



Hastes ultrafinas



Entrega excepcional



pedido

Intervenção Vascular // Coronária Stent Coronário em Cromo-Cobalto



# Pro-Kinetic Energy





Somente

9.06%

### Resultados clínicos comprovados

Numericamente a taxa mais baixa de TVF\*, 9,06% entre os estudos IDE da FDA dos principais BMS.<sup>1</sup>



Driver Registry<sup>3</sup>
Medtronic

9.7





TVF\* (%) em 9 meses

Stent com design em dupla-hélice para contorno externo homogêneo e excelente flexibilidade

Conectores longitudinais desenvolvidos para resistir à compressão longitudinal

Transições cuneiformes fornecem suporte consistente

<sup>\*</sup>Taxa de Falha de Vaso Alvo (TVF) é um composto de óbito cardiaco, Infarto do Miocárdio (MI) e revascularização do vaso alvo direcionado por isquemia (id-TVR).



16



### Hastes ultrafinas

Hastes com apenas 60 µm resultam em excelente flexibilidade e entrega do stent, até mesmo em anatomias desafiadoras.<sup>6</sup>

#### Flexibilidade<sup>7</sup>

A mais baixa rigidez ao ser dobrado para excelente flexibilidade.



### Força radial<sup>7</sup>

O design em dupla-hélice mantém força radial suficiente com design de hastes finas e oferece estabilidade para ótimo suporte e cobertura do vaso.



Hastes mais finas entre principais BMS modernos

> PRO-Kinetic Energy<sup>6</sup> BIOTRONIK



60 μm

Rebel Boston Scientific



81 µm

Multi-Link 8
Abbott



81 µm

**Integrity** Medtronic



89 µm

-26% mais fino que o Rebel

-26%
mais fino que
o
Multi-Link 8

-33% mais fino que o Integrity





### Excelente entrega

Entrega sem esforço do sistema de entrega com Melhor Força de Transmissão do shaft e materiais mais finos para melhor empurre e navegabilidade.

#### Cruzamento<sup>7</sup>

Hastes ultrafinas e avançado processo de crimpagem para menor perfil de cruzamento.



#### Empurre<sup>7</sup>

Empurre excepcional com Melhor Força de Transmissão do shaft.







## PRO-Kinetic Energy

Intervenção Vascular Coronária



# Indicado para melhorar o diâmetro luminal coronário.\*

| Dados técnicos | Stent                       |                                                                                                          |  |  |  |  |  |  |  |
|----------------|-----------------------------|----------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                | Material do stent           | Cromo-cobalto, L-605                                                                                     |  |  |  |  |  |  |  |
|                | Revestimento passivo        | Revestimento proBIO (Carbeto de Silício amorfo)                                                          |  |  |  |  |  |  |  |
|                | Espessura de haste          | ø 2.0 - 3.0 mm: 60 μm (0.0024");<br>ø 3.5 - 4.0 mm: 80 μm (0.0031");<br>ø 4.5 - 5.0 mm: 120 μm (0.0047") |  |  |  |  |  |  |  |
|                | Sistema de entrega          |                                                                                                          |  |  |  |  |  |  |  |
|                | Tipo do cateter             | Troca rápida                                                                                             |  |  |  |  |  |  |  |
|                | Cateter guia recomendado    | 5F (min. I.D. 0.056")                                                                                    |  |  |  |  |  |  |  |
|                | Perfil de entrada na lesão  | 0.017"                                                                                                   |  |  |  |  |  |  |  |
|                | Fio guia recomendado        | 0.014"                                                                                                   |  |  |  |  |  |  |  |
|                | Comprimento útil do cateter | 140 cm                                                                                                   |  |  |  |  |  |  |  |
|                | Material do balão           | Copolímero semicristalino                                                                                |  |  |  |  |  |  |  |
|                | Revestimento (shaft distal) | Hidrofílico                                                                                              |  |  |  |  |  |  |  |
|                | Marcas radiopacas           | Duas em Platina-Irídio                                                                                   |  |  |  |  |  |  |  |
|                | Diâmetro do shaft proximal  | 2.0F                                                                                                     |  |  |  |  |  |  |  |
|                | Diâmetro do shaft distal    | 2.5F: ø 2.0 - 3.5 mm; 2.8F: ø 4.0 - 5.0 mm                                                               |  |  |  |  |  |  |  |
|                | Pressão nominal (NP)        | 9 atm                                                                                                    |  |  |  |  |  |  |  |
|                | Pressão de ruptura (RBP)    | 16 atm (2.0 - 4.0 mm); 14 atm (4.5 - 5.0 mm)                                                             |  |  |  |  |  |  |  |

Tabela de complacência Diâmetro do balão x comprimento (mm)

|        |                 | Diametre de Batae X comprimente (mm)                                                     |                                                                                                                                           |                                                                                                                                                                            |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|--------|-----------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|        | ø 2.0 x<br>9-20 | ø 2.25 x<br>9-20                                                                         | ø 2.5 ×<br>9-22                                                                                                                           | ø 2.75 ×<br>9-30                                                                                                                                                           | ø 3.0 ×<br>9-30                                                                                                                                                                                     | ø 3.5 ×<br>9-40                                                                                                                                                                                                                                        | ø 4.0 ×<br>9-40                                                                                                                                                                                                               | ø 4.5 ×<br>13-40°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ø 5.0 ×<br>13-40 <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| atm**  | 9               | 9                                                                                        | 9                                                                                                                                         | 9                                                                                                                                                                          | 9                                                                                                                                                                                                   | 9                                                                                                                                                                                                                                                      | 9                                                                                                                                                                                                                             | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| ø (mm) | 2.00            | 2.25                                                                                     | 2.50                                                                                                                                      | 2.75                                                                                                                                                                       | 3.00                                                                                                                                                                                                | 3.50                                                                                                                                                                                                                                                   | 4.00                                                                                                                                                                                                                          | 4.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| atm**  | 16              | 16                                                                                       | 16                                                                                                                                        | 16                                                                                                                                                                         | 16                                                                                                                                                                                                  | 16                                                                                                                                                                                                                                                     | 16                                                                                                                                                                                                                            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| ø (mm) | 2.33            | 2.59                                                                                     | 2.83                                                                                                                                      | 3.12                                                                                                                                                                       | 3.42                                                                                                                                                                                                | 4.07                                                                                                                                                                                                                                                   | 4.65                                                                                                                                                                                                                          | 5.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|        | ø (mm) atm**    | <ul> <li>Ø 2.0 x 9-20</li> <li>atm** 9</li> <li>Ø (mm) 2.00</li> <li>atm** 16</li> </ul> | Ø 2.0 x       Ø 2.25 x         9-20       9-20         atm**       9         Ø (mm)       2.00       2.25         atm**       16       16 | Ø 2.0 x       Ø 2.25 x       Ø 2.5 ×         9-20       9-22         atm**       9       9         Ø (mm)       2.00       2.25       2.50         atm**       16       16 | Ø 2.0 x     Ø 2.25 x     Ø 2.5 x     Ø 2.75 x       9-20     9-20     9-22     9-30       atm**     9     9     9       Ø (mm)     2.00     2.25     2.50     2.75       atm**     16     16     16 | Ø 2.0 x 9-20       Ø 2.25 x 9-22       Ø 2.75 x 9-30       Ø 3.0 x 9-30         atm**       9       9       9       9         Ø (mm)       2.00       2.25       2.50       2.75       3.00         atm**       16       16       16       16       16 | Ø 2.0 x 9-20     Ø 2.25 x 9-22     Ø 2.75 x 9-30     Ø 3.5 x 9-40       atm**     9     9     9     9     9       Ø (mm)     2.00     2.25     2.50     2.75     3.00     3.50       atm**     16     16     16     16     16 | Ø 2.0 x 9-20       Ø 2.25 x 9-22       Ø 2.75 x 9-30       Ø 3.5 x 9-40       Ø 4.0 x 9-40         atm**       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       < | Ø 2.0 x 9-20       Ø 2.25 x 9-22       Ø 2.75 x 9-30       Ø 3.5 x 9-40       Ø 4.0 x 9-40       Ø 4.5 x 13-40°         atm**       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9       9 |  |  |

<sup>a</sup>22mm, 35mm comprimentos não disponíveis \*\*1 atm = 1.013 bar

| Informações para pedido | Stent<br>ø (mm)   | Cateter com 140cm de comprimento<br>Comprimento do stent (mm) |        |        |        |        |        |        |        |        |        |
|-------------------------|-------------------|---------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|                         |                   | 9                                                             | 13     | 15     | 18     | 20     | 22     | 26     | 30     | 35     | 40     |
|                         | 2.00 <sup>b</sup> | 360490                                                        | 360497 | 360506 | 360515 | 360524 | _      | _      | _      | _      | _      |
|                         | 2.25              | 360491                                                        | 360498 | 360507 | 360516 | 360525 | -      | _      | -      | _      | -      |
|                         | 2.50              | 360492                                                        | 360499 | 360508 | 360517 | 360526 | 360533 | _      | _      | _      | -      |
|                         | 2.75              | 360493                                                        | 360500 | 360509 | 360518 | 360527 | 360534 | 360538 | 360544 | _      | -      |
|                         | 3.00              | 360494                                                        | 360501 | 360510 | 360519 | 360528 | 360535 | 360539 | 360545 | -      | _      |
|                         | 3.50              | 360495                                                        | 360502 | 360511 | 360520 | 360529 | 360536 | 360540 | 360546 | 360550 | 360552 |
|                         | 4.00              | 360496                                                        | 360503 | 360512 | 360521 | 360530 | 360537 | 360541 | 360547 | 360551 | 360553 |
|                         | 4.50              | -                                                             | 360504 | 360513 | 360522 | 360531 | -      | 360542 | 360548 | _      | 360554 |
|                         | 5.00              | _                                                             | 360505 | 360514 | 360523 | 360532 | _      | 360543 | 360549 | -      | 360555 |
|                         |                   |                                                               |        |        |        |        |        |        |        |        |        |

<sup>1.</sup> Resultados de estudos clínicos diferentes não são diretamente comparáveis. Diferenças nos resultados podem ser um resultados de diferentes protocolos, populações ou outros fatores; 2. BIOTRONIK: US Food and Drug Administration, Centro de dispositivos e saúde radiológica. PRO-Kinetic Energy stent de Cromo-Cobalto Coronário, P160003; www.fda.gov (acessado em 16.Nov.2016); 3. Medtronic: US Food and Drug Administration, Centro de dispositivos e saúde acessado em 16.Nov.2016); 4. Boston Scientific: US Food and Drug Administration, Centro de dispositivos e saúde radiológica, REBELTM stent coronário em Platina-Cromo (troca rápida e "over-the-wire"), P130030; www.fda.gov (acessado em 23.Nov.2016); 5. Abbott Vascular: US Food and Drug Administration, Centro de dispositivos e saúde radiológica. MULTI-LINK VISION stent coronário OTW, P020047; www.fda.gov (acessado em 16.Nov.2016); 3 (II); 6. Válido para as medidas Ø 2.0 - 3.0 mm; 7. Ø 3.0 mm, quando comparado aos principais concorrentes. Dados em arquivo da BIOTRONIK. Rebel é uma marca registrada da Boston Scientific; Multi-Link 8 é uma marca registrada da Abbott; Integrity é uma marca registrada da Medtronic.





<sup>\*</sup>Indicação pelas Instruções de Uso (IFU).