#### Outline

# Lesson 16: Sort Wisely



Merge sort, quick sort and radix sort

BIOM2005 Further Mathematics and Algorithm

#### Merge Sort

- Merge sort is an example of sort performed in log-linear (i.e.  $O(n\log(n))$ ) time complexity!
- It was invented in 1945 by John von Neumann
- It is an example of a divide-and-conquer strategy
  - ⋆ That is, the problem is divided into a number of parts recursively
  - ★ The full solution is obtained by recombining the parts

1. Merge Sort

- 2. Quick Sort
- 3. Radix Sort



005 Further Mathematics and A

#### Algorithm



3

#### Merge

Further Mathematics and Algorithms

```
MERGE (\boldsymbol{b}[1:p], \boldsymbol{c}[1:q], \boldsymbol{a}[1:p+q])
  i←1
  j←1
  \text{ while } i \leq p \quad \text{and } j \leq q \quad \text{do} \quad
    if b_i \leq c_j
      a_k \leftarrow b_i
                                                  6 10 12 22 59 91
                                                                                9 10 20 21 92 99
       i ←i+1
    else
      a_k \leftarrow c_j
                                                  6 9 10 10 12 20 21 22 59 91 92 99
    endif
     k ←k+1
  end
  if i=p
     copy {m c}[j:q] to {m a}[k:p+q]
  else
     copy oldsymbol{c}[i:q] to oldsymbol{a}[k:p+q]
```

BIOM200

Further Mathematics and Algorithms

#### **Properties of Merge Sort**

- Merge sort is stable provided we merge carefully (i.e. it preserves the order of two entries with the same value)
- Merge sort isn't in-place $\blacksquare$ —we need an array of at most size n to do the merging $\blacksquare$
- Merging is quick. Given two arrays of size n the most number of comparisons we need to perform is n-1

12005 Further Math

#### Time Complexity of Merge Sort

Further Mathematics and Algorithms



BIOM200

#### Time Complexity of Merge Sort



05 Further Mathematics and Algorithms

BIOI

Further Mathematics and Algorithms

# **Time Complexity**

- We again measure the complexity in the number of comparisons
- From the above argument  $C(n) = O(n \times \log_2(n))$
- We can be a bit more formal

$$C(n) = 2C(\lfloor n/2 \rfloor) + C_{\mathsf{merge}}(n) \qquad \text{for } n > 1$$

$$C(0) = 1$$

- But in the worst case  $C_{merge}(n) = n 1$
- $\bullet$  Leads to  $C_{\mbox{Worst}}(n) = n \log_2(n) n + 1$

BIOM2005 Further Mathematics and Algorithms

#### Mixing Sort

• For very short sequences it is faster to use insertion sort than to pay the overhead of function calls



BIOM2005 Further Mathematics and Algorithms 11

#### Quicksort

- The most commonly used fast sorting algorithm is quicksort
- It was invented by the British computer scientist by C. A. R. Hoare in 1962
- It again uses the divide-and-conquer strategy
- It can be performed in-place, but it is not stable
- It works by splitting an array into two depending on whether the elements are less than or greater than a pivot value!
- This is done recursively until the full array is sorted

BIOM2005 Further Mathematics and Algorithms

#### **Optimising Partitioning**

- There are different ways of performing the partitioning
- We want to minimise the time taken on the inner loop
- This means we want to perform as few checks as possible!
- One method of doing this is to place sentinels at the ends of the array!
- We can also reduce work by placing the partition in its correct position

all elements <= p | p | all elements >= p

### **General Time Complexity**

• In general if we have a recursion formula

$$T(n) = aT(n/b) + f(n)$$

with  $a \ge 1$ , b > 1

• If  $f(n) \in \Theta(n^d)$  where  $d \ge 0$  then

$$T(n) \in \left\{ \begin{array}{ll} \Theta\left(n^d\right) & \text{if } a < b^d \\ \Theta\left(n^d\log(n)\right) & \text{if } a = b^d \\ \Theta\left(n^{\log_d(a)}\right) & \text{if } a > b^d \end{array} \right.$$

ullet Analogous results hold for the family O and  $\Omega {
m I}$ 

#### **Outline**

- 1. Merge Sort
- 2. Quick Sort
- 3. Radix Sort



OM2005 Further Mathematics and Algorithms

#### **Partition**

all elements = p

ullet We need to partition the array around the pivot p such that

```
Partition (a, p, left, right) { 
    i \leftarrow left  
    j \leftarrow right  
    repeat { 
        while a_i < p  
        i++ 
        while a_j \ge p  
        j-- 
        if i \ge j  
        break  
        SWAP (a_i, a_j) } } 
}
```

#### **Choosing the Pivot**

- There are different strategies to choosing the pivot
- $\bullet$  Choose the first element in the array
- Choose the median of the first, middle and last element of the array!
- This increases the likelihood of the pivot being close to the median of the whole array!
- For large arrays (above 40) the median of 3 medians is often used

Further Mathematics and Algorithms 15 BIOM2005 Further Mathematics and Algorithms

### Quicksort

We recursively partition the array until each partition is small enough to sort using insertion sort.

## QuickSort

quickSort(a, 08,299){{{ 0 if(**E900833**]{{ p = choosePivot(a, 48.299) i = partition(a, 16,004]) quickSort(a, 48,881)) quickSort(a, \$31,209) 161 142 248 8 6 } else 101 19 840 insertionSort(a, 08,E29) 0 19 73 18 h 9 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Б <mark>25 | 29 | 34 | 34 | 36 | 48 |</mark> 52 | 61 | 66 | 67 <mark>| 73 |</mark> 76 | 87 | 87 |

#### Selection

Further Mathematics and Algorithms

- A related problem to sorting is selection
- ullet That is we want to select the  $k^{th}$  largest element
- We could do this by first sorting the arrayl
- A full sort is not however necessary
   —we can use a modified quicksort where we only continue to sort the part of the array we are interested in
- This leads to a  $\Theta(n\log(n))$  algorithm which is considerably faster then sorting

BIOM2005 Further Mathematics and Algorithms

#### Radix Sort

- Can we get a sort algorithm to run faster than  $O(n \log(n))$ ?
- Our proof that this was optimal assumed we were performing binary decisions (is a<sub>i</sub> less than a<sub>i</sub>?)
- If we don't perform pairwise comparisons then the proof doesn't apply!
- Radix sort is the classic example of a sort algorithm that doesn't use pairwise comparisons

#### **Time Complexity**

- Partitioning an array of size n takes  $\Theta(n)$  operations
- If we split the array in half then number of partitions we need to do is  $\lceil \log_2(n) \rceil$
- This is the best case thus quicksort is  $\Omega\left(n\log(n)\right)$
- $\bullet$  If the pivot is the minimum element of the array then we have to partition n-1 times!
- This is the worst case so quicksort is  $O\left(n^2\right)$
- This worst case will happen if the array is already sorted and we choose the pivot to be the first element in the array!

2005 Further Mathematics and Algorithms

#### Sort in Practice

- The STL in C++ offers three sorts
  - ★ sort() implemented using quicksort
- ★ stable\_sort() implemented using mergesort
- \* partial\_sort() implemented using heapsort
- Java uses
  - ★ Quicksort to sort arrays of primitive types
- ★ Mergesort to sort Collections of objects
- Quicksort is typically fastest but has worst case quadratic time complexity!

DM2005 Further Mathematics and Algorithms

**Outline** 

- 1. Merge Sort
- 2. Quick Sort
- 3. Radix Sort



BIOM2005 Further Mathematics and Algorithms

#### Sorting Into Buckets

- The idea behind radix sort is to sort the elements of an array into some number of buckets
- $\bullet$  This is done successively until the whole array is sorted  $\blacksquare$
- Consider sorting integers in decimals (base 10 or radix 10)
- We can successively sort on the digits
- The sort finishes when we have got through all the digits

OM2005 Further Mathematics and Algorithms 23 BIOM2005 Further Mathematics and Algorithms 24

#### 11 0 null 13 1 null 26 2 null 29 3 null 37 43 4 null5 null 51 51 6 null null

Radix Sort in Action

ullet We need not use base 10 we could use base r (the radix)

ullet If the maximum number to be sorted is N then the number of

Time Complexity of Radix Sort

ullet Each sort involves n operations

iterations of radix sort is  $\log_r(N)$ 

• Thus the total number of operations is  $O\left(n\lceil \log_r(N)\rceil\right)$ 

 $\bullet$  Since N does not depend on n we can write this as  $O\left(n\right)$ 

IOM2005 Further Mathematics and Algorithms 25

OM2005 Further Mathematics and Algorithms

#### **Bucket Sort**

# Minimum Time for Sort

- A closely related sort is bucket sort where we divide up the inputs into buckets based on the most significant figure.
- We then sort the buckets on less significant figures

52

79

8 null

null

- Quicksort is a bucket sort with two buckets, but where we choose a pivot to determine which bucket to use
- Can we do better?
- In any sort we need to examine all possible elements in the arrayl
- If there is an element that isn't examined then we don't know where to put it
- $\bullet$  Thus the lower bound on any sort algorithm is  $\Omega(n) {\hspace{-0.1em}\blacksquare}$

BIOM2005 Further Mathematics and Algorithms

#### **Practical Sort**

• In practice, radix sort or bucket sort are rarely used

- The overhead of maintaining the buckets make them less efficient than they might appear!
- Radix sort is harder to generalise to other data types than comparison based sorts
- In practice quick sort and merge sort are usually preferred
- Having said that there are some very neat implementations of radix sort

Further Mathematics and Algorithms 29



Further Mathematics and Algorithms

BIOM2005 Further Mathematics and Algorithms

#### Lessons

- Sort is important—it is one of the commonest high level operations
- Merge sort and quick sort are the most commonly used sort
- There are sorts that have a better time complexity that quicksort
- In practice it is difficult to beat quicksort

BIOM2005

BIOM2005

Further Mathematics and Algorithms