1. Тип 13 № 2231

Маской подсети называется 32-разрядное двоичное число, которое определяет, какая часть IP-адреса компьютера относится к адресу сети, а какая часть IP-адреса определяет адрес компьютера в подсети. В маске подсети старшие биты, отведенные в IP-адресе компьютера для адреса сети, имеют значение 1; младшие биты, отведенные в IP-адресе компьютера для адреса компьютера в подсети, имеют значение 0.

Если маска подсети 255.255.255.224 и IP-адрес компьютера в сети 162.198.0.157, то порядковый номер компьютера в сети равен

2. Тип 13 № <u>2232</u>

Маской подсети называется 32-разрядное двоичное число, которое определяет, какая часть IP-адреса компьютера относится к адресу сети, а какая часть IP-адреса определяет адрес компьютера в подсети. В маске подсети старшие биты, отведенные в IP-адресе компьютера для адреса сети, имеют значение 1; младшие биты, отведенные в IP-адресе компьютера для адреса компьютера в подсети, имеют значение 0.

Если маска подсети 255.255.255.192 и IP-адрес компьютера в сети 10.18.134.220, то номер компьютера в сети равен

3. Тип 13 № <u>2234</u>

Маской подсети называется 32-разрядное двоичное число, которое определяет, какая часть IP-адреса компьютера относится к адресу сети, а какая часть IP-адреса определяет адрес компьютера в подсети. В маске подсети старшие биты, отведенные в IP-адресе компьютера для адреса сети, имеют значение 1; младшие биты, отведенные в IP-адресе компьютера для адреса компьютера в подсети, имеют значение 0.

Если маска подсети 255.255.248.0 и IP-адрес компьютера в сети 112.154.133.208, то номер компьютера в сети равен

4. Тип 13 № 2235

Маской подсети называется 32-разрядное двоичное число, которое определяет, какая часть IP-адреса компьютера относится к адресу сети, а какая часть IP-адреса определяет адрес компьютера в подсети. В маске подсети старшие биты, отведенные в IP-адресе компьютера для адреса сети, имеют значение 1; младшие биты, отведенные в IP-адресе компьютера для адреса компьютера в подсети, имеют значение 0.

Если маска подсети 255.255.224.0 и IP-адрес компьютера в сети 206.158.124.67, то номер компьютера в сети равен

5. Тип 13 № <u>2236</u>

В терминологии сетей ТСР/IP маской подсети называется 32-разрядное двоичное число, определяющее, какие именно разряды IP-адреса компьютера являются общими для всей подсети – в этих разрядах маски стоит 1. Обычно маски записываются в виде четверки десятичных чисел - по тем же правилам, что и IP-адреса. Для некоторой подсети используется маска 255.255.254.0. Сколько различных адресов компьютеров теоретически допускает эта маска, если два адреса (адрес сети и широковещательный) не используют?

6. Тип 13 № <u>2237</u>

В терминологии сетей ТСР/IP маской подсети называется 32-разрядное двоичное число, определяющее, какие именно разряды IP-адреса компьютера являются общими для всей подсети - в этих разрядах маски стоит 1. Обычно маски записываются в виде четверки десятичных чисел - по тем же правилам, что и IP-адреса. Для некоторой подсети используется маска 255.255.255.192. Сколько различных адресов компьютеров теоретически допускает эта маска, если два адреса (адрес сети и широковещательный) не используют?

7. Тип 13 № <u>3541</u>

В терминологии сетей TCP/IP маской подсети называется 32-разрядное двоичное число, определяющее, какие именно разряды IP-адреса компьютера являются общими для всей подсети – в этих разрядах маски стоит 1. Обычно маски записываются в виде четверки десятичных чисел – по тем же правилам, что и IP-адреса. Для некоторой подсети используется маска 255.255.248.0. Сколько различных адресов компьютеров допускает эта маска?

Примечание. На практике для адресации компьютеров не используются два адреса: адрес сети и широковещательный адрес.

8. Тип 13 № <u>3783</u>

В терминологии сетей ТСР/IP маской подсети называется 32-разрядное двоичное число, определяющее, какие именно разряды IP-адреса компьютера являются общими для всей подсети - в этих разрядах маски стоит 1. Обычно маски записываются в виде четверки десятичных чисел - по тем же правилам, что и IP-адреса. Для некоторой подсети используется маска 255.255.255.128. Сколько различных адресов компьютеров теоретически допускает эта маска, если два адреса (адрес сети и широковещательный) не используют?

9. Тип 13 № <u>3784</u>

Если маска подсети 255.255.252.0 и IP-адрес компьютера в сети 226.185.90.162, то номер компьютера в сети равен

10. Тип 13 № 3785

В терминологии сетей ТСР/IP маской подсети называется 32-разрядное двоичное число, определяющее, какие именно разряды IP-адреса компьютера являются общими для всей подсети - в этих разрядах маски стоит 1. Обычно маски записываются в виде четверки десятичных чисел - по тем же правилам, что и IP-адреса. Для некоторой подсети используется маска 255.255.255.224. Сколько различных адресов компьютеров теоретически допускает эта маска, если два адреса (адрес сети и широковещательный) не используют?

11. Тип 13 № 3786

Если маска подсети 255.255.240.0 и IP-адрес компьютера в сети 232.126.150.18, то номер компьютера в сети равен_____

12. Тип 13 № 16815

В терминологии сетей ТСР/IP маской сети называется двоичное число, определяющее, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого места — нули. Обычно маска записывается по тем же правилам, что и IP-адрес, — в виде четырёх байтов, причём каждый байт записывается в виде десятичного числа. Адрес сети получается в результате применения поразрядной конъюнкции к заданному IP-адресу узла и маске.

Например, если IP-адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.

Для узла с IP-адресом 98.162.71.94 адрес сети равен 98.162.71.64. Чему равно наибольшее количество возможных адресов в этой сети?

Примечание. Адрес сети и широковещательный адрес необходимо учитывать при подсчёте.

13. Тип 13 № <u>16888</u>

В терминологии сетей TCP/IP маской сети называется двоичное число, определяющее, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого места — нули. Обычно маска записывается по тем же правилам, что и IP-адрес, — в виде четырёх байтов, причём каждый байт записывается в виде десятичного числа. Адрес сети получается в результате применения поразрядной конъюнкции к заданному IP-адресу узла и маске.

Например, если IP-адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.

Для узла с IP-адресом 98.162.71.94 адрес сети равен 98.162.71.64. Чему равно наименьшее количество возможных адресов в этой сети?

Примечание. Адрес сети и широковещательный адрес необходимо учитывать при подсчёте.

14. Тип 13 № <u>60255</u>

В терминологии TCP/IP маской сети называют двоичное число, которое показывает, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу узла в этой сети. Адрес сети получается в результате применения поразрядной конъюнкции к заданному адресу узла и маске сети. Сеть задана IP-адресом 192.168.32.160 и маской сети 255.255.255.240. Сколько в этой сети IP-адресов, для которых сумма единиц в двоичной записи IP-адреса чётна?

В ответе укажите только число.

15. Тип 13 № <u>64898</u>

В терминологии сетей ТСР/IP маской сети называется двоичное число, определяющее, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого места — нули.

Адрес сети получается в результате применения поразрядной конъюнкции к заданному ІР-адресу узла и маске.

Например, если IP-адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.

Узлы с IP-адресами 114.91.57.39 и 114.91.19.61 находятся в одной сети. Укажите наименьшее возможное количество принадлежащих этой сети IP-адресов, в двоичной записи которых чётное число единиц.

16. Тип 13 № 64943

В терминологии сетей ТСР/IP маской сети называется двоичное число, определяющее, какая часть IP-адреса узла сети относится к адресу сети, а какая — к адресу самого узла в этой сети. При этом в маске сначала (в старших разрядах) стоят единицы, а затем с некоторого места — нули.

Адрес сети получается в результате применения поразрядной конъюнкции к заданному ІР-адресу узла и маске.

Например, если IP-адрес узла равен 231.32.255.131, а маска равна 255.255.240.0, то адрес сети равен 231.32.240.0.

Узлы с IP -адресами 202.3.20.24 и 202.3.27.11 находятся в одной сети. Укажите наименьшее возможное количество принадлежащих этой сети IP-адресов, в двоичной записи которых чётное число единиц.