

Contexto geral

O controlador PID tem a função de regular a variável de saída da planta térmica — neste caso, a temperatura — de modo que ela siga o valor desejado (setpoint) com o menor erro possível. Algumas funções:

- 1.Aumentar o aquecimento quando a temperatura está abaixo do setpoint (erro positivo);
- 2. Reduzir o aquecimento quando a temperatura se aproxima ou ultrapassa o setpoint;
- 3. Compensar distúrbios externos, como variações no ambiente, mantendo a estabilidade do sistema.
- 4. Aplicar o controle em malha fechada, ajustando continuamente o sinal de controle para minimizar o erro;
- 5. Gerar a resposta do sistema térmico, permitindo comparar o desempenho de cada método (tempo de subida, overshoot, tempo de acomodação e erro em regime permanente).

Métodos utilizados

Método CHR (Chien, Hrones e Reswick)

O método CHR é uma técnica clássica de sintonia de controladores PID baseada na resposta ao degrau do sistema.

Seu objetivo é ajustar os parâmetros do controlador (Kp, Ti, Td) de forma a alcançar uma resposta rápida e estável, podendo ser configurado com ou sem overshoot (sobressinal).

Ele utiliza os parâmetros do modelo FOPDT (First Order Plus Dead Time) — o ganho (k), a constante de tempo (τ) e o atraso de transporte (θ) — para calcular os valores ideais do controlador.

O CHR é amplamente utilizado por oferecer simplicidade e boa performance, sendo especialmente eficaz em processos com atraso moderado.

É muito útil em sistemas térmicos, pois permite ajustar a sintonia conforme o comportamento desejado — priorizando rapidez ou estabilidade.

Principais configurações:

- Sem overshoot: resposta estável, sem ultrapassar o setpoint.
- Com 20% de overshoot: resposta mais rápida, com leve ultrapassagem inicial.

Métodos utilizados

Método Cohen & Coon

O método Cohen & Coon, desenvolvido em 1953 por G. H. Cohen e G. A. Coon, é uma técnica de sintonia voltada para processos com atraso de transporte mais significativo, nos quais o tempo morto tem grande influência no desempenho do sistema.

Assim como o CHR, ele parte do modelo FOPDT, mas sua formulação é mais detalhada, levando em conta a relação entre o atraso (θ) e a constante de tempo (τ) .

O método busca equilibrar rapidez e estabilidade, reduzindo o erro e suavizando as oscilações. É particularmente eficaz em sistemas lentos ou com inércia alta, como processos térmicos industriais.

O Cohen & Coon tende a produzir uma resposta mais amortecida (menor overshoot) e é ideal quando o objetivo é evitar oscilações ou melhorar a robustez do controle.

Características principais:

- Melhora o desempenho em sistemas com grande atraso.
- Produz resposta suave e estável.
- Mais analítico e detalhado que o CHR.

Código

Comparando os métodos

Critério	Método CHR	Método Cohen & Coon
Tipo de processo ideal	Atraso moderado	Atraso elevado
Velocidade de resposta	Mais rápida	Mais lenta e estável
Overshoot	Configurável	Suavizado
Estabilidade	Boa	Excelente
Facilidade de implementação	Alta	Moderada

Conclusão

Identificação (Smith) Controle PID	
Método de Sintonia ○ CHR (0% OS) ○ CHR (20% OS)	Comparação do Pastroamento PID (Padá N=10)
○ Cohen–Coon	Comparação de Rastreamento PID (Padé N=10)
Comparação (Todos)	Dados (Malha Aberta) Setpoint (SP)
Setpoint (SP):	60 — CHR (0% OS) — CHR (20% OS)
Padé (ordem)	— Cohen-Coon
(dica: 1 é mais estável; 2 aproxima melhor)	50
Simular (método)	40
Ganhos manuais (PID paralelo) Kp	
TiTd	Sa S
Simular com ganhos manuais	20
Setpoint (SP): 41.090	
Método Kp Ti Td	10
CHR (0% OS) 7.568 49.678 3.594 CHR (20% OS) 11.983 67.413 3.400 Cohen-Coon 17.275 115.332 2.547	
	0 50 100 150 200 250 Tempo (s)
CHR (0% OS) 0.7 24.848 36.500 Erro Estacionário: 0.0036	

Obrigado.