点击率预估方法介绍

钱烽

qf6101 at gmail.com

概述

- 点击率预估问题及意义
- 点击率预估建模及求解
- 模型技术
 - Factorization Machines
- 特征技术
 - 历史特征
 - GBDT特征

Part I

点击率预估问题及意义

点击率预估问题

基本概念

CTR: Click-Through Rate

pCTR: Click-Through Rate Prediction

pCTR的输入

- *a*₁, *a*₂, ..., *a*_n 候选广告集合及其属性
- *u* 当前请求的用户属性
- c 当前请求的上下文属性

pCTR的输出

• $\{a_{i1}, s_{i1}\}, \{a_{i2}, s_{i2}\}, ..., \{a_{in}, s_{in}\}$ 排序后的广告及其得分

点击率预估问题(续)

应用扩展

● 广告系统: a 表示广告

● 推荐系统: a表示内容、商品、服务等

策略扩展

● 侧重于a的策略: 重定向广告和推荐

● 侧重于u的策略: 个性化推荐

● 侧重于c的策略: 原生广告

点击率预估的意义

- 商业意义
 - 投放什么广告直接影响平台收益
 - -eCPM = pCTR * CPC
- 技术意义
 - 在广告、推荐、搜索系统中,采用机器学习方法对广告或内容被 点击的概率进行预测和排序(广告乘以单价后再排序),以提高 曝光转化率,位于检索模块之后、推送模块之前

Part II

点击率预估的建模及求解

点击率预估的建模

hypotheses

• $P(x) = h_z(x) = \frac{1}{1+e^{-z}}$ where z is linear regression model

models

- Logistic Regression: $z = w^t x$
- Factorization Machine: $z = w_0 + w^t x + \sum_{i=1}^n \sum_{j=i+1}^n \langle v_i, v_j \rangle x_i x_j$

parameters

 $\bullet \ \theta \in \{w_0, w, v\}$

点击率预估的求解

loss = negative log likelihood

- $y \in \{-1, +1\}$: $\ell(\theta) = \log(1 + e^{-yz})$
- $y \in \{0, 1\}$: $\ell(\theta) = -(y \log(h_{\theta}(x)) + (1 y) \log(1 h_{\theta}(x)))$

gradient

- $y \in \{-1, +1\}$: $\frac{\partial \ell(\theta)}{\partial \theta} = -y \left(1 \frac{1}{1 + \exp(-yz)}\right) \cdot \frac{\partial z}{\partial \theta}$
- $y \in \{0, 1\}$: $\frac{\partial \ell(\theta)}{\partial \theta} = (h_{\theta}(x) y) \cdot \frac{\partial z}{\partial \theta}$

optimization

- Stochastic Gradient Descent
- L-BFGS

点击率预估的模型选择

为什么使用线性模型(LR、FM)?

- 具有很好的可解释性,可以输出概率,适合Ranking
- 适合高维稀疏特征,训练和预测都很快
- 容易大规模并行求解,适合分布式计算

模型参数选择

- Linear Search instead of Grid Search
- Wolf Line Search to dynamically choose learning rate
- ◆ 人工经验:观察,调整;再观察,再调整……

不平衡数据的处理

采样方法

- 对正样本做重采样(SMOTE算法),对负样本做下采样
- 正负样本比例控制在1:2以内

梯度惩罚

- 根据样本数比例,对负样本的梯度或损失值做惩罚
- 数据采样引入的新问题
 - Calibration = avg. pCTR / BG CTR
 - 模型校准

Part III

模型技术

——FACTORIZATION MACHINES

FM的动机

- 目标数据类型
 - Categorical, Set-Categorical, Real Valued
 - Sparse Representation (DT and SVM may fail)

								Fea	ature	vec	ctor	X								Tarç	get y
x ⁽¹⁾	1	0	0	 1	0	0	0		0.3	0.3	0.3	0		13	0	0	0	0		5	y ⁽¹⁾
X ⁽²⁾	1	0	0	 0	1	0	0		0.3	0.3	0.3	0		14	1	0	0	0		3	y ⁽²⁾
X ⁽³⁾	1	0	0	 0	0	1	0		0.3	0.3	0.3	0		16	0	1	0	0		1	y ⁽²⁾
X ⁽⁴⁾	0	1	0	 0	0	1	0		0	0	0.5	0.5		5	0	0	0	0		4	y ⁽³⁾
X ⁽⁵⁾	0	1	0	 0	0	0	1		0	0	0.5	0.5		8	0	0	1	0		5	y ⁽⁴⁾
X ⁽⁶⁾	0	0	1	 1	0	0	0		0.5	0	0.5	0		9	0	0	0	0		1	y ⁽⁵⁾
X ⁽⁷⁾	0	0	1	 0	0	1	0		0.5	0	0.5	0		12	1	0	0	0		5	y ⁽⁶⁾
	Α	B Us	C er	 TI		SW Movie			TI Oth	NH ner M	SW lovie	ST s rate	 ed	Time	ΤI	NH ast l	SW Movie	ST e rate	 ed		_

FM的动机 (续)

- 目标任务
 - Classification, Regression, Ranking, etc.
 - Weaken importance of feature engineering
- 目标模型
 - A general model that subsumes a wide variety of factorization models (e.g., polynomial kernel SVM, SVD++, PITF and PFMC).
- 目标算法
 - Linear time complexity

传统方法

- Linear Regression (LR)
 - ▶ Let $\mathbf{x} \in \mathbb{R}^p$ be an input vector with p predictor variables.
 - Model equation:

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^p w_i \, x_i$$

Model parameters:

$$w_0 \in \mathbb{R}, \quad \mathbf{w} \in \mathbb{R}^p$$

 $\mathcal{O}(p)$ model parameters.

传统方法(续)

Polynomial Regression

- ▶ Let $\mathbf{x} \in \mathbb{R}^p$ be an input vector with p predictor variables.
- ► Model equation (degree 2):

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^p w_i x_i + \sum_{i=1}^p \sum_{j>i}^p w_{i,j} x_i x_j$$

► Model parameters:

$$w_0 \in \mathbb{R}, \quad \mathbf{w} \in \mathbb{R}^p, \quad \mathbf{W} \in \mathbb{R}^{p \times p}$$

 $\mathcal{O}(p^2)$ model parameters.

传统方法(续)

Weaknesses

- Linear regression has no user-item interaction.
 - ► ⇒ Linear regression is not expressive enough.
- ► Polynomial regression includes pairwise interactions but cannot estimate them from the data.
 - ▶ $n \ll p^2$: number of cases is much smaller than number of model parameters.
 - ► Max.-likelihood estimator for a pairwise effect is:

$$w_{i,j} = \begin{cases} y - w_0 - w_i - w_u, & \text{if } (i,j,y) \in S. \\ \text{not defined}, & \text{else} \end{cases}$$

► Polynomial regression cannot generalize to *any* unobserved pairwise effect. 钱烽 (qf6101 at gmail.com)

Factorization Machines

Modeling

- ▶ Let $\mathbf{x} \in \mathbb{R}^p$ be an input vector with p predictor variables.
- ▶ Model equation (degree 3):

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^p w_i x_i + \sum_{i=1}^p \sum_{j>i}^p \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j$$

$$+ \sum_{i=1}^p \sum_{j>i}^p \sum_{l>j}^p \sum_{f=1}^k v_{i,f}^{(3)} v_{j,f}^{(3)} v_{l,f}^{(3)} x_i x_j x_l$$

Model parameters:

$$w_0 \in \mathbb{R}, \quad \mathbf{w} \in \mathbb{R}^p, \quad \mathbf{V} \in \mathbb{R}^{p \times k}, \quad \mathbf{V}^{(3)} \in \mathbb{R}^{p \times k}$$

Factorization Machines (续)

Advantages

- ► FMs work with real valued input.
- ► FMs include variable interactions like polynomial regression.
- ► Model parameters for interactions are factorized.
- ▶ Number of model parameters is $\mathcal{O}(k p)$ (instead of $\mathcal{O}(p^2)$ for poly. regr.).

Factorization Machines (续)

Efficient Computation

The model equation of an FM can be computed in $\mathcal{O}(p k)$.

Proof:

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^p w_i \, x_i + \sum_{i=1}^p \sum_{j>i}^p \langle \mathbf{v}_i, \mathbf{v}_j \rangle \, x_i \, x_j$$

$$= w_0 + \sum_{i=1}^p w_i \, x_i + \frac{1}{2} \sum_{f=1}^k \left[\left(\sum_{i=1}^p x_i \, v_{i,f} \right)^2 - \sum_{i=1}^p (x_i \, v_{i,f})^2 \right]$$

- ▶ In the sums over i, only non-zero x_i elements have to be summed up $\Rightarrow \mathcal{O}(N_z(\mathbf{x}) k)$.
- ▶ (The complexity of polynomial regression is $\mathcal{O}(N_z(\mathbf{x})^2)$.)

Factorization Machines (续)

Multilinearity

Opportunities to efficient learning and engineering

FMs are multilinear:

$$\forall \theta \in \Theta = \{ w_0, \mathbf{w}, \mathbf{V} \} : \qquad \hat{y}(\mathbf{x}, \theta) = h_{(\theta)}(\mathbf{x}) \theta + g_{(\theta)}(\mathbf{x})$$

where $g_{(\theta)}$ and $h_{(\theta)}$ do not depend on the value of θ .

E.g. for second order effects ($\theta = v_{I,f}$):

$$\hat{y}(\mathbf{x}, v_{l,f}) := w_0 + \sum_{i=1}^{p} w_i x_i + \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\substack{f'=1 \\ (f' \neq f) \lor (l \notin \{i,j\})}}^{k} v_{i,f'} v_{j,f'} x_i x_j + v_{l,f} x_l \sum_{\substack{i=1,i \neq l \\ h(v_{l,f})(\mathbf{x})}}^{} v_{i,f} x_i$$

21

Learning FM with SGD

Stochastic Gradient Descent

$$\frac{\partial}{\partial \theta} \hat{y}(\mathbf{x}) = \begin{cases} 1, & \text{if } \theta \text{ is } w_0 \\ x_i, & \text{if } \theta \text{ is } w_i \\ x_i \sum_{j=1}^n v_{j,f} x_j - v_{i,f} x_i^2, & \text{if } \theta \text{ is } v_{i,f} \end{cases}$$

► For each training case $(\mathbf{x}, y) \in S$, SGD updates the FM model parameter θ using:

$$\theta' = \theta - \alpha \left((\hat{y}(\mathbf{x}) - y) h_{(\theta)}(\mathbf{x}) + \lambda_{(\theta)} \theta \right)$$

- $ightharpoonup \alpha$ is the learning rate / step size.
- \blacktriangleright $\lambda_{(\theta)}$ is the regularization value of the parameter θ .
- ► SGD can easily be applied to other loss functions.

Remaining Problems

- 写论文就像医生治病: 头痛医头脚痛医脚
 - 前半部分描述病情 (Bing Ru Gao Huang)
 - 后半部分开药方 (Yao Dao Bing Chu)
- SGD needs to tune the learning rate
 - ALS algorithm for Sum of Squared Loss [SIGIR 2011]
- Needs to tune the regularization parameters
 - Adaptive Regularization [WSDM 2012]
 - Bayesian Inference [NIPS-WS 2011]
- Relational data introduces repetitive computation
 - Block Structure to scale algorithms [VLDB 2013]

All adopt multilinearity

Leaning FMs with ALS

Analytical solution for least squares

$$\frac{\partial}{\partial \theta} \text{RLS-OPT} = \sum_{(\mathbf{x}, y) \in S} 2 \left(\hat{y}(\mathbf{x}) - y \right) h_{(\theta)}(\mathbf{x}) + 2 \lambda_{(\theta)} \theta$$

$$\sum_{(\mathbf{x}, y) \in S} 2 \left(\hat{y}(\mathbf{x}) - y \right) h_{(\theta)}(\mathbf{x}) + 2 \lambda_{(\theta)} \theta = 0$$

$$\Leftrightarrow \sum_{(\mathbf{x}, y) \in S} \left(g_{(\theta)}(\mathbf{x}) - y \right) h_{(\theta)}(\mathbf{x}) + \sum_{(\mathbf{x}, y) \in S} \theta h_{(\theta)}^{2}(\mathbf{x}) + \lambda_{(\theta)} \theta = 0$$

$$\Leftrightarrow \theta = -\frac{\sum_{(\mathbf{x}, y) \in S} \left(g_{(\theta)}(\mathbf{x}) - y \right) h_{(\theta)}(\mathbf{x})}{\sum_{(\mathbf{x}, y) \in S} h_{(\theta)}^{2}(\mathbf{x}) + \lambda_{(\theta)}}$$

- ▶ Using caches of intermediate results, the runtime for updating all model parameters is $O(k N_z(X))$.
- ► The advantage of ALS compared to SGD is that no learning rate has to be specified.
- ▶ ALS can be extended to classification [Rendle, 2012].

Leaning FMs with ALS (续)

Recall the multilinearity

$$\hat{y}(\mathbf{x}|\theta) = g_{(\theta)}(\mathbf{x}) + \theta h_{(\theta)}(\mathbf{x})$$

Reformulate for each parameter

$$\hat{y}(\mathbf{x}|w_{0}) = w_{0} \underbrace{1}_{h_{(w_{0})}(\mathbf{x})} + \underbrace{\sum_{i=1}^{n} w_{i} x_{i} + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \hat{w}_{i,j} x_{i} x_{j}}_{g_{(w_{0})}(\mathbf{x})}$$

$$\hat{y}(\mathbf{x}|w_{l}) = w_{l} \underbrace{x_{l}}_{h_{(w_{l})}(\mathbf{x})} + w_{0} + \sum_{i=1, i \neq l}^{n} w_{i} x_{i} + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \hat{w}_{i,j} x_{i} x_{j}$$

$$\hat{y}(\mathbf{x}|v_{l,f}) := v_{l,f} \underbrace{x_{l} \sum_{i=1, i \neq l}^{n} v_{i,f} x_{i}}_{(f'\neq f) \lor (l \notin \{i,j\})} \underbrace{v_{i,f'} v_{j,f'} x_{i} x_{j}}_{g_{(v_{l},f)}(\mathbf{x})}$$

$$+ w_{0} + \sum_{i=1}^{n} w_{i} x_{i} + \sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{j=i+1}^{n} v_{i,f'} v_{j,f'} x_{i} x_{j}$$

$$\underbrace{y_{i,f'} v_{j,f'} x_{i} x_{j}}_{g_{(v_{l},f)}(\mathbf{x})} \underbrace{v_{i,f'} v_{j,f'} x_{i} x_{j}}_{g_{(v_{l},f)}(\mathbf{x})}$$

Leaning FMs with ALS (续)

- Precomputing skills
 - error-terms

$$e(\mathbf{x}, y|\Theta) := \hat{y}(x|\Theta) - y$$

$$g_{(\theta)}(\mathbf{x}) - y = e(\mathbf{x}, y|\Theta) - \theta h_{(\theta)}(\mathbf{x})$$

$$e(x, y|\Theta^*) = e(x, y|\Theta) + (\theta^* - \theta) h_{(\theta)}(\mathbf{x})$$

h-terms

$$h_{(v_{l,f})}(\mathbf{x}) = x_{l} \sum_{i=1}^{n} v_{i,f} x_{i} - x_{l}^{2} v_{l,f}$$

$$= x_{l} q(\mathbf{x}, f | \Theta) - x_{l}^{2} v_{l,f}$$

$$q(\mathbf{x}, f | \Theta) := \sum_{i=1}^{n} v_{i,f} x_{i}$$

$$q(\mathbf{x}, f | \Theta^{*}) = q(\mathbf{x}, f | \Theta) + (v_{l,f}^{*} - v_{l,f}) x_{l}$$

$$- 无须计算g(\mathbf{x})$$
钱烽 (qf6101

```
1: procedure LearnALS(S)
                                                                                    ▷ Initialize the model parameters
                                               w_0 \leftarrow 0
                                              \mathbf{w} \leftarrow (0, \dots, 0)
                                              \mathbf{V} \sim \mathcal{N}(0, \sigma)
                                              for (\mathbf{x}, y) \in S do
                                                                                                         \triangleright Precompute e and q
                                                     e(\mathbf{x}, y | \Theta) \leftarrow \hat{y}(\mathbf{x}, y) - y
                                                     for f \in \{1, ..., k\} do
                                                            q(\mathbf{x}, f|\Theta) \leftarrow \sum_{i=1}^{n} v_{i,f} x_i
                                                      end for
                                  9:
                                10:
                                               end for
                                                                                                   ▶ Main optimization loop
                                11:
                                               repeat
                                                     w_0^* \leftarrow -\frac{\sum_{(\mathbf{x},y)\in S}(e(\mathbf{x},y|\Theta)-w_0)}{|S|+\lambda_{(w_0)}}
                                                                                                                            ▷ global bias
                                12:
                                                     e(\mathbf{x}, y|\Theta) \leftarrow e(\mathbf{x}, y|\Theta) + (w_0^* - w_0)
                                13:
                                14:
                                                      w_0 \leftarrow w_0^*
                                                           w_l^* \leftarrow -\frac{\sum_{(\mathbf{x},y) \in S} (e(\mathbf{x},y|\Theta) - w_l x_l) x_l}{\sum_{(\mathbf{x},y) \in S} x_l^2 + \lambda_{(w_l)}}
                                                      for l \in \{1, ..., n\} do
                                15:
                                16:
                                                            e(\mathbf{x}, y|\Theta) \leftarrow e(\mathbf{x}, y|\Theta) + (w_l^* - w_l) x_l
                                17:
                                18:
                                                            w_l \leftarrow w_l^*
                                19:
                                                     end for
                                                      for f \in \{1, ..., k\} do

▷ 2-way interactions

                                20:
                                                             for l \in \{1, \ldots, n\} do
                                21:
                                                                   v_{l,f}^* \leftarrow -\frac{\sum_{(\mathbf{x},y)\in S} (e(\mathbf{x},y|\Theta) - v_{l,f} h_{(v_{l,f})}(\mathbf{x})) h_{(v_{l,f})}(\mathbf{x})}{\sum_{(\mathbf{x},y)\in S} h_{(v_{l,f})}^2(\mathbf{x}) + \lambda_{(v_{l,f})}}
                                22:
                                                                   e(\mathbf{x}, y | \Theta) \leftarrow e(\mathbf{x}, y | \Theta) + (v_{l,f}^* - v_{l,f}) h_{(v_{l,f})}(\mathbf{x})
                                23:
                                24:
                                                                   q(\mathbf{x}, f|\Theta) \leftarrow q(\mathbf{x}, f|\Theta) + (v_{l,f}^* - v_{l,f})h_{(v_{l,f})}(\mathbf{x})
                                25:
                                                                   v_{l,f} \leftarrow v_{l,f}^*
                                26:
                                                             end for
                                27:
                                                      end for
                                28:
                                               until stopping criterion is met
钱烽(qf6101 at \mathfrak{g}\mathfrak{g}ail.co\mathbf{return}\;w_0,\mathbf{w},\mathbf{V}
                                                                                                                                               26
```

Learning with Bayesian Inference

- Applying Hierarchical prioris
- Learning with Gibbs Sampling

 $w_0 \sim \mathcal{N}(\mu_{w_0}, 1/\lambda_{w_0}), \quad \forall j \in \{1, \dots, p\}: \ w_j \sim \mathcal{N}(\mu_w, 1/\lambda_w), \quad \mathbf{v}_j \sim \mathcal{N}(\mu_v, \Lambda_v^{-1})$

 $\mu_{w} \sim \mathcal{N}(\mu_{0}, \gamma_{0}\lambda_{w}), \quad \lambda_{w} \sim \mathcal{N}(\mu_{0}, \gamma_{0}\lambda_{v}), \quad \lambda_{v,f} \sim \Gamma(\alpha_{\lambda}, \beta_{\lambda})$

Learning with Adaptive Regularization

Intuitive Idea

alternatively solving parameters and regularization parameters

$$\begin{aligned} & \text{OptReg}(S,\lambda) := \underset{\Theta}{\operatorname{argmin}} \left(\sum_{(\mathbf{x},y) \in S} l(\hat{y}(\mathbf{x}|\Theta),y) + \sum_{\theta \in \Theta} \lambda_{\theta} \theta^2 \right) & \text{(On training data set)} \\ & \lambda^* := \underset{\lambda \in \mathbb{R}^c_+}{\operatorname{argmin}} \sum_{(\mathbf{x},y) \in S_V} l\left(\hat{y}(\mathbf{x}|\text{OptReg}(S_T,\lambda)),y\right) & \text{(On validation data set)} \end{aligned}$$

- But... it's non-trivial
 - The formula Independent of regularization parameter
 - The gradient vanishes

$$\lambda^* | \Theta^t := \underset{\lambda \in \mathbb{R}_+^c}{\operatorname{argmin}} \sum_{(\mathbf{x}, y) \in S_V} l\left(\hat{y}(\mathbf{x} | \Theta^t)\right), y\right)$$
$$\frac{\partial}{\partial \lambda} L(S_V, \Theta^t) = \frac{\partial}{\partial \lambda} \sum_{(\mathbf{x}, y) \in S_V} l(\hat{y}(\mathbf{x} | \Theta^t), y) = 0$$

Learning with Adaptive Regularization (续)

• 从相邻的两次迭代观察

$$\theta^{t+1} = \theta^{t} - \alpha \left(\frac{\partial}{\partial \theta^{t}} l(\hat{y}(\mathbf{x}|\Theta^{t}), y) + 2 \lambda \theta^{t} \right)$$
$$\hat{y}(\mathbf{x}|\Theta^{t+1}) = w_{0}^{t+1} + \sum_{l=1}^{p} w_{l}^{t+1} x_{l} + \sum_{l=1}^{p} \sum_{l_{2} > l_{1}}^{p} \langle \mathbf{v}_{l_{1}}^{t+1}, \mathbf{v}_{l_{2}}^{t+1} \rangle x_{l_{1}} x_{l_{2}}$$

• 合并上述两式

$$\hat{y}(\mathbf{x}|\Theta^{t+1}) = w_0^t - \alpha \left(\frac{\partial l(\hat{y}(\mathbf{x}|\Theta^t), y)}{\partial w_0^t} + 2 \lambda_0 w_0^t \right)$$

$$+ \sum_{l=1}^p x_l \left(w_l^t - \alpha \left(\frac{\partial l(\hat{y}(\mathbf{x}|\Theta^t), y)}{\partial w_l^t} + 2 \lambda_w w_l^t \right) \right)$$

$$+ \sum_{l=1}^p \sum_{l_2 > l_1}^p \sum_{f=1}^k \left[x_{l_1} \left(v_{l_1, f}^t - \alpha \left(\frac{\partial l(\hat{y}(\mathbf{x}|\Theta^t), y)}{\partial v_{l_1, f}^t} + 2 \lambda_f v_{l_1, f}^t \right) \right) \right]$$

$$x_{l_2} \left(v_{l_2, f}^t - \alpha \left(\frac{\partial l(\hat{y}(\mathbf{x}|\Theta^t), y)}{\partial v_{l_2, f}^t} + 2 \lambda_f v_{l_2, f}^t \right) \right) \right]$$

• 重写正则参数的优化目标

$$\lambda^*|\Theta^t := \operatorname*{argmin}_{\lambda \in \mathbb{R}^c_+} \sum_{(\mathbf{x},y) \in S_V} l\left(\hat{y}(\mathbf{x}|\Theta^{t+1}), y\right)$$
 {\\dagger* \psi_p^t \text{ (qf6101 at gmail.com)}}

Learning with Adaptive Regularization (续)

Learning with SGD

$$\lambda^{t+1} = \lambda^{t} - \alpha \frac{\partial}{\partial \lambda} l\left(\hat{y}(\mathbf{x}|\Theta^{t+1}), y\right)$$

$$\frac{\partial}{\partial \lambda_{0}} \hat{y}(\mathbf{x}|\Theta^{t+1}) = -2 \alpha w_{0}^{t},$$

$$\frac{\partial}{\partial \lambda_{w}} \hat{y}(\mathbf{x}|\Theta^{t+1}) = -2 \alpha \sum_{i=1}^{r} w_{i}^{t} x_{i}$$

$$\frac{\partial}{\partial \lambda_{f}} \hat{y}(\mathbf{x}|\Theta^{t+1}) = -2 \alpha \left[\sum_{i=1}^{r} x_{i} v_{i,f}^{t+1} \sum_{j=1}^{r} x_{j} v_{j,f}^{t} - \sum_{j=1}^{r} x_{j}^{2} v_{j,f}^{t+1} v_{j,f}^{t}\right]$$

Learning with Adaptive Regularization (续)

Approximation

每次更新完模型参数都去 更新下正则参数吗?

$$\tilde{\theta}^{t+1} := \theta^t - \alpha \left(\partial_{\theta} + 2 \lambda \, \theta^t \right) \approx \theta^{t+1}$$

This approximation $\tilde{\theta}^{t+1}$ is used for the λ -steps.

```
1: procedure SolveOptAdaptiveReg(S_T, S_V)
  2:
                w_0 \leftarrow 0
               \mathbf{w} \leftarrow (0, \dots, 0)
             \mathbf{V} \sim \mathcal{N}(0, \sigma)
              \lambda \leftarrow (0, \dots, 0)
              \partial \leftarrow (0, \dots, 0)
               repeat
                       for (\mathbf{x}, y) \in S_T do
                               \partial_0 \leftarrow \frac{\partial}{\partial w_0} l(\hat{y}(\mathbf{x}|\Theta), y)
  9:
                                w_0 \leftarrow w_0 - \alpha \left(2 \lambda_0 w_0 + \partial_0\right)
10:
                                for i \in \{1, \ldots, p\} \land x_i \neq 0 do
11:
                                       \partial_i \leftarrow \frac{\partial}{\partial w_i} l(\hat{y}(\mathbf{x}|\Theta), y)
12:
                                       w_i \leftarrow w_i - \alpha \left( 2 \lambda_w w_i + \partial_i \right)
13:
                                       for f \in \{1, \ldots, k\} do
14:
                                              \partial_{i,f} \leftarrow \frac{\partial}{\partial v_{i,f}} l(\hat{y}(\mathbf{x}|\Theta), y)
15:
                                              v_{i,f} \leftarrow v_{i,f} - \alpha \left( 2 \lambda_f v_{i,f} + \partial_{i,f} \right)
16:
17:
                                       end for
18:
                                end for
                                (\mathbf{x}', \mathbf{y}') \sim S_V \quad \triangleright \text{ draw a case from valid. set}
19:
                               \lambda_0 \leftarrow \max\left(0, \lambda_0 - \alpha \frac{\partial}{\partial \lambda_0} l\left(\hat{y}(\mathbf{x}'|\tilde{\Theta}), y'\right)\right)
20:
                               \lambda_w \leftarrow \max\left(0, \lambda_w - \alpha \frac{\partial}{\partial \lambda_w} l\left(\hat{y}(\mathbf{x}'|\tilde{\Theta}), y'\right)\right)
21:
                                for f \in \{1, \dots, k\} do
22:
                                       \lambda_f \leftarrow \max\left(0, \lambda_f - \alpha \frac{\partial}{\partial \lambda_f} l\left(\hat{y}(\mathbf{x}'|\tilde{\Theta}), y'\right)\right)
23:
24:
                                end for
25:
                        end for
26:
                until stopping criterion is met
27:
                return \Theta := (w_0, \mathbf{w}, \mathbf{V})
```

Block Structure for Relational Data

Improve repetitive computations and storages

(a) Predictive function

score : UserID × MovieID × Date × UserGender × UserAge × MovieGenres × UserFriends × ItemsWatched → IR

(b) Training Data for Predictive Function

UserID	MovieID	Date	Gender	Age	Genres	Friends	ItemsWatched
Alice	TI	2012-09-01	F	30	{A,R}	{E,C}	{TI,NH,SW}
Alice	NH	2012-09-12	F	30	{C,R}	{E,C}	{TI,NH,SW}
Alice	SW	2012-09-15	F	30	{S,A}	{E,C}	{TI,NH,SW}
Bob	SW	2012-09-02	M	25	{S,A}	{C,D}	{SW,ST}
Bob	ST	2012-10-07	M	25	{S}	{C,D}	{SW,ST}
Charlie	TI	2012-09-05	M	28	{A,R}	$\{A,B,D\}$	{TI,SW}
Charlie	SW	2012-09-05	M	28	{S,A}	{A,B,D}	{TI,SW}

(c) Training Data in Numeric Format (Design Matrix)

Use	rID	MovieID	Date	Gender	Age	Genres	Friends	ItemsWatched	Score
1 0	0	1 0 0 0	1	10	30		0 0 .5 0 .5	.3 .3 .3 0	5
1 0	0	0 1 0 0	12	10	30	0.5.50	0 0 .5 0 .5	.3 .3 .3 0	3
1 0	0	0 0 1 0	15	10	30	.5 0 0 .5	0 0 .5 0 .5	.3 .3 .3 0	1
0 1	0	0 0 1 0	2	01	25	.5 0 0 .5	0 0.5.5 0	0 0 .5 .5	4
0 1	0	0 0 0 1	37	01	25	0001	0 0.5.5 0	0 0 .5 .5	5
0 0	1	1 0 0 0	5	0 1	28	.5 .5 0 0	.3 .3 0 .3 0	.5 0 .5 0	1
0 0	1	0 0 1 0	5	0.1	28	.5 0 0 .5	.3 .3 0 .3 0	.5 0 .5 0	5
A B	C	TI NH SW ST		FM		ARCS	ABCDE	TI NH SW ST	corresponding le
				钱烽	(af61	01 at gma			categorical varial

Block Structure for Relational Data (续)

- Straight approach
 - Compress attributes

DEFINITION 1 (BLOCK STRUCTURE (BS)). Let $\mathcal{B} = \{B_1, B_2, \ldots\}$ be a set of <u>blocks</u>, where each block $B = (X^B, \phi^B)$ consists of a <u>design matrix</u> $X^B \in \mathbb{R}^{n^B \times p^B}$ and a <u>mapping</u> $\phi^B : \{1, \ldots, n\} \to \{1, \ldots, n^B\}$ from rows in the <u>original design matrix</u> X to rows within X^B . \mathcal{B} is a block structure representation of X iff for all rows i:

$$\mathbf{x}_{i} \equiv (x_{\phi^{B_{1}}(i),1}^{B_{1}}, x_{\phi^{B_{1}}(i),2}^{B_{1}}, \dots, x_{\phi^{B_{2}}(i),1}^{B_{2}}, x_{\phi^{B_{2}}(i),2}^{B_{2}}, \dots)$$
(1)

(a) Training Data in Numeric Format (Design Matrix)

(b) Block Structure Representation of Design Matrix

Block Structure for Relational Data (续)

Coordinate descent on 0th and 1st order parameters

$$\hat{y}(\mathbf{x}_i) = w_0 + \sum_{j=1}^p w_j \, x_{i,j}$$

$$w_l \leftarrow \frac{w_l \sum_{i=1}^n x_{i,l}^2 + \sum_{i=1}^n x_{i,l} \, e_i}{\sum_{i=1}^n x_{i,l}^2 + \lambda_l}$$

Need to compute when learning parameters

$$\sum_{i=1}^{n} x_{i,l}^{2}, \qquad \sum_{i=1}^{n} x_{i,l} e_{i}.$$

After applying Bayesian prioris

$$w_{l} \sim \mathcal{N}\left(\frac{\alpha w_{l} \sum_{i=1}^{n} x_{i,l}^{2} + \alpha \sum_{i=1}^{n} x_{i,l} e_{i} + \mu_{l} \lambda_{l}}{\alpha \sum_{i=1}^{n} x_{i,l}^{2} + \lambda_{l}}, \frac{1}{\alpha \sum_{i=1}^{n} x_{i,l}^{2} + \lambda_{l}}\right)$$

Block Structure for Relational Data (续)

- Scaling to Block Structures
 - Prediction

$$\hat{y}(\mathbf{x}_i) = w_0 + \sum_{B \in \mathcal{B}} \sum_{j=1}^{p^B} w_j^B \, x_{\phi(i),j}^B = w_0 + \sum_{B \in \mathcal{B}} q_{\phi(i)}^B$$
$$q_i^B = \sum_{j=1} w_j^B \, x_{i,j}^B, \quad \forall i \in \{1, \dots, n^B\}$$

Learning

$$\sum_{i=1}^{n} x_{i,l}^{2} = \sum_{i=1}^{n^{B}} \sum_{j=1}^{n} \delta(\phi^{B}(j) = i) x_{j,l}^{2} = \sum_{i=1}^{n^{B}} (x_{i,l}^{B})^{2} \#_{i}^{B}$$

$$\#_{i}^{B} = \sum_{i=1}^{n} \delta(\phi^{B}(j) = i)$$

$$\sum_{i=1}^{n} x_{i,l} e_{i} = \sum_{i=1}^{n^{B}} x_{i,l}^{B} e_{i}^{B}, \quad e_{i}^{B} := \sum_{j=1}^{n} \delta(\phi^{B}(j) = i) e_{j}.$$

- Similar skills to the 2nd order parameters
 - But more complex

Part IV

特征技术 ——历史特征

历史特征的定义

- 历史特征是一种动态特征
 - 用某一特征或特征组合的历史点击率作为新的特征
 - 动态: 同一样本在不同时间的历史特征值是不同的
- 优点
 - 本身包含了对点击率预测的决策信息
 - 用来替换原有特征时可以有效降低特征维度

历史特征举例

• 以下图为例

- 左边是基于用户兴趣到点击行为的转移概率(用户兴趣->点击), 右边是基于用户兴趣和广告行业组合到点击行为的转移概率(用户兴趣×广告行业->点击)

- 将转移概率作为新的特征
 - 式子中的第一项意味着在特征或特征组合条件下的点击率,可以通过统计最近历史日志获得;其他几项的信息直接包含在样本中

$$F_{1,U_IN} = \sum_{U_IN} P(C|U_IN)P(U_IN|U)$$

$$F_{1,U_IN \times A_ID} = \sum_{U_IN \times A_ID} P(C|U_IN \times A_ID) P(U_IN|U) P(A_ID|A)$$

附: 最简单的概率图模型推导

单特征

上图可以如下推导

$$P(a \mid c) = \frac{P(ac)}{P(c)}$$

$$= \frac{\sum_{b} P(abc)}{P(c)}$$

$$= \frac{\sum_{b} P(a \mid bc) P(b \mid c) P(c)}{P(c)}$$

$$= \sum_{b} P(a \mid b) P(b \mid c)$$

特征组合

因为c1和c2条件独立,所以可以如下推导

$$P(a|c1,c2) = \sum_{b} P(a|b)P(b|c1,c2)$$
$$= \sum_{b} P(a|b)P(b|c1)P(b|c2)$$

历史特征的扩展

- 重写第一项
 - 分子表示在特征条件下的点击数,分母表示特征条件下的曝光数

$$P(C|U_IN) = \frac{N_C}{N_V}$$
 \longrightarrow $F_{1,U_IN} = \sum_{U_IN} \frac{N_C}{N_V} \cdot M$

• 当只关注点击数时,可以延伸出下面的特征

$$F_{2,U_IN} = \sum_{U_IN} N_C \cdot M$$

• 当只关注曝光数时,可以延伸出下面的特征

$$F_{3,U_IN} = \sum_{U \supset IN} N_V \cdot M$$

• 当关注平均点击率时,可以延伸出下面的特征

$$F_{4,U_IN} = rac{\sum_{U_IN} N_C \cdot M}{\sum_{U_IN} N_V \cdot M}$$

时间衰减

- 以当天为基准,对于之前的第t天
 - 统计该天的历史行为数据,可以对每个特征条件都计算出

$$N_C^{(t)}$$
 $N_V^{(t)}$

• 继续做近似,进而计算出所有的 $F_*^{(t)}$

$$M^{(t)} pprox M^{(0)}$$

• 实际训练和预测用的特征由时间衰减计算得到

$$F_* = \sum_{t=0}^{\infty} rac{F(t)}{2^t}$$

Part V

特征技术

——GBDT特征

GBDT特征

- 两类特征组合方法
 - Tuple transformation
 - Non-linear transformation
- GBDT实现特征转换
 - 历史特征 → (e_{i1}, ...,e_{in})
 - 例如: e_{i1}=[0,1,0], e_{i2}=[1,0]
 - e表示一条路径(一种规则)

pCTR的特征转换流程

