|                                                | Lörningsfördag TENI 2022-02-11 MAA140                                                                                                                                         |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| · .                                            | 100                                                                                                                                                                           |
| 1.                                             | Låt $(6 \ 3 \ -1)$ $A = \begin{pmatrix} -9 \ -5 \ 2 \end{pmatrix} \text{ orb } B = \begin{pmatrix} -4 \ 4 \ 6 \end{pmatrix} = \begin{pmatrix} -4 \ 5 \ 0 \ -3 \end{pmatrix}.$ |
|                                                | $A = \begin{bmatrix} -7 & -5 & 2 \\ 10 & 5 & 2 \end{bmatrix}$ or $B = \begin{bmatrix} 5 & 0 & -3 \\ 1 & 0 & 5 \end{bmatrix}$ .                                                |
|                                                | 10 5 - 2                                                                                                                                                                      |
|                                                | beråhna följande uttryck,<br>eller förhlara værfor ett värde inte existerar.                                                                                                  |
|                                                | ever jordara ver for ett varde ude existerar.                                                                                                                                 |
| a)                                             | AB                                                                                                                                                                            |
| <u> </u>                                       | 710                                                                                                                                                                           |
|                                                | Svar: Ej definierat, for A her 3 kolemuner                                                                                                                                    |
|                                                | men 13 (som år 2x3) bara 2 rader.                                                                                                                                             |
|                                                |                                                                                                                                                                               |
| 6)                                             | A-B                                                                                                                                                                           |
| nnannunumman-nuurvammemanuuruusuusvanug amaaa. |                                                                                                                                                                               |
|                                                | Svær! Ej definierat, for A år 3x3 men B                                                                                                                                       |
|                                                | är bara 2x3.                                                                                                                                                                  |
|                                                |                                                                                                                                                                               |
| (5 . (                                         | BA                                                                                                                                                                            |
|                                                |                                                                                                                                                                               |
|                                                | Lösning: Uppställning ger                                                                                                                                                     |
|                                                | 3 -1                                                                                                                                                                          |
|                                                |                                                                                                                                                                               |
|                                                |                                                                                                                                                                               |
|                                                | 10 5 -2                                                                                                                                                                       |
|                                                | (-4 4 6) /-24-36+60 -12-20+30 4+8-12) _ (0-2 0)                                                                                                                               |
| ,                                              | $\begin{bmatrix} 5 & 0 & -3 \end{bmatrix} \begin{bmatrix} 30+0-30 & 15-0-15 & -5+0+6 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$                                   |
|                                                | (0-20)                                                                                                                                                                        |
|                                                | Svar: BA = (001)                                                                                                                                                              |
| •                                              |                                                                                                                                                                               |





| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Finn alla homplera Lossainson Z bill chrabionen                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Finn alla homplera losgainger Z bill chrabionen Z'=-8-8/3'i. Ge ditt svon på rehtangelär form.                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lösseling. Binomiska ehvabjonen som denna är enklest                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lösseling. Binomiska ehvabionen som denna är enklist<br>alt lösa på polär Jorn, så vi behöver först omvandla     |
| and the first of the second and the  | 10 - a Modelt                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\left -8-8\sqrt{3}\right  = \sqrt{(-8)^2 + (-8\sqrt{3})^2} = \sqrt{64+64\cdot3} =$                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $=\sqrt{64\cdot(1+3)}=\sqrt{64\cdot\sqrt{4}}=8\cdot2=16$                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\cos\left(\arg\left(-8-8\sqrt{3}'i\right)\right) = \frac{-8}{1-8-8\sqrt{3}'i} = \frac{-8}{16} = -\frac{1}{2} =$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-8-8/3; 16 2                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $=-\cos\left(\frac{\pi}{3}\right)=\cos\left(\mathcal{R}-\frac{\pi}{3}\right)=\cos\left(\frac{\pi}{3}\right).$    |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Alltså är 3 den ena kondidaten sov argumentet.                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Den andra kandidaten år - 3, eftersom cos svaljer                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | technet på vinklar8-8/3'i ligger i 3:e kvadranben,                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | men a av est arrement i l'a levadounten se                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rått orgunent år - 3.                                                                                            |
| · )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 27 Re                                                                                                          |
| ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Det betyder ett vi sta - Din                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Loza Avabienen                                                                                                   |
| the training them when the analysis have been also as a section of the second of the s | -8-8\J\)                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $Z' = 16\left(\cos\left(-\frac{29}{3}\right) + i\sin\left(-\frac{29}{3}\right)\right).$                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Det galler att $ z  =  z'  =  6(\cos(\frac{2\pi}{3}) + i\sin(\frac{2\pi}{3}))  =  6 = 2$                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sa  z =2.                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |

.

|      | For den førsta lømingen z, kan vi ta org (2,) = \frac{1}{3} = \frac{27}{3} =                                                                                                 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | - 2n n                                                                                                                                                                       |
|      | 12 = 6. Løsningarna ligger y = 2 = 6 ifrån                                                                                                                                   |
|      | $= \frac{2\pi}{12} = \frac{\pi}{6}$ Lösningarna ligger $\frac{2\pi}{4} = \frac{\pi}{2} = \frac{3\pi}{6}$ Varandra, så vi får                                                 |
|      |                                                                                                                                                                              |
|      | $arg(z_2) = arg(z_1) + \frac{\pi}{2} = -\frac{\pi}{6} + \frac{3\pi}{6} = \frac{2\pi}{6} = \frac{\pi}{3}$                                                                     |
| : `) | $arg(z_3) = arg(z_2) + \frac{\pi}{2} = \frac{2\pi}{6} + \frac{3\pi}{6} = \frac{5\pi}{6}$ och                                                                                 |
|      | $arg(z_4) = arg(z_3) + \frac{\pi}{2} = \frac{5\pi}{6} + \frac{3\pi}{6} = \frac{8\pi}{6} = \frac{4\pi}{3}$                                                                    |
|      | Albra ar Cosningarna                                                                                                                                                         |
|      | $= 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right) = 2\left(\frac{\sqrt{3}}{2} + i - \frac{1}{2}\right) = \sqrt{3} - i,$                    |
|      | $Z_2=2\left(\cos\left(\frac{\mathcal{R}}{3}\right)+i\sin\left(\frac{\mathcal{R}}{3}\right)\right)-2\left(\frac{1}{2}+i\cdot\frac{\sqrt{3}}{2}\right)= +i\sqrt{3} $           |
|      | $Z_3 = 2\left(\cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)\right) = 2\left(-\frac{\sqrt{3}}{2} + i\cdot\frac{1}{2}\right) = -\sqrt{3} + i \text{ och}$ |
|      | $z_{4}=2(\cos(\frac{4\pi}{3})+i\sin(\frac{4\pi}{3}))=2(-\frac{1}{2}+i\cdot-\frac{\sqrt{3}}{2})=-1-i\sqrt{3}'.$                                                               |
| ,    | Sver Lögningarna an 13-i, 1+1/3, -13+i och-1-i/3.                                                                                                                            |
|      | Den-1-173,                                                                                                                                                                   |
|      |                                                                                                                                                                              |
|      |                                                                                                                                                                              |
|      |                                                                                                                                                                              |

-

|                                                             | (2x + 4y + 16z = 6)                                                                                                                                                              |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3                                                           | Lös ehrabioussystemet 9 3x + 7y + 1/2=12                                                                                                                                         |
|                                                             | (4x + 10y + 6z = 8)                                                                                                                                                              |
|                                                             |                                                                                                                                                                                  |
|                                                             | Løsning. Oppställning som utvidgad matris bliv                                                                                                                                   |
|                                                             | [2 4 16; 6 Kg. [-1-3 5;-6 39                                                                                                                                                     |
|                                                             | 371112 EDN 371112 AN                                                                                                                                                             |
|                                                             | 12 4 16,6 FJ -1-3 5,-6 3 FJ<br>3 7 11,12 FDN 3 7 11 12 FDN<br>14 10 6;8 Y 10 6;8 FDN                                                                                             |
|                                                             | $\begin{bmatrix} -1 & -3 & 5 &   & -6 \\ 0 & -2 & 26 &   & -6 \\ 0 & -2 & 26 &   & -6 \\ 0 & -2 & 26 &   & -16 \\ 0 & -2 & 26 &   & -16 \\ 0 & 0 & 0 &   & -10 \\ \end{bmatrix}$ |
|                                                             | 0-2261-6 (1) N 0-226 1-6                                                                                                                                                         |
|                                                             | LO 1-2 26 1-16   LO O O 1-10                                                                                                                                                     |
|                                                             |                                                                                                                                                                                  |
| ·                                                           | Att 0=-10 sahnar Lösningar, så debsomma gållen                                                                                                                                   |
|                                                             | Sor systemet i sin helhet.                                                                                                                                                       |
|                                                             | Soan: Losning salmas.                                                                                                                                                            |
|                                                             |                                                                                                                                                                                  |
|                                                             |                                                                                                                                                                                  |
| 4                                                           | Låb Z = -3+2i, Berähna och markera som punber                                                                                                                                    |
|                                                             |                                                                                                                                                                                  |
|                                                             | i det homplexa talplanet balen z, z, iz, z/i, 121,<br>i-z och (5+14i)/z. Se till alt ha graderat                                                                                 |
|                                                             | astarna och välj en lämplig skala!                                                                                                                                               |
|                                                             |                                                                                                                                                                                  |
| it tillet for hande til | Lösning. Om Z=-3+2i sa blir                                                                                                                                                      |
| 4                                                           | $\overline{Z} = -3 + 2i = -3 - 2i$                                                                                                                                               |
| · .                                                         | $iz = i(-3+2i) = -3i+2i^2 = -2-3i,$                                                                                                                                              |
| · · · · · · · · · · · · · · · · · · ·                       |                                                                                                                                                                                  |

$$\frac{z/i}{i \cdot i} = \frac{z \cdot (i)}{i \cdot i} = \frac{-iz}{i \cdot -i} = -(-2 \cdot 3i) = 2 + 3i,$$

$$|z| = \sqrt{Re(z)^2 + Im(z)^2} = \sqrt{(-3)^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}^2 = \frac{3}{3} \cdot 6i,$$

$$|z| = i - (-3 + 2i) = i + 3 - 2i = 3 - i \text{ och}$$

$$|z| = i - (-3 + 2i) = i + 3 - 2i = 3 - i \text{ och}$$

$$|z| = (-3 + 2i) \cdot (-3 - 2i) = -15 - 10i - 42i - 28i^2 = -15 - 52i + 28 = 13 - 52i = 13 - 52i = 1 - 4i$$

$$|z| = -15 - 52i + 28 = 13 - 52i = 13 - 52i = 1 - 4i$$

$$|z| = -15 - 52i + 28 = 13 - 52i = 13 - 52i = 1 - 4i$$

$$|z| = -15 - 52i + 28 = 13 - 52i = 13 - 52i = 1 - 4i$$

$$|z| = -15 - 52i + 28 = 13 - 52i = 13 - 52i = 1 - 4i$$

$$|z| = -15 - 52i + 28 = 13 - 52i = 13 - 52i = 1 - 4i$$

$$|z| = -15 - 52i + 28 = 13 - 52i = 13 - 52i = 1 - 4i$$

$$|z| = -15 - 52i + 26i = 13 - 52i = 1 - 4i$$

$$|z| = -3 + 2i$$

$$|z| = -3 - 2i$$

