Name:	Roll #:	Section:

National University of Computer and Emerging Sciences, Lahore Campus

SOERIOES SOE	Course: Program: Duration: Paper Date: Section:	Design and Analysis of Algorithms BS(Computer Science) 90 Minutes 3-Feb-21 ALL	Course Code: Semester: Total Marks: Weight Page(s):	CS302 Fall 2020 18 12.5% 5
Salita & EMERGINGS	Section:	ALL	Page(s):	5
The same of the sa	Exam:	Midterm 2		

Instruction/Notes: Attempt the examination on the question paper and write concise answers. You can use extra sheet for rough work. Do not attach extra sheets used for rough with the question paper. Don't fill the table titled Questions/Marks.

Question	1	2	3	Total
Marks	/ 5	/5	/8	/18

Q1) In a twist to the fractional Knapsack problem, we allow the repetition of i.e. we can use any number of copies of a certain element if we wish. What will be the new greedy algorithm for this modified fractional knapsack? Give a pseudo-code. [5 Marks]

Name:			_			Section:				
Q2) Dry run the dynamic programming algorithm to find the Max Sub-array Sum of the following										
input array, A:										
10	50	60	150	20	00	10		100		1
-10	50	60	-150	20	80	-10	-5	100	-5	
In array S, fill into S[i]: the optimal sum of a subarray ending at A[i]. In array P, fill into P[i]: the starting index of the optimal array ending at A[i] [5 Marks] Solution:										
Solution	ı.									
S[]										
	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>			1
]
P[]										

Name: Rol Q3) Given a directed graph G (V,E), we might w	l #:	Section:
Q3) Given a directed graph G (V,E), we might we from i to j for all vertex pairs $(i, j) \in V$. We define		
where $E^* = \{(i, j) \text{ there is a path from vertex} \}$	x i to vertex j in G}.	
In other words you want to find out for each verte efficient algorithm that computes the transitive cle		
a) Briefly explain your algorithm in English.		
b) Write pseudo code of your algorithm		
b) write pseudo code or your argorithm		
c) Analyze its worst case time complexity.		