Needham Schroeder Protocol

Under the guidance of : Dr. Soumyadev Maity

Presented By:

Anshul Anand - ICM2014501 Kritika Sharma - ICM2014502 Jatin Goel - ICM2014503 Rishabh Verma - ICM2014004 Varun Kumar - ICM2014008

Introduction

- Network authentication is a major concern these days to secure the communication from impersonation, eavesdropping, etc.
- To ensure the same, many protocols have been developed like Needham Schroeder protocol.

Needham Schroeder Protocol

- Proposed by Needham and Schroeder in 1978.
- This is a shared key authentication protocol.
- Designed to generate and propagate a session key.
- Forms a basis for Kerberos authentication protocol.

Basic Architecture

Components:

- 1. Initiator
- 2. Responder
- 3. Key Distribution Center

Messages Exchange

- 1. Alice -> KDC : Alice, Bob, R_A
- 2. KDC -> Alice : $E_{KA}[R_A, Bob, K_{AB}, E_{KB}[Alice, K_{AB}]]$
- 3. Alice -> Bob : E_{KB}[Alice, K_{AB}]
- 4. Bob -> Alice : $E_{KAB}[R_B]$
- 5. Alice -> Bob : $E_{KAB}[R_B 1]$

Flow chart

KDC: Key-distribution center R_A: Alice's nonce R_B: Bob's nonce

Protocol Message Exchange Diagram

Experimental setup

- Implemented in python3 with following libraries:
 - Pycrypto
 - Netifaces
 - o IP
 - Socket
 - Threading

• Server[KDC] Running at IP Address: 172.21.21.105

- Alice IP Address: 172.21.21.103
- **Bob** IP Address: 172.21.21.206
- **Cherry** IP Address: 172.21.21.106

• **Server** is Running Persistently

- **Server[KDC]** is Running Persistently
- Now Alice Want to Communicate with Cherry

•

- **Server** is Running Persistently
- Now Alice Want to Communicate with Cherry
- Alice-Cherry-NonceA received at KDC
- Now KDC generates the Ticket for Alice which includes the Ticket of Cherry.

- **Server** is Running Persistently
- Now Alice Want to Communicate with Cherry
- Alice-Cherry-NonceA received at KDC
- Now KDC generates the Ticket for Alice which includes the Ticket of Cherry.

- **Server** is Running Persistently
- Now Alice Want to Communicate with Cherry
- Alice-Cherry-NonceA received at KDC
- Now KDC generates the Ticket for Alice which includes the Ticket of Cherry.
- Now **Alice** will Enter the **Private Key [Alice@123]** for decryption of ticket and **Alice** will send the Ticket for **Cherry**.

- **Server** is Running Persistently
- Now Alice Want to Communicate with Cherry
- Alice-Cherry-NonceA received at KDC
- Now KDC generates the Ticket for Alice which includes the Ticket of Cherry.
- Now **Alice** will Enter the **Private Key [Alice@123]** for decryption of ticket and **Alice** will send the Ticket for **Cherry**.

- **Server** is Running Persistently
- Now Alice Want to Communicate with Cherry
- Alice-Cherry-NonceA received at KDC
- Now KDC generates the Ticket for Alice which includes the Ticket of Cherry.
- Now **Alice** will Enter the **Private Key [Alice@123]** for decryption of ticket and **Alice** will send the Ticket for **Cherry**.
- Now Cherry will enter the Private Key[Cherry@123] for decryption of ticket

■ (1)) 5:34 PM (1)

- Now KDC generates the Ticket for Alice which includes the Ticket of Cherry.
- Now Alice will Enter the Private Key [Alice@123] for decryption of ticket and Alice will send the Ticket for Cherry.
- Now Cherry will enter the Private Key[Cherry@123] for decryption of ticket
- Now Cherry will Random NonceC to Alice.

■ (1)) 5:34 PM (1)

- Now KDC generates the Ticket for Alice which includes the Ticket of Cherry.
- Now Alice will Enter the Private Key [Alice@123] for decryption of ticket and Alice will send the Ticket for Cherry.
- Now Cherry will enter the Private Key[Cherry@123] for decryption of ticket
- Now Cherry will Random NonceC encrypted by Session key to Alice.
- Alice received NonceC, send back NonceC 1 to Cherry.

- Now Alice will Enter the Private Key [Alice@123] for decryption of ticket and Alice will send the Ticket for Cherry.
- Now Cherry will enter the Private Key[Cherry@123] for decryption of ticket
- Now Cherry will Random NonceC encrypted by Session key to Alice.
- Alice received NonceC, send back NonceC 1 to Cherry.
- Cherry received the NonceC 1 from Alice.

- Now Cherry will Random NonceC encrypted by Session key to Alice.
- Alice received NonceC, send back NonceC 1 to Cherry.
- Cherry received the NonceC 1 from Alice.
- Now Session Key is established b/w Alice and Cherry. So they can now do chatting with each other.

Latency Analysis

NEEDHAM-SCHROEDER PROTOCOL

S.No.	Latency b/w Client and KDC	Latency b/w Clients
1	4.06	9.62
2	6.02	10.42
3	4.89	8.72
4	6.99	11.42
5	4.06	9.62
6	4.79	9.38
7	6.34	10.74
8	5.50	10.98

Latency Plot

Disadvantages

- If session key is compromised and ticket to Bob is recorded, then intruder can impersonate initiator by carrying out last 3 steps.
- This is a replay attack mechanism, as there is no nonce in message 3, the attacker can replay the message Alice -> Bob:
 E_{KB}[Alice, K_{AB}] and Bob would accept it as legitimate as it doesn't know the freshness.
- Single point of failure.

Conclusion

- This was indeed a great learning Experience for all of us.
- Needham schroeder protocol has been successfully implemented.
- Authentication for further communication has been done.

Thank You!