Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

15 de julio de 2022

- Funcionales lineales y Distribuciones
- 2 Funciones de prueba, soporte y Delta de Dirac
- Oelta de Dirac: Generalidades
- 4 Delta de Dirac: Distribuciones y Sucesiones
- Delta de Dirac: Propiedades
- 6 Ejemplos para la discusión
- Recapitulando

• En el concepto de impulso $\vec{\mathcal{I}} = \vec{p}_{\tau} = \int_{0}^{\tau} \vec{F}(t) \mathrm{d}t$ $\Rightarrow \Delta \vec{p} = \vec{p}_{t_0+\tau} - \vec{p}_{t_0} = \int_{t_0}^{t_0+\tau} \vec{F}(t) \mathrm{d}t$, la fuerza $\vec{F}(t)$ actúa sobre un cuerpo durante un intervalo muy corto de tiempo y cambia su cantidad de movimiento $\vec{p}_{t_0} \to \vec{p}_{t_0+\tau}$.

- En el concepto de impulso $\vec{\mathcal{I}} = \vec{p}_{\tau} = \int_0^{\tau} \vec{F}(t) \mathrm{d}t$ $\Rightarrow \Delta \vec{p} = \vec{p}_{t_0+\tau} \vec{p}_{t_0} = \int_{t_0}^{t_0+\tau} \vec{F}(t) \mathrm{d}t$, la fuerza $\vec{F}(t)$ actúa sobre un cuerpo durante un intervalo muy corto de tiempo y cambia su cantidad de movimiento $\vec{p}_{t_0} \to \vec{p}_{t_0+\tau}$.
- La cantidad físicamente importante es el valor de la integral. Se asocia con el impulso que se le provee al cuerpo para sacarlo del reposo.

- En el concepto de impulso $\vec{\mathcal{I}} = \vec{p}_{\tau} = \int_0^{\tau} \vec{F}(t) \mathrm{d}t$ $\Rightarrow \Delta \vec{p} = \vec{p}_{t_0+\tau} \vec{p}_{t_0} = \int_{t_0}^{t_0+\tau} \vec{F}(t) \mathrm{d}t$, la fuerza $\vec{F}(t)$ actúa sobre un cuerpo durante un intervalo muy corto de tiempo y cambia su cantidad de movimiento $\vec{p}_{t_0} \to \vec{p}_{t_0+\tau}$.
- La cantidad físicamente importante es el valor de la integral. Se asocia con el impulso que se le provee al cuerpo para sacarlo del reposo.
- Las distribuciones generalizan la noción convencional de funciones en el análisis matemático Permiten diferenciar funciones cuyas derivadas no existen en el sentido tradicional del cálculo diferencial.

- En el concepto de impulso $\vec{\mathcal{I}} = \vec{p}_{\tau} = \int_0^{\tau} \vec{F}(t) \mathrm{d}t$ $\Rightarrow \Delta \vec{p} = \vec{p}_{t_0+\tau} \vec{p}_{t_0} = \int_{t_0}^{t_0+\tau} \vec{F}(t) \mathrm{d}t$, la fuerza $\vec{F}(t)$ actúa sobre un cuerpo durante un intervalo muy corto de tiempo y cambia su cantidad de movimiento $\vec{p}_{t_0} \to \vec{p}_{t_0+\tau}$.
- La cantidad físicamente importante es el valor de la integral. Se asocia con el impulso que se le provee al cuerpo para sacarlo del reposo.
- Las distribuciones generalizan la noción convencional de funciones en el análisis matemático Permiten diferenciar funciones cuyas derivadas no existen en el sentido tradicional del cálculo diferencial.
- Se utilizan ampliamente en la teoría de las ecuaciones diferenciales parciales, donde puede ser más fácil establecer la existencia de soluciones distribucionales que de soluciones clásicas.

- En el concepto de impulso $\vec{\mathcal{I}} = \vec{p_{\tau}} = \int_0^{\tau} \vec{F}(t) \mathrm{d}t$ $\Rightarrow \Delta \vec{p} = \vec{p_{t_0+\tau}} \vec{p_{t_0}} = \int_{t_0}^{t_0+\tau} \vec{F}(t) \mathrm{d}t$, la fuerza $\vec{F}(t)$ actúa sobre un cuerpo durante un intervalo muy corto de tiempo y cambia su cantidad de movimiento $\vec{p_{t_0}} \to \vec{p_{t_0+\tau}}$.
- La cantidad físicamente importante es el valor de la integral. Se asocia con el impulso que se le provee al cuerpo para sacarlo del reposo.
- Las distribuciones generalizan la noción convencional de funciones en el análisis matemático Permiten diferenciar funciones cuyas derivadas no existen en el sentido tradicional del cálculo diferencial.
- Se utilizan ampliamente en la teoría de las ecuaciones diferenciales parciales, donde puede ser más fácil establecer la existencia de soluciones distribucionales que de soluciones clásicas.
- El caso más emblemático de las distribuciones lo constituye la función delta de Dirac: una "función" que es cero en todo punto menos en uno que infinita.

• Consideremos la siguiente función

$$\phi(x) = \begin{cases} 0 & \text{si} \quad |x| \ge 1\\ \exp\left(-\frac{1}{1-x^2}\right) & \text{si} \quad |x| < 1 \end{cases}$$

Consideremos la siguiente función

$$\phi(x) = \begin{cases} 0 & \text{si} \quad |x| \ge 1 \\ \exp\left(-\frac{1}{1-x^2}\right) & \text{si} \quad |x| < 1 \end{cases}$$

• Una función (o campo escalar), $\phi(\mathbf{x}) = \phi(x_1, x_2, x_3, \dots, x_n)$, es de prueba con soporte $|x| \leq 1$ en \mathbb{R}^n cuando: sea infinitamente derivable en un subconjunto cerrado K de \mathbb{R}^n e idénticamente nula fuera éste.

Consideremos la siguiente función

$$\phi(x) = egin{cases} 0 & ext{si} & |x| \ge 1 \ \exp\left(-rac{1}{1-x^2}
ight) & ext{si} & |x| < 1 \end{cases}$$

- Una función (o campo escalar), $\phi(\mathbf{x}) = \phi(x_1, x_2, x_3, \dots, x_n)$, es de prueba con soporte $|x| \leq 1$ en \mathbb{R}^n cuando: sea infinitamente derivable en un subconjunto cerrado K de \mathbb{R}^n e idénticamente nula fuera éste.
- Estas funciones $\psi = c^1 \phi_1 + c^2 \phi_2$, forman un espacio vectorial, **V**, sobre \mathbb{R}^n , y a K se le denomina el soporte de ϕ .

Consideremos la siguiente función

$$\phi(x) = \begin{cases} 0 & \text{si} \quad |x| \ge 1\\ \exp\left(-\frac{1}{1-x^2}\right) & \text{si} \quad |x| < 1 \end{cases}$$

- Una función (o campo escalar), $\phi(\mathbf{x}) = \phi(x_1, x_2, x_3, \dots, x_n)$, es de prueba con soporte $|x| \leq 1$ en \mathbb{R}^n cuando: sea infinitamente derivable en un subconjunto cerrado K de \mathbb{R}^n e idénticamente nula fuera éste.
- Estas funciones $\psi = c^1 \phi_1 + c^2 \phi_2$, forman un espacio vectorial, **V**, sobre \mathbb{R}^n , y a K se le denomina el soporte de ϕ .
- Definimos una distribución a través de un funcional de la forma $\mathcal{F}[|\phi\rangle] \in \mathbb{C} \Leftrightarrow \mathcal{F}_f[|\phi\rangle] \equiv \langle f | \phi \rangle = \int_{\mathbb{R}^n} f(\mathbf{x}) \phi(\mathbf{x}) \mathrm{d}^n \mathbf{x}$, donde $\phi(\mathbf{x})$ es una función de prueba.

Consideremos la siguiente función

$$\phi(x) = \begin{cases} 0 & \text{si} \quad |x| \ge 1\\ \exp\left(-\frac{1}{1-x^2}\right) & \text{si} \quad |x| < 1 \end{cases}$$

- Una función (o campo escalar), $\phi(\mathbf{x}) = \phi(x_1, x_2, x_3, \dots, x_n)$, es de prueba con soporte $|x| \leq 1$ en \mathbb{R}^n cuando: sea infinitamente derivable en un subconjunto cerrado K de \mathbb{R}^n e idénticamente nula fuera éste.
- Estas funciones $\psi = c^1 \phi_1 + c^2 \phi_2$, forman un espacio vectorial, **V**, sobre \mathbb{R}^n , y a K se le denomina el soporte de ϕ .
- Definimos una distribución a través de un funcional de la forma $\mathcal{F}[|\phi\rangle] \in \mathbb{C} \Leftrightarrow \mathcal{F}_f[|\phi\rangle] \equiv \langle f | \phi \rangle = \int_{\mathbb{R}^n} f(\mathbf{x}) \phi(\mathbf{x}) \mathrm{d}^n \mathbf{x}$, donde $\phi(\mathbf{x})$ es una función de prueba.
- Podemos definir la distribución $\delta_{(0)}$ definida en \mathbb{R} , como $\mathcal{F}_{\delta_{(0)}}\left[|\phi\rangle\right] \equiv \left\langle \delta_{(0)} \mid \phi \right\rangle = \int_{\mathbb{R}} \delta_{(0)}\phi(x)\mathrm{d}x \equiv \int_{\mathbb{R}} \delta(x)\phi(x)\mathrm{d}x = \phi(0),$ $\forall \phi(x_0) \in \mathbb{R}$. El soporte de $\delta_{(0)}$ es el punto x=0 de \mathbb{R} .

Consideremos la siguiente función

$$\phi(x) = \begin{cases} 0 & \text{si} \quad |x| \ge 1\\ \exp\left(-\frac{1}{1-x^2}\right) & \text{si} \quad |x| < 1 \end{cases}$$

- Una función (o campo escalar), $\phi(\mathbf{x}) = \phi(x_1, x_2, x_3, \dots, x_n)$, es de prueba con soporte $|x| \leq 1$ en \mathbb{R}^n cuando: sea infinitamente derivable en un subconjunto cerrado K de \mathbb{R}^n e idénticamente nula fuera éste.
- Estas funciones $\psi = c^1 \phi_1 + c^2 \phi_2$, forman un espacio vectorial, **V**, sobre \mathbb{R}^n , y a K se le denomina el soporte de ϕ .
- Definimos una distribución a través de un funcional de la forma $\mathcal{F}[|\phi\rangle] \in \mathbb{C} \Leftrightarrow \mathcal{F}_f[|\phi\rangle] \equiv \langle f | \phi \rangle = \int_{\mathbb{R}^n} f(\mathbf{x}) \phi(\mathbf{x}) \mathrm{d}^n \mathbf{x}$, donde $\phi(\mathbf{x})$ es una función de prueba.
- Podemos definir la distribución $\delta_{(0)}$ definida en \mathbb{R} , como $\mathcal{F}_{\delta_{(0)}}[|\phi\rangle] \equiv \left\langle \delta_{(0)} \mid \phi \right\rangle = \int_{\mathbb{R}} \delta_{(0)} \phi(x) \mathrm{d}x \equiv \int_{\mathbb{R}} \delta(x) \phi(x) \mathrm{d}x = \phi(0),$ $\forall \phi(x_0) \in \mathbb{R}$. El soporte de $\delta_{(0)}$ es el punto x = 0 de \mathbb{R} .
- En Física este tipo de objetos se conoce como Deltas de Dirac.

4 / 9

Delta de Dirac: Generalidades

 Podemos definir la "función" Delta de Dirac como el límite de una sucesión de la forma

$$\delta(x) = \lim_{n \to \infty} \delta_n \equiv \lim_{n \to \infty} \delta_n \equiv \int_{0}^{\infty} \delta(x) = \delta(x) \to \infty \quad \text{si} \quad x \to 0$$

$$\delta(x) = \lim_{n \to \infty} \delta_n \equiv \delta(x) \to \infty \quad \text{si} \quad x \to 0$$

$$\delta(x) = 0 \quad \text{si} \quad x \neq 0$$

En el límite $n \to \infty$ tendremos una "función" que se anula en todos los puntos $x \ne 0$ e infinitamente derivable. Nótese que, siguiendo la costumbre en Física, aquí estamos escribiendo $\delta_{(0)} = \delta(x)$

una sucesión funciones gaussianas tal que:

$$\int_{-\infty}^{\infty} \delta_n(x) dx = 1, \ n > 0.$$

• En general uno puede definir las distribuciones como el límite de una familia, $\{f_j(x)\}$, de funciones localmente integrables en \mathbb{R}^n de la forma $f(x) = \lim_{j \to j_0} f_j \implies \lim_{j \to j_0} \mathcal{F}_{f_j} [|\phi\rangle] \equiv \lim_{j \to j_0} \langle f_j | \phi \rangle = \lim_{j \to j_0} \int_{\mathbb{R}^n} f_j(\mathbf{x}) \phi(\mathbf{x}) \mathrm{d}^n \mathbf{x}$

- En general uno puede definir las distribuciones como el límite de una familia, $\{f_j(x)\}$, de funciones localmente integrables en \mathbb{R}^n de la forma $f(x) = \lim_{j \to j_0} f_j \implies \lim_{j \to j_0} \mathcal{F}_{f_j} [|\phi\rangle] \equiv \lim_{j \to j_0} \langle f_j | \phi \rangle = \lim_{j \to j_0} \int_{\mathbb{R}^n} f_j(\mathbf{x}) \phi(\mathbf{x}) \mathrm{d}^n \mathbf{x}$
- La familia $f_j(x) = \frac{e^{-\frac{x^2}{4j}}}{\sqrt{4\pi j}}$ para $j \to 0$ es kernel de **Gauss**.

La familia
$$f_r(\theta) = \begin{cases} \frac{1}{2\pi} \left(\frac{1-r^2}{1+r^2-2r\cos\theta} \right) & \text{si } |\theta| \leq \pi \\ 0 & \text{si } |\theta| > \pi \end{cases}$$
 para $r \to 1$

es kernel de Poisson.

La familia
$$f_k(x) = \begin{cases} \sum_{m=-k}^k \frac{1}{2\pi} e^{imx} & \text{si } |x| \leq \pi \\ 0 & \text{si } |x| > \pi \end{cases}$$
 para $k \to \infty$

será el kernel de Dirichlet.

- En general uno puede definir las distribuciones como el límite de una familia, $\{f_j(x)\}$, de funciones localmente integrables en \mathbb{R}^n de la forma $f(x) = \lim_{j \to j_0} f_j \implies \lim_{j \to j_0} \mathcal{F}_{f_j} [|\phi\rangle] \equiv \lim_{j \to j_0} \langle f_j | \phi \rangle = \lim_{j \to j_0} \int_{\mathbb{R}^n} f_j(\mathbf{x}) \phi(\mathbf{x}) \mathrm{d}^n \mathbf{x}$
- La familia $f_j(x) = \frac{e^{-\frac{x^2}{4j}}}{\sqrt{4\pi j}}$ para $j \to 0$ es kernel de **Gauss**.

La familia
$$f_r(\theta) = \begin{cases} \frac{1}{2\pi} \left(\frac{1-r^2}{1+r^2-2r\cos\theta} \right) & \text{si } |\theta| \leq \pi \\ 0 & \text{si } |\theta| > \pi \end{cases}$$
 para $r \to 1$

es kernel de Poisson.

La familia
$$f_k(x) = \begin{cases} \sum_{m=-k}^k \frac{1}{2\pi} e^{imx} & \text{si } |x| \leq \pi \\ 0 & \text{si } |x| > \pi \end{cases}$$
 para $k \to \infty$

será el kernel de Dirichlet.

• Es claro que también
$$\delta_n(x-x_0) = \sqrt{\frac{n}{\pi}}e^{-n(x-x_0)^2} \Rightarrow \delta(x-x_0) = \text{lím}_{n\to\infty} \sqrt{\frac{n}{\pi}}e^{-n(x-x_0)^2}$$

- En general uno puede definir las distribuciones como el límite de una familia, $\{f_i(x)\}$, de funciones localmente integrables en \mathbb{R}^n de la forma $f(x) = \lim_{i \to i_0} f_i \implies \lim_{i \to i_0} \mathcal{F}_{f_i} [|\phi\rangle] \equiv \lim_{i \to i_0} \langle f_i | \phi \rangle =$ $\lim_{i\to i_0} \int_{\mathbb{R}^n} f_i(\mathbf{x}) \phi(\mathbf{x}) d^n \mathbf{x}$
- La familia $f_j(x) = \frac{e^{-\frac{x^2}{4j}}}{\sqrt{4\pi i}}$ para $j \to 0$ es kernel de **Gauss**.

La familia
$$f_r(\theta) = egin{cases} \frac{1}{2\pi} \left(\frac{1-r^2}{1+r^2-2r\cos\theta} \right) & \text{ si } |\theta| \leq \pi \\ 0 & \text{ si } |\theta| > \pi \end{cases}$$
 para $r \to 1$

es kernel de Poisson.

La familia
$$f_k(x) = \begin{cases} \sum_{m=-k}^k \frac{1}{2\pi} e^{imx} & \text{si } |x| \leq \pi \\ 0 & \text{si } |x| > \pi \end{cases}$$
 para $k \to \infty$

será el kernel de **Dirichlet**.

 Es claro que también $\begin{array}{l} \delta_n(x-x_0) = \sqrt{\frac{n}{\pi}}e^{-n(x-x_0)^2} \Rightarrow \delta(x-x_0) = \lim_{n \to \infty} \sqrt{\frac{n}{\pi}}e^{-n(x-x_0)^2} \\ \bullet \ \mathcal{F}_{\delta_{(x_0)}}[|\phi\rangle] = \int_{\mathbb{R}} \delta_{(x_0)}\phi(x)\mathrm{d}x \equiv \int_{\mathbb{R}} \delta(x-x_0)\phi(x)\mathrm{d}x = \phi(x_0), \end{array}$

 $\forall \phi(x_0) \in \mathbb{R}$.

Delta de Dirac: Propiedades

Resumimos aquí algunas de las propiedades de la delta de Dirac expresadas en el sentido distribucional:

$$\bullet \ \delta(x-x_0)=\delta(x_0-x)$$

•
$$\delta(ax) = \frac{\delta(x)}{|a|}$$

•
$$x\delta(x) = 0$$

$$f(x)\delta(x-x_0) = f(x_0)\delta(x-x_0)$$

•
$$\delta(x^2 - a^2) = \frac{1}{2|a|} [\delta(x - a) + \delta(x + a)]$$

$$\bullet \ x^{n+1} \frac{\mathrm{d}^n \delta(x)}{\mathrm{d} x^n} = 0$$

•
$$\delta(\mathbf{r} - \mathbf{r}_0) = \delta(x - x_0)\delta(y - y_0)\delta(z - z_0)$$
 • $\int f(\mathbf{r})\delta(\mathbf{r} - \mathbf{r}_0)dV = f(\mathbf{r}_0)$

•
$$\int f(\mathbf{r})\delta(\mathbf{r}-\mathbf{r}_0)\mathrm{d}V = f(\mathbf{r}_0)$$

Ejemplos para la discusión

• Una distribución de carga eléctrica puntual, localizada en ${\bf r}={\bf r}_0$, puede escribirse utilizando la delta de Dirac como

$$q = \int_{V} \rho(\mathbf{r}) dV = q \underbrace{\int \delta(\mathbf{r} - \mathbf{r}_{0}) dV}_{1} \Rightarrow \rho(\mathbf{r}) = q \delta(\mathbf{r} - \mathbf{r}_{0}).$$

Ejemplos para la discusión

ullet Una distribución de carga eléctrica puntual, localizada en ${f r}={f r}_0,$ puede escribirse utilizando la delta de Dirac como

$$q = \int_{V} \rho(\mathbf{r}) dV = q \underbrace{\int \delta(\mathbf{r} - \mathbf{r}_{0}) dV}_{=1} \Rightarrow \rho(\mathbf{r}) = q \delta(\mathbf{r} - \mathbf{r}_{0}).$$

• Demostremos que: $\delta(\alpha x) = \frac{\delta(x)}{\alpha}$, $\cos \alpha > 0$. Suponemos $y = \alpha x$, entonces $\int_{-\infty}^{\infty} f(x) \delta(\alpha x) \mathrm{d}x = \int_{-\infty}^{\infty} f\left(\frac{y}{\alpha}\right) \delta(y) \frac{1}{\alpha} \mathrm{d}y = \frac{1}{\alpha} \int_{-\infty}^{\infty} f\left(\frac{y}{\alpha}\right) \delta(y) \mathrm{d}y = \frac{f(0)}{\alpha} = \int_{-\infty}^{\infty} f(x) \delta(x) \mathrm{d}x$, por lo tanto: $\delta(\alpha x) = \frac{\delta(x)}{\alpha}$. La condición $\alpha > 0$ es porque la función delta de Dirac es par, $\delta(\alpha x) = \delta(-\alpha x)$, En general $\delta(\alpha x) = \frac{\delta(x)}{|\alpha|}$.

Ejemplos para la discusión

• Una distribución de carga eléctrica puntual, localizada en $\mathbf{r} = \mathbf{r}_0$, puede escribirse utilizando la delta de Dirac como

$$q = \int_{V} \rho(\mathbf{r}) dV = q \underbrace{\int \delta(\mathbf{r} - \mathbf{r}_{0}) dV}_{=1} \Rightarrow \rho(\mathbf{r}) = q \delta(\mathbf{r} - \mathbf{r}_{0}).$$

- Demostremos que: $\delta(\alpha x) = \frac{\delta(x)}{\alpha}$, $\cos \alpha > 0$. Suponemos $y = \alpha x$, entonces $\int_{-\infty}^{\infty} f(x) \delta(\alpha x) dx =$ $\int_{-\infty}^{\infty} f\left(\frac{y}{\alpha}\right) \delta(y) \frac{1}{\alpha} dy = \frac{1}{\alpha} \int_{-\infty}^{\infty} f\left(\frac{y}{\alpha}\right) \delta(y) dy = \frac{f(0)}{\alpha} = \int_{-\infty}^{\infty} f(x) \delta(x) dx,$ por lo tanto: $\delta(\alpha x) = \frac{\delta(x)}{\alpha}$. La condición $\alpha > 0$ es porque la función delta de Dirac es par, $\delta(\alpha x) = \delta(-\alpha x)$, En general $\delta(\alpha x) = \frac{\delta(x)}{|\alpha|}$.
- Siguiendo el ejemplo anterior demuestre
 - $\delta(\alpha x x_1) = \frac{\delta(x)}{1}$, con $\alpha > 0$

 - $\delta(g(x)) = \sum_{\alpha} \frac{\delta(x-\alpha)}{|g'(\alpha)|}$.

Recuerde que las $\delta(x-x_0)$ siempre viven dentro de las integrales

• Distribuciones generalizan los conceptos de las funciones de cálculo

- Distribuciones generalizan los conceptos de las funciones de cálculo
- La cantidad significativa es la integral de la distribución

- Distribuciones generalizan los conceptos de las funciones de cálculo
- La cantidad significativa es la integral de la distribución
- Una función (o campo escalar), $\phi(\mathbf{x}) = \phi(x_1, x_2, x_3, \dots, x_n)$, es de prueba con soporte $|x| \leq 1$ en \mathbb{R}^n cuando: sea infinitamente derivable en un subconjunto cerrado K de \mathbb{R}^n e idénticamente nula fuera este.

- Distribuciones generalizan los conceptos de las funciones de cálculo
- La cantidad significativa es la integral de la distribución
- Una función (o campo escalar), $\phi(\mathbf{x}) = \phi(x_1, x_2, x_3, \dots, x_n)$, es de prueba con soporte $|x| \leq 1$ en \mathbb{R}^n cuando: sea infinitamente derivable en un subconjunto cerrado K de \mathbb{R}^n e idénticamente nula fuera este.
- Definimos una distribución a través de un funcional $\mathcal{F}[|\phi\rangle] \in \mathbb{C} \Leftrightarrow \mathcal{F}_f[|\phi\rangle] \equiv \langle f | \phi \rangle = \int_{\mathbb{R}^n} f(\mathbf{x}) \phi(\mathbf{x}) \mathrm{d}^n \mathbf{x}$, donde $\phi(\mathbf{x})$ es una función de prueba.

- Distribuciones generalizan los conceptos de las funciones de cálculo
- La cantidad significativa es la integral de la distribución
- Una función (o campo escalar), $\phi(\mathbf{x}) = \phi(x_1, x_2, x_3, \dots, x_n)$, es de prueba con soporte $|x| \leq 1$ en \mathbb{R}^n cuando: sea infinitamente derivable en un subconjunto cerrado K de \mathbb{R}^n e idénticamente nula fuera este.
- Definimos una distribución a través de un funcional $\mathcal{F}[|\phi\rangle] \in \mathbb{C} \Leftrightarrow \mathcal{F}_f[|\phi\rangle] \equiv \langle f | \phi \rangle = \int_{\mathbb{R}^n} f(\mathbf{x}) \phi(\mathbf{x}) \mathrm{d}^n \mathbf{x}$, donde $\phi(\mathbf{x})$ es una función de prueba.
- La distribución $\delta_{(0)}$ está definida en \mathbb{R} , como $\mathcal{F}_{\delta_{(0)}}\left[|\phi\rangle\right] \equiv \left\langle \delta_{(0)} \mid \phi \right\rangle = \int_{\mathbb{R}} \delta_{(0)} \phi(x) \mathrm{d}x \equiv \int_{\mathbb{R}} \delta(x) \phi(x) \mathrm{d}x = \phi(0),$ $\forall \phi(x_0) \in \mathbb{R}$. El soporte de $\delta_{(0)}$ es el punto x = 0 de \mathbb{R} .

- Distribuciones generalizan los conceptos de las funciones de cálculo
- La cantidad significativa es la integral de la distribución
- Una función (o campo escalar), $\phi(\mathbf{x}) = \phi(x_1, x_2, x_3, \dots, x_n)$, es de prueba con soporte $|x| \leq 1$ en \mathbb{R}^n cuando: sea infinitamente derivable en un subconjunto cerrado K de \mathbb{R}^n e idénticamente nula fuera este.
- Definimos una distribución a través de un funcional $\mathcal{F}[|\phi\rangle] \in \mathbb{C} \Leftrightarrow \mathcal{F}_f[|\phi\rangle] \equiv \langle f | \phi \rangle = \int_{\mathbb{R}^n} f(\mathbf{x}) \phi(\mathbf{x}) \mathrm{d}^n \mathbf{x}$, donde $\phi(\mathbf{x})$ es una función de prueba.
- La distribución $\delta_{(0)}$ está definida en \mathbb{R} , como $\mathcal{F}_{\delta_{(0)}}[|\phi\rangle] \equiv \left\langle \delta_{(0)} \mid \phi \right\rangle = \int_{\mathbb{R}} \delta_{(0)} \phi(x) \mathrm{d}x \equiv \int_{\mathbb{R}} \delta(x) \phi(x) \mathrm{d}x = \phi(0),$ $\forall \phi(x_0) \in \mathbb{R}$. El soporte de $\delta_{(0)}$ es el punto x = 0 de \mathbb{R} .
- En general las distribuciones son el límite de una familia, $\{f_j(x)\}$, de funciones localmente integrables en \mathbb{R}^n de la forma $f(x) = \lim_{j \to j_0} f_j \implies \lim_{j \to j_0} \mathcal{F}_{f_j}[|\phi\rangle] \equiv \lim_{j \to j_0} \langle f_j | \phi \rangle = \lim_{j \to j_0} \int_{\mathbb{R}^n} f_i(\mathbf{x}) \phi(\mathbf{x}) d^n \mathbf{x}$