pISSN: 2301-7716; eISSN: 2622-4607

Jurnal Farmasi Udayana, Vol 10, No 1, Tahun 2021, 31-37

Potensi Daun Bungur (*Lagerstroemia loudonii* Teijsm. & Binn.) Sebagai Penghambat Alfa-Glukosidase

Riyanti S¹, Setyadi M A¹, Kumolowati E¹

¹Kelompok Keilmuan Biologi Farmasi, Fakultas Farmasi Universitas Jenderal Achmad Yani Jl. Terusan Jenderal Sudirman PO.BOX. 148 Cimahi, Indonesia, 40533

E-mail penulis: soraya.riyanti@lecture.unjani.ac.id

Riwayat artikel: Dikirim: 19/11/2020; Diterima: 30/12/2020, Diterbitkan: 1/07/2021

ABSTRACT

Corosolic acid is a pentacyclic triterpene group contained in Lagerstroemia speciosa L. leaves and has been reported to reduce blood glucose levels by inhibiting alpha-glucosidase. The ethanol extract of bungur (L loudonii Teijsm. & Binn.) leaves which still green was reported have alpha-glucosidase inhibitory activity of 262. 20 μ g/mL, ethyl acetate and n-hexane fraction of 62.73 μ g/mL and 97.16 μ g/mL. This study to determine the inhibitory activity of alpha-glucosidase of ethanol extract of fallen leaf and their fractions. The extraction process by reflux in 96% ethanol, the fractionation process by liquid-liquid extraction. Testing of alpha-glucosidase inhibitor activity using colorimetric method at a wavelength of 401 nm with chromogenic substrate p-nitrophenyl- α -D-glucopyranoside and alpha-glucosidase from Saccharomyces cerevisiae, acarbose was used as a standard inhibitor. The results showed that the IC50 values of ethanol extract, n-hexane, ethyl acetate and water fraction were 170.39 μ g/mL; 258.41 μ g/mL; 382.46 μ g/mL; and 134.27 μ g/mL, and acarbose 14.6 μ g/mL. The alpha-glucosidase inhibitory of the ethanol extract of the fallen leaves of bungur was greater than that of the ethanol extract of the leaves of bungur which was still green, the water fraction of fallen leaves gave the greatest alpha-glucosidase inhibition with an IC50 of 134.27 μ g/mL.

Key words: alpha-glucosidase inhibitor, bungur leaves, Lagerstroemia loudonii Teijsm. & Binn.

ABSTRAK

Asam korosolat merupakan kelompok triterpene pentasiklik yang terkandung di dalam daun bungur jenis *Lagerstroemia speciosa* L. dan telah dilaporkan dapat menurunkan kadar glukosa darah dengan mekanisme menghambat alfa-glukosidase. Ekstrak etanol daun bungur (*L loudonii* Teijsm. & Binn.) yang masih berwarna hijau dilaporkan memiliki aktivitas penghambat alfa-glukosidase sebesar 262, 20 μg/mL, fraksi etil asetat dan n-heksana sebesar 62,73 μg/mL dan 97, 16 μg/mL. Penelitian ini bertujuan untuk menentukan aktivitas penghambat alfa-glukosidase ekstrak etanol dan fraksi-fraksi daun bungur yang gugur. Proses ekstraksi secara refluks dalam etanol 96%, proses fraksinasi secara ekstraksi cair-cair. Penguijan aktivitas penghambat alfa-glukosidase menggunakan metode kolorimetri pada panjang gelombang 401 nm dengan substrat kromogenik p-nitrofenil-α-Dglukopiranosida dan enzim alfa-glukosidase dari Saccharomyces cerevisiae, akarbose digunakan sebagai pembanding penghambat alfa-glukosidase. Hasil penelitian diperoleh nilai IC50 ekstrak etanol, fraksi n-heksana, etil asetat dan air berturut-turut sebesar 170,39 µg/mL; 258,41 µg/mL; 382,46 µg/mL; dan 134,27 µg/mL, akarbose sebesar 14,6 µg/mL. Aktivitas penghambatan alfaglukosidase ekstrak etanol daun bungur yang gugur lebih besar dibandingkan dengan ekstrak etanol daun bungur yang masih berwarna hijau dan fraksi air daun bungur yang gugur memberikan aktivitas penghambatan alfa-glukosidase yang terbesar dengan IC₅₀ 134,27 µg/mL.

Kata kunci: Daun bungur, Lagerstroemia loudonii Teijsm. & Binn. penghambat alfa-glukosidase

pISSN: 2301-7716; eISSN: 2622-4607

Jurnal Farmasi Udayana, Vol 10, No 1, Tahun 2021, 31-37

1. PENDAHULUAN

Diabetes melitus salah satu penyakit degeneratif yang memerlukan penanganan secara serius. Penggunaan antidiabetes oral terkadang menimbulkan beberapa efek samping seperti gangguan pada pencernaan, bahkan sampai menyebabkan hipoglikemik. Inhibitor alfa-glukosidase merupakan salah satu dari mekanisme obat antidiabetes oral yang bekerja dengan menghambat proses pemecahan dan penyerapan glukosa.

Indonesia memiliki sumber daya alam yang melimpah, termasuk tumbuhan yang memiliki potensi untuk pengobatan. Salah satu marga tumbuhan vang dalam pengobatan berpotensi adalah Lagerstroemia marga yang telah dilaporkan memiliki aktivitas sebagai antidiabetes. Marga Lagerstroemia ini meliputi jenis tumbuhan bungur yang tersebar luas di Asia (Indonesia, Malaysia, Myanmar, Thailand, Filipina, India, Jenis tumbuhan China). marga Lagerstroemia diantaranya Lagerstroemia speciosa L., L. loudonii Teijsm. & Binn., L. floribunda, L. indica, L. subcostata, L. tomentosa, L. fordii.

Ekstrak etanol serta fraksi-fraksi daun bungur Lagerstroemia loudonii Teijsm. & Binn. yang berwarna hijau memberikan aktivitas sebagai inhibitor alfa-glukosidase dengan nilai berturut-turut untuk ekstrak etanol, fraksi n-heksana, etil asetat dan air sebesar 262,20 µg/ml; 97,16 µg/ml; 62,73 µg/ml; dan 145,30 µg/ml, sedangkan untuk buah bungur nilai IC50 berturut-turut sebesar $1,50 \mu g/ml; 3,69 \mu g/ml; 37,38 \mu g/ml; dan$ 22,59 µg/ml (S. Riyanti et al., 2020). Selain itu dari daun bungur baik yang masih berwarna hijau ataupun yang gugur berwarna kuning dilaporkan memiliki aktivitas antioksidan dengan nilai nilai IC_{50} berturut-turut sebesar 7,53 µg/ml; dan 25,87 µg/ml (Soraya Riyanti & Windyaswari, 2019).

Selain bagian daun dan buahnya, bagian kulit batang bungur dilaporkan memiliki aktivitas sebagai inhibitor alfa-glukosidase. Ekstrak etanol yang diperoleh dari proses refluks dan proses fraksinasi dilakukan dengan ekstraksi cair cair (ECC) memberikan nilai IC50 berturut-turut untuk ekstrak, fraksi n-heksana, fraksi etil asetat dan fraksi air 240,53 µg/ml; 186,11 µg/ml; 79,48 µg/ml; 113,10 µg/ml. Akarbose yang digunakan sebagai standar inhibitor alfa-glukosidase memiliki nilai IC₅₀ 10,46 μg/ml (Riyanti et al., 2018).

Kandungan senyawa kimia yang dilaporkan dari marga Lagerstroemia diantaranya adalah kelompok triterpene pentasiklik seperti asam korosolat, asam ursolat, asam arjunolat, asam oleanolat, asam asiatat dan asam 23-hidroksiursolat. Isolat yang dihasilkan tersebut dilaporkan memiliki aktivitas sebagai inhibitor alfaglukosidase dan asam korosolat memberikan hasil yang terbaik sebagai inhibitor alfa-glukosidase dengan nilai IC₅₀ 3,53 µg/ml (Wenli Hou et al, 2009).

Asam korosolat menjadi senyawa penanda dalam sediaan ekstrak terstandar Glucosol yang telah beredar di Filipina. Kelompok elagitanin, lagerstroemin dan flosin A dan flosin B juga dilaporkan memberikan kemampuannya dalam menurunkan pengambilan glukosa di jaringan adiposa pada hewan percobaan (Hayashi et al., 2002). Kadar kandungan asam korosolat dilaporkan lebih tinggi pada daun bungur yang gugur (berwarna kuning) dibandingkan pada daun yang masih berwarna hijau (Sikarwar MS et al., 2016).

2. BAHAN DAN METODE

Bahan dan Alat

Daun bungur (*Lagerstroemia loudonii* Teijsm. & Binn.) yang gugur dikumpulkan dari kota Bandung. Enzim alfa glukosidase (Sigma Aldrich) yang berasal dari *Saccharomyces cerevisiae*, substrat p-nitrofenil alfa-D-glukopiranosida (PNPG), *bovine serum albumin* (Sigma Aldrich), akarbose (PT. Dexa Medica), dapar fospat pH 7, natrium karbonat.

Peralatan yang digunakan diantaranya spektrofotometer UV-Visible (Shimadzu), alat penguap vakum putar (Heidolph), mikropipet 10-1000 µl (Ependorf), corong pisah 500 ml (Pyrex) dan peralatan standar yang biasa digunakan di laboratorium.

Metode

Proses pembuatan simplisia daun bungur yang gugur dilakukan dengan melakukan pengeringan menggunakan lemari pengering dengan suhu diatur di bawah 40^{0} C sampai daun kering. Ekstraksi simplisia dilakukan menggunakan merode refluks dalam etanol 96% selama satu jam. Proses ekstraksi diulang sebanyak tiga kali menggunakan pelarut yang baru. Ekstrak cair vang diperoleh dilakukan pemekatan ekstrak untuk memisahkan dari pelarutnya menggunakan alat penguap vakum putar. Ekstrak kental yang diperoleh kemudian sebagian dilakukan fraksinasi dengan metode ekstraksi cair cair menggunakan pelarut air, n-heksana dan etil asetat. Simplisia dan ekstrak yang diperoleh dilakukan proses penapisan fitokimia.

Metode pengujian aktivitas inhibitor alfa-glukosidase merujuk pada metode

Watanabe tahun 1997 (Watanabe et al., 1997) secara kolorimetri yang diukur pada Paniang gelombang 400.5 Konsentrasi enzim alfa-glukosidase yang digunakan adalah 0,2 unit/mL. dan substrat PNPG 0,625 mM. Sampel (ekstrak / fraksi-fraksi) dibuat beberapa variasi konsentrasi (100-1000 µg/ml). Sebanyak 10 μL larutan sampel dimasukan dalam tabung reaksi kemudian ditambahkan 500 µL dapar fospat pH 7, 250 µL PNPG (0,625 mM) dan 250 µL enzim alfa-glukosidase 0,2 unit/mL, kemudian diinkubasi pada suhu 37^oC selama 30 menit. Reaksi dihentikan dengan penambahan 1000 µL larutan natrium karbonat 200 mM. Larutan sampel ini kemudian diukur menggunakan spektrofotometer **UV-Visible** pada Panjang gelombang maksimum 400,5 nm (Riyanti et al., 2018).

Aktivitas inhibitor alfa-glukosidase ditentukan dengan menghitung persen (%) penghambatan menggunakan rumus:

% Penghambatan

$$= \frac{absorban\ kontrol - absorban\ sampel}{absorban\ kontrol} \times 100\%$$

Nilai IC₅₀ dihitung menggunakan persamaan regresi mengikuti persamaan y = bx + a, dan nilai IC₅₀ dihitung dengan rumus:

$$IC50 = \frac{50 - a}{h}$$

3. HASIL

Tabel 1. Nilai IC50 Ekstrak dan Fraksi-fraksi Daun Bungur Gugur

Daan Dangar Gagar	
Nama Sampel	Nilai IC50 (µg/mL)
Ekstrak etanol	170,39
Fraksi Air	134,27
Fraksi Etil Asetat	382,46
Fraksi n-heksana	258,41
Akarbosa	14,6

pISSN: 2301-7716; eISSN: 2622-4607

Jurnal Farmasi Udayana, Vol 10, No 1, Tahun 2021, 31-37

Gambar 1. Profil Kromatografi Lapis
Tipis Ekstrak Etanol Daun Bungur Gugur, Fase
Diam Silika Gel 60 F₂₅₄, Fase Gerak KloroformEtil Asetat (9:1). (a) Diamati dengan lampu UV
254 nm (b) Diamati dengan lampu UV 365 nm (c)
Setelah disemprot H₂SO₄ 10% dalam metanol,
diamati dengan UV 366 nm, (d) Setelah
disemprot sitroborat, dipanaskan dan diamati
dengan UV 365 nm (e) Setelah disemprot dengan
FeCl₃, dipanaskan dan diamati secara visual, (f)
Setelah disemprot Liebermann-Buchard,
dipanaskan dan diamati secara visual.

4. PEMBAHASAN

Diabetes merupakan suatu penyakit yang memerlukan penanganan serius dan penderitanya dituntut untuk menggunakan obat antidiabetes selama hidupnya. Selain itu penggunaan obat antidiabetes oral memiliki beberapa efek samping yang kurang nyaman bagi penderitanya seperti yang banyak dilaporkan adalah gangguan pada saluran pencernaan, mual, muntah, bahkan terjadi efek hipoglikemia.

Berdasarkan hasil penelitian aktivitas antioksidan pada daun bungur yang gugur dengan nilai IC_{50} yang masuk dalam kategori kuat (IC_{50} 25,87 µg/ml), serta informasi adanya kandungan asam korosolat yang lebih tinggi dalam daun bungur yang tua (berwarna kuning) dibandingkan dengan yang berwarna hijau, hal ini memberikan penguatan

untuk membuktikan juga aktivitasnya sebagai inhibitor alfa-glukosidase.

Daun bungur jenis Lagerstroemia loudonii Teijsm. & Binn. yang gugur terdeteksi mengandung senyawa flavonoid, polifenol, tanin, steroid, triterpenoid, monoterpeneseskuiterpenoid, saponin dan kuinon. Berdasarkan hasil penapisan fitokimia yang diperoleh, komponen kimia yang terdapat dalam daun bungur yang gugur masih memiliki senyawa yang diduga aktif sebagai inhibitor alfa-glukosidase yaitu kelompok flavonoid, tanin, steroid dan triterpenoid. Kelompok senyawa tanin (lagerstanin A, B, C, dan lagerstroemin) dalam daun bungur telah dilaporkan memiliki aktivitas sebagai antidiabetes bersama dengan senyawa asam korosolat yang merupakan kelompok senyawa triterpenoid (Miura et 2012; al., Vijaykumar & Murthy, 2006).

Proses ekstraksi dengan cara refluks menggunakan etanol 96% kemudian ekstrak total tersebut dipisahkan (fraksinasi) berdasarkan tingkat polaritas senyawa menggunakan metode ekstraksi cair cair (ECC), dengan tujuan senyawa yang bersifat non polar akan tersari ke dalam pelarut n-heksana, senyawa yang bersifat semi polar tersari ke dalam pelarut etil asetat dan senyawa polar akan tersari dalam pelarut air. Masing-masing ekstrak dan fraksi kemudian dilakukan pengujian inhibitor aktivitas sebagai glukosidase. Hasil pengujian ditampilkan dalam nilai IC₅₀ seperti yang tertera dalam Tabel 1.

Hasil pengujian aktivitas inhibitor alfa-glukosidase pada daun bungur yang gugur menunjukkan fraksi air memberikan nilai IC₅₀ yang terbaik, hal ini diduga terdapatnya kandungan senyawa yang bersifat polar dalam fraksi tersebut yang berperan sebagai inhibitor

pISSN: 2301-7716; eISSN: 2622-4607

Jurnal Farmasi Udayana, Vol 10, No 1, Tahun 2021, 31-37

alfa-glukosidase, seperti senyawa tanin serta flavonoid. Dugaan ini juga diperkuat dengan hasil penelitian yang telah dilakukan oleh Klein et al (2007) yang membuktikan ekstrak air dari daun bungur *L. speciosa* L. memiliki penghambatan terhadap aktivitas *insulin-like glucose transport*, senyawa yang teridentifikasi adalah galotanin yaitu penta-O-galoil-glukopiranosa (PGG). Senyawa ini pun dilaporkan memiliki aktivitas yang lebih baik dibandingkan dengan lagerstroemin dalam stimulasi transport glukosa (Klein et al., 2007; Sikarwar et al., 2016).

Nilai IC₅₀ ekstrak etanol daun bungur gugur sebesar 170,39 µg/mL relatif lebih baik dibandinkan dengan nilai IC₅₀ dari ekstrak etanol daun bungur yang masih berwarna hijau yaitu 262,20 µg/ml. Baik daun bungur yang gugr ataupun yang berwarna hijau, keduanya masih dilaporkan memiliki senyawa asam korosolat yang telah terbukti sebagai inhibitor alfa-glukosidase dengan nilai IC₅₀ sebesar 3,53 µg/ml (Wenli et al, 2009).

Beberapa penelitian melaporkan mekanisme kerja dari ekstrak daun bungur jenis L. speciosa L. dengan kandungan elagitanin dan asam korosolat vaitu sebagai inhibitor alfa-glukosidase dan alfa-amilase, peningkat transport glukosa, mimetik, dan mengaktivasi insulin GLUT-4. Lagerstroemia speciosa L. penelitian berdasarkan dilaporkan menggunakan jaringan adiposa hewan (tikus) mampu meningkatkan coba ambilan glukosa pada jaringan tersebut, akhirnya akan mempengaruhi sensitivitas insulin menjadi meningkat (Park & Lee, 2011; Guo et al., 2020; Eddouks et al., 2014).

Berdasarkan pada pendekatan kemotaksonomi dari marga Lagerstroemia yang telah dilaporkan khususnya dari tumbuhan bungur jenis *L. speciosa* L. sebagai antidiabetes dan kandungan senyawa kimia yang telah berhasil diisolasi dari tumbuhan tersebut, maka kemungkinan tanaman dari marga yang sama juga akan memberikan aktivitas serta data kandungan kimia yang hampir sama.

Profil kromatografi lapis tipis dari ekstrak etanol daun bungur dengan fase gerak kloroform-metanol (9:1) dapat teramati memiliki beragam senyawa kimia yang berbeda sifat polaritasnya. Fase gerak yang digunakan menghasilkan kepolaran yang cenderung non polar sehingga teramati masih banyak senyawa yang bersifat polar terjerap kuat dapa fase diam yang digunakan. Profil kromatografi lapis tipis untuk ekstrak etanol daun bungur gugur disajikan dalam Gambar 1.

Gambar 1 menunjukkan hasil kromatogram dari ekstrak etanol daun bungur yang gugur. Penggunaan pereaksi penampak bercak asam sulfat 10% dalam metanol sebagai penampak bercak universal mampu mendeteksi semua senyawa organik. Penampak bercak sitroborat digunakan untuk mendeteksi senvawa flavonoid pada kromatogram vang memberikan flourosensi berwarna kuning kehijauan saat diamati di bawah lampu UV 365 nm. Senyawa flavonoid dalam kromatogram teramati belum terelusi sempurna, masih berada pada bagian bawah (terikat dengan fase diam), hal ini dapat diperbaiki dengan mengubah fase gerak yang digunakan dengan menambahkan pelarut yang polar. Penampak bercak FeCl₃ digunakan untuk mendeteksi senyawa fenol yang terdapat dalam kromatogram yang ditandai dengan bercak berwarna coklat gelap dengan latar plat KLT berwarna kuning. Penampak bercak Liebermann-Buchard digunakan untuk mendeteksi senyawa steroid dan

pISSN: 2301-7716; eISSN: 2622-4607

Jurnal Farmasi Udayana, Vol 10, No 1, Tahun 2021, 31-37

triterpenoid (Farnsworth, 1966; Ashnagar et al., 2012).

Masih terbatasnya informasi kandungan kimia aktif yang teridentifikasi dari tumbuhan bungur jenis *L. loudonii* Teijsm. & Binn. menjadi suatu peluang mendapatkan kebaharuan dalam penelitian selanjutnya, dengan demikian dapat dijelaskan dengan baik mengenai aktivitas dari senyawa yang berhasil diisolasi tersebut.

5. KESIMPULAN

Ekstrak etanol daun bungur yang (berwarna kuning) memiliki gugur aktivitas sebagai inhibitor alfaglukosidase (nilai IC₅₀ 170,39 µg/mL) lebih baik dibandingkan dengan ekstrak etanol daun bungur yang berwarna hijau. Fraksi air menunjukkan aktivitas yang paling baik diantara fraksi n-heksan dan etil asetat dengan nilai IC₅₀ 134,27 µg/mL. Daun bungur (Lagerstroemia loudonii Teijsm. & Binn.) berpotensi untuk dikembangkan sebagai sumber herbal untuk menurunkan kadar glukosa darah melalui mekanisme penghambatan alfaglukosidase.

6. UCAPAN TERIMAKASIH

Terima kasih kepada Lembaga Penelitian dan Pengabdian Masyarakat (LPPM) Universitas Jenderal Achmad Yani yang telah memberikan dana penelitian melalui program Hibah Kompetitif Universitas Jenderal Achmad Yani tahun 2020.

7. DAFTAR PUSTAKA

Ashnagar, A., Motakefpour, M., Rahimi, A. A., Mehregan, I., & Ghannadi, A. (2012). *Persian Common Crape*

- Myrtle Leaves; Phytochemical Screenings and Flavonoid Patterns. 2(4), 240–243.
- Eddouks, M., Bidi, A., El Bouhali, B., Hajji, L., & Zeggwagh, N. A. (2014). Antidiabetic plants improving insulin sensitivity. *Journal of Pharmacy and Pharmacology*, 66(9), 1197–1214.
- Farnsworth, N. R. (1966). Biological and phytochemical screening of plants. *Journal of Pharmaceutical Sciences*, 55(3), 225–276.
- Guo, S., Ren, X., He, K., Chen, X., Zhang, S., Roller, M., Zheng, B., Zheng, Q., Ho, C. T., & Bai, N. (2020). The anti-diabetic effect of eight: Lagerstroemia speciosa leaf extracts based on the contents of ellagitannins and ellagic acid derivatives. *Food and Function*, 11(2), 1560–1571.
- Hayashi, T., Maruyama, H., Kasai, R., Hattori, K., Takasuga, S., Hazeki, O., Yamasaki, K., & Tanaka, T. (2002). Ellagitannins from Lagerstroemia speciosa as activators of glucose transport in fat cells. *Planta Medica*, 68(2), 173–175.
- Klein, G., Kim, J., Himmeldirk, K., Cao, Y., & Chen, X. (2007). Antidiabetes and anti-obesity activity of Lagerstroemia speciosa. *Evidence-Based Complementary and Alternative Medicine*, 4(4), 401–407.
- Miura, T., Takagi, S., & Ishida, T. (2012).

 Management of Diabetes and Its
 Complications with Banaba (
 Lagerstroemia speciosa L.) and
 Corosolic Acid . Evidence-Based
 Complementary and Alternative
 Medicine, 2012, 1–8.

pISSN: 2301-7716; eISSN: 2622-4607

Jurnal Farmasi Udayana, Vol 10, No 1, Tahun 2021, 31-37

- Park, C., & Lee, J. S. (2011). Banaba: The natural remedy as antidiabetic drug. *Biomedical Research*, 22(2), 125–129.
- Riyanti, S., Dewi, P. S., Windyaswari, A. S., & Azizah, S. A. N. (2020). Alphaglucosidase inhibitory activities of bungur (*Lagerstroemia loudonii* Teijsm. & Binn.) leaves and fruits. *IOP Conference Series: Earth and Environmental Science*, 462(1).
- Riyanti, Soraya, Ratnawati, J., Shaleh, M. I., & Suganda, A. G. (2018). Potensi Kulit Batang Bungur (*Lagerstroemia loudonii* Teijsm and Binn.) Sebagai Herbal Antidiabetes dengan Mekanisme Penghambat Alfaglukosidase. *Talenta Conference Series: Tropical Medicine (TM)*, 1(3), 117–120.
- Riyanti, Soraya, & Windyaswari, A. S. (2019). Potensi Daun Bungur (
 Lagerstroemia loudonii Teijsm . & Binn .) Gugur Sebagai Sumber Antiok-. 16–19.
- Sikarwar MS, Chung LC, Ting LW, Chee LC, F. S. & B. K. (2016).

- Phytochemical constituents and pharmacological activities of Lagerstroemia floribunda Jack. (Kedah bungor): A Review. *Journal of Applied Pharmaceutical Science*, 6(8), 185–190.
- Vijaykumar, K., & Murthy, P. (2006). Quantitative determination of corosolic acid in Lagerstroemia speciosa leaves, extracts and dosage forms. *Int J Appl Sci Eng*, *4*(2), 103–114.
- Watanabe, J., Kawabata, J., Kurihara, H., & Niki, R. (1997). Isolation and Identification of α -Glucosidase Inhibitors from Tochu-cha (Eucommia ulmoides). Bioscience, Biotechnology, and Biochemistry, 61(1), 177–178.
- Wenli Hou, Yanfang Li, Qiang Zhang, Xin Wei, Aihua Peng, L. C. and Y. W. (2009). Triterpene Acids Isolated from *Lagerstroemia speciosa* Leaves as α-Glucosidase Inhibitors. *Phytotherapy Research*, 22, 614–618.