# Math 110B (Algebra) *University of California, Los Angeles*

# Aaron Chao

#### Winter 2022

These are my lecture notes for Math 110B (Algebra), which is the second course in Algebra taught by Nicolle Gonzales. The textbook for this class is *Abstract Algebra: An Introduction*, *3rd edition* by Hungerford.

| Contents                                                                                                            |                         |  |  |
|---------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|
| Week 1                                                                                                              | 3                       |  |  |
| 1 Jan 3, 2022<br>1.1 Groups                                                                                         | <b>3</b><br>3           |  |  |
| 2 Jan 5, 2022<br>2.1 Groups (Cont'd)                                                                                | <b>5</b> 5              |  |  |
| 3 Jan 7, 2022 3.1 Symmetries (Cont'd) 3.2 Direct Product of Groups 3.3 Properties of Groups 3.4 Order of an Element | 9<br>9<br>9<br>10<br>11 |  |  |
| Week 2                                                                                                              |                         |  |  |
| 4 Jan 10, 2022         4.1 Order of an Element (Cont'd)         4.2 Subgroups                                       | 12<br>12<br>13          |  |  |
| 5 Jan 12, 2022 5.1 Subgroups (Cont'd) 5.2 Center of a Group 5.3 Cyclic Group                                        | 15<br>15<br>15<br>16    |  |  |
| 6 Jan 14, 2022                                                                                                      | 18                      |  |  |

|   | 6.1 Cyclic Group (Cont'd)                                                                  |                      |
|---|--------------------------------------------------------------------------------------------|----------------------|
| W | veek 3                                                                                     | 22                   |
| 7 | Jan 19, 20227.1 Isomorphisms and Homomorphisms (Cont'd)7.2 Classification of Cyclic Groups | 22<br>22<br>24       |
| 8 | Jan 21, 2022 8.1 Homomorphisms 8.2 Congruence 8.3 Lagrange's Theorem                       | 26<br>26<br>27<br>28 |

# 1 Jan 3, 2022

# 1.1 Groups

- Algebra  $\rightarrow$  study of mathematical structure.
- Rings  $\leftrightarrow$  "numbers" e.g.  $\mathbb{R}, \mathbb{Z}, \mathbb{C}, \mathbb{Z}_p$ 2 operations  $(+, \cdot)$

**Question 1.1:** What happens if we have only 1 operation (either  $\cdot$  or + but not both)? What kind of structure is this more basic setup?

Answer: Groups! It turns out groups encode the mathematical structures of the  $\underline{\text{symmetries}}$  in nature.

#### **Definition 1.2** (Group)

A group (G,\*) is a nonempty set with a binary operation  $*: G \times G \to G$  that satisfies

- 1. (Closure):  $a * b \in G \quad \forall a, b \in G$
- 2. (Associativity):  $(a * b) * c = a * (b * c) \quad \forall a, b, c \in G$
- 3. (Identity):  $\exists e \in G$  such that  $e * a = a = a * e \quad \forall a \in G$
- 4. (Inverse):  $\forall a \in G, \exists d \in G \text{ such that } d * a = e = a * d$

#### Note:

• If \* is addition, we just divide \* by the usual + sign. In this case

$$e = 0$$
 and  $d = -a$ 

• If the operation \* is multiplication, we just divide \* by the usual · sign. In this case

$$e = 1$$
 and  $d = a^{-1}$ 

• Be aware that sometimes \* is neither.

#### **Definition 1.3** (Abelian)

If the \* operation is commutative, i.e. a\*b = b\*a, then we say that G is <u>abelian</u> (named after the mathematician N.H. Abel)

# Definition 1.4 (Order, Finite Group vs. Infinite Group)

The <u>order</u> of a group G, denoted |G|, is the number of elements it contains (as a set). Thus, G is a <u>finite group</u> if  $|G| < \infty$  and G is an infinite group if  $|G| = \infty$ 

#### **Examples 1.5** (Examples of a group)

1. Rings where you "forget" multiplication.  $\rightarrow (\mathbb{Z}, +)$  integers with  $* = +, (\mathbb{R}[X], +)$ , etc. Note:  $(\mathbb{Z}, *)$  with  $* = \cdot$  is not a group. Why?

#### Theorem 1.6

Every ring is an abelian group under addition.

**Proof.** e = 0, inverse = -a for each  $a \in R$ .

<u>Fact:</u> If  $R \neq 0$  then  $(R, \cdot)$  is <u>never</u> a group since 0 has no multiplicative inverse.

#### **Examples 1.7** (More examples of a group)

2. Fields without zero.

#### Theorem 1.8

Let  $\mathbb{F}^*$  denote the nonzero elements of a field  $\mathbb{F}$ . Then  $(\mathbb{F}^*,\cdot)$  is an abelian group.

<u>Recall:</u> A unit in a ring R is an element  $a \in R$  with a multiplicative inverse  $a^{-1} \in R$  such that  $aa^{-1} = 1 = a^{-1}a$ .

#### Theorem 1.9

The set of units  $\mathcal{U}$  inside a ring R is a group under multiplication.

#### **Examples 1.10** (More examples of a group cont.)

3.  $\mathcal{U}_n = \{m | (m, n) = 1\} \subseteq \mathbb{Z}_n$  is also a group, but under multiplication,  $\underline{n = 4} \quad \mathbb{Z}_4 = \{0, 1, 2, 3\}, \quad \mathcal{U}_4 = \{1, 3\}$   $(\mathbb{Z}_4, +)$  and  $(\mathcal{U}_4, \cdot)$  are groups with different binary operation!

$$\underline{n=6}$$
  $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}, \quad \mathcal{U}_6 = \{1, 5\}$   $(\mathcal{U}_6, \cdot)$  is a group

- $1 \cdot 5 = 5 \pmod{6} \in \mathcal{U}_6$  (closure)
- 1 = e (identity)
- $1 \cdot 1 = 1$ ,  $5 \cdot 5 = 25 \equiv 1 \pmod{6}$  (inverse)
- Associativity is clear

# 2 Jan 5, 2022

# 2.1 Groups (Cont'd)

#### Examples 2.1

4.  $(M_{n \times m}(\mathbb{F}), +) = m \times n$  matrices over  $\mathbb{F}$  under addition e = zero matrix, inverse of a matrix -M

#### **Definition 2.2** (General linear group)

Denote by  $GL_n(\mathbb{F})$  the set of nxn invertible matrices under multiplication.  $(\det(A) \neq 0 \quad \forall A \in GL_n)$ 

- Closed:  $det(A \cdot B) = det(A) \cdot det(B) \neq 0 \implies AB \in GL_n \quad \forall A, B \in GL_N$
- Associativity: Obvious.
- $\overline{\text{Identity: }} \det(I) = 1 \neq 0 \implies I \in GL_n(\mathbb{F})$
- Inverse:  $A \in GL_n$ ;  $\det(A^{-1}) = \frac{1}{\det(A)} \neq 0 \implies A^{-1} \in GL_n(\mathbb{F})$

<u>Fact:</u>  $GL_n(\mathbb{F})$  is a group for any field  $\mathbb{F}$ .

Comment:

- $\det(A+B) \neq \det(A) + \det(B)$
- $\det(AB) = \det(A) \cdot \det(B)$

#### **Definition 2.3** (Special linear group)

Let  $SL_n(\mathbb{F})$  denote the set of invertible matrices over  $\mathbb{F}$  with det = 1

**Exercise.** Show that  $SL_n(\mathbb{F})$  is a group.

# 2.2 Symmetries

#### **Example 2.4** (Symmetries over a square)

Rotations and reflection These operations (maps) form a group under composition. So \*=0. For instance, suppose  $r_3 \circ t = h$ 



The group of rotations/reflections of a square is called <u>Dihedral Group of degree 4</u>, denoted  $D_4$ .

$$D_4 = \{r_1, r_2, r_3, r_4, d, t, h, v \mid \text{under } \circ \}$$



These are Professor Gonzales's lovely drawings.

#### **Example 2.5** (Symmetries of a regular polygon with n sides)

Called the dihedral groups of degree  $n, D_n$ .

• <u>n=</u>3



 $\underline{n}=4$ 



 $\underline{n=5}$ 



• <u>n=6</u> etc...

Observe:  $|D_n| = 2n$  because you have n-axes of reflection and n-angles of notation.

#### **Example 2.6** (The symmetric group)

Let  $n \in \mathbb{N}$ , and  $S_n$  be the set of all permutations of the numbers  $\{1, ..., n\}$ .

<u>Note:</u> any permutation of  $\{1,...,n\}$  can be thought of as a bijection  $\{1,...,n\} \rightarrow \{1,...,n\}$ .

- ⇒ This allows us to compose permutations just like functions.
- $\implies S_n$  is a group!

#### **Definition 2.7** (Symmetric group)

The symmetric group  $S_n$  is the group of permutations of the integers of the integers  $\{1, ..., n\}.$ 

Given any permutation  $\sigma \in S_n$ ,

$$\sigma: \{1, ..., n\} \to \{1, ..., n\},$$

$$i \mapsto \sigma_i$$

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ \sigma_1 & \sigma_2 & \cdots & \sigma_{n-1} & \sigma_n \end{pmatrix} \rightarrow e = \begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 2 & \cdots & n \end{pmatrix}$$

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma_1^{-1} & \sigma_2^{-1} & \cdots & \sigma_n^{-1} \end{pmatrix}$$

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma_1^{-1} & \sigma_2^{-1} & \cdots & \sigma_n^{-1} \end{pmatrix}$$

Group operation: function composition.

#### Example 2.8

$$\frac{n=2:}{e = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}} \tau = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} 
\tau \circ \tau = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} = e 
\tau \circ e = \tau 
e \circ \tau = \tau 
e \circ \tau = e 
\implies S_2 = \{e, \tau\} \text{ is a group} 
e^{-1} = e 
\tau^{-1} = \tau$$

Associativity: obvious because of function composition

# 3 Jan 7, 2022

# 3.1 Symmetries (Cont'd)

#### Example 3.1

 $\underline{\mathbf{n}}=3$   $S_3$ : permutations of  $\{1,2,3\}$ 

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \tau_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \tau_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$
$$\tau_{21} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \tau_{12} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \tau_{121} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$\tau_1 \circ \tau_2 \circ \tau_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} = \tau_{121}$$

Note:  $\tau_{21} = \tau_2 \circ \tau_1$ ,  $\tau_{12} = \tau_1 \circ \tau_2$  $\tau_{21} \neq \tau_{12} \implies S_3$  is not abelian!

Exercise.  $\tau_{212}$ ?

# 3.2 Direct Product of Groups

**Definition 3.2** (Direct product)

Given (G, \*), (H, \*) both groups define the binary operation:

$$\Box \colon (G \times H) \times (G \times H) \to G \times H$$
$$(g,h) \Box (g',h') \mapsto (g * g', h \star h')$$

Side note:  $(S, \Theta)$ 

 $\Theta \colon S \times S \to S \implies S \text{ group}$ 

#### Example 3.3

 $S_2 \times D_4$ :

 $(\tau_1, r_{270^{\circ}}) \square (\tau_1, v) = (\tau_1 \circ \tau_1, r_{270^{\circ}}v) = (e, t)$ 

### Example 3.4

$$(\mathbb{R},+)\times(\mathbb{R}^*,\cdot)$$

$$(5,2) \square (-5,\pi) = (0,2\pi)$$

#### Example 3.5

$$\mathbb{Z}_{n} \times \mathbb{Z}_{m} \quad n, m \in \mathbb{N}.$$

$$(a,b) \square (a',b') = (\underbrace{a+a'}_{\text{mod } n}, \underbrace{b+b'}_{\text{mod } m})$$

$$(5,5) \square (2,2) = (5+2,5+2)$$

$$= (7,1)$$

# 3.3 Properties of Groups

<u>Notation</u>: Going forward, we omit \* in the notation:  $(G,*) \to G$ . Use multiplicative notation for abstract groups. Instead  $a*b \to ab$ .

$$\underbrace{a * a * a * a \cdots * a}_{n \text{ times}} \to a^n$$

However, for very explicit groups like

 $(\mathbb{Z},+),(\mathbb{R},+),(\mathbb{Z}_n,+),$  etc, we use <u>additive notation</u>. (\*=+)

$$a*b \rightarrow a+b$$

$$\underbrace{a * \cdots * a}_{n \text{ times}} \to n \cdot a$$

(Review notation on page 198 of book)

#### Theorem 3.6

G group,  $a, b, c \in G$ . Then

- 1.  $e \in G$  is unique
- 2. if ab = ac or  $ba = ca \implies b = c$
- 3.  $\forall a \in G : a^{-1}$  is unique.

#### Proof.

1. Suppose  $\exists e' \in G$  s.t  $e \neq e'$  but  $e'a = a = ae' \ \forall a \in G$ .  $\Longrightarrow$  let  $a = e \implies e'e = e = ee'$ 

On the other hand  $e \cdot e' = e' = e'e$ 

$$\implies e = e'$$

 $2. \ ab=ac, \quad a,b,c \in G.$ 

Since  $a^{-1} \in G$ 

$$\implies \underbrace{a^{-1}a}_{e}b = \underbrace{a^{-1}a}_{e}c$$

$$\implies e \cdot b = e \cdot c$$

$$\implies b = c$$

3. Suppose  $a \in G \exists$  two distinct inverses.

$$d_1, d_2 \in G$$
.

$$d_1 a = e = a d_1$$

$$d_2a = e = ad_2$$

$$\implies d_1 = d_1 e = d_1 a d_2 = e \cdot d_2 = d_2$$

#### Corollary 3.7

G group,  $a, b \in G$ . Then

- 1.  $(ab)^{-1} = b^{-1}a^{-1}$
- 2.  $(a^{-1})^{-1} = a$

#### | Proof. Exercise.

Note: ab = ba (G is abelian)

$$\implies (ab)^{-1} = a^{-1}b^{-1} = b^{-1}a^{-1}$$

Generally:  $ab \neq ba \implies a^{-1}b^{-1} \neq b^{-1}a^{-1}$ 

#### 3.4 Order of an Element

**Definition 3.8** (Order (of an element) and Finite vs. Infinite order)

The <u>order</u> of an element  $a \in G$  is the smallest  $k \in \mathbb{N}$  such that  $a^k = e$ . We denote this by |a|.

If k is finite  $\implies a$  has finite order.

If k is infinite  $\implies a$  has <u>infinite order</u>.

#### Example 3.9

$$S_2; e, \tau_1 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

$$|e| = 1; e^1 = e$$

$$|e| = 1; e^{1} = e$$

$$|\tau_{1}| = 2 \quad \tau_{1}^{2} = \tau_{1} \circ \tau_{1} = e$$

$$\tau_{1}^{4} = \tau_{1}^{2} \circ \tau_{1}^{2} = e \circ e = e$$

# Example 3.10

$$\mathbb{Z} \leftarrow e = 0.$$
$$|1| = ?$$

 $1 \cdot n = 0$  for which n?

Answer none!

$$\implies |1| = \infty$$

# 4 Jan 10, 2022

# 4.1 Order of an Element (Cont'd)

#### Theorem 4.1

G-group,  $a \in G$ 

- 1. If  $|a| = \infty$ , then  $a^i \neq a^j$  for any  $i, j \in \mathbb{Z}$  with  $i \neq j$ .
- 2. If  $\exists i \neq j$  such that  $a^i = a^j \implies |a| < \infty$ .

**Proof.** We prove (2) (because  $1 \Leftrightarrow 2$ ).

WLOG suppose i > j, then if  $a^i = a^{j'} \implies a^{i-j} = a^i a^{-j} \implies = a^j a^{-j} = a^0 = e$   $\implies |a| \le i - j < \infty$ 

#### Theorem 4.2

G group,  $a \in G$  |a| = n

- 1.  $a^k = e \Leftrightarrow n \mid k \quad (n \le k)$
- 2.  $a^i = a^j \Leftrightarrow i \equiv j \pmod{n}$
- 3. if n = td  $d \ge 1 \implies |a^t| = d$ .

#### Proof.

1. If  $a^k = e$  and since  $a^n = e$  with n-smallest such integer, then k > n, and so k = nd + r with 0 < r < n

$$a^{k} = a^{nd+r} = (a^{n})^{d}a^{r} = e^{d}a^{r} = a^{r}$$

If 
$$0 < r < n \implies a^r \neq e \implies a^k \neq e$$
  
 $\implies r = 0 \implies k = nd \implies n \mid k$ .

2. If  $a^i = a^j \implies a^{i-j} = e$ 

$$\implies n \mid i - j \text{ by } (1).$$

$$\implies i - j \equiv 0 \pmod{n}$$

$$\implies i \equiv j \pmod{n}$$

3. If n = td  $(d \ge 1) \stackrel{?}{\Longrightarrow} |a^t| = d$ 

Since 
$$a^n = e \implies (a^t)^d = e \implies |a^t| < d$$
.

If 
$$|a^t| = k < d \implies (a^t)^k = a^{tk} = e$$

But  $tk for <math>tk < n \implies \neq$  because n is the smallest positive integer such that  $a^n = e$ .

$$\implies k = d \implies |a^t| = d.$$

Corollary 4.3

G- abelian group with  $|a| < \infty$   $\forall a \in G$ . Suppose  $c \in G$  such that  $|a| \leq |c|$   $\forall a \in G$ . Then  $|a| \mid |c|$ .

**Proof.** Suppose not.  $\exists$  some  $a \in G$  such that  $|a| \nmid |c|$ . Consider prime factorizations of |a| and |c|.

 $\implies$  Then  $\exists$  some prime p such that  $|a| = p^r m$   $|c| = p^s n$  where r > s (s might be zero) and  $(p_1 m) = 1 = (p_1 n)$ .

Then by (3) of Theorem 4.2,

$$|a^m| = p^r$$
 and  $|c^{p^s}| = n$ 

$$\Longrightarrow_{\text{because } (p^r, n) = 1} |\underbrace{a^m \cdot c^{p^s}}_{\in G}| = p^r \cdot n$$

Note:  $|a| = n, |b| = m, |a \cdot b| \neq n \cdot m \text{ unless } (n, m) = 1$ 

Recall:  $|c| = p^s \cdot n$  where s < r

- $\implies p^r > p^s$
- $\implies p^r n > p^s n$
- $\implies |a^m \cdot c^{p^s}| > |c|$
- $\implies$   $\neq$  because c is the element in G with maximal order! So  $a^m c^{p^s} \in G$  cannot have order larger than c.

# 4.2 Subgroups

#### **Definition 4.4** (Subgroup)

A subset  $H \subseteq G$  is a subgroup of (G, \*) if it is also a group under \*.

Note:

 $G \subseteq G \implies G$  is always a subgroup of itself (Improper subgroup)

 $\{e\} \subseteq G \implies \{e\}$  is always a subgroup of G (Trivial subgroup of G)

 $\implies$  Any subgroup  $e \neq H \neq G$  is called a nontrivial proper subgroup.

#### Examples 4.5

- $(\mathbb{Z},+)\subseteq (\mathbb{Q},+)$
- $\{e, r_{90}, r_{180}, r_{270}\} \subseteq D_4$
- $SL_n(\mathbb{F}) \subseteq GL_n(\mathbb{F})$

Note: any subgroup always contains e.

#### Theorem 4.6

A nonempty subset H of G is a subgroup if:

- $1. \ ab \in H \quad \forall a, b \in H$
- $2. \ a^{-1} \in H \quad \forall a \in H$

**Proof.** Since  $H \neq \emptyset$   $\exists a \in H$ . By (2),  $\exists a^{-1} \in H$ .  $\Longrightarrow$  By (1)  $aa^{-1} = e \in H$   $\Longrightarrow$   $e \in H$ .

#### Theorem 4.7

Any closed nonempty finite subset H of G is a subgroup.

**Proof.** By Theorem 4.6, we need only show that H contains inverses.

If  $a \in H$   $a^k \in H$   $\forall k \in \mathbb{Z}$ .

Since H is finite, not all  $a^k$  can be distinct.

$$\implies |a| = n < \infty \text{ for some } n \in \mathbb{N}.$$

$$\implies a^n = e$$

$$\implies a^{n-1} \cdot a = e = a \cdot a^{n-1}$$

$$\implies a^{n-1} = a^{-1}$$

If 
$$n > 1 \implies a^{-1} \in H$$

If 
$$n = 1 \implies a^{-1} = e \implies a = e \implies a^{-1} = e \in H$$
.

# 5 Jan 12, 2022

# 5.1 Subgroups (Cont'd)

#### Example 5.1

 $\mathbb{Z}_5 \leftarrow \text{group under addition} = \{0, 1, 2, 3, 4\}$ 

Units of  $\mathbb{Z}_5$ :  $\mathcal{U}_5 = \{1, 2, 3, 4\}$ 

Clearly,  $\mathcal{U}_5 \subseteq \mathbb{Z}_5$ 

Question: Is  $\mathcal{U}_5$  a subgroup of  $\mathbb{Z}_5$ 

No, because  $\mathcal{U}_5$  is a group under multiplication.

#### Example 5.2

 $S_3$ : set of permutations that fix 1.

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \quad \tau_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$
$$\tau_2 e = \tau_2 = e\tau_2$$
$$\tau_2 \cdot \tau_2 = e$$
$$\Rightarrow \underbrace{\{e, \tau_2\}}_{P} \text{ is closed.}$$

By Theorem 4.7, H is a subgroup because H is finite, nonempty, and closed.

# 5.2 Center of a Group

#### **Definition 5.3** (Center of a group)

The <u>center</u> of a group G is the subset

$$Z(G) \coloneqq \{a \in G \mid ag = ga \quad \forall g \in G\}$$

**Note 5.4:** When G is abelian  $\implies Z(G) = G$ 

**Question 5.5:** Is  $Z(G) = \emptyset$ ? No, because  $e \in Z(G)$ 

#### Examples 5.6

- $Z(S_n) = e$
- $Z(D_4) = \{e, r_{180}\}$

• 
$$Z(GL_n) = \{aI \mid a \in \mathbb{F}\}$$
 
$$\begin{pmatrix} a & 0 \\ \ddots \\ 0 & a \end{pmatrix}$$

•  $Z(SL_n) = \{I\} = e$ 

#### Theorem 5.7

Z(G) is a subgroup of G.

**Proof.** By Theorem 4.6, since  $Z(G) \neq \emptyset$ , we need only show closure and inverses.

1. 
$$a, b \in Z(G) \stackrel{?}{\Longrightarrow} ab \in Z(G), \forall g \in G.$$

$$(ab)g \stackrel{\text{b/c}}{=} a(gb) \underset{\text{by assoc.}}{=} (ag)b \stackrel{a \in Z(G)}{=} (ga)b = g(ab)$$

$$\Longrightarrow ab \in Z(G)$$
2.  $a \in Z(G), ag = ga \quad \forall g \in G.$ 

$$\Longrightarrow a^{-1}(ag)a^{-1} = a^{-1}(ga)a^{-1}$$

$$\Longrightarrow ga^{-1} = a^{-1}q \implies a^{-1} \in Z(G)$$

# 5.3 Cyclic Group

**Definition 5.8** (Cyclic group)

For any  $a \in G$ , the set

$$\langle a \rangle = \{ a^n \mid n \in \mathbb{Z} \}$$

is a subgroup of G. We say  $\langle a \rangle$  is the cyclic subgroup generated by a.

**Note 5.9:** Cyclic groups are always abelian.

If  $G = \langle a \rangle$  for some  $a \in G$ , then G is a cyclic group.

Example 5.10

 $\langle r_{90} \rangle \subseteq D_4$ 

 $\langle r_{90} \rangle = \{e, r_{90}, r_{180}, r_{270}\} \leftarrow \text{ is a cyclic subgroup of } G.$ 

**Note 5.11:** In additive notation:  $a * a = a + a \pmod{a \cdot a = a^2}$ 

$$\langle a \rangle = \{ n \cdot a \mid n \in \mathbb{Z} \} \quad n \cdot a = \underbrace{a + a + \dots + a}_{n \text{ times}}$$

$$a^n = \underbrace{a \cdot a \cdot a \cdots a}_{n \text{ times}}$$

Example 5.12

$$(\mathbb{Z},+) = \langle 1 \rangle = \langle -1 \rangle$$

Note 5.13: The generating element a is not unique.

Example 5.14

$$(\mathbb{Z}_3,+)=\langle 1\rangle=\langle 2\rangle$$

**Exercise.** Which elements generate  $\mathbb{Z}_n$  for  $n \in \mathbb{N}$ ?

Hint: Look at units (i.e. relatively prime) of  $\mathbb{Z}_n$ 

Example 5.15

$$\mathbb{Z}_n = \langle 1 \rangle$$

 $\implies$  All  $\mathbb{Z}_n$  are cyclic groups of order n

#### Theorem 5.16

Let  $a \in G$ 

- 1. If  $|a| = \infty$ , then  $\langle a \rangle = \{a^k \mid k \in \mathbb{Z}\}$  is an infinite group.
- 2. If  $|a| = n < \infty$ , then  $\langle a \rangle$  is a finite group. In fact,  $\langle a \rangle = \langle e, a, a^2, a^3, \dots, a^{n-1} \rangle \implies |\langle a \rangle| = |a| = n$ .

#### Proof (Sketch).

$$|a| = \infty \implies a^i \neq a^j \text{ for } i \neq j$$
  
 $\implies \{a^k \mid k \in \mathbb{Z}\} \implies \text{ infinite set.}$   
 $|a| = n \implies \langle a, a^2, \dots, a^{n-1}, a^n = e \}$ 

Since:  $a \cdot a^{n-1} = a^n = e = a^{n-1} \cdot a$ 

$$\implies a^{n-1} = a^{-1}$$

$$a^2 a^{n-2} = a^n = e = a^{n-2} a^2$$

$$\implies a^{-2} = a^{n-2}$$

#### Theorem 5.17

Let  $\mathbb{F}$  be any field. Then any finite subgroup  $G \subseteq \mathbb{F}^*$  is cyclic.

**Recall 5.18**  $\mathbb{F}^* = \mathbb{F} - \{0\}$  is a group under multiplication.

**Proof.** Since  $|G| < \infty$ ,  $\exists c \in G$  such that order of c is maximal  $(|a| \le |c| \quad \forall a \in G)$ . By Corollary 4.3,  $\forall a \in G, |a| \mid |c|$  so if  $|c| = m \implies a^m = 1$ 

Consider  $p(x) = x^m - 1$ . Since  $p(a) = 0 \quad \forall a \in G$ .

Since p(x) has degree m it can have at most m solutions  $\implies |G| \le m$ .

Since |c| = m so  $|\langle c \rangle| = m$ .

$$\implies \langle c \rangle \subseteq G \implies \langle c \rangle = G.$$

$$\implies$$
 G is cyclic.

# 6 Jan 14, 2022

# 6.1 Cyclic Group (Cont'd)

Recall 6.1  $a \in G$ 

$$\underbrace{\langle a \rangle} \coloneqq \{a^n \mid n \in \mathbb{Z}\} = \{\dots a^{-2}, a^{-1}, e, a, a^2, \dots\}$$
 cyclic group gen. by a

 $G = \langle a \rangle \leftarrow G$  is cyclic group

Recall 6.2 Thm:

$$|a| = \infty \rightarrow |\langle a \rangle| = \infty$$
  
 $|a| = n < \infty \rightarrow |\langle a \rangle| = n$ 

**Recall 6.3**  $\mathbb{F}$ -field,  $G \subseteq \mathbb{F}^*$  if G finite  $\Longrightarrow G$  is cyclic. (G is any subgroup)

#### Theorem 6.4

Subgroups of cyclic groups are cyclic.

**Proof.** Suppose  $G = \langle a \rangle$  and  $H \subseteq G$ . We want to show that  $H = \underbrace{\langle b \rangle}_{b=a^j \text{ for some } j}$  for some  $b \in G$ .

If  $H = e \implies H = \langle e \rangle$  we're done.

If  $H \neq e$ , then we can find k-smallest positive integer such that  $a^k \in H$  Suppose  $b \in H$ . Then,

 $b = a^i$  for some i then i = kd + r  $0 \le r < k$ .

$$\implies a^r = a^{i-kd} = b(a^k)^{-d} \in H$$
 by closure.

If

$$r \neq 0 \implies \begin{cases} a^r \in H \\ a^k \in H \end{cases}$$

with 0 < r < k which is a contradiction because k was supposed to be smallest positive integer with  $a^k \in H$ .

$$\implies r = 0 \implies b = a^i = a^{kd+r} = a^{kd} = (a^k)^d$$

$$\implies b \in \langle a^k \rangle$$

$$\implies H \subseteq \langle a^k \rangle$$

Since 
$$a^k \in H \implies \langle a^k \rangle \subseteq H$$
  
 $\implies \langle a^k \rangle = H$ 

# 6.2 Generating Sets for Groups

#### **Definition 6.5**

Given a subset S of G, let  $\langle S \rangle$  denote the set of all possible products of all elements of S and their inverses.

Note 6.6:  $S \subseteq \langle S \rangle$ 

#### Example 6.7

$$a, b \in G, \quad S = \{a, b\}$$

$$\langle S \rangle = \langle a, b \rangle$$

$$= \{a^{n}, b^{m}, a^{n}b^{m}, a^{n_{1}}b^{m_{1}}a^{n_{2}}b^{m_{2}}, b^{m}a^{n}, b^{m_{1}}a^{n_{2}}b^{m_{2}}a^{n_{1}}, \dots\}$$

$$= \left\{\prod_{i=0}^{k} a^{n_{i}}b^{m_{i}}, \prod_{i=0}^{k} b^{n_{i}}a^{m_{i}} \mid k \in \mathbb{N}, n_{i}, m_{i} \in \mathbb{Z}\right\}$$

#### Theorem 6.8

S- any subset of G.

- 1.  $\langle S \rangle$  is always a subgroup of G.
- 2. If H is any other subgroup of G such that  $S \subseteq H \implies \langle S \rangle \subseteq H$ .

#### Proof (Sketch).

- 1. Use the fact that very definition of  $\langle S \rangle$  ensures closure and inverses  $\implies \langle S \rangle$  is a subgroup.
- 2. Again follows from closure and inverses contained in H because H is a subgroup.

#### **Definition 6.9** (Generators)

For any  $S \subseteq G$ , the group  $\langle S \rangle$  is called the <u>subgroup generated by S</u>. If  $G = \langle S \rangle$ , then we call elements in S, the generators of G and S the generating set of G

# $$\begin{split} \mathbf{Example 6.10 } & \text{ (Symmetric group)} \\ S_3 &= \{e, \tau_1, \tau_2, \tau_{121}, \tau_{21}, \tau_{12}\} \\ \tau_{121} &= \tau_1 \circ \tau_2 \circ \tau_1 \\ \tau_{21} &= \tau_2 \circ \tau_1 \\ \tau_{12} &= \tau_1 \circ \tau_2 \\ e &= \tau_1 \circ \tau_1 = \tau_2 \circ \tau_2 \\ S_3 &= \left\langle \begin{array}{c} \tau_1 & , & \tau_2 \\ 2 & 3 \\ 2 & 1 & 3 \end{array} \right\rangle \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \\ S_n \leftarrow \text{ order } n! \\ S_n &= \left\langle \begin{array}{c} \tau_1 & , & \tau_2 \\ \tau_2 & , & \tau_3, \dots, \\ \tau_{n-1} & , & \tau_{n-1} \\ \tau_{\text{flips } 1-2} & , & \tau_{n-1} \\ \tau_{\text$$

# 6.3 Isomorphisms and Homomorphisms

**Definition 6.11** (Homomorphism (of groups))

G, H are groups. A homomorphism of groups is a map  $\varphi \colon G \to H$  such that  $\forall a, b \in G$ 

$$\varphi(\underbrace{ab}) = \varphi(\underbrace{a) \cdot \varphi}(b)$$

$$ab \text{ prod in } G \text{ prod in } H$$

**Note 6.12:** This means that the "multiplication" table for G is mapped onto "multiplication" table for H i.e.  $\varphi$  preserves group structures.

Note 6.13:  $\varphi(a) = \varphi(e_G \cdot a) = \varphi(e_G)\varphi(a)$  $\implies \varphi(e_G) = e_H$ 

 $\implies \varphi$  takes identities to identities.

**Definition 6.14** (Isomorphism (of groups))

An <u>isomorphism</u> of groups G and H is a homomorphism of  $\varphi \colon G \to H$  that is also a bijection, i.e. an isomorphism is an invertible homomorphism.

If G is isomorphic to H, then  $G \cong H$ , which is the same as writing  $\exists \varphi \colon G \to H$  with  $\varphi$  one-to-one and onto. Alternatively,  $\tilde{\varphi} \colon H \to G$  is also one-to-one and onto.

#### Example 6.15

```
\mathbb{Z}_8 = \{0, \dots, 7\}
\mathcal{U}_8 \text{ of units } \Longrightarrow \mathcal{U}_8 = \{\underbrace{1}_{e=}, 3, 5, 7\}
\text{Consider } \mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0, 0), (1, 0), (0, 1), (1, 1)\}
\text{Claim: } \mathbb{Z}_2 \times \mathbb{Z}_2 \cong \mathcal{U}_8
\text{Let}
\varphi \colon \mathcal{U}_8 \to \mathbb{Z}_2 \times \mathbb{Z}_2
\varphi(1) = (0, 0)
\varphi(2) = (1, 0)
```

$$\varphi(1) = (0,0)$$
 $\varphi(3) = (1,0)$ 
 $\varphi(5) = (0,1)$ 
 $\varphi(7) = (1,1)$ 

$$\varphi(ab) = \varphi(a) + \varphi(b)$$
 Check,

- $\varphi$  is a homomorphism
- multiplication table is preserved
- $\varphi$  is one to one and onto

# 7 Jan 19, 2022

# 7.1 Isomorphisms and Homomorphisms (Cont'd)

Example 7.1 (Example 6.15 Cont'd)

Let

$$\varphi \colon \mathcal{U}_8 \to \mathbb{Z}_2 \times \mathbb{Z}_2$$

$$\varphi(1) = (0,0) \leftarrow \text{ fixed}$$

$$\varphi(3) = (1,0)$$

$$\varphi(5) = (0,1)$$

$$\varphi(7) = (1,1)$$

Check,

$$(0,0) + (1,0) = \varphi(1) + \varphi(3) \stackrel{\checkmark}{=} \varphi(1 \cdot 3) = \varphi(3) = (1,0)$$
  
$$(0,0) = 2(0,1) = \varphi(5) + \varphi(5) \stackrel{\checkmark}{=} \varphi(5 \cdot 5) = \varphi(1) = (0,0)$$
  
:

Verify every time  $\varphi(ab) = \varphi(a) + \varphi(b) \implies \varphi$  is a homomorphism.  $\varphi$  is one-to-one<sup>a</sup> and onto<sup>b</sup>  $\implies$  DONE. Iso's are not unique. In fact,

$$\varphi(1) = (0,0)$$
  
 $\varphi(3) = (0,1)$   
 $\varphi(5) = (1,0)$   
 $\varphi(7) = (1,1)$ 

is also an iso. However,

$$\varphi(1) = (0,0)$$
  
 $\varphi(3) = (1,1)$ 

Does it work? Why? (Exercise)

$${}^{a}\varphi(x) = \varphi(y) \Longrightarrow x = y$$
  
 ${}^{b}\forall y \in Z_{2} \times Z_{2} \exists x \in \mathcal{U}_{8} \text{ s.t. } \varphi(x) = y$ 

#### Example 7.2

 $\mathbb{Z} \to Z_5$ 

 $n \stackrel{\varphi}{\mapsto} [n] \mod 5$ 

Let's construct a homomorphism.

1. Check  $\varphi$  is well defined.

$$n \equiv m \mod 5 \stackrel{?}{\Longrightarrow} \varphi(n) = \varphi(m).\checkmark$$

2.  $\varphi$  is a homomorphism.

$$\varphi(a+b) = \varphi(a) + \varphi(b)$$
$$[a+b] \underset{\text{true}}{=} [a] + [b]$$

 $\implies \varphi$  is a homomorphism

Note:  $\varphi$  is not injective because  $|\mathbb{Z}| > |\mathbb{Z}_5|$   $\varphi$  is not an iso.

#### **Fact 7.3:** Isomorphic groups always have the same order.

Converse?  $|G| = |H| \implies G \cong H$ ? FALSE!

#### Example 7.4

Consider  $S_3$  and  $\mathbb{Z}_6$ .

$$|S_3| = 3! = 6 \qquad |\mathbb{Z}_6| = 6$$

Not isomorphic. Let's suppose  $\varphi \colon S_3 \to \mathbb{Z}_6$  an isomorphism.

$$\varphi(ab) = \varphi(a) + \varphi(b) \tag{1}$$

So,

$$\varphi(a) + \varphi(b) = \varphi(b) + \varphi(a)$$
 (because  $\mathbb{Z}_6$  is abelian)  
=  $\varphi(ab)$ 

 $\implies$  if (1) holds since  $\mathbb{Z}_6$  is abelian

$$\implies \varphi(ab) = \varphi(ba) \quad \forall b, a \in S_3$$

 $\implies S_3$  is abelian

False,  $S_3$  is not abelian, so you can't define such an iso  $\varphi$ .

#### Theorem 7.5

If G is abelian, H is not abelian  $\implies G \ncong H$ .

**Fact 7.6:** Isomorphisms preserve order of elements, i.e.

$$|a| = |\varphi(a)|$$

#### **Definition 7.7** (Automorphism)

An <u>automorphism</u> is an isomorphism from  $G \to G$ . They capture internal symmetries of a group.

#### Example 7.8

identity:

$$i_G\colon G\to G$$

$$g \mapsto g$$

Clearly:  $i(ab) = i(a)i(b) = ab \stackrel{\checkmark}{=} ab$ 

#### **Definition 7.9** (Inner automorphism of G induced by c)

For any  $c \in G$ , the inner automorphism of G induced by c is:

$$\varphi_c \colon G \to G; \quad \varphi_c(g) = c^{-1}gc \leftarrow \text{ conjugation by } c.$$

1. Then  $\varphi_c$  is a homomorphism:

$$\varphi_c(ab) = c^{-1}abc = (c^{-1}ac)(c^{-1}bc) = \varphi_c(a)\varphi_c(b)$$

2.  $\varphi$  is surjective: Given any  $g \in G$ .

$$\varphi_c(cgc^{-1}) = c^{-1}(cgc^{-1})c = g$$

3.  $\varphi$  is injective:  $\varphi_c(a) = \varphi_c(b)$  for some  $a, b \in G$ 

$$\Rightarrow c^{-1}ac = c^{-1}bc$$

$$\implies a = b$$

 $\implies \varphi$  is an isomorphism.

# 7.2 Classification of Cyclic Groups

#### Theorem 7.10

Suppose G is a cyclic group.

1. 
$$|G| = \infty \implies G \cong (\mathbb{Z}, +)$$

2. 
$$|G| = n < \infty \implies G \cong (\mathbb{Z}_n, +)$$

#### Proof.

1. If  $G = \langle a \rangle$  infinite. Then  $G = \{a^n \mid n \in \mathbb{Z}\}$ . So let

$$\varphi\colon G\to \mathbb{Z}$$

$$a^n \mapsto n$$

So  $\varphi$  is one-to-one and onto by definition.

Then,

$$n + m = \varphi(a^{n+m}) = \varphi(a^n a^m) \stackrel{?}{=} \varphi(a^n) + \varphi(a^m) = n + m$$

 $\implies \varphi$  is a homomorphism and  $\varphi$  is bijection.

 $\implies \varphi$  is an isomorphism.

2. 
$$|G| = n \implies G = \{e, a, a^2, \dots, a^{n-1}\}$$

$$\varphi \colon G \to \mathbb{Z}_n = \{0, 1, \dots, n-1\}$$
$$a^i \mapsto i$$

Exactly for the same reasons: check  $\varphi$  is an isomorphism.

$$k = \underbrace{\varphi(a^k)}_{i+j \equiv k \mod n} = \underbrace{\varphi(a^{i+j})}_{i+j \equiv k \mod n} = \underbrace{\varphi(a^i) + \varphi(a^j)}_{i+j \equiv k \mod n}$$

 $\varphi$  is an isomorphism.

# 8 Jan 21, 2022

# 8.1 Homomorphisms

**Recall 8.1** Let  $\varphi \colon G \to H$  any map. Then

$$\operatorname{Im} \varphi = \{ h \in H \mid h = \varphi(g) \text{ some } g \in G \}$$

#### Theorem 8.2

If  $\varphi \colon G \to H$  is a homomorphism, then:

- 1.  $\varphi(e_G) = e_H$
- 2.  $\varphi(a^{-1}) = (\varphi(a))^{-1}$
- 3. Im  $\varphi$  is a subgroup of H
- 4. If  $\varphi$  is injective, then  $G \cong \operatorname{Im} \varphi$

**Note 8.3:** If  $\varphi$  is surjective, then  $\operatorname{Im} \varphi = H$ 

#### Proof.

- 1. Did before.
- 2. By (1),  $e_H = \varphi(e_G) = \varphi(aa^{-1}) = \varphi(a) \cdot \varphi(a^{-1}) \stackrel{?}{=} e_H \stackrel{?}{=} \varphi(a^{-1})\varphi(a) = \varphi(a^{-1}a) = \varphi(e_G) = e_H$  by (1).
- 3. Claim Im  $\varphi$  subgroup of H. Since  $\varphi(e_G) = e_H$  by  $(1) \implies e_H \in \operatorname{Im} \varphi$ . If  $a, b \in \operatorname{Im} \varphi \implies \exists a', b' \in G \text{ s.t. } \varphi(a') = a, \varphi(b') = b \implies ab = \varphi(a')\varphi(b') = \varphi(a'b') \text{ since } G \text{ is closed, } a'b' \in G \implies ab \in \operatorname{Im} \varphi \implies \operatorname{Im} \varphi \text{ is closed.}$
- 4. By (2), if  $\varphi(g) = a$  then

$$a^{-1} = \varphi(g)^{-1} = \varphi(g^{-1})$$

 $\implies a^{-1} = \varphi(g^{-1}) \text{ but } g^{-1} \in G \implies a^{-1} \in \operatorname{Im} \varphi$ 

 $\operatorname{Im} \varphi$  has inverses  $\Longrightarrow \operatorname{Im} \varphi$  is subgroup.

5.  $\varphi$  injective  $\Longrightarrow G \cong \operatorname{Im} \varphi$ . Since  $\varphi \colon G \to \operatorname{Im} \varphi$  is surjective by construction, if  $\varphi$  is also injective, then  $\varphi \colon G \to \operatorname{Im} \varphi$  is a bijection and a homomorphism  $\Longrightarrow \varphi \colon G \to \operatorname{Im} \varphi$  is an isomorphism  $\Longrightarrow G \cong \operatorname{Im} \varphi$ .

Example 8.4

 $\varphi \colon G \to H$  where  $\varphi$  is an injective homomorphism and H is abelian.

Question: Is G abelian?

Yes, because  $G \cong \operatorname{Im} \varphi$  by bijectivity, and  $\operatorname{Im} \varphi$  subgroup of H and subgroups of abelian groups are abelian  $\implies G$  has to be abelian.

# 8.2 Congruence

#### **Definition 8.5** (Congruence of a group)

Suppose H is a subgroup of G. Let  $a, b \in G$ . We say  $a \equiv b \pmod{H}$  if  $ab^{-1} \in H$ .

**Recall 8.6** An equivalence relation on a set S is a relation  $a \sim b$  for  $a, b \in S$  that is:

reflexive:  $a \sim a \quad \forall a \in S$ 

transitive:  $a \sim b$  and  $b \sim c \implies a \sim c$ 

symmetric:  $a \sim b \implies b \sim a$ .

#### Theorem 8.7

The congruence relation  $a \equiv b \pmod{H}$  is an equivalence relation for any subgroup  $H \subseteq G$ .

#### **Definition 8.8** (Right coset (and left coset))

Given any  $a \in G$ , the right coset of H in G is:

$$Ha = \{ha \in G \mid h \in H\}$$
 where a is any  $a \in G$  fixed

This is a right coset because a is multiplied on the right.

The left coset of H in G is:

$$aH = \{ah \in G \mid h \in H\}$$
 where a is any  $a \in G$  fixed

**Note 8.9:** Ha is just the congruence class of a in G mod H.

For any  $a \in G$ ,

$$[a] = \{b \in G \mid b \equiv a \mod H\}$$

$$= \{b \in G \mid ba^{-1} \in H\}$$

$$= \{b \in G \mid \underbrace{ba^{-1} = h}_{b=ha} \text{ for some } h \in H\}$$

$$= \{ha \in G \mid h \in H\} = Ha.$$

**Theorem 8.10** 1. Ha = Hb iff  $ab^{-1} \in H$  (i.e.  $a \equiv \mod H$ )

2. Given  $a \neq b$  either Ha = Hb or  $Ha \cap Hb = \emptyset$ .

**Proof.** Analogous as for rings (seen this in 110A).

# 8.3 Lagrange's Theorem

#### Theorem 8.11

H-subgroup of G then:

- 1.  $G = \bigcup_{a \in G} Ha$
- 2.  $\forall a \in G, \exists$  bijection between  $H \to Ha$ . So if  $|H| < \infty$ , then  $|Ha| = |Hb| \forall a, b \in G$ .

Proof.

- 1.  $\bigcup_{a \in G} Ha \subseteq G$  obvious. Given  $g \in G, g = eg$  where since  $e \in H \implies eg \in Hg \implies g \in Hg \implies G \subseteq \bigcup_{g \in G} Hg$
- 2. Consider

$$\psi \colon H \to Ha = \{ ha \mid h \in H \}$$
$$h \mapsto ha$$

 $\psi$  is surjective by definition. If  $\psi(h) = \psi(h') \implies ha = h'a \implies h = h' \implies \psi$  is injective  $\implies \psi$  is a bijection.

**Definition 8.12** (Index)

Given any subgroup H of G, the <u>index of H in G</u> denoted [G:H] is the number of distinct right cosets of H in G.

Theorem 8.13 (Lagrange's Theorem)

If  $H \subseteq G$  is a finite subgroup, then:

$$[G{:}H] = |G|/|H|$$