<u>Механика</u> Кинематика			
	Кинематика точки		
S=vt;	Равномерное прямолинейное	м (м/с, с);	
$x=x_0+vt$	движение Ускорение при равноускоренном	M(M, M/C, C) $M/C^{2}(M/C, M/C, C)$	
$a = \frac{\upsilon - \upsilon_0}{t}$	прямолинейном движении	M/C (M/C, M/C, C)	
$s = \frac{v + v_0}{2}t = v_0 t + \frac{at^2}{2} = \frac{v^2 - v_0^2}{2a}$	Перемещение при равноускоренном	M (M/c, M/c, c; M/c, c,	
	прямолинейном движении Координата точки при	M/c ² , c; m/c, m/c, M/c ²) M (M, M; M, M/c, c	
$x = x + S = x_{0+} v_{0}t + \frac{at^2}{2}$	равноускоренном прямолинейном движении Средняя скорость	M/c ² , c)	
$v_{cp} = \frac{s_1 + s_2 + \dots}{t_1 + t_2 + \dots}$	Средняя скорость	M/C (M, C)	
Кин	иематика твёрдого тела		
$a = \frac{v^2}{r} = 4\pi^2 r v^2$	Центростремительное и линейное	M/c^{2} (м/с, м; м, Гц)	
$a = \frac{-}{r} = 4\pi r v$	ускорение при движении по окружности		
<u>v-1</u>	Частота обращения при движении по	Гц (с)	
$v = T$ $v = 2\pi r v = \omega r$	окружности		
$v=2\pi r \ v=\omega r$	Линейная скорость при движении по окружности	м/с (м, Гц; рад/с, м)	
$\omega = \frac{\gamma}{t} = 2 \pi v$	Угловая скорость при движении по окружности	рад/с (рад, с; Гц)	
	Динамика	•	
	оны механики Ньютона		
F=0, mo a=0 F=ma	I закон Ньютона II закон Ньютона	Н Н (кг, м/c ²)	
$r = ma$ $\vec{F_1} = -\vec{F_2}$	II закон Ньютона III закон Ньютона	H (КГ, M/С ⁻) Н, Н	
·1- ·2	Силы в механике	<u>l</u>	
$F_{ynp} = kx (=N;P)$ $F_{mp} = \mu N (N = -P)$	Сила упругости	Н (Н/м, м)	
	Сила трения	H (H)	
$F_{ep}=G\frac{m_1m_2}{r^2}$	Гравитационная сила	H (H×м²/кг², кг, кг, м)	
r^2 $F_{ms,sc}=mq$	Сила тяжести	H (кг, м/c ²)	
$F = G \frac{mM}{(r+h)^2} = ma = \frac{mv^2}{r+h};$	Сила притяжения к Земле и первая космическая скорость	H (H×м²/кг², кг, кг, м; кг, м/с²; кг, м/с, м)	
$\upsilon = \sqrt{G \frac{M}{r+h}}$		м/с (Н×м²/кг², кг, м)	
$g=G\frac{M}{(r+h)^2}=9.8\frac{r^2}{(r+h)^2}$	Ускорение свободного падения на	м/c (H×м²/кг², кг, м)	
$g = G \frac{m}{(r+h)^2} = 9.8 \frac{r}{(r+h)^2}$	высоте h планеты и от поверхности Земли	м; м, м)	
$\frac{a_1}{a_2} = \frac{m_2}{m_1} = \frac{r_1}{r_2}$	Ускорение в зависимости от массы и плеча	м/c², м/c²; кг, кг; м, м	
$y = y_0 + v_0 t - \frac{gt^2}{2}$;	Скорость и координата тела при движении ↑	м (м, м/с, с, м/с ² , с)	
<u>-</u>		м/с (м/с, м/с ² , с)	
$v_y = v_0 - qt$ $y = y_0 - v_0 t - \frac{gt^2}{2}$;	Скорость и координата тела при движении ↓	$M(M, M/c, c, M/c^2, c)$ $M/c(M/c, M/c^2, c)$	
$ \frac{v_y = -v_0 - qt}{x = v_0 t, \ v_x = v_0;} $	Скорость и координата тела при	M (M/c, c); M/c (M/c)	
$y = y_0 - \frac{gt^2}{2}$, $v_y = -qt$	движении →	м (м/c, м/c ² , c); м/с	
$v_{0x} = v_0 \cos \alpha, \ v_x = v_{0x}$	Скорость и координата тела при	м/с; м/с	
$x = v_0 \cos \alpha t;$ $v_{0y} = v_0 \sin \alpha, v_y = v_0 \sin \alpha - qt$	движении под углом к горизонту	M M/c; M/c	
$y=v_0 \sin \alpha - \frac{gt^2}{2}$.		М	
$t = \frac{v_0 \cdot \sin \alpha}{q} \; ; \; t = \frac{2 \cdot v_0 \cdot \sin \alpha}{q}$	Время подъёма тела и время полёта тела	c (m/c, °, m/c ²); c (m/c, °, m/c ²)	
$h = \frac{v_0^2 \sin^2 \alpha}{2g}; l = \frac{v_0^2 \sin 2\alpha}{g}$	Максимальная высота подъёма тела. Дальность полёта тела	M (M/c, °, M/c ²); M (M/c, °, M/c ²)	
$\Delta l = l - l_0; \ \varepsilon = \frac{\Delta l}{l_0}$	Абсолютное и относительное	м (м, м)	
	удлинения Жесткость	H/m (H/m ² , m ² , m)	
$k=E\frac{s}{l_0}$		(, , , , , , , , , , , , , , , , , , ,	
$\delta = E \mid \varepsilon \mid$	Закон Гука		
	Статика		
$F_1+F_2+\ldots+F_n=0$	Геометрическая сумма сил,	Н	
M=Fd	приложенных к телу Момент силы	Н×м (Н, м)	
$M_1+M_2+\ldots+M_n=0$, , ,	
$\frac{F_1}{F_2} = \frac{l_2}{l_1}$	Рычаг	Н, Н; м, м	
	 ы сохранения в механике	<u> </u>	
	ы сохранения в механике он сохранения импульса		
$Ft=mv-mv_0$	Равенство импульса силы и тела	H × c; кг × м/с	
I=Ft	Импульс силы	H×c (H, c)	
P=mv	Импульс тела	KT×M/C (KT, M/C)	
$m_1v_1 + m_2v_2 = m_1v'_1 + m_2v'_2$ $m_2 \times V_2$	Закон сохранения импульса Реактивное движение	кг×м/с (кг, м/с) м/с (кг, м/с, кг)	
//	, .	,, ,,	
$D_{o\bar{o}} = \frac{1}{m_{o\bar{o}}}$	кон сохранения энергии		
	чи сохринения эпстии	7 77	
3ar A=Fs cosa	Работа	Дж (Н, м)	
3ar A=Fs cosa		Дж (H, м) Вт (Дж, с; H, м/с)	
A=Fs cosα	Работа		
3ar A=Fs cosa	Работа Мощность Кинетическая энергия тела Потенциальная энергия	Вт (Дж, с; Н, м/с)	
3ar A=Fs cosa	Работа Мощность Кинетическая энергия тела Потенциальная энергия деформированного тела	Вт (Дж, с; H, м/с) Дж (кг, м/с) Дж (Н/м, м)	
Зан	Работа Мощность Кинетическая энергия тела Потенциальная энергия	Вт (Дж, с; H, м/с) Дж (кг, м/с)	

$E_{pI} + E_{kI} = E_{p2} + E_{k2}$ $E = E_k + E_p$	Полная механическая энергия	Дж Дж				
$E_1 = E_2$ $S_1 \nu_1 = S_2 \nu_2$	Закон Бернулли	Дж м ² , м/с				
Колебания и волны						
Механические колебания						
$x=x_m\sin(\omega t+\delta)$;	Гармонические колебания: координата тела, скорость и	M (M; C)				
$\upsilon = x' = \upsilon_m \cos\left(\omega t + \frac{\pi}{2}\right) \upsilon_m = x_m \omega;$	ускорение в момент времени	M/c (M/c, c, M/c, M)				
$a=x''=v'=a_m\cos(\omega t+\pi)$ $a_m=x_m\omega^2$		M/c ² (M/c ² , c, M/c ² , M)				
$T = \frac{t}{n} = 2\pi \sqrt{\frac{l}{g}} = 2\pi \sqrt{\frac{m}{k}}$	Период свободных колебаний математического маятника и тела на пружине	с (c; м, м/c ² ; кг, Н/м)				
$v = \frac{1}{T}$; $\omega = \frac{2\pi}{T} = 2\pi v$	Частота колебаний и циклическая частота	Γц (с); рад/с (с; Гц)				
$a = \frac{k}{m}x = \frac{g}{l}s$	Ускорение при колебаниях тела на пружине и математического маятника	м/c ² (H/м, м, кг; м/с ² , м, м)				
Элект	ромагнитные колебания	1				
$q=q_m\cos\omega t$;	Колебательный контур: заряд, сила тока в момент времени	Кл (Кл, с)				
$i=q'=I_m\cos\left(\omega t+\frac{\pi}{2}\right); I_m=q\omega$	· · · · · · · · · · · · · · · · · · ·	A (A, c)				
$q''=i'=-\omega^2 q \cos(\omega t + \pi)$ $T=2\pi\sqrt{LC}$	Период колебаний в	с (Гн, Ф)				
	колебательном контуре Частота и циклическая частота в	рад/с (Гн, Ф); Гц (с,				
$ω = \frac{1}{\sqrt{LC}}; v = \frac{1}{T} = \frac{ω}{2π}$ $Φ = BS \cos ωt;$	колебательном контуре Колебательный контур:	рад/с) Вб (Тл, м ²)				
$\varepsilon = -\Phi' = \varepsilon_m \sin \omega t \ \varepsilon_m = BS\omega$	магнитный поток, ЭДС и напряжение в момент времени	В (Вб, В); В (Тл, м ² , рад/с)				
$u=U_m \cos \omega t$ $U=\frac{U_m}{\sqrt{2}}; I=\frac{I_m}{\sqrt{2}}$	Действующие значения напряжения и силы тока при	В (B, рад/с) В (B); A (A)				
1 , U	переменном токе Ёмкостное сопротивление и	Ом (c ⁻¹ , Ф); А (В,				
$x_C = \frac{1}{\omega C}; \ I = \frac{U}{x_C};$	закон Ома. Опережение колебаний I от U на	Ом)				
$i=I_m \sin \omega t = U_m C \omega \cos \left(\omega t + \frac{\pi}{2}\right)$	π/2.	A (A, paд/c, c; B, Φ, paд/c, paд/c, c)				
$x_L = L\omega; I = \frac{U}{x_L};$	Индуктивное сопротивление и закон Ома для катушки. Отставание колебаний I от U на	Ом (Гн, с ⁻¹); А (В, Ом)				
$u=L\omega I_m \cos \omega t=U_m \sin \left(\omega t+\frac{\pi}{2}\right)$	π/2.	В (Гн, рад/с, А, рад/с, с; В, рад/с, с)				
$z=\sqrt{R^2+(x_L-x_C)^2}$; $tg\delta=\frac{x_L-x_C}{R}$	Полное сопротивление	Ом (Ом, Ом, Ом)				
$k = \frac{n_1}{n_2} = \frac{\varepsilon_1}{\varepsilon_2} \approx \frac{U_1}{U_2}; \frac{U_1}{U_2} \approx \frac{I_2}{I_1}$	Коэффициент трансформации					
	<i>Теханические волны</i>					
$v = \frac{\lambda}{T} = \lambda v$	Скорость волны	м/с (м, с; Гц)				
$s = \frac{Ut}{2}$	Расстояние от ист. звука до отраж. звука	м (м/с; с)				
$s = s_m \sin \left[\omega \left(t - \frac{x}{\nu} \right) \right]$	Уравнение бегущей волны	м (м, рад/с, с, м, м/с)				
	тромагнитные волны Длина электромагнитной волны	м (м/с, Гн, Ф; м/с,				
$\lambda = 2\pi c \sqrt{LC} = \frac{c}{v}$		Гц)				
$I = \frac{\Delta W}{s \cdot \Delta t} = \frac{P}{s} = \omega v$	Интенсивность электромагнитной волны	Вт/м ² (Дж, м ² , с; Вт, м ² ; Дж/м ³ , м/с) Дж/м ³ (Дж, м ³)				
$\omega = \frac{\Delta W}{\Delta V}$	Плотность энергии электромагнитной волны					
	я физика. Тепловые яс	<u> </u>				
	кулярно-кинетической те	_				
$v = \frac{m}{M} = \frac{N}{N_A} = \frac{V}{V_n}$	Кол-во вещества через молярную массу, объём и число Авогадро	моль (кг, кг/моль, моль ⁻¹ , м ³)				
$n=\frac{N}{V}$	Концентрация частиц	$M^{-3}(M^3)$				
$\overline{v} = \sqrt{3\overline{v}^2}_x = \sqrt{\frac{3kT}{m_0}}$	Средняя скорость молекул идеального газа	м/с (м/с; Дж/К, К, кг)				
$p = \frac{1}{3} m_0 n \overline{\upsilon}^2 = \frac{2}{3} n \overline{E}_k = \frac{1}{3} \rho \overline{\upsilon}^2 = nkT$	Давление идеального газа	Н/м (кг, м ⁻³ , м/с, Дж, кг/м ³ , К)				
$\varphi = \frac{p_{napu}}{p_{Hac}} = \frac{p_{napu}}{p_{Hac}}$	Относительная влажность воздуха	% (Па, Па; кг/м ³ , кг/м ³)				
Энергия теплового движения молекул						
$\overline{E}_k = \frac{3}{2}kT$	Средняя кинетическая энергия поступательного движения частиц	Дж (Дж/К, К)				
$pV = \frac{m}{M}RT; \frac{pV}{T} = const$ $\frac{pV}{N} = kT$	Уравнение сост. идеального газа. Уравнение Клайперона (m=const)	Па, м ³ (кг, кг/моль, Дж/к×моль, К)				
$\frac{pV}{N}$ =kT	Уравнение термодинамического равновесия	Па, м ³ (Дж/К, К)				
Основы термодинамики						
$U = \frac{i \ m}{2 \ M} RT = \frac{i}{2} pV$, $\varepsilon \partial e \ i = 3; 5; 6$	Внутренняя энергия идеального газа: 1-, 2- и 3-атомного	Дж (кг, кг/моль, Дж/К×моль, К; Па, м ³)				
$\Delta U = A + Q$; $Q = \Delta U + A'$	Изменение внутренней энергии и количествава теплоты	м ⁻) Дж (Дж, Дж); Дж (Дж, Дж)				
$A' = p\Delta V = \nu R\Delta T$	Работа идеального газа в термодинамике	Дж (Па, м³; моль, Дж/К×моль, К)				
$Q_p = \Delta U + A'; \ Q_T = A'; \ Q_V = \Delta U;$ $Q = 0, \ \Delta U = A$	Кол-во теплоты при (р, Т, V)=const. Адиабатный процесс.	Дж (Дж, Дж); Дж (Дж); Дж (Дж); Дж (Дж)				
~ '' '		(-\				

$c = \frac{Q}{\Lambda T}$; $c_M = cM$	Теплоемкость тела и молярная	Дж/К (Дж, К),		
	теплоемкость Удельная и молярная теплоем-ти	Дж/моль×К (кг/моль, Дж/К×моль) Дж/К; Дж/моль×К		
$c_p = \frac{5 R}{2M}; c_{Mp} = \frac{5}{2}R$	при изобаре			
$c_V = \frac{3 R}{2 M}; c_{MV} = \frac{3}{2} R$	Удельная и молярная теплоем-ти при изохоре	Дж/К (Дж/К×моль, моль); Дж/моль×К (Дж/К×моль)		
<i>Q</i> ₁ + <i>Q</i> ₂ =0	Тепловой баланс в замкнутой системе	Дж		
$\eta = 1 - \frac{ Q_X }{ Q_H }; \ \eta_{\text{max}} = \frac{T_H - T_X}{T_H}$	КПД и максимальный КПД теплового двигателя	% (Дж, К)		
	Твердые тела			
$Q=cm\Delta t$	Количество теплоты	Дж (Дж/кг \times ° C , кг, К)		
Взаимны	е превращения жидкостег	й и газов		
Q=qm	Теплота сгорания	Дж (Дж/кг, кг)		
$Q=\pm \lambda m$	Теплота плавления	Дж (Дж/кг, кг)		
$Q=\pm Lm$	Теплота парообразования	Дж (Дж/кг, кг)		
	<u>Гидростатика</u> Давление			
$p = \frac{F}{S}$ $F_{A=g}\rho_{sc}V_{m}$	Давление	$H/M^2(H, M^2)$		
$F_{A=g}\rho_{\infty}V_{m}$	Сила Архимеда	H (H/кг, кг/м ³ , м ³)		
$\frac{F_1}{F_2} = \frac{S_2}{S_1}$	Гидравлический пресс	Н; м ²		
$p = \rho g h$	Давление в жидкостях	H/m ² (H, m ²)		
	Плотность	кг/м ³ (кг, м ³)		
$\rho = \frac{m}{V}$	2			
	Электродинамика			
gi+go -const	Электростатика Алгебр, сумма зарядов	Кл		
q ₁ +q ₂ =const	Алгеор, сумма зарядов Сила взаимодействия 2-х	Н (Н×м²/Кл², Кл, м)		
$F = k \frac{ q_1 q_2 }{r^2}$	точечных зарядов			
$E = \frac{F}{q} = k \frac{ q_0 }{r^2} = \frac{\varphi_1 - \varphi_2}{d} = \frac{U}{\Delta d}$	Напряженность поля	В/м (Н, Кл; Кл Н×м²/Кл², м; В, м)		
$\vec{E} = \vec{E}_1 + \vec{E}_2 \dots$	Геометрическая сумма напряжений	В/м		
$\varepsilon = \frac{E_0}{E}$; $F = k \frac{ q_1 q_2 }{\varepsilon r^2}$	Диэлектрическая проницаемость среды и сила, действ, на заряд			
$W_p = qEd$; $W_p = k\frac{q_1 \cdot q_2}{r}$	Потенциал. энергия заряда в однородном поле и двух точечных зарядов	Дж (Кл, В/м, м)		
$A=-\Delta W_p$	Работа электрического поля	Дж (Дж)		
$\delta = \frac{q}{s}$	Поверхностная плотность заряда	Кл/м ² (Кл, м ²)		
$\varphi = \frac{Wp}{q} = Ed \; ; \; \varphi_1 - \varphi_2 = U = \frac{A}{q} \; ; \varphi = k\frac{q}{r}$	Потенциал, разность потенциалов и потенциал точечного заряда	В (Дж, Кл); В (В, Дж, Кл)		
$C = \frac{q}{U}$; $C = \frac{\varepsilon \cdot \varepsilon_0 \cdot s}{d}$	Электроемкость и электроёмкость плоского конденсатора	Ф (Кл, В); Ф (м ² , м)		
$W_p = q \frac{E}{2} d = \frac{qU}{2} = \frac{CU^2}{2} = \frac{q^2}{2C}$	Потенциальная энергия плоского конденсатора	Дж (Кл, В/м, м, Кл, В, Ф, В, Кл, Ф)		
$\varepsilon = \frac{A_{CM}}{q}$	Электродвижущая сила	В (Дж, Кл)		
$\frac{U_1}{U_2} = \frac{R_1}{R_2}; \frac{I_1}{I_2} = \frac{R_2}{R_1}$	Отношения напряжения и силы тока к сопротивлению	В; А; Ом		
$I = \frac{\varepsilon}{R+r}; \ \varepsilon = U_{\mathit{GHeuu}} + U_{\mathit{GHym}}$	Закон Ома для полной цепи и ЭДС источника	А (В, Ом); В (В, В)		
$R+r$ $\eta = \frac{R}{R+r} = \frac{U_{6Heuu}}{\varepsilon}$	КПД источника	% (Ом; В)		
$\frac{R-R_0}{R_0}$ = αt ; $\rho = \rho_0 (1+\alpha t)$	Зависимость сопротивления проводника от температуры	1, K ⁻¹ , K; Om×m, K ⁻¹ , K		
$m=kI \Delta t; k=\frac{1}{eN_A} \frac{M}{n}$	Закон электролиза и электролитический эквивалент	кг (кг/Кл, А, с); кг/Кл (Кл, моль ⁻¹ , моль, м ⁻³)		
Законы постоянного тока				
	Сила тока и производная от силы	А (Кл, с); А (Кл, м ⁻³ , м/с,		
$I = \frac{q}{t}$; $I = en\overline{\upsilon}s$	тока, концентрации и др. ед. Электрическое напряжение	м ²) В (Дж, Кл)		
$U = \frac{A}{q}$				
$R = \frac{U}{I}$	Электрическое сопротивление для участка цепи	Ом (В, А)		
$R = \frac{\rho l}{S}$	Электрическое сопротивление проводника	Ом (Ом x мм ² /м, мм ² ,м)		
$I=I_1=I_2$ $R=R_1+R_2$	Последовательное соединение проводников	А		
$\frac{U=U_1+U_2}{I=I_1+I_2}$	Параллельное соединение	B A		
$U = U_1 = U_2$ $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$	проводников	В		
	Последовательное соединение	Ф		
$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$	конденсаторов	B		
$U=U_1+U_2$ $q=q_1=q_2$		Кл		
$C=C_1+C_2$ $U=U_1=U_2$	Параллельное соединение конденсаторов	Ф В		
$q=q_1+q_2$	D.C.	Кл		
A=Uq=UIt	Работа электрического тока	Дж (В, Кл; В, А, с)		

$P = \frac{A}{U} = UI$	Мощность электрического тока	Вт (Дж, с; В, А)
$P = \frac{A}{t} = UI$ $Q = I^2 Rt$	Количество теплоты, выделяемое проводником	Дж (А, Ом, с)
	Магнитное поле	
$F=B \mid I \mid l \cdot \sin \alpha$	Сила Ампера	Н (Тл, А, м)
$F_{\mathcal{A}} = q \upsilon B \cdot \sin \alpha; \ r = \frac{m\upsilon}{ q B}$	Сила Лоренца и радиус описанной окружности	Н (Кл, м/с, Тл); м (кг, м/с, Кл, Тл)
Элект	ромагнитная индукция	
$\Phi = BS \cdot \cos \alpha$	Магнитный поток	Вб (Тл, м ²)
$\varepsilon_i = \left \frac{\Delta \Phi}{\Delta t} \right $	Электромагнитная индукция	В (Вб, с)
$\varepsilon_{is} = L \left \frac{\Delta I}{\Delta t} \right $; $\Phi = LI$	ЭДС самоиндукции и магнитный поток при ней	В (Гн, А, с); Вб (Гн, А)
$W_M = \frac{LI^2}{2}; W_3 = \frac{q^2}{2C}$	Энергия магнитного поля тока и конденсатора	Дж (Гн, А); Дж (Кл, Ф)
2 20	<u>Оптика</u>	
	Световые волны	
$\frac{\sin \alpha}{\sin \beta} = \frac{\nu_1}{\nu_2} = \frac{n_2}{n_1} = n; \sin \alpha_0 = \frac{n_2}{n_1}$	Закон преломления света. Предельный угол отражения.	(°, м/c); °
$D = \pm \frac{1}{F} = \pm \frac{1}{d} \pm \frac{1}{f}; \ \pm \frac{1}{F} = \left(\frac{n_A}{n_{cp}} - 1\right) \left(\pm \frac{1}{R_1} \pm \frac{1}{R_2}\right)$	Формула тонкой линзы	Дптр (м, м, м); м (м, м)
$\Gamma = \frac{ f }{ d }$	Увеличение линзы	(M, M)
$\Delta d = 2k\frac{\lambda}{2}$; $\Delta d = (2k+1)\frac{\lambda}{2}$	Условие максимумов и минимумов	м (м); м (м)
$d \sin \varphi = k\lambda$	Максимумы в дифракционной	M , °, M
Элементы	решётке теории относительности	<u> </u> !
$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}; \tau = \frac{\tau_0}{\sqrt{1 - \frac{v^2}{c^2}}}; l = l_0 \sqrt{1 - \frac{v^2}{c^2}}$	Относительность промежутков массы, времени, расстояний	КГ (КГ, М/с, М/с); с (с, М/с, М/с); м (М, М/с, М/с)
$v_2 = \frac{v_1 + v}{1 + \frac{v_1 v}{2}}$	Релятивистский закон сложения скоростей	M/c (M/c, M/c, M/c, M/c)
$E = mc^{2} - \frac{m_{0}c^{2}}{\sqrt{1 \cdot \frac{v^{2}}{c^{2}}}}, E_{0} = m_{0}c^{2}; E_{n} = E_{0} + \Delta E$	Формула Эйнштейна. Энергия покоя. Полная энергия.	Дж (кг, м/с; кг, м/с м/с, м/с); Дж (кг, м/с); Дж (Дж, Дж)
Кв	вантовая физика	<u> </u>
	Световые кванты	
E=h v	Энергия кванта	Дж (Дж × c, c ⁻¹)
$\lambda = \frac{h}{p}$	Длина волны де Бройля (излучаемая движущимися частицами)	м (Дж с, кг хм/с)
$h\nu = A + \frac{m\nu^2}{2}$	Теория фотоэффекта	Дж х с, с ⁻¹ ; Дж, кг, м/с
$E = hv = \hbar\omega; \ p = \frac{h}{\lambda}$ $p = \left(\begin{array}{c} 1 + \rho \end{array} \right) \frac{I}{c}$	Энергия и импульс фотона	Дж (Дж с, с ⁻¹), кг м/с (Дж с, с ⁻¹) Па (Вт/м ² , м/с)
$p=(1+\rho)\frac{l}{c}$	Давление света	Па (Вт/м², м/с)
	Атомная физика	
$hv_{kn}=E_k-E_n$	Энергия излучённого или поглощенного фотона	Дж∗с, Гц (Дж, Дж
$v_{n,k}=R\left(\frac{1}{k^2}-\frac{1}{n^2}\right)$	Частота света при переходе из стационарного состояния п в k	Гц (Гц)
Фи	зика атомного ядра	
$E_{C6} = \Delta M c^2 = \left(Zm_p + Nm_n - M_{\mathcal{H}} \right) c^2;$ $M_{\mathcal{H}} = m_a - Zm_e$	Энергия связи нуклонов в атомных ядрах	МэВ (а.е.м., МэВ/а.е.м.; а.е.м., МэВ/а.е.м.)
$\frac{E_{CG}}{A}$, $c\partial e A=Z+N$	Удельная энергия связи нуклона в атомных ядрах	МэВ
$N=N_0\cdot 2^{-\frac{t}{T}}$	Закон радиоактивного распада	(c, c)
$\stackrel{M}{\underset{Z}{X}} X \stackrel{\alpha}{\to} \stackrel{M-4}{\underset{Z-2}{X}} Y + {}^{4}_{2} He; \stackrel{M}{\underset{Z}{X}} X \stackrel{\beta}{\to} \stackrel{M}{\underset{Z+1}{X}} Y + {}^{0}_{-1} e;$	Правила смещения для α , β , γ и $+\beta$ распадов	
$\stackrel{M}{\underset{Z}{X}} \stackrel{\gamma}{\underset{\to}{\longrightarrow}} \stackrel{M}{\underset{Z}{X}} \stackrel{+0}{\underset{\to}{\longrightarrow}} \stackrel{\gamma}{\underset{Z}{\longrightarrow}} \stackrel{M}{\underset{Z-1}{X}} \stackrel{+\beta}{\underset{+1}{\longrightarrow}} \stackrel{M}{\underset{+1}{\longrightarrow}} \stackrel{0}{\underset{+1}{\longrightarrow}} e$	Поээ нэлуногия	Гр (Пок кер)
$D=\frac{E}{}$	Доза излучения	Гр (Дж, кг)

G	Гравитационная постоянная	$6,672\times10^{-11}\ H\times_{M}^{2}/\kappa_{c}^{2}$
N_A	Постоянная Авогадро	6,022×10 ²³ моль ⁻¹
V_n	Моль-объём газов	22,4 л/моль
k	Постоянная Больцмана	1,3807×10 ⁻²³ Дж/К
k	Коэффициент Кулона	$9\times10^9 H\times_M^2/K\pi^2$
R	Универсальная газовая постоянная	8,31 Дж/К×моль
R	Постоянная Ридберга	3,20×10 ¹⁵ Γ <i>ų</i>
e	Элементарный заряд	1,60219×10 ⁻¹⁹ Кл
ε_0	Электрическая постоянная	$8,854 \times 10^{-12} \Phi/_{M}$
С	Скорость света в вакууме	2,9979×10 ⁸ м/с
h	Постоянная Планка	$6,626 \times 10^{-34}$ Дж $\times c = 4,136 \times 10^{-15}$ э $B \times c$
T	Соотношение тем-ры по Кельвину и по Цельсию	0 K = -273,15° C
а.е.м	Соотношение между а.е.м. и кг	1 a.e.м. = 1,66×10 ⁻²⁷ кг
c^2	1 единица массы эквивалента	931 МэВ/а.е.м.
эВ	Энергия, приобретённая эл. пройдя U в 1В	$1 \ni B = 1,6 \times 10^{-19} $ Джс
m_e	Масса электрона	9,1095×10 ⁻³¹ кг=5,486×10 ⁻⁴ а.е.м.
m_p	Масса протона	1,6726×10 ⁻²⁷ кг=1,00728 а.е.м.
m_n	Масса нейтрона	1,6749×10 ⁻²⁷ кг=1,00867 а.е.м.