Rozvrhovanie – 1.časť

- Operatívny manažment výrobného procesu
- Plánovanie vs. rozvrhovanie
- Rozvrhovanie hlavné a doplnkové charakteristiky, typy úloh
 - Rozvrh, optimálny rozvrh, používané kriteriálne funkcie
 - Príklad úlohy rozvrhovania a manuálnej tvorby rozvrhu (Ganttov diagram)
- Typy rozvrhovacích úloh a ich riešenie
 - 1. Rozvrhovanie na paralelných strojoch/procesoroch
 - A. Rozvrhovanie na jednom stroji/procesore
 - B. Rozvrhovanie na viacerých strojoch/procesoroch
 - 2. Rozvrhovanie na špecializovaných (dedikovaných) strojoch
 - A. Open shop (riešiť ako flow shop)
 - B. Flow shop
 - C. Job shop

Operatívny manažment výrobného procesu

- Definícia: systém riadiacich činností, ktoré priamo zabezpečujú priebeh výrobného procesu.
- Pozostáva z:
 - Výrobného rozvrhovania
 - Dispečerského riadenia
 - Monitorovania procesov a operatívnej evidencie

Štruktúra činností výrobnej logistiky

- Výrobné rozvrhovanie (nazývané niekedy aj operatívne plánovanie) – plní funkciu definovania cieľov výrobného procesu.
- Tieto ciele sú dané vo forme rozvrhov (w), ktoré sú výstupmi výrobného rozvrhovania.

 Dispečerské riadenie – zabezpečuje prenos cieľov na výrobný proces. Porovnávanie výstupov (y) výrobného procesu s jeho cieľmi (w), na základe ktorých zisťuje stav a prijíma rozhodnutia (u) tak aby sa dosiahol súlad medzi (y) a (w). Dispečerské riadenie zabezpečuje realizáciu týchto rozhodnutí (u).

 Monitorovanie procesov a operatívna evidencia – zabezpečuje zber dát o priebehu výrobného procesu a ich spracovanie do formy potrebnej pre analýzu a kontrolu výrobného procesu dispečermi.

Plánovanie vs. rozvrhovanie

- PLÁNOVANIE je postup vytvárania plánu.
- PLÁN je postupnosť akcií, ktoré je potrebné aplikovať tak, aby sa systém dostal z počiatočného stavu do cieľového stavu pri dodržaní daných ohraničení (pohľad AI, napr. robotika).
- ROZVRHOVANIE je postup vytvárania rozvrhu. Pritom nás okrem postupnosti (vopred daných) úloh zaujíma aj ich umiestenie v čase a na jednotlivé stroje/procesory. Cieľom je nájsť (optimálny) rozvrh pri dodržaní daných ohraničení.
- ROZVRH je súbor údajov, z ktorého je zrejmé, v ktorých časových intervaloch a kde sa majú úlohy realizovať.

Rozdiely medzi úlohami rozvrhovania a plánovania (AI)

- Paralelizmus ak máme k dispozícii viac strojov, niektoré úlohy môžu byť vykonávané naraz (paralelne).
- Trvanie akcií je pri rozvrhovaní dôležité, ale pri plánovaní sa neuvažuje
- Precedenčné ohraničenia sú dané výrobným harmonogramom, t.j. niektoré úlohy musia predchádzať iné (môže byť aj pri plánovaní).
- Implicitné ohraničenia na jednom stroji môžeme v jednom okamžiku vykonávať iba jednu úlohu.
- **Špecializované prostriedky** niektoré úlohy môžu byť vykonané iba na špecializovanom stroji.
- Obmedzené zdroje obmedzený počet strojov, surovín a pod.
- Časy medzi akciami niektoré úlohy môžu začať až s určitým časovým odstupom po skončení predchádzajúcich úloh.

Charakteristiky úloh rozvrhovania

- Hlavné charakteristiky
 - Stroje (alebo procesory)
 - 2. Úlohy
- Doplnkové charakteristiky
 - a) precedenčné ohraničenia (usporiadanie)
 - b) disjunktné ohraničenia (implicitné, vyplývajúce zo zdieľania strojov/procesorov)
 - c) zákazky (*jobs*) skupiny úloh
 - d) pomocné zdroje (*resources*)

1. Stroje (procesory)

- Poznáme dva základné typy strojov (resp. procesorov) z hľadiska rozvrhovania:
 - a) paralelné úloha môže bežať na ľubovoľnom stroji
 - b) špecializované (t.j. dedikované) úloha môže bežať len na špeciálne určenom stroji
- Podľa výkonnosti procesorov ich možno rozdeliť na:
 - a) identické na každom stroji j trvá spracovanie úlohy i rovnaký čas t_i
 - b) uniformné každý stroj (resp. procesor) j má svoju rýchlosť, ktorá nezávisí na úlohe, takže vnáša pri spracovaní úloh konštantné zrýchlenie (resp. spomalenie), ktoré označíme b_j
 - c) nesúvzťažné rýchlosť stroja (procesora) j závisí na vykonávanej úlohe i, t.j. čas vykonania úlohy i na stroji j bude t_{ij}

2. Úlohy

- Množina úloh $T = \{T_1, T_2, \dots, T_n\}$
- Povinné vstupné údaje o úlohách T_i :
 - 1. Čas spracovania úlohy t_i je dĺžka trvania task duration) vo všeobecnosti (pre nesúvzťažné stroje/procesory) to môže byť vektor (pre každý stroj, resp. procesor iná dĺžka trvania) $[t_{i1}, t_{i2}, ..., t_{im}]^T$
 - a) v prípade *identických* strojov/procesorov ide vlastne iba o jednu hodnotu t_i , t.j. $t_{ij} = t_i$ pre všetky stroje/procesory $j = 1 \dots m$
 - b) uniformné stroje/procesory: $t_{ij} = t_i / b_j$
 - c) nesúvzťažné stroje/procesory: rôzne t_{ij}

2. Úlohy

- **2.** Čas pripravenosti r_i (release time) od akého okamžiku je úloha pripravená na realizáciu. Ak sú všetky úlohy pripravené naraz, potom r_i = 0 (pre všetky i=1...n)
- 3. Požadovaná doba splnenia d_i (due date) doba dokedy by mala byť úloha splnená.
- <u>Nepovinné údaje</u>, ktoré o úlohách môžu, ale nemusia byť zadané:
 - **4.** Dodacie časy \overline{d}_i (deadline) neprekročiteľné časy ukončenia.
 - 5. Priority w_i významnosť úlohy

Doplnkové charakteristiky

- a) Precedenčné ohraničenia (usporiadanie)
 - $T_i < T_j$ (úloha T_i musí byť vykonaná pred úlohou T_j)
- b) Disjunktné ohraničenia (zdieľanie strojov/procesorov)
 - $T_i < T_j \lor T_j < T_i$ (úlohy T_j a T_i sa neprekrývajú)
- c) Zákazky (jobs)
 - Úlohy sa rozdeľujú do skupín (zákaziek) používajú sa pri rozvrhovaní na špecializovaných strojoch
- d) Pomocné zdroje (resources)
 - Napríklad spotreba materiálu, alebo energie

Rozvrh

- **ROZVRH** (R) je súbor údajov, z ktorého je zrejmé, v ktorých časových intervaloch sa majú jednotlivé úlohy realizovať
- Nech $c_i(R)$ je čas ukončenia úlohy T_i v rozvrhu R. Potom je zrejmé, že každý **prípustný rozvrh** R je daný n-ticou $[c_1(R), \dots, c_n(R)]$ za predpokladu, že spĺňa všetky ohraničenia.
- **Dominantná množina rozvrhov** (Dom) je taká množina, že pre každý rozvrh R, ktorý nie je z dominantnej množiny Dom existuje taký rozvrh S z dominantnej množiny Dom, že pre každú úlohu T_i (i = 1 ... n) platí $c_i(S) \le c_i(R)$ (t.j. že v rozvrhu S nekončí neskôr ako v rozvrhu R).

$$\forall R \notin Dom : \{\exists S \in Dom, c_i(S) \le c_i(R), \forall i = 1,...,n\}$$

Optimálny rozvrh

• Kriteriálna funkcia – je definovaná na množine všetkých prípustných rozvrhov spravidla ako nejaká reálna funkcia f času ukončenia jednotlivých úloh, t.j.

$$F(R) = f(c_1(R), ..., c_n(R))$$

- Regulárna kriteriálna funkcia F(R) je regulárna vtedy, ak nie je možný jej nárast bez toho, aby sa nepredĺžil termín ukončenia aspoň jednej úlohy.
- Optimálny rozvrh je taký prípustný rozvrh, pre ktorý daná kriteriálna funkcia F nadobúda minimum na množine všetkých prípustných rozvrhov.

$$F(R) = f(f_1(c_1(R)), ..., f_n(c_n(R)))$$

- Najčastejšie používané kriteriálne funkcie f (pričom f_i je tzv. funkcia nákladov, napr. c_i , l_i , f_i) sú tri:
- I. Suma (napr. C, L, F, T, n_T): $f = \sum_{i=1}^n f_i(c_i(R))$
- II. Maximum (napr. C_{max} , L_{max} , F_{max}): $f = \max_i f_i(c_i(R))$ $\sum_i f_i(c_i(R))$
- III. Aritmetický priemer (napr. \overline{C} , \overline{L} , \overline{F} , \overline{T}): $f = \frac{\overline{C}}{|C|}$ ak sú zadané priority w_i , tak možno počítať $\int_{c}^{n} w_i \cdot f_i(c_i(R))$
- IV. aj vážený priemer X_w :

$$f = \frac{\sum_{i=1}^{n} w_i \cdot f_i(c_i(R))}{\sum_{i=1}^{n} w_i}$$

C (completion time – čas ukončenia)

$$f_i = c_i(R) = c_i$$
$$f_i = w_i \cdot c_i(R)$$

- C (completion time čas ukončenia)
- L (lateness time oneskorenie, ak sú zadané d_i)

$$f_i = l_i = c_i - d_i$$
$$f_i = w_i \cdot (c_i - d_i)$$

- C (completion time čas ukončenia)
- L (lateness time oneskorenie, ak sú zadané d_i)
- F (flow time dĺžka spracovania, ak sú rôzne r_i)

$$f_{i} = c_{i} - r_{i}$$

$$f_{i} = w_{i} \cdot (c_{i} - r_{i})$$

$$\overline{F} = \frac{F}{n} \quad resp. \quad F_{w} = \frac{\sum w_{i} \cdot (c_{i} - r_{i})}{\sum w_{i}}$$

- C (completion time čas ukončenia)
- L (lateness time oneskorenie, ak sú zadané d_i)
- F (flow time dĺžka spracovania, ak sú rôzne r_i)
- T (tardeness time dĺžka omeškania, ak sú d_i)

$$f_i = \max(0, c_i - d_i)$$

$$f_i = \max(0, w_i \cdot (c_i - d_i))$$

$$\overline{T} = \frac{T}{n} \quad resp. \quad T_W = \frac{\sum w_i \cdot f_i}{\sum w_i}$$

Regulárne kriteriálne funkcie - sumár

- C (completion time čas ukončenia)
 - berú sa priamo hodnoty c_i
- L (lateness time oneskorenie)
 - berú sa hodnoty $c_i d_i$
- F (flow time dĺžka spracovania)
 - berú sa hodnoty c_i r_i
- T (tardeness time dĺžka omeškania)
 - berú sa iba kladné hodnoty $c_i d_i$
- n_T (počet omeškaných úloh)
 - počet kladných hodnôt $c_i d_i$

Príklad

- Máme 3 identické paralelné procesory (stroje) a daných 8 úloh s týmito parametrami:
 - m = 3, paralelné procesory, P = {P₁, P₂, P₃}
 - n = 8, úlohy, $T = \{T_1, T_2, ..., T_8\}$
 - $-t_i = [3, 4, 1, 2, 1, 2, 3, 2]$ časy spracovania úloh
 - $-r_i = 0$ (i = 1, ..., 8) časy pripravenosti
 - $-d_i$ = [5, 4, 5, 3, 7, 6, 9, 12] požadované časy ukončenia úloh
 - $-w_i = [1, 2, 1, 3, 1, 2, 2, 2] priority úloh$
 - {T1< T3, T2< T3, T2< T4, T3< T6, T3< T7, T4< T6, T4< T7, T4< T8, T5< T8} precedencie</p>

Precedenčný graf

- Úlohy sú reprezentované uzlami v grafe
- Precedencie sú reprezentované orientovanými hranami
- Graf konštruujeme postupne, pričom si uzly rozdelíme na vstupné, medziľahlé a výstupné.
- {T1< T3, T2< T3, T2< T4, T3< T6, T3< T7, T4< T6, T4< T7, T4< T8, T5< T8}

Ganttov diagram

- Je grafickou reprezentáciou rozvrhu (os x reprezentuje čas a na osi y sú jednotlivé procesory/stroje).
- Rozvrh môžeme skonštruovať na základe precedenčného grafu pričom dodržiavame precedencie a úlohy zaradzujeme vždy na voľný stroj v najskoršom možnom čase.

Príklad

 Vypočítajte hodnoty rôznych kriteriálnych funkcií pre rozvrhy R1 a R2 (typu *C, F, L, T*) a rozvrhy podľa nich porovnajte (v prípade rozvrhu R2 bola jedna precedencia zrušená).

Príklad – výpočet kriteriálnych funkcií

$$c_{i}(R_{I}) = [\ , \ , \ , \ , \ , \ , \] \quad P_{3}$$

$$d_{i} = [5, 4, 5, 3, 7, 6, 9, 12] \quad P_{2}$$

$$l_{i}(R_{I}) = [\ , \ , \ , \ , \ , \ , \] \quad P_{1}$$

$$tr_{i}(R_{I}) = [\ , \ , \ , \ , \ , \ , \] \quad P_{1}$$

$$f_{i}(R_{I}) = [\ , \ , \ , \ , \ , \ , \] \quad P_{1}$$

$$C_{max}(R_{I}) = [\ , \ , \ , \ , \ , \ , \] \quad P_{2}$$

$$P_{1}$$

$$tr_{i}(R_{I}) = [\ , \ , \ , \ , \ , \ , \] \quad P_{2}$$

$$P_{1}$$

$$tr_{i}(R_{I}) = [\ , \ , \ , \ , \ , \ , \] \quad P_{2}$$

$$C_{max}(R_{I}) = [\ , \ , \ , \ , \ , \ , \] \quad P_{2}$$

$$C_{max}(R_{I}) = [\ , \ , \ , \ , \ , \ , \] \quad P_{2}$$

$$C_{max}(R_{I}) = [\ , \ , \ , \ , \ , \ , \] \quad P_{2}$$

$$C_{max}(R_{I}) = [\ , \ , \ , \ , \ , \ , \] \quad P_{2}$$

$$C_{max}(R_{I}) = [\ , \ , \ , \ , \ , \ , \] \quad P_{2}$$

	R1	R2
$c_i(Ri)$	[3, 4, 5, 6, 1, 8, 9, 8]	[4, 4, 5, 6, 6, 8, 8, 8]
$d_i(Ri)$	[5, 4, 5, 3, 7, 6, 9, 12]	[5, 4, 5, 3, 7, 6, 9, 12]
$l_i(Ri)$	[-2, 0, 0, 3, -6, 2, 0, -4]	[-1, 0, 0, 3, -1, 2, -1, -4]
$f_i(\mathrm{Ri})$	[3, 4, 5, 6, 1, 8, 9, 8]	[4, 4, 5, 6, 6, 8, 8, 8]
$tr_i(Ri)$	[0, 0, 0, 3, 0, 2, 0, 0]	[0, 0, 0, 3, 0, 2, 0, 0]
C (= F)	44	49
$C_{max} (= F_{max})$	9	8
$\overline{C} = \overline{F}$	5,5	6,125
L	-7	-2
L_{max}	3	3
\overline{L}	-0,875	-0,25
T	5	5
T_{max}	3	3
n_T	2	2

Úloha z 5. prednášky

V tejto úlohe si prakticky overíte pochopenie látky preberanej na úvodnej prednáške z rozvrhovania. Postup ako úlohu riešiť, nájdete pri ukážkovom príklade v 5. prednáške. Vašou úlohou bude postupne:

- 1. Definovať si vlastnú úlohu rozvrhovania: 12 úloh na 4 identických paralelných procesoroch. Definujte si pre každú úlohu nasledovné údaje:
 - čas trvania úlohy t; (dĺžku úlohy),
 - čas kedy je úloha pripravená do výroby r_i (release time),
 - čas kedy by mala byť hotová d; (due date),
 - definujte aspoň 12 precedencií medzi ľubovoľnými dvojicami zadaných úloh.
- 2. Zostrojiť precedenčný graf pre Vami zadanú úlohu rozvrhovania.
- 3. Zostrojiť (pokiaľ možno platný) rozvrh vo forme Ganttovho diagramu pre Vami zadanú úlohu rozvrhovania.
- 4. Pre zostavený rozvrh vypočítajte hodnoty nasledovných kriteriálnych funkcií: C, C_{max} , L, L_{max} , F, F_{max} , T, T_{max} , n_T .