CHAPTER 7: TRIANGLES

EXERCISE 7.3

- 1. ABC is an isosceles triangle with AB=AC and BD and CE are its two medians. Show that BD=CE.
- 2. In Fig.7.4, D and E are the points on side BC of a \triangle ABC such that BD=CE and AD=AE. Show that \triangle ABD≅ \triangle ACE.

3. CDE is an equilateral triangle formed on a side CD of a square ABCD (Fig.7.5). Show that \triangle ADE \cong \triangle BCE.

Fig. 7.5

- 4. In Fig.7.6, BA \perp AC, DE \perp DF such that BA=DE and BF=EC. Show that \triangle ABC \cong \triangle DEF.
- 5. Q is a point on the side SR of $\triangle PSR$ such that PQ=PR. Prove that PS>PQ.
- 6. S is any point on side QR of a \triangle PQR. Show that PQ+QR+RP>2PS.
- 7. D is any point on side AC of a \triangle ABC with AB=AC. Show that CD<BD.

- 8. In Fig.7.7, l|m an M is the mid-point of a line segment AB. Show that M is also the mid-point of any line segment CD, having its end points on l and m, respectively.
- 9. Bisectors of the angles B and C of an isosceles triangle with AB=AC intersect each other at O. BO is produced to a point M. Prove that $\angle MOC = \angle ABC$.

- 10. Bisectors of the angle B and C of an isosceles triangle ABC with AB=AC intersect each other at O. Show that the external angle adjacent to \angle ABC is equal to \angle BOC.
- 11. In Fig.7.8, AD is the bisector of \angle BAC. Prove that AB>BD.