interpretation

frequenc

probabil MI

measure

Motivatio

Goals

- -----

Experimen

Data

rechnic

Problem

Commean

Noisy dat

more v

Plots

....

The effects of N-gram probabilistic measures on the recognition and production of four-word-sequences.

Eberhard Karls Universität Tübingen
Course: Frequency effects of multi-word sequences
Lecturer: Hendrix-Sun, June, Ph.D.
Student: Johannes Krämer
SS 2017

How to read the title?

Title interpretation

frequency

What t

Motivation

IVIOLIVALIOI

Goal

_

Ехренине

Date

Problems

more ,

FreaB

• Effects of [...] probabalistic measures [...]

How to read the title?

Title interpretation

frequency probabilit

What to

Motivation

iviotivatio

Goal

Sponer

Experimen

Data

_ . . .

Problem

Collinearity

......

more v

Plots

- Effects of [...] probabalistic measures [...]
 - \rightarrow it's about the methods:

How to read the title?

• Effects of [...] probabalistic measures [...]

 \rightarrow it's about the methods:

- how was it measured?
- which probabalitic methods were used?
- which are the best methods?

Which methods were used?

Title interpretation

Method

probabili MI

measure

Motivation

. .

Spoile

Experimen

Data

Technic

Problem

Collinearit

more v

Plots

ггефь

Methods = Predictors

- frequency of occurance
- log probability of occurance
- mutual information

litle nterpretation

frequency probabilit

measure

Motivation

Goals

Spoller

Experimen

Data

Problems

Noisy dat

more v

Plots

FreqB

onclusion

frequency of occurance

• frequency of occurance

$$freq-of-event$$

 $\frac{\textit{freq} - \textit{of} - \textit{event}}{\textit{all} - \textit{possible} - \textit{events}}$

Title interpretation

Methods frequency probability

What to measure

Motivation

. ..

Evporimor

Technics

Problems

Collinearity

Noisy dat

more v

FreaR

probability of occurance

Title interpretation

Methods frequency probabilit

measure

Motivation

C . . . 1

Experime

Problem

Collinearit

......

Plots

FreqB

Canalinatan

probability of occurance

• $P(W_i|W_{i-2},W_{i-1})$

Title interpretatior

Methods frequency probability

measure

Motivation

Goals

Spoile

Experimer

Б.

Technic

Problen

Collinearit

Noisy dat

more v

FreaB

FreqB

probability of occurance

• $P(W_i|W_{i-2},W_{i-1})$

• what is more propable?

wit OR with

given that previous words are...

Title interpretation

frequency probability MI

measure

Motivation

Goals

Experimer

Dat

Techni

Problen

Collinearit

more v

FreqB

probability of occurance

- $P(W_i|W_{i-2},W_{i-1})$
- what is more propable?
 - wit OR with
 - given that previous words are...
 - I like pizza

Title interpretatior

Methods frequency probability MI

measure

Motivation

Goals

Spoile

Experimer

Techi

Droblon

Collinearit

Noisy dat

more v

Plots

FreqB

probability of occurance

• $P(W_i|W_{i-2},W_{i-1})$

• what is more propable?

wit OR with

• given that previous words are...

I like pizza

(this example is from Mr. Cöltekins SNLP Course)

probability of occurance

• $P(W_i|W_{i-2},W_{i-1})$

• what is more propable?

wit OR with

given that previous words are...

I like pizza

(this example is from Mr. Cöltekins SNLP Course)

log is for scaling

 \rightarrow fitting more on the same plot

interpretation

Methods frequency probability

What to

Mativation

iviotivatioi

Goals

_

Experimen

Dat

Problems

Noisy data

more v

Plots

mutual information

- mutual information
- how much do we know about a fact given another fact
- correlation of variables

Title interpretatior

Methods frequency probabilit

measure

Motivation

Goals

E.....

Experimen

Dat

Technie

Problem

Collinearit

Noisy da

more v

Plots

FreqB

- mutual information
- how much do we know about a fact given another fact
- correlation of variables
- I(X; Y)

Title interpretatior

Methods frequency probability

measure

Motivation

Goals

Experimen

Dat

recillic

Problem

Collinearit

Plots

FreqB

- mutual information
- how much do we know about a fact given another fact
- correlation of variables
- I(X; Y)
- how much do we now about the gender given the name of a person?

Title interpretation

Methods frequency probability

What to measure

Motivation

. .

Spoil

Experimer

_ `

Technic

Problem

Collinearity

...

Plots

Plots FreqB

- mutual information
- how much do we know about a fact given another fact
- correlation of variables
- I(X; Y)
- how much do we now about the gender given the name of a person?
- how much do we know about FreqAB given FreqA

What is measured?

Title interpretatior

Methods frequency probability

What t

Mativation

Motivatio

Goals

Experimen

Data

1 TODICITIS

Noisy data

more var

Plots

FreqB

onclucior

onset latency

What is measured?

Title interpretation

Methods frequency probability

measure

Motivation

Caala

experiment

D. . . .

Technic

Problems

Collinearity

Moiey dat

more v

Plots

FreqB

onclusion

onset latency

production duration

Why do such a experiment in the first place? What inspired them?

• no one did it before

Why do such a experiment in the first place? What inspired them?

Title interpretation

frequency probabilit

measure

Motivation

_ .

Spoile

Experimen

Dat

Technic

Problem

Collinearit

Noisy dat

more \

Plots

FreqB

- no one did it before
- Baayen, Kuperman, Bertram (2010):
 - found interaction between measures of different linguistic units
 - \rightarrow claim: multiple sources of linguistic information are processed in parallel

This study: Find out the following questions

Title interpretation

frequency probabili

measure

Motivatio

Goals

Data

a

Commeanty

INDISY UA

more v

FreaR

. . .

• whether freq., log prob., MI of 1-4grams affect onset latency and production duration

This study: Find out the following questions

Title interpretation

Methods frequency probabilit

measure

Motivatio

Goals

experimen

Data

Lechnic

Problem

Collinearit

Moisy dat

more v

Plots

FreqB

- whether freq., log prob., MI of 1-4grams affect onset latency and production duration
- Which is the better predictor for:
 - onset latency
 - production duration

This study: Find out the following questions

Title interpretation

frequency probabilit

Metivetie

Motivatio

Goals

Experimen

Data

rechnics

riobieilis

Collinearit

worsy dat

more v

Plots

FreqB

- whether freq., log prob., MI of 1-4grams affect onset latency and production duration
- Which is the better predictor for:
 - onset latency
 - production duration
- Are there (linear) interactions between predictors?

Title interpretation

Methods frequency probability

What t

Motivatio

Goals

Spoiler

Tankaia

Problems

Collinearity

more v

Plots

FreqB

Title interpretation

Methods frequency probabilit

measure

Motivation

Goals

Experimen

Data

rechnic

Problem

Collinearit

Noisy dat

more v

Plots

FreqB

C---l....

- \rightarrow leaves us with:
- frequency of occurance
- log probability of occurance

Title interpretatior

frequency probabilit MI

measure

Motivatio

Goals

_

Experimer

Α.

Technic

Problem

Collinearit

rvoisy de

more v

FreqB

Complete

- \rightarrow leaves us with:
- frequency of occurance
- log probability of occurance
- prob. measures up to 4-grams all interact with each other

Title interpretation

frequency probabilit

measure

IVIOLIVALIO

Evperime

recimies

. ...

Collinearity

Plots

FreqB

- \rightarrow leaves us with:
- frequency of occurance
- log probability of occurance
- log probability of occurance
- prob. measures up to 4-grams all interact with each other
 - but how strong?
 - for which N-gram does it work best?
 - what does it mean if they interact?

Title interpretation

frequency probabilit

measure

Motivation

Goals

:xperimer

Data

Collinearit

Noisy da

more v

FreaR

· .

• participants:

- 17 Students (10 female, 7 male)
- University of Alberta
- paid: yes

- participants:
 - 17 Students (10 female, 7 male)
 - University of Alberta
 - paid: yes
- material:
 - extracted 112 most freq. 4grams from BNC (100 mio words)

Title interpretation

Methods frequency probabilit

measure

iviotivatioi

Goals

Lxperimer

Data

Collinearity

Plots

FreqB

- participants:
 - 17 Students (10 female, 7 male)
 - University of Alberta
 - paid: yes
- material:
 - extracted 112 most freq. 4grams from BNC (100 mio words)
 - frequeny: 12 117 per million words (?)

participants:

17 Students (10 female, 7 male)

University of Alberta

paid: yes

material:

 extracted 112 most freq. 4grams from BNC (100 mio words)

• frequeny: 12 - 117 per million words (?)

• random selection of 320 4grams:

frequeny: 0.3 - 11 per million words

Title interpretatior

frequency probabilit

measure Motivation

o .

c "

Experime

_

Technic

Problem

Commean

Noisy da

Dista

more va

participants:

• 17 Students (10 female, 7 male)

University of Alberta

paid: yes

material:

extracted 112 most freq. 4grams from BNC (100 mio words)

• frequeny: 12 - 117 per million words (?)

random selection of 320 4grams:

frequeny: 0.3 - 11 per million words

total: 432 4grams

Where did the data come from?

interpretation

frequency probabilit

What t

Motivatio

. .

Spoiler

experimen

Dat

Гесhnic

Problems

Collinearity

Noisy data

more vai

Plots

FreqD

• most freq. items from BNC

Where did the data come from?

most freq. items from BNC

frequencies of the items taken from COCA

 COCA = The Corpus of Contemporary American and English

COCA size: 385 mio. words

Where did the data come from?

Title interpretation

Methods frequency probabilit

What to

Motivation

_ .

Spoile

Experimen

Technic

Problem

Collinearit

reorsy data

more v

Plots FreaB most freq. items from BNC

- frequencies of the items taken from COCA
 - COCA = The Corpus of Contemporary American and English
 - COCA size: 385 mio. words
- ullet don't, you've, wasn't o one word
- data was randomized for every participant

Title interpretation

Methods frequency probability

What to measure

Motivation

C 1

Spoller

Experimen

Data

Problems

Collinearity

Noisv data

more

Plots

Пець

• 4gram preceded by a fixation cross

Title interpretation

frequency probabilit

measure

Motivatio

Goals

experimen

Dat

Technic

Problems

Collinearit

Noisy dat

more v

Plots

FreqB

4gram preceded by a fixation cross

ullet cross for 500ms o black screen 20ms o 4gram 1500ms

Title interpretation

frequency probability MI

measure

Motivatio

Goals

Experimer

Data

Technic

Problem

Collinearit

Noisy dat

more v

Plots

ггефь

- 4gram preceded by a fixation cross
- ullet cross for 500ms o black screen 20ms o 4gram 1500ms
- interstimulus 1000ms

Title interpretatior

frequency probability MI

measure

Motivation

Coole

Spoile

Experimen

Dat

Technic

Problem

Collinearit

Noisy dat

more \

Plots

ггефь

- 4gram preceded by a fixation cross
- ullet cross for 500ms o black screen 20ms o 4gram 1500ms
- interstimulus 1000ms
- read out loud aqap ;)

Title interpretation

frequency probability MI

measure

Motivation

Goals

Experimer

Tochnic

Problem

Collinearit

Noisy data

more v

FreqB

- 4gram preceded by a fixation cross
- ullet cross for 500ms o black screen 20ms o 4gram 1500ms
- interstimulus 1000ms
- read out loud aqap ;)
- 2 possible breaks (most of the participants didn't make use of it)

4gram preceded by a fixation cross

- ullet cross for 500ms o black screen 20ms o 4gram 1500ms
- interstimulus 1000ms
- read out loud agap;)
- 2 possible breaks (most of the participants didn't make use of it)
- 2 microphones

4gram preceded by a fixation cross

- ullet cross for 500ms o black screen 20ms o 4gram 1500ms
- interstimulus 1000ms
- read out loud agap;)
- 2 possible breaks (most of the participants didn't make use of it)
- 2 microphones
 - onset latency recording
 - speech recording

I itle interpretation

Methods frequency probabilit

What to measure

Motivation

Cools

:xperimer

Data

Problems

Collinearity

Confidently

more ver

IIIOIC Va

FreqB

.

W is our outcome

Title interpretation

frequenc probabili

What to

Motivotio

....

Spoile

Experimen

Collingarita

Collinearity

more v

Plots

- W is our outcome
- X and Z are predictors

Title interpretation

frequenc probabili

measure

Motivatio

Spoil

Experimer

ZAPCITICI

Techni

Problem

Collinearit

NI - 1 - - I - -

more v

Plots

FreqD

- W is our outcome
- X and Z are predictors
- \bullet if X,Z correlated \to can't tell wether W is due to X or to Z

Title interpretation

frequence probabili

What to measure

Motivatio

. .

Spoile

Experimen

Technic

Problem

Collinearity

Noisy dat

more v

Plots

FredD

- W is our outcome
- X and Z are predictors
- \bullet if X,Z correlated \to can't tell wether W is due to X or to Z
- draw on blackboard!

Title interpretation

Methods frequency probability

What to measure

Motivation

Goals

- .

Dat

Problems

Collinearity

Noisy dat

more var

Plots

C

detect collinearity

Title interpretation

Methods frequency probability

measure

Motivation

Goals

Experimen

Collinearity

TVOISY Ga

more va

FreaB

Canalusian

- detect collinearity
- reduce collinearity

Title interpretation

Methods frequency probabilit

What to measure

Motivation

....

Count

Experimen

Data

Technic

Problems

Collinearit

Ninia. das

more v

Plots

FreqB

Conclusion

- detect collinearity
- reduce collinearity
 - centering

Title interpretation

Methods frequency probabilis

What to measure

Motivation

C

Experimen

Data

Technic

Problem:

Collinearity

Noisy dat

more \

Plots

Constant

- detect collinearity
- reduce collinearity
 - centering
 - residualization

interpretation

frequency probabilit

What t measur

Motivatio

Эропсі

xperimen

Data

Moiey dat

more va

FreaB

Conclusion

ullet total: 7344 data points (17 imes 432)

Title interpretation

frequency probabilit

measure

Motivatio

Goals

Lxperimer

Commeant

ivoisy dai

more v

FreqE

....

total: 7344 data points (17 x 432)

• removed: 2251 = 30,7%

total: 7344 data points (17 x 432)

• removed: 2251 = 30.7%

WHY?

• 5 items had p = 0 in COCA \rightarrow 85 data points | 1,2%

Title interpretation

frequency probabilit MI

measure

Motivation

Coole

C : I .

Experimer

Dat

Technic

Problem

Collineari

more var

FreqB

FreqB

- total: 7344 data points (17 x 432)
- removed: 2251 = 30,7%
- WHY?
 - \bullet 5 items had p = 0 in COCA \rightarrow 85 data points | 1,2%
 - $\bullet~1$ Participant had to many errors $\rightarrow~35$ data points |~0.5%

total: 7344 data points (17 x 432)

• removed: 2251 = 30.7%

WHY?

• 5 items had p = 0 in COCA \rightarrow 85 data points | 1,2%

• 1 Participant had to many errors \rightarrow 35 data points | 0.5%

• not triggered sound \rightarrow 869 data points | 11,8%

Title interpretatior

frequency probabilit

measure

Motivation

Goals

Spoile

Experimer

Data

Technic

Problems

Collinearit

more var

FreqB

total: 7344 data points (17 x 432)

• removed: 2251 = 30,7%

• WHY?

• 5 items had p = 0 in COCA \rightarrow 85 data points | 1,2%

ullet 1 Participant had to many errors ightarrow 35 data points | 0.5%

ullet not triggered sound ightarrow 869 data points \mid 11,8%

ullet research assistants removed ightarrow 1258 data points | 17,1%

Title interpretation

frequency probabilit

What to

Motivation

....

Experimen

Technic

Problems

Collinearit

Noisy data

more va

Eroal

· . .

trials 1-432

Title interpretation

Methods frequency probability

measure

Motivation

Goals

_ .

Experimen

Dat

Technic

Problems

Collinearit

more va

FreqE

C . . .

• trials 1-432

Manner

- stop
- approximant
- vowel
- fricative
- nasal

Title interpretation

Methods frequency probability

measure

Motivation

Goals

Lxperimen

Data

Technic

Problem

Collinearit

more va

FreqE

Completion

• trials 1-432

Manner

- stop
- approximant
- vowel
- fricative
- nasal
- NumSyll

Title interpretation

Methods frequency probabilit

measure

Motivation

Goals

Spoile

Experimen

Data

Technic

Collinearit

more va

Freql

FreqD

- trials 1-432
- Manner
 - stop
 - approximant
 - vowel
 - fricative
 - nasal
- NumSyll
- PhraseABCD

- trials 1-432
- Manner
 - stop
 - approximant
 - vowel
 - fricative
 - nasal
- NumSyll
- PhraseABCD
 - 117 phrase
 - 310 non-phrase

Interpretation of data

Title interpretation

frequency probabili

MI What t

.

MOLIVALIC

Goals

Experimer

Б...

Lechnic

Problem:

Collinearit

Plots

11040

• We will look together at the plots and figger out whats going on there.

Why does FreqB have such an big impact?

Title interpretation

frequency

What t

Motivatio

iviotivatio

Spoil

Experimen

Dat

Problems

Collinearit

Noisy dat

more v

Plots

FreqB

.

B-gram appeared at position of fixation cross

Why does FreqB have such an big impact?

Title interpretation

frequency probabili

What t

Motivatio

Evporimor

Data

Problem

Collinearit

Noisy da

more v

Plots

11040

B-gram appeared at position of fixation cross

WordTypeB as influencer?

Title interpretation

frequency probability

What t measur

Motivation

Goals

-

Experimen

Data

Problems

Commeanty

Noisy data

more var

FreqB

Conclusion

look at the results together!

Title interpretation

frequency probabili

What to measure

Motivation

Spoiler

xperimer

Data

Problems

Collinearity

Moiey data

more v

Plots

Complexion

ullet onset latency o log probability of occurance

Title interpretatior

frequency probabilit MI

measure

Motivatio

Goals

Evnorimo

Collingarit

Commeanty

moro

Plots

. .

- \bullet onset latency \rightarrow log probability of occurance
 - \rightarrow 'recognition is mainly underpinned by a mechanism whereby a target N-gram competes with its family members'

Title interpretation

frequency probability

What to measure

Motivatio

c .

Spoile

Experimer

Data

Problen

Collinearit

Noisy da

more \

Plots

Conclusion

- ullet onset latency o log probability of occurance
 - ightarrow 'recognition is mainly underpinned by a mechanism whereby a target N-gram competes with its family members'
- ullet production duration o frequency of occurance (amount of experience)

Title interpretatior

Methods frequency probability

measure

Motivatio

Goals

Spoile

Experimen

Dat

Technic

Collinearit

moro

Plots

Plots FreqB

- ullet onset latency o log probability of occurance
 - ightarrow 'recognition is mainly underpinned by a mechanism whereby a target N-gram competes with its family members'
- ullet production duration o frequency of occurance (amount of experience)
- most important among: unigrams, bigrams, trigrams, quadgrams

ullet onset latency o log probability of occurance → 'recognition is mainly underpinned by a mechanism

whereby a target N-gram competes with its family members'

- \bullet production duration \rightarrow frequency of occurance (amount of experience)
- most important among: unigrams, bigrams, trigrams, quadgrams
 - onset latency?

Title interpretatior

Methods frequency probability

What to measure

Motivatio

Goals

Spoile

Experimen

Data

. . .

Collineari

Noisy dat

more v

Plots FreqB

- ullet onset latency ightarrow log probability of occurance
 - \rightarrow 'recognition is mainly underpinned by a mechanism whereby a target N-gram competes with its family members'
- ullet production duration o frequency of occurance (amount of experience)
- most important among: unigrams, bigrams, trigrams, quadgrams
 - onset latency?
 - ightarrow trigrams

Title interpretatior

frequency probability

What to measure

Motivatio

Goals

Spoile

Experimen

Data

Droblom

Collineari

Noisy da

more va

Plots FreqB ullet onset latency ightarrow log probability of occurance

 \rightarrow 'recognition is mainly underpinned by a mechanism whereby a target N-gram competes with its family members'

- ullet production duration o frequency of occurance (amount of experience)
- most important among: unigrams, bigrams, trigrams, quadgrams
 - onset latency?
 - $\rightarrow \mathsf{trigrams}$
 - production duration?

Title interpretatior

frequency probabilit

What to measure

Motivatio

Goals

Spoiler

Experimen

Technic

Problems

----, ---

Plots

- ullet onset latency ightarrow log probability of occurance
 - ightarrow 'recognition is mainly underpinned by a mechanism whereby a target N-gram competes with its family members'
- ullet production duration o frequency of occurance (amount of experience)
- most important among: unigrams, bigrams, trigrams, quadgrams
 - onset latency?
 - $\to \mathsf{trigrams}$
 - production duration?
 - ightarrow unigrams

Title interpretatior

frequency probabilit

What to measure

Motivatio

Goals

Spoile

Experimen

Technic

Problems

Connean

loisy da

more var Plots FreqB

- ullet onset latency ightarrow log probability of occurance
 - \rightarrow 'recognition is mainly underpinned by a mechanism whereby a target N-gram competes with its family members'
- ullet production duration o frequency of occurance (amount of experience)
- most important among: unigrams, bigrams, trigrams, quadgrams
 - onset latency?
 - $\rightarrow \mathsf{trigrams}$
 - production duration?
 - \rightarrow unigrams
- BUT they still interact → what does it mean?

The very conclusion

Title interpretation

frequency probabilit

measure

Motivatio

Spoil

Experime

Data

Technic

Problem

Collinearit

Noisy dat

Dlote

Plots FreaB

Conclusion

'Finally, the finding that probabilistic measures tied to N-grams up to four-words long **interacted** with each other in the onset latency and production duration analyses suggests that they are **processed in parallel** in both recognition and production.'

Reference:

Title interpretation

frequency probabilit

measure

Motivation

Spoil

Experimer

Data

Technic

Problem

Collinearit

reorsy da

more \

Plots FreaB

Camalunian

Antoine Tremblay and Benjamin V. Tucker. 'The effects of N-gram probabilistic measures on the recognition and production of four-word sequences.' IWK Health Center / University of Alberta.