AMERICAN UNIVERSITY OF ARMENIA

College of Science and Engineering

CS 120 Introduction to Object-Oriented Programming

MIDTERM EXAM

Date / Time:

Friday, March 17 2017 at 17:30

Duration:

2 hours

Attention:

ANY TYPE OF COMMUNICATION IS STRICTLY PROHIBITED

Write down your section, name and ID# at the top of all used pages

Participation:

Problem 1: Consider below a C++ function float kahan(float num1, float num2, float& compensation) that implements the Kahan Summation Algorithm for high-precision compensated summation of two float arguments float num1 and float num2:

float kahan (float num1, float num2, float &compensation)

float result; num2 -= compensation; result = num1 + num2; compensation = (result - num1) - num2;

Using this function, write a C++ function float pi(int n) that computes the value π by the following formula:

$$\pi = 2\sum_{k=0}^{n} \frac{(2k-1)!!}{(2k)!!(2k+1)} = \frac{2}{1*1} + \frac{1}{2}*\frac{2}{3} + \frac{1*3}{2*4}*\frac{2}{5} + \frac{1*3*5}{2*4*6}*\frac{2}{7} + \cdots$$

Recall that n!! is the product of odd numbers from I to n, if n is odd; and is the product of even numbers from 2 to n, if n is even. The double factorial of non-positive numbers equals to I by definition.

The initial value of *float compensation* is 0.0.

eveate a function that takes as an argument as matrix of any 2:20 and neturns the (your, eal) of the left upper corner of the vegion 5 x 5 that

has the greatest number of Is.

public static int get Num (int CJE) most, int sc, int sn & 11, sc-stanting column int count 20;

for (int now = sr; now 2 sn + 4; now + +) f fen(int col=se; rolesc+4; col++)f
if(nord (non][col]=1)f 3 3 count #+;

return count;

iffsc 1011 sn 42011 sc+4> mot length 11 sn+4> mout length) f

Use the backside, if needed 4 return 0

Problem 1 of 4

```
I mo, me the coonel of the upper left region that has the greatest num of ones
       int maximumzo;
       ind mrso;
       int mc=0;
     from (int n=0; ne mad-length; n++) f
       for lint c=0; e c mat. leigth; e++) f
int count = get Num (most, r, c);
        iff count >= maximum)f
              maximum = count;
              mr=n;
              Mc=e;
      System.out. print(mn+" "+mc);
```

ection,	Name	and	m#.
December 1	T	uuu	I I Jitt

Problem 2: Write a Java method public static double[] lin(double[] data) that takes as its argument an array of data points double[] data, and returns a two-element array – the first element being the slope of the linear regression and the second element being the intercept. The linear regression approximates the data points by the linear formula

 $y = \underline{k} x + \underline{b}$, where the slope k and the intercept b are computed as

 $k = \frac{\overline{xy} - \overline{x} \, \overline{y}}{\overline{x^2} - \overline{x}^2}, b = \overline{y} - k \, \overline{x}$

Here \overline{x} is the mean of the x coordinates, \overline{y} is the mean of the y coordinates, $\overline{x^2}$ is the mean of the squares of the x coordinates, and \overline{xy} is the mean of the products of the x and y coordinates. Use the element indices of the array double data as x coordinates and the element values as y coordinates. You may assume and use the method double mean(double data).

public static double [] Is he double (] data) {

double [] verult=new double [2];

double [] XS = new double [data langth];

double [] XS = new double [data langth];

for (i=0; i < olcita langth; i++) {

xS[i]=i; }

double mean x; meany, meanpp, mean x sq, k, b; mean x = mean (x s);

mean x = mean (x5); meany = mean (data); for lint i=0; ic data. length; i++) {

productxy[i]=i*data[i];
x59[i]=i*i;

mean pr = mean (procluct xy);
mean xsq = mean (xsq);

K = (meanpr - mean x * meany) / (mean x sq - mean x * mean *);

b = meany - K * meanx;

result[0]=k;

result[1]=b;

return result;

Use the backside, if needed

Problem 2 of 4

ection, Name and ID#:	×4
section, Name and ID#:	'In
 Problem 3: Write a Java function public static double 2-by-n array of a convex polygon's vertex coordinates and y coordinates in the second row. It returns polygon's 1. Divides the polygon into triangles by connecting 2. Adds the areas of the constructed triangles using a bond on the constructed triangles. 	s area as follows: g the first vertex with the hand (n+1)st vertices;
a, b and c are the sides and $p = (a + b + c)/2$. You may assume and use a method double dist(double).	x1. double v1. double x2. double y2) that takes as its
arguments coordinates of two points and returns the dist	tance between them.
plic static double areal double [71] ventor,	
louble area zo;	(1)
ideable a = 0; interesting this;	
clauble b 20;	
clouble c:0;	5
0 1 2	
l'ation invadore A-9: 14+)	(xog) (ly 6
(intizo; iz ventex. length - 2; i++)	(107 11 to COCO) 1 to COCO7)
detende a = clast (ventex[0][0], ventex[1]	[O]) Verilex [O][H]) Ventex[1][H])
b = dist (ventex0, ventex[1]	[0], Ventex[0][(-01) Ventex (-1) (1-01)
double c = dist(ventex (0) [ii], venter	v (A)(ith) vendex (O) (A) West (X(1)) (1+02))
1 (1 1 1 1 1 1 1 1 1	
anea 1 - cant(n*(n-a)*10-	b)*(p-c)); // use library for cong
were to syrup (pa) ip	the square next on es
7.	a lengtion balled 3

return area;

7

Problem 4: Write a Java method *public static void magic4N(int[][] square)* that creates a magic square of a 4N-by-4N size using the following algorithm:

1. Creates an array of the same size as *int[][] square* and fills it forward with successive integers assigning *I* to the top-left element;

2. Creates anther array of the same size as *int[][] square* and fills it backward with successive integers assigning *I* to the bottom-right element;

3. Divides the original *int[][] square* into 16 blocks of the same size – 4 blocks per row and column. In the on-diagonal (shaded) blocks copies the elements from the first array, and in the off-diagonal

12	2	1		100		(7)	8
9	10				1-1	15	10
		19	20	21	22		
	100	27	28	29	30		
		35	36	37	38		
		43	44	45	46		
49	50					55	5
57	58		71.13			63	6

The state of	77-743	62	61	60	59	EST	
A M	BERTH	54	53	52	51	- Kinh	思定
48	47	- A		V. 87 %	0 4 52 E Z	42	41
40	39	SHITT THE		2561	No.	34	33
	_	100 mg/s	District Control		Light Control	26	25
32	31	SE CONT		The second second	SARETE.	18	17
24	23	ETERO,		是在工作这	多 。	10	
		14	13	12	11	PER STATE	
连一致		6	5	4	3	4-12-14	

public state void masic 4 N (ind[][] square. length]; int value = 1;

while (value <= value 1) for (int now =0; now e and length; now + +) {

for (int now =0; now e and length; now + +) {

for (int now =0; now e and length; now + +) {

for (int now =0; now e and length; now + +) {

and [now][col] = value;

value ++; }

int[][] arrb = new int [square.length] (square length);

int[][] arrb = new int [square.length] (square length);

while (value) > If one int now =0; now e arrb.length; now ++) {

for (int now =0; now e arrb.length; now ++) {

for (int now =0; now e arrb.length; now ++) {

you = 1;

yo

Use the backside, if needed

Problem 4 of 4

