Quantum Theory 3

Prof Khoze

Epiphany Term 2019

Contents

I Scattering Theory	2
Lecture 1 Introduction to Scattering	3
1.1 Two types of scattering	3
1.2 Scattering cross-sections	3
Lecture 2 General Features of Potential Scattering in QM	4
2.1 The Schrodinger Equation	4

Part I Scattering Theory

Lecture 1 Introduction to Scattering

1.1 Two types of scattering

- ➤ elastic initial particles remain and no new particles emerge in the collision
- ➤ inelastic in the final state, there is more than just the initial particles

Will be using <u>non-relativistic</u> Quantum Mechanics for this part of the course, therefore will only be studying elastic non-relativistic scattering, e.g. Rutherford experiment, $\alpha + Au \rightarrow \alpha + Au$.

 \triangleright Consider elastic e^-e^+ scattering

$$e^+ + e^- \to e^+ + e^-$$
 (1.1)

Feynman diagrams of collision - both s-channel (particles meet) and t-channel (particles interact through virtual photon).

➤ Consider inelastic scattering

$$e^+ + e^- \to \mu^+ + \mu^-$$
 (1.2)

Feynman diagram of collision and decay into muon and anti-muon - electron and positron collide and annihilate, their energy then carried by photon which decays into muon and anti-muon.

1.2 Scattering cross-sections

The scattering cross-section, σ , is a probabilistic quantity that characterises the 'strength' of the scattering (interaction between the particles). σ has dimension of area (m^2) .

$$\frac{d\sigma}{d\Omega} = \frac{1}{F} \frac{dR}{d\Omega},\tag{1.3}$$

where:

- \triangleright F is the flux number of incident particles per unit area per unit time ($s^{-1}m^{-2}$)
- \blacktriangleright dR is the rate number of scattered particles (N) into d Ω per unit time (s⁻¹)
- \blacktriangleright $d\Omega$ is the solid angle
- $ightharpoonup rac{d\sigma}{d\Omega}$ is the differential cross-section into the solid angle (m^2)

$$\frac{d\sigma}{d\Omega}(\theta,\phi) = \frac{1}{F} \frac{dR}{d\Omega} \tag{1.4}$$

$$\sigma_{tot} = \int_0^{2\pi} d\phi \int_0^{\pi} d\theta \sin\theta \frac{d\sigma}{d\Omega}(\theta, \phi)$$
 (1.5)

$$N = \sigma_{tot} \cdot \int F \, dt \tag{1.6}$$

- F is known for each experiment, part of the design
- \triangleright σ_{tot} is measured in experiment
 - → Measured in barns (b) 1 barn = 10^{-24} cm⁻²
 - $\rightarrow \sigma_{\text{Thompson}} = 0.665 \, b$
- ➤ LHC gluon fusion into Higgs:
 - \Rightarrow $g + g \rightarrow H$
 - Feynman diagram of gluon collision into Higgs boson
 - $\rightarrow \sigma_{\text{Higgs}} \approx 10pb$

Lecture 2 General Features of Potential Scattering in QM

2.1 The Schrodinger Equation

Time-dependent Schrodinger equation, and reduced mass:

$$i\hbar \frac{\partial \psi(r,t)}{\partial t} = \left(-\frac{\hbar^2}{2m}\nabla^2 + V(r)\right)\psi(r,t)$$
 (2.1)

$$m = \frac{m_A m_B}{m_A + m_B} \tag{2.2}$$

E =fixed and finite

$$E = \frac{p^2}{2m} \tag{2.3}$$

$$\psi(r,t) = e^{-iEt/\hbar}\psi(r) \tag{2.4}$$

Leads to time-independent Schrodinger equation

$$E\psi(r) = \left(-\frac{\hbar^2}{2m}\nabla^2 + V(r)\right)\psi(r) \tag{2.5}$$

 $\frac{p}{\hbar} = k$, $U(r) = \frac{2m}{\hbar^2}V(r) \rightarrow$ Scattering equation:

$$\left(\nabla^2 + k^2 - U(r)\right)\psi(r) = 0 \tag{2.6}$$

For scattering:

► Looking for $\psi(r)$ s.t. as $r \to \pm \infty$,

$$\psi_{inc}(r) + \psi_{scat}(r) \equiv e^{ik \cdot r} + \frac{e^{i|k| \cdot |r|}}{r} \cdot f(k, \theta, \phi)$$
(2.7)

$$=e^{ikr\cos\theta} + \frac{e^{ikr}}{r} \cdot f(k,\theta,\phi) \tag{2.8}$$

- ▶ When scattering occurs, the incoming plane waves turn into spherical waves with $\frac{1}{r}$ amplitude from point of scattering
- \blacktriangleright $f(k,\theta,\phi)$ is the scattering amplitude need to determine this in order to compute σ

$$\psi(r) \approx_{r \to \infty} 1 \cdot e^{ik \cdot r} + f(k, \theta, \phi) \frac{e^{ik \cdot r}}{r}$$
(2.9)

Now consider the probability density for normalisation,

$$\rho_{inc}(r) \equiv |\psi_{inc}|^2 = 1 \tag{2.10}$$

What about flux?

$$F = \frac{\text{# of incoming particles}}{\text{Area} \cdot \text{time}}$$
 (2.11)

$$= v \cdot \rho = \frac{p}{m} \cdot \rho, \ \rho = 1 \tag{2.12}$$

$$=\frac{p}{m}\tag{2.13}$$

Recall $\frac{d\sigma}{d\Omega} = \frac{1}{F} \frac{dR}{d\Omega}$. So what is dR?

$$dR = j_r r^2 d\Omega (2.14)$$

So j_r is the probability current density - the number of scattered particles crossing the unit area per unit time.

$$j_r \equiv \frac{\hbar}{2mi} \left(\psi_{scat}^*(r) \nabla \psi_{scat}(r) - (\nabla \psi_{scat}(r))^* \psi(r) \right)$$
 (2.15)

$$= \frac{\hbar}{m} \text{Im} (\psi_{scat}^* \nabla \psi_{scat}) = \frac{\hbar k}{m} \frac{|f|^2}{r^2}$$

$$= \frac{p}{m} |f|^2 \frac{1}{r^2} = F \frac{|f(k, \theta, \phi)|^2}{r^2}$$
(2.17)

$$= \frac{p}{m}|f|^2 \frac{1}{r^2} = F \frac{|f(k,\theta,\phi)|^2}{r^2}$$
 (2.17)

$$\implies \frac{d\sigma}{d\Omega} = \frac{1}{F} \frac{dR}{d\Omega} = |f(k, \theta, \phi)|^2 \tag{2.18}$$