

Entrance Exam (2020 – 2021)

Chemistry
Duration: 40 min
September 2020

This Test consists of two Multiple-choice Exercises (MCQs). Each Exercise consists of 10 MCQs.

- 1- Post your answer on the grille.
- 2- For each question correspond 3 proposals a, b, c.
- 3- For each question, there is ONLY one true answer.
- 4- Select the correct proposal and mark" X" in the corresponding case in the GRILLE associated with the exercise.
- 5- You must answer all the questions.
- 6- Each correct answer provides you 1 point.
- 7- The use of a non programmable calculate is authorized.

Exercise – 1 Ester and pH

A mono-functional organic compound (A) of formula C_xH_yO₂ having the following percentage by mass: oxygen 36.37 % and carbon 54.55 %.

Given: Molar mass in g.mol⁻¹: M(H) = 1, M(C) = 12, M(O) = 16

- 1- The molar mass of (A) is:
 - a- 90 g.mol⁻¹
 - b- 88 g.mol⁻¹
 - c- 64 g.mol⁻¹
- 2- The molecular formula of (A) is:
 - a- $C_4H_8O_2$
 - b- C₄H₁₀O₂
 - $c- C_3H_6O_2$
- 3- A solution (S) was prepared by adding distilled water at 1×10^{-2} mol of (A) placed in a volumetric flask of 1 L to reach the line mark and shake. The compound A reacts with water according the equilibrium of the following equation: $A + H_2O \rightleftharpoons B + C$. The pH of the freshly solution (S) prepared of (A) is neutral. The function of (A) is an: a- Alcohol
 - b- Ester
 - c- Acid
- 4- Over time the pH of solution (S):
 - a- Doses not varie
 - b- Decreases
 - c- Increases

- 5- The analysis of solution (S) shows that it contains among others 2-propanol, the compound (A) is:
 - a- Propyl methanoate
 - b- Ethyl ethanoate
 - c- 1-methylethyl methanoate
- 6- The initial molar concentration of (S) is 1×10^{-2} mol.L⁻¹, the pH of the solution (S) after a long time will be:
 - a- pH = 2
 - b-pH>2
 - c-pH < 2
- 7- The equilibrium is strongly advanced towards the formation of B and C

$$A + H_2O \Rightarrow B + C$$

The factor influencing the equilibrium is:

- a- High water concentration
- b- Temperature rise
- c- Another factor
- 8- An acid-base neutralization of a volume V(S) requires an equal volume of NaOH 1×10^{-2} mol.L⁻¹. The yield Y of the reaction: A + H₂O \leftrightarrows B + C is:
 - a- Y = 80%
 - b- Y = 90%
 - c- Y = 100%
- 9- To achieve a colorimetric neutralization and to detect the equivalence point the most indicator to be used is:
 - a- Helianthine of pH range 3,2 <pH<4,4
 - b- Bromocresol green of pH range 3,8< pH< 5,4
 - c- Phenolphtalein of pH range 8,2<pH < 9,8
- 10- The equation of the acid-base neutralization reaction is:
 - a- $HCOOH + HO^- \leftrightarrows HCOO^- + H_2O$
 - b- $HCOOH + HO^{-} \rightarrow HCOO^{-} + H_{2}O$
 - c- $HCOOH + H_2O \leftrightarrows HCOO^- + H_3O^+$

Grille of exercise -1

QCM N°	а	b	С
1		X	
2	X		
3		X	
4		X	
5	A const		X
6	A18	X	
7	X		
8			X
9			X
10		X	

Exercise – 2 Kinetic and number of moles

In a laboratory of a polytechnic school, the kinetic study of the complete transformation betw een hydrogen peroxide and iodide ions $\Gamma(aq)$ in the presence of $H^+(aq)$ ions is undertaken. The chemical equation modeling this transformation is written:

$$H_2O_2(aq) + 2 I^-(aq) + 2 H^+(aq) \rightarrow I_2(aq) + 2 H_2O(1).$$

The following document presents the results of the kinetics studied: changes in the amount of number of moles for the three reagents versus time.

1- The limiting reagent is:

- a- H₂O₂
- b- I
- c- H⁺

- 2- The curve $n(I^-) = f(t)$ is correct, then:
 - a- The curve $n(H_2O_2) = f(t)$ is wrong
 - b- The curve $n(H^+) = f(t)$ s wrong
 - c- Neither of the two curves is wrong
- 3- The mass of iodine obtained (Molar mass: $M(I_2) = 254$ g.mol⁻¹) is approximately equal to:
 - a- 0.18 g
 - b- 0.44 g
 - c- 0.60g
- 4- The half-time of the reaction is:
 - a- 60 s
 - b- 35 s
 - c- 10 s
- 5- The rates of disappearance of reagents at instant t are such as:
- a- $R_{disappearance}(H_2O_2) = R_{disappearance}(I) = R_{disappearance}(H^+)$
- b- R disappearance (I) = 2 R disappearance (H+)
- c- 2 R disappearance (H_2O_2) = R disappearance (\bar{I})
- 6- The rate of formation of product I₂ at instant t are such as : Vitesse de formation du produit I₂ à un instant t est tel que :
- a- $R_{\text{formation (I2)}} = 2 R_{\text{disappereance (H}^+)}$
- b- R formation (I2) = R disappereance (H2O2)
- c- R formation (I2) = 2 R disappereance (H⁺)
- 7- The initial amount of H^+ , $n(H^+)_{initial} = 3.8$ mmol then the amount $n(I_2)$, expressed in mmol, of iodine formed during time is giving by the relation:
 - a- $n(I_2)_t = 3.5 2n(I^-)_t$
 - b- $n(I_2)_t = \frac{1}{2} (3.8 n(H^+)_t)$
 - c- $n(I_2)_t = 4 n(H_2O_2)_t$
- 8- The final composition of the mixture, expressed in mmol, is:

	H_2O_2	I ⁻	H^+	I_2	H ₂ O
a	2. 25	0	2.05	1.75	Large amount
b	2. 25	0	0.75	1.75	Large amount
c	2.25	0	0.30	1.75	Large amount

9- The final composition of the mixture at instant $t_{1/2}$, expressed in mmol, is:

	H ₂ O ₂	I-	H^+	I_2	H ₂ O
a	2.0	1.75	1.9	0.875	Large amount
b	3.125	1.75	2.05	0.875	Large amount
С	2.25	1.75	0.30	1.75	Large amount

10- The shape of the curve $n(I_2) = f''(t)$, passes through the points:

	t=0s	t 1/2	t final
a	0 mmol	2 mmol	4 mmol
b	0 mmol	1.9 mmol	3.8 mmol
С	0 mmol	0.875 mmol	1.75 mmol

Grille of exercise -2

QCM	Nº	а	b	С
1		A110	X	
2			X	
3			X	
4		6		X
5				X
6			X	4
7		7	X	
8				X
9		₩	X	
10		1		X