1 Wstęp

Celem tych zadań jest oswojenie Cię z pojęciami, z których będziemy korzystać na warsztatach - zatem spróbuj rozwiązać wszystkie zadania, nabyta wiedza okaże się pomocna!

Żadna dodatkowa literatura nie powinna być potrzebna do rozwiązania tych zadań, jednak w razie problemów z zadaniami, sugestii zmian lub chęci zobaczenia określonych kategorii na warsztatach, zachęcamy do kontaktu.

Obok każdego zadania znajduje się liczba punktów, jakie planujemy za nie przyznać. Nie wykluczamy jednak zmian w punktacji. Za szczególnie eleganckie rozwiązanie, którego nie przewidzieliśmy, będziemy przyznawać dodatkowe punkty, wedle własnego poczucia estetyki.

2 Kategorie

Kategoriq nazywamy kolekcję ¹ obiektów A, B, C..., taką, że dla każdych dwóch obiektów A, B istnieje zbiór Hom(A, B) morfizmów z A do B. Na ogół piszemy $f: A \to B$ zamiast $f \in Hom(A, B)$. Zakładamy też, że istnieje operacja składania morfizmów o posiadająca następujące własności:

- 1. Jeśli $f: A \to B$ oraz $g: B \to C$, to istnieje morfizm $g \circ f: A \to C$.
- 2. Dla dowolnych trzech morfizmów $f:A\to B, g:B\to C, h:C\to D$ mamy równość: $(h\circ q)\circ f=h\circ (q\circ f).$
- 3. Dla każdego obiektu X istnieje morfizm $\mathrm{Id}_X:X\to X,$ taki że dla każdego morfizmu $f:A\to B$ mamy $\mathrm{Id}_B\circ f=f\circ \mathrm{Id}_A.$
- 1. [3] Niech obiektami będą zbiory, morfizmami funkcje, a operacją o złożenie funkcji². Pokaż, że jest to kategoria dowodząc, że:
 - 1. dla dowolnych zbiorów A, B, wszystkie funkcje z A do B tworzą zbiór (nazywany $\operatorname{Hom}(A, B)$).
 - 2. dla dowolnych trzech funkcji $f:A\to B, g:B\to C, h:C\to D$ mamy równość: $(h\circ g)\circ f=h\circ (g\circ f).$
 - 3. dla każdego zbioru X znajdź funkcję³ Id_X taką, że dla dowolnej $f:A\to B$ mamy $\mathrm{Id}_B\circ f=f=f\circ\mathrm{Id}_A.$

Kategorię tę nazywamy **Set**.

¹Można myśleć o tym jak o zbiorze, do którego można włożyć dowolnie dużo elementów. Zainteresowanych jak uniknąć paradoksu zbioru wszystkich zbiorów odsyłamy do teorii klas Morse'a-Kelleya.

²Cóż za niezwykły zbieg okoliczności - to ten sam symbol!

³Ciekawe jak się może nazywać...

3 Morfizmy

3.1 Epimorfizmy

Niech $f:A\to B$ będzie morfizmem. Mówimy, że f is epimorfizmem jeśli dla dowolnego obiektu C oraz morfizmów $g,g':B\to C$ z równości $g\circ f=g'\circ f$ wynika, że g=g'.

- **2.** [4] Pokaż, że jeśli $f:A\to B$ oraz $g:B\to C$ są epimorfizmami, to $g\circ f$ też jest epimorfizmem.
- **3.** [4] Pokaż, że w kategorii **Set** epimorfizmy to dokładnie surjekcje (każdy epimorfizm jest surjekcją, a każda surjekcja epimorfizmem).

Jako, że obiektami kategorii nie muszą być zbiory, pojęcie "funkcji na" w ogólności może nie mieć sensu, dlatego zdanie "każdy epimorfizm to surjekcja" nie musi mieć sensu. Okazuje się, że

4. [4] Skonstruuj kategorię, której obiektami są pewne zbiory (tak więc pojęcie surjekcji ma sens), natomiast istnieje epimorfizm niebędący surjekcją.

3.2 Monomorfizmy

Niech $f:A\to B$ będzie morfizmem. Mówimy, że f is monomorfizmem jeśli dla dowolnego obiektu C oraz morfizmów $g,g':X\to A$ z równości $f\circ g=f\circ g'$ wynika, że g=g'.

- 5. [1] Pokaż, że jeśli $f:A\to B$ oraz $g:B\to C$ są monomorfizmami, to $g\circ f$ też jest monomorfizmem.
- **6.** [1] Pokaż, że w kategorii **Set** monomorfizmy to dokładnie iniekcje (każdy monomorfizm jest iniekcją, a każda iniekcja monomorfizmem).
- 7. [1] Skonstruuj kategorię, której obiektami są pewne zbiory (tak więc pojęcie surjekcji ma sens), natomiast istnieje monomorfizm niebędący iniekcją.

3.3 Izomorfizmy

Niech $f:A\to B$ będzie morfizmem. Jeśli istnieje $f':B\to A$ takie, że $f\circ f'=\mathrm{Id}_B$ oraz $f'\circ f=\mathrm{Id}_A$, to f nazywamy izomorfizmem.

- **8.** Będziemy wykorzystywać izomorfizmy do utożsamiania pewnych przestrzeni. W tym celu przyda nam się własności podobne do występujących w definicji relacji równoważności ⁴.
 - [2] Pokaż, że:
 - 1. dla każdego obiektu A istnieje izomorfizm z A do A.
 - 2. jeśli istnieje izomorfizm z A do B, to istnieje też izomorfizm z B do A.
 - 3. jeśli istnieje izomorfizm z A do B oraz z B do C, to istnieje też izomorfizm z A do C.
- 9. To zadanie ma przekonać Cię, że znasz już sporo własności izomorfizmów. [2]
 - 1. Pokaż, że każdy izomorfizm jest monomorfizmem oraz epimorfizmem.
 - 2. Skonstruuj kategorię, dowodzącą, że twierdzenie odwrotne nie jest prawdziwe (czyli, że istnieje morfizm będący epimorfizmem i monomorfizmem, natomiast nie izomorfizmem).
- 10. [1] Czym są izomorfizmy w kategorii Set?

4 Kategoria Set, i funktory

Zbiorem z wyróżnionym punktem nazywamy parę (X,x), gdzie X jest zbiorem, a x jakimś jego elementem (czyli $x \in X$). Przekształceniem między zbiorami z wyróżnionymi punktami (X,x) oraz (Y,y) (zapisywanym jako $f:(X,x) \to (Y,y)$) nazwiemy funkcję $f:X \to Y$ taką, że f(x)=y.

11. [3] Pokaż, że zbiory z wyróżnionym punktem wraz z wymienionymi funkcjami tworzą kategorię. Nazywamy ją \mathbf{Set}_* .

Funktorem nazywamy regułę ζ , ⁵ która każdemu obiektowi A w kategorii \mathcal{C} przypisuje obiekt $\zeta(A)$ w kategorii \mathcal{D} , a każdemu morfizmowi $f \in \text{Hom}(A, B)$

⁴Nazwanie "dokładności do izomorfizmu" relacją równoważności jest kuszące, natomiast relacje równoważności określone są na *zbiorach*. Kolekcja obiektów kategorii na ogół jest za duża do bycia zbiorem.

⁵Z przyczyn teoriomnogościowych nie jest to funkcja (trudno określić iloczyn kartezjański dwóch kolekcji, a co dopiero wybrać z niej (pod)zbiór).

w kategorii $\mathcal C$ przypisuje morfizm $\zeta(f)\in \mathrm{Hom}(\zeta(A),\zeta(B))$ w kategorii $\mathcal D$ zachowując złożenie 6 :

$$\zeta(f \circ g) = \zeta(f) \circ \zeta(g).$$

- 12. [2] Rozważmy kategorie \mathbf{Set}_* oraz \mathbf{Set} i wprowadźmy funktor⁷ $\zeta(X,x) = X$, który zamienia zbiory z wyróżnionym punktem na zbiory.
 - 1. Na co przechodzi funkcja $f:(X,x)\to (Y,y)$?
 - 2. Pokaż, że ζ jest funktorem (znaczy, że zachowuje złożenie).

5 Grupy

6 Topologia

6.1 Przeciwobraz funkcji

Niech $f:X\to Y$ będzie funkcją. Definiujemy pojęcia:

1. obrazu podzbioru: jeśli $A \subseteq X$, to

$$f(A) := \{ y \in Y : \text{istnieje } x \in X \text{ takie, że } f(x) = y \}$$

2. przeciwobrazu podzbioru: jeśli $B \subseteq Y$, to

$$f^{-1}(B) := \{ x \in X : f(x) \in B \}$$

- 13. To zadanie pokazuje dlaczego później będziemy korzystać z przeciwobrazu. [6] Niech $f:X\to Y$, oraz $A,B\subseteq X$ i $C,D\subseteq Y$. Pokaż, że:
 - 1. $f(A \cap B) \subseteq f(A) \cap f(B)$.
 - 2. Podaj przykład, dowodzący, że zawierania nie można zastąpić znakiem równości.
 - 3. $f(A \cup B) = f(A) \cup f(B)$
 - 4. $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$

$$\zeta(f \circ_{\mathcal{C}} g) = \zeta(f) \circ_{\mathcal{D}} \zeta(g).$$

My nie będziemy tego robić.

 $^{^6}$ Tak naprawdę w kategorii $\mathcal C$ mamy jedno złożenie - $\circ_{\mathcal C},$ a w kategorii jakieś zupełnie inne - $\circ_{\mathcal D}.$ Dlatego też formalista mógłby napisać

 $^{^7}$ Będąc bardzo formalnymi, powinno się napisać $\zeta((X,x))$, bo (X,x) jest przekształcanym obiektem, więc powinien stać w dodatkowych nawiasach.

5.
$$f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$$

6.
$$f^{-1}(Y \setminus C) = X \setminus f^{-1}(C)$$

6.2 Przestrzeń topologiczna

Niech X będzie zbiorem. Jego zbiorem potęgowym $\mathcal{P}(X)$ nazywamy zbiór wszystkich jego podzbiorów $^8: \mathcal{P}(X) = \{A: A \subseteq X\}.$

14. [1] Niech X będzie zbiorem o skończonej liczbie elementów n. Ile elementów ma zbiór $\mathcal{P}(n)$?

Przestrzenią topologiczną nazywamy parę (X, \mathcal{T}) , gdzie X jest zbiorem, a $\mathcal{T} \subseteq \mathcal{P}(X)$ ma następujące własności:

- 1. $\emptyset, X \in \mathcal{T}$
- 2. jeśli $A_i \in \mathcal{T}$ dla $i \in I$, to ich suma też należy do \mathcal{T} :

$$\bigcup_{i\in I}A_i\in\mathcal{T}$$

3. jeśli $A, B \in \mathcal{T}$, to $A \cap B \in \mathcal{T}$

Zbiór \mathcal{T} nazywamy topologią, a jego elementy - zbiorami otwartymi.

- **15.** [6] Niech X będzie nieskończonym zbiorem. Pokaż, że następujące zbiory są topologiami na X:
 - 1. $\mathcal{T} = \{\emptyset, X\}$ (tak zwana topologia trywialna)
 - 2. $T = \mathcal{P}(X)$ (topologia dyskretna)
 - 3. $\mathcal{T} = \{\varnothing\} \cup \{X \setminus A : A$ jest skończonym podzbiorem $X\}$ ($topologia~koskończona^9)$

 $^{^8{\}rm Jego}$ istnieje gwarantuje aksjomatyka teorii mnogości.

⁹Chyba

- **16.** Zazwyczaj pisząc "przestrzeń topologiczna \mathbb{R} " ma się na myśli \mathbb{R} wyposażoną w pewną określoną topologię...
- [5] Mówimy, że $A \subseteq \mathbb{R}$ jest otwarty jeśli dla każdego $x \in A$ istnieje odcinek otwarty (a_x, b_x) taki, że $x \in (a_x, b_x) \subseteq A$.
 - 1. Pokaż, że zbiory otwarte według powyższej definicji spełniają wszystkie aksjomaty topologii.
 - 2. Pokaż, że każdy zbiór otwarty może być zapisany jako suma pewnej rodziny otwartych odcinków to znaczy, że jeśli A jest zbiorem otwartym, to istnieją takie odcinki $(a_i,b_i),\,i\in I,$ że:

$$A = \bigcup_{i} \ (a_i, b_i)$$

6.3 Funkcje ciągłe

Niech (X, \mathcal{T}) oraz (Y, τ) będą przestrzeniami topologicznymi. Funkcję $f: X \to Y$ taką, że $f^{-1}(B) \in \mathcal{T}$ dla każdego $B \in \tau$ nazywamy funkcją ciągłą i oznaczamy $f: (X, \mathcal{T}) \to (Y, \tau)$.

- 17. [2] Pokaż, że funkcja identycznościowa $\mathrm{Id}_X:(X,\mathcal{T})\to (X,\mathcal{T})$ jest ciągła.
- 18. [2] Pokaż, że funkcja stała $f:(X,\mathcal{T})\to (Y,\tau),\ f(x)=c$ jest ciągła.
- **19.** [3] Pokaż, że funkcja $f: \mathbb{R} \to \mathbb{R}$ dana wzorem $f(x) = x^2$ jest ciągła. Podpowiedź: jak można zapisać każdy zbiór otwarty w \mathbb{R} ? Jakie własności ma przeciwobraz?

6.4 Kategoria Top

- **20.** [5] Pokaż, że przestrzenie topologiczne wraz z funkcjami ciągłymi tworzą kategorię. Nazywamy ją **Top**.
- **21.** [3] Dlaczego:
 - 1. monomorfizmy w **Top** to dokładnie (ciągłe) iniekcje?
 - 2. epimorfizmy to dokładnie (ciągłe) surjekcje?

3.	izomorfizmy to dokładnie (ciągłe)	bijekcje?	\mathbf{W}	$_{\rm tej}$	kategorii	nazywamy	je
	homeomorfiz mami.						

Powodzenia!