PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-215000

(43) Date of publication of application: 15.08.1997

(51)Int.CI.

HO4N 9/73 9/04 HO4N

(21)Application number: 08-016697

(71)Applicant: CANON INC

(22)Date of filing:

01.02.1996

(72)Inventor: TAKAHASHI KENJI

(54) IMAGE PICKUP DEVICE AND IMAGE SIGNAL PROCESSING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an image pickup device and an image signal processing method by which images are provided while considering the color rendering property of a light source and human color sensing characteristics.

SOLUTION: Concerning an image signal from an imaging device, ordinary white balance processing is performed by a white balance processing part not shown in the Figure, and these processed image data and a white balance coefficient in that case are inputted to a visual adaptation processing part shown in the Figure. At a light source information processing part 21 of this processing part, the kind of the light source is discriminated based on the white balance coefficient as mentioned above. Based on this discrimination, the matrix corresponding to the discriminated kind of the light source is selected by a matrix storage part 22, while using this matrix, the matrix operation of input image data is performed at a matrix operation processing part 23, and required image data is provided.

LEGAL STATUS

[Date of request for examination]

13.12.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平9-215000

(43)公開日 平成9年(1997)8月15日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ		技術表示箇所
H04N	9/73			H04N	9/73	Α
	9/04				9/04	В

審査請求 未請求 請求項の数10 OL (全 6 頁)

(21)出願番号	特願平8 -16697	(71)出願人			
(22)出顧日	平成8年(1996)2月1日	(72)発明者	キヤノン株式会社 東京都大田区下丸子3丁目30番2号 高橋 賢司 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内		
		(74)代理人	弁理士 丹羽 宏之 (外1名)		

(54) 【発明の名称】 撮像装置および画像信号処理方法

(57)【要約】

【課題】 光源の演色性および人間の色知覚特性を考慮 した画像の得られる撮像装置,画像信号処理方法を提供 する。

【解決手段】 撮像素子からの画像信号は、不図示のホワイトバランス処理部で通常のホワイトバランス処理が行われ、その処理後の画像データおよびその際のホワイトバランス係数が図示の視覚順応処理部に入力される。同処理部の光源情報処理部21では前記ホワイトバランス係数にもとづいて光源の種類を判定する。この判定にもとづいて、マトリクス記憶部22から、判定された光源の種類に対応するマトリクスが選定され、このマトリクスを用いてマトリクス演算処理部23で入力画像データのマトリクス演算が行われ、所要の画像データが得られる。

【特許請求の範囲】

【請求項1】 撮像素子と、この撮像素子の出力信号にホワイトバランス処理を行うホワイトバランス処理手段と、このホワイトバランス処理手段の出力信号に光源の演色性および人間の色知覚特性を考慮した変換関数を用いて色変換処理を行う色変換処理手段とを備えたことを特徴とする撮像装置。

【請求項2】 画像信号にホワイトバランス処理を行う 第1のステップと、この第1のステップで処理した画像 信号に光源の演色性および人間の色知覚特性を考慮した 色変換処理を行う第2のステップとを備えたことを特徴 とする画像信号処理方法。

【請求項3】 色変換処理手段は、ホワイトバランス係数をパラメータとする変換関数を用いて色変換処理するものであることを特徴とする請求項1記載の撮像装置。

【請求項4】 色変換処理手段は、EV値をパラメータとする変換関数を用いて色変換処理するものであることを特徴とする請求項1記載の撮像装置。

【請求項5】 パラメータを撮像素子の出力から求めることを特徴とする請求項3または請求項4記載の撮像装 20 置。

【請求項6】 パラメータを外光センサの出力から求めることを特徴とする請求項3または請求項4記載の撮像装置。

【請求項7】 変換関数は、マトリクス演算による変換 関数であることを特徴とする請求項1,請求項3,請求 項4のいずれかに記載の撮像装置。

【請求項8】 変換関数は、ルックアップテーブルによる変換関数であることを特徴とする請求項1,請求項3,請求項4のいずれかに記載の撮像装置。

【請求項9】 変換関数は、あらかじめ用意された任意の数の変換関数の中から選択されることを特徴とする請求項1,請求項3,請求項4のいずれかに記載の撮像装置。

【請求項10】 変換関数は、あらかじめ用意された1 つの変換関数が光源情報を用いて得られる補正係数により補正され求められることを特徴とする請求項1,請求項3,請求項4のいずれかに記載の撮像装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、撮像素子より入力される画像データを、人間の色の見えの特性を考慮した画像データに変換するための色変換処理に関するものである。

[0002]

【従来の技術】従来の撮像装置において、撮像条件の変化、例えば昼光と蛍光灯といった被写体を照明する光源の違いは、画像中の白点を信号値の白とするホワイトバランス処理により補正される程度であった。すなわち被写体を照明する光源の補正は撮像装置の光倫出機の角分

解フィルタが純色であればR, G, B、フィルタが補色であればM, G, Y, Cのそれぞれの信号のゲインを調整することによって行われてきた。

[0003]

【発明が解決しようとする課題】しかしながら近年のカラーマネージメントシステムの影響により、ユーザの色に対する関心の高まりから、より高いレベルの色処理が求められているのが現状である。すなわち光源の演色性、および人間の色知覚特性である色順応性を考慮した色処理が求められている。しかしながら従来のホワイトバランス処理だけでは光源の演色性、および色順応性を考慮した色変換処理を行うことは不可能である。本発明はこのような状況のもとでなされたものである。

[0004]

【課題を解決するための手段】本発明は、従来の光源の補正(ホワイトバランス処理)に加え更に、ホワイトバランス処理後の信号を光源の情報に基づき、その光源に適した演色性および色順応性を考慮した変換関数を求める、または選択し、その変換関数を用いて色変換処理を行うことにより、人間の色知覚特性を充分考慮した画像を得るものである。

【0005】詳しくは、本発明は、撮像装置を次の(1),(3)~(10)のとおりに構成し、画像信号処理方法を次の(2)のとおりに構成するものである。【0006】(1)撮像素子と、この撮像素子の出力信号にホワイトバランス処理を行うホワイトバランス処理手段と、このホワイトバランス処理手段の出力信号に光源の演色性および人間の色知覚特性を考慮した変換関数を用いて色変換処理を行う色変換処理手段とを備えた撮像装置。

【0007】(2) 画像信号にホワイトバランス処理を行う第1のステップと、この第1のステップで処理した画像信号に光源の演色性および人間の色知覚特性を考慮した色変換処理を行う第2のステップとを備えた画像信号処理方法。

【0008】(3)色変換処理手段は、ホワイトバランス係数をパラメータとする変換関数を用いて色変換処理するものである前記(1)記載の撮像装置。

【0009】(4)色変換処理手段は、EV値をパラメ 40 ータとする変換関数を用いて色変換処理するものである 前記(1)記載の撮像装置。

【0010】(5) パラメータを撮像素子の出力から求める前記(3) または(4) 記載の撮像装置。

【0011】(6) パラメータを外光センサの出力から 求める前記(3) または(4) 記載の撮像装置。

【0012】(7)変換関数は、マトリクス演算による変換関数である前記(1),(3),(4)のいずれかに記載の撮像装置。

ランス処理により補正される程度であった。すなわち被 【0013】(8)変換関数は、 ν ックアップテーブル 写体を照明する光源の補正は撮像装置の光検出機の色分 50 による変換関数である前記(1), (3), (4) のい

30

ずれかに記載の撮像装置。

【0014】(9)変換関数は、あらかじめ用意された 任意の数の変換関数の中から選択される前記(1),

(3), (4) のいずれかに記載の撮像装置。

【0015】(10)変換関数は、あらかじめ用意され た1つの変換関数が光源情報を用いて得られる補正係数 により補正され求められる前記(1), (3), (4) のいずれかに記載の撮像装置。

[0016]

【発明の実施の形態】以下に本発明の実施の形態を"撮 10 像装置"の実施例により詳しく説明する。

[0017]

【実施例】

(実施例1) 本発明に係わる実施例1を図面を参照して 説明する。図1は実施例1である"撮像装置"の概略的 構成を示すブロック図である。まずデータの流れを簡単 に説明する。図中、11はレンズ系であり、光学的ロー パスフィルタ12を透して、色分解フィルタが表面に形 成されているCCD13面に像を結ぶようになってい る。CCD13とA/D変換器14により被写体像はデ ジタル信号へと変換される。本実施例においては、補色 の色分解フィルタを用いたため、ここで得られるデジタ ル信号はM (マゼンタ), G (グリーン), Y (イエー ロ), C (シアン) の信号である。次にホワイトバラン ス処理部15においてデジタル信号中から白点が求めら れ、この白点においてM、G、Y、Cの信号値が等しく なる様に式(1)を用いてホワイトバランス処理が施さ れる。

[0018]

 $M_{ws} = M_w \times M_s$

 $Gws = Gw \times Gs$

 $Y_{ws} = Y_w \times Y_s$

$$C_{ws} = C_w \times C_s \tag{1}$$

ただし、M* , G* , Y* , C* はホワイトバランス係 数、Ms , Gs , Ys , Cs はA/D 変換して得られ た被写体のデジタル信号、Mws, Gws, Yws, Cwsはホ ワイトバランス処理後の信号である。本実施例におい て、ホワイトバランス係数を求める方法については従来 多く用いられている方法を用いた。

ws, Yws, Cwsとそのホワイトバランス係数Mw , G w , Yw , Cw は更に視覚順応処理部16へと送られ る。

【0020】図2に視覚順応処理部16のブロック図を*

*示し、これを用いて説明する。図1中ホワイトバランス 処理部15で求められたホワイトバランス係数Mw , G *, Y*, C* は、光源情報処理部21と送られる。光 源情報処理部21ではこのホワイトバランス係数を基に 画像がどのような光源下で撮影されたかを判別する。本 実施例においては、A光源、タ日、蛍光灯、昼光、フラ ッシュの5つのいづれかを判別した。判別はホワイトバ ランス係数Mw , Gw , Yw , Cw それぞれの信号より 式(2)により求められる値により行われる。

[0021]

 $WB_m = M_w / C_w$

 $WB_g = G_w / C_w$

 $WB_y = Y_w / C_w$

(2) $WB_c = 1.0$

WBm, WBg, WBy, WBcの値の関係、例えば式 (3) を満たせば夕日(但しV) (j=1~6) は夕日 のパラメータであり、A光源、蛍光灯、昼光、フラッシ ュでは値が異なる)といった様に求められる。

[0022]

【数1】

$$V_{1} < WB_{m} \leq V_{2}$$

$$V_{3} < WB_{n} \leq V_{4}$$

$$V_{5} < WB_{y} \leq V_{6}$$
(3)

【0023】但し、本実施例においては、式(2)にお いてCw を基準値として、WBm , WBg , WBy , W B。を求めたが、Mw、Gw、Ywのいずれを基準値に 用いて光源の判別を行っても良い。

【0024】以上のように撮影光源がA光源、夕日、蛍 30 光灯、昼光、フラッシュのいづれであるかを判別され

【0025】マトリクス記憶部22にはあらかじめA光 源、夕日、蛍光灯、昼光、フラッシュの演色性および人 間の色知覚特性である色順応性を考慮して求めた5つの マトリクスが用意されており、光源情報処理部21によ り判別された光源情報の結果を基に、この5つのマトリ クスの中から1つのマトリクスが選択される。

【0026】一方ホワイトバランス処理された信号 Mws, Gws, Yws, Cwsは演算処理部23へと送られ、 【0019】ホワイトバランス処理された信号 M_{ws} ,G 40 マトリクス記憶部 22 より送られてくるマトリクスの係 数 M_{ij} ($i=1\sim3$, $j=1\sim4$) により式(4) を用 いて変換される。

[0027]

$$\begin{bmatrix} R_{m} \\ G_{m} \\ B_{m} \end{bmatrix} = \begin{bmatrix} M_{11} & M_{12} & M_{13} & M_{14} \\ M_{21} & M_{22} & M_{23} & M_{24} \\ M_{31} & M_{32} & M_{33} & M_{34} \end{bmatrix} \begin{bmatrix} M_{wa} \\ G_{wa} \\ Y_{wa} \\ C_{wa} \end{bmatrix}$$
(4)

【0028】色変換処理部23によりマトリクス演算さ 50 れ、得られる信号 R_m , G_m , B_m は図1中画像処理部

17へと送られ、高周波成分のLowPassやBan d Pass等のフィルタ処理が施され画像データへと変 換される。更に画像データの圧縮が必要であれば圧縮 し、画像記録部18へと書き込まれる。

【0029】このようにして、本実施例によれば、光源 の演色性および人間の色知覚特性である色順応性を考慮 した画像が得られる。

【0030】 (実施例2) 以下に本発明に係わるの実施 例2を図面を参照して説明する。データの大まかな流れ は実施例1と同じであるため、実施例1と同じ部分につ 10 を基にそのマトリクスを光源の演色性,人間の色順応性 いては説明を省略する。実施例1と異なるのは図3に示 す図1中視覚順応処理部16相当部である。この視覚順 応処理部について図3を用いて詳述する。図3中光源情 報処理部31には実施例1と同様にホワイトバランス係 数Mw , Gw , Yw , Cw が入力される。このホワイト バランス係数を基に、式(5)により撮影された画像の 照明光の色温度Tが求められる。

[0031]

$$T = f (M_w G_w Y_w C_w)$$
 (5)

求める関数であり、本実施例においては、あらかじめ幾 つかの色温度の異なる光源を用いCCDの色分解フィル*

 $H_{ij} = f_{mtx}$ ($M_m G_m Y_m C_m$)

$$tilde{tilde} = 1 \sim 3, j = 1 \sim 4$$
 (6)

[0034]

$$M_{ij} = M d_{ij} \times H_{ij} \hbar \hbar (i = 1 \sim 3, j = 1 \sim 4)$$
 (7)

以下データの流れは実施例1と同様のため説明は省略す る。このようにして実施例1と同様の効果が得られる。 【0035】(実施例3)以下に本発明に係わる実施例 3を図面を参照して説明する。データの大まかな流れは ては説明を省略する。またブロック図としては実施例2 で使用した図3を用いて説明する。図3中光源情報処理 部31では実施例2とは異なり、EV値が求められる。 EV値は画像の明るさを示す値であり、この値によりマ トリクス補正部32により、マトリクスの補正を行う。 このEV値は図示されていないが外光センサまたはCC Dにより求めることができる。本実施例においてはCC Dにより求める方法により行なった。

 $H_{ij} = f_{ev}$ (EV) ただし ($i = 1 \sim 3$, $j = 1 \sim 4$)

以下実施例2と同様に補正されたマトリクスMij (i = 40 の効果が得られる。 1~3, j=1~4) は演算処理部33~と送られ、式 (4) を用いて画像データMws, Gws, Yws, CwsはR m , Gm , Bm 信号へと変換される。

【0038】本実施例においてはEV値を用いてデフォ ルトマトリクスの補正係数を求めて、補正マトリクスを 求める方法について述べたが、実施例1に示すようにあ らかじめ任意の数のマトリクスを用意し、EV値により そのマトリクスの中から1つのマトリクスを選択するよ うにしても構わない。

*タの分光透過特性およびCCDの分光透過特性から、M w , Gw , Yw, Cw を求め、それを基に決定される関 数を用いるが、もちろんCCD,色分解フィルタの分光 透過特性から理論的に色温度を算出することも可能であ る。

【0032】以上、ここで求められた色温度 T はマトリ クス補正部32へと送られる。マトリクス補正部32に はあらかじめデフォルトとなるマトリクスMdij (i= $1 \sim 3$, $j = 1 \sim 4$) が 1 つ用意されている。色温度 Tを補正するための補正係数が次の式(6)により求めら れ、その補正係数 H_{ij} ($i=1\sim3$, $j=1\sim4$) を式 (7)を用いて、デフォルトのマトリクスの値に乗じる ことにより色変換マトリクスが求まる。本実施例におい ては、人間の色順応性を変換関数にとり込むためにVo n Kriesの色順応方程式を用い、変換関数を求め た。

【0033】補正されたマトリクス M_{ij} ($i=1\sim3$, j=1~4) は演算処理部33~と送られ、式(4)を ただし、関数 f はホワイトバランス係数より色温度値を 20 用いて画像データ $M_{ t ws}$, $G_{ t ws}$, $G_{ t ws}$, $C_{ t ws}$ は $R_{ t m}$, Gm, Bm信号へと変換される。

※【0036】EV値が低くなると画像中のノイズ成分が 大きくなる、またEV値が大きくなると画像中のノイズ 成分が小さくなる。すなわちノイズ成分が大きい画像に おいて、色ゲインを大きくすることはノイズを増幅する 実施例2と同じであるため、実施例2と同じ部分につい 30 ことになってしまう。そこで、次の式(8)を用いて補 正係数を求めるのだが、この関数はEV値が小さい場合 はマトリクスの色ゲインを下げる補正係数、またEV値 が大き場合は色ゲインを上げる補正係数が求められる関 数となっている。ここで求められた補正係数Hij(i= $1 \sim 3$, $j = 1 \sim 4$) とあらかじめ用意されているデフ オルトのマトリクスにより式 (7) を用いて、補正マト

[0037]

リクスを決定する。

$$(i = 1 \sim 3, j = 1 \sim 4)$$
 (8)

【0040】(実施例4)以下に本発明に係わる実施例 4を図面を参照して説明する。データの大まか流れは実 施例1と同じであるため、実施例1と同じ部分について は説明を省略する。実施例1と異なるのは図4に示す図 1中視覚順応処理部16相当部である。この視覚順応処 理部について図4を用いて詳述する。

【0041】ホワイトバランス係数M*, G*, Y*, C は光源情報処理部 4 1 と送られる。光源情報処理部 41ではこのホワイトバランス係数を基に画像がどのよ 【0039】以下実施例1と同様の処理が行われ、同様 50 うな光源下で撮影したかを判別する。本実施例において

7

はA光源、夕日、蛍光灯、昼光、フラッシュの5つのいづれかを判別する。判別は実施例1と同様に $M_{\rm w}$, $G_{\rm w}$, $Y_{\rm w}$, $C_{\rm w}$ それぞれの信号より式(2)により求められる値により行われる。

【0042】撮影光源がA光源、夕日、蛍光灯、昼光、フラッシュのいづれからか判別されると、その情報はルックアップテーブル記憶部42へと送られ、そこに記憶されているあらかじめ記憶されているA光源、夕日、蛍光灯、昼光、フラッシュの演色性および人間の色知覚特性である色順応性を考慮して求めたルックアップテーブルの中から1つルックアップテーブルを選択し、それを用いてデータ変換を行う。本実施例においてはサンプリングされた格子点のデータを保有し、その間のデータは補間により求める方法を使用した。

【0043】以上ルックアップテーブルにより画像データ M_{vs} , G_{vs} , Y_{vs} , C_{vs} は R_m , G_m , B_m 信号へと変換され、以下実施例1と同様に処理が行われ、同様の効果が得られる。

[0044]

【発明の効果】以上説明したように、本発明によれば、 撮影光源の変化に対して、光源の演色性および人間の色 知覚特性である色順応を考慮した色変換処理を行うこと ができる。

8

【図面の簡単な説明】

- 【図1】 実施例1のブロック図
- 【図2】 実施例1における視覚順応処理部のブロック 図
- 10 【図3】 実施例2,実施例3における視覚順応処理部 のブロック図
 - 【図4】 実施例4における視覚順応処理部のブロック図

【符号の説明】

- 13 撮像素子
- 15 ホワイトバランス処理部
- 16 視覚順応処理部

【図1】

実施例1のプロック図

[図2]

実施例1における視覚順応処理部のプロッ7図

كس كا

【図3】

実施例 2. 実施例 3における視覚順応処理部のブロッ7図

【図4】

実視例4における視覚順応処理部の70ッ7図

