

Projektdokumentation Semesterprojekt 3 Blodtryksmålersystem ST3PRJ3-03

Gruppe 5
Sundhedsteknologi

Århus Universitet, IHA

Vejleder: Samuel Alberg Thyresøe

Dato: 16/12 2015

Mette Østergård Knudsen, 201404501	Ida Mark Skovbjerg, 201404669	
Line Skov Larsen, 201405838	Brian Hansen, 201310502	
Mohamed Hussein Mohamed, 201370525	Khaled Edwan, 200800899	

Indhold

In	dhol	d	i
1	Ind	ledning	1
2	Kra	vspecifikation	2
	2.1	Godkendelsesformular	2
	2.2	Indledning	2
	2.3	Systembeskrivelse	3
	2.4	Aktør-kontekst diagram	
	2.5	Use cases	
	2.6		LO
3	Ark	titektur og design 1	.3
	3.1	Hardware design	13
	3.2	Software design	
	3.3	Integrationstest	
4	Acc	epttest 3	86
	4.1	Indledning	36
	4.2	Accepttest for funktionelle krav	
	4.3	Accepttest for ikke-funktionelle krav	
	4.4	Godkendelses formular	
Li	ttera	utur 4	١7
	4 5	Referencer	17

Kapitel 1

Indledning

Kapitel 2

Kravspecifikation

2.1 Godkendelsesformular

Forfattere	Ida, Line, Mette, Brian, Mohamed og Khaled
Godkendes af:	Samuel Alberg Thrysøe
Antal sider:	
Kunde:	IHA

Ved underskrivelse af dette dokument accepteres det af begge parter, som værende kravene til udviklingen af det ønskede system. Sted og dato:

Kundens underskrift	Leverandørens underskrift

2.2 Indledning

Denne kravspecifikation er blevet udarbejdet på baggrund af krav fra kunden, samt hvad leverandøren finder muligt. Kravspecifikationens formål er at specificere de krav, der er til produktet.

2.3 Systembeskrivelse

Blodtryksmålersystemet ønskes at kunne måle blodtryk, EKG og iltmætning for en patient. Ud fra blodtrykket findes systolisk, diastolisk og middeltryks værdier, dette gøres ved at finde den maksimale værdi (systole) og den minimale værdi (diastole) for blodtrykskurven. Ud fra disse to værdier bestemmes middeltrykket, dette gøres ved formlen: $middel = 1/3 \cdot systole + 2/3 \cdot diastole$. [2]

Ud fra EKG-signalet kan pulsen bestemmes, dette gøres ved at bestemme antallet af R-takker på et minut. Desuden kan pulsen bestemmes ud fra blodtrykket, da pulsen her er antallet af systoliske værdier på et minut. Iltmætningen er mængden af ilt i blodet. For at kunne bestemme denne værdi skal et eksternt produkt benyttes. Dette produkt skal ved hjælp at infrarød bestemme iltmætningen i blodet.

${\bf 2.4} \quad {\bf Akt} \\ {\tt ør-kontekst \ diagram}$

Figur 2.1: Aktør-kontekst diagram

Af dette diagram ses de interagerende aktører: Sundhedsfaglig personale, Transducer, EKG patient, EPJ database, Personale database og Servicemedarbejder. Herunder er der en detaljeret beskrivelse af hver aktør.

Navn:	Sundhedsfaglig personale
Type:	Primær aktør
Beskrivelse:	Det sundhedsfaglige personale er aktøren, der sætter måleudstyret til
	transduceren, samt starter målingen. Det er det sundhedsfaglige
	personale, der interagerer med systemet og dermed har tilgang til de
	viste målinger på brugergrænsefladerne (startskærm og hovedskærm).

Navn:	Transducer
Type:	Sekundær aktør
Beskrivelse:	Transduceren er kilden til måleresultaterne, og dermed fungerer som
	patienten og forbindelsen til systemet. I dette tilfælde er det en in-vitro
	maskine, der leverer et tryk i mmHg til transduceren, som sender dette
	tryk videre til en forstærker, hvorefter signalet sendes igennem et
	lavpasfilter, for derefter at sendes ind i systemet via NI-DAQ.

Navn:	EKG patient
Type:	Sekundær aktør
Beskrivelse:	EKG patienten er den aktør hvorfra værdierne til EKG-kurven fås fra.
	Dermed er det denne aktør der er kilden til pulsen. Disse værdier
	hentes fra PhysioBank ATM.

Navn:	Personale database
Type:	Sekundær aktør
Beskrivelse:	Personale database er der, hvori det sundhedsfaglige personales login
	informationer opbevares, hvilket benyttes til at tilgå systemet.

Navn:	EPJ database
Type:	Sekundær aktør
Beskrivelse:	EPJ database er den database, hvor patientdata ligger, samt der hvori
	analyseresultaterne, der opnås ved målingerne i systemet, samt
	signalerne bliver gemt. Disse data er grafer for EKG, arterietryk, samt
	talværdier for puls, systole, diastole og middeltryk. Denne EPJ
	database skal simulere den EPJ database der fungere på sygehusene i
	virkeligheden.

Navn:	Servicemedarbejder
Type:	Primær aktør
Beskrivelse:	Servicemedarbejderen er aktøreren der igangsætter og foretager
	kalibreringen.

2.5 Use cases

Figur 2.2: Use case diagram

De fire Use cases kan ses ud fra Use case diagrammet, disse er: Kalibrér apparat, Foretag måling, Alarmér og Stop måling. Hver enkel af disse Use cases beskrives detaljeret herunder i et fully-dressed Use case skema.

Systemet består af en computer med programkode, en NI-DAQ samt hardware. Hardwaren består af et lavpasfilter, en forstærker og en transducer desuden er der hertil tilkoblet to 9 V batterier.

Systemet gør det muligt at hente data fra transduceren. Her går data fra transduceren igennem forstærkeren, hvilken bliver forsynet af spænding fra to 9 V batterier. Fra forstærkeren går signalet videre til lavpasfilteret og derefter ind i NI-DAQ, som så sender data videre til computeren og ind i programkoden.

"Signalets vej" og opbygning beskrives

Det digitale filter er pr. default slået til når systemet startes, dog vil det være muligt at slå dette filter fra under målingen.

Når programmet startes skal computeren have VPN-forbindelse til "ASE IHA VPN", desuden skal der være en forbindelse til " $webhotel10.F15ST2ITS2201404669.db_owner$ " (Personaledatabasen) og " $webhotel10.F15ST2ITS2201405838.db_owner$ " (EPJ database).

Programmet skal have to skærme; en startskærm, der fungerer som EPJ systemet, og en hovedskærm, der fungerer som selve blodtryksmålerens grænseflade.

Tabel 2.1: Use case 1

Use case 1	Kalibrér apparat
Mål:	Få kalibreret apparatet
Initiering:	Startes af Servicemedarbejder
Aktører:	Servicemedarbejder (primær)
Referencer:	-
Samtidige forekomster:	én kalibrering pr. apparat
Forudsætninger:	Blodtryksmålersystemet er tændt og tilsluttet
	kalibreringsudstyret.
Resultat:	Apparatet er kalibreret
Hovedscenarie:	1. Servicemedarbejder foretager kalibreringen, ved at indtaste
	spændingen og trykket for målepunktet fra væskesøjlen.
	2. Systemet beregner kalibreringsværdien.
Udvidelse/undtagelser:	-

Tabel 2.2: Use case 2

Use case 2	Foretag måling	
Mål:	Den valgte patients målinger foretages og værdierne gemmes i	
	EPJ database	
Initiering:	Startes af Sundhedsfaglig personale	
Aktører:	Sundhedsfaglig personale (primær), Personale database	
	(sekundær), EPJ database(sekundær), Transducer (sekundær),	
	EKG patient (sekundær)	
Referencer:	Use case 2	
Samtidige forekomster:	Én sundhedsfaglig person og én transducer pr. system	
Forudsætninger:	VPN, Personale database og EPJ databasen er tilsluttet korrekt	
Resultat:	Målingerne for den valgte patient er foretaget	
Hovedscenarie:	1. Sundhedsfaglig personale logger på ved at indtaste brugernavn	
	og kode.	
	[Undtagelse 1: Brugernavn og/eller kode indtastet forkert]	
	2. Besked: "Logget på"vises	
	3. Liste med patienter kommer frem	
	4. Den ønskede patient vælges	
	5. Sundhedsfaglig personale indtaster nulpunktjusterings værdien	
	og starter nulpunktsjusteringen	
	6. Systemet foretager nulpunktsjusteringen.	
	7. Sundhedsfaglig personale starter målingen	
	8. Systemet indhenter data fra transduceren og måler, hvor lang	
	tid målingen foretages	
	9. EKG og arterietryk præsenteres kontinuert på hver sin graf.	
	Puls, systole, diastole og middeltryk vises som talværdier. Data	
	gemmes automatisk kontinuert i EPJ database.	
	[Udvidelse 1: Slå digitalt filter til/fra]	
	[Udvidelse 2: Juster systolens/diastolens grænseværdi]	
Udvidelse/undtagelser:	[Undtagelse 1: Brugernavn og/eller kode indtastet forkert]	
	1.1 Besked: "Brugernavn og/eller kode indtastet forkert"	
	1.2 Use case 3 starter forfra	
	[Udvidelse 1: Slå digitalt filter til/fra]	
	1.1 Sundhedsfaglig personale vælger "Digitalt filter OFF"	
	1.2 Systemet slår det digitale filter fra	
	1.3 Sundhedsfaglig personale vælger "Digitalt filter ON"	
	1.4 Systemet slår det digitale filter til	
	[Hdvidalga 2: Jugtar gygtalang/dicatalang granngayandi]	
	[Udvidelse 2: Juster systolens/diastolens grænseværdi] 2.1 Sundhedsfaglig personale justerer grænseværdierne for systole	
	og/eller diastole.	
	og/ener diasione.	

Tabel 2.3: Use case 3

Use case 3	Alarmér	
Mål:	Få startet alarmeringen ved overskridelse af en grænseværdi	
Initiering:	Systemet starter denne Use case	
Aktører:	Sundhedsfaglig personale (sekundær)	
Referencer:	Use case 2	
Samtidige forekomster:	-	
Forudsætninger:	Målingen i Use case 2: Foretag måling, er kørt succesfuldt	
Resultat:	Alarmen starter	
Hovedscenarie:	1. Grænseværdi overskrides	
	2. Alarmering starter.	
	[Udvidelse 1: Anden grænseværdi overskrides]	
	[Udvidelse 2: Udsæt alarm]	
	3. Alarmen stopper når grænseværdien ikke længere er	
	overskredet.	
Udvidelse/undtagelser:	[Udvidelse 1: Anden grænseværdi overskrides]	
	1.1. Endnu en grænseværdi overskrides	
	1.2. Første alarm fortsætter, og den nye alarmering igangsætter.	
	1.3 Use case 3 fortsætter fra punkt 3.	
	[Udvidelse 2: Udsæt alarm]	
	2.1 Sundhedsfaglig person udsætter alarm	
	2.2 Systemet stopper alarmens lyd i et minut 2.3 Use case 3	
	fortsætter ved punkt 3.	

Tabel 2.4: Use case 4

Use case 4	Stop måling	
Mål:	Få stoppet målingen og logget ud	
Initiering:	Startes af Sundhedsfaglig personale	
Aktører:	Sundhedsfaglig personale (primær)	
Referencer:	Use case 2	
Samtidige forekomster:	-	
Forudsætninger:	Use case 2: Foretag måling, er kørt succesfuldt	
Resultat:	Signalet er stoppet, sundhedsfaglig personale er logget ud og	
	vendt tilbage til startskærm.	
Hovedscenarie:	1. Sundhedsfaglig personale stopper måling	
	2. Systemet stopper målingen.	
	3. Sundhedsfaglig personale logger ud	
Udvidelse/undtagelser:	-	

2.6 Ikke-funktionelle kray

De ikke-funktionelle krav er opsat efter FURPS+ metoden. De er prioriteret efter MoSCoW metoden:

- Must (skal være med)
 - De krav der dermed bliver markeret med et (M), er altså de krav til funktioner der skal være til produktet.
- Should (bør være med, hvis muligt)
 - Kravene kan også markeres med et (S). Disse krav er funktioner produktet bør have.
- Could (kunne have med, hvis det ikke går i vejen for noget andet)
 - Markeres et krav med (C), behøver produktet ikke at have funktionen, men det kunne være en funktion der kunne være god at have til produktet.
- Won't/Would (tager det ikke med nu, men kan komme med i fremtidige opdateringer)
 - Dermed er de krav der bliver markeret med et (W), altså de krav til funktioner der ville være gode til produktet, men ikke bliver implementeret i produktet. Grunden til dette kan være at der ikke er tid, eller at funktionen ikke er vigtig for produktet.

FURPS+ med MoSCoW

1. Functionality

- 1.1. (M) Programmet skal have et digitalt filter til udglatning af blodtrykssignal.
- 1.2. (S)Programmet skal give alarm, når grænseværdier for blodtrykket overskrides, med lyd og "Udsæt alarm"knappen blinker skiftevis mellem rød og hvid.
- 1.3. (M) Programmet skal kunne gemme blodtrykssignalet i en database.

2. Usability

- 2.1. (S) Programmet skal have to window forms: startskærm, der fungerer som EPJ systemet og hovedskærm, der fungerer som selve blodtryksmålerens grænseflade.
- 2.2. (M) Programmet skal have en "Log ind"knap på startskærmen.
- 2.3. (M) Programmet skal have en "Kalibrering"knap på startskærmen.
- 2.4. (M) Sundhedsfagligt personale skal kunne ændre "devicename/enhedsnavn"i dropdown på startskærmen.
- 2.5. (S) Programmet skal indeholde en dropdown, hvor patienten kan vælges, på startskærmen.
- 2.6. (M) Programmet skal have en "Nulpunkts indstilling"knap på hovedskærmen.
- 2.7. (M) Programmet skal have en knap til at slå det digitale filter fra og til på hovedskærmen.
- 2.8. (S) Programmet skal have knapper til at justere systolisk og diastolisk grænseværdiintervaller op og ned, på hovedskærmen.
- 2.9. (S) Programmet skal have en "Udsæt alarm"knap på hovedskærmen.

- 2.10. (M) Programmet skal have en "Tænd"knap på hovedskærmen.
- 2.11. (M) Programmet skal have en "Sluk"knap på hovedskærmen.
- 2.12. (M) Programmet skal have en "Log ud"knap på hovedskærmen.
- 2.13. (M) Teksten på startskærmen skal kunne læses fra 2 meters afstand ved synsstyrke i intervallet på +/-1.
- 2.14. (M) Teksten og graferne på hovedskærmen skal kunne læses fra 2 meters afstand ved synsstyrke i intervallet på \pm 1.
- 2.15. (M) Programmet skal præsentere arterietryk kontinuert, herudover vise systolisk værdi, diastolisk værdi og middeltryk som talværdier.
- 2.16. (S) Programmet skal præsentere EKG og puls.
- 2.17. (W) Programmet skal præsentere iltmætning både som graf og talværdi.
- 2.18. (M) Programmet skal præsentere data på grafer på følgende måde (Se afsnit nedenfor).
 - EKG vises i lysegrøn.
 - Arterietryk vises i rød.
 - Iltmætning/saturation i lyseblå.
- 2.19. (M) Programmet skal præsentere data i tal på følgende måde (Se afsnit nedenfor)
 - Hjertefrekvens (puls) i lysegrøn.
 - Systolisk samt diastolisk tryk i rødt, ligeledes middelblodtrykket i parentes ved siden af i rødt.
 - Iltmætningsværdien i lyseblå.

Figur 2.3: Skitse af startskærmen, som repræsenterer EPJ systemet

3. Reliability

3.1. (S) INGEN RELIABILITY KRAV ENDNU

4. Performance

- 4.1. (S) Tiden der går før måling af data påbegynder/vises i grafer må maksimalt være $2~{\rm sek.}$
- 4.2. (S) Tiden der går fra at data, herunder puls, diastolisk tryk, systolisk tryk og middeltryk, er analyseret til at data er gemt i EPJ database må være 2 sek. med en tolerance på $\pm 15\%$

Figur 2.4: Skitse af hovedskærmen, hvilken repræsenterer en blodtryksmålers brugergrænseflade

4.3. (S) Ved justering af grænseværdi for systole og diastole ændres grænseværdien 1 mmHg op eller ned.

5. Supportability

- 5.1. (M) Programmet skal skrives i C# kode
- 5.2. (M) Softwaren skal være opbygget efter trelagsmodellen (Data-View-Model)
- 5.3. (S) I softwaren benyttes Observer/Subject mønsteret.
- 5.4. (S) I softwaren benyttes PUSH mønsteret

6. + Test conditions

- 6.1. (M) Der skal være adgang til en computer med Windows 7, 8 eller 10 computeren skal minimum have 4 GB RAM.
- 6.2. (M) Der skal være adgang til en computer hvor National Instruments er installeret.

Kapitel 3

Arkitektur og design

Følgende beskriver arkitekturen for systemet herunder både hardware og software. Systemarkitektur er udviklingsrammen for den videre udvikling af design og implementering. Der vil igennem dette afsnit startes med at se systemet overordnet og hvorefter der arbejdes ned gennem systemet i mindre brudstykker. Der benyttes diagrammer for at kunne specificere og klarlægge systemkravene. Disse diagrammer beskrives desuden i tekst. Igennem dette afsnit bliver designet af produktet dermed bestemt.

3.1 Hardware design

Udviklingsfase og iterationer

I dette afsnit redegøres der for udviklingsprocessen på hardware-teamet, som har bestået af tre mand. Der redegøres for de løsnings-iterationer gruppen har været igennem, samt gruppens tankeproces mens der er arbejdet på projektet. Udviklingen af hardwaren til projektet har foregået som et teknologistudie baseret på krav til projektet og tidligere viden fra Analog Signal Behandling. Processen har været en iterativ og agil udviklingsproces, som er præget af en generel mangelfuld viden på området.

Første iteration - komponenter i lavpasfilteret

Der blev besluttet, at tage udgangspunkt i beregningsværktøjer på nettet [4] til den første iteration. Dette gav nogle værdier der lå meget tæt på det ønskede resultat. Kredsløbet blev derefter bygget op på et fumlebræt og fastsatte komponent værdierne ud fra beregningerne fra nettet. Udregningen fra nettet var baseret på en cut-off frekvens på $50 \, \text{Hz}$ og C1 = C2.

Figur 3.1: Butterworth Sallen-key filter.

Komponent	Værdi
R1	$4.7 \ k\Omega$
R2	$4.7 \ k\Omega$
C1	680 nF
C2	680 nF

Det viste sig at det ikke levede op til kravene omkring den nødvendige dæmpning ved 500Hz, ligeledes opførte filteret sig ikke som ønsket. I starten var der blandt andet arbejdet med filteret som passivt, noget som der først fik rettet op på til sidste iteration. Desuden fik hjælpen fra en ASB-underviser, vist at ovenstående filter ikke overholdte kravene til et 2. ordens Butterworth Sallen-key filter.

Anden iteration - komponenter i lavpasfilteret

Den anden iteration er beskrevet udførligt i hardware delen, her blev der brugt en mere matematisk proces til at designe filteret. Der blev gættet på en C1 værdi på 330nF, og herefter blev de resterende komponentværdier skaleret ud fra dette. Neden for ses de udregnede komponentværdier for lavpasfilteret version 2.

Komponent	Værdi
R1	$6.7 \ k\Omega$
R2	$6.7 \ k\Omega$
C1	330 nF
C2	680 nF

Filteret blev analyseret. Analysen viste, at der ikke kom den nødvendige dæmpning ved 500Hz. Igen kan dette være et resultat af det ikke var aktivt.

Tredje iteration - komponenter lavpasfilteret, forstærker og forsyningsspænding

I den tredje iteration blev der opdaget at C1 skulle være halvdelen af C2 for at give et filter der overholdte projektets krav. Modstandene er beregnet ud fra den nye kondensatorværdi.

Komponent	Værdi
R1	$6.6 \ k\Omega$
R2	$6.6 \ k\Omega$
C1	340 nF
C2	680 nF

Der blev besluttet at benytte en INA-114 forstærker, efter anbefaling fra vejleder og medstuderende. Der blev beregnet forstærkningen, samt blev der sikret at forstærkeren opfyldte projektets krav. Beslutningen om hvilken forsyningsspænding der skulle benyttes, faldt på to 9V-batterier. Det blev undersøgt hvorvidt det var muligt at bruge andre spændingsforsyninger, blandt andet USB og dedikerede spændingsforsyninger. USB som spændingsforsyning blev fravalgt da der ikke kunne opnå tilstrækkelig forstærkning I INA-114 forstærkeren, så det ville gå ud over præcisionen. De udleveret spændingsforsyninger blev fravalgt af praktiske årsager, da de var meget uhåndterbare.

Fjerde iteration - aktivt filter

Den fjerde iteration benytter samme komponentværdier som tredje iteration, men det var blevet overset at filteret skulle være aktivt. Derfor blev der bygget et kredsløb op forfra på fumlebræt, hvor der var tilsluttet spænding på filteret.

Design af lavpasfilteret

Frekvenserne der skal arbejdes med i blodtryksmåleren, ligger op til 50Hz, derfor skal der realiseres et 2. ordens lavpasfilter med følgende dimensioner:

Cut-off Frequency: 50Hz

Ligeledes skal der dæmpes med 40 dB/decade ved 500Hz.

C2 er givet til at være på 680nF, ligeledes er operationsforstærkeren givet til at være OP27.

Figur 3.2: Butterworth Sallen-key filter.

Overføringsfunktionen for ovenstående filter:

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{\frac{1}{R1 \cdot R2 \cdot C1 \cdot C2}}{s^2 + \frac{R1 + R2}{R1 \cdot R2 \cdot C2} \cdot s + \frac{1}{R1 \cdot R2 \cdot C1 \cdot C2}}$$
(3.1)

Omskrevet til standardformel:

$$\frac{V_{out}(s)}{V_{in}(s)} = \frac{\omega^2}{s^2 + 2\zeta\omega + \omega^2}$$
(3.2)

Her isoleres cut-off frekvensen (ω) i overføringsfunktionen for lavpasfilteret:

$$\omega = 2\pi \sqrt{\frac{1}{R1 \cdot R2 \cdot C1 \cdot C2}} \tag{3.3}$$

I formlen for cut-off frekvensen indsættes komponentværdierne. Der er valgt en værdi for C1 til at være 330nF, dette er et gæt. Cut-off frekvensen er sat til 50Hz, da dette er blevet givet som et krav til projektet.

$$C1 = 330nF, C2 = 680nFogR1 = R2$$

C1 := 330·10⁻⁹ C2 := 680·10⁻⁹

$$50·2\pi = \sqrt{\frac{1}{R \cdot R \cdot C1 \cdot C2}} \text{ solve, } R \rightarrow \begin{pmatrix} \frac{500000 \cdot \sqrt{561}}{561 \cdot \pi} \\ -\frac{500000 \cdot \sqrt{561}}{561 \cdot \pi} \end{pmatrix}$$

$$\frac{500000 \cdot \sqrt{561}}{561 \cdot \pi} = 6.72 \times 10^3$$

Figur 3.3: Mathcad beregninger.

Ud fra disse beregninger skal modstanden altså bestemmes til at have en værdi på ca. $6.7k\Omega$. Da der er blevet brugt et Butterworth Sallen-key filter vides der, at C1 skal være halvdelen af C2. Derfor er der lavet nye beregninger hvor C1 = 340nF, hvilket svarer til halvdelen af C2.

C1 :=
$$340 \cdot 10^{-9}$$
 C2 := $680 \cdot 10^{-9}$

$$50 \cdot 2\pi = \sqrt{\frac{1}{R \cdot R \cdot C1 \cdot C2}} \text{ solve, } R \rightarrow \begin{pmatrix} \frac{250000 \cdot \sqrt{2}}{17 \cdot \pi} \\ -\frac{250000 \cdot \sqrt{2}}{17 \cdot \pi} \end{pmatrix}$$

$$\frac{250000 \cdot \sqrt{2}}{17 \cdot \pi} = 6.62 \times 10^{3}$$

Figur 3.4: Mathcad beregninger.

Der er efterfølgende lavet en analyse i matlab for at sikre at dæmpningen er min. 40 dB pr. decade ved 500Hz. Dette er gjort med modstande på $6.6k\Omega$.

Figur 3.5: Matlab bodeplot med $6.6k\Omega$ modstande.

Ud fra dette kan det konkluderes at dæmpningen ved 550Hz er tilstrækkelig.

Design af operationsforstærkeren

Det elektriske signal der skal bruges i systemet, kommer fra tryktransduceren TruWaveTMog ind i dataopsamlingsmodel (NI-DAQ6009). Signalet fra TruWaveTMskal forstærkes op, så der kommer bedre målesignaler i DAQ'en. I databladet for NI-DAQ6009 kan der ses den maksimale spænding for indgangsportene er +/-10V, det vil sige at der ikke må forstærkes mere op end 10V. Der er valgt at forstærke op til +/-8V, for at give lidt buffer, så der ikke overstiges de 10V og derved mister data. Ligeledes er "projektet"hæmmet af valget af strømforsyning som er to 9-volts batterier, som praktisk leverer omkring +/- 8V.

Fra TruWaveTMer der valgt at fokuserer på et måleområde der hedder 0-250mmHg.

Maksimalt output for transducer

$$V_{max} = 250mmHg \cdot 16V \cdot 5\mu V \tag{3.4}$$

Ud fra dette kan der bestemmes, hvor meget gain (forstærkning), der skal bruges fra forstærkeren:

$$16V = 20 \cdot 10^{-3} V \cdot gain \tag{3.5}$$

$$gain = \frac{16V}{20 \cdot 10^{-3}V} = 800 \tag{3.6}$$

Båndbredde og valg af forstærker

Produktet af gain og båndbredde, BW, er konstant, derfor er det vigtigt vores båndbredde ligger over knækfrekvensen på 50Hz. Der er valgte at benytte en INA-114 forstærker da den opfylder behovene. Ved qain = 1 kan INA-114 levere 1MHz båndbredde, det vil sige, at der kan

opstilles følgende ligning for beregning af båndbredden.

$$1000000 = 800 \cdot BW \tag{3.7}$$

$$BW = \frac{1000000Hz}{800} = 1250Hz \tag{3.8}$$

Da 1250 Hz er over knækfrekvensen på 50Hz har forstærkeren tilstrækkelig båndbredde til at leve op til kravene til projektet.

Beregning af modstand til forstærker

Figur 3.6: Denne viser opbygningen og delene i operationsforstærkeren INA114

Forstærkerens gain er bestemt ved modstanden der sidder på port 1 og 8. Denne modstand kan beregnes med følgende formel, hvor R_G er modstanden og gain = 800.

$$G = 1 + \frac{50k\Omega}{R_G} \tag{3.9}$$

$$G = 1 + \frac{50k\Omega}{R_G}$$

$$800 = 1 + \frac{50k\Omega}{R_G}$$
(3.9)

$$R_G = 62.5\Omega \tag{3.11}$$

Et potentiometer er blevet valgt at benytte som denne modstand, da der helst skulle kunne reguleres på systemet, og den ovenstående værdi er beregnet med ideelle komponenter.

Implementering

Block definition diagram

På nedenstående figur bliver systemets hardware illustreret i et BDD. Heraf ses det at systemet har seks hardware blokke: Computer, transducer, NI-DAQ, lavpas filter, forstærker og en strømforsyning. Disse blokke udgør tilsammen blodtryksmålersystemet.

Figur 3.7: Block definition diagram. Dette diagram viser hardware delene i systemet, samt sammenhængen mellem disse.

Internal block definition

Ud fra BDD kan et IBD diagram udarbejdes. IBD diagrammet viser koblingen mellem blokkene:

- \bullet Strømforsyningen, denne er to 9V batterier som forsyner forstærkeren og transduceren med \pm 9V
- Transduceren omdanner tryksignalet fra kateteret til et strømsignal i ZZ mV tilbage til forstærkeren.
- Forstærkeren forstærker signalet til lavpas filteret.
- Lavpas filteret dæmper de høje frekvenser og sender signalet til NI-DAQ
- NI-DAQs formål er, at omdanne signalet fra et analogt signal til et digitalt signal.
- Computerens funktion er at få analyseret og vist blodtryksignalet på en brugergrænseflade, vha. Visual Studio.

Figur 3.8: Internal block diagram. Dette diagram viser signalerne imellem blokkene.

${\bf Modultest}$

3.2 Software design

I dette afsnit beskrives softwaredesign på baggrund af systembeskrivelsen og kravspecifikationen. Denne beskrivelse opnås ved, at der benyttes relevante diagrammer og modeller, hvilke kan bruges til at beskrive softwaren. Overvejelser og valg, der er blevet gjort i forbindelse med design og implementering af softwaren, vil i dette afsnit blive præsenteret.

Problemidentifikation

Ved identifikationen af produktet, og herunder hvad dette skal kunne, er der opstået nogle vanskeligheder, som der har skullet tages hensyn til. I første omgang blev der udarbejdet en idé, om at have en startskærm, hvor det kunne vælges hvorpå målingen skulle foretages. På startskærmen skulle det desuden være muligt at kalibrere systemet og foretage nulpunkts justeringen. Stederne hvor målingerne skulle foretages blev identificeret til at skulle være tre målesteder; hjertet, armen og benet. Efter målestedet var valgt, skulle man komme videre til en anden skærm, hvor selve målingen skulle foretages. Idé med denne startskærm viste sig dog ikke at være brugbar i praksis, hvilket fik os til at gå væk fra denne. Grunden til at denne idé ikke ville kunne bruges i praksis, ved en invasiv blodtryksmåling, var at denne idé var tænkt som et produkt til måling af blodtrykket på diabetes patienternes underekstremiteter. Herefter ville værdierne kunne sammenlignes, og situationen vurderes for patienten. Men ved denne patientgruppe er det dog ikke hensigtsmæssigt at lave invasiv blodtryksmåling på underekstremiteterne, da blodtrykket her vil være lavt. Ved invasiv blodtryksmålingen laves der hul på karrene og helingen af dette hul vil ikke kunne foregå optimalt og der vil være risiko for infektioner.

Figur 3.9: Idé til projekt. Startskærmen hvor det vil være muligt at vælge målested.

Herefter blev idéen ændret til et produkt, der ligner det der fungerer i dagligdagen på hospitalerne. Denne idé blev udarbejdet efter et besøg på Herning Sygehus, hvor et møde med anæstesi sygeplejerske Charlotte Høj blev afholdt. Her blev det muligt at se et scenarie med en blodtryksmåling. Ved scenariet loggede Charlotte Høj først ind på EPJ computeren, hvorefter selve blodtryksmålingen kunne foretages fra en anden skærm.

Ud fra denne idé blev en startskærm, som skal simulere EPJ-systemet (EPJ computeren), udarbejdet. EPJ-systemet er der, hvor det sundhedsfaglige personale kan tilgå patientens data, og dermed evt. se hvilket behandling patienten har været igennem før. Startskærmen der her er udarbejdet, er blot en prototype af dette og derfor er det kun den del, hvor det sundhedsfaglige personale logger på, samt vælger patient, der er blevet implementeret. Dermed er det ikke muligt at tilgå tidligere behandlinger osv. Desuden blev nulpunkts justeringen, hvilken hertil var placeret på startskærmen, flyttet ind på hovedskærmen, altså skærmen, hvor selve målingen foretages. Dette blev denne, da der var en antagelse om at der skulle sendes et signal igennem

systemet før denne kunne foretages. Dog er det senere blevet klart at dette ikke er aktuelt, idet denne sagtens kan udføres før ved denne prototype. Kalibreringen foretages med en væskesøjle, hvor der er tre punkter, som fører til at en spænding kan aflæses. Ud fra det tryk der leveres af væskesøjlen samt den målte spænding, kan en hældningskoefficient bestemmes, hvilken systemet skal gemme til at regne på alle data.

Ud fra alle disse faktorer kan grundstrukturen, til hvordan startskærmen og hovedskærmen skal se ud, dannes:

Figur 3.10: Startskærmen, hvilken fungerer som EPJ-systemet

Figur 3.11: Hovedskærmen, hvilken fungerer som blodtryksmålerens grænseflade

Domænemodel

Først skal der klarlægges hvilke klasser som systemet skal bestå af, hvilket er det første skridt i processen. For at kunne identificere disse klasse udarbejdes en domænemodel, hvilken har sit udgangspunkt i Use cases. Det er i de konceptuelle klasser fra Use cases som indeholder den information som systemet skal holde styr på. Derfor findes de konceptuelle klasser i Use cases og disse indføres i domænemodellen som klasser. Domænemodellen opstilles derfor for at finde frem til hvad problemet er i softwaren i forhold til, hvad der skal holdes styr på.

Figur 3.12: Domænemodel for blodtryksmålersystemet.

Denne domænemodel viser det sundhedsfaglige personales interaktion med systemet, samt hvilke handlinger der startes af denne interaktion. Det sundhedsfaglige personale udfører en handling, der medfører, at en række processer igangsættes i systemet. Disse processer sørger at hente data fra transduceren og EKG patient, sørger for at starte beregningen af puls, systolisk, diastolisk og middeltryks værdierne og vise disse på brugergrænsefladen, samt sørger for at disse data bliver gemt i en database.

Klasseidentifikation

Applikationsmodel

Ud fra domænemodellen kan en applikationsmodel opstilles. Denne model tager afsæt i domænemodellens klasser. Dette betyder derfor at denne model således også tager udgangspunkt i alle Use cases.

Modellen bruges til at bestemme de interagerende klasser i blodtryksmålersystemet.

Figur 3.13: Applikationsmodel for blodtryksmålersystemet.

Ud fra denne model ses klasserne og databaserne der skal implementeres i softwaren, samt interaktionen mellem disse. Altså hvordan klasserne må tale sammen på kryds og tværs. Så idet at det vides at tre-lagsmodellen skal benyttes, kan disse klasser ligges ind i det tilhørende lag. Databaserne vil blive tilgået fra datalaget, domæneklasserne ligger i logiklaget og i præsentationslaget vil startskærmen og hovedskærmen ligge hvorfra de vil blive præsenteret for det sundhedsfaglige personale.

Trelagsmodellen Trelags modellen er en software model, der gør det muligt at inddele ens software kode op i tre lag. De tre lag er præsentationslaget, logiklaget og datalaget.

Fordelen ved at kunne dele softwaren op på denne måde, er at man kan rette i de forskellige lag, uden at det får indflydelse i de andre lag. Man kan herved implementere nye klasser og deres funktioner, og bare henvise til dem i de andre lag. Hvert lag har deres egen funktionalitet og ansvar.

Præsentationslaget er det øverste lag i trelags modellen, og kan kun snakke sammen med logiklaget. I præsentationslaget må der ikke laves nogen form for beregninger, disse skal komme fra logiklaget. Med andre ord fungerer præsentationslaget, kun til at præsenter data på en brugergrænseflade. Præsentationslaget er også det eneste lag, som brugeren kommer til at integrerer

med.

Logiklaget er det midterste lag, og er et bindeled mellem præsentationslaget og datalaget. I logiklaget forgår alt behandling af data fra præsentationslaget og datalaget. Det betyder at alle algoritmer skal ligge i logiklaget.

Datalaget er det nederste lag, og indhenter data eller gemmer data. Der kan indlæses data fra en fil, eller et måleapparat eller en database. Datalaget kan gemme data fra logiklaget i en fil eller database.

I trelagsmodellen kan man skabe et flydende bindeled, der kan snakke sammen med alle lagene, dette kaldes for en DTO. En DTO står for data transfer object, og transporter objekter imellem alle lagene, og kan derved tilgås af alle lagene.

I dette projekt er trelagsmodellen blevet opfyldt ved at der er oprettet en solution der hedder PulsMaalerSystem, under denne solution ligger der fire projekter; PulsMaalerSystem, PulsMaalerSystem.Logiklag, PulsMaalerSystem.Datalag og PulsMaalerSystem.DTOlag. Opdeling af softwarekoden i trelagsmodel kan ses på figuren nedenfor.

Figur 3.14: Trelagsmodellen. Her ses hvor de forskellige klasser ligger i der forskellige lag.

Det første projekt PulsMaalerSystem fungerer som præsentationslaget og består af to Windows forms, StartGUI og HovedGUI. Begge forms sender informationer ned til logiklaget og henter data, som blodtryksværdier, og viser det på en graf.

Det andet projekt PulsMaalerSystem.Logiklag er logiklaget i projektet. I dette logiklag, er der implementeret seks klasser under: Blodtryk, Kalibrering, Digitaltfilter, Nulpunkts_justering og EKG, Logiklag. Klassen Blodtryk tager sig af at udregne systolen, diastolen og middeltrykket med algoritmer ud fra blodtrykket.

Kalibrerings klassen sørger for at kalibrer blodtrykssignalet med en kalibreringsværdi der kan indtastes i præsentationslaget. Digitaltfilter klassen implementer et glidende middelværdisfilter, der sørger for at udglatte blodtrykssignalet.

Nulpunkts_justering klassen sørger for at sætte signalet baseline ved 0 V. EKG klassen skulle have sørget for at finde R-takker og udregne pulsen. Grundet tidspres har det ikke været muligt at implementer EKG i projektet. Der er dog gjort klar til det med denne klasse.

Logiklags klassen binder alle de andre klasser sammen, ved at hente data nede fra datalaget til klasserne og sende metoderne med videre til præsentationslaget.

Det tredje projekt PulsMaalerSystem.Datalag består af to klasser: DAQ og datalag. DAQ klassen sørger for at hente data op fra DAQ'en. Datalag klassen sørger for at hente informationer om patienten og personalet i databassen. Datalag klassen sørger også for at gemme blodtrykket for patienten løbende i en database.

Det sidste projekt PulsMaalerSystem.DTOlag består af tre klasser: GrænseværdiDTO, IObserver, ISubject og KalibreringsDTO. GrænseværdiDTO klassen indeholder set og get metoder for grænseværdien, og sender grænseværdierne med i metode. IObserver kigger ned på subjectet, hvor klassen ISubject. KalibreringsDTO klassen har set og get metoder til volt og tryk, og en metode til at sende disse videre.

Metodeidentifikation

Sekvensdiagrammer

Nedenfor er vist sekvensdiagrammer for systemet. Der er lavet sekvens diagrammer for alle Use case. Vores Use cases er henholdsvis Use case 1: Kalibrér system, Use case 2: Foretag måling, Use case 3: Alarmér og Use case 4: Stop måling. Sekvens diagrammet er et interaktionsdiagram, som viser hvorledes processerne forløber i forhold til hinanden. Ud fra sekvensdiagrammerne kan det altså ses hvornår og hvordan de forskellige dele i systemet forløber og interagerer.

Figur 3.15: Sekvensdiagram for blodtryksmålersystemet. Denne viser adfærden for Use case 1

I sekvens diagrammet for Use case 1 interagerer servicemedarbejder med blodtryksmålersystemet. Her er det servicemedarbejderen som starter kalibreringen og blodtryksmålersystemet som foretager kalibreringen igennem lagene og klassen Kalibring. Her ses det at servicemedarbejderen indtaster værdierne der aflæses, hvorefter der trykkes på knappen, hvorefter systemet

foretager beregningen for kalibreringen.

Figur 3.16: Sekvensdiagram for blodtryksmålersystemet. Denne viser adfærden for Use case 2 del 1

Figur 3.17: Sekvensdiagram for blodtryksmålersystemet. Denne viser adfærden for Use case 2 del 2

Figur 3.18: Sekvensdiagram for blodtryksmålersystemet. Denne viser adfærden for Use case 2 del 3

I sekvens diagrammet for Use case 2 ønsker det sundhedsfaglig personale at foretage måling, dette gøres ved at det sundhedsfaglig personale interagerer med blodtryksmålersystemet. For at målingen forløber, foregår den videre interaktion via blodtryksmålersystemet og de klasser, som indgår i Use casen. Transducer, EKG patient sender sine data til datalaget, EPJ database og Personale database får sine data fra datalaget. I dette sekvens diagram ses det sundhedsfaglige personales interaktion med blodtryksmålersystemet. Denne interaktion igangsætter processerne, som medfører at blodtryksmålingen forløber. Det ses også, at præsentationslaget, som er vores blodtryksmålersystem, kommunikerer med logiklaget og logiklaget kommunikerer med datalag, altså er trelagsmodellen opfyldt.

Figur 3.19: Sekvensdiagram for blodtryksmålersystemet. Denne viser adfærden for Use case 3

I dette sekvens diagram for Use case 3 tjekker logiklaget hvorvidt grænseværdierne for systole og diastole er overskredet. Hvis en grænseværdi overskrides starter alarmeringen. I denne Use case har det sundhedsfaglig personale mulighed for at udsætte alarmen, dette sker ved en interaktion mellem sundhedsfaglig personale og blodtryksmålersystemet.

Figur 3.20: Sekvensdiagram for blodtryksmålersystemet. Denne viser adfærden for Use case 4

I sekvens diagrammet for Use case 4 ønsker sundhedsfaglig personale, at stoppe målingen. Dette gøres ved, at sundhedsfaglig personale interagerer med blodtryksmålersystemet i præsentationslaget. Denne interaktion medfører en videre kommunikation mellem logiklaget og datalaget, som medfører at data ikke længere hentes fra transduceren. Når blodtryksmålingen er afsluttet vises det som besked til det sundhedsfaglig personale.

Implementering

Kalibrering

Kalibreringen er blevet implementeret sådan at der indtastes en værdi for trykket som vandsøjlen leverer i mmHg og en værdi for spændingen i volt, hvilken kan aflæses fra waveforms eller måles vha. et multimeter. Disse to værdier bliver herefter sendt ned i software klassen Kalibrering, hvor en kalibreringsværdi/omsætningsværdi kan udregnes ved formlen:

$$X\left[\frac{mmHg}{V}\right] = \frac{pressure\left[mmHg\right]}{voltage\left[V\right]} \tag{3.12}$$

Den værdi der her udregnes benyttes herefter til at omregne den spænding i volt, der indsendes i systemet, til tryk i mmHg.

$$voltage[V] \cdot X\left[\frac{mmHg}{V}\right] = pressure[mmHg]$$
 (3.13)

Hermed ganges kalibreringsværdien på samtlige værdier i den liste af data der kommer fra DAQ'en (Blodtryksværdiliste).

Nulpunktsjustering

Nulpunktsjusteringen foregår ved at transduceren er tilsluttet og måler det atmosfæriske tryk, denne værdi skal herefter trækkes fra samtlige værdier for blodtrykket fra DAQ'en. Denne værdi skal derfor trækkes fra inden kalibreringsværdien ganges på. Måden hvormed nulpunktsjusteringen foregår på, er ved at transduceren er tilsluttet og vha. waveforms kan det atmosfæriske tryk aflæses, denne værdi aflæses som en spænding. Denne værdi indtastes på hovedskærmen, hvorefter nulpunktsjusteringen kan startes. Systemet går herefter ind i klassen Nulpunkts_justering, hvor følgende formel bruges til at beregne den værdi der skal benyttes videre:

$$V_{zero}[V] = V_{read}[V] - pressure[V]$$
(3.14)

Det er denne værdi der herefter bliver kalibreret, for derefter at kunne blive vist som en graf for blodtrykket i mmHg.

Digitalt filter

Det digitale filter der er blevet implementeret i projektet er af typen et glidende middelværdi filter. I et glidende middelværdi filter, lægges der et vindue oven på ens talværdi, i dette vindue tager man gennemsnittet af alle værdien. [1] Vinduet er her betegnelsen for et bestemt tidsinterval.

I projektet er der valgt længden ti på vinduet, det betyder at for hver tiende tal i vores blodtrykliste, bliver der udregnet gennemsnittet af. Herefter rykker vinduet sig til højre og udregner for de næste ti tal i blodtrykslisten. Blodtrykslisten er listen af blodtryksværdier, der bliver indlæst af DAQ'en.

Figur 3.21: Digital filter ramme. Denne viser hvordan rammen bestemmer gennemsnittet og rykker én hver gang.

Længden af vinduet på ti er valgt, da der bliver vist ti tal fra blodtrykslisten på en graf på brugergrænsefladen. Glidende middelværdifilter kan beskrives med formlen:

$$y[n] = \frac{1}{M} \cdot \sum_{k=0}^{M} x[n-k],$$
 (3.15)

$$b_k = \frac{1}{M} \tag{3.16}$$

M er de forgående samples for signalet, n er de nuværende værdier af blodtrykket og k er koefficienterne. Filteret udglatter signalets høje peak værdier, da filteret er et lavpasfilter.

Beregning af systolisk, diastolisk og middeltryks værdi

Algoritmerne for udregning af systole, diastole og middeltryk er alle implementeret i klassen Blodtryk.

Systolen er toppunkterne i blodtryksdataene. Dette kræver dog at man skrive en kort algoritme, så man kan holde styr på hvor langt man er kommet i blodtrykslisten og hvor mange systole værdier der er fundet.

Der er valgt at lave en baseline, som er den grænseværdi der skal overskrides, inden man tjekker efter for toppunkter. Grænseværdien baseline er sat til 100, da den normale værdi for systolen ligger omkring 120 mmHg.

Algoritmen BeregnSystole starter med en for lykke, hvor man har en tæller "i", der starter fra nul og tæller op til længden af blodtrykslisten. Inden i for lykken er der en if lykke, som tjekker om indeks "i"i blodtrykslisten er større end den baseline der er sat. Hvis indeks "i"i blodtrykslisten er større end baseline, vides der at grafen er på vej opad. Herved sættes der en ny basline, som er lig med værdien for indeks "i"i blodtrykslisten. Der bliver lagt én til værdien baselineoverskredet.

Hvis indeks "i"i blodtrykslisten er mindre end baseline og baslineoverskredet er større end 1, vides der at grafen for blodtrykslisten falder. Når blodtrykslisten falder vides der at den forgående indeks i blodtrykslisten er topppunktet. Der bliver gemt det forgående indeks i blodtrykslisen i en liste der hedder toppunkter. Listen af toppunkterlisten med værdier, er derfor listen af systole værdierne. Baselineoverskredet sættes lig nul, samtidig med at baselinen sættes lig default værdien, der var 100 mmHg. Algoritmen returnerer en liste af toppunkter.

Diastolen er minimumspunkterne i blodtrykslisten. For at finde minimumspunkterne i listen, er der implementeret en algoritme kaldet BeregnDiastole, som finder minimumspunkterne og gemmer dem i en liste.

Algoritmen er opbygget på samme måde som med BeregnSystole, med en lille ændring af at algoritmen skal finde minimumspunkter i stedet for toppunkter.

Der sættes en baseline værdi, der er den værdi der skal tjekkes for om indekset i blodtrykslisten er mindre ind. Default værdien for baseline er sat 90 mmHg, for at være sikker på at indekset i blodtrykslisten finder sig neden for denne værdi.

Algoritmen Beregn Diastole starter med en for lykke, hvor man har en tæller "i", der starter fra nul og tæller op til længden af blodtrykslisten. Inden i for lykken er der en if lykke, som tjekker om indeks "i"i blodtrykslisten er mindre end den baseline der sat. Hvis indeks "i"i blodtrykslisten er mindre end baseline, vides der at grafen er på vej opad. Herved sættes der en ny basline, som er lig med værdien for indeks "i"i blodtrykslisten. Der bliver lagt én til værdien baselineoverskredet.

Hvis indeks "i"i blodtrykslisten er større end baseline og baslineoverskredet er større end 1, vides der at grafen for blodtrykslisten stiger. Når blodtrykslisten stiger vides der at den forgående indeks i blodtrykslisten er minimumspunkter. Der bliver gemt det forgående indeks i blodtrykslisen i en liste der hedder minimumspunkter. Listen af minimumspunkter med værdier, er derfor listen af diastole værdierne. Baselineoverskredet sættes lig nul, samtidig med at baselinen sættes lig default værdien, der var 90 mmHg.

Algortimen til udregning af middeltrykket, udregner middeltrykket med [2] formlen:

$$Middeltryk = \frac{2}{3} \cdot Diastolisketryk + \frac{1}{3} \cdot Systolisketryk \tag{3.17}$$

Algoritmen middeltryk starter med en for lykke med en tæller "i", der starter fra nul og tæller op til og med længden af blodtrykslisten. Inde i for lykken udregnes ligningen for middeltrykket for indeks "i", med systolelisten for indeks "i"og diastolelisten for indeks "i". Det udregnede middeltryk gemmes i en liste kaldet middeltrykliste.

EKG-signal

Implementeringen af EKG-signalet er i dette projekt ikke sket. Dette er ikke implementeret, da der ikke har været tid til dette. Hvis der dog havde været tid til dette, ville Semesterprojekt 2: EKG diagnostik, været blevet benyttet til at få grundstrukturen til at se hvordan denne implementering skulle foregå.

Iltmætning

Desuden blev iltsaturation ikke implementeret. Dermed bliver iltmætningen ikke vist for patienten. Dette er ikke blevet implementeret på grund af flere faktorer: Der er ikke nok tid, der er ikke den fornødne viden til at få implementeret dette og der haves ikke de nødvendige materialer.

Møsntre: Subject/Observer og PUSH/PULL

Subject/Observer møsteret benyttes i dette projekt for at sørge for at data bliver sendt igennem alle lagene på en fornuftig og kontinuer måde.

Subject kan være en abstrakt klasse eller et interface, der har tre metoder; en metode der tilknytter en observer, som gerne vil modtage opdateringer, en metode til at fjerne observeren og en notify metode. Notify metoden giver informationen til observeren om ændringer.

Observer er et interface, som skal implementeres af alle de klasser, hvilke skal have besked, når der sker en ændring. Der bruges en observer, når der skal ændres i et objekt og det ikke vides hvor mange objekter der skal ændres i. Observer modtager besked om ændringer fra subjectet, dette kan ske enten ved PUSH eller PULL mønsteret.

PULL fungerer ved at subjectet giver besked til observeren om at der er ændringer. Observeren sender besked til subjectet om at modtage ændringerne. Subjectet sender herefter ændringen til observeren. PUSH fungerer sådan at subjectet giver besked til observeren, om at der er sket en ændring, samtidig med at den sender dataene med op. Data bliver altså i PUSH mønster skubbet op, hvor data i PULL trækkes op. I dette projekt er det PUSH mønsteret der er valgt at arbejde med.

I projektet er der valgt at implementere to interfaces; IObserver og ISubject. Disse to interfaces er implementeret i PUSH mønsteret, der sørger for at der hele tiden sendes data op, når der er en ny opdatering.

ISubject består af tre metoder. En metode til Attache en eller flere observer. En anden metode til at fjerne en eller flere observer. Den tredje metode Notify informerer observerne om, at der er sket en opdatering. Notify metoden sender en liste med data op til obseveren, det ses heraf at PUSH mønsteret benyttes.

I projektet er der valgt at skubbe data fra datalaget til logiklaget, og derefter fra logiklaget til

præsentationslaget.

Der bliver derfor i projektet implementeret to ISubjects og to IObservers. Datalaget fungerer som subject for logiklaget, som er observer til datalaget. Så hver gang der bliver læste tal ind af DAQ'en, skubber datalaget disse data videre til logiklaget.

Logiklaget er subject for præsentationslaget. Præsentationslaget er observer for logiklaget, og får derfor skubbet data op fra logiklaget.

Queue

For at være sikker på at den data, der er blevet nulpunktsjusteret og kalibreret bliver sendt korrekt op til præsentationslaget bliver der benyttet en kø metode: Queue Class [3]. Dette er en klasse der er indbygget i Visual Studio. Denne klasse har to metoder, hvilke benyttes til at sende data ind i den rigtige ende, hvorefter data fjernes fra den anden ende når køen er fuld. Disse to metoder er Enqueue(object) og Dequeue(). Enqueue(object) er metoden, hvilken tilføjer et object til køen. Dette object er data fra Blodtryksværdiliste. Metoden ligger i en for-løkke, sådan at data kommer ind sådan som de indlæses fra DAQ'en.

Dequeue() er metoden, som fjerne et object fra den anden ende, og tager den første værdi i rækken og fjerner. Denne metode ligger ligeledes i for-løkken, hvorunder der er if/else metoder. Dette sørger for at køen er fuld inden der bliver fjernet en værdi fra den anden ende og dermed sørger for at de to metoder følges ad.

Unittest

3.3 Integrationstest

Kapitel 4

Accepttest

4.1 Indledning

Accepttestene skal vise om kravene der er opstillet for blodtryksmålersystemet i kravspecifikationen lever op til de standarder der er sat op for at produktet aktivt kan indgå i en hverdag på sygehusene.

Accepttestene er er opfølgning af kravspecifikationen, hvilket sikre at alle krav er overholdt og dermed opnået.

Når der i feltet Godkendt er skrevet initialer for den der har udført testen, samt datoen for testens udførelse, betyder det at testen er godkendt.

Igennem Arkitektur og design er systemet blevet identificeret og specificeret, sadan at vides hvilke dele systemet består af og hvordan dette skal præsenteres på user interfaces.

4.2 Accepttest for funktionelle krav

Opstilling

Billede indsættes - haves ikke endnu

Tabel 4.1: Accepttest for Use case 1

Use case 1:	Test	Prækondition	Forventet	Godkendt/
Kalibrer			resultat	kommentar
apparat				
Normalforløb:	Indtast den		t esne ticemedarbejde	r
	aflæste værdi for	er tændt,	foretager	
	spændingen fra	tilsluttet og	kalibrering.	
	waveforms, og	startet, og	Værdierne	
	aflæs trykket fra	tilsluttet kalibre-	indtastes	
	vandsøjlens	ringsudstyret	korrekt.	
	skema for det af	(Analog		
	målepunkterne	Discovery og		
	fra vandsøjlen	Waveforms).		
	der måles på.	,		
	Tryk på	Blodtryksmålersys	t eSwet emet	IKKE
	"Kalibrering"	er tændt og	beregner kalibre-	TESTBAR
		tilsluttet, og	ringsværdien og	
		tilsluttet kalibre-	kalibrerer	
		ringsudstyret	systemet,	
		(Analog	resultatet af	
		Discovery og	beregningen	
		Waveforms) og	vises på	
		værdierne	startskærmen	
		indtastet.		

Det forudsættes for følgende Use cases (Use case 2, 3 og 4) at systemet er tilsluttet korrekt, port til DAQ er bestemt, at der er en VPN-forbindelse til "ASE IHA VPN", desuden skal der være en forbindelse til " $webhotel10.F15ST2ITS2201404669.db_owner$ " (Personaledatabasen) og " $webhotel10.F15ST2ITS2201405838.db_owner$ " (EPJ database).

Tabel 4.2: Accept test for Use case 2

Use case 2: Foretag	Test	Prækondition	Forventet resultat	Godkendt/ kommentar
måling			1 Courtai	Kommentar
Normalforløb:	Indtast	Port valgt.	Korrekt	
romanomos.	brugernavn	VPN-forbindelse,	indtastning	
	"anpe"og kode	Personale	fuldendt	
	"1234"	database og EPJ		
		database er		
		tilsluttet korrekt		
	Tryk "Log ind"	Port valgt. VPN,	Besked: "Logget	
		Personale	på"og den	
		database og EPJ	sundhedsfaglige	
		database er	er dermed logget	
		tilsluttet korrekt	på	
	Tryk på patient	En	Liste med	
	dropdown på	sundhedsfaglig er	patienter	
	startskærm	logget på	kommer frem	
	Vælg patienten	Den	Nyt vindue	
	"Arne Jensen"	sundhedsfaglige	kommer frem:	
		er logget på	Hovedskærmen	
	Indsend	Patient valgt og	Nulpunktsjustering	s s
	atmosfærisk tryk	blodtryksmåler-	værdien er	
	igennem	systemet	indtastet korrekt	
	transduceren,	(transduceren)		
	aflæs værdien på	er tilsluttet		
	waveforms og			
	indtast denne			
	korrekt	37 1.		
	Tryk på	Værdien er	Systemet starter	
	"Nulpunkts	indtastet korrekt	nulpunkts	
	justering"		justeringen.	
			Systemet tilpasser grafen.	
	Tryk på "Tænd"	Systemet er	Systemet	
	llyk pa Tænd	nulpunktjusteret	indhenter data	
		narpankijasteret	fra transduceren	
			og starter timer	
			på hovedskærm.	
			EKG og	
			arterietryk	
			præsenteres	
			kontinuert på	
			hver sin graf.	
			Puls, systole,	
			diastole og	
			middeltryk vises	
			som talværdier	
			på	
			hovedskærmen.	
			Data gemmes	
			automatisk	
			kontinuert i EPJ	
			database	

Tabel 4.3: Accept test for Use case 2

Use case 2:	Test	Prækondition	Forventet	Godkendt/
Foretag			resultat	kommentar
måling				
Undtagelse 1:	Indtast	Port valgt. VPN,	Forkert	
Brugernavn	brugernavn	Personale	kombination	
og/eller kode	"efgh"og kode	database og EPJ	indtastet	
indtastet	"1234"	database er		
forkert		tilsluttet korrekt		
	Tryk "Log ind"	Port valgt. VPN,	Besked:	
		Personale	"Brugernavn	
		database og EPJ	og/eller kode	
		database er	indtastet forkert"	
		tilsluttet korrekt.		

Tabel 4.4: Accepttest for Use case 2

Use case 2:	Test	Prækondition	Forventet	Godkendt/
Foretag			resultat	kommentar
måling				
Udvidelse 1:	Tryk på "Digitalt	Signalet er	Systemet slår	
Slå digitalt	filter	startet og filteret	det digitale filter	
filter til/fra:	OFF"radiobutton	er sat til pr.	fra. De to sinus	
		default	signaler (XX Hz	
			og YY Hz) er	
			indsendt	
	Tryk på "Digitalt	Signalet er	Systemet slår	
	filter	startet og	det digitale filter	
	ON"radiobutton	"Digitalt filter	til. Signalet ses	
		OFF"radiobutton	udglattet.	
		er valgt		

Tabel 4.5: Accepttest for Use case 2

Use case 2:	Test	Prækondition	Forventet	Godkendt/
Foretag			resultat	kommentar
måling				
Udvidelse 2:	Tryk på "Systole	Signalet er	Grænseværdien	
Juster systo-	op/"Diastole op"	startet	ændres 1 mmHg	
lens/diastolens			op og intervallet	
grænseværdi			vises på	
			hovedskærmen	
	Tryk på "Systole	Signalet er	Grænseværdien	
	ned/"Diastole	startet	ændres 1 mmHg	
	ned"		ned og intervallet	
			vises på	
			hovedskærmen	

Tabel 4.6: Accept test for Use case 3

Use case 3:	Test	Prækondition	Forventet	Godkendt/
Alarmér			resultat	kommentar
Normalforløb:	Grænseværdi	Signalet er	Alarm starter	
	overskrides	startet	med lyd og	
			"Udsæt	
			alarm"knappen	
			blinker skiftevis	
			mellem rød og	
			hvid	
	Grænseværdien	Alarmen	Alarm lyden	
	er ikke	igangsat	stopper og tallet	
	overskredet mere		skifter farve	
			tilbage til hvid.	

Tabel 4.7: Accepttest for Use case 3

Use case 3:	Test	Prækondition	Forventet	Godkendt/
Alarmér			resultat	kommentar
Udvidelse 1:	Endnu en	Signalet er er	Lyd fra første	
Anden	grænseværdi	startet og en	alarm fortsætter.	
grænseværdi	overskrides	alarm er startet		
overskrides				

Tabel 4.8: Accepttest for Use case 3

Use case 3:	Test	Prækondition	Forventet	$\operatorname{Godkendt}/$
Alarmér			resultat	kommentar
Udvidelse 2:	Tryk på "Udsæt	Alarmering er	Systemet stopper	
Udsæt alarm	alarm"knappen	startet	alarmens lyd i et	
			minut, Udsæt	
			alarm knappen	
			fortsætter med	
			at blinke	
			skiftevis rød og	
			hvid indtil	
			alarmen ikke	
			længere er	
			overskredet.	

Tabel 4.9: Accept test for Use case 4

Use case 4:	Test	Prækondition	Forventet	Godkendt/
Stop måling			resultat	kommentar
Normalforløb:	Tryk på "Sluk"	Målingen er	Målingen,	
		foretaget	signalet og timer	
			på	
			hovedskærmen	
			stopper	
	Tryk på "Log ud"	Signalet er	Pop-up vindue	
		stoppet	kommer op: "Er	
			du sikker?"	
	Tryk "Ja"	Signalet og	Startskærmen	
		målingen er	kommer frem og	
		stoppet	sundhedsfaglig	
			personale kan	
			logge på igen	
			sådan at ny	
			måling kan	
			foretages	

Tabel 4.10: Accept test for Use case 4

Use case 4:	Test	Prækondition	Forventet	Godkendt/
Stop måling			resultat	kommentar
Undtagelse 1:	Tryk "Nej"	Signalet og	Kommer tilbage	
Tryk på "Nej"		målingen er	til	
		stoppet	hovedskærmen	

4.3 Accepttest for ikke-funktionelle krav

Tabel 4.11: Accepttest for ikke-funktionelle krav

Krav	Krav	Test	Forventet	Resultat	Godkendt/
nr.			resultat		kommentar
1.1	Programmet skal have et digitalt filter til udglatning af blodtrykssignal	Send to frekvenser ind (XX Hz og ZZ Hz)	Den ene (XX Hz) af de indsendte frekvenser er blevet fjernet		
1.2	Programmet skal give alarm når grænseværdier overskrides med lyd og Udsæt alarm knappen skal blinke skiftevis rød og hvid.	Overskrid en grænseværdi og tjek alarmering	Alarmen starter		
1.3	Programmet skal kunne gemme blod- trykssignalet i en database	Indsend signal og gå ind i databasen og se værdier	Der ligger værdier i databasen		
2.1	Programmet skal have to window form: startskærm, der fungerer som EPJ systemet, og hovedskærm, som fungerer som selve blod- tryksmåleren	Start program og tjek dette	Der er to window forms		
2.2	Programmet skal have en "Log ind"knap på startskærmen	Start program og tjek startskærm	Startskærmen har en "Log ind"knap		
2.3	Programmet skal have en "Kalibre- ring"knap på startskærmen	Start program og tjek startskærm	Startskærmen har en "Kalibre- ring"knap		

2.4	Sundhedsfaglig personale skal kunne ændre "devi- ce/enhedsnavn"i dropdown på startskærm Programmet skal indeholde en dropdown,	Start program og tjek startskærm Start program, log på og tjek startskærm	Der er en opsætnings dropdown på startskærmen, hvor devi- ce/enhedsnavn kan ændres. Startskærmen har en dropdown med	
2.6	hvor patienten kan vælges på startskærmen Programmet	Start program	patienter Der er en	
2.0	skal have en "Nulpunkts indstilling"knap på hovedskærmen	og tjek hovedskærm	"Nulpunkts indstilling"knap på hovedskærmen	
2.7	Programmet skal have en knap, til at slå det digitale filter fra og til, på hovedskærmen	Start program og tjek hovedskærm	Der er en "Digital filter"knap på hovedskærmen	
2.8	Programmet skal have knapper, til at justere systolisk og diastolisk grænseværdiin- tervaller op og ned, på hovedskærmen	Start program og tjek hovedskærm	Der er ialt fire knapper, som justerer grænse- værdierne på hovedskærmen	
2.9	Programmet skal have en "Udsæt alarm"knap på hovedskærmen	Start program og tjek hovedskærm	Der er en "Udsæt alarm"på hovedskærmen	
2.10	Programmet skal have en "Tænd"knap på hovedskærmen	Start program og tjek hovedskærm	Hovedskærmen har en "Tænd"kanp	

2.11	Programmet skal have en "Sluk"knap på hovedskærmen	Tjek hovedskærm	Hovedskærmen har en "Sluk"knap		
2.12	Programmet skal have en "Log ud"knap på hovedskærmen	Start program og tjek hovedskærm	Der er en "Log ud"knap på hovedskærmen		
2.13	Teksten på startskærmen skal kunne aflæs fra 2 meters afstand med en synsstyrke i intervallet +/-1	10 personer med synsstyrke i intervallet +/-1 skal teste startskærmen	Alle 10 personer kan læse teksten tydeligt		
2.14	Teksten og graferne på hovedskærmen skal kunne læses fra 2 meters afstand ved synsstyrke i intervellet på +/-1	10 personer med synsstyrke i intervallet +/-1 skal teste hovedskærmen	Alle 10 personer kan læse grafer og teksten på hovedskærmen		
2.15	Programmet skal præsentere arterietryk kontinuert, herudover vise systolisk værdi, diastolisk værdi og middeltryk som talværdier.	Start program og start målingen	Grafen vises kontinuert og talværdierne vises på hovedskærmen.		
2.16	Programmet skal præsentere EKG og puls	Start program og start målingen.	EKG vises kontinuert og pulsen vises som talværdi på hovedskærmen.		
hline 2.17	Programmet skal præsentere iltmætning som graf og talværdi.	Start program og start måling	Iltmætningens grafen vises kontinuert og iltmætning vises som talværdi på hovedskærm.	IKKE IM- PLEMEN- TERET	

2.18	Programmet skal præsentere grafer efter standard	Start program og tjek farver	EKG vises i lysegrøn, arterietryk vises i rød og iltmætning vises i lyseblå	
2.19	Programmet skal præsentere data i tal efter standard	Start program og tjek at talværdiernes farve er efter standard	Pulsværdien vises i lysegrøn, systolisk værdi, diastolisk værdi og middeltryk vises i rød og iltmætning vises i lyseblå.	
3.1	Ingen krav endnu			
4.1	Tiden der går før målingen af data påbegyn- der/vises i grafer må maksimalt være 2.0 sek.	Stopur igangsættes samtidig med at signalet tændes	Stopuret viser 2 sek. eller mindre	
4.2	Tiden der går fra at data er analyseret til at data er gemt i database må være 2.0 sek. med en tolerance på +/- 15%	-	_	
5.1	Programmet skrives i C# kode.	Tjek programmet	Programmet er skrevet i C#	
5.2	Softwaren skal være opbygget efter trelagsmodellen	Se programop- bygningen	Softwaren er opbygget efter trelagsmodellen	
5.3	I softwaren benyttes Obser- ver/Subject mønsteret	Tjek programmet og tjek obser- ver/subject klasser	Observer og subject klas- ser/mønsteret benyttes	

5.4	I softwaren	Tjek	Det ses at	
	benyttes PUSH	programmet	programmet er	
	mønsteret		opbygget efter	
			PUSH	
			mønsteret.	
6.1	Der skal være			
	adgang til en			
	computer med			
	Windows 7, 8			
	eller 10 -			
	computeren			
	skal minimum			
	have 4 GB			
	RAM			
6.2	Der skal være			
	adgang til en			
	computer hvor			
	National			
	Instruments er			
	installeret			

4.4 Godkendelses formular

Dato for test	
Godkendes af:	
Ved underskr Sted og dato:	ivelse af dette dokument godkendes den kørte accepttest

 ${\bf Kundens\ underskrift} \\ {\bf Leverandørens\ underskrift}$

Litteratur

4.5 Referencer

Bøger

Internetsider

- [1] Dotnetwidkunal's Blog, skrevet 4. juni 2010, https://dotnetwidkunal.wordpress.com/2010/06/04/creating-a-simple-moving-average-function-in-c/
- [2] Blodtryk, Wikipedia.org, læst 7. december 2015, https://da.wikipedia.org/wiki/Blodtryk
- [3] Queue Class, msdn.microsoft.com, læst d. 8. december 2015, https://msdn.microsoft.com/en-us/library/system.collections.queue(v=vs.110).aspx
- [4] Sallen-Key Low-pass Filter Design Tool, brugt 9. december 2015, http://sim.okawa-denshi.jp/en/OPseikiLowkeisan.htm

Dokumenter