Railway Simulation

Moreno Ambrosin

Università degli studi di Padova Facoltà di Scienze MM. FF. NN. Corso di laurea in Informatica

Settembre 2013

Indice

- 1 Introduzione
- 2 Analisi del Problema
- 3 Soluzione al Problema
- 4 Conclusioni

Introduzione

- La progettazione di un sistema distribuito si compone di:
 - Analisi del problema.
 - Aspetti legati alla Distribuzione.
 - Aspetti legati alla Concorrenza.
 - Costruzione di una soluzione.
 - Scelta delle Tecnologie.

Analisi del Problema

- Identificare e definire i requisiti di massima del sistema.
 - Operazione sottovalutata ma importante.
- Individuazione e prima definizione delle entità del sistema.
 - ad es. nel progetto di un sistema ferroviario:
 - Treno (entità attiva)
 - Viaggiatore (antità attiva)
 - Segmento (entità reattiva)
 - Piattaforma (entità reattiva)
 - Biglietteria (entità reattiva)
 - Stazione (entità reattiva)

Analisi del Problema - Distribuzione (1)

- Primo aspetto da valutare
 - Fornisce un'architettura di alto livello del sistema.
 - Alcune scelte vincolano le modalità di interazione tra le entità.
- Caratteristiche Desiderabili
 - Il sistema dovrà apparire agli utenti in modo unitario e coerente.
 - ad es. nel progetto di un sistema ferroviario, la componente di visualizzazione dovrà nascondere l'architettura di distribuzione.
 - Trasparenza: Il sistema dovra il più possibile rendere trasparenti all'utente le caratteristiche legate alla distribuzione (Accesso, Collocazione, Migrazione, Spostamento, Replicazione, Malfunzionamento, Persistenza

Analisi del Problema - Distribuzione (2)

Openess:

- Il sistema dovrà garantire portabilità e interoperabilità.
- Il sistema dovrà essere fruibile mediante regole standard (interfacce).
- Organizzazione del sistema in componenti di dimensione ridotta, e facilmente sostituibili.
- Separazione tra politiche e meccanismi.

■ Scalabilità:

- Rispetto alla cardinalità del sistema (ad es. nel progetto di un sistema ferroviario, è desiderabile poter aumentare la popolazione di Stazioni e Segmenti di collegamento).
- Rispetto alla distribuzione spaziale delle componenti.
- Rispetto alle problematiche locali di gestione (che non devono affliggere l'intero sistema).

Analisi del Problema - Distribuzione (3)

■ Fault Tollerance:

- Il sistema deve essere progettato in modo tale da ridurre l'impatto causato da partial failures.
- Il sistema dovrà gestire errori di comunicazione tra i nodi.
- Avvio ordinato: Il sistema dovrà essere avviato in modo tale da permettere a tutte le componenti di comunicare senza errori.
- Terminazione in stato Consistente II sistema deve poter essere terminato in uno stato consistente; nessun entità dovrà rimanere attiva dopo la procedura di terminazione.

Analisi del Problema - Distribuzione - Scelte di progetto

- Modellazione ad alto livello delle componenti del sistema necessarie e loro distribuzione.
- Scelta delle modalità di distribuzione
 - Dove adottare distribuzione *verticale* o *orizzontale*
- Scelta della modalità di comunicazione tra le componenti (sincrona o asincrona) e definizione di possibili interfacce.
- Valutazione delle implicazioni nell'adozione di gradi di distribuzione diversi sul sistema.
- Individuazione delle problematiche specifiche del problema, ad es.
 - Gestione del *Name Resolution* per le componenti.
 - Gestione della sincronizzazione tra clock fisici dei nodi che ospitano le varie componenti.

Analisi del Problema - Distribuzione - Esempio (1)

Figura: Architettura di distribuzione in cui tutte le entità principali vengono distribuite.

Progetto esame di Sistemi Concorrenti e Distribuiti
L Analisi del Problema

Analisi del Problema - Distribuzione - Esempio

PRO:

- Scalabilità
- Fault Tollerance

CONTRO

- Complessità terminazione
- Assenza di riferimento temporale

Deve essere adottato un sistema di Naming che scali meglio di semplice tabella [Nome,Indirizzo]

Analisi del Problema - Distribuzione - Esempio (2)

Figura: Architettura di distribuzione in cui solo Controller Centrale e Visualizzazione sono distribuite.

Analisi del Problema - Distribuzione - Esempio (3)

Figura: Architettura di distribuzione in cui sono aggiunte e distribuite regioni.

Analisi del Problema - Concorrenza

- Scelta delle caratteristiche specifiche per ciascuna entità.
 - ad es.: scelta di definire un Segmento come entità reattiva con agente di controllo, ad accesso mutuamente esclusivo con molteplicità N ≥ 1.
 - ad es.: scelta di definire una Stazione come una struttura che mantiene al suo interno
 - un numero $M \ge 1$ di Piattaforme (entità reattive con agente di controllo ad accesso mutuamente esclusivo con molteplicità 1),
- Prima definizione dei protocolli logici di interazione tra entità che risiedono sullo stesso nodo di calcolo.
 - Il più possibile indipendente dalla scelta di un modello di concorrenza specifico.
 - Identificazione dei punti critici in cui il problema è concorrente.

Analisi del Problema - Concorrenza - Esempio (1)

Figura: Ingresso in un segmento

Analisi del Problema - Concorrenza - Esempio (2)

Figura: Ingresso in un segmento

Soluzione al Problema - Distribuzione

- Scelta di un'architettura di distribuzione.
 - Introduce nuove entità?
 - ad es.: utilizzare Regioni come collezione di Stazioni e Segmenti, che risiedono su un singolo nodo di calcolo, e sulle quali transitano Treni e Viaggiatori.
 - ad es.: introduzione di una gerarchia di Biglietterie per distribuire conoscenza e oneri di calcolo.
 - Centrale
 - Regionale
 - di Stazione
- Identificazione delle problematiche conseguenti a tale scelta.

Soluzione al Problema - Distribuzione - Esempio

- Come realizzare il passaggio di entità Treno e Viaggiatore tra Regioni?
 - possibile soluzione: Utilizzare Stazioni speciali (di "gateway") per permettere l'uscita di un Treno da una Regione; trasferimento diretto di un Viaggiatore.
- Come si traduce il trasferimento remoto di una entità?
 - creazione/distruzione?
 - replicazione?
 - Vincolo sulla realizzazione dell'entità per facilitare il trasferimento remoto!

Soluzione al Problema - Distribuzione - Avvio e Terminazione (1)

Avvio

- Deve essere coordinato tra le entità.
- È opportuno scegliere un ordine di avvio tra le componenti e separare la fase di inizializzazione della componente e l'avvio della simulazione.

Terminazione

- Ha come pre-requisito la definizione dei limiti entro i quali uno Stato del sistema è consistente. Ad es. nel progetto di un sistema ferroviario:
 - è accettabile che il sistema termini con un certo numero di Treni in attesa di accedere ad una Piattaforma;
 - non è accettato lo stato di terminazione per il quale un Viaggiatore è in attesa di un Biglietto.

Soluzione al Problema - Distribuzione - Avvio e Terminazione (2)

- È conveniente adattare algoritmi noti distribuiti (ad es. distributed snapshot).
- Nessun thread in esecuzione sui nodi di calcolo dopo la procedura.

Soluzione al Problema - Concorrenza

- Scelta di un modello di concorrenza adatto alle caratteristiche del problema.
- Valutazione di modelli differenti
 - ad es. modello ad Attori o a monitor.
- Modellazione delle entità di simulazione e della loro interazione con strumenti di modello.
 - Scomposizione delle interazioni in sottoproblemi semplici.
- Evitare scelte di progettazione che utilizzano operazioni specifiche offerte dalle tecnologie
 - Nessuna assunzione a priori sul linguaggio che verrà utilizzato.
- Validare ciascuna soluzione, partendo dai pre-requisiti.

Soluzione al Problema - Tecnologiche

- Scelta delle tecnologie che meglio si adattano alle scelte di progetto.
- Interessante l'utilizzo di tecnologie eterogenee
 - E difficile pensare ad un Sistema Distribuito realizzato con tecnologie omogenee.
 - Possibilità di utilizzare tecnologie specifiche per singola componente
 - Nella solouzione che ho adottato, ho utilizzato il linguaggio
 Ada per codificare le componenti che rappresentano le Regioni;
 - Utilizzo del linguaggio Scala per la realizzazione di Name Server, Biglietteria e Controller Centrale;
 - Utilizzo di Javascript e HTML per la realizzazione dell'interfaccia grafica.

Conclusioni

