p15: 11-(a) Show, using Proposition 1.14 and 1.17, that the statement form $((\neg(p \lor (\neg q))) \to (q \to r))$ is logically equivalent to each of the following.

(a)
$$((\neg(q \to p)) \to ((\neg q) \lor r))$$

..... Recall that:

Proposition 1.14: If \mathscr{B}_1 is a statement form arising from the statement form \mathscr{A} by substituting the statement form \mathscr{B} for one or more occurrences of the statement form \mathscr{A} in \mathscr{A}_1 , and if \mathscr{B} is logically equivalent to \mathscr{A}_1 , then \mathscr{B}_1 is logically equivalent to \mathscr{A}_1 .

Proposition 1.17 (De Morgan's Laws): Let $\mathscr{A}_1, \mathscr{A}_2, \cdots \mathscr{A}_n$ be any statement forms. Then:

- 1. $(\bigvee_{i=1}^n (\neg \mathscr{A}_i))$ is logically equivalent to $(\neg (\bigwedge_{i=1}^n \mathscr{A}_i))$.
- 2. $(\bigwedge_{i=1}^n (\neg \mathscr{A}_i))$ is logically equivalent to $(\neg(\bigvee_{i=1}^n \mathscr{A}_i))$.

.....

Your answer:

Let

$$\varphi = ((\neg (p \lor (\neg q))) \to (q \to r))$$
 and $\chi = ((\neg (q \to p)) \to ((\neg q) \lor r)).$

It suffices to show that if $\neg(p \lor (\neg q))$ is logically equivalent to $(\neg(q \to p))$, and $(q \to r)$ is logically equivalent to $(\neg q) \lor r$, then φ is logically equivalent to χ according to **Prop. 1.14**.

But it is easy to check, say, using truth table, that

$$\neg (p \lor (\neg q)) \leftrightarrow (\neg (q \to p)) \quad \text{and} \quad (q \to r) \leftrightarrow (\neg q) \lor r)$$

are tautologies, which means that $(\neg(p \lor (\neg q)))$ and $(\neg(q \to p))$, $(q \to r)$ and $(\neg q) \lor r)$ are logically equivalent, respectively.