SEGUNDO TESTE

Universidade Federal de Goiás (UFG) - Câmpus Jataí Bacharelado em Ciência da Computação Teoria da Computação Esdras Lins Bispo Jr.

14 de maio de 2014

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro testes, uma prova e exercícios;
- ullet A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

 $S = (\sum_{i=1}^{4} 0, 2.T_i) + 0, 2.P + 0, 1.E$

em que

- -S é o somatório da pontuação de todas as avaliações,
- $-T_i$ é a pontuação obtida no teste i,
- -P é a pontuação obtida na prova, e
- E é a pontuação total dos exercícios.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (1) Teoria da Computação e (2) Modelos de Computação.

Nome:	
Assinatura:	

Segundo Teste

1. (5,0 pt) Apresentamos logo abaixo a definição formal de uma máquina de Turing:

Uma **máquina de Turing** é uma 7-upla $(Q, \Sigma, \Gamma, \delta, q_0, q_{aceita}, q_{rejeita})$, de forma que Q, Σ, Γ são todos conjuntos finitos e

- \bullet Q é o conjunto de estados,
- Σ é o alfabeto de entrada sem o **símbolo branco** \sqcup ,
- Γ é o alfabeto da fita, em que $\sqcup \in \Gamma$ e $\Sigma \subset \Gamma$,
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{E, D\}$ é a função de transição,
- $q_0 \in Q$ é o estado inicial,
- $q_{aceita} \in Q$ é o estado de aceitação, e
- $q_{rejeita} \in Q$ é o estado de rejeição, em que $q_{rejeita} \neq q_{aceita}$.

Responda às seguintes perguntas, justificando a sua resposta.

(a) (1,0 pt) Uma máquina de Turing pode alguma vez escrever o símbolo branco ⊔ em sua fita?

R - Sim, ela pode. Pois $\sqcup \in \Gamma$ (em que Γ é o alfabeto da fita).

(b) (1,5 pt) O alfabeto da fita Γ pode ser o mesmo que o alfabeto de entrada Σ ?

R - Não, não pode. Pois $\sqcup \in \Gamma$, mas $\sqcup \not\in \Sigma$. Logo, $\Gamma \neq \Sigma$.

- (c) (1,0 pt) A cabeça de uma máquina de Turing pode alguma vez estar na mesma localização em dois passos sucessivos?
 - R Não, não pode. De acordo com a função δ , uma dupla de entrada é mapeada em uma tripla (estado, símbolo da fita, movimento da cabeça). Logo, o movimento da cabeça é obrigatório, forçando o movimento ou para a esquerda ou para a direita, não permitindo que a cabeça permaneça na mesma célula.
- (d) (1,5 pt) Uma máquina de Turing pode conter apenas um único estado?

R - Não, não pode. Como o $q_{rejeita} \neq q_{aceita}$, então existe pelo menos dois estados distintos.

2. (5,0 pt) Mostre que se A e B são duas linguagens decidíveis, então a linguagem $\overline{A} \cup \overline{B}$ também é decidível.

Prova: Seja M_A e M_B duas máquinas de Turing que decidem as linguagens A e B, respectivamente (pois se uma linguagem é decidível, então uma máquina de Turing a decide). Iremos construir a máquina de Turing M_{aux} , a partir de M_A e M_B , que decide $\overline{A} \cup \overline{B}$. A descrição de M_{aux} é dada a seguir:

 M_{aux} = "Sobre a entrada ω , faça:

- (a) Rode M_A sobre ω . Se M_A rejeita, aceite.
- (b) Rode M_B sobre ω . Se M_B rejeita, aceite.
- (c) Se M_A e M_B aceitam, rejeite".

Como é possível construir M_{aux} , então $\overline{A} \cup \overline{B}$ é decidível.