Introducción al Diseño de Sistemas Embebidos usando Zynq

Zynq Vivado 2018.1

Objetivos

> Al completar este módulo, el alumno será capaz de:

- Definir un Zynq All Programmable SoC (AP SoC) processor component
- Enumerar los aspectos claves del sistema de procesamiento Zynq AP SoC
- Describir el flujo de diseño embebido
- Entender la función de la herramienta IP Integrator
- Indicar como el diseño de hardware es relacionado al ambiente de desarrollo de software

Temario

- **➤** Componente Procesador Embebido
- > Reseña de Vivado para diseño de sistemas embebidos
- > Flujo de diseño de sistemas embebidos
- ➤ Creación de plataforma de hardware
- > Plataforma de software SDK
- > Resumen

Arquitectura del Diseño Embebdio en Zynq

> El diseño embebido con Zynq está basado en:

- Procesador y periféricos
 - Dual ARM® Cortex[™] -A9 processors of Zynq-7000 AP SoC
 - Interconexión AXI
 - Periféricos compatibles AXI
 - Reset, clocking, puertos de depuración
- Plataforma de software para el sistema de procesamiento
 - Aplicaiones bare-metal o Sistemas Operativos (ej: Linux, FreeRTOS)
 - Soporte de lenguaje C
 - Servicios de procesador
 - Drivers en C para el hardware
- User application
 - Rutinas para servicio de interrupciones (opcional)

PS (Sistema de Pocesamiento) y PL (Lógica Programable)

➤ The Zynq-7000 AP SoC architecture consists of two major sections

- PS: Sistema de procesamiento
 - Procesador dual basado en ARM Cortex-A9
 - Múltiples periféricos
 - Hard core de silicio
- PL: Lógica programable
 - Usa la misma lógica programable de la serie 7
 - Dispositivos basados en Artix™: Z-7010, Z-7015 and Z-7020 (high-range I/O banks only)
 - Dispositivos basados en Kintex™: Z-7030, Z-7035, Z-7045, and Z-7100 (mix of high-range and high-performance I/O banks)

PS Components

➤ El sistema de procesamiento del Zynq AP SoC está conformado por los siguientes bloques:

- Application processing unit (APU)
- Periféricos I/O (IOP)
 - I/O Multiplexado (MIO), I/O multiplexado extendido (EMIO)
- Interfaces de memoria
- Interconexiones del PS
- DMA
- Timers
 - Público and privado
- General interrupt controller (GIC)
- On-chip memory (OCM): ROM and RAM
- Controlador de depuración: CoreSight

Periféricos incluidos en la Arquitectura Zynq

- > Dos USB 2.0 OTG/Device/Host
- **>** Dos Tri- Mode GigE (10/100/1000)
- Dos interfaces SD/SDIO
 - Memoria, I/O y combo cards
- > Dos CAN 2.0Bs, SPIs , I2Cs, UARTs
- > Cuatro bloques GPIO de 32bit
 - 54 disponibles a través de MIO; otros a través de EMIO
- ➤ Entrada/Salida multiplexada (MIO)
 - Pinout multiplexado de periféricos y memoria estática
- > MIO extendida
 - Mapea los puertos de los periféricos del PS al PL

Temario

- ➤ Componente Procesador Embebido
- > Reseña de Vivado para diseño de sistemas embebidos
- > Flujo de diseño de sistemas embebidos
- > Creación de plataforma de hardware
- > Plataforma de software SDK
- > Resumen

Vivado

> Qué son Vivado, IP Integrator y SDK?

- Vivado es un conjunto de herramientas para el diseño sobre FPGAs de Xilinx e incluye capacidades para el diseño de sistemas embebidos
 - IP Integrator, es parte de Vivado y permite el diseño a nivel de sistema de la parte de hardware de un sistema embebido
 - Está integrado dentro de Vivado
 - Vivado incluye todas las herramientas, IP, y documentación que son requeridas para diseñar sistemas con el Zynq-7000 AP SoC hard core y/o con MicroBlaze, el soft core de 32 bits de Xilinx
 - Vivado + IPI reemplaza a ISE/EDK
- SDK es un ambiente de desarrollo de software basado en Eclipse
 - Permite la integración de componentes de hardware y software
 - Se ejecuta desde Vivado
- > Vivado es el administrador del proyecto completo y es usado para el desarrollo de hardware no-embebido y para instanciar sistemas embebidos
 - Vivado/IP Integrator flow es lo recomendado para desarrollar sistemas embebidos con Zynq

Componentes de Vivado

Vivado/IP Integrator

- Ambiente de diseño para la configuración de PS, y el diseño de hardware para PL
- Plataforma de hardware (xml)
- Simulación de la plataforma, el software y los periféricos
- Integración de un analizador lógico

Software Development Kit (SDK)

- Workspace del proyecto
- Definición de la plataforma de hardware
- Board Support Package (BSP)
- Aplicación de software
- Depuración de software

Herramientas para el Sistema Embebido: Hardware

> Hardware and software development tools

- IP Integrator
- IP Packager
- Generación de una netlist de hardware
- Generación de un modelo de simulación
- Xilinx Microprocessor Debugger (XMD)
- Depuración de hardware usando el analizador lógico (Vivado logic analyzer)

Herramientas para el Sistema Embebido: Software

> IDE basado en Eclipse, Software Development Kit (SDK)

- Creación de Board support package
- Herramientas GNU de desarrollo de software
- Compilador C/C++ para los procesadores MicroBlaze y ARM Cortex-A9 (gcc)
- Depurador para los procesadores MicroBlaze y ARM Cortex-A9 (gdb)

Board support packages (BSPs)

- Stand-alone BSP
 - Drivers para dispositivos básicos y utilidades de Xilinx
 - NOT an RTOS

Vista de Vivado

> Paneles configurables

> A: Administración de proyecto

▶ B: IP Integrator

> C: FPGA Flow

> D: Selección de Layout

> E: Project view/Panel de previsualización

> F: Consola, Mensajes, Logs

Zynq Customization Processing System

- > Zynq Block Design
- Configuración de la interfaz PS-PL
- Pines de E/S de los periféricos
- Configuración MIO/Vista Tabla
- Configuración del reloj
- Configuración de la DDR
- > Cálculo de tiempos SMC
- Interrupciones

Configuración MIO

Pines de E/S de los Periféricos

Archivos de Proyecto

> Top level Directory

- .xpr Vivado Project File (xml file), log files, journal

> .srcs

Archivos fuente del proyecto, archivos del IP Integrator

> .sim

Arhivos relacionados con la simulación

> .runs

Síntesis, corridas de implementación

> .sdk

Directorio SDK Export, Plataforma de Hardware (xml)

> .cache

Archvos temporales

Temario

- ➤ Componente Procesador Embebido
- > Reseña de Vivado para diseño de sistemas embebidos
- > Flujo de diseño de sistemas embebidos
- ➤ Creación de plataforma de hardware
- > Plataforma de software SDK
- > Resumen

Flujo de Diseño de un Sistema Embebido para Zynq-7000 AP SoC

Diseño de un Sistema Embebido usando Vivado

- > Crear un nuevo proyecto en Vivado, o abrir uno existente
- ➤ Invocar a IP Integrator
- > Construir (modificar) la porción de hardware del diseño embebido
- > Crear (Actualizar) el top level HDL wrapper
- > [opcional] Sintetizar cualquier componente no-embebido e implementarlo en Vivado
- > Exportar la descripción de hardware, y lanzar el SDK
- Crear un nuevo software board support package y proyectos de aplicación en el SDK
- > Compilar el software con el cross-compilador GNU en SDK
- > [opcional] Descargar el bitstream de la lógica programable
- > Usar el SDK para descargar el programa (el archivo .ELF)

Diseño de un Sistema Embebido usando Vivado

Integrator Block Diagram

- > IP Integrator Block Diagram abre una ventana en blanco
- IP puede ser agregado desde el catálogo de IP
- Interfaz Drag and drop
- > Ambiente de Diseño Inteligente
 - Asistencia de diseño
 - Automatización de conexiones
 - Resaltado de conexiones válidas
 - Agrupamiento, creación de bloques jerárquicos
- > Puede crear e importar IP propia usando IP Packager

Configurando Hardware en el IP Integrator

- Doble click sobre los bloques para acceder a las opciones de configuración
- > Arrastrar el puntero para realizar conexiones
 - Se resaltan las conexiones válidas
- **➤ Conexiones automáticas**
 - Conecta automáticamente las interfaces reconocidas
- Redibujo del sistema de manera automática

📴 Re-customize IP

Exportando al SDK

> Primero exportar hardware

- El archivo de formato, Hardware
 Description File (hdf), que contiene toda la información relevante será creado y ubicado en el directorio *.sdk
- Se incluye el bitstream, si es que fue generado

> Lanzar SDK

- El desarrollo de software se realiza con la herramienta SDK (Software Development Kit) de Xilinx
- ➤ La herramienta de SDK asociará entonces los proyectos de software de usuario al hardware

Flujo de Desarrollo de Software

- Crear un proyecto de plataforma de hardware
 - Ejecutado automáticamente cuando la herramienta SDK es lanzada desde un proyecto de Vivado
- > Crear BSP
 - Software de sistema, paquete de soporte de placa (board support package)
- > Crear aplicación de software
- > Crear el linker script
- ➤ Compilar el proyecto
 - compilar, ensamblar, linquear el archivo de salida <app_project>.elf

Configurando la FPGA y Descargando una Aplicación

- > Descarga del bitstream
 - Sólo si es usado el PL (lógica programable)
 - Archivo de entrada <top_name>.bit
- > El bitstream puede ser descargado desde
 - Vivado
 - SDK
- > Requiere que el cable de download esté conectado

Temario

- ➤ Componente Procesador Embebido
- > Reseña de Vivado para diseño de sistemas embebidos
- > Flujo de diseño de sistemas embebidos
- > Creación de plataforma de hardware
- > Plataforma de software SDK
- > Resumen

Configuración de la GUI de Zynq

- Provee una vista gráfica del PS para configurar
 - los núcleos de ARM
 - los periféricos de E/S
 - el controlador DDR
 - los sistemas de memoria
- Reparto de E/S entre pines dedicados de PS y E/S de lógica programable
- ➤ El Zynq-7000 AP SoC PS es configurado a través de un conjunto de registros de configuración mapeados en memoria

Configuración del Reloj

Configuración del Reloj

- La frecuencia de entrada puede ser establecida
 - Processor, DDR
- Todas las frecuencias de reloj IOP pueden ser establecidas
- Los relojes de fábrica
 de la PL pueden ser
 habilitados y configurados
- Establecimiento de Timers

Ajustes del Proyecto

- > Se accede desde el flow navigator
- La configuración por defecto es la típicamente usada
- Especificar/cambiar el dispositivo destino
 - Arquitectura, tamaño, encapsulado, grado de velocidad (speed grade)
- Simulación, Síntesis, Implementación, opciones de Bitstream
- Directorio del repositorio de IP
 - Provee acceso a IP personalizada que no está presente en la estructura de directorios del proyecto actual

Temario

- ➤ Componente Procesador Embebido
- > Reseña de Vivado para diseño de sistemas embebidos
- > Flujo de diseño de sistemas embebidos
- ➤ Creación de plataforma de hardware
- > Plataforma de software SDK
- > Resumen

Software Development Kit (SDK)

- > Entorno de diseño de software con funciones completas
- ➤ Herramienta separada de Vivado puede ser instalada de manera independiente para equipos de software
- Basado en el popular IDE open-source Eclipse
- Usado sólo para aplicaciones de software; el diseño de hardware y sus modificaciones son realizadas en Vivado
- > Entorno integrado para depuración fluida de targets embebidos
- Entorno de diseño de software sofisticado con muchas opciones y funciones con soporte para:
 - Múltiples procesadores
 - Múltiples plataformas de software
 - Múltiples aplicaciones de software
- > Editor de código C/C++ con funciones completas y navegador de error

Vistas de los Workbenchs del SDK

- C/C++ project outline muestra los elementos de un proyecto con iconos para una sencilla identificación
- Editor C/C++ para la creación de software integrado
- 3. Code outline muestra los elementos del archivo de software bajo desarrollo, con iconos para una sencilla identificación
- 4. Problemas, Consola, vista de la información de salida asociada con el flujo de desarrollo del software

Ajuste del Administrador del Software

- > El software es manejado en tres áreas principales
 - Opciones de Compilador/Linker
 - Programa de aplicación
 - Configuraciones de la plataforma de Software
 - Board support package
 - Generación del Linker Script
 - Asignando software a recursos de memoria.
- Cubierto en más detalle luego

Generate

Temario

- ➤ Componente Procesador Embebido
- > Reseña de Vivado para diseño de sistemas embebidos
- > Flujo de diseño de sistemas embebidos
- ➤ Creación de plataforma de hardware
- > Plataforma de software SDK
- > Resumen

Resumen

- Vivado incluye todas las herramientas, documentación, e IP necesaria para construir sistemas embebidos
- > IPI es una herramienta de diseño a nivel de sistema que incrementa la productividad, permitiendo que los diseños se completen más rapidamente
- > El Software Development Kit (SDK) es un entorno de desarrollo de software completo para aplicaciones de software
- > Un embedded processing system component está construido con IP provista en el catálogo de IP. Los diseñadores pueden también agregar su propia IP a este catálogo
- > El asistente de configuración del Sistema de Procesamiento (PS Configuration wizard) permite acceso a varias características configurables del PS