Теорема Менгера. Форма Гёринга

Теорема 0.1. Пусть $X,Y \subset V(G)$, причём $X \not\subset Y$ и $Y \not\subset X$. Известно, что $|X| \geqslant k, |Y| \geqslant k$, $\varkappa(X,Y) \geqslant k$. Тогда существуют k непересекающихся путей из X в Y.

Доказательство.

- ⊳ Индукция по размеру графа.
- ⊳ Для всех меньших графов считаем, что утверждение доказано.

Случай 1: существует разделяющее множество R ровно из k элементов

 \triangleright Во-первых, путь из X в R не проходит через множество Y, потому что иначе R – не разделяющее множество.

- \triangleright Удалим из графа $Y \setminus R$.
- ightharpoonup Заметим, что в новом графе работает индукционное предположение для множеств X и R: если $\varkappa(X,R) < k$, то найдётся множество S, которое разделяет X и R, а значит, разделяет и X,Y.
- \triangleright Применяем И.П. для X и R. Аналогично, для R и Y.
- \triangleright Так как вершин в R ровно k, то полученные пути стыкуются и получаются k непересекающихся путей.

Случай 2: такого множества не существует

- ightharpoonup Тогда $\varkappa(X,Y) > k \Rightarrow |R| > k$.
- \triangleright Будем постепенно удалять рёбра в графе G.
- \triangleright При удалении ребра e = xy в G возможны 3 случая:
 - Мы убрали все рёбра (этот случай очевиден)
 - Условие $\exists R : |R| = k$ начало выполняться (тогда мы тоже победили)
 - Нашлось разделяющее множество T размера меньше чем k (в G-e)

Замечание (о третьем случае). Дмитрий Валерьевич сам сказал, что Гёринг в своей статье написал что-то вроде «ну, очевидно же, вы чего?», однако, как мы убедимся далее, этот случай является наиболее противным моментом во всей теореме.

Подробнее рассмотрим случай 3. В G - xy найдётся T : |T| < k, тогда $T \cup \{xy\}$ разделяет X, Y в исходном G. Однако, как мы знаем, $T \cup \{x\}$ и $T \cup \{y\}$ не разделяют X, Y в G (так как $\varkappa(X,Y) > k$).

Повторим рассуждение ещё раз: итак, $T \cup \{xy\}$ разделяет X,Y. Значит, по-хорошему путь должен в обязательном порядке проходить по ребру xy. Однако, $T \cup \{x\}$ также удалит и ребро xy, причём не разделит множества X,Y.

А это возможно лишь в одном случае: $T \cup \{x\}$ полностью удаляет множество (НУО) X в графе G, поэтому нужные нам пути существуют: нечего стало разделять.

 $X \setminus T$ непусто из-за того, что $|T| < k, |X| \geqslant k$. В то же время, $X \subset T \cup \{x\}, |X| \geqslant k, |T \cup \{x\}| \leqslant k$. Значит, $X = T \cup \{x\}$.

Проведём аналогичные рассуждения для вершины y и множества Y и получим, что $Y=T\cup\{y\}.$ В итоге получим следующую картинку:

Теперь легко увидеть k нужных нам путей в графе G: это вершины множества T (вырожденные пути, все вершины T общие для X,Y) и ребро xy.

Итого, мы рассмотрели все 3 случая и полностью доказали теорему. \Box