such that each block D_j is either 1, -1, or a two-dimensional matrix of the form

$$D_j = \begin{pmatrix} \cos \theta_j & -\sin \theta_j \\ \sin \theta_j & \cos \theta_j \end{pmatrix}$$

where $0 < \theta_j < \pi$. In particular, the eigenvalues of A are of the form $\cos \theta_j \pm i \sin \theta_j$, 1, or -1.

Theorem 17.21 can be used to show that the exponential map $\exp: \mathfrak{so}(n) \to \mathbf{SO}(n)$ is surjective; see Gallier [72].

We now consider complex matrices.

Definition 17.4. Given a complex $m \times n$ matrix A, the transpose A^{\top} of A is the $n \times m$ matrix $A^{\top} = \begin{pmatrix} a_{ij}^{\top} \end{pmatrix}$ defined such that

$$a_{ij}^{\top} = a_{ji}$$

for all $i, j, 1 \le i \le m, 1 \le j \le n$. The conjugate \overline{A} of A is the $m \times n$ matrix $\overline{A} = (b_{ij})$ defined such that

$$b_{ij} = \overline{a_{ij}}$$

for all $i, j, 1 \le i \le m, 1 \le j \le n$. Given an $m \times n$ complex matrix A, the adjoint A^* of A is the matrix defined such that

$$A^* = \overline{(A^\top)} = (\overline{A})^\top.$$

A complex $n \times n$ matrix A is

• normal if

$$AA^* = A^*A$$
,

• Hermitian if

$$A^* = A$$
,

• skew-Hermitian if

$$A^* = -A$$
.

• unitary if

$$AA^* = A^*A = I_n$$
.