ILEACIONES ENDURECIDAS POR ACRITUD

Aluerino sin aliar

Les un materal de baja dureza y resistencia, annque redun eluvorse estos valores significativamente par acritical y sób por acritica!); anin así, no se alcanzan valores suficientes ara aplicaciones aemaníticas.

Tiene un exalute comportamiento a carosión y aplicaciones en arquitectura e industria química y aplicaciones domésticas

(papel de aluminio)

Se emplean también, romo ranductores eléctricos, versiones

de alta pureza, ran bajos niveles de Fi, Cr, V, Mu y con B,

pres para ello no se requieren propredades meránicas.

· Aleaciones Al-Mn

da adición de Mu al atuminio mejora la resistencia meránica monteniendo un excelente compartamiento a careción y alta monteniendo un excelente compartamiento a careción y alta ductilidad; anin así, sique cin ser tratable termicamente (no carecquimnos precipitados finos que san los que endurecen) pero trat la solidificación, la allación queda cobresativada en Mu (solubilidad maisima 1'81.) y un postoror calmitamiento a temperativa elmada favorece la precipitación de dispersoides ricos en Mu, lo que le proporciona un modesto endurecimiento adicional.

La adición de 19 produce un efecto de refuerzo por solución sólida y admicis acelera el endurecimiento por acritud, ammentando la densidad de dislocaciones y su distribución más homogénea. Refuerza también el compartamiento aconosión da adición de un paro de a mejara la resistencia a conosión por picaduras.

· Alea ciaves Aleuninio-Hagnesio

se tiene una amplia variación de solubilidad ron la temperativa, que es la randición necesaria para que se introduera en la red y se famem preo pitadones, amique no es randición suficiente: escasa respuesta al tratamiento térmico pues no alranza la madinación natural y en la artificial la solución sólida se descrompo ne preo pitando directamente los incoherentes - no endure ce apreciablemente!

\$ No san tratables telminamentes endurece por solución sólida y se le enele aplicar acritud: mejoran bastante sus propiedades merónicas annique no b suficiente para aplica ciones aeonantiras.

Auls ad, la adición de Hg es favorable pues:

- Endrece par solución sólida romo hemos didio

- Interaciona con las diclocaciones durante la acritud, favoreciendo el endurecimiente

- rejora el romportamiente a corrosión, sobre teclo en ambientes muy agresios, como el marino.

Phase	Composition, wt% Mg	Pearson symbol	Space group		
(Al)	0 to 17.1	· cF4	Fm3m		
β(Al ₃ Mg ₂)	36.1 to 37.8	cF1168	Fd3m		
R	39	hR53	R3 ·		
$\gamma(Al_{12}Mg_{17})$	42 to 58.0	c158	1 4 3 <i>m</i>		
(Mg)	87.1 to 100	hP2	P63/mmc		
Metastable phases					
Al ₂ Mg	31.0	<i>u</i> 24	141/amd		
Υ	38 to 56.2	(a)	•••		
(a) Tetragonal					

Fig. 20. Age-softening of an Al-6% Mg alloy cold-rolled to various initial HIX tempers. A linear change in tensile properties with log time is observed out to 17 years at room temperature. Legend indicates materials original temper.

Fig. 21. Age-softening of 5052-H18 alloy with and without stabilization treatment (eight hrs at 143°C). Properties of stabilized material remain nearly constant while those of the H18 sheet show a gradual but continued change. Final data points represent properties after 52

El estado HI es investable con el tiempo, se produce indida de dureza y resistencia y subida de plasticidad tara uprimir esta evolución se pasa al estado H3 (estabilización) un mediante un calintamiento que acelea el proceso y deja el material en mas condiciones que no cambiorair durante la vida vitil de la pieza.

A major contenido en Hg se tiene major dineza y resistencia, pero si Mg 7 31. la solución cólida er inestable y tiende a precipitar Mg2 Al3 en el borde de grano con el ousiquiente riesquo de carosión intergrammar, por extoliación o bajo tensiones: no se emplean aliaciones con Hg75'5%.

(>) son alraciones baratas, ou propiedades meránicas modertas fáciles de soldor y rou muy buen comportamiento a rorosión.

photosome a description of the second second

Design Num(irica	Designación de la aleación ica Simbólica	8	E.	Aleacic	ones de al	Aleaciones de aluminio. Serie 3000. Al Mn Aleaciones de aluminio. Serie 3000. Al Mn Cu Mn Mg Cr Ni · Zn G	erie 30	Ni · Zn	Zn (a	>	Notas	E	Otrasio Cada Tot	Is 14)
EN AW-3002 EN AW-3102 EN AW-3003 EN AW-3103 EN AW-3103A	EN ÂW-AJ Mn0,2Mg0,1 EN AW-AJ Mn0,2 EN AW-AJ Mn1Cu EN AW-AJ Mn1 EN AW-AJ Mn1	0,08 0,40 0,6 0,50 0,50	0,10 0,7 0,7 0,7	0,15. 0,10 0,05-0,20 0,10 0,10	0,05-0,25 0,05-0,40 1,0-1,5 0,9-1,5 0,7-1,4	0,05-0,20	0,10	:::::	0,05 0,30 0,10 0,20 0,20		50,05	 0,10 Zr+Ti 0,10 Zr+Ti	0,03	20,0 20,0 20,0 20,0 20,0	0,10 0,15 0,15 0,15
EN AW-3004 EN AW-3104 EN AW-3005 EN AW-3105 EN AW-3105A	EN AW-AI Mn1Mg1 EN AW-AI Mn1Mg1Cu EN AW-AI Mn1Mg0,5 EN AW-AI Mn0,5Mg0,5 EN AW-AI Mn0,5Mg0,5	0,30 0,6 0,6 0,6	7,0 7,0 7,0 7,0	0,25 0,05-0,25 0,30 0,30 0,30	1,0-1,5 0,8-1,4 1,0-1,5 0,30-0,8 0,30-0,8	0,8-1,3 0,8-1,3 0,20-0,6 0,20-0,8 0,20-0,8	0,10	:::::	0,25 0,25 0,25 0,40 0,25	0,05	0,05	: : : : :	0,10	0,05	0,15
EN AW-3207 EN AW-3017 EN AW-3017	EN AW-Al Mn0,6 EN AW-Al Mn0,6(A) EN AW-Al Mn1Cu0,3	0,30 0,35 0,25	0,45 0,6 0,25-0,45	0,45 0,10 0,6 0,25 0,25-0,45 0,25-0,40	0,40-0,8 0,30-0,8 0,8-1,2	0,10 0,40 0,10	0,20	:::	0,10	:::	:::	1 1 1	50,0	0,05	0,10

Aluminio EN AW-3004. [Al Mn1Mg1]

Estado de tratamiento	Espesor nominal mm		R _m MPa		R _{p0,2} MPa		Alargamiento mín. %		Radio de doblado				Dureza HBS
	Mayor que	hasta	mín.	máx.	mín.	máx.	A _{Strum}	A	180	·	90°		1)
3 ()	≥2,5	80,0	155										
D/H111	0,2 0,5 1,5 3,0 6,0 12,5	0,5 1,5 3,0 6,0 12,5 50,0	155 155 155 155 155 155	200 200 200 200 200 200 200	60 60 60 60 60		13 14 15 16 16	14	0 0 0,5 1,0	t t t	0 0 1,0 2,0	t t t	45 45 45 45 45 45
H12	0,2 0,5 1,5 3,0	0,5 1,5 3,0 6,0	190 - 190 190 190	240 240 240 240	155 155 155 155		2 3 4 5		1,5 1,5 2,0	t t	0 0,5 1,0 1,5	t t t	59 59 59 59
H14	0,2 0,5 1,5 3,0	0,5 1,5 3,0 6,0	220 220 220 220	265 265 265 265	180 180 180 180		1 2 2 3		2,5 2,5 2,5	t t	0,5 1,0 1,5 2,0	t t t	67 67 67 67
H16	0,2 0,5 1,5	0,5 1,5 4,0	240 240 240	285 285 285	200 200 200		1 1 2		3,5 3,5	t t	1,0 1,5 2,5	t t	73 73 73
H18	0,2 0,5 1,5	0,5 1,5 3,0	260 260 260		230 230 230		1 1 2				1,5 2,5	t t	80 80 80
H19	0,2 0,5	0,5 1,5	270 270		240 240		1 1						83 83
H22/H32	0,2 0,5 1,5 3,0	0,5 1,5 3,0 6,0	190 190 190 190	240 240 240 240	145 145 145 145		4 5 6 7	3 2	1,0 1,0 1,5	t	0 0,5 1,0 1,5	t t t	1
H24/H34	0,2 0,5 1,5	0,5 1,5 3,0	220 220 220	265 265 265	170 170 170		3 4 4		2,0 2,0 2,0	t	0,5 1,0 1,5	t	66
H26/H36	0,2 0,5 1,5	0,5 1,5 3,0	240 240 240	285 285 285	190 • 190 190		3 3 3		3,0			· t	72
H28/H38	0,2 0,5		260 260		220 220		2 3				1,5 2,5		1

¹⁾ Para información solamente.