Modelación matemática a través de la alometría: estrategias para la enseñanza en el aula

Carlos Eduardo León Salinas carlos.leon@ugc.edu.co

José Miguel León Puentes joleonp@unal.edu.co

Universidad La Gran Colombia Universidad Nacional de Colombia Bogotá, D.C. - Colombia.



**BOGOTÁ - COLOMBIA** 







# Programa del Taller

#### Primera Sesión

- Fundamentación teórica sobre modelación
- Fundamentación del diseño experimental
- Introducción a la alometría como caso de estudio.
- Fuentes y métodos para la recolección de datos.
- Primer desarrollo de la actividad



- Repaso de la sesión anterior
- Análisis y retroalimentación de la toma de datos
- Modelación Matemática
- Implementación de la Modelación desde otras perspectivas
- Segundo desarrollo de la actividad
- Reflexiones colectivas





# Problematización de la modelación matemática









# Problematización de la modelación matemática

La modelación puede considerarse como un proceso que tiene su génesis en la conceptualización de una situación o problema de la realidad. (Blum, Galbraith, Henn y Niss, 2007)



¿Debe la educación matemática replicar los estándares de validez y exactitud de la modelación científica, o debe construir sus propios criterios didácticos para valorar la modelación en el aula?

# Problematización de la modelación matemática



| Dimensión                | Educación Matemática                  | Otras Disciplinas (Mat. Aplicada, Física, etc.) |
|--------------------------|---------------------------------------|-------------------------------------------------|
| Finalidad                | Aprendizaje, comprensión de conceptos | Resolución de problemas reales, predicción      |
| Naturaleza del modelo    | Didáctico, simplificado, reflexivo    | Formal, complejo, basado en teoría y datos      |
| Rol del modelador        | Estudiante como aprendiz activo       | Experto como diseñador técnico                  |
| Relación con la realidad | Contextualización para el aprendizaje | Representación fiel del fenómeno real           |



# RELME 38

# ¿Qué es una "buena" modelación matemática?

¿cómo se mide? Aprendizajes matemáticos relevantes y transferibles para los estudiantes.

¿para qué? Enriquecer la enseñanza escolar con estructuras, métodos y estándares rigurosos que ayuden a resignificar



# RELME 38

# ¿Qué es una "buena" modelación matemática?

Expongan al estudiante a la complejidad de los fenómenos reales, sin caer en simplificaciones artificiales que descontextualicen las matemáticas.

Promuevan un uso auténtico de conceptos matemáticos (como funciones, proporciones, derivadas, etc.) como herramientas para comprender y explicar.

Introduzcan de manera formativa nociones clave como la validación empírica, la sensibilidad a los parámetros, la idealización o los supuestos del modelo, que son esenciales en la práctica científica.

Ayuden a los estudiantes a percibir la utilidad y el poder explicativo de las matemáticas en contextos reales e interdisciplinarios.





# Sin embargo...

Trasladar directamente los criterios de "buena modelación" de las ciencias a la educación corre el riesgo de imponer exigencias técnicas que obstaculicen los fines pedagógicos, especialmente en niveles escolares.

La necesidad no es imitar, sino traducir y adaptar esas prácticas para que sirvan como oportunidades formativas y no como fines en sí mismos.



## Preguntas orientadoras



- ¿Cuáles son las diferencias epistemológicas y didácticas entre la modelación matemática como práctica científica y como práctica educativa?
- ¿Qué criterios se utilizan actualmente en las aulas para valorar una "buena" modelación matemática?
- ¿Cómo perciben los docentes y estudiantes de secundaria el propósito de modelar en matemáticas?
- ¿Qué tensiones emergen cuando se propone una modelación interdisciplinar en contextos escolares?
- ¿Cómo se puede diseñar una secuencia de modelación que priorice aprendizajes matemáticos sin perder el vínculo con la rigurosidad del fenómeno modelado?



# El proceso formativo y la adquisición de conocimiento





# **Método Experimental**

Pseudo-generación de los universos paralelos bajo los siguientes principios:



- Aleatorización: Permite manifestar que antes del experimento no habían diferencias sistemáticas entre grupos, luego, estos son homogéneos a la hora de la asignación de los tratamientos. Además, reduce la probabilidad de sesgo por parte del investigador y permite realizar inferencia.
- Replicación: En caso de que pese a la aleatorización los grupos sean muy diferentes. Permite estimar el error experimental.
- Control: Cambios debidos al tratamiento vs cambios debidos al tiempo o circunstancias.

  Permite disminuir el error experimental



# **Método Experimental**

#### **Decide on Criteria**

Definición de las reglas y pruebas usadas para el juzgamiento de hipótesis.

#### **Identify Variables**

Condiciones que pueden cambiar el curso del experimento. Algunas son controlables, otras no.



#### **Identify Failure Points**

Analizar la respuesta obtenida, revisar e intentar corregir, Aceptar o modificar los criterios iniciales y volver a ejecutar.

#### **Isolate One Variable**

Introducir variaciones controladas que nos permitan observar diferencias en la respuesta.



# Métodos No Experimentales

Como alternativa a otros contextos en los cuales plantear un experimento no es viable



Los estudios observacionales, como algunas técnicas de muestreo surgen como respuesta al no poder preguntar a toda la población sin manipular o controlar las variables de estudio.

Las hay de dos tipos: probabilísticas y no probabilísticas. No son libres de error, sin embargo, en ocasiones, presentan menor error que implementaciones censales.

La encuesta como organizador de preguntas para obtener información específica relacionada.



# **Propósito**

Con el fin de hallar posibles respuestas a la preguntas planteadas, juzgar un sistema de hipótesis propuesto al inicio y sobre la marcha.



Método Científico y Principios Experimentales Técnicas Muestrales y Diseño de Instrumentos

Estudio Experimental

Estudio Observacional

Relaciones Causa-Efecto, Optimización, Toma de Decisiones, etc.



# Consideraciones Éticas y Entendimiento

En ocasiones, será conflictivo entender las limitaciones que presenta una operación estadística, sin embargo, una concientización del estudiante como garante de la obtención de datos de manera responsable, honesta y transparente, será vital.

- Impacto Ambiental
- Bienestar de los Participantes
- Consentimiento Informado
- Privacidad y manejo de la información (sensible)
- Participación Voluntaria





▲ D. indica

Isometry

1000

100

# 1798

#### Origen y desarrollo histórico de la alometría

1835-1850s

1932

1950-1960

2000s

**Thomas R. Malthus** 

**Adolphe Quetelet** 

Julian Huxley G.R. Tessier

**Expansión Conceptual** 

**West, Brown y Enquist** 

AN ESSAY ON



OF POPULATION
THOMAS
MALTHUS







Energía metabólica, biología evolutiva, ecología teórica y morfometría.



# Ecuaci

### Ecuación Alométrica

$$y = ax^b$$

$$y \propto x^b$$

 $\log y = \log a + b \log x$ 







Desarrollo de Actividad: del árbol a la ecuación

#### Del árbol a la ecuación:

construyendo modelos lineales con hojas

**OBJETIVO:** Aplicar procesos de modelacion mátematica para construir un modelo lineal a partir de datos recolectados del largo y el ancho de hojas de un ismo árbol

## Observación y selección



- Seleccionar un árbol especifico
- Recolectar
   20 hojas del mismo arbol

| Hoja Nº | Largo (cm) |      |
|---------|------------|------|
| 1       |            | (cm) |
| 2       |            |      |
| •••     |            |      |
|         |            |      |
|         |            |      |
|         |            |      |

## Construcción de modelo



- Graficar un largo vs el ancho
- Ajustar una recta de regresión
- Anotar la ecuación obtenida

## Comunicación de resultados



- Elaborar un informe o presentación
- Explicar el proceso y el modelo



## Continuamos mañana en:

Modelación matemática a través de la alometría: estrategias para la enseñanza en el aula

Gracias por su participación

