CS544 Module4

Suresh Kalathur

Module4

- Data Distributions
 - Discrete
 - Continuous

Discrete Distributions

- Discrete Random Variables
 - Support
 - Probability Mass Function (PMF)
 - Mean or Expected Value, variance, standard deviation
 - Cumulative Distribution Function (CDF)

Discrete Uniform Distribution

- Each value is equally likely
- Review PMF, CDF, mean, and variance
- R dunif, punif, qunif
- sample() function

Bernoulli Trials

Binomial coefficients

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

- Bernoulli Trials
 - Random experiment with two possible outcomes
 - Probability of success, p
 - Probability of failure, 1-p
 - Review PMF, mean, and variance
 - Repeated trials
 - The trials are independent,
 - Each trial has two possible outcomes (success and failure)
 - The probability of success remains the same from trial to trial.

Binomial Distribution

- Probability distribution for
 - the number of successes in a sequence of Bernoulli trials.
- Two parameters
 - n, the number of trials
 - p, the probability of success
- Review PMF, mean, and variance
- R dbinom, pbinom, qbinom, rbinom

Hypergeometric Distribution

- Outcomes dependent on previous outcomes
- Sample data selected without replacement
- Three parameters
 - M, # of events of interest
 - N, # of events not of interest
 - K, the sample size without replacement
- Review PMF, mean, and variance
- R dhyper, phyper, qhyper, rhyper

Geometric Distribution

- # of failures before a success in a sequence of Bernoulli trials
- One parameter
 - p, probability of success

- Review PMF, mean, and variance
- R dgeom, pgeom, qgeom, rgeom

Negative Binomial Distribution

- # of failures until a total or "r" successes in a sequence of Bernoulli trials
- Two parameters
 - p, probability of success
 - r, the total number of successes

- Review PMF, mean, and variance
- R dnbinom, pnbinom, qnbinom, rnbinom

Poisson Distribution

- Model the frequency with which a specified event occurs during a particular period of time
- One parameter
 - $-\lambda$, average number of events per unit of time [0,1]

- Review PMF, mean, and variance
- R dpois, ppois, qpois, rpois

Continuous Distributions

- Continuous uniform distribution
 - Two parameters (min and max)
 - Review PDF and CDF
- R functions
 - dunif, punif, qunif, runif

Normal Distribution

- Determined by the mean (μ) and standard deviation (σ)
- R functions (dnorm, pnorm, qnorm, rnorm)

Exponential Distribution

- Waiting times, time between arrivals, etc.
- One parameter
 - $-\lambda$, mean number of arrivals per unit of time
- R functions
 - dexp, pexp, qexp, rexp