Année-Scolaire : 2018 - 2019

Classe: 1^{ere} D Durée: 3 Heures

PREMIER DEVOIR DU SECOND SEMESTRE

Epreuve: Mathématiques

Contexte:

Le coffre-fort de la l'entreprise GP2BD-SERVICES a la forme du cube représenté

par le dessin de la figure ci-contre. Il est sécurisé par un code à trois chiffres deux à deux distincts, commençant par 1 et dont les deux autres chiffres sont des nombres premiers inférieur à 5 et diviseurs communs de 12 et 18. Le Directeur de l'entreprise désire récupérer un document important dans ce coffre-fort et constate qu'il ne se rappelle plus du code. Affolé, il sollicite le secours de son fils Donald, élève en classe de premières C pour l'aider à ouvrir ce coffre. Impressionné par la forme cubique du coffre-fort, Donald décide de revoir quelques propiétés géométriques relatives à la forme de ce solide.

Tâche: Tu vas aider donald et son papa en résolvant les trois problèmes suivants.

Problème 1

- 1. a. Détermine les coordonnées des points B, D et G dans le repère $\left(A; \overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{DH}\right)$.
 - b. Justifie que le repère $\left(A;\overrightarrow{AB},\overrightarrow{BC},\overrightarrow{DH}\right)$ est orthonormal.
- 2. a. Détermine les coordonnées des vecteurs $\overrightarrow{BH}, \overrightarrow{CE}$ et \overrightarrow{AG} .
 - b. Démontre que les vecteurs $\overrightarrow{BH}, \overrightarrow{CE}$ et \overrightarrow{AG} sont coplanaires.
- 3. a. Démontre que $(CE) \perp (BDG)$.
 - b. Démontre que le plan (BDG) est perpendicaliare aux plans (CFE) et (CGE).
- 4. Détermine l'ensemble des diviseurs premiers des nombres 12 et 18 puis déduisen le code du coffre-fort sachant que le chiffre des dizaines et supérieur au chiffre des unités.

Problème 2

Le coffre-fort est réalisé à l'aide des matériels spécifiques codés par $A = \cos\frac{\pi}{12} + \cos\frac{5\pi}{12} + \cos\frac{7\pi}{12} + \cos\frac{11\pi}{12}$. Sachant que $\frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}, \frac{7\pi}{12} = \frac{\pi}{3} + \frac{\pi}{4}$ et $2\frac{\pi}{8} = \frac{\pi}{4}$

- 5. a. Détermine $\cos \frac{\pi}{12}, \cos \frac{7\pi}{12}$ et $\cos \frac{\pi}{8}$.
 - b. Détermine le code A.
 - c. Déduis de ce qui précède la valeur de $B = \cos \frac{5\pi}{12} + \cos \frac{11\pi}{12}$
- 6. Démontre que

a.
$$\forall x \in \mathbb{R}, \cos 5x = (16\cos^4 x - 20\cos^2 x + 5)\cos x$$
.

b.
$$\forall x \in \mathbb{R}, 1 - \cos 5x = (1 - \cos x) (4\cos^2 x + 2\cos x - 1)^2$$
.

c. Justifie que
$$\frac{2\pi}{5}, \frac{4\pi}{5}$$
 sont solution de l'équation $\cos 5x = 1$

- 7. a. Résous dans \mathbb{R} , l'équation $4X^2 + 2X 1 = 0$.
 - b. En utilisant les questions 5-b et 5-c, justifie que $\cos \frac{2\pi}{5}$ et $\cos \frac{4\pi}{5}$ sont solutions de l'équation $4X^2 + 2X 1 = 0$.
 - c. Déduis-en la valeur exacte de $\cos \frac{2\pi}{5}$ et $\cos \frac{4\pi}{5}$.
- 8. a. Résous dans \mathbb{R} , l'équation $\cos x = 1$.
 - b. Résous dans \mathbb{R}^2 , le système $\begin{cases} \cos x \cos y = \frac{\sqrt{3}+1}{4} \\ \sin x \sin y = \frac{\sqrt{3}-1}{4} \end{cases}$

Problème 3

- 9. Détermine l'ensemble de définition de chacune des fonctions g et h. Les fonctions g et h sont-elles des applications? justifie ta réponse.
- 10. a. Démontre que $\forall x \in \mathbb{N} \setminus \{0, 1, 2\}, g(x) = \frac{1}{2} \left(x \frac{1}{2} \right)^2 \frac{1}{8} + \sqrt{x}$.
 - b. Détermine par g, l'image de 9.

11. a. Démontre que:

$$\forall y \ge 0, h(x) = y \Leftrightarrow \sqrt{x} + \frac{1}{2} = \sqrt{y + \frac{1}{4}} \text{ ou } \sqrt{x} + \frac{1}{2} = -\sqrt{y + \frac{1}{4}}$$

- b. Démontre h est une surjection de $[0; +\infty[$ sur $[0; +\infty[$.
- c. Démontre que $\forall a,b \in [0;+\infty[,h(a)=h(b)\Leftrightarrow a=b]$
- 12. a. Démontre que h admet une bijection réciproque h^{-1} .
 - b. Résous dans $[0; +\infty[$, l'équation $X^2 + X 6 = 0$ et déduis-en $h^{-1}(6)$