

DTIC FILE COPY

(1)

ACT Research Report Series

87-17

AD-A196 674

The Effect of Item Parameter Estimation Error on Decisions Made Using the Sequential Probability Ratio Test

Research Report ONR 87-1

**Judith A. Spray
Mark D. Reckase**

Prepared under Contract No. N00014-85-C-0241, Contract Authority
Identification No. NR 154-531, with the Cognitive Science Research Program of
the Office of Naval Research.

Approved for public release; distribution unlimited. Reproduction in whole or in
part is permitted for any purpose of the United States Government.

September 1987
October

DTIC
ELECTE
S JUL 07 1988 **D**
H

ACT.

Best Available Copy

2004 0323 024

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS	
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for public release: distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government	
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE		5. MONITORING ORGANIZATION REPORT NUMBER(S)	
4. PERFORMING ORGANIZATION REPORT NUMBER(S) ONR 87-1			
6a. NAME OF PERFORMING ORGANIZATION ACT	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION COGNITIVE SCIENCE RESEARCH PROGRAMS OFFICE OF NAVAL RESEARCH	
6c. ADDRESS (City, State, and ZIP Code) P.O. Box 168 Iowa City, IA 52243		7b. ADDRESS (City, State, and ZIP Code) Code 1142CS Arlington, VA 22217-5000	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER N00014-85-C-0241	
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF FUNDING NUMBERS	
		PROGRAM ELEMENT NO. 61153N	PROJECT NO. RR04204
		TASK NO. RR0420401	WORK UNIT ACCESSION NO. NR153-531
11. TITLE (Include Security Classification) The effect of item parameter estimation error on decisions made using the sequential probability ratio test			
12. PERSONAL AUTHOR(S) Judith A. Sprav, Mark D. Reckase			
13a. TYPE OF REPORT Technical	13b. TIME COVERED FROM _____ TO _____	14. DATE OF REPORT (Year, Month, Day) 1987, October	15. PAGE COUNT 26
16. SUPPLEMENTARY NOTATION			
17. COSATI CODES		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Adaptive testing Sequential probability ratio tests Item response theory alpha beta Latent trait theory	
19. ABSTRACT (Continue on reverse if necessary and identify by block number) → A series of computer simulations were performed in order to observe the effects of item response theory (IRT) item parameter estimation error on decisions made using an IRT-based sequential probability ratio test. Specifically, the effects of such error on misclassification rates and the average number of items required for either a mastery (pass) or nonmastery (fail) decision were observed under varied SPRT conditions. These conditions include the <u>a priori</u> or nominal type I (α) and type II (β) error rates, the simple hypotheses tested by the SPRT procedure, and the composition of the item pool (specifically the a , b and c parameters which characterized the items according to a three-parameter logistic model) used to administer the SPRT. The results of these simulations showed that these SPRT decisions are not greatly affected by this particular level of error in parameter estimates modeled in this study. Misclassification error rates were slightly greater when estimation error in the item parameters was present, but such differences appear to be negligible. <i>Keynote: adaptive testing, (KP) ←</i>			
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT. <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED	
22a. NAME OF RESPONSIBLE INDIVIDUAL Dr. Charles Davis		22b. TELEPHONE (Include Area Code) (202) 696-4046	22c. OFFICE SYMBOL ONR 1142CS

**THE EFFECT OF ITEM PARAMETER ESTIMATION ERROR
ON DECISIONS MADE USING THE
SEQUENTIAL PROBABILITY RATIO TEST**

Judith A. Spray
Mark D. Reckase

Approved for public release; distribution unlimited. Reproduction in whole or
in part is permitted for any purpose of the United States Government.

ABSTRACT

A series of computer simulations were performed in order to observe the effects of item response theory (IRT) item parameter estimation error on decisions made using an IRT-based sequential probability ratio test. Specifically, the effects of such error on misclassification rates and the average number of items required for either a mastery (pass) or nonmastery (fail) decision were observed under varied SPRT conditions. These conditions included the a priori or nominal type I (α) and type II (β) error rates, the simple hypotheses tested by the SPRT procedure, and the composition of the item pool (specifically the a, b and c parameters which characterized the items according to a three-parameter logistic IRT model) used to administer the SPRT. The results of these simulations showed that these SPRT decisions are not greatly affected by this particular level of error in parameter estimates modeled in this study. Misclassification error rates were slightly lower and average numbers of items required for a decision were slightly greater when estimation error in the item parameters was present, but such differences appear to be negligible.

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/	
Availability Codes	
Dist	Avail. and/or Special
A-1	

**The Effect of Item Parameter Estimation Error on Decisions
Made Using the Sequential Probability Ratio Test**

Wald's (1947) sequential probability ratio testing (SPRT) procedure has been proposed as a technique for making pass-fail or mastery-nonmastery decisions in adaptive testing situations (Reckase, 1983). The SPRT was originally proposed by Wald in order to decide between two simple hypotheses, H_0 and H_1 , or

$$H_0: \theta = \theta_0$$

vs.

$$H_1: \theta = \theta_1,$$

where θ is an unknown parameter of the distribution of some random variable, X . In a cognitive testing situation, the random variable, X , is the response to a test item and is usually assumed to be a dichotomous response, correct or incorrect.

In the case of cognitive testing, the random variable, X , is assumed to follow a binomial distribution. If $P(\theta_i)$ is the probability that examinee i will respond correctly to any item and $Q(\theta_i) = 1 - P(\theta_i)$ is the probability of an incorrect response from examinee i , then (for any single item) the random variable, X , represents a single Bernoulli trial and is distributed as $\text{bin}[P(\theta_i), 1]$. Then, let

$$\pi(\theta_i) = \text{Prob } (X = x | \theta = \theta_i) = P(\theta_i)^x Q(\theta_i)^{1-x}$$

where

$$x = \begin{cases} 1, & \text{correct response} \\ 0, & \text{incorrect response} \end{cases} .$$

For any single item, the probability of observing $\underline{x} = \underline{x}$ under the alternative hypothesis is $\pi(\theta_1)$. Under the null hypothesis, this probability is $\pi(\theta_0)$. The functions, $\pi(\theta_1)$ and $\pi(\theta_0)$ are called likelihood functions of \underline{x} . A ratio of these two functions, $L(\underline{x}) = \pi(\theta_1)/\pi(\theta_0)$, is called a likelihood ratio.

Two error probabilities, α and β , can be defined, where

$$\text{Prob } (\text{choosing } H_1 | H_0 \text{ is true}) = \alpha$$

and

$$\text{Prob } (\text{choosing } H_0 | H_1 \text{ is true}) = \beta .$$

Wald (1947) defined two likelihood ratio boundaries using inequalities which involved these error probabilities. These boundaries are A and B where

$$\text{lower boundary} = B \geq \beta/(1-\alpha)$$

and

$$\text{upper boundary} = A \leq (1-\beta)/\alpha .$$

According to Wald's SPRT, trials or items would be observed in sequence, $\underline{x}_1, \underline{x}_2, \dots, \underline{x}_n$, and following each observation, the likelihood ratio, $L(\underline{x}_1, \underline{x}_2, \dots, \underline{x}_n)$, would be computed, where

$$L(\underline{x}_1, \underline{x}_2, \dots, \underline{x}_n) = \frac{\pi_1(\theta_1) \cdot \pi_2(\theta_1) \cdots \pi_n(\theta_1)}{\pi_1(\theta_0) \cdot \pi_2(\theta_0) \cdots \pi_n(\theta_0)} .$$

The likelihood function then would be compared to the boundaries, A and B. If

$$L(\underline{x}_1, \underline{x}_2, \dots, \underline{x}_n) \geq A,$$

then H_1 is accepted. If

$$L(\underline{x}_1, \underline{x}_2, \dots, \underline{x}_n) \leq B,$$

then H_0 is accepted. If

$$B < L(\underline{x}_1, \underline{x}_2, \dots, \underline{x}_n) < A,$$

then another trial is observed, or in the case of cognitive testing, another item is administered.

Once α , β and the hypotheses are set prior to testing, the stopping rules of the test (i.e., the boundaries) are defined. Although α and β are determined prior to observing \underline{x} , where $\underline{x} = (\underline{x}_1 \underline{x}_2 \dots \underline{x}_n)$, Wald (1947) pointed out that the actual error rates observed in practice, α^* and β^* , would be bounded from above by

$$\alpha^* \leq \alpha/(1-\beta)$$

and

$$\beta^* \leq \beta/(1-\alpha)$$

(see Wald, 1947, p. 46). This means that even though the nominal error probabilities, α and β , are established prior to testing, the actual error rates can be less than these nominal rates, or even greater than the nominal rates.

Reckase (1983) reported the results of computer simulation research of the SPRT procedure as it applied to tailored or computerized adaptive testing (CAT) for making mastery testing decisions. He noted that this research had three purposes: (1) to obtain information on how the SPRT procedure functioned when items were selected from the item pools on the basis of maximizing item information rather than on the basis of a simple random sampling procedure; (2) to gain experience in selecting values of θ_0 and θ_1 , assumed to be the two critical values of ability required to be classified as nonmaster or master, respectively; and (3) to obtain information on the effects of guessing on the accuracy of classification when the form of $P(\theta)$ was the one-parameter logistic IRT (item response theory) model but a three-parameter logistic model was used to determine the responses.

Reckase's first concern, (1) above, was that, in a given pool of test items, only a small portion of these items would be available for selection for a given examinee and that the selection of test items would be based on estimates of θ after the administration of, say n items. This is because the selection of the $n+1$ st item is dependent upon maximum item information at $\hat{\theta}_n$, $\max I(\hat{\theta})_n$, where

$$I(\hat{\theta}_n) = \frac{P'(\hat{\theta}_n)}{P(\hat{\theta}_n)Q(\hat{\theta}_n)},$$

and $P'(\hat{\theta}_n)$ is the derivative of $P(\theta)$ w.r.t. θ , evaluated at $\hat{\theta}_n$.

It would appear that this nonrandom selection process would not really be a problem because the stopping rule of the SPRT is determined by prior knowledge of α , β , θ_0 and θ_1 before the test even begins and because $L(x, x_2, \dots, x_n)$ is written as the product of the individual item likelihood ratios through the assumption of local independence of the x_i given θ_i .

However, a problem may occur when it is time to generalize the results of

the mastery/nonmastery decision-making process, as defined by the SPRT. In most mastery situations, it is desirable to generalize the results of a mastery test to the entire domain of objectives measured by the test, and this domain is usually represented by the entire item pool. If, however, items are selected on the basis of $\max I(\theta_n)$, then inferences made to the entire pool of items may be questionable. On the other hand, one could always claim that the inferences are actually being made or generalized to the ability level or the latent trait value (call it θ_c) required before an individual examinee can pass the criterion number of items in the item pool, $\pi(\theta_c)$.

Perhaps a more serious concern is the effect of assuming that the function, $P(\theta_i)$, is only a function of θ_i , and known item parameters. For the IRT models which would be assumed to define $P(\theta_i)$ explicitly, the item parameters are usually treated as known values in CAT administrations. The item pool contains values of these item parameters so that $L(x_1, x_2, \dots, x_n)$ and $I(\hat{\theta}_n)$ can be computed during the test. However, these values are, themselves, estimates of the true but unknown item parameters. The estimates have been obtained in calibration computer runs prior to the CAT administrations and are stored along with the actual items in the pool.

The present computer simulation study was designed to investigate the effects of item parameter estimation error on the characteristics of the SPRT procedure. In this first phase of a thorough investigation, a strict SPRT was administered, meaning that the test was not adaptive (i.e., θ was not estimated and items were not selected for administration based on $\max I(\theta)$).

The research question to be answered by these simulations was, "What are the effects on observed type I (α^*) and type II (β^*) error rates when an SPRT is administered from item pools which contain items whose parameters are estimates rather than known values?" A secondary interest was to observe the

effects of these conditions on the average number of test items required to make a classification decision at each value of θ (particularly at θ_0 and θ_1). This number, called the average sample number (ASN) is a function of the stopping rule of the tests (i.e., it is a function of α , β , θ_0 and θ_1).

Method

Two hundred eighty-eight computer simulations were completed on either an IBM PC or XT. These 288 simulations represented one combination of conditions from a $2 \times 4 \times 3 \times 3 \times 4$ completely crossed design. Each of these runs consisted of 1000 replications of an SPRT administered to all of 24 hypothetical examinees with ability, θ_i , ranging from -3.0 to +3.0, incremented by .25.

The research design conditions were (1) an estimation error condition, (2) composition of the item pools, (3) a priori type I error rate (α), (4) a priori type II error rate (β), and (5) hypotheses. It was assumed that the item pools contained items which interacted with each examinee according to a three-parameter logistic model (3-PLM) to produce a correct or incorrect response to each item.

Conditions

Estimation error. There were two levels of the estimation error condition, absent (E1) or present (E2). Under the absent level (E1), the item parameters from the items in the pools were considered to be known values, and each of the 24 hypothetical examinees in the simulations with ability, θ_i , responded to the items in the pool by comparing a deviate from a uniform distribution on the open interval, 0 to 1, with the $P(\theta_i)$ function given by the 3-PLM, abbreviated as P_i .

Under the present level, it was assumed that the item parameters were actually estimates derived from previous maximum likelihood estimation (MLE) calibrations on 2500 examinees with ability, θ , distributed as normal with mean zero and variance one. According to the notation used by Thissen and Wainer (1982), the maximum likelihood estimates of the set of item parameters, ξ , are those that are located where the partial derivatives of the log of the likelihood function, summed over N examinees, are zero. If ℓ is this sum, or

$$\ell = \sum_{i=1}^N x_i \log (P_i) + (1 - x_i) \log (1 - P_i),$$

then, again from Thissen and Wainer (1982) but written without the i subscript, these MLEs satisfy

$$\frac{\partial \ell}{\partial \xi} = \sum x_i \frac{\partial P}{\partial \xi} - \frac{(1 - x_i)}{(1 - P)} \frac{\partial P}{\partial \xi} = 0 \quad . \quad (1)$$

The inverse of the negative expected value of the matrix of second derivatives of the function, ℓ , is the asymptotic variance-covariance matrix of the estimates, ξ , obtained from the relationship given by (1). If the second partial derivatives of ℓ are written, in general, as $\frac{\partial^2 \ell}{\partial \xi_s \partial \xi_t}$, for any parameters, ξ_s and ξ_t , then

$$-E\left\{\frac{\partial^2 \ell}{\partial \xi_s \partial \xi_t}\right\} = N \int_{-\infty}^{\infty} \left(\frac{1}{P} \frac{\partial P}{\partial \xi_s} \frac{\partial P}{\partial \xi_t} + \frac{1}{(1 - P)} \frac{\partial P}{\partial \xi_s} \frac{\partial P}{\partial \xi_t} \right) \phi(\theta) d\theta, \quad (2)$$

where $\phi(\theta)$ is taken to be a normal density with zero mean and variance one (Thissen & Wainer, 1982). In other words, if Σ is the variance-covariance matrix of ξ , then Σ is defined by the inverse of the matrix whose elements are given by (2).

For the present level (E2) of the estimation error condition, it was assumed that the item parameters were actually estimates sampled from a multivariate normal distribution with mean vector ξ and variance-covariance matrix Σ , where ξ was given for the item pool used for a particular SPRT and Σ was computed from (2).

Item Pools. There were four types of item pools used in the simulations. The first three consisted of 500 identical items from a three-parameter logistic IRT model of the form,

$$P(\theta_i) = c + \frac{(1 - c)}{1 + \exp \{-1.7a(\theta_i - b)\}} . \quad (3)$$

For the first pool (I1), $a = 1$, $b = 0$, and $c = 0$ for all 500 items. Under the E1 condition, these identical items represented a simple SPRT with constant success probability, $P(\theta_i)$ for a given θ_i value. Under the E2 condition, the items were still administered in sequence but were no longer identical because each item represented a different set of item parameter estimates. For example, even though $a_1 = a_2 = \dots = a_{500}$, each a parameter represented an estimate, \hat{a}_j , where

$$\hat{a}_j = a + \varepsilon_{aj} ,$$

and ε_{aj} was a random deviate from a multivariate normal distribution with mean vector 0 and variance-covariance matrix Σ , defined previously.

For the second item pool (I2), $a = 1$, $b = 0$, and $c = .2$. For the third pool (I3), $a = 1.5$, $b = 0$, and $c = .2$. Again, under E1 these item parameters remained constant for all 500 items in a pool. However, under E2, item parameter values were assumed to be estimates ($a + \varepsilon_{aj}$, $b + \varepsilon_{bj}$, and $c + \varepsilon_{cj}$ with ε_{aj} , ε_{bj} , and ε_{cj} being random deviates as before).

For the fourth item pool (I4), the 500 sets of parameters were generated from a pseudo-random number generator with $a \sim U(.5, 2.5)$, $b \sim U(-3., 3.)$, and $c \sim U(.0, .2)$. This was called the random item pool.

Error Rate Conditions. Type I or α rates were .01 (A1), .05 (A2), and .10 (A3). Type II or β rates were also .01 (B1), .05 (B2), and .10 (B3).

Hypotheses. In a mastery testing situation, the usual practice is to establish a single cutoff point along the ability scale, θ_c , which corresponds to a minimum proportion of items in the domain, $\pi(\theta_c)$, that an examinee is expected to answer correctly in order to be classified as a master. The relationship between θ_c and $\pi(\theta_c)$, for example, might be

$$\frac{1}{n} \sum_{j=1}^n P_j(\theta_c) = \pi(\theta_c),$$

where n is the number of items in the pool representing this testing domain. Because the SPRT procedure requires the setting of two values of θ in a simple hypothesis configuration, one usually sets $\theta_0 < \theta_c < \theta_1$. The region between θ_0 and θ_1 is referred to as an indifference region. Reckase (1983) stated that "in order to use the SPRT, a region must be specified around θ_c for which it does not matter whether a pass or a fail decision is made. If high accuracy is desired for the decision rule, a narrow indifference region must be specified, but more items will be required to make the decision. As the region gets wider, the decision accuracy declines, but fewer items are required" (p. 243).

In the present study, four simple hypotheses were used to establish four sizes of indifference regions around the chosen value of $\theta_c = .00$. These sets of hypotheses (θ_0, θ_1) were (1) H1: $(-.25, .25)$, (2) H2: $(-.5, .5)$, (3) H3: $(-.75, .75)$, and (4) H4: $(-1.0, 1.0)$.

Results

The results of these 288 computer simulations focused on the effects of the E2 condition on four characteristics or measures of an SPRT: actual or observed α rate (α^*), actual or observed β rate (β^*), average sample number or ASN when $\theta = \theta_0$, and ASN when $\theta = \theta_1$. These results are given in Tables 1 through 6 in terms of overall and marginal means and standard deviations of these variables under the E1 and E2 conditions.

Actual Error Rates

Table 1 shows that even though a nominal type I error or α rate was established prior to the usual SPRT, the observed rate (α^*) was actually lower than the nominal one. Under the E1 condition, α^* was .007, .034, and .060, for A1, A2, and A3 nominal rates, respectively. Under the E2 condition, these observed α rates were lower still, .005, .030, and .065, for A1, A2, and A3. However, the overall decrease in α^* for E2 (i.e., from .036 to .033) was quite small and probably insignificant from a practical standpoint.

There was a relatively large decrease in overall mean α^* under E2 for the fourth hypothesis, H4, where the mean $\alpha^* = .027$ (see Table 1). A further analysis of α^* by the nominal error rates, A1, A2, and A3 for this E2-H4 combination revealed that all three values of α^* were lower for H4, although these values were usually lower for each hypothesis under E2, regardless of the nominal α level.

The two exceptions, as seen in Table 2, are at the A3 level. No reasons for these lower α^* were apparent from inspection of further analyses within the design.

Table 3 shows that the observed β rates (β^*) were affected even less under the E2 condition than the α^* rates. Although β^* was usually smaller under E2 versus E1, this difference was never greater than .002. However, there was a relatively large decrease in β^* under the I4 condition for both E1 and E2. Table 4 shows that the β^* rate was lower under all nominal β rates when the item pool consisted of items with variable item parameter values (either known or estimated).

Average Sample Numbers

The overall effect of E2 on average sample number (ASN) was to increase the number of test items required to make a classification decision at each θ level for which the ASN was analyzed. Table 5 shows that when $\theta = \theta_0$, this overall increase in ASN amounted to 1.1 items from E1 to E2. The greatest increase occurred under the H1 condition (42.5 to 46.8).

Table 6 shows that when $\theta = \theta_1$, the increase in ASN from E1 to E2 was even smaller (.8). Again, the greatest increase occurred under the H1 condition (41.5 to 44.2).

It was interesting to note the effects of different item pools on the ASN. Tables 5 and 6 show that, regardless of the estimation error condition, the ASN increased when items within the pool included a nonzero value for c , the pseudo-guessing parameter. When items became more discriminating (i.e., when the discrimination or a parameter changed from 1.0 to 1.5), a decrease in ASN was noted. However, when items had variable item parameters, as was the case under the I4 or random item pool condition, the ASN increased significantly. The observed effects on the ASN under the fixed item pools, I1, I2, and I3, are more easily understood when the hypotheses and the indifference regions are transformed into functions of θ_0 and θ_1 , namely $\pi(\theta_0)$ and $\pi(\theta_1)$. Because all of the items in these pools are identical,

$$\pi(\theta_0) = \frac{c + (1 - c)}{1 + \exp\{-1.7a(\theta_0 - b)\}} = \pi_0$$

and

$$\pi(\theta_1) = \frac{c + (1 - c)}{1 + \exp\{-1.7a(\theta_1 - b)\}} = \pi_1 .$$

Table 7 shows these transformed hypotheses and indifference region lengths in terms of $\pi(\theta_0)$ and $\pi(\theta_1)$. Wald's SPRT theory predicts that the ASN for any value of θ will increase as the size of the indifference region decreases. Therefore, it is no surprise that, of the three fixed pools, the I2 pool produced the highest ASN at θ_0 and θ_1 while I3 showed the smallest overall ASN values. For the random item pool, π_0 and π_1 in Table 7 were defined in terms of the averages, $\bar{\pi}_0$ and $\bar{\pi}_1$, across the 500 sets of item parameters in I4, or

$$\bar{\pi}_0 = \frac{1}{500} \sum_{j=1}^{500} c_j + (1 - c_j) / [1 + \exp\{-1.7a_j (\theta_0 - b_j)\}]$$

and

$$\bar{\pi}_1 = \frac{1}{500} \sum_{j=1}^{500} c_j + (1 - c_j) / [1 + \exp\{-1.7a_j (\theta_1 - b_j)\}] .$$

The smaller average indifference regions encountered for I4 would appear to account for larger ASN values for I4 in Tables 5 and 6.

Other changes in ASN under the various error rate and hypothesis conditions were again predicted by Wald's SPRT theory. For example, ASN is expected to decrease as α or β increases and as the indifference region around θ_c increases.

Tables 5 and 6 show that this did occur under E1 and E2.

Summary and Conclusions

Administering a test using Wald's sequential probability ratio testing procedure on item pools which contain IRT parameter estimates rather than known values did not appear to have much effect on observed mastery or nonmastery classification error rates. These observed error rates were smaller when it was assumed that the item parameters were actually MLEs based on prior calibrations involving examinees with known abilities. However, these smaller observed error rates were not appreciably different from the absent-error condition, E1. Observed error rates under both estimation error conditions were still smaller than the nominal rates established prior to testing and this would appear to be the most important finding regarding error rates.

It should be pointed out that the amount of error in the item parameters was based on several assumptions. First, it was assumed that, during the item calibrations, ability was known. This is rarely true because ability almost always must be estimated in practice. Estimation of ability would increase the amount of error in the item parameter estimates, thereby magnifying the effects of estimation on the SPRT results. Second, the errors were derived under the assumption of normality for the (unidimensional) ability distribution. And finally these error estimates were based on asymptotic standard error formulae and large sample sizes of items and examinees were assumed.

The estimation error condition did appear to have some effect on the observed α rate when the largest indifference region was simulated (H4). How important this effect is in practice remains to be seen because the simulations still produced an α^* rate less than the nominal average and because this α^* rate occurred with an indifference region (-1.0, 1.0) which may be too large to be useful in actual SPRT administrations.

One noticeable finding involving β^* was the amount of decrease in this error rate, regardless of the estimation error condition, when the nature of the item pool changed in terms of item parameters. Wald's SPRT theory makes use of the local independence assumption of IRT through the formulation of the likelihood functions under H_0 and H_1 as products of probabilities. There is nothing in the SPRT theory which requires that these probabilities be constant from item to item within the pool. And yet, from Table 3, it is obvious that when these probabilities varied considerably from item to item (I4), β^* was significantly smaller than when the items did not vary at all (I1, I2 and I3 under E1) or varied by a very small amount (I1, I2, and I3 under E2). A similar effect on α^* was not observed.

On the other hand, the ASN was much larger under the I4 item pool condition, thereby leading to the following conclusion. When items are administered via SPRT procedures and those items vary considerably in P_i for a given examinee, then the ASN will be larger and the β^* rate smaller than for SPRT item pools in which the variability of P_i is smaller.

The estimation error condition did yield higher ASN values at all true θ values, in general, but these increases did not appear to be significant with the item parameter estimation error used in these simulations. According to SPRT theory, the ASN of any SPRT will be a maximum for some θ value within the indifference region, (θ_0, θ_1) . The rather large values of ASN for the H1 condition, regardless of estimation error, suggest that this hypothesis could yield ASN values greater than 50 items for some examinees with θ between -.25 and .25. Therefore, H1 may be an impractical hypothesis to consider for actual SPRT administrations due to the increased test length. Hypothesis H2 or H3 may be more reasonable in practice.

When items from item pools are chosen on some nonrandom basis (e.g., selecting items which maximize $I(\hat{\theta}_n)$ on the basis of estimates of ability, $\hat{\theta}_n$), the

variability of P_i for a given examinee may be minimal, and the effects of using SPRT in a CAT situation, for example, are not expected to change the characteristics of the test from those predicted by the SPRT theory, even when item parameter estimates are used. In fact, when administered as an SPRT, the CAT may even require fewer items and yield smaller classification errors when items are selected for administration on the basis of maximum information. Therefore, a second phase of this research will examine the characteristics of an SPRT when items are administered randomly from I^4 versus when the items are administered on the basis of $\max I(\theta)$, with θ known. A third study will compare the results of the $\max I(\theta)$ procedure of item selection versus a $\max I(\hat{\theta}_n)$ procedure, where θ is unknown and must be estimated after each item is presented.

REFERENCES

- Reckase, M. D. (1983). A procedure for decision making using tailored testing. In D. J. Weiss (Ed.), New horizons in testing: Latent trait test theory and computerized adaptive testing (pp. 237-255). New York: Academic Press.
- Thissen, D., & Wainer, H. (1982). Some standard errors in item response theory. Psychometrika, 47, 397-412.
- Wald, A. (1947). Sequential analysis. New York: Wiley.

TABLE 1
Actual Alpha Rate (α^*)

	N		Estimation Error	
			E1 Absent	E2 Present
Overall <u>Mean</u>	144		.036 (.26)	.033 (.027)
Item Pool <u>Means</u>	36	<u>I</u> 1	.034 (.026)	.031 (.027)
	36	<u>I</u> 2	.039 (.028)	.036 (.027)
	36	<u>I</u> 3	.033 (.026)	.033 (.028)
	36	<u>I</u> 4	.037 (.027)	.033 (.026)
α Rate <u>Means</u>	48	<u>A</u> 1 (.01)	.007 (.002)	.005 (.002)
	48	<u>A</u> 2 (.05)	.034 (.008)	.030 (.009)
	48	<u>A</u> 3 (.10)	.067 (.014)	.065 (.015)
β Rate <u>Means</u>	48	<u>B</u> 1 (.01)	.036 (.027)	.033 (.027)
	48	<u>B</u> 2 (.05)	.036 (.027)	.033 (.027)
	48	<u>B</u> 3 (.10)	.036 (.026)	.034 (.027)
Hypothesis <u>Means</u>	36	<u>H</u> 1 ($\pm .25$)	.039 (.028)	.037 (.029)
	36	<u>H</u> 2 ($\pm .50$)	.039 (.027)	.038 (.027)
	36	<u>H</u> 3 ($\pm .75$)	.032 (.025)	.032 (.027)
	36	<u>H</u> 4 (± 1.00)	.034 (.027)	.027 (.023)

Note: Standard deviations are given in parentheses in columns 6 and 8.

TABLE 2
Actual Alpha Rate (α^*) Means and Standard Deviations by Hypothesis

	<u>N</u>	<u>α</u>	Estimation Error		<u>E2</u> Present
			<u>E1</u> Absent	<u>E2</u> Present	
<u>H1</u>	12	<u>A1</u>	.007 (.002)	.004 (.001)	
	12	<u>A2</u>	.038 (.007)	.035 (.007)	
	12	<u>A3</u>	.073 (.006)	.072 (.007)	
<u>H2</u>	12	<u>A1</u>	.008 (.002)	.007 (.001)	
	12	<u>A2</u>	.038 (.006)	.035 (.008)	
	12	<u>A3</u>	.070 (.009)	.071 (.008)	
<u>H3</u>	12	<u>A1</u>	.005 (.002)	.004 (.001)	
	12	<u>A2</u>	.029 (.006)	.027 (.008)	
	12	<u>A3</u>	.061 (.014)	.065 (.015)	
<u>H4</u>	12	<u>A1</u>	.006 (.003)	.004 (.002)	
	12	<u>A2</u>	.032 (.009)	.024 (.006)	
	12	<u>A3</u>	.063 (.021)	.052 (.019)	

Note: A1 = .01, A2 = .05, and A3 = .10.

TABLE 3
Actual Beta Rate (β^*)

	<u>N</u>		Estimation Error	
			<u>E1</u> Absent	<u>E2</u> Present
<u>Overall Mean</u>	144		.032 (.025)	.031 (.026)
<u>Item Pool Means</u>	36	<u>I</u> 1	.036 (.027)	.035 (.027)
	36	<u>I</u> 2	.037 (.027)	.035 (.028)
	36	<u>I</u> 3	.032 (.025)	.033 (.028)
	36	<u>I</u> 4	.023 (.020)	.022 (.021)
<u>α Rate Means</u>	48	<u>A</u> 1 (.01)	.032 (.025)	.030 (.026)
	48	<u>A</u> 2 (.05)	.032 (.025)	.032 (.027)
	48	<u>A</u> 3 (.10)	.032 (.026)	.031 (.027)
<u>β Rate Means</u>	48	<u>B</u> 1 (.01)	.007 (.003)	.006 (.002)
	48	<u>B</u> 2 (.05)	.030 (.011)	.028 (.012)
	48	<u>B</u> 3 (.10)	.060 (.019)	.060 (.021)
<u>Hypothesis Means</u>	36	<u>H</u> 1 ($\pm .25$)	.041 (.027)	.039 (.030)
	36	<u>H</u> 2 ($\pm .50$)	.036 (.028)	.034 (.026)
	36	<u>H</u> 3 ($\pm .75$)	.027 (.022)	.027 (.023)
	36	<u>H</u> 4 (± 1.00)	.024 (.020)	.025 (.023)

Note: Standard deviations are given in parentheses in columns 6 and 8.

TABLE 4
Actual Beta Rate (β^*) Means and Standard Deviations by Item Pool

<u>Item Pool</u>	<u>N</u>	$\underline{\beta}$	<u>Estimation Error</u>	
			E1 Absent	E2 Present
<u>I1</u>	12	<u>B1</u>	.007 (.002)	.008 (.003)
	12	<u>B2</u>	.034 (.010)	.033 (.012)
	12	<u>B3</u>	.066 (.016)	.066 (.018)
<u>I2</u>	12	<u>B1</u>	.007 (.001)	.006 (.002)
	12	<u>B2</u>	.037 (.005)	.033 (.004)
	12	<u>B3</u>	.069 (.014)	.066 (.022)
<u>I3</u>	12	<u>B1</u>	.008 (.002)	.005 (.001)
	12	<u>B2</u>	.027 (.012)	.028 (.011)
	12	<u>B3</u>	.061 (.016)	.066 (.014)
<u>I4</u>	12	<u>B1</u>	.006 (.005)	.004 (.001)
	12	<u>B2</u>	.020 (.011)	.019 (.011)
	12	<u>B3</u>	.043 (.019)	.043 (.019)

Note: B1 = .01, B2 = .05, and B3 = .10.

TABLE 5

ASN (H_1)

	<u>N</u>		Estimation Error	
			<u>E1</u> Absent	<u>E2</u> Present
<u>Overall Mean</u>	144		17.6 (19.6)	18.7 (20.9)
	36	<u>I1</u>	13.5 (14.3)	13.8 (14.7)
<u>Item Pool Means</u>	36	<u>I2</u>	16.7 (16.8)	20.0 (20.5)
	36	<u>I3</u>	10.2 (9.6)	10.4 (9.9)
	36	<u>I4</u>	30.0 (27.6)	30.5 (28.6)
<u>α Rate Means</u>	48	<u>A1</u> (.01)	22.8 (25.4)	25.5 (27.5)
	48	<u>A2</u> (.05)	16.9 (17.2)	17.1 (17.8)
	48	<u>A3</u> (.60)	13.1 (13.4)	13.4 (13.8)
<u>β Rate Means</u>	48	<u>B1</u> (.01)	18.4 (20.6)	20.0 (22.6)
	48	<u>B2</u> (.05)	17.1 (19.1)	19.0 (21.7)
	48	<u>B3</u> (.10)	17.3 (19.4)	17.0 (18.7)
<u>Hypothesis Means</u>	36	<u>H1</u> ($\pm .25$)	42.5 (24.2)	46.8 (24.1)
	36	<u>H2</u> ($\pm .50$)	14.4 (7.2)	14.3 (7.1)
	36	<u>H3</u> ($\pm .75$)	8.2 (5.1)	8.2 (4.9)
	36	<u>H4</u> (± 1.00)	5.3 (3.3)	5.5 (3.3)

Note: Standard deviations are given in parentheses in columns 6 and 8.

TABLE 6

ASN(H_0)

<u>N</u>		Estimation Error		
		E1 Absent	E2 Present	
Overall <u>Mean</u>	144	16.2 (19.1)		17.0 (19.7)
	36	I1	13.6 (14.6)	13.4 (14.0)
Item Pool <u>Means</u>	36	I2	16.2 (18.3)	19.3 (20.9)
	36	I3	9.4 (9.5)	9.4 (9.4)
	36	I4	25.6 (26.6)	25.9 (26.5)
	48	A1 (.01)	15.7 (19.1)	18.1 (21.2)
α Rate <u>Means</u>	48	A2 (.05)	17.0 (20.1)	17.0 (19.8)
	48	A3 (.10)	15.9 (18.6)	15.9 (18.3)
	48	B1 (.01)	21.8 (25.6)	23.2 (26.4)
β Rate <u>Means</u>	48	B2 (.05)	14.6 (15.9)	15.5 (16.2)
	48	B3 (.10)	12.2 (12.5)	12.3 (12.7)
	36	H1 ($\pm .75$)	41.5 (23.3)	44.2 (22.0)
Hypothesis <u>Means</u>	36	H2 ($\pm .50$)	12.4 (5.5)	12.8 (5.9)
	36	H3 ($\pm .75$)	6.8 (3.1)	6.8 (3.1)
	36	H4 (± 1.00)	4.2 (1.7)	4.2 (1.8)

Note: Standard deviations are given in parentheses in columns 6 and 8.

TABLE 7
Hypotheses and Indifference Regions in Terms of $\pi(\theta)$

<u>Item Pool</u>	<u>Hypothesis</u>	<u>Cutoff Proportions</u>		<u>Indifference Region</u>
		π_0	π_1	$(\pi_1 - \pi_0)$
<u>I1</u>	<u>H1</u>	.395	.605	.210
	<u>H2</u>	.299	.701	.402
	<u>H3</u>	.218	.782	.564
	<u>H4</u>	.154	.846	.692
<u>I2</u>	<u>H1</u>	.516	.684	.168
	<u>H2</u>	.440	.760	.320
	<u>H3</u>	.337	.863	.526
	<u>H4</u>	.324	.876	.552
<u>I3</u>	<u>H1</u>	.477	.723	.246
	<u>H2</u>	.375	.825	.450
	<u>H3</u>	.303	.897	.594
	<u>H4</u>	.258	.942	.684
<u>I4</u>	<u>H1</u>	.540	.616	.076 (.093)
	<u>H2</u>	.503	.655	.152 (.172)
	<u>H3</u>	.466	.692	.226 (.230)
	<u>H4</u>	.428	.728	.300 (.270)

Note: Standard deviations for the indifference regions in I4 are given in parentheses in column 6.

ONR Report Distribution List
May 20, 1988

Dr. Terry Ackerman
American College Testing Programs
P.O. Box 168
Iowa City, IA 52243

Dr. Robert Ahlers
Code N711
Human Factors Laboratory
Naval Training Systems Center
Orlando, FL 32813

Dr. James Algina
University of Florida
Gainesville, FL 32605

Dr. Erling B. Andersen
Department of Statistics
Studiestraede 6
1455 Copenhagen
DENMARK

Dr. Eva L. Baker
UCLA Center for the Study
of Evaluation
145 Moore Hall
University of California
Los Angeles, CA 90024

Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08450

Dr. Menucha Birenbaum
School of Education
Tel Aviv University
Tel Aviv, Ramat Aviv 69978
ISRAEL

Dr. Arthur S. Blaiwes
Code N711
Naval Training Systems Center
Orlando, FL 32813

Dr. Bruce Bloxom
Defense Manpower Data Center
550 Camino El Estero,
Suite 200
Monterey, CA 93943-3231

Dr. R. Darrell Bock
University of Chicago
NORC
6030 South Ellis
Chicago, IL 60637

Cdt. Arnold Bohrer
Sectie Psychologisch Onderzoek
Rekruterings-En Selectiecentrum
Kwartier Koningen Astrid
Bruijnstraat
1120 Brussels, BELGIUM

Dr. Robert Breaux
Code N-095R
Naval Training Systems Center
Orlando, FL 32813

Dr. Robert Brennan
American College Testing
Programs
P. O. Box 168
Iowa City, IA 52243

Dr. Lyle D. Broemeling
ONR Code 1111SP
800 North Quincy Street
Arlington, VA 22217

Mr. James W. Carey
Commandant (G-PTE)
U.S. Coast Guard
2100 Second Street, S.W.
Washington, DC 20593

Dr. James Carlson
American College Testing
Program
P.O. Box 168
Iowa City, IA 52243

Dr. John B. Carroll
409 Elliott Rd.
Chapel Hill, NC 27514

Dr. Robert Carroll
OP 01B7
Washington, DC 20370

Mr. Raymond E. Christal
AFHRL/MOE
Brooks AFB, TX 78235

Best Available Copy

Dr. Norman Cliff
Department of Psychology
Univ. of So. California
University Park
Los Angeles, CA 90007

Director,
Manpower Support and
Readiness Program
Center for Naval Analysis
2000 North Beauregard Street
Alexandria, VA 22311

Dr. Stanley Collyer
Office of Naval Technology
Code 222
800 N. Quincy Street
Arlington, VA 22217-5000

Dr. Hans Crombag
University of Leyden
Education Research Center
Boerhaavelaan 2
2334 EN Leyden
The NETHERLANDS

Dr. Timothy Davey
Educational Testing Service
Princeton, NJ 08541

Dr. C. M. Dayton
Department of Measurement
Statistics & Evaluation
College of Education
University of Maryland
College Park, MD 20742

Dr. Ralph J. DeAvala
Measurement, Statistics,
and Evaluation
Benjamin Building
University of Maryland
College Park, MD 20742

Dr. Dattorasad Divgi
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Dr. Hei-Ki Dong
Bell Communications Research
6 Corporate Place
PYA-1k226
Piscataway, NJ 08854

Dr. Fritz Drasgow
University of Illinois
Department of Psychology
603 E. Daniel St.
Champaign, IL 61820

Defense Technical
Information Center
Cameron Station, Bldg 5
Alexandria, VA 22314
Attn: TC
(12 Copies)

Dr. Stephen Dunbar
Lindquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Dr. James A. Earles
Air Force Human Resources Lab
Brooks AFB, TX 78235

Dr. Kent Eaton
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. John M. Eddins
University of Illinois
252 Engineering Research
Laboratory
103 South Mathews Street
Urbana, IL 61801

Dr. Susan Embretson
University of Kansas
Psychology Department
426 Fraser
Lawrence, KS 66045

Dr. George Englehard, Jr.
Division of Educational Studies
Emory University
201 Easonburne Bldg.
Atlanta, GA 30322

Dr. Benjamin A. Fairbank
Performance Metrics, Inc.
5825 Callaghan
Suite 225
San Antonio, TX 78228

Dr. Pat Federico
Code 511
NPRDC
San Diego, CA 92152-6800

Dr. Leonard Feldt
Lindquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Dr. Richard L. Ferguson
American College Testing
Program
P.O. Box 168
Iowa City, IA 52240

Dr. Gerhard Fischer
Liebiggasse 5/3
A 1010 Vienna
AUSTRIA

Dr. Myron Fischl
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Prof. Donald Fitzgerald
University of New England
Department of Psychology
Armidale, New South Wales 2351
AUSTRALIA

Mr. Paul Foley
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Alfred R. Fregly
AFOSR/NL
Bolling AFB, DC 20332

Dr. Robert D. Gibbons
Illinois State Psychiatric Inst.
Rm 529W
1601 W. Taylor Street
Chicago, IL 60612

Dr. Janice Gifford
University of Massachusetts
School of Education
Amherst, MA 01003

Dr. Robert Glaser
Learning Research
& Development Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21218

Dipl. Pad. Michael W. Habon
Universitat Düsseldorf
Erziehungswissenschaftliches
Universitätsstr. 1
D-4000 Düsseldorf 1
WEST GERMANY

Dr. Ronald K. Hambleton
Prof. of Education & Psychology
University of Massachusetts
at Amherst
Hills House
Amherst, MA 01003

Dr. Delwyn Harnisch
University of Illinois
51 Gerty Drive
Champaign, IL 61820

Dr. Grant Henning
Senior Research Scientist
Division of Measurement
Research and Services
Educational Testing Service
Princeton, NJ 08541

Ms. Rebecca Hetter
Navy Personnel R&D Center
Code 62
San Diego, CA 92152-6800

Dr. Paul W. Holland
Educational Testing Service
Rosedale Road
Princeton, NJ 08541

Prof. Lutz F. Hornke
Institut fur Psychologie
RWTH Aachen
Jaegerstrasse 17/19
D-5100 Aachen
WEST GERMANY

Dr. Paul Horst
677 G Street, #184
Chula Vista, CA 90010

Mr. Dick Hoshaw
OP-135
Arlington Annex
Room 2834
Washington, DC 20350

Dr. Lloyd Humphreys
University of Illinois
Department of Psychology
603 East Daniel Street
Champaign, IL 61820

Dr. Steven Hunka
Department of Education
University of Alberta
Edmonton, Alberta
CANADA

Dr. Huynh Huynh
College of Education
Univ. of South Carolina
Columbia, SC 29208

Dr. Robert Jannarone
Department of Psychology
University of South Carolina
Columbia, SC 29208

Dr. Dennis E. Jennings
Department of Statistics
University of Illinois
1409 West Green Street
Urbana, IL 61801

Dr. Douglas H. Jones
Thatcher Jones Associates
P.O. Box 6640
10 Trafalgar Court
Lawrenceville, NJ 08646

Dr. Milton S. Katz
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Prof. John A. Keats
Department of Psychology
University of Newcastle
N.S.W. 2308
AUSTRALIA

Dr. G. Gage Kingsbury
Portland Public Schools
Research and Evaluation Department
501 North Dixon Street
P. O. Box 3107
Portland, OR 97209-3107

Dr. William Koch
University of Texas-Austin
Measurement and Evaluation
Center
Austin, TX 78703

Dr. James Kraatz
Computer-based Education
Research Laboratory
University of Illinois
Urbana, IL 61801

Dr. Leonard Kroeker
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Darryll Lang
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Jerry Lehnus
Defense Manpower Data Center
Suite 400
1600 Wilson Blvd.
Rosslyn, VA 22209

Dr. Thomas Leonard
University of Wisconsin
Department of Statistics
1210 West Dayton Street
Madison, WI 53705

Dr. Michael Levine
Educational Psychology
210 Education Bldg.
University of Illinois
Champaign, IL 61801

Dr. Charles Lewis
Educational Testing Service
Princeton, NJ 08541

Dr. Robert Linn
College of Education
University of Illinois
Urbana, IL 61801

Dr. Robert Lockman
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Dr. Frederic M. Lord
Educational Testing Service
Princeton, NJ 08541

Dr. George B. Macready
Department of Measurement
Statistics & Evaluation
College of Education
University of Maryland
College Park, MD 20742

Dr. Milton Maier
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Dr. William L. Maloy
Chief of Naval Education
and Training
Naval Air Station
Pensacola, FL 32508

Dr. Gary Marco
Stop 31-E
Educational Testing Service
Princeton, NJ 08451

Dr. Clessen Martin
Army Research Institute
5001 Eisenhower Blvd.
Alexandria, VA 22333

Dr. James McBride
Psychological Corporation
c/o Harcourt, Brace,
Javanovich Inc.
1250 West 6th Street
San Diego, CA 92101

Dr. Clarence McCormick
HO, MEPCOM
MEPCT-P
2500 Green Bay Road
North Chicago, IL 60064

Dr. Robert McKinley
Educational Testing Service
20-P
Princeton, NJ 08541

Dr. James McMichael
Technical Director
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Barbara Means
Human Resources
Research Organization
1100 South Washington
Alexandria, VA 22314

Dr. Robert Mislevy
Educational Testing Service
Princeton, NJ 08541

Dr. William Montague
NPRDC Code 13
San Diego, CA 92152-6800

Ms. Kathleen Moreno
Navy Personnel R&D Center
Code 62
San Diego, CA 92152-6800

Headquarters, Marine Corps
Code MPI-20
Washington, DC 20380

Dr. W. Alan Nicewander
University of Oklahoma
Department of Psychology
Oklahoma City, OK 73069

Deputy Technical Director
NPRDC Code 01A
San Diego, CA 92152-6800

Director, Training Laboratory,
NPRDC (Code 05)
San Diego, CA 92152-6800

Director, Manpower and Personnel
Laboratory,
NPRDC (Code 06)
San Diego, CA 92152-6800

Director, Human Factors
& Organizational Systems Lab,
NPRDC (Code 07)
San Diego, CA 92152-6800

Fleet Support Office,
NPRDC (Code 301)
San Diego, CA 92152-6800

Library, NPRDC
Code P201L
San Diego, CA 92152-6800

Commanding Officer,
Naval Research Laboratory
Code 2627
Washington, DC 20390

Dr. Harold F. O'Neil, Jr.
School of Education - WPH 801
Department of Educational
Psychology & Technology
University of Southern California
Los Angeles, CA 90089-0031

Dr. James Olson
WICAT, Inc.
1875 South State Street
Orem, UT 84057

Office of Naval Research,
Code 1142C3
800 N. Quincy Street
Arlington, VA 22217-5000
(6 Copies)

Office of Naval Research,
Code 125
800 N. Quincy Street
Arlington, VA 22217-5000

Assistant for MPT Research,
Development and Studies
OP 01B7
Washington, DC 20370

Dr. Judith Orasanu
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Jesse Orlansky
Institute for Defense Analyses
1301 N. Beauregard St.
Alexandria, VA 22311

Dr. Randolph Park
Army Research Institute
5001 Eisenhower Blvd.
Alexandria, VA 22333

Wayne M. Patience
American Council on Education
GED Testing Service, Suite 20
One Dupont Circle, NW
Washington, DC 20036

Dr. James Paulson
Department of Psychology
Portland State University
P.O. Box 751
Portland, OR 97207

Administrative Sciences Department,
Naval Postgraduate School
Monterey, CA 93940

Department of Operations Research,
Naval Postgraduate School
Monterey, CA 93940

Dr. Mark D. Reckase
ACT
P. O. Box 168
Iowa City, IA 52243

Dr. Malcolm Ree
AFHRL/MP
Brooks AFB, TX 78235

Dr. Barry Riegelhaupt
HumRRO
1160 South Washington Street
Alexandria, VA 22314

Dr. Carl Ross
CNET-PDCD
Building 90
Great Lakes NTC, IL 60089

Dr. J. Ryan
Department of Education
University of South Carolina
Columbia, SC 29208

Dr. Fumiko Samejima
Department of Psychology
University of Tennessee
3108 AustinPeay Bidg.
Knoxville, TN 37916-0900

Mr. Drew Sands
NPRDC Code 62
San Diego, CA 92152-6800

Lowell Schoer
Psychological & Quantitative
Foundations
College of Education
University of Iowa
Iowa City, IA 52242

Dr. Mary Schratz
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Dan Segall
Navy Personnel R&D Center
San Diego, CA 92152

Dr. W. Steve Sellman
OASD(MRA&L)
2B269 The Pentagon
Washington, DC 20301

Dr. Kazuo Shigematsu
7-9-24 Kugenuma-Kaigan
Fujisawa 251
JAPAN

Dr. William Sims
Center for Naval Analysis
4401 Ford Avenue
P.O. Box 16268
Alexandria, VA 22302-0268

Dr. H. Wallace Sinaiko
Manpower Research
and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314

Dr. Richard E. Snow
Department of Psychology
Stanford University
Stanford, CA 94306

Dr. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Paul Speckman
University of Missouri
Department of Statistics
Columbia, MO 65201

Dr. Judy Spray
ACT
P.O. Box 168
Iowa City, IA 52243

Dr. Martha Stocking
Educational Testing Service
Princeton, NJ 08541

Dr. Peter Stoloff
Center for Naval Analysis
200 North Beauregard Street
Alexandria, VA 22311

Dr. William Stout
University of Illinois
Department of Statistics
101 Illini Hall
725 South Wright St.
Champaign, IL 61820

Dr. Hariharan Swaminathan
Laboratory of Psychometric and
Evaluation Research
School of Education
University of Massachusetts
Amherst, MA 01003

Mr. Brad Simpson
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. John Tangney
AFOSR/NL
Bolling AFB, DC 20332

Dr. Kikumi Tatsuoka
CERL
252 Engineering Research
Laboratory
Urbana, IL 61801

Dr. Maurice Tatsuoka
220 Education Bldg
1310 S. Sixth St.
Champaign, IL 61820

Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044

Mr. Gary Thomasson
University of Illinois
Educational Psychology
Champaign, IL 61820

Dr. Robert Tsutakawa
University of Missouri
Department of Statistics
222 Math. Sciences Bldg.
Columbia, MO 65211

Dr. Ledyard Tucker
University of Illinois
Department of Psychology
603 E. Daniel Street
Champaign, IL 61820

Dr. Vern W. Urry
Personnel R&D Center
Office of Personnel Management
1900 E. Street, NW
Washington, DC 20415

Dr. David Vale
Assessment Systems Corp.
2233 University Avenue
Suite 310
St. Paul, MN 55114

Dr. Frank Vicino
Navv Personnel R&D Center
San Diego, CA 92152-6800

Dr. Howard Wainer
Division of Psychological Studies
Educational Testing Service
Princeton, NJ 08541

Dr. Ming-Mei Wang
Lindquist Center
for Measurement
University of Iowa
Iowa City, IA 52242

Dr. Thomas A. Warm
Coast Guard Institute
P. O. Substation 18
Oklahoma City, OK 73169

Dr. Brian Waters
Program Manager
Manpower Analysis Program
HumRRO
1100 S. Washington St.
Alexandria, VA 22314

Dr. David J. Weiss
N660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

Dr. Ronald A. Weitzman
NPS. Code 54Wz
Monterev. CA 92152-6800

Major John Welsh
AFHRL/MOAN
Brooks AFB, TX 78223

Dr. Douglas Wetzel
Code 12
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Rand R. Wilcox
University of Southern
California
Department of Psychology
Los Angeles, CA 90007

German Military Representative
ATTN: Wolfgang Wildegrube
Streitkraefteamt
D-5300 Bonn 2
4000 Brandywine Street, NW
Washington, DC 20016

Dr. Anthony R. Zara
National Council of State
Boards of Nursing, Inc.
625 North Michigan Ave.
Suite 1544
Chicago, IL 60611

Dr. Bruce Williams
Department of Educational
Psychology
University of Illinois
Urbana, IL 61801

Dr. Hilda Wing
NRC GF-176
2101 Constitution Ave
Washington, DC 20418

Dr. Martin F. Wiskoff
Navy Personnel R & D Center
San Diego, CA 92152-6800

Mr. John H. Wolfe
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. George Wong
Biostatistics Laboratory
Memorial Sloan-Kettering
Cancer Center
1275 York Avenue
New York, NY 10021

Dr. Wallace Hulfeck, III
Navy Personnel R&D Center
San Diego, CA 92152-6800

Dr. Kentaro Yamamoto
Educational Testing Service
Rosedale Road
Princeton, NJ 08541

Dr. Wendy Yen
ETS/McGraw Hill
Del Monte Research Park
Monterey, CA 93940

Dr. Joseph L. Young
Memory & Cognitive
Processes
National Defense Foundation
Washington, DC 20430