Open Systems Interconnection (OSI)

Reference Model

(by the ISO)

Server Client Application Application Presentation Presentation Session Session Router Transport Transport Network Network Network Data Link Data Link Data Link Physical Physical Physical

OSI Reference Model Layer Attributes

OSI Reference Model *Physical* Layer Attributes

Physical Layer Attribute Detail

Service Attribute:

- 1. Transportation of bits (ones and zeros) between sender and receiver.
- 2. (sender) Conversion of bits into the electrical, optical, or radio signal accepted by the transmission medium.
- 3. (receiver) Conversion of transmission medium's signal into bits.

Physical Layer Attribute Detail

Protocol Attribute:

- 1. Electrical, optical, or radio signal as defined by the transmission medium
- 2. Modulation and demodulation or digital signal conversion in compliance with the transmission medium.

Physical Layer Attribute Detail

Interface Attribute:

- 1. Physical jack specifications, or
- 2. Wireless card interface spcifications
- 3. Speed, and "plexing" technique:
 Simplex
 Half duplex
 Full duplex, etc.

OSI Reference Model *Data Link* Layer Attributes

Data Link Layer Attribute Detail

Service Attribute:

- 1. Framing
- 2. Error checking
- 3. Switching
- 4. Virtual LAN (VLAN)

Data Link Layer Attribute Detail

Protocol Attribute:

- 1. Logical Link Control (Ethernet framing) IEEE 802.2
- 2. Logical Access Procedure Balanced (LAPB), used in X.25
- 3. Logical Access Procedure for D channel (LAPD), used ISDN
- 4. Layer 2 Tunnel Protocol (L2TP), used by some VPNs
- 5. For a complete list, visit the IANA site: http://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml#ieee-802-numbers-1

Data Link Layer Attribute Detail

Interface Attribute:

- Encapsulating (sending):
 Formatted frame passed down to physical layer as a serialized bit stream
- De-capsulating (receiving):
 Network layer protocol number from Ethernet type field and PDU passed up to network layer

OSI Reference Model Network Layer Attributes

Network Layer Attribute Detail

Service Attribute:

- 1. Address Resolution
- 2. Routing
- 3. Congestion Control
- 4. Quality of Service
- 5. Internetworking
- 6. NAT

Network Layer Attribute Detail

Protocol Attribute:

Popular Network Layer Protocols:

IPv4

IPv6

ARP

MPLS

For a complete list, visit the IANA table:

http://www.iana.org/assignments/protocol-num-bers/protocol-numbers.xhtml#protocol-numbers-1

Network Layer Attribute Detail

Interface Attribute:

- Encapsulating (sending):
 Network protocol number and PDU passed down to data link layer
- De-capsulating (receiving):
 Transport protocol number from 8-bit protocol value field, and PDU passed up to transport layer

OSI Reference Model *Transport* Layer Attributes

Transport Layer Attribute Detail

Service Attribute:

End-to-end connectivity
 Connection-oriented
 Connectionless-oriented

2. Data transfer management:

Sequencing

Blocking

Concatenation

Segmenting

Multiplexing/splitting

Flow control

Error dectection/recovery

Expedited data transfer

3. Port Address Translation (PAT)

Transport Layer Attribute Detail

Protocol Attribute:

Popular Protocols:

- 1. TCP Connection Oriented
- 2. UDP Connectionless Oriented
- 3. For a complete list visit the IANA site: http://www.iana.org/assignments/service-names-port-numbers/ service-names-port-numbers.xhtml

Transport Layer Attribute Detail

Interface Attribute:

- 1. Encapsulating (sending):
 - Transport protocol number and PDU passed down to network layer
- 2. De-capsulating (receiving):
 - Destination service port (aka. application protocol number) and socket number passed up to application layer

Typical Implementation of Physical, Data Link, Network and Transport Layers

TCP/IP Layer-to-Layer Interface Identifications aka The Demultiplexing of an Ethernet Frame

Demultiplexing of received Ethernet frame

Classful and Special IPv4 Addressing

How Subnet Masks Work (same subnet)

Source Host IP
Subnet /Notation
Subnet Mask Notation
Destination Host ID

Dotted Decimal
192.168.101.217
192.168.101/24
255.255.255.0
192.168.101.210

Source Host IP
Subnet Mask
Destination Host IP

Source & Mask Dest. & Mask

How Subnet Masks Work (different subnet)

	<u>Dotted Decimal</u>	
Source Host IP	192.168.101.217	
Subnet /Notation	192.168.101/24	
Subnet Mask Notation	255.255.255.0	
Destination Host IP	192.168.110.217	

	<u> </u>
Source Host IP	11000000.10101000.01100101.11011001
Subnet Mask	111111111111111111111111100000000
Destination Host IP	11000000.10101000.01101110.11010010

Source & Mask 11000000.10101000.01100101.00000000 Dest. & Mask 11000000.10101000.01101110.00000000

Network Protocol Attributes

Autonomous Systems (AS):

An independently operated network. Operational policies apply to only the boundries of the AS, and not to foreign ASes

Intra-domain networking refers to networking inside the AS

Inter-domain networking refers to networking across multiple ASes

Examples?

Network Protocol Attributes

Router Protocols:

Open Shortest Path First (OSPF): An Intra-Domain routing protocol. Also called: Interior Gateway Protocol

Algorithm Requirments

Open: Non-proprietary algorithm

Supports multiple distance metrics such as delay and cost

Supports type of service routing

Supports load balancing

Supports hierarchical systems (legacy routers)

Sensitive to security

Network Protocol Attributes

Router Protocols:

Border Gateway Protocol (BGP): An Inter-Domain routing protocol. Also called Exterior Gateway Protocol

Sample Requirments

Do not carry commerical traffic on the educational network Do not send Pentagon traffic via an Iraqi route Use TeliaSonera instead of Verizon because it's lower cost Do not use Australian AT&T due to poor performance Traffic for Apple is not to traverse through Google etc. etc. etc.

Network Protocol Attributes Intra- and Inter- Networking Protocols

Address Resolution Protocol (ARP) and Reverse Address Resolution Protocol (RARP)

Frame Type = 0x0806==> ARP request or reply Hardware Type = 0x0001==> Ethernet Protocol Type = 0x0800==> IEEE 802.3 Hardware Size ==> Size of MAC addresses = 0x06Protocol Size = 0x04==> Size of IP Addresses Op Code = 0x0001==> ARP Request ==> ARP Response = 0x0002

Address Resolution Protocol (ARP)

Proxy ARP - When one host, such as a router, stands-in for the target

Gratuitous ARP - When a host sends and ARP request asking for its own MAC

ARP Request to nonexistent Host - Eventually times out. Time out value varies by system.

ARP Reply available to any host that can "hear" it.

Cached ARP data refreshed frequently

Reverse Address Resolution Protocol (RARP)

Purpose is to obtain an IP address from a destination

Destination must have knowledge of source's MAC address

RARP Packet format nearly same as ARP:

```
Frame Type = 0x035 ==> RARP Request or Reply
Op Code = 0x0002 ==> Request
= 0x0003 ==> Reply
```

IP Header Format

4-bit version	4-bit Hdr length	8-bit Type Of Service (TOS)	16-bit total byte length		
16-bit Identification		3-bit flags	16-bit Identification		
	e To Live TL)	8-bit protocol	16-bit header checksum		
32-bit Source IP Address					
32-bit Destination IP Address					
Options if any					
 Data					

Transport Protocol Attributes Networking Protocols

TCP Header Format

16-bit Source Port	16-bit destination port				
32-bit sequence no.					
32-bit Ack. no.					
32-bit Source IP Address					
4-bit hdr length reserved R C S S Y I G K H T N N	16-bit window size				
16-bit TCP Checksum	16-bit urgent pointer				
Options if any					

Typical TCP Socket Session

