Student Id: 20.04.2017

Name Surname:

Signature:

BLG311E – Formal Languages and Automata Spring 2017

Quiz 3

For $\Sigma = \{0,1\}$, prove that $L = \{0^n 10^n \mid n > 0\}$ is not a regular language.

Duration: 20 mins.

Solution:

Remember: Pumping Lemma

If L is a regular language with unrestricted word length then in this language we can build any word longer than n using substrings u, v, w in following form: $x = uv^i w$. The following conditions should apply:

- 1. $|uv| \leq n$
- 2. $v \neq \Lambda$
- 3. $\forall x \in L \ x = uv^i w \land i \ge 0$

Assumptions:

- Suppose that there exists a finite automaton M having k states and accepting L.
- Choose $x = 0^k 10^k$ so $x \in L$ and $|x| \ge k$.

By pumping lemma:

- x = uvw, |v| > 0 and $|uv| \le k$.
- For all possible splits that satisfy these rules: $v = 0^l$ where $1 \le l \le k$.
- Lemma states that for a regular language all uv^iw , $i \ge 0$ must belong to the language.
- Consider any string uv^iw where $i \neq 1$.
- $(i = 0) uw = 0^{k-l} 10^k \rightarrow$ The string does not belong to L since $k l \neq k$.
- $(i > 1) uv^i w = 0^{k+(i-1)l} 10^k \rightarrow$ The string does not belong to L since $k + (i-1)l \neq k$.
- lacktriangle This is a contradiction so L is not regular.