Linear Regression: Prediction Plots, Planning

STAT 245

Jan. 30 - Feb 1, 2024

Prediction Plots

Vary only certain predictor(s)

- We can't just show "data plus line" with multiple predictors
- New dataset with desired predictor values

New Prediction Data

```
fake_data <- expand.grid(fWHR = seq(from = _____</pre>
                      normDS =
                      Sex =
                      Group =
```

Generate Hypothetical Data

Quantitative Predictor

One predictor varies; the others are held constant at median or most common or common-sense values (don't include impossible combinations!)

Generate Hypothetical Data

Quantitative Predictor

```
library(mosaic) # for mean()
fake data <- expand grid(</pre>
  fWHR = seq(from = 1.05, by = 0.01, to = 1.9),
  normDS = mean(~normDS,
                 data = bonobos,
                 na.rm = TRUE),
  Sex = 'Female',
  Group = 'Planckendael')
```

Make Predictions

Prediction Plots

Create the Graph

```
gf_line(pred ~ fWHR, data = fake_data)
```


Prediction Plots

What is still missing?

Confidence Intervals!

On predictions: a CI gives a range of plausible values for average response, taking into account uncertainty in intercept and slope estimates.

Relying on the Central Limit Theorem, a simple CI is:

estimate \pm 1.96 * standard error

SE for predictions

Should account for uncertainty in *all* the β s

Put Preds + SEs in dataset

```
fake_data <- fake_data |>
  mutate(pred = preds$fit,
    pred.se = preds$se.fit)
```

What did we do?

glimpse(fake_data)

```
## Rows: 86
## Columns: 6
## $ fWHR <dbl> 1.05, 1.06, 1.07, 1.08, 1.09, 1.10,
1.11, 1.12, 1.13, 1.14, 1....
## $ normDS <dbl> 2.657017, 2.657017, 2.657017,
2.657017, 2.657017, 2.657017, 2....
## $ Sex <chr> "Female", "Female", "Female",
"Female", "Female", "Female", "F...
```

Convert from SE to CI

Plot Pred. w/CI

Categorical Predictors?

Replace lines with points and ribbon with errorbar

- new fake data
- slightly different plotting code

Generate Hypothetical Data

Make Predictions

Convert to CI

Make Prediction Plot (code)

The Prediction Plot

R so far

Dataset functions

- ▷ (pipe) for "and then..."
- mutate() to add variable to dataset
- select() to keep certain variables
- na.omit() to remove rows w/missing data (!!)
- glimpse() to peek at dataset
- pander::pander() to print table

R so far

Regression models

- lm(y ~ x1 + x2, data = ___) to fit linear
 model
- resid(model) to
- predict(model, ...) for prediction
 - o se.fit = TRUE (or FALSE)
 - newdata = ...

Causal Diagrams

There's more to planning than just p < n/15!

PREKNOP Example

Response: Knowledge of Body (KoB) Score

- Parity
- Wish to conceive
- Before/After course
- Before KoB score

- Age
- Education
- Race/Ethnicity
- Income
- Health Insurance

Confounder

Precision Covariate

Mediator

Moderator or Modifier

Also known as: Interaction

Collider

M-Bias

Resource: Guide to Causal Inference

https://doi.org/10.1098/rspb.2020.2815

Your Summary

Linear modeling step-by-step: