

計算理論 (Theory of Computation) 第1回

- 担当:増澤 利光 masuzawa@ist.osaka-u.ac.jp 中川 博之 nakagawa@ist.osaka-u.ac.jp
- TA:吉田 征樹(M1) m-yoshida@ist.osaka-u.ac.jp
 - ミニレポート採点. 質問対応
- オフィスアワー:メールで質問等に対応
- 成績:試験(中間/期末)7割、ミニレポート 3割
- ミニレポート
 - 大阪大学CLEの「コンテンツ/ミニレポート」で課題提示,レポート提出
- 講義資料等の配布
 - 大阪大学CLEの「コンテンツ/講義資料」からダウンロード可能
- 講義ビデオの視聴
 - 大阪大学CLEの「コンテンツ/講義映像」で視聴
 - タイトルが「計算論A」になっていることがあります

1

計算理論の内容

- 内容:オートマトンと形式言語
- テキスト
 - ホップクロフト, モトワニ, ウルマン「オートマトン 言語理論 計算論 | [第2版] 」サイエンス社(2003)
- ◆ 計算機科学の基礎理論
 - 抽象的な計算モデル(オートマトン)での議論
 - 実計算機システムではない
 - きっちりとした形式的議論
- **→** 何の役に立つのか
 - 計算機の「計算の原理」の解明
 - 計算機は、何でも計算できるのか?
 - どれだけ速く計算できるのか?
 - アセンブラやコンパイラの設計に必須
 - ソフトウェア/ハードウェアシステムの設計の基礎

2

オートマトン 言語理論 計算論 Ⅱ

受講上の注意(1)

- 内容は難しくないが、積み重ねが肝心
 - 予備知識は不要
 - 最初の定義、表記法等を理解していないと、後は理解できない
 - パズル的な思考の愉しみがある
- 講義ではエッセンスのみの紹介
 - テキストによる自習の補助
 - 毎週1時間程度の予習・復習が必要 テキストの自習、ミニレポート回答

受講上の注意(2)

- 質問
 - 増澤、中川、TAに直接尋ねる *オフィスアワー

随時, メールで連絡してください 必要に応じて, オンライン面談を実施

講義の予定(前半:増澤担当)

● 予定

- 第1回 イントロダクション、言語と決定性有限オートマトン
- 第2回 非決定性有限オートマトン
- 第3回 正則表現
- 第4回 有限オートマトンと正則表現
- 第5回 正則言語の性質
- 第6回 有限オートマトンの等価性と最小性
- 第7回 中間試験(第1~6回分)

※ 日程、内容を都合により変更することがあります

講義の予定(後半:中川担当)

■ 予定

- 第8回 文脈自由文法と構文木
- 第9回 文脈自由文法の応用
- 第10回 プッシュダウンオートマトン
- 第11回 文脈自由言語の標準形
- 第12回 文脈自由言語の反復補題
- 第13回 文脈自由言語の閉包性と決定問題
- 第14回 チューリングマシンと決定可能性
- 第15回 演習と解説
- 第16回 期末試験(第8~14回分)

※ 日程、内容を都合により変更することがあります

6

-トマトン. 文法. 表現

言語を指定する方法

5

-トマトンと文法の対応

制限の強い オートマトン 文法 言語 有限オートマトン 🖛 正則文法(3型文法) プッシュダウンオートマトン 🖛 文脈自由文法(2型文法) 線形拘束オートマトン ← → 文脈依存文法(1型文法) チューリング機械 💝 🗪 句構造文法(0型文法) 一般的な 言語

本日の内容

- 言語(第1.5節)
 - アルファベット
 - 文字列(語)
 - 言語
 - ■問題
- 決定性有限オートマトン(第2.2節)
 - 決定性有限オートマトン(DFA)
 - 状態遷移図
 - 状態遷移表
 - 状態遷移関数の拡張
 - DFA の言語

本日の学習目標

- 言語に関する用語の定義を述べ、例を用いて説明できる
- 決定性有限オートマトンとは何か、例を用いて説明できる
- 決定性有限オートマトンが状態遷移図/状態遷移表で与え られたとき、その動作をトレースできる
- 決定性有限オートマトンが与えられたとき、その言語を説 明できる
- 指定された言語を受理する決定性有限オートマトンを設計 でき、状態遷移図/状態遷移表で表現できる

10

- 1.5 オートマトン理論の中心概念
- 1. 5. 1 アルファベット

1.1 から 1.4 は読んでおくこと

- 記号
 - 英大文字、数字、ひらがな、かたかな、漢字など
- アルファベット
 - 記号の空でない有限集合
 - ∑で表すことが多い
 - $\Sigma = \{0, 1\}$
 - $\Sigma = \{a, b, \dots, z\}$

1.5.2 文字列(1)

- ▼字列(あるいは語):アルファベット ∑ の記号の有限列
 - **•** 01101, 11
- 空列(空語): 0 個の記号からなる文字列. ϵ で表す $(\epsilon \notin \Sigma)$
- |w|:語 w の長さ、|01101|=5, |11|=2, $|\epsilon|=0$
- Σ^k (アルファベットのベキ)
 - ullet Σ から作られる長さ k の列全体の集合
 - $\Sigma^0 = \{\epsilon\}$ (Σ にかかわらず)
 - $\Sigma = \{0, 1\}$ **x b i**
 - $\Sigma^1 = \{0, 1\}, \quad \Sigma^2 = \{00, 01, 10, 11\}$ $\Sigma^3 = \{000, 001, 010, 011, 100, 101, 110, 111, \}$
- $\Sigma^+ = \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \cdots$: 長さ1以上の列全体の集合
- $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \Sigma^3 \cup \dots = \Sigma^+ \cup \{\epsilon\}$: 長さり以上の"

1.5.2 文字列(2)

- 列の連接 xy
 - 列 *x* と *y* をつなげて得られる列
 - $x = a_1 a_2 \cdots a_i$, $y = b_1 b_2 \cdots b_i$ のとき $xy = a_1 a_2 \cdots a_i b_1 b_2 \cdots b_i$
 - $\epsilon w = w\epsilon = w$

1.5.3 言語

- Σ 上の言語 L
 - $L \subseteq \Sigma^*$
 - 言語の例
 - ある $n \ge 0$ について、n 個の 0 の後に n 個の 1 が並ん だ列からなる言語: $\{\epsilon, 01, 0011, 000111, \cdots\}$
 - 0 と 1 とが同じ数だけ含まれている列からなる言語: $\{\epsilon, 01, 10, 0011, 0101, 0110, 1001, 1010, 1100, \cdots\}$
 - Σ* は Σ 上の言語
 - **■** Ø は任意の∑上の言語
 - **■** {*ϵ*} は任意の∑上の言語

13

14

1.5.4 問題

- 文字列 $w \in \Sigma^*$ と言語 $L \subseteq \Sigma^*$ に対し. $w \in L$ かどうかを判定する
 - L にかかわる帰属性問題
 - 問題 L (判定問題、決定問題と呼ぶことが多い)

本日の内容

- 言語(第1.5節)
 - **■** アルファベット
 - 文字列(語)
 - 言語
 - ■問題

- 決定性有限オートマトン(第2.2節)
 - 決定性有限オートマトン(DFA)
 - 状態遷移図
 - 状態遷移表
 - 状態遷移関数の拡張
 - DFA の言語

2. 2 決定性有限オートマトン 2.1 は読んでおくこと

2.2.1 決定性有限オートマトンの定義(1)

・ 決定性有限オートマトン(DFA) $A = (Q, \Sigma, \delta, q_0, F)$

Q:状態の有限集合 $(Q \neq \emptyset)$

 Σ : 入力記号の有限集合 ($\Sigma \neq \emptyset$) (入力テープ上の記号)

 δ : 状態遷移関数 $Q \times \Sigma \to Q$

 q_0 :開始状態 $q_0 \in Q$

 $F: \overline{\mathbf{9}}$ 理状態 (最終状態) の集合 $F\subseteq Q$

Deterministic Finite Automaton

■ 2. 2. 1 決定性有限オートマトンの定義(1)

・ 決定性有限オートマトン(DFA) $A = (Q, \Sigma, \delta, q_0, F)$

Q: 状態の有限集合 ($Q \neq \emptyset$)

Σ: 入力記号の有限集合(Σ≠∅)(入力テープ上の記号)

 δ :状態遷移関数 $Q \times \Sigma \to Q$

 q_0 :開始状態 $q_0 \in Q$

 $F: \overline{\mathbf{9}}$ 理状態 (最終状態) の集合 $F\subseteq Q$

Deterministic Finite Automaton

18

2. 2. 1 決定性有限オートマトンの定義(1)

・ 決定性有限オートマトン(DFA) $A = (Q, \Sigma, \delta, q_0, F)$

Q:状態の有限集合 ($Q \neq \emptyset$)

 Σ : 入力記号の有限集合 $(\Sigma \neq \emptyset)$

(入力テープ上の記号)

 q_0 :開始状態 $q_0 \in Q$

F: 受理状態(最終状態)の集合 $F\subseteq Q$

Deterministic Finite Automaton

2.2.1 決定性有限オートマトンの定義(1)

決定性有限オートマトン(DFA) $A = (Q, \Sigma, \delta, q_0, F)$

Q: 状態の有限集合 ($Q \neq \emptyset$)

 Σ : 入力記号の有限集合 ($\Sigma \neq \emptyset$) (入力テープ上の記号)

 δ : 状態遷移関数 $Q \times \Sigma \to Q$

 q_0 :開始状態 $q_0 \in Q$

F: 受理状態(最終状態)の集合 $F\subseteq Q$

Deterministic Finite Automaton

動作開始時の状態: q_0 20

2.2.1 決定性有限オートマトンの定義(1)

- ・ 決定性有限オートマトン(DFA) $A = (Q, \Sigma, \delta, q_0, F)$
 - Q:状態の有限集合 $(Q \neq \emptyset)$
 - Σ :入力記号の有限集合 ($\Sigma \neq \emptyset$)
 - (入力テープ上の記号)
 - δ : 状態遷移関数 $Q \times \Sigma \to Q$
 - q_0 :開始状態 $q_0 \in Q$

abacacc を 受理/棄却したという

- $\longrightarrow F:$ 受理状態(最終状態)の集合 $F\subseteq Q$
 - 最後の記号を 読んで状態遷移 (動作終了)

入力テープ

 q ∈ F
 受理
 有限状態部

 q ∉ F
 棄却
 状態:q

21

2.2.1 決定性有限オートマトンの定義(2)

- DFA A の言語 (A が受理する言語) A が受理する記号列すべての集合
- $\{\emptyset\}$ 2. 1: $\Sigma = \{0, 1\}, L = \{w \in \Sigma^* \mid \exists x, y \in \Sigma^* [w = x01y]\}$
 - L は $\Sigma = \{0,1\}$ 上の言語で、01 を含む語すべての集合
 - $L = \{01, 010, 001, 011, 101, 0100, 0101, 0110, 0111, \cdots\}$
 - **■** *L* を受理する DFA を作りたい

まずは、DFA の表現法を学ぼう

22

2.2.3 DFA に関する記法(1)

- DFA A = (Q, Σ, δ, q₀, F) の状態遷移図
 - $Q = \{q_0, q_1\}, \quad \Sigma = \{0, 1\}, \quad F = \{q_0\}$
 - $\delta : \delta(q_0, 0) = q_0, \ \delta(q_0, 1) = q_1,$
 - $\delta(q_1, 0) = q_1, \ \delta(q_1, 1) = q_0$

状態遷移図

•

2.2.3 DFA に関する記法(2)

DFA $A = (Q, \Sigma, \delta, q_0, F)$ の状態遷移表

$$Q = \{q_0, q_1\}, \quad \Sigma = \{0, 1\}, \quad F = \{q_0\}$$

$$\delta$$
: $\delta(q_0, 0) = q_0$, $\delta(q_0, 1) = q_1$, $\delta(q_1, 0) = q_1$, $\delta(q_1, 1) = q_0$

受理状態

q₀ が初期状態 複数の状態に * が付くこともある

DFA の例:例2.1 (例2.2, 2.3)

- **M2.** 1: $\Sigma = \{0, 1\}, L = \{w \in \Sigma^* \mid \exists x, y \in \Sigma^* [w = x01y]\}$
 - L は $\Sigma = \{0,1\}$ 上の言語で、01 を含む語すべての集合
 - $L = \{01, 010, 001, 011, 101, 0100, 0101, 0110, 0111, \cdots\}$

2.2.4 遷移関数の拡張

- **DFA** $A = (Q, \Sigma, \delta, q_0, F)$
 - δ̂:状態遷移関数 δ の拡張
 - ■長さ 0 以上の記号列を読んだときの状態遷移
 - 基礎:各 $q \in Q$ に対して、 $\hat{\delta}(q,\epsilon) = q$
 - 再帰:各 $q \in Q, w = xa \in \Sigma^+ (x \in \Sigma^*, a \in \Sigma)$ に対して、 $\hat{\delta}(q, w) = \delta(\hat{\delta}(q, x), a)$
 - $\hat{\delta}(q, 1101) = \delta(\hat{\delta}(q, 110), 1)$
 - **■** *a* ∈ *O* から 110 を読んで状態遷移した後、1 を読んで遷移

29

2.2.4 遷移関数の拡張:例2.4

- 例2.4: $\Sigma = \{0, 1\}$.
 - $L = \{ w \in \Sigma^* \mid w \text{ は偶数個の } 0 \text{ と偶数個の } 1 \text{ を含む} \}$
 - $L = \{\epsilon, 00, 11, 0011, 0101, 0110, 1001, 1010, 1100, \cdots \}$

2.2.5 DFA の言語

- DFA $A = (Q, \Sigma, \delta, q_0, F)$ の言語 L(A)
 - $L(A) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$
 - DFA A が受理する語の集合(言語)
 - $\mathbf{M2.4:} L(A) = \{w \in \Sigma^* \mid w \text{ は偶数個の } 0 \text{ と偶数個の } 1 \text{ を含む} \}$

本日の講義のまとめ

- 言語(第1.5節)
 - アルファベット
 - 文字列(語)
 - 言語
 - ■問題
- 決定性有限オートマトン(第2.2節)
 - 決定性有限オートマトン(DFA)
 - 状態遷移図
 - 状態遷移表
 - 状態遷移関数の拡張
 - DFA の言語

本日の学習目標

目標を達成できたか 確認してみよう (復習も含めて)

- 言語に関する用語の定義を述べ、例を用いて説明できる
- 決定性有限オートマトンとは何か、例を用いて説明できる
- 決定性有限オートマトンが状態遷移図/状態遷移表で与えられたとき、その動作をトレースできる
- 決定性有限オートマトンが与えられたとき、その言語を説明できる
- 指定された言語を受理する決定性有限オートマトンを設計 でき、状態遷移図/状態遷移表で表現できる