

MOS INTEGRATED CIRCUIT μ PD70208H, 70216H

V40HLTM, V50HLTM 16/8, 16-BIT MICROPROCESSOR

DESCRIPTION

The μ PD70208H (V40HL) is a high-speed, low-power 16-/8-bit microprocessor based on the μ PD70208 (V40TM) with 16-bit architecture, 8-bit data bus, and general-purpose peripheral functions.

The μ PD70216H (V50HL) is a high-speed, low-power 16-bit microprocessor based on the μ PD70216 (V50TM) with 16-bit architecture, 16-bit data bus, and general-purpose peripheral functions.

The V40HL and V50HL offer 20 MHz operation, and in addition to the conventional standby functions, also allows the clock to be stopped by the use of fully static internal circuitry, thus achieving greatly reduced power consumption. It is also capable of 3 V operation in addition to the previous 5 V operation, making it ideally suited to battery driven systems.

Details are given in the following manuals. Be sure to read when carrying out design work.

- V40HL, V50HL User's Manual Hardware (U11610E)
- 16-bit V seriesTM User's Manual Instruction (U11301J: Japanese version)

FEATURES

- High-speed, low-power version of V40 and V50
- High-performance CPU (V20TM/V30TM software compatible)
 - Minimum instruction execution time: 100 ns (20 MHz, 5 V)

200 ns (10 MHz, 3 V)

- Memory addressing space: 1M bytes
- High-speed multiply/divide instructions: 0.95 to 2.8 μ s (20 MHz, 5 V)

1.9 to 5.6 μ s (10 MHz, 3 V)

- Maskable (ICU) & non-maskable (NMI) interrupt inputs
- μ PD8080AF emulation function
- · Standby functions, clock stoppage capability
- Standard peripheral LSI functions on chip
 - Clock generator (CG)
 - Programmable wait control unit (WCU)
 - Refresh control unit (REFU)
 - Timer/counter unit (TCU) \cdots μ PD71054 subset
 - Serial control unit (SCU) ... μPD71051 subset
 - Interrupt control unit (ICU) ... μPD71059 subset
 - DMA control unit (DMAU) \cdots μ PD71071/71037 subset (functions of either selectable)
- Operating frequency: 10/12.5/16/20 MHz (at 5 V, with 20/25/32/40 MHz supplied externally)

5/6.25/8/10 MHz (at 3 V, with 10/12.5/16/20 MHz supplied externally)

The information in this document is subject to change without notice.

ORDERING INFORMATION

(1) V40HL

Part Number	Package	Max. Operating Frequency (MHz)
μPD70208HGF-10-3B9	80-pin plastic QFP (14 × 20 mm)	10
	(Resin thickness 2.7 mm)	
μPD70208HGF-12-3B9	80-pin plastic QFP (14 × 20 mm)	12.5
	(Resin thickness 2.7 mm)	
uPD70208HGF-16-3B9	80-pin plastic QFP (14 × 20 mm)	16
	(Resin thickness 2.7 mm)	
μPD70208HGF-20-3B9	80-pin plastic QFP (14 × 20 mm)	20
	(Resin thickness 2.7 mm)	
uPD70208HGK-10-9EU	80-pin plastic TQFP (Fine pitch) (12 × 12 mm)	10
	(Resin thickness 1.0 mm)	
μPD70208HGK-12-9EU	80-pin plastic TQFP (Fine pitch) (12 × 12 mm)	12.5
	(Resin thickness 1.0 mm)	
μPD70208HGK-16-9EU	80-pin plastic TQFP (Fine pitch) (12 × 12 mm)	16
	(Resin thickness 1.0 mm)	
μPD70208HGK-20-9EU	80-pin plastic TQFP (Fine pitch) (12 × 12 mm)	20
	(Resin thickness 1.0 mm)	
uPD70208HLP-10	68-pin plastic QFJ (950 × 950 mil)	10
uPD70208HLP-12	68-pin plastic QFJ (950 × 950 mil)	12.5
uPD70208HLP-16	68-pin plastic QFJ (950 \times 950 mil)	16
μPD70208HLP-20	68-pin plastic QFJ (950 × 950 mil)	20

(2) V50HL

Part Number	Package	Max. Operating Frequency (MHz)
μPD70216HGF-10-3B9	80-pin plastic QFP (14 × 20 mm)	10
	(Resin thickness 2.7 mm)	
μPD70216HGF-12-3B9	80-pin plastic QFP (14 × 20 mm)	12.5
	(Resin thickness 2.7 mm)	
μ PD70216HGF-16-3B9	80-pin plastic QFP (14 × 20 mm)	16
	(Resin thickness 2.7 mm)	
μPD70216HGF-20-3B9	80-pin plastic QFP (14 × 20 mm)	20
	(Resin thickness 2.7 mm)	
μ PD70216HGK-10-9EU	80-pin plastic TQFP (Fine pitch) (12 \times 12 mm)	10
	(Resin thickness 1.0 mm)	
μ PD70216HGK-12-9EU	80-pin plastic TQFP (Fine pitch) (12 \times 12 mm)	12.5
	(Resin thickness 1.0 mm)	
μ PD70216HGK-16-9EU	80-pin plastic TQFP (Fine pitch) (12 \times 12 mm)	16
	(Resin thickness 1.0 mm)	
μ PD70216HGK-20-9EU	80-pin plastic TQFP (Fine pitch) (12 × 12 mm)	20
	(Resin thickness 1.0 mm)	
μPD70216HLP-10	68-pin plastic QFJ (950 × 950 mil)	10
μ PD70216HLP-12	68-pin plastic QFJ (950 × 950 mil)	12.5
μPD70216HLP-16	68-pin plastic QFJ (950 × 950 mil)	16
μ PD70216HLP-20	68-pin plastic QFJ (950 × 950 mil)	20

PIN CONFIGURATION (Top View)

(1) V40HL

```
• 80-pin Plastic QFP (14 \times 20 mm) \muPD70208HGF-10-3B9 \muPD70208HGF-12-3B9 \muPD70208HGF-16-3B9 \muPD70208HGF-20-3B9
```


Caution Leave IC pin open.

```
• 80-pin Plastic TQFP (Fine pitch) (12 \times 12 mm) \muPD70208HGK-10-9EU \muPD70208HGK-12-9EU \muPD70208HGK-16-9EU \muPD70208HGK-20-9EU
```


• 68-pin Plastic QFJ (950 \times 950 mil) μ PD70208HLP-10 μ PD70208HLP-12 μ PD70208HLP-16 μ PD70208HLP-20

(2) V50HL

```
• 80-pin Plastic QFP (14 \times 20 mm) \muPD70216HGF-10-3B9 \muPD70216HGF-12-3B9 \muPD70216HGF-16-3B9 \muPD70216HGF-20-3B9
```


Caution Leave IC pin open.

• 80-pin Plastic TQFP (Fine pitch) (12 \times 12 mm) μ PD70216HGK-10-9EU μ PD70216HGK-12-9EU μ PD70216HGK-16-9EU μ PD70216HGK-20-9EU


```
• 68-pin Plastic QFJ (950 \times 950 mil) \muPD70216HLP-10 \muPD70216HLP-12 \muPD70216HLP-16 \muPD70216HLP-20
```


PIN NAMES

A8-A15 : Address Bus

A16/PS0-A19/PS3 : Address/Processor Status AD0-AD15 : Address Bus/Data Bus

ASTB : Address Strobe
BS0-BS2 : Bus Status
BUFEN : Buffer Enable
BUFR/W : Buffer Read/Write

BUSLOCK : Bus Lock
CLKOUT : Clock Output

DMAAKO-DMAAK2 : DMA Acknowledge

DMAAK3/TxD : DMA Acknowledge/Transmit Data

DMARQ0-DMARQ2 : DMA Request

DMARQ3/RxD : DMA Request/Receive Data

END/TC : End/Terminal Count

GND : Ground

High : High Level Output
HLDAK : Hold Acknowledge
HLDRQ : Hold Request

IC : Internally Connected

INTAK/SRDY/TOUT1 : Interrupt Acknowledge/Serial Ready/Timer Output 1

INTP1-INTP7 : Interrupt Request from Peripherals

 IORD
 : I/O Read

 IOWR
 : I/O Write

 MRD
 : Memory Read

 MWR
 : Memory Write

NMI : Non-Maskable Interrupt Request

POLL : Poll

QS0, QS1 : Queue Status

READY : Ready

REFRQ : Refresh Request

RESET : Reset

RESOUT : Reset Output

TCLK : Timer Clock

TCTL2 : Timer Control 2

TOUT2 : Timer Output 2

UBE : Upper Byte Enable

VDD : Power Supply

X1, X2 : Crystal

9

BLOCK DIAGRAM

CPU: Central Processing Unit

CG: Clock Generator

BIU: Bus Interface Unit

BAU: Bus Arbitration Unit

CU: Reflesh Control Unit

SCU: Timer/Count Unit

SCU: Serial Control Unit

ICU: Interrupt Control Unit

WCU: Wait Control Unit

DMAU: DMA Control Unit

DIFFERENCES FROM V40 AND V50

Item		V40HL, V50HL	V40, V50
Operating supply voltage		3 V, 5 V	5 V
Operating VDD = 5 V frequency		MAX. : 10, 12.5, 16, 20 MHz MIN. : DC	MAX. : 8, 10 MHz MIN. : 2 MHz
	V _{DD} = 3 V	MAX. : 5, 6.25, 8, 10 MHz MIN. : DC	No operation
Clock gener	ator	Variable scaling factor	Fixed scaling factor
(CG)		Variable instruction cycle time	Fixed instruction cycle time
		Maximum input frequency: 40 MHz	Maximum input frequency: 20 MHz
Internal I/O refunction	elocation	Switchable 8-bit boundary or 16-bit boundary relocation function	V40: Relocation possible on 8-bit boundary V50: Relocation possible on 16-bit boundary
Wait control unit (WCU)		Memory space: 5 divisions ^{Note 1}	Memory space: 3 divisions
		I/O space: 3 divisionsNote 2	I/O space: Not divided
Refresh control unit		Refresh address: 16 bits	Refresh address: 9 bits
(REFU)		REFRQ extended timing supported	No REFRQ extended timing
Serial control unit (SCU)		Dedicated baud rate generator incorporated	No dedicated baund rate generator incorporated
DMA control unit (DMAU)		μ PD71071/71037 subset (either function selectable)	μPD71071 subset
Standby functions		HALT mode, STOP mode	HALT mode only

Notes 1. Divided into 3 when a reset is performed.

2. Not divided when a reset is performed.

CONTENTS

1.	PIN FUNCTIONS	15
	1.1 LIST OF PIN FUNCTIONS	15
	1.2 PROCESSING OF UNUSED PINS	17
2.	MEMORY AND I/O CONFIGURATION	19
	2.1 MEMORY SPACE	19
	2.2 I/O SPACE	21
3.	CPU	22
4.	CG (CLOCK GENERATOR)	24
5.	BIU (BUS INTERFACE UNIT)	24
6.	BAU (BUS ARBITRATION UNIT)	25
7. V	WCU (WAIT CONTROL UNIT)	27
	7.1 FEATURES	27
	7.2 RELATION BETWEEN WCU AND READY PIN	28
8.	REFU (REFRESH CONTROL UNIT)	29
	8.1 FEATURES	29
	8.2 REFRESH OPERATIONS	29
9.	TCU (TIMER/COUNTER UNIT)	
	9.1 FEATURES	30
	9.2 TCU INTERNAL BLOCK DIAGRAM	30
10.	SCU (SERIAL CONTROL UNIT)	
	10.1 FEATURES	31
	10.2 SCU INTERNAL BLOCK DIAGRAM	31
	ICU (INTERRUPT CONTROL UNIT)	
	11.2 ICU INTERNAL BLOCK DIAGRAM	
	11.2 ICU INTERNAL BLOCK DIAGRAM	32
12.	DMAU (DMA CONTROL UNIT)	
	12.1 FEATURES	33
		33
13.	STANDBY FUNCTIONS	34
14.	RESET OPERATION	34
15.	INSTRUCTION SET	35

16.	ELECTRICAL SPECIFICATIONS	66
	16.1 AT 5 V OPERATION	66
	16.2 AT 3 V OPERATION	75
17.	PACKAGE DRAWINGS	100
18.	RECOMMENDED SOLDERING CONDITIONS	103

1. PIN FUNCTIONS

1.1 LIST OF PIN FUNCTIONS

Pin Name	Input/Output	Function
AD0 to AD15 ^{Note 1, 3}	3-state I/O	Time-division address/data bus
AD0 to AD7Note 2, 3	3-state I/O	Time-division address/data bus
A8 to A15 ^{Note 2, 3}	3-state output	Address bus
A16/PS0 to A19/PS3 ^{Note 3}	3-state output	Time-division address/processor status
REFRQ	Output	Refresh request
HLDRQ	Input	Bus hold request
HLDAK	Output	Bus hold acknowledge
RESET	Input	Reset
RESOUT	Output	System reset output
READY	Input	Bus cycle end
NMI	Input	Non-maskable interrupt
MRDNote 3	3-state output	Memory read strobe
MWR Note 3	3-state output	Memory read strobe
IORDNote 3	3-state output	I/O read strobe
IOWR Note 3	3-state output	I/O write strobe
ASTB	Output	Address strobe
UBE Note 1, 3	3-state output	Data bus upper byte enable
HighNote 2	3-state output	High level output
BUSLOCK Note 3	3-state output	Bus lock
POLL	Input	Floating-point operation processor polling
BUFR/WNote 3	3-state output	Buffer read/write
BUFENNote 3	3-state output	Buffer enable
X1	Input	Crystal/external clock
X2	_	
CLKOUT	Output	Clock output
BS0 to BS2Note 3	3-state output	Bus status
QS0, QS1	Output	Queue status
TOUT2	Output	Timer 2 output
TCTL2	Input	Timer 2 control
TCLK	Input	Timer clock
INTP1 to INTP7	Input	Maskable interrupts
ĪNTAK/SRDY/TOUT1	Output	Interrupt acknowledge/serial reception ready/timer 1 output

Notes 1. V50HL only

- 2. V40HL only
- 3. These pins are provided with a latch. Therefore, when they go into a high-impedance state, they hold the status before the high-impedance state until driven by an external device. It is not necessary to pull up or down the data bus. To invert the level of the pin that goes into a high-impedance state by an external device, a drive current higher than the latch invert current (IILH, IILL) is necessary.

Pin Name	Input/Output	Function
DMAAK3/TxD	Output	DMA acknowledge 3/serial transmit data
DMARQ3/RxD	Input	DMA request 3/serial receive data
DMAAK0 to DMAAK2	Output	DMA acknowledge
DMARQ0 to DMARQ2	Input	DMA request
END/TC	I/O	DMA service forcible termination/DMA service completion
V _{DD}	_	Positive power supply pin
GND	_	Ground potential pin
IC	_	Internal connection pin (External connection impossible)

1.2 PROCESSING OF UNUSED PINS

Table 1-1 shows the processing (recommended connection) of the unused pins. Use of a resistor with a resistance of 1 to 10 $k\Omega$ is recommended to connect these pins to V_{DD} or GND via resistor.

Table 1-1. Processing of Unused Pins

5		
Pin Name	Input/Output	Recommended Connection
AD0 to AD15 ^{Note 1}	3-state I/O	Open
AD0 to AD7 ^{Note 2}	3-state I/O	
A8 to A15 ^{Note 2}	3-state output	
A16/PS0 to A19/PS3	3-state output	
REFRQ	Output	
HLDRQ	Input	Connect to GND via resistor
HLDAK	Output	Open
RESOUT	Output	Open
READY	Input	Connect to VDD via resistor
NMI	Input	Connect to GND via resistor
MRD	3-state output	Open
MWR	3-state output	
ĪŌRD	3-state output	
ĪOWR	3-state output	
ASTB	Output	
UBENote 1	3-state output	
HighNote 2	Output	
BUSLOCK	3-state output	
POLL	Input	Connect to GND via resistor
BUFR/W	3-state output	Open
BUFEN	3-state output	
CLKOUT	Output	Open
BS0 to BS2	3-state output	
QS0, QS1	Output	
TOUT2	Output	
TCTL2	Input	Connect to GND via resistor
TCLK	Input	
INTP1 to INTP7	Input	Open
INTAK/SRDY/TOUT1	Output	
DMAAK3/TxD	Output	
DMARQ3/RxD	Input	Connect to GND via resistor
DMAAK0 to DMAAK2	Output	Open
DMARQ0 to DMARQ2	Input	Connect to GND via resistor
END/TC	1/0	Individually connect to VDD via resistor
	l .	

Notes 1. V50HL only

2. V40HL only

Remark The circuit configuration of the latch is as illustrated below. To invert the level of the pin with a latch, a drive current higher than the latch invert current is necessary.

(1) Output pin

(2) I/O pin

2. MEMORY AND I/O CONFIGURATION

2.1 MEMORY SPACE

The V40HL and V50HL can access a 1M-byte (512K-word) memory space.

Figure 2-1. Memory Map

Figure 2-2. Interface with Memory (1/2)

(a) V40HL

Figure 2-2. Interface with Memory (2/2)

(b) V50HL

2.2 I/O SPACE

In the V40HL and V50HL, I/Os up to 64K bytes (32K words) can be accessed in an area independent of the memory. The various on-chip peripheral LSIs are set by accessing the system I/O area.

Extended functions added to those of the V40 and V50 are mapped onto unused V40 and V50 registers and the reserved area.

The I/O map is shown in Figure 2-3.

Figure 2-3. I/O Map

3. CPU

The CPU has the same functions as the V20HLTM and V30HLTM. In hardware terms, there are some changes regarding the use of the bus with on-chip peripherals, but in software terms the CPU is fully compatible.

The internal block diagram of the CPU is shown in Figure 3-1.

Figure 3-1. Internal Block Diagram of CPU (1/2)

(a) V40HL

Figure 3-1. Internal Block Diagram of CPU (2/2)

(b) V50HL

4. CG (CLOCK GENERATOR)

The CG generates a clock at a frequency of 1/2, 1/4, 1/8 or 1/16 that of the crystal and oscillator connected to the X1 and X2 pins, supplies it as the CPU operating clock and outputs it externally as the CLKOUT pin output.

The interrupt cycle time can be changed according to the oscillator scaling factor. The scaling factor can be set by a system I/O area register.

X1 Oscillator

Osc

Figure 4-1. Internal Block Diagram of CG

5. BIU (BUS INTERFACE UNIT)

The BIU controls the data bus, address bus and control bus pins. These buses are used by the CPU, DMAU (DMA control unit) and REFU (refresh control unit).

The BIU synchronizes the RESET input signal and READY input signal using the CLOCK signal generated by the clock generator (CG). In addition to being supplied to the inside of the V40HL and V50HL, the synchronized reset signal is also output externally from the RESOUT pin. The synchronized READY signal is supplied to the internal CPU, DMAU and REFU.

RESET O D CK \(\sqrt{Q} \)

READY \(\sqrt{

Figure 5-1. RESET and READY Signal Synchronization

6. BAU (BUS ARBITRATION UNIT)

The BAU performs bus arbitration among bus masters.

A list of bus masters (units which can acquire the bus) is shown below.

Table 6-1. Bus Masters

Bus Master	Bus Cycle
CPU	Program fetch, data read/write
DMAU	DMA cycle
REFU	Refresh cycle
External bus master (HLDRQ pin input)	Bus cycle driven by external device

The relative priorities of the bus masters are shown below.

High CPU (when BUSLOCK prefix is used)

REFU (highest priority: when given number of requests are reached)

DMAU HLDRQ pin

CPU (normal CPU cycle)

Low REFU (lowest priority: cycle steal)

BAU bus arbitration is performed as follows.

A bus master such as the CPU, DMAU, REFU, etc., incorporated in the V40HL and V50HL normally release the bus at the end of the bus cycle currently being executed, as shown in Figure 6-1. However, in the case of a bus master connected to the HLDRQ pin, or cascaded external DMA controllers, for instance, the situation is as shown in Figure 6-2. The V40HL and V50HL request return of the bus by inactivating the acknowledge signal (HLDAK), and on receiving this request, the external bus master holding the bus should release the bus by dropping the bus hold request signal (HLDRQ). The V40HL and V50HL-internal bus master with the highest priority is kept waiting until the bus hold request signal is dropped. This is called a bus wait operation.

Figure 6-1. Internal Bus Cycles

Figure 6-2. Bus Wait Operation

Note The period in which the external bus master which has been given the bus after its release by the V40HL and V50HL can use the bus.

7. WCU (WAIT CONTROL UNIT)

The WCU has the function of automatically inserting a wait state (TW) of 0 to 3 clock cycles in a CPU, DMAU or REFU bus cycle.

7.1 FEATURES

- Automatic setting of 0 to 3 waits for a CPU memory bus cycle
- 1M-byte memory space can be divided into 5
- 64K-byte I/O space can be divided into 3
- Automatic setting of 0 to 3 waits for an external I/O cycle
- Automatic setting of 0 to 3 waits for a DMA cycle
- Automatic setting of 0 to 3 waits for a refresh cycle
- Same as V40 and V50 directly after a reset (memory space divided into 3, no division of I/O space)

Figure 7-1. Example of Memory Space Division

Remark The division specification and the size of each block are set by means of a system I/O area register.

FFFFH
Upper I/O Block

64K-Byte I/O Area
Middle I/O Block

Lower I/O Block

Figure 7-2. Example of I/O Space Division

Remark The division specification and the size of each block are set by means of a system I/O area register.

7.2 RELATION BETWEEN WCU AND READY PIN

When wait cycles exceeding 3 clock cycles are necessary, the WCU and the READY signal pin can be used in combination. The number of wait cycles specified by the WCU set value or the number of wait cycles under READY control, whichever is larger, is inserted.

WCU WCU Bus Control

Figure 7-3. WCU and READY Control

8. REFU (REFRESH CONTROL UNIT)

The REFU generates refresh cycles required for refreshing of external DRAM. Refresh enabling/disabling and the refresh interval can be set programmably.

8.1 FEATURES

- Lowest-priority refreshing/highest-priority refreshing
- 7-refresh queue
- 16-bit refresh address
- REFRQ extended timing supported (REFRQ active from T1 state)

8.2 REFRESH OPERATIONS

The REFU has two priorities. Normally, it has the lowest priority, and a refresh cycle cannot be started unless the bus is completely idle. However, if there are 7 or more pending refresh requests, it is given the highest priority, and it requests the bus master holding the bus to relinquish it. (See **6. BAU**.)

The refresh address is output on A0 to A15. Every refresh cycle the refresh address is incremented by 1 (for the V40HL) or by 2 (for the V50HL), and the next refresh address is generated.

In a refresh cycle, a low-level signal is output on the low address pins (A16 to A19).

This refresh address is not affected by a reset. When the device is powered on, the refresh address is undefined.

9. TCU (TIMER/COUNTER UNIT)

The TCU incorporates 3 counters, and can be used as a timer, event counter, rate generator, etc. Functionally it is a subset of the μ PD71054.

9.1 FEATURES

- 3 × 16-bit counters
- Six programmable count modes
- Binary/BCD count
- Multiple latch command
- Choice of two input clocks: internal/external

9.2 TCU INTERNAL BLOCK DIAGRAM

Notes 1. A0 or A1 (Set by a system I/O area register)

2. A1 or A2 (Set by a system I/O area register)

10. SCU (SERIAL CONTROL UNIT)

The SCU performs control of serial communication (asynchronous). Its functions are a subset of the μ PD71051 excluding synchronous communication. Also, what was the control word register in the μ PD71051 has been divided into two: a command register and a mode register.

10.1 FEATURES

- Dedicated baud rate generator incorporated (using internal clock)
- Asynchronous serial communication
- Clock rate: baud rate × 16, × 64
- Baud rate: DC 500 kbps
- Character length: 7/8 bits
- Transmit stop bits: 1/2 bits
- Break transmission
- Automatic break detection
- Full-duplex double-buffer system
- Parity addition/checking
- Error detection: parity, overrun, framing
- Interrupt generation maskable

10.2 SCU INTERNAL BLOCK DIAGRAM

Notes 1. A0 or A1 (Set by a system I/O area register)

2. A1 or A2 (Set by a system I/O area register)

11. ICU (INTERRUPT CONTROL UNIT)

The ICU arbitrates among up to 8 interrupt requests (maskable interrupts) generated inside and outside the V40HL and V50HL, and transfers one of them to the CPU. The ICU functions comprise the functions of the V40HL and V50HL minus those functions not required by the V40HL and V50HL.

11.1 FEATURES

- 8 interrupt inputs
- μPD71059 cascading possible
- Edge- or level-triggered request input (input from internally connected TCU is edge-triggered only)
- Interrupt requests individually maskable
- Programmable interrupt request priority order
- Polling operation capability

11.2 ICU INTERNAL BLOCK DIAGRAM

Notes 1. A0 or A1 (Set by a system I/O area register)

2. A1 or A2 (Set by a system I/O area register)

12. DMAU (DMA CONTROL UNIT)

The DMAU has 4 DMA channels, and provides the functions (subset) of two LSIs, the μ PD71071 and μ PD71037.

12.1 FEATURES

- Two operating modes (μPD71071 mode, μPD71037 mode)
- 20-bit address register
- 16-bit count register
- Four independent DMA channels
- Byte transfer/word transfer selectable
- Three transfer modes (settable on an individual channel basis)
 Single transfer mode, demand transfer mode, block transfer mode
- Two bus modes (common to all channels: in μ PD71037 mode, bus release mode only)
 - Bus release mode
 - Bus hold mode
- DMA requests maskable on an individual channel basis
- Auto initialization function
- Transfer address increment/decrement
- Two channel priority systems (fixed priority/rotating priority)
- TC output at end of transfer
- Forced termination of service by END input
- Cascading capability

12.2 DMAU INTERNAL BLOCK DIAGRAM

Notes 1. In μ PD71071 mode

2. In μ PD71037 mode

13. STANDBY FUNCTIONS

The V40HL and V50HL have two modes, the HALT mode and STOP mode, as standby functions.

(1) HALT mode

When the HALT instruction is executed, the clock to internal CPU circuitry (excluding the HALT mode release circuit) is stopped.

(2) STOP mode

When the HALT instruction is executed, all clocks to the CPU and internal I/Os are stopped. STOP mode should be used when a resonator is connected to the X1 and X2 pins.

Remark Switching between HALT mode and STOP mode is performed by setting a system I/O area register.

14. RESET OPERATION

When the $\overline{\text{RESET}}$ pin is driven low and this level is held for 4 clock cycles or more from the fall of the signal, the CPU and on-chip peripheral LSIs are reset.

When the RESET pin subsequently returns to the high level, the CPU begins an instruction prefetch from address FFFF0H.

When the V40HL and V50HL are reset, its status is fully compatible with the V40 and V50.

Extended functions added to those of the V40 and V50 are mapped onto unused V40 and V50 registers and the reserved area

Table 14-1 shows the main statuses of the on-chip peripheral LSIs when a reset is performed.

Table 14-1. Main Statuses of On-Chip Peripheral LSIs After Reset

WCU	Memory, external I/O, DMA & refresh : 3-wait insertion Upper & lower memory blocks : set to 512 KB	
REFU	Refresh cycle : set to 72 clock cycles Refresh enabling/disabling : not affected by reset	
SCU	Baud rate : x 64 Character : 7 bits Parity : None Stop bits : 1 bit Break detection : None	
DMAU	μPD71071 mode Demand mode Auto initialization disabled Verify transfer, byte transfer Bus release mode DMA enabled	

Caution When a reset is performed, the SCU, TCU, ICU and DMAU cannot be used.

15. INSTRUCTION SET

Table 15-1. Operand Type Legend

Identifier	Description
reg	8/16-bit general register
	(destination register in an instruction using two 8/16-bit general registers)
reg'	Source register in an instruction using two 8/16-bit general registers
reg8	8-bit general register
	(destination register in an instruction using two 8-bit general registers)
reg8'	Source register in an instruction using two 8-bit general registers
reg16	16-bit general register
	(destination register in an instruction using two 16-bit general registers)
reg16'	Source register in an instruction using two 16-bit general registers
dmem	8/16-bit memory location
mem	8/16-bit memory location
mem8	8-bit memory location
mem16	16-bit memory location
mem32	32-bit memory location
imm	Constant in range 0 to FFFFH
imm3	Constant in range 0 to 7
imm4	Constant in range 0 to FH
imm8	Constant in range 0 to FFH
imm16	Constant in range 0 to FFFFH
acc	Accumulator AW or AL
sreg	Segment register
src-table	Name of 256-byte conversion translation table
src-block	Name of block addressed by register IX
dst-block	Name of block addressed by register IY
near-proc	Procedure in current program segment
far-proc	Procedure in a different program segment
near-label	Label in current program segment
short-label	Label in range –128 to +127 bytes from end of instruction
far-label	Label in a different program segment
memptr16	Word containing location offset in a different program segment to which control is to be shifted and segment base address
memptr32	Doubleword containing location offset in a different program segment to which control is to be shifted and segment base address
regptr16	General register containing location offset in a different program segment to which control is to be shifted
pop-value	Number of bytes to be removed from stack (0 to 64K, normally an even number)
fp-op	Immediate value which identifies external floating-point operation coprocessor operation code
R	Register set

Table 15-2. Operation Code Legend

Identifier	Description
W	Byte/word specification bit (0: byte, 1: word). However, when s =1, byte data of sign extension is 16-bit operand if W = 1.
reg	Register field (000 to 111)
reg'	Register field (000 to 111) (source register in instruction which uses two registers)
mem	Memory field (000 to 111)
mod	Mode field (00 to 10)
S	Sign-extended specification bit (0: without sign extension, 1: with sign extension)
X, XXX, YYY, ZZZ	Data used to determine external floating-point coprocessor operation code

Table 15-3. Operand Description Legend

Identifier	Description
AW	Accumulator (16-bit)
AH	Accumulator (higher byte)
AL	Accumulator (lower byte)
BW	Register BW (16-bit)
cw	Register CW (16-bit)
CL	Register CL (lower byte)
DW	Register DW (16-bit)
BP	Base pointer (16-bit)
SP	Stack pointer (16-bit)
PC	Program counter (16-bit)
PSW	Program status word (16-bit)
IX	Index register (source) (16-bit)
IY	Index register (destination) (16-bit)
PS	Program segment register (16-bit)
SS	Stack segment register (16-bit)
DS0	Data segment 0 register (16-bit)
DS1	Data segment 1 register (16-bit)
AC	Auxiliary carry flag
CY	Carry flag
Р	Parity flag
S	Sign flag
Z	Zero flag
DIR	Direction flag
IE	Interrupt enable flag
V	Overflow flag
BRK	Break flag
MD	Mode flag
(···)	Contents of memory indicated by contents of ()
disp	Displacement (8/16-bit)
ext-disp8	16 bits with 8-bit displacement sign-extended
temp	Temporary register (8/16/32-bit)
TA	Temporary register A (16-bit)
ТВ	Temporary register B (16-bit)
TC	Temporary register C (16-bit)
tmpcy	Temporary carry flag (1-bit)
seg	Immediate segment data (16-bit)
offset	Immediate offset data (16-bit)
←	Transfer direction
+	Addition
_	Subtraction
×	Multiplication
÷	Division
%	Modulo
^	Logical product
V	Logical sum
∀	Exclusive logical sum
××H	Two-digit hexadecimal number
××××H	Four-digit hexadecimal number

Table 15-4. Flag Operation Legend

Identifier	Description
(Blank)	No change
0	Cleared to 0
1	Set to 1
×	Set or cleared depending upon result
U	Undefined
R	Previously saved value is restored

Table 15-5. Memory Addressing

mod mem	00	01	10
000	BW + IX	BW + IX + disp 8	BW + IX + disp 16
001	BW + IY	BW + IY + disp 8	BW + IY + disp 16
010	BP + IX	BP + IX + disp 8	BP + IX + disp 16
011	BP + IY	BP + IY + disp 8	BP + IY + disp 16
100	IX	IX + disp 8	IX + disp 16
101	IY	IY + disp 8	IY + disp 16
110	DIRECT ADDRESS	BP + disp 8	BP + disp 16
111	BW	BW + disp 8	BW + disp 16

Table 15-6. 8/16-Bit General Register Selection

W=0 W=1reg, reg' 000 AL AW CL CW 001 010 DL DW 011 BL BW 100 SP AH 101 СН ΒP 110 DH IX

ВН

ΙY

111

Table 15-7. Segment Register Selection

sreg	
00	DS1
01	PS
10	SS
11	DS0

The instruction set is shown in tabular form on the following pages.

Clock cycle shown in table is the time required for execution of instruction by the execution unit and is based on the following conditions.

- Prefetch time and wait time for using bus, etc. are not included.
- 0 wait is assumed for memory access. That is, the clock number of one bus cycle is four clock cycle.
- 0 wait is assumed for I/O access.
- Primitive block transfer instruction and primitive input/output instruction is included repeat prefixes.

The number of clock cycle of instruction with byte processing and word processing (with W bit) is shown as the followings.

(1) V40HL

On the left of "/" : The value corresponding to byte processing (W = 0) or word processing (W = 1) of even

address

On the right of "/": The value corresponding to word processing (W =1) of odd address

For the clock of block transfer related instruction of V40HL, see Table 15-8.

Table 15-8. Number of Clock Cycles in Block Transfer Related Instruction (V40HL)

Instruction	Number of	Clock Cycles
motradion	Byte Processing (W = 0)	Word Processing (W = 1)
MOVBK	9 + 8 × rep (9)	9 + 16 × rep (17)
СМРВК	7 + 14 × rep (13)	7 + 22 × rep (21)
СМРМ	7 + 10 × rep (7)	7 + 14 × rep (11)
LDM	7 + 9 × rep (7)	7 + 13 × rep (11)
STM	$5 + 4 \times \text{rep}$ (5)	5 + 8 × rep (9)
INM	9 + 8 × rep (10)	9 + 16 × rep (18)
ОИТМ	9 + 8 × rep (10)	9 + 16 × rep (18)

Remark The figures in parentheses apply to one-time processing only.

(2) V50HL

On the left of "/" : The value corresponding to byte processing (W=0) or word processing (W=1) of even

address

On the right of "/" : The value corresponding to word processing (W =1) of odd address

For the clock of block transfer related instruction of V50HL, see Table 15-9.

Table 15-9. Number of Clock Cycles in Block Transfer Related Instruction V50HL (1/2)

	Number of Clock Cycles											
Instruction	Byte Processing		Word Processing (W = 1)									
	(W = 0)	Odd/Odd Address	Odd/Even Address	Even/Even Address								
MOVBK	9 + 8 × rep	9 + 16 × rep	9 + 12 × rep	9 + 8 × rep								
	(9)	(17)	(13)	(9)								
СМРВК	7 + 14 × rep	7 + 22 × rep	7 + 18 × rep	7 + 14 × rep								
	(13)	(21)	(17)	(13)								
INM	9 + 8 × rep	9 + 16 × rep	9 + 12 × rep	9 + 8 × rep								
	(10)	(18)	(14)	(10)								
OUTM	9 + 8 × rep	9 + 16 × rep	9 + 12 × rep	9 + 8 × rep								
	(10)	(18)	(14)	(10)								

Remark The figures in parentheses apply to one-time processing only.

Table 15-9. Number of Clock Cycles in Block Transfer Related Instruction (V50HL) (2/2)

	Number of Clock Cycles										
Instruction	Byte Processing	Word Proces	sing (W = 1)								
	(W = 0)	Odd Address	Even Address								
СМРМ	7 + 10 × rep	7 + 14 × rep	7 + 10 × rep								
	(7)	(11)	(7)								
LDM	7 + 9 × rep	7 + 13 × rep	7 + 9 × rep								
	(7)	(11)	(7)								
STM	5 + 4 × rep	5 + 8 × rep	5 + 4 × rep								
	(5)	(9)	(5)								

Remark The figures in parentheses apply to one-time processing only.

Group	Mnemonic	Operand(s)	Operation	on Code	Bytes	Clock	Cycles	Operation			Fla	gs		
	Willemonic	Operanu(s)	76543210	76543210	bytes	V40HL	V50HL	Operation	AC	CY	V	Р	S	Z
	MOV	reg, reg'	1000101W	11 reg reg'	2	2	2	$reg \leftarrow reg'$						
		mem, reg	1000100W	mod reg mem	2-4	7/11	7/11	$(mem) \leftarrow reg$						
		reg, mem	1000101W	mod reg mem	2-4	10/14	10/14	$reg \leftarrow (mem)$						
		mem, imm	1100011W	mod 0 0 0 mem	3-6	9/13	9/13	(mem) ← imm						
		reg, imm	1 0 1 1 W reg		2-3	4	4	reg ← imm						
		acc, dmem	1010000W		3	10/14	10/14	If W=0: AL \leftarrow (dmem) If W=1: AH \leftarrow (dmem + 1), AL \leftarrow (dmem)						
		dmem, acc	1010001W		3	9/13	9/13	If W=0: (dmem) \leftarrow AL If W=1: (dmem + 1) \leftarrow AH, (dmem) \leftarrow AL						
		sreg, reg16	10001110	1 1 0 sreg reg	2	2	2	$sreg \leftarrow reg16$ $sreg:SS, DS0, DS1$						
tions		sreg, mem16	10001110	mod O sreg mem	2-4	14	10/14	$sreg \leftarrow (mem16)$ $sreg:SS, DS0, DS1$						
Data transfer instructions		reg16, sreg	10001100	1 1 0 sreg reg	2	2	2	reg16 ← sreg						
er ins		mem16, sreg	10001100	mod 0 sreg mem	2-4	12	8/12	(mem16) ← sreg						
a transfe		DS0, reg16, mem32	11000101	mod reg mem	2-4	25	17/25	reg16← (mem32) DS0 ← (mem32 + 2)						
Data		DS1, reg16, mem32	11000100	mod reg mem	2-4	25	17/25	reg16 ← (mem32) DS1 ← (mem32 + 2)						
		AH, PSW	10011111		1	2	2	$AH \leftarrow S, Z, \times, AC, \times, P, \times, CY$						
		PSW, AH	10011110		1	3	3	S, Z, \times , AC, \times , P, \times , CY \leftarrow AH	×	×		×	×	×
	LDEA	reg16, mem16	10001101	mod reg mem	2-4	4	4	reg16 ←mem16						
	TRANS	src-table	11010111		1	9	9	AL← (BW + AL)						
	XCH	reg, reg'	1000011W	11 reg reg'	2	3	3	$reg \leftrightarrow reg'$						
		mem, reg reg, mem	1000011W	mod reg mem	2-4	13/21	13/21	$(mem) \leftrightarrow reg$						
		AW, reg16 reg16, AW	10010 reg		1	3	3	AW ↔ reg16						

Mnemonic	Operand(s)	Operation	on Code	Bytes	Clock	Cycles	Operation			Fla	gs		
Willellionic	Operanu(s)	76543210	76543210	Dytes	V40HL	V50HL	Operation	AC	CY	V	Р	S	Z
REPC		01100101		1	2	2	While CW \neq 0, the following byte primitive block transfer instruction is executed and CW is decremented (-1). If there is a pending interrupt, it is serviced. If CY \neq 1 the loop is exited.						
REPNC		01100100		1	2	2	Same as above If $CY \neq 0$ the loop is exited.						
REP REPE REPZ		11110011		1	2	2	While CW \neq 0, the following byte primitive block transfer instruction is executed and CW is decremented (–1). If there is a pending interrupt, it is serviced. If the primitive block transfer instruction is CMPBK or CMPM and $Z \neq 1$ the loop is exited.						
REPNE REPNZ		11110010		1	2	2	Same as above If $Z \neq 0$ the loop is exited.						
MOVBK	dst-block,	1010010W		1	See Table 15-8	See Table 15-9	If W = 0: $(IY) \leftarrow (IX)$ DIR = 0: $IX \leftarrow IX + 1$, $IY \leftarrow IY + 1$ DIR = 1: $IX \leftarrow IX - 1$, $IY \leftarrow IY - 1$ If W = 1: $(IY + 1, IY) \leftarrow (IX + 1, IX)$						
							DIR = 0 : IX \leftarrow IX + 2, IY \leftarrow IY + 2 DIR = 1 : IX \leftarrow IX - 2, IY \leftarrow IY - 2						
СМРВК	src-block,	1010011W		1	See Table 15-8	See Table 15-9	If W = 0: $(IX) - (IY)$ DIR = 0: $IX \leftarrow IX + 1$, $IY \leftarrow IY + 1$ DIR = 1: $IX \leftarrow IX - 1$, $IY \leftarrow IY - 1$	×	×	×	×	×	×
							If W = 1: $(IX + 1, IX) - (IY + 1, IY)$ DIR = 0: $IX \leftarrow IX + 2$, $IY \leftarrow IY + 2$ DIR = 1: $IX \leftarrow IX - 2$, $IY \leftarrow IY - 2$						
СМРМ	dst-block	1010111W		1	See Table 15-8	See Table 15-9	If W = 0: AL - (IY) $DIR = 0 : IY \leftarrow IY + 1; DIR = 1 : IY \leftarrow IY - 1$ $If W = 1: AW - (IY + 1, IY)$ $DIP = 0 : IY \leftarrow IY + 2; DIP = 1 : IY \leftarrow IY - 2$	×	×	×	×	×	×
LDM	src-block	1010110W		1	See Table 15-8	See Table 15-9	If W = 0: AL \leftarrow (IX) DIR = 0 : IX \leftarrow IX + 1; DIR = 1 : IX \leftarrow IX - 1						
STM	dst-block	1010101W		1	See Table 15-8	See Table 15-9	If W = 1: AW \leftarrow (IX + 1, IX) DIR = 0: IX + 2; DIR = 1: IX \leftarrow IX - 2 If W = 0: (IY) \leftarrow AL DIR = 0: IY \leftarrow IY + 1; DIR = 1: IY \leftarrow IY - 1 If W = 1: (IY + 1, IY) \leftarrow AW						
	REPNC REP REPE REPZ REPNE REPNZ MOVBK CMPBK CMPM	REPC REPNC REP REPE REPZ REPNE REPNZ MOVBK dst-block, src-block CMPBK src-block CMPM dst-block LDM src-block	Mnemonic Operand(s) 7 6 5 4 3 2 1 0 REPC 0 1 1 0 0 1 0 1 REPNC 0 1 1 0 0 1 0 0 REP 1 1 1 1 1 0 0 1 1 REPE 1 1 1 1 0 0 1 0 REPNE 1 0 1 0 0 1 0 W MOVBK dst-block, src-block 1 0 1 0 0 1 1 W CMPBK src-block, dst-block 1 0 1 0 1 1 1 W CMPM dst-block 1 0 1 0 1 1 1 W LDM src-block 1 0 1 0 1 1 0 W	REPC 01100101 REPNC 01100100 REP 11110011 REPE 11110010 REPNE 11110010 REPNZ 1010010W MOVBK dst-block 1010011W CMPBK src-block CMPM dst-block 101011W LDM src-block	Namework Operand(s) 76543210 76543210	Minemonic Operand(s) 76543210 76543210 V40HL	Minemonic Operand(s) 76543210 76543210 V40HL V50HL V50	Mnemonic Operand(s) 76 5 4 3 2 1 0 76 5 4 3 1 0 76 5	Memonic Operand(s) 7 6 5 4 3 2 1 0 7 6	Memonic Operand(s) 7 6 5 4 3 2 1 0 7 6	Memonic Operand(s) 76 5 4 3 2 1 0 7 6 5 4 4 3 1 0 7 6 5 4 4 3 1 0 7 6 5 4 4 3 1 0 7 6 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Memoratic Operand(s) 76 5 4 3 2 10 76	Memonic Operand(s) 76 5 4 3 2 1 0

Instruc-	Mnemonic	Operand(s)	Operation	on Code	Bytes	Clock	Cycles	Operation			Fla	gs		
Group	Millemonic	Operanu(s)	76543210	76543210	bytes	V40HL	V50HL	Operation	AC	CY	V	Р	S	Z
	INS	reg8, reg8'	00001111	00110001	3	35-133	31-117/	16-bit field ← AW						
			1 1 reg' reg				35-133							
tion		reg8, imm4	00001111	00111001	4	35-133	31-117/	16-bit field ← AW						
ipula			11000 reg				35-133							
man ons	EXT	reg8, reg8'	00001111	00110011	3	34-59	26-55/	$AW \leftarrow 16\text{-bit field}$						
ield			11 reg' reg				34-59							
Input/output instructions Bit field manipulation instructions Instructions Instructions		reg8, imm4	00001111	00111011	4	34-59	26-55/	AW ← 16-bit field						
			11000 reg				34-59							
ions	IN	acc, imm8	1 1 1 0 0 1 0 W		2	9/13	9/13 ^{Note}	If W = 0: AL \leftarrow (imm8) If W = 1: AH \leftarrow (imm8 + 1), AL \leftarrow (imm8)						
instruct		acc, DW	1110110W		1	8/12	8/12 ^{Note}	If W = 0: AL \leftarrow (DW) If W = 1: AH \leftarrow (DW + 1), AL \leftarrow (DW)						
t/output	OUT	imm8, acc	1110011W		2	8/12	8/12 ^{Note}	If W = 0: $(imm8) \leftarrow AL$ If W = 1: $(imm8 + 1) \leftarrow AH$, $(imm8) \leftarrow AL$						
ndul		DW, acc	1110111W		1	8/12	8/12 ^{Note}	If W = 0: $(DW) \leftarrow AL$ If W = 1: $(DW + 1) \leftarrow AH$, $(DW) \leftarrow AL$						
t,	INM	dst-block, DW	0110110W		1	See Table	See Table	If W = 0: $(IY) \leftarrow (DW)$ DIR = 0: IY \leftarrow IY + 1; DIR = 1: IY \leftarrow IY - 1						
ut/outpr						15-8	15-9	If W = 1: $(IY + 1, IY) \leftarrow (DW + 1, DW)$ DIR = 0: IY \leftarrow IY + 2; DIR = 1: IY \leftarrow IY - 2						
Primitive input/output instructions	OUTM	DW, src-block	0110111W		1	See Table	See Table	If W = 0: $(DW) \leftarrow (IX)$ DIR = 0: $IX \leftarrow IX + 1$; DIR = 1: $IX \leftarrow IX - 1$						
Primi instru						15-8	15-9	If W = 1: $(DW + 1, DW) \leftarrow (IX + 1, IX)$ $DIR = 0 : IX \leftarrow IX + 2 ; DIR = 1 : IX \leftarrow IX - 2$						

Note In case of IN/OUT instruction to internal DMAU, the number of word processing clock cycles applied is always that to the right of "/".

ZEC

Instruc- tion	Mnemonic	Operand(s)	Operation	on Code	Bytes	Clock	Cycles	Operation			Fla	gs		
Group	Millemonic	Operanu(s)	76543210	76543210	Dytes	V40HL	V50HL	Орегалоп	AC	CY	V	Р	s	Z
	ADD	reg, reg'	0000001W	11 reg reg'	2	2	2	reg ← reg + reg'	×	×	×	×	×	×
		mem, reg	000000W	mod reg mem	2-4	13/21	13/21	$(mem) \leftarrow (mem) + reg$	×	×	×	×	×	×
		reg, mem	0000001W	mod reg mem	2-4	10/14	10/14	$reg \leftarrow reg + (mem)$	×	×	×	×	×	×
		reg, imm	100000sW	11000 reg	3-4	4	4	reg ← reg + imm	×	×	×	×	×	×
		mem, imm	100000sW	mod 0 0 0 mem	3-6	15/23	15/23	$(mem) \leftarrow (mem) + imm$	×	×	×	×	×	×
		acc, imm	000010W		2-3	4	4	If $W = 0$: $AL \leftarrow AL + imm$ If $W = 1$: $AW \leftarrow AW + imm$	×	×	×	×	×	×
	ADDC	reg, reg'	0001001W	11 reg reg'	2	2	2	reg ← reg + reg'+ CY	×	×	×	×	×	×
Addition/subtraction instructions		mem, reg	0001000W	mod reg mem	2-4	13/21	13/21	$(mem) \leftarrow (mem) + reg + CY$	×	×	×	×	×	×
		reg, mem	0001001W	mod reg mem	2-4	10/14	10/14	$reg \leftarrow reg + (mem) + CY$	×	×	×	×	×	×
		reg, imm	100000s W	11010 reg	3-4	4	4	$reg \leftarrow reg + imm + CY$	×	×	×	×	×	×
		mem, imm	100000sW	mod 0 1 0 mem	3-6	15/23	15/23	$(mem) \leftarrow (mem) + imm + CY$	×	×	×	×	×	×
		acc, imm	0001010W		2-3	4	4	If W = 0: $AL \leftarrow AL + imm + CY$ If W = 1: $AW \leftarrow AW + imm + CY$	×	×	×	×	×	×
	SUB	reg, reg'	0010101W	11 reg reg'	2	2	2	reg ← reg − reg'	×	×	×	×	×	×
n/suk		mem, reg	0010100W	mod reg mem	2-4	13/21	13/21	$(mem) \leftarrow (mem) - reg$	×	×	×	×	×	×
ditio		reg, mem	0010101W	mod reg mem	2-4	10/14	10/14	$reg \leftarrow reg - (mem)$	×	×	×	×	×	×
Ad		reg, imm	100000sW	11101 reg	3-4	4	4	reg ← reg – imm	×	×	×	×	×	×
		mem, imm	100000sW	mod 1 0 1 mem	3-6	15/23	15/23	$(mem) \leftarrow (mem) - imm$	×	×	×	×	×	×
		acc, imm	0010110W		2-3	4	4	If $W = 0$: $AL \leftarrow AL - imm$ If $W = 1$: $AW \leftarrow AW - imm$	×	×	×	×	×	×
	SUBC	reg, reg'	0001101W	11 reg reg'	2	2	2	reg ← reg − reg'− CY	×	×	×	×	×	×
		mem, reg	0001100W	mod reg mem	2-4	13/21	13/21	$(mem) \leftarrow (mem) - reg - CY$	×	×	×	×	×	×
		reg, mem	0001101W	mod reg mem	2-4	10/14	10/14	$reg \leftarrow reg - (mem) - CY$	×	×	×	×	×	×
		reg, imm	100000sW	11011 reg	3-4	4	4	$reg \leftarrow reg - imm - CY$	×	×	×	×	×	×
		mem, imm	100000sW	mod 0 1 1 mem	3-6	15/23	15/23	$(mem) \leftarrow (mem) - imm - CY$	×	×	×	×	×	×
		acc, imm	0001110W		2-3	4	4	If W = 0: $AL \leftarrow AL - imm - CY$ If W = 1: $AW \leftarrow AW \ imm - CY$	×	×	×	×	×	×

Instruc- tion	Mnemonic	Operand(s)	Operation	on Code	Putos	Clock	Cycles	Operation			Fla	gs		
Group	Millemonic	Operand(s)	d(s) 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 V40HL V50HL		Орстаноп			V	Р	S	Z			
	ADD4S		00001111	0010000	2	19 × n + 7	19 × n + 7	dst BCD string ← dst BCD string + src BCD string*	U	×	U	U	U	×
SU	SUB4S		00001111	00100010	2	19 × n + 7	19 × n + 7	dst BCD string ← dst BCD string – src BCD string*	U	×	U	U	U	×
structio	CMP4S		00001111	00100110	2	19 × n + 7	19 × n + 7	dst BCD string – src BCD string*	U	×	U	U	U	×
BCD operation instructions	ROL4	reg8	00001111 11000 reg	00101000	3	13	13	reg ALL Upper Lower						
BCD op		mem8	00001111 mod000 mem	00101000	3-5	25	25	mem ALL Upper Lower						
	ROR4	reg8	00001111 11000 reg	00101010	3	17	17	reg ALL Upper Lower						
		mem8	00001111 mod 000 mem	00101010	3-5	29	29	mem → ALL Upper Lower						
	INC	reg8	11111110	1 1 0 0 0 reg	2	2	2	reg8 ← reg8 + 1	×		×	×	×	×
re-		mem	111111W	mod 0 0 0 mem	2-4	13/21	13/21	(mem) ← (mem) + 1	×		×	×	×	×
t/dec ructic		reg16	01000 reg		1	2	2	reg16 ← reg16 + 1	×		×	×	×	×
Increment/decre- ment instructions	DEC	reg8	11111110	11001 reg	2	2	2	reg8 ← reg8 − 1	×		×	×	×	×
ncre		mem	1111111W	mod 0 0 1 mem	2-4	13/21	13/21	(mem) ← (mem) − 1	×		×	×	×	×
		reg16	0 1 0 0 1 reg		1	2	2	reg16 ← reg16 − 1	×		×	×	×	×

n: 1/2 the number of BCD digits

^{*} The number of BCD digits is given by the CL register: a value between 1 and 254 can be set.

Instruc- tion	Mnemonic	Operand(s)	Operation	on Code	Bytes	Clock	Cycles	Operation			Fla	gs		
Group	Willemonic	Operand(s)	76543210	76543210	Dytes	V40HL	V50HL	Operation	AC	CY	V	Р	S	Z
	MULU	reg8	11110110	1110 0 reg	2	21-22	21-22	$AW \leftarrow AL \times reg8$ $AH = 0: CY \leftarrow 0, V \leftarrow 0$ $AH \neq 0: CY \leftarrow 1, V \leftarrow 1$	U	×	×	U	U	L
		mem8	11110110	mod 1 0 0 mem	2-4	26-27	26-27	AW \leftarrow AL \times (mem8) AH = 0: CY \leftarrow 0, V \leftarrow 0 AH \neq 0: CY \leftarrow 1, V \leftarrow 1	U	×	×	U	U	L
		reg16	11110111	1110 0 reg	2	29-30	29-30	DW, AW \leftarrow AW \times reg16 DW = 0: CY \leftarrow 0, V \leftarrow 0 DW \neq 0: CY \leftarrow 1, V \leftarrow 1	U	×	×	U	U	L
		mem16	11110111	mod 1 0 0 mem	2-4	38-39	34-35/ 38-39	DW, AW \leftarrow AW \times (mem16) DW = 0: CY \leftarrow 0, V \leftarrow 0 DW \neq 0: CY \leftarrow 1, V \leftarrow 1	U	×	×	U	U	L
SU	MUL	reg8	11110110	1110 1 reg	2	33-39	33-39	AW \leftarrow AL \times reg8 AH = AL sign extension: CY \leftarrow 0, V \leftarrow 0 AH \neq AL sign extension: CY \leftarrow 1, V \leftarrow 1	U	×	×	U	U	L
instructio		mem8	11110110	mod 1 0 1 mem	2-4	38-44	38-44	AW \leftarrow AL \times (mem8) AH = AL sign extension: CY \leftarrow 0, V \leftarrow 0 AH \neq AL sign extension: CY \leftarrow 1, V \leftarrow 1	U	×	×	U	U	ι
Multiplication instructions		reg16	11110111	1110 1 reg	2	41-47	41-47	DW, AW \leftarrow AW \times reg16 DW = AW sign extension: CY \leftarrow 0, V \leftarrow 0 DW \neq AW sign extension: CY \leftarrow 1, V \leftarrow 1	U	×	×	U	U	L
Mal		mem16	11110111	mod 1 0 1 mem	2-4	50-56	46-52/ 50-56	DW, AW \leftarrow AW \times (mem16) DW = AW sign extension: CY \leftarrow 0, V \leftarrow 0 DW \neq AW sign extension: CY \leftarrow 1, V \leftarrow 1	U	×	×	U	U	ι
		reg16, (reg16',)Note imm8	01101011	11 reg reg'	3	28-34	28-34	reg16 \leftarrow reg16' \times imm8 Product \leq 16 bits : CY \leftarrow 0, V \leftarrow 0 Product $>$ 16 bits : CY \leftarrow 1, V \leftarrow 1	U	×	×	U	U	L
		reg16, mem16, imm8	01101011	mod reg mem	3-5	37-43	33-39/ 37-43	reg16 \leftarrow (mem16) \times imm8 Product \leq 16 bits : CY \leftarrow 0, V \leftarrow 0 Product $>$ 16 bits : CY \leftarrow 1, V \leftarrow 1	U	×	×	U	U	L
		reg16, (reg16',) ^{Note} imm16	01101001	11 reg reg'	4	36-42	36-42	reg16 \leftarrow reg16' \times imm16 Product \leq 16 bits : CY \leftarrow 0, V \leftarrow 0 Product $>$ 16 bits : CY \leftarrow 1, V \leftarrow 1	U	×	×	U	U	U
		reg16, mem16, imm16	01101001	mod reg mem	4-6	45-51	41-47/ 45-51	reg16 ← (mem16) × imm16 Product ≤ 16 bits : CY ← 0, V ← 0 Product > 16 bits : CY ← 1, V ← 1	U	×	×	U	U	U

Note The 2nd operand can be omitted, in which case the same register as the 1st operand is taken as being specified.

Instruc-	Mnemonic	Operand(s)	Operati	on Code	Bytes	Clock	Cycles	Operation			Fla	gs		
Group	Willemonic	Operand(s)	76543210	76543210	Dytes	V40HL	V50HL	Operation	AC	CY	V	Р	S	Z
	DIVU	reg8	11110110	11110 reg	2	19	19	$\begin{split} \text{temp} \leftarrow \text{AW} \\ \text{If temp} & \div \text{reg8} \leq \text{FFH} \\ \text{AH} & \leftarrow \text{temp} \% \text{reg8}, \text{AL} \leftarrow \text{temp} \div \text{reg8} \\ \text{If temp} & \div \text{reg8} > \text{FFH} \\ \text{TA} & \leftarrow (001\text{H}, \ 000\text{H}), \text{TC} \leftarrow (003\text{H}, \ 002\text{H}) \\ \text{SP} & \leftarrow \text{SP} - 2, \ (\text{SP} + 1, \text{SP}) \leftarrow \text{PSW}, \text{IE} \leftarrow 0, \ \text{BRK} \leftarrow 0 \\ \text{SP} & \leftarrow \text{SP} - 2, \ (\text{SP} + 1, \text{SP}) \leftarrow \text{PS}, \text{PS} \leftarrow \text{TC} \\ \text{SP} & \leftarrow \text{SP} - 2, \ (\text{SP} + 1, \text{SP}) \leftarrow \text{PC}, \text{PC} \leftarrow \text{TA} \end{split}$	U	U	U	U	U	U
Unsigned division instructions		mem8	11110110	mod 1 1 0 mem	2-4	24	24	$\begin{split} \text{temp} \leftarrow \text{AW} \\ \text{If temp} & \div (\text{mem8}) \leq \text{FFH} \\ \text{AH} \leftarrow \text{temp\%}(\text{mem8}), \text{ AL} \leftarrow \text{temp} \div (\text{mem8}) \\ \text{If temp} & \div (\text{mem8}) > \text{FFH} \\ \text{TA} \leftarrow (\text{001H}, \text{000H}), \text{TC} \leftarrow (\text{003H}, \text{002H}) \\ \text{SP} \leftarrow \text{SP} - 2, \text{ (SP + 1, SP)} \leftarrow \text{PSW, IE} \leftarrow 0, \text{ BRK} \leftarrow 0 \\ \text{SP} \leftarrow \text{SP} - 2, \text{ (SP + 1, SP)} \leftarrow \text{PS}, \text{PS} \leftarrow \text{TC} \\ \text{SP} \leftarrow \text{SP} - 2, \text{ (SP + 1, SP)} \leftarrow \text{PC}, \text{PC} \leftarrow \text{TA} \end{split}$	U	U	U	U	U	O
Unsigned divis		reg16	11110111	11110 reg	2	25	25	$\begin{split} \text{temp} \leftarrow \text{DW}, & \text{AW} \\ \text{If temp} \div \text{reg16} \leq \text{FFFFH} \\ & \text{DW} \leftarrow \text{temp} \% \text{reg16}, & \text{AW} \leftarrow \text{temp} \div \text{reg16} \\ \text{If temp} \div \text{reg16} > & \text{FFFFH} \\ & \text{TA} \leftarrow (001\text{H}, \ 000\text{H}), & \text{TC} \leftarrow (003\text{H}, \ 002\text{H}) \\ & \text{SP} \leftarrow \text{SP} - 2, \ (\text{SP} + 1, \text{SP}) \leftarrow \text{PSW}, & \text{IE} \leftarrow 0, \ \text{BRK} \leftarrow 0 \\ & \text{SP} \leftarrow \text{SP} - 2, \ (\text{SP} + 1, \text{SP}) \leftarrow \text{PS}, & \text{PS} \leftarrow \text{TC} \\ & \text{SP} \leftarrow \text{SP} - 2, \ (\text{SP} + 1, \text{SP}) \leftarrow \text{PC}, & \text{PC} \leftarrow \text{TA} \\ \end{split}$	U	U	U	U	U	C
		mem16	11110111	mod 1 1 0 mem	2-4	34	30/34	$\begin{split} \text{temp} \leftarrow \text{DW, AW} \\ \text{If temp} \div (\text{mem16}) \leq \text{FFFFH} \\ \text{DW} \leftarrow \text{temp\%(mem16), AW} \leftarrow \text{temp} \div (\text{mem16}) \\ \text{If temp} \div (\text{mem16}) > \text{FFFFH} \\ \text{TA} \leftarrow (001\text{H}, 000\text{H}), \text{TC} \leftarrow (003\text{H}, 002\text{H}) \\ \text{SP} \leftarrow \text{SP} - 2, \ (\text{SP} + 1, \text{SP}) \leftarrow \text{PSW, IE} \leftarrow 0, \ \text{BRK} \leftarrow 0 \\ \text{SP} \leftarrow \text{SP} - 2, \ (\text{SP} + 1, \text{SP}) \leftarrow \text{PS, PS} \leftarrow \text{TC} \\ \text{SP} \leftarrow \text{SP} - 2, \ (\text{SP} + 1, \text{SP}) \leftarrow \text{PC, PC} \leftarrow \text{TA} \end{split}$	U	U	U	U	U	U

Instruc-	Mnemonic	Operand(s)	Operation	on Code	Bytes	Clock	Cycles	Operation			Fla	gs		
Group	Willemonic	Operand(s)	76543210	76543210	Dytes	V40HL	V50HL	Operation	AC	CY	٧	Р	S	Z
	DIV	reg8	11110110	11111 reg	2	29-34	29-34	$\begin{split} \text{temp} \leftarrow \text{AW} \\ \text{If temp} \div \text{reg8} > 0 \text{ and temp} \div \text{reg8} \leq 7\text{FH} \\ \text{or temp} \div \text{reg8} < 0 \text{ and temp} \div \text{reg8} > 0 - 7\text{FH} - 1 \\ \text{AH} \leftarrow \text{temp} \% \text{reg8}, \text{AL} \leftarrow \text{temp} \div \text{reg8} \\ \text{If temp} \div \text{reg8} > 0 \text{ and temp} \div \text{reg8} > 7\text{FH} \\ \text{or temp} \div \text{reg8} < 0 \text{ and temp} \div \text{reg8} \leq 0 - 7\text{FH} - 1 \\ \text{TA} \leftarrow (001\text{H}, 000\text{H}), \text{TC} \leftarrow (003\text{H}, 002\text{H}) \\ \text{SP} \leftarrow \text{SP} - 2, (\text{SP} + 1, \text{SP}) \leftarrow \text{PSW}, \text{IE} \leftarrow 0, \text{BRK} \leftarrow 0 \\ \text{SP} \leftarrow \text{SP} - 2, (\text{SP} + 1, \text{SP}) \leftarrow \text{PS}, \text{PS} \leftarrow \text{TC} \\ \text{SP} \leftarrow \text{SP} - 2, (\text{SP} + 1, \text{SP}) \leftarrow \text{PC}, \text{PC} \leftarrow \text{TA} \end{split}$	U	U	O	U	U	U
Signed division instructions		mem8	11110110	mod 1 1 1 mem	2-4	34-39	34-39	$\begin{split} \text{temp} \leftarrow \text{AW} \\ \text{If temp} \div (\text{mem8}) &> 0 \text{ and temp} \div (\text{mem8}) \leq 7\text{FH} \\ \text{or temp} \div (\text{mem8}) &< 0 \text{ and temp} \div (\text{mem8}) > 0 - 7\text{FH} - 1 \\ \text{AH} \leftarrow \text{temp} \% (\text{mem8}), \text{AL} \leftarrow \text{temp} \div (\text{mem8}) \\ \text{If temp} \div (\text{mem8}) &> 0 \text{ and temp} \div (\text{mem8}) > 7\text{FH} \\ \text{or temp} \div (\text{mem8}) &< 0 \text{ and temp} \div (\text{mem8}) \leq 0 - 7\text{FH} - 1 \\ \text{TA} \leftarrow (001\text{H}, 000\text{H}), \text{TC} \leftarrow (003\text{H}, 002\text{H}) \\ \text{SP} \leftarrow \text{SP} - 2, \text{ (SP} + 1, \text{SP}) \leftarrow \text{PSW}, \text{IE} \leftarrow 0, \text{ BRK} \leftarrow 0 \\ \text{SP} \leftarrow \text{SP} - 2, \text{ (SP} + 1, \text{SP}) \leftarrow \text{PS}, \text{PS} \leftarrow \text{TC} \\ \text{SP} \leftarrow \text{SP} - 2, \text{ (SP} + 1, \text{SP}) \leftarrow \text{PC}, \text{PC} \leftarrow \text{TA} \end{split}$	U	U	υ	U	U	
Signed division		reg16	11110111	11111 reg	2	38-43	38-43	temp \leftarrow DW, AW If temp \div reg16 $>$ 0 and temp \div reg16 \le 7FFFH or temp \div reg16 $<$ 0 and temp \div reg16 $>$ 0 $-$ 7FFFH $-$ 1 DW \leftarrow temp%reg16, AW \leftarrow temp \div reg16 $>$ 7FFFH or temp \div reg16 $>$ 0 and temp \div reg16 $>$ 7FFFH or temp \div reg16 $<$ 0 and temp \div reg16 \le 0 $-$ 7FFFH $-$ 1 TA \leftarrow (001H, 000H), TC \leftarrow (003H, 002H) SP \leftarrow SP $-$ 2, (SP + 1, SP) \leftarrow PSW, IE \leftarrow 0, BRK \leftarrow 0 SP \leftarrow SP $-$ 2, (SP + 1, SP) \leftarrow PS, PS \leftarrow TC SP \leftarrow SP $-$ 2, (SP + 1, SP) \leftarrow PC, PC \leftarrow TA	U	U	C	U	U	U
		mem16	11110111	mod 1 1 1 mem	2-4	47-52	43-48/ 47-52	$\begin{array}{l} temp \leftarrow DW, \ AW \\ If \ temp \div (mem16) > 0 \ and \ temp \div (mem16) \leq 7FFFH \\ or \ temp \div (mem16) < 0 \ and \ temp \div (mem16) > 0 - 7FFFH \\ -1 \\ DW \leftarrow temp\%(mem16), \ AW \leftarrow temp \div (mem16) \\ If \ temp \div (mem16) > 0 \ and \ temp \div (mem16) > 7FFFH \\ or \ temp \div (mem16) < 0 \ and \ temp \div (mem16) \leq 0 - 7FFFH \\ -1 \\ TA \leftarrow (001H, \ 000H), \ TC \leftarrow (003H, \ 002H) \\ SP \leftarrow SP - 2, \ (SP + 1, SP) \leftarrow PSW, \ IE \leftarrow 0, \ BRK \leftarrow 0 \end{array}$	U	U	U	U	U	C

Instruc-	Mnemonic	Operand(s)	Operation	on Code	Bytes	Clock	Cycles	Operation			Fla	gs		
Group	Willemonic	Operand(s)	76543210	76543210	Dytes	V40HL	V50HL	Орегаціон	AC	CY	٧	Р	S	z
	ADJBA		00110111		1	7	7	If AL $^{\wedge}$ 0FH > 9 or AC = 1: AL \leftarrow AL + 6 AH \leftarrow AH + 1, AC \leftarrow 1, CY \leftarrow AC, AL \leftarrow AL $^{\wedge}$ 0FH	×	×	U	U	U	U
adjustment instructions	ADJ4A		00100111		1	3	3	If AL $^{\wedge}$ 0FH $>$ 9 or AC = 1 AL \leftarrow AL + 6, CY \leftarrow CY $^{\vee}$ AC , AC \leftarrow 1 If AL $>$ 9FH or CY = 1 AL \leftarrow AL + 60H, CY \leftarrow 1	×	×	U	×	×	×
adjustment	ADJBS		00111111		1	7	7	If AL $^{\wedge}$ 0FH > 9 or AC = 1 AL \leftarrow AL - 6, AH \leftarrow AH - 1 , AC \leftarrow 1 CY \leftarrow AC, AL \leftarrow AL $^{\wedge}$ 0FH	×	×	U	U	U	U
BCD	ADJ4S		00101111		1	3	3	If AL \land 0FH $>$ 9 or AC = 1 AL \leftarrow AL -6 , CY \leftarrow CY \lor AC , AC \leftarrow 1 If AL $>$ 9FH or CY = 1 AL \leftarrow AL $-$ 60H, CY \leftarrow 1	×	×	U	×	×	×
ion	CVTBD		11010100	00001010	2	15	15	$AH \leftarrow AL \div 0AH, AL \leftarrow AL \% 0AH$	U	U	U	×	×	×
Data conversion instructions	CVTDB		11010101	00001010	2	7	7	$AL \leftarrow AH \times 0AH + AL, AH \leftarrow 0$	U	U	U	×	×	×
a cor uctic	CVTBW		10011000		1	2	2	If AL < 80H: AH \leftarrow 0, otherwise: AH \leftarrow FFH						
Data	CVTWL		10011001		1	4-5	4-5	If AW < 8000H: DW \leftarrow 0, otherwise: DW \leftarrow FFFFH						
S	CMP	reg, reg'	0011101W	11 reg reg'	2	2	2	reg – reg'	×	×	×	×	×	×
ction		mem, reg	0011100W	mod reg mem	2-4	10/14	10/14	(mem) - reg	×	×	×	×	×	×
ıstru		reg, mem	0011101W	mod reg mem	2-4	10/14	10/14	reg – (mem)	×	×	×	×	×	×
on ir		reg, imm	100000sW	11111 reg	3-4	4	4	reg – imm	×	×	×	×	×	×
paris		mem, imm	100000sW	mod 1 1 1 mem	3-6	12/16	12/16	(mem) – imm	×	×	×	×	×	×
Comparison instructions		acc, imm	0011110W		2-3	4	4	If $W = 0$: $AL - imm$ If $W = 1$: $AW - imm$	×	×	×	×	×	×
±	NOT	reg	1111011W	11010 reg	2	2	2	$reg \leftarrow \overline{reg}$						
Complement operation instructions		mem	1111011W	mod 0 1 0 mem	2-4	13/21	13/21	$(mem) \leftarrow \overline{(mem)}$						
mple eratic truct	NEG	reg	1111011W	11011 reg	2	2	2	$reg \leftarrow \overline{reg} + 1$	×	×	×	×	×	×
S g ii		mem	1111011W	mod 0 1 mem	2-4	13/21	13/21	(mem) ← (mem) + 1	×	×	×	×	×	×

ZEC

nstruc-	Mnemonic	Operand(s)	Operation	on Code	Bytes	Clock	Cycles	Operation			Fla	gs		
Group	WITEITIOTIC	Operanu(s)	76543210	76543210	bytes	V40HL	V50HL	Operation	AC	CY	V	Р	S	Z
	TEST	reg, reg'	1000010W	1 1 reg' reg	2	2	2	reg∧ reg'	U	0	0	×	×	×
		mem, reg reg, mem	1000010W	mod reg mem	2-4	9/13	9/13	(mem) ∧ reg	U	0	0	×	×	×
		reg, imm	1111011W	11000 reg	3-4	4	4	reg ^ imm	U	0	0	×	×	×
		mem, imm	1111011W	mod 0 0 0 mem	3-6	10/14	10/14	(mem) ^ imm	U	0	0	×	×	×
		acc, imm	1010100W		2-3	4	4	If W = 0: AL \(\cdot \text{imm8} \) If W = 1: AW \(\cdot \text{imm16} \)	U	0	0	×	×	×
	AND	reg, reg'	0010001W	11 reg reg'	2	2	2	reg ← reg ^ reg'	U	0	0	×	×	×
		mem, reg	0010000W	mod reg mem	2-4	13/21	13/21	$(mem) \leftarrow (mem) \land reg$	U	0	0	×	×	×
TEST reg, reg, mem, r reg, mem, r reg, im mem, ii acc, im mem, ii acc, im mem, ii acc, im mem, reg, me reg, im mem, reg, me reg, im mem, reg, me reg, im mem, reg, me, reg, im mem, reg, im mem, ii acc, im mem, reg, me	reg, mem	0010001W	mod reg mem	2-4	10/14	10/14	$reg \leftarrow reg \land (mem)$	U	0	0	×	×	×	
	reg, imm	1000000W	11100 reg	3-4	4	4	$reg \leftarrow reg \wedge imm$	U	0	0	×	×	×	
truct		mem, imm	1000000W	mod 1 0 0 mem	3-6	15/23	15/23	$(mem) \leftarrow (mem) \land imm$	U	0	0	×	×	×
ation ins		acc, imm	0010010W		2-3	4	4	If $W = 0$: $AL \leftarrow AL \land imm8$ If $W = 1$: $AW \leftarrow AW \land imm16$	U	0	0	×	×	×
pera	OR	reg, reg'	0000101W	11 reg reg'	2	2	2	$reg \leftarrow reg \lor reg'$	U	0	0	×	×	×
ical o		mem, reg	0000100W	mod reg mem	2-4	13/21	13/21	$(mem) \leftarrow (mem) \lor reg$	U	0	0	×	×	×
Log		reg, mem	0000101W	mod reg mem	2-4	10/14	10/14	$reg \leftarrow reg \lor (mem)$	U	0	0	×	×	×
		reg, imm	1000000W	11001 reg	3-4	4	4	$reg \leftarrow reg \vee imm$	U	0	0	×	×	×
		mem, imm	1000000W	mod 0 0 1 mem	3-6	15/23	15/23	$(mem) \leftarrow (mem) \lor imm$	U	0	0	×	×	×
		acc, imm	0000110W		2-3	4	4	If W = 0: $AL \leftarrow AL \lor imm8$ If W = 1: $AW \leftarrow AW \lor imm16$	U	0	0	×	×	×
	XOR	reg, reg'	0011001W	11 reg reg'	2	2	2	$reg \leftarrow reg \forall reg'$	U	0	0	×	×	×
		mem, reg	0011000W	mod reg mem	2-4	13/21	13/21	$(mem) \leftarrow (mem) \forall reg$	U	0	0	×	×	×
		reg, mem	0011001W	mod reg mem	2-4	10/14	10/14	$reg \leftarrow reg \; \forall \; (mem)$	U	0	0	×	×	×
		reg, imm	100000W	11110 reg	3-4	4	4	reg ← reg マ imm	U	0	0	×	×	×
		mem, imm	1000000W	mod 1 1 0 mem	3-6	15/23	15/23	$(mem) \leftarrow (mem) \forall imm$	U	0	0	×	×	×
		acc, imm	0011010W		2-3	4	4	If W = 0: $AL \leftarrow AL \forall imm8$ If W = 1: $AW \leftarrow AW \forall imm16$	U	0	0	×	×	×

Instruc-	Mnemonic	Operand(s)		Operation	on Code	Bytes	Clock	Cycles	Operation			Fla	gs		
Group	Millernonic	Operand(s)	76	543210	76543210	bytes	V40HL	V50HL	Operation	AC	CY	٧	Р	S	Z
	TEST1	reg8, CL	0 0	010000	11000 reg	3	3	3	reg8 bit NO.CL = $0: Z \leftarrow 1$ reg8 bit NO.CL = $1: Z \leftarrow 0$	U	0	0	U	U	×
		mem8, CL		0000	mod 0 0 0 mem	3-5	7	7	(mem8) bit NO.CL = 0 : Z← 1 (mem8) bit NO.CL = 1 : Z← 0	U	0	0	U	U	×
		reg16, CL		0001	11000 mem	3	3	3	reg16 bit NO.CL = $0: Z \leftarrow 1$ reg16 bit NO.CL = $1: Z \leftarrow 0$	U	0	0	U	U	×
		mem16, CL		0001	mod 0 0 0 mem	3-5	11	7/11	(mem16) bit NO.CL = $0: Z \leftarrow 1$ (mem16) bit NO.CL = $1: Z \leftarrow 0$	U	0	0	U	U	×
ions		reg8, imm3		1000	11000 reg	4	4	4	reg8 bit NO.imm3 = $0: Z \leftarrow 1$ reg8 bit NO.imm3 = $1: Z \leftarrow 0$	U	0	0	U	U	×
instruct		mem8, imm3		1000	mod 0 0 0 mem	4-6	8	8	(mem8) bit NO.imm3 = 0 : Z← 1 (mem8) bit NO.imm3 = 1 : Z← 0	U	0	0	U	U	×
oulation		reg16, imm4		1001	11000 reg	4	4	4	reg16 bit NO.imm4 = $0: Z \leftarrow 1$ reg16 bit NO.imm4 = $1: Z \leftarrow 0$	U	0	0	U	U	×
Bit manipulation instructions		mem16, imm4		1001	mod 0 0 0 mem	4-6	12	8/12	(mem16) bit NO.imm4 = 0 : Z← 1 (mem16) bit NO.imm4 = 1 : Z← 0	U	0	0	J	U	×
"	NOT1	reg8, CL		0110	11000 reg	3	4	4	reg8 bit NO.CL← reg8 bit NO.CL						
		mem8, CL		0110	mod 0 0 0 mem	3-5	10	10	(mem8) bit NO.CL← (mem8) bit NO.CL						
		reg16, CL		0111	11000 reg	3	4	4	reg16 bit NO.CL← reg16 bit NO.CL						
		mem16, CL		0111	mod 0 0 0 mem	3-5	18	10/18	(mem16) bit NO.CL← (mem16) bit NO.CL						
		reg8, imm3		1110	11000 reg	4	5	5	reg8 bit NO.imm3← reg8 bit NO.imm3						
		mem8, imm3		1110	mod 0 0 0 mem	4-6	11	11	(mem8) bit NO.imm3← (mem8) bit NO.imm3						
		reg16, imm4		1111	11000 reg	4	5	5	reg16 bit NO.imm4← reg16 bit NO.imm4						
		mem16, imm4	,	1111	mod 0 0 0 mem	4-6	19	11/19	(mem16) bit NO.imm4← (mem16) bit NO.imm4						

2nd byte*

3rd byte*

* 1st byte = 0FH

NOT1	CY	11110101	1	2	2	$CY \leftarrow \overline{CY}$	×		

Instruc- tion	Mnemonic	Operand(a)		Operation	on Code		Durton	Clock	Cycles	Operation			Fla	gs		
Group	winemonic	Operand(s)	7 6	543210	765432	2 1 0	Bytes	V40HL	V50HL	Operation	AC	CY	٧	Р	s	Z
	CLR1	reg8, CL	0 0	010010	11000	reg	3	5	5	reg8 bit NO.CL ← 0						
		mem8, CL		0010	mod O O O	mem	3-5	11	11	(mem8) bit NO.CL ← 0						
		reg16, CL		0011	11000	mem	3	5	5	reg16 bit NO.CL ← 0						
		mem16, CL		0011	mod O O O	mem	3-5	19	11/19	(mem16) bit NO.CL ← 0						
		reg8, imm3		1010	11000	reg	4	6	6	reg8 bit NO.imm3 \leftarrow 0						
instructions		mem8, imm3		1010	mod O O O	mem	4-6	12	12	(mem8) bit NO.imm3 ← 0						
struc		reg16, imm4		1011	11000	reg	4	6	6	reg16 bit NO.imm4 \leftarrow 0						
n in		mem16, imm4		1011	mod O O O	mem	4-6	20	12/20	(mem16) bit NO.imm4 \leftarrow 0						
ulatic	SET1	reg8, CL		0100	11000	reg	3	4	4	reg8 bit NO.CL ← 1						
manipulation		mem8, CL		0100	mod O O O	mem	3-5	10	10	(mem8) bit NO.CL ← 1						
Bit m		reg16, CL		0101	11000	reg	3	4	4	reg16 bit NO.CL ← 1						
		mem16, CL		0101	mod 0 0 0	mem	3-5	18	10/18	(mem16) bit NO.CL ← 1						
		reg8, imm3		1100	11000	reg	4	5	5	reg8 bit NO.imm3 ← 1						
		mem8, imm3		1100	mod O O O	mem	4-6	11	11	(mem8) bit NO.imm3 ← 1						
		reg16, imm4		1101	11000	reg	4	5	5	reg16 bit NO.imm4 ← 1						
		mem16, imm4		1101	mod O O O	mem	4-6	19	11/19	(mem16) bit NO.imm4 ← 1						

2nd byte*

3rd byte*

* 1st byte = 0FH

CLR1	CY	11111000	1	2	2	CY ← 0	0		
	DIR	11111100	1	2	2	DIR ← 0			
SET1	CY	11111001	1	2	2	CY ← 1	1		
	DIR	11111101	1	2	2	DIR ← 1			

Instruc- tion	Mnemonic	Operand(s)	Operation	on Code	Bytes	Clock	Cycles	Operation			Fla	gs		
Group	Millemonic	Operand(s)	76543210	76543210	bytes	V40HL	V50HL	Operation	AC	CY	٧	Р	S	Z
	SHL	reg, 1	1101000W	11100 reg	2	6	6	$\label{eq:cycless} \begin{aligned} CY &\leftarrow reg\;MSB,\; reg \leftarrow reg \times 2\\ If\; reg\;MSB \neq CY; & V \leftarrow 1\\ If\; reg\;MSB = CY; & V \leftarrow 0 \end{aligned}$	U	×	×	×	×	×
		mem, 1	1101000W	mod 1 0 0 mem	2-4	13/21	13/21	$\label{eq:cycless} \begin{aligned} CY &\leftarrow (mem) \; MSB, \; (mem) \leftarrow (mem) \times 2 \\ If \; (mem) \; MSB \neq CY; V \leftarrow 1 \\ If \; (mem) \; MSB &= CY; V \leftarrow 0 \end{aligned}$	U	×	×	×	×	×
ions		reg, CL	1101001W	11100 reg	2	7 + n	7 + n	$temp \leftarrow CL, \ while \ temp \neq 0 \ the \ following \ operation \ are \ repeated: \\ CY \leftarrow reg \ MSB, \ reg \leftarrow reg \times 2 \\ temp \leftarrow temp - 1$	U	×	U	×	×	×
Shift instructions		mem, CL	1101001W	mod 1 0 0 mem	2-4	16/24 + n	16/24 + n	temp \leftarrow CL, while temp \neq 0 the following operation are repeated: CY \leftarrow (mem) MSB, (mem) \leftarrow (mem) \times 2 temp \leftarrow temp $-$ 1	U	×	U	×	×	×
Ø		reg, imm8	1100000W	11100 reg	3	7 + n	7 + n	$temp \leftarrow imm8, \ while \ temp \neq 0 \ the \ following \ operations \ are$ $repeated:$ $CY \leftarrow reg \ MSB, \ reg \leftarrow reg \times 2$ $temp \leftarrow temp - 1$	U	×	U	×	×	×
		mem, imm8	1100000W	mod 1 0 0 mem	3-5	16/24 + n	16/24 + n	temp \leftarrow imm8, while temp \neq 0 the following operations are repeated: CY \leftarrow (mem) MSB, (mem) \leftarrow (mem) \times 2 temp \leftarrow temp $-$ 1	U	×	U	×	×	×

Instruc- tion	Mnemonic	Operand(s)	Operat	on Code	Bytes	Clock	Cycles	Operation			Fla	gs		
Group	Milemonic	Operand(s)	76543210	76543210	bytes	V40HL	V50HL	Operation	AC	CY	٧	Р	s	Z
	SHR	reg, 1	1101000W	11101 reg	2	6	6	CY \leftarrow reg LSB, reg \leftarrow reg \div 2 If reg MSB \neq bit after reg MSB : V \leftarrow 1 If reg MSB = bit after reg MSB : V \leftarrow 0	U	×	×	×	×	×
		mem, 1	1101000W	mod 1 0 1 mem	2-4	13/21	13/21	$\label{eq:cy} \begin{array}{l} \text{CY} \leftarrow \text{(mem) LSB, (mem)} \leftarrow \text{(mem)} \div 2 \\ \text{If (mem) MSB} \neq \text{bit after (mem) MSB} : V \leftarrow 1 \\ \text{If (mem) MSB} = \text{bit after (mem) MSB} : V \leftarrow 0 \\ \end{array}$	U	×	×	×	×	×
Shift instructions		reg, CL	1101001W	11101 reg	2	7 + n	7 + n	$\begin{array}{l} \text{temp} \leftarrow \text{CL, while temp} \neq 0 \text{ the following operations are} \\ \text{repeated:} \\ \text{CY} \leftarrow \text{reg LSB, reg} \leftarrow \text{reg} \div 2 \\ \text{temp} \leftarrow \text{temp} - 1 \end{array}$	U	×	U	×	×	×
Shift inst		mem, CL	1101001W	mod 1 0 1 mem	2-4	16/24 + n	16/24 + n	temp \leftarrow CL, while temp \neq 0 the following operations are repeated: CY \leftarrow (mem) LSB, (mem) \leftarrow (mem) \div 2 temp \leftarrow temp $-$ 1	U	×	U	×	×	×
		reg, imm8	1100000W	11101 reg	3	7 + n	7 + n	temp \leftarrow imm8, while temp \neq 0 the following operations are repeated: CY \leftarrow reg LSB, reg \leftarrow reg \div 2 temp \leftarrow temp $-$ 1	U	×	U	×	×	×
		mem, imm8	1 1 0 0 0 0 0 W	mod 1 0 1 mem	3-5	16/24 + n	16/24 + n	temp \leftarrow imm8, while temp \neq 0 the following operations are repeated: CY \leftarrow (mem) LSB,(mem) \leftarrow (mem) \div 2 temp \leftarrow temp $-$ 1	U	×	U	×	×	×

Instruc- tion	Mnemonic	Operand(s)	Operati	on Code	Bytes	Clock	Cycles	Operation			Fla	gs		
Group	Williamonio	Operana(s)	76543210	76543210	Bytes	V40HL	V50HL	- Operation	AC	CY	V	Р	S	Z
	SHRA	reg, 1	1101000W	11111 reg	2	6	6	$CY \leftarrow reg\ LSB,\ reg \leftarrow reg \div 2,\ V \leftarrow 0$ MSB of operand is unchanged.	U	×	0	×	×	×
		mem, 1	1101000W	mod 1 1 1 mem	2-4	13/21	13/21	$\label{eq:cy} \text{CY} \leftarrow (\text{mem}) \; \text{LSB}, (\text{mem}) \leftarrow (\text{mem}) \; \div \; 2, \; \text{V} \leftarrow 0 \\ \text{MSB of operand is unchanged}.$	U	×	0	×	×	×
		reg, CL	1101001W	11111 reg	2	7 + n	7 + n	temp \leftarrow CL, while temp \neq 0 the following operations are repeated: CY \leftarrow reg LSB, reg \leftarrow reg \div 2 temp \leftarrow temp – 1, MSB of operand is unchanged.	U	×	U	×	×	×
		mem, CL	1101001W	mod 1 1 1 mem	2-4	16/24 + n	16/24 + n	temp \leftarrow CL, while temp \neq 0 the following operations are repeated: CY \leftarrow (mem) LSB, (mem) \leftarrow (mem) \div 2 temp \leftarrow temp $-$ 1, MSB of operand is unchanged.	U	×	U	×	×	×
		reg, imm8	1100000W	11111 reg	3	7 + n	7 + n	temp \leftarrow imm8, while temp \neq 0 the following operations are repeated: CY \leftarrow reg LSB, reg \leftarrow reg \div 2 temp \leftarrow temp – 1, MSB of operand is unchanged.	U	×	U	×	×	×
		mem, imm8	1100000W	mod 1 1 1 mem	3-5	16/24 + n	16/24 + n	temp \leftarrow imm8, while temp \neq 0 the following operations are repeated: CY \leftarrow (mem) LSB,(mem) \leftarrow (mem) \div 2 temp \leftarrow temp $-$ 1, MSB of operand is unchanged.	U	×	U	×	×	×

Instruc-	Manania	On arond(a)	Operati	on Code	Dutos	Clock	Cycles	Operation			Fla	gs		
tion Group	Mnemonic	Operand(s)	76543210	76543210	Bytes	V40HL	V50HL	Operation	AC	CY	٧	Р	s	Z
	ROL	reg, 1	1101000W	11000 reg	2	6	6	$ \begin{array}{l} \text{CY} \leftarrow \text{reg MSB, reg} \leftarrow \text{reg} \times 2 + \text{CY} \\ \text{reg MSB} \neq \text{CY} : \text{V} \leftarrow 1 \\ \text{reg MSB} = \text{CY} : \text{V} \leftarrow 0 \end{array} $		×	×			
		mem, 1	1101000W	mod 0 0 0 mem	2-4	13/21	13/21	$\begin{array}{l} \text{CY} \leftarrow (\text{mem}) \; \text{MSB, (mem)} \leftarrow (\text{mem}) \times 2 + \text{CY} \\ \text{(mem)} \; \text{MSB} \neq \text{CY} : \text{V} \leftarrow 1 \\ \text{(mem)} \; \text{MSB} = \text{CY} : \text{V} \leftarrow 0 \end{array}$		×	×			
ıctions		reg, CL	1101001W	11000 reg	2	7 + n	7 + n	temp \leftarrow CL, while temp \neq 0 the following operations are repeated: CY \leftarrow reg MSB, reg \leftarrow reg \times 2 + CY temp \leftarrow temp $-$ 1		×	U			
Rotate instructions		mem, CL	1101001W	mod 0 0 0 mem	2-4	16/24 + n	16/24 + n	temp \leftarrow CL, while temp \neq 0 the following operations are repeated: CY \leftarrow (mem) MSB, (mem) \leftarrow (mem) \times 2 + CY temp \leftarrow temp $-$ 1		×	U			
		reg, imm8	1100000W	11000 reg	3	7 + n	7 + n	temp \leftarrow imm8, while temp \neq 0 the following operations are repeated: CY \leftarrow reg MSB, reg \leftarrow reg \times 2 + CY temp \leftarrow temp $-$ 1		×	U			
reg	mem, imm8	1100000W	mod 0 0 0 mem	3-5	16/24 + n	16/24 + n	$\begin{array}{l} temp \leftarrow imm8, \ while \ temp \neq 0 \ the \ following \ operations \ are \\ repeated: \\ CY \leftarrow (mem) \ MSB, \ (mem) \leftarrow (mem) \times 2 + CY \\ temp \leftarrow temp - 1 \end{array}$		×	U				

Instruc-	Mnemonic	Operand(s)	Operati	on Code	Bytes	Clock	Cycles	Operation			Fla	gs		
Group	Milleriforfic	Operand(s)	76543210	76543210	bytes	V40HL	V50HL	Ореганоп	AC	CY	٧	Р	s	z
	ROR	reg, 1	1101000W	11001 reg	2	6	6	$\begin{array}{l} \text{CY} \leftarrow \text{reg LSB, reg} \leftarrow \text{reg} \div 2 \\ \text{reg MSB} \leftarrow \text{CY} \\ \text{reg MSB} \neq \text{bit after reg MSB} : \text{V} \leftarrow 1 \\ \text{reg MSB} = \text{bit after reg MSB} : \text{V} \leftarrow 0 \end{array}$		×	×			
		mem, 1	1101000W	mod 0 0 1 mem	2-4	13/21	13/21	$\begin{array}{l} \text{CY} \leftarrow (\text{mem}) \text{ LSB, (mem)} \leftarrow (\text{mem}) \div 2 \\ (\text{mem}) \text{ MSB} \leftarrow \text{CY} \\ (\text{mem}) \text{ MSB} \neq \text{bit after (mem) MSB} : \text{V} \leftarrow 1 \\ (\text{mem) MSB} = \text{bit after (mem) MSB} : \text{V} \leftarrow 0 \end{array}$		×	×			
ons		reg, CL	1101001W	11001 reg	2	7 + n	7 + n	temp \leftarrow CL, while CL \neq 0 the following operations are repeated: CY \leftarrow reg LSB, reg \leftarrow reg \div 2 reg MSB \leftarrow CY temp \leftarrow temp $-$ 1		×	U			
Rotate instructions		mem, CL	1101001W	mod 0 0 1 mem	2-4	16/24 + n	16/24 + n	temp \leftarrow CL, while CL \neq 0 the following operations are repeated: CY \leftarrow (mem) LSB,(mem) \leftarrow (mem) \div 2 (mem) MSB \leftarrow CY temp \leftarrow temp $-$ 1		×	U			
Δ.		reg, imm8	1100000W	11001 reg	3	7 + n	7 + n	temp \leftarrow imm8, while CL \neq 0 the following operations are repeated: CY \leftarrow reg LSB,reg \leftarrow reg \div 2 reg MSB \leftarrow CY temp \leftarrow temp $-$ 1		×	U			
		mem, imm8	1100000W	mod 0 0 1 mem	3-5	16/24 + n	16/24 + n	temp \leftarrow imm8, while CL \neq 0 the following operations are repeated: CY \leftarrow (mem) LSB,(mem) \leftarrow (mem) $+$ 2 (mem) MSB \leftarrow CY temp \leftarrow temp $-$ 1		×	U			

Instruc-	Mnemonic	Operand(s)	Operati	on Code	Bytes	Clock	Cycles	Operation			Fla	gs		
Group	Willemonic	Operand(s)	76543210	76543210	bytes	V40HL	V50HL		AC	CY	٧	Р	S	z
	ROLC	reg, 1	1101000W	11010 reg	2	6	6	$\begin{split} & tmpcy \leftarrow CY, CY \leftarrow reg MSB \\ & reg \leftarrow reg \times 2 + tmpcy \\ & reg MSB \neq CY : V \leftarrow 1 \\ & reg MSB = CY : V \leftarrow 0 \end{split}$		×	×			
		mem, 1	1101000W	mod 0 1 0 mem	2-4	13/21	13/21	$\begin{split} & tmpcy \leftarrow CY, CY \leftarrow (mem) MSB \\ & (mem) \leftarrow (mem) \times 2 + tmpcy \\ & (mem) MSB \neq CY : V \leftarrow 1 \\ & (mem) MSB = CY : V \leftarrow 0 \end{split}$		×	×			
Rotate instructions		reg, CL	1101001W	11010 reg	2	7 + n	7 + n	temp \leftarrow CL, while CL \neq 0 the following operations are repeated: tmpcy \leftarrow CY, CY \leftarrow reg MSB reg \leftarrow reg \times 2 + tmpcy temp \leftarrow temp $-$ 1		×	U			
Rotate		mem, CL	1101001W	mod 0 1 0 mem	2-4	16/24 + n	16/24 + n	$\begin{split} temp &\leftarrow CL, while CL \neq 0 the following operations are repeated: \\ tmpcy &\leftarrow CY, CY \leftarrow (mem) MSB \\ (mem) &\leftarrow (mem) \times 2 + tmpcy \\ temp &\leftarrow temp - 1 \end{split}$		×	U			
		reg, imm8	1 1 0 0 0 0 0 W	11010 reg	3	7 + n	7 + n	temp \leftarrow imm8, while CL \neq 0 the following operations are repeated: tmpcy \leftarrow CY, CY \leftarrow reg MSB reg \leftarrow reg \times 2 + tmpcy temp \leftarrow temp $-$ 1		×	U			
		mem, imm8	1 1 0 0 0 0 0 W	mod 0 1 0 mem	3-5	16/24 + n	16/24 + n	temp \leftarrow imm8, while CL \neq 0 the following operations are repeated: tmpcy \leftarrow CY, CY \leftarrow (mem) MSB (mem) \leftarrow (mem) \times 2 + tmpcy temp \leftarrow temp $-$ 1		×	U			

Instruc- tion	Mnemonic	Operand(s)	Operat	on Code	Bytes	Clock	Cycles	Operation			Flag	gs		
Group	WITTETTIOTIC	Operand(s)	76543210	76543210	bytes	V40HL	V50HL	Ореганоп	AC	CY	٧	Р	S	Z
	RORC	reg, 1	1101000W	11011 reg	2	6	6	$\begin{split} & tmpcy \leftarrow CY, CY \leftarrow reg \ LSB \\ & reg \leftarrow reg \div 2 \\ & reg MSB \leftarrow tmpcy \\ & reg MSB \neq bit after reg MSB : V \leftarrow 1 \\ & reg MSB = bit after reg MSB : V \leftarrow 0 \end{split}$		×	×			
		mem, 1	1101000W	mod 0 1 1 mem	2-4	13/21	13/21	$\begin{split} & tmpcy \leftarrow CY, CY \leftarrow (mem) LSB \\ & (mem) \leftarrow (mem) \div 2 \\ & (mem) MSB \leftarrow tmpcy \\ & (mem) MSB \neq bit after (mem) MSB : V \leftarrow 1 \\ & (mem) MSB = bit after (mem) MSB : V \leftarrow 0 \end{split}$		×	×			
structions		reg, CL	1101001W	11011 reg	2	7 + n	7 + n	$\begin{split} temp &\leftarrow \text{CL}, \text{while CL} \neq 0 \text{ the following operations are repeated:} \\ tmpcy &\leftarrow \text{CY}, \text{CY} \leftarrow \text{reg LSB} \\ reg &\leftarrow \text{reg} \div 2 \\ reg \text{ MSB} &\leftarrow \text{tmpcy} \\ temp &\leftarrow \text{temp} - 1 \end{split}$		×	U			
Rotate instructions		mem, CL	1101001W	mod 0 1 1 mem	2-4	16/24 + n	16/24 + n	$\label{eq:closed} \begin{split} & temp \leftarrow CL, while CL \neq 0 the following operations are repeated: \\ & tmpcy \leftarrow CY, CY \leftarrow (mem) LSB \\ & (mem) \leftarrow (mem) \div 2 \\ & (mem) MSB \leftarrow tmpcy \\ & temp \leftarrow temp - 1 \end{split}$		×	U			
		reg, imm8	1100000W	11011 reg	3	7 + n	7 + n	temp \leftarrow imm8, while CL \neq 0 the following operations are repeated: tmpcy \leftarrow CY, CY \leftarrow reg LSB reg \leftarrow reg \div 2 reg MSB \leftarrow tmpcy temp \leftarrow temp $-$ 1		×	U			
		mem, imm8	1100000W	mod 0 1 1 mem	3-5	16/24 + n	16/24 + n	temp \leftarrow imm8, while CL \neq 0 the following operations are repeated: tmpcy \leftarrow CY, CY \leftarrow (mem) LSB (mem) \leftarrow (mem) \div 2 (mem) MSB \leftarrow tmpcy temp \leftarrow temp $-$ 1		×	U			

μ P[
U
7
0
2
\mathbb{Z}
8
H,
,
1, 70
,
1, 702
1, 702
1, 7021 6

Instruc-	Mnemonic	Operand(s)	Operat	ion Code	Bytes	Clock	Cycles	Operation			Fla	gs		
Group	Willemonic	Operanu(s)	76543210	76543210	Dytes	V40HL	V50HL	Operation	AC	CY	V	Р	s	z
	CALL	near-proc	11101000		3	20	16/20	$SP \leftarrow SP - 2$, $(SP + 1, SP) \leftarrow PC$ $PC \leftarrow PC + disp$						
		regptr16	11111111	11010 reg	2	18	14/18	$SP \leftarrow SP - 2$, $(SP + 1, SP) \leftarrow PC$ $PC \leftarrow regptr16$						
		memptr16	11111111	mod 0 1 0 mem	2-4	31	23/31	TA \leftarrow (memptr16) SP \leftarrow SP - 2, (SP + 1, SP) \leftarrow PC, PC \leftarrow TA						
ctions		far-proc	10011010		5	29	21/29	$SP \leftarrow SP - 2$, $(SP + 1, SP) \leftarrow PS$, $PS \leftarrow seg$ $SP \leftarrow SP - 2$, $(SP + 1, SP) \leftarrow PC$, $PC \leftarrow offset$						
Subroutine control instructions		memptr32	11111111	mod 0 1 1 mem	2-4	47	31/47	$TA \leftarrow (memptr32), TB \leftarrow (memptr32 + 2)$ $SP \leftarrow SP - 2, (SP + 1, SP) \leftarrow PS, PS \leftarrow TB$ $SP \leftarrow SP - 2, (SP + 1, SP) \leftarrow PC, PC \leftarrow TA$						
utine co	RET		11000011		1	19	15/19	$PC \leftarrow (SP + 1, SP)$ $SP \leftarrow SP + 2$						
Subro		pop-value	11000010		3	24	20/24	$PC \leftarrow (SP + 1, SP)$ $SP \leftarrow SP + 2, SP \leftarrow SP + pop-value$						
			11001011		1	29	21/29	$PC \leftarrow (SP + 1, SP)$ $PS \leftarrow (SP + 3, SP + 2)$ $PS \leftarrow SP + 4$						
		pop-value	11001010		3	32	24/32	$PC \leftarrow (SP + 1, SP)$ $PS \leftarrow (SP + 3, SP + 2)$ $SP \leftarrow SP + 4, SP \leftarrow SP + pop-value$						

Instruc-	Mnemonic	Operand(s)	Operat	ion Code	Bytes	Clock	Cycles	Operation			Fla	ıgs		
Group	Willemonic	Operand(s)	76543210	76543210	bytes	V40HL	V50HL	Operation	AC	CY	′ V	Р	s	Z
	PUSH	mem16	11111111	mod 1 1 0 mem	2-4	23	15/23	$SP \leftarrow SP - 2$ (SP + 1, SP) \leftarrow (mem16)						
		reg16	01010 reg		1	10	6/10	$SP \leftarrow SP - 2$ (SP + 1, SP) \leftarrow reg16						
		sreg	0 0 0 sreg 1 1 0		1	10	6/10	$SP \leftarrow SP - 2$ (SP + 1, SP) \leftarrow sreg						
		PSW	10011100		1	10	6/10	$SP \leftarrow SP - 2$ (SP + 1, SP) \leftarrow PSW						
ions		R	01100000		1	65	33/65	Push registers on the stack						
instruct		imm8	01101010		2	9	5/9	$SP \leftarrow SP - 2$ (SP + 1, SP) \leftarrow imm8, sign of extension						
ulation		imm16	01101000		3	10	6/10	$SP \leftarrow SP - 2$ ($SP + 1$, SP) \leftarrow imm16						
Stack manipulation instructions	POP	mem16	10001111	mod 0 0 0 mem	2-4	24	16/24	$ (\text{mem16}) \leftarrow (\text{SP} + 1, \text{SP}) $ $ \text{SP} \leftarrow \text{SP} + 2 $						
Stack		reg16	0 1 0 1 1 reg		1	12	8/12	reg16← (SP + 1, SP) SP ← SP + 2						
		sreg	0 0 0 sreg 1 1 1		1	12	8/12	$sreg \leftarrow (SP + 1, SP)$ $SP \leftarrow SP + 2$						
		PSW	10011101		1	12	8/12	$PSW \leftarrow (SP + 1, SP)$ $SP \leftarrow SP + 2$	R	R	R	R	R	R
		R	01100001		1	75	43/75	Pop registers from the stack						
	PREPARE	imm16, imm8	11001000		4	Note 1	Note 2	Prepare New Stack Frame						
	DISPOSE		11001001		1	10	6/10	Dispose of Stack Frame						

Notes 1. If imm8 = 0 16

If imm8 \geq 1 21 + 16 (imm8 - 1)

2. If imm8 = 0 12/16

If imm8 \geq 1 {17 + 8 (imm8 - 1)} / {21 + 16 (imm8 - 1)}

Instruction Group Mnemonic BR suoiton BR	Operand(s)	Operati	on Code	Bytes	Clock	Cycles	Operation			Flag	gs			
	Willemonic	Operand(s)	76543210	76543210	Dytes	V40HL	V50HL		AC	CY	V	Р	S	z
	BR	near-label	11101001		3	13	13	PC ← PC+ dsip						
Su		short-label	11101011		2	12	12	PC ← PC+ ext-disp8						
lotio		regptr16	11111111	11100 reg	2	11	11	PC ← regptr16						
ารเก		memptr16	11111111	mod 1 0 0 mem	2-4	23	19/23	PC ← (memptr16)						
		far-label	11101010		5	15	15	PS ← seg						
Branch								PC ← offset						
Δ		memptr32	11111111	mod 1 0 1 mem	2-4	34	26/34	$PS \leftarrow (memptr32 + 2)$ $PC \leftarrow (memptr32)$						

Instruc- tion	Mnemonic	Operand(s)		Operat	ion Code	Bytes	Clock C	ycles ^{Note}		Operation			Flag	gs		
Group	Willemonic	Operand(s)	7 6	543210	76543210	Dytes	V40HL	V50HL		Operation	AC	CY	v	Р	S	Z
	BV	short-label	0 1	110000		2	14/4	14/4	if V = 1	PC ← PC + ext-disp8					\Box	
	BNV	short-label		0 0 0 1		2	14/4	14/4	if V = 0	PC ← PC + ext-disp8						
	BC BL	short-label		0010		2	14/4	14/4	if CY = 1	PC ← PC + ext-disp8						
	BNC BNL	short-label		0011		2	14/4	14/4	if CY = 0	PC ← PC + ext-disp8						
	BE BZ	short-label		0100		2	14/4	14/4	if Z = 1	PC ← PC + ext-disp8						
	BNE BNZ	short-label		0101		2	14/4	14/4	if Z = 0	PC ← PC + ext-disp8						
ons	BNH	short-label		0110		2	14/4	14/4	if CY ∨ Z = 1	PC ← PC + ext-disp8						
Conditional branch instructions	ВН	short-label		0111		2	14/4	14/4	if $CY \lor Z = 0$	PC ← PC + ext-disp8						
inst	BN	short-label		1000		2	14/4	14/4	if S = 1	PC ← PC + ext-disp8						
anch	ВР	short-label		1001		2	14/4	14/4	if S = 0	$PC \leftarrow PC + ext\text{-disp8}$						
al bra	BPE	short-label		1010		2	14/4	14/4	if P = 1	$PC \leftarrow PC + ext\text{-disp8}$						
ition	вро	short-label		1011		2	14/4	14/4	if P = 0	$PC \leftarrow PC + ext\text{-disp8}$						
ond	BLT	short-label		1100		2	14/4	14/4	if S ∀ V = 1	PC ← PC + ext-disp8						
O	BGE	short-label		1101		2	14/4	14/4	if S ∀ V = 0	PC ← PC + ext-disp8						_
	BLE	short-label		1110		2	14/4	14/4	if (S ∀ V) ∨ Z = 1	PC ← PC + ext-disp8						
	BGT	short-label		1111		2	14/4	14/4	if (S ∀ V) ∨ Z = 0	PC ← PC + ext-disp8						
	DBNZNE	short-label	1 1	100000		2	14/5	14/5	CW = CW - 1 if $Z = 0$ and $CW \neq 0$	PC ← PC + ext-disp8						
	DBNZE	short-label	1 1	100001		2	14/5	14/5	CW = CW - 1 if $Z = 1$ and $CW \neq 0$	PC ← PC + ext-disp8						
	DBNZ	short-label	1 1	100010		2	13/5	13/5	$CW = CW - 1$ if $CW \neq 0$	PC ← PC + ext-disp8						
	BCWZ	short-label	1 1	100011		2	13/5	13/5	if CW = 0	PC ← PC + ext-disp8						

Note Condition determination: true/false

Instruc-	Mnemonic	Operand(s)	Operati	on Code	Bytes	Clock	Cycles	Operation			Flag	gs		
Group	Willemonie	Operaria(3)	76543210	76543210	Dytes	V40HL	V50HL	Орстаноп	AC	CY	V	Р	s	z
	BRK	3	11001100		1	50	38/50	$\begin{split} TA &\leftarrow (00DH,\ 00CH),\ TC \leftarrow (00FH,\ 00EH) \\ SP &\leftarrow SP - 2,\ (SP + 1,\ SP) \leftarrow PSW,\ IE \leftarrow 0,\ BRK \leftarrow 0 \\ SP &\leftarrow SP - 2,\ (SP + 1,\ SP) \leftarrow PS,\ PS \leftarrow TC \\ SP &\leftarrow SP - 2,\ (SP + 1,\ SP) \leftarrow PC,\ PC \leftarrow TA \end{split}$						
		imm8 (= 3)	11001101		2	50	38/50	$\begin{split} TA &\leftarrow (4\ n+1,\ 4n),\ TC \leftarrow (4n+3,\ 4n+2)\ n = imm8 \\ SP &\leftarrow SP-2,\ (SP+1,\ SP) \leftarrow PSW,\ IE \leftarrow 0,\ BRK \leftarrow 0 \\ SP &\leftarrow SP-2,\ (SP+1,\ SP) \leftarrow PS,\ PS \leftarrow TC \\ SP &\leftarrow SP-2,\ (SP+1,\ SP) \leftarrow PC,\ PC \leftarrow TA \end{split}$						
Interrupt instructions	BRKV		11001110		1	Note 1	Note 2	If V = 1 $TA \leftarrow (011H, 010H), TC \leftarrow (013H, 012H)$ $SP \leftarrow SP - 2, (SP + 1, SP) \leftarrow PSW, IE \leftarrow 0, BRK \leftarrow 0$ $SP \leftarrow SP - 2, (SP + 1, SP) \leftarrow PS, PS \leftarrow TC$ $SP \leftarrow SP - 2, (SP + 1, SP) \leftarrow PC, PC \leftarrow TA$						
Interrup	RETI		11001111		1	39	27/39	$PC \leftarrow (SP + 1, SP), PS \leftarrow (SP + 3, SP + 2),$ $PSW \leftarrow (SP + 5, SP + 4), SP \leftarrow SP + 6$	R	R	R	R	R	R
	BRKEM	imm8	00001111	11111111	3	50	38/50	$\begin{split} TA &\leftarrow (4\ n+1, 4n), TC \leftarrow (4n+3, 4n+2)\ n = imm8 \\ SP &\leftarrow SP-2, (SP+1, SP) \leftarrow PSW, MD \leftarrow 0 \\ MD\ is\ set\ to\ write\ enabled \\ SP &\leftarrow SP-2, (SP+1, SP) \leftarrow PS, PS \leftarrow TC \\ SP &\leftarrow SP-2, (SP+1, SP) \leftarrow PC, PC \leftarrow TA \end{split}$						
	CHKIND	reg16, mem32	01100010	mod reg mem	2-4	Note 3	Note 4	If (mem32) > reg16 or (mem32 + 2) < reg16 TA \leftarrow (015H, 014H), TC \leftarrow (017H, 016H) SP \leftarrow SP - 2, (SP + 1, SP) \leftarrow PSW, IE \leftarrow 0, BRK \leftarrow 0 SP \leftarrow SP - 2, (SP + 1, SP) \leftarrow PS, PS \leftarrow TC SP \leftarrow SP - 2, (SP + 1, SP) \leftarrow PC, PC \leftarrow TA						

Notes 1. When V = 1: 52

When V = 0: 3

2. When V = 1: 40/52

When V = 0: 3

3. When interrupt condition is established : 72 to 75 When interrupt condition is not established : 25

4. When interrupt condition is established : (52 to 55)/(72 to 75)

When interrupt condition is not established : 17/25

Group HAL POL Supprison S	Mnemonic	Operand(s)	Operat	ion Code	Bytes	Clock	Cycles	Operation			Fla	gs		
	Willomonio	Operana(o)	76543210	76543210	Dytes	V40HL	V50HL	Орегиноп	AC	CY	V	Р	S	Z
	HALT		11110100		1	2	2	CPU Halt						
	POLL		10011011		1	2 + 5n	2 + 5n	Poll and wait n: Number of times POLL pin is sampled						
Su	DI		11111010		1	2	2	IE ← 0						
actio	EI		11111011		1	2	2	IE ← 1						
nstru	BUSLOCK		11110000		1	2	2	Bus Lock Prefix						
troli	FPO1	fp-op	1 1 0 1 1 X X X	1 1 Y Y Y Z Z Z	2	2	2	No Operation						
Con		fp-op, mem	1 1 0 1 1 X X X	mod Y Y Y mem	2-4	14	10/14	data bus ← (mem)						
CPU	FPO2	fp-op	0110011X	1 1 Y Y Y Z Z Z	2	2	2	No Operation						
		fp-op, mem	0110011X	mod Y Y Y mem	2-4	14	10/14	data bus ← (mem)						
	NOP		10010000		1	3	3	No Operation						
	*		0 0 1 sreg 1 1 0		1	2	2	Segment override prefix						

^{*} DS0:, DS1:, PS:, and SS:.

Instruc-	Mnemonic	Operand(s)	Operati	on Code	Bytes	Clock	Cycles	Operation			Fla	ıgs		
Group	Williamo	Operana(s)	76543210	76543210	Dytos	V40HL	V50HL		AC	CY	٧	Р	S	z
80	RETEM		11101101	11111101	2	39	27/39	$\label{eq:pc} \begin{split} PC \leftarrow & (SP+1,SP),PS \leftarrow (SP+3,SP+2),\\ PSW \leftarrow & (SP+5,SP+4),SP \leftarrow SP+6,MD \;is\;set\;to\;write\\ disabled \end{split}$	R	R	R	R	R	R
8080	CALLN	imm8	11101101	11101101	3	58	38/58	$\begin{split} TA &\leftarrow (4n+1,4n),TC \leftarrow (4n+3,4n+2) \qquad n = imm8 \\ SP &\leftarrow SP-2,(SP+1,SP) \leftarrow PSW,MD \leftarrow 1 \\ SP &\leftarrow SP-2,(SP+1,SP) \leftarrow PS,PS \leftarrow TC \\ SP &\leftarrow SP-2,(SP+1,SP) \leftarrow PC,PC \leftarrow TA \end{split}$						

16. ELECTRICAL SPECIFICATIONS

Applied standard -

The electrical characteristics shown below are applied to devices other than the old models conforming to K mask.

Therefore, these characteristics are different from those conforming to the K mask. For the electrical characteristics of the K mask, consult NEC.

"Others" in the table below means products conforming to the masks other than E, P, X, and M (but conforming to the L, F mask).

16.1 AT 5 V OPERATION

OPERATING RANGE

	E, P, X, M Mask Model	Others
μPD70208H, 70216H-10/12/16	V _{DD} = 5 V ±10%	
μPD70208H, 70216H-20	_	V _{DD} = 5 V ±5%

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C)

Parameter	Symbol	Test Conditions	Rating	Unit
Supply voltage	V _{DD}		-0.5 to +7.0	V
Input voltage	Vı	V _{DD} = 5 V ±10%	-0.5 to V _{DD} + 0.3	V
Clock input voltage	Vĸ	$(\mu PD70208H, 70216H-10/12/16)$	-0.5 to V _{DD} + 1.0	V
Output voltage	Vo	(μPD70208H, 70216H-20)	-0.5 to V _{DD} + 0.3	V
Operating ambient temperature	Та		-40 to +85	°C
Storage temperature	T _{stg}		-65 to +150	°C

- Cautions 1. Do not directly connect the output pins of two or more IC products and do not directly connect the output pins to V_{DD} or V_{CC} and GND. However, open-drain pins or open-collector pins may be connected directly. Moreover, an external circuit whose timing is designed to avoid output collision can be connected to pins that go into a high-impedance state.
 - 2. If even one of the above parameters exceeds the absolute maximum rating even momentarily, the quality of the program may be degraded. Absolute maximum ratings, therefore, are the values exceeding which the product may be physically damaged. Use the program keeping all the parameters within these rated values.

The standards and conditions shown in DC and AC Characteristics below specify the range within which the normal operation of the product is guaranteed.

DC CHARACTERISTICS

(TA = -40 to +85 °C, VDD = 5 V \pm 10% (μ PD70208H, 70216H-10/12/16), VDD = 5 V \pm 5% (μ PD70208H, 70216H-20))

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Input voltage high	ViH	E, P, X, M	Except RESET	2.2		V _{DD} +0.3	V
		masks	RESET	0.8 V _{DD}		V _{DD} +0.3	
		Others	Except RESET, INTP1 to INTP7	2.2		V _{DD} +0.3	
			RESET	0.8 V _{DD}		V _{DD} +0.3	
			INTP1 to INTP7	2.4		V _{DD} +0.3	
Input voltage low	VIL	Except RESE	T	-0.5		+0.8	V
		RESET		-0.5		0.2V _{DD}	
Clock input voltage high	Vкн			3.9		V _{DD} +1.0	V
Clock input voltage low	VĸL			-0.5		+0.6	V
Output voltage high	Vон	Iон = −2.5 mA		0.7 V _{DD}			V
		Іон = -100 μΑ		V _{DD} - 0.4			
Output voltage low	Vol	Except END/T	C: IoL = 2.5 mA			0.4	V
		END/TC	: IoL = 5.0 mA	-			
Input leak current high	Інн	Vı = Vdd				10	μΑ
Input leak current low	ILIL	Except INTP:\	Vı = 0 V			-10	μΑ
INTP input current low	ILIPL	INTP input:Vi	= 0 V			-300	μΑ
Output leak current high	Ісон	Vo = VDD				10	μΑ
Output leak current low	ILOL	Vo = 0 V				-10	μΑ
Latch leak current high	Ішн	Vı = 3.0 V		-50		-300	μΑ
Latch leak current low	Іш	Vı = 0.8 V		50		300	μΑ
Latch inversion current $(L \rightarrow H)$	Ііцн					400	μΑ
Latch inversion current (H \rightarrow L)	lill					-400	μΑ
Supply current ^{Note}	IDD	E, P, X, M	On operation		5.5 fx	9.0 fx	mA
		masks	On standby (HALT)		1.5 fx	2.5 fx	
			On standby (STOP)			50	μΑ
		Others	On operation		4.5 fx	6.0 fx	mA
			On standby (HALT)		1.5 fx	2.2 fx	
			On standby (STOP)			50	μΑ

Note The unit of constant values (1.5, 2.2, 2.5, 4.5, 5.5, 6.0 and 9.0) is mA/MHz.

CAPACITANCE (TA = 25 °C, VDD = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Сі	fc = 1 MHz			10	pF
Input/output capacitance	Сю	0 V other than test pin.			15	pF

AC CHARACTERISTICS

(1) μ PD70208H, 70216H-10/12/16 (T_A = -40 to +85 °C, V_{DD} = 5 V \pm 10%) (1/3)

Output Pin Load Capacitance: CL = 100 pF

Parameter		Symbol		μPD7020 μPD7021		μPD70208H-12 μPD70216H-12		μPD70208H-16 μPD70216H-16		Linit
Parameter		Sy	/IIIDOI	μΡΟ/021 MIN.	MAX.	MIN.	MAX.	μΡΒ/1021 MIN.	MAX.	Unit
External clock input cycle		<1>	tcyx	50	DC	40	DC	31.25	DC	ns
External clock input high-level wi	idth (Vкн=3.0 V)	<2>	tххн	19		14		12		ns
External clock input low-level wid	dth (VĸL=1.5 V)	<3>	txxL	19		14		12		ns
External clock input rise time (1.	5→3.0 V)	<4>	txr		5		5		5	ns
External clock input fall time (3.0)→1.5 V)	<5>	txF		5		5		5	ns
Clock output cycle		<6>	tcyk	100	DC	80	DC	62.5	DC	ns
Clock output high-level width (Vo	рн=3.0 V)	<7>	tккн	0.5tсүк-5		0.5tсүк-5		0.5tсүк-5		ns
Clock output low-level width (Vol	=1.5 V)	<8>	tĸĸĿ	0.5tсүк-5		0.5tсүк-5		0.5tсүк-5		ns
Clock output rise time (1.5→3.0	V)	<9>	tkr		5		5		5	ns
Clock output fall time (3.0→1.5 \	/)	<10>	tĸF		5		5		5	ns
CLKOUT delay time (vs. externa	l clock)	<11>	tdxk		40		35		20	ns
Input rise time (except external of	clock) (0.8→2.2 V)	<12>	tır		15		15		15	ns
Input fall time (except external cl	ock) (2.2→0.8 V)	<13>	tır		10		10		10	ns
Output rise time	E, P, X, M masks	<14>	tor		15		15		15	ns
(except CLKOUT) (0.8→2.2 V)	Others				10		10		10	ns
Output fall time (except CLKOUT	(2.2→0.8 V)	<15>	tor		10		10		10	ns
RESET setup time (vs. CLKOUT	√)Note 1	<16>	tsresk	20		20		20		ns
RESET hold time (vs. CLKOUT↓)Note 1	<17>	thkres	25		25		15		ns
RESOUT output delay time (vs.	CLKOUT↓)	<18>	tokres	5	50	5	40	5	30	ns
READY inactive setup time (vs.	CLKOUT↑)	<19>	tsrylk	15		10		7		ns
READY inactive hold time (vs. C	LKOUT↑)	<20>	thkryl	20		15		15		ns
READY active setup time (vs. Cl	_KOUT↑)	<21>	tsryhk	15		10		7		ns
READY active hold time (vs. CLI	(OUT↑)	<22>	thkryh	20		20		15		ns
NMI setup time (vs. CLKOUT↑)		<23>	tsnmik	15		15		15		ns
POLL setup time (vs. CLKOUT))	<24>	tspolk	20		20		20		ns
Data setup time (vs. CLKOUT↓)		<25>	tsdk	15		10		7		ns
Data hold time (vs. CLKOUT↓)		<26>	t HKD	5		5		5		ns
CLKOUT → address delay time ^N	lote 2	<27>	t dka	5	50	5	40	5	28	ns
$CLKOUT \to address \; hold \; time$		<28>	t hka	10		10		10		ns
$CLKOUT{\downarrow} \to PS \; delay \; time$		<29>	t DKP	5	50	5	40	5	30	ns
$CLKOUT{\downarrow} o PS$ float delay time	1	<30>	t FKP	5	50	5	40	5	30	ns
Address setup time (vs. ASTB↓)		<31>	tsast	tккL-20		tккL—10		tккL-10		ns
$CLKOUT{\downarrow} o address$ float delay	time ^{Note 3}	<32>	t fka	thka	50	thka	40	thka	30	ns
$CLKOUT{\downarrow} \to ASTB{\uparrow} \; delay \; time$		<33>	t DKSTH		40		30		25	ns

Notes 1. When reset with the minimum pulse width or when guaranteeing the RESOUT output timing.

- 2. Specifications also corresponding to the QS0, QS1, and BUSLOCK signals, and A16/PS0-A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, NWR, IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.
- ★ 3. Specifications also corresponding to the A16/PS0-A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, NWR, IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.

(1) μ PD70208H, 70216H-10/12/16 (T_A = -40 to +85 °C, V_{DD} = 5 V \pm 10%) (2/3)

Output Pin Load Capacitance: CL = 100 pF

Parameter			μPD70208H-10		μPD70208H-12		μPD70208H-16		
		mbol	μPD7021		μPD70216H-12		μPD7021	6H-16	Unit
		1	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
CLKOUT↑ → ASTB↓ delay time	<34>	t DKSTL		45		35		30	ns
ASTB high-level width	<35>	tstst	tккL—10		tkkl-10		tккL—10		ns
$ASTB\!\!\downarrow \to address$ hold time	<36>	thsta	tккн-20		tккн-10		tккн-10		ns
CLKOUT → control 1 ^{Note 1} delay time	<37>	tDKCT1	5	60	5	50	5	40	ns
CLKOUT → control 2 ^{Note 2} delay time	<38>	tDKCT2	5	55	5	45	5	35	ns
Address float $\rightarrow \overline{RD} \downarrow$ delay time	<39>	t DAFRL	0		0		0		ns
$CLKOUT\!\!\downarrow o \overline{RD}\!\!\downarrow delay\ time$	<40>	tokrl	5	65	5	50	5	40	ns
$CLKOUT\!\!\downarrow o \overline{RD}\!\!\uparrow delay time$	<41>	tdkrh	5	60	5	45	5	35	ns
$\overline{RD}\!\!\uparrow o$ address delay time	<42>	t DRHA	tсүк-40		tсүк-20		tсүк-10		ns
RD low-level width	<43>	trr	2tсүк–40		2tсүк-20		2tсүк-20		ns
BUFEN↑ → BUFR/W delay time (read cycle)	<44>	tdbect	tккL—20		tккL—10		tккL—10		ns
$CLKOUT\!\!\downarrow o data$ output delay time	<45>	t DKD	5	55	5	40	5	30	ns
$CLKOUT\!\!\downarrow o data$ float delay time	<46>	tFKD	5	55	5	40	5	30	ns
WR low-level width	<47>	tww	2tсүк-40		2tсүк-20		2tсүк-20		ns
$\overline{WR}\!\!\uparrow \to \overline{BUFEN}\!\!\uparrow or\; BUFR/\!W\!\!\downarrow (write cycle)$	<48>	towct	tккL-20		tккL—10		tккL—10		ns
$CLKOUT^{\uparrow} o BS \!\!\downarrow delay time$	<49>	t DKBL	5	55	5	40	5	30	ns
$CLKOUT\!\!\downarrow \to BS\!\!\uparrow delay$ time	<50>	tоквн	5	55	5	40	5	30	ns
HLDRQ setup time (vs. CLKOUT↓)	<51>	t shqk	15		10		7		ns
$CLKOUT\!\!\downarrow \to HLDAK$ delay time	<52>	t DKHA	5	60	5	50	5	40	ns
CLKOUT↑ → DMAAK delay time	<53>	t DKHDA	5	55	5	45	5	35	ns
$CLKOUT \downarrow \rightarrow \overline{DMAAK}$ delay time (cascade mode)	<54>	t DKLDA	5	80	5	70	5	55	ns
WR low-level width DMA extended write	<55>	tww1	2tсүк-40		2tсүк–20		2tсүк–20		ns
(DMA cycle) DMA normal write	<56>	tww2	tсүк-40		tсүк-20		tсүк-15		ns
$\overline{\text{RD}}\downarrow$, $\overline{\text{WR}}\downarrow$ delay time (vs. $\overline{\text{DMAAK}}\downarrow$)	<57>	tddarw	tккн-30		tккн-20		tккн-15		ns
DMAAK↑ delay time (vs. RD↑)	<58>	torhdah	tккL-30		tккL-20		tккL—15		ns
RD↑ delay time (vs. WR↑)	<59>	towhrh	3		3		3		ns
TC output delay time (vs. CLKOUT↑)	<60>	t DKTCL		55		45		35	ns
TC OFF delay time (vs. CLKOUT↑)	<61>	t DKTCF		55		45		35	ns
TC low-level width	<62>	t TCTCL	tсүк–15		tсүк-10		tсүк-10		ns
TC pull-up delay time (vs. CLKOUT↑)	<63>	toktch		Note 3		Note 4		Note 4	ns
END setup time (vs. CLKOUT↑)	<64>	tsedk	30		25		20		ns
END low-level width	<65>	tededl	80		65		50		ns
DMARQ setup time (vs. CLKOUT↑)	<66>	tsdqk	30		20		15		ns
INTPn low-level width	<67>	tipipl	80		80		80		ns
RxD setup time (vs. SCU internal clock↓)	<68>	tsrx	500		500		500		ns

Notes 1. MWR and IOWR signals in DMA cycle

- 2. \overline{MWR} and \overline{IOWR} signals in \overline{BUFEN} , $BUF\overline{R}/W$, \overline{INTAK} , \overline{REFRQ} and CPU cycles.
- 3. t_{KKH} + $2t_{CYK}$ 10 (Reference value when a 1.1- $k\Omega$ pull-up resistor is connected.)
- 4. t_{KKH} + $2t_{CYK}$ 5 (Reference value when a 1.1-k Ω pull-up resistor is connected.)

(1) μ PD70208H, 70216H-10/12/16 (T_A = -40 to +85 °C, V_{DD} = 5 V ±10%) (3/3)

Output Pin Load Capacitance: CL = 100 pF

Parameter	Symbol		μPD7020 μPD7021		μPD7020 μPD7021		μPD7020 μPD7021		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
RxD hold time (vs. SCU internal clock↓)	<69>	tHRX	500		500		500		ns
$CLKOUT\!\!\downarrow \to \overline{SRDY}$ delay time	<70>	toksr		100		100		100	ns
$TOUT1\!\downarrow \to TxD$ delay time	<71>	t DTX		200		200		200	ns
TCTL2 setup time (vs. CLKOUT↓)	<72>	tsgk	40		40		40		ns
TCTL2 setup time (vs. TCLK↑)	<73>	t sgtk	40		40		40		ns
TCTL2 hold time (vs. CLKOUT↓)	<74>	thkg	80		80		80		ns
TCTL2 hold time (vs. TCLK↑)	<75>	t HTKG	40		40		40		ns
TCTL2 high-level width	<76>	tвен	40		40		40		ns
TCTL2 low-level width	<77>	tggL	40		40		40		ns
TOUT output delay time (vs. CLKOUT↓)	<78>	t DKTO		150		150		150	ns
TOUT output delay time (vs. TCLK↓)	<79>	tdtkto		100		100		100	ns
TOUT output delay time (vs. TCTL2↓)	<80>	tодто		90		90		90	ns
TCLK rise time	<81>	t tkr		25		25		25	ns
TCLK fall time	<82>	t TKF		25		25		25	ns
TCLK high-level width	<83>	tткткн	45		40		30		ns
TCLK low-level width	<84>	t TKTKL	45		40		30		ns
TCLK cycle	<85>	t CYTK	100	DC	80	DC	62.5	DC	ns
Access interval ^{Note 1}	<86>	tai	2tсүк-40		2tсүк-25		2tсүк-20		ns
REFRQ↑ delay time (vs. MRD↑)Note 2	<87>	t DRQHRH	tккL-30		tккL-15		tккL-10		ns
RESET pulse widthNote 3	<88>	twresl	4tcyk		4tcyk		4tcyk		ns

Notes 1. Specification to guarantee read/write recovery time for I/O device.

- Specification to guarantee that REFRQ↑ is always later than MRD↑.
 Only guaranteed when the EREF bit of the SCTL register is 0.
- 3. When using internal clock generator by connecting a resonator to the X1 and X2 pins, the oscillation stabilization time must be added at power-ON. Because the oscillation stabilization time varies depending on the characteristics of the resonator and oscillation circuit used, evaluate the oscillation stabilization time with the resonator and oscillation circuit actually used.

(2) μ PD70208H, 70216H-20 (T_A = -40 to +85 °C, V_{DD} = 5 V ±5%) (1/3)

Output Pin Load Capacitance: CL = 100 pF

Parameter	Sy	mbol	μPD70208H-20 μPD70216H-20		Unit
			MIN.	MAX.	
External clock input cycle	<1>	tcyx	25	DC	ns
External clock input high-level width (Vкн=3.0 V)	<2>	tххн	10		ns
External clock input low-level width (V _{KL} =1.5 V)	<3>	txxL	10		ns
External clock input rise time (1.5→3.0 V)	<4>	txR		5	ns
External clock input fall time (3.0→1.5 V)	<5>	txF		5	ns
Clock output cycle	<6>	t cyk	50	DC	ns
Clock output high-level width (VoH=3.0 V)	<7>	tккн	0.5tсүк-5		ns
Clock output low-level width (VoL=1.5 V)	<8>	tkkl	0.5tсүк-5		ns
Clock output rise time (1.5→3.0 V)	<9>	tkr		5	ns
Clock output fall time (3.0→1.5 V)	<10>	tkf		5	ns
CLKOUT delay time (vs. external clock)	<11>	toxk		20	ns
Input rise time (except external clock) (0.8→2.2 V)	<12>	tır		15	ns
Input fall time (except external clock) (2.2→0.8 V)	<13>	tıғ		10	ns
Output rise time (except CLKOUT) (0.8→2.2 V)	<14>	tor		10	ns
Output fall time (except CLKOUT) (2.2 \(\to 0.8 \) V)	<15>	tor		10	ns
RESET setup time (vs. CLKOUT↓)Note 1	<16>	tsresk	20		ns
RESET hold time (vs. CLKOUT↓)Note 1	<17>	thkres	10		ns
RESOUT output delay time (vs. CLKOUT↓)	<18>	tokres	5	25	ns
READY inactive setup time (vs. CLKOUT↑)	<19>	tsrylk	7		ns
READY inactive hold time (vs. CLKOUT [↑])	<20>	thkryl	10		ns
READY active setup time (vs. CLKOUT↑)	<21>	tsryhk	7		ns
READY active hold time (vs. CLKOUT↑)	<22>	thkryh	10		ns
NMI setup time (vs. CLKOUT↑)	<23>	tsимік	10		ns
POLL setup time (vs. CLKOUT↑)	<24>	tspolk	20		ns
Data setup time (vs. CLKOUT↓)	<25>	tsdk	7		ns
Data hold time (vs. CLKOUT↓)	<26>	tнкр	5		ns
CLKOUT → address delay time ^{Note 2}	<27>	t dka	5	25	ns
CLKOUT o address hold time	<28>	t HKA	10		ns
CLKOUT \downarrow \rightarrow PS delay time	<29>	t DKP	5	30	ns
CLKOUT \downarrow \rightarrow PS float delay time	<30>	trkp	5	30	ns
Address setup time (vs. ASTB↓)	<31>	tsast	tккL-10		ns
CLKOUT \downarrow \rightarrow address float delay time Note 3	<32>	t FKA	t hka	25	ns
CLKOUT $\downarrow \rightarrow$ ASTB \uparrow delay time	<33>	t DKSTH		20	ns
CLKOUT $\uparrow \rightarrow$ ASTB \downarrow delay time	<34>	t DKSTL		20	ns
ASTB high-level width	<35>	t stst	tккL-10		ns

- **Notes** 1. When reset with the minimum pulse width or when guaranteeing the RESOUT output timing.
- 2. Specifications also corresponding to the QS0, QS1, and BUSLOCK signals, and A16/PS0-A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, NWR, IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.
- 3. Specifications also corresponding to the A16/PS0-A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, NWR, IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.

(2) μ PD70208H, 70216H-20 (T_A = -40 to +85 °C, V_{DD} = 5 V ±5%) (2/3)

Output Pin Load Capacitance: CL = 100 pF

			μPD70208H-20			
Parameter	Sv	mbol	μPD70208H-20 μPD70216H-20		Unit	
. 3.3			MIN.	MAX.		
$ASTB \downarrow \to address \; hold \; time$	<36>	tHSTA	tккн-10		ns	
CLKOUT → control 1 ^{Note 1} delay time		<37>	tDKCT1	5	25	ns
CLKOUT → control 2 ^{Note 2} delay time		<38>	tDKCT2	5	30	ns
Address float $\rightarrow \overline{RD} \downarrow delay$ time		<39>	tDAFRL	0		ns
$CLKOUT \downarrow \to \overline{RD} \downarrow delay time$		<40>	tokrl	5	25	ns
$CLKOUT \downarrow \to \overline{RD} \uparrow delay time$		<41>	tokrh	5	28	ns
$\overline{RD} \uparrow \to address delay time$		<42>	t DRHA	tсүк-5		ns
RD low-level width		<43>	trr	2tсүк-15		ns
BUFEN ↑ → BUFR/W delay time (read cycle)		<44>	tobect	tккL—10		ns
CLKOUT \downarrow \rightarrow data output delay time		<45>	t DKD	5	25	ns
$CLKOUT \downarrow \to data$ float delay time		<46>	t FKD	5	25	ns
WR low-level width		<47>	tww	2tсүк-15		ns
$\overline{WR} \uparrow \to \overline{BUFEN} \uparrow or \; BUFR/W \downarrow (write cycle)$		<48>	towct	tккL—10		ns
$CLKOUT \uparrow \to BS \downarrow delay time$		<49>	t DKBL	5	30	ns
CLKOUT \downarrow \rightarrow BS \uparrow delay time		<50>	t DKBH	5	25	ns
HLDRQ setup time (vs. CLKOUT ↓)	<51>	tsнqк	7		ns	
$CLKOUT \downarrow \to HLDAK$ delay time		<52>	t DKHA	5	25	ns
$CLKOUT \uparrow \rightarrow \overline{DMAAK}$ delay time		<53>	t DKHDA	5	25	ns
		<54>	t DKLDA	5	45	ns
WR low-level width (DMA cycle)	DMA extended write	<55>	tww1	2tсүк-15		ns
	DMA normal write	<56>	tww2	tсүк-15		ns
$\overline{RD}\downarrow,\overline{WR}\downarrowdelay$ time (vs. $\overline{DMAAK}\downarrow$)		<57>	tddarw	tккн—10		ns
DMAAK ↑ delay time (vs. RD ↑)		<58>	torhdah	tkkl-10		ns
RD ↑ delay time (vs. WR ↑)		<59>	towhrh	3		ns
TC output delay time (vs. CLKOUT ↑)		<60>	t DKTCL		25	ns
TC OFF delay time (vs. CLKOUT ↑)		<61>	toktcf		25	ns
TC low-level width		<62>	t TCTCL	tсүк-10		ns
TC pull-up delay time (vs. CLKOUT ↑)	<63>	t DKTCH		Note 3	ns	
END setup time (vs. CLKOUT ↑)	<64>	tsedk	20		ns	
END low-level width	<65>	tededl	40		ns	
DMARQ setup time (vs. CLKOUT ↑)	<66>	tsdqk	10		ns	
INTPn low-level width	<67>	tipipl	60		ns	
RxD setup time (vs. SCU internal clock \downarrow)		<68>	tsrx	500		ns
RxD hold time (vs. SCU internal clock \downarrow)		<69>	thrx	500		ns
$CLKOUT \downarrow o \overline{SRDY}$ delay time		<70>	toksr		100	ns

Notes 1. $\overline{\text{MWR}}$ and $\overline{\text{IOWR}}$ signals in DMA cycle

- 2. \overline{MWR} and \overline{IOWR} signals in \overline{BUFEN} , BUFR/W, \overline{INTAK} , \overline{REFRQ} , and CPU cycles
- 3. $t_{KKH} + 2t_{CYK} 5$ (reference value when a 1.1-k Ω pull-up resistor is connected)

(2) μ PD70208H, 70216H-20 (T_A = -40 to +85 °C, V_{DD} = 5 V ±5%) (3/3)

Output Pin Load Capacitance: CL = 100 pF

Parameter	Sv	mbol	μPD70208H-20 μPD70216H-20		Unit
			MIN.	MAX.	
TOUT1 ↓ → TxD delay time	<71>	t DTX		200	ns
TCTL2 setup time (vs. CLKOUT ↓)	<72>	tsgk	40		ns
TCTL2 setup time (vs. TCLK ↑)	<73>	t sgtk	40		ns
TCTL2 hold time (vs. CLKOUT ↓)	<74>	tнкс	80		ns
TCTL2 hold time (vs. TCLK ↑)	<75>	t HTKG	40		ns
TCTL2 high-level width	<76>	tвен	40		ns
TCTL2 low-level width	<77>	tggL	40		ns
TOUT output delay time (vs. CLKOUT ↓)	<78>	t DKTO		150	ns
TOUT output delay time (vs. TCLK ↓)	<79>	t DTKTO		100	ns
TOUT output delay time (vs. TCTL2 ↓)	<80>	t DGTO		90	ns
TCLK rise time	<81>	t tkr		25	ns
TCLK fall time	<82>	t TKF		25	ns
TCLK high-level width	<83>	t ткткн	23		ns
TCLK low-level width	<84>	t TKTKL	23		ns
TCLK cycle	<85>	t CYTK	50	DC	ns
Access interval ^{Note 1}	<86>	tai	2tсүк-15		ns
REFRQ ↑ delay time (vs. MRD ↑)Note 2	<87>	t DRQHRH	tккL—10		ns
RESET pulse widthNote 3	<88>	twresl	4t сүк		ns

- **Notes** 1. This rating is to guarantee the read/write recovery time for the I/O device.
 - 2. This rating is to guarantee that REFRQ ↑ is always behind MRD ↑, and guaranteed only when the EREF bit of the STCL register is 0.
 - 3. When using internal clock generator by connecting a resonator to the X1 and X2 pins, the oscillation stabilization time must be added at power-ON. Because the oscillation stabilization time varies depending on the characteristics of the resonator and oscillation circuit used, evaluate the oscillation stabilization time with the resonator and oscillation circuit actually used.

73

RECOMMENDED OSCILLATION CIRCUIT

The clock input circuits (1) and (2) shown below are recommended.

(1) Ceramic resonator connection (T_A = -40 to +85 °C, $V_{DD} = 5$ V $\pm 10\%$ (μ PD70208H, 70216H-10/12/16), $V_{DD} = 5$ V $\pm 5\%$ (µPD70208H, 70216H-20))

- Cautions 1. The oscillation circuit should be as close as possible to the X1 and X2 pins.
 - 2. No other signal lines should pass through the area enclosed in dashed line.
 - 3. For matching between V40HL, V50HL and resonator, the efficient evaluation should be carried out.
 - 4. The values of the oscillation circuit constants C1 and C2 depend on the characteristics of the resonator used. Evaluate them with the resonator actually used.

Manufacturer	Frequency	Product Name	Recommended Constant			
	(fxx) [MHz]		C1 [pF]	C2 [pF]		
Murata Mfg.	40	CSA40.00MXZ040	3	3		
Co., Ltd. 32 25 20	CSA32.00MXZ040	5	5			
	25	CSA25.00MXZ040	5	5		
	20	CSA20.00MXZ040	10	10		
TDK	32	FCR32.0M2G	5	5		
Corporation	25	FCR25.0M2G	5	5		
	20	FCR20.0M2G	10	10		

(2) External clock input

Caution The high-speed CMOS inverter should be as close as possible to the X1 and X2 pins.

16.2 AT 3 V OPERATION

OPERATING RANGE

	E, P, X, M Masks	Others
μPD70208H, 70216H-10/12/16	VDD = 3 V ±10%	
μPD70208H, 70216H-20	_	V _{DD} = 3 V ±10%

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C)

Parameter	Symbol	Test Conditions	Rating	Unit
Supply voltage	V _{DD}		-0.5 to +7.0	V
Input voltage	Vı		-0.5 to V _{DD} + 0.3	V
Clock input voltage	Vĸ	V _{DD} = 3 V ±10%	-0.5 to V _{DD} + 1.0	V
Output voltage	Vo		-0.5 to V _{DD} + 0.3	V
Operating ambient temperature	TA		-40 to +85	°C
Storage temperature	Tstg		-65 to +150	°C

- Cautions 1. Do not directly connect the output pins of two or more IC products and do not directly connect the output pins to V_{DD} or V_{CC} and GND. However, open-drain pins or open-collector pins may be connected directly. Moreover, an external circuit whose timing is designed to avoid output collision can be connected to pins that go into a high-impedance state.
 - 2. If even one of the above parameters exceeds the absolute maximum rating even momentarily, the quality of the program may be degraded. Absolute maximum ratings, therefore, are the values exceeding which the product may be physically damaged. Use the program keeping all the parameters within these rated values.

The standards and conditions shown in DC and AC Characteristics below specify the range within which the normal operation of the product is guaranteed.

75

DC CHARACTERISTICS (T_A = -40 to +85 °C, V_{DD} = 3 V \pm 10%)

Parameter	Symbol	Tes	st Conditions	MIN.	TYP.	MAX.	Unit
Input voltage high	ViH	Except RESE	Ŧ	0.7 Vdd		VDD+0.3	V
		RESET		0.8 V _{DD}		Vpp+0.3	
Input voltage low	VIL	Except RESE	ĪΤ	-0.5		0.2 V _{DD}	V
		RESET					
Clock input voltage high	Vкн			0.8 V _{DD}		VDD+0.5	V
Clock input voltage low	VĸL			-0.5		0.2 V _{DD}	V
Output voltage high	Vон	Iон = −2.5 mA		0.7 Vdd			V
		Іон = -100 μΑ		V _{DD} - 0.4			
Output voltage low	Vol	Except END/	TC: IoL = 2.5 mA			0.4	V
		END/TC	: loL = 5.0 mA	1			
Input leak current high	Іпн	Vı = Vdd				10	μΑ
Input leak current low	ILIL	V1 = 0 V	: Except INTP			-10	μΑ
INTP input current low	ILIPL	V1 = 0 V	: INTP input			-300	μΑ
Output leak current high	Ісон	Vo = VDD				10	μΑ
Output leak current low	ILOL	Vo = 0 V				-10	μΑ
Latch leak current high	Ішн	Vı = 3.0 V		-50		-300	μΑ
Latch leak current low	ILLL	Vı = 0.8 V		50		300	μΑ
Latch inversion current $(L \rightarrow H)$	Ііін					400	μΑ
Latch inversion current (H \rightarrow L)	lill					-400	μΑ
Supply current ^{Note}	IDD	E, P, X, M	On Operation		3.0 fx	5.5 fx	mA
		masks	On standby (HALT)		0.9 fx	1.5 fx	
			On standby (STOP)			30	μΑ
		Others	On Operation		2.5 fx	4.0 fx	mA
			On standby (HALT)		0.9 fx	1.5 fx	
			On standby (STOP)			30	μΑ

Note The unit of constant values (0.9, 1.5, 2.5, 3.0, 4.0 and 5.5) is mA/MHz.

CAPACITANCE (TA = 25°C, VDD = 0 V)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Сі	fc = 1 MHz			10	pF
Input/output capacitance	Сю	0 V other than test pin.			15	pF

AC CHARACTERISTICS

(1) μ PD70208H, 70216H-10/12/16 (T_A = -40 to +85 °C, V_{DD} = 3 V ±10%) (1/3)

Output Pin Load Capacitance: CL = 100 pF

Parameter	Symbol		μPD70208H-10 μPD70216H-10		μPD70208H-12 μPD70216H-12		μPD70208H-16 μPD70216H-16		Unit
, alamoto			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Orme
External clock input cycle	<1>	tcyx	100	DC	83	DC	62.5	DC	ns
External clock input high-level width (Vкн=0.8 VDD)	<2>	tххн	40		30		20		ns
External clock input low-level width (Vkl=0.2 Vdd)	<3>	txxL	40		30		20		ns
External clock input rise time (0.2 V _{DD} →0.8 V _{DD})	<4>	txr		10		10		10	ns
External clock input fall time (0.8 VDD→0.2 VDD)	<5>	txF		10		10		10	ns
Clock output cycle	<6>	tcyk	200	DC	166	DC	125	DC	ns
Clock output high-level width (VoH=0.7 VDD)	<7>	tккн	0.5tсүк-7		0.5tcүк-7		0.5tсүк-7		ns
Clock output low-level width (VoL=0.2 VDD)	<8>	tĸĸĿ	0.5tcүк-7		0.5tcүк-7		0.5tсүк-7		ns
Clock output rise time (0.2 V _{DD} →0.7 V _{DD})	<9>	tkr		7		7		7	ns
Clock output fall time (0.7 Vdd→0.2 Vdd)	<10>	tĸF		7		7		7	ns
CLKOUT delay time (vs. external clock)	<11>	toxk		75		65		55	ns
Input rise time (except external clock) (0.2 V _{DD} →0.7 V _{DD})	<12>	tır		20		20		20	ns
Input fall time (except external clock) (0.7 V _{DD} →0.2 V _{DD})	<13>	tır		12		12		12	ns
Output rise time (except CLKOUT) (0.2 Vdd → 0.7 Vdd)	<14>	tor		20		20		20	ns
Output fall time (except CLKOUT) (0.7 V _{DD} →0.2 V _{DD})	<15>	tor		12		12		12	ns
RESET setup time (vs. CLKOUT↓)Note 1	<16>	tsresk	25		25		25		ns
RESET hold time (vs. CLKOUT↓)Note 1	<17>	thkres	35		35		35		ns
RESOUT output delay time (vs. CLKOUT↓)	<18>	tokres	5	80	5	70	5	60	ns
READY inactive setup time (vs. CLKOUT↑)	<19>	tsrylk	20		20		15		ns
READY inactive hold time (vs. CLKOUT↑)	<20>	thkryl	30		30		25		ns
READY active setup time (vs. CLKOUT↑)	<21>	tsryhk	20		20		15		ns
READY active hold time (vs. CLKOUT↑)	<22>	tнккүн	30		30		25		ns
NMI setup time (vs. CLKOUT↑)	<23>	tsимік	15		15		15		ns
POLL setup time (vs. CLKOUT↑)	<24>	tspolk	20		20		20		ns
Data setup time (vs. CLKOUT↓)	<25>	tsdk	20		20		15		ns
Data hold time (vs. CLKOUT↓)	<26>	tнкр	5		5		5		ns
CLKOUT → address delay time ^{Note 2}	<27>	t DKA	5	75	5	65	5	55	ns
CLKOUT o address hold time	<28>	thka	10		10		10		ns
$CLKOUT\!\!\downarrow \to PS$ delay time	<29>	t DKP	5	80	5	70	5	60	ns
$CLKOUT\!\!\downarrow \to PS$ float delay time	<30>	tfkp	5	80	5	70	5	60	ns
Address setup time (vs. ASTB↓)	<31>	tsast	tккL-30		tккL-30		tккL-30		ns
$CLKOUT{\downarrow} o address \ float \ delay \ time^{Note \ 3}$	<32>	t FKA	5	80	5	70	5	60	ns
$CLKOUT\!\!\downarrow \to ASTB\!\!\uparrow delay time$	<33>	toksth	5	65	5	55	5	45	ns
$CLKOUT \!\! \uparrow \to ASTB \!\! \downarrow delay time$	<34>	t DKSTL	5	70	5	60	5	50	ns
ASTB high-level width	<35>	t stst	tккL—10		tккL—10		tккL—10		ns

- Notes 1. When reset with the minimum pulse width or when guaranteeing the RESOUT output timing.
 - 2. Specifications also corresponding to the QS0, QS1, and BUSLOCK signals, and A16/PS0-A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, NWR, IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.
- 3. Specifications also corresponding to the A16/PS0-A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, NWR, IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.

(1) μ PD70208H, 70216H-10/12/16 (T_A = -40 to +85 °C, V_{DD} = 3 V ±10%) (2/3)

Output Pin Load Capacitance: CL = 100 pF

Paramet	er	Sv	mbol	μPD7020 μPD7021		μPD7020 μPD7021		μPD70208		Unit
T dramos				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Onne
ASTB↓ → address hold time		<36>	thsta	tккн-30		tккн-30		tккн-20		ns
CLKOUT → control 1 Note 1 de	elay time	<37>	tDKCT1	5	90	5	80	5	70	ns
CLKOUT → control 2 ^{Note 2} de	elay time	<38>	tDKCT2	5	80	5	70	5	60	ns
Address float $\rightarrow \overline{RD} \downarrow$ delay ti	me	<39>	t DAFRL	0		0		0		ns
$CLKOUT\!\!\downarrow \to \overline{RD}\!\!\downarrow delay\ time$		<40>	t _{DKRL}	5	95	5	85	5	75	ns
$CLKOUT \downarrow \rightarrow \overline{RD} \uparrow delay time$		<41>	tokrh	5	90	5	80	5	70	ns
$\overline{RD}\!\!\uparrow o address delay time$		<42>	t DRHA	tсүк-70		tсүк-60		tсүк-50		ns
RD low-level width		<43>	trr	2tcүк-70		2tсүк-60		2tсүк-50		ns
BUFEN↑ → BUFR/W delay ti	me (read cycle)	<44>	tobect	tккL-30		tккL-30		tккL-20		ns
CLKOUT↓ → data output dela	ay time	<45>	t DKD	5	80	5	70	5	60	ns
CLKOUT↓ → data float delay	time	<46>	t FKD	5	80	5	70	5	60	ns
WR low-level width		<47>	tww	2tсүк-50		2tсүк-50		2tсүк-40		ns
$\overline{WR} \uparrow \rightarrow \overline{BUFEN} \uparrow \text{ or } BUF\overline{R}/W$	√↓ (write cycle)	<48>	towct	tккL-30		tккL-30		tккL-20		ns
$CLKOUT \!\! \uparrow \to BS \!\! \downarrow delay time$		<49>	t _{DKBL}	5	80	5	70	5	60	ns
$CLKOUT\!\!\downarrow \to BS\!\!\uparrow delay$ time		<50>	tоквн	5	80	5	70	5	60	ns
HLDRQ setup time (vs. CLKC	DUT↓)	<51>	tsнqк	25		25		20		ns
$CLKOUT\!\!\downarrow \to HLDAK$ delay time		<52>	t DKHA	5	90	5	80	5	70	ns
CLKOUT↑ → DMAAK delay to	ime	<53>	t DKHDA	5	80	5	70	5	60	ns
CLKOUT↓ → DMAAK delay ti	ime (cascade mode)	<54>	t DKLDA	5	110	5	100	5	90	ns
WR low-level width	DMA extended write	<55>	tww1	2tсүк-50		2tсүк-50		2tсүк-40		ns
(DMA cycle)	DMA normal write	<56>	tww2	tсүк-50		tсүк-50		tсүк-40		ns
$\overline{RD}\downarrow \overline{WR}\downarrow$ delay time (vs. \overline{DW}	IAAK↓)	<57>	tddarw	tккн—40		tккн-40		tккн-30		ns
DMAAK↑ delay time (vs. RD1	`)	<58>	torhdah	tккL—40		tккL—40		tккL-30		ns
RD↑ delay time (vs. WR↑)		<59>	towhrh	5		5		5		ns
TC output delay time (vs. CL	KOUT↑)	<60>	toktcl	5	80	5	70	5	60	ns
TC OFF delay time (vs. CLKC	DUT↑)	<61>	toktof	5	80	5	70	5	60	ns
TC low-level width		<62>	ttctcl	tсүк-25		tсүк-25		tсүк-15		ns
TC pull-up delay time (vs. CL	KOUT↑)	<63>	tоктсн		Note 3		Note 4		Note 4	ns
END setup time (vs. CLKOUT	「↑)	<64>	tsedk	45		40		35		ns
END low-level width		<65>	tededl	140		120		100		ns
DMARQ setup time (vs. CLK0	OUT^)	<66>	tsdqk	45		40		35		ns
INTPn low-level width		<67>	tipipl	100		100		100		ns
RxD setup time (vs. SCU inte	rnal clock↓)	<68>	tsrx	1000		1000		1000		ns
RxD hold time (vs. SCU interi	nal clock↓)	<69>	thrx	1000		1000		1000		ns
$CLKOUT\!\!\downarrow \to \overline{SRDY}$ delay tim	ne	<70>	toksr		150		150		150	ns

Notes 1. $\overline{\text{MWR}}$ and $\overline{\text{IOWR}}$ signals in DMA cycle

- 2. MWR and IOWR signals in BUFEN, BUFR/W, INTAK, REFRQ and CPU cycles.
- 3. $t_{KKH} + 2t_{CYK} 20$ (Reference value when a 1.1-k Ω pull-up resistor is connected)
- 4. t_{KKH} + $2t_{CYK}$ 10 (Reference value when a 1.1- $k\Omega$ pull-up resistor is connected)

(1) μ PD70208H, 70216H-10/12/16 (T_A = -40 to +85 °C, V_{DD} = 3 V ±10%) (3/3)

Output Pin Load Capacitance: CL = 100 pF

Parameter		/mbol	μPD70208H-10 μPD70216H-10		μPD70208H-12 μPD70216H-12		μPD70208H-16 μPD70216H-16		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
TOUT1↓→ TxD delay time	<71>	totx		500		500		500	ns
TCTL2 setup time (vs. CLKOUT↓)	<72>	t sgk	50		50		50		ns
TCTL2 setup time (vs. TCLK↑)	<73>	tsgтк	50		50		50		ns
TCTL2 hold time (vs. CLKOUT↓)	<74>	tнкс	100		100		100		ns
TCTL2 hold time (vs. TCLK↑)	<75>	tнткс	50		50		50		ns
TCTL2 high-level width	<76>	tввн	50		50		50		ns
TCTL2 low-level width	<77>	tggL	50		50		50		ns
TOUT output delay time (vs. CLKOUT↓)	<78>	tokto		200		200		200	ns
TOUT output delay time (vs. TCLK↓)	<79>	tdtkto		150		150		150	ns
TOUT output delay time (vs. TCTL2↓)	<80>	tовто		120		120		120	ns
TCLK rise time	<81>	t TKR		25		25		25	ns
TCLK fall time	<82>	t TKF		25		25		25	ns
TCLK high-level width	<83>	tткткн	60		55		50		ns
TCLK low-level width	<84>	t TKTKL	60		55		50		ns
TCLK cycle	<85>	tсүтк	200	DC	166	DC	125	DC	ns
Access interval ^{Note 1}	<86>	tai	2tсүк-70		2tсүк-60		2tсүк-50		ns
REFRQ↑ delay time (vs. MRD↑)Note 2	<87>	tdrqhrh	tккL—50		tккL—40		tккL-30		ns
RESET pulse widthNote 3	<88>	twresl	4tсүк		4tcүк		4tcүк		ns

- Notes 1. Specification to guarantee read/write recovery time for I/O device.
 - 2. Specification to guarantee that REFRQ↑ is always later than MRD↑. Only guaranteed when the EREF bit of the SCTL register is 0.
 - 3. When using internal clock generator by connecting a resonator to the X1 and X2 pins, the oscillation stabilization time must be added at power-ON. Because the oscillation stabilization time varies depending on the characteristics of the resonator and oscillation circuit used, evaluate the oscillation stabilization time with the resonator and oscillation circuit actually used.

(2) μ PD70208H, 70216H-20 (TA = -40 to +85 °C, VDD = 3 V \pm 10%) (1/3)

Output Pin Load Capacitance: CL = 100 pF

Parameter		mbol	μPD70208H-20 μPD70216H-20		Unit
			MIN.	MAX.	
External clock input cycle	<1>	tcyx	50	DC	ns
External clock input high-level width (VKH=0.8 VDD)	<2>	tххн	19		ns
External clock input low-level width (V _{KL} =0.2 V _{DD})	<3>	txxL	19		ns
External clock input rise time (0.2 V _{DD} →0.8 V _{DD})	<4>	txR		5	ns
External clock input fall time (0.8 Vdd→0.2 Vdd)	<5>	txF		5	ns
Clock output cycle	<6>	t cyk	100	DC	ns
Clock output high-level width (VoH=0.7 VDD)	<7>	t kkh	0.5tсүк-7		ns
Clock output low-level width (VoL=0.2 VDD)	<8>	tkkl	0.5tсүк-7		ns
Clock output rise time (0.2 V _{DD} →0.7 V _{DD})	<9>	t kr		7	ns
Clock output fall time (0.7 V _{DD} →0.2 V _{DD})	<10>	tĸF		7	ns
CLKOUT delay time (vs. external clock)	<11>	toxk		45	ns
Input rise time (except external clock) (0.2 V _{DD} →0.7 V _{DD})	<12>	tır		15	ns
Input fall time (except external clock) (0.7 Vdd→0.2 Vdd)	<13>	tır		10	ns
Output rise time (except CLKOUT) (0.2 Vpp→0.7 Vpp)	<14>	tor		15	ns
Output fall time (except CLKOUT) (0.7 VDD→0.2 VDD)	<15>	t of		10	ns
RESET setup time (vs. CLKOUT↓)Note 1	<16>	tsresk	25		ns
RESET hold time (vs. CLKOUT↓)Note 1	<17>	thkres	25		ns
RESOUT output delay time (vs. CLKOUT↓)	<18>	t DKRES	5	50	ns
READY inactive setup time (vs. CLKOUT↑)	<19>	tsrylk	15		ns
READY inactive hold time (vs. CLKOUT [↑])	<20>	thkryl	20		ns
READY active setup time (vs. CLKOUT↑)	<21>	t sryhk	15		ns
READY active hold time (vs. CLKOUT [↑])	<22>	thkryh	20		ns
NMI setup time (vs. CLKOUT↑)	<23>	tsимік	15		ns
POLL setup time (vs. CLKOUT↑)	<24>	t spolk	20		ns
Data setup time (vs. CLKOUT↓)	<25>	t sdk	15		ns
Data hold time (vs. CLKOUT↓)	<26>	t HKD	5		ns
CLKOUT → address delay time ^{Note 2}	<27>	t dka	5	50	ns
CLKOUT → address hold time	<28>	t hka	10		ns
$CLKOUT \downarrow \to PS$ delay time	<29>	t DKP	5	50	ns
$CLKOUT \downarrow \to PS$ float delay time	<30>	t FKP	5	50	ns
Address setup time (vs. ASTB↓)	<31>	t sast	tккL—20		ns
CLKOUT \downarrow \rightarrow address float delay time Note 3	<32>	trka	thka	50	ns
CLKOUT \downarrow \rightarrow ASTB \uparrow delay time	<33>	toksth		40	ns
CLKOUT $\uparrow \rightarrow$ ASTB \downarrow delay time	<34>	tokstl		45	ns
ASTB high-level width	<35>	t sтsт	tккL—10		ns

- Notes 1. When reset with the minimum pulse width or when guaranteeing the RESOUT output timing.
- 2. Specifications also corresponding to the QS0, QS1, and BUSLOCK signals, and A16/PS0-A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, NWR, IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.
- ★ 3. Specifications also corresponding to the A16/PS0-A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, NWR, IOWR, and BS0-BS2 signals at HLDRQ/HLDAK timing.

(2) μ PD70208H, 70216H-20 (T_A = -40 to +85 °C, V_{DD} = 3 V ±10%) (2/3)

Output Pin Load Capacitance: CL = 100 pF

Parameter	Symbol		μPD70208H-20 μPD70216H-20		Unit	
				MIN.	MAX.	
$ASTB \downarrow \to address \; hold \; time$		<36>	t HSTA	tккн-20		ns
CLKOUT → control 1 ^{Note 1} delay time		<37>	tDKCT1	5	60	ns
CLKOUT → control 2 ^{Note 2} delay time		<38>	tdkct2	5	55	ns
Address float $ ightarrow \overline{ ext{RD}} \downarrow$ delay time		<39>	t DAFRL	0		ns
$CLKOUT \downarrow \to \overline{RD} \downarrow delay \; time$		<40>	t DKRL	5	65	ns
$CLKOUT \downarrow \to \overline{RD} \uparrow delay \ time$		<41>	t dkrh	5	60	ns
$\overline{RD} \uparrow \to address delay time$		<42>	t drha	tсүк-40		ns
RD low-level width		<43>	trr	2tсүк-40		ns
BUFEN ↑ → BUFR/W delay time (read cycle)		<44>	tdbect	tккL-20		ns
$CLKOUT \downarrow \to data$ output delay time		<45>	t DKD	5	55	ns
$CLK \overline{O}UT \downarrow \to data$ float delay time		<46>	t FKD	5	55	ns
WR low-level width		<47>	tww	2tсүк-40		ns
$\overline{WR} \uparrow \to \overline{BUFEN} \uparrow or \; BUFR/W \downarrow (write cycle)$				tккL-20		ns
$CLKOUT \uparrow \to BS \downarrow delay \; time$				5	55	ns
CLKOUT \downarrow \rightarrow BS \uparrow delay time				5	55	ns
HLDRQ setup time (vs. CLKOUT ↓)				15		ns
CLKOUT \downarrow \rightarrow HLDAK delay time				5	60	ns
$CLKOUT \uparrow o \overline{DMAAK}$ delay time		<53>	t DKHDA	5	55	ns
$CLKOUT \downarrow \to \overline{DMAAK} \; delay \; time \; (cascade \; mode)$		<54>	t DKLDA	5	80	ns
WR low-level width (DMA cycle)	MA extended write	<55>	tww1	2tсүк-40		ns
DN	MA normal write	<56>	tww2	tсүк-40		ns
$\overline{\text{RD}}\downarrow$, $\overline{\text{WR}}\downarrow$ delay time (vs. $\overline{\text{DMAAK}}\downarrow$)		<57>	tddarw	tккн-30		ns
DMAAK ↑ delay time (vs. RD ↑)		<58>	t DRHDAH	tккL-30		ns
$\overline{RD} \uparrow delay time \; (vs. \; \overline{WR} \uparrow)$		<59>	towhrh	3		ns
TC output delay time (vs. CLKOUT ↑)		<60>	t DKTCL		55	ns
TC OFF delay time (vs. CLKOUT ↑)		<61>	t DKTCF		55	ns
TC low-level width		<62>	t TCTCL	tсүк-15		ns
TC pull-up delay time (vs. CLKOUT ↑)		<63>	t DKTCH		Note 3	ns
END setup time (vs. CLKOUT ↑)		<64>	tsedk	30		ns
END low-level width			tededl	80		ns
DMARQ setup time (vs. CLKOUT ↑)			tsdqk	30		ns
INTPn low-level width		<67>	tipipl	80		ns
RxD setup time (vs. SCU internal clock ↓)		<68>	tsrx	500		ns
RxD hold time (vs. SCU internal clock ↓)		<69>	thrx	500		ns
$CLKOUT\downarrow o \overline{SRDY}$ delay time		<70>	toksr		100	ns

- Notes 1. $\overline{\text{MWR}}$ and $\overline{\text{IOWR}}$ signals in DMA cycle
 - 2. MWR and IOWR signals in BUFEN, BUFR/W, INTAK, REFRQ, and CPU cycles
 - 3. $t_{KKH} + 2t_{CYK} 10$ (reference value when a 1.1-k Ω pull-up resistor is connected)

(2) μ PD70208H, 70216H-20 (T_A = -40 to +85 °C, V_{DD} = 3 V ±10%) (3/3)

Output Pin Load Capacitance: CL = 100 pF

Parameter	Sv	mbol	μPD70208H-20 μPD70216H-20		Unit
			MIN.	MAX.	
TOUT1 $↓$ → TxD delay time	<71>	totx		200	ns
TCTL2 setup time (vs. CLKOUT ↓)	<72>	t sgĸ	40		ns
TCTL2 setup time (vs. TCLK ↑)	<73>	tsgтк	40		ns
TCTL2 hold time (vs. CLKOUT ↓)	<74>	tнкg	80		ns
TCTL2 hold time (vs. TCLK ↑)	<75>	tнткс	40		ns
TCTL2 high-level width	<76>	tввн	40		ns
TCTL2 low-level width	<77>	tggL	40		ns
TOUT output delay time (vs. CLKOUT ↓)	<78>	tокто		150	ns
TOUT output delay time (vs. TCLK ↓)	<79>	tdtkto		100	ns
TOUT output delay time (vs. TCTL2 ↓)	<80>	tовто		90	ns
TCLK rise time	<81>	t TKR		25	ns
TCLK fall time	<82>	t TKF		25	ns
TCLK high-level width	<83>	t ткткн	45		ns
TCLK low-level width	<84>	t TKTKL	45		ns
TCLK cycle	<85>	tсүтк	100	DC	ns
Access interval ^{Note 1}	<86>	tai	2tсүк-40		ns
REFRQ ↑ delay time (vs. MRD ↑)Note 2	<87>	t DRQHRH	tккL-30		ns
RESET pulse widthNote 3	<88>	twresl	4tсүк		ns

Notes 1. This rating is to guarantee the read/write recovery time for the I/O device.

- 2. This rating is to guarantee that REFRQ ↑ is always behind MRD ↑, and is guaranteed only when the EREF bit of the STCL register is 0.
- 3. When using internal clock generator by connecting a resonator to the X1 and X2 pins, the oscillation stabilization time must be added at power-ON. Because the oscillation stabilization time varies depending on the characteristics of the resonator and oscillation circuit used, evaluate the oscillation stabilization time with the resonator and oscillation circuit actually used.

82

NEC

RECOMMENDED OSCILLATION CIRCUIT

The clock input circuits (1) and (2) shown below are recommended.

(1) Ceramic resonator connection (T_A = -40 to +85 °C, V_{DD} = 3 V $\pm 10\%^{Note}$)

Cautions 1. The oscillation circuit should be as close as possible to the X1 and X2 pins.

- 2. No other signal lines should pass through the area enclosed in dashed line.
- 3. V40HL, V50HL and resonator matching requires careful evaluation.
- 4. The values of the oscillation circuit constants C1 and C2 depend on the characteristics of the resonator used. Evaluate them with the resonator actually used.

Manufacturer	Frequency	Product Name	Recommended Constant	
	(fxx) [MHz]		C1 [pF]	C2 [pF]
Murata Mfg.	20	CSA20.00MXZ040 ^{Note}	10	10
Co., Ltd.	16	CSA16.00MXZ040	15	15
	16	CSA16.00MXW0C3	-	-
	12.5	CSA12.5MTZ	30	30
		CSA12.5MTW	_	_
		CSA10.0MTZ	30	30
	10	CST10.0MXW	_	_
TDK	20	FCR20.0M2G	10	10
Corporation	16	FCR16.0M2G	15	15
	10	FCR10.0MC	_	_

Note Use the CAS20.00MXZ040 within the range of $V_{DD} = 2.9$ to 3.3 V.

(2) External clock input

Caution The high-speed CMOS inverter should be as close as possible to the X1 and X2 pins.

AC Test Input Waveform (Except X1 and X2) (at 5 V operation)

AC Test Output Test Points (at 5 V operation)

AC Test Input Waveform (Except X1 and X2) (at 3 V operation)

AC Test Output Waveform (at 3 V operation)

Load Conditions

Caution If the load capacitance exceeds 100 pF due to the configuration of the circuit, the load capacitance of this device should be reduced to 100 pF or less by insertion of a buffer, etc.

Clock Timing

★ Reset Timing

Ready Timing (1)

Ready Timing (2)

Note Variation range

* Read Timing

Note High-level signal is output in case of internal access.

* Write Timing

Note High-level signal is output in case of internal access.

* Status Timing

Notes 1. MRD, IORD, MWR, IOWR (all output)

2. High-level signal is output in case of internal access.

Interrupt Acknowledge Timing (V40HL)

- Notes 1. Slave address in case of interrupt from external μ PD71059. Invalid data in case of interrupt from internal ICU.
 - 2. Data read as vector address in case of interrupt from external μ PD71059. High impedance in case of interrupt from internal ICU.
 - 3. Low-level output in case of interrupt from external μ PD71059. High-level output in case of interrupt from internal ICU.

Interrupt Acknowledge Timing (V50HL)

- Notes 1. Slave address in case of interrupt from external μ PD71059. Invalid data in case of interrupt from internal ICU.
 - 2. Data read as vector address in case of interrupt from external μ PD71059. High impedance in case of interrupt from internal ICU.
 - 3. Low-level output in case of interrupt from external μ PD71059. High-level output in case of interrupt from internal ICU.

HLDRQ/HLDAK Timing (1)

Note A16/PS0 to A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, MWR, IOWR (all output): V40HL, V50HL A8-A15 (output): V40HL AD0-AD7 (input/output): V40HL AD0-AD15 (input/output) V50HL

Remark A dashed line indicates high impedance.

HLDRQ/HLDAK Timing (2)

Note A16/PS0 to A19/PS3, UBE, BUFEN, BUFR/W, MRD, IORD, MWR, IOWR (all output): V40HL, V50HL A8-A15 (output): V40HL AD0-AD7 (input/output): V40HL AD0-AD15 (input/output) V50HL

POLL, NMI Input Timing

BUSLOCK Output Timing

Access Interval

★ Refresh Timing (V40HL)

Remark A dashed line indicates high impedance.

★ Refresh Timing (V50HL)

Remark A dashed line indicates high impedance.

TCU Timing (1)

Note Applies to TOUT2 output.

TCU Timing (2)

Note Applies to TOUT2 output.

SCU Timing

★ DMAU Timing (1)

Note Low-level signal is output in extended write mode.

DMAU Timing (2)

DMAU Timing (3) (Cascade Mode)

In Normal Operation:

When Refresh Cycle is Inserted:

ICU Timing

17. PACKAGE DRAWINGS

80 PIN PLASTIC QFP (14x20)

detail of lead end

NOTE

- 1. Controlling dimension millimeter.
- 2. Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	23.6±0.4	0.929±0.016
В	20.0±0.2	$0.795^{+0.009}_{-0.008}$
С	14.0±0.2	$0.551^{+0.009}_{-0.008}$
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	0.8	0.031
Н	$0.37^{+0.08}_{-0.07}$	$0.015^{+0.003}_{-0.004}$
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
K	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.17^{+0.08}_{-0.07}$	$0.007^{+0.003}_{-0.004}$
N	0.10	0.004
Р	2.7±0.1	0.106+0.005
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.

P80GF-80-3B9-4

80 PIN PLASTIC TQFP (FINE PITCH) (\square 12)

detail of lead end

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
Α	14.0±0.2	0.551±0.008
В	12.0±0.2	$0.472^{+0.009}_{-0.008}$
С	12.0±0.2	$0.472^{+0.009}_{-0.008}$
D	14.0±0.2	0.551±0.008
F	1.25	0.049
G	1.25	0.049
Н	0.22±0.05	0.009+0.002
I	0.10	0.004
J	0.5 (T.P.)	0.020 (T.P.)
K	1.0±0.2	$0.039^{+0.009}_{-0.008}$
L	0.5±0.2	0.020+0.008
М	0.145±0.05	0.006+0.002
N	0.10	0.004
Р	1.0±0.05	0.040+0.002
Q	0.1±0.05	0.004±0.002
R	3°+7°	3°+7°
S	1.2 MAX.	0.048 MAX.

S80GK-50-9EU

68 PIN PLASTIC QFJ (□950 mil)

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
А	25.2±0.2	0.992±0.008
В	24.20	0.953
С	24.20	0.953
D	25.2±0.2	0.992±0.008
Е	1.94±0.15	0.076+0.007
F	0.6	0.024
G	4.4±0.2	0.173+0.009
Н	2.8±0.2	0.110+0.009
I	0.9 MIN.	0.035 MIN.
J	3.4	0.134
K	1.27 (T.P.)	0.050 (T.P.)
М	0.40±1.0	0.016+0.004
N	0.12	0.005
Р	23.12±0.20	0.910+0.009
Q	0.15	0.006
Т	R 0.8	R 0.031
U	0.20+0.10	0.008+0.004

18. RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the conditions recommended in the table below.

For the details of recommended soldering conditions for the surface mounting type, refer to the information document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact our salesman.

Table 18-1. Soldering Conditions

(1) μ PD70208HGF-×-3B9 : 80-pin plastic QFP (14 × 20 mm) μ PD70216HGF-×-3B9 : 80-pin plastic QFP (14 × 20 mm)

(a) K, E, X masks

Soldering Method	Soldering Conditions	Recommended Conditions Symbol
Infrared reflow	Package peak temperature: 230 °C, Time: 30 sec. max. (210 °C min.), Number of times: 1, Number of days Note: 7 days (after this, prebaking is necessary at 125 °C for 10 hours)	IR30-107-1
VPS	Package peak temperature: 215 °C, Time: 40 sec. max. (200 °C min.), Number of times: 1, Number of days Note: 7 days (after this, prebaking is necessary at 125 °C for 10 hours)	VP15-107-1
Wave soldering	Solder bath temperature: 260 °C max. Time: 10 sec. max., Number of times: 1, Preheating temperature: 120 °C max. (Package surface temperature), Number of days Note: 7 days (after this, prebaking is necessary at 125 °C for 10 hours).	WS60-107-1
Partial pin heating	Pin temperature: 300 °C max., Time: 3 sec. max. (per device side)	_

(b) P, M masks

Soldering Method	Soldering Conditions	Recommended Conditions Symbol
Infrared reflow	Package peak temperature: 235 °C, Time: 30 sec. max. (210 °C min.), Number of times: 2 max., Number of days Note: 7 days (after this, prebaking is necessary at 125 °C for 20 hours). < Precautions > Products other than in heat-resistance trays (such as those packaged in a magazine, taping, or non-heat-resistance tray) cannot be baked while they are in their package.	IR35-207-2
VPS	Package peak temperature: 215 °C, Time: 40 sec. (200 °C min.) Number of times: 2 max., Number of days Note: 7 days (after this prebaking is necessary at 125 °C for 20 hours). < Precautions> Products other than in heat-resistance trays (such as those packaged in a magazine, taping, or non-heat-resistance tray) cannot be baked while they are in their package.	VP15-207-2
Wave soldering	Solder bath temperature: 260 °C max., Time: 10 sec. max., Number of times: 1, Preheating temperature: 120 °C max. (Package surface temperature). Number of days Note: 7 days (after this, prebaking is necessary at 125 °C for 20 hours).	WS60-207-1
Partial pin heating	Pin temperature: 300 °C max., Time: 3 sec. max. (per device side)	_

Note This means the number of days after unpacking the dry pack. Storage conditions are 25 °C and 65% RH max.

(c) L, F masks

	Soldering Method	Soldering Conditions	Recommended Conditions Symbol
*	Infrared reflow	Package peak temperature: 235 °C, Time: 30 sec. max. (210 °C min.), Number of times: 3 max. < Precautions > Products other than in heat-resistance trays (such as those packaged in a magazine, taping, or non-heat-resistance tray) cannot be baked while they are in their package.	IR35-00-3
*	VPS	Package peak temperature: 215 °C, Time: 40 sec. (200 °C min.) Number of times: 3 max. < Precautions> Products other than in heat-resistance trays (such as those packaged in a magazine, taping, or non-heat-resistance tray) cannot be baked while they are in their package.	VP15-00-3
	Wave soldering	Solder bath temperature: 260 °C max., Time: 10 sec. max., Number of times: 1, Preheating temperature: 120 °C max. (Package surface temperature)	WS60-00-1
	Partial pin heating	Pin temperature: 300 °C max., Time: 3 sec. max. (per device side)	_

Caution Do not use one soldering method in combination with another. (however, partial pin heating can be performed with other soldering methods).

(2) μ PD70208HGK-×-9EU : 80-pin plastic TQFP (fine pitch) (12 × 12 mm) μ PD70216HGK-×-9EU : 80-pin plastic TQFP (fine pitch) (12 × 12 mm)

(a) K, E, X masks

Soldering Method	Soldering Conditions	Recommended Conditions Symbol
Infrared reflow	Package peak temperature: 230 °C, Time: 30 sec. max. (210 °C min.), Number of timers: 1, Number of days Note: 1 day (after this, prebaking is necessary at 125 °C for 10 hours)	IR30-101-1
VPS	Package peak temperature: 215 °C, Time: 40 sec. max. (200 °C min.), Number of times: 1, Number of days Note: 1 day (after this, prebaking is necessary at 125 °C for 10 hours)	VP15-101-1
Partial pin heating	Pin temperature: 300 °C max., Time: 3 sec. max. (per device side)	_

(b) P, M, L, F masks

Soldering Method	Soldering Conditions	Recommended Conditions Symbol
Infrared reflow	Package peak temperature: 235 °C, Time: 30 sec. max. (210 °C min.), Number of times: 2 max., Number of days Note: 7 days (after this, prebaking is necessary at 125 °C for 10 hours). < Precautions > Products other than in heat-resistance trays (such as those packaged in a magazine, taping, or non-heat-resistance tray) cannot be baked while they are in their package.	IR35-107-2
VPS	Package peak temperature: 215 °C, Time: 40 sec. (200 °C min.), Number of times: 2 max., Number of days Note: 7 days (after this prebaking is necessary at 125 °C for 10 hours). < Precautions> Products other than in heat-resistance trays (such as those packaged in a magazine, taping, or non-heat-resistance tray) cannot be baked while they are in their package.	VP15-107-2
Partial heating	Pin temperature: 300 °C max., Time: 3 sec. max. (per device side)	_

Note This means the number of days after unpacking the dry pack. Storage conditions are 25 °C and 65% RH max.

Caution Do not use one soldering method in combination with another. (however, partial pin heating can be performed with other soldering methods).

(3) μ PD70208HLP- \times : 68-pin plastic QFJ (950 \times 950 mil) μ PD70216HLP- \times : 68-pin plastic QFJ (950 \times 950 mil)

(a) K, E, X masks

Soldering Method	Soldering Conditions	Recommended Conditions Symbol
Infrared reflow	Package peak temperature: 230 °C, Time: 30 sec. max. (210 °C min.), Number of timers: 1, Number of days Note: 7 days (after this, prebaking is necessary at 125 °C for 36 hours)	IR30-367-1
VPS	Package peak temperature: 215 °C, Time: 40 sec. max. (200 °C min.), Number of times: 1, Number of days Note: 7 days (after this, prebaking is necessary at 125 °C for 36 hours)	VP15-367-1
Partial pin heating	Pin temperature: 300 °C max., Time: 3 sec. max. (per device side)	_

(b) P, M, L, F masks

	Soldering Method	Soldering Conditions	Recommended Conditions Symbol
*	Infrared reflow	Package peak temperature: 235 °C, Time: 30 sec. max. (210 °C min.), Number of times: 3 max., Number of days Note: 7 days (after this, prebaking is necessary at 125 °C for 36 hours). < Precautions > Products other than in heat-resistance trays (such as those packaged in a magazine, taping, or non-heat-resistance tray) cannot be baked while they are in their package.	IR35-367-3
*	VPS	Package peak temperature: 215 °C, Time: 40 sec. (200 °C min.), Number of times: 3 max., Number of days Note: 7 days (after this prebaking is necessary at 125 °C for 36 hours). < Precautions> Products other than in heat-resistance trays (such as those packaged in a magazine, taping, or non-heat-resistance tray) cannot be baked while they are in their package.	VP15-367-3
	Partial pin heating	Pin temperature: 300 °C max., Time: 3 sec. max. (per device side)	_

Note This means the number of days after unpacking the dry pack. Storage conditions are 25 °C and 65% RH max.

Caution Do not use one soldering method in combination with another. (however, partial pin heating can be performed with other soldering methods).

[MEMO]

NOTES FOR CMOS DEVICES -

1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH

Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A.

Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 65-253-8311

Fax: 65-250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Cumbica-Guarulhos-SP, Brasil Tel: 011-6465-6810 Fax: 011-6465-6829

[MEMO]

V20, V20HL, V30, V30HL, V40, V40HL, V50, V50HL and V series are trademarks of NEC Corporation.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5