# TD entraînement : approche énergétique

## Chute sur corde en escalade

On étudie une grimpeuse qui chute. Une corde d'escalade de longueur  $L_0$  peut, en première approximation, être modélisée par un ressort de longueur à vide  $L_0$  et de raideur  $k = \alpha/L_0$ , avec  $\alpha$  une caractéristique de la corde.



La grimpeuse est en chute libre sur une hauteur h pendant laquelle la corde n'est pas sous tension. La corde passe ensuite sous tension, et la chute se poursuit sur une hauteur  $\Delta l$ . La vitesse de la grimpeuse devient ainsi nulle au bout d'une hauteur totale de chute  $h + \Delta l$ .

On prendra  $g = 10 \,\mathrm{m\cdot s^{-2}}, \, \alpha = 5.0 \times 10^4 \,\mathrm{N}$  et une grimpeuse de masse  $m = 50 \,\mathrm{kg}$ .

- 1) À l'aide d'un bilan énergétique, donner l'expression de la vitesse maximale atteinte par la grimpeuse. Faire l'application numérique pour une hauteur de chute  $h=5\,\mathrm{m}$ .
- 2) Toujours à l'aide d'une méthode énergétique, donner l'expression de l'allongement maximal  $\Delta l$  de la corde. On supposera  $\Delta l \ll h$  afin de simplifier le calcul.
- 3) Donner enfin l'expression de la norme de la force maximal  $F_{\text{max}}$  qu'exerce la corde sur la grimpeuse. On introduira le facteur de chute  $f = h/L_0$ .
- 4) Au-delà d'une force de  $12\,\mathrm{kN}$ , les dommages sur le corps humain deviennent importants. Que vaut  $F_{\mathrm{max}}$  pour une chute de  $h=4\,\mathrm{m}$  sur une corde de longueur  $L_0=4\,\mathrm{m}$ ? Conclure.
- 5) Une chute d'un mêtre arrêtée par une corde de  $50\,\mathrm{cm}$  est-elle plus ou moins dangereuse qu'une chute de  $4\,\mathrm{m}$  arrêtée par une corde de  $8\,\mathrm{m}$ ?

### II | Recul d'un canon

On considère un canon (figure 4.1) de masse  $M=800\,\mathrm{kg}$ . Lors du tir horizontal d'un obus de masse  $m=2,0\,\mathrm{kg}$  avec une vitesse  $\overrightarrow{v_0}=v_0\,\overrightarrow{u_x}$  telle que  $v_0=600\,\mathrm{m\cdot s^{-1}}$ , le canon acquiert une vitesse de recul  $\overrightarrow{v_c}=-\frac{m}{M}\overrightarrow{v_0}$ .

Pour limiter la course du canon, on utilise un ressort de raideur  $k_1$ , de longueur à vide  $L_0$  dont l'une des extrémités est fixe, et l'autre liée au canon. Le déplacement a lieu suivant l'axe Ox. Dans la suite, le canon est assimilé à un point matériel, son centre de gravité G (figure 4.2).



FIGURE 4.1 – Canon

FIGURE 4.2 – Repérage

FIGURE 4.3 - Amortisseur

- 1) Quelle est la longueur du ressort lorsque le canon est au repos?
- 2) En utilisant l'énergie mécanique, déterminer la distance de recul d. En déduire la raideur  $k_1$  pour avoir un recul inférieur ou égal à d. Application numérique pour d = 1,0 m.
- 3) Retrouver la relation entre  $k_1$  et d en appliquant le PFD.
- 4) Quel est l'inconvénient d'utiliser un ressort seul?

Pour pallier ce problème, on ajoute au système un dispositif amortisseur (figure 4.3), exerçant une force de frottement  $\vec{F} = -\lambda \vec{v}$ ,  $\vec{v}$  étant la vitesse du canon.

- 5) Le dispositif de freinage absorbe une fraction  $\mathcal{E}_a = 778\,\mathrm{J}$  de l'énergie cinétique initiale. Calculer la nouvelle valeur  $k_2$  de la constante de raideur du ressort avec les données numériques précédentes. Déterminer la pulsation propre  $\omega_0$  de l'oscillateur.
- 6) Déterminer  $\lambda$  pour que le régime soit critique. Application numérique.
- 7) Déterminer l'expression de l'élongation x(t) du ressort, ainsi que celle de la vitesse  $\dot{x}(t)$ . En déduire l'instant  $t_m$  pour lequel le recul est maximal. Exprimer alors ce recul en fonction de m,  $v_0$  et  $\lambda$ . L'application numérique redonne-t-elle la valeur de d précédente?

# III Positions d'équilibre d'un anneau sur un cercle

Un anneau assimilable à un point matériel M de masse m peut glisser sans frottement sur une glissière circulaire de rayon R et de centre O. L'anneau est attaché à un ressort de raideur k dont une extrémité est fixée à la glissière au point A. Sa position est repérée par l'angle  $\theta$  entre le rayon OM et l'axe horizontal (Ox). Pour simplifier les calculs, on considérera que la longueur à vide  $\ell_0$  du ressort est nulle.



- 1) Montrer que la longueur  $\ell$  s'exprime  $\ell = R\sqrt{2(1+\cos\theta)}$ .
- 2) Exprimer l'énergie potentielle  $\mathcal{E}_p$  du système constitué de l'anneau et du ressort en fonction de l'angle  $\theta$ .
- 3) Déterminer les positions d'équilibre de l'anneau.
- 4) Préciser si les positions d'équilibre obtenues sont stables.

# IV

#### Oscillateur de LANDAU

L'oscillateur de LANDAU est un modèle théorique permettant de modéliser efficacement des systèmes physiques pour lesquelles des faibles non-linéarités sont à prendre en compte. Il s'agit d'une approximation un peu plus précise que celle de l'oscillateur harmonique pour étudier le comportement de systèmes au voisinage de leur position d'équilibre.

Un exemple de système modèle permettant de réaliser un oscillateur de Landau est un petit anneau, assimilé à un point matériel M de masse m, astreint à se déplacer sans frottement le long d'une tige rectiligne horizontale choisie comme axe (Ox). Cet anneau est relié à un ressort, de longueur à vide  $\ell_0$  et de raideur k, dont l'autre extrémité est fixée en A. La distance de A à la tige est notée AO = a.



- 1) Exprimer l'énergie potentielle totale  $\mathcal{E}_p(x)$ .
- 2) La courbe d'énergie potentielle est représentée ci-dessous pour quatre valeurs de  $a: a_1 = \ell_0/10$ ,  $a_2 = \ell_0/3$ ,  $a_3 = \ell_0$  et  $a_4 = 3\ell_0$ . En raisonnement qualitativement sur les positions d'équilibre, attribuer chaque courbe à la valeur de a qui lui correspond.
- 3) Pour chaque valeur de a, analyser le mouvement possible de l'anneau en fonction des conditions initiales.
- 4) Pour les valeurs de a précédentes, l'anneau est lâché avec les mêmes conditions initiales. Sa vitesse et sa position sont enregistrées au cours du temps, ce qui donne les trajectoires de phase de la figure ci-dessous. Déterminer la condition initiale et affecter chaque trajectoire de phase à la valeur de a qui lui correspond.







## Pendule électrique

On étudie un pendule constitué d'une boule de polystyrène expansé recouverte d'une feuille d'aluminium, et suspendue à une potence par une fine tige de longueur  $R=10\,\mathrm{cm}$  dont nous négligerons la masse. La boule de masse  $m=20\,\mathrm{g}$  sera assimilée à un point matériel M.

Une boule identique est placée en A (voir schéma). Les deux boules sont chargées électriquement avec la même charge, et donc se repoussent. La force exercée par A sur M s'écrit

$$\vec{F}_e = \frac{k}{\text{AM}^3} \vec{\text{AM}}$$
 avec  $k = 4.4 \times 10^{-3} \,\text{N} \cdot \text{m}^2$ 



FIGURE 4.4 - Dispositif



FIGURE 4.5 – Courbe  $\mathcal{E}_p(\theta)$ 

- 1) Exprimer la distance AM en fonction de R et  $\theta$ .
- 2) Montrer que la force  $\overrightarrow{F}_e$  est conservative, et que son énergie potentielle s'exprime

$$\mathcal{E}_{p,e}(\theta) = \frac{k}{R\sqrt{5 - 4\cos\theta}}$$

- 3) Exprimer l'énergie potentielle totale  $\mathcal{E}_p(\theta)$  de la boule M.
- 4) Le tracé de l'énergie potentielle est proposé sur la figure 2. Déduire de ce graphe l'existence de positions d'équilibres, et indiquer leur nature.
- 5) Discuter de la nature de la trajectoire de M suivant la valeur de son énergie mécanique.