Calculus A(1): Homework 5

November 19, 2021

2.6

39.

For what value of a is

$$f(x) = \begin{cases} x^2 - 1, & x < 3\\ 2ax, & x \ge 3 \end{cases}$$

continuous at every x?

Solution

Polynomials P(x) are continuous at every x. Thus, it does only require f(x) to be continuous at x = 3 for f to be continuous in \mathbb{R} .

$$\lim_{x \to 3} f(x) = f(3)$$

$$\Leftrightarrow \lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = f(3)$$

Given $f(x) = x^2 - 3, x < 3$, thus

$$\lim_{x \to 3^{-}} f(x) = 3^{2} - 1 = 8 = f(3) = 2a(3)$$

Hence a = 4/3.

46.

Explain why the equation $\cos x = x$ has at least one solution.

Solution

Let
$$y = f(x) = \cos x - x$$
, and consider $x \in [0, \frac{\pi}{2}]$.
Clearly, f is continuous over $[0, \frac{\pi}{2}]$, and $f(0) = 1, f(\frac{\pi}{2}) = -\frac{\pi}{2}$.
 $f(0) > 0 > f(\frac{\pi}{2})$, so by intermediate value theorem, $\exists x_0 \in (0, \frac{\pi}{2})$ such that $f(x_0) = 0$.

59.

A fixed point theorem Suppose that a function f is continuous on the closed interval [0,1] and that $0 \le f(x) \le 1$ for every x in [0,1]. Show that there must exist a number c in [0,1] such that f(c) = c (c is called a **fixed point** of f).

Solution

a := f(0), b := f(1)If a = 0, then c = 0 is a possible solution. If b = 1, then c = 1 is a possible solution. Else, we have 0 < a, b < 1g(x) := f(x) - x. Then g(0) = a > 0 and g(1) = b - 1 < 0, thus g(0) > 0 > g(1). By intermediate value theorem, $\exists c \in (0,1)$ such that g(c) = 0.

60.

The sign-preserving property of continuous functions Let f be defined on an interval (a, b) and suppose that $f(c) \neq 0$ at some c where f is continuous. Show that there is an interval $(c - \delta, c + \delta)$ about c where f has the same sign as f(c). Notice how remarkable this conclusion is. Although f is defined throughout (a, b), it is not required to be continuous at any point except c. That and the condition $f(c) \neq 0$ are enough to make f different from zero (positive or negative) throughout an entire interval.

Solution

f is continuous at x = c, i.e.

$$(\forall \epsilon > 0)(\exists \delta > 0)(|x - c| < \delta \rightarrow |f(x) - f(c)| < \epsilon)$$

Choose $\epsilon = \frac{|f(c)|}{2}$. Then we have

$$-\frac{|f(c)|}{2} + f(c) < f(x) < \frac{|f(c)|}{2} + f(c)$$

- 1. f(c) < 0. Then $\frac{3}{2}f(c) < f(x) < \frac{1}{2}f(c) < 0$.
- 2. f(c) > 0. Then $0 < \frac{1}{2}f(c) < f(x) < \frac{3}{2}f(c)$.

2.7

33.

Does the graph of

$$f(x) = \begin{cases} -1, & x < 0 \\ 0, & x = 0 \\ 1, & x > 0 \end{cases}$$

has a vertical tangent at the origin? Give reasons for your answer.

Solution

With the given function f, we have

$$\lim_{\Delta x \to 0^-} \frac{f(\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0^-} \frac{-1}{\Delta x} = +\infty, \lim_{\Delta x \to 0^+} \frac{f(\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{1}{\Delta x} = +\infty$$

Hence

$$\lim_{\Delta x \to 0} \frac{f(\Delta x) - f(0)}{\Delta x} = +\infty,$$

the graph of f(x) has a vertical tangent at x = 0, and it is the y-axis.

43.

$$y = \begin{cases} -\sqrt{|x|}, & x \le 0\\ \sqrt{x}, & x > 0 \end{cases}$$

- (a) Graph the curve. Where does the graph appear to have vertical tangents?
- (b) Confirm your findings in part(a) with limit calculations. But before you do, read the introduction to Exercise 33 and 34.

Solution

(a) The graph appears to have a vertical tangent at x = 0.

$$\lim_{\Delta x \to 0^-} \frac{y|_{x=\Delta x} - y|_{x=0}}{\Delta x} = \lim_{\Delta x \to 0^-} \frac{-\sqrt{|\Delta x|}}{\Delta x} = \lim_{\Delta x \to 0^-} \sqrt{\frac{-\Delta x}{(-\Delta x)^2}} = +\infty$$

$$\lim_{\Delta x \to 0^+} \frac{y|_{x = \Delta x} - y|_{x = 0}}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{\sqrt{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0^+} \sqrt{\frac{\Delta x}{(\Delta x)^2}} = +\infty$$

 $\text{(i)} \land \text{(ii)} \Rightarrow \lim_{\Delta x \to 0} \frac{y|_{x = \Delta x} - y|_{x = 0}}{\Delta x} = +\infty \Rightarrow \text{The graph has a vertical tangent at } x = 0.$

2. Additional and Advanced Exercises

19.

Antipodal points Is there any reason to believe that there is always a pair of antipodal (diametrically oppositive) points on Earth's equator where the temperatures are the same? Explain.

Solution

Surface temperature of the Earth can be considered as a scalar field on a sphere.

Assume \vec{r} and $-\vec{r}$ as a pair of antipodal points on the Earth, where $\vec{0}$ is the positional center of earth. Define f as the "directed" temperature difference between the antipodal points, i.e. $f(\vec{r}) = T(\vec{r}) - T(-\vec{r})$, where $T(\vec{r})$ is the surface temperature of position \vec{r} .

Let $d = f(\vec{r_0})$, where r_0 is arbitary position on Earth. Then for its antipodal point, $f(-\vec{r}) = -d$ As temperature is continuous on every position \vec{r} , the range of f includes positive and negative real numbers. By intermediate theorem, $\exists \vec{r_1}$ such that $f(\vec{r_1}) = 0$.

18.

The Dirichlet ruler function If x is a rational number, then x can be written in a unique way as a quotient of integers m/n where n > 0 and m and n has no common factors greater than 1. (We say that such a fraction is in *lowest terms*. For example, 6/4 wirtten in lowest terms is 3/2.) Let f(x) be defined for all x in the interval [0,1] by

$$f(x) = \begin{cases} 1/n, & \text{if } x = m/n \text{ is a rational number in lowest terms} \\ 0, & \text{if } x \text{ is irrational.} \end{cases}$$

For instance, f(0) = f(1) = 1, f(1/2) = 1/2, f(1/3) = f(2/3) = 1/3, f(1/4) = f(3/4) = 1/4, and so on.

- **a.** Show that f is discontinuous at every rational number in [0,1].
- **b.** Show that f is continuous at every irrational number in [0,1]. (Hint: If ϵ is a given positive number, show that there are only finitely many rational numbes r in [0,1] such that $f(r) \ge \epsilon$.)
- **c.** Sketch the graph of f. Why do you think f is called the "ruler function"?

Solution

a. Proof:

Assume $\exists q \in \mathbb{Q}$ such that f is continuous at x = q. Let q = m/n. Then

$$(\forall \epsilon > 0)(\exists \delta > 0)(|x - q| < \delta \rightarrow |f(x) - f(q)| < \epsilon)$$

Choose $\epsilon = 1/(2n)$, and x be a irrational number in the δ -neighborhood of q. Then,

$$|f(x)-f(q)|=|\frac{1}{n}|>\frac{1}{2n}=\epsilon$$

Hence such q does not exist.

b. Proof:

Let $x \in \mathbb{R} \setminus \mathbb{Q}$.

Let $M \in \mathbb{N}^*$ ($\forall \epsilon > 0$)($\exists N \in \mathbb{N}^*$)($\frac{1}{N} < \epsilon$). Let $M = \{q \in \mathbb{Q} : f(q) > \epsilon\}$, where N is the smallest positive integer such that $\frac{1}{N} < \epsilon$

$$|M| = 1 + \sum_{i=2}^{N} \varphi(i),$$

where $\varphi(n)$ is Euler's totient function.(number of positive integers less than n and coprime with n) Let $q_i \in M(1 \le i \le |M|)$.

Let $\delta = \min\{|x - q_i| : q_i \in M\}$ Hence, $\neg(\exists q \in \mathbb{Q})(|x - q| < \delta \land |f(q)| \ge \epsilon)$

c. The graph of f is shown below.

The graph looks like the markings on a ruler, when line segments with ends of (x,0) and (x,f(x))are constructed.