AMENDMENTS TO THE CLAIMS

1. (Currently Amended) A rotor of an electric rotating machine comprising: a rotor coil for generating magnetic flux by applying a current; and a pole core comprised of a first pole core body and a second pole core body that are arranged so as to cover said rotor coil, each being provided with claw-shaped claw magnetic poles engaging with each other; and

wherein a magnet assembly composed of a magnet for reducing leakage of magnetic flux and a magnet-holding member for supporting said magnet on <u>one of</u> said claw magnetic poles are arranged on inside diameter faces of so that said magnet is disposed on an inside diameter face of said one of said claw magnetic poles.

2. (Withdrawn) A rotor of an electric rotating machine comprising: a rotor coil for generating magnetic flux by applying a current; and a pole core comprised of a first pole core body and a second pole core body that are arranged so as to cover said rotor coil, each being provided with claw-shaped claw magnetic poles engaging with each other;

wherein a magnet assembly composed of a magnet for reducing leakage of magnetic flux and a magnet-holding member for supporting said magnet on said claw magnetic poles are arranged on inside diameter faces of said claw magnetic poles, and said magnet assembly is formed so that center of gravity of said magnet assembly is located on the base part side nearer than the center of said claw magnetic pole.

3. (Withdrawn) A rotor of an electric rotating machine comprising: a rotor coil for generating magnetic flux by applying a current; and a pole core comprised of a first pole core body and a second pole core body that are arranged so as to cover said rotor coil, each being provided with claw-shaped claw magnetic poles engaging with each other;

wherein a magnet assembly composed of a magnet for reducing leakage of magnetic flux and a magnet-holding member for supporting said magnet on said claw magnetic poles are arranged on inside diameter faces of said claw magnetic poles, and said magnet assembly is entirely mounted on the base part side of said claw magnetic pole.

- 4. (Original) The rotor of an electric rotating machine according to claim 1, wherein said magnet-holding member extends to the base part of said claw magnetic pole and is fitted to said claw magnetic pole.
- 5. (Withdrawn) The rotor of an electric rotating machine according to claim 2, wherein said magnet-holding member extends to the base part of said claw magnetic pole and is fitted to said claw magnetic pole.
- 6. (Withdrawn) The rotor of an electric rotating machine according to claim 3, wherein said magnet-holding member extends to the base part of said claw magnetic pole and is fitted to said claw magnetic pole.
- 7. (Original) The rotor of an electric rotating machine according to claim 1, wherein a fixing part for preventing said magnet from moving in axial direction is provided on the inside diameter side of said claw magnetic pole.
- 8. (Withdrawn) The rotor of an electric rotating machine according to claim 2, wherein a fixing part for preventing said magnet from moving in axial direction is arranged on the inside diameter side of said claw magnetic pole.
- 9. (Withdrawn) The rotor of an electric rotating machine according to claim 3, wherein a fixing part for preventing said magnet from moving in axial direction is arranged on the inside diameter side of said claw magnetic pole.
- 10. (Original) The rotor of an electric rotating machine according to claim 1, wherein an end of said magnet-holding member and said claw magnetic pole are joined together to prevent said magnet from moving in axial direction.

- 11. (Withdrawn) The rotor of an electric rotating machine according to claim 2, wherein an end of said magnet-holding member and said claw magnetic pole are joined together to prevent said magnet from moving in axial direction.
- 12. (Withdrawn) The rotor of an electric rotating machine according to claim 3, wherein an end of said magnet-holding member and said claw magnetic pole are joined together to prevent said magnet from moving in axial direction.
- 13. (Original) The rotor of an electric rotating machine according to claim 1, wherein said magnet-holding member extends to backside of the pole and is fitted to said claw magnetic pole, and two magnet-holding member are joined together on said backside of the pole.
- 14. (Withdrawn) The rotor of an electric rotating machine according to claim 2, wherein said magnet-holding member extends to backside of the pole and is fitted to said claw magnetic pole, and two magnet-holding members are joined together on said backside of the pole.
- 15. (Withdrawn) The rotor of an electric rotating machine according to claim 3, wherein said magnet-holding member extends to backside of the pole and is fitted to said claw magnetic pole, and two magnet-holding member are joined together on said backside of the pole.
- 16. (Original) The rotor of an electric rotating machine according to claim 1, wherein a ring for press fitting said magnet assembly is provided on the inside diameter side of said claw magnetic poles.
- 17. (Withdrawn) The rotor of an electric rotating machine according to claim 2, wherein a ring for press fitting said magnet assembly is provided on the inside diameter side of said claw magnetic poles.

- 18. (Withdrawn) The rotor of an electric rotating machine according to claim 3, wherein a ring for press fitting said magnet assembly is provided on the inside diameter side of said claw magnetic poles.
- 19. (New) The rotor of an electric rotating machine according to claim 1, wherein said magnet is disposed between planes defined by side faces of the one of said claw magnetic poles.
- 20. (New) The rotor of an electric rotating machine according to claim 1, wherein said magnet is disposed on an inner-most surface of said one of said claw magnetic poles.
- 21. (New) The rotor of an electric rotating machine according to claim 1, wherein said magnet is disposed so as not to oppose a side surface of said one of said claw magnetic poles.
- 22. (New) The rotor of an electric rotating machine according to claim 1, further comprising a plurality of magnet assemblies, wherein said magnet assemblies are disposed so as to mount each of the magnets on a unique one of said claw magnetic poles.