Unsupervised Cross-system Log Anomaly Detection via Domain Adaptation

Xiao Han and Shuhan Yuan Utah State University

Introduction

LogTAD

Experiment and Analysis

Conclusion

What is Log Anomaly Detection

- System logs are widely used on online services to record the status of the system.
- Anomalous logs can be useful in maintaining and increasing reliability and stability.
- Log anomaly detection is aimed to detect a point of the anomalous event or an abnormal pattern of multi-status.

Why do we need LogTAD

- Data Imbalance
- Scarcity of Samples from a Newly Deployed System

Introduction LogTAD **Experiment and Analysis** Conclusion

Problem Statement

- Prerequisites: A dataset \mathcal{D} consisting of normal log sequences from the source system \mathcal{D}^S and a small number of normal log sequences from the target system \mathcal{D}^T .
- Goal: Building an unsupervised and transferable log anomaly detection model to detect the anomalous log sequences from both source and target system.

Workflow of LogTAD

Log Sequence Centralization

• Encodes the log messages in a sequence to a sequence representation,

$$\mathbf{h}_n = LSTM(\mathbf{x}_n, \mathbf{h}_{n-1}),$$

$$\mathbf{v} = \mathbf{h}_N.$$

 Inspired by the DeepSVDD that the normal log sequences should be in a hypersphere and close to the center in the embedding space,

$$\mathbf{c} = Mean(\mathbf{v}_i^{\epsilon})$$
, where $\epsilon \in \{S, T\}$.

• To make the representation of normal log sequences close to the center \mathbf{c} , we develop the following objective function,

$$\mathcal{L}_{en} = \sum_{\epsilon \in \{S,T\}} \sum_{i=1}^{M_{\epsilon}} || \mathbf{v}_{i}^{\epsilon} - \mathbf{c} ||^{2},$$

where M_{ϵ} is the number of samples from the specific domain.

System-agnostic Representation

 Although we adopt one shared LSTM model to map log sequences into a hypersphere, the representations of log sequences from different systems can be still located in different regions.

- Hence, we propose an adversarial training method for cross-system data mapping.
- In specific, we formulate the adversarial training with a discriminator D and a shared LSTM as a generator G.

System-agnostic Representation via Domain Adversarial Training

 Discriminator D is used to distinguish whether the representations of log sequences are from the source or target system,

$$D(\mathbf{v}^{\epsilon}) = \sigma(\mathbf{w}^T \mathbf{v}^{\epsilon} + b),$$

where $\sigma(\bullet)$ indicates the logistic function, **w** and *b* are the trainable parameters.

• The shared generator *G* is trained to make representations of log sequences,

$$\mathbf{v}^{\epsilon} = G(\chi^{\epsilon}).$$

System-agnostic Representation via Domain Adversarial Training

With the adversarial training objective function,

$$\mathcal{L}_{adv} = \min_{G} \max_{D} (\mathbb{E}_{\chi^{S} \sim P_{source}} [\log D(G(\chi^{S}))] + \mathbb{E}_{\chi^{T} \sim P_{target}} [\log (1 - D(G(\chi^{T}))]),$$
 our goal is to mix the distributions of source and target log sequences.

Final objective function for LogTAD,

$$\mathcal{L} = \mathcal{L}_{en} + \lambda \mathcal{L}_{adv}.$$

Cross-system Log Anomaly Detection

• For a log sequence χ^{ϵ} ,

$$\hat{y}_{\chi^{\epsilon}} = \begin{cases} anomalous, & if ||G(\chi^{\epsilon}) - c||^2 > \gamma^{\epsilon} \\ normal, & else \end{cases}$$

where $\epsilon \in \{S, T\}$ and γ^{ϵ} can be derived from a small validation set.

Introduction LogTAD **Experiment and Analysis** Conclusion

Datasets

• Statistics of the Datasets

Dataset #	# of Logs	# of Log Sequences		
	# of Logs	Normal	Anomalous	
BGL	1,212,150	265,583	37,450	
ТВ	3,737,209	565,817	368,481	

• Statistics of Shared Words Across Systems

	BGL Normal	BGL Anomalous	TB Normal	TB Anomalous
BGL Normal	664	133	254	25
BGL Anomalous	133	195	99	16
TB Normal	254	99	1753	49
TB Anomalous	25	16	49	54

Baselines

- Unsupervised Log Anomaly Detection Approaches
 - PCA
 - LogCluster
 - DeepLog
 - DeepSVDD
- Supervised Transfer Learning Approach for Log Anomaly Detection
 - LogTransfer

Experimental Results Compared with Unsupervised Approaches

BGL -> TB					
Method	Source		Target		
	F1	AUC	F1	AUC	
PCA w/o TB	0.642	0.816	0.558	0.504	
LogCulster w/o TB	0.713	0.829	0.559	0.504	
DeepLog w/o TB	0.578	0.867	0.556	0.500	
DeepSVDD w/o TB	0.566	0.789	0.577	0.646	
LogTAD	0.926	0.964	0.758	0.804	

TB -> BGL					
Method	Source		Target		
	F1	AUC	F1	AUC	
PCA w/o BGL	0.760	0.779	0.229	0.658	
LogCulster w/o BGL	0.724	0.716	0.223	0.500	
DeepLog w/o BGL	0.660	0.677	0.223	0.500	
DeepSVDD w/o BGL	0.794	0.808	0.195	0.497	
LogTAD	0.788	0.797	0.845	0.909	

Experimental Results Compared with Unsupervised Approaches Cont.

BGL -> TB					
Method	Source		Target		
	F1	AUC	F1	AUC	
PCA w/ TB	0.322	0.587	0.731	0.776	
LogCulster w/ TB	0.530	0.746	0.677	0.716	
DeepLog w/ TB	0.662	0.854	0.590	0.619	
DeepSVDD w/ TB	0.499	0.725	0.567	0.616	
LogTAD	0.926	0.964	0.758	0.804	

TB -> BGL					
Method	Source		Target		
	F1	AUC	F1	AUC	
PCA w/ BGL	0.789	0.798	0.577	0.773	
LogCulster w/ BGL	0.708	0.688	0.697	0.886	
DeepLog w/ BGL	0.687	0.701	0.527	0.843	
DeepSVDD w/ BGL	0.660	0.699	0.196	0.537	
LogTAD	0.788	0.797	0.845	0.909	

Experimental Results Compared with Supervised Approach

BGL -> TB						
Method	Source		Target			
	F1	AUC	F1	AUC		
LogTransfer	0.971	0.972	0.792	0.828		
LogTAD	0.926	0.964	0.758	0.804		

TB -> BGL						
Method	Source		Target			
	F1	AUC	F1	AUC		
LogTransfer	0.995	0.995	0.788	0.833		
LogTAD	0.788	0.797	0.845	0.909		

Log Sequences Visualization

Introduction LogTAD **Experiment and Analysis** Conclusion

Summary

- We propose an unsupervised cross-system log anomaly detection framework.
- LogTAD utilizes the domain adversarial adaption to make the log data from different systems follow similar distributions.
- LogTAD can detect anomalies in different systems with large distances to the center.
- The experiment results show the effectiveness of our framework.

Thank You for Your Attention!

This work was supported in part by NSF 2103829.

