Лабораторная работа № 4

- 1. Тема: решение дифференциальных уравнений 1-ого порядка. Метод Рунге-Кутта.
- 2. Постановка задачи:

решение дифференциальных уравнений 1-го порядка

Решить дифференциальное уравнение вида

$$y' = y(1-x)$$

на интервале [0, 1] с начальными условиями у (0) = 1 методом Эйлера

3. Мат. модель:

$$y_{i+1}=y_i+F_i$$
, где F_i — усредненная производная $x_{i+1}=x_i+h_x$
$$F_i=\frac{k_{1i}+2k_{2i}+2k_{3i}+k_{4i}}{6}$$
 $k_{1i}=h*f(x_i,y_i)$ $k_{2i}=h*f(x_i+\frac{h}{2},y_i+\frac{k_{1i}}{2})$ $k_{3i}=h*f(x_i+h,y_i+k_{3i})$

4. Список идентификаторов: (в скобках указаны функции, в которых находится переменная)

Имя	Тип	Смысл
TIMI		
a	const	Левая граница интервала
b	const	Правая граница интервала
x0	const	Начальное значение
y0	const	Начальное значение
xf	double	Х в функции
yf	double	Ү в функции
y	double	Ү в функции для дифференцирования
X	double	Х в функции для дифференцирования
h	double	Шаг дифференцирования
h2	double	Деленный пополам шаг

a1	double	Левая граница в функции
b1	double	Правая граница в функции
n1	int	Число разбиений в функции
e	double	Точность, b-h
n	int	Число разбиений, вводится с клавиатуры
Fi	double	Усредненная производная
k1	double	Коэффициент для вычисления усредненной производной
k2	double	Коэффициент для вычисления усредненной производной
k3	double	Коэффициент для вычисления усредненной производной
k4	double	Коэффициент для вычисления усредненной производной

5. Код программы: #include <iostream> #include <stdlib.h> #include <math.h> #define a 0 #define b 1 #define y0 1 #define x0 0 using namespace std; double f(double xf, double yf){ return yf*(1 - xf); } double RungeKuttaMethod(double a1, double b1, int n1){ double h = (b1 - a1)/n1, y = y0, x = x0, e = b1 - h, h2 = h/2; double k1, k2, k3, k4, Fi; while $(x \le e)$ k1 = h*f(x, y);k2 = h*f(x + h2, y + k1/2);k3 = h*f(x + h2, y + k2/2);k4 = h*f(x + h, y + k3);Fi = (k1 + 2*k2 + 2*k3 + k4)/6;y += Fi;x += h;return y; } int main()

```
{
    system("chcp 1251 > nul");
    int n;
    cout << "Введите количество разбиений: "; cin >> n;
    cout << RungeKuttaMethod(a, b, n);
    return 0;
    }
6. Результаты:
    □ "C:\Users\svmar\Desktop\"ўхср\2 ъєЁё\т√ўшёыш€хы№эр ьр€хьр€шър\т
```

```
Введите количество разбиений: 100
1.64864
Process returned 0 (0x0) execution time : 1.396 s
Press any key to continue.
```