LEU+ to HALEU transitions in advanced reactor fuel cycles ORNL Symposium

Nathan Ryan Advanced Reactors and Fuel Cycles

University of Illinois Urbana-Champaign

March 8, 2025

- 1 My Background
- 2 Nuclear Fuel Cycle Fuel Cycle Modeling
- 3 Deployment Schemes
- 4 LEU+ to HALEU
- **6** Conclusion

Sometimes things need to be put side by side, in two nice looking columns. Maybe one column involves a quotation.

Explicit is better than implicit. – The Zen of Python
And, also, perhaps, a logo.

Figure: A caption describing the image. [3].

- 1 My Background
- 2 Nuclear Fuel Cycle Fuel Cycle Modeling
- 3 Deployment Schemes
- 4 LEU+ to HALEU
- **5** Conclusion

Generally, fuel cycles have these steps

*Spent fuel reprocessing is omitted from the cycle in most countries, including the United States.

Figure: Source: Penn State Univ. Radiation Science and Engineering Center (public domain)*

Not all fuel cycles are made equal, and we want options

Concerns about economics, waste generation, proliferation risk, and sustainability motivate the need for fuel cycle options. With metrics like:

- natural resource utilization,
- waste mass/volume,
- special material quantities,
- separative work units,
- and energy production,

we can begin to evaluate the tradeoffs between fuel cycle options.

We use Cyclus to model fuel cycles

Cyclus is an open-source agent-based fuel cycle code allowing for detailed facility and transaction modeling [2].

Source: https://github.com/cyclus/cyclus.github.com/blob/source/source/logos/logo2_transp.png

Cyclus is being used to tackle big questions in fuel cycle modeling

Making facility models more accurate

OpenMCyclus [1] couples Cyclus with OpenMC to model realtime depletion.

Making transaction models more detailed

There is active work to incorporate realistic purchasing agreements and market models into Cyclus.

Identifying realtime diversion or diversion paths

CNTAUR [4] and Pyre [5] format outputs in IAEA code 10 format and model real time diversion, respectively.

Finding advanced reactor impacts on the fuel cycle

We will talk about that today!

- 1 My Background
- 2 Nuclear Fuel Cycle Fuel Cycle Modeling
- 3 Deployment Schemes
- 4 LEU+ to HALEU
- **6** Conclusion

Greedy reactor deployment algorithm

- 1. Initialize demand
- 2: while demand exists do
- 3: Select the largest reactor that does not exceed demand
- 4: Deploy reactors until the next reactor exceeds demand
- 5: Update demand
- 6: end while

Random reactor deployment algorithm

- 1. Initialize demand
- 2: while demand exists do
- 3: Randomly deploy a reactor that does not exceed demand
- 4: Update demand
- 5: end while

${\sf Random} + {\sf greedy} \ {\sf reactor} \ {\sf deployment} \ {\sf algorithm}$

1. Initialize demand 2: while demand exists do Randomly deploy a reactor 3. if demand is exceeded then Δ٠ 5. Remove last reactor if demand still exists then 6. 7: Select the largest reactor that does not exceed demand 8. Deploy until the next reactor exceeds demand Update demand 9: end if 10. end if 11: 12 end while

- 1 My Background
- 2 Nuclear Fuel Cycle Fuel Cycle Modeling
- 3 Deployment Schemes
- 4 LEU+ to HALEU
- 6 Conclusion

What if we can't get HALEU to fuel these advanced reactors?

Figure: Source:

inl.gov/nuclear-reactor-sustainment-and-expanded-deployment/

Could we use LEU+ in the meantime?

We define the enrichment levels as...

These are a mash-up of economic and regulatory definitions.

Table: Enrichment levels and their ranges.

Enrichment Level	Range [% ²³⁵ U]
Natural	< 0.711
LEU	0.711-5
LEU+	5-10
HALEU	10-20
HEU	≥ 20

Our demand for energy is going up

Staggering enrichment could give the supply chain time to develop

The difference is on the order of hundreds of tons

- My Background
- 2 Nuclear Fuel Cycle Fuel Cycle Modeling
- 3 Deployment Schemes
- 4 LEU+ to HALEU
- **5** Conclusion

Fuel cycles modeling is useful for enegy planning and safeguards

We have covered a tiny fraction of what fuel cycle modeling can do, but there is so much more to do. In our simple case, we transition from LEU+ to HALEU after 10 years of operation.

- For the Xe100 reactors, we need almost 315 less tons of HALEU.
- For the MMR reactors, we need almost 97 less tons of HALEU.

Next we need to characterize what the cost of this transition would be.

Acknowledgement

Acknowledgements should include both people who helped and funding streams. If you are funded by an NEUP grant, that number usually goes here. \cdot

- Oleksandr Yardas Amanda M. Bachmann and Madicken Munk. An open-source coupling for depletion during fuel cycle modeling. Nuclear Science and Engineering, 0(0):1–14, 2024.
- [2] Kathryn D. Huff, Matthew J. Gidden, Robert W. Carlsen, Robert R. Flanagan, Meghan B. McGarry, Arrielle C. Opotowsky, Erich A. Schneider, Anthony M. Scopatz, and Paul P. H. Wilson.

Fundamental concepts in the Cyclus nuclear fuel cycle simulation framework. *Advances in Engineering Software*, 94:46–59, April 2016. arXiv: 1509.03604.

- [3] Mr. Mistopheles.

 The title of a great paper about kittens.

 Journal of Cats and Kittens. 2011.
- [4] Kathryn Mummah, Daniel Jackson, John Oakberg, Kenneth Apt, and Vlad Henzl. Advanced Algorithms for Scrutiny of Mandatory State Reports Declarations to the IAEA (Final Project Report). Technical Report LA-UR-24-24919, 2352690, Los Alamos National Lab. (LANL), Los Alamos, NM (United States), May 2024.

References II

[5] Greg T. Westphal.

Modeling special nuclear material diversion from a pyroprocessing facility. text, University of Illinois at Urbana-Champaign, December 2019.

Know how to code?

Consider volunteering as a TA or mentor in the Computational Resource Access NEtwork (CRANE) so we can support more students!

Go to our website: https://www.cranephysics.org