

# INVESTIGATING MULTIMODAL DENSITY SAMPLING METHOD REPELLING-ATTRACTING METROPOLIS

STAT 654 - Term Project - Group 8

*Professor - David E Jones* 

Abhishek Sinha
Abhishek Soma
Shubham Zope
Srujan Jabbireddy
Suryananaryana Nadumpalli

## PROJECT OUTLINE



Multimodal Posterior Density

Metropolis – Hastings Algorithm and its Limitations

Repelling-Attracting Metropolis (RAM)

RAM on Sensor Network Localization With 6 Nodes

Simulated Sensor Network With 9 Nodes

Sensor Network- Performance Statistic

Comparison of RAM with BFGS Optimization Method

Exoplanet: Posterior Sampling of a Simulated Radial Velocity Dataset

## Multimodal Posterior Density



### What is multimodal posterior density/distribution.

- > A continuous probability distribution with more than or equal to two peak/mode.
- > The posterior distribution contains all the information about the possible parameter values. A multimodal density/distribution represents more than 1 mode i.e. more than 1 possible parameter value.

### Various methods to find multimodal density

- Popular MCMC strategy for dealing with multimodality are
  - > Tempering such as parallel tempering (Geyer, 1991),
  - > Simulated tempering (Geyer and Thompson, 1995),
  - Tempered transitions (Neal, 1996), and
  - > Equi-energy sampler (Kou et al., 2006).

Though these methods are powerful, they typically require extensive tuning.

## Metropolis-Hastings



- Markov Chain a stochastic process in which future states are independent of past states, given the current state.
- Monte Carlo method an method that helps to obtain a desired value by performing simulations involving probabilistic choices.
- Metropolis Hastings
  - one of the most popular MCMC method for sampling from posterior distribution.
  - However, in case of multimodal posterior, MH algorithm generates Markov Chains that do not readily jump between modes.
  - Used when direct sampling is difficult

### Metropolis-Hastings algorithm

Let f(x) be the (possibly unnormalized) target density,  $x^{(j)}$  be a current value, and  $q(x|x^{(j)})$  be a proposal distribution, then

- Sample  $x^* \sim q(x|x^{(j)})$ .
- Calculate the acceptance probability

$$\rho(x^{(j)}, x^*) = \min \left\{ 1, \frac{f(x^*)}{f(x^{(j)})} \frac{q(x^{(j)}|x^*)}{q(x^*|x^{(j)})} \right\}.$$

• Set  $x^{(j+1)} = x^*$  with probability  $\rho(x^{(j)}, x^*)$ , otherwise set  $x^{(j+1)} = x^{(j)}$ .

## Metropolis Hasting Gibbs Sampling



### Gibbs Sampling:

- A special case of Metropolis Hastings algorithms
- Applicable when the joint distribution is not known explicitly or is difficult to sample from directly, but the conditional distribution of each variable is known
- Here we break the problem of sampling from the highdimensional joint distribution into a series of samples from low-dimensional conditional distributions.
  - we generate posterior samples by sweeping through each variable to sample from the conditional distribution with the remaining variables set to their current values.
  - Sampling depends on whether we can derive the conditional posterior distributions.

**Initialization:** Initialize  $\mathbf{x}^{(0)} \in \mathcal{R}^D$  and number of samples N

- for i = 0 to N 1 do
- $x_1^{(i+1)} \sim p(x_1|x_2^{(i)}, x_3^{(i)}, ..., x_D^{(i)})$
- $x_2^{(i+1)} \sim p(x_2|x_1^{(i+1)}, x_3^{(i)}, ..., x_D^{(i)})$
- :
- $x_j^{(i+1)} \sim p(x_j|x_1^{(i+1)}, x_2^{(i+1)}, ..., x_{j-1}^{(i+1)}, x_{j+1}^{(i)}, ..., x_D^{(i)})$
- :
- $x_D^{(i+1)} \sim p(x_D|x_1^{(i+1)}, x_2^{(i+1)}, ..., x_{D-1}^{(i+1)})$

return  $(\{\mathbf{x}^{(i)}\}_{i=0}^{N-1})$ 

## Repelling-Attracting Metropolis A | TEXAS A&M

Repelling-Attracting Metropolis (RAM) is an MH algorithm with a unique joint jumping density and an easy-to-compute acceptance probability that preserves the target marginal distribution.

- > This method was developed by Hyungsuk Tak, Xiao-Li Meng, David A. van Dyk.
- > This algorithm improve metropolis ability to jump the modes more often than Metropolis, and with less tuning requirements than tempering methods.

RAM generates a proposal via forced downhill and forced uphill Metropolis transitions.

- The forced downhill Metropolis transition uses a <u>reciprocal ratio of the target densities in its acceptance</u> <u>probability</u> which encourages it to prefer downward moves.
- > The subsequent forced uphill Metropolis transition generates a final proposal with a standard Metropolis ratio that <u>makes local modes attracting</u>.
- > Together, the downhill and uphill transitions form a proposal for a Metropolis-Hastings sampler.

## RAM PROPOSAL





x(i): Current state

x': Intermediate proposal

x'': Final proposal

### Two step procedure:

- **Downhill Metropolis**: Generate  $x' \sim N(x^{(i)}, \sigma^2)$  and
  - accept x' with probability  $\alpha_{\epsilon}^{D}(x'|x(i)) = min\{1, \frac{\pi(x^{(i)}) + \epsilon}{\pi(x') + \epsilon}\}.$
- <u>Uphill Metropolis</u>: Generate  $x'' \sim N(x', \sigma^2)$  and
  - accept x" with probability  $\alpha_{\epsilon}^{U}(\mathbf{x}'' | \mathbf{x}(\mathbf{i})) = min \{1, \frac{\pi(\mathbf{x}'') + \epsilon}{\pi(\mathbf{x}') + \epsilon}\}.$

Above steps are repeated until the proposal is accepted (forced metropolis)

## Acceptance/Rejection Probability



Accept x" with a Metropolis-Hastings acceptance probability

$$\alpha^{DU}(\mathbf{x}''|\mathbf{x}^{(i)}) = \min\{1, \frac{\pi(\mathbf{x}'')q^{DU}(\mathbf{x}^{(i)} \mid \mathbf{x}'')}{\pi(\mathbf{x}^{(i)})q^{DU}(\mathbf{x}''|\mathbf{x}^{(i)})}\}$$

$$\alpha^{DU}(\mathbf{x}''|\mathbf{x}^{(i)}) = \min\{1, \frac{\pi(\mathbf{x}'') \int N(\mathbf{x}|\mathbf{x}^{(i)}, \sigma^2)\alpha_{\epsilon}^{D}(\mathbf{x} \mid \mathbf{x}^{(i)})d\mathbf{x}}{\pi(\mathbf{x}^{(i)}) \int N(\mathbf{x}|\mathbf{x}'', \sigma^2)\alpha_{\epsilon}^{D}(\mathbf{x} \mid \mathbf{x}'')d\mathbf{x}}\}$$

- But calculating the integral part of acceptance probability is intractable.
- > So we introduce an auxiliary variable and produce a joint distribution.
- We introduce a joint target density  $\pi(x, z) = \pi(x)q(z \mid x)$

### The joint acceptance probability draws down to:

$$\alpha^{J}(z'', x''|z^{(i)}, x^{(i)}) = \min\{1, \frac{\pi^{J}(z'', x'')q^{J}(z^{(i)}, x^{(i)}|z'', x'')}{\pi^{J}(z^{(i)}, x^{(i)})q^{J}(z'', x''|z^{(i)}, x^{ii})}\}$$

$$= \min\{1, \frac{\pi(x'')\min\{1, \frac{\pi(x^{(i)}) + \epsilon}{\pi(z^{(i)}) + \epsilon}\}}{\pi(x^{(i)})\min\{1, \frac{\pi(x'') + \epsilon}{\pi(z'') + \epsilon}\}}\}$$

## RAM Algorithm



RAM is composed of 4 steps in each iteration.

- a) Steps 1-3 generates a joint proposal (z'', x'')
- Step 4 accepts or rejects the joint proposal (z'', x'')
- c) ε is introduced to avoid 0/0 values and its value is chosen to be 10e-308 (minimum positive number in R)

```
Table 1: A repelling-attracting Metropolis algorithm. Set initial values x^{(0)} and z^{(0)} (= x^{(0)}). For i = 0, 1, ... Step 1: (\searrow) Repeatedly sample x' \sim q(x' \mid x^{(i)}) and u_1 \sim \text{Uniform}(0, 1) until u_1 < \min\left\{1, \frac{\pi(x^{(i)}) + \epsilon}{\pi(x') + \epsilon}\right\}. Step 2: (\nearrow) Repeatedly sample x^* \sim q(x^* \mid x') and u_2 \sim \text{Uniform}(0, 1) until u_2 < \min\left\{1, \frac{\pi(x^*) + \epsilon}{\pi(x') + \epsilon}\right\}. Step 3: (\searrow) Repeatedly sample z^* \sim q(z^* \mid x^*) and u_3 \sim \text{Uniform}(0, 1) until u_3 < \min\left\{1, \frac{\pi(x^*) + \epsilon}{\pi(z^*) + \epsilon}\right\}. Step 4: Set (x^{(i+1)}, z^{(i+1)}) = (x^*, z^*) if u_4 < \min\left\{1, \frac{\pi(x^*) \min\{1, (\pi(x^{(i)}) + \epsilon)/(\pi(z^{(i)}) + \epsilon)\}}{\pi(x^{(i)}) \min\{1, (\pi(x^*) + \epsilon)/(\pi(z^*) + \epsilon)\}}\right\}, where u_4 \sim \text{Uniform}(0, 1), and set (x^{(i+1)}, z^{(i+1)}) = (x^{(i)}, z^{(i)}) otherwise.
```

## Sensor Network Localization



- Sensor localization is a critical step for effective application of large sensor networks and manual calibration of each sensor may be impractical.
- Sensor localization is obtaining estimates of each sensor's position as well as accurately representing the uncertainty of each estimate.
- Here, we consider a realistic example from Ihler et al. (2005): Searching for unknown sensor locations within a network using the noisy distance data. This problem is known to produce a high-dimensional, banana-shaped, and multimodal joint posterior distribution.
- We assume that the locations of the last two sensors, x5 and x6 are known and the locations of the other sensors,
   x1; x2; x3, and x4, are unknown parameters of interest.



## Sensor Network Localization



The Likelihood function is defined as below

$$L(x_1, x_2, x_3, x_4) \propto \prod_{j>i} \left[ \exp\left(-\frac{(y_{ij} - \|x_i - x_j\|)^2}{2 \times 0.02^2}\right)^{w_{ij}} \times \exp\left(-\frac{w_{ij} \times \|x_i - x_j\|^2}{2 \times 0.3^2}\right) \times \left(1 - \exp\left(-\frac{\|x_i - x_j\|^2}{2 \times 0.3^2}\right)\right)^{1 - w_{ij}} \right]$$

The full posterior distribution is

$$\pi(x_1, x_2, x_3, x_4 \mid y, w) \propto L(x_1, x_2, x_3, x_4) \times \exp\left(-\frac{\sum_{k=1}^4 x_k^\top x_k}{2 \times 10^2}\right)$$

## Sensor Network Localization - RESULTS



#### TRACE PLOT

• The trace plot, shows the sampled values of a parameter over time. This plot helps to study the convergence of MCMC procedure.



## Sensor Network Localization - RESULTS



### Scatterplots of the posterior sample of each location



## Sensor Network Localization - Histograms





### Simulated sensor network



- We simulate a sensor network similar to the previous network but with 9 nodes.
- > Nodes 7-9 are assumed to be known whereas we need to estimate parameters for nodes 1-6.
- 9 points are randomly simulated with coordinates between 0 and 1 and then distance is measured, random error is added and some of the distances are randomly removed.
- > The simulated sensor network is illustrated below.

#### Sensor network- 9 nodes



- Known points RED
- Unknown points BLACK

## Simulated sensor network- Trace plots



### Trace Plots of 6 out of 12 parameters



Number of Iteration: 250,000

Normal Proposal density with SD = 1.08

## Simulated sensor network- Scatterplots





## Simulated sensor network- Histograms





## Sensor Network Localization-Performance Statistic



### Performance statistic of RAM on 7-sensor network problem.

| Paramete<br>rs | No. of iterations | Burn in | Avg. No. of<br>downhill<br>proposals at<br>each iteration | Avg. no. of<br>uphill<br>proposals at<br>each<br>iteration | Avg. No. of<br>downhill<br>proposals for<br>auxiliary<br>variable | Total<br>Proposals | Average<br>acceptance<br>rate | Total<br>accepted<br>proposals |
|----------------|-------------------|---------|-----------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------|--------------------|-------------------------------|--------------------------------|
| X1             | 500,000           | 200,000 | 1.0001                                                    | 7.19                                                       | 1.07                                                              | 9.26               | 0.003625                      | 1632.5                         |
| X2             | 500,000           | 200,000 | 1.0003                                                    | 6.54                                                       | 1.07                                                              | 8.61               | 0.0084                        | 4200                           |
| Х3             | 500,000           | 200,000 | 1.0001                                                    | 7.29                                                       | 1.05                                                              | 9.34               | 0.00348                       | 1740                           |
| X4             | 500,000           | 200,000 | 1.0003                                                    | 6.98                                                       | 1.13                                                              | 9.11               | 0.007475                      | 3737.5                         |

### RAM v/s BFGS



### Comparison of accuracy of RAM (250k samples) & BFGS (1000 runs) results on the Sensor network

- BFGS an iterative method for solving non-linear optimization problems
  - gives a point solution i.e.a posterior mode.

RAM on the other hand gives sample from the posterior distribution.



### RAM v/s BFGS



- We compare the computational speed of RAM v/s BFGS
- The Computational speed for the RAM method is very high compared to BFGS method for same no. of iterations.
- The time comparison is done using Microbenchmark
- Ideally RAM is used to calculate the posterior distribution for large sample of order 10<sup>4</sup>
- The time complexity of both methods O(n)
- For comparing the methods,

| RAM                         | BFGS                   |
|-----------------------------|------------------------|
| 220,000 iterations – 2700 s | 1000 iterations - 78 s |



## Exoplanet dataset



- · We use RAM sampler to sample posterior from an exoplanet dataset.
- We had 6 simulated datasets with anywhere from zero to three planets in each dataset.
- For the purpose of our model generation, we used the first dataset and a 1 planet model.
- Dataset properties:
  - The dataset is a simple timeseries, including the time of observation  $(t_i)$ , measured" radial velocity  $(v_i)$ , and a measurement uncertainty  $(\sigma_i)$ .
  - Number of observations: nobs = 200
  - Observing baseline: 600 days
  - The dataset includes between zero and three planets (inclusive).
  - The dataset includes a single velocity offset and correlated, Gaussian noise to represent stellar activity.

## Exoplanet dataset- Statistical Model



Each simulated data point is generated according to

$$v_i = v_{\text{pred}}(t_i|\theta) + \epsilon_i,$$

where the first term is the velocity predicted at time ti by a model parameterised by  $\Theta$  and  $\varepsilon$ i.

The appropriate likelihood is a multi-variable normal distribution, centered on the predictions of the model.

$$\log \mathcal{L}(\theta) = -\frac{1}{2} (\mathbf{v} - \mathbf{v}_{\text{pred}}(\theta))^T \Sigma^{-1} (\mathbf{v} - \mathbf{v}_{\text{pred}}(\theta)) - \frac{1}{2} \log|\text{det}\Sigma| - \frac{n_{\text{obs}}}{2} \log(2\pi)$$

The Gaussian noise is correlated from one observation to the next. The covariance matrix is given by

$$\Sigma_{i,j} = K_{i,j} + \delta_{i,j} \left( \sigma_i^2 + \sigma_J^2 \right)$$

For the quasi-periodic kernel K<sub>i,j</sub>, we assume

$$K_{i,j} = \alpha^2 \exp\left[-\frac{1}{2} \left\{ \frac{\sin^2[\pi(t_i - t_j)/\tau]}{\lambda_p^2} + \frac{(t_i - t_j)^2}{\lambda_e^2} \right\} \right],$$

## **Exoplanet dataset- Priors**



· There are 7 parameters considered in a 1 planet model. The prior of these parameters are

| Para.               | Prior         | Mathematical Form                                              | $\operatorname{Min}$ | Max    |
|---------------------|---------------|----------------------------------------------------------------|----------------------|--------|
| T(days)             | Jeffreys      | $\frac{1}{T \ln \left(\frac{T_{max}}{T_{min}}\right)}$         | 39.81                | 44.66  |
| $K(ms^{-1})$        | Mod. Jeffreys | $\frac{(K+K_0)^{-1}}{\ln\left(\frac{K_0+K_{max}}{K_0}\right)}$ | 1.0                  | 999.0  |
| $V(ms^{-1})$        | Uniform       | $\frac{1}{V_{max}-V_{min}}$                                    | -1000                | 1000   |
| e                   | Uniform       | 1                                                              | 0                    | 1      |
| $\overline{\omega}$ | Uniform       | $\frac{1}{2\pi}$                                               | 0                    | $2\pi$ |
| χ                   | Uniform       | 1                                                              | 0                    | 1      |
| $s(ms^{-1})$        | Mod. Jeffreys | $\frac{(s+s_0)^{-1}}{\ln\left(\frac{s_0+s_{max}}{s_0}\right)}$ | 1                    | 99     |

where T – Planet's Orbital Period

K – Planet's RV Semi Amplitude

e - Planet's eccentricity

w – Planet's argument of pericenter

X – Planet's mean anomaly

s – Additional white noise term

V – RV Velocity offset

## Exoplanet dataset - RAM v/s Metropolis



- We compare the trace plots of one of the parameter using Metropolis and RAM with same number of runs.
- We can see that RAM is more likely to jump between modes than Metropolis.





<u>RAM</u>

## Exoplanet dataset- TRACE PLOTS





## Exoplanet dataset- Histogram







