Control Presentation

Rami Wail - Ahmed Alaa - Mohamed el shafey

The system

The nonlinear equation can be obtained by mass equivalent equation and Bernury's law is given by.

$$\frac{dh_1(t)}{dt} = -\frac{\beta_{12}\alpha_{12}}{A_1}\sqrt{2g(h_1(t) - h_2(t))} + \frac{k}{A_1}u(t)$$

$$\frac{dh_2(t)}{dt} = -\frac{\beta_2 a_2}{A_2} \sqrt{2gh_2(t)} + \frac{\beta_{12} a_{12}}{A_2} \sqrt{2g(h_1(t) - h_2(t))}$$

$$G(s) = \frac{H_2(s)}{U(s)} = \frac{K}{T_{12}T_2s^2 + (T_{12} + 2T_2)s + 1}$$

$$T_{12} = \frac{A_1}{\beta_{12}a_{12}} \sqrt{\frac{2(\overline{h_1} - \overline{h_2})}{g}}, \ T_2 = \frac{A_2}{\beta_2a_2} \sqrt{\frac{2\overline{h_2}}{g}}, \ K = \frac{kT_2}{A_2}$$

$$G(s) = \frac{19.8617}{2070.8029 c^2 + 224.224}$$

where A_1 and A_2 are the cross section area (cm²) of tank 1 and tank 2, a_2 is the cross section area (cm²) of outlet of tank 2, a_{12} is the cross section area (cm²) of jointed pipe between tank 1 and tank 2, β_2 is the value ratio at the outlet of tank 2, β_{12} is the value ratio between tank 1 and tank 2, g is the gravity (cm/s²) and k is the gain of pump (cm³/V × s).

A_1, A_2	a_2, a_{12}	β_2	β_{12}	$\overline{h_1}$	$\overline{h_2}$	k
154	0.5	0.682	1.531	30	25	30

Hardware

Pump "Motor"

Tanks "containers"

Sensor "ultrasonic most probably"

Water tap

Tubes

Hose

Water valve

PID-Controller

Bread board, wires

Simulation - Matlab

Pole	Damping	Frequency (rad/seconds)	Time Constant (seconds)
-5.41e-02 + 8.45e-02i	5.39e-01	1.00e-01	1.85e+01
-5.41e-02 - 8.45e-02i	5.39e-01	1.00e-01	1.85e+01

```
clear all; clc; close all;
       s=tf('s');
       t=0:0.01:5;
       %define function
       %open loop
       G=(19.8617)/(2070.8939*s^2+224.2254*s+1)
       %closed loop
8 -
       T=feedback(G,1);
9
       %obtain damping
10 -
       damp(T)
11
       %obtain overshoot, undershoot, tr, ts, peak, etc
12 -
       stepinfo(T)
       %obtain ess
13
14
       %e=1/s*s*1/1+openloopgain
15
       %ess=lim(e)as s->zero
       %knowing that the open loop gain is G
17 -
       E=1/(1+G);
18 -
       ess=dcgain(E);
19 -
       ess
20
       %plot step response
21 -
       step(T)
23 -
       figure %initialize figure
24 -
       t = 0:0.01:5; %small time for plot
       plot(step(T, t)); %step
25 -
26 -
       hold on
27 -
       title ('Step Response base')
28 -
       legend('Step', 'Ramp', 'Parabolic')
29 -
       xlabel('Time')
30 -
       ylabel('Amplitude')
```

Step Response

Response comparison

Comparison of parameters in paper (PSO)

Table 2: Comparison of PID controller parameters

Tuning rules	PID parameters				
	K_p	Ki	K _d		
Zeigler-Nichols	1.4928	0.0855	6.5159		
Cohen-Coon	1.6712	0.0791	5.2666		
IMC	1.0153	0.0046	4.3440		
PSO	12.144	0.030	9.349		

Table 3: Comparison of time domain specifications for set-point tracking

	Transient Characteristic	Z-N	C-C	IMC	PSO
- 2	Rise time[s]	11.07	11.33	22.22	3.80
	Peak amplitude	32.43	32.13	30.25	31.96
	Peak time[s]	29.02	29.42	46.15	9.35
	Settling time[s]	111.19	101.58	75.58	40.01

C-C **IMC** Z-N **PSO** characteristic Peak amplitude 30.39 30.48 30.43 30.05 129.45 146.25 109.35 Peak time [s] 129.12 Recovery time [s] 211.19 201.55 169.45 140.01

Table 4: Comparison of time domain specifications for disturbance

rejection

Transient

Figure 5: Closed-loop responses for set-point tracking with PID controllers

Figure 6: Closed-loop responses for disturbance rejection with PID controllers

Figure 2: Structure of PSO based PID control system

Reference

- 1. Lee, Yun-Hyung & Ryu, Ki-Tak & Hur, Jae-Jung & So, Myung-Ok. (2014). PSO based tuning of PID controller for coupled tank system. Journal of the Korean Society of Marine Engineering. 38. 1297-1302. 10.5916/jkosme.2014.38.10.1297.
- 2. Lee, Yun-Hyung & Jin, Gang-Gyoo & So, Myung-Ok. (2014). Level control of single water tank systems using Fuzzy-PID technique. Journal of the Korean Society of Marine Engineering. 38. 550-556. 10.5916/jkosme.2014.38.5.550.