

Дано:

- W грузоподъемность рюкзака.
- n количество типов деталей.
- Для каждого типа детали i заданы вес w_i , стоимость c_i .

 ${f 3}$ адача: найти количество x_i для каждого типа предметов так, чтобы

$$\begin{cases} \sum_{i=1}^{n} c_{i} x_{i} \to \max (1) \\ \sum_{i=1}^{n} w_{i} x_{i} \leq W(2) \\ x_{i} \geq 0, \ x_{i} \in \mathbb{Z}. \end{cases}$$

Задача о линейном раскрое

Задача целочисленного линейного программирования. Требуется раскроить целостный объект, согласно исходным параметрам "детали".

- Максимизация суммарного дохода от раскроенных деталей.
- Минимизации отходов остатков от целого куска материала.

Задача о линейном раскрое (максимизация)

Дано:

- I₀ общая длина.
- n количество типов деталей.
- ullet Для каждого типа детали i заданы длина l_i , стоимость c_i .

Задача: найти количество x_i для каждого типа детали так, чтобы

$$\begin{cases} \sum_{i=1}^{n} c_{i} x_{i} \to max \ (1) \\ \sum_{i=1}^{n} l_{i} x_{i} \leq (2) \\ x_{i} \geq 0, \ x_{i} \in \mathbb{Z}. \ (3) \end{cases}$$

Динамическое программирование

- 1 Разбиение на подзадачи меньшего размера.
- Нахождение оптимального решения рекурсивно, проделывая аналогичный алгоритм.
- Использование полученного решения подзадач для конструирования решения исходной задачи. Оптимальное решение одной подзадачи используется в качестве исходных данных для следующей.

Линейный раскрой - динамическое программирование

Дано:

- I₀ общая длина.
- n количество типов деталей.
- Для каждого типа детали i заданы длина l_i , стоимость c_i .

Задача: найти количество x_i для каждого типа детали так, чтобы

$$\begin{cases} \sum_{i=1}^{n} c_{i}x_{i} \to max \ (1) \\ \sum_{i=1}^{n} l_{i}x_{i} \leq (2) \\ x_{i} \geq 0, \ x_{i} \in \mathbb{Z}. \ (3) \end{cases}$$

$$v[j] = max\{c[u] + v[j - l(u)]\},$$

где u - деталь выбранная на шаге $j \in 1$: n.

Сортировка деталей по убыванию $\frac{c}{l}$.

Линейный раскрой - динамическое программирование

i	v[i]	U
0	0	-
1	0	-
2	0	-
3	4	{2}
4	7	{1}
5	7	{1}
6	8	{2}{2}
7	11	{1}{2}
8		
9		
10		
11		
12		
13		
14		

С	7	4	6
I	4	3	5

Линейный раскрой - динамическое программирование

v[i]	U
0	-
0	-
0	-
4	{2}
7	{1}
7	{1}
8	{2}{2}
11	{1}{2}
14	{1}{1}
14	{1}{1}
15	{1}{2}{2}
18	{1}{1}{2}
21	{1}{1}{1}
21	{1}{1}{1}
22	{1}{1}{2}{2}
	0 0 0 4 7 7 8 11 14 14 15 18 21

С	7	4	6
1	4	3	5

$$v[6] = max{7 + v[2]; 4 + v[3]; 6 + v[1]} = max{7; 8; 6} = 8$$

 $v[7] = max{7 + v[3]; 4 + v[4]; 6 + v[2]} = max{11; 11; 6} = 11$

Ответ: $x^* = (2, 2, 0)$; $f(x^*) = 22$

Алгоритм:

- Поиск частичного решения. Строится дерево перебора, где каждая ветвь является некоторым подмножеством решения. Выбирается обход дерева в глубину. Первое найденное допустимое решение становится нижней (или верхней для задачи с max) оценкой Rec.
- ② Оценка частичного решения x^k . Для задачи нахождения min:
 - ▶ Если $est(x^k)$ < Rec, то шаг вперед (по дереву обхода).
 - ▶ Если $est(x^k) \ge Rec$, то шаг назад (по дереву обхода).
- «В Каждое новое локальное решение обновляет оценку Rec.
- При каждом шаге вперед проверяется допустимость решения.
- ⑤ Оптимальное решение последняя оценка *Rec*, которая осталась после отсечения всех допустимых решений.

Линейный раскрой - м. ветвей и границ

- ① Сортировка деталей по убыванию $\frac{c}{l}$.
- 2 Выбор самой выгодной детали.
- 3 Оценка оставшейся свободной части:

$$est[u] = \sum_{i=1}^{k} c_i x_i + (I_0 - \sum_{i=1}^{k} I_i x_i) \frac{c_j}{I_j},$$

где k - порядковый номер последней выбранной детали, j - деталь наиболее выгодная для оставшейся части.

Линейный раскрой - м. ветвей и границ

i	U	fo	I	est	Rec?
0	()	0	14	24,5	-
1	(3,)	21	2	21	Да
2	(2,)	14	6	22	-
3	(2, 2, .)	22	0	22	Да, новый
4					
5					
6					
7					

С	7	4	6
_	4	3	5

```
est[0] = 14 * 7 / 4 = 24,5
est[1] = 7 * 3 + 2 * 0 = 21 /Rec/
est[2] = 2 * 7 + 6 * 4 / 3 = 22
est[3] = 2 * 7 + 2 * 4 = 22 /новый Rec/
```


Линейный раскрой - м. ветвей и границ

i	U	fo	I	est	Rec?
0	()	0	14	24,5	-
1	(3,)	21	2	21	Да
2	(2,)	14	6	22	•
3	(2, 2, .)	22	0	22	Да, новый
4	(2, 1, .)	18	33	18	18 < 22 (шаг назад)
5	(2, 0, .)	14	6	21,2	21,2 < 22 (шаг назад)
6	(1,)	7	10	{2}{2}	20,3 < 22 (шаг назад)
7	(0,)	0	14	{1}{2}	18,7 < 22 (конец)

С	7	4	6
- 1	4	3	5

est[0] = 14 * 7 / 4 = 24,5 est[1] = 7 * 3 + 2 * 0 = 21 /Rec/ est[2] = 2 * 7 + 6 * 4 / 3 = 22 est[3] = 2 * 7 + 2 * 4 = 22 /новый Rec/

Ответ: x* = (2, 2, 0); f(x*) = 22

