Chi-Square, Cramer's V, and Lambda

For a Rows by Columns Contingency Table

For a contingency table containing up to 5 rows and 5 columns, this unit will:

- perform a chi-square analysis [the logic and computational details of chi-square tests are described in Chapter 8 of <u>Concepts and Applications</u>];
- calculate Cramer's V, which is a measure of the strength of association among the levels of the row and column variables [for a 2x2 table, Cramer's V is equal to the absolute value of the phi coefficient];
- and calculate the two asymmetrical versions of lambda, the Goodman- Kruskal index of predictive association, along with some other measures relevant to categorical prediction. [Click here for a brief explanation of lambda.]

To begin, select the number of rows and the number of columns by clicking the appropriate buttons below; then enter your data into the appropriate cells of the data-entry matrix. After all data have been entered, click the «Calculate» button.

Select the number of rows:	2 3 4 5	3
Select the number of columns:	2 3 4 5	4

Data Entry_O

	, ~					
	B ₁	B ₂	B ₃	B ₄	B ₅	Totals
A ₁	13219	2053	3512	649		19433
A ₂	27015	1420	6339	1343		36117
A ₃	8632	653	3591	621		13497
A ₄						
A ₅						
Totals	48866	4126	13442	2613		69047
Reset Calculate						

1 of 3 06/05/2014 10:23 PM

Chi-Square df P

| 1633.84 | 6 | <.0001

Cramer's V = 0.1088

No message for this analysis.

Percentage deviation and standardized residual are both measures of the degre to which an observed chi-square cell frequency differs from the value that would be expected on the basis of the null hypothesis. Q

For each cell, percentage deviation is calculated $\ensuremath{\mathsf{as}}_Q$

$$xxx \frac{\text{observed} - \text{expected}}{\text{expected}} \quad x \ 100$$

Thus, a percentage deviation of +15% within a cell indicates that the observed frequency is 15% greater than the expected, while a percentage deviation (-15% indicates that the observed frequency is 15% smaller than the expected.

In the special case of df=1, the

Percentage Deviations _Q					
	B_1	B ₂	B ₃	B ₄	B ₅
A ₁	-3.9%	+76.8%	-7.2%	-11.8%	
A ₂	+5.7%	-34.2%	-9.8%	-1.7%	
A ₃	-9.6%	-19%	+36.7%	+21.6%	
A ₄					
A ₅					
Standardized Residuals _Q					
	B ₁	B ₂	B ₃	B ₄	B ₅
A ₁	-4.55	+26.17	-4.41	-3.19	
A ₂	+9.1	-15.89	-8.26	-0.64	
A ₂	+9.1 -9.41	-15.89 -5.41	-8.26 +18.79	-0.64 +4.88	
A ₃					

		Standard	.95 CI	Limits
Lambda for predicting		Error	Lower	Upper
A from B:	0.0192	0.0071	0.0053	0.0331
B from A:	0			

[Click <u>here</u> for a brief explanation of lambda.]

Estimated Probability of Correct Prediction when Predicting:

A without knowledge of B 0.5231

2 of 3

A from B	0.5322
B without knowledge of A	0.7077
B from A	0.7077

<u>Home</u> Click this link **only** if you did not arrive here via the VassarStats main page.

©Richard Lowry 2001-2014 All rights reserved.

3 of 3 06/05/2014 10:23 PM