ST

LEVEL-I

1.	If the bisector of angle A of ΔABC makes are to	A of $\triangle ABC$ makes an angle θ with BC, then $\sin \theta$ is equal			
	$(A) \cos\left(\frac{B-C}{2}\right)$	(B) $\sin\left(\frac{B-C}{2}\right)$			
	(C) $\sin\left(B - \frac{A}{2}\right)$	(D) $\sin\left(C - \frac{A}{2}\right)$			
2.	If the radius of the circumcircle of an isosce AB = AC then the angle A is	les triangle ABC is equal to			
	(A) π/6 (C) π/2	(B) π/3 (D) 2π/3			
	` '				
3.	In a triangle ABC, if $\frac{2\cos A}{a} + \frac{\cos B}{b} + \frac{2\cos C}{c}$	$\frac{c}{c} = \frac{a}{bc} + \frac{b}{ca}$, then the value of the			
	angle A is (A) 30 ⁰				
	$(C)60^{\circ}$	(B)45° (D) 90°			
4.	If A = 45°, B = 75° then a + $c\sqrt{2}$ is equal to				
	(A) 2b	(B) 3b			
	(C) $\sqrt{2}$ b	(D) b			
5.	The sides of a triangle inscribed in a given centre. The minimum value of the arithmetic and $\cos(\gamma + \pi/2)$ is equal to				
	(A) 0	(B) $1/\sqrt{2}$			
	(C) -1	(D) $-\sqrt{3}/2$			
6.	A regular polygon of nine sides, each of lengradius of the circle is	gth 2, is inscribed in a circle. The			
	(A)sec $\frac{\pi}{9}$	(B) $\sin \frac{\pi}{9}$			
	(C) $\csc \frac{\pi}{9}$	(D) $\tan \frac{\pi}{9}$			
7.	In an acute angled triangle ABC, the least v (A) 6 (B) 9	value of secA + secB + secC is (B)3 (D) 4			
8.	A circle is inscribed in an equilateral triangle inscribed in the circle is	e of side a. The area of any square			
	(A) a ² /4	(B) $a^2/6$			

	(C) $a^2/9$	(D) 2a ² /3
9.	If $3 \sin^2 A + 2\sin^2 B = 1$ and $3 \sin^2 A - 2 \sin^2 A = 1$ and $3 \sin^2 A - 2 \sin^2 A = 1$ and $3 \sin^2 A - 2 \sin^2 A = 1$ and $3 \sin^2 A - 2 \sin^2 A = 1$ and	(B) π/4
	(C) π/2	(D) none of these.
10.	If in a $\triangle ABC$, $\cos(A - C)\cos B + \cos 2B = 0$, (A) A.P. (C) H. P.	then a ² , b ² , c ² are in (B) G.P. (D) none of these
11.	If tan(A+B), tanB, tan(B+C) are in A.P., th (A) A.P. (C) H.P.	en tanA, cotB, tanC are in (B) G.P. (D) none of these
12.	If twice the square of the diameter of a circl of the sides of the inscribed triangle ABC to	
	(A) 2 (C) 4	(B) 3 (D) 1
13.	Consider a triangle ABC, with given $\angle A$ a triangle would exist if, (x is a given positive	
	(A) $a < x \sin \frac{A}{2}$	(B) $a > 2x \sin \frac{A}{2}$
	(C) $a < 2 \times \sin \frac{A}{2}$	(D) None of these .
14.	If in ∆ABC a, b, c are in geometric progres (A) cot²A, cot²B, cot²C are in G.P. (B) cosec²A, cosec²B, cosec²C are in A.P. (C) cosec²A, cosec²B, cosec²C are in G.F. (D) none of these.) <u>.</u>
15.	If in a \triangle ABC, $8R^2 = a^2 + b^2 + c^2$, then the (A) Equilateral (C) Isosceles	triangle is (B) Right angled (D) None of these
16.	In a triangle ABC, angle B is greater than a	angle A, B $-A < \frac{2\pi}{2}$. If the values of A
	and B satisfy the equation $3\sin x - 4\sin^3 x - k$ to	c = 0 (0 < k < 1), then angle C is equal
	(A) $\frac{\pi}{3}$	(B) $\frac{\pi}{6}$
	(C) $\frac{2\pi}{3}$	(D) None of these

17.	If in a triangle ABC, b + c = 4a. Then $\cot \frac{B}{2}$	C cot—is equal to
	(A) $\frac{5}{3}$ (C) $\frac{5}{8}$	(B) $\frac{3}{5}$
	(C) $\frac{5}{8}$	(D) None of these
18.	The ex-radai of a triangle r_1 , r_2 , r_3 are in Hab, c are in	armonic progression, then the sides a,
	(A) A.P (C) H.P	(B) G.P (D) none of these
19.	In a \triangle ABC A = 30°, B = 60°, then a : b : c is	
	(A) 1:2:3 (C) 1:2: $\sqrt{3}$	(B) 1: $\sqrt{3}$: 2 (D) 1: $\sqrt{2}$: 3
20.	In a $\triangle ABC$, the value of a (cos B + cos C) +	
20.	is	
	(A) a + b (C) b + c	(B) a + b + c (D) b + c –a
21.	In a triangle a = 13, b = 14, c = 15, r =	(D) 0
	(A) 4 (C) 2	(B) 8 (D) 6
22.	In a triangle ABC, If $b + c = 3a$, then the val	ue of $\cot \frac{B}{2} \cot \frac{C}{2}$ is
	(A) 1	(B) 2
	(C) $\sqrt{3}$	(D) 3
23.	In a triangle ABC, then 2ac sin $\frac{1}{2}$ (A –B + C	e) is
	(A) $a^2 + b^2 - c^2$ (D) $b^2 - c^2 - a^2$	(B) $c^2 + a^2 - b^2$ (D) $c^2 - a^2 - b^2$
24.	The angle A of the triangle ABC, in which (a (A) 30°	
	(C) 60°	(B) 45 ⁰ (D) 120 ⁰
25.	In a triangle ABC, Let $\angle C = \frac{\pi}{2}$, if r is the init	radius and R is the circumradius of the
	triangle, then $2 (r + R)$ is equal to $(A) a + b$	(B) b + c
	(C) c + a	(D) a + b + c
26.	In a triangle ABC, $\frac{c+b}{c-b}$. $\tan \frac{A}{2}$ is equal to	

	(A) $\tan\left(\frac{A}{2} + B\right)$	(B) $\cot\left(\frac{A}{2} + B\right)$
	(C) $\tan\left(A + \frac{B}{2}\right)$	(D) none of these
27.	In a $\triangle ABC$, a = 2b and $ A -B $	= $\frac{\pi}{3}$, the measure of angle C
28.		of $\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} =$
29.	If AD, BE and CF are the medians of a ΔA CA ² + AB ²) =	
30.	sin A, sin B, sin C are in A.P for the \triangle ABC (A) altitudes are in A.P (C) altitudes are in H.P	then (B) sides are in A.P (D) medians are in A.P
31.	In a triangle ABC, tan C< 0, then (A) tan A . tan B < 1 (C) tan A + tan B + tan C < 0	(B) tan A . tan B > 1 (D) tan A + tan B + tan C > 0
32.	If in a triangle ABC, b + c = 4a. Then $\cot \frac{B}{2}$. L
	(A) $\frac{5}{3}$ (B) $\frac{3}{5}$ these	(C) $\frac{5}{8}$ (D) None of
33.	(A) right angled (B) isosceles	$-rac{\sin^2 A}{\sin B \sin C}$, then the triangle is (C) scalene (D) None of
34.	these In a triangle, the lengths of the two larger s angles are in A.P., then the length of thi (A) $5 - \sqrt{6}$	•
	(A) 5 40	(D) $3\sqrt{3}$

In a \triangle ABC, maximum value of c cos (A - θ) + a cos(C + θ), equals (A) a (B) b (D) $\sqrt{a^2 + c^2}$

36.	In a triangle ABC, $a^2 (\cos^2 B - \cos^2 C) + \cos^2 B$) equals	$b^2 (\cos^2 C - \cos^2 A) + c^2 (\cos^2 A -$
	, .	(B) 1
	(C) -1	(D) none of these
37.	In a \triangle ABC, the angles A and B are two va	lues of θ satisfying $\sqrt{3}$ $\sin\theta$ + $\cos\theta$ =
	•	(D) 000
	、	(B) 90°
	(C) 120°	(D) none of these
38.	If the ex-radii of a triangle ABC are in H.P.	, then the sides a, b, c are in
	(A) A.P.	(B) G.P.
	` '	(D) None of these
	37.	cos ² B) equals (A) 0 (C) -1 37. In a \triangle ABC, the angles A and B are two va λ , $ \lambda < 2$. Then \angle C equals (A) 60° (C) 120°

LEVEL-II

1.	The expression $\frac{(a+b+c)(b+c-a)(c+a-b)}{4b^2c^2}$	$\frac{-b)(a+b-c)}{-b}$ is equal to
	(A) $\cos^2 A$ (C) $\cos A \cos B \cos C$	(B) sin ² A (D) None of these
2.	The perimeter of a triangle ABC is 6 times to angles. If the side a is 1, then the art (A) $\pi/6$ (C) $\pi/2$	
3.	If a ² , b ² ,c ² are in A.P , then cotA, cotB, cotC (A) A.P (B) G. (C) H.P	
4.	The area of the circle and the regular polygare in the ratio of (A) $\tan(\pi/n)$: π/n (C) $\sin(\pi/n)$: π/n	on of n sides and of equal perimeter (B) $\cos (\pi/n) : \pi/n$ (D) $\cot(\pi/n) : \pi/n$
5.	In a triangle ABC, $(a+b+c)(b+c-a) = \lambda bc$ if (A) $\lambda < 0$ (C) $0 < \lambda < 4$	(B) $\lambda > 0$ (D) $\lambda > 4$
6.	In a triangle ABC, AD is the altitude from AB = $\frac{abc}{b^2 - c^2}$ then \angle B is equal to (A) 23° (C) 67°	(B) 113 ⁰ (D) 90 ⁰
7.	In any triangle ABC, a³cos(B-C) + b³ cos(C (A) 6abc (C) 3abc	-A) + c ³ cos(A-B) is equal to (B) 9abc (D) None
8.	In a triangle ABC, $\sqrt{a} + \sqrt{b} - \sqrt{c}$ is (A) always positive (B) al (C) positive only when c is smallest (D) no	ways negative one of these .
9.	In a triangle with sides a,b, and c, a semicir inscribed whose diameter lies on AB. The (A) a/2 (C) $\frac{2\Delta}{a+b}$	
10.	A triangle is inscribed in a circle. The vert in to three arcs of length 3, 4 and 5 unit to,	

In $\triangle ABC$, if $\frac{c+a}{12} = \frac{a+b}{14} = \frac{b+c}{18}$, then

	(A) $r_1 = \frac{11}{7}r$	(B) $r_2 = 11r$			
	(C) $r_3 = \frac{2}{11}r$	(D) None of these			
19.	If a cos A = b cos B, the triangle is (A) equilateral (C) isosceles	(B) right angled (D) right angled or iso	osceles		
20.	The sides of a triangle are a, b and $\sqrt{a^2 + a}$	$\overline{b + b^2}$, then the greate	est angle is		
	(A) $\frac{\pi}{3}$	(B) $\frac{\pi}{2}$			
	(C) $\frac{2\pi}{3}$	(D) none of these			
21.	Two sides of a Δ are given by the roots of	the equation $x^2 - 2\sqrt{3}$	3x + 2 = 0. The		
	angle between the sides is $\frac{\pi}{3}$. The perimet	er of the triangle is			
22.	In a triangle ABC, R = circumradius $\frac{a\cos A + b\cos B + c\cos C}{a + b + c}$ is equal to	and r = inradius.	The value of		
	(A) $\frac{R}{r}$	(B) $\frac{R}{2r}$			
	(C) $\frac{r}{R}$	(D) $\frac{2r}{R}$			
23.	In a triangle ABC, 2 cos $\frac{A-C}{2} = \frac{a+c}{\sqrt{a^2+c^2-c^2}}$, then			
	$(A) B = \frac{\pi}{3}$	(B) B = C			
	(D) A, B, C are in A.P	(D) B + C = A			
24.	The distance of the circumcentre of the ac CA and AB are in the ratio	cute angled ∆ABC fror	n the sides BC,		
	(A) a sin A: b sin B: c sin C (C) a cot A: b cot B: c cot C	(B) cos A : cos B : co (D) none of these	s C		
25.	If twice the square of the diameter of a circle is equal to the sum of the squares of the sides of the inscribed triangle ABC, then $\sin^2 A + \sin^2 B + \sin^2 C$ is equal				
	to (A) 2 (B) 3	(C) 4	(D) 1		
26.	In $\triangle ABC$, if $\frac{c+a}{12} = \frac{a+b}{14} = \frac{b+c}{18}$, then				

	(A) $r_1 = \frac{11}{7}r$ these	(B) $r_2 = 11r$	(C) $r_3 = \frac{2}{11}r$	(D)	None	of
	11000					
27.	In a triangle ABC, 2 s	sinA cosC = 1 and $\frac{\tan x}{\tan x}$	$\frac{A}{C} = \frac{1}{2}$ then triangle is			
	(A) right angled at A		C 2 (B) right angled at B			
	(C) right angled at C		(D) none of these			
	, ,					
28.	In a triangle ABC, $\frac{(r_1)}{r_1}$	$\frac{+r_2)(r_2+r_3)(r_3+r_1)}{Rs^2}$ is	equal to			
	(A) 4	(B) 4 abc	(C) $\frac{4abc}{\Delta^2}$	(D) Δ		
29.	In a $\triangle ABC$, $\frac{a\cos A + 1}{2}$	$rac{bcosB+ccosC}{\Delta^2}$ is equ	ual to			
	(A) 8	(D) 2	$\langle \mathbf{c} \rangle$ $8\Delta^3$	(D)	Nana	٠,
	(A) abc	(B) $\frac{2}{\Delta R}$	abc	(D)	None	of
	these					
30.	If p ₁ , p ₂ and p ₃ are re	spectively the lengths	of perpendiculars from	n the v	ertices	of
		opposite sides, then the				
	(A) $\frac{a^2b^2c^2}{a^2}$	(B) $\frac{a^2b^2c^2}{a^2}$	(C) $\frac{a^2b^2c^2}{8R^4}$	$(D) = \frac{a}{a}$	$^2b^2c^2$	
	8R ²	` ⁻ ′ 8R ³	`´′ 8R⁴	(-)	$4R^2$	

- 31. If in a triangle $\cos^2 A + \cos^2 B \cos^2 C = 1$, then the triangle is (A) Right angled at A (B) Right angled at B
 - (C) Right angled at C (D) not a right triangle
- 32. If in a triangle ABC, $\frac{\text{SinB} \text{SinA}}{\text{SinC}} + \frac{\text{CosB} \text{CosA}}{\text{CosC}} = 0$ then the triangle is
 - (A) right angled (B) equilateral (C) isosceles (D) None of these
- 33. If $sin\theta$ and $-cos\theta$ are the roots of the equation $ax^2 bx c = 0$, where a, b, c are the sides of a triangle ABC then
 - (A) $\cos B = 1 \frac{c}{2a}$ (B) $\cos B = 1 \frac{b}{2a}$ (C) $\cos B = 1 + \frac{c}{2a}$ (D) $\cos B = 1 + \frac{b}{2a}$
- 34. In a right angled triangle ABC, with right angle at B, $\frac{1}{r^2} + \frac{1}{r_1^2} + \frac{1}{r_2^2} + \frac{1}{r_3^2} =$
 - (A) $\frac{8R^2}{\Delta^2}$ (B) $\frac{2R^2}{\Delta^2}$ (C) $\frac{4R^2}{\Delta}$ (D) None of these

35.	If in a triangle ABC, $\angle C = 135^{\circ}$, then value (A) 0 (C) -1	of tan A + tan B + tan A tan B equals (B) 1 (D) none of these
36.	Suppose the angles of a triangle ABC are in $\sqrt{3}$: $\sqrt{2}$ then the angle A equals (A) 45° (C) 75°	A.P. and sides b and c satisfy b : $c =$ (B) 60° (D) 90°
37.	If a^2 , b^2 , c^2 are the roots of the equation x^3 - the sides of a triangle ABC then the value of (A) $\frac{P}{\sqrt{R}}$ (C) $\frac{P}{4\sqrt{R}}$	
38.	In a triangle ABC, $\frac{b^2-c^2}{a\sin(B-C)} + \frac{c^2-a^2}{b\sin(C-A)}$ (A) R (B) 2R	equals $(B) \frac{1}{2R}$ $(D) \text{ none of these}$

ANSWERS

LEVEL -I

	1. 5.	A D	2. 6.	D C	3. 7.	D A	4. 8.	A B
	9. 13. 17. 21.	C D A A	10. 14. 18. 22.	A C A B	11. 15. 19. 23.	C B B	12. 16. 20. 24.	A C B C
	25.		26.	D	27.		28.	9 16
	29. 33. 37.	A C	30. 34. 38.	B A A	31. 35.	C B	32. 36.	A A
LEVE	L -II							
	1. 5.	B C	2. 6.	A B	3. 7.	A C	4. 8.	A A
	9. 13. 17. 21.	C B,C A $\sqrt{6} \left(1+\sqrt{2}\right)$	10. 14. 18. 22.	A C A C	11. 15. 19. 23.	B C D	12. 16. 20. 24.	A C C C
	25. 28. 29. 33.	A C	26. 30. 34.	A	27. 31. 35.	В	32. 36.	С
	37.	В	38.	D				