Об оценке числа обусловленности в Лабораторной работе 1

Пусть x — точное решение СЛАУ Ax = b, а x^* — полученное вами приближённое решение. Вычислим $b^* = Ax^*$. Тогда $r = b - b^* = b - Ax^*$ — невязка, которую тоже требуется найти. (**Обращаю внимание:** здесь A — исходная матрица коэффициентов, а не та, которая была получена в результате осуществления прямого хода метода Гаусса.)

Мы знаем, что имеется оценка $\delta(x^*) \leqslant \nu(A) \cdot \delta(b^*)$, которая неулучшаема, если рассматривать всевозможные $b \neq 0$ и сколько угодно близкие к ним b^* ; здесь $\nu(A)$ — число обусловленности. Поэтому, вычислив x^* , а затем b^* , и зная точное решение x (оно дано в самом задании), мы можем найти $\delta(x^*)$ и $\delta(b^*)$ (заметим, что $\Delta(b^*) = \|r\|$) и получить искомую оценку для числа обусловленности: $\nu(A) \geqslant \delta(x^*)/\delta(b^*)$.

Именно с этой целью в задании было дано точное решение x.