Package 'ncar'

March 13, 2017

Version 0.3.3

Date 2017-03-12
Title Noncompartmental Analysis for Pharmacokinetic Data for Report
 Description Conduct a noncompartmental analysis as closely as possible to the most widely used commercial software for pharmacokinetic analysis, i.e. 'Phoenix(R) WinNonlin(R)' https://www.certara.com/software/pkpd-modeling-and-simulation/phoenix-winnonlin/. Some features are CDISC SDTM terms Automatic slope selection with the same criterion of WinNonlin(R) Supporting both 'linear-up linear-down' and 'linear-up log-down' method Interval(partial) AUCs with 'linear' or 'log' interpolation method Produce pdf, rtf, text report files. Reference: Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016. (ISBN:9198299107).
Depends R (>= 2.0.0), rtf
Author Kyun-Seop Bae [aut]
Maintainer Kyun-Seop Bae <k@acr.kr></k@acr.kr>
Copyright 2016-2017, Kyun-Seop Bae
License GPL-3
NeedsCompilation no
LazyLoad yes
Repository CRAN
<pre>URL https://cran.r-project.org/package=ncar</pre>
Date/Publication
R topics documented:
ncar-package AUC

2 ncar-package

Round	 	 	 10
RptCfg	 	 	 11
rtfNCA	 	 	 12
Slope	 	 	 13
sNCA	 	 	 14
tabNCA	 	 	 17
txtNCA	 	 	 18
Unit	 	 	 19

ncar-package

Noncompartmental Analysis for Pharmacokinetic Data for Reviewer

21

Description

Index

It conducts a noncompartmental analysis(NCA) as closely as possible to the most widely used commercial pharmacokinetic analysis software.

Details

The main functions are

```
NCA to perform NCA for many subjects.
```

IndiNCA to perform NCA for one subject.

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

- 1. Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

AUC 3

```
colConc="conc", dose=320, doseUnit="mg", timeUnit="h", concUnit="mg/L")
pdfNCA(fileName="NCA-Indometh.pdf", Indometh, colSubj="Subject", colTime="time",
       colConc="conc", adm="Infusion", dur=0.5, dose=25, doseUnit="mg",
       timeUnit="h", concUnit="mg/L")
# Output to RTF file
rtfNCA(fileName="NCA-Theoph.rtf", Theoph, colSubj="Subject", colTime="Time",
       colConc="conc", dose=320, doseUnit="mg", timeUnit="h", concUnit="mg/L")
rtfNCA(fileName="NCA-Indometh.rtf", Indometh, colSubj="Subject", colTime="time",
       colConc="conc", adm="Infusion", dur=0.5, dose=25, doseUnit="mg",
       timeUnit="h", concUnit="mg/L")
# For one subject
iAUC = data.frame(Name=c("AUC[0-12h]", "AUC[0-24h]"), Start=c(0,0), End=c(12,24)); iAUC
x = Theoph[Theoph$Subject=="1","Time"]
y = Theoph[Theoph$Subject=="1","conc"]
sNCA(x, y, dose=320, doseUnit="mg", concUnit="mg/L", timeUnit="h", iAUC=iAUC)
sNCA(x, y, dose=320, concUnit="mg/L", returnNA=FALSE, iAUC=iAUC)
txtNCA(x, y, dose=320, doseUnit="mg", concUnit="mg/L", timeUnit="h", iAUC=iAUC)
```

AUC

Calculate Area Under the Curve (AUC) and Area Under the first Moment Curve (AUMC) in a table format

Description

Calculate Area Under the Curve(AUC) and the first Moment Curve(AUMC) in two ways; 'linear trapezoidal method' or 'linear-up and log-down' method. Return a table of cumulative values.

Usage

```
AUC(x, y, down = "Linear")
```

Arguments

vector values of independent variable, usually time
 vector values of dependent variable, usually concentration
 down
 either of "Linear" or "Log" to indicate the way to calculate AUC and AUMC

Details

 ${\tt fit="Linear"}\ means\ linear\ trapezoidal\ rule\ with\ linear\ interpolation.\ {\tt fit="Log"}\ means\ linear-up\ and\ log-down\ method.$

Value

Table with two columns, AUC and AUMC; the first column values are cumulative AUCs and the second column values cumulative AUMCs.

4 BestSlope

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics - Concepts and Applications. 4th ed. pp687-689. 2011.

See Also

```
LinAUC,LogAUC
```

Examples

```
AUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"]) # Default is "Linear" AUC(Theoph[Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"], down="Log")
```

BestSlope

Choose best fit slope for the log(y) and x regression by the criteria of adjusted R-square

Description

It sequentially fits $(\log(y) \sim x)$ from the last point of x to the previous points with at least 3 points. It chooses a slope the highest adjusted R-square. If the difference is less then 1e-4, it chooses longer slope.

Usage

```
BestSlope(x, y, adm = "Extravascular")
```

Arguments

x vector values of x-axis, usually time

y vector values of y-axis, usually concentration

adm one of "Bolus" or "Infusion" or "Extravascular" to indicate drug adminis-

tration mode

Details

Choosing the best terminal slope (y in log scale) in pharmacokinetic analysis is somewhat challenging, and it could vary by analysis performer. Currently this function uses ordinary least square method(OLS) only.

IntAUC 5

Value

R-squared

R2ADJ adjusted R-squared

LAMZNPT number of points used for slope
LAMZ negative of slope, lambda_z
b0 intercept of regression line
CORRXY correlation of log(y) and x
LAMZLL earliest x for lambda_z
LAMZUL last x for lambda_z

CLSTP predicted y value at last point, predicted concentration for the last time point

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

Slope

Examples

IntAUC

Calculate interval AUC

Description

It calculates interval AUC

Usage

```
IntAUC(x, y, t1, t2, Res, down = "Linear")
```

Arguments

Х	vector values of independent variable, usually time
У	vector values of dependent variable, usually concentration
t1	start time for AUC
t2	end time for AUC

Res result from IndiNCA function

down either of "Linear" or "Log" to indicate the way to calculate AUC

Details

This calculates an interval (partial) AUC (from t1 to t2) with the given series of x and y. If t1 and/or t2 cannot be found within x vector, it interpolates according to the Method.

6 Interpol

Value

```
return interval AUC value (scalar)
```

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

- 1. Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

See Also

```
AUC, Interpol
```

Examples

Interpol

Interpolate y value

Description

It interpolates y value when a corresponding x value (xnew) does not exist within x vector

Usage

```
Interpol(x, y, xnew, Slope, b0, down = "Linear")
```

Arguments

Details

This function interpolate y value, if xnew is not in x vector. If xnew is in x vector, it just returns the given x and y vector. This function usually is called by IntAUC function Returned vector is sorted in the order of increasing x values.

LinAUC 7

Value

new x and y vector containing xnew and ynew point

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

IntAUC

Examples

```
x = 10:1 + 0.1

y = -2*x + 40.2

Interpol(x, y, 1.5)

Interpol(x, y, 1.5, down="Log")
```

LinAUC

Area Under the Curve(AUC) and Area Under the first Moment Curve(AUMC) by linear trapezoidal method

Description

It calculates AUC and AUMC using linear trapezoidal method

Usage

```
LinAUC(x, y)
```

Arguments

x vector values of independent variable, usually time

y vector values of dependent variable, usually concentration

Details

This function returns AUC and AUMC by linear trapezoidal method.

Value

AUC area under the curve

AUMC area under the first moment curve

Author(s)

Kyun-Seop Bae <k@acr.kr>

8 LogAUC

References

- 1. Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

See Also

```
LogAUC, AUC
```

Examples

```
\label{linauc} Linauc (Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"]) \\ AUC (Theoph$Subject==1, "Time"], Theoph[Theoph$Subject==1, "conc"]) \# compare the last line $$ (Theoph$Subject==1, "conc") $$ (
```

LogAUC

Area Under the Curve(AUC) and Area Under the first Moment Curve(AUMC) by linear-up log-down method

Description

It calculates AUC and AUMC using linear-up log-down method

Usage

```
LogAUC(x, y)
```

Arguments

x vector values of independent variable, usually time

y vector values of dependent variable, usually concentration

Details

This function returns AUC and AUMC by linear-up log-down method.

Value

AUC area under the curve

AUMC area under the first moment curve

Author(s)

Kyun-Seop Bae <k@acr.kr>

9 pdfNCA

References

- 1. Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis Concepts and Applications. 5th ed. 2016.
- 2. Shargel L, Yu A. Applied Biopharmaceutics and Pharmacokinetics. 7th ed. 2015.
- 3. Rowland M, Tozer TN. Clinical Pharmacokinetics and Pharmacodynamics Concepts and Applications. 4th ed. 2011.
- 4. Gibaldi M, Perrier D. Pharmacokinetics. 2nd ed. revised and expanded. 1982.

See Also

LinAUC,AUC

Examples

```
LogAUC(Theoph[Theoph$Subject==1, "Time"],Theoph[Theoph$Subject==1, "conc"])
# Compare the last line with the above
AUC(Theoph[Theoph$Subject==1, "Time"],Theoph[Theoph$Subject==1, "conc"], down="Log")
```

pdfNCA

NCA output to pdf file

Description

This output NCA result in a pdf file.

Usage

```
pdfNCA(fileName = "Temp-NCA.pdf", concData, colSubj = "Subject", colTime = "Time",
      colConc = "conc", dose = 0, adm = "Extravascular", dur = 0, doseUnit = "mg",
       timeUnit = "h", concUnit = "ug/L", down="Linear", MW = 0)
```

Arguments

fileName	file name to save
concData	concentration data table
colSubj	column name for subject ID
colTime	column name for time
colConc	column name for concentration
dose	administered dose
adm	one of "Bolus" or "Infusion" or "Extravascular" to indicate drug administration mode $\parbox{\ensuremath{\square}}$
dur	duration of infusion
doseUnit	unit of dose
timeUnit	unit of time
concUnit	unit of concentration
down	either of "Linear" or "Log" to indicate the way to calculate AUC and AUMC
MW	molecular weight of drug

10 Round

Value

Basically same with sNCA

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

```
help, sNCA, txtNCA, tabNCA, rtfNCA
```

Examples

Round

Round Half Away from Zero

Description

This is an ordinary rounding function, so called round half away from zero

Usage

```
Round(x, n = 0)
```

Arguments

x numeric to be roundedn indicating decimal digits

Details

The function round in R base rounds to the even number, i.e. round(0.5) is 0 not 1. If you want rounding 0.5 be 1, you can use this Round function. This function is for the consistency with other software like MS-Excel, SAS.

Value

ordinarily rounded value

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

See wikipedia subject "Rounding"

RptCfg 11

Examples

```
(x = 1:10 - 0.5)
Round(x)
round(x) # compare with the above
```

RptCfg

NCA Report Configuation Table

Description

Contains the names and order of colum of return table/text by IndiNCA and NCA functions

Usage

RptCfg

Format

A data frame with 48 observations on the following 10 variables.

PPTESTCD a character vector of CDISC SDTM PPTESTCD

SYNONYM a character vector of CDISC SDTM PPTESTCD Synonym

NCI a character vector of NCI peferred terms

WNL a character vector of WinNonlin(R) software variables

ExtravascularDefault a numeric vector of ordering in report for extravascular administration, Zero means exclusion in the report.

ExtravascularWNL a numeric vector of WinNonlin(R) style ordering in report for extravascular administration, Zero means exclusion in the report.

BolusDefault a numeric vector of ordering in report for extravascular administration, Zero means exclusion in the report.

BolusWNL a numeric vector of WinNonlin(R) style ordering in report for extravascular administration, Zero means exclusion in the report.

InfusionDefault a numeric vector of ordering in report for extravascular administration, Zero means exclusion in the report.

InfusionWNL a numeric vector of WinNonlin(R) style ordering in report for extravascular administration, Zero means exclusion in the report.

Details

This table should exist in NonCompart package. User can edit this table for shaping the report in one's own style.

12 rtfNCA

rtfNCA

NCA output to rtf file

Description

This output NCA result in a rtf file.

Usage

Arguments

fileName	file name to save
concData	concentration data table
colSubj	column name for subject ID
colTime	column name for time
colConc	column name for concentration
dose	administered dose
adm	one of "Bolus" or "Infusion" or "Extravascular" to indicate drug adminis-
	tration mode
dur	duration of infusion
doseUnit	unit of dose
timeUnit	unit of time
concUnit	unit of concentration
down	either of "Linear" or "Log" to indicate the way to calculate AUC and AUMC
MW	molecular weight of drug

Value

Basically same with sNCA

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

```
help, sNCA, txtNCA, tabNCA, pdfNCA
```

Slope 13

Slope	Get the Slope of regression $log(y) \sim x$	

Description

It calculates the slope with linear regression of $log(y) \sim x$

Usage

```
Slope(x, y)
```

Arguments

x vector values of independent variable, usually timey vector values of dependent variable, usually concentration

Details

With time-concentration curve, you frequently need to estimate slope in $log(concentration) \sim time$. This function is usually called by BestSlope function and you seldom need to call this function directly.

Value

R2	R-squared

R2ADJ adjusted R-squared

LAMZNPT number of points used for slope
LAMZ negative of slope, lambda_z
b0 intercept of regression line
CORRXY correlation of log(y) and x
LAMZLL earliest x for lambda_z
LAMZUL last x for lambda_z

CLSTP predicted y value at last point, predicted concentration for the last time point

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

BestSlope

```
Slope(Indometh[Indometh$Subject==1, "time"],Indometh[Indometh$Subject==1, "conc"])
```

sNCA

|--|

Description

This is the simplest function for NCA.

Usage

Arguments

guiients				
Х	usually time			
У	usually concentration			
dose	given amount			
adm	one of "Bolus" or "Infusion" or "Extravascular" to indicate drug administration mode $$			
dur	duration of infusion			
doseUnit	unit of dose			
timeUnit	unit of time			
concUnit	unit of concentration			
iAUC	interval AUCs to calculate			
down	either of "Linear" or "Log" to indicate the way to calculate AUC and AUMC			
MW	molecular weight of the drug			
returnNA	if returnNA is TRUE, it returns NA values also.			

Details

This will replace IndiNCA.

Value

CMAX	maximum concentration, Cmax
CMAXD	dose normalized Cmax, CMAX / Dose, Cmax / Dose
TMAX	time of maximum concentration, Tmax
TLAG	time to observe the first non-zero concentration, for extra vascular administration only $ \\$
CLST	last positive concentration observed, Clast
CLSTP	last positive concentration predicted, Clast_pred
TLST	time of last positive concentration, Tlast
LAMZHL	half-life by lambda z, ln(2)/LAMZ
LAMZ	lambda_z negative of best fit terminal slope
LAMZLL	earliest time for LAMZ

sNCA 15

LAMZUL last time for LAMZ

LAMZNPT number of points for LAMZ

CORRXY correlation of log(concentration) and time

R2 R-squared

R2ADJ R-squared adjusted

C0 back extrapolated concentration at time 0, for bolus intravascular administration

only

AUCLST AUC from 0 to TLST

AUCALL AUC using all the given points, including trailing zero concentrations

AUCIFO AUC infinity observed

AUCIFOD AUCIFO / Dose

AUCIFP AUC infinity predicted using CLSTP instead of CLST

AUCIFPD AUCIFP / Dose

AUCPEO AUC % extrapolation observed AUCPEP AUC % extrapolated for AUCIFP

AUC % back extrapolation observed, for bolus IV administration only

AUCPBEP AUC % back extrapolation predicted with AUCIFP, for bolus IV administration

only

AUMCLST AUMC to the TLST

AUMCIFO AUMC infinity observed using CLST

AUMCIFP AUMC infinity determined by CLSTP

AUMCPEO AUMC % extrapolated observed

AUMCPEP AUMC % extrapolated predicted

MRTIVLST mean residence time (MRT) to TLST, for intravascular administration

MRTIVIFO mean residence time (MRT) infinity using CLST, for intravascular administra-

tion

MRTIVIFP mean residence time (MRT) infinity using CLSTP, for intravascular administra-

tion

MRTEVLST mean residence time (MRT) to TLST, for extravascular administration

MRTEVIFO mean residence time (MRT) infinity using CLST, for extravascular administra-

tion

MRTEVIFP mean residence time (MRT) infinity using CLSTP, for extravascular administra-

tion

VZO volume of distribution determined by LAMZ and AUCIFO, for intravascular

administration

VZP volume of distribution determined by LAMZ and AUCIFP, for intravascular ad-

ministration

VZFO VZO for extravascular administration, VZO/F, F is bioavailability
VZFP VZP for extravascular administration, VZP/F, F is bioavailability

CLO clearance using AUCIFO, for intravascular administration
CLP clearance using AUCIFP, for intravascular administration

CLFO CLO for extravascular administration, CLO/F, F is bioavailability

sNCA

CLFP	CLP for extravascular administration, CLP/F, F is bioavailability
VSS0	volume of distribution at steady state using CLST, for intravascular administration only
VSSP	volume of distribution at stead state using CLSTP, for intravascular administration only

Author(s)

Kyun-Seop Bae <k@acr.kr>

References

Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016.

See Also

```
help, tabNCA, txtNCA, pdfNCA, rtfNCA
```

```
# For one subject
x = Theoph[Theoph$Subject=="1","Time"]
y = Theoph[Theoph$Subject=="1","conc"]
sNCA(x,\ y,\ dose=320,\ doseUnit="mg",\ concUnit="mg/L",\ timeUnit="h")
sNCA(x, y, dose=320, concUnit="mg/L", returnNA=FALSE)
iAUC = data.frame(Name=c("AUC[0-12h]","AUC[0-24h]"), Start=c(0,0), End=c(12,24))
sNCA(x, y, dose=320, doseUnit="mg", concUnit="mg/L", timeUnit="h", iAUC=iAUC)
MW = 180.164 # Molecular weight of theophylline
sNCA(x, y/MW, dose=320, doseUnit="mg", concUnit="mmol/L", timeUnit="h")
sNCA(x, y/MW, dose=320, doseUnit="mg", concUnit="mmol/L", timeUnit="h", MW=MW)
sNCA(x, y, dose=320/MW, doseUnit="mmol", concUnit="mg/L", timeUnit="h", MW=MW)
sNCA(x, y/MW, dose=320/MW, doseUnit="mmol", concUnit="mmol/L", timeUnit="h", MW=MW)
sNCA(x, y/MW, dose=320/MW, doseUnit="mmol", concUnit="mmol/L", timeUnit="h", MW=MW, doseUnit="mmol", timeUnit="h", timeUnit="h
            returnNA=FALSE)
sNCA(x, y/MW, doseUnit="mmol", concUnit="mmol/L", timeUnit="h", MW=MW, returnNA=FALSE)
sNCA(x, y/MW, dose=as.numeric(NA), doseUnit="mmol", concUnit="mmol/L", timeUnit="h",
            MW=MW, returnNA=FALSE)
sNCA(x, y, dose=320, concUnit="mg/L", timeUnit="hr")
sNCA(x*60, y, dose=320, concUnit="mg/L", timeUnit="min")
# For all subjects
IDs = sort(unique(Theoph[,"Subject"]))
nID = length(IDs)
Res = vector()
for (i in 1:nID) {
    x = Theoph[Theoph[, "Subject"]==IDs[i], "Time"]
    y = Theoph[Theoph[,"Subject"]==IDs[i],"conc"]
     tRes = sNCA(x, y, dose=320, concUnit="mg/L", returnNA=FALSE)
     tRes = c(ID = IDs[i], tRes)
```

tabNCA 17

```
Res = rbind(Res, tRes)
}
Res
```

tabNCA

Table output NCA

Description

This output NCA result to table form.

Usage

```
tabNCA(concData, colSubj = "Subject", colTime = "Time", colConc = "conc", dose = 0,
    adm = "Extravascular", dur = 0, doseUnit = "mg", timeUnit = "h",
    concUnit = "ug/L", down = "Linear", MW = 0, returnNA = FALSE)
```

Arguments

concData concentration data table
colSubj column name for subject ID
colTime column name for time

colConc column name for concentration

dose administered dose

adm one of "Bolus" or "Infusion" or "Extravascular" to indicate drug adminis-

tration mode

duration of infusion

 $\begin{array}{ll} {\sf doseUnit} & {\sf unit\,of\,dose} \\ {\sf timeUnit} & {\sf unit\,of\,time} \end{array}$

concUnit unit of concentration

down method to calculate AUC, "Linear" or "Log"

MW molecular weight of drug

returnNA if returnNA is TRUE, it returns NA values also.

Value

Basically same with sNCA

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

```
help, sNCA, txtNCA, pdfNCA, rtfNCA
```

```
tabNCA(Theoph, dose=320, concUnit="mg/L")
tabNCA(Indometh, colSubj="Subject", colTime="time", colConc="conc", dose=25,
    adm="Infusion", dur=0.5, concUnit="mg/L")
```

18 txtNCA

txtNCA	Text output of NCA
--------	--------------------

Description

This output NCA result in text form.

Usage

Arguments

x	usually time
у	usually concentration
dose	given amount
adm	one of "Bolus" or "Infusion" or "Extravascular" to indicate drug administration mode
dur	duration of infusion
doseUnit	unit of dose
timeUnit	unit of time
concUnit	unit of concentration
iAUC	interval AUCs to calculate
down	either of "Linear" or "Log" to indicate the way to calculate AUC and AUMC
MW	molecular weight of the drug

Value

returnNA

Basically same with sNCA

Author(s)

Kyun-Seop Bae <k@acr.kr>

See Also

```
help, sNCA, tabNCA, pdfNCA, rtfNCA
```

Examples

if returnNA is TRUE, it returns NA values also.

Unit 19

Unit

Disply CDISC standard units and multiplied factor of NCA results

Description

It displays CDISC PP output units and multiplication factor for them.

Usage

```
Unit(code = "", timeUnit = "h", concUnit = "ng/mL", doseUnit = "mg", MW = 0)
```

Arguments

code vector of PPTESTCD

timeUnit unit of time

concUnit unit of concentration

doseUnit unit of dose

MW molecular weight of drug

Value

row names PPTESTCD

Unit unit

Factor internal mulitpilcation factor

Author(s)

Kyun-Seop Bae <k@acr.kr>

20 Unit

```
Unit(concUnit="ug/L", doseUnit="mg")
Unit(concUnit="ng/L", doseUnit="mg")
Unit(concUnit="umol/L", doseUnit="mmol")
Unit(concUnit="nmol/L", doseUnit="mmol")
Unit(concUnit="mmol/L", doseUnit="mg", MW=500)
Unit(concUnit="umol/L", doseUnit="mg", MW=500)
Unit(concUnit="nmol/L", doseUnit="mg", MW=500)
Unit(concUnit="nmol/L", doseUnit="mg", MW=500)
Unit(concUnit="ug/L", doseUnit="mg", MW=500)
Unit(concUnit="ug/L", doseUnit="mmol", MW=500)
Unit(concUnit="ug/L", doseUnit="mmol", MW=500)
Unit(concUnit="ng/L", doseUnit="mmol", MW=500)
Unit(concUnit="ng/mL", doseUnit="mmol", MW=500)
Unit(concUnit="ng/mL", doseUnit="mmol", MW=500)
Unit(concUnit="ng/mL", doseUnit="mmol", MW=500)
Unit(concUnit="ng/mL", doseUnit="mmol")
```

Index

ncar (ncar-package), 2

*Topic AUC	ncar-package, 2
AUC, 3	10000 0 10 15 10
IntAUC, 5	pdfNCA, 9, 12, 16–18
LinAUC, 7	Pound 10
LogAUC, 8	Round, 10 RptCfg, 11
*Topic NCA	rtfNCA, 10, 12, 16-18
ncar-package, 2	1 tinca, 10, 12, 10–18
*Topic Output Form	Slope, 5, 13
pdfNCA, 9	sNCA, 10, 12, 14, 17, 18
rtfNCA, 12	0, 10, 12, 11, 17, 10
sNCA, 14	tabNCA, 10, 12, 16, 17, 18
tabNCA, 17	txtNCA, 10, 12, 16, 17, 18
txtNCA, 18	
*Topic Slope	Unit, 19
BestSlope, 4	
*Topic datasets	
RptCfg, 11	
*Topic interpolation	
Interpol, 6	
*Topic interval AUC	
IntAUC, 5	
Interpol, 6	
*Topic package	
ncar-package, 2	
*Topic partial AUC	
IntAUC, 5	
Interpol, 6	
*Topic rounding	
Round, 10	
*Topic slope	
Slope, 13	
AUG 2 6 9 0	
AUC, 3, 6, 8, 9	
BestSlope, 4, 13	
help, 10, 12, 16–18	
<pre>IntAUC, 5, 7 Interpol, 6, 6</pre>	
LinAUC, 4, 7, 9 LogAUC, 4, 8, 8	
() 2	