Reglas de sintonía PID

Biomecatrónica 2025-1

Estructura del PID ideal

$$\begin{array}{c}
R(s) \\
F(s) \\
\hline
\end{array}$$

$$\begin{array}{c}
E(s) \\
\hline
\end{array}$$

$$\begin{array}{c}
K_p \left(1 + \frac{1}{T_i s} + T_d s\right) \\
\hline
\end{array}$$

$$\begin{array}{c}
G_p(s) \\
\hline
\end{array}$$

 $K_p \stackrel{\mathrm{def}}{=}$ Ganancia proporcional $T_i \stackrel{\mathrm{def}}{=}$ Constante de tiempo integral $T_d \stackrel{\mathrm{def}}{=}$ Constante de tiempo derivativa

$$K_i = \frac{K_p}{T_i}$$

$$K_d = K_p T_d$$

Variaciones

Controlador ideal en serie con un retardo de primer orden

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right) \left(\frac{1}{T_f s + 1} \right)$$

Controlador ideal en serie con un filtro de primer orden

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s\right) \left(\frac{b_{f1} s + 1}{a_{f1} s + 1}\right)$$

Variaciones

Controlador ideal en serie con un filtro de segundo orden

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right) \left(\frac{b_{f1} s + 1}{a_{f2} s^2 + a_{f1} s + 1} \right)$$

Controlador ideal con término proporcional ponderado

$$G_c(s) = K_p \left(b + \frac{1}{T_i s} + T_d s \right)$$

Prefiltro derivativo

El filtro derivativo se utiliza en el **controlador PID** para **reducir el ruido** que afecta a la acción derivativa. La parte derivativa del PID es muy sensible a los cambios rápidos en la señal de error, lo que incluye no solo cambios reales sino también el **ruido de alta frecuencia**. Sin un filtro, la derivada puede amplificar este ruido y generar señales de control inestables o ruidosas.

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} + \frac{T_d s}{1 + \frac{T_d}{N} s} \right)$$

¿Cómo se hallan las constantes?

Existen una serie de reglas de sintonía, la mayoría dependientes del tipo de modelo, e.g. FOPDT o SOPDT, algunas libres de modelo, pero dependientes de la estabilidad crítica

Otra forma consiste en ajustar los parámetros siguiendo reglas

Este método de Ziegler Nichols se realiza con el sistema en **lazo abierto**

Sin embargo, para poder usar este método es necesario que el sistema tenga un comportamiento del **tipo sigmoidal o forma de S** y el modelo debe ser, entonces, **FOPDT**

$$G_p(s) = \frac{Ke^{-\theta s}}{\tau s + 1}$$

Controlador	K_p	$T_{m{i}}$	T_d
P	$rac{ au}{K heta}$	∞	0
PI	$0.9 \frac{ au}{K heta}$	$\frac{\theta}{0.3}$	0
PID	$1.2 \frac{ au}{K heta}$	20	0.5θ

Cuidados del Método 1

- Según Corripio, las ecuaciones de sintonía de Z&N es buena cuando el factor de incontrolabilidad (θ/τ) está entre 0.1 y 0.3, o sea para procesos que no tengan un retardo dominante. Sin embargo algunos autores admiten que puede subir hasta 1.4
- Esta sintonía fue creada para controles analógicos y no para controles digitales

Ejemplo

Este segundo método de ajuste debe realizarse con el sistema en lazo cerrado

El proceso requiere de aumentar **experimentalmente** la ganancia proporcional del controlador paulatinamente, hasta conseguir en la salida (variable medida por los sensores) una respuesta **oscilatoria con una amplitud constante**

En este momento, se registra la ganancia que hace oscilar (ganancia última K_u) y el periodo de oscilación (periodo último, T_u)

Controlador	K_p	$T_{m{i}}$	$T_{oldsymbol{d}}$
P	$0.5K_u$	∞	0
PI	$0.45K_u$	$\frac{T_u}{1.2}$	0
PID	$0.6K_u$	$0.5T_u$	$0.125T_u$

Ejemplo

Sintonice controladores P, PI y PID, usando el método 2 de Z&N, para el sistema con función de transferencia

$$G(s) = \frac{8 - 3s}{s^2 + 7s + 5}$$

Otras sintonías

Tipo de control	K_p	T_i	T_d	K_i	K_d
P	$0.5K_u$	_	_	_	
PI	$0.45K_{u}$	$0.80T_u$	_	$0.54K_u/T_u$	
PD	$0.8K_u$	_	$0.125T_u$	_	$0.10K_uT_u$
PID clásico	$0.6K_u$	$0.5T_u$	$0.125T_{u}$	$1.2K_u/T_u$	$0.075K_uT_u$
Regla de Pessen	$0.7K_u$	$0.4T_u$	$0.15T_u$	$1.75K_u/T_u$	$0.105K_uT_u$
Bajo M_p	$0.3\overline{3}K_u$	$0.50T_{u}$	$0.3\overline{3}T_u$	$0.6\overline{6}K_u/T_u$	$0.1\overline{1}K_uT_u$
$\operatorname{No} M_p$	$0.20K_u$	$0.50T_u$	$0.3\overline{3}T_u$	$0.40K_u/T_u$	$0.06\overline{6}K_uT_u$

Observaciones del método 2

- Es claro que este tipo de sintonía tiene su mayor ventaja principalmente cuando no conocemos el modelo matemático de la planta que deseamos controlar
- Cuando el sistema llega a la ganancia última, indica que esta al borde de la inestabilidad. Gráficamente en el diagrama de polos y ceros, nos indica que los polos del sistema de lazo cerrado se encuentran sobre el eje imaginario, y un pequeño incremento en la ganancia provocará la inestabilidad
- Para que el sistema oscile, deberá tener un orden igual o superior a 3, o por lo menos deberá tener un retardo de tiempo, que hará que los polos crucen por el eje imaginario

Reglas heurísticas

- Se siguen reglas generales para obtener resultados aproximados o cualitativos
- La mayoría de controladores PID del mundo están sintonizados con estos métodos
- El método de prueba y error es un ejemplo de sintonía heurística

Ajuste heurístico

- 1. Establezca todas las ganancias en cero $(K_p=0,K_i=0,K_d=0)$.
- 2. Aumente K_p hasta que el sistema responda a los cambios de consigna con una velocidad aceptable, pero sin un sobreimpulso excesivo
- 3. Aumente K_i gradualmente para eliminar el error de estado estable. Observe si hay oscilaciones o inestabilidad

Ajuste heurístico

- 4. Si es necesario, introduzca K_d para reducir el sobreimpulso y amortiguar las oscilaciones. Tenga cuidado, ya que una acción derivativa excesiva puede generar sensibilidad al ruido
- 5. Ajuste todos los parámetros iterativamente, realizando pequeños ajustes y observando la respuesta del sistema
- 6. Pruebe el sistema con diferentes consignas y perturbaciones para garantizar un rendimiento robusto

Efecto sobre la dinámica

El efecto de los parámetros del controlador sobre la dinámica del sistema se puede resumir con la siguiente tabla

	t_r	${M}_{p}$	t_{s}	e_{ss}
K_p	Reduce	Aumenta	Poco efecto	Reduce
K_i	Reduce	Aumenta	Aumenta	Elimina
K_d	Poco efecto	Reduce	Reduce	Poco efecto