

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/790,093	03/02/2004	Robert Scott Winsor	0918.0269C	1178
27896 7590 02/27/2007 EDELL, SHAPIRO & FINNAN, LLC 1901 RESEARCH BOULEVARD SUITE 400 ROCKVILLE, MD 20850			EXAMINER WANG, QUAN ZHEN	
			ART UNIT 2613	PAPER NUMBER
SHORTENED STATUTORY PERIOD OF RESPONSE		MAIL DATE	DELIVERY MODE	
3 MONTHS		02/27/2007	PAPER	

Please find below and/or attached an Office communication concerning this application or proceeding.

If NO period for reply is specified above, the maximum statutory period will apply and will expire 6 MONTHS from the mailing date of this communication.

Office Action Summary	Application No.	Applicant(s)	
	10/790,093	WINSOR, ROBERT SCOTT	
	Examiner	Art Unit	
	Quan-Zhen Wang	2613	

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 08 February 2007 and 25 January 2007.

2a) This action is **FINAL**. 2b) This action is non-final.

3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1,3-40 and 44-52 is/are pending in the application.
4a) Of the above claim(s) _____ is/are withdrawn from consideration.

5) Claim(s) _____ is/are allowed.

6) Claim(s) 1,3-40 and 44-52 is/are rejected.

7) Claim(s) _____ is/are objected to.

8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.

10) The drawing(s) filed on _____ is/are: a) accepted or b) objected to by the Examiner.

 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).

 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
a) All b) Some * c) None of:
1. Certified copies of the priority documents have been received.
2. Certified copies of the priority documents have been received in Application No. _____.
3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a))

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) Notice of References Cited (PTO-892)
2) Notice of Draftsperson's Patent Drawing Review (PTO-948)
3) Information Disclosure Statement(s) (PTO/SB/08)
Paper No(s)/Mail Date _____
4) Interview Summary (PTO-413)
Paper No(s)/Mail Date. _____
5) Notice of Informal Patent Application
6) Other: _____

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed on February 8, 2007 in this application after allowance or after an Office action under *Ex Parte Quayle*, 25 USPQ 74, 453 O.G. 213 (Comm'r Pat. 1935). Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, prosecution in this application has been reopened pursuant to 37 CFR 1.114. Applicant's submission filed on January 25, 2007 has been entered.

Claim Rejections - 35 USC § 103

2. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

3. Claims 1, 3-10, 12-17, 19-31, 33-38, 40, and 44-52 are rejected under 35 U.S.C. 103(a) as being unpatentable over Doucet et al. (U.S. Patent US 5,786,923) in view of Koyama et al. (F. Koyama et al., "1.5 W operation of superluminescent diode with highly strained GaInAs/GaAs quantum well emitting at 1.2 μ m band"; IEEE 17th International Semiconductor Laser Conference Digest 2000, September 2000, Pages 71 – 72).

Regarding claims 1, 24, 44, and 47-52, Doucet teaches a method for light transmit across a free space (fig. 1, 100), the method comprising: generate a substantially phase incoherent beam of light (column 4, lines 52-56); collimating the phase incoherent beam of light (fig. 8, optical antenna 710); externally modulating the beam of light (fig. 8, beam modulator 752); and propagating the phase incoherent collimated beam of light across the free space (fig. 8, to/from optical router unit). The system of Doucet differs from the claimed invention in that Doucet does not specifically teach that the light source for the incoherent light beam is a single LED coupled to a single mode fiber to produce incoherent beam of light having narrow spectral range. However, it is well known in the art to generate incoherent light beam using a LED coupled to a single mode fiber. For example, Koyama discloses a light source that can be used for free space optical communication comprising a single LED coupled to a single mode fiber (fig. 1; paragraphs 1-3) to produce incoherent beam of light having narrow spectral range (fig. 3, emission spectra. Note that the spectral range is narrower than 40nm). Therefore, it would have been obvious for one of ordinary skill in the art at the time when the invention was made to incorporate a single LED coupled to a single mode fiber, as it is taught by Koyama, into the system of Doucet as the light source in order to provide phase incoherent light beam having narrow spectral range (spectral range narrower than 40nm). The modified system of Doucet and Koyama inherently reduces atmospheric scintillation when transmitted across the free space and optimizes energy efficiency of the light transmission because the light source is incoherent. As to claim 44, Koyama further discloses that the superluminescent light emitting diode can

be connected to a single mode fiber. As to claim 47, Doucet further teaches modulating (fig. 8, beam modulator 752) the beam of light (fig. 8, light source 754) with data to be transmitted from source to a destination across the free space, and the distance can obviously be of at least one kilometer.

Regarding claims 3-5 and 25-27, the modified system of Doucet and Koyama differs from the claimed invention in that Doucet and Koyama do not specifically teach that the system includes various claimed methods of generating incoherent beams of lights. However, the examiner takes Official Notice that the methods of generating incoherent beams of lights in claims 3-5 and 25-27 are well known light generating methods in the art. Therefore, it would have been obvious for one of ordinary skill in the art at the time when the invention was made to incorporate any of the methods in claims 3-5 and 25-27 into the modified system of Doucet and Koyama as the light source of the system, wherein the claimed differences involved to the substitution of interchangeable or replaceable equivalents and the reason for the selection of one equivalent for another was not to solve an existent problem, such substitution has been judicially determined to have been obvious. *In re Ruff*, 118, USPQ, 343 (CCPA 1958).

Regarding claims 6-7 and 28-29, the modified system of Doucet and Koyama differs from the claimed invention in that Doucet and Koyama do not specifically teach that the system includes a light amplifier for amplifying the incoherent beam. However, the examiner takes Official Notice that amplifying incoherent light using a light amplifier, such as an Erbium doped fiber amplifier, is well known in the art. Therefore, it would have been obvious for one of ordinary skill in the art at the time when the invention was

made to incorporate a light amplifier, such as an Erbium doped fiber amplifier, in the modified system of Doucet and Koyama in order to amplify the incoherent beam.

Regarding claims 9-10 and 30-31, the modified system of Doucet and Koyama differs from the claimed invention in that Doucet and Koyama do not specifically teach that the system includes filtering the incoherent beam to reduce the bandwidth of wavelength spectrum, or bandwidth limiting the incoherent beam into a plurality of bandwidth channels. However, the examiner takes Official Notice that is well known in the art to filter an incoherent beam to reduce the bandwidth of wavelength spectrum, or to limit bandwidth of an incoherent beam to form a plurality of bandwidth channels. Therefore, it would have been obvious for one of ordinary skill in the art at the time when the invention was made to incorporate filters in the modified system of Doucet and Koyama in order to filter the incoherent beam to reduce the bandwidth of wavelength spectrum, or to limit bandwidth of the incoherent beam to form a plurality of bandwidth channels.

Regarding claims 12 and 33, Doucet further teaches that the system includes collimating the beam of light with one of a conventional optical mirror (fig. 8, optical antenna 710).

Regarding claim 13, Doucet further teaches focusing the beam of light onto a primary focal plane of a telescope (fig. 8, lens 780).

Regarding claim 14, Doucet further teaches directing the optical beam towards an optical receiver using active pointing techniques (fig. 8, active optical control system 760).

Regarding claims 15 and 36, Doucet further teaches directing the optical beam towards an optical receiver using static pointing techniques (column 17, lines 39-48).

Regarding claims 16-17, and 37-38, Doucet further teaches to modulate the phase incoherent beam of light to encode data upon the beam of light (fig. 8, beam modulator 752).

Regarding claims 19, and 40, Doucet further teaches to modulate WDM channels within the beam of light (column 8, lines 13-20).

Regarding claim 20, Doucet further teaches to receive the incoherent beam from free space (fig. 8, signals to/from optical router).

Regarding claim 21, Doucet further teaches tracking the receiving beam of light using active pointing and tracking techniques (column 17, lines 49-54).

Regarding claims 22-23, Doucet further teaches to detect one of light and darkness within the received beam of light (inherent), thereby to produce a received data stream and demodulate the received data stream (fig. 8, Beam demodulator 772 and receiver 770).

Regarding claim 34, Doucet further teaches that the propagating optics is a telescope (fig. 8, optical antenna 710).

Regarding claim 35, Doucet further teaches that the propagating optics further includes an active pointing and tracking module to control the direction in which the incoherent beam is propagated (fig. 8, beam alignment detector 762 and active optics control system 760).

Regarding claim 45, Doucet further teaches that the system comprising a propagating optics to propagate the phase incoherent collimated beam of light across the free space (fig. 8, optical antenna 710).

Regarding claim 46, Doucet further teaches that the propagating optics further includes an active pointing and tracking module to control the direction in which the incoherent beam is propagated (fig. 8, beam alignment detector 762 and active optics control system 760).

4. Claims 11 and 32 is rejected under 35 U.S.C. 103(a) as being unpatentable over Doucet et al. (U.S. Patent US 5,786,923) in view of in view of Koyama et al. (F. Koyama et al., "1.5 W operation of superluminescent diode with highly strained GaInAs/GaAs quantum well emitting at 1.2 μ m band"; IEEE 17th International Semiconductor Laser Conference Digest 2000, September 2000, Pages 71 – 72) and further in view of Meadows (U.S. Patent US 5,381,250).

Regarding claims 11 and 32, the modified system of Doucet and Koyama differs from the claimed invention in that Doucet and Koyama do not specifically teach that the system includes collimating the beam of light with a gradient index lens. However, a gradient index lens is well known in the art, and using a gradient index lens to collimate a beam of light is also well known in the art. For example, Meadows discloses to collimate a light beam using a gradient index lens (column 3, lines 47-55). Therefore, it would have been obvious for one of ordinary skill in the art at the time when the invention was made to use a gradient index lens to collimate the beam of light, as it is

taught by Meadows, in the modified system of Doucet and Koyama in order to direct the beam of light to a receiver with sufficient light intensity.

5. Claims 18 and 39 are rejected under 35 U.S.C. 103(a) as being unpatentable over Doucet et al. (U.S. Patent US 5,786,923) in view of in view of Koyama et al. (F. Koyama et al., "1.5 W operation of superluminescent diode with highly strained GaInAs/GaAs quantum well emitting at 1.2 μ m band"; IEEE 17th International Semiconductor Laser Conference Digest 2000, September 2000, Pages 71 – 72) and further in view of Yonenaga et al. (U.S. Patent US 5,543,952).

Regarding claims 18 and 39, the modified system of Doucet and Koyama differs from the claimed invention in that Doucet and Koyama do not specifically teach to use an interferometer to toggle the light beam to at least one of on and off. However, it is well known in the art to toggle (modulate) the light beam using an interferometer. For example, Yonenaga discloses to modulate the intensity of the light beam to one of on and off using an interferometer (column 3, lines 52-67 and column 4, lines 1-2). Therefore, it would have been obvious for one of ordinary skill in the art at the time when the invention was made to use an interferometer to toggle (modulate) the intensity of the light beam to at least one of on and off, as it is taught by Yonenaga, in the modified system of Doucet and Koyama in order to encode the light beam.

Response to Arguments

6. Applicant's arguments filed on January 25, 2006 have been considered but are moot in view of the new ground(s) of rejection.

Conclusion

7. The prior art made of record and not relied upon is considered pertinent to applicant's disclosure. Swanson et al. (U.S. Patent US 5.062.150) teach a fiber-based free-space optical system using both coherent and incoherent optical system. Milano et al. (U.S. Patent US 5,870,215) disclose a compact infrared identification and communication assembly using incoherent infrared light.

8. Any inquiry concerning this communication or earlier communications from the examiner should be directed to Quán-Zhen Wang whose telephone number is (571) 272-3114. The examiner can normally be reached on 9:00 AM - 5:00 PM, Monday - Friday.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Jason Chan can be reached on (571) 272-3022. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

qzw
2/22/2007

JASON CHAN
SUPERVISORY PATENT EXAMINER
TECHNOLOGY CENTER 2800