CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF TECHNOLOGY&ENGINEERING DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

CS358: DESIGN & ANALYSIS OF ALGORITHMS

Credits and Hours:

Teaching Scheme	Theory	Practical	Tutorial	Total	Credit
Hours/week	4	2	-	6	5
Marks	100	50	-	150	

Pre-requisite courses:

• Computer Programming.

Outline of the course:

Sr.	Title of the unit	Minimum number of			
No.		hours			
1.	To derive time and space complexity of algorithm.	03			
2.	Analysis of Algorithm	06			
3.	Greedy Algorithm	07			
4.	Divide and Conquer Algorithm	07			
5.	Dynamic Programming	08			
6.	Exploring Graphs	04			
7.	Backtracking & Branch & Bound	05			
8.	String Matching and Introduction to NP- Completeness	05			

Total hours (Theory): 45

Total hours (Lab): 30

Total hours: 75

© CHARUSAT 2021 Page **71** of **173**

Detailed Syllabu	S
------------------	---

1.	Basics of Algorithms and Mathematics	03 Hours	05 %
1.1	What is an algorithm?		
1.2	Performance Analysis, Model for Analysis - Random Access		
	Machine (RAM), Primitive Operations		
1.3	Time Complexity and Space Complexity		
2.	Analysis of Algorithm	06 Hours	14 %
2.1	The efficiency of algorithm, average and worst case		
	analysis, elementary operation		
2.2	Asymptotic Notation		
2.3	Analyzing control statement		
2.4	Analyzing Algorithm using Barometer		
2.5	Solving recurrence Equation		
2.6	Sorting Algorithm		
3.	Greedy Algorithm	07 Hours	16 %
3.1	General Characteristics of greedy algorithms		
3.2	Problem solving using Greedy algorithm		
3.3	Making change problem		
3.4	Graphs: Minimum Spanning trees (Kruskal's algorithm,		
	Prim's algorithm		
3.5	Graphs: Shortest paths; The Knapsack Problem; Job		
	Scheduling Problem		
4.	Divide and Conquer Algorithm	07 Hours	16 %
4.1	Multiplying large Integers Problem		
4.2	Binary Search		
4.3	Sorting (Merge Sort, Quick Sort)		
4.4	Matrix Multiplication		
4.5	Exponential		

© CHARUSAT 2021 Page **72** of **173**

	5.	Dynamic Programming	08 Hours	18 %								
	5.1	Introduction, The Principle of Optimality										
	5.2											
		the Binomial Coefficient										
	5.3	Making Change Problem										
	5.4	Assembly Line-Scheduling										
~	/ 5.4	Knapsack Problem										
~	/ 5.5	Shortest Path										
~	5 .6	Matrix Chain Multiplication										
C	/ 5.7	Longest Common Subsequence										
	6.	Exploring Graphs & Backtracking	04 Hours	09 %								
~	6.1	An introduction using graphs and games,										
V	6.2	Traversing Trees – Preconditioning Depth First Search-										
		Undirected Graph; Directed Graph, Breath First Search,										
		Applications of BFS & DFS										
	7.	Backtracking & Branch & Bound	05 Hours	12%								
V	7.1	Backtracking -The Knapsack Problem; The Eight queens										
		problem, General Template										
	7.2	Brach and Bound -The Assignment Problem; The Knapsack										
		Problem, The min-max principle										
	8.	String Matching and Introduction to NP-Completeness	05 Hours	10%								
	8.1	The naïve string matching algorithm										
	8.2	The Rabin-Karp algorithm										
✓	8.3	The class P and NP Problems										
✓	8.4	Polynomial reduction										
V.	8.5	NP- Completeness Problem										
	8.6	NP-Hard problems										
	Cou	ourse Outcome (COs):										
	At th	e end of the course, the students will be able to										
Ī	CO1	Analyze the asymptotic performance of algorithms.										
	CO2	Derive time and space complexity of different sorting algorithms and c	ompare them 1	īo l								

© CHARUSAT 2021 Page **73** of **173**

choose application specific efficient algorithm.

CO3	Understand and analyze the problem to apply design technique from divide and conquer,
	dynamic programming, backtracking, branch and bound techniques and understand how
	the choice of algorithm design methods impact the performance
	of programs.
CO4	Understand and apply various graph algorithms for finding shorted path and
	minimum spanning tree.
CO5	Synthesize efficient algorithms in common engineering design situations.
CO6	Understand the notations of P, NP, NP-Complete and NP-Hard.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	-	-	-	-	-	-	-	-	-	-	1	-
CO2	2	2	-	-	-	-	-	-	-	-	-	2	2	-
CO3	3	3	3	3	2	•	-	-	-	-	=	2	2	-
CO4	2	3	3	1	-	-	-	-	-	-	-	-	2	-
CO5	1	-	1	-	-	-	-	-	-	-	-	2	1	1
CO6	3	1	-	-	-	ı	-	-	-	-	ì	ı	1	-

Enter correlation levels 1, 2 or 3 as defined below:

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)If there is no correlation, put "-"

Recommended Study Material:

***** Text Books:

 Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest and Clifford Stein, MIT Press

A Reference Books:

- 1. Fundamental of Algorithms by Gills Brassard, Paul Bratley, Pentice Hall of India.
- 2. Fundamental of Computer Algorithms by Ellis Horowitz, Sartazsahni and sanguthevar Rajasekarm, Computer Sci.P.
- 3. Design & Analysis of Algorithms by P H Dave & H B Dave, Pearson Education.

***** Web Materials:

© CHARUSAT 2021 Page **74** of **173**

- 1. http://www.stanford.edu/class/cs161/
- 2. http://www.itl.nist.gov/div897/sqg/dads/
- 3. http://highered.mcgraw-hill.com/sites/0073523402/

© CHARUSAT 2021 Page **75** of **173**