Matricule: Nom: Prénom:

Exercice 1

Donner une grammaire pour chacun des langages suivants :

- 1. $L_1=\{a^{2n}wb^m/n\geq 0, m\geq 0, w\in \{0,1\}^* \text{ et } |w|\equiv 1[3]\}$
- 2. $L_2=\{a^nwb^{m+1}/n, m \ge 0, w \in \{0,1\}^* \text{ et } m+|w|=n\}$
- 3. $L_3=\{a^nwd^{m+1}u/n, m \ge 0, w, u \in \{0,1\}^* \text{ et } u^R \text{ est facteur gauche de } w\}$
- 4. L₄= l'ensemble des appels d'une fonction (avec ou sans paramètres) en langage C. L'alphabet terminal ={nom, val, \, , ;, (,)} où
 - nom représente un nom de fonction ou celui d'un paramètre de type simple
 - val représente une valeur de type simple
 - \, est le méta-caractère

Exercice 2

Soit une grammaire G=({a,b, c}, {S, A, B, D}, S, P) tq P est défini par :

$$S \rightarrow AaB$$
 $B \rightarrow bBc/aBc/c$

$$A \rightarrow a^2 AD/D$$
 $D \rightarrow Dd/d^2$

Soit A un non-terminal, on note $L_G(A)$ l'ensemble des mots dérivables à partir du non-terminal A et défini comme suit : $L_G(A) = \{w/w \in T^* \text{ et } A \Rightarrow^* w\}$

- 1. Quel est le type de la grammaire G ? Expliquer.
- 2. Déterminer $L_G(A)$ et $L_G(B)$.
- 3. Donner le langage généré par la grammaire G.

Exercice 3

1. Donner un automate d'états fini simple pour chacun des langages suivants :

```
L_4 = \{wa^nb^m/n \ge 0, \ m \ge 0, \ w \in \{0,1\}^* \ \text{et } |w| \ \text{est impaire} \ \} L_5 = \{wa^nb^m/n \ge 0, \ m \ge 1, \ w \in \{0,1\}^+ \ \text{et } \ n+m+|w| \ \text{de longueur impaire} \}
```

- 2. Donner une expression régulière pour chacun des langages L₄ et L₅.
- 3. Donner l'expression régulière associée à l'automate d'états fini suivant en utilisant la méthode de transformation par élimination d'états