Exercice n°1

On effectue le dosage d'une solution aqueuse (S) de sulfate de fer(II) FeSO₄ de concentration molaire C par une solution de permanganate de potassium KMnO₄ de concentration molaire C₁ = 1 mol.L⁻¹.

On prélève un volume V = 10 mL de la solution (S) que l'on place dans un bécher et on l'acidifie avec de l'acide sulfurique concentré. On obtient l'équivalence lorsqu'on verse $V_E = 0,2$ mL de la solution de permanganate de potassium à l'aide d'une burette graduée au dixième du millilitre. Dans une deuxième expérience on a repris le dosage après avoir dilué 100 fois la solution de permanganate de potassium pour obtenir une solution de concentration molaire C_1 . On obtient alors l'équivalence lorsqu'on verse un volume $V_E = 16,2$ mL de la solution de permanganate de potassium.

- 1- Compléter le schéma du dispositif expérimental de la figure-1 dans la page annexe à remettre avec la copie.
- 2- Définir l'équivalence. Dire comment peut-on la repérer?
- 3- Choisir parmi les propositions suivantes celle qui correspond à la raison pour laquelle on a décidé de refaire le dosage :
 - a- difficulté d'ajouter un volume $V_E = 0,2 \, mL$
 - b- difficulté de repérer le point d'équivalence avec précision,
 - c- difficulté de faire un prélèvement de V = 10 mL.
- 4- L'équation chimique de la réaction de dosage est :

$$MnO_4^- + 5Fe^{2^+} + 8H_3O^+ \rightarrow Mn^{2^+} + 5Fe^{3^+} + 12H_2O$$

- a- Exprimer le nombre de moles d'ions fer(II), $\mathbf{n}_{\mathbf{Fe}^{2+}}$, en fonction de \mathbf{C}_1 et $\mathbf{V}_{\mathbf{E}}$ lorsqu'on
- b-abéduiré de mombre de molés d'iòns fer ($\mathbb{P}_{\mathbb{P}^n}$, en fonction de $\mathbf{C_1}$ et $\mathbf{V_E}$ lorsqu'on atteint l'équivalence.
- c- Déterminer la molarité C des ions fer (II) dans la solution (S).
- 5- Calculer la masse m de sulfate de fer (II) hydraté: FeSO₄,7H₂0 que l'on doit mettre en solution pour obtenir 500 mL de la solution (S).

On donne les masses molaires atomiques en g.mol⁻¹: M_{Fe} = 56; M_S = 32; M_O = 16; M_H=1.

Exercice n°2

On réalise le circuit électrique représenté par la **figure-2-** comportant :

- un générateur de tension idéale de fem ${\bf E}$,
- un condensateur de capacité C préalablement déchargé.
- deux conducteurs ohmiques de résistances

 $\mathbf{R}_1 = 2 \mathbf{k} \mathbf{\Omega}$ et \mathbf{R}_2 de résistance inconnue.

- Un interrupteur (K).

Partie A/

On ferme l'interrupteur (K) sur la position (1). Un système d'acquisition adéquate à permis de visualiser simultanément la tension $\mathbf{u}_{R1}(t)$ aux bornes du résistor \mathbf{R}_1 et la tension $\mathbf{u}_{C}(t)$ aux bornes du condensateur.

1) a. Montrer que l'équation différentielle régissant l'évolution de la tension $\mathbf{u}_{C}(t)$ au cours du temps est :

$$\frac{du_{C}}{dt} + \frac{1}{C(R_{1} + R_{2})}u_{C} = \frac{E}{C(R_{1} + R_{2})}$$

- **b.** Vérifier que la solution de cette équation est de la forme : $\mathbf{u}_{C}(t) = \mathbf{E}_{\bullet}(1 e^{-t/\tau_{1}})$ où τ_{1} est une constante qu'on exprimera en fonction des données du sujet.
- c. Déduire que la tension aux bornes du résistor R_1 est : $u_{R1}(t) = \frac{R_1}{R_1 + R_2}$. E. e^{-t/τ_1} .

- 2) Les courbes de la **figure-3-** représentent les variations au cours du temps de $\mathbf{u}_{C}(t)$ et $\mathbf{u}_{RI}(t)$. En justifiant la réponse,
 - a. déterminer la f.é.m E du générateur.
 - **b.** la constante de temps τ_1 du circuit.
- 3) Soit U_{01} la tension aux bornes du résistor R_1 à t=0s.
 - $a. \ \mbox{Montrer que}: \frac{R_2}{R_1} = \frac{E}{U_{01}} \ 1. \ \mbox{Calculer} \ R_2.$
- 4) Déduire que la valeur de la capacité C du condensateur est : $C=5~\mu F$.

A l'instant t_1 où $u_C=\frac{5}{2}.u_{R1}$, on bascule l'interrupteur en position

- (2); Cet instant est pris comme nouvelle origine des dates : t = 0s.
- 1) Déterminer l'instant t₁.
- 2) Calculer l'intensité du courant circulant dans le circuit à t = 0s.
- 3) Evaluer l'énergie électrique dissipée dans le résistor en fin de la décharge du condensateur.
- 4) Quelle modification doit-on apporter sur le circuit de la figure -2- en gardant ses mêmes composantes à fin d'avoir la même durée de décharge que celle de charge ?

Exercice n°2 (4,5 points)

Une bobine $(\mathbf{b_1})$ d'inductance $\mathbf{L}=\mathbf{0,1}$ \mathbf{H} et de résistance \mathbf{r} négligeable, est branchée aux bornes d'un générateur idéal de tension, un interrupteur \mathbf{K} et un rhéostat de résistance $\mathbf{R_h}$ ajustable. On bronche en parallèle avec la bobine une lampe et une diode. En face de la bobine $(\mathbf{b_1})$, on place une seconde bobine $(\mathbf{b_2})$ branchée aux bornes d'un milliampèremètre à zéro centrale comme l'indique la **figure-4-**.

Figure-4-

- 1) On ferme l'interrupteur K et on agit rapidement sur le rhéostat à fin de diminuer sa résistance R_{h} , simultanément,
- L'aiguille du milliampèremètre dévie indiquant l'apparition d'un courant i₂ dont le sens est indiqué sur le schéma.
- La lampe reste éteinte.
- a. Interpréter brièvement l'apparition du courant i₂.
- **b.** Compléter le schéma en représentant au centre de la bobine (b₂) :
- \triangleright Le vecteur champ magnétique \mathbf{B}_2 créé par la bobine (\mathbf{b}_2) .
- ightharpoonup Le vecteur champ magnétique $\mathbf{\tilde{B}}_1$ créé par la bobine (\mathbf{b}_1) .
- c. Indiquer si la borne (A) du générateur correspond à son pole (+) ou (-).
- **d.** Qu'observe-t-on si on ouvre l'interrupteur? Expliquer.
- 3) Avec la bobine (b_1) on réalise le montage de la **figure-5-** comportant en série un générateur basse fréquence délivrant une tension triangulaire de fréquence \mathbf{N} et un résistor de résistance $\mathbf{R} = \mathbf{1} \ \mathbf{k} \mathbf{\Omega}$.

Sur un oscilloscope bicourbe, on visualise la tension $\mathbf{u}_R(t)$ aux bornes du résistor sur la voie \mathbf{Y}_1 et la tension $\mathbf{u}_B(t)$ aux bornes de la bobine sur la voie \mathbf{Y}_2 . L'oscillogramme correspondant à $\mathbf{u}_R(t)$ est représenté par la **figure-6-**

	Sensibilité verticale	Balayage horizontal
Voie Y ₁	2V/div	1ms/div
Voie Y ₂	0,1V/div	

- a. Indiquer pourquoi est-il indispensable d'isoler la masse du GBF de la terre.
- $b_{\boldsymbol{\cdot}}$ La touche inverse de l'une des voies Y_1 ou Y_2 est maintenue enfoncée, indiquer laquelle ?
- $c. \ \ \text{Montrer que } u_b(t) = \frac{L}{R}.\frac{du_R(t)}{dt}.$
- **d.** Compléter alors l'oscillogramme de la **figure-6-** en représentant $\mathbf{u}_b(t)$ avec les sensibilités indiquées.

Comparer le sens du courant d'auto-induction à celui délivré par le GBF à la date t_2 .