

Voting in the Colony Governance Protocol

Elena Dimitrova & Dr. Aron Fischer

What is Colony?

Colony is a platform for decentralised governance.

It's about working together: coordination and collaboration.

It distributes authority throughout a community — no central point of control required.

Thousands of people, all over the world, can **build**, **manage and share in the rewards of a common endeavor**, without trusting (or even knowing) one another.

Governance Protocol

Built for Developers

100% ETH

Application

Governance

Colony governance is designed to be fluid, efficient and decentralised.

The focus is on 'getting stuff done' by:

Distributing authority
Mitigating bureaucracy
Enabling meritocracy

However, we need a security fall-back mechanism: the Vote!

The Colony Voting Protocol

• Traditionally: One vote per person

• Traditionally: One vote per person

• But: Who is a "person"?

"On the Internet, nobody knows you're a dog."

- Traditionally: One vote per person
- But: Who is a "person"?
- Strict control needed for voter ID

- Traditionally: One vote per person
- But: Who is a "person"?
- Strict control needed for voter ID
- dApps have risk of the "Sybil Attack"

Requirements

1. No double voting

Merit weighted voting

Votes weighted by reputation score

Merit weighted voting

Votes weighted by reputation score

Reputation is a non-transferable attribute that can only be earned

Merit weighted voting

Votes weighted by reputation score

Reputation is a **non-transferable attribute** that can only be earned

Derivative of a generic token weighted voting system

Solves the Sybil attack double-voting problem

 By distributing voting power over tokens representing real-world value

- By distributing voting power over tokens representing real-world value
- What matters is how many tokens a user owns

- By distributing voting power over tokens representing real-world value
- What matters is how many tokens a user owns
- Not into how many accounts a user has divided their tokens

- By distributing voting power over tokens representing real-world value
- What matters is how many tokens a user owns
- Not into how many accounts a user has divided their tokens
- "One Benjamin is just as good as 20 Lincolns"

The problems of token-weighted voting

What happens to the tokens when you vote?

Can tokens be moved freely?

If voter must transfer their tokens to vote:

We need to return tokens when the poll closes &

Voter can only participate in one poll at a time

1. User has tokens

- 1. User has tokens
- 2. Is asked to vote

- 1. User has tokens
- 2. Is asked to vote
- 3. Votes...

1. User has tokens

2. Is asked to vote

3. Votes by sending tokens

The user

1. User has tokens

2. Is asked to vote

- 3. Votes by sending tokens
- 4. User is asked another question

The user

Yes / No

Up / Down

- 1. User has tokens
- 2. Is asked to vote
- 3. Votes by sending tokens
- 4. User is asked another question
- 5. The user...

Yes / No

Up / Down

1. User has tokens

2. Is asked to vote

- 3. Votes by sending tokens
- 4. User is asked another question
- 5. The user can't vote again...

The user

Yes / No

Up / Down

0

- 1. User has tokens
- 2. Is asked to vote
- 3. Votes by sending tokens
- 4. User is asked another question
- 5. The user can't vote again until *after* the first poll closes and all the tokens are returned.

The user

Yes / No

Up / Down

Tokens as weight

If voter sends a voting transaction that *records* their tokenweighted vote but the tokens remain with the voter, the voter may double vote.

1. User has tokens

1. User has tokens

2. Is asked to vote

The user

- 1. User has tokens
- 2. Is asked to vote
- 3. Votes...

- 1. User has tokens
- 2. Is asked to vote
- 3. Votes by sending a message

- 1. User has tokens
- 2. Is asked to vote
- 3. Votes by sending a message
- 4. Makes a new account

The user

A "different" user

- 1. User has tokens
- 2. Is asked to vote
- 3. Votes by sending a message
- 4. Makes a new account
- 5. Transfers their tokens

Double voting

- 1. User has tokens
- 2. Is asked to vote
- 3. Votes by sending a message
- 4. Makes a new account
- 5. Transfers their tokens
- 6. Votes again...

Yes / No

Double voting

- 1. User has tokens
- 2. Is asked to vote
- 3. Votes by sending a message
- 4. Makes a new account
- 5. Transfers their tokens
- 6. Votes again and again...

The user

A "different" user

Yes / No

Double voting

- 1. User has tokens
- 2. Is asked to vote
- 3. Votes by sending a message
- 4. Makes a new account
- 5. Transfers their tokens
- 6. Votes again and again and again...

Double voting may be prevented by...

Individually accounting for each token transfer as part of the poll evaluation...

Double voting may be prevented by...

Individually accounting for each token transfer as part of the poll evaluation...

...or just preventing token transfers. ;P

1. User has tokens

1. User has tokens

2. Is asked to vote

The user

Yes / No

- 1. User has tokens
- 2. Is asked to vote
- 3. Votes by sending a message

- 1. User has tokens
- 2. Is asked to vote
- 3. Votes by sending a message
- 4. Tokens are locked, preventing transfers

Yes / No

- 1. User has tokens
- 2. Is asked to vote
- 3. Votes by sending a message
- 4. Tokens are locked, preventing transfers
- 5. Is asked to vote again

Yes / No

Up / Down

- 1. User has tokens
- 2. Is asked to vote
- 3. Votes by sending a message
- 4. Tokens are locked, preventing transfers
- 5. Is asked to vote again
- 6. Votes again

- 1. User has tokens
- 2. Is asked to vote
- 3. Votes by sending a message
- 4. Tokens are locked, preventing transfers
- 5. Is asked to vote again
- 6. Votes again
- 7. When all polls are closed the tokens are unlocked

Yes / No

Up / Down

However..

•

The problem with token-locking

As locked tokens cannot be moved, voting has a liquidity cost.

The **opportunity cost** of the inability to sell tokens until polls close.

Creates an incentive not to vote (or to wait until the last minute).

Consequently, the poll is inaccurate.

Requirements

- 1. No double voting
- 2. No skewed incentives

The Wisdom of Crowds

The public blockchain is transparent

Running tallies are public in a blockchain poll

But

For the wisdom of crowds to work, votes must be independent

So

Running tallies must be secret

Requirements

- 1. No double voting
- 2. No skewed incentives
- 3. No Bandwagon effect

Scalability

Q. Why can't we collect all votes and calculate the result in one go?

A. The gas limit.

Requirements

- 1. No double voting
- 2. No skewed incentives
- 3. No Bandwagon effect
- 4. Scalable

The Colony Voting Protocol

The Colony Voting Protocol

- Prevents double voting Sybil attacks by token weighting
- Prevents token-transfer double-voting by targeted locking.
- Prevents skewed incentives by keeping users in control of their tokens.
- Prevents bandwagon voting by masking open polls.

and

Scales to arbitrary number of voters and simultaneous polls.

• The user has tokens

- The user has tokens
- While polls are open...

Yes / No

- The user has tokens
- While polls are open users can vote by sending *masked votes*

- The user has tokens
- While polls are open users can vote by sending masked votes
- Tokens are free to move while the poll is open

Yes / No

- The user has tokens
- While polls are open users can vote by sending masked votes
- Tokens are free to move while the poll is open
- When the poll closes the account is locked

- The user has tokens
- While polls are open users can vote by sending masked votes
- Tokens are free to move while the poll is open
- When the poll closes the account is locked
- Tokens can't move but can still vote in other polls

- The user has tokens
- While polls are open users can vote by sending masked votes
- Tokens are free to move while the poll is open
- When the poll closes the account is locked
- Tokens can't move but can still vote in other polls.
- User can immediately(!) unlock account again be revealing and counting their vote

We must be able to:

- Track which polls an account has participated in
- Track which polls are open and which are closed
- Track which votes must be revealed to unlock an account
- Determine whether an account is locked
- Handle incoming transactions to locked accounts

Vote secrets data structure

- Double-linked list of unrevealed vote secrets for a user
- Ordered by poll close time
- Sorting the list is delegated to the user
- Implements a zero-entry item

isAddressLocked function


```
function isAddressLocked(address userAddress) constant returns (bool){
   var zeroPollCloseTimeNext = eternalStorage.getUIntValue(sha3("Voting",
   userAddress, uint256(0), "nextTimestamp"));

   if (zeroPollCloseTimeNext == 0) { return false; }
   if (now < zeroPollCloseTimeNext) { return false; }
   else { return true; }
}</pre>
```


Extension to the standard ERC #20 token implementation

Where to find us

COLONY.IO

COLONY.FOUNDATION

BLOG.COLONY.IO

HELLO@COLONY.IO

@JOINCOLONY

Recommended by Aron Fischer, Christian Maniewski, and 12 others

Writing robust smart contracts in Solidity

Before contract function code executes, it's a good idea to validate who triggered it and what inputs are given.

Recommended by Chris Moyer and 11 others

Why Colony is 100% behind ETH

 $I \ was a \ vocal \ proponent \ of \ the \ hard \ fork \ because \ for \ me \ it \ represented \ the \ best \ solution \ to \ an \ awful \ situation \ we \ (the \ Ethereum \ community...)$

We're hiring!

Collin Vine

Jack du Rose CEO

Dr. Alex Rea CTO

Thiago Delgado Engineering

Elena Dimitrova Engineering

Karol Podlesny Design

Christian Maniewski Front-End Dev

Dr. Aron Fischer R&D

You? Engineering

You? Engineering

You? Engineering

You? Front-End Dev