第二节 马吕斯定律

$$\frac{A}{A_0} = \cos \alpha$$
, $\frac{I}{I_0} = \frac{A^2}{A_0^2} = \cos^2 \alpha$

马吕斯定律 $I = I_0 \cos^2 \alpha$

光的偏振——马吕斯定律

8. 度	对 10 的 目然 光	、射丁偏振片 Pi, j	F依次透过偏振片 Pi、	同相互垂直, P_2 与 P_1 月 P_2 与 P_3 ,则通过三(D) I_0 / 16.	个偏振片后	的光温为		
9. 强之		叠在一起,且偏抗	辰化方向之间夹角为	g 60°,光强为 Io f	的自然光垂	直入射在偏振	宁上,则出	射光
	(A) $I_0 / 8$.	(B) $I_0 / 4$.	(C) $3 I_0 / 8$.	(D) $3 I_0 / 4$.	Γ]		
5.	· ·			计的偏振化方向成 45°			的光强 I	
	(A) $I_0/4\sqrt{2}$.	(B) I ₀ / 4.	(C) $I_0/2$.	(D) $\sqrt{2} I_0$	/2. []		
	(4 分) 使光强为 Id 化方向成 45°角.			P ₁ , P ₂ 和 P ₃ . P ₁ 与·	P2的偏振(比方向成 45°角	, P ₂ 与P ₃	的偏
6. 为			扁振片,且此两偏振片	片的偏振化方向成 45°	角,则穿过	过两个偏振片后的	勺光强 I	
	(A) $I_0/4\sqrt{2}$.							
	(C) $I_0/2$.	(D) $\sqrt{2} I_0 /$	2.	[]				
				的混合光垂直照射7 射光中,自然光强			潘方向为轴	ı旋转 ₋·
			光,让它垂直通过一 〔中自然光与线偏振	偏振片. 若以此入身 光的光强比值为	肘光束为轴	旋转偏振片,测	训得透射光	强度
	(A) $1/2$.	(B) 1/3.	(C) 1/4.	(D) 1/5.]		

3. 三个偏振片 P₁、P₂、P₃堆叠在一起, P₁与 P₃的偏振化方向相互垂直, P₁与 P₂的偏振化方向相互平行, 然后 P₂以恒定角速度 ω 绕着光传播的方向旋转, 如图 15 - 1 - 6 所示. 试证明: 光强为 I₀的自然光通过这三个偏振片后, 出射光的光强为

$$I = I_0 (1 - \cos 4\omega t) / 16$$

图 15-1-6

$$I = \frac{1}{2}I_0 \cdot \cos^2(\omega t) \cdot \sin^2(\omega t)$$

$$= \frac{1}{2}I_0 \left[\cos(\omega t) \cdot \sin(\omega t)\right]^2$$

$$= \frac{1}{2}I_0 \left[\cos(\omega t) \cdot \sin(\omega t)\right]^2$$

$$= \frac{1}{2}I_0 \left[\sin^2(\omega t)\right]^2 = \frac{1}{8}I_0 \cdot (\sin^2(\omega t))^2 = \frac{1}{8}I_0 \cdot \frac{1-\cos 4\omega t}{2}$$

$$= \frac{1}{16}I_0 \cdot (1-\cos 4\omega t).$$

$$= \frac{1}{16}I_0 \cdot (1-\cos 4\omega t).$$

第三节 反射和折射时的偏振

反射光——部分偏振光,垂直于入射面的成份占比大于平行于入射面.

折射光——部分偏振光,入射面内的成份占 比大于垂直于入射面.

理论和实验证明:反射光的偏振化程度与入射角有关.

一 当入射光等于某一特定值
 16时,反射光是完全偏振
 2 产。这个特殊的角叫起偏
 2 角或布儒斯特角。

$$i_b + \gamma = 90^{\circ}$$

$$\frac{\sin i_b}{\sin \gamma} = \frac{n_2}{n_1} \qquad \sin \gamma = \cos(\frac{\pi}{2} - \gamma) = \cos i_b$$

$$\tan i_b = \frac{n_2}{n_1} = \frac{\sin i_b}{\cos i_b}$$

2. 如图 15-4 所示,有一平板玻璃放在水中,板面与水面夹角为θ.设水和玻璃的折射率分别为 1.333 和1.517.已知水面的反射光是线偏振光,欲使玻璃板面的反射光也是线偏振光,θ角应是多大?

$$\dot{U}_{1} = \arctan(1.333)$$

$$= 53.1^{\circ}$$

$$\dot{U}_{2} = \arctan(\frac{1.517}{1.333})$$

$$= 48.7^{\circ}$$

$$\theta = (80^{\circ} - 90^{\circ} - \alpha - \beta = 90^{\circ} - \alpha - \beta$$

$$= 90^{\circ} - (90^{\circ} - \dot{U}_{1}) - (90^{\circ} - \dot{U}_{2})$$

$$= \dot{U}_{1} - 90^{\circ} + \dot{U}_{2} = 11.8^{\circ}$$

光的偏振——反射和折射时的偏振

9. 口然光以布儒斯特角由空气入射到一玻璃表面上,反射光是 (A) 在入射面内振动的完全线偏振光. (B) 平行于入射面的振动占优势的部分偏振光. (C) 垂直于入射面振动的完全线偏振光. (D) 垂直于入射面的振动占优势的部分偏振光. []	
6.(3 分)一束自然光从空气投射到玻璃表面上(空气折射率为 1),当折射角为 30°时,反射光是完全偏振光,则此璃板的折射率等于	比班
6. 一束自然光自空气射向一块平板玻璃(如图),设入射角等于布儒斯特角 i ₀ ,则在界面 2 的反射光 (A) 是自然光. (B) 是线偏振光且光矢量的振动方向垂直于入射面. (C) 是线偏振光且光矢量的振动方向平行于入射面. (D) 是部分偏振光.	
5. (5 分) 一束平行的自然光,以 60° 角入射到平玻璃表面上. 若反射光束是完全偏振的,则透射光束的折射角是 ; 玻璃的折射率为;	
5. (5分) 一束自然光从空气投射到玻璃表面上(空气折射率为 1), 当折射角为 30°时, 反射光是完全偏振光, 则此玻璃板的折射率等于	
6. (5 分) 一束自然光以布儒斯特角入射到平板玻璃片上,就偏振状态来说则反射光为, 反射	
光 $ec{E}$ 矢量的振动方向,透射光为。	

三、o光、e光的传播规律

若晶体中存在一点光源

偏振方向:垂直光轴 与光线构成平面(o光 主平面) e光: 偏振方向: 在光轴与 光线构成平面内(e光 主平面)

 n_0 , n_e 称为晶体的主折射率

2、光轴与晶体表面斜交,自然光垂直入射

这正是前面演示的情形。

7. 如图 15-1-2 所示, ABCD 是方解石的一个截面, AB 为垂直于纸面的 晶体平面与纸面的交线. 光轴方向在纸面内且与 AB 成一锐角 θ . 一束 平行的单色自然光垂直于 AB 端面入射. 在方解石内, 两条折射光线 o 光和e光

- (B) 传播方向相同, 电场强度的振动方向不互相垂直.
- 传播方向不同, 电场强度的振动方向互相垂直. 1114
- 传播方向不同, 电场强度的振动方向不互相垂直.

如图 15-1-3 所示, 一束自然光入射到方解石晶体的表面上, 入射光与光轴成一定的角 方解石切割成等厚的 A、B 两块, 并平行的移开很短的一段距离, 这两块方解石后,透射出来的光线有

(A) 1条.

(C) 3条.

光的偏振——双折射

- 7. (4 分) 在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的______相等,这一方向称为晶体的光轴.只具有一个光轴方向的晶体称为 晶体.
- 6. ABCD 为一块方解石的一个截面,AB 为垂直于纸面的晶体平面与纸面的交线. 光轴方向在纸面内且与 AB 成一锐角 θ ,如图所示. 一束平行的单色自然光垂直于 AB 端面入射. 在方解石内折射光分解为 o 光和 e 光,o 光和 e 光的
 - (A) 传播方向相同, 电场强度的振动方向互相垂直.
 - (B) 传播方向相同, 电场强度的振动方向不互相垂直.
 - (C) 传播方向不同, 电场强度的振动方向互相垂直.
 - (D) 传播方向不同, 电场强度的振动方向不互相垂直. [

