CS & IT

ENGINEERING

Sequential Circuit
Lecture No. 08

By- CHANDAN SIR

TOPICS TO BE COVERED 01 ASYNCHRONOUS COUNTER

02 PRACTICE

03 DISCUSSION

Full Mode counter > when all the states are used by the counter.

$$n=3$$
 MoD=8
 $n=4$ MoD=16
 $n=5$ MOD=32

a Besign a Mod 16 down counter in which a is taken as clock?

> Feedback Reduces the number of states.

FEEDBACK REDUCES THE NUMBER OF STATES

Mod 5) up Ripple counter.

FEEDBACK REDUCES THE NUMBER OF STATES

000
001
010
011
100

CLK	$\mathbf{Q}_{\mathbf{C}}$	Q_B	Q_{Λ}	$CLR = Q_C \overline{Q}_B Q_A$		
0	0	0	0	0		
1	0	0	1	0		
2	0	1	0	0		
3	0	1	1	0		
4	1.	0	0	O		
5	120	90	170	NO X		
6	0	0	1	0		
7	0	1	0	0		
8	0	1	1	0		

UP RIPPLE COUNTER 7 MOD-67

CLK	Qر	ag	QA	Cly
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	0
4	1	0	0	0
5	1	0	1.	0
6	20	10	010	70
7	0	O	1	0
8	0	1	0	6

CI	A	~	^
(11-	(2)		100
110-	Y	W	$\mu \nu \sigma$
			12

 $000 \rightarrow 001 \rightarrow 010 \rightarrow 011 \rightarrow 100 \rightarrow 101$

MOD-(9-) UP Ripple counter

CLK	QD	Qc	Q		cir
0	0	0	0	D	0
1	0.	0	0	1	0
ર	0	0	1	0	D
3	0	D	T	1	0
4	O		0	D	0
5	O		0	1	0
6	0	1	1	0	0
7	0	L	1	1	0
в	1	0	0	0	Ô
9	J. C	3	Ø	1	10
(0	0	0	0		
	0	U	I	1	

Design a BCD Ripple Carry counter?

Which type of counter is shown below?

C12929190

mod 5 down counter

mod 6 down counter

mod 6 up counter

Consider the following counter

If counter starts at 000, what will be the count after 13 clock pulses?

B 101

C 110

D 111

Discussion

- 9 Design 9 MOD-13 UP Ripple counter.
- a Résign a MOD-21 UP Ripple counter
- 9 Design a MOD-27 UP Ripple vounter
- Q Mesign a MODIA UP Ripple counter.

Thank you

Seldiers!

