Linear regression with ROC

Anton Antonov
MathematicaForPrediction project at GitHub
MathematicaVsR project at GitHub
October 2016

Introduction

This document demonstrates how to do in Mathematica linear regression (easily using the built-in function LinearModelFit) and to tune the binary classification with the derived model through the so called Receiver Operating Characteristic (ROC) framework, [5].

The data used in this document is from [1] and it has been analyzed in more detail in [2]. In this document we only show to how to ingest and do very basic analysis of that data before proceeding with the linear regression model and its tuning. The package [4] provides the needed ROC functionalities.

Used packages

These commands load the packages [3,4]:

```
Import[
    "https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/
        MathematicaForPredictionUtilities.m"]
Import[
    "https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/
        ROCFunctions.m"]
```

Reading data

The code below imports the data.

```
In[3]:= lines = Import["~/Datasets/adult/adult.data"];
    lines = Select[lines, Length[#] > 3 &];
    Dimensions[lines]

Out[5]= {32 561, 15}

In[6]:= linesTest = Import["~/Datasets/adult/adult.test"];
    linesTest = Select[linesTest, Length[#] > 3 &];
    Dimensions[linesTest]
Out[8]= {16 281, 15}
```

```
In[9]:= columnNames = StringSplit[
       "age,workclass,fnlwgt,education,education-num,marital-status,occupation,
          relationship, race, sex, capital-gain, capital-loss, hours-per-week, native-
         country", ","]
outge= {age, workclass, fnlwgt, education, education-num, marital-status, occupation,
      relationship, race, sex, capital-gain, capital-loss, hours-per-week, native-country}
In[10]:= AppendTo[columnNames, "income"]
Out[10]= {age, workclass, fnlwgt, education, education-num,
      marital-status, occupation, relationship, race, sex, capital-gain,
      capital-loss, hours-per-week, native-country, income}
In[ii]: aColumnNames = AssociationThread[columnNames → Range[Length[columnNames]]];
```

In[12]:= Magnify[#, 0.6] &@GridTableForm[lines[[1;; 12]], TableHeadings → Map[Style[#, Blue, FontFamily → "Times"] &, columnNames]]

#	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital-gain	capital-loss	hours-per- week	native- country	inco
1	39	State- gov	77 516	Bache lor s	13	Never-my arry ied	Adm-c: ler: ica:	Not-in - family	White	Male	2174	0	40	United - States	<=
2	50	Self- emp- not- inc	83 311	Bachev lorv s	13	Married- civ- spouse	Exec-ma anaa gera ial	Husband	White	Male	0	0	13	United - States	<=
3	38	Private	215 646	HS-grad	9	Divorced	Handle: rs-cle: aner: s	Not-in - family	White	Male	Θ	0	40	United - States	<=
4	53	Private	234 721	11th	7	Married- civ- spouse	Handlers - cleaners	Husband	Black	Male	Θ	0	40	United - States	<=!
5	28	Private	338 409	Bache\ lor\ s	13	Married- civ- spouse	Prof-sp: ecialt: y	Wife	Black	Female	Θ	0	40	Cuba	<=!
6	37	Private	284 582	Masters	14	Married- civ- spouse	Exec-mak nagerik al	Wife	White	Female	0	0	40	United - States	<=!
7	49	Private	160 187	9th	5	Married- spouse- absent	Other- service	Not-in - family	Black	Female	Θ	0	16	Jamaica	<=!
8	52	Self- emp- not- inc	209 642	HS-grad	9	Married- civ- spouse	Exec-ma\ nageri\ al	Husband	White	Male	Θ	0	45	United - States	>51
9	31	Private	45 781	Masters	14	Never- married	Prof-sp: ecialt: y	Not-in - family	White	Female	14 084	Θ	50	United - States	>51
10	42	Private	159 449	Bache \\ lor \\ s	13	Married- civ- spouse	Exec-ma\ nageri\ al	Husband	White	Male	5178	Θ	40	United - States	>51
11	37	Private	280 464	Some-c\ oll\ ege	10	Married- civ- spouse	Exec-ma\ nageri\ al	Husband	Black	Male	0	Θ	80	United - States	>51
12	30	State- gov	141 297	Bachel: ors	13	Married- civ- spouse	Prof-sp ecialtx y	Husband	Asian- Pac-I\ sla\ nde\ r	Male	0	Θ	40	India	>51

Out[12]=

In[13]:= Magnify[#, 0.6] &@GridTableForm[linesTest[[1;; 12]], TableHeadings → Map[Style[#, Blue, FontFamily → "Times"] &, columnNames]]

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	sex	capital-gain	capital-loss	hours-per- week	native- country	incor
1	25	Private	226 802	11th	7	Never-my arriy	Machi ne-op- inspct	Own- child	Black	Male	Θ	Θ	40	United - States	<=
2	38	Private	89 814	HS-grad	9	Married- civ- spouse	Farming - fishing	Husband	White	Male	0	Θ	50	United - States	<=
3	28	Local- gov	336 951	Assoc- acdm	12	Married- civ- spouse	Protect tive- serv	Husband	White	Male	Θ	Θ	40	United - States	>5
4	44	Private	160 323	Some-c\ olle\ ge	10	Married- civ- spouse	Machine -op- inspct	Husband	Black	Male	7688	Θ	40	United - States	>5
5	18	?	103 497	Some- college	10	Never- married	?	Own- child	White	Female	Θ	Θ	30	United - States	<=
6	34	Private	198 693	10th	6	Never- married	Other- service	Not-in - family	White	Male	Θ	Θ	30	United - States	<=
7	29	?	227 026	HS-grad	9	Never- married	?	Unmar: ried	Black	Male	0	0	40	United - States	<=
8	63	Self- emp- not- inc	104 626	Prof- school	15	Married- civ- spouse	Prof-st peciat	Husband	White	Male	3103	Θ	32	United - States	>5
9	24	Private	369 667	Some- college	10	Never- married	Other- service	Unmar: ried	White	Female	0	0	40	United - States	<=
10	55	Private	104 996	7th-8th	4	Married- civ- spouse	Craft- repair	Husband	White	Male	Θ	Θ	10	United - States	<=
11	65	Private	184 454	HS-grad	9	Married- civ- spouse	Machine -op- inspct	Husband	White	Male	6418	0	40	United - States	>5
12	36	Feder: al-gov	212 465	Bachel:	13	Married-	Adm-cl v	Husband	White	Male	0	0	40	United	<=

Assignment of training and testing data

As usual in classification and regression problems we work with two data sets: a training data set and a testing data set. Here we split the original training set into two sets training set and tuning set. The tuning set is going to be used to find a good value of a tuning parameter through ROC.

Training data

```
In[14]:= data = lines;
    data[All, -1] = Map[StringTrim, data[All, -1]];
In[16]:= trainingInds = RandomSample[Range[Length[data]], Ceiling[Length[data] * 0.75]];
    tuningInds = Complement[Range[Length[data]], trainingInds];
    trainingData = data[trainingInds];
    tuningData = data[tuningInds];
    Testing data
In[20]:= testData = linesTest;
     testData[All, -1] = Map[StringDrop[StringTrim[#], -1] &, testData[All, -1]];
```

Some preliminary data analysis

Before doing regression it is a good idea to do some preliminary analysis of the data. For that we are going to use functions defined in the package [3].

Image: Magnify[#, 0.7] &@Grid[ArrayReshape[RecordsSummary[data, columnNames], {3, 5}], Dividers → All, Alignment → {Left, Top}]

	1 age		2 workclass		3 fnlwgt			4 education		5 educati	on-num
	Min 17		Private	22 696	Min	12 285		HS-grad	10501	Min	1
	1st Qu 28			2541	1st Qu	471 297 /	4	Some-college	7291	1st Qu	9
	Median 37		Self-emp-not-		Median	178 356		Bachelors	5355	Median	10
	Mean 1256257/	32 561	inc		Mean	6 179 373	392 /	Masters	1723	Mean	328 237 / 32 561
	3rd Qu 48		Local-gov	2093		32 561		Assoc-voc	1382	3rd Qu	12
	Max 90		?	1836	3rd Qu	474 109		11th	1175	Max	16
			State-gov	1298	Max	² 1 484 705		(Other)	5134		
			Self-emp-inc	1116	Hux	1 10 1 103					
			(Other)	981							
	6 marital-status		7 occupation		8 relations	shin		9 race		10 sex	
	Married-civ-	14 976	Prof-specialty	4140	Husbar		13 193	White	27 816	Male	21 790
		14976	Craft-repair	4099		n-family	8305	Black	3124		e 10771
	spouse		Exec-managerial		Own-ch	,	5068	Asian-Pac-	1039	1 Cilia C	C 10111
0.45001	Never-married	10 683 4443	Adm-clerical	3770	Unmarr		3446		1039		
Out[22]=	Divorced		Sales	3650	Wife		1568	Islander			
	Separated Widowed	1025 993	Other-service	3295		relative		Amer-Indian-	311		
			(Other)	9541	0 00.		501	Eskimo			
	Married-	418	(0 cmcr)	00.1				Other	271		
	spouse-absent										
	Married-AF-	23									
	spouse										
	11 capital-gain		12 capital-loss		13 hours-	per-week		14 native-country		15 incom	ie
	1st Qu 0		1st Qu 0		Min	1		United-States	29 170	<=50K	24 720
	3rd Qu 0		3rd Qu 0		1st Qu	40		Mexico	643	>50K	7841
	Median 0		Median 0		Median	40		?	583		
	Min 0		Min 0		Mean	1316684	/ 32 561	Philippines	198		
	Mean $\frac{35089324}{32561}$		Mean $\frac{2842700}{32561}$		3rd Qu	45		Germany	137		
	Max 99 999		Max 4356		Max	99		Canada	121		
								(Other)	1709		

<code>
log23|= Magnify[#, 0.7] &@Grid[ArrayReshape[RecordsSummary[testData, columnNames], {3, 5}],
</code> Dividers → All, Alignment → {Left, Top}]

	1 age		2 workclass		3 fnlwgt		4 education		5 education-num		
ļ,	Min 17		Private	11210	Min 13492		HS-grad	5283	Min	1	
:	1st Qu 28			1321	1st Qu 466865/4	1	Some-college	3587	1st Qu	9	
	Median 37		Self-emp-not-		Median 177831		Bachelors	2670	Median	-	
	Mean 210 391 / 542	27	inc		Mean 3 084 202 2	270 /	Masters	934		163 997 / 16 281	
	3rd Qu 48		Local-gov	1043	16 281		Assoc-voc	679	3rd Qu		
	Max 90		?	963	3rd Qu 238384		11th	637	Max	16	
			State-gov	683	Max 1490400		(Other)	2491			
			Self-emp-inc	579							
			(Other)	482							
•	6 marital-status		7 occupation		8 relationship		9 race		10 sex		
	Married-civ-	7403	Prof-specialty	2032	Husband	6523	White	13 946	Male	10 860	
	spouse		Exec-managerial		Not-in-family	4278	Black	1561	Female	5421	
	Never-married	5434	Craft-repair	2013	Own-child	2513	Asian-Pac-	480			
Out[23]=	Divorced	2190	Sales	1854	Unmarried	1679	Islander				
Out[23]=	Widowed	525	Adm-clerical	1841	Wife	763	Amer-Indian-	159			
	Separated	505	Other-service	1628	Other-relative	525	Eskimo				
		210	(Other)	4893			Other	135			
	Married-spouse										
	-absent										
	Married-AF-	14									
	spouse										
	11 capital-gain		12 capital-loss		13 hours-per-week		14 native-country		15 income	;	
	1st Qu 0		1st Qu 0		Min 1		United-States	14 662	<=50K 1	12 435	
;	3rd Qu 0		3rd Qu 0		1st Qu 40		Mexico	308	>50K 3	8846	
1	Median 0		Median 0		Median 40		?	274			
	Min 0		Min 0		Mean 657 626 16 281		Philippines	97			
	Mean 5871499 5427		Mean $\frac{1431088}{16281}$		3rd Qu 45		Puerto-Rico	70			
	Max 99999		Max 3770		Max 99		Germany	69			
							(Other)	801			

Looking at the column "income" we can see that for both datasets the people who earn more than \$50000 is ≈ 25% of all people. We will consider ">50" to be the more important class label for the classifiers built below.

For simplicity of the exposition below we are going to use only the columns "age", "education-num", "hours-per-week", "income".

```
In[24]:= columnNamesExplantoryVars = {"age", "education-num", "hours-per-week"};
    columnNameResponseVar = "income";
    columnNamesForAnalysis =
```

Append[columnNamesExplantoryVars, columnNameResponseVar];

Here is variable dependence grid for those variables:

We can see from the last row of the plot above that the variables "age", "education-num", "hours-perweek" can explain "income" at least to a degree. We see that higher values of "age", "education-num", "hours-per-week" are associated closer with ">50K". For more detailed analysis see [2].

LinearModelFit

LinearModelFit has several signatures. Doing Linear regression over the data we have is most convenient with the signature Linear Model Fit [$\{m,v\}$] (using a design matrix m and a response vector v.)

As mentioned above in order to keep the exposition simple we do the regression with the three numerical columns "age", "education-num", and "hours-per-week". With the replacement rules {"<=50K"→ 0, ">50K">1} we convert the data column "income" into a vector of 0's and 1's. The result of LinearModelFit is a function based on the training set of data.

```
In[28]:= lfmFunc = LinearModelFit[
        {trainingData[All, aColumnNames /@ {"age", "education-num", "hours-per-week"}],
         trainingData[All, aColumnNames["income"]] /. {"<=50K" → 0, ">50K" → 1}}]
Out[28]= FittedModel
                    0.00187859 #1+0.0167414 #2+0.000599763 #3
     We use the model from the training data on the test data:
```

```
In[29]:= tuningLables = tuningData[All, aColumnNames["income"]] /. {"<=50K" → 0, ">50K" → 1};
     Next we are going to evaluate what is the classification success of the derived model.
```

```
In[30]:= modelValues = lfmFunc@@@
      tuningData[All, aColumnNames /@ {"age", "education-num", "hours-per-week"}];
In[31]:= modelValues[[1;; 12]]
0.217739, 0.315059, 0.266714, 0.218629, 0.16063, 0.256483
```

Although the response vector given to Linear Model Fit is of 0's and 1's the regression model values are reals within a smaller than [0, 1] range.

In[32]:= RecordsSummary[modelValues]

```
1 column 1
      Min
              0.0689454
       1st Qu 0.229504
      Median 0.263319
Out[32]=
              0.264793
      Mean
      3rd Qu 0.299186
      Max
              0.463377
```

Here is a histogram of values from the regression model:

```
In[33]:= Histogram[modelValues, Automatic, "Probability",
      PlotLabel → "Regression model values\nover the test data",
     AxesLabel → {"FittedModel values", "Probability"}]
```


We pick a threshold above which the model values are considered to be 1's (and hence ">=50K").

```
ln[34]:= With[\{\theta = 0.3\}, modelLabels = Map[If[\# > \theta, 1, 0] &, modelValues]];
In[35]:= modelLabels[1;; 12]
Out[35]= \{0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0\}
      Here is a table that shows classification success of the regression model with chosen threshold:
```

```
labelsROC = SortBy[Tally[Transpose[{tuningLables, modelLabels}]], First];
    labelsROC = Flatten /@
```

MapThread[Append, {labelsROC, labelsROC[All, 2] / Total[labelsROC[All, 2]] // N}]; TableForm[labelsROC, TableHeadings →

```
{{"true negative", "false positive", "false negative", "true positive"},
 {"test labels", "model labels", "freq", "%"}}]
```

Out[38]//TableForm=

	test labels	model labels	freq	왕
true negative	0	0	5218	0.641032
false positive	0	1	953	0.117076
false negative	1	0	927	0.113882
true positive	1	1	1042	0.12801

We want to determine the threshold that gives the best classification success. What is "best" can be viewed and determined in several ways. We are going to use the so called Receiver Operating Characteristic (ROC); see [5].

(The table above is similar to the confusion matrix produced by Mathematica's function Classify made available through ClassifierMeasurements. See the documentation for these function.)

LinearModelFit with ROC

In this section we take a more systematic approach of determining the best threshold to be used to separate the regression model values.

We are going to call **positive** the income values ">50K" and **negative** the income values "<=50K". Again see [2]. As we mentioned above, we will consider ">50" to be the more important class label for the classifiers built below.

For the ROC functionalities are employed through the package [4].

Linear regression classification definitions

```
In[39]:= Clear[ModelLabelsByThreshold]
     ModelLabelsByThreshold[modelValues_?VectorQ, \theta_?NumberQ] :=
       Map[If[\# > \theta, 1, 0] &, modelValues];
    ModelLabelsByThreshold[lfmFunc_FittedModel, testData_?MatrixQ,
        aColumnNames_Association, \theta_?NumberQ] :=
       Block[{t, testLables, modelValues, modelLabels},
        testLables = testData[All, aColumnNames["income"]] /. {"<=50K" → 0, ">50K" → 1};
        modelValues = lfmFunc@@@
          testData[All, aColumnNames /@ {"age", "education-num", "hours-per-week"}];
        ModelLabelsByThreshold[modelValues, testLables, \theta]
       ];
```

Computations to find the best threshold

Looking at the histogram of classification values:

```
In[42]:= Histogram[modelValues, Automatic, "Probability",
     PlotLabel → "Regression model values\nover the test data",
     AxesLabel → {"FittedModel values", "Probability"}]
```


we decide to use the following a range of thresholds:

```
ln[43]:= thRange = Range[0.15, 0.42, 0.01];
     Compute the model values
```

```
In[44]:= AbsoluteTiming[
      tuningLabels =
       testData [All, aColumnNames[columnNameResponseVar]] /. {"<=50K" → 0, ">50K" → 1};
      modelValues = lfmFunc @@@ testData[All, aColumnNames/@ columnNamesExplantoryVars];
     1
Out[44] = \{1.7642, Null\}
```

Compute the ROC data for each threshold of the range of thresholds, and convert the ROC data to associations convenient for the computation of ROC functions:

```
In[45]:= aROCs = Table[ToROCAssociation[{1, 0}, tuningLabels,
         ModelLabelsByThreshold[modelValues, θ]], {θ, thRange}];
```

Here is an example of evaluating some of the ROC functions over one of the elements of aROCs:

```
In[46]:= Through[ROCFunctions[{"PPV", "NPV", "ACC"}][aROCs[3]]]
       \left\{\frac{1917}{7796}, \frac{677}{689}, \frac{4511}{16281}\right\}
```

Plot of the functions PPV, NPV, TPR, SPC, ACC:

```
In[47]:= ListLinePlot[Map[Transpose[{thRange, #}] &, Transpose[
        Map[Through[ROCFunctions[{"PPV", "NPV", "TPR", "ACC", "SPC"}][#]] &, aROCs]]],
      Frame \rightarrow True, FrameLabel \rightarrow Map[Style[#, Larger] &, {"threshold, \theta", "rate"}],
      PlotLegends → Map[#<> ", "<> (ROCFunctions["FunctionInterpretations"][#]) &,
        {"PPV", "NPV", "TPR", "ACC", "SPC"}], GridLines → Automatic]
```


Using the plot above we can select a threshold for separating the model values into 0's and 1's ("<=50K" and ">50K" respectively). We can see that when the classification accuracy increases the positive predictive value decreases. A good threshold value is 0.3 because TPR and ACC have satisfactory, large enough values.

Let us find the intersection point of the curves PPV and TPR. Examining the plot above we can come up with the initial condition for x.

```
In[48]:= Clear[θ]
      ppvFunc = Interpolation[Transpose@{thRange, ROCFunctions["PPV"] /@aROCs}];
      tprFunc = Interpolation[Transpose@{thRange, ROCFunctions["TPR"] /@aROCs}];
      sol = FindRoot[ppvFunc[\theta] - tprFunc[\theta] == 0, {\theta, 0.25}]
Out[51]= \{\Theta \rightarrow 0.302858\}
```

Here is a different plot used typically in ROC analysis:

```
In[52]:= ROCPlot[thRange, aROCs, "PlotJoined" → False,
      "ROCPointCallouts" → True, "ROCPointTooltips" → True, GridLines → Automatic]
```


Accuracy over the test data

We split the original training data into two parts for training and tuning. Using the found threshold, let us use evaluate the classification process over the test data.

```
In[53]:= modelValues = lfmFunc@@@ testData[All, aColumnNames/@ columnNamesExplantoryVars];
    modelLabels = Map[If[\# > (\theta /. sol), ">50K", "<=50K"] &, modelValues];
```

Using the actual labels and the predicted labels (modelLabels) let us find the contingency values with ToROCAssociation:

```
In[55]:= clRes = ToROCAssociation[{">50K", "<=50K"},</pre>
         testData[All, aColumnNames[columnNameResponseVar]], modelLabels]
Out[55]= \langle | TruePositive \rightarrow 1983, FalsePositive \rightarrow 1882,
       TrueNegative → 10553, FalseNegative → 1863 |>
```

Using the above result let us compute all of the ROC functions:

```
In[56]:= GridTableForm[
     Transpose[{ROCFunctions["FunctionNames"], N@Through[ROCFunctions[][clRes]]}],
     TableHeadings → {"name", "value"}]
```

```
name
             value
        TPR
             0.515601
        SPC
             0.848653
      3 PPV
             0.513066
      4 NPV
             0.849952
Out[56]=
        FPR
             0.151347
        FDR
             0.486934
             0.484399
        FNR
              0.769977
        ACC
```

Using a built-in classifier

If we use one of the built-in classifiers we can see that we got better results for the important class label ">50K" through the ROC analysis using an inferior base classifier (linear regression).

```
IN[57]:= AbsoluteTiming[cf = Classify[data[All, aColumnNames /@ columnNamesExplantoryVars]] →
          data[All, aColumnNames[columnNameResponseVar]], Method → "NeuralNetwork"];
      cfPredictedLabels = cf /@ testData[All, aColumnNames /@ columnNamesExplantoryVars];
     1
Out[57]= { 24.3918, Null }
In[58]:= cfCLRes = ToROCAssociation[{">50K", "<=50K"},</pre>
        testData[All, aColumnNames[columnNameResponseVar]], cfPredictedLabels]
     GridTableForm[Transpose[{ROCFunctions["FunctionNames"],
         N@Through[ROCFunctions[][cfCLRes]]}], TableHeadings → {"name", "value"}]
Out[58]= \langle | \text{TruePositive} \rightarrow 1497, \text{FalsePositive} \rightarrow 874,
      TrueNegative → 11561, FalseNegative → 2349 |>
```

	#	name	value
	1	TPR	0.389236
	2	SPC	0.929715
	3	PPV	0.631379
Out[59]=	4	NPV	0.831129
	5	FPR	0.0702855
	6	FDR	0.368621
	7	FNR	0.610764
	8	ACC	0.802039

References

[1] Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science. Census Income Data Set, URL: http://archive.ics.uci.edu/ml/datasets/Census+Income.

- [2] Anton Antonov, "Classification and association rules for census income data", (2014), Mathematica-ForPrediction at WordPress.com, URL: https://mathematicaforprediction.wordpress.com/2014/03/30/classification-and-association-rules-for-census-income-data/.
- [3] Anton Antonov, MathematicaForPrediction utilities, (2014), source code MathematicaForPrediction at GitHub, package MathematicaForPredictionUtilities.m.
- [4] Anton Antonov, Receiver operating characteristic functions Mathematica package, (2016), source code MathematicaForPrediction at GitHub, package ROCFunctions.m.
- [5] Wikipedia entry, Receiver operating characteristic. URL: http://en.wikipedia.org/wiki/Receiver operating_characteristic .