

INTERAURAL TIME DIFFERENCE LOSS FOR BINAURAL TARGET SOUND EXTRACTION

Carlos Hernandez-Olivan, Marc Delcroix, Tsubasa Ochiai, Naohiro Tawara, Tomohiro Nakatani, Shoko Araki NTT Corporation, Japan

Abstract

Introduction: Extract a source given a mixture.

Conventional TSE is single-channel:

Motivation

- Improve spatial metrics with new spatial loss formulation based on GCC-PHAT.

State-of-the-art

System	IPD loss	ILD loss	ITD loss
Semantic Hearing [1] (TSE)	X	X	X
Tokala et al. [3] (speech enhancement)	✓	✓	X
Ours (TSE)	✓	✓	✓

Contributions

- ITD loss that reduces both ITD and signal-level losses

Binaural Target Sound Extraction

 $\hat{\mathbf{s}}^{\text{tgt}}$: extracted target sound signal

 $\mathbf{x} = [\mathbf{x}_l, \mathbf{x}_r] \in \mathbb{R}^{T \times 2}$: binaural mixture

i: source index

 $\mathbf{s}^{\text{tgt}} = \left[\mathbf{s}_l^{\text{tgt}}, \mathbf{s}_r^{\text{tgt}}\right] \in \mathbb{R}^{T \times 2}$: binaural target

m: microphone index

 $\mathbf{o} = [0, \dots, 1, \dots 0]^{\mathsf{T}}$: one-hot vector

 θ : network parameters

r, l: right and left channels

Observed signal

$$\mathbf{x}_m = \sum_{i=1}^{I} \mathbf{s}_{i,m}$$

T: number of samples

T': number of frames

D: feature dimension

TSE Model

$$\hat{\mathbf{s}}^{ ext{tgt}} = ext{TSE}(\mathbf{x}, \mathbf{o}; heta)$$

$$\mathbf{o} = [0, \dots, 1, \dots 0]^{\top}$$

$$\mathbf{Y} = \operatorname{Encoder}(\mathbf{x})$$
 $\mathbf{M} = \operatorname{Extractor}(\mathbf{Y}, \mathbf{e}^{\operatorname{tgt}})$ $\mathbf{\hat{s}}^{\operatorname{tgt}} = \operatorname{Decoder}(\mathbf{M} \odot \mathbf{Y})$
 $\mathbf{Y} \in \mathbb{R}^{T' \times D}$ $\mathbf{e}^{\operatorname{tgt}} \in \mathbb{R}^{D}$ $\mathbf{M} \in \mathbb{R}^{T' \times D}$

Training TSE

$$\hat{ heta} = \operatorname*{argmin}_{ heta} \mathcal{L} \left(\mathbf{s}^{ ext{tgt}}, \hat{\mathbf{s}}^{ ext{tgt}}(heta)
ight) \qquad \mathcal{L} = lpha \mathcal{L}^{ ext{signal}} + eta \mathcal{L}^{ ext{spatial}}$$

Results

Table 1. Signal-level and spatial metrics for mixture, baseline TSE using only spatial loss and proposed systems using signal-level and spatial losses.

Signal-Level Metrics		Spatial Metrics					
Syst	em	↑ SI-SNR [dB]	↑SNR [dB]	↓∆ILD [dB]	↓∆IPD [rad]	$\downarrow \Delta ITD$ -GCC (ΔITD) [μs]	↓FR [%
(1)	Mixture	-0.74	-0.73	2.68	0.84	235.7 (263.0)	-
(2)	Baseline TSE w/ L ^{signal}	6.50	7.85	0.84	0.88	163.5 (86.3)	0.17
(3)	$(2) + \mathcal{L}^{ILD}$	6.72	8.10	0.74	0.83	168.5 (74.8)	0.16
(4)	$(2) + \mathcal{L}^{IPD}$	6.76	8.03	0.79	0.49	242.9 (80.1)	0.16
(5)	$(2) + \mathcal{L}^{IID}$	6.74	8.11	0.78	0.84	137.3 (79.0)	0.16

Signal-level and Spatial Losses

Signal-level Losses

$$\mathcal{L}^{\text{SNR}}(\mathbf{s}^{\text{tgt}}, \hat{\mathbf{s}}^{\text{tgt}}) = -\left(\frac{1}{2}\text{SNR}(\mathbf{s}^{\text{tgt}}_r, \hat{\mathbf{s}}^{\text{tgt}}_r) + \frac{1}{2}\text{SNR}(\mathbf{s}^{\text{tgt}}_l, \hat{\mathbf{s}}^{\text{tgt}}_l)\right) \quad \mathcal{L}^{\text{signal}} = 0.9\mathcal{L}^{\text{SNR}} + 0.1\mathcal{L}^{\text{SI-SNR}}$$

Spatial Losses

- Interaural level difference (ILD): difference in intensity between ears

$$ILD = 10 \log_{10} \left(\frac{||\mathbf{s}_l||_2^2}{||\mathbf{s}_r||_2^2} \right) \qquad \mathcal{L}^{ILD} = \left| ILD^{tgt} - \widehat{ILD}^{tgt} \right|$$

- Interaural phase difference (IPD): difference in phase

$$IPD_{u,v} = \operatorname{atan}\left(\frac{\operatorname{Im}\left(S_{u,v,l}S_{u,v,r}^{*}\right)}{\operatorname{Re}\left(S_{u,v,l}S_{u,v,r}^{*}\right)}\right) \mathcal{L}^{IPD} = \frac{1}{UV} \sum_{u=1}^{U} \sum_{v=1}^{V} \left(\operatorname{IPD}_{u,v}^{\operatorname{tgt}} - \widehat{\operatorname{IPD}}_{u,v}^{\operatorname{tgt}}\right)^{2}$$

- Interaural time difference (ITD): difference in arrival between ears

$$\mathbf{c} = \mathcal{F}^{-1} \left(\frac{\mathcal{F}(\mathbf{s}_l) \odot \mathcal{F}(\mathbf{s}_r)^*}{|\mathcal{F}(\mathbf{s}_l) \odot \mathcal{F}(\mathbf{s}_r)^*|} \right) \qquad \text{ITD} = \underset{t \in [-\tau, \tau]}{\operatorname{argmax}} c_t$$

$$\mathcal{L}^{\text{ITD}} = \frac{1}{2\tau + 1} \sum_{t=-\tau}^{\tau} \left(c_t^{\text{tgt}} - \hat{c}_t^{\text{tgt}} \right)^2$$

 $\mathbf{c} = [c_{t=-T}, \dots, c_{t=0}, \dots, c_{t=T}] \in \mathbb{R}^{2T+1}$: vector of cross-correlation coefficients

 C_t : cross-correlation coefficient between left and right channels

 \mathcal{F} , \mathcal{F}^{-1} : Fourier Transform (FT) and Inverse Fourier Transform (IFT)

 c_t^{tgt} , \hat{c}_t^{tgt} : cross-correlation between the reference and extracted signals

 $au=1 ext{ms}$: scalar limiting the predicted delay in a range

 $S_{u,v,r}, S_{u,v,l} \in \mathbb{C}$: STFT of right and left channels u, v: indexes of time and frequency

Experimental Settings

Data: Semantic Hearing dataset [1]

- 20 sound classes from FSD50K, ESC-50, MUSDB18 and DISCO.
- HRTFS from CIPIC and real RIRs from 3 different corpora.
- 100K, 1K, 10K files for training, validation and test sets.
- Sampling frequency: 44.1KHz

Model Configuration

- Waveformer (E = D = 256) with lookahead.
- Encoder: 1-D convolution layer with stride of L = 32 samples and a kernel size of K = 3L.
- Extractor: DCC layers with kernel size 3 and dilation factors, and 2 MHA layers with 8 heads

Conclusions

Conslusions

- The proposed ITD loss improves spatial metrics while not degrading signal-level losses.

Future Work

- Consider perceptual metrics and losses using high-pass filter for ILD and low-pass filter for ITD and IPD.

References

[1] Bandhav Veluri, Malek Itani, Justin Chan, Takuya Yoshioka, and Shyamnath Gollakota, "Semantic hearing: Programming acoustic scenes with binaural hearables," in Proc. Symposium on User Interface Software and Technology (UIST). 2023, pp. 89:1–89:15, ACM.

[2] Bandhav Veluri, Justin Chan, Malek Itani, Tuochao Chen, Takuya Yoshioka, and Shyamnath Gollakota, "Real-time target sound extraction," in Proc. ICASSP, 2023.

[3] Vikas Tokala, Eric Grinstein, Mike Brookes, Simon Doclo, Jesper Jensen, and Patrick A. Naylor, "Binaural speech enhancement using deep complex convolutional transformer networks," in Proc. ICASSP. 2024, pp. 681–685, IEEE.