ECEN325 Ref Sheet © Josh Wright February 28, 2017

Metric Prefixes			
peta	Р	10^{15}	1 000 000 000 000 000
tera	Τ	10^{12}	1 000 000 000 000
giga	G	10^{9}	1 000 000 000
mega	Μ	10^{6}	1 000 000
kilo	k	10^{3}	1 000
hecto	h	10^{2}	100
deca	da	10^{1}	10
one		10^{0}	1
deci	d	10^{-1}	0.1
centi	c	10^{-2}	0.01
milli	m	10^{-3}	0.001
micro	μ	10^{-6}	0.000 001
nano	n	10^{-9}	0.000 000 001
pico	р	10^{-12}	0.000 000 000 001
femto	f	10^{-15}	0.000 000 000 000 001

$\overline{\overline{\mathbf{RC}}}$ Filter

- Transmission Function: $T(s) = \frac{V_o(s)}{V_i(s)}$
- Corner frequency: frequency s at which $T(s) = \frac{1}{\sqrt{2}}$
- for simple circuit: ground \rightarrow source $\rightarrow R \rightarrow C \rightarrow$ ground

$$*T(s) = \frac{1}{1+RCs} |T(j\omega)| = \frac{1}{\sqrt{1+R^2C^2s^2}} |\angle T(j\omega)| = \frac{1}{\sqrt{1+R^2C^2s^2}}$$

• low pass

*corner frequency: $s = \frac{1}{RC}$ (also pole)

*pole: $\frac{1}{RC}$

high pass

*zero: s=0, pole: $s=\frac{1}{RC}$

Bode Plots

• magnitude is plotted in dB: $|T(j\omega)|_{dB} = 20\log_{10}|T(j\omega)|$

• starts on y-axis at DC offset with slope 0

- just add together the bode plots of each individual pole, zero, and the DC offset
- poles always slope down, zeros slope up (applies for both magnitude and phase)
- dec=decade, e.g. from 10^0 to 10^1

• magnitude:

*Pole/Zero at origin: constant slope $\pm 20db/dec$ for all ω ; 0dB at $\omega = 10^0 = 1$

*Pole/Zero at ω_0 : 0 for $\omega < \omega_0$

slope $\pm 20 \frac{db}{dec}$ after

*Constant C: constant line at $20 \log_{10}(|C|)$

• phase:

*Pole at origin: constant $-\frac{\pi}{2}$ or -90°

*Zero at origin: constant $+\frac{\pi}{2}$ or $+90^{\circ}$

*Pole/Zero at ω_0 :

0 for $\omega < \frac{\omega_0}{10}$

slope linearly $(\pm 45^{\circ}/dec)$ until $10\omega_0$ 0 slope for $\omega > 10\omega_0$

*Constant C: no effect (0 for all ω)

• Prof wants us to actually show the -3dB drop curve. not just a straight intersection

Solving systems with Op Amps

• step 0: if the op amp is ideal, write out ideal properties:

 $V_{+} = V_{-}$ $V_{+} = V_{-}$ $V_{-} = 0, I_{+} = 0$

 $*A \approx \infty$

- avoid doing KCL/KVL directly on the output node of the op amp
- ignore resistors from a point at 0V to ground

Non-Ideal Op Amps

• still assume that current at input terminals is 0

 $\bullet V_o = A(V_+ - V_-)$

- *A: open-loop gain. Typically very large, 100,000 or more
- open-loop gain dependent on frequency: $A(s) = \frac{A_0}{1-\frac{s}{s}}$

*open-loop response drops off after ω_b (usually $2\pi \le \omega_b \le 2\pi 100$)

 $*A_0$: DC gain

* ω_t : unity gain frequency: $dB(T(\omega_t)) = 1$ $\omega_t \approx A_o \omega_b$

AKA gain bandwidth product

* in this case, we still assume $I_{-} = I_{+} = 0$ and $V_{-} = V_{+}$?

• slew rate

- *max rate at which the output can change
- * for a sinusoidal signal: (V_{pk}) : peak voltage) $SR > 2\pi f V_{pk}$ or $SR > \omega V_{pk}$ $\frac{dV_o}{dt}|_{MAX} < SR$

Op Amp Equations

- general form: $T(s) = \frac{K_0}{1 + \frac{s}{\omega_0}}$
 - $*T(0) = K_0$: DC offset. For these simple ones, it's equal to ideal response $*\omega_0 = \frac{\omega_t}{1+R_2/R_1}$

• inverting op amp: • ideal: $T(s) = \frac{V_o}{V_i} = -\frac{R_2}{R_1}$ * non-ideal: $T(s) = \frac{V_o}{V_i} = \frac{-R_2/R_1}{1 + \frac{1 + R_2/R_1}{A(s)}} = \frac{-R_2/R_1}{1 + \frac{s}{(\frac{\omega_t}{1 + R_2/R_1})}}$

 \bullet non-inverting op-amp:

*ideal: $T(s) = \frac{V_o}{V_i} = 1 + \frac{R_2}{R_1}$ *non-ideal: $T(s) = \frac{V_o}{V_i} = \frac{1 + R_2/R_1}{1 + \frac{1 + R_2/R_1}{A(s)}} = \frac{1 + R_2/R_1}{1 + \frac{s}{(1 + R_2/R_1)}}$

 $\bullet \, integrating$

*ideal:
$$V_o = -\int_0^t \frac{V_i}{RC} dt + C$$
% $C = V_o(t)$ at $t = 0$

• differentiating
$$*ideal: \ V_o = -RC\frac{dV_i}{dt}$$

 \bullet summing

*ideal:
$$V_o = -R_f \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} \right)$$

• differential (subtracting)
*ideal:
$$V_o = \frac{(R_f + R_1)R_g}{(R_g + R_2)R_1}V_2 - \frac{R_f}{R_1}V_1$$

