Definition

A homogenous vector equation is a vector equation of the form

$$x_1\mathbf{v}_1+\ldots+x_p\mathbf{v}_p=\mathbf{0}$$

(i.e. with the zero vector as the vector of constants).

Note: A homogenous equation always has at least one, trivial solution: $x_1 = 0$, $x_2 = 0$, ..., $x_p = 0$.

This leaves two possibilities for homogoneous equations:

1 only one solution e.g.
$$x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Definition

Let $\mathbf{v}_1,\ldots,\mathbf{v}_p\in\mathbb{R}^n$. The set $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ is *linearly independent* if the homogenous equation

$$x_1\mathbf{v}_1+\ldots+x_p\mathbf{v}_p=\mathbf{0}$$

has only one, trivial solution $x_1 = 0, \ldots, x_p = 0$. Otherwise the set is linearly dependent.

e.g. the set { [] [] is linearly { [] [] is linearly dependent } { [] [] [] dependent

a.g. the set

Theorem

Let $\mathbf{v}_1, \ldots, \mathbf{v}_p \in \mathbb{R}^n$. Consider the equation

$$x_1\mathbf{v}_1 + \ldots + x_p\mathbf{v}_p = \mathbf{w}$$

where $\mathbf{w} \in \mathsf{Span}(\mathbf{v}_1, \dots, \mathbf{v}_p)$.

If the set $\{v_1, \ldots, v_p\}$ is linearly independent then this equation has exactly one solution.

If $\{v_1, \ldots, v_p\}$ is linearly dependent then this equation has infinitely many solutions.

Proof: Assume that $\{v_1, ..., v_p\}$ - lin. independent and that $x_1, v_1 + ... + x_p v_p = W$ has two solutions:

then; $(c_1-d_1)V_1 + ... + (c_p-d_p)V_p = W-W = 0$

So: c, = d,, ..., cp = dp.

Conversely, assume that {v1,..., vpt - lin. dependent.

Then we have $C_1V_1 + ... + C_pV_p = 0$ where $c_i \neq 0$ for some i.

If $d_1v_1 + ... + d_pv_p = w$ then

$$(c_1+d_1)v_1+...+(c_p+d_p)v_p =$$

$$(c_1v_1+...+c_pv_p)+(d_1v_1+...+d_pv_p)=0+w=w$$

It follows that the equation $x_1v_1+...+x_pv_p=w$ has two different solutions:

$$\begin{cases} x_i = d_i \\ \vdots \\ x_p = d_p \end{cases} \quad \text{and} \quad \begin{cases} x_i = d_i + C_i \\ \vdots \\ x_p = d_p + C_p \end{cases}$$

Example. Let

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 3 \\ 5 \\ 4 \end{bmatrix} \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 3 \\ -12 \end{bmatrix}$$

Check is the set $\{v_1, v_2, v_3\}$ is linearly independent.

Solution

need to solve We

$$X_1V_1 + X_2V_2 + X_3V_3 = 0$$

augmented matrix:

$$\begin{bmatrix} v_1 & v_2 & v_3 & | \mathbf{0} \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 0 \\ 2 & 5 & 3 & 0 \\ -2 & 4 & -12 & 0 \end{bmatrix} \xrightarrow{\text{row reduction}} \begin{bmatrix} 1 & 0 & 4 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & | \mathbf{0} \end{bmatrix}$$
free variable so infinitely many

Thus the set {v₁, v₂, v₃} is <u>not</u> linearly independent.

Note

A set $\{v_1, \ldots, v_p\}$ is linearly independent if and only if every column of the matrix

$$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_p \end{bmatrix}$$

is a pivot column.

Some properties of linearly (in)dependent sets

- 1) A set consisting of one vector $\{v_1\}$ is linearly dependent if and only if $v_1=0$.
 - if $v_i \neq 0$ then $x_i v_i = 0$ has only one solution $x_i = 0$, so $\{v_i\}$ is lin. independent.
 - if $v_i = 0$ then $x_i, v_i = 0$ holds for any value of $x_{i,j}$ so $\{v_i\}$ is lin. dependent.

2) A set consisting of two vectors $\{v_1, v_2\}$ is linearly dependent if and only if one vector is a scalar multiple of the other.

If
$$\{v_{i,1}, v_{2}\}$$
 is lin. dependent then
$$c_{i}v_{i} + c_{2}v_{2} = 0$$
 for some c_{i} , c_{2} such that $c_{1}\neq 0$ or $c_{2}\neq 0$. Say $c_{1}\neq 0$. Then:
$$c_{1}v_{1} = -c_{2}v_{2}$$

$$v_{1} = \left(-\frac{c_{2}}{c_{1}}\right)v_{2}$$
 So v_{1} is a multiple of v_{2} .

3) If $\{v_1, \ldots, v_p\}$ is a set of p vectors in \mathbb{R}^n and p > n then this set is linearly dependent.

We need to show that if p>n then not every column of the matrix $\left[v_{i} \, ... \, v_{p} \, \right]$

is a pivot column.

$$E \cdot Q$$
. $v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $v_2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ $v_3 = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$

$$[v_1 \quad v_2 \quad v_3] = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \begin{cases} n=2 \text{ mas} \\ p=3 \end{cases}$$
Columns This means

This means that there are at most 2 leading ones, so at most 2 pivot columns.

Thus we will have a non-pivot column.

