FCC RF Test Report

APPLICANT : HMD Global Oy EQUIPMENT : Mobile Phone

BRAND NAME : Nokia

MODEL NAME : TA-1178

FCC ID : 2AJOTTA-1178

STANDARD : FCC Part 15 Subpart E §15.407

CLASSIFICATION : (NII) Unlicensed National Information Infrastructure

The product was received on May 27, 2019 and testing was completed on Jun. 21, 2019. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

Reviewed by: Jason Jia / Supervisor

JasonJia

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc.

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

Sporton International (Kunshan) Inc. TEL: +86-512-57900158

FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : 1 of 31
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	MMAR	Y OF TEST RESULT	4
1	GENE	RAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Product Feature of Equipment Under Test	
	1.3	Product Specification of Equipment Under Test	6
	1.4	Modification of EUT	7
	1.5	Testing Location	7
	1.6	Applicable Standards	
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	
	2.1	Carrier Frequency and Channel	8
	2.2	Test Mode	
	2.3	Connection Diagram of Test System	
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	
	2.6	Measurement Results Explanation Example	
3	TEST	RESULT	
	3.1	26dB & 99% Occupied Bandwidth Measurement	
	3.2	Maximum Conducted Output Power Measurement	
	3.3	Power Spectral Density Measurement	
	3.4	Unwanted Emissions Measurement	
	3.5	AC Conducted Emission Measurement	
	3.6	Automatically Discontinue Transmission	
	3.7	Antenna Requirements	
		OF MEASURING EQUIPMENT	
5		RTAINTY OF EVALUATION	31
ΑP	PEND	X A. CONDUCTED TEST RESULTS	
ΑP	PENDI	X B. AC CONDUCTED EMISSION TEST RESULT	
ΑP	PENDI	X C. RADIATED SPURIOUS EMISSION	
ΑP	PENDI	X D. DUTY CYCLE PLOTS	
ΑP	PENDI	X E. SETUP PHOTOGRAPHS	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR952704E	Rev. 01	Initial issue of report	Jul. 25, 2019

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : 3 of 31
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	2.1049 & 15.403(i)	26dB & 99% Bandwidth	-	Pass	-
3.2	15.407(a)	Maximum Conducted Output Power	≤ 24 dBm	Pass	-
3.3	15.407(a)	Power Spectral Density	≤ 11 dBm	Pass	-
3.4	15.407(b)	Unwanted Emissions	15.407(b) & 15.209(a)	Pass	Under limit 3.03 dB at 5350.300 MHz
3.5	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 8.84 dB at 0.156 MHz
3.6	15.407(c)	Automatically Discontinue Transmission	Discontinue Transmission	Pass	-
3.7	15.203 & 15.407(a)	Antenna Requirement	N/A	Pass	-

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : 4 of 31
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

1 General Description

1.1 Applicant

HMD Global Oy

Bertel Jungin aukio 9,02600 ESPOO. FINLAND

1.2 Product Feature of Equipment Under Test

F	Product Feature
Equipment	Mobile Phone
Brand Name	Nokia
Model Name	TA-1178
FCC ID	2AJOTTA-1178
	GSM/GPRS/EGPRS/WCDMA/HSPA/DC-HSDPA/
	HSPA+ (16QAM uplink is not supported)/LTE/NFC
	WLAN 2.4GHz 802.11b/g/n HT20
EUT supports Radios application	WLAN 5GHz 802.11a/n HT20/HT40
	WLAN 5GHz 802.11ac VHT20/VHT40/VHT80
	Bluetooth BR/EDR/LE
	FM Receiver/GNSS
	Conducted: N/A
IMEI Code	Conduction: 352924100008551
	Radiation: 352924100006340
HW Version	LLDM690B
SW Version	LLDB701
EUT Stage	Identical Prototype

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

Sporton International (Kunshan) Inc.
TEL: +86-512-57900158

FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : 5 of 31

Report Issued Date : Jul. 25, 2019

Report Version : Rev. 01

Report Template No.: BU5-FR15EWL AC MA Version 2.0

1.3 Product Specification of Equipment Under Test

Otom double related Developed Constitution			
Standards-related Product Specification			
Tu/Du Fue autonous Benera	5180 MHz ~ 5240 MHz		
Tx/Rx Frequency Range	5260 MHz ~ 5320 MHz		
	5500 MHz ~ 5700 MHz		
	<5180 MHz ~ 5240 MHz>		
	802.11a : 16.66 dBm / 0.0463 W		
	802.11n HT20 : 16.42 dBm / 0.0439 W		
	802.11n HT40 : 16.27 dBm / 0.0424 W 802.11ac VHT20 : 16.43 dBm / 0.0440 W		
	802.11ac VHT40 : 16.80 dBm / 0.0479 W		
	802.11ac VHT80 : 16.80 dBiii / 6.0479 W		
	602.11aC VH160 : 14.53 dBill / 0.0284 W <5260 MHz ~ 5320 MHz>		
	802.11a : 16.73 dBm / 0.0471 W		
	802.11n HT20 : 16.57 dBm / 0.0454 W		
Maximum Output Power to Antenna	802.11n HT40 : 16.55 dBm / 0.0452 W		
maximum output i outor to raitonna	802.11ac VHT20 : 16.72 dBm / 0.0470 W		
	802.11ac VHT40: 17.05 dBm / 0.0507 W		
	802.11ac VHT80 : 9.34 dBm / 0.0086 W		
	<5500 MHz ~ 5700 MHz >		
	802.11a : 16.60 dBm / 0.0457 W		
	802.11n HT20: 16.37 dBm / 0.0434 W		
	802.11n HT40: 15.76 dBm / 0.0377 W		
	802.11ac VHT20 : 16.39 dBm / 0.0436 W		
	802.11ac VHT40 : 16.29 dBm / 0.0426 W		
	802.11ac VHT80 : 15.68 dBm / 0.0370 W		
	<5180 MHz ~ 5240 MHz>		
	802.11a : 17.58 MHz		
	802.11ac VHT20 : 18.68 MHz		
	802.11ac VHT40 : 36.46 MHz		
	802.11ac VHT80 : 75.64 MHz		
	<5260 MHz ~ 5320 MHz>		
	802.11a : 17.58 MHz		
99% Occupied Bandwidth	802.11ac VHT20 : 18.78 MHz		
	802.11ac VHT40 : 36.46 MHz		
	802.11ac VHT80 : 75.76 MHz		
	<5500 MHz ~ 5700 MHz >		
	802.11a : 17.63 MHz		
	802.11ac VHT20 : 18.83 MHz 802.11ac VHT40 : 36.66 MHz		
	802.11ac VHT80 : 75.88 MHz		
	<5180 MHz ~ 5240 MHz>		
	IFA Antenna with gain -1.00 dBi		
	<5260 MHz ~ 5320 MHz>		
Antenna Type / Gain			
	IFA Antenna with gain -1.00 dBi		
	<5500 MHz ~ 5700 MHz >		
	IFA Antenna with gain -1.00 dBi		
	802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)		
Type of Modulation	802.11ac : OFDM (BPSK / QPSK / 16QAM / 64QAM /		
	256QAM)		

Note: For 802.11an HT20 / ac VHT20 and 802.11an HT40 / ac VHT40 mode, the whole testing have

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : 6 of 31
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

assessed only 802.11ac VHT20/VHT40 by referring to their maximum conducted power.

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

1.5 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Report No.: FR952704E

Test Firm	Sporton International (Kunshan) Inc.			
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone			
Test Site Location	Jiangsu Province 215300 People's Republic of China			
lest Site Location	TEL: +86-512-57900158			
	FAX: +86-512-579009	58		
	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.	
Test Site No.	TH01-KS CO01-KS 03CH06-KS	CN1257	314309	

1.6 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

 Sporton International (Kunshan) Inc.
 Page Number
 : 7 of 31

 TEL: +86-512-57900158
 Report Issued Date
 : Jul. 25, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

FCC ID: 2AJOTTA-1178 Report Template No.: BU5-FR15EWL AC MA Version 2.0

2 Test Configuration of Equipment Under Test

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	36	5180	44	5220
5180-5240 MHz	38*	5190	46*	5230
Band 1 (U-NII-1)	40	5200	48	5240
(0 1411 1)	42#	5210		

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	52	5260	60	5300
5260-5320 MHz Band 2	54*	5270	62*	5310
(U-NII-2A)	56	5280	64	5320
(3 :::: 27)	58#	5290		

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	100	5500	112	5560
	102*	5510	116	5580
5500-5700 MHz	104	5520	132	5660
Band 3 (U-NII-2C)	106#	5530	134*	5670
(8 1111 28)	108	5540	136	5680
	110*	5550	140	5700

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : 8 of 31

Report Issued Date : Jul. 25, 2019

Report Version : Rev. 01

Report No.: FR952704E

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	118*	5590	124	5620
TDWR Channel	120	5600	126*	5630
	122#	5610	128	5640

Note:

- 1. The above Frequency and Channel in "*" were 802.11n HT40 and 802.11ac VHT40.
- 2. The above Frequency and Channel in "#" were 802.11ac VHT80.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : 9 of 31
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

Modulation	Data Rate
802.11a	6 Mbps
802.11ac VHT20	MCS0
802.11ac VHT40	MCS0
802.11ac VHT80	MCS0

Report No.: FR952704E

	Test Cases					
AC Conducted Emission	Mode 1: GSM 850 Idle + Bluetooth Link + WLAN Link(5G) + Earphone 1 + USB Cable 1(Charging from Adapter 1) + Battery 1					
Remark: For Radiated Test Cases, The tests were performed with Adapter 1, Earphone 1, Battery and USB Cable 1.						

 Sporton International (Kunshan) Inc.
 Page Number
 : 10 of 31

 TEL: +86-512-57900158
 Report Issued Date
 : Jul. 25, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

FCC ID: 2AJOTTA-1178 Report Template No.: BU5-FR15EWLAC MA Version 2.0

Ch. #		Band I: 5180-5240 MHz	Band II: 5260-5320 MHz	Band III: 5500-5700MHz	
	Cn. #	802.11a	802.11a	802.11a	
L	Low	36	52	100	
M	Middle	44	60	116	
Н	High	48	64	140	

Ch. #		Band I: 5180-5240 MHz	Band II: 5260-5320 MHz	Band III:5500-5700MHz	
	Cn. #	802.11ac VHT20	802.11ac VHT20	802.11ac VHT20	
L	Low	36	52	100	
М	Middle	44	60	116	
Н	High	48	64	140	

	Ch. #	Band I: 5180-5240 MHz	Band II: 5260-5320 MHz	Band III: 5500-5700MHz	
	CII. #	802.11ac VHT40	802.11ac VHT40	802.11ac VHT40	
L	Low	38	54	102	
М	Middle	-	-	110	
Н	High	46	62	134	

	Ch. #	Band I: 5180-5240 MHz	Band II: 5260-5320 MHz	Band III: 5500-5700MHz	
	CII. #	802.11ac VHT80	802.11ac VHT80	802.11ac VHT80	
L	Low	-	-	106	
М	Middle	42	58	-	
Н	High	-	-	122	

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : 11 of 31
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No. : FR952704E

2.3 Connection Diagram of Test System

<Radiated Emission Mode>

<AC Conducted Emission Mode>

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : 12 of 31
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded,1.8m
2.	WLAN AP	D-link	DIR-855	KA2DIR855A2	N/A	Unshielded,1.8m
3.	Notebook	Lenovo	G480	N/A	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
4.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A

Report No.: FR952704E

2.5 EUT Operation Test Setup

For WLAN RF test items, an engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 7.6 dB.

 $Offset(dB) = RF \ cable \ loss(dB).$

= 7.6 (dB)

 Sporton International (Kunshan) Inc.
 Page Number
 : 13 of 31

 TEL: +86-512-57900158
 Report Issued Date
 : Jul. 25, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

FCC ID: 2AJOTTA-1178 Report Template No.: BU5-FR15EWL AC MA Version 2.0

3 Test Result

3.1 26dB & 99% Occupied Bandwidth Measurement

3.1.1 Description of 26dB & 99% Occupied Bandwidth

This section is for reporting purpose only.

There is no restriction limits for bandwidth.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 Section C) Emission bandwidth

Report No.: FR952704E

- 2. Set RBW = approximately 1% of the emission bandwidth.
- 3. Set the VBW > RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- 7. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1MHz and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 8. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 26dB & 99% Occupied Bandwidth

Please refer to Appendix A.

 Sporton International (Kunshan) Inc.
 Page Number
 : 14 of 31

 TEL: +86-512-57900158
 Report Issued Date
 : Jul. 25, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

FCC ID: 2AJOTTA-1178 Report Template No.: BU5-FR15EWL AC MA Version 2.0

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178

Page Number : 15 of 31 Report Issued Date: Jul. 25, 2019 Report Version : Rev. 01

Report No.: FR952704E

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

<FCC 14-30 CFR 15.407>

For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW.

Report No.: FR952704E

For the 5.25–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note that U-NII-2 band, devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Report Issued Date: Jul. 25, 2019
Report Version: Rev. 01

Page Number

Report Template No.: BU5-FR15EWL AC MA Version 2.0

: 16 of 31

3.2.3 Test Procedures

The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Report No.: FR952704E

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, $10 \log(1/x)$, where x is the duty cycle.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : 17 of 31
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

<FCC 14-30 CFR 15.407>

For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum power spectral density shall not exceed 11dBm in any 1 megahertz band.

Report No.: FR952704E

For the 5.25–5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178

Report Version : Rev. 01
Report Template No.: BU5-FR15EWL AC MA Version 2.0

Report Issued Date: Jul. 25, 2019

: 18 of 31

Page Number

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section F) Maximum power spectral density.

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 1 MHz.
- Set VBW ≥ 3 MHz.
- Number of points in sweep ≥ 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if the duty cycle is 25 percent.
- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

Sporton International (Kunshan) Inc.
TEL: +86-512-57900158

FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : 19 of 31
Report Issued Date : Jul. 25, 2019

Report No.: FR952704E

Report Version : Rev. 01
Report Template No.: BU5-FR15EWL AC MA Version 2.0

Note: Average Power Density (dB) = Measured value+ Duty Factor

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : 20 of 31
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

3.4 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

Report No.: FR952704E

3.4.1 Limit of Unwanted Emissions

(1) For transmitters operating in the 5150-5250 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of –27dBm/MHz.

For transmitters operating in the 5250-5350 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band must meet all applicable technical requirements for operation in the 5150-5250 MHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5150-5250 MHz band.

For transmitters operating in the 5470-5600 MHz and 5650-5725MHz band: all emissions outside of the 5470-5600 MHz and 5650-5725MHz band shall not exceed an EIRP of -27 dBm/MHz.

(2) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table,

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

FCC ID: 2AJOTTA-1178 Report Template No.: BU5-FR15EWL AC MA Version 2.0

EIRP (dBm)	Field Strength at 3m (dBμV/m)
- 27	68.3

Report No.: FR952704E

Note: The following formula is used to convert the EIRP to field strength.

$$EIRP = E_{Meas} + 20log (d_{Meas}) - 104.7$$

where

EIRP is the equivalent isotropically radiated power, in dBm

 E_{Meas} is the field strength of the emission at the measurement distance, in $dB\mu V/m$

 d_{Meas} is the measurement distance, in \boldsymbol{m}

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : 22 of 31
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

3.4.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 Section G) Unwanted emissions measurement.
 - (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
 - (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
- 2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : 23 of 31
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

3.4.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : 24 of 31
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

For radiated emissions above 1GHz

3.4.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.4.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.4.7 Duty Cycle

Please refer to Appendix D.

3.4.8 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic)

Please refer to Appendix C.

Report No.: FR952704E

3.5 AC Conducted Emission Measurement

3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR952704E

Eroquency of emission (MUz)	Conducted limit (dBµV)			
Frequency of emission (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

 Sporton International (Kunshan) Inc.
 Page Number
 : 26 of 31

 TEL: +86-512-57900158
 Report Issued Date
 : Jul. 25, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

FCC ID: 2AJOTTA-1178 Report Template No.: BU5-FR15EWL AC MA Version 2.0

3.5.4 Test Setup

3.5.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : 27 of 31
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

3.6 Automatically Discontinue Transmission

3.6.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

Report No.: FR952704E

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : 28 of 31

Report Issued Date : Jul. 25, 2019

Report Version : Rev. 01

3.7 Antenna Requirements

3.7.1 Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: FR952704E

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Page Number

Report Template No.: BU5-FR15EWL AC MA Version 2.0

: 29 of 31

List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Aug. 07, 2018	Jun. 08, 2019	Aug. 06, 2019	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 14, 2019	Jun. 08, 2019	Jan. 13, 2020	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 14, 2019	Jun. 08, 2019	Jan. 13, 2020	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY564000 23	3Hz~8.5GHz;M ax 30dBm	Oct. 12, 2018	Jun. 21, 2019	Oct. 11, 2019	Radiation (03CH06-KS)
EXA Spectrum Analyzer	Keysight	N9010B	MY574710 84	10Hz-44GHz	Jun. 25, 2018	Jun. 21, 2019	Jun. 24, 2019	Radiation (03CH06-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 19, 2018	Jun. 21, 2019	Oct. 18, 2019	Radiation (03CH06-KS)
Bilog Antenna	TeseQ	CBL6111D	44483	30MHz-1GHz	Dec. 28, 2018	Jun. 21, 2019	Dec. 27, 2019	Radiation (03CH06-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75957	1GHz~18GHz	Oct. 20, 2018	Jun. 21, 2019	Oct. 19, 2019	Radiation (03CH06-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 05, 2019	Jun. 21, 2019	Jan. 04, 2020	Radiation (03CH06-KS)
Amplifier	SONOMA	310N	187289	9KHz ~1GHZ	Aug. 06, 2018	Jun. 21, 2019	Aug. 05, 2019	Radiation (03CH06-KS)
Amplifier	MITEQ	TTA1840-35- HG	2014749	18~40GHz	Jan. 14, 2019	Jun. 21, 2019	Jan. 13, 2020	Radiation (03CH06-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Apr. 17, 2019	Jun. 21, 2019	Apr. 16, 2020	Radiation (03CH06-KS)
Amplifier	Keysight	83017A	MY532702 03	500MHz~26.5G Hz	Apr. 15, 2019	Jun. 21, 2019	Apr. 14, 2020	Radiation (03CH06-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Jun. 21, 2019	NCR	Radiation (03CH06-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Jun. 21, 2019	NCR	Radiation (03CH06-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Jun. 21, 2019	NCR	Radiation (03CH06-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 16, 2019	Jun. 16, 2019	Apr. 15, 2020	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060103	9kHz~30MHz	Oct. 12, 2018	Jun. 16, 2019	Oct. 11, 2019	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060105	9kHz~30MHz	Nov. 19, 2018	Jun. 16, 2019	Nov. 18, 2019	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 12, 2018	Jun. 16, 2019	Oct. 11, 2019	Conduction (CO01-KS)

NCR: No Calibration Required

Sporton International (Kunshan) Inc. Page Number TEL: +86-512-57900158 Report Issued Date: Jul. 25, 2019

FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178

Report Version : Rev. 01 Report Template No.: BU5-FR15EWL AC MA Version 2.0

: 30 of 31

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

Measuring Uncertainty for a Level of Confidence	2 04B
of 95% (U = 2Uc(y))	2.9dB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	5.UGB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.0db

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	5.UGB

Sporton International (Kunshan) Inc.
TEL: +86-512-57900158

FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : 31 of 31

Report Issued Date : Jul. 25, 2019

Report Version : Rev. 01

Report Template No.: BU5-FR15EWL AC MA Version 2.0

Appendix A. Conducted Test Results

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : A1 of A1
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report Template No.: BU5-FR15EWL AC MA Version 2.0

Test Engineer:	Weller Liu	Temperature:	21~25	°C
Test Date:	2019/6/8	Relative Humidity:	51~54	%

TEST RESULTS DATA 26dB and 99% OBW

	Band I									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Bandwidth (MHz)	26 dB Bandwidth (MHz)	IC 99% Bandwidth Power Limit (dBm)	IC 99% Bandwidth EIRP Limit (dBm)		
11a	6Mbps	1	36	5180	17.48	23.38	-	22.43		
11a	6Mbps	1	44	5220	17.58	23.68	-	22.45		
11a	6Mbps	1	48	5240	17.53	24.28	-	22.44		
VHT20	MCS0	1	36	5180	18.68	24.53	-	22.71		
VHT20	MCS0	1	44	5220	18.63	24.33	-	22.70		
VHT20	MCS0	1	48	5240	18.68	25.33	-	22.71		
VHT40	MCS0	1	38	5190	36.46	41.72	-	23.01		
VHT40	MCS0	1	46	5230	36.46	41.63	-	23.01		
VHT80	MCS0	1	42	5210	75.64	83.28	-	23.01		

TEST RESULTS DATA Average Power Table

	FCC Band I									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	FCC Conducted Power Limit (dBm)	DG (dBi)		Pass/Fail
11a	6Mbps	1	36	5180	0.21	16.28	24.00	-1.00		Pass
11a	6Mbps	1	44	5220	0.21	16.58	24.00	-1.00		Pass
11a	6Mbps	1	48	5240	0.21	16.66	24.00	-1.00		Pass
HT20	MCS0	1	36	5180	0.21	16.03	24.00	-1.00		Pass
HT20	MCS0	1	44	5220	0.21	16.32	24.00	-1.00		Pass
HT20	MCS0	1	48	5240	0.21	16.42	24.00	-1.00		Pass
HT40	MCS0	1	38	5190	0.38	14.00	24.00	-1.00		Pass
HT40	MCS0	1	46	5230	0.38	16.27	24.00	-1.00		Pass
VHT20	MCS0	1	36	5180	0.24	16.08	24.00	-1.00		Pass
VHT20	MCS0	1	44	5220	0.24	16.40	24.00	-1.00		Pass
VHT20	MCS0	1	48	5240	0.24	16.43	24.00	-1.00		Pass
VHT40	MCS0	1	38	5190	0.44	14.39	24.00	-1.00		Pass
VHT40	MCS0	1	46	5230	0.44	16.80	24.00	-1.00		Pass
VHT80	MCS0	1	42	5210	0.70	14.53	24.00	-1.00		Pass

TEST RESULTS DATA Power Spectral Density

	FCC Band I									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Power Density (dBm/MHz)	Average PSD Limit (dBm/MHz)	DG (dBi)	-	Pass/Fail
11a	6Mbps	1	36	5180	0.21	5.95	11.00	-1.00		Pass
11a	6Mbps	1	44	5220	0.21	5.93	11.00	-1.00		Pass
11a	6Mbps	1	48	5240	0.21	6.14	11.00	-1.00		Pass
VHT20	MCS0	1	36	5180	0.24	5.15	11.00	-1.00		Pass
VHT20	MCS0	1	44	5220	0.24	5.39	11.00	-1.00		Pass
VHT20	MCS0	1	48	5240	0.24	5.55	11.00	-1.00		Pass
VHT40	MCS0	1	38	5190	0.44	3.07	11.00	-1.00		Pass
VHT40	MCS0	1	46	5230	0.44	3.10	11.00	-1.00		Pass
VHT80	MCS0	1	42	5210	0.70	-1.15	11.00	-1.00		Pass

TEST RESULTS DATA 26dB and 99% OBW

						Band	II			
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Bandwidth (MHz)	26 dB Bandwidth (MHz)	IC 99% Bandwidth Power Limit (dBm)	IC 99% Bandwidth EIRP Limit (dBm)	FCC 26dB Bandwidth Power Limit (dBm)	Note
11a	6M bps	1	52	5260	17.53	23.78	23.44	29.44	23.98	
11a	6M bps	1	60	5300	17.48	24.08	23.43	29.43	23.98	
11a	6M bps	1	64	5320	17.58	24.38	23.45	29.45	23.98	
VHT20	MCS 0	1	52	5260	18.68	25.33	23.71	29.71	23.98	
VHT20	MCS 0	1	60	5300	16.68	25.43	23.22	29.22	23.98	
VHT20	MCS 0	1	64	5320	18.78	25.13	23.74	29.74	23.98	
VHT40	MCS 0	1	54	5270	36.46	41.54	23.98	30.00	23.98	
VHT40	MCS 0	1	62	5310	36.46	41.72	23.98	30.00	23.98	
VHT80	MCS 0	1	58	5290	75.76	82.96	23.98	30.00	23.98	

TEST RESULTS DATA Average Power Table

						FCC Ba	nd II			
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	FCC Conducted Power Limit (dBm)	DG (dBi)	EIRP Power Limit (dBm)	Pass/Fail
11a	6M bps	1	52	5260	0.21	16.72	23.98	-1.00	26.99	Pass
11a	6M bps	1	60	5300	0.21	16.65	23.98	-1.00	26.99	Pass
11a	6M bps	1	64	5320	0.21	16.73	23.98	-1.00	26.99	Pass
HT20	MCS 0	1	52	5260	0.21	16.55	23.98	-1.00	26.99	Pass
HT20	MCS 0	1	60	5300	0.21	16.57	23.98	-1.00	26.99	Pass
HT20	MCS 0	1	64	5320	0.21	16.56	23.98	-1.00	26.99	Pass
HT40	MCS 0	1	54	5270	0.38	16.55	23.98	-1.00	26.99	Pass
HT40	MCS 0	1	62	5310	0.38	10.64	23.98	-1.00	26.99	Pass
VHT20	MCS 0	1	52	5260	0.24	16.63	23.98	-1.00	26.99	Pass
VHT20	MCS 0	1	60	5300	0.24	16.72	23.98	-1.00	26.99	Pass
VHT20	MCS 0	1	64	5320	0.24	16.59	23.98	-1.00	26.99	Pass
VHT40	MCS 0	1	54	5270	0.44	17.05	23.98	-1.00	26.99	Pass
VHT40	MCS 0	1	62	5310	0.44	10.79	23.98	-1.00	26.99	Pass
VHT80	MCS 0	1	58	5290	0.70	9.34	23.98	-1.00	26.99	Pass

TEST RESULTS DATA Power Spectral Density

						Band	II		
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Power Density (dBm/MHz)	Average PSD Limit (dBm/MHz)	DG (dBi)	Pass/Fail
11a	6M bps	1	52	5260	0.21	6.19	11.00	-1.00	Pass
11a	6M bps	1	60	5300	0.21	6.07	11.00	-1.00	Pass
11a	6M bps	1	64	5320	0.21	6.26	11.00	-1.00	Pass
VHT20	MCS 0	1	52	5260	0.24	5.85	11.00	-1.00	Pass
VHT20	MCS 0	1	60	5300	0.24	5.87	11.00	-1.00	Pass
VHT20	MCS 0	1	64	5320	0.24	5.83	11.00	-1.00	Pass
VHT40	MCS 0	1	54	5270	0.44	2.99	11.00	-1.00	Pass
VHT40	MCS 0	1	62	5310	0.44	2.86	11.00	-1.00	Pass
VHT80	MCS 0	1	58	5290	0.70	-0.68	11.00	-1.00	Pass

TEST RESULTS DATA 26dB and 99% OBW

	Band III														
Mod.	Data Rate	NTX	CH.	Freq. 99% Bandwidth (MHz) 5500 17.58		26 dB Bandwidth (MHz)	IC 99% Bandwidth Power Limit (dBm)	IC 99% Bandwidth EIRP Limit (dBm)	FCC 26dB Bandwidth Power Limit (dBm)	Note					
11a	6M bps	1	100	5500	17.58	24.58	23.45	29.45	23.98						
11a	6M bps	1	116	5580	17.58	23.83	23.45	29.45	23.98						
11a	6M bps	1	140	5700	17.63	24.88	23.46	29.46	23.98						
VHT20	MCS 0	1	100	5500	18.68	24.98	23.71	29.71	23.98						
VHT20	MCS 0	1	116	5580	18.73	24.28	23.73	29.73	23.98						
VHT20	MCS 0	1	140	5700	18.83	25.48	23.75	29.75	23.98						
VHT40	MCS 0	1	102	5510	36.46	41.81	23.98	30.00	23.98						
VHT40	MCS 0	1	110	5550	36.66	41.81	23.98	30.00	23.98						
VHT40	MCS 0	1	134	5670	36.46	41.90	23.98	30.00	23.98						
VHT80	MCS 0	1	106	5530	75.76	83.28	23.98	30.00	23.98						
VHT80	MCS 0	1	122	5610	75.88	84.24	23.98	30.00	23.98						

TEST RESULTS DATA Average Power Table

						FCC Ba	nd III			
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	FCC Conducted Power Limit (dBm)	DG (dBi)	EIRP Power Limit (dBm)	Pass/Fail
11a	6M bps	1	100	5500	0.21	16.60	23.98	-1.00	26.99	Pass
11a	6M bps	1	116	5580	0.21	16.37	23.98	-1.00	26.99	Pass
11a	6M bps	1	140	5700	0.21	15.19	23.98	-1.00	26.99	Pass
HT20	MCS 0	1	100	5500	0.21	16.37	23.98	-1.00	26.99	Pass
HT20	MCS 0	1	116	5580	0.21	16.27	23.98	-1.00	26.99	Pass
HT20	MCS 0	1	140	5700	0.21	15.16	23.98	-1.00	26.99	Pass
HT40	MCS 0	1	102	5510	0.38	15.01	23.98	-1.00	26.99	Pass
HT40	MCS 0	1	110	5550	0.38	15.76	23.98	-1.00	26.99	Pass
HT40	MCS 0	1	134	5670	0.38	15.57	23.98	-1.00	26.99	Pass
VHT20	MCS 0	1	100	5500	0.24	15.79	23.98	-1.00	26.99	Pass
VHT20	MCS 0	1	116	5580	0.24	16.39	23.98	-1.00	26.99	Pass
VHT20	MCS 0	1	140	5700	0.24	15.15	23.98	-1.00	26.99	Pass
VHT40	MCS 0	1	102	5510	0.44	15.38	23.98	-1.00	26.99	Pass
VHT40	MCS 0	1	110	5550	0.44	16.29	23.98	-1.00	26.99	Pass
VHT40	MCS 0	1	134	5670	0.44	16.17	23.98	-1.00	26.99	Pass
VHT80	MCS 0	1	106	5530	0.70	12.95	23.98	-1.00	26.99	Pass
VHT80	MCS 0	1	122	5610	0.70	15.68	23.98	-1.00	26.99	Pass

TEST RESULTS DATA Power Spectral Density

						Band	III		
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Power Density (dBm/MHz)	Average PSD Limit (dBm/MHz)	DG (dBi)	Pass/Fail
11a	6M bps	1	100	5500	0.21	5.87	11.00	-1.00	Pass
11a	6M bps	1	116	5580	0.21	5.44	11.00	-1.00	Pass
11a	6M bps	1	140	5700	0.21	4.05	11.00	-1.00	Pass
VHT20	MCS 0	1	100	5500	0.24	5.62	11.00	-1.00	Pass
VHT20	MCS 0	1	116	5580	0.24	5.34	11.00	-1.00	Pass
VHT20	MCS 0	1	140	5700	0.24	3.49	11.00	-1.00	Pass
VHT40	MCS 0	1	102	5510	0.44	3.00	11.00	-1.00	Pass
VHT40	MCS 0	1	110	5550	0.44	1.91	11.00	-1.00	Pass
VHT40	MCS 0	1	134	5670	0.44	1.95	11.00	-1.00	Pass
VHT80	MCS 0	1	106	5530	0.70	-1.67	11.00	-1.00	Pass
VHT80	MCS 0	1	122	5610	0.70	-1.62	11.00	-1.00	Pass

Appendix B. AC Conducted Emission Test Results

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : B1 of B2
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : B2 of B2
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

Appendix C. Radiated Spurious Emission

Band 1 - 5150~5250MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5149.12	64.33	-9.67	74	52.34	34.3	8.15	30.46	100	234	Р	Н
		5149.92	47.32	-6.68	54	35.33	34.3	8.15	30.46	100	234	Α	Н
000.44	*	5176	109.1	-	-	97.01	34.37	8.16	30.44	100	234	Р	Н
802.11a CH 36		5176	102.22	-	-	90.13	34.37	8.16	30.44	100	234	Α	Н
5180MHz		5146.08	58.09	-15.91	74	46.1	34.3	8.15	30.46	299	253	Р	٧
3100WIFI2		5147.04	44.88	-9.12	54	32.89	34.3	8.15	30.46	299	253	Α	٧
	*	5180	103.83	-	-	91.74	34.37	8.16	30.44	299	253	Р	٧
		5180	96.53	-	-	84.44	34.37	8.16	30.44	299	253	Α	V

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C1 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

Band 1 5150~5250MHz

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
802.11a		10360	41.73	-26.57	68.3	54.93	37.67	11.7	62.57	100	360	Р	Н
CH 36 5180MHz		10360	42.5	-25.8	68.3	55.7	37.67	11.7	62.57	100	360	Р	V
		10440	42.62	-25.68	68.3	55.72	37.73	11.76	62.59	100	360	Р	Н
		15660	50.48	-23.52	74	57.75	40.5	15.07	62.84	100	173	Р	Н
802.11a		15660	40.83	-13.17	54	48.1	40.5	15.07	62.84	100	173	Α	Н
CH 44		10440	43.31	-24.99	68.3	56.41	37.73	11.76	62.59	100	360	Р	V
5220MHz		15660	55.14	-18.86	74	62.41	40.5	15.07	62.84	100	83	Р	V
		15660	44.46	-9.54	54	51.73	40.5	15.07	62.84	100	83	Α	V
		10480	41.49	-26.81	68.3	54.52	37.78	11.79	62.6	100	360	Р	Н
802.11a		15720	49.3	-24.7	74	56.45	40.63	15.09	62.87	100	0	Р	Н
CH 48		10480	43.14	-25.16	68.3	56.17	37.78	11.79	62.6	100	360	Р	V
5240MHz		15726	56.6	-17.4	74	63.73	40.63	15.11	62.87	100	82	Р	V
		15726	46.03	-7.97	54	53.16	40.63	15.11	62.87	100	82	Α	V

Remark

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C2 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 1 5150~5250MHz WIFI 802.11ac VHT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5146.88	68.27	-5.73	74	56.28	34.3	8.15	30.46	100	233	Р	Н
		5146.72	47.74	-6.26	54	35.75	34.3	8.15	30.46	100	233	Α	Н
802.11ac	*	5180	109.45	-	-	97.36	34.37	8.16	30.44	100	233	Р	Н
VHT20		5180	101.84	-	-	89.75	34.37	8.16	30.44	100	233	Α	Н
CH 36		5129.44	58.72	-15.28	74	46.77	34.27	8.15	30.47	359	255	Р	V
5180MHz		5149.44	44.83	-9.17	54	32.84	34.3	8.15	30.46	359	255	Α	V
	*	5180	103.08	-	-	90.99	34.37	8.16	30.44	359	255	Р	V
		5180	96.13	-	-	84.04	34.37	8.16	30.44	359	255	Α	V

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C3 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

Band 1 5150~5250MHz WIFI 802.11ac VHT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
802.11ac		10360	42.34	-25.96	68.3	55.54	37.67	11.7	62.57	100	360	Р	Н
VHT20 CH 36 5180MHz		10360	42.14	-26.16	68.3	55.34	37.67	11.7	62.57	100	360	Р	V
802.11ac		10440	42.35	-25.95	68.3	55.45	37.73	11.76	62.59	100	360	Р	Н
VHT20		15654	47.22	-26.78	74	54.49	40.5	15.07	62.84	100	0	Р	Н
CH 44		10440	42.62	-25.68	68.3	55.72	37.73	11.76	62.59	100	360	Р	V
5220MHz		15660	50.78	-23.22	74	58.05	40.5	15.07	62.84	100	0	Р	V
		10480	42.24	-26.06	68.3	55.27	37.78	11.79	62.6	100	360	Р	Н
802.11ac		15726	50.78	-23.22	74	57.91	40.63	15.11	62.87	100	0	Р	Н
VHT20		10480	43.49	-24.81	68.3	56.52	37.78	11.79	62.6	100	360	Р	V
CH 48 5240MHz		15720	57.32	-16.68	74	64.47	40.63	15.09	62.87	100	84	Р	V
0_70IIII IZ		15720	45.54	-8.46	54	52.69	40.63	15.09	62.87	100	84	Α	V

Remark

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C4 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 1 5150~5250MHz WIFI 802.11ac VHT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg.	(H/V)
		5144.32	67.67	-6.33	74	55.68	34.3	8.15	30.46	100	233	Р	Н
		5149.92	49.94	-4.06	54	37.95	34.3	8.15	30.46	100	233	Α	Н
	*	5194	106.21	-	-	94.08	34.4	8.17	30.44	100	233	Р	Н
		5194	97.98	-	-	85.85	34.4	8.17	30.44	100	233	Α	Н
802.11ac		5369.4	52.63	-21.37	74	40	34.7	8.28	30.35	100	233	Р	Н
VHT40		5360.04	43.51	-10.49	54	30.88	34.7	8.28	30.35	100	233	Α	Н
CH 38		5136	60.22	-13.78	74	48.27	34.27	8.15	30.47	305	257	Р	٧
5190MHz		5145.6	46.09	-7.91	54	34.1	34.3	8.15	30.46	305	257	Α	7
	*	5192	99.11	-	-	86.99	34.4	8.16	30.44	305	257	Р	V
		5192	91.94	-	-	79.82	34.4	8.16	30.44	305	257	Α	V
		5372.1	53.19	-20.81	74	40.56	34.7	8.28	30.35	305	257	Р	V
		5386.68	43.12	-10.88	54	30.47	34.7	8.28	30.33	305	257	Α	V

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C5 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

Band 1 5150~5250MHz

WIFI 802.11ac VHT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
802.11ac		10380	41.96	-26.34	68.3	55.13	37.68	11.73	62.58	100	0	Р	Н
VHT40													
CH 38		10380	40.45	-27.85	68.3	53.62	37.68	11.73	62.58	100	360	Р	V
5190MHz													
802.11ac		10460	42.93	-25.37	68.3	55.98	37.75	11.79	62.59	100	0	Р	Н
VHT40		15690	46.16	-27.84	74	53.36	40.57	15.09	62.86	100	0	Р	Н
CH 46		10460	44.63	-23.67	68.3	57.68	37.75	11.79	62.59	100	360	Р	V
5230MHz		15690	47.95	-26.05	74	55.15	40.57	15.09	62.86	200	0	Р	V

Remark

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C6 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 1 5150~5250MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		5147.2	66.49	-7.51	74	54.5	34.3	8.15	30.46	100	232	Р	Н
		5147.36	50.7	-3.3	54	38.71	34.3	8.15	30.46	100	232	Α	Н
	*	5204	101.57	-	-	89.43	34.4	8.17	30.43	100	232	Р	Н
		5204	93.95	-	-	81.81	34.4	8.17	30.43	100	232	Α	Н
802.11ac		5360.94	52.87	-21.13	74	40.24	34.7	8.28	30.35	100	232	Р	Н
VHT80		5353.38	43.95	-10.05	54	31.32	34.7	8.28	30.35	100	232	Α	Н
CH 42		5143.84	58	-16	74	46.01	34.3	8.15	30.46	250	242	Р	٧
5210MHz		5147.2	46.26	-7.74	54	34.27	34.3	8.15	30.46	250	242	Α	V
	*	5208	95.51	-	-	83.34	34.43	8.17	30.43	250	242	Р	V
		5208	88.33	-	-	76.16	34.43	8.17	30.43	250	242	Α	V
		5366.88	52.27	-21.73	74	39.64	34.7	8.28	30.35	250	242	Р	V
		5383.8	43.72	-10.28	54	31.07	34.7	8.28	30.33	250	242	Α	V

Remark

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C7 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 1 5150~5250MHz

WIFI 802.11ac VHT80 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		, .		Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11ac		10420	42.21	-26.09	68.3	55.31	37.72	11.76	62.58	100	0	Р	Н
VHT80													
CH 42		10420	41.51	-26.79	68.3	54.61	37.72	11.76	62.58	100	360	Р	V
5210MHz													

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C8 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

Band 2 - 5250~5350MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5351.5	60.72	-13.28	74	48.09	34.7	8.28	30.35	101	248	Р	Н
		5350	50.17	-3.83	54	37.54	34.7	8.28	30.35	101	248	Α	Н
000.44	*	5320	109.81	-	-	97.3	34.63	8.25	30.37	101	248	Р	Н
802.11a CH 64		5320	102.43	-	-	89.92	34.63	8.25	30.37	101	248	Α	Н
5320MHz		5352.7	54.35	-19.65	74	41.72	34.7	8.28	30.35	301	250	Р	V
3320WII 12		5350	46.01	-7.99	54	33.38	34.7	8.28	30.35	301	250	Α	V
	*	5322	103.84	-	-	91.33	34.63	8.25	30.37	301	250	Р	V
		5322	96.81	-	-	84.3	34.63	8.25	30.37	301	250	Α	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C9 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

Band 2 5250~5350MHz

WIFI 802.11a (Harmonic @ 3m)

Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	10520	41.85	-26.45	68.3	54.81	37.82	11.83	62.61	100	360	Р	Н
	15774	50.44	-23.56	74	57.47	40.73	15.13	62.89	100	0	Р	Н
	10520	43.94	-24.36	68.3	56.9	37.82	11.83	62.61	100	360	Р	V
	15786	58.4	-15.6	74	65.4	40.77	15.13	62.9	100	85	Р	V
	15786	47.53	-6.47	54	54.53	40.77	15.13	62.9	100	85	Α	V
	10600	43.08	-25.22	68.3	55.92	37.9	11.89	62.63	100	360	Р	Н
	15888	50.85	-23.15	74	57.62	41	15.18	62.95	100	0	Р	Н
	10600	45.4	-22.9	68.3	58.24	37.9	11.89	62.63	100	360	Р	V
	15906	58.38	-15.62	74	65.13	41.02	15.18	62.95	100	84	Р	V
	15906	47.47	-6.53	54	54.22	41.02	15.18	62.95	100	84	Α	V
	10640	40.69	-33.31	74	53.51	37.9	11.92	62.64	100	360	Р	Н
	15960	50.64	-23.36	74	57.33	41.07	15.22	62.98	100	0	Р	Н
	10640	43.93	-30.07	74	56.75	37.9	11.92	62.64	100	360	Р	V
	15960	57.85	-16.15	74	64.54	41.07	15.22	62.98	100	84	Р	V
	15960	46.62	-7.38	54	53.31	41.07	15.22	62.98	100	84	Α	V
	Note	(MHz) 10520 15774 10520 15786 15786 10600 15888 10600 15906 15906 10640 15960 10640 15960	(MHz) (dBμV/m) 10520 41.85 15774 50.44 10520 43.94 15786 58.4 15786 47.53 10600 43.08 15888 50.85 10600 45.4 15906 58.38 15906 47.47 10640 40.69 15960 50.64 10640 43.93 15960 57.85	(MHz) (dBμV/m) (dB) 10520 41.85 -26.45 15774 50.44 -23.56 10520 43.94 -24.36 15786 58.4 -15.6 15786 47.53 -6.47 10600 43.08 -25.22 15888 50.85 -23.15 10600 45.4 -22.9 15906 58.38 -15.62 15906 47.47 -6.53 10640 40.69 -33.31 15960 50.64 -23.36 10640 43.93 -30.07 15960 57.85 -16.15	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) 10520 41.85 -26.45 68.3 15774 50.44 -23.56 74 10520 43.94 -24.36 68.3 15786 58.4 -15.6 74 15786 47.53 -6.47 54 10600 43.08 -25.22 68.3 15888 50.85 -23.15 74 10600 45.4 -22.9 68.3 15906 58.38 -15.62 74 15906 47.47 -6.53 54 10640 40.69 -33.31 74 15960 50.64 -23.36 74 15960 57.85 -16.15 74	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV/m) 10520 41.85 -26.45 68.3 54.81 15774 50.44 -23.56 74 57.47 10520 43.94 -24.36 68.3 56.9 15786 58.4 -15.6 74 65.4 15786 47.53 -6.47 54 54.53 10600 43.08 -25.22 68.3 55.92 15888 50.85 -23.15 74 57.62 10600 45.4 -22.9 68.3 58.24 15906 58.38 -15.62 74 65.13 15906 47.47 -6.53 54 54.22 10640 40.69 -33.31 74 53.51 15960 50.64 -23.36 74 57.33 10640 43.93 -30.07 74 56.75 15960 57.85 -16.15 74 64.54	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) 10520 41.85 -26.45 68.3 54.81 37.82 15774 50.44 -23.56 74 57.47 40.73 10520 43.94 -24.36 68.3 56.9 37.82 15786 58.4 -15.6 74 65.4 40.77 15786 47.53 -6.47 54 54.53 40.77 10600 43.08 -25.22 68.3 55.92 37.9 15888 50.85 -23.15 74 57.62 41 10600 45.4 -22.9 68.3 58.24 37.9 15906 58.38 -15.62 74 65.13 41.02 15906 47.47 -6.53 54 54.22 41.02 15960 50.64 -23.36 74 57.33 41.07 10640 43.93 -30.07 74 56.75 37.9	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV) Factor (dB/m) Loss (dB) 10520 41.85 -26.45 68.3 54.81 37.82 11.83 15774 50.44 -23.56 74 57.47 40.73 15.13 10520 43.94 -24.36 68.3 56.9 37.82 11.83 15786 58.4 -15.6 74 65.4 40.77 15.13 15786 47.53 -6.47 54 54.53 40.77 15.13 10600 43.08 -25.22 68.3 55.92 37.9 11.89 15888 50.85 -23.15 74 57.62 41 15.18 10600 45.4 -22.9 68.3 58.24 37.9 11.89 15906 58.38 -15.62 74 65.13 41.02 15.18 10640 40.69 -33.31 74 53.51 37.9 11.92 15960 50.64 <td>(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV/m) Factor (dB/m) Loss (dB) Factor (dB) 10520 41.85 -26.45 68.3 54.81 37.82 11.83 62.61 15774 50.44 -23.56 74 57.47 40.73 15.13 62.89 10520 43.94 -24.36 68.3 56.9 37.82 11.83 62.61 15786 58.4 -15.6 74 65.4 40.77 15.13 62.9 15786 47.53 -6.47 54 54.53 40.77 15.13 62.9 10600 43.08 -25.22 68.3 55.92 37.9 11.89 62.63 15888 50.85 -23.15 74 57.62 41 15.18 62.95 10600 45.4 -22.9 68.3 58.24 37.9 11.89 62.63 15906 58.38 -15.62 74 65.13 41.02 15.18 62.95</td> <td>(MHz) (dBμV/m) Limit (dB) Level (dBμV/m) Factor (dB/m) Loss (dB) Factor (dB) Pos (cm) 10520 41.85 -26.45 68.3 54.81 37.82 11.83 62.61 100 15774 50.44 -23.56 74 57.47 40.73 15.13 62.89 100 10520 43.94 -24.36 68.3 56.9 37.82 11.83 62.61 100 15786 58.4 -15.6 74 65.4 40.77 15.13 62.9 100 15786 47.53 -6.47 54 54.53 40.77 15.13 62.9 100 10600 43.08 -25.22 68.3 55.92 37.9 11.89 62.63 100 15888 50.85 -23.15 74 57.62 41 15.18 62.95 100 15906 45.4 -22.9 68.3 58.24 37.9 11.89 62.63 100 15906</td> <td>(MHz) (dBµV/m) Limit (dB) Line (dBµV/m) Level (dBµV) Factor (dB/m) Loss (dB) Factor (dB) Pos (dB) Pos (deg) 10520 41.85 -26.45 68.3 54.81 37.82 11.83 62.61 100 360 15774 50.44 -23.56 74 57.47 40.73 15.13 62.89 100 0 10520 43.94 -24.36 68.3 56.9 37.82 11.83 62.61 100 360 15786 58.4 -15.6 74 65.4 40.77 15.13 62.9 100 85 15786 47.53 -6.47 54 54.53 40.77 15.13 62.9 100 85 10600 43.08 -25.22 68.3 55.92 37.9 11.89 62.63 100 360 15888 50.85 -23.15 74 57.62 41 15.18 62.95 100 0 15906 58.38</td> <td>(MHz) Limit (dB) (dB)/m (dB) Line (dB)/m (dB)/m (dB) Level (dB)/m (dB) Factor (dB) (dB) Pos (dB) (cm) (deg) (P/A) 10520 41.85 -26.45 68.3 54.81 37.82 11.83 62.61 100 360 P 15774 50.44 -23.56 74 57.47 40.73 15.13 62.89 100 0 P 10520 43.94 -24.36 68.3 56.9 37.82 11.83 62.61 100 360 P 15786 58.4 -15.6 74 65.4 40.77 15.13 62.9 100 85 P 15786 47.53 -6.47 54 54.53 40.77 15.13 62.9 100 85 A 10600 43.08 -25.22 68.3 55.92 37.9 11.89 62.63 100 360 P 15888 50.85 -23.15 74 57.62 41 15.18 62.95 100 0 P<</td>	(MHz) (dBμV/m) Limit (dB) Line (dBμV/m) Level (dBμV/m) Factor (dB/m) Loss (dB) Factor (dB) 10520 41.85 -26.45 68.3 54.81 37.82 11.83 62.61 15774 50.44 -23.56 74 57.47 40.73 15.13 62.89 10520 43.94 -24.36 68.3 56.9 37.82 11.83 62.61 15786 58.4 -15.6 74 65.4 40.77 15.13 62.9 15786 47.53 -6.47 54 54.53 40.77 15.13 62.9 10600 43.08 -25.22 68.3 55.92 37.9 11.89 62.63 15888 50.85 -23.15 74 57.62 41 15.18 62.95 10600 45.4 -22.9 68.3 58.24 37.9 11.89 62.63 15906 58.38 -15.62 74 65.13 41.02 15.18 62.95	(MHz) (dBμV/m) Limit (dB) Level (dBμV/m) Factor (dB/m) Loss (dB) Factor (dB) Pos (cm) 10520 41.85 -26.45 68.3 54.81 37.82 11.83 62.61 100 15774 50.44 -23.56 74 57.47 40.73 15.13 62.89 100 10520 43.94 -24.36 68.3 56.9 37.82 11.83 62.61 100 15786 58.4 -15.6 74 65.4 40.77 15.13 62.9 100 15786 47.53 -6.47 54 54.53 40.77 15.13 62.9 100 10600 43.08 -25.22 68.3 55.92 37.9 11.89 62.63 100 15888 50.85 -23.15 74 57.62 41 15.18 62.95 100 15906 45.4 -22.9 68.3 58.24 37.9 11.89 62.63 100 15906	(MHz) (dBµV/m) Limit (dB) Line (dBµV/m) Level (dBµV) Factor (dB/m) Loss (dB) Factor (dB) Pos (dB) Pos (deg) 10520 41.85 -26.45 68.3 54.81 37.82 11.83 62.61 100 360 15774 50.44 -23.56 74 57.47 40.73 15.13 62.89 100 0 10520 43.94 -24.36 68.3 56.9 37.82 11.83 62.61 100 360 15786 58.4 -15.6 74 65.4 40.77 15.13 62.9 100 85 15786 47.53 -6.47 54 54.53 40.77 15.13 62.9 100 85 10600 43.08 -25.22 68.3 55.92 37.9 11.89 62.63 100 360 15888 50.85 -23.15 74 57.62 41 15.18 62.95 100 0 15906 58.38	(MHz) Limit (dB) (dB)/m (dB) Line (dB)/m (dB)/m (dB) Level (dB)/m (dB) Factor (dB) (dB) Pos (dB) (cm) (deg) (P/A) 10520 41.85 -26.45 68.3 54.81 37.82 11.83 62.61 100 360 P 15774 50.44 -23.56 74 57.47 40.73 15.13 62.89 100 0 P 10520 43.94 -24.36 68.3 56.9 37.82 11.83 62.61 100 360 P 15786 58.4 -15.6 74 65.4 40.77 15.13 62.9 100 85 P 15786 47.53 -6.47 54 54.53 40.77 15.13 62.9 100 85 A 10600 43.08 -25.22 68.3 55.92 37.9 11.89 62.63 100 360 P 15888 50.85 -23.15 74 57.62 41 15.18 62.95 100 0 P<

Remark

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C10 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 2 5250~5350MHz WIFI 802.11ac VHT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.		,		Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5356.5	65.2	-8.8	74	52.57	34.7	8.28	30.35	100	234	Р	Н
		5350	50.93	-3.07	54	38.3	34.7	8.28	30.35	100	234	Α	Н
802.11ac	*	5318	109.25	-	-	96.74	34.63	8.25	30.37	100	234	Р	Н
VHT20		5318	102.08	-	-	89.57	34.63	8.25	30.37	100	234	Α	Τ
CH 64		5352.4	58.6	-15.4	74	45.97	34.7	8.28	30.35	300	250	Р	٧
5320MHz		5350	46.25	-7.75	54	33.62	34.7	8.28	30.35	300	250	Α	٧
	*	5318	103.26	-	-	90.75	34.63	8.25	30.37	300	250	Р	V
		5318	96.14	-	-	83.63	34.63	8.25	30.37	300	250	Α	V

Remark

. No other spurious found.

2. All results are PASS against Peak and Average limit line.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C11 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

Band 2 5250~5350MHz WIFI 802.11ac VHT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		10520	40.99	-27.31	68.3	53.95	37.82	11.83	62.61	100	360	Р	Н
802.11ac		15780	53.3	-20.7	74	60.33	40.73	15.13	62.89	101	125	Р	Н
VHT20		15780	42.81	-11.19	54	49.84	40.73	15.13	62.89	101	125	Α	Н
CH 52		10520	43.9	-24.4	68.3	56.86	37.82	11.83	62.61	100	360	Р	V
5260MHz		15780	58.74	-15.26	74	65.77	40.73	15.13	62.89	100	85	Р	V
		15780	46.53	-7.47	54	53.56	40.73	15.13	62.89	100	85	Α	V
		10600	41.96	-26.34	68.3	54.8	37.9	11.89	62.63	100	360	Р	Н
802.11ac		15900	50.24	-23.76	74	57.01	41	15.18	62.95	100	0	Р	Н
VHT20		10600	45.39	-22.91	68.3	58.23	37.9	11.89	62.63	100	360	Р	V
CH 60 5300MHz		15906	57.55	-16.45	74	64.3	41.02	15.18	62.95	100	84	Р	V
5300WITZ		15906	46.19	-7.81	54	52.94	41.02	15.18	62.95	100	84	Α	٧
		10640	43.35	-30.65	74	56.17	37.9	11.92	62.64	100	360	Р	Н
802.11ac		15960	54.22	-19.78	74	60.91	41.07	15.22	62.98	100	125	Р	Н
VHT20		15960	43.04	-10.96	54	49.73	41.07	15.22	62.98	100	125	Α	Н
CH 64		10640	45.41	-28.59	74	58.23	37.9	11.92	62.64	100	360	Р	V
5320MHz		15960	55.74	-18.26	74	62.43	41.07	15.22	62.98	100	0	Р	V
		15960	45.68	-8.32	54	52.37	41.07	15.22	62.98	100	84	Α	V

Remark

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C12 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 2 5250~5350MHz WIFI 802.11ac VHT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		5126.72	52.94	-21.06	74	40.99	34.27	8.15	30.47	100	234	Р	Н
		5140.8	44.18	-9.82	54	32.2	34.3	8.15	30.47	100	234	Α	Н
		5274	105.26	-	-	92.89	34.53	8.23	30.39	100	234	Р	Н
		5274	96.83	-	-	84.46	34.53	8.23	30.39	100	234	Α	Н
802.11ac		5361.6	56.73	-17.27	74	44.1	34.7	8.28	30.35	100	234	Р	Н
VHT40		5350.2	44.8	-9.2	54	32.17	34.7	8.28	30.35	100	234	Α	Н
CH 54		5141.76	54.45	-19.55	74	42.47	34.3	8.15	30.47	100	356	Р	V
5270MHz		5119.84	43.96	-10.04	54	32.05	34.23	8.15	30.47	100	356	Α	V
		5274	99.48	-	-	87.11	34.53	8.23	30.39	100	356	Р	V
		5274	92.42	-	-	80.05	34.53	8.23	30.39	100	356	Α	V
		5355.7	55.26	-18.74	74	42.63	34.7	8.28	30.35	100	356	Р	V
		5352.5	43.25	-10.75	54	30.62	34.7	8.28	30.35	100	356	Α	V
		5117.6	54.15	-19.85	74	42.26	34.23	8.15	30.49	100	232	Р	Н
		5103.84	44.33	-9.67	54	32.47	34.2	8.15	30.49	100	232	Α	Н
	*	5316	101.32	-	-	88.81	34.63	8.25	30.37	100	232	Р	Н
		5316	93.6	-	-	81.09	34.63	8.25	30.37	100	232	Α	Н
802.11ac		5350.8	64.39	-9.61	74	51.76	34.7	8.28	30.35	100	232	Р	Н
VHT40		5350.3	50.97	-3.03	54	38.34	34.7	8.28	30.35	100	232	Α	Н
CH 62		5104.96	53.09	-20.91	74	41.23	34.2	8.15	30.49	310	251	Р	V
5310MHz		5108.8	44.25	-9.75	54	32.36	34.23	8.15	30.49	310	251	Α	V
	*	5306	95.18	1	-	82.72	34.6	8.23	30.37	310	251	Р	V
		5306	87.8	1	-	75.34	34.6	8.23	30.37	310	251	Α	V
		5364.1	57.67	-16.33	74	45.04	34.7	8.28	30.35	310	251	Р	V
		5350.7	46.11	-7.89	54	33.48	34.7	8.28	30.35	310	251	Α	V

Remark

I. No other spurious found.

2. All results are PASS against Peak and Average limit line.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C13 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

Band 2 5250~5350MHz

WIFI 802.11ac VHT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		10540	41.62	-26.68	68.3	54.54	37.83	11.86	62.61	100	360	Р	Н
802.11ac		15810	47.66	-26.34	74	54.62	40.8	15.15	62.91	200	0	Р	Н
VHT40		10540	43.07	-25.23	68.3	55.99	37.83	11.86	62.61	100	0	Р	V
CH 54 5270MHz		15810	54.93	-19.07	74	61.89	40.8	15.15	62.91	105	83	Р	V
327 OWITIZ		15810	45.97	-8.03	54	52.93	40.8	15.15	62.91	105	83	Α	V
802.11ac		10620	40.24	-33.76	74	53.05	37.9	11.92	62.63	100	360	Р	Н
VHT40													
CH 62		10620	40.45	-33.55	74	53.26	37.9	11.92	62.63	100	0	Р	V
5310MHz													

Remark

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C14 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

[.] No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 2 5250~5350MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		5100	53.73	-20.27	74	41.87	34.2	8.15	30.49	105	231	Р	Н
		5115.2	44.4	-9.6	54	32.51	34.23	8.15	30.49	105	231	Α	Н
	*	5294	95.85	-	-	83.41	34.6	8.23	30.39	105	231	Р	Н
		5294	88.56	-	-	76.12	34.6	8.23	30.39	105	231	Α	Н
802.11ac		5350.1	57.4	-16.6	74	44.77	34.7	8.28	30.35	105	231	Р	Н
VHT80		5350.3	50.06	-3.94	54	37.43	34.7	8.28	30.35	105	231	Α	Н
CH 58		5115.36	54.21	-19.79	74	42.32	34.23	8.15	30.49	253	240	Р	V
5290MHz		5104	44.59	-9.41	54	32.73	34.2	8.15	30.49	253	240	Α	V
	*	5298	90.16	-	-	77.7	34.6	8.23	30.37	253	240	Р	V
		5298	82.44	-	-	69.98	34.6	8.23	30.37	253	240	Α	V
		5350.1	53.87	-20.13	74	41.24	34.7	8.28	30.35	253	240	Р	٧
		5350.3	46.15	-7.85	54	33.52	34.7	8.28	30.35	253	240	Α	V

Remark

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C15 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 2 5250~5350MHz

WIFI 802.11ac VHT80 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11ac		10580	40.67	-27.63	68.3	53.53	37.88	11.89	62.63	100	0	Р	Н
VHT80													
CH 58		10580	40.54	-27.76	68.3	53.4	37.88	11.89	62.63	100	360	Р	V
5290MHz													

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C16 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

Band 3 - 5470~5725MHz

WIFI 802.11a (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5452.88	57.36	-16.64	74	44.63	34.7	8.32	30.29	100	236	Р	Н
		5467.76	63.24	-5.06	68.3	50.51	34.7	8.32	30.29	100	236	Р	Н
		5459.76	46.25	-7.75	54	33.52	34.7	8.32	30.29	100	236	Α	Н
000 44	*	5498	106.37	-	-	93.63	34.7	8.32	30.28	100	236	Р	I
802.11a		5498	99.52	-	-	86.78	34.7	8.32	30.28	100	236	Α	Н
CH 100 5500MHz		5447.28	54.62	-19.38	74	41.9	34.7	8.32	30.3	261	248	Р	٧
3300WI112		5468.72	59.11	-9.19	68.3	46.38	34.7	8.32	30.29	261	248	Р	٧
		5458.48	44.41	-9.59	54	31.68	34.7	8.32	30.29	261	248	Α	٧
	*	5502	100.55	-	-	87.79	34.7	8.32	30.26	261	248	Р	٧
		5502	93.36	-	-	80.6	34.7	8.32	30.26	261	248	Α	٧
		5727.64	58.2	-10.1	68.3	45.25	34.77	8.42	30.24	100	236	Р	Н
	*	5700	102.19	-	-	89.3	34.7	8.42	30.23	100	236	Р	Н
802.11a		5700	94.89	-	-	82	34.7	8.42	30.23	100	236	Α	Н
CH 140 5700MHz		5745.72	54.18	-14.12	68.3	41.19	34.8	8.45	30.26	102	288	Р	V
37 UUIVIF12	*	5702	96.4	-	-	83.48	34.73	8.42	30.23	102	288	Р	V
		5702	89.6	-	-	76.68	34.73	8.42	30.23	102	288	Α	V

Remark

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C17 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 3 - 5470~5725MHz

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol
Ant.	İ			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11a		11000	39.15	-34.85	74	51.77	37.9	12.21	62.73	100	360	Р	Н
CH 100		44000	44.0	00.7	7.4	50.00	07.0	40.04	00.70	400	000	_	.,
5500MHz		11000	41.3	-32.7	74	53.92	37.9	12.21	62.73	100	360	Р	V
802.11a		11160	39.66	-34.34	74	52.18	37.9	12.35	62.77	100	360	Р	Н
CH 116		44400	40.4	00.0	7.4	50.00	07.0	40.05	00.77	400	000	-	
5580MHz		11160	40.1	-33.9	74	52.62	37.9	12.35	62.77	100	360	Р	V
802.11a		11400	39.36	-34.64	74	51.67	38	12.52	62.83	100	360	Р	Н
CH 140												_	
5700MHz		11400	40.44	-33.56	74	52.75	38	12.52	62.83	100	360	Р	V

Remark

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C18 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 3 - 5470~5725MHz WIFI 802.11ac VHT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5458	65.45	-8.55	74	52.72	34.7	8.32	30.29	100	234	Р	Н
		5468.4	64.98	-3.32	68.3	52.25	34.7	8.32	30.29	100	234	Р	Н
		5459.6	46.77	-7.23	54	34.04	34.7	8.32	30.29	100	234	Α	Н
802.11ac	*	5500	105.64	-	-	92.9	34.7	8.32	30.28	100	234	Р	Н
VHT20		5500	98.24	-	-	85.5	34.7	8.32	30.28	100	234	Α	Н
CH 100		5456.24	59.33	-14.67	74	46.6	34.7	8.32	30.29	259	246	Р	V
5500MHz		5467.76	60.74	-7.56	68.3	48.01	34.7	8.32	30.29	259	246	Р	V
		5457.68	44.41	-9.59	54	31.68	34.7	8.32	30.29	259	246	Α	V
	*	5500	99.43	-	-	86.69	34.7	8.32	30.28	259	246	Р	V
		5500	92.5	-	-	79.76	34.7	8.32	30.28	259	246	Α	V
		5727.88	59.52	-8.78	68.3	46.57	34.77	8.42	30.24	100	237	Р	Н
802.11ac	*	5702	102.02	-	-	89.1	34.73	8.42	30.23	100	237	Р	Н
VHT20		5702	94.73	-	-	81.81	34.73	8.42	30.23	100	237	Α	Н
CH 140		5733.56	54.3	-14	68.3	41.37	34.77	8.42	30.26	280	255	Р	٧
5700MHz	*	5704	96.44	-	-	83.52	34.73	8.42	30.23	280	255	Р	V
		5704	89.07	-	-	76.15	34.73	8.42	30.23	280	255	Α	V

Remark

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C19 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 3 - 5470~5725MHz WIFI 802.11ac VHT20 (Harmonic @ 3m)

WIFI Ant. 1	Note	Frequency	Level (dBµV/m)	Over Limit (dB)	Limit Line (dBµV/m)	Read Level (dBµV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Avg.	
802.11ac		11000	40.31	-33.69	74	52.93	37.9	12.21	62.73	100	360	Р	Н
VHT20 CH 100 5500MHz		11000	43.02	-30.98	74	55.64	37.9	12.21	62.73	200	360	Р	V
802.11ac		11160	40.19	-33.81	74	52.71	37.9	12.35	62.77	100	360	Р	Н
VHT20 CH 116 5580MHz		11160	41.04	-32.96	74	53.56	37.9	12.35	62.77	200	360	Р	V
802.11ac		11400	40.01	-33.99	74	52.32	38	12.52	62.83	200	360	Р	Н
VHT20 CH 140 5700MHz		11400	39.14	-34.86	74	51.45	38	12.52	62.83	100	360	Р	V

Remark

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C20 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 3 - 5470~5725MHz WIFI 802.11ac VHT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		5456.4	64.56	-9.44	74	51.83	34.7	8.32	30.29	105	239	Р	Н
		5468.4	64.76	-3.54	68.3	52.03	34.7	8.32	30.29	105	239	Р	Н
		5459.92	50.09	-3.91	54	37.36	34.7	8.32	30.29	105	239	Α	Н
	*	5512	102.74	-	-	89.97	34.7	8.33	30.26	105	239	Р	Н
802.11ac		5512	94.97	-	-	82.2	34.7	8.33	30.26	105	239	Α	Н
VHT40		5742.2	54.13	-14.17	68.3	41.14	34.8	8.45	30.26	105	239	Р	Н
CH 102		5445.52	58.89	-15.11	74	46.17	34.7	8.32	30.3	268	247	Р	V
5510MHz		5470	59.93	-8.37	68.3	47.2	34.7	8.32	30.29	268	247	Р	V
		5459.5	46.4	-7.6	54	33.67	34.7	8.32	30.29	268	247	Α	V
	*	5514	97.12	-	-	84.35	34.7	8.33	30.26	268	247	Р	V
		5514	88.92	-	-	76.15	34.7	8.33	30.26	268	247	Α	V
		5748.36	54.01	-14.29	68.3	41.02	34.8	8.45	30.26	268	247	Р	V
		5424.56	53.11	-20.89	74	40.4	34.7	8.31	30.3	100	234	Р	Н
		5461.52	52.43	-15.87	68.3	39.7	34.7	8.32	30.29	100	234	Р	Н
		5458.16	43.94	-10.06	54	31.21	34.7	8.32	30.29	100	234	Α	Н
	*	5674	101.08	-	-	88.19	34.7	8.4	30.21	100	234	Р	Н
802.11ac		5674	93.04	-	-	80.15	34.7	8.4	30.21	100	234	Α	Н
VHT40		5733.56	58.1	-10.2	68.3	45.17	34.77	8.42	30.26	100	234	Р	Н
CH 134		5456.24	53.53	-20.47	74	40.8	34.7	8.32	30.29	250	247	Р	V
5670MHz		5468.88	51.79	-16.51	68.3	39.06	34.7	8.32	30.29	250	247	Р	V
		5447.6	43.8	-10.2	54	31.08	34.7	8.32	30.3	250	247	Α	V
	*	5674	95.5	-	-	82.61	34.7	8.4	30.21	250	247	Р	V
		5674	87.79	-	-	74.9	34.7	8.4	30.21	250	247	Α	V
		5733.32	54.7	-13.6	68.3	41.77	34.77	8.42	30.26	250	247	Р	V

Remark

. No other spurious found.

2. All results are PASS against Peak and Average limit line.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C21 of C27
Report Issued Date : Jul. 25, 2019

Report No.: FR952704E

Report Version : Rev. 01

Band 3 - 5470~5725MHz WIFI 802.11ac VHT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	
802.11ac		11020	41.08	-32.92	74	53.67	37.9	12.24	62.73	100	360	Р	Н
VHT40 CH 102 5510MHz		11020	40.92	-33.08	74	53.51	37.9	12.24	62.73	100	0	Р	V
802.11ac		11100	40.59	-33.41	74	53.14	37.9	12.3	62.75	100	360	Р	Н
VHT40 CH 110 5550MHz		11100	40.7	-33.3	74	53.25	37.9	12.3	62.75	100	0	Р	V
802.11ac		11340	40.8	-33.2	74	53.21	37.93	12.47	62.81	100	360	Р	Н
VHT40 CH 134 5670MHz		11340	40.12	-33.88	74	52.53	37.93	12.47	62.81	100	0	Р	V

Remark

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C22 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 3 5470~5725MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V
		5459.92	58.82	-15.18	74	46.09	34.7	8.32	30.29	100	231	Р	Н
		5467.6	59.92	-8.38	68.3	47.19	34.7	8.32	30.29	100	231	Р	Н
		5459.98	50.88	-3.12	54	38.15	34.7	8.32	30.29	100	231	Α	Н
	*	5536	94.91	-	-	82.13	34.7	8.33	30.25	100	231	Р	Н
802.11ac		5536	87.29	1	-	74.51	34.7	8.33	30.25	100	231	Α	Н
VHT80		5758.84	53.95	-14.35	68.3	40.95	34.83	8.45	30.28	100	231	Р	Н
CH 106		5450.64	54.09	-19.91	74	41.36	34.7	8.32	30.29	251	242	Р	V
5530MHz		5465.2	55.47	-12.83	68.3	42.74	34.7	8.32	30.29	251	242	Р	V
		5457.2	46.65	-7.35	54	33.92	34.7	8.32	30.29	251	242	Α	V
	*	5520	87.79	-	-	75.02	34.7	8.33	30.26	251	242	Р	V
		5520	80.51	-	-	67.74	34.7	8.33	30.26	251	242	Α	V
		5754.36	53.49	-14.81	68.3	40.47	34.83	8.45	30.26	251	242	Р	V
		5414	52.86	-21.14	74	40.17	34.7	8.31	30.32	111	230	Р	Н
		5466	52.16	-16.14	68.3	39.43	34.7	8.32	30.29	111	230	Р	Н
		5458.16	44.29	-9.71	54	31.56	34.7	8.32	30.29	111	230	Α	Н
	*	5590	95.34	-	-	82.59	34.63	8.34	30.22	111	230	Р	Н
802.11ac		5590	88.11	-	-	75.36	34.63	8.34	30.22	111	230	Α	Н
VHT80		5761	54.07	-14.23	68.3	41.07	34.83	8.45	30.28	111	230	Р	Н
CH 122		5439.28	53.41	-20.59	74	40.69	34.7	8.32	30.3	250	243	Р	V
5610MHz		5468.72	52.51	-15.79	68.3	39.78	34.7	8.32	30.29	250	243	Р	V
		5441.84	44.11	-9.89	54	31.39	34.7	8.32	30.3	250	243	Α	V
	*	5604	89.62	-	-	76.88	34.6	8.34	30.2	250	243	Р	V
		5604	82.2	-	-	69.46	34.6	8.34	30.2	250	243	Α	V
		5741.48	53.99	-14.31	68.3	41	34.8	8.45	30.26	250	243	Р	V

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C23 of C27
Report Issued Date : Jul. 25, 2019

Report No.: FR952704E

Report Version : Rev. 01

Band 3 5470~5725MHz

WIFI 802.11ac VHT80 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	$(dB\mu V/m)$	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11ac		11060	41.17	-32.83	74	53.74	37.9	12.27	62.74	100	0	Р	Н
VHT80													
CH 106		11060	41.16	-32.84	74	53.73	37.9	12.27	62.74	100	360	Р	V
5530MHz													
802.11ac		11220	40.61	-33.39	74	53.11	37.9	12.38	62.78	100	0	Р	Н
VHT80													
CH 122		11220	41.22	-32.78	74	53.72	37.9	12.38	62.78	100	360	Р	V
5610MHz													

Remark

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C24 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Emission below 1GHz

WIFI 802.11AC VHT40 (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		44.55	20.51	-19.49	40	36.54	16.3	0.63	32.96	-	-	Р	Н
		119.24	32.43	-11.07	43.5	46.12	18.14	1.11	32.94	-	-	Р	Н
		195.87	32.45	-11.05	43.5	48.31	15.54	1.51	32.91	100	360	Р	Н
		263.77	28.53	-17.47	46	40.14	19.63	1.76	33	-	-	Р	Н
000.44		549.92	23.22	-22.78	46	29.98	24.04	2.51	33.31	-	-	Р	Н
802.11ac		907.85	25.44	-20.56	46	27.82	26.58	3.26	32.22	-	-	Р	Н
VHT40 LF		43.58	31.27	-8.73	40	46.91	16.7	0.63	32.97	100	360	Р	V
LF		74.62	24.9	-15.1	40	44.25	12.7	0.86	32.91	-	-	Р	V
		115.36	27.89	-15.61	43.5	41.84	17.89	1.09	32.93	-	-	Р	V
		218.18	24.7	-21.3	46	40.7	15.33	1.61	32.94	-	-	Р	V
		265.71	29.76	-16.24	46	41.46	19.54	1.76	33	-	-	Р	V
		885.54	25.54	-20.46	46	28.3	26.44	3.2	32.4	-	-	Р	V

Remark 1.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C25 of C27
Report Issued Date : Jul. 25, 2019

: Rev. 01

Report No.: FR952704E

Report Template No.: BU5-FR15EWL AC MA Version 2.0

Report Version

^{1.} No other spurious found.

^{2.} All results are PASS against limit line.

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : C26 of C27
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No. : FR952704E

A calculation example for radiated spurious emission is shown as below:

Report No.: FR952704E

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

 Sporton International (Kunshan) Inc.
 Page Number
 : C27 of C27

 TEL: +86-512-57900158
 Report Issued Date
 : Jul. 25, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

FCC ID: 2AJOTTA-1178 Report Template No.: BU5-FR15EWL AC MA Version 2.0

Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
802.11a	95.32	2.065	0.484	0.51KHz
802.11ac VHT20	94.68	1.935	0.517	0.56KHz
802.11ac VHT40	90.35	0.949	1.053	1.1KHz
802.11ac VHT80	85.15	0.465	2.150	2.2KHz

802.11a Spectrum Offset 7.60 dB ■ RBW 10 MHz SWT 5 ms ■ VBW 10 MHz Ref Level 37.60 dBm • Att 40 dB 👄 SWT SGL • 1Pk Max 0.25 dE 2.16667 ms 16.14 dBn D3[1] 30 dBm-M1[1] 20 dBm-202,90 µ 500.0 µs/ 691 pts Marker Y-value 16.14 dBm 2.26 dB 0.25 dB Type Ref Trc Function **Function Result** X-value 202.9 µs 2.06522 ms 2.16667 ms

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : D1 of D3
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E

802.11ac VHT20

802.11ac VHT40

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : D2 of D3
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

802.11ac VHT80

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2AJOTTA-1178 Page Number : D3 of D3
Report Issued Date : Jul. 25, 2019
Report Version : Rev. 01

Report No.: FR952704E