

CI 4 – Conception des mécanismes

Conception d'un réducteur

D'après ressources de Jean-Pierre Pupier.

- Objectif pédagogique : concevoir un mécanisme à partir d'un cahier des charges
- Objectif technique:
 - Concevoir un réducteur

Présentation

Analyse fonctionnelle technique

Afin de réduire la vitesse de sortie d'un moteur électrique, on désire concevoir un réducteur à engrenage. L'entreprise prévoit de vendre un volume de 5 réducteurs par an.

Fonction	Intitulé	Critères	Niveaux	Limites
FP1	Réduire la vitesse de rotation de l'arbre moteur	Rapport de réduction	0,3	
FC1	S'assembler avec l'arbre moteur			
FC2	S'assembler avec l'arbre récepteur			
FC3	Réaliser une liaison encastrement démontable			
FC4	Empêcher le lubrifiant de sortir du moteur			

Une étude préliminaire a conduit à se tourner vers l'architecture suivante.

Fonction	Intitulé	Commentaires	
FT1	Réduire la vitesse de rotation de l'arbre moteur	Rapport de réduction 0,3	
FT1'	Garantir la distance entre les axes	65 mm	
FT1"	Garantir la transmission du couple	Pignon + Couronne Coefficient de largeur de denture k=7 Module 2	
FT2	Assurer une liaison pivot avec le bâti		
FT3	Assurer une liaison pivot avec le bâti		
FT4	Garantir une distance satisfaisant entre l'axe du pignon et la base du bâti	Distance : 70mm à 85mm	
FT5	Garantir l'étanchéité statique et dynamique	Lubrification à l'huile	
FT6	Prévoir un dispositif d'assemblage avec le sol		
FT7	Permettre l'assemblage d'un arbre moteur	Vitesse de 1500 tr/min Puissance : 4kW	

Le carter sera réalisé en fonderie au sable. Il sera conçu en 2 parties conformément au schéma ci-contre.

Travail à réaliser

On demande de réaliser :

- le réducteur complet en coupe passant par le plan contenant les 2 axes ;
- la mise en place de tous les ajustements notamment au niveau des roulements, des joints, de l'assemblage des carters;
- d'indiquer les jeux fonctionnels;
- d'indiquer le niveau d'huile au repos ainsi que les éléments permettant l'alimentation et la vidange.

Conseils de conception:

- l'arbre d'entrée est monté en porte a faux;
- le pignon d'entrée est démontable car acheté sur catalogue (forme libre) ;
- la couronne d'entrée est également achetée;
- le support de couronne est en liaison à appui plan prépondérant avec l'arbre;
- l'entraînement en rotation se fait par obstacle.