

2. Small Signal Hybrid parameters

$$Y_{T} = 34 = (100)(0.036) = 2.6KR$$
 $I_{CR} = 1 ms$

$$\frac{A_{V}}{V_{S}} = -\left(g_{m}R_{c}\right)\left(\frac{r_{\pi}}{r_{\pi}*R_{B}}\right) = \frac{-11.4}{2}$$

$$V_0 = -g_{00} V_H R_C$$

$$V_{ff} = \left(\frac{r_{ff}}{r_{ff} + R_C}\right) V_S$$

Dr. R. Barsanti

Exe Using last example: ' Va = 50V

$$r_o = \frac{\sqrt{A}}{T_{CQ}} = \frac{50}{100A} = 50k\Omega$$

$$A_V = \frac{\sqrt{o}}{\sqrt{s}} = -gm \left(\frac{R_c II I_0}{r_{\pi} + R_B} \right)$$

$$= -(38.5)(5.36k)(\frac{2.6}{2.6.50}) = -10.2$$

The output resistance to reduces the magnitude of Ar . Typically to >> Re, and is many cases can be neglected.

Exam 1

VBECON) = 0,00

Find : Small signal YOUTHLE

$$T_{\pi} = \frac{V_{\Gamma}}{I_{RO}} = \frac{0.026}{9.5 \, \text{MA}} = \frac{2.74 \, \text{K.R.}}{9 \, \text{m}} = \frac{I_{CR}}{V_{T}} = \frac{36.5 \, \text{mA/V}}{V_{T}}$$

$$V_{\overline{H}} = V_S \left(\frac{R_{TH}/r_{\overline{H}}}{R_{TH}/r_{\overline{H}} + R_S} \right) = V_S \left(\frac{1.87}{2.32} \right) = 0.79 V_S$$

$$V_0 = (0.79)(-207)V_S = -163V_S \Rightarrow A_V = \frac{V_6}{V_S} = -163$$

Notes: 1 R. = R.11R2/1/4 = 1.87KR small compared to the source resist. R=0.5R and therefore put an appreciable load on the sounce.

B. Circuit my Emitter Resister

3 RE = 0.4K-R

13=100 VBECOND = 0.7

D& Solution: VTH = 10 (12.2+56) = 1.79V

RTH = 12,2/156 = 10K

KYL! BASE LOOP = -1.79 + IB 10K + 0.7 + (8+1) IB (0.4K) =0

IBO = 1.79-0.7 = 21.6 MA

.. Ica = B Ioa = 2.16 mA

KYL: OUTPUT LOOP: -10 + ICR 2k + VCE + (B-1) (21,6 MA) 0.4K = 0

VLE = 10 - 4.32 - 0.87 = 4.81V

Q IS IN FWO ACTIVE MODE

15 mall Signal Solution ... IT = \frac{\nabla_r}{I_{RO}} = \frac{0.026}{21.600} = 1.20 kS.

 $g_m = \frac{T_{CR}}{V_T} = \frac{2.16}{26} = 83.1 \frac{mA}{V}$ So = VA = 00

Vo = - B4 Rc

Node 1: 25-210 = 2/10 + 2/10 - 104 + (B+1)0.4K

Vio = 0.94 75 2/0/FL + 1 + 1 = 2/5 =>

All Rights Reserved

2 can you show that for Az = -B G Re

Av

of B do to addition of

3) The input resistance of the amplifier is also remade so that Vin & Vs. The sounce is not

heavily loaded.

Co Emilles by pass Capacitos

There are times that the emitter resistor must be large for the purpose of de design, but the large value degrades the small-signal wolfage goin too severely.

In such a case, an emitter bypass capacitor is used to short out all or part of Re as our by the ac signal.

Ex. Test Your Understanding Given: S=100Vas(on) = 0

Va = 1001

b) Ri seen by source? c) Ro looking back into Angle.

a) DC Analysis

 $I_{8}(100k) + 0.7 + (8+1)I_{8} 20k - 10^{V} = 0$ $I_{8} = \frac{9.3}{100k + 2020k} = \frac{4.4\mu A}{100k + 2020k} \Rightarrow I_{60} = 0.44 \text{ m/A}$

e = 6 000 = 700 + 700 + 1000 + 20k IFE = 0 VIER = 20 - 4.4 - 8.8 = 6.8 V => Fno Active

At Parameter : $I_{\overline{H}} = \frac{V_{\overline{T}}}{I_{\overline{B}}Q} = 5.9k$, $g_{\overline{M}} = \frac{I_{\overline{C}}Q}{V_{\overline{T}}} = 16.9 \text{ m/s}$

All Rights Reserved.

eg 12 >6 See lead line

Note
$$r_{II} = \frac{V_{I}}{I_{BB}} = \frac{26 \, \text{mV}}{Z \text{MA}} = 13 \, \text{K} \cdot \text{C}$$

