

Insight to computer vision

Contents

01

Overview

- Introduction to CV
- Object detection

02

Metrics

- Intersection over Union (IoU)
- Mean average precision (mAP)

03

Non-Max Suppression

 Common algorithm to tackle multiple bounding boxes

Overview - What is CV?

and many more...

Object Detection Task

Localization (regression)

- Localized the subject in the image
- Done by drawing bounding boxes (bbox) around the subject
- Bbox described as (x1, y1, x2, y2) or (x, y, w, h)

Classification

Classify subject correctly (e.g. cat or dog)

Object detection models

Two-stage models

- Region-based CNN Family Models
 - R-CNN (2014), Fast R-CNN (2015), Faster R-CNN (2016), Mask R-CNN (2017)
- More accurate but are typically slower.

R-CNN: Regions with CNN features warped region image proposals (~2k) warped region aeroplane? no. image person? yes. tvmonitor? no. 4. Classify regions

Figure 1: Object detection system overview. Our system (1) takes an input image, (2) extracts around 2000 bottom-up region proposals, (3) computes features for each proposal using a large convolutional neural network (CNN), and then (4) classifies each region using class-specific linear SVMs.

object detection models

One-stage models

- YOLO Family Models
 - YOLO (2015), YOLOv2 (2016), YOLOv3 (2018), YOLOv4 (2020), YOLOv5 (2021)
- SSD (2016)
- Fast inference speed, but not as good at recognizing a group of small objects

Evaluation metric: Intersection over Union (IoU)

- IoU quantify the amount of overlap area between predicted bbox overlapped with ground-truth bbox
- Range from 0 (prediction totally off) to 1 (prefect prediction)
- If prediction has IoU > 0.5, correct classification -> TP
- If prediction has IoU < 0.5, correct classification -> FP
- If no prediction when there is a target -> FN (0.5 is an arbitrary threshold)

Evaluation metric: Mean Average Precision (mAP)

5 total cases in this e.g.

- Based on the concept of IoU, calculate TP, FP, FN to built a precision –recall curve
- STEPS:
 - Sort the predictions by confidence level
 - Compute the precision and recall for each row sequentially
 - Plot graph
- Calculate area under graph and you get AP!
- Repeat this for diff classes and average them e.g. AP_{CAT} , AP_{DOG}
- Hence mean AP

Rank	Correct?	Precision	Recall
1	True	1.0] /]	0.2 1/5
2	True	1.0 2/2	0.4 2/5
3	False	0.67 2/3	0.4 2/5
4	False	0.5 2/4	0.4 2/5
5	False	0.4	0.4
6	True	0.5	0.6
7	True	0.57	0.8
8	False	0.5	0.8
9	False	0.44	0.8
10	True	0.5	1.0

How many retrieved items are relevant?

How many relevant items are retrieved?

Evaluation metric: Mean Average Precision (mAP)

COCO Object Detection Challenge

```
Average Precision (AP):
  AP
                       % AP at IoU=.50:.05:.95 (primary challenge metric)
  ADIOU=.50
                       % AP at IoU=.50 (PASCAL VOC metric)
  ApIoU=.75
                       % AP at IoU=.75 (strict metric)
AP Across Scales:
  Apsmall
                       % AP for small objects: area < 32^2
                       % AP for medium objects: 32^2 < area < 96^2
  Apmedium
  Aplarge
                       % AP for large objects: area > 96<sup>2</sup>
Average Recall (AR):
  AR<sup>max=1</sup>
                       % AR given 1 detection per image
  ARmax=10
                       % AR given 10 detections per image
  ARmax=100
                       % AR given 100 detections per image
AR Across Scales:
  ARsmall
                       % AR for small objects: area < 32<sup>2</sup>
  ARmedium
                       % AR for medium objects: 32^2 < area < 96^2
  ARlarge
                       % AR for large objects: area > 96<sup>2</sup>
```

Non-max suppression (NMS)

- Most obj detection models proposed multiple bbox around the target.
- NMS is a technique to remove all except one bbox proposal

Before non-max suppression

Non-Max Suppression

After non-max suppression

- 1. Start from one class
- 2. Select the bbox with the highest confidence score.
- 3. Check the IOU score of other bboxes.
- 4. Discard the bbox if IOU > 0.7 (arbitrar y threshold
- 5. Select the second highest confidence score and repeat step 3 and 4.
- 6. Repeat step 1 to 5 for other classes.

- 1. Start from one class
- 2. Select the bbox with the highest confidence score.
- 3. Check the IOU score of other bboxes.
- 4. Discard the bbox if IOU > 0.7 (arbitrar y threshold
- 5. Select the second highest confidence score and repeat step 3 and 4.
- 6. Repeat step 1 to 5 for other classes.

0.75

- 1. Start from one class
- 2. Select the bbox with the highest confidence score.
- 3. Check the IOU score of other bboxes.
- 4. Discard the bbox if IOU > 0.7 (arbitrar y threshold
- 5. Select the second highest confidence score and repeat step 3 and 4.
- 6. Repeat step 1 to 5 for other classes.

- 1. Start from one class
- 2. Select the bbox with the highest confidence score.
- 3. Check the IOU score of other bboxes.
- 4. Discard the bbox if IOU > 0.7 (arbitrar y threshold
- 5. Select the second highest confidence score and repeat step 3 and 4.
- 6. Repeat step 1 to 5 for other classes.

0.75

Bbox proposal

Steps:

- 1. Start from one class
- 2. Select the bbox with the highest confidence score.
- 3. Check the IOU score of other bboxes.
- 4. Discard the bbox if IOU > 0.7 (arbitrar y threshold
- 5. Select the second highest confidence score and repeat step 3 and 4.
- 6. Repeat step 1 to 5 for other classes.

Problem?

NMS performed poorly if targets are close

Thanks!