Chapter2-Cauchy Theorem and it's application

luojunxun

2023年6月3日

Goursat's theorem

Theorem 1.1: if Ω is an open set in C and $T \subset \Omega$ a triangle whose interior is also contained in Ω . then

$$\int_T f(z)dz = 0$$

whenever f is holomorphic in Ω

Corollary 1.2:If f is holomorphic in a open set Ω that contains a rectangle R and its interior .then

$$\int_{R} f(z)dz = 0$$

Local existence of primitives and Cauchy's Theorem in a disc

Theorem 2.1: A holomorphic function f in an open disc has a primitive in that disc

Theorem 2.2 Cauchy's theorem for a disc:if f is holomorphic in a disc then

$$\int_{\gamma} f(z)dz = 0$$

for any closed curve γ in that disc

Corollary 2.3: suppose f is holomorphic in an open set containing the circle C and its interior, then

$$\int_C f(z)dz = 0$$

Evaluation of some integrals

there are some common toy contours needed to be discuss

Cauchy's integral formula

Theorem 4.1: suppose f is holomorphic in an open set that contains the closure of a disc D, if Cdenotes the boundary of D with the positive orientation, then

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{\zeta - z} d\zeta$$

for any point $z \in D$

f is holomorphic on $\overline{D}!,\ z\in D!$: To understand it, let's look at the proof (p46). In the proof, we calculate the integral $F(\zeta)=\frac{f(\zeta)}{\zeta-z}$ on the disc D and divide it into two parts. The first part is $\int_{F_{\delta,\epsilon}} F(\zeta) d\zeta = 0$ since $F_{\delta,\epsilon} \subset \Omega$ and F is holomorphic on Ω (except at z). The second part is $\int_{C_{\epsilon}} F(\zeta) d\zeta$, which evaluates to $-2\pi i f(z)$ since F is not holomorphic at z. We need to calculate this part because $C = F_{\delta,\epsilon} \cup C_{\epsilon}$, where $\delta, \epsilon \to 0$. Therefore, we have $0 = \oint_C \frac{f(\zeta)}{\zeta-z} d\zeta - 2\pi i f(z)$, which is what we need to prove.

In fact, the circle C can be replaced by any closed curve γ that contains z in Ω . Also, if we

choose $z \in \Omega - \overline{D}$, then the integral will be zero since F is holomorphic on those points. That's why we choose z in D; otherwise, the conclusion is trivial.

Theorem 4.2: If f is hol on an open set Ω , then f has infinitely many complex dirivatives in Ω , and for any circle $C \subset \Omega$ whose interior is also in ω , we have:

$$f^{n}(z) = \frac{n!}{2\pi i} \int_{C} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

for all z in the interior of C

Corollary 4.3 Cauchy's inequalities: If f is hol in an open set that contains the closure of disc of D centered at z of radius of R, then

$$|f^n(z)| \le \frac{n!||f||_C}{R^n}$$

whenever $||f||_C = \sup_{z \in C} |f(z)|$ denotes the supremum of |f| on the boundary circle C

Theorem 4.4: Suppose f is holomorphic in an open set Ω . If D is a disc centered at z_0 and whose closure is contained in Ω , then f has a power series expansion at z_0

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

for all $z \in D$, and the coefficients are given by

$$a_n = \frac{f^{(n)}(z_0)}{n!}$$
 for all $n \ge 0$.

In fact there are not many restiction on D

Theorem 4.5 Lilouvile's theorem: if f is entire and bounded, then f is constant

Corollary 4.6: Every non-constant polynomial $P(z) = a_n z^n + \cdots + a_0$ with the complex coefficients has a root in C

Corollary 4.7: Every polynomial $P(z) = a_n z^n + \cdots + a_0$ of degree $n \geq 1$ has precisely n roots in \mathbb{C} . If these roots are denoted by w_1, \ldots, w_n , then P can be factored as

$$P(z) = a_n (z - w_1) (z - w_2) \cdots (z - w_n)$$

Theorem 4.8: Suppose f is a holomorphic function in a region Ω that vanishes on a sequence of distinct points with a limit point in Ω . Then f is identically 0

it's easy to underst sand since that a function f is hol on Ω means f is continuous in Ω , then using the continuity to get the conclusion. In the proof we just need to consider the neighborhood of the point

Corollary 4.9: Suppose f and g are holomorphic in a region Ω and f(z) = g(z) for all z in some non-empty open subset of Ω (or more generally for z in some sequence of distinct points with limit point in Ω). Then f(z) = g(z) throughout Ω

Futher application

Theorem 5.1 Morera's theorem: Suppose f is a continuous function in the open disc D such that for any triangle T contained in D

$$\int_{T} f(z)dz = 0$$

then f is holomorphic

In fact if true, for any γ the integration is zero, that the inverse proposition of Cauchy' theorem

Theorem 5.2: If $\{f_n\}_{n=1}^{\infty}$ is a sequence of holomorphic functions that converges uniformly to a function f in every compact subset of Ω , then f is holomorphic in Ω .

the key point is that the uniform-convergence in a compact set make the integral and limit can be exchanged for order:let's look at the impact of different convergent property(suppose $f>0, f_n \nearrow f_n$ converge to f in $D \subset \Omega$):that's

$$\forall \epsilon > 0, \forall z \in \Omega, \exists N_z > 0, \forall n \geq N_z : \int_T (f(z) - f_n(z)) dz < \epsilon; here : T \overset{triangle}{\subset} \Omega$$

then:

$$\int_{T} (f(z) - f_{N_z}(z))dz < \int_{T} \epsilon dz$$

there is no more information we can get unless $f_n \Rightarrow f$,then $\exists N, \forall z \in D, N_z < N$ then

$$\lim_{n \to \infty} \int_T (f(z) - f_n(z)) dz \le \int_T \epsilon dz < \epsilon_0$$

that's what we need(According to the arbitrariness of T and theorem 5.1: f is hol)

Theorem 5.3: Under the hypotheses of the previous theorem, the sequence of derivatives $\{f_n\}$ converges uniformly to f on every compact subset of Ω .

this two theorem show that if every f_n is hol on Ω , and the sum of these functions converge uniformly to F on Ω , then this series defines a holomorphic function F on Ω , which is $F(z) = \sum_{n=1}^{\infty} f_n(z)$

Theorem 5.4:Let F(z, s) be defined for $(z, s) \in \Omega \times [0, 1]$ where Ω is an open set in C. Suppose F satisfies the following properties:

(i):F(z, s) is holomorphic in z for each s. (ii):F is continuous on $\Omega \times [0, 1]$.

Then the function f defined on Ω by:

$$f(z) = \int_0^1 F(z, s) dz$$

is holomorphic

In fact, the properties(ii) means to show F(z,s) is continuous about s

proof of 5.4:In the proof we make a function sequence $f_n(z) = \frac{1}{n} \sum_{k=1}^n F(z, k/n)$, then $f_n \Rightarrow f$, on $D \subset \Omega$, then use Thm5.2, f is hol

so if we need to proof a function f is hol on a set Ω , we can make a function sequence f_n which converges uniformly to f on any compact subset of Ω , then we can say f is hol on Ω

Theorem 5.5 Symmetry principle: If f^+ and f^+ are holomorphic functions in Ω^+ and Ω^- respectively, that extend continuously to I and

$$f^+(x) = f^+(x), \forall x \in I$$

then the function f defined on Ω by

$$f(z) = \begin{cases} f^+(z) & z \in \Omega^+ \\ f^-(z) & z \in \Omega^- \\ f^+(z) = f^-(z) & z \in I \end{cases}$$

is holomorphic on all of Ω

Theorem 5.6 Schwarz reflection principle: Suppose that f is a holomorphic function in Ω^+ that extends continuously to I and such that f is real-valued on I. Then there exists a function F holomorphic in all of Ω such that F = f on Ω^+ .

Proof:[Schwarz reflection principle] let $F(z)=\overline{f(\overline{z})}$ on Ω^- , which is holomorphic, then use the Symmetry principle

Theorem 5.7: Any function holomorphic in a neighborhood of a compact set K can be approximated uniformly on K by rational functions whose singularities are in K^c

If K^c is connected, any function holomorphic in a neighborhood of K can be approximated uniformly on K by polynomials

wikipedia about Runge's approximation theorem

Lemma 5.8:Suppose f is holomorphic in an open set Ω , and $K \subset \Omega$ is compact. Then, there exists finitely many segments $\gamma_1, \ldots, \gamma_N$ in $\Omega - K$ such that

$$f(z) = \sum_{n=1}^{N} \frac{1}{2\pi i} \int_{\gamma_n} \frac{f(\zeta)}{\zeta - z} d\zeta \quad \text{for all } z \in K$$

Lemma 5.9:For any line segment γ entirely contained in $\Omega-K$, there exists a sequence of rational functions with singularities on γ that approximate the integral $\int_{\gamma} f(\zeta)/(\zeta-z)d\zeta \text{ uniformly on } K.$

Lemma 5.10:If K^c is connected and $z_0 \notin K$, then the function $1/(z-z_0)$ can be approximated uniformly on K by polynomials.

if $K \subset \Omega$, there are rational function which can be used to approximated uniformly. if K^c is connected, then the rational function can be polynomials

In fact I didn't understand the proof clearly...