3.2. The Euclidean Algorithm

- **3.2.1. The Division Algorithm.** The following result is known as *The Division Algorithm*: If $a, b \in \mathbb{Z}$, b > 0, then there exist unique $q, r \in \mathbb{Z}$ such that a = qb + r, $0 \le r < b$. Here q is called *quotient* of the *integer division* of a by b, and r is called *remainder*.
- **3.2.2.** Divisibility. Given two integers $a, b, b \neq 0$, we say that b divides a, written b|a, if there is some integer q such that a = bq:

$$b|a \Leftrightarrow \exists q, \ a = bq$$
.

We also say that b divides or is a divisor of a, or that a is a multiple of b.

3.2.3. Prime Numbers. A prime number is an integer $p \geq 2$ whose only positive divisors are 1 and p. Any integer $n \geq 2$ that is not prime is called *composite*. A non-trivial divisor of $n \geq 2$ is a divisor d of n such that 1 < d < n, so $n \geq 2$ is composite iff it has non-trivial divisors. Warning: 1 is not considered either prime or composite.

Some results about prime numbers:

- 1. For all $n \geq 2$ there is some prime p such that p|n.
- 2. (Euclid) There are infinitely many prime numbers.
- 3. If p|ab then p|a or p|b. More generally, if $p|a_1a_2...a_n$ then $p|a_k$ for some k = 1, 2, ..., n.
- **3.2.4.** The Fundamental Theorem of Arithmetic. Every integer $n \geq 2$ can be written as a product of primes uniquely, up to the order of the primes.

It is customary to write the factorization in the following way:

$$n = p_1^{s_1} \, p_2^{s_2} \dots p_k^{s_k} \,,$$

where all the exponents are positive and the primes are written so that $p_1 < p_2 < \cdots < p_k$. For instance:

$$13104 = 2^4 \cdot 3^2 \cdot 7 \cdot 13.$$

¹The result is not really an "algorithm", it is just a mathematical theorem. There are, however, algorithms that allow us to compute the quotient and the remainder in an integer division.

3.2.5. Greatest Common Divisor. A positive integer d is called a *common divisor* of the integers a and b, if d divides a and b. The greatest possible such d is called the *greatest common divisor* of a and b, denoted gcd(a, b). If gcd(a, b) = 1 then a, b are called *relatively prime*.

Example: The set of positive divisors of 12 and 30 is $\{1, 2, 3, 6\}$. The greatest common divisor of 12 and 30 is gcd(12, 30) = 6.

A few properties of divisors are the following. Let m, n, d be integers. Then:

- 1. If d|m and d|n then d|(m+n).
- 2. If d|m and d|n then d|(m-n).
- 3. If d|m then d|mn.

Another important result is the following: Given integers a, b, c, the equation

$$ax + by = c$$

has integer solutions if and only if gcd(a, b) divides c. That is an example of a *Diophantine equation*. In general a Diophantine equation is an equation whose solutions must be integers.

Example: We have gcd(12,30) = 6, and in fact we can write $6 = 1 \cdot 30 - 2 \cdot 12$. The solution is not unique, for instance $6 = 3 \cdot 30 - 7 \cdot 12$.

3.2.6. Finding the gcd by Prime Factorization. We have that gcd(a, b) = product of the primes that occur in the prime factorizations of both a and b, raised to their lowest exponent. For instance $1440 = 2^5 \cdot 3^2 \cdot 5$, $1512 = 2^3 \cdot 3^3 \cdot 7$, hence $gcd(1440, 1512) = 2^3 \cdot 3^2 = 72$.

Factoring numbers is not always a simple task, so finding the gcd by prime factorization might not be a most convenient way to do it, but there are other ways.

3.2.7. The Euclidean Algorithm. Now we examine an alternative method to compute the gcd of two given positive integers a, b. The method provides at the same time a solution to the Diophantine equation:

$$ax + by = \gcd(a, b).$$

It is based on the following fact: given two integers $a \ge 0$ and b > 0, and $r = a \mod b$, then gcd(a, b) = gcd(b, r). Proof: Divide a by

b obtaining a quotient q and a reminder r, then

$$a = bq + r$$
, $0 \le r \le b$.

If d is a common divisor of a and b then it must be a divisor of r = a - bq. Conversely, if d is a common divisor of b and r then it must divide a = bq + r. So the set of common divisors of a and b and the set of common divisors of b and b and b and b and b and b are equal, and the greatest common divisor will be the same.

The Euclidean algorithm is a follows. First we divide a by b, obtaining a quotient q and a reminder r. Then we divide b by r, obtaining a new quotient q' and a reminder r'. Next we divide r by r', which gives a quotient q'' and another remainder r''. We continue dividing each reminder by the next one until obtaining a zero reminder, and which point we stop. The last non-zero reminder is the gcd.

Example: Assume that we wish to compute gcd(500, 222). Then we arrange the computations in the following way:

$$500 = 2 \cdot 222 + 56 \rightarrow r = 56$$

 $222 = 3 \cdot 56 + 54 \rightarrow r' = 54$
 $56 = 1 \cdot 54 + 2 \rightarrow r'' = 2$
 $54 = 27 \cdot 2 + 0 \rightarrow r''' = 0$

The last nonzero remainder is r'' = 2, hence gcd(500, 222) = 2. Furthermore, if we want to express 2 as a linear combination of 500 and 222, we can do it by working backward:

$$2 = 56 - 1 \cdot 54 = 56 - 1 \cdot (222 - 3 \cdot 56) = 4 \cdot 56 - 1 \cdot 222$$
$$= 4 \cdot (500 - 2 \cdot 222) - 1 \cdot 222 = 4 \cdot 500 - 9 \cdot 222.$$

The algorithm to compute the gcd can be written as follows:

```
1: procedure gcd(a,b)
 2:
     if a<b then
                    // make a the largest
 3:
        swap(a,b)
     while b \neq 0 do
 4:
 5:
       begin
 6:
         r := a \mod b
 7:
         a := b
 8:
         b := r
 9:
       end
10:
     return(a)
11: end gcd
```

The next one is a recursive version of the Euclidean algorithm:

```
1: procedure gcd_recurs(a,b)
```

2: if b=0 then

3: return(a)

4: else

5: return(gcd_recurs(b,a mod b))

6: end gcd_recurs