AEROSPACE ENGINEERING AE449 Senior Design Project III Auburn University, Alabama

FINAL STUDY REPORT FOR THE SPACE SHUTTLE II ADVANCED SPACE TRANSPORTATION SYSTEM

Volume II: Technical Report

(MASA-CR-105953) SPACE SHUTTLE 2 ADVANCED SPACE TRANSPORTATION SYSTEM, VOLUME 2 FINGT Report (Auburn Univ.) 11 6 CSCL 220 N90-24854

unclas 63/15 0254535

Submitted to: Dr. James O. Nichols

Submitted by: James N. Adinaro

Philip A. Benefield Shelby D. Johnson Lisa K. Knight

Date Submitted: April 27, 1989

Table of Contents	
a a la Patamaination	1
1.0 Configuration Determination	7
2.0 STME Performance Calculation Summary	•
	14
3.0 Mission Analysis	49
4.0 Orbital Analysis	
5.0 Stability and Control Analysis	53

1.0 Configuration Determination

To determine the best configuration from all candidate configurations, it was necessary first to calculate minimum system weights and performance. To optimize the design, it is necessary to vary configuration-specific variables such as total system weight, thrust-to-weight ratios, burn durations, total thrust available, and mass fraction for the system. Optimizing each of these variables at the same time is technically unfeasible and not necessarily mathematically possible. However, discrete sets of data can be generated which will eliminate many candidate configurations. From the most promising remaining designs, a final configuration can be selected.

To ease this optimization process an interactive spreadsheet was created. It accepted initial thrust to weight ratios, number of main engines, vehicle dry weight, and initial (preseparation) burn time. From this information, it calculated maximum weights and propellant mass fractions available for each vehicle and the final post-separation burn time for the orbiter.

After selecting the number of engines and thrust to weight ratios for both the booster and the orbiter, the length of the initial burn was varied to maximize fuel available to the orbiter for the second phase burn. This maximum weight was then used to determine tank sizings which dictated total volume necessary within the booster and orbiter.

Included are the three most important designs considered: one which closely approximates the design criteria set forth in a Marshall Space Flight Center study of the Shuttle II; the configuration used in the initial proposal; and the final configuration presented and analyzed in this report. Note that these three systems represent important iterative steps in our final design.

A listing by cell of the formulas used to generate the aforementioned data is included for reference.

ORBITER DATA		Initial Boost Burn Time	133.00 sec
.Thrust/Weight	1.2000	Final Boost Burn Time	248.48 sec
Initial Boost Engines	4.00	Total Burn Time	381.48 sec
Total Thrust at Takeoff	1,454,100.00 lbf	TOTAL BUIN TIME	
Available Takeoff Weight	1,211,750.00 lbm	m-1	363,525.00 lbf
Dry Weight	180,000.00 lbm	Tsl	435,000.00 lbf
Payload	60,000.00 lbm	Tvac	949.40 lbm/sec
RCS Fuel (MMH/NO4)	20,000.00 lbm	Wdot	0.0700 ft^3
Total Orbiter Weight	260,000.00 lbm	SG - Hydrogen	1.1490 ft^3
Maximum Fuel Weight	951,750.00 lbm	SG - Oxygen	62.43 lbm/ft^3
		Density of Water	
Fuel Available Initially	951,750.00 lbm	Maria Bural - Wardwagan	135,964.29 lbm
Initial Boost Engines	4.00	Max Fuel - Hydrogen	815,785.71 lbm
Initial Fuel Consumed	505,080.80 lbm	Max Fuel - Oxygen	31,112.40 ft^3
Primary Fuel Available	446,669.20 lbm	Volume - Hydrogen	11,372.68 ft^3
Auxilliary Fuel	496,952.57 lbm	Volume - Oxygen	42,485.07 ft ³
Total Fuel Available	943,621.77 lbm	Total Volume	88.0301 ft
Final Boost Engines	4.00	Eq. Hydrogen Tanks	21.4203 ft
Approximate Final Thrust	1,740,000.00 lbf	Eq. Oxygen Tanks	109.4504 ft
Approximate Final T/W	1.4456	Minimum Length Necessary	107.1001
BOOSTER DATA			
Thrust/Weight	1.4000		
Initial Boost Engines	5.00	·	
Total Thrust at Takeoff	1,817,625.00 lbf		
Available Takeoff Weight	1,298,303.57 lbm		
Dry Weight	160,000.00 lbm	a m. 1 Madagaga	161,186.22 lbm
RCS Fuel (MMH/NO4)	10,000.00 lbm	Max Fuel - Hydrogen	967,117.35 lbm
, Total Booster Weight	170,000.00 lbm	Max Fuel - Oxygen	36,883.88 ft^3
Fuel Weight	1,128,303.57 lbm	Volume - Hydrogen	13,482.36 ft^3
		Volume - Oxygen	50,366.23 ft^3
Fuel Available Initially	1,128,303.57 lbm	Total Volume	69.4704 ft
Initial Boost Engines	5.00	Eq. Hydrogen Tanks	25.3939 ft
Initial Boost Fuel	631,351.00 lbm	Eq. Oxygen Tanks	94.8643 ft
Reservoir Fuel Pumped	496,952.57 lbm	Minimum Length Necessary	71.001010
OVERALL DATA			
Thrust/Weight	1.3034		
Initial Boost Engines	9.00		
Total Thrust at Takeoff	3,271,725.00 lbf		
Available Takeoff Weight	2,510,053.57 lbm		
Dry Weight	340,000.00 lbm		
Payload	60,000.00 lbm		
RCS Fuel (MMH/NO4)	30,000.00 lbm		
Total Dry Weight	430,000.00 lbm		
Fuel Weight	2,080,053.57 lbm		
	A 400 050 57 1b-		
Fuel Available Initially	2,080,053.57 lbm		
Initial Boost Engines	9.00		
Initial Boost Fuel	1,136,431.80 lbm		
Fuel Available Finally	943,621.77 lbm		

ORBITER DATA		Initial Boost Burn Time	119.00 sec
Thrust/Weight	1.2000	Final Boost Burn Time	330.00 sec
Initial Boost Engines	5.00	Total Burn Time	449.00 sec
Total Thrust at Takeoff	1,817,625.00 lbf	Total Buin Time	
Available Takeoff Weight	1,514,687.50 lbm		363,525.00 lbf
Dry Weight	180,000.00 lbm	Tsl	435,000.00 lbf
Payload	60,000.00 lbm	Tvac	949.40 lbm/sec
RCS Fuel (MMH/NO4)	20,000.00 lbm	Wdot	0.0700 ft^3
Total Orbiter Weight	260,000.00 lbm	SG - Hydrogen	1.1490 ft^3
Maximum Fuel Weight	1,254,687.50 lbm	SG - Oxygen	62.43 lbm/ft ³
		Density of Water	
Fuel Available Initially	1,254,687.50 lbm		179,241.07 lbm
Initial Boost Engines	5.00	Max Fuel - Hydrogen	1,075,446.43 lbm
Initial Fuel Consumed	564,893.00 lbm	Max Fuel - Oxygen	41,015.32 ft^3
Primary Fuel Available	689,794.50 lbm	Volume - Hydrogen	14,992.55 ft^3
Auxilliary Fuel	563,410.57 lbm	Volume - Oxygen	56,007.87 ft^3
Total Fuel Available	1,253,205.07 lbm	Total Volume	116.0496 ft
Final Boost Engines	4.00	Eq. Hydrogen Tanks	28.2383 ft
Approximate Final Thrust	1,740,000.00 lbf	Eq. Oxygen Tanks	144.2879 ft
Approximate Final T/W	1.1499	Minimum Length Necessary	144.207515
BOOSTER DATA			
Thrust/Weight	1.4000		
Initial Boost Engines	5.00	•	
Total Thrust at Takeoff	1,817,625.00 lbf		
Available Takeoff Weight	1,298,303.57 lbm		
Dry Weight	160,000.00 lbm		161,186.22 lbm
RCS Fuel (MMH/NO4)	10,000.00 lbm	Max Fuel - Hydrogen	967,117.35 lbm
Total Booster Weight	170,000.00 lbm	Max Fuel - Oxygen	36,883.88 ft ³
Fuel Weight	1,128,303.57 lbm	Volume - Hydrogen	13,482.36 ft ³
		Volume - Oxygen	50,366.23 ft ³
Fuel Available Initially	1,128,303.57 lbm	Total Volume	69.4704 ft
Initial Boost Engines	5.00	Eq. Hydrogen Tanks	25.3939 ft
Initial Boost Fuel	564,893.00 lbm	Eq. Oxygen Tanks	94.8643 ft
Reservoir Fuel Pumped	563,410.57 lbm	Minimum Length Necessary	34,0015 15
OVERALL DATA			
Thrust/Weight	1.2923		
Initial Boost Engines	10.00		
Total Thrust at Takeoff	3,635,250.00 lbf		
Available Takeoff Weight	2,812,991.07 lbm		
Dry Weight	340,000.00 lbm		
Payload	60,000.00 lbm		
RCS Fuel (MMH/NO4)	30,000.00 lbm		
Total Dry Weight	430,000.00 lbm		
Fuel Weight	2,382,991.07 lbm		
	o 202 001 07 lbm		
Fuel Available Initially	2,382,991.07 lbm 10.00		
Initial Boost Engines			
Initial Boost Fuel	1,129,786.00 lbm		
Fuel Available Finally	1,253,205.07 lbm	·	

ORBITER DATA			148.00 sec
Thrust/Weight	1.2000	Initial Boost Burn Time	246.10 sec
Initial Boost Engines	4.00	Final Boost Burn Time	394.10 sec
Total Thrust at Takeoff	1,454,100.00 lbf	Total Burn Time	374.20 303
Available Takeoff Weight	1,211,750.00 lbm		363,525.00 lbf
Dry Weight	180,000.00 lbm	Tsl	435,000.00 lbf
Payload	60,000.00 lbm	Tvac	949.40 lbm/sec
RCS Fuel (MMH/NO4)	20,000.00 lbm	Wdot	0.0700 ft^3
Total Orbiter Weight	260,000.00 lbm	SG - Hydrogen	1.1490 ft^3
Maximum Fuel Weight	951,750.00 lbm	SG - Oxygen Density of Water	62.43 lbm/ft^3
Fuel Available Initially	951,750.00 lbm	•	
Initial Boost Engines	4.00	Max Fuel - Hydrogen	135,964.29 lbm
Initial Fuel Consumed	562,044.80 lbm	Max Fuel - Oxygen	815,785.71 lbm
Primary Fuel Available	389,705.20 lbm	Volume - Hydrogen	31,112.40 ft^3
Auxilliary Fuel	544,897.09 lbm	Volume - Oxygen	11,372.68 ft^3
Total Fuel Available	934,602.29 lbm	Total Volume	42,485.07 ft^3
Final Boost Engines	4.00	Eq. Hydrogen Tanks	88.0301 ft
Approximate Final Thrust		Eq. Oxygen Tanks	21.4203 ft
Approximate Final T/W	1.4566	Minimum Length Necessary	109.4504 ft
BOOSTER DATA			
Thrust/Weight	1.4000		
Initial Boost Engines	6.00		
Total Thrust at Takeoff	2,181,150.00 lbf		
Available Takeoff Weight	1,557,964.29 lbm		
Dry Weight	160,000.00 lbm		
RCS Fuel (MMH/NO4)	10,000.00 lbm	Max Fuel - Hydrogen	198,280.61 lbm
Total Booster Weight	170,000.00 lbm	Max Fuel - Oxygen	1,189,683.67 lbm
	1,387,964.29 lbm	Volume - Hydrogen	45,372.10 ft^3
Fuel Weight	2,20,,500,20	Volume - Oxygen	16,585.10 ft ³
Fuel Available Initially	1,387,964.29 lbm	Total Volume	61,957.20 ft^3
Initial Boost Engines	6.00	Eq. Hydrogen Tanks	85.4579 ft
Initial Boost Fuel	843,067.20 lbm	Eq. Oxygen Tanks	31.2379 ft
Reservoir Fuel Pumped	544,897.09 lbm	Minimum Length Necessary	116.6958 ft
Thrust/Weight	1.3125		
Initial Boost Engines	10.00		
Total Thrust at Takeoff	3,635,250.00 lbf		
Available Takeoff Weight			
	340,000.00 lbm		
Dry Weight	60,000.00 lbm		
Payload RCS Fuel (MMH/NO4)	30,000.00 lbm		
	430,000.00 lbm		
Total Dry Weight Fuel Weight	2,339,714.29 lbm		
Fuel Available Initially	2,339,714.29 lbm		
Initial Boost Engines	10.00		
Initial Boost Engines Initial Boost Fuel	1,405,112.00 lbm		
Fuel Available Finally	934,602.29 lbm		
ruel Available rinally	734, 445 . E7		
		•	

ORBITER DATA		
Thrust/Weight	1.2	
Initial Boost Engines	5	1bf
Total Thrust at Takeoff	=B3*I6	1bm
Available Takeoff Weight	=B4/B2	1bm
Dry Weight	180000	1bm
Payload	60000	1bm
RCS Fuel (MMH/NO4)	20000	1bm
Total Orbiter Weight	=B6+B7+B8	1bm
Maximum Fuel Weight	= B5-B9	22
Fuel Available Initially	=B10	1bm
Initial Boost Engines	=B3	1bm
Initial Fuel Consumed	=B13*E8*E2	1bm
Primary Fuel Available	=B12-B14	1bm
Auxilliary Fuel	=B34	1bm
Total Fuel Available	=B15+B16	IDM
Final Boost Engines	4	lbf
Approximate Final Thrust	=B18*E7	101
Approximate Final T/W	=B19/(B9+B17)	
BOOSTER DATA		
Thrust/Weight	1.4	
Initial Boost Engines	5	lbf
Total Thrust at Takeoff	=B23*X6	1bm
Available Takeoff Weight	=B24/B22	1bm
Dry Weight	160000	
RCS Fuel (MMH/NO4)	10000	1bm
Total Booster Weight	= B26+B27	1bm
Fuel Weight	=B25-B28	1bm
		15-
Fuel Available Initially	#B29	lbm
Initial Boost Engines	=B23	• •
Initial Boost Fuel	=B32*E8*E2	1bm
Reservoir Fuel Pumped	=B31-B33	1bm
OVERALL DATA		
Thrust/Weight	=(B4+B24)/(B5+B25)	
Initial Boost Engines	= B3+B23	
Total Thrust at Takeoff	=B4+B24	lbf
Available Takeoff Weight	=B38/B36	1bm
Dry Weight	=B6+B26	1bm
Payload	-B7	1bm
RCS Fuel (MMH/NO4)	=B8+B27	1bm
Total Dry Weight	=B40+B41+B42	lbm
Fuel Weight	=B10+B29	1bm
Fuel Available Initially	=B12+B31	1bm
Initial Boost Engines	=B37	11
Initial Boost Fuel	=B47*E2*E8	lbm
Fuel Available Finally	=B46-B48	1bm

Initial Boost Burn Time	119	sec
Final Boost Burn Time	=B17/(B18*E8)	sec
Total Burn Time	=E2+E3	sec
Tsl	363525	lbf
	435000	1bf
Tvac	949.4	lbm/sec
Wdot	0.07	ft^3
SG - Hydrogen	1.149	ft^3
SG — Oxygen Density of Water	62.43	lbm/ft^3
V. v. Turk Hudrages	=B12/7	1bm
Max Fuel - Hydrogen	=B12 * 6/7	1bm
Max Fuel - Oxygen	=E13/(E9*E11)	ft^3
Volume - Hydrogen	=E14/(E10*E11)	ft^3
Volume - Oxygen	=E15+E16	ft^3
Total Volume	=E15/(PI()/4*15^2)/2	ft
Eq. Hydrogen Tanks	=E16/(PI()/4*26^2)	ft
Eq. Oxygen Tanks Minimum Length Necessary	=E18+E19	ft
-		
		1 70 000
Max Fuel - Hydrogen	=B29/7	lbm
Max Fuel - Oxygen	=B29*6/7	1bm
Volume - Hydrogen	=E27/(E9*E11)	ft^3
Volume - Oxygen	=E28/(E10*E11)	ft^3
Total Volume	=E29+E30	ft^3
Eq. Hydrogen Tanks	=E29/(PI()/4*26^2)	ft
Eq. Oxygen Tanks	=E30/(PI()/4*26^2)	ft
Minimum Length Necessary	=E32+E33	ft

2.0 STME Performance Calculation Summary

A model of the total thrust available from the Space Transportation Main Engines used on the Shuttle II was necessary to evaluate its launch profile. Thrust is a function of many variables, including nozzle expansion ratio, exit velocity, ambient pressure and exit pressure. Since the STME uses a translatable skirt, the expansion ratio of the engine could be set at discrete values of 35:1, 70:1, and 150:1. To insure that the engine operated most efficiently during all points in the launch, it was necessary to calculate the altitudes at which the skirt should be translated. This analysis was performed by calculating thrust coefficients for all three nozzles and finding the points of intersection.

These calculations were based on the data presented in the Aeroject contractor's report for the STME. The 1962 standard atmosphere was used as a model for pressure and density as functions of altitude. Most of the engine data was solved using simple, iterative techniques, isentropic relations, and graphical methods.

2.1 Analysis

Given an expansion ratio for a particular nozzle and an appropriate value for the coefficient of specific heats, the exit Mach number may be determined.

Assuming $\gamma = 1.24$ for a mixture of liquid oxygen and liquid hydrogen in a 6:1 mass ratio, and the first (fixed) nozzle expansion ratio of 35:1, this isentropic relation holds:

$$\frac{A_c}{A^+} = \frac{1}{Mc} \left[\frac{1 + \frac{1}{2} Mc^2}{\frac{1}{2} \frac{1}{2}} \right]^{\frac{p+1}{2}}$$

This function may be solved iteratively to obtain exit Mach numbers for the nozzles. This was solved using the included iterative, and the following were obtained as the exit Mach numbers:

Nozzle Expansion Ratio	Exit Mach Number
35:1	4.369
70:1	4.931
150:1	5.581

Next, the flow in a nozzle may be assumed to be very nearly isentropic, such that the chamber pressure may be related to the nozzle exit pressure through the isentropic relation

Given a chamber pressure of 2385 psia under normal power levels and 3125 psia under emergency conditions, the following exit pressures were obtained:

	Pe (NPL)	Pe (EPL)
For $e = 35:1$	5.069	6.642
For $e = 70:1$	2.058	2.696
For $e = 150:1$	0.771	1.010

For a given expansion ratio, a nozzle will have a maximum efficiency at a certain design altitude. At this altitude, the exit pressure is equal to the ambient pressure of the atmosphere. From the 1962 standard atmosphere, the design altitudes were determined to be

	hd (Normal Power Level)	(Emergency Power Levels)
For $e = 35:1$	26,700 ft	20,400 ft
For $e = 70:1$	45,800 ft	40,200 ft
For $e = 150:1$	66,300 ft	60,600 ft

In order to obtain the proper altitudes at which the sections of the nozzle should be extended, the following procedure is followed.

The thrust coefficient is defined as:

Since thrust varies with altutde, this expression may be rewritten as:

$$C_{T} = \sqrt{\left(\frac{2 r^{2}}{r-1}\right)\left(\frac{2}{r+1}\right)^{\frac{r-1}{r-1}}\left[1 - \left(\frac{P_{c}}{P_{T}}\right)^{\frac{r-1}{r-1}}\right] + \left(\frac{P_{c}}{P_{T}} - \frac{P_{c}}{P_{T}}\right) \frac{A_{c}}{A^{*}}}$$

For example, consider the nozzle with an expansion ratio of 70:1 at an altitude of 50,000 feet.

$$C_{T} = \sqrt{(12.8133)(.34724)\left[1 - \left(\frac{2.058}{2305}\right)^{.11355}\right]} + \frac{2.050 \cdot 1.632}{2305}(70) = 1.3314$$

Similarly, thrust coefficients for other nozzle and atmospheric conditions may be calculated. As shown in Figure 2.1.1, the points where these graphs cross indicate the altitudes where the nozzles should be translated for maximum efficiency.

For Normal Power Levels, the translation altitudes were found to be 36,900 feet and 56,500 feet. For Emergency Power Levels, the altitudes were 31,100 feet and 50,800 feet.

					E	r	G	H
	λ	В	c	D - 25	NPL, E=70	EPL.E=70	NPL, E=150	EPL, E=150
1	titude	Pa	NPL, E=35	EPL, E=35	1.4493	1.5515	0.9975	1.2164
2	0	14.7000	1.6185	1.6696	1.4649	1.5633	1.0308	1.2419
3	1000	14.1700	1.6263	1.6813	1.4798	1.5748	1.0629	1.2664
4	2000	13.6600	1.6338	1.6868	1.4942	1.5857	1.0937	1.2899
5	3000	13.1700	1.6410	1.6921	1.5083	1.5965	1.1239	1.3129
6	4000	12.6900	1.6480	1.6973	1.5218	1.6068	1.1529	1.3350
7	5000	12.2300	1.6548	1.7023	1.5350	1.6169	1.1812	1.3566
8	6000	11.7800	1.6614	1.7073	1.5479	1.6267	1.2088	1.3777
9	7000	11.3400		1.7120	1.5602	1.6361	1.2352	1.3979
10	8000	10.9200		1.7167	1.5726	1.6455	1.2617	1.4180
11	9000	10.5000		1.7210	1.5840	1.6543	1.2862	1,4368
12	10000	10.1100		1.7254	1.5955	1.6630	1.3107	1.4555
13	11000			1.7296	1.6064	1.6714	1.3342	1.4734
14	12000	9.3460		1.7336	1.6171	1.6795	1.3570	
15	13000			1.7376	1.6274	1.6874	1.3791	1.5077
16	14000			1.7414	1.6373	1.6950	1.4004	1.5239
17	15000			1.7451	1.6470	1.7023		
18	16000		· · · · · · · · · · · · · · · · · · ·	1.7486	1.6563	1.7094		
19	17000			1.7521	1.6653	1.7163		
20	18000			1.7554	1.6741	1.7230		
22	20000			1.7586	1.6825	1.7295		
23	21000			1.7617	1.6907	1.7357		
24	22000			1.7647	1.6986	1.7417		
25	23000			1.7677	1.7062	1.7475		
26	24000			1.7705	1,7136	1.7532		
27	25000			1.7732	1.7207	1.7586		
28	26000			1.7758		1.7638		
29	27000				1.7342	1.7689		
30	28000				1.7405	1,7737		
31	29000		1.7672		1.7467	1.7784		
32	30000					1.7830		
33	31000	4.1690				1.7874		
34	32000	3.9810				1.791		
35	33000	3.8000				1.799		
3 6	34000	3.6260				1.803		
37	35000							
38	36000	3.297						
39								
40								
41								
42								0 1.7976
43								6 1.8034
44								
4 5								9 1.8143
4 6								
47	_						1 1.793	
4 8							2 1.799	
4 9						1.839		
5 0 5 1								
5 2	_							
5 3						1.844		
5 4					1.8359	1.846		
5 5								
5 6								
157						1.851	1 1.838	1.8585
<u> </u>	3300	1.525	-1	<u> </u>				

					E	T	G	H
	A	В		D		1.8525	1.8427	1.8615
5.8	56000	1.2610	1.8158	1.8201	1.8437	1.8538	1.8465	1.8644
. 59	57000	1.2010	1.8166	1.8208	1.8455		1.8500	1.8671
60	58000	1.1450	1.8175	1.8214	1.8471	1.8551	1.8534	1.8697
_	59000	1.0910	1.8183	1.8220	1.8487	1.8563		1.8721
61		1.0400	1.8190	1.8226	1.8502	1.8574	1.8566	1.8745
62	60000	0.9913	1.8197	1.8232	1.8516	1.8585	1.8597	
63	61000		1.8204	1.8237	1.8530	1.8596	1.8626	1.8767
64	62000	0.9448		1.8242	1.8543	1.8606	1.8654	1.8788
6.5	63000	0.9005	1.8211		1.8556	1.8615	1.8681	1.8808
66	64000	0.8582	1.8217	1.8247	1.8567	1.8624	1.8706	1.8828
67	65000	0.8179	1.8223	1.8251		1.8630	1.8721	1.8839
68	65617	0.7941	1.8226	1.8254	1.8574	1.8663	1.8816	1.8911
69	70000	0.6437	1.8248	1.8271	1.8619		1.8901	1.8977
70	75000	0.5073	1.8268	1.8286	1.8659	1.8694	1.9220	1.9220
71	infinti	0.0000	1.8343	1.8343	1.8807	1.8807	1.9220	1.5000

3.0 Mission Analysis

To prove the flight worthiness and technical feasibility of the ASTS as proposed, a launch profile was constructed and simulated. This simulation consisted of a dynamic model of the vehicle's instantaneous position, velocity, acceleration, thrust, weight, orientation, and flight path with respect to the horizon. In addition to this vehicle-specific data, atmospheric conditions such as temperature, pressure, and density were modeled.

The basic format of this simulation was a fourth-order Runge-Kutta integration scheme. A number of asumptions were necessary to develop this model of the launch trajectory. First, the model is constrained by a run time of approximate seven minutes and a total distance downrange not exceeding 800 nautical miles, so the surface of the earth was modeled as being flat. In addition, rotational effects of the earth were neglected. This assumption cannot degrade the validity of results, since it could only create conditions more favorable to a due east launch from Kennedy Space Center. Drag forces were neglected for two principal reasons: they can be considered small in comparison to thrust forces necessary for a ballistic trajectory, and they would not exceed the advantages gained by incorporating the earth's rotation.

All initial conditions were set based on values calculated from the design process outlined in Section 1.0. Burn times, initial weights, total thrust available, and fuel available are the the most noteworthy examples. Thrust was computed as a function of altitude, based on translation altitudes for the extendable skirt on the STME nozzles, pressure forces, and known values of sea level and vacuum values. It was estimated that the maximum acceptable pitch rate was 0.5 degrees per second to retain stability during launch. This is the value used in the program for all pitch manuevers.

Before finalizing the launch profile, it was necessary to establish the range of orbits into which the orbiter could be successfully launched. Based on current STS mission analyses and estimations of maximum altitude and velocity available at this altitude, our launch goal was projected to be an altitude of 100 nautical miles and a velocity equal to that of the local circular speed. Inclination was varied during flight both to achieve this orbit and to place the booster in an alignment practical for separation.

```
program AE447Prog;
{$MC68020+}
($MC68881+)
{$SETC Elems881:=true}
              . 我就想到这种的最后,我们也没有一个,我们也没有一个,我们也没有一个,我们也没有一个,我们也没有一个,我们也没有一个,我们也没有一个,我们也没有一个。""我们
Written by Del Johnson (in TML Pascal II v1.00 under MPW v2.02)
Written for AE447-AE449 Shuttle II design group (Fall 1988 - Spring 1989)
This program is designed to model the flight of design configurations for the
Shuttle II Launch System. Design data was used in the model. Results from the
execution of these programs was used in an iterative process to fine-tune the
model as presented in the report.
Definition of variables u[i]:
{ Integral variables... }
            = Location along the x-axis
u[1] = u[x]
u[2] = u[xd] = Time rate of change of location along the x-axis
            = Location along the y-axis
u[3] = u[y]
u[ 4] = u[yd] = Time rate of change of location along the y-axis
u[5] = u[th] = Angle with respect to the y-axis
u[ 6] = u[thd] = Time rate of change of angle with respect to the y-axis
{ Other variables... }
u[ ] = u[alpha] = Angle of attack
u[ ] = u[gamma] = Flight path angle
   ] = u[wt] = Total vehicle weight
   ] = u[wtd] = Time rate of change of total vehicle weight
 u[ ] = u[dens] = Density of the atmosphere
 u[ ] = u[press] = Density of the atmosphere
 u[ ] = u[ thrust] = Thrust produced by all engines firing
 uses MemTypes, SANE;
 const
 { Number of equations... }
      numIntEquations = 6;
      numTotEquations = 11;
 { Time Considerations... }
                   0.00; { seconds }
      tbegin
               = 420.00; { seconds }
      tend
                   0.10; { seconds }
      dt.
                    10;
      cint
                     4;
      cols
 { Subscripts of the variables of motion... }
```

```
1;
     xd
                 2;
     x
                 3;
     yd
                 4:
     У
                 5;
     wt
                 6;
     th
                 7;
     vtot
                 8:
     gamma
                 9;
     thrust
              = 10;
     press
              = 11;
     dens
     Separation = 1;
                  = 2;
     Shutdown
     StartPitch1 = 3;
     StopPitch1 = 4;
     StartPitch2 = 5;
     StopPitch2 = 6;
{ Constants related to the problem... }
{ Mathematical constants... }
             = 57.29577951; { degrees/radians }
     conv
{ Physical constants... }
               = 20938912.00000; { feet }
     Re
                       32.17400; { feet/second^2 }
     g0
                        0.0023768; { pound-mass/feet^3 }
      rho
                        0.0023768; { pound-mass/feet^3 }
      rho0
                       14.70000; { pound-force/inches^2 }
      Psl
{ Vehicle characteristics... }
                   363535.00000; { lbf }
                     -949.40000; { lbm/sec }
      wtd0
                    25000.00000; { feet }
      pressAlt =
                    25000.00000; { feet }
      densAlt =
                     3247.22085; { inches^2 }
      Ae1
                     6503.88219; { inches^2 }
      Ae2
                    14526.72443; { inches^2 }
      Ae3
      designAlt1NPL = 26700.00000; { feet }
      designAlt2NPL = 45800.00000; { feet }
      designAlt3NPL = 66300.00000; { feet }
      designAlt1EPL = 20400.00000; { feet }
      designAlt2EPL = 40200.00000; { feet }
      designAlt3EPL = 60600.00000; { feet }
      transAlt1NPL = 36900.0000; { feet }
      transAlt2NPL = 56500.0000; { feet }
      transAlt1EPL = 31100.0000; { feet }
      transAlt2EPL = 50800.0000; { feet }
      PelNPL = 5.069; { lbf/feet^2 }
      Pe2NPL = 2.058; { lbf/feet^2 }
```

```
Pe3NPL = 0.771; { lbf/feet^2 }
    PelEPL = 6.642; { lbf/feet^2 }
    Pe2EPL = 6.296; { lbf/feet^2 }
    Pe3EPL = 1.010; { lbf/feet^2 }
    thrMax1NPL = 411259.15000;
    thrMax2NPL = 424577.04000;
    thrMax3NPL = 435000.00000;
    thrMax1EPL = 545789.15000;
    thrMax2EPL = 556312.08000;
    thrMax3EPL = 580000.00000;
{ Problem intial conditions... }
           = 0.00; { feet/second }
    xd0
            = 0.00; { feet }
    \mathbf{x}0
            = 0.00; { feet/second }
    yd0
            = 0.00; { feet }
    y0
            = 90.00; { degrees }
     th0
           = 0.00; { feet/second }
    vtot0
type
           = array [1..numTotEquations] of extended;
     uArray
    nameArray = array [1..numTotEquations] of str255;
     printrange = 1..32;
var
     outfile : text;
           : char;
     tab
            : array [1..numTotEquations] of integer;
     DryWtBooster, DryWtOrbiter, wt0 : extended;
            : extended;
            : array [1..6] of extended;
     time
            : array [1..4,1..numIntEquations] of extended;
     k
           : uArray;
     u, uu
     i,j,m,n : integer;
     printset : set of printrange;
{ Variables of motion... }
     wtd, thr, thd
                  : extended;
     thrMax : extended;
                            function g(alt : extended): extended;
begin
     g := g0*sqr(Re)/sqr(Re+alt);
                    function density(alt : extended): extended;
     density := rho0*exp(-alt/densAlt);
function pressure(alt : extended): extended;
begin
     pressure := Psl*exp(-alt/pressAlt);
end;
```

```
function pitchRate(t : extended): extended;
begin
           (t < Time[StartPitch1]) then pitchRate := 0.00 else</pre>
     if
            if (t < Time[StopPitch1] ) then pitchRate := -0.50 else</pre>
            if (t < Time[StartPitch2]) then pitchRate := 0.00 else</pre>
            if (t < Time[StopPitch2] ) then pitchRate := -0.50 else
            if (t < tend) then pitchRate := 0.00;
end;
                                     function thrustAvail(alt : extended): extended;
     Ae, thr1 : extended;
begin
     if (alt<transAlt1NPL) then begin
           Ae := Ae1;
           thr1 := thrMax1NPL;
     end
     else
           if (alt<transAlt2NPL) then begin
                 Ae := Ae2;
                 thr1 := thrMax2NPL;
           end
           else begin
                 Ae := Ae3;
                 thr1 := thrMax3NPL;
           end:
     thrustAvail := thrl - pressure(alt) *Ae;
procedure initVariables;
begin
     t := tbegin;
     u[yd] := yd0;
     u[y] := y0;
     u[xd] := xd0;
     u[x] := x0;
     u[wt] := wt0;
     u[th] := th0;
     u[gamma] := 90;
     u[vtot] := sqrt(sqr(u[yd])+sqr(u[xd]));
     u[press] := pressure(u[y]);
     u(dens) := density(u(y));
procedure print(style : integer);
  i : integer;
begin
   case style of
     1 : begin
              write(outfile,'t = ',t:6:2);
              for i := 1 to numTotEquations do begin
                 if (i in printset) then write(outfile,' u[',i:2,']
=',u[i]:12:2);
                                                       u[',i:2,']
                 if (i in printset) then write(
=',u[i]:12:2);
              end;
```

```
writeln(outfile);
             writeln;
          end;
    2 : begin
             i := 0;
             writeln(outfile,'Time = ',t:7:2);
                       'Time = ',t:7:2);
             writeln(
             for j := 1 to numTotEquations do
                if (j in printset) then begin
                   i := i+1;
                   write(outfile, 'u[',j:2,'] =',u[j]:12:2,'
                                                              1);
                                'u[',j:2,'] =',u[j]:12:2,'
                                                              1);
                   write(
                   if (i mod cols = 0) then begin
                      i := 0;
                      writeln(outfile);
                      writeln;
                   end;
                end:
              if (i<>0) then begin
                writeln(outfile);
                writeln;
             end:
           end;
     3 : begin
              write(outfile,t:7:2,tab);
              for j := 1 to numTotEquations do
                 if (j in printSet) then write(outfile,u[j]:12:sp[j],tab);
              writeln(outfile);
           end:
     otherwise;
  end; {case}
end;
{ Total function defining variables in terms of one another... }
function f(j: integer; t: extended; u: uArray): extended;
begin
     case j of
           xd : f := thr*cos(u[th]/conv)*g(u[y])/u[wt];
               : f := u[xd];
              : f := thr*sin(u[th]/conv)*g(u[y])/u[wt] - g(u[y]);
                : f := u[yd];
           У
                : f := wtd;
               : f := thd;
           otherwise;
     end;
begin
     Textbook (nil);
      tab := chr(09);
      for j := 1 to numTotEquations do
           sp[j] := 2;
      sp[press] := 8;
      sp[dens] := 8;
      open (outfile,'1/AE448prog.dat );
      rewrite (outfile);
```

```
{ Number of integration equations }
     m := numIntEquations;
     n := trunc((tend-tbegin)/dt); { Number of steps }
{ Set names of all variables... }
      printset := [xd,x,yd,y,wt,vtot,th,gamma,thrust,press,dens];
{ Set design variables... }
                    := 2769714.29; { lbf }
      DryWtBooster := 170000.00; { lbf }
      DryWtOrbiter := 260000.00; { lbf }
      Time[Separation] := 148.00; { seconds }
                        := 394.00; { seconds }
      Time [Shutdown]
      Time[StartPitch1] := 20.00; { seconds }
      Time[StopPitch1] := 140.00; { seconds }
Time[StartPitch2] := 160.00; { seconds }
      Time[StopPitch2] := Time[StartPitch2] + 38.00; { seconds }
{ Set initial conditions of all variables... }
      initVariables;
{ Echo initial conditions of all variables in the printing set... +
      print(3);
{ Beginning of time-step loop... }
      for i := 1 to n do begin
{ Computation of other, non time-dependent variables... }
             if (t = Time[Separation]) then u[wt] := u[wt] - DryWtBooster;
             thrMax := thrustAvail(u[y]);
                   (t < Time[Separation]) then thr := 10*thrMax else</pre>
                if (t < Time[Shutdown] ) then thr := 4*thrMax else
                    if (t < tend) then thr := 0*thrMax;
             u[press] := pressure(u[y]);
             u[dens] := density(u[y]);
             u[thrust] := thr;
               (t < Time[Separation]) then wtd := 10*wtd0 else
         if
                if (t < Time[Shutdown] ) then wtd := 4*wtd0 else
                    if (t < tend) then wtd := 0;
             thd := pitchRate(t);
             if (u[th] > 360.00) then u[th] := u[th] - 360.00;
             if (u[th] < -360.00) then u[th] := u[th] + 360.00;
 { Runge-Kutta 4th-Order integration loop of all variables... }
             for j := 1 to m do
                   k[1,j] := dt*f(j,t,u);
             for j := 1 to m do
                   uu[j] := u[j] + k[1,j]/2;
             for j := 1 to m do
                   k[2,j] := dt*f(j,t+dt/2,uu);
```

```
for j := 1 to m do
                 uu[j] := u[j] + k[2,j]/2;
           for j := 1 to m do
                 k[3,j] := dt*f(j,t+dt/2,uu);
            for j := 1 to m do
                 uu[j] := u[j] + k[3,j];
            for j := 1 to m do
                  k[4,j] := dt*f(j,t+dt,uu);
            for j := 1 to m do
                  u[j] := u[j] + (k[1,j]+2*k[2,j]+2*k[3,j]+k[4,j])/6;
            t := tbegin + i*dt;
            u[vtot] := sqrt(sqr(u[xd])+sqr(u[yd]));
            if (u[xd] > 0) then u[gamma] := arctan(u[yd]/u[xd])*conv else
u[gamma] := 90.00;
{ Printing parameters... }
            if (i mod cint = 0) and (printset <> []) then print(3);
      end;
      close (outfile);
end.
```

		В	С	D	E	F
	<u> </u>	x-Vel	X-Pos	Y-Vel	Y-Pos	Weight
1	Time	0.00	0.00	0.00	0.00	2769714.29
2	0.00	0.00	0.00	10.13	5.05	2760220.29
3	1.00	0.00	0.00	20.40	20.30	2750726.29
4	2.00	0.00	0.00	30.83	45.91	2741232.29
5	3.00	0.00	0.00	41.41	82.01	2731738.29
6	4.00	0.00	0.00	52.15	128.78	2722244.29
7	5.00	0.00	0.00	63.05	186.36	2712750.29
8	6.00	0.00	0.00	74.11	254.93	2703256.29
9	7.00	0.00	0.00	85.35	334.65	2693762.29
10	8.00 9.00	0.00	0.00	96.75	425.68	2684268.29
11	10.00	0.00		108.34	528.22	2674774.29
12	11.00	0.00		120.10	642.42	2665280.29
13	12.00	0.00		132.04	768.47	2655786.29
14	13.00			144.18	906.57	2646292.29
15	14.00			156.50		2636798.29
16	15.00			169.02		2627304.29
17	16.00			181.74	1395.00	2617810.29
19	17.00			194.66		2608316.29
20	18.00			207.79		2598822.29
21	19.00			221.13		2589328.29
22	20.00			234.69		2579834.29
23	21.00			248.46		2570340.29
24	22.00			262.45		2560846.29
25	23.00			276.67		2551352.29
26	24.00		4.31	291.10		2541858.29
127	25.00		8.43	305.76		2532364.29
28	26.00	7.34		320.64		2522870.29
29	27.00	10.02		335.74		2513376.29 2503882.29
30	28.00			351.06		2494388.29
31	29.00			366.61		2484894.29
32	30.00			382.37		2475400.29
33	31.00					
3 4	32.00					
35	33.00					
36			189.35			
37						
38						
39						
40						
41						
42						
4 3						
4 4						
4.5						
4 6						
47						
4 8						2323496.29
4 9						
50						2304508.29
5 <u>5</u> 1						2295014.29
53						
[3:	31.0	<u> </u>		<u> </u>		

			c	D	E	F
	A	B 500 50	2370.17	784.05	17936.50	2276026.29
54	52.00	228.50	2606.31	804.65	18730.83	2266532.29
155	53.00	243.87	2858.09	825.42	19545.85	2257038.29
5 6	54.00	259.79	3126.07	846.38	20381.74	2247544.29
57	55.00	276.26	3410.81	867.51	21238.67	2238050.29
58	56.00	293.31		888.81	22116.82	2228556.29
59	57.00	310.92	3712.87	910.28	23016.35	2219062.29
60	58.00	329.10	4032.84	931.90	23937.43	2209568.29
61	59.00	347.87	4371.28	953.69	24880.21	2200074.29
62	60.00	367.21	4728.77	975.62	25844.85	2190580.29
63	61.00	387.15	5105.90	997.71	26831.51	2181086.29
64	62.00	407.67	5503.26	1019.93	27840.31	2171592.29
6.5	63.00	428.79	5921.44	1042.29	28871.41	2162098.29
66	64.00	450.52	6361.05	1064.78	29924.94	2152604.29
67	65.00	472.84	6822.68	1087.40	31001.02	2143110.29
68	66.00	495.78	7306.94	1110.14	32099.78	2133616.29
69	67.00	519.33	7814.45	1132.99	33221.33	2124122.29
70	68.00	543.50	8345.81	1155.95	34365.80	2114628.29
71	69.00	568.29	8901.66	1179.02	35533.27	2105134.29
72	70.00	593.71	9482.60	1202.18	36723.86	2095640.29
73	71.00	619.75	10089.28	1202.18	37937.77	2086146.29
74	72.00	646.57	10722.38	1249.47	39175.35	2076652.29
75	73.00	674.10	11382.66	1273.38	40436.77	2067158.29
76	74.00	702.30	12070.80		41722.16	2057664.29
77	75.00	731.19	12787.49	1297.42	43031.66	2048170.29
78	76.00	760.77	13533.41	1321.60	44365.40	2038676.29
79	77.00	791.04	14309.26	1345.89	45723.49	2029182.29
80	78.00	822.01	15115.72	1370.30	47106.04	2019688.29
81	79.00	853.68	15953.51	1394.82	48513.15	2010194.29
82	80.00	886.05	16823.31	1419.43	49944.92	2000700.29
83	81.00	919.12	17725.83	1468.90	51401.43	1991206.29
8 4	82.00	952.91	18661.79	1493.74	52882.74	1981712.29
8.5	83.00	987.41	19631.90		54388.92	1972218.29
8 6	84.00	1022.63	20636.86	1518.64	55920.03	1962724.29
87	85.00	1058.57	21677.40	1543.59 1568.45	57476.08	1953230.29
8 8	86.00	1095.14	22754.22		59056.96	1943736.29
8 9	87.00	1132.43	23867.94	1593.33 1618.33	60662.78	1934242.29
90	88.00	1170.51	25019.34	1643.44	62293.65	1924748.29
91	89.00	1209.39	26209.23	1668.64	63949.69	1915254.29
92	90.00	1249.06	27438.39	1693.93	65630.97	1905760.29
93	91.00	1289.53	28707.62	1693.93	67337.57	1896266.29
94	92.00	1330.80	30017.71	1719.28	69069.56	1886772.29
9 5	93.00	1372.87	31369.48	1770.14	70826.97	1877278.29
96	94.00	1415.74	32763.71	1795.63		1867784.29
97	95.00	1459.41	34201.22	1821.12		1858290.29
98	96.00	1503.90	35682.81	1846.63		1848796.29
99		1549.18	37209.28	1872.13		1839302.29
100		1595.28	38781.45	1897.60		1829808.29
101		1642.19	40400.11	1923.05		1820314.29
102		1689.91	42066.09	1948.46		1810820.29
103			43780.20	1948.46		1801326.29
104			45543.24			1791832.29
105						1782338.29
100		1888.92	49219.40	2024.31	0 3 0 0 1 . 7 31	

	A	В	С	D	E	F
107	105.00	1940.72	51134.15	2049.44	91838.63	1772844.29
	106.00	1993.34	53101.11	2074.47	93900.60	1763350.29
108	. 107.00	2046.78	55121.10	2099.40	95987.54	1753856.29
109	108.00	2101.05	57194.95	2124.20	98099.35	
110	109.00	2156.14	59323.47	2148.89	100235.90	
111			61507.50	2173.43	102397.07	
112	110.00 111.00		63747.86	2197.83	104582.72	
113	112.00		66045.40	2222.07	106792.68	
114	113.00		68400.93	2246.15	109026.81	1696892.29
116	114.00		70815.30	2270.06	111284.93	1687398.29
117	115.00		73289.34	2293.78		1677904.29
118	116.00		75823.90	2317.30	115872.41	1668410.29
119	117.00		78419.83	2340.63	118201.40	1658916.29
120	118.00		81077.96	2363.74		1649422.29
121	119.00		83799.14	2386.64		1639928.29
122	120.00		86584.24	2409.31	125326.81	1630434.29
123	121.00		89434.10	2431.74		
124	122.00		92349.58	2453.93		1611446.29
125	123.00		95331.55	2475.86	132655.12	1601952.29
126	124.00		98380.86	2497.53		1592458.29
127	125.00		101498.40	2518.93	137650.09	
128	126.00		104685.03	2540.05	140179.60	
129	127.00		107941.63	2560.88	142730.09	
130	128.00		111269.08	2581.42	145301.26	
131	129.00		114668.26	2601.65	147892.82	
132	130.00		118140.06	2621.57		
133	131.00			2641.16		
134	132.00		125305.10	2660.43		
135	133.00	3733.00	129000.14	2679.35		
136	134.00	3809.67		2697.93		
137	135.00			2716.16		
138	136.00			2734.02		
139	137.00			2751.50		
140				2768.61		
141				2785.32		1
142						
143						
144						
145						
146						
147						
148						
149						
150				2940.84		
151						
152						
153						
154			7			
155						
156						
157						
158						
159	157.0	U ₁ 3331.13	440334.72	2000.7	.,	

			С	D	E	F
' <u></u> -	A	B 5372.10	245746.33	2858.89	229598.92	1156626.29
160	158.00	5413.17	251138.95	2851.13	232453.93	1152828.69
161	159.00	5454.37	256572.71	2843.45	235301.21	1149031.09
162	160.00		262047.76	2835.67	238140.79	1145233.49
163	161.00	5495.79	267564.41	2827.60	240972.45	1141435.89
164	162.00	5537.55	273122.98	2819.25	243795.90	1137638.29
165	163.00	5579.64 5622.06	278723.80	2810.61	246610.86	1133840.69
166	164.00	5664.81	284367.21	2801.68	249417.03	1130043.09
167	165.00	5707.89	290053.53	2792.45	252214.12	1126245.49
168	166.00	5751.29	295783.09	2782.92	255001.83	1122447.89
169	167.00	5795.02	301556.22	2773.08	257779.85	1118650.29
170	168.00	5839.08	307373.25	2762.94	260547.89	1114852.69
171	169.00	5883.45	313234.48	2752.48	263305.62	1111055.09
172	170.00	5928.15	319140.26	2741.71	266052.75	1107257.49
173	171.00	5973.17	325090.89	2730.63	268788.95	1103459.89
174	172.00	6018.51	331086.71	2719.22	271513.89	1099662.29
175	173.00	6064.17	337128.02	2707.48	274227.27	1095864.69
176	174.00 175.00	6110.14	343215.15	2695.42	276928.75	1092067.09
177		6156.43	349348.41	2683.02	279617.99	1088269.49
178	176.00	6203.04	355528.12	2670.28	282294.67	1084471.89
179	178.00	6249.95	361754.59	2657.21		1080674.29
180	179.00	6297.18	368028.13	2643.79		1076876.69
181	180.00	6344.72	374349.06	2630.02		1073079.09
182	181.00	6392.57	380717.67	2615.90		1069281.49
183	182.00	6440.72		2601.43	295477.60	1065483.89
184	183.00	6489.18	393599.21	2586.60		1061686.29
185	184.00	6537.94		2571.41		1057888.69
187	185.00	6587.01	406675.19	2555.85	303214.34	1054091.09
188	186.00	6636.37		2539.92		1050293.49
189	187.00	6686.04	419948.04	2523.61		1046495.89
190	188.00	6736.00		2506.93		1042698.29
191	189.00	6786.26		2489.87		1038900.69
192	190.00	6836.81		2472.42		1035103.09
193	191.00	6887.66		2454.59		1031305.49
194	192.00	6938.80				1027507.89
195	193.00	6990.23	460971.56			1023710.29
196	194.00	7041.94				1019912.69
197	195.00	7093.94				1016115.09
198	196.00	7146.23				1012317.49
199	197.00	7198.79				1008519.89
200	198.00	7251.64				1004722.29
201	199.00	7304.72	503851.44			1000924.69 997127.09
202	200.00	7357.99				
203	201.00					
204	202.00					
205			533497.78			
206						
207						
208						
209		7736.36				
210						
211				_		
212	210.00	7901.53	587463.73	20/1.3	2 301302.03	1

	3	В	С	D	E	F
\ 	211.00	7957.00	595392.98	2051.02	363364.02	955353.49
213	212.00	8012.68	603377.80	2030.76	365404.90	951555.89
214	213.00	8068.58	611418.41	2010.54	367425.55	947758.29
215		8124.69	619515.03	1990.38	369426.01	943960.69
216	214.00	8181.01	627667.86	1970.26	371406.32	940163.09
217	215.00	8237.55	635877.12	1950.19	373366.55	936365.49
218	216.00	8294.31	644143.03	1930.17	375306.73	932567.89
219	217.00	8351.29	652465.81	1910.20	377226.91	928770.29
220	218.00 219.00	8408.50	660845.69	1890.28	379127.15	924972.69
221	220.00	8465.93	669282.88	1870.40	381007.49	921175.09
222	221.00	8523.59	677777.62	1850.58	382867.97	917377.49
223	222.00	8581.47	686330.13	1830.81	384708.66	913579.89
224	223.00		694940.64	1811.08	386529.60	909782.29
225	224.00		703609.39	1791.41	388330.85	905984.69
227	225.00		712336.60	1771.79	390112.44	902187.09
228	226.00		721122.52	1752.22	391874.44	898389.49
229	227.00		729967.38	1732.70	393616.89	894591.89
230	228.00		738871.42	1713.23	395339.85	890794.29
231	229.00		747834.89	1693.81	397043.36	886996.69
232			756858.03	1674.45	398727.49	883199.09
233			765941.09	1655.14	400392.28	879401.49
234			775084.32	1635.89	402037.79	875603.89
235			784287.97	1616.68	403664.07	871806.29
236			793552.29	1597.54		868008.69
237			802877.54	1578.44		864211.09
238			812263.98	1559.41	408428.08	860413.49
239			821711.86	1540.42	409977.99	856615.89
240	238.00		831221.46	1521.50		852818.29
241	239.00	9602.66		1502.63		849020.69
242	240.00			1483.81		845223.09 841425.49
243				1465.06		
244			869882.34	1446.36		
245			879704.54	1427.72		
246			889590.09			
247				1390.61		
248						
249						
250						
251						
252						
253						
254						
255						
256			1002594.41			
258			1013262.86			
259			1023998.53			780663.89
260			1034801.75			776866.29
261			1045672.84		439383.97	
262			1056612.12			
263			1067619.92			
264		0 11111.20	1078696.58	1085.25		
265			1089842.43		443794.91	757878.29

						F'
	A	В	C	D 50	E 444854.13	754080.69
266	264.00	11250.27	1101057.82	1050.58	444654.15	750283.09
1267	265.00	11320.31	1112343.08	1033.34	446920.84	746485.49
268	266.00	11390.71	1123698.56	1016.18	447928.48	742687.89
269	267.00	11461.46	1135124.62	999.09	448919.06	738890.29
270	268.00	11532.57	1146621.60	982.08	449892.65	735092.69
271	269.00	11604.03	1158189.87	965.13	450849.34	731295.09
272	270.00	11675.86	1169829.78	948.26	451789.20	727497.49
273	271.00	11748.06	1181541.71	931.46	452712.30	723699.89
274	272.00	11820.62	1193326.02	914.74	453618.71	719902.29
275	273.00	11893.57	1205183.08	898.09 881.52	454508.51	716104.69
276	274.00	11966.89	1217113.28	865.03	455381.78	712307.09
277	275.00	12040.60	1229116.99	848.62	456238.60	708509.49
278	276.00	12114.69	1241194.60	832.28	457079.04	704711.89
279	277.00	12189.18	1253346.50	816.02	457903.18	700914.29
280	278.00	12264.06	1265573.09	799.85	458711.11	697116.69
281	279.00	12339.35	1277874.76	799.85	459502.91	693319.09
282	280.00	12415.04	1290251.92	767.74	460278.64	689521.49
283	281.00	12491.14	1302704.98	751.81	461038.41	685723.89
284	282.00	12567.60	1315234.34		461782.28	681926.29
285	283.00	12644.5	1327840.43		462510.36	678128.69
286	284.00	12721.9	1340523.66		463222.71	674331.09
287	285.00	12799.7	1353284.47		463919.43	670533.49
288	286.00	12877.9	6 1366123.29			666735.89
289	287.00	12956.6	2 1379040.54 3 1392036.68		465266.31	662938.29
290	288.00	13035.7	9 1405112.15			659140.69
291	289.00	13115.2	0 1418267.40			655343.09
292	290.00	13195.3	7 1431502.90			651545.49
293	291.00	13273.7	0 1444819.09			647747.89
294	292.00	13330.7	1 1458216.46			643950.29
295	293.00		0 1471695.48			640152.69
296	294.00 295.00	13602 3	7 1485256.62	552.67	469501.04	636355.09
297	296.00	13685 2	2 1498900.3			632557.49
298	297.00	13768.5	7 1512627.23	523.42		
		13852.4	3 1526437.69	508.95	471093.24	
300			9 1540332.2	494.57	471594.99	
302			6 1554311.4	480.30		
303			5 1568375.7	4 466.13		
304			7 1582525.7	1 452.00		
305			12 1596761.8	6 438.09		
306		14366.4	2 1611084.7	4 424.24		
307		14453.9	6 1625494.8	8 410.49		
308		14542.0	1639992.8	3 396.8		
309		14630.	70 1654579.1	6 383.3		
310		14719.	93 1669254.4			
311		14809.	72 1684019.2			
312	310.00	14900.	11 1698874.0	7 343.4		
313	311.00	14991.	08 1713819.6			
314	312.00	15082.	65 1728856.4			
315	313.00	15174.	84 1743985.1			
316	314.00		63 1759206.3	291.8		
317			05 1774520.6	279.2 3 266.7		
318	316.00	15455.	11 1789928.6	200.7	JI 37002011	<u> </u>

		В	c	D	E	F
	A 317.00		1805431.03	254.40	478280.68	552807.89
319			1821028.45	242.18	478528.96	549010.29
320	318.00		1836721.54	230.09	478765.08	545212.69
321	319.00		1852510.98	218.13	478989.18	541415.09
322	320.00	15037.03	1868397.42	206.30	479201.39	537617.49
323	321.00		1884381.57	194.61	479401.83	533819.89
324	322.00			183.05	479590.65	530022.29
325	323.00		1900464.10	171.64	479767.98	526224.69
326	324.00		1916645.72	160.36	479933.97	522427.09
327	325.00		1932927.15	149.22	480088.74	518629.49
328	326.00		1949309.11	138.23	480232.46	514831.89
329	327.00	16534.10	1965792.33	127.38	480365.25	511034.29
330	328.00	16636.49	1982377.57	116.69	480487.28	507236.69
331	329.00	16739.64	1999065.57	106.14		
332	330.00		2015857.11	95.75		499641.49
333	331.00		2032752.96	85.51		495843.89
334	332.00	17053.78	2049753.92	75.43		492046.29
335	333.00		2066860.79	65.51		488248.69
336	334.00		2084074.38	55.75		
337			2101395.54	46.16		480653.49
338	336.00		2118825.09	36.74		
339			2136363.90	27.49		
340			2154012.84	18.41		
341			2171772.78	9.50		
342			2189644.63	0.78		
343			2207629.31	-7.77		
344			2225727.73	-16.12		
345			2243940.84	-24.29		
346			2262269.60	-32.27		
347			2280714.99	-40.06		
348			2299278.00	-47.65		
349			2317959.63	-55.03		
350			2336760.93	-62.21		
351			2355682.92			
352		19105.0	2374726.68			
353	351.00		2393893.28			
354			2413183.83			
355			4 2432599.45			
356			3 2452141.29 9 2471810.50			
357						
358			6 2491608.27 4 2511535.82			
359			6 2531594.36			
360			5 2551785.16			
361			3 2572109.49			
362			3 2592568.66			
363			7 2613163.99			
364			7 2633896.84			
36			8 2654768.60			
360			1 2675780.68			
36			0 2696934.51			
361			7 2718231.56			
36			5 2739673.35			
37						
37	1 369.0	U 21661.6	9 2761261.39	7 -130.4	3, 3,000,7.1	

	A	В .	С	D	E	F
372	370.00		2782997.25	-158.30	478402.33	351535.09
373	371.00		2804882.54	-159.85	478243.23	347737.49
374	372.00		2826918.89	-161.08	478082.74	343939.89
375	373.00		2849107.96	-161.98	477921.18	340142.29
376	374.00		2871451.47	-162.55	477758.89	336344.69
377	375.00		2893951.17	-162.77	477596.20	332547.09
378	376.00		2916608.82	-162.65	477433.46	328749.49
379	377.00		2939426.28	-162.16	477271.02	324951.89
380	378.00		2962405.40	-161.31	477109.26	321154.29
381	379.00		2985548.10	-160.08	476948.54	317356.69
382	380.00		3008856.33	-158.46	476789,23	313559.09
383	381.00		3032332.12	-156.46	476631.74	309761.49
384	382.00		3055977.50	-154.04	476476.45	305963.89
385	383.00		3079794.60	-151.22	476323.79	302166.29
386	384.00		3103785.57	-147.96		298368.69
387	385.00		3127952.63	-144.28		294571.09
388	386.00		3152298.05	-140.14	475885.76	290773.49
389	387.00		3176824.16	-135.55	475747.87	286975.89
390	388.00		3201533.35	-130.48	475614.82	283178.29
391	389.00		3226428.09	-124.94		279380.69
392			3251510.89	-118.89		275583.09
393			3276784.36	-112.33	475249.45	271785.49
394	392.00		3302251.16	-105.25		267987.89
395			3327914.02	-97.63	475039.13	264190.29
396			3353775.78	-89.46	474945.54	
397			3379737.94	-120.22	474840.70	
398			3405700.10	-150.98		
399			3431662.26	-181.74		
400		25962.16	3457624.42	-212.51		
401		25962.16	3483586.58	-243,27		
402	400.00	25962.16	3509548.74	-274.04		
403	401.00	25962.16	3535510.91	-304.8 <u>0</u>		
404	402.00	25962.16	3561473.07	<u>-335.57</u>		
405	403.00		3587435.23	-366.34		
406	404.00		3613397.39	-397.11		
407	405.00		3639359.55	-427.88		
408	406.00		3665321.71	-458.65		
409			6 3691283.87	-489.42		
410			6 3717246.03			
411			6 3743208.19			
412		25962.1	6 3769170.36	-581.75		
413			6 3795132.52	-612.53	468979.08	
414			6 3821094.68	-643.31		
415		25962.1	6 3847056.84	-674.09		
416			6 3873019.00	-704.88		
417			6 3898981.16			
418			6 3924943.32	-766.45		
419			6 3950905.48			
420			6 3976867.64			
421			6 4002829.81			
422	420.00	25962.1	6 4028791.97	-889.63	462219.5	200392.03

			ī	J	K	L
	G	H Vtotal	Gamma	Thrust	Pressure	Density
1	Inc	0.00	90.00	0.00	14.700000	0.002377
2	90.00	10.13	90.00	3635328.12	14.697595	0.002376
3	90.00	20.40	90.00	3635599.61	14.689235	0.002375
4	90.00		90.00	3636068.00	14.674810	0.002373
5	90.00	30.83	90.00	3636735.59	14.654251	0.002369
6	90.00	41.41	90.00	3637604.52	14.627492	0.002365
7	90.00	52.15	90.00	3638676.70	14.594474	0.002360
8	90.00	63.05	90.00	3639953.82	14.555144	0.002353
9	90.00	85.35	90.00	3641437.35	14.509458	0.002346
10	90.00	96.75	90.00	3643128.53	14.457377	0.002338
11	90.00	108.34	90.00	3645028.31	14.398872	0.002328
12	90.00	120.10	90.00	3647137.44	14.333921	0.002318
13	90.00	132.04	90.00	3649456.35	14.262509	0.002306
14	90.00	144.18	90.00	3651985.22	14.184631	0.002293
15	90.00		90.00	3654723.95	14.100290	0.002280
16	90.00	156.50 169.02	90.00	3657672.12	14.009499	0.002265
17	90.00	181.74	90.00	3660829.04	13.912280	0.002249
18		194.66	90.00	3664193.67	13.808664	0.002233
19	90.00	207.79	90.00	3667764.69	13.698693	0.002215
20	90.00	221.13	90.00	3671540.44	13.582416	0.002196
21	90.00	234.69	90.00	3675518.93	13.459897	0.002176
22	90.00	248.46	89.95	3679697.82	13.331205	0.002155
23	89.50 89.00	262.45	89.82	3684074.43	13.196425	
24	88.50	276.67	89.62	3688645.66	13.055651	0.002111
25	88.00	291.12	89.36	3693408.02	12.908992	
27	87.50	305.80	89.05	3698357.60	12.756567	0.002063
28	87.00	320.72	88.69	3703490.10	12.598509	0.002037
29	86.50	335.89	88.29	3708800.82	12.434962	
30	86.00	351.31	87.86	3714284.68	12.266083	
31	85.50	366.99	87.39	3719936.20		
32	85.00	382.93	86.91	3725749.52	11.913017	
33	84.50	399.15	86.40	3731718.41	11.729202	
34	84.00	415.66	85.87	3737836,31	11.540798	
35			85.32	3744096.28		
36			84.76	3750491.08	11.151087	
37	82.50		84.19			
38	82.00		83.60	3763654.57		
39			83.01		10.537757	
40			82.41			
41	80.50		81.80	3784212.51		
42			81.19			
43			80.58			T
44		597.95	79.96		T	
45		618.07	79.34		T	
4 6	78.00		78.72			
47	77.50		78.09			
48			77.47			
4 9			76.85			
5 0			76.22			
51			75.60			
5 2			74.98			
5 3	74.50	792.97	74.37	3871596.60	1.42137	-1

	·			J	K	L
	G	H	I	3878922.82	7.195959	0.001163
54	74.00	816.67	73.75	3886211.90	6.971488	0.001127
5.5	73.50	840.79	73.14	3893454.85	6.748437	0.001091
56	73.00	865.34	72.53	3900642.90	6.527077	0.001055
57	72.50	890.33	71.92	3907767.51	6.307670	0.001020
58	72.00	915.75	71.32	3914820.40	6.090473	0.000985
59	71.50	941.62	70.72		5.875730	0.000950
60	71.00	967.94	70.12	3921793.57	5.663679	0.000916
61	70.50	994.71	69.53	3928679.34	5.454546	0.000882
62	70.00	1021.94	68.94	3935470.33	5.248548	0.000849
63	69.50	1049.63	68.36	3942159.56	5.045888	0.000816
64	69.00	1077.78	67.77	3948740.37	4.846759	0.000784
65	68.50	1106.40	67.20	3955206.52	4.651342	0.000752
66	68.00	1135.49	66.62	3961552.16	4.459803	0.000721
67	67.50	1165.05	66.06	3967771.84	4.272298	0.000691
68	67.00	1195.09	65.49	3973860.55		0.000661
69	66.50	1225.61	64.93	3979813.71	4.088967	0.000632
70	66.00	1256.61	64.37	3985627.17	3.909938	0.000604
71	65.50	1288.09	63.82	3991297.25	3.735325	0.000576
72	65.00	1320.06	63.27	3996820.67	3.565228	0.000550
73	64.50	1352.53	62.73	4002194.65	3.399733	0.000524
74	64.00	1385.80	62.19	4035115.95	3.238903	0.000324
75	63.50	1419.72	61.65	4045271.09	3.082764	0.000474
76	63.00	1454.21	61.12	4055118.40	2.931357	0.000474
77	62.50	1489.28	60.60	4064655.73	2.784716	0.000427
78	62.00	1524.92	60.07	4073881.73	2.642863	
79	61.50	1561.15	59.56	4082795.75	2.505806	0.000405
80	61.00	1597.95	59.04	4091397.87	2.373544	0.000384
81	60.50	1635.32	58.53	4099688.91	2.246066	0.000363
82	60.00	1673.28	58.03	4107670.35	2.123348	0.000343
83	59.50	1711.81	57.52	4115344.34	2.005357	0.000324
84	59.00	1750.91	57.03	4122713.67	1.892050	0.000306
8.5	58.50	1790.60	56.53	4129781.75	1.783376	0.000288
	58.00	1830.86	56.04	4136552.54	1.679272	0.000272
8 6	57.50	1871.70	55.56	4143030.57	1.579669	0.000255
	57.00	1912.95	55.08	4134351.81	1.484493	0.000240
88	56.50	1954.76	54.60	4147546.01	1.393666	0.000225
89	56.00	1997.27	54.12	4160122.37	1.307092	0.000211
90	55.50	2040.47	53.65	4172095.81	1.224668	0.000198
91	55.00	2084.35	53.18	4183481.81	1.146289	0.000185
92	54.50	2128.92	52.72	4194296.37	1.071843	0.000173
93	54.00	2174.16	52.26	4204555.91	1.001217	0.000162
9 4	53.50	2220.07	51.80	4214277.28	0.934297	0.000151
95		2266.66	51.35	4223477,63	0.870963	0.000141
96	53.00	2313.91	50.90	4232174.38		0.000131
97	52.50	2361.82	50.45	4240385.16	0.754574	0.000122
98	52.00	2410.40	50.13	4248127.74	0.701275	0.000113
99	51.50	2410.40	49.56	4255419.95		0.000105
100	51.00	2509.52	49.13		0.603855	0.000098
101	50.50	2560.06	48.69		0.559488	0.000090
102	50.00		48.26			0.000084
103	49.50	2611.25	47.83			0.000077
104	49.00	2663.10	47.83			0.000072
105	48.50	2715.59	46.98			0.000066
106	48.00	2768.73	40.98	4230103.10		

						L
	G	н	I	J	0.376249	0.000061
107	47.50	2822.52	46.56	4295343.40	0.346496	0.000056
108	47.00	2876.95	46.14	4299665.45	0.318778	0.000052
109	46.50	2932.03	45.73	4303692.05	0.292985	0.000047
110	46.00	2987.75	45.31	4307438.91	0.269012	0.000044
111	45.50	3044.12	44.90	4310921.32	0.246758	0.000040
112	45.00	3101.13	44.50	4314154.13	0.226123	0.000037
113	44.50	3158.79	44.09	4317151.69	0.226123	0.000033
114	44.00	3217.10	43.69	4319927.87	0.207012	0.000031
115	43.50	3276.05	43.28	4322496.04	0.172998	0.000028
116	43.00	3335.66	42.89	4324869.03	0.172938	0.000026
117	42.50	3395.91	42.49	4327059.16	0.144023	0.000023
118	42.00	3456.82	42.09	4329078.22	0.131224	0.000021
119	41.50	3518.39	41.70	4330937.47	0.131224	0.000019
120	41.00	3580.61	41.31	4332647.63	0.119431	0.000018
121	40.50	3643.49	40.92	4334218.91	0.108633	0.000016
122	40.00	3707.04	40.54	4335661.00	0.089607	0.000014
123	39.50	3771.25	40.15	4336983.07	0.089407	0.000013
124	39.00	3836.13	39.77	4338193.79	0.081272	
125	38.50	3901.68	39.39	4339301.36	0.066681	0.000011
126	38.00	3967.91	39.01	4340313.48	0.060320	
127	37.50	4034.81	38.63	4341237.42	0.054520	
128	37.00	4102.40	38.25	4342079.97	0.049237	0.000008
129	36.50	4170.68	37.88	4342847.52	0.044428	
130	36.00	4239.65	37.51	4343546.04	0.040057	
131	35.50	4309.31	37.14	4344181.09	0.036086	
132	35.00	4379.67	36.77	4344757.88	0.032483	1 2 2 2 2 2
133	34.50	4450.74	36.40	4345281.22		
134	34.00	4522.52	36.03	4345755.63		
135	33.50	4595.02	35.67	4346185.26 4346573.98		
136	33.00	4668.24	35.31	4346925.35		
137	32.50	4742.18	34.94	4347242.69		
138	32.00	4816.86	34.58	4347529.02		
139	31.50	4892.27	34.22	4347529.02		
140	31.00	4968.43	33.87	4348019.66		
141	30.50	5045.33	33.51	4348228.91		0.000002
142	30.00	5123.00	33.15	4348417.09		
143	30.00	5201.44	32.80	4348586.19		
144	30.00	5280.70	32.46	4348738.07		
145	30.00	5360.76	32.13	4348874.41		0.00001
146	30.00	5441.63	31.81	4348996.71		7 0.000001
147	30.00	5523.31	31.50	4349106.36		0.00001
148	30.00	5605.80	31.20 30.91	4349204.59		5 0.000001
149	30.00	5689.10	30.91	4349292.5		0.000001
150	30.00	5773.22	30.82	1739748.3		0.000001
151	30.00	5803.24	30.08	1739776.2		1 0.000001
152	30.00	5833.54	. 29.81	1739800.8	0.00342	7 0.000001
153	30.00	5864.10	29.55	1739822.7		0.000000
154	30.00	5894.93	29.29	1739842.2		
155	30.00	5926.02	29.03	1739859.4		9 0.000000
156	30.00	5957.38	28.77	1739874.8		5 0.000000
157	30.00	5989.01 6020.89	28.52	1739888.4		
158	30.00		28.27	1739900.5		0.000000
159	30.00	9033.04	20.27			

					K	L
	G	H	I	J	0.001527	0.000000
160	30.00	6085.45	28.02	1739911.29	0.001327	0.000000
161	30.00	6118.12	27.78	1739920.87	0.001302	0.000000
162	30.00	6151.04	27.53	1739929.39	0.001215	0.000000
163	29.50	6184.23	27.29	1739936.97		0.000000
164	29.00	6217.70	27.05	1739943.72	0.000969	0.000000
165	28.50	6251.45	26.81	1739949.73	0.000865	0.000000
166	28.00	6285.47	26.56	1739955.09	0.000773	0.000000
167	27.50	6319.77	26.32	1739959.86	0.000691	0.000000
168	27.00	6354.35	26.07	1739964.11	0.000618	0.000000
169	26.50	6389.21	25.82	1739967.90	0.000552	0.000000
170	26.00	6424.35	25.57	1739971.27	0.000494	0.000000
171	25.50	6459.77	25.32	1739974.29	0.000443	
172	25.00	6495.47	25.07	1739976.97	0.000396	
173	24.50	6531.46	24.82	1739979.37	0.000355	
174	24.00	6567.73	24.57	1739981.51	0.000318	
175	23.50	6604.29	24.31	1739983.42	0.000285	
176	23.00	6641.13	24.06	1739985.13	0.000256	
	22.50	6678.26	23.80	1739986.65	0.000230	
177	22.00	6715.67	23.55	1739988.01	0.000206	
	21.50	6753.38	23.29	1739989.23	0.000185	
179	21.00	6791.37	23.03	1739990.32	0.000167	
180	20.50	6829.65	22.77	1739991.29	0.000150	
181	20.00	6868.22	22.52	1739992.17	0.000135	
182		6907.09	22.25	1739992.95	0.000121	
183	19.50	6946.24	21.99	1739993.65		0.000000
184	19.00	6985.69	21.73	1739994.27	0.000099	
185	18.50	7025.44	21.47	1739994.83	0.000089	0.000000
186	18.00	7065.48	21.21	1739995.34	0.000080	
187	17.50	7105.82	20.94	1739995.79	0.000072	
188	17.00	7146.45	20.68	1739996.20		0.000000
189	16.50	7187.38	20.41	1739996.56		
190	16.00	7228.61	20.15			0.000000
191	15.50		19.88			
192	15.00	7270.14	19.61	1739997.45		0.000000
193	14.50	7311.97	19.35			
194	14.00	7354.10	19.08			0.000000
195	13.50	7396.53	18.81			
196	13.00	7439.27	18.54			0.000000
197	12.50	7482.31	18.27			7 0.000000
198	12.00	7525.66	18.00			
199	11.50	7569.31	17.73			
200	11.00	7613.27				
201	11.00	7657.57	17.46			
202	11.00	7702.23	17.19			
203	11.00	7747.25	16.93			
204	11.00	7792.63	16.67			
205	11.00	7838.37	16.41			
206	11.00	7884.46	16.16			
207	11.00	7930.92	15.91			
208	11.00	7977.73	15.66			
209	11.00	8024.89	15.41			
210	11.00	8072.41	15.1			
211	11.00	8120.28	14.93			
212	11.00	8168.51	14.6	1739999.5	3] 0.0000	-

			 -	J	K .	L
-	G	H	I 14 45	1739999.58	0.000007	0.000000
213	11.00	8217.09	14.45	1739999.61	0.000007	
214	11.00	8266.02	14.22	1739999.64	0.000006	
215	11.00	8315.30	13.99 13.77	1739999.67	0.000006	
216	11.00	8364.93		1739999.70	0.000005	
217	11.00	8414.92	13.54	1739999.72	0.000005	
218	11.00	8465.25	13.32	1739999.74	0.000004	
219	11.00	8515.94	13.10	1739999.76		
220	11.00	8566.97	12.88	1739999.78	0.000004	
221	11.00	8618.35	12.67	1739999.79		
222	11.00	8670.08	12.46	1739999.81	0.000003	
223	11.00	8722.16	12.25	1739999.82		
224	11.00	8774.59	12.04	1739999.83		
225	11.00	8827.37	11.84	1739999.85		
226	11.00	8880.50	11.64	1739999.86		
227	11.00	8933.98	11.44	1739999.87		
228	11.00	8987.81	11.24	1739999.88		
229	11.00		11.05 10.86			
230	11.00		10.67	1739999.89		
231	11.00		10.48			
232	11.00		10.48			
233	11.00		10.11			
234	11.00		9.93			
235	11.00					
236	11.00		9.58			
237	11.00 11.00		9.40			
238	11.00					0.000000
239	11.00					0.000000
241	11.00		8.89			0.000000
242	11.00					0.000000
243	11.00					
244	11.00					
245	11.00					
246						
247					0.00000	
248		+			0.00000	
249				1739999.96	0.00000	
250				1739999.97	0.00000	
251						
252				1739999.97		
253				1739999.9		
254				1739999.9	0.00000	
255				1739999.9		
256			6.62			
257		10703.41	6.48			
258		10768.06				
259						
260						
261		10964.32				
262						
263						
264						
265		0 11231.44	5.4	1739999.9	8 0.00300	0.000000

1/AE448data

	G	н	I	J	K	L
266	11.00	11299.21	5.33	1739999.98	0.000000	0.000000
1267	11.00	11367.38	5.22	1739999.98	0.000000	0.000000
268	11.00	11435.95	5.10	1739999.99	0.000000	0.000000
269	11.00	11504.92	4.98	1739999.99	0.000000	0.000000
270	11.00	11574.30	4.87	1739999.99	0.000000	0.000000
271	11.00	11644.10	4.75	1739999.99	0.000000	0.000000
272	11.00	11714.30	4.64	1739999.99	0.000000	0.000000
273	11.00	11784.92	4.53	1739999.99	0.000000	0.000000
274	11.00	11855.96	4.43	1739999.99	0.000000	0.000000
275	11.00	11927.43	4.32	1739999.99	0.000000	0.000000
276	11.00	11999.31	4.21	1739999.99	0.000000	0.000000
277	11.00	12071.63	4.11	1739999.99	0.000000	0.000000
278	11.00	12144.38	4.01	1739999.99	0.000000	
279	11.00	12217.56	3.91	1739999.99	0.000000	
280	11.00		3.81	1739999.99	0.000000	
281	11.00		3.71	1739999.99	0.000000	
282	11.00		3.61	1739999.99	0.000000	
283	11.00		3.52	1739999.99	0.000000	
284	11.00		3.42	1739999.99	0.000000	
285	11.00	12665.99	3.33		0.000000	
286	11.00	12742.32			0.00000	
287	11.00	12819.11	3.15		0.000000	
288	11.00	12896.38			0.000000	
289	11.00	12974.11	2.98		0.00000	
290	11.00	13052.33			0.000000	
291	11.00	13131.02			0.000000	T
292	11.00		2.72		0.000000	
293	11.00				0.000000	
294	11.00				0.000000	
295	11.00				0.000000	
296	11.00					
297	11.00					
298	11.00					
299	11.00					
300						
301	11.00 11.00					
302						
304						
305						
306						
307					0.000000	
308						
309					0.000000	
310				1740000.00	0.000000	
311				1740000.00		
312				1740000.00		
313						
314				- 		-
315						
316		15270.42				
317		15363.59				
318		15457.41	0.9	1740000.00	0.00000	0.00000

1/AE448data

 			I	J	ĸ	L
' 	G 11 00	H 15551.88	0.94	1740000.00	0.000000	0.000000
319	11.00		0.89	1740000.00	0.000000	0.000000
320	11.00	15647.02	0.84	1740000.00	0.000000	0.000000
321	11.00	15742.83	0.79	1740000.00	0.000000	0.000000
322	11.00	15839.33	0.74	1740000.00	0.000000	0.00000
323	11.00	15936.51	0.70	1740000.00	0.000000	0.000000
324	11.00	16034.40	0.75	1740000.00	0.000000	0.000000
325	11.00	16133.00		1740000.00	0.000000	0.000000
326	11.00	16232.31	0.61 0.56	1740000.00	0.000000	0.000000
327	11.00	16332.36	0.50	1740000.00	0.000000	0.000000
328	11.00	16433.15	0.52	1740000.00	0.000000	0.000000
329	11.00	16534.68	0.44	1740000.00		0.000000
330	11.00	16636.98	0.40	1740000.00		0.000000
331	11.00	16740.05	0.36	1740000.00	0.000000	
332	11.00		0.38	1740000.00	0.000000	
333	11.00			1740000.00		
334	11.00		0.29	1740000.00		
335	11.00		0.23	1740000.00		
336	11.00			1740000.00		
337	11.00		0.18 0.15			
338	11.00		0.13			
339	11.00		0.09			
340	11.00		0.09			
341	11.00		0.00			
342	11.00		0.00			
343	11.00		-0.02			
344	11.00		-0.05			
345			-0.08			
346	11.00 11.00					
347			-0.12			
348						0.000000
350						0.000000
351						
351						0.000000
353						0.000000
354						
355						
356						
357				<u> </u>	0.000000	
358					0.000000	
359					0.00000	
360					0.00000	
361						
362					0.00000	
363					0.00000	0.000000
3 6 4					0.00000	
365				1740000.00		
366				1740000.00	0.00000	
367				1740000.00	0.00000	
368					0.00000	
369					0.00000	
370					0.00000	
371						0.000000

1/AE448data

372 373 374 375 376 377 378 379 380 381	11.00 11.00 11.00 11.00 11.00 11.00 11.00	H 21810.88 21961.12 22113.02 22266.59 22421.90 22578.96	-0.42 -0.42 -0.42 -0.42 -0.42	J 1740000.00 1740000.00 1740000.00	0.000000	0.000000 0.000000 0.000000
373 374 375 376 377 378 379 380	11.00 11.00 11.00 11.00 11.00	21961.12 22113.02 22266.59 22421.90	-0.42 -0.42 -0.42	1740000.00 1740000.00	0.000000	0.000000
374 375 376 377 378 379 380	11.00 11.00 11.00 11.00	22113.02 22266.59 22421.90	-0.42 -0.42	1740000.00	0.000000	
375 376 377 378 379 380	11.00 11.00 11.00 11.00	22266.59 22421.90	-0.42			
376 377 378 379 380	11.00 11.00 11.00	22421.90		1/40000.00	0.000000	0.000000
377 378 379 380	11.00 11.00		-0.421	1740000.00	0.000000	0.000000
378 379 380	11.00	22578.96		1740000.00	0.000000	0.000000
379 380			-0.41	1740000.00	0.000000	0.000000
380	11.00	22737.83	-0.41	174000.00	0.000000	0.000000
		22898.55	-0.41	1740000.00	0.000000	0.000000
381	11.00	23061.15	-0.40 -0.39	1740000.00	0.000000	0.000000
	11.00	23225.69	-0.39	1740000.00	0.000000	0.000000
382	11.00	23392.21	-0.38	1740000.00	0.000000	0.000000
383	11.00	23560.76	-0.37	1740000.00	0.000000	0.000000
384	11.00	23731.39	-0.36	1740000.00	0.000000	0.000000
385	11.00	23904.15	-0.35	1740000.00	0.000000	0.000000
386	11.00	24079.09	-0.34	1740000.00	0.000000	0.000000
387	11.00	24256.28	-0.34	1740000.00	0.000000	0.000000
388	11.00	24435.77	-0.33	1740000.00	0.000000	0.000000
389	11.00	24617.62	-0.32	1740000.00	0.000000	0.000000
390	11.00	24801.89		1740000.00	0.000000	0.000000
391	11.00	24988.66	-0.29	1740000.00	0.000000	0.000000
392	11.00	25177.98	-0.27 -0.25	1740000.00	0.000000	0.000000
393	11.00	25369.93	-0.24	1740000.00	0.000000	0.000000
394	11.00	25564.58	-0.22	1740000.00	0.000000	0.000000
395	11.00	25762.02	-0.20	1740000.00	0.000000	0.000000
396	11.00	25962.32	-0.27	0.00	0.000000	0.000000
397	11.00	25962.44	-0.33	0.00	0.000000	0.000000
398	11.00	25962.60	-0.40	0.00	0.000000	0.000000
399	11.00	25962.80	-0.47	0.00	0.00000	0.000000
400	11.00	25963.03	-0.54	0.00	0.000000	0.000000
401	11.00	25963.30	-0.60	0.00	0.000000	0.000000
402	11.00	25963.61	-0.67	0.00	0.000000	0.000000
403	11.00	25963.95	-0.74	0.00	0.000000	0.000000
404	11.00	25964.33	-0.81	0.00	0.000000	0.000000
405	11.00	25964.75		0.00	0.000000	0.000000
406	11.00			0.00	0.000000	0.000000
407	11.00			0.00	0.000000	0.000000
408	11.00			0.00	0.000000	0.000000
409	11.00			0.00	0.000000	0.000000
410	11.00			0.00	0.000000	0.000000
411	11.00			0.00	0.000000	0.00000
412					0.000000	0.00000
413				0.00	0.000000	0.00000
414					0.000000	0.00000
415					0.000000	
416					0.000000	
417					0.000000	
418					0.000000	
419					0.000000	
420					0.000000	
421						0.00000

Figure 3.0.1: Plot of X-Velocity vs. Time - 0005 25000 -X-Velocity (feet/second)

Figure 3.0.2: Plot of X-Position vs. Time 1500000 -500000 -(feet) noilisoq-X

Figure 3.0.3: Plot of Y-Velocity vs. Time -500 2500 -1500 -Y-Velocity (feet/second)

Figure 3.0.4: Plot of Y-Position vs. Time Time (seconds) 150000 -450000 -(feet) noifizoq-Y

Figure 3.0.5: Plot of Weight vs. Time +0 2500000 -(spunod) 14BieW

Figure 3.0.6: Plot of Inclination vs. Time

(seergeb) noitsniioni

Figure 3.0.7: Plot of Total Velocity vs. Time **+** 20000 -15000 -

Total Velocity (feet/second)

360 Figure 3.0.8: Plot of Flight-Path Angle vs. Time 330 300 270 240 210 180 150 120 20.00 30.00 20.00 10.00 0.00 -10.00 -50.00 40.00 70.00 60.00 80.00 100.001 90.00 Filght-Path Angle (degrees)

420

(---) oitsA thgleW\teurnT

4.0 Orbital Analysis

The NASA ground rules for the Shuttle II specified two orbits into which the orbiter must be capable of launching: a 270 nautical mile orbit due east of Kennedy Space Center, and a 150 nautical mile polar orbit. To verify the feasibility of the proposed ASTS configuration, it was necessary to determine the types and magnitudes of the orbital maneuvers that would be necessary for orbit inserton. As a starting point, the output data for the final position and velocity from the launch simulation program was used. This data places the orbiter at an initial altitude of 78.1 nautical miles with a velocity of 25,962 feet per second.

4.1 The Insertion Orbit

The initial position and velocity of the orbiter place the orbiter originally at the perigee of an elliptical orbit. The semi major axis of this orbit, a₁, was calculated using the Vis-Viva equation:

 $V_i^2 = \mu_{\tilde{\epsilon}} \left(\frac{2}{r_i} - \frac{1}{a_i} \right)$

where r_1 is the sum of the altitude of the orbit and the radius of the earth (20925672.57 feet).

The eccentricity of this first orbit, and the altitude and velocity at the apogee of this orbit were calculated using simple geometric relationships. The pertinent data on the first orbit is as follows:

 $e_1 = .02473$ $a_1 = 21,943,244$ feet $r_{1ap} = 22,485,871$ feet $V_{1ap} = 24,709$ feet/second

4.2 The 270 Nautical Mile Orbit

In order to provide a minimum energy transfer between the insertion orbit and the 270 nmi orbit, an elliptical transfer orbit was used (see figure 4.2).

The 270 nmi orbit has a radius of $a_2 = 22,567,272$ ft. The semi major axis of the transfer ellipse, a_t , has a value of $(a_1 + a_2)/2 = 22,255,258$ ft.

The velocities at periapsis and apoapsis of the transfer ellipse, as well as the velocity for the circular orbit were calculated using the Vis-Viva equation again.

$$V_{p}^{2} = \mu_{E} \left(\frac{2}{r_{1}} - \frac{1}{a_{T}} \right) \qquad V_{q}^{2} = \mu_{E} \left(\frac{2}{r_{2}} - \frac{1}{a_{T}} \right)$$

The following values were calculated for the velocities and the velocity changes needed for insertion into a 270 nmi orbit:

$egin{array}{c} V_{1ap} \ V_{t1} \end{array}$	24,709 ft/sec 24,890 ft/sec
dV_1	181 ft/sec
V _{t2} V ₂₇₀	24,799 ft/sec 24,975 ft/sec
dV_2	176 ft/sec

The total impulsice change in velocity for this orbital maneuver is 351 ft/sec.

4.3 The 150 Nautical Mile Orbit

The path of the elliptical orbit transfer orbit used for this maneuver is shown in figure 4.3.

The velocity and radius of the 150 nmi orbit are found to be

r ₁₅₀	21837672 ft
V ₁₅₀	· 25389 ft/sec

Following the sane procedure as before in order to obtain the velocity changes necessary yields the following information:

$egin{array}{c} V_{1ap} \ V_{t1} \end{array}$	24709 ft/sec 24678 ft/sec
dV_1	-31 ft/sec
V _{t2} V ₁₅₀	25419 ft/sec 25389 ft/sec
dV_2	-30 ft/sec

The total impulsive change in velocity for this orbital transfer is -61 ft/sec. These two velocity changes would have to be made in a direction opposite to the direction of travel of the shuttle.

	7		В		С	D
1	Re	·	20925672.57	Rot	Speed	1525.9259
2	Mu		1.4076469E+16			
3		ltitude	Velocity			
4		700000	25513.0306			
5		710000	25507.1339			
6		720000	25501.2412			
7		730000	25495.3526			
8		740000	25489.4681			
9		750000	25483.5877			
10		760000	25477.7114			
11		770000	25471.8391			
12		780000		1		
13	l	790000				
14]	800000				
15		810000				
16		820000				
17		830000				
18		840000				
19		850000				
20	<u> </u>	860000				
21		870000				
22		880000				
23	1	890000	25401.6869	<u>' </u>		

Figure 4.2.1: 270 Nautical Mile Orbital Transfer

Figure 4.3.1: 150 Nautical Mile Polar Orbital Transfer

5.0 Stability and Control Analysis

Stability and Control Analysis for the Advanced Space Transportation System was performed using geometric Shuttle data and empirical and graphical methods given by Etkin, Roskam and Smetana. The geometric parameters used to perform the analysis included physical data for the wing, the body, and the vertical tail.

In order to determine stability and control derivatives, the geometric data for the Shuttle II must be used to determine aerodynamic parameters such as aspect ratio, wing taper ratio, and the mean aerodynamic chord.

'A' is the aspect ratio and is defined to be equal to b^2/S ; b is the wing span and S is the wing planform area. 'S' can be easily determined using the following formula: $S=(c_r+c_t)(b/2)$, where c_r is the wing root chord and c_t is the wing tip chord. The ratio of the wing tip chord to the wing root chord is in itself and important physical parameter known simply as the taper ratio, λ . The value of the mean aerodynamic chord (the wing chord which passes through the centroid of either half-wing) can be found by integrating the equation for the square of the wing chord: $c^2 = (c_r - [(c_r-c_t)/(b/2)]y)^2$ over the span of half a wing and multiplying by 2/S. All of these aerodynamic parameters have been calculated and are found in the Executive Summary in Tables 3.2.1 and 3.3.1.

5.1 Determination of $C_{L\alpha}$

 $C_{\mathbf{L}\alpha}$ is an extremely important stability derivative describing the change in lift of an aircraft due to variation in angle of attack.

Roskam gives the following formula for determining $C_{L\alpha}$:

$$\begin{split} C_{L\alpha} &= K_{wb}C_{L\alpha w} \\ \text{where } K_{wb} &= 1 \text{ - .25}(d/b)^2 + 0.25(d/b) \\ \text{and } C_{L\alpha w} &= 2\pi A/(2 + [(A^2B^2/K^2)(1 + \tan^2\Lambda_{c/2}/B^2) + 4]^{1/2}) \end{split}$$

In these equations:

d = body diameter at root chord = 30 ft.

b = wing span = 127.7 ft. A = wing aspect ratio = 2.8

 β = compressibility parameter = (1 - M^2)^{1/2} (for subsonic flight)

K = ratio of actual wing section left curve slope to 2π

 $\Lambda_{c/2}$ = sweep of the wing half-chord line = 34°

Since these equations are useful only for Mach numbers less than the critical Mach number, K is assumed to be approximately 1. Hence, the following values for $C_{L\alpha}$ are obtained:

M range	<u>β</u> 2	CLa (/rad)
0.0 - 0.3	1.0	$2.\overline{97}$
0.3 - 0.6	0.775	3.09
0.6-Mcr	0.415	3.33

It is apparent that these values alone for the lift-curve slope (although correct) cannot be used to represent $C_{L\alpha}$ for the ASTS. For this reason, methods of estimating $C_{L\alpha}$ at higher Mach numbers and varying Reynolds numbers (from *Dynamics of Flight*, by Etkin) were employed.

Etkin presents a graphical method by which the lift-curve slope of an aircraft may be obtained as a function of its geometrical parameters. Before incorporating Etkin's method, values for t/c and τ (defined in Figure 5.1.1) were assumed to be 0.06 and 5°, respectively.

Using Figure 5.1.1 the following section lift curve slopes were obtained:

Rn	(a ₁) ₀ /(a ₁) ₀ T	(<u>a₁)o (/rad)</u>
106	0.87	5.74
107	0.93	6.14
108	0.95	6.27

It follows that these values for the actual lift curve slope are good approximations for transition both at the leading edge and at c/2.

These values of $(a_1)_0$ were then used in conjunction with Figure 5.1.2 to estimate the overall aircraft lift curve slope. Also, Etkin defines K as $[(a_1)_{0m}/2\pi]\beta$ and Λ_β as the compressibility sweep parameter equal to $\tan^{-1}(\tan\Lambda_{c/4}/\beta)$.

Table 5.1.1. $C_{L\alpha}$ of ASTS for M < Mcr

M Range	β	Λ _B (°)	Rn	K	$\beta A/k$	$\beta C_{L\alpha}/K$ (/°)	$C_{L\alpha}(/rad)$
	- P	42	106	0.914	3.06	0.051	2.67
0.0 - 0.3	1	42	107	0.977	2.81	0.050	2.80
0.0 - 0.3		42	108	0.998	2.805	0.049	2.80
0.0-0.3	0.88	46	106	0.804	3.06	0.049	2.57
0.3 - 0.6	0.88	46	107	0.860	2.87	0.048	2.69
0.3 - 0.6	0.88	46	108	0.878	2.81	0.048	2.74
0.6 - Mcr	0.644	54	106	0.589	3.06	0.045	2.36
0.6 - Mcr	0.644	54	107	0.629	2.87	0.043	2.41
0.6 - Mcr	0.644	54	108	0.643	2.80	0.043	2.46

Note that these values of $C_{L\alpha}$ are slightly higher than those estimated using the method outlined by Roskam.

Etkin presents a system for predicting $C_{L\alpha}$ for Mach numbers greater than the critical Mach number using the graphical method shown in Figure 5.1.3 which is a function of A, M, λ , and $\Lambda_{c/2}$. Results using this figure are listed in Table 5.1.2.

Table 5.1.2. $C_{L\alpha}$ of ASTS for M > Mcr

Mrange	AtanAc/2	$A(M^2-1)^{1/2}$	CLa (/rad)
	1.89	1.64	4.14
1.0 - 1.3	1.89	2.97	3.42
1.3 - 1.6	1.89	4.04	2.72
1.6 - 1.9	1.89	5.02	2.21
1.9 - 2.2		5.97	1.82
			1.62
2.2 - 2.5 2.5 - 2.8	1.89 1.89	6.88	

Prediction of $C_{L\alpha}$ for Mach numbers greater than approximately 2.8 was not possible due to the lack of a proper estimation technique.

5.2 Determination of the Neutral Point, hn

The overall aircraft neutral point, hn, is defined as the point where the pitching moment is invariant with angle of attack. It is further defined geometrically by Figure 5.2.1. Roskam gives the following relationship for determining the neutral point:

$$hn = hnw + \Delta hng$$
 (for tail-less configurations)

where hnw = $k_1[(Xac'/c_r)-k_2]$ and $\Delta hnB = -(dM/d\alpha)/(qScC_{L\alpha w})$ where $dM/da = (q/36.5) S Wf^2(Xi)d\epsilon/d\alpha\Delta Xi$

Note that Roskam defines both the neutral point, hn, and the aerodynamic center, Xac/c, as the same quantity.

Using the relationships for Δ hng, it was found that the body had little or no effect on the overall aircraft neutral point. Therefore, determination of the neutral point is reduced to the following form:

$$hn = k_1[(Xac'/c_r)-k_2]$$

Xac'/c_r, k₁, and k₂ are found using Figures 5.2.2, 5.2.3, and 5.2.4, respectively. Using these figures together with known geometric data and the relationship for hn, the following results were obtained.

Table 5.2.1. Neutral Point of the ASTS for M < Mcr

В	Xac'/cr	k ₁	k ₂	hn
		1.43	0.39	0.27
		1.43	0.39	0.29
		1.43	0.39	0.30
	β 1.0 0.88 0.64	1.0 0.58 0.88 0.59	1.0 0.58 1.43 0.88 0.59 1.43	1.0 0.58 1.43 0.39 0.88 0.59 1.43 0.39

These values for hn show that as the Mach is increased, the neutral point begins to move gradually aft. This finding agrees with most aerodynamic data on similar aircraft.

It is important to determine the characteristics of a flight vehicle in as many of its flight regimes as possible. Therefore, methods given by Etkin were used to find values of hn for Mach numbers greater than the critical Mach number.

Etkin gives a graphical method shown in Figure 5.2.5 for determining hn as a function of A, M, λ , and $\Lambda_{c/2}$. Using these variables and Figure 5.2.5, the following data was obtained.

 $A(1-M^2)^{1/2}$ hn A $tan \Lambda_{c/2}$ M range 0.28 2.8 1.9 0.0 - 0.30.29 2.5 1.9 0.3 - 0.60.31 1.8 1.9 0.6 - Mcr 0.44 1.6 1.9 1.0 - 1.3 0.44 3.0 1.9 1.3 - 1.6 0.48 4.0 1.9 1.6 - 1.9 0.485.0 1.9 1.9 - 2.20.49 6.0 1.9 2.2 - 2.5 0.49 6.9 1.9 2.5 - 2.8

Table 5.2.2. Neutral Point of the ASTS for 0 < M < 2.8

Again, these numbers show that (as expected) the neutral point starts out relatively close to the quarter-chord for low subsonic Mach numbers and moves aft approaching the half-chord at higher supersonic Mach numbers.

5.3 Determination of $C_{M\alpha}$

 $C_{m\alpha}$ is an extremely important stability derivative which dictates whether or not a configuration has positive or negative static stability. $C_{m\alpha}$ is determined through the following equation:

$$C_{m\alpha} = C_{L\alpha} (h - hn)$$

where h represents the non-dimensional location of the aircraft center of gravity. For a configuration to be statically stable, $C_{m\alpha}$ must be negative; this requires that the quantity (h - hn) must be negative. Xcg was determined by considering the location and weight of the components of the ASTS. The distance between the center of gravity and the leading edge of the mean aerodynamic chord (non-dimensionalized by dividing by the mean aerodynamic chord) is defined as h. Upon completion of these calculations, it is found that h = 0.136.

Hence, $C_{m\alpha} = C_{L\alpha} (0.136 - hn)$

$5.4 C_{L\alpha}$ of Vertical Tail

The lift curve slope of the vertical tail is determined by the geometric characteristics of the vertical tail and is influenced by the change in flow characteristics due to the presence of the wing and body combination. Figure 5.4.1 shows the relationship between $(a_F)p/a_1$ for a vertical tail on a body of circular cross section. Using a value of 1 for D/h, $(a_F)p/a_1$ is approximately 2.9.

Values of CLa for the vertical tail are determined using the same procedure as before for the wing. When this value is obtained it is multiplied by the factor (aF)B/a1 to correct for its location in the flow field relative the wing and body. It is assumed that the vertical tail has approximately the same values of t/c and τ as the wing so that both the wing and vertical tail have the same values for $(a_1)_0$. Using the geometric parameters for the vertical tail and Figures 5.1.2 and 5.1.3 the following is found.

Table 5.4.1. Corrected $C_{L\alpha}$ values for the ASTS Vertical Tail

M range	Rn	CLa (rad-1)	CLa corrected (rad-1)
0.0 - 0.3	106	2.93	8.20
0.0 - 0.3	107	3.08	8.60
0.0 - 0.3	108	3.14	8.80
0.3 - 0.6	106	2.62	7.30
0.3 - 0.6	107	2.74	7.70
0.3 - 0.6	108	2.75	7.70
0.6 - Mcr	106	2.36	6.60
0.6 - Mcr	107	2.46	6.90
0.6 - Mcr	108	2.46	6.90
1.0 - 1.3		4.58	12.80
1.3 - 1.6	***	4.35	12.20

Determination of CLa corrected for the vertical tail beyond a Mach number of approximately 1.6 was not possible.

5.5 Determination of Clp

 C_{lp} is the change in rolling moment due to a variation in rolling velocity. C_{lp} is often referred to as the rolling moment damping derivative. Etkin provides a graphical method by which C_{lp} can be calculated based on the following parameters: β , K,A, λ ,and Λ e (which is defined as $\tan^{-1}[(1/\beta)\tan\Lambda_{c/4}]$). Etkin's method is presented here in Figure 5.5.1. Table 5.5.1 contains the values of C_{lp} found using Etkin's method.

Table 5.5.1. C_{lp} values of ASTS for M < Mcr

M range	β	Λ e (°)	Rn	K	Clp (/rad)
0.0 - 0.3	1.0	42	106	0.914	-0.219
	1.0	42	107	0.977	-0.225
0.0 - 0.3	1.0	42	108	0.998	-0.230
0.0 - 0.3	0.88	46	106	0.804	-0.215
0.3 - 0.6 0.3 - 0.6	0.88	46	107	0.860	-0.225
0.3 - 0.6	0.88	46	108	0.878	-0.229
0.6 - Mcr	0.644	54	106	0.589	-0.201
0.6 - Mcr	0.644	54	107	0.629	-0.210
0.6 - Mcr	0.644	54	108	0.643	-0.215

Clp does not vary greatly with Mach number, and is always negative.

5.6 Determination of $C_{I\beta}$

 $C_{l\beta}$ represents the change in rolling moment due to a change in sideslip angle, β . $C_{l\beta}$ is primarily governed by the wing dihedral angle, the body and the vertical tail. For this reason, $C_{l\beta}$ is often referred to as the effective dihedral derivative. Etkin presents a graphical method of determining $C_{l\beta}$ based on the effects of the wing, the body and the vertical tail. This method utilizes Figure 5.6.1. Using this figure, it was found that $C_{l\beta w} = -.32$ CL.

The effect of the body on $C_{l\beta}$ is found using the equation:

$$(\Delta C_{l\beta})_B = 1.2 (A)1/2 \text{ Zw (h+w)/b}^2$$

where Zw = vertical distance of c/4 point below fuselage centerline = 11.0 ft.

h = average fuselage height at wing root = 28.0 ft.

w = average fuselage width at wing root = 30.0 ft.

Using this information: $(\Delta C_{1\beta})B = 0.08$.

The effect of the vertical tail on $C_{l\beta}$ is found using the equation:

 $(\Delta C_{l\beta})_F = -a_F (1 - d\sigma/d\beta)(V_F/V)2 S_F Z_F/(S b)$

where Z_F = vertical distance between vertical tail AC and aircraft CG = 41.0 ft. S_F = Vertical Tail planform area = 603 ft².

Using this equation under the assumption that $d\sigma/d\beta$ is negligible and VF/V is approximately equal to 1: $(\Delta C_{l\beta})_F = -0.033$ aF

Combining components: $Cl\beta = -0.32 \ CL + 0.08 - 0.033aF$

This equation holds for all Mach numbers below the critical Mach number.

5.7 Determination of Clr

 C_{lr} represents the change in rolling moment due to yawing velocity, or simply rolling moment due to yaw. Etkin divides C_{lr} into two components: C_{lr} due to the wing and C_{lr} due to the vertical tail. Using Figure 5.7.1, (C_{lr}) B = 0.23 CL.

The contribution of the vertical tail on Clr is shown through the following formula:

$$(C_{lr})_F = a_F S_F Z_F [z + (l_f/b)]/(S b)$$

where lf = distance between vertical tail AC and the aircraft CG = 48.0 ft.

Hence, $(C_{lr})_F = 0.079 a_F$

Combining components: Clr = 0.23 CL + 0.079 ar

This equation holds for all Mach numbers below the critical Mach number.

5.8 Determination of $C_{n\beta}$

 $C_{n\beta}$ is defined to represent the change in yawing moment due to sideslip angle, β . $C_{n\beta}$ is a very important stability derivative since it alone determines whether or not an aircraft has positive weathercock stability; for positive weathercock stability, $C_{n\beta}$ must be positive.

Figure 5.8.1 shows the variation of $C_{n\beta}/CL^2$ as a function of wing aspect ratio, A, and wing quarter-chord sweep angle, Λ .

Using Figure 5.8.1, $C_{n\beta} = 0.07 C_L^2$

5.9 Determination of C_{np}

 C_{np} is a cross derivative defined as the change in yawing moment due to rolling velocity. Etkin presents the following equation for determining C_{np} :

 $\mathbf{C_{np}} = [(\Delta \mathbf{C_{np}})_1/\mathbf{C_L}]~\mathbf{C_L} + [(\Delta \mathbf{C_{np}})_2/(\mathbf{C_{D0}})\alpha]~(\mathbf{C_{D0}})\alpha$

where $(\Delta C_{np})_1/C_L$ and $(\Delta C_{np})_2/(C_{D0})\alpha$ are found from Figure 5.9.1

From Figure 5.9.1, $(\Delta C_{np})_1/C_L = -0.17$ and $(\Delta C_{np})_2/(C_{D0})\alpha = 19$, so that C_{np} may be written as

 $C_{np} = -0.17 C_L + 19 (C_{D0})\alpha$.

5.10 Determination of Cnr

 C_{nr} is defined to be the change in yawing moment due to yawing velocity and is often referred to as the damping in yaw derivative. Etkin presents the following equation for determining C_{nr} :

 $C_{\rm nr} = [(\Delta C_{\rm nr})_1/C_{\rm L}{}^2]C_{\rm L}{}^2 + [(\Delta C_{\rm nr})_2/C_{\rm D0}]C_{\rm D0}$

where $[(\Delta C_{nr})_1/C_L^2]$ and $[(\Delta C_{nr})_2/C_{D0}]$ are found from Figure 5.10.1

Figure 5.10.1 reveals that $[(\Delta C_{nr})_1/C_L^2] = -0.02$ and $[(\Delta C_{nr})_2/C_{D0}] = -0.48$, so that C_{nr} may be written as

 $C_{nr} = -0.02 C_L^2 - 0.48 C_{D0}$

5.11 Determination of CMq

 C_{mq} is defined as the variation in pitching moment due to pitch velocity or simply as the damping in pitch. Smetana gives the following relationship for C_{mq} :

$$C_{mq} = -2 x' |x'| C_{L\alpha}/c^2$$

where x' = distance from CG to wing quarter-chord (positive for forward CG) = -6.97 ft.

After substituting the proper geometric and stability parameters, C_{mq} can be written as $C_{mq} = 0.0372 \, C_{L\alpha}$

5.12 Determination of CLa

 C_{Lq} is defined as the change in lift coefficient due to pitch velocity. Smetana gives the following relationship for C_{Lq} :

$$C_{L\alpha} = 2 \times C_{L\alpha}/c$$

Upon substitution of known geometric parameters, C_{Lq} is written as C_{La} = -0.2727 C_{Lα}

5.13 Determination of $C_{D\alpha}$

 $C_{D\alpha}$ is defined as the change in drag coefficient due to a change in the angle of attack. Smetana gives the following relationship for CDa:

$$C_{\mathrm{D}\alpha} = (\mathrm{d}C_{\mathrm{D}0}/\mathrm{d}\alpha) + [2~C_{\mathrm{L}}/(\pi \mathrm{A})]~C_{\mathrm{L}\alpha}$$

Since (dCD0/d α) is usually small, CD α may be written simply as [2 CL/(πA)] CL α .

Therefore, $C_{D\alpha}$ may be expressed as $C_{D\alpha} = 0.2274 \text{ CL CL}_{\alpha}$.

5.14 Determination of CyB

 $C_{y\beta}$ is defined as the change in side force,y, due to a change in sideslip angle, β . Smetana breaks $C_{y\beta}$ up into 3 components: that of the wing, body, and vertical tail.

$$(C_{y\beta})_w = C_L^2 (6 \tan \Lambda \sin \Lambda)/[A(A + 4 \cos \Lambda)]$$

Upon substitution, $(C_{y\beta})_w = 0.2232 \text{ CL}^2$

$$(C_{y\beta})_B = -ki (C_{L\alpha})_B (S_B/S)$$

where S_B = body reference area = 3733 ft²
ki = interference factor determined from Figure 5.14.1

Figure 5.14.1 gives ki as a function of $Z_{\mathbf{w}}/(d/2)$ where $Z_{\mathbf{w}}$ is the distance from body centerline to quarter-chord point of exposed wing root chord (positive for quarter-chord point below body centerline) and d is the max body height at wing/body intersection.

$$Z_{w} = 11.0 \text{ ft.}$$

d = 25.0 ft.

From Figure 5.14.1, ki = 1.44

Smetana gives the following values of $(C_{L\alpha})_B$:

(CLa) circular body = 0.0525 rad-1

 $(C_{L\alpha})$ rectangular body = 0.1253 rad⁻¹

Since the ASTS configuration is a combination of these two shapes, let $(C_{L\alpha})_B = 0.08 \text{ rad}^{-1}$

Now that all values needed are known, $(C_{y\beta})_B = -0.074$

$$(C_{y\beta})_F = -k (C_{L\alpha})_F (1 + d\sigma/d\beta) S_F/S$$

k is found from Figure 5.14.2 and is a function of $[b_{\nu}/(2r_1)]$.

 b_v = vertical tail span = 29.0 ft. r_1 = fuselage diameter in tail area = 30 ft.

From Figure 5.14.2, k = 0.75

If it is assumed that do/dB is negligible then $(C_{y\beta})_F$ may be expressed as $(C_{y\beta})_F = -0.078$ ar

Combining all components: $C_{y\beta} = 0.2232 C_L^2 - 0.074 - 0.078 a_F$

5.15 Determination of Cyp

 C_{yp} represents the change in side force due to rolling velocity. Smetana expresses C_{yp} as the sum of the contributions due to the wing and the vertical tail.

$$(C_{yp})_w = C_L ([(A + \cos \Lambda) \tan \Lambda/(A + 4 \cos \Lambda)] + 1/A)$$

Substitution into $(C_{yp})_w$ yields $(C_{yp})_w = 0.91 C_L$

$$(C_{yp})_F = -2 a_F S_F Z_F/(S b)$$

All of these parameters have been defined previously so that $(C_{yp})F = -0.067$ ar

Combining these two: $C_{yp} = 0.91 C_L - 0.067 a_F$

5.16 Determination of Cyr

Cyr is defined as the change in side force due to yawing velocity. Smetana expresses Cyr as the sum of the contributions due to the wing and the vertical tail.

$$(C_{yr})_w = 0.143 \ C_L - 0.05$$

$$(C_{yr})_F = -2 \ l_f \ (C_{yr})_F/b = -0.752 \ (C_{yr})_F$$
 So that, $C_{yr} = 0.143 \ C_L - 0.05 - 0.752 \ (C_{yr})_F$

5.17 Dynamic Stability Matrices

Once the proper stability derivatives have been determined, it is possible to use them to investigate the dynamic stability of the configuration. Presented here are the longitudinal and lateral stability matrices corresponding to the non-dimensional, controls fixed, linearized equations of motion for a rigid aircraft.

Longitudinal Equations:

```
where x = (u \alpha q \theta)^T
         Dx = Ax
          A(1,1) = (C_{Xu} + 2 C_{L0} \tan \Theta_0)/2\mu
          A(1,2) = C_{X\alpha}/2\mu
          A(1,3) = 0.0
          A(1,4) = -C_{L0}/2\mu
          A(2,1) = (C_{Zu} - 2 C_{L0})/(2\mu - C_{Z\alpha})
          A(2,2) = C_{Z\alpha}/(2\mu - C_{Z\alpha})
          A(2,3) = (2\mu + C_{Zq})/(2\mu - C_{Z\alpha})
          A(2,4) = -C_{L0} \tan \Theta_0/(2\mu - C_{Z\alpha})
          A(3,1) = (C_{Mu} + C_{m\alpha} A(2,1))/i_B
          A(3,2) = (C_{M\alpha} + C_{m\alpha} A(2,2))/i_B
          A(3,3) = (C_{Mq} + C_{m\alpha} A(2,3))/i_B
          A(3,4) = C_{m\alpha} A(2,4)/iB
          A(4,1) = 0.0
          A(4,2) = 0.0
          A(4,3) = 1.0
          A(4,4) = 0.0
where \mu = m/(\rho S c/2)
          iB = Iyy/[\rho S (c/2)^3]
           C_{X\alpha} = C_{L0} - C_{D\alpha}
           C_{Z\alpha} = -C_{L\alpha} - C_{D0}
          C_{Zu} = -(M^2/1-M^2) C^{L0}
           C_{Zq} = -C_{Lq}
           C_{Dm} = C_{Du}/M
           C_{Xu} = -2 (C_{D0} + C_{L0} \tan \Theta_0) - M C_{Dm}
           C_{Z\alpha} = 0.0
```

Lateral Equations:

$$Dy = By \quad \text{where } y = (B \ p \ r \ \Phi)^T$$

$$B(1,1) = C_y \beta / 2 \mu$$

$$B(1,2) = C_y p / 2 \mu$$

$$B(1,3) = -(2\mu - C_{yT}) / 2 \mu$$

$$B(1,4) = C_{LO} / 2 \mu$$

$$B(2,1) = (i_C \ C_{l\beta} + i_E \ C_{n\beta}) / \Delta$$

$$B(2,2) = (i_C \ C_{lp} + i_E \ C_{np}) / \Delta$$

$$B(2,3) = (i_C \ C_{lr} + i_E \ C_{nr}) / \Delta$$

$$B(2,4) = 0.0$$

$$B(3,1) = (i_A \ C_{n\beta} + i_E \ C_{l\beta}) / \Delta$$

$$B(3,2) = (i_A \ C_{np} + i_E \ C_{lp}) / \Delta$$

$$B(3,3) = (i_A \ C_{nr} + i_E \ C_{lr}) / \Delta$$

$$B(3,4) = 0.0$$

$$B(4,1) = 0.0$$

$$B(4,2) = 1.0$$

$$B(4,3) = \tan \Theta_0$$

$$B(4,3) = \tan \Theta_0$$

$$B(4,4) = 0.0$$
where $\mu = m/(\rho \ S \ b/2)^3$

$$i_C = Izzz[\rho \ S \ (b/2)^3]$$

$$i_C = Izzz[\rho \ S \ (b/2)^3]$$

$$i_E = Ixzz[\rho \ S \ (b/2)^3]$$

Once the matrices A and B are found, their Eigen Values can be determined. These Eigen values reflect whether or not the system is stable. For a system to asymptotically stable, all of its Eigen values must have negative real parts.

The matrices A and B were calculated using a computer program written in FORTRAN. The program and results of the investigation of the dynamic stability for landing (assuming $\Theta_0 = 10^\circ$ and $U_0 = 300$ ft/sec and L = W) are listed on pages 66 and 71.

5.18 Determination of $C_{l\delta\alpha}$

 $C_{1\delta\alpha}$ describes the variation in rolling moment with change in aileron deflection; often, this stability derivative is referred to as the aileron power. Smetana gives the following equation for $C_{1\delta\alpha}$:

$$C_{l\delta\alpha} = [2 C_{L\alpha} \tau/(S b)] \int_{\lambda}^{b} c y dy$$

where c is the equation for the wing chord as a function of wing span, y:

$$c = c_r - [(c_r - c_t)/(b/2)] y = 73.125 - 0.863 y$$

and a and b represent the spanwise distance for the body centerline to the inner and outer aileron points, respectively.

$$a = 27.0 \text{ ft.}$$
 $b = 58.5 \text{ ft.}$

 τ is a correction factor which is a function of the aileron chord to wing chord ratio. τ is determined from Figure 5.18.1. Since the ratio of aileron chord to wing chord is not constant over the span of the aileron, the average value was used to determine τ .

$$(c_a/c_w)_{avg} = 0.33$$
 t=0.57

Upon integration and substitution of the proper values,

$$C_{l\delta\alpha} = 0.071 C_{L\alpha}$$

5.19 Determination of Clor

 $C_{l\delta r}$ is the variation in rolling moment coefficient with change in rudder deflection. Smetana gives the following formula for estimating $C_{l\delta r}$:

$$C_{l\delta r} = a_F \tau S_F Z_F/(S b)$$

Here, t is a function of the rudder area to vertical tail area ratio.

$$S_r = 157.5/ft2$$
 $S_F = 603 ft2$

Hence, $S_r/S_F = 0.261$ so that from Figure 5.19.1, $\tau = 0.48$.

Substitution into the equation for Clor results in

$$C_{l\delta r} = 0.0158$$
 ag.

5.20 Determination of Cnor

 $C_{n\delta r}$ is the variation in yawing moment coefficient with a change in rudder deflection and is often referred to as the rudder power. Smetana gives the following relationship for $C_{n\delta r}$ $C_{n\delta r} = -a_F \tau S_F l_f'(S_b)$

As with $C_{l\delta r}$, the value of τ is determined from Figure 5.19.1 and has a value of 0.48 so that $C_{n\delta r}$ may be expressed as

$$C_{n\delta r} = -0.0187 \text{ ag}$$

AE448 CG Locations/1

	A	В	С	D
1	Component .	X-Location	Weight	Y-Moment
2	Wing	116.60	28,300	3,299,780
3	Vertical Tail	140.00	3,200	448,000
4	Forward Body	28.90	27,000	780,300
5	Mid Body	80.00	23,600	1,888,000
6	Aft Body	128.00	13,200	1,689,600
7	Main Engines	137.00	22,800	3,123,600
8	OMS	138.00	3,700	510,600
9	RCS	138.00	1,600	220,800
10	Control Systems	48.00	4,000	192,000
11	Avionics	22.00	3,100	68,200
12	Personnel	35.00	1,600	56,000
13	Stores	42.00	600	25,200
14	Engine Accessories	125.00	6,200	775,000
15	Hydrogen Tanks	64.00	24,000	1,536,000
16	Oxygen Tank	121.00	11,000	1,331,000
17	TPS	96.30	6,100	587,430
18	Totals		180,000	16,531,510
19	Centroids	91.84		

```
C *** CONTROLS FIXED LONGITUDINAL AND LATERAL
 *** DYNAMIC STABILITY AND CONTROL PROGRAM
 *** FOR THE SECOND GENERATION SPACE
 *** TRANSPORTATION SYSTEM.
C
 *** WRITTEN BY: PHILIP BENEFIELD & DEL JOHNSON
C
C
        DOUBLE PRECISION G,S,W,WS,CBAR,UO,RHO,THETAO
        DOUBLE PRECISION BYAYCYEYCLOYCDOYCMUYCMA
        DOUBLE PRECISION CMAD, CMQ, CLA, CLQ, CDA, CDU
        DOUBLE PRECISION CLB, CLP, CLR, CNB, CNP, CNR
        DOUBLE PRECISION CYB, CYP, CYR, LLONG, MULONG, IBLONG
        DOUBLE PRECISION CXA,CZA,SOUND,M,CZU,CZQ,CDM
        DOUBLE PRECISION CXU, CZAD, ALONG(4,4), LLAT
        DOUBLE PRECISION IALAT, ICLAT, IELAT, MULAT
         DOUBLE PRECISION DELyALAT(4,4)
C
         OPEN(UNIT=9,FILE='STAB1IN.DAT',STATUS='OLD')
        OPEN(UNIT=10,FILE='STAB1OUT.DAT',STATUS='UNKNOWN')
C
         READ(9,*) G,S,W,WS,CBAR,UO,RHO,THETAO
         READ(9,*) B,A,C,E,CLO,CDO
         READ(9,*) CMU, CMA, CMAD, CMQ
         READ(9,*) CLA, CLQ, CDA, CDU
         READ(9,*) CLB,CLF,CLR
         READ(9,*) CNB, CNF, CNR, CYB, CYP, CYR
C
         FORMAT(1X,A40,' = ',F16.6)
300
         FORMAT(//////////siox, 'GEOMETRICAL, INERTIAL & EQUILIBRIUM',
 20
                 characteristics: '*//>
      ж
 C
         WRITE(10,20)
         WRITE(10,300) 'GRAVITATIONAL ACCELERATION (FT/SECT2)',G
         WRITE(10,300) 'WING AREA (FT^2)',S
         WRITE(10,300) 'WEIGHT (LB)',W
                        'WING SPAN (FT)', WS
         WRITE(10,300)
                        'MEAN AERODYNAMIC CHORD (FT)', CBAR
         WRITE(10,300)
         WRITE(10,300) 'AIRSPEED (FT/SEC)',UO
         WRITE(10,300) 'AIR DENSITY (SLUGS/FT°3)', RHO
                        'INITIAL THETA (RAD)', THETAO
         WRITE(10,300)
                        /IYY (SLUG-FT72)/,B
         WRITE(10,300)
                              (SLUG-FT72);A
(SLUG-FT72);C
                        'IXX
         WRITE(10,300)
         WRITE(10,300)
                        'IXZ (SLUG-FT12)'≠E
          WRITE(10,300)
                               (---)';CLO
                        'CLO
          WRITE(10,300)
                              (---)',CDO
         WRITE(10,300) 'CDO
         FORMAT(////+10X) (NON-DIMENSIONAL STABILITY DERIVATIVES: (+/)
 30
          WRITE(10,30)
                                                       ORIGINAL PAGE IS
                               (---)',CMU
          WRITE(10,300) 'CMU
                                                       OF POOR QUALITY
          WRITE(10+300) 'CMA
                               (---)/yCMA
                         'CMAD (---)',CMAD
          WRITE(10,300)
                               (---)/yCMQ
                        CMQ
          WRITE(10,300)
                               (---)/,CLA
                        'CLA
          WRITE(10,300)
          WRITE(10,300) /CLQ
                               (---)', CLQ
                               (---)',CDA
          WRITE(10,300)
                         /CDA
                         /CBU
                                   /,CDU
          WRITE(10.300)
```

```
FORMAT(////,10X,'LATERAL-DIRECTIONAL DERIVATIVES:'../)
40
        WRITE(10,40)
        WRITE(10,300) 'CLB (/RAD)',CLB
        WRITE(10,300) 'CLP (/RAD)',CLP
        WRITE(10,300) 'CLR (/RAD)', CLR
        WRITE(10,300) 'CNB (/RAD)', CNB
        WRITE(10,300) 'CNF (/RAD)', CNF
        WRITE(10,300) 'CNR (/RAD)',CNR
        WRITE(10,300) 'CYB (/RAD)',CYB
        WRITE(10,300) 'CYP (/RAD)',CYP
        WRITE(10,300) 'CYR (/RAD)',CYR
C *** CALCULATIONS FOR LONGITUDINAL MOTION
        LLONG=CBAR/2.0
         MULONG=(W/G)/(RHO*S*LLONG)
         IBLONG=B/(RHO*S*(LLONG**3))
         CXA=CLO-CDA
         CZA=-CLA-CDO
         SOUND=1116.4
         M=UO/SOUND
         CZU=-((M*M)/(1.0-M*M))*CLO
         cza=-cla
         CDM=CDU/M
         CXU=-(2.0*(CDO+CLO*TAN(THETAO)))-(M*CDM)
         CZAD=0.0
C
         ALONG(1,1)=(CXU+2.0*CL0*TAN(THETAO))/(2.0*MULONG)
         ALONG(1,2)=CXA/(2.0*MULONG)
         ALDNG(1,3)=0.0
         ALONG(1,4)=-CLO/(2.0*MULONG)
         ALONG(2,1)=(CZU-2.0*CLO)/(2.0*MULONG-CZAD)
         ALONG(2,2)=CZA/(2.0*MULONG-CZAD)
         ALONG(2,3)=(2.0*MULONG+CZQ)/(2.0*MULONG-CZAD)
         ALONG(2,4)=(-CLO*TAN(THETAO))/(2.0*MULONG-CZAD)
         ALONG(3,1)=(CMU+CMAD*ALONG(2,1))/IBLONG
         ALONG(3,2)=(CMA+CMAD*ALONG(2,2))/IBLONG
         ALONG(3,3)=(CMQ+CMAD*ALONG(2,3))/IBLONG
         ALONG(3,4)=CMAD*ALONG(2,4)/IBLONG
         ALBNG(4,1)=0.0
         ALONG(4,2)=0.0
         ALDNG(4 \times 3) = 1 \times 0
         ALONG(4,4)=0.0
   *** CALCULATIONS FOR LATERAL MOTION
 \mathbb{C}
         LLAT=WS/2.0
         MULAT=(W/G)/(RHO*S*LLAT)
          IALAT=A/(RHO*S%LLAT**3)
          ICLAT=C/(RHO*S*LLAT**3)
          IELAT=E/(RHO%S%LLAT%%3)
          DEL=(IALAT*ICLAT)-IELAT**2
```

. 7

C

```
ALAT(1,1)=CYB/(2.0*MULAT)
        ALAT(1,2)=CYP/(2,0*MULAT)
        ALAT(1,3)=-(2.0*MULAT-CYR)/(2.0*MULAT)
        ALAT(1,4)=CLO/(2.0*MULAT)
        ALAT(2,1)=(ICLAT*CLB+IELAT*CNB)/BEL
        ALAT(2,2)=(ICLAT*CLP+IELAT*CNP)/DEL
        ALAT(2,3)=(ICLAT*CLR+IELAT*CNR)/DEL
        ALAT(2,4)=0.0
        ALAT(3,1)=(IALAT*CNB+IELAT*CLB)/DEL
        ALAT(3,2)=(IALAT*CNF+IELAT*CLF)/DEL
        ALAT(3,3)=(IALAT*CNR+IELAT*CLR)/DEL
        ALAT(3,4)=0.0
        ALAT(4,1)=0.0
        ALAT(4,2)=1.0
        ALAT(4,3)=TAN(THETAO)
        ALAT (4,4)=0.0
C
        WRITE(10,100)
        DO 10 J=1,4
          WRITE(10,200) (ALDNG(J,K), K=1,4)
          IF(J.NE.4) WRITE (10,201)
10
        CONTINUE
C
        WRITE(10,101)
        DO 15 J=1,4
          WRITE(10,200) (ALAT(J,K), K=1,4)
           IF(J.NE.4) WRITE (10,201)
15
        CONTINUE
C
        FORMAT(/////,25X,'THE STABILITY MATRIX CORRESPONDING TO',/,
100
         20X, THE NONDIMENSIONAL, CONTROLS FIXED, LINEARIZED, 1,/,
          25X, LONGITUDINAL EQUATIONS OF MOTION FOR',/,
     *
          35X, 'A RIGID AIRPLANE',//)
        FORMAT(////,25X,'THE STABILITY MATRIX CORRESPONDING TO ',/,
101
          20X, THE NONDIMENSIONAL, CONTROLS FIXED, LINEARIZED, 1,/,
          28X, LATERAL EQUATIONS OF MOTION FOR ',/,
          35X, 'A RIGID AIRPLANE', //)
         FORMAT(5X)/1 /,4(F12.8)6X),/ 1/)
200
         FORMAT(5%, 11/, 74%, 11/)
201
C
         CLOSE(9)
         CLOSE(10)
         STOP
         END
```

GEOMETRICAL, INERTIAL & EQUILIBRIUM CHARACTERISTICS:

```
32.174000
GRAVITATIONAL ACCELERATION (FT/SEC^2) =
                                              5818.000000
                     WING AREA (FT^2) =
                                            180000.000000
                           WEIGHT (LB) =
                       WING SPAN (FT) =
                                               127.692000
                                                51.120000
          MEAN AERODYNAMIC CHORD (FT) =
                                                300.000000
                    AIRSPEED (FT/SEC) =
                                                  0.002377
             AIR DENSITY (SLUGS/FT^3) =
                                                  0.174500
                   INITIAL THETA (RAD) =
                                          12490393.000000
                       IYY (SLUG-FT^2) =
                                           1686164,000000
                       IXX (SLUG-FT^2) =
                                          13399266,000000
                       IZZ (SLUG-FT^2) =
                                           795369.000000
                       IXZ (SLUG-FT^2) =
                                                 0.418000
                            CLO (---) =
                                                  0.050000
                                 (---) =
                            CDO
```

NON-DIMENSIONAL STABILITY DERIVATIVES:

CMU	()	=	0.000000
CMA	()		-0.403200
CMAD	()		0.000000
CMQ	()		0.104200
CLA	()		2,800000
CLQ	()		-0.763500
CDA	()		0.266000
CBU	()		0.000000

LATERAL-DIRECTIONAL DERIVATIVES:

CLE	(/RAD)	==	-0.338000
CLF'	(/RAD)	=	-0.225000
CLR		==	0.775500
CNB	(/RAD)	=	0.012000
CNF		=	-0.070000
CNR	(/RAD)	==	-0.030000
CYB	(/RAD)	==	-0.706000
CYF	(/RAID)	<u></u>	-0.195800
CYR		=:	0.514200

THE STABILITY MATRIX CORRESPONDING TO THE NONDIMENSIONAL, CONTROLS FIXED, LINEARIZED, LONGITUDINAL EQUATIONS OF MOTION FOR A RIGID AIRPLANE

ì	-0.00315899	0.00480166	0.0000000	-0.01320457
!	-0.02743687	-0.09003117	1.02411888	-0.00232787
1	0.00000000	-0.00745438	0.00192645	0.00000000
;	0.0000000	0.0000000	1.00000000	0.00000000

THE STABILITY MATRIX CORRESPONDING TO THE NONDIMENSIONAL, CONTROLS FIXED, LINEARIZED, LATERAL EQUATIONS OF MOTION FOR A RIGID AIRPLANE

0.03298353	-0.95942552	-0.01545018	-0.05570903
0.00000000	1.69903754	-0.50320992	1 -0.74066202
0.0000000	0.09279544	-0.04867205	; -0.04074188
0.0000000	0.17629303	1.0000000	0.0000000

User Name: Shuttle II Design Broud Problem Identification: Dynamic Stability Date: 7/2/89

LINEAR SYSTEM ANALYSIS RESULTS

THE A MATRIX

-3.1590E-03 4.9017E-03 0.0000E+00 -1.3205E-02

0.0000E+00 0.0000E+00 1.0000E+00 0.0000E+00

CHARACTERISTIC POLYNOMIAL COEFFICIENTS - ASCENDING FOWERS OF S

2.64595-06 5.96195-06 7.97085-03 9.12545-02 1.00005+00

THE EIGENVALUES OF THE A MATRIX

User Name: Shuttle II Design Group

Problem Identification: Dynamic Stability

Date: 3/2/99

LINEAR SYSTEM ANALYSIS RESULTS

THE A MATRIX

-5.57098-02 -1.54508-02 -9.59478-01 5.29848-02 -7.40885-01 -5.07218-01 1.89908-00 0.00008-00 -4.07428-02 -4.88728-02 9.27988-01 0.00008-00 0.00008-00 1.00008-00 1.78298-01 0.00008-00

OF POOR QUALITY

SHARESTERISTED FOLVOINES COSTITUTENTS - ASSENDING FONESS OF S

-7.41888-05 4.18818-02 9.77178-07 4.66128-01 1.00008-00 transcriptions from the state of the sta

THE ELEENVALUES IF THE 4 MAISIN

Figure 5.1.1. Lift curve slopes for two-dimensional incompressible flow.

Figure 5.1.2.Lift-curve slope for swept and tapered wings at speeds below critical Mach number.

Figure 5.1.3. Lift-curve slope for swept and tapered wings at supersonic speeds.

Figure 5.2.1. Definitions of Dimensional and Non-Dimensional Aerodynamic Center (Neutral Point) Locations.

Figure 5.2.2. Aerodynamic Center Location of Lifting Surfaces.

Figure 5.2.3. Aerodynamic Center Transformation Constant K₁

Figure 5.2.4. Aerodynamic Center Transformation Constant K2

ORIGINAL PAGE IS OF POOR QUALITY

Figure 5.2.5. Chordwise position of the mean aerodynamic center of swept and tapered wings at high speeds expressed as a fraction of the mean aerodynamic chord.

Figure 5.4.1. Lift-curve slope for single fin and rudder on a body of circular cross section.

Figure 5.5.1. Clp for straight-tapered wings.

Figure 5.6.1. $C_{l\beta}$ for straight-tapered wings with no dihedral.

Figure 5.7.1. Charts for estimating Clr for subsonic incompressible flow.

Figure 5.8.1. Variation of $C_{n\beta}/CL^2$ with aspect ratio and sweep for subsonic incompressible flow

Figure 5.9.1. Variation of $(\Delta C_{np})_1/C_L$ and $(\Delta C_{np})_2/(C_{D0})\alpha$ with aspect ratio for subsonic incompressible flow.

Figure 5.10.1. Charts for estimating $(\Delta C_{nr})_1/C_L{}^2$ and $(\Delta C_{nr})_2/C_{D0}$

Figure 5.14.1. Values for wing-fuselage interference factor.

Figure 5.14.2. Values for k as a function of the ratio of vertical tail span to fuselage diamter in the tail region.

Figure 5.18.1. Values for τ as a function of aileron chord to wing chord ratio.

Figure 5.19.1. Values for t as a function of rudder area to vertical tail area ratio.