TASK2 – 2D Array

Use functions for all the below questions (Deadline May 2^{nd})

1. Problem1: Wiggly Path1

Given an input matrix, access the array elements in this wiggly path-I and print the array in the pattern given below

Input:

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Output:

1 2 3 4 5 10 9 8 7 6 11 12 13 14 15 20 19 18 17 16

Input:

10 24 32

50 6 17

99 10 11

Output:

10 24 32 17 6 50 99 10 11

2. Problem 2: Wiggly Path II

Given an input matrix, access the array elements in this wiggly path-I and print the array in the pattern given below

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Output: 4 8 12 16 15 11 7 3 2 6 10 14 13 9 5 1

Input: 1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Output: 4 8 12 16 15 11 7 3 2 6 10 14 13 9 5 1

Input: 1 9 4 10

3 6 90 11

2 30 85 72

6 31 99 15

Output: 10 11 72 15 99 85 90 4 9 6 30 31 6 2 3 1

3. Problem3: Anti Diagonal Sorting

Given a matrix, sort the antidiagonal (top right to bottom left) elements of the matrix. The matrix has to be updated. Print the updated matrix.

Input:

1	2	3	12
5	6	7	8
9	2	11	12
13	14	15	16

Output:

1	2	3	2
5	6	7	8
9	12	11	12
13	14	15	16

4. Problem 4: Binary Matrix Transformation

You are given a binary matrix. Your task is to predict the status of the matrix after 'K' iterations . Each iteration brings about a set of transformation to the matrix . Transformations are as follows.

- An element 1 in current matrix remains 1 in the next iteration only if it is surrounded by just A number of 1s (not more not less) in the previous iteration; where $0 \le \liminf_{x \to \infty} 1 \le A \le \liminf_{x \to \infty} 1 \le A$.
- An element 0 in current matrix becomes 1 in the next iteration only if it is surrounded by just B number of 1s (not more not less) in the previous iteration; where $0 \le \liminf_{n \to \infty} 0 \le \liminf_{n \to \infty} 0$.

Note that second transformation(k=2) is applied on the output of first transformation.(k=1). .{For hints refer the video lecture}

Input:

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

limit1a =2,limit1b=2,limit0a=2,limit0b=3,K=2.

Output after first iteration

Output after second iteration

$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	0 0 1	0
$ \tilde{0} $	Ŏ	0	ŏ	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	0	1	0
<u>L</u> 0	1	0	1]	Lo	0	1	0

5. Problem 5: Task Assignment Problem

Let there be N workers and N jobs. Any worker can be assigned to perform any job, incurring some cost that may vary depending on the work-job assignment. It is required to perform all jobs by assigning exactly one worker to each job and exactly one job to each agent in such a way that the total cost of the assignment is minimized. [For hints refer the video lecture]

to

An example job assignment problem. Green values show optimal job assignment that is A-Job₂, B-Job₁ C-Job₃ and D-Job₄