MA 1971 Exercise Set 1 Answers

Hubert J. Farnsworth

March 29, 2021

1. (a) $A(x) = "x^2 \ge 0"$.

Then "For all $x \in \mathbb{R}$, A(x)" is true.

(b) $B(x) = "x^2 = 2"$.

Then "For all $x \in \mathbb{R}$, B(x)" is false, but "There exists $x \in \mathbb{R}$ such that B(x)" is true.

2. (a) Hypothesis: "For $x, y, z \in \mathbb{Z}^+$, if x + y is odd and y + z is odd".

Conclusion "Then x + z is odd".

This statement is false.

(b) Hypothesis: "If x is an integer".

Conclusion: "Then $x^2 \ge x$.

This statement is true.

(c) Hypothesis: "For $x \in \mathbb{R}$, if $x^2 > 11$ ".

Conclusion: "Then x is positive".

This statement is false.

(d) Hypothesis: "If f is a polynomial of odd degree".

Conclusion: "Then f has at least one real root".

This statement is true.

(e) Hypothesis: "If x is an integer".

Conclusion: "Then $x^3 \ge x$ ".

This statement is false.

3. (a)

A	$\mid B \mid$	$A \wedge (A \implies B)$	$A \wedge (A \implies B) \implies B$
T	T	T	T
T	F	F	T
F	T	F	T
F	F	F	T

(b)

1 4	l D		$A \rightarrow (D \land C)$	A \ D	$ (A \rightarrow (D \land C)) \rightarrow (A \rightarrow D) $
A	D		,	$A \Longrightarrow D$	$(A \Longrightarrow (B \land C)) \Longrightarrow (A \Longrightarrow B)$
$\mid T$	$\mid T \mid$	$\mid T \mid$	T	T	T
T	T	F	F	T	T
T	F	T	F	F	T
T	F	F	F	F	T
F	T	T	T	T	T
F	T	F	T	T	T
F	$\mid F \mid$	T	T	T	T
F	F	F	T	T	T

4.

A	B	$A \implies B$	$B \implies A$
T	T	T	T
T	F	F	T
F	T	T	F
F	F	T	T

5.

	A	B	$\neg (A \land B)$	$\neg A \land \neg B$	$\neg (A \lor B)$	$ \neg A \lor \neg B $
Ì	T	T	F	F	F	F
	T	F	T	F	F	T
	F	T	T	F	F	T
	F	F	T	T	T	T

6. x is less than or equal to 7.

- 7. (a) There exists a polynomial with both real and genuinely complex roots.
 - (b) There exists an $x \in \mathbb{R}$ such that $x \geq 0$ or x is rational.
 - (c) There exist $x, y, z \in \mathbb{Z}^+$ such that x + y is odd or y + z is odd.
- 8. (a) All prime numbers are even.
 - (b) There is a real number x such that $x^3 > x$ or $x^3 < x$.
 - (c) There is a positive integer that cannot be written as the sum of distinct powers of three.
 - (d) For all positive real numbers y, there is a real number x such that $y^2 > x$ or $y^2 < x$.
- 9. (a) There exists an odd integer x such that x^2 is odd (True).
 - (b) There exists a continuous function f that is not differentiable (True).
 - (c) There exists a differentiable function f that is not continuous (False).
 - (d) There exists a polynomial f with integer coefficients that has zero real roots (True).
- 10. (a) 27 > 5 and 27 > 10
 - (b) $2^3 = 8 \neq 2$.
 - (c) The number 2 is a prime number that is even.
- 11. Let $x, y, z \in \mathbb{Z}$. Suppose x + y and y + z are even. Then there exist integers k and j such that x + y = 2k and y + z = 2j. This implies that x + z = 2k y + 2j y = 2(k + j y). Since k + j y is an integer, this shows that x + z is even.
- 12. (a) If $x^2 \le 0$, then $x \ge 0$.
 - (b) If there does not exist a y such that xy = 1, then x = 0.
 - (c) If x^2 is an odd integer, then x is an odd integer.
 - (d) If x + z is even, then x + y is even or y + z is even.
 - (e) If f is a polynomial with zero real roots, then f must be of even degree.

13.

Q	$\neg Q$	P	$\neg P$	$P \wedge \neg P$	$ \neg Q \implies (P \land \neg P) $
T	F	T	F	T	T
$\mid T$	F	T	F	F	T
F	T	F	T	F	F
F	T	F	T	F	F

14. Suppose that x is an integer assume that x is both even and odd. Then there exist integers k and j such that x=2k and x=2j+1. This means 1=2k-2j=2(k-j). Since k and j are integers, k-j is also an integer. It follows that $\frac{1}{2}=k-j$ is an integer. This is a contradiction since $\frac{1}{2} \notin \mathbb{Z}$. This contradiction arose from the assumption that x is both even and odd and so we must conclude that x cannot be both even and odd.