Fonaments dels Sistemes Operatius (FSO)

Departament d'Informàtica de Sistemes i Computadores (DISCA) *Universitat Politècnica de València*

Bloc Temàtic 2: Processos

Unitat Temàtica 4
Planificació de Processos

Objectius

- Comprendre la necessitat de que el Sistema
 Operatiu estiga dotat amb un mòdul de planificació de CPU
- Exposar els possibles criteris a optimitzar per a seleccionar un planificador escaient
- Estudiar els distints algorismes de planificació de CPU

- Concepte de Planificació
- Criteris de Planificació
- Algorismes de Planificació
 - Algorisme FCFS
 - Algorisme SJF
 - Algorisme SRTF
 - Algorisme RR
- Planificació Múltiples Cues

Bibliografia

Contingut

A. Silberschatz, P. B. Galvin. "Sistemas Operativos". 7ª ed.
 Capítulos. 1 i 2

- Concepte de Planificació
- Criteris de Planificació

Contingut

- Algorismes de Planificació
 - Algorisme FCFS
 - Algorisme SJF
 - Algorisme SRTF
 - Algorisme RR
- Planificació Múltiples Cues

Concepte de Planificació

Concepte de Planificació

¡Quants processos esperen CPU! ¿Quan podrem utilizar la CPU? ¿Per quant de temps podrem utilitzar-la?

Recurs reutilitzable en sèrie:

Únicament puc atendre a un procés en cada instant de temps. Quan finalitze aquest procés atendré a un altre.

- Mancança de recursos: Molts processos competint per un únic recurs
- El Sistema Operatiu ha d'aplicar una política per a assignar recursos.

Planificadors a Curt i Llarg Termini

Concepte de Planificació

Planificador: Element del sistema operatiu que determina a quin procés se li assigna un determinat recurs (p. e. CPU) en cada instant de temps, d' acord amb alguna política

Planificadors a Curt, Mitjà i Llarg Termini

Mitjà Termini: S'encarrega de controlar quins processos, d'entre tots els iniciats han d'estar en memòria i quins altres han d'estar en l'espai d'intercanvi

Curt Termini: Sel·lecciona un procés de la cua de processos preparats per a execució i li assigna la CPU.

Concepte de Planificació

- Tipus de Processos: la vida activa d'un procés és una successió de ràfegues de CPU i ràfegues de E/S
 - Processos Limitats per CPU: Inverteix la major part del seu temps en efectuar càlculs (ej. Càlcul numèric)
 - Processos Limitats per E/S: Utilitza mes temps en realitzar
 E/S que en realitzar càlcul (processos interactius)

Durada de r\u00e0fegues de CPU

Concepte de Planificació

Estudis estadístics mostren que la majoria dels processos tenen ràfegues curtes de CPU, combinades amb les seues ràfegues d'E/S

- Gran nombre de r\u00e4fegues
 de CPU de curta durada
- Xicotet nombre de r\u00e4fegues
 de CPU de llarga durada.

- Concepte de Planificació
- Criteris de Planificació

Contingut

- Algorismes de Planificació
 - Algorisme FCFS
 - Algorisme SJF
 - Algorisme SRTF
 - Algorisme RR
- Planificació Múltiples Cues

• ¿Com planificar segons el tipus de sistema?

Criteris de Planificació

 Utilització de CPU: Mantindre la CPU tan ocupada com siga possible.

Temps_recurs_ocupat / Temps_total

 Taxa de rendiment: Maximitzar el nombre de tasques processades per unitat de temps.

Nombre_de_processos_acabats / Temps_total

 Temps de retorn: Temps transcorregut entre l'arribada d'un procés i la seua finalització.

Temps de sortida - Temps d'entrada = \sum TCPU + \sum TE/S + \sum TCues

- Temps d'espera: Temps que un procés está en la cua de processos preparats.
- Temps de resposta: Temps que transcòrre des de que es llança un procés fins que la CPU comença a executar la seua primera instrucció.
- Equitat: Garantitzar que cada procés obté la proporció justa de CPU. Es a dir, que els processos siguen tractats de manera igualitària. L'extrem oposat a l'equitat seria la inanició

La multiprogramació en sí mateixa suposa una millora de molts dels criteris de planificació respecte a l'execució seqüencial

Criteris de Planificació

La multiprogramació en sí miateixa suposa una millora de molts dels criteris de planificació respecte a l'execució sequencial

Criteris de Planificació

- Concepte de Planificació
- Criteris de Planificació

Contingut

- Algorismes de Planificació
 - Algorisme FCFS
 - Algorisme SJF
 - Algorisme SRTF
 - Algorisme RR
- Planificació Múltiples Cues

Planificador a Curt Termini

si la CPU es troba ociosa

- Objectiu: Decidir a quin procés dels que estan en la cua de processos preparats se li assignarà la CPU.
- Quan ha d'actuar el planificador:

CPU ociosa quan:

- -Finalitza un procés
- -El procé sol·licita E/S

si arriben processos a la cua de preparats

- Algorismes de planificació

Algorismes de planificació

- Polítiques de Planificació: No expulsiva/expulsiva
 - No expulsiva o No apropiativa ("Non preemptive"): el procés que està en CPU se'n va voluntariament (ej. FCFS)
 - Menys canvis de context, possible acaparament de CPU, més equitat (Ex. Windows 3.11)
 - Expulsiva o apropiativa ("Preemptive"): el planificador pot desallotjar al procés que està en CPU
 - Necessària per a implementar temps compartit i temps real: Unix, Windows NT/XP, Mac OS X

Algorismes de planificació:

Algorismes de planificació

- FCFS :First-Come First-Served
- SJF :Shortest-Job-First

EXPULSIU

- SRTF: Shortest-Remaining-Time-First
- RR: Round-Robin o per Torn Rotatori

- No expulsiu/Expulsiu ("Preemptive")
- Estàtics/Dinàmics
- Planificació amb múltiples cues.

Algorismes de planificació

Planificació FCFS (first-come, first-served)

- No Expulsiu: Quan un procés te assignada la CPU la mante fins al final de la seua execució o E/S
- La CPU es assignada als processos per ordre d'arribada a la cua de preparats
- Avantatges: És fàcil d'implementar
- Inconvenients:
 - No optimitza temps d'espera
 - Efecte convoi: treballs llargs retrasan a curts
 - No escaient per a sistemes interactius

Procés	Instant d'arribada	Ràfega CPU
P1	0	24
P2	0	3
P3	0	3

Cas 1) Ordre d'arribada P1, P2, P3

Temps mig d'espera: (0 + 24 + 27) / 3 = 17

Cas 2) Ordre d'arribada P2, P3, P1

Temps mig d'espera : (6 + 0 + 3) / 3 = 3

SJF (Shortest-Job-First)

- S'associa a cada treball el temps de la següent ràfega de CPU.
- S'assigna la CPU al treball amb menor temps associat.

No expulsiu

Processos	Instant d'arribada	Ràfega CPU
P1	0	7
P2	2	4
P3	4	1
P4	5	4

Temps d'espera mig: (0 + 6 + 3 + 7) / 4 = 4

Algorismes de planificació

- SRTF (Shortest-Remaining-Time-First)
 - La CPU es assignada al procés que li queda menys temps per a finalitzar ràfega.
 - Expulsiu/Apropiatiu
 - Avantatges: Optimitza la mitja de temps d'espera
 - Inconvenients:

Diagrama de Gantt

- Predir la durada del següent interval de CPU
- Possibilitat d'inanició a treballs llargs

Processos	Instant d'arribada	Ràfega CPU
P1	0	7
P2	2	4
P3	4	1
P4	5	4

	P1) (F	P2) (P	3) (P	4)		P4	5	4
•	P1	P2	P3	P2	P4		P1	
	0 2	2	1 5		7	11		— 16

Cronograma per processos

Algorismes de planificació

- SRTF (Shortest-Remaining-Time-First)
 - La CPU es assignada al procés que li queda menys temps per a finalitzar ràfega.
 - Expulsiu/Apropiatiu
 - Avantatges: Optimitza la mitja de temps d'espera
 - Inconvenients:
 - Predir la durada del següent interval de CPU
 - Possibilitat d'inanició a treballs llargs

Processos	Instant d'arribada	Ràfega CPU
P1	0	7
P2	2	4
P3	4	1
P4	5	4

• Planificació per Prioritats (Expulsiu)

Algorismes de planificació

 S'associa a cada procés un nombre (sencer), anomenat prioritat d'acord amb algún criteri.

S'assigna la CPU al treball amb major prioritat (normalment,

				110063303	Arribada	CPU	Trioritat	Menys
				P1	0	7	15 🚄	Prioritari
				P2	2	4	10	
Diagrama de Gant	t			P3	4	1	5 <	Mes
		2) (D4	,	P4	5	4	10	Prioritari
(P1) (P2)	(P:	3) (P4	·)					
P1	P2	P3	P2		P4		P1	
0 2	4	5		7		11		16

Cronograma per processos

Temps mig d'espera: (9 + 1 + 0 + 2) / 4 = 3

Planificació per Prioritats (Expulsiu)

Algorismes de planificació

 S'associa a cada procés un nombre (sencer), anomenat prioritat d'acord amb algún criteri.

S'assigna la CPU al treball amb major prioritat (normalment,

Algorismes de planificació

Planificació per Prioritats (No Expulsiu)

 S'associa a cada procés un nombre (sencer), anomenat prioritat d'acord amb algún criteri.

S'assigna la CPU al treball amb major prioritat (normalment,

menor nombre).

		,		Processos	Instant Arribada	Ràfega CPU	Prioritat	Menys
				P1	0	7	15	Prioritari
				P2	2	4	10	
Diagrama de	o Cantt			P3	4	1	5	Mes
Diagrama de			P4	5	4	10	Prioritari	
(P1)	(P2)	(P3)	(P4)					
	P1			P3	P2		P4	
O	2	4	5	7 8		12		16

Cronograma per processos

Planificació per Prioritats (No Expulsiu)

Algorismes de planificació

 S'associa a cada procés un nombre (sencer), anomenat prioritat d'acord amb algún criteri.

S'assigna la CPU al treball amb major prioritat (normalment,

menor nombre).

Algorismes de Planificació

- Round-Robin (RR) o Planificació Circular
 - A cada procés se li assigna un temps de CPU o "quantum"
 - Si ràfega de CPU major que "quantum", aleshores el procés es expulsat de la CPU i torna a la cua de preparats

 Si hi ha n processos en preparats, cadascun obté 1/n del temps de la CPU en intèrvals de q unitats.

	•			uantum q=4)	Procés	Instan Arribad	
			P1	0	16			
Diagra	ma da C	P2 P3	0	3				
Diagra	Diagrama de Gantt							11
	P1	P2	P3	P1	P3	P1	P3	P1
0		4 7	7	11	15	19 2	3 26	30

Cronograma per processos

Temps mig d'espera: (14 + 4 + 15) / 3 = 11

- Concepte de Planificació
- Criteris de Planificació

Contingut

- Algorismes de Planificació
 - Algorisme FCFS
 - Algorisme SJF
 - Algorisme SRTF
 - Algorisme RR
- Planificació Múltiples Cues

Planificació Múltiples Cues

- Diverses cues de processos preparats
 - Cadascuna gestionada amb una política diferent
 - Necessària una planificació entre cues
 - Prioritats expulsives
 - %us de CPU

Planificació amb múltiples cues

Múltiples cues amb realimentació

- Paràmetres
 - Nombre de cues.
 - Algorisme de cada cua
 - Prioritat de cada cua.
 - Mètode de promoció d'un procés.
 - Mètode de degradació d'un procés.
 - Mètode per a determinar la cua d'entrada d'un procés.

