Deep Learning for Gophers

Rise of Deep Learning

Google Al Tool Identifies a Tumor's Mutations From an Image

Pit.ai puts a financial twist on reinforcement learning to outperform hedge funds

Identifying artificial intelligence "blind spots"

Finding a good read among billions of choices

As natural language processing techniques improve, suggestions are getting speedier and more relevant.

What is Deep Learning?

ARTIFICIAL INTELLIGENCE

Any technique that enables computers to mimic human behavior

MACHINE LEARNING

Ability to learn without explicitly being programmed

DEEP LEARNING

Extract patterns from data using neural networks

3 1 3 5 6 7 1 4 5 9 2 3

Why Deep Learning?

Hand engineered features are time consuming, brittle & not scalable in practise

Can we learn underlying features directly from data?

Low Level Features

The Perceptron: Feedforward Propagation


```
package deep_learning_for_gophers
type Neuron struct {
    Act
                     ActivationFunc
    Input
                     []*Edge
    Output
                     []*Edge
    Value
                     float64
type Edge struct {
                     float64
    Weight
                     float64
    Input
    Output
                     float64
    IsBias
                     bool
```

The Perceptron: Feedforward Propagation

$$\hat{y} = g \left(w_0 + \sum_{i=1}^m x_i w_i \right)$$

$$\hat{y} = g \left(w_0 + \boldsymbol{X}^T \boldsymbol{W} \right)$$

where:
$$\boldsymbol{X} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$
 and $\boldsymbol{W} = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$

Input Weights Sum Non-Linearity Output

```
package deep_learning_for_gophers
import ...
type initializeWeight func() float64
func NormalWeightInitialize(stdDev, mean float64) float64 {
    return rand.NormFloat64()*stdDev + mean
func UniformWeightInitialize(stdDev, mean float64) float64 {
    return (rand.Float64()-0.5)*stdDev + mean
```

The Perceptron: Feedforward Propagation

Activation Function

$$\hat{y} = g \left(w_0 + \boldsymbol{X}^T \boldsymbol{W} \right)$$

Example : Sigmoid function

$$g(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Common Activation Functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

```
package deep_learning_for_gophers
import (
   "math"
    "math"
type ActivationFunc int
const(
   NoActivation ActivationFunc
                                       = 0
    SigmoidActivation ActivationFunc
    TanhActivation ActivationFunc
    ReLuActivation ActivationFunc
   LinearActivation ActivationFunc
                                       = 5
    SoftMaxActivation ActivationFunc
                                       = 6
func GetActivationFunc(act ActivationFunc) Differentiable{
    switch act {
    case SigmoidActivation:
        return Sigmoid{}
    case ReLuActivation:
        return ReLU{}
    case LinearActivation:
```

```
func (s Sigmoid) Func(x float64) float64 {
    return Logistic(x, a: 1)
func (s Sigmoid) DFunc(y float64) float64{
    return y*(1-y)
type ReLU struct{}
func (a ReLU) Func(x float64) float64 { return math.Max(x, y: 0) }
func (a ReLU) DFunc(y float64) float64 {
    if y > 0 : 1 
    return 0
type linear struct{}
func (l linear) Func(x float64) float64 {return x}
func (l linear) DFunc(x float64) float64 {return 1}
```

Importance of Activation Functions

The purpose of activation functions is to **introduce non-linearities** into the network

What is we want to build a Neural Network to distinguish between blue vs orange points?

Importance of Activation Functions

Linear activations produce linear decisions no matter what the network size

Non-linearities allow us to approximate arbitrarily complex functions

The Perceptron: Example

We have:
$$w_0 = 1$$
 and $\mathbf{W} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

$$\hat{y} = g \left(w_0 + \mathbf{X}^T \mathbf{W} \right)$$

$$= g \left(1 + \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right)$$

$$\hat{y} = g \left(1 + 3x_1 - 2x_2 \right)$$
This is just a line in 2D!

Input Weights Sum Non-Linearity Output

The Perceptron: Example

The Perceptron: Example

Building Neural Networks with Perceptrons

The Perceptron: Simplified

The Perceptron: Simplified

Single Layer Neural Network

Single Layer Neural Network

Applying Neural Networks

Example Problem

Will I be able to do justice to this topic?

Let's start with simple two feature model

X1 : Number of hours I practise for this talk

X2: Number of hours spent on Netflix yesterday

Will I be able to do justice to this topic?

Single Layer Neural Network

Quantifying Loss

Training Neural Networks

We want to find the network weights that achieve the lowest loss

$$\boldsymbol{W}^* = \underset{\boldsymbol{W}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}; \boldsymbol{W}), y^{(i)})$$

$$\boldsymbol{W}^* = \underset{\boldsymbol{W}}{\operatorname{argmin}} J(\boldsymbol{W})$$

$$\downarrow$$

$$\boldsymbol{W} = \{\boldsymbol{W}^{(0)}, \boldsymbol{W}^{(1)}, \cdots\}$$
Remember:

Take direction in opposite direction of gradient

Gradient Descent

Repeat until convergence

Gradient Descent

Algorithm

- 1. Initialize weights randomly
- 2. Loop until convergence
- 3. Compute gradient $\frac{\partial J(w)}{\partial W}$
- 5. Return weights

How does small change in one weight (eg W_2) affect the final loss J(W)?

$$\frac{\partial J(\mathbf{W})}{\partial \mathbf{w_2}}$$

Using chain rule

$$\frac{\partial J(\mathbf{W})}{\partial w_2} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_2}$$

Using chain rule

$$\frac{\partial J(\mathbf{W})}{\partial w_1} = \frac{\partial J(\mathbf{W})}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_1} * \frac{\partial z_1}{\partial w_1}$$

Repeat this for every weight in the network using gradients from later layers

Demo

Resources

- Inspiration for topic :
 - Ellen Kobes Learn Neural Networks WithGo, Not Math: GopherCon EU'19
 - Francesc Campoy Machine Learning for Gophers
- Theoretical
 - MIT 6.S191 Introduction to Deep Learning
 - Stanford University CS230 Deep Learning
- Codebase
 - godeep library as starter kit

Thanks to Maartje and Carolyn for being my inspiration! Ofcourse Ashley, for gopher animations!

Thankyou!

