Goal Evaluate more complicated sums with the aid of known Taylor series. Evaluate limits using Taylor series.

Problems to hand in

Find the **sum** of each of the following series (which do converge). Simplify.

1.
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots$$

2.
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{9^n (2n)!}$$

3.
$$-\frac{\pi^3}{3!} + \frac{\pi^5}{5!} - \frac{\pi^7}{7!} + \frac{\pi^9}{9!} - \dots$$

4.
$$-\frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots$$

5.
$$-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} - \dots$$

6.
$$\sum_{n=0}^{\infty} \frac{(-1)^n (\ln 8)^n}{3^{n+1} n!}$$

7.
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{(36)^n (2n+1)!}$$

8.
$$\frac{1}{6} - \frac{1}{2(6)^2} + \frac{1}{3(6)^3} - \frac{1}{4(6)^4} + \dots$$

9.
$$1 - e + \frac{e^2}{2!} - \frac{e^3}{3!} + \frac{e^4}{4!} - \frac{e^5}{5!} + \dots$$

10.
$$-\frac{\pi^2}{2!} + \frac{\pi^4}{4!} - \frac{\pi^6}{6!} + \frac{\pi^8}{8!} - \dots$$

11.
$$\sum_{n=0}^{\infty} \frac{(-1)^n \ \pi^{2n}}{(2n)!}$$

$$12. \sum_{n=0}^{\infty} \frac{1}{e^n}$$

13.
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1} \ 2^{n+1} \ (\ln 9)^n}{n!}$$

14.
$$4 - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \dots$$

15.
$$\sum_{n=0}^{\infty} \frac{e^6 (x-6)^n}{n!}$$
 (answer will be in x) 16.
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1} \pi^{2n+1}}{9 (2n)!}$$

16.
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1} \pi^{2n+1}}{9 (2n)!}$$

17.
$$\sum_{n=0}^{\infty} \frac{1}{3! \ \pi^n}$$

18.
$$-\pi + \frac{\pi^3}{3!} - \frac{\pi^5}{5!} + \dots$$

19.
$$1+1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\dots$$

20.
$$2-1+\frac{2}{3}-\frac{2}{4}+\frac{2}{5}-\dots$$

21.
$$\frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \frac{1}{5!} + \dots$$

22.
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{\left(\sqrt{2}\right)^{4n} (2n)!}$$

 $\lim_{x\to 0} \ \frac{xe^x -\arctan x}{\ln(1+5x) - 5x}.$ Check your answer using L'Hôpital's Rule. 23. Use Series to Compute