INDUCTION SIZE. POSSORE $\hat{\Sigma} \times \hat{\tau} = \frac{x^{k+1}-1}{x-1} \quad (1, H)$ WANT: $\hat{\Sigma} \times \hat{\tau} = \frac{x^{k+1+1}-1}{x-1} = \frac{x^{k+2}-1}{x-1}$ $\hat{\Sigma} \times \hat{\tau} = \frac{x^{k+1}-1}{x-1} = \frac{x^{k+2}-1}{x-1} + x^{k+1} = \frac{x^{k+1}-1}{x-1} + x^{k+1} = \frac{x^{k+1}-1}{x-1} + x^{k+2} = \frac{x^{k+1}-1}{$

· CONCLUSION: BY & INDUCTION, YMEIN $\sum_{x''} x'' = \frac{x'''-1}{x-1}$

F(n+2) = F(m) + F(m+1)
$$\forall n \in \mathbb{N}$$

FROME: $\forall n \in \mathbb{N} \setminus \{0\}$ $F(m-1) \cdot F(m+1) - F(m)^2 = (-1)^4$

BASE CASE: $[m=1]$: $F(o) F(2) - F(1)^2 = (-1)^4$

IND. STEP: ASSURE, FOR $A \in \mathbb{N} \setminus \{0\}$ $[k \ge 1]$

F(k-1) $F(k+1) - F(k)^2 = (-1)^4$ (1. M.)

WANT: $F(k+1-1) F(k+1+1) - F(k+1)^2 = (-1)^{4m}$
 $F(k) F(k+2) - F(k+1) = [F(k+1)^2 = (-1)^{4m}]$

F(k) $F(k) + F(k+1) - F(k+1)^2 = [F(k+1) = F(k) + F(k+1)]$

F(k) $F(k+1) F(k+1) - F(k+1) = [F(k+1) = F(k+1) = F(k+1)]$

F(k) $F(k+1) F(k+1) = (F(k+1) + F(k+1))$

F(k) $F(k+1) F(k+1) = (F(k+1) + F(k+1)) = (-1)^{4m}$

ONCLUSION: BY INDUCTION, $\forall m \in \mathbb{N} \setminus \{0\}$

F(m-1) $F(m+1) - F(m)^2 = (-1)^{4m}$

Here $(m+1) = (-1)^{4m}$
 $F(m-1) F(m+1) - F(m)^2 = (-1)^{4m}$
 $F(m-1) F(m+1) - F(m)^2 = (-1)^{4m}$

LET F(0) = 0, F(1)=1, These