

Mouvement d'un satellite

Travail en Atelier - Marzook, Planchon & Valette

Table des matières

I.	Présentation du problème	1
II.	Mise en place des équations différentiels II.1. Départ avec les équations de Newton	
III.	Cas constant ($\omega(t)$ constant)	2
IV.	Cas non constant ($\omega(t)$ varie)	2
v.	Lois de Kepler	2

I. Présentation du problème

II. Mise en place des équations différentiels

II.1. Départ avec les équations de Newton

Entre deux corps, la force de Gravitation s'applique. Notons M la Terre, m le satellite, r le rayon entre les deux corps.

$$\overrightarrow{F_{M/m}} = -G\frac{M*m}{r^2}*\overrightarrow{u_{M/m}}$$

Aussi, nous notons $m: x \begin{pmatrix} x \\ y \end{pmatrix}$, et donc $\overrightarrow{u_{M/m}} = \frac{x}{\|x\|}$. Aussi au départ, nous suposerons que le satellite est sur l'axe des abscisse à la position x.

Alors étant donné que r=x, nous avons $r^2=x^tx=\begin{pmatrix} x & y \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}=x^2+y^2$.

$$\overrightarrow{F_{M/m}} = -G \frac{Mm}{r^2} \times \overrightarrow{u_{M/m}}$$

$$= -G \frac{Mm}{x^t x} \times \frac{x}{\parallel x \parallel}$$

$$= -G \frac{Mm}{x^t x} \times \frac{x}{\sqrt{x^t x}}$$

$$= -G \frac{Mm}{(x^t x)^{3/2}} \times x$$

Mouvement d'un satellite

Travail en Atelier - Marzook, Planchon & Valette

II.2. Utilisation du PFD

D'après le principe fondamentale de la dynamique (et du fait que la seule force soit $\overrightarrow{F_{M/m}}$) nous avons :

$$\overrightarrow{F_{M/m}} = m\vec{a}$$

$$= m \begin{pmatrix} \ddot{x} \\ \ddot{y} \end{pmatrix}$$

Donc, en remplacant $\overrightarrow{F_{M/m}}$, nous avons :

$$-G\frac{Mm}{(x^tx)^{3/2}} \times \begin{pmatrix} \ddot{x} \\ \ddot{y} \end{pmatrix} = m \begin{pmatrix} \ddot{x} \\ \ddot{y} \end{pmatrix}$$
$$-G\frac{M}{(x^tx)^{3/2}} \times \begin{pmatrix} \ddot{x} \\ \ddot{y} \end{pmatrix} = \begin{pmatrix} \ddot{x} \\ \ddot{y} \end{pmatrix}$$

Pour simplifier les calculs, nous alons supposer que M*G=1, ainsi,

$$\ddot{x} = -(x^t x)^{-3/2} x$$

Donc,

$$\ddot{x} + (x^t x)^{-3/2} x = 0$$

Et si $(x^t x)^{-3/2}$ est constant alors on a

$$\ddot{x} + \omega^2(t) \times x = 0$$

avec $\omega^2 = (\mathbf{x}^t x)^{-3/2}$. Cela est l'équation d'un oscillateur harmonique. Finalement nous avons le système suivant :

$$\begin{cases} \ddot{x_1} + \omega^2(t)x_1 = 0\\ \ddot{x_2} + \omega^2(t)x_2 = 0 \end{cases}$$

- III. Cas constant ($\omega(t)$ constant)
- IV. Cas non constant $(\omega(t))$ varie
- V. Lois de Kepler