Solutions for Sheet 3

Raphael Wude, Martin Brückmann, Claude Jordan, Daniel Degenstein

PATTERN MATCHING AND MACHINE LEARNING FOR AUDIO SIGNAL PROCESSING

23. April 2022

Task 3.1

(a) We have the following formulas for cos(z) and u_k :

$$cos(z) = \frac{1}{2}e^{iz} + e^{-iz}$$
$$u_k = e^{\frac{2\pi ikn}{N}}$$

So for f, we get:

$$f(t) = \cos(4\pi t) + 4\cos(20\pi t) + 8\cos(2\pi 20t) = \cos(2\pi 2t) + 4\cos(2\pi 10t) + 8\cos(2\pi 20t)$$

$$= \frac{1}{2} \left(e^{2\pi 2ti} + e^{-2\pi 2ti} \right) + \frac{4}{2} \left(e^{2\pi 10ti} + e^{-2\pi 10ti} \right) + \frac{8}{2} \left(e^{2\pi 20ti} + e^{-2\pi 20ti} \right)$$

$$= \frac{1}{2} \left(e^{2\pi 2ti} + e^{-2\pi 2ti} \right) + 2 \left(e^{2\pi 10ti} + e^{-2\pi 10ti} \right) + 4 \left(e^{2\pi 20ti} + e^{-2\pi 20ti} \right)$$

With $t = \frac{k}{N}$ we get:

$$f = \frac{1}{2} (u_2 + u_{N-2}) + 2 (u_{10} + u_{N-10}) + 4 (u_{20} + u_{N-20})$$

(b) We obtain from f:

$$|\hat{f}(k)| = w_k \cdot \frac{N}{2}$$

with $w_2 = w_{N-2} = 1$, $w_{10} = w_{N-10} = 2$, $w_{20} = w_{N-20} = 4$ and otherwise $w_k = 0$.

Abbildung 1: $f(t)(top)and|\hat{f}(k)|(bottom)$

c)