Bayesian stats with Stan and brms ()

Béatrice Capolla & Florent Déry

An immersion into british philosophy

David Hume: a great skeptic

Criticizes Descartes' rationalism: our ideas cannot be confirmed by immediate perceptions

Hume's fork:

Demonstrative statement

Probable statement

irrefutable (a priori knowledge),

2 + 2 = 4

Concludes that belief is at the center of rationalism, not reason refutable, needs empirical proof

- A Treatise of Human Nature: Being an
 - Attempt to introduce the experimental
 Method of Reasoning into Moral Subjects
 (1739)

- Enquiries concerning Human Understanding (1748)

1711 1776

Concludes that reports of miracles change nothing regarding our understanding of human existence

Clergy opposes

Thomas Bayes' theorem might be seen as a rebuttal of David Hume's work

Thomas Bayes:
Highly skilled amateur
mathematician &
clergyman.
Started working on his
theorem shortly after
Hume's conclusion on
miracles

Richard Price: Clergyman and pioneer insurance statistician.

Completed and published Bayes works after his death

Thomas Bayes' theorem might be seen as a rebuttal of David Hume's work

Bayes theorem combines
Hume's fork:

Probable
statement

irrefutable
(a priori needs
knowledge)

refutable refutable,
needs
empirical proof

Price uses **Bayes' theorem** to explain miracles (improbable events)

Did you say probable(-ility)?

- Conditional probability: If y and x are two random variables conditional probability = p(y|x); the probability of y for a given value of x (or the probability of y knowing x).
- **Joint probability**: probability of obtaining both a certain value of x and a certain value of y, noted p(x,y), can be calculated in two ways:

$$p(x,y) = p(x)p(y|x) = p(y)p(x|y)$$

probability of getting x * probability of getting y * probability of getting y knowing y

• Marginal probability: probability of a variable y, p(y), is its probability if we ignore the value of the other variables. If we do not know p(y) directly, but we know p(y,x) for each possible value of another variable x, then p(y) corresponds to the sum of the joint probabilities of x and y for each value of x.

$$p(y) = \sum_{x} p(y,x) = \sum_{x} p(y|x)p(x)$$

Bayes' theorem

Prior distribution

Posterior distribution

$$p(x|y) = \frac{p(x)p(y|x)}{p(y)}$$

Frequentist approach!

Likelihood function

Probability

of data

Marginal probability

constant often omitted as it does not change the outcomes

Bayes' theorem

What we know A Priori

The model

Parameters estimates

$$p(x|Data) = \frac{p(x)p(Data|x)}{p(Data)}$$

Probability of data

Bayes' theorem

We can then calculate the probability distribution of x conditional of y if we know:

Probability of data

- the probability distribution of y conditional of x, and;
- the marginal probability distribution of x.

distribution

As for the denominator p(y), this can be obtained by taking the sum (or the integral) of p(x)p(y|x) over the set of possible values of x.

So, how do we solve Bayes' theorem?

Bayes theorem: can be hand solved for simple cases, but not for most of modern day use. --> Need a powerful computer.

Instead of resolving complex integrals, it is estimated by simulating many, many, many posterior distributions

Widely used algorithms:

WinBUGS, BUGS, JAGS, STAN, Nimble

Frequentist

<u>Parameter is a known value</u> for a given population. The sample serves to estimate this parameter.

Sample is one of many sample possibles from a population.

95% confidence intervals: 95% of possible samples of x would produce an interval containing the said value.

Bayesian

Parameter is a random value drawn from a distribution

Sample represents truth (what we actually know)

95% confidence intervals: Probability to observe the parameter within the interval's boundary. → credible interval.

Stan... who?

the R interface to Stan

Download and Get Started

Instructions for downloading, installing, and getting started with RStan on all platforms.

• RStan Quick Start Guide (GitHub)

https://mc-stan.org/users/interfaces/rstan

To open a new Stan file

workshops - master - Kstudio											
File Edit Code View Plots	Session Build	Debug Profile Tools Help									
New File		R Script Ctrl+Shift+N									
New Project		R Notebook									
Open File Reopen with Encoding Recent Files	Ctrl+O	R Markdown Shiny Web App Plumber API									
Open Project Open Project in New Session Recent Projects		C File C++ File Header File									
Import Dataset		Markdown File									
Save	Ctrl+S	HTML File									
Save As		CSS File									
Rename		JavaScript File									
Save with Encoding		D3 Script									
Save All	Ctrl+Alt+S	Python Script									
Publish		Shell Script									
Print		SQL Script Stan File									
Close	Ctrl+W	Text File									
Close All	Ctrl+Shift+W	D Sweene									
Close All Except Current	Ctrl+Alt+Shift+	W R Sweave R HTML									
Close Project		R Presentation									
Quit Session	Ctrl+Q	R Documentation									

Empty Stan file

```
https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started
       int<lower=0> N;
       vector[N] y;
16 🔺
20 v parameters {
      real mu;
       real<lower=0> sigma;
23 4 3
28 v model {
      y ~ normal(mu, sigma);
30 4 }
```

Use two forward slashes instead of a pound (#) when you want to write text and not code

Where to click if you have trouble coding in Stan

Define your data

Define your parameters

Define your model

Our data : BTdata.txt

Stan hates factor... so make it integer!

```
# Convert factor to integer ###

library(dplyr)

BTdata$sex_no <- as.integer((BTdata$sex))

BTdata$dam_no <- as.integer((BTdata$dam))

dam_ID <- distinct(BTdata, dam_no, dam) %>%

arrange(dam_no)

arrange(dam_no)
```

Creates a DF indicating which dam_no corresponds to which dam ID

•	tarsus ‡	back [‡]	animal ‡	dam [‡]	fosternest [‡]	hatchdate [‡]	sex [‡]	sex_no ‡	dam_no 🗦
1	-1.89229718	1.146421150	R187142	R187557	F2102	-0.68740208	Fem	+	56
2	1.13610981	-0.759652092	R187154	R187559	F1902	-0.68740208	Male	2	57
3	0.98468946	0.144937259	R187341	R187568	A602	-0.42798142	Male	2	61
4	0.37900806	0.255584701	R046169	R187518	A1302	-1.46566405	Male	2	38
5	-0.07525299	-0.300699223	R046161	R187528	A2602	-1.46566405	Fem	1	43
6	-1.13519543	1.557721860	R187409	R187945	C2302	0.35028055	Fem	1	94
7	-1.13519543	-0.426824377	R187507	Fem3	C1902	-0.42798142	Male	2	3
8	1.89321156	-1.340762577	R187028	R187030	C1302	-0.94682274	Fem	1	23
9	-0.37809369	0.067481541	R046128	R187517	C602	-1.98450537	Fem	1	37

Our model

i = observation number j = group (mother ID) $\beta_{0j} = \beta_0 + \mu_{0j}$ $\mu_{0j} \sim N(0, \sigma_{\mu_0}^2)$ $\varepsilon_{0ij} \sim N(0, \sigma_{e_0}^2)$

Coding data in Stan

Use chevrons to indicate boundaries!

Use brackets to indicate the length of your data!

Coding parameters in Stan

```
₱ bayesian_model.stan ×

👫 intro_to_bayesian.R 🔀
                                             BTdata
🖛 🕽 📗 📗 🔽 Check on Save 📗 🥄 🎢 🗸
                                                                                                                    → Check
        real b_0; // Population intercept.
        real u_dam[n_dam]; // Random effects.
        real<lauer = 0> sigma_u_dam; // Standard deviation of random effects.
        real b_sex; // Population slope
        real<lower = 0> sigma; // Population standard deviation.
        real b_dam[n_dam]; // Varying intercepts (one per cluster)
        real mu[n_obs]: // Individual mean
       for (j in 1:n_dam){
 40 -
         b_{dam}[n_{dam}] = b_{0} + u_{dam}[n_{dam}];
 43
 44 -
        for (i in 1:n_obs){
         mu[i] = b_dam[dam_no[i]] + b_sex * sex_no[i];
 46
```

Coding models in Stan

```
₱ bayesian_model.stan* ×

intro_to_bayesian.R 🔀
                                              BTdata >
      🚛 📗 🔽 Check on Save 🔍 🎢 🕶
                                                                                                                    → Check
 54
        b_0 \sim std_normal();
 55
        u_dam ~ std_normal();
 56
        sigma_u_dam ~ std_normal();
        b_sex ~ std_normal();
        sigma ~ std_normal();
        u_dam ~ normal(0, sigma_u_dam); // Random effects distribution.
        for (i in 1:n_obs){
 62
          tarsus[i] ~ normal(mu[i], sigma); //
 63 △ }
 65 4 }
```

Run your Stan model in R