PIPELINING

Course Name

ICT 411: Computer Architecture and Organization

Course Teacher

Md. Sharif Hossen

Assistant Professor, Dept. of ICT

Comilla University

Contact

Email: mshcou@gmail.com

Mobile: 01780544586

Referred Book

"Computer Architecture and Organization" by John P. Hayes

"Microprocessor Hardware Interfacing and Application" by Barry B. Brey

Pipelining

- It is a technique of decomposing a sequential process into segments
- A Pipeline is a series of stages, where some work is done at each stage. The work is not finished until it has passed through all stages.
- we key to pipelining: division of a larger task into smaller overlapping tasks.

Example:

- There are **four loads** of dirty laundry that need to be washed, dried, and folded.
- We could put the first load in the washer for 30 minutes, dry it for 40 minutes, and then take 20 minutes to fold the clothes.
- Then pick up the second load and wash, dry, and fold, and repeat for the third and fourth loads.
- Supposing we started at 6 PM and worked as efficiently as possible, we would still be doing laundry until midnight.

Example:

- A smarter approach to the problem would be to put the second load of dirty laundry into the washer after the first was already clean
- Then, while the first load was being folded, the second load would dry, and a third load could be added to the pipeline of laundry. Using this method, the laundry would be finished by 9:30.

Pipeline hazards:

- There are phenomena called pipeline hazards which **disrupt the smooth execution** of the pipeline. The resulting delays in the pipeline flow are called **bubbles**.
- A hazard is a potential problem that can happen in a pipelined processor. It refers to the possibility of erroneous computation when a CPU tries to simultaneously execute multiple instructions which exhibit data dependence.

Types of hazards:

- There are typically three types of hazards: data hazards, structural hazards, control hazard
- **structural** hazards from <u>hardware conflicts</u> (accessing two instruction to ALU at the same time)
- data hazards arising from data dependencies
- **control** hazards that come about from <u>branch</u>, <u>jump</u>, and other control flow changes

A **data dependency** occurs when an instruction depends on the results of a previous instruction.

Four-segment pipeline

The simplest way of viewing the pipeline structure is to imagine that each segment consists of an **input register** followed by a **combinational circuit**

- The register holds the data and the combinational circuit performs the suboperation in the particular segment
- A clock is applied to all registers after enough time has elapsed to perform all segment activity. In this way the information flows through the pipeline one step at a time

Example:

$$A_i * B_i + C_i$$
 for $i = 1, 2, 3, ..., 7$

The suboperations performed in each segment are:

 $R1 \leftarrow A_i$, $R2 \leftarrow B_i$ Load A_i and B_i

 $R3 \leftarrow R1 * R2$, $R4 \leftarrow C_i$ Multiply and load C_i

 $R5 \leftarrow R3 + R4$ Add

Example:

TABLE 9-1 Content of Registers in Pipeline Example

Clock Pulse Number	Segment 1		Segment 2		Segment 3
	R1	R2	R3	R4	R5
1	A_1	B ₁		_	_
2	A_2	B_2	$A_1 * B_1$	C_1	
3	A_3	B_3	$A_2 * B_2$	C_2	$A_1*B_1+C_1$
4	A_4	B_4	$A_3 * B_3$	C_3	$A_2*B_2+C_2$
5	As	B_5	$A_4 * B_4$	C_4	$A_3*B_3+C_3$
6	A_6	B_6	$A_5 * B_5$	C_5	$A_4*B_4+C_4$
7	A_7	B_7	$A_6 * B_6$	C_6	$A_5*B_5+C_5$
8	_		$A_7 * B_7$	C_7	$A_6*B_6+C_6$
9		_		_	$A_7 * B_7 + C_7$

Types of pipeline:

(i) Arithmetic pipeline

different stages of an arithmetic operation are handled along the stages of a pipeline

(ii) Instructional pipeline

different stages of an instruction fetch and execution are handled in a pipeline

Assignments

Assignment 1

Consider the following equation:

$$A_i + B_i * C_i$$

Specify a pipeline configuration to carry out this task. List the contents of all registers in the pipeline for i = 0 to 6

Assignment 2

Consider the following equation:

$$(A_i + B_i) * (C_i + D_i)$$

Specify a pipeline configuration to carry out this task. List the contents of all registers in the pipeline for i = 0 to 6

Questions

Thanks a lot!