Intégrale de Riemann

Sommaire

- Sommes de Riemann d'une fonction
 - Définitions
 - Exemples
- 2 Intégrale de Riemann
 - Intégrabilité
 - Exemples
 - Propriétés
 - Formule de la moyenne
- Primitives
 - Théorème fondamental de l'analyse
 - Lien intégrale/primitive
 - Exemple de synthèse
 - Primitives des fonctions usuelles

Sommaire

- Sommes de Riemann d'une fonction
 - Définitions
 - Exemples
- Intégrale de Riemann
- Primitives

1. Sommes de Riemann

a) Définitions

Définition 1.1 (Subdivision)

Soit a et b deux réels tels que a < b.

- Une subdivision de l'intervalle fermé borné [a, b] est une famille finie de réels (x₀, x₁,..., x_n) telle que : a = x₀ < x₁ < ··· < x_{n-1} < x_n = b.
 Il s'agit donc d'un « découpage » de l'intervalle [a, b].
- Le **pas** d'une telle subdivision est le nombre $\delta = \max_{1 \le k \le n} \{x_k x_{k-1}\}.$

C'est la longueur du **plus grand** intervalle dans le découpage de [a, b].

Exemple 1.2 (Subdivision « équirépartie »)

La subdivision **équirépartie** est issue d'un découpage **équidistant** de [a,b] en n intervalles de longueur identique $\delta = \frac{b-a}{n}$.

Les points de subdivision sont donnés par $x_k = a + k \frac{b-a}{n}, \ 0 \leqslant k \leqslant n$ (ils sont répartis selon une progression arithmétique de raison δ) :

Définition 1.3 (Somme de Riemann)

Soit f une fonction définie sur [a,b], $\sigma=(x_0,\ldots,x_n)$ une subdivision de [a,b], et $\Lambda=(\lambda_1,\ldots,\lambda_n)$ une famille de réels tels que : $\forall \ k\in\{1,\ldots,n\}$, $\lambda_k\in[x_{k-1},x_k]$ (on dit alors que la famille Λ est **adaptée** à la subdivision σ).

On appelle **somme de Riemann** de la fonction f associée à σ et à Λ le nombre

$$S(f,\sigma,\Lambda)=\sum_{k=1}^{n}(x_{k}-x_{k-1})f(\lambda_{k}).$$

Ce nombre représente l'aire de la réunion des rectangles de base $[x_{k-1}, x_k]$ et de hauteur $f(\lambda_k)$.

2

Exemple 1.4 (Subdivision équirépartie)

Considérons une subdivision « équirépartie » avec comme choix des λ_k une des

bornes de chaque sous-intervalle :
$$\begin{cases} x_k = a + k \frac{b-a}{n}, \ 0 \leqslant k \leqslant n \\ \lambda_k = x_{k-1} \text{ ou } x_k, \ 1 \leqslant k \leqslant n \end{cases}$$

Les sommes de Riemann correspondantes s'écrivent :

$$S(f, \sigma, \Lambda) = \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{b-a}{n}\right) \quad \text{ou} \quad \frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right)$$

1. Sommes de Riemann b) Exemples

Exemple 1.5 (Sommes de Darboux (facultatif))

Soit f une fonction **continue** sur [a, b], $\sigma = (x_0, \dots, x_n)$ une subdivision de [a, b]. Introduisons les valeurs « extrémales » relatives à chacun des sous-intervalles de σ :

$$\forall k \in \{1, 2, \dots, n\}, \quad m_k = \min_{[x_{k-1}, x_k]} f \quad \text{et} \quad M_k = \max_{[x_{k-1}, x_k]} f.$$

Par continuité, f atteint ses bornes : il existe donc des λ_k^1, λ_k^2 dans $[x_{k-1}, x_k]$ tels que $f(\lambda_k^1) = m_k$ et $f(\lambda_k^2) = M_k$.

Les sommes de Riemann correspondant aux familles adaptées $\Lambda_1 = (\lambda_1^1, \dots, \lambda_n^1)$ et $\Lambda_2 = (\lambda_1^2, \dots, \lambda_n^2)$ sont appelées sommes de Darboux :

$$S_1 = S(f, \sigma, \Lambda_1) = \sum_{k=1}^{n} m_k (x_k - x_{k-1})$$
 et $S_2 = S(f, \sigma, \Lambda_2) = \sum_{k=1}^{n} M_k (x_k - x_{k-1}).$

Remarque : toutes les sommes de Riemann sont comprises entre S_1 et S_2 .

Sommaire

- 1 Sommes de Riemann d'une fonction
- 2 Intégrale de Riemann
 - Intégrabilité
 - Exemples
 - Propriétés
 - Formule de la moyenne
- Primitives

Définition 2.1 (Intégrabilité)

Soit $f:[a,b] \to \mathbb{R}$ une fonction **bornée**. S'il existe un nombre réel I tel que

 $\forall \varepsilon > 0, \ \exists \, \delta > 0, \ \forall \, \sigma \text{ subdivision de pas} < \delta, \ \forall \, \Lambda \text{ adapt\'ee à } \sigma, \ |S(f,\sigma,\Lambda) - I| < \varepsilon$

on dit que la fonction f est **intégrable (au sens de Riemann)** sur [a,b] et le nombre f est l'**intégrale de f sur [a,b]**. Ce nombre est noté $\int_a^b f(x) \, dx$ ou $\int_a^b f$.

Autrement dit, une fonction est intégrable ssi **toutes** ses suites de sommes de Riemann dont le pas des subdivisions associées tend vers 0, sont **convergentes de même limite finie.**

Définition 2.1 (Intégrabilité)

Soit $f:[a,b] \to \mathbb{R}$ une fonction **bornée**. S'il existe un nombre réel I tel que

 $\forall \varepsilon > 0, \ \exists \, \delta > 0, \ \forall \, \sigma \text{ subdivision de pas} < \delta, \ \forall \, \Lambda \text{ adapt\'ee à } \sigma, \ |S(f,\sigma,\Lambda) - I| < \varepsilon$

on dit que la fonction f est **intégrable (au sens de Riemann)** sur [a,b] et le nombre f est l'**intégrale de f sur [a,b]**. Ce nombre est noté $\int_a^b f(x) \, \mathrm{d}x$ ou $\int_a^b f(x) \, \mathrm{d}x$

Autrement dit, une fonction est intégrable ssi **toutes** ses suites de sommes de Riemann dont le pas des subdivisions associées tend vers 0, sont **convergentes de même limite finie.**

Définition 2.1 (Intégrabilité)

Soit $f:[a,b] \to \mathbb{R}$ une fonction **bornée**. S'il existe un nombre réel I tel que

 $\forall \varepsilon > 0, \ \exists \ \delta > 0, \ \forall \ \sigma \ \textit{subdivision de pas} < \delta, \ \forall \ \Lambda \ \textit{adapt\'ee} \ \grave{a} \ \sigma, \ |S(f,\sigma,\Lambda) - I| < \varepsilon$

on dit que la fonction f est **intégrable (au sens de Riemann)** sur [a,b] et le nombre f est l'**intégrale de f sur [a,b]**. Ce nombre est noté $\int_a^b f(x) \, dx$ ou $\int_a^b f$.

Autrement dit, une fonction est intégrable ssi **toutes** ses suites de sommes de Riemann dont le pas des subdivisions associées tend vers 0, sont **convergentes de même limite finie.**

Remarque 2.2 (Notations/conventions)

La variable utilisée dans la notation de l'intégrale est dite muette :

$$\int_a^b f = \int_a^b f(x) dx = \int_a^b f(t) dt = \int_a^b f(u) du = \int_a^b f(0) d0 = \cdots$$

• Le nombre $\int_a^b f$ représente l'« aire algébrique » entre la courbe de f dans un repère orthonormal et l'axe des abscisses, en comptant négativement les parties au-dessous de l'axe et positivement les parties au-dessus.

• Conventions : on convient que $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$ et $\int_{a}^{a} f(x) dx = 0$.

Théorème 2.3 (Exemples de fonction intégrable (admis))

- Toute fonction continue sur [a, b] est intégrable sur [a, b].
- Plus généralement, toute fonction **continue par morceaux** sur [a, b] (i.e. admettant un nombre **fini** de discontinuités, celles-ci étant de 1^{re} espèce) est **intégrable** sur [a, b].

Plus précisément, en notant x_1, x_2, \dots, x_{n-1} ses discontinuités et en posant $x_0 = a$ et $x_n = b$, on peut prolonger f par continuité sur chaque intervalle

$$[x_{k-1},x_k]$$
, $k \in \{1,\ldots,n\}$. Notons \tilde{f}_k ce prolongement. Alors $\int_a^b f = \sum_{k=1}^n \int_{x_{k-1}}^{x_k} \tilde{f}_k$.

Remarquons que si l'on modifie la valeur d'une fonction continue par morceaux en un nombre fini de points, alors la valeur de son intégrale reste la même.

• Toute fonction **monotone** sur [a, b] est **intégrable** sur [a, b].

7

Exemple 2.4 (Fonctions constante, identité, exponentielle...)

À l'aide de la somme de Riemann associée à une subdivision **équirépartie**, on trouve pour une fonction intégrable

$$\lim_{n\to+\infty}\frac{b-a}{n}\sum_{k=1}^n f\bigg(a+k\frac{b-a}{n}\bigg)=\int_a^b f(x)\,\mathrm{d}x.$$

Dans le cas d'une fonction constante, cela donne

$$\forall \lambda \in \mathbb{R}, \quad \int_a^b \lambda \, \mathrm{d}x = \lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=1}^n \lambda = \lambda (b-a) \quad (\text{aire d'un rectangle !})$$

• Dans le cas de la fonction exponentielle, cela donne

$$\int_a^b e^x dx = \lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=1}^n e^{a+k\frac{b-a}{n}} = e^b - e^a.$$

• Dans le cas de la fonction identité, cela donne

$$\int_{a}^{b} x \, dx = \lim_{n \to +\infty} \frac{b-a}{n} \sum_{n=0}^{\infty} \left(a + k \frac{b-a}{n} \right) = \frac{1}{2} (b^2 - a^2) \quad \text{(aire d'un trapèze!)}$$

Dans le cas de la fonction carré, cela donne

$$\int_{a}^{b} x^{2} dx = \lim_{n \to +\infty} \frac{b-a}{n} \sum_{i=1}^{n} \left(a + k \frac{b-a}{n} \right)^{2} = \frac{1}{3} (b^{3} - a^{3}).$$

3

Exemple 2.5 (Fonction indicatrice de \mathbb{Q})

Considérons la fonction «indicatrice» (ou «caractéristique») de \mathbb{Q} . Il s'agit de la fonction

$$\mathbb{1}_{\mathbb{Q}}: \mathbb{R} \longrightarrow \mathbb{Q}$$

$$x \longmapsto \begin{cases} 1 \text{ si } x \in \mathbb{Q} \\ 0 \text{ si } x \notin \mathbb{Q} \end{cases}$$

Soit une subdivision $\sigma = (x_0, \dots, x_n)$ d'un intervalle [a, b] de pas arbitrairement petit,

$$\Lambda = (\lambda_1, \dots, \lambda_n)$$
 et $\Lambda' = (\lambda'_1, \dots, \lambda'_n)$ deux familles adaptées à la subdivision σ telles que $\forall k \in \{1, \dots, n\}, \quad \lambda_k \in \mathbb{Q} \quad \text{et} \quad \lambda'_k \in \mathbb{R} \setminus \mathbb{Q}.$

Les sommes de Riemann correspondantes valent

$$S(\mathbb{1}_{\mathbb{Q}}, \sigma, \Lambda) = b - a$$
 et $S(\mathbb{1}_{\mathbb{Q}}, \sigma, \Lambda') = 0$.

Elles ne peuvent pas tendre vers une limite commune.

Ainsi, la fonction indicatrice de $\mathbb Q$ n'est intégrable sur aucun intervalle [a,b].

Entre deux réels distincts quelconques, il existe un rationnel et un irrationnel (en fait une infinité de chaque). On dit que les ensembles $\mathbb Q$ et $\mathbb R\setminus\mathbb Q$ sont **denses** dans $\mathbb R$.

En effet : soit $(a,b) \in \mathbb{R}^2$ tels que a < b. Alors il existe un entier n tel que $a < b - \frac{1}{n}$.

Posons $u_n = \frac{\mathsf{E}(na)+1}{n}$ et $v_n = \frac{\mathsf{E}(na\sqrt{2})+1}{n\sqrt{2}}$. Les nombres u_n et v_n sont compris entre a et b,

 u_n est rationnel et v_n est irrationnel.

$$b-\frac{1}{n}$$

Proposition 2.6 (Opérations)

Linéarité

Soit f et g deux fonctions intégrables sur [a,b] ($a \le b$) et $\lambda, \mu \in \mathbb{R}$. La fonction $\lambda f + \mu g$ est intégrable sur [a,b] et

$$\int_a^b (\lambda f(x) + \mu g(x)) dx = \lambda \int_a^b f(x) dx + \mu \int_a^b g(x) dx$$

Relation de Chasles

Soit f une fonction intégrable sur [a,b] ($a \le b$) Pour tout $c \in [a,b]$, f est intégrable f(x)sur [a,c] et [c,b] et

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$
ou encore

$$\int_a^c f(x) dx = \int_a^b f(x) dx - \int_c^b f(x) dx$$

Ces propriétés restent valables lorsque b < a.

Proposition 2.7 (Parité)

Soit f une fonction intégrable sur $[-b, -a] \cup [a, b]$ $(0 \le a \le b)$.

Si f est paire, alors

$$\int_{-b}^{-a} f(x) dx = \int_{a}^{b} f(x) dx.$$

Si f est impaire, alors

$$\int_{-b}^{-a} f(x) dx = -\int_{a}^{b} f(x) dx.$$

Cas particulier: soit f une fonction intégrable sur [-a, a] $(a \ge 0)$.

• Si f est paire, alors

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx.$$

Autrement dit, la fonction

$$x \in [-a, a] \longmapsto \int_0^x f(t) dt$$

est impaire.

• Si f est **impaire**, alors

$$\int_{-a}^{a} f(x) \, \mathrm{d}x = 0.$$

Autrement dit, la fonction

$$x \in [-a, a] \longmapsto \int_0^x f(t) dt$$

est **paire**.

Proposition 2.8 (Périodicité)

Soit f une fonction T-périodique sur \mathbb{R} intégrable sur [0,T] (T>0). Alors, pour tout réel a, f est intégrable sur [a,a+T] et

$$\int_a^{a+T} f(x) dx = \int_0^T f(x) dx.$$

Proposition 2.9 (Ordre)

Croissance/Positivité

Soit f et g deux fonctions intégrables sur [a, b] ($a \le b$).

Si
$$f \geqslant g$$
 sur $[a, b]$ alors $\int_a^b f(x) dx \geqslant \int_a^b g(x) dx$.

En particulier : si
$$f \geqslant 0$$
 sur $[a, b]$ alors $\int_a^b f(x) dx \geqslant 0$.

2 Inégalité triangulaire

Soit f une fonction intégrable sur [a,b] $(a \le b)$.

On a
$$\left| \int_a^b f(x) \, \mathrm{d}x \right| \leqslant \int_a^b |f(x)| \, \mathrm{d}x$$

Plus généralement, quel que soit l'ordre de a et b,

$$\left| \int_a^b f(x) \, \mathrm{d}x \right| \leqslant \left| \int_a^b |f(x)| \, \mathrm{d}x \right| \leqslant |b-a| \times \sup_{x \in [a,b]} |f(x)|.$$

Stricte positivité

Supposons f continue et positive.

- S'il existe $x_0 \in [a, b]$ tel que $f(x_0) > 0$, alors $\int_a^b f(x) dx > 0$.
- Si $\int_{a}^{b} f(x) dx = 0$ alors, pour tout $x \in [a, b]$, f(x) = 0.

Définition 2.10 (Valeur moyenne)

Soit $f:[a,b] \to \mathbb{R}$ une fonction intégrable.

On appelle valeur moyenne de f sur [a, b] le réel $\frac{1}{b-a} \int_a^b f(x) dx$.

Exemple 2.11

Soit y_1, y_2, \ldots, y_n des nombres réels et $f: [a,b] \longrightarrow \mathbb{R}$ la fonction y, constante par morceaux définie par $f(x) = y_k$ pour tout $k \in \{1,2,\ldots,n\}$ et tout $x \in [x_{k-1},x_k]$ où l'on a posé y_3 $x_k = a + (b-a)\frac{k}{n}$.

Alors la valeur moyenne de f sur [a, b] coïncide avec la moyenne arithmétique des nombres y_1, \ldots, y_n :

$$\frac{1}{b-a}\int_a^b f(x)\,\mathrm{d}x = \frac{1}{n}\sum_{k=1}^n y_k = \bar{y}.$$

Théorème 2.12 (Formule de la moyenne)

Soit $f:[a,b]\to\mathbb{R}$ continue et soit $g:[a,b]\to\mathbb{R}$ intégrable de signe constant.

Alors
$$\exists c \in [a, b], \quad \int_a^b f(x)g(x) \, \mathrm{d}x = f(c) \int_a^b g(x) \, \mathrm{d}x.$$

En particulier, pour g = 1:

$$\exists c \in [a,b], \ \int_a^b f(x) \, \mathrm{d}x = f(c)(b-a).$$

Autrement dit, il existe un $c \in [a, b]$ tel que f(c) coïncide avec la valeur moyenne de f sur [a, b].

Exemple 2.13

Soit $f:[a,b]\to\mathbb{R}$ continue et pour tout $n\in\mathbb{N}$, $u_n=\int_a^b f(x)\,\mathrm{e}^{-nx}\,\mathrm{d}x$. La fonction $x \mapsto e^{-nx}$ étant intégrable positive sur [a, b],

$$\exists c_n \in [a,b], \quad u_n = f(c_n) \int_{a}^{b} e^{-nx} dx = \frac{1}{n} f(c_n) (e^{-na} - e^{-nb}).$$

La fonction f étant continue sur [a, b], donc bornée, on en déduit que $\lim u_n = 0$.

Sommaire

- Sommes de Riemann d'une fonction
- 2 Intégrale de Riemann
- Primitives
 - Théorème fondamental de l'analyse
 - Lien intégrale/primitive
 - Exemple de synthèse
 - Primitives des fonctions usuelles

Le théorème de la moyenne permet d'obtenir une relation de **réciprocité** entre les opérations d'**intégration** et de **dérivation** décrite dans le résultat suivant :

Théorème-définition 3.1 (Théorème fondamental de l'analyse)

Soit f une fonction **continue** sur un intervalle I et $a \in I$ fixé.

On définit la fonction suivante F sur I par $\forall x \in I$, $F(x) = \int_{-\infty}^{x} f(t) dt$.

Alors F est de **classe** C^1 sur I et F' = f.

On dit que F est une **primitive** de f sur I.

F est en fait l'**unique** primitive de f sur l qui s'annule en a.

Remarque 3.2 (Raffinement de la formule de la moyenne (facultatif))

La formule de la moyenne précédemment énoncée stipule l'existence d'un c appartenant à l'intervalle **fermé** [a,b] tel que $\int_a^b f(x) dx = f(c)(b-a)$.

En fait, le théorème des accroissements finis appliqué à une primitive de f permet d'assurer plus précisément l'existence d'un tel c dans l'intervalle **ouvert** a, b.

Corollaire 3.3

Soit f une fonction **continue** sur un intervalle I. Alors :

- f admet des primitives sur I;
- g si F est une primitive de f, alors toutes les primitives de f s'obtiennent en ajoutant une constante réelle à F;
- **3** pour toute primitive F de f et $(a,b) \in I^2$, on $a : \int_a^b f(t) dt = F(b) F(a)$.

Notations :

- la quantité F(b) F(a) se note aussi $[F(t)]_a^b$;
- on note $\int f(x) dx$ toute primitive de f (définie à une constante additive près).

Corollaire 3.4

Soit f une fonction de **classe** C^1 sur un intervalle I.

Alors on a pour tout
$$(a,b) \in I^2$$
: $\int_a^b f'(t) dt = f(b) - f(a)$.

On fera attention de ne pas confondre la formule précédente avec la suivante (valable pour f continue), l'ordre d'intégration et de dérivation n'étant pas le même :

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, \mathrm{d}t = f(x).$$

Exemple 3.5 (Un calcul d'intégrale)

- **1** La fonction d'intérêt : soit $f: [0,1] \longrightarrow \mathbb{R}$ $x \longmapsto \frac{x-1}{\ln x}$
 - La fonction f est continue sur]0,1[.
 - On a $\lim_{x \to 0^+} f(x) = 0$ et $\lim_{x \to 1^-} f(x) = 1$.
 - Donc f admet un prolongement par continuité \tilde{f} en 0 et 1 obtenu en posant $\tilde{f}(0)=0$ et $\tilde{f}(1)=1$. Plus précisément :

$$ilde{f}:[0,1] \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} f(x) & \text{si } x \in]0,1[\\ 0 & \text{si } x = 0 \\ 1 & \text{si } x = 1 \end{cases}$$

On se propose alors de calculer l'intégrale

$$I = \int_0^1 \tilde{f}(x) \, \mathrm{d}x.$$

3. Primitives

- $x \longmapsto \int_{x}^{x^{2}} \frac{1}{\ln t} \, \mathrm{d}t$
- Limite en 0^+ . Posons $\varphi(t) = \frac{1}{\ln t}$ pour $t \in]0,1[$. En appliquant la formule de la moyenne à la fonction φ continue sur $[x^2,x]$, il existe $c(x) \in [x^2,x]$ tel que

c) Exemple de synthèse

- $F(x) = \frac{x^2 x}{\ln(c(x))}. \text{ Or } \lim_{x \to 0^+} c(x) = 0. \text{ D'où } \lim_{x \to 0^+} F(x) = 0.$
- Limite en 1⁻. En décomposant $\varphi(t) = f(t) \times \frac{1}{t-1}$ et en appliquant la formule de la moyenne, la fonction $t \mapsto \frac{1}{t-1}$ étant négative sur $[x^2, x]$, il existe $d(x) \in [x^2, x]$ tel que $F(x) = f(d(x)) \int_x^{x^2} \frac{1}{t-1} dt = f(d(x)) \ln(x+1)$. Or $\lim_{x \to 1^-} d(x) = 1$ et $\lim_{x \to 1^-} f(u) = 1$,
- donc $\lim_{x \to 1^{-}} f(d(x)) = 1$. D'où $\lim_{x \to 1^{-}} F(x) = \ln 2$.

 Prolongement par continuité que [0, 1]. Donc F admet un prolongement par continuité.
- Prolongement par continuité sur [0,1]. Donc F admet un prolongement par continuité \tilde{F} en 0 et 1 obtenu en posant $\tilde{F}(0)=0$ et $\tilde{F}(1)=\ln 2$ (F étant continue sur [0,1]).
- Dérivée de \tilde{F} . La fonction φ étant continue sur]0,1[, elle admet une primitive Φ . On peut écrire $F(x) = \Phi(x^2) \Phi(x)$, Φ étant dérivable sur]0,1[. On voit alors que F est dérivable sur]0,1[et $F'(x)=2x\varphi(x^2)-\varphi(x)=f(x)$. Par ailleurs, $\lim_{x\to 0^+} F'(x)=\tilde{f}(0)$ et $\lim_{x\to 0^+} F'(x)=\tilde{f}(1)$, donc d'après le théorème de

la limite de la dérivée, \tilde{F} est dérivable en 0 et en 1 et $\tilde{F}' = \tilde{f}$ sur [0, 1].

Exemple 3.5 (Un calcul d'intégrale)

8 Le calcul d'aire :

• La fonction \tilde{F} est une **primitive** de \tilde{f} sur [0,1]. En conséquence, $I = \left[\tilde{F}(x)\right]_0^1 = \tilde{F}(1) - \tilde{F}(0)$ soit

$$I = \ln 2$$
.

3. Primitives

Exemple 3.6 (Fonctions puissances/exponentielles/trigonométriques/hyperboliques)

$$\int x^{p} dx = \frac{1}{p+1} x^{p+1} + Cste \text{ pour tout } p \in \mathbb{R} \setminus \{-1\} \text{ et } \int \frac{1}{x} dx = \ln|x| + Cste$$
 ou encore
$$\int \frac{1}{x^{p}} dx = -\frac{1}{p-1} \frac{1}{x^{p-1}} + Cste \text{ pour tout } p \in \mathbb{R} \setminus \{1\}$$

$$\int \cos x \, dx = \sin x + Cste \text{ et } \int \sin x \, dx = -\cos x + Cste$$

$$\int \tan x \, dx = -\ln|\cos x| + Cste \text{ et } \int \frac{1}{\cos^2 x} \, dx = \tan x + Cste$$

$$\oint \operatorname{ch} x \, \mathrm{d}x = \operatorname{sh} x + \operatorname{Cste} \text{ et } \int \operatorname{sh} x \, \mathrm{d}x = \operatorname{ch} x + \operatorname{Cste}$$

$$\int \operatorname{th} x \, dx = \ln \operatorname{ch} x + \operatorname{Cste} \, \operatorname{et} \, \int \frac{1}{\operatorname{ch}^2 x} \, dx = \operatorname{th} x + \operatorname{Cste}$$

$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + Cste \text{ et } \int \frac{1}{\sqrt{x^2+1}} dx = \operatorname{argsh} x + Cste$$

$$\int \frac{1}{x^2+1} dx = \arctan x + Cste$$

4. Compléments

Et pour aller plus loin...

Notions à retenir

- Sommes de Riemann
 - * Application au calcul de limites de certaines suites
- Intégrale de Riemann
 - * Interprétation géométrique
 - * Opérations
 - * Inégalités, théorème de la moyenne
- Primitives
 - Théorème fondamental de l'analyse : lien entre intégrale définie et primitive
 - * Primitives usuelles à connaître