### BANA4095: Decision Models – Spring 2020 Course Introduction



#### Sam Heshmati

Adjunct Instructor of Operations and Business Analytics

1

### Introductions

- Sam Heshmati PhD (ABD)
  - » Adjunct Instructor of Operations and Business Analytics
  - » 3450 Lindner Hall
  - » Thursdays 3:00 4:00 PM
  - » heshmasm@ucmail.uc.edu
- Teaching Assistant
  - » Samantha Riser
  - » risersa@mail.uc.edu

2

### **Class Schedule and Format**

- Tuesdays and Thursdays, 12:30 13:50
- · Challenging course!
- Importance of attendance, organization, and time management

### **Advice**

- You cannot learn the material in this course by only sitting through lectures and reading the book.
- In order to learn the material covered in this course you will have to review it and use it outside of class . . . some people more than others.
- We will provide you with opportunities to apply/practice the material outside of class, but you may need more practice.
  - » Rework class examples, rework homework assignments, work additional problems, use these concepts and tools at work

4

## **Syllabus**

- Objectives
  - Develop quantitative, analytical skills for effective business decision-making
  - Modeling decision problems
  - Optimization, Simulation
  - Coding and spreadsheet skills
- · Canvas Course Site
  - » VERY IMPORTANT!! Check it regularly for messages and announcements

**Syllabus** 

Recommended Textbook(s)

Anderson et al., Introduction to Management Science: Quantitative Approaches to Decision Making, 15<sup>th</sup> edition. Cengage, 2019.

Severance, Charles R. *Python for Everybody: Exploring Data Using Python 3*. CreateSpace Independent Publishing Platform, 2016. (free open source, posted in Canvas)

Downey, Allen. *Think Python: How to Think Like a Computer Scientist*, 2<sup>nd</sup> edition (ver. 2.2.23). Green Tea Press, 2015. (free open source, posted in Canvas)





- How to "read"?
  - » Build your own models as you read through examples
  - » Modify and experiment with your model examples

# **Syllabus**

- Computer Usage
  - » Always bring your laptop to class
  - » Excel + Solver
  - » Anaconda Python Distribution
  - » Google Colaboratory (Colab)
  - » You are personally responsible for your own access to the necessary software both in and out of class



# Important Note for Apple/Mac Users

- Great news!!
- ALL of the course software will run on a Mac computer!!





### **Software Installation Instructions**

MS Excel should include the basic Solver add-in package

· Anaconda Python distribution





- » Installation instructions in Canvas
- » Includes Python Shell, Jupyter Notebook, and Spyder environments

Google Colaboratory (Colab)





- » Optional but recommended as a backup
- » Cloud based environment to run Jupyter Notebooks
- » Requires Google account



### **Individual & Team Assignments**

- Homework assignments are a critical component of the learning process for this course
- Always provide a clear verbal explanation and interpretation of your analysis and recommendation
- Individual Assignments
  - » All submitted work must be your own
  - » You may discuss the general approach and solution with others only after you and they have already attempted to solve the problem

### **Team Assignments**

- Team Assignments
  - » Must be collaborative work with all team members
  - » All team members must make a substantial contribution to the assignment
  - » Every team member should work on the assignment individually before the group meets to work together
  - » Every member of the team must be prepared to present the team's work
  - » Team member assessments may be used to adjust individual grades on a team assignment
  - » No discussion of specific approaches or solutions between teams

### **Academic Integrity**

- University of Cincinnati Student Code of Conduct (SCOC)
  - » http://www.uc.edu/conduct/Code of Conduct.html
- Lindner College of Business "Two Strike" Policy
  - » <a href="https://business.uc.edu/academics/resources/advising/student-support.html">https://business.uc.edu/academics/resources/advising/student-support.html</a>
- Instructors are required to report any incident of academic misconduct. There will be a <u>ZERO</u> tolerance policy for academic misconduct in this class.

**Other Stuff** 

- Attendance
- · Accessibility/Disability
- Inclement Weather
- Make-up policy
  - » Assignments
    - Late submissions will be penalized and will not be accepted after the assignment solution has been reviewed in class
  - » Exam:
    - Must provide valid documented excuse before the exam or within 24 hours of the exam

14

### **Expectations**

- On-time, pay attention, ask questions
- · Don't leave during class without permission
- Turn off all electronic devices (except your computer of course)
- Read the assigned material BEFORE class
- · Keep thorough, organized class notes
- Do the homework assignments and learn from them

#### QUESTIONS?

**Business Analytics** 

- "The extensive use of data, statistical and quantitative analysis, explanatory and predictive models, and fact-based management to drive decisions and actions."
  - -Davenport and Harris (2007)
- "In God we trust . . . all others bring data."
  - W. Edwards Deming
- Data-enabled decision making



# **Levels of Business Analytics**

Competitive Advantage

Prescriptive Analytics

<u>Decision Modeling</u>

Optimization & Simulation

What's the best decision?

Predictive Analytics
 Statistical Modeling

Why is this happening? What will or could happen?

 Descriptive Analytics Reporting, Charting, and Summary Statistics What is happening?

17

### **Examples**

- · Identifying profitable and loyal customers
- Determining the optimal price for a product or service
- Finding the lowest possible level of inventory without reducing availability to the customer
- Finding the best people to hire, retain and promote
- What are some examples from your own work experience?







18

#### **Structured Decision Problems**

- · Objectives are clear
- · Necessary assumptions are obvious
- · All the necessary data are readily available
- Logical structure of the analysis is well understood
- Examples:
  - » Textbook problems and test questions (usually!)
  - » Routine work assignments
  - » Others?

#### **Unstructured Decision Problems**

- Objectives are unclear
- · Assumptions and problem structure are unclear
- · Necessary data is not readily available
- Not clear what data is needed or useful
- Examples
  - » What should Hoxworth do to increase blood donations?
  - » Should an advertiser spend more money on the creative aspects of an ad campaign or on the delivery of the ad?
  - » How much should a mid-career executive save toward retirement?

### **Example: UC Student Recruiting**

The university administration has decided that one of its new strategic goals is to increase student enrollment at UC by 20%. As a student assistant you have been tasked with developing a decision model to help the university predict future enrollment and to help the university decide what actions it should take to increase enrollment.





## **Decision Modeling & Analysis**



# **Decision Modeling**

#### Real World Model World Formulation PROBLEM ASSUMPTIONS and **STATEMENT** MODEL STRUCTURE Application Analysis Interpretation RESULTS and SOLUTION CONCLUSIONS

### What is a Model?

- A model is a purposeful representation of the key elements of an object or system and the relationships among those elements.
  - » Abstract representation of something real
  - » Enough detail so that key elements and relationships are accurately represented
  - » Omit unnecessary details

"Everything should be made as simple as possible, but not simpler."

- Albert Einstein

- Why model?
  - » Models provide insights and understanding that can ultimately lead to better decisions

### **Key Elements of a Mathematical Model**

- Inputs
  - » Quantities or factors that affect a decision
  - » Controllable Inputs (Decision Variables)
  - » Uncontrollable Inputs (Parameters)
- Variables
  - » Intermediate values that are calculated from some of the other elements
- Outputs
  - » Primary
  - » Secondary
- Mathematical relationships/structure

**Decomposition Strategy** 

- · An effective strategy for constructing decision models
- Breakdown large, complex problem or model into smaller, more manageable components
- Backward start with the desired output/result and work backward to determine necessary inputs and intermediate calculations
- Forward start with the available inputs and work forward calculating relevant intermediate values

26

# Armstrong Bike Co.

Armstrong Bike Co. produces two new lightweight bicycle frames, the Flyer and the Razor, that are made from special aluminum and steel alloys. The cost to produce a Flyer frame is \$100, and the cost to produce a Razor frame is \$120. As the selling price of each frame model,  $P_F$  and  $P_R$ , increases, the weekly quantity demanded for each model, F and R, goes down linearly.

$$F = 750 - 5P_F$$

$$R = 400 - 2P_R$$

### **Mathematical Relationships**

- Mathematical formulas are used to model the relationships between the input parameters, decisions, variables and outputs.
- Each variable and output has a specific corresponding mathematical formula.
- The precise structure and parameters of each formula may be determined by definition, a logical relationship, historical data, assumption, or intuition.

# **Types of Relationships**

- Linear
  - » Constant rate of change (slope)
  - y = a + bx



- Increasing Returns
  - » Increasing rate of change (slope)
  - » Power Function:  $y = ax^b$  with b > 1
  - » Exponential:  $y = ae^{bx}$  with b > 0



29

# **Types of Relationships**

- · Decreasing at a diminishing rate
  - » Exponential Decay
  - » Negative Exponential:  $y = ae^{-bx}$  with b > 0



- Diminishing Returns
  - » Decreasing rate of change (slope)
  - » Power Function:  $y = ax^b$  with b < 1
  - » Natural Logarithm:  $y = a + b \ln(x)$
  - » Asymptotic Exponential:  $y = a(1 e^{-bx})$  with b > 0



30

## **Types of Relationships**

- S-curve
  - » Increasing then decreasing slope between two limits
  - » Power-S Curve:  $y = b + (a b)(x^c/(d + x^c))$
  - » Logistic Function:  $y = \exp(a + bx)/[1 + \exp(a + bx)]$  used especially when y is a probability or proportion.



31

### Review

- Course Introduction
- Decision Modeling
  - » Levels of Business Analytics
  - » Structured-Unstructured Decision Problems
  - » Key elements of a Mathematical Model
- Common Mathematical Relationships