2019-10-15

Свойство

$$(U^{\perp})^{\perp} = U$$

Док-во

$$\begin{aligned} \dim U^\perp + \dim U &= \dim V \\ \dim (U^\perp)^\perp + \dim U^\perp &= \dim V \end{aligned} \Rightarrow \dim (U^\perp)^\perp = \dim U$$

$$U \subset (U^\perp)^\perp \\ (U^\perp)^\perp &= \{v \in V\}$$

Опр

$$\begin{split} &U < V, \quad v \in V \\ &U \oplus U^\perp = V \\ &\Rightarrow \exists ! u \in U, \ w \in U^\perp : v = u + w \end{split}$$

и называется ортогональной проекцией

Обозначение:
$$\operatorname{pr}_U v \stackrel{\text{def}}{=} u$$

 $v = \operatorname{pr}_U v + w \Rightarrow (v, u) = (\operatorname{pr}_U v, u)$

Свойства (орт. проекции)

$$\begin{split} 1. \ \operatorname{pr}_{U}(v+v') &= \operatorname{pr}_{U}v + \operatorname{pr}_{U}v' \\ v &= u+w, \ u \in U, w \in U^{\perp} \\ v' &= u'+w', \ u \in U, \ w' \in U^{\perp} \\ v+v' &= (u+u') + (w+w') \\ \in U &\in U^{\perp} \end{split}$$

$$\begin{split} 2. \ \|v - \mathrm{pr}_U \, v\| & \leqslant \|v - u\| \quad \forall u \in U \\ \|v - u\|^2 &= \|v - \mathrm{pr}_U \, v\|^2 + \|\mathrm{pr}_U \, \underset{\in U}{v} - u\|^2 \end{split}$$

Опр

 $e_1, ..., e_n$ - базис V

Базис называется ортогональным, есди $(e_i,e_j)=0 \quad \forall i \neq j$ - ортогональный баз

$$(e_i, e_j) = \delta_{i,j} = \begin{bmatrix} 0, i \neq j \\ 1, i = j \end{bmatrix}$$

Процесс ортоганализации Грамма-Шмидта:

$$e_1, ..., e_n$$
 - базис

Хотим ортонормированный $f_1,...,f_n:< f_1,...,f_k>=< e_1,...e_k> \quad \forall 1\leqslant k\leqslant n$:

Строим по индуции:

Б.И. k=1:

$$f_1 = \frac{1}{\|e_1\|} e_1$$

 $И.\Pi. k-1 \rightarrow k$:

$$f_k = e_k + \sum_{i=0}^{k-1} \lambda_i f_i$$

$$(f_k, f_j) \stackrel{?}{=} 0 \quad 1 \leqslant j \leqslant k - 1$$

$$(f_k, f_j) = (e_k, f_j) + \sum_{i=1}^{k-1} \lambda_i (f_i, f_j)$$

$$\lambda_j = -(e_k, f_j) \quad \forall 1 \leqslant j \leqslant k - 1$$

Ортонормируем f_k , чтобы $(f_k, f_k) = 1$

y_{TB}

Если $e_1,...,e_n$ - ОНБ U

$$\operatorname{pr}_{U} v = \sum_{i=1}^{n} (v, e_{i}) e_{i}$$

Док-во

Хотим доказать $v - \sum_{i=1}^n (v, e_i) e_i \in U^{\perp}$

Достаточно доказать, что вектор ортогонален любому

$$(v - \sum_{i=1}^{n} (v, e_i)e_i)e_j = (v, e_i) - \sum_{i=1}^{n} (v, e_i)(e_i, e_j)$$