巡回符号の課題

2022年7月18日

1 n=5 の巡回符号

生成多項式 g(x) は $1+x^n$ の因数なので、

$$1 + x^5 = (1+x)(1+x+x^2+x^3+x^4)$$

より、g(x) の候補は 1+x と $1+x+x^2+x^3+x^4$ である。 g(x)=1+x のときの全ての符号を表 1 に示す。表 1 より、g(x)=1+x のときの最小ハミング距離は 2 である。 $g(x)=1+x+x^2+x^3+x^4$

表 1
$$g(x) = 1 + x$$
 の符号

 00000

 00011
 00110
 01100
 11000
 10001

 00101
 01010
 10100
 01001
 10010

 01111
 11110
 11101
 11011
 10111

のとき、符号は00000と11111のみなので、最小ハミング距離は5である。

2 n=6 の巡回符号

生成多項式 g(x) は $1+x^n$ の因数なので、

$$1 + x^6 = (1 + x^3)^2 = (1 + x)^2 (1 + x + x^2)^2$$

より、g(x) の候補を k の昇順に並べると表 2 になる。

$$\begin{array}{c|c} k & g(x) \\ \hline 1 & (1+x)(1+x+x^2)^2 \\ 2 & (1+x+x^2)^2 \\ 2 & (1+x)^2(1+x+x^2) \\ 3 & (1+x)(1+x+x^2) \\ 4 & 1+x+x^2 \\ 4 & (1+x)^2 \\ 5 & 1+x \\ \end{array}$$

$g(x) = (1+x)(1+x^2+x^3)$ の巡回符号の生成行列

n=7 の場合、g(x) の次数が 4 なので、情報源の長さは 3 である。g(x) を展開すると $1+x+x^2+x^4$ となり、生成行列は 1 行目が $x^2g(x)$,2 行目が xg(x),3 行目が g(x) になるので、

$$m{G} = egin{bmatrix} 0 & 0 & 1 & 1 & 1 & 0 & 1 \ 0 & 1 & 1 & 1 & 0 & 1 & 0 \ 1 & 1 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

となる。これを組織符号に変換すると

$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$