Problem 1

- (a) Prove -(-x) = x.
- (b) Prove -(xy) = (-x)y.

Solution

Part (a)

$$0 + -(-x) = -(-x)$$
 by (A3)

$$[x + -x] + -(-x) = -(-x)$$
 by (A4)

$$x + [-x + -(-x)] = -(-x)$$
 by (A2)

$$x + 0 = -(-x)$$
 by (A4)

$$x = -(-x)$$
 by (A3)

Part (b)

$$(-x)y + xy = (-x + x)y$$
 by (D)
 $(-x)y + xy = (0)y$ by (A4)

In class it was proved that $0 \cdot x = 0$ for all x. By this result we get

$$(-x)y + xy = 0$$

 $(-x)y + xy + -(xy) = 0 + -(xy)$ add $-(xy)$
 $(-x)y + 0 = -(xy)$ by (A4)
 $(-x)y = -(xy)$ by (A3)

Problem 2

- (a) Prove if x > y, z < 0 then xz < yz.
- (b) Prove if x > y > 0, z > w > 0 then xz > yw.
- (c) Prove if x > 0 then $x^{-1} > 0$.

Solution

Part (a)

z < 0 so -z > 0. By (O6) which was proved in class $x(-z) > y(-z) \implies xz < yz$.

Part (b)

DO THIS YOU DIDN'T DO IT

Part (c)

First assume that $x^{-1} < 0$. Then by (O7) proved in class:

$$x \cdot x^{-1} < 0 \cdot x^{-1}$$

It was also proved in class that $0 \cdot x = 0$ for all x. Thus,

$$x \cdot x^{-1} < 0$$

1 < 0 by (M4)

This is a contradiction so $x^{-1} > 0$.

Problem 3

Prove that there does not exist an $x \in \mathbb{Z}$ such that 0 < x < 1. $\mathbb{Z} = \{x \in \mathbb{R} \mid x \in \mathbb{N} \lor x = 0 \lor -x \in \mathbb{N}\}.$

Solution

Consider any arbitrary $x \in \mathbb{R}$. There are three possible cases.

- (a) Case 1: $x \in \mathbb{N}$ It was proven in class that for all x in \mathbb{N} , $x \ge 1$. Thus it is impossible that x < 1.
- (b) Case 2: x = 0If x = 0 then it is impossible that x > 0.
- (c) Case 3: $-x \in \mathbb{N}$ By the same fact used in case 1, $-x \ge 1 \implies x \le -1$. So it is impossible that x > 0.

There is no case in which it is possible that 0 < x < 1.

Problem 4

Prove that it is impossible to define inequalities in \mathbb{C} such that (O1)-(O4) hold.

Solution

The proof given in the book that for any nonzero $a \in \mathbb{R}$, $a^2 > 0$ depends only on axioms (O1)-(O4). Thus if these axioms held in \mathbb{C} then it would have to be the case that the square of any nonzero element of \mathbb{C} was greather than 0. However, i is defined such that $i^2 = -1$ which is less than 0. Thus is impossible to define inequalitied in \mathbb{C} in such a way that axioms (O1)-(O4) hold.

Problem 5

- (a) Let $x, y \in \mathbb{R}$. Prove $x \leq y$ if and only if $x \epsilon < y + \epsilon \forall \epsilon > 0$.
- (b) Let $x, y \in \mathbb{R}$ with x < y. Prove there exists $z \in \mathbb{R}$ with x < z < y.
- (c) Let $a, x, b \in \mathbb{R}$ with a < x < b. Prove there exists $\epsilon > 0$ such that $a < x \epsilon < x + \epsilon < b$. Deduce that $(x \epsilon, x + \epsilon) \subset (a, b)$.

Solution

Part (a)

By Theorem 1.9 part i proved in the book, $x < y + \epsilon$ for all $\epsilon > 0$. For any given value for $\epsilon > 0$, $0 > -\epsilon$. Then by (O5) $y + \epsilon > x - \epsilon$ for all $\epsilon > 0$.

Part (b)

Let n be the largest natural number such that $\frac{1}{n} < y - x$. Let k be the largest natural number such that $\frac{k}{n} \le x$. Then by our selection of k, $\frac{k+1}{n} > x$. Now assume that $y \le \frac{k+1}{n}$. Then we have that $\frac{k+1}{n} \ge y$ and $-\frac{k}{n} \ge -x$ so by (O5)":

$$\frac{1}{n} = \frac{k+1}{n} - \frac{k}{n} \ge y - x$$

. This is a contradiction so it must be the case that $y > \frac{k+1}{n}$. Thus $z = \frac{k+1}{n}$ is a number satisfying x < z < y.

Part (c)

Let y be the smaller value of b-x and x-a. Then $a \le x-y < x < x+y \le b$. By part b) there exists a z such that x < z < x+y. Let $\epsilon = z-x$. This value satisfies that desired conditions.

Problem 6

Prove that each of the following are metric spaces.

- (a) $X = \mathbb{R}, d(x, y) = |y x|$
- (b) $X = \text{any set}, d(x, y) = 1 \text{ if } x \neq y \text{ and } d(x, y) = 0 \text{ if } x = y.$
- (c) Give another example of a metric space.

Solution

Part (a)

 $i d(x,y) = 0 \iff x = y$

First assume x = y. Then |y - x| = |0| = 0. Now assume that |y - x| = 0. Then either y - x = 0 or x - y = 0. In the first case y - x + x = x so by (A4) y = x. In the second case x - y + y = y so by (A4) x = y.

ii d(x,y) = d(y,x)

By property 2 of absolute values, |y - x| = |x - y|.

iii $d(x,z) \le d(x,y) + d(y,z)$

 $|z-x| \le |y-x| + |z-4|$ by the triangle inequality proved in class.

Part (b)

 $i d(x,y) = 0 \iff x = y$

This is true by the definition of the function d.

ii d(x,y) = d(y,x)

In the case when x = y, d(x, y) = 0 = d(y, x). In the case when $x \neq y$, d(x, y) = 1 = d(y, x).

iii $d(x,z) \le d(x,y) + d(y,z)$

Case: x = y = z

 $0 \le 0$

Case: $x \neq y \neq z$

 $1 \leq 2$

Case: $x = y \neq z$

 $1 \leq 1$

Case: $x \neq y = z$

 $1 \le 1$

Case: $x = z \neq y$

0 < 1

Part (c)

$$X = \mathbb{C}, d(x, y) = \sqrt{x^2 + y^2}.$$