MEAM 620

TIME, MOTION, AND TRAJECTORIES

Aggressive Trajectories

Smooth Trajectories

General Problem

Start and goal states

Position, orientation, velocity, etc.

Waypoints

Position, orientation, velocity, etc.

Smoothness criterion

Generally means minimizing rate of change of "input"

Order of the system (n)

- Order of the system determines the input
- Boundary conditions on $(n-1)^{th}$ order and lower derivatives

Calculus of Variations

$$x^*(t) = \underset{x(t)}{\operatorname{argmin}} \int_0^T L(\dot{x}, x, t) dt$$
Function Functional

Examples

Shortest distance (geometry)

$$x^*(t) = \operatorname*{argmin}_{x(t)} \int_0^T \dot{x} dt$$

Fermat's principle (optics)

$$x^*(t) = \operatorname*{argmin}_{x(t)} \int_0^T 1dt$$

Principle of least action (mechanics)

$$x^*(t) = \underset{x(t)}{\operatorname{argmin}} \int_0^T T(\dot{x}, x, t) - V(\dot{x}, x, t) dt$$

Calculus of Variations

$$x^*(t) = \operatorname*{argmin}_{x(t)} \int_0^T L(\dot{x}, x, t) dt$$

Assume x(t) is the optimal function

Any other path from x(0) to x(T) can be written as

$$x(t) + \alpha \eta(t)$$
 s.t. $\eta(0) = \eta(T) = 0$

Calculus of Variations

$$x^*(t) = \operatorname*{argmin}_{x(t)} \int_0^T L(\dot{x}, x, t) dt$$

Since x(t) is the optimal function it must be that

$$\frac{d}{d\alpha}\Big|_{\alpha=0} \int_0^T L(\dot{x} + \alpha \dot{\eta}(t), x(t) + \alpha \eta(t), t) dt = 0$$

Euler Lagrange Equation

Necessary condition satisfied by the optimal function

Smooth Trajectories (n = 1)

$$\dot{x} = u$$

$$x^*(t) = \operatorname*{argmin}_{x(t)} \int_0^T \dot{x}^2 dt$$

$$x(0) = x_0, x(T) = x_T$$

Smooth Trajectories (n = 1)

$$x^*(t) = \operatorname*{argmin}_{x(t)} \int_0^T \dot{x}^2 dt$$

$$L(\dot{x}, x, t) = \dot{x}^2$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) - \frac{\partial L}{\partial x} = \frac{d}{dt} \left(2\dot{x} \right) - 0 = 2\ddot{x} = 0$$

So
$$x(t) = c_0 + c_1 t$$

Shortest paths are straight lines

Smooth Trajectories (n)

$$x^{(n)} = u$$

$$x^*(t) = \underset{x(t)}{\operatorname{argmin}} \int_0^T (x^{(n)})^2 dt$$

$$x(0) = x_0, x(T) = x_T$$

$$\dot{x}(0) = v_0, \dot{x}(T) = v_T$$

$$\vdots$$

$$x^{(n)}(0) = x_0^{(n)}, x^{(n)}(T) = x_T^{(n)}$$

Euler-Lagrange Equation

$$x^*(t) = \underset{x(t)}{\operatorname{argmin}} \int_0^T L(x^{(n)}, x^{(n-1)}, \dots, \dot{x}, x, t) dt$$

Euler Lagrange Equation

Necessary condition satisfied by the optimal function

$$\circ \frac{\partial L}{\partial x} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) + \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial \ddot{x}} \right) - \dots + (-1)^n \frac{d^n}{dt^n} \left(\frac{\partial L}{\partial x^{(n)}} \right) = 0$$

Smooth Trajectories

n = 1, shortest distance (minimum velocity)

n=2, minimum acceleration

n = 3, minimum jerk

n = 4, minimum snap

n = 5, minimum crackle

n = 6, minimum pop

$$L = (x^{(n)})^2$$
 leads to $x(t) = c_0 + c_1 t + \dots + c_{2n-1} t^{2n-1}$

Extensions to Multiple Variables

$$\left(x^*(t), y^{*(t)}\right) = \underset{x(t), y(t)}{\operatorname{argmin}} \int_0^T L(\dot{x}, \dot{y}, x, y, t) dt$$

Euler Lagrange Equations

Waypoint Navigation

Smooth 1D Trajectories

Design a trajectory x(t) s.t. x(0) = a and x(T) = b

Minimum Acceleration Trajectory

$$x^*(t) = \underset{x(t)}{\operatorname{argmin}} \int_0^T L(\ddot{x}, \dot{x}, x, t) dt = \underset{x(t)}{\operatorname{argmin}} \int_0^T (\ddot{x})^2 dt$$

Euler Lagrange Equation

Necessary condition satisfied by the optimal function

$$x^{(4)} = 0$$

$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3$$

How do we find the c_i ?

Solving for Coefficients

Boundary conditions:

	Position	Velocity
t = 0	а	0
t = T	b	0

Solve:

• Recall
$$x(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3$$

$$\begin{bmatrix} a \\ b \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & T & T^2 & T^3 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2T & 3T^2 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

Motion Profiles

Bang-(Coast)-Bang Trajectories

Multi-Segment 1D Trajectories

Design a trajectory such that

Multi-Segment 1D Trajectories

Design a trajectory such that

$$t = [t_0 \ t_1 \ t_2 \ \dots \ t_m]^T$$

 $x = [x_0 \ x_1 \ x_2 \ \dots \ x_m]^T$

Define a piecewise trajectory

$$x(t) = \begin{cases} x_1(t), & t_0 \le t < t_1 \\ x_2(t), & t_1 \le t < t_2 \\ \dots & \\ x_m(t), & t_{m-1} \le t < t_m \end{cases}$$

Bang-(Coast)-Bang Segments

Cubic Spline

Design a trajectory such that

$$t = [t_0 \ t_1 \ t_2 \ \dots \ t_m]^T$$

 $x = [x_0 \ x_1 \ x_2 \ \dots \ x_m]^T$

$$x(t) = \begin{cases} x_1(t) = c_{1,3}t^3 + c_{1,2}t^2 + c_{1,1}t + c_{1,0}, & t_0 \le t < t_1 \\ x_2(t) = c_{2,3}t^3 + c_{2,2}t^2 + c_{2,1}t + c_{2,0}, & t_1 \le t < t_2 \\ \dots & \\ x_m(t) = c_{m,3}t^3 + c_{m,2}t^2 + c_{m,1}t + c_{m,0}, & t_{m-1} \le t < t_m \end{cases}$$

4m degrees of freedom

Cubic Spline

Second order system $L(\ddot{x}, \dot{x}, x, t)$

Spline for nth Order System

2nm constraints

Multi-Segment Multi-Dimensional Trajectories

Bang-(Coast)-Bang trajectories

 Project the desired acceleration/velocity profile along the straight line connecting two waypoints

Polynomial trajectories

- Solve each dimension independently
- Euler-Lagrange equations decouple
- Make sure time constraints are the same

Application to Quadrotors

Quadrotor Control

$$m\ddot{\mathbf{r}} = \begin{bmatrix} 0\\0\\-mg \end{bmatrix} + R \begin{bmatrix} 0\\0\\u_1 \end{bmatrix}$$

$$I\begin{bmatrix} \dot{p} \\ \dot{q} \\ \dot{r} \end{bmatrix} = \begin{bmatrix} u_2 \\ u_3 \\ u_4 \end{bmatrix} - \begin{bmatrix} p \\ q \\ r \end{bmatrix} \times I\begin{bmatrix} p \\ q \\ r \end{bmatrix}$$

Differential Flatness

Flat systems have a *flat output*, which can be used to explicitly express all states and inputs in terms of the flat output and a finite number of its derivatives

Implications: can plan in a lower dimensional space

Quadrotors are differentially flat

- Flat outputs x, y, z, ψ
- The flat system is 4th order

See <u>Daniel Mellinger and Vijay Kumar.</u> "Minimum snap trajectory generation and control for quadrotors." *IEEE International Conference on Robotics and Automation (ICRA)*. 2011 for further details

Aerial Grasping

Payload Manipulation

Project 1

PHASE 3

Project 1 Phase 3

Due Tuesday Feb 16 at 11:59pm

Work individually

Combine Phases 1 and 2

- Generate safe and short paths through the environment (Phase 2)
- Smooth the path (this lecture)
- Follow the path (Phase 1)

Project 1 Phase 3

Will be running more tests than we give you

- Giving you a few baseline tests
- Please make your own!

Test locally before using turnin

Your code will be given 10 minutes to run

Grading

- If you complete all of the tests you will earn at least 60%
 - If you collide with an obstacle, you will get a 0 on that test!
- Rest will depend on speed and accuracy