CS 105: Department Introductory Course on Discrete Structures

Instructor: S. Akshay

Aug 31, 2023
Lecture 11 – Basic Mathematical Structures
Equivalence relations and partially ordered sets

Recap: Proofs and Structures

Chapter 1: Proofs

- 1. Propositions, predicates
- 2. Types of proofs, axioms
- 3. Mathematical Induction, Well-ordering principle
- 4. Strong Induction

Recap: Proofs and Structures

Chapter 1: Proofs

- 1. Propositions, predicates
- 2. Types of proofs, axioms
- 3. Mathematical Induction, Well-ordering principle
- 4. Strong Induction

Chapter 2: Sets and Functions

- 1. Finite and infinite sets.
- 2. Using functions to compare sets: focus on bijections.
- 3. Countable, countably infinite and uncountable sets.
- 4. Cantor's diagonalization (New/powerful proof technique!).

Recap: Proofs and Structures

Chapter 1: Proofs

- 1. Propositions, predicates
- 2. Types of proofs, axioms
- 3. Mathematical Induction, Well-ordering principle
- 4. Strong Induction

Chapter 2: Sets and Functions

- 1. Finite and infinite sets.
- 2. Using functions to compare sets: focus on bijections.
- 3. Countable, countably infinite and uncountable sets.
- 4. Cantor's diagonalization (New/powerful proof technique!).

Chapter 3: Relations

- 1. Equivalence Relations
- 2. Partial Orders

Examples

- ▶ Reflexive: $\forall a \in S, aRa$.
- Symmetric: $\forall a, b \in S, aRb \text{ implies } bRa.$
- ▶ Transitive: $\forall a, b, c \in S$, aRb, bRc implies aRc.
- ▶ Equivalence: Reflexive, Symmetric and Transitive.

Examples

▶ Reflexive: $\forall a \in S, aRa$.

▶ Symmetric: $\forall a, b \in S$, aRb implies bRa.

▶ Transitive: $\forall a, b, c \in S$, aRb, bRc implies aRc.

▶ Equivalence: Reflexive, Symmetric and Transitive.

Relation	Refl.	Sym.	Trans.	Equiv.
aR_4b if students a and b take	✓	✓	✓	√
same set of courses				
aR_5b if student a takes course b				
$\{(a,b) \mid a,b \in \mathbb{Z}, (a-b) \mod 2 = 0\}$				
$\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}$				
$\overline{\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}}$				
$\{(a,b) \mid a,b \in \mathbb{Z}, a \mid b\}$				
$\{(a,b) \mid a,b \in \mathbb{R}, a-b < 1\}$				
$\{((a,b),(c,d)) \mid (a,b),(c,d) \in$				
$\mathbb{Z} \times (\mathbb{Z} \setminus \{0\}), (ad = bc)\}$				

Definition

- ▶ Let R be an equivalence relation on set S, and let $a \in S$.
- Then the equivalence class of a, denoted [a], is the set of all elements related to it, i.e., $[a] = \{b \in S \mid (a, b) \in R\}$.

Definition

- ▶ Let R be an equivalence relation on set S, and let $a \in S$.
- ▶ Then the equivalence class of a, denoted [a], is the set of all elements related to it, i.e., $[a] = \{b \in S \mid (a, b) \in R\}$.

In $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid (a - b) \mod 5 = 0\}$, what are [0], [1]?

Definition

- ▶ Let R be an equivalence relation on set S, and let $a \in S$.
- ▶ Then the equivalence class of a, denoted [a], is the set of all elements related to it, i.e., $[a] = \{b \in S \mid (a, b) \in R\}$.

In $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid (a - b) \mod 5 = 0\}$, what are [0], [1]?

Lemma

Let R be an equivalence relation on S. Let $a, b \in S$. Then, the following statements are equivalent:

- 1. *aRb*
- 2. [a] = [b]
- 3. $[a] \cap [b] \neq \emptyset$.

Definition

- ▶ Let R be an equivalence relation on set S, and let $a \in S$.
- ▶ Then the equivalence class of a, denoted [a], is the set of all elements related to it, i.e., $[a] = \{b \in S \mid (a, b) \in R\}$.

In $R = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid (a - b) \mod 5 = 0\}$, what are [0], [1]?

Lemma

Let R be an equivalence relation on S. Let $a, b \in S$. Then, the following statements are equivalent:

- 1. *aRb*
- 2. [a] = [b]
- 3. $[a] \cap [b] \neq \emptyset$.

Proof Sketch: (1) to (2) symm and trans, (2) to (3) refl, (3) to (1) symm and trans. (H.W.: Redo the proof formally.)

From equivalence relations to partitions

Theorem

1. Let R be an equivalence relation on S. Then, the equivalence classes of R form a partition of S.

From equivalence relations to partitions

Theorem

- 1. Let R be an equivalence relation on S. Then, the equivalence classes of R form a partition of S.
- 2. Conversely, given a partition P of S, there is an equivalence relation R whose equivalence classes are exactly the sets of P.

From equivalence relations to partitions

Theorem

- 1. Let R be an equivalence relation on S. Then, the equivalence classes of R form a partition of S.
- 2. Conversely, given a partition P of S, there is an equivalence relation R whose equivalence classes are exactly the sets of P.

Proof sketch of (1): Union, non-emptiness follows from reflexivity. The rest (pairwise disjointness) follows from the previous lemma.

(H.W.): Write the formal proofs of (1) and (2).

Defining new objects using equivalence relations

Consider

$$R = \{((a,b),(c,d)) \mid (a,b),(c,d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}), (ad=bc)\}.$$

Defining new objects using equivalence relations

Consider

$$R = \{ ((a,b), (c,d)) \mid (a,b), (c,d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}), (ad = bc) \}.$$

- ightharpoonup Then the equivalence classes of R define the rational numbers.
- e.g., $\left[\frac{1}{2}\right] = \left[\frac{2}{4}\right]$ are two names for the same rational number.
- ▶ Indeed, when we write $\frac{p}{q}$ we implicitly mean $\begin{bmatrix} p \\ q \end{bmatrix}$.

Defining new objects using equivalence relations

Consider

$$R = \{ ((a,b), (c,d)) \mid (a,b), (c,d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}), (ad = bc) \}.$$

- ightharpoonup Then the equivalence classes of R define the rational numbers.
- e.g., $\left[\frac{1}{2}\right] = \left[\frac{2}{4}\right]$ are two names for the same rational number.
- ▶ Indeed, when we write $\frac{p}{q}$ we implicitly mean $\begin{bmatrix} p \\ q \end{bmatrix}$.
- ▶ With this definition, why are addition and multiplication "well-defined"?

Defining new objects using equivalence relations

Consider

$$R = \{ ((a,b), (c,d)) \mid (a,b), (c,d) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}), (ad = bc) \}.$$

- ightharpoonup Then the equivalence classes of R define the rational numbers.
- e.g., $\left[\frac{1}{2}\right] = \left[\frac{2}{4}\right]$ are two names for the same rational number.
- ▶ Indeed, when we write $\frac{p}{q}$ we implicitly mean $\begin{bmatrix} p \\ q \end{bmatrix}$.
- ► With this definition, why are addition and multiplication "well-defined"?

Can we define integers and real numbers starting from naturals by using equivalence classes?

Moving on another special relation: Partial Orders

Consider $\{(a,b) \mid a,b \in \mathbb{Z}, a \leq b\}$.

Moving on another special relation: Partial Orders

Consider $\{(a,b) \mid a,b \in \mathbb{Z}, a \leq b\}$. This is reflexive, transitive but not symmetric. In fact, it is quite different!

Consider $\{(a,b) \mid a,b \in \mathbb{Z}, a \leq b\}$. This is reflexive, transitive but not symmetric. In fact, it is quite different!

Anti-symmetric

A relation R on S is anti-symmetric if for all $a, b \in S$ aRb and bRa implies a = b.

Consider $\{(a,b) \mid a,b \in \mathbb{Z}, a \leq b\}$. This is reflexive, transitive but not symmetric. In fact, it is quite different!

Anti-symmetric

A relation R on S is anti-symmetric if for all $a, b \in S$ aRb and bRa implies a = b.

Examples:

- $R_1(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}.$
- $R_2(\mathcal{P}(S)) = \{ (A, B) \mid A, B \in \mathcal{P}(S), A \subseteq B \}.$

Consider $\{(a,b) \mid a,b \in \mathbb{Z}, a \leq b\}$. This is reflexive, transitive but not symmetric. In fact, it is quite different!

Anti-symmetric

A relation R on S is anti-symmetric if for all $a, b \in S$ aRb and bRa implies a = b.

Examples:

- $R_1(\mathbb{Z}) = \{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}.$
- $R_2(\mathcal{P}(S)) = \{ (A, B) \mid A, B \in \mathcal{P}(S), A \subseteq B \}.$

Definition

A partial order is a relation which is reflexive, transitive and anti-symmetric.

Partial orders and equivalences relations

- ▶ Reflexive: $\forall a \in S, aRa$.
- Symmetric: $\forall a, b \in S$, aRb implies bRa.
- ▶ Anti-symmetric: $\forall a, b \in S$, aRb, bRa implies a = b.
- ▶ Transitive: $\forall a, b, c \in S$, aRb, bRc implies aRc.

Partial orders and equivalences relations

▶ Reflexive: $\forall a \in S, aRa$.

Symmetric: $\forall a, b \in S$, aRb implies bRa.

▶ Anti-symmetric: $\forall a, b \in S$, aRb, bRa implies a = b.

▶ Transitive: $\forall a, b, c \in S$, aRb, bRc implies aRc.

	Reflexive	Transitive	Symmetric	Anti-symmetric
Equivalence	✓	✓	✓	
relation				
Partial order	✓	\checkmark		\checkmark

Partial orders and equivalences relations

▶ Reflexive: $\forall a \in S, aRa$.

Symmetric: $\forall a, b \in S$, aRb implies bRa.

▶ Anti-symmetric: $\forall a, b \in S, aRb, bRa \text{ implies } a = b.$

▶ Transitive: $\forall a, b, c \in S$, aRb, bRc implies aRc.

	Refl.	Anti-Sym	Trans.	PO
$\overline{\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}}$	✓	✓	√	√
$\overline{\{(A,B) \mid A,B \in \mathcal{P}(S), A \subseteq B\}}$	✓	✓	√	√
$\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}$				
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$				
$\{((a,b),(c,d)) \mid (a,b),(c,d) \in$				
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } (a = c, b \le d) \}$				

	Refl.	Anti-Sym	Trans.	PO
$\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}$	✓	✓	√	√
$\overline{\{(A,B) \mid A,B \in \mathcal{P}(S), A \subseteq B\}}$	✓	✓	√	√
$\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}$				
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$				
$\{((a,b),(c,d)) \mid (a,b),(c,d) \in$				
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } (a = c, b \le d) \}$				

▶ We use \leq to denote partial orders and write $a \leq b$ instead of aRb.

	Refl.	Anti-Sym	Trans.	PO
$\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}$	✓	✓	√	√
$\{(A,B) \mid A,B \in \mathcal{P}(S), A \subseteq B\}$	✓	✓	√	√
$\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}$				
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$				
$\{((a,b),(c,d)) \mid (a,b),(c,d) \in A\}$				
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } (a = c, b \le d) \}$				

- ▶ We use \leq to denote partial orders and write $a \leq b$ instead of aRb.
- ▶ Why is it called "partial" order?

	Refl.	Anti-Sym	Trans.	PO
$\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}$	✓	✓	√	√
$\{(A,B) \mid A,B \in \mathcal{P}(S), A \subseteq B\}$	✓	✓	√	√
$\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}$				
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$				
$\{((a,b),(c,d)) \mid (a,b),(c,d) \in A\}$				
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } (a = c, b \le d) \}$				

- ▶ We use \leq to denote partial orders and write $a \leq b$ instead of aRb.
- ▶ Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by ≼).

	Refl.	Anti-Sym	Trans.	PO
$\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}$	✓	✓	√	√
$\overline{\{(A,B) \mid A,B \in \mathcal{P}(S), A \subseteq B\}}$	✓	✓	√	√
$\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}$				
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$				
$\{((a,b),(c,d)) \mid (a,b),(c,d) \in$				
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } (a = c, b \le d) \}$				

- ▶ We use \leq to denote partial orders and write $a \leq b$ instead of aRb.
- ▶ Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by ≼).
- ▶ A total order is a partial order \leq on S in which every pair of elements is comparable
 - ▶ i.e., $\forall a, b \in S$, either $a \leq b$ or $b \leq a$.

	Refl.	Anti-Sym	Trans.	PO	ТО
$\overline{\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}}$	√	✓	√	√	√
$\overline{\{(A,B) \mid A,B \in \mathcal{P}(S), A \subseteq B\}}$	✓	✓	√	√	×
$\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}$					
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$					
$\{((a,b),(c,d)) \mid (a,b),(c,d) \in$					
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } (a = c, b \le d) \}$					

- ▶ We use \leq to denote partial orders and write $a \leq b$ instead of aRb.
- ▶ Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by ≤).
- ▶ A total order is a partial order \leq on S in which every pair of elements is comparable
 - ▶ i.e., $\forall a, b \in S$, either $a \leq b$ or $b \leq a$.

	Refl.	Anti-Sym	Trans.	PO	ТО
$\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}$	✓	✓	√	✓	√
$ (A,B) \mid A,B \in \mathcal{P}(S), A \subseteq B $	✓	✓	√	√	×
$\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}$					
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$					
$\{((a,b),(c,d)) \mid (a,b),(c,d) \in$					
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } (a = c, b \le d) \}$					

- ▶ We use \leq to denote partial orders and write $a \leq b$ instead of aRb.
- ▶ Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by ≤).
- ▶ A total order is a partial order \leq on S in which every pair of elements is comparable
- ▶ Qn: Can a relation be symmetric and anti-symmetric?

	Refl.	Anti-Sym	Trans.	PO	ТО
$\{(a,b) \mid a,b \in \mathbb{Z}, a \le b\}$	✓	✓	√	✓	✓
$\{(A,B) \mid A,B \in \mathcal{P}(S), A \subseteq B\}$	√	✓	✓	✓	X
$\{(a,b) \mid a,b \in \mathbb{Z}, a < b\}$					
$\{(a,b) \mid a,b \in \mathbb{Z}^+, a \mid b\}$					
$\{((a,b),(c,d)) \mid (a,b),(c,d) \in$					
$\mathbb{Z}^+ \times \mathbb{Z}^+, a < c \text{ or } (a = c, b \le d) \}$					

- ▶ We use \leq to denote partial orders and write $a \leq b$ instead of aRb.
- ▶ Why is it called "partial" order? Because, not all pairs of elements are "comparable" (i.e., related by ≤).
- ▶ A total order is a partial order \leq on S in which every pair of elements is comparable
- ▶ Qn: Can a relation be symmetric and anti-symmetric?
- ▶ Qn: Can a relation be neither symmetric nor anti-symmetric?

Partially ordered sets (Posets)

Definition

A set S together with a partial order \preceq on S, is called a partially-ordered set or poset, denoted (S, \preceq) .

Partially ordered sets (Posets)

Definition

A set S together with a partial order \leq on S, is called a partially-ordered set or poset, denoted (S, \leq) .

Examples

- \triangleright (\mathbb{Z}, \leq): integers with the usual less than or equal to relation.
- \triangleright $(\mathcal{P}(S), \subseteq)$: powerset of any set with the subset relation.
- \triangleright (\mathbb{Z}^+ , |): positive integers with divisibility relation.

Recall: any relation on a set can be represented as a graph with

- ▶ nodes as elements of the set and
- ▶ directed edges between them indicating the ordered pairs that are related.

- ▶ Did these come from posets?
- ▶ Do graphs defined by posets have any "special" properties?

- ▶ Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.
- ▶ How does the graph of $(\mathcal{P}(S), \subseteq)$ look like?

- ▶ Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.
- ▶ How does the graph of $(\mathcal{P}(S), \subseteq)$ look like?

- ▶ Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.
- ▶ How does the graph of $(\mathcal{P}(S), \subseteq)$ look like?

Figure: Graph of a poset and its Hasse diagram

▶ Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.

Figure: Graph of a poset and its Hasse diagram

▶ What is "special" about these graphs?

▶ Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.

Figure: Graph of a poset and its Hasse diagram

- ▶ What is "special" about these graphs?
- ► Graphs of posets are "acyclic" (except for self-loops).
- ➤ Starting from a node and following the directed edges (except self-loops), one can't come back to the same node.

▶ Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.

Figure: Graph of a poset and its Hasse diagram

- ▶ What is "special" about these graphs?
- ► Graphs of posets are "acyclic" (except for self-loops).
- ► Starting from a node and following the directed edges (except self-loops), one can't come back to the same node.
- ► Given the Hasse diagram of a poset, its reflexive transitive closure gives back the graph of the poset.