VARIABLES ALÉATOIRES À VALEURS RÉELLES

I- LOI DE PROBABILITÉ – FONCTION DE RÉPARTITION

A. Loi de probabilité

Variable aléatoire : on considère une expérience aléatoire d'un univers Ω . Définir une variable aléatoire (v.a. par la suite) X, c'est associer à chaque issue de Ω un nombre réel.

La loi de probabilité de X est l'association entre les différentes valeurs de X et les probabilités correspondantes.

On la présente parfois sous la forme d'un tableau :

Valeur x_i de la v.a. X	χ_1	χ_2	 \mathcal{X}_n
Probabilité $p_i = P(X = x_i)$	$p_1 = P(X = x_1)$	$p_2 = P(X = x_2)$	 $p_n = P(X = x_n)$

Exemple : on jette un dé équilibré. Si on obtient 6, on gagne 18€. Si on obtient un nombre impair, on gagne 10€. Et dans les autres cas, on perd 30€.

On note X la v.a. égale au gain pour un lancer de dé. X peut donc prendre comme valeurs 18, 10 ou -30. P(X = 18) = 1/6

$$P(X - 10) - 1/0$$

 $P(X=10) = 3/6 = \frac{1}{2} (car \ 3 \text{ faces impaires sur } 6)$

P(X = -30) = 2/6 = 1/3 (cas où on tombe sur 2 ou 4)

Gain	-30	10	18
Proba	1/3	1/2	1/6

=> Loi de probabilité de cette v.a. :

La loi de probabilité de la v.a. X est la fonction de $X(\Omega) \rightarrow [0; 1]$, qui à k associe P(X = k).

On dit aussi distribution de probabilité.

B. Fonction de répartition

La fonction de répartition de la v.a.X est la fonction F, de IR dans [0;1], qui à x associe $F(x) = P(X \le x)$.

Propriétés:

- La fonction de répartition F est toujours **CROISSANTE** sur IR.
- $\lim_{x \to -\infty} F(x) = 0 \text{ et } \lim_{x \to +\infty} F(x) = 1$
- Pour $a \le b$, on a: $P(a \le X \le b) = F(b) F(a)$

C. Cas des variables aléatoires continues

Jusqu'ici, on a étudié des v.a. dont les valeurs étaient « isolées » = v.a. DISCRÈTES. Mais on peut aussi étudier des v.a. dont les valeurs sont regroupées au sein d'intervalles = v.a. CONTINUES. Pour une telle v.a., la fonction de répartition joue un rôle essentiel et permet de calculer des probabilités $P(X \le x)$.

On suppose que cette fonction de répartition F est définie par:

P(X ≤ x) = F(x) =
$$\int_{-\infty}^{x} f(t)dt$$
 où f est la DENSITÉ DE PROBABILITÉ de la v.a. X.

 \rightarrow Si on trace la représentation graphique de f, F(x) représente une SURFACE.

Propriétés de la densité de probabilité de X :

- $f(t) \ge 0 \ \forall t \in IR$
- $\int_{-\infty}^{+\infty} f(t)dt = 1$ (car la somme de toutes les probabilités est toujours égale à 1).

Propriété de la fonction de répartition de X: Puisque $P(X \le x) = F(x)$, alors :

$$P(a \le X \le b) = F(b) - F(a) = \int_a^b f(t)dt$$

II- ESPÉRANCE MATHÉMATIQUE, VARIANCE, ÉCART-TYPE

A. Espérance mathématique

Comme son nom l'indique, l'espérance mathématique représente la valeur à laquelle on s'attend que la variable aléatoire soit égale. C'est pourquoi on parle aussi de moyenne.

1. V.a. Discrète

L'espérance mathématique d'une v.a. DISCRÈTE prenant n valeurs x_i avec les probabilités $p_i = P(X = x_i)$, où $1 \le i \le n$, est :

$$\mathbf{E}\left(\mathbf{X}\right) = \sum_{i=1}^{n} p_{i} x_{i}$$

2. V.a. Continue

$$E(X) = \int_{-\infty}^{+\infty} t \cdot f(t) dt$$

B. Variance, Écart-type

la variance d'une v.a. X est, si elle existe, l'espérance mathématique de la v.a. $(X - E(X))^2$.

On a ainsi :
$$V(X) = E[(X - E(X))^2] = E(X^2) - [E(X)]^2$$

Propriété: On a toujours $V(X) \ge 0$

L'écart-type de X est
$$\sigma$$
 (X) = $\sqrt{V(X)}$

C. Couple de deux variables aléatoires X et Y

La **loi du couple** (X, Y) est donnée par P ($X = x \cap Y = y$).

Les lois respectives de X et de Y sont appelées loi marginales de X et de Y.

• Indépendance de deux v.a.

$$\rightarrow$$
 Si P $(X = x_i \text{ et } Y = y_j) = P $(X = x_i)^* P (Y = y_j)$$

• Espérance d'une somme de deux v.a.

$$E(X+Y) = E(X) + E(Y)$$

• Variance de la somme de deux v.a. indépendantes

$$V(X + Y) = V(X) + V(Y)$$
 SI X et Y indépendantes

• Ecart-type de la somme de deux v.a. indépendantes

Si X et Y indépendantes ,
$$V(X + Y) = V(X) + V(Y)$$
 , c'est-à-dire :

$$\sigma^2_{X+Y} = \sigma^2_X + \sigma^2_Y$$

DONC
$$\sigma_{X+Y} = \sqrt{\sigma_X^2 + \sigma_Y^2}$$

III- LOIS USUELLES

A. Lois discrètes usuelles

Loi	Ce que représente X	Support $X(\Omega)$	Probabilité P (X = k)	Espérance E(X)	Variance V(X)	Ecart type σ
Bernoulli $B(p)$ $p \in [0; 1]$	Succès/Échec	{0;1}	$p^{k}(1-p)^{1-k}$	Þ	p (1 – p)	$\sqrt{p(1-p)}$
Binomiale $B(n, p)$ $p \in [0; 1]$	Nombre de succès	{0;,n}	$C_n^k p^k (1-p)^{n-k}$	пр	np (1 – p)	$\sqrt{np(1-p)}$
Poisson $P(\lambda)$ $\lambda > 0$	Phénomènes rares	IN	$e^{-\lambda} \cdot \frac{\lambda^k}{k!}$	λ	λ	$\sqrt{\lambda}$

- La loi binomiale s'utilise lorsqu'une même expérience aléatoire, répétée n fois de façon indépendante (tirage avec remise), a deux issues possibles:
 - "succès", avec la probabilité p
 - "échec", avec la probabilité 1 p.

Alors, la variable aléatoire X associée au nombre de succès suit une loi binomiale de paramètres n et p.

On a alors:

$$P(X = k) = \binom{n}{k} p^{k} (1-p)^{n-k} = C_{n}^{k} p^{k} (1-p)^{n-k}$$

$$P(X \le t) = P(X = 0) + P(X = 1) + \dots + P(X = k)$$

$$et:$$

$$P(X > t) = 1 - P(X \le t)$$

La loi de Poisson s'utilise généralement lorsqu'une variable aléatoire représente un phénomène rare.

On a dans ce cas:

$$P(X = k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$$

$$P(X \le t) = P(X = 0) + P(X = 1) + \dots + P(X = t)$$

$$P(X > t) = 1 - P(X \le t)$$

Ces probabilités se calculent à la calculatrice (voir p.7)

B. Lois continues usuelles

Loi	Densité f	Fonction de répartition F	Espérance E(X)	Variance V(X)	Ecart type
Uniforme sur [a; b]	$\begin{cases} \frac{1}{b-a} & \text{si } a \le x \le b \\ 0 & \text{si } x < a \text{ ou } x > b \end{cases}$	$\begin{cases} \frac{0}{x-a} & \text{si } x < a \\ \frac{b-a}{b-a} & \text{si } a \le x \le b \\ 1 & \text{si } x > b \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{b-a}{2\sqrt{3}}$
Normale $N (m; \sigma^2)$ $m \in IR; \sigma^2 > 0$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-1}{2\sigma^2}(x-m)^2}$	Non explicite	m	σ^2	σ
Normale centrée réduite N (0 ; 1)	$\frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$	Non explicite	0	1	1
Exponentielle $E(\lambda)$ $\lambda > 0$	$\lambda e^{-\lambda x} si x > 0$ $0 sinon$	$1 - e^{-\lambda x} si \ x > 0$ $0 sinon$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{1}{\lambda}$

Une variable aléatoire suit une <u>loi uniforme sur [a; b]</u> si et seulement si, pour tout intervalle I inclus dans [a; b], la probabilité de l'événement « $X \in I$ » est l'aire du domaine $\{M(x,y): x \in I \text{ et } 0 \le y \le \frac{1}{b-a}\}$

Dans ce cas, pour tout intervalle $[x_1; x_2]$ inclus dans [a; b],

$$P(X \in [x_1; x_2]) = \frac{x^2 - x^1}{b - a}$$

Dans le cas d'une variable aléatoire qui suit une <u>loi normale d'espérance m et d'écart-type o</u>, on calcule directement une probabilité avec la **calculatrice** (voir p.6).

Représentation:

Et pour une loi normale centrée réduite :

- La loi exponentielle est utilisée pour les questions relatives à la fiabilité d'un dispositif. C'est la loi suivie par une variable aléatoire T lorsque le taux d'avarie λ est constant. On définit donc, pour $t \ge 0$:
 - La fonction de défaillance (= failure), qui donne la probabilité pour que le système ait une défaillance avant l'instant t: $F(t) = P(T \le t) = 1 e^{-\lambda t}$
 - La fonction de fiabilité (= reliability), qui donne la probabilité pour que le système n'ait pas de défaillance avant l'instant t: $R(t) = P(T > t) = 1 P(T \le t) = 1 F(t) = e^{-\lambda t}$
 - La **M.T.B.F.** (Moyenne de Temps de Bon Fonctionnement, ou encore, en anglais, Mean Time Between Failures), est l'espérance mathématique de la variable aléatoire *T*.

On a M.T.B.F. =
$$\frac{1}{\lambda}$$

• De plus $\sigma(T) = \frac{1}{\lambda}$.

C. Approximation

1. d'une loi binomiale par une loi de poisson

Si
$$n \ge 30$$
, $p \le 0.1$ et $np < 15$ OU lorsque $p \le 0.1$ et $np \le 10$ alors $B(n, p) \sim P(\lambda)$ où $\lambda = np$

Sous ces conditions, une loi binomiale de paramètres n et p peut être approchée par une loi de Poisson de paramètre $\lambda = np$

2.d'une loi binomiale par une loi normale

Si
$$n \ge 30$$
, $np > 5$ $np(1-p) > 5$ alors $B(n, p) \sim N(m, \sigma)$

Sous ces conditions, une loi binomiale de paramètres n et p peut être approchée par une loi normale de moyenne (espérance) m = np et d'écart-type $\sigma = \sqrt{np(1-p)}$.

Mémo – Utilisation de la calculatrice

	→ Cas d'une loi BINOMIALE :
-	Pour déterminer $P(X = k)$:
-	Pour déterminer $P(X \le k)$:
-	Pour déterminer $P(X > k)$:
	→ Cas d'une loi de POISSON :
-	Pour déterminer $P(X = k)$:
_	Pour déterminer $P(X \le k)$:
-	Pour déterminer $P(X \ge k)$:
	→ Cas d'une loi NORMALE :
-	Pour déterminer $P(X \le k)$:
-	Pour déterminer $P(a \le X \le b)$:
-	Pour déterminer $P(X \ge k)$:
_	Pour déterminer k tel que $P(X \le k) = n$ (par exemple 0,9 ou 0,95 ou 0,99).