(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-305472

(P2003-305472A)

(43)公開日 平成15年10月28日(2003.10.28)

(51) Int.Cl. ⁷		識別記号		FΙ				วั	7]ド(参考)
C 0 2 F	1/46			C 0 2	2 F 1	/46		Z	4D061
	1/68	5 1 0			1	./68		510B	$4 \ \mathrm{K} \ 0 \ 2 \ 1$
								510H	
		5 2 0						520B	
		5 3 0						5 3 0 B	
			審査請求	未請求 請	青求項の	数 5	OL	(全 8 頁)	最終頁に続く

(21)出願番号	特願2002-115715(P2002-115715)
----------	-----------------------------

(22)出願日 平成14年4月18日(2002.4.18)

(71)出願人 000004260

株式会社デンソー

愛知県刈谷市昭和町1丁目1番地

(72)発明者 中村 賢治

愛知県刈谷市昭和町1丁目1番地 株式会

社デンソー内

(72)発明者 三田 隆浩

愛知県刈谷市昭和町1丁目1番地 株式会

社デンソー内

(74)代理人 100106149

弁理士 矢作 和行

最終頁に続く

(54) 【発明の名称】 水改質装置

(57)【要約】

【課題】 電解槽 2へ水を導入する給水管 6 の途中にカルシウム添加装置 7 を設けて、カルシウムを豊富に含有する改質水を容易に生成することのできるアルカリ整水器 1 を提供する。

【解決手段】 電解槽2内に対向して配されるPtからなる一対の第1電極3a、3bへ制御装置5により電圧を印加して、第1電極3a、3b間に配されるマグネシウム製の2枚の第2電極4からMg²⁺イオンを溶出させることにより電解槽2内の水をアルカリ性に改質する水改質装置であるアルカリ整水器1において、電解槽2へ上水道管2から水を導入する給水管6の途中にカルシウム添加装置7を設け、水中にカルシウムを添加する構成とした。これにより、第2電極としてマグネシウムとカルシウムとの合金を用いた従来の水改質装置の場合と比較して、より豊富にカルシウムを含有するアルカリ性の改質水を容易に生成することができる。

【特許請求の範囲】

【請求項1】 水道水等を電解槽へ導入する給水管と、 前記電解槽から外部へ水を流出させる排水管と、

前記電解槽内に対向して配される導電性金属から形成される一対の第1電極と、

前記一対の第1電極間に配されるマグネシウムから形成 される第2電極と、

前記一対の第1電極へ電圧を印加する制御手段とを備え、

前記制御手段により前記一対の第1電極に電圧を印加し 10前記第2電極からMg²⁺イオンを溶出させて前記電解槽内の水をアルカリ性に改質する水改質装置において、前記給水管の途中に、前記電解槽に導入する水にカルシウムを添加するカルシウム添加手段を設けることを特徴とする水改質装置。

【請求項2】 前記一対の第1電極は、貴金属または貴金属合金から形成されることを特徴とする請求項1に記載の水改質装置。

【請求項3】 前記カルシウム添加手段は、水を沪過する沪過手段を備えることを特徴とする請求項1または請求項2に記載の水改質装置。

【請求項4】 前記制御手段は、前記一対の第1電極の一方に高電位電圧を印加し且つ他方に低電位電圧を印加する第1通電モードと、前記一対の第1電極の一方に低電位電圧を印加し且つ他方に高電位電圧を印加する第2通電モードとを交互に切替えることを特徴とする請求項1ないし請求項3のいずれかに記載の水改質装置。

【請求項5】 前記第1通電モードおよび前記第2通電モードの各継続時間を同じ時間としたことを特徴とする請求項4に記載の水改質装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、水道水等の原水を 電気分解によりアルカリ性に改質する水改質装置に関す るものである。

[0002]

【従来の技術】水道水等の原水をマグネシウム電極により電気分解してアルカリ性の改質水を生成する水改質装置として、たとえば特開2001-191078号公報に開示されるものがある。ここに提案される水改質装置 40によれば、マグネシウム電極の代わりにマグネシウムとアルカリ土類金属(たとえばカルシウム)との合金を用いると、マグネシウムイオン(Mg²+)と同時にカルシウムイオン(Ca²+)が生成され、原水をアルカリ性に効率的に改質でき、電気分解のための電力を低減することができる。

【0003】ところで、この水改質装置により生成されるアルカリ性改質水の用途(たとえば、飲料水、浴水等)によっては、改質水中により豊富にカルシウムを含有することが要求される。

[0004]

【発明が解決しようとする課題】しかしながら、上述の水改質装置においては、C a²⁺の原料であるカルシウムを、電極をマグネシウムーカルシウム合金により形成することで供給しており、電極として必要な強度を確保するために、カルシウムの含有量は約20重量%以下に制限されている。このため、改質水中のカルシウム含有量を十分確保できない、という問題があった。

【0005】本発明は、上記のような問題点に鑑みてなされたものであり、電解槽へ水を導入する給水管の途中にカルシウム添加手段を設けて、カルシウムを豊富に含有する改質水を容易に生成することのできる水改質装置を提供することを目的とする。

[0006]

【課題を解決するための手段】本発明は上記目的を達成 するため、以下の技術的手段を採用する。本発明の請求 項1に記載の水改質装置は、水道水等を電解槽へ導入す る給水管と、電解槽から外部へ水を流出させる排水管 と、電解槽内に対向して配される導電性金属から形成さ れる一対の第1電極と、一対の第1電極間に配されるマ グネシウムから形成される第2電極と、一対の第1電極 へ電圧を印加する制御手段とを備え、制御手段により一 対の第1電極に電圧を印加し第2電極からMg2+イオン を溶出させて電解槽内の水をアルカリ性に改質する水改 質装置において、給水管の途中に、電解槽に導入する水 中にカルシウムを添加するカルシウム添加手段を設ける 構成とした。これにより、第2電極としてマグネシウム とカルシウムとの合金を用いた従来の水改質装置の場合 と比較して、より豊富にカルシウムを含有する改質水を 30 生成することができる。

【0007】本発明の請求項2に記載の水改質装置は、一対の第1電極は、貴金属または貴金属合金から形成される構成とした。これにより、第1電極の交換を不要とすることができる。

【0008】本発明の請求項3に記載の水改質装置は、カルシウム添加手段は、水を沪過する沪過手段を備える構成としている。これにより、カルシウム添加手段内のカルシウム製剤やその細片が電解槽に導入されることを防止できる。

【0009】本発明の請求項4に記載の水改質装置は、制御手段は、一対の第1電極の一方に高電位電圧を印加し且つ他方に低電位電圧を印加する第1通電モードと、一対の第1電極の一方に低電位電圧を印加し且つ他方に高電位電圧を印加する第2通電モードとを交互に切替える構成とした。これにより、一対の第1電極への電圧印加により電解槽において電気分解が進行する際に、マグネシウムから形成される第2電極の両面をほば均等に消耗させることができ、第2電極の寿命を延長することができる。

50 【0010】すなわち、一対の第1電極へ電圧を印加す

ると、電解槽おいては、第2電極の高電位電圧電極側表面にMg(OH)2が析出し、この析出物質のために第2電極表面におけるMg2+イオンの溶出が不均等となり、第2電極表面に亀裂、あるいは荒れ(凹凸状態)が発生する。この状態が続くと、第2電極表面からの微小なマグネシウム片の剥離が発生して電極の寿命が短縮される。そこで、一対の第1電極への電圧印加の極性を入れ換え、さらにそれを順次繰返すことにより、第2電極の表裏両面の劣化状態(亀裂、荒れ等)を均等とすることができるので、第2電極の寿命を延長することができる。

【0011】この場合、請求項5に記載の発明のように、第1通電モードおよび第2通電モードの継続時間を等しく設定すれば、第2電極の表裏両面の消耗度合いを確実に同等レベルにできるので第2電極の寿命を延長することができる。

[0012]

【発明の実施の形態】以下、本発明による水改質装置を、主として飲料用水をアルカリ性に改質するアルカリ整水器に適用した場合を例に図面に基づいて説明する。 【0013】図1は、本発明の一実施形態による水改質装置であるアルカリ整水器1の構成を示す説明図である。

【0014】アルカリ整水器1は、外部の上水道管に接 続された蛇口12の下流側に、切替え弁10を介して接 続されている。この切替え弁10を操作することによ り、水道水をそのまま放水管13から流出させたり、ア ルカリ整水器1に流入させたり切替えることができる。 【0015】アルカリ整水器1は、大きくは、図1に示 すように、一対の第1電極3a、3bおよび第2電極4 を備える電解槽2と、一対の第1電極3a、3bへ電圧 を印加する制御手段である制御装置5と、外部の上水道 管に接続された蛇口12からの水を電解室2に導入する 給水管6と、給水管6の途中に設けられたカルシウム添 加手段であるカルシウム添加装置7と、電解室2内の改 質水を外部へ流出させる排水管である吐水管9とを備え ている。これにより、蛇口12からの水を電解室2へ導 入する途中において、カルシウム添加装置7により水中 にカルシウムを添加すると共に、この水を、電解槽2に おいてマグネシウムで形成された第2電極4を用いて電 40 気分解してアルカリ性に改質するものである。

【0016】電解槽2は、耐腐食性に富む材料、たとえばプラスチックなどの材料で形成されている。また、電解槽2には、図1に示すように、導電性金属から形成される一対の第1電極3a、3bが互いに対向して設けられている。両第1電極3a、3bは、貴金属であるプラチナ(以降Ptと書く)から形成されている。すなわち、チタン製の基材の表面にPtメッキを施して、あるいはチタン製の基材の表面にPt粒子を焼着して形成されている。両第1電極3a、3b間には、マグネシウム50

から形成された第2電極4が2枚配置されている。ここで、隣合う各電極間の隙間長さは等しくなるように設定されている。また、第1電極3a、3bは、後述する制御装置5に電気的に接続されている。

4

【0017】電解槽2の下部には、図1に示すように、蛇口12からの水を電解槽2に導入する給水管6が接続されている。給水管6の電解槽2と反対側は、蛇口12に接続されている。また、給水管6の途中には後述するカルシウム添加装置7が設置されている。さらに、給水管6のカルシウム添加装置7より上流側には、給水管6を開閉するための電磁弁8が取付けられている。この電磁弁8は、後述する制御装置5に電気的に接続されている。一方、電解槽2の上部には、電解槽2から外部へ水を流出させる排水管である吐水管9が接続されている。【0018】カルシウム添加装置7は、給水管6の途中、すなわち、図1に示すように、蛇口12と電解槽2との間に設けられている。図2は、本発明の一実施形態によるアルカリ整水器1におけるカルシウム添加装置7の構成を示す説明図である。

20 【0019】カルシウム添加装置7は、図2に示すように、給水管6に接続されるベース部72およびカルシウム製剤等を内蔵するカートリッジ部71とから構成されている。

【0020】ベース部72は、樹脂等から形成され、カートリッジ部71を固定するためのボス部72aを備えている。ボス部72aの外周には雄ねじ(図示せず)が設けられ、これと螺合することによりカートリッジ部71がベース部72に固定される。また、ベース部72には、カートリッジ部71个水を導入する通路である給水路72b、カートリッジ部71からの水を排出する通路である排水路72cが形成されている。

【0021】カートリッジ部71は、図2に示すよう に、樹脂等から形成されたケース71a内に、カルシウ ムである、たとえばペレット状(比較的均一な寸法を有 する成形材)に形成されたカルシウム製剤71bと、水 を沪過する沪過手段であるフィルタ71 cとを収容保持 している。カルシウム製剤71bとしては、乳酸カルシ ウム、グリセロリン酸カルシウム等が用いられている。 一方、フィルタ71cとしては、カルシウム製剤71b より小さい直径の小孔を多数設けた板材と中空糸膜等を 積層したものが用いられている。したがって、フィルタ 71 cによりカルシウム製剤71 bがカートリッジ部7 1から下流側へ流出し電解槽2へ侵入することを防止で きる。さらに、蛇口12からの水に含まれる種々の異物 も、フィルタ71cにより捕集除去することができる。 カートリッジ部71は、ボス部72aにねじ込むことに よりベース部72に固定される。また、カートリッジ部 71、ベース部72間の気密は〇ーリング73により保 たれている。

0 【0022】カルシウム添加装置7を上述のような構成

としたことにより、アルカリ整水器1の使用過程においてカルシウム製剤71bが消耗し補給が必要となった場合、カートリッジ71を交換するという簡単な作業でカルシウム製剤71bを補給することができる。

5

【0023】蛇口12からの水は、カルシウム添加装置7の内部を、図2中において矢印で示す方向に流れ、この間にカルシウム製剤71bの表面からカルシウムイオン(Ca²+)が水中に溶出する。これにより、電解槽2により生成される改質水に、Ca²+、すなわちミネラル成分を豊富に含有させることができる次に、第1電極3 10a、3bに電圧を印加する制御手段である制御装置5の構成について説明する。図3には、本発明の一実施形態によるアルカリ整水器1の制御装置5の電気回路構成図を示す。

【0024】制御装置5は、図3に示すように、たとえば100Vの交流電源11に接続している。制御装置5は、100Vの交流電源11からの交流電力を所定電圧の直流に変換する変換部51と、変換部51から直流電力を供給されて第1電極3a、3bへ電圧を印加する電源部52と、変換部51からの直流電力により作動して電源部52に対して第1電極3a、3bへの電圧印加信号を出力する制御部53とを備えている。すなわち、電源部52は、制御部53からの電圧印加信号に基づいて第1電極3a、3bへ電圧を印加する。

【0025】本発明の一実施形態によるアルカリ整水器 1においては、変換部51は、電源部52へ直流24V を、制御部53へ直流5Vをそれぞれ供給している。

【0026】電源部52は、一対の第1電極3a、3bの一方である第1電極3aに高電位電圧として24Vを印加すると共に、他方の電極である第電極3bに低電位 30電圧として0Vを印加する。

【0027】制御部53は、電源部52に対して、第1 電極3aに高電位電圧として24Vを印加すると共に第 1電極3bに低電位電圧として0Vを印加する第1通電 モードと、第1電極3aに低電位電圧として0Vを印加 すると共に第1電極3bに高電位電圧として24Vを印 加する第2通電モードとを交互に繰返させるように電圧 印加信号を出力している。さらに、第1通電モードの通 電時間と第2通電モードの通電時間とは等しくなるよう に設定されており、本発明の一実施形態によるアルカリ 整水器 1 においては、それぞれ 3 分間に設定されてい る。また、制御部53には、給水管6内に水が流れてい ることを検出する、言い換えると、蛇口12から給水管 6を介して改質槽2へ水道水が流入していることを検出 する流水センサ8が接続されている。流水センサ8の出 力信号レベルは、水が流れていない時にはし、水が流れ ている時にはHである。

【0028】次に、本発明の一実施形態によるアルカリ 整水器1の作動について、図4に示すアルカリ整水器1 における各部の作動のタイムチャートに基づいて説明す 50

【0029】図4は、本発明の一実施形態によるアルカリ整水器1における、流水センサ8、第1電極3a、3bそれぞれの通電状態のタイムチャートである。すなわち、図4(a)には、流水センサ8の出力信号レベルを、図4(b)には、第1電極3a、3bへの電圧印加状態を示す。図4(a)、(b)において、縦軸は出力

状態を示す。図4(a)、(b)において、縦軸は出力 信号レベル(L、H)あるいは通電状態(ON、OF F)を示し、横軸は時間(t)を示す。

【0030】使用者が、蛇口12を開けるとともに、切替え弁10を操作して、水道水が給水管6に流入すると、図4(a)に示すように、流水センサ8の出力信号レベルがしからHに変化する。これにより、制御装置5の制御部53が作動を開始する。すなわち、図4(b)に示すように、第1電極3a、3bへの電圧印加制御を開始する。

【0031】この時、蛇口12からの水は、カルシウム添加装置7内を通過することによりCa²+(カルシウムイオン)が添加され、それから電解槽2に流入する。

【0032】一方、制御装置5においては、制御部53が電源部52に対して第1電極3a、3bへ電圧印加、すなわち3分間の第1通電モードと3分間の第2通電モードとを交互に繰返させるように電圧印加信号を出力する。その結果、第1通電モードとして第1電極3aに高電位電圧として24Vが、第1電極3bに低電位電圧として0Vが3分間印加されると、続いて第2通電モードとして、第1電極3aに低電位電圧として0Vが、第1電極3bに高電位電圧として24Vが3分間印加され、これが交互に繰り返される。この時、第1電極3a、3b、および2枚の第2電極4において、隣合う各電極間の隙間長さは等しくなるように設定されているので、隣合う2つの電極間の電位差は8V(24V/3)となっている。これにより、各第2電極4の消耗状態、すなわち電極寿命を同等とすることができる。

【0033】上述のような電圧印加により、電解槽2内 においては、第1電極3a、3b、および2枚の第2電 極4により電気分解が進行する。なお、図1は、第1通 電モード、すなわち第1電極3aに24V、第1電極3 bにOVが印加されている状態を示している。電解槽2 において第1通電モード時には、図1に示すように、2 4 Vが印加される第1電極3 aが+極、0 Vが印加され る第1電極3bが一極として作用する。同時に、各第2 電極4においては、+極である第1電極3a側表面4a が一極、一極である第1電極3b側表面4bが+極とし て作用する。したがって、電解室2において、+極とし て作用する各第2電極4の表面4 bからMg2+イオンが 溶出し、-極として作用する各第2電極4の表面4 aか SH_2 が発生する。そのため、下記(化1)~(化4) 式に示すような反応が生じ、電解室2内の水がアルカリ 性に改質される。

[0034]

【化1】 $2H_2O\rightarrow 2H^++2OH^-$

[0035]

【化2】 $2H^+ + 2e^- \rightarrow H_2 \uparrow$

[0036]

【化3】 $Mg \rightarrow Mg^{2+} + 2e^{-}$

[0037]

【化4】 $Mg^{2+}+2OH-\rightarrow Mg(OH)_2$

また、この改質水は、カルシウム添加装置7内を通過す る際にCa²⁺(カルシウムイオン)が添加されているの 10 いる。これにより、カルシウム添加装置7内のカルシウ で、ミネラル成分を豊富に含んでいる。

【0038】上述の第1通電モードが進行すると、第2 電極4の第1電極3b側表面4bには生成されたMg (OH)₂が析出し始める。このMg(OH)₂の析出量 が多くなると、第2電極4の表面4bからのMg2+イオ ンの溶出が不均一となり、表面4bに亀裂が入ったり、 表面4 bが荒れて凹凸を生じたりする。この状態が続く と、表面4 bから微細なマグネシウム片の剥離が発生し て第2電極4の寿命が短くなってしまう。第1通電モー ドが3分間経過した時点で第2通電モードに切替えて、 第2電極4において、こんどは表面4bと反対側の表面 4 aからMg²⁺イオンを溶出させると共に、表面4 bに 析出し始めたMg(OH)2を水中に溶解させて表面4 bを復元することで、第2電極4の表面4a、4bの荒 れを防止し、第2電極4の寿命を長期化することができ る。

【0039】また、第2電極4は、Mg2+イオンの溶出 により消耗するため定期的な交換が必要となる。本発明 の第1実施形態によるアルカリ整水器1においては、第 2電極4は、第1電極3a、3bのように制御装置5に 電気的に接続されていないので、その交換作業を容易に 実施することができる。

【0040】次に、使用者が、切替え弁10を放水管1 3側に切替える、あるいは蛇口12を閉じることにより 給水管6への水道水の流入が停止すると、図4(b)に 示すように、流水センサ8の出力信号レベルがHからL へ変化する。これにより、制御装置5は、図4(b)に 示すように、第1電極3a、3bへの通電を停止する。 【0041】以上説明した、本発明の一実施形態による アルカリ整水器1おいては、水道水等の水を電解槽2へ 40 導入する給水管6と、電解槽2から外部へ水を流出させ る吐出管9と、電解槽2内に対向して配される貴金属で あるPtから形成される一対の第1電極3a、3bと、 一対の第1電極3 a、3 b間に配されるマグネシウムか ら形成される2枚の第2電極4と、一対の第1電極3 a、3bへ電圧を印加する制御手段である制御装置5と を備え、制御装置5により一対の第1電極3a、3bに 電圧を印加して第2電極4からMg2+イオンを溶出させ て電解槽2内の水をアルカリ性に改質する水改質装置で あるアルカリ整水器 1 において、給水管 6 の途中に、電 50 【0048】また、以上説明した、本発明の一実施形態

解槽2に導入する水中にカルシウムを添加するカルシウ ム添加手段であるカルシウム添加装置7を設ける構成と した。これにより、第2電極としてマグネシウムとカル シウムとの合金を用いた従来の水改質装置の場合と比較 して、より豊富にカルシウムを含有する改質水を生成す ることができる。

【0042】また、本発明の一実施形態によるアルカリ 整水器1おいては、カルシウム添加装置7は、水を沪過 する沪過手段であるフィルタ71cを備える構成として ム製剤71bやその細片が電解槽2に侵入することを防 止できる。

【0043】また、本発明の一実施形態によるアルカリ 整水器1おいては、制御装置5は、一対の第1電極3 a、3bの一方に高電位電圧を印加し且つ他方に低電位 電圧を印加する第1通電モードと、一対の第1電極3 a、3bの一方に低電位電圧を印加し且つ他方に高電位 電圧を印加する第2通電モードとを交互に切替えると共 に、第1通電モードおよび第2通電モードの継続時間を 等しく設定した。これにより、一対の第1電極への電圧 印加により電解槽2において電気分解が進行した際に、 マグネシウムから形成される第2電極4の表裏両面の消 耗度合いを確実に同等レベルにできるので第2電極4の 寿命を延長することができる。

【0044】なお、以上説明した、本発明の一実施形態 によるアルカリ整水器1においては、第2電極4の個数 を2枚としているが、これを2枚に限らなくてもよい。 たとえば、3枚であってもよい。さらに、複数枚の第2 電極4を電気絶縁材料、たとえば樹脂等からなるスペー サに固定してユニット化し、複数枚の第2電極4を1個 の部品とすれば、第2電極4の交換作業性を向上するこ とができる。

【0045】また、以上説明した、本発明の一実施形態 によるアルカリ整水器1においては、第1電極3a、3 bをチタン製の基材の表面に貴金属であるP tをメッキ あるいは焼着して形成したが、Pt単体から形成しても よい。これによっても、第1電極3a、3bを交換不要 とすることができる。

【0046】また、以上説明した、本発明の一実施形態 によるアルカリ整水器1において、第2電極4としてマ グネシウムの鋳造材を用いているが、他の製法によるマ グネシウム材、たとえば圧延材、焼結材、押出し材等を 用いてもよい。

【0047】また、以上説明した、本発明の一実施形態 によるアルカリ整水器1において、第1電極3a、3b の少なくとも一方をマグネシウムで形成してもよい。こ の場合、マグネシウム製電板の総面積を大きくできるの で、小容量の電解槽2で短時間に改質水を生成すること ができる。

によるアルカリ整水器1において、マグネシウムで形成 された第2電極4を廃止して、第1電極3a、3bをマ グネシウムで形成してもよい。

【0049】また、以上説明した、本発明の一実施形態 によるアルカリ整水器1においては、カルシウム製剤7 1 bをペレット状としているが、ペレット状に限定する 必要はなく、他の形態、たとえば錠剤、粒状あるいは塊 状であってもよい。

【0050】また、以上説明した、本発明の一実施形態 によるアルカリ整水器1におけるカルシウム添加装置7 10 およびカートリッジ71の構造は、図2に示すものに限 る必要はなく他の構造であってもよい。

【0051】また、本発明の一実施形態によるアルカリ 整水器1の作動に関しては、図4(a)、(b)の各タ イムチャートに示す内容に限定するものではなく、必要 に応じて変更してもよい。

【0052】また、本発明の一実施形態によるアルカリ 整水器1においては、制御装置5の電源を100Vの交 流電源11としているが、他の電源、たとえば、200 Vの交流電源、または蓄電池等の直流電源を用いてもよ 20

【0053】また、本発明の一実施形態によるアルカリ 整水器1における切替え弁10は、手動式、あるいは電 磁弁等を用いた動力式のどちらでもよい。

【0054】次に、本発明の一実施形態によるアルカリ 整水器1の変形例について説明する。

【0055】図5は、本発明の一実施形態によるアルカ リ整水器1の変形例による電解槽2における各電極配置 を示す説明図である。この変形例においては、一対の第 1電極3a、3bの一方を2個設けている。すなわち、 図5に示すように、3個の第1電極3a、3b、3cを 設置すると共に、第1電極3b、3cを接続して同極性 の電極として作動させている。また、第1電極3aを上 述の一実施形態の場合と同様Ptから、第1電極3b、 3 c をマグネシウムから形成している。この変形例の電 極構成によっても、上述の本発明の一実施形態によるア ルカリ整水器1の場合と同様にアルカリ性改質水を生成 することができる。この場合、第1電極3aをマグネシ ウムから、第1電極3b、3cをPtから形成してもよ い。あるいは、第1電極3a、3b、3cの全てをマグ ネシウムで形成してもよい。

【0056】図6には、本発明の一実施形態によるアル カリ整水器1の他の変形例による電解槽2内の各電極配 置を示す。この他の変形例においては、上述の変形例に おける第1電極3a、3b、3cをPtから形成すると 共に、第1電極3a、3b間、第1電極3a、3c間 に、図6に示すように、マグネシウム製の第2電極4を 2枚ずつ配置したものである。この他の変形例の電極構 成によっても、上述の本発明の一実施形態によるアルカ リ整水器1の場合と同様にアルカリ性改質水を生成する 50 716 10

ことができる。この場合、第1電極3a、3b間、第1 電極3a、3c間に配置する第2電極4の枚数を、1枚 ずつ、あるいは3枚以上ずつとしてもよい。また、第1 電極3a、3b、3cの少なくとも1つをマグネシウム で形成してもよい。

【0057】なお、以上説明した、本発明の一実施形態 によるアルカリ整水器1、その変形例および他の変形例 においては、第1電極3a、3b、3c、第2電極4を 板形状としているが、板形状に限定されるものではなく 他の形状であってもよい。たとえば螺旋形状としてもよ

【0058】また、以上において、本発明による水改質 装置を、主として飲料用水をアルカリ性に改質するアル カリ整水器1に適用した場合を例に説明してきたが、本 発明による水改質装置の用途は飲料水改質用に限定する ものではなく、他の用途、たとえば浴水改質用、あるい は栽培作物に散布する農業用水改質用等に用いてもよ

【図面の簡単な説明】

【図1】本発明の第1実施形態によるアルカリ整水器1 の構成を示す説明図である。

【図2】本発明の第1実施形態によるアルカリ整水器1 におけるカルシウム添加装置7の構成を示す説明図であ

【図3】本発明の第1実施形態によるアルカリ整水器1 の制御装置5の電気回路構成を示す説明図である。

【図4】(a)は、流水センサ8の出力信号レベルを示 すタイムチャートである。(b)は、第1電極3a、3 bへの電圧印加状態を示すタイムチャートである。

【図5】本発明の一実施形態によるアルカリ整水器1の 変形例における電解槽2内の電極配置構成を示す説明図 である。

【図6】本発明の一実施形態によるアルカリ整水器1の 他の変形例における電解槽2内の電極配置構成を示す説 明図である。

【符号の説明】

- アルカリ整水器(水改質装置) 1
- 2 電解槽
- 3 第1電極
- 3a, 3b, 3c 第1電極
 - 4 第2電極
 - 制御装置(制御手段) 5
 - 変換部 51
 - 52 電源部
 - 53 制御部
 - 給水管 6
 - カルシウム添加装置(カルシウム添加手段) 7
 - カートリッジ部 7 1
 - 71a ケース
- カルシウム製剤(カルシウム)

71с	フィルタ(沪過手段))	8	流水センサ
72	ベース部		9	吐出管(排水管)
72a	ボス部		10	切替え弁
72b	給水路		1 1	交流電源
72c	排水路		12	蛇口
73	O-リング		13	放水管

フ	ロン	トペー	-ジの続き
	ωz	1, / -	ニンクリ常正さ

(51) Int. Cl. 7		識別記号	FΙ		テーマコード(参考)
C 0 2 F	1/68		C 0 2 F	1/68	530L
		540			540E
C 2 5 B	1/06		C 2 5 B	1/06	
	15/00	302	1	15/00	3 0 2 Z
	15/08	302	1	15/08	302

F ターム(参考) 4D061 DA03 DA07 DB09 EA02 EB01 EB04 EB14 EB21 EB30 EB31 EB39 ED12 GC14

4K021 AB25 BA02 BB03 BC01 BC09

DA09 DA13 DC15

PAT-NO: JP02003305472A

DOCUMENT-IDENTIFIER: JP 2003305472 A

TITLE: WATER REFORMER

PUBN-DATE: October 28, 2003

INVENTOR-INFORMATION:

NAME COUNTRY

NAKAMURA, KENJI N/A MITA, TAKAHIRO N/A

ASSIGNEE-INFORMATION:

NAME COUNTRY

DENSO CORP N/A

APPL-NO: JP2002115715 **APPL-DATE:** April 18, 2002

INT-CL (IPC): C02F001/46 , C02F001/68 , C25B001/06 , C25B015/00 ,

C25B015/08

ABSTRACT:

PROBLEM TO BE SOLVED: To provide an alkaline ionized water apparatus 1 which easily produces reformed water containing calcium in abundance by disposing a calcium addition device 7 in the way of a water feeding pipe 6 introducing water to a dialyzer 2.

SOLUTION: In the alkaline ionized water apparatus 1 as a water reformer, a voltage is applied to a pair of first electrodes 3a, 3b made of Pt which are disposed opposite to the dialyzer 2 by the use of a controller 5, Mg

COPYRIGHT: (C) 2004, JPO