

-22-

I CLAIM:

1. A Nuclear Myosin I β protein comprising a 16 amino acid N-terminal extension added to a cytoplasmic Myosin I β protein amino acid sequence.

2. The Nuclear Myosin I β protein of claim 1 wherein the amino acid sequence comprises:

mryrasalgs	dgvrvtmesa	ltardrvgvq	dfvllenfts
eaafienlrr	rfrenliity	igpvlvsvnp	yrdlqiysrq
hmeryrgvsf	yevpphlfav	adtvyrarlrt	errdqavmis
gesgagkttea	tkrllqfyae	tcpapergga	vrdrllqsnp
10 vleafgnakt	lrndnssrfg	kymdvqfdfk	gapvgghils
ylleksrvvh	qnhgernfhv	fyqlleggee	etlrlrlger
npqsylylvk	gqcakvssin	dksdwkvmrk	alsvidfted
evedllsiva	svlhlgnihf	aadedsnaqv	tttenqlkylt
rllgvegttl	realthrkii	akgeellspl	nleqaayard
15 alakavysrt	ftwlvrkinr	slaskdaesp	swrsstvlgl
ldiygfefvfq	hnsfeqfcin	ycneklqqif	ieltlkseqe
eyeaeagiawe	pvyqyfmnkii	cdlveekflkg	iisildeecl
rpgeatdltf	lekledtvkp	hphflthkla	dqktrksldr
gefrrlhyag	evtysvtgfl	dknnndlfrn	lketcmsmmn
20 pimaqcfdk	elsdkkrpet	vatqfkmsll	qlveirlske
payircikpn	dakqprgrfde	vlihqvkyl	glmenlrvrr
agfayrrkye	aflqrykslc	petwpmwagr	pqdgavavl
hlgykpeeyk	mgrtkifirf	pktlfateds	levrrqslat
kiqaawrgfh	wrqkflrvkr	saiciqswwr	gtlgrkaak
25 rkwaqaqtirr	lirgfilrhs	prcpenaffl	dhvrasfln
lrrqlprnvl	dtswpptppa	lreasellre	lcmkmnmvwky
crsispewkq	qlqqkavase	ifkgkkdnyp	qsvprlfist
rlgteeispr	vlqslgsepi	qyavpvvkyd	rkgykprprq
llltpsavvi	vedakvkqri	dyanltgisv	sslsdslfvl
30 hvqrednkqk	gdvvlqsdhv	ietltktals	adrvnnninin
qgsitfaggp	grdgidfts	gsellitkak	nghlavvapr
lnsr.			

-23-

3. An oligonucleotide sequence encoding the Nuclear Myosin I β of
claim 1.

4. A cDNA molecule with the following nucleotide sequence:

1	ggagcggggc	gcccggtccg	gcaggatcg	ctaccggca	tcggccctgg
5	gcagtgacgg				
61	ggttcgagtg	accatggaga	gcccgttgc	tgcggagac	cgggttaggg
	tgcaggactt				
121	tgcctgtctg	gagaatttca	ccagtgaggc	tgccttcatt	gagaacctcc
	ggcggcggtt				
10	181	ccgggagaac	ctcatttata	cctacatcg	tcctgtccta
		atccctaccg			
	241	agacctacag	atctacagcc	ggcagcatat	ggaacgtac
		gtttctatga			
15	301	agtaccacct	catttgtttg	cagtggtcga	cactgtatac
		gtactgagcg			
	361	tggggaccag	gcagtgtatga	tttctggaga	gagtggggca
		aggccaccaa			
	421	gagactgtct	cagttctatg	cagagacctg	cccagcccc
		gcccgtgtcg			
20	481	agaccgtctg	ttcagagca	accccggtt	agagggcttt
		agactctccg			
	541	caacgataac	tccagccgt	ttggaaagta	catggatgt
		tcagggtgc			
	601	ccccgtggga	ggccacattc	tcaaggatctt	cctggaaaag
25		tgcacaaaaa			
	661	tcaaggagag	cgaaacttcc	acgttttta	ccagctactg
		aggaggagac			
	721	tctccgtcgg	ctgggcttgg	aacggaaaccc	ccagagactac
		tgaaggccca			
30	781	gtgtgccaag	gttcctcca	tcaacgacaa	gagtgtactgg
		ggaaggcgct			
	841	gtccgtcatt	gacttcactg	aggatgaagt	ggaggacttg

1027260-1733850

-24-

	tggccagcgt				
901	cctacatctg aggtaactac	ggcaacatcc	actttgctgc	tgacgaggac	agcaatgcc
961	tgagaaccag cacttaggga	ctcaaatac	tgaccaggct	ccttgtgtg	gaaggtaaca
5	1021 agccctgacc cactgaaacct	cacaggaaga	tcatcgccaa	gggggaagag	ctcctgagcc
10	1081 tgaacagggcg ggacattcac	gcatatgcaa	gggatgcgc	tgccaaggct	gtgtacagcc
1141 ctggctggtc gccccagctg	agaaagatca	ataggtca	ggcctctaag	gacgctgaga	
1201 gcgaaaggacc ttcagcataa	acggttcttg	ggctcctgga	catttacggc	tttgaagtgt	
1261 cagcttcgag tcttcatcga	cagttctgca	tcaactactg	caatgagaag	ctgcagcagc	
1321 gctgactctc ggaaacctgt	aagtccggagc	aggaggaata	cgaggctgag	ggcatcgctg	
1381 ccagttactc aggccatcat	aacaacaaga	tcatctgtga	cctggtagag	gagaagttca	
20	1441 ctccatctg cctttctgga	gatgaagagt	gcctgcgtcc	tggggaggcc	acggacactga
1501	gaagttggag tcgctgacca	gacactgtca	agccccaccc	tcacttcctg	acgcacaagg
1561	gaagaccagg ctggagagg	aaatccctag	accgagggga	gttccgcctt	ctgcattatg
25	1621 gacctacagt ggAACCTGAA	gtgactgggt	ttctggataa	aaacaatgac	ctcctttccc
1681	ggagaccatg agatgtgact	tgcagctaa	tgaaccccat	catggccag	tgctttgaca
30	1741 cagtgacaag tcctgcagct	aagcggccag	gacgggtggc	cacccagttc	aagatgagcc
1801	cgtggagatc	ctgagggtcta	aggagctgc	ctatatccgg	tgcataaagc

-25-

		caaacgacgc			
1861	caagcagccg	ggtcgccttg	atgagggtct	catccgacat	caggtgaagt
	acctggggact				
1921	gatggagaat	ctgcgcgtgc	gcagagctgg	ctttgcctat	cgtcgcaaat
5	atgaggcttt				
1981	cctgcagagg	tacaagtac	tgtgcccaaga	gacatggccc	atgtggcag
	gacggccccca				
2041	ggatgggtgt	gccgtgtgg	ttagacacct	cggctacaag	ccagaagagt
	acaaaatggg				
10	2101	caggactaag	atcttcatcc	gattcccca	gacccttattt
	actcccttgg				gccacagagg
2161	agtccggcg	cagagtctag	ccaccaagat	ccaggcggcc	tggagggct
	ttcatggcg				
15	2221	acagaaattt	ctccgggtga	agcgatcagc	catctgtatc
	ggcgtggcac				cagtcatgg
2281	actggggccgg	aggaaggcag	ccaagaggaa	gtgggcagcc	cagaccatcc
	gtcgactcat				
2341	ccgtggcttc	attttgcgcc	attcaccccg	gtgccctgag	aatgccttct
	tcttggacca				
20	2401	cgtgegegcc	tcattttgc	ttaacctgag	gcccggaaatg
	ttctggacac				
2461	ctcctggccc	acaccccccac	ctgcccctgag	agaggcctca	gaactgctac
	gggaacttgt				
25	2521	catgaagaac	atggtgtgga	agtactgcgc	cctgagtgg
	agcagcagct				
2581	gcagcaaaag	gccccggcta	gtgaaatttt	caaggcgaag	aaggacaact
	accccccagag				
2641	tgtccccaga	ctcttcatta	gcacacggct	tggcacagag	gagatcagcc
	ccagagtgtct				
30	2701	tcaatccctg	ggctctgaac	ccatccagta	tgcgcgtcccc
	acgaccgtaa				gtggtaaaat
2761	gggttacaag	cctgcggcccc	ggcagctgtct	gctcacgccc	agtgcgtgtgg

100-290-17334360

-26-

		tcattgtgga			
2821	ggatgctaaa	gtcaaggaga	gaattgatta	tgcacaccct	accggaaact
	ctgtcagtag				
2881	cctgagtgat	agccattttg	tgcttcacgt	gcagcggtgaa	gacaacaagc
5	agaagggaga				
2941	tgtggtgctg	cagagtgtac	atgtgtatcg	gacactaacc	aagacggccc
	tcagtgtcta				
3001	ccgcgtgaac	aatatcaaca	tcaaccagg	cagcataacg	tttgcagggg
	gtccaggcag				
10	3061	ggacggcatc	attgtactca	catcggtc	agagcttctc
	ctaagaatgg				atcaccaagg
3121	ccacctggct	gtggggcccc	cacggctgaa	ttctcggtg	tgaaggctgc
	ggtgtggaccgc				
15	3181	tcctgactcc	tgatgcttcc	cttagtcccc	tcctccccctc
	aaaactcaag				cgacttacca
3241	cttccaaaca	gggatccatg	gacaccctca	aaacccacgc	tgcaaactcc
	tgccttctgc				
3301	tcgccccctc	ttgaggtgat	caggagccag	ggagctaccc	catgagtggg
	ccaggccggg				
20	3361	ccacaccaat	agaaaaagcag	aggcctgagc	aggccaggcc
	tgtgcacaaa				ageccctctgc
3421	tatctaagac	aagggaattt	taactgaggt	tttctctgag	attttttgat
	gttttatagg				
25	3481	aaactatttt	ttaagaaag	ccattttct	accctaaaca
	gtttttccct				cactggatgt
3541	gcctcgaaca	gggcaaggaa	tgttaactgaa	agactgactg	ggctgggctg
	gaagggtctc				
3601	ttcttggcca	acccttcctt	atcccttgt	ctgcctgtcc	atccacacgtc
	accttttag				
30	3661	cca.			

5. A peptide comprising an amino acid sequence
MRYRASALGSDGVRVT.

00093371-0029704

-27-

6. A cDNA molecule encoding the peptide of claim 4.
7. The peptide of claim 5 comprising an epitope with the amino acid sequence FLAG.
8. An antibody directed to the Nuclear Myosin I β protein of claim 2.
9. An antibody directed to the peptide of claim 4.
10. The antibody of claim 7, wherein the antibody is a monoclonal antibody.
11. An antibody directed to the peptide of claim 7.
12. A functional complex formed between one RNA polymerase II.
10. 13. A method for inhibiting cell proliferation, said method comprising:
 - (a) obtaining at least one antibody to the peptide of claim 5; and
 - (b) administering the antibody to an organism so that the antibody contacts cells.
14. The method of claim 13 wherein the antibody is a monoclonal antibody.
15. The method of claim 13 wherein the antibody is a synthetic compound.
16. A method for inhibiting cell proliferation, said method comprising
 - a) obtaining an antisense oligonucleotide to the cDNA of claim 3;
 - (b) contacting the cDNA with the antisense oligonucleotide to prevent expression of the cDNA and reduce cell proliferation.
20. 17. A method for screening a candidate agent that inhibits transcription, said screening method comprising the antibodies in claim 9.
 - (a) providing proliferating cells;
 - (b) contacting the cells with the candidate agent;
 25. (c) determining whether nuclear myosin I β (NMI β) is translocated to the nucleus of the cells; and
 - (d) inferring that the candidate agent is an inhibitor of cell proliferation if NMI β is not detected in the cells nucleus.

052790-123360