МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

КУРСОВАЯ РАБОТА

по дисциплине «Разработка приложений для мобильных платформ»

Тема: Мобильное приложение «Duckietown» для управление полигоном

для испытания алгоритмов автономного движения

Студентка гр. 9304	 Селезнёва А.В.
Студент гр. 9304	 Тиняков С.А.
Студент гр. 9304	 Цаплин И.В.
Преподаватель	Заславский М.М.

Санкт-Петербург

ЗАДАНИЕ НА КУРСОВУЮ РАБОТУ

Студентка Селезнёва А.В.	
Студент Тиняков С.А.	
Студент Цаплин И.В.	
Группа 9304	
Тема работы: Мобильное прилож	ение «Duckietown» для управление
полигоном для испытания алгори	тмов автономного движения
Содержание пояснительной запис	ски:
«Аннотация»	
«Содержание»	
«Введение»	
«Сценарии использования»	
«Пользовательский интерфейс»	
«Разработанное приложение»	
«Последовательность действий д	ля осуществления сценариев использования»
«Заключение»	
«Список использованных источні	иков»
Предполагаемый объем поясните	льной записки:
Не менее 20 страниц.	
Дата выдачи задания: 10.02.2023	
Дата сдачи реферата: 28.03.2023	
Дата защиты реферата: 28.03.202	23
Студентка	Селезнёва A.B.
Студент	Тиняков С.А.
Студент	Цаплин И.В.
Преподаватель	Заславский М.М.

АННОТАЦИЯ

В данной работе было разработано мобильное приложение на базе ОС Android, позволяющее упростить взаимодействие с полигоном для испытания алгоритмов автономного движения.

SUMMARY

In this work, a mobile application based on the Android OS was developed for simplification of interaction with the test site for testing autonomous movement algorithms.

СОДЕРЖАНИЕ

	Введение	5
1.	Сценарии использования	6
2.	Пользовательский интерфейс	9
2.1.	Макет интерфейса с графом переходов	9
2.2.	Целевые устройства, обоснование требований и максимально	9
	подробные характеристики	
3.	Разработанное приложение	11
3.1.	Краткое описание	11
3.2.	Использованные технологии (внешние)	11
3.3	Использованные модули/системные библиотеки вашей	11
	платформы	
3.4	Ссылки на раздел Приложение	11
	Заключение	12
	Список использованных источников	13
	Приложение А. Инструкция для пользователя	14
	Приложение Б. Снимки экрана приложения	16

ВВЕДЕНИЕ

На данный момент лаборатория СПбГЭТУ "ЛЭТИ" стремительно развивается и растет, привлекает все больше и больше людей, в связи с чем необходимо обеспечить удобное взаимодействие с полигоном.

Мобильное приложение поможет людям, незнакомым с полигоном, легко и быстро осуществить взаимодействие с полигоном, а людям, работающим там – упростит взаимодействие.

Решение необходимо реализовать как мобильное приложение, поскольку смартфон есть у большинства людей, он всегда доступен. Также пользователи знакомы с типовыми интерфейсами, которые используются в мобильных приложениях.

1. СЦЕНАРИИ ИСПОЛЬЗОВАНИЯ

Сценарий с управлением бота

Действующее лицо: Пользователь

Предусловие: Открыт главный экран приложения

Основной сценарий:

1. Нажать на кнопку "Bots" – произошел переход на экран со списком ботов. Для каждого бота указан его статус (online / offline) и имя;

- 2. Нажать на ячейку с ботом произошел переход на экран управления соответствующим ботом;
- 3. Нажать на кнопку "Joystick" произошел переход на экран ручного управления ботом;
- 4. Нажать на одну из кнопок передвижения отправлена команда боту на соответствующее движение.

Альтернативный сценарии:

- В меню информации о боте нажать на кнопку "Start demo" запустилось демо на боте;
- В меню информации о боте нажать на кнопку "Video" произошёл переход на экран с видео камеры бота;
- В меню информации о боте нажать на кнопку "Set time" была произведена проверка локального времени бота и при необходимости синхронизация по NTP-серверу.

Сценарий просмотра видео с вышки

Действующее лицо: Пользователь

Предусловие: Открыт главный экран приложения

Основной сценарий:

- 1. Нажать на кнопку "Watchtowers" произошел переход на экран со списком вышек. Для каждой вышки указан его статус (online / offline) и имя;
- 2. Нажать на ячейку с вышкой произошел переход на экран с видео камеры с соответствующей вышки.

Сценарий просмотра видео с камер полигона

Действующее лицо: Пользователь

Предусловие: Открыт главный экран приложения

Основной сценарий:

1. Нажать на кнопку "Cameras" – произошел переход на экран со списком камер. Для каждой камеры указан его статус (online / offline) и имя;

2. Нажать на ячейку с камерой — произошел переход на экран управления соответствующей камерой.

Альтернативный сценарий:

• Нажать на кнопку внизу экрана — произошел переход на предыдущую/следующую камеру.

Сценарий использование карты

Действующее лицо: Пользователь

Предусловие: Открыт главный экран приложения

Основной сценарий:

1. Нажать на кнопку "Мар" – произошел переход на экран с картой;

2. Выставить две точки на карте – точки появились на изображении карты;

3. Нажать на кнопку "Send" — отправился запрос, содержащий координаты точек.

Сценарий сканирования маркера

Действующее лицо: Пользователь

Предусловие: Открыт главный экран приложения

Основной сценарий:

1. Нажать на кнопку "Scan ARUCO" – произошел переход на экран с видео с камеры устройства;

2. Навести камеру на ARUCO-маркер – произошел переход на экран управления ботом с соответствующим ARUCO-маркером.

Сценарий изменения настроек

Действующее лицо: Пользователь

Предусловие: Открыт любой экран приложения

Основной сценарий:

- 1. Нажать на иконку шестеренки в правом верхнем углу произошел переход на экран настроек приложения;
- 2. Нажать на тумблер "Local/Web" произошла смена режима работы приложения (выключенный тумблер локальная сеть, включенный web-cepsep).

Альтернативные сценарии:

- Ввести внешний адрес сети в поле "Outside url" изменился внешний адрес сети, на который приложение отправляет запросы;
- Ввести доменный адрес ботов в сети в поле "Bot url" изменился доменный адрес ботов, на который приложение отправляет запросы.

Общие альтернативы

- Нажать на кнопку назад произошел переход на предыдущий экран приложения;
- Нажать на иконку шестеренки в правом верхнем углу произошел переход на экран настроек приложения.

2. ПОЛЬЗОВАТЕЛЬСКИЙ ИНТЕРФЕЙС

2.1. Макет интерфейса с графом переходов

Макет интерфейса приложения с графом переходов представлен на рисунке 1.

Рисунок 1 - Макет интерфейса приложения

2.2. Целевые устройства, обоснование требований и максимально подробные характеристики

Целевым устройством является смартфон со следующими характеристиками:

Размер экрана: 3120х1440 пикселей;

Плотность пикселей: 560;

Минимальное количество ядер: 2;

Минимальное количество оперативной памяти: 1.5 Гб;

Минимальная версия API Andorid: 24.

3. РАЗРАБОТАННОЕ ПРИЛОЖЕНИЕ

3.1. Краткое описание

Приложение позволяет просматривать информацию о вышках, ботах, составлять на карте маршрут для ботов, делиться им, просматривать камеры, которые расположены над полигоном для отслеживания перемещений ботов. Также есть возможность переключаться между режимами работы вне и внутри сети лаборатории.

3.2. Использованные технологии (внешние)

- OkHttp библиотека для работы с HTTP запросами;
- android-mjpeg-view Android View для отображения трансляции MJPG;
- android-gif-drawable библиотека для отображения GIFизображений.

3.3. Использованные модули/системные библиотеки вашей платформы

- Камера
- Взаимодействие с сетью

3.4. Ссылки на раздел Приложение

В Приложении А представлено руководство пользователя. В Приложении Б представлены снимки экранов разработанного приложения.

ЗАКЛЮЧЕНИЕ

В результате выполнения курсовой работы было разработано мобильное приложение на базе ОС Android, позволяющее упростить взаимодействие с полигоном для пользователей. Приложение позволяет просматривать информацию о вышках, ботах, составлять на карте маршрут для ботов, делиться им, просматривать камеры, которые расположены над полигоном для отслеживания перемещений ботов. Также есть возможность переключаться между режимами работы вне и внутри сети лаборатории.

Разработанное приложение обладает рядом недостатков:

- 1) Отсутствует взаимодействие с AruCo маркерами;
- 2) Вместо сканирования сети при помощи Avahi используются статичные запросы;
 - 3) Отсутствует взаимодействие с полигоном через ROS.

Данные недостатки могут быть исправлены в дальнейшей работе над приложением.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. GitHub репозиторий проекта [Электронный ресурс] URL: https://github.com/moevm/adfmp1h23-duckietown (27.03.2023);
- 2. Документация Android [Электронный ресурс] URL: https://developer.android.com/reference (27.03.2023);
- 3. Документация Kotlin [Электронный ресурс] URL: https://kotlinlang.org/docs/ (дата обращения: 27.03.2023).

ПРИЛОЖЕНИЕ А

ИНСТРУКЦИЯ ДЛЯ ПОЛЬЗОВАТЕЛЕЙ

На стартовом экране присутствует логотип Duckietown и кнопки, которые осуществляют переход на соответствующие экраны.

На стартовом экране:

- При нажатии на кнопку "Scan ArUco" на стартово происходит переход на экран с камерой;
- При нажатии на кнопку "Мар" откроется экран с картой;
- При нажатии на кнопку "Autobots" откроется экран со списком ботов;
- При нажатии на кнопку "Watchtowers" откроется экран со списком вышек;
- При нажатии на кнопку "Cameras" откроется экран со списком камер;
- При нажатии на иконку шестеренки откроется экран настроек.

На экране с картой:

- Можно указать две точки на карте;
- После указания двух точек можно выполнить действие по кнопке "Send";
- Очистить точки на карте можно при помощи кнопки "Clear points".

На экране со статусом бота:

- Можно посмотреть текущие характеристики бота
- При нажатии на кнопку "Start demo"/"Stop demo" запускается/останавливается демо на боте;
- При нажатии на кнопку видео откроется экран с видео от бота;
- При нажатии на кнопку "Set time" на боте будет синхронизировано время с сервером
- При нажатии на кнопку "Joystick" откроется экран с управлением движением бота.

На экране настроек можно настроить такие параметры как url для локальной и внешней сети, url для ботов/вышек/камер и время обновления статуса устройств.

На экране с камерой можно отсканировать маркер ArUco, после чего происходит переход на экран со статусом бота.

На экране со списком камер отображаются камеры со статусом активны/неактивны. При нажатии на ячейку с камерой откроется экран с камерой.

На экране с камерой показывается видео с камеры. При нажатии на кнопки внизу экрана можно переключаться между камерами вперед и назад.

На экране со списком вышек отображаются активные и неактивные вышки. При нажатии на вышку откроется экран с видео вышки.

На экране со списком ботов отображаются активные и неактивные боты. При нажатии на активного бота откроется экран с его статусом.

На всех экранах со списками можно установить фильтр по параметрам устройств. Для открытия фильтра необходимо нажать на иконку фильтра в правом верхнем углу экрана.

На экране управления бота можно посмотреть частичный статус, а также при помощи джойстика внизу экрана управлять движением бота.

ПРИЛОЖЕНИЕ Б СНИМКИ ЭКРАНА ПРИЛОЖЕНИЯ

Bot status

Temperature: 55.504°C CPU load: 43.0% Battery: 0.0%

Memory (used/total): 0,84/3,69 Gb Swap (used/total): 0,01/2,00 Gb Disk (used/total): 12,33/55,72 Gb Last update time: 21:26:40

 \triangleleft \bigcirc \square

