17.8: Divergence Theorem

The Divergence Theorem is the three-dimensional version of the flux form of Green's Theorem. Recall the flux form of Green's Theorem:

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_{R} \underbrace{(f_x + g_y)}_{\text{divergence}} \, dA.$$

The above means that the cumulative expansion and contraction throughout R equals the flux across the boundary of R. The Divergence Theorem computes the flux over a surface S in \mathbb{R}^3 :

Theorem 17.17: Divergence Theorem

Let **F** be a vector field whose components have continuous first partial derivatives in a connected and simply connected region D in \mathbb{R}^3 enclosed by an oriented surface S. Then

$$\iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iiint\limits_{D} \nabla \cdot \mathbf{F} \, dV,$$

where \mathbf{n} is the outward unit normal vector on S.

Example. Verify the Divergence Theorem: Consider the radial field $\mathbf{F} = \langle x, y, z \rangle$ and let S be the sphere $x^2 + y^2 + z^2 = a^2$ that encloses the region D. Assume \mathbf{n} is the outward unit normal vector on the sphere. Evaluate both integrals of the Divergence Theorem.

Example. Find the net outward flux of the field $\mathbf{F} = xyz\langle 1,1,1\rangle$ across the boundaries of the cube $D = \{(x,y,z): 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}.$

Theorem 17.18: Divergence Theorem for Hollow Regions

Suppose the vector field \mathbf{F} satisfies the conditions of the Divergence Theorem on a region D bounded by two oriented surfaces S_1 and S_2 , where S_1 lies within S_2 . Let S be the entire boundary of D ($S = S_1 \cup S_2$) and let \mathbf{n}_1 and \mathbf{n}_2 be the outward unit normal vectors for S_1 and S_2 , respectively. Then

$$\iiint\limits_{D} \nabla \cdot \mathbf{F} \, dV = \iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iint\limits_{S_{2}} \mathbf{F} \cdot \mathbf{n}_{2} \, dS - \iint\limits_{S_{1}} \mathbf{F} \cdot \mathbf{n}_{2} \, dS.$$

 \mathbf{n}_1 is the outward unit normal to S_1 and points into D. The outward unit normal to S on S_1 is $-\mathbf{n}_1$.

Example. Consider the inverse square vector field

$$\mathbf{F} = \frac{\mathbf{r}}{|\mathbf{r}|^3} = \frac{\langle x, y, z \rangle}{(x^2 + y^2 + z^2)^{3/2}}$$

Find the net outward flux of **F** across the surface of the region $D = \{(x, y, z) : a^2 \le x^2 + y^2 + z^2 \le b^2\}$ that lies between concentric spheres with radii a and b.

Find the outward flux of F across any sphere that encloses the origin.

Example. Use the Divergence Theorem to compute the net outward flux of the field $\mathbf{F} = \langle x^2, \, y^2, \, z^2 \rangle$ across the surface S where S is the sphere $\{(x,y,z): x^2+y^2+z^2=r^2\}$.

Fundamental Theorem of Calculus

Theorem
$$\int_a^b f'(x) dx = f(b) - f(a)$$

Fundamental Theorem for Line Integrals

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(B) - f(A)$$

Green's Theorem (Circulation Form)

$$\iint\limits_{R} (g_x - f_y) dA = \oint\limits_{C} f dx + g dy$$

Stokes' Theorem

$$\iint\limits_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS = \oint\limits_{C} \mathbf{F} \cdot d\mathbf{r}$$

Divergence Theorem

$$\iiint\limits_{D} \nabla \cdot \mathbf{F} \, dV = \iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \, dS$$

