CONSTRAINT SATISFACTION PROBLEMS – PART VI

Chapter 6

Outline

- Constraint Satisfaction Problems (CSP)
- Backtracking search
- Constraint propagation
- □ Local search for CSPs
- Structure of the problem

Local search

- □ Assume an **assignment** is inconsistent
- Next assignment can be constructed in such a way that constraint violation is smaller
 - Only "small" changes (local steps) of the assignment are allowed
 - Next assignment should be "better" than previous
 - better = more constraints are satisfied
- Assignments are not necessarily generated systematically
 - we lose completeness, but we (hopefully) get better efficiency

Local search terminology

- Search space: set of <u>all complete</u> variable <u>assignments</u>
- Set of solutions:
 - subset of the search space
 - all complete assignments <u>satisfying all the constraints</u>
- Neighborhood relation: indicating what assignments can be reached by a search step given the current assignment during the search procedure
- Evaluation function: mapping each assignment to a real number representing "how far the assignment is from being a solution"

Local search terminology

Initialization function: returns an initial position given a possibility distribution over the assignments

Step function:

- Given an assignment, its neighborhood, and the evaluation function
- returns the new assignment to be explored by the search
- Set of memory states (optional): holding information about the state of the search mechanism
- Termination criterion: stopping the search when satisfied

Local search for CSPs

- Neighborhood of an assignment: all assignments differing on one value of one variable
- Evaluation function: mapping each assignment to the number of constraints it violates
- Initialization function: returns an initial assignment chosen randomly
- Termination criterion:
 - ☐ if a solution is found or
 - □ if a given <u>number of search steps</u> is exceeded
- The different algorithms are characterized by the step function and use of memory

Local search for CSPs

- □ The point of LS: eliminating violated constraints
- Heuristic for choosing a new value for a variable: value that results in the minimum number of conflicts with other variables

Min-Conflicts

- □ Conflict set of an assignment:
 - set of variables involved in some constraint that assignment is violating
- Min-conflict LS procedure
 - Starts at a randomly generated assignment
 - At each step of the search
 - Selects a variable from the current conflict set
 - Selects a value for that variable that minimizes the number of violated constraints
 - If multiple choices choose one randomly
 - neighbourhood = <u>different values</u> for the <u>selected variable</u>
 - neighbourhood size = (d-1)

Local minima

The evaluation function can have:

- local minimum a state that is not minimal and there is no state with better evaluation in its neighbourhood
- strict local minimum a state that is not minimal and there are only states with worse evaluation in its neighbourhood
- global minimum the state with the best evaluation
- plateau a set of neighbouring states with the same evaluation

Graphically...

Escaping local minima

 A local search procedure may get stuck in a local minima

- □ Techniques for preventing stagnation
 - restart
 - allowing non improving steps → random walk
 - □ changing the neighborhood → tabu search

Restart

- Re-initialize the search after MaxSteps (non-strictly improving) steps
- New assignment chosen <u>randomly</u>
- Can be <u>combined</u> both with hill-climbing and Minconflicts
- It is effective if MaxSteps is chosen correctly and often it depends on the instance

Random walk

Add some "noise" to the algorithm

- Random walk
 - a new assignment <u>from the neighbourhood</u> is selected randomly (e.g., the value is chosen randomly)
 - such technique can hardly find a solution
 - so it needs some guidance
- Random walk can be <u>combined</u> with the heuristic guiding the search via probability distribution:
 - p: probability of using the random walk (noise setting)
 - \square (1-p): probability of using the heuristic guide
 - Min-conflicts random walk

Tabu search

- Being trapped in local minimum can be seen as cycling
- How to avoid cycles in general?
 - Remember already visited states and do not visit them again
 - memory consuming (too many states)
 - It is possible to remember just a few last states
 - Prevents "short" cycles
 - Tabu list = a list of forbidden states
 - Tabu list has a fix length k (tabu tenure)
 - "old" states are removed from the list when a new state is added
 - State included in the tabu list is forbidden (it is tabu)

Constraint weighting

- Can help concentrate the search on important constraints
- Each constraint is given a numeric weight (initially all 1)
- At each step of the search
 - We choose a variable/value pair to change with lowest total weight of all violated constraints
 - Weights are then adjusted by <u>incrementing</u> the weight of each constraint violated by the current assignment

Local search in real-world problems

- It can be used for scheduling problems in online setting when the problem changes
- A week's <u>airline</u> schedule
 - may involve thousands of flights
 - may involve tens of thousands of personnel assignments
 - bad weather at one airport can make the schedule infeasible
 - To repair the schedule with a minimum number of changes
 - a local search algorithm starting from the current schedule
 - A backtracking search with the new set of constraints usually requires
 - much more time
 - might find a solution with many changes from the current schedule

CONSTRAINT SATISFACTION PROBLEMS — PART VII

Outline

- Constraint Satisfaction Problems (CSP)
- Backtracking search
- Constraint propagation
- Local search for CSPs
- Structure of the problem

Structure of the problems

- Problem structure (constraint graph) can be used to find solutions quickly
- Example map coloring problem
 Tasmania is not connected to the mainland
 - → coloring Tasmania and coloring the mainland ar independent subproblems
 - any solution for the mainland combined with any solution for Tasmania yields a solution for the map

Northern Territory

New South Wales

Structure of the problems

- Independence can be obtained by finding <u>connected</u> <u>components</u> of the constraint graph
 - Each component corresponds to a subproblem CSP;
 - If assignment S_i is a solution of $CSP_i \rightarrow U_iS_i$ is a solution of $U_i CSP_i$

Structure of the problems

Why is decomposition important?

- Assume n variables, each variable has a domain with cardinality d
- Assume c is a constant, c < n</p>
- \blacksquare Assume each CSP; has c variables from the total of $n \rightarrow n/c$ subproblems
- Each subproblem requires at most d^c work to solve it →
- \square Total work is $O(d^c n/c)$, which is *linear* in n
- Without the decomposition

Total work is $O(d^n)$, which is exponential in n

■ Example:

- Dividing a Boolean CSP with 80 variables into 4 subproblems
- Worst-case solution time: from the lifetime of the universe to less than 1 second

The structure of the problems

- Other graph structures easy to solve: trees
 - A constraint graph is a tree when any two variables are connected by only one path
- Any tree-structured CSP can be solved in time linear in the number of variables

A CSP is defined to be directed arc-consistent (DAC) under an ordering of variables X₁, X₂, ..., X_n iff every X_i is arc-consistent with each X_i for j>i

Tree-structured CSP

- □ Given n variables, with d values in each domain
 - □ If the CSP graph is a tree, it can be solved in O(nd²)

Tree-structured CSPs

- To solve a tree-structured CSP:
 - Pick any variable to be the <u>root</u> of the tree
 - Choose an <u>ordering of the variables</u> such that each variable appears after its parent in the tree
 - This kind of ordering is called topological sort
 - Make this graph <u>directed arc-consistent</u> (O(nd²))
 - Follow the list of variables starting from the root and choose any remaining value

DAC guarantees that for any value we choose for the parent, there will be a valid value left to choose for the child

Tree-structured CSPs

a) The constraint graph of a tree-structured CSP

b) Linear ordering of the variables
consistent with the tree with A as the root
This is known as a topological sort of the
variables

Tree CSP solver

function TREE-CSP-SOLVER(csp) returns a solution, or failure inputs: csp, a CSP with components X, D, C

n ← number of variables in X

assignment ← an empty assignment

root ← any variable in X

X ←TOPOLOGICALSORT(X, root)

for j = n down to 2 do

MAKE-ARC-CONSISTENT(PARENT(Xj), Xj) **if** it cannot be made consistent **then return** failure

for i = 1 to n do

assignment [Xi] ← any <u>consistent value</u> from Di **if** there is no consistent value **then return** failure

return assignment

TOPOLOGICALSORT

each variable appears **after its parent** in the tree

Backtrack is not required

We can move linearly through the variables

Amost tree-structured

 Idea: Reduce the graph structure to a tree assigning values to some variables

Example

- Consider the constraint graph for Australia
- If we could delete South Australia, the graph would become a tree

■ We can do this by <u>fixing a value for SA</u> and <u>deleting</u> from the domains of the other variables any <u>values</u> that are inconsistent with the value chosen for SA

Amost tree-structured

Cutset Conditioning

- Choose a subset S of the CSPs variables such that the constraint graph becomes a tree after removal of S
 (S is called a cycle cutset)
- For each possible assignment of variables in S that satisfies all constraints on S
 - Remove from the domains of the remaining variables any values that are inconsistent with the assignment for \$
 - If the remaining CSP has a solution, return it together with the assignment for S

CONSTRAINT SATISFACTION PROBLEMS — PART VIII

Outline

- Constraint Satisfaction Problems (CSP)
- Backtracking search
- Constraint propagation
- Local search for CSPs
- Structure of the problem

Structure of the problem Another method: tree decomposition

- Decompose problem into a set of connected sub-problems, where two sub-problems are connected when they share a constraint
- Solve sub-problems independently and combine solutions

Example: A tree decomposition of the constraint graph for Australia

Another method: tree decomposition

A tree decomposition must satisfy the following conditions:

- Every variable of the original CSP appears in at least one sub-problem
- □ If two variables are connected by a constraint in the original CSP → they must appear with their constraint in at least one subproblem
- □ If a variable appears in some subproblems →
 it must have the same value in every subproblem

Another method: tree decomposition

- We solve each sub-problem independently
- If a sub-problem has no solution > entire problem has no solution
- \Box If we can <u>solve all</u> the subproblems \rightarrow we construct a <u>global solution</u>
 - Consider each sub-problem as new "mega-variable"
 - **Domain** of each mega-variable: **all the solutions** to the sub-problem
 - Then, solve the constraints that connect the subproblems by using tree CSP solver to find an overall solution with identical values for the same variable

Tree width

- A constraint graph allows for <u>several</u> tree decompositions
- Aim: to select decomposition with the suproblems as small as possible
- □ Tree width of a tree decomposition: s 1
 where s is the size of largest sub-problem
- Tree width of a graph is the minimum tree width among all its tree decompositions

Tree width

- □ If
 - a graph has tree-width w
 - we know the corresponding tree decomposition

Then we can solve the problem in $O(nd^{w+1})$

- CSPs with constraint graph with a bounded tree width can be solved in polynomial time
- Finding a tree decomposition with minimal tree width is NP-hard (but some heuristic methods work well in practice)

Symmetry breaking

- □ So far: structure of the constraint graph
- Now: structure in the values of variables
- Example: map-coloring problem with n colors
 - □ Vsolution, n! solutions formed by permuting the color names
 - Australia map:
 - WA, NT, SA must all have different colors
 - But there are 3! = 6 ways to assign three colors to three regions
 - This is called value symmetry
 - To reduce the search space: symmetry-breaking constraint
 - We impose an **arbitrary ordering constraint**, **NT < SA < WA** that requires the three values to be in alphabetical order →
 - One of the n! solutions is possible: $\{NT = blue, SA = green, WA = red \}$

Summary

- CSPs are a special kind of search problem:
 - states are value assignments
 - goal test is defined by constraints
- Backtracking = DFS with one variable assigned per node.
 Other intelligent backtracking techniques possible
- Variable/value ordering heuristics can help dramatically
- Constraint propagation prunes the search space
- Tree structure of CSP graph simplifies problem significantly
- CSPs can also be solved using local search