3

Rekenen met algebraische vormen

Naam			Totaal	Punten
Klas	Nummer	Datum	Orde / Stiptheid	Correctheid

1 Bepaal de getalwaarde van...

.... / 2

a
$$-2ab$$
 als $a = 5$ en $b = -2$

b
$$5x^2 - y$$
 als $x = -3$ en $y = 50$

$$-2ab$$
 wordt: $-2 \cdot 5 \cdot (-2)$

$$5x^2 - y$$
 wordt $5 \cdot (-3)^2 - 50 = 5 \cdot 9 - 50$

$$=45-50$$

$$= -5$$

Wat is bij de veelterm $2x^3 - 3x^2y - 9y^4$

..... / 3

a de graad in
$$x$$
?

3

b de graad in y?

Λ

c de graad in z?

0

Werk uit, herleid en rangschik naar dalende macht in x.

.... / 3

a
$$\left(-5x+2x^3+3x^2\right)-\left(-6x^2+2,5x^3-5x\right)$$

$$= \underline{-5x} + 2x^{3} + 3x^{2} + 6x^{2} - 2,5x^{3} + 5x$$

$$= -0.5x^3 + 9x^2$$

b
$$\left(\frac{3}{4}x^4 + x^3 + \frac{1}{2}x^2 - 1\right) + \left(-\frac{6}{5}x^2 + \frac{1}{3}x^3 + 4 - \frac{1}{2}x^2\right)$$

$$= \underbrace{\frac{3}{4}x^4 + x^3 + \frac{1}{2}x^2 - 1 - \frac{6}{5}x^2 + \frac{1}{3}x^3 + 4 - \frac{1}{2}x^2}_{-2}$$

$$= \frac{3}{4}x^4 + \frac{4}{3}x^3 - \frac{6}{5}x^2 + 3$$

/ 2

Schrijf de omtrek zo eenvoudig mogelijk.

a

$$2a + 4b + 2a + 4b$$

= 4a + 8b

b

$$3x + 3x + 3x + 3x$$

= 12x

a $-\frac{1}{4}a^3b + \frac{1}{2}a^3b = \frac{1}{4}a^3b$ b $2x^2 + \frac{1}{2}a^2b = -10x^2$

$$-\frac{1}{2}a^3b$$

b
$$2x^2 +$$

$$(-12x^2)$$

... / 2

/ 3

..... / 3

a 4a + 8a

$$= 12a$$

b 4a · 8a

$$= _{32}a^{2}$$

c
$$\frac{2}{3}x \cdot \left(-\frac{9}{4}x^2\right)$$

$$= \frac{3}{2}x^3$$

Vul aan met = of \neq .

a $x^3 \cdot x^3 \cdot x^3 \dots \neq x^{27}$

c
$$4x^4 \cdot 4x^4 \dots = 16x^8$$

b $(x^4-4)(x^4+4)$... x^8-16

d
$$4x^4 + 4x^4 \dots \neq 8x^8$$

Hoe groot is de oppervlakte van deze tuin?

a Druk uit met een veelterm.

$$3b \cdot 2a + (2a)^2$$

 $= 6ab + 4a^2$

b Als a = 5 m en b = 8 m, hoe groot is dan de oppervlakte?

 $6ab + 4a^2$ wordt:

$$6 \cdot 5 \cdot 8 + 4 \cdot 5^2 = 240 + 100 = 340$$

9 Bereken. ____ / 3

a $2x \cdot (-3x + 8)$ = $-6x^2 + 16x$

= _____

b $\frac{1}{4}\left(16x^2 - \frac{8}{3}\right)$ = $\frac{4x^2 - \frac{2}{3}}{3}$

= _____

c (3a+1)(2a-4) = $6a^2-12a+2a-4$

 $= 6a^2 - 10a - 4$

Werk uit met de formule $(a + b) \cdot (a - b) = a^2 - b^2$.

 $(a+5)\cdot(a-5) \qquad \qquad = \underline{\qquad a^2 - 25}$

 $(-3b+2)\cdot(3b+2) = 4-9b^2$

 $\left(\frac{1}{2}b^3 - 5\right) \cdot \left(5 + \frac{1}{2}b^3\right) = \frac{1}{4}b^6 - 25$

Werk uit met de formule $(a + b)^2 = a^2 + 2ab + b^2$. 3

 $(b+3)^2 = b^2 + 6b + 9$

 $(4x-3)^2 = \underline{16x^2 - 24x + 9}$

 $\left(\frac{2}{3}b^2 - 1\right)^2 = \frac{4}{9}b^4 - \frac{4}{3}b^2 + 1$

Wat hoort niet in het rijtje? ______ / 1

 $(2x+3)\cdot (2x-3) \qquad (-2x-3)^2 \qquad (2x+3)\cdot (2x+3) \qquad (2x+3)^2 \qquad (-2x-3)\cdot (-2x-3)$

(niet gelijk aan de andere)