Design and Generation of Efficient Hardware Accelerators for Tensor Computations

Nitish Srivastava

Special Committee

Zhiru Zhang David Albonesi Christopher Batten Rajit Manohar

01/14/2020

School of Electrical and Computer Engineering, Cornell University

- Tensors are generalization of matrices to n dimensions
 - Scalar is tensor with 0 dimensions
 - Vector is tensor with 1 dimension
 - Matrix is tensor with 2 dimensions, and so on

- Tensors are generalization of matrices to n dimensions
 - Scalar is tensor with 0 dimensions
 - Vector is tensor with 1 dimension
 - Matrix is tensor with 2 dimensions, and so on
- Sparse tensor is a tensor where most of its elements are zeros

- Tensors are generalization of matrices to n dimensions
 - Scalar is tensor with 0 dimensions
 - Vector is tensor with 1 dimension
 - Matrix is tensor with 2 dimensions, and so on
- Sparse tensor is a tensor where most of its elements are zeros
- Tensor kernels are both compute and data intensive

2D Tensor/ Matrix

- **Tensors** are generalization of matrices to n dimensions
 - Scalar is tensor with 0 dimensions
 - Vector is tensor with 1 dimension
 - Matrix is tensor with 2 dimensions, and so on
- **Sparse tensor** is a tensor where most of its elements are zeros
- Tensor kernels are both compute and data intensive
- Popular tensor kernels
 - Matricized Tensor Times Khatri-Rao Product (MTTKRP)
 - Matrix-Matrix Multiplication (MM)
 - Matrix-Vector Multiplication (MV), etc

^[1] Zhang, Shijin, et al. "Cambricon-x: An accelerator for sparse neural networks.", Int'l Symp. on Microarchitecture, 2016.

^[2] Han, Song, et al. "Ese: Efficient speech recognition engine with sparse Istm on fpga." Int'l Symp. on Field-Programmable Gate Arrays, 2017.

^[3] Fowers, Jeremy, et al. "A high memory bandwidth fpga accelerator for sparse matrix-vector multiplication." Int'l Symp. on Field-Programmable Custom Computing Machines, 2014.

All these accelerators either focus on a single tensor kernel or certain class of applications with some assumptions on sparsity

^[1] Zhang, Shijin, et al. "Cambricon-x: An accelerator for sparse neural networks.", Int'l Symp. on Microarchitecture, 2016.

^[2] Han, Song, et al. "Ese: Efficient speech recognition engine with sparse Istm on fpga." Int'l Symp. on Field-Programmable Gate Arrays, 2017.

^[3] Fowers, Jeremy, et al. "A high memory bandwidth fpga accelerator for sparse matrix-vector multiplication." Int'l Symp. on Field-Programmable Custom Computing Machines, 2014.

^[4] Pal, Subhankar, et al. "Outerspace: An outer product based sparse matrix multiplication accelerator." Int'l Symp. on High Performance Computer Architecture (HPCA), 2018.

Challenges with Dense and Sparse Tensor Acceleration

Dense

Productivity

Although dense accelerators are wellunderstood, designing a highly-efficient dense tensor accelerator in short amount of time still remains a challenge

Challenges with Dense and Sparse Tensor Acceleration

Dense

Productivity

Although dense accelerators are wellunderstood, designing a highly-efficient dense tensor accelerator in short amount of time still remains a challenge

Sparse

Flexibility

Existing sparse tensor accelerators focus on a single application while making assumptions on sparsity

Efficiency

Achieving high performance and energy efficiency while maintaining flexibility

Challenges with Dense and Sparse Tensor Acceleration

Dense

Productivity

Although dense accelerators are wellunderstood, designing a highly-efficient dense tensor accelerator in short amount of time still remains a challenge

Sparse

Flexibility

Existing sparse tensor accelerators focus on a single application while making assumptions on sparsity

Efficiency

Achieving high performance and energy efficiency while maintaining flexibility

In my dissertation, I would attempt to address the productivity challenge in dense tensor acceleration and flexibility and efficiency challenge in sparse tensor acceleration

Dissertation Structure

<u>Dense</u>

T2S-Tensor: a language and a compilation framework to productively generate high-performance accelerators for dense tensor algebra (FCCM'19) – *Chapter 3*

Dissertation Structure

MTTKRP Dense (Matricized Tensor Times Sparse-**Khatri Rao Product)** Dense **TTMc** Dense (Tensor Times Matrix Chain) Sparse-Dense Dense Sparse-MM Dense (Matrix-Matrix Multiply) Dense Sparse-MV **Dense** (Matrix-Vector Multiply)

Dense

T2S-Tensor: a language and a compilation framework to productively generate high-performance accelerators for dense tensor algebra (FCCM'19) – *Chapter 3*

Mixed Sparse-Dense

■ **Tensaurus:** a hardware accelerator for mixed sparse-dense tensor computations such as tensor factorizations and matrix multiplications (HPCA'20) – *Chapter 4*

Dissertation Structure

MTTKRP (Matricized Tensor Times Khatri Rao Product)	Dense	
	Sparse- Dense	
TTMc (Tensor Times Matrix Chain)	Dense	
	Sparse- Dense	
MM (Matrix-Matrix Multiply)	Dense	4
	Sparse- Dense	1
	Sparse- Sparse	
MV (Matrix-Vector Multiply)	Dense	
	Sparse- Dense	
	Sparse- Sparse	

Dense

■ **T2S-Tensor:** a language and a compilation framework to productively generate high-performance accelerators for dense tensor algebra (FCCM'19) – *Chapter 3*

Mixed Sparse-Dense

Tensaurus: a hardware accelerator for mixed sparse-dense tensor computations such as tensor factorizations and matrix multiplications (HPCA'20) – Chapter 4

Sparse-Sparse

MatRaptor: a hardware accelerator for the most popular sparse-sparse tensor kernel i.e. sparse-sparse matrix multiply (submitted to ISCA'20) – Chapter 5

Chapter 3

T2S-Tensor: Productively Generating High-Performance Spatial Hardware for Dense Tensor Computations

 Appears in International Symposium on Field-Programmable Custom Computing Machines (FCCM'19)

Designing high-performance dense tensor accelerators is hard

- Designing high-performance dense tensor accelerators is hard
- Even for well-known kernels like MM it takes around 18 months to come up with a high-performance design.

- Designing high-performance dense tensor accelerators is hard
- Even for well-known kernels like MM it takes around 18 months to come up with a high-performance design.

T2S-Tensor Contributions

► T2S-Tensor: A language and compilation framework to productively generate systolic arrays for dense tensor computations

Key Features:

- Provides a concise yet expressive programming abstraction that <u>decouples hardware</u> <u>optimizations from algorithm</u>
- Provides a <u>set of key compiler optimizations</u> that are essential for creating highperformance systolic arrays for dense tensor computations

Driving Example – Dense Matrix Multiplication (Dense MM)

High-performance dense MM design on FPGA

Driving Example – Dense Matrix Multiplication (Dense MM)

High-performance dense MM design on FPGA

Driving Example – Dense Matrix Multiplication (Dense MM)

High-performance dense MM design on FPGA

Driving Example – Dense Matrix Multiplication (Dense MM)

High-performance dense MM design on FPGA

High-Performance Dense MM Design in HLS

```
Custom compute
 unrolled for(int ii = 0; ii < II; ii++) {
                                                    (Loop unrolling)
 unrolled for(int jj = 0; jj < JJ; jj++) {
  for(int i = 0; i < I/II*III; i++) {
                                                    Custom compute
    for(int j = 0; j < J/JJ*JJJ; j++) {
                                                    (Loop tiling)
      for(int k = 0; k < K/KK; k++) {
       float buffer[III][JJJ]
     for(int iii = 0; iii < III; iii++) {
        for(int iii = 0; iii < JJJ; iii++) {
           8xfloat a = RCH (chA[ii][jj])
          WCH (chA[ii+1][jj], a)
                                                    Custom comm.
           8xfloat b = RCH (chB[ii][jj])
                                                    (Forwarding)
          WCH (chB[ii][jj+1], b)
                                                    Custom memory
          if (drain)
             WCH (chC[ii][jj], buf[iii][jjj])
                                                    (Buffer)
           #pragma unroll
                                                    Custom compute
           for(int kkk = 0; kkk < KKK; kkk++)
                                                    (Vectorization)
              sum += a[kkk]*b[kkk]
           buffer[iii][jjj] += sum;
}}}}}}
```

750 lines

of high-performance HLS code

High-Performance Dense MM Design in HLS

```
Custom compute
 unrolled for(int ii = 0; ii < II; ii++) {
                                                    (Loop unrolling)
 unrolled for(int jj = 0; jj < JJ; jj++) {
  for(int i = 0; i < I/II*III; i++) {
                                                    Custom compute
    for(int j = 0; j < J/JJ*JJJ; j++) {
                                                    (Loop tiling)
      for(int k = 0; k < K/KK; k++) {
       float buffer[III][JJJ]
     for(int iii = 0; iii < III; iii++) {
        for(int iii = 0; iii < JJJ; iii++) {
           8xfloat a = RCH (chA[ii][jj])
          WCH (chA[ii+1][jj], a)
                                                    Custom comm.
          8xfloat b = RCH (chB[ii][jj])
                                                    (Forwarding)
          WCH (chB[ii][jj+1], b)
                                                    Custom memory
          if (drain)
             WCH (chC[ii][jj], buf[iii][jjj])
                                                    (Buffer)
           #pragma unroll
                                                    Custom compute
           for(int kkk = 0; kkk < KKK; kkk++)
                                                    (Vectorization)
              sum += a[kkk]*b[kkk]
           buffer[iii][jjj] += sum;
}}}}}}
```

750 lines

of high-performance HLS code

HLS C

Algorithm#1

Custom Compute

Algorithm#2

Custom Memory

Custom Comm.

Entangled algorithm specification & customization schemes [1,2,3]

Algorithm#3

- [1] Intel HLS
- [2] Xilinx Vivado HLS
- [3] Canis, et al. FPGA'11

Algorithm#1

Custom Compute

Algorithm#2

Custom Memory

Custom Comm.

Algorithm#3

T2S

Algorithm#1,2,3

Custom Compute

Custom Memory

Custom Comm.

Entangled algorithm specification & customization schemes [1,2,3]

Decoupled customization & clean abstraction

- [1] Intel HLS
- [2] Xilinx Vivado HLS
- [3] Canis, et al. FPGA'11

Entangled algorithm specification & customization schemes [1,2,3]

- [1] Intel HLS
- [2] Xilinx Vivado HLS
- [3] Canis, et al. FPGA'11

```
Decoupled customization & clean abstraction
```

```
C(i, j) = 0;
C(i, j) += A(i, k) * B(k, j);
C.update().tile(k, j, i, kk, jj, ii, KK, JJ, II);
.isolate_producer_chain(A, A_loader, A_feeder)
.isolate_producer_chain(B, B_loader, B_feeder)
.isolate_consumer_chain(C, C_drainer, C_unloader);
A_loader.unroll(ii).remove(jj).vload(kk);
A_feeder.buffer(ii, Buffer::Double).unroll(ii);
B_loader.unroll(jj).remove(ii).vload(kk);
B_feeder.buffer(k, Buffer::Double).unroll(jj);
C.update().unroll(jj, ii)
.forward(A_feeder, {1, 0}) .forward(B_feeder, {0, 1});
C_drainer.unroll(jj, ii).gather(C, {1, 0})
C_unloader.buffer(ii).unroll(ii).vstore(jj);
```

T2S is an extension over Halide for spatial architectures

Temporal to Spatial → T2S

Temporal Definition in T2S

Func C

$$C(i, j) = 0$$

$$C(i, j) += A(i, k) * B(k, j)$$

C.tile(i,j,k,ii,jj,kk,II,JJ,KK)

Temporal Definition in T2S

Func C

$$C(i, j) = 0$$

$$C(i, j) += A(i, k) * B(k, j)$$

C.tile(i,j,k,ii,jj,kk,II,JJ,KK)

C

C

Func C C(i, j) = 0 C(i, j) += A(i, k) * B(k, j) C.tile(i,j,k,ii,jj,kk,II,JJ,KK) $C.isolate_producer(A, A_feeder)$

for i, j, k

for ii, jj, kk

for ii, jj, kk

i',j',k' = ...

WCH (ch1, A[i',k'])

channel1 (ch1)

* B[k',j']

15

Algorithm

Spatial

Mapping

```
Func C
C(i, j) = 0
```

C(i, j) += A(i, k) * B(k, j)

C.tile(i,j,k,ii,jj,kk,II,JJ,KK)

C.isolate_producer(A, A_feeder)

C.unroll(ii, jj)

Func C

$$C(i, j) = 0$$

$$C(i, j) += A(i, k) * B(k, j)$$

C.tile(i,j,k,ii,jj,kk,II,JJ,KK)

C.isolate_producer(A, A_feeder)

C.unroll(ii, jj)

A_feeder

A_feeder

for i, j, k, ii
float buf [KK]
for kk = 0 .. KK
buf [kk] = RCH(.5.)

A_loader

for i, j, k

for ii, jj, kk

i',j',k' = ...

WCH (ch2, A[i',k'])

for jj, kk i',j',k' = ... WCH (ch1[ii][jj], buf[kk])

Func C

$$C(i, j) = 0$$

$$C(i, j) += A(i, k) * B(k, j)$$

C.tile(i,j,k,ii,jj,kk,II,JJ,KK)

C.isolate_producer(A, A_feeder)

C.unroll(ii, jj)

A_feeder.isolate_producer(A, A_loader)

A_loader.remove(jj)

A_feeder.buffer(ii, DOUBLE)

Func C

$$C(i, j) = 0$$

$$C(i, j) += A(i, k) * B(k, j)$$

C.tile(i,j,k,ii,jj,kk,II,JJ,KK)

C.isolate_producer(A, A_feeder)

C.unroll(ii, jj)

A_feeder.isolate_producer(A, A_loader)

A_loader.remove(jj)

A_feeder.buffer(ii, DOUBLE)

C.forward(A_feeder, +jj)

A_feeder.unroll(ii).scatter(A, +ii)

C.isolate_consumer(C, C_drainer)

C_drainer.isolate_consumer_chain(C,

C_collector, C_unloader)

C_drainer.unroll(ii).unroll(jj).gather(C, -ii)

C_collector.unroll(jj).gather(C, -jj)

Complete T2S Code for Dense MM

~20 LOC vs 750 lines of HLS code

```
C(i, i) = 0.0f;
C(i, i) += A(k, i) * B(i, k);
C.tile(j, i, jj, ii, JJ, II).tile(jj, ii, jjj, iii, JJJ, III);
                                                                                                   Custom compute
C.update(0).tile(k, j, i, kk, jj, ii, KK, JJ, II).tile(kk, jj, ii, kkk, jjj, iii, KKK, JJJ, III);
                                                                                                   (Loop Tiling)
C.update(0).isolate_producer_chain(A, A_serializer, A_loader, A_feeder)
                                                                                                   Custom compute
            .isolate_producer_chain(B, B_serializer, B_loader, B_feeder)
                                                                                                   (Compute Partitioning)
            .isolate consumer chain(C, C drainer, C collector, C unloader, C deserializer);
A_serializer.sread().swrite();
                                                                                                   Custom compute
B_serializer.sread().swrite();
                                                                                                   (Data Vectorization)
C.update(0).vread({A,B});
                                                                                                    Custom compute
C.update(0).unroll(ii)
                                                                                                    (Loop Unrolling)
            .unroll(jj)
C.update(0).forward(A_feeder, { 0, 1 })
                                                                                                    Custom comm.
            .forward(B feeder, { 1, 0 });
                                                                                                    (Data Forwarding)
A_serializer.remove(jjj, jj, j);
A_loader.remove(jjj, jj);
                                                                                                    Custom memory
A feeder.buffer(ii, true).unroll(ii);
                                                                                                    (Buffer Insertion)
B_serializer.remove(iii, ii, i);
B loader.remove(iii, ii);
B feeder.buffer(k, true).unroll(jj);
A_feeder.scatter(A, {1});
                                                                                                    Custom comm.
B_feeder.scatter(B, {1});
                                                                                                    (Data Scattering)
C_drainer.unroll(ii).unroll(jj).gather(C, jjj, { 1, 0 });
                                                                                                    Custom comm.
                                                                                                    (Data Gathering)
C_collector.unroll(jj).gather(C_drainer, jjj, { 1 });
```

T2S Compilation Flow

Dense MM on Arria 10

Dense MM on Arria 10

- Baseline
 - Open-source NDRange-style OpenCL code, tuned on the specific FPGA
- Ninja
 - Hand-written and manually optimized design from industry

Dense MM on Arria 10

- Baseline
 - Open-source NDRange-style OpenCL code, tuned on the specific FPGA
- Ninja
 - Hand-written and manually optimized design from industry

	Baseline	T2S	Ninja
LOC	70	20	750
Systolic array size		10 x 8	10 x 8
Vector length	16 x float	16 x float	16 x float
# Logic elements	131 K (31%)	214 K (50%)	230 K (54%)
# DSPs	1,032 (68%)	1,282 (84%)	1,280 (84%)
# RAMs	1,534 (57%)	1,384 (51%)	1,069 (39%)
Frequency (MHz)	189	215	245
Throughput (GFLOPS)	311	549	626

1.8x speedup over the baseline with 3.5x less code 82% performance of ninja implementation with 3% code

Tensor Kernels on FPGA & CGRA

Tensor decomposition kernels

- MTTKRP: Y(i,f) += A(i,j,k) * B(j,f) * C(k,f)

- **TTM**: Y(i, j, f) += A(i, j, k) * B(k, f)

- **TTMc**: $Y(i, f_1, f_2) += A(i, j, k) * B(j, f_1) * C(k, f_2)$

Evaluation on CGRA

	LOC	Throughput wrt. Ninja GEMM	FMA Usage
MM	40	92 %	100 %
MTTKRP	32	99 %	100 %
TTM	47	104 %	100 %
TTMc	38	103 %	95 %

Evaluation on Arria-10 FPGA

Benchmark	LOC	Systolic Array Size	Logic Usage	DSP Usage	RAM Usage	Frequency (MHz)	Throughput (GFLOPS)
MTTKRP	28	8 x 9	53 %	81 %	56 %	204	700
TTM	30	8 x 11	64 %	93 %	88 %	201	562
TTMc	37	8 x 10	54 %	90 %	62 %	205	738

~100 % FMA usage for CGRA ~80-90 % DSP utilization and 560-740 GFLOPS for FPGA

Chapter 4

Tensaurus: A Versatile Accelerator for Mixed Sparse-Dense Tensor Computations

 Appears in International Symposium on High-Performance Computer Architecture (HPCA'20)

► **Tensaurus:** First accelerator for sparse tensor factorizations

► **Tensaurus:** First accelerator for sparse tensor factorizations

Key Idea: Co-design sparse format and computation pattern

- Tensaurus: First accelerator for sparse tensor factorizations
- Key Idea: Co-design sparse format and computation pattern
- Key Features:
 - Versatile:
 - NOT limited to tensor factorizations. Also supports common matrix operations
 - Adaptable:
 - Also <u>accelerates dense kernels</u> (tensor factorizations and matrix ops)
 - Easily <u>adapts to different levels of sparsity</u> found in various domains

Compressed Sparse Row Format (CSR)

Compressed Sparse Row Format (CSR)

Values

Compressed Sparse Row Format (CSR)

Compressed Sparse Row Format (CSR)

Compressed Sparse Row Format (CSR)

Compressed Interleaved Sparse Row (CISR) [1]

Values

 $|\mathsf{a}_{00}|\mathsf{a}_{02}|\mathsf{a}_{11}|\mathsf{a}_{21}|\mathsf{a}_{23}|\mathsf{a}_{33}|$

Values

Compressed Sparse Row Format (CSR)

Compressed Interleaved Sparse Row (CISR) [1]

Values

 $a_{00} a_{02} a_{11} a_{21} a_{23} a_{33}$

Values

|a₀₀|a₁₁|a₀₂|a₂₁|a₃₃|a₂₃

Compressed Sparse Row Format (CSR)

Compressed Interleaved Sparse Row (CISR) [1]

PE 0 1 0 1 0 1
Row Len. 2 1 1 2

Col. Id 0 1 2 1 3 3

Values a₀₀ a₁₁ a₀₂ a₂₁ a₃₃ a₂₃

Compressed Interleaved Sparse Row (CISR) [1]

Compressed Sparse Row Format (CSR)

Compressed Interleaved Sparse Row (CISR) [1]

Streaming and vectorized accesses

Compressed Sparse Row Format (CSR)

(CISR) [1]

PE 0 1 0 1 0 1

Row Len. 2 1 1 2

Compressed Interleaved Sparse Row

Col. Id 0 1 2 1 3 3

Values $a_{00} a_{11} a_{02} a_{21} a_{33} a_{23}$

Non-streaming & non-vectorized accesses

Streaming and vectorized accesses

accesses

Max: **16GB/s** (DDR3)

Utilized Bandwidth vs. # PEs

accesses

Compressed Sparse Row Format (CSR)

accesses

Compressed Interleaved Sparse Row (CISR) [1]

1.8GB/s: 8 PEs CSR 1.6GB/s: 2 PEs

Max: **16GB/s** (DDR3)

Utilized Bandwidth vs. # PEs

CISR requires centralized row decoding

→ Not scalable

CISR requires centralized row decoding

→ Not scalable

CISR requires centralized row decoding

→ Not scalable

CISR+ has negligible storage overhead as an extra zero is sent only once per row

Scalar-Fiber product followed by Fiber-Fiber product (SF³) Pattern

fiber: one-dimensional arrays along a tensor dimension

Scalar-Fiber product followed by Fiber-Fiber product (SF³)

Pattern

fiber: one-dimensional arrays

MTTKRP
$$\forall i \ Y(i,:) = \sum_{D_1} B(j,:) \circ \sum_{D_0} (A(i,j,k) \cdot C(k,:))$$

 $[0,J) \text{ or } \{j \mid \exists k \text{ st. } A(i,j,k) \neq 0\} \longleftrightarrow [0,K) \text{ or } \{k \mid A(i,j,k) \neq 0\}$

Scalar-Fiber product followed by Fiber-Fiber product (SF³) Pattern

$$fibers_{out} = \sum_{D_1} fiber_1 op \sum_{D_0} (scalar \cdot fiber_0)$$

fiber: one-dimensional arrays

Scalar-Fiber product followed by Fiber-Fiber product (SF³) **Pattern**

$$fibers_{out} = \sum_{D_1} fiber_1 op \sum_{D_0} (scalar \cdot fiber_0)$$

fiber: one-dimensional arrays

$$\mathsf{MTTKRP} \quad \forall i \quad Y(i,:) = \sum_{D_1} B(j,:) \circ \sum_{D_0} (A(i,j,k) \cdot C(k,:))$$

$$[0,J) \text{ or } \{j \mid \exists k \text{ st. } A(i,j,k) \neq 0\} \longleftrightarrow [0,K) \text{ or } \{k \mid A(i,j,k) \neq 0\}$$

$$\mathsf{TTMC} \quad \forall i \quad Y(i,:) = \sum_{D_1} B(j,:) \otimes \sum_{D_0} (A(i,j,k) \cdot C(k,:))$$

$$\mathsf{MM} \quad \forall i \quad Y(i,:) = \sum_{\Phi} null \quad op \sum_{D_0} (A(i,j) \cdot B(j,:))$$

$$\mathsf{MV} \quad \forall i \quad Y(i,:) = \sum_{\Phi} null \quad op \sum_{D_0} (A(i,j) \cdot b(j,:))$$

SF³ compute pattern can express all the common dense and mixed sparse-dense tensor kernels

Tensaurus Micro-architecture

PE:
$$\forall i \in [0,I) \ Y(i,:) = \sum_{D_1} B(j,:) \circ \sum_{D_0} (A(i,j,k) \cdot C(k,:))$$

PE:
$$\forall i \in [0, I) \quad Y(i,:) = \sum_{D_1} B(j,:) \circ \sum_{D_0} (A(i,j,k) \cdot C(k,:))$$

$$\begin{aligned} \mathsf{PE_0} \colon & \forall i \in \left[0, \frac{I}{r}\right) & Y(i,:) = \sum_{D_1} B(j,:) \circ \sum_{D_0} (A(i,j,k) \cdot C(k,:)) \\ \mathsf{PE_1} \colon & \forall i \in \left[\frac{I}{r}, \frac{2I}{r}\right) & Y(i,:) = \sum_{D_1} B(j,:) \circ \sum_{D_0} (A(i,j,k) \cdot C(k,:)) \\ \bullet & \bullet & \bullet \\ \end{aligned}$$

$$\mathsf{PE_{r-1}} \colon & \forall i \in \left[\frac{(r-1)I}{r}, I\right) Y(i,:) = \sum_{D_1} B(j,:) \circ \sum_{D_0} (A(i,j,k) \cdot C(k,:)) \end{aligned}$$

$$\begin{aligned} \mathsf{PE_0} \colon & \forall i \in \left[0, \frac{I}{r}\right) & Y(i, :) = \sum_{D_1} B(j, :) \circ \sum_{D_0} (A_i, :) \\ \mathsf{PE_1} \colon & \forall i \in \left[\frac{I}{r}, \frac{2I}{r}\right) & Y(i, :) = \sum_{D_1} B(j, :) \circ \sum_{D_0} (A_i, :) \\ \bullet & \bullet & \bullet \end{aligned}$$

$$\mathsf{PE_{r-1}} \colon & \forall i \in \left[\frac{(r-1)I}{r}, I\right) Y(i, :) = \sum_{D_1} B(j, :) \circ \sum_{D_0} (A_i, :) \\ \bullet & \bullet & \bullet \end{aligned}$$

$$\mathsf{PE_0}\colon \ \forall i \ \epsilon \left[0, \frac{I}{r}\right) \ Y(i,:) = \sum_{D_1} B(j,:) \circ \sum_{D_0} (A(i,j,k) \cdot C(k,:))$$

B & C are frequently reused → cache on-chip

Tensaurus Micro-architecture

Evaluation Methodology

Cycle-level simulation in gem5

- 8 x 8 PE array, VLEN = 8
- 8 16KB RAMs per SPM
- HBM: 8 128-bit physical channels (128 GB/s peak bandwidth)

RTL Modeling of a PE using PyMTL

Baselines

- CPU: Intel(R) Xeon(R) CPU E7-8867
 - SparseBLAS and SPLATT
- GPU: Titan XP
 - CuSparse, PaRTI
- Accelerator:
 - Cambricon-X

Area and Power Breakdown

Component	$Area(mm^2)$	%	Power (mW)	%
$^{ m PE}$	0.625	27.2~%	402.30	40.9 %
Xbar	0.066	2.8~%	24.27	2.5%
SPM	0.832	36.2~%	296.05	30.1 %
MSU	0.759	33.0~%	247.03	25.2~%
TLU	0.009	0.4~%	6.28	0.6%
MLU	0.009	0.4~%	6.28	0.6~%
Total	2.3	100 %	982.21	100 %

Datasets

FROSTT Tensors, Florida Sparse Matrices, AlexNet, VGG-16

Results on Sparse Neural Nets

Results on Sparse Tensor Decompositions

Results on Sparse Tensor Decompositions

Results on Sparse Tensor Decompositions

Tensaurus is 22.9x & 3.1x faster, and 220x & 290x more energy-efficient than CPU & GPU for MTTKRP. For TTMc, it achieves 6x & 0.1x of the performance of CPU & GPU, and is 23x and 31x more energy-efficient than CPU & GPU

Chapter 5

MatRaptor: A Sparse-Sparse Matrix Multiplication Accelerator Based on Row-Wise Product

Submitted to International Symposium on Computer Architecture (ISCA'20)

MatRaptor Contributions

- MatRaptor: An efficient hardware accelerator for sparse-sparse MM
- Key Idea: Co-design <u>algorithm</u> and <u>sparse format</u>
- Applications of Sparse-Sparse MM:
 - All Pair Shortest Path
 - Graph Searches & Contractions
 - Peer-pressure clustering, etc.

Inner Product

$$C[i,j] = \sum_{k} A[i,k] . B[k,j]$$

Inner Product

$$C[i,j] = \sum_{k} A[i,k] \cdot B[k,j]$$

Outer Product

$$C[:,:] = \sum_{k} A[:,k] . B[k,:]$$

Inner Product

$$C[i,j] = \sum_{k} A[i,k] . B[k,j]$$

Inconsistent formats
Inefficient index matching
No synchronization
Low on-chip memory

Outer Product

$$C[:,:] = \sum_{k} A[:,k] . B[k,:]$$

Inner Product

$$C[i,j] = \sum_{k} A[i,k] . B[k,j]$$

Inconsistent formats
Inefficient index matching
No synchronization
Low on-chip memory

Outer Product

$$C[:,:] = \sum_{k} A[:,k] . B[k,:]$$

Inconsistent formats

Elimination of index matching

Synchronization

High on-chip memory

Inner Product – ExTensor^[1]

Outer Product – OuterSPACE [2]

CSR & CSC formats Skip mechanism

CR and CC formats

Locks

Caches & deals with evictions

^[1] Hegde, Kartik, et al. "ExTensor: An Accelerator for Sparse Tensor Algebra.", Int'l Symp. on Microarchitecture (MICRO). 2019.

Row-wise Product

$$C[i,:] = \sum_{k} A[i,k] \cdot B[k,:]$$

Row-wise Product

$$C[i,:] = \sum_{k} A[i,k] \cdot B[k,:]$$

Benefits over other approaches due to:

Row-wise Product

$$C[i,:] = \sum_{k} A[i,k] \cdot B[k,:]$$

Row-wise Product

$$C[i,:] = \sum_{k} A[i,k] . B[k,:]$$

- Consistent formatting
 - Row-major format for both inputs and output

Row-wise Product

$$C[i,:] = \sum_{k} A[i,k] \cdot B[k,:]$$

- Consistent formatting
 - Row-major format for both inputs and output
- Elimination of index matching
 - No index matching comparisons as in inner-product

Row-wise Product

$$C[i,:] = \sum_{k} A[i,k] \cdot B[k,:]$$

- Consistent formatting
 - Row-major format for both inputs and output
- Elimination of index matching
 - No index matching comparisons as in inner-product
- Elimination of synchronization
 - No RAW dependencies → No synchronization

Row-wise Product

$$C[i,:] = \sum_{k} A[i,k] \cdot B[k,:]$$

- Consistent formatting
 - Row-major format for both inputs and output
- Elimination of index matching
 - No index matching comparisons as in inner-product
- Elimination of synchronization
 - No RAW dependencies → No synchronization
- Low on-chip memory requirements
 - Only stores a single row of output matrix on chip

$$C[i,:] = \sum_{k} A[i,k] \cdot B[k,:]$$

$$C[i,:] = \sum_{k} A[i,k] \cdot B[k,:]$$

$$C[i,:] = \sum_{k} A[i,k] \cdot B[k,:]$$

	0	1	2	3		0	1	2	3		_	0	1	2	3
0	a ₀₀		a ₀₂		0		b ₀₁				0		C ⁰² ₀₁	C ² ₀₂	
1		a ₁₁			1	b ₁₀					1				
2		a ₂₁		a ₂₃	2		b ₂₁	b ₂₂		=	2				
3				a ₃₃	3		b ₃₁		b ₃₃		3				

Requirements for Sparse Format for Sparse-Sparse MM

- Output format needs to be consistent with input format
 - Many applications use a chain of sparse-sparse MMs
 - CISR requires global scheduling for load balancing → cannot be used for output format

- The same format should result in streaming memory accesses for both A & B
 - CISR is efficient for the case when a row of sparse matrix is accessed by only one PE
 - In sparse-sparse MM, B matrix is accessed based on indices of non-zeros in A matrix

accesses

Cyclic Channel Sparse Row (C²SR)

Streaming and vectorized accesses

MatRaptor Micro-architecture

SpAL₀ Sparse A Loader SpBL₀ Sparse B Loader PE₀ Compute PE

PE Micro-architecture

Evaluation Methodology

Cycle-level simulation in gem5

- 8 PE array, Memory Width 128 bytes
- 10 8 KB Queues (RAMs) per PE
- HBM: 8 128-bit physical channels (128 GB/s peak bandwidth)

RTL Modeling of a PE using PyMTL

Baselines

- CPU: Intel(R) Xeon(R) CPU E7-8867
 - Intel MKL
- GPU: Titan XP
 - CuSparse
- Accelerator:
 - OuterSPACE

Area and Power Breakdown

Component	Area (mm ²)	%	Power (mW)	%
PE	1.981	88.44 %	1050.57	78.46 %
Logic	0.080	3.61 %	43.08	3.22 %
 Sorting Queues 	1.901	84.83 %	1007.49	75.24 %
SpAL	0.129	5.78 %	144.15	10.77 %
SpBL	0.129	5.78 %	144.15	10.77 %
Total	2.241	100 %	1338.89	100 %

Datasets

Florida Sparse Matrices

Results on Sparse-Sparse MM

MatRaptor is 158.7x, 6.9x and 1.7x faster, and 780x, 1300x and 12x more energy-efficient than CPU, GPU and OuterSPACE

Dissertation Summary

Dense

Productivity

T2S-Tensor: Solves <u>productivity</u> issue by providing a language that decouples algorithm and hardware customization

Dissertation Summary

Dense

Productivity

T2S-Tensor: Solves <u>productivity</u> issue by providing a language that decouples algorithm and hardware customization

Sparse

Flexibility, Efficiency

Tensaurus: A hardware accelerator that is both <u>flexible</u> (runs multiple dense & sparse-dense tensor kernels) and <u>efficient</u> (outperforms state-of-the-art accelerator)

MatRaptor: A hardware accelerator for spars-sparse MM that is more <u>efficient</u> than the existing state-of-the-art accelerator

Publications

- Nitish Srivastava, Jie Liu, Hanchen Jin, David Albonesi and Zhiru Zhang, "MatRaptor: A Sparse-Sparse Matrix Multiplication Accelerator Based on Row-Wise Product Approach", in MICRO'20
- <u>Nitish Srivastava</u>, Hanchen Jin, Shaden Smith, Hongbo Rong, David Albonesi and Zhiru Zhang, "Tensaurus: A versatile accelerator for Mixed Sparse-Dense Tensor Computations", in HPCA'20
- Nitish Srivastava, Hongbo Rong, et al., "T2S-Tensor: Productively Generating High-Performance Spatial Hardware for Dense Tensor Computations", in FCCM'19
- <u>Nitish Srivastava</u> and Rajit Manohar, "Operation Dependent Frequency Scaling Using Desynchronization", in TVLSI'19
- Yuan Zhou, Udit Gupta, Steve Dai, Ritchie Zhao, <u>Nitish Srivastava</u>, et al., "Rosetta: A Realistic HLS Benchmark Suite for Software Programmable FPGAs", in FPGA'18
- Nitish Srivastava, Steve Dai, Rajit Manohar and Zhiru Zhang, "Accelerating Face Detection on Programmable SoC Using C-Based Synthesis", in FPGA'17

Acknowledgements

Special Committee

- Prof. Zhiru Zhang
- Prof. David Albonesi
- Prof. Christopher Batten
- Prof. Rajit Manohar

Members (past and present) of CSL

- Hanchen Jin, Sean Li, Jie Liu, Yuan Zhou, Neeraj Kulkarni (Cornell)
- Dr. Shreesha Srinath (SciFive)
- Dr. Steve Dai (NVIDIA)
- Dr. Gai Liu (Xilinx)
- Dr. Skand Hurkat, Dr. Ritchie Zhao (Microsoft)
- Members of Zhang and Albonesi group

Outside Collaborators

- Hongbo Rong, Christopher Hughes, Pradeep Dubey, Paul Petersen, Tim Mattson, Geoff Lowney (Intel)
- Prithayan Barua, Vivek Sarkar (Georgia Tech)
- Guanyu Feng, Huanqi Cao, Wenguang Chen (Tsinghua University)

Funding Sources

NSF, DARPA, JUMP CRISP

Thank you! Questions?

Design and Generation of Efficient Hardware Accelerators for Tensor Computations

Nitish Srivastava January 14, 2020

Electrical and Computer Engineering, Cornell University