Engineering Mechanics Assignment - I

Slides by

Deepa Anandhan .E 19ME1024 2nd Year ,Mechanical dept., Two forces acting on Screw eye. If $F_1 = 400N$ and $F_2 = 600N$, Determine the angle between them, So that resultant force has magnitude of $F_2 = 800N$.

Hint:

2). Two Forces F_1 and F_2 act on screw eye . If their lines of forces is $F_1=F_2=F$. Determine magnitude of resulatant force F_r and angle b/w F_r and F_1 .

Hint:

4). Determine the magnitude and direction , measured counter-clockwise from positive x-axis , of resultant force acting on ring at O , if $F_A = 750N$ and $\theta = 45^\circ$.

Hint:

3). Determine the magnitude and direction of F_A so that resultant force is directed along positive x-axis and has a magnitude of 1250N.

Him.

Law of Cosines

If the resultant force of two tugboats is 3kN, directed along positive x-axis, Determine required magnitude of F_B and direction θ .

Hint: Low of Connes Two forces acting on Screw eye. If F_1 = 400N and F_2 = 600N, Determine the angle between them, So that resultant force has magnitude of F_r = 800 N.

Hint:

By law of Cosines,

$$F_{B} = \sqrt{2^{2} + 3^{2} - 2x2x3cos30^{o}}$$

$$= \sqrt{13 - 12(.0866)}$$

$$= \sqrt{2.6}$$

$$= 1.6149 \text{ kN}$$

$$\frac{2}{\sin \theta} = \frac{1.6149}{\sin 30^{0}}$$

$$\sin \theta = \frac{2x \sin 30^{0}}{1.6149} = 0.619$$

$$\theta = 38.26 \text{ or } 38^{0}14'35.33'$$

2). Two Forces F_1 and F_2 act on screw eye. If their lines of forces is $F_1=F_2=F$. Determine magnitude of resulatant force F_r and angle b/w F_r and F_1 .

Hint:

By law of Cosines,

$$F_r^2 = F^2 + F^2 - 2F^2 cos\theta$$

$$= 2F^2(1 + cos\theta)$$

$$= 2F^2 cos^2(\theta/2)x^2$$

$$F_r^2 = 4F^2 cos^2(\theta/2)$$

$$\therefore F_r = 2F cos(\theta/2)$$

$$\frac{\sin \theta}{2F\cos(\theta/2)} = \frac{\sin \alpha}{F}$$

$$\frac{2\sin(\theta/2)\cos(\theta/2)}{\cos(\theta/2)} = \sin \alpha$$

$$\sin(\theta/2) = \sin \alpha$$

$$\sin(\theta/2) = \sin \alpha$$

$$\alpha = \theta/2$$

3). Determine the magnitude and direction of F_A so that resultant force is directed along positive x-axis and has a magnitude of 1250N.

Hint:

By law of Cosines,

$$F_{B} = \sqrt{2^{2} + 3^{2} - 2x2x3cos30^{o}}$$

$$= \sqrt{13 - 12(.0866)}$$

$$= \sqrt{2.6}$$

$$= 1.6149 \text{ kN}$$

$$\frac{2}{\sin \theta} = \frac{1.6149}{\sin 30^{0}}$$

$$\sin \theta = \frac{2x \sin 30^{0}}{1.6149} = 0.619$$

$$\theta = 38.26 \text{ or } 38^{0}14'35.33'$$

4). Determine the magnitude and direction , measured counter-clockwise from positive x-axis , of resultant force acting on ring at O , if $F_A = 750N$ and $\theta = 45^\circ$.

Hint:

By law of Cosines,

$$F_{B} = \sqrt{2^{2} + 3^{2} - 2x2x3cos30^{o}}$$

$$= \sqrt{13 - 12(.0866)}$$

$$= \sqrt{2.6}$$

$$= 1.6149 \text{ kN}$$

$$\frac{2}{\sin \theta} = \frac{1.6149}{\sin 30^{0}}$$

$$\sin \theta = \frac{2x \sin 30^{0}}{1.6149} = 0.619$$

$$\theta = 38.26 \text{ or } 38^{0}14'35.33'$$

If the resultant force of two tugboats is 3kN , directed along positive x-axis, Determine required magnitude of F_B and direction θ .

Hint:

By law of Cosines,

$$F_{B} = \sqrt{2^{2} + 3^{2} - 2x2x3cos30^{o}}$$

$$= \sqrt{13 - 12(.0866)}$$

$$= \sqrt{2.6}$$

$$= 1.6149 \text{ kN}$$

$$\frac{2}{\sin \theta} = \frac{1.6149}{\sin 30^{0}}$$

$$\sin \theta = \frac{2x \sin 30^{0}}{1.6149} = 0.619$$

$$\theta = 38.26 \text{ or } 38^{0}14'35.33'$$

Thanks for viewing my slide 瓜瓜瓜