N-Model, Threshold & Greedy Policy

Guo Yuanxin

CUHK-Shenzhen

December 4, 2019

N-model: System Description

TWO SERVERS WORKING IN PARALLEL

Figure: N-model

N-model: System Description

- Arrival: Poisson process with rate λ_i
- $\lambda_1 = 1.3 \rho$, $\lambda_1 = 0.4 \rho$
- Service: Exponential with mean m_i
- $m_1 = 1, m_2 = 2, m_3 = 1$
- Goal: Minimize holding cost: $g(X_1, X_2) = 3X_1 + X_2$
- The only decision to be made is when server 2 is idle, whether to take a job of class 1 or class 2.

Threshold Policy

- Class 1 job has a higher arrival rate, so it is more likely to be congested.
- Idea: Whenever jobs in buffer 1 exceeds a certain **threshold** α (or buffer 2 is empty), server 2 takes a class 1 job. Otherwise take a class 2 job.
- Problem becomes choosing the best threshold α .

Greedy Policy

- We can use relative value iteration to find a greedy optimal policy.
- The value function of regular value iteration diverges in this case, so
 we subtract the value function of a *reference state* at each iteration,
 which makes the iterates converge.

Truncating the state space

- However, we have infinite state space $S = \mathbb{Z}_+^2$. It is impossible for us to do RVI on it.
- We truncate the state space, discard the part that is unlikely to occur.
- When $\rho=0.95$, we truncate the space to be $0 \le X_1 \le 180$, $0 \le X_2 \le 120$.
- Only 1% of the states are out of the truncated state space.
- When $\rho=0.8$, we truncate the space to be $0 \le X_1 \le 45$, $0 \le X_2 \le 45$.
- Only 0.001% of the states are out of the truncated state space..

Comparison of policies ($\rho = 0.95$)

(a) Long-run average value function

(b) Greedy Policy

Figure: $\rho = 0.95$

Comparison of policies ($\rho = 0.8$)

Figure: $\rho = 0.8$

Results

- The greedy policy does better than all threshold policies.
- The 'threshold' is increasing over X_2 , which is in accordance to our intuition.

Changing the holding cost

- We now consider the holding cost to be $g(X_1, X_2) = X_1 + X_2$.
- Since $m_2 > m_3$ while the holding cost for the two kinds of job are the same, it is always favorable to take a job from buffer 2 whenever it is not empty.
- The greedy policy thus reduces to the last-buffer-first-serve (LBFS) policy.

Comparison of policies ($\rho = 0.95$)

Figure: $\rho = 0.95$

• The blue line almost coincides with the red one in (a).

Comparison of policies ($\rho = 0.8$)

(a) Long-run average value function

(b) Greedy Policy

Figure: $\rho = 0.8$

• The blue line almost coincides with the red one in (a).

Sample generation does make a difference

 Using different random seeds may produce unwanted results. In the following example, it seems that threshold policy is better.

Figure: Using different seeds produces opposite result