Operateur élémentaire d'addition/sonstraction Leviller Vimothee Chretier Paul François Axel Shurck Alexandre 1. Cahier des charges - Le schéma bloc ci-dessons fait le botan des signais d'entrées et de sortie de l'opérateur élémentaire réalisé. HBO Bi OP ADDITIONULEUR/ SOLDTRACTEUR Pi-1: La setence de l'opérateur de rang i-s A: et B: Les nombres binaires des deux nombres adhionnés on soustner's OP: choix de l'apération effectuée (6: addition Ri: Retenue de l'opération Ti : Résultat de l'opération efectuée

2.1. Opérateur élémentaire d'addition. 2.1.1. Table de vérité

Ai	Bi	R _{i-1}	Ri	s _i
0	0	0	0	0
1	0	0	0	1
0	1	0	0	1
0	0	1	0	1
1	1	0	1	0
1	0	1	1	0
0	1	1	1	0
1	1	1	1	1

2.1.2 Terme de somme Si

Si = A. B. Ri + A. B. Ri - + A. B. R- + A. B. R.

Démonstration de Si= AiDBiDRi-

Si = Ai.Bi.Rin + Ai.Bi.Rin + Ai.Bi.Rin + Ai.Bi.Rin

Rin (ABi+ABi) + Rin (ABi+ABi)

= Ri-1 (Ai & Bil + Ri-1 (Ai & Bi)

= Ri-7 O Ai O Bi

On a dove 5; A: & BA @ Range

2.1.3 Come de retenue R

 $R_{\lambda} = A_{\lambda} B_{\lambda}^{2} + B_{\lambda} R_{\lambda-1} + A_{\lambda}^{2} R_{\lambda-1}^{2}$ $= A_{\lambda} R_{\lambda}^{2} + R_{\lambda-1} (A_{\lambda} + B_{\lambda}^{2})$

OP	R _i	T_i (S_i ou D_i)
0 (ADD)	$A_iB_i + R_{i-1}(A_i \oplus B_i)$	$A_i \oplus B_i \oplus R_{i-1}$
1 (SOUS)	$\overline{A_i}B_i + R_{i-1}(\overline{A_i \oplus B_i})$	$A_i \oplus B_i \oplus R_{i-1}$

$$R_{i} = \overline{OP} \left(A_{i} B_{i} + R_{i-1} \left(A_{i} \otimes B_{i} \right) \right) + OP \left(\overline{A}_{i} B_{i} + R_{i-1} \left(\overline{A}_{i} \otimes \overline{B}_{i} \right) \right)$$

$$= \overline{OP} A_{i} B_{i} + \overline{OP} R_{i-1} \left(\overline{A}_{i} \otimes B_{i} \right) + OP \overline{A}_{i} B_{i} + OP R_{i-1} \left(\overline{A}_{i} \otimes B_{i} \right)$$

$$= B_{i} \left(\overline{OP} A_{i} + OP \overline{A}_{i} \right) + R_{i-1} \left(\overline{OP} \left(A_{i} \otimes B_{i} \right) + OP \left(\overline{A}_{i} \otimes B_{i} \right) \right)$$

$$= B_{n} \left(\overline{OP} \otimes A_{i} \right) + R_{i-1} \left(\overline{OP} \otimes A_{i} \otimes B_{i} \right)$$

$$= B_{n} \left(\overline{OP} \otimes A_{n} \right) + R_{i-1} \left(\overline{OP} \otimes A_{i} \otimes B_{i} \right)$$

$$= R_{i} = B_{n} \left(\overline{OP} \otimes A_{n} \right) + R_{i-1} \left(\overline{OP} \otimes A_{i} \otimes B_{i} \right)$$

4. Document à rendre

En effectuant des recherches sur des circuits permettant de réaliser la fonction additions, nous avons trouvé 3 composants principaux permettant d'effectuer cette opération :

- 74LS83
- 74HC283
- HD74HC83

Voici leurs schéma respectifs :

• 74LS83

• 74HC283

HD74HC83

On constate tout d'abord qu'il s'agit d'additionneur 4 bits, à l'opposé de l'additionneur 1 bit du travail dirigé. Les 3 circuits utilisent le même principes de sommation que nous en prenant en compte les retenues. Cependant, comme il s'agit d'un sommateur 4 bits, les calculs des termes de retenues et de sommes sont très différents d'où les différences de circuits entre ceux trouver pour le 3 et ceux des circuits ci-dessus.

Sources:

https://pdf1.alldatasheet.fr/datasheet-pdf/view/51091/FAIRCHILD/74LS83.html

https://pdf1.alldatasheet.fr/datasheet-pdf/view/15580/PHILIPS/74HC283.html

https://pdf1.alldatasheet.fr/datasheet-pdf/view/63937/HITACHI/HD74HC83.html