Recurrent Neural Networks | Coursera

Recurrent Neural Networks

Graded Quiz • 30 min

Due Mar 2, 2:59 AM EST

Recurrent Neural Networks

TOTAL POINTS 10

1.Question 1

Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

2.Question 2

Consider this RNN:

This specific type of architecture is appropriate when:

$$T_x = T_y$$

$$T_x < T_y$$

$$\bigcap T_x > T_y$$

$$T_x = 1$$

1 point

3.Question 3

To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

- Speech recognition (input an audio clip and output a transcript)
- Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)
- Image classification (input an image and output a label)
- Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

1 point

4.Question 4

You are training this RNN language model.

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- Calculating $P(y^{<1>},y^{<2>},\ldots,y^{< t-1>})$
- \bigcirc Estimating $P(y^{< t>})$
- Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \dots, y^{< t-1>})$
- Estimating $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \dots, y^{< t>})$

1 point

5.Question 5

You have finished training a language model RNN and are using it to sample random sentences, as follows:

What are you doing at each time step *t*?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{<\iota>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{(t)}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{V}^{\wedge < t >}$. (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{Y}^{\wedge < t >}$. (ii) Then pass this selected word to the next time-step.

1 point

6.Question 6

You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?

- Vanishing gradient problem.
- Exploding gradient problem.
- ReLU activation function g(.) used to compute g(z), where z is too large.

Sigmoid activation function g(.) used to compute g(z), where z is too large.

1 point

7.Question 7

Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100-dimensional activations $a^{< t>}$. What is the dimension of Γ_u at each time step?

 \bigcirc 1

300

10000

1 point

8.Question 8

Here're the update equations for the GRU.

GRU

$$\begin{split} \tilde{c}^{< t>} &= \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c) \\ \Gamma_u &= \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u) \\ \Gamma_r &= \sigma(W_r[c^{< t-1>}, x^{< t>}] + b_r) \end{split}$$

$$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t - 1>}$$

$$a^{} = c^{}$$

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient

problems even when trained on very long input sequences?

- Alice's model (removing Γ_u), because if $\Gamma_r \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Alice's model (removing Γ_u), because if $\Gamma_r \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Betty's model (removing Γ_r), because if $\Gamma_u \approx 0$ for a timestep, the gradient can propagate back through that timestep without much decay.
- Betty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

1 point

9.Question 9

Here are the equations for the GRU and the LSTM:

GRU	LSTM
$\tilde{c}^{< t>} = \tanh(W_c[\Gamma_r * c^{< t-1>}, x^{< t>}] + b_c)$	$\tilde{c}^{< t>} = \tanh(W_c[a^{< t-1>}, x^{< t>}] + b_c)$
$\Gamma_u = \sigma(W_u[c^{< t-1>}, x^{< t>}] + b_u)$	$\Gamma_u = \sigma(W_u[\ a^{< t-1>}, x^{< t>}] + b_u)$
$\Gamma_r = \sigma(W_r[c^{< t-1>},x^{< t>}] + b_r)$	$\Gamma_f = \sigma(W_f[a^{< t-1>},x^{< t>}] + b_f)$
$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + (1 - \Gamma_u) * c^{< t-1>}$	$\Gamma_o = \sigma(W_o[a^{< t-1>},x^{< t>}] + b_o)$
$a^{< t>} = c^{< t>}$	$c^{< t>} = \Gamma_u * \tilde{c}^{< t>} + \Gamma_f * c^{< t-1>}$
	$a^{< t>} = \Gamma_o * c^{< t>}$

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks?

$$igcup_u$$
 and $1-\Gamma_u$

 $\bigcap \Gamma_u$ and Γ_r

10.Question 10

You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $\mathcal{X}^{<1>},\ldots,\mathcal{X}^{<365>}$. You've also collected data on your dog's mood, which you represent as $\mathcal{Y}^{<1>},\ldots,\mathcal{Y}^{<365>}$. You'd like to build a model to map from $X\to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

I, **Zhuo Chen**, understand that submitting work that isn't my own may result in

permanent failure of this course or deactivation of my Coursera account.