Chapitre 1

Compléments de théorie des groupes

1.1 Rappel sur les groupes libres

Dans ce chapitre, G est un groupe et I un ensemble, fini ou non. F(I) dénote le groupe libre sur I.

Exemple 1.1.1. Pour $I = \{\star\}$, $F(I) \cong \mathbf{Z}$, en effet si x est le générateur,

$$F(I) = \{x^n \mid n \in \mathbf{Z}\}.$$

Pour $I = \{1, 2\}$, F(x, y) est le groupe formé de tous mes mots qu'on peut écrire avec x et y et leurs inverses x^{-1} , y^{-1} . Typiquement tout élément de F(x, y) s'écrit comme

$$x^{k_1}y^{l_1}x^{k_2}\dots l_i, k_i \in \mathbf{Z}.$$

La seule relation imposée sur la multiplication, ou juxtaposition, est que

$$xx^{-1} = 1 = x^{-1}x$$
 et $yy^{-1} = 1 = y^{-1}y$.

Remarque. En général un groupe peut admettre plusieurs présentations, par exemple le groupe trivial \star admet une présentation 'vide', mais aussi $\langle x \mid x^2, x^3 \rangle$.

Proposition 1.1.2 (Propriété universelle). Un homomorphisme $f: F(x,y) \longmapsto G$ correspond à la donnée de deux éléments dans G, les images de x et y.

1.2 Présentation de groupes

Il est possible de définir un groupe par une *présentation* qui lui est propre, c'est à dire la donnée d'un ensemble de générateurs et de relations que ceux-ci vérifient. Il s'agit d'un écriture compacte exprimant les propriétés fondamentales du groupe.

Dans cette section $S \subset G$ dénote un sous ensemble qui engendre tout le groupe G. Ainsi si S engendre G, il est possible d'écrire tout élément de G comme un produit

$$x_1^{k_1} x_2^{k_2} \dots x_n^{k_n}, \ x_i \in S, \ k_i \in \mathbf{Z} \ \forall i \in \{1, \dots n\}.$$

Si G n'est pas libre, cette écriture n'est pas unique. Pour arriver à retrouver notre groupe G il faut mettre en évidence certaines relations et montrer quels produits sont égaux. Il suffit pour cela de spécifier quels produits sont égaux à l'élément neutre de G. Il est bon de noter qu'il n'est en général pas nécessaire d'expliciter toutes ces relations.

Définition 1.2.1 (Présentation de groupe). Pour un ensemble S, et $R \subset F(S)$ une partie du groupe libre, on appelle *clôture normale* de R le plus petit sous groupe distingué N de F(S) contenant R. On note le quotient $F(S)/N =: \langle S \mid R \rangle$ et on dit que G admet une représentation $\langle S \mid R \rangle$ s'il lui est isomorphe.

Commençons par prendre un exemple simple pour illustrer cette notion, celui du groupe symétrique $S_3 = \{1, (12), (13), (23), (123), (132)\}$. S_3 est engendré par les deux transpositions (12), (23) ainsi nous avons un homomorphisme surjectif

$$\varphi: F(x,y) \longmapsto S_3$$

$$x \longmapsto (12)$$

$$y \longmapsto (23).$$

Le noyau est un sous groupe normal de F(x,y) dont les générateurs sont donnés par les relations dans S_3 $(12)^2 = 1$, $(23)^2 = 1$, $((12)(23))^3 = 1$. Soit maintenant $N \triangleleft F(x,y)$ engendré par $x^2, y^2, (xy)^3$

Proposition 1.2.2.
$$F(x,y)/N \cong S_3$$
.

Démonstration. On a l'homomorphisme

$$\varphi: F(x,y) \longmapsto S_3$$

$$x \longmapsto (12)$$

$$y \longmapsto (23).$$

On constate que $\varphi(N)=1$ donc φ passe au quotient et induit un homomorphisme surjectif $\overline{\varphi}: F(x,y)/_N \longmapsto S_3$. Pour voir que $\overline{\varphi}$ est injectif on compte les éléments. Les éléments du quotient $F(x,y)/_N$ sont des classes de mots en x et y. Or $x^2,y^2\in N$, on peut choisir comme représentant de chaque élément du quotient ne faisant intervenir que x et y à la puissance 1. Ces mots sont de la forme $xyx\dots xy$ ou $xyx\dots yx$ ou $yxy\dots yx$ ou $yxy\dots xy$. Le dernier relateur est $(xy)^3=xyxyxy\in N$, de fait dans le quotient xyx=yxy. Finalement on a $F(x,y)/_N=\{\overline{1},\overline{x},\overline{y},\overline{xy},\overline{yx},\overline{xyx}\}$. Cela montre que φ est injectif, c'est donc un isomorphisme.

Ainsi on a identifié $S_3 \cong \langle x, y \mid x^2, y^2, (xy)^3 \rangle$ qui se lit comme le groupe engendré par x, y avec les relations $x^2 = 1, y^2 = 1, (xy)^3 = 1$.

1.3 Le graphe de Cayley

Définition 1.3.1 (Graphe de Cayley). Soit S un ensemble de générateurs d'un groupe G, le graphe de Cayley $\Gamma = \Gamma(G, S)$ est le graphe coloré et orienté dont les sommets sont les éléments de G et une arrête de couleur $s \in S$ relie g à $g \cdot s$.

Exemple 1.3.2. Si $G = C_2$ et $S = \{x\}$ où x est le générateur on a une seule couleur et le graphe est le suivant. Par convention, si x est d'ordre 2 on peut simplifier l'écriture de ce graphe en utilisant une arrête non orienté entre g et $g \cdot x$.

FIGURE 1.1 – Illustration du graphe de Cayley pour $G=C_2$

Exemple 1.3.3. Cet exemple illustre la convention précédente, pour $G = \mathbf{Z}$ et $S = \{1\}, S' = \{1, -1\}$ alors les graphes $\Gamma(\mathbf{Z}, S), \Gamma(\mathbf{Z}, S')$ sont les suivants

FIGURE 1.2 –
$$\Gamma(\mathbf{Z}, S)$$

FIGURE 1.3 – $\Gamma(\mathbf{Z}, S')$

Le fait que -1 soit dans S' on peut lire chaque arrête dans les deux sens et donc le graphe n'est pas orienté. Lorsque les générateurs dans S sont d'ordre infini il est préférable que S contienne les inverses de ses générateurs.

1.4 Produit libre

Dans cette section on considère deux groupes donnés par les présentations $G = \langle x_{\alpha} \mid r_{\beta} \rangle, \ \alpha \in I, \beta \in J \text{ et } H = \langle x_{\gamma} \mid r_{\delta} \rangle, \ \gamma \in K, \delta \in L.$

F(I) dénote le groupe libre dont les générateurs sont x_{α} et F(K) le groupe libre dont les générateurs sont les x_{γ} .

Définition 1.4.1 (Produit libre). Le produit libre G*H est le groupe donné par la présentation $\langle x_{\alpha}, x_{\gamma} \mid r_{\beta}, r_{\delta} \rangle$.

Lemme 1.4.2. Il existe des morphismes injectifs

$$i: G \longmapsto G * H$$

 $i: H \longmapsto G * H$.

 $D\acute{e}monstration$. Par symétrie de la construction du produit libre on ne s'occupe que de i. On considère la composition suivante

$$F(I) \xrightarrow{\qquad} F(I \coprod K) \xrightarrow{\qquad} G*H \xrightarrow{\qquad} F(I \coprod K)/r_{\beta} = 1 = r_{\gamma}$$

Cette composition passe au quotient puisque r_{β} est envoyé sur 1 dans G*H. On appelle i cet homomorphisme. Il reste alors à montrer l'injectivité. Il existe un autre homomorphisme surjectif

$$\pi: F(I \coprod K) \longmapsto G$$

$$x_{\alpha} \longmapsto x_{\alpha}$$

$$x_{\gamma} \longmapsto 1.$$

1.4. PRODUIT LIBRE

5

On observe que $\pi(r_{\beta}) = 1 = \pi(r_{\gamma})$ donc π passe au quotient, donc

$$G \xrightarrow{i} G * H \xrightarrow{\overline{\pi}} G$$

 $x_{\alpha} \mapsto x_{\alpha} \mapsto x_{\alpha}.$

Ainsi $\overline{\pi} \circ i = Id_G$ et en particulier i est injectif.

Proposition 1.4.3 (Propriété universelle). Nous énonçons la propriété universelle du produit libre

Le diagramme suivant est un pushout, c'est à dire pour tous homomorphismes $\varphi: G \longmapsto M$ $\psi: H \longmapsto M$ il existe un unique morphisme $\omega: G*H \longmapsto M$ tel que $\omega \circ i = \varphi$ et $\omega \circ j = \psi$.

Démonstration. On définit un homomorphisme $\Omega: F(I \coprod K) \longmapsto M$ par $\Omega(x_{\alpha}) = \varphi(x_{\alpha})$ et $\Omega(x_{\gamma}) = \psi(x_{\gamma})$. Cet homomorphisme passe au quotient. En effet $\Omega(r_{\beta}) = \varphi(r_{\beta}) = 1$ et $\Omega(r_{\gamma}) = \psi(r_{\gamma}) = 1$. On a bien $\omega \circ i = \varphi$ et $\omega \circ j = \psi$ puisque les x_{α}, x_{γ} sont des générateurs. Pour l'unicité, la commutativité des triangles impose $\omega(x_{\alpha}) = \omega(i(x_{\alpha})) = \varphi(x_{\alpha})$ et de même $\omega(x_{\gamma}) = \omega(j(x_{\gamma})) = \psi(x_{\gamma})$.

Exemple 1.4.4 (Groupes libres). $F(1) \cong \mathbb{Z}$, or l'ensemble des homomorphismes $\mathbb{Z} \longmapsto G$ est en bijection avec G, en effet l'image de 1 détermine entièrement chaque morphisme. Soit G = F(x), H = F(y) deux groupes libres engendrés par un générateur. Alors le produit libre $G * H = \langle x, y \mid \varnothing \rangle = F(x, y)$ correspond au groupe libre à deux générateurs.

Exemple 1.4.5. On regarde cette fois $C_2 * C_2 = \langle x, y \mid x^2, y^2 \rangle$ où x, y sont les générateurs respectifs des copies de C_2 . On a $\omega : C_2 * C_2 \longmapsto M$ correspond à la donnée de deux éléments d'ordre 2 dans M par la propriété universelle $\omega(x) = m$, $\omega(y) = n$. Comme $\omega(x^2) = 1 = \omega(y^2)$ on doit aussi avoir $m^2 = 1 = n^2$. Il n'y a *a priori* aucune relation entre eux. Si on impose la commutativité xy = yx alors $C_2 \times C_2 = \langle x, y \mid x^2, y^2, xyx^{-1}y^{-1} \rangle$ est tel que ω passe au quotient si et seulement si $\omega(xyx^{-1}y^{-1}) = mnm^{-1}n^{-1} = 1$ donc si et seulement si mn = nm.

1.5 Amalgames (pushout de groupes)

On fixe dans cette section trois groupes G, H, K et deux homomorphismes $\alpha : K \longmapsto G$ et $\beta : K \longmapsto H$.

Définition 1.5.1 (Amalgame). Le pushout, ou amalgame du diagramme

$$H \stackrel{\beta}{\longleftarrow} K \stackrel{\alpha}{\longrightarrow} G$$

est le groupe quotient $G *_K H := G *_H /_N$ où N est le sous groupe normal engendré par $\alpha(x)\beta(x)^{-1} \ \forall x \in K$.

Remarque. Les inclusions $i:G\hookrightarrow G*H$ et $j:H\hookrightarrow G*H$ permettent de définir par composition avec la projection $\pi:G*H\longmapsto G*_KH$ de nouveaux homomorphismes, non nécessairement injectifs, $i:G\longmapsto G*_KH$ et $j:H\longmapsto G*_KH$.

Proposition 1.5.2 (Propriété universelle). Nous énonçons la propriété universelle de l'amalgame

Pour tous homomorphismes $\varphi: G \longmapsto M$ et $\psi: H \longmapsto M$ tels que $\varphi \circ \alpha = \psi \circ \beta$ il existe un unique morphisme $\omega: G *_K H \longmapsto M$ tel que $\omega \circ i = \varphi$ et $\omega \circ j = \psi$.

Démonstration. On vérifie d'abord que $i \circ \alpha = j \circ \beta$,

$$G \mapsto G * H \longmapsto G *_K H$$

$$\alpha(x) \mapsto \alpha(x) \mapsto \overline{\alpha(x)} = \overline{\beta(x)}$$

Pour construire ω on observe que la propriété universelle du produit libre donne un homomorphisme $\omega: G*H \longmapsto M$. Or cet homomorphisme passe au quotient. En effet

$$\omega(\alpha(x)\beta(x)^{-1}) = \omega(\alpha(x))\omega(\beta(x))^{-1} = \varphi(\alpha(x))\psi(\beta(x)) = \psi(\beta(x))\psi(\beta(x))^{-1} = 1.$$

Donc ω passe au quotient et définit $\omega: G*_K H \longmapsto M$. On a bien $\omega \circ i = \varphi$ et $\omega \circ j = \psi$. Pour l'unicité, la composition $G*_H \mapsto G*_K H \stackrel{\omega}{\mapsto} M$ est un homomorphisme qui est déterminé de manière unique par $\omega_{|_G} = \varphi$ et $\omega_{|_H} = \psi$. La propriété universelle du quotient permet de conclure.

1.5.1 L'unicité de l'amalgame

Dans cette section nous montrons l'unicité de la construction de l'amalgame vis à vis de la propriété universelle que nous venons d'énoncer.

Nous pouvons considérer le carré commutatif suivant avec $P = G *_K H$ et supposons de plus que Q est un autre groupe avec cette propriété, nous voulons montrer que $Q \cong P$.

Alors par la propriété universelle de l'amalgame il existe un unique morphisme $f:Q\longmapsto P$ tel que $f\circ k=i$ et $f\circ l=j$ comme sur le diagramme de droite. En échangeant les rôles de P et Q il existe par le même raisonnement un unique morphisme $g:P\longmapsto Q$ faisant commuter le diagramme. On veut montrer que f et g sont inverses l'un de l'autre.

On s'intéresse alors à la composition $g \circ f$: $Q \longmapsto Q$, le raisonnement est encore une fois semblable pour la composition $f \circ g$: $P \longmapsto P$. Remarquons que $g \circ f$ fait commuter le diagramme suivant, tout comme Id_Q , la propriété universelle de l'amalgame garanti l'unicité donc nécessairement $g \circ f = Id_Q$.

$$\begin{array}{c} K \xrightarrow{\beta} G \\ \alpha \downarrow & \downarrow i \\ H \xrightarrow{j} P \end{array}$$

On obtient finalement bien que f et g son inverses l'un de l'autre ce qui montre que P et Q sont isomorphes. On illustre maintenant cette propriété par quelques exemples.

Exemple 1.5.3. 1. Dans le cas K = 1 on a pour $1 \stackrel{\beta}{\longleftarrow} K \stackrel{\alpha}{\longrightarrow} G$

$$H *_1 G = {H * G /_{\alpha(x)\beta(x)^{-1}}} \forall x \in 1$$
$$= {H * G /_{\alpha(1)\beta(1)^{-1}}}$$
$$= H * G.$$

On retrouve le produit libre de H et G.

2. Dans le cas H=1 avec les mêmes morphismes α,β on a

$$1 *_{K} G = {1 * G /_{\alpha(x)\beta(x)^{-1}}} \forall x \in K$$

$$\cong {G /_{\alpha(x)}}$$

$$\cong {G /_{N}}$$

où N est le sous groupe normal de G engendré par K.

3. Finalement dans le cas particulier H=1 et $K \triangleleft G$ on retrouve $1*G \cong {}^G/_K$.