Find the the value of (a) $f \circ g$ and (b) $g \circ f$, then (c) find the domain for $f \circ g$:

1)
$$a.(f.og)(x) = \sqrt{4x^2-7}$$

b) $(g.of)(x) = 4(\sqrt{x-7})^{\frac{1}{2}}4(x-7)^{\frac{1}{2}}4x-38$
c) $4x^2-7 \ge 0$ $4x^2 \ge 7$
 $x^2 \ge \frac{7}{4}$ $x \ge \sqrt{7}$
 $x \ge \sqrt{7}$
3) $a.(f.og)(x) = \sqrt{7}$
 $b.(g.of)(x) = \sqrt{7}$
 $a.(f.og)(x) = \sqrt{7}$

More precal practice Nov. 10, 2021

Do all work in notebook! Show all work!

1.
$$f(x) = \sqrt{x-7}$$
, $g(x) = 4x^2$

1.
$$f(x) = \sqrt{x-7}$$
, $g(x) = 4x^2$ 2. $f(x) = \sqrt{x+3}$, $g(x) = \frac{x}{2}$

3.
$$f(x) = x + 2$$
, $g(x) = \frac{1}{x^2 - 4}$

3.a)
$$(f \circ g)(x) = \frac{1}{x^2 - 4} + \lambda$$

b) $(g \cdot f)(x) = \frac{1}{(x+1)^2 - 4} = \frac{1}{x^2 + 4x}$
c. $x^2 - 4 > 0 \rightarrow x^2 > 4$

Identify the vertex and x-intercepts for:

$$4. f(x) = x^2 + 8x + 11$$

$$4. f(x) = x^2 + 8x + 11$$
 5. $f(x) = -(x^2 - 2x - 15)$ 6. $f(x) = 4x^2 + 24x - 41$

$$6. f(x) = 4x^2 + 24x - 41$$

$$f(x) = (x^2 + 8x + 10) - 10 + 10$$

$$= (x + 4)^2 - 5$$

$$\forall ev + ex = (-4, -5)$$

$$8 \pm \sqrt{64 - 44}$$
 $8 \pm \sqrt{64 - 44}$
 $\frac{1}{2}$

$$X = -4 \pm 2\sqrt{5}$$

$$X = -4 + \sqrt{5}, -4 - \sqrt{5}$$

5.
$$f(x) = -(x^2 - 2x - 15)$$

 $ver + exe$ $x = -1$
 -1 $= x + 1$ $= (x - 1)^2 - 1 - 15$
 $ver + exe$ $x = -1$
 $ver + ex$ $x = -1$
 $ver +$

$$Y = -15$$

 $= -(x+3)(x-5)$
 $= -(x+3)(x-5)$
 $= -3$
 $= -3$

6.
$$f(x) = 4x^{2} + 34x - 41$$

Vertex:
 $f(x) = 4(x^{2} + 6x - 10.25)$
 $f(x) = -4(x + 3)^{2} - 9 - 10.25$
 $f(x) = -4(x + 3)^{2} - 19.25$
 $f(x) = -4(x + 3)^{2} + 79$
Vertex:
 $f(x) = -4(x + 3)^{2} + 79$
 $f(x) = -4(x + 3)^{2} + 79$

$$9 = 4, b = 24, c = -41$$
 $\times = -24 \pm \sqrt{24^2 - 4(4)(-41)}$
 $-24 \pm \sqrt{1+32}$
 $-24 \pm \sqrt{1+32}$

 $7x^3 + 3 \div x + 2$

8.

Use long division to divide:

7.
$$3x^3 - 5x^2 + 10x - 3 \div 3x + 1$$

7.
$$x^{2}-2x+4$$
 $3x+1\sqrt{3}x^{3}-5x+10x-3$
 $-3x^{3}-x^{2}$
 $-6x^{2}+10x$
 $+6x^{2}+2x$
 $12x-3$
 $-14x^{2}+0x$
 $26x+3$
 $-28x-56$

Remainder

 $7x^{2}-14x+2x$
 $-14x^{2}+0x$
 $-14x^{2}+0x$
 $-14x^{2}+10x$
 -14

More precal practice Nov. 10, 2021 Do all work in notebook! Show all work!

For the problems below:

- (a) Find all real roots
- (b) Apply the leading coefficient test
- (c) sketch the graph for the equation. If necessary find additional points on the graph.

$$a, o = x[x^2 - x - 2]$$

 $+1-x = -1$
 $0 = x(x+1)(x-2)$
 $+1-x = -1$
 $+1-x = -1$

b. leading (vefficient: + highest exp: even

graph;

find additional

Points

Total

Forx

9.
$$f(x) = x^3 - x^2 - 2x$$

$$10. f(x) = x^3 + 2x^2 - 6x$$

10.
$$a. 0 = x(x^{2} + 1)x - 6$$

 $x = -(1) \pm \sqrt{41^{2} - 4/11/1-6} = \frac{2 - 1}{2}$
 $-2 \pm \sqrt{4 + 14} = 28$ $\sqrt{31} = \sqrt{43} = \sqrt{43}$
 $-2 \pm \sqrt{4 + 14} = 28$ $\sqrt{31} = \sqrt{43} = \sqrt{43}$
 $-3.45, 1.65$
 $x = -3.45, 1.65$

Plat addional points (plug in -3,-1,1 Sorx)

x	-3	-1	1
Y	9	7	-3

