You Only Look Once (YOLOv1): Unified, Real-Time Object Detection

최성욱

목차

- 1. Abstract
- 2. Introduction
- 3. Technique
 - 3.1 Unified Detection
 - 3.2 Network Design
 - 3.3 Training
 - 3.4 Loss
 - 3.5 Hyper Parameter
 - 3.6 Inference
- 4. Limitations
- 5. Experiments
 - 3.1 Comparison
 - 3.2 Error Analysis
 - 3.3 Ensemble
 - 3.4 Generalizability
- 6. Reference

1. Abstract

- · Why do we need to use this proposed model?
 - 1. Whole Detection Pipeline is a single Network.
 - 2. Fast
 - 1. Real-Time에서 초당 45 frame 처리 가능
 - 2. Fast YOLO: 초당 155 frame 처리 가능
 - 3. False Positive가 적다.
 - 4. Generalized

- ✓ 빠르다.
- ✓ 간편하다.
- ✓ 일반화가 잘된다.

2. Introduction

- · YOLO vs Traditional Detector
 - 1. Traditional Detector (DPM, R-CNN)
 - RPN or Sliding Window를 활용하여 **Potential Bbox**
 - Potential Bbox를 바탕으로 분류 진행
 - Post-Processing (Bbox 미세 조정, NMS, Bbox rescore)

reg layer

conv feature map

2. Introduction

- · YOLO vs Traditional Detector
 - 1. YOLO
 - Simple: Coordinate와 Class Classification을 동시에 Regression 문제로 해결
 - Fast with Performance
 - Batch처리 없이 하나의 Titan X GPU에서 초당 45 frame을 처리
 - Real-Time system에서 가장 높은 mAP
 - Reason Globally about the image
 - False Positive가 Fast R-CNN에 비해 2배 이상 적다.
 - Background Error가 낮다.
 - Generalizable Representation
 - Natural Dataset으로부터 학습 -> artwork에서의 Test
 - DPM, R-CNN 보다 훨씬 성능이 좋다.

- Unified Detection
 - 1. 전체 이미지에서 Bbox를 예측.
 - 2. 각 Grid Cell에서 Class를 예측.

- Network Design
- 1. Convolutional Layers: 특성 추출
 - 24개의 Conv Layers
 - 1x1 Reduction Layer + 3x3 Conv Layer
- 2. Fully Connected Layers: class 확률과 좌표 예측

(a) Inception module, naïve version

Training

- 1. Pre-Training
 - ImageNet Dataset을 활용하여, 20개의 Conv Layer에 대해서만 사전 학습을 진행
- 1. Additional Layer
 - 4개의 Conv Layer와 2개의 Fully Connected Layer 추가 -> 성능의 개선 [4]
- 3. High Resolution (448 x 448)
 - 세밀한 Visual 정보를 요구 (Detection)
- 4. Normalize Bbox
 - Bounding Box의 width와 height를 image의 height, width에 대하여 정규화 하여 0과 1사이의 값으로 만든다.
 - x, y 역시 grid cell의 offset이 되도록 parameter화 하고, 0과 1사이의 값으로 만든다.
- 5. Activation Function
 - Leaky ReLU
 - Linear Activation Function at Final layer

· Loss Function

Notation

- -1_{ii}^{obj} : 객체가 탐지된 Bounding Box (즉, i번째 grid cell에서 j번째 객체를 포함한 Bounding Box)
- 1^{noobj} : r객체가 탐지되지 않은 Bounding Box (즉, i번째 grid cell에서 j번째 객체를 포함하지 않은 Bounding Box)
- 1^{obj}: i번째 grid cell에서 객체를 포함하는지 여부
- Ĉi: i번째 grid cell에서의 Confidence 예측값. (Confidence = Pr(Object) * IOU^{truth}_{pred})
- C_i: i번째 grid cell에서의 Confidence Ground Truth 값. (target값으로서 grid cell에 객체가 있으면 1, 없으면 0)
- x, y, w, h: 중심점의 좌표, width와 height. (C와 마찬가지로 예측값과 target을 표현)
- p(c): class c일 확률

$$\lambda_{\text{coord}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[(x_{i} - \hat{x}_{i})^{2} + (y_{i} - \hat{y}_{i})^{2} \right] \\
+ \lambda_{\text{coord}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[\left(\sqrt{w_{i}} - \sqrt{\hat{w}_{i}} \right)^{2} + \left(\sqrt{h_{i}} - \sqrt{\hat{h}_{i}} \right)^{2} \right] \\
+ \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left(C_{i} - \hat{C}_{i} \right)^{2} \\
+ \lambda_{\text{noobj}} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left(C_{i} - \hat{C}_{i} \right)^{2} \\
+ \sum_{i=0}^{S^{2}} \mathbb{1}_{i}^{\text{obj}} \sum_{c \in \text{classes}} (p_{i}(c) - \hat{p}_{i}(c))^{2} \quad (3)$$

1. Bounding Box Loss

- Object를 가지는 Bounding Box의 x, y에 대하여 SSE 연산
- Object를 가지는 Bounding Box의 w, h에 대하여 SSE 연산
- w, h의 경우, Large Box와 Small Box에서의 편차가 상대적으로 차이가 나므로 square root를 사용하여 그 편차를 줄여준다.
- Penalty 부과

2. Confidence Loss

- Object를 가지는 Bounding Box가 있는 grid cell에 대하여 Confidence 연산
- Object를 가지지 않는 Bounding Box가 있는 grid cell에 대하여 Confidence 연 산
- Object를 가지지 않는 Bounding Box가 있는 gride cell에 대하여, Penalty 부과

3. Classification Loss

- Object가 있는 grid cell에 대하여, class 확률 예측

4. Penalty

- Confidence Error에서 Object가 없는 Cell이 훨씬 많기 때문에 Confidence Error (특히, No Object)에 큰 power가 쏠린다.
- 이를 보정하기 위하여, Bounding Box Loss에 Penalty를 추가하여 증가시킨다.
- 더불어, No Object에 대한 Confidence Error에 Penalty를 추가하여 감소시킨다.

Hyper Parameter

- 1. Pascal VOC 2007/2012 에 대하여 train / valid dataset을 활용하여 135 epoch 진행 (VOC 2012에 대하여 test할 경우 → VOC 2007도 함께 학습, 반대도 마찬가지로 진행)
- 2. Batch size: 64
- 3. Optimizer: SGD (Momentum: 0.9, weight_decay: 0.0005)
- 4. Learning Rate Scheduling: StepLR (첫 epoch에서는 10^{-3} -> 10^{-2} 로 높임 / 75epochs: 10^{-2} , 30epochs: 10^{-3} , 30epochs: 10^{-4}
- 5. Dropout & Extensive Data Augmentation
 - Dropout Ratio: 0.5
 - 원본 image size의 20% 까지 random scaling and translation
 - HSV color space에서 image의 exposure & saturation을 최대 1.5배까지 랜덤 조정

· Inference

- 1. 각 image당 98개의 Bounding Boxes 예측
- 2. 각 Bounding Box에서의 Class 확률 예측
 - 각 Bounding Box의 Confidence Score와 Class Score를 곱한다.
- 3. NMS (Non-maximal suppression)
 - 2~3%의 mAP 상승

· Inference

4. Limitations

- 1. Spatial Constraints
 - 하나의 Grid Cell에서 1개의 class 만을 예측한다.
 - 여러 작은 객체가 하나의 grid cell 내부에 있을 경우, detect 하기 어렵다.
- 2. Aspect ratios의 일반화의 어려움
 - Training Dataset에 의존하는 Bbox의 aspect ratios
- 3. Coarse Features
 - Upsampling Layer의 부재로 인한 Feature의 정보 부재
- 4. Bbox의 size에 따른 동일한 Loss 사용
 - Bbox의 크기가 크건, 작건 Loss가 동일
 - 큰 size의 Bbox에 비해, 작은 size의 Bbox에서 Loss에 더욱 민감해야한다.

Comparison

Real-Time Detectors	Train	mAP	FPS
100Hz DPM [31]	2007	16.0	100
30Hz DPM [31]	2007	26.1	30
Fast YOLO	2007+2012	52.7	155
YOLO	2007+2012	63.4	45
Less Than Real-Time			
Fastest DPM [38]	2007	30.4	15
R-CNN Minus R [20]	2007	53.5	6
Fast R-CNN [14]	2007+2012	70.0	0.5
Faster R-CNN VGG-16[28]	2007+2012	73.2	7
Faster R-CNN ZF [28]	2007+2012	62.1	18
YOLO VGG-16	2007+2012	66.4	21

1. YOLO

- 63.4%의 mAP
- Maintaining Real-Time Performance
- Fast YOLO의 경우 가장 빠른 Detector

2. Fast R-CNN

- Selective Search (2 sec per image)
- 0.5 fps

3. Faster R-CNN

- Selective Search -> Region Proposal Network
- YOLO에 비해 높은 성능
- 같은 Backbone인 VGG-16을 사용했을 때, YOLO에 비해 3배 느리다.

Error Analysis

- Correct: correct class and IOU > .5
- Localization: correct class, .1 < IOU < .5
- Similar: class is similar, IOU > .1

- \bullet Other: class is wrong, IOU > .1
- Background: IOU < .1 for any object

각 Category의 Top N Prediction 진행

- 1. BackGround Error
 - IU ⟨ 0.1 for any object
 - IoU가 낮은데 객체를 담고있을 경우
- 2. Localization Error
 - Correct Class
 - 0.1 \ loU \ 0.5
 - 제대로 예측했으나 loU가 작다.
- 3. YOLO
 - 객체 탐지는 잘하지만, 좌표를 제대로 찾지 못 한다.
 - 이미지 전체를 보기 때문에, BackGround Error의 비중이 낮다.

· Ensemble

- 1. YOLO + Fast R-CNN
 - Fast R-CNN의 Background Error를 낮추기 위하여 YOLO와 Ensemble
 - R-CNN이 예측한 모든 Bounding Box에 대하여, YOLO가 유사한 Box를 예측했는지 확인한다.
 - 예측된 Box들의 Overlap을 바탕으로 최종 예측 결정

2. 의의

- "Fast R-CNN + Fast R-CNN" 에 비하여 더 높은 성능의 개선
- 서로 다른 종류의 모델 Ensemble을 통한 높은 성능향상
- Output에 대한 Soft-Ensemble 이기 때문에, 속도에서의 이득은 없다.
- But, YOLO의 실행 속도는 미미하므로, Fast R-CNN 측면에서는 큰 속도의 손실 없이 성능 향상 가능

	mAP	Combined	Gain
Fast R-CNN	71.8	_	-
Fast R-CNN (2007 data)	66.9	72.4	.6
Fast R-CNN (VGG-M)	59.2	72.4	.6
Fast R-CNN (CaffeNet)	57.1	72.1	.3
YOLO	63.4	75.0	3.2

Generalizability

- 1. Generalizable
 - Real World에서는 모든 사례들을 예측할 수 없고, Test Data가 Train Data와 많이 상이할 수 있다.
 - Artwork (Picasso Dataset, People-Art Dataset) 에 대하여, 일반화 Test를 진행한다. (Train은 VOC 2007로 진행)
- 2. R-CNN
 - VOC 에서의 높은 AP 성능
 - Artwork에서의 큰 성능 감소
 - Selective Search (혹은 RPN)을 통한, Region탐색 -> 좋은 RPN 성능을 필요로 한다.
- 3. YOLO
 - 다른 모델들에 비해, 더 낮은 성능 감소
 - Image 전체를 보며, 객체들 사이의 관계, 위치를 모델링
- 4. DPM
 - 객체의 모양과 Layout에 대한 강한 Spatial Model
 - 즉, 일반화가 어느 정도 잘 되는 Model로 알려져 있다.
 - But, 기존의 낮은 AP로 인해 성능이 좋지 않다.

	VOC 2007	1 icasso		1 copic-Ait
	AP	AP	Best F_1	AP
YOLO	59.2	53.3	0.590	45
R-CNN	54.2	10.4	0.226	26
DPM	43.2	37.8	0.458	32
Poselets [2]	36.5	17.8	0.271	
D&T [4]	-	1.9	0.051	

Picasso

People-Art

VOC 2007

References

- [1] You Only Look Once: Unified, Real-Time Object Detection https://arxiv.org/pdf/1506.02640.pdf
- [2] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks: https://arxiv.org/pdf/1506.01497.pdf
- [3] GoogLeNet: Going deeper with convolutions https://arxiv.org/pdf/1409.4842.pdf
- [4] Object detection networks on convolutional feature maps https://arxiv.org/pdf/1504.06066.pdf
- [5] deepsystem.io (YOLO)
 https://docs.google.com/presentation/d/1aeRvtKG21KHdD5lg6Hgyhx5rPq_ZOsGjG5rJ1HP7BbA/pub?start=false&loop=false&delayms=3000&slide=id.p