

all the keys in the blue note that two keys of region are ≥ 20 equal value may be wellseparated (10,A)(35,R)**BST Rules:** entries stored only at (14,J)(21,0)(7,T)(37,P)internal nodes kevs stored at nodes in the (8,N)left subtree of ν are less than or equal to the key stored at ν keys stored at nodes in the (5.H)(7,P)right subtree of ν are greater than or equal to the all the keys in the yellow key stored at ν (2,R)region are ≤ 20 An inorder traversal will return the keys in order Splay Trees © 2004 Goodrich, Tamassia, Dickerson

Splay Trees are Binary Search Trees

Searching in a Splay Tree: Starts the Same as in a BST

- Search proceeds down the tree to found item or an external node.
- Example: Search for time with key 11.

Splay Trees do Rotations after **Every Operation (Even Search)** new operation: splay splaying moves a node to the root using rotations ■ left rotation

■ right rotation makes the left child x of a node y into \blacksquare makes the right child y of a node x y's parent; y becomes the right child

© 2004 Goodrich, Tamassia, Dickerson

into x's parent; x becomes the left child of v

Splay Trees

Visualizing the **Splaying Cases** zig-zag zig-zig zig Splay Trees © 2004 Goodrich, Tamassia, Dickerson

Splaying Example, Continued

Splay Tree Definition

- a splay tree is a binary search tree where a node is splayed after it is accessed (for a search or update)
 - deepest internal node accessed is splayed
 - splaying costs O(h), where h is height of the tree - which is still O(n) worst-case
 - O(h) rotations, each of which is O(1)

Splay Trees & Ordered **Dictionaries**

method	splay node
get(k)	if key found, use that node
	if key not found, use parent of ending external node
put(k,v)	use the new node containing the entry inserted
remove(k)	use the parent of the internal node that was actually removed from the tree (the parent of the node that the removed item was swapped with)

Amortized Analysis of Splay Trees

- Running time of each operation is proportional to time for splaying.
- Define rank(v) as the logarithm (base 2) of the number of nodes in subtree rooted at v.
- ◆ Costs: zig = \$1, zig-zig = \$2, zig-zag = \$2.
- Thus, cost for playing a node at depth d = \$d.
- ◆ Imagine that we store rank(v) cyber-dollars at each node v of the splay tree (just for the sake of analysis).

© 2004 Goodrich, Tamassia, Dickerson

Splay Trees

13

Cost per zig

- Doing a zig at x costs at most rank'(x) rank(x):
 - \circ cost = rank'(x) + rank'(y) rank(y) rank(x) < rank'(x) - rank(x).

© 2004 Goodrich, Tamassia, Dickerson

Splay Trees

Cost per zig-zig and zig-zag

Doing a zig-zig or zig-zag at x costs at most 3(rank'(x) - rank(x)) - 2

Cost of Splaying

- Cost of splaying a node x at depth d of a tree rooted at r:
 - at most 3(rank(r) rank(x)) d + 2:
 - Proof: Splaying x takes d/2 splaying substeps:

$$cost \le \sum_{i=1}^{d/2} cost_{i}$$

$$\le \sum_{i=1}^{d/2} (3(rank_{i}(x) - rank_{i-1}(x)) - 2) + 2$$

$$= 3(rank(r) - rank_{0}(x)) - 2(d/d) + 2$$

 $\leq 3(\operatorname{rank}(r) - \operatorname{rank}(x)) - d + 2.$

Splay Trees

15

Splay Trees

Performance of Splay Trees

- Recall: rank of a node is logarithm of its size.
- Thus, amortized cost of any splay operation is O(log n)
- In fact, the analysis goes through for any reasonable definition of rank(x)
- ◆ This implies that splay trees can actually adapt to perform searches on frequentlyrequested items much faster than O(log n) in some cases

© 2004 Goodrich, Tamassia, Dickerson

Splay Trees

17

