Routing in WSNs

Preliminaries

Communication

- □ Communication is expensive → Use only if necessary
- A node communicates only with its neighbors
- Wireless advantage: all neighbors in broadcasting range listen

Unit Distance Graph (UDG)

- Communication range is the same for all nodes
- Connectivity graph of nodes: nodes are connected if their normalized distance is less than 1

Topology Control

- Establish communication with other nodes
 - Discovery of nodes in communication range
 - Topology is determined by communication range
 - Adjust communication range (save energy)
- Critical transmission range (CTR)
 - Minimum transmission range to connect all nodes
- Assumption
 - All nodes have the same transmission range r

Topology Control

Locations are known a priori

- □ Spanning tree (ST) of a graph G = (V, E)
 - Set of |V|-1 edges connecting all vertices
- Minimum spanning tree (MST) of G
 - ST where the sum over all costs $c_{ij} = (v_i, v_j)$ is minimal
- CTR is longest edge in MST

Nodes locations are not known accurately

- Theory of geometric random graphs if nodes are randomly and uniformly distributed
- \square CTR for *n* nodes: $r = C \times (\log n / n)^{\frac{1}{2}}$

Criteria for Routing Algorithms

- Size of the routing table
 - Preferably small
- Quality of the route for a given destination
 - Fastest, most reliable, highest throughput route
 - Most energy-efficient route
- Update cost
 - Nodes can die, move, or join

MANETs vs WSNs

Commonality

Wireless Sensor Networks (WSNs) are MANETs

Differences

- Scalability: number of nodes is potentially much larger
- Fault tolerance: sensor nodes are more prone to failure
- Energy-awareness: nodes have a very limited amount of energy

Terminology

- Routing
 - Transport messages between two nodes
- Data dissemination
 - Transport messages from a node to many nodes
- Broadcasting
 - Transport messages from a node to all nodes (in range)
- Data gathering
 - Transport messages from nodes (within a region) to a sink

Terminology

- Base station
 - Node providing a gateway or central processing
- □ Sink
 - Node requesting information
- Source
 - Node generating information (event)
- Interest
 - Message requesting a certain type of information

Sensor Network Architectures

- Layered architecture
- Flat architecture
- Hierarchical or clustered architecture

Layered Architecture

Paradigm

- A single powerful base station (BS)
- Layers: nodes with the same hop-count to the BS

Application

In-building wireless backbones: BS is an access point to a wired connection

Flat Architecture

- Paradigm
 - Each node has the same role
- Large number of nodes
 - No unique global identifier
 - Data-centric routing
 - Location-based routing

Hierarchical Architecture

Paradigm

- Nodes are organized into clusters
- Nodes in a cluster send their messages to cluster heads (CHs)
- CHs send their messages to a base station (BS)

Topology-based Routing

Review: Topology-based Routing

- Approach
 - Use information about *links* in the network
- Proactive protocols
 - Compute routes before routing
- Reactive protocols
 - Discover routes on-demand
- Hybrid protocols
 - Compute routes once, then update

Flooding

Technique

- Each node that receives a message broadcasts this message if
 - the node is not a goal node
 - the maximum hop count is not reached

Reactive protocol

- Requires no topology maintenance
- No (complex) route discovery necessary
- Often used as backup strategy: limited flooding

Disadvantages of Flooding

Implosion

A node often receives the same message from different neighbors

Duplication

Nodes send the same message to their neighbors

Resource blindness

Not aware of the energy levels of the mobile device

Gossiping

Limited broadcast

Nodes do not broadcast received messages to every neighbor but only to a randomly selected neighbor

Advantage

No implosion and lower overhead

Disadvantages

- Long travel time for messages
- No delivery guarantee

Radius Growth

- Problem: locality insensitivity
 - Destination is a few hops away but the entire network is flooded
- Flood with growing radius
 - For a message the time-to-live (TTL) is decreased at every node
 - Rounds of different floods with increasing TTLs (1, 2, 3, ...)
 - But: how to stop if the destination is found?

Slow flooding

- A timeout for nodes before a message is forwarded
- Destination is found: a second fast flooding that stops the previous flood

Source Routing

Problem

Nodes store routing information for other nodes

Idea

- Source node stores the whole path to the destination
- Source node encodes the path with every message
- Nodes on the path remove their ID from the message before relaying the message to the next node

Discussion

- Nodes only store the paths they need
- However, not efficient if mobility/data ratio is high
- How to deal with asymmetric links?

DSR (Dynamic Source Routing)

Route discovery

- Packet needs to be sent: a node checks whether a cached route is available
- If not available: RREQ with the address of S and D and a unique identification number
- Node adds its own address to the route record
- RREP: message reaches D or a node with a route to D

Route maintenance

- Acknowledgments
- Route errors lead to updates

Improving Source Routing

- Caching of routes (DSR)
- Local search
 - Flooding with TTL+1
- Hierarchy of nodes
 - Nodes with the same IP prefix are in the same direction
- Clustering
 - Good if heterogeneous network but level of indirection and overhead
- Implicit acknowledgment
 - Symmetric links: node A automatically hears the communication from B to C

Directed Diffusion (DD) I

- Motivation
 - No central authority
 - Sensor networks are resource constrained
 - Nodes are tied to physical locations
 - Nodes may not know the topology
 - Nodes are generally stationary
- How can we get data from the sensors?

Directed Diffusion II

- Data centric
 - Individual nodes are unimportant
- Request driven
 - Sinks place requests as interests
 - Sources satisfying the interest to be found
 - Intermediate nodes route data toward sinks
- Localized reinforcement and repair
- Multi-path delivery

DD: Interest and Event Naming

Query/interest of sink

```
Type = wheeled vehicle // detect vehicle location
Interval = 20 ms (event data rate) // e.g., 1 sec initially
Duration = 10 sec (time to cache) // for the next 10 sec
Rect = [-100, 100, 200, 400]
```

Reply of sensor node

```
Type = wheeled vehicle // type of vehicle seen
Instance = truck // instance of this type
Location = [125, 220] // node location
Intensity = 0.6 // signal amplitude measure
Confidence = 0.85 // confidence in the match
Timestamp = 01:20:40 // event generation time
```

Attribute-Value pairs

No advanced naming scheme

Directed Diffusion IV

Sinks

- Broadcast interest to neighbors
- Initially use a low data rate to find sources with minimal energy consumption

Interests

Cached by neighbors

Gradients

Point back to where interests came from

Sources

Receive an interest: route data along gradients

DD: Interest Propagation

- Flood interest
- Constrained or directional flooding based on location is possible
- Directional propagation based on previously cached data

DD: Data Propagation

Multipath routing

Consider each gradient's link quality

DD: Reinforcement

- Reinforce one of the neighbors after receiving initial data
- Neighbor who consistently performs better than others
- Neighbor from whom most events received

Negative Reinforcement I

Explicitly degradation

Resend interest with lower data rate along path

□ Time out

 Without periodic reinforcement, a gradient will be torn down

Negative Reinforcement II

Explicitly degradation

Resend interest with lower data rate along path

Time out

Without periodic reinforcement, a gradient will be torn down

Evaluation

- Simulation: ns2
- Modified 802.11 MAC for energy use calculation
 - □ Idle time: 35mW, receive: 395mW, transmit: 660mW
- Random node placement
 - □ 50 250 nodes (increment by 50), 50 nodes are deployed in 160m×160m (increase the SN size to keep the density constant)
 - 40m radio range

Metrics

Baselines

- Flooding
- Omniscient multicast: each source transmits its events along a shortest path tree to all sinks; ignore tree construction cost (centrally computed)

Average dissipated energy

- Ratio of total energy expended per node to number of distinct events received at sink
- Measures average work expenditure as function of network size

Average Dissipated Energy

Impact of Negative Reinforcement

Impact of In-Network Processing

Why no suppression for omniscient multicast?

Average Dissipated Energy

Unmodified 802.11 MAC is dominated by idle energy 1.6W transmission, 1.2W reception, and 1.15W idle

Directed Diffusion: Extension

Push diffusion

- Sink does not flood interest
- Source detecting events disseminate exploratory data across the network
- Sink having corresponding interest reinforces one of the paths

Directed Diffusion: Design Choices

Diffusion Element	Design Choices
Interest Propagation	 Flooding Constrained or directional flooding based on location Directional propagation based on previously cached data
Data Propagation	 Reinforcement to single path delivery Multipath delivery with selective quality along different paths Multipath delivery with probabilistic forwarding
Data Caching and Aggregation	 For robust data delivery in the face of node failure For coordinated sensing and data reduction For directing interests
Reinforcement	 Rules for deciding when to reinforce Rules for how many neighbors to reinforce Negative reinforcement mechanisms and rules

Rumor Routing

Agent-based algorithm

- A compromise between query flooding and event flooding
 - Spread information from both: sink and sources
 - Use only linear (straight) paths to preserve energy
- Long-lived messages, called agents, circulate in the network in order to find shortest paths
- Agents inform other sinks about events
- Routes are not optimal

Disadvantages

- No delivery guarantee
- Performance depends on topology

Rumor Routing

Path creation

Path optimization

Rumor Routing

Query flooding

- A node interested in an event floods the network
- Transmission for n nodes: $Q \times n$ (Q number of queries)

Event flooding

- A node sensing an event floods the network
- Transmission for n nodes: $E \times n$ (E number of events)

LEACH

- Low-Energy Adaptive Clustering Hierarchy
- Goal
 - Minimize energy dissipation in SNs
 - All nodes consume a similar amount of energy
- Architecture
 - Hierarchical protocol
 - Select random nodes as cluster heads
 - Periodic reselection of CHs (cluster heads) after a steady phase

LEACH II

- Works in Rounds
 - Short set-up state
 - Long steady state
- Set-Up Phase:
 - Advertisement (I am CH)
 - Cluster Set-Up (I am your CH)
 - Schedule Creation (This is your slot)
- Steady-State Phase:
 - Data Transmission using TDMA

LEACH III

Communication

- Every node uses the same channel
- Different clusters use different CDMA codes
- Code chosen randomly
- Only CHs communicate with sink

Hierarchical Clustering

- Basic LEACH protocol is a 1 hop protocol
- Extension possible

LEACH IV

Set up phase

- Each node randomly selects a number between 0 and 1
- Number is less than a threshold value T(n) → node becomes CH
- A node advertises its CH role

Selection of CHs

■
$$T(n)$$
 = $P/(1 - P \times (r \mod (1/P)))$ if $n \in G$ otherwise.

- P: desired percentage of CHs
- □ G: nodes which were not CHs in the last 1/P rounds
- r: current round

LEACH: Disadvantages

"Hot Spot" Problem

Nodes on a path from an event-congested area to the sink may drain

Stationary Sink

May be unpractical

1 hop neighbors

Basic algorithm assumes any node can communicate with sink but: extensions are possible

TEEN

Threshold sensitive Energy Efficient Network protocol

- Reactive, event-driven protocol for time-critical applications
- A node senses the environment continuously, but turns radio on and transmits only if the sensor value changes significantly
- Save energy if data is not critical

CH sends hard and soft thresholds

- Hard threshold: A member only sends data to CH only if data values are in the range of interest
- Soft threshold: A member only sends data if its value changes by at least the soft threshold

Hierarchical clustering

TEEN Discussion

Advantages

- Good for time-critical applications
- Less energy consumption compared to proactive approaches
- Hard and soft threshold can be adapted depending on applications

Disadvantages

- Inappropriate for periodic monitoring such as habitat monitoring
- Ambiguity between packet loss and unimportant data (indicating no drastic change)

APTEEN

AdaPtive Threshold sensitive Energy Efficient Network protocol

- Extends TEEN to support both periodic sensing & reacting to time critical events
- In contrast to TEEN a node must sample and transmit a data if it has not sent data for a time period equal to CT (count time) specified by CH

Compared with LEACH and TEEN

- APTEEN consumes less energy than LEACH but more than TEEN
- Network lifetime: TEEN ≥ APTEEN ≥ LEACH

Drawbacks of TEEN and APTEEN

 Overhead and complexity of forming clusters in multiple levels and implementing threshold-based functions

SPIN

- Sensor Protocols for Information via Negotiation
 - Communicating raw sensor data is expensive but metadata about sensor data is not
- Extend lifetime of the system
 - Nodes need to monitor and adapt to changes in their own energy resource
- Solves flooding disadvantages!

SPIN: Metadata

Completely describe the data

- Must be smaller than the actual data
- If data is different, their meta-data must differ
- Metadata is application specific
- Application has to interpret and synthesize its metadata

SPIN messages

- ADV: a node A advertises data
- REQ: an interested node B requests this data
- DATA: the node A sends the actual data to node B

SPIN-1

- 3-Stage Handshake Protocol
 - Needs knowledge about single-hop network neighbors
- Adaptation for lossy networks
 - Compensate for lost ADVs by re-advertising periodically
 - Compensate for lost REQ/DATA by re-requesting after fixed time
- Adaptation for mobile networks
 - Topology changes trigger updates to node neighbor lists
 - A node's neighbor list changes: re-advertise all its data

SPIN-2

Energy-conservation

- Incorporate low-energy-threshold
- Works as SPIN-1 when energy level is high
- Reduce participation of node when approaching lowenergy-threshold
 - When node receives data, it only initiates protocol if it can participate in all three stages with all neighbor nodes
 - When node receives advertisement, it does not request the data
- Caveat: node still exhausts energy below threshold by receiving ADV or REQ messages

Localization

Need for Localization

- Localization
 - Means for a node to determine its physical position.
- Why important?
 - Increase the use of sensor readings!
 - Essential in some communication protocols
- Why not locate nodes during deployment
 - Large number of nodes
 - Mobile nodes
 - Air-drop, hostile environment
- Limits of GPS
 - Indoor environments, under foliage, next to high-rise buildings
 - Cost in terms of hardware and energy expenditure

Range-based methods

- □ Idea
 - Absolute point-to-point distance estimates
 - Angle estimates

Techniques

- Received Signal Strength Indicator (RSSI)
- Time of Arrival (TOA)
- Time Difference of Arrival (TDOA)
- Angle of Arrival (AOA)

Localization by Landmarks

Landmarks

Landmark: a node that knows its own location

Atomic multilateration

- Compute a node's location from 3 or more landmarks using distances
- Least-square technique for n landmarks nodes to improve precision

How do we compute the distance?

RSSI

- Received Signal Strength Inverse (RSSI)
 - Inverse power of distance $O(1/r^{\alpha})$, but: imprecise
- Path loss model

$$P_{RX} = c \times \frac{P_{TX}}{d^{\alpha}}$$

- □ Simple, but unreliable due to inaccurate range estimates
- Fading, interference, position of antenna

TOA: One-way Delay

□ Time On Arrival (TOA)

- Time synchronized sender and receiver
- Distance = $(T_1 T_0)$ x Speed
- Since speed is large, distance cannot be short for radio waves

Acoustic TOA

- Accuracy is about 10cm
- Range is tens of meters

TOA: Round-trip Delay

Round trip

- No time synchronization required
- Computing latency affects estimation accuracy

TDOA (Time Difference on Arrival)

Use two receivers and measure time difference to estimate the difference in distance

TDOA: Same Frequency

Coordinated senders

Time difference of arrivals
 translated to distance difference

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2} - \sqrt{(x_2 - x_0)^2 + (y_2 - y_0)^2} = \nabla T \times Speed$$

Problem: calibration

TDOA: Different Frequencies

Idea

- Use two frequencies
- \square Speed of wireless signal: s_{RF}
- \square Speed of ultrasound: s_{US}
- \Box D = ((T₃ T₁) (T₂ T₀)) × (s_{RF} s_{US})

Problem

Hardware cost

AOA: Angle on Arrival

- Use an antenna array
 - Estimate AOA of anchors
- Problem
 - Unrealistic for most of WSN applications due to complex hardware and AOA estimation algorithms

Iterative Multilateration

Assumption

 Some nodes can hear at least three anchors (to perform triangulation) but not all of them

Idea

 Nodes recursively compute position estimates and spread position information

Problem

Errors accumulate

- Start-up anchor
- New anchor
- New node

Collaborative Multilateration

Problem

2 nodes cannot communicate with 3 landmarks but with 2

□ Idea

- Collaborate and use all available measurements are used as constraints
- Solve for the positions of multiple unknowns simultaneously
- This is a non-linear optimization problem

Range-free Methods

- Assumption
 - No absolute range estimates are used
- Advantage
 - Normally more cost-effective than range-based methods
- Disadvantage
 - Normally less accurate than range-based methods

Centroid Approach

Centroid formula

Estimate local location based on anchors' positions

$$(x, y) = \left(\frac{\sum_{i}^{N} x_{i}}{N}, \frac{\sum_{i}^{N} y_{i}}{N}\right)$$

- Anchor
- Undetermined node
- Estimated position

DV-Hop (Distance Vector Hop)

Idea

- Anchor locations are flooded through the network
- Use shortest hop distance between nodes
- The hop distance approximate the Euclidean distance
- Distance = Hops * Avg_hop_len
- Average hop length can be obtained online or offline
- Apply trilateration after estimating more than 3 distances

APIT (Approximate Point in Triangle)

□ Idea

- APIT uses an area-based approach
- Anchors define triangular regions
- Test whether a node is inside or outside a triangle

Location of a node

Intersection area of all the triangles which contain the node

APIT III

PIT theory

■ If there is a direction in which M is moves away from points A, B, and C simultaneously, then M is outside of $\triangle ABC$; otherwise, M is inside $\triangle ABC$.

In practice

- Nodes cannot move!
- How do we determine a direction?
- Exhaustive test on all directions is not possible

APIT IV

Use signal strength

- If no neighbour of M is further from/closer to all three anchors A, B and C simultaneously, M assumes to be inside the triangle
- Otherwise M assumes to be outside this triangle

APIT V

Neighboring nodes

Each node maintains a table of anchor ID, location & signal strength

	(X,	Y)	SS
Α	20	20	1mv
В	45	31	2mv
С	23	56	3mv

	(X,	Y)	SS
Α	20	20	2mv
В	45	31	3mv
С	23	56	1mv

Node M

Node 1

Nodes exchange anchor tables with the neighbors

					\Rightarrow
	(X,Y)		MySS	SS1	 SSn
Α	20	20	1mv	2mv	6mv
В	45	31	2mv	3mv	7mv
С	23	56	3mv	1mv	7mv

APIT VI

- Main algorithm
 - Receive beacons (X_i,Y_i) from N anchors
 - N anchors form $\binom{N}{2}$ triangles **T**
 - □ For each triangle T_i ∈ **T**:
 - If Point-In-Triangle-Test(T_i) == True:
 - InsideSet = InsideSet \cup {T_i}
 - Position = Center of Gravity ($\{ \cap T_i \mid T_i \in InsideSet \}$);

Centroid vs DV-Hop vs – APIT

	Centroid	DV-Hop	APIT	
Accuracy	Fair	Good	Good	
Node Density	> 0	> 8	> 6	
Anchor	> 10	> 8	> 10	
Anchor to Node Ratio	> 0	> 0	> 3	
Degree of Irregularity	Good	Good	Good	
GPS Error of Anchors	Good	Good	Good	
Overhead	Smallest	Largest	Small	

ROCRSSI

- Ring Overlapping based on Comparison of RSSI
 - Anchor A is sender
 - If B's RSSI < S's RSSI < C's RSSI
 - Then S is in ring
 - ROCRSSI only compares the relative strength of RSS
 - Compute ring for each anchor S can hear
 - Center of gravity of intersection of rings is S's position

Location Verification

- How to deal with malicious nodes that lie about their location?
- Sample attack scenario
 - Pretend to be close to the sink
 - Attract many packets
 - Drop some or all of them
 - DoS attacks for geographic routing protocols (see later in the lecture)

SerLoc

Approach

- Node i claims its location is (x, y)
- Node i needs to send (x, y) a location verification request message to a nearby verifier
- A verifier can be a normal sensor node
- □ The verifier sends a random nonce to node i and starts its clock
- Node i has to immediately return the challenge through both radio and ultrasonic channels

Verifier

- Measures the time for node i returning the challenge
- Take the difference between the radio and ultrasonic signal propagation
- Verifies the claimed location based on the measurement

Weaknesses of SerLoc

- Requires extra hardware, i.e., ultrasonic channel
- Valid nodes may respond late due to backlog
- Not location verification but range verification!

Research Issues

- Most localization work is mathematical and evaluated via (high level) simulations
 - More realistic work is needed
- Indoor localization is harder
 - Look at CodeBlue project at Harvard
- Location verification
 - Cannot trust sensors
- Secure localization
 - Cannot trust anchors

Geographic Routing

Location Awareness

Assumptions

- Each node knows its location
- Each node knows the location of its (1-hop) neighbors
- The location of a destination node is known
- Each node can store a constant amount of routing information

Advantages

- No route discovery necessary
- No maintenance of routes necessary
- □ Facilitates *geocasting*, i.e., delivery of packets to all nodes in a region

Location Services

- Idea: map an address to a node location
- Viable solutions?
 - One central location server
 - Every node is a location server
- Distributed location service
 - Robust to single node failures
 - Spread load uniformly among nodes
 - Locality-preserving

Grid Location Service (GLS)

Idea

- Nodes act as a location server in their neighborhood
- Nodes are hierarchically organized based on a quad-tree

Assumptions

- Each node has a unique ID, e.g. its MAC address
- All IDs are distinct and ordered

Mapping

GLS provides a mapping from node IDs to node locations

GLS: Setting up a Hierarchy I

Level 1 (leaf) tiles

- Size of leaf tile: all nodes are in communication range
- A node N can act as a location server for itself and all other nodes in that leaf tile
- N selects three nodes in the three sibling leaf tiles that act as a location server for N

Level 2 tiles

- Four sibling leaf tiles form a tile T of level 2
- T is the unique level 2 tile containing N
- N selects three nodes in the three sibling level 2 tiles

GLS: Setting up a Hierarchy II

- Recursion: level k tiles
 - Four sibling level k-1 tiles form a tile of level k
 - Each level k-1 tile is only part of a single level k tile
 - A node is located in exactly one tile of each level

Properties

- Depth of the tree for n nodes: O(log n)
- Number of location servers for node *N*: *O*(log *n*)

GLS: Setting up a Hierarchy III

Determining a location server

- Avoid that all nodes choose the same node
- The location server for N: node with the least ID greater than N's ID (also called the *closest* node)
- Wrap around if none available: node with the smallest ID

How to search for a location server?

- Node *N* uses geographic forwarding and sends a packet including its position to the selected tile on level *k*
- □ First node in that tile searches for the closest location server (node) for N

Communicating with GLS

Communication between nodes A and B

- □ A sends a request to the node N that has the least ID ≥ than B's ID and is known to A
- □ If B's location is known to N: geographic forwarding of A's packet to B, B can reply as A's location is part of message
- If not: N repeats the algorithm and sends the sends a request to the node N' that has the least ID ≥ than B's ID and is known to A
- Each iteration moves one level up in the hierarchy
- Recursion must stop because B's location is known at the highest level

Understanding GLS I

- Each step brings the query to the closest node in a larger square
- Node 21 is a location server for node 6, 10, 20, 76
- Node 45 is a location server for node 39, 41, 43

Understanding GLS II

	(a) = 1 = 1 a 1						19,35,37,45		
	(70),72,76,81 82,84,87	1,5,6,10,12					50,51,82		
	A: 90	90,91					39		
1,5,16,37,62			16(17)19,21		19,35,39,45		39,41,43		
63,90,91			23,26,28,31 32,35		51,82				
70			32,33	37	50		45		
1,62,70,90	1,5,16,37,39	1,2,16,37,62				35,39,45,50		19,35,39	,45
	41,43,45,50	70,90,91						50,51,55	,61
	51,55,61,91							62,63,70	,72
91	62	5				51		76,81	11
	62,91,98					19,20,21,23	1,2,5,6,10,12		
						26,28,31,32	14,16,17,82		
						51,82	84,87,90,91		
	1					35	⁹⁸ 19		
14,17,19,20		2,17,23,63	2,17,2	3,26	28,31,32,35		10,20,21,28		Τ
21,23,26,87			31,32,	43,55	37,39		41,43,45,50		
			61,62				51,55,61,62		
26		23		63	41		$ ^{63,70}$ 72		
14,23,31,32	2,12,26,87	1,17,23,63,81	2,12,1	4,16		6,10,20,21	6,72,76,84		
43,55,61,63	98	87,98	23,63			23,26,41,72			
81,82,84			'	-		76,84			
87	14	2	B:	17		28	10		
31,81,98	31,32,81,87	12,43,45,50	12,43,	55	1,2,5,21,76	6,10,20,76		6,10,12,1	
	90,91	51,61			84,87,90,91			16(17)19	,84
					98	1		>	
32	98	55		61	6	21		2	2(
31,32,43,55	2,12,14,17	12,14,17,23	2,5,6,10,43			6(21),28,41	20,21,28,41		
61,63,70,72	23,26,28,32	26,31,32,35	55,61,63,81		l	72	72,76,81,82		
76,98	81,98	37,39,41,55	87,98		l				
81	31	61 43		12	I	A: 76	84		

Discussion of GLS

Advantages

- Each node maintains a small amount of state
- Querying even works well if location servers fail

Cons

- Prone to performance degradation due to node failures and high degrees of mobility
- Fixed size squares: nodes in high density areas have to maintain more state information (more power required)
- The nodes have to know the quadtree structure in advance

Greedy Forwarding I

Local strategy

- A node forwards a message to a neighbor node that is "closer" to the destination than itself
- Repeat until the destination is reached

Loop-free

If nodes have consistent location information

Greedy Forwarding II

- Similar approaches
 - MFR (most forward within radius): closest projection
 - DIR/GEDIR: direction
- Greedy forwarding can fail!
 - Require recovery strategy

Face Routing

Problem

- Greedy distance protocols are simple and powerful
- But: Packets can get stuck in local minima

Protocol: right hand rule

- Can guarantee delivery
- Route along the perimeter of voids

Planarization of a Graph

Purpose

- Face routing relies on a planarized graph,
 i.e., no two edges intersect
- Can be locally computed
- Gabriel graph & relative neighborhood graph

GG: Gabriel Graph

Definition

- There is an edge (u,v) between two vertices $u, v \in G$ if there is no other vertex $w \in G$ in the circle of diameter \underline{uv}
- □ $\forall w \in G$, $w \neq v$, $w \neq u$: $d(u,v) < (d^2(u,w) + d^2(v,w))^{\frac{1}{2}}$

RNG: Relative Neighborhood Graph

Definition

- □ There is an edge (u,v) between two vertices $u, v \in G$ if their distance d(u,v) is less than or equal to the distance of u or v to any other vertex $w \in G$
- $\square \forall w \in G$, $w \neq v$, $w \neq u$: $d(u,v) < \max(d(u,w), d(v,w))$

GPSR

- □ GPSR: greedy perimeter stateless routing
 - Greedy forwarding
 - Use only information of a node's immediate neighbors
 - Compute a planar subgraph of the communication graph (RNG or GG)
- Perimeter forwarding
 - If greedy forwarding is not possible
 - Route along the perimeter of a face on the subgraph
 - Use right hand rule
- Stateless
 - A router (node) only keeps local topology

GAFI

- GAF: geographic adaptive fidelity
 - Location- and emery-aware routing protocol for MANETs
 - Nodes have different roles
- Hierarchical protocol
 - Network is partitioned into fixed zones (virtual grid)
 - Each node in a zone is considered equal in terms of cost and position
 - A node in a zone must be able to reach every node of an adjacent zone

GAFII

Roles of nodes

- In each zone one node will be awake for a period of time while other are asleep
- The responsible node senses and communicates data for the other nodes in the zone
- Node have three states: discovering, active, asleep
- Nodes have to synchronize with other nodes in a zone

Orthogonal protocol

GAF can be used in conjunction with another routing protocol

GEAR

Geographic and Energy Aware Routing

 Heuristics to select neighbors depending on energy levels and distance

Nodes use two cost functions

- Estimated cost: combination of residual energy and distance to goal
 - \blacksquare N_i is a node and R is the target region
 - $d(N_i, R)$: normalized distance from N_i to the centroid of R
- $\mathbf{D} e_i$ is the normalized energy already consumed by node N_i
 - $c(N_i, R) = \alpha d(N_i, R) + (1 \alpha) e(N_i)$
- Learned cost: refined cost that accounts for holes in the network

Challenges in WSNs

- Localization errors
 - Imprecise measurements
 - Lack of updates
 - Rapid position changes
- (Self-) Localization techniques
 - GPS is not available indoors
- Rapid topology changes
 - Location service is costly
- Global behavior from local knowledge
 - Achieve desired global goal using adaptive localized algorithms
- Sparse sensor networks
 - Many algorithms do not perform well if the network is not dense