Week 1 Review

Reminders

- Have you activated your ECF account for the labs? See our announcements on Portal.
- 2. Here are the current lab assignments:
 - Section L0101 Wednesday Labs
 - BA3145: Abady Kanaan
 - BA3155: Kapadia Tao
 - BA3165: Truong Zou
 - Section L5101 Thursday Labs
 - BA3145: Abboud-Seryani Hu
 - BA3155: Hua Rhee
 - BA3165: Saynorath Zou
- 3. Have you done your Lab1 prelab? ©
 - Check out the Breadboard Demo video; link posted under Course Materials -> Labs.

Textbook

- In case you don't want to purchase a full-price textbook but want access to it for reference:
 - Check the book out first in the library (it's under course reserves).
 - Look for a used copy
- If you have a different edition:
 - You can find the table of contents of the 4th edition under Course Materials -> General Course Information.

Week 1 Review

- Properties of electricity
- Semiconductor materials
 - Doping (n-type and p-type)
- p-n junctions
- Transistors
 - MOSFETs

How CSC258 tutorials work

- Each week has three hours of classroom time.
 - Two hours of lectures,
 - One hour of tutorials.
- The tutorial is split into two halves:
 - The first half hour at the beginning, reviewing last week's material and potential exam questions.
 - The second half hour is later in the week, reviewing what you need to know for the upcoming lab.

Midterm Short Answer Q's

- True or False? Doping gives a semiconductor an overall positive or negative charge.
- What kind of bias on a pn junction causes the depletion layer to expand?
 Reverse bias
- Phosphorus has 5 electrons in its outer valence shell. When added in small amounts to silicon, the result is a ______
 semiconductor. Doped or N-Type

Electricity review

- If electrons are traveling from the bottom of the battery to the top, which way is current said to be traveling?
 - Current is measured as the movement of positive charges.

Transistor review

Logic gates are built from <u>transistors</u>

This transistor is called <u>nMOS</u>

It conducts (i.e., acts as a closed switch) if we apply 5 Volts (logic-1) at its gate.

This transistor is called pMOS

It conducts (i.e., acts as a closed switch, if we apply O Volts (logic-o, Gnd) at its gate.

More Transistor Questions

What gate is created by the following?

Remember: transistors that look like are activated when the gate input is high, whereas transistors that look like are activated when the gate input is low.

Which gate is this one?

Α	В	W	Y
0	0		
0	1		
1	0		
1	1		

Which gate is this one?

A	В	W	Y
0	0	1	0
0	1	0	1
1	0	0	1
1	1	0	1

$$W = \overline{(A + B)}$$
$$Y = (A + B)$$

Basic Logic Gates: Symbols and Truth <u>Tables</u>

• What are the names and truth table values for the following gates? How many transistors do you need to build a NOT gate?

A	В	Y
0	0	
0	1	
1	0	
1	1	

A	В	Y
0	0	
0	1	
1	0	
1	1	

A	Y
0	
1	

Basic Logic Gates: Symbols and Truth Tables

• What are the names and truth table values for the following gates?

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

A	Y
0	1
1	0

Kinds of current

What is the name of currents A and B, and how are they produced?

Kinds of current

- Two things to note here:
 - Need to determine which electrons are moving from high concentration to low concentration (diffusion),

and which are moving because of the electric field (drift).

- Remember: Current is measured in the opposite direction of electron flow (i.e. as the flow of positive charge through the material)