Carlos Gil 19443

Ejercicio 1:

En este ejercicio se realizo un flip flop D de un bit con enable, reset en un bloque always. Posteriormente, se concatenaron 2 de estos módulos para hacer un flip flop D de 2 bits y 4 para hacer un flip flop de 4 bits.

Tablas:

Flip Flop D de un bit:

Diagrama de timing:

Flip Flop D de dos bits:

Diagrama de timing:

Flip Flop D de cuatro bits:

Diagrama de timing:

Ejercicio2:

En este ejercicio se realizo un toggle flip flop, que alterna el valor de la salida con cada flanco de reloj. Este es esencialmente un flip flop D con Q! conectado a D.

Tabla:

Circuitverse:

Diagrama de timing:

Ejercicio 3:

En este ejercicio se construyo un Flip Flop JK que tiene de entradas J, K, enable y reset. Este consiste en una nube combinacional conectada a un flip flop D, donde la entrada del FFD es la salida de la nube combinacional y dicha nube tiene como entradas, la salida del FFD, J y K.

Tabla:

Diagrama de Timing:

Ecuaciones booleanas:

Circuitverse:

Ejercicio 4:

En este ejercicio se construyo un buffer triestado. Este elemento funciona de la siguiente manera, cuando el enable esta encendido, deja pasar a la salida lo que este en la entrada y cuando el enable esta en 0, la salida esta en alta impedancia.

Tabla:

Diagrama de Timing:

Ejercicio 5:

En este ejercicio se implemento la tabla de verdad de la codificación de un nibbler en forma de memoria ROM implementada con cases.

Tabla:

MTCROCODE					
TNPUT OUTPUT					
0xxxxxx	1000000001000				
00001x1	0100000001000				
00000x1	1000000001000				
00011x1	1000000001000				
00010x1	0100000001000				
0010xx1	0001001000010				
0011xx1	1001001100000				
0100xx1	0011010000010				
0101xx1	0011010000100				
0110xx1	1011010100000				
0111xx1	1000000111000				
1000x11	0100000001000				
1000x01	1000000001000				
1001x11	1000000001000				
1001x01	0100000001000				
1010xx1	0011011000010				
1011xx1	1011011100000				
1100xx1	0100000001000				
1101xx1	0000000001001				
1110xx1	0011100000010				
1111xx1	1011100100000				
1111111	1011100100000				
1111001	1011100100000				
1111011	1011100100000				
1111101	1011100100000				
1110001	0011100000010				
1101011	0000000001001				
1000001	1000000001000				
1101011	0000000001001				
1111101	1011100100000				
1000001	1000000001000				

Diagrama de timing:

Link del repositorio: https://github.com/gil19443/Digital_1.git