GRANICA	METODA
$\lim_{n\to\infty}\frac{wielomian}{wielomian}$	wyciąganie przed nawias
$\lim_{n \to \infty} \sqrt{-\sqrt{1}}$ $\lim_{n \to \infty} a - \sqrt{1}$ $\lim_{n \to \infty} \sqrt{-\alpha}$	mnożenie przez sprzężenie
$\lim_{n\to\infty} \left(\frac{wielomian}{wielomian}\right)^{\infty}$ $[1^{\infty}]$	$\lim_{n \to \infty} \left(1 + \frac{a}{\{\}} \right)^{\{\}} = e^a$
$\sqrt[n]{a^n+b^n+\dots}$	twierdzenie o trzech ciągach
logarytm naturalny	$ \ln 0 \to -\infty \ln 1 = 0 \ln e = 1 \ln \infty \to \infty $
logarytm $dla \ a > 1$	$\log_a 0 \to -\infty$ $\log_a \infty \to \infty$
logarytm	$\log_a 1 = 0$ $\log_a a = 1$
logarytm dla a < 1	$\log_a 0 \to \infty$ $\log_a \infty \to -\infty$
logarytmy	$\lim_{\{\}\to\infty} \frac{\log_a(1+\{\})}{\{\}\}} = \log_a e$ $\lim_{\{\}\to\infty} \frac{\ln(1+\{\})}{\{\}\}} = 1$

GRANICA	METODA
trygonometryczne podstawowe	$\lim_{\{\}\to 0} \frac{\sin\{\ \}}{\{\ \}} = 1$
	$\lim_{\{\}\to 0} \frac{\arcsin\{\}}{\{\}} = 1$
	$\lim_{\{\}\to 0} \frac{tg\{\ \}}{\{\ \}} = 1$
	$\lim_{\{\}\to 0} \frac{\operatorname{arctg}\{\ \}}{\{\ \}} = 1$
trygonometryczne	$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$
a^{∞}	$a^{\infty} = \begin{cases} \infty dla \ a > 1 \\ 1 \ dla \ a = 1 \\ 0 \ dla \ a < 1 \end{cases}$
wykładnicze	$\lim_{\{\}\to\infty}\frac{a^{\{\}}-1}{\{\}}=\ln a$
	$\lim_{\{\}\to\infty}\frac{e^{\{\}}-1}{\{\}}=1$
suma arytmetycznego	$S_n = \frac{a_1 + a_n}{2} * n$
suma geometrycznego	$S_n = a_1 * \frac{1 - q^n}{1 - q}$
$\frac{A}{\pm \infty}$	$\frac{A}{\pm \infty} = 0$
$\frac{A}{0}$	$\frac{A}{0} = \pm \infty$

SYMBOL	DE L'HOSPITAL
$\left[\frac{0}{0}\right]\left[\frac{\infty}{\infty}\right]$	$\lim_{x \to \{ \}} \frac{f(x)}{g(x)} = \lim_{x \to \{ \}} \frac{f'(x)}{g'(x)}$
$[\infty - \infty]$	wspólny mianownik wyciągnąć przed nawias
[0 * ∞]	$\frac{f(x)}{\frac{1}{g(x)}}$ lub $\frac{g(x)}{\frac{1}{f(x)}}$
$[1^{\infty}] [0^0] [\infty^0]$	$a^b = e^{b*\ln a}$

GRANICA FUNKCJI	METODA
$\lim_{\{\ \}\to a} f(x)$ (do liczby!)	wyciąganie przed nawiasgrupowanie wyrazówwz. skróconego mnożenia

FUNKCJA	POCHODNA
$\log_a x$	$\frac{1}{x \ln(a)}$
ln(x)	$\frac{1}{x}$
a^x	$a^x \ln(a)$
$\frac{a}{x}$	$-\frac{a}{x^2}$