Lei de Coulomd

Força que a carga 1 exerce na carga 2 e que a carga 2 exerce na carga 1

$$\overrightarrow{F_{ab}} = |\overrightarrow{F_{ab}}|\widehat{r_{ab}}$$

$$\overrightarrow{F_{12}} = K \; \frac{q_1 q_2}{r_{12}^2} \, \widehat{r_{12}}$$

Principio de sobreposição

$$\overrightarrow{E_P} = \frac{\overrightarrow{F_{q,P}}}{q}$$

A força resultante sobre qualquer das cargas é igual à <u>soma vectorial</u> das forças devidas às cargas individuais.

$$\overrightarrow{E}_{P} = \overrightarrow{E}_{P,q1} + \overrightarrow{E}_{P,q2} + \overrightarrow{E}_{P,q3} + \dots$$

O campo elétrico resultante, num ponto, é igual à <u>soma vectorial</u> dos campos nesse ponto devidos às cargas individuais.

Campo Elétrico e linhas de campo elétrico

$$\overrightarrow{E_P} = \frac{\overrightarrow{F_{qo,P}}}{q_o}$$

$$(S.I. \Rightarrow N/C)$$

2. A LEI DE GAUSS

- 2.1 Fluxo do campo elétrico
- 2.2 Lei de Gauss
- 2.3 Aplicações da Lei de Gauss a Isoladores Carregados
- 2.4 Condutores em Equilíbrio Eletrostático

Lei de Gauss:

- Outro procedimento para o cálculo dos campos elétricos.
- É uma consequência da lei de Coulomb.
- Mais indicada para o cálculo do campo elétrico de distribuições de carga simétrica.
- Guia para o entendimento de problemas mais complicados.

2.1 Fluxo do Campo Elétrico

Necessário: Campo elétrico; Superfície na região de campo

- Fluxo do campo elétrico através de uma superfície é uma medida do número de linhas do campo que atravessam a referida superfície (escalar).
- Quando a superfície atravessada é fechada e contém no seu interior cargas elétricas, o número de linhas que saem através da superfície menos o número de linhas que entram através da superfície é proporcional à carga total no interior da superfície.
- O número de linhas contado, ou seja o fluxo, é independente da forma da superfície que envolve a carga (~ Lei de Gauss)

O número de linhas de campo elétrico que passam uma dada superfície (ou seja o fluxo) depende:

- da intensidade do campo elétrico (> nº linhas ⇒ campo mais intenso)
- da área da superfície (maior área ⇒ mais linhas de campo a passar)
- do ângulo que a normal à superfície faz com as linhas de campo

O fluxo pode ser um número negativo ou positivo: dependendo da normal da superfície escolhida

Fluxo positivo: a normal à sup escolhida é $//\vec{E}$

Fluxo negativo: a normal à sup escolhida é anti- $//\overrightarrow{E}$

Assim:
$$Fluxo = \vec{E} \cdot \vec{A} = \vec{E} \cdot \hat{n}A = |\vec{E}| |\vec{A}| \cos(\hat{\vec{E}}, \hat{n})$$

. = Produto escalar

Tendo valor máximo, $|\vec{E}| |\vec{A}|$, quando a superfície é \perp ao campo (cos $0^{\circ} = 1$)
Tendo valor nulo quando a superfície é // ao campo (cos $90^{\circ} = 0$)

Se o campo Elétrico for **uniforme**, e se área $A \perp$ ao campo

Em situações mais gerais, o campo elétrico pode variar sobre a superfície considerada.

Metodologia a seguir: Principio de sobreposição – dividir a superfície em elementos de área muito pequenos ($\overrightarrow{\Delta A_1}$ ou d $\overrightarrow{A_i}$) onde o campo elétrico seja constante.

 $\Delta \overrightarrow{A}_i$ cujo módulo é a área do iésimo elemento e cuja direção é a da normal à superfície ($\Delta \overrightarrow{E}=0$ em $\Delta \overrightarrow{A}_i$)

$$\Delta \vec{A}_i = \hat{n} \Delta A$$

$$d\overrightarrow{A_i} = \hat{n}dA$$

A contribuição para o fluxo do elemento i é: $\overrightarrow{E}_i \cdot \Delta \overrightarrow{A}_i$

$$\Rightarrow \Delta \Phi_i = E_i \Delta A_i \cos(\widehat{\overline{E}_i, \widehat{n}_i})$$

O fluxo total é: $\sum_i \Delta \Phi_i$

Se as áreas elementares $\rightarrow 0$

$$\phi \equiv \lim_{\Delta A_i \to 0} \sum \vec{E}_i \Delta \vec{A}_i = \int \vec{E} \cdot d\vec{A}$$

$$\phi \equiv \lim_{\Delta A_i \to 0} \sum \vec{E}_i \Delta \vec{A}_i = \int_{\text{superficie}} \vec{E} \cdot d\vec{A}$$

Definição geral do fluxo elétrico

- Integral sobre uma superfície hipotética
- Em geral o valor de φ depende da configuração do campo e da superfície que se tiver escolhido.

Escolha da normal a usar (fluxo positivo ou negativo):

Numa superfície fechada (superfície que divide o espaço numa região interior e numa exterior) escolhe-se as normais à superfície positivas, ou seja, as normais que apontam "para fora" do volume encerrado.

RESUMO:

O fluxo total, através da superfície, é proporcional ao <u>número líquido</u> de linhas que atravessam a superfície.

(nº de linhas que saem) – (nº de linhas que entram)

- Saem > entram ⇒ fluxo positivo
- Entram > saem ⇒ fluxo negativo

(Assumindo a normal positiva)

Fluxo total

$$\phi = \int \vec{E} \cdot d\vec{A} = \int EA \cos(\vec{E}, \hat{n} dA)$$

Integral sobre uma superfície

- Pode ser muito trabalhoso
- Se campo for \bot à superfície, em cada ponto, e tiver módulo cte \Rightarrow cálculo direto.

2.2 Lei de Gauss

1

Relação geral entre o **fluxo elétrico** através de uma **superfície fechada** (superfície Gaussiana) e a **carga no interior da superfície**.

Consideremos uma carga +q colocada num ponto P.

?? Como é o campo elétrico em qualquer ponto, na vizinhança da carga, criado por essa carga??

?Como é o campo elétrico?

• campo
$$\vec{E}$$
 tem módulo: $|\vec{E}| = K \frac{q}{r^2}$

- campo \vec{E} aponta para longe da carga (+)
 - campo elétrico é radial.

$$\phi = \int \vec{E} . d\vec{A} = \int \left| \vec{E} \right| d\vec{A} \left| \cos(\vec{E}, \hat{n} dA) = \dots$$
Superfície ???

Consideremos então a mesma carga +q no centro de uma superfície esférica de raio r

superfície: Lei de Coulomb

$$\phi = \oint E_n dA = \oint = E \oint dA = E 4\pi r^2$$

$$\left| \vec{E} \right| = K \frac{q}{r^2}$$

$$\phi_{c} = \frac{K q}{r^{2}} (4\pi r^{2}) = 4\pi K q = \frac{q}{\varepsilon_{0}} = \frac{q_{\text{int}}}{\varepsilon_{0}}$$

$$K = \frac{1}{4}$$

! Fluxo é independente de r!

O fluxo do vetor campo elétrico através da superfície Gaussiana esférica é proporcional à carga *q* no interior da superfície.

- $\phi \equiv$ número líquido de linhas que atravessam a superfície.
- O fluxo através de qualquer superfície fechada que envolve uma carga pontual q é dado por q/ϵ_0

O fluxo elétrico através de qualquer Superfície fechada (sup. Gaussiana) é igual à carga no interior da superfície, dividida por ϵ_0

q_{in}: carga elétrica <u>no interior</u> da Superfície Gaussiana.

 \vec{E} : campo elétrico total (contribuições das cargas no interior e no exterior da Superfície Gaussiana.)

Porque é que as cargas fora da superfície não contribuem para o fluxo??????

Carga pontual no exterior de uma superfície fechada.

O fluxo através de uma superfície fechada que não envolve nenhuma carga, é nulo (o número de linhas de campo que entram a superfície é igual ao numero de linhas que saem da mesma).

C

Caso geral de muitas cargas pontuais, ou de uma distribuição contínua de cargas.

 Princípio da sobreposição: o campo elétrico num ponto criado por muitas cargas é igual à soma vetorial dos campos elétricos nesse ponto criado pelas cargas individuais.

$$Fluxo_{Sup_i} = \oint \vec{E} \cdot d\vec{A} = \oint (\vec{E}_1 + \vec{E}_2 + \vec{E}_{3...}) \cdot d\vec{A}$$

S, S1 e S11 são superfícies fechadas.

$$Logo \phi_{si} = \frac{q_{int}si}{\varepsilon_o}$$

$$|\phi_s| = \frac{q_1}{\varepsilon_0}$$

$$\phi_{s^1} = \left(\frac{q_2 + q_3}{\varepsilon_0}\right)$$

$$\phi_{s^{11}}=0$$

Lei de Gauss
$$\phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{q_{
m int}}{arepsilon_0}$$

- <u>Na prática</u>, a Lei de Gauss só é útil num limitado número de situações, nas quais existe um elevado grau de simetria (distribuições de cargas que têm simetria esférica, cilíndrica ou plana).
- A Superfície Gaussiana (fechada) é uma superfície matemática.
- Se a Superfície Gaussiana for cuidadosamente escolhida \Rightarrow o integral \oint será fácil de calcular.

Exemplos

Simetria esférica

Simetria cilíndrica

Simetria planar

Para curiosos: início

2.2.1 A Lei de Gauss não depende da forma da superfície

Consideremos:

- uma carga pontual
- Uma superfície esféria centrada na carga
- Uma outra superfície de forma arbitrária contendo a superfície esférica no seu interior

• Ângulo sólido:
$$\Delta\Omega \equiv \frac{\Delta A}{r^2}$$

(adimensional)

Unidade: esterradiano

A área superficial total da esfera é $4\pi r^2$, o ângulo sólido total subtendido pela esfera, no seu centro, é dado por:

$$\Omega = \frac{4\pi r^2}{r^2} = 4\pi$$

$$\Omega = S/R^2 = S'/R'^2 = S''/R''^2$$

O ângulo sólido subtendido por qualquer destes elementos:

$$\Delta\Omega = (\Delta A \cos \theta)/r^2$$

Assim,

$$\Delta\Omega = (\Delta A \cos \theta)/r^2$$

$$\Omega = \frac{4\pi r^2}{r^2} = 4\pi$$

logo:

$$\Delta \phi = \vec{E} \cdot \Delta \vec{A} = |\vec{E}| \Delta \vec{A} | \cos \theta = Kq \frac{\Delta A \cos \theta}{r^2}$$

$$kq / r^2$$

$$K = 1/4\pi \varepsilon_0$$

$$\phi = Kq \oint \frac{dA \cos \theta}{r^2} = Kq \oint d\Omega = Kq \Omega = Kq 4\pi = \frac{q}{\varepsilon_0}$$

- não depende da forma da superfície fechada
 - É independente da posição da carga no interior da superfície.

Para curiosos: fim

2.3 Aplicações da Lei de Gauss

$$\phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{q_{\rm int}}{\varepsilon_0}$$

- Cálculo do campo elétrico \vec{E} de uma dada distribuição de cargas.
- A Lei de Gauss é útil quando há um elevado grau de simetria na distribuição de cargas: ex. esferas, ou cilindros compridos, ou chapas planas, todas uniformemente carregadas.
- A superfície deve ser sempre escolhida de modo que tenha a mesma simetria da distribuição de carga.

a) Campo elétrico (no ponto P) criado por uma carga pontual

i) Considerações relativas ao campo elétrico: Lei de Coulomb

Campo radial, apontando para longe da carga

ii) Escolha da superfície fechada (gaussiana) que passa no ponto P (de forma a que conheça o ângulo que o \vec{E} faz com a normal positiva da superfície)

Superfície esférica, raio r

Distância do ponto P à carga

$$\overrightarrow{E} // \widehat{n} dA (= d\overrightarrow{A})$$

$$|\overrightarrow{E}|/|\widehat{n}dA(=d\overrightarrow{A})|$$

iii) Cálculo do fluxo

$$\phi = \oint \vec{E} \cdot d\vec{A} = \oint E dA \cos(\vec{E}, \hat{n} dA) = \oint E dA \cos o^{0} = \oint E dA = E \oint dA = EA = E 4\pi r^{2}$$

$$E = \text{Cte } \forall \text{ P}_{\text{sup}}$$

iv) Lei de Gauss

$$\phi = \oint \vec{E} \cdot d\vec{A} = (E4\pi r^2) = \frac{q_{\text{int}}}{\varepsilon_o} = (\frac{+q}{\varepsilon_o})$$

⇒ **Módulo** do campo

 $\left| E = \left| \vec{E} \right| = \frac{q}{4\pi\varepsilon_0 r^2} = K \frac{q}{r^2} \right|$

RADIAL

 \Rightarrow Força eletrostática sobre uma segunda carga pontual q_0 , colocada no ponto P:

Módulo
$$\Rightarrow$$
 $\left| \vec{F} = \left| \vec{F} \right| = q_0 \, \left| \vec{E} \right| = K \, \frac{q q_0}{r^2} \right|$

Lei de Coulomb

b) <u>Distribuição contínua de carga com simetria esférica</u>

• Esfera **isolante**; raio a; densidade de carga ρ uniforme e +Q carga total

i) Considerações relativas ao campo elétrico: Lei de Coulomb

Consideremos um ponto P muito afastado da esfera com carga (ou reduzimos o raio α para um valor muito pequeno).

Apliquemos a lei de Coulomb: Campo E será radial; como Q é positiva apontará para longe do corpo.

Campo radial, apontando para longe da carga

ii) Escolha da superfície fechada (gaussiana) que passa no ponto P (de forma a que conheça o ângulo que o E faz com a normal positiva da superfície)

Sup. fechada (SG):

Superfície esférica, raio r > a, concêntrica com o corpo com carga

Em qualquer ponto da superfície esférica (SG) de raio r:

$$\overrightarrow{E}$$
 // $\widehat{n}dA (= d\overrightarrow{A})$

iii) Cálculo do fluxo de E através desta sup. esférica de raio r:

$$\phi_c = \oint \vec{E} \cdot d\vec{A} = \oint E dA \cos(\vec{E}, \hat{n} dA) = \oint E dA \cos o^0 = \oint E dA = E \oint dA = EA = E 4\pi r^2$$

 $|\vec{E}|$ = cte. em qualquer ponto da superfície: Lei de Coulomb

iv) Aplicar a Lei de Gauss

$$oldsymbol{\phi_c} = \oint \overrightarrow{E} \cdot d\overrightarrow{A} = rac{q_{ ext{int}}}{\mathcal{E}_o}$$

???? r > a

$$\phi_c = \oint \vec{E} \cdot d\vec{A} = (E4\pi r^2) = \underbrace{\frac{q_{\text{int}}}{\varepsilon_o}} = \frac{+Q}{\varepsilon_o}$$

$$E = \frac{+Q}{4\pi r^2 \varepsilon_o} = K \frac{Q}{r^2}$$
 r > a

??? e para r < a ????

$$\phi_c = \oint \overrightarrow{E} \cdot d\overrightarrow{A} = \frac{q_{\mathrm{int}}}{\mathcal{E}_o}$$

Sup. Gauss para r < a

$$\phi_c = \oint \vec{E} \cdot d\vec{A} = (E4\pi r^2) = \underbrace{q_{\text{int}}}_{\mathcal{E}_o} = \underbrace{Q^{(Q)}}_{\mathcal{E}_o}$$

 $Q = \rho Volume$

Rosa: carga total do Corpo

Azul: carga do corpo que está contida dentro da Sup. Gauss

iv) Lei de Gauss

$$|\phi_c| = \oint \overrightarrow{E} \cdot d\overrightarrow{A} = \frac{q_{\text{int}}}{\mathcal{E}_o}$$

?????r<a

$$\phi_c = \oint \vec{E} \cdot d\vec{A} = (E4\pi r^2) = \underbrace{q_{\text{int}}}_{\mathcal{E}_o} = \underbrace{Q^{(Q)}}_{\mathcal{E}_o} = \underbrace{Q^{(Q)}}_{\mathcal{E}_o}$$

$$Q = \rho Volume = \rho \frac{4}{3}\pi a^3$$

$$Q' = \rho \ Vol \ (esf \ raio \ r) = \rho \frac{4}{3} \pi \ r^3$$

$$E = \frac{\rho \frac{4}{3} \pi r^3}{4 \pi r^2 \varepsilon_o} = \frac{\rho r}{3 \varepsilon_o}$$

r < a

$$E = \frac{\rho \frac{4}{3} \pi r^3}{4 \pi r^2 \varepsilon_o} = \frac{\rho r}{3 \varepsilon_o}$$

$$Q_{total\;corpo} = Q = \; \rho_{corpo} V_{corpo} \label{eq:corpo}$$

$$\rho_{corpo} = \frac{Q}{4\pi a^3/3}$$

$$E = \frac{\rho r}{3\varepsilon_o} = \frac{Qr}{4\pi a^3 \varepsilon_o} = \frac{KQr}{a^3}$$

Representação do campo elétrico em função de r (mat. isolador)

$$\left| E = \left| \vec{E} \right| = K \frac{Q}{r^2} \right| \qquad r >$$

$$E = \left| \vec{E} \right| = \frac{KQr}{a^3} \qquad r < a$$

• $E \Rightarrow 0$ quando $r \Rightarrow 0$

Se a esfera for de **material condutor**.....

Veremos mais à frente

c) Distribuição de Cargas com Simetria Cilíndrica

Calcular o campo elétrico num ponto que dista r de uma reta uniformemente carregada, com carga +Q, de comprimento ∞ e com densidade de carga λ = cte

à distância r para fora do écran: à distância r para dentro do écran

Todos os pontos sobre qualquer das circunferência de raio r são o ponto P

i) Considerações relativas ao campo elétrico: Lei de Coulomb

Consideremos um ponto P muito afastado da reta com carga (ou reduzimos a dimensão da reta para um valor muito pequeno)

Apliquemos a lei de Coulomb: Campo \vec{E} estará sempre segundo a linha que une a reta ao ponto; como Q é positiva apontará para longe do corpo.

Consideremos um ponto P muito afastado da reta com carga. Apliquemos a lei de Coulomb.

??Qual a contribuição para o campo no ponto P devida ao elemento de carga dq_1 $(d\overrightarrow{E_1})$??

Campo $d\vec{E}$ estará sempre segundo a linha que une a carga ao ponto e como Q é positiva apontará para longe do corpo.

Qual o campo resultante destas contribuições?????

Como

Lei de Coulomb:
$$r_1 = r_2 = r$$

$$dq_1 = dq_2 = dq$$

$$\left| d\overrightarrow{E_1} \right| = \left| d\overrightarrow{E_2} \right| = \frac{K \ dq}{r^2}$$

e como $\theta 2 = \theta 1$

As componentes segundo yy (paralelas ao fio) ANULAM-SE.

Para curiosos: início

$$d\overrightarrow{E_1} = dE_{1xx}(\hat{\imath}) + dE_{1xx}(-j)$$
 Componente s

Componente segundo o eixo dos xx: $(+\hat{i})$ Componente segundo o eixo dos yy: $(-\hat{j})$

$$d\overrightarrow{E_2} = dE_{2xx}(\hat{\imath}) + dE_{2xx}(j)$$

Componente segundo o eixo dos xx: $(+\hat{\iota})$

Componente segundo o eixo dos yy: $(+\hat{j})$

Lei de Coulomb:

$$\begin{vmatrix} r_1 = r_2 = r \\ dq_1 = dq_2 = dq \end{vmatrix} = \begin{vmatrix} d\overrightarrow{E_1} \end{vmatrix} = \begin{vmatrix} d\overrightarrow{E_2} \end{vmatrix} = \frac{K \ dq}{r^2}$$

$$E_{1xx} = \left| d\overrightarrow{E_1} \right| \cos \theta = E_{2xx}$$

$$d\overrightarrow{E_2} = dE_{2xx}(\hat{\imath}) + dE_{2xx}(j)$$

 $d\overrightarrow{E_1} = dE_{1xx}(\hat{\imath}) + dE_{1xx}(-j)$

$$E_{1xx} = \left| d\overrightarrow{E_1} \right| \cos \theta = E_{2xx}$$

$$d\overrightarrow{E_1} = dE_{1xx}(\hat{\imath}) + dE_{1xx}(-j)$$

$$d\overrightarrow{E_2} = dE_{2xx}(\hat{\imath}) + dE_{2xx}(j)$$

As componentes paralelas ao fio ANULAM-SE.

Cálculo trabalhoso pela Lei de Coulomb.....

$$\left| d\vec{E} \right| = dE_{xx} = \frac{K \, dq}{r^r} \cos \theta$$

$$|\vec{E}| = \int_{-\infty}^{+\infty} |d\vec{E}| = \cdots \dots$$

• Simetria : \vec{E} \perp reta e tem direção "radial".

Para curiosos: fim

As componentes paralelas ao fio ANULAM-SE.

Simetria : \overrightarrow{E} \perp reta e tem direção "radial"

- Simetria : \vec{E} \perp reta e tem direção "radial".
- ii) Escolha da superfície fechada (gaussiana) que passa no ponto P (de forma a que conheça o ângulo que o \vec{E} faz com a normal positiva da superfície): Cilindro (sup. fechada) de raio r, comprimento I, centrado na reta e com eixo paralelo à reta.

- Em qualquer ponto sobre a Superfície cilíndrica: E = cte, $(\vec{E} \parallel d\vec{A})$
- Em qualquer ponto do topo 1 ou topo2: $\left(\overrightarrow{E} \perp d\overrightarrow{A}
 ight)$

Superfície cilíndrica; topo 1; topo 2

iii) Cálculo do fluxo de \vec{E} através desta sup. gaussiana:

$$\phi_c = \oint \vec{E} \cdot d\vec{A} = E \int dA = E 2\pi r l$$

E=cte ao longo de toda a sup.: Lei de Coulomb

iv) Lei de Gauss:

$$\phi_c = \oint \overrightarrow{E} \cdot d\overrightarrow{A} = rac{q_{
m int}}{\mathcal{E}_0}$$

$$E2\pi rl = \underbrace{\frac{q_{\text{int}}}{\mathcal{E}_0}}$$

$$E2\pi rl = \frac{q_{\rm int}}{\varepsilon_0} = \frac{\lambda l}{\varepsilon_0}$$

$$E = \frac{\lambda}{2\pi r \varepsilon_0}$$

Comprimento do cilindro

$$E = \frac{\lambda}{2\pi \varepsilon_0 r} = 2K \frac{\lambda}{r}$$

Boa estimativa para pontos na vizinhança da reta, e afastados das extremidades

•
$$E \propto \frac{1}{r}$$

PS:

- i) se reta finita $\Rightarrow E \neq \boxed{1}$

iii) Se existe pouca simetria na distribuição de carga ⇒ é necessário usar a Lei de Coulomb

d) Folha plana não condutora eletricamente carregada

• Carga σ uniforme

i) Considerações relativas ao campo elétrico: Lei de Coulomb

Consideremos um ponto P à distância *d* da folha. Apliquemos a lei de Coulomb e o principio de sobreposição:

- ? Qual a contribuição para o campo no ponto P pelo elemento de carga dq.
- Campo $d\vec{E}$ estará sempre segundo a linha que une a carga ao ponto;
- como Q é positiva apontará para longe do corpo.

 $rac{dq}{dq}$ origina $rac{dec{E}}{E}$ (com componente paralela e perpendicular ao plano) $rac{dec{E}}{dq}$ origina $rac{dec{E}}{dE}$ (com componente paralela e perpendicular ao plano)

As componentes // ao plano anulam-se e as perpendiculares somam-se.

Longe das bordas, para qualquer dq $(d\vec{E})$ existe um dq $(d\vec{E})$

Simetria: campo é perpendicular ao plano e aponta para longe do plano

ii) Escolha da superfície fechada (gaussiana) que passa no ponto P (de forma a que conheça o ângulo que o E faz com a normal positiva da superfície

- \overrightarrow{E} \perp plano folha
- ullet Sentido de $oldsymbol{E}$ oposto em cada face.

 Cilindro (sup. fechada) de raio r, comprimento l, centrado no plano e com eixo perpendicular ao plano.

\overrightarrow{E} Superfície Gaussiana

Cilindro: sup. cilindrica+topo1+topo2

- \overrightarrow{E} | superfície cilíndrica, ou seja perpendicular to \widehat{n} dA \Rightarrow ϕ_{sup} = 0
- \vec{E} perpend aos topos, ou seja paralelo to $\hat{n}dA \Rightarrow \phi_{sup} \neq 0$

iii) Cálculo do fluxo de \vec{E} através desta sup. gaussiana:

$$\phi_c = \oint \overrightarrow{E} \cdot d\overrightarrow{A} = \oint E dA \cos(\overrightarrow{E}, \widehat{n} dA) = \left(\int E dA \cos 90^0 + \int E dA \cos 0^0 + \int E dA \cos 0^0 \right)$$
Superfície cilíndrica topo 1 topo 2

Topo1 Topo2

$$\phi_c = \oint \vec{E} \cdot d\vec{A} = \oint E dA \cos(\vec{E}, \hat{n} dA) = \int E dA + \int E dA = E \int dA + E \int dA = 2EA$$

E=cte ao longo de toda a sup. (topo): Lei de Coulomb

iv) Lei de Gauss:

$$\phi_c = \oint \vec{E} \cdot d\vec{A} = \frac{q_{\text{int}}}{\mathcal{E}_0}$$

$$\phi_c = 2EA = \frac{q_{in}}{\varepsilon_0} = \frac{\sigma A}{\varepsilon_0}$$

$$\boldsymbol{E} = \frac{\boldsymbol{\sigma}}{2\boldsymbol{\varepsilon}_0}$$

Independente de r

2.4 Condutores em Equilíbrio Eletrostático

Um bom condutor elétrico (Cu) contém cargas (e⁻) que não estão ligadas a nenhum átomo em particular e por isso podem-se deslocar no interior do metal...

Possui muitas cargas "móveis" (eletrões) Cargas de igual sinal: repelem-se. Força repulsiva de acordo com lei de Coulomb. Movimento aleatório

2.4.1 Placa condutora num campo elétrico \overrightarrow{E}

Possui muitas cargas "móveis" (eletrões)

Cargas de igual sinal: repelem-se.

Força repulsiva de acordo com lei de Coulomb.

Movimento aleatório

A- Placa condutora num campo elétrico uniforme

Se o corpo condutor estiver numa região onde existe o campo elétrico, então cada carga "móvel" vai sentir uma força:

Cargas negativas criam campos

$$(\overrightarrow{E_d})$$

que apontam para elas

 $\overrightarrow{E_d}$ opõe-se ao campo externo

Assim os eletrões sentem um campo (resultante) que é:

$$\overrightarrow{E_R} = \overrightarrow{E} + \overrightarrow{E_d}$$

Como $\overrightarrow{F_q} = q\overrightarrow{E_R}$, há movimento de carga enquanto $\overrightarrow{E_R} \neq 0$

O condutor estará em equilíbrio eletrostático (sem movimento de carga) quando o campo resultante no interior do condutor for nulo, ou seja quando $\overrightarrow{E_R} = 0$

$$\vec{E} + \overrightarrow{E_d} = 0$$

$$\overrightarrow{E_d} = -\overrightarrow{E}$$

B- Mesma análise...agora usando a Lei de Gauss e o resultado anterior

i) Da análise anterior sabemos que em todos os pontos no interior do condutor (em equilíbrio eletrostático) \vec{E} =0

i) Consideremos então uma SG no interior do condutor

Assim:

- o fluxo através da SG é NULO (se não há cargas, não há campo elétrico; não há linhas de campo elétrico)
- Logo, pela Lei de Gauss: \mathbf{q}_{int} =0 (Fluxo através de uma sup. fechada: $\phi_c = \frac{q_{in}}{\epsilon}$

Como não pode haver carga líquida no interior da Superfície Gaussiana (que pode estar arbitrariamente próxima da superfície do Condutor) \Rightarrow qualquer excesso de carga, num condutor, deve estar na superfície do condutor.

C- Relação do campo elétrico sobre a face externa da superfície de um condutor em equilíbrio com a distribuição de carga no condutor- Lei de Gauss.

Condutor em eq. eletrostático Carga em excesso estará na superfície (consideremos (+) por simplicidade)

- apontará para longe da carga (+)
- qual a orientação?????

Se campo for paralelo à superfície

Corpo não está em eq. eletrostático

Se campo fizer um ângulo com a superfície (possui uma componente paralela e outra perpendicular à superfície)

Cargas sente $\overrightarrow{F} \neq 0$

Logo movem-se

Cargas sente $\overrightarrow{F} \neq 0$, mas como não tem para onde ir, não se movem

Corpo não está em eq. eletrostático

Logo a única hipótese é o campo ser perpendicular à superfície

Escolha da superfície de Gauss: cilindro de raio r, comprimento l (1/2 fora e 1/2 dentro do corpo)

• interior (sup. cilíndrica e topo) $\Rightarrow \phi = 0$

• exterior: sup cilíndrica ϕ = 0 pois $\hat{n}A$ $\acute{e}\perp a$ \vec{E} Topo: ϕ = EA pois $\hat{n}A//\vec{E}$

$$\phi_c = \oint \vec{E} \cdot d\vec{A} = \oint E dA \cos(\vec{E}, \hat{n} dA) = \int E dA = E \int dA = EA = E(\pi r^2)$$

E=cte ao longo de toda a sup. (topo): Lei de Coulomb

Lei de Gauss:

$$E_n = \frac{\sigma}{\varepsilon_0}$$

Não depende de r!!!!!!

Resumo: Condutores em Equilíbrio Eletrostático

Um condutor diz-se em equilíbrio eletrostático quando não há um movimento líquido no interior do metal.

- 1. O campo elétrico é nulo em qualquer ponto no interior do condutor.
- Qualquer excesso de carga, num condutor em equilíbrio eletrostático (isolado), deve estar, necessária e inteiramente, na superfície do condutor.
- 3. O campo elétrico na face externa da superfície de um condutor é perpendicular à superfície do condutor e tem o módulo igual a σ/ϵ_0 (σ é a carga por unidade de área no ponto da superfície).

PS: Num condutor com forma irregular, a carga tende a acumular-se nos locais onde o raio de curvatura da superfície é pequeno, isto é, onde a superfície é pontiaguda.

Representação do campo elétrico em função de r (Esfera condutora)

$$E = \left| \vec{E} \right| = K \frac{Q}{r^2}$$
 r > a

$$E=0$$
 r < a