CS 559 Machine Learning

Lecture 3: Linear Classification

Ping Wang
Department of Computer Science
Stevens Institute of Technology

Today's Lecture

- Generative vs Discriminative Classification
- Linear Discriminant Analysis
- Least Square Classification
- Fisher's Linear Discriminant
- The Perceptron Algorithm

Classification Task

• Task: find a function f that classifies examples into a given set of discrete classes $\{C_1, C_2, \dots, C_k\}$.

3

Linear Classification

- Decision boundaries/surfaces: divide the input space into decision regions.
- For linear classification, the decision boundaries are linear functions of the input x.
- Linear separable: datasets that can be exactly separated by linear decision boundaries are linear separable.

Generative and Discriminative Approach

Decision Theory for Classification

- Decision theory, combined with probability theory, allows us to make optimal decisions in situations involving uncertainty.
 - Training data: input values X and target values y
 - Learning stage: use the training data to learn a model for $p(C_k|x)$, where C_k represents the class k.
 - Decision stage: use the learnt posterior probabilities to make optimal class assignments.

Generative Methods

- Solve the inference problem by estimating the class-conditional density $p(x|C_k)$ for each class C_k
- Estimate the class prior probability $p(\mathcal{C}_k)$
- Use Bayes' theorem to get the class posterior probability:

$$p(C_k|x) = \frac{p(x|C_k)p(C_k)}{p(x)}$$

where
$$p(x) = \sum_{k=1}^{K} p(x|C_k)p(C_k)$$

• Use decision theory to determine class label for each new input x.

Discriminative Methods

- Directly solve the inference problem of estimating the class posterior probabilities $p(C_k|x)$.
- Discriminative Functions: Find a function f(x) which maps each input directly onto a class label. Probabilities play no role here.
- Use decision theory to determine class label for each new input x.

Linear Discriminant Function

Binary Classification

- Task: Assign each data point to one of two classes (e.g., 0/1, 1/-1).
- Examples:
 - Is there a face in this image?
 - Is this email spam or not?
 - Based on this brain-scan, does this patient have a given disease or not?
 - Will this customer buy this product or not?
 - Will this patient be re-hospitalized or not?

Linear Discriminant Function

- Discriminative methods learn the class posterior $p(C_k|x)$.
- The simple way would be the linear discriminant function.
- The discriminant function directly assigns the class label for each input vector x.
- Linear algorithms can be used together with nonlinear feature spaces or nonlinear basis functions to solve nonlinear classification problems!

Linear Discriminant Function

- Linear discriminants separate the space by a hyperplane, and the parameters define its normal vector.
- Decision function: $f(x) = w^T x + w_0$, where w represents the weight vector, and w_0 is the bias that determines the location of the decision boundary.
- Classification task:

If
$$f(x) \ge 0$$
, $x \to \text{class } 1$
If $f(x) < 0$, $x \to \text{class } -1$

• The decision boundary is defined by equation f(x) = 0, which is a hyperplane.

Geometrical Properties

- Decision boundary: $f(x) = w^T x + w_0 = 0$
- Let x_1, x_2 be two points which lie on the decision boundary

$$f(x_1) = w^T x_1 + w_0 = 0$$

$$f(x_2) = w^T x_2 + w_0 = 0$$

$$w^T (x_1 - x_2) = 0$$

 Therefore, w represents the orthogonal direction to the decision boundary. It is the normal vector to the hyperplane, and points into the positive class or negative class.

Sign is Important!

- We can observe that the sign of f(x) is important for classification.
- The scale of the weight w does not matter.
- Therefore, we can use the normalized weight w with length ||w|| = 1.

Geometrical Properties Cont.

•
$$w^{*T} = \frac{w^T}{\|w\|}$$

- $w^{*T}(x-x_0)$ is the projection of $(x-x_0)$ onto the direction of w^* ; x_0 is a point on the decision boundary.
- Thus

$$\frac{w^{T}}{\|w\|}(x - x_{0}) = \frac{1}{\|w\|}(w^{T}x - w^{T}x_{0})$$

$$= \frac{1}{\|w\|}(w^{T}x + \omega_{0}) = \frac{f(x)}{\|w\|}$$

• When x = 0, $\frac{f(x)}{\|w\|} = \frac{\omega_0}{\|w\|}$

Signed orthogonal distance of the origin from the decision surface

Linear Discriminant Functions: Multiple Classes

one-versus-the-rest:

- K-1 classifiers, each of which solves a two-class problem of separating points in a particular class C_k from points not in that class.
- Leads to regions of input space that are ambiguously classified, shown in green.

Linear Discriminant Functions: Multiple classes

one-versus-one:

- $\frac{K(K-1)}{2}$ classifiers, one for every possible pair of classes
- Each point is classified by majority voting amongst the discriminant functions.
- Also leads to regions of input space that are ambiguously classified, shown in green.

Linear Discriminant Functions: Multiple classes

• Solution: Consider a single K-class discriminant comprising K linear functions of the form

$$f_k(x) = w_k^T x + w_{k0}$$

• Assign a point x to class C_k if

$$f_k(x) > f_j(x) \ \forall j \neq k.$$

• The decision boundary between class C_k and class C_i is given by:

$$f_k(x) = f_j(x)$$

A hyperplane: $\Rightarrow (w_k - w_j)^T x + (w_{k0} - w_{j0}) = 0$

If two points lie in the same decision region, then any point on the line segment must lie in the same region.

Linear Classification Algorithms

- Mis-classification rate $C(w) = \frac{1}{N} \sum_{n} \delta[f(x_n) = y_n]$ (i.e. average number of errors) is difficult to optimize over w, and might have multiple solutions.
- Many algorithms can be derived by replacing ${\cal C}$ by another cost-function which can be optimized.
 - Least-square Classification
 - Fisher's Linear Discriminant
 - The Perceptron Algorithm
 - Logistic Regression
 - Support Vector Machines

- We have to fit the function $f(x) = xw^T + \omega_0$ to data.
- Simply do a linear regression from x to y by minimizing the sum-of-squared errors $\sum_{n} (f(x_n) y_n)^2$.
- $w_{reg} = (\sum_n x_n x_n^T)^{-1} \sum_n x_n y_n$

Questions: what is the limitation of Least Square Classification?

- Least squares solutions lack robustness to outliers.
- The decision boundary changed significantly when extra data points are added.

Bishop PRML Figure 4.4.

Purple: least squares. Green: logistic regression

- Example of a synthetic data set with three classes. Most of the points in the green class are misclassified.
- The background colors denote the respective classes of the decision regions.

Bishop PRML Figure 4.5

Classification via Projection

• A linear function: $f(x) = w^T x + w_0$ assuming in 2D, projects each point x to a line parallel to w:

$$x_1 \rightarrow z_1 = w^T x_1$$

$$x_2 \rightarrow z_2 = w^T x_2$$
...
$$x_N \rightarrow z_N = w^T x_N$$

• We can study how well the projected points $z_1, ..., z_N$ (viewed as functions of w) are separated across the classes.

Classification via Projection

- By varying w we get different levels of separation between the projected points.
- Find w that maximizes the separation of the projected points across classes.
- Quantify the separation (overlap) in terms of means and variances of the resulting 1-dimensional class distributions.

- One way to view a linear classification model is in terms of dimensionality reduction.
- For binary classification, suppose we project x onto one dimensional: $f = w^T x$
- A threshold t can be set to assign the label for x:

If
$$f \le t, x \to C_1$$

If $f > t, x \to C_2$

 In general, the projection leads to considerable loss of information, and classes well separated in the original space may strongly overlap in one dimension.

- Find a direction along which the projected samples are well separated.
- This is exactly the goal of linear discriminant analysis (LDA).
- In other words: we want to find the linear projection that best separates the data, i.e. best discriminates data of different classes.

- We use N_1 and N_2 to represent the number of samples for class C_1 and C_2 , respectively.
- Consider the normalized weight vector w with ||w|| = 1.
- Then, $w^T x$ is the projection of x onto the direction of w.
- Objective: find the projections of $w^T x$ so that $x \in C_1$ and $x \in C_2$ can be well separated (maximize the class separation).

How to Measure the Separation?

An intuitive measure of the separation between the projected points is the difference of the sample means.

• Sample mean vector of class C_1 :

$$m_1 = \frac{1}{N_1} \sum_{x \in C_1} x$$

• Sample mean vector of class C_1 after projection:

$$m_1' = \frac{1}{N_1} \sum_{x \in C_1} w^T x = w^T m_1$$

• Objective is to choose w that can maximize the separation $|m_1'-m_2'|=w^T|m_1-m_2|$

How to Measure the Separation?

- Choose w that maximizes projection-distance of class means $|m_1'-m_2'|=w^T|m_1-m_2|$
- Limitation: maximizing distance between means, but the projected variances within each class might be large (large class overlap).

How to Measure the Separation?

- To obtain good separation of the projected data, we really want the difference between the means to be large relative to some measure of the standard deviation of each class.
- Variance of the projected samples of class C_1 :

$$s_1^2 = \sum_{x \in C_1} (w^T x - m_1')^2$$

Total within-class variance of the projected samples will be:

$$s_1^2 + s_2^2$$

 Fisher linear discriminant analysis: Fisher criterion defined by the ratio of the between-class variance to the within-class variance.

$$\arg\max_{w} \frac{|m_1' - m_2'|^2}{s_1^2 + s_2^2}$$

• Define $J(w) = \frac{|m_1' - m_2'|^2}{s_1^2 + s_2^2}$. To obtain J(w) as an explicit function of w, we define the following matrices:

$$S_1 = \sum_{x \in C_1} (x - m_1)(x - m_1)^T$$

- Within-class covariance matrix: $S_W = S_1 + S_2$
- Then

$$s_1^2 = \sum_{x \in C_1} (w^T x - m_1')^2 = \sum_{x \in C_1} (w^T x - w^T m_1)^2$$
$$= \sum_{x \in C_1} w^T (x - m_1)(x - m_1)^T w = w^T S_1 w$$

- Therefore, $s_1^2 = w^T S_1 w$ and $s_2^2 = w^T S_2 w$.
- Further:

$$s_1^2 + s_2^2 = w^T S_1 w + w^T S_2 w = w^T (S_1 + S_2) w = w^T S_W w$$

• Similarly:

$$|m'_1 - m'_2|^2 = (w^T m_1 - w^T m_2)^2$$

$$= w^T (m_1 - m_2)(m_1 - m_2)^T w$$

$$= w^T S_B w$$

• Where $S_B = (m_1 - m_2)(m_1 - m_2)^T$ is the between-class covariance matrix.

- Therefore, $J(w) = \frac{|m'_1 m'_2|^2}{s_1^2 + s_2^2} = \frac{w^T S_B w}{w^T S_W w}$
- Differentiating with respect to w, J(w) is maximized when $(w^T S_B w) S_W w = (w^T S_W w) S_B w$
- We can observe that $S_B w = (m_1 m_2)(m_1 m_2)^T w$ always in the direction of $(m_1 m_2)$ since $(m_1 m_2)^T w$ is a scalar.
- Also, we only care about the direction of w, so we can drop the scaler factors $(w^T S_B w)$ and $(w^T S_W w)$.
- Therefore, we have the solution:

$$w \propto S_W^{-1}(m_1 - m_2)$$

Summary of Fisher's Linear Discriminant

•
$$m_1 = \frac{1}{N_1} \sum_{x \in C_1} x$$
, $m_2 = \frac{1}{N_2} \sum_{x \in C_2} x$

- Separation: Maximize projection-distance of class means
- But the projected variances within each class might be large
- Fix: Maximize the ratio of between-class variance to within-class variance ("signal to noise").
- Fisher criterion $J(w) = \frac{|m'_1 m'_2|^2}{s_1^2 + s_2^2}$
- Solution: $w \propto S_W^{-1}(m_1 m_2)$

Fisher's Linear Discriminant

- Gives the linear function with the maximum ratio of between-class variance to within-class variance.
- LDA is a linear technique for dimensionality reduction. The classification problem has been reduced from a d-dimensional problem to a more manageable one-dimensional problem.
- Note that LDA uses class labels.
- The analysis can be extended to multiple classes or non-linear problems.
- More details can be found in Bishop PRML Section 4.1.6

The Perceptron Algorithm

The Perceptron Algorithm

- First learning algorithm for neural networks. (Frank Rosenblatt, 1957)
- Originally introduced for character classification, where each character is represented as an image.
- It is a type of linear classifier that makes predictions based on a linear predictor function and a set of weights with the input feature vector.

The Perceptron Algorithm

Total input to output node:

$$\sum_{j} w_{j} x_{j}$$

 Output unit performs the function (activation function):

$$H(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$$

Perceptron: Learning Task

- Goal: compute a mapping from inputs to the outputs.
- Example: two-class character recognition problem.
 - Training set: a set of images representing either the character 'a' or the character 'b' (supervised learning);
 - Learning task: learn the weights so that when a new unlabeled image comes in, the network can predict its label.
 - Setting: d input units (intensity level of a pixel), 1 output unit.

- The algorithm proceeds as follows:
 - Initial random setting of weights;
 - The input is a random sequence $\{x_k\}$
 - For each element of class C_1 , if output = 1 (correct), do nothing; otherwise, update weights.
 - For each element of class C_2 , if output = 0 (correct), do nothing; otherwise, update weights.

- More formally:
 - $x = (x_1, x_2, ..., x_d)^T$
 - $w = (w_1, w_2, ..., w_d)^T$
- Output: $w^T x = w_1 x_1 + w_2 x_2 + \dots + w_d x_d$
- Output class 1 if $w^T x \ge 0$, otherwise, output class 0.

- The objective is to learn the weights so that the perceptron can correctly discriminate elements of \mathcal{C}_1 from elements of \mathcal{C}_2
- Given x in input, if x is classified correctly, weights are unchanged, otherwise:

$$w = \begin{cases} w + x & \text{if an element of class } C_1 \text{ was classified as in } C_2 \\ w - x & \text{if an element of class } C_2 \text{ was classified as in } C_1 \end{cases}$$

- It is online:
 - Only process one example at a time, instead of considering the entire dataset at the same time.
- Error-Driven Updating:
 - If it is doing well, it doesn't update the parameters.
 - Only when the prediction is incorrect, it updates the parameters.
 - The parameters are updated in a way that it would do better on this example next time around.
 - How to verify? Two cases.

• 1st case: $x \in C_1$, but was classified in C_2 . In other words, the correct answer is 1, which corresponds to $w^T x \ge 0$, but the model provides $w^T x < 0$. In the next round after updating the parameters to w'^T , we want to get closer to the correct answer (be greater):

$$w^T x < w'^T x$$

• Verify if it would do better after updating w as w' = w + x.

$$w'^T x = (w + x)^T x$$
$$= w^T x + x^T x$$
$$= w^T x + ||x||^2$$

• Since $||x||^2 > 0$, the condition is verified.

• 2^{nd} case: $x \in C_2$, but was classified in C_1 . In other words, the correct answer is 0, which corresponds to $w^T x < 0$, but the model provides $w^T x \ge 0$. In the next round after updating the parameters to w'^T , we want to get closer to the correct answer (be smaller):

$$w^T x > w'^T x$$

• Verify if it would do better after updating w as w' = w - x.

$$w'^T x = (w - x)^T x$$
$$= w^T x - x^T x$$
$$= w^T x - ||x||^2$$

• Since $||x||^2 > 0$, the condition is verified.

The Perceptron Algorithm: Example

Example:
$$(-1,2) - X$$

 $(1,0) + \checkmark$ $w_1 = (0,0)$
 $(1,1) + X$ $w_2 = w_1 - (-1,2) = (1,-2)$
 $(-1,0) - \checkmark$ $w_3 = w_2 + (1,1) = (2,-1)$
 $(-1,-2) - X$ $w_4 = w_3 - (-1,-2) = (3,1)$
 $(1,-1) + \checkmark$

Representational Power of Perceptrons

- Marvin Minsky and Seymour Papert, "Perceptrons" 1969: The perceptron can only solve problems with linearly separable classes.
 - The functions can be drawn in 2-dim graph and a single straight line separates values in two parts.
- Examples of linearly separable Boolean functions:

Representational Power of Perceptrons

- The perceptron cannot model the non-linearly separable functions: Logical XOR function (computes the logical exclusive).
 - Input: Two input arguments with values in {0,1}.
 - Output: 1 if and only if two inputs have different values.
 - For such functions, we have to use multi-layer feed-forward network.

X_1	X_2	Y
0	0	0
0	1	1
1	0	1
1	1	0

Summary of The Perceptron Algorithm

- For a random sequence $x_1, x_2, ..., x_k$, with $x_i (i = 1, ..., k) \in C_1$ or C_2
- For each x, if it is correctly classified, then $w_{k+1} = w_k$, otherwise,

$$w_{k+1} = \begin{cases} w_k + x & \text{if } x \in C_1 \\ w_k - x & \text{if } x \in C_2 \end{cases}$$

• Convergence theorem: regardless of the initial choice of weights, if the two classes are linearly separable, there exists w such that:

$$\begin{cases} w^T x \ge 0 & if \ x \in C_1 \\ w^T x < 0 & if \ x \in C_2 \end{cases}$$

• The learning rule will find such solution after a finite number of steps.

Summary of Today's Lecture

- Generative vs Discriminative Classification
- Linear Discriminant Analysis
- Least Square Classification
- Fisher's Linear Discriminant
- The Perceptron Algorithm