SparkSQL and DataFrame

Lecture 5 November 9th, 2017

Jae W. Lee (jaewlee@snu.ac.kr)
Computer Science and Engineering
Seoul National University

Slide credits: Prof. Anthony Joseph (BerkeleyX CS105x)

SparkSQL & DataFrames

- Special-purpose libraries for a variety of data science tasks
 - SQL-like query computation by SparkSQL
 - DataFrames: Table

^{*} Image from https://www.safaribooksonline.com/library/view/data-analytics-with/9781491913734/ch04.html

Outline

- DataFrames
- Spark Transformations and Actions
- Spark Programming Model
- Relational Database and SQL
- SparkSQL

DataFrames

Primary abstraction in Spark

- Immutable (i.e., read-only) once constructed
- Track lineage information to efficiently recompute lost data
- Enable operations on collection of elements in parallel
 - "Here's an operation, run it on all of the data"

You can construct DataFrames

- by parallelizing existing Python collections (lists)
- by transforming an existing Spark or pandas DFs
- from files in HDFS or any other storage system

Spark Driver and Workers

- A Spark program is two programs:
 - A driver program and a workers program
- Worker programs run on cluster nodes or in local threads
- DataFrames are distributed across workers

Spark and SQL Contexts

- A Spark program first creates a SparkContext object
 - SparkContext tells Spark how and where to access a cluster
 - pySpark shell automatically creates SparkContext
 - iPython and programs must create a new SparkContext
- The program next creates a sqlContext object
- Use sqlContext to create DataFrames

In the labs, we create the SparkContext and sqlContext for you

DataFrames

- Each row of a DataFrame is a Row object
- The fields in a Row can be accessed like attributes

```
>>> row = Row(name="Alice", age=11)
>>> row
Row(age=11, name='Alice')
>>> row['name'], row['age']
('Alice', 11)
>>> row.name, row.age
('Alice', 11)
```

DataFrames

Similarities to RDD

- Two types of operations: transformations and actions
- Transformations are lazy (not computed immediately)
- Transformed DF is executed when action runs on it
- Persist (cache) DFs in memory or disk

Working with DataFrames

Create a DataFrame from a data source:

- Apply transformations to a DataFrame: select, filter, ...
- Apply actions to a DataFrame: collect, count, ...

Creating DataFrames

Create DataFrames from Python collections (lists)

pandas: Python Data Analysis Library

- Open source data analysis and modeling library
 - An alternative to using R
- pandas <u>DataFrame</u>: a table with named columns
 - The most commonly used pandas object
 - Represented as a Python <u>Dict</u> (column_name → Series)
 - Each pandas <u>Series</u> object represents a column
- 1-D labeled array capable of holding any data type
 - R has a similar <u>data frame</u> type

Creating DataFrames

Easy to create pySpark DataFrames from pandas (and R) DataFrames

```
# Create a Spark DataFrame from Pandas
>>> spark_df = sqlContext.createDataFrame(pandas_df)
```

Creating DataFrames

From HDFS, text files, JSON files, Apache Parquet, Hypertable, Amazon S3, Apache Hbase, SequenceFiles, any other Hadoop InputFormat, and directory or glob wildcard: /data/201404*

```
>>> df = sqlContext.read.text("README.txt")
>>> df.collect()
[Row(value=u'hello'), Row(value=u'this')]
```

Creating a DataFrame from a File

distFile = sqlContext.read.text ("...")

Loads text file and returns a DataFrame with a single string column named "value"

Each line in text file is a row

Lazy evaluation means no execution happens now

Outline

- DataFrames
- Spark Transformations and Actions
- Spark Programming Model
- Relational Database and SQL
- SparkSQL

Spark Transformations

- Create new DataFrame from an existing one
- Use lazy evaluation
 - Results not computed right away Spark remembers set of transformations applied to base DataFrame
 - Spark uses Catalyst to optimize the required calculations
 - Spark recovers from failures and slow workers
- Think of this as a recipe for creating result

Catalyst: Shared Optimization & Execution

DataFrames, Datasets, and Spark SQL share the same optimization/execution pipeline

The apply method creates a DataFrame from one column:

>>> ageCol = people.age

The apply method creates a DataFrame from one column:

```
>>> ageCol = people.age
```

You can select one or more columns from a DataFrame:

```
>>> df.select('*')
```

^{*} selects all the columns

The apply method creates a DataFrame from one column:

```
>>> ageCol = people.age
```

You can select one or more columns from a DataFrame:

```
>>> df.select('*')
   * selects all the columns
>>> df.select('name', 'age')
   * selects the name and age columns
```

The apply method creates a DataFrame from one column:

```
>>> ageCol = people.age
```

You can select one or more columns from a DataFrame:

* selects the name and age columns, increments the values in the age column by 10, and renames (alias) the age + 10 column as age

More Column Transformations

The <u>drop</u> method returns a new DataFrame that drops the specified column:

```
>>> df.drop(df.age)
[Row(name=u'Alice'), Row(name=u'Bob')]
```

Review: Python 1ambda Functions

- Small anonymous functions (not bound to a name)
 - Example: lambda a, b: a + b
 - returns the sum of its two arguments
- Can use lambda functions wherever function objects are required
- Restricted to a single expression

User Defined Function Transformations

■ Transform a DataFrame using a <u>User Defined Function</u>

<u>UDF</u> takes named or lambda function and the return type of the function

Other Useful Transformations

Transformation	Description
<u>filter(func)</u>	returns a new DataFrame formed by selecting those rows of the source on which <i>func</i> returns true
where(func)	where is an alias for filter
<u>distinct()</u>	return a new DataFrame that contains the distinct rows of the source DataFrame
orderBy(*cols, **kw)	returns a new DataFrame sorted by the specified column(s) and in the sort order specified by kw
sort(*cols, **kw)	Like orderBy, sort returns a new DataFrame sorted by the specified <i>column(s)</i> and in the sort order specified by <i>kw</i>
<pre>explode(col)</pre>	returns a new row for each element in the given array or map

func is a Python named function or lambda function

Using Transformations (1)

```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
```

Using Transformations (1)

```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
>>> from pyspark.sql.types import IntegerType
>>> doubled = udf(lambda s: s * 2, IntegerType())
>>> df2 = df.select(df.name, doubled(df.age).alias('age'))
[Row(name=u'Alice', age=2), Row(name=u'Bob', age=4)]
```

* selects the name and age columns, applies the UDF to age column and aliases resulting column to age

Using Transformations (1)

```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
>>> from pyspark.sql.types import IntegerType
>>> doubled = udf(lambda s: s * 2, IntegerType())
>>> df2 = df.select(df.name, doubled(df.age).alias('age'))
[Row(name=u'Alice', age=2), Row(name=u'Bob', age=4)]
   * selects the name and age columns, applies the
     UDF to age column and aliases resulting column
    to age
>>> df3 = df2.filter(df2.age > 3)
[Row(name=u'Bob', age=4)]
   * only keeps rows with age column greater than 3
```

Using Transformations (2)

Using Transformations (2)

```
>>> data2 = [('Alice', 1), ('Bob', 2), ('Bob', 2)]
>>> df = sqlContext.createDataFrame(data2, ['name', 'age'])
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2),
   Row(name=u'Bob', age=2)]
>>> df2 = df.distinct()
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
    * only keeps rows that are distinct
>>> df3 = df2.sort("age", ascending=False)
[Row(name=u'Bob', age=2),
Row(name=u'Alice', age=1)]
    * sort ascending on the age column
```

Using Transformations (III)

```
>>> data3 = [Row(a=1, intlist=[1,2,3])]
>>> df4 = sqlContext.createDataFrame(data3)
[Row(a=1, intlist=[1,2,3])]
>>> df4.select(explode(df4.intlist).alias("anInt"))
[Row(anInt=1), Row(anInt=2), Row(anInt=3)]
  * turn each element of the intlist column into a Row, alias the resulting column to anInt, and select only that column
```

GroupedData Transformations

groupBy(*cols) groups the DataFrame using the specified columns, so we can run aggregation on them

GroupedData Function	Description
agg(*exprs)	Compute aggregates (avg, max, min, sum, or count) and returns the result as a DataFrame
<u>count()</u>	counts the number of records for each group
avg(*args)	computes average values for numeric columns for each group

Using GroupedData (1)

```
>>> data = [('Alice',1,6), ('Bob',2,8), ('Alice',3,9), ('Bob',4,7)]
>>> df = sqlContext.createDataFrame(data, ['name', 'age', 'grade'])
>>> df1 = df.groupBy(df.name)
>>> df1.agg({"*": "count"}).collect()
[Row(name=u'Alice', count(1)=2), Row(name=u'Bob', count(1)=2)]
```

Using GroupedData (1)

```
>>> data = [('Alice',1,6), ('Bob',2,8), ('Alice',3,9), ('Bob',4,7)]
>>> df = sqlContext.createDataFrame(data, ['name', 'age', 'grade'])
>>> df1 = df.groupBy(df.name)
>>> df1.agg({"*": "count"}).collect()
[Row(name=u'Alice', count(1)=2), Row(name=u'Bob', count(1)=2)]
>>> df.groupBy(df.name).count()
[Row(name=u'Alice', count=2), Row(name=u'Bob', count=2)]
```

Using GroupedData (2)

```
>>> data = [('Alice',1,6), ('Bob',2,8), ('Alice',3,9), ('Bob',4,7)]
>>> df = sqlContext.createDataFrame(data, ['name', 'age', 'grade'])
>>> df.groupBy().avg().collect()
[Row(avg(age)=2.5, avg(grade)=7.5)]
```

Using GroupedData (2)

```
>>> data = [('Alice',1,6), ('Bob',2,8), ('Alice',3,9), ('Bob',4,7)]
>>> df = sqlContext.createDataFrame(data, ['name', 'age', 'grade'])
>>> df.groupBy().avg().collect()
[Row(avg(age)=2.5, avg(grade)=7.5)]
>>> df.groupBy('name').avg('age', 'grade').collect()
[Row(name=u'Alice', avg(age)=2.0, avg(grade)=7.5),
    Row(name=u'Bob', avg(age)=3.0, avg(grade)=7.5)]
```

Transforming a DataFrame

linesDF = sqlContext.read.text('...')

commentsDF = linesDF.filter(isComment)

linesDF commentsDF

Lazy evaluation means nothing executes – Spark saves recipe for transforming source

Spark Actions

- Cause Spark to execute recipe to transform source
- Mechanism for getting results out of Spark

Some Useful Actions

Action	Description
<pre>show(n, truncate)</pre>	prints the first <i>n</i> rows of the DataFrame
take(n)	returns the first <i>n</i> rows as a list of Row
<u>collect()</u>	return all the records as a list of Row WARNING: make sure will fit in driver program
<pre>count()*</pre>	returns the number of rows in this DataFrame
<pre>describe(*cols)</pre>	Exploratory Data Analysis function that computes statistics (count, mean, stddev, min, max) for numeric columns – if no columns are given, this function computes statistics for all numerical columns

^{*} count for DataFrames is an action, while for GroupedData it is a transformation

Getting Data Out of DataFrames (1)

```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
>>> df.collect()
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
```

Getting Data Out of DataFrames (1)

```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
>>> df.collect()
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
>>> df.show()
+----+
| name|age|
+----+
|Alice| 1|
| Bob| 2|
+----+---+
```

Getting Data Out of DataFrames (1)

```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
>>> df.collect()
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
>>> df.show()
 name|age|
|Alice| 1|
  Bob | 2 |
+----+
>>> df.count()
```

Getting Data Out of DataFrames (2)

```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
>>> df.take(1)
[Row(name=u'Alice', age=1)]
```

Getting Data Out of DataFrames (2)

```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
>>> df.take(1)
[Row(name=u'Alice', age=1)]
>>> df.describe()
summary
                         age
   count |
    mean
  stddev | 0.7071067811865476 |
     min
     max
```

Outline

- DataFrames
- Spark Transformations and Actions
- Spark Programming Model
- Relational Database and SQL
- SparkSQL

Spark Programming Model

```
linesDF = sqlContext.read.text('...')
```

print linesDF.count()

count() causes Spark to:

- read data
- sum within partitions
- combine sums in driver

Spark Programming Model

```
linesDF = sqlContext.read.text('...')
commentsDF = linesDF.filter(isComment)
print linesDF.count(), commentsDF.count()
```


Spark recomputes linesDF:

- read data (again)
- sum within partitions
- combine sums in driver

Spark Programming Model

```
linesDF = sqlContext.read.text('...')
LinesDF.cache() # save, don't recompute!
commentsDF = linesDF.filter(isComment)
print linesDF.count(),commentsDF.count()
```


Spark Program Lifecycle

- Create DataFrames from external data or <u>createDataFrame</u> from a collection in driver program
- Lazily <u>transform</u> them into new DataFrames
- cache() some DataFrames for reuse
- Perform <u>actions</u> to execute parallel computation and produce results

Local or Distributed?

Where does code run?

- Locally, in the driver
- Distributed at the executors
- Both at the driver and the executors

Very important question:

- Executors run in parallel
- Executors have much more memory

Where Code Runs

- Most Python code runs in driver
 - Except for code passed to transformations
- Transformations run at executors
- Actions run at executors and driver

Examples

Your application (driver program)
Worker
Spark
executor

Examples

Examples

How Not to Write Code

- Let's say you want to combine two DataFrames: aDF, bDF
- You remember that df.collect() returns a list of Row, and in Python you can combine two lists with +
- A naïve implementation would be:

```
>>> a = aDF.collect()
>>> b = bDF.collect()
>>> cDF = sqlContext.createDataFrame(a + b)
```

Where does this code run?

How Not to Write Code

```
>>> a = aDF.collect()
>>> b = bDF.collect()
```

* all distributed data for a and b is sent to driver

What if a and/or b is very large?

- Driver could run out of memory: Out Of Memory error (OOM)
- Also, takes a long time to send the data to the driver

How Not to Write Code

>>> cDF = sqlContext.createDataFrame(a + b)
 * all data for cDF is sent to the executors

■ What if the list a + b is very large?

- Driver could run out of memory: Out Of Memory error (OOM)
- Also, takes a long time to send the data to executors

How Not to Write Code: The Best Way

>>> cDF = aDF.unionAll(bDF)

- Use the <u>DataFrame</u> reference API
 - unionAll()
 "Return a new DataFrame containing union of rows in this frame and another frame"
- Runs <u>completely</u> at executors:
 - Very scalable and efficient

Some Programming Best Practices

- Use Spark Transformations and Actions wherever possible
 - Search DataFrame reference API
- Never use collect() in production, instead use take(n)
- cache() DataFrames that you reuse a lot

Outline

- DataFrames
- Spark Transformations and Actions
- Spark Programming Model
- Relational Database and SQL
- SparkSQL

Key Data Management Concepts

- A data model is a collection of concepts for describing data
- A schema is a description of a particular collection of data, using a given data model
- A relational data model is the most used data model
 - Relation, a table with rows and columns
 - Every relation has a schema defining fields in columns

The Structure Spectrum

Next topic

Relational Database: Definitions

- Relational database: a set of relations
- Two parts to a Relation:
 - Schema: specifies name of relation, plus each column's name and type

```
Students(sid: string, name: string, email: string, age: integer, gpa: real)
```

- Instance: the actual data at a given time
 - # rows = cardinality
 - # fields = degree

What is a Database?

- A large organized collection of data
 - Transactions used to modify data
- Models real world, e.g., enterprise
 - Entities
 - e.g., teams, games
 - Relationships
 - e.g., A plays against B in The World Cup

Large Databases

- US Internal Revenue Service: <u>150Terabytes</u>
- Australian Bureau of Stats: <u>250 Terabytes</u>
- AT&T call records: 312 Terabytes
- eBay database: <u>1.4 Petabytes</u>
- Yahoo click data: 2 Petabytes
- What matters for these databases?

Large Databases

What matters for these databases?

Example: Instance of Students

Attribute names

Students(sid:string, name:string, login:string, age; Integer, gpa:real)

sid		name	login	age	gpa
Table name		Jones	jones@eecs	18	3.4
53688 Sn		Smith	smith@statistics	18	3.2
	53650	Smith	smith@math	19	3.8

- Cardinality = 3 (rows)
- Degree = 5 (columns)
- All rows (tuples) are distinct.

Tuples or rows

SQL – A language for Relational DBs

- **SQL** = Structured Query Language
- Supported by Spark DataFrames (SparkSQL)
- Some of the functionality SQL provides:
 - Create, modify, delete relations
 - Add, modify, remove tuples
 - Specify queries to find tuples matching criteria

Queries in SQL

- Single-table queries are straightforward
- To find all 18 year old students, we can write:

```
SELECT *
  FROM Students S
WHERE S.age=18
```

To find just names and logins:

```
SELECT S.name, S.login
FROM Students S
WHERE S.age=18
```

Querying Multiple Relations

Can specify a join over two tables as follows:

```
SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid
```

Enrolled

E

E.sid	E.cid	E.grade
53831	Physics203	А
53650	Topology112	А
53341	History105	В

Students

5

S.sid	S.name	S.login	S.age	S.gpa
53341	Jones	jones@cs	18	3.4
53831	Smith	smith@ee	18	3.2

First, combine the two tables, S and E

Querying Multiple Relations

Cross Join: Cartesian product of two tables (E x S)

Enrolled

E

E.sid	E.cid	E.grade
53831	Physics203	А
53650	Topology112	А
53341	History105	В

Students

5

S.sid	S.name	S.login	S.age	S.gpa
53341	Jones	jones@cs	18	3.4
53831	Smith	smith@ee	18	3.2

Querying Multiple Relations

Cross Join: Cartesian product of two tables (E x S) (cont'd)

Enrolled

F

E.sid	E.cid	E.grade
53831	Physics203	А
53650	Topology112	А
53341	History105	В

Students

S

S.sid	S.name	S.login	S.age	S.gpa
53341	Jones	jones@cs	18	3.4
53831	Smith	smith@ee	18	3.2

E.sid	E.cid	E.grade	S.sid	S.name	S.login	S.age	S.gpa
53831	Physics203	А	53341	Jones	jones@cs	18	3.4
53650	Topology112	А	53341	Jones	jones@cs	18	3.4
53341	History105	В	53341	Jones	jones@cs	18	3.4
53831	Physics203	А	53831	Smith	smith@ee	18	3.2
53650	Topology112	А	53831	Smith	smith@ee	18	3.2
53341	History105	В	53831	Smith	smith@ee	18	3.2

Querying Multiple Relations

Where clause: Choose matching rows using Where clause:

```
SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid
```

E.sid	E.cid	E.grade	S.sid	S.name	S.login	S.age	S.gpa
53831	Physics203	A	53341	Jones	jones@cs	18	3.4
53650	Topology112	A	53341	Jones	jones@cs	18	3.4
53341	History105	В	53341	Jones	jones@cs	18	3.4
53831	Physics203	Α (53831	Smith	smith@ee	18	3.2
53650	Topology112	А	53831	Smith	smith@ee	18	3.2
53341	History105	В	53831	Smith	smith@ee	18	3.2

Querying Multiple Relations

Select clause: Filter columns using Select clause:

```
SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid
```

	E.sid	E.cid	E.grade	S.sid	S.name	S.login	S.age	S.gpa
	53831	Physics203	А	53341	Jones	jones@cs	18	3.4
	53650	Topology112	А	53341	Jones	jones@cs	18	3.4
(53341	History105	В	53341	Jones	jones@cs	18	3.4
	53831	Physics203	Α (53831	Smith	smith@ee	18	3.2
	53650	Topology112	А	53831	Smith	smith@ee	18	3.2
	53341	History105	В	53831	Smith	smith@ee	18	3.2

Querying Multiple Relations

Results

```
SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid
```

Enrolled

E	E.sid	E.cid	E.grade
	53831	Physics203	А
	53650	Topology112	А
	53341	History105	В

Students

S	S.sid	S.name	S.login	S.age	S.gpa
(53341	Jones	jones@cs	18	3.4
(53831	Smith	smith@ee	18	3.2

Result = S.name E.cid

Jones History105

Smith Physics203

Explicit SQL Joins

SELECT S.name, E.classid

FROM Students S INNER JOIN Enrolled E ON S.sid=E.sid

S.name S.sid

Jones 11111

Smith 22222

Brown 33333

E.sid	E.classid
11111	History105
11111	DataScience194
22222	French150
44444	English10

Result

S.name	E.classid
Jones	History105
Jones	DataScience194
Smith	French150

Equivalent SQL Join Notations

Explicit Join notation (preferred):

```
SELECT S.name, E.classid
FROM Students S INNER JOIN Enrolled E ON S.sid=E.sid
```

```
SELECT S.name, E.classid
FROM Students S JOIN Enrolled E ON S.sid=E.sid
```

Implicit join notation (deprecated):

```
SELECT S.name, E.cid
FROM Students S, Enrolled E WHERE
S.sid=E.sid
```

SQL Types of Joins

SELECT S.name, E.classid FROM Students S INNER JOIN

Enrolled E ON S.sid=E.sid

S

S.name	S.sid
Jones	11111
Smith	22222
Brown	33333

E

E.sid	E.classid
11111	History105
11111	DataScience194
22222	French150
44444	English10

Result

S.name	E.classid
Jones	History105
Jones	DataScience194
Smith	French150

Unmatched keys

The type of join controls how unmatched keys are handled

SQL Joins: Left Outer Join

SELECT S.name, E.classid FROM Students S LEFT OUTER

JOIN Enrolled E ON S.sid=E.sid

 S.name
 S.sid

 Jones
 11111

 Smith
 22222

 Brown
 33333

E.sid	E.classid
11111	History105
11111	DataScience194
22222	French150
44444	English10

Result

S.name	E.classid
Jones	History105
Jones	DataScience194
Smith	French150
Brown	<null></null>

Unmatched keys

SQL Joins: Right Outer Join

SELECT S.name, E.classid FROM Students S LEFT OUTER

JOIN Enrolled E ON S.sid=E.sid

 S.name
 S.sid

 Jones
 11111

 Smith
 22222

 Brown
 33333

E.sid	E.classid
11111	History105
11111	DataScience194
22222	French150
44444	English10

Result

S.name	E.classid
Jones	History105
Jones	DataScience194
Smith	French150
<null></null>	English10

Unmatched keys

Running an SQL query on Spark

- SparkSession.sql(sqlQuery)
 - Returns a DataFrame representing the result of the given query.

```
>>> df.createOrReplaceTempView("table1")
>>> df2 = spark.sql("SELECT field1 AS f1, field2 as f2 from table1")
>>> df2.collect()
[Row(f1=1, f2=u'row1'), Row(f1=2, f2=u'row2'), Row(f1=3, f2=u'row3')]
```

createOrReplaceTempView(name)

- Creates or replaces a local temporary view with this DataFrame
- The lifetime of this temporary table is tied to the SparkSession that was used to create this DataFrame.

Spark Joins

- **SparkSQL and Spark DataFrames** support joins
- join(other, on, how):
 - other right side of the join
 - on –join column name, list of column (names), or join expression
 - how inner, outer, left_outer, right_outer, ...

LEFT OUTER JOIN - all rows from table A, even if they do not exist in table B

INNER JOIN - fetch the results that exist in both tables

RIGHT OUTER JOIN - all rows from table B, even if they do not exist in table A

Source: https://zeroturnaround.com/rebellabs/sql-cheat-sheet/

Spark Join Examples (1)

- Inner Join X. join (Y, cols)
 - Return DF of rows with matching cols in both X and Y

```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
>>> df2 = sqlContext.createDataFrame(data2,['name', 'height'])
[Row(name=u'Chris', height=80), Row(name=u'Bob', height=85)]
>>> df.join(df2, 'name')
[Row(name=u'Bob', age=2, height=85)]
```

Spark Join Examples (2)

- Inner Join X. join (Y, cols)
 - Return DF of rows with matching cols in both X and Y

```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
>>> df2 = sqlContext.createDataFrame(data2,['name', 'height'])
[Row(name=u'Chris', height=80), Row(name=u'Bob', height=85)]
>>> df.join(df2, 'name').select(df.name, df2.height)
[Row(name=u'Bob', height=85)]
```

Spark Join Examples (3)

- Outer Join X.join(Y, cols, 'outer')
 - Return DF of rows with matching cols in either X and Y

```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
>>> df2 = sqlContext.createDataFrame(data2,['name', 'height'])
[Row(name=u'Chris', height=80), Row(name=u'Bob', height=85)]
>>> df.join(df2, 'name', 'outer')
[Row(name=u'Chris', age=None, height=80),
Row(name=u'Alice', age=1, height=None),
Row(name=u'Bob', age=2, height=85)]
```

Spark Join Examples (4)

- Outer Join X.join(Y, cols, 'outer')
 - Return DF of rows with matching cols in either X and Y

```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
>>> df2 = sqlContext.createDataFrame(data2,['name', 'height'])
[Row(name=u'Chris', height=80), Row(name=u'Bob', height=85)]
>>> df.join(df2, 'name', 'outer').select('name', 'height')
[Row(name=u'Chris', height=80),
   Row(name=u'Alice', height=None),
   Row(name=u'Bob', height=85)]
```

Spark Join Examples (5)

- Left Outer Join X.join(Y, cols, 'left_outer')
 - Return DF of rows with matching cols in X

```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
>>> df2 = sqlContext.createDataFrame(data2,['name', 'height'])
[Row(name=u'Chris', height=80), Row(name=u'Bob', height=85)]
>>> df.join(df2, 'name', 'left_outer')
[Row(name=u'Alice', age=1, height=None),
Row(name=u'Bob', age=2, height=85)]
```

Spark Join Examples (6)

- Right Outer Join X.join(Y, cols, 'right_outer')
 - Return DF of rows with matching cols in Y

```
>>> df = sqlContext.createDataFrame(data, ['name', 'age'])
[Row(name=u'Alice', age=1), Row(name=u'Bob', age=2)]
>>> df2 = sqlContext.createDataFrame(data2,['name', 'height'])
[Row(name=u'Chris', height=80), Row(name=u'Bob', height=85)]
>>> df.join(df2, 'name', 'right_outer')
[Row(name=u'Chris', age=None, height=80),
Row(name=u'Bob', age=2, height=85)]
```