임베디드 실험 및 실습 9주차 예비 발표

2조

202055606 주우성

202055623 허치영

202255632벌드 바타르 아마르투브신

201724637 오치어 자미안퓨레브

202055629밧툴가 바잘삿

목차

프로파일과 SPP
 SSID와 UUID
 납땜
 납땜하는 이유
 방법

01

블루투스

개요와 구조

02

12 FB755AC 모듈

- 각 핀과 기능
- 연결 방법
- 설정과 AT 명령어

01

블루투스

블루투스 개요

- 블루투스는 근거리(10 ~ 100m) 무선 통신 기술이다
- 2.4GHz ISM (Industrial, Scientific, Medical) 대역을 사용한다.
- frequency-hopping spread spectrum
 (FHSS) 로 간섭을 최소화하여 신뢰성
 있는 통신이 가능하다.
- 무선 헤드셋, 키보드, 마우스 등 컴퓨터/핸드폰과 주변 장치를 무선으로 연결 가능하게 하는 저전력, 저비용 통신 방법이다.

블루투스 구조

- Piconet
- Master(1개)와 Slave(최대 7개) 역할로 동작
- Master:
 - Inquiry(검색)
 - Page(연결 요청)
- Slave:
 - Inquiry Scan(검색대기)
 - Page Scan(연결대기)

<그림 1-1 블루투스 동작>

블루투스 프로파일

- 블루투스와 연결되는 장비의 종류에 따라 규정되는 개별적인 프로토콜
- 통신하고자 하는 장비 간에 동일한 프로토콜을 가지고 있어야 한다

대표적인 프로토콜:

- GAP: 블루투스 Discovery, Connecting 절차 등 정의
- HID: 입력 장치 e.g. 키보드, 마우스
- A2DP: 스테레오 오디오 전송 e.g. 무선 이어폰
- MAP: 문자 등의 알림 전송 e.g. 스마트 워치 알림
- BIP: 이미지 송수신
- HFP: 전화 음성을 송수신 및 제어 e.g. 차내 전화
- SPP: 직렬 포트를 통해 데이터 전송 e.g. GPS

Serial Port Profile(SPP)

- 블루투스 장치 간에 가상 시리얼 포트를 생성하여 무선으로 데이터를 송수신하는 프로토콜
- 유선 시리얼 통신 방식과 비슷한 환경을 제공하므로, 기존에 유선 시리얼 통신을 사용하던 기기들을 블루투스로 대체할 수 있다.
- RS-232 시리얼 통신 에뮬레이션
- 양방향 데이터 통신
- 낮은 대역폭

SSID, UUID

SSID (Service Set Identifier)

- 무선 LAN을 식별하기 위한 ID
- 일반적으로, 우리가 보는 Wi-Fi 이름이 SSID의 일종

UUID (Universally Unique Identifier)

- 128비트 길이의 ID로, 블루투스 프로콜에서 서비스와 특징을 정의하는데 사용됨
- 어떤 종류의 data가 통신 되는지 알려줌

3 16-bit UUIDs

See Bluetooth Core Specification [Vol 3] Part B, Section 2.5.1 [4].

3.1 Protocol Identifiers

See Bluetooth Core Specification [Vol 3] Part B, Section 5.1.5 [4].

Last Modified: 2024-10-18

Filename: assigned_numbers/uuids/protocol_identifiers.yaml

UUID	Protocol	Reference	
0x0001	SDP	Bluetooth Core Specification [4]	
0x0002	UDP	Personal Area Networking Profile [20]	
0x0003	RFCOMM	RFCOMM [21]	
0x0004	TCP	Personal Area Networking Profile [20]	
0x0005	TCS-BIN	Telephony Control Protocol [23]	

02

FB755AC 모듈

FB755AC & FB755AS 사용자 설명서: http://www.funnykit.co.kr/bemarket/datasheet/FB755_U serGuide_Kor.pdf

개요 및 특징

- 기존의 유선 RS232 케이블 방식을 무선으로 대체할 수 있도록 설계
- Bluetooth 2.0 support
- Bluetooth Piconets 구성 가능
- AT 명령어로 제어 가능

각 핀과 기능

4.3 FB755AC PIN Assign

STATUS 1
FACTORY RESET 2
STREAM CONTROL / DSR 3
STREAM STATUS / DTR 4
CONFIG SELECT 5
CONNECT CHECK / DCD 6

- 12 VCC
- 11 MESSAGE STATUS / RTS
- 10 MESSAGE CONTROL/CTS
- 9 RXD
- 8 TXD
- 7 GND

Dimension: 20.5(Width) x 27.7(Length) x 12(Height) mm

각 핀과 기능

번호	핀 이름	기능	입/출 방향	신호레벨
1	STATUS	STATUS LED	출력	TTL
2	FA SET	Factory Reset Go back default setting	입력	TTL Pull-up
3	STREAM_CONTROL UART DSR	1:N – Stream Control 1:1 – UART Data Set Ready	입력	TTL
4	STREAM_STATUS UART_DTR	1:N – Stream Status 1:1 – UART Data Terminal Ready	출력	TTL
5	CONFIG_SELECT	Configuration Select	입력	TTL Pull-down
6	CONNECT_CHECK UART DCD	1:N – Connect Check 1:1 - UART Data Carrier Detect	출력	TTL
7	GND	Ground		
8	UART_TXD	UART Transfer Data Data output	출력	TTL
9	UART_RXD	UART Received Data Data Input	입력	TTL
10	MESSAGE_CONTROL UART_CTS	1:N – Message Control 1:1 - UART Clear To Send	입력	TTL
11	MESSAGE_STATUS UART_RTS	1:N – Message Status 1:1 - UART Ready To Send	출력	TTL
12	VSUP	3V3 for RF circuit (Vcc)	입력	

- STANEWARDE OF HERIO KNOWN LART DCD:
SFERTE SAMM SITA FILES, 모니터링
STERES MANGE ELECTRONIC BURGAL ART DET ELECTRONIC BURGAL ART DE DE LETTE DE

연결방법

5.1 흐름제어를 사용 하지 않을 때

연결방법

5.2 흐름제어를 사용 할 때

연결방법

5.3 1:N 통신 할 때

설정과 AT 명령어

부록 A 환경설정 세부설명:

https://cpuplaza.co.kr/upload/bbs/AppendixA_Kor.pdf

- FB570AC, FB570AS 는 MODE4 만 지원합니다.

3.2.5 CONNECTION MODE4

- CONNECTION MODE4는 AT 명령어 대기 상태로서 전원이 인가되면 명령어 대기만 하고 있기 때문에 일련의 동작을 하기 위해서는 AT 명령어를 입력 하셔서 사용 해야 합니다. AT 명령어 사용에 관해서는 "부록 B AT 명령어 세부 설명"을 참조 하시기 바랍니다.

부록 B AT 명령어 세부 설명 및 사용방법: https://cpuplaza.co.kr/upload/bbs/AppendixB_Kor.pdf 03

납땜

납땜을 하는 이유?

450°C 이하의 녹는점을 지닌 보충물을 사용하여 끊어진 두 개 이상의 물질을 결합하는 과정을 의미한다.

임베디드 시스템에서 납땜은 PCB와 전자 부품(저항, 축전기 등)간에 전류가 흐를 수 있는 통로를 만드는 역할을 한다.

출처: https://ckmakers.com/80/?bmode=view&idx=4227585

납땜 도구

인두기: 땜납을 녹임

땜납: 전류가 흐름

인두팁 클리너: 인두기의 팁을 닦음

납 흡입기: 납땜을 잘못했을 때 제거

출처: https://ckmakers.com/80/?bmode=view&idx=4227585

납땜 하는 방법

출처: https://ckmakers.com/80/?bmode=view&idx=4227585

감사합니다