Completeness of QD

LOGIC I Benjamin Brast-McKie October 7, 2024

Basic Lemmas

- **L13.1** If α is a constant and X is a proof in which the constant β does not occur, then $X[\beta/\alpha]$ is also a proof.
- **L13.3** If $\Lambda \cup \{\varphi\}$ is inconsistent, then $\Lambda \vdash \neg \varphi$.
- **L13.5** If $\Lambda \vdash \varphi$ and $\Pi \cup \{\varphi\} \vdash \psi$, then $\Lambda \cup \Pi \vdash \psi$.
- **L13.6** If $\Lambda \cup \{\varphi\}$ and $\Lambda \cup \{\neg \varphi\}$ are both inconsistent, then Λ is inconsistent.
- **L13.9** If $\Lambda \vdash \varphi$ and $\Lambda \vdash \neg \varphi$, then Λ is inconsistent.
- **L13.11** If $\Lambda \vdash \varphi$, then $\Lambda \cup \Pi \vdash \varphi$.

Satisfiability

T13.1 Every consistent set of $QL^{=}$ sentences Γ is satisfiable.

Completeness: If $\Gamma \vDash \varphi$, then $\Gamma \vdash \varphi$.

- 1. Assuming $\Gamma \vDash \varphi$, we know $\Gamma \cup \{\neg \varphi\}$ is unsatisfiable.
- 2. So $\Gamma \cup \{\neg \varphi\}$ is inconsistent by **T13.1**.
- 3. So $\Gamma \vdash \neg \neg \varphi$ by **L13.3**, and so $\Gamma \vdash \varphi$ by DN and **L13.5**.

Saturation

Free: Let $\varphi(\alpha)$ be a wff of QL⁼ with at most one free variable α .

Saturated: A set of sentences Σ is saturated in $QL_{\mathbb{N}}^{=}$ just in case for each wff $\varphi(\alpha)$ of QL_N⁼, there is a constant β where $(\exists \alpha \phi \supset \phi[\beta/\alpha]) \in \Sigma$.

Constants: Let \mathbb{C} be the constants of $\mathrm{QL}_{\mathbb{N}}^{=}$ where $\mathbb{N}\subseteq\mathbb{C}$ are new constants.

L13.2 Assuming Γ is consistent in QL⁼, we know Γ is consistent in QL⁼_N.

Free Enumeration: Let $\varphi_1(\alpha_1)$, $\varphi_2(\alpha_2)$, $\varphi_3(\alpha_3)$,... enumerate all wffs of QL_N with one free variable.

Witnesses: $\theta_1 = (\exists \alpha_1 \varphi_1 \supset \varphi_1[n_1/\alpha_1])$ where $n_1 \in \mathbb{N}$ is the first constant not in φ_1 . $\theta_{k+1}=(\exists \alpha_{k+1}\varphi_{k+1}\supset \varphi_{k+1}[n_{k+1}/\alpha_{k+1}])$ where $n_{k+1}\in\mathbb{N}$ is the first

constant not in θ_i for any $j \leq k$.

Saturation: Let $\Sigma_1 = \Gamma$, $\Sigma_{n+1} = \Sigma_n \cup \{\theta_n\}$, and $\Sigma_{\Gamma} = \bigcup_{i \in \mathbb{N}} \Sigma_n$.

L13.4 Σ_{Γ} is consistent and saturated in QL_N⁼.

- 1. If Σ_{m+1} is inconsistent, then $\Sigma_m \vdash \exists \alpha_{m+1} \varphi_{m+1}$ and $\Sigma_m \vdash \neg \varphi_{m+1} [n_{m+1} / \alpha_{m+1}]$.
- 2. So $\Sigma_m \vdash \forall \alpha_{m+1} \neg \varphi_{m+1}$ by $\forall I$, and so $\Sigma_m \vdash \neg \exists \alpha_{m+1} \varphi_{m+1}$ by $\forall \neg$.
- 3. If Σ_{Γ} is inconsistent, then $\Sigma_m \vdash \bot$ for some $m \in \mathbb{N}$.

Maximization

Maximal: A set of sentences Δ is MAXIMAL in $QL_{\mathbb{N}}^{=}$ just in case as either $\psi \in \Delta$ or $\neg \psi \in \Delta$ for every sentence ψ in $QL_{\mathbb{N}}^{=}$.

Full Enumeration: Let $\psi_0, \psi_1, \psi_2, \dots$ enumerate all sentences in $QL_{\mathbb{N}}^{=}$.

Maximization: Let
$$\Delta_0 = \Sigma$$
, $\Delta_{n+1} = \begin{cases} \Delta_n \cup \{\psi_n\} & \text{if } \Gamma_n \cup \{\psi_n\} \text{ is consistent} \\ \Delta_n \cup \{\neg \psi_n\} & \text{otherwise.} \end{cases}$, and $\Delta_{\Sigma} = \bigcup_{i \in \mathbb{N}} \Delta_n$.

L13.7 $\Delta = \Delta_{\Sigma_{\Gamma}}$ is maximal consistent in $QL_{\mathbb{N}}^{=}$.

Case 1: $\Delta_n \cup \{\psi_n\}$ is consistent, and so $\Delta_{n+1} = \Delta_n \cup \{\psi_n\}$ is consistent.

Case 2: $\Delta_n \cup \{\psi_n\}$ is not consistent, and so $\Delta_{n+1} = \Delta_n \cup \{\neg \psi_n\}$.

- 1. If $\Delta_n \cup \{\neg \psi_n\}$ is inconsistent, then Δ_n is inconsistent by **L13.6**.
- 2. So Δ_{n+1} is consistent in both cases.
- 3. If Δ_{Σ} is inconsistent, then $\Delta_m \vdash \bot$ for some $m \in \mathbb{N}$.
- 4. Maximality is immediate.

L13.8 $\Gamma \subseteq \Sigma_{\Gamma} \subseteq \Delta$ where Δ is saturated.

1. Immediate from the definitions.

L13.10 $\varphi \in \Delta$ whenever $\Delta \vdash \varphi$.

- 1. Assuming $\Delta \vdash \varphi$, we know $\Delta \nvdash \neg \varphi$ by **L13.9**.
- 2. So $\neg \varphi \notin \Delta$ since otherwise $\Delta \vdash \neg \varphi$.
- 3. Thus $\varphi \in \Delta$ by maximality.

Henkin Model

Element: $[\alpha]_{\Delta} = \{ \beta \in \mathbb{C} : \alpha = \beta \in \Delta \}.$

Domain: $\mathbb{D}_{\Delta} = \{ [\alpha]_{\Delta} : \alpha \in \mathbb{C} \}.$

L13.13 If $\alpha = \beta \in \Delta$, then $[\alpha]_{\Delta} = [\beta]_{\Delta}$.

- 1. Assuming $\alpha = \beta \in \Delta$ where $\Gamma \in [\alpha]_{\Delta}$, we know $\alpha = \gamma \in \Delta$.
- 2. So $\alpha = \beta$, $\alpha = \gamma \vdash \beta = \gamma$ by =E, and so $\Delta \vdash \beta = \gamma$ by **L13.11**.
- 3. Thus $\beta = \gamma \in \Delta$ by **L13.10**, and so $\gamma \in [\beta]_{\Delta}$, hence $[\alpha]_{\Delta} \subseteq [\beta]_{\Delta}$.

Constants: $\mathcal{I}_{\Delta}(\alpha) = [\alpha]_{\Delta}$ for all constants $\alpha \in \mathbb{C}$.

Predicates: $\mathcal{I}_{\Delta}(\mathcal{F}^n) = \{ \langle [\alpha_1]_{\Delta}, \dots, [\alpha_n]_{\Delta} \rangle \in \mathbb{D}_{\Delta}^n : \mathcal{F}^n \alpha_1, \dots, \alpha_n \in \Delta \}.$

L13.14 If $\alpha_i = \beta_i \in \Delta$, then $\mathcal{F}^n \alpha_1, \dots, \alpha_n \in \Delta$ iff $\mathcal{F}^n \alpha_1, \dots, \alpha_n [\beta_i / \alpha_i] \in \Delta$.

- 1. Assume $\alpha_i = \beta_i \in \Delta$ where $\mathcal{F}^n \alpha_1, \dots, \alpha_n \in \Delta$.
- 2. $\Delta \vdash \mathcal{F}^n \alpha_1, \dots, \alpha_n [\beta_i / \alpha_i]$ by = E, so $\mathcal{F}^n \alpha_1, \dots, \alpha_n [\beta_i / \alpha_i] \in \Delta$ by **L13.10**.
- 3. Parity of reasoning completes the proof.

Henkin Lemmas

L13.15 $\mathcal{V}_{\mathcal{I}_{\Lambda}}^{\hat{a}}(\exists \alpha \psi) = 1$ just in case $\mathcal{V}_{\mathcal{I}_{\Delta}}^{\hat{a}}(\psi[\beta/\alpha]) = 1$ for some constant $\beta \in \mathbb{C}$.

- 1. Letting $\mathcal{V}_{\mathcal{I}_{\Lambda}}^{\hat{a}}(\exists \alpha \varphi) = 1$ for some \hat{a} , $\mathcal{V}_{\mathcal{I}_{\Lambda}}^{\hat{c}}(\varphi) = 1$ for some α -variant \hat{c} .
- 2. So $\hat{c}(\alpha) = [\beta]_{\Delta}$ for some $\beta \in \mathbb{C}$, so $\hat{c}(\alpha) = \mathcal{I}_{\Delta}(\beta)$ since $\mathcal{I}_{\Delta}(\beta) = [\beta]_{\Delta}$.
- 3. Thus $\mathcal{V}_{\mathcal{I}}^{\hat{c}}(\alpha) = \mathcal{V}_{\mathcal{I}}^{\hat{c}}(\beta)$, and so $\mathcal{V}_{\mathcal{I}_{\Lambda}}^{\hat{c}}(\varphi) = \mathcal{V}_{\mathcal{I}_{\Lambda}}^{\hat{c}}(\varphi[\beta/\alpha])$ by **L12.9**.
- 4. So $\mathcal{V}_{\mathcal{I}_{\Lambda}}^{\hat{c}}(\varphi[\beta/\alpha]) = 1$, and so $\mathcal{V}_{\mathcal{I}_{\Lambda}}^{\hat{a}}(\varphi[\beta/\alpha]) = 1$ by **L12.6**.
- 5. Assume instead that $\mathcal{V}_{\mathcal{I}_{\Lambda}}^{\hat{a}}(\varphi[\beta/\alpha]) = 1$ for some $\beta \in \mathbb{C}$.
- 6. Let \hat{c} be the α -variant of \hat{a} where $\hat{c}(\alpha) = \mathcal{I}_{\Delta}(\beta)$, so $\mathcal{V}_{\mathcal{I}}^{\hat{c}}(\alpha) = \mathcal{V}_{\mathcal{I}}^{\hat{c}}(\beta)$.
- 7. Thus $\mathcal{V}_{\mathcal{I}_{\Lambda}}^{\hat{c}}(\varphi) = \mathcal{V}_{\mathcal{I}_{\Lambda}}^{\hat{c}}(\varphi[\beta/\alpha])$ by **L12.9**, and so $\mathcal{V}_{\mathcal{I}_{\Lambda}}^{\hat{a}}(\exists \alpha \varphi) = 1$.
- **L13.16** $\mathcal{V}_{\mathcal{I}_{\Delta}}^{\hat{a}}(\forall \alpha \varphi) = 1$ just in case $\mathcal{V}_{\mathcal{I}_{\Delta}}^{\hat{a}}(\varphi[\beta/\alpha]) = 1$ for all constants $\beta \in \mathbb{C}$.
 - 1. Similar to **L13.15**.
- **L13.17** \mathcal{M}_{Δ} satisfies φ just in case $\varphi \in \Delta$.

$$\textit{Base: } \mathcal{V}_{\mathcal{I}_{\Delta}}^{\hat{\alpha}}(\alpha_{1}=\alpha_{2})=1 \textit{ iff } \mathcal{I}_{\Delta}(\alpha_{1})=\mathcal{I}_{\Delta}(\alpha_{2}) \textit{ iff } [\alpha_{1}]_{\Delta}=[\alpha_{2}]_{\Delta} \textit{ iff } \alpha_{1}=\alpha_{2}\in\Delta.$$

- 1. If $[\alpha_1]_{\Delta} = [\alpha_2]_{\Delta}$, then $\alpha_2 \in [\alpha_2]_{\Delta}$ by **L13.12**, and so $\alpha_2 \in [\alpha_1]_{\Delta}$.
- 2. Thus $\alpha_1 = \alpha_2 \in \Delta$ by definition, and the converse holds by **L13.13**.

Induction: Assume $\mathcal{V}_{\mathcal{I}_{\Lambda}}^{\hat{a}}(\varphi)=1$ just in case $\varphi\in\Delta$ whenever $\mathsf{Comp}(\varphi)\leq n$.

- 1. Let φ be a sentence of $QL_{\mathbb{N}}^{=}$ where $Comp(\varphi) = n + 1$.
- Case 1: $\mathcal{V}_{\mathcal{I}_{\Delta}}^{\hat{a}}(\neg \psi) = 1$ iff $\mathcal{V}_{\mathcal{I}_{\Delta}}^{\hat{a}}(\psi) \neq 1$ iff $\psi \notin \Delta$ iff $\neg \psi \in \Delta$.
- $\textit{Case 2: } \mathcal{V}_{\mathcal{I}_{\Delta}}^{\hat{a}}(\psi \wedge \chi) = 1 \textit{ iff } \mathcal{V}_{\mathcal{I}_{\Delta}}^{\hat{a}}(\psi) = \mathcal{V}_{\mathcal{I}_{\Delta}}^{\hat{a}}(\chi) = 1 \textit{ iff } \psi, \chi \in \Delta \textit{ iff } \psi \wedge \chi \in \Delta.$
- Case 6: $\mathcal{V}_{\mathcal{I}_{\Delta}}^{\hat{a}}(\exists \alpha \psi) = 1$ iff $\mathcal{V}_{\mathcal{I}_{\Delta}}^{\hat{a}}(\psi[\beta/\alpha]) = 1$ for some $\beta \in \mathbb{C}$ by **L13.15**.
 - 1. *iff* $\psi[\beta/\alpha] \in \Delta$ for some $\beta \in \mathbb{C}$ by hypothesis.
 - 2. *iff* $\exists \alpha \psi \in \Delta$ by $\exists I$ and **L13.10** given saturation.

Conclusion: So $\mathcal{V}_{\mathcal{I}_{\Delta}}^{\hat{a}}(\varphi) = 1$ just in case $\varphi \in \Delta$, from which the lemma follows.

Restriction

Restriction: $\mathcal{I}'_{\Delta}(\alpha) = [\alpha]_{\Delta}$ for every constant α in QL⁼.

L13.18 For all QL⁼ sentences φ , \mathcal{M}'_{Δ} satisfies φ just in case \mathcal{M}_{Δ} satisfies φ .

T13.1 Every consistent set of $QL^=$ sentences Γ is satisfiable.

Compactness

C13.2 If $\Gamma \vDash \varphi$, then there is a finite subset $\Lambda \subseteq \Gamma$ where $\Lambda \vDash \varphi$.

C13.3 Γ is satisfiable if every finite subset $\Lambda \subseteq \Gamma$ is satisfiable.