GRAPHIC ERA HILL UNIVERSITY Department of Mathematics

TMA-316: Discrete Mathematical Structures and Combinatorics (Assignment No: 1)

Last Date of Submission: 30-Sep-2023

1.	Define a set and give examples to illustrate the difference between a collection and a set.	What
	are the different ways to specify a set?	

- 2. Define Countable and Uncountable Sets.
- 3. Show that the set Z of all integers is countable. Also Show that every infinite set has a denumerable (countable infinity) subset.
- 4. Prove that sets of real numbers and sets of complex numbers are uncountable.
- 5. Let A be a finite set. Identify, whether the followings are true or not ? a) $A \subseteq P(A)$ b) $A \in P(A)$ c) $\phi \subseteq P(A)$ d) $\phi \in P(A)$ e) $\phi \subseteq A$ f) $\phi \in A$.
- 6. For a set A, followings are true or not ? a) $\phi \in 2^A$ b) $\phi \subseteq 2^A$ c) $A \in 2^A$ d) $A \subseteq 2^A$ e) $A \in 2^A$ f) $|A| \le |2^A|$.
- 7. Determine $|P(P(P(P(\phi)))|$.
- 8. Uf $A = \{\text{Fine, Yang}\}\$ and $B = \{\text{president, vice-president, secretary, treasurer}\}\$, write:-a) $A \times B$, b) $B \times A$, c) $A \times A$, d) $A \times \phi$, e) $\phi \times A$.
- 9. Let $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $A_1 = \{1, 2, 3, 4\}$, $A_2 = \{5, 6, 7\}$, $A_3 = \{8, 9, 10\}$, $A_4 = \{4, 8, 10\}$, $A_5 = \{4, 5, 7, 9\}$, $A_6 = \{1, 2, 3, 6, 8, 10\}$. Which of the following are partitions of A? a) $\{A_1, A_2, A_5\}$, b) $\{A_1, A_3, A_5\}$, c) $\{A_3, A_6\}$, d) $\{A_2, A_3, A_4\}$, e) $\{A_2, A_4\}$.
- 10. Let $A = \{a, b, c, d, ..., z\}$. Give the partition \mathcal{P} of A such that $|\mathcal{P}| = 4$ and one element of \mathcal{P} contains only the letters needed to spell your first name.
- 11. Let $A = \{a, b, c, d, ..., z\}$. Give the partition \mathcal{P} of A such that $|\mathcal{P}| = 3$ and each element of \mathcal{P} contains at-least five elements.
- 12. The number of partitions of a set with n elements into k subsets satisfies the recurrence relation S(n,k) = S(n-1,k-1) + k.S(n-1,k) with initial conditions S(n,1) = S(n,n) = 1. Find the number of partitions of a set with three elements into two subsets, i.e. S(3,2). Hence, verify your result on a set $A = \{1,2,3,4\}$.
- 13. Which of the followings are not true?
 - a) $A B = A \cap B^c$ b) $A (A B) = A \cap B$ c) $A B = A \cap B^c$ d) $A \cap B = B$
 - e) $B \cup (A \cap B) = B$ f) $(A \cap B^c) \cup (A \cap B) = A$ g) $A (A \cap B) = A B$ h) $B^c \subset A^c$
 - i) $B-A=\phi$ j) if $A\subset \phi$, then $A=\phi$ h) $A-(A\cap B)=B$ i) $A\cup B=A$.
- 14. Which of the followings are not true?
 - a) (A B) C = A (C B) b) (A B) C = (A C) B
 - c) $(A \cup B) (B \cup C) = A (A \cup C) (A B)$ d) $(A B) C = A (B \cup C)$

- 15. Find the cardinality of a set of integers, defined as $X = \{n | 1 \le n \le 123, n \text{ is divisible by 2 or 3}\}.$
- 16. Find the cardinality of a set of integers, defined as $X = \{n | 1 \le n \le 123, n \text{ is divisible by 2 and 3}\}$.
- 17. Find the cardinality of the power set of the set $\{0, 1, 2, ..., 10\}$.
- 18. Write down the following sets:

- a) $A = \{x : x^2 = 4\}$, b) $B = \{x : x^2 = 9, x 3 = 5\}$, c) $C = \{x : x^2 + 1 = 0, x \text{ is a complex number}\}$, d) $D = \{x : x^2 + 1 = 0, x \text{ is a real number}\}$.
- 19. Which of the following sets are equal? Also examine their nature (i.e. null, singleton etc.)
 - a) $A = \{x : x^2 = 11, x \text{ is an even integer}\},\$
- b) $B = \{0\},\$ c) $C = \{x : x + 6 = 6\},\$

d) $D = \{x : x^2 = 7, 3x = 5\}.$

- e) $E = \{x : x \in \mathbb{N}, 5 < x < 14\}.$
- 20. Determine the power sets of the following sets:
 - a) $\{a\},\$
- b) $\{\{a\}\},\$
- c) $\{\phi, \{\phi\}\}\$.
- 21. Let $A = \{\phi, b\}$, construct the following sets:

 - a) $A \phi$, b) $\{\phi\} A$,
- c) $A \cup P(A)$,
- d) ϕA .
- 22. Show that union of two sets is: (where symbol U stands for universal set)
 - a) commutative,
- b) Associative,
- c) Idempotent,
- d) $A \cup \phi = A$,
- e) $U \cup A = U$.

- 23. Show that intersection of two sets is:
 - a) commutative,
- b) Associative,
- c) Idempotent, d) $A \cap U = A$, e) $A \cap \phi = \phi$.
- 24. Simplify the expression $[\{(A \cup B) \cap C\}^c \cup B^c]^c$, where superscript c represents the compliment.
- 25. Show that union is distributive over intersection

i.e.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
.

26. Show that intersection is distributive over union

i.e.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
.

- 27. Let $A_n = \{x : x \text{ is divisible by } n\}$, where $n \in \mathbb{N}$. Find $A_3 \cap A_5$ and $A_3 \cup A_5$.
- 28. Prove the followings:

- a) $A-B=A\Leftrightarrow A\cap B=\phi,$ b) $A-B=\phi\Leftrightarrow A\subseteq B,$ c) $A-(A-B)=A\cap B,$ d) $(A-C)\cap (B-C)=(A\cap B)-C,$ e) $A-(A\cap B)=A-B,$ f) $A\cap (B-C)=(A\cap B)-(A\cap C),$

- g) $A \oplus B$ or $(A B) \cup (B A) = (A \cup B) (A \cap B)$.
- 29. Prove that $P(A \cap B)$ is equal to $P(A) \cap P(B)$.
- 30. In a class of 25 students, 12 have taken economics, 8 have taken economics but not political science. Find the number of students who have taken economics and political science and those who have taken political science but not economics.
- 31. Among the first 500 positive integers,
 - a) Determine the integers which are neither divisible by 5, 7 nor 9.
 - b) Determine the integers which are divisible by 5 but not by 7 and 9.

- 32. In a group 200 people, each of whom is at-least accountant or management consultant or salesmanager, it was found that 80 are accountants, 110 are management consultants, 130 are salesmanagers, 25 are accountants as-well-as sales-managers, 70 are management consultants as-well-as sales managers, 10 are accountants, management consultants as-well-as sales managers. Find the number of those people who are accountant as-well-as management consultants but not sales-managers.
- 33. Let $A = \{1, 2, 4, a, b, c\}$, identify each of the following as true or false :- a) $2 \in A$, b) $3 \in A$, c) $c \notin A$, d) $\phi \in A$, e) $\{\} \notin A$, f) $A \in A$.
- 34. Let $A = \{x : x \text{ is a real number and } x < 6\}$, identify each of the following as true or false :- a) $3 \in A$, b) $6 \in A$, c) $5 \notin A$, d) $8 \notin A$, e) $-8 \in A$, f) $3.4 \notin A$.
- 35. In each part, give the set by listing its elements:
 - a) The set of all positive integers that are less than 10, b) $A = \{x : x \in \mathbb{Z} \text{ is and } x^2 < 12\},$
 - c) AARDVARK,
- d) BOOK,
- e) MISSISSIPPI.
- 36. Let $A = \{1, \{2, 3\}, 4\}$. Identify each the following as true or false : a) $3 \in A$, b) $\{1, 4\} \subseteq A$, c) $\{2, 3\} \subseteq A$, d) $\{2, 3\} \in A$, e) $\{4\} \in A$, f) $\{1, 2, 3\} \subseteq A$.
- 37. Let $A = \{1\}, B = \{1, a, 2, b, c\}, C = \{b, c\}, D = \{a, b\}$ and $E = \{1, a, 2, b, c, d\}$. Each of the following part, replace the symbol \diamond with either \subseteq or $\not\subseteq$ to give a trure statement: a) $A \diamond B$, b) $\phi \diamond A$, c) $B \diamond C$, d) $C \diamond E$, e) $D \diamond C$, f) $B \diamond E$.
- 38. If $P(B) = \{\{\}, \{m\}, \{n\}, \{m, n\}\}\$, then find B.
- 39. If $A = \{3, 7, 2\}$, find :- a) P(A), b) |A|, c) |P(A)|.
- 40. Find all the partition of $X = \{a, b, c, d\}$.

* * * * * * * All the Best * * * * * *