Module 1

Lecture 1

Setup

```
In[*]:= << Notation`

In[*]:= Symbolize[ __ ]

Symbolize[ __ ]

In[*]:= PopulationVariance = ResourceFunction["PopulationVariance"]

Out[*]:= SetOptions[DiscretePlot, PlotStyle → Thickness[.02], Frame → True];
    SetOptions[Plot, PlotStyle → Thickness[.02], Frame → True];</pre>
```

Win / Loss Example

```
ln[*]:= P_{win} = \frac{20}{100} // N
Out[*]:= 0.2
ln[*]:= P_{loss} = \frac{80}{100} // N
Out[*]:= 0.8
ln[*]:= P_{win} + P_{loss} == 1
```

Out[•]=

True

Rolling Dice

```
In[*]:= RandomChoice[{"Heads", "Tails"}]
Out[*]= Heads
```

In[*]:= RandomInteger[{1, 6}]

Out[*]= 5

In[*]:= RollDi := RandomInteger[{1, 6}]

In[•]:= **RollDi**

Out[*]= 4

In[@]:= RollDice[n_] := RandomInteger[{1, 6}, n]

In[*]:= rolls = RollDice[#] & /@ {100, 10000, 1000000};

$$ln[*] := p = \frac{1}{6};$$

diProbabilities = Association@Table[$i \rightarrow p$, {i, 1, 6}]

Out[*]=
$$\left\langle \left| 1 \rightarrow \frac{1}{6}, 2 \rightarrow \frac{1}{6}, 3 \rightarrow \frac{1}{6}, 4 \rightarrow \frac{1}{6}, 5 \rightarrow \frac{1}{6}, 6 \rightarrow \frac{1}{6} \right| \right\rangle$$

In[*]:= Total@Values@diProbabilities == 1

Out[•]= True

In[*]:= diNumbers = Range[6]

 $Out[\bullet] = \{1, 2, 3, 4, 5, 6\}$

In[*]:= diRules = Thread[x == diNumbers]

 $lo[e] = diProbabilities = ConstantArray \left[\frac{1}{6}, 6 \right]$

Out[\circ]= $\left\{ \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6} \right\}$

In[⊕]:= pw = Piecewise[{diProbabilities, diRules}^T]

 $\text{Out[*]=} \left\{ \begin{array}{l} \frac{1}{6} \quad x == 1 \mid \mid x == 2 \mid \mid x == 3 \mid \mid x == 4 \mid \mid x == 5 \mid \mid x == 6 \\ 0 \quad \text{True} \end{array} \right.$

pw /. x
$$\rightarrow$$
 1

Out[*]= $\frac{1}{6}$

In[*]:= p = pw /. x \rightarrow # & /@ {1, 2, 3}

Out[*]= $\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}$

In[*]:= Total[p]

Out[*]= $\frac{1}{2}$

Lecture 2

Digital Channel (Ex 3.3)

There is a chance that a bit transmitted through a digital transmission channel is received in error. Let X equal the number of bits in error in the next four bits transmitted. The possible values for X are $\{0, 1, 2, 3, 4\}$. Based on a model for the errors that is presented in the following section, probabilities for these values will be determined. Suppose that the probabilities are

$$P(X = 0) = 0.6561$$
 $P(X = 1) = 0.2916$
 $P(X = 2) = 0.0486$ $P(X = 3) = 0.0036$
 $P(X = 4) = 0.0001$

$$In[10]:= \mbox{ digitalChannel} = \left\{ \begin{array}{l} 0.6561 & x == 0 \\ 0.2916 & x == 1 \\ 0.0486 & x == 2; \\ 0.0036 & x == 3 \\ 0.0001 & x == 4 \end{array} \right.$$

Lecture 3

Digital Channel (Ex 3.5)

In <u>Example 3.3</u>, we might be interested in the probability that three or fewer bits are in error. This question can be expressed as $P(X \le 3)$.

The event that $\{X \le 3\}$ is the union of the events $\{X = 0\}$, $\{X = 1\}$, $\{X = 2\}$, and $\{X = 3\}$. Clearly, these three events are mutually exclusive. Therefore,

$$P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)$$

= 0.6561 + 0.2916 + 0.0486 + 0.0036 = 0.9999

Ways to access values from Piecewise

```
\label{eq:local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_
```

Cumulative Sum

In[*]:= Accumulate@values Out[*]= {0.6561, 0.9477, 0.9963, 0.9999, 1.}

Lecture 4

Digital Channel (Ex 3.7)

In Example 3.3, there is a chance that a bit transmitted through a digital transmission channel is received in error. Let X equal the number of bits in 3, 4}. Based on a model for the errors presented in the following section, probabilities for these values will be determined. Suppose that the probabilities are

$$P(X = 0) = 0.6561 \ P(X = 2) = 0.0486 \ P(X = 4) = 0.0001$$

 $P(X = 1) = 0.2916 \ P(X = 3) = 0.0036$

Expectation Value (several methods)

```
In[ • ]:= x [i_] := i
  ln[\circ]:= f[i] := digitalChannel /.x \rightarrow i
  ln[@] := 0f[0] + 1f[1] + 2f[2] + 3f[3] + 4f[4]
         0.4
Out[ • ]=
```

In[@]:= Range[0, 4].values

Out[•]= 0.4

The mean of a distribution gives the expectation value.

```
ln[*]:= \mu = Mean[dist]
```

0.4 Out[•]=

Standard Deviation

The variance can be computed manually using a sum.

$$ln[x] = V = \sum_{i=0}^{4} f[x[i]] (x[i] - \mu)^{2}$$

Out[*]= **0.36**

Note that this is variance of a distribution, which considers weights appropriately.

```
In[•]:= Variance@dist
```

$$ln[\bullet]:= \sigma = \sqrt{V}$$

In[*]:= Around
$$\left[\mu, \sqrt{\mathsf{V}}\right]$$

$$\textbf{0.4} \pm \textbf{0.6}$$

NiCd Battery (3.3.6)

$$ln[\circ]:= \text{ battery} = \begin{cases} 0.17 & x == 0 \\ 0.35 & x == 2 \\ 0.33 & x == 3 \\ 0.15 & x == 4 \end{cases}$$

ln[*]:= dist = ProbabilityDistribution[battery, {x, 0, 4, 1}];

$$\text{Out[\circ]= Function} \left[\left\{ \begin{matrix} x \\ x \end{matrix} \right\}, \right. \left\{ \begin{array}{ll} 0. & x < 0 \\ 0.17 & 0 \leq x < 2 \\ 0.52 & 2 \leq x < 3 \end{array}, \text{Listable} \right] \\ 0.85 & 3 \leq x < 4 \\ 1. & \text{True} \end{array} \right.$$

In[*]:= cdf[#] & /@Range[0, 4]

 $Out[\ \ \ \ \ \ \ \ \ \ \ \ \]=$ {0.17, 0.17, 0.52, 0.85, 1.}

log[*]:= Plot[cdf[x], {x, 0, 5}, PlotRange \rightarrow {0, 1}, FrameLabel \rightarrow {"Nickel Charge", "CDF"}]


```
In[\bullet]:= \mu = Mean@dist
 Out[ •]= 2.29
  \sigma = \sqrt{V}
 Out[ ]= 1.23527
  ln[\bullet]:= charge = Around [\mu, \sigma]
          \textbf{2.3} \pm \textbf{1.2}
Out[ • ]=
```

Code Graveyard

Exam Scores

```
ln[\circ]:= scores = <| "50-60" \rightarrow 20, "61-80" \rightarrow 30, "81-100" \rightarrow 50|>
 \textit{Out[\#]}\text{=} \  \  \, <\mid 50-60 \ \rightarrow \ 20 , 61-80 \ \rightarrow \ 30 , 81-100 \ \rightarrow \ 50 \ \mid >
  In[*]:= values = Values@scores;
          total = Total@values;
          values / total // N
 Out[\sigma]= {0.2, 0.3, 0.5}
  In[*]:= Total[values / total] == 1
            True
Out[ • ]=
```

Piecewise Function

$$ln[*]:= scores = \begin{cases} \frac{20}{60-50} & (x \ge 50) & \& (x \le 60) \\ \frac{30}{80-61} & (x \ge 61) & \& (x \le 80) ; \\ \frac{50}{100-81} & (x \ge 81) & \& (x \le 100) \end{cases}$$

Integration of First Group

Out[•]=

0.2

Integration of All Groups

$$In[*]:= MapThread \left[\frac{\int_{1:1}^{1:2} scores \, dx}{\int_{0}^{100} scores \, dx} \, \&, \, \{\{50, \, 61, \, 81\}, \, \{60, \, 80, \, 100\}\} \right] \, // \, N$$

Probability Distribution

```
log[*] dist = ProbabilityDistribution[digitalChannel, {x, 0, 4, 1}];
     pdf = Simplify@PDF[dist, x];
log_{e}:= DiscretePlot[pdf, {x, 0, 4}, FrameLabel \rightarrow {"Number of incorrect bits", "Probability"}]
        0.6
        0.5
        0.4
        0.2
        0.0
```

Print Notebook

Assumes that Mathematica notebook ends with .nb extension

Number of incorrect bits

In[13]:= Export[StringDrop[NotebookFileName[], -2] <> "pdf", EvaluationNotebook[]] Export: Cannot open C:\Users\sterg\Documents\GitHub\sparks-baird\mete-3070\mathematica\module-1.pdf. Out[12]= **\$Failed**