PHL245 Modern Symbolic Logic

⊚ Tingfeng Xia

Fall 2019, modified on September 11, 2019

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike $4.0\ \mathrm{International}$ " license.

Contents

1	1.1	guments Validity	
2		nantics in Sentential Logic Syntax	2
	3.1	suth Tables Summary	

1 Arguments

1.1 Validity

We say a deductive argument is valid iff it is not invalid. This means that we can find out if a argument is valid or not by assessing the possiblity of the case where the premise is true and conclusion is false.

1.2 Soundness

We say a deductive argument is sound iff it is

- It is valid
- All the premises are TRUE

2 Semantics in Sentential Logic

2.1 Syntax

Sentential Logic(SL) Complex (compound) statements are all built up by joining statements together using LOGICAL CONNECTIONS. we have $\land, \lor, \rightarrow, \leftarrow, \sim$. Where \sim is the only unitary connector and others are binary.

Atomic vs Molecular A statement is Atomic if it has no logical connector and is molecular otherwise. We use **P-Z letters** to represent **atomic statements** Here is an example: You can have fries or salad. $\equiv P \vee Q$. Then, P is "You can have fires" and Q is "You can have salad". Notice that we are following the definition that P and Q are **statements**.

Informal Notation Hierarchy ¹ We shall see this through some examples:

• In official notation, we need $(P \vee Q)$ while it is safe to drop the parenthesis.

We can check if a statment is official or informal if it has the same number of brackets as binary connectors in the statement. If you see a bracket around a unitary connector, the sentence is not well-formed. **Right Most Rule** We say the rightmost connector in a sentence with connectors of the same level the main connector.

¹We use this Informal notation because the formal one is cumbersome. But in order to use the informal one, we have some conventions to follow.

3 Truth Tables

3.1 Summary

First we remark that we are here talking about binary operators, so they will have and only have two operands. We have the following to consider:

- Logical OR (\vee) is true when either one of the operands is true. It evaluates to false otherwise.
- Logical AND (\(\lambda\)) is true when both of the operands are true and false otherwise.
- Implication (\Longrightarrow) is true in two cases. The first case is when the first operand is false and second case is when both operands are true.
- **Double implication, Iff** (\iff) is true when either both operands are true or when both operands are false.
- **Negation** (\neg^2) is true when the operand is false and false otherwise.

3.2 Full truth tables

Example: ³ evaluate $(P \land \neg Q) \lor R$. $\neg R \lor Q$. $\therefore \neg P \implies Q$. Notice that this is equivalent to evaluating

$$(((P \land \neg Q) \lor R) \land (\neg R \lor Q)) \implies \neg P \implies Q$$

and by staring at it we see this statement is valid and only valid when $(P,Q,R) \in \{(T,T,T),(T,F,F),(F,T,T)\}$, which has a non-null set of solution. Hence the statement is consistent.

 $^{^2\}mathrm{Or}$ in this course, we may see \sim

³This example was adapted from Scharer 4.4 EG3.