XMC4500 Satellite-kit: General Purpose Motor Drive Kit

Part Number: KIT_XMC4X_MOT_GPDLV_001

Features

- Seamless connection to CPU board via ACT Satellite Connector
- 3 phase low voltage half-bridge inverter using Infineon's N-channel
- OptiMOS™3 power transistors
- Gate Driver IC (6ED003L02-F2) with over-current detection circuit (ITRIP)
- Current measurement by using single or triple shunts (amplified)
- Single side assembly of all parts
- Position sensing via
 - Inductive resolver interface using delta-sigma modulator and pattern generator for resolver excitation
 - Hall sensor interface
- Power jack for external 24V supply
- Power supply generation:
 - Switch mode power supply for 5V power generation
 - Low drop voltage regulators (15 V) for MOSFET gate driver and resolver extiation
 - Low drop voltage regulators (3.3V) for logic
- Maximum DC-link current: 7.5 A, nominal DC-link current 5 A
- Single side assembly of all parts
- 3 LEDs indicating power (15 Volt, 5 Volt, 3.3 Volt)

PLEASE SEE THE FOLLOWING PAGES FOR USERS MANUAL

Hexagon Application Kit

For XMC4000 Family

MOT_GPDLV-V2

General Purpose Motor Drive Card

Board User's Manual

Revision 1.0, 2012-09-21

Microcontroller

Edition 2012-09-21 Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision Histor	Revision History						
Page or Item Subjects (major changes since previous revision)							
Revision 1.0,	Initial release						
2012-09-21							

Trademarks of Infineon Technologies AG

AURIX $^{\text{TM}}$, C166 $^{\text{TM}}$, Canpak $^{\text{TM}}$, CIPOS $^{\text{TM}}$, CIPURSE $^{\text{TM}}$, EconoPack $^{\text{TM}}$, CoolMos $^{\text{TM}}$, CoolSet $^{\text{TM}}$, CoolSet $^{\text{TM}}$, CoolSet $^{\text{TM}}$, CoolSet $^{\text{TM}}$, Crossave $^{\text{TM}}$, Dave $^{\text{TM}}$, EasyPIM $^{\text{TM}}$, EconoBridge $^{\text{TM}}$, EconoDual $^{\text{TM}}$, EconoPiM $^{\text{TM}}$, EiceDriver $^{\text{TM}}$, eupec $^{\text{TM}}$, FCOs $^{\text{TM}}$, Hitfet $^{\text{TM}}$, HybridPack $^{\text{TM}}$, ISOFACE $^{\text{TM}}$, IsoPack $^{\text{TM}}$, Mipaq $^{\text{TM}}$, ModStack $^{\text{TM}}$, my-d $^{\text{TM}}$, NovalithIC $^{\text{TM}}$, OptiMos $^{\text{TM}}$, Origa $^{\text{TM}}$, PrimePack $^{\text{TM}}$, PrimeStack $^{\text{TM}}$, Pro-Sil $^{\text{TM}}$, Profet $^{\text{TM}}$, Rasic $^{\text{TM}}$, Reversave $^{\text{TM}}$, Satric $^{\text{TM}}$, Sieget $^{\text{TM}}$, Sindrion $^{\text{TM}}$, SipMos $^{\text{TM}}$, SmartLewIs $^{\text{TM}}$, Solid Flash $^{\text{TM}}$, Tempfet $^{\text{TM}}$, thinQ! $^{\text{TM}}$, Trenchstop $^{\text{TM}}$, Tricore $^{\text{TM}}$.

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-02-24

Table of Contents

Table of Contents

Introdu	iction	7
1	Overview	7
1.1	Key Features	7
1.2	Block Diagram	
2	Hardware Description	g
2.1	Power Supply	10
2.2	Satellite Connector	
2.3	Gate Driver and Power Stage	13
2.4	Voltage and Current Measurements	15
2.4.1	Phase Current Measurement	15
2.4.2	Phase Voltage Measurement	15
2.5	Resolver Interface	16
2.6	Encoder and Hall Interface	
3	Production Data	19
3.1	Schematics	19
3.2	Components Placement and Geometry	23
3.3	List of Material	

MOT_GPDLV-V2 General Purpose Motor Drive Card

List of Figures

List of Figures

Figure 1	Block Diagram of the General Purpose Motor Drive Card	8
igure 2	General Purpose Motor Drive Card	9
igure 3	Block Diagram of the Power Circuit	10
igure 4	Connection to the CPU Board	
igure 5	Pin Mapping on ACT Satellite Connector	11
igure 6	Pin Mapping to XMC4500 on CPU Board CPU_45A-V2	12
igure 7	Block Diagramm of the Gate Driver and the Power Stage	14
igure 8	Measurement of Voltages and Currents	15
igure 9	Connection Scheme of the Resolver Connector	16
igure 10	Resolver Excitation Circuit	16
igure 11	Resolver Modulator Circuit	17
Figure 12	Encoder Connector for differential encoder signals	18
Figure 13	Encoder Line Receiver (differential signals) and hall interface	18
igure 14	Satellite Connector, Power Supply	
Figure 15	Gate Driver, Power Stage, Shunt Amplifier, Motor Connector	21
Figure 16	Resolver, Encoder, Hall Connector	
igure 17	Components Placement and Geometry	23

MOT_GPDLV-V2 General Purpose Motor Drive Card

List of Tables

List of Tables

Table 1	Power LED	10
Table 2	Power rail connection to the ACT Satellite Connector	10
Table 3	Gate Driver signals connection to the ACT Satellite Connector	14
Table 4	Voltage and Current signals at the ACT Satellite Connector	15
Table 5	Resolver signals at the ACT Satellite Connector	
Table 6	Encoder / hall signals at the ACT Satellite Connector	
Table 7	List of Material for General Purpose Motor Drive Card (MOT_GPDLV-V2-002)	

Overview

Introduction

This document describes the features and hardware details of the General Purpose Motor Drive Card (MOT_GPDLV-V2) designed to work with Infineon's CPU boards of the XMC4000 family. This board is a member of Infineon's Hexagon Application Kits.

1 Overview

The MOT_GPDLV-V2 board is an application expansion satellite card of the Hexagon Application Kits. The satellite card along with a CPU board (e.g. CPU_45A-V2 board) demonstrates the motor control capabilities of XMC4000 family. The main use case for this satellite card is proofing software algorithms and methods for motor control. The focus is safe operation under evaluation conditions. The board is neither cost nor size optimized and does not serve as a reference design.

1.1 Key Features

The MOT GPDLV-V2 satellite card is equipped with following features

- Seamless connection to the CPU board (e.g. CPU_45A-V2) via the ACT satellite connector
- 3 phase low voltage half-bridge inverter using Infineon's N-channel OptiMOS™3 power transistors
- Gate Driver IC (6ED003L02-F2) with over-current detection circuit (ITRIP)
- Current measurement by using single or triple shunts (amplified)
- Position sensing via
 - Inductive resolver interface using delta-sigma modulator and pattern generator for resolver excitation
 - Quadrature encoder interface for both single ended and differential signals
 - Hall sensor interface
- Input voltage range: 24 V +/-20%
- Power supply
 - Switch mode power supply for 5V power generation
 - Low drop voltage regulators (15 V) for MOSFET gate driver and resolver excitation
 - Low drop voltage regulators (3.3V) for logic
- Maximum DC-link current: 7.5 A, nominal DC-link current 5 A

Overview

Revision 1.0, 2012-09-21

1.2 Block Diagram

Figure 1 shows the block diagram of the MOT_GPDLV-V2 satellite card. There are following building blocks:

- Connectors to CPU Board, power supply, motor and position interfaces
- · Analog signal measurement
- Position sensing

Figure 1 Block Diagram of the General Purpose Motor Drive Card

2 Hardware Description

The following sections give a detailed description of the hardware and how it can be used.

Figure 2 General Purpose Motor Drive Card

2.1 Power Supply

The General Purpose Motor Drive Card must be supplied by an external 24 Volt DC power supply connected to its power jack X240. The power to be delivered by the external power supply depends on the overall load mainly defined by the power consumption of the motor. The power supply unit (24V / 2A) delivered with the motor control kit is sufficient to drive the enclosed motor as well as other satellite cards connected to the CPU board. The power supply concept is shown in Figure 3.

A diode protects the power supply units and the circuit if more than one power supply is connected to the system via other satellite cards or via the CPU board (USB). The General Purpose Motor Drive Card is able to supply all other boards with 5V (VDD5) via the ACT satellite connector.

An on-board DC-DC converter (U240) steps down the 24 V input voltage from the power jack to 5 V (VDD5). The input voltage VDD24 must be 24 V +/-20%. The 5 Volt supply for analog circuits VDDA5 is derived from VDD5 filtered by a low pass. A LDO voltage regulator generates 3.3 V (VDD3.3) out of VDD5 and another voltage regulator generates 15 V (VDD15) power supply out of the 24 V input voltage.

Three power LEDs indicate the presence of the generated supply voltages.

Table 1 Power LED

LED	Power Rail	Voltage	Note
V210	VDD5	5.0 V	Must always be "ON"
V211	VDD3.3	3.3 V	Must always be "ON"
V212	VDD15	15.0V	Must always be "ON"

Figure 3 Block Diagram of the Power Circuit

Table 2 shows the connection of the power rails to the ACT satellite connector.

Table 2 Power rail connection to the ACT Satellite Connector

Pin No.	Power rail	Description
43,44,45,46	VDD5	5 V
1,2,79,80	GND	Ground

2.2 Satellite Connector

The satellite connector of the General Purpose Motor Drive Card is the interface to the CPU board e.g. CPU_45A-V2. Take care to connect the General Purpose Motor Drive Card always to the corresponding ACT satellite connector of the CPU board only as shown in Figure 4.

Figure 4 Connection to the CPU Board

The signal mapping details of the ACT satellite connector and the General Purpose Motor Drive Card are provided in Figure 5. The inner rows show the general function of the 80 pins of the ACT connector, which is common for all ACT satellites cards. The outer rows show the signals of the General Purpose Motor Drive Card.

The General Purpose Motor Drive Card provides 5 functional groups of signals (marked by color code) at its pins of the satellite connector:

- The encoder signals (ENCA, ENCB, ENCI): pin 4, 6 and 8
- Resolver signals (PWMN/P, MCLK, MCOS, MSIN): pin 9, 11, 13, 14, 15, 16
- Control and TRAP signals (FAULT#, ENPOW, ENENC#): pin 25, 26, 30
- Voltage and current measurement signals: (UU, UV, UW, UZ, AMP_IW...) located from pin 49 to 60
- PWM signals for the 3-Phase power stage (HIN1#, LIN1#, HIN2 ...): pin 64, 66, 68,70, 72, 74

Figure 5 Pin Mapping on ACT Satellite Connector

Figure 6 is an extended view of the signal mapping between the General Purpose Motor Drive Card (MOT_GPDLV-V2) and the "XMC4500 CPU Board General Purpose" (CPU_45A-V2). It shows in details which pin of the XMC4500 is mapped to which signal on the motor drive card.

MOT_GPDLV-V2	Function		GND	ENCA	ENCB	ENCI	nc	nc	MCOS	MSIN	nc	nc	nc	nc	ENPOW	nc	ENENC#	nc	nc	nc	nc	nc	nc	VDDS		VDDS	nc	OFFS	ΛN	nc	20	ZN	WU	nc	HIN1#	LIN1#	HIN2#	LIN2#	HIN3#	UN3#	nc	nc	GND
	XMC		NSS	P1.3	P1.2	P1.1	P0.8(2)	P2.6	P1.6	P6.5 (3)	nc	P4.6	P4.5	P4.4	P2.13	P2.12	P6.4	P3.13	P2.5	P3.0	P5.8	9.0d	PORST				VAREF	P14.8	P14.4	P14.14	P14.15	P14.2	P15.6	P15.7	P0.5	P0.2	P0.4	P0.1	P0.3	D.0.0	P6.3	P6.2	NSS
CPU_45A-V2	XMC Function		GND	PIF0_IN0A	PIF0_IN1A	PIFO_INZA	DSD_DINOA	DSD_DIN1B	DSD_DIN2A	DSD_DIN3A	DU	CCU43_IN0A	CCU43_IN1A	CCU43_IN2A	CCU43_IN2C	CCU43_IN3C	CCU430UT1	UDC1_DOUT0	UOC1_DX0B	UDC1_SCLKOUT	ULCO_SCIKOUT	P0.6	RESET#				VAREF	VADC_G1CH0	VADC_G0CH4	VADC_G1CH6	VADC_G1CH7	VADC_G0CH2	VADC_G2CH6	VADC_G2CH7	ccuso_outoo	CCU80_OUT01	CCU80_OUT10	CCU80_OUT11	CCU80_OUT20	CCU80_OUT21	CCU430UT2	CCU430UT3	GND
	Function		GND	PIFOINT	PIF0IN2	PIFOIN3	DSDINO	DSDIN1	DSDINZ	DSDIN3	RSVD	CC_INO	CC_IN1	CC_IN2	ENA_A	ENA_B	ENA_X	SPI_MTSR	SPI_MRST	SPLSCLK	12C_SCL	GPIO	RESET	VDDS		VDDS	AREF	DAC1/ADC0	ADC2/DACREF	ADC4/ORC1	ADC6/ORC3	ADC8	ADC10	ADC12	PWMA0_H	PWMA0_L	PWMA1_H	PWMA1_L	PWMA2_H	PWMA2_L	PWMX0	PWMX1	GND
Satellite	Pin	ACT	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	ACT	46	48	50	52	54	56	58 6	60	62	64	56	68	70	72	74	76	78	80
Connector		A	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	41	43	A	45	47	49	51	53	55 5	57 5	59	61	63	55	67	69	71	73	75	77	79
	Function		GND	PIFTINO	PIFIINI	PIF11N2	PWMN	PWMP	DSDCLKO	DSDCLK1	RSVD	CC_IN3	CC_IN4	CC_INS	TRAP_A	TRAP_B	TRAP_X	SPI_CSA0	SPI_CSA1	SPI_CSA2	I2C_SDA	ACT_GPI01	ACT_GPIO0	VDDS		SOON	AGND	DACO/ADC1	ADC3/ORC0	ADC5/ORC2	ADC7	ADC9	ADC11	ADC13	PWMB0_H	PWMB0_L	PWMB1_H	PWMB1_L	PWMB2_H	PWMB2_L	PWMX2	PWMX3	GND
CPU_45A-V2	XMC Function		GND	nc	nc	nc	DSD_PWMN	DSD_PWMP	DSD_MCLK2A	DSD_MCLK3B	nc	CCU43_IN3A	CCU81_IN1B	CCU81_IN3B	CCUSO_INOA	CCU81_IN0A/1A/2A/3A	CCU43_IN0C	UOCI_SELO2	U0C1_SELO3	nc	ULCO DX0D/DOUTO	P15.4 Input	P4.2				AGND	VADC_G1CH1	VADC_G0CH6	VADC_G0CH7	VADC_G0CH0	VADC_G2CH1	VADC_G3CH6	VADC_G3CH7	CCU81_OUT00	CCU81_OUT01	CCU81_OUT10	CCU81_OUT11	CCU81_OUT20	CCU81_OUT21	CCU81_OUT31	CCU81_OUT30	GND
	XMC	4	NSS	nc	nc	nc	P1.0	P5.1	P1.7	P3.4	nc	P4.3	P5.2	P5.4	P0.7 (1)	P5.0	P4.7	P3.11	P3.8	nc	P2.14	P15.4	P4.2				VAGND	P14.9	P14.6	P14.7	P14.0	P14.5	P15.14	P15.15	P1.15	P1.12	P1.14	P1.11	P1.13	P.10	P6.0 (3)	P6.1 (3)	NSS
MOT_GPDLV-V2	Function		GND	nc	nc	nc	PWMN	PWMP	MCLK	MCLK	nc	nc	nc	nc	FAULT#	nc	nc	nc	nc	nc	nc	nc	nc	VDDS		SOOV	nc	AMP_IW	nc	AMP_IU	Zn	AMP_IV	AMP_IZ	Zn	nc	GND							

Figure 6 Pin Mapping to XMC4500 on CPU Board CPU_45A-V2

2.3 Gate Driver and Power Stage

The power stage consists of three half-bridges using Infineon's N-channel OptiMOS™ power transistors. They are selected for a safe operation area with huge headroom, hence no cooling is needed when using at nominal current of 5 Ampere.

The gate driver (6ED003L02-F2) is Infineon's full bridge driver in SOI-technology offering an excellent ruggedness on transient voltages. The external bootstrap circuitry has been dimensioned according to the formula (see Infineon application note AN-EICEDRIVER-6EDL04-1):

$$C_{BS} = \frac{i_{QBS} \cdot t_P + Q_G}{\Delta V_{BS}} \cdot 1.2$$

$$\frac{C_{BS} \cdot \Delta V_{BS}}{1.2} = i_{QBS} \cdot t_P + Q_G$$

$$(0.833 \cdot C_{BS} \cdot \Delta V_{BS}) - Q_G = i_{QBS} \cdot t_P$$

$$t_P = \frac{(0.833 \cdot C_{BS} \cdot \Delta V_{BS}) - Q_G}{i_{QBS}}$$

With

 C_{BS} : Bootstrap Capacity (1 uF)

i_{QBS}: highside driver quiescent current (max. 100 uA)

Q_G: Gate charge (max. 130 nC)

 ΔV_{BS} : max. allowed voltage drop at the bootstrap capacitor (5 V)

Factor 1.2: 20% margin for capacitor

the minimum switching period t_P is 40 ms:

$$t_P = \frac{(0.833 \cdot 1 \, uF \cdot 5 \, V) - 130 \, nC}{100 \, uA}$$

$$t_p = 40 \ ms$$

The gate driver offers several protection features like under-voltage lockout, signal interlocking of every phase to prevent cross-conduction and overcurrent detection.

In an error situation a FAULT# signal is generated and must be handled by the microcontroller. The FAULT# signal changes to low state if an over-current condition has been detected by the ITRIP circuit. The ITRIP current level is measured as the amplified voltage drop over the DC-link shunt (see Figure 7). The minimum input voltage level to trigger an over-current event is specified at 380 mV. With an amplifier gain of 1 + (40.2/10) = 5.02 and a DC-Link shunt with 10 m Ω the ITRIP will be triggered at a DC-Link current higher than 7.57 A:

$$I = U / R,$$

$$I = (0.38 \text{ V} / 5.02) / 10 \text{ m}\Omega,$$

$$I = 7.57 \text{ A}.$$

The overcurrent condition must be present for longer than about 100 us (3 * RC time constant of the RC filter R322, C310) in order to trigger the ITRIP. This shall protect the PCB traces and the components in the high current path.

The microcontroller must provide the PWM signals (LIN1/2/3#, HIN1/2/3#) for the high-side and low-side switches. The PWM signals must be generated low-active.

The gate driver must be enabled via signal ENPOW.

A phase current measurement is provided via shunt resistors

- a) single shunt (10 m Ω) in the DC-link path and/or
- b) triple shunt (10 m Ω) in the low-side path

The resistance of the shunts limits the system behavior and may not fit to the low-ohmic power transistors. This is intended as the main purpose of this board is to proof SW algorithms and methods over a wide range.

Figure 7 Block Diagram of the Gate Driver and the Power Stage

Table 3 shows the connection of the Gate Driver signals to the ACT satellite connector.

Table 3 Gate Driver signals connection to the ACT Satellite Connector

Pin No.	Signal Name	Description
25	FAULT#	this signal indicates over-current and under-voltage (low-active)
26	ENPOW	High level enables the power stage (high-active)
64	HIN1#	High-side logic input 1 (low-active)
66	LIN1#	Low-side logic input 1 (low-active)
68	HIN2#	High-side logic input 2 (low-active)
70	LIN2#	Low-side logic input 2 (low-active)
72	HIN3#	High-side logic input 3 (low-active)
74	LIN3#	Low-side logic input 3 (low-active)

2.4 Voltage and Current Measurements

The phase current measurement is illustrated on the left side of Figure 8; the right side shows the voltage divider for the voltage measurement.

Figure 8 Measurement of Voltages and Currents

2.4.1 Phase Current Measurement

The current measurement can be done via a single shunt (signal IZ) in the DC-link path or via triple shunts (IU, IV, IW) in the emitter path. In both cases the measurement is dimensioned for the following requirements:

Motor power range up to 120W which leads to a nominal DC-link current of about 5 Ampere and a maximum phase peak current of about 20 Ampere. The phase current range is 75 mA to 20 A.

A shunt resistance of 10 m Ω leads to 0.75 mV voltage drop @ 75 mA and 200 mV voltage drop @ 20 A. This voltage is amplified by a non-inverting amplifier. The output of the operational amplifier (AMP_IU, AMP_IV, AMP_IV, AMP_IZ) is available at the ACT Satellite Connector and connected to ADC input channels of the XMC4000 microcontroller.

The gain of the operational amplifier is set to 21 (G = 1 + (R1 / R2)), which leads to an output voltage of 15.75 mV @ 75 mA and 4.20 V @ 20A.

The XMC4000 offers a DAC output which is used as DC offset generator for the OpAmps (signal OFFS). The DAC voltage must be adjusted to a voltage level of about 1.2 V in order to get 0 V at the output of the OpAmps when there is no current flow through the shunts. Alternatively the offset can be generated by a resistive voltage divider.

2.4.2 Phase Voltage Measurement

The phase voltage is directly measured using resistive dividers at the phases (signals UZ, UU, UV, and UW). The divider is dimensioned to divide the measured voltage UZ, UU, UV, UW by factor 10.21. The formula to calculate the phase voltage U_{PHx} from the measured voltage U_x is:

$$U_{PHx} = 10.21 * U_{x}$$

Table 4 summarizes all voltage signals and current signals available at the ACT satellite connector.

Table 4 Voltage and Current signals at the ACT Satellite Connector

Pin No.	Signal Name	Description
50	OFFS	Offset voltage input required for the shunt amplifier

Table 4 Voltage and Current signals at the ACT Satellite Connector

Pin No.	Signal Name	Description
53	AMP_IU	Amplified shunt voltage output representing the current of phase U
57	AMP_IV	Amplified shunt voltage output representing the current of phase V
49	AMP_IW	Amplified shunt voltage output representing the current of phase W
59	AMP_IZ	Amplified shunt voltage output representing the DC-link current
56	UU	Divided voltage output of phase U (divided by 10.21)
52	UV	Divided voltage output of phase V (divided by 10.21)
60	UW	Divided voltage output of phase W (divided by 10.21)
55, 58, 61	UZ	Divided DC-link output voltage (divided by 10.21)

2.5 Resolver Interface

For rotor position detection a resolver can be used. The three coils of the resolver must be connected to the connector X400 as shown in Figure 9.

Figure 9 Connection Scheme of the Resolver Connector

The XMC4000 devices use an on-chip pattern generator for the excitation of the primary coil and a decimation filter to read the SIN/COS feedback measured by a delta-sigma modulator.

The primary coil excitation is done via the microcontroller signals PWMP/PWMN which is a digital data stream with a selectable clock rate in the MHz range. These signals are integrated, amplified and fed to the primary coil of the resolver as shown in Figure 10.

Figure 10 Resolver Excitation Circuit

The feedback signals (SINA/B and COSA/B) of the secondary coils are fed to a delta-sigma modulator ADS1205 which has an internal clock and generates the SIN/COS serial data stream on the signals MSIN/MCOS. It also provides the modulator clock MCLK. The circuit is shown in Figure 11.

Figure 11 Resolver Modulator Circuit

Table 5 summarizes all signals of the resolver which are connected to the ACT satellite connector.

Table 5 Resolver signals at the ACT Satellite Connector

Pin No.	Signal Name	Description
9	PWMN	Excitation input signal (inverted)
11	PWMP	Excitation input signal
14	MCOS	COS signal output of the delta sigma modulator
16	MSIN	SIN signal output of the delta sigma modulator
15, 13	MCLK	Clock output of the delta sigma modulator

2.6 Encoder and Hall Interface

A quadrature encoder can be used for detecting the actual rotor position. There are single-ended and differential encoders, the board supports both types. For the differential types an encoder line receiver is required as the microcontroller needs single ended signals.

Figure 12 Encoder Connector for differential encoder signals

The differential signals from the encoder (ENCA+/-, ENCB+/-, ENCI+/-) must be connected to the 10-pin encoder connector X441 (Figure 13). The receiver must be enabled by the signal ENENC# (set to "0").

In case of using a single ended encoder or a hall sensor the signals must be applied to the connector X440 and the encoder line receiver must be disabled by setting the signal ENENC# to high level (default).

The parallel operation of both a differential encoder and a hall sensor is possible by adapting the resistor values shown in Figure 13. The pull-up resistors value must be changed to 4.7 k Ω , the serial resistors must be set to 680 Ω . This will ensure appropriate signal levels for the encoder signals ENCx in all use cases and limits the current to about 5 mA.

Figure 13 Encoder Line Receiver (differential signals) and hall interface

Figure 6 shows the connection of the encoder/hall signals available at the ACT satellite connector.

Table 6 Encoder / hall signals at the ACT Satellite Connector

Pin No.	Signal Name	Description
30	ENCEN#	enable signal for the encoder line receiver (active low)
4	ENCA	Encoder channel A
6	ENCB	Encoder channel B
8	ENCI	Encoder channel I

3 Production Data

3.1 Schematics

This chapter contains the schematics for the General Purpose Motor Drive Card (MOT_GPDLV-V2):

- Figure 14: Satellite Connector, Power Supply
- Figure 15: Gate Driver, Power Stage, Shunt Amplifier, Motor Connector
- Figure 16: Resolver, Encoder, Hall Connector

Figure 14 Satellite Connector, Power Supply

Figure 15 Gate Driver, Power Stage, Shunt Amplifier, Motor Connector

Figure 16 Resolver, Encoder, Hall Connector

Revision 1.0, 2012-09-21

3.2 Components Placement and Geometry

Figure 17 Components Placement and Geometry

3.3 List of Material

The list of material is valid for a certain assembly version for the General Purpose Motor Drive Card. This version is stated in the header of the Table 7. The assembly version number can be identified by the board identification code printed on the PCB. The last digit field "002" of the board identification codes "MOT_GPDLV-V2-002" is representing the assembly version. If there is no assembly version number printed on the PCB (white empty field) than the PCB has the assembly version number 1.

The only difference between both assembly version 1 and 2 is the value of the resistor R322. In version 1 it is 100 k Ω , whereas in assembly version 2 R322 is 3.3 k Ω .

Table 7 List of Material for General Purpose Motor Drive Card (MOT_GPDLV-V2-002)

SI. No.	Qty	Value	Device	Reference Designator
1	3	0R/0603	Resistor	R254, R408, R409
2	4	OR010/2010	Shunt	RS310, RS311, RS312, RS313
3	7	1k/0603	Resistor	R345, R355, R365, R375, R447, R448, R449
				R341, R342, R351, R352, R361, R362, R371,
4	8	1k1/0603	Resistor	R372
5	2	1k8/0603	Resistor	R210, R244
6	2	1k24/0603	Resistor	R413, R426
7	5	1uF/0603	Capacitor	C301, C302, C303, C410, C412
8	4	2k2/0603	Resistor	R416, R417, R429, R430
9	3	3R3/0603	Resistor	R302, R303, R304
10	1	3k3/0603	Resistor	R322
11	4	4k99/0603	Resistor	R400, R401, R404, R405
12	4	5k1/0603	Resistor	R331, R333, R335, R337
13	1	6ED003L02-F2	Gate Driver 6ED003L02-F2	U300
14	1	6k8/0603	Resistor	R212
15	1	8k25/0603	Resistor	R232
				R300, R305, R339, R410, R411, R423, R424,
16	8	10k/0603	Resistor	R443
17	1	10nF/0603	Capacitor	C310
				C249, C250, C252, C300, C343, C404, C405,
18	12	10uF/25V/0805	Capacitor	C407, C415, C416, C417, C444
19	6	13R/0603	Resistor	R310, R312, R314, R316, R318, R320
20	1	14k/0603	Resistor	R245
21	4	15k/0603	Resistor	R340, R350, R360, R370
22	3	15nF/0603	Capacitor	C440, C441, C442
				R419, R420, R421, R422, R432, R433, R434,
23	8	18R/1206	Resistor	R435
24	4	20R/0603	Resistor	R402, R403, R406, R407
25	4	20k/0603	Resistor	R414, R415, R427, R428
26	5	22k/0603	Resistor	R243, R344, R354, R364, R374
27	2	22nF/0603	Capacitor	C242, C304
28	2	22p/0603	Capacitor	C400, C401
29	1	22uF/25V/C	Capacitor unipolar	C232
30	4	33pF/0603	Capacitor	C341, C351, C361, C371
31	1	33uH/3.2A	Inductor IHLP-3232DZ-11	L240

Table 7 List of Material for General Purpose Motor Drive Card (MOT_GPDLV-V2-002)

SI. No.	Qty	Value	Device	Reference Designator
32	1	40k2/0603	Resistor	R338
33	1	41k2/0603	Resistor	R230
34	4	47k/0603	Resistor	R330, R332, R334, R336
35	2	47uF/E/50V/6.6	Capacitor unipolar	C230, C240
36	3	100R/0603	Resistor	R444, R445, R446
				C200, C202, C231, C241, C246, C247, C248,
				C253, C305, C342, C402, C403, C406, C414,
37	15	100nF/0603	Capacitor	C443
38	2	100pF/0603	Capacitor	C411, C413
39	1	100uF/T/10V/C	Capacitor unipolar	C245
40	3	120R/0603	Resistor	R440, R441, R442
41	1	220nF/0603	Capacitor	C243
42	1	330uF/50V/10.0	Capacitor unipolar	C311
43	2	442R/0603	Resistor	R412, R425
44	1	470pF/0603	Capacitor	C244
45	1	680R/0603	Resistor	R211
46	1	ADS1205	Delta-Sigma Modulator	U400
47	1	AM26LV32EIPW	Differential Line Receiver	U440
48	2	B340A-13-F	Schottky Diode	V241, V242
49	2	BC807-40	Transistor	Q411, Q413
50	2	BC817K-40	Transistor	Q410, Q412
51	1	BLM18PG600	Inductor	L241
			Infineon OptiMOS3 Power-	
52	6	BSC031N06NS3G	Transistor	Q310, Q311, Q312, Q313, Q314, Q315
53	1	BUCHSE-LP-5A	Power Plug	X240
54	3	DFLU1400	Diode	V300, V301, V302
55	1	ENCODER	Connector	X441
56	3	FIDUCIAL	FIDUCIAL	ADJ_1, ADJ_2, ADJ_3
57	1	HSEC8-140-01-S-RA	SAMTEC 80-pin connetor	X200
58	1	IFX1763SJV33	Voltage Regulator	U250
59	1	IFX91041EJV	Voltage Regulator	U240
60	3	LED-GN/D/0603	LED green	V210, V211, V212
61	1	LMV321DBV	OpAmp	U310
62	1	MKDS1/3-3,81	PHOENIX Connector	X300
63	1	MPT0,5/5-2,54	PHOENIX Connector	X440
64	1	MPT0,5/6-2,54	PHOENIX Connector	X400
65	1	OPA2347EA	OpAmp	U401
66	1	OPA4830IPW	OpAmp	U340
67	1	TL084CPW	OpAmp	U410
68	1	TLE4276-2DV	Voltage Regulator	U230
69	1	no ass./0R/0603	Resistor	R253
70	2	no ass./1k2/0603	Resistor	R418, R431

MOT_GPDLV-V2 General Purpose Motor Drive Card

Table 7 List of Material for General Purpose Motor Drive Card (MOT_GPDLV-V2-002)

SI. No.	Qty	Value	Device	Reference Designator
71	1	no ass./10nF/0603	Capacitor	C251
72	4	no ass./22k/0603	Resistor	R343, R353, R363, R373
73	4	no ass./0603	Capacitor	C340, C350, C360, C370
74	7	no ass./0603	Resistor	R301, R311, R313, R315, R317, R319, R321
75	1	no ass./0805	Resistor	R246
76	1	3-pin header	PowerScale Connector	JP242
77	1	0402	Solder Jumper	SJ1
78	5	no assembly	SMD Pads	TP201, TP210, TP211, TP212, TP213

www.infineon.com