

Building a Reproducible Model Workflow Cont.

Train, Validation and Experiment Tracking

01

02

Decision TreeIntroduction, Mathematical Foundations

Evaluation Metrics

Best practices, threshold and ranking metrics

An inference pipeline is an ML pipeline that contains everything that needs to run in production at inference time: a pre-processing step that transforms the data input to the data expected by the model, and then the model

03

04

Implementing Pipelines From MLOps 0 to 1

Test Evaluation

Previously on lessons

Decision Trees

How can we split the tree?

Algorithm used in Decision Trees

- 1. ID3 (Entropy)
- 2. Gini Index
- 3. Chi-Square
- 4. Reduction in Variance
 - a. C4.5, pruning
- 5. ..

COMPLETE

Entropy is an indicator of how messy your data is.

Why Entropy in Decision Trees?

- The goal is to tidy the data.
- You try to separate your data and group the samples together in the classes they belong to.
- You maximize the purity of the groups as much as possible each time you create a new node of the tree
- Of course, at the end of the tree, you want to have a clear answer.

Mathematical Definition of Entropy

Suppose a set of N items, these items fall into two categories:

$$+ gain > 50k(k)$$

$$p = rac{k}{N}, q = rac{m}{N} \ Entropy = -p \log p - q \log q$$

Generalization

Feature X
$$E(X) = -\sum_{i=1}^{c} P(X_i) \log_b P(X_i)$$

$$P(X_i) \text{ is the fraction of examples in a given class i}$$

<= 50k. 17288 > 50k. 5487 from scipy.stats import entropy
entropy(df_train.high_income.value_counts(), base=2)
0.7965702796015677

Entropy using the frequency table of two attributes

$$E(T \mid X) = \sum_{c \in X} \frac{|X_{c}|}{|X|} E(T \mid X_{c})$$

```
0.486894 * entropy(cross.iloc[0], base=2) \
+ 0.513106 * entropy(cross.iloc[1], base=2)
0.7509335429830957
```


Information Gain

IG (T,X) = E(T) - E(T|X)Information Gain from X on T The information gain is based on the decrease in entropy after a dataset is split on an attribute.

Constructing a decision tree is all about finding attribute that returns the **highest information gain** (i.e., the most homogeneous branches).

Gini(x) = 1 -
$$\sum_{i=1}^{c} P(x_i)^2$$

Entropy(x) = - $\sum_{i=1}^{c} P(x_i) \log_b P(x_i)$

Gini index or Entropy is the criterion for calculating **Information Gain**. Both of them are measures of impurity of a node.

from sklearn.tree import plot_tree

Taxonomy of Classifier Evaluation Metrics

Threshold Metrics

Ratio when a predicted class does not match

Accuracy, Error, Sensitivity, Specificity, G-mean, precision, recall, Abeta-measure

Ranking Metrics

Based on score of class membership and variations of thresholds to measure the effectiveness of classifiers.

> ROC Curve, ROC AUC, Precision-Recall Curve

Probability Metrics

Quantify the uncertainty in a classifier's prediction

> Log-Loss Brier Score

Confusion Matrix

Expected

Positive Class (1)

Negative Class (0)

Э

class (0)

Negative

Predicted

True Positive (TP) Predicted

False Positive (FP)

Predicted Expected

True Negative (TN)

Predicted

00

TP + TN Accuracy = TP + FN + FP + TN

Error = 1 - Accuracy

False Negative (FN)

Predicted

Expected

Expected

Confusion Matrix

Expected

Positive Class (1)

Negative Class (0)

Positive class

Predicted
Vegative class (0) Positi

True Positive (TP)

Predicted Expected

False Negative (FN)

Expected

Predicted

False Positive (FP)

Predicted Expected

Specificity = $\frac{TN}{FP + TN}$

Sensitivity =

G-mean = Sensitivity X Specificity

Confusion Matrix

Expected

Positive Class (1)

Negative Class (0)

Predicted

Э

Recall =
$$\frac{TP}{TP + FN}$$

Predicted

Confusion Matrix

Expected

Positive Class (1)

Negative Class (0)

False Negative (FN)

Predicted Expected

O
O

$$\beta == \begin{cases} 0.5, & \text{more weight on precision} \\ 1.0, & \text{balance on weight} \\ & \text{PR and RE} \\ 2.0, & \text{less weight on precision} \end{cases}$$

Rank metrics are more concerned with evaluating classifiers based on **how effective** they are at separating classes.

These metrics require that a **classifier predicts a score** or a probability of class membership. From this score, **different thresholds** can be applied to **test the effectiveness of classifiers**. Those models that maintain a good score across a range of thresholds will have good class separation and will be ranked higher.

False Positive Rate

$$PPR = \frac{PP}{PP + TN}$$

Predicted

True Negative (TN) Predicted

Expected

Expected

Precision-Recall (PR) Curve

Case Study - Hands on

Final Stage

