

CHA.4 AND 5 HYPOTHESES TESTING AND INFERENCE BASED ON TWO SAMPLE

- \Box The hypotheses to be test is called null hypotheses H_0 and negation is called alternative hypotheses H_a
- \square A hypotheses is said to be a sample hypotheses when H completely specifies the density of the population (i. e. $\theta = 2,...$). Otherwise is called composite hypotheses(i. e. $\theta < 2,...$)
- ➤ Method of finding test
- The likelihood ratio test statistic denoted with (W) and (C) refers to critical region or just rejection region is the set store the value for reject the null hypotheses H_0 . It is defined by

$$W(x_1, x_2, \dots, x_n) = \frac{\max\limits_{\theta \in \Omega_0} L(\theta, x_1, \dots, x_n)}{\max\limits_{\theta \in \Omega_a} L(\theta, x_1, \dots, x_n)} \text{ or } W = \frac{L(\theta_0)}{L(\theta_a)}$$

then
$$C = \{(x_1, x_2, ..., x_n) | W(\theta, x_1, x_2, ..., x_n) \le k \}, k \in [0,1]$$

* We have two type of errors are

- 1. Reject H_0 when H_0 is true. It is called type I error
- 2. Accept H_0 when H_0 is false. It is called type 2 error
- \diamond The significance level α is the value of probability of type I error
- \Leftrightarrow β is the value of probability of type II error
- \clubsuit The function or power function is denoted by π and defined by

$$\pi(\theta) = P(type\ I\ error)or\ \pi(\theta) = 1 - P(type\ 2\ error)$$

- ☐ The uniformly most powerful (UMP)
- if T is UMP than w of the same test of level δ if : $\pi_T(\theta) \ge \pi_W(\theta)$
- □ Neyman-Pearson Lemma is the set of critical region c defined by

$$C = \{(x_1, ..., x_n) | \frac{L(\theta_0)}{L(\theta_a)} \le k\}, where L is the likelihood function$$

- \square If $X_1, ..., X_n$ is random sample from normal distribution that has parameter μ and σ^2 are known and n < 30
- ☐ The z test for population mean is defined as the test statistic value is $z = \frac{\bar{x} \mu_0}{\sigma_0 / \sqrt{n}}$
- □ Three case of hypotheses test when H_0 : $\mu = \mu_0$ and if
- 1. $H_a: \mu > \mu_a$ then critical region C or test is $C = \{z: z = \frac{\bar{x} \mu_0}{\frac{\sigma_0}{\sqrt{n}}} \ge z_\alpha \}$
- 2. $H_a: \mu < \mu_a \text{ then } C = \{z: z \leq -z_\alpha\}$
- 3. $H_a: \mu \neq \mu_a$ then $C = \{z: |z| \geq z_{\underline{\alpha}}\}$

• For large sample $n \ge 30$ and it is from a distribution with know μ , then

 $z = \frac{\bar{x} - \mu}{S/\sqrt{n}}$, where is the standard deviation of the sample

 \Box We use T-test when it is a normal distribution with unknown parameter μ and σ^2 also n <30

when
$$H_0$$
: $\mu = \mu_0$ then test statistic value for T-test : $t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$

- ☐ the critical region (C) or rejection region (RR)
- I. when $H_a: \mu > \mu_0$, then $C = \{t: t \ge t_{\alpha,n-1}\}$
- 2. when $H_a: \mu < \mu_0 \text{ then } C = \{ t : t \le -t_{\alpha, n-1} \}$
- 3. When $H_a: \mu \neq \mu_0$ then $C = \{t: |t| \geq t_{\frac{\alpha}{2}, n-1}\}$
- ☐ Without testing hypotheses by using critical region, we can also use P-value for testing the hypotheses for z test

P-value =1
$$-\phi(z)$$
 for upper-tailed or right-tailed test $(H_a: \mu_a > \mu_0)$
= $\phi(z)$ for lower-tailed or left -tailed test $(H_a: \mu_a < \mu_0)$
= $2[1-\phi(|z|)]$ for two - tailed test $(H_a: \mu_a \neq \mu_0)$

Decision for P-value

If P-value $\leq \alpha$, then reject H_0

If P-value $> \alpha$ not reject H_0

 \square β and sample size

Recall: β is probability of type II error

- □ To find the power π , we have $\pi(\mu') = 1 \beta(\mu')$, where
- I. If $H_a: \mu > \mu_0$ then $\beta(\mu') = \phi\left(z_\alpha + \frac{\mu_0 \mu'}{\frac{\sigma}{\sqrt{n}}}\right)$
- 2. If H_a : $\mu < \mu_0$ then $\beta(\mu') = 1 \phi \left(-z_\alpha + \frac{\mu_0 \mu'}{\frac{\sigma}{\sqrt{n}}} \right)$
- 3. If H_a : $\mu \neq \mu_0$ then $\beta(\mu') = \phi\left(z_{\frac{\alpha}{2}} + \frac{\mu_0 \mu'}{\frac{\sigma}{\sqrt{n}}}\right) \phi\left(-z_{\frac{\alpha}{2}} + \frac{\mu_0 \mu'}{\frac{\sigma}{\sqrt{n}}}\right)$
- ☐ Size determinant
- I. For one tailed test $n = \left[\frac{\sigma(z_{\alpha} + z_{\beta})}{\mu_0 \mu_{\prime}}\right]^2$
- 2. For two-tailed test $n = \left[\frac{\sigma\left(z_{\frac{\alpha}{2}} + z_{\beta}\right)}{\mu_0 \mu'}\right]^2$, n is rounded up to the whole number

☐ Test for a Variance and standard deviation

for random sample from normal distribution of size n with mean and variance are unknown

We use χ^2 test

Null hypotheses
$$H_0$$
: $\sigma^2 = \sigma_0^2$

And test statistic value
$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

- Determine the rejection region
- I. If $H_a: \sigma^2 > \sigma_0^2$ then $C = \{\chi^2: \chi^2 \ge \chi_{\alpha, n-1}^2\}$
- 2. If $H_a: \sigma^2 < \sigma_0^2$ then $C = \{\chi^2: \chi^2 \le \chi_{1-\alpha, n-1}^2\}$
- 3. If $H_a: \sigma^2 \neq \sigma_0^2$ then $C = \left\{ \chi^2 : \chi^2 \leq \chi_{1-\frac{\alpha}{2},n-1}^2 \text{ or } \chi^2 \geq \chi_{\frac{\alpha}{2},n-1}^2 \right\}$

- ☐ Test about a population proportion
- ❖ Assumption $x_1, ... x_n \sim Bernulli(p)$ sample, $x_i \in \{0,1\}$

then
$$X = \sum x_i \sim Ber(n, p)$$
, where $\hat{p} = \frac{x}{n}$ (probability of success)

We use z –test

- \triangleright Null Hypotheses : H_0 : $p = p_0$
- For Test statistic value $z = \frac{\hat{p} p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$
- Critical region
- **I.** For H_a : $p > p_0$ then $C = \{z: z \ge z_\alpha\}$
- **2.** For H_a : $p < p_0$ then $C = \{z: z \le -z_\alpha\}$
- 3. For H_a : $p \neq p_0$ then $C = \{z: z \leq -z_{\frac{\alpha}{2}} \text{ or } z \leq z_{\frac{\alpha}{2}}\} = \{z: |z| \geq z_{\frac{\alpha}{2}}\}$

Remark : test will provided that $np_0 \ge 5$ and $n(1-p_0) \ge 5$

Beta and sample size

we have alternative hypotheses $\beta(p')$, where

1.
$$H_a: p > p_0 \text{ then } \beta(p') = \phi \left[\frac{p_0 - p' + z_\alpha \sqrt{\frac{p_0(1 - p_0)}{n}}}{\sqrt{\frac{p'(1 - p')}{n}}} \right]$$

2.
$$H_a: p < p_0 \text{ then } \beta(p') = 1 - \phi \left[\frac{p_0 - p' - z_\alpha \sqrt{\frac{p_0(1 - p_0)}{n}}}{\sqrt{\frac{p'(1 - p')}{n}}} \right]$$

3.
$$H_a: p \neq p_0 \text{ then } \beta(p') = \phi \left[\frac{p_0 - p' + \frac{z_\alpha}{2} \sqrt{\frac{p_0(1 - p_0)}{n}}}{\sqrt{\frac{p'(1 - p')}{n}}} \right] - \phi \left[\frac{p_0 - p' - z_\alpha \sqrt{\frac{p_0(1 - p_0)}{n}}}{\sqrt{\frac{p'(1 - p')}{n}}} \right]$$

Sample size

For one tailed test:
$$n = \left[\frac{z_{\alpha}\sqrt{p_0(1-p_0)} + z_{\beta}\sqrt{p'(1-p')}}{p'-p_0}\right]^2$$

For two tailed test :
$$n = \left[\frac{z_{\frac{\alpha}{2}}\sqrt{p_0(1-p_0)} + z_{\beta}\sqrt{p'(1-p')}}{p'-p_0}\right]^2$$

CH.5

Test for normal distribution with known the variance

- □ The null hypotheses H_0 : $\Delta_0 = \mu_1 \mu_2$
- We use z-test and test statistic value is $z = \frac{\bar{x} \bar{y} \Delta_0}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}$
- We have the critical region, when
- I. $H_a: \mu_1 \mu_2 > \Delta_0 \text{ then } C = \{z: z \ge z_\alpha\}$
- 2. $H_a: \mu_1 \mu_2 < \Delta_0 \text{ then } C = \{z: z \le -z_\alpha\}$
- 3. $H_a: \mu_1 \mu_2 \neq \Delta_0 \text{ then } C = \{z: |z| \geq z_{\frac{\alpha}{2}}\}$

\square Alternative hypotheses $\beta(\Delta')$

Recall $\beta(\Delta') = P(type\ II\ error)$, when $\Delta' = \mu_1 - \mu_2$ is defined by

I. If
$$H_a: \mu_1 - \mu_2 > \Delta_0$$
 then $\beta(\Delta') = \phi\left(z_\alpha - \frac{\Delta' - \Delta_0}{\sigma}\right)$

2. If
$$H_a: \mu_1 - \mu_2 < \Delta_0$$
 then $\beta(\Delta') = 1 - \phi\left(-z_\alpha - \frac{\Delta' - \Delta_0}{\sigma}\right)$

3. If
$$H_a: \mu_1 - \mu_2 \neq \Delta_0$$
 then $\beta(\Delta') = \phi\left(z_{\frac{\alpha}{2}} - \frac{\Delta' - \Delta_0}{\sigma}\right) - \phi\left(-z_{\frac{\alpha}{2}} - \frac{\Delta' - \Delta_0}{\sigma}\right)$

Where
$$\sigma = \sigma_{\bar{X}-\bar{Y}} = \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}$$

Sample size

We use
$$\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n} = \frac{(\Delta' - \Delta_0)^2}{(z_\alpha + z_\beta)^2}$$
 for one –tailed test, where m and n is the sample size

We use
$$\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n} = \frac{\left(\Delta' - \Delta_0\right)^2}{\left(\frac{z_{\alpha} + z_{\beta}}{2}\right)^2}$$
 for two tailed test

Large Sample Tests

 \square A assumption normal distribution when $n \ge 30$ and $m \ge 30$,

from Central limit theorem

- Test statistic value $z = \frac{\bar{x} \bar{y} \Delta_0}{\sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}}$, where $\Delta_0 = \mu_1 \mu_2$ (null hypotheses)
- \square Confidence Interval for $\mu_1 \mu_2$

we get
$$CI = \left[\bar{x} - \bar{y} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}} \right]$$

For Large sample
$$CI = \left[\bar{x} - \bar{y} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}} \right]$$

T-test for two sample

When distribution are both normal and $\sigma_X^2 \neq \sigma_Y^2$, n and m < 30

- □ Null hypotheses H_0 : $\Delta_0 = \mu_1 \mu_2$
- Test statistic value $T = \frac{\bar{x} \bar{y} \Delta_0}{\sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}}$
- ☐ The critical region is defined by

I.
$$H_a: \mu_1 - \mu_2 > \Delta_0 \text{ then } C = \{t: t \ge t_{\alpha, \nu}\}$$

2.
$$H_a: \mu_1 - \mu_2 < \Delta_0 \text{ then } C = \{t \leq -t_\alpha, \nu\}$$

3.
$$H_a: \mu_1 - \mu_2 \neq \Delta_0 \text{ then } C = \{t: |t| \geq t_{\frac{\alpha}{2},\nu}\}$$

Where degree of freedom
$$v = \frac{\left(\frac{S_1^2}{m} + \frac{S_2^2}{n}\right)^2}{\frac{\left(\frac{S_1^2}{m}\right)^2}{m-1} + \frac{\left(\frac{S_2^2}{n}\right)^2}{n-1}}$$
 (rounded it to nearest integer)

 \square For $100(1-\alpha)\%$ confidence interval is defined by

$$CI = \left[\bar{x} - \bar{y} \pm t_{\frac{\alpha}{2}, \nu} \sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}} \right]$$

- Pooled t procedures
- * Alternative to the two sample t procedures assuming not only normal distributed and we don't know the variance for the population but we know that $\sigma_1^2 = \sigma_2^2$
- The standardized variable $T = \frac{\bar{X} \bar{Y} (\mu_1 \mu_2)}{S_p \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim t$ distributed with df $\nu = m + n 2$

Where , S_p is called the pooled estimator or standard deviation of σ and defined by

$$S_p = \sqrt{\frac{(m-1)s_1^2 + (n-1)s_2^2}{m+n-2}}$$

- ☐ Analysis for Paired Data
- Using one sample t-test
- \triangleright Null Hypotheses H_0 : $\mu_D = \Delta_0$
- \triangleright D_i is the different d= before $-after = X_i Y_i$

Test statistic value
$$t = \frac{\bar{d} - \Delta_0}{\frac{S_D}{\sqrt{n}}}$$

- > Alternative hypotheses and the critical region
- I. When $H_a: \mu_D > \Delta_0$ then $C = \{t: t \ge t_{\alpha, n-1}\}$
- 2. $H_a: \mu_D < \Delta_0 \text{ then } C = \{t: t \leq -t_{\alpha, n-1}\}$
- 3. $H_a: \mu_D \neq \Delta_0 \text{ then } C = \left\{t: |t| \geq t_{\frac{\alpha}{2}, n-1}\right\}$

☐ Confidence Interval for the Mean Difference

The paired t CI for
$$\mu_D$$
 is : $CI = \left[\bar{d} \pm t_{\frac{\alpha}{2},n-1} \times \frac{S_D}{\sqrt{n}} \right]$

- ☐ Inferences about two population variance
- $\succ X_1, ..., X_n$ be a random from normal distribution with variance σ_1^2 , and let $Y_1, ..., Y_n$ be a random sample from normal distribution with variance σ_2^2 and let S_1^2 and S_2^2 denote the two sample variance.
- * we use Fisher distribution F that is $F = \frac{\frac{S_1^2}{\sigma_1^2}}{\frac{S_2^2}{\sigma_2^2}}$ with df $v_1 = m-1$ and $v_2 = n-1$

- ☐ The test for equality of Variances
- Use Fisher distribution F
- Null hypotheses H_0 : $\sigma_1^2 = \sigma_2^2$
- ightharpoonup Test statistic value : $f = \frac{S_1^2}{S_2^2}$
- > Alternative Hypotheses and rejection region
- I. When $H_a: \sigma_1^2 > \sigma_2^2$ then C or $RR = \{f: f \ge F_{\alpha, m-1, n-1}\}$
- 2. When $H_a: \sigma_1^2 < \sigma_2^2$ then $C = \{f: f \le F_{1-\alpha,m-1,n-1}\}$
- 3. When $H_a: \sigma_1^2 \neq \sigma_2^2$ then $C = \{f: f \geq F_{\frac{\alpha}{2}, m-1, n-1} \text{ or } f \leq F_{1-\frac{\alpha}{2}, m-1, n-1} \}$

 \square A confidence Interval for σ_1^2/σ_2^2 and σ_1/σ_2

$$ightharpoonup$$
 A $100(1-\alpha)\%$ CI for σ_1^2/σ_2^2 is $CI = \left[\frac{s_1^2}{S_2^2}, \frac{1}{F_{\frac{\alpha}{2}}, m-1, n-1}, \frac{s_1^2}{S_2^2}, F_{\frac{\alpha}{2}, n-1, m-1}\right]$

 \triangleright A random $100(1-\alpha)\%$ CI for σ_1/σ_2 is

$$CI = \left[\frac{s_1}{s_2}, \frac{1}{\sqrt{F_{\underline{\alpha}, m-1, n-1}}}, \frac{s_1}{s_2}, \sqrt{F_{\underline{\alpha}, n-1, m-1}}\right]$$

☐ Inferences about two population proportion

■ Test statistic value
$$Z = \frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\frac{p_1 q_1}{m} + \frac{p_2 q_2}{n}}}$$
 approximate to standard normal

- For null hypotheses H_0 : $p_1 = p_2$, then
- the test Statistic value $z=\frac{\hat{p}_1-\hat{p}_2}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{m}+\frac{1}{n}\right)}}$, where

$$\hat{p}_1 = \frac{x}{m}$$
 and $\hat{p}_2 = \frac{y}{n}$, $\hat{p} = \frac{x+y}{m+n}$, $\hat{q} = 1 - \hat{p}$

For test safely be used as long as $m\hat{p}_1, m\hat{q}_1, n\hat{p}_2, n\hat{q}_2$ are all at least 5 (≥ 5)

- ☐ Alternative hypotheses and Rejection region
- I. $H_a: p_1 p_2 > 0 \text{ then } R = \{z: z \ge z_\alpha\}$
- 2. $H_a: p_1 p_2 < 0 \text{ then } R = \{z: z \le -z_\alpha\}$
- 3. $H_a: p_1 p_2 \neq 0 \text{ then } R = \left\{z: |z| \geq z_{\frac{\alpha}{2}}\right\}$

 \square Alternative Hypotheses $\beta(p_1, p_2)$, if

I.
$$H_a: p_1 - p_2 > 0 \text{ then } \beta(p_1, p_2) = \phi \left[\frac{z_{\alpha} \sqrt{p} \bar{q} \left(\frac{1}{m} + \frac{1}{n} \right) - (p_1 - p_2)}{\sigma} \right]$$

2.
$$H_a: p_1 - p_2 < 0 \text{ then } \beta(p_1, p_2) = 1 - \phi \left[\frac{-z_\alpha \sqrt{p\bar{q}(\frac{1}{m} + \frac{1}{n}) - (p_1 - p_2)}}{\sigma} \right]$$

3.
$$H_a: p_1 - p_2 \neq 0 \text{ then } \beta(p_1, p_2) = \phi \left[\frac{z_{\frac{\alpha}{2}} \sqrt{p_{\overline{q}} \left(\frac{1}{m} + \frac{1}{n}\right)} - (p_1 - p_2)}{\sigma} \right] - \phi \left[\frac{-\frac{z_{\alpha}}{2} \sqrt{p_{\overline{q}} \left(\frac{1}{m} + \frac{1}{n}\right)} - (p_1 - p_2)}{\sigma} \right]$$

Where
$$\bar{p} = \frac{(mp_1 + np_2)}{(m+n)}$$
, $\bar{q} = \frac{mq_1 + nq_2}{m+n}$ and $\sigma = \sigma_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{p_1q_1}{m} + \frac{p_2q_2}{n}}$

- ☐For sample size
- \triangleright In case m = n and $d = p_1 p_2$ then

■ Sample size
$$n = \frac{\left[z_{\alpha}\sqrt{\frac{(p_1+p_2)(q_1+q_2)}{2}}+z_{\beta}\sqrt{p_1q_1+p_2q_2}\right]^2}{d^2}$$
 for one tailed test

For two-tailed test
$$n = \frac{\left[z_{\frac{\alpha}{2}}\sqrt{\frac{(p_1+p_2)(q_1+q_2)}{2}} + z_{\beta}\sqrt{p_1q_1+p_2q_2}\right]^2}{d^2}$$

- ☐ A large sample confidence interval
- A $100(1-\alpha)\%$ CI for $p_1 p_2$ is

$$CI = \left[\hat{p}_1 - \hat{p}_2 \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_1 \hat{q}_1}{m} + \frac{\hat{p}_2 \hat{q}_2}{n}} \right]$$