MATH 191 GRAPHS AND NETWORKS RESEARCH PROJECT

FIRST AUTHOR * SECOND AUTHOR * THIRD AUTHOR *

February 28, 2015

Abstract. Abstract goes here. Provide 10-15 lines with a summary of your work.

Key words. A few keyword that best describe your work. For example: network centrality, spectral algorithms, gravity models, vertex similarity, core periphery structure, directed graphs, local-to-global algorithms, multiple network alignment, clustering bipartite graphs, angular synchronization

1. Introduction. This is the Introduction.

10

11

12

14

15

16

17

18

19 20

21

22

23

24

25

26

27

This is how you cite a reference paper [1] or multiple ones [1, 2].

Fig. 1.1. This is how you add a plot to a Figure. It is always a good idea to add such a caption to each Figure, and explain what the figure is about. Also, if your plot has x and y axis, please always label your graphs (within MATLAB) so that your plots/results can be easily read and understood.

This is how you cite a (labeled) section: In Section 2, we describe the related work considered in [2]. In Section 3 we ... In Section 4 we test the above algorithms on synthetically generated data sets, while in Section 5 we do so for a real data set. Finally, in Section 6 we conclude with a summary of our results, and discuss future possible research direction.

2. Related work. Questions/Comments/Things that could be done

- What is a good notion of core-periphery structure in directed networks? Would the null model shown in Figure 1.1 be a good model?
- Can one build on or expand some of the above methods and apply them to directed networks?
- As a starting point, perhaps apply simulated annealing to the objective function induced by the above null model
- Apply this to a real network, a good such example might be the migration network between counties in the United States, which we have seen in class in the past.
- This is how you add an url link

http://people.maths.ox.ac.uk/porterm/papers/prestige_final.pdf

This is how you color tex in red ...

This is how you color tex in blue ...

3. Our work. Describe the bulk of your work in this section.

 $^{^{1}}$ Department of Mathematics, UCLA, 520 Portola Plaza, Mathematical Sciences Building 6363, Los Angeles, CA 90095-1555, email: xyz@ucla.edu

²Second Department, UCLA, 520 Portola Plaza, Mathematical Sciences Building 6363, Los Angeles, CA 90095-1555

- 4. Numerical experiments on synthetic data. Present here the numerical results you obtain on a synthetically generated data set...
- 5. Numerical experiments on real data. Present here the numerical results you obtain on a real data set...
- **6. Summary and conclusion.** Summarize your work in this section.

REFERENCES

5

- 6 [1] M. CUCURINGU, M. P. ROMBACH, S. H. LEE, AND M. A. PORTER, Detection of core-periphery structure in networks using spectral methods and geodesic paths, submitted, arXiv:1410.6572, (2014).
- 8 [2] M. P. ROMBACH, M. A. PORTER, J. H. FOWLER, AND P. J. MUCHA, Core-periphery structure in networks, SIAM J. Appl. Math., 74 (2014), pp. 167–190.