ТЕХНИЧЕСКОЕ ЗАДАНИЕ

Разработка программного обеспечения для инверсионного стола (далее – изделие).

Цель работы: создание программного обеспечения (далее ПО) для работы с изделием, реанимационным кардиомонитором, получением необходимых медицинских данных, их хранения в базе данных (БД) и визуализации.

<u>Результатом работы</u> является готовая программа, работающая на персональном компьютере (ПК) с операционной системой (ОС) Windows 10 и обеспечивающая весь заявленный функционал. Подготовкой и настройкой ПО на заранее подготовленном компьютере занимается разработчик.

Описание системы

Роли пользователей ПО:

Пользователь – рядовой пользователь, врач.

Администратор — пользователь, дополнительно обладающий правом тонкой настройкой приложения, специалист технической поддержки.

Процессы:

Процессы пользователя

- 1. Создание, редактирование и удаления пациента.
- 2. Запуск сеанса, пауза, реверс изделия и экстренная остановка сеанса.
- 3. Просмотр и сохранение результатов сеанса.
- 4. Установка параметров сеанса.
- 5. Построение отчетов.
- 6. Печать отчета.

Процессы администратора

- 1. Все процессы, доступные пользователю.
- 2. Настройка подключения к базе данных.
- 3. Настройка подключения к кардиомонитору.
- 4. Настройка подключения к изделию.
- 5. Настройка критических параметров, влияющих на выполнение сеанса.

Функциональная схема ПО

Общие функциональные требования, предъявляемые к программе и реализуемые в ходе работы

Структура

Программа содержит в себе следующие основные разделы:

- Список пациентов
- Список проведенных сеансов выбранного пациента
- Окно проведения сеанса
- Результаты проведенного сеанса
- Результаты сеанса (чтение данных из сохраненного на диск файла)
- Построение отчета о результатах сеанса

Работа с кардиомонитором.

ПО должно иметь возможность работать с кардиомониторами следующих типов:

1. Митар – 01- «Р-Д»

Соединение с кардиомонитором осуществляется путем патч-корда (сетевой кабель типа «витая пара»). ПО запрашивает у кардиомонитора параметры (ЧСС, ЧД, SPO2, АД сист, АД диаст, АД ср) и заносит их в табличку.

Значения в табличке отображаются на экране по мере поступления. Кроме этого, в начале, при достижении максимального угла и в конце каждого повторения во время сеанса производится запись ЭКГ продолжительностью 10 секунд. ЭКГ отображается на экране только после завершения сеанса в отдельной вкладке.

Для измерения значений давления (систолическое, диастолическое, среднее) ПО вызывает накачку манжеты при первом достижении угла, определенного как ключевая точка.

Определение ключевых точек происходит перед началом сеанса в зависимости от выбранных параметров сеанса (смотри далее). В них же происходит запрос остальных данных (ЧСС, ЧД, SPO2). Замер происходит при первом достижении значения угла, за исключением угла 0 при окончании сеанса, там измерение происходит при полной остановке изделия.

Количество таблиц с данными равно количеству повторений, заданных при старте (от 1 до 10 включительно), количество кардиограмм – от 3 до 30 включительно соответственно (по 3 за одно повторение).

В процессе сеанса есть возможность отключить автоматическую накачку давления путем нажатия на кнопку "Отключить автонакачку" на окне запущенного сеанса.

После завершения сеанса (именно сеанса, а не любого повторения) перед сохранением результатов в БД есть возможность провести дополнительный замер всех значений из таблицы + ЭКГ нажатием на кнопку "перемерить", значения при этом запишутся в последнюю строчку (угол 0).

В программе относительно предыдущей версии будет проведено изменение способа соединения с кардиомонитором с целью повышения качества соединения и снижения вероятности ошибок.

Общие параметры.

Программа работает под управлением операционной системы Windows 10, используемый язык программирования – с#, СУБД – MySQL/PostgreSQL.

При старте программы начальной страницей является окно со списком пациентов. Пациентов можно добавлять, удалять, редактировать. Контактная информация о пациенте – Имя, Фамилия, Отчество, Дата рождения (число, месяц, год). В списке также указывается порядковый номер пациента, есть возможность поиска и упорядочивания (по алфавиту).

При запуске нового сеанса появляется небольшое окно с 3 параметрами: Максимальный угол, Частота, Количество повторений. Изначально указаны стандартные значения. После задания этих параметров и нажатия на кнопку "ОК" сеанс запускается.

При старте сеанса производится накачка давления, замер показателей и съем кардиограммы. До тех пор, пока не будут получены значения давления, изделие не начинает

движение. В случае, если замерить давление (осуществить накачку) не удалось, ПО пробует повторить попытку еще 2 раза, после чего сообщает об ошибке, сеанс при этом не запускается.

Перед началом накачки при старте происходит выравнивание изделия относительно горизонта. Во время выравнивания работа с изделием заблокирована.

В ходе сеанса при ошибке накачки (не удалось корректно измерить давление) ПО пробует измерить его повторно 1 раз.

После окончания сеанса есть возможность перезамерить последние значения (см. выше), после чего нажатием на кнопку "Сохранить" данные сохраняются в БД. Результаты сеанса, сохраненные в БД, не изменяются.

При нажатии на кнопку реверс или экстренная остановка изделие завершает только текущее повторение, не выполняя оставшиеся (если они есть).

Наличие возможности зайти в программу с правами администратора (авторизовавшись), в этом режиме есть возможность изменять настройки приложения. Используется техническими специалистами при обслуживании/начальной настройке ПО.

Кроме БД, программа также сохраняет результаты каждого сеанса в папку пациента на жестком диске. Место расположения папки можно настроить. Сохраненный файл можно открыть для просмотра в программе с помощью кнопки "Открыть файл".

Данные, сохраненные программой, резервируются как минимум 2 способами: с помощью БД и с помощью специальным образом сериализуемого файла на жестком диске.

В случае возникновения ошибок в ходе работы ПО, БД или присоединенного оборудования (изделие, кардиомонитор) ПО информирует об этом пользователя с помощью специальных информационных сообщений.

Отображение результатов сеанса.

После завершения сеанса можно просмотреть список всех сеансов, совершенных данным пациентом. При этом значения получаются из БД. На экране отображаются Имя, Фамилия, Отчество, Номер в базе данных, и Дата рождения пациента, Номер сеанса (порядковый из имеющихся на текущий момент), Угол (максимальный) и Частота, при которых сеанс был проведен, последовательно все Таблички и все ЭКГ, измеренные за время сеанса. Также на основе табличных значений строится график (ось Ох — угол, при котором осуществлен замер, ось Оу — значение).

На основе этих значений ПО может построить небольшой отчет с помощью системы Stimulsoft.Reports, сохранить его в выбранном формате (docx, pdf и т.д.) и распечатать. По умолчанию выводятся все параметры, отображаемые на окне результатов сеанса.

Работа с изделием.

ПО может отправить на изделие команды: Старт/Пауза, Реверс, Экстренное возвращение, при старте на изделие передаются значения максимального угла и частоты сеанса. При запуске изделия с кнопки на самом изделии ПО взаимодействовать с ним не может с ошибкой "Сеанс уже запущен". ПО обрабатывает нажатие кнопок на изделии (в случае, если сеанс запущен из самой программы) с выводом соответствующего информационного сообщения. ПО получает от изделия ряд параметров: текущий угол по двум осям, текущая итерация, версия прошивки и т.д.

Работа с флоуметром.

На данном этапе используется врачом вручную для определения частоты и затем ввода полученного значения в специальное поле при старте сеанса.

<u>Таблица значений ключевых углов для измерений в зависимости от максимального угла.</u>

Угол не может быть меньше 7,5 градусов. При любом допустимом значении угла замер осуществляется при старте в 0 градусов, при окончании повторения в 0 градусов и в максимальном значении угла. При значениях от 7,5 до 12 градусов включительно замер осуществляется только в этих значениях (всего 3 ключевых точки). При значениях от 13,5

до 21 включая замер производится в 1 дополнительной точке (при подъеме и при спуске) (всего 5 замеров). При значениях от 22,5 до 31,5 включая — в 2 дополнительных точках (всего 7) (см. таблицу ниже)

Измерение значений происходит в контрольных точках. Контрольные точки зависят от максимального угла.

В таблице указаны количество контрольных точек, и углы при которых будут происходить замеры.

Jamephi.								
Максимальный угол	кол-во контр. точек	точка 1	точка 2	точка 3	точка 4	точка 5	точка 6	точка 7
7,5	3	0	7,5	0				
9	3	0	9	0				
10,5	3	0	10,5	0				
12	3	0	12	0				
13,5	5	0	6	13,5	6	0		
15	5	0	7,5	15	7,5	0		
16,5	5	0	7,5	16,5	7,5	0		
18	5	0	9	18	9	0		
19,5	5	0	9	19,5	9	0		
21	5	0	10,5	21	10,5	0		
22,5	7	0	7,5	15	22,5	15	7,5	0
24	7	0	7,5	15	24	15	7,5	0
25,5	7	0	9	16,5	25,5	16,5	9	0
27	7	0	9	18	27	18	9	0
28,5	7	0	9	19,5	28,5	19,5	9	0
30	7	0	10,5	19,5	30	19,5	10,5	0
31,5	7	0	10,5	21	31,5	21	10,5	0

Измерение ЭКГ происходит в трех точках, перед запуском, в максимальной точке и после завершения цикла.

Во всех контрольных точках измеряется 6 параметров: ЧСС, ЧД, SPO2, АД сист, АД диаст, АД ср

ЭКГ считывается с кардиомонитора в течение 10 секунд.

Алгоритм движения:

Основные параметры, задающие алгоритм движения: частота, максимальный угол, кол-во повторений.

Частота - показывает количество колебаний в секунду, (время за которое происходит переход от одного положения в другое).

Максимальный угол - показывает угол на который максимально наклонится лежак кровати. Количество повторений - показывает количество повторений алгоритма в одном сеансе. Алгоритм движения в общем виде представлен следующей таблицей:

Табл 1. Алгоритм движения

Номер	Итерация		частота	0,100				
итерации	X1	X2	Y1	Y2	Y3	Y4	Время, С	
0	0,0	0,0	0	0	0	0	5	Конт. Изм; ЭКГ
1	3,0	1,5	3	0	-3	0	30	
2	4,5	3,0	3	0	-3	0	30	
3	6,0	4,5	3	0	-3	0	30	

4	7,5	6,0	3	0	-3	0	30	
5	9,0	7,5	3	0	-3	0	30	
6	10,5	9,0	3	0	-3	0	30	Конт. Изм
7	12,0	10,5	3	0	-3	0	30	
8	13,5	12,0	3	0	-3	0	30	
9	15,0	13,5	3	0	-3	0	30	
10	16,5	15,0	3	0	-3	0	30	
11	18,0	16,5	3	0	-3	0	30	
12	19,5	18,0	3	0	-3	0	30	
13	21,0	19,5	3	0	-3	0	30	Конт. Изм
14	22,5	21,0	3	0	-3	0	30	
15	24,0	22,5	3	0	-3	0	30	
16	25,5	24,0	3	0	-3	0	30	
17	27,0	25,5	3	0	-3	0	30	
18	28,5	27,0	3	0	-3	0	30	
19	30,0	28,5	3	0	-3	0	30	
20	31,5	30,5	3	0	-3	0	30	Конт. Изм; ЭКГ
21	30,5	30,5	3	0	-3	0	20	110111111111111111111111111111111111111
22	27,0	28,5	3	0	-3	0	30	
23	25,5	27,0	3	0	-3	0	30	
24	24,0	25,5	3	0	-3	0	30	
25	22,5	24,0	3	0	-3	0	30	
26	21,0	22,5	3	0	-3	0	30	Конт. Изм
27	19,5	21,0	3	0	-3	0	30	
28	18,0	19,5	3	0	-3	0	30	
29	16,5	18,0	3	0	-3	0	30	
30	15,0	16,5	3	0	-3	0	30	
31	13,5	15,0	3	0	-3	0	30	
32	12,0	13,5	3	0	-3	0	30	
33	10,5	12,0	3	0	-3	0	30	Конт. Изм
34	9,0	10,5	3	0	-3	0	30	
35	7,5	9,0	3	0	-3	0	30	
36	6,0	7,5	3	0	-3	0	30	
37	4,5	6,0	3	0	-3	0	30	
38	3,0	4,5	3	0	-3	0	30	
39	1,5	3,0	3	0	-3	0	30	
40	0,0	1,5	3	0	-3	0	30	
0	0,0	0,0	0	0	0	0	5	Конт. Изм; ЭКГ
	,	,-			Сумі		1200	
						ма, Мин	20	

Данная таблица отображает алгоритм движения при следующих параметрах, эти параметры считаются стандартными, частота = $0.100~\Gamma$ ц, максимальный угол = 31.5, количество повторений = 1.

При запуске сеанса с пульта управления расположенного на кровати, кровать запускается со стандартными параметрами.

При запуске программы с ПК есть возможность изменить параметры, причем параметры могут находиться в следующих диапазонах:

частота - от 0.070 до 0.145

угол максимальный - от 7.5 до 31.5

Количество повторений - от 1 до 10

Распространение программы:

ПО не распространяется в виде готового установщика, а только в виде подготовленного к работе ПК. Установка, настройка и техническое обслуживание программно-аппаратного комплекса осуществляется специально подготовленным техническим специалистом.

Сервисное и техническое обслуживание (ТО):

Для обслуживания изделия (и всего программно-аппаратного комплекса) разрабатывается специальная программа. С ее помощью осуществляется техническое обслуживание изделия, получение системной информации, настройка/ремонт изделия при необходимости. ПО при работе с изделием должно оповещать пользователя о времени, оставшемся до ближайшего ТО.

Параметры отображения:

- Продолжительность работы (кол-во часов)
- Серийный номер
- Версия прошивки
- Время до необходимости сервисного обслуживания
- Возможность сброса сервисного таймера
- Возможность сброса блокировки
- Получение кода ошибки (при их возникновении)
- Было ли вскрытие блока управления изделия

В случае возникновения необходимости внесения добавлений/изменений в требования к ПО, ТЗ согласуется и перезаключается с учетом выполненной работы.

Тестирование:

По завершению разработки проводится этап тестирования, после успешного завершения которого производится передача ПО. В ходе тестирования производится проверка работоспособности ПО по всему заявленному функционалу, исправление выявленных ошибок в случае их обнаружения. Тестирование признается успешным после проведения трех подряд тестовых запусков изделия с предварительно оговоренными параметрами (параметрами сеанса, заданными в ПО перед началом каждого сеанса (нажатие тех или иных кнопок, число повторений и т.п.)) и демонстрацией функционала, в ходе которого не выявлено проблем с работоспособностью ПО. Также по итогам тестирования окончательно определяются системные требования к ПО. Тестирование проводится совместно Разработчиком и Приобретателем. Оборудование для тестирования ПО (инверсионный стол) предоставляет Приобретатель.

ЭТАПЫ РАЗРАБОТКИ

1. Создание структуры и разработка архитектуры программы.

- Создание структуры: Начало проектирования, подбор и проверка необходимых технологий разработки, настройка рабочих мест, подготовка архитектуры, анализ функционала и требований к вводу/выводу данных.
- Разработка архитектуры: Проектирование, разработка и реализация архитектуры приложения. Подготовка классов-заглушек для перспективного функционала, поддержка функциональной возможности авторизации пользователей, учет действий пользователя, возможных ошибок (логгирование), подготовка возможности тонкой работы приложения (максимальное упрощение настройки).

2. Работа с кардиомонитором и разработка базы данных

- Работа с кардиомонитором: Поддержка работы с кардиомонитором, изменение взаимодействия (клиент-сервер, поддержка протокола udp), реализация работы с событиями (в т.ч. по результатам накачки) (увеличение надежности), реализация передачи данных ЭКГ, увеличение надежности передачи и т.д.
- База данных:
 - Новая БД частично входит в задачи по архитектуре и ЭКГ. Работа с СУБД (MySQL/PostgreSQL), проработка базы, способов сохранения данных (в особенности ЭКГ) консультационное взаимодействие с Константином на тему взаимной поддержки, анализ и реализация способов резервирования/безопасности.
 - о Реализация базы данных, функционала взаимодействия с ней, резервного копирования данных, тестирование (с поддержкой ЭКГ), проверка надежности, получение данных, оптимизация.

3. Работа с инверсионным столом (изделием), реализация приложения, результаты сеанса (отчеты).

- Работа с инверсионным столом (изделием): Взаимодействие с прошивкой изделия, тестирование, разработка служебной программы. Зависит от необходимости, сроков разработки новой прошивки и сроков предшествующих работ. Разработка максимально надежного протокола взаимодействия с прошивкой, реализация и проверка отправки/приема данных. Поддержка изменяемых углов, кол-ва периодов, частоты (новые требования).
- Реализация приложения: Работа по клиенту (связка архитектуры, БД, монитора), рендеринг (отображение) ЭКГ, дизайн приложения. Реализация навигации внутри приложения (переход между формами), тестирование, сериализация данных в файл, оптимизация работы и т.д.
- Результат сеанса (отчеты): Реализация построения отчетов о сеансе, график, печать отчетов. Отображение результатов из файла.

4. Поддержка Windows 10, итоговая реализация.

Разработка драйверов, разработка и проверка работы функционала в ОС Windows 10. Итоговая реализация (объединение всех разработанных программных компонентов, подготовка графического интерфейса приложения и т.д.)

7

5. Итоговое тестирование ПО. Проведение испытаний ПО непосредственно на изделии, выявление возможных ошибок и недоработок, их исправление.

ГРАФИК ВЫПОЛНЕНИЯ РАБОТ И СРОКИ ВЫПОЛНЕНИЯ РАБОТ

Необходимое время для разработки программы — 7 месяцев с момента подписания договора. Еще два месяца требуется для тестирования изделия, первый месяц тестирование в Минске, в офисе, второй месяц финальное тестирование в клинике.

Ниже представлен план-график работ.

																					не	дел	И																			\exists
Наименование этапа Наименование работ		1	2	3	4	5	6	7	8		9	10	11	12	13	14	15	16		17	18	19	20	21	22	23	24		25	26	27	28		29	30	31	32	33	34	35	36	
Этап № 1	Создание структуры																																									
∃lallM2T	Разработка архитектуры																																									
Этап № 2	Работа с кард. Монитором																																									
	База данных																											_ [4eT									<u> </u>
	Обмен данными с кроватью									No.1									N N N									No.3					й									900
Этап № 3	Реализация приложения									ē									듑									ē					ВЫЙ									арб
	Результаты сеанса									6									5									6					010									Пач
Этап № 4	Поддержка Windows 10																		ı														ž									3
	Итоговая реализация																																									
	Тестирование С-Пб																																									
Этап № 5	Тестирование Минск																									_																
1	Тестирование Финальное																																									

Список необходимого оборудования и ПО:

Оборудование приобретается Приобретателем и передается во временное владение и использование разработчиком на основании отдельного акта сдачи-приемки оборудования.

Оборудование передается под материальную ответственность Разработчика. В случае причинения любого ущерба переданному оборудованию, Разработчик обязан возместить стоимость такого оборудования на основании данных о стоимости, предоставленных Приобретателем.

Возврат оборудования также осуществляется на основании отдельного акта сдачиприемки.

1. Кардиомонитор реанимационный Митар-01-Р-Д.

Передается Приобретателем во временное пользование. Необходим для разработки ПО. Входит в состав изделия, в дальнейшем возвращается Приобретателю для использования в составе изделия.

2. Персональный компьютер

Характеристики:

Процессор Intel Core i7 4790

Материнская плата Gigabyte GA-Z97-HD3

Оперативная память 8GB 1600Mhz x 2

Жесткий диск Toshiba 1000GB

Устройство чтения и записи CD/DVD Lite-On

Видеоадаптер Gigabyte GV-N75TOC-2GL

Корпус системного блока MiniTower IW-EAR 500W

Жесткий диск Kingston SV300S37A/240G

Moнumop DELL P2414HB

Мышь Logitech B100

Клавиатура А4Tech KV-300H

Акустическая система Logitech Z150

Передается Приобретателем во временное пользование. Используется для разработки ПО, в состав изделия не входит.

3. Ноутбук для работы с новым инверсионным столом (изделием). Наименование - Asus x5551

Передается Приобретателем во временное пользование, используется при разработке и тестировании (разработчиком и заказчиком) ПО. Входит в состав изделия, в дальнейшем используется Приобретателем (в составе изделия).

4. ПО "Stimulsoft Reports Ultimate", лицензия на 1 разработчика, без исходного кода

Стороннее ПО, используется для системы построения отчетов, встраивается Разработчиком в состав ПО.

5. Принтер

лазерный принтер HP LaserJet Pro P1102 RU

Передается Приобретателем во временное пользование. Входит в состав изделия, необходим для печати отчетов.

Приложение № 5 к Договору на разработку системы управления инверсионным столом № от 25.04.2016г.

РЕЗУЛЬТАТЫ РАБОТ

По выполнению договора будет представлен один полностью рабочий экземпляр ПО, разработанным в соответствии с ТЗ (Приложение № 1).

Результатом работ является готовая программа, работающая на персональном компьютере (ПК) с операционной системой (ОС) Windows 10 и обеспечивающая весь заявленный функционал. Подготовкой и настройкой ПО на заранее подготовленном компьютере занимается Разработчик.

По завершению разработки Приобретателю будет представлен следующий комплект оборудования материалов и документов: ПК с подготовленным для работы ПО, ПО с инструкцией по установке/настройке, инструкция по эксплуатации ПО, рекомендуемые требования к ПК и периферийному оборудованию для использования ПО, исходный код программы. Весь комплект материалов и документов будет скопирован на USB-накопитель и передан Приобретателю в течение двух недель с момента завершения тестирования ПО.