Respuestas

1)

	f(x) = 2x + 3	g(x) = (x + 3) / (2x - 1)	f(g(x))	g(f(x))
-3	-3	0/-7= 0	f(0)=2(0)+3=3	g(-3)=0
2,5	8	5,5/4= 1,375	f(1,375)=2(1,375)+3=2,75+3=5,75	g(8)=(8+3)/(16-1)=11/15= 0.733
1/4	3,5	3,25/-0,5= -6,5	f(-6,5)=2(-6,5)+3=-13+3=-10	g(3,5)=(3.5+3)/(7-1)=6,5/6 =1,083
0,5	4	3,5/0= indefinido	f(indefinido)=indefinido	g(4)=(4+3)/(8-1)=7/7= 1

2)
$$f(x) = \sqrt{x} y g(x) = x + 2$$

a-
f(g(x)) = f(x+2) =
$$\sqrt{x+2}$$

Dominio de f(g(x)) $x+2 \ge 0$ porque $\sqrt{x} \ne 0$ x+2=0x=-2

 $D=\mathbb{R}\to\mathbb{R}-\{<=-2\}$

b-¿Cómo se obtiene la gráfica de f(g(x)) a partir de las gráficas de f y g?

Observaciones:

La gráfica de $f(g(x)) = \sqrt{x+2}$ se obtiene desplazando 2 unidades hacia la izquierda la de $f(x) = \sqrt{x}$

La gráfica de g(f(x))= $\sqrt{x+2}$ se obtiene desplazando 2 unidades hacia arriba la de f(x)= \sqrt{x} .

Se ve que f \circ g \neq g \circ f ya que las transformaciones son distintas (horizontal vs vertical).

C-

Resolución:

 $f(g(x))=\sqrt{x+2}$ es la raíz cuadrada desplazada 2 unidades a la izquierda.

 $g(f(x))=\sqrt{x+2}$ es la raíz cuadrada desplazada 2 unidades hacia arriba.

Relación entre ambas:

No coinciden, ya que una es un desplazamiento horizontal y la otra vertical. Ambas son ramas de raíz cuadrada, pero con dominios distintos:

$$D(f(g))=[-2,\infty)$$

$$D(g(f))=[0,\infty)$$

Se concluye que las composiciones de funciones no son conmutativas, es decir, f \circ g \neq g \circ f

3)
$$h(x) = f(g(x))$$
 $h(x) = x/2 + 2x$
 $g(x) = x + 1$
 $f(g(x)) = f(x+1) = x^2 + 2x$. Pongo $u=x+1 \Rightarrow x=u-1$ entonces, $x=u-1$:

 $f(u)=(u-1)2+2(u-1)=u2-1$

Volviendo a x :
 $f(x)=x^2-1$

4)

Si ambas funciones son potencias:
 $f(x)=x^2$, $g(x)=x^3$

Entonces:
 $f(g(x)) = f(x^3) = (x^3)^2 = x^6$
 $g(f(x)) = g(x^2) = (x^2)^3 = x^6$

En este caso si se cumple que $f(g(x)) = g(f(x))$

5)
 $f(x) = 2x$
 $g(x) = -2x + 1$
 $h(x) = x^2$

a-
 $g(h(x)) = g(x^2) = -2(x^2)+1 = -2x^2+1$
 $f(g(h(x))) = f(-2x^2+1) = 2(-2x^2+1) = -4x^2+2$

b-
 $f(g(x)) = f(-2x+1) = 2(-2x+1) = -4x+2$
 $f(g(x)) = f(-2x+1) = 2(-2x+1) = -4x+2$
 $f(g(x)) = f(-2x+1) = 2(-2x+1) = -4x+2$

C-

En ambos casos, obtuvimos la misma función:

$$f \circ (g \circ h)(x) = (f \circ g) \circ h(x) = -4x2+2$$