ИДЗ № 3

Задача 1. Найти и изобразить на плоскости ХОУ область определения функции (0,5 б)

1.
$$z = \sqrt{(x^2 + y^2 - 4)(9 - x^2 - y^2)}$$

2.
$$z = \frac{\ln x}{\sqrt{9-x^2-y^2}}$$

3.
$$z = \arccos(x^2 + y^2 - y + 1) + \frac{1}{\sqrt{y-x}}$$

4.
$$z = \frac{\sqrt{x - \sqrt{y}}}{\sqrt{3 - x^2 - y^2}}$$

5.
$$z = \sqrt{x^2 + y^2 - 2x} - \sqrt{4 - x^2 - y^2}$$

6.
$$z = \sqrt{4x + 4 - y^2} \cdot \ln(4 - x^2 - y^2)$$

7.
$$z = arc\sin(x+y) + \sqrt{9-x^2-y^2}$$

8.
$$z = \frac{1}{y} + \sqrt{(x^2 - y^2 - 1)(4 - x^2 - y^2)}$$

9.
$$z = \frac{\ln(x+y)}{\sqrt{25-x^2-y^2}}$$

$$10. z = \arcsin(1 - x^2) + \arccos\frac{y}{x^2}$$

11.
$$z = \arcsin(x^2 + y^2 - 2x + 1) + \frac{1}{\sqrt{2x - y}}$$

12.
$$z = \sqrt{x^2 + y^2 - 4y} - \sqrt{16 - x^2 - y^2}$$

13.
$$z = \frac{\ln(1-x^2-y^2)}{\sqrt{x^2-y}}$$

14.
$$z = \sqrt{4y + 4 - x^2} \cdot \ln(4 - x^2 - y^2)$$

15.
$$z = arcsin \frac{x}{\sqrt{x^2+y^2}}$$

16.
$$z = \sqrt{1 - x^2 - y^2} - \frac{1}{\sqrt{25 - x^2 - y^2}}$$

17.
$$z = \ln(y^2 - 4x + 8) + \sqrt{16 - x^2 - y^2}$$

18.
$$z = \frac{\ln(x^2 + y)}{\sqrt{4 - 2x^2 - y}} + \frac{y}{x^2}$$

19.
$$z = \sqrt{\ln \frac{4}{x^2 + y^2}} - \sqrt{x^2 + y^2 - 4}$$

20.
$$z = arccos(x^2 + y^2 - 4y + 1) + \frac{1}{\sqrt{x}}$$

21.
$$z = (x - \sqrt{16 - x^2 - y^2}) \ln(x^2 - y^2 - 1)$$

22.
$$z = \frac{\sqrt{2y+16-x^2}}{x \cdot \ln(25-x^2-y^2)}$$

$$23. z = \arccos \frac{y}{\sqrt{x^2 + y^2}}$$

24.
$$z = \arcsin(x^2 + y^2 - 4x - 1) + \frac{1}{\sqrt{y}}$$

25.
$$z = \sqrt{x^2 - y^2 + 1} + ln(4 - x^2 - y^2)$$

26.
$$z = \ln(\cos x - y) + \sqrt{y - x^2 + \frac{9\pi^2}{4}}$$

Задача 2. Найти дифференциал первого порядка и второго порядка функции z(x,y) в заданной точке M (0,5 б)

1.
$$z = e^{x-2y} + x^2y^3 - xy^2$$
; $M(2; 1)$

2.
$$z = ln(x + 3y) + xy^3 - x^2y^2$$
; $M(2; 1)$

3.
$$z = \sqrt{2x + 3y} - 3xy^2$$
; $M(5; 2)$

4.
$$z = x^3y^2 + \sqrt{2xy - 2}$$
; $M(3; 1)$

5.
$$z = x^2 + y^2x + ln(1 + 2x + y); M(1; 2)$$

6.
$$z = x^3y^2 - 3x + \sqrt{3 + x^2y}$$
; $M(1; 1)$

7.
$$z = e^x \ln y - yx^4$$
; $M(1; e)$

8.
$$z = xy + (2x + y^2)^3$$
; $M(1; -1)$

9.
$$z = 3x \cdot \sqrt{2y+1} - 4xy^2$$
; $M(1;4)$

10.
$$z = x \cdot \sqrt{y} + x^2y + 3x - 5$$
; $M(1; 4)$

11.
$$z = e^{3x-y} + x^4y^2 - 2xy + x$$
; $M(1;3)$

12.
$$z = ln(2x - y) + 3\sqrt{x} - xy^2$$
; $M(1; 1)$

13.
$$z = \sqrt{6x - 3y} + x^2y^5 - 3y$$
; $M(2; 1)$

14.
$$z = xy^3 + y^2 + \sqrt{5xy^2 - 1}$$
; $M(1; 1)$

15.
$$z = xy^2 - 9y^3x + ln(5y - 3x); M(-1; 1)$$

16.
$$z = yx^3 + xy^2 + \sqrt{5 - x^2y}$$
; $M(1; 1)$

17.
$$z = e^{y-1} \cdot ln(x+1) - y^2x + 2x; \quad M(1;1)$$

18.
$$z = x^4y + (x^2 - y)^4$$
; $M(1; 3)$

19.
$$z = y^3 \cdot \sqrt{4x + 5} - 3xy$$
; $M(1; 3)$

20.
$$z = x^2 \cdot \sqrt{y-1} + xy^3 + 3y$$
; $M(1; 2)$

21.
$$z = e^{5y-2x} + xy^4 - x^2y$$
; $M(5; 2)$

22.
$$z = ln(4x - 3y) + x^2y^2 - 3y^2$$
; $M(1; 1)$

23.
$$z = \sqrt{7x + 3y} + 2x - 3xy$$
; $M(1; -1)$

24.
$$z = xy^2 - 2x + \sqrt{xy^2 + 2}$$
; $M(2; 1)$

25.
$$z = x^4y - 3yx + ln(7x - 5y); M(1; 1)$$

26.
$$z = x^5y^4 + 2x^2 + \sqrt{9 - xy^3}; M$$
 (1; 2)

Задача 3. (0,5 б)

1. Дана функция
$$z = x e^{\frac{y}{x}}$$
. Показать, что $x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} = 0$.

2. Дана функция
$$z = \ln(x + e^{-y})$$
. Показать, что $\frac{\partial z}{\partial x} \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial z}{\partial y} \frac{\partial^2 z}{\partial x^2} = 0$.

3. Дана функция
$$z=arctg\frac{x}{y}$$
. Показать, что $\frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2}=0$.

4. Дана функция
$$z = \sqrt{xy} \ e^{\frac{x}{y}}$$
. Показать, что $x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} = 0$.

5. Дана функция
$$z = \sin^2(y - ax)$$
. Показать, что $\frac{\partial^2 z}{\partial x^2} - a^2 \frac{\partial^2 z}{\partial y^2} = 0$.

6. Дана функция
$$z = \ln(x^2 + y^2 + 2xy + 1)$$
. Показать, что $\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 0$.

7. Дана функция
$$z=e^{xy}$$
. Показать, что $x^2\frac{\partial^2 z}{\partial x^2}-y^2\frac{\partial^2 z}{\partial y^2}=0$.

8. Дана функция
$$z=\frac{y}{x}$$
. Показать, что $x^2\frac{\partial^2 z}{\partial x^2}+2xy\frac{\partial^2 z}{\partial x\partial y}+y^2\frac{\partial^2 z}{\partial y^2}=0$.

9. Дана функция
$$z=e^{-\cos\left(ax+y\right)}$$
. Показать, что $\frac{\partial^2 z}{\partial x^2}-a^2\frac{\partial^2 z}{\partial y^2}=0$.

10. Дана функция
$$z=y\sqrt{\frac{y}{x}}$$
 . Показать, что $x^2\frac{\partial^2 z}{\partial x^2}-y^2\frac{\partial^2 z}{\partial y^2}=0$.

11. Дана функция
$$z = \frac{\sin(x-y)}{x}$$
. Показать, что $\frac{\partial}{\partial x} \left(x^2 \frac{\partial z}{\partial x} \right) - x^2 \frac{\partial^2 z}{\partial y^2} = 0$.

12. Дана функция
$$z=\sqrt{\frac{x}{y}}$$
 . Показать, что $x^2\frac{\partial^2 z}{\partial x^2}-\frac{\partial}{\partial y}\bigg(y^2\frac{\partial z}{\partial y}\bigg)=0$.

13. Дана функция
$$z=e^{\frac{y}{x}}$$
 . Показать, что $\frac{\partial}{\partial x}\bigg(x^2\frac{\partial z}{\partial x}\bigg)-y^2\frac{\partial^2 z}{\partial y^2}=0$.

14. Дана функция
$$z=e^{-x-3y}\,\sin\!\left(x+3y\right)$$
. Показать, что $9\frac{\partial^2 z}{\partial x^2}-\frac{\partial^2 z}{\partial y^2}=0$.

15. Дана функция
$$z=e^{xy}$$
. Показать, что
$$x^2 \frac{\partial^2 z}{\partial x^2} - 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} + 2xyz = 0.$$

16. Дана функция
$$z=x\ e^{-\left(x^2+y^2\right)/2}$$
 . Показать, что
$$\frac{\partial^2 z}{\partial x \partial y} + \left(x+y\right)\frac{\partial z}{\partial x} + \left(x^2-1\right)z = 0 \ .$$

17. Дана функция
$$z=\ln\!\left(\!e^x+e^y\right)$$
. Показать, что
$$\frac{\partial^2 z}{\partial x^2}\frac{\partial^2 z}{\partial y^2}-\left(\frac{\partial^2 z}{\partial x\partial y}\right)^2=0\;.$$

18. Дана функция
$$z = e^x (x \cos y - y \sin y)$$
. Показать, что $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.

19. Дана функция
$$z=\ln \frac{1}{\sqrt{x^2+y^2}}$$
. Показать, что $\frac{\partial^2 z}{\partial x^2}+\frac{\partial^2 z}{\partial y^2}=0$.

20. Дана функция
$$z=\frac{y}{y^2-4x^2}$$
 . Показать, что $\frac{\partial^2 z}{\partial x^2}-4\frac{\partial^2 z}{\partial y^2}=0$.

21. Дана функция
$$z=xy\,e^{xy}$$
. Показать, что $x^2\,\frac{\partial^2 z}{\partial x^2}-y^2\,\frac{\partial^2 z}{\partial y^2}=0$.

22. Дана функция
$$z=\ln\!\left(\!e^x+e^{-y}\right)\!.$$
 Показать, что $\frac{\partial^2 z}{\partial y^2}-\frac{\partial^2 z}{\partial x^2}=0$.

23. Дана функция
$$z = arctg(xy)$$
. Показать, что $x^2 \frac{\partial^2 z}{\partial x^2} = y^2 \frac{\partial^2 z}{\partial y^2}$.

24. Дана функция
$$z=e^{\sqrt{xy}}$$
 . Показать, что $x^2\frac{\partial^2 z}{\partial x^2}-y^2\frac{\partial^2 z}{\partial y^2}=0$.

25. Дана функция
$$z = \cos^2(x - 3y)$$
. Показать, что $9\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 0$.

26. Дана функция
$$z=\sqrt{\frac{x}{y}}$$
 . Показать, что $x^2\frac{\partial^2 z}{\partial x^2}-\frac{\partial}{\partial y}\bigg(y^2\frac{\partial z}{\partial y}\bigg)=0$.

A) по направлению вектора \vec{a} ;

1.
$$u = arctg \frac{x}{y} - y^2z; M(2; 2; 4); \vec{a} = \{-1; 2; 2\}$$

2.
$$u = x \arctan \frac{y}{z} - y^2 z^3$$
; $M(2; 2; 1)$; $\vec{a} = \{-1; 2; 2\}$

3.
$$u = (y^2 + 2)^{4x - \sqrt{z}}; M(1; -1; 4); \vec{a} = \{-1; 2; -2\}$$

4.
$$u = arctg \frac{z}{x} + \sqrt{2y - 7x}$$
; $M(1; 4; 1)$; $\vec{a} = \{0; 4; -3\}$

5.
$$u = z \cdot arc tg(2x - y^2); M(1; 1; 3); \vec{a} = \{4; -3; 0\}$$

6.
$$u = x \cdot ln(5 - z^2y)$$
; $M(2; 1; 2)$; $\vec{a} = \{4; 2; 0\}$

7.
$$u = z \cdot \sqrt{xy^3 - 4}$$
; $M(1; 2; 2)$; $\vec{a} = \{-1; 1; 0\}$

8.
$$u = arctg \frac{yz}{r^2}; M(2; 2; -1); \vec{a} = \{4; -3; 0\}$$

9.
$$u = arctg \frac{xy}{z}$$
; $M(1;2;1)$; $\vec{a} = \{0; -4; 1\}$

10.
$$u = \frac{x\sqrt{y}}{z} - e^{(x^2 - y^2)}; M(-1; 1; 2); \vec{a} = \{2; 2; 4\}$$

11.
$$u = (x^2 + y^2)^z$$
; $M(1; -2; 3)$; $\vec{a} = \{1; -1; 0\}$

12.
$$u = (x - \sqrt{yz})^{4-z}$$
; $M(1; 1; 4)$; $\vec{a} = \{2; 1; -1\}$

13.
$$u = \sqrt{2x + y} + y \operatorname{arctg} z; M(3; -2; 1); \vec{a} = \{4; 0; -3\}$$

14.
$$u = 3z^3 \cdot \sqrt[3]{x} + \cos\left(\frac{\pi}{6} - xy\right); \quad M(8; 0; -1); \quad \vec{a} = \{4; 1; 1\}$$

15.
$$u = (x^2 + y^2)^{2z}$$
; $M(1; 2; -1)$; $\vec{a} = \{4; 0; 3\}$

16.
$$u = ye^{(xz^2-8)}; M(2;-1;2); \vec{a} = \{2;2;4\}$$

17.
$$u = \frac{x}{\sqrt{x^2 + y^2 + z^2}}; M(1; -2; 2); \vec{a} = \{4; -3; 0\}$$

18.
$$u = (x^2 + xy)^{2-z}; M(1; 2; 0); \vec{a} = \{2; -2; 0\}$$

19.
$$u = ln(e^x + 2e^y + 2e^z); M(0; 0; 0); \vec{a} = \{2; -2; 1\}$$

20.
$$u = \sqrt{zx - y} + \ln(3 - xy^3); M(1; 1; 2); \vec{a} = \{3; 0; -4\}$$

21.
$$u = 3^{x^2 - y^2 - z^2}$$
; $M(2; 1; -1)$; $\vec{a} = \{4; -1; 0\}$

22.
$$u = arctg \frac{xz^2}{y}; M(2; -2; 1); \vec{a} = \{-1; 2; -2\}$$

23.
$$u = z \ln(x^2 - 4y^2 + z^2); M(1; -1; 2); \vec{a} = \{2; -2; 1\}$$

24.
$$u = xarctg \frac{y}{z}$$
; $M(-1; 2; 2)$; $\vec{a} = \{-1; 2; 2\}$

25.
$$u = z \log_2(1 + 2\sqrt{xy}); M(1; 4; 2); \vec{a} = \{-4; 3; 0\}$$

26.
$$u = (5x + 2)^{\sqrt{y}} \cdot \cos(\pi z); \quad M\left(1; 1; \frac{1}{4}\right); \quad \vec{a} = \{2; -2; 0\}$$

Задача 5. Вычислить производную сложной функции. (0,5 б)

- 1. Вычислить $\frac{dz}{dt}$, если $z = e^{2x-3y}$, x = tg t, $y = t^2 + 2t$.
- 2. Вычислить $\frac{\partial z}{\partial x}$, если $z = \ln(e^u + e^{2v})$, $u = x^3$, $v = y^2 2x$.
- 3. Вычислить $\frac{dz}{dt}$, если $z = x^{2y}$, $x = \ln t$, $y = \sin t$.
- 4. Вычислить $\frac{\partial z}{\partial y}$, если $z = u^2 \ln v$, $u = \frac{y}{x}$, $v = y^2 + x^2$.
- 5. Вычислить $\frac{dz}{dt}$, если $z = arctg \frac{y}{x}$, $x = e^{3t}$, $y = e^{2t} + 1$.
- 6. Вычислить $\frac{dz}{dx}$, если $z = \ln(e^x + e^y)$, $y = x^3 + 3x 1$.
- 7. Вычислить $\frac{\partial z}{\partial x}$, если $z = u^2 v u v^2$, $u = x \sin y$, $v = y \cos x$.
- 8. Вычислить $\frac{dz}{dx}$, если $z = arctg \frac{x + \sqrt{y}}{x}$, $y = e^{x^2 + 3x}$.
- 9. Вычислить $\frac{dz}{dt}$, если $z = \sin^2(xy)$, $x = e^{-t}$, $y = e^{2t} 3$.
- 10. Вычислить $\frac{dz}{dx}$, если $z = x 2^{xy}$, $y = x^2 3x + 1$.
- 11. Вычислить $\frac{dz}{dt}$, если $z = 3^{2x-y}$, $x = \sin 2t$, $y = \cos 2t$.
- 12. Вычислить $\frac{\partial z}{\partial y}$, если $z = \ln(tg \ u + 2 \ ctg \ v)$, $u = 3x^2 + y$, $v = y^2 2x$.
- 13. Вычислить $\frac{dz}{dt}$, если $z = x^{\ln y}$, $x = t^2$, $y = \cos t$.
- 14. Вычислить $\frac{\partial z}{\partial y}$, если $z = \arcsin(2u + v)$, u = xy, $v = x^2 + xy$.
- 15. Вычислить $\frac{dz}{dt}$, если $z = tg \frac{y}{x}$, $x = 2^{3t}$, $y = 3^{2t}$.
- 16. Вычислить $\frac{dz}{dx}$, если $z = \sin(e^x + y)$, $y = e^{3x} + 3$.
- 17. Вычислить $\frac{\partial z}{\partial x}$, если $z = u^2 \cos v$, $u = xe^y$, $v = ye^x$.
- 18. Вычислить $\frac{dz}{dx}$, если $z = arctg \frac{x + \sqrt{y}}{x}$, $y = e^x$.
- 19. Вычислить $\frac{dz}{dt}$, если $z = 3^{2xy}$, $x = \ln t$, $y = \ln(2t+1)$.
- 20. Вычислить $\frac{dz}{dx}$, если $z = xy e^{xy}$, $y = x^2 2x$.
- 21. Вычислить $\frac{dz}{dt}$, если $z = \arcsin(2x 5y)$, $x = \ln t$, $y = t^2$.
- 22. Вычислить $\frac{\partial z}{\partial x}$, если $z = \ln(u^2 + 2v)$, $u = (x+1)^2 + y^2$, v = y 2x.
- 23. Вычислить $\frac{dz}{dt}$, если $z = x^{\sin y}$, $x = 2^t$, $y = t^2$.
- 24. Вычислить $\frac{\partial z}{\partial y}$, если $z = u^2 + \ln(3u + v)$, u = xy, $v = x^2 y^2$.
- 25. Вычислить $\frac{dz}{dx}$, если $z = \cos^2\left(\frac{y}{x}\right)$, $y = e^{2x} 1$.

26. Вычислить $\frac{dz}{dt}$, если $z = 6^{7x-2y}$, $x = \sin 8t$, $y = \cos 8t$.

Задача 6. (0,5 б)

- **1.** Написать уравнения касательных плоскостей к поверхности $xy + z^2 + xz = 20$, параллельных плоскости x + 2z = y.
- **2.** Написать уравнения касательных плоскостей к поверхности $9xy + 9z^2 + 9xz = 5$, перпендикулярных к прямой $\frac{x-2}{-1} = \frac{y+5}{1} = \frac{z}{-2}$.
- **3.** Написать уравнения касательных плоскостей к поверхности $3x^2 + y^2 + 2z^2 = 189$, параллельных плоскости 6x + y + 4z = 13.
- **4.** Написать уравнение касательной плоскости к поверхности z = xy, перпендикулярной к прямой L: $\{x = 2t 2, y = 2t 2, z = 1 t\}$.
- **5.** Написать уравнения касательной плоскости к поверхности $x^2 + z^2 + 2x 5y 8z = 0$, параллельной плоскости 2x + 5y 2z = 2.
- **6.** Написать уравнения касательных плоскостей к поверхности $4x^2 + 6y^2 + z^2 4 = 365$, перпендикулярных к прямой $\frac{x-2}{2} = \frac{y}{-1} = \frac{z-1}{3}$.
- 7. Написать уравнения касательных плоскостей к поверхности $x^2 + 2y^2 + 3z^2 = 21$, перпендикулярных вектору $\vec{a} = (1; 4; 6)$.
- **8.** Написать уравнения касательной плоскости к поверхности $x^2 + y^2 2x 12y + 8z 3 = 0$, параллельной плоскости x y + z = 9.
- **9.** Написать уравнения касательных плоскостей к сфере $x^2 + y^2 + z^2 = 2x + 1$, перпендикулярных плоскостям x y z = 2, 2x 2y z = 4.
- **10.** Написать уравнения касательных плоскостей к поверхности $x^2 + 2y^2 + z^2 = 22$, параллельных плоскости x y + 2z = 0.
- **11.** Написать уравнение касательной плоскости к поверхности $x^2-12x+y^2-2y+8z-11=0$, перпендикулярной прямой L: $\frac{x+3}{1}=\frac{y+7}{-1}=\frac{z}{-1}$.
- **12.** Написать уравнения касательных плоскостей к поверхности $z^2 + y^2 + xy + xz 18 = 0$, параллельных плоскости x + y + 3z = 8.
- **13.** Написать уравнения касательных плоскостей к поверхности $3x^2 + y^2 + 2z^2 114 = 0$, перпендикулярных к прямой $L:\{x = 7 + 6t, y = 1 4t, z = t + 2\}$.
- **14.** Написать уравнения касательных плоскостей к поверхности $xy + z^2 + xz = 8$, параллельных плоскости x 2y + 2z = 7.

15. Написать уравнение касательной плоскости к поверхности $x^2+y^2-6y-3z=0$, перпендикулярной к прямой L: $\frac{x+9}{-1}=\frac{y}{1}=\frac{z+4}{2}$.

- **16** . Написать уравнения касательных плоскостей к поверхности $x^2+2y^2+3z^2-525=0$, параллельных плоскости x+4y+6z=7 .
- **17.** Написать уравнения касательных плоскостей к поверхности $xy + xz + z^2 1 = 0$, перпендикулярных к прямой $L:\{x = t, y = 5 3t, z = t 3\}$.
- **18.** Написать уравнения касательных плоскостей к поверхности $2x^2 + 3y^2 + z^2 36 = 0$, параллельных плоскости 4x + 6y 4z = -5.
- **19.** Написать уравнения касательных плоскостей к поверхности $3x^2+y^2+2z^2=84$, перпендикулярных к прямой L: $\frac{x-8}{-6}=\frac{y+3}{-1}=$ $=\frac{z-1}{-4}$.
- **20.** Написать уравнения касательных плоскостей к поверхности $4x^2 + 4y^2 + 4z^2 12x 24z = 105$, парадлельных плоскости 2x y + z = 5.
- **21.** Написать уравнение касательной плоскости к поверхности $x^2 + 16x + y^2 18y 20z = 15$, перпендикулярной к прямой $L: \{x = 3 + t, y = 1 t, z = 9 5t\}$.
- **22.** Написать уравнения касательных плоскостей к поверхности $x^2 + y^2 + z^2 + 2y + 7z 7 = 0$, параллельных плоскости 2x y 2z = -3.
- **23.** Написать уравнение касательной плоскости к поверхности $x^2 + y^2 9x + y 3z 2 = 0$, перпендикулярной к прямой $L:\{x = -4 t, y = 6 + t, z = -2 + t\}$.
- **24.** Написать уравнения касательных плоскостей к поверхности $2x^2 + y^2 + 3z^2 2x 4z = 0$, параллельных плоскости x + y z = 12.
- **25.** Написать уравнение касательной плоскости к поверхности $x^2+z^2+2x+7y=-5$, перпендикулярной к прямой L: $\frac{x+1}{2}=\frac{y-3}{7}=\frac{z+7}{-6}$.
- **26.** Написать уравнения касательных плоскостей к поверхности $xz + x^2 + yz = 13$, параллельных плоскости 2x y z = 7.

Задача 7. Найдите точки локального экстремума (0,5 б)

1.	$z = y\sqrt{x} - y^2 - x + 6y$	2.	$z = 2(x+y) - x^2 - y^2$
3.	$z = x^2 + xy + y^2 - 2x - y$	4.	z = xy(6 - x - y)
5.	$z = (x-1)^2 + 2y^2$	6.	$z = x^2 + 3(y+2)^2$
7.	$z = x^2 + y^2 - xy + x + y$	8.	$z = xy - 3x^2 - 2y^2$
9.	$z = x^2 - xy + y^2 + 9x - 6y + 20$	10.	$z = x^3 + 8y^3 - 6xy + 1$
11.	$z = 2xy - 3x^2 - 2y^2 + 10$	12.	$z = xy - x^2 - y^2 + 9$
13.	z = xy(12 - x - y)	14.	$z = 2xy - 5x^2 - 3y^2 + 2$
15.	$z = x\sqrt{y} - x^2 - y + 6x + 3$	16.	$z = 2xy - 2x^2 - 4y^2$
17.	$z = x^3 + y^3 - 3xy$	18.	$z = (x-5)^2 + y^2 - 1$
19.	$z = (x-2)^2 + 2y^2 - 10$	20.	$z = x^2 + xy + y^2 - 6x - 9y$
21.	$z = 6(x - y) - 3x^2 - 3y^2$	22.	$z = 4(x-y)-x^2-y^2$
23.	$z = x^2 + y^2 + xy + x - y + 1$	24.	$z = 3x^3 + 3y^3 - 9xy + 10$
25.	$z = x^3 + y^2 - 6xy - 39x + 18y + 20$	26.	$z = 2x^3 + 2y^3 - 6xy + 5$

Задача 8. Определить наименьшее и наибольшее значения функции z = f(x, y) в области, ограниченной заданными линиями. (0,5 балла)

1.
$$z = x^2 - y^2 - x + y$$
, $x = 0$, $x = 2$, $y = 0$, $y = 1$.

2.
$$z = x^2 + 2xy - 4x + 8y$$
, $x = 0$, $y = 0$, $5x - 3y + 45 = 0$.

3.
$$z = x^2 - xy + y^2 - 4x$$
, $x = 0$, $y = 0$, $2x + 3y = 12$.

4.
$$z = x^2 + 3y^2 + x - y$$
, $x = 1$, $y = 1$, $x + y = 1$.

5.
$$z = x^2 y$$
, $y = 0$, $y = 1 - x^2$.

6.
$$z = 4 - 2x^2 - y^2$$
, $x^2 + y^2 \le 1$.

7.
$$z = xy - 2x - y$$
, $x = 0$, $y = 0$, $x = 3$, $y = 4$.

8.
$$z = x^3 + y^3 - 3xy$$
, $x = 0$, $y = 0$, $x = 2$, $y = 3$.

9.
$$z = x^2 - 2y^2 + 4xy - 6x - 1$$
, $x = 0$, $y = 0$, $x + y = 3$.

10.
$$z = x^2 + xy$$
, $x = -1$, $y = 0$, $x = 1$, $y = 3$.

11.
$$z = -3x^2 + 2xy - 2y^2 + 5$$
, $x = -1$, $y = -1$, $x + y = 5$.

12.
$$z = 3xy - 6x^2 - 6y^2 + 15x$$
, $x = 0$, $y = 0$, $x = 2$, $y = 1$.

13.
$$z = -3x^2 + 2y^2 + 12x - 4y$$
, $x = 0$, $y = 0$, $3x + 4y = 12$.

14.
$$z = \frac{1}{2}x^2 - xy$$
, $y = \frac{x^2}{3}$, $y = 3$.

15.
$$z = 1 + xy^2$$
, $x = 0$, $y = -1$, $x = 1$, $y = 2$.

16.
$$z = x^2 - 2y^2 + 4$$
, $x^2 + y^2 \le 1$.

17.
$$z = x^2 - xy + 5$$
, $y = 0$, $x^2 + y = 1$.

18.
$$z = x^2 + 6xy - x + 3y$$
, $x = 0$, $y = 0$, $x = 3$, $y = 3$.

19.
$$z = x^2 + y^2 - 4xy + 6y$$
, $x = 4$, $y = x$, $y = 0$.

20.
$$z = 5xy - y^2$$
, $x = 4$, $y^2 = 5x + 5$.

$$21. z = -xy - 2x + 3y$$
, $x = 0$, $y = 0$, $3x - 4y = 12$.

$$22. z = 2x + y - xy$$
, $x = 0$, $y = 0$, $x = 4$, $y = 4$.

23.
$$z = x^2 + 2xy - 4x + 8y$$
, $x = 0$, $y = 0$, $x = 1$, $y = 2$.

24.
$$z = x^2 + y^2 - xy + x + y$$
, $x = 0$, $y = 0$, $x + y = -3$.

25.
$$z = x^3 + 8y^3 - 6xy + 1$$
, $x = 0$, $y = -1$, $x = 2$, $y = 1$.

26.
$$z = 1 + xy^2$$
, $x = 0$, $y = -2$, $x = 2$, $y = 1$.