

INSTITUT NATIONAL DES SCIENCES **APPLIQUÉES**

> Tricycle Project **Dick Dastardly Crystal Ball**

Final Review

18/01/2022

-Sprint 5-

Pierre Calmettes Romain Choulot Yixia Liu **Gautier Martin** Nikita Mikhin Valentin Piqueras

Yassine Ariba Guillaume Auriol **Elodie Chanthery** Barbara Moore Didier Le Botlan

Presentation plan

Project Purpose

Multiple sensors and actuators integrated to a tricycle, that needs to be conscious of its surrounding and able to autonomously and safely drive itself and its passenger.

- Equip a tricycle with sensors and use Al algorithms to assist the driver
- Warn in case of danger

- Identify road signs, people walking, cyclists, etc.
- Avoid personal injury or material damage

- React faster than humans
- Automate "conditional" driving, the third level of automation in driving

Safety on the sides

LIDAR is more useful in the night as the driver's vision is limited

Safety on the sides

Demo:

Technologies used:

Explanation of the first demo:

Demo:

Validation tests:

Expected vs Realized Features Results **Informations** Distance & type of Fusion of camera and LIDAR objects Level of certainty for each detection **Display Graphical User Interface Alarm** Prediction of trajectory Raise an alarm for specific situations 10

Software pt.1

- Calibration & field of view synchronisation
- Current trajectory prediction & trajectory prediction when tricycle is moving

 Learning new recognisable objects (e.g. road related) and remove unused ones with Al

Points to improve

Software pt.2

Software optimization

• Make the software cross platform (e.g. mobile phone)

• Check outside performances

Points to improve

Hardware

Finding other hardware to compute data, the Jetson Nano is not powerful enough

Changing the camera to a 60fps one would significantly improve reaction time

€429.98 Tax included

Moving the tricycle, because for now prediction only works for a static vehicle

Thank you!

Pierre Calmettes Romain Choulot Yixia Liu Gautier Martin Nikita Mikhin Valentin Piqueras

Yassine Ariba
Guillaume Auriol
Elodie Chanthery
Barbara Moore
Didier Le Botlan