Lista de Exercícios Lógica Sentencial

Valor lógico de proposições compostas

Disciplina: Lógica de Predicados Semestre 2014/2

Letivo:

Professora: Daniela Scherer dos Santos **Data:** 04/08/2014

1.

a) não está frio.

- b) está frio e está chovendo.
- c) está frio ou está chovendo.
- d) está chovendo se e somente se está frio.
- e) está frio ou não está chovendo.
- f) não está frio e não está chovendo.
- g) está frio se e somente se não está chovendo.

2.

- a) $(p \wedge q)$
- b) (p ^ ~q)
- c) \sim (p v q)
- d) (~p^~q)
- e) $\sim (\sim p \ v \ q)$

(não é o caso que = não é verdade que = é falso que)

3.

- a) $(p v q) ^ \sim r$
- b) $(p \land q) v \sim r$
- c) $\sim (p \sim r)$
- d) $\sim (q v r \wedge \sim p)$

4.

- a) $(p \wedge q)$
- b) (p v q)
- c) $(p \rightarrow q)$
- d) $(p \leftrightarrow q)$
- e) ~p

5.

- (a) p: cheirar pimenta q: espirar r: ganhar aposta $Fun\tilde{q}o: (p ^ \sim q) \rightarrow r$
- (b) p: estiver chovendo q: houver nuvens no céu r: levarei o guarda-chuva $Funç\~ao$: $((p \lor q) \rightarrow r) \lor ((\sim p \land \sim q) \rightarrow \sim r)$

6.

- a) ~c
- b) cvn
- c) $c^{\wedge} \sim n$
- d) $\sim (c \wedge n)$
- e) $c \rightarrow n$
- $f) \sim (n \rightarrow c)$
- g) $c \leftrightarrow \sim n$
- h) $\sim c \rightarrow \sim (n \land c)$

```
i) c v (c \wedge n)
```

7. V = 1; F = 0

a)
$$p ^ q = 1 ^ 0 = 1 ^ 1 = 1 (V)$$

b)
$$p \ v \sim q = 1 \ v \sim 0 = 1 \ v \ 1 = 1 \ (V)$$

c)
$$\sim p \ v \ q = \sim 1 \ v \ 0 = 0 \ v \ 0 = 0 \ (F)$$

d)
$$\sim p ^ \sim q = \sim 1 ^ \sim 0 = 0 ^ 1 = 0 (F)$$

e)
$$p^{(v)}(p v q) = 1^{(v)}(p v q) = 1$$

8.

- a) Valor(p) = F ou Valor(p) = V
- b) Valor(p) = F
- c) Valor(p) = V
- d) Valor(p) = V ou Valor(p) = F
- e) Valor(p) = F

9.

a)
$$P(p, q, r) = p \land \neg r \rightarrow \neg q$$

 $1 \land \neg 1 \rightarrow \neg 0$
 $1 \land 0 \rightarrow 1$
 $0 \rightarrow 1$

b)
$$P(p, q, r) = \sim (p \ v \sim q) \land (\sim p \ v \ r)$$

 $\sim (1 \ v \sim 0) \land (\sim 1 \ v \ 1)$
 $\sim (1 \ v \ 1) \land (0 \ v \ 1)$
 $\sim 1 \land 1$

10.

$$(p \land (\neg p \Rightarrow q)) \land \neg ((p \leftrightarrow \neg q) \Rightarrow q \lor \neg p)$$

$$(0 \land (\neg 0 \Rightarrow 1)) \land \neg ((0 \leftrightarrow \neg 1) \Rightarrow 1 \lor \neg 0)$$

$$(0 \land (1 \Rightarrow 1)) \land \neg ((0 \leftrightarrow 0) \Rightarrow 1 \lor 1)$$

$$(0 \land 1) \land \neg ((1) \Rightarrow 1)$$

$$(0 \land 1) \land \neg 1$$

$$0 \land 0$$

$$0$$

11.

a)
$$(p \leftrightarrow p \rightarrow q) \lor (p \rightarrow r) = (1 \leftrightarrow 1 \rightarrow 0) \lor (1 \rightarrow 0) = (1 \leftrightarrow 0) \lor (0) = 0 \lor 0 = 0$$

b)
$$(p \rightarrow \neg q) \leftrightarrow ((p \lor r) \land q) = (1 \rightarrow \neg 0) \leftrightarrow ((1 \lor 0) \land 0) = (1 \rightarrow 1) \leftrightarrow (1 \cdot 0) = 1 \leftrightarrow 0 = 0$$

c)
$$(p \cdot q \to r) \to (p \to (q \to r)) = (1 \cdot 0 \to 0) \to (1 \to (0 \to 0)) = (0 \to 0) \to (1 \to (1)) = 1 \to (1) = 1$$

12.

a)
$$\sim (p \ v \ q) = \sim (0 \ v \ 1) = \sim 1 = 0$$

b)
$$(p \land q) \rightarrow \sim q = (0 \land 1) \rightarrow \sim 1 = 0 \rightarrow 0 = 1$$

c)
$$(q \leftrightarrow p) v \sim q = (1 \leftrightarrow 0) v \sim 1 = 0 v = 0$$

d)
$$\sim (q \land p) \rightarrow (\sim p \lor \sim q) = \sim (1 \land 0) \rightarrow (\sim 0 \lor \sim 1) = \sim 0 \rightarrow (1 \lor 0) = 1 \rightarrow 1 = 1$$

13.

(a)

$P(p,q) = (p \cdot q)' + (q \longleftrightarrow p)'.$

Solução:

р	q	b.d	(p · q)'	$q \leftrightarrow p$	$(q \leftrightarrow p)'$	$(p \cdot q)' + (q \leftrightarrow p)'$
0	0	0	1	1	0	1
0	1	0	1	0	1	1
1	0	0	1	0	1	1
1	1	1	0	1	0	0

(b)

			Р	(p,q,r)	= p + r'	→ q ·	r'.
Solução:							
	р	q	r	r'	p+r'	q·r'	$p+r' \longrightarrow q$
	0	0	0	1	1	0	0
	0	0	1	0	0	0	1
	0	1	0	1	1	1	1
	0	1	1	0	0	0	1
	1	0	0	1	1	0	0
	1	0	1	0	1	0	0
	1	1	0	1	1	1	1
	1	1	1	0	1	0	0

p	q	r	p→q	q→r	p→r	(b→d) · (d→t)	$(b\rightarrow d) \cdot (d\rightarrow t) \rightarrow (b\rightarrow t)$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	0	1	0	1
0	1	1	1	1	1	1	1
1	0	0	0	1	0	0	1
1	0	1	0	1	1	0	1
1	1	0	1	0	0	0	1
1	1	1	1	1	1	1	1