XLIX Olimpíada Internacional e XXIII Olimpíada Iberoamericana Segundo Teste de Seleção 29 de março de 2008

Instruções:

- Não resolva mais de uma questão por folha de almaço. Escreva seu nome em cada folha que usar. Entregue também o rascunho, pois ele pode ser utilizado a seu favor na correção.
- É proibido o uso de calculadora ou computador. É permitido o uso de régua, esquadro e compasso.
- Tudo o que você escrever deve ser justificado.
- Todas as questões têm o mesmo valor.
- Duração da prova: 5 horas.

▶PROBLEMA 1

Sejam b, n > 1 inteiros. Suponha que para cada k > 1 exista um inteiro a_k tal que $b - a_k^n$ seja divisível por k. Prove que $b = A^n$, para algum inteiro A.

▶PROBLEMA 2

Considere todas as funções $f: N \to N$ que satisfazem à seguinte condição:

$$f(m+n) \geqslant f(m) + f(f(n)) - 1,$$

para todos os $m, n \in N$. Ache os possíveis valores de f(2008).

(N denota o conjunto dos inteiros positivos.)

▶PROBLEMA 3

Sejam A_1 , B_1 e C_1 , respectivamente, os pontos médios dos lados \overline{BC} , \overline{CA} e \overline{AB} do triângulo ABC e P um ponto variável sobre o seu circuncírculo. As retas PA_1 , PB_1 e PC_1 encontram o circuncírculo novamente nos pontos A', B' e C', respectivamente. Suponha que os pontos A, B, C, A', B' e C' sejam distintos e que as retas AA', BB' e CC' formem um triângulo. Mostre que a área deste triângulo não depende da posição do ponto P.

▶PROBLEMA 4

No sistema de coordenadas cartesianas, definimos a faixa $S_n = \{(x,y) \mid n \leqslant x < n+1\}$, para cada inteiro n. Assuma que cada faixa é colorida de azul ou vermelho, e sejam a e b dois inteiros positivos distintos. Prove que existe um retângulo, cujos lados têm comprimentos a e b, tal que seus vértices tenham a mesma cor.