Ecole Nationale Supérieure de Techniques Avancées Paris PRB202 - Martingales et Algorithmes Stochastiques PC3 - 2 décembre 2019

Exercice 1:

On dit qu'un processus $(M_n)_{n\in\mathbb{N}}$ est à accroissements indépendants si, pour tout $n\in\mathbb{N}$, la variable aléatoire $M_{n+1}-M_n$ est indépendante de la tribu $\mathcal{F}_n=\sigma(M_0,\cdots,M_n)$.

- 1. Soit $(M_n)_{n\in\mathbb{N}}$ une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale de carré intégrable et à accroissements indépendants. On pose $\sigma_0^2 = \operatorname{Var}(M_0)$ et, pour tout $k \geq 1$, $\sigma_k^2 = \operatorname{Var}(M_k - M_{k-1})$.
 - (a) Montrer que $\operatorname{Var}(M_n) = \sum_{k=0}^n \sigma_k^2$, quel que soit $n \in \mathbb{N}$.
 - (b) Calculer le crochet noté $(\langle M \rangle_n)_{n \in \mathbb{N}}$ de la martingale $(M_n)_{n \in \mathbb{N}}$.
- 2. Soit $(M_n)_{n\in\mathbb{N}}$ une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale gaussienne, c'est-à-dire telle que pour tout $n\in\mathbb{N}$, le vecteur (M_0,\cdots,M_n) soit gaussien.
 - (a) Démontrer que $(M_n)_{n\in\mathbb{N}}$ est à accroissements indépendants.
 - (b) Montrer que, pour tout $\lambda \in \mathbb{R}$ fixé, le processus $(Z_n^{\lambda} = e^{\lambda M_n \frac{\lambda^2 < M >_n}{2}})_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ martingale.

Exercice 2:

Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et de même loi telles que :

$$\mathbb{P}(X_n = 1) = \mathbb{P}(X_n = -1) = \frac{1}{2}.$$

Posons $\mathcal{F}_0 = \{\emptyset, \Omega\}$, $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ et $S_0 = 0$, $S_n = X_1 + \dots + X_n$, pour tout $n \ge 1$.

On définit par ailleurs sur $\mathbb R$ la fonction "signe" par $\forall x \in \mathbb R$, $\operatorname{sgn}(x) = \mathbf 1_{\{x > 0\}} - \mathbf 1_{\{x < 0\}}$ et on considère le processus $(M_n)_{n \in \mathbb N}$ tel que $M_0 = 0$ et $M_n = \sum_{k=1}^n \operatorname{sgn}(S_{k-1}) X_k$, pour tout $n \ge 1$.

- 1. Démontrer que $(S_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ martingale de carré intégrable et déterminer son crochet.
- 2. Montrer que $(M_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale de carré intégrable et calculer son crochet.
- 3. Trouver la décomposition de Doob de $(|S_n|)_{n\in\mathbb{N}}$.
- 4. Vérifiez que pour tout $n \geq 1$, M_n est mesurable par rapport à la tribu $\sigma(|S_1|, \dots, |S_n|)$.
- 5. Posons $Y_k = \frac{1}{2}(X_k + 1)$, pour tout $k \in \mathbb{N}$. Identifier la loi des variables aléatoires Y_k , $k \in \mathbb{N}$ et de $T_n = \frac{1}{2}(S_n + n)$, quel que soit $n \in \mathbb{N}$.
- 6. Prouver alors que $\mathbb{P}(S_{2j+1}=0)=0$ et $\mathbb{P}(S_{2j}=0)=\binom{2j}{j}4^{-j}$, quel que soit $j\in\mathbb{N}$, où $\binom{n}{k}=\frac{n!}{k!(n-k)!}$, lorsque $(n,k)\in\mathbb{N}^2$, $0\leq k\leq n$.
- 7. En-déduire que pour tout $n \in \mathbb{N}$, $\mathbb{E}[|S_n|] = \sum_{j=0}^{\lfloor \frac{n-1}{2} \rfloor} \binom{2j}{j} 4^{-j}$, où $\lfloor x \rfloor$ désigne la partie entière de $x \in \mathbb{R}$.

Exercice 3:

Soit $(Y_n)_{n\in\mathbb{N}}$ une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale telle que pour tout $n\in\mathbb{N}, |Y_n-Y_{n-1}|=1$. On suppose que $Y_0=y_0\in\mathbb{Z}$.

- 1. Soit $f: \mathbb{Z} \to \mathbb{R}$ une fonction $(\mathcal{P}(\mathbb{Z}), \mathcal{B}(\mathbb{R}))$ mesurable. Montrer que le processus $(f(Y_n))_{n \in \mathbb{N}}$ est $(\mathcal{F}_n)_{n \in \mathbb{N}}$ adapté et intégrable.
- 2. On définit les dérivées discrètes premières et secondes de f en un point $x \in \mathbb{Z}$ comme suit :

$$f'(x) = \frac{1}{2}(f(x+1) - f(x-1)),$$

$$f''(x) = f(x-1) + f(x+1) - 2f(x).$$

Posons, pour tout $n \ge 1$, $F'_{n} = f'(Y_{n-1})$ et $F''_{n} = f''(Y_{n-1})$.

Démontrer que quel que soit $n \geq 1$,

$$f(Y_n) - f(Y_{n-1}) = F'_n (Y_n - Y_{n-1}) + \frac{1}{2} F''_n.$$

3. En-déduire que pour tout $n \geq 1$,

$$f(Y_n) = f(y_0) + (F' \bullet Y)_n + \frac{1}{2} \sum_{i=1}^n F_i'',$$
(1)

où $((F' \bullet Y)_n)_{n \geq 1}$ désigne l'intégrale stochastique discrète du processus $(F'_n)_{n \geq 1}$ au regard de $(Y_n)_{n \in \mathbb{N}}$.

- 4. Supposons que f est convexe, c'est-à-dire $f''(x) \geq 0$, pour tout $x \in \mathbb{Z}$. Identifier alors la décomposition de Doob de la $(\mathcal{F}_n)_{n \in \mathbb{N}}$ sous-martingale $(f(Y_n))_{n \in \mathbb{N}}$.
- 5. Dans cette question, $(Y_n)_{n\in\mathbb{N}}$ est de plus une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale de carré intégrable et $f(x)=x^2$, pour tout $x\in\mathbb{Z}$.

En utilisant la formule d'Itô discrète (1), prouver que $\langle Y \rangle_n = n$, quel que soit $n \geq 1$.

6. On définit $Y_n = S_n$, pour tout $n \in \mathbb{N}$ où $(S_n)_{n \in \mathbb{N}}$ est la $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - martingale décrite dans l'Exercice 2. Retrouver la décomposition de Doob de la $(\mathcal{F}_n)_{n \in \mathbb{N}}$ - sous-martingale $(|S_n|)_{n \in \mathbb{N}}$.

Exercice 4:

Soit $(\mathcal{F}_n)_{n\in\mathbb{N}}$ une filtration de l'espace probabilisé $(\Omega,\mathcal{F},\mathbb{P})$ et $(M_n)_{n\in\mathbb{N}}$ une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale bornée dans $\mathbb{L}^1(\Omega,\mathcal{F},\mathbb{P})$, c'est-à-dire que $\sup_{n\in\mathbb{N}}\mathbb{E}[|M_n|]<+\infty$.

- 1. Posons $X_{n,m} = \max(M_{n+m}, 0)$, pour tout $(n,m) \in \mathbb{N}^2$. Soit $n \in \mathbb{N}$, un entier naturel fixé. Montrer que $(X_{n,m})_{m \in \mathbb{N}}$ est une $(\mathcal{F}_{n+m})_{m \in \mathbb{N}}$ sous-martingale bornée dans $\mathbb{L}^1(\Omega, \mathcal{F}, \mathbb{P})$.
- 2. Démontrer que $\mathbb{E}[X_{n,m+1}|\mathcal{F}_n] \geq \mathbb{E}[X_{n,m}|\mathcal{F}_n] \geq 0$, pour tout $(n,m) \in \mathbb{N}^2$. En-déduire que les limites $Y_n = \lim_{m \to +\infty} \mathbb{E}[X_{n,m}|\mathcal{F}_n]$ existent \mathbb{P} presque-sûrement pour tout $n \in \mathbb{N}$.
- 3. En utilisant le théorème de convergence monotone, montrer que $\mathbb{E}[Y_n] < +\infty$, quel que soit $n \in \mathbb{N}$.
- 4. Prouver que $(Y_n)_{n\in\mathbb{N}}$ est une $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -martingale positive et bornée dans $\mathbb{L}^1(\Omega,\mathcal{F},\mathbb{P})$.
- 5. Posons $Z_n = Y_n M_n$, pour tout $n \in \mathbb{N}$. Vérifier que $(Z_n)_{n \in \mathbb{N}}$ est une $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -martingale bornée dans $\mathbb{L}^1(\Omega, \mathcal{F}, \mathbb{P})$.
- 6. En appliquant l'inégalité de Jensen conditionnelle, démontrer que $Y_n \ge \max(M_n, 0)$, quel que soit $n \in \mathbb{N}$.
- 7. Conclure que $(M_n)_{n\in\mathbb{N}}$ peut s'écrire comme la différence de deux $(\mathcal{F}_n)_{n\in\mathbb{N}}$ martingales positives et bornées dans $\mathbb{L}^1(\Omega, \mathcal{F}, \mathbb{P})$.