CHESTIONAR DE CONCURS

DISCIPLINA: Algebră și Elemente de Analiză Matematică M1A

VARIANTA A

- 1. Să se calculeze $\int_0^1 (x^2 + x) dx$. (5 pct.)
 - a) $\frac{1}{6}$; b) 1; c) $\frac{2}{3}$; d) 2; e) 3; f) $\frac{5}{6}$.
- 2. Suma soluțiilor ecuației $\sqrt{x^2-9} = 4$ este: (5 pct.)
 - a) 9; b) -1; c) 5; d) 1; e) 0; f) 4.
- 3. Fie $A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$. Calculați A^3 . (5 pct.)
 - $a)\begin{pmatrix}1&1\\1&1\end{pmatrix};b)\begin{pmatrix}0&0\\0&0\end{pmatrix};c)\begin{pmatrix}1&0\\0&1\end{pmatrix};d)\begin{pmatrix}0&1\\1&0\end{pmatrix};e)\begin{pmatrix}1&1\\0&-1\end{pmatrix};f)\begin{pmatrix}1&1\\-1&0\end{pmatrix}.$
- 4. Să se rezolve ecuația $\frac{2x+1}{x+2} = 1$. (5 pct.)
 - a) x = 1; b) x = -2; c) $x = -\frac{1}{2}$; d) x = 2; e) $x = \sqrt{2}$; f) $x = \sqrt[3]{2}$.
- 5. Să se rezolve ecuația $3^{x+1} = 3^{4x}$. (5 pct.)
 - a) 2; b) $\frac{1}{3}$; c) $-\frac{1}{3}$; d) -1; e) $\frac{2}{3}$; f) 0.
- 6. Câte numere naturale x verifică inegalitatea $x < \frac{9}{x}$? (5 pct.)
 - a) șase; b) două; c) patru; d) niciunul; e) unul; f) cinci.
- 7. Dacă x și y verifică sistemul $\begin{cases} 2x + y = 2 3m \\ x y = 1 3m \end{cases}$ atunci x + 2y este egal cu: (5 pct.)
 - a) 1; b) 0; c) 2m+1; d) m-1; e) m; f) 2.
- 8. Să se calculeze $\lim_{x\to +\infty} \frac{x^2}{x^2+1}$. (5 pct.)
 - a) nu există limita; b) 2; c) 1; d) 0; e) $\frac{1}{2}$; f) $+\infty$.

9. Produsul soluțiilor ecuației $2x^2 - 5x + 2 = 0$ este: (5 pct.)

a)
$$-\frac{5}{2}$$
; b) 0; c) 1; d) $\frac{5}{2}$; e) 4; f) -1.

10. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 2x^2 + 3x - e^x$. Să se calculeze f'(0). (5 pct.)

a) 3; b) 1; c)
$$e^2$$
; d) $\frac{1}{e}$; e) 0; f) 2.

11. Să se calculeze $(1+i)^2$. (5 pct.)

a)
$$-i$$
; b) $2i$; c) 3; d) 0; e) i ; f) 1.

12. Să se rezolve inecuația $\frac{x}{2} - 1 < \frac{x}{3} + 2$. (5 pct.)

a)
$$x \ge 20$$
; b) $x > 20$; c) $x \le 18$; d) $x > 24$; e) $x = 21$; f) $x < 18$.

13. Suma rădăcinilor polinomului $X^3 - 3X^2 + 2X$ este: (5 pct.)

a)
$$\frac{1}{3}$$
; b) $\frac{1}{2}$; c) 3; d) 2; e) 0; f) 1.

14. Numărul punctelor de extrem ale funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{x^2 + 1}$ este: (5 pct.)

15. Să se rezolve ecuația $\log_2 x = -1$. (5 pct.)

a)
$$x = -\frac{1}{2}$$
; b) $x = e$; c) $x = 1$; d) $x = 0$; e) $x = 2$; f) $x = \frac{1}{2}$.

16. Să se calculeze limita șirului $(a_n)_{n\in\mathbb{N}}$ definit prin $a_n = \sum_{k=0}^n \frac{k+1}{3^k}$. (5 pct.)

a)
$$\frac{7}{2}$$
; b) $\frac{9}{4}$; c) 2; d) $\frac{5}{2}$; e) $\frac{7}{3}$; f) 3.

17. Fie $f:(-\infty,1)\cup(1,\infty)\to\mathbb{R}$, $f(x)=\frac{x^2+mx+1}{x-1}$. Să se determine $m\in\mathbb{R}$ astfel încât dreapta y=x+2 să fie asimptotă la graficul funcției f. (5 pct.)

a)
$$m = \sqrt{2}$$
; b) $m = -\sqrt{2}$; c) $m = -1$; d) $m = 1$; e) $m = 2$; f) $m = 0$.

18. Să se calculeze rația r a unei progresii aritmetice cu $a_1 = 1$ și $a_4 = 7$. (5 pct.)

a)
$$r = 6$$
; b) $r = 7$; c) $r = \frac{1}{2}$; d) $r = \sqrt{2}$; e) $r = -2$; f) $r = 2$.