Mecanică Generală

III. Cinematica punctului material - 4

Liviu Marin^{1,†}

¹Facultatea de Matematică și Informatică. Universitatea din București. România †E-mail: marin.liviu@gmail.com

12 noiembrie 2013

III. Cinematica punctului material - 4

Definiție

Mișcarea punctului $\mathbf{P} \in \mathcal{E}$ în raport cu reperul absolut $\mathcal{R}_A(\mathbf{0}, \{\vec{\mathbf{e}}_i\}_{1 \le i \le 3})$ se numeste miscare absolută.

Mișcarea punctului $\mathbf{P} \in \mathcal{E}$ în raport cu reperul relativ $\mathcal{R}(\mathbf{0}', \{\vec{\varepsilon}_{\alpha}(t)\}_{1 < \alpha < 3})$ se numește mișcare relativă.

Notații:

$$\overrightarrow{\mathbf{OP}} \equiv \vec{\mathbf{r}}(t) \in \mathcal{V}_{\mathbf{O}}$$

$$\overrightarrow{\mathbf{OO'}} \equiv \vec{\mathbf{r}}_{\mathbf{O}}(t) \in \mathcal{V}_{\mathbf{O}}$$

$$\overrightarrow{\mathbf{O'P}} \equiv \vec{\rho}(t) \in \mathcal{V}_{\mathbf{O'}}$$

Figure : Reperele \mathcal{R}_A și \mathcal{R} .

III. Cinematica punctului material - 4

Miscarea absolută. Miscarea relativă

Propozitie

Fie $\mathcal{R}_A(\mathbf{0}, \{\vec{\mathbf{e}}_i\}_{1 \le i \le 3})$ un referențial/reper absolut în \mathcal{E} . Fie $\mathcal{R}(\mathbf{0}', \{\vec{\varepsilon}_{\alpha}(t)\}_{1 < \alpha < 3})$ un referențial/reper relativ în \mathcal{E} . Atunci:

$$\exists \ \mathbf{Q}(t) \in \text{Ort}: \quad \vec{\varepsilon}_{\alpha}(t) = \mathbf{Q}(t) \, \vec{\mathbf{e}}_{\alpha}, \quad 1 \le \alpha \le 3.$$
 (1)

Demonstrație: Cum $\vec{\varepsilon}_{\alpha}(t) \in \mathcal{V}_{\mathbf{0}}$, $1 \leq \alpha \leq 3$, rezultă

$$\forall \ \alpha \in \{1,2,3\}, \ \exists \ \{q_{\alpha i}(t)\}_{1 \leq i \leq 3} \subset \mathbb{R}: \quad \vec{\varepsilon}_{\alpha}(t) = \sum_{i=1}^{3} q_{\alpha i}(t) \, \vec{\mathbf{e}}_{i} \quad (2)$$

Fie
$$\mathbf{Q}(t) = \left[q_{\alpha i}(t)\right]_{1 < \alpha, i < 3}$$
. Din (2), obţinem

$$egin{aligned} \delta_{lphaeta} &= ec{oldsymbol{arepsilon}}_{lpha}(t) \cdot ec{oldsymbol{arepsilon}}_{eta}(t) = \Big(\sum_{i=1}^3 q_{lpha i}(t) \, ec{oldsymbol{arepsilon}}_i\Big) \cdot \Big(\sum_{j=1}^3 q_{eta j}(t) \, ec{oldsymbol{arepsilon}}_j\Big) \ &= \sum_{i,j=1}^3 q_{lpha i}(t) \, q_{eta j}(t) \, \underbrace{\Big(ec{oldsymbol{arepsilon}}_i \cdot ec{oldsymbol{arepsilon}}_i\Big)}_{=\delta_{ij}} = \sum_{i=1}^3 q_{lpha i}(t) \, q_{eta i}(t) \, q_{eta i}(t) \, oldsymbol{arepsilon}_i\Big]_{lphaeta}. \ \Box \ &= \sum_{i,j=1}^3 q_{lpha i}(t) \, a_{eta j}(t) \, a_{eta i}(t) \, a_{$$

Teoremă (formula lui Poisson)

Dacă reperul relativ $\mathcal{R} \big(\mathbf{0}', \{ \vec{\varepsilon}_{\alpha}(t) \}_{1 < \alpha < 3} \big)$ este legat de reperul absolut $\mathcal{R}_{A}(\mathbf{0}, \{\vec{\mathbf{e}}_i\}_{1 < i < 3})$ prin relația (1), atunci

$$\exists! \ \mathbf{W}(t) \in \mathsf{Asim}(\mathcal{V}, \mathcal{V}), \quad \mathsf{respectiv} \ \exists! \ \vec{\omega}(t) \in \mathcal{V} \quad \mathsf{a.i.}$$

$$\dot{\vec{\varepsilon}}_{\alpha}(t) = \mathbf{W}(t) \, \vec{\varepsilon}_{\alpha}(t) = \vec{\omega}(t) \times \vec{\varepsilon}_{\alpha}(t), \quad 1 < \alpha < 3.$$
(3)

Demonstrație:

Din relația (1), rezultă

$$\dot{\vec{\varepsilon}}_{\alpha}(t) = \frac{\mathsf{d}}{\mathsf{d}t} \big[\mathbf{Q}(t) \, \vec{\mathbf{e}}_{\alpha} \big] = \dot{\mathbf{Q}}(t) \, \vec{\mathbf{e}}_{\alpha} \stackrel{(1)}{=} \dot{\mathbf{Q}}(t) \big[\mathbf{Q}^{\mathsf{T}}(t) \, \vec{\varepsilon}_{\alpha}(t) \big]
= \big[\dot{\mathbf{Q}}(t) \, \mathbf{Q}^{\mathsf{T}}(t) \big] \vec{\varepsilon}_{\alpha}(t) \equiv \mathbf{W}(t) \, \vec{\varepsilon}_{\alpha}(t).$$
(4)

Cum $\mathbf{I} = \mathbf{Q}(t) \mathbf{Q}^{\mathsf{T}}(t)$, obţinem

$$\mathbf{0} = \frac{\mathsf{d}\mathbf{I}}{\mathsf{d}t} = \frac{\mathsf{d}}{\mathsf{d}t} \left[\mathbf{Q}(t) \, \mathbf{Q}^\mathsf{T}(t) \right] = \dot{\mathbf{Q}}(t) \, \mathbf{Q}^\mathsf{T}(t) + \mathbf{Q}(t) \, \dot{\mathbf{Q}}^\mathsf{T}(t)$$

$$= \dot{\mathbf{Q}}(t) \, \mathbf{Q}^\mathsf{T}(t) + \left[\dot{\mathbf{Q}}(t) \, \mathbf{Q}^\mathsf{T}(t) \right]^\mathsf{T} \Longrightarrow$$
(5)

$$\mathbf{W}(t) \equiv \dot{\mathbf{Q}}(t) \, \mathbf{Q}^{\mathsf{T}}(t) \in \mathsf{Asim}(\mathcal{V}, \mathcal{V}). \tag{6}$$

Arătăm următoarea echivalență:

$$\boxed{\mathbf{W}(t) \in \mathsf{Asim}(\mathcal{V}, \mathcal{V}) \Longleftrightarrow \exists ! \ \vec{\omega}(t) \in \mathcal{V} : \mathbf{W}(t) \, \vec{\mathbf{x}} = \vec{\omega}(t) \times \vec{\mathbf{x}}, \forall \ \vec{\mathbf{x}} \in \mathcal{V}}$$
(7)

(i) Unicitatea reprezentării (7)

Presupunem

$$\exists \vec{\omega}_1, \vec{\omega}_2 \in \mathcal{V}: \quad \mathbf{W}(t)\vec{\mathbf{x}} = \vec{\omega}_{\alpha} \times \vec{\mathbf{x}}, \quad \forall \vec{\mathbf{x}} \in \mathcal{V}, \quad \alpha = 1, 2.$$
 (8)

Fie $\vec{\omega}:=\vec{\omega}_1-\vec{\omega}_2$. Atunci

$$\vec{\boldsymbol{\omega}} \times \vec{\mathbf{x}} = (\vec{\boldsymbol{\omega}}_1 - \vec{\boldsymbol{\omega}}_2) \times \vec{\mathbf{x}} = \vec{\boldsymbol{\omega}}_1 \times \vec{\mathbf{x}} - \vec{\boldsymbol{\omega}}_2 \times \vec{\mathbf{x}} = \vec{\mathbf{0}}, \quad \forall \ \vec{\mathbf{x}} \in \mathcal{V}$$
 (9)

Rezultă $\vec{\omega} = \vec{\mathbf{0}}$, i.e. $|\vec{\omega}_1 = \vec{\omega}_2|$

III. Cinematica punctului material - 4

Observatii:

(i) $\mathbf{W}(t) \in Asim(\mathcal{V}, \mathcal{V})$ se numește spinul mișcării și, în baza $\{\vec{\mathbf{e}}_i\}_{1 \leq i \leq 3}$, are următoarea reprezentare:

$$\mathbf{W}(t) = egin{bmatrix} 0 & -\omega_3(t) & \omega_2(t) \ \omega_3(t) & 0 & -\omega_1(t) \ -\omega_2(t) & \omega_1(t) & 0 \end{bmatrix}$$

- (ii) $\vec{\omega}(t) \in \mathcal{V}$ se numește vectorul rotației instantanee.
- (iii) Rotația în jurul unei axe fixe:

Presupunem că reperul relativ $\mathcal{R}ig(\mathbf{0},\{ec{arepsilon}_lpha(t)\}_{1\leqlpha\leq3}ig)$ este obținut din reperul absolut $\mathcal{R}_A(\mathbf{0}, \{\vec{\mathbf{e}}_i\}_{1 \leq i \leq 3})$ printr-o rotație în jurul axei $\vec{\mathbf{e}}_3$ cu unghiul $\theta(t)$. Atunci

$$\mathbf{W}(t) = egin{bmatrix} 0 & \dot{ heta}(t) & 0 \ -\dot{ heta}(t) & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}, \quad \vec{\omega}(t) = -\dot{ heta}(t)\,\vec{\mathbf{e}}_3 = egin{bmatrix} 0 & 0 & -\dot{ heta}(t) \end{bmatrix}^\mathsf{T}.$$

Proiectăm membrul drept al relației (7) pe baza ortonormată $\{\vec{e}_i\}_{1 \le i \le 3}$:

$$\vec{\mathbf{e}}_1: \quad W_{12}(t) \, x_2 + W_{13}(t) \, x_3 = \omega_2(t) \, x_3 - \omega_3(t) \, x_2, \quad \forall \ \vec{\mathbf{x}} \in \mathcal{V} \quad (10a)$$

$$\vec{\mathbf{e}}_2: W_{21}(t) x_1 + W_{23}(t) x_3 = \omega_3(t) x_1 - \omega_1(t) x_3, \quad \forall \ \vec{\mathbf{x}} \in \mathcal{V}$$
 (10b)

$$\vec{\mathbf{e}}_3$$
: $W_{31}(t) x_1 + W_{32}(t) x_2 = \omega_1(t) x_2 - \omega_2(t) x_1$, $\forall \vec{\mathbf{x}} \in \mathcal{V}$ (10c)

Fie
$$\vec{\mathbf{x}} = \vec{\mathbf{e}}_1$$
: (10b) $\Longrightarrow \omega_3(t) = W_{21}(t)$ & (10c) $\Longrightarrow \omega_2(t) = -W_{31}(t)$

Fie
$$\vec{\mathbf{x}} = \vec{\mathbf{e}}_2$$
: (10c) $\Longrightarrow \omega_1(t) = W_{32}(t)$ & (10a) $\Longrightarrow \omega_3(t) = -W_{12}(t)$

Fie
$$\vec{\mathbf{x}} = \vec{\mathbf{e}}_3$$
: (10a) $\Longrightarrow \omega_2(t) = W_{13}(t)$ & (10b) $\Longrightarrow \omega_1(t) = -W_{23}(t)$

În cele din urmă, obtinem:

$$\left| \vec{\omega}(t) = \begin{bmatrix} -W_{23}(t) & -W_{31}(t) & -W_{12}(t) \end{bmatrix}^{\mathsf{T}} \right| \quad \Box \tag{11}$$

III. Cinematica punctului material - 4 Mecanică Generală

(iii) Demonstrație:

Reperul relativ $\mathcal{R}ig(\mathbf{0},\{ec{arepsilon}_lpha(t)\}_{1<lpha<3}ig)$ este obținut din reperul absolut $\mathcal{R}_A(\mathbf{0}, \{\vec{\mathbf{e}}_i\}_{1 \le i \le 3})$ printr-o rotație în jurul axei $\vec{\mathbf{e}}_3$ cu unghiul $\theta(t)$:

$$\left\{egin{array}{ll} ec{arepsilon}_1(t) = & \cos heta(t)\,ec{\mathbf{e}}_1 + \sin heta(t)\,ec{\mathbf{e}}_2 \ & ec{arepsilon}_2(t) = -\sin heta(t)\,ec{\mathbf{e}}_1 + \cos heta(t)\,ec{\mathbf{e}}_2 \ & ec{arepsilon}_3(t) = & ec{\mathbf{e}}_3 \end{array}
ight.$$

i.e.

$$\mathbf{Q}(t) = egin{bmatrix} \cos \ heta(t) & \sin \ heta(t) & 0 \ -\sin \ heta(t) & \cos \ heta(t) & 0 \ 0 & 0 & 1 \end{bmatrix} \implies$$

$$\mathbf{Q}^{\mathsf{T}}(t) = \begin{bmatrix} \cos\theta(t) & -\sin\theta(t) & 0 \\ \sin\theta(t) & \cos\theta(t) & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ \dot{\mathbf{Q}}(t) = \dot{\theta}(t) \begin{bmatrix} -\sin\theta(t) & \cos\theta(t) & 0 \\ -\cos\theta(t) & -\sin\theta(t) & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Calculăm $\mathbf{W}(t) = \dot{\mathbf{Q}}(t) \mathbf{Q}^{\mathsf{T}}(t)$ și apoi determinăm $\vec{\omega}(t)$ – Exercițiu!

Legătura functională între \mathbf{W} și $\vec{\omega}$

 Considerăm problema de vectori și valori proprii pentru $\mathbf{W} \in \mathsf{Asim}(\mathcal{V}, \mathcal{V})$:

$$\mathbf{W}\,\vec{\mathbf{x}} = \lambda\,\vec{\mathbf{x}} \iff (\mathbf{W} - \lambda\,\mathbf{I})\vec{\mathbf{x}} = \vec{\mathbf{0}} \iff \det(\mathbf{W} - \lambda\,\mathbf{I}) = 0$$

$$\iff -\lambda\left[\lambda^2 + \left(W_{12}^2 + W_{23}^2 + W_{31}^2\right)\right] = 0$$
(12)

• Singura valoare proprie reală a ecuatiei caracteristice (12) este

$$\lambda = 0 \tag{13}$$

Fie $\vec{\omega} \in \mathcal{V}$ vectorul propriu corespunzător valorii proprii reale (13), i.e.

$$\mathbf{W}\,\vec{\boldsymbol{\omega}} = 0 \tag{14}$$

• Exercitiu: Solutia ecuatiei (14) este vectorul rotatiei instantanee. $\vec{\omega}$. definit prin relația (7) i.e.

$$\mathbf{W}(t)\,ec{\mathbf{x}} = ec{oldsymbol{\omega}}(t) imes ec{\mathbf{x}}, \quad orall \, \, ec{\mathbf{x}} \in \mathcal{V}$$

III. Cinematica punctului material - 4 Mecanică Generală

Demonstrație:

•
$$\mathcal{R}_A$$
: $\exists \{u_i(t)\}_{1 \leq i \leq 3} \subset \mathbb{R}$: $\vec{\mathbf{u}}(t) = \sum_{i=1}^3 u_i(t) \vec{\mathbf{e}}_i$

Derivăm relația de mai sus în raport cu t și obținem:

$$\dot{\vec{\mathbf{u}}}(t) = \frac{\mathsf{d}\vec{\mathbf{u}}(t)}{\mathsf{d}t} = \frac{\mathsf{d}}{\mathsf{d}t} \sum_{i=1}^{3} u_i(t) \, \vec{\mathbf{e}}_i = \sum_{i=1}^{3} \dot{u}_i(t) \, \vec{\mathbf{e}}_i$$

•
$$\mathcal{R}$$
: $\exists \left\{ \mu_{\alpha}(t) \right\}_{1 \leq \alpha \leq 3} \subset \mathbb{R}$: $\vec{\mathbf{u}}(t) = \sum_{\alpha=1}^{3} \mu_{\alpha}(t) \, \vec{\varepsilon}_{\alpha}(t)$

Derivăm relația de mai sus în raport cu t și obținem:

$$\dot{\vec{\mathbf{u}}}(t) = \frac{\mathsf{d}}{\mathsf{d}t} \sum_{\alpha=1}^{3} \mu_{\alpha}(t) \, \vec{\varepsilon}_{\alpha}(t) = \sum_{\alpha=1}^{3} \left[\dot{\mu}_{\alpha}(t) \, \vec{\varepsilon}_{\alpha}(t) + \mu_{\alpha}(t) \, \dot{\vec{\varepsilon}}_{\alpha}(t) \right] \\
\stackrel{(3)}{=} \sum_{\alpha=1}^{3} \dot{\mu}_{\alpha}(t) \, \vec{\varepsilon}_{\alpha}(t) + \sum_{\alpha=1}^{3} \mu_{\alpha}(t) (\vec{\omega}(t) \times \vec{\varepsilon}_{\alpha}(t)) \\
= \sum_{\alpha=1}^{3} \dot{\mu}_{\alpha}(t) \, \vec{\varepsilon}_{\alpha}(t) + \vec{\omega}(t) \times \sum_{\alpha=1}^{3} \mu_{\alpha}(t) \, \vec{\varepsilon}_{\alpha}(t) = \frac{\delta \vec{\mathbf{u}}(t)}{\delta t} + \vec{\omega}(t) \times \vec{\mathbf{u}}(t) \, \Box$$

Propozitie (regula de derivare)

Presupunem că reperul relativ $\mathcal{R}(\mathbf{0}',\{ec{arepsilon}_{lpha}(t)\}_{1<lpha<3})$ este legat de reperul absolut $\mathcal{R}_A(\mathbf{0}, \{\vec{\mathbf{e}}_i\}_{1 \le i \le 3})$ prin relația (1)

Fie $\vec{\mathbf{u}}(t)$ o mărime mecanică oarecare. Atunci are loc formula:

$$\frac{d\vec{\mathbf{u}}(t)}{dt} = \frac{\delta \vec{\mathbf{u}}(t)}{\delta t} + \mathbf{W}(t) \vec{\mathbf{u}}(t) = \frac{\delta \vec{\mathbf{u}}(t)}{\delta t} + \vec{\mathbf{\omega}}(t) \times \vec{\mathbf{u}}(t)$$
(15)

- (i) $\dot{\vec{\mathbf{u}}}(t) := \frac{\mathrm{d}\vec{\mathbf{u}}(t)}{\mathrm{d}t}$ este derivata absolută a mărimii $\vec{\mathbf{u}}(t)$; se calculează și se exprimă în \mathcal{R}_A ;
- (ii) $\frac{\delta \vec{\mathbf{u}}(t)}{\delta t}$ este derivata relativă a mărimii $\vec{\mathbf{u}}(t)$; se calculează si se exprimă în \mathcal{R} ;
- (iii) $\mathbf{W}(t) \vec{\mathbf{u}}(t) = \vec{\omega}(t) \times \vec{\mathbf{u}}(t)$ descrie modificarea mărimii $\vec{\mathbf{u}}(t)$ dacă punctul asociat acesteia ar fi solidar legat de \mathcal{R} .
- (iv) W(t) este spinul miscării dat de (6);
- (v) $\vec{\omega}(t)$ este vectorul rotatiei instantanee dat de (11).

III. Cinematica punctului material - 4 Mecanică Generală

Propoziție (compunerea vitezelor)

Presupunem că reperul relativ $\mathcal{R}ig(\mathbf{0}',\{ec{arepsilon}_lpha(t)\}_{1<lpha<3}ig)$ este legat de reperul absolut $\mathcal{R}_A(\mathbf{0}, \{\vec{\mathbf{e}}_i\}_{1 \le i \le 3})$ prin relația (1)

Fie $P(t) \in \mathcal{E}$ un punct mobil. Atunci are loc formula de compunere a vitezelor:

$$\vec{\mathbf{v}}_{\mathsf{a}}(t) = \vec{\mathbf{v}}_{\mathsf{r}}(t) + \vec{\mathbf{v}}_{\mathsf{t}}(t) \tag{16}$$

unde:

(i)
$$\vec{\mathbf{v}}_a(t) := \frac{d\vec{\mathbf{r}}(t)}{dt} = \dot{\vec{\mathbf{r}}}(t)$$
 este viteza absolută;

(ii)
$$\vec{\mathbf{v}}_r(t) := \frac{\delta \vec{\boldsymbol{\rho}}(t)}{\delta t}$$
 este viteza relativă;

(iii)
$$\vec{\mathbf{v}}_t(t) := \dot{\vec{\mathbf{r}}}_0(t) + \vec{\omega}(t) imes \vec{
ho}(t)$$
 este viteza de transport;

(iv)
$$\vec{\omega}(t)$$
 este vectorul rotației instantanee dat de (11).

Demonstratie:

In reperul absolut \mathcal{R}_A , are loc relația:

$$\vec{\mathbf{r}}(t) = \vec{\mathbf{r}}_0(t) + \vec{\boldsymbol{\rho}}(t)$$

Derivăm relația de mai sus în raport cu t și obținem:

$$\vec{\mathbf{v}}_{a}(t) = \frac{d\vec{\mathbf{r}}(t)}{dt} = \frac{d}{dt} \left[\vec{\mathbf{r}}_{0}(t) + \vec{\boldsymbol{\rho}}(t) \right] = \frac{d\vec{\mathbf{r}}_{0}(t)}{dt} + \frac{d\vec{\boldsymbol{\rho}}(t)}{dt}$$

$$\stackrel{(15)}{=} \dot{\vec{\mathbf{r}}}_{0}(t) + \left[\frac{\delta \vec{\boldsymbol{\rho}}(t)}{\delta t} + \vec{\boldsymbol{\omega}}(t) \times \vec{\boldsymbol{\rho}}(t) \right]$$

$$= \underbrace{\frac{\delta \vec{\boldsymbol{\rho}}(t)}{\delta t}}_{=:\vec{\mathbf{v}}_{r}(t)} + \underbrace{\left[\dot{\vec{\mathbf{r}}}_{0}(t) + \vec{\boldsymbol{\omega}}(t) \times \vec{\boldsymbol{\rho}}(t) \right]}_{=:\vec{\mathbf{v}}_{t}(t)}$$

$$= \vec{\mathbf{v}}_{r}(t) + \vec{\mathbf{v}}_{t}(t) \quad \Box$$

III. Cinematica punctului material - 4

Demonstratie:

$$\begin{split} \vec{\mathbf{a}}_{a}(t) &= \frac{\mathrm{d}\vec{\mathbf{v}}_{a}(t)}{\mathrm{d}t} \stackrel{(16)}{=} \frac{\mathrm{d}}{\mathrm{d}t} \left[\vec{\mathbf{v}}_{r}(t) + \vec{\mathbf{v}}_{t}(t) \right] = \frac{\mathrm{d}\vec{\mathbf{v}}_{r}(t)}{\mathrm{d}t} + \frac{\mathrm{d}\vec{\mathbf{v}}_{t}(t)}{\mathrm{d}t} \\ \frac{\mathrm{d}\vec{\mathbf{v}}_{r}(t)}{\mathrm{d}t} &= \frac{\mathrm{d}}{\mathrm{d}t} \sum_{\alpha=1}^{3} \dot{\rho}_{\alpha}(t) \, \vec{\varepsilon}_{\alpha}(t) = \sum_{\alpha=1}^{3} \left[\ddot{\rho}_{\alpha}(t) \, \vec{\varepsilon}_{\alpha}(t) + \dot{\rho}_{\alpha}(t) \, \dot{\vec{\varepsilon}}_{\alpha}(t) \right] \\ &= \sum_{\alpha=1}^{3} \ddot{\rho}_{\alpha}(t) \, \vec{\varepsilon}_{\alpha}(t) + \sum_{\alpha=1}^{3} \dot{\rho}_{\alpha}(t) \big(\vec{\omega}(t) \times \vec{\varepsilon}_{\alpha}(t) \big) \\ &= \frac{\delta^{2} \vec{\rho}(t)}{\delta t^{2}} + \vec{\omega}(t) \times \sum_{\alpha=1}^{3} \dot{\rho}_{\alpha}(t) \, \vec{\varepsilon}_{\alpha}(t) \\ &= \vec{\mathbf{a}}_{r}(t) + \vec{\omega}(t) \times \frac{\delta \vec{\rho}(t)}{\delta t} = \vec{\mathbf{a}}_{r}(t) + \vec{\omega}(t) \times \vec{\mathbf{v}}_{r}(t) \end{split}$$

Presupunem că reperul relativ $\mathcal{R}(\mathbf{0}', \{\vec{\varepsilon}_{\alpha}(t)\}_{1 \leq \alpha \leq 3})$ este legat de reperul absolut $\mathcal{R}_A(\mathbf{0}, \{\vec{\mathbf{e}}_i\}_{1 < i < 3})$ prin relația (1)

Fie $\mathbf{P}(t) \in \mathcal{E}$ un punct mobil. Atunci are loc formula de compunere a acceleratiilor:

$$\left| \vec{\mathbf{a}}_{a}(t) = \vec{\mathbf{a}}_{r}(t) + \vec{\mathbf{a}}_{t}(t) + \vec{\mathbf{a}}_{c}(t) \right| \tag{17}$$

(i)
$$\vec{\mathbf{a}}_{a}(t) := \frac{d\vec{\mathbf{v}}_{a}(t)}{dt} = \frac{d^{2}\vec{\mathbf{r}}(t)}{dt^{2}} = \ddot{\vec{\mathbf{r}}}(t)$$
 este accelerația absolută;

(ii)
$$\vec{\mathbf{a}}_r(t) := \frac{\delta \vec{\mathbf{v}}_r(t)}{\delta t} = \frac{\delta^2 \vec{\rho}(t)}{\delta t^2}$$
 este accelerația relativă;

(iii)
$$\vec{a}_t(t) := \ddot{\vec{r}}_0(t) + \vec{\omega}(t) \times (\vec{\omega}(t) \times \vec{\rho}(t)) + \dot{\vec{\omega}}(t) \times \vec{\rho}(t)$$
 este accelerația de transport;

(iv)
$$\vec{\mathbf{a}}_c(t) := 2\vec{\omega}(t) \times \vec{\mathbf{v}}_r(t)$$
 este accelerația lui Coriolis;

(v)
$$\vec{\omega}(t)$$
 este vectorul rotației instantanee dat de (11).

Observații

(i) Următoarele afirmații sunt echivalente:

(a)
$$\frac{d\vec{\mathbf{u}}(t)}{dt} = \frac{\delta \vec{\mathbf{u}}(t)}{\delta t}$$
;

(b)
$$\vec{\mathbf{u}}(t) = \lambda(t) \, \vec{\omega}(t) \, \mathrm{cu} \, \vec{\omega}(t)
eq \vec{\mathbf{0}}$$

- (ii) Mişcări rectilinii și uniforme: Dacă $\vec{\omega}(t) = \vec{\mathbf{0}}$ și $\ddot{\vec{r}}_0(t) = \vec{\mathbf{0}}$, atunci reperul relativ $\mathcal{R}\left(\mathbf{0}', \{\vec{\varepsilon}_{\alpha}(t)\}_{1 \leq \alpha \leq 3}\right)$ are o mişcare rectilinie și uniformă în raport cu reperul absolut $\mathcal{R}_A\left(\mathbf{0}, \{\vec{\mathbf{e}}_i\}_{1 \leq i \leq 3}\right)$.
- (iii) Dacă reperul relativ $\mathcal{R}\big(\mathbf{O}',\{ec{e}_{lpha}(t)\}_{1\leq lpha\leq 3}\big)$ se mișcă rectiliniu și uniform în raport cu reperul absolut $\mathcal{R}_{A}\big(\mathbf{O},\{ec{\mathbf{e}}_{i}\}_{1\leq i\leq 3}\big)$, atunci viteza și accelerația unui punct $\mathbf{P}\in\mathcal{E}$, în raport cu cele două referențiale, sunt legate prin relațiile:

$$\vec{\mathbf{v}}_{a}(t) = \vec{\mathbf{v}}_{0} + \vec{\mathbf{v}}_{r}(t), \qquad \vec{\mathbf{a}}_{a}(t) = \vec{\mathbf{a}}_{r}(t).$$
 (18)

III. Cinematica punctului material - 4

Mecanică Generală

Demonstrație:

- (i) Exercițiu!
- (ii) Cum $\vec{\omega}(t) = \vec{0}$, din formula lui Poisson (3) obţinem:

$$\dot{\vec{\varepsilon}}_{\alpha}(t) = \vec{\omega}(t) \times \vec{\varepsilon}_{\alpha}(t) = \vec{0}, \quad \forall \ t \ge 0, \quad 1 \le \alpha \le 3$$
 (19)

Relația (19) implică

$$\vec{\varepsilon}_{\alpha}(t) = \vec{\varepsilon}_{\alpha}(0), \quad \forall \ t \ge 0, \quad 1 \le \alpha \le 3$$
 (20)

i.e. \mathcal{R} se mișcă rectiliniu în raport cu \mathcal{R}_A .

Cum $\ddot{\vec{\mathbf{r}}}_0(t) = \vec{\mathbf{0}}$, obţinem prin integrare:

$$\vec{\mathbf{r}}_0(t) = \vec{\mathbf{v}}_0 t + \vec{\mathbf{r}}_0, \quad \vec{\mathbf{r}}_0 \equiv \vec{\mathbf{r}}_0(0), \quad \vec{\mathbf{v}}_0 \equiv \dot{\vec{\mathbf{r}}}_0(0)$$
 (21)

i.e. \mathcal{R} se mişcă uniform în raport cu \mathcal{R}_A .

(iii) Consecință directă a formulelor de compunere a vitezelor (16) și a accelerațiilor (17), împreună cu ipotezele $\vec{\omega}(t) = \vec{0}$ și $\vec{r}_0(t) = \vec{0}$.

III. Cinematica punctului material - 4

Mecanică General