Методы машинного обучения. Обучение с подкреплением (Reinforcement Learning)

Воронцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: k.v.vorontsov@yandex.ru

материалы курса: github.com/MSU-ML-COURSE/ML-COURSE-23-24 орг.вопросы по курсу: ml.cmc@mail.ru

ВМК МГУ • 23 апреля 2024

Содержание

- 🕕 Задача о многоруком бандите
 - Простая постановка задачи
 - Жадные и полужадные стратегии
 - Адаптивные стратегии
- Ореда с состояниями
 - Постановка задачи
 - Метод Q-обучения
 - Параметризация стратегий и функций ценности
- 3 Моделирование среды
 - Контекстный бандит и томпсоновское сэмплирование
 - Линейная регрессионная модель премии
 - Оценивание модели по историческим данным

Задача о многоруком бандите (multi-armed bandit)

Имеется множество допустимых *действий* (ручек, arm), с различными распределениями размера *премии* (reward, payoff). Как быстрее найти самое выгодное действие? Какие возможны стратегии?

Задача о многоруком бандите (multi-armed bandit)

```
A — конечное множество возможных действий p(r|a) — неизвестное распределение премии r \in \mathbb{R} для a \in A \pi_t(a) — стратегия (policy) агента в раунде t, распределение на A
```

Игра агента со средой:

```
инициализация стратегии \pi_1(a); для всех раундов t=1,\ldots,T,\ldots агент выбирает действие a_t\sim\pi_t(a); среда генерирует премию r_t\sim p(r|a_t); агент корректирует стратегию \pi_{t+1}(a);
```

$$Q_t(a)=rac{\sum_{i=1}^t r_i[a_i=a]}{\sum_{i=1}^t [a_i=a]}$$
 — средняя премия в t раундах $Q^*(a)=\lim_{t o\infty}Q_t(a) o\max_{a\in A}$ — ценность действия a

Примеры прикладных задач

- Управление роботами, технологическими процессами
- Генерация движений персонажей в мультипликации
- Рекомендация новостных статей пользователям
- Показ рекламы в Интернете
- Управление портфелем ценных бумаг, игра на бирже
- Управление ценами и ассортиментом в сетях продаж
- Маршрутизация в телекоммуникационных сетях
- Стратегические игры: шахматы, го, Dota2, StarCraft2, . . .

Обобщения постановки задачи:

- Есть информация о состоянии среды или о контексте
- Есть параметрическая модель стратегии/ценности/среды

H. Robbins. Some aspects of the sequential design of experiments. 1952.

Жадная стратегия

Множество действий с максимальной текущей оценкой ценности:

$$A_t = \operatorname{Arg} \max_{a \in A} Q_t(a)$$

 \mathcal{K} адная стратегия — выбирать любое действие из A_t :

$$\pi_{t+1}(a) = \frac{1}{|A_t|}[a \in A_t]$$

Недостаток жадной стратегии — по некоторым действиям a можем так и не набрать статистику для оценки $Q_t(a)$.

Компромисс «изучение-применение» (exploration-exploitation) ε -жадная стратегия:

$$\pi_{t+1}(a) = \frac{1-arepsilon}{|A_t|}[a \in A_t] + \frac{arepsilon}{|A|}$$

Эвристика: параметр ε уменьшать со временем.

Mетод UCB (upper confidence bound)

Выбор действия с максимальной верхней оценкой ценности:

$$A_t = \operatorname{Arg} \max_{a \in A} \left(Q_t(a) + \varepsilon \sqrt{\frac{2 \ln t}{k_t(a)}} \right),$$

где $k_t(a) = \sum_{i=1}^t [a_i = a], \quad \varepsilon$ — параметр exr/ext-компромисса.

Интерпретация:

чем меньше $k_t(a)$, тем менее исследована стратегия, тем выше должна быть вероятность выбрать a;

чем больше ε , тем стратегия более исследовательская.

Эвристика: параметр ε уменьшать со временем.

P. Auer, N. Cesa-Bianchi, P. Fischer. Finite-time analysis of the multiarmed bandit problem, Machine Learning, 2002.

Экспоненциальное скользящее среднее

Рекуррентная формула Moving Average для усреднения Q_t :

$$Q_t(a) = \alpha \cdot (r_t) + (1 - \alpha) \cdot Q_{t-1}(a) = \mathsf{MA}_{\alpha}(r_t)$$

При lpha= const это экспоненциальное скользящее среднее (EMA) При $lpha=rac{1}{k_{\rm r}(a)}$ это среднее арифметическое

Условие сходимости к среднему:
$$\sum\limits_{t=1}^{\infty} \alpha_t = \infty, \ \sum\limits_{t=1}^{\infty} \alpha_t^2 < \infty$$

Среднее арифметическое подходит для стационарных задач, экспоненциальное скользящее среднее — для нестационарных (в этом случае сходимости нет, но она и не нужна)

Задачи обучения с подкреплением, как правило, не стационарные

Напоминание. Экспоненциальное скользящее среднее

Задача прогнозирования временного ряда y_0,\ldots,y_t,\ldots :

- простейшая регрессионная модель константа $y_t = c$,
- наблюдения учитываются с весами, убывающими в прошлое,
- прогноз \hat{y}_{t+1} методом наименьших квадратов:

$$\sum_{i=0}^{t} \beta^{t-i} (y_i - c)^2 \to \min_{c}, \quad \beta \in (0,1)$$

Аналитическое решение — формула Надарая-Ватсона:

$$c \equiv \hat{y}_{t+1} = \frac{\sum_{i=0}^{t} \beta^{i} y_{t-i}}{\sum_{i=0}^{t} \beta^{i}}$$

Запишем аналогично \hat{y}_t , оценим $\sum_{i=0}^t eta^i pprox \sum_{i=0}^\infty eta^i = rac{1}{1-eta}$,

получим $\hat{y}_{t+1} = \hat{y}_t \beta + (1 - \beta) y_t$, заменим $\alpha = 1 - \beta$:

$$\hat{\mathbf{y}}_{t+1} = \alpha \mathbf{y}_t + (1 - \alpha)\hat{\mathbf{y}}_t$$

Использование ЕМА для конструирования стратегий

Метод преследования (pursuit) жадной стратегии:

$$\pi_{t+1}(a) = \mathsf{EMA}_{\alpha}\left(rac{[a \in \mathcal{A}_t]}{|\mathcal{A}_t|}\right), \quad a \in \mathcal{A}$$

Сравнение с подкреплением (reinforcement comparison): $\bar{r}_t = \text{EMA}_{\alpha}(r_t) - c$ редняя премия по всем действиям, $p_t(a_t) = \text{EMA}_{\beta}(r_t - \bar{r}_t) -$ преимущество (advantage) действия,

$$\pi_{t+1}(a) = \frac{\exp\left(\frac{1}{\tau}p_t(a)\right)}{\sum_{a'}\exp\left(\frac{1}{\tau}p_t(a')\right)},$$

при au o 0 стратегия стремится к жадной, при $au o \infty$ — к равномерной, т.е. чисто исследовательской.

Экспериментальный факт:

не существует метода, универсально лучшего для всех задач

Сравнение стратегий в имитационных экспериментах

10-рукая испытательная среда. Генерируется 2000 задач:

$$|A| = 10$$
, $p(r|a) = \mathcal{N}(r; Q^*(a), 1)$, $Q^*(a) \sim \mathcal{N}(0, 1)$

Зависимость доли оптимальных действий (% optimal action) от числа шагов t, усреднённая по 2000 синтетическим задачам

Richard Sutton, Andrew Barto. Reinforcement Learning: An Introduction. The MIT Press. 1998, 2004, 2018

Р. Саттон, Э. Барто. Обучение с подкреплением. 2011, 2020

Постановка задачи в случае, когда агент влияет на среду

- A конечное множество возможных действий (action) S конечное множество состояний среды (state)
- Игра агента со средой:

```
инициализация стратегии \pi_1(a \mid s) и состояния среды s_1; для всех раундов t=1,\ldots,T,\ldots агент выбирает действие a_t \sim \pi_t(a \mid s_t); среда генерирует премию r_t \sim p(r \mid a_t, s_t) и новое состояние s_{t+1} \sim p(s \mid a_t, s_t); агент корректирует стратегию \pi_{t+1}(a \mid s);
```

Марковский процесс принятия решений (МППР, MDP):

$$P(s_{t+1}, r_t \mid s_t, a_t, r_{t-1}, s_{t-1}, a_{t-1}, r_{t-2}, \dots, s_1, a_1) = P(s_{t+1}, r_t \mid s_t, a_t)$$

Понятия выгоды и ценности действия

Суммарная выгода (return) на конечном горизонте T:

$$R_t = r_t + r_{t+1} + \cdots + r_{t+T}$$

Дисконтированная выгода (discounted return):

$$R_t = r_t + \gamma r_{t+1} + \dots + \gamma^k r_{t+k} + \dots$$

где $\gamma\in[0,1]$ — коэффициент дисконтирования, $1+\gamma+\gamma^2+\cdots=rac{1}{1-\gamma}$ — горизонт дальновидности агента.

Функции ценности состояния $V^{\pi}(s)$ и ценности действия в состоянии $Q^{\pi}(s,a)$ при условии, что агент следует стратегии π :

$$V^{\pi}(s) = \mathsf{E}_{\pi}(R_t \mid s_t = s) \qquad = \mathsf{E}_{\pi}\left(\sum_{k=0}^{\infty} \gamma^k r_{t+k} \mid s_t = s\right)$$

$$Q^{\pi}(s, a) = \mathsf{E}_{\pi}(R_t \mid s_t = s, \ a_t = a) = \mathsf{E}_{\pi}\left(\sum_{k=0}^{\infty} \gamma^k r_{t+k} \mid s_t = s, \ a_t = a\right)$$

Жадные стратегии максимизации ценности

Рекуррентная формула для функции ценности $Q^{\pi}(s,a)$:

$$Q^{\pi}(s, a) = E_{\pi}(\sum_{k=0}^{\infty} \gamma^{k} r_{t+k} \mid s_{t} = s, a_{t} = a)$$

$$= E_{\pi}(r_{t} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t} = s, a_{t} = a)$$

$$= E_{\pi}(r_{t} + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) \mid s_{t} = s, a_{t} = a)$$

Уравнение Беллмана для оптимальной функции ценности Q^* :

$$Q^*(s, a) = \mathsf{E}_{\pi} \big(r_t + \gamma \max_{\substack{a' \in A}} Q^*(s_{t+1}, a') \mid s_t = s, \ a_t = a \big)$$

Утв. Жадная стратегия «выбирать то действие, на котором достигается максимум в уравнениях Беллмана» оптимальна:

$$\pi_{t+1}(a) = \frac{1}{|A_t|}[a \in A_t], \quad A_t = \operatorname{Arg} \max_{a \in A} Q^*(s_t, a)$$

Метод *Q*-обучения

Аппроксимируем $Q^*(s,a)$ экспоненциальным скользящим средним:

$$Q(s_t, a_t) = \mathsf{EMA}_{\alpha}(r_t + \gamma \max_{a} Q(s_{t+1}, a))$$

инициализация стратегии $\pi_1(a \mid s)$ и состояния среды s_1 ; для всех раундов $t=1,\ldots,T,\ldots$ агент выбирает действие $a_t \sim \pi_t(a \mid s_t)$; среда генерирует $r_t \sim p(r \mid a_t, s_t)$ и $s_{t+1} \sim p(s \mid a_t, s_t)$; $Q(s_t, a_t) := \alpha \big(r_t + \gamma \max_a Q(s_{t+1}, a) \big) + (1-\alpha)Q(s_t, a_t)$;

Утв. Если α_t уменьшается $(\sum_t \alpha_t = \infty, \sum_t \alpha_t^2 < \infty)$, и все s посещаются бесконечное число раз, то $Q \stackrel{\text{пн}}{\to} Q^*$, $t \to \infty$

Возможны два способа выбора действий:

- on-policy: $a_t \sim \pi_t(a \mid s_t) \Leftrightarrow a_t \in \operatorname{Arg\,max}_a Q(s_t, a)$
- ullet off-policy: $a_t \sim \pi_t(a \mid s_t)$ другая стратегия на основе Q

Отличия от обычных задач машинного обучения

- ullet выборка (s_t,a_t,r_t) не является независимой
- распределение $p(s_t, a_t, r_t)$ может меняться во времени и зависеть от стратегии агента π
- премии могут быть
 - отложенными (оценивать действия с задержкой)
 - разреженными (почти всё время $r_t=0$)
 - зашумлёнными (не ясно, за что именно премия)

Какие параметрические модели можно обучать:

- стратегию $\pi_{t+1}(a|s;\theta)$
- ullet функцию ценности действия в состоянии Q(s,a; heta)
- функцию ценности состояния $V(s;\theta)$
- модель среды $(r_t, s_{t+1}) = \mu(s_t, a_t; \theta)$

Градиентная оптимизация стратегии (policy gradient)

$$\pi(a \mid s, \theta)$$
 — стратегия агента с параметром θ $F(s_t, a_t)$ — функция ценности или её оценка (например, R_t)

Задача максимизации $\mathsf{E}_\pi F$ по вектору параметров стратегии θ :

$$\mathsf{E}_{\pi}F(s,a) \equiv \mathsf{E}_{a \sim \pi(a|s,\theta)}F(s,a)
ightarrow \max_{\theta}$$

Градиентный метод: $heta^{(t+1)} := heta^{(t)} + \eta
abla_{ heta \geq \pi} F(s,a)$

$$\begin{split} \nabla_{\theta} \mathbf{E}_{\mathbf{a} \sim \pi} F(s, \mathbf{a}) &= \nabla_{\theta} \sum_{a \in A} F(s, \mathbf{a}) \pi(\mathbf{a} | s, \theta) = \sum_{a \in A} F(s, \mathbf{a}) \nabla_{\theta} \pi(\mathbf{a} | s, \theta) = \\ &= \sum_{a \in A} F(s, \mathbf{a}) \pi(\mathbf{a} | s, \theta) \frac{\nabla_{\theta} \pi(\mathbf{a} | s, \theta)}{\pi(\mathbf{a} | s, \theta)} = \\ &= \mathbf{E}_{\mathbf{a} \sim \pi} \big[F(s, \mathbf{a}) \nabla_{\theta} \ln \pi(\mathbf{a} | s, \theta) \big] \end{split}$$

R.Sutton et al. Policy gradient methods for reinforcement learning with function approximation. NIPS 1999.

Градиентная оптимизация стратегии (policy gradient)

Замена E_π эмпирической оценкой EMA градиента:

$$\theta^{(t+1)} := \theta^{(t)} + \eta \, \textcolor{red}{\mathsf{EMA}_{\alpha}} \big(F(s_t, a_t) \nabla_{\theta} \ln \pi(a_t \, | \, s_t, \theta^{(t)}) \big)$$

Фактически, это стохастический градиент SGD с методом инерции Б.Т.Поляка для максимизации log-правдоподобия:

$$\sum_{t} F(s_t, a_t) \ln \pi(a_t \mid s_t, \theta) \rightarrow \max_{\theta}$$

Основные отличия от максимизации log-правдоподобия:

- ullet вместо предсказания меток классов y_t действия a_t
- ullet вместо бинарных y_t вещественные $F(s_t, a_t)$

Что можно использовать в качестве $F(s_t, a_t)$:

- \bullet функцию выгоды R_t ,
- \bullet функцию *ценности* $Q(s_t, a_t)$,
- ullet функцию преимущества (advantage) $Q(s_t,a_t)-V(s_t)$

Алгоритм REINFORCE

$$F(s_t,a_t)=R_t$$
 — выгода, становится известна в конце эпизода

```
инициализация стратегии \pi_1(a \mid s) и состояния среды s_1; для всех эпизодов m=1,\ldots,M для всех раундов t=1,\ldots,T_m агент выбирает действие a_t \sim \pi_t(a \mid s_t,\theta); среда генерирует r_t \sim p(r \mid a_t,s_t) и s_{t+1} \sim p(s \mid a_t,s_t); \theta := \theta + \eta \sum_{t=1}^{T_m} R_t \nabla_\theta \ln \pi(a_t \mid s_t,\theta);
```

Преимущество policy gradient и алгоритма REINFORCE:

ullet легко обобщается на задачи с непрерывным множеством A

Недостаток:

• медленная сходимость, надо дожидаться конца эпизода

Алгоритм «Актёр-Критик» (Advantage Actor-Critic, A2C)

- Актёр корректирует стратегию под воздействием Критика
- Вместо R_t используем преимущество $\mathcal{A}_t = Q(s_t, a_t) V(s_t)$ (уменьшается дисперсия, улучшается сходимость)
- ullet Из уравнения Беллмана: $Q(s_t,a_t)pprox lacksquare$
- ullet Параметр heta обновляется на каждом шаге

```
инициализация стратегии \pi_1(a \mid s) и состояния среды s_1; для всех эпизодов m=1,\ldots,M, раундов t=1,\ldots,T_m агент выбирает действие a_t \sim \pi_t(a \mid s_t,\theta); среда генерирует r_t \sim p(r \mid a_t,s_t) и s_{t+1} \sim p(s \mid a_t,s_t); V(s_t) := EMA_{\beta}(r_t + \gamma V(s_{t+1})); \mathcal{A}_t := r_t + \gamma V(s_{t+1}) - V(s_t); \theta := \theta + \eta \, EMA_{\alpha}(\mathcal{A}_t \nabla_{\theta} \ln \pi(a_t \mid s_t,\theta));
```

Следующий шаг: параметризовать оценку преимущества \mathcal{A}_t

Алгоритм «Актёр-Критик» с двойной параметризацией

 $\pi(a\,|\,s,\theta)$ — стратегия агента $(A\kappa \tau \ddot{e}pa)$ с параметром θ $A(s_t,a_t;w)$ — модель преимущества с параметром w, делает Kритика дальновиднее в средах с большим или сложным S:

$$\sum_{t} (A(s_t, a_t; w) - A_t)^2 \rightarrow \min_{w}$$

```
инициализация стратегии \pi_1(a \mid s) и состояния среды s_1; для всех эпизодов m=1,\ldots,M для всех раундов t=1,\ldots,T_m агент выбирает действие a_t \sim \pi_t(a \mid s_t,\theta); среда генерирует r_t \sim p(r \mid a_t,s_t) и s_{t+1} \sim p(s \mid a_t,s_t); \theta:=\theta+\eta \, EMA_{\alpha}\big(A(s_t,a_t;w)\nabla_{\theta}\ln\pi(a_t\mid s_t,\theta)\big); \mathcal{A}_t=Q(s_t,a_t)-V(s_t) для всех t=1,\ldots,T_m; w:=w-\eta_2\sum_{t=1}^{T_m}\big(A(s_t,a_t;w)-\mathcal{A}_t\big)\nabla_w A(s_t,a_t;w_t);
```

Моделирование среды в обучении с подкреплением

Отличие Model-Based подходов от Model-Free:

- ullet моделируется поведение среды $(r_t, s_{t+1}) = \mu(s_t, a_t; w)$
- возможно долгосрочное планирование действий
- ullet возможна непрерывная параметризация как A, так и S
- в несложных технических системах управления адекватная параметрическая модель среды может быть известна

Трудность задачи:

- сложные среды требуют больших выборок для обучения моделей большой размерности
- RL может хорошо функционировать в смоделированной среде, и гораздо хуже — в настоящей

T.Moerland, J.Broekens, C.Jonker. Model-based reinforcement learning: a survey. 2020

Томпсоновское сэмплирование (Thompson sampling)

```
x_{ta}\in\mathbb{R}^n — контекст, вектор признаков действия a\in A на шаге t p(r_t|x,w) — вероятностная модель премии, w\in\mathbb{R}^n
```

Игра агента и среды:

```
инициализация априорного распределения p_1(w); для всех раундов t=1,\ldots,T среда сообщает агенту контексты x_{ta} для всех a\in A; агент сэмплирует вектор модели премии w_t\sim p_t(w); агент выбирает действие a_t=\arg\max_{a\in A}\langle x_{ta},w_t\rangle; среда генерирует премию r_t; агент корректирует распределение по формуле Байеса: p_{t+1}(w)\propto p(r_t|x_{tat},w)\,p_t(w);
```

S. Agrawal, N. Goyal. Thompson sampling for contextual bandits with linear payoffs. 2013.

Томпсоновское сэмплирование с гауссовскими распределениями

$$p(r|x, w) = \mathcal{N}(r; \langle x, w \rangle, \sigma^2), \quad p(w_t) = \mathcal{N}(w_t; w, \sigma^2 B^{-1})$$

Игра агента и среды (contextual bandit with linear payoff)

```
инициализация: B = I_{n \times n}; \quad w = 0_n; \quad f = 0_n; для всех раундов t = 1, \dots, T среда сообщает агенту контексты x_{ta} для всех a \in A; агент сэмплирует вектор линейной модели премии w_t \sim \mathcal{N}(w, \sigma^2 B^{-1}); агент выбирает действие a_t = \arg\max_{a \in A} \langle x_{ta}, w_t \rangle; среда генерирует премию r_t; агент корректирует параметры распределения: B := B + x_{tat} x_{tat}^{\mathsf{T}}; \quad f := f + x_{tat} r_t; \quad w := B^{-1}f;
```

S. Agrawal, N. Goyal. Thompson sampling for contextual bandits with linear payoffs. 2013.

Регрессия с инкрементным обучением и доверительной оценкой

```
r(s,a) — функция премии за действие a в состоянии s \hat{r}(s,a;w) — регрессионная модель премии с параметром w UCB(s,a) — верхняя оценка отклонения \hat{r}-r \delta — параметр (чем больше, тем больше exploration)
```

Игра агента со средой:

```
инициализация стратегии \pi_1(a|s); для всех раундов t=1,\ldots,T,\ldots агент выбирает действие a_t=\arg\max_{a\in A} \left(\hat{r}(s,a;w)+\delta \text{UCB}(s,a)\right); среда генерирует премию r_t=r(s_t,a_t); регрессия \hat{r}(s,a;w) дообучается на точке (s_t,a_t,r_t);
```

Lihong Li, Wei Chu, John Langford, Robert E. Schapire. A contextual-bandit approach to personalized news article recommendation. WWW-2010.

Пример. Рекомендация новостных статей пользователям

Агент — рекомендательная система для персонализации показов новостных статей (Yahoo! Today).

F1..F4 — позиции для показа заголовков новостей.

A — новостные статьи, действия системы

 s_t — состояние = пользователь, которому даём рекомендацию

 $x_{ta} \in \mathbb{R}^n$ — признаковое описание пары (s_t, a)

 $r_{ta} \in \{0,1\}$ — пользователь s_t кликнул на статью a

 $Q_t(a)$ — средняя премия, CTR (click-through rate) статьи

Цель — повышение среднего СТР и «счастья пользователя»

Lihong Li, Wei Chu, John Langford, Robert E. Schapire. A contextual-bandit approach to personalized news article recommendation. WWW-2010.

Линейная модель премий и гребневая регрессия

Пусть $x_{ta} \in \mathbb{R}^n$, $w_a \in \mathbb{R}^n$.

Линейная модель премий для действия $a \in A$ в состоянии s_t :

$$\mathsf{E}\big[r_{ta}\,|\,x_{ta}\big] = \langle x_{ta},w_a\rangle.$$

Гребневая регрессия: обучение w_a для действия a в момент t:

$$\sum_{i=1}^{t} [a_i = a] (\langle x_{ia}, w_a \rangle - r_{ia})^2 + \frac{\tau}{2} ||w_a||^2 \rightarrow \min_{w_a}.$$

$$w_a = \left(F_a^{\mathsf{T}} F_a + au I_n
ight)^{-1} F_a^{\mathsf{T}} y_a$$
 — решение задачи МНК, где $F_a = \left(x_{ia}
ight)_{i=1: \ a_i=a}^t - \ell imes n$ -матрица объекты—признаки, $y_a = \left(r_{ia}
ight)_{i=1: \ a_i=a}^t - \ell imes 1$ -вектор ответов, $\ell = k_t(a) = \sum_{i=1}^t [a_i = a]$ — объём обучающей выборки.

LinUCB: линейная модель с верхней доверительной оценкой

Доверительный интервал с коэффициентом доверия $1-\alpha$ для линейной модели регрессии $w:\|Fw-y\|\to \min_w$:

$$y = \langle x, w \rangle \pm \hat{\sigma} Z_{\alpha} \sqrt{x^{\mathsf{T}} (F^{\mathsf{T}} F)^{-1} x},$$

 $Z_lpha\equiv t_{\ell-n,1-rac{lpha}{2}}$ — квантиль распределения Стьюдента, $\hat{\sigma}^2=rac{1}{\ell-n}RSS$ — оценка дисперсии отклика y .

Стратегия $\pi_t(a,x)=rac{1}{|A_t|}[a\in A_t]$ — действие с максимальной верхней оценкой ценности UCB (upper confidence bound):

$$A_t = \operatorname{Arg\,max}_{a \in A} \Big(\langle x_{ta}, w_a \rangle + \delta \hat{\sigma} Z_{\alpha} \sqrt{x_{ta}^{\mathsf{T}} \big(F_a^{\mathsf{T}} F_a + \tau I_n \big)^{-1} x_{ta}} \, \Big).$$

Чем больше параметр δ , тем больше исследования.

LinUCB: особенности реализации и обобщения

- ullet Инкрементный алгоритм пересчёта w_a и матрицы $(F_a^{\scriptscriptstyle\mathsf{T}}F_a + au I_n)^{-1}$ при добавлении каждой строки в F_a .
- ullet Гибридная линейная модель $Q^*(a) = \langle ilde{x}_t, v
 angle + \langle x_{ta}, w_a
 angle$, где $ilde{x}_t$ часть контекста, не зависящая от действия a.
- «Сырые признаки»: пользователи: 12 соцдем, 200 география, \sim 1000 категорий, статьи: \sim 100 категорий.
- Используется кластеризация и понижение размерности: $\dim w_a = 6$, $\dim v = 36$.
- Можно было бы использовать любую другую модель с инкрементным обучением и доверительными оценками.

Lihong Li, Wei Chu, John Langford, Robert E. Schapire. A contextual-bandit approach to personalized news article recommendation. WWW-2010.

Оценивание модели по историческим данным

Проблема off-line оценивания стратегии π : исторические данные накоплены при использовании другой стратегии (logging policy) $\pi_0(a)$, отличной от π

Идея:

для оценивания $Q_t(a)$ отбираются только те события (x_{ta}, a, r_{ta}) , для которых стратегии π и π_0 выбирали одинаковое действие:

$$a = \arg \max_{a} \pi(a, x_{ta}) = \arg \max_{a} \pi_0(a)$$

(нужны очень большие данные или сходство стратегий)

Утв. Если $\pi_0(a)$ — равномерное распределение, то оценка $Q_t(a)$ по отобранной выборке является несмещённой.

Lihong Li, Wei Chu, John Langford, Robert E. Schapire. A contextual-bandit approach to personalized news article recommendation. WWW-2010.

Резюме в конце лекции

- В обучении с подкреплением нет ответов учителя, есть только ответная реакция среды
- Что можно обучать в Model-Free подходах:
 - функцию ценности Q(s,a;w), например, методом SGD
 - стратегию $\pi(a|s;w)$, методом Policy Gradient
 - модели актора $a(s; w_1)$ и критика $Q(s, a; w_2)$
- Что можно обучать в Model-Based подходах:
 - только модель премии r(s, a; w)
 - модель среды $(r_t, s_{t+1}) = \mu(s_t, a_t; w)$
- Компромисс «изучение-применение» при любом обучении с подкреплением подбирается экспериментальным путём

R.S.Sutton, A.G.Barto. Reinforcement Learning: An Introduction. 2018 https://spinningup.openai.com/en/latest
Yuxi Li. Resources for Deep Reinforcement Learning. 2018