MÈTODES NUMÈRICS I

Grau de Matemàtiques. Curs 2015/16, primer semestre. Examen parcial del 11 de novembre de 2015

- 1.-[8 punts] Es vol calcular la quantitat $R = (\sqrt{5} \sqrt{3})^2$.
 - (a) Demostreu que les 4 expressions següents són equivalents:

$$\left(\sqrt{5}-\sqrt{3}\right)^2$$
, $8-2\sqrt{3}\sqrt{5}$, $\frac{4}{\left(\sqrt{5}+\sqrt{3}\right)^2}$, $\frac{2}{4+\sqrt{3}\sqrt{5}}$.

- (b) Suposem que $\sqrt{5}$ i $\sqrt{3}$ es coneixen només aproximadament, amb errors absoluts pròxims a 0 i de magnitud semblant. Quina de les 4 expressions de l'apartat anterior és millor numèricament per a calcular R?
- **2.-**[8 punts]
 - (a) Siguin a, b, c > 0. Suposem que, en el càlcul de $y = \frac{\sqrt{a}}{\sqrt{b} + \sqrt{c}}$, cada operació elemental (3 arrels quadrades, una suma i un quocient) es fa amb un error relatiu fitat per $\epsilon (<<1)$. Trobeu una fita de l'error relatiu en el resultat y de la forma $k\epsilon + O(\epsilon^2)$, amb k constant independent de a, b, c.
 - (b) Calculeu $\frac{\sqrt{59}}{\sqrt{47}+\sqrt{97}}$ treballant en base 10 i usant 5 dígits significatius (o sigui, el resultat de cada operació elemental s'arrodoneix a 5 dígits significatius).
- **3.-**[10 punts] Sigui A una matriu $n \times n$ tridiagonal i simètrica. Anomenem a_i ($\forall i = 1, 2, ..., n$) els elements de la diagonal principal, i b_i ($\forall i = 1, 2, ..., n 1$) els elements que estan situats immediatament per sobre o per sota de la diagonal principal.
 - (a) Suposem que A és definida positiva i que, per tant, té factorització de Cholesky $A = U^tU$, amb U triangular superior i elements de la diagonal positius. Trobeu fórmules que permetin calcular recurrentment els elements essencials de U (els que no podem assegurar que siguin 0), i compteu el nombre d'operacions que cal fer (arrels quadrades, quocients, productes i restes, per separat).
 - (b) En el cas particular $a_i = 2 \ (\forall i = 1, 2, ..., n)$ i $b_i = \sqrt{1.1} \ (\forall i = 1, 2, ..., n 1)$, fins a quin valor de la dimensió n és A definida positiva?

Indicació: Sigui d_n el determinant de la matriu A en el cas de dimensió n. Deduïu una recurrència per a trobar d_n en funció de d_{n-1} i d_{n-2} i useu-la.

4.-[6 punts] Es consideren matrius $A,\ 2\times 2,$ de la forma $A=\left(\begin{array}{cc}a&b\\b&a\end{array}\right)$, amb $a,b\in R.$

Vegeu que, encara que s'imposi que A és definida positiva i que tingui determinant 1, el nombre de condició $K_{\infty}(A)$ pot ser arbitràriament gran (de fet, pròxim a $4|b|^2$, quan |b| és molt gran).

Entregueu problemes diferents en fulls diferents