

#### Redes de Computadores

Módulo 3 - Protocolos de Ligação (HDLC e outros)

Universidade do Minho Grupo de Comunicações por Computador Departamento de Informática



- Protocolo HDLC (High-level Data Link Control)
  - norma da ISO (ISO 3309, 4335) para uso em ligações PP e MP
  - outros protocolos de ligação (LLC, PPP) derivam do HDLC
  - orientado ao bit; muito usado em redes de computadores
- O HDLC suporta
  - estações: primárias, secundárias e mistas (combinadas)
  - configurações: não balanceada e balanceada (tb. HDX e FDX)
  - modos de operação:
    - Normal Response Mode (NRM) (n\(\tilde{a}\)o balanceado)
    - Asynchronous Response Mode (ARM) (não balanceado)
    - Asynchronous Balanced Mode (ABM) (balanceado)



HDLC: modos de operação

#### NRM

 a estação primária pode iniciar a transferência de dados; a secundária apenas pode transmitir com um comando específico da primária

exemplo: ligações computador-terminal/periférico

#### ARM

 a estação secundária pode iniciar a transmissão sem receber qualquer solicitação da estação primária.
 exemplo: ligação computador-periférico onde este necessite tomar a iniciativa.

#### ABM

 qualquer estação pode tomar a iniciativa na transmissão exemplo: ligações computador-computador (é o mais usado)



HDLC: definição da trama

- Estrutura das trama HDLC
  - as mensagens de controlo e os dados são transportadas em tramas de formato único e normalizado
    - flag: 8 bits de padrão de alinhamento de trama: 01111110
    - endereço: um ou mais octetos
    - control: um ou dois octetos (formato normal ou extendido)
    - dados: campo de informação de tamanho variável
    - FCS: Frame Check Sequence (16 ou 32 bits, método CRC)



Universidade do Minho 4

HDLC: transparência, bit stuffing



- O protocolo HDLC usa a técnica de bit stuffing para obter transparência dos dados, isto é, para evitar que um possível padrão 01111110 dentro da trama seja tomado como flag.
- É inserido um **0** após cinco **1** consecutivos
- O receptor retira cada 0 que suceda a cinco 1 consecutivos

#### **Exemplo**

• após bit-stuffing é transmitido:



HDLC: verificação de erros

- Frame Check Sequence (FCS)
  - é calculado sobre toda a trama, exceptuando as *flags*
  - pode ser usado CRC-16 ou CRC-32 de acordo com o tamanho das tramas ou a fiabilidade da linha (Bit Error Rate, BER):

CRC-16:  $x^{16}+x^{12}+x^5+1$ 

CRC-32:  $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$ 

HDLC: endereçamento





- O conteúdo do campo endereço varia com o modo de operação; suporta endereços de grupo ou difusão
- Normalmente 8 bits mas suporta um formato estendido
- O primeiro bit indica se o octeto corrente do endereço é o último (=1) ou se lhe seguem outros (=0)

HDLC: campo de control





N(S) = número de sequência de envio (Send) N(R) = número de sequência de recepção (Receive)

S = bits da função Supervisora

M = bits da função não-numerada P/F = bit *Poll/*Final

HDLC: tipos de trama



- Tipos de tramas (I, S, U):
  - (I) informação usadas para transporte de dados do utilizador
  - (S) supervisão usadas para controlo de fluxo e de erros
  - (U) não-numeradas usadas para inicializar/terminar a ligação
- As tramas são também classificadas como *comando* ou *resposta*
- Formato do campo de control normal para cada tipo de trama:



HDLC: tipos de trama



- Tramas de informação
  - o campo de dados é passado de/para o nível protocolar superior
  - N(S) número sequencial da trama corrente enviada
  - N(R) número sequencial da próxima trama esperada receber

O campo N(R) possibilita, à estação que envia, a confirmação implícita de tramas I recebidas - confirmação em **piggyback** 

• O bit P/F (Poll/Final) é usado para efectuar o *poll* de uma estação forçando-a a uma resposta

[Obs: não é o mesmo que o Poll de acesso à linha mencionado no Cap 2]

# Universidade do Minho Escola de Engenharia Departamento de Informática

HDLC: tipos de trama

- Tramas de supervisão
  - **RR** N(R) (*Receiver Ready*)
    - usadas na impossibilidade de fazer *piggyback*
    - confirmação mais rápida
  - RNR (Receiver Not Ready)
    - indicam indisponibilidade temporária para a recepção de tramas I
  - **REJ** N(R) ou **SREJ** N(R)
    - retransmissão a partir da trama N(R) ou retransmissão selectiva da trama N(R)
  - não contêm informação do utilizador (nível superior)
  - usadas unicamente na fase de transferência de dados



HDLC: tipos de trama

- Tramas não-numeradas (exemplos)
  - SABM/SABME (set asynchronous balanced mode/extended);
     SNRM/SNRME (set normal response mode/extended);
     SARME (set asynchronous response mode/extended);
    - comandos que inicializam a ligação lógica e estabelecem o modo de operação
  - DISC
    - termina a ligação lógica
  - UA (Unnumbered Ack)
    - confirma o estabelecimento ou terminação da ligação

• ...



HDLC: codificação do campo de control

| П | Código no campo de control |   |      |   |     |   |      | Com/ |      |       |                    |
|---|----------------------------|---|------|---|-----|---|------|------|------|-------|--------------------|
| Ш | 1                          | 2 | 3    | 4 | 5   | 6 | 7    | 8    | Resp | Trama | Descrição          |
| I | 0                          | _ | N(S) | _ | P/F | _ | N(R) | -    | C/R  | I     | Informação         |
| S | 1                          | 0 | 0    | 0 | P/F | _ | N(R) | -    | C/R  | RR    | Receive Ready      |
| П | 1                          | 0 | 0    | 1 | P/F | _ | N(R) | -    | C/R  | REJ   | Reject             |
| П | 1                          | 0 | 1    | 0 | P/F | _ | N(R) | _    | C/R  | RNR   | Receive not ready  |
| Ш | 1                          | 0 | 1    | 1 | P/F | _ | N(R) | -    | C/R  | SREJ  | Selective reject   |
| U | 1                          | 1 | 0    | 0 | P/F | 0 | 0    | 0    | C/R  | UI    | Unnumbered info    |
| П | 1                          | 1 | 0    | 0 | P   | 0 | 0    | 1    | C    | SNRM  | Set NRM mode       |
| Ш | 1                          | 1 | 0    | 0 | P   | 0 | 1    | 0    | C    | DISC  | Disconnect         |
| Ш | 1                          | 1 | 0    | 0 | F   | 0 | 1    | 0    | R    | RD    | Request disconnect |
| Ш | 1                          | 1 | 0    | 0 | F   | 1 | 0    | 0    | R    | UP    | Unnumbered poll    |
| Ш | 1                          | 1 | 0    | 0 | F   | 1 | 1    | 0    | R    | UA    | Unnumbered ack     |
| Ш | 1                          | 1 | 0    | 1 | P/F | 0 | 0    | 0    | C/R  |       | Nonreserved 0      |
| П | 1                          | 1 | 0    | 1 | P/F | 0 | 0    | 1    | C/R  |       | Nonreserved 1      |
| П | 1                          | 1 | 0    | 1 | P/F | 0 | 1    | 0    | C/R  |       | Nonreserved 2      |
| П | 1                          | 1 | 0    | 1 | P/F | 0 | 1    | 1    | C/R  |       | Nonreserved 3      |
| Ш | 1                          | 1 | 1    | 0 | P   | 0 | 0    | 0    | C    | SIM   | Set init mode      |
| Ш | 1                          | 1 | 1    | 0 | F   | 0 | 0    | 0    | R    | RIM   | Request init mode  |
| Ш | 1                          | 1 | 1    | 0 | F   | 0 | 0    | 1    | R    | FRMR  | Frame reject       |
| Ш | 1                          | 1 | 1    | 1 | P   | 0 | 0    | 0    | C    | SARM  | Set ARM mode       |
| Ш | 1                          | 1 | 1    | 1 | F   | 0 | 0    | 0    | R    | DM    | Disconnect mode    |
| П | 1                          | 1 | 1    | 1 | P   | 0 | 0    | 1    | C    | RSET  | Reset              |
| П | 1                          | 1 | 1    | 1 | P   | 0 | 1    | 0    | C    | SARME | Set ARM extended   |
|   | 1                          | 1 | 1    | 1 | P   | 0 | 1    | 1    | C    | SNRME | Set NRM extended   |
|   | 1                          | 1 | 1    | 1 | P   | 1 | 0    | 0    | C    | SABM  | Set ABM mode       |
|   | 1                          | 1 | 1    | 1 | P/F | 1 | 0    | 1    | C/R  | XID   | Exchange identific |
|   | 1                          | 1 | 1    | 1 | F   | 1 | 1    | 0    | C    | SABME | Set ABM extended   |

HDLC: operação





d) Recuperação de Reject

HDLC: operação





e) Recuperação de Timeout

HDLC: parâmetros do protocolo



- T1: Timeout(FRACK), tempo máximo de espera por um ACK antes de retransmitir a trama
- T2: Timeout(ResponseTime), tempo de espera entre a recepção de uma trama-I e o envio do ACK (RR,RNR,REJ)
- T3: Timeout(CHECKTime), tempo máximo de inactividade antes de enviar um *poll* para testar a ligação
- T4: Timeout(DisconnectTime), tempo máximo de inactividade antes de terminar automaticamente a ligação
- N1: comprimento máximo das tramas
- N2: número máximo de retransmissões de uma trama
- K: abertura da janela de controlo de fluxo

HDLC: operação (exemplo)



Exercício: diagrama temporal?

Traço visualizado no interface serial0/0 do router-ext:

```
1w2d: SerialO/0: LAPB O SABMSENT (2) SABM P
1w2d: SerialO/0: LAPB I SABMSENT (2) SABM P
1w2d: Serial0/0: LAPB O CONNECT (2) UA F
1w2d: Serial0/0: LAPB I CONNECT (2) UA F
1w2d: Serial0/0: LAPB I CONNECT (54) IFRAME 0 0
1w2d: Serial0/0: LAPB I CONNECT (66) IFRAME 1 0
1w2d: Serial0/0: LAPB O CONNECT (2) RR (R) 2
1w2d: Serial0/0: LAPB O CONNECT (66) IFRAME 0 2
1w2d: Serial0/0: LAPB I CONNECT (2) RR (R) 1
1w2d: Serial0/0: LAPB I CONNECT (174) IFRAME 2 1
1w2d: Serial0/0: LAPB O CONNECT (2) RR (R) 3
1w2d: Serial0/0: LAPB I CONNECT (70) IFRAME 3 1
1w2d: Serial0/0: LAPB O CONNECT (54) IFRAME 1 4
```

HDLC: operação (diagrama exemplo)





HDLC: primitivas de serviço



 O serviço de ligação prestado à camada protocolar superior é feito por funções designadas <u>primitivas de serviço</u> (*request, confirm e indication*)





HDLC: interação de serviço com camada superior





HDLC: Especificação do protocolo por máquina de estados



Outros protocolos de ligação: LAPB



- LAPB: Link Access Procedure, Balanced
  - subconjunto do HDLC operando em modo ABM
  - usado em links PP de acesso a redes alargadas (WAN):
    - o lado da rede é o DCE e o lado do assinante é o DTE
  - ex: usado como nível 2 do protocolo X.25
  - tanto o DCE como o DTE são estações mistas podendo actuar como primárias ou como secundárias no estabelecimento de uma ligação lógica. As tramas utilizadas são:

| Tipo trama   | Comandos | Respostas |
|--------------|----------|-----------|
| Informação   | I        |           |
| Supervisão   | RR       | RR        |
|              | RNR      | RNR       |
|              | REJ      | REJ       |
| Não-numerada | SABM     | UA        |
|              | DISC     | DM        |
|              |          | FRMR      |

#### Outros protocolos de ligação: LAPB



- utilização do bit P/F
  - numa trama de comando o bit P/F é P=1|0 indicando se é exigida uma resposta ou não
  - numa trama de resposta o bit P/F é F=1|0 indicando se é uma resposta a um comando com P=1 ou não
  - uma trama de resposta com F=1 é a resposta a uma trama de comando transmitida com P=1

| Trama de comando enviada com P=1 | Trama de resposta<br>devolvida com F=1 |
|----------------------------------|----------------------------------------|
| SABM/SABME                       | UA, DM                                 |
| I                                | RR, REJ, RNR, FRMR                     |
| RR, REJ, RNR                     | RR, REJ, RNR, FRMR                     |
| DISC                             | UA, DM                                 |

#### Outros protocolos de ligação: LLC



- Logical Link Control (LLC)
  - normalizado pelo IEEE 802.2, semelhante ao HDLC mas
    - formato do LLC-PDU é distinto do HDLC-PDU porque
    - é usado para efectuar uma ligação lógica servida por uma camada MAC (*Medium Access Layer*),i.e., o LLC opera sobre um nível MAC, por exemplo IEEE 802.3
  - a detecção de erros é efectuada no nível MAC (CRC-32)
  - opera com estações *mistas*
  - usa 2 endereços: emissor e receptor designados por:
    - Destination- Link Service Access Points (D-LSAP) e
    - Source- Link Service Access Point (S-LSAP)
  - Ver : LAN / Ethernet (módulo 4)



Outros protocolos de ligação: LLC, PDU e campo de control



N(S) = número de sequência de envio (Send) N(R) = número de sequência de recepção (Receive) S = bits da função Supervisora M = bits da função Modificadora P/F = bit *Poll/*Final

Formatos do campo de control (normal e estendido)

Outros protocolos de ligação: LAPD



- LAPD: Link Access Procedure, D-Channel
  - um acesso básico RDIS usa
    - 2 canais B de 64 Kbps cada para transmissão de dados
    - 1 canal D de 16 Kbps para control da ligação
    - no canal D opera o LAPD
  - o LAPD é um subconjunto do LAPB
  - é o protocolo nível 2 da pilha RDIS (ITU-T Q.920/921)
  - usa sempre 7 bits para sequenciação (não permite 3 bits)
  - usa endereços de 16 bits



Outros protocolos de ligação: Frame Relay

- Frame Relay
  - usado em redes de comutação de pacotes para débitos elevados
  - protocolo de ligação que veio substituir o X.25
  - usa o Link Access Procedure for Frame-Mode Bearer Services (LAPF)
  - ABM; sequenciação com 7-bits e CRC com 16 bits
  - endereçamento com 2, 3 ou 4 octetos
  - Data Link Connection Identifier (DLCI) identifica uma conexão lógica entre um sistema origem e um sistema destino (switching das conexões lógicas occorre ao nível dois)

#### Outros protocolos: ATM



- Asynchronous Transfer Mode (ATM)
  - orientado à conexão (CO), usado em redes de alto débito
  - **não é** baseado em HDLC
  - as conexões designam-se circuitos virtuais
  - definem-se caminhos virtuais (Virtual Path) entre estações
  - definem-se circuitos virtuais (Virtual Circuits) dentro de VPs identificados por VPI e VCI (virtual path identifier/virtual circuit identifier)
  - as tramas são denominadas <u>células</u>
  - uma célula tem um comprimento fixo de 53 Bytes (5 cabeçalho + 48 dados)
    - Tecnologia orientada à conexão, baseada na comutação muito rápida de pequenas unidades de informação de tamanho fixo chamadas células.
  - normalização ex: interfaces a 155 e 622 Mbps