NANYANG TECHNOLOGICAL UNIVERSITY School of Electrical & Electronic Engineering

EE/IM4152 Digital Communications

Tutorial No. 9 (Sem 1, AY2016-2017)

1. Show that the following set of waveforms can be used as the basis signals of a 3-dimensional signal space:

$$\begin{cases} \varphi_1(t) = \frac{1}{\sqrt{T_0}}, & 0 \le t \le T_0 \\ \varphi_2(t) = \sqrt{\frac{2}{T_0}} \sin\left(\frac{2\pi}{T_0}t\right), & 0 \le t \le T_0 \\ \varphi_3(t) = \sqrt{\frac{2}{T_0}} \cos\left(\frac{2\pi}{T_0}t\right), & 0 \le t \le T_0. \end{cases}$$

With respect to above basis functions, find the energy of

$$x(t) = \frac{2}{\sqrt{T_0}} + 3 \times \sqrt{\frac{2}{T_0}} \sin\left(\frac{2\pi}{T_0}t\right) + 5 \times \sqrt{\frac{2}{T_0}} \cos\left(\frac{2\pi}{T_0}t\right).$$

- 2. Using the Schwarz inequality, we have obtained the transfer function of the matched filter (MF) $H(f) = P(-f)e^{-j2\pi fT_b}$, where P(f) = F[p(t)] is the Fourier transform of the input signal p(t) and T_b is the duration of p(t). The impulse response of the MF is $h(t) = p(T_b t)$. It is observed that both p(t) and h(t) have the same duration T_b . Hence, the convolution of them, $p_0(t) = h(t) \otimes p(t)$, has a width of $2T_b$ seconds, with its peak occurring at $t = T_b$.
 - (a) Suppose that a real signal g(t) is an even signal, i.e., g(t) = g(-t). Show that G(f) = F[g(t)] is real. Now, if g(t) is time-shifted by τ , determine its spectrum $F[g(t-\tau)]$ by using the properties of Fourier transform.
 - (b) Find the spectrum $P_0(f) = \mathbb{F}[p_0(t)]$ and compare its form with the results obtained in part (a). Show that $p_0(t)$ is symmetrical about $t = T_b$.
- 3. Binary data are transmitted by using $s_0(t) = p(t)$ for binary 0 and $s_1(t) = 3p(t)$ for binary 1, where the duration of p(t) is T_b seconds. The binary signal waveform is transmitted over an additive white Gaussian noise (AWGN) channel with two-sided noise power spectral density function $N_0/2$. The matched-filter receiver is shown in Fig. 1.

(a) Determine the output a_0 due to the input signal $s_0(t)$ in terms of

$$E_{p} = \int_{0}^{T_{b}} p^{2}(t) dt .$$

- (b) Determine the output a_1 due to the input signal $s_1(t)$ in terms of E_p .
- (c) Find the mean and variance of the noise component at the output of the receiver.
- (d) If the threshold is chosen to be $\gamma = (a_0 + a_1)/2$, derive the error probability.