Lecture 8

Training Neural Networks & Convolutional Neural Networks

Review

We looked in detail at:

- Activation Functions (use ReLU)
- Data Preprocessing (images: subtract mean)
- Weight Initialization (use Xavier init)
- Batch Normalization (use)
- Gradient Checking
- Babysitting the Learning process
- Hyperparameter Optimization (random sample hyperparams, in log space when appropriate)

Hyperparameter Optimization

Cross-validation strategy

I like to do coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work **Second stage**: longer running time, finer search ... (repeat as necessary)

Tip for detecting explosions in the solver: If the cost is ever > 3 * original cost, break out early

For example: run coarse search for 5 epochs

```
max count = 100
                                                           note it's best to optimize
   for count in xrange(max count):
         reg = 10**uniform(-5, 5)
        lr = 10**uniform(-3, -6)
                                                           in log space!
        trainer = ClassifierTrainer()
        model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of classes
        trainer = ClassifierTrainer()
        best model local, stats = trainer.train(X train, y train, X val, y val,
                                       model, two layer net,
                                       num epochs=5, reg=reg,
                                       update='momentum', learning rate decay=0.9,
                                       sample batches = True, batch size = 100,
                                       learning rate=lr, verbose=False)
            val acc: 0.412000, lr: 1.405206e-04, reg: 4.793564e-01, (1 / 100)
            val acc: 0.214000, lr: 7.231888e-06, reg: 2.321281e-04, (2 / 100)
            val acc: 0.208000, lr: 2.119571e-06, reg: 8.011857e+01, (3 / 100)
            val acc: 0.196000, lr: 1.551131e-05, req: 4.374936e-05, (4 / 100)
            val acc: 0.079000, lr: 1.753300e-05, req: 1.200424e+03, (5 / 100)
            val acc: 0.223000, lr: 4.215128e-05, reg: 4.196174e+01, (6 / 100)
            val acc: 0.441000, lr: 1.750259e-04, reg: 2.110807e-04, (7 /
                                                                            100)
            val acc: 0.241000, lr: 6.749231e-05, reg: 4.226413e+01,
nice
            val acc: 0.482000, lr: 4.296863e-04, req: 6.642555e-01, (9 / 100)
            val acc: 0.079000, lr: 5.401602e-06, reg: 1.599828e+04, (10 / 100)
```

val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 100)

Now run finer search...

max count = 100

```
adjust range
for count in xrange(max count):
      reg = 10**uniform(-5, 5)
      lr = 10**uniform(-3, -6)
                    val acc: 0.527000, lr: 5.340517e-04, req: 4.097824e-01, (0 / 100)
                     val acc: 0.492000, lr: 2.279484e-04, reg: 9.991345e-04, (1 / 100)
                     val acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
                     val acc: 0.461000, lr: 1.028377e-04, req: 1.220193e-02, (3 / 100)
                     val acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100)
                     val acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100)
                     val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100)
                    val acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100)
                    val acc: 0.530000, lr: 5.808183e-04, reg: 8.259964e-02, (8 / 100)
                     val acc: 0.489000, lr: 1.979168e-04, reg: 1.010889e-04, (9 / 100)
                     val acc: 0.490000, lr: 2.036031e-04, req: 2.406271e-03, (10 / 100)
                     val acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
                     val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 100)
                     val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)
                    val acc: 0.531000, lr: 9.471549e-04, reg: 1.433895e-03, (14 / 100)
                     val acc: 0.509000, lr: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
                     val acc: 0.514000, lr: 6.438349e-04, reg: 3.033781e-01, (16 / 100)
                     val acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100)
                     val acc: 0.509000, lr: 9.752279e-04, req: 2.850865e-03, (18 / 100)
```

val acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100) val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100) val acc: 0.516000, lr: 8.039527e-04, req: 1.528291e-02, (21 / 100)

```
max count = 100
for count in xrange(max count):
      reg = 10**uniform(-4, 0)
      lr = 10**uniform(-3, -4)
```

53% - relatively good for a 2-layer neural net with 50 hidden neurons.

Now run finer search...

```
max count = 100
                                               adjust range
                                                                              max count = 100
for count in xrange(max count):
                                                                               for count in xrange(max count):
      reg = 10**uniform(-5, 5)
                                                                                     reg = 10**uniform(-4, 0)
      lr = 10**uniform(-3, -6)
                                                                                     lr = 10**uniform(-3, -4)
                    val acc: 0.527000, lr: 5.340517e-04, reg: 4.097824e-01, (0 / 100)
                    val acc: 0.492000, lr: 2.279484e-04, reg: 9.991345e-04, (1 / 100)
                    val acc: 0.512000, lr: 8.680827e-04, reg: 1.349727e-02, (2 / 100)
                    val acc: 0.461000, lr: 1.028377e-04, req: 1.220193e-02, (3 / 100)
                    val acc: 0.460000, lr: 1.113730e-04, reg: 5.244309e-02, (4 / 100)
                                                                                               53% - relatively good
                    val acc: 0.498000, lr: 9.477776e-04, reg: 2.001293e-03, (5 / 100)
                    val acc: 0.469000, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100)
                                                                                               for a 2-layer neural net
                    val acc: 0.522000, lr: 5.586261e-04, reg: 2.312685e-04, (7 / 100)
                                                                                               with 50 hidden neurons.
                    val acc: 0.530000, lr: 5.808183e-04, reg: 8.259964e-02, (8 / 100)
                    val acc: 0.489000, lr: 1.979168e-04, reg: 1.010889e-04, (9 / 100)
                    val acc: 0.490000, lr: 2.036031e-04, reg: 2.406271e-03, (10 / 100)
                    val acc: 0.475000, lr: 2.021162e-04, reg: 2.287807e-01, (11 / 100)
                                                                                               But this best cross-
                    val acc: 0.460000, lr: 1.135527e-04, reg: 3.905040e-02, (12 / 100)
                                                                                               validation result is
                    val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 100)
                    val acc: 0.531000, lr: 9.471549e-04, reg: 1.433895e-03, (14 / 100)
                                                                                               worrying. Why?
                    val acc: 0.509000, lr: 3.140888e-04, reg: 2.857518e-01, (15 / 100)
                    val acc: 0.514000, lr: 6.438349e-04, reg: 3.033781e-01, (16 / 100)
                    val acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100)
                    val acc: 0.509000, lr: 9.752279e-04, req: 2.850865e-03, (18 / 100)
                    val acc: 0.500000, lr: 2.412048e-04, reg: 4.997821e-04, (19 / 100)
                    val acc: 0.466000, lr: 1.319314e-04, reg: 1.189915e-02, (20 / 100)
                    val acc: 0.516000, lr: 8.039527e-04, req: 1.528291e-02, (21 / 100)
```

Random Search vs. Grid Search

Random Layout Unimportant parameter

Random Search for Hyper-Parameter Optimization Bergstra and Bengio, 2012

Important parameter

Regularization: **Dropout**

"randomly set some neurons to zero in the forward pass"

(a) Standard Neural Net

(b) After applying dropout.

[Srivastava et al., 2014]

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train step(X):
  """ X contains the data """
 # forward pass for example 3-layer neural network
 H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = np.random.rand(*H1.shape) < p # first dropout mask
 H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 U2 = np.random.rand(*H2.shape) < p # second dropout mask
 H2 *= U2 # drop!
 out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
 # perform parameter update... (not shown)
```

Example forward pass with a 3-layer network using dropout

Waaaait a second... How could this possibly be a good idea?

Waaaait a second... How could this possibly be a good idea?

Forces the network to have a redundant representation.

Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 8 - 13

Waaaait a second... How could this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of models (that share parameters).

Each binary mask is one model, gets trained on only ~one datapoint.

Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

(this can be shown to be an approximation to evaluating the whole ensemble)

Can in fact do this with a single forward pass! (approximately) Leave all input neurons turned on (no dropout).

Q: Suppose that with all inputs present at test time the output of this neuron is x.

What would its output be during training time, in expectation? (e.g. if p = 0.5)

Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).


```
during test: a = w0*x + w1*y
during train:
E[a] = \frac{1}{4} * (w0*0 + w1*0)
             w0*0 + w1*y
                         w0*x + w1*0
             w0*x + w1*y
     = \frac{1}{4} * (2 w0*x + 2 w1*y)
         = \frac{1}{2} * (w0*x + w1*y)
```

Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).


```
during test: \mathbf{a} = \mathbf{w0}^*\mathbf{x} + \mathbf{w1}^*\mathbf{y}

during train:

\mathbf{E}[\mathbf{a}] = \frac{1}{4}^* (\mathbf{w0}^*\mathbf{0} + \mathbf{w1}^*\mathbf{0})

\mathbf{w0}^*\mathbf{0} + \mathbf{w1}^*\mathbf{y}

\mathbf{w0}^*\mathbf{x} + \mathbf{w4}^*\mathbf{0}

\mathbf{w0}^*\mathbf{x} + \mathbf{w4}^*\mathbf{0}

\mathbf{w0}^*\mathbf{x} + \mathbf{w4}^*\mathbf{0}

\mathbf{w0}^*\mathbf{x} + \mathbf{w4}^*\mathbf{0}

\mathbf{w0}^*\mathbf{x} + \mathbf{w4}^*\mathbf{0}
```

$$w0*x + w1*y)$$
= $\frac{1}{4}$ * (2 w0*x + 2 w1*y)
= $\frac{1}{2}$ * (w0*x + w1*y)

With p=0.5, using all inputs in the forward pass would inflate the activations by 2x from what the network was "used to" during training! => Have to compensate by scaling the activations back widow by ½

Lecture 8 -

We can do something approximate analytically

```
def predict(X):
    # ensembled forward pass
H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3
```

At test time all neurons are active always => We must scale the activations so that for each neuron: output at test time = expected output at training time

```
""" Vanilla Dropout: Not recommended implementation (see notes below) """
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train step(X):
  """ X contains the data """
 # forward pass for example 3-layer neural network
 H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = np.random.rand(*H1.shape) 
 H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 U2 = np.random.rand(*H2.shape) < p # second dropout mask
 H2 *= U2 # drop!
 out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
 # perform parameter update... (not shown)
def predict(X):
 # ensembled forward pass
 H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
 H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
 out = np.dot(W3, H2) + b3
```

Dropout Summary

drop in forward pass

scale at test time

32x32x3 image

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

32x32x3 image

Filters always extend the full depth of the input volume

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

activation map

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Preview

[From recent Yann LeCun slides]

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

example 5x5 filters (32 total)

We call the layer convolutional because it is related to convolution of two signals:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} f[n_1, n_2] \cdot g[x - n_1, y - n_2]$$

elementwise multiplication and sum of a filter and the signal (image) preview:

Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 8 - 33

A closer look at spatial dimensions:

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter

7

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter

7

7x7 input (spatially) assume 3x3 filter

=> 5x5 output

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7x7 input (spatially) assume 3x3 filter applied with stride 3?

7x7 input (spatially) assume 3x3 filter applied with stride 3?

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.

IN

	F		
F			

Output size:

(N - F) / stride + 1

e.g.
$$N = 7$$
, $F = 3$:
stride $1 = > (7 - 3)/1 + 1 = 5$

stride
$$2 \Rightarrow (7 - 3)/2 + 1 = 3$$

stride
$$3 \Rightarrow (7 - 3)/3 + 1 = 2.33 : \$$

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1

In practice: Common to zero pad the border

e.g. input 7x73x3 filter, applied with stride 1pad with 1 pixel border => what is the output?

7x7 output!

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

e.g.
$$F = 3 \Rightarrow zero pad with 1$$

 $F = 5 \Rightarrow zero pad with 2$
 $F = 7 \Rightarrow zero pad with 3$

Remember back to...

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size:

$$(32+2*2-5)/1+1 = 32$$
 spatially, so

32x32x10

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

(+1 for bias)

Number of parameters in this layer? each filter has 5*5*3 + 1 = 76 params

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - the stride S,
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Common settings:

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 \times H_1 \times D_1$
- Requires four hyperparameters:
 - Number of filters K,
 - · their spatial extent F,
 - the stride S.
 - the amount of zero padding P.

- K = (powers of 2, e.g. 32, 64, 128, 512)
 - F = 3, S = 1, P = 1
 - F = 5. S = 1. P = 2
 - F = 5, S = 2, P = ? (whatever fits)
 - F = 1. S = 1. P = 0
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $\circ D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 imes H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

(btw, 1x1 convolution layers make perfect sense)

nn.Conv2d in PyTorch

class torch.nn.Conv2d[in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) [source]

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, C_{in}, H, W) and output $(N, C_{out}, H_{out}, W_{out})$ can be precisely described as:

$$out(N_i, C_{out_j}) = bias(C_{out_j}) + \sum_{k=0}^{C_{in}-1} weight(C_{out_j}, k) \star input(N_i, k)$$

where * is the valid 2D cross-correlation operator

Summary. To summarize, the Conv Layer.

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K.
 - their spatial extent F.
 - · the stride S.
 - the amount of zero padding P.

Parameters:

- . in_channels (int) Number of channels in the input image
- . out channels (int) Number of channels produced by the convolution
- kernel_size (int or tuple) Size of the convolving kernel
- . stride (int or tuple, optional) Stride of the convolution. Default: 1
- padding (int or tuple, optional) Zero-padding added to both sides of the input.
 Default: 0
- dilation (int or tuple, optional) Spacing between kernel elements. Default: 1
- groups (int, optional) Number of blocked connections from input channels to output channels. Default: 1
- . bias (bool, optional) If True, adds a learnable bias to the output. Default: True

Shape:

- Input: (N, C_{in}, H_{in}, W_{in})
- Output: (N, Cout, Hout, Wout) where

```
\begin{split} H_{out} &= floor((H_{in}+2*padding[0]-dilation[0]*(kernel\_size[0]-1)-1)/stride[0]+1) \\ W_{out} &= floor((W_{in}+2*padding[1]-dilation[1]*(kernel\_size[1]-1)-1)/stride[1]+1) \end{split}
```

Variables:

- weight (Tensor) the learnable weights of the module of shape (out_channels, in_channels, kernel_size[0], kernel_size[1])
- bias (Tensor) the learnable bias of the module of shape (out_channels)

Examples:

```
>>> # With square kernels and equal stride
>>> m = nn.Conv2d(16, 33, 3, stride=2)
>>> # non-square kernels and unequal stride and with padding
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
>>> # non-square kernels and unequal stride and with padding and dilation
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))
>>> input = autograd.Variable(torch.randn(20, 16, 50, 100))
>>> output = m(input)
```

vl_nnconv in MatConvNet

Summary. To summarize, the Conv Layer.

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K.
 - their spatial extent F.
 - · the stride S.
 - · the amount of zero padding P.

VL_NNCONV - CNN convolution.

Y = VL_NNCONV(X, F, B) computes the convolution of the image X with the filter bank F and biases B. If B is the empty matrix, then no biases are added. If F is the empty matrix, then the function does not filter the image, but still adds the biases and applies downsampling and padding as explained below.

X is an array of dimension H x W x C x N where (H,W) are the height and width of the image stack, C is the number of feature channels, and N is the number of images in the batch.

F is an array of dimension FW x FH x FC x K where (FH,FW) are the filter height and width and K the number of filters in the bank. FC is the number of feature channels in each filter and must match the number of feature channels C in X. Alternatively, FC can

- . divide* the C: in this case, filters are assumed to form G=C/FC
- · groups* of equal size (where G must divide K). Each group of

filters works on a consecutive subset of feature channels of the input array X.

[DX, DF, DB] = VL_NNCONV(X, F, B, DY) computes the derivatives of the operator projected onto P. DX, DF, DB, and DY have the same dimensions as X, F, B, and Y, respectively. In particular, if B is the empty matrix, then DB is also empty.

VL_NNCONV() implements a special fully-connected mode: when the support of the filters matches exactly the support of the input image, the code uses an optimized path for faster computation.

VL_NNCONV(..., 'option', value, ...) accepts the following options:

· Stride [1]

Set the output stride or downsampling factor. If the value is a scalar, then the same stride is applied to both vertical and horizontal directions; otherwise, passing [STRIDEY STRIDEX] allows specifying different downsampling factors for each direction.

· Pad [0]

Set the amount of input padding. Input images are padded with zeros by this number of pixels before the convolution is computed. Passing [TOP BOTTOM LEFT RIGHT] allows specifying different padding amounts for the top, bottom, left, and right sides respectively. Passing a single scalar applies the same padding to all borders.

· Dilate [1]

Set the kernel dilation factor. Passing [DILATEY DILATEX] allows specifying different dilation factors for Y and X. Filters are dilated by inserting DILATE-1 zeros between filter elements. For example, the filter

Convolution in Caffe

Summary. To summarize, the Conv Layer.

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K.
 - · their spatial extent F.
 - · the stride S.
 - the amount of zero padding P.

```
laver {
 name: "convl"
  type: "Convolution"
  bottom: "data"
  top: "convl"
  # learning rate and decay multipliers for the filters
  param { Ir mult: 1 decay mult: 1 }
  # learning rate and decay multipliers for the biases
  param { Ir mult: 2 decay mult: 0 }
  convolution param {
   num_output: 96
                      # learn 96 filters
   kernel size: 11
                      # each filter is llxll
   stride: 4
                      # step 4 pixels between each filter application
   weight filler {
     type: "gaussian" # initialize the filters from a Gaussian
                      # distribution with stdey 0.01 (default mean: 0)
      std: 0.01
    bias filler {
      type: "constant" # initialize the biases to zero (0)
      value: 0
```

tf.nn.conv2d in TensorFlow

```
conv2d(
   input,
   filter,
   strides,
   padding,
   use_cudnn_on_gpu=None,
   data_format=None,
   name=None
)
```

Summary. To summarize, the Conv Layer.

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
 - Number of filters K.
 - their spatial extent F.
 - the stride S.
 - the amount of zero padding P.

Args:

- input: A Tensor. Must be one of the following types: half, float32. A 4-D tensor. The dimension order is
 interpreted according to the value of data_format, see below for details.
- filter: A Tensor. Must have the same type as input. A 4-D tensor of shape [filter_height, filter_width, in_channels, out_channels]
- strides: A list of ints. 1-D tensor of length 4. The stride of the sliding window for each dimension of input.
 The dimension order is determined by the value of data_format, see below for details.
- · padding: A string from: "SAME", "VALID". The type of padding algorithm to use.
- use_cudnn_on_gpu: An optional bool. Defaults to True.
- data_format: An optional string from: "NHWC", "NCHW". Defaults to "NHWC". Specify the data format of the
 input and output data. With the default format "NHWC", the data is stored in the order of: [batch, height, width,
 channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, channels, height, width].
- · name: A name for the operation (optional).

Returns:

A Tensor . Has the same type as input . A 4-D tensor. The dimension order is determined by the value of data_format , see below for details.

It's just a neuron with local connectivity...

the result of taking a dot product between the filter and this part of the image (i.e. 5*5*3 = 75-dimensional dot product)

An activation map is a 28x28 sheet of neuron outputs:

- 1. Each is connected to a small region in the input
 - All of them share parameters A major advantage of CONV layer!

"5x5 filter" -> "5x5 receptive field for each neuron"

How could we make a standard neural network have local connectivity?

- Instead of have a connection from every unit in a hidden layer to the whole image, what if we only had connections to things that were "nearby"?
- Have to define a notion of "nearness".
- Give every unit coordinates in 3 dimensions (like layers in the brain).
- Now, introduce a penalty that makes the weights smaller when the connections are across a greater distance.
- This will naturally lead to local connectivty.
- Project idea!

Fully versus locally connected units

E.g. with 5 filters, CONV layer consists of neurons arranged in a 3D grid (28x28x5)

There will be 5 different neurons all looking at the same region in the input volume

two more layers to go: POOL/FC

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires three hyperparameters:
 - \circ their spatial extent F,
 - the stride S,
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:

$$W_2 = (W_1 - F)/S + 1$$

$$H_2 = (H_1 - F)/S + 1$$

$$Ooldsymbol{0} D_2 = D_1$$

- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

Common settings:

• Accepts a volume of size
$$W_1 imes H_1 imes D_1$$

- Requires three hyperparameters:
 - their spatial extent F,
 - the stride S.
- Produces a volume of size $W_2 \times H_2 \times D_2$ where:

$$W_2 = (W_1 - F)/S + 1$$

$$H_2 = (H_1 - F)/S + 1$$

$$Ooldsymbol{o} D_2 = D_1$$

- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

$$F = 2$$
, $S = 2$
 $F = 3$. $S = 2$

Why do we need pooling?

- Pool information by increasing receptive field
- Provide some spatial invariance

Fully Connected Layer (FC layer)

 Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

[ConvNetJS demo: training on CIFAR-10]

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

Receptive field

Which pixels in the input image have impact on the value of **v**?

Chuang Gan and TAs Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 8 - 78

Receptive field

Which pixels in the input image have impact on the value of **v**? With POOL Layers?

Dilated convolution, for even larger receptive fields

is implicitly treated as

by setting DILATE equal to 2.

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of resolution or coverage. (a) F_1 is produced from F_0 by a 1-dilated convolution; each element in F_1 has a receptive field of 3×3 . (b) F_2 is produced from F_1 by a 2-dilated convolution; each element in F_2 has a receptive field of 7×7 . (c) F_3 is produced from F_2 by a 4-dilated convolution; each element in F_3 has a receptive field of 15×15 . The number of parameters associated with each layer is identical. The receptive field grows exponentially while the number of parameters grows linearly.

Multi-Scale Context Aggregation by Dilated Convolutions, Fisher Yu, Vladlen Koltun

Case Study: LeNet-5

[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 Subsampling (Pooling) layers were 2x2 applied at stride 2 i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Q: what is the output volume size? Hint: (227-11)/4+1 = 55

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = **35K**

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Q: what is the number of parameters in this layer?

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Parameters: 0!

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96 After POOL1: 27x27x96

• • •

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons

[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

best model

11.2% top 5 error in ILSVRC 2013

->

7.3% top 5 error

		ConvNet C	onfiguration		
A	A-LRN	В	C	D	E
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	i	nput (224×2	24 RGB imag	:)	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
		max	pool		
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
		max	pool		
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256 conv3-256
		max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
70.00.00.00.00.00		max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		•
		FC-	4096		
		7.75	4096		
			1000		
		soft	-max		

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

	ConvNet C	onfiguration		_
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728	В	C	D	
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864	13 weight	16 weight	16 weight	19
POOL2: [112x112x64] memory: 112*112*64=800K params: 0	layers	layers	layers	
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728		24 RGB image		
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	cc
POOL2: [56x56x128] memory: 56*56*128=400K params: 0	contro ot	pool	CONV3-04	cc
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912	conv3-128	conv3-128	conv3-128	co
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	conv3-128	conv3-128	conv3-128	co
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824		pool	2.256	
	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	co
POOL2: [28x28x256] memory: 28*28*256=200K params: 0	CONV3-250	conv3-256	conv3-256	co
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648			331113.323	co
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296		pool		
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296	conv3-512	conv3-512	conv3-512	co
POOL2: [14x14x512] memory: 14*14*512=100K params: 0	conv3-512	conv3-512 conv1-512	conv3-512 conv3-512	co
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296		CONVI-312	CONV3-312	co
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	max	pool		
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	conv3-512	conv3-512	conv3-512	co
POOL2: [7x7x512] memory: 7*7*512=25K params: 0	conv3-512	conv3-512	conv3-512	co
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448		conv1-512	conv3-512	co
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216	max	pool		-
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000		4096		
Telephone in the content of the cont		4096		
		1000		
	soft	-max		
Chuang Gan and TAs Lecture 8	- 89			
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller				

memory: 224*224*3=150K params: 0

INPUT: [224x224x3]

(not counting biases)

ConvNet Configuration

CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728	В	C	D	
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864	13 weight	16 weight	16 weight	19
POOL2: [112x112x64] memory: 112*112*64=800K params: 0	layers	layers	layers	
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728		24 RGB image		
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	cc
POOL2: [56x56x128] memory: 56*56*128=400K params: 0		pool	CONV3-04	cc
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912	conv3-128	conv3-128	conv3-128	co
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824	conv3-128	conv3-128	conv3-128	co
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824		pool		
	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	co
POOL2: [28x28x256] memory: 28*28*256=200K params: 0	CONV3-230	conv1-256	conv3-256	co
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648		CO 7 200	CONTO 200	co
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296	max	pool		
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296	conv3-512	conv3-512	conv3-512	co
POOL2: [14x14x512] memory: 14*14*512=100K params: 0	conv3-512	conv3-512 conv1-512	conv3-512 conv3-512	co
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296		CONV1-312	C011V3-312	co
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	max	pool		
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	conv3-512	conv3-512	conv3-512	co
POOL2: [7x7x512] memory: 7*7*512=25K params: 0	conv3-512	conv3-512	conv3-512	co
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448		conv1-512	conv3-512	co
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216	max	pool		co
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000		4096		
		4096		
TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)	-	1000		
TOTAL params: 138M parameters	soft-	max		
Chuang Gan and TAs Lecture 8 -	- 90			
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller				

memory: 224*224*3=150K params: 0

INPUT: [224x224x3]

(not counting biases)

```
Most memory is in
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
                                                                                          early CONV
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
 POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256=589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512=2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
                                                                                          Most params are
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
                                                                                          in late FC
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
 TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
 TOTAL params: 138M parameters
Chuang Gan and TAs
                                                                   Lecture 8 -
Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller
```

(not counting biases)

Note:

INPUT: [224x224x3] memory: 224*224*3=150K params: 0

POOL2: [112x112x64] memory: 112*112*64=800K params: 0

CONV3-64: [224x224x64] memory: **224*224*64=3.2M** params: (3*3*3)*64 = 1,728

CONV3-64: [224x224x64] memory: **224*224*64=3.2M** *params: (3*3*64)*64 = 36,864

Case Study: GoogLeNet

type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
convolution	7×7/2	112×112×64	1							2.7K	34M
max pool	3×3/2	56×56×64	0				Y Y		1		
convolution	3×3/1	56×56×192	2		64	192				112K	360M
max pool	3×3/2	28×28×192	0								
inception (3a)		28×28×256	2	64	96	128	16	32	32	159K	128M
inception (3b)		28×28×480	2	128	128	192	32	96	64	380K	304M
max pool	3×3/2	14×14×480	0								
inception (4a)		14×14×512	2	192	96	208	16	48	64	364K	73M
inception (4b)		14×14×512	2	160	112	224	24	64	64	437K	88M
inception (4c)		14×14×512	2	128	128	256	24	64	64	463K	100N
inception (4d)		14×14×528	2	112	144	288	32	64	64	580K	119M
inception (4e)		14×14×832	2	256	160	320	32	128	128	840K	170M
max pool	3×3/2	7×7×832	0								
inception (5a)		7×7×832	2	256	160	320	32	128	128	1072K	54M
inception (5b)		7×7×1024	2	384	192	384	48	128	128	1388K	71M
avg pool	7×7/1	1×1×1024	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1			Ų.				1000K	1M
softmax		1×1×1000	0								

Fun features:

Only 5 million params!
 (Removes FC layers completely)

Compared to AlexNet:

- 12X less params
- 2x more compute
- 6.67% (vs. 16.4%)

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

Research

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

According to Google Scholar Metrics, as of June 2017:

Deep Residual Learning for Image Recognition

"Deep Residual Learning for Image Recognition" is the most cited paper published in CVPR 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016 (Oral). CVPR Best Paper Award

arXiv code/models talk slides: ILSVRC workshop ICML tutorial CVPR oral

ILSVRC & COCO competitions 2015: we won the 1st places in ImageNet classification, ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation!

Chuang Gan and TAs

Some slides kindly provided by Fei-Fei Li, Jiajun Wu, Erik Learned-Miller

Lecture 8 - 94

(slide from Kaiming He's recent presentation)

CIFAR-10 experiments

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

2-3 weeks of training on 8 GPU machine

at runtime: faster than a VGGNet! (even though it has 8x more layers)

(slide from Kaiming He's presentation)

[He et al., 2015]

[He et al., 2015]

Case Study: ResNet [He et al., 2015]

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

[He et al., 2015]

[He et al., 2015]

(this trick is also used in GoogLeNet)

Case Study: ResNet [He et al., 2015]

layer name	output size	18-layer	34-layer	50-layer 101-layer		152-layer			
conv1	112×112								
		3×3 max pool, stride 2							
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$			
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$			
conv4_x	14×14	$\left[\begin{array}{c} 3 \times 3, 256 \\ 3 \times 3, 256 \end{array}\right] \times 2$	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 3$			
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$			
	1×1	average pool, 1000-d fc, softmax							
FLO	OPs	1.8×10^{9}	3.6×10 ⁹	3.8×10 ⁹	7.6×10^{9}	11.3×10 ⁹			

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX where N is usually up to ~5, M is large, 0 <= K <= 2.
 - but recent advances such as ResNet/GoogLeNet challenge this paradigm