Artificial Intelligence

Pham Viet Cuong
Dept. Control Engineering & Automation, FEEE
Ho Chi Minh City University of Technology

- ✓ A type of supervised ML algorithm
- ✓ Can be used for both classification and regression
- ✓ Lazy learning algorithm

- Uses 'feature similarity' to predict the values of new datapoints
- ✓ The new data point will be assigned a value based on how closely it matches the points in the training set co

- ✓ The kNN requires
 - ❖ An integer k
 - A set of labeled examples (training data)
 - A metric to measure "closeness"
- ✓ Example 1: Classification
 - **❖** 2D
 - 2 classes
 - k = 3
 - Euclidean distance
 - 2 sea bass, 1 salmon

- ✓ Example 2: Classification
 - **❖** 2D
 - Three classes
 - k = 5
 - Euclidean distance

- ✓ Example 3: Classification
 - Three-class 2D problem
 - non-linearly separable
 - k = 5
 - Euclidean distance

- ✓ Example 4: Classification
 - Three-class 2D problem
 - non-linearly separable
 - k = 5
 - Euclidean distance

- Algorithm
 - Step 1: Load training data and test data
 - Step 2: Choose k
 - Step 3:
 - Calculate distance between test data and other data points
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of test data (e.g., by taking majority vote)
 - Step 4: End

- ✓ How to choose k?
 - If infinite number of samples available, the larger is k the better
 - In practice: # samples is finite ACNC
 - Rule of thumb: k = sqrt(n), n: number of examples
 - * k = 1: for efficiency, but can be sensitive to "noise"

- ✓ How to choose k?
 - Larger k may improve performance, but too large k destroys locality
 - Smaller k: higher variance (less stable)
 - Larger k: higher bias (less precise)

- ✓ How well does KNN work?
 - If we have lots of samples, kNN works well

Minkowski distance

Mahattan distance

- Euclidean distance
- Chebyshev distance

$$D_{Mink}(x,y) = \sqrt[p]{\sum_{i=1}^n |x_i - y_i|^p}$$
 $MD(x,y) = \sum_{i=1}^n |x_i - y_i|$
TAI LIỆU SƯU TẬP
 $ED(x,y) = \sqrt{\sum_{i=1}^n |x_i - y_i|^2}$
 $CD(x,y) = \max_i |x_i - y_i|$

✓ Best distance?

Reference	#distances	#datasets	Best distance
[13]	11	#datasets 8 HOACNCA	Manhattan, Minkowski
		4KI	Chebychev
	N. A.	CH S	Euclidean, Mahalanobis
	49		Standardized Euclidean
[62]	3	1	Manhattan
[39]	4 TÀI	37	Chi square
[72]	18	BOLHCMUT-CNCP	Manhattan, Euclidean, Soergel
		BOT HEMOT-CNCP	Contracted Jaccard-Tanimoto
			Lance-Williams
[52]	5	15	Euclidean and Manhattan
[3]	3	28	Hassanat
[51]	3	2	Hassanat
Ours	54	28	Hassanat

✓ Euclidian distance

$$ED(x,y) = \sum_{i=1}^{n} |x_i - y_i|^2$$

- Euclidean distance treats each feature as equally important
- However some features (dimensions) may be much more discriminative than others of HCMUT-CNCP

Euclidian distance

- feature 1 gives the correct class: 1 or 2
- feature 2 gives irrelevant number from 100 to 200
- dataset: [1 150]

[2 110]

classify [1 100]

$$D(\begin{bmatrix} 1\\100\\150 \end{bmatrix}) = \sqrt{(1-1)^2 + (100-150)^2} = 50$$

$$D(\begin{bmatrix} 1\\100\end{bmatrix}, \begin{bmatrix} 2\\110 \end{bmatrix}) = \sqrt{(1-2)^2 + (100-110)^2} = 10.5$$

- [1 100] is misclassified!
- The denser the samples, the less of this problem
- But we rarely have samples dense enough

- ✓ Feature nomalization
 - Linearly scale to 0 mean, variance 1

- ✓ Feature weighting
 - Scale each feature by its importance for classification

- ✓ Computational complexity
 - Basic kNN algorithm stores all examples
 - Very expensive for a large number of samples

- ✓ kNN a lazy learning algorithm
 - Defers data processing until it receives a request to classify unlabeled data
 - Replies to a request for information by combining its stored training data
 - Discards the constructed answer and any intermediate results
 - Lazy algorithms have fewer computational costs than eager algorithms during training but greater storage requirements and higher computational costs on recall

- **Advantages**
 - Can be applied to the data from any distribution
 - Very simple and intuitive WOACNCA
 - Good classification if the number of samples is large enough
 - Uses local information, which can yield highly adaptive behavior
 - Very easy for parallel implementations
- ✓ Disadvantages
 TÀI LIỆU SƯU TẬP

 - Choosing k may be tricky
 - Test stage is computationally expensive
 - Need large number of samples for accuracy
 - Large storage requirements
 - Highly susceptible to the curse of dimensionality

✓ Sources:

- https://www.csd.uwo.ca/courses/CS4442b/L3-ML-knn.pdf
- http://research.cs.tamu.edu/prism/lectures/pr/pr_l8.pdf
- http://web.iitd.ac.in/~bspanda/KNN%20presentation.pdf
- V. B. Surya Prasath et. al., Effects of Distance Measure Choice on KNN Classifier Performance A Review, Big Data. 7. 10.1089/big.2018.0175.

TÀI LIỆU SƯU TẬP

BỚI HCMUT-CNCP