第1题

(a) 基于α,β

三台计算机的向量分别为:

• A: [3.06, 500α, 6β]

• B: [2.68, 320α, 4β]

• C: [2.92, 640α, 6β]

则sim(A,B):

$$sim(A,B) = rac{3.06 imes 2.68 + 500 lpha imes 320 lpha + 6 eta imes 4 eta}{\sqrt{3.06^2 + (500 lpha)^2 + (6 eta)^2} \cdot \sqrt{2.68^2 + (320 lpha)^2 + (4 eta)^2}}$$

其余 sim(A,C)、sim(B,C) 同理。

(b) α =0.01, β =0.5

三台计算机的向量分别为:

• A: [3.06, 5,3]

• B: [2.68, 3.2, 2]

• C: [2.92, 6.43]

计算余弦相似度:

$$sim(A,B) = rac{3.06 imes 2.68 + 5 imes 3.2 + 3 imes 2}{\sqrt{3.06^2 + 5^2 + 3^2} \cdot \sqrt{2.68^2 + 3.2^2 + 2^2}} pprox rac{28.9408}{\sqrt{43.3636} imes \sqrt{22.5424}} pprox 0.926 \ sim(A,C) pprox 0.961 \ \ sim(B,C) pprox 0.910$$

第2题

效用矩阵:

	a	b	С	d	e	f	g	h
Α	4	5		5	1		3	2
В		3	4	3	1	2	1	
С	2		1	3		4	5	3

(a) Jaccard 距离

转为布尔值(有评分为1,无为0):

- A: [1 1 0 1 1 0 1 1]
- B: [0 1 1 1 1 1 1 0]
- C: [1 0 1 1 0 1 1 1]
- A∩B=4, A∪B=8⇒距离=1-4/8=0.5
- A∩C=4, A∪C=8⇒距离=1-4/8=0.5

• B∩C=4, B∪C=8⇒距离=1-4/8=0.5

(b) 布尔余弦距离

用布尔向量计算余弦相似度,再取 1-相似度为距离:

- A·B = 4, $|A| = \sqrt{6}$, $|B| = \sqrt{6} \Rightarrow \sin \approx 0.667 \Rightarrow \text{dist} \approx 0.333$
- A·C = 4, $|A| = \sqrt{6}$, $|C| = \sqrt{6} \Rightarrow \sin \approx 0.667 \Rightarrow \text{dist} \approx 0.333$
- B·C = 4, $|B| = \sqrt{6}$, $|C| = \sqrt{6} \Rightarrow \sin \approx 0.667 \Rightarrow \text{dist} \approx 0.333$

(c) 评分3-5为1, 1-2为0, 其余为0

- A: [1 1 0 1 0 0 1 0]
- B: [0 1 1 1 0 0 0 0]
- C: [0 0 0 1 0 1 1 1]

得出余弦距离:

- A·B=2, $|A| = \sqrt{4}$, $|B| = \sqrt{3} \Rightarrow sim \approx 0.577 \Rightarrow dist \approx 0.423$
- A·C=2, $|A| = \sqrt{4}$, $|C| = \sqrt{4} \Rightarrow sim = 0.5 \Rightarrow dist = 0.5$
- B·C=1, $|B| = \sqrt{3}$, $|C| = \sqrt{4} \Rightarrow sim \approx 0.289 \Rightarrow dist \approx 0.711$

(d) 评分减去各用户均值

用户均值:

- A: (4+5+5+1+3+2)/6 = 3.33
- B: (3+4+3+1+2+1)/6 = 2.33
- C: (2+1+3+4+5+3)/6 = 3.0

归一化:

	a	b	С	d	е	f	g	h
Α	0.67	1.67		1.67	-2.33		-0.33	-1.33
В		0.67	1.67	0.67	-1.33	-0.33	-1.33	
С	-1.0		-2.0	0.0		1.0	2.0	0.0

计算余弦距离 (找出共同评分项):

用户对	归一化余弦相似度	归一化余弦距离
A-B	0.823	0.177
A-C	-0.263	1.263
B-C	-0.933	1.933

第3题

原始矩阵:

$$M = egin{bmatrix} 1 & 2 & 3 \ 3 & 4 & 5 \ 5 & 4 & 3 \ 0 & 2 & 4 \ 1 & 3 & 5 \end{bmatrix}$$

(a)

$$MM^T = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 5 & 4 & 3 \\ 0 & 2 & 4 \\ 1 & 3 & 5 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 & 5 & 0 & 1 \\ 2 & 4 & 4 & 2 & 3 \\ 3 & 5 & 3 & 4 & 5 \end{bmatrix} = \begin{bmatrix} 14 & 26 & 22 & 16 & 22 \\ 26 & 50 & 46 & 28 & 40 \\ 22 & 46 & 50 & 20 & 32 \\ 16 & 28 & 20 & 20 & 26 \\ 22 & 40 & 32 & 26 & 35 \end{bmatrix}$$

$$M^TM = egin{bmatrix} 1 & 3 & 5 & 0 & 1 \ 2 & 4 & 4 & 2 & 3 \ 3 & 5 & 3 & 4 & 5 \end{bmatrix} \cdot egin{bmatrix} 1 & 2 & 3 \ 3 & 4 & 5 \ 5 & 4 & 3 \ 0 & 2 & 4 \ 1 & 3 & 5 \end{bmatrix} = egin{bmatrix} 36 & 37 & 38 \ 37 & 49 & 61 \ 38 & 61 & 84 \end{bmatrix}$$

(b)

解如下特征多项式:

$$\det(M^T M - \lambda I) = 0$$

$$\lambda 1 \approx 153.57, \ \lambda 2 \approx 15.43, \ \lambda 3 \approx 0$$

(c)

这些特征向量已归一化,对应于上面三个特征值(列向量):

$$V = \begin{bmatrix} -0.409 & -0.816 & 0.408 \\ -0.563 & -0.126 & -0.816 \\ -0.718 & 0.564 & 0.408 \end{bmatrix}$$

(d)

SVD 形式为:

$$M = U\Sigma V^T$$

奇异值 Σ (对角线) 为特征值平方根:

$$\Sigma = egin{bmatrix} \sigma_1 & 0 & 0 \ 0 & \sigma_2 & 0 \ 0 & 0 & \sigma_3 \end{bmatrix} = egin{bmatrix} 12.392 & 0 & 0 \ 0 & 3.928 & 0 \ 0 & 0 & pprox 0 \end{bmatrix}$$

• 矩阵 V (即V^T 的转置):

$$V = \begin{bmatrix} -0.409 & -0.563 & -0.718 \\ -0.816 & -0.126 & 0.564 \\ 0.408 & -0.816 & 0.408 \end{bmatrix}$$

• 矩阵 U (截取前三列):

$$U = \begin{bmatrix} -0.298 & 0.159 & 0.941 \\ -0.571 & -0.033 & -0.153 \\ -0.521 & -0.736 & -0.052 \\ -0.323 & 0.510 & -0.196 \\ -0.459 & 0.414 & -0.224 \end{bmatrix}$$

第4题

布隆过滤器参数: m = 80亿 bit, n = 10亿

$$f = (1 - e^{-kn/m})^k$$

令k=3:

$$fpprox (1-e^{-3 imes 10^9/8 imes 10^9})^3pprox (1-e^{-0.375})^3pprox (1-0.687)^3pprox 0.313^3pprox 0.031$$

令k=4 同理, 结果≈0.017

第5题

(a) $h(x)=2x+1 \mod 32$

流: 3,1,4,1,5,9,2,6,5

哈希结果:

3 → 7 → 111 → 尾长0

1 → 3 → 011 → 尾长0

• ...尾长分别为: [0,0,0,0,0,0,0,0,0,0]

最大尾长=0 ⇒ 估计数目: 2^0/φ≈1/0.773≈1.29

(b) $h(x)=4x \mod 32$

3 → 12 → 1100 → 尾长2

1 → 4 → 0100 → 尾长2

• ...尾长分别为: [2,2,4,2,2,2,2,3,2]

最大尾长=4⇒估计数目: 2^4/φ≈16/0.773≈20.69

第6题

给定的数据流为:

$$x = [3, 1, 4, 1, 3, 4, 2, 1, 2]$$

先计算样本的均值:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\mu = \frac{3+1+4+1+3+4+2+1+2}{9} = \frac{21}{9} = 2.333...$$

二阶中心矩

$$\mu_2 = rac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$

计算每一项:

x_i	x_i - μ	(x_i - μ)²
3	0.6667	0.4444
1	-1.3333	1.7778
4	1.6667	2.7778
1	-1.3333	1.7778
3	0.6667	0.4444
4	1.6667	2.7778
2	-0.3333	0.1111
1	-1.3333	1.7778
2	-0.3333	0.1111

求和:

$$\frac{0.4444 + 1.7778 + 2.7778 + 1.7778 + 0.4444 + 2.7778 + 0.1111 + 1.7778 + 0.1111}{9} = \frac{12.0}{9} = 1.3333$$

所以:

二阶矩 (奇异数) =1.3333

三阶中心矩

$$\mu_3 = rac{1}{n} \sum_{i=1}^n (x_i - \mu)^3$$

计算每一项:

x_i	x_i - μ	(x_i - μ)³
3	0.6667	0.296
1	-1.3333	-2.370
4	1.6667	4.630
1	-1.3333	-2.370
3	0.6667	0.296
4	1.6667	4.630
2	-0.3333	-0.037
1	-1.3333	-2.370

x_i	x_i - μ	(x_i - μ)³
2	-0.3333	-0.037

求和:

$$\frac{0.296 - 2.370 + 4.630 - 2.370 + 0.296 + 4.630 - 0.037 - 2.370 - 0.037}{9} = \frac{2.668}{9} \approx 0.296$$

所以:

三阶矩=0.296

第7题

k值	真实值	估计值	误差
5	3	3	0
15	9	10	1