REINS ET MEDICAMENTS

I. INTRODUCTION ET DEFINITION

- Le rein est le principal organe d'élimination des médicaments
- Le rein a un rôle essentiel dans le métabolisme des médicaments
- Nombre d'entre eux sont éliminés après transformation, par voie urinaire
- Beaucoup de médicaments sont également susceptibles de perturber le fonctionnement des reins.
- La prescription de médicaments ayant un impact sur les reins
- Pour ce faire, le médecin prescrit des analyses sanguines, afin de déterminer :
- Le taux sanguin de créatinine (une protéine présente dans le sang) ;
- Le débit de filtration glomérulaire, qui indique l'état de la fonction rénale.

II. PHARMACOCINETIQUE ET INSUFFISANCE RENALE

A. La pharmacocinétique est l'étude du devenir des médicaments après qu'ils aient été administrés

- **1. Absorber le médicament :** s'il est administré par voie orale, intramusculaire ou sous-cutanée, cutanéo-muqueuse, ou perfusion intraveineuse
- **2. Distribuer le médicament :** dans différents secteurs (appelés « compartiments ») de l'organisme.
- **3. Métaboliser le médicament :** c'est-à-dire le dégrader, le transformer en d'autres substances. Ce métabolisme se déroule dans le foie, a pour objectif de transformer un médicament lipophile en composés (métabolites) hydrophiles, de façon à ce que ces derniers puissent être excrétés par les reins dans l'urine.
- **4.** Excréter le médicament : c'est-à-dire l'expulser hors de l'organisme, les reins vont intervenir,

B. Une insuffisance rénale entraîne une modification de la pharmacocinétique

- **1. Le métabolisme hépatique :** Le dysfonctionnement rénal entraîne l'accumulation dans l'organisme de toxines, appelées toxines urémiques, qui peuvent interagir avec le métabolisme des médicaments et le ralentir ou le diminuer.
- **2.** La distribution dans l'organisme : En cas d'oedèmes ou de modifications de la composition des protéines du sang.
- **3. L'absorption intestinale des médicaments administrés par voie orale :** Les toxines urémiques vont également réduire le métabolisme intestinal des médicaments et donc modifier la fraction de médicament absorbée dans la circulation

III. FACTEURS DE RISQUE DE NEPHROTOXICITE

A. Liés aux patients

- L'Age
- Insuffisance rénale chronique pré -existante
- diabète, myélome multiple
- Etat de déshydratation, déplétion volémique
- Hypovolémie relative (cirrhose, syndrome Néphrotique)
- Transplantation rénale

B. Liés aux médicaments

- Dose non adaptée
- Durée prolongée du traitement
- Exposition répétée
- Néphrotoxicite intrinsèque
- Utilisation combinée ou rapprochée dans le temps d'agent néphrotoxiques
- Interactions médicamenteuses

IV. Présentation clinique de la toxicité médicamenteuse

- L'IRA reste la principale forme de toxicité rénale :
- L'IRA secondaire à la toxicité d'un médicament est un événement grave.
- La mortalité globale associée à une IRA est de l'ordre de 30 %
- Certains médicaments ont à la fois :
- Une toxicité aiguë tableau IRA
- Une toxicité chronique tableau IRC

V. MECANISMES PHYSIOPATHOLOGIQUES DE L'IRA MEDICAMENTEUSE

- 1. <u>Insuffisance rénale fonctionnelle :</u>
- Hypoperfusion rénale par hypovolémie : Diurétiques, AINS*, IEC**, ARA2
- Hypoperfusion rénale d'origine vasculaire : Anticalcineurine (ciclosporine, tacrolimus)
- 2. Insuffisance rénale organique :
- Toxicité tubulaire directe aiguë :

Nécrose tubulaire aiquë (NTA): Aminosides, produits de contraste iodés, cisplatine,

Toxicité tubulaire indirecte aiguë : NTA :

Rhabdomyolyse: Statines, fibrates

Hémolyse : rifampicine Cristallurie : Acyclovir

• Néphrite tubulo-interstitielle aiguë (NTIA)

Allergique: AINS, B-lactamines, allopurinol

• Atteinte glomérulaire :

D'origine immunologique : AINS, interféron, D-pénicillamine

- 3. Néphropathie vasculaire :
- *Microangiopathie thrombotique :* Ciclosporine, mitomycine
- 4. Insuffisance rénale obstructive
- Fibrose rétropéritonéale : Ergotamine, B-bloquants
- 5. Maladie rénale chronique :
- Toxicité tubulaire ou tubulo-interstitielle chronique : Lithium, ténofovir ; Antalgiques

VI. MESURES thérapeutiques ET PRÉVENTIVES

A. Traitement de L'IRA:

- Arrêt du traitement, confirmer le type de la toxicité rénale
- Une réhydratation : examen clinique
- Traitement symptomatique
- L'épuration extra rénale si nécessaire

B. Prévention:

- Traitement le plus court possible
- Posologies adaptées à la fonction rénale
- Ne pas associer plusieurs médicaments néphrotoxiques
- Maintenir un état d'hydratation optimal,
- Surveillance stricte du marqueur d'effet indésirable : créatininémie si risque d'insuffisance rénale, protéinurie si risque glomérulaire

C. évaluer la fonction rénale :

- Le DFG varie selon l'âge, le sexe et l'indice de masse corporelle. Normale = 125 ml/mn/1,73m² chez l'adulte jeune.
- MDRDs CKD-EPI Cockcroft
- Si le DFG est inférieur à 60 ml/min, plusieurs « gammes de dose » sont définies, pour lesquelles des posologies différentes peuvent être recommandées, les doses devant être réduites à mesure que le DFG diminue

IRA : Insuffisance rénale aiguë NTA : La nécrose tubulaire aiguë

NTIA : La néphrite tubulo-interstitielle aigue

ARII : Les Antagonistes des récepteurs de l'angiotensine II

IEC : Les inhibiteurs de l'enzyme de conversion AINS : Les anti-inflammatoires non stéroïdiens

LES COURS DE LA 5EME ANNEE MEDECINE - MODULE D'URO-NEPHROLOGIE

PARTIE : NEPHROLOGIE

NEGADI MOHAMMED EL AMINE