Master CSI 2 2016-1017

Cryptologie Avancée — 4TCY903U

Responsables : G. Castagnos – G. Zémor

Examen — 5 janvier 2017

Durée 3h — Documents non autorisés

Partie G. Castagnos

- Exercice 1. Soit $\Pi = (\mathsf{KeyGen}, \mathsf{Encrypt}, \mathsf{Decrypt})$ un schéma de chiffrement asymétrique. On note $\mathcal M$ l'espace des messages clairs pour Π . Soit $\mathcal A$ un algorithme attaquant Π et k un paramètre de sécurité. Soit n > 0, un entier. On définit l'expérience $n-\mathsf{IND-CPA}$, $\mathbf{Exp}_{\Pi,k}^{n-\mathsf{IND-CPA}}(\mathcal A)$ comme suit :
 - 1. On lance l'algorithme $\mathsf{KeyGen}(1^k)$ pour obtenir les clefs (pk, sk)
 - 2. On choisit un bit aléatoire avec équi probabilité $b^\star \xleftarrow{\$} \{0,1\}$
 - 3. On donne pk à \mathcal{A} . Au cours de son exécution, \mathcal{A} émet n couples de messages clairs : pour $i=1,\ldots,n$, quand \mathcal{A} émet $(m_{i,0},m_{i,1})\in\mathcal{M}\times\mathcal{M}$, on lui donne c_i^{\star} , un chiffré de $m_{i,b^{\star}}:c_i^{\star}\leftarrow\mathsf{Encrypt}(pk,m_{i,b^{\star}})$
 - 4. À la fin de son exécution, \mathcal{A} retourne un bit b
 - 5. La sortie de l'expérience est 1 si $b = b^*$ et 0 sinon.

L'avantage de l'attaquant \mathcal{A} est défini par

$$\mathbf{Adv}_{\Pi,k}^{n-\mathsf{IND-CPA}}(\mathcal{A}) = \left| \Pr \left(\mathbf{Exp}_{\Pi,k}^{n-\mathsf{IND-CPA}}(\mathcal{A}) = 1 \right) - \frac{1}{2} \right|.$$

Le schéma Π est dit sûr au sens $n-\mathsf{IND}-\mathsf{CPA}$ si pour tout algorithme polynomial probabiliste $\mathcal A$ cet avantage est négligeable.

- (a) À quelle notion de sécurité correspond le cas n = 1?
- (b) Soit n > 1 un entier. À partir du schéma Π , on construit un schéma $\Pi' = (\mathsf{KeyGen'}, \mathsf{Encrypt'}, \mathsf{Decrypt'})$. L'algorithme de génération de clefs est inchangé : $\mathsf{KeyGen'} := \mathsf{KeyGen}$. L'algorithme de chiffrement $\mathsf{Encrypt'}$ est défini comme suit. L'espace des messages clairs est inchangé : $\mathcal{M}' = \mathcal{M}'$. Soit $m \in \mathcal{M}$ à chiffrer. On tire un bit b tel que b = 0 avec probabilité 1/n et b = 1 avec probabilité 1 1/n. Si b = 0, le chiffré est $c := (c_1, c_2) := (m, 0)$. Si b = 1, le chiffré est $c := (c_1, c_2) := (\mathsf{Encrypt}(pk, m), 1)$. L'algorithme de déchiffrement $\mathsf{Decrypt'}$ sous l'entrée (c_1, c_2) retourne c_1 si $c_2 = 0$ et $\mathsf{Decrypt}(sk, c_1)$ si $c_2 = 1$.

Montrer qu'il existe un attaquant polynomial probabiliste \mathcal{A} attaquant Π' tel que

$$\mathbf{Adv}_{\Pi',k}^{n-\mathsf{IND-CPA}}(\mathcal{A}) \geqslant (1-e^{-1})/2 \approx 0,3$$

On pourra utiliser le fait que pour tout réel z, $1 - z \leq e^{-z}$.

(c) Soit n > 1 un entier. Soit \mathcal{A} un attaquant polynomial probabiliste contre la notion $n - \mathsf{IND} - \mathsf{CPA}$ pour le schéma Π . Construire à partir de \mathcal{A} un algorithme polynomial probabiliste $\mathcal{B} = (\mathcal{B}_1, \mathcal{B}_2)$ attaquant la notion $\mathsf{IND} - \mathsf{CPA}$ pour le schéma Π tel que

$$\mathbf{Adv}_{\Pi,k}^{\mathsf{IND-CPA}}(\mathcal{B}) = \frac{1}{n}\mathbf{Adv}_{\Pi,k}^{n-\mathsf{IND-CPA}}(\mathcal{A}).$$

Conclure. **Indication** : \mathcal{B}_1 pourra choisir aléatoirement en début d'exécution le nombre de fois ℓ où il chiffre le premier élément d'un couple choisi par \mathcal{A} , puis lors du calculs des probabilités, on pourra décomposer suivant la valeur de ℓ .

(d) Soit GenDH un algorithme polynomial qui prend en entrée 1^k et retourne la description d'un groupe cyclique G son ordre q premier tel que |q|=k et un générateur g. Soit $T\in G^3$ un triplet d'éléments de G. On rappelle que T est un triplet DH si $T=(g^x,g^y,g^{xy})$ avec $x,y\in \mathbf{Z}/q\mathbf{Z}$ uniformément distribués et indépendants. Si $T=(g^x,g^y,g^z)$ avec $x,y,z\in \mathbf{Z}/q\mathbf{Z}$ uniformément distribués et indépendants, on dit que T est un triplet aléatoire. On rappelle que le problème DDH consiste à distinguer les triplets DH et les triplets aléatoires.

Donner un algorithme polynomial \mathcal{R} qui prend en entrée $T=(X,Y,Z)\in G^3$ et qui retourne un couple (Y',Z') d'éléments de G tel que $T':=(X,Y',Z')\neq T$ et tel que si T est un triplet DH alors T' est un triplet DH et si T est un triplet aléatoire alors T' est un triplet aléatoire.

(e) On rappelle le fonctionnement du chiffrement Elgamal. L'algorithme KeyGen appelle GenDH puis choisit x aléatoire avec probabilité uniforme dans $\mathbb{Z}/q\mathbb{Z}$ et calcule $X=g^x$. KeyGen retourne pk=(G,q,g,X) et sk=(G,q,g,x). L'algorithme Encrypt sur l'entrée (pk,m) avec $m\in G$ choisit y uniformément dans $\mathbb{Z}/q\mathbb{Z}$ calcule $Y=g^y$ et $Z=X^y$ dans G et retourne c=(Y,mZ).

Soit n>1 un entier. Soit $\mathcal A$ un attaquant polynomial probabiliste contre la notion $n-\mathsf{IND}-\mathsf{CPA}$ pour Elgamal. En utilisant l'algorithme $\mathcal R$ de la question précédente, construire à partir de $\mathcal A$ un algorithme polynomial probabiliste $\mathcal D$ résolvant le problème Diffie-Hellman décisionnel (DDH) tel que

$$\mathbf{Adv}^{\mathrm{DDH}}_{\mathsf{GenDH},k}(\mathcal{D}) = \frac{1}{2}\mathbf{Adv}^{n-\mathrm{IND-CPA}}_{\mathsf{Elgamal},k}(\mathcal{A}).$$

Conclure.

- Exercice 2. Soit k un entier et $\Pi = (\mathsf{KeyGen}, \mathsf{Encrypt}, \mathsf{Decrypt})$ un schéma de chiffrement asymétrique. On suppose que l'espace des messages clairs est $\mathcal{M} := \{0,1\}^{2k}$. On suppose de plus que le chiffrement d'un message $m \in \mathcal{M}$ avec la clef publique pk consiste à prendre $r \in \{0,1\}^k$ avec distribution uniforme puis poser $c = E_{pk}(m,r)$ où E_{pk} est une fonction de $\{0,1\}^{2k} \times \{0,1\}^k$ à valeurs dans l'espace des chiffrés.

Soit $\mathcal{H}: \{0,1\}^{2k} \to \{0,1\}^k$ un oracle aléatoire. À partir de Π , on construit un nouveau schéma de chiffrement $\Pi' = (\mathsf{KeyGen'}, \mathsf{Encrypt'}, \mathsf{Decrypt'})$ dans le modèle de l'oracle aléatoire. L'algorithme de génération de clefs est inchangé : $\mathsf{KeyGen'} := \mathsf{KeyGen}$. L'algorithme de chiffrement $\mathsf{Encrypt'}$ est défini comme suit. L'espace des messages clairs est $\mathcal{M}' := \{0,1\}^k$. Soit

 $m \in \{0,1\}^k$ à chiffrer avec la clef publique pk. On tire $t \in \{0,1\}^k$ avec probabilité uniforme et on pose $c = E_{pk}(m||t, \mathcal{H}(m||t))$ où || désigne la concaténation des chaînes de bits.

(a) Donner la description d'un l'algorithme de déchiffrement $\mathsf{Decrypt'}$ pour $\mathsf{\Pi'}$ qui vérifie que le chiffré est bien formé avant de retourner le message clair.

Dans la suite on note $\mathcal{A}' = (\mathcal{A}'_1, \mathcal{A}'_2)$ un attaquant polynomial probabiliste contre la notion de sécurité IND — CPA du schéma Π' dans le modèle de l'oracle aléatoire. À partir de \mathcal{A}' , on construit $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$ un attaquant contre la notion de sécurité IND — CPA du schéma Π comme suit.

$$\frac{\mathcal{A}_{1}(pk)}{1. \ (m_{0}, m_{1}, s) \leftarrow \mathcal{A}'_{1}(pk)} \\
2. \ t_{0}, t_{1} \stackrel{\$}{\leftarrow} \{0, 1\}^{k} \\
3. \ \text{Retourne} \ (m_{0}||t_{0}, m_{1}||t_{1}, s)$$

$$\frac{\mathcal{A}_{2}(c^{*}, s)}{1. \ b' \leftarrow \mathcal{A}'_{2}(c^{*}, s)} \\
2. \ \text{Retourne} \ b'$$

On note b^* le bit choisi lors de l'expérience IND – CPA que joue \mathcal{A} . Soit E l'événement « \mathcal{A}'_2 demande (m_{b^*}, t_{b^*}) à son oracle aléatoire » et F l'événement « \mathcal{A}'_2 demande $(m_{\bar{b}^*}, t_{\bar{b}^*})$ à son oracle aléatoire ».

- (b) Compléter la description de \mathcal{A} pour répondre aux requêtes faites par \mathcal{A}' à son oracle aléatoire. De plus comment \mathcal{A} peut il utiliser ces requêtes pour résoudre l'expérience IND CPA avec un meilleur avantage?
- (c) Que valent les probabilités suivantes $\Pr(\mathbf{Exp}_{\Pi,k}^{\mathsf{IND-CPA}}(\mathcal{A}) = 1|E)$, $\Pr(\mathbf{Exp}_{\Pi,k}^{\mathsf{IND-CPA}}(\mathcal{A}) = 1|(\bar{E} \ \text{et} \ F))$ et $\Pr(\mathbf{Exp}_{\Pi,k}^{\mathsf{IND-CPA}}(\mathcal{A}) = 1|(\bar{E} \ \text{et} \ \bar{F}))$?
- (d) En déduire que

$$\Pr(\mathbf{Exp}_{\Pi,k}^{\mathsf{IND-CPA}}(\mathcal{A}) = 1) - \Pr(\mathbf{Exp}_{\Pi',k}^{\mathsf{IND-CPA}}(\mathcal{A}') = 1) \geqslant -\Pr(\bar{E} \ \text{et} \ F).$$

Conclure.

(e) Adapter ce qui précède pour montrer que Π' est IND-CCA2 dans le modèle de l'oracle aléatoire si Π est IND - CPA.

Partie G. Zémor