Total No. of Questions: 6

Total	l No.	of Printed	d Pages:2

Faculty of Engineering End Sem Examination Dec-2023

EE3EW01 / EX3EW01 Advanced Power System Analysis Programme: B.Tech. Branch/Specialisation: EE / EX

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

Q.1 i.		In ZIP load model, meaning of 'Z' is-		1
		(a) Constant power	(b) Constant current	
		(c) Constant Impedance	(d) None of these	
	ii.	Thevenin equivalent is a method of-		
		(a) Current reduction	(b) Network reduction	
		(c) Voltage reduction	(d) Power reduction	
	iii.	Which is strongly coupled?		1
		(a) Reactive power and load a	angle	
		nge		
		(c) Active power and Voltage)	
		(d) None of these		
	iv.	v. The technique which increases the line loadability-		
		(a) Compensation	(b) Depreciation	
		(c) Completion	(d) None of these	
	v.	with respect to the bus angle is-	1	
		(a) Very low almost zero	(b) High	
		(c) Infinite	(d) Can't say	
	vi.	In Line outage distribution	n factor calculation, line outage is	1
		realized by-		
		(a) Depreciation injection the	orem	
	(b) Compensation injection theorem			
	(c) Compensation rejection theorem			
		(d) None of these		

P.T.O.

[2]

	vii.	Contingency analysis are used to study			
		(a) Economic operation	(b) Unit commitment		
		(c) Outage events	(d) None of these		
	viii.	The power system needs to be	he power system needs to be-		
	ix.	(a) Secure (b) Insecure Which is one of the voltage st	(c) Instable (d) None of these ability criteria?	1	
		(a) Deformity (b) Ductility	(c) Proximity (d) None of these		
	х.	PV curve is utilized for the analysis of			
		(a) Voltage stability	(b) Phase displacement		
		(c) Angle stability	(d) None of these		
Q.2	i.	Write about static load model	ling.	2	
	ii.	Explain line loadability in det	ail using suitable diagram.	3	
	iii.	Draw and explain the capabili	ity curves of alternator.	5	
OR	iv.	Demonstrate any one network reduction method in detail. 5			
Q.3	i.	-	fects of compensation in power system.	4	
	ii.	Describe in detail the unifor diagram and mathematical rel	rm series compensation with suitable ations.	6	
OR	iii.	Demonstrate any two effects of compensation on loadability of transmission line with suitable mathematical relations.			
Q.4	i.	Explain the meaning of sensit	ivity analysis.	3	
	ii.	Derive for and explain the line	e outage distribution factor.	7	
OR	iii.	Formulate and explain the ger	neration shift distribution factor.	7	
Q.5	i.	Explain the meaning of securi		3	
	ii.		ctions of contingency analysis.	7	
OR	iii.	List and explain the different	levels of power system security.	7	
Q.6		Attempt any two:			
	i.		nism criteria for voltage stability.	5	
	ii.	Differentiate between voltage	, ,	5	
	iii.	Write and explain any two eff stability.	fects of shunt compensation on voltage	5	

Marking Scheme

EE3EW01 (T)- Advanced Power System Analysis

Q.1	1)	c) Constant Impedance	1
	ii)	b) Network reduction	1
	iii)	b) Reactive power and Voltage	1
	iv)	a) Compensation	1
	v)	b) High	1
	vi)	b) Compensation injection theorem	1
	vii)	c) Outage events	1
	viii)	a) Secure	1
	ix)	c) Proximity	1
	x)	a) Voltage stability	1
Q.2	i.	Static load modelling.	2
	ii.	Line loadability, diagram.	2,1
	iii.	Figure, Explanation of capability curves of alternator.	$2.5x^2$
OR	iv.	One network reduction method explanation, solution	3,2
Q.3	i.	Effects of compensation	2x2
	ii.	Uniform series compensation diagram, relation and explanation	3x2
OR	iii.	Two effects of compensation on loadability	3x2
Q.4	i.	Meaning of sensitivity analysis.	3
	ii.	Derive and explain the line outage distribution factor.	4,3
OR	iii.	Formulate and explain the generation shift distribution factor.	4,3
Q.5	i.	Meaning of security analysis.	3
	ii.	Discussion, three functions of contingency analysis.	1,6
OR	iii.	Seven levels of power system security.	1x7
Q.6			
	i.	Mechanism criteria for voltage stability.	5

ii.	Differentiate between voltage stability and angle stability.	2.5x2
iii.	Two Effects of shunt compensation on voltage stability.	2.5x2
