PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-255983

(43)Date of publication of application: 30.09.1997

(51)Int.CI.

C10M169/00 //(C10M169/00 C10M101:02 C10M105:02 C10M105:18 C10M105:32 C10M103:06 C10M115:08

C10M135:18 C10N 10:12

C10N 30:08 C10N 40:04 C10N 50:10

(21)Application number: 08-065809

(71)Applicant: KYODO YUSHI KK

HONDA MOTOR CO LTD

(22)Date of filing:

22.03.1996

(72)Inventor: TAKEUCHI KIYOSHI

SASAKI TAKESHI

HANAWA TOMIO **USUI KOKI**

OGURA NAOHIRO

(54) GREASE COMPOSITION FOR CONSTANT SPEED JOINT

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a grease composition having improved antiflaking performances and heat resistance performances by mixing a base oil with a specified diurea compound, melamine cyanurate. molybdenum disulfide and a sulfur extreme pressure additive.

SOLUTION: This composition is obtained by mixing a base oil being a lubricating oil such as a mineral oil, a synthetic ester oil, a synthetic ether oil or a synthetic hydrocarbon oil or a mixture thereof with 1-25wt.%, based on the total composition, diurea compound represented by the formula (R1 and R2 are each a 6 or 7C aryl or cyclohexyl), 0.1-5wt.%, based on the total composition, melamine cyanurate being an adduct of melamine with cyanuric acid, 0.5-5wt.% molybdenum disulfide extensively used as a general extreme pressure additive, 0.1-3wt.% sulfur extreme pressure additive freed from phosphorus and having a sulfur content of 35-50wt.%, 0.1-5wt.% molybdenum dithiocarbamate and

RINH-CO-NE-Cara-p-Chi -Caca-p-NH-CO-NHRI-

optionally other additives such as an antioxidant, a rust preventive and a corrosion inhibitor and reacting the resultant mixture by heating at 70-80° C under heating.

LEGAL STATUS

[Date of request for examination]

14.01.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-255983

(43)公開日 平成9年(1997)9月30日

(51) Int.Cl.⁶

戲別記号

庁内整理番号

FΙ

C 1 0 M 169/00

技術表示箇所

C 1 0 M 169/00 // (C 1 0 M 169/00

101: 02

101:02

105:02

105:18

審査請求 未請求 請求項の数4 OL (全 5 頁) 最終頁に続く

(21)出願番号

特顏平8-65809

(22)出願日

平成8年(1996)3月22日

(71)出願人 592038317

協同油脂株式會社

東京都中央区銀座2丁目16番7号

(71)出願人 000005326

本田技研工業株式会社

東京都港区南青山二丁目1番1号

(72)発明者 竹内 澄

神奈川県藤沢市辻堂神台1の4の1 協同

油脂株式會社辻堂工場内

(72)発明者 佐々木 剛

神奈川県藤沢市辻堂神台1の4の1 協同

油脂株式會社辻堂工場内

(74)代理人 弁理士 中村 稔 (外6名)

最終頁に続く

(54) 【発明の名称】 等速ジョイント用グリース組成物

(57)【要約】

【課題】 フレーキング防止性能及び耐熱性能に優れた 等速ジョイント用グリース組成物を提供すること。

【解決手段】 (a) 基油、(b) 下記式で表されるジウレア化合物:

R1 NH-CO-NH-C6 H4 -p-CH2 -C6 C4 -p-NH-CO-NHR2

(式中、R¹ およびR² は、同一もしくは異なる炭素原子数6又は7のアリール基もしくはシクロヘキシル基である)、(c) メラミンシアヌレート、(d) 二硫化モリブデン、及び(e) リン分を含まない硫黄系極圧添加剤からなる、等速ジョイント用グリース組成物。

【特許請求の範囲】

【請求項1】 (a) 基油、(b) 下記式で表されるジウレ ア化合物:

1

R1 NH-CO-NH-C6 H, -p-CH2 -C6 C, -p-NH-CO-NHR2

(式中、R¹ およびR¹ は、同一もしくは異なる炭素原 子数6又は7のアリール基もしくはシクロヘキシル基で ある)、(c) メラミンシアヌレート、(d) 二硫化モリブ デン、及び(e) リン分を含まない硫黄系極圧添加剤から なる、等速ジョイント用グリース組成物。

【請求項2】 さらに、(f) モリブデンジチオカーバメ 10 ートを含有する、請求項1記載の等速ジョイント用グリ ース組成物。

【請求項3】 全組成物中、ジウレア化合物の含有量 が、1~25重量%、メラミンシアヌレートの含有量が 0. 1~5重量%、二硫化モリブデンの含有量が0.5 ~5 重量%、リン分を含まない硫黄系極圧添加剤の添加 量が0.1~3重量%である、請求項1記載の等速ジョ イント用グリース組成物。

【請求項4】 全組成物中、ジウレア化合物の含有量 が、1~25重量%、メラミンシアヌレートの含有量が 20 0. 1~5重量%、二硫化モリブデンの含有量が0.5 ~5 重量%、リン分を含まない硫黄系極圧添加剤の添加 量が0.1~3重量%、モリブデンジチオカーバメート の添加量が0.1~5重量%である、請求項2記載の等 速ジョイント用グリース組成物。

【発明の詳細な説明】

[0001]

【発明が属する技術分野】本発明は、等速ジョイント用 グリース組成物、特にプランジング型等速ボールジョイ ント用または固定型等速ボールジョイント用グリース組 30 成物に関するものである。等速ジョイントの潤滑条件 は、極めて高面圧であり、その結果、異常摩耗や金属疲 労の発生による、剥離現象、すなわち、ジョイントのフ レーキングが発生し易い。本発明は、このような等速ジ ョイントを潤滑し、ジョイントの摩耗を効果的に低減 し、潤滑部分のフレーキングの発生を効果的に防止する ことのできる等速ジョイント用グリース組成物に関する ものである。

[0002]

【従来の技術】従来、このような等速ジョイントに用い られている潤滑グリースとしては、二硫化モリブデンを 含有するリチウム系極圧グリースや、二硫化モリブデン と硫黄-リン系極圧剤やナフテン酸の鉛塩を含有するリ チウム系極圧グリースが挙げられる。しかし、これらの 等速ジョイント用グリースは、近年の高性能自動車にお いて発生する厳しい作用条件の下では、必ずしも満足な ものとはいえない。プランジング型等速ボールジョイン トとして用いられているダブルオフセット型等速ジョイ ントやクロスグルーブ型等速ジョイント等、また固定型 等速ボールジョイントとして用いられているバーフィー 50 混合油が挙げられるが、これらに限定されるものではな

ルドジョイント等は、いずれも6個のボールでトルクを 伝達する構造を持つ。これらの等速ジョイントでは、回 転時高面圧下で複雑なころがりすべりの往復運動によ り、ボールおよびボールと接触する金属表面に繰り返し 応力が加わり、金属疲労によるフレーキング現象が発生 し易い。近年のエンジンの高出力化、また燃費向上のた めの自動車の軽量化により、ジョイントのサイズも小さ くなるため、相対的に高面圧となり、従来のグリースで はフレーキング現象を充分に防止することができない。 また、グリースの耐熱性向上も必要になってきている。 [0003]

【発明が解決しようとする課題】従って、本発明の目的 は、フレーキング防止性能及び耐熱性能に優れた等速ジ ョイント用の新規なグリース組成物を提供することであ

[0004]

る。

【課題を解決するための手段】本発明者等は等速ジョイ ントの摩耗を最適化し、異常な摩耗や金属疲労によるジ ョイントのフレーキングを防止し、かつ耐熱性能に優れ たグリース組成物を開発するため種々の研究を行った。 上記のような高面圧下での複雑なころがりすべり往復運 動を伴う潤滑条件で使用するグリースの性能評価を、特 にすべり運動に着目し、高速四球試験機として知られ る、潤滑性能試験機を用いて行い、各種極圧添加剤、固 体潤滑剤または各種添加剤の組合せによる極圧性能につ いて検討した。その結果本発明者等は、基油、ジウレア 化合物、メラミンシアヌレート、二硫化モリブデン、及 びリン分を含まない硫黄系極圧剤を含有するグリース組 成物、また、さらにモリブデンジチオカーバメートを含 有するグリース組成物が、高い極圧性能を示すことを見 出し、さらに、実際の等速ジョイントを用いた耐久性能 試験においても、従来の等速ジョイント用グリースとは 異なり、フレーキング現象の発生を効果的に防止し得る ことを確認し、本発明を完成するに至った。

【0005】本発明は以下の成分を含む等速ジョイント 用グリース組成物である。

(a) 基油、(b) 下記式で表されるジウレア化合物: R1 NH-CO-NH-C6 H4 -p-CH2 -C6 C4 -p-NH-CO-NHR2

(式中、R¹ およびR² は、同一もしくは異なる炭素原 子数6又は7のアリール基もしくはシクロヘキシル基で ある)、(c) メラミンシアヌレート、(d) 二硫化モリブ デン、及び(e) リン分を含まない硫黄系極圧添加剤。 [0006]

【発明の実施の形態】本発明の好ましい実施態様は、上 記(a) ~(e) 成分に加えて、(f) モリブデンジチオカー バメートを含有する等速ジョイント用グリース組成物で ある。本発明に使用する(a) 成分の基油としては、鉱物 油、エステル系合成油、エーテル系合成油、炭化水素系 合成油等の普通に使用されている潤滑油またはそれらの 3

い。本発明に使用する(b) 成分のジウレア化合物は、アニリン、pートルイジン等の芳香族系アミン、シクロへキシルアミン、又はこれらの混合物と、ジイソシアネート化合物との反応によって得られる、ジウレア化合物であり、ジウレア化合物中のアリール基は6又は7個の炭素原子を有するものが好ましく、ジウレア化合物中のアリール基の割合は、100ないし0%である。

【0007】本発明に使用する(c) 成分のメラミンシア ヌレートは、メラミンとシアヌル酸の付加物である。シ アヌル酸は、イソシアヌル酸と互変異性の関係にあり、 通常市販されているメラミンシアヌレートは、メラミン 1モルとシアヌル酸1モルの付加物であり、メラミンイ ソシアヌレートの形態にある。この明細書において、メ ラミンシアヌレートは、メラミンとシアヌル酸またはイ ソシアヌル酸の付加物を示すものとする。メラミンシア ヌレートは、例えば、メラミン水溶液とシアヌル酸また はイソシアヌル酸水溶液を混合すると容易に白色の沈殿 として析出してくる。メラミンシアヌレートは、通常平 均粒径1~2μmの白色微粉末として市販されており、 6員環構造のメラミン分子とシアヌル酸分子が水素結合 で強力に結合して平面状に配列し、その平面が互いに弱 い結合力で層状に重なりあって、二硫化モリブデンと同 様にへき開性を有すると推定され、優れた潤滑性を与え るものと考えられる。

【0008】本発明に使用する(d) 成分の二硫化モリブデンは、一般に極圧添加剤として広く用いられている。その潤滑機構としては、層状格子構造を持ち、すべり運動により薄層状に容易にせん断し、摩擦係数を低下させることが知られている。また、ジョイントの焼け付き防止にも効果がある。本発明に使用する(e) 成分である、リン分を含まない、硫黄極圧添加剤として好ましいものは、硫黄分35~50重置%のものである。本発明に使用する(f) 成分である、モリブデンジチオカーバメートの好ましい例としては下記の式で表されるものが挙げられる。

(R'R'N-CS-S),-Mo,OmSn (式中、R'及びR'は、それぞれ独立して、炭素数1~24、好ましくは3~18のアルキル基を表し、mは0~3、nは4~1、m+n=4である。) 本発明の等速ジョイント用グリース組成物には、上記成

本発明の等述ショインド用グリース組成物には、上記成分に加えて、酸化防止剤、防錆剤、防食剤等を含有させることができる。

【0009】本発明の等速ジョイント用グリース組成物は、好ましくはグリース組成物の全重量に対して、(a) *

粘度 40℃ 100℃

粘度指数 106

【0012】また、市販二硫化モリブデンに硫黄-リン 系極圧剤とナフテン酸の鉛塩を含有するリチウムグリー スを比較例6のグリースとした。これらのグリースにつ 50

*成分の基油:60.0~98.3重量%、(b) 成分のジウレ ア化合物: 1~25重量%、(c) 成分のメラミンシアヌ レート: 0.1~5.0 重量%、(d) 成分の二硫化モリブデ ン: 0.5~5.0 重量%、(e) 成分のリン分を含まない硫 黄系極圧添加剤:0.1~5.0重量%を含んでいる。本発 明の他の等速ジョイント用グリース組成物は、好ましく は、グリース組成物の全重量に対して、(a) 成分の基 油:55.0~98.2重量%、(b) 成分のジウレア化合 物:1~25重量%、(c) 成分のメラミンシアヌレー ト:0.1~5.0 重量%、(d) 成分の二硫化モリブデン: 0.5~5.0 重量%、(e) 成分のリン分を含まない硫黄系 極圧添加剤: 0.1~5.0重量%、(f) 成分のモリブデン ジチオカーバメート: 0.1~5.0 重量%を含んでいる。 【0010】(b) 成分のジウレア化合物の含有量が1重 量%未満では、増ちょう効果が少なくなり、グリース化 しにくくなり、25重量%より多いと、得られた組成物 が硬くなり過ぎ、所期の効果が得られにくくなる。(c) 成分のメラミンシアヌレートの含有量が0.1重量%未 満、(d) 成分の二硫化モリブデンの含有量が0.5 重量 %未満、(e) 成分のリン分を含まない硫黄系極圧添加剤 の含有量が0.1重量%未満では、所期の効果を十分に得 ることが困難な場合があり、一方(c) 成分の含有量が5 重量%より多く、(d) 成分の含有量が5重量%より多 く、(e) 成分の含有量が5重量%より多い場合にも、効 果の増大はなく、フレーキング防止効果においては、む しろ逆効果である。また、(f) 成分のモリブデンジチオ カーバメートの含有量が0.1重量%未満であるか、5重 量%より多い場合には、添加効果が顕著でなくなる。 [0011]

30 【実施例】次に本発明を実施例及び比較例により説明する。

〔実施例1~6、比較例1~5〕容器に基油4100gとジフェニルメタン-4、4′ージイソシアネート1012gをとり、混合物を70~80℃に加熱した。別容器に基油4100gとシクロヘキシルアミン563g、アニリン225gをとり、70~80℃に加熱後、先の容器に加えた。混合物をよく攪拌しながら、30分間反応させ、その後攪拌しながら、160℃まで昇温し、放冷し、ベースウレアグリースを得た。このベースグリースに、表1に示す配合で、添加剤を添加し、適宜基油を加え、得られる混合物を、三段ロールミルにて、ちょう度No.1グレードに調整した。上記実施例及び比較例において、いずれもグリースの基油としては以下の特性を有する鉱油を使用した。

 $130 \text{ mm}^2/\text{s}$ $14 \text{ mm}^2/\text{s}$

き以下に示す試験方法で物性の評価を行い、得られた結果を表1に併記した。

5

<ちょう度>

ISO 2137 による

<滴 点>

ISO 2176 による

<高速四球極圧試験>

ASTM D 2596による 評価項目 融着荷重 (Weld Point)

<実ジョイント台上耐久試験>下記条件にて、実ジョイ

* 有無を評価した。

ントでの台上耐久試験を行い、フレーキング等の発生の*

試験条件 回転数

1500 rpm

トルク

196 N·m

ジョイント角度

200 時間

10.

運転時間

ジョイントタイプ バーフィールドジョイント

測定項目 運転後のジョイント各部のフレーキング発生の有無

[0013]

※ ※【表1】

実	施	例				
	1_	2	3	4	5	6
1)ジウレアグリース	96.0	95.5	94.5	96.0	95.0	93.5
2)メラミンシアヌレート(MCA)	1.5	1.5	1.5	1.0	1.5	1.5
3)二硫化モリブデン	2.0	2.0	2.0	2.0	2.0	2.0
4)硫黄系極圧剤(アングラモル33)	0.5	1.0	2.0	1.0	1.0	1.0
5)モリブデンジチオカーバメート					0.5	2.0
6)ちょう度 60w	328	325	331	332	323	332
7)滴点 (℃)	260<	260<	260<	260<	260<	260<
8)高速四球極圧 融着荷重 kgf	500	500	500	500	500	500
9)耐久試験 200h 後の剥離の有無	0	0	0	0	0	0

比	較	1	例				
	1	2	3	4	5	6	
1)ジウレアグリース	98.5	98.0	99.0	99.5	97.0		
2)メラミンシアヌレート(MCA)	1.5						
3)二硫化モリブデン		2.0			2.0		
4)硫黄系極圧剤(アングラモル33)			1.0		1.0		
5)モリブデンジチオカーバメート				0.5			
6)ちょう度 60w	324	322	330	325	331	275	
刀滴点 (℃)	260<	260<	260<	260<	260<	190	
8)高速四球極圧 融着荷重 kgf	200	250	200	200	315	400	
9)耐久試験 200h 後の剥離の有無	X	×	×	×	×	×	

【0014】1) モノアミンとして、シクロヘキシルア ミンとアニリンを混合使用したジウレア化合物を用いた ジウレアグリース

- 株式会社製)
- 3) 二硫化モリブデン (スーパーファイン グレード) (商品名: Molysulfide CLIMAX MOLYBDENUM COMPANY 製★
- ★平均粒径0.45μm)
 - 4) 硫黄系極圧剤 (商品名: Anglamol 33 日本ルーブリ ゾール(Lubrizol)社製)
- 2) メラミンシアヌレート (商品名: MCA 三菱化学 40 5) モリブデンジチオカーバメート (商品名: Molyvan A R.T.Vanderbilt社製)
 - 6) 市販二硫化モリブデン入りリチウムグリース

剥離の有無 〇:剥離無し、 ×:剥離有り

フロントページの続き

(51) Int.Cl.⁶

庁内整理番号 識別記号

FΙ

技術表示箇所

115:08

135:18)

C 1 0 N 10:12

30:08

40:04

50:10

(72) 発明者 塙 富夫

栃木県真岡市松山町19番地 本田技研工業

株式会社栃木製作所内

(72)発明者 薄井 好己

栃木県真岡市松山町19番地 本田技研工業

株式会社栃木製作所内

(72)発明者 小倉 尚宏

栃木県真岡市松山町19番地 本田技研工業

株式会社栃木製作所内

THIS PAGE BLANK (USPTO)