<u>Informe Módulo 1</u> "Análisis del perfil laboral de un científico de datos"

Resumen

El perfil del científico de datos en el sector salud en Chile demanda competencias técnicas en estadística avanzada, programación en Python/R, Big Data y visualización interactiva, así como habilidades personales de comunicación interdisciplinaria y manejo ético de datos sensibles. Los roles se distribuyen en niveles Junior, Mid-Level y Senior, con responsabilidades que van desde el preprocesamiento de datos clínicos hasta el diseño de arquitecturas de ML en producción y mentoría de equipos. Los sueldos en Santiago oscilan entre \$1.500.000 a \$2.000.000 mensuales para juniors, \$2.250.000 a \$3.000.000 para mid-level y \$3.000.000 a \$5.000.000 en promedio para seniors. El crecimiento laboral en salud digital se impulsa por programas como Hospital Digital del MINSAL y la adopción de IA explicable, con crecimientos de vacantes superiores al 20 % anual. Los científicos de datos trabajan en hospitales, laboratorios de investigación, aseguradoras y startups de salud digital, abarcando áreas de analítica clínica, salud pública, optimización operativa y desarrollo de productos de IA médica.

Competencias Técnicas y Habilidades Personales Requeridas

Competencias Técnicas

- Estadística y Análisis de Datos: manejo de métodos inferenciales y modelos de regresión para interpretar resultados de estudios clínicos.
- **Programación y Big Data:** uso Python y R y de librerías como pandas, scikit-learn y plataformas Spark para procesar expedientes electrónicos (EHR).
- **Machine Learning y Modelado Predictivo:** desarrollo de algoritmos para predicción de readmisiones o detección temprana de patologías.
- **Visualización y Dashboards:** creación de informes interactivos con Power BI, Tableau o Dash para comunicar hallazgos a equipos clínicos.
- MLOps e Infraestructura en la Nube: implementación de pipelines CI/CD y despliegue de modelos en AWS o Azure Health Data Services.

Habilidades Personales

- Comunicación Interdisciplinaria: capacidad de traducir términos técnicos a lenguaje médico y administrativo.
 - **Pensamiento Crítico:** análisis sistemático de calidad de datos y resolución de inconsistencias en bases clínicas.
- Ética de Datos y Regulación: conocimiento de normativas como la Ley 20.584 y GES para protección de datos de pacientes.
- Trabajo en Equipo Multidisciplinario: colaboración con médicos, bioestadísticos e ingenieros de software.

Niveles de Experiencia y Seniority

1. Junior:

a. Recolección y procesamiento de datos clínicos

Recolectar, depurar y procesar datos estructurados y no estructurados de fuentes como expedientes electrónicos de salud y sistemas de laboratorio.

b. Análisis exploratorio de datos

Realizar análisis exploratorio y generar reportes estadísticos básicos para apoyar a equipos clínicos en la toma de decisiones.

c. Detección de patrones iniciales

Identificar patrones y tendencias en los datos usando técnicas como clustering y análisis de series temporales.

d. Modelos predictivos sencillos

Desarrollar y entrenar bajo supervisión modelos básicos (por ejemplo, predicción de readmisiones) para casos de uso clínicos específicos.

e. Automatización de tareas

Crear scripts en Python o R para automatizar el pre-procesamiento de datos y la generación de informes rutinarios.

f. Visualización básica

Preparar gráficos simples (barras, líneas, histogramas) con librerías como Matplotlib para comunicar hallazgos iniciales.

g. Garantía de calidad de datos

Identificar outliers, valores faltantes e inconsistencias en los conjuntos de datos para mejorar la fiabilidad de los análisis

2. Mid-Level:

a. Modelado y validación avanzada

Diseñar, entrenar y validar modelos de machine learning complejos (por ejemplo, clasificación de diagnósticos, regresión de costos hospitalarios), ajustando hiperparámetros y usando técnicas de cross-validation.

b. Dashboards interactivos

Diseñar y mantener dashboards en Power BI o Tableau para monitorear métricas clave de salud en tiempo real y presentar insights a equipos clínicos.

c. Análisis estadístico profundo

Realizar pruebas de hipótesis, análisis de supervivencia y estudios de eficacia de intervenciones mediante métodos estadísticos avanzados.

d. Optimización de pipelines

Colaborar con ingenieros de datos para optimizar y escalar pipelines de ingestión, transformación y almacenamiento de información sanitaria.

e. IA explicable (XAI)

Definir e implementar prácticas de IA explicable para asegurar que los modelos puedan ser auditados y comprendidos por clínicos.

f. Mentoría de juniors

Guiar a data scientists junior en las mejores prácticas de preprocesamiento, modelado y presentación de resultados.

3. Senior:

a. Estrategia y gobernanza de datos

Liderar la definición de la arquitectura de datos, estándares de calidad y cumplimiento normativo (Ley 20.584, GES) en proyectos de salud digital.

b. MLOps y despliegue en producción

Diseñar pipelines de CI/CD para el entrenamiento, despliegue y monitoreo continuo de modelos predictivos en entornos clínicos.

c. Gestión de portfolio de proyectos

Priorizar iniciativas de ciencia de datos, gestionando el backlog y alineando los proyectos con los objetivos estratégicos de la organización sanitaria.

d. Liderazgo técnico

Supervisar equipos multidisciplinarios, liderar revisiones de código y diseño de modelos, y promover la adopción de buenas prácticas.

e. Comunicación a stakeholders

Presentar resultados e impactos de los modelos (ej. reducción de readmisiones, optimización de recursos) a directivos y equipos clínicos mediante informes ejecutivos.

f. Innovación en IA médica

Evaluar y pilotar nuevas técnicas (deep learning para imágenes médicas, NLP para historiales clínicos) que aporten valor a los servicios de salud.

Expectativas y Proyección Laboral

Expectativas Salariales

El salario promedio de un Data Scientist en Chile es \$2.000.000 mensuales, un junior gana alrededor de \$1.500.000 a \$2.000.000, mid-level \$2.250.000 a \$3.000.000 y senior hasta \$5.000.000 o más.

Oportunidades de Crecimiento

1. Expansión de vacantes y demanda sostenida

- Las ofertas de "(salud) Data Scientist" superan las 300 en LinkedIn Chile, con un crecimiento de vacantes de más de 20 % anual.
- Indeed Chile muestra más de 200 empleos de "análisis datos salud" en la Región Metropolitana, reflejando sólida demanda local.

2. Impulso de programas públicos

- El programa Hospital Digital del MINSAL financia proyectos de analítica para optimizar camas y reducir listas de espera, generando plazas especializadas.
- Empleos Públicos del Estado requieren postgrados en ciencia de datos para cargos en salud, evidenciando oportunidades en el sector público.

3. Diversificación sectorial

- Aseguradoras de salud (p.ej., Consalud) buscan Data Scientists para modelar riesgos y detectar fraudes.
- Startups de telemedicina y salud digital (p.ej., Xepelin, Mallplaza Salud) contratan perfiles híbridos de análisis y desarrollo de producto.

- 4. Formación y certificaciones
- Cursos y diplomados en Data Science UC y OpenWebinars ofrecen especializaciones en salud, bioestadística e IA médica.
- La FCFM U. de Chile desarrolla algoritmos de prevención de errores de medicación, abriendo roles académicos y de I+D

Tendencias Futuras

- Inteligencia Artificial Explicable (XAI): Crecerá la exigencia de trazabilidad en modelos predictivos, para garantizar confianza clínica y cumplimiento normativo.
- **Telemedicina y atención virtual:** La telemedicina, potenciada por IA y wearables, pretende democratizar el acceso a la salud en zonas remotas de Chile.
- **Big Data genómico y salud poblacional:** Integración de datos genómicos con EHR para perfiles de riesgo personalizado y estudios de cohortes a gran escala.
- loT y monitorización en tiempo real: Uso de sensores y dispositivos conectados para seguimiento continuo de pacientes crónicos, generando flujos de datos masivos.
- Optimización de procesos hospitalarios: Modelos de optimización, como los propuestos para listas de espera oncológicas, permitirán priorizar recursos y pacientes de forma eficiente.

Entorno de Trabajo y Áreas de Desempeño

Entorno de Trabajo

- Hospitales y Redes Asistenciales: Equipos internos de analítica colaboran con equipos clínicos para gestión de camas, predicción de demanda y control de costos.
- Laboratorios de Investigación Clínica: Proyectos en ensayos clínicos y estudios observacionales requieren científicos de datos para diseño estadístico y análisis de supervivencia.
- Aseguradoras y Sector Financiero en Salud: Modelado de riesgos, prevención de fraudes y pricing de pólizas basados en datos históricos de siniestralidad.
- Startups y Proveedores de Servicios Digitales: Creación de productos de IA para diagnóstico y seguimiento remoto.
- Modalidades de trabajo: Predomina el esquema híbrido (presencial-remoto), con equipos distribuidos y colaboración mediante herramientas de video y repositorios de código.

Áreas de Desempeño

- Analítica Clínica: Evaluación de eficacia terapéutica, análisis de supervivencia y estudios de pronóstico de readmisiones.
- 2. **Salud Pública:** Modelos predictivos de brotes, análisis demográfico y planificación de intervenciones sanitarias.
- 3. **Operaciones y Logística:** Optimización de cadenas de suministro de insumos, gestión de personal y tiempos de servicio en urgencias.
- 4. **Desarrollo de Productos:** Integración de ML en dispositivos médicos, aplicaciones de telemedicina, plataformas digitales para agendamiento y fichas electrónicas de

- pacientes. Visión por computador para imágenes médicas y procesamiento de lenguaje natural en historiales clínicos
- 5. **Investigación e Innovación:** Colaboración con universidades y centros de I+D para pilotaje de modelos avanzados y publicación de resultados

Bibliografía

- 1. ConsoleFlare. Skills You Need To Be A Data Scientist In Healthcare. Medium. 2023.
- 2. LinkedIn. Roles and Responsibilities of a Clinical Data Scientist. 2023.
- 3. Refont eLearning. 2025 Data Science Salaries FAQs. 2025.
- 4. Pace University Online. The Role of the Data Scientist in Healthcare. 2023.
- **5.** Santeka. Career Spotlight: Healthcare Data Scientists. 2025.
- 6. NCBI PMC. Healthcare data scientist qualifications, skills, and job focus. 2020.
- 7. UND Blog. Key Insights on 7 Data Science Roles, Responsibilities and Skills. 2024.
- 8. 365 Data Science. Data Science Salaries in 2025 by Country, Industry. 2025.
- 9. BLS. Data Scientists: Occupational Outlook Handbook. May 2024.
- 10. 365 Data Science. How to Become a Data Scientist in Healthcare?. 2022.
- 11. Yardstick. Example Job Description for Healthcare Data Scientist. 2024.
- 12. KDnuggets. Data Cleaning and Preprocessing in Healthcare Data Science. 2023.
- 13. LinkedIn Salary Insights. Data Scientist Salaries in Chile. 2024.
- **14.** Glassdoor. Senior Data Scientist in Santiago, Chile 2025 Salary. 2025.
- **15.** Talent.com. Salario data scientist promedio en Chile. 2024.
- 16. KDnuggets. Pattern Discovery in Clinical Data: Clustering and Time Series. 2023.
- **17.** Tableau Blog. *Building Interactive Dashboards for Healthcare Analytics*. 2024.
- **18.** Medium. *Implementing Simple Predictive Models for Hospital Readmissions*. 2022.
- **19.** Journal of Medical Systems. *Statistical Methods for Clinical Trials: Hypothesis Testing and Survival Analysis*. 2023.
- 20. Data Engineering Weekly. Optimizing Data Pipelines in Healthcare with Spark. 2023.
- 21. Journal of Responsible Al. Explainable Al in Clinical Decision Support. 2023.
- 22. Microsoft Azure Documentation. CI/CD for Machine Learning in Azure. 2024.

- **23.** Harvard Business Review. *Managing a Portfolio of Analytics Projects in Healthcare*. 2022.
- **24.** KDnuggets. *Mentoring Data Science Teams: Best Practices*. 2023.
- **25.** Journal of Digital Imaging. *Deep Learning for Medical Image Analysis: Trends and Applications*. 2024.