Question 5 (a) Let G be a simple graph with vertex set $V(G) = \{v_1, v_2, v_3, v_4, v_5\}$ and adjacency lists as follows:

 v_1 : v_2 v_3 v_4 v_2 : v_1 v_3 v_4 v_5 v_3 : v_1 v_2 v_4 v_4 : v_1 v_2 v_3 .

 v_5 : v_2

- (i) List the degree sequence of G.
- (ii) Draw the graph of G.
- (iii) Find two distinct paths of length 3, starting at v_3 and ending at v_4 .
- (iv) Find a 4 cycle in G. [6]
- (b) Let K_n be the simple graph with vertices $v_1, v_2, v_3, ..., v_n$ in which each vertex is joined to every other vertex by an edge.
 - (i) Draw K_6 .
 - (ii) Determine the number of edges of K_6 .
 - (iii) Determine the number of paths from v_1 to v_2 of length two.
 - (iv) Find an expression in terms of n for the number of paths from v_1 to v_2 of length two in k_n .
- (c) Draw two different (that is non-isomorphic) connected graphs each having the degree sequence 3, 3, 2, 1, 1, 1. Give one reason why the graphs you have drawn are not isomorphic. [3]
- (a) Let G be a simple graph. Explain why the sum of the degrees of the vertices of G is twice the number of its edges. [2]
- (b) Justifying your answer, say why it is not possible to construct a simple graph G with degree sequence

[2]

(c) Justifying your answer, say whether it is possible to construct a simple graph with degree sequence 3, 3, 3, 3, 3.

[2]