# UCAR Software Engineering Assembly Improving Scientific Software Conference Boulder, April 2025

Continuous Integration with research notebooks: on maintaining reproducibility in atmospheric modeling Agnieszka Żaba<sup>1</sup>. Sylwester Arabas and open-atmos contributors







<sup>&</sup>lt;sup>1</sup>azaba@agh.edu.pl, AGH University of Krakow, Poland

#### Plan of this talk

Why . . . ... reproducibility? ... notebooks? open-atmos projects Developers' perspective **Users'** perspective **Summary** 

- **Q** Why ...
  - ... reproducibility?
  - ... notebooks?
- P open-atmos projects
- Developers' perspective
- Users' perspective
- **E** Summary



## Geoscientific Model Development (GMD) Guidelines<sup>a</sup>

<sup>a</sup>DOI:10.5194/gmd-12-2215-2019

"necessary to have access to all of the input data (...)"



## Geoscientific Model Development (GMD) Guidelines<sup>a</sup>

<sup>a</sup>DOI:10.5194/gmd-12-2215-2019

- "necessary to have access to all of the input data (...)"
- "(...) all model configuration files are provided"



#### Geoscientific Model Development (GMD) Guidelines<sup>a</sup>

<sup>a</sup>DOI:10.5194/gmd-12-2215-2019

- "necessary to have access to all of the input data (...)"
- "(...) all model configuration files are provided"
- "(...) no manual processing of the data"



#### Geoscientific Model Development (GMD) Guidelines<sup>a</sup>

<sup>a</sup>DOI:10.5194/gmd-12-2215-2019

- "necessary to have access to all of the input data (...)"
- "(...) all model configuration files are provided"
- "(...) no manual processing of the data"
- "All figures and tables must be scientifically reproducible from the scripts".



# "Why Jupyter is data scientists' computational notebook of choice" Nature 563 (toolbox): Perkel 2018



"We went from Jupyter notebooks not existing some six years ago to in essence everybody using them today"



# "Why Jupyter is data scientists' computational notebook of choice" Nature 563 (toolbox): Perkel 2018



"(...) difficult to organize code logically, break it into reusable modules and develop tests to ensure the code is working properly"



# Reactive, reproducible, collaborative: computational notebooks evolve Nature 593: Perkel 2021<sup>2</sup>



► A 2019 study found that just 24% of 863,878 publicly available Jupyter notebooks on GitHub could be successfully re-executed, and only 4% produced the same results

<sup>&</sup>lt;sup>2</sup>(J. F. Pimentel et al. in 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR) 507–517; IEEE, 2019)

- - ... reproducibility?
  - ... notebooks?
- open-atmos projects
- Developers' perspective
- Users' perspective
- **E** Summary

#### Maintainability

Packages started over 5 years ago serve as good examples for discussion about maintainability.

# **P** Projects



PySDM is a Pythonic high-performance (multi-threaded CPU & CUDA GPU) implementation of Monte-Carlo Super-Droplet Method (SDM) (Shima et al. 2009)

# Projects



PySDM is a Pythonic high-performance (multi-threaded CPU & CUDA GPU) implementation of Monte-Carlo Super-Droplet Method (SDM) (Shima et al. 2009)

PyMPDATA is a Numba-accelerated multi-threaded Pythonic implementation of the NCAR-developed MPDATA algorithm used in geophysical fluid dynamics for solving advection-diffusion PDFs



# **P** Projects



PySDM is a Pythonic high-performance (multi-threaded CPU & CUDA GPU) implementation of Monte-Carlo Super-Droplet Method (SDM) (Shima et al. 2009)

PyMPDATA is a Numba-accelerated multi-threaded Pythonic implementation of the NCAR-developed MPDATA algorithm used in geophysical fluid dynamics for solving advection-diffusion PDFs





**open-atmos-jupyter-utils** provides utility routines for Jupyter notebooks for: automated testing; presenting visuals; pip-installation of external packages on Colab.

# **⇌** What's next?

- - ... reproducibility?
  - ... notebooks?
- popen-atmos projects
- 2 Developers' perspective
- Users' perspective
- **E** Summary

### **Devs** gain

- modularity and IoC
- dimensional analysis
- testing scenarios
- on-boarding new developers

# **Inversion of Control**

prerequisite for reusability in atmospheric science and for testing

# Atmospheric science: parameterizations and simulation flow control

```
from PvSDM import Formulae
formulae = Formulae(
    terminal_velocity='RogersYau',
   drop_growth='Mason1951',
   diffusion_thermics='Neglect',
    saturation_vapour_pressure='AugustRocheMagnus',
    ventilation='Froessling1938',
    particle_shape_and_density='LiquidSpheres',
    air_dynamic_viscosity='ZografosEtAl1987',
    constants={'BOLIN_ISOTOPE_TIMESCALE_COEFF_C1': 1.63},
    isotope_relaxation_timescale='Bolin1958',
```

## Dimensional analysis of the code

```
test_bolin_tritium_formula_unit():  AgnieszkaZaba
with DimensionalAnalysis():
    # arrange
    si = constants_defaults.si
    formulae = Formulae(
        isotope_relaxation_timescale="Bolin1958",
        constants={"BOLIN_ISOTOPE_TIMESCALE_COEFF_C1": 1 * si.dimensionless},
    sut = formulae.isotope_relaxation_timescale.tau
    # act
    result = sut(radius=si.um, r_dr_dt=si.um**2 / si.s)
    # assert
    assert result.check("[time]")
```



## pip install open-atmos-jupyter-utils

## notebook\_vars()

- executes unmodified notebook code for automated testing
- run-once/multiple asserts (using pytest fixture)





```
test_table_1.pv ×
Opytest.mark.parametrize( * AgnieszkaZaba
    ",".join(COLUMNS.keys()),
        (2, 0.025, 33, 2.1, 69),
        (3, 0.05, 93, 4.0, 370),
        (4, 0.075, 165, 5.4, 890),
        (5, 0.1, 245, 6.5, 1600),
        (6, 0.15, 365, 8.1, 3000),
        (7, 0.2, 435, 8.8, 3800),
Opvtest.mark.parametrize(
    {k: v for k, v in COLUMNS.items() if k != "row"}.items()
def test_table_1_against_values_from_the_paper(
```



# Developers' perspective — DEMO



- ► IoC formulae chosen by user
- dimensional analysis can be done because of that
- unit tests outside of notebooks
- on-boarding new developers



- ... reproducibility?
- ... notebooks?
- P open-atmos projects
- Developers' perspective
- **Users**' perspective
- **E** Summary

#### Users gain

- self-contained notebooks ready to run
- compliance with journal requirements
- maintainable visuals in research-notebooks



#### import open\_atmos\_jupyter\_utils

## show\_plot()

- gives SVG inline graphics
- adds save-SVG/PDF buttons
- ► Google-Drive link on Colab
- renders OK on GitHub





#### Maintainable visuals in research-notebooks

#### import open\_atmos\_jupyter\_utils

#### show\_plot()

- gives SVG inline graphics
- adds save-SVG/PDF buttons
- Google-Drive link on Colab
- renders OK on GitHub

# show\_anim()

- uses matplotlib & imageio
- ► GIF~base64~ipynb JSON
- ► save-as-GIF button +Colab
- renders OK on GitHub



# Users' perspective – DEMO



- notebooks are great for tutorials, but only if kept up-to-date with ongoing development (with CI automation!)
- paper-author (compliance with journal requirements) / paper-reviewer perspectives
- maintainable visuals in research-notebooks

- - ... reproducibility?
  - ... notebooks?
- popen-atmos projects
- Developers' perspective
- Users' perspective
- **Summary**



# **Essential integration**

Research notebooks + automated testing workflows



# **Essential integration**

Research notebooks + automated testing workflows

# Modularity and IoC

Benefits for users, developers and on-boarding new contributors



# **Essential integration**

Research notebooks + automated testing workflows

# Modularity and IoC

Benefits for users, developers and on-boarding new contributors

#### **Generated and embedded visuals**

force reproducibility, easier to maintain



# **Essential integration**

Research notebooks + automated testing workflows

# Modularity and IoC

Benefits for users, developers and on-boarding new contributors

#### Generated and embedded visuals

force reproducibility, easier to maintain

## Maintenance of research-result reproducibility

Supports ongoing project development













Thank you for your attention!