M2.2.2 Modelos Supervisados y No Supervisados

Programa Big Data y Business Intelligence

Enrique Onieva

enrique.onieva@deusto.es
https://twitter.com/EnriqueOnieva
https://www.linkedin.com/in/enriqueonieva/

Clustering

- Definición e idea del grupo
- Medidas de calidad del análisis cluster
- Clustering Jerárquico
 - Divisivo
 - Aglomerativo
- Midiendo distancias entre clusters
- El algoritmo k-means
- Estableciendo el número apropiado de clusters

Definición

- Los métodos de clustering buscan agrupar un conjunto de datos en "clusters" (grupos), según cierta medida de distancia
 - Datos dentro del mismo cluster deben estar cerca los unos de los otros
 - Datos de clústeres diferentes deben estar lejos los unos de los otros

- Los clusters (en la mayoría de los casos) no se ven a simple vista
- Para "demostrarlo", dos ejemplos
 - Genero 2 conjuntos de datos con 2 atributos 500 puntos
 - Conjunto 1 -> elimino aquellos puntos en los que no se cumple que:
 - Conjunto 2 -> elimino aquellos puntos en los que no se cumple que:
 - Obtengo 2 datasets con 2 clusters "fácilmente diferenciables"

 Pero si hago dos datasets, siguiendo el mismo razonamiento, pero con 3 atributos...

 En algunos (pocos) casos puedo "rotar" el dataset como si fuera un cubo hasta encontrar la separación → En otros casos, no

- También puedo mostrar los datos como un conjunto de dibujos de dos dimensiones
 - Es lo que se conoce como un "scatter plot"
- ¿Me ayuda?

- Pero los dos clusters "están ahí"
 - (aunque no los veamos)
- ¿Y si tenemos 4 atributos?
 - Los ejemplos para ilustrar el análisis cluster trabajan en dos dimensiones para poder "ver" los clusters,
 - Y así comparar el resultado de un método con el resultado de un "experto"
- ¿Y si tenemos 5, 6, 7, ...?

Atr1

¿Qué es el análisis cluster?

- Un cluster es una agrupación de muestras de datos
 - Similares a aquellas pertenecientes al grupo
 - Diferentes de aquellas no pertenecientes al grupo
- Objetivos
 - Comprender la estructura de los datos
 - Encontrar similitudes entre datos
 - Agrupar elementos
 - \circ Es No-Supervisado \rightarrow no hay "clases" definidas

¿Qué es el análisis cluster?

- Conjunto de técnicas que agrupan objetos en grupos o clusters
- ¿Cuántos grupos?
 - Grupos o clusters no definidos a priori.
 - Diferencia con los métodos supervisados.
- ¿Cómo buscarlos? Los objetos dentro de un cluster deben ser
 - Similares o cercanos entre sí
 - (gran similaridad <u>intra-clase</u>)
 - Diferentes o alejados a los objetos de otro cluster
 - (baja similaridad <u>inter-clase</u>)

¿Qué es el análisis cluster?

Aplicaciones típicas

- Comprender los datos
 - Nos permitirá ver si los datos están agrupados o no
 - Ganaremos conocimiento sobre nuestros datos
 - Nos permitirá tomar decisiones más acertadas
- Etapa de preprocesamiento
 - Para beneficiar en otra tarea del ciclo de vida de los datos.
 - Calidad de datos: si hay un cluster de datos que son similares entre sí porque comparten cierto valor de atributo (asignación de valores perdidos)

Aplicaciones

ullet Marketing

 Ayudar a identificar grupos de clientes, para enfocar campañas específicas

Seguros

 Identificar grupos o características comunes dentro de los asegurados que reclaman costes altos

Planificación urbana

 Identificar grupos de viviendas similares en función del tipo, valor, área geográfica...

¿Cuándo es bueno?

- Una buena agrupación está compuesta por clusters con
 - Alta similitud intra-cluster
 - Elementos dentro del mismo cluster
 - Baja similitud inter-cluster
 - Elementos de clusters diferentes
- Métricas de evaluación de la calidad
 - Medidas de similitud inter/intra cluster
 - Inspección manual
 - Comparación con "etiquetas" pre-diseñadas
- Distancias
 - Por ello, es recomendable normalizar

- Supón que tienes 5 elementos {a,b,c,d,e}
 - Inicialmente, consideramos cada uno, por sí mismo, un cluster
 - Entonces, en cada paso, tomamos los clústeres más similares entre sí, y los agrupamos en un nuevo cluster

- Supón que tienes 5 elementos {a,b,c,d,e}
 - Inicialmente, consideramos un único cluster con todos los elementos dentro
 - Entonces, en cada paso, partimos un cluster para mejorar la distancia intra-cluster, hasta que todos los elementos son clusters independientes

- Esos son los dos enfoques de clustering jerárquico, denominados
 - Aglomerativo → comenzamos con clústeres individuales, que vamos uniendo entre sí
 - Divisivo → comenzamos con un sólo cluster que vamos dividiendo hasta que todos los elementos pertenecen a clusters independientes

Fortalezas

- No necesita que se establezca el número deseado de clústeres
- Se pueden obtener divisiones en cualquier número de clústeres "cortando" el dendograma en el nivel apropiado
- Pueden corresponderse con taxonomías reales
- Utilizan una matriz de distancias o proximidad, para unir o dividir clústeres según ésta

Clustering Aglomerativo

Pasos

- Comenzamos con cada elemento siendo un cluster independiente
- Calcular la matriz de proximidad
- Repetir hasta que sólo quede un cluster
 - Unir los dos clusters más cercanos
 - Actualizar la matriz de proximidad

18

Clustering Divisivo

Pasos

- Comenzamos con todos los elementos en el mismo cluster
- Repetir mientras se pueda
 - Utilizamos un método (otro) de clustering para dividir los elementos de cada cluster en 2 (o más) clusters

 Con el clustering jerárquico podemos obtener tantas divisiones como elementos haya

¿Cuál escogemos?

Eligiendo el número de clusters

- Withing-cluster sum of squares (WSS)
 - Distancia de los elementos de un cluster a su centroide
- Between-cluster sum of squares (BSS)
 - Distancia entre centroides de clusters
- Dibujar WSS y BSS y buscar el punto con cambio significativo

 Between/Within Cluster Sum-of-square

$$WSS(C) \sum_{i=1}^{k} \sum_{x_j \in C_i} d(x_j, \mu_i)^2$$

$$BSS(C) \sum_{i=1}^{k} |C_i| d(\mu, \mu_i)^2$$

Midiendo Distancias (Cluster)

- Si comenzamos con N clusters
 - Tendremos una matriz de distancias entre puntos
 - Empezaremos a agrupar
 - Y a actualizar esa matriz de distancias
 - Y en algún punto, esa matriz de distancias contendrá distancias entre clusters,
 - ¿Cómo la calculamos?

Midiendo Distancias (Clusters)

Medidas típicas:

- Mínima distancia entre un elemento de un cluster y otro
- Máxima distancia entre un elemento de un cluster y otro
- Distancia promedio entre los elementos de los clusters
- Distancia entre los <u>centroides</u> de los clusters

o ...

¿Cómo los representamos?

Para datos numéricos

- Podemos identificar un cluster por su centroide (Punto promedio)
- De una manera alternativa, por su envolvente convexa

Para datos no numéricos

- Podemos utilizar "cualquier" distancia
- \circ No podemos establecer un centroide \rightarrow clustoide
 - Es una instancia que se toma como representante del cluster
 - Puede ser el punto que minimiza la suma de las distancias con los otros puntos del cluster
 - O minimiza la distancia máxima a otro elemento
 - O minimiza la suma al cuadrado de las distancias con otros elementos
 - ...

Problemas y Limitaciones

- Una vez que se combinan 2 clusters, la decisión no es reversible
- No hay una función objetivo a minimizar
- Problemas ante:
 - Presencia de outliers, y datos con ruido
 - Clusters con tamaños muy diferentes
 - Partición de clusters que agrupan muchos elementos

Clustering de "representación"

- Dado un dataset con N instancias, y un número de clusters a crear (k)
 - o generan una partición de las N instancias en k clusters
- Para cada cluster, se define un punto que representa al conjunto
 - Lo más común es utilizar la media de los puntos del cluster

$$\mu_i = \frac{1}{n_i} \sum_{x_j \in C_i} x_j$$

Clustering de "representación"

- El objetivo del método es encontrar la mejor partición según una función de scoring
 - La más común es la suma promedio de cuadrados
- Objetivo: encontrar la partición que minimiza SSE
 - Se podrían probar todas las combinaciones posibles...
 - Existen k^N/k! Particiones posibles
 - Para dividir 100 datos en 5 clusters \rightarrow 6.5738409e+67
 - (Un 6 seguido de 67 ceros, más o menos)

- Es el método más conocido
- Asume espacios numéricos, aunque se puede extender fácilmente a otros
- Utilizar una estrategia voraz iterativa para minimizar el SSE


```
K-MEANS (D, k, \epsilon):
 1 t = 0
    Randomly initialize k centroids: \mu_1^t, \mu_2^t, \dots, \mu_k^t \in \mathbb{R}^d
 з repeat
 4 t \leftarrow t+1
 5 C_i \leftarrow \emptyset for all j = 1, \dots, k
       // Cluster Assignment Step
 6 foreach x_i \in D do
     igg| j^* \leftarrow \mathop{\mathsf{arg}}
olimits \mathsf{min}_i \Big\{ igg\| \mathbf{x}_j - oldsymbol{\mu}_i^t igg\|^2 \Big\} // Assign \mathbf{x}_j to closest
 7
            C_{j^*} \leftarrow C_{j^*} \cup \{\mathbf{x}_j\}
          // Centroid Update Step
       foreach i = 1 to k do
     igg| oldsymbol{\mu}_i^t \leftarrow rac{1}{|C_i|} \sum_{\mathbf{x}_j \in C_i} \mathbf{x}_j
11 until \sum_{i=1}^{k} \| \mu_i^t - \mu_i^{t-1} \|^2 \le \epsilon
```


- ¿Cómo funciona el algoritmo?
 - a. Elegir el valor de K (número de clusters).
 - Elegir los centros de los k clusters, por ejemplo al azar (centroides)
 - c. Asignar cada objeto al grupo más cercano (por ejemplo distancia euclídea)
 - d. Re-estimar los centros de los k clusters, asumiendo que las asignaciones a los grupos están ok
 - e. Repetir el paso c hasta que no haya más cambios
- Se puede cambiar el punto b, empezando con k centroides iniciales

- Se trata de un método estocástico
 - Los puntos iniciales se escogen con cierto factor de aleatoriedad, por lo que el resultado obtenido NO siempre es el mismo
 - (Según implementación concreta)
 - El método seleccionado para elegir los centroides iniciales es Crítico para su desempeño
 - Usar otro método para determinarlos
 - Elegir un número mayor que k, y Seleccionar entre ellos
 - **...**

Limitaciones de K-means

- Principalmente, su desempeño se ve mermado cuando los clusters tienen
 - Diferentes tamaños
 - Diferentes densidades
 - Formas no globulares
- Presenta problemas cuando los datos contienen outliers
 - (Como casi todos los métodos)

Limitaciones de K-means

Una solución puede ser hacer un número superior de clusters, y luego "unir las partes"

Resúmen de K-means

- Es un método simple
 - Se debe seleccionar el número de clusters a priori
 - Sensible a outliers
- Sus variantes giran en torno a:
 - Elección de los elementos iniciales
 - Cálculo de distancias
 - Diferentes definiciones de centroide (aparte de la media)
- Extensiones
 - Muchas... BFR es la más conocida:
 - Especialmente diseñada para lidiar con grandes volúmenes de datos
 - Mantiene un resúmen estadístico de los datos ya procesados

Resúmen de K-means

- Se debe de elegir a priori el número de clusters:
 - Conocimiento a priori: Por ejemplo, si clasificamos películas, k=nº de géneros
 - Dirigidos por el negocio: Por ejemplo, el departamento de Marketing sólo tiene recursos para hacer 3 campañas distintas de marketing
 - Sin nada de lo anterior: k=raíz(n/2)
 - Suele ser una buena elección

Resúmen de K-means

- Si el tiempo lo permite: Regla del codo
 - Realizar varias repeticiones del método, incrementando el valor de k
 - Tomar aquel valor a partir del cual, las diferencias en distancias inter e intra cluster no son significativas.

Copyright (c) University of Deusto

This work (but the quoted images, whose rights are reserved to their owners*) is licensed under the Creative Commons "Attribution-ShareAlike" License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/

Enrique Onieva

enrique.onieva@deusto.es
https://twitter.com/EnriqueOnieva
https://www.linkedin.com/in/enriqueonieva/

