Combinational Circuits: Theory

Digital Design and Computer Architecture Mohammad Sadrosadati Frank K. Gürkaynak

http://safari.ethz.ch/ddca

What we will learn

- Boolean Algebra
- Theorems
- Simplifying Boolean Equations
- Proving Theorems
- Bubble Pushing

Introduction

- A logic circuit is composed of:
 - Inputs
 - Outputs
- Functional specification (describes relationship between inputs and outputs)
- Timing specification (describes the delay between inputs changing and outputs responding)

Circuits

Circuit elements

- **E**1, E2, E3
- Each itself a circuit

Nodes (wires)

- Inputs: A, B, C
- Outputs: Y, Z
- Internal: n1

Circuits

Circuit elements

- E1, E2, E3
- Each itself a circuit

Nodes (wires)

- Inputs: A, B, C
- Outputs: Y, Z
- Internal: n1
- To count the nodes look at
 - outputs of every circuit element
 - inputs to the entire circuit

Types of Logic Circuits

■ Combinational Logic

- Memoryless
- Outputs determined by current values of inputs
- In some books called Combinatorial Logic

Sequential Logic

- Has memory
- Outputs determined by previous and current values of inputs

Rules of Combinational Composition

- Every circuit element is itself combinational
- Every node of the circuit is either
 - designated as an input to the circuit or
 - connects to exactly one output terminal of a circuit element
- The circuit contains no cyclic paths: every path through the circuit visits each circuit node at most once
- Example: (If E1-3 combinational)

Combinational Or Not?

Boolean Equations

- Functional specification of outputs in terms of inputs
- Example (full adder more later):

$$S = F(A, B, C_{in})$$

$$C_{\text{out}} = G(A, B, C_{\text{in}})$$

$$\begin{array}{c|c}
A & \\
B & \\
C_{in}
\end{array}$$

$$\begin{array}{c|c}
C & S \\
C_{out}
\end{array}$$

$$S = A \oplus B \oplus C_{in}$$

 $C_{out} = AB + AC_{in} + BC_{in}$

Boolean Algebra

- Set of axioms and theorems to simplify Boolean equations
- Like regular algebra, but in some cases simpler because variables can have only two values (1 or 0)
- Axioms and theorems obey the principles of duality:
 - stay correct if
 ANDs and ORs interchanged and
 0's and 1's interchanged
 - Examples:

$$\overline{0} =$$

$$B \cdot \overline{B} =$$

Boolean Algebra

- Set of axioms and theorems to simplify Boolean equations
- Like regular algebra, but in some cases simpler because variables can have only two values (1 or 0)
- Axioms and theorems obey the principles of duality:
 - stay correct if
 ANDs and ORs interchanged and
 0's and 1's interchanged
 - Examples:

$$\overline{0} = 1$$

$$B \cdot \overline{B} = 0$$

$$\overline{1} = 0$$

$$B + \overline{B} = 1$$

Boolean Axioms

	Axiom		Dual	Name
A1	$B = 0 \text{ if } B \neq 1$	A1′	$B = 1 \text{ if } B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5'	1 + 0 = 0 + 1 = 1	AND/OR

Duality: If the symbols 0 and 1 and the operators • (AND) and + (OR) are interchanged, the statement will still be correct.

T1: Identity Theorem

- B·1 =
- \blacksquare B + 0 =

T1: Identity Theorem

$$\blacksquare$$
 B·1 = B

$$B + 0 = B$$

$$\begin{bmatrix} B \\ 1 \end{bmatrix} = B$$

$$\begin{bmatrix} B \\ 0 \end{bmatrix}$$
 = B

T2: Null Element Theorem

- $\mathbf{B} \cdot \mathbf{0} =$
- B+1 =

T2: Null Element Theorem

$$\mathbf{B} \cdot \mathbf{0} = \mathbf{0}$$

$$B+1=1$$

$$\begin{bmatrix} B \\ 0 \end{bmatrix} - = 0 - \cdots$$

$$\begin{bmatrix} B \\ 1 \end{bmatrix}$$
 = 1

T3: Idempotency Theorem

- \blacksquare B \cdot B =
- \blacksquare B + B =

T3: Idempotency Theorem

$$\blacksquare$$
 B \cdot B = B

$$\blacksquare$$
 B + B = B

$$\begin{bmatrix} B \\ B \end{bmatrix}$$
 $=$ B

$$\begin{bmatrix} B \\ B \end{bmatrix}$$
 = B

T4: Involution Theorem

T4: Involution Theorem

T5: Completeness Theorem

- $B + \overline{B} =$

T5: Completeness Theorem

$$B \cdot \overline{B} = 0$$

$$B + \overline{B} = 1$$

$$\frac{B}{B}$$
 $=$ 0 $=$ 0

$$\frac{B}{B}$$
 \rightarrow $=$ 1

Boolean Theorems: Summary

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1'	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2'	B + 1 = 1	Null Element
T3	$B \bullet B = B$	T3'	B + B = B	Idempotency
T4		$\bar{\bar{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5'	$B + \overline{B} = 1$	Complements

Boolean Theorems of Several Variables

	Theorem		Dual	Name
Т6	$B \bullet C = C \bullet B$	T6′	B + C = C + B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
Т8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8′	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
Т9	$B \bullet (B + C) = B$	T9′	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10′	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$	T11′	$(B+C) \bullet (\overline{B}+D) \bullet (C+D)$	Consensus
	$= B \bullet C + \overline{B} \bullet D$		$= (B + C) \bullet (\overline{B} + D)$	
T12	$\overline{B_0 \bullet B_1 \bullet B_2}$	T12′	$B_0 + B_1 + B_2$	De Morgan's
	$= (\overline{B_0} + \overline{B_1} + \overline{B_2} \dots)$		$= (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2})$	Theorem

$$Y = \bar{A}B + AB$$

$$Y = \bar{A}B + AB$$

$$= B(\bar{A} + A) \qquad T8$$

$$= B(1)$$
 T5'

$$Y = A(AB + ABC)$$

$$Y = A(AB + ABC)$$

$$= A(AB(1+C)) T8$$

$$= A(AB(1)) T2'$$

$$= A(AB)$$
 T1

$$= (AA)B T7$$

DeMorgan's Theorem

$$Y = \overline{A \cdot B} = \overline{A} + \overline{B}$$

NAND

$$A - \bigcirc B - \bigcirc Y$$

$$Y = \overline{A + B} = \overline{A} \cdot \overline{B}$$

NOR

$$A \rightarrow D \rightarrow Y$$

Bubble Pushing

- Pushing bubbles backward (from the output) or forward (from the inputs) changes the body of the gate from AND to OR or vice versa.
 - Pushing a bubble from the output back to the inputs puts bubbles on all gate inputs.

 Pushing bubbles on all gate inputs forward toward the output puts a bubble on the output and changes the gate body.

Bubble Pushing

What is the Boolean expression for this circuit?

How to get with bubble pushing?

Bubble Pushing Rules

- Begin at the output of the circuit and work toward the inputs
- Push any bubbles on the final output back toward the inputs
- Draw each gate in a form so that bubbles cancel

Bubble Pushing Example

Bubble Pushing Example

bubbles pushed

$$Y = \overline{ABC} + \overline{D}$$

$$\overline{\overline{(A+B)} \bullet C} \bullet D = \overline{AB}C + \overline{D}$$

What have we learned

- Combinational circuit discipline
- Boolean algebra theorems
- Bubble pushing (De Morgan's Theorem)