rechts verschieben

4. Addition durchführen

5. Falls Carry = 1: Ergebnis normalisieren:

• Exponent um 1 erhöhen

• Signifikand um 1 nach rechts schieben

• x = 1.5, y = 0.75

• $x = 0 \mid 0111 \mid 1111 \mid 100 \mid 0000 \mid 00000 \mid 0000 \mid 00000 \mid 0000 \mid 000$

• $y = 0 \mid 0111 \mid 1110 \mid 100 \mid 0000 \mid 00000 \mid 0000 \mid 0000$

• $x' = 0 \mid 0111 \mid 1111 \mid (1) \mid 100 \mid 0000 \mid 0000 \mid 0000 \mid 0000 \mid 0000 \mid mit \mid hidden Bit$

• $z' = 0 \mid 011111111 \mid (10) 010 0000 0000 0000 0000 0000 = x' + y'$

• $z'' = 0 \mid 1000\,0000 \mid (1)\,001\,0000\,0000\,0000\,0000\,0000\,a + 1$, $m \cdot 2^{-1}$

• z = 2.25

Gruppe, Ring und Körper

Körper

Ein Ring ist ein Körper, wenn:

a) Jedes Element des Rings (ausser der 0) ein multiplikatives Inverses hat

b) Die Multiplikation kommutativ ist: ab = ba (Abel'sche Gruppe)

- c) Das Distributivgesetz gilt: a(1-b) = a ab
- d) Wenn er eine 1 hat (multiplikatives neutrales Element)

Wir definieren Mengen wie:

- $\mathbb{Z}_2 = \{0, 1\}$
- $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$
- $\mathbb{Z}_M = \{0, 1, 2, ..., M-1\}$

Um die Abgeschlossenheit sicherzustellen, verwenden wir Operationen zusammen mit Modulo M. Beispiel:

$$\mathbb{Z}_5 = \{1, 2, 3, 4, 5\}$$
 $3 \cdot 4 = 12, 12 \notin \mathbb{Z}_5$
 $12 \mod 5 = 2, 2 \in \mathbb{Z}_5$

Codewörter können als Elemente eines endlichen Ganzzahlkörpers betrachtet werden. In der Informatik bewegen wir uns in \mathbb{Z}_2 . Die Anzahl der darstellbaren Codewörter wird durch die Codewortlänge bestimmt.

- Byte: 8 Bit
- Word: 16, 32, 64 Bit
- TCP-Paket: 1024 Bit

Im endlichen Ganzzahlkörper gibt es immer eine grösste und eine kleinste Zahl. Die Darstellung dieser Zahl kann durch Speicher oder Definition der Wortgrösse begrenzt werden \rightarrow Keine Unendlichkeit.

Interpretation eines Codewortes

Ein Codewort 1001 kann auf verschiedene Arten interpretiert werden:

- Als Tupel (1, 0, 0, 1)
- Als Zahl $1001_2=9_{10}.$ Es gelten die üblichen Operationen der Ganzzahlrechnung. _
- Als Vektor $\begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix}^T$. Es gelten die üblichen Operationen der Vektorrechnung.

- Als Polynom: $g(u)=u^3+1.$ Es gelten die üblichen Operationen der Polynomrechnung.

Die obigen Darstellungsformen sind äquivalent und beschreiben alle dasselbe Codewort. Alle Berechnungen erfolgen in \mathbb{Z}_2 .

Interpretation eines Codewortes als Vektor

Vektorraum \mathbb{Z}_2^3 :

$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \equiv \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \operatorname{mod} 2$$

Vektoren werden in der Codierung zur Fehlererkennung und -behebung verwendet.

Interpretation als Polynom

Codewort 100101 als Polynom:

$$1u^5 + 0u^4 + 0u^3 + 1u^2 + 0u^1 + 1u^0 = u^5 + u^2 + u^0$$

Multiplikation zweier Polynome in \mathbb{Z}_2 :

$$(u^5 + u^2 + u^0)(u^2 + u^0) \operatorname{mod} 2$$

= $(u^7 + u^5 + u^4 + 2u^2 + u^0) \operatorname{mod} 2$
= $u^7 + u^5 + u^4 + 1$

Das resultierende Codewort ist 1011 0001.

Zyklische Gruppe

Polynom $f(x) = x^3 + x + 1$, hat nach Fundamentalsatz der Algebra 3 Nullstellen. Die Frage ist nun, ob das Polynom in \mathbb{Z}_2 eine Lösung hat.

Eine zyklische Gruppe (gemäss Évariste Galois (1811 - 1832)):

- Wird von einem einzigen Element erzeugt
- Besteht nur aus Potenzen des Erzeugers

- Das erzeugende Element a wird als Lösung eingesetzt: $f(a) = a^3 + a + a$

$$a = a$$

$$a^2 = a^2$$

$$a^3 = a + 1$$

Umstellung f(a) in \mathbb{Z}_2

$$a^4 = a(a+1) = a^2 + a$$

$$a^5 = a(a^2 + a) = a^3 + a^2 = a^2 + a + 1$$

$$a^6 = a(a^2 + a + 1) = a^2 + 2a + 1 = a^2 + 1$$

$$a^7 = a(a^2 + 1) = 1$$

$$a^8 = a$$

Zyklus beginnt von vorne