THÉORÈME D'INTÉGRABLITITÉ DE LIE-PALAIS

ABDELHAK ABOUQATEB

[Version préliminaire.]

Table des matières

1. Introduction.	2
2. Préliminaires.	2
2.1. Champs de vecteurs	2
2.2. Actions d'algèbres de Lie	3
3. L'énoncé du théorème	5
4. Démonstration du théorème	5
5. La faible-complètude implique la complètude	12
6. Groupes de transformations de Lie	14
7. Les groupes de transformations classiques ($Iso_g(M), Aff_{\nabla}(M)$).	15
8. Des notes sur la variété des repères.	17
8.1. La 1-forme canonique $\theta \in \Omega^1(L(M); \mathbb{R}^n)$.	17
8.2. Finitude de la dimension de $\mathcal{G}_{\nabla}(M)$.	18
8.3. Connections complétes.	19
9. Commentaires.	21
Références	22

Résumé. Ce texte est une démonstration assez complète du théorème d'intégrabilité de Lie-Palais : "toute action complète d'algèbre de Lie est intégrable en une action globale de groupe de Lie".

L'objet principal de cet exposé est de comprendre comment s'effectue un passage de l'infinitésimal au global. Nous voulons insister sur le caratère pédagogique de la preuve de ce théorème, ce qui nous semble d'un intérêt fondamental pour un géométre ou topologue.

Les outils de base sont : le théorème de Frobenius (théorie des feuilletages) , le troisième théorème de Lie (sur la correspondance groupes et algèbres de Lie) et la notion de revêtement.

Date: 17-31 mai 2004. Ce texte est un exposé de l'ECOLE CIMPA "Maroc 2004" organisée à la Faculté des sciences et techniques de Marrakech.

1. Introduction.

La théorie de Lie des groupes de transformations remonte à Sophus Lie ([Li]1893). Selon cette théorie, "il y a correspondance biunivoque entre actions d'algèbres de Lie et actions locales de groupes de Lie."

L'idée de R. Palais ([Pa]1957) étais la recherche d'une version globale de cette théorie de Lie. Le résultat principal obtenu dans le mémoire [Pa](1957) est le suivant :

"Il y a correspondance biunivoque entre actions faiblement complètes d'algèbres de Lie et actions globales de groupes de Lie."

Nous allons centré notre exposé sur la démonstration de ce théorème.

Dans une deuxième étape, nous ferons le lien avec un théorème attribué à S. Kobayashi et selon lequel des groupes de transformations laissant invariant certaines structures géomètriques sont des groupes de Lie. Comme application, nous retrouvons le fait que le groupe des isométries $Iso(M,g) := Diff_g(M)$ d'une variété Riemannienne est un groupe de Lie (Myers-Steenrod) et que le groupe $Diff_{\nabla}(M)$ des transformations affines (i.e. preservant une connection ∇ sur M) l'est aussi (cf. "Nomizu" avec l'hypothèse de complétude, et puis "Hano and Morimoto" sans hypothèse de complétude). Notons au passage que c'est H. Cartan qui le premier avait démontré un résultat de ce style : (le groupe des transformations holomorphes d'un domaine borné de \mathbb{C}^n est un groupe de Lie).

2. Préliminaires.

2.1. Champs de vecteurs. (Rappels) A tout champ de vecteurs $X \in \chi(M)$ est associé une équation différentielle (ED) :

$$\frac{d\gamma}{dt}(t) = X_{\gamma(t)}$$
.

Les solutions maximales $\gamma: t \in \mathbb{R} \mapsto \gamma(t) \in M$, sont appelés les trajectoires ou les courbes intégrales du champ X. Ces courbes ne sont pas nécessairement définies pour tout $t \in \mathbb{R}$. Pour tout $x \in M$, on note $\varphi^X(\cdot, x): t \mapsto \varphi^X(t, x)$ la courbe intégrale passant par x, c'est à dire l'unique solution maximale de l'équation (ED) de condition initiale $\varphi^X(0, x) = x$.

Le flot de X est l'application φ^X : $(t,x) \mapsto \varphi^X(t,x)$ définie sur un ouvert D_X de $\mathbb{R} \times M$ à valeurs dans M. Pour t fixé, on note φ^X_t la transformation de M donnée par : $\varphi^X_t(x) := \varphi^X(t,x)$. On montre que si (t,x), $(s,\varphi^X(t,x))$ et (s+t,x) sont tous dans D_X , alors : $\varphi^X(s,\varphi^X(t,x)) = \varphi^X(s+t,x)$.

Les transformations $(\varphi_t^X)_t$ sont des difféomorphismes locaux de M: l'inverse de φ_t^X est φ_{-t}^X , et qu'on a $\varphi_s^X \circ \varphi_t^X = \varphi_{s+t}^X$ (là où les deux membres de cette égalité ont un sens). La famille $(\varphi_t^X)_t$ est appelée le *pseudo-groupe* de transformation (ou groupe à un paramétre local) associé au champ X.

Un champ de vecteurs est dit complet si son flot est défini sur $\mathbb{R} \times M$, autrement dit toutes ses courbes intégrales sont définies sur \mathbb{R} . Ce qui équivaut à la donnée d'une représentation $\mathbb{R} \to Diff(M)$ de \mathbb{R} dans le groupe des difféomorphismes de M, telle que l'application induite $\mathbb{R} \times M \to M$ soit différentiable.

Sur une variété compacte, tout champ de vecteurs est complet.

Exemples-Exercices:

- Sur $M := \mathbb{R}$, le champ de vecteurs $X := x^2 \frac{d}{dx}$ n'est pas complet; son flot est l'application $\varphi^X(t,x) = \frac{x}{1-tx}$ définie sur $D_X = \{(t,x) \in \mathbb{R} \times \mathbb{R} \ / \ tx < 1\}$.
- \bigstar Le crochet ou la somme de deux champs de vecteurs complets peut ne pas être complet :
- Sur $M := \mathbb{R} \times \mathbb{R}$ on peut considérer les deux champs : $X := y \frac{\partial}{\partial x}$ et $Y := (\frac{x^2}{2}) \frac{\partial}{\partial y}$. Ces deux champs sont complets, leurs flots respectifs sont en effet donnés par : $\varphi_t^X(t,x) = (x+ty,y)$ et $\varphi_t^Y(t,x) = (x,y+x^2\frac{t}{2})$.

Montrer que les deux champs de vecteurs X + Y et [X, Y] ne sont pas complets.

- Soit $\lambda: \mathbb{R} \to \mathbb{R}$ une fonction différentiable 1-périodique (i.e. $\lambda(x+1) = \lambda(x)$) telle que : $\lambda(x) = 0$ sur $[0, \frac{1}{5}] \cup [\frac{4}{5}, 1]$ et $\lambda(x) = \frac{\pi}{2}$ sur $[\frac{2}{5}, \frac{3}{5}]$. Nous considérons alors sur $M := \mathbb{R}$ les deux champs de vecteurs : $X = x^2 cos^2(\lambda(x)) \frac{d}{dx}$, $Y = x^2 sin^2(\lambda^2(x)) \frac{d}{dx}$. Montrer que ces deux champs sont complets, alors que nous venons de voir auparavant que le champ de vecteurs somme $X + Y = x^2 \frac{d}{dx}$ ne l'est pas.
- 2.2. Actions d'algèbres de Lie. Soit \mathcal{G} une algèbre de Lie de dimension finie. Soit M une variété différentiable. Une action de \mathcal{G} sur M est la donnée d'un homomorphisme d'algèbres de Lie

$$\tau: \mathcal{G} \longrightarrow \chi(\mathbf{M}).$$

(c-à-d τ est linéaire et $\tau[h,k]=[\tau(h),\tau(k)].)$

On dira alors que M est une \mathcal{G} -variété. Pour $h \in \mathcal{G}$, le champ de vecteurs $X^h := \tau(h)$ sera appelé le champ fondamental associé à h.

Une \mathcal{G} -action sur M peut aussi être vue comme la donnée d'une famille finie $\{X^1,...,X^p\}$ de champs de vecteurs sur M dont les crochets sont donnés par les constantes de structures C^k_{ij} de l'algèbre de Lie \mathcal{G} relativement à une base, soit :

$$[X^i, X^j] = \sum_{1 \le k \le p} C^k_{ij} X^k .$$

Exemples-Remarques

Soit G un groupe de Lie et M une variété différentiable.

 \blacktriangleright Une action différentiable à gauche (ou action globale) de G sur M est la donnée d'un homomorphisme

$$\rho: G \to Diff(M)$$

de G dans le groupe des difféomorphismes de M, de façon que l'application induite $\rho: G \times M \to M$ donnée par $\rho(q, x) := \rho(q)x$ soit différentiable.

ightharpoonup Toute action d'un groupe de Lie G induit une action de son algèbre de Lie G:

pour tout vecteur $h \in \mathcal{G}$ on associe le champ de vecteurs X^h sur M dont les courbes intégrales sont : $t \mapsto \rho(\exp(-th))x$ (les X^h sont les champs de vecteurs fondamentaux associés, notons que ce sont des champs de vecteurs complets).

L'application : $\tau(h) := X^h$ ainsi définie est une action de \mathcal{G} sur M; elle sera notée

$$\rho':\mathcal{G}\to\chi(M)$$

c'est l'action infinithésimale associée à l'action du groupe de Lie G . Des exemples simples :

- Le groupe affine GA de la droite réelle, c'est-à-dire le groupe des transformations ($x \in \mathbb{R} \mapsto ax + b \in \mathbb{R}$) est un groupe de Lie de dimension deux; son algèbre de Lie s'identifie à \mathbb{R}^2 muni du crochet $[e_1, e_2] = e_2$. Ainsi, toute action de GA sur une variété M donne lieu à deux champs de vecteurs complets $\{X^1, X^2\}$ avec $[X^1, X^2] = X^2$.
- Soit G = SO(3) opérant sur $M = \mathbb{R}^3$ à l'aide de l'action linéaire $\rho(g, x) = g.x$. L'algèbre de Lie so(3) de G (c-à-d l'algèbre des matrices antisymétriques) s'identifie à \mathbb{R}^3 muni de son produit vectoriel, c'est l'isomorphisme donné par :

$$\begin{pmatrix} x^1 \\ x^2 \\ x^3 \end{pmatrix} \mapsto \begin{pmatrix} 0 & -x^3 & x^2 \\ x^3 & 0 & -x^1 \\ -x^2 & x^1 & 0 \end{pmatrix}.$$

L'action infinithésimale $\mathcal{G} \to \chi(\mathbb{R}^3)$ induite de ρ est donnée par : $\rho'(h) = h \wedge ...$

 \blacktriangleright Une action locale de G sur M est la donnée d'une application

$$\varphi: D_{\varphi} \subset G \times M \to M$$

tel que :

- (i) D_{φ} est un voisinage ouvert de $\{1\} \times M$, et φ différentiable sur D_{φ} .
- (ii) $\varphi(1,x)=x$ pout tout $x\in M$.
- (iii) Si E est l'ensemble des triplets $(a,b,x) \in G \times G \times M$ tels que (b,x), (ab,x) et $(a,\varphi(b,x))$ sont toutes dans D_{φ} et que $\varphi(ab,x) = \varphi(a,\varphi(b,x))$, alors E est un voisinage ouvert de $\{1\} \times \{1\} \times M$.

Exemple : le flot d'un champ de vecteur X sur M est une action locale du groupe de Lie Abelien \mathbb{R} .

▶ Une \mathcal{G} -action sera dite *effective* si l'homomorphisme τ est injectif (c-à-d que pour tout vecteur non nul $h \in \mathcal{G}$, il existe un point $x \in M$ tel que le vecteur tangent $\tau(h)_x$ soit non nul); c'est ce que l'on supposera désormais.

On dira qu'une \mathcal{G} -action est *complète* s'il existe une base $\beta = \{e_1, ..., e_r\}$ du \mathbb{R} -espace vectoriel \mathcal{G} telle que les champs de vecteurs $X^{e_1}, ..., X^{e_r}$ soient complets.

Une \mathcal{G} -action sera dite faiblement complète s'il existe une famille $S \subset \mathcal{G}$ telle que l'algèbre de Lie engendré $\mathcal{A}lg(S)$ soit égale à \mathcal{G} , et que pour tout $h \in S$ le champ de vecteurs X^h soit complet.

On montrera plus loin un lemme selon lequel il y a équivalence entre "action faiblement complète" et " action complète".

Le théorème de Palais affirme que toute action faiblement complète est l'action infinithésimale d'une action différentiable d'un groupe de Lie.

3. L'énoncé du théorème

Théorème 1. ★

Soit $\tau: \mathcal{G} \to \chi(M)$ une action faiblement complète de \mathcal{G} sur M. Désignons par :

- G le groupe de Lie simplement connexe d'algèbre de Lie G.
- $T(\mathcal{G})$ le sous-groupe de Diff(M) engendré par les difféomorphismes (φ_t^X) pour $t \in \mathbb{R}$ et X champ complet dans $\tau(\mathcal{G})$.

Alors:

- (1) Il existe une action $\rho: G \to Diff(M)$ telle que $\rho' = \tau$ et $\rho(G) = T(\mathcal{G})$.
- (2) Le groupe $T(\mathcal{G})$ admet une structure de groupe de Lie connexe d'algèbre de Lie $\tau(\mathcal{G})$, opérant effectivement sur M.
 - Si l'action τ est effective, l'homomorphisme $G \to T(\mathcal{G})$ induit de ρ est un revêtement de groupes de Lie.

4. Démonstration du théorème

Nous pouvons supposer sans perte de généralité que τ est injective $\tau: \mathcal{G} \hookrightarrow \chi(M)$. La \mathcal{G} -action sera aussi supposée complète (c'est dans une deuxième étape que l'on montrera qu'une action faiblement complète est automatiquement complète). L'algèbre de Lie \mathcal{G} opère sur $G \times M$ via :

$$\widehat{ au}:\mathcal{G} o\chi(G imes M)$$

en posant $\widehat{\tau}(h) = (L^h, X^h)$, où L^h est le champ de vecteur invariant à gauche sur G obtenu par translation de $h \in \mathcal{G}$. Le flot du champ de vecteurs $\widehat{X}^h := \widehat{\tau}(h)$ est donné par :

$$\varphi_t^{\widehat{X}^h}(a,x) = (a.exp(th), \varphi_t^{X^h}(x))$$
.

Pour tout $(a, x) \in G \times M$, l'application linéaire

$$\widehat{\tau}_{(a,x)}: \mathcal{G} \to T_{(a,x)}(G \times M)$$

donnée par : $\widehat{\tau}_{(a,x)}(h) = (L_a^h, X_x^h)$ est injective !

Considérons alors l'homomorphisme de fibrés vectoriels (que nous notons encore $\hat{\tau}$ par abus de notation)

$$\mathcal{G} \times (G \times M) \xrightarrow{\widehat{\tau}} T(G \times M)$$

défini par : $\hat{\tau}$: $(h,(a,x)) \mapsto (L_a^h, X_x^h)$. C'est un homomorphisme de rang constant, nous obtenons ainsi un feuilletage régulier \mathcal{F} sur $G \times M$:

$$\mathcal{F}_{(a,x)} = \widehat{\tau}_{(a,x)}(\mathcal{G}) = \{ (L_a^h, X_x^h) / h \in \mathcal{G} \}$$

On l'appellera le feuilletage graphe associé à la \mathcal{G} -action.

Analysons ce feuilletage:

Le théorème de Frobenius \rightsquigarrow Par tout point (a, x) dans $G \times M$ passe une unique sous-variété intégrale maximale de la distribution \mathcal{F} , qu'on notera $F_{(a,x)}$, c'est la feuille passante par (a, x).

D'un autre côté, le groupe de Lie G opère sur $G \times M$ par l'action donnée par : g.(a,x)=(ga,x). Comme toute action, celle-ci induit une action de G sur le fibré tangent $T(G \times M)$:

$$G \to Aut(T(G \times M))$$
,

c'est une représentation de G dans le groupe des automorphismes du fibré, elle est donnée par :

$$g.(Z_b, X_x) = (((l_g)_*(Z_b), X_x).$$

Cette action préserve le feuilletage \mathcal{F} : Puisque pour tout $g \in G$

$$g.(\widehat{\tau}(h))_{(b,x)} = \widehat{\tau}(h)_{(gb,x)}$$

Et par suite

$$g.\mathcal{F}_{(b,x)} = \mathcal{F}_{(gb,x)}$$

La distribution \mathcal{F} est alors stable par l'action de G. Une conséquence immediate est la suivante :

$$g.F_{(a,x)} = F_{(ga,x)} .$$

Ainsi le groupe G opère sur l'espace des feuilles :

$$(\mathbf{G} \times \mathbf{M})/\mathcal{F}$$
.

- ▶ Toute feuille est de la forme $a.F_{(e,x)}$ avec $a \in G$ et $x \in M$. En particulier toute orbite de l'action de G sur $(G \times M)/\mathcal{F}$ contient une feuille de la forme $F_{(e,x)}$.
- ▶ Pour tous $a \in G$ et $x \in M$, l'application $F_{(e,x)} \to F_{(a,x)}$ donnée par $(b,y) \mapsto (ab,y)$ est un difféomorphisme (la raison est que les feuilles d'un feuilletage sont des sous-variétés "consevatives" ou "faiblement plongées").
- ▶ Pour tout $x \in M$, l'application

$$p_{G,x}:F_{(e,x)}\to G$$

donnée par $p_{G,x}(b,y)=b$ est un difféomorphisme local [Elle est d'abord différentiable puisque c'est la restriction de la première projection $G\times M\to G$ à la feuille $F_{(e,x)}$. Ensuite sa différentielle est donnée par $(dp_{G,x})_{(b,y)}(L_b^h,X_x^h)=L_b^h$ pour tout $h\in\mathcal{G}$.] Ainsi pour tout point $x\in M$ il existe U_x un voisinage ouvert de e dans G et une application $s_x:U_x\to F_{(e,x)}$ tels que $p_{G,x}\circ s_x=id_{U_x}$. [c-à-d $s_x:U_x\to G\times M$, $s_x(g)\in F_{(e,x)}$ et $s_x(g)=(g,-)$ pour tout $g\in U_x$.]

Lemme 1. (Le voisinage U_x peut être choisit le même pour tous les x.) : Il existe un voisinage ouvert U de e dans G tel que pour tout $x \in M$, il existe une application $s_x : U \to G \times M$ telle que $s_x(g) \in F_{(e,x)}$ et $s_x(g) = (g, \star)$ pour tout $g \in U$. Pour celà, nous aurons besoin du lemme 2. suivant (La complètude!).

Lemme 2. Pour toute famille de champs de vecteurs complets $X^{e_1}, ..., X^{e_k}$, et pour tout $x \in M$, l'expression

$$\gamma_x(t_1,...,t_k) = (exp(t_1e_1)...exp(t_ke_k) , \varphi_{t_k}^{X^{e_k}}...\varphi_{t_1}^{X^{e_1}}(x))$$

défine une application différentiable de \mathbb{R}^k vers la feuille $F_{(e,x)}$.

Démonstration du lemme 2. (par récurrence sur k)

Puisque les feuilles sont des sous-variétés conservatives, il suffit de montrer que $\gamma_x(t_1,...,t_k) \in F_{(e,x)}$ pour tout $(t_1,...,t_k) \in \mathbb{R}^k$.

• Pour k = 1: dans ce cas γ_x est la courbe

$$\gamma_x(t) = (\alpha(t), \varphi(t))$$

où $\alpha(t) = exp(th)$, $\varphi(t) = \varphi_t^{X^h}(x)$ avec $h \in \mathcal{G}$ et X^h champ complet. Pour tout $t \in \mathbb{R}$, on a :

$$\dot{\gamma}_x(t) = (\dot{\alpha}(t), \dot{\varphi}(t)) = (L_{\alpha(t)}^h, X_{\varphi(t)}^h) = \widehat{\tau}(h)_{(\alpha(t), \varphi(t))}$$

c-à-d

$$\dot{\gamma}_x(t) = \widehat{\tau}(h)_{\gamma_x(t)} = \widehat{X}^h_{\gamma_x(t)}$$

Ainsi, γ_x est une courbe inégrale du champ de vecteurs \widehat{X}^h (c'est en particulier une courbe intégrale de la distribution \mathcal{F}), et puisque $\gamma_x(0) = (e, x)$, on en déduit que cette courbe intégrale est contenue dans la feuille $F_{(e,x)}: \gamma_x(\mathbb{R}) \subset F_{(e,x)}$.

. Supposons maintenant que le lemme est vrai à l'ordre k-1. Posons

$$(exp(t_1e_1)...exp(t_{k-1}e_{k-1}), \varphi_{t_{k-1}}^{X^{e_{k-1}}}...\varphi_{t_1}^{X^{e_1}}(x)) = (a, y)$$

• A cause de l'hypothèse de récurrence, on a $(a, y) \in F_{(e,x)}$. Donc

$$a.F_{(e,y)} = F_{(e,x)}$$
.

Or : $\gamma_x(t_1, ..., t_k) = (a.exp(t_k e_k), \varphi_{t_k}^{X^{e_k}}(y)).$

D'autre part, en appliquant ce qu'on vient d'établir pour k = 1, on aura :

$$(exp(t_k e_k), \varphi_{t_k}^{X^{e_k}}(y)) \in F_{(e,y)}$$

D'où : $\gamma_x(t_1, ..., t_k) \in F_{(e,x)}$.

Démonstration du lemme 1. Soit $\{e_1, ..., e_r\}$ une base de \mathcal{G} telle que les champs de vecteurs $X^{e_1}, ..., X^{e_r}$ soient tous complets.

Considérons l'application

$$\beta: \mathbb{R}^r \to G$$

donnée par $\beta(t_1,...,t_r) = exp(t_1e_1)...exp(t_re_r)$; celle-ci étant un difféomorphisme local en 0, donc il existe V un voisinage de 0 dans \mathbb{R}^r et U un voisinage de e dans e0, tels que e1, e2, e3 voit un difféomorphisme. En appliquant maintenant le lemme 2., l'application

$$s_x := \gamma_x \circ (\beta_{|_V})^{-1} : U \to G \times M$$

répond à la question. ♦

Lemme 3. Pour tout $x \in M$, l'application

$$p_{G,x}:F_{(e,x)}\to G$$

est surjective.

Démonstration du lemme 3. Soit U comme dans le lemme 1. Donc :

$$U \subset p_{G,x}(F_{(e,x)})$$
.

Le groupe G étant connexe, donc le voisinage U de e engendre G:

$$\bigcup_{m} U^{m} = G .$$

Nous allons montrer par récurrence que pour tout $m \in \mathbb{N}$, on a

$$U^m \subset p_{G,x}(F_{(e,x)})$$
.

- Pour m = 1, c'est ce que nous venons de voir.
- Supposons que : $\forall z \in M, U^m \subset p_{G,z}(F_{(e,z)})$.
- Soit $x \in M$. Nous avons :

$$\forall a \in U^m , \exists y \in M , (a, y) \in F(e, x)$$

Or dire que $(a,y) \in F_{(e,x)}$ signifie que $a.F_{(e,y)} = F_{(e,x)}$. Nous en déduisons alors la commutativité du diagramme :

$$\begin{array}{ccc}
F_{(e,y)} & \xrightarrow{p_{G,y}} & G \\
a \downarrow & & \downarrow l_a \\
F_{(e,x)} & \xrightarrow{p_{G,x}} & G
\end{array}$$

Et puisque $U \subset p_{G,y}(F_{(e,y)})$, nous aurons $a.U = l_a(U) \subset p_{G,x}(F_{(e,x)})$; et ceux-ci pour tout $a \in U^m$. Ainsi : $U^{m+1} \subset p_{G,x}(F_{(e,x)})$.

Comme conséquence du lemme 3., on a :

$$\forall a \in G, \forall x \in M, \exists z \in M, (a^{-1}, z) \in F_{(e, x)}$$

D'où : $(e, z) \in a.F_{(e,x)}$, et parsuite : $F_{(e,z)} = a.F_{(e,x)} = F_{(a,x)}$. <u>Conclusion I.</u> : Toute feuille de \mathcal{F} est de la forme $F_{(e,z)}$.

Autrement dit, l'application

$$\mathbf{M} \longrightarrow (\mathbf{G} \times \mathbf{M})/\mathcal{F}$$

donnée par $x \mapsto F_{(e,x)}$, est surjective.

Lemme 4. Pour tout $x \in M$, l'application $p_{G,x}$ est un revêtement.

Démonstration du lemme 4. Considérons l'ouvert U du lemme 1. Posons : $V_x := s_x(U)$, c'est un ouvert de $F_{(e,x)}$ contenu dans

$$p_{G,x}^{-1}(U) = F_{(e,x)} \cap (U \times M)$$

et qui se projete difféomorphiquement sur U $(p_{G,x}:V_x\to U)$. Soit

$$(a,y) \in [p_{G,x}^{-1}(U) - V_x],$$

celà signifie que $a \in U$ mais $(a, y) \neq s_x(a)$.

 $F_{(e,x)}$ étant de Hausdorff, il existent alors θ_1 voisinage ouvert de (a,y) dans $F_{(e,x)}$ et $\theta_2 \subset V_x$ voisinage ouvert de $s_x(a)$ tels que $\theta_1 \cap \theta_2 = \emptyset$. L'ouvert $p_{G,x}(\theta_1) \cap p_{G,x}(\theta_2)$ est un voisinage de a; en prenant alors

$$\theta_1' := \theta_1 \cap p_{G,x}^{-1}(p_{G,x}(\theta_1) \cap p_{G,x}(\theta_2))$$

et

$$\theta_2' := \theta_2 \cap p_{G,x}^{-1}(p_{G,x}(\theta_1) \cap p_{G,x}(\theta_2))$$

En remplaçant θ_1 par θ'_1 (et θ_2 par θ'_2), nous obtenons encore deux ouverts de $p_{G,x}^{-1}(U)$ qui sont disjoints avec en plus

$$p_{G,x}(\theta_1') = p_{G,x}(\theta_2') .$$

Et puisque $p_{G,x_{|_{V_n}}}$ est injective, nous aurons :

$$\theta_1' \cap V_x = \emptyset .$$

[en effet : soit $p \in \theta'_1$, il existe alors $q \in \theta'_2$ tel que $p_{G,x}(p) = p_{G,x}(q)$; ainsi $p \notin V_x$]. En résumé, nous venons d'établir que pour tout $(a,y) \in [p_{G,x}^{-1}(U) - V_x]$, il existe θ'_1 voisinage ouvert de (a,y) dans $p_{G,x}^{-1}(U)$ tel que

$$\theta_1' \subset [p_{G,x}^{-1}(U) - V_x]$$
.

Ainsi V_x est un ouvert et fermé de $p_{G,x}^{-1}(U)$. Et puisque V_x est connexe (car homéomorphe à U), on en déduit que V_x est la composante connexe de $p_{G,x}^{-1}(U)$ contenant le point (e,x).

Affirmation: Toute composante connexe de $p_{G,x}^{-1}(U)$ contient un point de la forme (e,z).

En effet : Soit C une composante connexe de

$$X := p_{G,x}^{-1}(U) = (U \times M) \cap F_{(e,x)}$$
.

Soit $(a, y) \in C$. L'application

$$\beta: \mathbb{R}^r \to G$$

donnée par : $\beta(t_1,...,t_r) = e^{t_1e_1}...e^{t_re_r}$, étant un difféomorphisme local d'un voisinage V de 0 sur U, il existe alors $(s_1,...,s_r)$ tel que $e^{s_1e_1}...e^{s_re_r} = a$. Posons

$$z = \varphi_{-s_1}^{X^{e_1}} \circ \dots \circ \varphi_{-s_r}^{X^{e_r}}(y)$$

Considérons l'application :

$$\gamma: V \to (U \times M) \cap F_{(e,z)}$$

donnée par :

$$\gamma(t_1, ..., t_r) = (e^{t_1 e_1} ... e^{t_r e_r}, \varphi_{t_r}^{X^{e_r}} \circ ... \circ \varphi_{t_1}^{X^{e_1}}(z))$$

Et puisque $\gamma(t_1,...,t_r)=(a,y)$, on aura $(a,y)\in F_{(e,z)}$, donc $F_{(a,y)}=F_{(e,z)}$. D'autre part : $F_{(a,y)}=F_{(e,x)}$ (puiqu'on est parti d'un point $(a,y)\in C\subset F_{(e,x)}$). D'où $F_{(e,z)}=F_{(e,x)}$.

Ainsi $\gamma(V)$ est un connexe de $(U \times M) \cap F_{(e,x)} = X$, et puisque ce connexe contient (a,y), on aura $\gamma(V) \subset C$; En particulier $\gamma(0) \in C$, c-à-d $(e,z) \in C$.

En résumé, nous venons d'établir que pour toute composante connexe C de $p_{G,x}^{-1}(U)$, il existe $z \in M$ tel que $C = V_z$ et . Réciproquement, soit $z \in M$ tel que $F_{(e,z)} = F_{(e,x)}$; V_z est alors la composante connexe de $F_{(e,x)} \cap (U \times M)$ contenant (e,z). Ainsi :

$$p_{G,x}^{-1}(U) = \coprod_{z_x/F_{(e,z)}=F_{(e,x)}} V_{z_x}$$

[notons que si z, z' sont tels que $F_{(e,z)} = F_{(e,z')} = F_{(e,x)}$ avec $z \neq z'$, alors $V_z \neq V_{z'}$].

Plaçons nous maintenant au voisinage d'un autre point $a \in G$. L'ouvert a.U est alors un voisinage de a. Nous avons :

$$p_{G,x}^{-1}(a.U) = \coprod_{q/F_{(a,q)}=F_{(e,x)}} a.V_q$$

En effet, $(b,y) \in p_{G,x}^{-1}(a.U)$ ssi $(a^{-1}b \in U$ et $(b,y) \in F_{(e,x)})$. Soit encore

$$a^{-1}(b,y) \in a^{-1}.F_{(e,x)} \cap (U \times M)$$

Or $a^{-1}.F_{(e,x)}=F_{(e,z)}$, donc $a^{-1}(b,y)$ appartient à une composante connexe C de $F_{(e,z)}$, c-à-d une partie V_{qz} . Autrement dit on a

$$p_{G,x}^{-1}(a.U) = \coprod_{q/F_{(e,q_z)}=F_{(e,z)}} a.V_{q_z}$$

Le fait que $F_{(e,q_z)} = F_{(e,z)} = a^{-1}.F_{(e,x)}$ équivant à $F_{(a,q_z)} = F_{(e,x)}$, permet d'achever la démonstration.

Ceci achève la démonstration du lemme 4.

Des conséquences du lemme 4. :

▶ Le groupe G étant simplement connexe, donc : pour tout $x \in M$ l'application

$$p_{G,x}:F_{(e,x)}\to G$$

est un difféomorphisme.

 \blacktriangleright Pour tous $x, x' \in M$, on a l'implication

$$(F_{(e,x)} = F_{(e,x')}) \longrightarrow (x = x')$$

[La raison est que (e, x') et (e, x) seront deux points de $F_{(e,x)}$ qui ont le même image par l'application $p_{G,x}$.]

Conclusion II.: L'application

$$\Phi : \mathbf{M} \longrightarrow (\mathbf{G} \times \mathbf{M})/\mathcal{F}$$

donnée par $\Phi(x) = F_{(e,x)}$, est **bijective**.

Nous pouvons alors munir la variété M de l'action de G provenant de celle sur l'espace $(G \times M)/\mathcal{F}$ de façon que Φ soit équivariante. Plus précisement :

$$\rho(\mathbf{g},\mathbf{x}) = \mathbf{g}.\mathbf{x} \ := \ \Phi^{-1}(\mathbf{g}.\mathbf{F}_{(\mathbf{e},\mathbf{x})}) = \Phi^{-1}(\mathbf{F}_{(\mathbf{g},\mathbf{x})})$$

c-à-d q.x est défini par

$$\mathbf{F}_{(\mathbf{e},\mathbf{g},\mathbf{x})} = \mathbf{F}_{(\mathbf{g},\mathbf{x})}$$
.

▶L'action ρ satisfait les assertions :

- i) C'est une action différentiable.
- ii) C'est une primitive de τ .

Pour i) il suffit de le vérifier sur U. Nous aurons besoin de revenir sur les expressions des applications $s_x: U \to F_{(e,x)}$ (tq $:p_{G,x} \circ s_x = id_U$). Il s'agit d'expliciter le " \star " figurant dans le lemme 1.

Rappelons alors que l'application

$$\beta:\mathcal{G}\to G$$

donnée par $\beta(t_1e_1 + ... + t_re_r) = exp(t_1e_1)...exp(t_re_r)$, est un difféomorphisme local d'un voisinage V de 0 sur U.

On désignera par

$$\phi: \mathcal{G} \to T(\mathcal{G})$$

l'application définie par :

$$\phi(t_1e_1 + ... + t_re_r) := \varphi_{t_r}^{X^{e_r}} \circ ... \circ \varphi_{t_1}^{X^{e_1}}$$
.

Les lemmes 1. et 2. peuvent alors être reformulés comme suit :

Lemme 5. Pour tout $x \in M$, l'application $s_x : U \to F_{(e,x)}$ est donnée par :

$$s_x(g) = (g, [(\phi \circ \beta^{-1})(g)](x))$$

Utilisons ce lemme : Soit $g \in U$, prenons $y := [(\phi \circ \beta^{-1})(g)]^{-1}(x)$.

D'après ce lemme, on a : $s_y(g) = (g, [(\phi \circ \beta^{-1})(g)](y)).$

Donc $s_y(g)=(g,x)$. Ainsi : $(g,x)\in F_{(e,y)}$; c-à-d $F_{(g,x)}=F_{(e,y)}$. D'où : g.x=y.

En résumé, l'expression de l'action ρ sur $U \times M$ est donnée par :

$$\rho(g,x) = [(\phi \circ \beta^{-1})(g)]^{-1}(x) .$$

La composée de $\beta \times id_M: V \times M \to U \times M$ suivie de $\rho: U \times M \to M$, est donnée par :

$$(t_1e_1 + ... + t_re_r, x) \mapsto \varphi_{-t_1}^{X^{e_1}} \circ ... \circ \varphi_{-t_r}^{X^{e_r}}(x)$$
.

En particulier l'applicatin ρ est différentiable.

Nous en déduisons aussi que pour tout j=1,...,r le champ de vecteur fondamental associé au vecteur e_i et qui est défini par :

$$-\rho'(e_j)_x = -\frac{d}{dt}_{|t=0}\rho(expte_j, x)$$

celui-ci n'est alors autre que X^{e_j} . Par linéarité, nous en déduisons alors que ρ est bien une primitive de τ : pour tout $h \in \mathcal{G}$, on a $X^h = -\rho'(h)$. Nous venons donc d'établir ii); et qu'en particulier tous les champs de vecteurs $X^h \in \tau(\mathcal{G})$ sont complets [le flot de X^h est donné par : $\varphi_t^{X^h}(x) = \rho(exp(-th), x)$].

▶ Considérons maintenant l'homomorphisme de groupes

$$\widehat{\rho}: G \longrightarrow T(\mathcal{G}) \subset Diff(M)$$

induit de l'action ρ , c-à-d $\widehat{\rho}(g) = \rho(g, \cdot)$.

Les champs de vecteurs X^h sont complets, donc le sous-groupe $T(\mathcal{G}) \subset Diff(M)$ est celui engendré par tout les flots $\varphi_t^{X^h}$; et puisque $\widehat{\rho}(exp(-th)) = \varphi_t^{X^h}$, nous en déduisons que lhomomorphisme $\widehat{\rho}$ est surjectif.

Le noyau $\Gamma := \ker \widehat{\rho}$ (i.e. l'intersection des groupes d'isotropies) étant un souss-groupe fermé de G (donc de Lie) son algèbre de Lie s'identifie à l'ensemble des $h \in G$ tels que $\forall t \in \mathbb{R}$ et $\forall x \in M$ on a $\rho(\exp(-th), x) = x$, soit alors $\rho'(h) = 0$ c-à-d $\tau(h) = 0$ donc h = 0 (puisque l'action τ est effective). Ainsi : Γ est un sous-groupe discret distingué dans G. Nous avons une bijection :

$$\widetilde{
ho}: \mathbf{G}/\Gamma \stackrel{\cong}{ o} \mathbf{T}(\mathcal{G})$$

Il existe alors une structure de groupe de Lie sur $T(\mathcal{G})$ de façon que la bijection $\widetilde{\rho}$ devient un difféomorphisme. L'homomorphisme $\widehat{\rho}$ est alors un revêtement de groupes de Lie. Une fois le groupe $T(\mathcal{G})$ est muni de cette structure de groupe de Lie, l'action effective canonique $T(\mathcal{G}) \times M \to M$ est différentiable.

Ceci achève la démonstration du théorème.

5. La faible-complètude implique la complètude

Lemme 6. Soit $\tau : \mathcal{G} \hookrightarrow \chi(M)$ une action effective.

Supposons qu'il existe S un sous-ensemble de $\tau(\mathcal{G})$ tel que :

- $\forall Y \in S$, le champ Y est complet.
- S engendre algèbriquement $\tau(\mathcal{G}) : \mathcal{A}lg(S) = \tau(\mathcal{G})$.

Alors: il existe une base $\{X^{e_1},...,X^{e_r}\}$ de champs de vecteurs complets.

Démonstration.

Il s'agit de montrer que l'ensemble

$$C := \{ X \in \tau(\mathcal{G}) \mid X \text{ est complet} \}$$

engendre linéairement $\tau(\mathcal{G})$.

L'hypothèse est que $Alg(C) = \tau(\mathcal{G})$ puisque $S \subset C$ et que $Alg(S) = \tau(\mathcal{G})$.

L'ensemble C des champs complets satisfait les deux propriétés :

(i)

$$\forall t \in \mathbb{R}, \ \forall X \in C, \ tX \in C$$
.

(ii)

$$\forall X \in C, \ \forall Y \in C, \ e^{ad_X}(Y) \in C.$$

En effet : c'est le (ii) qui parait moins évident ; nous allons en donner la preuve. Soit $h, k \in \mathcal{G}$ et $X^h = \tau(h), X^k = \tau(k)$. Posons $a := exp(h) \in G$, et considérons la courbe $\beta : \mathbb{R} \to G$ donnée par :

$$\beta(t) = aexp(tk)a^{-1}$$

on a les égalités :

$$\beta(t) = exp(tAd_a(k)) = exp(tAd_{exph}(k)) = exp(te^{ad_h}(k)).$$

Pour $x \in M$ fixé, on note $\varphi : \mathbb{R} \to M$ la courbe

$$\varphi(t) := \varphi_{-1}^{X^h} \circ \varphi_t^{X^k} \circ \varphi_1^{X^h}(x).$$

La courbe $\gamma_x: \mathbb{R} \to G \times M$, donnée par :

$$\gamma_x(t) := (exp(h)exp(tk)exp(-h), \varphi_{-1}^{X^h} \circ \varphi_t^{X^k} \circ \varphi_1^{X^h}(x))$$

étant à valeurs dans la feuille $F_{(e,x)}$ (cf. lemme 2.) ; donc :

$$\dot{\gamma}_x(0) \in T_{(e,x)} = \widehat{\tau}_{(e,x)}(\mathcal{G})$$

Or : $\dot{\gamma}_x(0) = (\dot{\beta}(0), \dot{\varphi}(0))$ et $\dot{\beta}(0) = e^{ad_h}(k)$; nous en déduisons alors :

$$\dot{\varphi}(0) = [\tau(e^{ad_h}(k))]_x$$

Et puisque $\tau:\mathcal{G}\to \tau(\mathcal{G})$ est un isomorphisme d'algèbres de Lie, nous avons :

$$\tau(e^{ad_h}(k)) = e^{ad_{\tau(h)}}\tau(k) ;$$

et parsuite $\dot{\varphi}(0) = [e^{ad_{\tau(h)}}\tau(k)]_x$.

conclusion : le flot du champ de vecteurs $e^{ad_{\tau(h)}}\tau(k) \in \chi(M)$ est alors donnée par :

$$\varphi(t,x) = \varphi_{-1}^{X^h} \circ \varphi_t^{X^k} \circ \varphi_1^{X^h}(x)$$

il est alors complet. D'où (ii).

Dérnière étape : il s'agit maintenant de montrer que le fait que l'ensemble C satisfait aux deux propriétés (i) et (ii) ci-dessus , entraine que $vect(C) = \tau(\mathcal{G})$.

Posons alors : $\mathcal{V} := vect(C)$, et montrons que \mathcal{V} est une sous-algèbre de Lie de $\tau(\mathcal{G})$;

le résultat en découle alors puisque $\mathcal{A}lg(C) = \tau(\mathcal{G})$. Or pour $X, Y \in C$, on a

$$[X,Y] = (adX)Y = \lim_{t \to 0} \frac{e^{tad_X}Y - Y}{t}$$

Donc $[C, C] \subset \mathcal{V}$; et par linéarité nous avons aussi : $[\mathcal{V}, \mathcal{V}] \subset \mathcal{V}$.

6. Groupes de transformations de Lie

Soit M une variété différentiable, et soit $H \subset Diff(M)$ un sous-groupe. Le théorème ci-dessous attribué à S. Kobayashi permet de donner des conditions suffisantes pour qu'un tel sous-groupe soit de Lie. C'est une conséquence du théorème de Palais comme nous allons voir.

Théorème 2. Soit $H \subset Diff(M)$ un sous-groupe. Soit $S \subset \chi(M)$ le sous-ensemble :

$$\mathcal{S} := \{Xcomplet \mid \varphi_t^X \in H , \ \forall t \in \mathbb{R} \}$$

 $Si \ dim(\mathcal{A}lg(\mathcal{S})) < \infty.$

Alors: H est un groupe de Lie d'algèbre de Lie S. [En particulier on a: S = Alg(S)].

Démonstration. Par hypothèse l'action naturelle de l'algèbre de Lie $\mathcal{G} := \mathcal{A}lg(\mathcal{S})$ sur M est faiblement complète, elle est donc complète et le groupe

$$T(\mathcal{G}) := \langle \{ \varphi_t^X / X \in \mathcal{G} \} \rangle$$

est un groupe de Lie d'algèbre de Lie \mathcal{G} .

Affirmation : $T(\mathcal{G}) \subset H$.

En effet : pour tous $X \in \mathcal{G}$, $x \in M$ et $t \in \mathbb{R}$ on a

$$exp(tX).x = \varphi_t^X(x)$$

où exp désigne l'application exponentielle du groupe de Lie $T(\mathcal{G})$. Nous avons en particulier, $exp(Y) \in H$ pour tout $Y \in \mathcal{S}$. Et puisque $exp(\mathcal{S})$ engendre le groupe $T(\mathcal{G})$ (cf. le lemme ci-dessous) nous en tirons alors que $T(\mathcal{G}) \subset H$.

Lemme 7. Soit G un groupe de Lie connexe d'algèbre de Lie G. Soit S un sousensemble de G tel que :

- Alg(S) = G.
- $t.S \subset S$ pour tout $t \in \mathbb{R}$.

Alors: exp(S) engendre G.

 $D\acute{e}monstration$. Soit K le sous-groupe de G engendré par $exp(\mathcal{S})$. Considérons :

$$U := \{ X \in \mathcal{G} / exp(tX) \in K, \ \forall t \in \mathbb{R} \}$$

Nous avons les inclusions $\mathcal{S} \subset U \subset V := vect(U) \subset \mathcal{G}$.

Affirmation : $\forall a \in K, \forall X \in U$, $ad_a(X) \in U$. La raison est que nous avons :

$$exp(tad_a(X)) = exp(ad_a(tX)) = aexp(tX)a^{-1}$$
.

Donc (par linéarité) $ad_a(V) \subset V$ pour tout $a \in K$; et parsuite $ad_{exp(tX)}(Y) \in V$ pour tous $X \in U$ et $Y \in V$. Il en découle que $[U,V] \subset V$, et par linéarité : $[V,V] \subset V$. Ainsi V est une sous-algèbre de Lie de \mathcal{G} , et contenant \mathcal{S} , donc : $V = \mathcal{A}lg(\mathcal{S}) = \mathcal{G}$. Nous venons donc d'établir que $\mathcal{G} = vect(U)$, il existe alors une base $\beta := \{X_1, ..., X_r\}$ de \mathcal{G} telle que $X_1, ..., X_r \in U$, c-à-d $exp(tX_j) \in K$ pour tout $t \in \mathbb{R}$. L'image de l'application $(t_1, ..., t_r) \mapsto e^{t_1X_1}...e^{t_rX_r}$ est alors contnue dans K; et puisque cette application est un difféomorphisme local d'un voisinage de zéro dans \mathbb{R}^r sur un voisinage θ de e dans G, nous aurons $\theta \subset K$; ainsi K = G puisque θ engendre G.

♦

En résumé : $T(\mathcal{G}) \subset H$. Autrement dit, pour tout $X \in \mathcal{G}$ et $\forall t \in \mathbb{R}$, on a $\varphi_t^X \in H$. Il en découle : $\mathcal{G} = \mathcal{S}$.

D'autre part, pour tous $X \in \mathcal{G}$ et $g \in H$, on peut considérer le champ de vecteurs \widehat{X} donné par son flot (global) :

$$\varphi_t^{\widehat{X}} := g^{-1} \circ \varphi_t^X \circ g$$

Le que ces difféomorphismes sont dans H, nous permet d'en déduire que $\widehat{X} \in \mathcal{S} \subset \mathcal{G}$, et parsuite

$$\varphi_t^{\widehat{X}} \in T(\mathcal{G})$$

Et puisque les φ_t^X engendre $T(\mathcal{G})$, nous aurons :

$$\forall g \in H , g^{-1} \circ T(\mathcal{G}) \circ g \subset T(\mathcal{G})$$

c-à-d $T(\mathcal{G})$ est un sous-groupe invariant dans H.

Nous sommes ainsi devant la situation suivante : • $K := T(\mathcal{G})$ est un groupe de Lie connexe, • K est un sous-groupe distingué dans H, et • pour tout $g \in H$ l'automorphisme $\lambda_g : x \mapsto g^{-1}.x.g$ de K est différentiable (la raison est qu'il envoie un groupe à un sous-paramètre " $exp(t\widehat{X})$ "). Ses conditions nous permettent de munir H d'une structure de groupe de Lie de façon que K soit la composante connexe de l'élément unité de H (à faire à titre d'exercice). Ceci achève la démonstration du théorème.

7. Les groupes de transformations classiques ($Iso_g(M), Aff_{\nabla}(M) \dots$).

Le but de ce paragraphe est d'appliquer le théorème 2. pour montrer que certains groupes de transformations sont des groupes de Lie.

*

Définition 1. Soit (M, ∇) une variété munie d'une connection.

• une transformation $\varphi \in Diff(M)$ sera dite affine si elle preserve la connection ∇ (c-à-d $\varphi(\nabla_Y Z) = \nabla_{\varphi Y} \varphi Z$). l'ensemble des transfomations affines est un groupe qu'on notera $Diff_{\nabla}(M)$ ou $Aff(M, \nabla)$.

• un champ de vecteurs $X \in \chi(M)$ sera dit affine si son flot φ_t^X est constitué de transformations affines; ce qui équivaut à :

$$[X, \nabla_Y Z] = \nabla_Y [X, Z] + \nabla_{[X,Y]} Z \quad \forall X, Y, Z \in \chi(M)$$

soit encore

$$L_X \circ \nabla_Y - \nabla_Y \circ L_X = \nabla_{[X,Y]} \ \forall X, Y \in \chi(M)$$

ou aussi

$$\nabla_{ad(X)Y} = [adX, \nabla_Y] \ \forall X, Y \in \chi(M) \ .$$

L'ensemble des champs de vecteurs affines sera noté $\mathcal{G}_{\nabla}(M)$.

Il est alors facile de vérifier (à cause de l'identité de Jacobi) que $\mathcal{G}_{\nabla}(M)$ est une sous-algèbre de Lie de $\chi(M)$.

Théorème 3. Soit M une variété connexe munie d'une connection ∇ . Alors : $dim(\mathcal{G}_{\nabla}(M)) \leq n^2 + n$.

On montre aussi (voir [KN]) que si $dim(\mathcal{G}_{\nabla}(M)) = n^2 + n$, alors la connection ∇ est plate (c-à-d sans courbure ni tortion).

La démonstration de (1) dans ce théorème sera discuté dans la section suivante. Comme conséquence de ce théorème et en appliquant II, nous obtenons :

Thoéorème IV.

Le groupe $Diff_{\nabla}(M)$ est un groupe de Lie de dimension inférieure ou égale à $n^2 + n$. Si la connection est géodésiquemnt complète, l'algèbre de Lie du groupe affine $Diff_{\nabla}(M)$ s'identifie à $\mathcal{G}_{\nabla}(M)$.

Définition 2. Soit (M,<,>) une variété munie d'une métrique Riemannienne.

• une transformation $\varphi \in Diff(M)$ sera dite une isométrie si elle preserve la métrique (c-à-d < $\varphi_*X_x, \varphi_*Y_x > = < X_x, Y_x > , \forall x \in M, \forall X_x, Y_x \in T_xM$).

L'ensemble des isométries est un groupe : $Diff_{<,>}(M)$ ou Iso(M,<,>).

• Un champ de vecteurs $X \in \chi(M)$ sera dit de Killing si son flot φ_t^X est constitué d'isométries locales; ce qui équivaut à :

$$X. < Y, Z > = < [X, Y], Z > + < Y, [X, Z] > .$$

L'ensemble des champs de Killing $\mathcal{G}_{<,>}(M)$ encore

L'ensemble des champs de Killing noté $\mathcal{G}_{<,>}(M)$ (ou encore $Kill_{<,>}(M)$) est une sous-algèbre de Lie de $\chi(M)$.

Théorème 4. Soit M une variété connexe munie d'une métrique Riemannienne <,>.

Alors:

$$dim(\mathcal{G}_{<,>}(M)) \le \frac{1}{2}n(n+1).$$

On montre (voir [KN]) que si $dim(\mathcal{G}_{<,>}(M)) = \frac{1}{2}n(n+1)$, alors M est localement isométrique à l'un des espaces : \mathbb{R}^n , S^n , \mathbb{RP}^n , ou \mathbb{H}^n .

Remarque 1. Si ∇^g désigne la connection de Levi-Civita associée à une métrique g, alors toute transformation φ preservant la métrique g preserve automatiquement la connection ∇^g (à vérifier à titre d'exercice), et nous avons l'inclusion

$$\mathcal{G}_q(M) \subset \mathcal{G}_{\nabla^g}(M)$$
.

Si (M,g) est une variété Riemannienne **compacte**, alors on a légalité : $\mathcal{G}_g(M) = \mathcal{G}_{\nabla^g}(M)$ c-à-d tout champ de vecteurs affine est de Killing, c'est un résultat de K. Yano [Ya1] (voir [Ze]).

Corollaire 1. 1) Le groupe Iso(M, <, >) est un groupe de Lie de dimension inférieure ou égale à $\frac{1}{2}n(n+1)$.

2) Si la métrique est complète, alors l'algèbre de Lie de Iso(M,<,>) s'identifie à $\mathcal{G}_{<,>}(M)$.

8. Des notes sur la variété des repères.

Soit M une variété différentiable. Le fibré des repères $P := L(M) \xrightarrow{\pi} M$ est un fibré principal de groupe structural $G := GL(n, \mathbb{R})$, ou n = dim(M).

8.1. La 1-forme canonique $\theta \in \Omega^1(L(M); \mathbb{R}^n)$. Il existe sur P une 1-forme canonique $\theta \in \Omega^1(P; \mathbb{R}^n)$ à valeurs dans l'espace vectoriel \mathbb{R}^n :

$$\theta(Y_z) := z^{-1}(\pi_*(Y_z))$$

où $Y_z \in T_z(P)$ et $\mathbb{R}^n \xrightarrow{z} T_x M$.

C'est une 1-forme semi-basique $(\theta(Y) = 0$ pour Y champ vecrtical) et G-équivariante $(\theta(Z.g) = g^{-1}.\theta(Z)$ pour tout $g \in G$ et $Z \in T_z(P)$).

Nous avons une suite exacte courte de G-fibrés :

$$0 \to V \to TP \xrightarrow{\pi} P \times \mathbb{R}^n \to 0$$

où $V:=ker(d\pi)\to P$ est le fibré vertical, et $P\times\mathbb{R}^n\to P$ le fibré trivial (celui-ci s'dentifie au fibré "Pull-back" du fibré tangent $TM\to M$ par l'application $P\overset{\pi}{\to}M$, la raison est l'existence de l'homomorphisme canonique $P\times\mathbb{R}^n\to TM$ donné par $(z,v)\mapsto z(v)$).

• Tout difféomorphisme $f \in Diff(M)$ permet d'induire de manière naturelle un automorphisme \widetilde{f} du fibré $L(M) \to M$, celui-ci preserve la forme θ (c-à-d $\widetilde{f} \in Diff(P)$, $\pi \circ \widetilde{f} = f \circ \pi$ et $\widetilde{f}^{\star}(\theta) = \theta$). Il est facile d'établir (exercice) que :

$$Diff(M) \cong Aut_{\theta}(L(M))$$
.

• Tout champ de vecteurs $X \in \chi(M)$ se relève de manière naturelle (i.e. sans connection!) en un champ de vecteurs $\widetilde{X} \in \chi(L(M))$ (de façon que $\pi_*(\widetilde{X}_z) = X_{\pi(z)}$ pour tout $z \in P$). Le champ \widetilde{X} est G-invariant et preserve la forme θ (c-à-d $L_X\theta = 0$). L'espace des champs de vecteurs $\widetilde{X} \in \chi(L(M))$ qui sont G-invariants et preservant la forme θ , est une algèbre de Lie qu'on note $\chi_{\theta}^G(L(M))$. A titre d'exercice :

$$\chi(M) \cong \chi_{\theta}^{G}(L(M))$$
.

8.2. Finitude de la dimension de $\mathcal{G}_{\nabla}(M)$. Soit ∇ une connection sur M. Celleci peut s'interprétée comme un scindement G-équivariant de la suite exacte courte ci-dessus (la raison est que la 1-forme de connection $\omega^{\nabla} \in \Omega^1(P; \mathcal{G}l(n,\mathbb{R}))$ associée à ∇ peut être vue comme un projecteur G-équivariant du fibré tangent TP sur le fibré vertical V). D'où l'existence d'un homomorphisme de fibrés :

$$TP \stackrel{B}{\longleftrightarrow} P \times \mathbb{R}^n$$

de façon que : $\theta \circ B = Id$ entité et $B(z.g,g^{-1}v) = B(z,v).g.$

A tout vecteur $v \in \mathbb{R}^n$ on associe le champ de vecteurs horizontal $B^v \in \chi(P)$ donné par : $B_z^v = B(z, v)$, de façon que

$$\pi_*(B_z^v) := z(v) \ \forall z \in P .$$

Les champs de vecteurs $(B_{v\in\mathbb{R}^n}^v$ seront appelés les champs de vecteurs horizontaux standards.

Lemme 8. Soit (M, ∇) une variété connexe munie d'une connection, et soit $X \in \chi(M)$.

- (i) Les deux assertions suivantes sont équivalentes :
- $X \in \mathcal{G}_{\nabla}(M)$.
- $[\widetilde{X}, B^v] = 0$, pour tout $v \in \mathbb{R}^n$.
- (ii) Soit $z \in P$ un point arbitraire. L'application évaluation :

$$\mathbf{X} \in \mathcal{G}_{
abla}(\mathbf{M}) \longrightarrow \widetilde{\mathbf{X}}_{\mathbf{z}} \in \mathbf{T}_{\mathbf{z}}\mathbf{P}$$

est injective.

Démonstration. (i) Il est d'abord facile de voir que $X \in \mathcal{G}_{\nabla}(M)$ si et seulement si $L_{\widetilde{X}}\omega^{\nabla}$, où ω^{∇} désigne la 1-forme de connection associée. Donc, pour tout $X \in \mathcal{G}_{\nabla}(M)$ on a :

$$0 = (L_{\widetilde{X}}\omega^{\nabla})(B^v) = \widetilde{X}(\omega^{\nabla}(B^v)) - \omega^{\nabla}([\widetilde{X},B^v]) = -\omega^{\nabla}([\widetilde{X},B^v])$$

D'un autre côté, puisque le champ \widetilde{X} preserve θ , un calcul anologue à ce qu'on vient de faire et en utilisant le fait que $0 = \widetilde{X}(\theta(B^v))$, nous permet d'en déduire aussi que : $\theta([\widetilde{X}, B^v]) = 0$. Réciproquement, si $[\widetilde{X}, B^v] = 0$, alors le flot $\varphi_t^{\widetilde{X}}$ preserve la

distribution horizontale $H := ker(\omega^{\nabla})$, nous en déduisons alors que $\varphi_t^{\widetilde{X}}$ preserve la connection, d'où $X \in \mathcal{G}_{\nabla}(M)$.

(ii) Si $\widetilde{X}_z = 0$, alors $\widetilde{X}_{zg} = 0$ pour tout $g \in G$ à cause de la G-invariance de \widetilde{X} . Considérons ensuite l'ensemble F des points $x \in M$ tels que $X_x = 0$; c'est un fermé non vide de M. Puisque M est connexe, il suffit d'établir que dès que X_x alors X s'annule localement autour de x. Or \widetilde{X} commute avec les champs B^v , donc les flots $\varphi_t^{B^v}$ laisseront invariant le champ \widetilde{X} ; ainsi pour tout $v \in \mathbb{R}^n$ on a : $\widetilde{X}_{\varphi_t^{B^v}(z)} = 0$, (z étant un point de la fibre $\pi^{-1}(x)$).

Il est par ailleurs facile de voir que les points de la forme $\pi(\varphi_{t_1}^{B^{e_1}} \circ ... \circ \varphi_{t_n}^{B^{e_n}}(z))$ recouvrent un voisinage de x (où $(t_1, ..., t_n)$ varient dans petit voisinage de 0 de \mathbb{R}^n). Ceci permet d'achever la preuve de (ii).

8.3. Connections complétes. Le but de cette section est de montrer que si ∇ est une connection complète sur M, alors tout champ de vecteurs affine est complet. Soit M une variété munie d'une connection ∇ .

• La connection sera dite *complète* si pour tout $v \in \mathbb{R}^n$ le champ de vecteurs horizontal B^v est complet (de façon que l'expression $\varphi_t^{B^v}(z)$ a bien un sens $\forall t \in \mathbb{R} \ \forall v \in \mathbb{R}^n$ et $\forall z \in L(M)$). Désormais ∇ sera supposée complète.

• Soit $x \in M$ et $X_x \in T_xM$. Pour tout $z \in \pi^{-1}(x)$ on peut associer le vecteur $v := z^{-1}(X_x) \in \mathbb{R}^n$; nous pouvons alors considérer la courbe :

$$\gamma_x : \mathbb{R} \mapsto \pi \in M$$
,

donnée par $\gamma_x(t) = \pi(\varphi_t^{B^v}(z))$; il est facile de vérifier que cette courbe est bien définie (c-à-d ne dépend pas du choix de z) et qu'elle est différentiable.

• La courbe γ_x sera appelée la géodésique associée aux conditions initiales (x, X_x) ; le vecteur vitesse en 0 est en effet égale à : $\dot{\gamma}_x$ (0) = X_x .

• Pour tout $x \in M$, on définit l'application exponentielle :

$$exp_r: T_rM \to M$$
,

en posant:

$$exp_x(X_x) := \gamma_x(1) = \pi(\varphi_1^{B^{z^{-1}X_x}}(z))$$
.

Il est facile de vérifier que la dfférentielle en 0_x de \exp_x n'est autre que l'identité $((dexp_x)_{0_x}(X_x) = X_x)$; il en découle par application du théorème d'inversion locale, que l'application \exp_x est un difféomorphisme local d'un voisinage de 0_x dans T_xM sur un voisinage U_x de x dans M. Un tel ouvert U_x sera appelé un voisinage normal de x, le couple (U_x, \exp_x^{-1}) est une carte loale en x dont les coordonnées associées sont dites les coordonnées normales en x). Nous aurons besoin de ces coordonnées dans la démonstration du théorème ci-dessous. Auparavant, nous aurons besoin d'un lemme

fort utile:

Lemme 9. Soit $X \in \chi(M)$, et soit $(\varphi_t^X)_t$ son flot. S'il existe $\epsilon > 0$ telle que $\varphi_t^X(x)$ soit défini pour tout $x \in M$ et pour tout $t \in]-\epsilon, \epsilon[$, alors le champ X est complet (c-à-d $\varphi_t^X(x)$ est définie pour tout $x \in M$ et tout $t \in \mathbb{R}$).

Démonstration du lemme.

Pour tout $t \in \mathbb{R}$, il existe un unique entier $m \in \mathbb{Z}$ tel que : $t = m\frac{\epsilon}{2} + s$ avec $s \in [0, \frac{\epsilon}{2}[$. On pose:

$$c_x(t) := \begin{cases} \overbrace{\varphi_{\frac{\epsilon}{2}} \circ \dots \circ \varphi_{\frac{\epsilon}{2}}}^{m} \circ \varphi_s(x) & m > 0 \\ \overbrace{\varphi_{-\frac{\epsilon}{2}} \circ \dots \circ \varphi_{-\frac{\epsilon}{2}}}^{-m} \circ \varphi_s(x) & m < 0 \\ \varphi_s(x) & m = 0 \end{cases}$$

On vérifie ensuite sans problème que pour tout $x \in M$, la courbe $c_x : t \mapsto c_x(t)$ est différentiable sur \mathbb{R} et que c'est une trajectoire du champ de vecteurs X.

Ceci achève la preuve du lemme.□

Exercice. Si $X \in \chi(M)$ est à support compact, alors X est complet.

Théorème 5. Soit ∇ une connection complète. Alors, tout champ de vecteurs affine est complet.

 $D\acute{e}monstration$. On peut supposer que M est connexe (il suffit en effet le cas écheant de raisonner sur les composantes connexes de M).

Soit $X \in \mathcal{G}_{\nabla}(M)$. Soit $x_0 \in M$ un point arbitraire, et soit $\varphi_t^{\widetilde{X}}: U \to P$, $t \in]-\epsilon, \epsilon[$ le groupe à un paramètre local associé au champ \widetilde{X} (le relèvement naturel de X à la variété des repères P := L(M)). Nous allons montrer (à cause du lemme ci-dessus) que pour tout $x \in M$, la courbe $t \mapsto \varphi_t^{\widetilde{X}}(z)$ est bien définie sur $]-\epsilon, \epsilon[$; ce qui équivaut à l'existence d'une trajectoire définie sur \mathbb{R} et passant à t=0 par le point x.

les deux points $x = \pi(z)$ et $x_0 = \pi(z_0)$ peuvent être reliés par une succession de gédésiques (c'est la connexité de M et l'existence de coordonnées normales qui permettent cette affirmation). Celà signifie l'existence de $t_1, ..., t_k \in \mathbb{R}$ et $v_1, ..., v_k \in \mathbb{R}^n$ tels que :

$$x = \pi(\varphi_{t_1}^{B^{v_1}} \circ \dots \circ \varphi_{t_k}^{B^{v_k}}(z_0))$$
.

Nous considérons alors la courbe β :] $-\epsilon, \epsilon[\to M, \text{ donnée par } : \beta(t) = \pi(\varphi_{t_1}^{B^{v_1}} \circ M)$ $\dots \circ \varphi_{t_k}^{B^{v_k}}(\varphi_t^{\widetilde{X}}z_0)$). La courbe β anisi obtenue est une courbe intégrale du champ de vecteurs X (la raison est que les flots $\varphi_t^{B^v}$ laissent invariant le champ \widetilde{X} , il en découle en effet que : $\dot{\beta}(t) = \pi_*(\widetilde{X}_{\varphi_{t_1}^{B^{v_1}} \circ \dots \circ \varphi_{t_k}^{B^{v_k}} (\varphi_{t_1}^{\widetilde{X}} z_0)}) = X_{\beta(t)})$. Ceci achève la démonstration du théorème.

9. Commentaires.

• Les groupes de Lie G opérant effectivement et différentiablement sur une variété différentiable M souvent appelés des groupes de transformations de Lie. Durant cet exposé, et en appliquant le théorème d'intégrabilité de Lie-Palais, nous avons montré le théorème de S. Kobayashi; ce dernier nous a servi de critère pour munir un sous-groupe $G \subset Diff(M)$ d'une structure de transformations de Lie.

Il est important de signaler à ce sujet qu'une autre procédure serait d'utiliser le résultat intéressant de Montgomery-Zippin-Bochner [MZ](p.208 et p.212) :

Théorème: "Soit G un groupe topologique localement compact, opérant effectivement sur une variété différentiable M, par desdifféomorphismes de classe C^1 . Alors G est un groupe de Lie opérant différentiablement sur M."

C'est cette approche qui est utilisée dans [KN] pour montrer que les groupes Iso(M,g) et $Aff_{\nabla}(M)$ sont des groupes de Lie (en montrant que le groupe Iso(M,g) muni de la topologie compacte-ouverte est localement compact et que c'est un férmé de Homeo(M)).

Dans [Fu] l'auteur utilise les deux théorèmes en question pour étudier le groupe G(P):=groupe des difféomorphismes commutant avec P, où $P: C^{\infty}(M) \to C^{\infty}(M)$ désigne un opérateur différentiel elliptique sur M compacte; le résultat principal de ce papier est que : "Le groupe G(P) muni de la topologie compacte-ouverte est un groupe de Lie compact."

Si M est une variété compacte et que g est une métrique Riemannienne sur M, alors Iso(M,g) est un groupe compact. Cette compacité n'est pas du tout liée à la compacité de M! mais plutôt c'est une conséquence directe du théorème d'Ascoli ([ZQ]) et du fait que c'est un fermé dans Homeo(M) muni de la distance $d(f,h) := sup_{x \in M} d_M(f(x), h(x))$ (où : d_M désigne la distance induite de la métrique g, en prenant la longueur minimale de courbes joinant deux points sur M. L'équicontinuité de la famille $(\varphi)_{\varphi \in Iso(M,g)}$, est une conséquence directe de la définition puisque tout $\varphi \in Iso(M,g)$ preserve automatiquement la distance d_M).

Le groupe affine (ainsi d'ailleurs que le groupe Iso(M, g) avec g pseudo-Riemannienne) d'une variété compacte, n'a aucune raison d'être compact (voir à ce sujet [Ze1][Ze2][Ze3]).

• Pour toute métrique Riemannienne g sur M, l'action du groupe de Lie G := Iso(M,g) sur M est une action propre (c'est à dire que l'application $(a,x) \in G \times M \mapsto (a.x,x)M \times M$ est une application propre i.e. l'image d'un compact est un compact), en particulier les groupes d'isotropies G_x sont compacts. Les variétés Riemanniennes M pour lesquelles l'action de Iso(M,g) sur M est transitive sont donc nécessairement des espaces homogènes G/K (avec $K \subset G$ un sous-groupe compact de G).

Signalons tout de même (à titre d'information) que pour toute variété connexe, le groupe Diff(M) opère transitivement sur M (celà signifie que pour tout $(x,y) \in M \times M$, il existe $\psi \in Diff(M)$ tel que $y = \psi(x)$).

• Durant cet exposé, nous n'avons pas abordé l'aspect qualitative pour les \mathcal{G} -actions. Il faut noter que supporter une action (de groupe ou d'algèbre de Lie) avec des restrictions sur la nature de cette action, pourrait avoir des obstructions (topologiques ou autres). On sait par exemple que la sphère S^2 ne supporte pas d'action régulière de \mathbb{R} (à cause de la classe d'Euler); et qu'il est impossible de définir une action localement libre du groupe Abelien \mathbb{R}^2 sur la sphère S^3 (c'est le théorème de Lima [L][CN]).

Références

[CN] Csar Camacho and Alcides Lins Neto, Geometric Theory of Foliations, Translated by Sue E. Goodman, Birkhaüser Boston. Basel. Stuttgart 1984.

[DK] J.J. Duistermaat and J. A. Kolk, Lie Groups, G.T.M.Springer.

[Fu] K. Furutani, On the group of diffeomorphisms commuting with an elliptic operator, J. Math. Soc.Japan Vol. 35,No. 1,1983.

[KN] S. Kobayashi and K. Nomizu, Foundations Of Differential Geometry Vol I. Wiley-Interscience Publication. 1963.

[Ko] S. Kobayashi, *Transformation Groups in Differential Geometry*, Classics in Mathematics. Springer-Verlag Heidelberg 1972.

[L] E. L. Lima, Commuting vector fields on S^3 , Ann. of Math., vol. 81, p. 70-81, 1965.

[Na] R. Narasimhan, Several Complex Variables, Chicago Lectures in Mathematics. The University of Chicago Press 1971.

[Pa] R.S. Palais, A Global Formulation Of The Lie Theory of Transformation Groups. Mem. Amer. Math. Soc., 22, 1957.

[Po] M.M. Postnikov, Geometry VI. Riemannian Geometry. Encyclopaedia of Mathematical Sciences. Vol. 91. Springer.

[Va] V.S. Varadarajan, Lie groups, Lie algebras, and Their Representations. GTM. 102. Springer.

[Ya1] K. Yano, On harmonic and Killing vector fields., Ann. Math. 55 (1952),38-45.

[Ya2] K. Yano, The theory of Lie Derivatives and Its Applications, North Holland Publishing Co., Amsterdam, 1957.

[Ze1] A. Zeghib, Le groupe affine d'une variété Riemannienne compacte, Communications in Analysis and Geometry Vol 1, Number 5, 199-211,1997.

[Ze2] A. Zeghib, On affine actions of Lie groups, Math. Z. 227, 245-262 (1998).

[Ze3] A. Zeghib, The identity component of the isometry group of a compact Lorentz manifold, Duke Math. Journal Vol. 92, No. 2. 1998.

[ZQ] CI. Zuily and H. Quefflec, Élments d'analyse pour l'agrgation, ed. Masson, Paris 1995.

FACULTÉ DES SCIENCES ET TECHNIQUES, B.P. 549 GUÉLIZ-MARRKECH-MAROC $E\text{-}mail\ address$: abouqateb@fstg-marrakech.ac.ma