An Introduction to Cybernetics

Robert Oates
Room B50
rxo@cs.nott.ac.uk

1

Overview

- o What is "Cybernetics"?
- Control Theory and Cybernetics
- Ordinary Differential Equations (ODEs) for Simulation
- o ODEs & Isoclines
- ODEs vs Agent Based Simulation

Before we start... calculus!

- Integration
 - Calculates the area under a curve
 - Just adds up at each 'sample'
- Differentiation
 - Calculates the gradient of a curve
 - The difference between each 'sample'
- Differentiation is to integration what division is to multiplication

3

Calculus

The Original Interdisciplinary Research Topic!

- Product of The Macy Conferences (1946 – 1953)
- Contributors include
 - Norbert Weiner
 - John Von Neumann
 - Claude Shannon
 - Warren McCulloch
 - Walter Pitts

5

What is Cybernetics?

- a) The study of systems where the input affects the output
- b) The study of control and communication in man and machine
- c) The study of sailors

The Steersman (Κυβερνήτης)

7

Block Diagram Representation of a Control System

Block Diagram Representation of a Control System

9

Block Diagram Representation of a Control System

PID Controller

11

Cybernetics vs Control Theory

- Control Theory
 - Control!
 - Manipulate inputs
 - Negative feedback is good
 - Positive feedback is bad
- Cybernetics
 - Understand, characterise and unite
 - Feedback is feedback!

Is Positive Feedback Really That Bad?

13

Ordinary Differential Equations (ODEs) for System Representation

$$\frac{dx}{dt} = -13 - 2x^2 + 21y$$

$$\frac{dy}{dt} = -13 + 8x - 3y^2$$

Numerical Simulation Based on Differential Equations

Euler's Method

$$\frac{ddx}{dt} = f(x) - 2x^2 + 21y$$

$$x_{n+1} = x_n + \Delta_t \left(f(3_n) 2x_n^2 + 21y_n \right)$$

15

Euler's Method

A Quick Aside

- Better numerical integration techniques exist
- The best one in general is Fourth-Order Runge-Kutta. The wikipedia page is actually very good!

17

Differential Equations for System Representation

$$\frac{dx}{dt} = -13 - 2x^2 + 21y$$

$$\frac{dy}{dt} = -13 + 8x - 3y^2$$

But where do we start?

This technique can only comment on systems once we know the initial conditions

Isoclines

- There are techniques that allow us to examine a system without knowing the initial conditions
- o Examine the isoclines!

19

Isoclines

Assessing stability and "flow"

Sea Angels (Cliones)

http://www.youtube.com/watch?v=vB5recdpPal

21

Clione Neuron Interaction

Taken from Hugh R Wilson's "Spikes, Decisions and Actions", Oxford University Press, 1999

Isoclines in the Clione Nervous System

dR/dt and dV/dt models taken from Nagumo et al (1962)

23

Simulation

- ODEs are not the only way to perform simulation
- Many other techniques exist
- It would be interesting to compare
 ODEs to agent-based simulation

Daisyworld – An Investigation into ODE's vs Agent-Based Simulations

- The Parable of Daisyworld
- James Lovelock and Andrew Watson
- Designed to illustrate "Gaia Theory"
- Grey planet
- Two species of daisy black and white
- A sun getting hotter

25

Daisy Fitness

Population Dynamics

27

Agent-Based System

Rules

29

References

- Watson, A. J. and J. E. Lovelock (1983). Biological homeostasis of the global environment: the parable of Daisyworld. Tellus 35B, 284-289.
- Isoclines example taken from Dr Richard Mitchell's lecture notes (1999)