Seminár z algoritmizácie a programovania 1

Martin Bobák Ústav informatiky Slovenská akadémia vied

Obsah prednášky

Dynamické programovanie

Spätná väzba:

https://forms.gle/iKbuLdF6xDtNSEDP8

Dynamické programovanie

Úloha:

- riešenie náročného problému tým, že ho zjednodušíme rozdelením na menšie podproblémy, ktorých vyriešením sa dostaneme k riešeniu pôvodného problému.
- musí existovať (rekurzívny) vzťah medzi vstupným problémom a podproblémami.
- podproblémy sa prelínajú (opakujú sa -> rozdeľ a panuj generuje v každom kroku nové podproblémy)
- obmedzenia: neexistuje vzťah medzi vstupným problémom a jeho podproblémami, vysoký počet podproblémov...

Prečo dynamické programovanie?

- v 50. rokoch, keď Richard Bellman prišiel s týmto konceptom, pojem programovanie znamenal plánovanie
- · dynamické programovanie označovalo metódu pre optimálne plánovanie úloh
- "vypĺňanie matice/tabuľky riešení podproblémov"

Motivácia

Zrejmé aplikácie:

- matematická optimalizácia (plánovanie, ekonomika...)
- vyhľadávanie v reťazcoch
- grafové algoritmy

Pokročilé aplikácie:

- bioinformatika (zarovnanie sekvencií)
- Markovove modely (spracovanie prirodzeného jazyka)
- počítačová grafika
- teoretické informatika

Rozdeľ a panuj

Pripomína prístup rozdeľ a panuj:

- vstupný problém rozdelíme na disjunktné (nezávislé, samostatné) podproblémy
- vyriešime podproblémy
- pomocou riešení podproblémov vyriešime vstupný problém

Príklady:

triedenie (merge sort, quick sort)

Merge sort

Quick sort

Fibonacciho čísla

čísla v postupnosti sú súčtom dvoch predchádzajúcich

Fibonacciho čísla Rekurzívne

```
int fib(int n)
{
   if (n <= 1)
      return n;
   else
      return fib(n-2) + fib(n-1);
}</pre>
```

neefektívne, pretože sa veľakrát vypočítavajú tie isté čísla – časová zložitosť: **O(2**ⁿ**)**

Technika pamätania

- systematicky riešime všetky podproblémy
- riešenia už predchádzajúcich podproblémov si zapamätáme a využívame ich pri riešení nových podproblémov
 - rozdiel medzi technikou rozdeľ a panuj, zbytočne si budeme ukladať medzivýsledky, keď s nimi následne nepracujeme

Poznáme dva prístupy:

- memoizácia
- tabulácia

Memoizácia

Zhora nadol:

 problém riešime ako pri rekurzii, avšak predtým ako ideme vyriešiť podproblém, pozrieme sa do pomocnej tabuľky, či sme sa s nám už nestretli

```
časová zložitosť: O(n)

(int. p. int. *fib. tab) (

pamäťová zložitosť: O(n)
```

```
int fib(int n, int *fib_tab) {
    if (fib_tab[n] == NIL) {
        if (n <= 1)
            fib_tab[n] = n;
        else
            fib_tab[n] = fib(n-1, fib_tab) + fib(n-2, fib_tab);
    }

    return fib_tab[n];
}</pre>
```

Tabulácia

Zdola nahor:

 začíname od najjednoduchších podproblémov, pomocou ktorých riešime/zostavujeme komplikovanejšie varianty.

nerekurzívne riešenie

časová zložitosť: **O(n)** pamäťová zložitosť: **O(n)**

```
int fib(int n)
{
   int f[n+1];
   int i;
   f[0] = 0; f[1] = 1;
   for (i = 2; i <= n; i++)
       f[i] = f[i-1] + f[i-2];

return f[n];
}</pre>
```

Fibonacciho čísla Iteratívne

```
int fib(int n)
   if (n <= 1)
     return n;
   else {
      int n 1, n 2, i, sucet;
     n 1 = 0;
     n = 1;
      for(i=2; i<=n; i++) {
         sucet = n 1 + n 2;
         n 1 = n 2;
        n 2 = sucet;
      return sucet;
```

niekedy si nepotrebujeme pamätať celú tabuľku, ale iba jej časť (napr. posledný riadok, niektoré hodnoty)

časová zložitosť: O(n)

pamäťová zložitosť: O(1)

Zhrnutie

- pri memoizácii uschovávame podproblémy, na ktoré narazíme počas riešenia vstupného problému
 - niektoré podproblémy vieme preskočiť
 - rekurzívne riešenie si vyžaduje minimálne zásahy
- pri tabulácii začíname so základnými podproblémami, ktoré vieme vyriešiť a postupne/systematicky riešime všetky podproblémy.
 - je potrebné pretransformovať rekurzívne riešenie na nerekurzívne riešenie

- podobnosť reťazcov
 - diff, história zmien (Git)
 - bioinformatika

Old revision	New revision
2010-10-31 17:10:03 by admin	2010-10-31 17:31:03 by admin
this	
is	
some	this
text	is
that	the
will	changed
be	text
changed	

- $\cdot X = ABCD$ Y = ACBAD
 - AB, AC, AD, BD
 - ABD, ACD

Vstup: dva reťazce (polia znakov)

$$X = (X_1, X_2...X_m), Y = (Y_1, Y_2...Y_n)$$

Výstup: reťazec reprezentujúci najdlhšiu spoločnú podpostupnosť

Podproblém: $C[i,j] = najdlhšia spoločná podpostupnosť reťazcov <math>X = (X_1, X_2...X_i), Y = (Y_1, Y_2...Y_j).$

C[m,n] = riešenie pre vstupné reťazce

$$LCS(X_i, Y_j) = egin{cases} \emptyset & ext{if } i = 0 ext{ or } j = 0 \ LCS(X_{i-1}, Y_{j-1}) \hat{\ } x_i & ext{if } i, j > 0 ext{ and } x_i = y_j \ \max\{LCS(X_i, Y_{j-1}), LCS(X_{i-1}, Y_j)\} & ext{if } i, j > 0 ext{ and } x_i
eq y_j. \end{cases}$$

- okraje tabuľky inicializujeme na 0
- postupne vypĺňame tabuľku podľa okolitých hodnôt
 - C[i, j] určíme podľa C[i−1, j], C[i, j−1] a C[i−1, j−1]

2020/2021

LCS Strings

	Ø	A	G	С	A	Т
Ø	Ø	Ø	Ø	Ø	Ø	Ø
G	Ø					
A	Ø					
С	Ø					

18

"G" Row Completed

	Ø	A	G	С	A	Т
Ø	Ø	Ø	Ø	Ø	Ø	Ø
G	Ø	$\stackrel{\uparrow}{\leftarrow}$ Ø	[്] √(G)	←(G)	←(G)	←(G)
A	Ø					
С	Ø					

"G" & "A" Rows Completed

	Ø	A	G	С	A	Т
Ø	Ø	Ø	Ø	Ø	Ø	Ø
G	Ø	$\overset{\uparrow}{\leftarrow} \emptyset$	√(G)	←(G)	←(G)	←(G)
A	Ø		[↑] (A) & (G)	[↑] (A) & (G)	്(GA)	←(GA)
С	Ø					

Completed LCS Table

	Ø	A	G	С	A	Т
Ø	Ø	Ø	Ø	Ø	Ø	Ø
G	Ø	$\stackrel{\uparrow}{\leftarrow}$ Ø	്(G)	←(G)	←(G)	←(G)
A	Ø	<a>⟨ (A)	[↑] (A) & (G)	[↑] (A) & (G)	√(GA)	←(GA)
С	Ø	↑(A)	[↑] (A) & (G)	√(AC) & (GC)	$\stackrel{\uparrow}{\leftarrow}$ (AC) & (GC) & (GA)	$\stackrel{\uparrow}{\leftarrow}$ (AC) & (GC) & (GA)

Storing length, rather than sequences

	Ø	A	G	С	A	Т
Ø	0	0	0	0	0	0
G	0	$\overset{\uparrow}{\leftarrow} 0$	₹1	←1	←1	←1
A	0	√1	$\stackrel{\uparrow}{\leftarrow}$ 1	$\stackrel{\uparrow}{\leftarrow}$ 1	√2	←2
C	0	↑ 1	$\stackrel{\uparrow}{\leftarrow}$ 1	₹ 2	↑ 2	<u></u> † 2

Traceback example

	Ø	A	G	С	A	Т
Ø	0	0	0	0	0	0
G	0	$\overset{\uparrow}{\leftarrow} 0$	\1	←1	←1	←1
A	0	^1	$\stackrel{\uparrow}{\leftarrow}$ 1	$\stackrel{\uparrow}{\leftarrow}$ 1	^2	←2
С	0	1	\leftarrow 1	₹2	↑ 2	←2

```
int LCS(char* X, char* Y, int m, int n) {
    int C[m + 1][n + 1];
    int result = 0:
    for (int i = 0; i \le m; i++) {
        for (int j = 0; j \le n; j++) {
            if (i == 0 | | j == 0)
                C[i][j] = 0;
            else if (X[i - 1] == Y[j - 1]) {
                C[i][j] = C[i - 1][j - 1] + 1;
                result = max(result, C[i][j]);
            else
                C[i][j] = 0; }
    return result; }
```

Námety na semestrálnu prácu

 nájdite si úlohu vhodnú pre dynamické programovanie a porovnajte zložitosti jednotlivých prístupov

Zdroje

Dynamické programovanie:

https://www.geeksforgeeks.org/overlapping-subproble ms-property-in-dynamic-programming-dp-1/

Najdlhšia spoločná podpostupnosť:

https://en.wikipedia.org/wiki/Longest_common_subsequence_problem

Ďakujem vám za pozornosť!

Spätná väzba:

https://forms.gle/iKbuLdF6xDtNSEDP8

