宏晶 STC90C58AD 系列单片机器件手册

- --- 广受欢迎的宏晶 STC89 系列升级版本
- --- 无法解密,解决了全球89系列均已被解密的问题
- --- 超强抗干扰,超强抗静电
- --- 抗干扰能力比89系列更强,复位效果更好
- --- 直接取代89系列,软硬件无需改动
- --- 低功耗,超低价,高速,高可靠

STC90C51AD, STC90LE51AD

STC90C52AD, STC90LE52AD

STC90C53AD, STC90LE53AD

STC90C54AD, STC90LE54AD

STC90C58AD, STC90LE58AD

STC90C516AD, STC90LE516AD

请使用采用宏晶最新第七代加密技术的宏晶 STC90C58AD 系列或采用宏晶第六代加密技术的 STC11/10xx,STC90C51,STC12C5Axx 系列单片机取代全球各厂家均已被解密的89系列单片机

全部中国大陆本土独立自主知识产权,技术处于全球领先水平,请全体中国人民支持,您的支持是中国大陆本土企业统一全球市场的有力保证.

宏晶 STC 单片机官方网站: www.STCMCU.com(最新网站) www.MCU-Memory.com(原有网址)

Update date: 2010-04-21

目录

第1章	i STC 超豪华阵容系列单片机宣传资料	4
1.1	STC90C58AD 系列单片机选型指南	. 4
1.2	2 STC90C58AD 系列单片机选型一览表	. 5
	3 STC11/10xx 系列单片机选型指南	
1.4	4 STC11/10xx 系列单片机选型一览表	. 7
1.1	STC12C5A60S2 系列单片机选型指南	. 8
1.1	STC12C5A60S2 系列单片机选型一览表	. 9
	STC12C5201AD 系列单片机选型指南	
	2 STC12C5201AD 系列单片机选型一览表	
	STC12C5620AD 系列单片机选型指南	
	2 STC12C5620AD 系列单片机选型一览表	
	│ STC12C5410AD/2052AD 系列单片机选型指南	
	2 STC12C5410AD/2052AD 系列单片机选型一览表	
	STC89C51RC/RD+ 系列单片机选型指南	
	: STC90C58AD 系列单片机总体介绍	
	1 STC90C58AD 系列单片机简介	
	2 STC90C58AD 系列单片机管脚图及封装尺寸图	
	2.2.1 STC90C58AD 系列单片机管脚图	
	2.2.2 STC90C58AD 系列单片机封装尺寸图	
	3 STC90C58AD 系列单片机命名规则	
	4 STC90C58AD 系列单片机优点及特性	
	5 STC90C58AD 系列单片机典型应用电路	
	6 STC90C58AD 系列单片机特殊功能寄存器映像 说明 SFR Mapping	
	7 STC90C58AD 系列单片机中断系统	
	3 降低单片机时钟对外界的电磁辐射(EMI)三大措施	
	9 STC90C58AD 系列单片机内部扩展 RAM 的使用 / 禁止	
	O_STC90C58AD 系列单片机双数据指针	
	I1 STC90C58AD 系列单片机扩展 P4 口(C0H)的使用(可以位寻址)	
	2 STC90C58AD 系列 A/D 转换寄存器简介	
	3 STC90C58AD 系列 A/D 转换示例程序	
第3章		
	看门狗应用及测试程序	
	3.1.1 看门狗应用介绍	
	3.1.2 一个完整的看门狗测试程序,在下载板上可以直接测试	
	2 如何用软件实现系统复位	
	: STC90C58AD 系列单片机 I AP 及 EEPROM 应用说明	
	1 TAP 及 EEPROM 应用	
	Z EEPRUM 起始地址一見表	
4.3	3 一个完整的 IAP/EEPROM测试程序,在下载板上可以直接测试	56

第5章 STC90C58AD 系列单片机定时器的使用及测试程序	60
5.1 定时器 0/1 的介绍及测试程序	60
5.1.1 定时器 0/1 的介绍	60
5.1.2 定时器 0/1 应用程序举例	64
5.1.3 用定时器 1 做波特率发生器(一个完整的程序,在下载板上可以直接测试	69
5.2 定时器 2 的介绍	76
5.2.1 定时器 2 的介绍	76
5.2.2 用定时器 2 做波特率发生器(一个完整的程序,在下载板上可以直接测试)	82
5.2.3 定时器 2 的时钟输出功能,在 P1.0 口输出高速脉冲	85
第 6 章 STC90C58AD 系列单片机的掉电模式	87
6.1 PCON寄存器的高级应用,上电复位标志,进入掉电模式	
6.2 进入掉电模式后由外部中断唤醒示例程序	88
第 7 章 STC90C58AD 系列单片机电气特性	90
第8章 STC90C58AD 系列单片机开发 / 编程工具说明	92
8.1 编程(ISP)原理使用说明	92
8.2 在系统可编程(ISP)的使用	93
8.3 ISP 软件界面使用说明	94
8.4 用户板如果没有 RS-232,如何用 STC-ISP Ver3.0 PCB 板做 RS-232 通信转换	95
8.5 如何实现运行中不停电自定义下载,无仿真器时方便调试	96
附录 A Keil C51 高级语言编程的软件如何减少代码长度	97
附录 B 典型 MCU-/DSP/uC 复位、电源监控、外部看门狗专用电路	98
附录 C 用串行口扩展 I/O 接口	
附录 D 利用 STC 单片机普通 I /0 口驱动 LCD 显示	. 101
附录 E STC90C58AD 系列单片机准双向口输出原理	. 107
附录F 指令系统与程序设计	. 108
附录 G STC90C58AD 系列单片机选型及应用	. 143

超强抗干扰, 无法解密的宏晶 STC90C58AD 系列单片机

STC90C58AD 系列解决了全球各厂家89 系列均已被解密的问题,软硬件完全兼容

型 묵	工作 电压(V) 90C:5V 90LE:3V	Flash 程序 存储 器 字节	SRAM 字节	EEP ROM	定时器	8路 10位 A/D	双倍速	I/0 □	支掉唤外中	内置复位	看门狗	I S P	I A P	LQFP 价格
STC90C51	5.5 - 3.5	4K	256	-	3个	-	有	39个	4个	有	有	有	有	2.99
STC90C51 RC	5.5 - 3.5	4K	512	5K	3个	-	有	39个	4个	有	有	有	有	3.20
STC90C52	5.5 - 3.5	8K	256	-	3个	1	有	39个	4个	有	有	有	有	3.20
STC90C52 RC	5.5 - 3.5	8K	512	5K	3个	-	有	39个	4个	有	有	有	有	3.50
STC90C10 RC	5.5 - 3.5	10K	512	3K	3个	-	有	39个	4个	有	有	有	有	4.30
STC90C53 RC	5.5 - 3.5	12K	512	1 K	3个	-	有	39个	4个	有	有	有	有	4.30
STC90C13 RC	5.5 - 3.5	13K	512	1	3个	1	有	39个	4个	有	有	有	-	4.30
STC90C54 RD+	5.5 - 3.5	16K	1280	45K	3个	•	有	39个	4个	有	有	有	有	4.70
STC90C58 RD+	5.5 - 3.5	32K	1280	29K	3个	•	有	39个	4个	有	有	有	有	4.90
STC90C510RD+	5.5 - 3.5	40K	1280	21K	3个	•	有	39个	4个	有	有	有	有	5.50
STC90C512RD+	5.5 - 3.5	48K	1280	13K	3个	•	有	39个	4个	有	有	有	有	5.50
STC90C514RD+	5.5 - 3.5	56K	1280	5K	3个	•	有	39个	4个	有	有	有	有	5.50
STC90C516RD+	5.5 - 3.5	61K	1280	•	3个	•	有	39个	4个	有	有	有	-	4.99
STC90C51AD	5.5 - 3.8	4K	4352	45K	3个	有	有	39个	4个	有	有	有	有	6
STC90C52AD	5.5 - 3.8	8K	4352	45K	3个	有	有	39个	4个	有	有	有		
STC90C54AD	5.5 - 3.8	16K	4352	45K	3个	有	有	39个	4个	有	有	有	Ī	
STC90C58AD	5.5 - 3.8	32K	4352	29K	3个	有	有	39个	4个	有	有	有	Ī	
STC90C514AD	5.5 - 3.8	56K	4352	5K	3个	有	有	39个	4个	有	有	有	Ī	
STC90C516AD	5.5 - 3.8	61K	4352	-	3个	有	有	39个	4个	有	有	有	Ī	
STC90LE516AD	3.6 - 2.4	61K	4352	-	3个	有	有	39个	4个	有	有	有	Ī	

选择 S T C 90C51 系列单片机的理由:

无法解密,并且软硬件完全兼容全球各厂家均已被解密的89系列单片机,可直接取代超大容量SRAM,最高达4.2K字节SRAM高速10位A/D,可达25万次/秒

超强抗干扰:

- 1、高抗静电(ESD保护,整机轻松过2万伏)
- 2、轻松过4400V快速脉冲干扰(EFT测试)
- 3、宽电压,不怕电源抖动
- 4、宽温度范围,-40 ~85

三大降低单片机时钟对外部电磁辐射的措施: —— 出口欧美的有力保证

- 1、禁止ALE输出;
- 2、如选6时钟/机器周期,外部时钟频率可降一半;
- 3、单片机时钟振荡器增益可设为1/2gain。

超低功耗:

- 1、掉电模式: 典型功耗 <0.1 µ A
- 2、正常工作模式: 典型功耗 4mA 7mA
- 3、掉电模式可由外部中断唤醒,适用于电池供电系统,如水器、二类、便携设备等。

供电系统,如水衣、 气衣、使捞设备₹ 在系统可编程, 无需编程器, 无需仿真器 可送 STC - ISP 下载编程器, 1 万片 / 人 / 天

内部有简单复位,时钟频率在12MHz以下时,可使用内部复位原复位电路可以保留,也可以不用,不用时RESET脚接1K电阻到地

强烈推荐 LQFP44 小型封装

尽量不选落后的 PDIP 和 PLCC 封装

关于单片机说明:<管脚与流行的8051兼容> 大客户超低价

STC90C/LExxRC/RD+ 系列 PLCC、LQFP 多两个外部中断 P4.2/INT3,P4.3/INT2,P4 口均可位寻址 DIP-40,PLCC-44,LQFP-44 封装(STC90C/LExxRC/RD+系列 PLCC、LQFP,P4 口地址在 E8H)

5V: 5.5V~3.8V; 3V: 3.8V~2.4V(仅针对 RC/RD+系列) STC90C58AD, 后缀带 AD 字样的 RAM 为 256 + 4096 字节

STC90C58AD, 后缀带 AD 字样的 RAW 为 256 + 4096 STC90C58AD, 后缀带 AD 字样的, P4 口地址在 COH

STC90C58AD 系列, AUXR 控制寄存器的 Bit 7 位置'1',可将串口从

P3 口[RxD/P3.0,TxD/P3.1]切换到 P1 口[P1.6/RxD,P1.7/TxD]

STC micro[™] 宏晶科技

8051 单片机全球第一品牌中国大陆本土 MCU 领航者

新客户请直接联系深圳以获得更好的技术支持和服

网址:www.STCMCU.com

深 圳:Tel:0755-82948411 82948412 Fax:0755-82944243

Fax: 020-85517881

上海办:TeI:021-53560136 53560138 Fax:021-53080587 北京办:TeI:010-62538687 62634001 Fax:010-62538683

85518657

82905966

免费索取

从网上下载样品申请单, 传真至深圳申请 STC 单片机 样片及 ISP 下载线/编程工具

技术支持:13922805190

广州办:Tel:020-87501705

STC90C58AD 系列单片机选型一览表

			7	• • •	• •	17 01			יטפ				
型号	工作 电压(V)	Flash 程序 存储 器 字节	SRAM 字节	EEP ROM	定时器 T0 T1	T2	D P T R	中断优先级	支掉 唤外中	内置复位 时钟频率 在12MHz 以下可靠	看门狗	封装 40-Pin 35 个I/0	封装 44-Pin 39个I/0
	-		STC	90C58	AD系列	列单片	机送	七型・	一览	-			
STC90C51AD	5.5 - 3.8	4K	4352	5K	有	有	2	4	4个	有	有	PDIP	LQFP/PLCC
STC90C52AD	5.5 - 3.8	8K	4352	5K	有	有	2	4	4个	有	有	PDIP	LQFP/PLCC
STC90C53AD	5.5 - 3.8	12K	4352	1K	有	有	2	4	4个	有	有	PDIP	LQFP/PLCC
STC90C54AD	5.5 - 3.8	16K	4352	45K	有	有	2	4	4个	有	有	PDIP	LQFP/PLCC
STC90C58AD	5.5 - 3.8	32K	4352	29K	有	有	2	4	4个	有	有	PDIP	LQFP/PLCC
STC90C516AD	5.5 - 3.8	61K	4352	-	有	有	2	4	4个	有	有	PDIP	LQFP/PLCC
			STC	90LE58	BAD系	列单片	竹机	先型	一览				
STC90LE51AD	3.6 - 2.4	4K	4352	-	有	有	2	4	4个	有	有	PDIP	LQFP/PLCC
STC90LE52AD	3.6 - 2.4	8K	4352	-	有	有	2	4	4个	有	有	PDIP	LQFP/PLCC
STC90LE53AD	3.6 - 2.4	12K	4352	1K	有	有	2	4	4个	有	有	PDIP	LQFP/PLCC
STC90LE54AD	3.6 - 2.4	16K	4352	45K	有	有	2	4	4个	有	有	PDIP	LQFP/PLCC
STC90LE58AD	3.6 - 2.4	32K	4352	29K	有	有	2	4	4个	有	有	PDIP	LQFP/PLCC
STC90LE516AD	3.6 - 2.4	61K	4352	-	有	有	2	4	4个	有	有	PDIP	LQFP/PLCC

宏晶新-超强抗干扰 无法解密 -代 8051 单片机

8051 单片机全球第一品牌,中国大陆本土 MCU 领航者

STC11/10xx 系列 1T 8051 1个时钟/机器周期,高速、高可靠

宏晶科技是新一代增强型 8051 单片机标准的制定者和领导厂商,现已成长为全球最大的 8051 单片机设计公司。致力于提供满足中国市场需求的世界级 高性能单片机技术,采用宏晶最新第六代加密技术的 STC11/10xx 系列单片机解决了全球 89 系列都已经被解密的问题,请广大用户立即采用无法解密的 STC11/10xx 系列单片机对传统的已被解密的 89 系列单片机系统升级换代,以保护您的智慧财产权不受侵害。管脚完全兼容,性能更好,驱动能力

更强,功耗更低,价格也比传统89系列低,请放心使用。 每片单片机具有全球唯一身份证号码(ID号) 传统 8051 单片机划时代升级换代产品,管脚完全兼容 PO.0 IP40 P0.1 P0.2 P0.3 38 □ vcc P3.6/RST SOP-16 恤 37 INT/RxD/P3.0 15 7 P1.7/TxD □ P0.4 P1.5 35 P1.6/RxD/INT TxD/P3.1 14 並 N INT/RxD/P1.6 34 . 1 PO.5 6 单时钟 1T -2 个 UART/ 串口 P0.5 P0.6 P0.7 NA/P4.6 TxD/P1.7 33 速 밤 13 P1 5 XTAL 2 \rightarrow P4.7/RST INT/RxD/P3.0 8051 CPU 独立 P 4 P1.2 XTAL1 波特率发生器 31 曼快指令快 24 倍 ALE/P4.5 O TxD/P3.1 INT1/P3.3 6 11 ☐ P1 1 高 NA/P4 P2.7 \Box ᄝ CLKOUTO/INT/TO/P3.4 INT1/P3.3 T/T0/P3.4 0 10 P1.0/CLKOUT2 可 Flash(10万次) 佐 P2.6 Gnd I 27 程序存储器 9 __ P3.7 6 靠 CLKOUT1/INT/T1/P3.5 26 P2.5 36 Timer 0 WR/P3.6 RD/P3.7 XTAL2 1 P2.4 /2/3/4/5/8/16 P2.3 P2.2 Timer 1 \rightarrow 20/32/40/62K 18 23 宽 独立波特率发生 VCC XTAL1 P2.1 P3.6/RST [∃ P2.0 器 ISP / IAP Gnd [电 INT/RxD/P3 0 17 ☐ P1.7/TxD 2 \Box 侐 数据 RAM]P1.6/RxD/TNT 串口做主机通信时,可控制串口通信在 压 ु TxD/P3.1 1280/256 字节 4 [RxD/P3.0,TxD/P3.1]和[RxD/P1.6,TxD/P1.7] 4 7 P1 5 XTAL 2 15 \rightarrow 之间任意切换,实现2组串口。 XTAL1 5 14 P1.4 低 **FFPROM** -0 建议用户将串口设在[RxD/P1.6,TxD/P1.7] INT1/P3.3 6 7 P1.2 P0/P1/P2/P3 13 功 可配置 1/0 口 CLKOUTO/INT/TO/P3.4 12 P1.1 耗 \Box CLKOUT1/INT/T1/P3.5 8 11 P1.0/CLK0UT2 另特别增加 9 10 __ P3.7 Gnd [WDT 超 Port4 硬件看门狗 强 可配置 1/0 口 P1.5 INT/RxD/P1.6 TxD/P1.7 抗 P3.6/RST [20 □ vcc 恤 5 SQP 干 佡 P0 .6 P0 .7 片内 INT/RxD/P3.0 2 ☐ P1.7/TxD 19 JIM SOP16 اق 电源监控: 扫 40 FP-□ NA/P4.6 □ P4.1 □ ALE/P4.5 R/C 振荡器 扰 TxD/P3.1 [_ 3 P1.6/RxD/INT 18 户 → P₄ 1. 掉电检测 6 ത TxD/P3 XTAL2 4 17 P1.5 411 - 44 - 0 2 上由复位 XTAL2 ु \rightarrow 井 XTAL1 [5 7 P1 4 晶体或 无 3.掉电复位 16 CLKOUTO/INT/TO/P3.4 CCLKOUT1/INT/T1/P3.5 LSSOP 可配置振荡器 XTAL1 INTO/P3.2 P1.3 谐振器 15 法 INT1/P3.3 14 7P1.2 7 解 0 CLKOUTO/INT/TO/P3.4 /P3.6 //P3.7 XTAL1 XTAL1 Gnd P2.0 P2.0 P2.1 P2.3 P2.3 CPU 时钟 8 13 7P1.1 密 CLKOUT1/INT/T1/P3.5 \Box P1.0/CLKOUT2 9 12 RD/ Gnd [10] P3.7 11 宏晶 STC10F04-LQFP44 宏晶 STC11/10xx 系列主要性能 全球最低价: RMB 2.70 元 高速:1个时钟/机器周期,增强型8051内核,速度比普通8051快8~12倍

宽电压:5.5~4.1V/3.7V,3.6V~2.4V/2.1V(STC11/10L系列)

低功耗设计:空闲模式(可由任意一个中断唤醒)

低功耗设计:掉电模式(可由任意一个外部中断唤醒,可支持下降沿/低电平 和远程唤醒, STC11xx 系列还可通过内部专用掉电唤醒定时器唤醒)

工作频率:0~35MHz,相当于普通8051:0~420MHz

时钟:外部晶体或内部 RC 振荡器可选,在 ISP 下载编程用户程序时设置 1/2/3/4/5/6/8/16/32/52/62K 字节片内 Flash 程序存储器,擦写次数 10 万次以上

1280/256 字节片内 RAM 数据存储器

芯片内 EEPROM 功能, 擦写次数 10 万次以上

ISP / IAP , 在系统可编程 / 在应用可编程 , 无需编程器 / 仿真器

2 个 16 位定时器 兼容普通 8051 的定时器 T0/T1

1 个独立波特率发生器(故无需 T2 做波特率发生器), 缺省是 T1 做波特率发生器 可编程时钟输出功能, T0 在 P3.4 输出时钟, T1 在 P3.5 输出时钟, BRT 在 P1.0 输出时钟 硬件看门狗(WDT)

全双工异步串行口(UART),兼容普通8051,可当2个串口使用(串口可在P3与P1之间任意切换) 先进的指令集结构,兼容普通8051指令集,有硬件乘法/除法指令

通用 I / 0 口 (36/40 个), 复位后为: 准双向口/弱上拉(普通8051 传统 I / 0 口) 可设置成四种模式:准双向口/弱上拉,推挽/强上拉,仅为输入/高阻,开漏 每个 I/O 口驱动能力均可达到 20mA, 44/40 管脚的 IC 建议整个芯片不要超过 100mA, 20/18/16 管脚的 IC 建议整个芯片不要超过 60mA

复位脚: 烧录程序时如设置为 I/O 口, 可当 I/O 口使用或浮空 不用的 I/0 口: 浮空即可

使用 LQFP44 封装时, 最多有 40 个 I/0 口

使用 PDIP40 封装时, 最多有 36 个 I/0 口

选 择 宏晶 S T C 11 / 10xx 系 列 单 片 机 的 理 由 :

加密性强, 无法解密

超强抗干扰,超强抗静电,整机可轻松过2万伏静电测试 速度快, 1 个时钟 / 机器周期, 可用低频晶振, 大幅降低 E M I

--- 出口欧美的有力保证 输入/输出口多,最多有40个1/0,复位脚如当1/0口使用,可省去外部复位电路

招低功耗 掉电模式:外部中断唤醒功耗 <0.1uA,支持下降沿/低电平和远程唤醒 STC11xx 系列增加了掉电唤醒专用定时器,启动掉电唤醒定时器典型功耗<2uA

适用于电池供电系统,如水表、气表、便携设备等。 空闲模式: 典型功耗 <1.3mA

下常丁作模式: 2mA - 7mA

在系统可编程,无需编程器,无需仿真器 , 可远程升级

Fax: 021-53080587

Fax: 010-62538683

可送 STC - I SP 下载编程器 1 万片 / 人 / 天内部集成高可靠复位电路,复位脚设置为 I / 0 口使用时,复位脚可浮空

micro 晶

8051 单片机全球第一品牌

中国大陆本土 MCU 领航者 新客户请直接联系深圳以获得更好的技术支持和服务 网址:www.STCMCU.com

53560138

62634001

深 圳:Tel:0755-82948411 82948412 Fax: 0755-82944243 82905966 广州办:Tel:020-87501705 85518657 Fax: 020-85517881

技术支持:13922805190

从网上下载样品申请单 传真至深圳申请 STC 单片机 样片及 ISP 下载线 / 编程工具

宏晶科技:已成长为全球最大的8051单片机设计公司 请用无法解密的 STC11/10xx 系列取代全球各厂家均已被解密的 89 系列单片机

上海办:Tel:021-53560136

北京办:Tel:010-62538687

采用宏晶最新第六代加密技术的 STC11F/10Fxx 系列单片机选型一览表直接取代全球各厂家均已被解密的 89 系列单片机

型 号	工作 电压(V)	Flash 程序 存储器 字节	SRAM 字节	EEP ROM	定时器 T0 T1	UART 口独波率生器	D P T R	中断优先级	内部低压中断	支掉 唤外中	掉唤专定 器	内复并选复门电置位可择位槛压	看门狗	封装 40-Pin 36个I/0	封装 44-Pin 40个I/0
				STC1	1Fxx	系列单片	机选	型-	-览						
STC11F60XE	5.5 - 4.1/3.7	60K	1280	1K	有	1-2个	2	2	有	5个	有	有	有	PDIP	LQFP/PLCC
STC11F56XE	5.5 - 4.1/3.7	56K	1280	5K	有	1-2个	2	2	有	5个	有	有	有	PDIP	LQFP/PLCC
STC11F52XE	5.5 - 4.1/3.7	52K	1280	9K	有	1-2个	2	2	有	5个	有	有	有	PDIP	LQFP/PLCC
STC11F48XE	5.5 - 4.1/3.7	48K	1280	13K	有	1-2个	2	2	有	5个	有	有	有	PDIP	LQFP/PLCC
STC11F40XE	5.5 - 4.1/3.7	40K	1280	21K	有	1-2个	2	2	有	5个	有	有	有	PDIP	LQFP/PLCC
STC11F32XE	5.5 - 4.1/3.7	32K	1280	29K	有	1-2个	2	2	有	5个	有	有	有	PDIP	LQFP/PLCC
STC11F20XE	5.5 - 4.1/3.7	20K	1280	29K	有	1-2个	2	2	有	5个	有	有	有	PDIP	LQFP/PLCC
STC11F16XE	5.5 - 4.1/3.7	16K	1280	32K	有	1-2个	2	2	有	5个	有	有	有	PDIP	LQFP/PLCC
STC11F08XE	5.5 - 4.1/3.7	8K	1280	32K	有	1-2个	2	2	有	5个	有	有	有	PDIP	LQFP/PLCC

型 号	工作 电压(V)	Flash 程序 存储器 字节	SRAM 字节	EEP ROM	定时器 TO T1	UART 口独波率生器	D P T R	中断优先级	内部低压中断	支掉 唤外中	掉唤专定器	内复并选复门电置位可择位槛压	看门狗	封装 40-Pin 36个I/0	封装 44-Pin 40个I/0
	-			ST	C10Fx	x系列单	片	几选	型一년	览				-	
STC10F04	5.5 - 3.8/3.3	4K	256	ı	有	1-2个	1	2	有	5个	-	有	有	PDIP	LQFP/PLCC
STC10F04X	5.5 - 3.8/3.3	4K	512	ı	有	1-2个	1	2	有	5个	-	有	有	PDIP	LQFP/PLCC
STC10F04XE	5.5 - 3.8/3.3	4K	512	5K	有	1-2个	1	2	有	5个	-	有	有	PDIP	LQFP/PLCC
STC10F08	5.5 - 3.8/3.3	8K	256	ı	有	1-2个	1	2	有	5个	-	有	有	PDIP	LQFP/PLCC
STC10F08X	5.5 - 3.8/3.3	8K	512	ı	有	1-2个	1	2	有	5个	-	有	有	PDIP	LQFP/PLCC
STC10F08XE	5.5 - 3.8/3.3	8K	512	5K	有	1-2个	1	2	有	5个	-	有	有	PDIP	LQFP/PLCC
STC10F12	5.5 - 3.8/3.3	12K	256	ı	有	1-2个	1	2	有	5个	-	有	有	PDIP	LQFP/PLCC
STC10F12X	5.5 - 3.8/3.3	12K	512	ı	有	1-2个	1	2	有	5个	-	有	有	PDIP	LQFP/PLCC
STC10F12XE	5.5 - 3.8/3.3	12K	512	1K	有	1-2个	1	2	有	5个	1	有	有	PDIP	LQFP/PLCC
IAP10F14X	5.5 - 3.8/3.3	14K	512		有	1-2个	1	2	有	5个	-	有	有	可在程序	区修改程序区

宏晶新一代8051单片机

8051 单片机全球第一品牌,中国大陆本土 MCU 领航者 宏晶 STC12C5A60S2 系列 1T 8051

1个时钟/机器周期,高速、 高可靠,2路PWM,8路10位高速A/D转换,25万次/秒 宏晶科技是新一代增强型 8051 单片机标准的制定者和领导厂商 , 现已成长为全球最大的 8051 单片机设计公司 , 致力于提供满足中国市场需求的世界级高 性能单片机技术,采用宏晶最新第六代加密技术的STC12C5A60S2系列单片机无法解密。在高品质的基础上,以极低的价格和完善的服务赢得了客户的 长期信赖。现全力推出"1个时钟/机器周期"的单片机,全面提升8051单片机性能。新客户请直接联系深圳,以获得更好的技术支持与服务。

宏晶 STC12C5A6OS2/AD/PWM 系列主要性能:

高速:1个时钟/机器周期,增强型8051内核,速度比普通8051快8~12倍

宽电压:5.5~3.3V,2.2~3.6V(STC12LE5A60S2系列) 增加第二复位功能脚(可任意调整复位门槛电压,频率<12MHz 时,无需此功能) 增加掉电检测电路(P4.6),可在掉电时,及时将数据保存进EEPROM,正常工作时无需操作EEPROM

低功耗设计:空闲模式,(可由任意一个中断唤醒)

低功耗设计:掉电模式(可由外部中断唤醒),可支持下降沿/上升沿和远程唤醒

工作频率:0~35MHz,相当于普通8051:0~420MHz

时钟:外部晶体或内部 RC 振荡器可选,在 ISP 下载编程用户程序时设置

8/16/20/32/40/48/52/56/60/62K 字节片内 Flash 程序存储器,擦写次数 10 万次以上 1280 字节片内 RAM 数据存储器

芯片内 EEPROM 功能,擦写次数 10 万次以上

ISP / IAP, 在系统可编程/在应用可编程, 无需编程器/仿真器

8 通道, 10 位高速 ADC, 速度可达 25 万次 / 秒, 2 路 PWM 还可当 2 路 D/A 使用 2 通道捕获 / 比较单元 (PWM/PCA/CCP),

--- 也可用来再实现 2 个定时器或 2 个外部中断 (支持上升沿 / 下降沿中断) 个 16 位定时器, 兼容普通 8051 的定时器 TO/T1, 2 路 PCA 实现 2 个定时器

可编程时钟输出功能, T0 在 P3.4 输出时钟, T1 在 P3.5 输出时钟, BRT 在 P1.0 输出时钟 硬件看门狗(WDT)

高速 SPI 串行通信端口

全双工异步串行口(UART),兼容普通8051的串口

先进的指令集结构,兼容普通8051指令集,有硬件乘法/除法指令

通用 I / 0 口 (36/40/44 个), 复位后为: 准双向口/弱上拉(普通8051传统1/0口) 可设置成四种模式:准双向口/弱上拉,推挽/强上拉 ,仅为输入/高阻,开漏 每个 I/O 口驱动能力均可达到 20mA,但整个芯片最大不得超过 100mA

复位脚:烧录程序时如设置为 1/0 口, 可当 I/0 口使用或浮空

EX LVD: 是外部低压检测中断 / 比较器

不用的 I/0 口:浮空即可

使用LQFP48 封装时,最多有44个 I/0 口

使用LQFP44 封装时,最多有40个 I/0口

使用PDIP40封装时,最多有36个I/0口

选择 S T C 12C5A60S2/AD/PWM 系列单片机的理由:

加密性强, 无法解密

超强抗干扰,整机轻松过2万伏静电测试

Fax: 0755-82944243

速度快, 1 个时钟/ 机器周期,可用低频晶振,大幅降低 EMI

- 出口欧美的有力保证

超低功耗:

掉电模式:外部中断唤醒功耗 <0.1uA,支持下降沿/上升沿/低电平和远程唤醒 支持掉电模式专用唤醒定时器唤醒,启动掉电唤醒定时器典型功耗<2uA 适用于电池供电系统,如水表、气表、便携设备等。

空闲模式: 典型功耗 <1.3mA

正常工作模式:2mA - 7mA

输入/输出口多,最多有44个1/0口,A/D做按键扫描还可以节省很多1/0在系统可编程,无需编程器,无需仿真器,可远程升级

可送STC-ISP下载编程器,1万片/人/天

内部集成 MAX810 专用复位电路,原复位电路可以保留, 也可以不用,不用时RESET脚接1K电阻到地。

micro

8051 单片机全球第一品牌

中国大陆本土MCU领航者 新客户请直接联系深圳以获得更好的技术支持和服务 网址:www.STCMCU.com

85518657

53560138

62634001

82905966 82948412 Fax: 0755-82944243

Fax: 021-53080587

Fax: 010-62538683

Fax: 020-85517881

从网上下载样品申请单,

技术支持:13922805190

传真至深圳申请 STC 单片机 样片及 ISP 下载线 / 编程工具

宏晶科技:已成长为全球最大的8051单片机设计公司 请用无法解密的 STC11/10xx 系列取代全球各厂家均已被解密的 89 系列单片机

深 圳:Tel:0755-82948411

广州办:Tel:020-87501705

上海办:Tel:021-53560136

北京办:Tel:010-62538687

宏晶科技 STC12C5A60AD/S2 系列单片机选型一览表

型号	工作 电压(V)	Flash 程序 存储 器 字节	SRAM 字节	定时器TOT1	PCA定时器	U A R T		Р	EEP ROM	PCA 16位 PWM 8位	A/D 8路 25万 次 秒	1/0	看门狗	内置复位	外部 可调复位 上地区 电压	外实低检学	封装 40-Pin 36个I/0	封装 44-Pin 40个I/0 LQFP44 PLCC44	封装 48-Pin 44个I/0 LQFP48 PDIP48
		S	C12C5/	460AI)系	列单	<u></u> 片材	诜	型—\	<u></u>	= 3√(f∫;	包括系列单	片机	可供	用户洗	<u></u> 怪)			
STC12C5A08PWM	5.5 - 3.5	8K	1280	有	2	1	有	2	有	2路	301110	36/40/44	有	有	有	有	PDIP40	全有	 全有
STC12C5A08AD	5.5 - 3.5	8K	1280	有	2	1	有	2	有	2路	10位	36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A08S2	5.5 - 3.5	8K	1280	有	2	2	有	2	有	2路	10位	36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A16PWM	5.5 - 3.5	16K	1280	有	2	1	有	2	有	2路		36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A16AD	5.5 - 3.5	16K	1280	有	2	1	有	2	有	2路	10位	36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A16S2	5.5 - 3.5	16K	1280	有	2	2	有	2	有	2路	10位	36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A20PWM	5.5 - 3.5	20K	1280	有	2	1	有	2	有	2路		36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A20AD	5.5 - 3.5	20K	1280	有	2	1	有	2	有	2路	10位	36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A20S2	5.5 - 3.5	20K	1280	有	2	2	有	2	有	2路	10位	36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A32PWM	5.5 - 3.5	32K	1280	有	2	1	有	2	有	2路		36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A32AD	5.5 - 3.5	32K	1280	有	2	1	有	2	有	2路	10位	36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A32S2	5.5 - 3.5	32K	1280	有	2	2	有	2	有	2路	10位	36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A40PWM	5.5 - 3.5	40K	1280	有	2	1	有	2	有	2路		36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A40AD	5.5 - 3.5	40K	1280	有	2	1	有	2	有	2路	10位	36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A40S2	5.5 - 3.5	40K	1280	有	2	2	有	2	有	2路	10位	36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A48PWM	5.5 - 3.5	48K	1280	有	2	1	有	2	有	2路		36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A48AD	5.5 - 3.5	48K	1280	有	2	1	有	2	有	2路	10位	36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A48S2	5.5 - 3.5	48K	1280	有	2	2	有	2	有	2路	10位	36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A52PWM	5.5 - 3.5	52K	1280	有	2	1	有	2	有	2路		36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A52AD	5.5 - 3.5	52K	1280	有	2	1	有	2	有	2路	10位	36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A52S2	5.5 - 3.5	52K	1280	有	2	2	有	2	有	2路	10位	36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A56PWM	5.5 - 3.5	56K	1280	有	2	1	有	2	有	2路		36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A56AD	5.5 - 3.5	56K	1280	有	2	1	有	2	有	2路	10位	36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A56S2	5.5 - 3.5	56K	1280	有	2	2	有	2	有	2路	10位	36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A60PWM	5.5 - 3.5	60K	1280	有	2	1	有	2	有	2路		36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A60AD	5.5 - 3.5	60K	1280	有	2	1	有	2	有	2路	10位	36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A60S2	5.5 - 3.5	60K	1280	有	2	2	有	2	有	2路	10位	36/40/44	有	有	有	有	PDIP40	全有	全有
STC12C5A62PWM	5.5 - 3.5	62K	1280	有	2	1	有	2		2路		36/40/44		有	有	有	PDIP40	全有	全有
STC12C5A62AD	5.5 - 3.5	62K	1280	有		1	有	-		2路	10位	36/40/44		有	有	有	PDIP40	全有	全有
IAP12C5A62S2	5.5 - 3.5	62K	1280	有	2	2	有	2		2路	10位	36/40/44	有	有	有	有	PDIP40	全有	全有

宏晶新一代8051单片机

8051 单片机全球第一品牌,中国大陆本土 MCU 领航者 宏晶 STC12C5201AD 系列 1T 8051

1 个时钟 / 机器周期, 高速、高可靠, 2 路 PWM, 8 路 8 位高速 A / D 转换, 30 万次每秒 宏晶科技是新一代增强型8051单片机标准的制定者和领导厂商,现已成长为全球最大的8051单片机设计公司,致力于提供满足中国市场需求的世界级高 性能单片机技术,采用宏晶最新第六代加密技术的 STC12C5201AD 系列单片机无法解密。在高品质的基础上,以极低的价格和完善的服务赢得了客户的 长期信赖。现全力推出"1个时钟/机器周期"的单片机、全面提升8051单片机性能。新客户请直接联系深圳、以获得更好的技术支持与服务。

强烈推荐选择 SOP-16/20/28/32 贴片封装

每片单片机具有全球唯一身份证号码(ID号)

宏晶 STC12C5201AD 系列主要性能:

高速:1个时钟/机器周期,增强型8051内核,速度比普通8051快8~12倍宽电压:5.5~3.3V,2.2~3.6V(STC12LE5201AD系列)

增加第二复位功能脚(可任意调整复位门槛电压,频率<12MHz 时,无需此功能)

增加掉电检测电路(P1.2),可在掉电时,及时将数据保存进EEPROM(正常工作时无需操作EEPROM)

外部低压掉电检测 (P1.2/EX_LVD)

低功耗设计:空闲模式,掉电模式(可由外部中断唤醒)

工作频率:0~35MHz,相当于普通8051:0~420MHz

时钟:外部晶体或内部 RC 振荡器可选,在 ISP 下载编程用户程序时设置

1K/2K/4K/5K/6K 字节片内 Flash 程序存储器,擦写次数 10 万次以上

256 字节片内 RAM 数据存储器

芯片内 EEPROM 功能,擦写次数 10 万次以上

ISP / IAP, 在系统可编程/在应用可编程, 无需编程器/仿真器

8 通道,8 位高速 ADC,速度可达30 万次/秒,2 路 PWM 还可当2路 D/A 使用

2 通道捕获 / 比较单元 (PWM/PCA/CCP)

--- 也可用来再实现 2 个定时器或 2 个外部中断 (支持上升沿 / 下降沿中断)

4个16位定时器,兼容普通8051的定时器T0/T1,2路PCA实现2个定时器

可编程时钟输出功能, T0 在 P3.4 输出时钟, T1 在 P3.5 输出时钟

硬件看门狗(WDT)

全双工异步串行口(UART),兼容普通8051的串口

新客户请直接联系深圳以获得更好的技术支持和服务

先进的指令集结构,兼容普通8051指令集

有硬件乘法 / 除法指令

通用 | /0 口(27/23/15 个),复位后为: 准双向口/弱上拉(普通8051传统|/0口)可设置成四种模式:准双向口/弱上拉,推挽/强上拉,仅为输入/高阻,开漏每个 | /0 口驱动能力均可达到 20mA,但整个芯片最大不得超过 55mA

如果 1/0 口不够用,可以用 2 到 3 根普通 1/0 口线 外接74HC164/165/595(均可级联)来扩展 I/O 口, 还可用 A/D 做按键扫描来节省 I/O 口

选择宏晶STC12C5201AD 系列单片机的理由:

加密性强, 无法解密

超强抗干扰:

- 1、高抗静电(ESD保护),整机轻松过2万伏静电测试2、轻松过4KV快速脉冲干扰(EFT测试)
- 3、宽电压,不怕电源抖动
- 4、宽温度范围,-40 ~85
- 1 个时钟 / 机器周期,可用低频晶振,大幅降低 E M I --- 出口欧美的有力保证

超低功耗:

1、掉电模式: 典型功耗 <0.1 u A 空闲模式 典型功耗 1.8mA

正常工作模式: 曲型功耗 2 7mA - 7mA

掉电模式可由外部中断唤醒,适用于电池 供电系统,如水表、气表、便携设备等。

在系统可编程, 无需编程器, 无需仿真器, 可远程升级 可送STC-ISP下载编程器,1万片/人/天 内部集成MAX810专用复位电路,原复位电路可以保留,

也可以不用,不用时RESET 脚接1K 电阻到地。

micro

8051 单片机全球第一品牌 中国大陆本土MCU领航者

深 圳:Tel:0755-82948411 广州办:Tel:020-87501705 上海办:Tel:021-53560136 北京办:Tel:010-62538687

网址:www.STCMCU.com

Fax: 0755-82944243 Fax: 020-85517881 Fax: 021-53080587 Fax: 010-62538683

82905966

技术支持:13922805190

从网上下载样品申请单 传真至深圳申请 STC 单片机 样片及 ISP 下载线 / 编程工具

宏晶科技 STC12C5201AD 系列单片机选型一览表

-型 묵	工作 电压(V)	sh 程序储器节	SR- AM 字 节	0 T	A 定时	U A C R F T T 串 R	EP R-	PCA 16 位 PWM 8位	A/D 8路	1/0	看门狗	内置复位	外部低压检测	封装 16-Pin	封装 18-P- in	封装 20-Pin	封装 28-Pin	封装 32-Pin
-								STC1	2C520	1AD/PWM系列单片	机选	型一	览					
STC12C5201	5.5 - 3.3	1K	256	有		有 1				11/13/15	有	有	有	SOP/DIP	DIP	SOP/LSSOP/DIP		
STC12C5201PWM	5.5 - 3.3	1K	256	有	2	有 1	有	2路		11/13/15	有	有	有	SOP/DIP	DIP	SOP/LSSOP/DIP		
STC12C5201AD	5.5 - 3.3	1K	256	有	2	有 1	有	2路	8位	11/13/15	有	有	有	SOP/DIP	DIP	SOP/LSSOP/DIP		
STC12C5202	5.5 - 3.3	2K	256	有		有 1				11/13/15/23/27	有	有	有	SOP/DIP	DIP	SOP/LSSOP/DIP	SOP/SKDIP	LQFP/SOP
STC12C5202PWM	5.5 - 3.3	2K	256	有	2	有 1	有	2路		11/13/15/23/27	有	有	有	SOP/DIP	DIP	SOP/LSSOP/DIP	SOP/SKDIP	LQFP/SOP
STC12C5202AD	5.5 - 3.3	2K	256	有	2	有 1	有	2路	8位	11/13/15/23/27	有	有	有	SOP/DIP	DIP	SOP/LSSOP/DIP	SOP/SKDIP	LQFP/SOP
STC12C5204	5.5 - 3.3	4K	256	有		有 1				11/13/15/23/27	有	有	有	SOP/DIP	DIP	SOP/LSSOP/DIP	SOP/SKDIP	LQFP/SOP
STC12C5204PWM	5.5 - 3.3	4K	256	有	2	有 1	有	2路		11/13/15/23/27	有	有	有	SOP/DIP	DIP	SOP/LSSOP/DIP	SOP/SKDIP	LQFP/SOP
STC12C5204AD	5.5 - 3.3	4K	256	有	2	有 1	有	2路	8位	11/13/15/23/27	有	有	有	SOP/DIP	DIP	SOP/LSSOP/DIP	SOP/SKDIP	LQFP/SOP
STC12C5205	5.5 - 3.3	5K	256	有		有 1				11/13/15/23/27	有	有	有	SOP/DIP	DIP			
STC12C5205PWM	5.5 - 3.3	5K	256	有	2	有 1	有	2路		11/13/15/23/27	有	有	有	SOP/DIP	DIP	需P1.0/P1.1 = (载用户程序(无I		种才可以下
STC12C5205AD	5.5 - 3.3	5K	256	有	2	有 1	有	2路	8位	11/13/15/23/27	有	有	有	SOP/DIP	DIP	半私円) 1±/1/(ノし!	U J)	
STC12C5206	5.5 - 3.3	6K	256	有		有 1				11/13/15/23/27	有	有	有	SOP/DIP	DIP	可在程序区修改	程序区	
STC12C5206PWM	5.5 - 3.3	6K	256	有	2	有 1		2路		11/13/15/23/27	有	有	有	SOP/DIP	DIP	需P1.0/P1.1 = 0	神才可以下	
STC12C5206AD	5.5 - 3.3	6K	256	有	2	有 1		2路	8位	11/13/15/23/27	有	有	有	SOP/DIP	DIP	载用户程序(无		
								STC12	LE520	D1AD/PWM系列单片	机选	型-	览					
STC12LE5201	3.6 - 2.2	1K	256	有	1	有 1	T	T		11/13/15	有	有	有	SOP/DIP	DIP	SOP/LSSOP/DIP		
STC12LE5201PWM	3.6 - 2.2	1K			_	_	+	2路		11/13/15	有	有	<u> </u>	SOP/DIP	DIP	SOP/LSSOP/DIP		
STC12LE5201AD	3.6 - 2.2	1K	256	有	_	_	有	2路	8位	11/13/15	有	有		SOP/DIP	DIP	SOP/LSSOP/DIP		
STC12LE5202	3.6 - 2.2	2K	256	-	_	有 1	1.5	-24		11/13/15/23/27	有	有	-	SOP/DIP	DIP	SOP/LSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5202PWM	3.6 - 2.2	2K	256		-	_	有	2路		11/13/15/23/27	有	有	-	SOP/DIP	DIP	SOP/LSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5202AD	3.6 - 2.2	2K	256	有	_	_	+	2路	8位	11/13/15/23/27	有	有		SOP/DIP	DIP	SOP/LSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5204	3.6 - 2.2	4K	256	有	_	有 1	1.5		- 1,-	11/13/15/23/27	有	有		SOP/DIP	DIP	SOP/LSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5204PWM	3.6 - 2.2	4K	256	有	-	-	有	2路		11/13/15/23/27	有	有	-	SOP/DIP	DIP	SOP/LSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5204AD	3.6 - 2.2	4K	256	有	-	+	+-	2路	8位	11/13/15/23/27	有	有	-	SOP/DIP	DIP	SOP/LSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5205	3.6 - 2.2	5K	256		-	有 1	┿	1	┢	11/13/15/23/27	有	有		SOP/DIP	DIP			
STC12LE5205PWM	3.6 - 2.2	5K	256		-	有 1	有	2路		11/13/15/23/27	有	有		SOP/DIP	DIP	需P1.0/P1.1 = 0	神才可以下	
STC12LE5205AD	3.6 - 2.2	5K	256	-	_	-	有	2路	8位	11/13/15/23/27	有	有		SOP/DIP	DIP	载用户程序(无) כ עון	
STC12LE5206	3.6 - 2.2	6K	256	有	-	有 1	T	1	Ť	11/13/15/23/27	有	有	-	SOP/DIP	DIP	コケ40点であった	和序区	
STC12LE5206PWM	3.6 - 2.2	6K	256	有	-	-	t	2路		11/13/15/23/27	有	有	-	SOP/DIP	DIP	可在程序区修改 需P1.0/P1.1 = 0		沖才可以下
STC12LE5206AD	3.6 - 2.2	6K	256	有	+	有 1	T	2路	8位	11/13/15/23/27	有	有		SOP/DIP	DIP	载用户程序(无		• • • •

超强抗干扰 无法解密 宏晶新一代8051单片机

STC 12C5620AD 系列 1T 8051 单片机

——1 个时钟 / 机器周期,高速、高可靠,4 路 P W M ,8 路 10 位高速 A / D 转换 宏晶科技是新一代增强型8051 单片机标准的制定者和领导厂商,现已成长为全球最大的8051 单片机设计公司,致力于提供满足中国市场需求的世界级高性能单片机技术,采用宏晶最新第六代加密技术的STC12C5620AD 系列单片机无法解密。在高品质的基础上,以极低的价格和完善的服务赢得了客户的长期信赖。现全力推出"1 个时钟 / 机器周期"的单片机,全面提升8051 单片机性能。新客户请直接联系深圳,以获得更好的技术支持与服务。

推荐选择 SOP-20/28/32 贴片封装, 尽量不选落后的插件 DIP 封装

宏晶 STC12C5624AD 系列主要性能:

高速:1 个时钟 / 机器周期,增强型 8051 内核,速度比普通 8051 快 8~12 倍

宽电压:5.5~3.5V,2.2~3.6V(STC12LE5624AD 系列) 低功耗设计:空闲模式,掉电模式(可由外部中断唤醒)

工作频率:0~35MHz,相当于普通8051:0~420MHz 时钟:外部晶体或内部RC振荡器可选,在ISP下载编程用户程序时设置

30K/28K/24K/20K/16K/12K/8K/4K字节片内 Flash 程序存储器,擦写次数 10 万次以上

256+512 字节片内 RAM 数据存储器

芯片内 EEPROM 功能

ISP / IAP, 在系统可编程/在应用可编程, 无需编程器/仿真器

10 位 ADC, 8 通道。4 路 PWM 还可当 4 路 D/A 使用

4 通道捕获 / 比较单元 (PWM / PCA / CCU)

--- 也可用来再实现 4 个定时器或 4 个外部中断 (支持上升沿 / 下降沿中断)

6个16位定时器,兼容普通8051的定时器T0/T1,4路PCA也是4个定时器

可编程时钟输出功能, T0 可在 P1.0 输出时钟, T1 可在 P1.1 输出时钟

硬件看门狗(WDT)

高速 SPI 通信端口

全双工异步串行口(UART),兼容普通8051的串口

先进的指令集结构,兼容普通8051指令集

有硬件乘法/除法指令

通用 I / 0 口 (27/23/15 个),复位后为: 准双向口/弱上拉(普通8051 传统 I / 0 口)可设置成四种模式:准双向口/弱上拉,推挽/强上拉,仅为输入/高阻,开漏每个 I / 0 口驱动能力均可达到 20mA,但整个芯片最大不得超过55mA

如选 32-Pin,推荐选 LQFP-32,

如果 I/0 口不够用,可以用2到3根普通 I/0 口线外接 74HC164/165/595(均可级联)来扩展 I/0 口,还可用 A/D 做按键扫描来节省 I/0 口

选择宏晶STC12C5624AD系列单片机的理由:

加密性强, 无法解密

超强抗干扰:

1、高抗静电(ESD保护)

2、轻松过4KV快速脉冲干扰(EFT测试)

3、宽电压,不怕电源抖动

4、宽温度范围,-40 ~85

1 个时钟 / 机器周期,可用低频晶振,大幅降低 E M I

--- 出口欧美的有力保证 超低功耗:

1、掉电模式: 典型功耗 <0.1 μ A 2、空闲模式: 典型功耗 1.8mA

3、正常工作模式: 典型功耗 2.7mA - 7mA

、掉电模式可由外部中断唤醒,适用于电池供电系统,如水表、气表、便携设备等。

在系统可编程,无需编程器,无需仿真器,可远程升级可送STC-ISP下载编程器,1万片/人/天内部集成MAX810专用复位电路,原复位电路可以保留,

也可以不用,不用时RESET脚接1K电阻到地。

STC micro

宏晶科技

全球最大的 8051 单片机设计公司中国大陆本土 MCU 领航者

中国大陆本土 MCU 领航者 新客户请直接联系深圳以获得更好的技术支持和服务 深 圳:Tel:0755-82948411 广州办:Tel:020-87501705 上海办:Tel:021-53560136

北京办:Tel:010-62538687

82948412 85518657 53560138

62634001

网址:www.STCMCU.com

Fax: 0755-82944243
Fax: 020-85517881
Fax: 021-53080587

Fax: 010-62538683

82905966 免费索取

技术支持:13922805190

从网上下载样品申请单, 传真至深圳申请STC单片机 样片及ISP下载线/编程工具

宏晶科技: 已成长为全球最大的8051单片机设计公司 请用无法解密的STC11/10xx系列取代全球各厂家均已被解密的89系列单片机

宏晶科技 STC12C5620AD 系列单片机选型一览表

型 묵	工作 电压(V)	Flash 程序 存储 器 字节	SRAM 字节	定时器	时钟输出	UART	PCA 16位 PWM 8位	A/D 8路	1/0	看门狗	内置复位	EEP ROM	S P I	封装 20-Pin	封装 28-Pin	封装 32-Pin
	1		1					4AD系	列单片机选							
STC12C5601	5.5 - 3.5	1K	768	6	有	有	4路		27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5601AD	5.5 - 3.5	1K	768	6	有	有	4路	10位	27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5602	5.5 - 3.5	2K	768	6	有	有	4路		27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5602AD	5.5 - 3.5	2K	768	6	有	有	4路	10位	27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5604	5.5 - 3.5	4K	768	6	有	有	4路		27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5604AD	5.5 - 3.5	4K	768	6	有	有	4路	10位	27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5605	5.5 - 3.5	5K	768	6	有	有	4路		27/23/15	有	有	IAP	有	需使用外部 时钟 才可以 下载用户		
STC12C5605AD	5.5 - 3.5	5K	768	6	有	有	4路	10位	27/23/15	有	有	IAP	有	区直接修改用户		
STC12C5608	5.5 - 3.5	8K	768	6	有	有	4路		27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5608AD	5.5 - 3.5	8K	768	6	有	有	4路	10位	27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5612	5.5 - 3.5	12K	768	6	有	有	4路		27/23/15	有	有	IAP	有	需使用外部 时钟		
STC12C5612AD	5.5 - 3.5	12K	768	6	有	有	4路	10位	27/23/15	有	有	IAP	有	才可以 下载用户 区直接修改用户		用尸程序
STC12C5616	5.5 - 3.5	16K	768	6	有	有	4路		27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5616AD	5.5 - 3.5	16K	768	6	有	有	4路	10位	27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5620	5.5 - 3.5	20K	768	6	有	有	4路		27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5620AD	5.5 - 3.5	20K	768	6	有	有	4路	10位	27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5624	5.5 - 3.5	24K	768	6	有	有	4路		27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5624AD	5.5 - 3.5	24K	768	6	有	有	4路	10位	27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5628	5.5 - 3.5	28K	768	6	有	有	4路		27/23/15	有	有	IAP	有	需使用外部 时钟	中,需P1.0/P [·]	1.1 = 0/0
STC12C5628AD	5.5 - 3.5	28K	768	6	有	有	4路	10位	27/23/15	有	有	IAP	有	才可以 下载用户 区直接修改用户		用户程序
				6	有	有	4路	1012		有	有	IAP	有	需使用外部 时钟		1 1 – 0/0
STC12C5630	5.5 - 3.5	30K	768		-				27/23/15			-		才可以 下载用户		
STC12C5630AD	5.5 - 3.5	30K	768	6	有	有	4路	10位	27/23/15	有	有	IAP	有	区直接修改用户	程序	
			1	1				24AD系	列单片机选		<u> </u>				·	
STC12LE5601	3.6 - 2.2	1K	768	6	有	有	4路		27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5601D	3.6 - 2.2	1K	768	6	有	有	4路	10位	27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5602	3.6 - 2.2	2K	768	6	有	有	4路		27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5602AD	3.6 - 2.2	2K	768	6	有	有	4路	10位	27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5604	3.6 - 2.2	4K	768	6	有	有	4路	10/4	27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5604AD	3.6 - 2.2	4K	768		有	有	4路	1011	27/23/15		有	有		SOP/TSSOP/DIP		
STC12LE5605	3.6 - 2.2	4K	768	6	有	有	4路		27/23/15	有	有	有	有	需使用外部 时钟 才可以 下载用户	P,需P1.0/P P程序 可在	1.1 = 0/0 用户程序
STC12LE5605AD	3.6 - 2.2	4K	768	6	有	有	4路	10位	27/23/15	有	有	有	有	区直接修改用户		137 1273
STC12LE5608	3.6 - 2.2	8K	768	6	有	有	4路		27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5608AD	3.6 - 2.2	8K	768	6	有	有	4路	10位	27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5612	3.6 - 2.2	12K	768	6	有	有	4路		27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5612AD	3.6 - 2.2	12K	768	6	有	有	4路	10位	27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5616	3.6 - 2.2	16K	768	6	有	有	4路		27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5616AD	3.6 - 2.2	16K	768	6	有	有	4路	10位	27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5620	3.6 - 2.2	20K	768	6	有	有	4路		27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5620AD	3.6 - 2.2	20K	768	6	有	有	4路	10位	27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5624	3.6 - 2.2	24K	768	6	有	有	4路		27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5624AD	3.6 - 2.2	24K	768	6	有	有	4路	10位	27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5628	3.6 - 2.2	28K	768	6	有	有	4路		27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5628AD	3.6 - 2.2	28K	768	6	有	有	4路	10位	27/23/15	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5630	3.6 - 2.2	30K	768	6	有	有	4路		27/23/15	有	有	-	有	需使用外部 时钟 才可以 下载用户		
STC12LE5630AD	3.6 - 2.2	30K	768	6	有	有	4路	10位	27/23/15	有	有		有	区直接修改用户		1±/J.

1T 12C5410AD 系列 8051 单片机

1 个时钟 / 机器周期,高速、高可靠,4路PWM,8路高速A/D转换

宏晶科技是新一代增强型 8051 单片机标准的制定者和领导厂商,致力于提供满足中国市场需求的世界级高性能单片机技术,在业内处于领先地位,销售网 络覆盖全国。在高品质的基础上, 以极低的价格和完善的服务赢得了客户的长期信赖。在广受欢迎的 STC89C51 全系列单片机的基础上, 现全力推出 " 1 个时钟 / 机器周期 " 的单片机, 全面提升 8051 单片机性能。欢迎海内外厂家前来洽谈合作! 新客户请直接联系深圳, 以获得更好的技术支持与服务。

强烈推荐选择 SOP-20/28/32 贴片封装,尽量不选落后的插件 DIP 封装

高速:1个时钟/机器周期,增强型8051内核,速度比普通8051快8~12倍

宽电压:5.5~3.8V,2.4~3.8V(STC12LE5410AD系列)

低功耗设计:空闲模式,掉电模式(可由外部中断唤醒)

工作频率:0~35MHz,相当于普通8051:0~420MHz

时钟:外部晶体或内部RC振荡器可选,在ISP下载编程用户程序时设置

12K/10K/8K/6K/4K/2K 字节片内 Flash 程序存储器,擦写次数 10 万次以上

512字节片内 RAM 数据存储器

芯片内 EEPROM 功能

ISP / IAP , 在系统可编程 / 在应用可编程 , 无需编程器 / 仿真器

10 位 ADC, 8 通道, STC12C2052AD 系列为 8 位 ADC。4 路 PWM 还可当 4 路 D/A 使用 4 通道捕获 / 比较单元 (PWM / PCA / CCU) , STC12C2052AD 系列为 2 通道

SICYZNEZ , JEETH -- 也可用来再实现 4 个定时器或 4 个外部中断(支持上升沿 / 下降沿中断) 2 个硬件 16 位定时器,兼容普通 8051 的定时器。4 路 PCA 还可再实现4 个定时器 硬件看门狗(WDT)

高速 SPI 通信端口

全双工异步串行口(UART),兼容普通8051的串口

先进的指令集结构,兼容普通8051指令集

4组8个8位通用工作寄存器(共32个通用寄存器) 有硬件乘法 / 除法指令

通用 I / 0 口 (27 / 23 / 15 个), 复位后为: 准双向口 / 弱上拉 (普通 8051 传统 I / 0 口) 可设置成四种模式:准双向口/弱上拉,推挽/强上拉,仅为输入/高阻,开漏 每个 I/O 口驱动能力均可达到 20mA,但整个芯片最大不得超过 55mA

选 择 宏晶 S T C 12C5410AD 系 列 单 片 机 的 理 由 :

加密性强,无法解密

超强抗干扰:

高抗静电(ESD保护)

2、轻松过4KV快速脉冲干扰(EFT测试)

3、宽电压,不怕电源抖动

4、宽温度范围,-40

1 个时钟 / 机器周期,可用低频晶振,大幅降低 E M I

--- 出口欧美的有力保证

超低功耗:

掉电模式 典型功耗 <0.1 µ A

空闲模式: 典型功耗 2mA

正常工作模式: 曲型功耗 2 7mA - 7mA 掉电模式可由外部中断唤醒,适用于电池

供电系统,如水表、气表、便携设备等。

在系统可编程, 无需编程器, 无需仿真器 , 可远程升级 可送STC-ISP下载编程器,1万片/人/天内部集成MAX810专用复位电路,原复位电路可以保留, 也可以不用,不用时RESET脚接1K电阻到地。

micro

8051 单片机全球第一品牌

中国大陆本土MCU领航者 新客户请直接联系深圳以获得更好的技术支持和服务 网址:www.STCMCU.com

82948412 Fax: 0755-82944243 85518657 Fax: 020-85517881

53560138 Fax: 021-53080587 62634001 Fax: 010-62538683 技术支持:13922805190 82905966

> 从网上下载样品申请单. 传真至深圳申请 STC 单片机 样片及 ISP 下载线 / 编程工具

宏晶科技:已成长为全球最大的8051单片机设计公司 请用无法解密的 STC11/10xx 系列取代全球各厂家均已被解密的 89 系列单片机

深 圳:Tel:0755-82948411

广州办:Tel:020-87501705

上海办:Tel:021-53560136

北京办:Tel:010-62538687

STC12C5410AD / 2052AD 系列单片机选型一览表

型 묵	工作 电压(V)	Flash 程序 存储 器 字节	SRAM 字节	定时器	时钟输出	UART	PCA 16 位 PWM 8位	A/D 8路	1/0	看门狗	内置复位	EEP ROM	S P	封装 20-Pin	封装 28-Pin	封装 32-Pin
					ST	C12C2	052AE)系列的	单片机选	型-	一览					
STC12C1052	5.5 - 3.5	1K	256	4	有	有	2路		15	有	有	有	有	SOP/TSSOP/DIP		
STC12C1052AD	5.5 - 3.5	1K	256	4	有	有	2路	8位	15	有	有	有	有	SOP/TSSOP/DIP		
STC12C2052	5.5 - 3.5	2K	256	4	有	有	2路		15	有	有	有	有	SOP/TSSOP/DIP		
STC12C2052AD	5.5 - 3.5	2K	256	4	有	有	2路	8位	15	有	有	有	有	SOP/TSSOP/DIP		
STC12C4052	5.5 - 3.5	4K	256	4	有	有	2路		15	有	有	有	有	SOP/TSSOP/DIP		
STC12C4052AD	5.5 - 3.5	4K	256	4	有	有	2路	8位	15	有	有	有	有	SOP/TSSOP/DIP		
STC12C5052	5.5 - 3.5	5K	256	4	有	有	2路		15	有	有	有	有	SOP/TSSOP/DIP	管脚:	
STC12C5052AD	5.5 - 3.5	5K	256	4	有	有	2路	8位	15	有	有	有	有	SOP/TSSOP/DIP	89C20	J5 I
STC12LE1052	2.2 - 3.8	1K	256	4	有	有	2路		15	有	有	有	有	SOP/TSSOP/DIP	超强:	抗干扰
STC12LE1052AD	2.2 - 3.8	1K	256	4	有	有	2路	8位	15	有	有	有	有	SOP/TSSOP/DIP	 无法!	解密
STC12LE2052	2.2 - 3.8	2K	256	4	有	有	2路		15	有	有	有	有	SOP/TSSOP/DIP	, , , , ,	
STC12LE2052AD	2.2 - 3.8	2K	256	4	有	有	2路	8位	15	有	有	有	有	SOP/TSSOP/DIP		
STC12LE4052	2.2 - 3.8	4K	256	4	有	有	2路		15	有	有	有	有	SOP/TSSOP/DIP		
STC12LE4052AD	2.2 - 3.8	4K	256	4	有	有	2路	8位	15	有	有	有	有	SOP/TSSOP/DIP		
STC12LE5052	2.2 - 3.8	5K	256	4	有	有	2路		15	有	有	有	有	SOP/TSSOP/DIP		
STC12LE5052AD	2.2 - 3.8	5K	256	4	有	有	2路	8位	15	有	有	有	有	SOP/TSSOP/DIP		
					ST	C12C5	410AE)系列阜	•——— 单片机选	型-	一览					
STC12C5402	5.5 - 3.5	2K	512	6	有	有	4路		27/23	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5402AD	5.5 - 3.5	2K	512	6	有	有	4路	10位	27/23	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5404	5.5 - 3.5	4K	512	6	有	有	4路		27/23	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5404AD	5.5 - 3.5	4K	512	6	有	有	4路	10位	27/23	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5406	5.5 - 3.5	6K	512	6	有	有	4路		27/23	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5406AD	5.5 - 3.5	6K	512	6	有	有	4路	10位	27/23	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5408	5.5 - 3.5	8K	512	6	有	有	4路		27/23	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5408AD	5.5 - 3.5	8K	512	6	有	有	4路	10位	27/23	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5410	5.5 - 3.5	10K	512	6	有	有	4路		27/23	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5410AD	5.5 - 3.5	10K	512	6	有	有	4路	10位	27/23	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5412	5.5 - 3.5	12K	512	6	有	有	4路		27/23			有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12C5412AD	5.5 - 3.5	12K	512	6	有	有	4路	10位	27/23	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
				1												
STC12LE5402	2.2 - 3.8	2K	512	6	有	有	4路		27/23			有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5402AD	2.2 - 3.8	2K	512	6	有	有	4路	10位	27/23	-	-	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5404	2.2 - 3.8	4K	512	6	有	有	4路		27/23	_		有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5404AD	2.2 - 3.8	4K	512	6	有	有	4路	10位	27/23	-		有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5406	2.2 - 3.8	6K	512	6	有	有	4路		27/23	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5406AD	2.2 - 3.8	6K	512	6	有	有	4路	10位	27/23	-	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5408	2.2 - 3.8	8K	512	6	有	有	4路		27/23	-	_	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5408AD	2.2 - 3.8	8K	512	6	有	有	4路	10位	27/23	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5410	2.2 - 3.8	10K	512	6	有	有	4路		27/23		有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5410AD	2.2 - 3.8	10K	512	6	有	有	4路	10位	27/23	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5412	2.2 - 3.8	12K	512	6	有	有	4路		27/23	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP
STC12LE5412AD	2.2 - 3.8	12K	512	6	有	有	4路	10位	27/23	有	有	有	有	SOP/TSSOP/DIP	SOP/SKDIP	SOP/LQFP

降低的是成本

STC 89 系列单片机选型· 超低价

型号	最高 频 5V	时钟 率Hz 3V	Flash 存储器	RAM 字节	降低 EMI	看门狗	双倍速	Р 4 П	I S P	I A P	E ² P ROM 字节	A / D
STC 89C51 RC	0 ~ 80M		4K	512		0					2K+	
STC 89C52 RC	0 ~ 80M		8K	512		0					2K+	
STC 89C53 RC	0 ~ 80M		15K	512		0						
STC 89C54 RD+	0 ~ 80M		16K	1280		0					16K+	
STC 89C55 RD+	0 ~ 80M		20K	1280		0					16K+	
STC 89C58 RD+	0 ~ 80M		32K	1280		0					16K+	
STC 89C516 RD+	0 ~ 80M		64K	1280		0						
STC 89LE51 RC		0 ~ 80M	4K	512		0					2K+	
STC 89LE52 RC		0 ~ 80M	8K	512		0					2K +	
STC 89LE53 RC		0 ~ 80M	15K	512		0						
STC 89LE54 RD+		0 ~ 80M	16K	1280		0					16K +	
STC 89LE58 RD+		0 ~ 80M	32K	1280		0					16K+	
STC 89LE516RD+		0 ~ 80M	64K	1280		0						

(全球各厂家89系列均已被解密) 超强抗干扰:

加密性强,但还是请使用最新第六代加密技术

无法解密的STC11/10xx 系列单片机直接取代

选择 S T C 8 9 C 5 1 系 列 单片机的理 由 :

- 1、高抗静电(ESD保护)
- 轻松过2KV/4KV快速脉冲干扰(EFT测试)
- 3、宽电压,不怕电源抖动
- 4、宽温度范围, -40
- 三大降低单片机时钟对外部电磁辐射的措施: - 出口欧美的有力保证
- 1、禁止ALE输出;
- 2、如选6时钟/机器周期,外部时钟频率可降一半;
- 3、单片机时钟振荡器增益可设为1/2gain。

超低功耗:

- 1、掉电模式: 典型功耗 $<0.1 \mu A$ 2、正常工作模式: 典型功耗 4mA - 7mA
- 3、掉电模式可由外部中断唤醒,适用于电池 供电系统,如水表、气表、便携设备等。

在系统可编程, 无需编程器, 无需仿真器 可送STC-ISP下载编程器,1万片/人/天 可供应内部集成 MAX810 专用复位电路的单片机, 只有 D 版本才有内部集成专用复位电路,原复位 电路可以保留,也可以不用,不用时RESET脚 接1K 电阻到地

强烈推荐 LQFP44 小型封装

关于单片机说明:<管脚与流行的8051兼容> 大客户超低价

DIP-40, PLCC-44, LQFP-44 封装(RC/RD+系列PLCC、LQFP有P4口地址E8H,AD系列P4口为COH) RC/RD+系列PLCC、LQFP多两个外部中断P4.2/INT3, P4.3/INT2。 P4 口均可位寻址 5V: 5.5V~3.8V; 3V: 3.8V~2.4V(仅针对 RC/RD+系列) 直下的看门狗 可始ふ尘土地如果了。

真正的看门狗,可放心省去外部看门狗,缺省为关闭,打开后无法关闭。单倍速和双倍速可反复设置 "6时钟/机器周期"和"12时钟/机器周期"可在 ISP 编程时反复设置,新的设置冷启动后才生效

尽量不选落后的 PDIP 和 PLCC 封装

STC11/10xx 系列单片机取代全球各厂家均已被解密的89系列

82905966

micro

8051 单片机全球第一品牌 中国大陆本土 MCU 领航者

新客户请直接联系深圳以获得更好的技术支持和服务

圳:Tel:0755-82948411 广州办:Tel:020-87501705

上海办:Tel:021-53560136 北京办:Tel:010-62538687 62634001

82948412 Fax: 0755-82944243 85518657 Fax: 020-85517881 53560138 Fax: 021-53080587

Fax: 010-62538683

网址:www.STCMCU.com

技术支持:13922805190

从网上下载样品申请单, 传真至深圳申请 STC 单片机 样片及 ISP 下载线 / 编程工具

STC90C58AD 系列 单片机简介

STC90C58AD 系列单片机是宏晶科技推出的新一代超强抗干扰 / 高速 / 低功耗的单片机 , 指令代码完全兼容传统 8051 单片机 , 12 时钟 / 机器周期和 6 时钟 / 机器周期可任意选择 , 内部集成 MAX810 专用复位电路,时钟频率在 12MHz 以下时,复位脚可直接接地.

特点:

- 1. 增强型6时钟/机器周期,12时钟/机器周期 8051 CPU
- 2. 工作电压:5.5V 3.8V(5V单片机) / 3.6V 2.4V(3V单片机)
- 3. 工作频率范围:0 40 MHz,相当于普通8051的 0~80MHz.
- 4. 用户应用程序空间 4K/6K/7K/8K/10K/12K/13K/16K/32K/40K/48K/56K/61K/字节
- 5. 片上集成 256 + 4096 字节 RAM
- 6. 通用 I/O 口(35/39 个),复位后为: P1/P2/P3/P4 是准双向口/弱上拉(普通8051 传统 I/O 口) P0 口是开漏输出,作为总线扩展用时,不用加上拉电阻,作为 I/O 口用时,需加上拉电阻。
- 7. ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器/仿真器可通过串口(P3.0/P3.1)直接下载用户程序,8K程序3-5秒即可完成一片
- 8. EEPROM 功能
- 9. 看门狗
- 10.内部集成 MAX810 专用复位电路,外部晶体 12M 以下时,可省外部复位电路,复位脚可直接接地.
- 11. 共 3 个 16 位定时器 / 计数器,其中定时器 0 还可以当成 2 个 8 位定时器使用
- 12.外部中断 4 路, 下降沿中断或低电平触发中断, Power Down 模式可由外部中断低电平触发中断方式唤醒
- 13. 通用异步串行口(UART),还可用定时器软件实现多个UART
- 14. 工作温度范围: 0 75 / -40 +85
- 15. 封装: LQFP-44.PDIP-40, PLCC-44

STC90C58AD 系列单片机 管脚图

AUXR 8Eh	Auxiliary Register 0	UART_P1 -	-	-	-	-	EXTRAM	ALEOFF	0xxx,xx00
UART_P1	= 0, 串口/UART在P3口	[P3.0/RxD,P3	.1/Tx	D]					

UART_P1 = 1, 串口 /UART 在 P1 口,将串口从 P3 口切换到 P1 口 [P1.6/RxD,P1.7/TxD]

EXTRAM = 0, 允许访问内部扩展 0000H - 0FFFH 单元 (4096 字节 RAM), 超过 0FFFH 的地址空间总

是访问外部数据存储器

EXTRAM = 1, 禁止访问内部扩展 0000H - 0FFFH 单元(4096 字节 RAM), 直接访问外部数据存储器

数据

ALEOFF = 0, ALE信号正常输出。

ALEOFF = 1, 禁止 ALE 信号输出。但在访问外部数据空间及外部程序空间时有信号输出。

P4 口: 地址在 COH, P4.3 - P4.0

A/D 转换在 P1 口, P1.0 - P1.7 八路。

A/D 转换典型应用线路:

STC 8051 封装尺寸图

LQFP-44 OUTLINE PACKAGE

C	COMMON D	IMENSION	S
(UNITS	OF MEASU	IRE = MIL	LIMETER)
SYMBOL	MIN	NOM	MAX
А		ı	1.20
A 1	0.05	-	0.15
A 2	1.35	1 . 4 0	1 . 4 5
A 3	0.39	0.44	0.49
b	0.31	-	0 . 4 4
b 1	0.30	0.35	0.40
С	0.13	-	0.18
c 1	0.12	0.127	0.134
D	11.80	12.00	12.20
D 1	9.90	10.00	10.10
Е	11.80	12.00	12.20
E 1	9.90	10.00	10.10
е		0.80BSC	-
L	0.45	0.60	0.75
L 1		1.00REF	
L 2		0.25BSC	
R 1	0.08	-	-
R 2	0.08	-	0.20
S	0.20	-	-
	0 °	3 . 5 °	7 °
1	0 °	-	-
2	1 1 °	1 2 °	1 3 °
3	1 1 °	1 2 °	1 3 °

DIP40: plastic dual in-line package;40 leads(600 mil)

DIMENSIONS(inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e 1	L	Мв	Мн	W	Z ⁽¹⁾ max.
mm	4.7	0.51	4.0	1.70 1.14	0.53 0.38	0.36 0.23	52.5 51.5	14.1 13.7	2.54	15.24	3.60 3.05	15.8 15.24	17.42 15.90		2.25
inches	0.19	0.020	0.16	0.067 0.045	0.021 0.015	0.014	2.067 2.028	0.56 0.54	0.10	0.60	0.14 0.12	0.62 0.60	0.69 0.63	0.01	0.089

Note

1.Plastic or metal protrusion of 0.25 mm maximum per side are not included

OUTLINE		REFE	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	1330E DATE
S0T129-1	051G08	MO-015	SC-511-40		95-01-14 99-12-27

PLCC44: plastic leaded chip carrier;44 leads

DIMENSIONS(millimetre dimensions are derived from the original inch dimensions)

UNIT	A	A ₁ max.	Аз	A4 max.	bp	b ₁	D ⁽¹⁾	E ⁽¹⁾	е	e _D	e _E	H _D	H _E	k	kı max.	L _p	٧	w	у	$Z_{\scriptscriptstyle D}^{\;(1)}$ max.	$Z_{E}^{(1)}$ max.	
mm	4.57 4.19	0.51	0.25	3.05	0.53 0.33	0.81 0.66	16.66 16.51	16.66 16.51	1.27	16.00 14.99	16.00 14.99	17.65 17.40	17.65 17.40	1.22 1.07	0.51	1.44 1.02	0.18	0.18	0.10	2.16	2.16	45°
inches	0.180 0.165	0.020	0.01	0.12	0.021 0.013	0.032 0.026	0.656 0.650	0.656 0.650	0.05	0.630 0.590	0.630 0.590	0.695 0.685	0.695 0.685	0.048 0.042	0.020	0.057 0.040	0.007	0.007	0.004	0.085	0.085	

Note

1.Plastic or metal protrusions of 0.01 inches maximum per side are not included

Γ	OUTLINE		REFE	RENCES	EUROPEAN	ISSUE DATE
L	VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
ſ	S0T187-2	112E10	MO-047			97-12-16 99-12-27

PQFP44

0	Dimen	sion ir	inch	Dimen	sion i	n mm
Symbol	Min.	Nom.	Max.	Min.	Nom.	Max.
А						
A ₁	0.002	0.01	0.02	0.05	0.25	0.5
A2	0.075	0.081	0.087	1.90	2.05	2.20
b	0.01	0.014	0.018	0.25	0.35	0.45
С	0.004	0.006	0.010	0.101	0.152	0.254
D	0.390	0.394	0.398	9.9	10.00	10.1
Е	0.390	0.394	0.398	9.9	10.00	10.1
е	0.025	0.031	0.036	0.635	0.80	0.952
H₀	0.510	0.520	0.530	12.95	13.2	13.45
HE	0.510	0.520	0.530	12.95	13.2	13.45
L	0.025	0.031	0.037	0.65	0.8	0.95
L ₁	0.051	0.063	0.075	1.295	1.6	1.905
у			0.003			0.08
	0 °		7 °	0 °		7°

Notes:

- 1.Dimension D & E do not include interlead flash.
- 2. Dimension b does not include dambar protrusion/intrusion.
- 3. Controlling dimension Millimeter
- 4.General appearance spec. should be based on final visual inspection spec.

STC90C58AD 系列 单片机 命名规则

超低功耗 ---- STC90C58AD 系列单片机

1. 掉电模式:

典型功耗 < 0.1uA, 可由外部中断唤醒,中断返回后,继续执行原程序

2. 正常工作模式:

典型功耗 4mA - 7mA

3. 掉电模式可由外部中断唤醒,适用于水表、气表等电池供电系统及便携设备

降低单片机对外部的电磁辐射 (EMI)--- 三大措施

1. 禁止 ALE 时钟信号输出:

STC90C58AD 系列 8051 单片机 扩展 RAM 管理及禁止 ALE 输出 特殊功能寄存器 只写

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset value
AUXR	8Eh	Auxiliary Register 0	-	1	-	-	-	-	EXTRAM	ALEOFF	xxxx,xx00

禁止 ALE 信号输出(应用示例供参考,汇编语言):

MOV AUXR, #00000001B; ALEOFF 位置"1",禁止 ALE 时钟输出

- 2. 外部时钟频率降一半,6T模式: 传统的8051为每个机器周期12时钟,如将STC的增强型8051单片机在ISP烧录程序时设为双倍速(即6T模式,每个机器周期6时钟),则可将单片机外部时钟频率降低一半,有效的降低单片机时钟对外界的辐射
- 3. 单片机内部时钟振荡器增益降低一半: 在 ISP 烧录程序时将 OSCDN 设为 1/2 gain 可以有效的降低单片机时钟高频部分对外界的辐射,单片机外部晶振频率<16MHz 时,可将 OSCDN 设为 1/2 gain,有利于降低 EMI,16M 以上选择 full gain。

STC90C58AD 系列单片机 ISP 下载编程典型应用电路

特殊功能寄存器映像 SFR Mapping

STC90C51AD, STC90C52AD, STC90C53AD, STC90C54AD, STC90C58AD, STC90C516AD STC90LE51AD, STC90LE52AD, STC90LE53AD, STC90LE54AD, STC90LE516AD

	Bit Addressable		1	Non Bit Add	dressable				
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h									FFh
F0h	B 0000,0000								F7h
E8h	XICON 0000,0000								EFr
E0h	ACC 0000,0000	VDT_CONTR xx00,0000	ISP_DATA 1111,1111	ISP_ADDRH 0000,0000	ISP_ADDRL 0000,0000	ISP_CMD 1111,1000	ISP_TRIG xxxx,xxxx	ISP_CONTR 000x,x000	E7h
D8h									DFh
D0h	PSW 0000,0000								D7h
C8h	T2CON 0000,0000	T2MOD xxxx,xx00	RCAP2L 0000,0000	RCAP2H 0000,0000	TL2 0000,0000	TH2 0000,0000			CFh
C0h	P4 x111,1111					ADC_CONTR xxx0,0000	ADC_DATA 0000,0000	ADC_LOW2 xxxx,xx00	C7h
B8h	IP xx00,0000	SADEN 0000,0000							BFh
B0h	P3 1111,1111							IPH 0000,0000	B7h
A8h	IE 0000,0000	SADDR 0000,0000							AFh
A0h	P2 1111,1111		AUXR1 xxxx,0xx0						A7h
98h	SCON 0000,0000	SBUF xxxx,xxxx							9Fh
90h	P1 1111,1111							P1_ADC_EN 0000,0000	
88h	TCON 0000,0000	TMOD 0000,0000	TL0 0000,0000	TL1 0000,0000	TH0 0000,0000	TH1 0000,0000	AUXR xxxx,xx00		8Fh
80h	P0 1111,1111	SP 0000,0111	DPL 0000,0000	DPH 0000,0000				PCON 00x1,0000	87h
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
ACC	E0h	Accumulator									0000,0000
В	F0h	B Register									0000,0000
PSW	D0h	Program Status Word	CY	AC	F0	RS1	RS0	OV	F1	Р	0000,0000
SP	81h	Stack Pointer									0000,0111
DPL	82h	Data Pointer Low Byte									0000,0000
DPH	83h	Data Pointer High Byte									0000,0000

STC90C58AD 系列 8051 单片机系统管理特殊功能寄存器 System Management SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset value
PCON	87h	Power Control	SMOD	SMODO	•	POF	GF1	GF0	PD	IDL	00x1,0000
AUXR	8Eh	Auxiliary Register 0	-	•	•	•	-	ı	EXTRAM	ALEOFF	xxxx,xx00
AUXR1	A2h	Auxiliary Register 1	-	-	-	-	GF2	-	-	DPS	xxxx,0xx0

STC90C58AD 系列 8051 单片机 中断 特殊功能寄存器 Interrupt SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
IE	A8h	Interrupt Enable	EA	-	ET2	ES	ET1	EX1	ET0	EX0	0000,0000
IP	B8h	Interrupt Priority Low	-	-	PT2	PS	PT1	PX1	PT0	PX0	xx00,0000
IPH	B7h	Interrupt Priority High	РХЗН	PX2H	PT2H	PSH	PT1H	PX1H	PTOH	PX0H	0000,0000
TCON	88h	Timer / Counter 0 and 1 Control	TF1	TR1	TF0	TRO	IE1	IT1	IE0	IT0	0000,0000
SCON	98h	Serial Control	SMO/FE	SM1	SM2	REN	TB8	RB8	TI	RI	0000,0000
T2CON	C8h	Timer / Counter 2 Control	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#	0000,0000
XICON	E8h	Auxiliary Interrupt Control	PX3	EX3	IE3	IT3	PX2	EX2	IE2	IT2	0000,0000

STC90C58AD 系列 8051 单片机 I/O 口 特殊功能寄存器 Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
P0	80h	8-bit Port 0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	1111,1111
P1	90h	8-bit Port 1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0	1111,1111
P2	A0h	8-bit Port 2	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	1111,1111
P3	B0h	8-bit Port 3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	1111,1111
P4	C0h	4-bit Port 4	-	P4.6	P4.5	P4.4	P4.3	P4.2	P4.1	P4.0	x111,1111

STC90C58AD 系列 8051 单片机 串行口 特殊功能寄存器 Serial I/O Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
SCON	98h	Serial Control	SMO/FE	SM1	SM2	REN	TB8	RB8	TI	RI	0000,0000
SBUF	99h	Serial Data Buffer									xxxx,xxxx
SADEN	B9h	Slave Address Mask									0000,0000
SADDR	A9h	Slave Address									0000,0000

STC90C58AD 系列 8051 单片机 定时器 特殊功能寄存器 Timer SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
TCON	88h	Timer / Counter 0 and 1 Control	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	0000,0000
TMOD	89h	Timer / Counter 0 and 1 Modes	GATE GATE1	C/T# C/T1#	M1 M1_1	MO M1_0	GATE GATE0	C/T# C/T0#	M1 MO_1	MO MO_O	0000,0000
TL0	8Ah	Timer / Counter O Low Byte									0000,0000
TH0	8Ch	Timer / Counter O High Byte									0000,0000
TL1	8Bh	Timer / Counter 1 Low Byte									0000,0000
TH1	8Dh	Timer / Counter 1 High Byte									0000,0000
T2CON	C8h	Timer / Counter 2 Control	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#	0000,0000
T2MOD	C9h	Timer / Counter 2 Mode	-	-	-	-	-	-	T20E	DCEN	xxxx,xx00
RCAP2L	CAh	Timer / Counter 2 Reload/Capture Low Byte									0000,0000
RCAP2H	CBh	Timer / Counter 2 Reload/Capture High Byte									0000,0000
TL2	CCh	Timer / Counter 2 Low Byte									0000,0000
TH2	CDh	Timer / Counter 2 High Byte									0000,0000

STC90C58AD 系列 8051 单片机 看门狗定时器 特殊功能寄存器 Watch Dog Timer SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
WDT_CONTR	E1h	Watch-Dog-Timer Control register	ı	1	EN_WDT	CLR_WDT	IDLE_WDT	PS2	PS1	PS0	xx00,0000

STC90C58AD 系列 8051 单片机 ISP/IAP 特殊功能寄存器 ISP/IAP SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
ISP_DATA	E2h	ISP/IAP Flash Data Register									1111,1111
ISP_ADDRH	E3h	ISP/IAP Flash Address High									0000,0000
ISP_ADDRL	E4h	ISP/IAP Flash Address Low									0000,0000
ISP_CMD	E5h	ISP/IAP Flash Command Register	1	-	-	•	-	MS2	MS1	MS0	xxxx,x000
ISP_TRIG	E6h	ISP/IAP Flash Command Trigger									xxxx,xxxx
ISP_CONTR	E7h	ISP/IAP Control Register	ISPEN	SWBS	SWRST	-	-	WT2	WT1	WT0	000x,x000

中断

STC90C58AD 系列 8051 单片机 中断 特殊功能寄存器 Interrupt SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
IE	A8h	Interrupt Enable	EA	-	ET2	ES	ET1	EX1	ET0	EX0	0000,0000
IP	B8h	Interrupt Priority Low	-	-	PT2	PS	PT1	PX1	PT0	PX0	xx00,0000
IPH	B7h	Interrupt Priority High	РХЗН	PX2H	PT2H	PSH	PT1H	PX1H	PTOH	PX0H	0000,0000
TCON	88h	Timer / Counter 0 and 1 Control	TF1	TR1	TF0	TRO	IE1	IT1	IE0	IT0	0000,0000
SCON	98h	Serial Control	SMO/FE	SM1	SM2	REN	TB8	RB8	TI	RI	0000,0000
T2CON	C8h	Timer / Counter 2 Control	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#	0000,0000
XICON	E8h	Auxiliary Interrupt Control	PX3	EX3	IE3	IT3	PX2	EX2	IE2	IT2	0000,0000

中断与普通8052 完全兼容,优先级可设为4级,另增加2个外部中断INT2/P4.3,INT3/P4.2。

Interrupt Source 中断源	Vector Address 中断 向量地址	Polling Sequence 中断 查询次序	中断优先级设置	优先级0 最低	优先级1	优先级2	优先级3 最高	Interrupt Request 中断请求	Interrupt Enable Control Bit 中断允许 控制位
/INTO	0003H	0(最优先)	PXOH, PXO	0,0	0,1	1,0	1,1	IE0	EXO/EA
Timer O	000BH	1	PTOH, PTO	0,0	0,1	1,0	1,1	TF0	ETO/EA
/INT1	0013H	2	PX1H,PX1	0,0	0,1	1,0	1,1	IE1	EX1/EA
Timer 1	001BH	3	PT1H,PT1	0,0	0,1	1,0	1,1	TF1	ET1/EA
UART	0023H	4	PSH, PS	0,0	0,1	1,0	1,1	RI + TI	ES/EA
Timer 2	002BH	5	PT2H,PT2	0,0	0,1	1,0	1,1	TF2 + EXF2	ET2/EA
/INT2	0033H	6	PX2H,PX2	0,0	0,1	1,0	1,1	IE2	EX2/EA
/INT3	003BH	7(最低)	PX3H,PX3	0,0	0,1	1,0	1,1	IE3	EX3/EA

XICON (扩展中断控制)寄存器,控制外部中断 INT2/INT3

Name	Function
PX3	置位表明外部中断3的优先级为高,优先级最终由[PX3H,PX3]=[0,0];[0,1];[1,0];[1,1]来决定
EX3	如被设置成1,允许外部中断3中断;如被清成0,禁止外部中断3中断。
IE3	外部中断3中断请求标志位,中断条件成立后,IE3=1,可由硬件自动清零。
IT3	当此位由软件置位时,外部中断3为下降沿触发中断;当此位由软件清零时,为低电平触发中断。
PX2	置位表明外部中断2的优先级为高,优先级最终由[PX2H,PX2]=[0,0];[0,1];[1,0];[1,1]来决定
EX2	如被设置成1,允许外部中断2中断;如被清成0,禁止外部中断2中断。
IE2	外部中断2中断请求标志位,中断条件成立后,IE2=1,可由硬件自动清零。
IT2	当此位由软件置位时,外部中断2为下降沿触发中断;当此位由软件清零时,为低电平触发中断。
РХЗН	外部中断3最高中断优先级设置位置高,优先级最终由[PX3H,PX3]=[0,0];[0,1];[1,0];[1,1]来决定
PX2H	外部中断2最高中断优先级设置位置高,优先级最终由[PX2H,PX2]=[0,0];[0,1];[1,0];[1,1]来决定

降低单片机对系统的电磁干扰 (EMI)--- 三大措施

1. 禁止 ALE 信号输出,适用型号:

STC90C51AD, STC90C52AD, STC90C53AD, STC90C54AD, STC90C58AD, STC90C516AD STC90LE51AD, STC90LE52AD, STC90LE53AD, STC90LE54AD, STC90LE58AD, STC90LE516AD

RC/RD+系列8051 单片机 扩展 RAM 管理及禁止 ALE 输出 特殊功能寄存器

只写

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset value
AUXR	8Eh	Auxiliary Register 0	-	1	1	1		1	EXTRAM	ALEOFF	xxxx,xx00

禁止 ALE 信号输出(应用示例供参考, C语言):

sfr AUXR = 0x8e; /* 声明 AUXR 寄存器的地址 */

AUXR = 0x01;

/* ALEOFF 位置 1, 禁止 ALE 信号输出, 提升系统的 EMI 性能, 复位后为 0, ALE 信号正常输出 */禁止 ALE 信号输出(应用示例供参考, 汇编语言):

AUXR EQU 8Eh ; 或 AUXR DATA 8Eh

MOV AUXR, #00000001B; ALEOFF 位置"1", 禁止 ALE 信号输出, 提升了系统的 EMI 性能

- 2. 外部时钟频率降一半,6T模式: 传统的8051为每个机器周期12时钟,如将STC的增强型8051单片机在ISP烧录程序时设为双倍速(及6T模式,每个机器周期6时钟),则可将单片机外部时钟频率降低一半,有效的降低单片机时钟对外界的干扰
- 3. 单片机内部时钟振荡器增益降低一半: 在 ISP 烧录程序时将 OSCDN 设为 1/2 gain 可以有效的降低单片机时钟高频部分对外界的辐射,但此时外部晶振频率尽量不要高于 16MHz。

STC90C58AD 系列单片机扩展 RAM 的使用 STC90C58AD 系列单片机扩展 RAM 的禁止

适用型号:

STC90C51AD, STC90C52AD, STC90C53AD, STC90C54AD, STC90C58AD, STC90C516AD STC90LE51AD, STC90LE52AD, STC90LE53AD, STC90LE54AD, STC90LE54AD, STC90LE516AD

- 1). 低 128 字节的内部 RAM (地址:00H~7FH), 可直接寻址或间接寻址, (data/idata)
- 2). 高 128 字节的内部 RAM (地址:80H~FFH), 只能间接寻址(普通89C51没有), (idata)
- 3). 特殊功能寄存器 SFR (地址: 80H~FFH), 只能直接寻址, (data)

特殊功能寄存器 SFR 和高 128 字节的内部 RAM 是通过寻址方式来区分的,传统的 8051 系列单片机只有 128-256 字节 RAM 供用户使用,在此情况下 STC 公司响应广大用户的呼声,在一些单片机内部增加了扩展 RAM。STC90C58AD 系列单片机扩展了 4096 个字节 RAM,共 4352 字节 RAM,访问内部扩展 RAM 时,不影响 P0 口 / P2 口 / P3.6/P3.7/ALE。

STC90C58AD 系列 8051 单片机 扩展 RAM 管理及禁止 ALE 输出 特殊功能寄存器 只写

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset value
AUXR	8Eh	Auxiliary Register 0	1	-	1		1	1	EXTRAM	ALEOFF)	xxxx,xx00

Symbol 符号 Function 功能

EXTRAM

Internal/External RAM access 内部 / 外部 RAM 存取

0: 内部扩展的 EXT RAM 可以存取.

RD+ 系列单片机

在 00H 到 0FFFH 单元(4096 字节),使用 MOVX @DPTR 指令访问,超过 0FFFH 的地址空间总是访问外部数据存储器, MOVX @Ri 只能访问 00H 到 FFH 单元。

1: External data memory access.

外部数据存储器存取,禁止访问内部扩展 RAM ,此时 MOVX @DPTR / MOVX @Ri的使用同普通 8052 单片机

ALEOFF Disable/enable ALE.

0: ALE is emitted at a constant rate of 1/3 the oscillator frequency in 6 clock mode, 1/6 fosc in 12 clock mode

ALE 脚输出固定的 1/6 晶振频率信号在 12 时钟模式时,在 6 时钟模式时输出固定的 1/3 晶振频率信号.

1: ALE is active only during a MOVX or MOVC instruction.

ALE 脚仅在执行 MOVX or MOVC 指令时才输出信号,好处是:降低了系统对外界的 EMI.

1.STC90C/LE58AD 系列单片机扩展 AUX-RAM 的使用

STC90C/LE516AD 系列单片机内部的 RAM 为 4352 字节(256+4096), 即常规 256 字节片内 RAM 和内部扩展的 4096 字节 AUX-RAM, 其访问方式为:

汇编语言: (只能够访问内部扩展的 256 字节 AUX-RAM)

MOVX @Ri, A ; 将累加器 A 的值送至 @Ri 指向的单元, i = 0, 1 MOVX A, @Ri; 将 @Ri 指向的单元的值读到累加器 A, i = 0, 1

当 AUXR 寄存器的 Bi t1 控制位(即 EXTRAM 置'1'时,直接访问物理上在单片机外部的 256 字节数据存储空间 当 AUXR 寄存器的 Bi t1 控制位(即 EXTRAM 置'0'时,只访问物理上在单片机内部,逻辑上在外部的 256 字节数据存储空间

汇编语言: (可访问内部扩展的 4096 字节 AUX-RAM)

MOVX @DPTR, A ; 将累加器 A 的值送至 @DPTR 指向的单元 MOVX A, @DPTR ; 将 @DPTR 指向的单元的值读到累加器 A

当 AUXR 寄存器的 Bit1 控制位(即 EXTRAM 置'1'时,直接访问物理上在单片机外部的 64K 数据存储空间 当 AUXR 寄存器的 Bit1 控制位(即 EXTRAM 置'0'时,先访问物理上在单片机内部,逻辑上在外部的数据存储 空间[0000H - 0FFFH, 共 4096 字节 AUX-RAM),地址空间超出 0FFFH 时才访问物理上在单片机外部,逻辑上在外部的数据存储空间.

C 语言:

用 pdata 声明的变量访问单片机内部扩展的 256 字节 AUX-RAM 用 xdata 声明的变量访问单片机外部 64K 数据空间

2. 双数据指针 及 AUXR1 寄存器

AUXR1 A2h Auxiliary Register 1	-		. -	-	-	-	DPS	xxxx,xxx0
--------------------------------	---	--	-------	---	---	---	-----	-----------

DPS = 0 时选择 DPTRO, DPS = 1 时选择 DPTR1

可以用 "INC AUXR1" 快速切换 DPTR0 / DPTR1

3. 禁止 ALE 输出 及 AUXR1 寄存器

AUXR 8Eh Auxiliary Register 0 UART_P1 - - - - - EXTRAM ALEOFF 0x	AUXR	8Eh	Auxiliary Register 0	UART_P1	-	-	-	-	-	EXTRAM	ALEOFF	0xxx,xx00
--	------	-----	----------------------	---------	---	---	---	---	---	--------	--------	-----------

UART_P1 = 0, 串口 / UART 在 P3 口 [P3.0/RxD, P3.1/TxD]

UART_P1 = 1, 串口/UART在P1口,将串口从P3口切换到P1口[P1.6/RxD,P1.7/TxD]

EXTRAM = 0, 允许访问内部扩展 0000H - 0FFFH 单元 (4096 字节 RAM),超过 0FFFH 的地址空间总具 2000 中央 1000 中央

是访问外部数据存储器

EXTRAM = 1, 禁止访问内部扩展 0000H - 0FFFH 单元 (4096 字节 RAM), 直接访问外部数据存储器数据

ALEOFF = 0, ALE信号正常输出。

ALEOFF = 1. 禁止 ALE 信号输出。但在访问外部数据空间及外部程序空间时有信号输出。

STC90C58AD 系列单片机内部扩展 RAM 演示程序

```
;/* --- STC International Limited ----- */
:/* --- Mobile: 13922805190 ----- */
;/* --- Fax: 0755-82944243 ----- */
;/* --- Tel: 0755-82948409 ----- */
;/* --- Web: www.STCMCU.com ----- */
;/* --- 本演示程序在 STC-ISP Ver 3.0A.PCB 的下载编程工具上测试通过 ------ */
:/* --- 如果要在程序中使用该程序,请在程序中注明使用了宏晶科技的资料及程序 --- */
;/* --- 如果要在文章中引用该程序,请在文章中注明使用了宏晶科技的资料及程序 --- */
#include <reg52.h>
#include <intrins.h>
                   /* use _nop_() function */
sfr AUXR = 0x8e;
sfr AUXR1 = 0xa2;
sfr P4 = 0xc0;
sfr XICON = 0xe8;
sfr IPH = 0xb7;
sfr WDT_CONTR = 0xe1;
sfr ISP_DATA = 0xe2;
sfr ISP\_ADDRH = 0xe3;
sfr\ ISP\_ADDRL = 0xe4;
sfr\ ISP\_CMD = 0xe5;
sfr ISP_TRIG = 0xe6;
sfr ISP_CONTR = 0xe7;
sbit ERROR\_LED = P1^5;
sbit OK LED = P1^7:
void main()
  unsigned int array_point = 0;
  /* 测试数组 Test_array_one[512], Test_array_two[2048]*/
  unsigned char xdata Test_array_one[2048]
  {
     0x00,
            0x01,
                   0x02,
                          0x03,
                                 0x04,
                                        0x05,
                                               0x06,
                                                       0x07,
     0x08,
            0x09,
                   0x0a,
                          0x0b,
                                 0x0c,
                                        0x0d,
                                               0x0e,
                                                       0x0f,
     0x10.
            0x11,
                   0x12,
                          0x13,
                                 0x14,
                                        0x15.
                                               0x16,
                                                       0x17,
            0x19,
                                               0x1e,
                                                       0x1f,
     0x18,
                   0x1a,
                          0x1b,
                                 0x1c,
                                        0x1d,
     0x20,
            0x21,
                          0x23,
                                 0x24,
                                        0x25,
                                               0x26,
                                                       0x27,
                   0x22,
```

宏晶科技:w	ww.STCMCU.co	om Mobile	: 13922805190	(姚永平) T	el:0755-8294	8412 Fax	: 0755-829442	243
0.	x28, 0)x29,	0x2a,	0x2b,	0x2c,	0x2d,	0x2e,	0x2f,
0	x30, 0)x31,	0x32,	0x33,	0x34,	0x35,	0x36,	0x37,
0	x38, 0)x39,	0x3a,	0x3b,	0x3c,	0x3d,	0x3e,	0x3f,
0	x40, 0)x41,	0x42,	0x43,	0x44,	0x45,	0x46,	0x47,
0.	x48, 0)x49,	0x4a,	0x4b,	0x4c,	0x4d,		0x4f,
0.	x50, 0)x51,	0x52,	0x53,	0x54,	0x55,	0x56,	0x57,
0.	x58, 0)x59,	0x5a,	0x5b,	0x5c,	0x5d,	0x5e,	0x5f,
0	x60, 0)x61,	0x62,	0x63,	0x64,	0x65,	0x66,	0x67,
0	x68, 0)x69,	0x6a,	0x6b,	0x6c,	0x6d,	0x6e,	0x6f,
0	x70, 0)x71,	0x72,	0x73,	0x74,	0x75,	0x76,	0x77,
0	x78, 0)x79,	0x7a,	0x7b,	0x7c,	0x7d,	0x7e,	0x7f,
0	x80, 0)x81,	0x82,	0x83,	0x84,	0x85,	0x86,	0x87,
0	x88, C)x89,	0x8a,	0x8b,	0x8c,	0x8d,	0x8e,	0x8f,
0	x90, 0)x91,	0x92,	0x93,	0x94,	0x95,	0x96,	0x97,
0	x98, 0)x99,	0x9a,	0x9b,	0x9c,	0x9d,	0x9e,	0x9f,
0	xaO, C)xa1,	0xa2,	0xa3,	0xa4,	0xa5,	0xa6,	0xa7,
0	xa8, 0)xa9,	0xaa,	0xab,	0xac,	0xad,	0xae,	Oxaf,
0	xb0, 0)xb1,	0xb2,	0xb3,	0xb4,	0xb5,	0xb6,	0xb7,
0	xb8, C)xb9,	0xba,	0xbb,	0xbc,	0xbd,	0xbe,	Oxbf,
0	xc0, C)xc1,	0xc2,	0xc3,	0xc4,	0xc5,	0xc6,	0xc7,
0	xc8, C)xc9,	0xca,	0xcb,	Oxcc,	0xcd,	Oxce,	Oxcf,
0	xd0, C)xd1,	0xd2,	0xd3,	0xd4,	0xd5,	0xd6,	0xd7,
0	xd8, C)xd9,	0xda,	0xdb,	0xdc,	0xdd,	0xde,	0xdf,
0	xeO, C)xe1,	0xe2,	0xe3,	0xe4,	0xe5,	0xe6,	0xe7,
0	xe8, C)xe9,	0xea,	Oxeb,	Oxec,	0xed,	Oxee,	Oxef,
0	xf0, C)xf1,	0xf2,	0xf3,	0xf4,	0xf5,	0xf6,	0xf7,
0	xf8, C)xf9,	Oxfa,	Oxfb,	Oxfc,	Oxfd,	Oxfe,	Oxff,
0	xff, C)xfe,	Oxfd,	Oxfc,	Oxfb,	0xfa,	0xf9,	0xf8,
0	xf7, 0)xf6,	0xf5,	0xf4,	0xf3,	0xf2,	0xf1,	0xf0,
0	xef, C)xee,	0xed,	0xec,	Oxeb,	0xea,	0xe9,	0xe8,
0	xe7, C)xe6,	0xe5,	0xe4,	0xe3,	0xe2,	0xe1,	0xe0,
0	xdf, C)xde,	0xdd,	0xdc,	0xdb,	0xda,	0xd9,	0xd8,
0	xd7, C)xd6,	0xd5,	0xd4,	0xd3,	0xd2,	0xd1,	0xd0,
0	xcf, C)xce,	0xcd,	0xcc,	0xcb,	0xca,	0xc9,	0xc8,
0	xc7, 0)xc6,	0xc5,	0xc4,	0xc3,	0xc2,	0xc1,	0xc0,
0	xbf, C)xbe,	0xbd,	0xbc,	0xbb,	0xba,	0xb9,	0xb8,
				0xb4,	0xb3,	0xb2,	0xb1,	0xb0,
0	xaf, C)xae,	0xad,	0xac,	0xab,	0xaa,	0xa9,	0xa8,
				0xa4,	0xa3,	0xa2,	0xa1,	0xa0,
				0x9c,	0x9b,	0x9a,	0x99,	0x98,
				0x94,	0x93,	0x92,	0x91,	0x90,
				0x8c,	0x8b,	0x8a,	0x89,	0x88,
				0x84,	0x83,	0x82,	0x81,	0x80,
				0x7c,	0x7b,	0x7a,	0x79,	0x78,
	*	· ·		0x74,	0x73,	0x72,	0x71,	0x70,
				0x6c,	0x6b,	0x6a,		0x68,
				0x64,	0x63,	0x62,	0x61,	0x60,
0	x5f, 0)x5e,	0x5d,	0x5c,	0x5b,	0x5a,	0x59,	0x58,

宏晶科技	: www.STCMCU	.com Mobi	Mobile:13922805190(姚永平)		Tel:0755-82948412		Fax: 0755-82944243	
	0x57,	0x56,	0x55,	0x54,	0x53,	0x52,	0x51,	0x50,
	0x4f,	0x4e,	0x4d,	0x4c,	0x4b,	0x4a,	0x49,	0x48,
	0x47,	0x46,	0x45,	0x44,	0x43,	0x42,	0x41,	0x40,
	0x3f,	0x3e,	0x3d,	0x3c,	0x3b,	0x3a,	0x39,	0x38,
	0x37,	0x36,	0x35,	0x34,	0x33,	0x32,	0x31,	0x30,
	0x2f,	0x2e,	0x2d,	0x2c,	0x2b,	0x2a,	0x29,	0x28,
	0x27,	0x26,	0x25,	0x24,	0x23,	0x22,	0x21,	0x20,
	0x1f,	0x1e,	0x1d,	0x1c,	0x1b,	0x1a,	0x19,	0x18,
	0x17,	0x16,	0x15,	0x14,	0x13,	0x12,	0x11,	0x10,
	0x0f,	0x0e,	0x0d,	0x0c,	0x0b,	0x0a,	0x09,	0x08,
	0x07,	0x06,	0x05,	0x04,	0x03,	0x02,	0x01,	0x00
};	oxor,	0,000,	oxoo,	0,01,	ολοο,	0,02,	0,01,	OXOO
, ,								
uns	igned char	xdata Tes	t_array_tw	o[2048]	=			
{								
	0x00,	0x01,	0x02,	0x03,	0x04,	0x05,	0x06,	0x07,
	0x08,	0x09,	0x0a,	0x0b,	0x0c,	0x0d,	0x0e,	0x0f,
	0x10,	0x11,	0x12,	0x13,	0x14,	0x15,	0x16,	0x17,
	0x18,	0x19,	0x1a,	0x1b,	0x1c,	0x1d,	0x1e,	0x1f,
	0x20,	0x21,	0x22,	0x23,	0x24,	0x25,	0x26,	0x27,
	0x28,	0x29,	0x2a,	0x2b,	0x2c,	0x2d,	0x2e,	0x2f,
	0x30,	0x31,	0x32,	0x33,	0x34,	0x35,	0x36,	0x37,
	0x38,	0x39,	0x3a,	0x3b,	0x3c,	0x3d,	0x3e,	0x3f,
	0x40,	0x41,	0x42,	0x43,	0x44,	0x45,	0x46,	0x47,
	0x48,	0x49,	0x4a,	0x4b,	0x4c,	0x4d,	0x4e,	0x4f,
	0x50,	0x51,	0x52,	0x53,	0x54,	0x55,	0x56,	0x57,
	0x58,	0x59,	0x5a,	0x5b,	0x5c,	0x5d,	0x5e,	0x5f,
	0x60,	0x61,	0x62,	0x63,	0x64,	0x65,	0x66,	0x67,
	0x68,	0x69,	0x6a,	0x6b,	0x6c,	0x6d,	0x6e,	0x6f,
	0x70,	0x71,	0x72,	0x73,	0x74,	0x75,	0x76,	0x77,
	0x78,	0x79,	0x7a,	0x7b,	0x7c,	0x7d,	0x7e,	0x7f,
	0x80,	0x81,	0x82,	0x83,	0x84,	0x85,	0x86,	0x87,
	0x88,	0x89,	0x8a,	0x8b,	0x8c,	0x8d,	0x8e,	0x8f,
	0x90,	0x91,	0x92,	0x93,	0x94,	0x95,	0x96,	0x97,
	0x98,	0x99,	0x9a,	0x9b,	0x9c,	0x9d,	0x9e,	0x9f,
	0xa0,	0xa1,	0xa2,	0xa3,	0xa4,	0xa5,	0xa6,	0xa7,
	0xa8,	0xa9,	0xaa,	0xab,	0xac,	0xad,	0xae,	0xaf,
	0xb0,	0xb1,	0xb2,	0xb3,	0xb4,	0xb5,	0xb6,	0xb7,
	0xb8,	0xb9,	0xba,	0xbb,	Oxbc,	0xbd,	0xbe,	Oxbf,
	0xc0,	0xc1,	0xc2,	0xc3,	0xc4,	0xc5,	0xc6,	0xc7,
	0xc8,	0xc9,	0xca,	0xcb,	Oxcc,	0xcd,	0xce,	Oxcf,
	0xd0,	0xd1,	0xd2,	0xd3,	0xd4,	0xd5,	0xd6,	0xd7,
	0xd8,	0xd9,	0xda,	0xdb,	0xdc,	0xdd,	0xde,	0xdf,
	0xe0,	0xe1,	0xe2,	0xe3,	0xe4,	0xe5,	0xe6,	0xe7,
	0xe8,	0xe9,	0xea,	Oxeb,	Oxec,	0xed,	Oxee,	Oxef,
	0xf0,	0xf1,	0xf2,	0xf3,	0xf4,	0xf5,	0xf6,	0xf7,
	0xf8,	0xf9,	Oxfa,	Oxfb,	Oxfc,	Oxfd,	Oxfe,	Oxff,
	Oxff,	Oxfe,	Oxfd,	Oxfc,	Oxfb,	0xfa,	0xf9,	0xf8,

```
宏晶科技:www.STCMCU.com
                          Mobile: 13922805190(姚永平)
                                                        Tel: 0755-82948412
                                                                             Fax: 0755-82944243
         0xf7,
                     0xf6,
                                 0xf5,
                                             0xf4,
                                                         0xf3,
                                                                     0xf2,
                                                                                 0xf1,
                                                                                             0xf0,
         Oxef,
                                 0xed,
                     0xee,
                                             0xec,
                                                         0xeb,
                                                                     0xea,
                                                                                 0xe9,
                                                                                             0xe8,
         0xe7,
                                                                                             0xe0,
                     0xe6,
                                 0xe5,
                                             0xe4,
                                                         0xe3,
                                                                     0xe2,
                                                                                 0xe1,
                                                                                 0xd9,
         0xdf,
                                                                                             0xd8,
                     0xde,
                                 0xdd,
                                             0xdc,
                                                         0xdb,
                                                                     0xda,
         0xd7,
                     0xd6,
                                 0xd5,
                                             0xd4,
                                                         0xd3,
                                                                     0xd2,
                                                                                 0xd1,
                                                                                             0xd0,
                                                                                 0xc9,
                                                                                             0xc8,
         0xcf,
                     0xce,
                                 0xcd,
                                             0xcc,
                                                         0xcb,
                                                                     0xca,
         0xc7,
                     0xc6,
                                 0xc5,
                                             0xc4,
                                                         0xc3,
                                                                     0xc2,
                                                                                 0xc1,
                                                                                             0xc0,
         0xbf,
                     0xbe,
                                 0xbd,
                                             0xbc,
                                                         0xbb,
                                                                     0xba,
                                                                                 0xb9,
                                                                                             0xb8,
         0xb7,
                     0xb6,
                                 0xb5,
                                             0xb4,
                                                         0xb3,
                                                                     0xb2,
                                                                                 0xb1,
                                                                                             0xb0,
         0xaf,
                     0xae,
                                 0xad,
                                             0xac,
                                                         0xab,
                                                                     0xaa,
                                                                                 0xa9,
                                                                                             0xa8,
                                 0xa5,
                                             0xa4,
                                                                                             0xa0,
         0xa7,
                     0xa6,
                                                         0xa3,
                                                                     0xa2,
                                                                                 0xa1,
         0x9f,
                     0x9e,
                                 0x9d,
                                             0x9c,
                                                         0x9b,
                                                                     0x9a,
                                                                                 0x99,
                                                                                             0x98,
         0x97,
                     0x96,
                                 0x95,
                                             0x94,
                                                         0x93,
                                                                     0x92,
                                                                                 0x91,
                                                                                             0x90,
         0x8f,
                     0x8e,
                                 0x8d,
                                             0x8c,
                                                         0x8b,
                                                                     0x8a,
                                                                                 0x89,
                                                                                             0x88,
         0x87,
                     0x86,
                                 0x85,
                                             0x84,
                                                         0x83,
                                                                     0x82,
                                                                                 0x81,
                                                                                             0x80,
         0x7f,
                     0x7e,
                                 0x7d,
                                             0x7c,
                                                         0x7b,
                                                                     0x7a,
                                                                                 0x79,
                                                                                             0x78,
                     0x76,
                                 0x75,
                                             0x74,
                                                                                             0x70,
         0x77,
                                                         0x73,
                                                                     0x72,
                                                                                 0x71,
         0x6f,
                     0x6e,
                                 0x6d,
                                             0x6c,
                                                         0x6b,
                                                                     0x6a,
                                                                                 0x69,
                                                                                             0x68,
         0x67,
                     0x66,
                                 0x65,
                                             0x64,
                                                         0x63,
                                                                     0x62,
                                                                                 0x61,
                                                                                             0x60,
         0x5f,
                     0x5e,
                                 0x5d,
                                             0x5c,
                                                                                 0x59,
                                                                                             0x58,
                                                         0x5b,
                                                                     0x5a,
         0x57,
                     0x56,
                                 0x55,
                                             0x54,
                                                         0x53,
                                                                     0x52,
                                                                                 0x51,
                                                                                             0x50,
         0x4f,
                     0x4e,
                                 0x4d,
                                             0x4c,
                                                         0x4b,
                                                                     0x4a,
                                                                                 0x49,
                                                                                             0x48,
                                                                                             0x40,
         0x47,
                     0x46,
                                 0x45,
                                             0x44,
                                                         0x43,
                                                                     0x42,
                                                                                 0x41,
         0x3f,
                     0x3e,
                                 0x3d,
                                             0x3c,
                                                         0x3b,
                                                                     0x3a,
                                                                                 0x39,
                                                                                             0x38,
         0x37,
                     0x36,
                                 0x35,
                                             0x34,
                                                         0x33,
                                                                     0x32,
                                                                                 0x31,
                                                                                             0x30,
         0x2f,
                     0x2e,
                                 0x2d,
                                             0x2c,
                                                         0x2b,
                                                                     0x2a,
                                                                                 0x29,
                                                                                             0x28,
         0x27,
                     0x26,
                                 0x25,
                                             0x24,
                                                         0x23,
                                                                     0x22,
                                                                                 0x21,
                                                                                             0x20,
                     0x1e,
                                 0x1d,
                                                                                 0x19,
                                                                                             0x18,
         0x1f,
                                             0x1c,
                                                         0x1b,
                                                                     0x1a,
         0x17,
                     0x16,
                                 0x15,
                                             0x14,
                                                         0x13,
                                                                     0x12,
                                                                                 0x11,
                                                                                             0x10,
         0x0f,
                     0x0e.
                                 0x0d.
                                             0x0c.
                                                         0x0b,
                                                                     0x0a.
                                                                                 0x09.
                                                                                             0x08,
         0x07,
                     0x06,
                                 0x05,
                                             0x04,
                                                         0x03,
                                                                     0x02,
                                                                                 0x01,
                                                                                             0x00
    };
    ERROR\_LED = 1;
    OK_LED = 1;
    for(array_point=0; array_point<2048; array_point++)</pre>
    {
          if(Test_array_one[array_point]!=Test_array_two [array_point]){
              ERROR LED = 0;
              OK_{LED} = 1;
              break;
        }
         else{
              OK_LED = 0;
              ERROR LED = 1;
         }
    }
    while(1);
 }
```

双数据指针 DPTRO, DPTR1 的使用

适用型号:

STC90C51AD, STC90C52AD, STC90C53AD, STC90C54AD, STC90C58AD, STC90C516AD STC90LE51AD, STC90LE52AD, STC90LE53AD, STC90LE54AD, STC90LE58AD, STC90LE516AD

系列8051 单片机双数据指针 特殊功能寄存器

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset value
AUXR1	A2h	Auxiliary Register 1	-	1		1	GF2			DPS	xxxx,0xx0

Symbol 符号 Function 功能

GF2 General purpose user-defined flag. 通用功能用户自定义位

DPS DPTR registers select bit. DPTR 寄存器选择位

0: DPTR0 is selected DPTR0 被选择 1: DPTR1 is selected DPTR1 被选择

此系列单片机有两个 16-bit 数据指针, DPTR0, DPTR1. 当 DPS 选择位为 0 时, 选择 DPTR0, 当 DPS 选择位为 1 时, 选择 DPTR1.

AUXR1 特殊功能寄存器,位于 A2H 单元,其中的位不可用布尔指令快速访问.但由于 DPS 位位于 bit0,故对 AUXR1 寄存器用 INC 指令, DPS 位便会反转,由 0 变成 1 或由 1 变成 0,即可实现双数椐指针的快速切换.

应用示例供参考:

: 新增特殊功能寄存器定义

AUXR1 DATA 0A2H

MOV AUXR1, #0 ;此时 DPS 为 0, DPTR0 有效

MOV DPTR, #1FFH ;置 DPTR0 为 1FFH

MOV A, #55H

MOVX @DPTR, A ;将 1FFH 单元置为 55H

MOV DPTR, #2FFH ; 置 DPTRO 为 2FFH

MOV A, #OAAH

MOVX @DPTR, A ;将 2FFH 单元置为 0AAH

INC AUXR1 ; 此时 DPS 为 1, DPTR1 有效

MOV DPTR, #1FFH ; 置 DPTR1 为 1FFH

MOVX A, @DPTR ; 读 DPTR1 数椐指针指向的 1FFH 单元的内容, 累加器 A 变为 55H.

INC AUXR1 ; 此时 DPS 为 0, DPTR0 有效

MOVX A, @DPTR ; 读 DPTRO 数椐指针指向的 2FFH 单元的内容, 累加器 A 变为 OAAH.

INC AUXR1 ; 此时 DPS 为 1, DPTR1 有效

MOVX A, @DPTR ; 读 DPTR1 数椐指针指向的 1FFH 单元的内容, 累加器 A 变为 55H.

INC AUXR1 ; 此时 DPS 为 0, DPTR0 有效

MOVX A, @DPTR ; 读 DPTRO 数椐指针指向的 2FFH 单元的内容, 累加器 A 变为 OAAH.

P4 ☐ (可以位寻址,可像操作 P1/P2/P3 一样操作 P4 □)

STC90C58AD 系列 8051 单片机 I/O 口 特殊功能寄存器 Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
Р0	80h	8-bit Port 0	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	1111,1111
P1	90h	8-bit Port 1	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0	1111,1111
P2	A0h	8-bit Port 2	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	1111,1111
P3	B0h	8-bit Port 3	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	1111,1111
P4	COh	4-bit Port 4	-	p4.6	p4.5	p4.4	P4.3	P4.2	P4.1	P4.0	x111,1111

汇编语言:

P4 DATA OCOH; or P4 EQU OCOH

MOV A, P4; Read P4 status to Accumulator.

MOV P4, #0AH; Output data "A"through P4.0 - P4.3

SETB P4.0 ; P4.0 = 1 CLR P4.0 ; P4.0 = 0

MOV P4, #0AH; Output data "A"through P4.0 - P4.3

C 语言:

sfr P4 = 0xc0; C语言中声明P4口特殊功能寄存器地址

A/D 转换寄存器及应用

A/D 及 A/D 转换寄存器 ADC_CONTR/ADC_DATA/P1_ADC_EN

STC90C/LE516AD 在 P1 口 , 有 10 位精度的高速 A/D 转换器, P1.7 - P1.0 共 8 路

电压输入型,可做按键扫描,电池电压检测,频谱检测等。89个时钟可完成一次转换

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
P1_ADC_EN	97h	允许P1.x成为A/D口	ADC_P17	ADC_P16	ADC_P15	ADC_P14	ADC_P13	ADC_P12	ADC_P11	ADC_P10	0000,0000
ADC_CONTR	C5h	A/D 转换控制寄存器	-	ADC_SPEED1	ADC_SPEEDO	ADC_FLAG	ADC_START	CHS2	CHS1	CHS0	xxx0,0000
ADC_DATA	C6h	A/D 转换结果寄存器高8位	-	-	-	-	-	-	-	-	0000,0000
ADC_LOW2	C7h	A/D 转换结果寄存器低2位									

P1_ADC_EN 特殊功能寄存器: P1.x作为A/D 转换输入通道来用允许特殊功能寄存器

相应位为"1"时,对应的P1.x口作为A/D转换使用,内部上拉电阻自动断开

ADC_CONTR 特殊功能寄存器: A/D 转换控制特殊功能寄存器

ADC_CONTR - ADC_SPEED1 ADC_SPEED0 ADC_FLAG ADC_START CHS2 CHS1 CHS0 xxx0,0000

CHS2 / CHS1 / CHS0:模拟输入通道选择, CHS2 / CHS1 / CHS0

C H S 2	C H S 1	C H S O	Analog Input Channel Select 模 拟 输 入 通 道 选 择
0	0	0	选 择 P1.0 作 为 A/D输 入 来 用
0	0	1	选 择 P1.1 作 为 A/D输 入 来 用
0	1	0	选 择 P1.2 作 为 A/D输 入 来 用
0	1	1	选 择 P1.3 作 为 A/D输 入 来 用
1	0	0	选 择 P1.4 作 为 A/D输 入 来 用
1	0	1	选 择 P1.5 作 为 A/D输 入 来 用
1	1	0	选 择 P1.6 作 为 A/D输 入 来 用
1	1	1	选择 P1.7 作 为 A/D输 入 来 用

ADC_SPEED1 / ADC_SPEED0: ADC 转换速度控制位

[ADC_SPEED1: ADC_SPEED0] = [0,0] 完成 1 次 A/D 转换需要 89 个时钟(如果要取 10 位转换结果,

建议不要选择最快转换速度)

[ADC_SPEED1: ADC_SPEED0[= [0,1] 完成 1 次 A/D 转换需要 178 个时钟 [ADC_SPEED1: ADC_SPEED0[= [1,0] 完成 1 次 A/D 转换需要 356 个时钟 [ADC_SPEED1: ADC_SPEED0[= [1,1] 完成 1 次 A/D 转换需要 534 个时钟

ADC_START: 模拟/数字转换(ADC)启动控制位,设置为"1"时,开始转换 ADC FLAG: 模拟/数字转换结束标志位,当A/D转换完成后,ADC FLAG = 1。

ADC_DATA 特殊功能寄存器: A/D 转换结果特殊功能寄存器

ADC_DATA	-	-	-	-	-	-	-	-	0000,0000
ADC_LOW2							-	-	xxxx, xx00

模拟/数字转换结果计算公式如下:

如果要取8位A/D转换结果:(ADC_DATA[7:0]) = 256 x Vin/Vcc

如果要取10位A/D转换结果: (ADC_DATA[7:0], ADC_LOW2[1:0]) = 1024 x Vin/Vcc

Vin 为模拟输入通道输入电压,Vcc 为单片机实际工作电压,用单片机工作电压作为模拟参考电压。

一个完整的 A/D 转换测试程序

```
;/* --- STC International Limited ----- */
;/* --- Mobile: 13922805190 ----- */
:/* --- Tel: 0755-82948409
                     Fax: 0755-82944243----- */
;/* --- Web: www.mcu-memory.com ----- */
;/* --- 本演示程序在 STC-ISP Ver 3.0A.PCB 的下载编程工具上测试通过 ------- */
;/* --- 如果要在程序中使用该程序,请在程序中注明使用了宏晶科技的资料及程序 ------ */
;/* --- 如果要在文章中引用该程序,请在文章中注明使用了宏晶科技的资料及程序 ------ */
  ADC DEMO 程序演示 STC90C/LE516AD 系列 MCU 的 A/D 转换功能。 时钟
                                               11.0592MHz
  转换结果以 16 进制形式输出到串行口,可以用串行口调试程序观察输出结果。
#include <reg52.H>
#include <intrins.H>
//定义与 ADC 有关的特殊功能寄存器
                                // A/D 转换功能允许寄存器
sfr P1_ADC_EN
                  0x97;
                  0xC5;
                                // A/D 转换控制寄存器
sfr ADC_CONTR
                                // A/D 转换结果寄存器高8位
sfr ADC_DATA
                  0xC6;
sfr ADC_DATAL2
                                // A/D 转换结果寄存器低 2 位
                  0xC7;
       unsigned char INT8U;
typedef
typede f
       unsigned int
                  INT16U;
                          // 延时函数
void delay(INT8U delay_time)
  INT8U
           n;
  INT16U
           m;
  for (n=0; n<delay_time; n++)
     for (m=0; m<10000; m++);
  }
}
void initiate_RS232 (void)
                        // 串口初始化
  ES = 0:
                        // 禁止串口中断
  SCON = 0x50;
                        // 0101,0000 8位数据位, 无奇偶校验
                        // 0011,0100,由T2作为波特率发生器
  T2CON = 0x34;
                        // 时钟 11.0592MHz, 9600 波特率
  RCAP2H = 0xFF;
  RCAP2L = 0xDB;
  ES = 1:
                        // 允许串口中断
}
void Send_Byte(INT8U one_byte)
                        // 发送一个字节
{
  TI = 0;
                        // 清零串口发送中断标志
  SBUF = one_byte;
  while (TI == 0);
  TI = 0:
                        // 清零串口发送中断标志
```

```
INT8U get_AD_result(INT8U channel)
    INT8U AD_finished
                             0:
                                          // 存储 A/D 转换标志
   ADC_DATA
             =
                    0:
   ADC_CONTR = channel;
                                       // 选择 A/D 当前通道
   delay(1);
                                       //使输入电压达到稳定
   ADC_CONTR |= 0x08;
                                       //0000,1000 令 ADC_START = 1, 启动 A/D 转换
   AD_finished = 0;
   while ( AD_finished == 0 )
                                      // 等待 A/D 转换结束
       AD_finished = (ADC_CONTR & 0x10); //0001,0000, ADC_FLAG ==1 测试 A/D 转换结束否
   }
   ADC_CONTR &= 0xF7;
                                    //1111,0111 令 ADC_START = 0, 关闭 A/D 转换,
                                    // 返回 A/D 转换结果
   return (ADC_DATA);
}
void main()
    initiate_RS232();
                  0x63; // 0110,0011,要设置为 A/D 转换的 P1.x 口,先设为高
         =
              Р1
   P1\_ADC\_EN = 0x63;
                       //0110,0011, P1 的 P1.0,P1.1,P1.5,P1.6 设置为 A/D 转换输入脚
                         // 断开 P1.0, P1.1, P1.5, P1.6 内部上拉电阻
   while(1)
   {
       Send_Byte(get_AD_result(0)); //P1.0 为 A/D 当前通道, 测量并发送结果
       delay(0x200);
       Send_Byte(get_AD_result(1)); //P1.1 为 A/D 当前通道,测量并发送结果
       delay(0x200);
       Send_Byte(get_AD_result(5)); //P1.5 为 A/D 当前通道, 测量并发送结果
       delay(0x200);
       Send_Byte(get_AD_result(6)); //P1.6 为 A/D 当前通道, 测量并发送结果
       delay(0x200);
                                // 连续发送 4 个 00H, 便于观察输出显示
       Send_Byte(0);
       Send_Byte(0);
       Send_Byte(0);
       Send_Byte(0);
                                 // 延时
       delay(0x200);
       delay(0x200);
       delay(0x200);
       delay(0x200);
       delay(0x200);
       delay(0x200);
   }
}
```

看门狗应用

适用型号:

STC90C51AD, STC90C52AD, STC90C53AD, STC90C54AD, STC90C58AD, STC90C516AD STC90LE51AD, STC90LE52AD, STC90LE53AD, STC90LE54AD, STC90LE58AD, STC90LE516AD 系列 8051 单片机 看门狗定时器 特殊功能寄存器 Watch Dog Timer SFR

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
WDT_CONTR	E1h	Watch-Dog-Timer Control register	1	ı	EN_WDT	CLR_WDT	IDLE_WDT	PS2	PS1	PS0	xx00,0000

Symbol 符号 Function 功能

EN_WDT Enable WDT bit. When set, WDT is started

看门狗允许位, 当设置为"1"时,看门狗启动。

CLR_WDT WDT clear bit. When set, WDT will recount. Hardware will automatically clear

this bit.

看门狗清"0"位, 当设为"1"时, 看门狗将重新计数。硬件将自动清"0"此位。

IDLE_WDT When set, WDT is enabled in IDLE mode. When clear, WDT is disabled in IDLE mode

看门狗"IDLE"模式位,当设置为"1"时,看门狗定时器在"空闲模式"计数

当清"0"该位时,看门狗定时器在"空闲模式"时不计数

PS2, PS1, PS0 Pre-scale value of Watchdog timer is shown as the bellowed table:

看门狗定时器预分频值,如下表所示

P S 2	PS1	PS0	Pre-scale 预分频	WDT Period @20MHz and 12 clocks mode
0	0	0	2	39.3 mS
0	0	1	4	78.6 mS
0	1	0	8	157.3 mS
0	1	1	1 6	314.6 mS
1	0	0	32	629.1 mS
1	0	1	6 4	1.258
1	1 0		128	2.5\$
1	1	1	256	5 S

The WDT period is determined by the following equation 看门狗溢出时间计算

看门狗溢出时间 = (N x Pre-scale x 32768) / Oscillator frequency

N = 12, 当在12 clock mode时, N = 6, 当在6 clock mode 时

设时钟为 12MHz, 12 时钟模式

看门狗溢出时间 = (12 x Pre-scale x 32768) / 12000000 = Pre-scale x 393216 / 12000000

PS2	PS1	PS0	Pre-scale 预分频	WDT Period @12MHz and 12 clocks mode
0	0	0	2	65.5 mS
0	0	1	4	131.0 mS
0	1	0	8	262.1 mS
0	1	1	16	524.2 mS
1	0	0	3 2	1.0485\$
1	0	1	6 4	2.09718
1	1	0	128	4.1943\$
1	1	1	256	8.3886\$

设时钟为 11.0592MHz, 12 时钟模式

看门狗溢出时间 = (12 x Pre-scale x 32768) / 11059200 = Pre-scale x 393216 / 11059200

PS2	PS1	PS0	Pre-scale 预分频	WDT Period @11.0592MHz and 12 clocks mode
0	0	0	2	71.1 mS
0	0	1	4	142.2 mS
0	1	0	8	284.4 mS
0	1	1	16	568.8 mS
1	0	0	32	1.1377\$
1	0	1	64	2.2755\$
1	1	0	128	4.55118
1	1 1	1	256	9.1022\$

汇编语言程序示例

```
WDT_CONTR DATA
               0E1H ; 或者
                                WDT CONTR EQU 0E1H
;复位入口
   ORG
          0000H
   LJMP Initial
   ...
   ORG
          0060H
Initial:
   MOV
         WDT_CONTR, #00111100B; Load initial value 看门狗定时器控制寄存器初始化
              ; EN_WDT = 1, CLR_WDT = 1, IDLE_WDT = 1, PS2 = 1, PS1 = 0, PS0 = 0
   . . .
Main_Loop:
   LCALL
          Display_Loop
   LCALL Keyboard_Loop
   MOV
          WDT_CONTR, #00111100B; 喂狗, 不要用 ORL WDT_CONTR, #00010000B
   ...
   LJMP
          Main_Loop
C语言程序示例
#include<reg52.h>
sfr
      WDT_CONTR = 0xe1;
void main()
   WDT_CONTR = 0x3c;
   /* 0011,0100 EN_WDT = 1,CLR_WDT = 1, IDLE_WDT = 1, PS2 = 1, PS1 = 0, PS0 = 0 */
   while(1){
       display();
       keyboard();
       WDT_CONTR = 0x3c; /* 喂狗, 不要用 WDT_CONTR = WDT_CONTR | 0x10;*/
   }
}
```

```
;/* --- STC International Limited ----- */
;/* --- Mobile: 13922805190 ----- */
:/* --- Fax: 0755-82944243 ------ */
:/* --- Tel: 0755-82948409 ----- */
;/* --- Web: www.STCMCU.com ----- */
;/* --- 本演示程序在 STC-ISP Ver 3.0A.PCB 的下载编程工具上测试通过 ------ */
:/* --- 如果要在程序中使用该程序,请在程序中注明使用了宏晶科技的资料及程序 --- */
;/* --- 如果要在文章中引用该程序,请在文章中注明使用了宏晶科技的资料及程序 --- */
;本程序用于验证 STC90C/LE58AD系列单片机的看门狗及其溢出时间计算公式
;看门狗及其溢出时间 = (N * Pre_scale *32768)/Oscillator frequency
; N = 12, 当在 12 clock mode 时, N = 6, 当在 6 clock mode 时。
WDTCR
       EQU
            0E1H
                     ;看门狗地址
LED
       EQU
            P1.5
                     ;用 P1.5 控制发光二级管
Pre scale Word EQU 0x35
                   ;清0、启动看门狗,预分频数=64
;f=18.432MHz、12clock mode 时
  看门狗溢出时间 = (12 * 64 * 32768)/18432000 = 1.36$
  ORG
      0000H
  AJMP MAIN
  ORG
      0100H
MAIN:
  CLR
      LED
                     :点亮 LED
                     ;延时,让 LED 亮大约 1S 的时间
  ACALL Delay
  MOV
      WDTCR, #Pre_scale_Word;启动看门狗,若注释掉本条指令即不启动狗,
                      ;LED 只会亮一次
  SETB LED
                      ;熄灭 LED
Wait:
  SJMP Wait
              ;跳转到本语句(停机),等待看门狗溢出复位,复位后将再次点亮 LED
Delay:
  MOV
      RO, #0
      R1, #0
  MOV
  MOV
      R2, #15
Delay Loop:
  DJNZ RO, Delay_Loop
  DJNZ R1, Delay_Loop
  DJNZ R2, Delay_Loop
  RET
  END
```

STC90C58AD 系列单片机如何用软件实现系统复位

用户应用程序在运行过程当中,有时会有特殊需求,需要实现单片机系统软复位(热启动之一),传统的 8051 单片机由于硬件上未支持此功能,用户必须用软件模拟实现,实现起来较麻烦。现 STC 新推出的增强型 8051 根据客户要求增加了 ISP_CONTR 特殊功能寄存器,实现了此功能。用户只需简单的控制 ISP_CONTR 特殊功能寄存器的其中两位 SWBS / SWRST 就可以系统复位了。

ISP CONTR: ISP/IAP 控制寄存器,地址在 0E7H 单元

В7	В6	B5	В4	В3	B2	B1	В0	Reset Value
ISPE	SWBS	SWRST	-	-	WT2	WT1	WTO	000x,x000

ISPEN: ISP/IAP 功能允许位。0:禁止 ISP/IAP 编程改变 Flash,1:允许编程改变 Flash

SWBS: 软件选择从用户应用程序区启动(0),还是从 ISP 程序区启动(1)。要与 SWRST 直接配合

才可以实现

SWRST: 0: 不操作;1: 产生软件系统复位,硬件自动清零。

;从用户应用程序区(AP区)软件复位并切换到用户应用程序区(AP区)开始执行程序

MOV ISP_CONTR, #00100000B; SWBS = 0(选择 AP 区), SWRST = 1(软复位)

;从系统 ISP 监控程序区软件复位并切换到用户应用程序区(AP区)开始执行程序

MOV ISP CONTR, #00100000B; SWBS = 0(选择 AP 区), SWRST = 1(软复位) -

;从用户应用程序区(AP区)软件复位并切换到系统 ISP 监控程序区开始执行程序

MOV ISP_CONTR, #01100000B; SWBS = 1(选择 ISP区), SWRST = 1(软复位)

;从系统 ISP 监控程序区软件复位并切换到系统 ISP 监控程序区开始执行程序

MOV ISP_CONTR, #01100000B; SWBS = 1(选择 ISP区), SWRST = 1(软复位)-

本复位是整个系统复位,所有的特殊功能寄存器都会复位到初始值,1/0口也会初始化。

STC90C58AD 系列 ISP / IAP 应用 STC90C58AD 系列 内部 EEPROM 的应用

-- 利用 IAP 技术可实现 EEPROM,内部 Flash 擦写次数为 100,000 次以上

RC/RD+系列 8051 单片机 ISP/IAP 特殊功能寄存器 ISP/IAP SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset Value
ISP_DATA	E2h	ISP/IAP Flash Data Register									1111,1111
ISP_ADDRH	E3h	ISP/IAP Flash Address High									0000,0000
ISP_ADDRL	E4h	ISP/IAP Flash Address Low									0000,0000
ISP_CMD	E5h	ISP/IAP Flash Command Register	-	-	-	-	-	MS2	MS1	MS0	xxxx,x000
ISP_TRIG	E6h	ISP/IAP Flash Command Trigger									xxxx,xxxx
ISP_CONTR	E7h	ISP/IAP Control Register	ISPEN	SWBS	SWRST	-	-	WT2	WT1	WT0	000x,x000

ISP_DATA: ISP/IAP 操作时的数据寄存器。

ISP/IAP 从 Flash 读出的数据放在此处,向 Flash 写的数据也需放在此处

ISP_ADDRH: ISP/IAP 操作时的地址寄存器高八位。 ISP_ADDRL: ISP/IAP 操作时的地址寄存器低八位。

ISP CMD: ISP/IAP 操作时的命令模式寄存器,须命令触发寄存器触发方可生效。

В7	В6	В5	В4	В3	В2	В1	В0	命令 / 操作 模式选择		
	保	留			命令	令 选	择			
-	-	•	•	-	0	0	0	Standby 待机模式,无 I SP操作		
-	-	ı	-	-	0	0	AP-Flash / Data-Flash Read 对用户的应用程序Flash区及数据Flash区字节			
-	-	-	-	-	0	1	0	AP-Flash / Data-Flash Program 对用户的应用程序Flash区及数据Flash区字节编程		
-	-	-	-	-	0	1	1	AP-Flash / Data-Flash Sector Erase 对用户的应用程序Flash区及数据Flash区扇区擦除		

程序在系统 ISP 程序区时可以对用户应用程序区/数据 Flash 区(EEPROM)进行字节读/字节编程/扇区擦除;程序在用户应用程序区时,仅可以对数据 Flash 区(EEPROM)进行字节读/字节编程/扇区擦除。已经固化有 ISP 引导码,并设置为上电复位进入 ISP 的 STC89C51RC/RD+ 系列单片机出厂时就已完全加密。

ISP_TRIG: ISP/IAP 操作时的命令触发寄存器。

在 ISPEN(ISP_CONTR.7) = 1时,对 ISP_TRIG 先写入 46h,再写入 B9h,

ISP/IAP 命令才会生效。

ISP CONTR: ISP/IAP 控制寄存器。

В7	В6	B5	В4	В3	B2	B1	В0	Reset Value
ISPEN	SWBS	SWRST	•	-	WT2	WT1	WTO	000x,x000

ISPEN: ISP/IAP 功能允许位。0:禁止 ISP/IAP 编程改变 Flash, 1:允许编程改变 Flash

SWBS: 软件选择从用户主程序区启动(0), 还是从 ISP 程序区启动(1)。

SWRST: 0: 不操作;1: 产生软件系统复位,硬件自动清零。

;从用户应用程序区(AP区)软件复位并切换到 ISP 程序区开始执行程序

MOV ISP_CONTR, #01100000B; SWBS = 1(选择 ISP区), SWRST = 1(软复位)

;从 ISP 程序区软件复位并切换到用户应用程序区(AP区)开始执行程序

MOV ISP_CONTR, #00100000B; SWBS = 0(选择 AP 区), SWRST = 1(软复位)

设置	置等待时间 CPU 等待时间(机器周期)					周期)
WT2	WT1	WT0	Read	Program	Sector Erase	Recommended System Clock
0	1	1	6	30	5471	5MHz
0	1	0	11	60	10942	10MHz
0	0	1	22	120	21885	20MHz
0	0	0	43	240	43769	40MHz

STC90C51AD,STC90C06AD,STC90C07AD,STC90C52AD单片机内部可用 Data Flash(EEPROM)的地址STC90LE51AD,STC90LE06AD,STC90LE07AD,STC90LE52AD单片机内部可用 Data Flash(EEPROM)的地址:

第一;	弱 区	第二	扇区	第三)	扇区	第四扇	園 区	毎 个 扇 区
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	5 1 2 字 节
2000h	2 1 F F h	2200h	23FFh	2 4 0 0 h	2 5 F F h	2600h	27FFh	建议
第五月	. 弱 区	第六	扇 区	第七月	扇 区	第八扇区		同次的
起始地址	结 束 地 址	起始地址	结束地址	起始地址	结 束 地 址	起始地址	结束地址	数据放在
2800h	2 9 F F h	2 A 0 0 h	2 B F F h	2 C O O h	2 D F F h	2 E 0 0 h	2 F F F h	同一扇区
第九月	弱 区	第 十	扇区			-	1	
起始地址	结束地址	起始地址	结束地址					
3000h	31FFh	3 2 0 0 h	33FFh]

STC90C10AD, STC90LE10AD 单片机内部可用 Data Flash(EEPROM)的地址:

第一	扇区	第二	扇区	第三扇区		第四扇区		每个 扇区
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	512 字节
2800h	29FFh	2A00h	2BFFh	2C00h	2DFFh	2E00h	2FFFh	建议同一
第五	第五扇区 第六		扇区					次修 改的
起始地址	结束地址	起始地址	结束地址					数据放在
3000h	31FFh	3200h	33FFh					同一扇区

STC90C53AD, STC90LE53AD 单片机内部可用 Data Flash(EEPROM)的地址:

第一月	弱 区	第二	扇区		毎 个 扇 区
起始地址	结束地址	起始地址	结束地址		512 节议一修的
3000h	31FFh	3200h	33FFh		数据 在 同 区

STC90C54AD, STC90LE54AD 单片机内部可用 Data Flash(EEPROM)的地址:

100000 1 70,	0.00022017	- - /	בור ווין בורע					
第一	扇区	第二	扇区	第三	扇区	第四	扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
4000h	41FFh	4200h	43FFh	4400h	45FFh	4600h	47FFh	
第五	扇区	第六	扇区	第七	扇区	第八	扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
4800h	49FFh	4A00h	4BFFh	4C00h	4DFFh	4E00h	4FFFh	
第九	扇区	第十	扇区	第十	一扇区	第十	二扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
5000h	51FFh	5200h	53FFh	5400h	55FFh	5600h	57FFh	
第十二	三扇区	第十	四扇区	第十	五扇区	第十	六扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
5800h	59FFh	5A00h	5BFFh	5C00h	5DFFh	5E00h	5FFFh	
第十	七扇区	第十	八扇区	第十	 九扇区	第二	十扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
6000h	61FFh	6200h	63FFh	6400h	65FFh	6600h	67FFh	
第二	十一扇区	第二	十二扇区	第二	十三扇区	第二	十四扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	每个 扇区
6800h	69FFh	6A00h	6BFFh	6C00h	6DFFh	6E00h	6FFFH	512
第二	<u>+</u> 五扇区	第二	十六扇区	第二	- 十七扇区	第二	十八扇区	字节
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	建议
6000h	71FFh	7200h	73FFh	7400h	75FFh	7600h	77FFH	同一
第二	<u>-</u> 十九扇区	第三	十扇区	第三		第三	十二扇区	次修 改的
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	数 据
7800h	79FFh	7A00h	7BFFh	7C00h	7DFFh	7E00h	7FFFH	放在同一
第三	十三扇区	第三	十四扇区	第三	- 十五扇区	第三	十六扇区	扇区
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
8000h	81FFh	8200h	83FFh	8400h	85FFh	8600h	87FFH	
第三	十七扇区	第三	十八扇区	第三	- 十九扇区	第四	十扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	•
8800h	89FFh	8A00h	8BFFh	8C00h	8DFFh	8E00h	8FFFH	•
第四	. 十一扇区	第四	十二扇区	第四	• 十三扇区	第四	 十四扇区	•
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
9000h	91FFh	9200h	93FFh	9400h	95FFh	9600h	97FFH	•
第四	<u>-</u> 十五扇区	第四	十六扇区	第四		第四	十八扇区	•
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
9800h	99FFh	9A00h	9BFFh	9C00h	9DFFh	9E00h	9FFFH	•
第 四 ·	 十九扇区	第五	十扇区	第五	 十一扇区	第五	十二扇区	•
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
A000h	A1FFh	A200h	A3FFh	A400h	A5FFh	A600h	A7FFH	
	┺		十四扇区		 十五扇区		十六扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	i I
A800h	A9FFh	AA00h	ABFFh	AC00h	ADFFh	AE00h	AFFFH	
+	十七扇区		十八扇区		十九扇区		十扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
B000h	B1FFh	B200h	B3FFh	B400h	B5FFh	B600h	B7FFh	
200011	1	-20011			1-0			

STC90C54AD, STC90LE54AD 单片机内部可用 Data Flash (EEPROM)的地址:

~~ \		AA- 1		<i>σσ</i> . \	1-0-	<i>6</i> 47 \	Lmee	
第六	十一扇区	第六	十二扇区	第六	十三扇区	第六	十四扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
B800h	B9FFh	BA00h	BBFFh	BC00h	BDFFh	BE00h	BFFFh	
第六 [·]	十五扇区	第六	十六扇区	第六	十七扇区	第六	十八扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
C000h	C1FFh	C200h	C3FFh	C400h	C5FFh	C600h	C7FFh	
第六·	十九扇区	第七	十扇区	第七	十一扇区	第七	十二扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	每个
C800h	C9FFh	CA00h	CBFFh	CC00h	CDFFh	CE00h	CFFFh	扇区
第七 [·]	十三扇区	第七	十四扇区	第七	十五扇区	第七	十六扇区	512 字节
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
D000h	D1FFh	D200h	D3FFh	D400h	D5FFh	D600h	D7FFh	建议同一
第七 [·]	十七扇区	第七	十八扇区	第七	十九扇区	第八	十扇区	次修
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	改的
D800h	D9FFh	DA00h	DBFFh	DC00h	DDFFh	DE00h	DFFFh	数据 放在
第八·	十一扇区	第八	十二扇区	第八	十三扇区	第八	十四扇区	同一
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	扇区
E000h	E1FFh	E200h	E3FFh	E400h	E5FFh	E600h	E7FFH	
第八·	十五扇区	第八	十六扇区	第八	十七扇区	第八	十八扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
E800h	E9FFh	EA00h	EBFFh	EC00h	EDFFh	EE00h	EFFFH	
第八	十九扇区	第九	十扇区					
起始地址	结束地址	起始地址	结束地址					
F000h	F1FFh	F200h	F3FFh					
	·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

STC90C58AD, STC90LE58AD 单片机内部可用 Data Flash(EEPROM)的地址:

S1090058AL	, STC90LE58	AD 单万机内	部可用 Data	a Flash(EE	PROM) 的地名	<u> </u>		
第一	扇区	第二	扇区	第三	扇区	第四	扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
8000h	81FFh	8200h	83FFh	8400h	85FFh	8600h	87FFh	
第五	 扇区	第六	扇区	第七	扇区	第八	扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
8800h	89FFh	8A00h	8BFFh	8C00h	8DFFh	8E00h	8FFFh	
第九	扇区	第十	扇区	第十	一扇区	第十	二扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
9000h	91FFh	9200h	93FFh	9400h	95FFh	9600h	97FFh	
第十	三扇区	第十	四扇区	第十	五扇区	第十	六扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
9800h	99FFh	9A00h	9BFFh	9C00h	9DFFh	9E00h	9FFFh	
第十	七扇区	第十	八扇区	第十	九扇区	第二	十扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
A000h	A1FFh	A200h	A3FFh	A400h	A5FFh	A600h	A7FFh	
第二	十一扇区	第二	十二扇区	第二	十三扇区	第二	十四扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	每个 扇区
A800h	A9FFh	AA00h	ABFFh	AC00h	ADFFh	AE00h	AFFFH	512
第二	十五扇区	第二	十六扇区	第二	十七扇区	第二	十八扇区	字节
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	建议
B000h	B1FFh	B200h	B3FFh	B400h	B5FFh	B600h	B7FFH	同一
第二	<u>-</u> 十九扇区	第三	<u></u> 十扇区	第三	<u>-</u> 十一扇区	第三	十二扇区	次修 改的
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	数据
B800h	B9FFh	BA00h	BBFFh	BC00h	BDFFh	BE00h	BFFFH	放在
第三		第三	十四扇区	第三	<u></u> 十五扇区	第三	十六扇区	同一扇区
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
C000h	C1FFh	C200h	C3FFh	C400h	C5FFh	C600h	C7FFH	1
第三	. 十七扇区	第三	十八扇区	第三	- 十九扇区	第四	十扇区	1
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
C800h	C9FFh	CA00h	CBFFh	CC00h	CDFFh	CE00h	CFFFH	
第四	- 十一扇区	第四	十二扇区	第四	- 十三扇区	第四	- 十四扇区	1
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
D000h	D1FFh	D200h	D3FFh	D400h	D5FFh	D600h	D7FFH	
第四	- 十五扇区	第四	十六扇区	第四	十七扇区	第四	十八扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	1
D800h	D9FFh	DA00h	DBFFh	DC00h	DDFFh	DE00h	DFFFH	
第四	<u>-</u> 十九扇区	第五	十扇区	第五	 十一扇区	第五	十二扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
E000h	E1FFh	E200h	E3FFh	E400h	E5FFh	E600h	E7FFH	-
第五	———— 十三扇区	第五	十四扇区	第五	 十五扇区	第五	———— 十六扇区	
起始地址	结束地址	起始地址		起始地址	结束地址	起始地址	结束地址	1
E800h	E9FFh	EA00h	EBFFh	EC00h	EDFFh	EE00h	EFFFH	1
	十七扇区		十八扇区		<u> </u>		<u>. </u>	1
起始地址	结束地址	起始地址					1	1
F000h	F1FFh	F200h	F3FFh				 	1
			1	l	I	<u> </u>		ь

STC90C510AD, STC90LE510AD 单片机内部可用 Data Flash(EEPROM)的地址:

第一月	弱区	第二	扇区	第三	扇区	第四	扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
A000h	A1FFh	A200h	A3FFh	A400h	A5FFh	A600h	A7FFh	
第五月	弱区	第六	扇区	第七	扇区	第八	扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
A800h	A9FFh	AA00h	ABFFh	AC00h	ADFFh	AE00h	AFFFh	
第九月	弱区	第十	扇区	第十	一扇区	第十	二扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
B000h	B1FFh	B200h	B3FFh	B400h	B5FFh	B600h	B7FFh	
第十三	三扇区	第十	四扇区	第十三	五扇区	第十	六扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
B800h	B9FFh	BA00h	BBFFh	BC00h	BDFFh	BE00h	BFFFh	每个
第十一	七扇区	第十	八扇区	第十二	九扇区	第二	十扇区	扇区 512
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	字节
C000h	C1FFh	C200h	C3FFh	C400h	C5FFh	C600h	C7FFh	建议
第二 ⁻	十一扇区	第二	十二扇区	第二	十三扇区	第二	十四扇区	同一
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	次修
C800h	C9FFh	CA00h	CBFFh	CC00h	CDFFh	CE00h	CFFFh	改的 数据
第二:	十五扇区	第二	十六扇区	第二	十七扇区	第二-	十八扇区	放在
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	同一 扇区
D000h	D1FFh	D200h	D3FFh	D400h	D5FFh	D600h	D7FFh	79.5
第二	十九扇区	第三	十扇区	第三	十一扇区	第三	十二扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
D800h	D9FFh	DA00h	DBFFh	DC00h	DDFFh	DE00h	DFFFh	
第 三 ⁻	十三扇区	第三	十四扇区	第三	十五扇区	第三	十六扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
E000h	E1FFh	E200h	E3FFh	E400h	E5FFh	E600h	E7FFH	
第 三 ⁻	十七扇区	第三	十八扇区	第三	十九扇区	第四	十扇区	
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	
E800h	E9FFh	EA00h	EBFFh	EC00h	EDFFh	EE00h	EFFFH	
第四-	十一扇区	第四	十二扇区					
起始地址	结束地址	起始地址	结束地址					
F000h	F1FFh	F200h	F3FFh					

STC90C512AD, STC90LE512AD 单片机内部可用 Data Flash(EEPROM)的地址:

第一月	弱区	第二	扇区	第三	扇区	第四	扇区			
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址			
C000h	C1FFh	C200h	C3FFh	C400h	C5FFh	C600h	C7FFh			
第五月	弱区	第六扇区		第七扇区		第八	扇区			
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址			
C800h	C9FFh	CA00h	CBFFh	CC00h	CDFFh	CE00h	CFFFh	每个		
第九月	弱区	第十	扇区	第十	一扇区	第十二	二扇区	扇区		
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	512 字节		
D000h	D1FFh	D200h	D3FFh	D400h	D5FFh	D600h	D7FFh	1 1 1		
第十日	三扇区	第十	四扇区	第十	五扇区	第十六扇区		第十六扇区		建议
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	同一 次修		
D800h	D9FFh	DA00h	DBFFh	DC00h	DDFFh	DE00h	DFFFh	改的		
第十一	七扇区	第十	八扇区	第十	九扇区	第二	十扇区	数据 放在		
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	同一		
E000h	E1FFh	E200h	E3FFh	E400h	E5FFh	E600h	E7FFH	扇区		
第二	十一扇区	第二	十二扇区	第二	十三扇区	第二	十四扇区			
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址			
E800h	E9FFh	EA00h	EBFFh	EC00h	EDFFh	EE00h	EFFFH			
第二	十五扇区	第二	十六扇区							
起始地址	结束地址	起始地址	结束地址			-				
F000h	F1FFh	F200h	F3FFh							

STC90C514AD, STC90LE514AD 单片机内部可用 Data Flash(EEPROM)的地址:

第一	扇区	第二	扇区	第三	扇区	第四	扇区	每个
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	扇区
E000h	E1FFh	E200h	E3FFh	E400h	E5FFh	E600h	E7FFH	512 字节
第五月	扇区	第六	扇区	第七	扇区	第八扇区		建议
起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	起始地址	结束地址	同一 次修
E800h	E9FFh	EA00h	EBFFh	EC00h	EDFFh	EE00h	EFFFH	改的
第九	扇区	第十	扇区		•		•	数据放在
起始地址	结束地址	起始地址	结束地址					同一
F000h	F1FFh	F200h	F3FFh					扇区

STC90C58AD 系列 IAP 应用汇编简介 STC90C58AD 系列 内部 EEPROM 的应用

;用DAT	A 还	是EQU 声明新	f增特殊功能	寄存器:	地址要	看你用	的汇编器	器/编译器	
1	SP_D	ATA	DATA	0E2h;	或	ISP_	DATA	EQU	0E2h
1	SP_A	DDRH	DATA	0E3h;	或	ISP_/	ADDRH	EQU	0E3h
1	SP_A	DDRL	DATA	0E4h;	或	ISP_/	ADDRL	EQU	0E4h
- 1	SP_C	MD	DATA	0E5h;	或	ISP_0	CMD	EQU	0E5h
1	SP_T	RIG	DATA	0E6h;	或	ISP_	ΓRΙG	EQU	0E6h
1	SP_C	ONTR	DATA	0E7h;	或	ISP_0	CONTR	EQU	0E7h
;定义口	SP/I	AP 命令及等	待时间						
1	SP_I	AP_BYTE_RE	AD	EQU	1	;字节	读		
1	SP_I	AP_BYTE_PR	OGRAM EQU	2	•			该字节是空,0FF	
I	SP_I	AP_SECTOR_	ERASE EQU	3	;扇区	擦除,	要某字节	5为空,要擦一扇	園区
W.	AIT_	TIME	EQU 0			;设置	等待时间],40MHz 以下 0,2	20M 以下 1,
						;		10MHz 以下 2,	5M 以下 3
;字节读									
			#BYTE_ADDR				Щ.	地址需要改变时に	大型重新关地址
			#BYTE_ADDR				子巾_		
									D 版本不需要关中断
М			#WAIT_TIME				_	此两句可以合成	- '
0	RL	ISP_CONTR,	#1000000B	;允许	FISP/I	IAP 操	作	并且只送一次就	够了
M	10V	ISP_CMD,	#ISP_IAP_B	YTE_R	EAD ;	送字节	读命令,	命令不需改变时,	不需重新送命令
M	MOV	ISP_TRIG,	#46h	;先送	46h,∄	再送 B9	h 到 ISP	/IAP 触发寄存器	,每次都需如此
M	10V	ISP_TRIG,	#0B9h	;送完	B9h 后	i, IS	P/IAP 命	令立即被触发起	动
;CPU €	等待!	IAP 动作完成	成后,才会继	续执 行	亍程序	, 要先	关中断 ((EA),	
;再送4	6h, B	9h 到 ISP/IA	AP 触发寄存器	引起动	ISP/I	AP 命	令,关中断	f <mark>在触发之前即</mark> 可	•
N	IOP				;数据	读出至	JISP_DA	(TA 寄存器后,C	PU 继续执行程序
M	10V	A, ISP_DATA			;将读	出的数	対据送往 A	\cc	
;以下语	旬可	不用, 只是出	出于安全考虑问	而已					
M	OV	ISP_CONTR,	#0000000B		;禁止	ISP/	IAP 操作		
M	10V	ISP_CMD,	#0000000B		;去除	SISP/	IAP 命令		
;	MOV	ISP_TRIG,	#0000000B		;防止	ISP/	IAP 命令i	误触发	
;	MOV	ISP_ADDRH,	#0		;送地	址高字	节单元为	o 00,指向非 EEP	ROM 🗵
;	MOV	ISP_ADDRL,	#0		;送地	址低字	节单元为	可00,防止误操作	Ī
S	ETB	EA			;开中	断,(PU 处理?	完 ISP/IAP 动作即	1可开中断

```
宏晶科技:www.STCMCU.com Mobile:13922805190(姚永平) Tel:0755-82948412
;字节编程,该字节为FFh/空时,可对其编程,否则不行,要先执行扇区擦除
   MOV ISP DATA,
                 #ONE DATA
                                      送字节编程数据到 ISP DATA
   MOV ISP_ADDRH, #BYTE_ADDR_HIGH ; 送地址高字节 -
                                      一地址需要改变时才需重新送地址
   MOV ISP_ADDRL, #BYTE_ADDR_LOW ;送地址低字节 _
   CLR EA ; 关中断, 此时各中断请求, 会被挂起, 一开中断, 立即响应, 最新的 D 版本不需要关中断
       ISP CONTR, #WAIT TIME;设置等待时间 — 此两句可以合成一句,
   MOV
   ORL ISP_CONTR, #10000000B;允许 ISP/IAP 操作 ___ 并且只送一次就够了
   MOV ISP_CMD, #ISP_IAP_BYTE_PROGRAM
                                 ;送字节编程命令
   MOV ISP_TRIG, #46h ;先送 46h,再送 B9h 到 ISP/IAP 触发寄存器,每次都需如此
   MOV ISP TRIG, #0B9h
                      ;送完B9h后,ISP/IAP命令立即被触发起动
:CPU 等待 IAP 动作完成后,才会继续执行程序,要先关中断(EA).
;再送 46h, B9h 到 ISP/IAP 触发寄存器,起动 ISP/IAP 命令,关中断在触发之前即可
                          ;字节编程成功后,CPU继续执行程序
   NOP
;以下语句可不用,只是出于安全考虑而已
                         ;禁止 ISP/IAP 操作
   MOV ISP CONTR, #0000000B
   MOV ISP_CMD, #0000000B
                         ;去除 ISP/IAP 命令
   ;MOV ISP TRIG, #0000000B
                          ;防止 ISP/IAP 命令误触发
   ; MOV ISP ADDRH, #0
                          ;送地址高字节单元为00,指向非 EEPROM 区,防止误操作
   :MOV ISP ADDRL.#0
                          :送地址低字节单元为 00. 指向非 EEPROM 区, 防止误操作
   SETB EA
                          ;开中断, CPU 处理完 ISP/IAP 动作即可开中断
;扇区擦除,没有字节擦除,只有扇区擦除,512字节/扇区,
;扇区里面任意一个字节的地址都是扇区地址,无需求首地址,单片机会自己处理
;建议同一次修改的数据放在同一个扇区
;如果要对某个扇区进行擦除,而其中有些字节的内容需要保留,则需将其先读到单片机
:内部的RAM 中保存,再将该扇区擦除,然后将须保留的数据写回该扇区,
; 所以每个扇区中用的字节数越少越好, 操作起来越灵活越快
;强烈建议同一次修改的数据放在同一个扇区
   MOV ISP_ADDRH, #SECTOR_FIRST_BYTE_ADDR_HIGH;送扇区起始地址高字节 7 地址需要改变时
   MOV ISP ADDRL, #SECTOR_FIRST_BYTE_ADDR_LOW ;送扇区起始地址低字节 _ 才需重新送地址
   CLR EA ; 关中断, 此时各中断请求, 会被挂起, 一开中断, 立即响应, 最新的 D 版本不需要关中断
   MOV ISP_CONTR, #WAIT_TIME;设置等待时间 此两句可以合成一句,
       ISP_CONTR, #10000000B ;允许 ISP/IAP ___ 并且只送一次就够了
   ORL
   MOV ISP CMD, #ISP IAP SECTOR ERASE ;送扇区擦除命令,命令不需改变时,不需重新送命令
   MOV ISP TRIG, #46h
                      ;先送 46h,再送 B9h 到 ISP/IAP 触发寄存器,每次都需如此
   MOV ISP TRIG, #0B9h
                      ;送完B9h后, ISP/IAP 命令立即被触发起动
; CPU 等待 IAP 动作完成后,才会继续执行程序,要先关中断(EA),
;再送 46h, B9h 到 ISP/IAP 触发寄存器, 起动 ISP/IAP 命令, 关中断在触发之前即可
   NOP
                          ;扇区擦除成功后,CPU 继续执行程序
;以下语句可不用,只是出于安全考虑而已
                          ;禁止 ISP/IAP 操作
   MOV ISP CONTR. #00000000B
   MOV ISP CMD, #0000000B
                          ;去除 ISP/IAP 命令
   ;MOV ISP TRIG, #0000000B
                          ;防止 ISP/IAP 命令误触发
                          ;送地址高字节单元为00,指向非EEPROM区
   ;MOV ISP ADDRH, #0
   ;MOV ISP ADDRL, #0
                         ;送地址低字节单元为00,防止误操作
```

小常识: (STC 单片机的 Data Flash 当 EEPROM 功能使用)

3个基本命令 - - - - 字节读,字节编程,扇区擦除

字节编程:如果该字节是"1111,1111B",则可将其中的"1"编程为"0",如果该字节中有位为"0",则须先将整个扇区擦除,因为只有"扇区擦除"才可以将"0"变为"1"。

扇区擦除:只有"扇区擦除"才可能将"0"擦除为"1"。

大建议:

- 1. 同一次修改的数据放在同一扇区中,单独修改的数据放在另外的扇区,就不须读出保护。
- 2. 如果一个扇区只用一个字节,那就是真正的 EEPROM,STC 单片机的 Data Flash 比外部 EEPROM 要快很多,读一个字节/编程一个字节/擦除一个扇区大概是 10uS/60uS/10mS。
- 3. 如果同一个扇区中存放了一个以上的字节,某次只需要修改其中的一个字节或一部分字节时,则另外的不需要修改的数据须先读出放在 STC 单片机的 RAM 中,然后擦除整个扇区,再将需要保留的数据和需修改的数据一并写回该扇区中。这时每个扇区使用的字节数是使用的越少越方便(不需读出一大堆需保留数据)。

```
宏晶科技:www.STCMCU.com Mobile:13922805190(姚永平) Tel:0755-82948412 Fax: 0755-82944243
;/* --- STC International Limited ----- */
:/* --- 宏晶科技 姚永平 设计 2006/1/6 V1.0 ------*/
;/* --- 演示 STC90C/LE90RC/RD+ 系列 MCU EEPROM/IAP 功能示例程序 ------ */
;/* --- Mobile: 13922805190 ----- */
:/* --- Tel: 0755-82948409
                    Fax: 0755-82944243----- */
;/* --- Web: www.STCMCU.com ----- */
;/* --- 本演示程序在 STC-ISP Ver 3.0A.PCB 的下载编程工具上测试通过 ------ */
;/* --- 如果要在程序中使用该程序,请在程序中注明使用了宏晶科技的资料及程序 --- */
;/* --- 如果要在文章中引用该程序,请在文章中注明使用了宏晶科技的资料及程序 --- */
:本程序演示 STC90C58AD 系列单片机 EEPROM/IAP 功能
;定义与 IAP 有关的特殊功能寄存器
ISP DATA
         EQU 0E2H
         EQU 0E3H
ISP_ADDRH
          EQU 0E4H
ISP_ADDRL
ISP CMD
          EQU 0E5H
ISP_TRIG
         EQU 0E6H
ISP CONTR
          EQU 0E7H
;定义常量
:-----
;Flash 操作等待时间
                        ;<5MHz
;ENABLE ISP EQU 83H
          EQU 82H
; ENABLE ISP
                         ;<10MHz
;ENABLE_ISP
          EQU 81H
                        ;<20MHz
ENABLE ISP
          EQU 80H
                        ;>20MHz
DEBUG DATA
          EQU 5AH
;-----
;选择 MCU 型号
DATA FLASH START ADDRESS EQU 2000H ;STC90C/LE
  ORG
       0000H
  AJMP MAIN
:-----
  ORG
       0100H
MAIN:
  MOV P1,#0F0H;演示程序开始工作
  LCALL Delay ;延时
  MOV
       P1,#0FH ;演示程序开始工作
  LCALL Delay ;延时
        SP,#0E0H;堆栈指针指向 0E0H 单元
;读回写入 flash 的第1个字节
MAIN1:
   MOV
       DPTR, #DATA FLASH START ADDRESS
   LCALL Byte_Read
   MOV
       40H, A
                      ;值送 40H 单元保存
```

CJNE A, #DEBUG_DATA, DATA_NOT_EQU_DEBUG_DATA

```
DATA IS DEBUG DATA:
   MOV
           P1, #01111111B ; (DATA_FLASH_START_ADDRESS) = #5A, 亮 P1.7
   LCALL
          Delay
                  ;延时
   MOV
           A, 40H ;值从 40H 单元送 ACC
   CPL
           Α
           P1, A ;数据是对的,送 P1显示
   MOV
WAIT1:
           WAIT1 ;数据是对的,送 P1显示,并在此停止
   SJMP
DATA_NOT_EQU_DEBUG_DATA:
   MOV
           P1, #11110111B ; (DATA_FLASH_START_ADDRESS) != #5A, 亮 P1.3
   LCALL
          Delay ;延时
   MOV
           A, 40H;值从40H单元送 ACC
   CPL
           P1, A ;数据不对,送 P1显示
   MOV
   LCALL
           Delay ;延时
   MOV
           DPTR, #DATA_FLASH_START_ADDRESS
   ACALL
          Sector_Erase ;擦除扇区, (DATA_FLASH_START_ADDRESS) != #DEBUG_DATA
   MOV
           DPTR, #DATA_FLASH_START_ADDRESS
   MOV
                                   ;写入 flash 的数据为 DEBUG_DATA
          Α,
               #DEBUG DATA
   ACALL
          Byte_Program
                                   ;字节编程
   MOV
          P1, #11011111B
                                   ;先亮 P1.3 ,再亮 P1.5
WAIT2:
          WAIT2 ;字节编程后在此停止
   SJMP
;读一字节
;调用前需打开 IAP 功能
;入口:DPTR = 字节地址
;返回:A = 读出字节
Byte_Read:
   MOV
          ISP_CONTR, #ENABLE_ISP ;打开 IAP 功能,设置 Flash 操作等待时间
   MOV
          ISP_CMD,
                     #01
                                   ;Select Read AP Mode
   MOV
          ISP_ADDRH, DPH
                                   ;Fill page address in ISP_ADDRH & ISP_ADDRL
   MOV
          ISP_ADDRL, DPL
   CLR
          EΑ
   MOV
          ISP_TRIG,
                     #46H
                                   ;Trigger ISP processing
          ISP_TRIG, #0B9H
   MOV
                                   ;Trigger ISP processing
   NOP
   MOV
          A, ISP_DATA
                                   ;数据在 ISP_DATA
   SETB
          EΑ
```

; Now in processing. (CPU will halt here before completing)

宏晶科技:www.STCMCU.com Mobile:13922805190(姚永平) Tel:0755-82948412 Fax: 0755-82944243 :关闭 IAP 功能, 清与 ISP 有关的特殊功能寄存器 ACALL IAP_Disable RET ;-----;字节编程 ;调用前需打开 IAP 功能 ;入口:DPTR = 字节地址, A=须编程字节的数据 Byte_Program: MOV ISP_CONTR, #ENABLE_ISP ;打开 IAP 功能,设置 Flash 操作等待时间 MOV ISP_CMD, #02H ;Select Byte Program Mode MOV ISP_ADDRH, DPH ;Fill page address in ISP_ADDRH & ISP_ADDRL MOV ISP_ADDRL, DPL MOV ISP_DATA, A ;数据进 ISP_DATA CLR EΑ MOV ISP_TRIG, #46H ;Trigger ISP processing MOV ISP_TRIG, #OB9H ;Trigger ISP processing NOP SETB EA ;关闭 IAP 功能, 清与 ISP 有关的特殊功能寄存器 ACALL IAP_Disable RET ;-----;擦除扇区,入口:DPTR = 扇区地址 Sector_Erase: ISP_CONTR, #ENABLE_ISP ;打开 IAP 功能,设置 Flash 操作等待时间 MOV MOV ISP_CMD, #03H ;Select Page Erase Mode MOV ;Fill page address in ISP_ADDRH & ISP_ADDRL ISP_ADDRH, DPH MOV ISP_ADDRL, DPL EΑ CLR ISP_TRIG, #46H ISP_TRIG, #0B9H MOV;Trigger ISP processing MOV ;Trigger ISP processing NOP SETB EA ACALL IAP_Disable ;关闭 IAP 功能, 清与 ISP 有关的特殊功能寄存器 RET ;-----Trigger_ISP: CLR EA

;Trigger ISP processing ;Trigger ISP processing

MOV ISP_TRIG, #46H MOV ISP_TRIG, #0B9H

NOP SETB EA RET

;-----;关闭 IAP 功能, 清与 ISP 有关的特殊功能寄存器 IAP_Disable: MOVISP_CONTR, #0 ;关闭 IAP 功能 MOV ISP_CMD, #0 ISP_TRIG, #0 MOVRET ;-----Delay: CLR A MOV RO, A MOV R1, A MOV R2, #20H Delay_Loop: DJNZ RO, Delay_Loop DJNZ R1, Delay_Loop DJNZ R2, Delay_Loop RET ;-----END

STC90C58AD 系列单片机定时器的使用

定时器0和1

定时和计数功能由特殊功能寄存器 TMOD 的控制位 C/T 进行选择,TMOD 寄存器的各位信息如下表所列。可以看出,2 个定时 / 计数器有 4 种操作模式,通过 TMOD 的 M1 和 M0 选择。2 个定时 / 计数器的模式 0、1 和 2 都相同,模式 3 不同,各模式下的功能如下所述。

寄存器 TMOD 各位的功能描述

1. 模式 0

将定时器设置成模式 0 时类似 8048 定时器,即 8 位计数器带 32 分频的预分频器。下图所示为模式 0 工作方式。此模式下,定时器配置为 13 位的计数器,由 TLn 的低 5 位和 THn 的 8 位所构成。TLn 低 5 位溢出向 THn 进位,THn 计数溢出置位 TCON 中的溢出标志位 TFn (n=0,1)。 GATE=0 时,如 TRn=1,则定时器计数。GATE=1 时,允许由外部输入 INT1 控制定时器 1,INT0 控制定时器 0,这样可实现脉宽测量。TRn 为 TCON 寄存器内的控制位,TCON 寄存器各位的具体功能描述见 TCON 寄存器各位的具体功能描述表。

* 在6时钟模式下, d=6;在12时钟模式下, d=12。

图 定时器 / 计数器 0 和定时器 / 计数器 1 的模式 0 : 13 位定时 / 计数器

表 寄存器 TCON 各位的功能描述

TCON 地址:88H										
 可位寻址		7	6	5	4	3	2	1	0	
复位值:00H		TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	
位	符号	功 能								
TCON.7	TF1	定时器 / 计数器 1 溢出标志位。当 T1 被允许计数后,T1 从初值开始加 1 计数,最高位产生溢出时,置"1"TF1,并向 CPU 请求中断,当 CPU 响应时,由硬件清"0"TF1,TF1 也可以由程序查询或清"0"。								
TCON.6	TR1	定时器 T1 的运行控制位。该位由软件置位和清零。当 GATE (TMOD.7)=0, TR1=1 时就允许 T1 开始计数, TR1=0 时禁止 T1 计数。当 GATE (TMOD.7)=1, TR1=1 且 INT1输入高电平时,才允许 T1 计数。								
TCON.5	TF0	定时器 / 计数器 0 溢出标志位。当 T0 被允许计数后,T0 从初值开始加 1 计数,最高位产生溢出时,置" 1" TF0,并向 CPU 请求中断,当 CPU 响应时,由硬件清" 0" TF0,TF0 也可以由程序查询或清" 0"。								
TCON.4	TRO	定时器 T0 的运行控制位。该位由软件置位和清零。当 GATE (TMOD.3)=0, TR0=1 时就允许 T0 开始计数,TR1=0 时禁止 T0 计数。当 GATE (TMOD.3)=1, TR0=1 且 INTO输入高电平时,才允许 T0 计数。								
TCON.3	IE1	外部中断 1 中断请求标志位。当主机响应中断转向该中断服务程序执行时,由内部硬件 自动将 I E 1 位清 0。								
TCON.2	IT1	外部中断 1 触发方式控制位。IT1=0 时,外部中断 1 为低电平触发方式,当 INT1(P3.3)输入低电平时,置位 I E1。采用低电平触发方式时,外部中断源(输入到 I NT1)必须保持低电平有效,直到该中断被 CPU 响应,同时在该中断服务程序执行完之前,外部中断源必须被清除(P3.3 要变高),否则将产生另一次中断。当 IT1=1 时,则外部中断 1(INT1)端口由"1""0"下降沿跳变,激活中断请求标志位 I E 1,向主机请求中断处理。								
TCON.1	IE0	外部中断 0 中断请求标志位。当主机响应中断转向该中断服务程序执行时,由内部硬件 自动将 I E 0 位清 0。								
TCON.O	IT0	外部中断 1 触发方式控制位。ITO=0 时,外部中断 0 为低电平触发方式,当 INTO (P3.2)输入低电平时,置位 I E 0。采用低电平触发方式时,外部中断源(输入到 INTO)必须保持低电平有效,直到该中断被 CPU 响应,同时在该中断服务程序执行完之前,外部中断源必须被清除 (P3.2 要变高),否则将产生另一次中断。当 ITO=1 时,则外部中断 0 (INTO)端口由"1""0"下降沿跳变,激活中断请求标志位 I E 1,向主机请求中断处理。								

该 13 位寄存器包含 THn 全部 8 个位及 TLn 的低 5 位。TLn 的高 3 位不定,可将其忽略。置位运行标志(TRn)不能清零此寄存器。模式 0 的操作对于定时器 0 及定时器 1 都是相同的。2 个不同的 GATE 位 (TMOD.7 和 TMOD.3)分别分配给定时器 1 及定时器 0。

2. 模式1

模式 1 除了使用了 THn 及 TLn 全部 16 位外,其他与模式 0 完全相同。

* 在6时钟模式下, d=6;在12时钟模式下, d=12。

图 定时器 / 计数器 0 和定时器 / 计数器 1 的模式 1 : 16 位定时 / 计数器

3. 模式 2

此模式下定时器 / 计数器 0 和 1 作为可自动重装载的 8 位计数器 (TLn), 如下图所示。TLn 的溢出不仅置位 TFn, 而且将 THn 内容重新装入 TLn, THn 内容由软件预置,重装时 THn 内容不变。模式 2 的操作对于定时器 0 及定时器 1 是相同的。

* 在6时钟模式下, d=6;在12时钟模式下, d=12。

图 定时器 / 计数器 0 和 1 的模式 2 : 8 位自动重装载

4. 模式3

对定时器 1,在模式 3时,定时器 1停止计数,效果与将 TR1设置为 0相同。

对定时器 0 ,此模式下定时器 0 的 TL0 及 TH0 作为 2 个独立的 8 位计数器。下图为模式 3 时的定时器 0 逻辑图。TL0 占用定时器 0 的控制位: C/\overline{T} 、 GATE、TR0、 $\overline{INT0}$ 及 TF0。TH0 限定为定时器功能(计数器周期),占用定时器 1 的 TR1 及 TF1。此时,TH0 控制定时器 1 中断。

模式 3 是为了增加一个附加的 8 位定时器 / 计数器而提供的,使单片机具有三个定时器 / 计数器。模式 3 只适用于定时器 / 计数器 0,定时器 T1 处于模式 3 时相当于 TR1=0,停止计数(此时 T1 可用来作串行口波特率发生器),而 T 0 可作为两个定时器用。

* 在6时钟模式下, d=6;在12时钟模式下, d=12。

图 定时/计数器0的模式3 : 两个8位计数器

定时器0和1应用举例

【例1】 定时/计数器编程,定时/计数器的应用编程主要需考虑:根据应用要求,通过程序初始化,正确设置控制字,正确计算和计算计数初值,编写中断服务程序,适时设置控制位等。通常情况下,设置顺序大致如下:

- 1)工作方式控制字(TMOD、T2CON)的设置;
- 2) 计数初值的计算并装入THx、TLx、RCAP2H、RCAP2L;
- 3)中断允许位ETx、EA的设置,使主机开放中断;
- 4) 启 / 停位 TRx 的设置等。

现以定时/计数器0或1为例作一简要介绍。

8051 系列单片机的定时器 / 计数器 0 或 1 是以不断加 1 进行计数的,即属加 1 计数器,因此,就不能直接将实际的计数值作为计数初值送入计数寄存器 THx、TLx 中去,而必须将实际计数值以 2⁸、2¹³、2¹⁶ 为模求补,以其补码作为计数初值设置 THx 和 TLx。

设:实际计数值为 X ,计数器长度为 n (n = 8 、 1 3 、 1 6),则应装入计数器 T H x 、T L x 中的计数初值为 2^n - x ,式中 2^n 为取模值。例如,工作方式 0 的计数长度为 1 3 位,则 n = 1 3 ,以 2^{13} 为模,工作方式 1 的计数长度为 1 6 ,则 1 7 。

对于定时模式,是对机器周期计数,而机器周期与选定的主频密切相关。因此,需根据应用系统所选定的主频计算出机器周期值。现以主频 6 M H z 为例,则机器周期为:

实际定时时间Tc = x·Tp

式中Tp 为机器周期,Tc 为所需定时时间,x 为所需计数次数。Tp 和Tp 一般为已知值,在求出Tp 后即可求得所需计数值x,再将x 求补码,即求得定时计数初值。即

$$(x) = 2^{n} - x$$

例如,设定时时间Tc = 5ms,机器周期 $TP = 2 \mu s$,可求得定时计数次数

$$x = \frac{5ms}{2 \mu s} = 2500 \, \text{m}$$

设选用工作方式 1 , 则 n=16 , 则应设置的定时时间计数初值为 : (x) 补 = 2^{16} - x=65536-2500=63036 , 还需将它分解成两个 8 位十六进制数 , 分别求得低 8 位为 3 CH 装入 TLx , 高 8 位为 F 6 H 装入 THx 中。

工作方式 0、1、2 的最大计数次数分别为 8192、65536 和 256。

对外部事件计数模式,只需根据实际计数次数求补后变换成两个十六进制码即可。

【例 2 】 定时/计数器应用编程,设某应用系统,选择定时/计数器1定时模式,定时时间 Tc=10ms,主频频率为 12MHz,每 10ms 向主机请求处理。选定工作方式 1。计算得计数初值:低 8 位初值为 Tc 为 Tc FOH,高 8 位初值为 Tc D8H。

(1)初始化程序

所谓初始化,一般在主程序中根据应用要求对定时/计数器进行功能选择及参数设定等预置程序, 本例初始化程序如下:

START:

; 主程序段 MOV SP,#60H ;设置堆栈区域 ;选择T1、定时模式,工作方式1 MOV TMOD, #10H MOV TH1, #0D8H ;设置高字节计数初值 MOV TL1, #0F0H ;设置低字节计数初值 SETB EA SETB ET1 ; 其他初始化程序 SETB TR1 ;启动 T1 开始计时 : 继续主程序 (2)中断服务程序 INTT1: PUSH A PUSH DPL PUSH DPH MOV TL1,#0F0H MOV TH1,#0D8H ;中断处理主体程序 POP DPH POP DPL POP A RETI ;返回

这里展示了中断服务子程序的基本格式。8052系列单片机的中断属于矢量中断,每一个矢量中断源只留有8个字节单元,一般是不够用的,常需用转移指令转到真正的中断服务子程序区去执行。

【例3】 对外部正脉冲测宽。选择定时/计数器2进行脉宽测试较方便,但也可选用定时/计数器0或定时/计数器1进行测宽操作。本例选用定时/计数器0(T0)以定时模式,工作方式1对INT0引脚上的正脉冲进行脉宽测试。

设置 GATE 为 1 , 机器周期 TP 为 1 µ s。本例程序段编制如下:

INTTO: MOV TMOD, #09H ; 设TO 为定时方式1, GATE 为1

MOV TLO,#00H ; THo,TLo清(

CLR EXO ;关 INTO 中断

 LOP1:
 JB
 P3.2, LOP1
 ;等待 INTO 引低电平

 LOP2:
 JNB
 P3.2, LOP2
 ;等待 INTO 引脚高电平

SETB TRO ; 启动 TO 开始计数

LOP3: JB P3.2, LOP3 ; 等待 INTO 低电平

CLR TRO ; 停止TO 计数

 MOV A,TL0
 ; 低字节计数值送 A

 MOV B,TH0
 ; 高字节计数值送 B

 : 计算脉宽和处理

【例 4 】 利用定时/计数器 0 或定时/计数器 1 的 Tx 端口改造成外部中断源输入端口的应用设计。在某些应用系统中常会出现原有的两个外部中断源 INTO 和 INT1 不够用,而定时/计数器有多余,则可将 Tx 用于增加的外部中断源。现选择定时/计数器 1 为对外部事件计数模式工作方式 2 (自动再装入),设置计数初值为 FFH,则 T1 端口输入一个负跳变脉冲,计数器即回 0 溢出,置位对应的中断请求标志位 TF1 为 1,向主机请求中断处理,从而达到了增加一个外部中断源的目的。应用定时/计数器 1 (T1)的中断矢量转入中断服务程序处理。其程序示例如下:

(1) 主程序段:

ORG 0000H

AJMP MAIN ;转主程序

ORG 001BH

LJMP INTER ;转T1 中断服务程序

:

ORG 0100 ; 主程序入口

MAIN: ...

:

MOV SP,#60H ;设置堆栈区

MOV TMOD, #60H ;设置定时/计数器1,计数方式2

MOV TL1,#0FFH ;设置计数常数

MOV TH1, #0FFH

SETB EA ; 开中断

 SETB ET1
 ; 开定时 / 计数器 1 中断

 SETB TR1
 ; 启动定时 / 计数器 1 计数

:

(2)中断服务程序(具体处理程序略)

ORG 1000H

INTER: PUSH A

PUSH DPL ; 现场入栈

PUSH DPH

- :

POP DPH ; POP DPL ; POP A ; RETI ; 返回

这是中断服务程序的基本格式。

【例 5 】 某应用系统需通过 P1.0 和 P1.1 分别输出周期为 200 μ s 和 400 μ s 的方波。为此,系统选用 定时器 / 计数器 0 (T0), 定时方式 3, 主频为 6 MHz, TP=2 μ s, 经计算得定时常数为 9 CH 和 3 8 H。

本例程序段编制如下:

(1)初始化程序段

```
EPLTO:MOV TMOD,#03H ; 设置 T0 定时方式 3
MOV TLO,#9CH ; 设置 TLO 初值
MOV THO,#38H ; 设置 THO 初值
SETB EA ;
SETB ETO ; 异中断 ; 启动
SETB TRO ; 启动
: 启动
```

(2)中断服务程序段

RETI

;返回

在实际应用中应注意的问题如下。

(1)定时/计数器的实时性

定时/计数器启动计数后,当计满回0溢出向主机请求中断处理,由内部硬件自动进行。但从回0溢出请求中断到主机响应中断并作出处理存在时间延迟,且这种延时随中断请求时的现场环境的不同而不同,一般需延时3个机器周期以上,这就给实时处理带来误差。大多数应用场合可忽略不计,但对某些要求实时性苛刻的场合,应采用补偿措施。

这种由中断响应引起的时间延时,对定时/计数器工作于方式0或1而言有两种含义:一是由于中断响应延时而引起的实时处理的误差;二是如需多次且连续不间断地定时/计数,由于中断响应延时,则在中断服务程序中再置计数初值时已延误了若干个计数值而引起误差,特别是用于定时就更明显。

例如选用定时方式1设置系统时钟,由于上述原因就会产生实时误差。这种场合应采用动态补偿办法以减少系统始终误差。所谓动态补偿,即在中断服务程序中对THx、TLx 重新置计数初值时,应将THx、TLx 从回0溢出又重新从0开始继续计数的值读出,并补偿到原计数初值中去进行重新设置。可考虑如下补偿方法:

:

CLR EA ;禁止中断

MOV A,TLx ;读TLx中已计数值

ADD A, #LOW ; LOW 为原低字节计数初值

MOV TLx, A;设置低字节计数初值

MOV A,#HIGH ;原高字节计数初值送A

ADDC A, THx ; 高字节计数初值补偿

MOV THx, A;置高字节计数初值

SETB EA ; 开中断

:

(2)动态读取运行中的计数值

在动态读取运行中的定时/计数器的计数值时,如果不加注意,就可能出错。这是因为不可能在同一时刻同时读取 THx 和 TLx 中的计数值。比如,先读 TLx 后读 THx,因为定时/计数器处于运行状态,在读 TLx 时尚未产生向 THx 进位,而在读 THx 前已产生进位,这时读得的 THx 就不对了;同样,先读 THx 后读 TLx 也可能出错。

一种可避免读错的方法是:先读THx,后读TLx,将两次读得的THx进行比较;若两次读得的值相等,则可确定读的值是正确的,否则重复上述过程,重复读得的值一般不会再错。此法的软件编程如下:

RDTM: MOV A, THx ; 读取 THx 存 A 中 MOV RO, TLx ; 读取 TLx 存 RO 中

CJNE A, THx, RDTM; 比较两次 THx 值, 若相等,则读得的值正

;确,程序往下执行,否则重读

MOV R1, A ;将 THx 存于 R1 中

:

定时器1做波特率发生器

;/*	- STC International Limited */
;/*	- 宏晶科技 姚永平 设计 2006/1/6 V1.0*/
;/*	- 演示 STC89C/LE58AD系列 MCU 定时器1作波特率发生器功能*/
;/*	- Mobile: 13922805190 */
;/*	- Tel: 0755-82948409 Fax: 0755-82944243*/
;/*	- Web: www.STCMCU.com */
;/*	· 本演示程序在 STC-ISP Ver 3.0A.PCB的下载编程工具上测试通过 */
;/*	如果要在程序中使用该程序,请在程序中注明使用了宏晶科技的资料及程序 */
;/*	如果要在文章中引用该程序,请在文章中注明使用了宏晶科技的资料及程序 */
;	
; 4	□程序演示 STC90C/LE51AD/STC90C/LE52AD/STC90C/LE53AD/STC90C/LE54AD/STC90C/LE58AD
; ST	TC90C/LE516AD 系列单片机用定时器 1 作 RS-232 通信波特率发生器的使用方法。
; S1	「C12C2O52AD、STC12C5410AD 系列是 "一个时钟/机器周期" 的 8051 单片机。它
;的定时	器 0、定时器 1 有两种计数速率,一种是 12T 模式:每 12 个时钟加 1, 与普通的
;8051	上片机相同;另一种是 1T 模式:每个时钟加 1 , 是普通 8051 单片机的 12 倍。
; S1	「C90C/LE58AD 系列是 "12 个时钟 / 机器周期 " 的 8051 单片机,与普通的 8051 单片
;机相同	0
:使用方	
,	 多改程序,改变波特率参数或改变定时器 1 的计数速率(1T 模式 /12T 模式)
•	[编程序,将代码下载到单片机中
•	周整串口调试助手的波特率与单片机的波特率相同,并打开调试助手的串口。STC
•	下载程序 STC-ISP.exe 版本 3.2 以上有串口调试助手功能。
•	T开单片机电源,可以在串口调试助手的接收区看到单片机发出的数据
,	用串口调试助手发送单个字节到单片机,单片机收到后会立即回发到串口调试助手
•	反复步骤 1-5,检验波特率参数是否正确,特别要观察定时器 1 工作在 1T模式
	的波特率。例如,先设置定时器 1 工作在 12T模式,设置波特率为 9600 ,执行
•	5版符字。例如,光设量定的66°1 工作在 12°1 模式,设量版符字为 9000,fM1] 5骤 2-5,检验波特率参数是否正确。然后仅仅将定时器1 的计数速率改成
•	
•	
; 1	T模式,执行步骤 2-5,就会发现本程序的波特率变成了 115200,波特率是 2T模式的 12 倍。

宏晶:全球最大的8051单片机设计公司 请用无法解密的STC90xxAD系列取代全球各厂家均已被解密的89系列

;-----

```
;定义 STC90C/LE58AD 系列 MCU 特殊功能寄存器
AUXR
             EQU 8EH
;定义波特率自动重装数
;以下是 Fosc = 22.1184MHz, 1T 模式, SMOD=1 时,计算出的自动重装数和波特率
;RELOAD_COUNT EQU OFFH
                         ;Baud=1,382,400 bps
;RELOAD_COUNT EQU OFEH
                         ;Baud=691,200 bps
                         ;Baud=460,800 bps
;RELOAD_COUNT EQU OFDH
;RELOAD COUNT EQU OFCH
                         ;Baud=345,600 bps
;RELOAD_COUNT EQU OFBH
                         ;Baud=276,480 bps
;RELOAD_COUNT EQU OFAH
                         ;Baud=230,400 bps
;RELOAD COUNT EQU 0F4H
                         ;Baud=115,200 bps
;RELOAD_COUNT EQU 0E8H
                         ;Baud=57,600 bps
;RELOAD_COUNT EQU ODCH
                         ;Baud=38,400 bps
;RELOAD COUNT EQU OB8H
                         ;Baud=19,200 bps
;RELOAD_COUNT EQU 70H
                        ;Baud=9,600 bps
;以上是 Fosc = 22.1184MHz, 1T 模式, SMOD=1 时,计算出的自动重装数和波特率
             ****************
;以下是 Fosc = 1.8432MHz, 1T 模式, SMOD=1 时 , 计算出的自动重装数和波特率
;RELOAD_COUNT EQU OFFH
                         ;Baud=115,200 bps
;RELOAD COUNT EQU OFEH
                         ;Baud=57,600 bps
;RELOAD COUNT EQU OFDH
                         ;Baud=38,400 bps
;RELOAD_COUNT EQU OFCH
                         ;Baud=28,800 bps
                         ;Baud=19,200 bps
;RELOAD_COUNT EQU OFAH
;RELOAD_COUNT EQU 0F4H
                         ;Baud=9,600 bps
;RELOAD_COUNT EQU 0E8H
                         ;Baud=4,800 bps
                         ;Baud=2,400 bps
;RELOAD_COUNT EQU ODOH
;RELOAD_COUNT EQU OAOH
                         ;Baud=1,200 bps
;以上是 Fosc = 1.8432MHz, 1T 模式, SMOD=1 时, 计算出的自动重装数和波特率
;以下是 Fosc = 18.432MHz, 1T 模式, SMOD=1 时,计算出的自动重装数和波特率
;RELOAD COUNT EQU OFFH
                        ;Baud=1,152,000 bps
                         ;Baud=576,000 bps
;RELOAD_COUNT EQU OFEH
;RELOAD_COUNT EQU OFDH
                         ;Baud=288,000 bps
; RELOAD COUNT EQU OFCH
                         ;Baud=144,000 bps
;RELOAD_COUNT EQU OF6H
                         ;Baud=115,200 bps
;RELOAD COUNT EQU OECH
                         ;Baud=57,600 bps
;RELOAD_COUNT EQU 0E2H
                         ;Baud=38,400 bps
;RELOAD_COUNT EQU OD8H
                         ;Baud=28,800 bps
                         ;Baud=19,200 bps
;RELOAD COUNT EQU 0C4H
;RELOAD_COUNT EQU 088H
                         ;Baud=9,600 bps
;以上是 Fosc = 18.432MHz, 1T模式, SMOD=1 时,计算出的自动重装数和波特率
```

```
;以下是 Fosc = 18.432MHz, 1T 模式, SMOD=0 时 , 计算出的自动重装数和波特率
;RELOAD_COUNT EQU OFFH
                       ;Baud=576,000 bps
;RELOAD_COUNT EQU OFEH
                       ;Baud=288,000 bps
;RELOAD COUNT EQU OFDH
                       ;Baud=144,000 bps
;RELOAD_COUNT EQU OFCH
                       ;Baud=115,200 bps
;RELOAD_COUNT EQU OF6H
                       ;Baud=57,600 bps
;RELOAD_COUNT EQU OECH
                       ;Baud=38,400 bps
;RELOAD_COUNT EQU 0E2H
                       ;Baud=28,800 bps
;RELOAD_COUNT EQU OD8H
                       ;Baud=19,200 bps
;RELOAD_COUNT EQU OC4H
                       ;Baud=9,600 bps
;RELOAD_COUNT EQU 088H
                       ;Baud=4,800 bps
;以上是 Fosc = 18.432MHz, 1T 模式, SMOD=0 时,计算出的自动重装数和波特率
;以下是 Fosc = 18.432MHz, 12T模式, SMOD=0 时,计算出的自动重装数和波特率
RELOAD_COUNT EQU OFBH ;Baud=9,600 bps
;RELOAD_COUNT EQU OF6H
                      ;Baud=4,800 bps
;RELOAD_COUNT EQU OECH
                      ;Baud=2,400 bps
;RELOAD_COUNT EQU OD8H ;Baud=1,200 bps
;以上是 Fosc = 18.432MHz, 12T模式, SMOD=0 时,计算出的自动重装数和波特率
;以下是 Fosc = 18.432MHz, 12T模式, SMOD=1 时,计算出的自动重装数和波特率
                       ;Baud=19,200 bps
;RELOAD_COUNT EQU OFBH
                       ;Baud=9,600 bps
;RELOAD_COUNT EQU OF6H
;RELOAD_COUNT EQU OECH
                       ;Baud=4,800 bps
:RELOAD COUNT EQU OD8H
                       ;Baud=2,400 bps
;RELOAD_COUNT EQU OBOH
                       ;Baud=1,200 bps
:以上是 Fosc = 18.432MHz. 12T模式. SMOD=1 时,计算出的自动重装数和波特率
```

```
;以下是 Fosc = 11.0592MHz, 12T模式, SMOD=0 时,计算出的自动重装数和波特率
;RELOAD_COUNT EQU OFFH
                   ;Baud=28,800 bps
                   ;Baud=14,400 bps
;RELOAD_COUNT EQU OFEH
;RELOAD_COUNT EQU OFDH
                    ;Baud=9,600 bps
;RELOAD COUNT EQU OFAH
                    ;Baud=4,800 bps
;RELOAD_COUNT EQU 0F4H
                   ;Baud=2,400 bps
;RELOAD_COUNT EQU 0E8H
                    ;Baud=1,200 bps
;以上是 Fosc = 11.0592MHz, 12T模式, SMOD=0 时,计算出的自动重装数和波特率
;以下是 Fosc = 11.0592MHz, 12T模式, SMOD=1 时,计算出的自动重装数和波特率
;RELOAD_COUNT EQU OFFH ;Baud=57,600 bps
                    ;Baud=28,800 bps
;RELOAD COUNT EQU OFEH
;RELOAD COUNT EQU OFDH
                    ;Baud=14,400 bps
                   ;Baud=9,600 bps
;RELOAD_COUNT EQU OFAH
                    ;Baud=4,800 bps
;RELOAD_COUNT EQU 0F4H
;RELOAD COUNT EQU 0E8H
                    ;Baud=2,400 bps
;RELOAD_COUNT EQU ODOH ;Baud=1,200 bps
;以上是 Fosc = 11.0592MHz, 12T模式, SMOD=1 时,计算出的自动重装数和波特率
:定义指示灯
LED MCU START EQU P1.7 ;MCU 工作指示灯
   ORG
       0000H
  AJMP MAIN
_____
   ORG
       0023H
   AJMP UART_Interrupt ; RS232 串口中断服务程序
   NOP
   NOP
MAIN:
  MOV SP, #7FH
                           ;设置堆栈指针
   CLR LED_MCU_START
                          ;点亮 MCU 工作指示灯
   ACALL Initial UART
                          ;初始化串口
                          ;30H = 可打印字符 '0' 的 ASCII 码
   MOV RO, #30H
   MOV R2, #10
                          ;发送10个字符'0123456789'
```

```
LOOP:
  MOV A, RO
  ACALL Send_One_Byte ;发送一个字节,可将PC 串口调试助手设置成字符显示
  ;如果是字符显示,显示为 0123456789,
  ;如设置成 16 进制显示, 显示 30 31 32 33 34 35 36 37 38 39
  INC
  DJNZ R2, LOOP
MAIN WAIT:
  SJMP MAIN WAIT
                        ;跳转到本行, 无限循环
[------
UART Interrupt:
                        ;串口中断服务程序
     RI, Is_UART_Receive
  JB
                       ;清零串口发送中断标志
  CLR TI
  RETI
                        :发送时使用的是查询方式,不使用中断
Is UART Receive:
  CLR RI
  PUSH ACC
  MOV A, SBUF
                       :取接收到的字节
  ACALL Send One Byte
                       :回发收到的字节
  POP ACC
  RETI
1-----

      Initial_UART:
      ;初始化串口

      ; SCON Bit:
      7
      6
      5
      4
      3
      2
      1
      0

   SMO/FE SM1 SM2 REN TB8 RB8 TI RI
  MOV SCON, #50H
                       ;0101,0000 8位可变波特率,无奇偶校验
  MOV TMOD, #21H
                       ;设置定时器1 为8位自动重装计数器
  MOV TH1, #RELOAD_COUNT ;设置定时器 1 自动重装数
      TL1. #RELOAD COUNT
  MOV
:-----
       PCON, #80H
                        ;若本行有效, 波特率可以加倍
:-----
;以下两行指令只能有一行有效
 ORL AUXR, #01000000B ;定时器1工作在1T模式,波特率可以快
   12 倍
  ANL AUXR, #10111111B ; 定时器 1 工作在 12T 模式,与普通的 8051 相同
;以上两行指令只能有一行有效
:-----
  SETB TR1
                        ;启动定时器1
  SETB ES
  SETB EA
  RET
```

```
;入口参数: A = 要发送的字节
Send_One_Byte:
                        ;发送一个字节
  CLR ES
  CLR TI
                        ;清零串口发送中断标志
  MOV SBUF, A
Wait_Send_Finish:
  JNB TI, Wait_Send_Finish ;等待发送完毕
  CLR TI
                         :清零串口发送中断标志
  SETB ES
  RET
;-----
1-----
;计算自动重装数 RELOAD (SMOD = 0, SMOD 是 PCON 特殊功能寄存器的最高位):
; 1. 计算 RELOAD (以下是 SMOD = 0 时的计算公式)
   a) 12T 模式的计算公式: RELOAD = 256 - INT(Fosc/Baud0/32/12 + 0.5)
    b) 1T 模式的计算公式: RELOAD = 256 - INT(Fosc/Baud0/32 + 0.5)
   式中: INT() 表示取整运算即舍去小数, 在式中加 0.5 可以达到四舍五入的目的
        Fosc = 晶振频率
        Baud0 = 标准波特率
 2. 计算用 RELOAD 产生的波特率:
     a) Baud = Fosc/(256 - RELOAD)/32/12 12T 模式
     b) Baud = Fosc/(256 - RELOAD)/32
                                    1T 模式
; 3. 计算误差
        error = (Baud - Baud0)/Baud0 * 100%
4. 如果误差绝对值 > 4.5% 要更换波特率或者更换晶体频率,重复步骤 1-4
;例: Fosc = 22.1184MHz, Baud0 = 57600 (12T 模式)
; 1. RELOAD = 256 - INT(22118400/57600/32/12 + 0.5)
       = 256 - INT(1.5)
        = 256 - 1
        = 255
       = OFFH
; 2. Baud = 22118400/(256-255)/32/12
  = 57600
; 3. 误差等于零
```

```
;例: Fosc = 18.432MHz, Baud0 = 57600 (12T 模式)
; 1. RELOAD = 256 - INT(18432000/57600/32/12 + 0.5)
         = 256 - INT(0.833 + 0.5)
         = 256 - INT(1.333)
         = 256 - 1
         = 255
         = OFFH
; 2. Baud = 18432000/(256-255)/32/12
       = 48000
; 3. error = (48000 - 57600)/57600 * 100\%
         = -16.66\%
;4. 误差很大,要更换波特率或者更换晶体频率,重新计算请见下一例
;例: Fosc = 18.432MHz, Baud0 = 9600 (12T 模式)
; 1. RELOAD = 256 - INT(18432000/9600/32/12 + 0.5)
         = 256 - INT(5.5)
         = 256 - 5
         = 251
         = OFBH
; 2. Baud = 18432000/(256-251)/32/12
       = 9600
; 3. 一目了然, 误差等于零
;例: Fosc = 2.000MHz, Baud = 4800 (1T 模式)
; 1. RELOAD = 256 - INT(2000000/4800/32 + 0.5)
         = 256 - INT(13.02 + 0.5)
         = 256 - INT(13.52)
         = 256 - 13
         = 243
         = 0F3H
; 2. Baud = 2000000/(256-243)/32
        = 4808
; 3. error = 0.16\%
```

STC 定时器2的操作

定时器 2 是一个 16 位定时 / 计数器。通过设置特殊功能寄存器 T2CON 中的 C/T2 位 , 可将其作为定时器或计数器 (特殊功能寄存器 T2CON 的描述如表 1 所列)。定时器 2 有 3 种操作模式:捕获、自动重新装载 (递增或递减计数) 和波特率发生器 , 这 3 种模式由 T2CON 中的位进行选择 (如表 1 所列)。

表 1 特殊功能寄存器 T2CON 的描述 T2CON 地址 = 0C8H 可位寻址 复位值 =00H 7 0 5 1 C/T2 CP/RL2 TF2 EXF2 RCLK TCLK EXEN2 TR2 符号 位 名称和意义 TF2 T2CON.7 定时器 2 溢出标志。定时器 2 溢出时置位,必须由软件清除。当 RCLK 或 TCLK=1 时, TF2 将不会置位 EXF2 T2CON.6 定时器 2 外部标志。当 EXEN2=1 且 T2EX 的负跳变产生捕获或重装时, EXF2 置位。定时器2 中断使能时, EXF2=1 将使CPU 从中断向量处执 行定时器 2 中断子程序。EXF2 位必须用软件清零。在递增/递减计数器 模式(DCEN=1)中,EXF2不会引起中断 RCLK T2CON.5 接收时钟标志。RCLK 置位时,定时器2的溢出脉冲作为串行口模式1和 模式 3 的接收时钟。RCLK=0 时,将定时器 1 的溢出脉冲作为接收时钟 TCLK T2CON.4 发送时钟标志。TCLK 置位时,定时器2的溢出脉冲作为串行口模式1和 模式 3 的发送时钟。TCLK=0 时,将定时器 1 的溢出脉冲作为发送时钟 定时器 2 外部使能标志。当其置位且定时器 2 未作为串行口时钟时,允 EXEN2 T2CON.3 许T2EX的负跳变产生捕获或重装。EXEN2=0时,T2EX的跳变对定时器2 无效 定时器 2 启动 / 停止控制位。置 1 时启动定时器 TR2 T2CON.2 $C/\overline{T2}$ T2CON.1 定时器 / 计数器选择。(定时器 2) 0= 内部定时器 (OSC/12 或OSC/6) 1 = 外部事件计数器(下降沿触发) CP/RL2 T2CON.0 捕获/重装标志。置位:EXEN2=1时,T2EX的负跳变产生捕获。清零:

表 2 定时器 2 工作方式

EXEN2=0 时,定时器 2 溢出或 T2EX 的负跳变都可使定时器自动重装。当

RCLK=1或 TCLK=1时,该位无效且定时器强制为溢出时自动重装

RCLK+TCLK	CP/RL2	TR2	模 式
0	0	1	16 位自动重装
0	1	1	16 位捕获
1	Х	1	波特率发生器
Х	Х	0	(关闭)

1. 捕获模式

在捕获模式中,通过 T2CON 中的 EXEN2 设置 2 个选项。如果 EXEN2=0,定时器 2 作为一个 16 位定时器或 计数器(由 T2CON 中 C/T2 位选择),溢出时置位 TF2(定时器 2 溢出标志位)。该 位可用于产生中断(通过使能 IE 寄存器中的定时器 2 中断使能位)。如果 EXEN2=1,与以上描述相同,但增加了一个特性,即外部输入 T2EX 由 1 变零时,将定时器 2 中 TL2 和 TH2 的当前值各自捕获到 RCAP2L 和

RCAP2H。另外,T2EX的负跳变使T2CON中的EXF2置位,EXF2也像TF2一样能够产生中断(其向量与定时器2溢出中断地址相同,定时器2中断服务程序通过查询TF2和EXF2来确定引起中断的事件),捕获模式如图1所示。在该模式中,TL2和TH2无重新装载值,甚至当T2EX产生捕获事件时,计数器仍以T2EX的负跳变或振荡频率的1/12(12时钟模式)或1/6(6时钟模式)计数。

在 6 时钟模式下,d=6;在 12 时钟模式下,d=12。

图 1 定时器 2 捕获模式

2. 自动重装模式(递增/递减计数器)

16 位自动重装模式中,定时器 2 可通过 C/T2 配置为定时器 / 计数器,编程控制递增 / 递减计数。计数的方向是由 DCEN(递减计数使能位)确定的,DCEN 位于 T2MOD 寄存器中,T2MOD 寄存器各位的功能描述如表 3 所示。当 DCEN=0 时,定时器 2 默认为向上计数;当 DCEN=1 时,定时器 2 可通过 T2EX 确定递增或递减计数。图 2 显示了当 DCEN=0 时,定时器 2 自动递增计数。在该模式中,通过设置 EXEN2 位进行选择。如果 EXEN2=0,定时器 2 递增计数到 0FFFFH,并在溢出后将 TF2 置位,然后将 RCAP2L 和 RCAP2H 中的 16 位值作为重新装载值装入定时器 2。RCAP2L 和 RCAP2H 的值是通过软件预设的。

表 3 定时器 2 模式 (T2MOD) 控制寄存器的描述

	也址 =0C9l 位寻址	H			Ę	夏位值 =XX	XXX XX00I	В
	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	T20E	DCEN
符 号	功(能						

— 不可用,保留将来之用 *

T20E 定时器 2 输出使能位

DCEN 向下计数使能位。定时器2可配置成向上/向下计数器

* 用户勿将其置1。这些位在将来80C51系列产品中用来实现新的特性。在这种情况下,以后用到保留位,复位时或非有效状态时,它的值应为0;而这些位为有效状态时,它的值为1。从保留位读到的值是不确定的。

如果 EXEN2=1,16 位重新装载可通过溢出或 T2EX 从 1 0 的负跳变实现。此负跳变同时将 EXF2 置位。如果定时器 2 中断被使能,则当 TF2 或 EXF2 置 1 时产生中断。在图 3 中,DCEN=1 时,定时器 2 可递增或递减计数。此模式允许 T2EX 控制计数的方向。当 T2EX 置 1 时,定时器 2 递增计数,计数到 0FFFFH后溢出并置位 TF2,还将产生中断(如果中断被使能)。定时器 2 的溢出将使 RCAP2L 和 RCAP2H 中的16 位值作为重新装载值放入 TL2 和 TH2。

当 T2EX 置零时,将使定时器 2 递减计数。当 TL2 和 TH2 计数到等于 RCAP2L 和 RCAP2H 时,定时器产

* 在6时钟模式下, d=6; 在12时钟模式下, d=12。

图 2 定时器 2 自动重装模式 (DCEN=0)

* 在 6 时钟模式下,d=6 ; 在 12 时钟模式下,d=12。

图 3 定时器 2 自动重装模式 (DCEN=1)

生中断。

3. 波特率发生器模式

寄存器 T2CON 的位 TCLK 和(或) RCLK 允许从定时器 1 或定时器 2 获得串行口发送和接收的波特率。当 TCLK=0 时,定时器 1 作为串行口发送波特率发生器;当 TCLK=1 时,定时器 2 作为串行口发送波特率发生器。RCLK 对串行口接收波特率有同样的作用。通过这 2 位,串行口能得到不同的接收和发送波特率,一个通过定时器 1 产生,另一个通过定时器 2 产生。

如图 4 所示为定时器 2 工作在波特率发生器模式。与自动重装模式相似,当 TH2 溢出时,波特率发生器模式使定时器 2 寄存器重新装载来自寄存器 RCAP2H 和 RCAP2L 的 16 位的值 寄存器 RCAP2H 和 RCAP2L 的值由软件预置。当工作于模式 1 和模式 3 时,波特率由下面给出的公式所决定:

* 在 6 时钟模式下,d=1 ; 在 12 时钟模式下,d=2。

图 4 定时器 2 波特率发生器模式

定时器可配置成"定时"或"计数"方式,在许多应用上,定时器被设置在"定时"方式(C/T2=0)。当定时器2作为定时器时,它的操作不同于波特率发生器。通常定时器2作为定时器,它会在每个机器周期递增(1/6或1/12振荡频率)。当定时器2作为波特率发生器时,它在6时钟模式下,以振荡器频率递增(12时钟模式时为1/12振荡频率)。

这时的波特率公式如下:

式中: n=16(6时钟模式)或32(12时钟模式);[RCAP2H, RCAP2L]是RCAP2H和RCAP2L的内容,为16位无符号整数。

如图 4 所示,定时器 2 是作为波特率发生器,仅当寄存器 T2CON 中的 RCLK 和(或)TCLK=1 时,定时器 2 作为波特率发生器才有效。注意:TH2 溢出并不置位 TF2,也不产生中断。这样当定时器 2 作为波特率发生器时,定时器 2 中断不必被禁止。如果 EXEN2(T2 外部使能标志)被置位,在 T2EX 中由 1 到 0 的转换会置位 EXF2(T2 外部标志位),但并不导致(TH2,TL2)重新装载(RCAP2H,RCAP2L)。当定时器 2 用作波特率发生器时,如果需要,T2EX 可用做附加的外部中断。

当计时器工作在波特率发生器模式下,则不要对 TH2 和 TL2 进行读 / 写,每隔一个状态时间(fosc/2)或由 T2 进入的异步信号,定时器 2 将加 1。在此情况下对 TH2 和 TH1 进行读 / 写是不准确的;可对 RCAP2 寄存器进行读,但不要进行写,否则将导致自动重装错误。当对定时器 2 或寄存器 R C A P 进行访问时,应关闭定时器 (清零 T R 2)。表 4 列出了常用的波特率和如何用定时器 2 得到这些波特率。

4. 波特率公式汇总

定时器 2 工作在波特率发生器模式,外部时钟信号由 T2 脚进入,这时的波特率公式如下:

如果定时器 2 采用内部时钟信号,则波特率公式如下:

表 4 由定时器 2 产生的常用波特率

波特	寺率	振荡器频率	5	定时器 2
12 时钟模式	6 时钟模式	/MHz	RCAP2H	RCAP2L
375 000	750 000	12	FF	FF
9 600	19 200	12	FF	D9
2 800	9 600	12	FF	B2
2 400	4 800	12	FF	64
1 200	2 400	12	FE	C8
300	600	12	FB	1E
110	220	12	F2	AF
300	600	6	FD	8F
110	220	6	F9	57

式中: n=32(12 时钟模式)或 16(6 时钟模式), fosc= 振荡器频率。

自动重装值可由下式得到:

RCAP2H, RCAP2L=65536 — [fosc/(n ×波特率)]

5. 定时器 / 计数器 2 的设置

只接收

只发送

除了波特率发生器模式, T2CON 不包括 TR2 位的设置, TR2 位需单独设置来启动定时器。如表 5 和表 6 分别列出了 T2 作为定时器和计数器的具体设置方法。

模 式	T20	CON
(笑 工) 	内部控制	外部控制
16 位重装	00H	08H
16 位捕获	01H	09H
波特率发生器接收和发送相同波特率	34H	36H

表 5 T2 作为定时器的设置

仅当定时器溢出时进行捕获和重装。

当定时 / 计数器溢出并且 T2EX(P1.1)发生电平负跳变时产生捕获和重装(定时器 2 用于 波特率发生器模式时除外)。

24H

14H

26H

16H

模 式	TM	OD
模 式 	内部控制	外部控制
16 位	02H	OAH
自动重装	03H	OBH

表 6 T2 作为计数器设置

注 和注 同表5的注 和注。

6. 可编程时钟输出

STC89C51RC/RD+ 系列单片机,可设定定时/计数器2,通过P1.0输出时钟。P1.0除作通用I/0口外还有两个功能可供选用:用于定时/计数器2的外部计数输入和定时/计数器2时钟信号输出。图5为时钟输出和外部事件计数方式示意图。

* d=1,6时钟/机器周期;d=2,12时钟/机器周期

图 5 定时器 2 时钟输出和外部事件计数方式示意图

通过软件对 T2CON.1 位 C/\overline{T}_2 复位为 0 ,对 T2MOD.1 位 T2OE 置 1 就可将定时 / 计数器 2 选定为时钟信号发生器,而 T2CON.2 位 TR2 控制时钟信号输出开始或结束 (TR2 为启 / 停控制位). 由主振频率 (fosc)和定时 / 计数器 2 定时、自动再装入方式的计数初值决定时钟信号的输出频率。其设置公式如下:

* n=2,6时钟/机器周期;n=4,12时钟/机器周期

从公式可见,在主振频率(fosc)设定后,时钟信号输出频率就取决于定时计数初值的设定。 在时钟输出模式下,计数器回0溢出不会产生中断请求。这种功能相当于定时/计数器2用作波特率 发生器,同时又可以作时钟发生器。但必须注意,无论如何波特率发生器和时钟发生器不能单独确定各 自不同的频率。原因是两者都用同一个陷阱寄存器RCAP2H、RCAP2L,不可能出现两个计数初值。

```
;/* --- STC International Limited ----- */
;/* --- 宏晶科技 姚永平 设计 2006/1/6 V1.0 ----- */
;/* --- 演示 STC90C/LE58AD 系列 MCU 定时器2作波特率发生器功能------*/
;/* --- Mobile: 13922805190 ----- */
                       Fax: 0755-82944243----- */
:/* --- Tel: 0755-82948409
;/* --- Web: www.STCMCU.com -----*/
;/* --- 本演示程序在 STC-ISP Ver 3.0A.PCB 的下载编程工具上测试通过 ------ */
;/* --- 如果要在程序中使用该程序,请在程序中注明使用了宏晶科技的资料及程序 --- */
;/* --- 如果要在文章中引用该程序,请在文章中注明使用了宏晶科技的资料及程序 --- */
;-----Timer 2 做波特率发生器 -------
;----- 本程序不提供技术支持,一定要自己测试--------
:定义特殊功能寄存器
;与 RS232 口、TIMER2 有关的特殊功能寄存器
T2C0N
                   EQU 0C8H
TR2
                   EQU T2CON.2 ;TR2 是 T2CON 特殊功能寄存器的第 2 位
                   EQU OCAH
RCAP2L
RCAP2H
                   EQU OCBH
TH2
                   EQU OCDH
TL2
                   EQU OCCH
;设置波特率自动重装数
RELOAD COUNT HIGH
                  EQU OFFH
;使用以下参数必须将 RELOAD_COUNT_HIGH 设置为 OFFH
; RELOAD_COUNT_LOW
                   EQU OFAH ; Fosc = 22.1184MHz, Baud = 115200
                             ; Fosc = 22.1184MHz, Baud = 38400
; RELOAD_COUNT_LOW
                   EQU OEEH
; RELOAD COUNT LOW
                   EQU OFOH
                             ; Fosc = 20.000MHz, Baud = 38400
                             ; Fosc = 12.000MHz, Baud = 38400
; RELOAD_COUNT_LOW
                   EQU OF6H
                             ; Fosc = 11.059MHz, Baud = 115200
                   EQU OFDH
; RELOAD_COUNT_LOW
                             ; Fosc = 11.059MHz, Baud = 38400
; RELOAD COUNT LOW
                   EQU 0F7H
                             ; Fosc = 10.000MHz, Baud = 38400
; RELOAD_COUNT_LOW
                   EQU OF8H
                             ; Fosc = 6.000MHz, Baud = 38400
; RELOAD_COUNT_LOW
                   EQU OFBH
; RELOAD COUNT LOW
                   EQU OFCH
                             ; Fosc = 5.000MHz, Baud = 38400
; RELOAD_COUNT_LOW
                   EQU 070H
                             ; Fosc = 11.059MHz, Baud = 2400
;-----
```

宏晶:全球最大的8051单片机设计公司 请用无法解密的STC90xxAD系列取代全球各厂家均已被解密的89系列

```
; 计算自动重装数:
:-----
;晶体频率: Fosc
;波特率: Baud
;自动重装数:
           RELOAD = INT(Fosc/Baud/32 + 0.5), INT 表示取整运算(舍去小数)
;将自动重装数转换成 16 进制,用 10000H 减自动重装数,存入 RCAP2H, RCAP2L
; 计算实际的波特率: Baud = Fosc/RELOAD/32, 如果误差>3.5 要更改波特率.
;例: Fosc = 22.1184MHz, Baud = 115200
; RELOAD = INT(22118400/115200/32 + 0.5)
        = INT(6.5)
       = 6
        = 0006H
; 10000H - 0006H = FFFAH
   MOV RCAP2H, #0FFH
   MOV RCAP2L, #0FAH
;例: Fosc = 20.MHz, Baud = 57600 (Baud=115200 时误差太大)
; RELOAD = INT(20000000/57600/32 + 0.5)
        = INT(10.85 + 0.5)
       = INT(11.35)
       = 11
        = 000BH
; 10000H - 000BH = FFF5H
   MOV RCAP2H, #0FFH
   MOV RCAP2L, #0F5H
   ORG 0000H
   AJMP MAIN
;-----
   ORG
       0023H
                             ;RS232 串口中断
   AJMP UART
   NOP
   NOP
;-----
MAIN:
   MOV
       SP, #0E0H
   ACALL Initial_UART
                            :初始化串口
                             ;发送 10 个字符 '0123456789'
   MOV
       RO, #30H
       R2, #10
   MOV
LOOP:
   MOV
       A, RO
   ACALL Send_One_Byte
                   ;发送一个字节
   INC
       R0
   DJNZ R2, LOOP
WAIT1:
   SJMP WAIT1
                             ;跳转到本行, 无限循环
```

```
;-----
UART:
                    ;串口中断服务程序
  JBC RI, UART_1
                   ;发送时使用的是查询方式,不使用中断
  RETI
UART_1:
                    ;接收一个字节. 此时 RI 已被清0
  PUSH ACC
                   ;取接收到的字节
  MOV A, SBUF
  ACALL Send_One_Byte
                    ;回发收到的字节
  POP ACC
  RETI
;-----
                   ;初始化串口
Initial_UART:
; Bit: 7 6 5 4 3 2 1 0
; SCON SMO/FE SM1 SM2 REN TB8 RB8 TI RI
               ;0101,0000 8位可变波特率,无奇偶校验
  MOV SCON, #50H
Init M®$232 RCAP2H, A
  MOV TAH,2 #RELOAD_COUNT_HIGH ;波特率自动重装数
  MOV A, #RELOAD_COUNT_LOW
  MOV RCAP2L, A
  MOV TL2, A
  MOV T2CON, #0x34
                    ;使用 T2 作波特率发生器
                    ;允许串口中断
  SETB ES
  SETB EA
                    ;开总中断
  RET
;-----
Send_One_Byte:
                    ;发送一个字节
  CLR ES
  CLR TI
                  ;清零串口发送中断标志
  MOV SBUF, A
WAIT2:
  JNB TI, WAIT2
                    ;等待发送完毕
  CLR TI
                    ;清零串口发送中断标志
  SETB ES
  RET
;-----
  END
;-----
```

定时器 2 的时钟输出功能, 在 P1.0 口输出

```
:/* --- STC International Limited ----- */
:/* --- 演示 STC90C58AD 系列 MCU 定时器 2 的时钟输出功能,在 P1.0 口输出 ------ */
;/* --- Mobile: 13922805190 ----- */
                      Fax: 0755-82944243----- */
:/* --- Tel: 0755-82948409
;/* --- Web: www.STCMCU.com ----- */
;/* --- 本演示程序在 STC-ISP Ver 3.0A.PCB 的下载编程工具上测试通过 ------ */
:/* --- 如果要在程序中使用该程序,请在程序中注明使用了宏晶科技的资料及程序 --- */
      如果要在文章中引用该程序,请在文章中注明使用了宏晶科技的资料及程序 --- */
;本程序演示了如何使用定时器 2 的时钟 / 脉冲输出功能 , 在 P1.0 口输出
·
;定义特殊功能寄存器
: 与 RS232 口、TIMER2 有关的特殊功能寄存器
T2C0N
                 EQU 0C8H
T2MOD
                 EQU 0C9H
TR2
                 EQU T2CON.2 :TR2 是 T2CON 特殊功能寄存器的第 2 位
RCAP2L
                 EQU OCAH
RCAP2H
                 EQU OCBH
TH2
                 EQU OCDH
TL2
                 EQU OCCH
;定时器 / 计数器 2 控制寄存器 T2CON
             D7
                      D5
                               D3
                                   D2
                                       D1
                                            D0
                                                   Reset Value
                  D6
                          D4
             CF
                  CE
                      CD
                          CC
                               CB
                                   CA
                                       C9
                                            C8
 位地址
            TF2
                 EXF2 RCLK TCLK EXEN2 TR2
                                       C/T2 CP/RL2
; T2CON(C8H)
                                                     00
:T2MOD 寄存器
             D7
                  D6
                      D5
                               D3
                                       D1
                          D4
                                   D2
                                            D0
                                                   Reset Value
; T2CON(C9H)
                                       T20E
                                            DCEN
                                                   xxxxxx00b
  ORG
       0000H
  AJMP MAIN
;------
  ORG
       0100H
MAIN:
  MOV SP, #0E0H
                         ;熄灭 P1 口的发光二级管
  MOV
       P1, #0FFH
   ACALL SET_T2_OUT_MODE
                         ;设置 T2 为高速脉冲输出方式
  MOV
       DPTR, #0FFF0H
                         :设置 T2 脉冲输出速率
   ACALL SET_T2_OUT_SPEED
WAIT1:
                          ;可加入此行,用频率计或其它仪器测量 P1.0 的
   SJMP WAIT1
                          ;输出信号,验证脉冲输出频率的计算公式
  ACALL DELAY
  ACALL PAUSE
                         ;暂停输出,便于观察
                          ;设置 T2 脉冲输出速率, 比前一次降低一半
  MOV DPTR, #0FFE0H
   ACALL SET_T2_OUT_SPEED
```

```
宏晶科技:www.STCMCU.com Mobile:13922805190(姚永平) Tel:0755-82948412 Fax: 0755-82944243
  ACALL DELAY
  ACALL PAUSE
                          ;暂停输出,便于观察
  MOV DPTR, #OFFDOH
                          ;设置 T2 脉冲输出速率, 比前一次降低 1/3
  ACALL SET_T2_OUT_SPEED
  ACALL DELAY
  ACALL PAUSE
                         :暂停输出,便于观察
WAIT2:
  SJMP WAIT2
                         ;跳转到本行,无限循环
;-----
DELAY:
  MOV R1, #0
  MOV R2, #0
  MOV R3, #30
DELAY LOOP:
  DJNZ R1, DELAY LOOP
  DJNZ R2, DELAY_LOOP
  DJNZ R3, DELAY LOOP
  RET
SET_T2_OUT_MODE:
                         ;设置 T2 为脉冲输出方式
      T2CON, #0
  MOV
                         ;设置 T2 为定时器方式
  MOV T2MOD, #02
                         ;0000,0010 允许 T2 溢出脉冲由 P1.0 输出
  RET
;脉冲输出频率由振荡器频率和 T2 的捕获寄存器 RCAP2H、RCAP2L 的重新装入值确定,
; 计算公式:
    脉冲输出频率 = 振荡器频率 / (n*(65536 - RCAP2H, RCAP2L))
;公式中 n = 2, 在 6 Clock 模式; n = 4, 在 12 Clock 模式
     RCAP2H, RCAP2L 是由 RCAP2H 和 RCAP2L 组成的 16 位无符号整数,
:入口: DPTR = 重装数
;对寄存器 RCAP2H, RCAP2L 不要送 FFFFh, 否则无脉冲输出
SET_T2_OUT_SPEED:
                         ;设置 T2 脉冲输出速率
  CLR
                         :停止 T2 工作
  MOV RCAP2H, DPH
  MOV RCAP2L, DPL
  SETB TR2
                        ;启动 T2
  RET
;-----
PAUSE:
                         ;暂停输出
  CLR TR2
                         ;停止 T2 工作
  MOV P1, #0FFH
                         ;熄灭 P1 口的发光二级管
  ACALL DELAY
  RET
```

END

PCON 寄存器的高级应用,上电复位标志,进入掉电模式

Mnemonic	Add	Name	7	6	5	4	3	2	1	0	Reset value
PCON	87h	Power Control	SMOD	SMODO	-	POF	GF1	GF0	PD	IDL	00x1,0000

POF:上电复位标志位,单片机停电后,上电复位标志位为1,可由软件清0。

实际应用:要判断是上电复位(冷启动),还是外部复位脚输入复位信号产生的复位,还是内部看门狗复位,可通过如下方法来判断:

PD:将其置1时,进入Power Down模式,可由外部中断低电平触发或下降沿触发中断模式唤醒。

进入掉电模式时,外部时钟停振,CPU、定时器、串行口全部停止工作,只有外部中断继续工作。 IDL:将其置1时,进入IDLE模式(空闲),除CPU不工作外,其余仍继续工作,可由任何一个中断唤醒。

STC90C58AD 系列单片机如何从掉电模式唤醒

```
; Wake Up Idle and Wake Up Power Down
   ORG
        0000H
   AJMP MAIN
   ORG
        0003H
int0_interrupt:
   CLR P1.7
                   ;点亮 P1.7 LED 表示已响应 intO 中断
   ACALL delay
                   ;延时是为了便于观察,实际应用不需延时
   CLR EA
                   ;关闭中断,简化实验. 实际应用不需关闭中断
   RETI
   ORG
        0013H
int1_interrupt:
   CLR
                  ;点亮 P1.6 LED 表示已响应 int1 中断
        P1.6
   ACALL delay
                   ;延时是为了便于观察,实际应用不需延时
   CLR
                    ;关闭中断,简化实验. 实际应用不需关闭中断
   RETI
   ORG
        0100H
delay:
   CLR
   MOV
        RO, A
   MOV
        R1, A
        R2, #02
   MOV
delay_loop:
   DJNZ RO, delay_loop
   DJNZ R1, delay_loop
   DJNZ R2, delay_loop
   RET
main:
        R3, #0 ;P1 LED 递增方式变化,表示程序开始运行
   MOV
main_loop:
   MOV
       A, R3
   CPL
        Α
        P1, A
   MOV
   ACALL delay
```

INC R3

MOV A, R3

SUBB A, #18H

JC main_loop

MOV P1, #0FFH ; 熄灭全部灯表示进入 Power Down 状态

CLR ITO ;设置低电平激活外部中断

; SETB ITO

SETB EXO :允许外部中断 0

CLR IT1 ;设置低电平激活外部中断

; SETB IT1

SETB EX1 ;允许外部中断 1

SETB EA ;开中断,若不开中断就不能唤醒 Power Down

:下条语句将使 MCU 进入 idle 状态或 Power Down 状态

;低电平激活外部中断可以将 MCU 从 Power Down 状态中唤醒

;其方法为:将外部中断脚拉低

MOV A, PCON ;令 PD=1, 进入 Power Down 状态, PD = PCON.1

ORL A, #02H MOV PCON, A

MOV PCON, #01H ;删除本语句前的";", 同时将前3条语句前加上注释符号";",

;令 IDL=1, 可进入 idle 状态, IDL = PCON.0

MOV P1, #01010000B ;请注意:

; 1.外部中断使 MCU 退出 Power Down 状态,执行本条指令后;响应中断,表现为 P1.5 与 P1.7 的 LED 同时亮(INTO 唤醒)

; 2.外部中断使 MCU 退出 idle 状态, 先响应中断然后再执行本 ;条指令, 表现为 P1.7 的 LED 先亮(INTO 唤醒) P1.5 的 LED 后亮

WAIT1:

SJMP WAIT1 ; 跳转到本语句, 停机

END

STC90C58AD 系列单片机交直流特性

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Parameter	Symbol	MIN	MAX	UNIT
Storage temperature	Тѕт	- 5 5	+125	
Operating Temperature(I)	Та	- 40	+85	
Operating Temperature(C)	Та	0	+70	
DC Power Supply(5V MCU)	V D D - V S S	-0.3	+6.0	V
DC Power Supply(3V MCU)	V D D - V S S	-0.3	+4.0	V
Voltage on any Pin		- 0 . 5	+5.5	V

DC Specification(5V MCU)

0	D = " = " = 4 = "	Ş	Specif	icatio	n	Test
Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
Vod	Operating Voltage	3.8	5.0	5.5	V	
I PWDN	Power Down Current		< 0 . 1		u A	5 V
IDLE	Idle Current		2.0		m A	5 V
I cc	Operating Current		4 m A	20	m A	5 V
V _{IL1}	Input low voltage (P0,1,2,3,4)			0.8	V	5 V
V _{IL2}	Input low voltage (RESET, XTAL1)			1.5	V	5 V
V I H 1	Input High voltage (P0,1,2,3,4,/EA)	2.0			V	5 V
V 1 H 2	Input High voltage (RESET)	3.0			V	5 V
I 0L1	Sinking Current for Output Low (P1, P2, P3, P4)	4	6		m A	5 V
I 0L2	Sinking Current for Output Low (PO, ALE, PSEN)	8	12		m A	5 V
I 0H1	Sourcing Current for Output High (P1, P2, P3, P4)	150	220		u A	5 V
I 0H2	Sourcing Current for Output High (ALE, PSEN)	1 4	20		m A	5 V
Til	Logic 0 input current (P1,2,3,4)		18	5 0	u A	V P I N = 0 V
Īτι	Logic 1 to 0 transition current (P1,2,3,4)		270	600	u A	V p i N = 2 V

DC Specification(3.3V MCU)

Cumbal	Doromotor		Specif	icatio	n	Test
Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
VDD	Operating Voltage	2.4	3.3	3.8	V	
I PWDN	Power Down Current		<0.1		u A	3.3V
IDLE	Idle Current		2.0		m A	3.3V
I cc	Operating Current		4 m A	15	m A	3.3V
V _{IL1}	Input low voltage (P0,1,2,3,4)			0.8	V	3.3V
VIL2	Input low voltage (RESET, XTAL1)			1.5	V	3.3V
V I H 1	Input High voltage (P0,1,2,3,4,/EA)	2.0			V	3.3V
V 1 H 2	Input High voltage (RESET)	3.0			V	3.3V
I OL1	Sinking Current for Output Low (P1,P2,P3,P4)	2.5	4		m A	3.3V
l ol2	Sinking Current for Output Low (PO,ALE,PSEN)	5	8		m A	3.3V
I он1	Sourcing Current for Output High (P1,P2,P3,P4)	40	70		u A	3.3V
I 0H2	Sourcing Current for Output High (ALE, PSEN)	8	13		m A	3.3V
Тт	Logic 0 input current (P1,2,3,4)		8	50	u A	V P I N = 0 V
Îτι	Logic 1 to 0 transition current (P1,2,3,4)		110	600	u A	V P I N = 2 V

STC90C58AD 系列单片机 ISP 编程 原理 注意事项

为什么有些用户下载程序不成功(在宏晶提供的下载板上)

- 1. 可能电脑端的 STC-ISP 控制软件要升级,现须升级到 STC-ISP-3.1
- 2.现在单片机端(下位机) ISP 软件是 3.2C, 解决了少数电脑慢, 通信连不上的问题.
- 3.运行用户程序时,可到40M/80MHz,但ISP下载程序以前的版本软件只能到33M/66MHz
- 4. 少数客户的 PLCC-44, PQFP-44 转 DIP-40 的转换座走线过长,造成时钟振荡不稳定,下载不成功。
- 5. 也有电脑 USB 电源供电不足的,可用万用表测一下,看 5V 部分是否在 4.5V 以上。
- 6. 可能单片机内部没有 ISP 引导码,或 PC 串口波特率达不到 115200,选 57600 试一下。
- 7. 有些客人的笔记本电脑没有串口, 用的是 USB 扩展串口, 有些不兼容, 我们可以提供经过宏晶科技认可的 USB 扩展串口线, 人民币 50 元一条。

为什么有些用户下载程序不成功(在用户自己的系统上)

- 1. 可能用户板上有外部看门狗,需不让其起作用,另要查时钟是否起振、复位是否正常。
- 2. 可能用户板上 P3.0/RxD, P3.1/Txd 除了接 RS-232 转换器外,还接了 RS-485 等其它电路,需要将其它电路断开,防止在 ISP 下载编程时受到其它电路的影响。用户系统接了 RS-485/RS-232 电路的,推荐在选项中选择下次冷启动时需 P1.0/P1.1=0.0 才判是否下载程序。

STC 90C58AD 系列单片机在系统可编程的使用

--- 将用户代码下载进单片机内部,不用编程器

STC单片机在线编程线路, STC RS-232 转换器

上图适用如下型号:

 STC90C51AD ,
 STC90C52AD ,
 STC90C53AD

 STC90LE51AD ,
 STC90LE52AD ,
 STC90LE53AD

 STC90C54AD ,
 STC90C516AD

 STC90LE54AD ,
 STC90LE516AD

STC90C58AD 系列单片机大部分具有在系统可编程(ISP)特性,ISP 的好处是:省去购买通用编程器,单片机在用户系统上即可下载/烧录用户程序,而无须将单片机从已生产好的产品上拆下,再用通用编程器将程序代码烧录进单片机内部。有些程序尚未定型的产品可以一边生产,一边完善,加快了产品进入市场的速度,减小了新产品由于软件缺陷带来的风险。由于可以将程序直接下载进单片机看运行结果故也可以不用仿真器。

大部分 STC90C58AD 系列单片机在销售给用户之前已在单片机内部固化有 ISP 系统引导程序,配合 PC 端的控制程序即可将用户的程序代码下载进单片机内部 故无须编程器(速度比通用编程器快)。不要用通用编程器编程,否则有可能将单片机内部已固化的 ISP 系统引导程序擦除,造成无法使用 STC 提供的 ISP 软件下载用户的程序代码。

如何获得及使用 STC 提供的 ISP 下载工具 (STC-ISP. exe 软件):

(1). 获得 STC 提供的 ISP 下载工具(软件)

登陆 www.STCMCU.com 网站,从STC 半导体专栏下载 PC (电脑)端的 ISP 程序,然后将 其 自解压,再安装即可(执行setup.exe),注意随时更新软件。

- (2). 使用 STC-ISP 下载工具(软件),请随时更新,目前已到 Ver3.1 版本(2005/12/7),支持
 - *.Hex(Intel 16 进制格式)文件,RC/RD+系列单片机的底层软件版本为Ver3.2C(旧版可更换)。 请随时注意升级PC(电脑)端的ISP程序,现 Ver3.1 欢迎测试。

单片机底层软件版本为 Ver3.2C 的单片机, PC(电脑)端的 ISP 程序应用 Ver3.1以上

- (3).已经固化有 ISP 引导码,并设置为上电复位进入 ISP 的 STC89C51RC/RD+ 系列单片机出厂时就已完全加密,需要单片机内部的电放光后上电复位(冷起动)才运行系统 ISP 程序。
- (4).可能用户板上 P3.0/RxD, P3.1/Txd 除了接 RS-232 转换器外,还接了 RS-485 等电路,需要将其断开。用户系统接了 RS-485 电路的,推荐在选项中选择下次冷启动时需 P1.0/P1.1=0.0 才判是否下载程序。

Step1/ 步骤 1:选择你所使用的单片机型号,如 STC90C58AD, STC90LE516AD等

Step2/步骤2:打开文件,要烧录用户程序,必须调入用户的程序代码(*.bin, *.hex)

Step3/步骤3:选择串行口,你所使用的电脑串口,如串行口1--COM1, 串行口2--COM2,...

有些新式笔记本电脑没有 RS-232 串行口, 可买一条 USB-RS232 转接器, 人民币 50 元左右。 有些 USB-RS232 转接器, 不能兼容, 可让宏晶帮你购买经过测试的转换器。

Step4/步骤4:设置是否双倍速,双倍速选中Double Speed即可

STC90C58AD 系列可以反复设置 双倍速 / 单倍速 , 新的设置停电后重新冷启动后才能生效 OSCDN: 单片机时钟振荡器增益

选 1/2 gain 为降一半,降低EMI;选 full gain(全增益)为正常状态。

Step5/步骤5:选择 "Download/下载"按钮下载用户的程序进单片机内部,

可重复执行Step5/步骤5, 也可选择 "Re-Download/重复下载"按钮

下载时注意看提示,主要看是否要给单片机上电或复位, 下载速度比一般通用编程器快。

一般先选择"Down Load / 下载"按钮,然后再给单片机上电复位(先彻底断电),而不要先上电关于硬件连接:

- (1). MCU/单片机 RXD(P3.0) --- RS-232转换器 --- PC/电脑 TXD(COM Port Pin3)
- (2). MCU/单片机 TXD(P3.1) --- RS-232转换器 --- PC/电脑 RXD(COM Port Pin2)
- (4). STC90C58AD 系列单片机不需要 P1.0, P1.1 = 0,0,但软件可选下次需要。
- (5). RS-232 转换器可选用 STC232/MAX232/SP232(4.5-5.5V), STC3232/MAX3232/SP3232(3V-5.5V). STC232/MAX232/SP232 尽量选用 SOP 封装(窄体, STC232ESE, STC3232ESE)。

如用户系统没有RS-232接口,

可使用 STC-ISP Ver 3.0A.PCB 演示板作为编程工具可使用 STC-ISP Ver 3.0A.PCB 演示板作为编程工具

STC-ISP Ver 2.0B PCB 板可完成下载 / 烧录用户程序的功能。

在 STC-ISP Ver 2.0B PCB 板完成下载 / 烧录:

关于硬件连接:

- (1.) 根据单片机的工作电压选择单片机电源电压
 - A. 5V 单片机, 短接 JP1 的 MCU-VCC, 5V 电源管脚
 - B. 3V 单片机, 短接 JP1 的 MCU-VCC, 3.3V 电源管脚
- (2.) 根据单片机的工作电压选择复位信号(3.0A PCB 演示工具无复位信号选择)
 - A. 5V 单片机, 短接 JP2 的 MCU-RST, 5V/MCU-RST 信号管脚
 - B. 3.3V单片机,短接JP2的MCU-RST, 3.3V/MCU-RST信号管脚
- (3.)连接线(宏晶提供)
 - A. 将一端有 9 芯连接座的插头插入 PC/ 电脑 RS-232 串行接口插座用于通信
 - B. 将同一端的 USB 插头插入 PC/ 电脑 USB 接口用于取电
 - C. 将只有一个 USB 插头的一端插入宏晶的 STC-ISP Ver 2.0B PCB 板 USB1 插座用于 RS-232 通信和供电,此时 +5V Power 灯亮(D10,USB 接口有电)
- (4.)其他插座不需连接
- (5.) SW1 开关处于非按下状态,此时 MCU-VCC Power 灯不亮(D9), 没有给单片机通电
- (6.)SW3 开关

处于非按下状态, P1.0, P1.1 = 1, 1, 不短接到地。 处于按下状态, P1.0, P1.1 = 0, 0, 短接到地。

- (7.)将单片机插进 U1-Socket 锁紧座,锁紧单片机
- (8.) 关于软件:选择 "Download/下载"(必须在给单片机上电之前让PC 先发一串合法下载命令)
- (9.)按下 SW1 开关,给单片机上电复位,此时 MCU-VCC Power 灯亮(D9) 此时 STC 单片机进入 ISP 模式(STC90C51RC/RD+系列冷启动进入 ISP)
- (10.)下载成功后,再按SW1开关,此时SW1开关处于非按下状态,MCU-VCC Power灯不亮(D9), 给单片机断电,取下单片机。

利用 STC-ISP Ver 3.0A PCB 板进行 RS-232 转换单片机在用户自己的板上完成下载 / 烧录:

- 1.U1-Socket 锁紧座不得插入单片机
- 2. 将用户系统上的电源(MCU-VCC, GND)及单片机的 P3.0/RXD, P3.1/TXD 接入转换板 CN2 插座 这样用户系统上的单片机就具备了与 PC/ 电脑进行通信的能力
- 将用户系统的单片机的P1.0,P1.1 接入转换板CN2 插座(仅STC90LE516AD 系列需要)
- 4. SW3 开关处于按下状态, P1.0, P1.1 = 0, 0, 短接到地。仅 STC90LE516AD 系列需要
- 5. 关于软件:选择 "Download/下载"
- 6. 给单片机系统上电复位(注意是从用户系统自供电,不要从电脑 USB 取电,电脑 USB 座不插)
- 7. 下载程序时,如用户板有外部看门狗电路,不得启动,单片机必须有正确的复位,但不能在 ISP 下载程序时被外部看门狗复位,可将外部看门狗电路 WDI 端/或 WDO 端浮空
- 8. 如有 RS-485 晶片连到 P3.0/Rxd, P3.1/Txd, 在下载时应将其断开。

附录 D: 如何实现运行中自定义下载,无仿真器时方便调试

自定义下载原理:STC-ISP.exe软件

1.STC-ISP.exe 软件,可由用户设置,按UART/RS-232 的格式向用户程序发送命令

波特率: 38400bps, 19200bps, 9600bps, 4800bps, 2400bps, 1200bps等

奇偶校验位: 无, 偶校验, 奇校验 数据位几位: 8位,7位,6位,5位, 等 停止位几位: 1位, 1.5位,2位,等

选项	自定义	下载	ISP DEMO 自动増量 存储文件 硬件连接	no_
用户	程序中加	1入收到	间自定义命令,延时1秒,软复位到系统ISP区的	的程序
MCV :	软复位到	系统工	SP区程序命令:MOV OE7H, #60H; (ISP_CONTF	, OE7H)
70000	VALUE OF THE PARTY			
波特	率 3840	0 🔻	奇偶位 Name ▼ 数据位 8 ▼ 停止位	1 🔻
波特	率 3840	0 🔻	奇偶位 None ▼ 数据位 8 ▼ 停止位	1 🔻
波特自定			奇偶位 None ▼ 数据位 8 ▼ 停止位 3 78 90 AB CD EF 1234567890ABCDEF	1 🕶
	义 12			1 🕶
自定	义 命令			1 •

- 2. 需向用户程序发送的命令用户可在上图自定义下载命令输入窗口中输入(HEX) 命令之间建议加一个空格,也可不加,STC-ISP.exe 会处理,上例为发送自定义命令 12H,34H,56H,78H,0ABH,0CDH,0EFH, 12H,34H,56H,78H,0ABH,0CDH,0EFH
- 3. 用户程序中应加入收到自定义下载命令,延时一秒,软复位到系统 ISP 程序区的程序
- 4. 将以上含有接收自定义下载命令的用户程序先用老方法下载进 STC 单片机内部: STC90C51AD, STC90C52AD, STC90C53AD, STC90C54AD, STC90C58AD, STC90C516AD STC90LE52AD, STC90LE53AD, STC90LE54AD, STC90LE58AD, STC90LE516AD

这样以上型号的 STC 单片机就具有了"不停电/运行中/自定义下载功能"

6. 以下选好型号, 打开文件...,在自定义下载中设置相关选项,选择"发送"即可,

STC89C58RD+	•	0000	P Memory - 7FFF
tep2/步骤2: Open File / 打开	f文件 —		
Buffer Start Address(HEX):	_		Clear Buffer
Unused Bytes(in file range)	C 77	G 00	Open File

STC-ISP.exe 在"发送"完用户自定义下载命令后,就会转去调用老的那一套下载命令,而不管用户单片机程序收到命令没有。不过这个转换有些电脑有时需要将近1S的时间,所以用户应用程序要延时1S,否则系统ISP程序收不到下载命令,又会回到用户应用程序。

7.调试程序时,还可以在选项中选择"每次下载前自动重新调入文件",这样你每次修改原文件并从新编译/汇编后生成的*.hex,*.bin文件就不要再次手工调入了,生产时不要用。

附录 A: Keil C51 高级语言编程的软件如何减少代码长度

- 1.在"Project"菜单中选择"Options for Target"
- 2.在"Options for Target"中选择"C51"

- 3. 选择按空间大小 , 9级优化程序
- 4. 重新编译程序即可。

附录B: 典型 MCU/DSP/uC 复位、电源监控、外部看门狗专用电路

1. 高电平复位信号输出

上电复位, 掉电复位, 人民币1元

高/低电平2路复位信号输出

上电复位, 掉电复位, 外部手动复位, 电源稳压块<mark>前端</mark>掉电检测, 外部硬件看门狗

2. 低电平复位信号输出

上电复位, 掉电复位,外部手动复位, 电源稳压块<mark>前端</mark>掉电检测,

B TC 6342 VCC RESET VCC RESET UC / DSP Interrupt PFO PFO Interrupt

上电复位, 掉电复位,外部手动复位, 稳压块前端掉电检测

外部硬件看门狗

使用外部专用复位电路的好处:

- 1. 确保上电时, 在用户设定的电源电压之上, 时钟振荡稳定后, 单片机才开始工作
- 2. 确保掉电时,在用户设定的电源电压之下,立即让单片机复位,以免单片机误动作
- 3. 具有电源稳压块前端掉电检测的专用复位电路, 确保掉电前有充分的时间保存数据
- 4.复位门槛电压可选: L:4.63V; M:4.38V; J: 4.00V; T:3.08V; S:2.93V; R:2.63V

附录 C: 用串行口扩展 I/O 接口

STC90C58AD 串行口的方式 0 可用于 I / 0 扩展。如果在应用系统中,串行口未被占用,那么将它用来扩展并行 I / 0 口是一种经济、实用的方法。

在操作方式 0 时,串行口作同步移位寄存器,其波特率是固定的,为 fosc/12 (fosc 为振荡器频率)。数据由 R X D 端 (P3.0) 出入,同步移位时钟由 T X D 端 (P3.1) 输出。发送、接收的是 8 位数据,低位在先。

一、用74HC165扩展并行输入口

下图是利用两片 74LS165 扩展二个 8 位并行输入口的接口电路图。

74HC165 是 8 位并行置入移位寄存器。当移位 / 置入端(S/ \overline{L}) 由高到低跳变时,并行输入端的数据置入寄存器;当 S/ \overline{L} =1,且时钟禁止端(第 15 脚)为低电平时,允许时钟输入,这时在时钟脉冲的作用下,数据将由 QA 到 QH 方向移位。

上图中,TxD(P3.1)作为移位脉冲输出端与所有 74LS165 的移位脉冲输入端 CP 相连;RxD(P3.0) 作为串行输入端与 74HC165 的串行输出端 Q_H 相连;P1.0 用来控制 P3HC165 的移位与置入而同 S/L 相连;P3HC165 的时钟禁止端(P3HC165 的时)

下面的程序是从16位扩展口读入5组数据(每组二个字节),并把它们转存到内部RAM 20H开始的单元中。

MOV R7, #05H ; 设置读入组数

MOV RO, #20H ; 设置内部 RAM 数据区首址

START: CLR P1.0 ;并行置入数据,S/L=0

SETB P1.0 ; 允许串行移位 S/L=1

MOV R1,#02H ;设置每组字节数,即外扩74HC165的个数

RXDATA: MOV SCON, #00010000B ;设串行方式0,允许接收,启动接收过程

WAIT: JNB RI, WAIT ;未接收完一帧,循环等待

CLR RI ;清RI标志,准备下次接收

MOV A,SBUF; 读入数据MOV @RO,A;送至RAM缓冲区

INC RO ;指向下一个地址

DJNZ R1, RXDATA ; 为读完一组数据,继续 DJNZ R7, START ; 5 组数据未读完重新并行置入

…… ; 对数据进行处理

上面的程序对串行接收过程采用的是查询等待的控制方式,如有必要,也可改用中断方式。从理论上讲,按上图方法扩展的输入口几乎是无限的,但扩展的越多,口的操作速度也就越慢。

二、用74HC164扩展并行输出口

74LS164 是 8 位串入并出移位寄存器。下图是利用 74LS164 扩展二个 8 位输出口的接口电路。

当单片机串行口工作在方式 0 的发送状态时,串行数据由 P3.0(RxD)送出,移位时钟由 P3.1(TxD)送出。在移位时钟的作用下,串行口发送缓冲器的数据一位一位地移入74HC164中。需要指出的是,由于74HC164 无并行输出控制端,因而在串行输入过程中,其输出端的状态会不断变化,故在某些应用场合,在74HC164的输出端应加接输出三态门控制,以便保证串行输入结束后再输出数据。

下面是将 RAM 缓冲区 30H、31H的内容串行口由 74HC164 并行输出的子程序。

START: MOV R7, #02H ; 设置要发送的字节个数

MOV RO,#30H ;设置地址指针

MOV SCON,#00H ;设置串行口方式0

SEND: MOV A, @RO

MOV SBUF,A ; 启动串行口发送过程

WAIT: JNB TI,WAIT ; 一帧数据未发送完,循环等待

CLR TI INC RO ; 取下一个数

DJNZ R7, SEND

RET

附录 D: STC 单片机普通 I/O 口驱动 LCD 显示

本资料不提供技术支持,请自行消化吸收

```
NAME LcdDriver
$include(STC90C58AD.h)
;the LCD is 1/3 duty and 1/3 bias; 3Com*24Seg; 9 display RAM;
                 Bit7
                        Bit6
                                         Bit3
                             Bit5
                                   Bit4
                                               Bit2
                                                    Bit1
                                                          Bit0
;ComO: ComODataO:
                       Seg6
                 Seg7
                             Seg5
                                   Seg4
                                         Seg3
                                               Seg2
                                                    Seg1
                                                          Seg0
      ComOData1: Seg15
                       Seg14 Seg13 Seg12 Seg11
                                              Seg10 Seg9
                                                          Seg8
      ComOData2: Seg23
                       Seg22 Seg21 Seg20 Seg19
                                              Seg18 Seg17 Seg16
                       Seg6
;Com1: Com1Data0: Seg7
                             Seg5
                                   Seg4
                                         Seg3
                                               Seg2
                                                    Seg1
                                                          Seg0
      Com1Data1: Seg15
                       Seg14 Seg13 Seg12 Seg11 Seg10 Seg9
                                                          Seg8
      Com1Data2: Seg23 Seg22 Seg21 Seg20 Seg19 Seg18 Seg17 Seg16
                       Seg6
;Com2: Com2Data0: Seg7
                             Seg5
                                   Seg4
                                         Seg3
                                               Seg2
                                                    Seg1
                                                          Seg0
      Com2Data1: Seg15 Seg14 Seg13 Seg12 Seg11
                                              Seg10 Seg9
                                                          Seg8
      Com2Data2: Seg23
                       Seg22 Seg21 Seg20 Seg19 Seg18 Seg17 Seg16
;Com0: P3^0,P3^1
                when P3^0 = P3^1 = 1
                                      then Com0=VCC(=5V);
                    P3^0 = P3^1 = 0
                                      then Com0=GND(=0V);
                                      then Com0=1/2 VCC;
                    P3^0 = 1, P3^1 = 0
;Com1: P3^2,P3^3 the same as the Com0
;Com2: P3^4,P3^5 the same as the Com0
sbit SEGO = P0^0
sbit SEG1 =P0^1
sbit SEG2 = P0^2
sbit SEG3 =P0^3
sbit SEG4 =P0^4
sbit SEG5 =P0^5
sbit SEG6 =P0^6
sbit SEG7 = P0^7
sbit SEG8 =P1^0
sbit SEG9 =P1^1
sbit SEG10 =P1^2
sbit SEG11 =P1^3
sbit SEG12 =P1^4
sbit SEG13 =P1^5
sbit SEG14 =P1^6
sbit SEG15 =P1^7
sbit SEG16 =P2^0
sbit SEG17 =P2^1
sbit SEG18 =P2^2
sbit SEG19 =P2^3
```

```
sbit SEG20 = P2^4
sbit SEG21 =P2^5
sbit SEG22 = P2^6
sbit SEG23 = P2^7
CSEG AT 0000H
     LJMP start
     CSEG AT 000BH
     LJMP int_t0
lcdd_bit SEGMENT BIT
     RSEG Icdd bit
                 DBIT 1
     OutFlag:
                             ; the output display reverse flag
Icdd data SEGMENT DATA
    RSEG Icdd_data
    ComODataO:
                DS
                   1
    ComOData1:
                DS
    ComOData2:
                DS
                   1
    Com1Data0:
                DS
                   1
    Com1Data1:
                DS
    Com1Data2:
                DS
                   1
    Com2Data0:
                DS
                   1
    Com2Data1:
                DS
    Com2Data2:
                DS
                   1
    TimeS:
                DS
                   1
;=====Interrupt Code============
tO_int SEGMENT CODE
   RSEG tO_int
   USING 1
               ;TimeO interrupt
; ths system crystalloid is 22.1184MHz
; the time to get the TimeO interrupr is 2.5mS
; the whole duty is 2.5 \text{mS}^{*}6=15 \text{mS}, including reverse
int_t0:
   ORL TLO, #00H
   MOV THO, #0EEH
   PUSH ACC
   PUSH PSW
```

```
MOV
        PSW,#08H
   ACALL OutData
   POP
        PSW
   POP
        ACC
   RETI
uart_sub SEGMENT CODE
      RSEG uart_sub
      USING 0
; initial the display RAM data
; if want to display other, then you may add other data to this RAM
       ComODataO, ComOData1, ComOData2
       Com1Data0, Com1Data1, Com1Data2
; Com1:
       Com2Data0, Com0Data1, Com0Data2
;Com2:
InitComData:
                           ;it will display "11111111"
   MOV ComODataO, #24H
   MOV ComOData1,#49H
   MOV ComOData2, #92H
   MOV Com1Data0, #92H
   MOV Com1Data1, #24H
   MOV Com1Data2,#49H
   MOV Com2Data0, #00H
   MOV Com2Data1,#00H
   MOV Com2Data2, #00H
   RET
       ******************
; reverse the display data
RetComData:
   MOV RO, #ComOData0
                            ;get the first data address
   MOV R7,#9
RetCom_0:
   MOV A,@RO
   CPL A
   MOV @RO,A
   INC RO
   DJNZ R7, RetCom_0
   RET
```

```
;get the display Data and send to Output register
OutData:
    INC TimeS
    MOV A, TimeS
    MOV P3,#11010101B
                                     ;clear display,all Com are 1/2VCC and invalidate
                                  ; judge the duty
    CJNE A,#01H,OutData_1
    MOV PO, ComODataO
    MOV P1, ComOData1
    MOV P2, ComOData2
    JNB OutFlag, OutData_00
    MOV P3,#11010111B
                                      ;ComO is work and is VCC
    RET
OutData_00:
    MOV P3,#11010100B
                                      ;ComO is work and is GND
    RET
OutData_1:
    CJNE A, #02H, OutData_2
    MOV P0, Com1Data0
    MOV P1, Com1Data1
    MOV P2, Com1Data2
    JNB OutFlag, OutData_10
    MOV P3,#11011101B
                                      ;Com1 is work and is VCC
    RET
OutData_10:
    MOV P3,#11010001B
                                      ;Com1 is work and is GND
    RET
OutData 2:
    MOV P0, Com2Data0
    MOV P1, Com2Data1
    MOV P2, Com2Data2
    JNB OutFlag,OutData_20
    MOV P3,#11110101B
                                      ;Com2 is work and is VCC
    SJMP OutData 21
OutData_20:
    MOV P3,#11000101B
                                      ;Com2 is work and is GND
OutData 21:
    MOV
          TimeS, #00H
    ACALL RetComData
    CPL
          OutFlag
    RET
```

```
uart_main SEGMENT CODE
      RSEG uart_main
      USING 0
start:
         MOV
             SP,#40H
         CLR
             OutFlag
         MOV
             TimeS,#00H
         MOV
             TL0,#00H
         MOV
             THO,#0EEH
         MOV
             TMOD,#01H
             IE,#82H
         MOV
         ACALL InitComData
         SETB TRO
Main:
    NOP
    SJMP Main
```

END

附录 E: STC90C58AD 系列单片机准双向口输出原理

准双向口输出类型可用作输出和输入功能而不需重新配置口线输出状态。这是因为当口线输出为 1 时驱动能力很弱,允许外部装置将其拉低。当引脚输出为低时,它的驱动能力很强,可吸收相当大的电流。准双向口有 3 个上拉晶体管适应不同的需要。

在3个上拉晶体管中,有1个上拉晶体管称为"弱上拉",当口线寄存器为1且引脚本身也为1时打开。此上拉提供基本驱动电流使准双向口输出为1。如果一个引脚输出为1而由外部装置下拉到低时,弱上拉关闭而"极弱上拉"维持开状态,为了把这个引脚强拉为低,外部装置必须有足够的灌电流能力使引脚上的电压降到门槛电压以下。

第 2 个上拉晶体管,称为"极弱上拉",当口线锁存为 1 时打开。当引脚悬空时,这个极弱的上拉源产生很弱的上拉电流将引脚上拉为高电平。

第 3 个上拉晶体管称为"强上拉"。当口线锁存器由 0 到 1 跳变时,这个上拉用来加快准双向口由逻辑 0 到逻辑 1 转换。当发生这种情况时,强上拉打开约 2 个机器周期以使引脚能够迅速地上拉到高电平。

准双向口输出如下图所示。

STC90LE51RC/RD+ 系列单片机为 3V 器件,如果用户在引脚加上 5V 电压,将会有电流从引脚流向 VDD,这样导致额外的功率消耗。因此,建议不要在准双向口模式中向 3V 单片机引脚施加5V 电压,如使用的话,要加限流电阻,或用二极管做输入隔离,或用三极管做输出隔离。

准双向口带有一个施密特触发输入以及一个干扰抑制电路。

附录 F: 指令系统与程序设计

执行软件是微型计算机与通用数字集成电路的主要区别,也是微电子技术区别于通用电器和 电子技术的根本特征。

软件是由具有一定意义的指令组成的。一台计算机所执行的指令集合就是它的指令系统。指令系统是计算机厂商定义的,它成为应用计算机必须理解和遵循的标准。每种计算机都有自己专用的指令系统。

指令常以英文名称或缩写形式作为助记符。用助记符表示的指令称为汇编语言,用汇编语言编写的程序称为汇编语言程序。

目前单片机主要使用汇编语言,指令系统的学习和应用是使用单片机的重要前提。

STC90xx 系列单片机与 MCS-51 系列在软件上完全兼容,编制的汇编语言程序可运行于这两种系列单片机。也就是说,STC90xx 系列单片机采用的也是 MCS-51 指令系统。本章详细介绍该指令系统及其编程方法。

1 指令格式及其符号说明

指令的表示方法称为指令格式。一条指令通常由两部分组成:操作码和操作数。操作码规定指令执行什么操作,而操作数是操作的对象。操作数可以是一个具体的数据,也可以是存储数据的地址或寄存器。指令的基本格式如下:

操作码操作数(地址码、寄存器或立即数)

汇编语言编写的程序必须翻译成单片机可执行的机器码。根据机器码的长短,可分为单字节、 双字节和3字节等不同长度的指令。

1. 单字节指令

指令系统中有些指令的功能很专一而明确,不需要具体指定操作数,便形成了单字节指令。单字节指令的机器码只有一个字节,操作码和操作数同在其中。例如,指令 INC DPTR , 功能为数据指针加 1 , 指令码为

1010 0011 A3H

有些指令的操作数在工作寄存器 R0~R7中,寄存器的编码可用 3 位二进制数表示。例如,指令 MOV A, Rn,功能是工作寄存器向累加器传输数据,指令码为

1110 1rrr

用rrr表示工作寄存器的二进制编码。对于不同的工作寄存器,单字节的机器码如下表所列。

1日々 MO A Y Y V II 1日 A H)				
指令	指令码(机器码)			
担々	二进制	十六进制		
MOV A, RO	1110 1000	E8H		
MOV A, R1	1110 1001	E9H		
MOV A, R2	1110 1010	EAH		
MOV A, R3	1110 1011	EBH		
MOV A, R4	1110 1100	ECH		
MOV A, R5	1110 1101	EDH		
MOV A, R6	1110 1110	EEH		
MOV A, R7	1110 1111	EFH		

指令MOV A, Rn 指令码

2. 双字节指令

双字节指令的第一字节是操作码,第二字节是操作数。例如,指令MOV A,#data,功能是将立即数传送到A,指令码为

	0111	0100			
立即数					

例如,指令MOV A,#35H的指令码为7435H。

3. 3字节指令

3 字节指令中,操作码占一字节,操作数占两字节。其中操作数既可以是数据,也可以是地址。例如,指令 ANL direct,#data,功能是直接地址单元中的内容与立即数进行"与"操作,结果存于直接地址单元,指令码为

0101	0011			
直接地址				
立即数				

例如,指令ANL 35H,#20H的机器码为533520H。

在介绍指令之前,先将指令中使用的一些符号意义作简要说明。

- Rn ——当前工作寄存器 R0~R7,即 n=0~7,在指令中表示寄存器寻址方式。
- Ri ——间接寻址的寄存器 RO 和 R1 ,即 i=0 ,1 ,在指令中表示间接寻址方式。
- direct —— 8 位直接地址,在指令中表示直接寻址方式,寻址范围为 00H~FFH。
- #data —— 8 位立即数,表示立即数寻址方式。
- ●#data16 —— 16 位立即数,表示立即数寻址方式。
- ●addr16 ——16 位目的地址,只限用于LCALL和LJMP指令。
- ●addr11 ——11 位目的地址,只限用于ACALL和AJMP指令。
- rel ——相对转移指令中的偏移量,为8位带符号补码数,在指令中表示相对寻址方式。
- DPTR ——数据指针,16 位。
- ●bit ——内部数据 RAM 和特殊功能寄存器中的可寻址位。

- A ——表示累加器。
- ACC ——直接寻址方式的累加器。
- B ——寄存器 B。
- C ——进位标志位,可作为位处理器的位累加器,也称为累加位。在指令中代表 C Y 。
- @ ——间址寄存器的前缀标志。
- / ——加在位地址前面,表示该位状态取反。
- (X)——某个寄存器或某地址单元中的内容。
- ((X))——由X间接寻址单元中的内容。
- ——箭头右边的内容传送到箭头左边的存储器单元或寄存器中,即表示数据的传送方向。
- ——箭头左边的内容传送到箭头右边的存储器单元或寄存器中,即表示数据的传送方向。

2 寻址方式

指令执行是都要应用操作数。指令必须指明如何取得操作数,也必须指明程序转移目的地址。所谓寻址,就是如何指定操作数所在的单元,或者如何指定程序转移的目的地址。根据指定的方法不同,形成了不同的寻址方式。MCS-51 指令系统有7种不同的寻址方式,下面分别介绍。

1. 寄存器寻址方式

寄存器寻址时,指令中操作数为某一寄存器的内容。指定了寄存器,就指定了操作数。该 寻址方式中,用符号名称表示寄存器。

寄存器寻址方式所使用的寄存器包括:

- 1) 工作寄存器 $R0 \sim R7$,只能寻址当前寄存器组,即由 PSW 中的 RS1 和 RS0 位的状态对应的 当前寄存器组。
 - 2) 部分特殊功能寄存器,例如A、AB寄存器对以及数据指针DPTR等。

例如:

INC RO;(RO) (RO)+1

其功能是把寄存器 R0 的容量加 1,再送回 R0 中。由于操作数在 R0 中,指定了 R0,也就得到了操作数。

2. 直接寻址方式

直接寻址时,指令中操作数部分直接给出了操作数地址。例如:

MOV A , 4AH ; (A) (4AH)

该指令的功能是把片内 RAM 4AH 单元的内容送入累加器 A。指定了地址 4AH ,也就的到了操作数。 直接寻址中的操作数以存储单元形式出现,因此直接寻址方式只能用 8 位二进制数表示的地址,寻址范围只限于内部 RAM ,即:

- 1) 片内 RAM 低 128 单元,在指令中直接以单元地址形式给出。
- 2)特殊功能寄存器。特殊功能寄存器除了用单元地址形式给出外,还可以用寄存器的名称符号表示。应当指出,直接寻址方式是访问特殊功能寄存器的主要方法。例如:

MOV A, P1 ;(A) (P1)

MOV A, 90H; (A) (90H)

由于 SFR P1 的地址为 90H, 两条指令本质上是一样的,有相同的机器码,都是直接寻址方式。

3. 寄存器间接寻址方式

寄存器间接寻址时,指令中给出的寄存器内容为操作数地址,而不是操作数本身,即寄存器

为地址指针。

为区别寄存器寻址和寄存器间接寻址,在寄存器间接寻址中,应在寄存器的名称前加前缀 @。 例如:

MOV R1, #60H

MOV A, @R1

该指令的功能是将 60H 单元的内容送入累加器 A。

2) 外部数据 RAM 空间的 256 个单元。例如:

MOVX A, @R1

由R1 中内容指定的外RAM单元内容送入累加器A。

用 DPTR 作间址寄存器,其形式为 @DPTR,可寻址外部 RAM 64 KB (0000H~FFFH)。例如: MOVX @DPTR,A

将累加器的内容传送到由 DPTR 内容指定的片外 RAM16 位地址单元。

堆栈操作指令(PUSH和POP)也应算作是寄存器间接寻址,即以堆栈指针(SP)作间址寄存器的间接寻址方式,只不过SP不出现在堆栈操作指令中。

4. 立即寻址方式

立即寻址方式是由指令直接给定操作数的方式。例如:

MOV A, #48H;(A) #48H

其中#作为立即数的标志符。指令的功能是将数据 48H 送入累加器 A。

除 8 位立即数外, MCS-51 指令系统中还有一条 16 位立即数传送指令,以 #data16 表示 16 位立即数。该指令为

MOV DPTR, #data16

其功能是将 16 位立即数送入数据指针 DPTR。例如:

MOV DPTR, #1234H

其功能是将 12H 送入 DPH, 34H 送入 DPL。

5. 变址寻址方式

变址寻址方式是以程序计数器 PC 或数据指针 DPTR 作为基址寄存器,以累加器 A 作为变址寄存器,这两者内容之和为有效地址。例如:假定指令执行前(A)= 54H,(DPTR)= 3F21H, 执行指令

MOVC A, @A+DPTR

其功能是将程序存储器 3F75H 单元的内容读入累加器 A。

这类寻址方式特别适用于查表。DPTR 可指向 64KB 存储空间; @A+PC 指向以 PC 当前值为起始地址的 256 个字节单元。

对变址寻址方式说明如下:

- 1) 变址寻址方式只能对程序存储器寻址,或者说它是专门针对程序存储器的寻址方式。
- 2) 变址寻址指令只有3条,即

MOVC A, @A+DPTR

MOVC A, @A+PC

JMP @A+DPTR

前两条是程序存储器指令,最后一条是无条件转移指令。

- 3) 变址寻址方式中的 A、DPTR 以及 PC 中的内容为无符号数。
- 4) 尽管变址寻址方式比较复杂,但变址寻址的指令却都是单字节指令。

6. 位寻址方式

位寻址时,操作数是二进制数表示的地址,其位地址出现在指令中。例如:

CLR bit

该指令使地址为bit的位单元清0。

位寻址的寻址范围如下:

- 1) 片内 RAM 中的位寻址区。 其单元地址为 20H~2FH,共 16 个单元 128 位,位地址为 00H~7FH。对这 128 位的寻址可使用直接地址表示。
- 2) 特殊功能寄存器的可寻址位。对这些寻址位在指令中常用以下几种表示方法:
 - 直接使用位地址,例如 PSW 中的位 5 地址为 D5H;
 - 位名称表示法,例如 PSW 的位 5 是 F0 标志位,可使用 F0 表示;
 - 特殊功能寄存器符号名称加位数的表示方法,例如 PSW 的位 5 可表示成 PSW.5。

7. 相对寻址方式

前面介绍的6种寻址方式主要解决操作数的给出问题,而相对寻址方式是为解决程序转移而专门设置的,为转移指令所采用。

相对寻址是以 PC 的相对值为基地址,加上指令中所给定的偏移量,形成有效转换地址。偏移量是带符号的 8 位二进制数,以补码的形式出现。因此,程序的转移范围为 +127 ~ -128。转移目的地址可用如下公式表示:

目的地址 = 转移指令所在地址 + 转移指令字节数 +rel

例如:

SJMP rel;(PC) (PC) + 2 + rel

执行这条指令时,程序转移到指令 PC 值加 2 再加 rel 的方向地址处。其中,2 为该指令的字节长度, rel 以 8 位带符号的补码形式出现。

3 指令分类介绍

MCS-51 指令系统共有 111 条指令,分为 5 大类:

- 数据传送类指令(29条);
- 算术运算类指令(24条);
- 逻辑运算及移位类指令(24条);
- 控制转移类指令 (17条);
- 位操作类指令(17条)。

1 数据传送类指令

数据传送操作属于复制性质,而不是搬家性质。一般传送类指令的助记符号为MOV,通用格式为MOV <目的操作数>.<源操作数>

传送指令中有从右向左传送数据的约定,即指令的右边操作数为源操作数,表达的是数据的来源,而左边的操作数为目的操作数,表达的是传送数据的目的地址。

源操作数可以是:累加器 A、工作寄存器 Rn、直接地址 direct、间址寄存器和立即数。目的操作数可以是:累加器 A、工作寄存器 Rn、直接地址 direct 和间址寄存器。两者只差一个立即数。在数据传送操作中,除了奇偶标志 P 外,一般不影响程序状态字 PSW(指令直接访问 PSW 除外)。

1. 一般传送指令

(1) 以累加器 A 为目的操作数的传送指令

MOV A, Rn ; (A) (Rn)
MOV A, direct ; (A) (direct)
MOV A, @Ri ; (A) ((Ri))
MOV A, #vdata ; (A) #data

(2) 以工作寄存器为目的操作数的传送指令

MOV Rn, A ; (Rn) (A)

MOV Rn, direct ; (Rn) (direct)

MOV Rn, #data ; (A) #data

(3) 以直接地址为目的操作数的传送指令

MOV direct, A ; (direct) (A)
MOV direct, Rn ; (direct) (Rn)
MOV direct, @Ri; (direct) (Ri)
MOV direct1, direct2; (direct1) (direct2)
MOV direct, #data; (direct) #data

(4) 以寄存器间接地址为目的操作数的传送指令

MOV @Ri, A ; ((Ri)) (A)

MOV @Ri, direct; ((Ri)) (direct)

MOV @Ri, #data ; ((Ri)) #data

例 1 把 25H 和 10H 数据分别送到片内 RAM20H 和 25H 单元;把 CAH 送 P1 口;将 P1 口内容送 P2 口;将 RAM20H 单元内容送以 R0 间址的存储单元。

MOV 20H, #25H ;(20H) #25H

MOV 25H, #10H ;(25H) #10H

MOV P1, #0CAH ;(P1) #0CAH

MOV P2, P1 ;(P2) P1

MOV @R0, 20H ;((R0)) (20H)

操作数的寻址方式如下表所列。

例 1 操作数寻址方式

指令	目的操作数	源操作数
MOV 20H , #25H	直接寻址	立即寻址
MOV 25H , #10H	直接寻址	立即寻址
MOV P1,#0CAH	直接寻址	立即寻址
MOV P2 , P1	直接寻址	直接寻址
MOV @RO,20H	间接寻址	直接寻址

2. 16 位地址指针传送指令

MOV DPTR, #data16; (DPTR) #data16

这条指令的功能是将 16 位常数送入数据指针 DPTR。这是 MCS-51 指令系统中惟一一条 16 位数据传送指令。DPTR 由 DPH 和 DPL 组成。该指令将高 8 位立即数送入 DPH , 低 8 位立即数送入 DPL。例如:

MOV DPTR, #1992H ;(DPH) #19H,(DPL) #92H

也可写成两条8位传送指令:

MOV DPH, #19H MOV DPL, #92H

3. 栈操作指令

栈操作指令有进栈 PUSH 和出栈 POP 两条指令:

```
PUSH direct;(SP) (SP)+1;((SP)) (direct)
POP direct;(direct) ((SP));(SP) (SP)-1
```

栈操作指令的操作数有两种寻址方式: SP 间接寻址(隐含在指令中)和直接寻址方式。例如:

PUSH B ; B 为直接寻址方式 PUSH DPH ; DPH 为直接寻址方式

对于工作寄存器的栈操作,只能使用 Rn 的当前直接地址,而不能用 Rn 名称,因为栈操作指令不能区别 Rn 的当前组别。如果 Rn 工作在组 1 时,R1 的直接地址为 09H,对 R1 的直接地址为 09H,对 R1 的栈操作应写成:PUSH 09H或 POP 09H。

4. 累加器 A 数据交换指令

(1) 字节交换指令

XCH A, Rn ;(A) (Rn)
XCH A, direct ;(A) (direct)
XCH A, @Ri ;(A) ((@Ri))

该指令的功能是将 A 与源操作数内容互相交换。

例 2 设(A) = 92H,(R0) = 20H,(20H) = 12H,执行指令XCH A,@R0后,则(A)=12H,(20H) = 92H。

(2) 半字节交换指令

XCHD A, @Ri ;(A) $_{0,-3}$ ((Ri)) $_{0,-3}$

这条指令的功能是将 A 中的低 4 位与 R i 间址单元内容的低 4 位交换,各自的高 4 位不变。

例3 设 A 中的内容为 58H , (R0) = 20H , 片内 RAM 20H 单元的内容为 65H , 执行 XCHD A , @R0 后 , 则 A 的内容为 55H , 片内 RAM 20H 单元内容为 68H。

(3) 累加器 A 高 4 位与低 4 位相互交换指令

SWAP A ; (A) $_{0.7}$ (A) $_{4.7}$

例如,设A中的内容为ABH,执行上述指令后,A中的内容就变为BAH。

5. 累加器 A 与外部 RAM 传送指令

MOVX A, @Ri ;(A) ((Ri))
MOVX A, @DPTR ;(A) ((DPTR))
MOVX @Ri, A ;((Ri)) (A)
MOVX @DPTR, A ;((DPTR)) (A)

单片机与外部 RAM 进行数据交换时,只能通过累加器 A。采用 RO 和 R1 作间址寄存器时,在给定 P2 情况下,可寻址外 RAM 的 256 个单元;采用 DPTR 作间址寄存器时,可寻址外 RAM 的 64KB 空间。

6. 累加器 A 与程序存储器传送指令

```
MOVC A, @A+DPTR ; (A) ((A)+(DPTR)) MOVC A, @A+PC ; (A) ((A)+(PC))
```

上述两条适龄以 DPTR 或 PC 作为基址寄存器, A 中的内容为 8 位无符号数(A 称为变址寄存器), 将基址寄存器内容与 A 中的内容相加,得到一个 16 位地址,将该地址指出的程序存储器单元的内容送入累加器 A。

例 4 程序存储器中有一字形表的首地址为 0198H, 若要调用表中第一字符,则可用下列指令:

```
      MOV
      DPTR , #0198H ;设置地址指针

      MOV
      A , #00H ;设置变形首址

      MOVC
      A , @A+DPTR ;寻找字形码
```

MOVX @RO, A ;字形码送外字形口

例 5 根据累加器 A 的内容 (0~3) 找出由伪令 DB 所定义的 4 个字符中的一个。

```
START: INC A ;(A) (A)+1,单字节指令
```

MOVC A, @A+PC ; (PC) (PC)+1,(A) ((A)+(PC)), 单字节指令

RET ; 单字节指令

DB 29H
DB 0A2H
DB 92H
DB 45H

DB 是伪指令,功能是将右边的单字节数据存入其左边标号地址单元内。如果 DB 左边没有标号,则 DB 伪指令的右边字节数据在DB指令的当前地址连续存放。

该子程序在 MOVC 指令前面有一条 INC A 指令,其作用是跳过表格中的 RET 指令。如果指令 MOVC 所在地址与表格首地址由若干字节隔开,就需要在累加器 A 中加上相应的数目。本例中 A 的取值限定在 $0 \sim 3$ 。在调用上述子程序时,若 (A) = 02H,则在执行完这段程序后,A 中的内容为 92H。

PC 的当前值是指读取 "MOVC A, @A+PC"后的 PC 值,即该指令下面的指令所对应的地址。由于"MOVC A, @A+PC"为单字节指令,将该指令所在地址加1,即为 PC 当前值指向指令 RET 所在地址。

2 算术运算类指令

MCS-51 指令系统具有较强的加、减、乘、除四则运算指令,但只有8位数据运算指令,没有16位数据运算指令。

1. 加法类指令

(1) 加法指令

```
ADD A , Rn ; (A ) (A ) + (Rn)
ADD A , direct ; (A) (A) + (direct)
ADD A , @Ri ; (A) (A) + ((Ri))
ADD A , #data ; (A) (A) + #data
```

上述指令的功能是将累加器 A 中的内容与源操作数相加,结果存于 A 中。

当相加结果的第3位和第7位有进位时,分别将AC和CY置1,否则清0。

无符号数相加后,若CY=1,表示溢出;CY=0,表示无溢出。

对于带符号数相加结果的溢出,取决于第7位和第6位。若第7位有进位而第6位没进位,或第7位 没进位而第6位有进位,则0V=1;若第7位和第6位都有进位,或都没进位,则0V=0。0V=1表示两个正数 相加而和变为负数。或两个负数相加而和变为正数的错误结果。

例如:(A)=0C2H,(R0)=0A9H,执行ADD A,R0指令,过程表示为

运算结果(A)=6BH,(AC)=0,(CY)=1,(0V)=1。若 0C2H 和 0A9H 是两个无符号数,则结果是正确的;若 0C2H 和 0A9H 是两个带符号的数,由于有溢出,则表明结果是错误的,因为两个负数相加的

结果不可能的到正数。

例 6 片内 RAM 40H 和 41H 单元分别放两个加数,相加结果存放在 41H 和 40H 单元。

编制程序如下:

MOV RO,#40H ;设置地址指针 MOV A, @RO ; 取第一个加数 INC RO ; 修改地址指针 ADD A, @RO ; 两数相加 DEC RO ; 修改地址指针 MOV @RO,A ; 存放和的低字节 INC RO ; 修改地址指针 JC LOOP ;有进位则转 MOV @RO,#00H ;存放和的高字节 RET

LOOP: MOV @RO, #00H;存放和的高字节 RET

(2) 带进位的加法指令

ADDC A , Rn ; (A) (A) + (Rn) + (CY)

ADDC A , @Ri ; (A) (A) + ((Ri)) + (CY)

ADDC A , @Ri ; (A) (A) + ((Ri)) + (CY)

ADDC A , #data ; (A) (A) + #data + (CY)

上述 4 条指令的操作数除了需要加上进位 CY 外,其余与 ADD 的 4 条指令的操作相同。 例 7 设 A 中的内容为 C3H, R0 的内容为 AAH, CY=1,执行指令 ADDC A, R0 的过程为

结果:A中的内容为6EH,(AC)=0,(CY)=1,(OV)=1。

(3) 加1指令

INC A ; (A) (A) + 1
INC Rn ; (Rn) (Rn) + 1
INC direct ; (direct) (direct) + 1
INC @Ri ; ((Ri)) ((Ri)) + 1
INC DPTR ; (DPTR) (DPTR) + 1

INC 指令是把指定的单元内容加 1 , 结果仍存原单元中。加 1 指令除影响奇偶标志 P 外 , 运算结果不影响其他标志位。

加 1 指令为, 当目的操作数是 P0~P3 口时, 数据来自端口锁存器(即为 SFR), 结果仍写回端

口锁存器。这类以端口为目的操作数的指令被称为"读-修改-写"指令。

例8 设DPTR的内容为12FEH,执行下列指令:

INC DPTR ;(DPH) 12H,(DPL) FFH
INC DPTR ;(DPH) 13H,(DPL) 00H
INC DPTR ;(DPH) 13H,(DPL) 01H

(4) 二-十进制调整指令

DA A

这是一条专用指令,用于对BCD码十进制加法运算的结果进行修正。MCS-51指令系列系统中没有十进制(BCD)的加法指令,只能借助于二进制加法指令。然而,二进制数的加法用于十进制加法运算时,有时会产生错误结果。例如:

1) 6+3=9	2) 8+7=15	3) 8+9=17
0110	1000	1000
+) 0011	+) 0111	+) 1001
1001	1111	1 0001

其中:1)的运算是正确的,因为9的BCD码就是1001;

- 2)的运算结果是不正确的,因为BCD码没有1111;
- 3)的运算结果也是错误的,因为运算结果是11,而不是17。

出错的原因在于,BCD 码是 4 位的二进制编码,而 4 位二进制编码共有 16 个编码,但 BCD 码只用了其中的 10 个,剩下的 6 个没有用。通常把这 6 个没有用的编码(1010,1011,1100,1101,1110),1111)称为无效码。

在BCD码的加法运算中,凡是结果已进入或跳过无效编码区时,其结果都是错误的。相加的结果大于9,说明已进入无效编码区;相加的结果有进位,说明已跳过无效编码区。但不管是哪一种出错情况,相加结果都比正确值小6。出错是由6个无效编码造成的。

为此,对BCD码运算结果进行"加6"调整,才能得到正确的结果。"加6"的条件是:

- 1) (A)_{3~0} >9 或(AC)=1;
- 2) (A)_{7~4} >9 或(CY)=1。

十进制调整指令不影响溢出标志。

例 9 设累加器 A 的内容为 1000 1000B (即 BCD 码 88), 工作寄存器 R5 的内容为 1001 1001B (即 BCD 码 99), (CY)=1。执行下列指令:

ADDC A , R 5

DA A

第一条加法指令执行后, A 中的内容为 0010 0010B;(CY)=1,(AC)=1。然后执行十进制调整指令 DA A。因为(CY)=1,(AC)=1,所以高 4位和低 4位均自动加 6调整,即

以上所讲的十进制调整的原理和方法,在具体操作时是通过片内硬件逻辑电路实现的。

例 10 设一个加数存于 40H 和 41H 单元,另一个加数存于 42H 和 43H 单元,和存于 40H 和 41H 单元。 4 位 BCD 码的加法程序如下(假定相加的结果仍为 4 位 BCD 码):

MOV RO, #40H ; RO 指向加数低字节

MOV R1, #42H ; R1 指向另一个加数低字节

MOV A, @RO

ADD A, @R1 ; 个位、十位数相加

DA A ;十进制调整

 MOV @RO , A
 ; 存低位和于 40H 单元

 INC RO
 ; 指针指向百位、千位数

INC R1

MOV A, @RO

ADDC A, @R1 ; 百位、千位数相加

DA A

MOV @RO, A ; 存高位和于 41H 单元

RET

2. 减法类指令

(1) 带借位减法指令

SUBB A, Rn ; (A) (A)-(Rn)-(CY)

SUBB A, direct ;(A) (A)—(direct)—(CY) SUBB A, @Ri ;(A) (A)—((Ri))—(CY)

SUBB A, #data ;(A) (A)—#data—(CY)

如果第7位借位,则(CY)=1,否则(CY)=0;若第3位有借位,则(AC)=1,

否则(AC)=0;溢出标志0V用于带符号的整数减法,若第7位和第6位中只有一位有借位,而另一位没有借位,则(0V)=1。(0V)=1表示一个正数减去一个负数结果为负数,或一个负数减去一个正数为正数的错误结果。当无符号数运算时,溢出标志无意义。

例 11 设累加器 A 中的内容为 0ECH , 寄存器 R5 中的内容为 75H ,(CY) =1 , 执行指令 SUBB A , R5 , 其运算操作过程为

结果:(A)=76H,(CY)=0,(AC)=0(OV)=1。

(2) 减1指令

DEC A ;(A) (A)-1

DEC Rn ;(Rn) (Rn)-1

DEC direct ;(direct) -1

DEC @Ri ;((Ri)) ((Ri)) -1

减 1 指令的功能是指令单元的内容减 1 , 结果存于原单元中。除了标志 P 外 , 本指令不影响其他标志位。

当减 1 指令的目的操作数是 P0~P3 端口时,该指令属于"读-修改-写"指令,即将端口数据读出,减 1,又送回原端口。

3. 乘法和除法指令

(1) 乘法指令

MUL AB ; (B_{15-8} A_{7-0}) (A) \times (A)

将 A 和 B 的无符号数相乘, 16 位乘积的低 8 位存于 A, 高 8 位存于 B。乘法指令影响 3 个标志位:(CY)=0; 若(B)=0,则(OV)=0,若若(B)=0,则(OV)=1; P 标志仍按 A 中的内容设置。

(2) 除法指令

DIV AB ;(A) 商,(B) 余数

将 A 中的 8 位无符号数除以 B 中的 8 为 2 无符号数, 商存于 A, 余数存于 B。

DIV操作影响 3 个标志位:(CY)=0;(B)=0(即非法)时(0V)=1,表明除法没有意义,而其他情况下(0V)=0;P标志仍取决于A的内容。

3 逻辑运算及移位类指令

MCS-51 指令系统能对位和字节操作数进行基本的逻辑运算。下面介绍字节操作数的逻辑运算,有关位操作将在后面介绍。

1.逻辑"与"运算指令

ANL A, Rn ; (A) (A) (Rn)

ANL A, direct ; (A) (A) (direct)

ANL A, @Ri ; (A) (A) ((Ri))

ANL A, #data ; (A) (A) #data

ANL direct, A ; (direct) (direct) (A)

ANL direct, #data ;(direct) (direct) #data

例 12 已知 (A) =1010 1101B, (R4) =0110 0101B。执行指令 ANL A, R4 的过程为

2.逻辑"或"运算指令

ORL A, Rn ; (A) (A) (Rn)
ORL A, direct ; (A) (A) (direct)
ORL A, @Ri ; (A) (A) ((Ri))
ORL A, #data ; (A) (A) #data
ORL direct, A ; (direct) (direct) (A)

ORL direct, #data ;(direct) (direct) #data 例 13 将累加器 A 的高 5 位送到 P1 口的高 5 位, 而 P1 口的低 3 位保持不变。程序如下:

 MOV
 R 2 , A
 ; 暂存 A 的内容

 ANL
 A , #0F8H
 ; 取 A 的高 5 位

 ANL
 P1 , #07H
 ; 取 P1 的低 3 位

 ORL
 P1 , A
 ; 组合 P1 口内容

 MOV
 A , R 2
 ; 恢复 A 的内容

3.逻辑"异或"指令

"异或"操作也是按位进行的。当两个操作数相同时,结果为 0 ;不同时,结果为 1。运算符号为。

XRL A, Rn ; (A) (A) (Rn)

```
XRL A, direct ;(A) (A) (direct)
XRL A, @Ri ;(A) (A) ((Ri))
XRL A, #data ;(A) (A) #data
XRL direct, A ;(direct) (direct) (A)
XRL direct, #data ;(direct) (direct) #data
```

使用"异或"指令可判别两个数是否相等。若相等,则结果为全 0。利用本指令可对目的操作数的某些位取反或保留:用 1 去"异或"的位,则取反;用 0 去"异或"的位,则保留。

在 M C S - 5 1 指令系统中的逻辑"与"、"或"、"异或"运算时,当目的操作数为 P 0 ~ P 3 端口时,指令属于"读-修改-写"指令。

4. 累加器清0及取反指令

```
CLR A ;(A) #00H
CLR A ;(A) (A)
```

MCS-51 指令系统没有"求补"指令,若需要进行"求补"运算,可用"取反加1"运算规则实现。

5. 移位指令

MCS-51 指令系统的移位操作只对累加器 A 进行,有左、右小循环和左、右大循环 4 种:

左小循环 RL A 右小循环 RR A 左大循环 RLC A 右大循环 RRC A

以上4条指令的操作过程,如下图所示。

移位指令示意图

4 控制转移类类指令

程序的顺序执行是靠 PC 自动加 1 实现的。要改变程序的执行顺序,实现分支转向,应通过

强迫改变 PC 值的方法来实现。这就是控制转移类指令的基本功能。

共有两类转移:无条件转移和有条件转移。

1. 无条件转移指令

(1) 长转移指令

LJMP addr16 ;(PC) addr16

这是一条 3 字节指令,指令执行后把 16 位地址(addr16)送入 PC,从而实现了程序的转移。 因为转移范围大,可达 6 4 KB,故称为"长转移"。

(2) 绝对转移指令

LJMP addr11 ; (PC) (PC) +2, (PC)_{10 \sim 0} addr11

AJMP 指令提供 11 位地址去替换 PC 的低 11 位地址内容,形成新的 PC 值,即转移目的地址。

AJMP 是一条双字节指令,指令的格式为

第一字节	A10	A9	A8	0	0	0	0	1
第二字节	A7	A6	A5	A4	А3	A2	A1	A0

指令提供的 11 位地址中,A7~A0 在第二字节,A10~A8 则占据第一字节的高 3 位,而指令操作码只占第一字节的低 5 位(00001)。AJMP 指令的功能是构造程序转移目的地址,实现程序的转移。其构造新地址的方法是:以指令提供的 11 位地址(A10~A0)去替换 PC 的低 11 位,形成新的 PC 值,即转移目的地址。但要注意,被替换的 PC 值是 AJMP 指令的地址加 2 的 PC 值,

即指向 AJMP 下条指令的 PC 值,称为 PC 当前值。例如,在程序存储器的 2070H 单元存放一条绝对转移指令:

2070H AJMP NEWAD

标号地址 NEWAD 的低 11 位地址为 16AH=001 0110 1010B,构成的指令代码为 216AH,即

0	0	1	0	0	0	0	1
0	1	1	0	1	0	1	0

程序计数器 PC 加 2 的内容为:0010 0000 0111 0010B=2072H,以 11 位绝对地址(16AH)代替 PC 中的低 11 位,形成的转移目的地址为:0010 0001 0110 1010B=216AH。

addr11是无符号整数,最小值为000H,最大值为7FFH,因此绝对转移指令所能转移的最大范围是2KB。 对于"2070H AJMP NEWAD"指令,其转移范围是2000H~27FFH。

(3) 短转移指令

SJMP rel

SJMP是相对寻址方式的双字节指令,其中rel为相对偏移量。指令的功能是按计算得到转移目的地址, 实现程序转移。计算公式为

目的地址 = (PC) +2+rel

其中,PC 称为源地址,即指令"SJMP rel"所在程序单元的地址;偏移量 rel是一个带符号的 8 位二进制补码数。如果 rel 为正,则向前转移;如果 rel 为负,则向后转移。计算偏移量的公式为

rel=目的地址 - (源地址 +2)

若相对转移指令是3字节指令,则偏移量为

rel=目的地址 - (源地址 +3)

例: 在 835AH 处有 SJMP 指令 835AH SJMP 35H

源地址 =835AH, re I =35H 且为正,则目的地址 =835AH+02H+35H=8391H,即程序转移到8391H地址。

例: 在835AH 处的 SJMP 指令为

835AH SJMP 0E7H

re I = 0E7H 且为负数 19H 的补码,因此目的地址 =835AH+02H-19H=8343H,即程序转移到 8343H 处。若 re I = FEH,为负数 02H 的补码,则目的地址 = PC+02-02=PC,即目的地址和指令源地址相同,

程序就在该指令上踏步,即

HERE:SJMP HERE或HERE:SJMP \$

在 MCS-51 指令系统中,以\$代表指令源地址。

若 rel=00H,则目的地址=PC+02H,即目的地址为下一条指令地址。如:

SJMP 00H

NEXT: MOV A, #00H 程序转移到 NEXT 处。

(4) 变址寻址转移指令

JMP @A+DPTR ; (PC) (A)+(DPTR)

以 DPTR 内容为基础 (称为基址), A 中的内容作为变址。当 DPTR 固定时, A 中赋值不同,可以实现程序的对分支转移。其计算公式为

转移目的地址= (A)+(DPTR)

这种由基址寄存器(DPTR)和变址寄存器(A)共同实现的间址方式,称为变址寻址。

2. 条件转移指令

执行条件转移指令时,如指令中规定的条件满足,则进行程序转移;否则,程序顺利执行。

(1) 累加器判零转移指令

JZ rel ; 若(A)=0,则(PC) (PC)+2+rel,即转移

;否则(PC) (PC)+2,即顺序执行

JNZ rel ; 若(A) 0,则(PC) (PC)+2+rel,即转移

; 否则 (P C) (P C) + 2 , 即顺序执行

上述两条指令均为双字节指令。第一条指令转移条件是(A)=0,第二条指令转移条件是

(A) 0, A中的内容为转移指令前面最后一条指令的执行结果。单片机的程序状态字PSW中没有零标志,只能用累加器的内容为零(非零)作为判断条件。

(2) 比较条件转移指令

比较条件转移指令是把两个操作数进行比较,以是否相等作为条件来控制程序转移。共有4条指令:

CJNE A, #data, rel; 累加器内容与立即数不等则转移,否则顺序执行

CJNE A, direct, rel;累加器内容与内RAM中指定单元内容不等则转移,否则顺序执行

CJNE Rn, #data, rel;工作寄存器内容与立即数不等则转移,否则顺序执行

CJNE @Ri,#data,rel;内部RAM中指定单元(间址形式)内容与立即数不等则转移, 否则顺序执行

上述 4 条指令是 3 字节指令, 具有数值比较和程序转移两方面功能。

两个操作数比较结果影响 CY 标志,但不影响操作数中的内容。当左操作数 = 右操作数时,(CY)=0,程序顺序执行;当左操作数>右操作数时,(CY)=0,程序转移执行;当左操作数<右操作数时,(CY)=1,程序转移执行。

(3) 减1条件转移指令

这是一组把减1与条件转移两种功能结合在一起的指令,共有两条。

● 寄存器减1条件转移指令(双字节指令)为

DJNZ Rn, rel ; (Rn) (Rn) - 1

若(Rn) 0,则(PC) (PC)+2+rel,即程序转移;

若(Rn)= 0,则(PC) (PC)+2,即程序顺序执行。

● 直接寻址单元减1条件转移指令(3字节指令)为

DJNZ direct, rel; (direct) (direct)-1

若(direct) 0,则(PC) (PC)+ 3 + rel,即程序转移;

若(direct) = 0,则(PC) (PC)+3,即程序执行。

这两条指令主要用于控制程序循环。如预先把寄存器或内部 RAM 单元赋值循环次数,利用减1条件转移指令,以减1后是否为0作为转移条件,即可实现按次数控制循环。

例: 将外部 RAM 地址为 1100H~11FFH 的 256 个单元清 0, 试编制实现程序。

MOV R7,#00H ; 置计数初值

MOV A, #00H

MOV DPTR, #1100H ; 清0单元首地址

LOOP:MOV @DPTR,A ;清0

INC DPTR

DJNZ R7, LOOP ; 计数值减1, 不为0则循环

RET ;返回

3. 子程序调用及返回指令

从主程序转向子程序的指令称为子程序调用指令;从子程序返回主程序的指令称为返回指令。

调用指令与钻仪指令的主要区别是转移指令不保存返回地址,而子程序调用指令在转向目的地址的同时,必须保留返回地址(称为断点地址),以便执行返回指令时回到主程序断点的位置。通常采用堆栈技术保存断点地址,这样可以允许多重子程序调用(在子程序中再次调用子程序)。

(1)绝对调用指令(双字节指令)

ACALL addr11 ; (PC) (PC)+2,(SP) (SP)+1,(SP) (PC)₇₋₀ ; (SP) (SP)+1,(SP) (PC)₁₅₋₈ ; (PC)₁₀₋₀ addr11,(PC)₁₅₋₁₁保留

该指令格式为

第一字节	A10	A9	A8	1	0	0	0	1
第二字节	A7	A6	A5	A4	А3	A2	A1	AO

指令代码中提供了子程序入口地址的低 11 位。这 11 位地址的 A7~A0 占据指令的第二字节, A10~A8 占据指令的第一字节的高 3 位, 低 5 位为操作码。指令的调用范围为 2KB。

为了实现直程序调用,该指令共完成两项操作:

断点保护 断点保护是通过自动方式的堆栈操作实现的。即把加 2 以后的 PC 值 (称为 PC 当前值) 自动送入栈区保存起来,待子程序返回时再送回 PC。

构造目的地址 目的地址的构造是在 PC 加 2 的基础上,以提供的 11 位地址取代 PC 当前值中的低 11 位 , PC 的高 5 位保持不变。

例: 在程序存储器8100H单元处有一条绝对调用指令,确定子程序目的地址。

8100H ACALL 48FH

由于 48FH=0100 1000 1111B,即 addr11的高3位(A10 A9 A8)=100,因此指令第一字节为91H,第二字节为8FH,即机器码为918FH。

PC 的当前值 PC=8102H=1000 0001 0000 0010 指令提供的低 11 位地址替换 PC 中的低 11 位后,形成的目的地址是

1000 0100 1000 1111B=848FH

即被调用的子程序入口地址为 848FH。本指令的地址为 8100H,不变的高 5 位是 1000B,因此本指令的调用范围是 8000H~87FFH(2 KB).

(2)长调用指令(3字节指令)

```
ACALL addr16 ; (PC) (PC)+3,(SP) (SP)+1,(SP) (PC)_{7-0}; (SP) (SP)+1,(SP) (PC)_{15-8}; (PC) addr16
```

子程序入口地址在指令中直接给出.指令执行后,断点进栈保存,addr16作为子程序入口地址.本指令的调用范围是64KB(0000H~FFFH),使用比较方便,但3字节指令较ACALL指令占有较多的存储空间.

```
例 18 已知下列程序段:
```

ORG 0100H
MOV SP,#60H
.....
ORG 0200H
START: LCALL MIR
.....
RET
MIR EQU 8100H

程序执行结果:(SP)=62H,(61H)=03H,(62H)=02H,(PC)=8100H。

(3)返回指令

● 子程序返回指令

RET; $(PC)_{15-8}$ (SP), (SP) $(SP)-1, (PC)_{7-0}$ (SP), (SP) (SP)-1

● 中断返回指令为

RETI; $(PC)_{15-8}$ (SP), (SP) $(SP)-1, (PC)_{7-0}$ (SP), (SP) (SP)-1

子程序返回和中断返回指令的功能都是从堆栈中取出16位断点地址送PC,使子程序返回主程序。RET指令安排在子程序出口处,RETI指令安排在中断服务程序出口处。

此外,RETI 指令还具有清除中断响应时被触发的优先级状态,开放较低级中断和恢复中断逻辑等功能。例 19 已知(SP)=62H,(62H)=07H,(61H)=30H,执行 RET 指令后,其结果是: (SP)=60H,(PC)=0730H,即 CPU 从 0730H 处开始执行程序。

4. 空操作指令

```
NOP ; (PC) (PC) + 1
```

空操作指令也是一条控制指令,控制CPU不做任何操作,只消耗一个机器周期的时间。空操作指令是单字节指令,依次执行后 PC 加 1,时间 延续一个机器周期。NOP 指令常用于程序的等待或时间的延迟。

位操作(又称位处理)就是以位(bit)为单位进行的运算和操作。位变量也称为布尔变量或开关变量。

5 位操作类指令

MCS-51 指令系统适用位操作的地址空间是片内 RAM 20H~2FH 单元(位地址为 00H~7FH) 以及 SFR 区中可寻址的位。

1. 位传送指令

```
MOV C, bit ;(CY) (bit)
MOV bit, C ;(bit) (CY)
```

bit 表示位地址。位传送就是可寻址的位与 CY 之间的相互传送。由于没有可寻址位之间的直接传送指令,因此位之间无法实现直接传送。如果需要位之间传送,必须以 CY 作中介实现。

例:将位地址为20H的内容传送到位地址5AH。编制程序如下:

```
MOV10H,C; 暂存 CY 内容MOVC,20H; 20H 位送 CYMOV5AH,C; CY 送 5AH 位MOVC,10H; 恢复 CY 内容
```

2. 位置位和复位指令

```
SETB C ; (CY) 1
SETB bit ; (bit) 1
CLR C ; (CY) 0
CLR bit ; (bit) 0
```

3. 位运算指令

位运算都是逻辑运算,有"与"、"或"、"非"3种,共6条指令

```
ANL C, bit ;(CY) (CY) (bit)

ANL C, /bit ;(CY) (CY) (bit)

ORL C, bit ;(CY) (CY) (bit)

ORL C, /bit ;(CY) (CY) (bit)

CPL C ;(CY) (CY)

CPL bit ;(CY) (bit)
```

"/bit"表示位中内容的"非",运算后bit中的内容不取反,保持原内容不变。

在位操作指令中,没有位的"异或"运算,需要时可由上述多条位操作指令实现。此外,通过位逻辑运算,可对各种组合逻辑电路进行模拟,即用软件方法来获得组合电路的逻辑功能。

例 21 用位运算指令实现"异或"操作:

D=E B

由于 D=E B=EB+EB,实现的程序如下:

4. 位控制转移指令

位控制转移指令就是以位的状态作为实现程序转移的判断条件。

(1)以C 状态为条件的转移指令(双字节指令)

JC rel ; 若(CY)=1,则(PC) (PC)+2+rel,即转移

;若(CY)=0,则(PC) (PC)+2,即程序顺序执行

JNC rel ; 若(CY)=0,则(PC) (PC)+2+rel,即转移

;若(CY)=1,则(PC) (PC)+2,即程序顺序执行

(2)以bit 状态为条件的转移指令(3字节指令)

JB bit, rel;若(bit)=1,则(PC) (PC)+3+rel,即转移

;若(bit)=0,则(PC) (PC)+3,即程序顺序执行

JNB bit, rel ; 若(bit)=0,则(PC) (PC)+3+rel,即转移

;若(bit)=1,则(PC) (PC)+3,即程序顺序执行

JBC bit, rel ; 若(bit)=1,则(PC) (PC)+3+rel,即转移,且同时伴随着清bit位,即(bit)=0;若(bit)=0,则(PC) (PC)+3,即程序顺序执行

JBC指令中,若可寻位为1时,则转移,并同时清该位。当bit是P0~P3端口中某一位时,该指令称为: "读-修改-写"指令。

4 汇编语言程序设计

用助记符表示的指令就是计算机的汇编语言,每一条指令就是汇编语言的一条语句。 所谓程序设计就是编写计算机程序。汇编语言程序设计就是使用汇编指令来编写计算机程序。

1 汇编语言的特点及其语句格式

1. 汇编语言的特点

汇编语言有以下特点

- 1) 助记符指令与机器指令一一对应,所以用汇编语言编写的程序占用存储器空间小,运行速度快,可编写出最优化程序。
 - 2)汇编语言是面向计算机的。汇编语言的程序设计人员必须对计算机硬件有相当深入的了解。
- 3)汇编语言能直接访问存储器及接口电路,也能处理中断,因此汇编语言程序能直接管理和控制硬件设备。
- 4)各种计算机都有自己的汇编语言 ,不同计算机的汇编语言之间不能通用 ,因此汇编语言缺乏通用性 ,程序不易移植。

2. 汇编语言的语句格式

各种计算机汇编语言的语句格式及语法规则基本相同。MCS-51汇编语言的语句格式为

[标号]:[操作码][目的操作数],[源操作数];[注释]

其中每部分也称为字段。各部分之间用一个空格或字段分界符分隔。常用的字段分界符有冒号":"、逗号","和分号";"。

(1)标号

标号用来说明指令的地址,用于其他语句对该句的访问。标号有以下规定:

- 1) 标号由 1~8 个字母和数符组成,字母打头,冒号":"结束,中间允许数字符号。 标号中的字符个数不超过 8 个,若超过 8 个,则以前面的 8 个字符有效,后面的字符不起作用。
- 2)不能用本汇编语言已经定义的符号作为标号,如指令助记符、伪指令以及寄存器的符号名称符。
- 3)同一标号在一个程序中只能定义一次,不能重复定义。
- 4)一条语句可以有标号,也可以没有标号,取决于本程序中有无语句访问这条语句。

(2)操作码

操作码是汇编语句格式中惟一不能空缺的部分,用于规定语句执行的操作内容。

(3)操作数

操作数用于表明指令操作的数据或数据存储地址。操作数可以是空白,也可以是一项、两项,各操作数之间用逗号分开。MCS-51 指令系统的操作数有寄存器、立即数、直接、间接等 7 种寻址方式。

操作数与操作码之间用空格分开。

(4)注释

注释不属于语句的功能部分,只是对语句的解释说明,只要用";"号开头,即表明以下为注释的内容。使用注释可使程序文件编制显得更加清楚,帮助程序人员阅读程序。注释可有可无,长度不限,一行不够时可以换行接着写,但换行时要注意在开头使用";"号。

(5)分界符

分界符(分隔符)用于把语句格式中的各部分隔开,以便区分,包括空格、冒号、分号或逗号等 多种符号。

冒号(:)——用于标号之后。

空格()——用于操作码和操作数之间。

分号(;)——用于注释之前。

逗号(,)——用于操作数之间。

3. 汇编语言程序设计的特点

汇编语言程序设计有以下特点:

- 1) 在程序中要对存取数据的存储器单元地址以及寄存器等作出明确分配。
- 2) 设计人员对单片机应用系统的硬件结构要有详细了解,以便在程序中熟练使用。
- 3) 设计程序要尽量采用模块化结构,便于阅读和修改。
- 4) 在满足工艺要求和便于阅读的基础上,尽量选用字节少,工作进行效率高的指令和结构形式。

2 汇编语言程序的基本结构形式

一般把程序结构分为3种形式:顺序结构、分支结构和循环结构。

1. 顺序结构

顺序结构是最简单的程序结构,在顺序程序中无分支、循环和调用子程序,程序是逐条顺序执行的。 例 22 被加数存于片内 RAM 32H,31H和30H;加数存于片内 RAM 35H,34H和H;相加之和存于片内 RAM 32H,31H和30H;进位存于 00H单元,试编制程序。

START:	MOV	RO ,#30H	;被加数低字节地址
	MOV	R1 ,#33H	;加数低字节地址
	MOV	A , @ R O	
	ADD	A , @ R 1	;低字节相加
	MOV	@RO,A	;存低字节相加结果
	INC	RO	
	INC	R1	
	MOV	A , @ R O	
	ADDC	A , @ R 1	; 中间字节相加
	MOV	@ R O . A	; 存中间字节相加结果

INC RO

MOV A , @ R O

ADDC A, @R1 ; 高字节相加

MOV @RO,A;存高字节相加结果

CLR A

ADDC A,#00H

MOV 00H,A ;存进位

RET

2. 分支结构

分支结构是通过转移指令实现的。根据程序的功能特点,又可分为单分支程序、多分支程序等。

例 23 假定在外 RAM 2000H, 2001H, 2002H的3个连续单元中, 2000H和2001H单元存放着两个无符号数,要求找出其中较大者并存于2002H单元。其程序如下:

ORG 0100H

START: CLR C

 MOV
 DPTR,#2000H
 ;设置数据指针

 MOVX
 A,@DPTR
 ;取第一个数

 MOV
 R2,A
 ;暂存于R2

 INC
 DPTR
 ;数据指针加1

 MOVX
 A,@DPTR
 ;取第二个数

 SUBB A , R 2
 ; 两数比较

 JNC L00P1
 ; 第二个数大则转 L00P1

XCH A,R2 ;第一个数大则交换

LOOPO: INC DPTR

MOVX @DPTR , A ; 存大数

RET

LOOP1: MOVX A, @DPTR

SJMP LOOPO

3. 循环结构

循环是为了重复执行一个程序段。在汇编语言中可以通过条件判断循环是否结束。 例 将内部 RAM 20H 为起始地址的数据串(最大长度为32字节)传送到外部 RAM 2000H 为首地址的区域,直到发现"\$"字符的 ASC 码为止。其程序如下:

 MOV
 R0,#20H
 ;内RAM数据串首地址

 MOV
 DPTR,#2000H
 ;外RAM数据串首地址

MOV R7, #20H ; 最大数据串长度

LOOPO: MOV A, RO

XRL A, #24H ; 判断是否为"\$"字符

JZ LOOP1 MOV A,@RO MOVX @DPTR, A

INC RO

DJNZ R7, LOOPO

LOOP1: RET

5 汇编语言的伪指令与汇编

用指令系统编写的汇编语言程序称为源程序,必须将其翻译成机器码(称为目标程序),单片机方可执行。源程序转换成目标程序的过程是由通用计算机执行一种特定的翻译程序(称为汇编程序)自动完成的。这个翻译过程称为汇编。

1 汇编语言的伪指令

源程序中应有向汇编程序发出指示信息,告诉汇编程序如何完成汇编工作的控制命令,称 之为伪指令。伪指令具有控制汇编程序的输入/输出、定义数据和符号、条件汇编和分配存储 空间等功能。不同的汇编语言的伪指令也有所不同,但一些基本的东西却是相同的。

伪指令是由程序员发给汇编程序的命令,也称为汇编命令或汇编程序控制指令。只有在汇编前的源程序中才有伪指令,汇编后得到的目标程序(机器码)中没有伪指令相应的机器代码。

下面介绍 MCS-51 汇编语言程序中常见的伪指令。

1.0RG 汇编起始地址命令

在汇编语言源程序的开始,通常都要用一条ORG(Origin)伪指令规定程序的起始地址。 命令格式为

[标号]:ORG [地址]

其中:[标号]是选择项,根据需要选用;[地址]项通常为16绝对地址,但也可以使用标号或表达式。例如:

ORG 8000H

START: MOV A, #00H

.

即规定标号 START 代表地址 8000H,目标程序的第一条指令从 8000H 开始。

2. END 汇编终止命令

END(END of assembly)是汇编语言源程序的结束标志,在整个源程序中只能有一条 END 命令,且位于程序的最后。如果 END 命令出现在中间,则其后面的源程序汇编时将不予处理。 命令格式为

[标号]:END

命令中的[标号]是选择项。这个标号应是源程序第一条指令的符号地址。例如:

ORG 8100H

START: MOV A, #00H

MOV R7,#10H

MOV RO, #20H

LOOP: MOV @RO,A

INC RO

DJNZ R7, LOOP

RET

END

3. EQU 赋值命令

EQU (Equate) 命令用于给标号赋值。赋值以后,其符号值在整个程序中有效。命令格式为

[字符名称] EQU [赋值项]

其中,[赋值项]可以是常数、地址、标号或表达式。其值为8位或16位而进制数。赋值以后的字符名称既可以作立即数使用,也可以作地址使用。例如:

ORG 6000H

START: MOV R7,#05H LOOP: LCALL DELAY

DJNZ R7,L00P

RET

DELAY EQU 1880H

END

4.DB 定义字节命令

DB (Define Byte)命令用于从指定的地址开始,在程序存储器的连续单元中定义字节数据。命令格式为

[标号]: DB [8位数据表]

字节数据可以是一字节常数或字符,或用逗号分开的字符串,或用引号括起来的字符串。

例如:

DB "How are you?"

把字符串中的字符按 ASC 码存于连续的 ROM 单元中。

常使用本命令存放数据表格,例如存放数码管显示的十六进制数的形码,可使用多条DB命令定义:

DB 3FH, 06H, 5BH, 4FH

DB 66H,6DH,7DH,07H

DB 7FH, 6FH, 77H, 7CH

DB OCOH, OF9H, OA4H, OBOH

5.DW 定义字命令

DW (Define Word)命令用于从指定地址开始,在程序存储器的连续单元中定义16位的数据字。命令格式为

[标号]: DW [16 位数据表]

存放时,数据的高8位在前(低地址),低8位在后(高地址)。例如:

DW " A A " ; 存入 41H , 41H DW " A " ; 存入 00H , 41H

DW "ABC" ; 不合法, 因超过两个字节

DW 100H, 1ACH, 814 ;按顺序存入01H, 00H, 01H, ACH, FCH, DCH

DB和DW定义的数据表,数的个数不得超过80个。如果数据的数目较多时,可使用多个定义命令。在MCS-51程序设计中,常以DB定义数据,以DW是定义地址。

6.DS 定义存储区命令

DS (Define Storage)命令用于从指定地址开始,保留指定树木的字节单元作为存储区,供程序运行使用。汇编时,这些单元不赋值。命令格式为

[标号]: DS [16 位数据表]

例如:

ADDTAL : DS 20

从标号 ADDTBL 带表的地址开始,保留 20 个连续的地址单元。又例如:

ORG 8100H DS 08H

从8100H地址开始,保留8个连续的地址单元。

注意 DB,DW和DS命令只能对程序存储器使用,而不能对数据存储器使用。

6.BIT 位定义命令

本命令用于给字符名称赋以位地址。命令格式为

[字符名称] BIT [位地址]

其中[位地址]可以是绝对地址,也可以是符号地址(即位符号名称)。例如:

AQ BIT P1.0

把 P1.0 的位地址赋给变量 AQ。在其后的编程中, AQ 就可以作为位地址(P1.0)使用。

2 汇编语言的汇编

将用助记符编写的源程序转换成机器码的过程称为汇编。汇编分为手工汇编和机器汇编。

对于简单的应用程序,可以通过查表翻译指令的方法将源程序翻译成机器码,称之为手工汇编。

由于手工汇编是按绝对地址进行定位,所以手工汇编时要根据转移的目标地址计算转移指令的偏移量,而且容易出错。此外,对于汇编后的目标程序,如须增加、删除和修改指令,就会引起以后各指令地址的改变,转移指令的偏移量也要重新计算。因此,手工汇编不是理想的方法,通常只用于小的程序。

编写完单片机的源程序之后,由于单片机本身软硬件资源所限,无法由单片机本身自动汇编(机器汇编),只能借助于通用计算机对源程序进行汇编。

使用一种计算机的汇编程序去汇编另一种计算机源程序 具体说就是运行汇编程序进行汇编的是一种计算机 ,而运行汇编得到目标程序的则是另一种计算机。这种使用一种计算机的汇编程序去汇编另一种计算机的源程序的汇编过程,被称为交叉汇编。单片机的机器汇编就是交叉汇编。

在交叉汇编之前,一般还要借助于通用计算机进行单片机的程序设计。通常使用编辑软件进行源程序的编辑,以形成一个由汇编指令和伪指令组成的源程序文件。这个过程被称为机器编辑。

交叉汇编之后,再使用串行通信方法,把汇编得到的目标程序传送到单片机,进行程序的调试和运行。

"机器编辑 交叉编辑 串行发送",这3个过程构成了单片机软件设计的3个基本步骤。

源程序编写如下:

ORG 8000H

START: MOV RO, #20H

MOV R7, #07H

CLR F0

LOOP: MOV A , @RO

MOV 2BH, A

INC RO

MOV 2AH,@RO

CLR C

SUBB A , @RO

JC NEXT

MOV @RO,2BH

DEC RO

MOV @RO,2AH

INC RO

SETB F0

NEXT: DJNZ R7, LOOP

JB FO, START

HERE: SJMP \$

END

手工汇编结果如下表所列。

手工汇编结果

目标程序部分		源程序部分		
地址	机器码	标号	助记符指令	备注
8000	7820	START:	MOV RO,#20H	
8002	7F07		MOV R7,#07H	
8004	C2D5		CLR F0	
8006	E6	LOOP:	MOV A,@RO	
8007	F52B		MOV 2BH, A	
8009	08		INC RO	
800A	862A		MOV 2AH, @RO	
800C	C3		CLR C	
800D	96		SUBB A , @RO	
800E	4008		JC NEXT	偏移1
8010	A62B		MOV @RO,2BH	
8012	18		DEC RO	
8013	A62A		MOV @RO,2AH	
8015	08		INC RO	
8016	D2D5		SETB FO	
8018	DFEC	NEXT:	DJNZ R7, LOOP	偏移2
801A	20D5E3		JB FO, START	偏移3
801D	80FE	HERE :	SJMP \$	偏移4

偏移1的计算:

rel1=目的地址 - (源地址 +2) =8018H - (800EH+2) =08H

偏移2的计算:

reI2=目的地址 - (源地址 +2)=8006H-(8018H+2)=-14H (-14H)补码=ECH

偏移3的计算:

rel3=目的地址 - (源地址 +2)=8000H - (801AH+3)=-1DH (-1DH)补码=E3H

偏移4的计算:

rel4=目的地址 - (源地址+2)=801DH-(801DH+2)=-2H (-2H)补码=FEH

6 汇编语言程序设计举例

1 算术运算程序

1.加、减运算程序

(1) 不带符号的多字节数加法

例 设有两个4字节的二进制数,分别存放在以30H和50H为起始地址的单元中(先存放低字节)。求这两个数的和,并将和存放在以30H为起始地址的单元中,试编制程序。

程序如下:

ORG 2000H JAZ:MOV R O , #30H ;指向加数最低位 MOV R1 , #50H ;另一加数最低位 MOV R2 , #04H ;字节个数存于 R2 LCALL JAFA ;调用加法子程序 JC OVER ;有进位则转出 MOV 34H ,#00H ; 无进位清最低字节单元 SJMP HERE MOV OVER: 34H ,#01H ;最高字节单元为 01H HERE: SJMP HERE ORG 1000H JAFA: CLR ; C 清 0 JAADD: MOV A , @RO ; 取出加数一个字节 ADDC A , @R1 ;加上另一个数的一个字节 @RO,A MOV ;保存和 INC R0 ;修改加数的地址 INC DJNZ R2, JAADD ; 没加完则继续 RET

(2) 不带符号的两个多字节数减法

例 设有两个 N 字节无符号数分别存于内 RAM 单元中,低字节在前,高字节在后。由 R0 指定被减数单元地址,由 R1 指定减数单元地址,要求差值存放在原被减数单元中,假定最高字 节没有错位。

程序如下:

CLR C

MOV R7,#N ; 设定N字节

LOOP: MOV A,@RO ;从低位取被减数字节

SUBB A,@RO ;两位数减 MOV @RO,A ;保存差 INC RO INC R1 DJNZ R7,LOOP

(3)带符号数加、减运算

对于带符号数的减法运算,只要将减数的符号位取反,就可把减法运算按加法运算处理。

对于带符号数的加法运算,首先要进行两数符号的判定。如果两数符号相同,应进行两数相加,并以被加数符号为结果符号。

如果两数符号不同,应进行两数相减。如果相减的差为正,则差即为最后结果,并以被减数符号为结果符号;如果相减的差为负,则应将其差值取补,并把被减数的符号取反作为结果符号。

例 27 假定 20H 和 21H 以及 22H 和 23H 分别存放两个 16 位的带符号二进制数,其中 20H 和 22H 的最高位为两数的符号位。请编写带符号双字节二进制数的加减法程序,以BUSB 为减法程序入口,以BADD 为加法程序入口,以内 RAM 24H 和 25H 保存运算结果。

程序如下:

住			
BUSB:	MOV	A , 22H	;取减数高字节
	CPL	ACC.7	
	MOV	22H , A	;减数符号位取反进行加法
BADD:	MOV	A , 20H	;取被加数
	MOV	C , ACC.7	
	MOV	FO,C	;被加数符号位存于 F0
	XRL	A , 22H	;两数高字节 " 异或 "
	MOV	C , ACC.7	; 两数同号 (C Y) = 0 , 异号 (C Y) = 1
	MOV	A , 20H	;取被加数
	CPL	ACC.7	;被加数高字节符号位清 0
	MOV	20H , A	;取其数值部分
	MOV	A , 22H	;取加数
	CLR	ACC.7	;加数高字节符号位清 0
	MOV	22H , A	; 取其数值部分
	JC	JIAN	; 两数异号转 JIAN
JIA:MOV	A , 2	1 H ; 两数	如同号进行加法
	ADD	A , 23H	;低字节相加
	MOV	25H , A	;保存低字节和
	MOV	A , 20H	
	ADDC	A , 22H	;高字节相加
	MOV	24H , A	;保存高字节和
	JB	ACC.7,QAZ	;符号位为 1 转溢出处理
QWE:MOV	C , F	0 ;结果	具符号处理
	MOV	ACC.7,C	
	MOV	24H , A	
	RET		

JIAN: MOV A , 21H ; 两数异号进行减法 CLR С SUBB A , 23H ;低字节相减 MOV 25H, A ;保存差 MOVA , 20H **SUBB** A , 22H ;高字节相减 MOV 24H , A ;保存差 ACC.7,QWE ;没借位转QWE JNB BMP:MOV A , 25H ;有借位,差值取补 CPL ADD A , #01H MOV 25H, A MOV A,24H CPL Α ADDC A , #00H 24H,A MOV CPL F0 ;符号位取反 SJMP QWE

QAZ :..... ;溢出处理(从省略)

2. 乘法运算

对于单字节乘法运算,使用一条乘法指令 MUL AB 即可;对于多字节的乘法就必须通过程 序实现。

例 假设被乘数存放于 R6 和 R7 中,乘数存放于 R4 和 R5 中,乘积存放于 40H,41H, 42H 和 43H 中,低字节在前,双字节乘法结果最多为4字节。

双字节乘法按一般竖式相乘原理,设R6×R4=H64,L64;R7×R4=H74,L74;R5×R6=H56, L56; R7 x R5=H75, L75。其中, H 表示高字, L 表示低字节。竖式乘法过程表示为

具体程序如下:

	ORG	0020H	
MUL16:	MOV	RO,#40H	; 积地址指针
	MOV	A , R 6	
	MOV	B , R 4	
	MUL	AB	; R6 \times R4=H64 , L64
	MOV	@RO,A	;L64 (40H)
	MOV	R3 ,B	; H64 R3
	MOV	A , R 7	

132			(//8/3/1/
	MOV	B , R 4	
	MUL	AB	; R7 \times R4=H74 , L74
	ADD	A , R 3	; L74+H64 R3
	MOV	R3 , A	
	MOV	A , #00H	; H74+CY R2
	MOV	R2,A	
	MOV	A , R 6	
	MOV	B , R 5	
	MUL	AB	; R5 \times R6=H56 , L56
	ADD	A , R3	; L56+L74+H64 A
	INC	R0	
	MOV	@RO , A	; A (41H)
	MOV	R1 , #00H	
	MOV	A , R2	
	ADDC	А,В	; H56+R2+CY R2
	MOV	R2 , A	
	JNC	NEXT	
	INC	R1	
NEXT:	MOV	A , R7	
	MOV	B , R5	
	MUL	AB	; R7 \times R5=H75 , L75
	ADD	A , R2	; L75+R2 A
	INC	RO	
	MOV	@RO , A	; A (42H)
	MOV	А,В	
	ADDC	A , R1	; H75+R1+CY A
	INC	RO	
	MOV	@RO , A	
	RET		

3. 除法运算

对于单字节除法运算使用一条除法指令 DIV AB 即可;但对于多字节的除法就必须通过程序实现。

多字节除法的程序设计常采用"恢复余数法",其设计思想是做减法。 仿照手工算法进行除法,设被除数为100011,除数为101,求100011B÷101B=?

	0	0	0	1	1	1	
除数					1	1	被除数
	٧-)	1	0	1			2 ⁻¹ ×除数
			1	1	1		余数
	-)		1	0	1		2 ⁻² ×余数
				1	0	1	余数
	-)			1	0	1	2 ⁻³ ×除数

计算机除法运算采用"左移被除数相除法"。做除法前先将余数单元清 0,在 CY=0条件下,执行左循环移位,将被除数最高位移入余数单元最低位,被除数最低位变为 0,然后用余数减去除数。若够减,则此时被除数移位单元最低位置1,即商为1,同时用差取代余数;若不够减,则此时的被除数移位单元仍为 0,即商为 0。这样重复移位,做减法,直到被除数全部左移入余数单元。最后被除数移位单元变成了商数单元,余数单元存有余数。

设被除数为1011,除数为0101,余数单元全清0,下面是采用左移位除法过程。

第一次移位:余数单元=0001,被除数移位单元=0110,余数单元减去除数,不够减,继续左移。

第二次移位:余数单元=0010,被除数移位单元=1100,余数单元减去除数,不够减,继续左移。

第三次移位:余数单元=0101,被除数移位单元=1000,余数单元减去除数,够减且差为0000,用此时的差值取代原来余数,并将被除数移位单元最低位置1,即余数单元=0000,被除数移位单元=1001,继续左移。

第四次移位: 余数单元=0001, 被除数移位单元=0010, 移位完成, 最后结果是: 商为0010, 余数为0001。 **例** 编写一个 16 位÷ 16 位除法程序。假设被除数存于 40H 和 41H 中,除数存于 44H 和 45H 中,商存于 40H 和 41H 中,余数存于 42H 和 43H 中。低字节在前, 48H 和 49H 为暂存单元。

程序如	卜	:
-----	---	---

1773 28 1	•		
	ORG	0059H	
DIV16:	MOV	RO,#40H	;被除数为 0 则退出
	MOV	A , @ R O	
	JNZ	LOP0	
	INC	RO	
	MOV	A , @ R O	
	JNZ	LOP0	
	CLR	Α	
	MOV	42H , A	
	MOV	43H , A	
	RET		
L0P0:	MOV	RO,#44H	;除数为0则退出
	MOV	A , @ R O	
	JNZ	LOP1	
	INC	RO	
	MOV	A , @ R O	
	JNZ	LOP1	
	RET		
LOP1:	CLR	Α	
	MOV	42H , A	; 清余数单元 42H 和 43H
	MOV	43H , A	
	MOV	R2,#10H	; 置移位次数
LOP2:	CLR	С	; CY=0
	MOV	R3 , #04H	

MOV RO,#40H ;被除数地址指针 LOP3: MOV A,@RO ;余数单元,被除数单元左移一次

RLC A

MOV @RO,A

INC RO

DJNZ R3,LOP3

MOV RO, #42H ; 余数单元减除数

MOV R1,#44H

MOV A,@RO

CLR C

SUBB A, @R1

MOV 48H,A ;暂存差的低字节

INC RO

INC R1 MOV A,@RO

SUBB A, @ R1

 MOV
 49H, A
 ; 暂存差的高字节

 JC
 LOP4
 ; 不够减继续左移

MOV RO,#42H ;够减时差值取代原余数

MOV R1, #48H MOV A, @R1 MOV @R0, A

INC RO

MOV A, @ R 1 MOV @ R O, A

MOV A,40H

INC A ;够减时被除数单元加1

MOV 40H, A

LOP4: DJNZ R2, LOP2 ; 移位次数不到,继续

RET END

2 数制转换程序

1. 十六进制数转换成 ASC 码

例 在片内 RAM 20H 单元中存有 2 位十六进制数,将其转换成 ASC 码,并存于 21H 和 22H 两个单元中。

程序如下:

MOV SP,#3FH

MAIN: PUSH 20H ; 十六进制数进栈 LCALL HASC ; 调用转换子程序

POP 21H ; 第一位转换结果送 21H 单元

MOV A, 20H ; 再取原十六进制数

SWAP A ; 高低半字节交换

PUSH ACC ; 交换后的十六进制数进栈

LCALL HASC ;调用转换子程序

POP 22H ; 第二位转换结果送 22H 单元

RET

HASC: DEC SP ; 跨过断点保护对象

DEC SP

POP ACC ; 弹出转换数据 ANL A,#0FH ; 屏蔽高 4 位

ADD A,#07H ;修改变址寄存器内容

MOVC A,@A+PC ; 查表

PUSH ACC ; 查表结果进栈

INC SP ;修改堆栈指针回到断点保护内容

INC SP

RET

ASCTAB: DB "0,1,2,3,4,5,6,7" ;ASC 码表

DB "8 ,9 ,A ,B ,C ,D ,E ,F "

2.ASC 码转换成十六进制数

例 将外部 RAM 30H~3FH 单元中的 ASC 码依次转换为十六进制数,并存入内 RAM 60H~67H 单元中。

程序如下:

MAIN: MOV RO,#30H ;设置ASC 码地址指针

MOV R1,#60H ;设置十六进制数地址指针

MOV R7,#08H ; 需拼装的十六进制数的字节数

LOOPA: LCALL TRAN ; 调用转换子程序

SWAP A ; A 中高低 4 位交换

MOV @R1,A ;存于内部RAM

INC RO

LCALLTRAN;调用转换子程序XCHDA,@R1;十六进制数拼装

INC RO

DJNZ R7, LOOPA

R1

RET

INC

TRAN: CLR C

MOVX A,@RO ;取ASC 码 SUBB A,#30H ;减去30H

CJNE A , #OAH , LOOPB

SJMP LOOPC

LOOPB: JC DONE LOOPC: SUBB A,#07H

DONE: RET

3 定时程序

在单片机应用系统中,定时功能除可使用定时器/计数器实现外,还可使用定时程序完成。 定时程序是典型的循环程序,是通过执行一个具有固定延迟时间的循环体来实现延时的。

1. 单循环定时程序

MOV R7, #TIME

LOOP: NOP

NOP

DJNZ R7, LOOP

RET

NOP指令的机器周期为1,DJNZ指令的机器周期为2,则一次循环共4个机器周期。如果单片机的晶振频率为6MHz,则一个机器周期是2 μ s,因此一次循环的延迟时间为8 μ s。定时程序的总延迟时间是循环程序段的整数倍,该程序的延迟时间为8 ν TIME(μ s)。这个程序的最长延时时间为256 ν 8=2048 μ s。

2. 较长时间的定时程序

为了加长定时时间,通常采用多重循环的方法。如下面的双重循环的定时程序,最长可延时 262 914 个机器周期,即 525 828 μ s 或大约 526ms(晶振频率为 6MHz)。

MOV R7,#TIME1 ;1 个机器周期

LOOP1: MOV R6, #TIME2 ;1 个机器周期

 NOP
 ;1 个机器周期

 NOP
 ;1 个机器周期

 DJNZ
 R6, L00P2
 ; 2 个机器周期

 DJNZ
 R7, L00P1
 ; 2 个机器周期

最长定时时间计算公式为

RET

 $(256 \times 4+2+1) \times 256 \times 2+4=525 828 \mu s$

3. 以一个基本的延时程序满足不同的定时要求

如果系统中有多个定时需要,可以先设计一个基本的延时程序,使其延迟时间为各定时时间的最大公约数,然后以此基本程序作为子程序,通过调用的方法实现所需要的不同定时。例如:要求的定时时间分别为5s,10s和20s,设计一个1s延时子程序DELAY,则不同定时的调用情况表示如下(晶振频率为6MHz):

; 2 个机器周期

MOV R5,#05H ;延时5s

LOOP1: LCALL DELAY

DJNZ R5, LOOP1

RET

MOV R5,#0AH

R5,#0AH ; 延时10s

LOOP2: LCALL DELAY

DJNZ R5,L00P2

RET

MOV R5,#14H ; 延时 20s

LOOP3: LCALL DELAY

DJNZ R5, LOOP3

RET

DELAY: MOV R7, #0FAH LOOPA: MOV R6, #0FAH

LOOPB: NOP

NOP NOP

NOP

DJNZ R6, LOOPB DJNZ R7, LOOPA

RET

延时时间为

 $(250 \times 8+2+1) \times 250 \times 2+4=1 \ 001 \ 504 \ \mu s \ 1s$

4. 查表程序

预先把数据形式存放在程序存储器中,然后使用程序读出。这种能读出表格数据的程序被称为查表程序。MCS-51 指令系统准备了专用的查表指令:

MOVC A, @A+DPTR

MOVC A, @A+PC

这两个MOVC指令的功能是完全相同的。它们在不改变DPTR和PC的状态下,只根据A的内容就可以取出表格中的数据。但这两条指令在具体使用上也存在差异。前一条指令的基址寄存器DPTR能提供16位基址,而且还能在使用前给DPTR赋值,查表空间可达64KB。后一条指令是以PC作为基址寄存器,虽然也能提供16位地址,但PC不能被赋值,所以其基址值是固定的。由于A的内容为8位无符号数,因次只能在当前指令下面的256个地址单元内进行查表,即数据只能放在该指令后面的256个地址单元之内,而且表格只能被程序段所使用。

例 设有一个巡回检测报警装置,需要对 16 路输入值进行比较,当每一路输入值等于或超过该路的报警值时,实现报警。下面根据这一要求,编制一个查表程序。

设 X i 为路数,查表是 X i 按 0 ,1 ,2 ,…,15 (i = 15) 取数,表中报警值是 2 字节数,依 X i 顺序列成表格放在 TAB 中。进入查表程序之前,路数 X i 放在 R2 中,其输入值存于 R0 和 R1 当中,查表结果若许报警,将 P1 . 0 置 1 ,否则清 0。

	ORG	1000H	
TB1:	MOV	A,R2	;路数Xi R2 A
	ADD	A, R2	;R2+R2 A
	MOV	R2,A	; A R2
	MOV	DPTR,#TAB	;取数据表首地址
	MOVC	A,@A+DPTR	;取出高字节
	MOV	R4,A	; 高字节 R4
	INC	R2	; 地址指向低字节
	MOV	A,R2	
	MOVC	A,@A+DPTR	;取出低字节
	MOV	R3,A	;低字节 R3
	CLR	С	

MOV A,RO ; 当前输入值与报警值比较

SUBB A,R3 ;低字节相减

MOV A,R1

SUBB A,R4 ; 高字节相减

JNC LOOP

CLR P1.0 ; 输入值 < 报警值

RET ;返回

LOOP: SETB P1.0 ;输入值 报警值

RET ;返回

ORG 2000H

TAB:DW 05F0H, 0E89H, 0A69H, 1EAAH

DW 0D9BH, 7F93H, 0373H, 26D7H DW 2710H, 9E3FH, 1A66H, 22E3H DW 1174H, 16EFH, 33E4H, 6CA0H

END

5 数据极值查找程序

极值查找就是在指定的数据区中挑出最大值或最小值。

例 片内 RAM 20H 单元开始存放 8 个无符号 8 位二进制数,找出其中的最大值。极值查找操作的主要内容是进行数值大小的比较。假定在比较过程中,以A存放大数,与之逐个比较的另一个数放在3AH单元中。比较结束后,把查找到的最大数送到3BH单元中。

程序如下:

 MOV
 R0,#20H
 ;数据区首地址

 MOV
 R7,#08H
 ;数据区长度

MOV A, @RO ; 读第一个数

LOOP: INC RO

MOV 3AH,@RO ;读下一个数

CJNE A,3AH,CHK;数值比较

SJMP LOOP1

CHK: JNC LOOP1 ; A 值大则转

MOV A,@RO ;大数送A

LOOP1: DJNZ R7,LOOP ;继续比较

MOV 3BH, A

RET