Системы научных публикаций

Семинар №6

MathType. Настройка стилей отображения уравнений

- 1. Подготовка к выполнению задания на семинар
- **1.1. Создать документ** sem 06.docx.
- 1.2. Ознакомиться с разделами документации по форматированию уравнений в MathType.
- 2. Стили отображения формул.
- 2.1. Добавить в документ следующие выражения. Каждую формулу необходимо вставить отдельной строкой.

Формула	Для символа	Установить стиль
$W(\tau/y(t))$	au	Текст
$W\left(oldsymbol{\lambda}_{i-1} \middle/ y_1^{i-1} ight)$	λ	Матрица-вектор
$K_{OIIT}(f) = \frac{S_{\lambda}(f)}{S_{\lambda}(f) + S_{\mathbf{X}}(f)}$	X	Матрица-вектор
$S_{\lambda}(f) + S_{\mathbf{X}}(f)$	λ	Текст
$s(t;\tau_1;\varphi_1) = \operatorname{Re}(\dot{S}(t-\tau_1)\exp(j2\pi f_0 t)\exp(j\varphi_1))$	au	Текст
	arphi	Текст
$W(y(t)/s(t;\lambda_{9})) = c \exp \left\{-\frac{1}{N_{0}} \int_{0}^{T} \left[y(t)-s(t;\lambda_{9})\right]^{2} dt\right\}$	λ	Матрица-вектор
$\left[\begin{array}{cc} N_0 \int_0^{\lfloor y(t)/3 \rfloor} \left(N_0 \int_0^{\lfloor y$	Э	Текст

- 2.2 Внести изменения в формулы, применив стили в соответствии с требованиями в таблице.
- 3. Изменение существующего стиля
- 3.1. Добавить в документ формулу:

$$\int_{-\infty}^{\infty} \frac{x}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx$$

- 3.2. В редакторе уравнений зайти в меню «Стили» (Style) «Определить…» (Define…). В открывшемся диалоговом окне установить вариант отображения «Расширенный» (Advanced), изменить стиль написания греческих символов, убрав эффект курсива и жирности.
- 3.3. Убедиться, как изменился стиль написания символов.

- 4. Изменение размера символов
- 4.1. Добавить в документ формулу:

$$\overline{\Pi}(y(t)) = 1 - \int_{\lambda_1 - \Delta_1/2}^{\lambda_1 + \Delta_1/2} \dots \int_{\lambda_r - \Delta_r/2}^{\lambda_r + \Delta_r/2} W(\lambda/y(t)) d\lambda_1 d\lambda_2 \dots d\lambda_r$$

- 4.2. Увеличить размер формулы, зайдя в меню «Размер» (Size) «Определить...» (Define...) и увеличить размер «Обычный» (full) до 20 пунктов.
- 5. Пробелы в выражениях.
- 5.1 Набрать в одном окне редактора следующие выражения, каждое на своей строке:

$$\int_{0}^{1} a(x) dx = \lim_{n \to \infty} \sup \varphi_{n}(a),$$

$$\int_{0}^{1} a(x)b(x) dx = \lim_{n \to \infty} \sup \psi_{n}(a,b),$$

5.2. Вставить пробелы (размер выбрать по своему усмотрению) между подынтегральным выражением и переменной интегрирования, после знака «,», между греческими символами и «sup», между сомножителями во втором подынтегральном выражении.

Пробелы находятся в палитре

Условное название	Кнопка в палитре	Горячая клавиша	Ширина пробела
Нулевой пробел	э́р	Shift+пробел	
Одноточечный пробел	ajb	Ctrl+Alt+ пробел	1 pt
Тонкий 1/6 EM	ajb	Ctrl+пробел	2 pt
Тонкий 1/3 ЕМ	ajb	Ctrl+Shift+пробел	4 pt
ЕМ-пробел	a_b	-	12 pt

- 6. Выравнивание нескольких выражений относительно друг друга.
- 6. 1. Сделать пять копий, созданных в пункте 5 выражений, вставить каждое в новую строку документа.
- 6.2. Открыть каждую формулу и, выбрав соответствующую опцию в меню «Формат», установить следующие варианты выравнивания:
 - Выровнять Левый край;
 - Выровнять Центр;
 - Выровнять Правый край;
 - Выровнять по = <>...;

- Выровнять по «,».
- 6.3. Подписать получившиеся результаты.
- 7. Выравнивание выражений в скобках.
- 7.1. Набрать в редакторе следующее выражение:

$$H - \left\{ \frac{M + \frac{A+b}{P-Q}}{3Q} \right\}$$

- 7.2. Сделать три копии созданного выражения, вставить каждую в новую строку документа.
- 7.3. Открыть каждую формулу и, выбрав опцию «Выравнивание Скобок» (Fence Alignment)» в меню «Формат», установить следующие варианты выравнивания:

- 7.4. Подписать получившиеся результаты.
- 8. Изменение интервалов.
- 8.1. Набрать в одном окне редактора следующие выражения, каждое на своей строке:

$$a_1 = x^2 + y^2$$

$$y = \frac{3}{4} \sum_{-\infty}^{\infty} x dx$$

$$z = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

8.2. Перейти в меню «Формат» — «Настройка Интервалов» (Define Spacing). Переопределить следующие интервалы:

3

Междустрочный интервал (Line spacing)

1 cm;

• Расстояние между строками (Matrix row spacing)

– 150 %;

• Расстояние между столбцами (Matrix column spacing)

— 150 %;

- Отступ над/под строчного индекса от аргумента (Sub/Superscript gap) 15 %;
- Высота верхнего предела (Limit height) 0.2 см;
- Толщина дробной линии (Fraction bar thickness) 8 %;
- Вертикальный отступ от скобки (Fence overhang) 30%;
- Горизонтальный отступ от скобки (Horizontal fence gap) 30%.
- 9. Создание и применение пользовательского стиля оформления уравнений.
- 9.1. Открыть редактор MathType, ввести там любое уравнение. Изменить стиль и размер формулы по следующим параметрам:
 - Основной шрифт (Primary font)
 Cambria Math;
 - Размер «Обычный» (full) 16 пт;
 - Выступ дробной линии (Fraction bar overhand) 0.3 см;
- 9.2. Сохранить установленную конфигурацию, для этого выбрать в меню «Установки» (Preferences) «Установки формул» (Equation Preferences) «Сохранить файл» (Save to file) и сохраняем конфиругационный (установочный) файл.
- 9.3. Вставить в документ несколько формул, содержащих двроби, каждую формулу необходимо вставить как выключную отдельной строкой. Выделить две формулы, нажать в меню MathType «Формат уравнений» (Format Equations), выбрать созданный в пункте 5.2. конфигурационный файл и применить его к выделенной области (Current selection).

Примечание. Все интервалы могут устанавливаться в дюймах, сантиметрах, пунктах, пиках и в процентном отношении относительно обычного (установленного по умолчанию) размера. Вернуть размеры к тем значениям, которые были установлены по умолчанию, можно с помощью кнопки «Заводские настройки» (Factory settings).

<u>Примечание</u>. Для регулировки межстрочного интервала лучше пользоваться командой «Межстрочный интервал» (Line Spacing) в меню «Формат».

<u>Примечание.</u> Для удобства работы с MathType может потребоваться увеличить размер панели инструментов, для этого перейдите в меню «Установки» (Preferences) — «Установки Рабочей области» (Workspace Preferences) и выберите необходимый размер панели инструментов (Toolbar Size).

Горячие клавиши

Клавиша	Значение
TAB	Переход в конец поля. Если курсор находится в конце поля, он перемещается
TAB	в конец поля, которое логически следует за текущим
SHIFT+TAB	Курсор перемещается в конец предыдущего поля
\rightarrow	На один элемент вправо внутри текущего поля или шаблона
←	На один элемент влево внутри текущего поля или шаблона
\uparrow	На одну строку вверх
\downarrow	На одну строку вниз
HOME	К началу текущего поля
END	К концу текущего поля
F2	Переход к панели инструментов

Изменение масштаба отображения

Клавиша	Значение
CTRL+1	Масштаб 100%, соответствующий реальному результату.
CTRL+2	Масштаб 200%, наиболее удобный для повседневной работы.
CTRL+4	Масштаб 400%, позволяющий уточнить детали, недоступные для вывода с
CTKL+4	экранным разрешением.
	Обновление вывода на экран (redraw). Позволяет эффективно броться с
CTRL+D	неизбежными ошибками отображения при редактировании сложных формул
	(полное или частичное удвоение элементов с наползанием друг на друга).
	Показать все. Актуально только при работе с крайне устаревшими
CTRL+Y	разрешениями, очень маленьким окном программы или формулами,
	чрезвычайно большими по высоте.

Задание стиля

Клавиша	Значение
	Включает математический стиль, то есть переводит набор в режим по
CTRL+SHIFT+=	умолчанию. Характеризуется автоматическим отнесением вводимого
	текста к цифрам, скобкам, функциям или переменным.
	Текст, то есть символы без начертаний. Наиболее востребованный
	вариант, необходимый чаще всего для поясняющих индексов и
CTRL+SHIFT+E	десятичного логарифма в русскоязычных текстах. В противном случае
	все символы рассматриваются как переменные и к ним применяется
	курсив.
CTRL+SHIFT+F	Функция, по существу идентична тексту. Автоматически включается при
CINEISIIIIIIII	распознавании текстов, указанных в перечне функций.
CTRL+SHIFT+I	Переменная, то есть (автоматически) все символы, не отнесенные к
CINEISIIIIIIII	функциям.
CTRL+SHIFT+G	Набор символов греческого алфавита (знаков шрифта Symbol).
CTRL+SHIFT+B	Матрица-вектор (полужирное начертание).
CTRL+G	Переключение в режим набора одного(!) греческого символа с
CINLTO	возвратом к предыдущему стилю.
CTRL+B	Переключение в режим набора одного (!) полужирного символа
CINLTD	(матрица-вектор) с возвратом к предыдущему стилю.

Ввод символов и диакритических знаков

Клавиша	Символ	Значение
CTRL+ALT+'	¥	Штрих
CTRL+ALT+-	i	Стрелка (вектор)
CTRL+ALT+.	i	Точка сверху
CTRL+K, <	≤	Меньше либо равно
CTRL+K, >	2	Больше либо равно
CTRL+K, C	С	Содержится в
CTRL+K, D	9	Частная производная
CTRL+K, E	€	Принадлежит
CTRL+K, I	∞	Бесконечность
CTRL+K, O	Ø	Пустое множество
CTRL+K, SHIFT+C	¢	Не содержится в
CTRL+K, SHIFT+E	∉	Не принадлежит
CTRL+K, T	×	Умножение
CTRL+SHIFT+"	N.	Штрих двойной
CTRL+SHIFT+-	ī	Черта сверху

Ввод шаблонов

Клавиша	Элемент	Значение
CTRL+(или CTRL+)	(11)	Круглые скобки
CTRL+[или CTRL+]		Квадратные скобки
CTRL+{ или CTRL+}	{ ::}	Фигурные скобки
CTRL+/	m/a	Дробь косой чертой
CTRL+F	<u> </u>	Дробь (fractal)
CTRL+H	**	Индекс верхний (high)
CTRL+I	<u>J</u> Ī	Интеграл
CTRL+J	*:	Индексы верхний+нижний
CTRL+L	* _	Индекс нижний (low)
CTRL+R	√ <u>"</u>	Корень (radix)
CTRL+T, N	₩	Корень n-ой степени
CTRL+T, P	ŢΠ	Произведение
CTRL+T, S	ي ٰ ا	Сумма
CTRL+T, U	Ū	Объединение
CTRL+T,	ņ	Пересечение