Работа 3

Цели

- Освоение работы с конфигурацией тактирования микроконтроллера (MCU)
- Освоение работы с периферией таймера и ЦАП
- Освоение работы с осциллографом

Программное обеспечение

- 1. STM32CubeCLT
- 2. VS Code
- 3. Расширения для VS Code:
 - STM32Cube for Visual Studio Code
 - Output Colorizer
- 4. Терминал
- 5. MultiVirAnalyzer

Аппаратное обеспечение

- 1. Лабораторный стенд
- 2. Осциллограф

Задание

Подготовка

	1. С помощью схемы лабораторного стенда найдите выходы ЦАП и определите, к каким выводам МК они подключень
)	2. Используя даташит на МК, определите, какой ЦАП и какие каналы подключены к этим выводам.
J	3. Осмотрите плату NUCLEO, найдите внешний генератор и определите его частоту.

Основная часть

1. Настройте системное тактирование, включая предделители шин и коэффициенты PLL, чтобы получить частоту ЦП согласно вашему варианту, используя внешний генератор и PLL.
Смотрите даташит МК для максимальных значений частоты ядра и шин.

2. Включите FPU с помощью следующей строки

S	SCB->CPACR = (3UL << 10 * 2) (3UL << 11 * 2);						
	3. Включите тактирование требуемой периферии.						
	4. Настройте GPIO для USART и ЦАП.						
	5. Настройте ЦАП.						
	6. Настройте USART для обмена данными.						
	7. Выберите таймер для генерации прерываний и настройте его.						
	8. Разрешите необходимые прерывания в NVIC.						
	9. Запустите преобразования ЦАП и счет таймера.						
	10. Напишите программу, которая использует обработчик прерывания таймера для генерации синусоидального сигнала на выходе канала ЦАП с частотой и амплитудой согласно варианту.						

Памятка

Вспомните рекомендуемый поток выполнения программы для приложения на прерываниях

11. Добавьте возможность изменять частоту и амплитуду через связь по USART с ПК.

В данной лабораторной работе конфигурация МК включает:

Схема настройки RCC с PLL

Настройка ЦАП включает

Настройка таймера включает

Варианты

Вариант	Частота ЦП, МГц	Частота синуса, Гц	Амплитуда, В		
1	40	10	1		
2	50	15	1.5		
3	60	20	2		
4	70	25	2.5		
5	80	30	3		
6	90	10	1		
7	100	15	1.5		

Вариант	Частота ЦП, МГц	Частота синуса, Гц	Амплитуда, В
8	110	20	2
9	120	25	2.5
10	130	30	3
11	140	10	1
12	150	15	1.5
13	160	20	2
14	170	25	2.5
15	180	30	3

Дополнительно

Реализуйте другие формы сигналов: меандр, треугольник, пила.

Вопросы

- 1. Какие источники тактирования используются в микроконтроллерах?
- 2. Как можно изменять тактовую частоту МК?
- 3. Зачем нужны предделители частоты для шин?
- 4. На каком этапе следует включать тактирование периферии и почему?
- 5. Каково разрешение ЦАП?
- 6. Каков максимальный уровень выходного напряжения ЦАП?
- 7. Что такое предделитель (Prescaler) таймера?
- 8. Что такое значение автоперезагрузки (ARR) таймера?
- 9. Что такое событие обновления (Update Event) в таймере?
- 10. Как управлять временными интервалами в программе МК с помощью таймеров?