Quiz 2 Solutions

Name:		
Name:		

You will have 20 minutes \circ Calculators are allowed \circ Show all work for credit \circ Don't cheat \circ attempts at a problem may count for partial credit.

- 1. The volume of a cell increases at a rate of 10 μm^3 per hour.
 - (a) [2 pts] Express this statement as a differential equation.

$$\frac{dV}{dt} = 10$$

(b) [2 pts] Find the solution to this equation assuming the volume of the cell was initially $500\mu\mathrm{m}^3$.

$$V(t) = 10t + 500.$$

2. [4 pts] Find the solution to the following differential equation:

$$\frac{dy}{dt} = 2 + e^{-t}, \qquad y(0) = 1.$$

$$y(t) = 2t - e^{-t} + 2.$$

- 3. [3 pts] Suppose that $f(x) = 2x^2 + 7$.
 - (a) What differential equation does f(x) solve? f'(x) = 4x is the differential equation.

- (b) What is the initial condition? f(0) = 7.
- 4. Below is the graph of $\frac{dy}{dt}$ as a function of time.

- (a) [1 pts] On which interval(s) is y(t) increasing? [4, 8]
- (b) [1 pts] On which interval(s) is y(t) decreasing? [0, 4]
- (c) [2 pts] Sketch a graph of y(t) assuming an initial condition of y(0) = 0.

