TEMA 6: PROGRAMACIÓN DE ENTRADA/SALIDA

Objetivo: El alumno explicará los conceptos utilizados para la programación de entrada y salida.

DISPOSITIVOS ENTRADA/SALIDA

DISPOSITIVOS ENTRADA/SALIDA

Dispositivos

Entrada

- Teclado
- Mouse
- Touchpad
- Scanner
- Unidad de disco

Salida

- Monitor
- Impresora
- Memorias

DISPOSITIVOS ENTRADA/SALIDA

Puertos

- Ethernet
- Video: VGA HDMI Display Port DVI
- Audio: IN OUT MIC
- USB
- IDE SATA
- PCI PCle
- PS/2
- DB9 (Serial port)
- DB25 (Parallel port)

Se utilizan 2 formas de realizar operaciones entre periféricos y CPU:

- E/S mapeado por memoria
- E/S mapeado por puerto

E/S mapeado por memoria

- Utiliza el mismo espacio para direcciones de memoria y periféricos. La memoria y los periféricos están mapeados a valores de dirección, así que una dirección accedida por el CPU puede hacer referencia a una localidad de memoria RAM o a la memoria de un dispositivo E/S.
- Las áreas de memoria utilizadas por los periféricos deben estar reservadas.

E/S mapeado por puerto

 Utiliza instrucciones especiales del CPU diseñadas para realizar operaciones de E/S. Estas instrucciones son IN y OUT.

PUERTOS

- En una computadora, un puerto de Entrada/Salida (E/S) utiliza una dirección de memoria para transferir datos. A este procedimiento de comunicación con periféricos se le denomina direccionamiento de E/S.
- Una dirección de E/S hace referencia a un espacio de memoria separado en los periféricos, similar a periféricos mapeados por memoria que utilizan bloques de memoria.
- Los periféricos utilizan dos métodos: una dirección de E/S para pasar señales de control y dirección, y memoria para transferencia de datos.

PUERTOS

- Existe un espacio de direcciones de 64 KB para direccionamiento de E/S, aunque comúnmente sólo se utiliza menos de 1 KB.
- Cada dispositivo que utiliza una dirección de E/S contiene pocos bytes de memoria colocados en un rango de direcciones predeterminados.
- Los espacios de E/S son números de pequeños bancos de memoria dispersos entre diferentes dispositivos.
- Si cada dispositivo está colocado en una dirección diferente, el CPU puede transmitir señales al dispositivo apropiado sin conflictos

 Si un programa necesita enviar un byte a algún puerto, emite una instrucción OUT al CPU con la dirección del puerto. El CPU notifica al bus de control activar el espacio de E/S, y el bus de direcciones envía la señal de la localidad apropiada del dispositivo. Entonces el CPU envía los datos sobe el bus de datos a ese puerto.

Puerto serie

Puerto paralelo

-	COMI	3F8h	- LPTI	378h
-	COM2	2F8h	- LPT2	278h
-	COM3	2E8h	- LPT3	3BCh
_	COM4	2E0h		

Instrucciones IN y OUT

- IN Lectura de dispositivos E/S
- OUT Escritura de dispositivos E/S

INSTRUCCIÓN IN

Función

• Lee en AL o AX un dato de 8 o 16 bits, respectivamente, de la dirección del puerto especificado.

Sintaxis

Ejemplos:

in al, 60h ;lee de teclado y guarda dato de ;8 bitsen AL

mov dx, 03F8h ;dirección de puerto serie en DX in ax, dx ;lee de puerto direccionado por DX ;y guarda dato de 16 bits en AX

Banderas afectadas:

Ninguna

INSTRUCCIÓN OUT

Función

 Escribe un dato de AL (8 bits) o AX (16 bits) en la dirección del puerto especificado en el destino.

Sintaxis

out destino, origen
{imm8/DX} {AL,AX}

Registro
origen.

Ejemplo:

mov dx,03F8h ;dirección de puerto serie en DX out dx, ax ;escribe el contenido de AX en el puerto ;direccionado por DX

Dirección del puerto:

Puede ser un valor inmediato (constante) de 8 bits o el registro DX de 16 bits.

Banderas afectadas:

Ninguna

INTERRUPCIONES

- Una interrupción es una operación que suspende la ejecución de un programa de manera que el sistema pueda realizar una acción especial.
- Cuando se presenta una interrupción, el sistema suspende la ejecución de un programa y atiende la interrupción mediante una rutina o procedimiento de interrupción. Esta rutina se ejecuta y, por lo regular, regresa el control del procesamiento al programa que fue interrumpido, el cual continúa su ejecución.
- El BIOS maneja las interrupciones 00h 1Fh, y DOS 20h 3Fh.

INTERRUPCIONES

- Interrupciones externas: son provocadas por dispositivos externos al microprocesador.
- Interrupciones internas: ocurren como resultado de la ejecución de una instrucción de interrupción INT, o una operación de división que cause desbordamiento, ejecución en modo de paso a paso (debugger) o una petición para una operación externa como E/S de disco.

VECTORES DE INTERRUPCIÓN

- Los vectores de interrupción y la tabla de vectores son elementos imprescindibles para comprender interrupciones.
- La tabla de vectores de interrupción se encuentra en los primeros 1024 bytes de memoria, en las direcciones 00000000h 000003FFh.
- Esta tabla contiene 256 vectores de interrupción, de 4 bytes distintos.
- Un vector de interrupción contiene la dirección (segmento y desplazamiento) del procedimiento de servicio de interrupciones.

- Es una técnica que permite que un dispositivo de E/S tenga acceso a la memoria principal del sistema mientras el microprocesador está temporalmente deshabilitado.
- Esto permite transferencia directa de datos entre memoria y el dispositivo E/S, aunque a una velocidad limitada por la memoria o el dispositivo de E/S.

Lo que sabíamos hasta el momento...

Se introduce un Controlador de DMA

- El controlador de DMA proporciona señales e información de direcciones a la memoria y a los dispositivos E/S durante la transferencia DMA.
- El DMAC funciona como un microprocesador de propósito específico.

Se deshabilitan los buses desde el CPU y el control lo tiene el DMAC

Problemas de memoria caché

Dado que la memoria caché se encuentra en el CPU, se debe tener especial cuidado al manejar cambios de memoria usando DMA. Si el CPU accede a una localidad de memoria afectada por DMA, es necesario que se refresque la caché después de realizar DMA.

DMA – ACCESO DIRECTO A MEMORIA PROBLEMAS EN MEMORIA CACHÉ

DMA – ACCESO DIRECTO A MEMORIA PROBLEMAS EN MEMORIA CACHÉ

- La memoria caché almacena una localidad de memoria y su contenido para un acceso más rápido.
- Si una localidad de memoria del sistema se modificó por DMA, el CPU no está enterado de ese cambio.
- Es posible que la memoria caché contenga información obsoleta.
- Se debe actualizar la información de las localidades de memoria de la caché, este proceso puede ser tardado.