

ABSTRACT

As the complexity of processing issues increases, deep neural networks require more computing and storage resources. At the same time, the researchers found that the deep neural network contains a lot of redundancy, causing unnecessary waste, and the network model needs to be further optimized. Based on the above ideas, researchers have turned their attention to building more compact and efficient models in recent years, so that deep neural networks can be better deployed on nodes with limited resources to enhance their intelligence. At present, the deep neural network model compression method have weight pruning, weight quantization, and knowledge distillation and so on, these three methods have their own characteristics, which are independent of each other and can be self-contained, and can be further optimized by effective combination. This paper will construct a deep neural network compression framework based on weight pruning, weight quantization and knowledge mation. Firstly, the model will be double coarse–grained compression with pruning and

network, thereby further accelerating and compressing the model to make the loss of accuracy smaller. The experimental results show that the combination of three algorithms can

Proceedings 🗸

References

- **1.** LeCun, Y., Denker, J. S., and Solla, S. A. 1990. Optimal brain damage. NIPS'89 Proceedings of the 2nd International Conference on Neural Information Processing Systems. 598–605.
- **2.** Hassibi, B., and Stork, D. G. 1993. Second order derivatives for network pruning: Optimal brain surgeon. In Advances in neural information processing systems. 164––171.
- **3.** Han, S., Pool, J., Tran, J., and Dally, W. 2015. Learning both weights and connections for efficient neural network. In Advances in neural information processing systems. 1135–1143.
- **4.** Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J. 2017. Pruning convolutional neural networks for resource efficient inference. In International Conference of Learning Representation. arXiv preprint arXiv:1611.06440
- **5.** He, Y., Liu, P., Wang, Z., and Yang, Y. 2018. Pruning Filter via Geometric Median for Deep Convolutional Neural Networks Acceleration. arXiv preprint arXiv:1811.00250.
- **6.** Singh, P., Verma, V. K., Rai, P., and Namboodiri, V. P. 2018. Leveraging Filter Correlations for Deep Model Compression. arXiv preprint arXiv:1811.10559.
- **7.** Gong, Y., Liu, L., Yang, M., and Bourdev, L. 2014. Compressing deep convolutional networks using vector quantization. arXiv preprint arXiv:1412.6115.
- **8.** Wu, J., Leng, C., Wang, Y., Hu, Q., and Cheng, J. 2016. Quantized convolutional neural networks for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4820--4828.
- **9.** Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P. 2015. Deep learning with limited numerical precision. In International Conference on Machine Learning. 1737–1746.
- **10.** Gysel, P., Motamedi, M., and Ghiasi, S. 2016. Ristretto: Hardware-oriented approximation of convolutional neural networks. arXiv preprint arXiv:1605.06402
 - rurbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., and Bengio, Y. 2016. Binarized neural ks: Training deep neural networks with weights and activations constrained to+ 1 or -1. arXiv arXiv:1602.02830.

preprint arXiv:1503.02531.

- 14. Romero Δ Rallac N Kahou S F Chaccang Δ Gatta C and Rengio V 2014. Fitnetc∙ Hints for Proceedings ∨
- **15.** Yim, J., Joo, D., Bae, J., and Kim, J. 2017. A gift from knowledge distillation: Fast optimization, network minimization and transfer learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4133--4141.
- **16.** Mishra, A., and Marr, D. 2018. Apprentice: Using knowledge distillation techniques to improve low-precision network accuracy. In International Conference of Learning Representation.
- **17.** Han, S., Mao, H., and Dally, W. J. 2015. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149.
- **18.** Oguntola, I., Olubeko, S., and Sweeney, C. 2018. SlimNets: An Exploration of Deep Model Compression and Acceleration. In 2018 IEEE High Performance extreme Computing Conference.1--6.
- **19.** Polino, A., Pascanu, R., and Alistarh, D.2018. Model compression via distillation and quantization. arXiv preprint arXiv:1802.05668

Show Fewer References

Index Terms

Using Distillation to Improve Network Performance after Pruning and Quantization

Computing methodologies

Artificial intelligence

Search methodologies

DL Comment Policy

Comments should be relevant to the contents of this article, (sign ir

Proceedings >

0 Comments			
У Tweet f	Share	Sort by Newes	t ▼
	Nothing in this	discussion yet.	
		View Table Of Contents	
Categories		About	
Journals		About ACM Digital	Library
Magazines		Subscription Inform	nation
Books		Author Guidelines	
Proceedings		Using ACM Digital Library	
SIGs		All Holdings within	the ACM Digital Library
Conferences		ACM Computing Cl	assification System
Collections			
People			
Join		Connect	
Join ACM			
Join SIGs		f Facebook	
Subscribe to Pu	ublications	Y Twitter	

ACM Digital Library is published by the Association for Computing Machinery. Copyright © 2020 ACM, Inc.

Linkedin

Institutions and Libraries

Proceedings ~

