Department of Mathematics

University of British Columbia MATH 300

Solutions to Quiz 1 July 15, 2021, 1-2:15pm

Problem 1. Find real numbers x and y such that $\frac{1+i}{(1-i)^{11}} = x + iy$.

Solution: Work in polar form: $1+i=\sqrt{2}e^{\frac{\pi}{4}i}$ and $1-i=\sqrt{2}e^{-\frac{\pi}{4}i}$. Thus

$$\frac{1+i}{(1-i)^{11}} = \frac{\sqrt{2} e^{\frac{\pi i}{4}}}{(\sqrt{2})^{11} e^{-\frac{11\pi i}{4}}} = \frac{e^{\frac{12\pi i}{4}}}{(\sqrt{2})^{10}} = \frac{e^{3\pi i}}{2^5} = \frac{-1}{32} .$$

Answer: $x = -\frac{1}{32}$ and y = 0.

Problem 2. Find all complex solutions z to the equation $|e^{\frac{1}{z-1}}| = 1$.

Solution: The equality $|e^{\frac{1}{z-1}}| = 1$ is equivalent to $\operatorname{Re}(\frac{1}{z-1}) = 0$. In other words, $\frac{1}{z-1} = si$, where s is a real number. Equivalently, $z-1=\frac{1}{si}=-\frac{1}{s}i=ti$ for some real number $t\neq 0$ (why?). In summary, z satisfies the identity in question if and only if $z\neq 1$ but $\operatorname{Re}(z)=1$, i.e., z=1+ti for some real number $t\neq 0$.

Problem 3: For each of the statements below, indicate whether they are true or false. If true, give a proof. If false, give a counterexample.

- (a) Let z and w be complex numbers. If $z^3 = w^3$, then $z = w^3$
- (b) The function $f(z) = \frac{\overline{z} 1}{\overline{z} + 1}$ is differentiable at z = 0.

Solution: (a) False. Counterexample: $z = e^{\frac{2\pi i}{3}}$ and w = 1. Here $z^3 = w^3 = 1$ but $z \neq w$.

(b) False. Solve for \overline{z} in terms of f(z):

$$f(z)(\overline{z}+1) = \overline{z}-1 \implies f(z)+1 = \overline{z}(1-f(z)) \implies \overline{z} = \frac{f(z)+1}{1-f(z)}.$$

Note that f(0) = -1. By the quotient rule for differentiation, if f(z) were differentiable at 0, then \overline{z} would also be differentiable at 0, and we know that \overline{z} is not differentiable anywhere.

Problem 4. Let $f(z) = x + 2y + (2x - y)^2 i$, where z = x + yi.

- (a) Find all complex numbers z_0 such that f(z) is differentiable at z_0 ?
- (b) For every z_0 where f(z) is differentiable, find the complex derivative $f'(z_0)$.
- (c) Find all complex numbers z_0 such that f(z) is analytic at $z=z_0$?

Solution: (a) Let u(x,y) = x + 2y and $v(x,y) = (2x - y)^2$ be the real and imaginary parts of f(z), respectively. The partial derivatives

$$u_x = 1$$
 $v_x = 2(2x - y) \cdot 2$
 $u_y = 2$ $v_y = 2(2x - y) \cdot (-1)$

are continuous in the entire complex plane. The Cauchy-Riemann equations, $v_y = u_x$ and $v_x = -u_y$, translate to

$$-2(2x - y) = 1$$
 and $4(2x - y) = -2$.

Both are satisfied if and only if $2x - y = -\frac{1}{2}$. In other words, f(z) is differentiable at z_0 if and only if z_0 lies on the line $2x - y = -\frac{1}{2}$, i.e., $z_0 = t + (2t + \frac{1}{2})i$ for some real number t.

(b) As we showed in class, when f(z) is differentiable at $z_0 = x_0 + y_0 i$, the derivative is given by the formula

$$f'(z_0) = u_x(x_0, y_0) + v_x(x_0, y_0)i = u_x(x_0, y_0) - u_y(x_0, y_0)i.$$

If z_0 is of the form $t + (2t + \frac{1}{2})i$ for some real number t, then $u_x = 1$ and $u_y = 0$, so $f'(z_0) = 1 - 2i$.

(c) By part (a), f(z) is not differentiable in any disk, hence, f(z) is not analytic at any z_0

Problem 5: Do the following limits exist?

(a)
$$\lim_{z \to 1} \frac{\overline{z} - 1}{z - 1}$$
, (b) $\lim_{z \to i} \frac{e^{\pi z} + 1}{z - i}$.

Justify your answers. If the answer is "yes", compute the limit.

Solution: The limit in part (a) is the derivative of $f(z) = \overline{z}$ at $z_0 = 1$. We showed in class that f(z) is not differentiable at any z_0 . Hence, the limit in part (a) does not exist.

The limit in part (b) is the derivative of $g(z) = e^{\pi z}$ at $z_0 = i$. We showed in class that e^z is differentiable and $\frac{d}{dz}(e^z) = e^z$. Hence, by the Chain Rule, $g'(z) = e^{\pi z} \cdot \pi$. We conclude that the limit in part (b) exists and equals $e^{\pi i} \cdot \pi = -\pi$.