## 計算量問題について

アルゴリズム講座第一回

発表者:皆藤 広樹

なぜアルゴリズムと データ構造を 勉強するのか?

そもそもアルゴリズムとは何なのか?

そもそもアルゴリズムとは何なのか?

- →日本語訳すると「算法」
- →情報学的に言うと処理の手順

そもそもアルゴリズムとは何なのか?

- →日本語訳すると「算法」
- →情報学的に言うと処理の手順

よりよいアルゴリズムを学ぶことは処理の効率化、すなわち 計算量の削減またメモリ使用量の削減につながる 計算量やメモリ使用量を減らすとどうなるのか?

# 計算量やメモリ使用量を減らすとどうなるのか?

- ・PCの処理が少なくなる
- →処理時間が短くなる

## 計算量やメモリ使用量を減らすとどうなるのか?

- ・PCの処理が少なくなる
- →処理時間が短くなる

現実的な処理時間、 またユーザーにとってストレスのないプログラムになる すなわち、アルゴリズムを学ぶことは

すなわち、アルゴリズムを学ぶことは

PCに負担の少ないプログラム、または 処理時間の短いプログラム作成につながる 実際に計算量を比較してみよう

#### 前知識

<u>とある整列された配列から特定の要素を探すプログラム</u> を考える

Nは配列の要素数 線形探索 最悪計算量 N 二分探索 最悪計算量 log N

線形探索



現在参照している位置











線形探索

#### 比較回数(計算量)は8回



#### 二分探索



現在参照している位置





#### 二分探索

#### 7に対して今の数字が High or Low?



現在参照している位置











二分探索

#### 比較回数(計算量)は3回



#### 前知識

<u>とあるリストを整列するプログラム</u> を考える

Nはリストの要素数 バブルソート 最悪計算量  $N^2$ マージソート 最悪計算量  $N \log N$ 

## 計算量オーダーについて

- ・計算量について議論する上で便利なものさし
- 入力サイズをNとしたとき

```
O(N) はN に比例した計算量 O(N^2) はN^2 に比例した計算量 O(\log N)は\log Nに比例した計算量
```

を示す。

計算量オーダーの考え方は、 前提:nはとても大きい数として考える。 例、計算量 $3n^2 + 5n + 100$ に対して

- ・最高次数の項以外を落とす
- ・係数を無視する

計算量オーダーの考え方は、 前提:nはとても大きい数として考える。 例、計算量 $3n^2 + 5n + 100$ に対して

- ・最高次数の項以外を落とす  $3n^2 + 5n + 100 \rightarrow 3n^2$
- ・係数を無視する

計算量オーダーの考え方は、 前提:nはとても大きい数として考える。 例、計算量 $3n^2 + 5n + 100$ に対して

- ・最高次数の項以外を落とす  $3n^2 + 5n + 100 \rightarrow 3n^2$
- ・係数を無視する  $3n^2 \rightarrow n^2$

したがって、 計算量 $3n^2 + 5n + 100$ のプログラムは 計算量オーダー $O(n^2)$ のプログラム として見なせる。 実際の関数の比較 (pythonでします)

### 制限時間1秒に対する計算の許容限界量

| ループ回数           | 蟻本の記載              | 現在                 |
|-----------------|--------------------|--------------------|
| $10^{6}$        | 余裕を持って間に合う         |                    |
| $10^{7}$        | おそらく間に合う           | 余裕を持って間に合う         |
| 10 <sup>8</sup> | 非常にシンプルな処理でない限り厳しい | おそらく間に合う           |
| $10^9$          |                    | 非常にシンプルな処理でない限り厳しい |

### 実際の計算量

| $\frac{\log n}{\ \cdot\ _{\bullet}}$ | n         | $n \log n$ | $n^2$       | $n^3$      | $2^n$     | n!        |
|--------------------------------------|-----------|------------|-------------|------------|-----------|-----------|
| 2                                    | 5         | 12         | 25          | 130        | 30        | 120       |
| 3                                    | 10        | 33         | 100         | 1,000      | 1,024     | 3,628,800 |
| 4                                    | 15        | 59         | 225         | 3.375      | 32,768    | -         |
| 4                                    | 20        | 86         | 400         | 8,000      | 1,048,576 | -         |
| 5                                    | 25        | 116        | 625         | 15,625     | -         | -         |
| 5                                    | 30        | 147        | 900         | 27,000     | -         | -         |
| 7                                    | 100       | 664        | 10,000      | 1,000,000  | -         | -         |
| 8                                    | 300       | 2,468      | 90,000      | 27,000,000 | -         | -         |
| 10                                   | 1,000     | 9,966      | 1,000,000   | -          | -         | -         |
| 13                                   | 10,000    | 132,877    | 100,000,000 | -          | -         | -         |
| 16                                   | 100,000   | 1,660,964  | -           | -          | -         | -         |
| 20                                   | 1,000,000 | 19,931,568 | -           | -          | -         | -         |

## 参考文献

・計算量オーダーの求め方を総整理! ~ どこから log が出て来るか ~

https://qiita.com/drken/items/872ebc3a2b5caaa4a0d0