

LOCAL PROPERTIES ON THE REMAINDERS OF THE TOPOLOGICAL GROUPS

FUCAI LIN

ABSTRACT. When does a topological group G have a Hausdorff compactification bG with a remainder belonging to a given class of spaces? In this paper, we mainly improve some results of A.V. Arhangel'skiĭ and C. Liu's. Let G be a non-locally compact topological group and bG be a compactification of G . The following facts are established: (1) If $bG \setminus G$ has a locally a point-countable p -metabase and π -character of $bG \setminus G$ is countable, then G and bG are separable and metrizable; (2) If $bG \setminus G$ has locally a $\delta\theta$ -base, then G and bG are separable and metrizable; (3) If $bG \setminus G$ has locally a quasi- G_δ -diagonal, then G and bG are separable and metrizable. Finally, we give a partial answer for a question, which was posed by C. Liu in [16].

1. INTRODUCTION

By a remainder of a space X we understand the subspace $bX \setminus X$ of a Hausdorff compactification bX of X . In [3, 4, 5, 13, 16], many topologists studied the following question of a Hausdorff compactification: When does a Tychonoff space X have a Hausdorff compactification bX with a remainder belonging to a given class of spaces? A famous classical result in this study is the following theorem of M. Henriksen and J. Isbell [13]:

(M. Henriksen and J. Isbell) A space X is of countable type if and only if the remainder in any (in some) compactification of X is Lindelöf.

Recall that a space X is of *countable type* [10] if every compact subspace F of X is contained in a compact subspace $K \subset X$ with a countable base of open neighborhoods in X . Suppose that X is a non-locally compact topological group, and that bX is a compactification of X . In [4], A.V. Arhangel'skiĭ showed that if the remainder $Y = bX \setminus X$ has a G_δ -diagonal or a point-countable base, then both X and Y are separable and metrizable. In [16], C. Liu improved the results of A.V. Arhangel'skiĭ, and proved that if Y satisfies one of the following conditions (i) and (ii), then X and bX are separable and metrizable.

- (i) $Y = bX \setminus X$ is a quotient s -image of a metrizable space, and π -character of Y is countable;
- (ii) $Y = bX \setminus X$ has locally a G_δ -diagonal.

In this paper, we mainly concerned with the following statement, and under what condition Φ it is true.

Statement Suppose that G is a non-locally compact topological group, and that $Y = bG \setminus G$ has locally a property- Φ . Then G and bG are separable and metrizable.

Recall that a space X has *locally a property- Φ* if for each point $x \in X$ there exists an open set U with $x \in U$ such that U has a property- Φ .

2000 *Mathematics Subject Classification.* 54A25, 54B05.

Key words and phrases. Topological group; Countably compact; G_δ -subset; Quasi- G_δ -diagonal; Countable type; Lindelöf p -space; Metrizability; Compactification; BCO; D-space.

Supported by the NSFC (No. 10971185, No. 10971186) and the Educational Department of Fujian Province (No. JA09166) of China.

In Section 2 we mainly study some local properties on the remainders of the topological group G such that G and bG are separable and metrizable if the π -character of $bG \setminus G$ is countable. Therefore, we extend some results of A.V. Arhangel'skii and C. Liu.

In Section 3 we prove that if the remainders of a topological group G has locally a quasi- G_δ -diagonal, then G and bG are separable and metrizable. Therefore, we improve a result of C. Liu in [16]. Also, we study the remainders that are the unions of G_δ -diagonals.

In Section 4 we mainly give a partial answer for a question, which was posed by C. Liu in [16]. Finally, we also study the remainders that are locally hereditarily D -spaces.

Recall that a family \mathcal{U} of non-empty open sets of a space X is called a π -base if for each non-empty open set V of X , there exists an $U \in \mathcal{U}$ such that $U \subset V$. The π -character of x in X is defined by $\pi\chi(x, X) = \min\{\mathcal{U} : \mathcal{U} \text{ is a local } \pi\text{-base at } x \text{ in } X\}$. The π -character of X is defined by $\pi\chi(X) = \sup\{\pi\chi(x, X) : x \in X\}$.

The p -spaces are a class of generalized metric spaces [1]. It is well-known that every metrizable space is a p -space, and every p -space is of countable type.

Throughout this paper, all spaces are assumed to be Hausdorff. The positively natural numbers is denoted by \mathbb{N} . We refer the readers to [10, 11] for notations and terminology not explicitly given here.

2. REMAINDERS WITH THE COUNTABLE π -CHARACTERS

Let \mathcal{A} be a collection of subsets of X . \mathcal{A} is a p -network [7] for X if for distinct points $x, y \in X$, there exists an $A \in \mathcal{A}$ such that $x \in A \subset X - \{y\}$. The collection \mathcal{A} is called a p -base (i.e., T_1 -point-separating open cover) [7] for X if \mathcal{A} is a p -network and each element of \mathcal{A} is an open subset of X . The collection \mathcal{A} is a p -metabase [15] (in [7], p -metabase is denoted by the condition (1.5)) for X if for distinct points $x, y \in X$, there exists an $\mathcal{F} \in \mathcal{A}^{<\omega}$ such that $x \in (\cup \mathcal{F})^\circ \subset \cup \mathcal{F} \subset X - \{y\}$.

First, we give some technique lemmas.

Lemma 2.1. [3] *If X is a Lindelöf p -space, then any remainder of X is a Lindelöf p -space.*

Lemma 2.2. [16] *Let G be a non-locally compact topological group. Then G is locally separable and metrizable if for each point $y \in Y = bG \setminus G$, there is an open neighborhood $U(y)$ of y such that every countably compact subset of $U(y)$ is metrizable and π -character of Y is countable.*

Lemma 2.3. *Suppose that X has a point-countable p -metabase. Then each countably compact subset of X is a compact, metrizable, G_δ -subset¹ of X .*

Proof. Suppose that \mathcal{U} is a point-countable p -metabase of X , and that K is a countably compact subset of X . Then K is compact by [7]. According to a generalized Miščenko's Lemma in [22, Lemma 6], there are only countably many minimal neighborhood-covers² of K by finite elements of \mathcal{U} , say $\{\mathcal{V}(n) : n \in \mathbb{N}\}$. Let $V(n) = \cup \mathcal{V}(n)$. Then $K \subset \cap \{V(n) : n \in \mathbb{N}\}$. Suppose that $x \in X \setminus K$. For each point $y \in K$, there is an $\mathcal{F}_y \in \mathcal{U}^{<\omega}$ with $y \in (\cup \mathcal{F}_y)^\circ \subset \cup \mathcal{F}_y \subset X - \{x\}$. Then there is some sub-collection of $\{\mathcal{F}_y : y \in K\}$ is a minimal finite neighborhood-covers of K since K is compact. Therefore, we obtain one of the collections $\mathcal{V}(n)$ with $K \subset V(n) = \cup \mathcal{V}(n) \subset X - \{x\}$. \square

Lemma 2.4. *Suppose that X is a Lindelöf space with locally a point-countable p -metabase. Then X has a point-countable p -metabase.*

¹A subset K of X is called a G_δ -subset of X if K is the intersection of countably open subsets of X .

²Let \mathcal{P} be a collection of subsets of X and $A \subset X$. The collection \mathcal{P} is a neighborhood-cover of A if $A \subset (\cup \mathcal{P})^\circ$. A neighborhood-cover \mathcal{P} of A is a minimal neighborhood-cover if for each $P \in \mathcal{P}$, $\mathcal{P} \setminus \{P\}$ is not a neighborhood-cover of A .

Proof. For each point $x \in X$, there is an open neighborhood $U(x)$ with $x \in U(x)$ such that $U(x)$ has a point-countable p -metabase \mathcal{F}_x . Let $\mathcal{U} = \{U(x) : x \in X\}$. Since X is Lindelöf, it follows that there exists a countable subfamily $\mathcal{U}' \subset \mathcal{U}$ such that $X = \cup \mathcal{U}'$. Denoted \mathcal{U}' by $\{U_{x_i} : i \in \mathbb{N}\}$. Obviously, $\mathcal{F} = \bigcup_i \mathcal{F}_{x_i}$ is a point-countable p -metabase for X . \square

Theorem 2.5. *Suppose that G is a non-locally compact topological group, and that $Y = bG \setminus G$ has locally a point-countable p -metabase. Then G and bG are separable and metrizable if π -character of Y is countable.*

Proof. It is easy to see that G is locally separable and metrizable by Lemmas 2.2 and 2.3. Then G is a p -space. Hence Y is Lindelöf by Henriksen and Isbell's theorem. From Lemma 2.4 it follows that $Y = bG \setminus G$ has a point-countable p -metabase.

Claim: The space Y has a G_δ -diagonal.

Put $G = \bigoplus_{\alpha \in \Lambda} G_\alpha$, where G_α is a separable and metrizable subset for each $\alpha \in \Lambda$. Let $\zeta = \{G_\alpha : \alpha \in \Lambda\}$, and let F be the set of all points of bG at which ζ is not locally finite. Since ζ is discrete in G , it follows that $F \subset bG \setminus G$. It is easy to see that F is compact. Therefore, it follows from Lemma 2.3 that F is separable and metrizable. Hence F has a countable network.

Let $M = Y \setminus F$. For each point $y \in M$, there is an open neighborhood O_y in bG such that $\overline{O_y} \cap F = \emptyset$. Since ζ is discrete, $\overline{O_y}$ meets at most finitely many G_α . Let $L = \bigcup \{G_\alpha : G_\alpha \cap \overline{O_y} \neq \emptyset\}$. Then L is separable and metrizable. By Lemma 2.1, $\overline{L} \setminus L$ is a Lindelöf p -space. Obviously, $\overline{L} \setminus L \subset Y$. Therefore, $\overline{L} \setminus L$ has a point-countable p -metabase. Hence $\overline{L} \setminus L$ is separable and metrizable by [12], which implies that \overline{L} has a countable network. It follows that \overline{L} is separable and metrizable. Clearly, $O_y \subset \overline{L}$ and $O_y \cap M$ is separable and metrizable. Therefore, M is locally separable and metrizable. From Lemma 2.3 it follows that each compact subset of Y is a G_δ -subset of Y . Since F is compact and Y is Lindelöf, it follows that M is Lindelöf. Therefore, M is separable. Then M has a countable network. So Y has a countable network, which implies that Y has a G_δ -diagonal. Thus, Claim is verified.

Therefore, G and bG are separable and metrizable by [4, Theorem 5]. \square

Corollary 2.6. *Suppose that G is a non-locally compact topological group, and that $Y = bG \setminus G$ has locally a point-countable p -base. Then G and bG are separable and metrizable if π -character of Y is countable.*

Corollary 2.7. [4] *Suppose that G is a non-locally compact topological group. If $Y = bG \setminus G$ has a point-countable base, then G and bG are separable and metrizable.*

Next, we consider the remainders with locally a $\delta\theta$ -base³ of the topological groups.

Lemma 2.8. *Let X be a Lindelöf space with locally a $\delta\theta$ -base. Then X has a $\delta\theta$ -base.*

Proof. For each point $x \in X$, there is an open neighborhood $U(x)$ with $x \in U(x)$ such that $U(x)$ has a $\delta\theta$ -base $\mathcal{B}_x = \bigcup_n \mathcal{B}_{n,x}$. Let $\mathcal{U} = \{U(x) : x \in X\}$. Since X is Lindelöf, it follows that there exists a countable subfamily $\mathcal{U}' \subset \mathcal{U}$ such that $X = \cup \mathcal{U}'$. Denoted \mathcal{U}' by $\{U_{x_i} : i \in \mathbb{N}\}$. Obviously, $\mathcal{B} = \bigcup_{i,n} \mathcal{B}_{n,x_i}$ is a $\delta\theta$ -base for X . \square

Theorem 2.9. *Let G be a non-locally compact topological group. If $Y = bG \setminus G$ has locally a $\delta\theta$ -base. Then G and bG are separable and metrizable.*

Proof. Obviously, Y is first countable. By [8, Proposition 2.1], each countably compact subset of Y is a compact, metrizable, G_δ -subset of Y . From Lemma 2.2 it follows that G is locally

³Recall that a collection $\mathcal{B} = \bigcup_n \mathcal{B}_n$ of open subsets of a space X is a $\delta\theta$ -base [11] if whenever $x \in U$ with U open, there exist an $n \in \mathbb{N}$ and a $B \in \mathcal{B}$ such that

- (i) $1 \leq \text{ord}(x, \mathcal{B}_n) \leq \omega$;
- (ii) $x \in B \subset U$.

separable and metrizable. Then G is a p -space. Hence Y is Lindelöf by Henriksen and Isbell's theorem. From Lemma 2.8 it follows that $Y = bG \setminus G$ has a $\delta\theta$ -base.

By the same notations in Theorem 2.5, it is easy to see from [8, Proposition 2.1] that $F \subset bG \setminus G$ is compact and metrizable in view of the proof of Theorem 2.5. By [11, Corollary 8.3] and Lemma 2.1, $\overline{L} \setminus L$ is separable and metrizable. In view of the proof of Theorem 2.5, G and bG are separable and metrizable by [8, Proposition 2.1]. \square

Corollary 2.10. [16] *Let G be a non-locally compact topological group. If $Y = bG \setminus G$ is locally a quasi-developable⁴. Then G and bG are separable and metrizable.*

Finally, we consider the remainders with locally a c-semistratifiable space of the topological group.

Let X be a topological space. X is called a *c-semistratifiable space*(CSS) [17] if for each compact subset K of X and each $n \in \mathbb{N}$ there is an open set $G(n, K)$ in X such that:

- (i) $\cap\{G(n, K) : n \in \mathbb{N}\} = K$;
- (ii) $G(n+1, K) \subset G(n, K)$ for each $n \in \mathbb{N}$; and
- (iii) if for any compact subsets K, L of X with $K \subset L$, then $G(n, K) \subset G(n, L)$ for each $n \in \mathbb{N}$.

Theorem 2.11. *Suppose that G is a non-locally compact topological group, and that $Y = bG \setminus G$ is locally a CSS-space. Then G and bG are separable and metrizable if π -character of Y is countable.*

Proof. By [8, Proposition 3.8(c)] and the definition of CSS-spaces, it is easy to see that each countably compact subset of Y is a compact, metrizable, G_δ -subset of Y . From Lemma 2.2 it follows that G is locally separable and metrizable. Then G is a p -space. Hence Y is Lindelöf by Henriksen and Isbell's theorem. From Lemma 2.8 it follows that $Y = bG \setminus G$ is a CSS-space by [8, Proposition 3.5].

By the same notations in Theorem 2.5, it is easy to see from [8, Proposition 3.8] that $F \subset bG \setminus G$ is compact and metrizable in view of the proof of Theorem 2.5. By [8, Proposition 3.8], $\overline{L} \setminus L$ is separable and metrizable. In view of the proof of Theorem 2.5, it is easy to see that G and bG are separable and metrizable. \square

Corollary 2.12. *Suppose that G is a non-locally compact topological group, and that $Y = bG \setminus G$ is locally a σ^\sharp -space⁵. Then G and bG are separable and metrizable if π -character of Y is countable.*

Proof. By [8, Lemma 3.1], it follows that every σ^\sharp -space is a CSS-space. Hence G and bG are separable and metrizable by Theorem 2.11. \square

Question 2.13. *Let G be a non-locally compact topological group. If $Y = bG \setminus G$ satisfies the following conditions (1) and (2), are G and bG separable and metrizable?*

- (1) *For each point $y \in Y$, there exists an open neighborhood $U(y)$ of y such that every countably compact subset of $U(y)$ is metrizable and G_δ -subset of $U(y)$;*
- (2) *π -character of Y is countable .*

⁴A space X is *quasi-developable* if there exists a sequence $\{\mathcal{G}_n\}_n$ of families of open subsets of X such that for each point $x \in X$, $\{\text{st}(x, \mathcal{G}_n) : n \in \mathbb{N}, \text{st}(x, \mathcal{G}_n) \neq \emptyset\}$ is a base at x .

⁵A space X is called a σ^\sharp -space [17] if X has a σ -closure-preserving closed p -network.

3. REMAINDERS THAT ARE LOCALLY QUASI- G_δ -DIAGONALS, AND THAT ARE UNIONS

First, we study the remainders with locally a quasi- G_δ -diagonal⁶ and improve a result of C. Liu.

We call a space X is *Ohio complete* [3] if in each compactification bX of X there is a G_δ -subset Z such that $X \subset Z$ and each point $y \in Z \setminus X$ is separated from X by a G_δ -subset of Z .

Lemma 3.1. *Let X be a p -space and every compact subset of $bX \setminus X$ be metrizable. Then there exists a G_δ -subset Y of bX such that $X \subset Y$ and satisfies the following conditions:*

- (1) *bX is first countable at every point $y \in Y \setminus X$;*
- (2) *If X is a topological group and $\overline{Y \setminus X} \cap X \neq \emptyset$, then X is metrizable.*

Proof. Since X is a p -space, X is Ohio complete [3, Corollary 3.7]. It follows that there is a G_δ -subset Y of bX such that $X \subset Y$ and every point $y \in Y \setminus X$ can be separated from X by a G_δ -subset. We now prove that Y satisfies the conditions (1) and (2).

(1) From the choice of Y , it is easy to see that for every point $y \in Y \setminus X$ there exists a compact G_δ -subset C of bX such that $y \in C \subset Y \setminus X \subset bX \setminus X$. Since C is compact, the compact subset C is metrizable. Therefore, y is a G_δ -point in bX and hence, bX is first countable at y .

(2) We choose a point $a \in \overline{Y \setminus X} \cap X$. Since X is a p -space, there exists a compact subset F of X such that $a \in F$ and F has a countable base of neighborhoods in X . Since X is dense in bX , the set F has a countable base of open neighborhoods $\phi = \{U_n : n \in \omega\}$ in bX . Since $a \in \overline{Y \setminus X}$, we can fix a $b_n \in U_n \cap (Y \setminus X)$ for each $n \in \omega$. Obviously, there is a point $c \in F$ which is a limit point for the sequence $\{b_n\}$. By (1), we know that bX is first countable at b_n for every $n \in \omega$. We can fix a countable base η_n of bX at b_n . Then $\cup\{\eta_n : n \in \omega\}$ is a countable π -base of bX at c . Then the space X also has a countable π -base at c , since $c \in X$ and X is dense in bX . Since X is a topological group, the space X is metrizable. \square

Theorem 3.2. *Let G be a non-locally compact topological group. If $Y = bG \setminus G$ has a quasi- G_δ -diagonal. Then G and bG are separable and metrizable.*

Proof. Obviously, Y has a countable pseudocharacter. By [5, Theorem 5.1], G is a paracompact p -space or Y is first countable.

Case 1: The space Y is first countable.

From [8, Proposition 2.3] it follows that each countably compact subset of Y is a compact, metrizable, G_δ -subset of Y . Note that a Lindelöf p -space with a quasi- G_δ -diagonal is metrizable by [14, Corollary 3.6]. In view of the proof of Theorem 2.5, it is easy to see that G and bG are separable and metrizable.

Case 2: The space G is a paracompact p -space.

By [3, Corollary 3.7], G is Ohio complete. Therefore, there exists a G_δ -subset X of bG such that $G \subset X$ and every point $x \in X \setminus G$ can be separated from G by a G_δ -set of X . Let $M = X \setminus G$. Then bG is first countable at every point $y \in M$ by Lemma 3.1.

Subcase 1: $\overline{M} \cap G = \emptyset$. Then $X \setminus \overline{M} = G$. Hence G is a G_δ -subset of bG . It follows that Y is σ -compact. Since Y has a quasi- G_δ -diagonal, every compact subspace of Y is separable and metrizable by [8, Proposition 2.3]. Hence Y is separable. Since both Y and G are dense in bG , it follows that the souslin number of G is countable. The space G is Lindelöf, since G is paracompact. Therefore, G is a Lindelöf p -space. Then Y is a Lindelöf p -space by Lemma 2.1. Since Y has a quasi- G_δ -diagonal, the space Y is metrizable by [14, Corollary 3.6]. It follows that Y has a G_δ -diagonal. Therefore, G and bG are separable and metrizable by [4, Theorem 5].

⁶A space X has a *quasi- G_δ -diagonal* [14] if there exists a sequence $\{\mathcal{G}_n\}_n$ of families of open subsets of X such that for each point $x \in X$, $\{\text{st}(x, \mathcal{G}_n) : n \in \mathbb{N}, \text{st}(x, \mathcal{G}_n) \neq \emptyset\}$ is a p -network at point x .

Subcase 2: $\overline{M} \cap G \neq \emptyset$. Then G is metrizable by Lemma 3.1.

Subcase 2(a): G is locally separable. By [8, Proposition 2.3], it is easy to see that G and bG are separable and metrizable by the proof of Theorem 2.5.

Subcase 2(b): G is nowhere locally separable. Fix a base $\mathcal{B} = \{\mathcal{U}_n : n \in \mathbb{N}\}$ of G such that each \mathcal{U}_n is discrete in G . Let F_n be the set of all accumulation points for \mathcal{U}_n in bG for each $n \in \mathbb{N}$. Put $Z = \cup\{F_n : n \in \mathbb{N}\}$. Then Z is dense in Y and σ -compact by [4, Proposition 4]. Since every compact space with a quasi- G_δ -diagonal is separable and metrizable by [8, Proposition 2.3], the space Z has a countable network. Because G is nowhere locally compact, the space Y is dense in bG . It follows that Z is dense in bG . Hence bG is separable, which implies that the Souslin number of G is countable. Since G is metrizable, the space G is separable. Then Y is a Lindelöf p -space by Lemma 2.1. Hence Y is metrizable by [14, Corollary 3.6]. It follows that Y is separable and metrizable, which implies that G and bG are separable and metrizable. \square

Lemma 3.3. *Let X be a Lindelöf space with locally a quasi- G_δ -diagonal. Then X has a quasi- G_δ -diagonal.*

Proof. For each point $x \in X$, there exists an open neighborhood $U(x)$ such that $x \in U(x)$ and $U(x)$ has a quasi- G_δ -diagonal. Then $\mathcal{U} = \{U(x) : x \in X\}$ is an open cover of X . Since X is a Lindelöf space, there exists a countable subfamily $\mathcal{V} \subset \mathcal{U}$ such that $X = \cup \mathcal{V}$. Denote \mathcal{V} by $\{U_n : n \in \mathbb{N}\}$. For each $n \in \mathbb{N}$, let $\{\mathcal{U}_{nk}\}_{k \in \mathbb{N}}$ be a quasi- G_δ -diagonal sequence of U_n . Let $\mathcal{F} = \{\mathcal{U}_{nk}\}_{n,k \in \mathbb{N}}$. Then \mathcal{F} is a quasi- G_δ -diagonal sequence of X .

Indeed, for distinct points $x, y \in X$, there exists an $n \in \mathbb{N}$ such that $x \in U_n$.

If $y \notin U_n$, then $x \in U_n \subset X - \{y\}$. Since $\{\mathcal{U}_{nk}\}_{k \in \mathbb{N}}$ is a quasi- G_δ -diagonal sequence of U_n , there exists a $k \in \mathbb{N}$ such that $x \in \mathcal{U}_{nk}$. Hence $x \in \text{st}(x, \mathcal{U}_{nk}) \subset \mathcal{U}_{nk} \subset U_n \subset X - \{y\}$.

If $y \in U_n$, then $x \in U_n - \{y\} \subset X - \{y\}$. Since $\{\mathcal{U}_{nk}\}_{k \in \mathbb{N}}$ is a quasi- G_δ -diagonal sequence of U_n , there exists a $k \in \mathbb{N}$ such that $x \in \text{st}(x, \mathcal{U}_{nk}) \subset U_n - \{y\} \subset X - \{y\}$.

Therefore, \mathcal{F} is a quasi- G_δ -diagonal sequence of X . \square

Theorem 3.4. *Let G be a non-locally compact topological group. If $Y = bG \setminus G$ has locally a quasi- G_δ -diagonal, then G and bG are separable and metrizable.*

Proof. By [8, Proposition 2.1 and 2.5] and Lemma 2.2, it is easy to see that G is locally a separable and metrizable space. Then Y is a Lindelöf space by Henriksen and Isbell's theorem. From Lemma 3.3 it follows that Y has a quasi- G_δ -diagonal. Then G and bG are separable and metrizable by Theorem 3.2. \square

Question 3.5. *Is there a topological group G such that the $Y = bG \setminus G$ has a W_δ -diagonal⁷, G is not separable and metrizable?*

Corollary 3.6. [16] *Let G be a non-locally compact topological group. If $Y = bG \setminus G$ has locally a G_δ -diagonal, then G and bG are separable and metrizable.*

Next, we study the remainder that are the unions of the G_δ -diagonals.

Lemma 3.7. *Let G be a non-locally compact topological group. If there exists a point $a \in Y = bG \setminus G$ such that $\{a\}$ is a G_δ -set in Y , then at least one of the following conditions holds:*

- (1) G is a paracompact p -space;
- (2) Y is first-countable at some point.

⁷A space X is said to have a W_δ -diagonal if there is a sequence (\mathcal{B}_n) of bases for X such that whenever $x \in B_n \in \mathcal{B}_n$, and (B_n) is decreasing (by set inclusion), then $\{x\} = \cap\{B_n : n \in \omega\}$.

Proof. Suppose that Y is not first-countable at point a . Since a is a G_δ -point in Y , there exists a compact subset $F \subset bG$ with a countable base at F in bG such that $\{a\} = F \cap (bG \setminus G)$. We have $F \setminus \{a\} \neq \emptyset$, since Y is not first-countable at point a . Therefore, there exists a non-empty compact subset $B \subset F$ with a countable base at B in bG . Obviously, $B \subset G$. It follows that G is a topological group of countable type [18]. Therefore, G is a paracompact p -space[18]. \square

Lemma 3.8. *Let G be a non-locally compact topological group, and $Y = bG \setminus G = Y_1 \cup Y_2$, where both Y_1 and Y_2 have a countable pseudocharacter. If at most one of the Y_1 and Y_2 is dense in bG , then at least one of the following conditions holds:*

- (1) G is a paracompact p -space;
- (2) Y is first-countable at some point.

Proof. Without loss of generality, we can assume that $\overline{Y_1} \neq bG$. Let $U = bG \setminus \overline{Y_1}$. Then $V = U \cap Y = U \cap Y_2 \neq \emptyset$. It follows that V is an open subset of Y and each point of V is a G_δ -point. By Lemma 3.7, we complete the proof. \square

Theorem 3.9. *Let G be a non-locally compact topological group, and $Y = bG \setminus G = Y_1 \cup Y_2$, where both Y_1 and Y_2 have a countable pseudocharacter. If both Y_1 and Y_2 are Ohio complete, then at least one of the following conditions holds:*

- (1) G is a paracompact p -space;
- (2) Y is first-countable at some point.

Proof. Case 1: $\overline{Y_1} \neq bG$ or $\overline{Y_2} \neq bG$.

It is easy to see by Lemma 3.8.

Case 2: $\overline{Y_1} = bG$ and $\overline{Y_2} = bG$.

Then bG is the Hausdorff compactification of Y_1 and Y_2 . Since Y_1 and Y_2 are Ohio complete, there exist G_δ -subsets X_1 and X_2 satisfy the definition of Ohio complete, respectively.

Case 2(a): $Y_1 = X_1$ and $Y_2 = X_2$.

Then Y has countable pseudocharacter. By [5, Theorem 5.1], we complete the proof.

Case 2(b): $Y_1 \neq X_1$ or $Y_2 \neq X_2$.

Without loss of generality, we can assume that $Y_1 \neq X_1$. If $(X_1 \setminus Y_1) \cap Y_2 \neq \emptyset$, then for each $y \in (X_1 \setminus Y_1) \cap Y_2$ there exists a compact subset C such that $y \in C$ and $C \cap Y_1 = \emptyset$. Obviously, y is a G_δ -point of Y . By Lemma 3.7, we also complete the proof. If $(X_1 \setminus Y_1) \cap Y_2 = \emptyset$, then there exists a compact subset $C \subset G$ with a countable base at C in bG . It follows that G is a topological group of countable type [18]. Therefore, G is a paracompact p -space [18]. \square

A space with a G_δ -diagonal is Ohio complete[2]. Therefore, by Theorem 3.9, we have the following result.

Theorem 3.10. *Let G be a non-locally compact topological group, and $Y = bG \setminus G = Y_1 \cup Y_2$, where both Y_1 and Y_2 have a G_δ -diagonal. Then at least one of the following conditions holds:*

- (1) G is a paracompact p -space;
- (2) Y is first-countable at some point.

Question 3.11. *Let G be a non-locally compact topological group, and $Y = bG \setminus G = \bigcup_{i=1}^{i=n} Y_i$, where Y_i has a G_δ -diagonal for every $1 \leq i \leq n$. Is G a paracompact p -space or is Y first-countable at some point?*

Question 3.12. *Let G be a non-locally compact topological group, and $Y = bG \setminus G = Y_1 \cup Y_2$, where both Y_1 and Y_2 have quasi- G_δ -diagonal. Is G a paracompact p -space or is Y first-countable at some point?*

4. REMAINDERS OF LOCALLY BCO AND LOCALLY HEREDITARILY D-SPACES

First, we study the following question, which was posed by C. Liu in [16].

Question 4.1. *Let G be a non-locally compact topological group, and $Y = bG \setminus G$ have a BCO⁸. Are G and bG separable and metrizable?*

Now we give a partial answer for Question 4.1.

Theorem 4.2. *Let G be a non-locally compact topological group, and $Y = bG \setminus G$ has a BCO. If Y is Ohio complete, then G and bG are separable and metrizable.*

Proof. Since Y is Ohio complete, G is a paracompact p -space or σ -compact space by [3, Theorem 4.3].

Case 1: The space G is a paracompact p -space.

Since G is a p -space, the space Y is Lindelöf by Henriksen and Isbell's theorem. Hence Y is developable by [11, Theorem 6.6]. Then G and bG are separable and metrizable by Theorem 3.4.

Case 2: The space G is a σ -compact space.

We claim that G is metrizable. Suppose that G is not metrizable. Then Y is ω -bounded⁹ by [5, Theorem 3.12]. Since G is a σ -compact topological group, the Souslin number $c(G)$ of G is countable by a theorem of Tkachenko [21, Corollary 2]. Therefore, $c(bG) \leq \omega$. Y is dense in bG , since G is non-locally compact. It follows that $c(Y) \leq \omega$ as well. Since Y is Čech-complete, there exists a dense subspace $Z \subset Y$ such that Z is a paracompact and Čech-complete subspace of Y by [19]. Then Z is a paracompact space with a BCO. Therefore, Z is metrizable by [11, Theorem 1.2 and 6.6]. Since $c(Y) \leq \omega$ and Z is dense for Y , $c(Z) \leq \omega$ as well. It follows that Z is separable. Since Y is ω -bounded, it is compact. Therefore, G is locally compact, which is a contradiction. It follows that G is metrizable. Therefore, G and bG are separable and metrizable by Case 1. \square

Theorem 4.3. *Let G be a non-locally compact topological group, and $Y = bG \setminus G$ have a BCO. If G is an Σ -space, then G and bG are separable and metrizable.*

Proof. From [6, Theorem 2.8] it follows that every compact subspace of Y has countable character in Y . Since G is non-locally compact, Y is also a dense subset of bG . Hence G is Lindelöf space by Henriksen and Isbell's theorem. If G is a σ -compact space, then G and bG are separable and metrizable by Case 2 in Theorem 4.2. Hence we assume that G is non- σ -compact. Since G is a Lindelöf Σ -space, it is easy to see that G is a Lindelöf p -space by the proof of [5, Theorem 4.2]. It follows that G and bG are separable and metrizable by Case 1 in Theorem 4.2. \square

Finally, we study the remainders of topological groups with locally a hereditarily D-space.

Theorem 4.4. *Let G be a topological group. If for each $y \in Y = bG \setminus G$ there exists an open neighborhood $U(y)$ of y such that every ω -bounded subset of $U(y)$ is compact, then at least one of the following conditions holds:*

- (1) G is metrizable;
- (2) bG can be continuously mapped onto the Tychonoff cube I^{ω_1} .

Proof. Case 1: The space G is locally compact.

If G is not metrizable, then G contains a topological copy of D^{ω_1} . Since the space G is normal, the space G can be continuously mapped onto the Tychonoff cube I^{ω_1}

⁸A space X is said to have a *base of countable order*(BCO) [11] if there is a sequence $\{\mathcal{B}_n\}$ of base for X such that whenever $x \in b_n \in \mathcal{B}_n$ and (b_n) is decreasing (by set inclusion), then $\{b_n : n \in \mathbb{N}\}$ is a base at x .

⁹A space X is said to be ω -*bounded* if the clourse of every countable subset of X is compact.

Case 2: The space G is not locally compact.

Obviously, both G and Y are dense in bG . Suppose that the condition (2) doesn't hold. Then, by a theorem of Šapirovs'kii in [20], the set A of all points $x \in bG$ such that the π -character of bG at x is countable is dense in bG . Since G is dense in bG , it can follow that the π -character of G is countable at each point of $A \cap G$.

Subcase 2(a): $A \cap G \neq \emptyset$.

Since G is a topological group, it follows that G is first countable, which implies that G is metrizable.

Subcase 2(b): $A \cap G = \emptyset$.

Obviously, $A \subset Y$. For each $y \in Y$, there exists an open neighborhood $U(y)$ in Y such that $y \in U(y)$ and every ω -bounded subset of $U(y)$ is compact. Obviously, $A \cap U(y)$ is dense of $U(y)$. Also, it is easy to see that $A \cap U(y)$ is ω -bounded subset for $U(y)$. Therefore, $A \cap U(y)$ is compact. Then $A \cap U(y) = U(y)$, since $A \cap U(y)$ is dense of $U(y)$. Hence Y is locally compact, a contradiction. \square

A *neighborhood assignment* for a space X is a function φ from X to the topology of X such that $x \in \varphi(x)$ for each point $x \in X$. A space X is a *D-space* [9], if for any neighborhood assignment φ for X there is a closed discrete subset D of X such that $X = \bigcup_{d \in D} \varphi(d)$.

It is easy to see that every countably compact D-space is compact. Hence we have the following result by Theroem 4.4.

Theorem 4.5. *Let G be a topological group. If $Y = bG \setminus G$ is locally a hereditarily D-space, then at least one of the following conditions holds:*

- (1) G is metrizable;
- (2) bG can be continuously mapped onto the Tychonoff cube I^{ω_1} .

Acknowledgements. We wish to thank the reviewers for the detailed list of corrections, suggestions to the paper, and all her/his efforts in order to improve the paper. In particular, Question 3.5 is due to the reviewers.

REFERENCES

- [1] A. Arhangel'skiĭ, *Mappings and spaces*, Russian Math. Surveys., 21(1966), 115–162.
- [2] A. Arhangel'skiĭ, *D-space and covering properties*, Topology Appl., 146–147(2005), 437–449.
- [3] A. Arhangel'skiĭ, *Remainders in compactification and generalized metrizability properties*, Topology Appl., 150(2005), 79–90.
- [4] A. Arhangel'skiĭ, *More on remainders close to metrizable spaces*, Topology Appl., 154(2007), 1084–1088.
- [5] A. Arhangel'skiĭ, *First countability, tightness and other cardinal invariants in remainders of topological groups*, Topology Appl., 154(2007), 2950–2961.
- [6] B. Alleche, A. Arhangel'skiĭ, J. Calbrix, *Weak developments and metrization*, Topology Appl., 100(2000), 23–38.
- [7] D. Burke, E.A. Michael, *On certain point-countable covers*, Pacific J. Math., 64(1976), 79–92.
- [8] H. Bennett, R. Byerly, D. Lutzer, *Compact G_δ sets*, Topology Appl., 153(2006), 2169–2181.
- [9] E.K. Douwen, W.F. Pfeffer, *Some properties of the Sorgenfrey line and related spaces*, Pacific J. Math., 81(1979), 371–377.
- [10] R. Engelking, General Topology(revised and completed edition), Heldermann Verlag, Berlin, 1989.
- [11] G. Gruenhage, *Generalized metric spaces*, In: K. Kunen, J. E. Vaughan(Eds.), Handbook of Set-Theoretic Topology, Elsevier Science Publishers B.V., Amsterdam, 1984, pp. 423–501.
- [12] G. Gruenhage, E. Michael, Y. Tanaka, *Spaces determined by point-countable covers*, Pacific J. Math., 113(1984), 303–332.
- [13] M. Henriksen, J. Isbell, *Some properties of compactifications*, Duke Math. J., 25(1958), 83–106.
- [14] R.E. Hodel, *Metrizability of topological spaces*, Pacific J. Math., 55(1974), 441–459.
- [15] S. Lin, Generalized Metrizable Spaces and Mappings (2nd edition), China Science Press, Beijing, 2007 (in Chinese).

- [16] C. Liu, *Remainders in compactification of topological groups*, Topology Appl., 156(2009), 849–854.
- [17] H. Martin, *Metrizability of M -space*, Canad. J. Math., 4(1973), 840–841.
- [18] W. Roelke, S. Dierolf, *Uniform Structures on Topological group and Their Quotients*, McGraw-Hill, New York, 1981.
- [19] B. Šapirovskii, *On separability and metrizability of spaces with Souslin's condition*, Soviet Math. Dokl., 13(1972), 1633–1638.
- [20] B. Šapirovskii, *On π -character and π -weight of compact Hausdorff spaces*, Soviet Math. Dokl., 16(1975), 999–1003.
- [21] M.G. Tkachenko, *On the Souslin property in free topological groups over compact Hausdorff spaces*, Mat. Notes, 34(1983), 790–793.
- [22] P.F. Yan, S. Lin, *Point-countable k -network and α_4 -space*, Topology Proc., 24(1999), 345–354.

FUCAI LIN: DEPARTMENT OF MATHEMATICS AND INFORMATION SCIENCE, ZHANGZHOU NORMAL UNIVERSITY, ZHANGZHOU 363000, P. R. CHINA.

E-mail address: linfucai2008@yahoo.com.cn