Ministério da Educação

Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE Departamento de Ciências Exatas - DCEX

Disciplina: Matrizes e Sistemas Lineares. Semestre: 2021/1 Prof. Me. Luiz C. M. de Aquino

Lista IV

- 1. Dizemos que uma matriz A é ortogonal quando sua transposta coincide com sua inversa (ou seja, quando $A^t = A^{-1}$). Considerando a matriz $R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, responda aos quesitos abaixo.
 - (a) Determine $R_{\frac{\pi}{2}}$.
 - (b) Determine $R_{\left(-\frac{\pi}{2}\right)}$.
 - (c) Mostre que R_{θ} é ortogonal.
 - (d) Mostre que $R_{\alpha}R_{\beta} = R_{\alpha+\beta}$.
- 2. Determine o valor de p para que o sistema abaixo seja SPD.

$$\begin{cases} 3x_1 - x_2 = 2\\ 2x_1 + px_2 = -1 \end{cases}$$

- 3. Prove que se $A=B^{-1}CB$, então $A^n=B^{-1}C^nB$ para todo $n\in\mathbb{N}$. (Observação: por convenção considere que $M^0 = I$, para toda matriz quadrada M.)
- 4. Vamos usar operações com matrizes para criptografar uma mensagem. Primeiro, converta cada letra da mensagem em um número, como indica a tabela abaixo. Cada grupo de três letras, formará uma linha da matriz de mensagem M, de ordem 3×3 . Agora, escolha uma matriz invertível S, de ordem 3×3 , para ser a chave da criptografia. Para determinar a mensagem criptografada C, calculamos C = SM. Já para recuperar a mensagem original, calculamos M = $S^{-1}C$.

A	В	С	D	Ε	F	G	Н	I	J	K	L	Μ
1	2	3	4	5	6	7	8	9	10	11	12	13
N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
14	15	16	17	18	19	20	21	22	23	24	25	26

Considerando que a chave de criptografia é a matriz $S = \begin{bmatrix} 1 & -2 & 2 \\ 2 & -3 & 6 \\ 1 & 1 & 7 \end{bmatrix}$ e a mensagem criptografada

é
$$C = \begin{bmatrix} -13 & -4 & 15 \\ -4 & 3 & 80 \\ 48 & 28 & 147 \end{bmatrix}$$
, qual é a mensagem original?

Gabarito

[1] (a)
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
. (b) $\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$. (c) Sugestão: mostre que $R_{\theta}R_{\theta}^{t} = I$. (d) Sugestão: use as

identidades para o seno e o cosseno da soma de arcos. [2] $p \neq -\frac{2}{3}$. [3] Sugestão: aplique o Princípio de

Indução Finita. [4]
$$M = \begin{bmatrix} A & L & G \\ L & I & N \\ E & A & R \end{bmatrix}$$
 .