BEST PRACTICES ALGORITHMIC DESIGN DOC (IDEATION PHASE)

Overview

This conceptual document outlines the planned integration of two core Python modules, `options_trading_execution.py` and `qnn_Odte.py`, into a unified quantum-informed trading algorithm. The principal objective is to validate whether the backtesting results mirror real-time trading performance when utilizing the same shared backtest simulation output directory and sub-repo structure. The design stresses early model efficacy ("earliest arrival of profits/alpha") and secures data flow through a lightweight cryptographic toolset.

Core Methodology

- 1. **Blended Module Architecture**
 - *options_trading_execution.py*: Automates live trade entries and exits based on signal triggers derived from the quantum neural network's output.
 - *qnn_0dte.py*: Implements a QNN strategy optimized for intraday (0-DTE) options opportunities, maintaining a common state with the backtest engine to ensure consistency between simulated and real environments.
- 2. **Tracking Live vs. Simulated Performance**
 - Maintain a single, continuously updated sub-folder for storing simulation outputs (e.g., synthetic CSV logs) and QNN signals.
 - Compare real-time trades with concurrent backtest metrics for immediate consistency checks.
- 3. **Cryptographic Assurance (SHA + RSA)**
- Embed SHA-based checksums for each commit within the GitHub sub-repo; this ensures

traceability and tamper-proofing for every iteration of the QNN algorithm.

- Generate RSA public/private key pairs to validate data provenance and safeguard proprietary signals.
- 4. **Quantum Crypto Toolset**
 - Envision a future extension to quantum-resilient encryption once feasible (e.g., lattice-based schemes), keeping design flexible for prospective quantum upgrades.
- 5. **Efficacy Porting & Parsimonious Paths**
 - Prefer minimal overhead ("parsimonious paths") in bridging data from backtest to live trading while preserving critical metadata.
 - Continuously assess alpha generation during staged or partial deployment, enabling swift pivots based on early efficacy insights.

Intended Outcome

Upon completion, this unified framework is expected to provide a transparent path from simulation to live trading, underpinned by essential cryptographic verifications. Further expansions may incorporate advanced quantum cryptography to future-proof data

integrity. The ultimate goal is an open-source reference model (V0OSS) that streamlines collaborations while protecting intellectual property through secure commits, ensuring partners can easily contribute or fork with confidence in the algorithm's reliability.

111111