Operations on Matrices

Michael Brodskiy

Professor: Lynn Knight

February 3, 2021

- Matrix An ordered array of numbers
 - 1. Dimensions (size) Expressed as row by column $(r \times c)$
 - 2. Addition Let $A = [a_{ij}]$ and $B = [b_{ij}]$, then $A + B = [a_{ij} + b_{ij}]$, assuming the matrix dimensions are equal
 - 3. Scalar Multiplication Let c be a constant and $A = [a_{ij}]$. Then $cA = [ca_{ij}]$
 - 4. Zero Matrix Ex. $\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$
 - 5. Equality Let $A = [a_{ij}]$ and $B = [b_{ij}]$. A = B iff $a_{ij} = b_{ij}$
 - 6. Matrix Multiplication
 - (a) Dot Product Given two matrices, $A = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$ and $B = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$, $\begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$,

the product is $a_1b_1 + a_2b_2 + \cdots + a_nb_n$. This can only be done if the dimensions of A are $m \times n$ and the dimensions of B are $n \times m$.

- Diagonal Matrix: $A = \begin{bmatrix} a_{11} & 0 & 0 & 0 \\ 0 & a_{22} & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & a_{nn} \end{bmatrix}$. Must be a square matrix.
- \bullet Traces of a matrix are the sums of the main diagonal components