

## A Machine Learning Model for Diabetes

Hassan Shojaee-Mend Assistant Professor of Medical Informatics Gonabad University of Medical Sciences



- ⇒ Downloading the Pima Diabetes dataset from Kaggle
- ⇒ Preprocessing the data
- ⇒ Training a model using Hugging Face AutoTrain
- ⇒ Deploying the model with Gradio in Hugging Face Spaces

#### Pima Diabetes Dataset

- Predict the onset of diabetes based on diagnostic measures
- 768 patients are females at least 21 years old of Pima Indian heritage.
- Predictor variables includes the number of pregnancies the patient has had, their BMI, insulin level, age, and so on. (8 predictors)
- Target variable: Outcome (0,1)



https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

### Downloading the Dataset from Kaggle



https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

#### Data Preprocessing and Visualization

 Replace zeros with NaN for columns where zero is invalid (Glucose, BloodPressure, SkinThickness, Insulin, BMI)

| # Pregnancies = Number of times pregnant | # Glucose Plasma glucose concentration a 2 hours in an oral glucose tolerance test | # BloodPressure  Diastolic blood pressure (mm Hg) | # SkinThickness = Triceps skin fold thickness (mm) | # Insulin = 2-Hour serum insulin (mu U/ml) | # BMI<br>Body mass index<br>in kg/(height in m) |
|------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|--------------------------------------------|-------------------------------------------------|
| 0 17                                     | 0 199                                                                              | 0 122                                             | 0 99                                               | 0 846                                      | 0                                               |
| 6                                        | 148                                                                                | 72                                                | 35                                                 | 0                                          | 33.6                                            |
| 1                                        | 85                                                                                 | 66                                                | 29                                                 | 0                                          | 26.6                                            |
| 8                                        | 183                                                                                | 64                                                | 0                                                  | 0                                          | 23.3                                            |
| 1                                        | 00                                                                                 | 44                                                | 22                                                 | 0.4                                        | 20 1                                            |

#### Training with AutoTrain

- A no-code tool for training ML models
- Go to Hugging Face AutoTrain
- Upload the preprocessed dataset
- Choose the target column (diabetes outcome)
- Select model type and train
- Wait for training to complete!



# Create powerful AI models without code

A new way to automatically train, evaluate and deploy state-of-the-art Machine Learning models.

Create new project

or read the documentation

https://huggingface.co/autotrain

#### Deploying on Hugging Face Spaces

- Deploy with Gradio: A Python library for building ML apps
- Create a new Hugging Face Space
- Select Gradio as the SDK
- Write a simple Gradio interface
- Upload the trained model
- Create requirements.txt
- Deploy!

### Writing the Gradio App Code (app.py)

```
import gradio as gr
import numpy as np
import joblib
model = joblib.load("model4.joblib")
def myfunc(Pregnancies, Glucose, Blood Pressure, Skin Thickness, Insulin, BMI, Diabetes Pedigree Function, Age):
 data = np.array([[Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age]])
 p = model.predict_proba(data)
 return p[0][1]
demo = gr.Interface(
 fn=myfunc,
 inputs=[
   gr.Number(label="Pregnancies"),
   gr.Number(label="Glucose"),
   gr.Number(label="Blood Pressure"),
   gr.Number(label="Skin Thickness"),
   gr.Number(label="Insulin"),
   gr.Number(label="BMI"),
   gr.Number(label="Diabetes Pedigree Function"),
   gr.Number(label="Age")],
 outputs=gr.Textbox(label="Probability"),
 title="Diabetes prediction App",
 description="Enter patient info to predict diabetes risk")
demo.launch()
```

## requirements.txt

joblib

numpy

scikit-learn

#### **Diabetes prediction App**

Enter patient info to predict diabetes risk



| Probability       |  |  |
|-------------------|--|--|
| 0.541666666666666 |  |  |

### Testing and Sharing Your Model

- Use the Gradio web UI to test the deployed model
- Enter patient data and get predictions
- Share the Hugging Face Space link with others

