Ideal Gas: set of non-inter	acting particles
Ideal Gas: set of non-interacting particles reasonable approximation for dilute gases physics chemistry	
phys, cs	che mistry
PV=NKBT on P	V=nRT
P: pressure in Pascals (N/m²)	Standard Temperature & Pressure (STP)
Vi volume in m3	T = 300K
V: volume in m? T: temperature in Kelvin	$1 \text{ atm} = 1.013 \times 10^5 \text{ Pa}$
N: # of particles n: # of moles	1 bar = 105 Pa
ks = 1.38 × 10 -23 J/K R= ks NA = 8.31 J/K mod	
NA = 6.02 × 10 23/mol "gas constant"	

of P(V) changes with volume $W = -\int_{V_i}^{V_f} P(V) dV$

Heat Capacities of an Ideal Cos

$$C : \frac{Q}{\Delta T} = \frac{\Delta U}{\Delta T} - \frac{W}{\Delta T}$$

if $W = 0$, then $C = \frac{\Delta U}{\Delta T}$

for ideal gas, $W = 0$ means ΔV constant

h.c. ΔT

constant

 $V = \left(\frac{\partial U}{\partial T}\right)_{V} V$ constant volume

Volume

Aside: $f(x,y,z)$ of assumes $y \in z$ and constant of x

$$\int UII \int dx \int_{Z} dx dx$$

Hermodynamics is interplated

$$C_{p} = \frac{\Delta U}{\Delta T} - \frac{W}{\Delta T} = \frac{\Delta U}{\Delta T} + \frac{P\Delta V}{\Delta T}$$

$$C_{p} = (\frac{\partial U}{\partial T})_{p} + P(\frac{\partial V}{\partial T})_{p}$$

e.g. ideal gas abeys equiportidan theorem

$$U: N_{\overline{2}}^{\underline{f}} L^{T} \qquad \left(\frac{\partial U}{\partial T}\right)_{V} = \left(\frac{\partial U}{\partial T}\right)_{P} = N_{\overline{2}}^{\underline{f}} k$$

Cp = Cv + Nk

Cp & langer them Cv

less & remains to increase T because of Q gue ento moving Surrounding air out of the way.