ANSWERS TO SOME OF THE HOMEWORK PROBLEMS

Third problem set

- 1. By definition $\phi(1)=1$, hence $\phi(n\cdot 1)=n\cdot \phi(1)=n\cdot 1$ for all $n\in\mathbb{Z}$. For any ring homomorphism ϕ , if u is a unit then $\phi(u^{-1})=(\phi(u))^{-1}$ (this is another reason why we want to impose the condition $\phi(1)=1$), hence $\phi(n\cdot 1/m\cdot 1)=\phi((n\cdot 1)(m\cdot 1)^{-1})=\phi(n\cdot 1)(\phi(m\cdot 1))^{-1}=(n\cdot 1)(m\cdot 1)^{-1})=n\cdot 1/m\cdot 1$. Since by defintion the prime subfield of F is the set of all elements of the form $a=n\cdot 1/m\cdot 1$, we see that $\phi(a)=a$ for all a in the prime subfield.
- **2.** (i) First $(\phi(\sqrt{2}))^2 = \phi((\sqrt{2})^2) = \phi(2) = 2$, by Problem 1. Thus $\phi(\sqrt{2}) = \pm \sqrt{2}$. If $\phi(\sqrt{2}) = \sqrt{2}$, then again by Problem 1 $\phi(a+b\sqrt{2}) = \phi(a)+\phi(b\sqrt{2}) = \phi(a)+\phi(b)\phi(\sqrt{2}) = a+b\sqrt{2}$ for all $a,b\in\mathbb{Q}$, and hence $\phi=\text{Id}$. Similarly, if $\phi(\sqrt{2}) = -\sqrt{2}$, then $\phi(a+b\sqrt{2}) = \phi(a)+\phi(b\sqrt{2}) = \phi(a)+\phi(b)\phi(\sqrt{2}) = a-b\sqrt{2}$ for all $a,b\in\mathbb{Q}$. Finally, if ϕ is defined by $\phi(a+b\sqrt{2}) = a-b\sqrt{2}$ for all $a,b\in\mathbb{Q}$, then it is easy to see that ϕ is an additive homomorphism and that $\phi(1)=1$. To see that ϕ preserves multiplication, we compute:

$$\phi(a+b\sqrt{2})\phi(c+d\sqrt{2}) = (a-b\sqrt{2})(c-d\sqrt{2}) = (ac+2bd) - (ad+bc)\sqrt{2};$$

$$\phi((a+b\sqrt{2})(c+d\sqrt{2})) = \phi((ac+2bd) + (ad+bc)\sqrt{2})$$

$$= (ac+2bd) - (ad+bc)\sqrt{2}.$$

Hence ϕ preserves multiplication and is thus a ring homomorphism. Since clearly $\phi^2 = \operatorname{Id}$, ϕ is an isomorphism with $\phi^{-1} = \phi$.

(ii) Arguing as in (i), $(\phi(\sqrt[3]{2}))^3 = \phi((\sqrt[3]{2})^3) = \phi(2) = 2$, so that $\phi(\sqrt[3]{2})$ is a cube root of 2. This rules out $\phi(\sqrt[3]{2}) = -\sqrt[3]{2}$ since $(-\sqrt[3]{2})^3 = -2$, as well as $\phi(\sqrt[3]{2}) = (\sqrt[3]{2})^2$ since $((\sqrt[3]{2})^2)^3 = 4$. In fact, since $\phi(\sqrt[3]{2}) \in \mathbb{Q}(\sqrt[3]{2})$, it is a real number whose cube is 2 and hence $\phi(\sqrt[3]{2}) = \sqrt[3]{2}$. Thus $\phi((\sqrt[3]{2})^2) = (\sqrt[3]{2})^2$, and again using Problem 1, if $a, b, c \in \mathbb{Q}$,

$$\phi(a+b\sqrt[3]{2}+c(\sqrt[3]{2})^2) = \phi(a)+\phi(b)\phi(\sqrt[3]{2})+\phi(c)\phi((\sqrt[3]{2})^2)$$
$$= a+b\sqrt[3]{2}+c(\sqrt[3]{2})^2,$$

so that $\phi = \mathrm{Id}$.

3. (a) Not an ideal $(\sqrt{2} \cdot 1 \notin \mathbb{Q})$. (b) Not an ideal $(x \cdot 1 \notin \mathbb{Z})$. (c) Not an ideal $(i \cdot 1 \notin \mathbb{Z})$. (d) An ideal, in fact it is the principal ideal generated by 3 - 2i. (e) An ideal, in fact it is the principal ideal generated by (x^5) .

- (f) Not an ideal since e.g. the linear term of 1 is 0 but that of $x \cdot 1$ is not.
- (g) Not a subgroup, since for example 2x and -2x + 1 both have leading coefficient divisible by 2, but their sum does not. Hence not an ideal.
- **4.** We already know that $I \cap J$ is an additive subgroup of R. If $r \in I \cap J$ and $s \in R$, then $sr \in I$ since I is an ideal and $sr \in J$ since J is an ideal, hence $sr \in I \cap J$. Clearly any subset of R, and hence any ideal, contained in both I and J is by definition contained in $I \cap J$. But $I \cup J$ is not always an ideal, e.g. $(2) \cup (3) \subseteq \mathbb{Z}$ which is not closed under addition.
- **5.** By Problem 3, Part (b) from the last HW, the sum of two nilpotent elements is nilpotent. Clearly 0 is nilpotent and, by Part (a) of Problem 3, last HW, r nilpotent $\Longrightarrow -r = (-1) \cdot r$ is nilpotent. Hence $\sqrt{0}$ is an additive subgroup. Again by HW 2, Problem 3, Part (a) it is an ideal. $R = \mathbb{Z}$: $\sqrt{0} = (0)$. $R = \mathbb{Z}/6\mathbb{Z}$: $\sqrt{0} = (0)$. $R = \mathbb{Z}/27\mathbb{Z}$: $\sqrt{0} = (3)$. $R = \mathbb{Z}/18\mathbb{Z}$: $\sqrt{0} = (6)$.
- **6.** (i) Recall that, by definition, $\varphi^{-1}(J) = \{r \in R : \varphi(r) \in J\}$. We know $\varphi^{-1}(J)$ is an additive subgroup of R. If $r \in \varphi^{-1}(J)$ and $s \in R$, then by definition $\varphi(sr) = \varphi(s)\varphi(r) \in J$, since $\varphi(r) \in J$ and J is an ideal in S. Hence $sr \in \varphi^{-1}(J)$ by definition. The last sentence follows since if $i: R \to S$ is the inclusion, then $R \cap J = i^{-1}(J)$.
- (ii) Again, we know that $\varphi(I)$ is an additive subgroup of S (even if φ is not necessarily surjective). Given $s \in S$ and $\varphi(r) \in \varphi(I)$, since φ is surjective there exists a $t \in R$ with $\varphi(t) = s$. Hence $s\varphi(r) = \varphi(t)\varphi(r) = \varphi(tr)$. Since I is an ideal, $tr \in I$ and hence by definition $s\varphi(r) = \varphi(tr) \in \varphi(I)$. Thus $\varphi(I)$ is an ideal. For an example where φ is not surjective and $\varphi(I)$ is not an ideal, you could take $R = \mathbb{Z}$, $S = \mathbb{Q}$, i the inclusion and I any nonzero ideal. Then i(I) is not an ideal of \mathbb{Q} since, as it is nonzero, it would have to be all of \mathbb{Q} but it is contained in \mathbb{Z} .

Fourth problem set

- 1. Suppose that R is a ring and that every ideal of R is either $\{0\}$ or R, and that $R \neq \{0\}$. Let $r \in R$, $r \neq 0$. Then (r) is an ideal of R and $(r) \neq \{0\}$, hence (r) = R. Thus $1 \in (r)$, i.e. there exists $s \in R$ such that rs = 1. Hence every nonzero r has a multiplicative inverse. Since $R \neq \{0\}$, R is a field.
- **2.** In any case, $\operatorname{Ker} \rho$ is an ideal of F. Thus either $\operatorname{Ker} \rho = \{0\}$ and ρ is injective, or $\operatorname{Ker} \rho = F$ and hence $\rho(a) = 0$ for all $a \in F$. In particular, $\rho(1) = 0$, hence since $\rho(1) = 1$, 1 = 0 and $R = \{0\}$.

- **3.** It is easy to check that I+J is an additive subgroup of R. If $r \in I$, $s \in J$, and $t \in R$, then $t(r+s) = tr + ts \in I + J$. Finally, any ideal of R containing both I and J must contain all sums r+s with $r \in I$, $s \in J$, hence contains I+J.
- **4.** $I \cdot J$ is closed under addition: given two expressions $\sum_i r_i s_i$, with $r_i \in I$, $s_i \in J$, and $\sum_j t_j w_j$, $t_j \in I$, $w_j \in J$, the sum $\sum_i r_i s_i + \sum_j t_j w_j$ is again a sum of products of elements of R such that the first term is in I and the second is in J, hence is in $I \cdot J$. Clearly $0 = 0 \cdot 0 \in I \cdot J$, and if $\sum_i r_i s_i \in I \cdot J$, then $-\sum_i r_i s_i = \sum_i (-r_i) s_i \in I \cdot J$. Thus $I \cdot J$ is an additive subgroup. Given $r \in R$ and $\sum_i r_i s_i \in I \cdot J$, the product $r(\sum_i r_i s_i) = \sum_i (rr_i) s_i \in I \cdot J$, because I is an ideal. Hence $I \cdot J$ is an ideal. Clearly $\sum_i r_i s_i \in I$ since $r_i s_i \in I$ for every i (I is an ideal) and $\sum_i r_i s_i \in J$ since $r_i s_i \in J$ for every i (I is an ideal). Hence $I \cdot J \subseteq I \cap J$.
- **5.** (n) + (m) = (d), where $d = \gcd\{n, m\}$. $(n) \cap (m) = (e) = (nm/d)$, where $d = \gcd\{n, m\}$ and hence $e = \operatorname{lcm}\{n, m\}$. $(n) \cdot (m) = (nm)$. So for example if n = m = 2, then $(2) \cap (2) = (2)$ but $(2) \cdot (2) = (4)$.
- **6.** Let $f: R \to S/J$ be defined by f(r) = r + J. Then f is a homomorphism since it is the composition $\pi \circ i$ of two homomorphisms, where i is the inclusion $R \to S$ and $\pi: S \to S/J$ is the quotient homomorphism. Moreover $\operatorname{Ker} f = \{r \in R : r \in J\} = R \cap J = I$. Hence there is an induced injective homomorphism, which we will also denote by f, from R/I to S/J. It is surjective \iff for every element s+J of S/J, there exists an $r \in R$ such that $r+J=s+J \iff$ for all $s \in S$, there exists an $r \in R$ such that $r-s \in J$.
- 7. (i) Clearly $-3+2i=i(2+3i)\in I$. In fact, I is the set of all multiples (a+bi)(2+3i)=a(2+3i)+b(-3+2i), $a,b\in\mathbb{Z}$. This exactly says that 2+3i and -3+2i generate the additive subgroup I. (ii) Since I contains 2+3i and -3+2i, it contains 2+3i-(-3+2i)=5+i. (iii) By (ii), $a+bi\equiv a-5b \bmod I$ and we can then apply Problem 6 to see that f is surjective. (iv) $13=(2-3i)(2+3i)\in I$. (v) Since $13\in\mathbb{Z}\cap I$ and $\mathbb{Z}\cap I$ is an ideal in \mathbb{Z} , $13\mathbb{Z}\subseteq\mathbb{Z}\cap I$. Conversely, suppose that $(a+bi)(2+3i)=a(2+3i)+b(-3+2i)\in\mathbb{Z}$, where (a+bi)(2+3i) is a typical element of I. Then the imaginary part (3a+2b)i=0, so that 2b=-3a. Since a and b are relatively prime, 2|a, say a=2k, and hence -6k=2b so that b=-3k. Then

(a+bi)(2+3i) = a(2+3i) + b(-3+2i) = (2a-3b) + (3a+2b)i = 4k+9k = 13k.

Hence $\mathbb{Z} \cap I \subseteq 13\mathbb{Z}$ so that $\mathbb{Z} \cap I = 13\mathbb{Z}$. (vi) Again by Problem 6, there is a homomorphism $\mathbb{Z}/13\mathbb{Z} \to \mathbb{Z}[i]/I$ which is injective and surjective, hence

a (ring) isomorphism. Since $\mathbb{Z}/13\mathbb{Z}$ is a field, I is a maximal and hence a prime ideal.