CHARACTERIZATION OF BOUNDED LATTICES

18-fra-leb2

 $p_i \geqslant \beta_{\ell_i} h(p_i)$ and, by the induction hypothesis, $q_i \geqslant \beta_{\ell_i+n} h(p_i)$. Our goal once again is to prove $q \geqslant \beta_{\ell+n}h(p)$.

For all k, H_k is closed under meet, so the length of p is $\ell = \max\{\ell_1, \ell_2\}$ (in contrast to Case 1). Still, $\beta_{\ell_i+n}h(p_i) \geqslant \beta_{\ell+n}h(p_i)$, so

$$q = q_1 \wedge q_2 \geqslant \beta_{\ell_1 + n} h(p_1) \wedge \beta_{\ell_1 + n} h(p_2) \geqslant \beta_{\ell + n} h(p_1) \wedge \beta_{\ell + n} h(p_2).$$

Therefore, to complete the proof it this case, it suffices to show

$$\beta_{\ell+n}h(p_1) \wedge \beta_{\ell+n}h(p_2) \geqslant \beta_{\ell+n}h(p).$$

Recall that $\beta_{\ell+n}h(p_i)$ denotes the least term t_i of length at most $\ell+n$ such that $h(t_i) = h(p_i)$. Now, $t_1 \wedge t_2$ has length at most $\ell + n$, since $H_{\ell+n}$ is closed under meet. Also,

$$h(t_1 \wedge t_2) = h(t_1) \wedge h(t_2) = h(p_1) \wedge h(p_2) = h(p_1 \wedge p_2) = h(p),$$

so the image of $t_1 \wedge t_2$ under h is h(p). Since $\beta_{\ell+n}h(p)$ is the least term of length at most $\ell + n$ that is mapped to h(p), we have $t_1 \wedge t_2 \geqslant \beta_{\ell+n} h(p)$, as desired.

4. Proof of the Main Theorem

With Lemma 3.2 established, we are now in a position to prove Theorem 3.1. We begin with the converse direction. In fact, we will prove the contrapositive of the converse. Specifically, if $h: \mathbf{F} \to \mathbf{L}$ is not lower bounded, then ker h is not a finitely generated sublattice of $\mathbf{F} \times \mathbf{F}$. After proving the converse, we will assume h is (both upper- and lower-) bounded, and then prove that ker his a finitely generated sublattice of $\mathbf{F} \times \mathbf{F}$.

Proof of Theorem 3.1.

 (\Leftarrow) Suppose $h: \mathbf{F} \to \mathbf{L}$ is not lower bounded, and let K be an arbitrary finite subset of ker h. We prove that the subalgebra $\langle K \rangle \leq \mathbf{F} \times \mathbf{F}$ generated by K is not all of ker h. Since K is an arbitrary finite subset of ker h, this will prove that $\ker h$ is not finitely generated.

Let $h^{-1}(a)$ be a class of ker h that is not lower bounded. The-the sequence $\beta_k(a)$ defined prior to Lemma 3.2 is an infinite decending chain. Of course, $\zeta(1)$ for every $k \in \mathbb{N}$, we have $h\beta_0(a) = h\beta_k(a)$, so $(\beta_0(a), \beta_k(a)) \in \ker h$. On the other hand, since K is a finite subset of ker h, Lemma 3.2 asserts the existence of an $n \in \mathbb{N}$ such that, if $(p,q) \in \langle K \rangle$, then $p \geqslant \beta_{\ell}h(p)$ implies $p \geqslant \beta_{\ell+n}h(p)$. Therefore, $(\beta_0(a), \beta_{n+1}(a)) \in \ker h \setminus \langle K \rangle$. Thus $\langle K \rangle \neq \ker h$, as we set out to prove.

 (\Rightarrow) Assume h is a bounded epimorphism so that the preimage of each $y \in L$ under h is bounded. For each $y \in L$, let $c(y) = \bigvee h^{-1}\{y\}$ and $\beta(y) = \bigwedge h^{-1}\{y\}$ denote the greatest and least elements of $h^{-1}\{y\}$, respectively (both of which exist by the assumed boundedness and surjectivity of h). Observe that $h\alpha h =$ h, and $h\beta h = h$. In fact, α and β are adjoint to h. Indeed, it is easy to see that

 $hx \leq y \Leftrightarrow x \leq \alpha y$.

$$y \leqslant hx \Leftrightarrow \beta y \leqslant x.$$

For each $y \in L$, let $X_y := X \cap h^{-1}\{y\}$, the set of generators that lie in the inverse image of y under h. Let G be the (finite) set of pairs in $\mathbf{F} \times \mathbf{F}$ defined as follows:

$$G = \bigcup_{y \in L} \{(x, \alpha y), (\alpha y, x), (x, \beta y), (\beta y, x), (\alpha y, \beta y), (\beta y, \alpha y) : x \in X_y\}.$$

We claim that G generates ker h. To prove this, we first show, by induction on term complexity, that for every $y \in L$, for every $r \in h^{-1}\{y\}$, the pairs $(r, \alpha y)$ and $(r, \beta y)$ belong to the sublattice $\langle G \rangle \leqslant \mathbf{F} \times \mathbf{F}$ generated by G.

• Case 0. Suppose $r \in X$. Then $(r, \alpha y)$ and $(r, \beta y)$ belong to G itself, so there's nothing to prove.

• Case 1. Suppose $r = s \vee t$. Assume (the induction hypothesis) that $(s, \alpha h(s)), (s, \beta h(s)), (t, \alpha h(t)),$ and $(t, \beta h(t))$ belong to $\langle G \rangle$. Then $y = h(r) = h(s \vee t) = h(s) \vee h(t)$, so

$$h(\alpha h(s) \vee \alpha h(t)) = h\alpha h(s) \vee h\alpha h(t) = h(s) \vee h(t) = y.$$

Likewise, $h(\beta h(s) \vee \beta h(t)) = h(s) \vee h(t) = y$. Therefore,

$$\beta y \leqslant \beta h(s) \lor \beta h(t) \leqslant \alpha h(s) \lor \alpha h(t) \leqslant \alpha y.$$

Also, $r \leq \alpha y$, so $r = \alpha y \wedge (s \vee t)$. Taken together, these observations yield

$$\begin{pmatrix} r \\ \beta y \end{pmatrix} = \begin{pmatrix} \alpha y \wedge (s \vee t) \\ \beta y \end{pmatrix} = \begin{pmatrix} \alpha y \wedge (s \vee t) \\ \beta y \wedge (\beta h(s) \vee \beta h(t)) \end{pmatrix}$$

$$= \begin{pmatrix} \alpha y \\ \beta y \end{pmatrix} \wedge \left[\begin{pmatrix} s \\ \beta h(s) \end{pmatrix} \vee \begin{pmatrix} t \\ \beta h(t) \end{pmatrix} \right],$$

and each term in the last expression belongs to $\langle G \rangle$, so $(r, \beta y) \in \langle G \rangle$, as desired.

Similarly, $(r, \alpha y) \in \langle G \rangle$. Indeed, $\beta y \leqslant r$ implies $r = \beta y \lor s \lor t$, and $\beta h(s) \lor \beta h(t) \leqslant \alpha y$ implies $\alpha y = \alpha y \lor \beta h(s) \lor \beta h(t)$. Therefore,

• Case 2. Suppose $r = s \wedge t$. Assume $(s, \alpha h(s)), (s, \beta h(s)), (t, \alpha h(t)),$ and $(t, \beta h(t))$ belong to (G). Then $h(s \wedge t) = h(r) = y$, so $h(\alpha h(s) \wedge \alpha h(t)) = y = h(\beta h(s) \wedge \beta h(t))$, so $\beta y \leqslant \beta h(s) \wedge \beta h(t) \leqslant \alpha h(s) \wedge \alpha h(t) \leqslant \alpha y$. Also, $\beta y \leqslant r \leqslant \alpha y$ so $r = \alpha y \wedge s \wedge t$ and $r = \beta y \vee (s \wedge t)$. Altogether, Reduced $\alpha y = \beta y \vee (s \wedge t)$.

Warden.

we have

$$\begin{pmatrix} r \\ \alpha a \end{pmatrix} = \begin{pmatrix} \beta y \lor (s \land t) \\ \alpha y \lor (\alpha h(s) \land \alpha h(t)) \end{pmatrix}$$
$$= \begin{pmatrix} \beta y \\ \alpha y \end{pmatrix} \lor \begin{bmatrix} \begin{pmatrix} s \\ \alpha h(s) \end{pmatrix} \land \begin{pmatrix} t \\ \alpha h(t) \end{pmatrix} \end{bmatrix},$$

and each term in the last expression belongs to $\langle Y \rangle$, as desired. Similarly,

$$\begin{pmatrix} r \\ \beta y \end{pmatrix} = \begin{pmatrix} \alpha y \wedge s \wedge t \\ \beta y \wedge \alpha h(s) \wedge \alpha h(t) \end{pmatrix}$$
$$= \begin{pmatrix} \alpha y \\ \beta y \end{pmatrix} \wedge \begin{pmatrix} s \\ \alpha h(s) \end{pmatrix} \wedge \begin{pmatrix} t \\ \alpha h(t) \end{pmatrix}.$$

Indicentally, in each of the last two derivations, we could have used β 's instead of α 's; in both cases the last meet could be replaced with

$$\left(\begin{array}{c} s\\ \beta h(s) \end{array}\right) \wedge \left(\begin{array}{c} t\\ \beta h(t) \end{array}\right).$$

In each case, we end up with an expression involving terms from $\langle G \rangle$, and this proves that $(r, \alpha y)$ and $(r, \beta y)$ belong to $\langle G \rangle$, as desired.

Email address: williamdemeo@gmail.com

The last term of the la

THE PARTY OF THE P

Total Control

the same of a signal and a sign

15 - (Delate) - (Delate) - 72)