	el Wednesday, 3 de February de 2021, 09:01 do Finalizado	Navegación por el cuestionario
Tiempo emplead Calificació	en Wednesday, 3 de February de 2021, 10:59 do 1 hora 58 minutos ón 6 de 9 (67%)	New heading 3 4 5 6 7 8 9 10 11
Pregunta 1 Finalizado Sin calificar	Respuesta:	New heading
V Marcar pregunta		Mostrar una página cada vez Finalizar revisión
Pregunta	La respuesta correcta es: Ingrese su número de Padrón, sin puntos ni espacios	
Finalizado Sin calificar Marcar	Respuesta:	
pregunta	La respuesta correcta es:	
Pregunta 3	Sean $\mathbb{V}=\left\{A\in\mathbb{R}^{2\times 2}:A^T=A\right\}$ el \mathbb{R} -espacio vectorial de la matrices simétricas de $\mathbb{R}^{2\times 2}$, y $T:\mathbb{V}\to\mathbb{R}^3$ la transformación lineal tal que	
Incorrecta Puntúa 0 sobre 1 Marcar	$[T]_B^C = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ es la matriz de T con respecto a las bases $B = \left\{ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\}$ de	
pregunta	$\mathbb{V} \text{ y } C = \left\{ \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T \right\} \text{ de } \mathbb{R}^3.$ Todas las soluciones de la ecuación $T(A) = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T \text{ son de la forma}$	
	Selectione una:	
	$ c. \ A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + a \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}, \text{ con } a \in \mathbb{R} . $ $ d. \ A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + a \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}, \text{ con } a \in \mathbb{R} . $	
	La respuesta correcta es: $A=\begin{bmatrix}0&0\\0&1\end{bmatrix}+a\begin{bmatrix}-1&1\\1&1\end{bmatrix}$, con $a\in\mathbb{R}$.	
Pregunta 4	En \mathbb{R}^2 con el producto interno canónico, sea A la matriz con respecto a la base canónica de la proyección ortogonal sobre el subespacio $\{x \in \mathbb{R}^2 : 2x_1 + 3x_2 = 0\}$ y sea $Q: \mathbb{R}^2 \to \mathbb{R}$ la forma cuadrática definida por	
Puntúa 0 sobre 1 Marcar pregunta	$Q(x)=x^T\left(A+3I\right)x$. El conjunto de nivel $\left\{x\in\mathbb{R}^2:Q(x)=4\right\}$ es Seleccione una: a. una elipse con centro en el origen, eje mayor de longitud $\frac{4\sqrt{3}}{3}$ contenido	
	en la recta generada por $\begin{bmatrix} 2 & 3 \end{bmatrix}^T$ y eje menor de longitud 2 contenido en la recta generada por $\begin{bmatrix} -3 & 2 \end{bmatrix}^T$. b. una elipse con centro en el origen, eje mayor de longitud $\frac{2\sqrt{6}}{3}$ contenido en la recta generada por $\begin{bmatrix} -3 & 2 \end{bmatrix}^T$ y eje menor de longitud $\sqrt{2}$ contenido en	
	la recta generada por $\begin{bmatrix} 2 & 3 \end{bmatrix}^T$. c. una elipse con centro en el origen, eje mayor de longitud $\frac{2\sqrt{6}}{3}$ contenido en la recta generada por $\begin{bmatrix} 2 & 3 \end{bmatrix}^T$ y eje menor de longitud $\sqrt{2}$ contenido en la recta generada por $\begin{bmatrix} -3 & 2 \end{bmatrix}^T$.	
	o. una elipse con centro en el origen, eje mayor de longitud $\frac{4\sqrt{3}}{3}$ contenido en la recta generada por $\begin{bmatrix} -3 & 2 \end{bmatrix}^T$ y eje menor de longitud 2 contenido en la recta generada por $\begin{bmatrix} 2 & 3 \end{bmatrix}^T$.	
	La respuesta correcta es: una elipse con centro en el origen, eje mayor de longitud $\frac{4\sqrt{3}}{3}$ contenido en la recta generada por $\begin{bmatrix} 2 & 3 \end{bmatrix}^T$ y eje menor de longitud 2 contenido en la recta generada por $\begin{bmatrix} -3 & 2 \end{bmatrix}^T$.	
Pregunta 5 Correcta	Sea $\mathbb{S}_a\subseteq C^\infty\left(\mathbb{R}\right)$ el subespacio definido por $\mathbb{S}_a=\operatorname{gen}\left\{a+2\cos(x),3+3\cos(x)-a\sin(x),1+\cos(x)+2\sin(x)\right\},$ con $a\in\mathbb{R}$.	
Puntúa 1 sobre 1 V Marcar pregunta	Selectione una: a. $\dim (\mathbb{S}_a) = 3$ si y solamente si $a \notin \{2, -6\}$. b. $\dim (\mathbb{S}_a) = 3$ si y solamente si $a \notin \{2, 6\}$.	
	c. $\dim (\mathbb{S}_a)=3$ si y solamente si $a\notin \{-3,-6\}$. d. $\dim (\mathbb{S}_a)=3$ si y solamente si $a\notin \{-3,6\}$.	
Pregunta	La respuesta correcta es: $\dim (\mathbb{S}_a) = 3$ si y solamente si $a \notin \{2, -6\}$. Si $A \in \mathbb{R}^{3 \times 3}$ es una matriz simétrica tal que $\det(A) = 3$, $\operatorname{tr}(A) = 1$, $\begin{bmatrix} 0 & 3 & 3 \end{bmatrix}^T$	
Incorrecta Puntúa 0 sobre 1	y $\begin{bmatrix} -2 & 1 & 2 \end{bmatrix}^T$ son autovectores de A , entonces Seleccione una: a. $A^2 = \frac{1}{3} \begin{bmatrix} 35 & -16 & -32 \\ -16 & 11 & 16 \\ -32 & 16 & 35 \end{bmatrix}$.	
V Marcar pregunta	$\begin{bmatrix} 16 & 11 & 16 \\ -32 & 16 & 35 \end{bmatrix}$ $\begin{bmatrix} 11 & -16 & 16 \\ -16 & 35 & -32 \\ 16 & -32 & 35 \end{bmatrix}.$	
	© c. $A^2 = \frac{1}{9} \begin{bmatrix} 41 & -16 & -32 \\ -16 & 17 & 16 \\ -32 & 16 & 41 \end{bmatrix}$. \times O d. $A^2 = \frac{1}{9} \begin{bmatrix} 17 & -16 & 16 \\ -16 & 41 & -32 \\ 16 & -32 & 41 \end{bmatrix}$.	
	La respuesta correcta es: $A^2 = \frac{1}{9} \begin{bmatrix} 17 & -16 & 16 \\ -16 & 41 & -32 \\ 16 & -32 & 41 \end{bmatrix}$.	
Pregunta 7	El máximo de $Q(x)=x^T\begin{bmatrix}3&4\\4&9\end{bmatrix}x$ sujeto a la restricción $x_1^2+3x_2^2=12$ es	
Correcta Puntúa 1 sobre 1 Marcar	Seleccione una: a. $36 + 16\sqrt{3}$.	
pregunta	O c. $\frac{9}{2} + 2\sqrt{3}$. O d. $18 + 8\sqrt{3}$.	
Pregunta	La respuesta correcta es: $36+16\sqrt{3}$. Sea $T\in\mathcal{L}\left(\mathbb{R}^2\right)$ la transformación lineal definida por $T(x)=Ax$, donde	
8 Correcta Puntúa 1 sobre	$A=\begin{bmatrix}14&10\\-2&10\end{bmatrix}.$ La imagen por T de la circunferencia unitaria $S_1=\{x\in\mathbb{R}^2:\ x\ =1\}$ es Seleccione una:	
V Marcar pregunta	a. una elipse con centro en el origen, eje mayor de longitud $32\sqrt{5}$ contenido en la recta generada por $\left[\frac{3}{\sqrt{10}} \frac{1}{\sqrt{10}}\right]^T$ y eje menor de longitud $16\sqrt{5}$ contenido en la recta generada por $\left[\frac{-1}{\sqrt{10}} \frac{3}{\sqrt{10}}\right]^T$.	
	b. una elipse con centro en el origen, eje mayor de longitud $16\sqrt{5}$ contenido en la recta generada por $\begin{bmatrix} \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{bmatrix}^T$ y eje menor de longitud $8\sqrt{5}$ contenido en la recta generada por $\begin{bmatrix} \frac{-1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \end{bmatrix}^T$.	
	c. una elipse con centro en el origen, eje mayor de longitud $24\sqrt{5}$ contenido en la recta generada por $\left[\frac{3}{\sqrt{10}} \frac{1}{\sqrt{10}}\right]^T$ y eje menor de longitud $12\sqrt{5}$ contenido en la recta generada por $\left[\frac{-1}{\sqrt{10}} \frac{3}{\sqrt{10}}\right]^T$.	
	d. una elipse con centro en el origen, eje mayor de longitud $40\sqrt{5}$ contenido en la recta generada por $\begin{bmatrix} \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{bmatrix}^T$ y eje menor de longitud $20\sqrt{5}$ contenido en la recta generada por $\begin{bmatrix} -\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \end{bmatrix}^T$.	
	La respuesta correcta es: una elipse con centro en el origen, eje mayor de longitud $16\sqrt{5}$ contenido en la recta generada por $\begin{bmatrix} \frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \end{bmatrix}^T$ y eje menor de longitud $8\sqrt{5}$ contenido en la recta generada por $\begin{bmatrix} \frac{-1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \end{bmatrix}^T$.	
Pregunta 9	Sea $A \in \mathbb{R}^{3 \times 3}$ la matriz dependiente del parámetro real a definida por	
Correcta Puntúa 1 sobre 1 Marcar	$\begin{bmatrix} 1 & -1 & 1 \\ 0 & a^2 & 0 \\ 0 & 1 & (a-1)^2 \end{bmatrix}.$ Existe una matriz inversible $P \in \mathbb{R}^{3\times 3}$ tal que $P^{-1}AP = \begin{bmatrix} \frac{1}{4} & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	
pregunta	$P^{-1}AP = \begin{bmatrix} \frac{1}{4} & 1 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & 1 \end{bmatrix}$ si, y solo si, Seleccione una:	
	a. $a = 0$. b. $a \in \{-1, 2\}$. c. $a \notin \{-1, 0, \frac{1}{2}, 2\}$.	
	o d. $a=\frac{1}{2}$. \checkmark La respuesta correcta es: $a=\frac{1}{2}$.	
Pregunta 10 Correcta	Sea $Y\in C^\infty\left(\mathbb{R},\mathbb{R}^3\right)$ tal que $Y'=AY$, donde $A=\begin{bmatrix}1&4&10\\1&1&5\\0&0&-1\end{bmatrix}$.	
Puntúa 1 sobre 1 Marcar pregunta	Selectione una: $ \bigcirc \text{a. } \lim_{t \to +\infty} Y(t) = 0 \iff Y(0) \in \operatorname{gen} \left\{ \begin{bmatrix} 2 & 1 & -1 \end{bmatrix}^T, \begin{bmatrix} -5 & 0 & 1 \end{bmatrix}^T \right\}. $ $ \bigcirc \text{b. } \lim_{t \to +\infty} Y(t) = 0 \iff Y(0) \in \operatorname{gen} \left\{ \begin{bmatrix} -3 & 1 & 0 \end{bmatrix}^T \right\}. $	
	$0 \text{c.} \lim_{t \to +\infty} Y(t) = 0 \iff Y(0) \in \text{gen} \left\{ \begin{bmatrix} 3 & 1 & -1 \end{bmatrix}^T, \begin{bmatrix} -5 & 0 & 1 \end{bmatrix}^T \right\}. \checkmark$ $0 \text{d.} \lim_{t \to +\infty} Y(t) = 0 \iff Y(0) \in \text{gen} \left\{ \begin{bmatrix} -2 & 1 & 0 \end{bmatrix}^T \right\}.$	
	La respuesta correcta es: $\lim_{t\to +\infty} Y(t) = 0 \iff Y(0) \in \operatorname{gen}\left\{ \begin{bmatrix} 3 & 1 & -1 \end{bmatrix}^T, \begin{bmatrix} -5 & 0 & 1 \end{bmatrix}^T \right\}.$	
Pregunta 11 Correcta	Sea $(\mathbb{R}^2, \langle \cdot, \cdot \rangle)$ el \mathbb{R} -espacio euclídeo respecto del cual el triángulo de vértices $\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ es un triángulo equilátero de área $\frac{1}{4}$.	
Puntúa 1 sobre 1 Marcar pregunta	El área del triángulo de vértices $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ es Seleccione una:	
	 a. 1. b. ½. ✓ c. 2. 	
	O d. $\frac{1}{4}$. La respuesta correcta es: $\frac{1}{2}$.	
Información Marcar pregunta	Cliquee ``Terminar intento" y en la próxima página ``Enviar todo y terminar"	
pregunta		