Monte Carlo Approximation

Yingbo Li

Clemson University

MATH 9810

Monte Carlo Approximation

Suppose we want to summarize posterior distribution of function of θ , say $\phi=g(\theta)$. For example, we might want to compute the expectation, $E(\phi\mid Y)$.

We have

$$E(\phi \mid Y) = \int_{g(\Theta)} \phi p(\phi \mid Y) d\phi = \int_{\Theta} g(\theta) p(\theta \mid Y) d\theta$$

- What if we do not know how to compute the integral?
- Common problem as we move in to higher dimensional parameters $(\theta_1, \theta_2, \dots, \theta_p)$

Appeal to simulation and the Law of Large Numbers.

Simulation as Approximation

Suppose we can sample S values from the posterior distribution of θ , so that

$$\theta^{(1)}, \dots, \theta^{(S)} \stackrel{\mathsf{iid}}{\sim} p(\theta \mid Y)$$

for large S.

Law of Large Numbers

$$\mathsf{E}[\theta \mid Y] \;\; \approx \;\; \frac{1}{S} \sum \theta^{(i)}$$

$$\mathsf{E}[g(\theta) \mid Y] \;\; \approx \;\; \frac{1}{S} \sum g(\theta^{(i)})$$

Sample means converge to their expectations

Simulated Distributions

$$\theta^{(1)}, \dots, \theta^{(S)} \stackrel{\mathsf{iid}}{\sim} p(\theta \mid Y)$$

• Cumulative ordered values approximate $F(\theta \mid Y)$ (empirical cdf)

$$P(\theta < c \mid Y) \approx \frac{\#(\theta^{(s)} < c)}{S}$$

- Empirical distribution of the sample $\theta^{(1)}, \dots, \theta^{(S)}$ approximates $p(\theta \mid Y)$. Visualize with histogram or density estimator.
- Sample moments/quantiles/functions approximate true moments/quantiles/functions
- For example, proportion of samples where event $g(\theta^{(i)}) > c$ approximates $p(g(\theta) > c \mid Y)$

Extends to higher dimensional parameters

Television Example

Posterior with uniform prior: $\theta \mid Y \sim \text{Beta}(693, 357)$

- Exact posterior mean 693/(693 + 357) = 0.66
- 95% central interval, i.e., quantile-based CI, (0.631, 0.668)
- This interval from qbeta(c(.025, .975), 693, 357)

Simulation based:

S determines the accuracy. Make large when practical; usually 1000 is enough.

Functions of θ

Simulate posterior distribution of odds of having a television in room

$$o = \frac{\theta}{1 - \theta} \Longrightarrow \theta = \frac{o}{1 + o}, \quad \frac{d\theta}{do} = \frac{1}{(1 + o)^2}$$

Change of variable $\theta \mid Y \sim \mathsf{Beta}(a,b)$:

$$p(o \mid Y) = \frac{1}{B(a,b)} \cdot \frac{o^{a-1}}{(1+o)^{a+b}}$$

Monte Carlo approximation: draw independent samples from $p(o \mid Y)$:

- > th = rbeta(10000, 693, 357)
- > oddsth = th / (1 th)

```
> hist(oddsth, prob = TRUE, xlab = 'o', ylab = 'p(o)');
> lines(density(oddsth), lwd = 2);
> tmp = seq(1.5, 2.5, by = 0.001);
> ptmp = exp(lgamma(693 + 357) - lgamma(693) - lgamma(357)
+ (693 - 1) * log(tmp) - (693 + 357) * log(1 + tmp));
> lines(tmp, ptmp, col = 2, lty = 2, lwd = 2);
```

Histogram of oddsth

Monte Carlo Approximation about o

Monte Carlo approximation: draw independent samples from $p(o \mid Y)$:

Note that 95% central credible interval is invariant to (monotone) transformation.

$$\frac{0.6313}{1 - 0.6313} = 1.7122, \quad \frac{0.6883}{1 - 0.6883} = 2.2082$$

4□ > 4₫ > 4불 > 4불 > ½ 90

HPD interval from the CODA package

HPD Regions Not Invariant

- > library(coda)
- > oddsth.mcmc = as.mcmc(oddsth)
- > HPDinterval(oddsth.mcmc)

lower upper var1 1.695732 2.18715

If (Θ_H) is a $100(1-\alpha)\%$ HPD region for θ , and we are interested in $g(\theta)$, then

- $g(\Theta_H)$ is a 100(1-lpha)% probability region for g(heta)
- $g(\Theta_H)$ is NOT a 100(1-lpha)% HPD region for g(heta)

$$\frac{0.6328}{1 - 0.6328} = 1.7233, \quad \frac{0.6896}{1 - 0.6896} = 2.2216$$

Comparing Distributions

- Data from VA Hospitals: for each year observe n patients and y, the number of cases (really failures).
- Observed data $Y = \{y_1, n_1; y_2, n_2\}$ for hospital 21:
 - In 1992, $y_1 = 306, n_1 = 651$
 - In 1993, $y_2 = 300, n_2 = 705$

First Model: Independent binomial outcomes in each year with probabilities θ_1 and θ_2 .

Question of Interest: has the probability changed between 1992 and 1993?

- Independent continuous uniform priors → independent posteriors:
- $\theta_1 \mid Y \sim \mathsf{Beta}(307, 346)$ and
- $\theta_2 \mid Y \sim \mathsf{Beta}(301, 406)$ (independent of θ_1)
- θ_i independent and $y_i \mid \theta_i$ independent imply θ_i independent a posterior

Difference

New parameter $\delta = \theta_2 - \theta_1$ measures difference.

- Immediately:
 - $E(\delta \mid Y) = E(\theta_2 \mid Y) E(\theta_1 \mid Y) = 0.426 0.470 = -0.044.$
- Is this significantly different from 0? Is it really negative? (improvement in care)
- Immediately: $V(\delta \mid Y) = V(\theta_2 \mid Y) + V(\theta_1 \mid Y) = 0.0275^2$, sd = 0.0275
- mean \pm 2 sd = $(-.044 \pm 2 \times 0.0275)$ includes zero (rough)

Can compute $p(\delta \mid Y)$ by transformation – but messy.

Use Monte Carlo Simulation!

Posterior Simulation

Large sample of S values for θ_1 , similar for θ_2 and then compute δ

```
> y1 = 306; y2 = 300; n1 = 651; n2 = 705;
> S = 5000;
> t1 = rbeta(S, y2 + 1, n2 - y2 + 1);
> t2 = rbeta(S, y1 + 1, n1 - y1 + 1);
> d = t1 - t2
> hist(d, nclass=30, prob=T);
> sum(d < 0) / S
[1] 0.9494</pre>
```

About a 95% posterior probability that $\delta < 0$ (similar results with Jeffreys' prior B(1/2,1/2))

Posterior Densities

Posterior Distribution of Difference in Failure Probabilty for 1993 versus 1992

 $\theta_1 - \theta_2$

Posterior Distribution of Difference in Failure Probabilty for 1993 versus 1992

Uniform Priors (left) versus Jeffreys' Priors (right)

Posterior Predictive Distributions

Given the traffic accident waiting time data, what is probability that the duration Y^* between the last and next accident exceeds 30 days?

- Model for eruption times: $Y^* \mid \beta \sim Exp(\beta)$
- ullet Could plug in estimate (posterior mean) of eta in above, but... this underestimates uncertainty
- \bullet Better: Find distribution of $Y^* \mid Y$, where Y is the data for the n=10 measurements

Posterior Predictive Distributions

$$p(Y^* \mid Y) = \int p(y^*, \beta \mid Y) d\beta$$
$$= \int p(y^* \mid \beta, Y) p(\beta \mid Y) d\beta$$

Can solve analytically, but easier to simulate this distribution. For $i=1,\dots,S$

- $\textbf{ @ Generate } Y^* \text{ from } p(Y \mid \beta^{(i)}) \text{, which is } Exp(\beta^{(i)})$

Histogram of Y^* is estimate of posterior predictive density

Simulation in Traffic Accident Example

Simulate S = 10000 new waiting times

```
> beta = rgamma(10000, 10, rate = 336);
> newy = rexp(10000, beta)
Can summarize p(Y^* \mid Y) via histograms and quantiles.
# posterior predictive probability that Y* > 30
> mean(newy > 30)
[1] 0.4292
# 95% probability for waiting time:
> quantile(newy, c(0.025, 0.975));
       2.5% 97.5%
  0.8908783 152.2844839
```

Analytic Solution

For exponential pdf and $\beta \mid y \sim G(10, 336)$, we have

$$p(Y^* | Y) = \int p(y^* | \beta, Y) p(\beta | Y) d\beta$$

$$= \int \beta \exp(-\beta y^*) \frac{336^{10}}{\Gamma(10)} \beta^{10-1} \exp(-336\beta) d\beta$$

$$= \frac{336^{10}}{\Gamma(10)} \int \beta^{11-1} \exp(-(336 + y^*)\beta) d\beta$$

Inside integral is kernel of Gamma distribution, $G(11,336+y^*)$. So we multiply by appropriate constant to make integral equal one, resulting in

$$p(Y^* \mid Y) = \left(\frac{336^{10}}{\Gamma(10)}\right) \left(\frac{\Gamma(11)}{(336 + y^*)^{11}}\right)$$

4 ロ ト 4 個 ト 4 差 ト 4 差 ト 3 至 9 9 9 9 9

Inverse CDF Method for Sampling PDFs

We can find the cdf by integrating

$$F(w) = Pr(Y^* < w \mid Y) = \int_0^w \frac{(10)336^{10}}{(336 + y^*)^{11}} dy^*$$
$$= -\frac{336^{10}}{(336 + y^*)^{10}} \Big|_0^w$$
$$= 1 - \frac{336^{10}}{(336 + w)^{10}}$$

To sample a value Y^* from $f(Y^* \mid Y)$,

- **①** Draw u from uniform on (0,1).
- ② Find w such that F(w) = u, i.e., $w = F^{-1}(u)$.
- lacktriangle Value of w is a draw of Y^*

Posterior Predictive Model Checks

Can use posterior predictive distribution for model checking.

- ullet Specify a statistic t(Y) that is useful for model checking, e.g., means, variances, functions of residuals.
- $\textbf{ @} \ \, \text{Generate large number of new datasets from } p(Y^* \mid Y)$
- lacktriangle Compute $t(Y^*)$ in each simulated dataset
- $\textbf{ Oompute } p(t(Y^*) > t(Y)|Y) \text{ and } 1 p(t(Y^*) > t(Y)|Y)$
- lacktriangle If either is small, suggests model does not describe Y very well

Posterior predictive checks cannot validate that your model is correct, only reveal if it does not describe the data well.

Generating Many Datasets

Simulate S=1000 new datasets

```
> S = 1000;
> newy = matrix(nrow = S, ncol = 10);
> for(i in 1:S){
+  beta = rgamma(1, 10, rate = 336);
+  newy[i,] = rexp(10, beta);
+ }
```

Note that I define "newy" as a maatrix beforehand, and populate its rows with the simulated data. R will give you errors if you do not define matrices or vectors before you populate them.

PPM Checks for Volcano Data

Reasonable test statistics include quantities like,

```
• t_1(Y) = mean(Y)/sd(Y)
```

$$t_2(Y) = max(Y)$$

•
$$t_3(Y) = min(Y)$$

Use the apply command for fast computations

```
> t1sims = apply(newy, 1, mean) / apply(newy, 1, sd);
> mean(t1sims > mean(y) / sd(y));
[1] 0.688
> 
> t2sims = apply(newy, 1, max);
> mean(t2sims > max(y));
[1] 0.383
> 
> t3sims = apply(newy, 1, min);
> mean(t3sims > min(y));
[1] 0.641
```