Image registration

Ruisheng Su, Maureen van Eijnatten

Today:

- Introduction of medical image registration
- Recap of linear algebra
- Geometrical transformations

Learning outcomes

The student can:

- name possible causes of misalignment in medical images
- name different applications of medical image registration
- classify medical image registration methods using eight different criteria
- apply the basic principles of linear algebra (i.e., matrix-vector, vector-matrix products, transpose, norms, orthogonality, determinant) to image registration tasks
- use the determinant of a transformation matrix T to predict the orientation and magnification of an object transformed with T
- compose and combine rigid and affine transformations in 2D and 3D (and rewrite them using homogeneous coordinates)
- explain the difference between affine and non-linear registrations

IMAG/e

Technische Universiteit
Eindhoven
University of Technology

Image registration: Introduction

r/pics post: "I went to Milan to create a frame for this photo. Live frame."

Image registration: determination of a **geometrical transformation** that aligns **one view** of an object with **another view** of that object or another object.

 $\it T$ aligns the first with the second view

fixed image

transformed moving image

moving image

You will implement this functionality during the image registration project!

Causes of misalignment:

- Different positioning of patient in scanner
- Movements of organs due to physiology
- Movements of patient
- Distortions caused by imaging system
- Changes caused by interventions (e.g. surgery, chemotherapy) in between acquisition of the images

Applications of image registration:

- Combining information from different sources
- Comparison: differences in (groups of) subjects
- Comparison: monitoring changes in a single subject
- Segmentation
- Motion correction
- Image-guided treatment
- Atlas, model of average anatomy

Applications of image registration:

- Combining information from different sources
- Comparison: differences in (groups of) subjects
- Comparison: monitoring changes in a single subject
- Segmentation
- Motion correction
- Image-guided treatment
- Atlas, model of average anatomy

MRI, information about form

PET, information about function

Applications of image registration:

- Combining information from different sources
- Comparison: differences in (groups of) subjects
- Comparison: monitoring changes in a single subject
- Segmentation
- Motion correction
- Image-guided treatment
- Atlas, model of average anatomy

Digital subtraction angiography

Without registration

With registration

Digital subtraction angiography

Classification of image registration:

- Image dimensionality: 2D, 3D, 3D + time...
- Registration basis: point sets, intensity...
- Geometrical transformations: rigid, affine, nonlinear...
- Degree of interaction: automatic, semi-automatic
- Optimization procedure: closed-form solution, iterative
- Modalities: multi-modal, intra-modal
- Subject: inter-patient, intra-patient, atlas
- Object: head, vertebra, liver...

Image registration overview

Study materials:

- Primary: lecture slides, exercises, virtual reader
- Recommended reading relevant sections from:
 Fitzpatrick, J.M., Hill, D.L. and Maurer Jr, C.R., Image registration.

IMAG/e

Technische Universiteit Eindhoven University of Technology

Review of linear algebra

Kolter, Z. Do, C., Linear Algebra Review and Reference

(http://cs229.stanford.edu/section/cs229-linalg.pdf)

Topics to review:

- Matrix-vector, vector-matrix products
- Transpose
- Norms
- Orthogonality
- Determinant

Scalars

- · A scalar is a single number
- Integers, real numbers, rational numbers, etc.
- · We denote it with italic font:

a, n, x

Vectors

A vector is a 1-D array of numbers:

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}. \tag{2.1}$$

- Can be real, binary, integer, etc.
- Example notation for type and size:

Matrices

A matrix is a 2-D array of numbers:

Example notation for type and shape:

$$A \in \mathbb{R}^{m \times n}$$

Matrix Transpose

$$(\mathbf{A}^{\top})_{i,j} = A_{j,i}.$$

$$\mathbf{A} = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \\ A_{3,1} & A_{3,2} \end{bmatrix} \Rightarrow \mathbf{A}^{\top} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \end{bmatrix}$$

Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the main diagonal.

$$(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}. \tag{2.9}$$

Matrix (Dot) Product

$$C = AB. (2.4)$$

$$C_{i,j} = \sum_{k} A_{i,k} B_{k,j}.$$
 (2.5)

Identity Matrix

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$$

Figure 2.2: Example identity matrix: This is I_3 .

$$\forall \boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{I}_n \boldsymbol{x} = \boldsymbol{x}. \tag{2.20}$$

 $\boldsymbol{A}_{m.:}\boldsymbol{x}=b_m$

Systems of Equations

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{2.11}$$

expands to

$$\boldsymbol{A}_{1,:}\boldsymbol{x} = b_1 \tag{2.12}$$

$$\boldsymbol{A}_{2,:}\boldsymbol{x} = b_2 \tag{2.13}$$

$$(2.14)$$
 System of Linear Equation

Matrix representation

$$A = \begin{bmatrix} 2.0 & 4.0 & 6.0 \\ 4.0 & 5.0 & 6.0 \\ 3.0 & 1.0 & -2.0 \end{bmatrix} \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad b = \begin{bmatrix} 18.0 \\ 24.0 \\ 4.0 \end{bmatrix}$$

Matrix Inversion

- Matrix inverse: $A^{-1}A = I_n$. (2.21)
- Solving a system using an inverse:

$$\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} \tag{2.22}$$

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} \tag{2.23}$$

$$I_n \mathbf{x} = \mathbf{A}^{-1} \mathbf{b} \tag{2.24}$$

Numerically unstable, but useful for abstract analysis

Norms

- Functions that measure how "large" a vector is
- Similar to a distance between zero and the point represented by the vector
 - $\bullet \ f(\boldsymbol{x}) = 0 \Rightarrow \boldsymbol{x} = \boldsymbol{0}$
 - $f(x + y) \le f(x) + f(y)$ (the triangle inequality)
 - $\forall \alpha \in \mathbb{R}, f(\alpha x) = |\alpha| f(x)$

Special Matrices and Vectors

Unit vector:

$$||\boldsymbol{x}||_2 = 1. \tag{2.36}$$

Symmetric Matrix:

$$\boldsymbol{A} = \boldsymbol{A}^{\top}.\tag{2.35}$$

Orthogonal matrix:

$$\mathbf{A}^{\top} \mathbf{A} = \mathbf{A} \mathbf{A}^{\top} = \mathbf{I}.$$

$$\mathbf{A}^{-1} = \mathbf{A}^{\top}$$
(2.37)

The Determinant

det
$$(\mathbf{A})$$
 = $|\mathbf{A}| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$

• The determinant of a square matrix maps matrices to real scalars

Question: What is the determinant of the identity matrix $\det(I)$?

Determinant of a transformation matrix **T**: the signed area of a unit square shape after transforming with **T**. The sign reflects whether the orientation has changed.

Determinant of a transformation matrix **T**: the signed **area** of a unit square shape after transforming with **T**. The **sign** reflects whether the orientation has changed.

- |T|
- $= 1 \rightarrow$ no magnification
- >1 > the matrix has magnification property
 - <1 > the matrix has shrinking property
 - = 0 → shrink any object to a dot / matrix is not invertable

Essence of linear algebra, 3Blue1Brown channel

Geometrical transformations

All examples will be for 2D geometrical shapes and images, but they can be easily generalized to 3D.

Translation:

$$x = x + t_x$$

$$y = y + t_y$$

$$\mathbf{x}' = \mathbf{x} + \mathbf{t}$$

$$\mathbf{x}' = \begin{bmatrix} x' \\ y' \end{bmatrix} \mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{t} = egin{bmatrix} t_x \ t_y \end{bmatrix}$$

Distance between two points in 2D:

$$D(\mathbf{x}, \mathbf{x}') = \sqrt{(x - x')^2 + (y - y')^2} = \sqrt{(\mathbf{x} - \mathbf{x}')^{\mathsf{T}}}$$

Rotation:

$$x' = \cos(\phi)x - \sin(\phi)y$$
$$y' = \sin(\phi)x + \cos(\phi)y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{x}' = \mathbf{R}\mathbf{x}$$

$$\mathbf{R} = egin{bmatrix} \cos(\phi) & -\sin(\phi) \ \sin(\phi) & \cos(\phi) \end{bmatrix}$$

Not every matrix can be considered a rotation matrix.

$$\mathbf{R} = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix}$$

Rotation matrices:

Are orthogonal:

$$\mathbf{R}\mathbf{R}^{-1} = \mathbf{R}\mathbf{R}^{\intercal} = \mathbf{I}$$

Have determinant equal to 1:

$$\det(\mathbf{R}) = 1$$

Scaling:

$$x' = s_x x$$

$$y' = s_y y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{x}' = \mathbf{S}\mathbf{x}$$

$$\mathbf{S} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$$

Scaling (on whiteboard)

Rotation (on whiteboard)

Shearing:

$$x' = x + h_x y$$

$$y' = h_y x + y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & h_x \\ h_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{x}' = \mathbf{H}\mathbf{x}$$

$$\mathbf{H} = egin{bmatrix} 1 & h_x \ h_y & 1 \end{bmatrix}$$

Reflection:

Horizontal:

$$x' = -x$$

$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Vertical:

$$x' = x$$

$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Composition of transformations:

Rotation + translation (rigid):

$$\mathbf{x}' = \mathbf{R}\mathbf{x} + \mathbf{t}$$

Transformations can be combined by multiplying the transformation matrices.

Rotation, scaling + translation:

$$x' = RSx + t$$

$$x' = SRx + t$$

Note that matrix multiplication is not commutative:

$$\mathbf{T_1T_2x} \neq \mathbf{T_2T_1x}$$

First scaling, then rotation, then translation:

$$x' = RSx + t$$

First rotation, then scaling, then translation:

$$x' = SRx + t$$

Affine transformation (no restriction on the transformation parameters):

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

$$x' = Ax + t$$

It can be considered as a composition of any combination of rotations, scalings, shearings, reflections + translations.

Note that the affine transformation has **6 parameters**: 2×2 transformation matrix and 2×1 translation vector.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

The combination of rotation, scaling, shearing, reflection + translation has **9** parameters: 1 rotation angle, 2 scaling parameters, 2 shearing parameters, 2 reflection parameters and 2×1 translation vector.

$$\begin{bmatrix} \phi & s_x & s_y & h_x & h_y & r_x & r_y & t_x & t_y \end{bmatrix}$$

However, the first 7 parameters are not **independent**.

The first parameterization is more compact, the second more human-readable.

Affine transformation in 2D has only 6 degrees of freedom.

In medical image registration, **reflections do not usually occur**, and it can be very problematic if two images are incorrectly registered with a reflection (e.g. can cause a surgical procedure to be performed on the wrong side of the body).

Thus, reflections should be excluded from affine registration.

$$\begin{bmatrix} \phi & s_x & s_y & h_x & h_y & t_x & t_y \end{bmatrix}$$

When using the unrestricted transformation matrix, a check for reflection can be made by examining $\det(\mathbf{A})$. If a reflection has occurred $\det(\mathbf{A}) < 0$.

$$x' = Ax + t$$

A transformation matrix and a translation vector can be combined when using homogeneous coordinates:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

This largely simplifies the notation and implementation of complex transformations.

Example:

$$\mathbf{T}_{1} = \begin{bmatrix} 1 & 0 & t_{x,1} \\ 0 & 1 & t_{y,1} \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & t_{x,2} \end{bmatrix}$$

$$\mathbf{T}_2 = \begin{bmatrix} 1 & 0 & t_{x,2} \\ 0 & 1 & t_{y,2} \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T}_{1}\mathbf{T}_{2} = \begin{bmatrix} 1 & 0 & t_{x,1} \\ 0 & 1 & t_{y,1} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_{x,2} \\ 0 & 1 & t_{y,2} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_{x,1} + t_{x,2} \\ 0 & 1 & t_{y,1} + t_{y,2} \\ 0 & 0 & 1 \end{bmatrix}$$

Example – rotation around an arbitrary point $\mathbf{x}_r = \begin{bmatrix} x_r \\ y_r \end{bmatrix}$:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_r \\ 0 & 1 & y_r \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\phi) & -\sin(\phi) & 0 \\ \sin(\phi) & \cos(\phi) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -x_r \\ 0 & 1 & -y_r \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Example – rotation around an arbitrary point $\mathbf{x}_r = \begin{bmatrix} x_r \\ y_r \end{bmatrix}$:

Inverse transformation can be achieved by taking the inverse of the transformation matrix:

$$\mathbf{T} = \begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T}^{-1} = \begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix}^{-1}$$

Affine transformation in 3D:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t_x \\ d & e & f & t_y \\ g & h & i & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

How many rotation angles in 3D? How many degrees of freedom?

Non-linear transformations:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$x' = ax + by + t_x$$
 $y' = cx + dy + t_y$ Linear polynomial

$$x' = ax + by + t_x + u_1x^2 + u_2y^2 + u_3xy...$$
$$y' = cx + dy + t_y + v_1x^2 + v_2y^2 + v_3xy...$$

Higher order polynomial

Non-linear transformations:

Non-linear transformations: thin-plate spline

$$x' = ax + by + t_x + \sum_{i=1}^{N} u_i r_i^2 \ln r_i^2$$

$$y' = cx + dy + t_y + \sum_{i=1}^{N} v_i r_i^2 \ln r_i^2$$

$$r_i^2 = (x - x_i)^2 + (y - y_i)^2$$

Thank you

Next: Image transformation, point-based registration

