

	1
	4
INTRODUCTION	5
SECTION 1	6
INITIAL DATA AND DESIGN CONDITIONS	6
HEAT GAINS IN BUILDINGS	6
CLTD, SCL & CLF VALUES AND USAGE	7
INITIAL DATA AND DESIGN CONDITIONS	8
SECTION 2	9
DIVISION OF THERMAL ZONES	9
HEAT GAINED FROM CONDUCTION THROUGH ROOF, WALL, FLOOR AND GLASS	9
Conduction through the ceiling	9
Conduction through floor	11
Conduction through walls	12
Conduction through Glass	15
HEAT LOAD FROM SOLAR RADIATION TROUGH GLASS	18
HEAT LOAD FROM OCCUPANTS, LIGHTS AND APPLIANCES	21
Heat load from occupants (sensible + latent)	21
Heat load from lights	24
Heat load from appliance	26
HEAT LOAD FROM AIR INFILTRATION (for whole room, sensible + latent)	28
HEAT GAIN THROUGH VENTILATION (for whole room, sensible + latent)	32
ZONAL COOLING LOAD SUMMARY (without infiltration and ventilation)	33
SUMMARY ON OVERALL SENSIBLE AND LATENT PEAK COOLING DEMAN	34
SUPPLY AIR TEMPERATURE AND COOLING COIL CAPACITY	35
SECTION 3	37
DUCT LAYOUT	37
AIR FLOW REQUIREMENT FOR EACH THERMAL ZONE	37
DIMENSIONS OF THE DUCT SYSTEM (VELOCITY METHOD)	39
APPENDIX	41
APPENDIX A	41
APPENDIX B	41
APPENDIX C	42
APPENDIX D	42
APPENDIX E	43

APPENDIX F	44
APPENDIX G	45
APPENDIX H	46
APPENDIX I	46
REFERENCE	49

LIST OF ABBREVIATIONS

CLTD	Cooling Load Temperature Difference
SCL	Solar Cooling Load
CLF	Cooling Load Factor
ASHRAE	American Society of Heating, Refrigerating and Air-conditioning Engineers
RH	Relative Humidity
BPF	By-Pass Factor
ADP	Apparatus Dew Point
AHU	Air Handling Unit
GSHF	Grand Sensible Heat Factor

INTRODUCTION

The installation of a reliable central air conditioning system is essential in the effort to create a comfortable home atmosphere. This is particularly true for the First Floor of a three-story office structure, where the requirement for an efficient cooling system is critical. An air handling unit (AHU), which distributes air in the right amounts throughout the allocated spaces, is a crucial part of the system that helps achieve this.

The primary objective of this assignment is to specify the supply air flow rate of the AHU that can effectively meet the total cooling load required for the First Floor. By carefully analyzing the given spaces and their corresponding cooling requirements, the design of the AHU will aim to provide optimal comfort to the occupants while ensuring energy efficiency and cost-effectiveness.

The design process will involve a comprehensive evaluation of the cooling load in accordance with the provided drawing and floor plan. Factors such as the size and orientation of the spaces, the number of occupants, heat-generating equipment, and external factors will be taken into account to accurately determine the total cooling load. This load estimation will serve as the basis for calculating the required supply air flow rate, which is vital in achieving the desired indoor climate conditions.

The scope of this assignment is dedicated to specifying the supply air flow rate for the AHU, which will contribute significantly to the overall success of the central air-conditioning system. As the primary focus is on the design of the AHU, other aspects such as equipment selection, ductwork design, and control systems will be beyond the scope of this assignment.

By meticulously designing the AHU and tailoring it to the cooling needs of the First Floor, this project aims to provide an optimized solution that ensures occupant comfort, energy efficiency, and effective cooling performance. With the successful completion of this assignment, the central air-conditioning system will be equipped to create a pleasant and conducive environment for the occupants of the First Floor in the three-storied office building.

SECTION 1

INITIAL DATA AND DESIGN CONDITIONS

HEAT GAINS IN BUILDINGS

There are several ways to manage heat gains in buildings, including

Building Orientation: Proper building orientation can reduce the amount of solar radiation entering the building, which can help reduce heat gains. For example, orienting the building to the north or south can help minimize solar heat gain.

Shading: Installing shading devices such as awnings, louvers, and overhangs can reduce the amount of solar radiation entering the building and help control heat gains.

Insulation: Proper insulation can help reduce conductive heat transfer through the building envelope, which can help manage heat gains.

Air Sealing: Proper air sealing can reduce the infiltration of hot air into the building and help manage heat gains.

Ventilation: Proper ventilation can help remove heat generated by people, equipment, and lighting, which can help manage internal loads.

Efficient HVAC Systems: Installing energy-efficient HVAC systems can help manage heat gains by reducing energy consumption and improving the overall thermal comfort of the building.

Managing heat gains in buildings is essential for energy efficiency, thermal comfort, and indoor air quality. By implementing proper design and building practices, building owners and operators can reduce energy consumption, save money, and improve the overall performance of their buildings.

Figure 1.1: Sources of heat gains within a building

To manage heat gains in buildings, various strategies can be employed, such as:

- 1. Energy-efficient windows and doors
- 2. Insulation
- 3. Effective ventilation
- 4. Use of shading devices
- 5. High-efficiency lighting and equipment
- 6. Use of green roofs and walls

CLTD, SCL & CLF VALUES AND USAGE

The CLTD/CLF/SCL cooling load calculation was first introduced by the 1979 ASHRAE Cooling and Heating Load Manual. This was a reasonably good approximation of the total heat gains through a building. This method was a solution to the difficult calculation methods that existed before.

The CLTD factor or the Cooling Load Temperature Difference factor is used to represent the temperature difference between indoor and outdoor air with the heating effects of solar radiation.

The CLF coefficient or the Cooling Load Factor coefficient is used for the time lag between the outdoor and indoor temperature peaks.

The SCL or the Solar Cooling Load factor accounts for the variables associated with the solar heat load. This CLTD/CLF/SCL calculation method is the most precise method in calculating heat loads in buildings.

INITIAL DATA AND DESIGN CONDITIONS

Floor plan where the air conditioning system is designed

Figure 1.2: First floor plan view

External dimensions of the floor

Figure 1.2: Front view of the building

The air condition system of the building is designed under the following data.

 $\begin{array}{lll} \textit{Uceiling} & = & 2.5 \textit{W/m2C0} \\ \textit{Uglass} & = & 6 \textit{W/m2C0} \\ \textit{Uwall} & = & 1.9 \textit{W/m2C0} \\ \textit{Ufloor} & = & 2.5 \textit{W/m2C0} \\ \textit{Outdoor conditions} & = & 33 \textit{CO} / 80 \% \textit{RH} \\ \textit{Design conditions} & = & 25 \textit{CO} / 60 \% \textit{RH} \end{array}$

Shading of window = 75%

SECTION 2

DIVISION OF THERMAL ZONES

Manager room
Meeting room
Training room
General office
Corridor

HEAT GAINED FROM CONDUCTION THROUGH ROOF, WALL, FLOOR AND GLASS

Conduction through the ceiling

Manager room

The calculation is done for 1300 hrs.

Uceiling = 2.5W/m2C0Area = 22.3125m2

Corr.CLTD at 1300h = 32.1

 $q = U \times A \times Corr. CLTD$ $q = 2.5 \times 22.3125 \times 32.1$

q = 1790.58W

Meeting room

The calculation is done for 1300 hrs.

Uceiling=2.5W/m2C0Area=32.9375m2

Corr.CLTD at 1300h = 32.1

 $q = U \times A \times Corr. CLTD$ $q = 2.5 \times 32.9375 \times 32.1$

q = 2643.23 W

Training room

The calculation is done for 1300 hrs.

Uceiling = 2.5W/m2C0Area = 40.6875 m2 $q = U \times A \times Corr. CLTD$ $q = 2.5 \times 40.6875 \times 32.1$

q = 3265.17W

General office

The calculation is done for 1300 hrs.

Uceiling=2.5W/m2C0Area=60.0625m2

Corr.CLTD at 1300h = 32.1

 $q = U \times A \times Corr. CLTD$ $q = 2.5 \times 60.0625 \times 32.1$

q = 4820.02 W

Corridor

The calculation is done for 1300 hrs.

Uceiling = 2.5W/m2C0

Area = 24m2Corr.CLTD at 1300h = 33.1

 $q = U \times A \times Corr. \ CLTD$

 $q = 2.5 \times 24 \times 32.1$

q = 1926W

Table 2.2: Heat loads of the ceiling in each zone

	13:00	14:00	15:00	16:00	17:00	
CLTD	32.1	37.1	40.1	41.1	41.1	
Manager	1790.58	2069.48	2236.83	2292.61	2292.61	
Meeting room	2643.23	3054.95	3301.98	3384.33	3384.33	
Training room	3265.17	3773.77	4078.92	4180.64	4180.64	Heat Load
General office	4820.02	5570.80	6021.27	6171.42	6171.42	
Corridor	1926	2226	2406	2466	2466	

Conduction through floor

Manager Room

The calculation is done for 1300 hrs.

Uceiling=2.5W/m2C0Area= $22.3125m^2$

Corr.CLTD at 1300h = 32.1

 $q = U \times A \times Corr. CLTD$ $q = 2.5 \times 22.3125 \times 32.1$

q = 1790.58 W

Meeting room

The calculation is done for 1300 hrs.

Uceiling=2.5W/m2C0Area=32.9375m2

Corr.CLTD at 1300h = 32.1

 $q = U \times A \times Corr. CLTD$

 $q = 2.5 \times 32.9375 \times 32.1$

q = 2643.23 W

Training room

The calculation is done for 1300 hrs.

Uceiling=2.5W/m2C0Area=32.9375m2

Corr.CLTD at 1300h = 32.1

 $q = U \times A \times Corr. CLTD$

 $q = 2.5 \times 32.9375 \times 32.1$

q = 3265.17 W

General office

The calculation is done for 1300 hrs.

Uceiling=2.5W/m2C0Area=60.0625m2

Corr.CLTD at 1300h = 32.1

 $q = U \times A \times Corr. CLTD$

 $q = 2.5 \times 22.3125 \times 32.1$

q = 4820.02W

Corridor

The calculation is done for 1300 hrs.

Uceiling = 2.5W/m2C0

Area = 24m2Corr.CLTD at 1300h = 32.1

 $q = U \times A \times Corr. CLTD$

 $q = 2.5 \times 24 \times 32.1$

q = 1926 W

Table 2.3: Heat loads of the floor in each zone

	13:00	14:00	15:00	16:00	17:00	
CLTD	32.1	37.1	40.1	41.1	41.1	
Manager	1790.58	2069.48	2236.83	2292.61	2292.61	
Meeting room	2643.23	3054.95	3301.98	3384.33	3384.33	
Training room	3265.17	3773.77	4078.92	4180.64	4180.64	Heat Load
General office	4820.02	5570.80	6021.27	6171.42	6171.42	
Corridor	1926	2226	2406	2466	2466	

Conduction through walls

Manager Room

The calculation is done for 1300 hrs.

Uwall = 1.9W/m2C

North Wall: Corr.CLTD = 12.1

Area = $15.75-2.4 = 13.35 m^2$

 $q = U \times A \times Corr. CLTD$ $q = 1.9 \times 13.35 \times 12.1$

q = 306.92 W

West Wall: Corr.CLTD = 4.988889

Area = $12.75-2.4 = 10.35m^2$

$$q = U \times A \times Corr. CLTD$$

 $q = 1.9 \times 10.35 \times 4.988889$
 $q = 198.11W$

Meeting Room

The calculation is done for 1300 hrs.

Uwall = 1.9W/m2C

North Wall: Corr.CLTD = 12.1

Area = $23.25-4.8 = 18.45m^2$

 $q = U \times A \times Corr. CLTD$

 $q = 1.9 \times 18.45 \times 12.1$

q = 424.17 W

East Wall: Corr.CLTD = 25.98889

Area = $12.75-2.4 = 10.35m^2$

 $q = U \times A \times Corr. CLTD$

 $q = 1.9 \times 10.35 \times 25.989$

q = 511.07 W

Training room

The calculation is done for 1300 hrs.

Uwall = 1.9W/m2C

South wall: Corr.CLTD = 7.211111

Area = $15.75-2.4 = 13.35m^2$

 $q = U \times A \times Corr. CLTD$

 $q = 1.9 \times 13.35 \times 7.211111$

q = 182.91 W

West Wall: Corr.CLTD = 4.988889

Area = $23.25-4.8 = 18.45m^2$

 $q = U \times A \times Corr. CLTD$

 $q = 1.9 \times 18.45 \times 4.988889$

q = 174.89 W

General office

The calculation is done for 1300 hrs.

Uwall = 1.9W/m2C

East wall : Corr.CLTD = 25.98889

Area = $23.25-4.8 = 18.45m^2$

$$q = U \times A \times Corr. CLTD$$

 $q = 1.9 \times 18.45 \times 25.98889$
 $q = 911.04 W$

South wall: Corr.CLTD = 7.211111

Area = $23.25-4.8 = 18.45m^2$

 $q = U \times A \times Corr. CLTD$

 $q = 1.9 \times 18.45 \times 7.211111$

q = 252.79 W

Corridor

The calculation is done for 1300 hrs.

Uwall = 1.9W/m2C

North wall : Corr.CLTD = 12.1

Area = $6m^2$

 $q = U \times A \times Corr. CLTD$

 $q = 1.9 \times 6 \times 12.1$

q = 137.94 W

South wall: Corr.CLTD = 7.211111

Area = $6m^2$

 $q = U \times A \times Corr. CLTD$

 $q = 1.9 \times 6 \times 7.211111$

q = 82.21 W

Table 2.4: Heat loads of the walls in each zone

		13:00	14:00	15:00	16:00	17:00	
	N	12.1	14.1	16.1	17.1	18.1	
	E	25.98889	24.98889	22.98889	20.98889	19.98889	
CLTD	s	7.211111	12.21111	15.21111	19.21111	20.21111	
	w	4.988889	6.988889	10.98889	15.98889	20.98889	
Manager	N	306.92	357.65	408.38	433.74	459.11	
	w	98.11	137.44	216.10	314.42	412.75	
	N	424.17	494.28	564.39	599.44	634.5	
Meeting room	E	511.07	491.41	452.08	412.08	393.08	
Training room	s	182.91	309.73	385.83	487.29	512.65	Heat Load
	w	174.89	245.0	385.22	560.50	735.77	
	E	911.04	875.99	805.88	735.77	700.71	
General office	s	252.79	428.06	533.23	673.45	708.50	
Corridor	N	137.94	160.74	183.54	194.94	206.34	
	S	82.21	139.21	173.41	219.01	230.41	

Conduction through Glass

Manager Room

The calculation is done for 1300 hrs.

 $Uglass = 6W/m^2$. C

North Wall: Corr.CLTD = 7

Area = $2.4m^2$

 $q = U \times A \times Corr. CLTD$

 $q = 6 \times 2.4 \times 7$ q = 100.8W

West Wall: Corr.CLTD = 7

Area = $2.4m^2$

 $q = U \times A \times Corr. CLTD$

 $q = 6 \times 2.4 \times 7$ q = 100.8 W

Meeting Room

The calculation is done for 1300 hrs.

 $Uglass = 6W/m^2$. C

North Wall: Corr.CLTD = 7

Area = $4.8m^2$

 $q = U \times A \times Corr. CLTD$

 $q = 6 \times 4.8 \times 7$ q = 201.6 W

East Wall: Corr.CLTD = 7

Area = $2.4m^2$

 $q = U \times A \times Corr. CLTD$

 $q = 6 \times 2.4 \times 7$ q = 100.8 W

Training room

The calculation is done for 1300 hrs.

 $Uglass = 6W/m^2$. C

West Wall: Corr.CLTD = 7

Area = $4.8m^2$

 $q = U \times A \times Corr. CLTD$

 $q = 6 \times 4.8 \times 7$ q = 201.6 W

South Wall: Corr.CLTD = 7

Area = $2.4m^2$

$$q = U \times A \times Corr. CLTD$$

 $q = 6 \times 2.4 \times 7$
 $q = 100.8 W$

General Office

The calculation is done for 1300 hrs.

 $Uglass = 6W/m^2$. C

East Wall: Corr.CLTD = 7

Area = $4.8m^2$

 $q = U \times A \times Corr. CLTD$

 $q = 6 \times 4.8 \times 7$ q = 201.6 W

South Wall: Corr.CLTD = 7

Area = $4.8m^2$

 $q = U \times A \times Corr. CLTD$

 $q = 6 \times 4.8 \times 7$ q = 201.6 W

Table 2.8: Conduction through the glass in each zone

		13:00	14:00	15:00	16:00	17:00	
CLTD		7	7	8	8	7	
Managan	N	100.8	100.8	115.2	115.2	100.8	
Manager	w	100.8	100.8	115.2	115.2	100.8	
	N	201.6	201.6	230.4	230.4	201.6	
Meeting room	E	100.8	100.8	115.2	115.2	100.8	Heat Load
Training room	w	201.6	201.6	230.4	230.4	201.6	
	S	100.8	100.8	115.2	115.2	100.8	
	E	201.6	201.6	230.4	230.4	201.6	

General office	S	201.6	201.6	230.4	230.4	201.6

HEAT LOAD FROM SOLAR RADIATION TROUGH GLASS

Manager room

Solar radiation through glass.

$$q = A(SC)(SCL)$$

With 75% of shading glass,

SCL in North wall (at 1300 hrs.) = 142W/m2

$$q = A \times (SC) \times (SCL)$$

$$q = 2.4 \times 0.75 \times 142$$

$$q = 255.6 W$$

SCL in West wall (at 1300 hrs.) = 185W/m2

$$q = A \times (SC) \times (SCL)$$

$$q = 2.4 \times 0.75 \times 185$$

$$q~=333~W$$

Meeting room

Solar radiation through glass.

$$q = A(SC)(SCL)$$

With 75% of shading glass,

SCL in North wall (at 1300 hrs.) = 142W/m2

$$q = A \times (SC) \times (SCL)$$

$$q = 4.8 \times 0.75 \times 142$$

$$q = 511.2 W$$

SCL in East wall (at 1300 hrs.) = 175W/m2

$$q = A \times (SC) \times (SCL)$$

$$q = 2.4 \times 0.75 \times 175$$

$$q = 315 W$$

Training room

Solar radiation through glass.

$$q = A(SC)(SCL)$$

With 75% shading glass,

98.6 W/m

SCL in South wall (at 1300 hrs.) = 98.6 W/m2

$$q = A \times (SC) \times (SCL)$$

$$q = 2.4 \times 0.75 \times 98.6$$

$$q = 177.48 W$$

SCL in West wall (at 1300 hrs.) = 185 W/m2

$$q = A \times (SC) \times (SCL)$$

$$q = 4.8 \times 0.75 \times 185$$

$$q = 666 W$$

General Office

Solar radiation through glass.

$$q = A(SC)(SCL)$$

With 75% of shading glass,

SCL in East wall (at 1300 hrs.) = $175W/m^2$

$$q = A \times (SC) \times (SCL)$$

$$q = 4.8 \times 0.75 \times 175$$

$$q = 630 W$$

SCL in South wall (at 1300 hrs.) = 98.6W/m2

$$q = A \times (SC) \times (SCL)$$

$$q = 4.8 \times 0.75 \times 98.6$$

$$q = 354.96 W$$

Table 2.10: Radiation through the glass in each zone

		13:00	14:00	15:00	16:00	17:00	
SCL	N	142	138.1	130.3	117.3	117.3	
	E	175	163	147	134	116	
	s	98.6	87.4	67	49.4	40.6	
	w	185	308	415	481	490	Heat Load
Manager	N	255.6	248.58	234.54	211.14	211.14	
	w	333	554.4	747	865.8	882	
Meeting room	N	511.2	497.16	469.08	422.28	422.28	

	E	315	293.4	264.6	241.2	208.8	
Training room	s	177.48	157.32	120.6	88.92	73.08	
	W	666	1108.8	1494	1731.6	1764	
General office	E	630	586.8	529.2	482.4	417.6	
	S	354.96	314.64	241.2	177.84	146.16	

HEAT LOAD FROM OCCUPANTS, LIGHTS AND APPLIANCES

Heat load from occupants (sensible + latent)

Manager room

The calculation is done for 1300 hrs.

Occupancy loading = 3 people

Total floor area = 22.3125m2

CLF(at 1300 hrs.) = 0.79

Assuming the 3 Occupancy, moderately active office work,

Sensible heat = 75 WLatent heat = 55 W

Sensible Load = $N \times sensible$ heat gain $\times CLF$ $q = 3 \times 75 \times 0.79$ q = 177.75 W

Latent Load = $N \times L$ atent heat gain $q = 3 \times 55$ q = 165 W

Meeting room

The calculation is done for 1300 hrs.

Occupancy loading = 10 people Total floor area = 32.94m2CLF(at 1300 hrs.) = 0.79

Assuming the 10 Occupancy, moderately active office work,

Sensible heat = 75 WLatent heat = 55 W

Sensible Load = $N \times \text{sensible heat gain} \times \text{CLF}$ $q = 10 \times 75 \times 0.79$ q = 592.5 W

Latent Load = $N \times$ Latent heat gain $q = 10 \times 55$ q = 550 W

Training room

The calculation is done for 1300 hrs.

Occupancy loading = 10 people Total floor area = 40.68 m2CLF(at 1300 hrs.) = 0.79

Assuming the 10 Occupancy, moderately active office work,

Sensible heat = 75 WLatent heat = 55 W

Sensible Load = $N \times \text{sensible heat gain} \times \text{CLF}$ $q = 10 \times 75 \times 0.79$ q = 592.5 W

Latent Load = $N \times L$ atent heat gain $q = 10 \times 55$ q = 550 W

General Office

The calculation is done for 1300 hrs.

Occupancy loading = 15 people Total floor area = 60.06m2CLF(at 1300 hrs.) = 0.79

Assuming the 15 Occupancy, moderately active office work,

Sensible heat = 75 WLatent heat = 55 W

Sensible Load = $N \times$ sensible heat gain \times CLF $q = 15 \times 75 \times 0.79$ q = 888.75 W

Latent Load = $N \times L$ atent heat gain $q = 15 \times 55$ q = 825 W

<u>Table 2.12: Rates of heat gain from occupants of conditions</u>
<u>spaces</u>

		Total	Total Heat, W		Latent	% Sensible Heat that is	
Degree of Activity		Adult Male	Adjusted, M/F ^a	Heat,	Heat,	Low V	iant ^b High V
Seated at theater	Theater, matinee	115	95	65	30	20070000	
Seated at theater, night	Theater, night	115	105	70	35	60	27
Seated, very light work	Offices, hotels, apartments	130	115	70	45		
Moderately active office work	Offices, hotels, apartments	140	130	75	55		
Standing, light work; walking	Department store; retail store	160	130	75	55	58	38
Walking, standing	Drug store, bank	160	145	75	70		
Sedentary work	Restaurant	145	160	80	80		
Light bench work	Factory	235	220	80	140		
Moderate dancing	Dance hall	265	250	90	160	49	35
Walking 4.8 km/h; light machine work	Factory	295	295	110	185		
Bowlingd	Bowling alley	440	425	170	255		
Heavy work	Factory	440	425	170	255	54	19
Heavy machine work; lifting	Factory	470	470	185	285		
Athletics	Gymnasium	585	525	210	315		

Table 2.12: Occupancy sensible heat load at each zone

	13:00	14:00	15:00	16:00	17:00		
CLTD	0.79	0.83	0.86	0.89	0.91		
Manager	177.75	186.75	193.5	200.25	204.75		
Meeting room	592.5	622.5	645	667.5	682.5	Sensible	
Training room	592.5	622.5	645	667.5	682.5	Heat Load	
General office	888.75	933.75	967.5	1001.25	1023.75		
Corridor							

Table 2.12: Occupancy Latent heat load at each zone

	13:00	14:00	15:00	16:00	17:00	
Manager	165	165	165	165	165	Latent
Meeting room	550	550	550	550	550	Heat Load

Training room	550	550	550	550	550	
General office	825	825	825	825	825	
Corridor						

Heat load from lights

Manager room

Area = 22.3125m2Lighting loads = 10W/m2

Total lighting load in zone = 223.125W

Assuming a standard lighting output that subject to normal temperatures a normal ballast factor is considered. (FSA = 0.88)

For a modern office building, FUT = 0.9 is assumed.

At 1300 hrs. CLF = 0.87

Qsensible = $W. F^{UT}. F^{SA}. (CLF)$ $q = 223.125 \times 0.9 \times 0.88 \times 0.87$ q = 153.74 W

Meeting room

Area = 32.9375m2Lighting loads = 10W/m2

Total lighting load in zone = 329.375W

Assuming a standard lighting output that subject to normal temperatures a normal ballast factor is considered. (FSA = 0.88)

For a modern office building, FUT = 0.9 is assumed.

At 1300 hrs. CLF = 0.87

Qsensible = $W. F^{UT}. F^{SA}. (CLF)$ $q = 329.375 \times 0.9 \times 0.88 \times 0.87$ q = 226.95 W

Training room

Area = 40.6875m2Lighting loads = 10W/m2

Total lighting load in zone = 406.875W

Assuming a standard lighting output that subject to normal temperatures a normal ballast factor is considered. (FSA = 0.88)

For a modern office building FUT = 0.9 is assumed.

At 1300 hrs. CLF = 0.87

Qsensible = $W. F^{UT}. F^{SA}. (CLF)$ $q = 406.875 \times 0.9 \times 0.88 \times 0.87$ q = 280.35 W

General Office

Area = 60.0625m2Lighting loads = 10W/m2

Total lighting load in zone = 600.625W

Assuming a standard lighting output that subject to normal temperatures a normal ballast factor is considered. (FSA = 0.88)

For a modern office building, FUT = 0.9 is assumed.

At 1300 hrs. CLF = 0.87

Qsensible = $W. F^{UT}. F^{SA}. (CLF)$ $q = 600.625 \times 0.9 \times 0.88 \times 0.87$ q = 413.85 W

Table 2.13: Lights sensible heat load at each zone

	13:00	14:00	15:00	16:00	17:00	
CLTD	0.87	0.88	0.89	0.90	0.91	
Manager	153.74	155.51	157.28	159.04	160.81	
Meeting room	226.95	229.56	232.17	234.78	237.39	Heat Load
Training room	280.35	283.58	286.80	289.02	293.24	
General office	413.85	418.61	423.37	428.13	432.88	

Heat load from appliance

 $Qsensible = W. F^{U}. F^{R}. (CLF) \times n$

W: Watts input by appliance

 F^U : Usage factor F^R : Radiation factor

n: Number of appliances

For a usage factor of 0.9 and a radiation factor of 0.8

Manager room

The calculation is done for 1300 hrs.

Appliances = 1 desktop computer of 200W

Usage factor = 0.9 Radiation factor = 0.8 CLF at 1300 hrs. = 0.79

No latent heat load from computers Q (latent) = 0

$$q = W. F^{U}. F^{R}. (CLF). n$$

 $q = 200 \times 0.9 \times 0.8 \times 0.79 \times 1$

q = 113.76 W

Meeting room

The calculation is done for 1300 hrs.

Appliances = 2 desktop computers of 200W

Usage factor = 0.9 Radiation factor = 0.8 CLF at 1300 hrs. = 0.79

No latent heat load from computers Q (latent) = 0

$$q = W. F^{U}. F^{R}. (CLF). n$$

$$q = 200 \times 0.9 \times 0.8 \times 0.79 \times 2$$

q = 227.52 W

Training room

The calculation is done for 1300 hrs.

Appliances = 1 desktop computer of 200W

Usage factor = 0.9 Radiation factor = 0.8 CLF at 1300 hrs. = 0.79

No latent heat load from computers Q (latent) = 0

$$q = W. F^{U}. F^{R}. (CLF). n$$

 $q = 200 \times 0.9 \times 0.8 \times 0.79 \times 1$

General Office

The calculation is done for 1300 hrs.

Appliances = 5 desktop computers of 200W

Usage factor = 0.9 Radiation factor = 0.8 CLF at 1300 hrs. = 0.79

No latent heat load from computers Q (latent) = 0

 $q = W. F^U. F^R. (CLF). n$

 $q = 200 \times 0.9 \times 0.8 \times 0.79 \times 5$ q = 568.8 W

Table 2.14: Appliances sensible heat load at each zone

	13:00	14:00	15:00	16:00	17:00	
CLF	0.79	0.83	0.86	0.89	0.91	
Manager	113.76	119.52	123.84	128.16	131.04	
Meeting room	227.52	239.04	247.68	256.32	262.08	
Training room	113.76	119.52	123.84	128.16	131.04	Heat Load
General office	568.8	597.6	619.2	640.8	655.2	
Corridor						

HEAT LOAD FROM AIR INFILTRATION (for whole room, sensible + latent)

The below calculations are done using air change method.

$$qsensible = 1.23 \times Q \times (T_0 - T_i)$$

 T_0 = Outside temperature in C

Ti = Inside temperature in C

 $Q = \ln l/s$ q = Watts

$$Qlatent = 3010 \times Q \times (wo - wi)$$

 w_0 = Outside humidity ratio kg(water)/kg(dry air) w_i = Inside humidity ratio kg(water)/kg(dry air)

Shown in table 2.15 is ASHRAE recommended air changes per hour for specific room conditions

Table 2.15: ASHRAE recommended air changes per hour

L	ocation Type	Suggested Outdoor Air Ventilation Rate (air changes per hour)
	Homes	0.35–1
_0	Hotel Rooms	1–2
	Offices	2–3
	Retail Shops	2–3
	Schools (except lecture halls)	5-6
THE PARTY NAMED IN	Sports Facilities	4–8
	Restaurants	6–8

Manager room

For air change method,

Number of air changes per hour = $2 \times Room \ volume$

= 2 × 5.25 × 4.25 × 3

Number of changes = $133.875 \ m3/hr$

Airflow rate Q (L/s) = ACH x Room Volume(m^3/hr) x 1000 / 3600

ACH for room two walls exposed = 1.5

= 1.5 x 5.25 \times 4.25 \times 3 x 1000 / 3600

Q = 27.89 l/s

 $Qsensible = 1.23 \times 27.89 \times (33 - 25)$

= 274.4376 W

From psychometric charts,

 $w_0 = 0.026 \ kg(water)/kg(dry \ air)$ [for and outside temparature of 33C and 80% RH] $w_i = 0.015 kg(water)/kg(dry \ air)$ [for and outside temparature of 25C and 60% RH]

 $Qlatent = 3010 \times 27.89 \times (0.026-0.015)$

= 923.44 W

Qinfiltratuin = Qlatent + Qsensible

= 923.44+274.44

= 1197.88 W

Meeting room

For air change method,

Number of air changes per hour = $2 \times Room \ volume$

= 2 × 7.75 × 4.25 × 3

Number of changes = $197.625 \ m3 / hr$

Airflow rate Q (L/s) = ACH x Room Volume(m^3/hr) x 1000 / 3600

ACH for room two walls exposed = 1.5

 $= 1.5 \times 7.75 \times 4.25 \times 3 \times 1000 / 3600$

Q = 41.17 l/s

 $Qsensible = 1.23 \times 41.17 \times (33 - 25)$

= 405.11W

From psychometric charts,

 $w_0 = 0.026 \ kg(water)/kg(dry \ air)$ [for and outside temparature of 33C and 80% RH] $w_i = 0.015 kg(water)/kg(dry \ air)$ [for and outside temparature of 25C and 60% RH]

 $Qlatent = 3010 \times 41.17 \times (0.026-0.015)$

= 1363.14 W

Qinfiltratuin = Qlatent + Qsensible

= 405.11+1363.14

= 1768.25W

General Office

For air change method,

Number of air changes per hour = $2 \times Room \ volume$

 $= 2 \times 7.75 \times 7.75 \times 3$

Number of changes = $360.38 \ m3 / hr$

Airflow rate Q (L/s) = ACH x Room Volume(m^3/hr) x 1000 / 3600

ACH for room two walls exposed = 1.5

= 1.5 x 7.75 \times 7.75 \times 3 x 1000 / 3600

Q = 75.08 l/s

 $Qsensible = 1.23 \times 75.08 \times (33 - 25)$

= 738.79 W

From psychometric charts,

 $w_0 = 0.026 \ kg(water)/kg(dry \ air)$ [for and outside temparature of 33C and 80% RH] $w_i = 0.015 \ kg(water)/kg(dry \ air)$ [for and outside temparature of 25C and 60% RH]

 $Qlatent = 3010 \times 75.08 \times (0.026-0.015)$

= 2485.90 W

Qinfiltratuin = *Qlatent* + *Qsensible*

= 738.79+2485.90

= 3224.69 W

Training room

For air change method,

Number of air changes per hour = $2 \times Room \ volume$

 $= 2 \times 7.75 \times 5.25 \times 3$

Number of changes = $244.13 \ m3 / hr$

Airflow rate Q (L/s) = ACH x Room Volume(m^3/hr) x 1000 / 3600

ACH for room two walls exposed = 1.5

= 1.5 x 7.75 \times 5.25 \times 3 x 1000 / 3600

Q = 50.86 l/s

 $Qsensible = 1.23 \times 50.86 \times (33 - 25)$

= 500.46 W

From psychometric charts,

 $w_0 = 0.026 \ kg(water)/kg(dry \ air)$ [for and outside temparature of 33C and 80% RH] $w_i = 0.015 \ kg(water)/kg(dry \ air)$ [for and outside temparature of 25C and 60% RH]

 $Qlatent = 3010 \times 50.86 \times (0.026-0.015)$

= 1683.97 W

Qinfiltratuin = Qlatent + Qsensible

= 1683.97+500.46

= 2184.43 W

Corridor

For air change method,

Number of air changes per hour = $2 \times Room \ volume$

 $= 2 \times 2 \times 12 \times 3$

Number of changes = 144m3/hr

Airflow rate Q (L/s) = ACH x Room Volume(m^3/hr) x 1000 / 3600

ACH for room two walls exposed = 1.5

 $= 1.5 \times 2 \times 12 \times 3 \times 1000 / 3600$

Q = 30 l/s

 $Qsensible = 1.23 \times 30 \times (33 - 25)$

= 295.2 W

From psychometric charts,

 $w_0 = 0.026 \ kg(water)/kg(dry \ air)$ [for and outside temparature of 33C and 80% RH] $w_i = 0.015 \ kg(water)/kg(dry \ air)$ [for and outside temparature of 25C and 60% RH]

Qlatent = $3010 \times 30 \times (0.026-0.015)$

= 993.3 W

Qinfiltratuin = Qlatent + Qsensible

= 993.3+295.2 = 1288.5 W

HEAT GAIN THROUGH VENTILATION (for whole room, sensible + latent)

Manager room

10 l/s per person ventilation air supply is assumed.

Q = 10
$$l/s \times 3$$

= 30 l/s

$$Qsensible = 1.23 \times Q \times (T_0 - T_i)$$
= 1.23 × 30 × (33 - 25)
= 295.2 W

$$Qlatent = 3010 \times Q \times (w_0 - w_i)$$
= 3010 × 30 × (0.026-0.015) = 993.3 W

Meeting room

10 *l/s* per person ventilation air supply is assumed.

Q = 10
$$l/s \times 10$$

= 100 l/s

$$Qsensible = 1.23 \times Q \times (T_0 - T_i)$$

= 1.23 × 100 × (33 - 25)
= 984 W

$$Qlatent = 3010 \times Q \times (w_0 - w_i)$$

= 3010 × 100 × (0.026-0.015)
= 3311 W

General Office

10 *l/s* per person ventilation air supply is assumed.

Q = 10
$$l/s \times 15$$

= 150 l/s

$$Qsensible = 1.23 \times Q \times (T_0 - T_i)$$

= 1.23 × 150 × (33 - 25)
= 1476 W

$$Qlatent = 3010 \times Q \times (w_0 - w_i)$$

= 3010 × 150 × (0.026-0.015)
= 4966.5 W

Training room

10 l/s per person ventilation air supply is assumed.

Q = 10
$$l/s \times 10$$

= 100 l/s
Qsensible = 1.23 × Q × (To - Ti)
= 1.23 × 100 × (33 - 25)
= 984 W
Qlatent = 3010 × Q × (wo - wi)
= 3010 × 100 × (0.026-0.015)
= 3311W

ZONAL COOLING LOAD SUMMARY (without infiltration and ventilation)

Show in table 2.16 zonal cooling load summary without infiltration and ventilation

Table 2.16: Zonal cooling load summary

		Total Cooling Load								
	Manager Room Meeting room		j room	n Training room		General office		Corridor		
	Sensible	Latent	Sensible	Latent	Sensible	Latent	Sensible	Latent	Sensible	Latent
1300h	5221.64	165	8397.27	550	8427.71	550	14063.43	825	4072.15	0
1400h	6100.41	165	9279.65	550	10696.39	550	15700.25	825	4751.95	0
1500h	6784.7	165	9824.56	550	11334.43	550	16622.92	825	5168.95	0
1600h	7128.17	165	9947.86	550	12659.87	550	16642.98	825	5345.95	0
1700h	7248.42	165	9911.69	550	12855.96	550	16830.84	825	5368.75	0

SUMMARY ON OVERALL SENSIBLE AND LATENT PEAK COOLING DEMAN

Peak sensible cooling demands and peak latent cooling demands for total floor is shown under 1700 hrs. in table 2.17 (without ventilation and infiltration)

Table 2.17: Summary of peak cooling demand

	Loads in watts						
For 17:00 Hour/Peak Hour	Naturally genera	ated (Room) load	Purposely introduced (ventilation) load				
	Sensible	Latent	Sensible	Latent			
Roof	18495	0	0	0			
Perimeter Wall	4993.82	0	0	0			
Glass(Conduction)	1209.6	0	0	0			
Glass(Radiation)	4125.06	0	0	0			
Partition wall	0	0	0	0			
Floor	18495	0	0	0			
Occupants	2593.5	2090	0	0			
Lights	1124.32	0	0	0			
Appliances	1179.36	0	0	0			
Infiltration	2213.998	7449.75	0	0			
Ventilation		0	3739.2	12581.8			
Floor Load	63969.41						
Grand total	80290.41						

SUPPLY AIR TEMPERATURE AND COOLING COIL CAPACITY

Peak load hour is 1700 hrs. Therefore the next calculations are dependent on the value present at 17:00 hrs.

Room sensible heat factor = $\frac{Room \ sensible \ load}{}$

Room load

54429.66

63969.41

= 0.8509

Grand sensible heat factor = Room sensible load + sensible ventilation

Grand load

58168.86

80290.41

= 0.7245

Determine supply air quantity (Q)

 $Q = \frac{Room Sensible}{}$

 $\begin{array}{ccc} & - & \\ & 1.23 \times (T_R - T_S) \end{array}$

 $Ts = T_R - (1 - BPT) * (T_R - ADP)$

With the assumption of the number of the cooling coil as 4 and face velocity is 2.5 m/s and 14 pins per inches BPF = 0.1

Use of psychometric chart to find ADP

Figure 2.1: Use of psychometric chart

Room condition, 25C, 60% RH

$$RSH = 0.79$$

ADP = 17C

$$Ts = TR - (1 - BPT)(TR - ADP)$$

 $Ts = 25 - (1 - 0.1)(25 - 17)$
 $Ts = 18.7 C$

Supply air RH is 90%

Supply air quantity ofr Manager Room,

Q =
$$\frac{Room \, Sensible}{1.23 \times (T_R - T_S)}$$

= $\frac{7248.42}{1.23 \times (25-18.7)}$

$$Q = 935.40 l/s$$

$$Q = 0.9354 \, m3/s$$

	Manager room	Meeting room	Training room	General office	Corridor
Supply Air Quantity	0.9354	1.279	1.659	2.17	0.693

SECTION 3

DUCT LAYOUT

Show in figure 3.1 is the basic duct layout with the necessary dimensions for the air conditioning system for the office room.

Figure 3.1: Duct layout

AIR FLOW REQUIREMENT FOR EACH THERMAL ZONE

Shown in table 3.1 is the summary of the zonal sensible room cooling load requirement for the peak 1700 hrs.

Table 3.1: Zonal sensible room cooling load requirement at 1700 hrs. peak

Zone	Manager room	Meeting room	Training room	General office	Corridor

Total sensible cooling load without infiltration and ventilation/ W 7248.2 9911.69 12855.96 16642.98 53	68.75	
--	-------	--

To find volumetric flow rate.

$$m\dot{} = \frac{q}{Cp \times \Delta T}$$

m - Mass flow rate

q - Room cooling load (kW)

 C_p – Specific heat capacity of air (1.026 kJ/kg. K)

 ΔT – Temperature difference between design supply and design return air temperature

$$\Delta T = T_R - T_S = 25 - 18.7 = 6.3K$$

$$V = \frac{m}{\rho}$$

V - Volumetric flow rate

 ρ – Density of air $(1.204kg/m^3)$

For Manager room,

$$m' = \frac{q}{Cp \times \Delta T}$$

$$\vec{m} = \frac{7248.42}{1.026 \times 6.3}$$

$$m' = 1.121 \text{ kg/s}$$

$$V = \frac{m}{\rho}$$

$$V = \frac{1.121}{1.204}$$

$$V = 0.93 \ m^3/s$$

Similarly, airflow requirement can be calculated for all zones as above. Shown in table 3.2 is the summary of the zonal airflow requirement for the peak hour (1700 hrs.)

Table 3.2: Zonal air flow requirement

Zones	Manager room	Meeting room	Training room	General office	Corridor
q/W	7248.42	9911.69	12855.96	16830.84	5368.75
m	1.12	1.53	1.99	2.6	0.83
v	0.93	1.27	1.65	2.16	0.69

DIMENSIONS OF THE DUCT SYSTEM (VELOCITY METHOD)

For upstream section, velocity = 8 m/sFor branches and downstream section, velocity = 5m/sFor H branch, velocity = 4m/s

$$Q = Av$$

Q – volume flow rate

v - velocity

A – area

Decided duct is a circular shape.

$$\frac{\pi d^2}{4} = \frac{Q}{v}$$

$$d = \sqrt{\frac{4Q}{\pi v}}$$

For Manager Room,

$$d = \sqrt{\frac{4 \times 0.93}{\pi \times 8}}$$

$$d = 0.384 m$$

Similarly, dimensions of the ducts can be calculated for all sections of the duct design. Shown in table 3.3 are the dimensions of the respective duct sections

Table 3.3: Duct dimensions

Section	Q (m3)	V (m/s)	Diameter (m)
А	6.7383	8	1.0359
В	5.0793	8	0.8993
С	2.9073	8	0.6804
D	2.2145	8	0.5938
Е	0.9354	5	0.4882
F	1.6590	5	0.6501
G	2.1720	5	0.7439
Н	0.6928	4	0.4697
I	1.2791	5	0.5709

APPENDIX

APPENDIX A

Table 1: CLTD corrected for roof for Colombo conditions

	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N	О	Р	Q
8	Ã	4	10.1	7.1	5.1	3.1	2.1	0.1	-0.9	-0.9	1.1	5.1	10.1	17.1			
9																	
10		Hour	13	14	15	16	17	18	19	20	21	22	23	24		-1	
11	96	1	47.1	50.1	50.1	47.1	42.1	34.1	25.1	15.1	9.1	6.1	4.1	2.1		180	
12	ž	2	42.1	47.1	49.1	48.1	45.1	40.1	32.1	23.1	15.1	9.1	6.1	4.1	U value	2.5	
13	Roof Type	3	33.1	38.1	41.1	42.1	42.1	38.1	34.1	28.1	22.1	18.1	14.1	10.1			
14	œ	4	24.1	31.1	37.1	42.1	44.1	44.1	42.1	38.1	32.1	26.1	20.1	14.1			
15																	
16																	
17																	
18																	
19		Hour	1	2		4	5		7	8			11	12			
20	/pe	1	0.1	-0.9		-2.9	-2.9	-2.9	0.1	7.1	16.1	25.1	33.1	41.1			
21	Roof Type	2	1.1	0.1		-1.9	-2.9	-2.9	-1.9	2.1	9.1	18.1	27.1	34.1			
22	80	3	7.1	4.1		1.1	0.1	-0.9	0.1	3.1	7.1	13.1	19.1	26.1			
23	_	4	9.1	6.1	4.1	2.1	1.1	-0.9	-1.9	-1.9	0.1	4.1	9.1	16.1			
24		Hour	13	1.0	15	1.0	4.7	18	19	20	24	22	22	24			
25 26	_	Hour	46.1	14 49.1		16 46.1	17 41.1	33.1	24.1	14.1	21 8.1	5.1	23 3.1	1.1			
27	Roof Type	2	40.1	46.1	49.1	47.1	44.1	39.1	31.1	22.1	14.1	8.1	5.1	3.1			
28	Ť	2	32.1	37.1	40.1	41.1	41.1	37.1	33.1	27.1	21.1	17.1	13.1	9.1			
29	8o	1	23.1	30.1		41.1	43.1	43.1	41.1	37.1	31.1	25.1	19.1	13.1			
30		Room		1300h	1400h			1700h	71.1	37.1	31.1	23.1	15.1	15.1			
31		Manager			2069,484												
32		Training	40.6875		3773.766												
33		Meeting	32.9375		3054.953			3384.328									
34		General	60.0625		5570.797		6171.422	6171.422									
35		Corridor	24	1926	2226	2406	2466	2466									
	>	Roof CLT	D Correcte	d Conc	luction Thr	ough walls	Condu	uction Thro	ugh glass	Solar R	adiation T	hrough Gla	iss CLF	⊕	(

APPENDIX B

Table 2: CLTD corrected for external walls for Colombo conditions

2 NW	9.322222	11.32222	14.32222	16.32222	20.32222	24.32222	28.32222	30.32222	30.32222	26.32222	21.32222	17.32222									_
3														General	Area	1300h	1400h	1500h	1600h	1700h	
4														South	18.45	252.7855	428.0605	533.2255	673.4455	708.5005	
5														East	18.45	911.0405	875.9855	805.8755	735.7655	700.7105	
6 Hr	1	2	3	4	5	6	7	8	9	10	11	12									
7 N	11.1	9.1	8.1	7.1	6.1	5.1	5.1	6.1	7.1	8.1	9.1	11.1		Corridor	Area	1300h	1400h	1500h	1600h	1700h	
B NE	8.322222	6.322222	5.322222	4.322222	3.322222	2.322222	2.322222	4.322222	9.32222	14.32222	18.32222	20.32222		North	6	137.94	160.74	183.54	194.94	206.34	
9 E	4.988889	2.988889	1.988889	0.988889	-0.01111	-0.01111	-0.01111	1.988889	6.988889	13.98889	19.98889	23.98889		South	6	82.20667	139.2067	173.4067	219.0067	230.4067	
O SE	1.655556	-0.34444	-1.34444	-2.34444	-3.34444	-3.34444	-4.34444	-3.34444	-0.34444	4.655556	10.65556	15.65556									
1 <mark>S</mark>	2.211111	0.211111	-0.78889	-1.78889	-2.78889	-2.78889	-3.78889	-2.78889	-3.78889	-2.78889	-0.78889	3.211111									
2 SW	5.655556	2.655556	0.655556	-1.34444	-2.34444	-3.34444	-4.34444	-4.34444	-4.34444	-3.34444	-1.34444	-0.34444									
3 W	10.98889	6.988889	4.988889	2.988889	0.988889	-0.01111	-0.01111	-1.01111	-0.01111	-0.01111	1.988889	2.988889									
4 NW	12.32222	9.32222	7.322222	5.322222	4.322222	3.322222	2.322222	2.322222	2.322222	3.322222	4.322222	6.322222									
5																					
6 Hr	13	14	15	16	17	18	19	20	21	22	23	24									
7 N	12.1	14.1	16.1	17.1	18.1	19.1	20.1	20.1	19.1	17.1	16.1	13.1									
NE NE	20.32222	20.32222	19.32222	19.32222	19.32222	18.32222	18.32222	16.32222	15.32222	13.32222	11.32222	9.32222									
E E	25.98889	24.98889	22.98889	20.98889	19.98889	17.98889	16.98889	14.98889	12.98889	10.98889	7.988889	6.988889									
) SE	19.65556	21.65556	21.65556	19.65556	18.65556	16.65556	14.65556	12.65556	9.65556	7.655556	5.655556	3.655556									
1 <mark>S</mark>	7.211111	12.21111	15.21111	19.21111	20.21111	19.21111	18.21111	15.21111	13.21111	9.21111	7.211111	4.211111									
2 SW	2.655556	5.655556	10.65556	15.65556	21.65556	24.65556	27.65556	27.65556	23.65556	18.65556	13.65556	9.65556									
W W	4.988889	6.988889	10.98889	15.98889	20.98889	26.98889	1.988889	34.98889	31.98889	26.98889	20.98889	15.98889									
NW	8.322222	10.32222	13.32222	15.32222	19.32222	23.32222	27.32222	29.32222	29.32222	25.32222	20.32222	16.32222									
5																					
5																					
7																					
3																					
	Roof CLTE) Correcte	d Cond	uction Thr	ough wall	s Condu	ıction Thro	ugh glass	Solar R	adiation Tl	rough Gla	iss CLF	⊕ ፤ [

APPENDIX C

Table 3: CLTD for glass conditions

APPENDIX D

Table 4: SCL corrected for Colombo conditions

8 9 10 11 12 3 109.5 122.5 134.2 138.1 4 331.4 229.4 183.8 176.6 456 390 279 194 5 246.65 246.65 218.05 166.7	Manager Area Si North 2.4 West 2.4	C 0.75	1300h	1400h	1500h	1600h	
4 331.4 229.4 183.8 176.6 5 456 390 279 194 5 246.65 246.65 218.05 166.7		0.75					1700h
5 456 390 279 194 5 246.65 246.65 218.05 166.7	West 2.4					211.14	
5 246.65 246.65 218.05 166.7		0.75	333	554.4	747	865.8	882
	Meeting Area So		1300h			1600h	1700h
8 44.2 67 87.4 98.6	North 4.8	0.75				422.28	
3 35.4 40.6 44.2 71	East 2.4	0.75	315	293.4	264.6	241.2	208.8
97 106 112 116							
3 108.2 120.2 127.4 134.6	Training Area So	С	1300h	1400h	1500h	1600h	1700h
7 498.4 605.1 688.7 733.8	West 4.8	0.75	666	1108.8	1494	1731.6	1764
	South 2.4	0.75	177.48	157.32	120.6	88.92	73.08
21 22 23 24							
5 31.5 27.6 23.7 23.7	General Area Si	С	1300h	1400h	1500h	1600h	1700h
2 41 37.4 32.6 29	East 4.8	0.75	630	586.8	529.2	482.4	417.6
3 46 40 37 34	South 4.8	0.75	354.96	314.64	241.2	177.84	146.16
27.6 25.65 21.75 19.8							
1 14.2 11.8 10.2 9							
2 27.8 24.2 20.6 17.8							
87 75 65 59							
78.2 63.8 55.4 48.2							
9 131 116.7 103.5 92.5							
2001 2000 32.0							
		ar Radiation Through Glass CLF (†) :					

APPENDIX E

Table 5: CLF values for occupancy and unhooded equipment for general office applications

Hr	1	2	3	4	5	6	7	8	9	10	11	12
CLF	0.08	0.06	0.05	0.04	0.04	0.03	0.02	0.02	0.02	0.61	0.69	0.75
Hr	13	14	15	16	17	18	19	20	21	22	23	24

	Tur office 74	opiication (c	nour onic	3	0 hrs to 170	JO 1113)	6	7	8	9	10	11	12
		0.08	0.06	_	0.04	0.04	0.03	0.02	0.02	0.02	0.61	0.69	0.75
		13					18			21	22	23	24
.F		0.79		0.86	0.89	0.91	0.32	0.26	0.21	0.17	0.14	0.11	0.09
		Sensible Hea											
	Rooms		Sensi.heat			1500h	1600h	1700h					
	Manager	3			186.75	193.5	200.25	204.75					
	Meeting	10											
	Training	10					667.5	682.5					
	General	15	75	888.75	933.75	967.5	1001.25	1023.75					
			Latent hea	t									
	Rooms	N(Occu)	Latent	1300h	1400h	1500h	1600h	1700h					
	Manager	3	55	165	165	165	165	165					
	Meeting	10	55	550	550	550	550	550					
	Training	10	55	550	550	550	550	550					
	General	15	55	825	825	825	825	825					
									<u>/=</u>				

APPENDIX F

Table 6: CLF values for lighting for general office applications

Hr	1	2	3	4	5	6	7	8	9	10	11	12
CLF	0.06	0.05	0.05	0.05	0.04	0.04	0.03	0.03	0.03	0.72	0.8	0.84
				70	V-20	93	10	1.7			- 22	
Hr	13	14	15	16	17	18	19	20	21	22	23	24

В	C	D	E	F		н		J	K	L	M	N
	Heat	load from	lights									
Rooms	Area	Ligt.Load	FUT	FSA	1300h	1400h	1500h	1600h	1700h			
Manager	22.3125	10	0.9	0.88	153.74205	155.5092	157.2764	159.0435	160.8107			
Meeting	32.9375	10	0.9	0.88	226.95255	229.5612	232.1699	234.7785	237.3872			
Training	40.6875	10	0.9	0.88	280.35315	283.5756	286.7981	290.0205	293.243			
General	60.0625	10	0.9	0.88	413.85465	418.6116	423.3686	428.1255	432.8825			
	s for Lightin	_				,						
	al Office Ap		ı —		0 hrs to 1700 hrs	•	_	_	_			
Hr	1	2	3		5	6		8		10	11	12
CLF	0.06	0.05	0.05	0.05	0.04	0.04	0.03	0.03	0.03	0.72	8.0	0.84
Hr	13			16	17	18	19	20		22	23	24
CLF	0.87	0.88	0.89	0.9	0.91	0.23	0.15	0.11	0.09	0.08	0.07	0.07
Color Box	diation Thro	augh Class	L CIEw	alues for a	eneral office	Heat load fro	m light-	Hoat fro	m des.com	putor 1-7	10	: 1

CLF valu	ies for Occup	pancy and l	<u>Jnhooded</u>	Equipment	t (derived fr	om ASHRA	E Table 37)						
or Gen	eral Office A	pplication (8	3 hour offic	e from 090	0 hrs to 170	00 hrs)							
Hr		1	2	3	4	5	6	7	8	9	10	11	12
CLF		0.08	0.06	0.05	0.04	0.04	0.03	0.02	0.02	0.02	0.61	0.69	0.75
Hr		13	14	15	16	17	18	19	20	21	22	23	24
CLF		0.79	0.83	0.86	0.89	0.91	0.32	0.26	0.21	0.17	0.14	0.11	0.09
	Rooms	App.Powe		FR	n	1300h	1400h	1500h	1600h	1700h			
	Manager	200						123.84					
	Meeting	200						247.68					
	Training	200						123.84					
	General	200	0.9	0.8	5	568.8	597.6	619.2	640.8	655.2			
										L			
→	Solar Pag	diation Thro	ough Glass	CLE va	alues for ge	noral offic	o l Hoat	load from	lights	Heat from	des.compt	ıter Zor	··· (+) ;

Α	В	С	D	E	F	G	Н	T	J	K	L	М	N	O P	Q	R	S	Т	U	
	Ma	nager Roon	n																	
																Nat	urally	ventilation		
1300h	1790.58	1790.58	306.92	98.11	100.8	100.8	255.6	333	177.75	153.74	113.76	5221.64		Peak 1700	1	Sensible		Sensibl	Latent	
1400h	2069.48	2069.48	357.65	137.44	100.8	100.8	248.58	554.4	186.75	155.51	119.52	6100.41		Roof		18495				
1500h	2236.83	2236.83	408.38	216.1	115.2	115.2	234.54	747	193.5	157.28	123.84	6784.7		Perimeter w	all	4993.82				
1600h	2292.61	2292.61	433.74	314.42	115.2	115.2	211.14	865.8	200.25	159.04	128.16	7128.17		Glass(Conduct	ion)	1209.6				
1700h	2292.61	2292.61	459.11	412.75	100.8	100.8	211.14	882	204.75	160.81	131.04	7248.42		Glass(Radiati	on)	4125.06				
														Partition wa	II	C				
	Me	eeting Roon	1											Floor		18495				
														Occupants		2593.5	2090			
1300h	2643.23	2643.23	424.17	511.07	201.6	100.8	511.2	315	592.5	226.95	227.52	8397.27		Lights		1124.32				
1400h	3054.95	3054.95	494.28	491.41	201.6	100.8	497.16	293.4	622.5	229.56	239.04	9279.65		Appliances		1179.36				
1500h	3301.98	3301.98	564.39	452.08	230.4	115.2	469.08	264.6	645	232.17	247.68	9824.56		Infiltration		2213.998	7449.75			
1600h	3384.33	3384.33	599.44	412.08	230.4	115.2	422.28	241.2	667.5	234.78	256.32	9947.86		Ventilation				3739.2	12581.8	3
1700h	3384.33	3384.33	634.5	393.08	201.6	100.8	422.28	208.8	682.5	237.39	262.08	9911.69		Floor load						
														Grand load	l					
	Training Room													Floor load		63969.41				
														Grand load		80290.41				
1300h	3265.17	3265.17	182.91	174.89	201.6	100.8	177.48	73.08	592.5	280.35	113.76	8427.71								
1400h	3773.77	3773.77	309.73	245	201.6	100.8	157.32	1108.8	622.5	283.58	119.52	10696.39								
1500h	3773.77	3773.77	385.83	385.22	230.4	115.2	120.6	1494	645	286.8	123.84	11334.43								
1600h	4180.64	4180.64	487.29	560.5	230.4	115.2	88.92	1731.6	667.5	289.02	128.16	12659.87		Sensible		54429.66				
1700h	4180.64	4180.64	512.65	735.77	201.6	100.8	73.08	1764	682.5	293.24	131.04	12855.96		Sensible to	tal	58168.86				
	Ge	neral Office	,																	
1300h	4820.02	4820.02	911.04	252.79	201.6	201.6	630	354.96	888.75	413.85	568.8	14063.43								
1400h	5570.8	5570.8	875.99	428.06	201.6	201.6	586.8	314.64	933.75	418.61	597.6	15700.25								
1500h	6021.27	6021.27	805.88	533.23	230.4	230.4	529.2	241.2	967.5	423.37	619.2	16622.92								
1600h	6021.27		735.77	673.45	230.4	230.4	482.4	177.84	1001.25	428.13		16642.98								
	CLF values	for genera	l office	Heat load	from light	5 Hea	t from des.	computer	Zonal	cooling loa	d Shee	t4 ①								

APPENDIX G

Figure 1: Psychometric chart

APPENDIX H

Table 16: Typical coil bypass factor.

Row Deep	14 fins/inch								
	Face velocity= 2 m/s	2.5 m/s	3 m/s						
1	0.52	0.56	0.59						
2	0.274	0.31	0.35						
4	0.076	0.10	0.12						
6	0.022	0.03	0.04						

APPENDIX I

Table 17: Duct and joint losses.

D	Type -	Volume Flow rate (m3/s)	Velocity (m/s)	Diameter (m)	Length (m)	ΔP (Pa/m)	Duct loss (Pa)	T joint loss (Pa)
A	Duct	2.663	8	0.651	1.5	1.01	1.515	
N	T joint		5					12
В	Branch	0.369	5	0.306	1	1.05	1.05	
A1	Duct	2.294	5	0.764	1	0.339	0.339	T .
P	T joint		5					12
С	Branch	0.359	5	0.302	1	1.06	1.06	4
D	Duct	1.936	5	0.702	4	0.379	1.516	
Q	T joint		5					12
E	Branch	0.276	5	0.265	1	1.24	1.24	
D1	Duct	1.66	5	0.65	1	0.416	0.416	
R	T joint		5					12
F	Branch	0.266	5	0.26	1	1.28	1.28	
G	Duct	1.394	5	0.596	4	0.461	1.844	
S	T joint		5					12
Н	Branch	0.276	5	0.265	1	1.24	1.24	1
G1	Duct	1.119	5	0.534	1	0.527	0.527	
Т	T joint		5					12
J	Branch	0.266	5	0.26	1	1.28	1.28	
K	Duct	0.853	5	0.466	4	0.624	2.496	
U	T joint		5					12
L	Branch	0.431	5	0.331	1	0.95	0.95	
V	90 bend		5					12
M	Branch	0.421	5	0.328	1	0.951	0.951	

_ A	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R
21 1500h	3773.77	3773.77	385.83	385.22	230.4	115.2	120.6	1494	645	286.8	123.84	11334.43					
22 1600h	4180.64	4180.64	487.29	560.5	230.4	115.2	88.92	1731.6	667.5	289.02	128.16	12659.87			Sensible		54429.66
23 1700h	4180.64	4180.64	512.65	735.77	201.6	100.8	73.08	1764	682.5	293.24	131.04	12855.96			Sensible to	otal	58168.86
24 25																	
25	Ge	eneral Offic	e														
26 1300h	4820.02	4820.02	911.04	252.79	201.6	201.6	630	354.96	888.75	413.85	568.8	14063.43					
27 1400h	5570.8	5570.8	875.99	428.06	201.6	201.6	586.8	314.64	933.75	418.61	597.6	15700.25					
28 1500h	6021.27	6021.27	805.88	533.23	230.4	230.4	529.2	241.2	967.5	423.37	619.2	16622.92					
29 1600h	6021.27	6021.27	735.77	673.45	230.4	230.4	482.4	177.84	1001.25	428.13	640.8	16642.98					
30 1700h	6171.42	6171.42	700.71	708.5	201.6	201.6	417.6	146.16	1023.75	432.88	655.2	16830.84					
31																	
32		Corridor															
33 1300h	1926	1926	137.94	82.21								4072.15					
34 1400h	2226	2226	160.74	139.21								4751.95					
35 1500h	2406	2406	183.54	173.41								5168.95					
36 1600h	2466	2466	194.94	219.01								5345.95					
37 1700h	2466	2466	206.34	230.41								5368.75					
38																	
39 40																	
40																	
41																	
42	supply a	air qua															
43	Mana	ager	935.4007	0.935401													
44	Mee	ting	1279.093	1.279093													
45	Trair	ning	1659.048	1.659048													
45 46	Gene	eral	2172.002	2.172002													
47	Corri	idor	692.8313	0.692831													
48	7.749																
49																	
	CLF values	s for gener	al office	Heat load	l from lights	Hea	t from des	.computer	Zonal	cooling lo	ad Shee	et4 🕀)				
Ready (4. Ac	ressibility: Inves	tigate															

			С	D		F					К	
47		Cor	ridor	692.8313	0.692831							
48		7.749										
49												
50												
51		Manager	7248.42	6.4638	1121.387	1.121387	0.931384					
52		Meeting	9911.69	6.4638	1533.415	1.533415	1.273601					
53		Training	12855.96	6.4638	1988.917	1.988917	1.651924					
54		General	16830.84	6.4638	2603.862	2.603862	2.162676					
55		Corridir	5368.75	6.4638	830.5873	0.830587	0.689857					
56												
57		Sec	Q(m3)	V(ms-1)		Dia .Squa						
58		Α	6.738374	8	3.369187	1.072989	1.035852					
59		В	5.079326	8	2.539663	0.80881	0.899339					
60		C	2.907325	8	1.453662	0.46295	0.680404					
61		D	2.214493	8	1.107247	0.352626	0.593824					
62		E	0.935401	5	0.748321	0.238319	0.488179					
63		F	1.659048	5	1.327238	0.422687	0.650144					
64		G	2.172002	5	1.737602	0.553376	0.743893					
65		H	0.692831	4	0.692831	0.220647	0.469731					
66		I	1.279093	5	1.023274	0.325884	0.570862					
67												
68			3.14									
69												
70												
71												
72												
73												
74												
75			_									
4	·	CLF value	es for gene	ral office	Heat loa	ad from lig	nts He	at from de	es.compute	r Zonal	cooling lo	oad Sheet

REFERENCE

- https://www.lyfnstyle.com/2020/09/14/comparison-between-blow-through-draw-through-ahu/
- https://www.ohio.edu/mechanical/thermo/property_tables/air/air_Cp_Cv.html
- https://www.lyfnstyle.com/2020/09/14/comparison-between-blow-through-draw-through-ahu/
- https://www.cedengineering.com/userfiles/Air%20Conditioning%20Psychrometrics%20 R1.pdf
- https://www.engineersedge.com/fluid_flow/mass_flow_rate.htm
- https://www.engineeringtoolbox.com/air-density-specific-weight-d_600.html