EEL7052 – Sistemas Lineares (Laboratório) Semestre 2018.2

<u>Introdução</u>

Informações gerais

- Professor:
 - Leonardo Silva Resende (leonardo@eel.ufsc.br), LCS/GPqCom, Ramal 2360
- Turmas:
 - 05202A, 05202B, 05202C 05202D, 05235A e 05213
- Laboratórios:
 - LIICT5 e LIICT6
- Horários:
 - 3.1010-2/LIICT5 (Turmas 05202A e 05235A);
 - 3.1330-2/LIICT6 (Turmas 05202D e 05213);
 - 4.1010-2/LIICT6 (Turmas 05202B e 05202C).

Objetivos

- Consolidar o aprendizado através de simulações computacionais;
- Motivar e incentivar os alunos a realizarem simulações computacionais como uma forma de aprendizado.

Metodologia

As aulas de laboratório consistem de uma breve revisão do conteúdo que será abordado, seguida de uma simulação. Cada simulação será realizada de acordo com um roteiro. O roteiro descreve a sequência de passos a ser seguida para realizar a simulação. No total, serão realizadas 7 simulações, correspondente a 7 aulas de laboratório.

No início de cada aula de laboratório, os alunos terão que apresentar o pré-laboratório (questionário e/ou memória de cálculo) relativo à simulação em folha apropriada. Esse pré-laboratório visa preparar os alunos para a simulação que será realizada, introduzindo o conteúdo que será abordado, bem como auxiliará os alunos a responder um questionário ao final da aula relativo à simulação realizada. Todo o pré-laboratório deve ser feito a mão. Cada aluno é responsável pelo seu trabalho. A cópia de pré-laboratório, total ou parcial, **é inaceitável**. O pré-laboratório e o roteiro de cada simulação estarão disponíveis no moodle da disciplina.

O computador do laboratório utilizado pelo aluno na realização da primeira simulação será o mesmo para as simulações seguintes. Os computadores do laboratório utilizam um software que restaura o conteúdo do disco rígido a cada vez que o computador é reiniciado. Isto significa que qualquer arquivo salvo será perdido quando o computador for desligado. Mantenha o laboratório organizado! Ao sair, certifique-se de deixar sua bancada em ordem, da mesma forma que a encontrou, em respeito aos próximos alunos que a utilizarão.

É absolutamente **imprescindível que o aluno faça a aula de laboratório no horário de sua turma**. Assim, certifique-se de estar ciente do cronograma de aulas.

Aulas de Laboratório

Aula 0 – Introdução ao Laboratório de Sistemas Lineares

Aula 1 – Simulação 1: Sinais e Propriedades Básicas de Sistemas

Aula 2 – Simulação 2: Sistemas de Primeira e Segunda Ordem

Aula 3 – Simulação 3: Resposta em Frequência e Diagramas de Bode

Aula 4 – Simulação 4: Séries de Fourier

Aula 5 – Simulação 5: Propriedades da Transformada de Fourier

Aula 6 – Simulação 6: Filtragem de Sinais

Aula 7 – Simulação 7: Amostragem de Sinais

Avaliação

A avaliação do desempenho do estudante no laboratório será feita através de questionários que serão aplicados ao final de cada simulação. Os questionários são baseados nos pré-laboratórios e na realização das simulações. Durante a aplicação do questionário não é permitida consulta às respostas dos demais colegas. Por favor, tragam suas próprias folhas de papel para rascunho. A não realização da simulação implicará, consequentemente, em nota zero no questionário daquela aula/simulação. Faltas devidamente justificadas junto ao Departamento de Engenharia Elétrica e Eletrônica (EEL) serão abonadas. No final do semestre, a nota de laboratório do aluno será composta pela média simples das 7 notas nos questionários (todas os questionários têm o mesmo peso na nota final do laboratório). No entanto, até duas faltas abonadas em que não houve realização da simulação e realização do questionário, as notas "0" nos questionários relativos às aulas/simulações perdidas não serão consideradas na média final.

Bibliografia

- Roteiros das simulações;
- B. P. LATHI, Sinais e Sistemas Lineares, 2a. Edição, Bookman, SP, 2007;
- A. V. Oppenheim e A. S. Willsky, Sinais e Sistemas, 2a. Edição, Pearson, SP, 2010;
- C. S. Burrus, J. H. McClellan, A. V. Oppenheim, T. W. Parks, R. W. Schaffer and H. W. Schuessler, "Computer-Based Exercises for Signal Processing using MatLab", Prentice Hall, NJ, 1994.