Example 5.2: Laplace equation over a square domain (p. 334)

Consider solution of the Laplace equation over a square domain.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0; \quad 0 < x < 1; \quad 0 < y < 1$$

with the following boundary conditions

$$u(0, y) = 0; u(1, y) = 0$$

$$u(x, 0) = x(1-x); \quad u(x, 1) = 0$$

Comparing this problem to the general form of the 2D BVP we can see that here we have $k_x = k_y = 1$ and p = q = 0. The boundary conditions on all four sides are of the essential type.

An exact solution of the problem is known and is given by the sum of the following infinite series.

Exact
$$u(x, y) = \sum_{n=1}^{\infty} -\frac{4\sin(n\pi x)((-1)^n - 1)\sinh(n\pi (1 - y))}{\sinh(n\pi) n^3 \pi^3}$$

From the given essential boundary conditions the following nodal values are known.

 $Essential \ boundary \ conditions \ \{node,\ value\}: \left(\ \{1,\ 0\} \quad \{2,\ 0\} \quad \{3,\ 0\} \quad \left\{4,\ \frac{1}{4}\right\} \quad \{6,\ 0\} \quad \{7,\ 0\} \quad \{8,\ 0\} \quad \{9,\ 0\} \ \right)$

The complete finite element solution is as follows.

Global equations at start of the element assembly process

Equations for element 1

Element dimensions:
$$a = \frac{1}{4}$$
; $b = \frac{1}{4}$

$$k_x=1; \hspace{1cm} k_y=1; \hspace{1cm} p=0; \hspace{1cm} q=0$$

Complete element equations

$$\begin{pmatrix} \frac{2}{3} & -\frac{1}{6} & -\frac{1}{3} & -\frac{1}{6} \\ -\frac{1}{6} & \frac{2}{3} & -\frac{1}{6} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{6} & \frac{2}{3} & -\frac{1}{6} \\ -\frac{1}{6} & -\frac{1}{3} & -\frac{1}{6} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} u_1 \\ u_4 \\ u_5 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

The element contributes to {1, 4, 5, 2} global degrees of freedom.

Equations for element 2

Element dimensions:
$$a = \frac{1}{4}$$
; $b = \frac{1}{4}$

$$\begin{aligned} & \mathbf{k}_{x} = 1; & \mathbf{k}_{y} = 1; & \mathbf{p} = 0; & \mathbf{q} = \mathbf{0} \\ & & \\ & \mathbf{k}_{k} = \begin{pmatrix} \frac{2}{3} & -\frac{1}{6} & -\frac{1}{3} & -\frac{1}{6} \\ -\frac{1}{6} & \frac{2}{3} & -\frac{1}{6} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{6} & \frac{2}{3} & -\frac{1}{6} \\ -\frac{1}{2} & -\frac{1}{3} & -\frac{1}{6} & \frac{2}{3} \end{pmatrix}; & & \mathbf{k}_{p} = \begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{pmatrix}; & & & \mathbf{r}_{q} = \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix} \end{aligned}$$

Complete element equations

$$\begin{pmatrix} \frac{2}{3} & -\frac{1}{6} & -\frac{1}{3} & -\frac{1}{6} \\ -\frac{1}{6} & \frac{2}{3} & -\frac{1}{6} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{6} & \frac{2}{3} & -\frac{1}{6} \\ -\frac{1}{6} & -\frac{1}{3} & -\frac{1}{6} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} u_2 \\ u_5 \\ u_6 \\ u_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

The element contributes to {2, 5, 6, 3} global degrees of freedom.

Equations for element 3

Element dimensions:
$$a = \frac{1}{4}$$
; $b = \frac{1}{4}$

$$k_x=1; \hspace{1cm} k_y=1; \hspace{1cm} p=0; \hspace{1cm} q=0$$

Complete element equations

$$\begin{pmatrix} \frac{2}{3} & -\frac{1}{6} & -\frac{1}{3} & -\frac{1}{6} \\ -\frac{1}{6} & \frac{2}{3} & -\frac{1}{6} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{6} & \frac{2}{3} & -\frac{1}{6} \\ -\frac{1}{6} & -\frac{1}{2} & -\frac{1}{6} & \frac{2}{2} \end{pmatrix} \begin{pmatrix} u_4 \\ u_7 \\ u_8 \\ u_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

The element contributes to {4, 7, 8, 5} global degrees of freedom.

Equations for element 4

$$\begin{aligned} &\text{Element dimensions: a} = \frac{1}{4}; & b = \frac{1}{4} \\ &k_x = 1; & k_y = 1; & p = 0; & q = 0 \\ & & k_k = \begin{pmatrix} \frac{2}{3} & -\frac{1}{6} & -\frac{1}{3} & -\frac{1}{6} \\ -\frac{1}{6} & \frac{2}{3} & -\frac{1}{6} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{6} & \frac{2}{3} & -\frac{1}{6} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}; & & \textbf{\textit{r}}_q = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \end{aligned}$$

Complete element equations

$$\begin{pmatrix} \frac{2}{3} & -\frac{1}{6} & -\frac{1}{3} & -\frac{1}{6} \\ -\frac{1}{6} & \frac{2}{3} & -\frac{1}{6} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{6} & \frac{2}{3} & -\frac{1}{6} \\ -\frac{1}{6} & -\frac{1}{2} & -\frac{1}{6} & \frac{2}{2} \end{pmatrix} \begin{pmatrix} u_5 \\ u_8 \\ u_9 \\ u_6 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

The element contributes to $\{5,\,8,\,9,\,6\}$ global degrees of freedom.

$$\begin{pmatrix} \frac{2}{3} & -\frac{1}{6} & 0 & -\frac{1}{6} & -\frac{1}{3} & 0 & 0 & 0 & 0 \\ -\frac{1}{6} & \frac{4}{3} & -\frac{1}{6} & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & 0 \\ 0 & -\frac{1}{6} & \frac{2}{3} & 0 & -\frac{1}{3} & -\frac{1}{6} & 0 & 0 & 0 \\ -\frac{1}{6} & -\frac{1}{3} & 0 & \frac{4}{3} & -\frac{1}{3} & 0 & -\frac{1}{6} & -\frac{1}{3} & 0 \\ -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & \frac{8}{3} & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} & 0 \\ 0 & -\frac{1}{3} & -\frac{1}{6} & 0 & -\frac{1}{3} & \frac{4}{3} & 0 & -\frac{1}{3} & -\frac{1}{6} \\ 0 & 0 & 0 & -\frac{1}{6} & -\frac{1}{3} & 0 & \frac{2}{3} & -\frac{1}{6} & 0 \\ 0 & 0 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{6} & \frac{4}{3} & -\frac{1}{6} \\ 0 & 0 & 0 & 0 & 0 & -\frac{1}{3} & -\frac{1}{6} & 0 & -\frac{1}{6} & \frac{2}{3} \end{pmatrix}$$

Essential boundary conditions

Node	dof	Value
1	$\mathbf{u_1}$	0
2	\mathbf{u}_2	0
3	\mathbf{u}_3	0
4	u_4	$\frac{1}{4}$
6	u_6	0
7	\mathbf{u}_7	0
8	u_8	0
9	\mathbf{u}_{9}	0

Delete equations {1, 2, 3, 4, 6, 7, 8, 9}.

Extract columns {1, 2, 3, 4, 6, 7, 8, 9}.

Multiply each column by its respective known value $\{0, 0, 0, \frac{1}{4}, 0, 0, 0, 0, 0\}$

Move all resulting vectors to the rhs.

After adjusting for essential boundary conditions we have

$$\left(\begin{array}{c} \frac{8}{3} \end{array}\right) \left(\begin{array}{c} u_5 \end{array}\right) = \left(\begin{array}{c} \frac{1}{12} \end{array}\right)$$

Solving the final system of global equations we get

$$\left\{u_5=\frac{1}{32}\right\}$$

Complete table of nodal values

Solution for element 1

Coordinates of element center

$$x_c = \frac{1}{4}; \qquad \qquad y_c = \frac{1}{4}$$

Element dimensions:
$$a = \frac{1}{4}$$
; $b = \frac{1}{4}$

$$b = \frac{1}{4}$$

Interpolation functions in local element coordinates

$$\textit{N}^{T} = \left\{4\,t\,s - s - t + \frac{1}{4},\, -4\,t\,s + s - t + \frac{1}{4},\, 4\,t\,s + s + t + \frac{1}{4},\, -4\,t\,s - s + t + \frac{1}{4}\right\}$$

Shift for global coordinates:
$$s = x - \frac{1}{4}$$
; $t = y - \frac{1}{4}$

$$t = y - \frac{1}{4}$$

Interpolation functions in global coordinates

$$N^{T} = \{4 y x - 2 x - 2 y + 1, 2 x - 4 x y, 4 x y, 2 y - 4 x y\}$$

Nodal values,
$$\boldsymbol{d}^{T} = \left\{0, \ \frac{1}{4}, \ \frac{1}{32}, \ 0\right\}$$

$$\mathbf{u}(\mathbf{x},\,\mathbf{y}) = \mathbf{N}^{\mathrm{T}}\mathbf{d} = \frac{\mathbf{x}}{2} - \frac{7\,\mathbf{x}\,\mathbf{y}}{8}$$

$$\partial u/\partial x = \frac{1}{2} - \frac{7y}{8};$$
 $\partial u/\partial y = -\frac{7x}{8}$

$$\partial \mathbf{u}/\partial \mathbf{y} = -\frac{7 \mathbf{x}}{8}$$

Solution for element 2

Coordinates of element center

$$x_{c} = \frac{1}{4};$$
 $y_{c} = \frac{3}{4}$

$$y_c = \frac{3}{4}$$

Element dimensions: $a = \frac{1}{4}$; $b = \frac{1}{4}$

$$b = \frac{1}{4}$$

Interpolation functions in local element coordinates

$$\textbf{\textit{N}}^T = \left\{ 4\,t\,s - s - t + \frac{1}{4}, \, -4\,t\,s + s - t + \frac{1}{4}, \, 4\,t\,s + s + t + \frac{1}{4}, \, -4\,t\,s - s + t + \frac{1}{4} \right\}$$

Shift for global coordinates:
$$s = x - \frac{1}{4}$$
; $t = y - \frac{3}{4}$

$$t = y - \frac{3}{4}$$

Interpolation functions in global coordinates

$$N^{T} = \{4 y x - 4 x - 2 y + 2, 4 x - 4 x y, 4 x y - 2 x, -4 y x + 2 x + 2 y - 1\}$$

Nodal values, $\boldsymbol{d}^{\mathrm{T}} = \left\{0, \frac{1}{39}, 0, 0\right\}$

$$\mathbf{u}(\mathbf{x},\,\mathbf{y}) = \mathbf{N}^{\mathrm{T}}\mathbf{d} = \frac{\mathbf{x}}{8} - \frac{\mathbf{x}\,\mathbf{y}}{8}$$

$$\partial u/\partial x = \frac{1}{8} - \frac{y}{8};$$
 $\partial u/\partial y = -\frac{x}{8}$

$$\partial u/\partial y = -\frac{x}{Q}$$

Solution for element 3

Coordinates of element center

$$x_c = \frac{3}{4};$$
 $y_c = \frac{1}{4}$

$$y_c = \frac{1}{4}$$

Element dimensions: $a = \frac{1}{4}$; $b = \frac{1}{4}$

$$b = \frac{1}{4}$$

Interpolation functions in local element coordinates

$$\textbf{\textit{N}}^T = \left\{ 4\,t\,s\,-\,s\,-\,t\,+\,\frac{1}{4}\,,\,\,-\,4\,t\,s\,+\,s\,-\,t\,+\,\frac{1}{4}\,,\,\,4\,t\,s\,+\,s\,+\,t\,+\,\frac{1}{4}\,,\,\,-\,4\,t\,s\,-\,s\,+\,t\,+\,\frac{1}{4} \right\}$$

Shift for global coordinates: $s = x - \frac{3}{4}$; $t = y - \frac{1}{4}$

$$t = y - \frac{1}{4}$$

Interpolation functions in global coordinates

$$\textbf{\textit{N}}^T = \{4\ y\ x - 2\ x - 4\ y + 2,\ -4\ y\ x + 2\ x + 2\ y - 1,\ 4\ x\ y - 2\ y,\ 4\ y - 4\ x\ y\}$$

Nodal values,
$$\boldsymbol{d}^{\mathrm{T}} = \left\{ \frac{1}{4}, 0, 0, \frac{1}{32} \right\}$$

$$\mathbf{u}(\mathbf{x}, \mathbf{y}) = \mathbf{N}^{\mathrm{T}} \mathbf{d} = \frac{7 \mathbf{y} \mathbf{x}}{8} - \frac{\mathbf{x}}{2} - \frac{7 \mathbf{y}}{8} + \frac{1}{2}$$

$$\partial u/\partial x = \frac{7\,y}{8} - \frac{1}{2}\,; \qquad \qquad \partial u/\partial y = \frac{7\,x}{8} - \frac{7}{8}$$

Solution for element 4

Coordinates of element center

$$x_c = \frac{3}{4}; \qquad \qquad y_c = \frac{3}{4}$$

Element dimensions:
$$a = \frac{1}{4}$$
; $b = \frac{1}{4}$

$$b = \frac{1}{4}$$

Interpolation functions in local element coordinates

$$\textbf{\textit{N}}^T = \left\{ 4\,t\,s - s - t + \frac{1}{4}, \, -4\,t\,s + s - t + \frac{1}{4}, \, 4\,t\,s + s + t + \frac{1}{4}, \, -4\,t\,s - s + t + \frac{1}{4} \right\}$$

Shift for global coordinates:
$$s = x - \frac{3}{4}$$
; $t = y - \frac{3}{4}$

Interpolation functions in global coordinates

$$\textbf{\textit{N}}^T = \{4\ y\ x\ -\ 4\ x\ -\ 4\ y\ +\ 4,\ -\ 4\ y\ x\ +\ 4\ x\ +\ 2\ y\ -\ 2,\ 4\ y\ x\ -\ 2\ x\ -\ 2\ y\ +\ 1,\ -\ 4\ y\ x\ +\ 2\ x\ +\ 4\ y\ -\ 2\}$$

Nodal values,
$$\boldsymbol{d}^{T} = \left\{ \frac{1}{32}, 0, 0, 0 \right\}$$

$$u(x, y) = N^{T} d = \frac{yx}{8} - \frac{x}{8} - \frac{y}{8} + \frac{1}{8}$$

$$\partial u/\partial x = \frac{y}{8} - \frac{1}{8}; \qquad \qquad \partial u/\partial y = \frac{x}{8} - \frac{1}{8}$$

Solution summary

Nodal solution

	x-coord	y-coord	u
1	0	0	0
2	0	$\frac{1}{2}$	0
3	0	1	0
4	$\frac{1}{2}$	0	$\frac{1}{4}$
5	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{32}$
6	$\frac{1}{2}$	1	0
7	1	0	0
8	1	$\frac{1}{2}$	0
9	1	1	0

Solution at element centroids

	x-coord	y-coord	u	$\partial u/\partial x$	$\partial u/\partial y$
1	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{9}{128}$	$\frac{9}{32}$	$-\frac{7}{32}$
2	$\frac{1}{4}$	$\frac{3}{4}$	$\frac{1}{128}$	$\frac{1}{32}$	$-\frac{1}{32}$
3	$\frac{3}{4}$	$\frac{1}{4}$	$\frac{9}{128}$	$-\frac{9}{32}$	$-\frac{7}{32}$
4	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{1}{128}$	$-\frac{1}{32}$	$-\frac{1}{32}$

		2
4 Element	Solution	$\times 10^{-3}$

7.8125	7.8125
70.3125	70.3125

Exact Solution $\times 10^{-3}$ (5 terms)

13.7286	13.7286
83.201	83.201

16 Element solution

Solution summary

Nodal solution

	x-coord	y-coord	u
1	0.	0.	0
2	0.	0.25	0
3	0.	0.5	0
4	0.	0.75	0
5	0.	1.	0
6	0.25	0.	$\frac{3}{16}$
7	0.25	0.25	0.0788018
8	0.25	0.5	0.0334821
9	0.25	0.75	0.0122696
10	0.25	1.	0
11	0.5	0.	$\frac{1}{4}$
12	0.5	0.25	0.112111
13	0.5	0.5	0.0473214
14	0.5	0.75	0.0173531
15	0.5	1.	0
16	0.75	0.	$\frac{3}{16}$
17	0.75	0.25	0.0788018
18	0.75	0.5	0.0334821
19	0.75	0.75	0.0122696
20	0.75	1.	0
21	1.	0.	0
22	1.	0.25	0
23	1.	0.5	0
24	1.	0.75	0
25	1.	1.	0

Solution at element centroids

	x-coord	y-coord	u	$\partial \mathbf{u}/\partial \mathbf{x}$	$\partial \mathbf{u}/\partial \mathbf{y}$	
1	0.125	0.125	0.0665755	0.532604	-0.217396	
2	0.125	0.375	0.028071	0.224568	-0.0906394	
3	0.125	0.625	0.0114379	0.0915035	-0.0424251	
4	0.125	0.875	0.0030674	0.0245392	-0.0245392	
5	0.375	0.125	0.157103	0.191619	-0.493174	
6	0.375	0.375	0.0679291	0.0942972	-0.220219	
7	0.375	0.625	0.0276066	0.0378456	-0.102362	
8	0.375	0.875	0.00740567	0.0101671	-0.0592454	
9	0.625	0.125	0.157103	-0.191619	-0.493174	
10	0.625	0.375	0.0679291	-0.0942972	-0.220219	
11	0.625	0.625	0.0276066	-0.0378456	-0.102362	
12	0.625	0.875	0.00740567	-0.0101671	-0.0592454	
13	0.875	0.125	0.0665755	-0.532604	-0.217396	
14	0.875	0.375	0.028071	-0.224568	-0.0906394	
15	0.875	0.625	0.0114379	-0.0915035	-0.0424251	
16	0.875	0.875	0.0030674	-0.0245392	-0.0245392	
v 16 F	V 16 Flament Solution $\times 10^{-3}$ V Exact Solution $\times 10^{-3}$					

0.5