Primer Examen Parcial

Álgebra Superior 1, 2025-4

Instrucciones. Resuelve los siguientes ejercicios, se pueden utilizar libremente resultados vistos en clase, siempre y cuando, se indique claramente dónde y cuáles se utilizan.

Ej. 1 (2.5 pts) Sean I, J, K conjuntos no vacíos y supongamos que $J \cup K = I$. Si $\{X_i \mid i \in I\}$ es una familia indexada de conjuntos, demuestra que:

$$\bigcap_{i\in I}X_i=\Big(\bigcap_{i\in J}X_i\Big)\cap\Big(\bigcap_{i\in K}X_i\Big)$$

Ej. 2 (2.5 pts) Demuestra que $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$. Además da un ejemplo que muestre que la otra contención no siempre se cumple.

- **Ej. 3 (2.5 pts)** Si A, B y S son tales que $A \cap C = B \cap C$ y $A \cup C = B \cup C$, entonces A = B.
- **Ej. 4 (2.5 pts)** Sean A, B conjuntos. Demuestra que $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cap \mathcal{P}(B)$ implica A = B.
- **Ej. 5 (+1 pt)** Este ejercicio es opcional y sólo se tomará en cuenta si no hay errores en la solución. Sea A un conjunto y $R \subseteq A \times A$ una relación sobre A. Demuestre que si R es reflexiva y transitiva, entonces $Q := R \cup R^{-1}$ es una relación de equivalencia.

Primer Examen Parcial

Álgebra Superior 1, 2025-4

Instrucciones. Resuelve los siguientes ejercicios, se pueden utilizar libremente resultados vistos en clase, siempre y cuando, se indique claramente dónde y cuáles se utilizan.

Ej. 1 (2.5 pts) Sean I, J, K conjuntos no vacíos y supongamos que $J \cup K = I$. Si $\{X_i \mid i \in I\}$ es una familia indexada de conjuntos, demuestra que:

$$\bigcap_{i \in I} X_i = \Big(\bigcap_{i \in J} X_i\Big) \cap \Big(\bigcap_{i \in K} X_i\Big)$$

Ej. 2 (2.5 pts) Demuestra que $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$. Además da un ejemplo que muestre que la otra contención no siempre se cumple.

- **Ej. 3 (2.5 pts)** Si A, B y S son tales que $A \cap C = B \cap C$ y $A \cup C = B \cup C$, entonces A = B.
- **Ej. 4 (2.5 pts)** Sean A, B conjuntos. Demuestra que $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cap \mathcal{P}(B)$ implica A = B.
- **Ej. 5 (+1 pt)** Este ejercicio es opcional y sólo se tomará en cuenta si no hay errores en la solución. Sea A un conjunto y $R \subseteq A \times A$ una relación sobre A. Demuestre que si R es reflexiva y transitiva, entonces $Q := R \cup R^{-1}$ es una relación de equivalencia.