

At constant presence $\Rightarrow \triangle Q_n = \triangle U + \triangle W = nC_p \triangle T$

Work done from P-V Graph

Area under P-V diagram gives work done by the gas

Isobaric process

 $\triangle W = P \triangle V = 0$

Expansion

Compression

Thermodynamic process

Adiabatic process

· △Q=0 [no exchange of heat]

·Rapid or spontaneous process/insulated vessel

·FLOT=> AQ=AU+AW $\triangle Q=0$ $\triangle U=-\triangle W$

Compression

 $\Delta W = -ve$ $\Delta U = +ve$

△U[†]=>Temperature[†] ⇒ Pressure†

Expansion

 $\Delta W = -ve$ $\Delta U = +ve$

△U↓=>Temperature →Pressure

Equation of state PV =a constant $TV^{\gamma-1}$ = a constant

$$P \propto T \left[\frac{\gamma}{\gamma - 1} \right]$$

Workdone by the gas

$$\Delta W = -\Delta U = nC_v(T_1 - T_2)$$
$$= n \frac{f}{2} R(T_1 - T_f)$$

$$\Delta W = \frac{nR}{\gamma - 1} (T_1 - T_f)$$

$$\Delta W = \frac{P_i V_i - P_f V_f}{\gamma - 1}$$

Slope of adiabatic process = γ slope of isothermal process specific heat of gas $\implies C=0$

$$C = \frac{\triangle Q}{\triangle t} \longrightarrow \triangle Q = 0$$
 $C = 0$

Isothermal process

⇒ ∧T=0 ⇒ ∆U=0 eg: - perfectly conducting slow process

equation of states $\Rightarrow P_1V_1=P_2V_2$ Workdone by the gas

W=2.303 nRT $log(\frac{V_2}{V})$

W=2.303 nRT $log(\frac{r_1}{p})$

specific heat $C=\infty$

Slope ⇒ Slope of adiabatic process = $\gamma \times$ slope of isothermal process

Isobaric process

 $\Lambda P = 0$ FLOT \Longrightarrow $\triangle Q = \triangle U + \triangle W$ equation of states $\Rightarrow V \propto T$

Workdone by the gas $\Delta W = P \Delta V = P(V_2 - V_1) = nR(T_2 - T_1)$

specific heat of gas $\Rightarrow C_p = \left(1 + \frac{f}{2}\right) R = \frac{\gamma R}{\gamma - 1}$

Isochoric process

∆V=0 or V=constant equation of states $\Rightarrow P \propto T$ $\frac{P_1}{P_2} = \frac{T_1}{T_2}$ Workdone by the gas $\triangle V = 0$ $\triangle W = 0$ specific heat of gas $\Longrightarrow C_v = \frac{f}{2} R = \frac{R}{\gamma - 1}$

Heat Engine

'Devices that convert heat into work'

efficiency(1)

$$\eta = \frac{W}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_2}$$

$$\eta = \frac{T_1 - T_2}{T} = 1 - \frac{T_2}{T}$$

 η_{max} \Longrightarrow Where Q_2 =0 or T_2 =0K (not possible)

Carnot Engine

→ Ideal engine

T, (High T) Q, E T₂ (Low T) Coefficient of performance (B)

Refrigerator

Relationship between n&B

$$\beta = \frac{1 - \eta}{\eta}$$

Cascaded engine

THERMODYNAMICS