Hazard Analysis Digital Twin Forest

Team 8, Forest Mirror Yichen Jiang, jiany34 Bowen Zhang, zhangb82 Junhong Chen, chenj297 Jiacheng Wu, wuj187 Tingyu Shi, shit19

Table 1: Revision History

Date	Developer(s)	Change
October 18	All team members	Initial documents
April 2	All team members	Final Draft

Contents

1	Introduction	1
2	Scope and Purpose of Hazard Analysis	1
3	System Boundaries and Components 3.1 System Boundaries	
4	Critical Assumptions	2
5	Failure Mode and Effect Analysis	3
6	Safety and Security Requirements 3.1 Access Requirements 3.2 Integrity Requirements 3.3 Privacy Requirements 3.4 Audit Requirements 3.5 Immunity Requirements	5 5 5
7	Roadmap 7.1 Data storage 7.2 Forest Model Construction 7.3 Data visualization 7.4 Data update 7.5 Data update	6 6
L	st of Tables	
	Revision History FMEA Forest Model Construction FMEA Forest Data Visualization FMEA Data Storage FMEA Data Update	3 3 3

List of Figures

1 Introduction

This document is the hazard analysis of the project Digital Twin Forest. Digital twin forest is a virtual representation of the natural world, specifically a real forest. The detailed introduction of our project can be found here.

2 Scope and Purpose of Hazard Analysis

The scope of this document is to analyze and identify the hazards that may occur in our system in order to minimize the cost and harm of them when they occur.

Safety is always the top requirement of ours. Though we are developing software that may not lead to any physical harm to our users, we would make an effort to examine and then avoid any other kind of possible harm. We care about not only our users but also our development and maintenance team, which will provide long-term support for our users.

The purpose of our product is to display visualized forest information to users. As a result, users would be able to better make their strategies based on the information we provided in the product, which means, inaccurate data might mislead the users when making decisions. Thus, different with many other products, information accuracy is another one of our top concerns. Regarding to the purpose of the product and the requirements of information accuracy, we will also include the analysis of the possible sources of data inaccuracy in this document.

With the hazard analysis recorded in this document, we expect our product to avoid mentioned possible hazards and provide a safer user experience for our users. 100% safety is not achievable in a project. However, we believe that it is still essential to avoid predictable unsafe situations and try our best to prepare for unpredictable ones. In this document of hazard analysis, it identifies unsafe behaviors while accomplishing the application, and it makes sure such behaviors are eliminated. We would raise several recommended actions for each hazard we mentioned, which provides possible solutions to avoid hazards.

3 System Boundaries and Components

3.1 System Boundaries

Our system includes the following contents:

- Entire application
- Computers or laptops that execute our application
- JSON files to store the data

3.2 System Components

The application will be divided into the following 5 components, in order of importance:

- 1. Forest Model Construction
- 2. Data Visualization
- 3. Data Storage
- 4. Data Update from users

4 Critical Assumptions

We assume that Unity game engine will always work properly.

5 Failure Mode and Effect Analysis

Component	Failure Modes	Effects of Failure	Causes of Failure	Recommended Ac-	SR	Ref
				tion		
Forest Model Construction	System lag or crash when loading tree models	Users cannot use the system any- more	Excessive accuracy of the model Loading too many models at the same time	Reduce the accuracy of the model as a trade-off Use parametric modeling to solve the problem of loading too many models at the same time	SR 2.2	H 1-1

Table 2: FMEA Forest Model Construction

Component	Failure Modes	Effects of Failure	Causes of Failure	Recommended Ac-	SR	Ref
				tion		
Forest Data Visualization	The user interface	Users will not be	The space is not	Check if the Unity	SR2.4,	H2-1
Potest Data Visualization	is missing for some	able to collect or	large enough for	UI panel and but-	SR2.5	
	of the forest data	analyze the data if	the interface or the	tons are finished.		
		the interface is not	Unity UI the sys-	Make sure the		
		presented.	tem does not work	space is big enough		
			properly.	to present all data.		
	UI was imple-	The system may	The lab and the	Download the lat-	SR2.2,	H2-2
	mented, but the	crash due to calcu-	team do not have	est forest data from	SR2.5	
	corresponding	lations using non-	or upload the latest	ArcGIS and update		
	forest data are	exist or wrong data.	forest data.	the data. Add		
	inaccurate or miss-			scripts for fault tol-		
	ing.			erance when the		
				data is missing.		

Table 3: FMEA Forest Data Visualization

Component	Failure Modes	Effects of Failure	Causes of Failure	Recommended Ac-	SR	Ref
				tion		
	Data Storage		Missing data stor-	Users can down-	SR1.1	H 3-1
Data Storage	classes were unin-	Data analysis	age	load the backup	SR1.2	
Data Storage	tentionally deleted.	fails		data storage from	SR2.2	
		10110		GitHub of our	SR2.3	
		• User inter-		project.(As we		
		faces fail to		cannot prevent the		
		represent		users from deleting		
		data		the data.)		

Table 4: FMEA Data Storage

Component	Failure Modes	Effects of Failure	Causes of Failure	Recommended Ac- tion	SR	Ref
Data update from users	Inappropriate user inputs	Possible application crash caused by invalid data input. Invalid data input may disable some of the features like pie charts, due to the failure of necessary calculations	Invalid input with wrong data type	Implement a feature to check the data type of the input before forwarding it to the storage.	SR2.2 SR2.3	H 4-1

Table 5: FMEA Data Update

6 Safety and Security Requirements

New added requirements are shown in blue and will be updated into SRS document.

6.1 Access Requirements

- SR1.1 The product shall only be accessed by users who download the product from our GitHub website.
- SR1.2 Forest data shall only be modified through the interface provided by developers.

6.2 Integrity Requirements

- SR2.1 The system shall not propagate errors throughout the users' devices in case of failure.
- SR2.2 The product shall avoid crashing when being used.
- SR2.3 The product shall check if user updates (user inputs) are legal before updating them to the system.
- SR2.4 Data displayed in the application shall be consistent with the data stored.
- SR2.5 The system shall provide one-to-one mapping relationships between each data and GUI.

6.3 Privacy Requirements

- SR3.1 The product shall not ask the users to provide personal information.
- SR3.2 The product shall not send notifications to the users without permission.

6.4 Audit Requirements

N/A

6.5 Immunity Requirements

N/A

The corresponding fit criteria can be found in the SRS document

7 Roadmap

7.1 Data storage

Unsafe behaviours related to data storage are identified and eliminated before hazard analysis revision 0 on October 19. This component has the greatest importance in the failure mode and effect analysis. The team accomplished most of the measurement during the reading week with Dr. Gonsamo's guidance.

7.2 Forest Model Construction

Unsafe behaviours related to modeling will be identified and solved before the proof of concept demonstration on November 14. The model is the basic visual representation of the real forest. Failures may occur while the team using the technique of parametric modeling in Unity. It is necessary to eliminate or mitigate all of them during the early phase of the project.

7.3 Data visualization

Unsafe behaviours related to data visualization will be identified and solved before the POC demonstration on November 14. The team may encounter challenges and unpredictable failures while implementing the user interface of the project. Actions shall be taken to ensure the user experience of the demo is satisfying.

7.4 Data update

The solution to unsafe behaviours related to data updates will be postponed until the end of the project. According to the failure mode and effect analysis, this component is the least important. Therefore, the team shall focus on the implementation of the project first, and defer the mitigation of unsafe maintenance behaviours.