Problemas Tema 5: Aplicaciones lineales

EP5.1. - Estudiar las siguientes aplicaciones y comprobar que son lineales:

a)
$$f: R^2 \longrightarrow R$$
 b) $f: R^2 \longrightarrow R$ c) $f: R^3 \longrightarrow R$ d) $f: R^3 \longrightarrow R$ $(x, y) \longrightarrow y$ $(x, y, z) \longrightarrow x + y$ $(x, y, z) \longrightarrow x - y + z$

e)
$$f: R^3 \longrightarrow R^2$$
 f) $f: R^3 \longrightarrow R^2$ g) $f: R^3 \longrightarrow R^2$ $(x, y, z) \longrightarrow (x, y, z) \longrightarrow (x - y, y + z)$

h)
$$f: R^3 \longrightarrow R^2$$
 i) $f: R^3 \longrightarrow R^2$ j) $f: R^3 \longrightarrow R^2$ $(x, y, z) \longrightarrow (x + y - 2z, 0)$ $(x, y, z) \longrightarrow (x + y - 5, y - z)$ $(x, y, z) \longrightarrow (2x, 1)$

EP5.2. Obtener los subespacios Ker(f) e Im(f) de las siguientes aplicaciones lineales.

a)
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 $f(x,y) = (2x - y, x + y)$

b)
$$f: R^2 \longrightarrow R^3$$
 $f(x, y, z) = (x + 2y + z, x + 5y, z)$
c) $f: R^2 \longrightarrow R^4$ $f(x, y) = (x, -y, x + 3y, x - y)$

c)
$$f: R^2 \longrightarrow R^4$$
 $f(x, y) = (x, -y, x + 3y, x - y)$

d)
$$f: R^4 \longrightarrow R^3$$
 $f(x, y, z, t) = (7x + 2y - z + t, y + z, -x)$

EP5.3.- Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ definida por $f(e_1) = (1,1), f(e_2) = (3,0), f(e_3) = (4,-7)$ donde $\{e_1,e_2,e_3\}$ es la base canónica de R^3 . a) Calcular f(1,3,8) y f(x,y,z) b) Determinar Ker(f) e Im(f)

EP5.4. Sea
$$f: R^3 \longrightarrow R^2$$
 tal que $f(x, y, z) = (3x + 2y - 4z, x - 5y + 3z)$

- a) Calcular la matriz de f respecto de las bases canónicas
- **b)** Calcular la matriz de f respecto de las bases $B_{\mathbb{R}^3} = \{(1,1,1),(1,1,0),(1,0,0)\}$ $B_{\mathbb{R}^2} = \{(1,1),(0,1)\}$

EP5.5. - Sea
$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
 y la matriz asociada respecto de la base canónica es $A = \begin{bmatrix} 3 & -1 & 1 \\ 0 & 2 & 0 \\ 1 & -1 & 3 \end{bmatrix}$

Determinar C asociada a f respecto de $B' = \{e_1', e_2', e_3'\}$ $e_1' = (1, 0, -1)$ $e_2' = (0, 1, 1)$ $e_3' = (1, 0, 1)$.

EP5.6. Sea f el endomorfismo de R^3 definido por: $f(e_1) = -e_1$ $f(e_2) = e_1 + e_2 + e_3$ $f(e_3) = -e_2 - e_3$ donde $\{e_1, e_2, e_3\} = B_{R^3}$

- i) Determinar la matriz de f relativa a la base $B_{{\mbox{\scriptsize R}}^{3}}$.
- ii) Encontrar dim Ker(f) y dim Im(f)
- iii) Probar que los vectores $u_1=-e_2$ $u_2=e_1+e_3$ $u_3=e_1$ forman base de R^3 y encontrar la matriz de f respecto de esta base

EP5.7.- Un endomorfismo f de R^3 está determinado por f(x,y,z) = (2y+z,x-4y,3x) en la base canónica. Se pide: a) Ker(f) e Im(f) b) La matriz de f en esta base. c) La matriz de f en la base constituida por los vectores $v_1=(1,1,1)$, $v_2=(1,1,0)$, $v_3=(1,0,0)$ d) La expresión de f en la base V.

EP5.8.-Determinar la matriz del morfismo $f(R^3) \longrightarrow R^4$ tal que f(0,1,1) = (1,2,7,1), f(1,0,3) = (-1,2,3,1), f(2,-1,0) = (2,0,4,0). Buscar las bases de Ker(f) ¿Cuales son las antiimágenes del vector (2,4,14,2)?