分而治之篇: 递归式求解

童咏昕

北京航空航天大学 计算机学院

中国大学MOOC北航《算法设计与分析》

$$T(n) = \begin{cases} 2T(n/2) + O(n), & if n > 1 \\ O(1), & if n = 1 \end{cases}$$

$$T(n) = \begin{cases} 2T(n/2) + O(n), & \text{if } n > 1 \\ O(1), & \text{if } n = 1 \end{cases}$$

• 递归树法: 用树的形式表示抽象递归

由于树的深度通常由0开始计数,故层数=深度+1,后续统一用"深度"

递归树法

代人法

主定理法

递归树法

代人法

主定理法

$$T(n) = \begin{cases} T(n/4) + T(3n/4) + n, & \text{if } n \ge 4 \\ 1, & \text{if } n < 4 \end{cases}$$

$$T(n) = \begin{cases} T(n/4) + T(3n/4) + n, & \text{if } n \geq 4 \\ 1, & \text{if } n < 4 \end{cases}$$

$$T(n) = \begin{cases} T(n/4) + T(3n/4) + n, & \text{if } n \ge 4 \\ 1, & \text{if } n < 4 \end{cases}$$

$$T(n/4)$$

问题:该界是否为渐进紧确界?

递归树法

代人法

主定理法

代人法: 实例

•
$$T(n) = \begin{cases} T(n/4) + T(3n/4) + n, & n \ge 4 \\ 1, & n < 4 \end{cases}$$

代人法: 实例

•
$$T(n) = \begin{cases} T(n/4) + T(3n/4) + n, & n \ge 4 \\ 1, & n < 4 \end{cases}$$

• 猜测: $T(n) = \Theta(n \log n)$

•
$$T(n) = \begin{cases} T(n/4) + T(3n/4) + n, & n \ge 4 \\ 1, & n < 4 \end{cases}$$

- 猜测: $T(n) = \Theta(n \log n)$
 - 即证明 $\exists c_1, c_2, n_0 > 0$,使得 $\forall n > n_0, c_1 \cdot n \log n \leq T(n) \leq c_2 \cdot n \log n$

0记号

定义:

• 对于给定的函数g(n), $\Theta(g(n))$ 表示以下函数的集合:

$$\Theta(g(n)) = \{T(n): \exists \ c_1, c_2, n_0 > 0, 使得 \forall \ n \geq n_0, c_1g(n) \leq T(n) \leq c_2g(n)\}$$

•
$$T(n) = \begin{cases} T(n/4) + T(3n/4) + n, & n \geq 4 \\ 1, & n < 4 \end{cases}$$

- 猜测: $T(n) = \Theta(n \log n)$
 - 即证明 $\exists c_1,c_2,n_0>0$,使得 $\forall n>n_0,\ c_1\cdot n\log n\leq T(n)\leq c_2\cdot n\log n$

使用数学归纳法证明该命题

•
$$T(n) = \begin{cases} T(n/4) + T(3n/4) + n, & n \ge 4 \\ 1, & n < 4 \end{cases}$$

- 猜测: $T(n) = \Theta(n \log n)$
 - 即证明 $\exists c_1, c_2, n_0 > 0$,使得 $\forall n > n_0, c_1 \cdot n \log n \leq T(n) \leq c_2 \cdot n \log n$
- 数学归纳法
 - n = 3时: 使 $c_1 \cdot 3 \log 3 \le 1 \le c_2 \cdot 3 \log 3$,需取 $0 < c_1 \le \frac{1}{3 \log 3}$, $c_2 \ge \frac{1}{3 \log 3}$

•
$$T(n) = \begin{cases} T(n/4) + T(3n/4) + n, & n \ge 4 \\ 1, & n < 4 \end{cases}$$

- 猜测: $T(n) = \Theta(n \log n)$
 - 即证明 $\exists c_1, c_2, n_0 > 0$,使得 $\forall n > n_0, c_1 \cdot n \log n \leq T(n) \leq c_2 \cdot n \log n$
- 数学归纳法
 - n = 3时: 使 $c_1 \cdot 3 \log 3 \le 1 \le c_2 \cdot 3 \log 3$,需取 $0 < c_1 \le \frac{1}{3 \log 3}$, $c_2 \ge \frac{1}{3 \log 3}$
 - 小于n时: 假设命题成立

•
$$T(n) = \begin{cases} T(n/4) + T(3n/4) + n, & n \geq 4 \\ 1, & n < 4 \end{cases}$$

- 猜测: $T(n) = \Theta(n \log n)$
 - 即证明 $\exists c_1, c_2, n_0 > 0$,使得 $\forall n > n_0, c_1 \cdot n \log n \leq T(n) \leq c_2 \cdot n \log n$
- 数学归纳法
 - n = 3时: 使 $c_1 \cdot 3 \log 3 \le 1 \le c_2 \cdot 3 \log 3$,需取 $0 < c_1 \le \frac{1}{3 \log 3}$, $c_2 \ge \frac{1}{3 \log 3}$
 - 小于n时: 假设命题成立
 - 等于*n*时: 代入可得

o
$$T(n) = T(n/4) + T(3n/4) + n \le c_2 \cdot \frac{n}{4} \cdot \log \frac{n}{4} + c_2 \cdot \frac{3n}{4} \cdot \log \frac{3n}{4} + n$$

$$T(n) = T(n/4) + T(3n/4) + n$$

$$\leq c_2 \cdot \frac{n}{4} \cdot \log \frac{n}{4} + c_2 \cdot \frac{3n}{4} \cdot \log \frac{3n}{4} + n$$

$$= \left(c_2 \cdot \frac{n}{4} \cdot (\log n - \log 4)\right) + \left(c_2 \cdot \frac{3n}{4} \cdot (\log n - \log \frac{4}{3})\right) + n$$

$$T(n) = T(n/4) + T(3n/4) + n$$

$$\leq c_2 \cdot \frac{n}{4} \cdot \log \frac{n}{4} + c_2 \cdot \frac{3n}{4} \cdot \log \frac{3n}{4} + n$$

$$= \left(c_2 \cdot \frac{n}{4} \cdot (\log n - \log 4)\right) + \left(c_2 \cdot \frac{3n}{4} \cdot (\log n - \log \frac{4}{3})\right) + n$$

$$T(n) = T(n/4) + T(3n/4) + n$$

$$\leq c_2 \cdot \frac{n}{4} \cdot \log \frac{n}{4} + c_2 \cdot \frac{3n}{4} \cdot \log \frac{3n}{4} + n$$

$$= \left(c_2 \cdot \frac{n}{4} \cdot (\log n - \log 4)\right) + \left(c_2 \cdot \frac{3n}{4} \cdot (\log n - \log \frac{4}{3})\right) + n$$

$$= c_2 n \log n$$

$$T(n) = T(n/4) + T(3n/4) + n$$

$$\leq c_2 \cdot \frac{n}{4} \cdot \log \frac{n}{4} + c_2 \cdot \frac{3n}{4} \cdot \log \frac{3n}{4} + n$$

$$= \left(c_2 \cdot \frac{n}{4} \mid (\log n - \log 4)\right) + \left(c_2 \cdot \frac{3n}{4} \cdot \left(\log n - \log \frac{4}{3}\right)\right) + n$$

$$= c_2 n \log n - \left(c_2 n \left(\frac{1}{4} \log 4 + \frac{3}{4} \log 4 - \frac{3}{4} \log 3\right)\right) + n$$

$$T(n) = T(n/4) + T(3n/4) + n$$

$$\leq c_2 \cdot \frac{n}{4} \cdot \log \frac{n}{4} + c_2 \cdot \frac{3n}{4} \cdot \log \frac{3n}{4} + n$$

$$= \left(c_2 \cdot \frac{n}{4} \cdot (\log n - \log 4)\right) + \left(c_2 \cdot \frac{3n}{4} \cdot \left(\log n - \log \frac{4}{3}\right)\right) + n$$

$$= c_2 n \log n - \left(c_2 n \left(\frac{1}{4} \log 4 + \frac{3}{4} \log 4 - \frac{3}{4} \log 3\right)\right) + n$$

$$T(n) = T(n/4) + T(3n/4) + n$$

$$\leq c_2 \cdot \frac{n}{4} \cdot \log \frac{n}{4} + c_2 \cdot \frac{3n}{4} \cdot \log \frac{3n}{4} + n$$

$$= \left(c_2 \cdot \frac{n}{4} \cdot (\log n - \log 4)\right) + \left(c_2 \cdot \frac{3n}{4} \cdot (\log n - \log \frac{4}{3})\right) + n$$

$$= c_2 n \log n - \left(c_2 n \left(\frac{1}{4} \log 4 + \frac{3}{4} \log 4\right) - \frac{3}{4} \log 3\right) + n$$

$$= c_2 n \log n - \left(c_2 \left(\log 4 - \frac{3}{4} \log 3\right) - 1\right) n$$

$$T(n) = T(n/4) + T(3n/4) + n$$

$$\leq c_2 \cdot \frac{n}{4} \cdot \log \frac{n}{4} + c_2 \cdot \frac{3n}{4} \cdot \log \frac{3n}{4} + n$$

$$= \left(c_2 \cdot \frac{n}{4} \cdot (\log n - \log 4)\right) + \left(c_2 \cdot \frac{3n}{4} \cdot \left(\log n - \log \frac{4}{3}\right)\right) + n$$

$$= c_2 n \log n - \left(c_2 \left(\frac{1}{4} \log 4 + \frac{3}{4} \log 4 - \frac{3}{4} \log 3\right)\right) + n$$

$$= c_2 n \log n - \left(c_2 \left(\log 4 - \frac{3}{4} \log 3\right) - 1\right) + n$$

$$T(n) = T(n/4) + T(3n/4) + n$$

$$\leq c_2 \cdot \frac{n}{4} \cdot \log \frac{n}{4} + c_2 \cdot \frac{3n}{4} \cdot \log \frac{3n}{4} + n$$

$$= \left(c_2 \cdot \frac{n}{4} \cdot (\log n - \log 4)\right) + \left(c_2 \cdot \frac{3n}{4} \cdot \left(\log n - \log \frac{4}{3}\right)\right) + n$$

$$= c_2 n \log n - \left(c_2 n \left(\frac{1}{4} \log 4 + \frac{3}{4} \log 4 - \frac{3}{4} \log 3\right)\right) + n$$

$$= c_2 n \log n - \left(c_2 \left(\log 4 - \frac{3}{4} \log 3\right) - 1\right) n$$

$$T(n) = T(n/4) + T(3n/4) + n$$

$$\leq c_2 \cdot \frac{n}{4} \cdot \log \frac{n}{4} + c_2 \cdot \frac{3n}{4} \cdot \log \frac{3n}{4} + n$$

$$= \left(c_2 \cdot \frac{n}{4} \cdot (\log n - \log 4)\right) + \left(c_2 \cdot \frac{3n}{4} \cdot \left(\log n - \log \frac{4}{3}\right)\right) + n$$

$$= c_2 n \log n - \left(c_2 n \left(\frac{1}{4} \log 4 + \frac{3}{4} \log 4 - \frac{3}{4} \log 3\right)\right) + n$$

$$= c_2 n \log n - \left(c_2 \left(\log 4 - \frac{3}{4} \log 3\right) - 1\right) n$$
希望此式 \lequeq c_2 n \leques n \leque n \leques n \le

$$T(n) = T(n/4) + T(3n/4) + n$$

$$\leq c_2 \cdot \frac{n}{4} \cdot \log \frac{n}{4} + c_2 \cdot \frac{3n}{4} \cdot \log \frac{3n}{4} + n$$

$$= \left(c_2 \cdot \frac{n}{4} \cdot (\log n - \log 4)\right) + \left(c_2 \cdot \frac{3n}{4} \cdot (\log n - \log \frac{4}{3})\right) + n$$

$$= c_2 n \log n - \left(c_2 n \left(\frac{1}{4} \log 4 + \frac{3}{4} \log 4 - \frac{3}{4} \log 3\right)\right) + n$$

$$= c_2 n \log n - \left(c_2 \left(\log 4 - \frac{3}{4} \log 3\right) - 1\right) n$$
只需此部分≥ 0

• 代入并整理表达式

$$T(n) = T(n/4) + T(3n/4) + n$$

$$\leq c_2 \cdot \frac{n}{4} \cdot \log \frac{n}{4} + c_2 \cdot \frac{3n}{4} \cdot \log \frac{3n}{4} + n$$

$$= \left(c_2 \cdot \frac{n}{4} \cdot (\log n - \log 4)\right) + \left(c_2 \cdot \frac{3n}{4} \cdot (\log n - \log \frac{4}{3})\right) + n$$

$$= c_2 n \log n - \left(c_2 n \left(\frac{1}{4} \log 4 + \frac{3}{4} \log 4 - \frac{3}{4} \log 3\right)\right) + n$$

$$= c_2 n \log n - \left(c_2 \left(\log 4 - \frac{3}{4} \log 3\right) - 1\right) n$$
只需此部分≥ 0

• 令
$$\left(c_2\left(\log 4 - \frac{3}{4}\log 3\right) - 1\right)n \ge 0$$
,解得 $c_2 \ge \frac{1}{\log 4 - \frac{3}{4}\log 3} > 0$

•
$$T(n) = \begin{cases} T(n/4) + T(3n/4) + n, & n \geq 4 \\ 1, & n < 4 \end{cases}$$

- 猜测: $T(n) = \Theta(n \log n)$
 - 即证明 $\exists c_1, c_2, n_0 > 0$,使得 $\forall n > n_0, c_1 \cdot n \log n \leq T(n) \leq c_2 \cdot n \log n$
- 数学归纳法
 - n = 3时: 使 $c_1 \cdot 3 \log 3 \le 1 \le c_2 \cdot 3 \log 3$,需取 $0 < c_1 \le \frac{1}{3 \log 3}$, $c_2 \ge \frac{1}{3 \log 3}$
 - 小于n时: 假设命题成立
 - 等于n时: 代入可得

o
$$T(n) = T(n/4) + T(3n/4) + n \le c_2 \cdot \frac{n}{4} \cdot \log \frac{n}{4} + c_2 \cdot \frac{3n}{4} \cdot \log \frac{3n}{4} + n$$
o 若想 $T(n) \le c_2 \cdot n \log n$,需取 $c_2 \ge \frac{1}{\log 4 - \frac{3}{4} \log 3}$

o 若想
$$T(n) \leq c_2 \cdot n \log n$$
,需取 $c_2 \geq \frac{1}{\log 4 - \frac{3}{4} \log 3}$

•
$$T(n) = \begin{cases} T(n/4) + T(3n/4) + n, & n \geq 4 \\ 1, & n < 4 \end{cases}$$

- 猜测: $T(n) = \Theta(n \log n)$
 - 即证明 $\exists c_1, c_2, n_0 > 0$,使得 $\forall n > n_0, c_1 \cdot n \log n \leq T(n) \leq c_2 \cdot n \log n$
- 数学归纳法
 - n = 3时: 使 $c_1 \cdot 3 \log 3 \le 1 \le c_2 \cdot 3 \log 3$,需取 $0 < c_1 \le \frac{1}{3 \log 3}$ 。 $c_2 \ge \frac{1}{3 \log 3}$ 。
 - 小于*n*时:假设命题成立
 - \bigcirc 等于n时:代人可得

o
$$T(n) = T(n/4) + T(3n/4) + n \le c_2 \cdot \frac{n}{4}$$

o
$$T(n) = T(n/4) + T(3n/4) + n \le c_2 \cdot \frac{n}{4} \cdot \log \frac{1}{4} \cdot c_2 \cdot \frac{1}{4} \cdot \log \frac{1}{4} + n$$
o 若想 $T(n) \le c_2 \cdot n \log n$,需取 $c_2 \ge \frac{1}{\log 4 - \frac{3}{4} \log 3}$

两条件需同时满足

$$\frac{\log_4 \cdot c_2 \cdot \overline{4} \cdot \log_{\overline{4}} + n}{4}$$

•
$$T(n) = \begin{cases} T(n/4) + T(3n/4) + n, & n \geq 4 \\ 1, & n < 4 \end{cases}$$

- 猜测: $T(n) = \Theta(n \log n)$
 - 即证明 $\exists c_1, c_2, n_0 > 0$,使得 $\forall n > n_0, c_1 \cdot n \log n \leq T(n) \leq c_2 \cdot n \log n$
- 数学归纳法
 - n = 3时: 使 $c_1 \cdot 3 \log 3 \le 1 \le c_2 \cdot 3 \log 3$,需取 $0 < c_1 \le \frac{1}{3 \log 3}$, $c_2 \ge \frac{1}{3 \log 3}$
 - · 小于n时:假设命题成立
 - 等于n时: 代入可得

o
$$T(n) = T(n/4) + T(3n/4) + n \le c_2 \cdot \frac{n}{4} \cdot \log \frac{n}{4} + c_2 \cdot \frac{3n}{4} \cdot \log \frac{3n}{4} + n$$
o 若想 $T(n) \le c_2 \cdot n \log n$,需取 $c_2 \ge \frac{1}{\log 4 - \frac{3}{4} \log 3}$

- o $c_2 \ge \max\left\{\frac{1}{\log 4 \frac{3}{4} \log 3}, \frac{1}{3 \log 3}\right\}$

•
$$T(n) = \begin{cases} T(n/4) + T(3n/4) + n, & n \geq 4 \\ 1, & n < 4 \end{cases}$$

- 猜测: $T(n) = \Theta(n \log n)$
 - 即证明 $\exists c_1, c_2, n_0 > 0$,使得 $\forall n > n_0, c_1 \cdot n \log n \leq T(n) \leq c_2 \cdot n \log n$
- 数学归纳法
 - n = 3时: 使 $c_1 \cdot 3 \log 3 \le 1 \le c_2 \cdot 3 \log 3$,需取 $0 < c_1 \le \frac{1}{3 \log 3}$, $c_2 \ge \frac{1}{3 \log 3}$
 - 小于n时: 假设命题成立
 - 等于n时: 代入可得
 - $\quad \mathbf{取} c_2 \geq \max\left\{\frac{1}{\log 4 \frac{3}{4}\log 3}, \frac{1}{3\log 3}\right\}, \quad \mathbf{可得} T(n) \leq c_2 \cdot n \log n$

•
$$T(n) = \begin{cases} T(n/4) + T(3n/4) + n, & n \geq 4 \\ 1, & n < 4 \end{cases}$$

- 猜测: $T(n) = \Theta(n \log n)$
 - 即证明 $\exists c_1, c_2, n_0 > 0$,使得 $\forall n > n_0, c_1 \cdot n \log n \leq T(n) \leq c_2 \cdot n \log n$
- 数学归纳法
 - n = 3时: 使 $c_1 \cdot 3 \log 3 \le 1 \le c_2 \cdot 3 \log 3$,需取 $0 < c_1 \le \frac{1}{3 \log 3}$, $c_2 \ge \frac{1}{3 \log 3}$
 - 小于*n*时:假设命题成立
 - 等于n时: 代入可得
 - $\quad \mathbf{取} c_2 \geq \max\left\{\frac{1}{\log 4 \frac{3}{4}\log 3}, \frac{1}{3\log 3}\right\}, \quad \mathbf{可得} T(n) \leq c_2 \cdot n \log n$
 - o 取 $0 < c_1 \le \min\left\{\frac{1}{\log 4 \frac{3}{4}\log 3}, \frac{1}{3\log 3}\right\}$,可得 $T(n) \ge c_1 \cdot n\log n$

•
$$T(n) = \begin{cases} T(n/4) + T(3n/4) + n, & n \ge 4 \\ 1, & n < 4 \end{cases}$$

- 猜测: $T(n) = \Theta(n \log n)$
 - 即证明 $\exists c_1, c_2, n_0 > 0$,使得 $\forall n > n_0, c_1 \cdot n \log n \leq T(n) \leq c_2 \cdot n \log n$
- 数学归纳法
 - n = 3时: 使 $c_1 \cdot 3 \log 3 \le 1 \le c_2 \cdot 3 \log 3$,需取 $0 < c_1 \le \frac{1}{3 \log 3}$, $c_2 \ge \frac{1}{3 \log 3}$
 - 小于*n*时:假设命题成立
 - 等于n时: 代入可得

 - o 取 $0 < c_1 \le \min\left\{\frac{1}{\log 4 \frac{3}{4}\log 3}, \frac{1}{3\log 3}\right\}$,可得 $T(n) \ge c_1 \cdot n\log n$
 - 得证 $T(n) = \Theta(n \log n)$

•
$$T(n) = \begin{cases} T(n/4) + T(3n/4) + n, & n \geq 4 \\ 1, & n < 4 \end{cases}$$

- 猜测: $T(n) = \Theta(n \log n)$
 - 即证明 $\exists c_1, c_2, n_0 > 0$,使得 $\forall n > n_0, c_1 \cdot n \log n \leq T(n) \leq c_2 \cdot n \log n$
- 数学归纳法

•
$$n = 3$$
时: 使 $c_1 \cdot 3 \log 3 \le 1 \le c_2 \cdot 3 \log 3$,需取 $0 < c_1 \le \frac{1}{3 \log 3}$, $c_2 \ge \frac{1}{3 \log 3}$

- 小于n时:假设命题成立
- 等于*n*时: 代入可得

问题: 猜测解不易得时如何求解递归式?

o 取
$$0 < c_1 \le \min\left\{\frac{1}{\log 4 - \frac{3}{4}\log 3}, \frac{1}{3\log 3}\right\}$$
,可得 $T(n) \ge c_1 \cdot n\log n$

• 得证 $T(n) = \Theta(n \log n)$

递归树法

代人法

主定理法

• 对形即 $T(n) = aT\left(\frac{n}{b}\right) + f(n)$ 的递归式

常数*a* ≥ 1, *b* > 1

• 对形即 $T(n) = aT\left(\frac{n}{b}\right) + f(n)$ 的递归式

T(n)

• 对形即 $T(n) = aT\left(\frac{n}{b}\right) + f(n)$ 的递归式

对数技巧: $a^{\log_b n} = n^{\log_b a}$

• 主定理: 对形如 $T(n) = aT(\frac{n}{h}) + f(n)$ 的递归式

$$T(n) = egin{cases} \mathbf{\Theta}ig(f(n)ig) \ \mathbf{\Theta}ig(n^{\log_b a} \log nig) \ \mathbf{\Theta}ig(n^{\log_b a}ig) \end{cases}$$

$$T(n) = egin{cases} \Theta(f(n)) & if \ f(n) = \Omega(n^{\log_b a + \epsilon}) \ 0 \ (n^{\log_b a} \log n) & if \ f(n) = \Theta(n^{\log_b a}) \ 0 \ 0 \end{pmatrix} & if \ f(n) = \Theta(n^{\log_b a}) & 2 \end{pmatrix}$$

比较根节点代价f(n)与 叶节点代价之和 $n^{\log_b a}$

• 主定理: 对形如 $T(n) = aT\left(\frac{n}{b}\right) + f(n)$ 的递归式

$$T(n) = egin{cases} \Theta(f(n)) & if \ f(n) = \Omega(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a}) & if \ f(n) = \Theta(n^{\log_b a}) \ \Omega(n^{\log_b a}) & if \ f(n) = O(n^{\log_b a}) \ \Omega(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a$$

• 若存在常数 $\epsilon>0$ 使 $f(n)=\Omega(n^{\log_b a+\epsilon})$,且存在常数c<1和足够大的 n 使得 $af\left(\frac{n}{b}\right)\leq cf(n)$,则 $T(n)=\Theta(f(n))$

• 主定理: 对形如 $T(n) = aT\left(\frac{n}{b}\right) + f(n)$ 的递归式

$$T(n) = egin{cases} \Theta(f(n)) & if \ f(n) = \Omega(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a}) & if \ f(n) = \Theta(n^{\log_b a}) \ \Omega(n^{\log_b a}) & if \ f(n) = O(n^{\log_b a}) \ \Omega(n^{\log_b a}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) & if$$

• 若存在常数 $\epsilon > 0$ 使 $f(n) = \Omega(n^{\log_b a + \epsilon})$,且存在常数c < 1和足够大的 n 使得 $af\left(\frac{n}{b}\right) \le cf\left(\frac{f(n)}{f(n)}\right)$ 项式意义大于 $n^{\log_b a}$:

不止渐进大于且相差因子 n^{ϵ}

• 主定理: 对形如 $T(n) = aT\left(\frac{n}{b}\right) + f(n)$ 的递归式

• 若存在常数 $\epsilon > 0$ 使 $f(n) = \Omega(n^{\log_b a + \epsilon})$,且存在常数c < 1和足够大的 n

使得
$$af\left(\frac{n}{b}\right) \leq cf(n)$$
,则 $T(n) = \Theta(f(n))$

称为"正则"条件

• 主定理: 对形如 $T(n) = aT\left(\frac{n}{b}\right) + f(n)$ 的递归式

$$T(n) = \begin{cases} \Theta(f(n)) & \text{if } f(n) = \Omega(n^{\log_b a + \epsilon}) \text{ 1} \\ \Theta(n^{\log_b a} \log n) & \text{if } f(n) = \Theta(n^{\log_b a}) & \text{2} \\ \Theta(n^{\log_b a}) & \text{if } f(n) = O(n^{\log_b a - \epsilon}) \text{ 3} \end{cases}$$

• 若存在常数 $\epsilon > 0$ 使 $f(n) = \Omega(n^{\log_b a + \epsilon})$,且存在常数 $c \leq 1$ 和足够大的 n

使得 $af\left(\frac{n}{b}\right) \leq cf(n)$,则 $T(n) = \Theta(f(n))$

保证了根节点代价 大于下一层代价之和

• 主定理: 对形如 $T(n) = aT\left(\frac{n}{b}\right) + f(n)$ 的递归式

$$T(n) = egin{cases} \Theta(f(n)) & if \ f(n) = \Omega(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a}) & if \ f(n) = \Theta(n^{\log_b a}) \ \Omega(n^{\log_b a}) & if \ f(n) = O(n^{\log_b a}) \ \Omega(n^{\log_b a}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a + \epsilon}) & if \ f(n) = O(n^{\log_b$$

• 若存在常数 $\epsilon > 0$ 使 $f(n) = \Omega(n^{\log_b a + \epsilon})$,且存在常数c < 1和足够大的 n

使得 $af\left(\frac{n}{b}\right) \leq cf(n)$,则 $T(n) = \Theta(f(n))$

称为"正则"条件

保证了根节点代价 大于下一层代价之和

• 主定理: 对形如 $T(n) = aT\left(\frac{n}{b}\right) + f(n)$ 的递归式

$$T(n) = egin{cases} \Theta(f(n)) & if \ f(n) = \Omega(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a} \log n) & if \ f(n) = \Theta(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}$$

• 主定理: 对形如 $T(n) = aT\left(\frac{n}{b}\right) + f(n)$ 的递归式

$$T(n) = egin{cases} \Theta(f(n)) & if \ f(n) = \Omega(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a} \log n) & if \ f(n) = \Theta(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}$$

• 若存在常数 $\epsilon > 0$ 使 $f(n) = O(n^{\log_b a - \epsilon})$,则 $T(n) = O(n^{\log_b a})$

• 主定理: 对形如 $T(n) = aT\left(\frac{n}{b}\right) + f(n)$ 的递归式

$$T(n) = egin{cases} \Theta(f(n)) & if \ f(n) = \Omega(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a} \log n) & if \ f(n) = \Theta(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) &$$

• 若存在常数 $\epsilon > 0$ 使 $f(n) = O(n^{\log_b a - \epsilon})$,则 $T(n) = O(n^{\log_b a})$

 $\frac{f(n)}{\int s}$ 多项式意义小于 $\frac{n^{\log_b a}}{\int s}$ 不止渐进小于且相差因子 n^{ϵ}

• 主定理: 对形如 $T(n) = aT(\frac{n}{b}) + f(n)$ 的递归式

$$T(n) = egin{cases} \Theta & ext{当}f(n)$$
形式为 n^k 时,可简化主定理公式 $b^{a+\epsilon}$)① $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}$

• 主定理: 对形如 $T(n) = aT(\frac{n}{b}) + f(n)$ 的递归式

$$T(n) = egin{cases} \Theta(f(n)) & if \ f(n) = \Omega(n^{\log_b a + \epsilon}) \ \Omega(n^{\log_b a}) & if \ f(n) = \Theta(n^{\log_b a}) \ \Omega(n^{\log_b a}) & if \ f(n) = O(n^{\log_b a}) \ \Omega(n^{\log_b a}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) \ \Omega(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) & if \ f(n) = O(n^{\log_b a - \epsilon}) &$$

• 主定理(简化形式): 对形如 $T(n) = aT(\frac{n}{b}) + n^k$ 的递归式

$$T(n) = egin{cases} \Theta(n^k) & if \ k > \log_b a & 1 \\ \Theta(n^k \log n) & if \ k = \log_b a & 2 \\ \Theta(n^{\log_b a}) & if \ k < \log_b a & 3 \end{cases}$$

主定理法: 实例一

• 主定理(简化形式): 对形如 $T(n) = aT(\frac{n}{h}) + n^k$ 的递归式

$$T(n) = egin{cases} \Theta(n^k) & if \ k > \log_b a \ \Theta(n^k \log n) & if \ k = \log_b a \ \Theta(n^{\log_b a}) & if \ k < \log_b a \ 3 \end{cases}$$

if
$$k > \log_b a$$
 ①

if
$$k = \log_b a$$
 ②

if
$$k < \log_b a$$
 3

共
$$a$$
个分支 $f(n/b)$ … $f(n/b)$ 每层以因子 b 速度下降 证度下降 $f(n/b^2)$ … $f(n/b^2$

- 例一: $T(n) = 2T\left(\frac{n}{2}\right) + n$
 - k = 1
 - $a = 2, b = 2, \log_b a = 1$
 - $k = \log_b a$,属于情况②
 - $T(n) = \Theta(n^k \log n) = \Theta(n \log n)$

主定理法: 实例二

• 主定理(简化形式): 对形如 $T(n) = aT(\frac{n}{h}) + n^k$ 的递归式

$$T(n) = egin{cases} \mathbf{\Theta}(n^k) \ \mathbf{\Theta}(n^k \log n) \ \mathbf{\Theta}(n^{\log_b a}) \end{cases}$$

if
$$k > \log_b a$$
 ①

$$if k = \log_b a \quad ②$$

$$if k < \log_b a \quad ③$$

if
$$k < \log_b a$$
 3

其
$$a$$
个分支
$$f(n/b)$$
 … $f(n/b)$ 每层以因子 b 速度下降
$$f(n/b^2)$$
 … $f(n/b^2)$ …

- 例二: $T(n) = 5T\left(\frac{n}{2}\right) + n^3$
 - k = 3
 - $a = 5, b = 2, \log_b a = \log_2 5$
 - $k > \log_b a$,属于情况①
 - $T(n) = \Theta(n^k) = \Theta(n^3)$

主定理法: 实例三

 $f(n/b^2)$... $f(n/b^2)$... $f(n/b^2)$

 $T(n) = \Theta(n^{\log_b a}) + \sum_{i=1}^{\log_b n-1} \overline{a^i} f(\frac{\overline{n}}{\overline{n}i})$

• 主定理(简化形式): 对形如 $T(n) = aT(\frac{n}{h}) + n^k$ 的递归式

$$T(n) = egin{cases} \Theta(n^k) & if \ k > \log_b a & 1 \\ \Theta(n^k \log n) & if \ k = \log_b a & 2 \\ \Theta(n^{\log_b a}) & if \ k < \log_b a & 3 \end{cases}$$

if
$$k > \log_b a$$
 ①

if
$$k = \log_b a$$
 ②

if
$$k < \log_b a$$
 3

• 例三:
$$T(n) = 4T\left(\frac{n}{4}\right) + \sqrt{n}$$

- $k = \frac{1}{2}$
- a = 4, b = 4, $\log_b a = \log_4 4 = 1$
- $k < \log_b a$,属于情况③

•
$$T(n) = \Theta(n^{\log_b a}) = \Theta(n)$$

主定理法: 实例四

• 主定理: 对形如 $T(n) = aT(\frac{n}{h}) + f(n)$ 的递归式

$$T(n) = egin{cases} \Theta(f(n)) & if \ f(n) = \Omega(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a} \log n) & if \ f(n) = \Theta(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{$$

- 例四: $T(n) = 3T\left(\frac{n}{4}\right) + n \log n$
 - $\log_b a = \log_4 3 < 1$,则 $\exists \epsilon > 0$,使得 $\log_b a + \epsilon < 1$,故 $f(n) = \Omega(n^{\log_b a + \epsilon})$

•
$$\exists c = \frac{3}{4}$$
时, $af\left(\frac{n}{b}\right) = \frac{3n}{4}\log(\frac{n}{4}) < cf(n) = \frac{3}{4}n\log n$,属于情况①

• $T(n) = \Theta(f(n)) = \Theta(n \log n)$

(1)
$$T(n) = \Theta(f(n))$$

主定理法: 实例五

• 主定理: 对形如 $T(n) = aT(\frac{n}{b}) + f(n)$ 的递归式

$$T(n) = egin{cases} \Theta(f(n)) & if \ f(n) = \Omega(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a} \log n) & if \ f(n) = \Theta(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) & \mathbb{O}(n^{\log_b a + \epsilon}) \ \mathbb{O}(n^{\log_b a + \epsilon}) \$$

- 例五: $T(n) = 2T\left(\frac{n}{2}\right) + n\log n$
 - $\log_b a = \log_2 2 = 1, f(n) = \Omega(n^{\log_b a})$
 - 然而对 $\forall \epsilon > 0$, $\log n$ 渐进小于 n^{ϵ} , 故 $\exists \epsilon > 0$ 使 $f(n) = \Omega(n^{\log_b a + \epsilon})$
 - 该情况落人①和②之间,不能使用主定理

主定理法: 实例五

• 主定理: 对形如 $T(n) = aT(\frac{n}{b}) + f(n)$ 的递归式

$$T(n) = \begin{cases} \Theta(f(n)) & \text{if } f(n) = \Omega(n^{\log_b a + \epsilon}) \text{ } 1 \text{ } 1$$

- 例五: $T(n) = 2T\left(\frac{n}{2}\right) + n\log n$
 - $\log_b a = \log_2 2 = 1, f(n) = \Omega(n^{\log_b a})$
 - 然而对 $\forall \epsilon > 0$, $\log n$ 渐进小于 n^{ϵ} , 故 $\exists \epsilon > 0$ 使 $f(n) = \Omega(n^{\log_b a + \epsilon})$
 - 该情况落人①和②之间,不能使用主定理

上述主定理不适用 扩展形式主定理可解决

• 主定理(扩展形式): 对形如 $T(n) = aT(\frac{n}{b}) + f(n)$ 的递归式

$$T(n) = \begin{cases} \Theta(f(n)) & \text{if } f(n) = \Omega(n^{\log_b a + \epsilon}) \\ \Theta(n^{\log_b a} \log^{k+1} n) & \text{if } f(n) = \Theta(n^{\log_b a} \log^k n), k \ge 0 \\ \Theta(n^{\log_b a}) & \text{if } f(n) = O(n^{\log_b a - \epsilon}) \end{cases}$$

$$3$$

主定理法: 例五

• 主定理(扩展形式): 对形如 $T(n) = aT(\frac{n}{h}) + f(n)$ 的递归式

$$T(n) = \begin{cases} \Theta(f(n)) & \text{if } f(n) = \Omega(n^{\log_b a + \epsilon}) \\ \Theta(n^{\log_b a} \log^{k+1} n) & \text{if } f(n) = \Theta(n^{\log_b a} \log^k n), k \ge 0 \\ \Theta(n^{\log_b a}) & \text{if } f(n) = O(n^{\log_b a - \epsilon}) \end{cases}$$

$$3$$

- 例五: $T(n) = 2T\left(\frac{n}{2}\right) + n\log n$

 - $k = 1, f(n) = \Theta(n^{\log_b a} \log^k n)$,属于情况②
 - $T(n) = \Theta(n^{\log_b a} \log^{k+1} n) = \Theta(n \log^2 n)$

 $n^{\log_b a} \log^k n$, $k \geq 0$ $n^{\log_b a + \epsilon}$

• 主定理(扩展形式): 对形如 $T(n) = aT(\frac{n}{b}) + f(n)$ 的递归式

$$T(n) = \begin{cases} \Theta(f(n)) & \text{if } f(n) = \Omega(n^{\log_b a + \epsilon}) \\ \Theta(n^{\log_b a} \log^{k+1} n) & \text{if } f(n) = \Theta(n^{\log_b a} \log^k n), k \ge 0 \\ \Theta(n^{\log_b a}) & \text{if } f(n) = O(n^{\log_b a - \epsilon}) \end{cases}$$

• 情况②的三种扩展

$$T(n) = egin{cases} \Theta(n^{\log_b a} \log^{b} a \log^{k+1} n) & k > -1 \ \Theta(n^{\log_b a} \log \log n) & k = -1 \ \Theta(n^{\log_b a}) & k < -1 \end{cases}$$

小结

• 递归式分析方法比较

分析方法	优点	缺点
递归树法	直观形象	难以展开
代人法	适用广泛	难猜通解
主定理法	形式简洁	适用有限