[Aula 09] Caminho de dados e controle 3 – MIPS Multiciclo

Prof. João F. Mari joaof.mari@ufv.br

MIPS Multiciclo

Problema da máquina de ciclo único

- Implementação multiciclo:
 - Cada fase de execução da instrução em um ciclo
 - Unidades funcionais podem ser compartilhadas.
 - Ou seja, podem ser usadas mais de uma vez por instrução
 - Redução da quantidade de hardware necessário
- Principais vantagens do multiciclo:
 - Instruções são executadas em quantidades diferentes de períodos de clock
 - CPI variável. Caso comum pode ser melhorado.
 - É possível compartilhar unidades funcionais
 - Redução de custo.

Visão de alto nível do caminho de dados multiciclo

- Memória e ALU unificadas.
- Registradores RI e MDR
 - Os dois valores são necessários no mesmo ciclo de clock.
- Registradores A e B
 - Armazenam os valores lidos no banco de registradores
 - Mais de uma leitura é possível por execução de instrução.
- O registrador SaidaALU armazena a saída da ALU

Visão de alto nível do caminho de dados multiciclo

- Várias unidades funcionais são compartilhadas para diferentes finalidades
 - Multiplexadores adicionais devem ser incluídos e os existentes devem ser expandidos.
- A substituição das três ALUs do caminho de dados de ciclo único por uma única ALU
 - É necessário acomodar todas as entradas das três ALUs diferentes na implementação monociclo.
 - Um multiplexador adicional é incluído para a primeira entrada da ALU
 - Escolher entre os registradores A e o PC
- O multiplexador na segunda entrada da ALU muda de duas para quatro entradas:
 - As duas entradas adicionais são:
 - a constante 4 (incremento o PC)
 - e o campo offset com sinal estendido e deslocado (cálculo do endereço do desvio)

O caminho de dados multiciclo para o MIPS manipular instruções básicas

Unidade de controle principal

- Implementação multiciclo exige um conjunto diferente de sinais de controle:
 - PC, memória, registradores e IR: sinal de escrita
 - Memória: sinal de leitura
 - UAL: mesmo controle da implementação monociclo
 - Multiplexador de 4 entradas: 2 linhas de controle
 - Todos os demais multiplexadores: uma linha de controle
- Para instruções jump e branch equal existem três fontes possíveis para o PC:
 - Não tomar o branch: PC + 4
 - Branch: SaidaALU (desvio condicional)
 - Jump: 26 últimos bits do IR acrescido de 2 zeros à direita, e concatenados com os 4 MSB's do PC
- Controle de escrita do PC:
 - Incremento normal e deslocamento incondicional, o PC é escrito incondicionalmente
 - Se for um desvio condicional, passa o valor de UALSaída, somente se os registradores forem iguais
 - Dois sinais de escrita: PCEsc e PCEscCond

O caminho de dados multiciclo com as linhas de controle indicadas

Ações dos sinais de controle de 1 bit

Nome do sinal	Efeito quando inativo	Efeito quando ativo	
RegDst	O número do registrador de destino do banco de registradores para a entrada "Registrador para escrita" vem do campo rt.	O número do registrador de destino do banco de registradores para a entrada "Registrador para escrita" vem do campo rd.	
EscreveReg	Nenhum.	O registrador de uso geral selecionado pelo número na entrada "Registrador para escrita" é escrito como valor da entrada "Dados para escrita".	
OrigAALU	O primeiro operando da ALU é o PC.	O primeiro operando da ALU vem do registrador A.	
LeMem	Nenhum.	O conteúdo da memória no local especificado pela entrada Endereço é colocado na saída Dados da memória.	
EscreveMem	Nenhum.	O conteúdo da memória no local especificado pela entrada Endereço é substituido pelo valor na entrada "Dados para escrita".	
MemparaReg	O valor enviado para a entrada "Dados para escrita" do banco de registradores vem de SaídaALU.	O valor enviado para a entrada "Dados para escrita" do banco de registradores vem do MDR.	
louD	O PC é usado para fornecer o endereço para a unidade de memória.	SaídaALU é usado para fornecer o endereço para a unidade de memória.	
IRWrite	Nenhum.	A saída da memória é escrita no IR.	
EscrevePC	Nenhum.	O PC é escrito; a origem é controlada por OrigPC.	
EscrevePCCond	Nenhum.	O PC é escrito se a saída Zero da ALU também estiver ativa.	

Ações dos sinais de controle de 2 bit

Nome do sinal	Valor (binário)	Efeito
OpALU	00	A ALU realiza uma operação de adição.
	01	A ALU realiza uma operação de subtração.
	10	O campo funct da instrução determina a operação da ALU.
OrigBALU	00	A segunda entrada para a ALU vem do registrador B.
	01	A segunda entrada da ALU é a constante 4.
	10	A segunda entrada da ALU são os 16 bits menos significativos com sinal estendido do IR.
	11	A segunda entrada da ALU são os 16 bits menos significativos com sinal estendido do IR deslocados em 2 bits para a esquerda.
OrigPC	00	A saída da ALU (PC + 4) é enviada ao PC para escrita.
	01	O conteúdo da SaídaALU (o endereço de destino do desvio) é enviado ao PC para escrita.
	10	O endereço de destino do jump (IR[25:0]) deslocado de 2 bits para a esquerda e concatenado com PC + 4[31:28] é enviado ao PC para escrita.

Caminho de dados completo para a implementação multiciclo com as linhas de controle necessárias

Caminho de dados completo para a implementação multiciclo com as linhas de controle necessárias

- Dividir as instruções em mais de um ciclo de clock:
 - Cada etapa da instrução é realizada em um ciclo de clock.
- A organização da execução de cada instrução segue um número de etapas, que depende do tipo da instrução
 - Cada etapa deve realizar apenas:
 - uma operação de ALU;
 - um acesso à memória ou;
 - um acesso ao banco de registradores.
 - Com essa restrição, o ciclo de clock possui a duração de da etapa mais longa.
- Os registradores armazenam dados para os próximos ciclos da mesma instrução
 - Ex: Registradores A, B, MDR, SaidaALU.

- 1. Busca da instrução
 - (PC + Memória)
- 2. Decodificação da instrução e busca dos registradores
 - (Controle e banco de registradores)
- 3. Execução, cálculo do endereço de memória ou conclusão do desvio
 - (UAL)
- 4. Acesso à memória ou conclusão de instrução tipo R
 - (Memória ou banco de registradores)
- 5. Conclusão de leitura de memória
 - (Banco de registradores)

- 1. Busca da instrução
 - IR <= Memória[PC]</p>
 - $PC \leq PC + 4$
 - Envia o endereço armazenado no PC para a memória
 - Escreve a instrução no RI
- 2. Decodificação e busca dos registradores
 - Não se sabe qual instrução está no IR.
 - Os registradores são lidos para evitar a perda de tempo durante a execução (por exemplo ler rs e rt)
 - Alguns valores podem ser descartadas após a decodificação da instrução
 - Carrega os registradores de entrada da ALU e do endereço de desvio condicional (salvo em SaidaALU)
 - A <= Reg[IR[25-21]];
 - B <= Reg[IR[20-16]];
 - SaidaALU <= PC + extensão de sinal (IR[15-0] << 2);

- 3. Execução, cálculo do endereço de memória ou conclusão do desvio
 - a) Referência à memória (LW e SW)
 - SaidaALU <= A + extensão de sinal IR[15-0]
 - b) Instrução aritmética ou lógica (tipo R)
 - SaidaALU <= A op B
 - c) Desvio condicional (BEQ)
 - Se (A == B): PC <= SaidaALU
 - d) Desvio incondicional (J)
 - PC <= PC [31-28] || (IR[25-0]<<2)

- 4. Etapa de acesso à memória ou conclusão de instrução tipo R
 - a) Referência à memória (LW ou SW)
 - MDR = Memória [SaidaALU]; (LW)

ou

- Memória [SaidaALU] <= B; (SW)
- b) Instruções aritméticas ou lógicas (tipo R)
 - Reg[IR[15-11]] <= UALSaída;
- 5. Etapa de conclusão de acesso à memória (LW)
 - Reg[IR[20-16]] <= MDR

Etapa	Ação para instruções tipo R	Ação para instruções de acesso à memória	Ação para desvios	Ação para jumps		
Busca da instrução	IR <= Memória[PC] PC <= PC + 4					
Decodificação da instrução e busca dos registradores	A <= Reg[IR[25:21]] B <= Reg[IR[20:16]] SaídaULA <= PC + (estende-sinal (IR[15:0]) << 2)					
Execução, cálculo do endereço ou conclusão do desvio/jump	SaídaALU <= A op B	SaídaALU <= A + estende_sinal (IR[15:0])	If(A==B) PC <= SaídaALU	PC <= {PC[31:28], (IR[25:0], 2'b00)}		
Acesso à memória ou conclusão de instrução do tipo R	Reg[IR[15:11]] <= SaídaALU	Load: MDR <= Memória[SaídaALU] ou Store: Memória[SaídaALU] <= B				
Conclusão da leitura da memória		Load: Reg[IR[20:16]] <= MDR				

DEFININDO O CONTROLE

Definindo o controle

- Controle da implementação multiciclo pode ser realizado:
 - Máquina de estados finitos (MEF)
 - Microprogramação
- Máquina de estados finitos
 - Visão de alto nível

Bibliografia

- 1. PATTERSON, D.A; HENNESSY, J.L. **Organização e Projeto de Computadores: A Interface Hardware/Software**. 3a. Ed. Elsevier, 2005.
 - Capítulo 5.
- 2. Notas de aula do prof. Luciano J. Senger:
 - http://www.ljsenger.net/classroom.html
- 3. Notas de aula da Profa. Mary Jane Irwin
 - CSE 331 Computer Organization and Design
 - http://www.cse.psu.edu/research/mdl/mji/mjicourses

FIM – Aula 09

- FIM:
 - Aula 09 Caminho de dados e controle 2 MIPS
 Multiciclo
- Próxima aula:
 - Aula 10 Pipelining: Introdução