Analysis für Informatik

Ass.Prof. Clemens Amstler

Tanja Kohler

25. Oktober 2018

1 Reelle und Komplexe Zahlen

1.1 Reelle Zahlen

Die reellen Zahlen $\mathbb R$ erfüllen eine Reihe von Axiomen, die in drei Gruppen unterteilt werden können.

- I. Algebraische Axiome
- II. Anordnungsaxiome
- III. Vollständigkeitsaxiome

1.1.1 Algebraische Axiome

Die reellen Zahlen bilden mit der Addition $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ mit $(a,b) \mapsto a+b$ und der Multiplikation $*: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ mit $(a,b) \mapsto a*b$ einen Körper $(\mathbb{R},+,*)$, der folgende Axiome erfüllt:

- 1) \mathbb{R} ist bzgl. der Addition eine Abelsche Gruppe. $(\mathbb{R}, +)$
- 2) $\mathbb{R} \setminus \{0\}$ ist bzgl der Multiplikation eine Abelsche Gruppe. $(\mathbb{R}, *)$
- 3) Das Distributivgesetz gilt: $\forall a, b, c \in \mathbb{R}$ a*(b+c) = a*b + a*c

Andere Beispiele von Körpern: \mathbb{C} , \mathbb{Q} , \mathbb{Z}_p für p prim. Die Natürlichen Zahlen $\mathbb{N} = \{1, \ldots, \infty\}$ und die Ganzen Zahlen \mathbb{Z} bilden keinen Körper.

1.1.1. Proposition

 $\forall x \in \mathbb{R} \text{ gilt } 0 * a = 0.$

Beweis:

$$0+0 = 0 \Rightarrow$$

$$a(0+0) = a*0 \stackrel{\text{Distributivgesetz}}{\Rightarrow}$$

$$a*0+a*0 = a*0 \stackrel{\text{assiozativ}}{\Rightarrow}$$

$$a*0+(a*0-a*0) = (a*0-a*0) \stackrel{\text{additives, Inverses}}{\Rightarrow}$$

$$a*0+0 \stackrel{0+0=0}{=} a*0 = 0.$$

q.e.d.

1.1.2. Definition Potenzschreibweise

Für $a \in \mathbb{R}$ und $n \in \mathbb{Z}$ wird a^n folgendermapen induktiv definiert:

- $a^0 = 1$
- $\bullet \ \forall n > 1 \quad a^{n+1} = a * a^n$
- $\forall n > 1 \ \forall a \neq 0 \quad a^{-n} = (a^{-1})^n$

1.1.3. Bemerkung

 $\forall a, b \in \mathbb{R} \setminus \{0\} \text{ und } \forall n, m \in \mathbb{Z} \text{ gilt:}$

(1)
$$a^n * a^m = a^{n+m}$$

(2)
$$a^{n^m} = a^{n*m}$$

(3)
$$a^n * b^n = (a * b)^n$$

Beweis:

Beweis:
(1)
$$a^{n} * a^{m} \stackrel{\text{n. Def.}}{=} \overbrace{a \dots a}^{n\text{-mal}} * \overbrace{a \dots a}^{m\text{-mal}} = \overbrace{a \dots a}^{n\text{-mal}} \stackrel{\text{n. Def.}}{=} a^{n+m}$$
(2) $a^{n^{m}} = a^{n \dots n} = a^{m*n} = a^{n*m}$

(2)
$$a^{n^m} = a^{n \cdot n} = a^{m \cdot n} = a^{n \cdot m}$$

(3)
$$a^n * b^n = \underbrace{a \dots a}^{n \text{-mal}} * \underbrace{b \dots b}^{n \text{-mal}} = \underbrace{a \dots ab \dots b}^{n \text{-mal}} = (a * b)^n$$

q.e.d.

1.1.2 Anordnungsaxiome

Die reellen Zahlen werden in positive Zahlen (x > 0), negative Zahlen (x < 0)und 0 (x = 0) unterteilt. Dabei ist $x < 0 \Leftrightarrow -x > 0$ Und es gelten folgende Axiome:

- (1) $\forall x \in \mathbb{R}$ gilt genau eine der folgenden Bedingungen: x > 0, x = 0, x < 0
- (2) $\forall x, b \in \mathbb{R}$ x, b > 0 gilt: $a + b > 0 \land a * b > 0$

Wir schreiben für $a, b \in \mathbb{R}$ $a > b \Leftrightarrow a - b > 0$ und $a \ge b \Leftrightarrow a > b \lor a = b$

1.1.4. Proposition

 $\forall a, b \in \mathbb{R} \text{ gilt: } a < b \text{ und } b < c \Rightarrow a < c$

Beweis: selbst q.e.d.

1.1.5. Bemerkung

 $\forall a, b, c \in \mathbb{R}$ gilt:

- a) $a < b \Rightarrow a + c < b + c$
- b) $a < b \text{ und } c > 0 \Rightarrow a * c < b * c$
- c) $a < b \text{ und } c < 0 \Rightarrow a * c > b * c$
- d) $a \neq 0 \Rightarrow a^2 > 0$ speziell 1 > 0
- e) $0 < a < b \text{ und } a < b < 1 \Rightarrow b^{-1} < a^{-1}$

1.1.6. Definition

Für $a \in \mathbb{R}$ und der Betrag | a | folgendermaßen definiert.

$$|a| = \begin{cases} a & \text{wenn } a > 0 \\ -a & \text{wenn } a < 0 \end{cases}$$

1.1.7. Satz

 $\forall b \in \mathbb{R} \text{ gilt:}$

- (1) |a*b| = |a|*|b|
- (2) $|a+b| \le |a| + |b|$ (Dreiecksungleichung)
- (3) $|a-b| \ge ||a|-|b||$ (umgekehrte Dreiecksungleichung)

Beweis: (1) siehe PS

- (2) $a \le |a|$ und $b \le |b| \Rightarrow a+b \le |b|+b \le |a|+|b|$ • $-a \le |a| und-b \le |b| \Rightarrow -(a+b) = -a+-b \le |a|+-b \le |a|+|b|$ \Rightarrow d.h. $a+b \le |a|+|b|$ und $-(a+b) \le |a|+|b| \Rightarrow |a+b| \le |a|+|b|$
- (3) siehe PS

q.e.d.

1.1.8. Bemerkung Archimedisches Axiom

Für zwei positive Zahlen, a,b gibt es immer eine natürliche Zahln, sodass folgendes gilt: n*b>a Also:

$$\forall a, b > 0 \ \exists n \in \mathbb{N} \quad n * b > a$$

Als Folgerung erhalten wir: Setze b = 1

$$\forall a > 0 \; \exists n \in \mathbb{N} \quad n > a$$

1.1.9. Satz Bernoullische Ungleichung

Sei a > -1 dann gilt $\forall n \in \mathbb{N} : (1+a)^n > = 1 + na$

Beweis: Übung.

q.e.d.

1.1.10. Korollar

Sei a > 0.

- (1) Ist $a > 1 \ \forall k > 0 \ \exists n \in \mathbb{N}$, sodass $a^n > k$.
- (2) $0 < a < 1 \ \forall \epsilon > 0 \ \exists n \in \mathbb{N}$, sodass $a^n < \epsilon$

Beweis:

- (1) $a > 1 \Rightarrow \exists x \in \mathbb{R} x = a 1 > 0 \Rightarrow a = x + 1 \Rightarrow a^n = (x + 1)^n \stackrel{\text{Bernoulli}}{\geq} 1 + nx > 1 + k 1 = k, \text{ da } \forall n \in \mathbb{N} \ \exists x > 0 \text{ mit } nx > k 1$
- (2) Sei 0 < a < 1, sei $b = \frac{1}{a} > 1$, $\stackrel{\text{mit }(1)}{\Rightarrow} \exists k \in \mathbb{R} \text{ mit } b^n > k = \frac{1}{\epsilon} \Rightarrow \left(\frac{1}{a}\right)^n > \frac{1}{\epsilon} \Rightarrow \frac{1}{a^n} > \frac{1}{\epsilon} \Rightarrow a^n < \epsilon.$

q.e.d.

1.1.3 Vollständigkeitsaxiom

Die Zahlengerade \mathbb{R} hat keine Lücken.

1.1.11. Definition

Sei $M \subset \mathbb{R}$ eine Teilmenge.

- 1. $k \in \mathbb{R}$ heißt obere Schranke von M wenn gilt, $\forall x \in M, x \leq k$. M heißt nach oben beschränkt, wenn es eine obere Schranke gibt. zB \mathbb{N} ist nicht nach oben beskchränkt, nach dem Archimedischem Axiom.
- 2. $k \in \mathbb{R}$ heißt untere Schranke von M wenn gilt, $\forall x \in M, x \geq k$. M heißt nach unten beschränkt, wenn es eine untere Schranke gibt.
- 3. M heißt beschränkt, wenn eine obere und untere Schranke existiert. (äquivalente Definition für Beschränktheit: $\exists k \in \mathbb{R}, |x| \leq k \forall x \in M$)
- 4. $a \in \mathbb{R}$ heißt Infimum von M, falls a größte untere Schranke von M ist. d.h. a ist untere Schranke von M und ist k eine untere schranke von M, dann folgt $k \le a$

Schreibweise: a = inf(M)

5. $b \in \mathbb{R}$ heißt Supremum von M, falls b kleinste obere Schranke von M ist. d.h. b ist obere schranke von M und ist k eine obere schranke von M, dann folgt $k \geq a$

Schreibweise: $b = \sup(M)$

1.1.12. Beispiel

Sei a < b dann ist inf([a,b]) = a = inf((a,b)) und sup([a,b]) = b = sub((a,b)).

 $[a,b] = \{a \in \mathbb{R} | a \le x \le b\}$ heißt abgeschlossenes Intervall

 $(a,b) = \{a \in \mathbb{R} | a < x < b\}$ heißt offenes Intervall

1.1.13. Bemerkung zur Erinnerung

Definition der natürlichen Zahlen (Axiom des kleinsten Element (Pianoaxiome)) Jede Teilmenge der natürlichen Zahlen hat ein kleinstes Element.

1.1.14. Satz Vollständigkeitsaxiom

Jede nicht leere, nach unten beschränkte Teilmenge $M \subset \mathbb{R}$ besitzt ein Infimum $inf(M) \in \mathbb{R}$.

 $ohne\ Beweis.$ q.e.d.

1.1.15. Bemerkung

inf(M) muss kein Element von \mathbb{R} sein.

1.1.16. Proposition

Jede nicht leere nach oben bescrhänkte Teilmenge $M\subset\mathbb{R}$ besitzt ein Supremum $sup(M)\in\mathbb{R}.$

Beweis: Sei M nach oben beschränkt. Sei $-M = \{- < | x \in M\}$. Sei a eine obere Schranke von M. d.h. $\forall x \in Mx \le a \Rightarrow -a \le -x \forall x \in M \Rightarrow$ d.h. -a ist untere Schranke von -M. d.h. -M ist nach unten beschränkt. Nach dem Vollständigkeitsaxiom, existiert ein Infimum. Sei $b = inf(-M) \Rightarrow -a \le b \Rightarrow -b \le aundb \le -x \Rightarrow x \le -b$. Also -b ist obere Schranke und kleinste obere Schanke. $\Rightarrow -b = sup(M)$

1.1.17. Proposition

sup(M) und inf(M) sind eindeutig bestimmt.

Beweis: Seien m und m' SupremuDm von $M \Rightarrow m \leq m'$ und $m' \leq m \Rightarrow m = m'$.

analog für Infimum.

q.e.d.

1.2 Komplexe Zahlen

Die Menge der komplexen Zahlen $\mathbb C$ sind die Punkte der Ebene $\mathbb R^2=\{(a,b):a,b\in\mathbb R\}$

$$(a,b) = (a,0) + (0,b) = a(1,0) + b(0,1)$$

Wir setzen $1 = (1,0), i = (0,1) \Rightarrow (a,b) = a + ib$

[grafik R2 mit z = (a, b) und (1,0) und (0,1) eingezeichnet] zusätzlkich verlangen wir $i^2 = -1$ Also:

$$\mathbb{C} := \{ z = a + ib | a, b \in \mathbb{R}, i^2 = -1 \}$$

1.2.1. Satz

Es gilt: C ist ein Körper.

Beweis: nachrechnen.

q.e.d.

1.2.2. Definition

Sei $z=a+ib\in\mathbb{C}$, dann heißt $\bar{z}=a-ib$ die konjungiert komplexe Zahl von z. $\mid z\mid=\sqrt{z*\bar{z}}=\sqrt{a^2+b^2}$ heißt Betrag von z a=Re(z) heißt Realteil von z b=Im(z) heißt Imaginärteil von z

1.2.3. Satz

Es gilt: $Re(z) = \frac{z+\bar{z}}{2}$ und $Im(z) = \frac{z-\bar{z}}{2i}$.

Beweis: selber mit grafik.

q.e.d.

1.2.4. Proposition

Es gilt:

(i)
$$\bar{z} = z, \bar{z_1} + \bar{z_2} = z_1 + z_2, \bar{z_1} * \bar{z_2} = z_1 * z_2, |\bar{z}| = |z|$$

(ii)
$$|z| > 0, |z| = 0 \Leftrightarrow z = 0$$

(iii)
$$|z_1z_2| = |z_1||z_2|$$

(iv)
$$|z_1 + z_2| \le |z_1| + |z_2|$$

Beweis: (i) und (ii) nachrechnen.

(iii) $|z_1 z_2|^2 = (z_1 z_2)(z_1 \overline{z_2}) = \dots$ (iv) Sei $a, b \in \mathbb{R} \Rightarrow a^2 \le a^2 + b^2 \Rightarrow a \le \sqrt{a^2 + b^2}$

Sei z = a + ib, $a = Re(z) \Rightarrow |Re(z)| \le z \Rightarrow Re(z_1\bar{z_2}) \le |Re(z_1\bar{z_2})| \le |z_1\bar{z_2}| = |z_1||\bar{z_2}| = |z_1||z_2| \Rightarrow |z_1 + z_2|^2 = (z_1 + z_2)(z_1 + z_2) = (z_1 + z_2)(\bar{z_1} + \bar{z_2}) = |z_1\bar{z_1} + z_2\bar{z_1} + z_1\bar{z_2}z_2\bar{z_2} = |z_1|^2 + z_1\bar{z_2} + |z_1\bar{z_2}|^2 = |z_1|^2 + 2Re(z_1\bar{z_2}) + |z_2|^2 \le |z_1|^2 + |z_2|^2 = |z_1|^2 + |z_2|^2 + |z_2|^2 = |z_1|^2 + |z_2|^2 = |z_1|^2 + |z_2|^2 + |z_2|^2 = |z_1|^2 + |z_2|^2 + |z_1|^2 + |z_2|^2 + |z_2|^2 = |z_1|^2 + |z_1|^2 + |z_2|^2 + |z_1|^2 + |z_2|^2 + |z_1|^2 +$ realteil ersetzen nach oben und dann hamma quadrate , mit wurzel ziehen folgt die aussage.

$\mathbf{2}$ Folgen und Reihen

Folgen 2.1

2.1.1. Beispiel

Betrachte [Rechtwinkliges Dreieck mit beschriftung 1, 1, und $\sqrt{2}$] $\Rightarrow \sqrt{2} \in \mathbb{R}$, aber $\sqrt{2} \notin \mathbb{Q}$

 $\pmb{Beweis:}$ indirekter Beweis: Angenommen $\sqrt{2}\in\mathbb{Q},$ d.h. $\sqrt{2}=\frac{p}{q}$ mit $p\in\mathbb{Z},q\in\mathbb{Z}$ $\mathbb N$. Wir können annehmen, dass $\operatorname{\mathsf{p}}$ und $\operatorname{\mathsf{q}}$ nicht beide durch $\operatorname{\mathsf{2}}$ teilbar sind (sonst kürzen wir.) teilerfremd. $\Rightarrow 2 = \frac{p^2}{q^2} \Rightarrow p^2 = 2q^2 \Rightarrow 2|p^2 \Rightarrow 2|p \Rightarrow \exists m \text{ mit } p = 2m. \Rightarrow 2q^2 = (2m)^2 = 4m^2 \Rightarrow q^2 = 2m^2 \text{ d.h. } 2|q^2 \Rightarrow 2|q \text{ Also p und q sind}$ beide durch 2 teilbar. Widerspruch zur Annahme, p und q sind teilerfremd. $\Rightarrow \sqrt{2} \notin \mathbb{Q}$

2.1.2. Bemerkung

 $\sqrt{2}$ ist die positive Lösung von $a^2=2 \Leftrightarrow a=\frac{2}{a} \Leftrightarrow 2a=a+\frac{2}{a} \Leftrightarrow a=\frac{1}{2}\left(a+\frac{2}{a}\right)$ Betrachte die rechte Seite dieser Gleichung und berechne diese induktiv Setze zB

$$a_1 = 1$$

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right)$$

 $a_1 = 1a_2 = \dots = 1, 5a_3 = \dots \approx 1.41a_3 = \dots \approx 1,4142\dots$

Also a_n nähert sich mit wachsendem n
 immer mehr an $\sqrt{2}$ Dies führt zu dem Begriff Grenzwert einer Folge.

2.1.3. Definition

Eine Folge $(a_n)_{k=0}^{\infty}$ reeller Zahlen ist eine Abbildung $\mathbb{N}_0 \to \mathbb{R}$ mit $n \mapsto a_n$ Bezeichnung: Wir schreiben für Folgen

- \bullet $(a_n)_{k=0}^{\infty}$
- $(a_n)_{n\geq 0}$
- $(a_n)_{n\in\mathbb{N}}$
- \bullet (a_n)
- $(a_n)_{n>n_0}$ für $n_0 \in \mathbb{N}$

- **2.1.4. Definition** 1. Eine Folge (a_n) heißt (streng) monoton wachsend, wenn $\forall a \in \mathbb{N}_0 \ a_n \leq a_{n+1}(a_n < a_{n+1})$ gilt. Schreibweise: $(a_n) \nearrow$, $(a_n) \uparrow$.
 - 2. Eine Folge (a_n) heißt (streng) monoton fallend, wenn $\forall a \in \mathbb{N} \ a_n \geq a_{n+1}(a_n > a_{n+1})$ gilt. Schreibweise: $(a_n) \searrow, (a_n) \downarrow$.
 - 3. Eine Folge (a_n) heißt (streng) monoton, sie (streng) monoton wachsend oder fallend ist.
- **2.1.5. Beispiel** 1. Die konstante Folge $a_n := a$ ist monoton fallend und steigend.
 - 2. Die harmonische Folge $a_n := \frac{1}{n} \forall n \geq 1$ ist streng monoton fallend.
 - 3. Die alternierende Folge $a_n := (-1)^n$ ist nicht monoton.
 - 4. Die geometische Folge, Sei $a \in \mathbb{R}a_n := a^n \forall n \geq 0$ ist $\begin{cases} \text{streng monoton wachsend} & \text{wenn } a > 0 \\ \text{streng monoton fallend} & \text{wenn } 0 < a < 1 \\ \text{monoton fallend und steigend} & \text{wenn } a = 1 \\ \text{nicht monoton} & \text{sonst} \end{cases}$
 - 5. Die Fibonacci Folge $f_0 = 0, f_1 = 1, f_n = f_{n-1} + f_{n-2} \forall n \geq 2$ ist monoton wachsend.

2.1.6. Definition der Konvergenz

Eine Folge zeeller Zahlen $(a_n)_{n\in\mathbb{N}}$ heißt konvergent gegen $a\in\mathbb{R}$ (Schreibweise. $\lim_{n\to\infty}a_n=a,\lim a_n=a$ wenn es für jedes $\epsilon>0$ ein $N=N(\epsilon)\in\mathbb{N}$ gibt, sodass für alle $n\geq N$ die Ungleichung $|a_n-a|<\epsilon$ gilt. a heißt der Grenzwert (Limes) der Folge (a_n) Die Folge (a_n) heißt divergent, wenn sie nicht konvergent ist.

Also:
$$lima_n = a \Leftrightarrow \forall \epsilon > 0 \exists N(\epsilon) \in \mathbb{N} : \forall n \geq N \mid a_n - a \mid < \epsilon$$

2.1.7. Bemerkung 1. Sei $a \in \mathbb{R}, \epsilon > 0$ $U_{\epsilon}(a) := (a - \epsilon, a + \epsilon) = \{x \in \mathbb{R} | a - \epsilon < x < a + \epsilon\}$ heißt ϵ -Umgebung von a.

$$a_n \in U_{\epsilon}(a) \Leftrightarrow a - \epsilon < a_n < a + \epsilon \Leftrightarrow -\epsilon < a_n - a < \epsilon \Leftrightarrow |a_n - a| < \epsilon$$

Also Die Folge (a_n) konvergiert gegen $a \Leftrightarrow$ Die Folgenglieder a_n liegen ab einer Schwelle N alle in der ϵ -Umgebung von a.

2. (a_n) konvergiert nicht gegen $a \Leftrightarrow \exists \epsilon > 0 \forall N \in \mathbb{N} \exists n \geq N |a_n - a| \geq \epsilon$.

2.1.8. Beispiel

1) Die harmonische Folge $a_n = \frac{1}{n} \Rightarrow \lim_{n \to \infty} \frac{1}{n} = 0$

Beweis: Sei $\epsilon > 0$ Wähle $N > \frac{1}{\epsilon} \mid a_n - 0 \mid = \left| \frac{1}{n} - 0 \right| = \frac{1}{n} < = \frac{1}{N} < \epsilon$ q.e.d.

2) Die alternierende Folge $a_n = (-1)^n$

Beweis: Angenommen $\exists ain\mathbb{R}$ mit $\lim a_n = a$ Wähle $\epsilon > 0 \Rightarrow \exists N \in \mathbb{N} \forall n \geq N \mid b_n - a \mid < \frac{1}{2}$. Da $b_{n+1} - b_n = + -2$ ist $\forall n \geq N2 = \mid b_{n+1} - b_n \mid = \mid b_{n+1} - a - (b_n - a) \mid \leq \mid b_{b+1} - a \mid + \mid b_n - a \mid < \frac{1}{2} + \frac{1}{2} = 1 \Rightarrow 2 < 1$ Widerspruch $\Rightarrow (b_n)$ ist divergent.

3) Die geometsiche Folge $(a^n)_{n\geq 1}$ 1. Fall $|a|<1\Rightarrow \lim_{n\to\infty}a^n=0$

Beweis: Sei
$$\epsilon < 0 \overset{archim}{\Rightarrow} \exists N \in \mathbb{N} \mid a \mid^N < \epsilon \Rightarrow \forall n \geq N : |a^n - 0| = |a|^n \leq |a|^N < \epsilon$$

$$q.e.d.$$

2. Fall $a=1 \Rightarrow a^n=1 \Rightarrow \lim a^n=1$ 3. Fall $a=-1 \Rightarrow$ divergent weil alternierend. 4. Fall $|a|>1 \forall K>0 \exists n\in\mathbb{N}|a|^n>K$ d.h. (a^n) ist unbeschränkt.

2.1.9. Definition

Eine Folge (a_n) heißt nach oben (unten) beschränkt, wenn es ein $A \in \mathbb{R}$ gibt mit $\forall n \in \mathbb{N} a_n \leq A(a_n \geq A)$. (a_n) heißt beschränkt, wenn (a_n) nach oben oder unten beschränkt ist. d.h. $\exists K \in \mathbb{R} |a_n| \leq K \forall n \in \mathbb{N}$

2.1.10. Satz

Jede konvergente Folge (a_n) ist beschränkt.

Beweis:
$$\lim_{n \to \infty} a_n = a$$
. Wähle $\epsilon = 1 > 0 \Rightarrow \exists N \in \mathbb{N} : \forall n \geq N \, | \, a_n - a \, | < 1 \Rightarrow |a_n| = |a + (a_n - a)| \leq |a| + |a_n - c| = |a| + 1 \forall n \geq N$. Sei $K = \max\{|a_1|, |a_2|, \dots, |a_n - 1|, |a| + 1\} \Rightarrow |a_n| < k \forall n \geq 1$ q.e.d.

2.1.11. Bemerkung

Die uMkehrung gilt nicht. d.h. eine beschränkte Folge ist nicht konvergent. siehe die alternierende Folge.

2.1.12. Satz Monotoniekriterium

- (1) Jede monoton wachsende nach oben beschränkte Folge ist konvergent.
- (2) Jede monoton fallende nach unten beschränkte Folge ist konvergent. Bem: Das Monotonie-Kriterium ist äquivalent zur Vollständigkeit.

Beweis: (1) Sei (a_n) monoton wachsen und nach oben beschränkt. Nach dem Vollständigkeitsaxiom existiert $a:=\sup\{a_n|n\in\mathbb{N}\}$. Sei $\epsilon>0\Rightarrow a-\epsilon$ ist keine obere Schranke von $\{a_n|n\in\mathbb{N}\}\Rightarrow\exists N\in\mathbb{N}:a-\epsilon< a_N\le a$. Da (a_n) monoton wachsend ist, $\Rightarrow \forall n\ge Na_N\le a_n\Rightarrow a-\epsilon< a_N\le a_n\le a< a+\epsilon\forall n\ge N\Rightarrow a-\epsilon< a_n< a+\epsilon\forall n\ge N\Rightarrow a-\epsilon< a_n< a+\epsilon\forall n\ge N\Rightarrow a-\epsilon< a_n< a+\epsilon$ and (a_n) monoton wachsend ist, (a_n) is (a_n) in (a_n) in (

2.1.13. Satz

Der Grenzwert einer Folge ist eindeutig bestimmt.

Beweis: Angenommen $\lim_{n\to\infty}a_n=a$ und $\lim_{n\to\infty}a_n=b$ und $a\neq b$. Sei $\epsilon=\frac{1}{2}\,|b-a|\Rightarrow \exists N_1\forall n\geq N_1:|a_n-a|<\epsilon$ und $\Rightarrow \exists N_2\forall n\geq N_2:|a_n-b|<\epsilon$. Sei $N:=\max\{N_1,N_2\}$.

$$\Rightarrow n \ge N: |b-a| = |(b-a_n) + (a_n-a)| \le |b-a_n| + |a_n-a| = |a_n-b| + |a_n-a| < \frac{1}{2}|b-a| + \frac{1}{2}|b-a| = |b-a| \Rightarrow |b-a| < |b-a| \text{ Widerspruch } \Rightarrow a = b \qquad q.e.d.$$

2.1.14. Satz Rechenregeln für konvergente Folgen

Seien (a_n) und (b_n) zwei konvergente Folgen. Dann gilt:

- 1. $(a_n \pm b_n)$ ist konvergent und $\lim_{n \to \infty} a_n \pm b_n = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n$.
- 2. $\lambda(a_n)$ ist konvergent und $\lim_{n\to\infty} \lambda a_n = \lambda \lim_{n\to\infty} a_n$.
- 3. (a_nb_n) ist konvergent und $\lim_{n\to\infty}a_nb_n=\lim_{n\to\infty}a_n\lim_{n\to\infty}b_n$
- 4. Ist $(b_n) \neq 0 \forall n \geq n_0 und \lim_{n \to \infty} b_n \neq 0$ Dann $(\frac{a_n}{b_n})$ ist konvergent und $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}.$
- 5. $a_n \leq b_n \operatorname{dann} \operatorname{ist} \lim a \leq \lim b \forall n \geq n_0$.

Beweis: Sei $\lim a_n = 0$ und $\lim b_n = b$.

1) Sei
$$\epsilon > 0 \Rightarrow \exists N_1, N_2, \in \mathbb{N}$$

$$|a_n - a| < \frac{\epsilon}{2} \forall n \ge N_1$$

$$|b_n - b| < \frac{\tilde{\epsilon}}{2} \forall n \ge N_2$$

$$\Rightarrow \forall n \geq max N_1, N_2$$

$$|(a_n + b_n) - (a + b)| = |(a_n - a) + (b_n + b)| \le |(a_n - a)| + |(b_n + b)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \Rightarrow beschriktund \lim a_n + b_n = a + b. \text{ analog für } -$$

- 2) Übung
- 3) Jede konvergente Folge ist beschränkt $\Rightarrow \exists K \in \mathbb{R} \text{ mit } |a_K| \leq K \text{ und } |b| \leq K$ Sei $\epsilon > 0 \Rightarrow \exists N_1, N_2 \in \mathbb{N} |a_n a| < \frac{\epsilon}{2K} \text{ und } |b_n b| < \frac{\epsilon}{2K}. \Rightarrow \forall n \geq \max N_1, N_2 gilt |a_n b_n ab| = |a_n b_n a_n b + a_n b + ab| = |a_n (b_n b) + b(a_n a)| \leq |a_n (b_n b)| + |b(a_n a)| = \underbrace{|a_n|}_{\leq K} (b_n b)| + \underbrace{|b|}_{\leq K} |(a_n a)| < K \frac{\epsilon}{2K} + K \frac{\epsilon}{2K} = \epsilon$

$$4) Zeige \lim_{n \to \infty} \frac{1}{b_n} = \frac{1}{\lim_{n \to \infty} b_n} ||b_n| - |b|| \le |b_n - b| < \frac{|b|}{2} \forall n \ge n_0 \Rightarrow -\frac{|b|}{2} < |b_n| - |b| < \frac{|b|}{2} < \frac{|b|}{2$$

 $\frac{|b|}{2} \Rightarrow \frac{|b|}{2} < |b_n| \Rightarrow \frac{1}{|b_n|} < \frac{2}{|b|} frallengrern_0 Seiepsilon > 0 folgtesgibt N frallengrergleich N |b_n - b_n|$

$$|b| < (\epsilon |b|^2)/2 \Rightarrow \left| \frac{1}{b_n} - \frac{1}{b} \right| = aufgleichennenner = \frac{1}{|b_n|} \frac{1}{|b|} |restinklammer| mitepsilonnachvoraussetzungener | |b| | |b| | |c| | |b| | |c| | |c$$

$$\begin{array}{l} 5)Seia_n \leq b_n \forall n \geq n_0.zz.a \leq bAngenommena > bSei\epsilon^{\frac{a-b}{2}} > 0 \Rightarrow \exists N_1, N_2 \in \mathbb{N} \mid a_n - a \mid <\epsilon \forall n \geq N_1 \mid b_n - b \mid <\epsilon \forall n \geq N_2 \Rightarrow \forall n \geq maxN_1, N_2b_n < b + \epsilon = b + (a-b)/2 = (2b+a-b)/2 = (b+a)/2 = (2a-a+b)/2 = a - (a-b)/2 = a - \epsilon < a_n \Rightarrow b_n < a_n \forall n \geq maxN_1, N_2Widerspruch \Rightarrow a \leq b \end{array} \qquad q.e.d.$$

2.1.15. Satz Sandwich-Theorem

Sei (a_n) und (b_n) zwei konvergente Folgen mit der Eigenschaft, dass $\lim a_n = \lim b_n = a$. Sei (c_n) eine Folge mit der Eigenschaft, dass $a_n \le c_n \le b_n \forall n \ge n_0$ Dann ist (c_n) konvergent und $\lim c_n = a$.

Beweis: $Sei\epsilon > 0 \Rightarrow \exists N_1, N_2 \in \mathbb{N}a - \epsilon < a_n < a + \epsilon frallen >= N1a - \epsilon < b_n < a + \epsilon frallen >= N2 \Rightarrow frallenausmaxn1, N2gilta - \epsilon < a_n <= c_n <= b_n < a + \epsilon frallen >= N \Rightarrow |c_n - a| < \epsilon \Rightarrow \lim c_n = a$ q.e.d.

2.1.16. Beispiel 1. Sei (a_n) eine Folge mit $0 \le a_n \le \frac{1}{n} \Rightarrow \lim a_n = 0$

2.
$$a_n = \sqrt{2n} - \sqrt{n}$$
 ist divergent, denn $a_n = (\sqrt{2n} - \sqrt{n}) \frac{\sqrt{2n} + \sqrt{n}}{\sqrt{2n} + \sqrt{n}} = \frac{2_n - n}{\sqrt{n} * (\sqrt{2} - 1)} \ge \frac{n}{3\sqrt{n}} = \frac{sqrtn}{3} \to 0$

2.1.17. Definition

Eine Folge (a_n) heißt bestimmt divergent gegen $+\infty$ $(-\infty)$ wenn gilt: $\forall K \in \mathbb{R} \exists N \in \mathbb{N} \quad \forall n \geq N \\ a_n > K(bzwa_n < K)$

Wir schreiben: $\lim a_n = +\infty \text{ (bzw } -\infty)$

nach oben unbeschränkt oder nach unten unbeschränkt

2.1.18. Beispiel 1. Die Fibonacci Folge ist bestimmt divergent gegen $+\infty$

- 2. Sei $a_n = n$, dann folgt $\lim a_n = \infty$
- 3. Sei $\lim a_n = \infty \Leftrightarrow \lim -a_n = -\infty$
- 4. Die Folge $a_n = (-1)^n$ ist divergent aber nicht bestimmt divergent.
- 5. Sei (a_n) bestimmt divergent und $a_n \neq 0 \forall n \geq n_0$, dann folgt $\lim_{n \to \infty} \frac{1}{a_n} = 0$.

Beweis: Sei
$$\lim a_n = \infty \Rightarrow \forall \epsilon > 0 \exists N \in \mathbb{N} \forall n \geq N a_n > \frac{1}{\epsilon} > 0 \Rightarrow \frac{1}{a_n} < \epsilon \Rightarrow \left| \frac{1}{a_n} - 0 \right| < \epsilon, \text{ da } a_n > 0 \Rightarrow \lim \frac{1}{a_n} = 0$$

$$q.e.d.$$

2.1.19. Definition

Sei (a_n) eine Folge reeller Zahlen, und $n_0 < n_1 < n_2 < ... < n_k <$ eine Teilmenge der Natürlichen Zahlen. Dann heißt die Folge $(a_{n_k})_{k \in \mathbb{N}}$ eine Teilfolge von $(a_n)_{n \in \mathbb{N}}$

2.1.20. Bemerkung

Ist die Folge (a_n) konvergent, dann ist auch jede Teilfolge von (a_n) konvergent.

Beweis: Übung q.e.d.

2.1.21. Definition

Sei (a_n) eine Folge. Eine Zahl $a \in \mathbb{R}$ heißt Häufungspunkt (Häufungswert) der Folge (a_n) , wenn es eine Teilfolge von (a_n) gibt die gegen a konvergiert.

2.1.22. Bemerkung 1. Sei $\lim a_n = a$, dann ist a der einzige Häufungspunkt der Folge (a_n) .

- 2. Eine bestimmt divergente Folge hat keinen Häufungspunkt.
- 3. Die Folge $a_n=(1/n)+(-1)^n$ besitzt die zwei Häufungspunkte -1 und +1. $\lim a_{2n}=\lim \frac{1}{2n}(-1)^{2n}=\lim \frac{1}{2n}+1=1$ und $\lim a_{2n+1}=\lim \frac{1}{2n+1}(-1)^{2n+1}=\lim \frac{1}{2n+1}-1=-1$
- 4. Jede konvergente Folge ist beschränkt, aber jede beschränkte Folge muss nicht konvergent sein.

Folgender Satz ist äquvivalent zum Vollstaändigkeitsaxiom:

von Bolzano-Weierstraß 2.1.23. Satz

Jede beschränkte Folge reeller Zahlen besitzt eine konvergente Teilfolge.

Beweis: $(a_n)_{n\in\mathbb{N}_0}$ ist beschränkt, d.h. $\exists A\in\mathbb{R}$ mit $-A\leq a_n\leq A\forall n\geq 0$

Sei $A_k = \{a_m : m \ge k\} \Rightarrow \text{jede der Mengen } A_k \text{ ist beschränkt.}$

Mit dem Vollständigkeitsaxiom existiert für jedes A_k ein Infinum. Sei etwa, $X_k = inf(A_k)$

 $A_0 \supset A_1 \supset \dots \supset A_{k-1} \supset A_k \supset \dots \Rightarrow x_k \le x_{k+1} \forall k \ge 0$

d.h. Die Folge $(x_k)_{k\geq 0}$ ist monoton wachsen und durch A nach oben beschränkt. Nach dem Monotoniekriterium ist die Folge $(x_k)_{k\geq 0}$ konvergent. Sei etwa der $\lim k \to \infty(x_k) = z.$

Behauptung: z ist Häufungspunkt von (a_n) .

I) Sei $\epsilon>0$, da lim $x_k=z\Rightarrow \exists N\in\mathbb{N}$ mit $|x_k-z|<\frac{\epsilon}{2} \forall n\geq N$ II) Da $x_k=0$ $inf(A_k) = inf(\{a_m : m \ge k\}) \Rightarrow \exists a_{k_m} \text{ mit } |x_k - a_{k_m}| < \frac{\epsilon}{2}. \Rightarrow |a_{k_m} - z| = \frac{\epsilon}{2}$ $\begin{array}{l} \mid a_{k_m} - x_k + x_k - z \mid \leq \mid a_{k_m} - x_k \mid + \mid x_k - z \mid < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \\ \text{Also } \forall \epsilon > 0 \exists N \in \mathbb{N} \forall k \geq N \exists a_{k_m} \in (a_n) \mid a_{k_m} - z \mid < \epsilon \end{array}$

d.h. die Teilfolge $(a_{k_m})_{m\geq 0}$ ist konvergent gegen z

Also (a_{k_m}) ist eine konvergente Teilfoge von der beschränkten Folge (a_n) . q.e.d.

2.1.24. Bemerkung

Äquivalente Formulierungen: Jede beschränkte Folge reeler Zahlen hat mindestens einen Häufungspunkt Jede beschränkte Folge reeller Zahlen hat einen größten und einen kleinsten Häufungspunkt

2.1.25. Definition Cauchy-Folge

Eine Folge $(a_n)_{n\geq 0}$ heißt CAUCHY-Folge, wenn gilt: $\forall \epsilon>0 \exists N\in \mathbb{N} \forall n,m\geq 0$ $N \mid a_n - a_m \mid < \epsilon$

2.1.26. Satz

Folgende Aussagen sind äquivalent

- 1. Die Folge (a_n) ist konvergent
- 2. Die Folge (a_n) ist eine Cauchy-Folge

Beweis: $\ddot{1}$) \Rightarrow 2)"

Sei $\lim a_n = a \Rightarrow \forall \epsilon > 0 \exists N : \forall m \geq N \mid a_n a \mid < \frac{\epsilon}{2} \Rightarrow \forall n, m \geq N \mid a_n - a_m \mid = 0$ $|a_n-a+a-a_m| \le |a_n-a|+|a_m-a| < \frac{\epsilon}{2}+\frac{\epsilon}{2} = \epsilon \Rightarrow a_n$ ist eine Cauchy Folge $\ddot{2}$) \Rightarrow 1)"

Jede Cauchy Folge ist beschränkt. Sei $\epsilon = 1 \Rightarrow \exists N \in N \forall n, m \geq N \mid a_n - a_m \mid < \infty$ $1 \Rightarrow |a_n - a_N| < 1 \Rightarrow |a_n| = |a_n - a_N + a_N| \le |a_n - a_N| + |a_N| < 1 +$ $|a_N| \forall n \geq N \Rightarrow \forall n \in \mathbb{N} |a_n| \leq max\{|a_0|, ..., |a_{N-1}|, |a_N| + 1\} \Rightarrow (a_n) \text{ ist}$ beschränkt. Nach dem Satz von Bolzano-Weierstraß existiert eine konvergente Teilfolge $(a_{n_k})_{k\geq 0}$ sei $\lim a_{n_k} = a$.

Wir zeigen. $lima_n = a$.

Sei $\epsilon > 0$. Wähle m so groß, dass $|a_m - a_n| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nund |a_{n_k} - a| < \frac{\epsilon}{2} \forall n, m \geq Nu$ $\frac{\epsilon}{2} \forall k \ge N \Rightarrow |a - a_n| = \frac{a - a_{n_k} + a_{n_k} - a_n}{\le} |a - a_{n_k}| + |a_{n_k} - a_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon, \text{ da}$ $n_k \ge n \ge N$

2.1.27. Beispiel Verfahren zur Berechnung der Quadratwurzel

Seien a = 0, $a_0 > 0$ reelle Zahlen. Wir definieren die Folge (x_n) rekursiv.

$$x_0 = x_0$$

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

Wir zeigen: (x_n) ist konvergent und $\lim x_n = x$ und $x^2 = a$.

 $\begin{aligned} & \textit{Beweis:} \ 1.x_n > 0 \forall n \geq 0 IA: n = 0: x_0 > 0 n - > n + 1 Seix_n > 0 \Rightarrow x_n + 1 = \\ & 1/2(x_n + a/x_n) > 0, daalleteile > 0 sind. (mitunderbraceundoverbraced.h.(x_n) istnachuntendurch0 beschrnkt \\ & a \forall n >= 1 dennx_{n+1}^2 - a = (1/4(x_n + a/x_n)^2 - a = ... ainklammerreinzieihenundausrechnen... = \\ & 1/4(malsaquradrat) >= 03.(x_n) istmonotonfallendx_n - x_{n+1} = x_n - 1/2(x_n + a/x_n) = (x_n inklammerreinzeihenundausrehcnen) = 1/(2x_n)(x_n^2 - a) >= \\ & weilbeides >= 0(x_n > 0) \Rightarrow x_> n >= x_{n+1} NachdemMonotonie - Kriteriumist(x_n) konvergent. 4. Seix = \\ & \lim n \to \infty x_n \Rightarrow x = \lim n \to \infty x_{n+1} = \lim n \to \infty \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) = \frac{1}{2} \left(\lim n \to \infty x_n + \frac{a}{\lim n \to \infty x_n} \right) = \\ & \frac{1}{2} \left(x + \frac{a}{x} \right) \Rightarrow 2x = x + a/x \Rightarrow x = a/x \Rightarrow x^2 = a. \end{aligned}$

Die positive Lösung der Gleichung $x^2=a$ heißt die Quadratwurzeln von a. Wir Schreiben $x=\sqrt{a}$.

2.2 Reihen

2.2.1. Definition

Sei $(a_n)_{n\geq 0}$ eine Folge reeller Zahlen. Sei weiters $S_N=\sum_{n=0}^N a_n$ die N-te Partialsumme, dann heißt die Folge $(S_N)_{N\geq 0}$ der Partialsummen eine unendliche Reihe

Man schreibt $\sum_{n=0}^{\infty} a_n$

3 Test

zum Formeln raus kopieren $\lim_{n\to\infty} a_n$ (a_n)