Отчёт по работе 6.11.5

Туннелирование в полупроводниках

Карташов Констанин Б04-005

Цель работы: Исследуется принцип действия туннельного диода, измеряются его вольт-амперная характеристика и основные параметры.

I Теоретическая часть

Туннельный диод или диод Эсаки (изобретён Лео Эсаки в 1957 году) — полупроводниковый диод на основе вырожденного полупроводника, на вольт-амперной характеристике которого при приложении напряжения в прямом направлении имеется участок с отрицательным дифференциальным сопротивлением, обусловленный туннельным эффектом. Туннельный диод представляет собой р-п-переход, обе области в котором имеют предельно сильное, до вырождения, легирование — концентрации доноров n_n в п-области и акцепторов n_p в р-области могут превышать 10^{19} см⁻³.

Расстояния от уровня Ферми до краев зон:

$$\xi = \mu_n - E_c,$$

$$\eta = \mu_p - E_v.$$
(1)

При достижении U_v ток через диод минимален, что соответствует совпадению границ зоны проводимости E_c и валентной зоны E_v . Откуда можно оценить положение уровней Ферми:

$$eU_v \approx \xi + \eta \approx 2\xi \approx 2\eta.$$
 (2)

Напряжению U_p соответствует пик тока, при котором смещение энергетических зон должно быть одинаково. Это даёт возможность определить энергетический промежуток $E_{n\max}$ между уровнем Ферми и максимум плотности распределения электронов $n_{\max}(E)$, отсчитываемый от границы зоны проводимости:

$$eU_p \approx \xi - E_{n \max}.$$
 (3)

II Экспериментальная часть

і Экспериментальная установка

Для измерения основных параметров туннельного диода используются три различные схемы.

При снятии вольт-амперной характеристики и определении параметров туннельного диода (рис. 1) ток измеряется амперметром, включенным последовательно с туннельным диодом, а напряжение на диоде измеряется вольтметром. Регулирование тока через диод производится переменным сопротивлением R. Ключи K_1 и K_2 используются при уточнении основных параметров диода.

Рис. 1: Принципиальная схема измерения параметров вольт-амперной характеристики туннельного диода

Быстрее и нагляднее, но с меньшей точностью можно измерить характеристику диода с помощью осциллографа и мостовой схемы, изображенной на рис. 2. На вход «Y» осциллографа подаётся напряжение, пропорциональное току, протекающему через диод, а на вход «X» — падение напряжения на диоде. Ток протекающий через диод можно определить по формуле:

$$I_D = U_D \frac{R_1 + 2(R_2 + R_3)}{(R_1 + 2R_2)R_3},\tag{4}$$

где R_1 , R_2 и R_3 — сопротивления соответствующих резисторов в плечах моста. Напряжение U_D определяется с помощью осциллографа.

Рис. 2: Принципиальная схема наблюдения вольт-амперной характеристики туннельного диода с помощью осциллографа

Генератор электромагнитных колебаний на туннельном диоде собран по схеме с параллельным контуром (рис. 3). Резистор и конденсатор служат для развязки источника питания и генератора по переменному напряжению. Резистор служит для выведения рабочей точки туннельного диода на нужную ветвь вольт-амперной характеристики.

Рис. 3: Принципиальная схема генератора на туннельном диоде

іі Наблюдение вольт-амперной характеристики туннельного диода с помощью осциллографа

Воспользуемся схемой изображённой на рис. 2. На нашей схеме $R_1=680$ Ом, $R_2=100$ Ом, $R_3=120$. Поэтому формула (4) принимает вид $I_D=U_D/R$, где R=94.3 Ом.

Получим на осциллографе изображение вольт-амперной характеристики при масштабных коэффициентах $\alpha_X = 50 \text{ мB/дел}$, $\alpha_Y = 100 \text{ мB/дел}$ (рис 4).

Рис. 4: Вольт-амперная характеристика, полученная на осциллографе

По полученной вольт-амперной характеристике определим значения U_p, U_v, U_f и I_p, I_v , погрешность оценим по ширине кривой на экране осциллографа:

$$U_p=1.2\pm0.1$$
 дел = 60 ± 5 мВ,
$$U_v=7.2\pm0.2$$
 дел = 360 ± 10 мВ,
$$U_f=10\pm0.1$$
 дел = 500 ± 5 мВ,
$$U_{I_p}=5.1\pm0.1$$
 дел = 510 ± 10 мВ $\Rightarrow I_p=U_{I_p}/R=5.4\pm0.1$ мА,
$$U_{I_v}=0.3\pm0.1$$
 дел = 30 ± 10 мВ $\Rightarrow I_v=U_{I_v}/R=0.3\pm0.1$ мА.

ііі Получение статической характеристики туннельного диода

Воспользуемся схемой изображённой на рис. 1. Меняя значения переменного сопротивления R снимем вольт-амперную характеристику диода. Измеренные данные приведены в таблице 1.

U, MB	<i>I</i> , мА	U, мВ	<i>I</i> , мА	U, MB	I, мА
1	0.004	226.2	2.024	408.7	0.676
5.3	0.958	333.7	0.91	419.5	0.784
10.4	1.8	345.5	0.828	445.4	1.314
15.6	2.539	353.4	0.785	459.7	1.778
21.8	2.262	362	0.739	460.7	1.814
28.2	3.825	386	0.524	464.2	1.855
30.3	3.98	391.1	0.538	486.3	3.69
33	4.138	392.5	0.546	493.3	4.578
41.6	4.15	397.7	0.582	494.6	4.748
50.2	4.15	402	0.609	_	_

Таблица 1: Снятые точки для вольт-амперной характеристики

По данным из таблицы 1 построим график вольт-амперной характеристики (рис. 5). Теоретическая погрешность значений полученных статическим методом ограничена погрешностью измерительных приборов, однако на практике измерения вблизи точек p и v становятся неточными из-за близости к неустойчивым участкам вольтамперной характеристики, погрешность внесённую неустойчивостью сложно оценить. Оценим погрешность как половину разности значения между ближайшими точками в измерении, тогда $\Delta U \sim 1$ мВ, $\Delta I \sim 0.01$ мА. Полученные значения:

$$U_p = 50 \text{ MB}, \ I_p = 4.15 \text{ MA}, \ U_v = 386 \text{ MB}, \ I_v = 0.52 \text{ MA}, \ U_f = 490 \text{ MB}$$

Оценим по измеренным данным и формулам (2) и (3) энергию Ферми и энергию соответствующую максимальной плотности распределения электронов:

$$\mu_n \approx \mu_p = \mu = \frac{eU_v}{2}, \ \Delta\mu = \frac{e\Delta U_v}{3},$$

$$E_{n_{\text{max}}} = \mu - eU_p, \ \Delta E_{n_{\text{max}}} = \sqrt{(\Delta\mu)^2 + (e\Delta U_p)^2} = e\sqrt{(\Delta U_p)^2 + \left(\frac{\Delta U_v}{2}\right)^2}$$

Результаты вычисления приведены в сводной таблице (табл. 2).

iv Изучение генератора на основе туннельного диода

Воспользуемся схемой изображённой на рисунке 3. Получим на осциллографе изображение колебаний (рис. 6). Частота колебаний примерно равна $f \approx 180$ кГц, при изменении сопротивления видимых изменений частоты колебаний и формы волны не происходило, при этом амплитуда колебаний менялась в пределе от 0.5 до 0.4 В.

Рис. 5: График вольт-амперной характеристики снятой статическим методом

III Выводы

- 1. Получили вольт-амперную характеристику туннельного диода на осциллографе. Полученное изображение соответствует теоретическим ожиданиям.
- 2. Получили вольт-амперную характеристику туннельного диода статическим методом. Полученная зависимость согласовывалась с полученной на осциллографе.
- 3. По измеренным вольт-амперным характеристикам определили характеристики туннельного диода приведённые в таблице 2.

величина	U_p , мВ	U_v , мВ	U_f , мВ	I_p , мА	I_v , мА	μ, мэВ	$E_{n_{ m max}}$, мэВ
динам.	60 ± 5	360 ± 10	500 ± 5	5.4 ± 0.1	0.3 ± 0.1	180 ± 5	120 ± 7
стат.	50 ± 1	386 ± 1	490 ± 1	4.15 ± 0.01	0.52 ± 0.01	193 ± 1	143 ± 1

Таблица 2: Сводная таблица

4. Изучили сигнал создаваемый генератором на основе туннельного диода.

Рис. 6: Изображение колебаний полученное на осциллографе