
Sequence Listing was accepted with existing errors.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Thu Jul 26 17:07:13 EDT 2007

Validated By CRFValidator v 1.0.2

Application No: 10538071 Version No: 1.1

Input Set:

Output Set:

Started: 2007-07-26 17:06:44.142 **Finished:** 2007-07-26 17:06:44.618

Elapsed: 0 hr(s) 0 min(s) 0 sec(s) 476 ms

Total Warnings: 5
Total Errors: 1

No. of SeqIDs Defined: 8
Actual SeqID Count: 8

Error code		Error Description
W	213	Artificial or Unknown found in <213> in SEQ ID (4)
W	213	Artificial or Unknown found in <213> in SEQ ID (5)
W	213	Artificial or Unknown found in <213> in SEQ ID (6)
Е	330	Invalid protein , found in SEQID(6) POS (5) Invalid Protein: Asx
W	213	Artificial or Unknown found in <213> in SEQ ID (7)
W	213	Artificial or Unknown found in <213> in SEQ ID (8)

SEQUENCE LISTING

<110>	Camargo, Antonio C.M. Hayashi, Mirian A.F. Portaro, Fernanda C.V. Guerreiro, Juliano R.										
<120>	PROCESS FOR THE DETERMINATION OF THE PRIMARY STRUCTURE OF THE MESSANGE RNA CODING FOR THE HUMAN RECOMBINANT ENDOOLIGOPEPTIDASE A (HEOPA) [AF217798]										
<130>	4705-0111PUS1										
<140> <141>	10/538,071 2006-05-04										
	BR0205000-5										
<151>	2002-12-09										
<150>	BR0305688-0										
<151>	2003-12-05										
<160>	8										
<170>	PatentIn version 3.3										
<210>	1										
<211>	2179										
<212>	DNA										
<213>	Oryctolagus cuniculus										
<400>	1										
cctgac	tgt cggggaggag ccgggtgccg aggtgcgcgg agtggagctc agggctgcgg 60										
agggaag	regg agetgagegg etggggegge etggeeagge eageggaget gaggegtegg 120										
tcagcco	gcg gcgaacatgc gcttttgaca cattggaggc tttcttgatc atggatggtg 180										
aagatat	acc agatttttca agtttaaagg aggaaactgc ttattggaag gaactttcct 240										
tgaagta	taa gcaaacgttc caggaagctc gggatgagct agttgaattc caggaaggaa 300										
gcagaga	att agaagcagag ttggaggcac aattagtaca ggctgaacaa agaaatagag 360										
acttgca	agc tgataaccaa agactgaaat atgaagtgga ggcgctaaag gagaaactgg 420										
aacatca	gta cgcacagagc tacaagcagg tttccgtatt agaagatgat ttaagtcaga 480										
ctcggg	cat taaggagcag ttgcacaagt acgtgaggga gctggagcag gccaatgatg 540										
acctgga	gcg agcaaaaagg gcaacaatag tttcactgga agactttgaa caaaggctaa 600										
atcaggo	cat agaacggaat gcatttttag aaagtgaact tgatgaaaag gaatctttgt 660										
tggtct	tgt acagcggtta aaggatgaag caagagattt gaggcaagaa ctagcagtcc 720										

gagaaagaca acaggaagtg accagaaagt cggctcctag ttctccaact ctagactgtg 780

aaaagatgga ttctgctgta	caagcatcac	tttccttgcc	agctacacct	gttggcaaag	840
ggacagaaaa cagttttcct	tccccaaaag	ctataccaaa	tggttttggt	accagtccac	900
taactccttc ggccaggata	tcagcgctaa	acattgtggg	ggatctctta	cggaaagtag	960
gggctttaga atccaaatta	gcagcttgca	ggaattttgc	aaaggaccaa	gcatcacgga	1020
aatcctatat ttcagggaat	gttaactgtg	gggtgatgaa	cagcaacggc	acaaagttct	1080
ctcgatcagg gcatacatct	ttcttcgaca	aaggggcagt	aaatggcttt	gacccagctc	1140
ctcctcctcc tggcctgggc	tectegegee	cgttgtcagc	acccggtatg	ctgccgctca	1200
gtgtgtgagt gcccggcctc	cggggctcct	gccctcctcc	aacaacccag	gacacccacg	1260
cctcacccct cggtgcctgg	gcccagccct	gtgcccctcc	atctgcctcc	ccacacggct	1320
ggcagagggc aggctgcatg	cagtggcggt	gcttcggccc	tgcccagccc	caggactctg	1380
cgcgatatca atactggcta	ttttctcttc	tcgccgtagt	gccgttggtt	tcacatgatt	1440
gcacttttgt gggtcacgag	gtgatacata	cttgtattac	ttggtcactg	gatgcagaag	1500
tacccatttg tcatccctgc	ctcatagccc	ccgccctgct	gtactgatag	gatttagttg	1560
tgtttaggac attgcgaatc	ttctacaagt	tctcccccaa	tcaggttgac	acataccctc	1620
ctcctgagcc ccccgagccc	cctgggcgcc	ctcagtgctc	acgatcatgt	gtttcccggc	1680
cctaccccca gtctgggccc	gttactgcca	ggagtcagga	aggtcgctga	gttagggaat	1740
attgtctgta ctctcgtttt	acgtagcagt	tccatccata	gactgcctcc	agagcagtga	1800
aacgccatgc tgagccccct	ggcaggagcc	tcgtgcctgg	gcacgcacgg	gctgagcctc	1860
aggccatctc ctcctccatg	tgcctcagac	tcgggggagg	ggtgacggcg	tccgtgccag	1920
tgtcctgtgc atcctttgat	tactctcatg	ctgcatttac	tgtttacatt	tgttttattg	1980
tacataggtt tgtaaacatt	attgcctaag	atatttgtat	ataacttggg	ctttgtagct	2040
tttatttatt cagaactcat	atggcatgtt	aatgactccc	gatggtgtcc	tactctgggc	2100
agctgtatag gatcatcatg	tggttaaaaa	accagttccc	tcaaaaaaaa	tcttttaatg	2160
tggaaacaat aaatttcac					2179

<210> 2

<211> 2393

<212> DNA

<213> Homo sapiens

tacgctgagt	ggagctcggg	gctgcgtagg	ggagctgagc	cgagcggctg	ggcgggcctg	120
gccgggccag	cggagggag	acgtcggttg	agcggcggcg	aacatgcgct	tttgacacat	180
tggaggcttt	cttgatcatg	gatggtgaag	atataccaga	tttttcaagt	ttaaaggagg	240
aaactgctta	ttggaaggaa	ctttccttga	agtataagca	aagcttccag	gaagctcggg	300
atgagctagt	tgaattccag	gaaggaagca	gagaattaga	agcagagttg	gaggcacaat	360
tagtacaggc	tgaacaaaga	aatagagact	tgcaggctga	taaccaaaga	ctgaaatatg	420
aagtggaggc	attaaaggag	aagctagagc	atcaatatgc	acagagctat	aagcaggtct	480
cagtgttaga	agatgattta	agtcagactc	gggccattaa	ggagcagttg	cataagtatg	540
tgagagagct	ggagcaggcc	aacgacgacc	tggagcgagc	caaaagggca	acaatagttt	600
cactggaaga	ctttgaacaa	aggctaaacc	aggccattga	acgaaatgca	tttttagaaa	660
gtgaacttga	tgaaaaggaa	tctttgttgg	tctctgtaca	gaggttaaag	gatgaagcaa	720
gagatttaag	gcaagaacta	gcagttcggg	aaagacaaca	ggaagtaact	agaaagtcgg	780
ctcctagctc	tccaactcta	gactgtgaaa	agatggactc	cgccgtacaa	gcatcacttt	840
ctttgccagc	tacccctgtt	ggcaaaggaa	cggagaacac	ttttccttca	ccgaaagcta	900
taccaaatgg	ttttggtacc	agtccactaa	ctccctctgc	taggatatca	gcactaaaca	960
tcgtggggga	tctcttacgg	aaagtagggg	ctttagaatc	caaattagca	gcttgcagga	1020
attttgcaaa	ggaccaagca	tcacgaaaat	cctatatttc	agggaatgtt	aactgtgggg	1080
tgctgaatgg	caatggcaca	aagttctctc	gatcagggca	tacatctttc	ttcgacaaag	1140
gggcagtaaa	cggctttgac	cccgctcctc	ctcctcctgg	tetgggetee	tcgcgtccat	1200
cgtcagcgcc	gggtatgctg	cctctcagtg	tgtgagtgcc	tagcctccag	gtgggggctc	1260
ctgccctcct	ccaacaaccc	aggacaccca	cgcctcaccc	ctcggtgcct	gggcccagcc	1320
ccgtgcccct	ccgtctgcct	ccgcacggct	ggcagagggc	aggctgcatg	cagtggcggc	1380
tactgggccc	tgcccagccc	cggaactctg	cgcgatatca	atactggcta	ttttctcttc	1440
tcgccgtagt	gccgttggtt	tcacatgatt	gcacttttgt	gggtcgcaag	gtgatacata	1500
cgtgtattac	ttggtcactg	gatgcagaag	tacccattca	tcacacctgc	cccatagccc	1560
ccactctgct	gtactgatag	gatttagttg	tgttttagga	cattgcaaat	cttctagaag	1620
ttctccccca	aatcaggtca	atgtgtgccc	tcctgagctc	ccacccaggc	atctccagtg	1680
ctcatgatca	tgtgtcccc	aactccaccc	ctcacagttt	gggcctgttt	ctggcaaaga	1740

gtcaggaagg	ttactgaatt	agggaacatt	ttctgcacct	tctgatttta	cttaagcagc	1800
taccattcca	tggacttgcc	tcccagagca	gcacaatgcc	cgtctgagcc	ccacgtggca	1860
ggagcctctg	ggacggggca	cacacaggcc	cagcctctgt	gctgtctcct	cctctgtgcg	1920
cctcagactc	ggggtgaggg	aggcgggcag	cctctcgcca	gccttcccgt	ccttcagttc	1980
aacgacatct	ttggagtgtt	tttgttttct	cttccaaggg	ccgtcccgtt	gtgttaggaa	2040
gggtgagtgg	ctggttccag	ggtgggccgg	tgccagctcc	ggggtggact	gaacagcggc	2100
ggctgtccct	gtgcatcctt	tgattactct	catgctgcat	ttactgttta	catttgtttt	2160
attgtacata	ggtttgtaaa	cattattgcc	tgagatattt	gtatataact	tgggctttgt	2220
agcttttatt	tattcagaac	gcatacggca	tgttaatgac	tctgatggtg	tectectetg	2280
ggcagctgta	taggatcatc	atgtggttac	aaaaaatact	tccctcaaaa	aaattctttt	2340
aatgtggaaa	caataaattt	cacagaaaaa	aaaaaaaaa	aaaaaaaaa	aaa	2393

<210> 3

<211> 345

<212> PRT

<213> Homo sapiens

<400> 3

Met Asp Gly Glu Asp Ile Pro Asp Phe Ser Ser Leu Lys Glu Glu Thr
1 5 10 15

Ala Tyr Trp Lys Glu Leu Ser Leu Lys Tyr Lys Gln Ser Phe Gln Glu 20 25 30

Ala Arg Asp Glu Leu Val Glu Phe Gln Glu Gly Ser Arg Glu Leu Glu 35 40 45

Ala Glu Leu Glu Ala Gln Leu Val Gln Ala Glu Gln Arg Asn Arg Asp 50 55 60

Leu Gln Ala Asp Asn Gln Arg Leu Lys Tyr Glu Val Glu Ala Leu Lys 65 70 75 80

Glu Lys Leu Glu His Gln Tyr Ala Gln Ser Tyr Lys Gln Val Ser Val 85 90 95

Leu Glu Asp Asp Leu Ser Gln Thr Arg Ala Ile Lys Glu Gln Leu His 100 105 110

Lys Tyr	Val 115	Arg	Glu	Leu	Glu	Gln 120	Ala	Asn	Asp	Asp	Leu 125	Glu	Arg	Ala
Lys Arg 130	Ala	Thr	Ile	Val	Ser 135	Leu	Glu	Asp	Phe	Glu 140	Gln	Arg	Leu	Asn
Gln Ala 145	Ile	Glu	Arg	Asn 150	Ala	Phe	Leu	Glu	Ser 155	Glu	Leu	Asp	Glu	Lys 160
Glu Ser	Leu	Leu	Val 165	Ser	Val	Gln	Arg	Leu 170	Lys	Asp	Glu	Ala	Arg 175	Asp
Leu Arg	Gln	Glu 180	Leu	Ala	Val	Arg	Glu 185	Arg	Gln	Gln	Glu	Val 190	Thr	Arg
Lys Ser	Ala 195	Pro	Ser	Ser	Pro	Thr 200	Leu	Asp	Cys	Glu	Lys 205	Met	Asp	Ser
Ala Val 210	Gln	Ala	Ser	Leu	Ser 215	Leu	Pro	Ala	Thr	Pro 220	Val	Gly	Lys	Gly
Thr Glu 225	Asn	Thr	Phe	Pro 230	Ser	Pro	Lys	Ala	Ile 235	Pro	Asn	Gly	Phe	Gly 240
Thr Ser	Pro	Leu	Thr 245	Pro	Ser	Ala	Arg	Ile 250	Ser	Ala	Leu	Asn	Ile 255	Val
Gly Asp	Leu	Leu 260	Arg	Lys	Val	Gly	Ala 265	Leu	Glu	Ser	Lys	Leu 270	Ala	Ala
Cys Arg	Asn 275	Phe	Ala	Lys	Asp	Gln 280	Ala	Ser	Arg	Lys	Ser 285	Tyr	Ile	Ser
Gly Asn 290	Val	Asn	Cys	Gly	Val 295	Leu	Asn	Gly	Asn	Gly 300	Thr	Lys	Phe	Ser
Arg Ser 305	Gly	His	Thr	Ser 310	Phe	Phe	Asp	Lys	Gly 315	Ala	Val	Asn	Gly	Phe 320
Asp Pro	Ala	Pro	Pro 325	Pro	Pro	Gly	Leu	Gly 330	Ser	Ser	Arg	Pro	Ser 335	Ser

```
Ala Pro Gly Met Leu Pro Leu Ser Val
           340
                             345
<210> 4
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic peptide
<400> 4
Gly Phe Ala Pro Phe Arg Gln
              5
<210> 5
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic peptide
<400> 5
Arg Pro Pro Gly Phe Ser Pro Phe Arg
<210> 6
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic peptide
<400> 6
Glu Leu Tyr Glu Asx Lys Pro Arg Arg Pro Tyr Ile Leu
              5
                                 10
1
<210> 7
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic peptide
<400> 7
```

Tyr Gly Gly Phe Leu

```
<210> 8
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 8

Tyr Gly Gly Phe Met
```