Algebraic Geometry Avinash Iyer

Introduction

Oh hey, it's another one of these independent studies. Me and a friend are going to be going through William Fulton's *Algebraic Curves*. It will be hard, it will be long, and it might not work out for me, but who cares.

Contents

Introduction	1
Affine Algebraic Sets	1
Algebraic Preliminaries	1

Affine Algebraic Sets

Algebraic Preliminaries

We will assume all rings are commutative with unity, where \mathbb{Z} is the integers, \mathbb{Q} is the rationals, \mathbb{R} is the reals, and \mathbb{C} is the complex numbers.

Any integral domain R has a quotient field K, which contains R as a subring, and any element in K may be written as a not necessarily unique ratio of two elements of R. Any one-to-one ring homomorphism from R to a field L extends uniquely to a ring homomorphism from K to L.

If R is a ring, then R[x] is the ring of polynomials with coefficients in R. The degree of a nonzero polynomial $\sum a_i x^i$ is the largest integer d such that $a_d \neq 0$. The polynomial is monic if $a_d = 1$.

The ring of polynomials in n variables over R is $R[x_1,\ldots,x_n]$. We write R[x,y] and R[x,y,z] if n=2 and 3 respectively. Monomials in $R[x_1,\ldots,x_n]$ are of the form $x^{(i)} := x_1^{i_1}x_2^{i_2}\cdots x_n^{i_n}$, where i_j are nonnegative integers, and the degree of the monomial is $i_1+\cdots i_n$. Every $F\in R[x_1,\ldots,x_n]$ has a unique expression $F=\sum a_{(i)}x^{(i)}$, where $x^{(i)}$ are monomials, and $a_{(i)}\in R$. We say F is homogeneous of degree d if all $a_{(i)}$ are zero except for monomials of degree d. The polynomial F is written as $F=F_0+F_1+\cdots F_d$, where F_i is a form of degree i, and $d=\deg(F)$ for $F_d\neq 0$.

The ring R is a subring of R[$x_1, ..., x_n$], and the ring R[$x_1, ..., x_n$] is characterized by the following: if $\varphi \colon R \to S$ is a ring homomorphism, and $s_1, ..., s_n$ are elements in S, then there is a unique extension of φ to a ring homomorphism $\overline{\varphi} \colon R[x_1, ..., x_n] \to S$ such that $\overline{\varphi}(x_i) = s_i$. The image of F under $\overline{\varphi}$ is written F($s_1, ..., s_n$). The ring R[$x_1, ..., x_n$] is canonically isomorphic to R[$x_1, ..., x_{n-1}$][x_n].

An element $a \in R$ is called irreducible if it is not a unit or zero, and any factorization a = bc with $b, c \in R$ is such that either b or c is a unit. A domain R is a unique factorization domain (UFD) if every nonzero element in R can be factored uniquely up to units and ordering.

If R is a UFD with quotient field K, then any irreducible element $F \in R[x]$ remains irreducible when considered in K[x].

Theorem (Gauss's Lemma for \mathbb{Z}): If $F \in \mathbb{Z}[x]$ is a monic polynomial that is irreducible, then F is irreducible in $\mathbb{Q}[x]$.

If F and G are polynomials in R[x] with no common factors in R[x], then they have no common factors in K[x].

Algebraic Geometry Avinash Iyer

If R is a UFD, then R[x] is also a UFD, and consequently $k[x_1,...,x_n]$ is a UFD for any field k. The quotient field of $k[x_1,...,x_n]$ is written $k(x_1,...,x_n)$ is called the field of rational functions in n variables over k.

If $\varphi \colon R \to S$ is a ring homomorphism, $\ker(\varphi) := \varphi^{-1}(0)$. The kernel is an ideal in R. An ideal in R is proper if $I \neq R$, and a proper ideal is known as maximal if it is not contained in any larger proper ideal. An ideal \mathfrak{p} is prime if, whenever $\mathfrak{ab} \in \mathfrak{p}$, then $\mathfrak{a} \in \mathfrak{p}$ or $\mathfrak{b} \in \mathfrak{p}$.

Let k be a field and I a proper ideal in $k[x_1,...,x_n]$. The canonical homomorphism π from $k[x_1,...,x_n]$ to $k[x_1,...,x_n]/I$. We regard k as a subring of $k[x_1,...,x_n]/I$, which is a vector space over k.

If R is an integral domain, then char(R), the characteristic of R, is the smallest integer p such that

$$\underbrace{1+1\cdots+1}_{p \text{ times}}=0.$$

If p exists, we say char(R) = p, else 0.

Note that if $\varphi \colon \mathbb{Z} \to R$ is the unique ring homomorphism from \mathbb{Z} to R^{III} then $\ker(\varphi) = \langle p \rangle$, so $\operatorname{char}(R)$ is prime or 0.

If R is a ring, and $F \in R[x]$, and α is a root of F, then $F = (x - \alpha)G$ for some unique polynomial $G \in R[x]$. A field k is algebraically closed if any nonconstant $F \in k[x]$ has a root.

Exercise (Exercise 1.1): Let R be an integral domain.

- (a) If F and G are forms of degree r and s respectively in $R[x_1, ..., x_n]$, show that FG is a form of degree r + s.
- (b) Show that any factor of a form in $R[x_1,...,x_n]$ is also a form.

Exercise (Exercise 1.2): Let R be a UFD and K the quotient field of R. Show that every element $z \in K$ may be written as z = a/b, where $a, b \in R$ have no common factors. This representative is unique up to units of R.

Solution:

Exercise (Exercise 1.3): Let R be a principal ideal domain, and let P be a nonzero proper prime ideal in R.

- (a) Show that P is generated by an irreducible element.
- (b) Show that P is maximal.

Solution:

(a) Since P is principal, we know that $P = \langle a \rangle$ for some $a \in R$. We know that a cannot be a unit, as otherwise P = R, contradicting the assumption that P is proper, and that $a \ne 0$ as P is not zero.

Suppose toward contradiction that $\langle a \rangle \subsetneq \langle b \rangle$ for some $b \in R$. Then, a = bc for some $c \in R$. If $c \notin \langle a \rangle$, then since $\langle a \rangle$ is prime, we must have $b \in \langle a \rangle$, contradicting strict inclusion. Thus, $c \in \langle a \rangle$, so c = at for some $t \in R$. Therefore, we have a = abt, so $bt = 1_R$, and $\langle b \rangle = R$.

(b) Since R is a PID, and P is prime, we know that $P = \langle \alpha \rangle$ is generated by an irreducible element. Thus, if $\langle \alpha \rangle \subseteq \langle b \rangle$, then $\alpha = bc$ for some $c \in R$. Since we have unique factorization (as all PIDs are UFDs), and α is irreducible, this means either b or c is a unit. If b is a unit, then $\langle b \rangle = R$, and if c is a unit, then $\langle b \rangle = \langle \alpha \rangle$. Thus, $\langle \alpha \rangle$ is maximal.

Exercise (Exercise 1.4): Let k be an infinite field, $f \in k[x_1, ..., x_n]$. Suppose $F(a_1, ..., a_n) = 0$ for all $a_1, ..., a_n \in k$. Show that f = 0.

Exercise (Exercise 1.5): Let k be any field. Show that there are an infinite number of irreducible monic polynomials in k[x].

 $^{{}^{\}rm I}\!$ Alternatively, an ideal I is maximal if the quotient ring R/M is a field.

^{II}Alternatively, an ideal $\mathfrak p$ is prime if $R/\mathfrak p$ is an integral domain.

 $^{^{} ext{III}}$ This is because $\mathbb Z$ is initial in the category of rings. See Aluffi.

Algebraic Geometry Avinash Iyer

Solution: Suppose F_1, \ldots, F_n were all the irreducible monic polynomials in k[x]. Consider the polynomial $P = F_1F_2 \cdots F_n + 1$. We note that P is monic. We will show that P is irreducible.

Suppose toward contradiction that P were reducible. We know that k[x] is a principal ideal domain, so $P \in \langle F_i \rangle$ for some irreducible monic F_i . However, we know that, for any F_i , $1 \le i \le n$, $P \nmid F_i$, as, applying the division algorithm to P, we get

$$P = (F_i) \prod_{j \neq i} F_j + 1,$$

where $r \neq 0$. Thus, P is not reducible and monic, so there are infinitely many irreducible monic polynomials in k[x].

Exercise (Exercise 1.6): Show that any algebraically closed field is infinite.

Solution: Note that if k is any field, then there are infinitely many irreducible monic polynomials in k[x]. If k is algebraically closed, then $(x - \alpha)$, for $\alpha \in k$, is the only irreducible monic polynomial. Since there are infinitely many irreducible monic polynomials in k[x], there are infinitely many $\alpha \in k$ such that $(x - \alpha)$ is irreducible in k[x]. Thus, k is infinite.

Exercise (Exercise 1.7): Let k be any field, and $F \in k[x_1, ..., x_n]$, with $a_1, ..., a_n \in k$.

(a) Show that

$$F = \sum \lambda_{(i)}(x_1 - a_1)^{i_1} \cdots (x_n - a_n)^{i_n},$$

where $\lambda_{(i)} \in k$.

(b) If $F(\alpha_1, \ldots, \alpha_n) = 0$, show that $F = \sum_{i=1}^n (x_i - \alpha_i) G_i$ for some not necessarily unique $G_i \in k[x_1, \ldots, x_n]$.