编译原理 第二周作业 9月21日 周一

PB18151866 龚小航

- 2.4 为下列语言写出正规定义:
- (c) 某语言的注释, 它是以 /* 开头并以 */ 结尾的任意字符串, 但它的任何前缀(本身除外) 不以*/结尾。
- (d) 相邻数字都不相同的所有数字串。
- 解: (c) 对其作正规定义:

char2 → a | b | ····· | x , 指 Σ 中除了 * 及 / 以外的所有字符,即 Σ –
$$\{*,/\}$$

按照每个位置可能出现的情况,直接可以写出其正规定义为:

NOTE
$$\rightarrow /* \text{ char1}^* *^* (*^+ \text{ char2 char1}^* *^*)^* */$$

(d) 对其作正规定义,需要使用递归定义。递归的想法是先用某个数字对合法的数字串作分割,原串就被割成了没有这个数字的若干个小段,这里把这个数字取作 0;再对这些不含 0 的小段继续以 1 作为分割,如此递归下去最后就得到一些只含 9 的小段。写出的正规定义式只需要先满足"用 0 分割,每段没有 0",再在每个小段中陈述"用 1 分割,每段没有 1"……这就得到了一个递归定义。即为:

$$result \to (0|X_{1\sim 9} \ 0)(X_{1\sim 9} \ 0)^*(X_{1\sim 9}|\varepsilon) \ | \ X_{1\sim 9}$$

$$X_{1\sim 9} \to (1|X_{2\sim 9} \ 1)(X_{2\sim 9} \ 1)^*(X_{2\sim 9}|\varepsilon) \ | \ X_{2\sim 9}$$

$$X_{2\sim 9} \to (2|X_{3\sim 9} \ 2)(X_{3\sim 9} \ 2)^*(X_{3\sim 9}|\varepsilon) \ | \ X_{3\sim 9}$$

$$X_{3\sim 9} \to (3|X_{4\sim 9} \ 3)(X_{4\sim 9} \ 3)^*(X_{4\sim 9}|\varepsilon) \ | \ X_{4\sim 9}$$

$$X_{4\sim 9} \to (4|X_{5\sim 9} \ 4)(X_{5\sim 9} \ 4)^*(X_{5\sim 9}|\varepsilon) \ | \ X_{5\sim 9}$$

$$X_{5\sim 9} \to (5|X_{6\sim 9} \ 5)(X_{6\sim 9} \ 5)^*(X_{6\sim 9}|\varepsilon) \ | \ X_{6\sim 9}$$

$$X_{6\sim 9} \to (6|X_{7\sim 9} \ 6)(X_{7\sim 9} \ 6)^*(X_{7\sim 9}|\varepsilon) \ | \ X_{7\sim 9}$$

$$X_{7\sim 9} \to (7|X_{8\sim 9} \ 7)(X_{8\sim 9} \ 7)^*(X_{8\sim 9}|\varepsilon) \ | \ X_{8\sim 9}$$

$$X_{8\sim 9} \to (8|X_{9} \ 8)(X_{9} \ 8)^*(X_{9}|\varepsilon) \ | \ X_{9}$$

$$X_{9} \to 9$$

其中 $X_{i\sim i}$ 表示只含 $i\sim j$ 的数字组成的串。

2.7 用算法 2.4 为下列正规式构造不确定有限自动机,给出它们处理输入串 ababbab 的状态转化系列。

(d) $(a | b)^*abb(a | b)^*$

解: 只有一种方法能在最后使之接受, 即是有机会就向后走

状态转化: $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 6 \rightarrow 1 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 16$

$$\rightarrow 11 \rightarrow 14 \rightarrow 15 \rightarrow 16 \rightarrow 17$$

解: 这里输入字母表是 {a,b}.

根据算法, 先标记A, 然后计算 $\varepsilon - closure(move(A, a))$

由于在 $A = \{0,1,2,4,7\}$ 中,只有状态 2,7 能发生 a 转化,分别转换为状态 3 和 8 因此 $move(A,a) = \{3,8\}$,

$$\varepsilon - closure(move(A, a)) = \varepsilon - closure(\{3, 8\}) = \{1, 2, 3, 4, 6, 7, 8\}$$

称这个集合为 B, 于是 Dtran(A,a) = B

在 A 中, 只有状态 4 能发生 b 转换到达状态 5, 因此 $move(A,b) = \{5\}$,

$$\varepsilon - closure(move(A, b)) = \varepsilon - closure(\{5\}) = \{1, 2, 4, 5, 6, 7\}$$

称这个集合为 C, 于是 Dtran(A,b) = C

在 $B = \{1, 2, 3, 4, 6, 7, 8\}$ 中,状态 2,7 能发生 a 转换到达状态 3,8,因此 $move(B, a) = \{3, 8\}$,

$$\varepsilon - closure(move(B, a)) = \varepsilon - closure(\{3, 8\}) = \{1, 2, 3, 4, 6, 7, 8\}$$

这个集合为 B,于是 Dtran(B,a) = B

在 B 中,只有状态 4.8 能发生 b 转换到达状态 5.9 ,因此 $move(B,b) = \{5.9\}$

$$\varepsilon - closure(move(B, b)) = \varepsilon - closure(\{5, 9\}) = \{1, 2, 4, 5, 6, 7, 9\}$$

称这个集合为 D, 于是 Dtran(B,b) = D

在 $C = \{1, 2, 4, 5, 6, 7\}$ 中,只有状态 2,7 能发生 a 转化,分别转换为状态 3 和 8 因此 $move(C, a) = \{3, 8\}$,

$$\varepsilon - closure(move(C, a)) = \varepsilon - closure(\{3, 8\}) = \{1, 2, 3, 4, 6, 7, 8\}$$

这是 B, 于是 Dtran(C,a) = B

在 C 中只有状态 4 能发生 b 转化, 转换为状态 5

$$\varepsilon - closure(move(C, b)) = \varepsilon - closure(\{5\}) = \{1, 2, 4, 5, 6, 7\}$$

这是 C, 于是 Dtran(C,b) = C

在 $D = \{1,2,4,5,6,7,9\}$ 中,只有状态 2,7 能发生 a 转化,分别转换为状态 3 和 8 因此 $move(D,a) = \{3,8\}$,

$$\varepsilon - closure(move(D, a)) = \varepsilon - closure(\{3, 8\}) = \{1, 2, 3, 4, 6, 7, 8\}$$

称这个集合为 B, 于是 Dtran(D,a) = B

在 D 中, 状态 4,9 能发生 b 转换到达状态 5,10, 因此 $move(D,b) = \{5,10\}$,

$$\varepsilon - closure(move(D,b)) = \varepsilon - closure(\{5,10\}) = \{1,2,4,5,6,7,10,11,12,14,17\}$$
 称这个集合为 E ,于是 $Dtran(D,b) = E$

在 *E* = {1,2,4,5,6,7, 10,11,12,14,17} 中, 状态 2,7,12 能发生 *a* 转化, 转换为状态 3,8,13 因此 *move*(*E*,*a*) = {3,8,13},

$$\varepsilon - closure(move(E, a)) = \varepsilon - closure(\{3,813\}) = B \cup \{11, 12, 13, 14, 16, 17\}$$

称这个集合为 F, 于是 Dtran(E,a) = F

在 E 中,状态 4,14 能发生 b 转换到达状态 5,15,因此 $move(E,b)=\{5,15\}$,

$$\varepsilon - closure(move(E, b)) = \varepsilon - closure(\{5,15\}) = C \cup \{11, 12, 14, 15, 16, 17\}$$
 称这个集合为 G ,于是 $Dtran(E, b) = G$

在 $F = B \cup \{11,12,13,14,16,17\}$ 中,新增部分没有状态能发生 a 转化

于是 Dtran(F,a) = F

在 F 中,状态 4,8,14 能发生 b 转换到达状态 5,9,15,因此 $move(F,b) = \{5,9,15\}$,

$$\varepsilon - closure(move(F, b)) = \varepsilon - closure(\{5,915\}) = D \cup \{11,12,14,15,16,17\}$$

文个集合为 G 于是 $Dtran(F, b) = G$

这个集合为 G, 于是 Dtran(F,b) = G

在 $G = D \cup \{11, 12, 14, 15, 16, 17\}$ 中,状态 2,7,12 能发生 a 转化,转换为状态 3,8,13 因此 $move(G, a) = \{3,8,13\}$,

 $\varepsilon - closure(move(G, a)) = \varepsilon - closure(\{3, 8, 13\}) = B \cup \{11, 12, 13, 14, 16, 17\}$

这个集合为 F,于是 Dtran(G,a) = F

在 G 中,新增部分(除去原 B 的部分)没有状态能进行 b 转换,

于是 Dtran(G,b) = G

将上述得到的关系列表:

状态	输入符号			
1人/公	а	b		
A	В	С		
В	В	D		
С	В	С		
D	В	Е		
E (接受)	F	G		
F(接受)	F	G		
<i>G</i> (接受)	F	G		

输入串 ababbab 的状态转化:

$$A \rightarrow B \rightarrow D \rightarrow B \rightarrow D \rightarrow E \rightarrow F \rightarrow G$$

2.12 为下列正规式构造最简的 DFA:

(b) $(a | b)^* a (a | b) (a | b)$

解:直接对其观察构造,有四条接受分支,它们互不相同,应有四个接受状态,画出它的转换图:

编译原理 第二周作业 9月24日 周四

PB18151866 龚小航

3.1 考虑文法:

$$S \to (L) \mid a$$
$$L \to L, S \mid S$$

(b) 建立句子 (a,(a,a)) 和 (a,((a,a),(a,a)))的最左推导。

解:对其进行最左推导:

(a,(a,a)):

$$S \Rightarrow (L) \Rightarrow (L,S) \Rightarrow (L,(L)) \Rightarrow (L,(L,S)) \Rightarrow (L,(S,S))$$

 $\Rightarrow (S,(S,S)) \Rightarrow (a,(S,S)) \Rightarrow (a,(a,S)) \Rightarrow (a,(a,a))$

(a,((a,a),(a,a))):

$$S \Rightarrow (L) \Rightarrow (L,S) \Rightarrow (L,(L)) \Rightarrow (S,(L)) \Rightarrow (S,(L,S))$$

$$\Rightarrow (S,(S,S)) \Rightarrow (S,((L),S)) \Rightarrow (S,((L),(L))) \Rightarrow (S,((L,S),(L)))$$

$$\Rightarrow (S,((L,S),(L,S))) \Rightarrow (S,((S,S),(L,S))) \Rightarrow (S,((S,S),(S,S)))$$

$$\Rightarrow (a,((S,S),(S,S))) \Rightarrow (a,((a,S),(S,S))) \Rightarrow (a,((a,a),(S,S)))$$

$$\Rightarrow (a,((a,a),(a,S))) \Rightarrow (a,((a,a),(a,a)))$$

3.3 下面的二义文法描述命题演算公式,为它写一个等价的非二义文法。

$$S \rightarrow S$$
 and $S \mid S$ or $S \mid not S \mid true \mid false \mid (S)$

解:根据运算的优先级即可构造等价的非二义文法:

$$S \to S$$
 or A
 $A \to A$ and B

 $B \rightarrow \mathbf{not} \, B \mid \mathbf{true} \mid \mathbf{false} \mid (S)$

运算优先级: 非>与>或

编译原理 第四周作业 10月10日 周六

PB18151866 龚小航

3.8 消除以下文法的左递归:

$$S \to (L) \mid a$$
$$L \to L, S \mid S$$

并为其构造预测分析器。

解: 显然只有 L 存在直接左递归, 按消除左递归的一般方法:

```
S \rightarrow (L) \mid a
L \rightarrow SL'
L' \rightarrow SL' \mid \varepsilon
```

再为其构造预测分析器,为此需要先构造预测分析表。

先写出这个文法的 FIRST 集合与 FOLLOW 集合:

```
FIRST(S) = \{ (,a) \}
FIRST(L) = FIRST(S) = \{ (,a) \}
FIRST(L') = \{',', \epsilon\} \}
FOLLOW(S) = \{',', \$\}
FOLLOW(L) = \{ ) \}
FOLLOW(L') = \{ ) \}
```

由此做出其预测分析表:

非终结符	输入符号				
	()	а	,	\$
S	$S \to (L)$		$S \rightarrow a$		
L	$L \rightarrow SL'$		$L \rightarrow SL'$		
L'		$L' \to \varepsilon$		$L' \rightarrow$, SL'	$L' \to \varepsilon$

再给出此非递归的预测分析器的伪代码:

```
X= StackTop(Stack* s); //获取栈顶元素
while(X!=$){ //栈非空
   if(X = a){
       StackPop(Stack* s); //X从栈中弹出
   else if(X = 终结符) error(); //进入报错程序
   else if(M[X,a]未定义(出错));
             error(); //进入报错程序
   else if (M[X,a] = X \rightarrow Y_1Y_2Y_3 \cdots Y_k) {
       printf("X \rightarrow Y_1Y_2Y_3 \cdots Y_k");
       StackPop(Stack* s); //X从栈中弹出
       for(int i=k;i>0;i--){
          StackPush (Stack* s, DataType Y_i);
          //依次入栈, Y1在栈顶
       }
   X = StackTop(Stack* s); //获取栈顶元素
}
```

若采用递归设计,预测分析器代码如下:

```
void match(terminal t){
   if (lookahead == t)
   lookahead = nextToken();
   else
   error();
void S( ){
   if(lookahead == '('){
      match('(');
      L();
      match(')');
   else if(lookahead == 'a'){
      match('a');
   else
      error();
}
void L( ){
      S(); L1();
}
void L1( ){
   if(lookahead == ','){
      match(',');
       S();L1();
   else if (lookahead == '\epsilon') {
      match('\varepsilon');
   else error();
```

3.10 构造下列文法的 LL(1) 分析表:

```
T \rightarrow \mathbf{int} \mid \mathbf{real}

L \rightarrow \mathbf{id} R

R \rightarrow \mathbf{id} R \mid \varepsilon
```

 $D \rightarrow TL$

解: 先写出它的 FIRST 集合与 FOLLOW 集合:

```
FIRST(D) = FIRST(T) = { int, real }
FIRST(T) = { int, real }
FIRST(L) = { id }
FIRST(R) = { ', ' , ε }
FOLLOW(D) = FOLLOW(L) = {$}
FOLLOW(T) = { id }
FOLLOW(L) = { $ }
FOLLOW(R) = { $ }
```

由此做出其预测分析表:

非终结符			输入符号		
> > 11.3	int	real	id	,	\$
D	$D \rightarrow TL$	$D \rightarrow TL$			
T	$T \rightarrow \mathbf{int}$	$T \rightarrow \mathbf{real}$			
L			$L \rightarrow id R$		
R				$R \rightarrow , \mathbf{id} R$	$R \rightarrow \varepsilon$

编译原理 第五周作业 10 月 15 日 周四

PB18151866 龚小航

3.17 给出接受下列文法的活前缀的一个 DFA:

$$S \to (L) \mid a$$
$$L \to L, S \mid S$$

解: 构造接受活前缀的 DFA, 先作出这个文法的拓广文法:

$$S' \to S$$

$$S \to (L) \mid a$$

$$L \to L, S \mid S$$

再计算 LR(0) 项目集规范族(SLR分析表的基础),根据定义构造各状态: 初始状态记为 I_0 :

$$I_0: \left\{ \begin{array}{l} S' \to \cdot \ S \\ S \to \cdot (L) \\ S \to \cdot \ a \end{array} \right.$$

利用 goto() 函数, 计算出各个状态:

$$I_{1} = \operatorname{goto}(I_{0}, S) = S' \to S \cdot$$

$$I_{2} = \operatorname{goto}(I_{0}, ()) = \begin{cases} S \to (\cdot L) \\ L \to \cdot L, S \\ L \to \cdot S \\ S \to \cdot (L) \\ S \to \cdot a \end{cases}$$

$$I_3 = \text{goto}(I_0, a) = S \rightarrow a$$

此时 I_1,I_3 均已完成分析,只需继续对 I_2 分析即可:

$$I_4 = \operatorname{goto}(I_2, L) = \begin{cases} S \to (L \cdot) \\ L \to L \cdot, S \end{cases}$$

$$I_5 = \operatorname{goto}(I_2, S) = L \to S \cdot$$

$$I_6 = \operatorname{goto}(I_2, () = \operatorname{goto}(I_0, () = I_2 \quad \cdots \quad \text{重新定义状态}$$

$$I_7 = \operatorname{goto}(I_2, a) = S \to a \cdot = I_3 \quad \cdots \quad \text{重新定义状态}$$

至此 I_2 , I_5 也都分析完毕, 继续对 I_4 分析即可:

$$I_6 = \operatorname{goto}(I_4,)) = S \to (L) \cdot$$

$$I_7 = \operatorname{goto}(I_4, ,) = \begin{cases} L \to L, S \\ S \to (L) \\ S \to a \end{cases}$$

继续对 I_7 分析:

$$I_8 = \operatorname{goto}(I_7, S) = L \to L, S$$
 .
$$I_9 = \operatorname{goto}(I_7, \zeta) = \begin{cases} S \to (\cdot L) \\ L \to \cdot L, S \\ L \to \cdot S = I_2 \end{cases}$$
 重新定义状态
$$S \to (L)$$

$$S \to a$$

$$I_{10} = \operatorname{goto}(I_7, a) = S \to a \cdot = I_3$$
 重新定义状态

此时所有状态都分析完毕, 共计八个状态。画出对应的状态转换 DFA:

3.19 考虑下面的文法,为此文法构造 SLR 分析表。针对输入串 $a + ba^*$,对照分析表,用栈和输入缓冲区, 写出判断过程该串合法性的过程。

$$E \rightarrow E + T \mid T$$

$$T \rightarrow TF \mid F$$

$$F \rightarrow F^* \mid a \mid b$$

解: 首先写出其拓广文法:

$$E' \rightarrow E$$

$$E \rightarrow E + T \mid T$$

$$T \rightarrow TF \mid F$$

$$F \rightarrow F^* \mid a \mid b$$

对其构造 LR(0) 项目集规范族:

初始状态记为 I_0 :

$$I_0 : \left\{ \begin{array}{l} E' \rightarrow \cdot E \\ E \rightarrow \cdot E + T \\ E \rightarrow \cdot T \\ T \rightarrow \cdot TF \\ T \rightarrow \cdot F \\ F \rightarrow \cdot F^* \\ F \rightarrow \cdot a \\ F \rightarrow \cdot b \end{array} \right.$$

利用 goto() 函数, 计算出各个状态:

$$I_{1} = \operatorname{goto}(I_{0}, E) = \begin{cases} E' \to E \\ E \to E + T \end{cases}$$

$$I_{2} = \operatorname{goto}(I_{0}, T) = \begin{cases} E \to T \\ T \to T \cdot F \\ F \to \cdot F * \\ F \to \cdot b \end{cases}$$

$$I_{3} = \operatorname{goto}(I_{0}, F) = \begin{cases} T \to F \\ F \to F * \end{cases}$$

$$I_{4} = \operatorname{goto}(I_{0}, a) = F \to a \cdot$$

$$I_{5} = \operatorname{goto}(I_{0}, b) = F \to b \cdot$$

 I_0, I_4, I_5 分析完毕,接下来分析 I_1 :

$$I_{6} = \operatorname{goto}(I_{1}, +) = \begin{cases} E \to E + T \\ T \to TF \\ T \to F \\ F \to F^{*} \\ F \to a \\ F \to b \end{cases}$$

分析 I₂:

$$I_7 = \text{goto}(I_2, F) = \begin{cases} T \to TF \cdot \\ F \to F \cdot * \end{cases}$$

 $\text{goto}(I_2, a) = I_4; \quad \text{goto}(I_2, b) = I_5$

分析 I₃:

$$I_8 = goto(I_3, *) = F \rightarrow F *$$

分析 I₆:

$$I_9 = \text{goto}(I_6, T) = \begin{cases} E \to E + T \cdot \\ T \to T \cdot F \\ F \to \cdot F^* \\ F \to \cdot a \\ F \to \cdot b \end{cases}$$

$$goto(I_6, F) = I_3; goto(I_6, a) = I_4; goto(I_6, b) = I_5$$

分析 I₇:

$$goto(I_7,*) = I_8$$

分析 I₉:

$$goto(I_9, F) = I_7$$
; $goto(I_9, a) = I_4$; $goto(I_9, b) = I_5$

至此,所有状态都已经分析完毕,共计九个状态,做出状态转换 DFA:

根据状态转换 DFA , 构造 SLR 分析表:

对产生式进行标号,再求出 FIRST、FOLLOW集合:

产生式标号:

$$(1) \ E' \rightarrow E \qquad (2) \ E \rightarrow E + T \qquad (3) \ E \rightarrow T \qquad (4) \ T \rightarrow TF$$

$$(5) \ T \rightarrow F \qquad \qquad (6) \ F \rightarrow F^* \qquad \qquad (7) \ F \rightarrow a \qquad \qquad (8) \ F \rightarrow b$$

FIRST、FOLLOW集合:

FIRST(E') = FIRST(E) = FIRST(T) = FIRST(F) =
$$\{a, b\}$$

FOLLOW(E') = $\{\$\}$
FOLLOW(E) = $\{+,\$\}$
FOLLOW(T) = $\{a, b, +,\$\}$
FOLLOW(F) = $\{*, a, b, +,\$\}$

最后根据 SLR 分析表构造算法得到以下分析表:

√T7 -/-	动作				转	移			
状态	+	*	а	b	\$	E'	Е	Т	F
0			<i>s</i> 4	<i>s</i> 5			1	2	3
1	<i>s</i> 6				асс				
2	r3		s4	<i>s</i> 5	r3				7
3	<i>r</i> 5	<i>s</i> 8	<i>r</i> 5	<i>r</i> 5	<i>r</i> 5				
4	<i>r</i> 7								
5	r8	r8	r8	r8	r8				
6			s4	<i>s</i> 5				9	3
7	r4	<i>s</i> 8	r4	r4	r4				
8	r6	r6	r6	r6	r6				
9	r2		<i>s</i> 4	<i>s</i> 5	r2				7

栈	输入	动作
0	$a + ba^*$ \$	移进
0 a 4	+ba*\$	按 $F \rightarrow a$ 归约
0 F 3	+ba*\$	接 $T \rightarrow F$ 归约
0 T 2	+ba*\$	按 <i>E</i> → <i>T</i> 归约
0 E 1	$+ba^*$ \$	移进
0 E 1 + 6	ba^* \$	移进
0 E 1 + 6 b 5	a*\$	接 $F \rightarrow b$ 归约
0 E 1 + 6 F 3	a*\$	按 <i>T → F</i> 归约
0 E 1 + 6 T 9	<i>a</i> *\$	移进
0 E 1 + 6 T 9 α 4	* \$	按 $F \rightarrow a$ 归约
0 E 1 + 6 T 9 F 7	* \$	移进
0 E 1 + 6 T 9 F 7 * 8	\$	按 <i>F</i> → <i>F</i> * 归约
0 E 1 + 6 T 9 F 7	\$	按 T → TF 归约
0 E 1 + 6 T 9	\$	按 <i>E</i> → <i>E</i> + <i>T</i> 归约
0 E 1	\$	接受

编译原理 第六周作业 10月22日 周四

PB18151866 龚小航

3.19 考虑下列文法, 并为其构造 LALR 分析表:

$$E \to E + T \mid T$$

$$T \to TF \mid F$$

$$F \to F^* \mid a \mid b$$

解: 先做出其拓广文法:

$$E' \rightarrow E$$

$$E \rightarrow E + T \mid T$$

$$T \rightarrow TF \mid F$$

$$F \rightarrow F^* \mid a \mid b$$

再构造 LR(1) 项目集, 根据构造算法:

$$I_{0} = \begin{cases} E' \to \cdot E, & \$ \\ E \to \cdot E + T, & \$ \\ E \to \cdot T, & \$ \\ E \to \cdot T, & + \\ E \to \cdot T, & + \\ T \to \cdot TF, & \$ \\ T \to \cdot TF, & + \\ T \to \cdot TF, & a \\ T \to \cdot F, & a \\ T \to \cdot F, & b \\ F \to \cdot F^*, & + \\ F \to \cdot a, & + \\ F \to \cdot b, & + \\ F \to \cdot b, & a \\ F \to \cdot b, & a \\ F \to \cdot b, & a \\ F \to \cdot b, & b \\ F \to \cdot a, & b \\ F \to \cdot b, & b \\ F \to \cdot A, & */\$ \\ F \to \cdot a, & */\$ \\ F \to \cdot b, & */\$ \end{cases}$$

$$I_{1} = \text{goto}(I_{0}, E) = \begin{cases} E' \to E \cdot , & \$ \\ E \to E \cdot + T, & \$/+ \end{cases}$$

$$I_{2} = \text{goto}(I_{0}, T) = \begin{cases} E \to T \cdot , & \$/+ \\ T \to T \cdot F, & \$/a/b/+ \\ F \to \cdot F^{*}, & \$/a/b/+/* \\ F \to \cdot a, & \$/a/b/+/* \end{cases}$$

$$I_{3} = \text{goto}(I_{0}, F) = \begin{cases} T \to F \cdot , & \$/a/b/+ \\ F \to F \cdot^{*}, & \$/a/b/+/* \end{cases}$$

$$I_{4} = \text{goto}(I_{0}, a) = F \to a \cdot , & \$/a/b/+/*$$

$$I_{5} = \text{goto}(I_{0}, b) = F \to b \cdot , & \$/a/b/+/*$$

至此 I_0, I_4, I_5 分析完毕, 接下来计算 I_1 的 goto 集合:

$$I_{6} = \text{goto}(I_{1}, +) = \begin{cases} E \to E + \cdot T, & \$/+ \\ T \to \cdot TF, & \$/a/b/+ \\ T \to \cdot F, & \$/a/b/+ \\ F \to \cdot F^{*}, & \$/a/b/+/* \\ F \to \cdot a, & \$/a/b/+/* \\ F \to \cdot b, & \$/a/b/+/* \end{cases}$$

 I_1 计算完毕,接下来分析 I_2 :

$$I_7 = \operatorname{goto}(I_2, F) = \begin{cases} T \to TF \cdot, & \frac{1}{a}/b + \frac{1}{b} \\ F \to F \cdot^*, & \frac{1}{a}/b + \frac{1}{b} \end{cases}$$
$$\operatorname{goto}(I_2, a) = I_4; & \operatorname{goto}(I_2, b) = I_5$$

分析 I₃:

$$I_8 = \text{goto}(I_3,*) = F \rightarrow F^* \cdot , \qquad \$/a/b/+/*$$

分析 I₆:

$$I_{9} = \text{goto}(I_{6}, T) = \begin{cases} E \to E + T \cdot, & \$/+ \\ T \to T \cdot F, & \$/a/b/+ \\ F \to \cdot F^{*}, & \$/a/b/+/* \\ F \to \cdot a, & \$/a/b/+/* \\ F \to \cdot b, & \$/a/b/+/* \end{cases}$$

$$\text{goto}(I_{6}, F) = I_{3}; & \text{goto}(I_{6}, a) = I_{4}; & \text{goto}(I_{6}, b) = I_{5};$$

分析 I₇:

$$goto(I_7,*) = I_8$$

分析 I₉:

$$goto(I_9, F) = I_7;$$
 $goto(I_9, a) = I_4;$ $goto(I_9, b) = I_5;$

至此所有状态及其转移情况均已构造完毕,此时没有可以合并的同心项目集。由此做出状态转换图:

产生式标号:

$$(1) \ E' \rightarrow E \qquad (2) \ E \rightarrow E + T \qquad (3) \ E \rightarrow T \qquad (4) \ T \rightarrow TF$$

(5)
$$T \rightarrow F$$
 (6) $F \rightarrow F^*$ (7) $F \rightarrow a$ (8) $F \rightarrow b$

根据 LALR 分析表构造方法,得到分析表如下:

12121				p1		1			
状态		动作						转移	
,,,,,,	+	*	а	b	\$	E'	Е	T	F
0			s4	<i>s</i> 5			1	2	3
1	s6				асс				
2	r3		s4	<i>s</i> 5	r3				7
3	<i>r</i> 5	<i>s</i> 8	<i>r</i> 5	<i>r</i> 5	<i>r</i> 5				
4	<i>r</i> 7								
5	r8	r8	r8	<i>r</i> 8	r8				
6			s4	<i>s</i> 5				9	3
7	r4	<i>s</i> 8	r4	r4	r4				
8	r6	r6	r6	r6	r6				
9	r2		s4	<i>s</i> 5	r2				7

3.27 文法 G 的产生式如下:

$$S \rightarrow I \mid R$$
 $I \rightarrow d \mid I d$ $R \rightarrow WpF$ $W \rightarrow Wd \mid \varepsilon$ $F \rightarrow Fd \mid d$

- a) 令 d 表示任意数字, p 表示十进制小数点, 那么非终结符 S,I,R,W,F在编程语言中分别表示什么?
- b) 该文法是 LR(1) 文法吗? 为什么?

解:对该文法进行分析:

a) 若 $d\sim[0-9]$, 从产生式 $W\to Wd\mid \varepsilon$ 可知 W 表示若干个任意数字,即 $W\sim[0-9]^*$; 同理 $F\sim[0-9]^+$,再由产生式 $R\to WpF$ 可知 $R\sim[0-9]^*$.[$0-9]^+$,表示一个浮点数; 再从产生式 $I\to d\mid Id$ 可知 $I\sim[0-9]^+$,表示一个若干位的正整数。

因此,可以写出各个非终结符表示的意义:

S: 无符号数; I: 无符号整数; R: 无符号浮点数, 其中整数部分可以不存在;

W: 无符号浮点数的整数部分,可以为空; F: 无符号浮点数的小数部分,必须存在

- **b**) 该文法不是 LR(1) 文法。显然这样的文法会产生很多冲突。例如当分析器处于初始状态时,面对的第一个输入符号是 d,那么由产生式 $I \to d \mid I d$ 和 $W \to W d \mid \varepsilon$,并无法确定应该将其归约为 I 还是归约为 W,产生一个明显的归约-归约冲突。这就可以断言它不是 LR(1) 文法。
- 3.29 为下面的文法构造给范 LR(1) 分析表,只需画出状态转换图。这样的状态转换图有同心项目集吗? 若有,合并同心项目集后是否会出现动作冲突?

$$S \rightarrow V = E \mid E$$

 $V \rightarrow *E \mid id$
 $E \rightarrow V$

解: 先做出其拓广文法:

$$S' \rightarrow S$$

 $S \rightarrow V = E \mid E$
 $V \rightarrow *E \mid id$
 $E \rightarrow V$

再构造 LR(1) 项目集, 根据构造算法:

$$I_{0} = \begin{cases} S' \to \cdot S, & \$ \\ S \to \cdot V = E, & \$ \\ S \to \cdot E, & \$ \\ V \to \cdot *E, & = \\ V \to \cdot \text{id}, & = \\ E \to \cdot V, & \$ \\ V \to \cdot *E, & \$ \\ V \to \cdot \text{id}, & = /\$ \\ V \to$$

从 I₀ 开始构造规范项目集:

$$\begin{split} I_1 &= \text{goto}(I_0, S) = S' \to S \cdot, \ \$ \\ I_2 &= \text{goto}(I_0, V) = \left\{ \begin{array}{l} S \to V \cdot = E, \ \$ \\ E \to V \cdot, \end{array} \right. \$ \\ I_3 &= \text{goto}(I_0, E) = S \to E \cdot, \ \$ \\ I_4 &= \text{goto}(I_0, *) = \left\{ \begin{array}{l} V \to * \cdot E, \ = /\$ \\ E \to \cdot V, \ = /\$ \\ V \to \cdot * E, \ = /\$ \\ V \to \cdot \text{id}, \ = /\$ \end{array} \right. \\ I_5 &= \text{goto}(I_0, \text{id}) = V \to \text{id} \cdot, \ = /\$ \end{split}$$

 I_0, I_1, I_3, I_5 构造完毕,继续分析 I_2 :

$$I_6 = \operatorname{goto}(I_2, =) = \begin{cases} S \to V = \cdot E, & \$ \\ E \to \cdot V, & \$ \\ V \to \cdot *E, & \$ \\ V \to \cdot \text{ id.} & \$ \end{cases}$$

分析 I4:

$$I_7 = \text{goto}(I_4, E) = V \to *E \cdot, =/$$$

 $I_8 = \text{goto}(I_4, V) = E \to V \cdot, =/$$
 $\text{goto}(I_4, *) = I_4 ; \text{goto}(I_4, id) = I_5$

分析 I₆:

$$\begin{split} I_9 &= \mathrm{goto}(I_6, E) = S \rightarrow V = E \cdot, \; \$ \\ I_{10} &= \mathrm{goto}(I_6, V) = E \rightarrow V \cdot, \qquad \$ \\ I_{11} &= \mathrm{goto}(I_6, *) = \begin{cases} V \rightarrow * \cdot E, & \$ \\ E \rightarrow \cdot V, & \$ \\ V \rightarrow \cdot * E, & \$ \\ V \rightarrow \cdot \; \mathbf{id}, & \$ \end{cases} \\ I_{12} &= \mathrm{goto}(I_6, \mathbf{id}) = V \rightarrow \; \mathbf{id} \cdot, & \$ \end{split}$$

分析 I11:

$$\begin{split} I_{13} &= \text{goto}(I_{11}, E) = V \to * \ E \cdot , \quad \$ \\ &\text{goto}(I_{11}, V) = I_{10} \ ; \quad \text{goto}(I_{11}, *) = I_{11} \ ; \quad \text{goto}(I_{11}, \mathbf{id}) = I_{12} \end{split}$$

至此所有状态均分析完毕,由此构造状态转换图:

这样的状态转换图存在同心项目集:

$$I_4 = I_{11}, I_5 = I_{12}, I_8 = I_{10}$$

由教材85,86页的结论,合并后不会出现移进-归约冲突。经过计算,合并后也未出现归约-归约冲突。

4.3 为下列文法写两个语法制导定义,输出括号的对数以及括号嵌套的最大深度。

$$S \rightarrow (L) \mid a$$

 $L \rightarrow L, S \mid S$

解: 对于给定的文法,直接按要求做出其语法制导的定义:

输出括号的对数:

产生式	语义规则
$E \to S \mathbf{n}$	print(S. val)
$S \rightarrow (L)$	S, val = L. val + 1
$S \rightarrow a$	S. val = 0
$L \to L_1, S$	$L. val = L_1. val + S. val$
$L \rightarrow S$	L. val = S. val

输出括号嵌套的最大深度:

产生式	语义规则
$E \to S \mathbf{n}$	print(S.val)
$S \rightarrow (L)$	S, val = L. val + 1
$S \rightarrow a$	S. val = 0
$L \to L_1, S$	$L. val = (L_1. val > S. val)? L_1. val : S. val$
$L \rightarrow S$	L. val = S. val

编译原理 第七周作业 9月24日 周四

PB18151866 龚小航

3.37 下面是一个二义文法:

$$S \to AS \mid b$$
$$A \to SA \mid a$$

如果为该文法构造 LR 分析表,则一定存在某些有分析动作冲突的项目,它们是哪些?假定分析表这样来使用: 出现冲突时,不确定的选择一个可能的动作。给出对于输入 abab 所有可能的动作系列。

解: 先做出其拓广文法:

$$S' \to S$$

$$S \to AS \mid b$$

$$A \to SA \mid a$$

再构造 LR(1) 项目集,根据构造算法: $FIRST(S) = FIRST(A) = \{a, b\}$

$$I_{0} = \begin{cases} S' \to \bullet S, & \$ \\ S \to \bullet AS, & \$ \\ S \to \bullet b, & \$ \\ A \to \bullet SA, & a/b = \begin{cases} S' \to \bullet S, & \$ \\ S \to \bullet AS, & \$/a/b \\ S \to \bullet b, & a/b \end{cases}$$

$$\begin{cases} S' \to \bullet S, & \$ \\ S \to \bullet AS, & \$/a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet SA, & a/b \end{cases}$$

$$\begin{cases} S' \to \bullet S, & \$ \\ S \to \bullet AS, & \$/a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet a, & a/b \end{cases}$$

对 I_0 进行分析:

$$I_{1} = \gcd(I_{0}, S) = \begin{cases} S' \to S \bullet, & \$ \\ A \to S \bullet A, & a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet a, & a/b \\ S \to \bullet AS, & a/b \\ S \to \bullet b, & a/b \end{cases}$$

$$I_{2} = \gcd(I_{0}, A) = \begin{cases} S \to A \bullet S, & \$/a/b \\ S \to \bullet AS, & \$/a/b \\ S \to \bullet b, & \$/a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet AS, & \$/a/b \\ A \to \bullet AS, & A/b \\ A \to$$

至此, I_0 , I_3 , I_4 已分析完毕,接下来分析 I_1 :

$$I_{5} = \operatorname{goto}(I_{1}, A) = \begin{cases} A \to SA \bullet, & a/b \\ S \to A \bullet S, & a/b \\ S \to \bullet AS, & a/b \\ S \to \bullet b, & a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet A, & a/b \end{cases}$$

$$I_{6} = \operatorname{goto}(I_{1}, S) = \begin{cases} A \to S \bullet A, & a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet A, & a/b \\ S \to \bullet AS, & a/b \\ S \to \bullet b, & a/b \end{cases}$$

$$goto(I_{1}, a) = I_{4}$$

 $I_7 = \text{goto}(I_1, b) = S \rightarrow b \bullet, a/b$

分析 I₂:

$$I_{8} = \operatorname{goto}(I_{2}, S) = \begin{cases} S \to AS \bullet, & \$/a/b \\ A \to S \bullet A, & a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet a, & a/b \\ S \to \bullet AS, & a/b \\ S \to \bullet b, & a/b \end{cases}$$

 $goto(I_2, A) = I_2; goto(I_2, a) = I_4; goto(I_2, b) = I_3$

分析 I₅:

$$I_{9} = \operatorname{goto}(I_{5}, S) = \begin{cases} S \to AS \bullet, & a/b \\ A \to S \bullet A, & a/b \\ A \to \bullet SA, & a/b \\ A \to \bullet a, & a/b \\ S \to \bullet AS, & a/b \\ S \to \bullet b, & a/b \end{cases}$$

$$I_{10} = \operatorname{goto}(I_{5}, A) = \begin{cases} S \to A \bullet S, & a/b \\ S \to \bullet AS, & a/b \\ S \to \bullet AS, & a/b \\ A \to \bullet AS, & AS, & A/b \\ A \to \bullet AS, & A$$

分析 I₆:

$$goto(I_6, S) = I_6; goto(I_6, A) = I_5; goto(I_6, a) = I_4; goto(I_6, b) = I_7$$

 $goto(I_5, b) = I_7; goto(I_5, a) = I_4$

分析 I₈:

$$goto(I_8, A) = I_5; goto(I_8, S) = I_6; goto(I_8, a) = I_4; goto(I_8, b) = I_7;$$

分析 I₉:

$$goto(I_9, A) = I_5; goto(I_9, S) = I_6; goto(I_9, a) = I_4; goto(I_9, b) = I_7;$$

分析 I₁₀:

$$goto(I_{10}, S) = I_9; goto(I_{10}, A) = I_{10}; goto(I_{10}, b) = I_7; goto(I_6, a) = I_4$$

至此所有状态均分析完毕,做出其状态转换图:

由状态转换图,即可做出规范的 LR 分析表:

产生式标号:

$$(1) S \rightarrow AS \qquad (2) S \rightarrow b \qquad (3) A \rightarrow SA \qquad (4) A \rightarrow a$$

根据 LR 分析表构造方法, 得到分析表如下:

状态	动作			转	移
1///65	а	b	\$	S	A
0	s4	<i>s</i> 3		1	2
1	s4	<i>s</i> 7	асс	6	5
2	s4	<i>s</i> 3		8	2
3	r2	r2	<i>r</i> 2		
4	r4	r4			
5	s4/r3	s7/r3		9	10
6	s4	s7		6	5
7	r2	r2			
8	s4/r1	s7/r1	<i>r</i> 1	6	5
9	s4/r1	s7/r1		6	5
10	s4	s7		9	10

可知状态 5, 8, 9 都存在分析动作冲突。

由规范的 LR 分析表,可知输入串为 abab 时,可能出现的动作系列如下:

情况一

-:		
栈	输入	动作
0	a b a b \$	移进
0 a 4	b a b \$	接 $A \rightarrow a$ 归约
0 A 2	b a b \$	移进
0 A 2 b 3	a b \$	按 S → b 归约
0 A 2 S 8	a b \$	移进
0 A 2 S 8 a 4	b \$	接 $A \rightarrow a$ 归约
0 A 2 S 8 A 5	b \$	移进
0 A 2 S 8 A 5 b 7	\$	报错

情况二:

栈	输入	动作
0	a b a b \$	移进
0 a 4	b a b \$	接 $A \rightarrow a$ 归约
0 A 2	b a b \$	移进
0 A 2 b 3	a b \$	接 $S \rightarrow b$ 归约
0 A 2 S 8	a b \$	移进
0 A 2 S 8 a 4	b \$	接 $A \rightarrow a$ 归约
0 A 2 S 8 A 5	b \$	接 $A \rightarrow SA$ 归约
0 A 2 A 2	b \$	移进
0 A 2 A 2 b 3	\$	接 $S \rightarrow b$ 归约
0 A 2 A 2 S 8	\$	接 $S \rightarrow AS$ 归约
0 A 2 S 8	\$	接 $S \rightarrow AS$ 归约
0 S 1	\$	接受

情况三:

栈	输入	动作
0	a b a b \$	移进
0 a 4	b a b \$	接 $A \rightarrow a$ 归约
0 A 2	b a b \$	移进
0 A 2 b 3	a b \$	接 $S \rightarrow b$ 归约
0 A 2 S 8	a b \$	接 $S \rightarrow AS$ 归约
0 <i>S</i> 1	a b \$	移进
0 S 1 a 4	b \$	接 $A \rightarrow a$ 归约
0 <i>S</i> 1 <i>A</i> 5	b \$	移进
0 S 1 A 5 b 7	\$	报错

情况四:

栈	输入	动作
0	a b a b \$	移进
0 a 4	b a b \$	接 $A \rightarrow a$ 归约
0 A 2	b a b \$	移进
0 A 2 b 3	a b \$	接 $S \rightarrow b$ 归约
0 A 2 S 8	a b \$	接 $S \rightarrow AS$ 归约
0 S 1	a b \$	移进
0 S 1 a 4	b \$	按 A → a 归约
0 S 1 A 5	b \$	接 $A \rightarrow SA$ 归约
0 A 2	b \$	移进
0 A 2 b 3	\$	接 $S \rightarrow b$ 归约
0 A 2 S 8	\$	接 $S \rightarrow AS$ 归约
0 <i>S</i> 1	\$	接受

4.5 为下面的文法写一个语法制导的定义,它完成一个句子的 while - do 最大嵌套层次的计算并输出结果。

 $S \rightarrow E$ $E \rightarrow$ while E do E | id := E | E + E | id | (E)

解:给出其语法制导定义:loop是表示循环嵌套最大层数的综合属性。

产生式	语义规则	
$S \to E$	print(S.loop)	
$E \rightarrow \mathbf{while} \ E_1 \ \mathbf{do} \ E_2$	$E.loop = \max\{E_1.loop, E_2.loop\} + 1$	
$E \rightarrow \mathbf{id} := E_1$	$E.loop = E_1.loop$	
$E \rightarrow E_1 + E_2$	$E.loop = \max\{E_1.loop, E_2.loop\}$	
$E \rightarrow id$	E.loop = 0	
$E \to (E_2)$	$E.loop = E_1.loop$	

4.9 用 S 的综合属性 val 给出下面文法中 S 产生的二进制数的值。如输入 101.101,输出 S.val = 5.625

$$S \rightarrow L.L \mid L$$

$$L \rightarrow LB \mid B$$

$$B \rightarrow 0 \mid 1$$

用 L 属性定义决定 S.val。在该定义中,B 的唯一综合属性是 c (还需要继承属性),它给出由 B 产生的位对最终值的贡献。例如 101.101 的最前一位和最后一位对值 5.625 的贡献分别是 4 和 0.125

解: 为解释的更清楚, 可以对这个文法略作改动, 将其改为:

$$S \rightarrow L.R \mid L$$

$$L \rightarrow BL \mid B$$

$$R \rightarrow RB \mid B$$

$$B \rightarrow 0 \mid 1$$

将其分为小数点左侧和小数点右侧两部分。inh 为其继承属性,分两部分定义即可。

给出其语法制导定义:

	语义规则
$S \rightarrow L.R$	S. val = L. val + R. val
$S \rightarrow L$	S. val = L. val
$L \rightarrow BL_1$	B. inh = $L_1 \cdot c * 2$; $L \cdot c = L_1 \cdot c * 2$; $L \cdot val = L_1 \cdot val + B \cdot c$
$L \rightarrow B$	B. $inh = 1$; L. $c = 1$; L. $val = B$. c
$R \rightarrow R_1 B$	B. inh = R_1 . c/2; R. c = R_1 . c/2; R. val = R_1 . val + B. c
$R \rightarrow B$	B. inh = 0.5 ; L. c = 0.5 ; R. val = B. c
$B \rightarrow 0$	B.c=0
$B \rightarrow 1$	B. c = B. inh

4.12 文法如下:

$$S \rightarrow (L) \mid a$$

$$L \rightarrow L, S \mid S$$

写一个翻译方案,它打印出每个 a 在句子中是第几个字符。例如对于句子 (a,(a,(a,a),(a))),输出的结果为 2581014

翻译方案如下所示。

$$S' \rightarrow \{S. inh = 0\} S$$

$$S \rightarrow \{L.inh = S.inh + 1\} (L) \{S.val = L.val + 1\}$$

$$S \rightarrow a \ \{S. \, val = S. \, inh + 1; \ printf(S. \, val)\}$$

$$L \to \{L_1.inh = L.inh\}\ L_1,\ \{S.inh = L_1.val + 1\}\ S\ \{L.val = S.val\}$$

$$L \rightarrow \{S.inh = L.inh\}$$
 S $\{L.val = S.val\}$