Química Inorgânica 1 - Ficha IV Teoria de Pearson

Felipe Pinto - 61387

15 de Abril de 2021

Conteúdo

1			3
	1.1	$K_2[CdI_4]$	3
	1.2	$[\operatorname{Ir}(\operatorname{NH}_3)_5(\operatorname{SO}_2)]\operatorname{Cl}_3\ .\ .\ .\ .\ .\ .\ .\ .$	4
	1.3	$[Pd(en)_2]SO_4$	5
	1.4	$[\mathrm{NiI}_2(\mathrm{PPh}_3)_2]\ \dots \dots$	6
	1.5	$K[Ag(SCN)_2]$	7
	1.6	$[\mathrm{La}(\mathrm{NH_3})_4(\mathrm{OH_2})_2]\mathrm{F}_2\ \dots \dots$	8
	1.7	$[\mathrm{Hg}(\mathrm{SH_2}(\mathrm{CH_2})_2\mathrm{NH_2})_3]\mathrm{F}_2\ \dots \ \dots$	9
	1.8	$[PtCl_2(TeO)_2] \dots \dots \dots \dots \dots \dots \dots \dots \dots $	0
	1.9	$[Fe(bpy)_3](ClO_4)_3 1$	1
	1.10	$[\mathrm{Co}(\mathrm{NH_3})_2\mathrm{I_2}]\mathrm{Br_3} 1$	2
2		1:	3
	2.1	$K_2[CdI_4]$	3
	2.2	$[\operatorname{Ir}(\operatorname{NH}_3)_5(\operatorname{SO}_2)]\operatorname{Cl}_3\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	3
	2.3	$[Pd(en)_2]SO_4$	3
	2.4	$[NiI_2(PPh_3)_2] \ \dots \ $	3
	2.5	$K[Ag(SCN)_2]$	3

	2.6	$[La(NH_3)_4(OH_2)_2]F_2$	13
	2.7	$[\mathrm{Hg}(\mathrm{SH}_2(\mathrm{CH}_2)_2\mathrm{NH}_2)_3]\mathrm{F}_2\ \dots\ \dots\ \dots\ \dots\ \dots$	13
	2.8	$[PtCl_2(TeO)_2]$	13
	2.9	$[Fe(bpy)_3](ClO_4)_3 \dots \dots \dots \dots \dots \dots \dots \dots$	13
	2.10	$[\mathrm{Co}(\mathrm{NH_3})_2\mathrm{I_2}]\mathrm{Br_3}$	13
3			14
	3.1	$\operatorname{Au}(I)$, SH_2 , $\operatorname{H}_2\operatorname{O}$, NO_3^- , CN	
	3.2	$Ru(II)$, CN , $SH_2(CH_2)_2NH_2$, H_2O , BF_4^-	14
	3.3	$Cu(II)$, acac, NO_2 , Cl^-	15
	3.4	$Ba(II), H_2O, EDTA^-, ClO_4^- \dots \dots \dots \dots \dots$	15
	3.5	$Fe(III), CO_2, phen, en, F^- \dots \dots \dots \dots \dots \dots$	16
	3 6	Hg(II), tu, F ⁻ , SCN ⁻	_ 17

1

$1.1 \quad \mathrm{K_2}[\mathrm{CdI_4}]$

- Ligandos:
- \bullet Átomos Doadores dos Ligandos:
- Contraião:
- Numero de Coordenação do Metal:
- Configuração Eletrônica do Metal:
- Natureza do Átomo Central e Ligandos:
- Isómeros:

1.2 $[Ir(NH_3)_5(SO_2)]Cl_3$

- Ligandos:
- Átomos Doadores dos Ligandos:
- Contraião:
- Numero de Coordenação do Metal:
- Configuração Eletrônica do Metal:
- Natureza do Átomo Central e Ligandos:
- Isómeros:

1.3 $[Pd(en)_2]SO_4$

- Ligandos:
- Átomos Doadores dos Ligandos:
- Contraião:
- Numero de Coordenação do Metal:
- Configuração Eletrônica do Metal:
- Natureza do Átomo Central e Ligandos:
- Isómeros:

1.4 $[NiI_2(PPh_3)_2]$

- Ligandos:
- Átomos Doadores dos Ligandos:
- Contraião:
- Numero de Coordenação do Metal:
- Configuração Eletrônica do Metal:
- Natureza do Átomo Central e Ligandos:
- Isómeros:

$1.5 ext{ K}[Ag(SCN)_2]$

- Ligandos:
- Átomos Doadores dos Ligandos:
- Contraião:
- Numero de Coordenação do Metal:
- Configuração Eletrônica do Metal:
- Natureza do Átomo Central e Ligandos:
- Isómeros:

1.6 $[La(NH_3)_4(OH_2)_2]F_2$

- Ligandos:
- Átomos Doadores dos Ligandos:
- Contraião:
- Numero de Coordenação do Metal:
- Configuração Eletrônica do Metal:
- Natureza do Átomo Central e Ligandos:
- Isómeros:

1.7 $[Hg(SH_2(CH_2)_2NH_2)_3]F_2$

- Ligandos:
- Átomos Doadores dos Ligandos:
- Contraião:
- Numero de Coordenação do Metal:
- Configuração Eletrônica do Metal:
- Natureza do Átomo Central e Ligandos:
- Isómeros:

1.8 $[PtCl_2(TeO)_2]$

- Ligandos:
- Átomos Doadores dos Ligandos:
- Contraião:
- Numero de Coordenação do Metal:
- Configuração Eletrônica do Metal:
- Natureza do Átomo Central e Ligandos:
- Isómeros:

1.9 $[Fe(bpy)_3](ClO_4)_3$

- Ligandos:
- Átomos Doadores dos Ligandos:
- Contraião:
- Numero de Coordenação do Metal:
- Configuração Eletrônica do Metal:
- Natureza do Átomo Central e Ligandos:
- Isómeros:

$1.10 \quad [\mathrm{Co(NH_3)_2I_2}]\mathrm{Br_3}$

- Ligandos:
- Átomos Doadores dos Ligandos:
- Contraião:
- Numero de Coordenação do Metal:
- Configuração Eletrônica do Metal:
- Natureza do Átomo Central e Ligandos:
- Isómeros:

2

- $2.1 \quad \mathrm{K}_2[\mathrm{CdI}_4]$
- $2.2 \quad [\mathrm{Ir}(\mathrm{NH_3})_5(\mathrm{SO_2})]\mathrm{Cl_3}$
- $2.3 \quad [Pd(en)_2]SO_4$
- $2.4 \quad [NiI_2(PPh_3)_2]$
- $2.5 \quad \text{K[Ag(SCN)_2]}$
- $2.6 \quad [La(NH_3)_4(OH_2)_2]F_2$
- $2.7 \overline{[\mathrm{Hg}(\mathrm{SH}_2(\mathrm{CH}_2)_2\mathrm{NH}_2)_3]\mathrm{F}_2}$
- $2.8 \quad [PtCl_2(TeO)_2]$
- $2.9 \quad [Fe(bpy)_3](ClO_4)_3$
- $2.10 [Co(NH_3)_2I_2]Br_3$

$3.1 \quad \mathrm{Au(I)}, \, \mathrm{SH_2}, \, \mathrm{H_2O}, \, \mathrm{NO_3}^-, \, \mathrm{CN}$

- 1
- •
- Natureza do Elemento central:
- Natureza do Ligandos:
- Estrutura:

3.2 Ru(II), CN, $SH_2(CH_2)_2NH_2$, H_2O , BF_4^-

- Ru(II): Intermédio (Mole) H₂O:
- H₂O: Acido/Base Dura

- CN⁻: Base Mole
- $SH_2(CH_2)_2NH_2$: Base
- BF₄: Base Dura
- $Ru(H_2O)_4(BF_4)_2$ (Octaédrico) Apenas trans por causa do BF_4 ocupar muito espaço
- Isomeros de ligação do anterior
- $\operatorname{Ru}(\operatorname{CN})_6^{4-}$
- Isomeros ionicos anterior com agua
- $Ru(SH_2(CH_2)_2NH_2)_3$
- Isomeros Opticos do anterior
- Isomeros fac mer do anterior

3.3 Cu(II), acac, NO_2 , Cl^-

- Cu(II): Ácido Intermédio (D9: Complexos Octaedricos)
- acac^{2–}: Base Duro
- $\bullet\ \mathrm{NO_2}^+ \!\!:$ Ácido Duro
- Cl¯: Base Intermédia (dura)
- $Cu(acac)_3$
- Intermédios $[\mathrm{Cu}(\mathrm{NO_2})_\mathrm{i}(\mathrm{Cl})_\mathrm{j}]^\mathrm{k}$ onde i+j=6e k=2-j
- $Cu(Cl)_4$

$3.4 \quad \mathrm{Ba(II)}, \, \mathrm{H_2O}, \, \mathrm{EDTA}^-, \, \mathrm{ClO}_4^-$

- Ba(II): Ácido Duro
- H_2O : Base
- Ba(EDTA)

$3.5 \quad \mathrm{Fe(III),\ CO_2,\ phen,\ en,\ F^-}$

• Fe(III): Ácido Duro

• CO₂: Base/Ácido Duro

• phen: Base Intermédia

• en: Base Intermédia (dura)

• F⁻: Base Dura

- Fe(phen) $_3$ 3 aneis quelatos
- $Fe(en)_3$
- $Fe(F)_6$
- $Fe(CO_2)_6$

3.6 Hg(II), tu, F⁻, SCN⁻

- Hg(III): Ácido Duro
- tu: Base ambidentado por 3, Ocupa espaço e não forma anél quelato então é instável
- F⁻: Base Dura
- SCN¯: Base Duro/Intermédio
- Hg(Tu)₆
- $Hg(SCN)_6$
- $$\begin{split} \bullet \ & \mathrm{Hg}(\mathrm{Tu})_{\mathrm{i}}(\mathrm{SCN})_{\mathrm{j}}(\mathrm{NCS})_{\mathrm{k}} \\ & \mathrm{onde} \ i+j+k=6 \\ & \mathrm{quanto} \ \mathrm{menos} \ \mathrm{tiureia} \ \mathrm{mais} \ \mathrm{est\'{a}vel} \\ & \mathrm{quanto} \ \mathrm{mais} \ \mathrm{SCN} \ \mathrm{mais} \ \mathrm{est\'{a}vel} \end{split}$$