



Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

## Geometría I Examen I

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos Jesús Muñoz Velasco

Granada, 2023-24

Asignatura Geometría I.

Curso Académico 2022-23.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Prácticas B.

Profesor Juan de Dios Pérez Jiménez.

**Descripción**  $1^{\underline{a}}$  Prueba. Temas 1 y 2.

Fecha 28 de noviembre de 2022.

Duración 60 minutos.

En el espacio vectorial  $\mathbb{R}^4$  se consideran los siguientes subconjuntos vectoriales:

$$U_1 = \mathcal{L}(\{(1, -1, -1, 1)\})$$
  
$$U_2 = \{(x, y, z, t) \in \mathbb{R}^4 \mid x + y + z + t = 0\}$$

**Ejercicio 1.** [3 puntos] Comprueba que  $U_1 \subset U_2$  y calcula dos planos (subespacios de dimensión 2) de  $\mathbb{R}^4$  cuya intersección sea  $U_1$  y su suma sea  $U_2$ .

Para ver que  $U_1 \subset U_2$  bastará con ver que el vector que genera  $U_1$  está contenido en  $U_2$ , es decir, que el vector (1, -1, -1, 1) verifica la ecuación x + y + z + t = 0,

$$1 - 1 - 1 + 1 = 0 \Rightarrow U_1 \subset U_2$$

Veamos la segunda parte del ejercicio. Para ello, busquemos los vectores que generan  $U_2$ . Dado que  $U_2$  tiene una única ecuación implícita y está en  $\mathbb{R}^4$ , estará generado por 3 vectores linealmente independientes. Sabemos además que el vector (1, -1, -1, 1) es una solución. Busquemos 2 más linealmente independientes:

Para 
$$x = -1$$
,  $y = 0$ ,  $z = 1 \Rightarrow t = 0 \Rightarrow (-1, 0, 1, 0) \in U_2$   
Para  $x = -1$ ,  $y = 1$ ,  $z = 0 \Rightarrow t = 0 \Rightarrow (-1, 1, 0, 0) \in U_2$ 

Veamos que los 3 vectores buscados son linealmente independientes:

$$Rango\begin{pmatrix} -1 & -1 & 1\\ 0 & 1 & -1\\ 1 & 0 & -1\\ 0 & 0 & 1 \end{pmatrix} = 3, \text{ ya que } \begin{vmatrix} 0 & 1 & -1\\ 1 & 0 & -1\\ 0 & 0 & 1 \end{vmatrix} = -\begin{vmatrix} 1 & -1\\ 0 & 1 \end{vmatrix} \neq 0$$

Por tanto, tenemos que  $U_2 = \mathcal{L}\{(-1,0,1,0),(-1,1,0,0),(1,-1,-1,1)\}.$ 

Busquemos ahora dos planos  $W_1$  y  $W_2$  tal que  $W_1 \cap W_2 = U_1$  y  $W_1 + W_2 = U_2$ . De la primera condición sabemos que  $U_1 \subset W_1$  y  $U_1 \subset W_2$ . Por tanto, tenemos que

$$W_1 = \mathcal{L}\{(1, -1, -1, 1), v_1\}$$
  

$$W_2 = \mathcal{L}\{(1, -1, -1, 1), v_2\}$$

Con  $v_1$  y  $v_2$  linealmente independientes (ya que sino tendríamos  $W_1 = W_2$  y  $W_1 \cap W_2 = W_1 \cap W_1 = W_1$ , de dimensión 2, por lo que  $W_1 \cap W_2 \neq U_1$ , que sería una contradicción).

Además, como  $W_1 + W_2 = U_2$  tenemos que  $\mathcal{L}\{(1, -1, -1, 1), v_1, v_2\} = U_2$ . Con lo calculado anteriormente es facil ver que  $v_1 = (-1, 0, 1, 0)$  y  $v_2 = (-1, 1, 0, 0)$  verifican todo lo pedido, ya que hemos visto que son linealmente independientes y además  $U_2 = \mathcal{L}\{(-1, 0, 1, 0), (-1, 1, 0, 0), (1, -1, -1, 1)\}$ . Por tanto los espacios buscados son:

$$W_1 = \mathcal{L}\{(1, -1, -1, 1), (-1, 0, 1, 0)\}$$
  

$$W_2 = \mathcal{L}\{(1, -1, -1, 1), (-1, 1, 0, 0)\}$$

Ejercicio 2. [3 puntos] ¿Son únicos dichos planos, o existen otros dos con la misma intersección y la misma suma?

Por la forma en la que lo hemos calculado, cualquiera 2 vectores de  $U_2$  linealmente independientes entre sí y a (1, -1, -1, 1) podrían dar una solución. Busquemos entonces otros vectores que generen  $U_2$ :

Para 
$$x = 0$$
,  $y = 1$ ,  $z = 0 \Rightarrow t = 1 \Rightarrow (0, 1, 0, 1) \in U_2$   
Para  $x = 1$ ,  $y = 0$ ,  $z = 0 \Rightarrow t = -1 \Rightarrow (1, 0, 0, -1) \in U_2$ 

Veamos que son linealmente independientes:

$$Rango\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & -1 \\ 1 & -1 & 1 \end{pmatrix} = 3, \text{ ya que} \begin{vmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 0 & -1 \end{vmatrix} = - \begin{vmatrix} 1 & 1 \\ 0 & -1 \end{vmatrix} \neq 0$$

Con el razonamiento anterior tenemos que

$$W_1 = \mathcal{L}\{(1, -1, -1, 1), (0, 1, 0, 1)\}$$
  
$$W_2 = \mathcal{L}\{(1, -1, -1, 1), (1, 0, 0, -1)\}$$

Verifican también las condiciones buscadas. Por tanto la solución anterior no es única.

Ejercicio 3. [4 puntos] Calcula un complementario de  $U_1$  y otro de  $U_2$ .

Comencemos buscando el complementario de  $U_1$ . Para ello buscamos 3 vectores linealmente independientes,  $v_1, v_2, v_3 \in \mathbb{R}^4$  tales que  $\mathcal{L}\{v_1, v_2, v_3\} \oplus U_1 = \mathbb{R}^4$ , es decir linealmente independientes a (1, -1, -1, 1). Veamos que el espacio dado por el conjunto  $C_1 = \mathcal{L}\{(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}$  lo verifica, ya que:

$$\begin{vmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{vmatrix} = - \begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix} \neq 0$$

Por tanto,  $C_1 = \mathcal{L}\{(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)\}$  es un complementario de  $U_1$ .

Hagamos lo mismo para  $U_2$ . En este caso buscamos un único vector linealmente independiente a (-1,0,1,0), (-1,1,0,0), (1,-1,-1,1). Veamos que el vector (1,0,0,0) verifica lo que buscamos:

$$\begin{vmatrix} 1 & -1 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 1 & -1 \\ 0 & -1 \\ 0 & 0 & 1 \end{vmatrix} = - \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} \neq 0$$

Y tenemos que  $C_2 = \mathcal{L}\{(1,0,0,0)\}$  es un complementario de  $U_2$ .