Minor- I: Functional Analysis

School of Mathematics and Statistics University of Hyderabad

12 August, 2024

Instructions: No mark will be given for writing only TRUE or FALSE (without justification) in Question

1. State TRUE or FALSE giving proper justification for each of the following statements:

Instructor: Dharmendra Kumar

[1 + 3]

Course Code: MM 501

Duration: 60 minutes

(a) T is continuous.

Maximum Score: 20 points

(a) $\left(C[0, 1], \ \cdot\ _{\infty}\right)$ is separable.	[2]
(b) $\left(C^1[0, 1], \ \cdot\ _{\infty}\right)$ is Banach space.	[1]
2. (a) State and prove Hölder's inequality for any complex numbers x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n .	[3]
(b) If $1 \le p < q < \infty$, then show that $ x _p \le n^{\frac{1}{p} - \frac{1}{q}} x _q$ for all $x \in \mathbb{K}^n$.	[1]
(c) Show that c_{00} is dense in $(c_0, \ \cdot\ _{\infty})$ and also in $(\ell^p, \ \cdot\ _p)$ for $1 \leq p < \infty$.	[2 + 2]
3. Examine whether $\ \cdot\ $ is a norm on $C[0,1]$, where $\ x\ = \min\{\ x\ _{\infty}, 2\ x\ _1\}$ for all $x \in C[0,1]$.	[2]
4. Examine whether $\ \cdot\ $ is a norm on $C[0,1]$, where $\ x\ = \min\{\ x\ _{\infty}, \frac{1}{2}\ x\ _{1}\}$ for all $x \in C[0,1]$.	[1]
5. Let E and F be normed linear spaces and $T:E\longrightarrow F$ be bounded linear map. Show that	
$ T = \sup_{\ x\ =1} T(x) .$	
	[2]

6. Let E and F be normed linear spaces and $T: E \longrightarrow F$ be linear map. Show that TFAE:

(b) T sends Cauchy sequences in E to Cauchy sequences in F.