Министерство образования Республики Беларусь Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ» Кафедра электроники

Отчёт по лабораторной работе № 1 ИССЛЕДОВАНИЕ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ

Выполнили: студенты гр. 980161 Томин В.В. Ковель М.Ю. Алейчик И.Д. Проверил: Соколов В.Б.

Цель работы

- Изучить устройство, режим работы, принцип действия и схемы включения биполярных транзисторов.
- Экспериментально исследовать статические BAX характеристики транзисторов и определить дифференциальные параметры в заданной рабочей точке.

Электрические схемы для измерения ВАХ полупроводниковых диодов

а – схема для исследования прямой ветви ВАХ диода;

б – схема для исследования обратной ветви ВАХ диода;

Результаты экспериментальных исследований

1. ВАХ диода FR157

Прямая ветвь

І,мА	0	0.6	1	1.6	2.7	8
U,B	0	0.46	0.48	0.5	0.57	0.58

Обратного тока нет.

2. ВАХ диода КД507А

Прямая ветвь

І,мА	0	0.2	0.4	2	3.6	7
U,B	0	0.2	0.24	0.31	0.36	0.44

Обратного тока нет.

Отсутствие обратного тока объясняется малостью обратных токов по сравнению с пределами измерений используемого амперметра.

3. ВАХ стабилитрона КС 139А

Прямая ветвь

І,мА	0	0.4	1	1.6	2.2	3.8
U,B	0	0.5	0.58	0.6	0.62	0.66

Обратная ветвь

І,мА	0	0.4	1	2.1	3.2	6.5
U,B	0	0.58	0.62	0.64	0.66	0.68

Рис 2 Прямые ветви ВАХ исследованных диодов

Рис 3 Обратные ветви ВАХ исследованных диодов

Результаты расчетов

- 1. Расчет параметров исследованных диодов
 - _ Расчет сопротивления диодов постоянному току R_{np} и дифференциального сопротивления $r_{\text{диф} \ np}$

$$R_{
m \pi p} = rac{U_{
m \pi p}}{I_{
m \pi p}}$$
 $r_{
m ди \varphi \ \pi p} = rac{\Delta U_{
m \pi p}}{\Delta I_{
m \pi p}}$

	FR157	1Д507А
Uпр, B	0.3	0.28
Іпр, мА	6	6
R пр, Ом	98,3	70
dUпp, B	0.3	0.28
Іпр, мА	1	1
Р диф, Ом	300	280

- Расчет статического R0 и дифференциального гст стабилитрона

$$R_0 = \frac{U_{\text{CT HOM}}}{I_{\text{CT HOM}}}$$

$$r_{\text{CT}} = \frac{\Delta U_{\text{CT}}}{\Delta I_{\text{CT}}}$$

	KC139A
U ст ном, В	0.2
Іст ном, мА	6
R0, Ом	113,3
dUcт, В	0.2
dIст, мА	1
г ст, Ом	200

- Расчет сопротивления R0 (статического) и гст (дифференциального) стабилитрона

	U_ст	Іст ном,	R0, Om	dUст,В	dIct,A	r_ст,A
	ном,В	A				
КС139А	1.9	6	316	2.09	1	209.0

– Теоретическая ВАХ диода при I =0.01

І,мА	-0.4	-0.3	-0.2	0	0.2	0.3	0.4	0.5
U,B	-	-	-	0	0.022	1.026	48.02	2248.1
	1*10^-	9*10^-	9*10^-					
	8	9	9					

Выводы:

Изучили устройство, принцип действий, системы обозначений, параметры и характеристики полупроводниковых диодов, области их применения.

Экспериментально исследованы вольтамперные характеристики (BAX) диодов, указанных в карточке задания, и рассчитаны по измеренным характеристикам их требуемые параметры. Выяснили что экспериментальная ВАХ и теоретическая отличаются что обусловлено не учтенной генерацией носителей зарядов в переходе, а также критическим напряжением пробоя.