Area Integrals

This is a method of working out the area of a snape using integration. The simplest example of this is to compute the area of a square. To do this, we first split up the larger square into smaller squares:

The width of each square is 8x

The height of each square is 8y

The orea of the tiny square is 8x8y

Total Area = 28x8y

Now we can add up and the strips across all y: Total Area = ZLSy which an be written as the integral:

Total Area = L_1^2 dy = L_2^2 So we have the area of the square is L_2^2 . Shocking!

Notice that we have just done something called a double integral. The first sum $\Sigma S \times S y$ could have been written directly as:

Total Area = \ii dxdy in either order.

2d Polar Coordinates

In problems with rotational symmetry, for example when working with a disc, it is sometimes easier to use a polar coordinate system (defined with values of r and O) instead of a cortesian coordinate system.

Generally, the conversion is: $x = rcos\Theta$ $y = rsin\Theta$

This polar system uses a value for distance from centre, called r, and a value for angle from the horizontal, called G, is the ranges OGTED, OGEZIT.

In the same way that we can divide a shape in a cortesian system into infinitesimal lines or squares, we can do the same in a polar system:

80 is an infinitesimal increase of rotation from 0 and 8r is an infinitesimal increase of radius from r.

Note that the orc length of the formed orc is 180, making each small "square" look like:

ISO Sr giving each square Area = 1808r

The line integral can be worked out in the Polar System in much the same way as the cortesian system.

Here is an example with a circle:

PE Divide circle into small arcs of leight RSO. Sunning all the arc lengths:

Circumference =
$$\sum_{i=0}^{2\pi} R SO$$
 which is new itten as:
= $\sum_{i=0}^{2\pi} R SO$ which is new itten as:
= $\sum_{i=0}^{2\pi} R SOO$
= $R[O]_{o}^{2\pi}$
= $\sum_{i=0}^{2\pi} R$

The same is true for working out the Area Integral:

Area =
$$\sum_{i=0}^{2\pi} r 808r$$
 which is rewritten as:
= $\sum_{i=0}^{2\pi} r 808r$ which is rewritten as:
= $\int_{-2\pi}^{2\pi} r \int_{-2\pi}^{2\pi} d0 dr$
= $\int_{-2\pi}^{2\pi} r \int_{-2\pi}^{2\pi} d0 dr$