COMP-547 2020 Homework set #2

Due Tuesday October 27, 2020, 23:59:59

Historic Cryptography

Exercises from Katz and Lindell's book (1.5, 1.11 (3rd ed.))

[10%]

1.5 Show that the shift, substitution, and Vigenère ciphers are all trivial to break using a chosen-plaintext attack. How much chosen plaintext is needed to recover the key for each of the ciphers?

[10%]

1.11 The attack on the Vigenère cipher has two steps: (a) find the key length by identifying τ with $S_{\tau} \approx 0.065$ (cf. Equation (1.3)) and (b) for each character of the key, find j maximizing I_j (cf. Equation (1.2)), using $\{p_i\}$ corresponding to English text. What happens in each case if the underlying plaintext is in a language other than English?

[5%]

Refer to https://en.wikipedia.org/wiki/Letter frequency for distributions of letters in 15 languages. Which of those 15 languages would be hardest to cryptanalyze, and why?

Monogenère & Ligenère

Imagine that *Blaise de Vigenère* had used *t* mono-alphabetic substitutions instead of *t* shift ciphers to define his encryption scheme.

[5%]

1) Give a formal definition of the Monogenère encryption scheme.

[5%]

2) Explain why the methods we learned to break the **Vigenère** cipher are no longer sufficient to break the **Monogenère** encryption scheme.

[5%]

3) Explain however why we can still figure out the correct value of t.

To be honest, I am not completely sure how we can break this system efficiently. So let me give you another one you can still break. Instead of pure mono-alphabetic substitutions, let's only generalize the simple shift cipher

$c = m + k \mod 26$

to a somewhat more complicated cipher

$c = e \cdot m + k \mod 26$

where the secret key is (k,e), $0 \le k,e \le 25$, gcd(e,26)=1. This system has 312 possible key-pairs instead of 26. Let's call this a linear cipher. Similarly, let a **Ligenère** cipher be the system obtained by analogy to the **Vigenère** cipher using t independent linear ciphers instead of t independent shift ciphers.

[5%]

4) Define the decryption operation of a linear cipher with key-pair (**k**,**e**).

[10%]

5) How could we break the **Ligenère** cipher? Give full details.

Perfect and Computational Secrecy

Let (Gen₁,Enc₁,Dec₁), (Gen₂,Enc₂,Dec₂), and (Gen₃,Enc₃,Dec₃) be three encryption schemes over the same message space M={0,1}. Consider the composite scheme (Gen_c,Enc_c,Dec_c) over message space M={0,1}. defined as

 $Gen_c = (Gen_1, Gen_2, Gen_3)$

Enc_c(m) = **pick** uniformly at random $u,v \in M$, independently from m; **return** (Enc₁(u), Enc₂(v), Enc₃(u \oplus v \oplus m))

 $Dec_c(x,y,z) = return (Dec_1(x) \oplus Dec_2(y) \oplus Dec_3(z))$

[10%]

Prove that if any of the three encryption schemes (Gen_s, Enc_s, Dec_s), $1 \le s \le 3$, is *perfectly secret* then so is (Gen_c, Enc_c, Dec_c).

Exercise from Katz and Lindell's book (2.10 (3rd ed.), 3.2, 3.3)

2.10 The following questions concern the message space $\mathcal{M} = \{0,1\}^{\leq \ell}$, the set of all nonempty binary strings of length at most ℓ .

[5%]

(a) Consider the encryption scheme in which Gen chooses a uniform key from $\mathcal{K} = \{0,1\}^{\ell}$, and $\mathsf{Enc}_k(m)$ outputs $k_{|m|} \oplus m$, where k_t denotes the first t bits of k. Show that this scheme is not perfectly secret for message space \mathcal{M} .

[10%]

(b) Design a perfectly secret encryption scheme for message space $\mathcal{M}.$

[10%]

3.2 Prove that Definition 3.8 cannot be satisfied if Π can encrypt arbitrary-length messages and the adversary is *not* restricted to outputting equallength messages in experiment $\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}}$.

Hint: Let q(n) be a polynomial upper-bound on the length of the ciphertext when Π is used to encrypt a single bit. Then consider an adversary who outputs $m_0 \in \{0,1\}$ and a uniform $m_1 \in \{0,1\}^{q(n)+2}$.

[10%]

3.3 Say $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ is such that for $k \in \{0,1\}^n$, algorithm Enc_k is only defined for messages of length at most $\ell(n)$ (for some polynomial ℓ). Construct a scheme satisfying Definition 3.8 even when the adversary is not restricted to outputting equal-length messages in $\mathsf{PrivK}_{\mathcal{A},\Pi}^{\mathsf{eav}}$.