

STATS 03: Hypothesis Testing

Winter semester 2023/2024

Statistical Inference

What is Statistical Inference?

- Descriptive Statistics summarize data and identifies relationships and patterns.
- ▶ Interferential Statistics allow us to go beyond pure description and make conclusions to the population.
- ▶ **Statistical Inference** is the process of using data from a sample to learn about a larger population or process.
- Inference allows us to:
 - 1. Estimate **unknown quantities** (called *parameters*) that describe the population.
 - Test hypotheses to verify claims about the population or process.

Statistical Inference

What is a parameter?

- A parameter is an unknown quantity that describes some aspect of a population or a process.
- Examples:
 - The proportion of cells expressing a specific gene under stress conditions.
 - ▶ The rate of mutation in a gene across generations.
 - Air temperature from rocket sound delay at New Year's.

Goals of Statistical Inference

We observe a sample and want to draw conclusions about the parameter θ based on the sample.

- 1. Estimation: approximate determination of the parameter θ
- 2. Hypothesis testing: verifying claims about the parameter θ

Populations and samples

Population parameters typically not observable

Populations and samples

The population is the entire set of quantities we are interested in.

Population \rightarrow parameters

Numerical measures of this population are called parameters. Parameters are fixed but unknown.

Inference about the parameters is made by taking a subset of the population: a *sample*.

Sample \rightarrow statistics

Numerical measures of the sample are called statistics. Statistics can vary from sample to sample but are known.

Statistical modeling

- We repeat n times independently the experiment \mathcal{E} .
- ▶ The sample variable *X_i* is a random variable that, with its distribution, describes the probability that a specific characteristic occurs in the ith drawing from the population.
- \triangleright x_i is a realization of X_i .

Examples: sample mean and sample variance

Consider data

$$X_1, X_2, \ldots, X_n$$
.

▶ The sample mean is defined as

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

▶ The sample variance is defined as

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

▶ \bar{x} and s^2 describe the distribution of data the same way as μ and σ^2 describe probability distributions.

Population parameters are estimated by sampling

True distribution of values between (0,30) in a population, with mean μ and standard deviation σ

Nature Methods (Nat Methods) ISSN 1548-7105 (online) ISSN 1548-7091 (print)

Random samples taken from the population

Samples		Sample means
$X_1 = [1, 19, 17, 20, 26]$ $X_2 = [8, 11, 16, 24, 25]$ $X_3 = [16, 17, 18, 20, 24]$	$\overset{\bar{X}}{}$	$ar{X}_1 = 14.6$ $ar{X}_2 = 16.8$ $ar{X}_3 = 19.0$
•••		

Example

Repeat 100 times.

#

Sampling distribution for \bar{X}

Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables with $\mathbb{E}[X_i] = \mu < \infty$ and $\text{Var}(X_i) = \sigma^2 < \infty$.

Let \bar{X} be the sample mean calculated by

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

then the sampling distribution of \bar{X} is

The standard error of \bar{X} is the square-root of $Var(\bar{X})$: $SE(\bar{X}) = \sigma/\sqrt{n}$.

The central limit theorem

Theorem.

Let $Y_1, Y_2, ..., Y_n$ be independent and identically distributed random variables with $\mathbb{E}[Y_i] = \mu < \infty$ and $\text{Var}(Y_i) = \sigma^2 < \infty$. Define

$$U_n = \frac{\sum_{i=1}^n Y_i - n\mu}{\sigma\sqrt{n}} = \frac{\bar{Y} - \mu}{\sigma/\sqrt{n}}, \quad \text{ where } \bar{Y} = \frac{1}{n} \sum_{i=1}^n Y_i.$$

Then the distribution of U_n converges to the standard normal distribution function as $n \to \infty$. That is,

$$\lim_{n\to\infty} \mathbb{P}(U_n \le u) = \int_{-\infty}^u e^{-t^2/2} dt \quad \text{ for all } u.$$

3Blue1Brown: https://youtu.be/zeJD6dqJ5lo

The central limit theorem

Example: Rolling *n* dice and sum up the result. Repeat m = 1000 times.

The central limit theorem

- Universality Across Distributions: Regardless of the original distribution, the sum or average of independent random variables tends toward a normal distribution.
- Foundation of Inferential Statistics: Enables confidence intervals, hypothesis testing, and regression by justifying the normality of sampling distributions.
- Predictability in Real-World Processes: Explains why natural phenomena (e.g., heights, measurement errors) often produce normal-like outcomes.
- Simplifies Complex Problems: Allows approximation of probabilities and outcomes using the normal distribution, even in non-normal scenarios.
- ► **Practical Applicability:** Works well with finite sample sizes, enabling predictions in polling, surveys, and experiments.

Confidence interval

Confidence interval

- When estimating a parameter θ uncertainties regarding the accuracy of θ occur, because of uncertainties of the sample, e.g. due to (finite) sampling.
- ▶ This uncertainties are expressed by a confidence interval [L, U], which includes the unknown parameter θ of interest with probability 1α .
- $ightharpoonup \alpha$ is the so-called significance level.

Interval Estimates

- average over multiple samples
 - ▶ The sample mean X follows a normal distribution:

$$ar{X} \sim \mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right),$$

$$Z = \frac{ar{X} - \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1).$$

confidence interval derivation:

$$1 - \alpha = \mathbb{P}\left(-z_{\alpha/2} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2}\right).$$

Rearranging gives:

$$\mathbb{P}\left(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha.$$

Interval estimates

Thus, the confidence interval for μ is:

$$\mu \in \left[\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \, \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right].$$

Statement of confidence interval for the mean

We are 95% confident that the mean of <variable> from <population> lies between <lower> and <upper> <units>.

Illustration of Cls

For
$$1-\alpha=.95$$
 we get $z_\pm=\pm 1.96$ again by using $\Phi(z)=\int_{-\infty}^z \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}\,dt=\frac{\alpha}{2}.$

Hypothesis test

Introduction to Hypothesis Testing

What is Hypothesis Testing?

We test assumptions about data by evaluating whether the observed results are likely under a given hypothesis.

- Rolling a Die: I rolled a fair-looking die 20 times and got the following sequence: 1, 2, 6, 4, 6, 6, 3, 6, 5, 6, 2, 6, 6, 4, 6, 6, 5, 6, 1, 6. How likely is it that the die is biased towards 6?
- Drug Effectiveness: A new medication was tested on 100 patients. 65 showed improvement. Is the drug significantly better than random chance?
- Coin Toss: A coin was tossed 50 times, and it landed heads 40 times. Is the coin fair, or is it biased?
- Sports Performance: A basketball player makes 8 successful shots out of 10. Is the player performing better than average, or could this be due to luck?
- Website Click-Through Rates: Two versions of a website were tested. Version A had a click rate of 12%, and Version B had 15%. Is the difference in performance statistically significant?

Key Question: How likely are the observed results under the assumption that the null hypothesis is true?

The Null Hypothesis

What is the Null Hypothesis (H_0) ?

The Null Hypothesis is a starting assumption in hypothesis testing that there is **no effect**, **no difference**, or that things happen by **random chance**.

Examples of Null Hypotheses:

- Rolling a Die: The die is fair, with each side equally likely (p = 1/6).
- Drug Effectiveness: The drug has no effect (p = 0.5, same as random chance).
- Coin Toss: The coin is fair (p = 0.5).
- Sports Performance: The basketball player's success rate matches the league average.
- Website Click-Through Rates: The click rates of Version A and Version B are identical.

Key Idea: Hypothesis testing evaluates how likely the observed data is under H_0 . If unlikely, we reject H_0 .

Hypothesis Testing: Discrete vs. Continuous Variables

Discrete (mutation count, expression level,...)

- Binomial Test
- Chi-Square Test
- Fisher's Exact Test

Continuous (protein concentration, enzyme activity, ...)

- t-Test
- ANOVA
- Z-Test
- Kolmogorov-Smirnov Test

Example for continous data

Consider the weights in g of ten mice:

8.87	9.07	9.46	9.57	10.23	9.08	8.14	9.96	7.79	8.13

Question: Is $\bar{x} = 9.03g$ significantly different from $\mu_0 = 10g$, $\sigma = 1g$?

State the appropriate hypotheses

The appropriate hypotheses are

Null-hypothesis $H_0: \mu = \mu_0 \implies H_0: \mu = 10$

Alternative hypothesis $H_a: \mu \neq \mu_0 \implies H_a: \mu \neq 10$

Alternatives

two-sided test

$$H_0: \mu = \mu_0 \implies H_0: \mu = 10$$

 $H_a: \mu \neq \mu_0 \implies H_a: \mu \neq 10$

one-sided test

$$H_0: \mu \ge \mu_0 \implies H_0: \mu \ge 10$$

 $H_a: \mu < \mu_0 \implies H_a: \mu < 10$

one-sided test

$$H_0: \mu \le \mu_0 \implies H_0: \mu \le 10$$

 $H_a: \mu > \mu_0 \implies H_a: \mu > 10$

The 7-test statistics

For making inferences about the mean of a normal distribution with known variance:

the test statistic Z is calculated as

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}},$$

- where μ_0 is the value under H_0 ($\mu_0 = 10$)
- ▶ If the null hypothesis is true what is $\mathbb{E}[Z]$ and Var(Z)?

Calculate the observed value of the test statistic

▶ We assume that the weights are normally distributed

$$X_i \sim \mathcal{N}(\mu_0, \sigma),$$

hence,

$$\mathbb{E}[\bar{X}] = \mu_0$$
 and $\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}$.

 \triangleright and since σ^2 and n are known, we can rewrite

$$Z = rac{ar{X} - \mu_0}{\sigma / \sqrt{n}} \Longrightarrow Z = aar{X} + b$$
 $a = rac{\sqrt{n}}{\sigma}, \quad b = -rac{\mu_0 \sqrt{n}}{\sigma}.$

Calculate the observed value of the test statistic

▶ For the mice experiment (i.e. $\mu_0 = 10$)

$$Z = \frac{\bar{X} - 10}{1/\sqrt{10}}$$

▶ The observed value of *Z* for the weight data is:

$$z = \frac{9.03 - 10}{1/\sqrt{10}} \approx -3.0674$$

This is more than 3σ away and thus very unlikely!

p-values

The *p*-value is the probability of observing the measured value or a more extreme value, assuming that the null hypothesis and the test statistic are correct.

For z- tests this probability can be calculated directly from the z- value.

$$\begin{split} \mathbb{P}(Z \leq z_{-}) &= \int_{-\infty}^{z_{z}} \frac{e^{-x^{2}/2}}{\sqrt{2\pi}} dx & \leftarrow \text{left handed p-value} \\ \mathbb{P}(Z \geq z_{+}) &= \int_{z_{+}}^{\infty} \frac{e^{-x^{2}/2}}{\sqrt{2\pi}} dx & \leftarrow \text{right handed p-value} \end{split}$$

We found for our weight data $z_{\pm} = \pm 3.0674$.

$$\mathbb{P}(Z \le -3.0674) + \mathbb{P}(Z \ge 3.0674) = 0.000430 \leftarrow \text{p-value}$$

Conclusion about H₀?

On the basis of the p-value, decide to retain or reject H_0

Let α denote the significance level and p denote the p-value, then

- ▶ if $p \ge \alpha$: retain H_0
- if $p < \alpha$: reject H_0 .

Using a critical value

Fix significance level lpha and compute the critical value $z_{lpha/2}$ as

$$\mathbb{P}(Z \geq z_{\alpha/2}) = \alpha/2,$$

where $Z \sim \mathcal{N}(0, 1)$.

The decision process is then:

- if $|z| > z_{\alpha/2}$: reject H_0 ,
- if $|z| \leq z_{\alpha/2}$: retain H_0 ,

where z is the observed value of the test statistic.

Null Distribution for z-Tests

Model:
$$X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma)$$
, $H_0: \mu = \mu_0$

Test Statistic:
$$Z=rac{ar{\chi}-\mu_{f 0}}{\sigma/\sqrt{n}}\sim\mathcal{N}(0,1),$$
 and $lpha=95\%$

Reject H_0 if z lies within critical area (red)

Using a confidence region

For a significance level of α , a $(1-\alpha)100\%$ confidence interval for the mean is calculated, denoted (L,U), and then the decision protocol is

- if $\mu_0 \in (L, U)$: retain H_0 ,
- if $\mu_0 \notin (L, U)$: reject H_0 ,

where μ_0 is the hypothesised value.

Example: Mice weight data for $\alpha = 95\%$

$$\begin{aligned} 10g \notin & \left(\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right) \\ = & \left(9.03g - 1.96 \frac{1g}{\sqrt{10}}, \bar{x} + 1.96 \frac{1g}{\sqrt{10}} \right) = \left(8.41g, 9.65g \right) \end{aligned}$$

Check the assumptions

► For inferring the mean of a normal distribution with known variance, the assumption is that the observation is a random sample from a normal distribution:

$$X_i \sim \mathcal{N}(\mu, \sigma), \quad i = 1, 2, \dots, n.$$

For n > 30, we need the random variables X_i , i = 1, ..., n to be independent and identical distributed. (Central limit theorem)

Checking assumptions for mice data

- 1. Normality (Q-Q Plot)
- 2. Identically distributed
- 3. Known variance (external information)

Normal quantile plot for mice data

Sampling from same distribution

Split measured data into two parts: Randomly select n_1 items and interpret them as part of treatment group 1. Do the same for the remaining items $n_2 = n - n_1$.

Now, we want to know if the means are identical.

• We are interested in the difference $\mu_1 - \mu_2$.

Point estimate

lf

- ullet $ar{X}_1$ is the sample mean of $X_{1,i}$, $i=1,\ldots,n_1$
- $ar{X}_2$ is the sample mean of $X_{2,i}$, $i=1,\ldots,n_2$ and for j=1,2,

$$\bar{X}_j = \frac{1}{n_j} \sum_{i=1}^{n_j} X_{j,i},$$

• then a point estimate of $\mu_1 - \mu_2$ is $\bar{X}_1 - \bar{X}_2$.

Sample distribution

lf

$$X_{1,i} \sim \mathcal{N}(\mu_1, \sigma_1), \quad i = 1, \dots, n_1,$$

and

$$X_{2,i} \sim \mathcal{N}(\mu_2, \sigma_2), \quad i = 1, \ldots, n_2,$$

• What is $\mathbb{E}[\bar{X}_1 - \bar{X}_2]$?

$$\mathbb{E}[\bar{X}_1 - \bar{X}_2] = \mu_1 - \mu_2$$

• What is $Var(\bar{X}_1 - \bar{X}_2)$?

$$\operatorname{Var}ig(ar{X}_1 - ar{X}_2ig) = rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}$$

• What is the sampling distribution of $\bar{X}_1 - \bar{X}_2$?

Sample distribution

Since the $X_{j,i}$ are all normally distributed, and $\bar{X}_1 - \bar{X}_2$ is just a linear combination of the $X_{j,i}$,

$$(\bar{X}_1 - \bar{X}_2) \sim \mathcal{N}\Big(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\Big).$$

For now, we will use the sample variances in place of the unknown population variances, meaning (for now) our test is only approximate.

Hypothesis testing I (Two-sided Test)

The steps for hypothesis testing are as follows:

1. State the appropriate hypotheses

$$H_0: \quad \mu = \mu_0 \quad \text{(equivalently: } \mu_1 - \mu_2 = 0\text{)}$$
 $H_a: \quad \mu \neq \mu_0 \quad \text{(equivalently: } \mu_1 - \mu_2 \neq 0\text{)}$

- 2. Choose the required significance level α
- 3. Check the assumptions:
 - 3.1 The group 1 data are a random sample from $\mathcal{N}(\mu_1, \sigma_1)$.
 - 3.2 The group 2 data are a random sample from $\mathcal{N}(\mu_2, \sigma_2)$.
 - 3.3 The two sets of observations are independent.

Hypothesis testing II (Two-sided Test)

4. Calculate the observed value of the test statistic

$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}.$$

Calculate the p-value
 If H₀ is true, then the test statistic z is (approximately) standard
 normally distributed,

$$z \sim \mathcal{N}(0,1)$$

and the p-value is

$$\mathbb{P}(|Z| \geq |z|)$$

where z is the observed value of the test statistic.

6. On the basis of the p-value, decide to retain or reject H_0 .

Confidence interval

A $(1-\alpha)100\%$ confidence interval for $\mu_1-\mu_2$ is (approximately)

$$\left(\bar{x}_1 - \bar{x}_2 - z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, \ \bar{x}_1 - \bar{x}_2 + z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right),$$

where

- $z_{\alpha/2}$ is the critical value such that $\mathbb{P}(|Z| \geq z_{\alpha/2}) = \alpha/2$,
 - where Z has a standard normal distribution.

Randomly Splitting Mice Data

► **Group 1:** [9.46, 8.87, 9.57, 10.23, 9.08]

Mean: 9.44Variance: 0.27

► **Group 2:** [8.14, 9.07, 8.13, 7.79, 9.96]

Mean: 8.62Variance: 0.79

$$x_1 - \bar{x}_2 = 0.824$$

Confidence interval:

$$(-0.32, 1.97)$$

► Since 0 lies within the confidence interval, we cannot conclude that the means are significantly different.

The Student's t-Test

Inference for the population mean μ when the population variance is unknown

So far we assumed a normal distribution with known variance.

- Consider the problem when we have n observations from a normal distribution with unknown variance.
- Now, we would like to estimate and make inferences about the population mean.

Point estimates for μ and σ^2

As before a point estimate for the population mean μ is the sample mean \bar{X} calculated by

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i,$$

where X_i , i = 1, ..., n are the n observations.

► For the population variance, the sample variance can be used as a point estimate of the population variance, i.e.

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2},$$

can be used as a point estimate of σ^2 .

T-distribution

Consider n independent observations X_i , $i=1,\ldots,n$, from a normal distribution with mean μ and standard deviation σ , i.e.,

$$X_i \sim \mathcal{N}(\mu, \sigma),$$

then the random variable, denoted T, calculated by

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}.$$

where

- $ightharpoonup \bar{X}$ is the estimator for the mean, and
- S is the estimator for the standard deviation

has a T-distribution with n-1 degrees of freedom.

T-distribution

df: degrees of freedom

Power analysis

Retaining H₀

If we retain H_0 this can be because either

- $ightharpoonup H_0$ is true, or
- ▶ there is not enough evidence to show that H_0 is false.

Therefore, we use the term retain but make no claims about the validity of H_0 .

Choose the required significance level α

Hypothesis testing results in deciding to retain or reject the null hypothesis. This gives us four possibilities:

		Decision			
		retain H_0	reject H_0		
$\overline{H_0}$	true	correct $1-\alpha$	Type I error α		
			(false positive)		
	false	Type II error <i>β</i>	correct		
		(false negative)	$1-\beta$		

The significance level of a hypothesis testing procedure is the probability of a Type I error.

The power of a test is given by $1-\beta$. The higher the power the better the test. Calculating β involves knowledge about the specific statistical quantities.

Power analysis

The power of a statistical test

If we reject the null hypothesis if $p \le \alpha$, we reject true null hypothesis with probability α .

But how likely are we to not reject the false null hypothesis?

To answer that, we must assume a specific alternative model

The false negative (or type-II error) rate at significance level α is

$$\beta = \mathbb{P}(\{p \ge \alpha | \text{alternative hypothesis is true}\})$$

and the power against that alternative at level α is $1 - \beta$.

p ≤ α rejects the null hypothesis, it does not prove the alternative to be true!

The power of a statistical test

- variance increases the power decreases (fatter curves)
- number of samples increase the power increases (thinner curves)

Power analysis

- 1. Pick specific alternative
- 2. Find distribution D_{alt} of test statistic under H_a
- 3. Pick significance level α
- 4. Find acceptance region A, i.e., values of test statistic where $p \ge \alpha$
- 5. Intersect D_{alt} with A to find the false negative rate

$$\beta = \mathbb{P}(\{p \geq \alpha | \text{alternative model is true}\})$$

6. The power of the test against the alternative model is $1-\beta$. This is tedious! G^* Power implements this for many common tests http://www.gpower.hhu.de/

The multiple testing problem

Multiple Tests

p-value distribution:

If we test a true null hypothesis, the p-value distribution is uniform

This means that for n=1000 and $\alpha=0.05$, about $0.05\times 1000=50$ tests will show significant results purely by chance, regardless of the shape of the null-distribution.

Example: scRNA-seq expression levels

	Control				Treatment			
	cell 1		cell n	mean	cell 1	• • • •	cell n	mean
gene 1	c ₁₁		C _{1n}	<u>c</u> 1	t ₁₁		t_{1n}	$\overline{t_1}$
:			٠				٠	
gene m	C _{m1}	• • •	c_{mn}	$\overline{c_m}$	t_{m1}		t_{mn}	$\overline{t_m}$

Q: Which genes show significant differences in average expression levels?

Probability that at least one *p*-value in *m* (independent) tests is $\leq \alpha$?

$$\mathbb{P}(p_1 \leq \alpha) = 1 - (1 - \alpha)^1$$

University of Vienna

Probability that at least one *p*-value in *m* (independent) tests is $\leq \alpha$?

$$\mathbb{P}(p_1 \leq \alpha) = 1 - (1 - \alpha)^1$$

$$\mathbb{P}(p_1 \leq \alpha \text{ or } p_2 \leq \alpha) = 1 - (1 - \alpha)^2$$

Probability that at least one *p*-value in *m* (independent) tests is $\leq \alpha$?

$$\mathbb{P}(p_1 \le \alpha \text{ or } \dots \text{ or } p_{20} \le \alpha) = 1 - (1 - \alpha)^{20}$$

Probability that at least one *p*-value in *m* (independent) tests is $\leq \alpha$?

$$\mathbb{P}(p_1 \le \alpha \text{ or } \dots \text{ or } p_{20} \le \alpha) = 1 - (1 - \alpha)^{20}$$

Example: testing 20 drugs with none of them having an effect. The null-hypothesis is true for all.

For each drug we have a Type I error of $\alpha = 0.05$ which is the probability of incorrectly rejecting H_0 .

Considering all 20 drugs the probability of at least one false positive is

$$1 - (1 - \alpha)^{20} = 1 - (1 - 0.95)^{20} \approx 0.64$$

The multiple testing problem

The probability of making at least one Type I error increases with the number of tests!

If we test m hypotheses, we call the probability

$$\mathbb{P}(p_1 \leq \alpha \text{ or } \dots \text{ or } p_m \leq \alpha)$$

(assuming the hypotheses are true) the family-wise error rate. (FWER)

- = Probability of making one or more false discovery
 - ▶ Without correction, FWER $> \alpha$ if m > 1

To ensure FWER $\leq \alpha$, we adjust (correct) the individual *p*-values. (or equivalently, we adjust the individual α 's)

Methods to control the FWER

Assume: $p_1 \leq p_2 \leq \cdots \leq p_m$ with $H_0(1), \ldots, H_0(m)$.

Method of Bonferroni

▶ Reject $H_0(i)$ if $p_i < \frac{\alpha}{m}$ for i = 1, ..., m

Method of Holm-Bonferroni

▶ Sort p-values in ascending order $p_1, p_2, ..., p_m$ and compare them to $p_k < \frac{\alpha}{m-k+1} \Rightarrow$ Reject H_0 for the smallest p-values until one fails the condition.

Method of Benjamini-Hochberg

▶ Sort p-values in ascending order $p_1, p_2, ..., p_m$. Find the largest p-value such that $p_k \leq \frac{k}{m} \alpha \Rightarrow \text{Reject all } H_0 \text{ for } p_1, p_2, ..., p_k$.