

TP23: Loi de la statique des fluides

But du TP

• Tester la loi de statique des fluides.

Situation problème

• Dans *L'Odyssée d'Astérix*, un guide dit à Obélix que la mer Morte est six fois plus salée que les autres mers.

Problème posé

• Comment comparer la salinité de deux eaux de mer ?

La masse volumique ρ (en $kg\cdot m^{-3}$) d'une solution d'eau de mer salée dépend de sa concentration C (en $g\cdot L^{-1}$) en sel par la relation suivante :

$$\rho = 1000 + 6.42 \times 10^{-1} \times C$$

Doc 1 Masse volumique et concentration en sel

La différence de pression entre deux points A et B d'un fluide à l'équilibre dépend de l'altitude des points A et B et de la masse volumique du fluide selon la relation suivante :

$$p_B - p_A = \rho \times g \times (z_A - z_B)$$

 p_A et p_B : pression aux points A et B en pascals (Pa)

g: intensité du champ de pesanteur $g = 9.8 N \cdot kg^{-1}$

 z_A et z_B : altitudes des points A et B (en m)

 ρ : masse volumique du fluide (en $kg \cdot m^{-3}$)

Doc 2 Loi de la statique des fluides

Pressiomètre équipé d'un tube souple • Éprouvette graduée de mL • Règle de 30cm • Élastique • Le logiciel Atelier scientifique physique et sa documentation • Eaux de différentes mers ou océans : Morte, Noire, Méditerranée, Atlantique, Indien, Baltique...

Doc 3 Matériel à disposition

La force pressante exercée par n'importe quel fluide (liquide ou gaz) sur une paroi avec laquelle il est en contact est toujours perpendiculaire à cette paroi (direction de la force) et dirigée vers l'extérieur (sens de la force). L'intensité de la force pressante est donnée par la relation :

 $F = p \times S$ avec F en newtons (N), p en pascals (Pa) et S en (m²)

Doc 4 Force pressante

S'approprier (partie à faire à la maison)

- 1. Quelle est le nom scientifique et la formule chimique du sel marin?
- 2. Écrire l'équation de dissolution du sel dans l'eau.
- 3. Que mesure un conductimètre ? Justifier pourquoi il est possible de déterminer la concentration en sel de l'eau de mer en utilisant un conductimètre.
- 4. Que mesure un pressiomètre ? Justifier pourquoi il est possible de déterminer la concentration en sel de l'eau de mer en utilisant un pressiomètre.
- 5. Exprimer h la hauteur d'eau de mer comprise entre les points A et B en fonction des altitudes des deux points. En déduire que la différence de pression $p_B p_A$ dépend :
 - a. (vrai/faux) pour les hauteurs d'eau : uniquement de la hauteur d'eau comprise entre les deux points ;
 - b. (vrai/faux) pour les hauteurs d'eau : de la hauteur d'eau présente au-dessus du point A ;
 - c. (vrai/faux) pour les hauteurs d'eau : de la hauteur d'eau présente sous le point *B* :
 - d. (vrai/faux) de la concentration en sel de l'eau de mer.
- 6. Si S est un point à la surface libre de l'eau à la pression p_0 et si M est un point à une profondeur h (en m) à la pression p, établir que :
 - a. la différence de pression $\Delta p=p-p_0$ est une fonction linéaire de la profondeur d'immersion h ;
 - b. la pression p au point M est une fonction affine de la profondeur h.
- 7. Vérifier l'homogénéité des unités de la relation : $\Delta p = \rho \times g \times h$ avec Δp en Pa ; ρ en $kg \cdot m^{-3}$; g en $N \cdot kg^{-1}$.

Analyser (partie à faire à la maison)

 Proposer un protocole détaillé permettant de déterminer la concentration en sel d'une eau de mer avec le maximum de précision en utilisant exclusivement le matériel mis à disposition.

Réaliser, communiquer

• Après validation du professeur, mettre en œuvre le protocole sur une des eaux de mer proposées. Conclure.

Répondre au problème posé

- 1. Récupérer les résultats obtenus par les différents groupes et les faire figurer dans un tableau.
- 2. En analysant les résultats obtenus par les différents groupes, déterminer si la mer Morte est bien six fois plus salée que les autres eaux de mers.