Feuille 3: Applications continues entre e.v.n.

Exercice 1 Donner le domaine de définition de f et étudier sa limite au point (0,0) dans chacun des cas suivants:

1°.
$$f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$$
;

2°.
$$f(x,y) = \frac{\sqrt{|xy|}}{\max(|x|^2,|y|)};$$

3°. $f(x,y) = \frac{x^5y^7}{x^2+3|y|^3}.$

$$3^{\circ}. \ f(x,y) = \frac{x^5 y^7}{x^2 + 3|y|^3}$$

Exercice 2 Dans chacun des cas suivants, l'application f est-elle continue sur \mathbb{R}^2 ?

Exercise 2 Dans chacun des cas survants, l'appli
$$1^{\circ}$$
. $f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$ si $(x,y) \neq 0$, $f(0,0) = 0$; 2° . $f(x,y) = \frac{xy}{x^2 + y^2}$ si $(x,y) \neq 0$, $f(0,0) = 0$; 3° . $f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$ si $(x,y) \neq 0$, $f(0,0) = 0$; 4° . $f(x,y) = y^2 \sin \frac{x}{y}$ si $y \neq 0$; $f(x,0) = 0$;

2°.
$$f(x,y) = \frac{xy}{x^2+y^2}$$
 si $(x,y) \neq 0$, $f(0,0) = 0$

3°.
$$f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$$
 si $(x,y) \neq 0$, $f(0,0) = 0$;

4°.
$$f(x,y) = y^2 \sin \frac{x}{y}$$
 si $y \neq 0$; $f(x,0) = 0$;

5°.
$$f(x,y) = \frac{\sin(xy)}{x}$$
, si $x \neq 0$, $f(0,y) = y$.

Exercice 3 Dans chacun des cas suivants, l'application f est-elle continue sur \mathbb{R}^2 ?

1°.
$$f(x,y) = (x^2 \sin y, e^y + 2x)$$
;

2°.
$$f(x,y) = \left(\sqrt{|xy|}\sin\frac{1}{\sqrt{x^2+y^2}}, x^2 + y^2\right) \text{ si } (x,y) \neq (0,0); f(0,0) = 0;$$

3°. $f(x,y) = \left(\frac{\sin(xy)}{x}, \frac{y}{x}\right) \text{ si } x \neq 0; f(0,y) = (y,1).$

3°.
$$f(x,y) = \left(\frac{\sin(xy)}{x}, \frac{y}{x}\right) \text{ si } x \neq 0; f(0,y) = (y,1)$$

Exercice 4 Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 . On définit la fonction g sur \mathbb{R}^2 par

$$g(x,y) = \frac{f(x) - f(y)}{x - y}$$
 si $x \neq y$, $g(x,x) = f'(x)$.

Montrer que q est continue sur \mathbb{R}^2 .

Exercice 5 Montrer que la fonction $f(x,y) = |x^2 - y^2|$ n'est pas uniformément continue sur \mathbb{R}^2 .

Exercice 6 Soient $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$ deux espaces vectoriels normés. On munit $E \times F$ de la norme $||(x,y)|| = \max(||x||_E, ||y||_F)$. Soit A un fermé de E et $f: A \to F$ une application continue. Montrer que le graphe de f, c'est-à-dire l'ensemble $\Gamma = \{(x, f(x)), x \in A\}$, est un fermé de $E \times F$.

Exercice 7 Soient E et F deux espaces vectoriels normés st $f: E \to F$ une application conti-

- 1°. Montrer que pour tout $A \subset E$, on a $f(\overline{A}) \subset \overline{f(A)}$.
- $2^{\circ}.$ Montrer par un exemple que l'inclusion peut être stricte.

Exercice 8 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une application continue.

1°. On suppose que

$$\lim_{x^2+y^2\to+\infty} f(x,y) = +\infty.$$

Montrer qu'il existe $(x_0, y_0) \in \mathbb{R}^2$ tel que, pour tout $(x, y) \in \mathbb{R}^2$,

$$f(x,y) \ge f(x_0, y_0).$$

2°. On suppose que, pour tout $(x,y) \in \mathbb{R}^2$, on a $f(x,y) \geq 0$ et que

$$\lim_{x^2+y^2\to+\infty} f(x,y) = 0.$$

Montrer qu'il existe $(x_0, y_0) \in \mathbb{R}^2$ tel que, pour tout $(x, y) \in \mathbb{R}^2$,

$$f(x,y) \le f(x_0, y_0).$$

Exercice 9 On définit $f: \mathbb{R}^2 \to \mathbb{R}$ par $f(x,y) = (x^2 + y^2)^{1/3}$.

- 1°. Montrer que f est uniformément continue sur B'(0,1).
- 2°. Montrer que f est lispchitzienne sur $\mathbb{R}^2 \setminus B(0,1)$.

Indication : Appliquer le théorème des accroissements finis à la fonction $\varphi(t)=t^{\frac{1}{3}}$.

3°. Déduire de ce qui précède que f est uniformément continue sur \mathbb{R}^2 .

Exercice 10 On munit \mathbb{R}^n de la norme $\|\cdot\|_{\infty}$. On considère $a=(a_1,\ldots,a_n)\in\mathbb{R}^n$ et l'application $f:\mathbb{R}^n\to\mathbb{R}$ définie par $f(x)=< a,x>=\sum_{j=1}^n a_jx_j$. 1°. Vérifier que f est une application linéaire continue.

- 2°. Déterminer sa norme, que l'on notera $|||f|||_{\infty}$.
- 3°. On munit maintenant \mathbb{R}^n de la norme $\|\cdot\|_1$. Déterminer la norme de f notée $\|\cdot\|_1$.
- 4° . On munit maintenant \mathbb{R}^n de la norme $\|\cdot\|_2$. Déterminer la norme de f notée $\|\cdot\|_1$.

Exercice 11 Soit $\mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre n à coefficients dans \mathbb{R} muni de la norme définie par, pour tout $A = (a_{j,j}) \in \mathcal{M}_n(\mathbb{R})$,

$$||M|| = \sum_{i,j=1}^{n} |a_{i,j}|.$$

Montrer que l'application

$$\phi : M \to Tr(M) = \sum_{i=1}^{n} a_{i,i}$$

est une application linéaire continue de et calculer sa norme $|||\phi|||$.

Exercice 12 Soit $E = \mathcal{C}([0,1],\mathbb{R})$ l'espace vectoriel des applications continues de [0,1] dans \mathbb{R} muni de la norme $||f|| = \sup_{x \in [0,1]} |f(x)|$. Montrer que les applications ϕ et ψ définies sur E par

$$\phi(f) = f(0); \ \psi(f) = \int_0^1 f(t)dt$$

sont des applications linéaires continues et déterminer leur normes.