

# Decision Tree

**FDP ANN & ML 2023** 



Dr. Uday Pratap Singh Associate Professor PIET, Jaipur



Variable that Best Splits Data

**Root Node** 



### Agenda for Today Session

- What is Classification?
- Types of Classification
- Classification Use Case
- What is Decision Tree?
- Decision Tree Terminology
- Visualizing a Decision Tree
- Writing a Decision Tree Classifier from Scratch in Python using CART Algorithm

# What is Classification



"Classification is a supervised machine learning process of categorizing a given set of input data into classes based on one or more variables."

# What is Classification?





"A decision tree is a graphical representation of all the possible solutions to a decision based on certain conditions"

# What is Decision Tree?





# **Understanding Decision Tree**

#### Data Set

This is how our dataset looks like!

| Colour | Diameter | Label |
|--------|----------|-------|
| Green  | 3        | Mango |
| Yellow | 3        | Mango |
| Red    | 1        | Grape |
| Red    | 1        | Grape |
| Yellow | 3        | Lemon |

## Decision Tree



## Decision Tree



#### **Decision Tree Terminology**



into further nodes

#### **How Does A Tree Decide Where To Split?**

#### Gini Index

The measure of impurity (or purity) used in building decision tree in CART is Gini Index

$$Gini = 1 - \sum_{i=1}^{j} P(i)^2$$



#### Information Gain

The information gain is the decrease in entropy after a dataset is split on the basis of an attribute. Constructing a decision tree is all about finding attribute that returns the highest information gain

## **Let's First Understand What is Impurity**





Impurity = 0



#### **Let's First Understand What is Impurity**



# What is Entropy?

- Defines randomness in the data
- Entropy is just a metric which measures the impurity or
- The first step to solve the problem of a decision tree





# What is Entropy?



Entropy(s) =-  $P(yes) log_2 P(yes) - P(no) log_2 P(no)$ 

Where,

- S is the total sample space,
- P(yes) is probability of yes

If number of yes = number of no ie P(S) = 0.5

$$\Rightarrow$$
 Entropy(s) = 1

If it contains all yes or all no ie P(S) = 1 or 0

$$\Rightarrow$$
 Entropy(s) = 0

# What is

## **Entropy?**



$$E(S) = -P(YeS) \log_2 P(YeS)$$
  
When  $P(YeS) = P(No) = 0.5$  ie YES + NO = Total Sample(S)  
 $E(S) = 0.5 \log_2 0.5 - 0.5 \log_2 0.5$   
 $E(S) = 0.5(\log_2 0.5 - \log_2 0.5)$ 

E(S) = 1

# What is Information Gain?

- Measures the reduction in entropy
- Decides which attribute should be selected as the decision node

If S is our total collection,

Information Gain = Entropy(S) – [(Weighted Avg) x Entropy(each feature)]

#### Step 1: Compute the entropy for the Data set

Out of 14 instances we have 9 YES and 5 NO

So we have the formula,

$$E(S) = -P(Yes) \log_2 P(Yes) - P(No) \log_2 P(No)$$

$$E(S) = -(9/14)* \log_2 9/14 - (5/14)* \log_2 5/14$$

$$E(S) = 0.41 + 0.53 = 0.94$$

|     | outlook  | temp. | humidity | windy | play |
|-----|----------|-------|----------|-------|------|
| D1  | sunny    | hot   | high     | false | no   |
| D2  | sunny    | hot   | high     | true  | no   |
| D3  | overcast | hot   | high     | false | yes  |
| D4  | rainy    | mild  | high     | false | yes  |
| D5  | rainy    | cool  | normal   | false | yes  |
| D6  | rainy    | cool  | normal   | true  | no   |
| D7  | overcast | cool  | normal   | true  | yes  |
| D8  | sunny    | mild  | high     | false | no   |
| D9  | sunny    | cool  | normal   | false | yes  |
| D10 | rainy    | mild  | normal   | false | yes  |
| D11 | sunny    | mild  | normal   | true  | yes  |
| D12 | overcast | mild  | high     | true  | yes  |
| D13 | overcast | hot   | normal   | false | yes  |
| D14 | rainy    | mild  | high     | true  | no   |

#### Which Node To Select As Root Node?



| outlook  | temp. | humidity | windy | play |
|----------|-------|----------|-------|------|
| sunny    | hot   | high     | false | no   |
| sunny    | hot   | high     | true  | no   |
| overcast | hot   | high     | false | yes  |
| rainy    | mild  | high     | false | yes  |
| rainy    | cool  | normal   | false | yes  |
| rainy    | cool  | normal   | true  | no   |
| overcast | cool  | normal   | true  | yes  |
| sunny    | mild  | high     | false | no   |
| sunny    | cool  | normal   | false | yes  |
| rainy    | mild  | normal   | false | yes  |
| sunny    | mild  | normal   | true  | yes  |
| overcast | mild  | high     | true  | yes  |
| overcast | hot   | normal   | false | yes  |
| rainy    | mild  | high     | true  | no   |

#### Which Node To Select As Root Node: Outlook



| outlook  | temp. | humidity | windy | play |
|----------|-------|----------|-------|------|
| sunny    | hot   | high     | false | no   |
| sunny    | hot   | high     | true  | no   |
| overcast | hot   | high     | false | yes  |
| rainy    | mild  | high     | false | yes  |
| rainy    | cool  | normal   | false | yes  |
| rainy    | cool  | normal   | true  | no   |
| overcast | cool  | normal   | true  | yes  |
| sunny    | mild  | high     | false | no   |
| sunny    | cool  | normal   | false | yes  |
| rainy    | mild  | normal   | false | yes  |
| sunny    | mild  | normal   | true  | yes  |
| overcast | mild  | high     | true  | yes  |
| overcast | hot   | normal   | false | yes  |
| rainy    | mild  | high     | true  | no   |
| rainy    | mild  | high     | true  | no   |

#### Which Node To Select As Root Node: Outlook

$$E(Outlook = Sunny) = -2/5 \log_2 2/5 - 3/5 \log_2 3/5 = 0.971$$

$$E(Outlook = Overcast) = -1 \log_2 1 - 0 \log_2 0 = 0$$

$$E(Outlook = rainy) = -3/5 log_2 3/5 - 2/5 log_2 2/5 = 0.971$$

#### Information from outlook,

$$I(Outlook) = 5/14 \times 0.971 + 4/14 \times 0 + 5/14 \times 0.971 = 0.693$$

#### Information gained from outlook,

$$Gain(Outlook) = E(S) - I(Outlook)$$

$$0.94 - 0.693 = 0.247$$

| outlook  | temp. | humidity | windy | play |
|----------|-------|----------|-------|------|
| sunny    | hot   | high     | false | no   |
| sunny    | hot   | high     | true  | no   |
| overcast | hot   | high     | false | yes  |
| rainy    | mild  | high     | false | yes  |
| rainy    | cool  | normal   | false | yes  |
| rainy    | cool  | normal   | true  | no   |
| overcast | cool  | normal   | true  | yes  |
| sunny    | mild  | high     | false | no   |
| sunny    | cool  | normal   | false | yes  |
| rainy    | mild  | normal   | false | yes  |
| sunny    | mild  | normal   | true  | yes  |
| overcast | mild  | high     | true  | yes  |
| overcast | hot   | normal   | false | yes  |
| rainy    | mild  | high     | true  | no   |
|          |       |          |       |      |



$$E(Windy = True) = 1$$

$$E(Windy = False) = 0.811$$

#### Information from windy,

$$I(Windy) = 8/14 \times 0.811 + 6/14 \times 1 = 0.892$$

Information gained from outlook,

$$Gain(Windy) = E(S) - I(Windy)$$

$$0.94 - 0.892 = 0.048$$

#### Which Node To Select As Root Node

Outlook:

Info

Gain: 0.940-0.693

Temperature:

Info 0.911 Gain: 0.940-0.911 0.029

Humidity:

Info 0.788 0.152

Gain: 0.940-0.788

Windy:

Info

Gain: 0.940-0.982

0.048

0.892

Since Max gain = 0.247,

Outlook is our ROOT Node

0.693

0.247

| outlook  | temp. | humidity | windy | play |
|----------|-------|----------|-------|------|
| sunny    | hot   | high     | false | no   |
| sunny    | hot   | high     | true  | no   |
| overcast | hot   | high     | false | yes  |
| rainy    | mild  | high     | false | yes  |
| rainy    | cool  | normal   | false | yes  |
| rainy    | cool  | normal   | true  | no   |
| overcast | cool  | normal   | true  | yes  |
| sunny    | mild  | high     | false | no   |
| sunny    | cool  | normal   | false | yes  |
| rainy    | mild  | normal   | false | yes  |
| sunny    | mild  | normal   | true  | yes  |
| overcast | mild  | high     | true  | yes  |
| overcast | hot   | normal   | false | yes  |
| rainy    | mild  | high     | true  | no   |

#### This Is How Your Complete Tree Will Look Like



# What Should I do to play? Pruning

Pruning is to cutting down the nodes to get optimal solution.

# What is Pruning?



#### **Pruning: Reducing The Complexity**



#### **Dependent variable: PLAY**

