Brückenkurs – Tag 8 - 2016-10-13

12 Die komplexen Zahlen

 $\mathbb{N}_0 \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$

Beispiel $X^2 + 10X - 144 = 0$

Lösungsansatz Quadratische Ergänzung

$$X^2 + 2 \cdot 5 \cdot X + 5^2 - 5^2 - 144 = 0 \Leftrightarrow (X + 5)^2 = 169 \Leftrightarrow X + 5 = \pm \sqrt{169} = \pm 13 \Leftrightarrow X = -5 \pm 13 = -18, 8$$

Allgemein $X^2 + pX + q = 0$

Lösung
$$\Leftrightarrow X^2 + pX + (\frac{p}{2})^2 - (\frac{p}{2})^2 + q = 0 \Leftrightarrow (X + \frac{p}{2})^2 - (\frac{p}{2})^2 + q = 0 \Leftrightarrow (X + \frac{p}{2})^2 - (\frac{p}{2})^2 + q = 0 \Leftrightarrow (X + \frac{p}{2})^2 - q \Leftrightarrow X + \frac{p}{2} = \pm \frac{1}{2} \sqrt{p^2 - 4q} \Leftrightarrow X = -\frac{p}{2} \pm \frac{1}{2} \sqrt{p^2 - 4q}$$

Definition $\Delta := p^2 - 4q$ heißt die **Diskriminante** der Gleichung / des quadratischen Polynoms. Drei Fälle, jeweils in \mathbb{R} :

- 1. Fall: $\Delta > 0$: 2 (verschiedene) Lösungen
- 2. Fall: $\Delta = 0$: 1 Lösungen
- 3. Fall: $\Delta < 0$: Keine Lösungen

[Darstellung: Funktion $X^2 + pX + q$ in Koordinatensystem für $\Delta = 0$, $\Delta < 0$ und $\Delta > 0$]

Vergleiche $X^2-2=0$ hat in $\mathbb Q$ keine Lösung, da 8 kein Quadrat in $\mathbb Q$ ist.

 $X^2 + 1 = 0$ hat in \mathbb{R} keine Lösung, da -4 kein Quadrat in \mathbb{R} .

12.1 Die Imaginäre Einheit

Wir suchen einen Körper \mathbb{C} , in dem wir $X^2 + 1 = 0$ lösen können. Damit muss ein $i \in \mathbb{C}$ existieren mit $i^2 = -1$, die sogenannte **imaginäre Einheit**.

Angenommen, ein solches \mathbb{C} existiert. Sind dann $a, b \in \mathbb{R}$, so ist $a + b \cdot i \in \mathbb{C}$.

12.2 Rechnen in \mathbb{C}

Addition
$$(a+b\cdot i)+(c+d\cdot i)=(a+c)+(b+d)i$$

Multiplikation $(a+bi) \cdot (c+di) = ac + adi + cbi + bd \cdot i^2 = (ac - bd) + (ad + bc)i^{-1}$

Die Menge der Ausdrücke der Form $a+bi; a,b \in \mathbb{R}$, wobei $i^2=-1$ bildet einen kommutativen Ring, der \mathbb{R} umfasst.

Multiplikative Inversen
$$\frac{1}{a+bi} = \frac{a-bi}{(a+bi)(a-bi)} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$$
, wobei $a \neq 0b \neq 0$ Die Rechnung zeigt, dass $(a+bi)^{-1}$ existiert, nämlich $(a+bi)^{-1} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$

Satz Die Menge $\mathbb{C} := \{a + bi | a, b \in \mathbb{R}\}$, wobei $i^2 = -1$, bildet einen Oberkörper von \mathbb{R} den Körper der komplexen Zahlen.

Warnung \mathbb{C} ist kein angeordneter Körper²: Angenommen, es gibt eine Anordnung, die mit den arithmetischen Operationen verträglich ist.

Fall $i>0: \implies i^2>0 \implies -1>0 \implies 1<0$ Widerspruch zu "Quadrate sind nicht negativ" Fall $i<0: \implies (-i)^2>0 \implies$ Ebenfalls Widerspruch

 $^{^{1}}bdi^{2}=-bd,$ da qua Definition $i^{2}=-1$

²Das heißt: In \mathbb{C} : Wenn a < b, c < d gilt **nicht** a + c < b + d

12.3 Komplexe Zahlenebene

[Darstellung: Ebene komplexer Zahlen statt Zahlenstrahl. Betrag der komplexen Zahl ist Abstand vom Ursprung]

Definition Ist $z = a + bi \in \mathbb{C}$; $a, b \in \mathbb{R}$, so heißt $|z| := \sqrt{a^2 + b^2}$ der **Betrag von** z.

Proposition

- 1. $|z| \ge 0$
- 2. $|z| = 0 \Leftrightarrow z = 0$

Aufgabe $|z+w| \le |z| + |w|$ für alle $z, w \in \mathbb{C}$.

Proposition $|z \cdot w| = |z| \cdot |w|$ für alle $z, w \in \mathbb{C}$.

Beweis
$$(a+bi) \cdot (c+di) = ac - bd + (ad+bc)i \implies |(a+bi)(c+di)|^2 = (ac-bd)^2 + (ad+bc)^2 = |a+bi|^2 \cdot |c+di|^2 = (a^2+b^2) \cdot (c^2+d^2)$$

12.4 Alternative Darstellung

Eine komplexe Zahl z = a + bi lässt sich auch in der Form $z = r(\cos \varphi + i \sin \varphi)$ schreiben. Hierbei ist $r \in \mathbb{R}_{\geq 0}$ der **Betrag** |z| von z und $\varphi \in \mathbb{R}$ heißt das **Argument**.

Multiplikation

$$r(\cos\varphi + i\sin\varphi) \cdot r'(\cos\varphi' + \sin\varphi') = r \cdot r'((\cos\varphi \cdot \cos\varphi' - \sin\varphi\sin\varphi') + i(\cos\varphi\sin\varphi' + \sin\varphi\cos fgft\varphi')) =$$
$$= rr'(\cos(\varphi + \varphi') + i\sin(\varphi + \varphi'))$$

Erfolg In $\mathbb C$ hat jede quadratische Gleichung $X^2 + pX + q = 0$ (mindestens) eine Lösung, nämlich $X = -\frac{p}{2} \pm \frac{1}{2}\sqrt{\Delta}$, $\Delta = p^2 - 4q$. $\sqrt{-5} = \sqrt{-1} \cdot \sqrt{5} = \pm i\sqrt{5}$ $\sqrt{r(\cos\varphi + i\sin\varphi)} = \pm \sqrt{r} \cdot (\cos\varphi/2 + i\sin\varphi/2)$

12.5 Kubische Gleichungen

$$X^3 + aX^2 + bX + c = 0$$

$$\textbf{Ansatz} \quad X^3 + aX^2 \tfrac{1}{3}a^2X + \tfrac{1}{27}a^3 + (b - \tfrac{1}{3}a^2)X + (c - \tfrac{1}{27}a^3) = (X + \tfrac{a}{3})^3 + (b - \tfrac{1}{3}a^2)X + (c - \tfrac{1}{27}a^3) \text{ Setze } Y := X + \tfrac{a}{3}a^3 + (b - \tfrac{1}{3}a^2)X + (c - \tfrac{1}{27}a^3) + (c -$$

$$\begin{array}{l} Y^3 + (b - \frac{1}{3}a^2)(Y - \frac{a}{3}) + (c - \frac{1}{27}a^3) \\ = Y^3 + (b - \frac{1}{3}a^2)Y + (c - \frac{ab}{3} + \frac{2a^3}{27}) \text{ Setze } p := b - \frac{1}{3}a^2, q := c - \frac{ab}{3} + \frac{2a^3}{27} \\ = Y^3 + pY + q \text{ (Kubik in reduzierter Form)} \end{array}$$

Es reicht damit, Gleichungen der Form $Y^3 + pY + q = 0$ zu lösen.

Ansatz
$$Y = U + V$$
. Dann $(U + V)^3 + p(U + V) + q = U^3 + 3U^2V + 3UV^2 + V^3 + pU + pV + q$

Ansatz
$$U^3 + V^3 = -q$$
. Dann $3U^2V + 3UV^2 + pU + pV = 0 = (3 \cdot UV + p) \cdot U + (3 \cdot UV + p) \cdot V$.

Ansatz
$$U \cdot V = -\frac{p}{3}$$
, daraus $U^3 \cdot V^3 = -\frac{p}{27}$

$$\begin{array}{ll} \textbf{L\"osung} & V^3 = -q - U^3. \text{ Also: } U^3(-q - U^3) = -\frac{p^3}{27} \Leftrightarrow (U^3)^2 + qU^3 - \frac{p^3}{27} = 0 \Leftrightarrow U^3 = -\frac{q}{2} \pm \frac{1}{2} \sqrt{q^2 + \frac{4p^3}{27}} \Leftrightarrow U = \sqrt[3]{-\frac{q}{2} \pm \frac{1}{2} \sqrt{q^2 + \frac{4p^3}{27}}}, \quad V = -\frac{p}{3U}, \quad Y = U + V, \\ X = Y - \frac{a}{3} & Y = \frac{1}{2} \sqrt{q^2 + \frac{4p^3}{27}}, \quad V = -\frac{p}{3U}, \quad Y = U + V, \\ Y = \frac{a}{3} & Y = \frac{1}{2} \sqrt{q^2 + \frac{4p^3}{27}}, \quad Y = \frac{1}{2} \sqrt{q^2 + \frac{4p^3}{27}}, \\ Y = \frac{1}{2} \sqrt{q^2 + \frac{4p^3}{27}}, \quad Y = \frac{1}{2} \sqrt{q^2 + \frac{4p^3}{27}}, \\ Y = \frac{1}{2} \sqrt{q^2 + \frac{4p^3}{27}}, \quad Y = \frac{1}{2} \sqrt{q^2 + \frac{4p^3}{27}}, \\ Y = \frac{1}{2} \sqrt{q^2 + \frac{4p^3}{27}}, \quad Y = \frac{1}{2} \sqrt{q^2 + \frac{4p^3}{27}}, \\ Y = \frac{1}{2} \sqrt{q^2 + \frac{4p^3}{27}}, \quad Y = \frac{1}{2} \sqrt{q^2 + \frac{4p^3}{27}}, \\ Y = \frac{1}{2} \sqrt{q^2 + \frac{4p^3}{27}}, \quad Y = \frac{1}{2} \sqrt{q^2 + \frac{4p^3}{27}}, \\ Y = \frac{1}{2} \sqrt{q^2 + \frac{4p^3}{27}}, \quad Y = \frac{1}{2} \sqrt{q^2 + \frac{4p^3}{27}}, \\ Y = \frac{1}{2}$$

12.6 Gaussscher Fundamentalsatz der Algebra

 $\mathbb C$ ist **algebraisch abgeschlossen**, das heißt: Jedes nicht konstante Polynom hat in $\mathbb C$ eine Nullstelle. $P(X) \in \mathbb{C}[X]$, deg. P(X) = n > 0. Nach dem FdA³ existiert $z_1 \in \mathbb{C}$ mit $P(z_1) = 0$. Polynomidivision: $P(X) = (X - z_1) \cdot Q(X) + R$, deg. Q(X) = n - 1, $\mathbb{R} \in \mathbb{C}$. Wegen $P(z_1) = 0$ sogar R = 0.

Dann machen wir mit Q(X) anstelle P(X) weiter, usw. $\rightarrow P(X) = (X - z_1) \cdot Q(X) = (X - z_1)(X - z_2) \cdot \overline{Q}(X) = \dots = c \cdot (X - z_1)/cdot(X - z_2) \cdot \dots \cdot (X - Z_n).$

Insbesondere lässt sich jedes Polynom über $\mathbb C$ als Produkt linearer Polynome schreiben.

Beweis
$$P(Z) = Z^d + a_1 Z^{d-1} + ... + a_{d-1} Z + a_d; \quad a_i \in \mathbb{C}$$

$$\lim_{|Z| \to \infty} |P(X)| = \lim_{|Z| \to \infty} |Z^d(1 + a_1 Z^{-1} + \ldots + a_d Z^{-d})| \le \lim_{|z| \to \infty} |z|^d (1 + |a_1| \cdot |z|^{-1} + \ldots + |a_d| \cdot |z^{-d}|) = \infty$$

Damit nimmt |P(Z)| an einer Stelle $z_0 \in \mathbb{C}$ ihr Minimum an. Das heißt: $\forall a \in \mathbb{C} : |P(a)| \ge |P(z_0)|$

Annahme $|P(z_0)| > 0$ (sonst $|P(z_0)| = 0$, also $P(z_0) = 0$, also hätten wir Nullstellen) $W = Z - z_0 \Leftrightarrow Z = W + z_0; \quad P(Z) = a + bW^n + W^{n+1} \cdot Q(W), \ a, b \in \mathbb{C}, \ Q(W) \in \mathbb{C}[W]$ Bei W = 0 nimmt P(Z) betraglich sein Minimum an.

Wähle $\omega \in \mathbb{C}$ mit $\omega^n = -\frac{a}{b}$. Dann ist $\delta |\omega^{n+1} \cdot Q(\delta \cdot \omega)| < |a|$ für geeignetes $\delta > 0$. $P(\delta \cdot \omega) = a + b \cdot \delta^n \cdot \omega^n + \delta^{n+1} \cdot \omega^{n+1} \cdot Q(\delta \cdot \omega) = a(1 - \delta^n) + \delta^{n+1} \cdot \omega^{n+1} \cdot Q(\delta \cdot \omega)$ $\implies |P(\delta\omega)| \le |a| \cdot |1 - \delta^n| + \delta^{n+1} |\omega^{n+1} Q(\delta\omega)| < |a| \cdot |1 - \delta^n| + |a| \cdot \delta^n \le |a| = |P(z_0)|$

³Fundamentalsatz der Algebra