# GASES IDEALES

### Descripción de un gas ideal - Ecuación de Estado

- Gas ideal: gas a baja presión → baja densidad
- Fuerzas interatómicas o intermoleculares muy débiles (Gases biatómicos: O<sub>2</sub>, N<sub>2</sub>, Cl<sub>2</sub>) o inexistentes (gases nobles o inhertes: He, Ne, Ar...)
- El volumen no es estándar a una temperatura dada si no que depende del recipiente que lo contiene  $\rightarrow$  Las ecuaciones que involucran gases utilizan un valor de V para un estado determinado en lugar de un  $\Delta V$
- Relacionamos P, T y V **Ecuación de ESTADO**

## Leyes

#### Ley de Boyle-Mariotte

Si T es constante  $\Rightarrow P \propto 1/V \rightarrow P_1.V_1 = P_2.V_2$  Transformación Isotérmica

### Ley de Charles

Si P es constante  $\Rightarrow$  V  $\propto$  T  $\rightarrow$  V<sub>1</sub>/T<sub>1</sub>=V<sub>2</sub>/T<sub>2</sub> Transformación Isobárica

Ley de Gay Lussac

Si V es constante  $\Rightarrow P \propto T \rightarrow P_1/T_1 = P_2/T_2$  Transformación Isocórica

P.V/T = cte

### P.V/n.T = cte = R

n: número de moles del gas (n=m/M) (M: Masa molar) (1mol = 6,02.10 $^{23}$  unid) Ejem: ¿Cuántos moles hay en 60g de  $O_2$ ?  $M_{O2}$ =32g/mol Opción A) n = 60g/32g/mol = 1,875mol Opción B) 32g  $\rightarrow$  1mol  $60g\rightarrow$  n=1,875mol

R: Constante universal de los gases

R=0,082 atm.L/mol.K R=8,314 J/mol.K

# **ECUACIÓN DE ESTADO:**

P.V = n.R.T

# Diagrama P-V

#### **ISOTERMA**







#### *ISOBARA*









# Ejemplos:



### Ejercicios:

Una masa gaseosa a 32°C ejerce una presión de 18 atmósferas, si se mantiene constante el volumen, ¿qué aumento de presión sufrió el gas al ser calentado a 52°C?. Graficar.

P.V=n.R.T 
$$\Rightarrow$$
 P/T=n.R/V=cte  
 $P_2/T_2=P_1/T_1$   
 $P_2=P_1.T_2/T_1$   
 $P_2=18atm.325K/305K$   
 $P_2=19,18atm$ 



2) Una masa gaseosa se expande del estado 1 al estado 2 mediante una transformación isotérmica como se muestra en la figura. Responder:



- a) ¿A qué presión llega el gas?
- b) ¿Cuántos moles son?
- c) Si se trata de gas N<sub>2</sub> ¿cuál es la masa de gas que está sufriendo la transformación?

Transformación a T=cte ⇒ P.V=cte

$$P_2.V_2 = P_1.V_1$$

P<sub>2</sub>=P<sub>1</sub>.V<sub>1</sub>/V<sub>2</sub>

 $P_2$ =4atm.1L/5L

P<sub>2</sub>=0,8atm

¿Cuál es la masa de gas?

 $M=m/n \Rightarrow m=M.n$ 

m=28g/mol . 0,195mol

m=143,6g

b) ¿Cuántos moles son?

 $P.V=n.R.T \Rightarrow n=P.V/R.T$ 

 $n=P_1.V_1/R.T_1$ 

n=P<sub>2</sub>.V<sub>2</sub>/R.T<sub>2</sub> n=4atm.1L/0,082(atm.L/mol.K).250K

n=0 195 mc

n=0,195 mol

- 3) 2 moles de un gas se encuentran inicialmente a una presión de 6.10<sup>5</sup> Pa y ocupa 16.10<sup>-3</sup>m<sup>3</sup>, sufren las siguientes transformaciones:
  - $1 \rightarrow 2$ : Se triplica el volumen a temperatura constante.
  - $2 \rightarrow 3$ : Se disminuye la temperatura manteniendo la presión constante, hasta obtener nuevamente el volumen inicial.
  - $3 \rightarrow 1$ : Se vuelve a las condiciones iniciales manteniendo el volumen constante.
  - a) ¿Cuál es la Presión del estado 2?
  - b) ¿Por qué valores de Temperatura atraviesa el gas?



a) ¿Cuál es la Presión del estado 2?

Si el Volumen se triplica a Temperatura constante, entonces la Presión se hace 3 veces más chica  $\Rightarrow P_2 = 2.10^5 \, Pa$ 

b) ¿Por qué valores de Temperatura atraviesa el gas?

$$T_1 = T_2 = ?$$
  $T_1 = P_1 \cdot V_1 / n \cdot R$ 

$$T_1 = 6.10^5 \text{ Pa } .16.10^{-3} \text{m}^3 / 2 \text{mol } .8,314 \text{ (J/mol.K)}$$

$$T_1 = 0.10 \text{ Ta}.\text{K}$$
 $T_1 = T_2 = 577.8\text{K}$ 

$$P.V=n.R.T \Rightarrow T=P.V/n.R$$

$$T_3 = P_3 \cdot V_3 / n.R$$
  
 $T_3 = 2.10^5 Pa .16.10^{-3} m^3 / 2mol . 8,314 (J/mol.K)$ 

 $T_2$  = 192,6K

### Unidades de PRESIÓN

### **Pressure Conversions**

- 1 atm =  $1.01325 \times 10^5 \text{ Pa}$
- 1 bar =  $1 \times 10^5$  Pa
- 1 millibar (mb) = 100 Pa
- 1 atm = 1.01325 bar
- 1 atm = 760 torr
- 1 torr = 1 mm Hg

| UNIDADES DE PRESIÓN   |         |                                                                                      |
|-----------------------|---------|--------------------------------------------------------------------------------------|
| Unidad                | Símbolo | Equivalencia                                                                         |
| Atmósfera             | atm     | 1 atm = 1 kgf/cm <sup>2</sup>                                                        |
| Pascal                | Pa      | 1 Pa = 1 N/m <sup>2</sup>                                                            |
| Bar                   | bar     | 1 bar = 10 <sup>5</sup> Pa = 10 <sup>5</sup> N/m <sup>2</sup> = 0,987 atm = 750 mmHg |
| Milímetro de mercurio | mmHg    | 1 mmHg = 0,0013 bar                                                                  |