Estimation of Tax Functions from Microsimulation Data for OG-India Day 2

Jason DeBacker ¹ Richard W. Evans ²

¹University of South Carolina, Department of Economics and Open Research Group, Inc.

²University of Chicago, Open Source Economics Laboratory, M.A. Program in Computational Social Science, and Open Research Group, Inc.

Tuesday, August 20, 2019
Tax Policy Research Unit and World Bank

Where taxes enter model: BC

The household budget constraint

$$c_{j,s,t} + b_{j,s+1,t+1} = (1+r_t)b_{j,s,t} + w_t e_{j,s} n_{j,s,t} + \zeta_{j,s} \frac{BQ_t}{\lambda_j \omega_{s,t}} + \eta_{j,s,t} \frac{TR_t}{\lambda_j \omega_{s,t}} - T_{s,t}$$

$$T_{j,s,t} \equiv au_{s,t}(x,y)(x+y) + au_{c,t}c_{j,s,t}$$

where
$$x \equiv \frac{w_t e_{j,s} n_{j,s,t}}{e^{g_y t}}$$
 and $y \equiv \frac{r_t b_{j,s,t}}{e^{g_y t}}$

MTR on savings:
$$\equiv \frac{\partial T_{j,s,t}}{\partial r_t b_{j,s,t}}$$

MTR on labor supply:
$$\equiv \frac{\partial T_{j,s,t}}{\partial w_t e_{j,s} n_{j,s,t}}$$

Where taxes enter model: Eulers

Two Euler Equations

$$\begin{aligned} w_t e_{j,s} \left(\frac{1 - \tau_{s,t}^{mtrx}}{1 - \tau_{c,t}} \right) (c_{j,s,t})^{-\sigma} &= \\ e^{g_y (1 - \sigma)} \chi_s^n \left(\frac{b}{\tilde{I}} \right) \left(\frac{n_{j,s,t}}{\tilde{I}} \right)^{\upsilon - 1} \left[1 - \left(\frac{n_{j,s,t}}{\tilde{I}} \right)^{\upsilon} \right]^{\frac{1 - \upsilon}{\upsilon}} \\ j, t, \quad \text{and} \quad E + 1 \leq s \leq E + S \end{aligned}$$

$$(c_{j,s,t})^{-\sigma} = \chi_j^b \rho_s(b_{j,s+1,t+1})^{-\sigma} + \beta \left(1 - \rho_s\right) \left(\frac{1 - \tau_{c,t}}{1 - \tau_{c,t+1}}\right) \left(1 + r_{t+1} \left[1 - \tau_{s+1,t+1}^{mtry}\right]\right) (c_{j,s+1,t+1})^{-\sigma}$$

$$\forall j, t, \text{ and } E + 1 \le s \le E + S - 1$$

Microsim can generate ETR and MTR for each age

Need smooth function for dynamic model

Let x =labor income (wen) and y =capital income (rb)

$$\begin{split} \tau(x,y) = & \left[\tau(x) + shift_x\right]^{\phi} \left[\tau(y) + shift_y\right]^{1-\phi} + shift \\ \text{where} \quad \tau(x) \equiv \left(max_x - min_x\right) \left(\frac{Ax^2 + Bx}{Ax^2 + Bx + 1}\right) + min_x \\ \text{and} \quad \tau(y) \equiv \left(max_y - min_y\right) \left(\frac{Cy^2 + Dy}{Cy^2 + Dy + 1}\right) + min_y \\ \text{where} \quad A, B, C, D, max_x, max_y, shift_x, shift_y > 0 \\ \text{and} \quad max_x > min_x \quad \text{and} \quad max_y > min_y \\ \text{and} \quad \phi \in [0, 1] \end{split}$$

Tax Function Parameters Description

Symbol	Description
Α	Coefficient on squared labor income term x^2 in $\tau(x)$
В	Coefficient on labor income term x in $\tau(x)$
С	Coefficient on squared capital income term y^2 in $\tau(y)$
D	Coefficient on capital income term y in $\tau(y)$
max_x	Maximum tax rate on labor income x given $y = 0$
min_x	Minimum tax rate on labor income x given $y = 0$
max_y	Maximum tax rate on capital income y given $x = 0$
min_y	Minimum tax rate on capital income y given $x = 0$
shift _x	shifter $> min_x $ ensures that $\tau(x) + shift_x > 0$ despite potentially negative values for $\tau(x)$
shift _y	shifter $> min_y $ ensures that $\tau(y) + shift_y > 0$ despite potentially negative values for $\tau(y)$
shift	shifter (can be negative) allows for support of $\tau(x,y)$ to include negative tax rates
φ	Cobb-Douglas share parameter between 0 and 1

Estimated ETR, MTRx, and MTRy

A simpler tax function

Gouveia and Strauss (1994), three parameters (ψ_0, ψ_1, ψ_2)

Gouveia and Strauss versus others

