PreDP revision questions answers for Section B of the exam

Unit 1 and 2: Measurements and Forces and Motion

check zero on stopwatch OR repeat OR other sensible precaution start stopwatch at some recognisable point in the cycle stop stopwatch after at least 10 cycles OR count no. of cycles in at least 10 divide time by number of cycles	B1 B1 B1 B1	[4]
(a) micrometer OR screw gauge OR vernier scale NOT vernier callipers	B1	
(b) 2.73 mm	B1	
(c) check/set zero) close instrument on to paper) not too tight/use ratchet) any 3 take reading of both scales) use several sheets) divide reading by no. of sheets)	B1 × 3	
		[5]
(a) measuring cylinder with liquid immerse statue volume from difference of readings from measuring cylinder OR displacement can/equivalent/beaker, filled to overflowing with liquid	B1 B1 B1 (B1)	
immerse statue measure volume displaced <u>with measuring cylinder</u>	(B1) (B1)	
(b) (D =) M/V OR 600/65 9.23 g/cm³ (minimum 2 s.f.) N.B. unit penalty applies OR	B1 B1	
(For gold) (M =) V × D OR 65 × 19 1235 g (minimum 2 s.f.) N.B. unit penalty applies OR	(B1) (B1)	
(For gold) (V =) M / D OR 600/19 31.6 cm ³ (minimum 2 s.f.) N.B. unit penalty applies	(B1) (B1)	
'NO' ticked if justified by previous work in (a) or (b) . e.c.f from wrong values above	B1	[6]

(a)		iod: 1.81s OR 1.8s as mean value 1.8s as most common reading / the mode	B1
(b)		ne a minimum of 2 (successive) oscillations ide result by the number of oscillations	B1 B1
	Cou		(B1)
	OR	Divide no. of oscillations by time and find reciprocal	(B1)
	Tim Che	peat (several times) <u>and</u> find mean the with reference to fixed / fiducial point or top or bottom of oscillation eck / set zero of stop-watch by knowledge of what is meant by one oscillation	B2
(a)		nsity =) mass/volume OR mass per unit volume m/V with symbols explained	B1
(b)	(i)	(vol =) mass/density OR 60.7/2.70 = 22.48 cm ³ to 2 or more sig. figs	C1 A1
	(ii)	$V = A \times \text{(average)}$ thickness OR thickness = V/A OR 22.48 / (50 × 30) 0.01499 cm to 2 or more sig. figs. e.c.f. (b)(i)	C1 A1
(c)	(i)	micrometer/screw gauge / (vernier/digital) callipers	В1
	(ii)	check zero of device used / cut sheet into several pieces / detail of how to use device / fold sheet	B1
		measure thickness of sheet <u>in different places</u> OR measure thickness of several pieces together calculate/obtain average thickness OR divide answer by number of measurements/ pieces/places	B1 B1

(a)	(density =) mass/volume	B1	
(b)	water used in measuring/graduated cylinder	B1	
	volume of water known or read/recorded/taken	B1	
	place the coins in the water and read/record/take new level of water in cylinder	B1	
	subtract readings	B1	
	OR ALTERNATIVE METHOD: pour water into displacement can to level of spout	(B1)	
	place the coins/several coins in the water	(B1)	
	collect overflow	(B1)	
	measure volume of overflow water using measuring graduated cylinder	(B1)	
	measure mass/weigh the coins used with balance/spring balance	B1	
(a)	(if no diagram, max. mark is 3) measuring/graduated cylinder	B1	
	water AND initial reading OR known volume alternative method: water AND filled eureka can owtte	B1	
	immerse stone AND final reading alternative method: immerse stone AND catch overflow	B1	
	final reading – initial reading alternative method: reading on measuring cylinder	B1	
(b)	(i) mass, NOT with other quantity	B1	
	(ii) $(\rho =)m/V$ in symbols or words	B1	
(c)	attach weight to wood OR different liquid OR push down with stick	M 1	
	accuracy mark must match method subtract volume of weight from total volume OR new liquid less dense than wood OR no part of stick in water/thin stick	A1	

(a)	(i)	straight line OR constant gradient / slope OR change in speed with time constant OR speed proportional to time	B1	
	(ii)	increase in velocity / time OR $a = v/t$, symbols, words or numbers 0.75 m/s ²	C1 A1	
(b)	(i)	decreases OR acceleration slows (down) NOT 'it slows down'	C1	
	(ii)	equal to forward / downward force / force down slope OR constant / maximum OR (giving) no resultant force equal to component of weight (down slope)	C1 A1	
	(iii)	1 graph starting at origin curved from start AND decreasing gradient AND	B1	
		horizontal final part	B1	
		2 label A on any correct curved region label B on horizontal region	B1 B1	[10
(a)	in c	lirection of the force Do not accept forward on is own.	B1	
(b)		inges direction / causes acceleration / stops straight line motion / keeps object in leaving circle / keeps path circular / pulls object into circle	В1	
(c)	(i)	 600 N same as his 1. accept 600 N if no value given in (c) (i) 1. 	B1 B1	
	(ii)	ma OR 60 × 2.5 150 N	C1 A1	
	(iii)	750 N e.c.f. from (c) (i) 2 and/or (c) (ii)	B1	
	(iv)	same as his (c) (i) 2 accept 600 N if no value given in (c) (i) 2.	B1	

(a)	decreases / braking / decelerating) constant / steady / nothing) all 3 increases / accelerate)	B1	
(b)	speed x time in any form, symbols, numbers or words OR any area under graph used or stated 13 (m/s) OR 24 (s) seen or used in correct context 312 m	C1 C1 A1	
(c)	rate of change of speed OR gradient of graph OR 18/12	C1	
	18 (m/s) OR 12 (s) seen or used in correct context 1.5 m/s ²	C1 A1	
(d)	same gradient / slope OR equal speed changes in equal times OR allow graph symmetrical	B1	[8]
(a)	(i) constant/steady/uniform speed/velocity OR speed/velocity = 2.5 (m/s) speed/velocity = 2.5 m/s accept fraction, average speed/velocity = 2.5 m/s	B1 B1	[2]
	(ii) shape curving upward but not to vertical, at least to 3.5s unless reaches 25 m	B1	[1]
(b)	horizontal (straight) line OR careful sketch accept parallel to time/x-axis	B1	[1]
(c)	tolerance on both axes ± 1/2 small square throughout both parts		
	(i) horizontal straight line at 2.5 m/s from 0 to 2 s, ecf from (a)(i)	B1	
	(ii) straight line rising to the right as far as the edge of the graph area $\Delta v = 4 \text{m/s}$ or gradient clearly 2m/s^2	M1 A1	[3]
(d)	horizontal (straight) line at 0 m/s accept for both marks: line in/along time/x-axis OR line with $y/v = 0$ OR careful sketch	M1 A1	[2]

(a)	(i)	Increasing speed / acceleration		B1
	(ii)	Constant / steady / uniform speed or motion		В1
	(iii)	Decreasing speed / deceleration / braking / slowing / stopping / negative acceleration		В1
(b)	(i)	(Total) distance / (total) time OR d/t OR 400 / 60 6.67 m/s at least 2 s.f.		C1 A1
	(ii)	Mention of maximum gradient OR clear that whole or part of B to C is used Use of correct data from graph to $+/-\frac{1}{2}$ square Answer rounds to 9.2 to 9.4 m/s, at least 2 s.f.		C1 C1 A1
(a)	(i)	a time from 12.5 – 14.9 s or 15.1 – 16.0 s *Unit penalty applies	B1	
	(ii)	a time from 0 – 2.5s or 14.9 – 15.1s *Unit penalty applies	B1	
	(iii)	a time from 2.5 – 12.5 s *Unit penalty applies	B1	
(b)	(init	ially) weight/force of gravity and <u>air</u> friction/resistance act	B1	
	it sp	peeds up/accelerates and (air) friction/resistance increases	B1	
	rea	ches terminal/constant velocity	В1	
	(air) friction/resistance = weight or no resultant (force) or forces in equilibrium	B1	
(c)	upv	vards	B1	[8]
*Ap	plyι	ınit penalty once only		

(a)	(i)	$v = u + at$ OR $(a =) (v - u)/t$ OR $24 = a \times 60$ OR $24/60$ $0.4(0)$ m/s ²	C1 A1
	(ii)	$(F =) ma OR 7.5 \times 10^5 \times 0.40$ 300 000 N OR 300 kN	C1 A1
(b)	(i)	in words or symbols ($P = W/t$ OR F x d/t OR Fv OR 7.2 × 10 ⁴ × 24 / 1 OR OR 7.2 × 10 ⁴ × 24 1.7 × 10 ⁶ W	C1 A1
	(ii)	gravitational/potential energy of train has to be increased OR force acts down the slope/backward force acts (on train)	B1
		(for the same distance moved) more work done has to be done OR energy has to be provided (by the engine) in the same time (so needs more power)	B1 B1

(a) (i)	Terminal (velocity);		1
(ii)	upward force = downward force / forces balanced / no resultant force / resultant force = 0; reference to F = ma / reference to (Newton's) 1 st or 2 nd Law; no acceleration / acceleration = 0;	IGNORE descriptions of <i>reaching</i> terminal velocity	3
(iii)	, , , , ,	NOT ACCEPT ' <u>no</u> air resistance' IGNORE upthrust	2
(b)	(Stopping distance) increased / further / longer; Suitable reason, e.g. Since less braking force / air resistance / drag / takes longer to decelerate / reduced deceleration / smaller resultant force;	IGNORE references to `longer time' must be comparative, e.g. less / slower / longer	2

(a)	(stopping distance =) thinking distance + braking distance	Could be reversed	1
(b)	Any two of:	Ignore references to time	2
	as speed increases / car goes faster, the (thinking/braking/stopping) distance increases;		
	as thinking distance increases so does braking distance; difference in pattern between thinking/braking	Allow use of values from graph	
	distances identified; e.g: increase in thinking distance < increase in braking distance / increase in thinking distance is linear or	Reject: thinking distance proportional to braking distance	
	proportional / increase (in braking / stopping) is non linear / WTTE		
(c)	30 (m)	ALLOW any value from 28 to 32 m	1

(a)	(i)	Substitution; Calculation; e.g. m x g = 0.454 x 10 = 4.54 (N)			2
	(ii)	Centre of gravity;	Centre of mass;		1
(b)	(i)	force upwards; from top of nail; Any two from: increase F_1 OR increase force (from hand); Increase d_1 OR increase distance of hand from pivot; Keep F_1 perpendicular to hammer;	Near vertical by eye In line with F_2 use two hands use longer handle use longer hammer		2
			Ignore: references to d ₂ distance from nail to pivot idea of bigger [rather than longer] hammer	Total	7

(a)	(i)	work done = force × distance (moved);	Accept correct symbols e.g. W = F x d W = F x s	1
	(ii)	substitution; evaluation;		2
		e.g. (work =) 140 × 39 5500 (J)	5460	
	(iii)	same answer as 5(a)(ii)	allow 'the same'	1
(b)	(i)	X in line with the weight arrow and vertically between the tail of the arrow and the top of the wheelbarrow (not including the logs);	judge alignment with weight arrow by eye	1
		pivot X		
	(ii)	moment = force × (perpendicular) distance (from pivot);	condone M = F x d M = F x s	1
	(iii)	principle of moments (stated or implied); total distance hand to pivot calculated;	accept 1.4 or 0.6 + 0.8 seen in working	4
		substitution showing either correct moment (or both); final rearrangement and evaluation;	accept 282 seen in working	
		e.g. (total) clockwise (moment) = (total) anticlockwise (moment) (distance) = $0.6 + 0.8 = 1.4 \text{ m}$ $470 \times 0.6 = F \times 1.4$		
		$F = 470 \times 0.6 / 1.4 = 200 (N)$	allow 201, 201.43	
			350, 352, 353, 352.5 gets 2 marks	

(a)	momentum = mass x velocity OR 72 x 8; Calculation 580 (kg m/s);	Or equivalent rearrangement ACCEPT use of standard abbreviations i.e. p = mv ALLOW 576 (kg m/s)	2
(b)	Substitution 920 ÷ 0.17 ; Calculation 5400 (N) ;	REJECT Alternative incorrect unit for 1 mark ACCEPT 5410 / 5412 / 5411.7 5411.8 REJECT 5411	2
(c) (i)	Any two from: Road Weather-related e.g. wet / dry / rainy / icy; Surface-related e.g. gravel / mud / freshly tarmaced / oily; Gradient e.g. uphill / downhill; Car Mechanical e.g. quality of tyres / brakes; Momentum-related e.g. speed / number of passengers / mass; Driver State of alertness e.g. tired / alcohol / drugs / mobile phone / other distractions; Reaction time;	ALLOW slippery if qualified	2

(a) (i	momentum = mass x velocity;		1
(ii	Substitution into correct equation; Calculation; e.g. momentum = 0.15 x 6 = 0.9;; Unit: kg m/s;	kg ms ⁻¹ Ns	3
(ii	0.9 = (0.15 + 0.05) x v; v = 0.9 ÷ 0.2 = 4.5 (m/s);	Ecf from 8(a) (ii) (i.e. answer for 8aii ÷ 0.2 or answer for 8aii x 5)	2
(b)	The student is wrong; Because variables are not controlled; e.g. mass of cloth different, mass of (other) tins different, cloth velocity not measured	Student is right if the mass of the second cloth is 0.3 kg;; Student is right if the momentum of the second cloth is 1.8 kg m/s;; (assuming all tins are 0.05 kg/ throws new cloth with exactly the same velocity)	2

(b) (i) Momentum = mass x velocity; $p=m \times v$; accept rearrangements (ii) Substitution in correct equation; $e.g. 6.4 \times 6 = 38.4 \times kg \text{ m/s}$; (c) (i) 4.8 (m/s) ; Idea that momentum is conserved; Substitution; Calculation; Calculation; $e.g. 6.4 \times 6 = (6.4 + m_2) \times 4.8 \times 6.4 \times 6 = (6.4 + m_2) \times 4.8$ $m_2 = (38.4 + 4.8) - 6.4 = 8 - 6.4 \times 6.$	(a)		Area under the graph (from 0 s to 3 s) ;	6 x 3 or 18 (m); area shaded on graph		1
(ii) Substitution in correct equation; Calculation; e.g. 6.4×6 = 38.4 kg m/s; (c) (i) 4.8 (m/s); (ii) Idea that momentum is conserved; Substitution; Calculation; e.g. $p_1 = p_2 / m_1 \times v_1 = (m_1 + m_2) \times v_2$ 6.4 \times 6 = $(6.4 + m_2) \times 4.8$ (a) $m_2 = (38.4 + 4.8) - 6.4 = 8 - 6.4$ (b) $m_2 = (38.4 + 4.8) - 6.4 = 8 - 6.4$ (c) (i) $m_3 = (38.4 + 4.8) - 6.4 = 8 - 6.4$ (c) (ii) $m_4 = (38.4 + 4.8) - 6.4 = 8 - 6.4$ (c) (iii) $m_4 = (38.4 + 4.8) - 6.4 = 8 - 6.4$ (c) (iv) $m_4 = (38.4 + 4.8) - 6.4 = 8 - 6.4$ (c) (iv) $m_4 = (38.4 + 4.8) - 6.4 = 8 - 6.4$ (c) (iv) $m_4 = (38.4 + 4.8) - 6.4 = 8 - 6.4$ (c) (iv) $m_4 = (38.4 + 4.8) - 6.4 = 8 - 6.4$ (d) $m_4 = (38.4 + 4.8) - 6.4 = 8 - 6.4$ (e.g.: Idea of conservation of momentum; $m_4 = (6.4) = $	(b)	(i)	Momentum = mass x velocity;			1
		(ii)	Calculation; e.g. 6.4 x 6			3
(ii) Idea that momentum is conserved; Substitution; Calculation; Calculation; Calculation; Calculation in (b)(ii) and /or incorrect welocity reading calculation of momentum; $m_2 = (38.4 \div 4.8) - 6.4 = 8 - 6.4 = 1.6 \text{ (kg)}$ Allow e.c.f. from incorrect momentum calculation in (b)(ii) and /or incorrect velocity reading e.g.: Idea of conservation of momentum; $m_2 = ([b)(ii) \div (c)(i)] - 6.4$; correct evaluation of this; e.g. 5 m/s \Rightarrow 1.28 kg Allow for one mark - A calculation that only leads to total mass e.g. = 8 kg;			kg m/s ;	Ns;		
Substitution; Calculation; incorrect momentum calculation in (b)(ii) and /or incorrect velocity reading $ \begin{array}{c} e.g. \\ p_1=p_2 \ / \ m_1 \times v_1 = (m_1+m_2) \times v_2 \\ 6.4 \times 6 = (6.4+m_2) \times 4.8 \end{array} & e.g.: \\ Idea of conservation of momentum; \\ m_2=(38.4+4.8)-6.4=8-6.4 & momentum; \\ m_2=[(b)(ii)+(c)(i)]-6.4; \\ correct evaluation of this; \\ e.g. 5 \ m/s \rightarrow 1.28 \ kg \\ Allow for one mark - A calculation that only leads to total mass e.g. = 8 kg; \\ \end{array} $	(c)	(i)	4.8 (m/s) ;			1
Total 9		(ii)	Substitution; Calculation; e.g. $p_1 = p_2 / m_1 \times v_1 = (m_1 + m_2) \times v_2$ $6.4 \times 6 = (6.4 + m_2) \times 4.8$ $m_2 = (38.4 + 4.8) - 6.4 = 8 - 6.4$	incorrect momentum calculation in (b)(ii) and /or incorrect velocity reading e.g.: Idea of conservation of momentum; m₂ = [(b)(ii) ÷ (c)(i)] - 6.4; correct evaluation of this; e.g. 5 m/s → 1.28 kg Allow for one mark - A calculation that only leads to total mass	Total	3