Chaînes de Markov-Partie2

Réalisé par Dr. A. Redjil Département de mathématiques, UBMA, Annaba

May 23, 2020

Abstract

E-mail: a.redjil@univ-annaba.dz

1 Chaînes de Markov

- 1.1 Notions de base-Suite
- 1.1.1 Introduction
- 1.1.2 Dynamique markovienne
- 1.1.3 Distributions marginales

Soit $(X_0, X_1, ..., X_n)$ un vecteur (n-uplet) extrait d'une chaîne de Markov X, les conditionnements successifs permet de définir la distribution de $(X_0, X_1, ..., X_n)$ par:

$$P[(X_0, X_1, ..., X_n) = (x_0, x_1, ..., x_n)] = P[(X_0 = x_0] . P_1(x_0, x_1) ... P_n(x_{n-1}, x_n)$$

$$= \pi_0(x_0) . P_1(x_0, x_1) ... P_n(x_{n-1}, x_n)$$

pour tout $x_0, x_1, ..., x_n \in E$.

Remarque

On déduit les probabilités marginales π_n de la distribution π_0 et des matrices de transition:

$$\pi_n(x) = \sum_{x_0, x_1, \dots, x_{n-1} \in E} \pi_0(x_0) . P_1(x_0, x_1) ... P_n(x_{n-1}, x)$$

En utilisants les notations des matrices, la formule de la distribution π_n est donnée par:

$$\pi_n = \pi_0.P_1...P_n$$
, pour tout $n \ge 1$,

La distribution π_0 est considérée comme un vecteur ligne de taille card(E) multipliant à gauche le produit de matrices $P_1, ..., P_n$.

Formule de Chapman-Kolmogorov La formule de Chapman-Kolmogorov exprime le fait que la probabilité d'aller de x en y entre la date 0 et la date n se décompose comme la somme des probabilités d'aller de x en y en passant par un état z arbitraire à une date intermédiaire k, elle est donnée par:

$$P\left[X_{n}=y\mid X_{0}=x\right]=\sum_{z\in E}P\left[X_{n}=y\mid X_{k}=z\right].P\left[X_{k}=z\mid X_{0}=x\right];\ x,y\in E\ \text{pour tous}\ \ 0\leq k\leq n.$$

Espérance conditionnelle et matrice de transition Pour toute fonction

intégrable ou positive $f: E \longrightarrow \mathbb{R}$, l'ésperance conditionnelle $E\left[f\left(X_n\right) \mid F_{n-1}^X\right]$ se calcule en utilisant la matrice de transition P_n :

$$E[f(X_n) | F_{n-1}^X] = E[f(X_n) | X_{n-1}]$$

:
$$= (P_n f)(X_{n-1}) = \sum_{y \in E} P_n(X_{n-1}, y) f(y).$$

Si on représente f par un vecteur colonne $f(x), x \in E$, de taille card E, la formule de $E [f(X_n) | F_{n-1}^X]$ présente le produit matriciel à droite $P_n f$:

$$E[f(X_n) | X_{n-1} = x] = (P_n f)(x)$$

Espérance non conditionnelle et matrice de transition L'espérance non conditionnelle de la variable aléatoire $f(X_n)$ se calcule par le produit matriciel:

$$E[f(X_n)] = \pi_0 P_1 ... P_n f$$
, pour tout $n \ge 1$

Notons que la distribution π_0 est représentée par un vecteur ligne, alors que la fonction f est représentée par un vecteur colonne.