Empirical Evidence of excess profits in european stock markets ex-ante monetary policy decisions by the ECB

SE Bachelor Thesis in Economics or Economic Psychology Felix Reichel

Stock Returns over the FOMC cycle. Cieslak et al. (2019)

- The FOMC (= Federal Open Market Committee) meets approx. 8 times per annum (~ 6.5 weeks)
- Figure:
 - Y-Axis: Average 5-day stock excess return, from day t to t+4 in percent.
 - X- Axis:
 Days since FOMC meeting:
 usually -1 to 33.
 (7 weeks * 5 days = 35)

- Profitability of Various Trading Strategies, 1994 to 2016 (Cieslak et al.)
 - Portfolio A: Hold stocks throughout all weeks within FOMC cycles: 1\$ -> 7.68\$
 - Portfolio B: Hold stocks in even weeks (0, 2, 4, 6) only: $1\$ \rightarrow 15.22\$$
 - Portfolio C: Hold stock in odd weeks (-1, 1, 3, 5) only: $1\$ \rightarrow 0.51\$$

The Economics of the Fed Put. Cieslak et al. (2021)

- Fed Put
- Textual analysis of FOMC meeting transcripts
- Moral hazard effects

Seal of the Federal Reserve System

Jerome H. Powell, 16th Chair of the Federal Reserve

(Prelimary) Research Questions

- Does the effect that stock excess return are mainly achieved in FOMC even weeks (0,2,4,6) from 2016 onwards still persist? (occurance of many unscheduled FOMC meetings due to the corona-crisis in 2020)
- In the euro-zone the ECB makes policy interest rate decision. Is there empirical evidence for a similar effect when considering only the Euro-Zone and Euro-Zone stock returns.
- Does it imply an equivalent of the Fed Put in the Euro-Zone? Why/why not?

Used Data, Technology and Tools

- Dummie coding/generation using R (Statistical Programming Language)
- Fama/French US Research Data 3-Factors for calculation of stock market excess returns according to Cieslak et al.
 - Calculation:
 - "Risk free" market stock returns (Mkt.RF) over "risk free" (30 day-)treasury bill returns (RF):
 - Daily excess returns = 100 * ((Mkt.RF + RF)/100 + 1) (RF/100 + 1))
- STATA for estimation of MLR model with binary dummy variables
- LATEX as typesetting for writing the thesis

Partial replication results of Cieslak et al. (2019)

Replication with own coded dummies in R and excess return on stock over T-Bills using Fama/French Research Data Factors according to Cieslak et al. Table I PANEL B (1):

2014 to 2016								
Dummy = 1 in Week 0	0.174* (1.92)	ex1	Coef.	Robust Std. Err.	+	P> t	[95% Conf.	Interval]
Dummy = 1 in Week 2, 4, 6	0.176***			5141 2111		1.5 [8]	[55 0 00111	11111111111
Constant	(2.67) -0.049	w_t0 w_t2t4t6	0.174 0.176	0.091 0.066	1.92 2.67	0.055 0.008	-0.004 0.047	0.352 0.305
N (days)	(-1.15) 783	_cons	-0.049	0.043	-1.14	0.254	-0.132	0.035

Avg. 5 day stock access returns, day t to t+4 (in percent) 1994 - 2016 (left) vs. 2014 - 2016 (right)

Approach (MLR model)

$$returns_{i} = \widehat{\beta_{0}} + \widehat{\delta_{0}} * fomcweek0 + \widehat{\delta_{1}} * fomcweek246 + \epsilon_{i}$$

Replace with excess returns in European Stock Markets using Fama/French European 3-Factors for Developed Market Factors and Returns

(Re-)Estimate:
$$\widehat{\beta_0}, \widehat{\delta_0}, \widehat{\delta_1}$$