Divide-and-conquer and the Master Theorem

William Hendrix

Outline

- Review
 - Bit vectors, Heaps, Union-find
- Union-Find
- Prefix and suffix trees: not on exams
- Divide-and-conquer
- The Master Theorem

Data structures

- Bit vectors
 - Dictionary w/ O(1) worst-case search, insert, and delete time
 - Disadvantages: integers only, space depends on data range
- Priority Queue
 - Specialized to find the optimum value in a set (max or min)
 - Implemented with heap
 - **Max()**: constant time for max-heap
 - DeleteMax(): swap max with last leaf and call PercolateDown(1):
 O(lg n)
 - Insert(x): add as last leaf and PercolateUp(n): O(lg n)
 - **Heapify()**: call PercolateDown(i) from end to beginning: O(n)
- Union-Find
 - Represent partition of a dataset
 - Implemented by array
 - **Find(x)**: return partition ID for *x*
 - Union(a, b): join partitions containing a and b together

Union-Find implementation

- Array contains element IDs
- Partition IDs are elements pointing to themselves
- Initially, all elements are isolated:

0	1	2	3	4	5	6	7
{0}	{1}	{2}	{3}	{4 }	{5 }	{6 }	<i>{</i> 7 <i>}</i>

- Find(x)
 - Follow links until you hit a partition ID
 - Return partition ID
 - -O(n) time
- Union(a, b)
 - Point Find(a) to b
 - -O(n) time

```
1 Algorithm: Find(x)
2 if unionfind[x] = x then
3 | return x;
4 else
5 | id = find(unionfind[x])
| return id;
6 end
```

- 1 Algorithm: Union(a, b)
- id = Find(a);
- **3** unionfind[id] = b;

Optimizing Union-Find

- Union complexity depends on Find
- Find complexity depends on height of tree
- First idea: add Find(a) to Find(b) (or vice versa)
- Second idea: add the smaller tree to the larger
 - Swap a and b if a > b (or a < b)
 - Min (max) value always ends up as root
- Third idea: flatten structure when we call Find()

Union-Find operations

• **Find(x)**

- Recursively point to answer
- $-O(\alpha(n))$
- Generally less than 5 for conceivable n

Union(a, b)

- Call Find on both sides first
- Always point to max (min)
- $-O(\alpha(n))$
- The Ackermann function

$$\alpha^{-1}(n) = 2^{2 \dots^{2}} -3$$

$$\alpha^{-1}(1) = 2^{2} - 3 = 1$$

$$\alpha^{-1}(2) = 2^{4} - 3 = 13$$

$$\alpha^{-1}(3) = 2^{16} - 3 = 65,533$$

$$\alpha^{-1}(4) = 2^{65536} - 3 \dots \text{is very big}$$

- 1 Algorithm: Find(x)
- 2 if unionfind[x] $\neq x$ then
- $\mathbf{3} \mid id = \operatorname{Find}(\operatorname{unionfind}[x]);$
- 4 | unionfind[x] = id;
- 5 end
- 6 return unionfind[x];
- 1 Algorithm: Union(a, b)
- ra = Find(a);
- rb = Find(b);
- 4 if ra > rb then
- $\mathbf{5} \mid \text{Swap } ra \text{ and } rb;$
- 6 end
- 7 unionfind[ra] = rb;

Algorithm strategies

- Exhaustive search
 - Try everything!
- Greedy algorithm
 - Always pick the best option
- New strategy: organize data
 - List out values needed to solve the current problem
 - Enumerate all data operations
 - Choose a data structure based on common operations
 - May even use multiple data structures for same data
 - E.g., hash table to remove duplicates and heap to find min
 - May introduce metadata to further accelerate computation
 - Data about data
 - E.g., store every 100th value in sorted array in another array
 - Pay small up-front cost to organize, save order of complexity later
 - Useful in conjunction with any other strategy

Divide-and-conquer

Another algorithm strategy

Goal

Reduce complexity of high-complexity algorithms

Outline

- Divide large problems into one or more subproblems of roughly the same size
 - E.g., split array into 2 halves, 3 thirds, etc.
- Solve subproblems via recursion
- Combine solutions to subproblems into solution for full problem
- Solve small problems directly (base case)

Intuition

 If combining solutions is easier than solving directly, divide-andconquer solution will be faster

Divide-and-conquer example

- Sorting
 - Several $O(n^2)$ algorithms
- Applying divide-and-conquer
 - Split array into two halves

L R

- Sort half-arrays recursively
 - Base case: one element
- Combine two sorted half-arrays into one sorted array

Divide-and-conquer example

- Fill in result left-to-right
- Min is min(left) or min(right)
- 2nd value is next value of selected half or min(unselected half)
- Continue until both arrays have emptied into result
 - After one array is empty, just add the other
- Time to combine: O(n)
 - Better than $O(n^2)$!
- Algorithm: MergeSort

MergeSort

```
Input: data: the data to sort (must be comparable)
Input: n: the number of elements in data
Output: a permutation of data such that data[1] \leq ... \leq data[n]
Algorithm: MergeSort
if n \leq 1 then
   return data;
else
   mid = floor((n+1)/2);
   left = MergeSort(data[1..mid], mid);
   right = MergeSort(data[mid + 1..n], n - mid);
   temp = array(n);
   \ell = r = s = 1;
   while \ell \leq mid and r \leq n - mid do
       if left[\ell] < right[r] then
         temp[s] = left[\ell];
          \ell = \ell + 1:
       else
         temp[s] = right[r];

r = r + 1;
       end
       s = s + 1;
   end
   rem = mid - \ell;
   temp[s+1..s+rem] = left[\ell+1..mid];
   temp[s + rem + 1..n] = right[r + 1..n - mid];
   return temp;
end
```

MergeSort analysis

- T(n): time to sort array of size n
- Sorting a large array:
 - Divide array into two halves $\Theta(1)$
 - Sort left half T(n/2)
 - Sort right half T(n/2)
 - Merge two halves $\Theta(n)$
- Total time: $T(n) = 2T(n/2) + \Theta(n)$
- Solving the recurrence:
 - -c(x) = ???
 - Not T(n) = T(n-1) + ... + T(n-k) + f(n)
- We need another technique!

Analysis: divide-and-conquer

• In general, we need 3 factors to determine divide-and-conquer complexity:

$$T(n) = aT(n/b) + f(n)$$

- -b: number of pieces we are dividing problem into
- -a: number of recursive calls (often a = b)
- -f(n): time required to combine subproblem solutions

Master Theorem

- Gives complexity for T(n) based on a, b, and f(n)
- 1. Calculate $c = log_b(a)$
- 2. Compare complexity of f(n) to n^c
 - If $f(n) = \Theta(n^c)$, $T(n) = \Theta(f(n)\lg n)$
 - Otherwise, if f(n) is strictly smaller than $O(n^c)$, $T(n) = \Theta(n^c)$
 - $f(n) = O(n^{c+e})$, for some e > 0
 - Otherwise, if $f(n) = \Omega(n^{c+e})$ and f is regular, $T(n) = \Theta(f(n))$
 - Strictly more than n^c
 - Regular: af(n/b) < f(n), for large n
 - All functions that grow faster than linear are regular

Formal statement

Master Theorem. If T is an increasing function that satisfies the recurrence

$$T(n) = aT(n/b) + f(n)$$

where $a \ge 1$ and $b \ge 1$, then:

$$T(n) = \begin{cases} \Theta(n^c), & \text{if } f(n) = O(n^{c-\epsilon}) \text{ for some } \epsilon > 0 \\ \Theta(n^c \lg n), & \text{if } f(n) = \Theta(n^c) \\ \Theta(f(n)), & \text{if } f(n) = \Omega(n^{c+\epsilon}) \text{ for some } \epsilon > 0 \\ & \underline{\text{and }} af(n/b) < f(n) \text{ for large } n \end{cases}$$

Almost: $T(n) = \Theta(n^c + f(n))$ unless n^c and f(n) are same size For purposes of the Master Theorem, you may ignore floor and ceiling

E.g.,
$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n)$$

= $2T(n/2) + O(n)$

Warning: cases 1+3 must be polynomially different (not log)

Application: MergeSort complexity

- $T(n) = 2T(n/2) + \Theta(n)$
- 1. Identify variables

$$- a = 2, b = 2, f(n) = \Theta(n)$$

2. Calculate *c*

$$-c = \log_b(a) = \log_2(2) = 1$$

3. Decide case

$$- n^c \text{ vs. } f(n)$$
? $f(n) = \Theta(n^c)$

4. Report complexity (test regularity if case 3)

$$- \Theta(n^{c} \lg n) = \Theta(n \lg n)$$

Coming up

- Exam 2 will be next Tuesday
 - Data structures, divide-and-conquer, Master Theorem
 - Practice Exam 2 posted on Canvas
- Exam review on Thursday
- After exam: sorting algorithms
- **Project 1** will be due Oct. 18
- **Recommended readings:** Chapter 3, Sections 4.3, 4.5, and 4.10
- **Practice problems:** 3-21 (p. 101), 4-13, 4-30, 4-32 (p. 140)

Prefix trees

- A.k.a., trie
- Nonlinear linked data structure for storing collections of strings
- Each node in tree represents one letter in string
- Null character represents beginning and end of word
- Example: are, be, bed, bled, blue, blur

Prefix tree implementation

- Linked structure
- Parent and children pointers
- Children are stored in a map
- Dictionary of (k, v) ordered pairs
 - Insert(k, v): adds pair to map or replaces if exists (k, v_2)
 - **Search(k)**: returns v associated with k
 - **Delete(k):** removes pair associated with k
 - Complexity same as dictionary
 - Array, hash table, or BST
 - If keys are consecutive, can also be stored as array of values:

1 2 3	••••	<i>r</i> -1	r
-------	------	-------------	---

- *O*(1) time operations, worst-case
- May be space inefficient if range is large

Prefix tree operations

Contains(w)

- Searches for w
- -O(|w|) time

Insert(w)

- Searches for w while adding nodes
- O(|w|) time

Delete(w)

- Searches for w
- Backtracks until a parent has > 1 child, freeing nodes along the way
- O(|w|) time

Root()

- Returns root node of prefix tree
- O(1) time

Next(c)

- Returns node corresponding to char c
- O(1) time

```
1 Algorithm: Contains(w)
2 if w = \emptyset and node.value = '\0'
   then
      return node;
4 else
      child = node.next(w[1]);
5
      if child = NIL then
          return NIL;
      else
          return
          child.Contains(w[2..|w|]);
      end
10
l11 end
                              19
```

Prefix tree analysis

- Excellent for string matching applications
 - E.g., spellchecking, autocorrect, etc.
- May take large amount of space
 - Worst case: O(w_{sum}) nodes
 - Pointers are larger than characters...
- Can be mitigated with compressed prefix trees

- Potential complexity issues if continually modifying
- Suffix trees
- Prefix tree containing all suffixes of a word
 - -O(|w|) space if compressed properly
- Excellent for greatest common substring, etc.