Lecture 7 Binary Heaps

Heaps

A binary min-heap (or just binary heap or just heap) is:

- Structure property: A complete binary tree
- Heap property: The priority of every (non-root) node is greater than (or equal to) the priority of its parent. AKA the children are always greater than the parents.

Array Representation of Binary Trees

From node i:

left child: i * 2

right child: i*2+1

parent: i/2

(wasting index 0 is convenient for the index arithmetic)

implicit (array) implementation:

	A	В	C	D	E	F	G	Н	I	J	K	L	
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Heap Operations Runtimes

insert and deleteMin both O(logN)

at worst case, the number of swaps you have to do is the height of the tree. The height of a complete tree with N nodes is logN.

Intuition:

1 Node

2 Nodes

4 Nodes

20 Nodes

2¹ Nodes

2² Nodes

Judging the array implementation

Plusses:

- Less "wasted" space
 - Just index 0 and unused space on right
 - In conventional tree representation, one edge per node (except for root), so n-1 wasted space (like linked lists)
 - Array would waste more space if tree were not complete
- Multiplying and dividing by 2 is very fast (shift operations in hardware)
- Last used position is just index size

Minuses:

 Same might-be-empty or might-get-full problems we saw with stacks and queues (resize by doubling as necessary)

Plusses outweigh minuses: "this is how people do it"

Build Heap

- Suppose you have n items to put in a new (empty) priority queue
 - Call this operation buildHeap
- n distinct inserts works (slowly)
 - Only choice if ADT doesn't provide buildHeap explicitly
 - $-O(n \log n)$
- Why would an ADT provide this unnecessary operation?
 - Convenience
 - Efficiency: an O(n) algorithm called Floyd's Method
 - Common tradeoff in ADT design: how many specialized operations

Floyd's Method

Intuition: if you have a lot of values to insert all at once, you can optimize by inserting them all and then doing a pass for swapping

- 1. Put the *n* values anywhere to make a complete structural tree
- 2. Treat it as a heap and fix the heap-order property
 - Bottom-up: leaves are already in heap order, work up toward the root one level at a time

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

- Build a heap with the values:
 12, 5, 11, 3, 10, 2, 9, 4, 8, 1, 7, 6
- Stick them all in the tree to make a valid structure
- In tree form for readability.
 Notice:
 - Purple for node values to fix (heap-order problem)
 - Notice no leaves are purple
 - Check/fix each non-leaf bottom-up (6 steps here)

Algorithm Example

Purple shows the nodes that will need to be fixed.

We don't know which ones they are yet, so we'll traverse bottom up one level at a time and fix all the values.

Values to consider on each level circled in blue

Algorithm Example

Happens to already be less than it's child

Percolate down (notice that moves 1 up)

Another nothing-to-do step

Percolate down as necessary (steps 4a and 4b)

But is it right?

- "Seems to work"
 - Let's prove it restores the heap property (correctness)
 - Then let's prove its running time (efficiency)

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
}
```

Correctness

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
}
```

Loop Invariant: For all j>i, arr[j] is less than its children

- True initially: If j > size/2, then j is a leaf
 - Otherwise its left child would be at position > size
- True after one more iteration: loop body and percolateDown make arr[i] less than children without breaking the property for any descendants

So after the loop finishes, all nodes are less than their children

Efficiency

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Easy argument: **buildHeap** is $O(n \log n)$ where n is **size**

- size/2 loop iterations
- Each iteration does one percolateDown, each is O(log n)

This is correct, but there is a more precise ("tighter") analysis of the algorithm...

Efficiency

```
void buildHeap() {
  for(i = size/2; i>0; i--) {
    val = arr[i];
    hole = percolateDown(i,val);
    arr[hole] = val;
  }
}
```

Better argument: **buildHeap** is O(n) where n is **size**

- size/2 total loop iterations: O(n)
- 1/2 the loop iterations percolate at most 1 step
- 1/4 the loop iterations percolate at most 2 steps
- 1/8 the loop iterations percolate at most 3 steps
- •
- ((1/2) + (2/4) + (3/8) + (4/16) + (5/32) + ...) < 2 (page 4 of Weiss)
 - So at most 2 (size/2) total percolate steps: O(n)

Lessons from buildHeap

- Without **buildHeap**, our ADT already let clients implement their own in $O(n \log n)$ worst case
 - Worst case is inserting better priority values later
- By providing a specialized operation internal to the data structure (with access to the internal data), we can do O(n) worst case
 - Intuition: Most data is near a leaf, so better to percolate down
- Can analyze this algorithm for:
 - Correctness:
 - Non-trivial inductive proof using loop invariant
 - Efficiency:
 - First analysis easily proved it was O(n log n)
 - Tighter analysis shows same algorithm is O(n)

Other function

- merge: given two priority queues, make one priority queue
 - How might you merge binary heaps:
 - If one heap is much smaller than the other?
 - If both are about the same size?
 - Different pointer-based data structures for priority queues support logarithmic time merge operation (impossible with binary heaps)
 - Leftist heaps, skew heaps, binomial queues
 - Worse constant factors
 - Trade-offs!