7 Lecture 7: Matrix Inverse

Definition 7.1. A matrix of the size $n \times n$ (i.e., the number of rows equals the number of columns) is called a square matrix. The square matrix

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

is called the **identity** matrix. In some context, the identity matrix of size $n \times n$ (or simply of "size n") is denoted by \mathbf{I}_n .

Note that:

- For any square matrix A, we have AI = IA = A.
- For any $m \times n$ matrix **A**, we have $\mathbf{I}_m \mathbf{A} = \mathbf{A} \mathbf{I}_n = \mathbf{A}$.

7.1 The inverse matrix

A square matrix \mathbf{A} is said to be **invertible** if there exists a square matrix \mathbf{B} (of the same size) such that

$$\mathbf{AB} = \mathbf{BA} = \mathbf{I} \tag{7.1}$$

In this case, **B** is an **inverse** of **A**. The inverse of **A** is denoted by A^{-1} .

Example 7.1. If
$$\mathbf{A} = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$, then
$$\mathbf{AB} = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix} \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and}$$

$$\mathbf{BA} = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Thus, ${\bf B} = {\bf A}^{-1}$.

The inverse of **A** is unique. Indeed, if **C** is another inverse of **A**, we will show that $\mathbf{C} = \mathbf{B}$. By the relation (7.1), $\mathbf{AC} = \mathbf{CA} = \mathbf{I}$. Therefore,

$$\mathbf{C} = \mathbf{CI} = \mathbf{C}(\mathbf{AB}) = (\mathbf{CA})\mathbf{B} = \mathbf{IB} = \mathbf{B}.$$

A matrix that is *not invertible* is sometimes called a **singular matrix**, and an invertible matrix is called a **nonsingular matrix**.

7.2 Calculation of inverse matrices

7.2.1 For a 2×2 matrix

Let $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ If $ad - bc \neq 0$ then \mathbf{A} is invertible and the inverse of \mathbf{A} is

$$\mathbf{A}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

The term ad - bc is known as the **determinant** of **A**. The determinant of a matrix **A** is written as: $det(\mathbf{A})$

Example 7.2. Find the inverse of $A = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$.

Solution: Since $det(\mathbf{A}) = 3(6) - 4(5) = -2 \neq 0$, A is invertible, and

$$\mathbf{A}^{-1} = \frac{1}{-2} \begin{bmatrix} 6 & -4 \\ -5 & 3 \end{bmatrix} = \begin{bmatrix} 6/(-2) & -4/(-2) \\ -5/(-2) & 3/(-2) \end{bmatrix} = \begin{bmatrix} -3 & 2 \\ 5/2 & -3/2 \end{bmatrix}$$

7.2.2 For any $n \times n$ matrix:

Using Gauss-Jordan Algorithm: Row reduce the augmented matrix $\begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix}$. If \mathbf{A} is row equivalent to \mathbf{I} , then $\begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix}$ is row equivalent to $\begin{bmatrix} \mathbf{I} & \mathbf{A}^{-1} \end{bmatrix}$. Otherwise, \mathbf{A} does not have an inverse.

Example 7.3. Find the inverse of the matrix $\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$, if it exists.

Solution: We first row reduce the matrix $\begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix}$:

$$\begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & -3 & -4 & 0 & -4 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 & -4 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3/2 & -2 & 1/2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -9/2 & 7 & -3/2 \\ 0 & 1 & 0 & -2 & 4 & -1 \\ 0 & 0 & 1 & 3/2 & -2 & 1/2 \end{bmatrix} .$$

Since $\mathbf{A} \sim \mathbf{I}$, that \mathbf{A} is invertible, and

$$\mathbf{A}^{-1} = \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix}$$

Example 7.4. Find the inverse of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix}$, if it exists.

Solution: We first row reduce the matrix $\begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix}$:

$$\begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 2 & 3 & 4 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 & 1 & 0 \\ 0 & 1 & 2 & -2 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 1 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 & 1 & 0 \\ 0 & 1 & 2 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 0 & -3 & 1 \\ 0 & 1 & 2 & 0 & 2 & -1 \\ 0 & 0 & 0 & 1 & 1 & -1 \end{bmatrix}.$$

Since matrix **A** cannot be row reduced to the identity matrix, **A** is not invertible.

7.3 Properties

(1) If **A** is an invertible matrix, then \mathbf{A}^{-1} is invertible and

$$\left(\mathbf{A}^{-1}\right)^{-1} = \mathbf{A}$$

(2) If **A** and **B** are $n \times n$ invertible matrices, then so is **AB**, and the inverse of **AB** is the product of the inverses of **A** and **B** in the reverse order. That is,

$$(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$$

(3) If **A** is an invertible matrix, then so is \mathbf{A}^T , and the inverse of \mathbf{A}^T is the transpose of \mathbf{A}^{-1} . That is,

$$\left(\mathbf{A}^T\right)^{-1} = \left(\mathbf{A}^{-1}\right)^T$$

The set of all nonsingular matrices is known as the general linear group of degree n and denoted by \mathbf{GL}_n .

7.4 Application to linear systems with unique solutions

If $\mathbf{A} \in \mathbf{GL}_n$, the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution for any $\mathbf{b} \in \mathbb{R}^n$, and the solution is

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}.$$

Example 7.5. Find the solution of the linear system

$$\begin{cases} +x_2 & +2x_3 = 2\\ x_1 & +3x_3 = -4\\ 4x_1 & -3x_2 & +8x_3 = 0 \end{cases}$$

Solution: The linear system is written as

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

where
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 2 \\ -4 \\ 0 \end{bmatrix}$. We see from Example 7.3 that the coefficient matrix of

the linear system, A, is invertible. Thus, the system has a unique solution, which is

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = \begin{bmatrix} -9/2 & 7 & -3/2 \\ -2 & 4 & -1 \\ 3/2 & -2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 \\ -4 \\ 0 \end{bmatrix} = \begin{bmatrix} -33 \\ -20 \\ 11 \end{bmatrix}.$$

8 Lecture 8: Matrix Factorization with Elementary Matrices

8.1 Upper triangular, lower triangular, and diagonal matrices

(i) An $n \times n$ matrix $\mathbf{A} = [a_{ij}]$ is upper triangular if and only if $a_{ij} = 0$ when i > j. Examples,

$$\begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 4 & 5 & 6 \\ 0 & 0 & 6 & 7 \\ 0 & 0 & 0 & 8 \end{bmatrix}$$

In particular, an upper triangle matrix whose entries in the main diagonal are 1 is called a upper unitriangular.

(ii) An $n \times n$ matrix $\mathbf{A} = [a_{ij}]$ is lower triangular if and only if $a_{ij} = 0$ when i < j. Examples,

$$\begin{bmatrix} 1 & 0 \\ 1 & 4 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & 6 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 4 & 0 & 0 \\ 7 & 0 & 6 & 0 \\ 1 & 1 & 6 & 8 \end{bmatrix}$$

(iii) An $n \times n$ matrix $\mathbf{A} = [a_{ij}]$ is diagonal if and only if $a_{ij} = 0$ when $i \neq j$. Examples,

$$\begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 8 \end{bmatrix}$$

8.2 Upper trapezoidal and lower trapezoidal matrices

(a) An $m \times n$ matrix $\mathbf{A} = [a_{ij}]$ is upper trapezoidal if and only if $a_{ij} = 0$ when i > j. Examples,

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 4 & 5 & 0 & 6 \\ 0 & 0 & 6 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \\ 0 & 0 & 0 \end{bmatrix}$$

(b) An $m \times n$ matrix $\mathbf{A} = [a_{ij}]$ is lower trapezoidal if it is the transpose of an upper trapezoidal matrix.

8.3 Elementary matrices

Elementary Matrices

An elementary matrix is obtained by applying a single elementary row operation on an identity matrix. The following example shows the three kinds of elementary matrices.

Example 8.1.

$$\mathbf{E}_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}, \text{ applying the replacement - Replace row 3 by row } 3 + (-4) \text{ times row 1})$$

$$\mathbf{E}_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ applying the interchange - interchange row 1 and row 2}$$

$$\mathbf{E}_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}, \text{ applying the scaling - scale the last row by 5.}$$

Note Elementary matrices are invertible (row operations are reversible). The inverse of an elementary matrix is an elementary matrix of the same kind.

Example 8.2. With three matrices E_1 , E_2 and E_3 in Example 8.1,

$$\mathbf{E}_{1}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{bmatrix}, \text{ applying the replacement - Replace row 3 by row 3 + 4 times row 1)}$$

$$\mathbf{E}_{2}^{-1} = \mathbf{E}_{2} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ applying the interchange - interchange row 1 and row 2}$$

$$\mathbf{E}_{3^{-1}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{5} \end{bmatrix}, \text{ applying the scaling - scale the last row by } \frac{1}{5}.$$

$$\text{Let } \mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \text{ be a } 3 \times 3 \text{ matrix in a general form and } \mathbf{E}_{1}, \mathbf{E}_{2} \text{ and } \mathbf{E}_{3} \text{ be three matrices in } \mathbf{E}_{2}, \mathbf{E}_{3}, \mathbf{E}_{3}, \mathbf{E}_{4}, \mathbf{E}_{5}, \mathbf$$

Let
$$\mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 be a 3×3 matrix in a general form and $\mathbf{E}_1, \mathbf{E}_2$ and \mathbf{E}_3 be three matrices in Example 8.1, we see that

$$\mathbf{E}_1\mathbf{A} = \left[egin{array}{cccc} a & b & c \ d & e & f \ g-4a & h-4b & i-4c \end{array}
ight].$$

The matrix on the right-hand side is also obtained by replacing row 3 of matrix \mathbf{A} with row 3 + (-4) times row 1. This is the same operation to produce the elementary matrix \mathbf{E}_1 from the identity matrix. Similarly,

$$\mathbf{E}_2 \mathbf{A} = \begin{bmatrix} d & e & f \\ a & b & c \\ g & h & i \end{bmatrix}$$

equals the matrix obtained by interchange row 1 and row 2 of matrix A, and

$$\mathbf{E}_3 \mathbf{A} = \begin{bmatrix} a & b & c \\ d & e & f \\ 5g & 5h & 5i \end{bmatrix}$$

 $\mathbf{E}_3\mathbf{A}$ equals the matrix obtained by multiplying the last row of matrix \mathbf{A} by 5. These illustrations show that a single row operation applied to a matrix equals this matrix multiplied by an elementary matrix on the left side (or left-multiplication).

8.4 Gauss-Jordan through products of elementary matrices and LU factorization

Suppose that to row reduce a matrix **A** to its proto-row reduce echelon form, denoted by $\operatorname{pref}(\mathbf{A})$, we need to apply ℓ times elementary row operation. Each elementary row operation j^{th} associated with an elementary matrix \mathbf{E}_{j} , then from the discussion above we have

$$\operatorname{pref}(\mathbf{A}) = \mathbf{E}_{\ell} \mathbf{E}_{\ell-1} \dots \mathbf{E}_2 \mathbf{E}_1 \mathbf{A}$$

Each elementary matrix is invertible. Thus, the multiplication is invertible. Therefore, matrix \mathbf{A} can be written as a multiplication as follows

$$\mathbf{A} = (\mathbf{E}_{\ell}\mathbf{E}_{\ell-1}\dots\mathbf{E}_2\mathbf{E}_1)^{-1}\mathrm{pref}(\mathbf{A})$$

When no row exchanges are required in the forward phase, $\mathbf{L} := (\mathbf{E}_{\ell} \mathbf{E}_{\ell-1} \dots \mathbf{E}_2 \mathbf{E}_1)^{-1}$ is lower unitriangular and $\mathbf{U} := \operatorname{pref}(\mathbf{A})$, the proto-row-echelon form of \mathbf{A} , is upper trapezoidal. Thus, we can write as the product of a lower unitriangular matrix and an upper trapezoidal matrix.

$$\mathbf{A} = \mathbf{L}\mathbf{U}$$

This result is known as the LU factorization of A.

Remark 8.1. Some important observations:

- 1. The LU factorization does not exist if row exchange is needed in the forward phase of the Gauss-Jordan algorithm.
- 2. The LU factorization may not be unique; for some matrices, there is more than one way to factor the matrix as the product of a lower unitriangular matrix and the proto-row-echelon form of the matrix.

8.5 LU factorization and Algorithms

- 1. Reduce A to an echelon form U by a sequence of row replacement operations, if possible.
- 2. Place entries in L such that the same sequence of row operations reduces L to I.

The following example illustrates how to make a matrix L when the LU factorization exists:

Example 8.3. Find an LU factorization of

$$A = \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ -4 & -5 & 3 & -8 & 1 \\ 2 & -5 & -4 & 1 & 8 \\ -6 & 0 & 7 & -3 & 1 \end{bmatrix}$$

Solution: Matrix **A** has four rows, so if exists then **L** is an 4×4 matrix. We find a matrix **L** of the form

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ * & 1 & 0 & 0 \\ * & * & 1 & 0 \\ * & * & * & 1 \end{bmatrix}$$

The first column of \mathbf{L} is the first column of \mathbf{A} divided by the top pivot entry:

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & * & 1 & 0 \\ -3 & * & * & 1 \end{bmatrix}$$

Row reducing matrix A into its proto row echelon form without using the scaling operation gives

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ -4 & -5 & 3 & -8 & 1 \\ 2 & -5 & -4 & 1 & 8 \\ -6 & 0 & 7 & -3 & 1 \end{bmatrix} \sim \mathbf{A}_1 = \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ 0 & 3 & 1 & 2 & -3 \\ 0 & -9 & -3 & -4 & 10 \\ 0 & 12 & 4 & 12 & -5 \end{bmatrix}$$
$$\sim \mathbf{A}_2 = \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ 0 & 3 & 1 & 2 & -3 \\ 0 & 0 & 0 & 2 & 1 \end{bmatrix} \sim \operatorname{pref}(\mathbf{A}) = \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ 0 & 3 & 1 & 2 & -3 \\ 0 & 0 & 0 & 2 & 1 \end{bmatrix} = \mathbf{U}.$$

To determine two entries under the pivot position in the second column of \mathbf{L} , we use the second column of \mathbf{A}_1 . Similarly to the way building the first column, divide the second column of \mathbf{A}_1 by the

pivot, the two entries below the normalized pivot gives the two corresponding entries in the second column of L, i.e., after this step, matrix L becomes

$$\mathbf{L} = \begin{vmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & -3 & 1 & 0 \\ -3 & 4 & * & 1 \end{vmatrix}.$$

Doing similarly, the last missing entry in the matrix \mathbf{L} is obtain from the fourth column of \mathbf{A}_2 , and equal the last entry in the column divided by the pivot (column 3 of matrix \mathbf{A}_2 is ignored since it is not a pivot column). Thus, matrix \mathbf{L} is

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & -3 & 1 & 0 \\ -3 & 4 & 2 & 1 \end{bmatrix}.$$

8.6 CR Factorization

If A is an $m \times n$ matrix with the rank r, then A has the factorization of A = CR, where

- C is the $m \times r$ matrix consisting of the pivot columns of A and
- **R** the compact reduced row-echelon matrix of **A** (i.e., the matrix consisting of the nonzero rows of $rref(\mathbf{A})$).

Example 8.4. Find the CR-factorization of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 & 2 & 1 & 3 \\ 1 & 0 & 1 & 2 & 1 & 3 \\ 1 & 0 & 1 & 2 & 1 & 3 \end{bmatrix}$$

Apply the Gauss-Jordan Algorithm to row reduce matrix A

Thus, $rank(\mathbf{A}) = 1$ and the pivot column of \mathbf{A} is $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. The CR factorization of \mathbf{A} is

$$\mathbf{A} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 2 & 1 & 3 \end{bmatrix}$$

Example 8.5. Find an CR factorization of

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ -4 & -5 & 3 & -8 & 1 \\ 2 & -5 & -4 & 1 & 9 \end{bmatrix}$$

We first apply the Gauss-Jordan algorithm to find the reduced-row-echelon form of A, i.e., rref(A):

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ -4 & -5 & 3 & -8 & 1 \\ 2 & -5 & -4 & 1 & 9 \end{bmatrix} \sim \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ 0 & 3 & 1 & 2 & -3 \\ 0 & -9 & -3 & -4 & 11 \end{bmatrix} \sim \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ 0 & 3 & 1 & 2 & -3 \\ 0 & 0 & 0 & 2 & 2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 2 & -1/2 & 5/2 & -1 \\ 0 & 1 & 1/3 & 2/3 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1/2 & 0 & -7/2 \\ 0 & 1 & 1/3 & 0 & -5/3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -7/6 & 0 & -1/6 \\ 0 & 1 & 1/3 & 0 & -5/3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Matrix **A** has three pivot columns 1, 2, 4, which are $\begin{bmatrix} 2 \\ -4 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 4 \\ -5 \\ -5 \end{bmatrix}$, $\begin{bmatrix} 5 \\ -8 \\ 1 \end{bmatrix}$. Thus, the CR-factorization

is

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 5 \\ -4 & -5 & -8 \\ 2 & -5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -7/6 & 0 & -1/6 \\ 0 & 1 & 1/3 & 0 & -5/3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$