

о всяком треугольнике квадрат стороны, стягивающей острый угол, меньше суммы квадратов сторон, содержащих этот угол, на дважды прямоугольник, заключен-

ный между любой из этих сторон и отрезком, отсекеаемым перпендикуляром из противоположного угла от этого отрезка или от продленного отрезка.

Первый случай

$$^{\text{C}}$$
 $^{\text{A}^2}$ $<$ $^{\text{B}}$ $^{\text{C}^2}$ $+$ $^{\text{A}}$ $^{\text{B}^2}$ на $2 \cdot ^{\text{B}}$ $^{\text{C}}$ $\cdot ^{\text{B}}$ $^{\text{D}}$. Второй случай

$$\stackrel{\mathsf{B}}{-} \stackrel{C^2}{-} < \stackrel{\mathsf{B}}{-} \stackrel{F^2}{-} + \stackrel{\mathsf{F}}{-} \stackrel{G^2}{-} \mathcal{H}a \ \mathcal{Z} \cdot \stackrel{\mathsf{F}}{-} \stackrel{\mathsf{G}}{-} \cdot \stackrel{\mathsf{F}}{-} \stackrel{\mathsf{H}}{-} .$$

Предположим, перпендикуляр падает внутри треугольника, тогда (пр. II.7)

$$^{\mathrm{B}}$$
 $^{\mathrm{C}^2}$ + $^{\mathrm{B}}$ $^{\mathrm{D}^2}$ = $2 \cdot ^{\mathrm{B}}$ $^{\mathrm{C}}$ $\cdot ^{\mathrm{B}}$ $^{\mathrm{D}}$ + $^{\mathrm{D}}$ $^{\mathrm{C}^2}$, к каждой добавим $^{\mathrm{A}}$ $^{\mathrm{D}^2}$, тогда

Теперь предположим, что перпендикуляр падает вовне треугольника, тогда (пр. II.7)

$$\stackrel{\text{F}}{---}\stackrel{\text{H}^2}{---} + \stackrel{\text{F}}{---}\stackrel{\text{G}^2}{---} = 2 \cdot \stackrel{\text{F}}{----} \stackrel{\text{H}}{---} \cdot \stackrel{\text{F}}{----} \stackrel{\text{G}}{---} + \stackrel{\text{G}}{----} \stackrel{\text{H}^2}{----} ,$$

к каждой добавим $\stackrel{^{_{\rm H}}}{-\!-\!-\!-}$, тогда $\stackrel{^{_{\rm F}}}{-\!-\!-}$ $\stackrel{^{_{\rm H}^2}}{-\!-\!-}$ + $\stackrel{^{_{\rm H}^2}}{-\!-\!-}$ =

$$\therefore (\text{пр. I.47}) \xrightarrow{\text{E}} \xrightarrow{\text{F}} + \xrightarrow{\text{F}} \xrightarrow{G^2} = 2 \cdot \xrightarrow{\text{F}} \xrightarrow{\text{H}} \cdot \xrightarrow{\text{F}} \xrightarrow{G^2} + \xrightarrow{\text{E}} \xrightarrow{G^2}$$

$$\therefore \xrightarrow{\text{E}} \xrightarrow{G^2} < \xrightarrow{\text{E}} \xrightarrow{F^2} + \xrightarrow{\text{F}} \xrightarrow{G^2} \text{Ha } 2 \cdot \xrightarrow{\text{F}} \xrightarrow{\text{H}} \cdot \xrightarrow{\text{F}} \xrightarrow{G}.$$

Первый случай

Второй случай

ч.т.д.