INN HOTELS PROJECT

BY: DR. CYNTHIA OFFOHA

AGENDA

- EXECUTIVE SUMMARY
- BUSINESS PROBLEM OVERVIEW & SOLUTION APPROACH
- DATA OVERVIEW
- EDA UNIVARIATE ANALYSIS & KEY QUESTIONS
- EDA BIVARIATE ANALYSIS & KEY QUESTIONS
- LOGISTIC REGRESSION & DECISION TREE
- RECOMMENDATIONS & CONCLUSIONS

EXECUTIVE SUMMARY

- Some hotels bookings are called off due to cancellations or no-shows with reasons being due to change of plans and scheduling conflicts
- New technologies have been developed in promoting online booking channels which have made it easier for customers
- It is shown that cancellation of bookings impact hotels in various aspects such as:
 - Loss of resources when hotel cannot resell the room
 - Cost of distribution channels by increasing commissions or paying for publicity
 - Decreasing prices last minute in order for hotel to resell room which leads to reduction in profit margin
 - Guest arrangements situated by human resources

BUSINESS PROBLEM OVERVIEW & SOLUTION APPROACH

- The increased number of cancellations have led to the urgent need for Machine Learning expertise to assist in predicting which booking is likely to be cancelled
- INN Hotels Group has a chain of hotels in Portugal which is facing problems with high number of cancellations booking and has reached out for data-driven solutions
- As Data Scientist, the goal is to analyze the data provided to determine which factors are affecting the cancellations on booking
 - Thus, the data scientists must develop a predictive model that can deter which booking is going to be cancelled in advance
 - Also, data scientists will assist in formulation of profitable policies for cancellations and refunds

DATA OVERVIEW

VARIABLE	DESCRIPTIONS
Booking_ID	the unique identifier of each booking
no_of_adults	Number of adults
no_of_children	Number of Children
no_of_weekend_nights	Number of weekend nights (Saturday or Sunday) the guest stayed or booked to stay at the hotel
no_of_week_nights	Number of weeknights (Monday to Friday) the guest stayed or booked to stay at the hotel
type_of_meal_plan	 Type of meal plan booked by the customer: Not Selected – No meal plan selected Meal Plan 1 – Breakfast Meal Plan 2 – Half board (breakfast and one other meal) Meal Plan 3 – Full board (breakfast, lunch, and dinner)
required_car_parking_space	Does the customer require a car parking space? (0 - No, 1-Yes)
room_type_reserved	Type of room reserved by the customer. The values are ciphered (encoded) by INN Hotels Group
lead_time	Number of days between the date of booking and the arrival date
arrival_year	Year of arrival date
arrival_month	Month of arrival date
arrival_date	Date of the month
market_segment_type	Market segment designation.
repeated_guest	Is the customer a repeated guest? (0 - No, 1-Yes)
no_of_previous_cancellations	Number of previous bookings that were canceled by the customer prior to the current booking

VARIABLE	DESCRIPTION
no_of_previous_bookings_not_canceled	Number of previous bookings not canceled by the customer prior to the current booking
avg_price_per_room	Average price per day of the reservation; prices of the rooms are dynamic. (in euros)
no_of_special_requests	Total number of special requests made by the customer (e.g. high floor, view from the room, etc)
booking_status	Flag indicating if the booking was canceled or not.

DATA STRUCTURE

	Booking_ID	no_of_adults	no_of_children	no_of_weekend_nights	no_of_week_nights	type_of_meal_plan	required_car_parking_space
0	INN00001	2	0	1	2	Meal Plan 1	0
1	INN00002	2	0	2	3	Not Selected	0
2	INN00003	1	0	2	1	Meal Plan 1	0
3	INN00004	2	0	0	2	Meal Plan 1	0
4	INN00005	2	0	1	1	Not Selected	0

	Booking_ID	no_of_adults	no_of_children	no_of_weekend_nights	no_of_week_nights	type_of_meal_plan
30048	INN30049	2	0	1	2	Not Selected
21003	INN21004	2	0	0	3	Meal Plan 1
23749	INN23750	2	0	0	2	Meal Plan 2
30908	INN30909	1	0	0	3	Not Selected
9276	INN09277	1	0	2	2	Meal Plan 1

#	Column	Non-Null Count	Dtype
0	Booking_ID	36275 non-null	object
1	no_of_adults	36275 non-null	int64
2	no_of_children	36275 non-null	int64
3	type_of_meal_plan	36275 non-null	object
4	required_car_parking_space	36275 non-null	int64
5	room_type_reserved	36275 non-null	object
6	<pre>lead_time</pre>	36275 non-null	int64
7	arrival_year	36275 non-null	int64
8	arrival_month	36275 non-null	int64
9	arrival_date	36275 non-null	int64
10	market_segment_type	36275 non-null	object
11	repeated_guest	36275 non-null	int64
12	no_of_previous_cancellations	36275 non-null	int64
13	no_of_previous_bookings_not_canceled	36275 non-null	int64
14	avg_price_per_room	36275 non-null	float64
15	no_of_special_requests	36275 non-null	int64
16	booking_status	36275 non-null	object
17	total_nights	36275 non-null	int64
dtyp	es: float64(1), int64(12), object(5)		

OBSERVATIONS

- Dataframe has 36275 rows and 19 columns
- No duplicates values in dataset and no missing data across all columns
- 5 columns of the dtype object, 1 columns of the dtype float64, and 13 columns of the dtype int64.
- Target variable for both the Logistic Regression model and the Decision Tree model will be booking_status
- room_type_reserved values are ciphered (encoded) by INN Hotels and not be useful for model building
- Booking_ID values illustrate no material information for model building

EDA: UNIVARIATE ANALYSIS

EDA: UNIVARIATE ANALYSIS

EDA: UNIVARIATE ANALYSIS

OBSERVATIONS: UA

- It is shown that october is the busiest month followed by September and August
- Approx. 64% (23214) bookings are made online which yield the highest average price per room (\$112.25), followed by bookings through Aviation and Offline market
- Approx. 33% (11885) bookings were cancelled whereas ~2% (16 out of 930) total bookings made by repeated guest were cancelled
- It is shown that as # of special requests made by customers increases, the proportion of bookings cancelled decreases
- The median avg. Room price ~100 / night
 - Plot showed right skewed distribution depicting significant influence of highly priced rooms
- 78% of the bookings include two or more adults and 21% of bookings were single adult
- ~93% of bookings consist no children
- ~97% of guests required no parking space and not a single booking required more than one space
- 82% of the bookings took place during 2018 and 2.6% of bookings came from repeat guests
- 0.9% of bookings (338 out of 36,275 total bookings) were booked by guest with one or more previous cancellations on record
- >90% of bookings chose only breakfast or no meal

EDA: BIVARIATE ANALYSIS

- Most variables showed no correlations
- As the number of adults and children increase, the avg. price of a room can be expected to increase
- A repeat guest are more likely to have both previously cancelled and not cancelled booking:
 - A repeat guest has more opportunities to decide to cancel or not cancel these previous bookings
 - The weak positive correlation between number of previous cancellations and number of previous bookings not cancelled supports this conclusion

EDA: BIVARIATE ANALYSIS

OBSERVATIONS: BA

- 565 rooms sold at no cost to the guests during the period observed
- Of the rooms with low outlier average room prices (<~40 /night):
 - Only 3% of these guests cancelled reservations
- Of the rooms with high outlier average room prices (>~160/night):
 - More than a third (~36%) cancelled reservations, 4% higher than the cancelation rate for all bookings
 - Over 91% of these high-priced reservations were booked online
- 71.3% of cancelled bookings were booked online

LOGISTIC REGRESSION & MULTICOLLINEARITY

	coef	std err	z	P> z	[0.025	0.975]
const	-947.8054	120.138	-7.889	0.000	-1183.271	-712.340
no_of_adults	0.0698	0.036	1.914	0.056	-0.002	0.141
no_of_children	-0.0450	0.046	-0.986	0.324	-0.134	0.044
required_car_parking_space	-1.5856	0.138	-11.494	0.000	-1.856	-1.315
lead_time	0.0156	0.000	59.066	0.000	0.015	0.016
arrival_year	0.4685	0.060	7.871	0.000	0.352	0.585
arrival_month	-0.0391	0.006	-6.085	0.000	-0.052	-0.027
arrival_date	0.0004	0.002	0.206	0.837	-0.003	0.004
repeated_guest	-2.3829	0.617	-3.862	0.000	-3.592	-1.174
no_of_previous_cancellations	0.2687	0.085	3.166	0.002	0.102	0.435
no_of_previous_bookings_not_canceled	-0.1749	0.154	-1.134	0.257	-0.477	0.127
avg_price_per_room	0.0162	0.001	24.363	0.000	0.015	0.018
no_of_special_requests	-1.4556	0.030	-48.576	0.000	-1.514	-1.397
total_nights	0.0534	0.009	5.656	0.000	0.035	0.072
type_of_meal_plan_Meal Plan 2	0.2485	0.066	3.777	0.000	0.120	0.378
type_of_meal_plan_Meal Plan 3	16.7413	2512.467	0.007	0.995	-4907.604	4941.087
type_of_meal_plan_Not Selected	0.3337	0.051	6.527	0.000	0.234	0.434
market_segment_type_Complementary	-28.9673	2751.609	-0.011	0.992	-5422.022	5364.088
market_segment_type_Corporate	-1.1178	0.264	-4.242	0.000	-1.634	-0.601
market_segment_type_Offline	-2.0655	0.252	-8.201	0.000	-2.559	-1.572
market_segment_type_Online	-0.2948	0.249	-1.183	0.237	-0.783	0.194

	feature	VIF
0	const	39091160.37
20	market_segment_type_Online	70.87
19	market_segment_type_Offline	63.67
18	market_segment_type_Corporate	16.82
17	$market_segment_type_Complementary$	4.44
8	repeated_guest	1.78
11	avg_price_per_room	1.75
10	no_of_previous_bookings_not_canceled	1.65
5	arrival_year	1.42
9	no_of_previous_cancellations	1.39
4	lead_time	1.38
1	no_of_adults	1.27
6	arrival_month	1.27
14	type_of_meal_plan_Meal Plan 2	1.26
12	no_of_special_requests	1.24
16	type_of_meal_plan_Not Selected	1.20
2	no_of_children	1.19
13	total_nights	1.09
3	required_car_parking_space	1.04
15	type_of_meal_plan_Meal Plan 3	1.01
7	arrival_date	1.01

OBSERVATIONS

•VIF standards:

- If VIF is between 1 and 5, then there is low multicollinearity.
- If VIF is between 5 and 10, we say there is moderate multicollinearity.
- If VIF is exceeding 10, it shows signs of high multicollinearity.

- (-) coefficient indicates the probability of a hotel booking being cancelled decreases with increase of corresponding attribute value
- (+) coefficient indicates probability of a hotel booking being cancelled increases with increase of corresponding attribute value
- p-value of a variable indicates if the variable is significant or not
 - If we consider the significance level to be 0.05 (5%), then any variable with a p-value < 0.05 would be considered significant. Thus, variables might contain multicollinearity, which will affect the p-values
 - Might have to eliminate multicollinearity from the data to get reliable coefficients and p-values
- As there is no multicollinearity, can look at the p-values of predictor variables to verify significance
- Of the 20 variables in this logistic regression model, 7 of predictor variables are shown to be statistically insignificant

OBSERVATIONS: COEFFICIENT INTERPRETATIONS

- repeated_guest: Holding all other features constant, a unit change in repeated_guest decreases the odds that booking being canceled by 0.06 times or a **94**% decrease in odds of a booking being canceled
- market_segment_type_Offline: Holding all other features constant, a unit change in market_segment_type_Offline decreases the odds that booking being canceled by 0.17 times or an 83% decrease in odds of a booking being canceled
- A guest requiring a parking space decreases the odds of that booking being canceled by 0.20 times or an 80% decrease in odds of a booking being canceled
- A single additional increase in the average cost per night increases the odds of that booking being canceled by 1.02 times or a 2% increase in the odds of a booking being canceled
- A single additional night booked at the hotel increases the odds of that booking being canceled by 1.96 times or a **6**% increase in the odds of a booking being canceled

PERFORMANCE EVALUATION

OBSERVATIONS

- Predictive model was developed that can be utilized by INN Hotels to predict which bookings can be canceled with an F1 score of 0.70 on the training set
- Logistic regression models gave generalized performance on both the training and test set, illustrating similar model can be generated for INN Hotels in production
- Coefficients for the number of adults, the lead time prior to a booking, the arrival year (i.e., 2018 v. 2017), the number of previous cancellations, the average room price, the total nights booked, selecting Meal Plan 2, and not selecting a meal plan are (+) indicating increase chances of hotel booking being cancelled
- Coefficients for requiring a parking space, arrival month, being a repeat guest, the number of special requests, and the market segments for Corporate and Offline are (-) indicating an increase will lead to decrease in chances of a hotel booking being cancelled

DECISION TREE MODEL

• *lead_time* and *avg_price_per_room* are the two most important variables for predicting a booking's cancellation by a factor of 3 and 2, respectively, over the third most important variable, *arrival_date*.

DECISION TREE VISUALIZATION

Performance on training set

Performance on test set

difficult to interpret

VISUALIZING DECISION TREE

Decision tree is less complex and easier to analyze

Train	ning performan			
	Decision-Tree	Pre-Pruned Tree	Post-Pruned Tree	Readible Tree
F1	0.99	0.96	0.95	0.75

CONCLUSIONS

- Cancelation decisions of 36,2
 75 bookings were analyzed via four different Decision Tree classifiers to generate a predictive model
 - The models can be utilized by INN Hotels Group to validate if a booking will be canceled prior to the check-in date
- All decision-tree models perform better through objective criterion of F1 score than best-performing logistic regression model
- Each model's decision-tree and confusion matrix were investigated to get a better understanding of each model. Thus, the predictions from the original, pre-pruned, and post-pruned decision-tree model would be difficult to interpret by the client
- Pre-pruning and post-pruning methods resulted in minimal reductions to overfitting.
- However, the best performing model, the pre-pruned decision-tree, still shows a significant disparity between its performance on the training dataset and the test dataset.
 - This shows that the model's predictions, as compared to the best logistic regression model, may not be as generalizable
- INN Hotels should consider the tradeoff that exists for decision-tree models with respect to performance, overfitting, and understanding the decision-making criteria of the model
 - If a more understandable prediction model is the objective, then the minimal depth required for this decision-tree model to perform better than the best logistic regression model, is 8.
 - However, if the tree still too complex for the client's use-case and preferences, than potentially the logistic regression model is the ideal prediction tool
 - If INN Hotels is seeking the best performing prediction model then the pre-pruned tree is the best option
- Based on all models, lead_time and avg_price_per_room were the two most important variables for predicting a booking's cancellation

CONCLUSIONS

- From our analysis, it shows that guests booking cheaper rooms, with shorter lead times, requiring a parking space, being a repeat guest, with higher number of special requests, from the Corporate and Offline market segments are less likely to cancel bookings
 - Thus, guests booking more expensive rooms, with longer lead times, through the Online market segment have greater chance to cancel bookings
- Based on the coefficients in the logistic regression models and the features in the decision-tree models, both prediction models indicate that INN Hotels should consider separate cancellation and refund policies for its guests travelling for business or personal reasons
- The data analysis suggests that introducing a rewards program for business travelers (e.g., requiring more frequent trips, booking on short notice from a corporate sales channel, and directed by corporate travel guidelines to book a room with the lowest available cost) should further incentive these guests to book at INN Hotels and follow-through on their travel plans
- Moreover, when a hotel is at capacity or overbooked, management could utilize the model to ensure all repeat guests or guests travelling for business reasons have rooms available
 - Thus, management can combine predictions from both models to identify the "most likely case" that a booking will be canceled and reallocate that room to a booking for that room category which is the "least likely case"
 - A disclaimer should be in place that this model should not replace the industry experience of its management team regarding managing its hotel's capacity
 - Moreover, the models should provide supplemental evidence in support of its decision-making process

RECOMMENDATIONS

- To further improve the utility of the models, the hotel can provide approximations of the costs related to the outcomes corresponding to true/false positives/negatives
- The team can optimize the models' predictions to achieve the highest expected profits, versus optimizing for F1 score, which we chose for our evaluation criteria based on the client's use-case
- INN hotels should gear towards offering the best room rates before 5 months and after can increase the prices slightly and increase profit
- Implementation of nonrefundable deposit should be in place on all rooms in advance of over 5 months
- The 'Full Board' option should be replaced on the booking with a menu of special requests available such as:
 - VIP a champagne toast at sunset your first night; Room upgrades; WiFi; Laundry Bag;
 Slippers

THANK YOU