Элементарные преобразования матриц

Элементарными называются следующие преобразования матриц:

- 1) $\ell^{\rm I}$ умножение строки матрицы на число $\lambda \neq 0$;
- 2) ℓ^{II} прибавление одной строки матрицы к другой;
- 3) ℓ^{III} прибавление строки, умноженной на число $\lambda \neq 0$, к другой строке матрицы;
- 4) ℓ^{IV} перестановка строк матрицы.

Замечания

- 1. Можно показать, что элементарные преобразования ℓ^{III} и ℓ^{IV} могут быть выполнены с помощью последовательности элементарных преобразований ℓ^{I} и ℓ^{II} .
- 2. Требование $\lambda \neq 0$ гарантирует обратимость элементарных преобразований, т.е. для каждого элементарного преобразования ℓ можно найти обратное элементарное преобразование ℓ^{-1} такое, что $\ell^{-1}(\ell(\mathbf{A})) = \mathbf{A}$.
- 3. Запись $\ell(\mathbf{A})$ будет означать выполнение одного из перечисленных выше элементарных преобразований матрицы \mathbf{A} .

Матрицы элементарных преобразований

Применив к единичной матрице **E** элементарное преобразование ℓ^1 (умножение i-й строки на матрицы на число $\lambda \neq 0$), получим матрицу

$$\mathbf{L}^{\mathrm{I}} = \ell^{\mathrm{I}}(\mathbf{E}) = \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & \lambda & & \\ & & \ddots & \\ & & & 1 \end{bmatrix} \leftarrow cmpo\kappa a \ i$$

Применив к единичной матрице ${\bf E}$ элементарное преобразование $\ell^{\rm II}$ (прибавление j -й строки к строке с номером i), получим матрицу

$$\mathbf{L}^{\mathrm{II}} = \ell^{\mathrm{II}}(\mathbf{E}) = \begin{bmatrix} 1 & & & & \\ & \ddots & & \\ & & 1 & 1 & \\ & & \ddots & \\ & & 0 & 1 & \\ & & & \ddots & \\ & & & & 1 \end{bmatrix} \leftarrow строка i$$

Умножение матриц \mathbf{L}^{I} и \mathbf{L}^{II} на матрицу $\mathbf{A}_{m \times n}^{}$ даёт следующие результаты:

$$\mathbf{L}^{\mathrm{I}}\mathbf{A} = \begin{bmatrix} \frac{\mathbf{a}_{1}}{\dots} \\ \frac{\lambda}{\mathbf{a}_{i}} \\ \vdots \\ \frac{\mathbf{a}_{m}}{\mathbf{a}_{m}} \end{bmatrix} \leftarrow строка \ i \quad \mathbf{L}^{\mathrm{II}}\mathbf{A} = \begin{bmatrix} \frac{\mathbf{a}_{1}}{\dots} \\ \frac{\mathbf{a}_{i} + \mathbf{a}_{j}}{\dots} \\ \vdots \\ \frac{\mathbf{a}_{m}}{\mathbf{a}_{m}} \end{bmatrix} \leftarrow строка \ i .$$

Таким образом, умножение матрицы \mathbf{L}^{I} на матрицу \mathbf{A} слева приводит к умножению i-й строки матрицы на число λ , а умножение матрицы \mathbf{L}^{II} на матрицу \mathbf{A} слева приводит к прибавлению j-й строки к строке с номером i, т.е. $\mathbf{L}^{\mathrm{I}}\mathbf{A} = \ell^{\mathrm{I}}(\mathbf{A})$ и $\mathbf{L}^{\mathrm{II}}\mathbf{A} = \ell^{\mathrm{II}}(\mathbf{A})$. Матрицы \mathbf{L}^{I} и \mathbf{L}^{II} называются матрицами элементарных преобразований.

16.11.2017 15:00:14

Замечания

- 1. Правило построения матрицы элементарного преобразования следующее: чтобы построить матрицу элементарного преобразования ℓ необходимо выполнить это преобразование c единичной матрицей e, получившийся результат и будет искомой матрицей.
- 2. Если L матрица некоторого элементарного преобразования, то $L^{\rm T}$ также является матрицей некоторого в общем случае другого элементарного преобразования.
- 3. Умножение матрицы элементарного преобразования ${\bf L}$ на матрицу ${\bf A}$ слева приводит к преобразованию строк матрицы ${\bf A}$, а умножение матрицы ${\bf L}$ на матрицу ${\bf A}$ справа приводит к преобразованию столбцов матрицы ${\bf A}$.
- 4. Пусть \mathbf{L}_1 , \mathbf{L}_2 ,..., \mathbf{L}_N матрицы элементарных преобразований ℓ_1 , ℓ_2 ,..., ℓ_N и пусть матрица $\mathbf{L} = \mathbf{L}_N \mathbf{L}_{N-1} ... \mathbf{L}_2 \mathbf{L}_1$, тогда $\mathbf{L} \mathbf{A} = \ell_N (\ell_{N-1} (... (\ell_2 (\ell_1(\mathbf{A})))...))$, т.е. матрица $\mathbf{L} -$ это матрица последовательности элементарных преобразований ℓ_1 , ℓ_2 ,..., ℓ_N .

Вырожденные матрицы

Квадратная матрица – (не)вырожденная, если её строки линейно (не)зависимы.

Примером вырожденной матрицей является квадратная матрица, содержащая нулевую строку, примером невырожденной матрицы является единичная матрица ${\bf E}$.

Теорема (о (не)вырожденных матрицах)

- 1. В результате элементарных преобразований (не)вырожденная матрица преобразуется в (не)вырожденную.
- 2. Матрица **A** вырожденная тогда и только тогда, когда с помощью элементарных преобразований её можно преобразовать в матрицу, содержащую нулевую строку.
- 3. Матрица **A** невырожденная тогда и только тогда, когда с помощью элементарных преобразований её можно преобразовать в единичную матрицу.
- 4. Матрица **A** невырожденная тогда и только тогда, когда она представима в виде произведения матриц элементарных преобразований, т.е. $\mathbf{A} = \mathbf{L}_N \, \mathbf{L}_{N-1} \dots \mathbf{L}_2 \, \mathbf{L}_1$.
- 5. Матрица ${\bf A}$ невырожденная тогда и только тогда, когда является невырожденной матрица ${\bf A}^{\rm T}$.

Следствия

- 1. Матрицы элементарных преобразований \mathbf{L}^{I} и \mathbf{L}^{II} являются невырожденными, так как получены элементарными преобразованиями невырожденной единичной матрицы \mathbf{E} .
- 2. Все определения и результаты сформулированные в этом разделе в терминах строк могут быть сформулированы в терминах столбцов.

Теорема (о произведении (не)вырожденных матриц)

- 1. Если одна из матриц **A** или **B** вырожденная, то матрица **AB** также вырожденная.
- 2. Если матрицы **A** и **B** невырожденные, то матрица **AB** также невырожденная.

Следствие

Матрица последовательности элементарных преобразований $\mathbf{L} = \mathbf{L}_N \, \mathbf{L}_{N-1} \dots \mathbf{L}_2 \, \mathbf{L}_1$ является невырожденной, так как представляет собой произведение невырожденных матриц.

16.11.2017 15:00:14