#### Dr. Perceptron

"Now, consider the following: You were admitted to this robot asylum. Therefore, you must be a robot. Diagnosis complete."

—Dr. Perceptron to Fry<sup>[source]</sup>

**Dr. Perceptron** is the head doctor at the Hal Institute for Criminally Insane Robots. He was destroyed briefly by Roberto during his escape from the Institute, but was apparently fixed/rebuilt and returned to work for Bender's second stay.

In 3008, Dr. Perceptron was damaged during a group therepy session, but like his encounter with Roberto, was quickly repaired to continue his duties at the Institute.

#### Appearances **PEdit**



- Insane in the Mainframe
- Bender's Game



| Gender           | Male ♂                                 |  |
|------------------|----------------------------------------|--|
| Species          | Robot                                  |  |
| Planet           | Earth                                  |  |
| Profession       | Doctor of Freudian<br>Circuit Analysis |  |
| First appearance | Insane in the<br>Mainframe             |  |
| Voiced by        | Maurice LaMarche                       |  |

http://futurama.wikia.com/wiki/Dr. Perceptron

#### Quick review of Tuesday

- Learning as optimization
- Optimizing conditional log-likelihood  $Pr(y|\mathbf{x})$  with logistic regression
- Stochastic gradient descent for logistic regression
  - Stream multiple times (epochs) thru data
  - Keep model in memory
- L2-regularization
- Sparse/lazy L2 regularization
- The "hash trick": allow feature collisions, use array indexed by hash code instead of hash table for parameters.

#### **Quick look ahead**

- Experiments with a hash-trick implementation of logistic regression
- Next question:
  - how do you parallelize SGD, or more generally, this kind of streaming algorithm?
  - -each example affects the next prediction →
     order matters → parallelization changes the
     behavior
  - we will step back to perceptrons and then step forward to parallel perceptrons

# Debugging Machine Learning Algorithms

William Cohen

# Debugging for non-ML systems

"If it compiles, ship it."

#### Debugging for ML systems

- 1. It's definitely *exactly* the algorithm you read about in that paper
- 2. It also compiles
- 3. It gets 87% accuracy on the author's dataset
  - but he got 91%
  - so it's not working?
  - or, your eval is wrong?
  - or, his eval is wrong?

#### Debugging for ML systems

- 1. It's definitely *exactly* the algorithm you read about in that paper
- 2. It also compiles
- 3. It gets 97% accuracy on the author's dataset
  - but he got 91%
  - so you have a best paper award!
  - or, maybe a bug...

#### Debugging for ML systems

- It's always hard to debug software
- It's *especially* hard for ML
  - a wide range of almost-correct modes for a program to be in



#### Debugging advice

- 1. Write tests
- 2. For subtle problems, write tests
- 3. If you're still not sure why it's not working, write tests
- 4. If you get really stuck:
  - take a walk and come back to it in a hour
  - ask a friend
    - If s/he's also in 10-605 s/he can still help as long as no notes are taken (my rules)
  - take a break and write some tests

## Debugging ML systems

#### Write tests

- For a generative learner, write a generator and generate training/test data from the assumed distribution
  - Eg, for NB: use one small multinomial for pos examples, another one for neg examples, and a weighted coin for the class priors.
- The learner should (usually) recover the actual parameters of the generator
  - given enough data, modulo convexity, ...
- Test it on the weird cases (eg, uniform class priors, highly skewed multinomials)

## Debugging ML systems

#### Write tests

- For a discriminative learner, similar trick...
- Also, use what you know: eg, for SGD
  - does taking one gradient step (on a sample task) lower the loss on the training data?
  - does it lower the loss *as expected?* 
    - (f(x)-f(x+d))/d should approximate f'(x)
  - does regularization work as expected?
    - large mu → smaller param values
  - record training set/test set loss
    - with and without regularization

## Debugging ML systems

Compare to a "baseline" mathematically clean method vs scalable, efficient method

- lazy/sparse vs naïve regularizer
- hashed feature values vs hashtable feature values

•

#### **ON-LINE ANALYSIS AND REGRET**

## On-line learning/regret analysis

- Optimization
  - is a great model of what you want to do
  - a less good model of what you have time to do
- Example:
  - How much to we lose when we replace gradient descent with SGD?
  - what if we can only approximate the local gradient?
  - what if the distribution changes over time?
  - **—** ...
- One powerful analytic approach: online-learning aka regret analysis (~aka on-line optimization)

# **On-line learning**



#### To detect interactions:

- increase/decrease  $\mathbf{v}_k$  only if we need to (for that example)
- otherwise, leave it unchanged
- We can be sensitive to duplication by stopping updates when we get better performance

# **On-line learning**



#### To detect interactions:

- increase/decrease  $\mathbf{v}_k$  only if we need to (for that example)
- otherwise, leave it unchanged
- We can be sensitive to duplication by stopping updates when we get better performance

## Theory: the prediction game

- Player A:
  - picks a "target concept" c
    - for now from a finite set of possibilities C (e.g., all decision trees of size m)
  - for t=1,....,
    - Player A picks  $\mathbf{x} = (x_1, ..., x_n)$  and sends it to B
      - For now, from a finite set of possibilities (e.g., all binary vectors of length n)
    - B predicts a label,  $\hat{y}$ , and sends it to A
    - A sends B the true label y=c(x)
    - we record if B made a *mistake* or not
  - We care about the worst case number of mistakes B will make over all possible concept & training sequences of any length
    - The "Mistake bound" for B,  $M_B(C)$ , is this bound

# **Perceptrons**

#### The prediction game

 Are there practical algorithms where we can compute the mistake bound?

# The voted perceptron



Compute:  $\hat{y}_i$  = sign(  $\mathbf{v}_k \cdot \mathbf{x}_i$ )

If mistake:  $\mathbf{v}_{k+1} = \mathbf{v}_k + y_i \mathbf{x}_i$ 

Margin  $\gamma$ . A must provide examples that can be separated with some vector  $\mathbf{u}$  with margin  $\gamma > 0$ , ie

$$\exists \mathbf{u} : \forall (\mathbf{x}_i, y_i) \text{ given by } A, (\mathbf{u} \cdot \mathbf{x}) y_i > \gamma$$

and furthermore,  $\|\mathbf{u}\| = 1$ .

Radius R. A must provide examples "near the origin", ie

$$\forall \mathbf{x}_i \text{ given by } A, \|\mathbf{x}\|^2 < R^2$$

# The voted perceptron



Compute: 
$$p = sign(\mathbf{v}_k \cdot \mathbf{x}_i)$$

If mistake: 
$$\mathbf{v}_{k+1} = \mathbf{v}_k + y_i \mathbf{x}_i$$

Aside: this is related to the SGD update:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \lambda(y - p)\mathbf{x}$$

$$y=p: \text{no update}$$

$$y=0, p=1: -\mathbf{x}$$

$$y=1, p=0: +\mathbf{x}$$



(3a) The guess  $v_2$  after the two positive examples:  $v_2 = v_1 + x_2$ 

(3b) The guess  $\mathbf{v_2}$  after the one positive and one negative example:  $\mathbf{v_2} = \mathbf{v_1} - \mathbf{x_2}$ 



**Lemma 1**  $\forall k, \mathbf{v}_k \cdot \mathbf{u} \geq k\gamma$ . In other words, the dot product between  $\mathbf{v}_k$  and  $\mathbf{u}$  increases with each mistake, at a rate depending on the margin  $\gamma$ .

Proof:

$$\mathbf{v}_{k+1} \cdot \mathbf{u} = (\mathbf{v}_k + y_i \mathbf{x}_i) \cdot \mathbf{u}$$

$$\Rightarrow \mathbf{v}_{k+1} \cdot \mathbf{u} = (\mathbf{v}_k \cdot \mathbf{u}) + y_i (\mathbf{x}_i \cdot \mathbf{u})$$

$$\Rightarrow \mathbf{v}_{k+1} \cdot \mathbf{u} \ge \mathbf{v}_k \cdot \mathbf{u} + \gamma$$

$$\Rightarrow \mathbf{v}_k \cdot \mathbf{u} \ge k\gamma$$

(3a) The guess  $v_2$  after the two positive examples:  $v_2 = v_1 + x_2$ 

(3b) The guess  $v_2$  after the one positive and one negative example:  $v_2 = v_1 - x_2$ 



**Lemma 2**  $\forall k$ ,  $\|\mathbf{v}_k\|^2 \leq kR^2$ . In other words, the norm of  $\mathbf{v}_k$  grows "slowly", at a rate depending on  $R^2$ .

Proof:

$$\begin{aligned} \mathbf{v}_{k+1} \cdot \mathbf{v}_{k+1} &= (\mathbf{v}_k + y_i \mathbf{x}_i) \cdot (\mathbf{v}_k + y_i \mathbf{x}_i) \\ \Rightarrow & \|\mathbf{v}_{k+1}\|^2 = \|\mathbf{v}_k\|^2 + 2y_i \mathbf{x}_i \cdot \mathbf{v}_k + y_i^2 \|\mathbf{x}_i\|^2 \\ \Rightarrow & \|\mathbf{v}_{k+1}\|^2 = \|\mathbf{v}_k\|^2 + [\text{something negative}] + 1 \|\mathbf{x}_i\|^2 \\ \Rightarrow & \|\mathbf{v}_{k+1}\|^2 \le \|\mathbf{v}_k\|^2 + \|\mathbf{x}\|^2 \\ \Rightarrow & \|\mathbf{v}_{k+1}\|^2 \le \|\mathbf{v}_k\|^2 + R^2 \\ \Rightarrow & \|\mathbf{v}_k\|^2 \le kR^2 \end{aligned}$$

**Lemma 1**  $\forall k, \mathbf{v}_k \cdot \mathbf{u} \geq k\gamma$ . In other words, the dot product between  $\mathbf{v}_k$  and  $\mathbf{u}$  increases with each mistake, at a rate depending on the margin  $\gamma$ .

**Lemma 2**  $\forall k$ ,  $\|\mathbf{v}_k\|^2 \leq kR$ . In other words, the norm of  $\mathbf{v}_k$  grows "slowly", at a rate depending on R.

$$(k\gamma)^{2} \leq (\mathbf{v}_{k} \cdot \mathbf{u})^{2}$$

$$\Rightarrow k^{2}\gamma^{2} \leq \|\mathbf{v}_{k}\|^{2} \|\mathbf{u}\|^{2}$$

$$\Rightarrow k^{2}\gamma^{2} \leq \|\mathbf{v}_{k}\|^{2}$$

$$\Rightarrow k^{2}\gamma^{2} \leq \|\mathbf{v}_{k}\|^{2}$$

$$\Rightarrow k^{2}\gamma^{2} \leq kR^{2}$$

$$\Rightarrow k\gamma^{2} \leq R^{2}$$

$$\Rightarrow k\gamma^{2} \leq R^{2}$$

$$\Rightarrow k \leq \frac{R}{\gamma^{2}} = \left(\frac{R}{\gamma}\right)^{2}$$

Radius R. A must provide examples "near the origin", ie

$$\forall \mathbf{x}_i \text{ given by } A, \|\mathbf{x}\|^2 < R^2$$

# One Weird Trick for Making Perceptrons More Expressive

What if the separating line doesn't go thru the origin?

Replace  $\mathbf{x} = (x^1,...,x^n)$  with  $(x^0,...,x^n)$  where  $x^0 = 1$  for every example  $\mathbf{x}$ .

Then  $y = sign(\sum_{j} x^{j} w^{j})$  becomes  $sign(x^{0} w^{0} + \sum_{j \ge 1} x^{j} w^{j})$  which is  $sign(w^{0} + \sum_{j \ge 1} x^{j} w^{j})$ 



## **Summary**

- We have shown that
  - If: exists a **u** with unit norm that has margin γ on examples in the seq  $(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2), \dots$
  - *Then*: the perceptron algorithm makes  $< R^2/\gamma^2$  mistakes on the sequence (where R  $>= ||\mathbf{x}_i||$ )
  - Independent of dimension of the data or classifier (!)
  - This doesn't follow from M(C)<=VCDim(C)</li>
- We don't know if this algorithm could be better
  - There are many variants that rely on similar analysis (ROMMA, Passive-Aggressive, MIRA, ...)
- We don't know what happens if the data's not separable
  - Unless I explain the "Δ trick" to you
- We don't know what classifier to use "after" training

#### The idea of the "delta trick"



#### The idea of the "delta trick"



#### The **\Delta** Trick

- The proof assumes the data is separable by a wide margin
- We can make that true by adding an "id" feature to each example
  - sort of like we added a constant feature

$$\mathbf{x}^{1} = (x_{1}^{1}, x_{2}^{1}, ..., x_{m}^{1}) \rightarrow (x_{1}^{1}, x_{2}^{1}, ..., x_{m}^{1}, \Delta, 0, ..., 0)$$

$$\mathbf{x}^{2} = (x_{1}^{2}, x_{2}^{2}, ..., x_{m}^{2}) \rightarrow (x_{1}^{2}, x_{2}^{2}, ..., x_{m}^{2}, 0, \Delta, ..., 0)$$

$$...$$

$$\mathbf{x}^{n} = (x_{1}^{n}, x_{2}^{n}, ..., x_{m}^{n}) \rightarrow (x_{1}^{n}, x_{2}^{n}, ..., x_{m}^{n}, 0, 0, ..., \Delta)$$

#### The **\Delta** Trick

- The proof assumes the data is separable by a wide margin
- We can make that true by adding an "id" feature to each example
  - sort of like we added a constant feature

```
doc17: i, found, aardvark, today → i, found, aardvark, today, doc17 doc37: aardvarks, are, dangerous → aardvarks, are, dangerous, doc37 ....
```

#### The **\Delta** Trick

- Replace x<sub>i</sub> with x'<sub>i</sub> so X becomes [X | I Δ]
- Replace  $R^2$  in our bounds with  $R^2 + \Delta^2$
- Let  $d_i = max(0, \gamma y_i \mathbf{x}_i \mathbf{u})$
- Let  $\mathbf{u'} = (\mathbf{u}_1, ..., \mathbf{u}_n, y_1 d_1/\Delta, ..., y_m d_m/\Delta) * 1/Z$ 
  - So Z=sqrt(1 + D<sup>2</sup>/ $\Delta$ <sup>2</sup>), for D=sqrt(d<sub>1</sub><sup>2</sup>+...+d<sub>m</sub><sup>2</sup>)
  - Now [X|I $\Delta$ ] is separable by **u**' with margin  $\gamma$
- Mistake bound is  $(R^2 + \Delta^2)Z^2 / \gamma^2$
- Let  $\Delta$  = sqrt(RD)  $\rightarrow$  k <= ((R + D)/ $\gamma$ )<sup>2</sup>
- Conclusion: a little noise is ok

## **Summary**

- We have shown that
  - If: exists a **u** with unit norm that has margin  $\gamma$  on examples in the seq (**x**<sub>1</sub>,y<sub>1</sub>),(**x**<sub>2</sub>,y<sub>2</sub>),....
  - *Then*: the perceptron algorithm makes  $< R^2/ γ^2$  mistakes on the sequence (where  $R >= ||\mathbf{x}_i||$ )
  - Independent of dimension of the data or classifier (!)
- We don't know what happens if the data's not separable
  - Unless I explain the "Δ trick" to you
- We don't know what classifier to use "after" training

# The averaged perceptron

$$P(\text{error in } \mathbf{x}) = \sum_{k} P(\text{error on } \mathbf{x}|\text{picked } \mathbf{v}_{k}) P(\text{picked } \mathbf{v}_{k})$$

$$= \sum_{k} \frac{1}{m_{k}} \frac{m_{k}}{m} = \sum_{k} \frac{1}{m} = \frac{k}{m}$$

Imagine we run the on-line perceptron and see this result.

| i  | guess          | input             | result                     |
|----|----------------|-------------------|----------------------------|
| 1  | $\mathbf{v}_0$ | $\mathbf{x}_1$    | X (a mistake)              |
| 2  | $\mathbf{v}_1$ | $\mathbf{x}_2$    | $\sqrt{\text{(correct!)}}$ |
| 3  | $\mathbf{v}_1$ | $\mathbf{X}_3$    | $\checkmark$               |
| 4  | $\mathbf{v}_1$ | $\mathbf{x}_4$    | X (a mistake)              |
| 5  | $\mathbf{v}_2$ | $X_5$             | $\checkmark$               |
| 6  | $\mathbf{v}_2$ | $\mathbf{x}_6$    | $\checkmark$               |
| 7  | $\mathbf{v}_2$ | $\mathbf{x}_7$    | $\checkmark$               |
| 8  | $\mathbf{v}_2$ | $\mathbf{x}_8$    | X                          |
| 9  | $\mathbf{v}_3$ | $\mathbf{x}_9$    | $\checkmark$               |
| 10 | $\mathbf{v}_3$ | $\mathbf{x}_{10}$ | X                          |

- Pick a v<sub>k</sub> at random according to m<sub>k</sub>/m, the fraction of examples it was used for.
- 2. Predict using the  $\mathbf{v}_k$  you just picked.
- 3. (Actually, use some sort of deterministic approximation to this).

#### predict using sign(v\*. x)

$$\mathbf{v}_* = \sum_k (\frac{m_k}{m} \mathbf{v}_k)$$

Imagine we run the on-line perceptron and see this result.

| _  | ,              |                   |                            |
|----|----------------|-------------------|----------------------------|
| i  | guess          | input             | $\operatorname{result}$    |
| 1  | $\mathbf{v}_0$ | $\mathbf{x}_1$    | X (a mistake)              |
| 2  | ${f v}_1$      | $\mathbf{x}_2$    | $\sqrt{\text{(correct!)}}$ |
| 3  | $\mathbf{v}_1$ | $\mathbf{x}_3$    | $\checkmark$               |
| 4  | $\mathbf{v}_1$ | $\mathbf{x}_4$    | X (a mistake)              |
| 5  | $\mathbf{v}_2$ | $X_5$             | $\checkmark$               |
| 6  | $\mathbf{v}_2$ | $\mathbf{x}_6$    | $\checkmark$               |
| 7  | $\mathbf{v}_2$ | $\mathbf{x}_7$    | $\checkmark$               |
| 8  | $\mathbf{v}_2$ | $\mathbf{x}_8$    | X                          |
| 9  | $\mathbf{v}_3$ | $\mathbf{x}_9$    | $\checkmark$               |
| 10 | $\mathbf{v}_3$ | $\mathbf{x}_{10}$ | X                          |
|    |                |                   |                            |

- Pick a v<sub>k</sub> at random according to m<sub>k</sub>/m, the fraction of examples it was used for.
- 2. Predict using the  $\mathbf{v}_k$  you just picked.
- 3. (Actually, use some sort of deterministic approximation to this).



# SPARSIFYING THE AVERAGED PERCEPTRON UPDATE

# Complexity of perceptron learning

- Algorithm: O(n)
- $\cdot v=0$
- for each example x,y:
  - $if sign(\mathbf{v.x}) != y$ 
    - $\mathbf{v} = \mathbf{v} + y\mathbf{x}$   $O(|\mathbf{x}|) = O(|\mathbf{d}|)$

init hashtable

• for  $x_i!=0$ ,  $v_i += yx_i$ 

Final hypothesis (last): v



# Complexity of averaged perceptron

O(|V|)

- Algorithm:
- O(n) O(n|V|)

• vk=0

init hashtables

**Test Erorr** 

- va = 0
- for each example **x**,*y*:
  - if sign(vk.x)! = y
    - va = va + mk\*vk
    - vk = vk + yx
    - m = m + 1
    - mk = 1
- $O(|\mathbf{x}|) = O(|\mathbf{d}|)$

- else
  - mk++

Final hypothesis (avg): va/m



# Complexity of perceptron learning

- Algorithm: O(n)
- v=0 init hashtable
- for each example **x**,*y*:
  - $if sign(\mathbf{v.x}) != y$ 
    - $\mathbf{v} = \mathbf{v} + y\mathbf{x}$   $O(|\mathbf{x}|) = O(|\mathbf{d}|)$

• for  $x_i!=0$ ,  $v_i += yx_i$ 

# Complexity of averaged perceptron

- Algorithm:
- O(n) O(n|V|)

vk=0

init hashtables

- va = 0
- for each example x,y:
  - $\text{ if sign}(\mathbf{vk.x}) != y \quad O(|V|)$



• va = va + vk



- vk = vk + yx
- mk = 1  $O(|\mathbf{x}|) = O(|\mathbf{d}|)$
- else
  - nk++

- for  $vk_i!=0$ ,  $va_i+=vk_i$
- for  $x_i!=0$ ,  $v_i+=yx_i$

## Alternative averaged perceptron

- Algorithm:
- $\mathbf{v}\mathbf{k} = 0$
- va = 0
- for each example x,y:

$$-$$
 va = va + vk

- m = m + 1
- if sign(vk.x) != y
  - $\mathbf{v}\mathbf{k} = \mathbf{v}\mathbf{k} + y^*\mathbf{x}$
- Return **va**/m

Observe:

$$\mathbf{vk} = \sum_{j \in S_k} y_j \mathbf{x}_j$$

S<sub>k</sub> is the set of examples including the first k mistakes

## Alternative averaged perceptron

- Algorithm:
- $\mathbf{v}\mathbf{k} = 0$
- va = 0
- for each example x,y:

$$- \mathbf{va} = \mathbf{va} + \sum_{j \in S_k} y_j \mathbf{x}_j$$
$$- \mathbf{m} = \mathbf{m} + 1$$

$$-m=m+1$$

- if sign(vk.x) != y
  - $\mathbf{v}\mathbf{k} = \mathbf{v}\mathbf{k} + y^*\mathbf{x}$
- Return **va**/m

So when there's a mistake at time t on **x**,y:

 $y^*x$  is added to va on every subsequent iteration

Suppose you know T, the total number of examples in the stream...

# Alternative averaged perceptron

- Algorithm:
- vk = 0
- va = 0
- for each example x,y:

$$- va = va + \sum_{j \in S_k} y_j x_j$$
$$- m = m+1$$

- if sign(vk.x) != y
  - $\mathbf{v}\mathbf{k} = \mathbf{v}\mathbf{k} + y^*\mathbf{x}$
  - va = va + (T-m)\*y\*x

All subsequent additions of x to va

Return **va/**T

T = the total number of examples in the stream...(all epochs)

#### **KERNELS AND PERCEPTRONS**

# The kernel perceptron



Compute: 
$$y_i = \mathbf{v}_k \cdot \mathbf{x}_i$$

Compute: 
$$\hat{y}_i = \mathbf{v}_k \cdot \mathbf{x}_i$$
 Compute:  $\hat{y} = \sum_{\mathbf{x}_{k^+} \in FN} \mathbf{x}_i \cdot \mathbf{x}_{k^+} - \sum_{\mathbf{x}_{k^-} \in FP} \mathbf{x}_i \cdot \mathbf{x}_{k^-}$ 

If mistake: 
$$\mathbf{v}_{k+1} = \mathbf{v}_k + y_i \mathbf{x}_i \longrightarrow$$

If false positive (too high) mistake : add  $\mathbf{x}_i$  to FP

If false positive (too low) mistake: add  $\mathbf{x}_i$  to FN

Mathematically the same as before ... but allows use of the kernel trick

# The kernel perceptron



$$K(\mathbf{x},\mathbf{x}_k) \equiv \mathbf{x} \cdot \mathbf{x}_k$$

$$\hat{y} = \sum_{\mathbf{x}_{k^{+}} \in FN} K(\mathbf{x}_{i}, \mathbf{x}_{k^{+}}) - \sum_{\mathbf{x}_{k^{-}} \in FP} K(\mathbf{x}_{i}, \mathbf{x}_{k^{-}})$$

Compute: 
$$y_i = \mathbf{v}_k \cdot \mathbf{x}_i$$

Compute: 
$$\hat{v} = \sum_{\mathbf{x}_{k^+} \in FN} \mathbf{x}_i \cdot \mathbf{x}_{k^+} - \sum_{\mathbf{x}_{k^-} \in FP} \mathbf{x}_i \cdot \mathbf{x}_{k^-}$$

If mistake: 
$$\mathbf{v}_{k+1} = \mathbf{v}_k + y_i \mathbf{x}_i \longrightarrow$$

If false positive (too high) mistake : add  $\mathbf{x}_i$  to FP

If false positive (too low) mistake: add  $\mathbf{x}_i$  to FN

Mathematically the same as before ... but allows use of the "kernel trick"

Other kernel methods (SVM, Gaussian processes) aren't constrained to limited set (+1/-1/0) of weights on the  $K(\mathbf{x},\mathbf{v})$  values.

## Some common kernels

Linear kernel:

$$K(\mathbf{x}, \mathbf{x}') \equiv \mathbf{x} \cdot \mathbf{x}'$$

- Polynomial kernel:
- Gaussian kernel:
- More later....

$$K(\mathbf{x}, \mathbf{x}') \equiv (\mathbf{x} \cdot \mathbf{x}' + 1)^d$$

$$K(\mathbf{x}, \mathbf{x}') \equiv e^{-\|\mathbf{x} - \mathbf{x}'\|^2/\sigma}$$

### Kernels 101

- Duality
  - and computational properties
  - Reproducing Kernel Hilbert Space (RKHS)
- Gram matrix
- Positive semi-definite
- Closure properties

Explicitly map from  $\mathbf{x}$  to  $\phi(\mathbf{x})$  – i.e. to the point corresponding to  $\mathbf{x}$  in the *Hilbert space* 

## Kernels 101

Implicitly map from  $\mathbf{x}$  to  $\phi(\mathbf{x})$  by changing the kernel function K

#### Duality: two ways to look at this

$$\hat{y} = \mathbf{x} \cdot \mathbf{w} = K(\mathbf{x}, \mathbf{w})$$

$$\mathbf{W} = \sum_{\mathbf{X}_{k^+} \in FN} \mathbf{X}_{k^+} - \sum_{\mathbf{X}_{k^-} \in FP} \mathbf{X}_{k^-}$$

$$\hat{y} = \sum_{\mathbf{x}_{k^{+}} \in FN} K(\mathbf{x}_{i}, \mathbf{x}_{k^{+}}) - \sum_{\mathbf{x}_{k^{-}} \in FP} K(\mathbf{x}_{i}, \mathbf{x}_{k^{-}})$$

$$K(\mathbf{x}, \mathbf{x}_k) \equiv \phi(\mathbf{x}) \cdot \phi(\mathbf{x}_k)$$

$$\hat{y} = \phi(\mathbf{x}) \cdot \mathbf{w}$$

$$\mathbf{w} = \sum_{\mathbf{x}_{k^{+}} \in FN} \phi(\mathbf{x}_{k^{+}}) - \sum_{\mathbf{x}_{k^{-}} \in FP} \phi(\mathbf{x}_{k^{-}})$$

$$\hat{y} = \sum_{\mathbf{x}_{k^{+}} \in FN} K(\mathbf{x}_{i}, \mathbf{x}_{k^{+}}) - \sum_{\mathbf{x}_{k^{-}} \in FP} K(\mathbf{x}_{i}, \mathbf{x}_{k^{-}})$$

$$K(\mathbf{x}, \mathbf{x}_k) \equiv \phi(\mathbf{x}') \cdot \phi(\mathbf{x}'_k)$$

Two different computational ways of getting the same behavior

## Kernels 101

- Duality
- Gram matrix:  $\mathbf{K}$ :  $\mathbf{k}_{ij} = \mathbf{K}(\mathbf{x}_i, \mathbf{x}_j)$

| $K(x,x') = K(x',x) \rightarrow$ | Gram |
|---------------------------------|------|
| matrix is symmetric             |      |

 $K(x,x) > 0 \rightarrow diagonal of K$  is positive  $\rightarrow K$  is "positive semi-definite"  $\rightarrow z^T K z >= 0$  for all z

|   | K(1,1) | K(1,2) | K(1,3) |     | K(1,m) |
|---|--------|--------|--------|-----|--------|
|   | K(2,1) | K(2,2) | K(2,3) | ••• | K(2,m) |
| = |        |        |        |     |        |
|   |        |        |        |     |        |
|   | K(m,1) | K(m,2) | K(m,3) |     | K(m,m) |

### Review: the hash trick

# Learning as optimization for regularized logistic regression

• Algorithm:

$$w^j = w^j + \lambda(y - p)x^j - \lambda 2\mu w^j$$

- Initialize hashtables W, A and set k=0
- For each iteration t=1,...T
  - For each example  $(\mathbf{x}_i, y_i)$ 
    - $p_i = ...$ ; k++
    - For each feature  $j: x_i^j > 0$ :

» 
$$W[j] *= (1 - \lambda 2\mu)^{k-A[j]}$$

$$W[j] = W[j] + \lambda (y_i - p^i) x_i$$

$$A[j] = k$$

# Learning as optimization for regularized logistic regression

• Algorithm:

$$w^j = w^j + \lambda(y - p)x^j - \lambda 2\mu w^j$$

- Initialize arrays W, A of size R and set k=0
- For each iteration t=1,...T
  - For each example  $(\mathbf{x}_i, y_i)$

• Let V be hash table so that 
$$V[h] = \sum_{j:hash(x_i^j)\% R=h} x_i^j$$

•  $p_i = ...; k++$ 

$$f.masn(x_i)/on$$

• For each hash value h: V[h] > 0:

» 
$$W[h]$$
 \*=  $(1 - \lambda 2\mu)^{k-A[j]}$   
»  $W[h] = W[h] + \lambda (y_i - p^i)V[h]$   
»  $A[h] = k$ 

## The hash trick as a kernel

#### Hash Kernels

#### Qinfeng Shi, James Petterson

Australian National University and NICTA, Canberra, Australia

#### John Langford, Alex Smola, Alex Strehl

Yahoo! Research New York, NY and Santa Clara, CA, USA

#### Gideon Dror

Department of Computer Science Academic College of Tel-Aviv-Yaffo, Israel

#### Vishy Vishwanathan

Department of Statistics Purdue University, IN, USA

Slightly different hash to avoid systematic bias

$$V[h] = \sum_{j:hash(j)\%R==h}^{j} x_i^j$$

$$\varphi[h] = \sum_{j:hash(j)\%m==h} \xi(j)x_i^j$$
, where  $\xi(j) \in \{-1,+1\}$ 

m is the number of buckets you hash into (R in my discussion)

Slightly different hash to avoid systematic bias

$$\varphi[h] = \sum_{j:hash(j)\%m==h} \xi(j)x_i^j$$
, where  $\xi(j) \in \{-1,+1\}$ 

Lemma 2 The hash kernel is unbiased, that is  $\mathbf{E}_{\phi}[\langle x, x' \rangle_{\phi}] = \langle x, x' \rangle$ . Moreover, the variance is  $\sigma_{x,x'}^2 = \frac{1}{m} \left( \sum_{i \neq j} x_i^2 x_j'^2 + x_i x_i' x_j x_j' \right)$ , and thus, for  $\|x\|_2 = \|x'\|_2 = 1$ ,  $\sigma_{x,x'}^2 = O\left(\frac{1}{m}\right)$ .

m is the number of buckets you hash into (R in my discussion)

**Theorem 3** Let  $\epsilon < 1$  be a fixed constant and x be a given instance. Let  $\eta = \frac{\|x\|_{\infty}}{\|x\|_2}$ . Under the assumptions above, the hash kernel satisfies the following inequality

$$\Pr\left\{\frac{\left|\left\|x\right\|_{\phi}^{2}-\left\|x\right\|_{2}^{2}\right|}{\left\|x\right\|_{2}^{2}} \geq \sqrt{2}\sigma_{x,x}+\epsilon\right\} \leq \exp\left(-\frac{\sqrt{\epsilon}}{4\eta}\right).$$

I.e. – a hashed vector is probably close to the original vector

**Corollary 4** For two vectors x and x', let us define

$$\sigma := \max(\sigma_{x,x}, \sigma_{x',x'}, \sigma_{x-x',x-x'})$$

$$\eta := \min\left(\frac{\|x\|_{\infty}}{\|x\|_{2}}, \frac{\|x'\|_{\infty}}{\|x'\|_{2}}, \frac{\|x-x'\|_{\infty}}{\|x-x'\|_{2}}\right).$$

Also let  $\Delta = \|x\|^2 + \|x'\|^2 + \|x - x'\|^2$ . Under the assumptions above, we have that

$$\Pr\left[ |\left\langle x,x'\right\rangle _{\phi} - \left\langle x,x'\right\rangle| \! > \! (\sqrt{2}\sigma \! + \! \epsilon)\Delta/2 \right] \! < \! 3e^{-\frac{\sqrt{\epsilon}}{4\eta}}.$$

I.e. the inner products between x and x' are probably not changed too much by the hash function: a classifier will probably still work

Corollary 5 Denote by  $X = \{x_1, \dots, x_n\}$  a set of vectors which satisfy  $||x_i - x_j||_{\infty} \le \eta ||x_i - x_j||_2$  for all pairs i, j. In this case with probability  $1 - \delta$  we have for all i, j

$$\frac{\left| \|x_i - x_j\|_{\phi}^2 - \|x_i - x_j\|_2^2}{\|x_i - x_j\|_2^2} \le \sqrt{\frac{2}{m}} + 64\eta^2 \log^2 \frac{n}{2\delta}.$$

This means that the number of observations n (or correspondingly the size of the un-hashed kernel matrix) only enters *logarithmically* in the analysis.

# The hash kernel: implementation

- One problem: debugging is harder
  - Features are no longer meaningful
  - -There's a new way to ruin a classifier
    - Change the hash function ☺
- You can separately compute the set of all words that hash to h and guess what features mean
  - -Build an inverted index  $h \rightarrow w1, w2, ...,$



Figure 2. The decrease of uncaught spam over the baseline classifier averaged over all users. The classification threshold was chosen to keep the not-spam misclassification fixed at 1%. The hashed global classifier (global-hashed) converges relatively soon, showing that the distortion error  $\epsilon_d$  vanishes. The personalized classifier results in an average improvement of up to 30%.