Data Mining

DECISION TREE

Prof. Dr. Hikmat Ullah Khan Department of Information Technology

UNIVERSITY OF SARGODHA, SARGODHA

Lesson from Holy Quran

Agenda

- Decision Tree
 - Introduction
 - Applying model
 - Properties
 - Attribute Selection
 - Information Gain
 - Entropy
 - Gini
 - Classification Error
 - Advantages/Dis-advantage

Data to Decision Tree

- Training data set: Buys_computer
- Resulting tree:

			1	
age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Example of a Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Model: Decision Tree

Decision Tree Classification Task

Test Set

Large

67K

?

No

DEDUCTION

generalization

All birds fly.

specific

bird.

The cardinal is a

INDUCTION

specific

The cardinal is a bird that flies.

specific

The robin is a bird that flies.

The cardinal is a bird that flies.

conclusion.

Start from the root of tree.

Test Data

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Properties of Decision Tree

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a
 - top-down
 - recursive
 - divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical
 - (continuous are discretized in advance)
 - Test attributes are selected on the basis on statistical measure (e.g., information gain)

Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - □ ID3, C4.5, C5.0
 - □ SLIQ,SPRINT

General Structure

- Let D_t be the set of training records that reach a node t
- General Procedure:
 - If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
 - If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets.
 Recursively apply the procedure to each subset.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tree Induction

- Greedy strategy.
 - □ Split the records based on an attribute test that optimizes certain criterion.

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Tree Induction

- Greedy strategy.
 - □ Split the records based on an attribute test that optimizes certain criterion.

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to Specify Test Condition?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous

- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

Tree Induction

- Greedy strategy.
 - □ Split the records based on an attribute test that optimizes certain criterion.

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Brief Review of Entropy

- Entropy is the measure of uncertainty associated with a random measure
 - High entropy -> high uncertainty
 - Low entropy -> low uncertainty
- It is also known as measure of dispersion

$$Entropy(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

□ Information needed (after using A to split D into v partitions) to classify D: $\nabla D_i = D_i$

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Examples for computing Entropy

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy = -	- 0 log 0 –	1 log 1	= -0 -	0 =	= 0
		J			

C1	0
C2	6

C1	1
C2	5

C1	2
C2	4

Examples for computing Entropy

$$Entropy(t) = -\sum_{j} p(j | t) \log_{2} p(j | t)$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Gini =
$$1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (5/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

C1	0
C2	6

C1	1
C2	5

C1	2
C2	4

Attribute Selection: Information Gain

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no no
<=30	high	no	excellent	no no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Attribute Selection: Information Gain

Class P: buys_computer = "yes"

Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Attribute Selection: Information Gain

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

$$Info_{age}(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

 $\frac{5}{14}I(2,3)$ means "age <=30" has 5 out of 14 samples, with 2 yes'es and 3 no's. Hence

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3140	4	0	0
>40	3	2	0.971

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Gini Index (CART, IBM IntelligentMiner)

□ If a data set D contains examples from n classes, gini index, gini(D) is defined as $gini(D) = 1 - \sum_{j=1}^{n} p_{j}^{2}$

where p_j is the relative frequency of class j in D

$$gini_A(D) = \frac{|D_1|}{|D|} gini(D_1) + \frac{|D_2|}{|D|} gini(D_2)$$

$$\Delta gini(A) = gini(D) - gini_A(D)$$

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

Gini =
$$1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$$

C1	1
C2	5

C1	2
C2	4

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
 $Gini = 1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
 $Gini = 1 - (2/6)^2 - (4/6)^2 = 0.444$

Third measure of Classification Error

$$\begin{aligned} \text{Entropy}(t) &= & -\sum_{i=0}^{c-1} p(i|t) \log_2 p(i|t), \\ \text{Gini}(t) &= & 1 - \sum_{i=0}^{c-1} [p(i|t)]^2, \\ \text{Classification error}(t) &= & 1 - \max_i [p(i|t)], \end{aligned}$$

Three in One

Node N_1	Count
Class=0	0
Class=1	6

Gini =
$$1 - (0/6)^2 - (6/6)^2 = 0$$

Entropy = $-(0/6) \log_2(0/6) - (6/6) \log_2(6/6) = 0$
Error = $1 - \max[0/6, 6/6] = 0$

Node N_2	Count
Class=0	1
Class=1	5

Gini =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

Entropy = $-(1/6) \log_2(1/6) - (5/6) \log_2(5/6) = 0.650$
Error = $1 - \max[1/6, 5/6] = 0.167$

Node N_3	Count
Class=0	3
Class=1	3

Gini =
$$1 - (3/6)^2 - (3/6)^2 = 0.5$$

Entropy = $-(3/6) \log_2(3/6) - (3/6) \log_2(3/6) = 1$
Error = $1 - \max[3/6, 3/6] = 0.5$

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Stopping Criteria for Tree Induction

Stop expanding a node when all the records belong to the same class

Decision Tree Based Classification

Advantages:

- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets
- Disadvantages
 - Not scalable (add one attribute, all tree needed to be computed again)
 - Not good accuracy for large dataset
 - Not robust (less handling of large attributes)

WEKA complete Book

WEKA provides Wiki for all the concepts of Machine Learning and data mining

https://www.cs.waikato.ac.nz/ml/weka/book.html

 WEKA examples for Decision Tree has been uploaded as reading material

Examples

- □ Search "Data Mining Lecture -- Decision Tree | Solved Example (Eng-Hindi)"
- □ URL:
 - https://www.youtube.com/watch?v=cKl7WV EKDU

You All should solve the complete example of Weather data

30 min video

2 hour solution

DT Classification Task (optional)

Test Set

Every one can has DT in his mind for every task

The leader of a company needs to have a decision tree in his head - if this happens, we go this way, but if it winds up like that, then we go this other way.

— Sean Parker —

AZ QUOTES