```
In[22]:= ClearAll["Global`*"]
   SetOptions[$FrontEndSession, NotebookAutoSave → True]
   NotebookSave[]
```

Lynx paper notebook 1

Script for analysis presented with respect to hoverfly flights

Preprocessing

Load Trajectory3D package

Package available at Github, download and move to the Applications subdirectory of your user base directory.

Import Data

project specific constants and other variables

```
fps = 1/500;(*frame rate*)
flyfolder =
    "/Users/dinesh/Dropbox/projects/lynx/lynx prey response/Data/processed
    data/flydata"; (*insert folder path to csv files *)

data = Import[#, "CSV"] & /@ FileNames["*.csv", flyfolder];
```

Categorize data

```
flights = Range@Length@data
 In[30]:=
Out[30]=
        {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
         14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27}
```

Assign flights to flower type

```
fyellows = {2, 3, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25};
In[31]:=
       fwhites = {1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 26, 27};
In[32]:=
```

Segment trajectory to closest approach to flower (point chosen visually)

```
SpecialProximityCut3D[file_, n_] := Module[{head, obj, cuts, cuttraj},
In[33]:=
      head = file[All, {1, 2, 3}];
       obj = file[[All, {7, 8, 9}]];
       cuts = {75, 282, 119, 90, 58, 285, 328, 242, 471, 311, 117, 85, 404,
           257, 75, 497, 65, 328, 245, 250, 118, 53, 54, 182, 258, 10, 19};
      cuttraj = file[;; cuts[n], All];
       cuttraj
      ]
      mpc = SpecialProximityCut3D[data[#]], #] & /@ flights;
In[34]:=
```

Analyses

Distance

Distance profile

```
ListLinePlot[
In[0]:=
        \label{lem:network} N@TimeSeriesRescale[DistanceProfile3D[mpc[#]]], \ \{0,\ 1\}] \ \& \ /@fyellows,
        PlotStyle → Directive[{Black, Thin}], Frame → {{True, False}, {True, False}},
        FrameLabel → {{HoldForm["Distance to spider (cm)"], None},
           {HoldForm["Time (rescaled)"], None}},
        PlotLabel → None, LabelStyle → {GrayLevel[0]}]
```

Out[0]=

In[0]:=

ListLinePlot[N@TimeSeriesRescale[DistanceProfile3D[mpc[#]]], {0, 1}] & /@ fwhites[2;;], PlotStyle → Directive[{Black, Thin}], Frame → {{True, False}, {True, False}}, FrameLabel → {{HoldForm["Distance to spider (cm)"], None}, {HoldForm["Time (rescaled)"], None}}, PlotLabel → None, LabelStyle → {GrayLevel[0]}, PlotRange → All]

Out[0]=

for fig

```
GraphicsRow[{\S^{\circ}, \S^{\circ}}]
```


minimum distance Yellows vs whites

In[•]:=

minyellow = Min[DistanceProfile3D[mpc[#]]] & /@ fyellows

 $Out[\circ] =$

```
{5.91197, 4.46833, 3.99423, 7.24363, 5.35963, 2.55969, 5.27143, 5.38142, 8.38861, 2.74377, 2.06915, 0.689805}
```

In[•]:= Out[•]=

minwhites = Min[DistanceProfile3D[mpc[#]]] & /@ fwhites

 $\{25.562, 4.0714, 11.7528, 5.03334, 3.83508, 4.11694, 2.42063, 7.48262, 1.87721, 4.3131, 8.17715, 12.7003, 3.71957 \times 10^{-12}, 13.8802, 4.82305\}$

In[0]:=

```
BoxWhiskerChart[{minwhites, minyellow},
  ChartLabels → {"White Flower", "Yellow Flower"}, FrameLabel →
  {{HoldForm["Closest distance to spider (cm)"], None}, {None, None}},
  PlotLabel → None, LabelStyle → {GrayLevel[0]}]
```

Out[•]=

Test whether the minimum distances are significantly different

Trajectory Plots

Plots of selected trajectories

Ball and pin plot of a typical trajectory

In[0]:= Out[0]=

Show $[\%, ViewPoint \rightarrow \{1.3, -2.4, 2.\}, Boxed \rightarrow False]$

All trajectories (not run)

TwinCollettPlot3D[mpc[#]] & /@ flights;

Colour coded to speed

Distance vs Speed

```
yellowdistspeeds =
In[37]:=
         {DistanceProfile3D[mpc[#]]}, SpeedProfile3D[mpc[#]]}^{T} & /@ fyellows;
In[38]:=
       whitedistspeeds =
         {DistanceProfile3D[mpc[#]]}, SpeedProfile3D[mpc[#]]}^{T} & /@ fwhites;
```

```
SmoothDensityHistogram[Flatten[yellowdistspeeds, 1],
 In[0]:=
           PlotRange \rightarrow \{\{0, 30\}, \{0, 200\}\}, FrameLabel \rightarrow \{\{HoldForm["Speed (cm/s)"], None\}, \{HoldForm["Speed (cm/s)"], None\}\}
              {HoldForm["Distance from spider (cm)"], None}},
           PlotLabel → None, LabelStyle → {GrayLevel[0]}]
Out[\circ] =
```


Test for significance

```
(* Assuming yellowdistspeeds data is structured as {x, y} pairs *)
In[50]:=
      ydata = Flatten[yellowdistspeeds, 1];
      (* Fit a linear model *)
      ymodel = LinearModelFit[ydata, x, x];
      (* Show the plot with data and regression line *)
      Show[
        ListPlot[ydata, PlotStyle → Red,
        PlotLabel → "Data with Linear Regression Line"],
        Plot[ymodel[x], {x, Min[ydata[All, 1]]], Max[ydata[All, 1]]]}, PlotStyle → Blue]
      ]
      (* Extract parameter significance *)
      parameterTable = ymodel["ParameterTable"];
      parameterTable
```

Out[52]=

Out[54]=

```
Estimate Standard Error t-Statistic
                                       P-Value
                           -0.674068 0.500332
  -1.08304 1.60672
x 5.83697 0.147782
                          39.497
                                     3.80785 \times 10^{-264}
```

In[55]:=

```
Grid[Transpose[{#, ymodel[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
 Alignment → Left]
```

Out[55]=

```
AdjustedRSquared 0.390045
AIC
                 24475.6
BIC
                 24493.
                 0.390295
RSquared
```

```
SmoothDensityHistogram[Flatten[whitedistspeeds, 1],
In[0]:=
        PlotRange \rightarrow {{0, 30}, {0, 200}}, FrameLabel \rightarrow
         {{HoldForm["Speed (cm/s)"], None}, {HoldForm["Distance from spider"], None}},
        PlotLabel → None, LabelStyle → {GrayLevel[0]}]
```


Test for significance

```
(* Assuming yellowdistspeeds data is structured as {x, y} pairs *)
In[39]:=
      wdata = Flatten[whitedistspeeds, 1];
      (* Fit a linear model *)
      wmodel = LinearModelFit[wdata, x, x];
      (* Show the plot with data and regression line *)
      Show[
        ListPlot[wdata, PlotStyle → Red,
        PlotLabel → "Data with Linear Regression Line"],
        Plot[wmodel[x], \{x, Min[wdata[All, 1]]\}, Max[wdata[All, 1]]]\}, PlotStyle \rightarrow Blue]
      ]
      (* Extract parameter significance *)
      parameterTable = wmodel["ParameterTable"];
      parameterTable
```

Out[41]=

General: Exp [-1064.36] is too small to represent as a normalized machine number; precision may be lost.

Out[43]=

```
Estimate Standard Error t-Statistic P-Value
  -18.5431 1.59516
                             -11.6246 \ 1.52749 \ \times 10^{-30}
x 6.97139 0.123872
                            56.2792 0.
```

In[44]:=

```
Grid[Transpose[{#, wmodel[#]} &[{"AdjustedRSquared", "AIC", "BIC", "RSquared"}]],
 Alignment → Left]
```

Out[44]=

```
AdjustedRSquared 0.529725
AIC
                 29525.2
BIC
                 29543.
RSquared
                 0.529892
```

For figure

GraphicsRow[$\{ \odot 14, \odot \}$] In[0]:= Out[0]=

In[0]:= Rasterize[%59, "Image"]

Export["/Users/dinesh/Dropbox/projects/lynx/lynx prey In[0]:= response/Manuscript/Figures/distvsspeed_fly.pdf", %64, "PDF"]

Persistence Velocity

Yellow flower flights

Extract persistent velocity values for yellow flower flights

PVyellows = OrthogonalComponentsVelocity3D[mpc[#]] [1] & /@ fyellows; In[0]:=

ypv = LowpassFilter[PVyellows[#]], 0.5] & /@ Range@Length@fyellows; In[0]:=

Distances for yellow flower flights

ydis = DistanceProfile3D[mpc[#]] & /@ fyellows; In[0]:=

Join to a single dataset

 $yellowdistPV = \{ydis[\![\#]\!][\![2\ ;\!]\!], ypv[\![\#]\!]\}^{\mathsf{T}} \& /@ \{1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9,\,10,\,11,\,12\};$ In[0]:=

Smooth density histogram with contours

```
In[0]:=
       SmoothDensityHistogram[Flatten[yellowdistPV, 1],
        PlotRange \rightarrow \{\{0, 30\}, \{-100, 100\}\}, Mesh \rightarrow 30,
        FrameLabel → {{HoldForm[" Persistence Velocity (cm/s)"], None},
           {HoldForm["Distance from spider (cm)"], None}},
        PlotLabel → None, LabelStyle → {GrayLevel[0]}]
```


White flower flights

Extract persistent velocity values for white flower flights

```
PVwhites = OrthogonalComponentsVelocity3D[mpc[#]] [1] & /@ fwhites;
In[0]:=
```

Subsample to remove trajectories where computation did not work; standardize (z-score normalisation) and then run a low pass filter

```
wpv = LowpassFilter[PVwhites[#]], 0.5] & /@ Range@Length@fwhites;
In[0]:=
```

Distances for white flower flights

```
wdis = DistanceProfile3D[mpc[#]] & /@ fwhites;
In[0]:=
```

Join to a single dataset

```
whitedistPV = {wdis[#][2;;], wpv[#]]} \(^{\text{\text{$\phi}$}} \& \/@\text{Range@Length@fwhites;}\)
```

Smooth density histogram with contours

```
SmoothDensityHistogram[Flatten[whitedistPV, 1],
In[0]:=
        PlotRange \rightarrow \{\{0, 30\}, \{-100, 100\}\}, Mesh \rightarrow 20,
        FrameLabel → {{HoldForm["Persistence Velocity (cm/s)"], None},
           {HoldForm["Distance to spider (cm)"], None}},
        PlotLabel \rightarrow None, LabelStyle \rightarrow {GrayLevel[0]}]
```


For figure

 ${\tt GraphicsRow}\big[\big\{{\tt \$20}\,,\,{\tt \$}^{\bullet}\big\}\big]$ In[0]:= Out[0]=

