CSCU9YE - Artificial Intelligence

Lecture 3: Problem Solving by Search (Optimisation)

Prof. Gabriela Ochoa, University of Stirling

Content

- 1. Problem solving and search
- 2. Optimisation problems
 - Definition and applications
 - Two concrete examples
 - The *Knapsack Problem*
 - The *Traveling Salesman Problem* TSP (next week)
- 3. Heuristics
- 4. Optimisation and search

Search in Computing Science

At least 4 meanings of the word **search** in CS

1. Search for stored data

- Finding information stored in disc or memory.
- Examples: Sequential search, Binary search

2. Search for web documents

- Finding information on the world wide web
- Results are presented as a list of results

3. Search for paths or routes

- Finding a set of actions that will bring us from an initial stat to a goal stat
- Relevant to Al
- Algorithms: depth first search, breadth first search, branch and bound, A*, Monte Carlo tree search.

4. Search for solutions

- Find a solution in a large space of candidate solutions
- Relevant to Al, Optimisation, OR
- Algorithms: evolutionary algorithms, Tabu search, simulated annealing, ant colony optimisation, etc.

Examples of search problems

- A robot vehicle would search for a route to a given destination.
- An automated air traffic controller would search for a safe landing sequence for a set of incoming planes
- In games of strategy, such as chess or checkers: search for a sequence of moves to beat your opponent
- More generally: trying to find a particular object from a large number of such objects.
- Search problems are common in Al: Planning and Learning.
- Optimisation problems can be seen as type of search problems (search for solutions, instead of search for a sequence of actions)

Optimisation problems

- Wide variety of applications across industry, commerce, science and government
- Optimisation occurs in the minimisation of time, cost and risk, or the maximisation of profit, quality, and efficiency

Examples

- Finding shortest round trips in graphs (TSP)
- Planning, scheduling, cutting & packing, logistics, transportation,
 communications, timetabling, resource allocation, genome sequencing
- Software engineering: test case minimisation and prioritisation, requirements analysis, code design and repair, etc.

Optimisation problems are everywhere!

Logistics, transportation, supply change

Cutting & packing

Manufacturing, production lines

Computer networks and Telecommunications

Timetabling

Software - SBSE

Optimisation problems

General constrained optimisation problem:

Min/Max f(x) Subject to:

- Equality constraints
- Inequality constraints

Search Space: set of candidate solutions. All possible combinations of the decision variables.

Optimisation through search

Iteratively generate and evaluate candidate solutions.

- Systematic search
- (Stochastic) local search

Optimisation problems: two categories

Continuous

- Continuous variables
- Looking for a set (vector) of real numbers [45.78, 8.91, 3.36]
- Objective function has a mathematical expression
- Special cases studied in mathematics and OR: Convex, Linear

Combinatorial

- Discrete variables
- Looking for an object from a finite set
 - Binary digits [1011101010]
 - Integer [1, 53, 4, 67, 39]
 - Permutation [3,5,1,2,4]
 - Graph

Combinatorial optimisation: The Knapsack problem

An example of an Optimisation Problem

Thanks to: Dr Steven Adriaensen Free University of Brussels Brussels, Belgium

- In Brussels a traveler named Tom is faced with a problem.
- During his trip he has bought numerous souvenirs, varying in size and value.
- However, he has bought more souvenirs than fit into his luggage.
- Which souvenirs should he pack?

Brussels attractions

The Atomium is a landmark building in Brussels, originally constructed for the 1958 Brussels World's Fair. It is now a museum. A structure depicting atoms. There is a restaurant in the top sphere with a panoramic view over Brussels

Manneken Pis (little pee man in Flemish). The peeing boy is a small bronze fountain statue from the 17th century that is tall just 61cm (24 inches). Symbolise the good humour

Knapsack problem

Candidate solutions are different subsets of items Tom could pack and the objective is to find the one maximizing the total value of the packed items.

Knapsack problem

Candidate solutions are different subsets of items Tom could pack and the objective is to find the one maximizing the total value of the packed items.

A possible algorithm for a small problem

Let us consider all the combinations that we can fit in rucksack

€ 20 (size: 2)

€ 40 (size: 4)

€ 500 (size: 1)

€ 20 (size: 2)

€ 10 (size: 3)

€ 500 (size: 1)

€ 20 (size: 2)

€ 15 (size: 2)

€ 20 (size: 2)

€ 45 (size: 4)

A possible algorithm for a small problem

We could enumerate all 9 maximal subsets of items, determine the total value of their contents and return the most valuable.

€ 500 (size: 1)

€ 45 (size: 4)

Heuristic optimisation

Heuristic

- Describes how to derive an output for any given input ($^{\sim}$ "ordinary" algorithm)
- Rule of thumb to solve a problem
- Provides no guarantees w.r.t. the quality (optimality) of the output.

Why heuristics?

- Heuristics work well in practice!
- Heuristics trade theoretical guarantees on efficacy for: practical efficiency
- For some problems efficient exact algorithms are not known and unlikely to exist (e.g. NP-hard problems).

Terminology and dates

- Heuristic: Greek word heuriskein, the art of discovering new strategies to solve problems
- Heuristics for solving optimization problems, G. Poyla (1945)
 - A method for helping in solving of a problem, commonly informal
 - "rules of thumb", educated guesses, or simply common sense
- Prefix meta: Greek for "upper level methodology"
- Metaheuristics: term was introduced by Fred Glover (1986).
- Other terms: modern heuristics, heuristic optimisation, stochastic local search

Otpimisation and local search

- In many optimisation problems, the path to the goal is irrelevant; the goal state itself is the solution
- So we do not use tree-based search
 Search Space = set of all configurations or candidate solutions
- Find configuration or solution satisfying constraints, maximising or minimising a quality function
- In such cases, we can use local search algorithms also called metaheuristics
- Keep a single "current" state, try to improve it

Greedy Construction heuristic for Knapsack [heuristic]:

- start with an empty knapsack
- 2. repeat until no more items can be added:
- 3. determine i_{next} the most valuable item that still fits.
- 4. add i_{next} to the knapsack

Greedy Construction [metaheuristic]:

- start with an empty solution
- repeat until solution is complete:
- 3. determine the solution component c_{next} that can
- be added to the partial solution at minimal cost.
- 4. add c_{next} to the partial solution

Greedy Construction heuristic for Knapsack [heuristic]:

- 1. start with an empty knapsack
- repeat until no more items can be added:
- 3. determine i_{next} the most valuable item that still fits.
- 4. add i_{next} to the knapsack

value contents: €0

Greedy Construction heuristic for Knapsack [heuristic]:

- 1. start with an empty knapsack
- 2. repeat until no more items can be added:
- 3. determine i_{next} the most valuable item that still fits.
- 4. add i_{next} to the knapsack

£ 15 (cizo:

€ 15 (size: 2)

€ 45 (size: 4)

€ 40 (size: 4)

remaining capacity: 6

value contents: €0

€ 500 (size: 1)

€ 10 (size: 3)

€ 20 (size: 2)

Greedy Construction heuristic for Knapsack [heuristic]:

- start with an empty knapsack
- 2. repeat until no more items can be added:
- 3. determine i_{next} the most valuable item that still fits.
- 4. add i_{next} to the knapsack

€ 15 (size: 2)

€ 45 (size: 4)

€ 40 (size: 4)

remaining capacity: 5 value contents: €500

€ 10 (size: 3)

€ 20 (size: 2)

21

Greedy Construction heuristic for Knapsack [heuristic]:

- start with an empty knapsack
- 2. repeat until no more items can be added:
- 3. determine i_{next} the most valuable item that still fits.
- 4. add i_{next} to the knapsack

€ 15 (size: 2)

€ 45 (size: 4)

€ 40 (size: 4)

remaining capacity: 5 value contents: €500

€ 10 (size: 3)

€ 20 (size: 2)

Greedy Construction heuristic for Knapsack [heuristic]:

- start with an empty knapsack
- 2. repeat until no more items can be added:
- 3. determine i_{next} the most valuable item that still fits.
- 4. add i_{next} to the knapsack

€ 15 (size: 2)

€ 40 (size: 4)

remaining capacity: 1 value contents: €545

€ 10 (size: 3)

€ 20 (size: 2)

23

Greedy Construction heuristic for Knapsack [heuristic]:

- start with an empty knapsack
- repeat until no more items can be added:
- 3. determine i_{next} the most valuable item that still fits.
- 4. add i_{next} to the knapsack

€ 15 (size: 2)

remaining capacity: 1 value contents: €545

€ 10 (size: 3)

€ 20 (size: 2)

€ 40 (size: 4)

24

Optimisation problems

General constrained optimisation problem:

Min/Max f(x) Subject to:

- Equality constraints
- Inequality constraints

Search Space: set of candidate solutions. All possible combinations of the decision variables.

Optimisation through search

Iteratively generate and evaluate candidate solutions.

- Systematic search
- (Stochastic) local search

The knapsack problem

Given a knapsack of capacity W, and a number n of items, each with a weight and value. The objective is to maximise the total value of the items in the knapsack

$$\begin{array}{lll} \text{Maximise} & \sum_{i=1}^{n} v_{i} x_{i} & \text{Subject} & \sum_{i=1}^{n} w_{i} x_{i} \leqslant W, & x_{i} \in \{0,1\} \\ & maximise & \\ & 4x_{1} + 2x_{2} + x_{3} + 10x_{4} + 2x_{5} & x_{i} = \begin{cases} 1 & \text{If we select item } i \\ 0 & \text{Otherwise} \end{cases} \\ & subject \ to \\ & 12x_{1} + 2x_{2} + x_{3} + 4x_{4} + x_{5} \leq 15 \\ & x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in \{0, 1\} & \text{Binary representation [11010]} \end{array}$$

- Search space size = 2^n
- $n = 100, 2^{100} \approx 10^{30}$

Example of small dataset and encoding as binary string

- Try out all possible ways of packing/leaving out the items
- For each way, it is easy to calculate the total weight carried and the total value carried
- Consider the following knapsack problem instance:

```
3
1 5 4
2 12 10
3 8 5
11
```

• Where: The first line gives the number of items. The last line gives the capacity of the knapsack. The remaining lines give the index, value and weight of each item.

Knapsack, full enumeration

Items	V alue	Weight Feasible?	
• 000	0 0	Yes	
• 001	8 5	Yes	
• 010	12 10	Yes	
• 011	20 15	No	
• 100	5 4	Yes	Optimal!!
• 101	13 9	Yes	
• 110	17 14	No	
• 111	25 19	No	

Real-world example of the Knapsack problem

- Consider a cargo company, that has an airplane and need to carry packages.
- Customers state the weight of the cargo item they would like delivered, and the amount they are prepared to pay.
- The airline is constrained by the total amount of weight the plane is allowed to carry.
- The company must choose a subset of the packages (bids) to carry in order to make the maximum possible profit, given the weight limit that they must respect.

Next Lab: Solving the Knapsack problem

- Read a file with the data describing an instance.. Two datasets will be provided with 20 and 200 items
- Solve the problems using two very different algorithms
 - A random search algorithm
 - A Greedy constructive heuristic
 - Optional: Full enumeration

Optimisation/search algorithms

Approximation algorithms:

- An attempt to formalise heuristics (emerged from the field of theoretical computer science)
- Polynomial time heuristics that provide some sort of guarantee on the quality of the solution

Summary

- Mayny real-world problems can be formulated as Search Problems
- We can distinguish between
 - a. Searching for a sequence of actions or paths
 - b. Searching for a solution in a large space of possible candidate solutions
- Optimisation problems are those where a quantity needs to be maximised or minimised
- They can be formulated as search problems
- Heuristics: are rules of thumb to solve problems