Chapter 1

Tensor Identities

In this Appendix, we introduce the double dot product of two tensors, and work with the velocity gradient tensor to ultimately derive the tensor identity

$$\nabla^2 \vec{u} \cdot \vec{g} = \nabla \cdot ((\nabla \vec{u} + \nabla \vec{u}^T) \cdot \vec{g}) - 2\mathbf{E}(\vec{u}) : \mathbf{E}(\vec{g})$$

for use in Chapter 6.

1.0.1 Tensor Double Dot Product

The double dot product of two tensors, also known as the Frobenius inner product, is a generalization of the vector inner product:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad Z = \begin{bmatrix} x & y \\ z & w \end{bmatrix}, \quad A : Z = ax + by + cz + dw$$
 (1.1)

As expected, addition distributes over this form of multiplication:

$$(A+B): (Z+W) = A: Z+A: W+B: Z+B: W$$
 (1.2)

1.0.2 Tensor Vector Divergence Identity

For a tensor T and vector \vec{q} :

$$T: \nabla \vec{g} = T_{11} \partial_x g_x + T_{12} \partial_x g_y + T_{21} \partial_y g_x + T_{22} \partial_y g_y \tag{1.3}$$

and

$$\nabla \cdot T = \begin{bmatrix} \partial_x & , & \partial_y \end{bmatrix} \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} = \begin{bmatrix} \partial_x T_{11} + \partial_y T_{21} & , & \partial_x T_{12} + \partial_y T_{22} \end{bmatrix} \quad (1.4)$$

so that

$$(\nabla \cdot T) \cdot \vec{g} = g_x \partial_x T_{11} + g_x \partial_y T_{21} + g_y \partial_x T_{12} + g_y \partial_y T_{22}$$

$$\tag{1.5}$$

Furthermore

$$T \cdot \vec{g} = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \begin{bmatrix} g_x \\ g_y \end{bmatrix} = \begin{bmatrix} T_{11}g_x + T_{12}g_y \\ T_{21}g_x + T_{22}g_y \end{bmatrix}$$
(1.6)

Therefore

$$\nabla \cdot (T \cdot \vec{g}) = \partial_x (T_{11}g_x) + \partial_x (T_{12}g_y) + \partial_y (T_{21}g_x) + \partial_y (T_{22}g_y)$$
 (1.7)

$$= g_x \partial_x T_{11} + T_{11} \partial_x g_x + g_y \partial_x T_{12} + T_{12} \partial_x g_y \tag{1.8}$$

$$+ g_x \partial_y T_{21} + T_{21} \partial_y g_x + g_y \partial_y T_{22} + T_{22} \partial_y g_y \tag{1.9}$$

$$= [T_{11}\partial_x g_x + T_{12}\partial_x g_y + T_{21}\partial_y g_x + T_{22}\partial_y g_y]$$
 (1.10)

$$+ \left[g_x \partial_x T_{11} + g_x \partial_y T_{21} + g_y \partial_x T_{12} + g_y \partial_y T_{22} \right] \tag{1.11}$$

$$= T : \nabla \vec{g} + (\nabla \cdot T) \cdot \vec{g} \tag{1.12}$$

We have shown:

$$\nabla \cdot (T \cdot \vec{g}) = T : \nabla \vec{g} + (\nabla \cdot T) \cdot \vec{g} \tag{1.13}$$

1.0.3 Application to Velocity Gradient Tensor

Substituting $T = \nabla \vec{u}$ in the identity gives:

$$\nabla \cdot (\nabla \vec{u} \cdot \vec{g}) = \nabla \vec{u} : \nabla \vec{g} + (\nabla \cdot \nabla \vec{u}) \cdot \vec{g} \tag{1.14}$$

and the 'vector Laplacian' is defined:

$$\nabla \cdot \nabla \vec{u} = \left[\partial_x \partial_x u + \partial_y \partial_y u \right], \quad \partial_x \partial_x v + \partial_y \partial_y v = \left[\nabla^2 u \right], \quad \nabla^2 v = \nabla^2 \vec{u}$$

$$\tag{1.15}$$

So

$$\nabla \cdot (\nabla \vec{u} \cdot \vec{q}) = \nabla \vec{u} : \nabla \vec{q} + \nabla^2 \vec{u} \cdot \vec{q}$$
 (1.16)

Similarly for the transpose of the velocity gradient tensor:

$$\nabla \cdot (\nabla \vec{u}^T \cdot \vec{g}) = \nabla \vec{u}^T : \nabla \vec{g} + (\nabla \cdot \nabla \vec{u}^T) \cdot \vec{g}$$
 (1.17)

Now, however, the last term vanishes:

$$\nabla \cdot \nabla \vec{u}^T = \left[\partial_x \partial_x u + \partial_x \partial_y v \quad , \quad \partial_y \partial_x u + \partial_y \partial_y v \right]$$
 (1.18)

$$= \left[\partial_x (\partial_x u + \partial_y v) \quad , \quad \partial_y (\partial_x u + \partial_y v) \right]$$
 (1.19)

$$= \left[\partial_x (\nabla \cdot \vec{u}) \quad , \quad \partial_y (\nabla \cdot \vec{u}) \right] \tag{1.20}$$

$$= \begin{bmatrix} 0 & , & 0 \end{bmatrix} \tag{1.21}$$

since we assume the fluid is **incompressible**, so $\nabla \cdot \vec{u} = 0$ everywhere.

Thus

$$\nabla \cdot (\nabla \vec{u}^T \cdot \vec{g}) = \nabla \vec{u}^T : \nabla \vec{g} \tag{1.22}$$

1.0.4 Deformation Rate Tensor Identity

Extending our notation slightly to include vector fields other than \vec{u} , recall that the deformation rate tensor is:

$$\mathbf{E}(\vec{u}) = \frac{\nabla \vec{u} + \nabla \vec{u}^T}{2} \tag{1.23}$$

so that:

$$2\mathbf{E}(\vec{g}) = \nabla \vec{g} + \nabla \vec{g}^T \tag{1.24}$$

Then the double dot product of two such tensors is:

$$2\mathbf{E}(\vec{u}) : 2\mathbf{E}(\vec{g}) = (\nabla \vec{u} + \nabla \vec{u}^T) : (\nabla \vec{g} + \nabla \vec{g}^T)$$
(1.25)

$$4\mathbf{E}(\vec{u}) : \mathbf{E}(\vec{g}) = \nabla \vec{u} : \nabla \vec{g} + \nabla \vec{u} : \nabla \vec{g}^T + \nabla \vec{u}^T : \nabla \vec{g} + \nabla \vec{u}^T : \nabla \vec{g}^T$$
 (1.26)

Now, transposition affects the double dot product such that

$$\nabla \vec{u}: \nabla \vec{g} = \nabla \vec{u}^T: \nabla \vec{g}^T$$
 and $\nabla \vec{u}^T: \nabla \vec{g} = \nabla \vec{u}: \nabla \vec{g}^T$, so

$$4\mathbf{E}(\vec{u}) : \mathbf{E}(\vec{g}) = 2\nabla \vec{u} : \nabla \vec{g} + 2\nabla \vec{u}^T : \nabla \vec{g}$$
(1.27)

$$2\mathbf{E}(\vec{u}) : \mathbf{E}(\vec{g}) = \nabla \vec{u} : \nabla \vec{g} + \nabla \vec{u}^T : \nabla \vec{g}$$
(1.28)

Finally,

$$\nabla \cdot ((\nabla \vec{u} + \nabla \vec{u}^T) \cdot \vec{g}) = \nabla \cdot (\nabla \vec{u} \cdot \vec{g} + \nabla \vec{u}^T \cdot \vec{g})$$
(1.29)

$$= \nabla \cdot (\nabla \vec{u} \cdot \vec{g}) + \nabla \cdot (\nabla \vec{u}^T \cdot \vec{g}) \tag{1.30}$$

$$= \nabla^2 \vec{u} \cdot \vec{g} + \nabla \vec{u} : \nabla \vec{g} + \nabla \vec{u}^T : \nabla \vec{g}$$
 (1.31)

$$= \nabla^2 \vec{u} \cdot \vec{g} + 2\mathbf{E}(\vec{u}) : \mathbf{E}(\vec{g})$$
 (1.32)

Therefore:

$$\nabla^2 \vec{u} \cdot \vec{g} = \nabla \cdot ((\nabla \vec{u} + \nabla \vec{u}^T) \cdot \vec{g}) - 2\mathbf{E}(\vec{u}) : \mathbf{E}(\vec{g})$$
(1.33)