PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISI	DER THE PATENT COOPERATION TREATY (PCT)			
(51) International Patent Classification 6:		(11) International Publication Number:	WO 98/28056	
B01D 3/22, 3/16	A1	(43) International Publication Date:	2 July 1998 (02.07.98)	
(21) International Application Number: PCT/US (22) International Filing Date: 25 November 1997 (European patent (AT, BE, CH, 1	DE, DK, ES, FI, FR, GB,	
(30) Priority Data: 08/771,780 20 December 1996 (20.12.9)	6) U	Published With international search report.		
(71) Applicant: NORTON CHEMICAL PROCESS PRO CORPORATION [US/US]; 2855 Fishcreek Road, S 44224 (US).	ODUCT Stow, C	H S		
(72) Inventor: HARRIS, John; 508 Ivan Drive, Kent, O (US).	OH 442	00		
(74) Agents: GORDON, David, P.; 65 Woods End Road, S CT 06905 (US) et al.	Stamfor	d,		

(54) Title: FIXED VALVE

(57) Abstract

A fractionation tray is provided which has perforations spanned by arch members (1) formed by deforming material from the material from which the tray (3) is constructed. The arch (1) has a ribbed underside shaped to divert gas rising through the perforation smoothly such that it encounters the liquid flow essentially at right angles.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Кепуа	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

1

FIXED VALVE

Background of the Invention

This invention relates to chemical process equipment in which a liquid is contacted with a counterflow of gas. This may be for a variety of purposes such as stripping a component from the liquid stream or absorbing a component into a liquid stream. More generically this invention relates to equipment designed to facilitate mass and/or heat transfer between phases.

The type of equipment to which this invention specifically relates employs cross-flow fractionation trays connected by downcomers. In such equipment a tower is provided with a plurality of fractionation trays arranged generally horizontally within the tower. Each tower has a perforated tray and at least one channel, called a downcomer, in which a liquid flowing over the tray may be collected and channeled to the tray below. In use a gas or vapor is introduced at the base of the tower and passes upwards through the perforations in the trays of the fractionation trays. Meanwhile a liquid is introduced at the top of the tower and percolates downward passing across the fractionation trays and down the downcomers to the tray below.

The trays are conventionally made of metal and particularly a metal adapted to withstand the environment in which it is expected to operate. Typically the metal will be a stainless steel. Such metals are relatively easy to engineer and trouble free while in use, though expensive in terms or materials.

Upon reaching each tray, the liquid flows across the tray in what is described here as the "design flow direction", which indicates the direction the liquid is intended to flow when the tray is operating in optimum design conditions. The tray is provided with a plurality of perforations through which gas bubbles continuously at a pressure that, under normal operating conditions, precludes the liquid from passing through the

2

perforation. These perforations are referred to as "valves" and it is to an improved design for such valves that this invention particularly pertains.

As indicated above, in the ideal process design, the liquid should be prevented from passing through the valves in the trays by the pressure of gas passing through the perforations in the upward direction. This is a finely balanced process since, if the pressure is too great, the gas will have a shorter transit time within the tower and less efficient contact with the down-flowing liquid. The high gas velocity may also cause liquid droplets to be carried up to the tray above, thereby reducing the separation efficiency as a result of back-mixing. On the other hand if the gas flow rate is too low the liquid will penetrate through the valves in the trays, (known as "weeping"), and short-circuit the flow patterns which are intended to maximize liquid/gas contacts.

Some valve designs actually allow the valve to close if the pressure drops too low. Such valves can however cause problems if they stick closed or only partially open. They are also expensive. Other valve designs merely place a cover over a perforation in the tray tray to prevent liquid falling on to the perforation with sufficient velocity to penetrate even when the pressure is at design levels.

The present invention provides a simple valve design that is obtained by a simple deformation of the material from which the tray is produced. Thus the tray can be produced, with the valves already in place, with no need for a further installation operation. Such arrangements are already known in principle but are often only partially unsuccessful at minimizing weeping.

The present invention provides a highly effective means of contacting liquid flowing over and around the valve with gas flowing up through the valve with reduced weeping and all in the context of a fixed valve formed by deformation of the material of the tray itself.

General Description of the Invention

The present invention provides a fractionation tray having a design flow direction and at least one perforation therein formed by deformation of the material of the tray out of the plane of the tray to form an arch member spanning the perforation and oriented in the design flow direction in the vicinity of the perforation, said arch being provided with a centrally-located depression and correspondingly, on the underside of the arch member, a rib extending substantially the length of the arch member in the design flow direction.

In a conventional fixed valve the bridge member forces the gas rising through the perforation to exit laterally so that the gas contacts the liquid flowing around the leg members essentially at right angles. However the gas flow does not have any significant imposed directional component since it merely contacts the undersurface of the arch member and scatters in directions limited only by the attachment of the arch to the tray. In addition the energy in the gas flow is somewhat dissipated by the impact on the arch undersurface.

The novel contribution of the present invention is the provision of a central depression in the arch member which provides a corresponding central rib on the underside. Thus gas rising through the perforation encounters the rib which deflects the gas to either side of the rib with minimal reduction of the energy of the gas flow and maximum direction in the beneficial sideways direction.

In a preferred embodiment the depression is so deep that the lowest point of the rib above the surface of the tray is from about 30 to about 60%, and preferably from about 40 to 55%, of the maximum height of the arch above the tray.

The length of the rib is preferably at least 60% and more preferably at least 75% of the length of the perforation in the design flow direction.

The arch is connected to the tray in effect by legs which

4

are described as the "upstream" and "downstream" legs with the "stream" direction being the design flow direction.

In use a liquid flowing in the design flow direction across the tray encounters first of all the upstream leg member. This leg is solid and the liquid flow is split and directed to either side of the valve. As it passes the sides of the valve member it encounters gas flowing at right angles to the direction of flow of the liquid and directed smoothly in that direction by the central rib. This makes for very efficient gas/liquid contact.

Drawings

Figure 1 is a plan view of a valve according to the invention.

Figure 2 is a cross-section at right angles to the design flow direction of the valve shown in Figure 1 at the midpoint of the arch member.

Figure 3 is a cross-section along the design flow direction at the center line of the valve shown in Figure 1.

Detailed Description of the Invention

The invention is now further described with reference to the Drawings which are intended to illustrate the invention but are not to be understood as implying any essential limitations on the scope of the invention.

The device illustrated in Figures 1, 2 and 3 comprises a arch member, 1, spanning a perforation, 2 in the tray, 3. The arch is provided with a depression, 4, with a corresponding rib, 5, on the underside of the arch.

The arch is shown as a curved structure and indeed this is the preferred form as well the most simple to construct by deformation from the material of the tray. The depression and corresponding rib would then be located in the horizontal connecting portion of such a structure. It is therefore

5

understood that the present invention embraces also such alternative forms of arch.

In operation a tray has a large number of perforations which are usually circular, though other shapes such as elliptical and even polygonal are usable. The preferred locations of the perforations on the tray is in lines across the design flow direction with adjacent lines staggered such that the perforations in one line are between pairs of perforations in the lines on either side along the design flow direction. This ensures that the flows are repeatedly split and combined to ensure that no flow of liquid develops that is not contacted by the up-rising gas.

6

CLAIMS

- 1. A fractionation tray having design flow direction and at least one perforation formed by deformation of the material of the tray out of the plane of the tray to form an arch member spanning the perforation and oriented in the design flow direction in the vicinity of the perforation, said arch being provided with a centrally-located depression and correspondingly, on the underside of the arch member, a rib extending substantially the length of the arch member in the design flow direction.
- 2. A fractionation tray according to Claim 1 in which the lowest portion of the rib is located at from about 30 to 60% of the height above the tray surface of the highest point of the arch.
- 3. A fractionation tray according to Claim 1 in which the rib extends at least 60% of the length of the perforation in the design flow direction.

FIG.1

FIG.2

FIG.3

INTERNATIONAL SEARCH REPORT

In. Ational Application No PCT/US 97/21577

A. CLASS	FIGATION OF SUBJECT MATTER B01D3/22 B01D3/16	1	
According to	o International Patent Classification(IPC) or to both national classif	lication and IPC	
B. FIELDS	SEARCHED		
IPC 6	ocumentation searched (classification system followed by classifical B01D		
	lion searched other than minimumdocumentation to the extent that		
	· · · · · · · · · · · · · · · · · · ·		,
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category :	Citation of document, with indication, where appropriate, of the re	elevant passages	Relevant to claim No
X	DE 22 23 654 A (STAGE HERMAN) 29 1973 see page 2, paragraph 4	November	1
	see page 4, paragraph 3; figure		
X	FR 1 595 892 A (SOCIÉTÉ POUR L'É DES INDUSTRIES CHIMIQUES SPEICHI 1970 see figure 18		1
A	US 3 759 494 A (AXELROD L ET AL) September 1973	18	
A	DE 27 08 683 A (INST NAWOZOW SZT ZJEDNO) 31 August 1978	UCZNYCH	
Furth	er documents are listed in the continuation of box C.	Patent family members are listed ii	n annex,
Special cat	egories of cited documents :	"T" later document published after the inter	national filing date
conside "E" earlier de	nt defining the general state of the art which is not ered to be of particular relevance ocument but published on or after the international	or prionty date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the ci	eory underlying the
which is	ate nt which may throw doubts on priority claim(s) or s cited to establish the publicationdate of another or other special reason (as specified)	cannot be considered novel or cannot involve an inventive step when the doc "Y" document of particular relevance; the cl	be considered to cument is taken alone laimed invention
other m	nt published prior to the international filling date but	cannot be considered to involve an inv document is combined with one or mo ments, such combination being obviou in the art.	re other such docu- is to a person skilled
	an the priority date claimed	"&" document member of the same patent f	· · · · · · · · · · · · · · · · · · ·
	ctual completion of the international search March 1998	Date of mailing of the international sear 09/04/1998	ch report
	alling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Van Belleghem, W	

1

INTERNATIONAL SEARCH REPORT

information on patent family members

PCT/US 97/21577

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE 2223654 A	29-11-73	NONE	
FR 1595892 A	15-06-70	GB 1280658 A US 1595892 A US 3696832 A	05-07-72 10-08-26 10-10-72
US 3759494 A	18-09-73	FR 2151461 A DE 2138220 A GB 1319906 A	20-04-73 08-02-73 13-06-73
DE 2708683 A	31-08-78	NONE	