DET-100 PHOTO DETECTORS & PREAMPLIFIERS

PHOTODETECTORS

PRODUCT BULLETIN

Hinds' detection systems are specifically designed for use with high frequency optical signals including those generated in Photoelastic Modulator (PEM) applications.

Hinds' detection features include:

- Frequency response. DC to several times the operating frequency of the PEM being used.
- Dark-current and/or background DC null.
- Preamplification for current to voltage conversion and buffering for impedance matching to signal cables.
- For many applications, separate lowpass or DC signals and wideband AC signals derived from the detector output.

These detectors are supplied in cylindrical housings 2-5/8 inches long by 2-1/2 inches in diameter, with a $\frac{1}{4}$ x 20 tapped hole for post mounting.

Typical Performance

(5mm², photoconductive, Red/IR)

- Power, bipolar, +/- 12 to 18 volts.
- Operating Temperature Range, 0° to 70° C.
- Current to Voltage Transfer Ratio, 2000 mV/mA.
- Frequency Bandwidth, DC to 1 MHz.
- Spectral Response, 350 to 950 nm.
- Noise Equivalent Power, 5 x 10⁻¹³.

Silicon detector models are available in either photovoltaic or photoconductive versions, and in either red/IR or UV/visible spectral sensitivity. A photovoltaic germanium detector/preamplifier is also available.

The DET-100 detectors include a universal power supply and also have the option of receiving power from the SCU-100.

DET-100 MODEL OPTIONS						
MODEL	TYPE	SPECTRAL RANGE, nm	ACTIVE AREA	FREQUENCY RESPONSE	MAXIMUM LIGHT INPUT POWER¹	DETECTOR DC OUTPUT ²
001	Si-PC	350 - 950	5 mm²	DC – 1 MHz	6.5 mW	$8.2 V_{DC}$
002	Si-PC	350 - 950	16 mm²	DC – 1 MHz	6.6 mW	$7.7 V_{DC}$
003	Si-PV	350 - 950	5 mm ²	DC – 350 kHz	6.5 mW	$6.4 V_{DC}$
004	Si-PV	350 - 950	16 mm ²	DC – 300 kHz	6.5 mW	$6.8 V_{DC}$
005	Si-PV	200 - 950	5 mm ²	DC – 400 kHz	6.1 mW	$6.4~V_{DC}$
006	Si-PV	200 - 950	20 mm ²	DC – 200 kHz	2 mW	$2.25~{ m V}_{ m DC}$
007	Ge-PV	800 -1600	3 mm ²	DC – 260 kHz	6.1 mW	$0.81~V_{ m DC}$
PC = Photoconductive			PV = Photovoltaic			

¹ For linear response, 632.8 nm laser

² Into a 5.6k load at maximum light input