ANALYSE I et II Math. et Phys. 1^{ère} année Prof. J. Rappaz

Propédeutique 1

Exercice 1 (10 points).

Les suites de fonctions $(f_n)_{n=1}^{\infty}$ définies ci-dessous convergent-elles uniformément et/ou ponctuellement vers une fonction?

Si oui, donnez la limite avec justification.

Si non, justifiez!

- 1.) $f_n: [0, 2\pi] \to \mathbb{R}$ définie par $f_n(x) = \sin(nx)$;
- 2.) $f_n:[0,2\pi]\to\mathbb{R}$ définie par $\begin{cases} f_n(x)=\frac{1}{n}\sin\left(\frac{1}{x}\right) & \text{si } x\neq 0,\\ f_n(0)=0; \end{cases}$
- 3.) $f_n: [0, 2\pi] \to \mathbb{R}$ définie par $\begin{cases} f_n(x) = \sin\left(\frac{1}{nx}\right) & \text{si } x \neq 0, \\ f_n(0) = 0. \end{cases}$

Exercice 2 (10 points).

Calculer
$$\lim_{x \to 0} \frac{\ln \left(\cos^2(x)\right) + x^2}{x^4}$$
.

Exercice 3 (10 points).

Soit $I \subset \mathbb{R}$ un intervalle non vide et soit $f: I \to \mathbb{R}$ une fonction que l'on suppose **uniformément continue** sur I.

- 1.) Donner la définition de l'uniforme continuité de f sur I avec des ϵ et des δ .
- 2.) Démontrer à partir de cette définition que si $(a_n)_{n=0}^{\infty} \subset I$ est une suite convergente vers $a \in \mathbb{R}$, alors la suite $(f(a_n))_{n=0}^{\infty}$ est aussi convergente.
- 3.) Démontrer que si I =]a, b[avec a < b, alors f peut être prolongée en une fonction continue définie sur [a, b].
- 4.) Démontrer que si I =]0,1[et $f(x) = \frac{1-x}{\ln x}$, alors f est bien uniformément continue sur I. Comment peut-on définir f(0) et f(1) en prolongeant continûment f en zéro et en un?

Tourner la page, s.v.pl.

Exercice 4 (10 points).

Soit $(a_n)_{n=0}^{\infty} \subset \mathbb{R}$ une **suite** numérique **bornée**.

- 1.) Donner la définition de $\limsup_{n\to\infty} a_n$.
- 2.) Donner la définition de $\liminf_{n\to\infty} a_n$.
- 3.) Si $(a_n)_{n=0}^{\infty} \subset \mathbb{R}$ est définie par:

$$a_{2n} = 1 + \frac{1}{1+n}, \quad a_{2n+1} = \ln\left(1 + \frac{1}{1+n}\right), \text{ pour } n \in \mathbb{N},$$

calculer $\limsup_{n\to\infty} a_n$ et $\liminf_{n\to\infty} a_n$ en utilisant les définitions 1.) et 2.).

Exercice 5 (10 points).

Soit $a \in \mathbb{R}$, soit $f : [a, \infty[\to \mathbb{R}$ une fonction que l'on suppose continue sur $[a, +\infty[$ et dérivable sur $]a, +\infty[$.

1.) Démontrer que si $\lim_{\substack{x \to a \\ x \to a}} f'(x)$ existe, alors il existe une dérivée de f à droite de a notée $f'_d(a)$ et on a

$$f'_d(a) = \lim_{\substack{x \to a \\ >}} f'(x).$$

2.) Que penser de la réciproque, c'est-à-dire: si $f'_d(a)$ existe, alors $\lim_{\substack{x \to a \\ >}} f'(x)$ existe et on a $f'_d(a) = \lim_{\substack{x \to a \\ >}} f'(x)$? (Si vous pensez l'affirmation correcte, il faut la démontrer; si vous la pensez fausse, il faut donner un contre-exemple!)

Exercice 6 (10 points).

Montrer le résultat suivant:

Théorème: Soit $(x_n)_{n=0}^{\infty}$ une suite croissante et $(y_n)_{n=0}^{\infty}$ une suite décroissante qui sont telles que

$$\lim_{n \to \infty} (x_n - y_n) = 0.$$

Alors, on a:

- 1.) $x_0 \le x_1 \le x_2 \le \dots x_n \le y_n \le y_{n-1} \le y_{n-2} \le \dots \le y_1 \le y_0$.
- $2.) \lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n.$