## Introduction to Computer Vision

13. Deep Learning

UCLA – CS 188 – Fall 2019 Fabien Scalzo, Ph.D.

| Week 1  |        |                                  | 26-Sep | Introduction                           |
|---------|--------|----------------------------------|--------|----------------------------------------|
| Week 2  | 1-Oct  | Basic Image Processing           | 3-Oct  | Feature Extraction and Classification  |
| Week 3  | 8-Oct  | Feature Tracking/Optical Flow    | 10-Oct | SVD, 2D camera model, projective plane |
| Week 4  | 15-Oct | 2D Image transformations, RANSAC | 17-Oct | Euclidean geometry, rigid body motion  |
| Week 5  | 22-Oct | Epipolar Geometry                | 24-Oct | 3D Cameras and processing              |
| Week 6  | 29-Oct | Midterm                          | 31-Oct | 3D Cameras and processing              |
| Week 7  | 5-Nov  | Learning from data               | 7-Nov  | Neural Networks                        |
| Week 8  | 12-Nov | Deep Learning                    | 14-Nov | Deep Learning                          |
| Week 9  | 19-Nov | Object Detection                 | 21-Nov | Generative Models                      |
| Week 10 | 26-Nov | Guest Lecture (Nikhil Naik)      | 28-Nov |                                        |
| Week 11 | 3-Dec  | Applications                     | 5-Dec  | Recap                                  |
| Week 12 | 10-Dec |                                  | 12-Dec | Final                                  |

- Convolution
- Back-propagation
- Limitations of Gradient Descent
- Limitations of Neural Networks in Computer Vision
- Deep Learning
  - Convolutional Neural Networks
  - Convolutional Encoder-decoder

3

#### 2D Convolution

$$I'(x,y) = \sum_{i=-1}^{1} \sum_{j=-1}^{1} I(x-i,y-j) \cdot filter(i,j)$$

|   |   |   | m   | -1 | 0  | 1 |   |   |
|---|---|---|-----|----|----|---|---|---|
| 2 | 3 | 1 | -1  | 0  | 0  | 0 |   |   |
| 0 | 5 | 1 | * 0 | 0  | 0  | 0 | = | ? |
| 1 | 0 | 8 | 1   | 0  | -1 | 0 |   |   |

4

#### 2D Convolution

$$I'(x,y) = \sum_{i=-1}^{1} \sum_{j=-1}^{1} I(x-i,y-j) \cdot filter(i,j)$$

|   |   |   | m   | -1 | 0  | 1  |   |   |
|---|---|---|-----|----|----|----|---|---|
| 2 | 3 | 1 | -1  | 0  | -1 | 0  |   |   |
| 0 | 5 | 1 | * 0 | 0  | 0  | 0  | = | ? |
| 1 | 0 | 8 | 1   | -1 | -1 | -1 |   |   |

## **Gradient Descent**

# $\sigma^2$ )

#### **Algorithm**

- 1. Initialize weights randomly  $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient,  $\frac{\partial J(W)}{\partial W}$
- 4. Update weights,  $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{|\partial \mathbf{W}|}$
- 5. Return weights

6

#### **Gradient Descent**

#### **Algorithm**

1. Initialize weights randomly  $\sim \mathcal{N}(0, \sigma^2)$ 



- 3. Compute gradient,  $\frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$ 
  - · Propagate input forward
  - Backpropagate
- 4. Update weights,  $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights



If h(x) is a composite function defined by h(x) = g(f(x)), and f and g are differentiable, then h(x) is differentiable and h' is given by the product:



8













#### Chain Rule



15

$$\frac{d}{da} = \frac{\partial b}{\partial a} * \frac{\partial err}{\partial b}$$

$$\frac{\partial b}{\partial a} = w$$

$$\frac{\partial b}{\partial a} = w$$



$$b = \frac{1}{1 + e^{-a}}$$

$$= \sigma(a)$$
Because math is beautiful / dumb luck:
$$\frac{\partial b}{\partial a} = \frac{\partial b}{\partial a} \cdot \frac{\partial err}{\partial b}$$

$$\frac{\partial b}{\partial a} = \sigma(a) \cdot (1 - \sigma(a))$$

## Limitations of Gradient Descent

Activation function: Sigmoid







Vanishing gradient

The sigmoid function is defined as follows

$$\sigma(x) = \frac{1}{1+e^{-x}}.$$

This function is easy to differentiate because

$$\frac{d\sigma(x)}{d(x)} = \sigma(x) \cdot (1 - \sigma(x)).$$





# Vanishing gradient : Solution 1

#### ReLU activation function



## Vanishing gradient: Solution 2

#### (mini-)batch normalization (BN)

Input: Values of 
$$x$$
 over a mini-batch:  $\mathcal{B} = \{x_{1...m}\}$ ; Parameters to be learned:  $\gamma$ ,  $\beta$ 

Output:  $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ 

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

#### FULLY CONNECTED NEURAL NET



#### LOCALLY CONNECTED NEURAL NET



## Convolution Layer



#### activation map



## Convolution layer







#### Convolution layer

• Parametrized by: height, width, depth, stride, padding, number of filters, type of activation function



29

## Pooling layer (i.e. sub-sampling)



# Pooling layer (i.e. sub-sampling)

| 12  | 20  | 30 | 0  |                       |
|-----|-----|----|----|-----------------------|
| 8   | 12  | 2  | 0  | $2 \times 2$ Max-Pool |
| 34  | 70  | 37 | 4  |                       |
| 112 | 100 | 25 | 12 |                       |

#### Dropout layer

• Dropout consists in randomly setting a fraction rate of input units to 0.

#### Flatten layer

Convert the input to a 1D array.

Batch Normalization (BN), Noise Layer

#### **Dilated Convolution**

Dilating the filter means expanding its size filling the empty positions with 0.

A way of increasing receptive view of the network while keeping the number of weights constant.







# Unpooling



## Unpooling (Nearest Neighbor)



## Max-Unpooling



#### **Max Pooling**

Remember which element was max!

| 1 | 2 | 6 | 3 |   |   |
|---|---|---|---|---|---|
| 3 | 5 | 2 | 1 | 5 | 6 |
| 1 | 2 | 2 | 1 | 7 | 8 |
| 7 | 3 | 4 | 8 |   |   |

**Max Unpooling** 

Use positions from pooling layer

|   |   | `     |
|---|---|-------|
| 1 | 2 | <br>( |
| 3 | 4 | (     |
|   |   | 3     |

Input: 4 x 4

Output: 2 x 2

Input: 2 x 2

Output: 4 x 4

Corresponding pairs of downsampling and upsampling layers



Learned Up-Sampling (<del>Deconvolution</del>)

Also called transposed convolution









Figure 2. Architecture of the proposed fully convolutional encoder-decoder network.

39

#### MR-based synthetic CT generation using a deep convolutional neural network method



Medical Physics, Volume: 44, Issue: 4, Pages: 1408-1419, First published: 13 February 2017, DOI: (10.1002/mp.12155)

