```
In [3]:
               year 2020: covid
               year 2021: post-covid
         # data format is kept in monthly order
         # we always keep 2 columns 'Month' and 'Year'
In [4]:
         # AFTER CLEANING
         # each final dataset is convert to 36 rows (not including headers),
         # from 2019 to 2021 with strictly 12 months per year.
In [3]:
        import pandas as pd
        import numpy as np
        import calendar
        international student = pd.read csv("instu R1.csv")
        transport usage = pd.read csv("transport R2.csv")
        employment = pd.read csv("employment R3.csv")
```

Data 1: Enrolment of international students

passenger = pd.read csv("passenger R4.csv")

```
In [6]:
         # Monthly international students' enrolments & commencements
In [2]:
        # Replace headers with first row
        new header = international student.iloc[0]
        international student = international student[1:]
         international student.columns = new_header
         # Rename headers
         international student.columns = ['Year', 'Month', 'State', 'Higher Education Enrolments', 'VE']
                                          'Schools Enrolments', 'ELICOS Enrolments', 'Non-award Enrolments'
                                          'Higher Education Commencements', 'VET Commencements', 'School
                                          'ELICOS Commencements', 'Non-award Commencements']
         # Clear all year execept for Jan 19 to Dec 21
         international student = international student[(international student["Year"] == "2021") |
         # Clear all states except "NSW"
         international student = international student[(international student["State"] == "NSW")]
```

```
Out[3]:
                                 Higher
                                              VFT
                                                     Schools
                                                                ELICOS Non-award Higher Education
             Year Month State
                               Education
                                         Enrolments Enrolments Enrolments Commencements Commence
                              Enrolments
          1 2019
                    Jan NSW
                                  98,257
                                            59,377
                                                       4,596
                                                                 19,714
                                                                            7,580
                                                                                           1,762
         10 2019
                         NSW
                                 120,224
                                            66,453
                                                       4,690
                                                                 23,231
                                                                           11,711
                                                                                          23,729
                    Feb
         19 2019
                    Mar NSW
                                 127,674
                                            68,510
                                                       4,699
                                                                 26,951
                                                                           12,724
                                                                                          31,179
        Data 2: Usage of public transport
In [9]:
          # Monthly trips counts
In [10]:
          # Restructure data
          transport usage = transport usage.pivot table(index='Year Month', columns='Travel Mode',
          # Delete last row ('total row')
          transport usage = transport usage[:-1]
          # Ensure all empty value are in the same format of nan
          transport usage = transport usage.replace(' ', np.nan)
          # 34 nan val exists
In [11]:
          # Take 'Year Month' column off 'Index'
          transport usage = transport usage.rename axis('Year Month').reset index()
          # Split into 2 new columns: Year and Month
          date = transport usage['Year Month'].str.split("-", expand=True,)
          # Add new columns to data set
          transport usage = transport usage.assign(Year=pd.DataFrame(date[0]))
          transport usage = transport usage.assign(Month=pd.DataFrame(date[1]))
          # Delete the old Year-Month column
          transport usage = transport usage.drop('Year Month', axis=1)
          # Rearrange columns
          transport usage = transport usage[["Year", "Month", "Bus", "Ferry", "Metro", "Train", "All"]]
          # Clear all year execept for Jan 19 to Dec 21
          transport usage = transport usage[(transport usage["Year"] == "2021") | (transport usage['
          # Convert int to month
          transport usage.Month = transport usage['Month'].apply(lambda x: calendar.month abbr[int()
In [12]:
         transport usage.head(3)
                                                                          All
Out[12]: Travel Mode
                   Year Month
                                      Bus
                                              Ferry Metro
                                                              Train
                 30 2019
                            Jan 22040138.0 1619996.0
                                                         29925564.0 54210931.0
                                                     NaN
                 31 2019
                            Feb 25713814.0 1266715.0
                                                     NaN 32218764.0 60087643.0
```

Data 3: Employment

In [13]:

32 2019

In [3]:

international student.head(3)

```
# Unemployment rate and hours worked
In [14]:
          # Delete last 2 'info' rows
          employment = employment[:-2]
```

NaN 36530266.0 67583312.0

Mar 28742223.0 1300757.0

```
# Split 'Date' into 2 columns contain 'Year' and 'Month'
date = employment['Date'].str.split("-", expand=True,)
# Add 'Year' "Month" to data set
employment = employment.assign(Year=pd.DataFrame(date[1]))
employment = employment.assign(Month=pd.DataFrame(date[0]))
# Remove old column 'Date'
employment = employment.drop('Date', axis=1)
# Rearrange column
# list(a) then copy the output
employment = employment[['Year','Month','Unemployment rate(%)','Underemployment rate(%)',
                        "Employed people ('000)", 'Hours worked (m)', 'Hours worked Yearly
                        'Underemployment Males (%)','Underemployment Females (%)']]
# Clear all year execept for Jan 19 to Dec 21
employment = employment[(employment["Year"] == "19")
                        | (employment["Year"] == "20")
                        | (employment["Year"] == "21")]
employment['Year'] = employment['Year'].replace(['19', '20', '21'], ['2019', '2020', '2021
```

In [15]:

employment.head(3)

Out[15]:

	Year	Month	Unemployment rate(%)	Underemployment rate(%)	Employed people ('000)		worked Yearly change (%)	Underemployment Males (%)	Underemploy Femal
78	2019	Jan	5.1	8.1	12,747.20	1,762	3.6	6.2	
79	2019	Feb	5.0	8.1	12,747.30	1,764	2.3	6.3	
80	2019	Mar	5.1	8.3	12,780.70	1,779	3.0	6.5	

Harris

Data 4: Passenger Air Movement

```
In [16]: # Monthly passenger movement at 20 major Australian airports
```

In [18]:

passenger.head(3)

Out[18]:		Year	Month	AIRPORT	Dom_Pax_In	Dom_Pax_Out	Dom_Pax_Total	Int_Pax_In	Int_Pax_Out	Int_Pax_Total	
	9084	2019	Jan	SYDNEY	1151296	1138031	2289327	887489	768912	1656401	2
	9085	2019	Feb	SYDNEY	1041047	1041948	2082995	707952	612960	1320912	1
	9086	2019	Mar	SYDNEY	1168035	1163665	2331700	656438	672111	1328549	1

```
In [19]: # Export data frame to csv without index column
   international_student.to_csv("instu_C1.csv", index = False)
   transport_usage.to_csv("transport_C2.csv", index = False)
   employment.to_csv("employment_C3.csv", index = False)
   passenger.to_csv("passenger_C4.csv", index = False)
```

Visualisation

```
In []: # I want to emphasize the change in 2020, when covid starts

In [27]: from matplotlib import pyplot as plt
    international_student = pd.read_csv("instu_C1.csv", thousands=',')
    transport_usage = pd.read_csv("transport_C2.csv")
    employment = pd.read_csv("employment_C3.csv", thousands=',')
    passenger = pd.read_csv("passenger_C4.csv")
```

D1: International Students

```
In [22]: # Commencement of International Students from 2019 to 2021
# in Higher Education sector
is19 = international_student[international_student['Year']==2019]
is20 = international_student[international_student['Year']==2020]
is21 = international_student[international_student['Year']==2021]
x = is19['Month']
y19 = is19['Higher Education Commencements']
y20 = is20['Higher Education Commencements']
y21 = is21['Higher Education Commencements']
```

```
In [23]:
         # Line graph (FIG 1.1)
         plt.figure(figsize=(12,8))
         plt.plot(x, y20, ls="--", lw=3, marker="X", markersize=10,
                  markerfacecolor="red", markeredgecolor="black",label="2020")
         plt.plot(x, y19, ls=":", marker="o", markersize=15,
                  markerfacecolor="None", label="2019")
         plt.plot(x, y21, ls=":", marker="o", markersize=15,
                  markerfacecolor="None", label="2021")
         plt.title('International Students Higher Education Commencements 2019-2021'
                   , fontsize=15, pad=18)
         plt.grid()
         plt.xlabel('Month', fontsize=15, labelpad=18)
         plt.ylabel('Number of commencemments', fontsize=15, labelpad=18)
         plt.xticks(fontsize=15)
         plt.yticks(fontsize=15)
         plt.legend(fontsize=17)
         plt.show()
         # plt.savefig('line.png')
```

International Students Higher Education Commencements 2019-2021


```
In [24]: # Total Enrolments and Commencements of International Students
# Each year from 2019 to 2021
x19 = pd.melt(is19,id_vars=['Year','Month','State'])['value']
is21 = pd.melt(is21,id_vars=['Year','Month','State'])['value']
```

International Students Total Enrolments and Commencements

D2: Public transport usage

```
In [33]: # Total trips of all public transports from 2019 to 2021
# Boxplot (FIG 2.1)
tp19 = transport_usage[transport_usage['Year']==2019]['All']
tp20 = transport_usage[transport_usage['Year']==2020]['All']
tp21 = transport_usage[transport_usage['Year']==2021]['All']

plt.figure(figsize=(10,6))
plt.title('Total trips of all public transports from 2019 to 2021', fontsize=15)
plt.boxplot([tp19, tp20, tp21], labels = ['2019', '2020', '2021'])
plt.xlabel("Year", fontsize=15, labelpad=15)
plt.ylabel("Number of trips", fontsize=15, labelpad=15)
plt.show()
```


D3: Employment

D4: Passenger air movement

Total number of passengers going in and going out, international and domestic 2019-2021

