Macroprudential Policy Interactions in a Sectoral DSGE Model with Staggered Interest Rates

Marc Hinterschweiger, Kunal Khairnar, Tolga Ozden, Tom Stratton

November 1, 2019

Overview

- ► Model summary
- ► Estimation highlights
- ► Macroprudential Policy (CAR, SCR, LTV & CCyB)
- ► Interest rate pass-through & Macroprudential policy

Model Overview

Estimation-I

- ▶ Quarterly data for the U.K. economy over 1998Q1-2016Q4.
- ▶ 10 observables in:
 - ► Interest rates (Official bank rate, mortgage & corporate rates)
 - Real growth rates (output, investment, consumption and wages)
 - Credit growth rates (mortgage & corporate sectors)
 - ► House price growth
- ▶ Model (partially) estimated using Bayesian likelihood methods.

Estimation-II

Figure: Example: estimated interest-rate pass through

▶ Average Bank Rate pass-through is [4.73, 5.93] months on corporate rates and [8.21, 11.1] months on mortgage rates.

Estimated shocks over 1998Q1-2016Q4.

▶ Sequence of shocks over the estimation sample.

Historical Variance Decomposition: Household Lending Growth

Historical Variance Decompositions: Output Growth

Some key unobservables estimated by the model

- ▶ Household defaults are dominant during the crisis period.
- ▶ Welfare of both household types have an upward trend before the crisis, and downward afterwards.

Macroprudential Policy

- Available tools in the model:
 - ▶ Minimum and sectoral capital requirements (Benchmark: 11 % CAR, no SCR)
 - LTV limit on businesses and households (Benchmark: 86 %)
 - CCyB (Benchmark: 0)

Macroprudential Policy

- Available tools in the model:
 - ▶ Minimum and sectoral capital requirements (Benchmark: 11 % CAR, no SCR)
 - LTV limit on businesses and households (Benchmark: 86 %)
 - CCyB (Benchmark: 0)
- Steady-state welfare analysis
- Counterfactuals
- ▶ Interest rate stickiness & Macroprudential tools interaction

Example: Sectoral Capital Requirements on Mortgage Lending and Key Variables in Steady-state

Optimal Policies

Ad-hoc mean-variance objective: $E[W_t] - \omega \sqrt{Var[W_t]}$

Optimal Policies

• Ad-hoc mean-variance objective: $E[W_t] - \omega \sqrt{Var[W_t]}$

Table: Optimal macroprudential parameters, one at a time. Results with $\omega=0.1$. Benchmark values are: 11 % for CAR, 86 % for LTV limit, no SCR.

Parameter	Optimal Value	Welfare Improvement
LTV Limit	86.6 %	0.001 %
SCR-Mortgage	17.6 % (11 % CAR, 6.6 % add-on)	4.26 %
SCR-Corporate	16.7 % (11 % CAR, 5.7 % add-on)	3.22 %
CAR	14.5 %	3.82 %

Optimal Policies

Ad-hoc mean-variance objective: $E[W_t] - \omega \sqrt{Var[W_t]}$

Table: Optimal macroprudential parameters, one at a time. Results with $\omega=0.1$. Benchmark values are: 11 % for CAR, 86 % for LTV limit, no SCR.

Parameter	Optimal Value	Welfare Improvement
LTV Limit	86.6 %	0.001 %
SCR-Mortgage	17.6 % (11 % CAR, 6.6 % add-on)	4.26 %
SCR-Corporate	16.7 % (11 % CAR, 5.7 % add-on)	3.22 %
CAR	14.5 %	3.82 %

Table: Optimal joint SCRs and LTV

Parameter	
LTV	94.06 %
SCR-Mortgage	15.88 %
SCR-Corporate %	12.5 %
Welfare Improvement	4.8 %

- Larger improvement with lower SCRs when macroprudential tools are coordinated.
- LTV limit can be relaxed if SCRs are sufficiently high.
- ► CCyB is not as effective as CAR & SCRs.

Counterfactual I

Figure: Counterfactual I with optimized values: $\phi_H = 15.8\%$, $\phi_F = 12.5\%$, $\epsilon_H = 94\%$.

Counterfactual II: Phasing-in

Figure: Same counterfactual phased-in over a 5-year period over 2001-2006 in equal increments.

Changes in the Level and Volatility

Table: Policies introduced at once at the beginning of the sample.

Variable	Change in Level	Change in Volatility
Corporate Credit	0.039	0.041
Mortgage Credit	0.024	0.147
Output	0.019	-0.0354
Household Welfare	0.175	0.0437

Changes in the Level and Volatility

Table: Policies introduced at once at the beginning of the sample.

Variable	Change in Level	Change in Volatility
Corporate Credit	0.039	0.041 0.147 -0.0354 0.0437
Mortgage Credit	0.024	0.147
Output	0.019	-0.0354
Household Welfare	0.175	0.0437

Table: Policies phased-in over 2001-2006.

Variable	Change in Level	Change in Volatility
Corporate Credit	0.024	-0.001
Mortgage Credit	0.006	-0.007 -0.0356
Output	0.014	-0.0356
Household Welfare	0.12	0.096

Changes in the Level and Volatility

Table: Policies introduced at once at the beginning of the sample.

Variable	Change in Level	Change in Volatility
Corporate Credit	0.039	0.041
Mortgage Credit	0.024	0.041 0.147
Output	0.019	-0.0354 0.0437
Household Welfare	0.175	0.0437

Table: Policies phased-in over 2001-2006.

Variable	Change in Level	Change in Volatility
Corporate Credit	0.024	-0.001
Mortgage Credit	0.006	-0.007
Output	0.014	-0.0356
Household Welfare	0.12	0.096

Table: Policies phased-in over 2001-2006, without interest rate stickiness.

Variable	Change in Level	Change in Volatility	_	
Corporate Credit	0.041	0.02	-	
Mortgage Credit	0.029	0.08		
Output	0.02	-0.028		
Household Welfare	0.12	0.098	▶ ←圖 ▶ ← 圖 ▶ ← 圖 ▶	₽

Interest Rate Pass-through & Prudential Policy Interactions

▶ The impact of macroprudential tools will be weaker in cases where interest rate stickiness is high.

Figure: Positive housing depreciation shock.

ness

(a) Impact of CCyB with and without interest-rate sticki- (b) Impact of LTV limit with and without interest-rate stickiness

(c) Impact of CAR with and without interest-rate stickiness

Conclusions & Future Work

- Conclusions:
 - ▶ Coordination of macroprudential tools may have a welfare improving effect
 - macroprudential tools would have improved some macroeconomic indicators but not have prevented the crisis altogether
 - Interest rate sluggishness may weaken the transmission of macroprudential tools that work through interest rates
- ► Future work:
 - ► Interaction between LTI & LTV limits
 - Introduction of monetary policy
 - Household heterogeneity
 - ▶ The impact of heterogeneous expectations on the effectiveness of macroprudential tools

Appendix-Estimation Details

State-space system:

$$\begin{cases} \textit{Model} : X_t = f(E_t X_{t+1}, X_{t-1}, \epsilon_t) \\ \textit{Measurement equations} : y_t = F X_t \end{cases}$$

- Estimation steps:
 - Log-linearize around the steady-state
 - ► Kalman filter for the log-linearized model
 - Bayesian likelihood estimation

Appendix-Introducing CCyB

CCyB does not improve the outcome nearly as much as the SCRs.

Variable	% Change in Level	% Change in Volatility
Optimal SCR+LTV		
Corporate Credit	0.039	0.041
Mortgage Credit	0.024	0.147
Output	0.019	-0.354
Household Welfare	0.175	0.0437

Variable	% Change in Level	% Change in Volatility
CCyB+Baseline SCR+LTV		
Corporate Credit	0.007	0.042
Mortgage Credit	0.003	0.029
Output	0.0019	0.37
Household Welfare	0.003	-0.002

Appendix-The effect of Interest rate Stickiness on Shock Transmission-I

A shock originating in the household sector: transmission to corporate side and the real economy will depend on the degree of stickiness

Figure: Negative housing preference shock

Appendix-The effect of Interest rate Stickiness on Shock Transmission-II

A shock originating in the banking sector: transmission to both corporate and household sectors will depend on the degree of stickiness

Figure: Negative bank capital shock

