What is claimed is:

[Claim 1] A method for forming a thin high-k layer on a substrate, the method comprising:

providing a substrate in a process chamber;

depositing a high-k material to at least a minimum thickness to form a thick complete high-k layer on the substrate; and

thinning the thick complete high-k layer to a desired thickness less than the minimum thickness to form a thin complete high-k layer.

- **[Claim 2]** The method according to claim 1, wherein the high-k material comprises Ta_2O_5 , TiO_2 , ZrO_2 , Al_2O_3 , Y_2O_3 , Y_2O_3 , Y_2O_3 , Y_2O_3 , Y_2O_3 , Y_2O_3 , Y_3O_3 , Y
- **[Claim 3]** The method according to claim 1, wherein the minimum thickness of the thick complete high-k layer is between about 30 Å and about 200 Å.
- **[Claim 4]** The method according to claim 1, wherein the minimum thickness of the thick complete high-k layer is between about 50 $\hbox{\AA}$ and about 100 $\hbox{Å}$.
- **[Claim 5]** The method according to claim 1, wherein the depositing comprises thermal chemical vapor deposition, plasma-enhanced chemical vapor deposition, atomic layer deposition, or physical vapor deposition.
- **[Claim 6]** The method according to claim 1, wherein the desired thickness of the thin complete high-k layer is between about 5 Å and about 50 Å.
- [Claim 7] The method according to claim 1, wherein the desired thickness of the thin complete high-k layer is between about 10 $\hbox{\AA}$ and about 30 $\hbox{\AA}$.
- **[Claim 8]** The method according to claim 1, wherein the providing comprises providing a substrate having an interface layer formed on the substrate and the depositing comprises depositing the high-k material on the interface layer.
- **[Claim 9]** The method according to claim 8, wherein the interface layer comprises an oxide layer, a nitride layer, or an oxynitride layer, or a combination of two or more thereof.

[Claim 10] The method according to claim 1, wherein the thinning comprises exposing the deposited high-k layer to a plasma process.

[Claim 11] The method according to claim 10, wherein the plasma process comprises a process gas containing an inert gas.

[Claim 12] The method according to claim 11, wherein the inert gas comprises He, Ne, Ar, Kr, or Xe, or a combination of two or more thereof.

[Claim 13] The method according to claim 11, wherein the process gas further comprises a reactive gas.

[Claim 14] The method according to claim 13, wherein the reactive gas comprises HCI, HBr, Cl_2 , Br₂, $C_xH_yX_z$, or $C_xH_yX_z$, or a combination of two or more thereof.

[Claim 15] The method according to claim 10, wherein the plasma process comprises etching the thick complete high-k layer in a reactive etching process.

[Claim 16] The method according to claim 10, wherein the plasma process comprises modifying a portion of the thick complete high-k layer and removing the modified portion using wet processing.

[Claim 17] A method for forming a thin hafnium-containing high-k layer on a substrate, the method comprising:

providing a substrate in a process chamber, the substrate having an interface layer formed thereon;

depositing a hafnium-containing high-k material to at least a minimum thickness necessary to form a thick complete hafnium-containing high-k layer on the interface layer in a TCVD process; and

thinning the thick complete hafnium-containing high-k layer to a desired thickness less than the minimum thickness to form a thin complete hafnium-containing high-k layer.

[Claim 18] The method according to claim 17, wherein the minimum thickness of the thick complete hafnium-containing high-k layer is between about 30 Å and about 200 Å.

[Claim 19] The method according to claim 17, wherein the desired thickness of the thin complete hafnium-containing high-k layer is between about 5 \mathring{A} and about 50 \mathring{A} .

[Claim 20] The method according to claim 17, wherein the thinning comprises etching the deposited hafnium-containing high-k layer in a reactive etching process.

[Claim 21] The method according to claim 17, wherein the thinning comprises modifying a portion of the thick complete hafnium-containing high-k layer in a plasma process and removing the modified portion using wet processing.