~ (Congr	ratulations! You passed! Next Item
1/1 point	1.	Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch? $a^{[3]\{8\}\{7\}}$ Correct $a^{[3]\{7\}\{8\}}$ $a^{[8]\{3\}\{7\}}$ $a^{[8]\{7\}\{3\}}$
1/1 point	2.	Which of these statements about mini-batch gradient descent do you agree with? Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent. One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent. Correct

You should implement mini-batch gradient descent without an explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at

the same time (vectorization).

•	3.	Why is the best mini-batch size usually not 1 and not m, but instead something in- between?		
1/1 point		If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.		
		Correct		
		If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.		
		Correct		
		If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.		
		Un-selected is correct		
		If the mini-batch size is 1, you end up having to process the entire training set before making any progress.		

Un-selected is correct

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

1/1 point

Which of the following do you agree with?

- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

Correct

Jan 1st: $\theta_1=10^{o}C$

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with eta=0.5 to track the temperature: $v_0=0$, $v_t=eta v_{t-1}+(1-eta) heta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2 = 7.5, v_2^{corrected} = 10$$

Correct

$$v_2 = 10$$
, $v_2^{corrected} = 7.5$

$$\bigcirc \quad v_2 = 7.5, v_2^{corrected} = 7.5$$

$$v_2=10$$
 , $v_2^{corrected}=10$

6. Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = 0.95^t \alpha_0$$

$$\alpha = e^t \alpha_0$$

Correct

1/1 point 7. You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Un-selected is correct

Increasing β will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Decreasing β will create more oscillation within the red line.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

Un-selected is correct

1/1 point

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)

9. Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function [Math Processing Error]. Which of the following techniques could help find parameter values that attain a small value for [Math Processing Error]? (Check all that apply)

Try mini-batch gradient descent					
Correct					
Try better random initialization for the weights					
Correct					
lacksquare Try tuning the learning rate $lpha$					
Correct					
Try initializing all the weights to zero					
Un-selected is correct					
Try using Adam					
Correct					

~	10. Which of the following statements about Adam is False?					
1/1 point	0	We usually use "default" values for the hyperparameters eta_1,eta_2 and [Math Processing Error] in Adam ($eta_1=0.9,eta_2=0.999$, [Math Processing Error])				
	\bigcirc	The learning rate hyperparameter α in Adam usually needs to be tuned.				
	•	Adam should be used with batch gradient computations, not with minibatches.				
	Cor	Correct				
	0	Adam combines the advantages of RMSProp and momentum				

6 P