

Advanced Mechatronics Design

Software Tools – LabVIEW Intro Simulated Devices

What Type of Device Should I Use?

	Sound Card*	NI USB DAQ	NI PCI DAQ	Instruments*
Al Bandwidth	8 to 44 kS/s	10 kS/s to 1.25 MS/s	20 kS/s to 10 MS/s	100 S/s to 2 GS/s
Accuracy	12 to 16 bits	12 to 18 bits	12 to 18 bits	8 to 26 bits
Portable	$\sqrt{}$	\checkmark	_	some
Al Channels	2	8 to 80	2 to 80	1 to 80
AO Channels	2	2 to 4	2 to 8	2 to 8
AC or DC	AC	AC/DC	AC/DC	AC/DC
Triggering	_	V	√	√
Calibrated	_	√	√	√

^{*} The above table may not be representative of all device variations that exist in each category

Explore

Test Panels

Device Pinouts

Advanced Mechatronics Design

NI PCI/PXI-6220

)				
	(
Al 0	68 34	AI 8				
AI GND	67 33	Al 1				
Al 9	66 32	AI GND				
Al 2	65 31	AI 10		0		
AI GND	64 30	Al 3		₩		
Al 11	63 29	AI GND		5 5		
AI SENSE	62 28	Al 4		CONNECTOR 0 (Al 0-15)		
AI 12	61 27	AI GND		8		
Al 5	60 26	AI 13		°		
AI GND	59 25	Al 6		(8)		
Al 14	58 24	AI GND		1		
Al 7	57 23	AI 15	TERMINAL 68	F	- TERMINAL 34	
AI GND	56 22	NC				
NC	55 21	NC				
NC	54 20	NC				
D GND	53 19	P0.4				
P0.0	52 18	D GND				
P0.5	51 17	P0.1				
D GND	50 16	P0.6				
P0.2	49 15	D GND				
P0.7	48 14	+5 V				
P0.3	47 13	D GND				
PFI 11/P2.3	46 12	D GND	TERMINAL 35		- TERMINAL 1	
PFI 10/P2.2	45 11	PFI 0/P1.0		785		
D GND	44 10	PFI 1/P1.1				
PFI 2/P1.2	43 9	D GND		_		
PFI 3/P1.3	42 8	+5 V				
PFI 4/P1.4	41 7	D GND				
PFI 13/P2.5	40 6	PFI 5/P1.5				
PFI 15/P2.7	39 5	PFI 6/P1.6				
PFI 7/P1.7	38 4	D GND				
PFI 8/P2.0	37 3	PFI 9/P2.1				
D GND	36 2	PFI 12/P2.4				
D GND	35 1	PFI 14/P2.6				
NC = No Connect						

Default NI-DAQmx Counter Terminals

Counter/Timer Signal	Default Pin Number	Signal Name
CTR 0 SRC	37	PFI 8
CTR 0 GATE	3	PFI 9
CTR 0 AUX	45	PFI 10
CTR 0 OUT	2	PFI 12
CTR 0 A	37	PFI 8
CTR 0 Z	3	PFI 9
CTR 0 B	45	PFI 10
CTR 1 SRC	42	PFI 3
CTR 1 GATE	41	PFI 4
CTR 1 AUX	46	PFI 11
CTR 1 OUT	40	PFI 13
CTR 1 A	42	PFI 3
CTR 1 Z	41	PFI 4
CTR 1 B	46	PFI 11
FREQ OUT	1	PFI 14

NI PCI/PXI-6220

NC = No Connect

Setting up myRIO Projects

• Click on "Create Project"

Setting up the Project

Choose blank project.

Setting up the Project

- You will see the project window.
- Right click on "Project: Untitled Project 1" → Save as → "AnalogInput".

Setting up the Project with myRIO

• Right click on Project AnalogInput → New → Targets and Devices

- Existing target or device:
 - Discover an existing target or device.
 - Or specify a target or device by IP address. (myRIO's IP is 172.22.11.2)
- Click the "+" sign before myRIO.

Project with Simulated myRIO

• Right click on Project AnalogInput → New → Targets and Devices

Create New target or device.

Click on green myRIO-1950.

Setting up the Project

• The project tree now looks like this:

Setting up the Project

- Right click on "NI-myRIO-1900..." → New → VI
- A VI will open.
- Save it as RT.vi.
- Now we are ready to program the VI for reading analog inputs.

Project with Simulated myRIO

- Set myRIO's IP as 172.22.11.2
- Right click on "NI-myRIO-1950..." → New → VI
- A VI will open.
- Save it as RTS.vi.
- Now we are ready to program the VI
- Instead of Input signals as with physical myRIO you will Simulate Signals

Reading & Calibrating Range Sensor

• Next, create the following VI in RT.vi:

- Connect the IR Range Sensor to the myRIO board as follows:
 - Red \rightarrow 5V
 - Black → Ground
 - White \rightarrow AI 0

Project with Simulated I/O

Project with Simulated I/O

UNIVERSITY

A Control System Design

Your task is to design a control system. Use LabVIEW to simulate temperature data acquisition and control, in modern cars, where you have two temperature control loops. Controlled variables are temperatures, T_1 and T_2 . Your program should perform the following:

- Simulate data acquisition, with noise,
- Has an interface to set up the target value of the controlled variable, and offset $T=T_{target} \pm T_{offset}$ for example $T=20\pm 1$ ^{0}C
- Filter the signal using FIR filter, or other,
- Display the temperature value before and after the filtering using graph representation,
- Display the temperature value using a numerical indicator,
- If the measured (simulated) value is below the target activate the heater, simulated by a red diode
- If the measured value is above the target activate the fan, simulated by a blue diode
- When the controlled variable is at the target range both diodes should be OFF
- Add two more diodes for warning when the temperature is too low $(T < 2^{0}C)$, or too high $(T > 80^{0}C)$
- BONUS, for HD: Add sound warning for both cases: $(T < 2^{0}C) & (T > 80^{0}C)$.
- If your control system for the temperature T_1 is working well, add one more control system for the temperature T_2 .

Dual Temperature Control

Dual Temperature Control

Exercise

Redevelop temperature control program so that

Two temperatures are measured

lacksquare

Acquire

Sound

Data

- Case structure is used instead if else constructions
- Add sound warning: In order to do that you

need to

Thank you, Questions

