Probabilités

Cours de Olivier François Notes de Julien Henry

Ensimag 1A

1 Simulation

On va décrire quelques méthodes de simulation de variables aléatoires. L'objectif est de pouvoir générer des variables aléatoires de lois classiques.

Définition 1. SIMULATION

Le principe d'une simulation est de produire une variable X de loi donnée, soit par sa fonction de répartition F, soit par sa densité à partir d'un générateur de variables U(0,1) indépendantes.

1.1 Méthode d'inversion

$$\forall x \in (0,1), F^{-1}(U) = \inf\{t \in \mathbb{R}, F(t) \ge u\}$$

On a alors

$$X = F^{-1}(U)$$

où U soit la loi U(0,1).

1.2 Méthode de mélange

Définition 2. Soit $(p_n)_{n\geq 1}$ une loi de probabilité sur \mathbb{N}^* et $(f_n)_{n\geq 1}$ une suite de fonctions de densité de probabilité. On dit que f est un **mélange** si :

$$\forall x \in \mathbb{R}, f(x) = p_1 f_1(x) + p_2 f_2(x) + \dots$$

Algorithme:

- 1. Tirer N selon la loi p_n
- 2. Sachant que N = n, simuler f_n .

1.3 Méthode de rejet

Soit f une densité sur [0,1] et

$$C = \max_{[0,1]} f(x)$$

Il faut alors faire:

Repeter

U <- ALEA

V <- ALEA

Jusqu'à (V < f(U)/C)

X <- U

X admet f par densité.

Exemple. Loi $\varepsilon(\lambda), \lambda > 0$

 $U \sim U(0, 1),$

$$F(t) = \begin{cases} 1 - e^{-\lambda t}, t \ge 0\\ 0 \text{ sinon} \end{cases}$$
$$X = -\frac{1}{\lambda} \log(U)$$

Soit $t \leq 0$:

$$P(X \le t) = P(-\log U \le \lambda t)$$

$$= P(U \ge e^{-\lambda t})$$

$$= 1 - e^{-\lambda t}$$

Dogme de l'inversion : Si $t \ge 0, U = 1 - e^{-\lambda t}$

$$\Rightarrow t = -\frac{1}{\lambda}\log(1-x)$$

Remarque. U et 1-U ont la même loi, donc :

$$X \longleftarrow -\frac{1}{\lambda} \log(ALEA)$$

est la manière standard de "programmer" l'inversion.

Exemple. On va calculer l'inverse généralisée de :

$$F(t) = \left\{ \begin{array}{l} 0 \ si \ t < 0 \\ \frac{1+t}{2} \ sit \in [0,1] \\ 1 \ sinon \end{array} \right.$$

On voit déjà que :

$$\forall u \le \frac{1}{2}, F^{-1}(u) = 0$$

 $\forall u \ge \frac{1}{2}, F^{-1}(u) = 2u - 1$

Donc l'algorithme d'inversion nous dit que :

$$X = (2U - 1) \mathbb{1}_{(U > \frac{1}{2})}$$

Propriété 1.

$$F^{-1}(u) \le t \Leftrightarrow u \le F(t)$$

 $D\acute{e}monstration.$ Preuve de l'algorithme d'inversion Soit $t \in \mathbb{R}$:

$$P(X \le t) = P(F^{-1}(U) \le t)$$
$$= P(U \le F(t))$$
$$= F(t)$$

Si on reprend l'exemple, on a :

$$P(X \le 0) = \frac{1}{2}$$

 $P(x < 0) = 0$
 $P(X = 0) = \frac{1}{2}$

Avec la probabilité $\frac{1}{2}$, X = 0, sinon X = U.

$$X = B \times U$$

Avec $B \sim B(1, \frac{1}{2})$.

$$X = \mathbb{1}_{Pile} \times U$$

Autrement dit, on peut considérer $N \in \{1, 2\}$ tel que $p_1 = \frac{1}{2} = p_2$. Si N = 1, alors on simule selon δ_0

Si N=2, alors on simule selon U(0,1)

 $D\'{e}monstration$. Methode de mélange

Après 1. et 2., on obtient X:

$$\forall t \in \mathbb{R}, P(X \le t) = \sum_{n=1}^{\infty} P(X \le T | N = n) P(N = n)$$

$$= \sum_{n=1}^{\infty} p_n \left(\int_{-\infty}^{t} f_n(x) \, dx \right)$$

$$= \int_{-\infty}^{t} \left(\sum_{n=1}^{\infty} p_n f_n(x) \right) dx$$

Par définition, cela signifie que :

$$f_X(x) = \sum_{n=1}^{\infty} p_n f_n(x)$$

Exemple.

$$f_X(x) = \left(x + \frac{1}{4}\right) \mathbb{1}_{[0,1]}(x) + \frac{1}{4} \mathbb{1}_{[1,2]}(x)$$

$$F(t) = \begin{cases} 0 \text{ si } t \le 0\\ \frac{2t^2 + t}{4} \text{ si } t \in (0,1)\\ \frac{3}{4} + \frac{t}{4} \text{ si } t \in (1,2) \end{cases}$$

En fait, on peut dire que:

$$f_X(x) = \mathbb{1}_{[0,1]}(x) + \frac{1}{4} \mathbb{1}_{[0,2]}(x)$$

$$= \frac{1}{2}(2x) \mathbb{1}_{[0,1]}(x) + \frac{1}{2} \left(\frac{1}{2} \mathbb{1}_{[0,2]}(x)\right)$$

$$= \frac{1}{2}f_1(x) + \frac{1}{2}f_2(x)$$

Simulation : $N \in \{1, 2\}, P(N = 1) = P(N = 2) = \frac{1}{2}$.

Si
$$(N = 1)$$
, alors $X = \sqrt(U)$
Sinon $X = 2U$

Etudier : Sachant que $B \sim B(1, \frac{1}{2})$,

$$X = B\sqrt{(U)} + (1-B)2U$$

$$\begin{split} E[X] &= E[B]E[\sqrt{U}] + E[1-B]E[2U] \\ &= \frac{1}{3} + \frac{1}{2} \\ E[X^2] &= E[BU + (1-B)4U^2] \\ &= \frac{1}{4} + \frac{2}{3} \end{split}$$

2 Fonctions génératrices

Définition 3. Soit X une variable aléatoire entière. Soit z un nombre tel que $|z| \le 1$. On définit la fonction génératrice :

$$G_X(z) = \sum_{n=0}^{+\infty} P(X=n) z^n$$
$$= E[z^X]$$

Propriété 2. G_X caractérise la loi de X. Si G_X est à la fois dérivable au point z=1 , alors on a

$$\begin{array}{rcl} G_X'(1) & = & E[X] \\ G_X''(1) & = & E[X(X-1)] \\ \Rightarrow Var(x) & = & G_X''(1) + G_X'(1) - G_X'(1)^2 = E[X^2] - E[X]^2 \end{array}$$

Propriété 3. Indépendance

 $Si\ X\ et\ Y\ sont\ indépendantes,\ alors:$

$$G_{X+Y}(z) = G_X(z) G_Y(z)$$

1.
$$z^X = \varphi(X)$$

$$E[\varphi(X)] = \sum_{n=0}^{\infty} \varphi(n) \ P(X=n) = \sum_{n=0}^{\infty} z^n \ P(X=n)$$

2. Caractérisation:

$$\forall n \in \mathbb{N}, P(X = n) = \frac{G_X^{(n)}(0)}{n!}$$
$$G_X(1) = 1$$

$$\frac{\partial}{\partial z}G_X(z)\bigg|_{z=1} = \frac{\partial}{\partial z}E[z^X]\bigg|_{z=1}$$

$$= E\left[\frac{\partial}{\partial z}z^X\right]\bigg|_{z=1}$$

$$= E[Xz^{X-1}]\bigg|_{z=1}$$

$$= E[X]$$

$$\begin{array}{ccc} \frac{\partial^2}{\partial z^2} & = & E\left[\frac{\partial^2}{\partial z^2}z^X\right]\bigg|_{z=1} \\ & = & E[X(X-1)z^{X-2}]\big|_{z=1} \\ & = & E[X^2] - E[X] \\ Var(X) & = & E[X^2] - E[X]^2 \end{array}$$

Exemple. X et Y indépendantes. Loi de X+Y?

$$G_{X+Y} = E[z^{X+Y}]$$

$$= E[z^X z^Y]$$

$$= E[z^X] E[z^Y]$$

2.1 Lois classiques

2.1.1 Bernoulli

2.1.2 Binômiale : Bin(n, p)

$$X = X_1 + \dots + X_n$$

 X_i suit la loi B(1,p). Les X_i sont indépendants.

$$G_X(z) = \prod_{i=1}^n G_{X_i}(z) = (q + pz)^n$$

$$E[X] = np$$

$$Var(X) = \sum_{i=1}^n Var(X_i) = nqp$$

2.1.3 Loi géométrique : G(p)

$$P(X = n) = p(1 - p)^{n-1}, n \ge 1$$

$$G_X(z) = pz \sum_{n=1}^{\infty} q^{n-1} z^{n-1} = \frac{pz}{1 - qz}$$

$$G'(z) = \frac{p}{(1 - qz)^2} \Big|_{z=1} = \frac{p}{(1 - q)^2} = \frac{1}{p}$$

$$G''(z) = \frac{2pq}{(1 - qz)^3} \Big|_{z=1} = \frac{2q}{p^2}$$

$$E[X] = \frac{1}{p}$$

$$Var(X) = \frac{q}{p^2}$$

Remarque. $p = \frac{1}{10}, E[X] = 10$

$$Var(X) = \frac{9}{10} * 100 = 90$$

 $SD(X) = \sqrt{Var(X)} = 9,5$

SD = standard derivation = 'ecart type

2.1.4 Loi de Poisson $\mathcal{P}(\lambda)$

$$P(X = n) = \frac{\lambda^n}{n!} e^{-\lambda}, n \ge 0$$

$$G_X(z) = \sum_{n=0}^{\infty} \frac{e^{-\lambda}}{n!} \lambda^n z^n = e^{-\lambda} e^{\lambda z} = e^{\lambda(z-1)}$$

$$E[X] = \lambda = Var(X)$$

Exemple. Si $X \equiv \mathcal{P}(\lambda)$ et $Y \equiv \mathcal{P}(\mu)$, X et Y indépendantes. Alors

$$X+Y\equiv \mathcal{P}(\lambda+\mu)$$

$$G_{X+Y}(z)=G_X(z)G_Y(z)=e^{\lambda(z-1)+\mu(z-1)}=e^{(\lambda+\mu)(z-1)}$$

Remarque. LIEN AVEC L'ANALYSE Le produit de convolution devient un produit classique.

$$P(X + Y = n) = \sum_{i=0}^{n} P(X + Y = n | X = i) P(X = i)$$

$$= \sum_{i=0}^{n} P(Y = n - i | X = i) P(X = i)$$

$$= \sum_{i=0}^{n} P(Y = n - i) P(X = i)$$

$$= P_{Y} * P_{X}(n)$$

Exemple. Sommes aléatoires

 $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires indépendantes de même loi G_X . Soit N indépendante de X_n , de loi G_N .

$$S = X_1 + X_2 + \dots + X_N$$

Résultat : $G_S(z) = G_N(G_X(z))$

$$E[z^{S}] = E\left[\sum_{n=0}^{\infty} \mathbb{1}_{N=n} z^{X_{1}+\dots+X_{n}}\right]$$

$$= \sum_{n=0}^{\infty} E[\mathbb{1}_{N=n} z^{X_{1}+\dots+X_{n}}]$$

$$= \sum_{n=0}^{\infty} P(N=n)(E[z^{X_{1}}])^{n}$$

$$= G_{N}(E[z^{X_{1}}])$$

3 Fonctions caractéristiques

Définition 4. Soit X une variable aléatoire réelle de loi de densité f_X . On définit la fonction caractéristique par :

$$\forall t \in \mathbb{R}, \Phi_X(t) = \int e^{itx} f_X(x)$$
$$= E[e^{itX}]$$
$$= E[z^X], z = e^{it}$$

Propriété 4. Φ_X caractérise la loi de X:

$$\forall x \in \mathbb{R}, f_X(x) = \frac{1}{2\pi} \int e^{itx} \Phi_X(t) dt$$

Propriété 5. Si X^k est intégrable, alors la fonction caractéristique est k fois dérivable en 0.

$$E[X^k] = (-i)^k \Phi_X^{(k)}(0)$$

Propriété 6. Si X est Y sont indépendantes, alors :

$$\Phi_{X+Y}(t) = \Phi_X(t)\Phi_Y(t)$$

Exemple. Loi Normale

La fonction caractéristique de la loi normale N(0,1) est :

$$\forall t \in \mathbb{R}, \Phi_X(t) = e^{\frac{-t^2}{2}}$$

Exemple. Loi $\varepsilon(\lambda, \lambda > 0)$

$$f_X(x) = \lambda e^{-\lambda x} \, \mathbb{1}_{\mathbb{R}^+}(x), x \in \mathbb{R}$$

$$\Rightarrow \Phi_X(t) = \int_0^{+\infty} \lambda e^{itx - \lambda x} dx$$

$$= \int_0^{+\infty} \lambda e^{-(\lambda - it)x} dx$$

$$= \frac{\lambda}{\lambda - it}$$

$$\Phi_X(t) = \frac{1}{1 - i\frac{t}{\lambda}}$$

Exemple. Loi $G(a, \lambda), a > 0, \lambda > 0$

$$\forall x \in \mathbb{R}, f_X(x) = \frac{\lambda^a}{\Gamma(a)} x^{a-1} e^{-\lambda x} \, \mathbb{1}_{\mathbb{R}^+}(x)$$

$$(a = 1), G(1, \lambda) \equiv \varepsilon(\lambda)$$

$$\Phi_X(t) = \int_0^{+\infty} \frac{\lambda^a}{\Gamma(a)} x^{a-1} e^{-(\lambda - it)x} dx$$

On effectue un changement de variables : $y = (\lambda - it)x$, $dy = (\lambda - it)dx$

$$\Phi_X(t) = \lambda^a \int_0^{+\infty} \frac{dy}{(\lambda - it)^a} = \left(\frac{1}{1 - i\frac{t}{\lambda}}\right)^a$$

Exemple. Somme de deux variables indépendantes : X+Y

$$\begin{split} \Phi_{X+Y}(t) &= E[e^{it(X+Y)}] &= E[\underbrace{e^{itX} - e^{itY}}_{\text{indépendance}}] \\ &= E[e^{itX}]E[e^{itY}] \\ &= \Phi_X(t)\Phi_Y(t) \end{split}$$

Exemple. Application du précédent

$$\left\{\begin{array}{l} X \sim \varepsilon(\lambda) \\ Y \sim \varepsilon(\lambda) \end{array}\right., \, \text{avec} \, \, X, Y \, \, \text{indépendantes}.$$

$$\begin{split} \Phi_{X+Y}(t) &= \Phi_X(t)\Phi_Y(t) \\ &= \left(\frac{1}{1 - \frac{it}{\lambda}}\right) \left(\frac{1}{1 - \frac{it}{\lambda}}\right) \\ &= \left(\frac{1}{1 - \frac{it}{\lambda}}\right)^2 \end{split}$$

Ainsi, X+Y sut la loi $G(a=2,\lambda)$. En général, X et Y indépendantes avec :

$$\begin{cases} X \sim G(a, \lambda) \\ Y \sim G(b, \lambda) \end{cases}$$

Alors on peut en déduire que X + Y suit $G(a + b, \lambda)$.

Exemple. CALCUL DES MOMENTS : $(E[X], E[X^2], ...)$

$$\frac{\partial}{\partial t} \Phi_X(t) = \frac{\partial}{\partial t} E[e^{itX}] \Big|_{t=0}$$

$$= E \left[\frac{\partial}{\partial t} e^{itX} \right] \Big|_{t=0}$$

$$= iE[Xe^{itX}] \Big|_{t=0}$$

$$= iE[X]$$

D'où $E[X] = \frac{1}{i} \Phi_X'(0) = (-i) \Phi_X(0)$. Si X^2 est intégrable, alors

$$\Phi_X''(0) = -E[X^2]$$

Exemple. Application à la loi $\varepsilon(\lambda)$

$$\Phi_X(t) = \frac{1}{1 - i\frac{t}{\lambda}}$$

$$\Phi'_X(0) = \frac{\frac{i}{\lambda}}{\left(1 - i\frac{t}{\lambda}\right)^2} \Big|_{t=0}$$

$$= \frac{i}{\lambda}$$

Donc $E[X] = \frac{1}{\lambda}$. En dérivant deux fois, on obtient :

$$E[X^2] = \frac{2}{\lambda^2}$$

Exemple. Loi normale N(0,1)E[X] = 0, $E[X^2] = Var(X) = 1$.

$$\forall x \in \mathbb{R}, Var(X) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

$$E[e^{itX}] = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{itx - \frac{x^2}{2}} dx$$

$$= e^{-\frac{t^2}{2}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{\frac{t^2}{2} + itx - \frac{x^2}{2}} dx$$

$$= e^{-\frac{t^2}{2}} \int_{-\infty}^{+\infty} \frac{e^{-\frac{(x-it)^2}{2}}}{\sqrt{2\pi}} dx$$

On effectue le changement de variable y = x - it, dy = dx.

$$E[e^{itX}] = e^{-\frac{t}{2}} \left(\int_{-\infty}^{+\infty} \frac{e^{-\frac{y^2}{2}}}{\sqrt{2\pi}} dy \right)$$

Exemple. Loi normale $N(m, \sigma^2)$ $Y = m + \sigma X$. E[Y] = m, et $Var(X) = \sigma^2$.

$$\forall y \in \mathbb{R}, f_X(y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y-m)^2}{2\sigma^2}}$$

$$\Phi_Y(t) = E[e^{itY}]
= E[e^{itm+it\sigma X}]
= e^{itm}E[e^{i(t\sigma)X}]
= e^{itm}\Phi_X(t\sigma)
= e^{itm-\frac{t^2\sigma^2}{2}}$$

Exemple. TENDANCE VERS LA LOI NORMALE

Soit X_1, X_2, \ldots une suite de variables aléatoires indépendantes, d'espérance 0, de variance $Var(X_i) = \sigma^2$, de même loi. On forme :

$$S_n = \sum_{i=1}^n X_i$$

$$E[S_n] = 0. \ Var[S_n] = \sum_{i=1}^n Var(X_i) = n\sigma^2. \ Z_n = \frac{S_n}{\sqrt{n}\sigma}. \ Var[Z_n] = 1.$$

$$\Phi_{Z_n}(t) = E[e^{it\frac{S_n}{\sqrt{n}\sigma}}]$$

$$= \Phi_{S_n}\left(\frac{t}{\sigma\sqrt{n}}\right)$$

$$= \prod_{i=1}^n \Phi_{X_1}\left(\frac{t}{\sigma\sqrt{n}}\right)^n$$

$$= \Phi_{X_1}\left(\frac{t}{\sigma\sqrt{n}}\right)^n$$

On fait un développement limité :

$$\begin{split} \Phi_{X_1}\left(\frac{t}{\sigma\sqrt{n}}\right) &\approx & \Phi_X(0) + \frac{t}{\sigma\sqrt{n}}\underbrace{\Phi_X'(0)}_{=0} + \frac{t^2}{2\sigma^2n}\Phi_X''(0) \\ &\approx & 1 - \frac{t^2}{2\sigma^2n}E[X^2] \\ &\approx & 1 - \frac{t^2}{2n} \end{split}$$