Curiositat sobre les resistències

- El concepte de resistència va ser descobert per Georg Ohm a l'any 1827 (font 1.1)
- A la dècada del 1920 l'associació Radio Manufacturer's d'EUA va definir i establir el codi de colors (<u>font 1.2</u>)
- Les inicials SMD volen dir Surface Mounting Device

Tipus de resistències

- Explicació blog: font 2.1

- De carboni, de ceràmica...: font 2.2

Codi de colors per a calcular el valor de les resistències

- Explicació i exemples: font3.1, font imatge

- App: Resistor (recurs)

Valor comercial/estàndard de les resistències

- Valors estàndards i com es llegeixen: font 4.1

- Font taula

x 1	x 10	x 100	x 1.000 (K)	x 10.000 (10K)	x 100.000 (100K)	x 1.000.000 (M)
1Ω	10Ω	100Ω	$1 \text{ K}\Omega$	$10~\mathrm{K}\Omega$	100 KΩ	1 M Ω
$1,2 \Omega$	12Ω	120Ω	$1 \text{K2} \Omega$	$12~\mathrm{K}\Omega$	$120~\mathrm{K}\Omega$	$1M2 \Omega$
$1,5 \Omega$	15Ω	150 Ω	$1 \text{K5} \Omega$	$15~\mathrm{K}\Omega$	$150 \text{ K}\Omega$	$1M5 \Omega$
$1,8 \Omega$	18Ω	180Ω	$1K8 \Omega$	$18 \text{ K}\Omega$	180 KΩ	$1M8 \Omega$
2,2 Ω	22Ω	220Ω	$2K2 \Omega$	$22 \text{ K}\Omega$	$220 \text{ K}\Omega$	$2M2 \Omega$
$2,7 \Omega$	27Ω	270Ω	$2 \text{K7 } \Omega$	$27~\mathrm{K}\Omega$	$270~\mathrm{K}\Omega$	$2M7 \Omega$
$3,3 \Omega$	33Ω	330Ω	$3K3 \Omega$	$33 \text{ K}\Omega$	$330~\mathrm{K}\Omega$	$3M3 \Omega$
3.9Ω	39Ω	390Ω	$3K9 \Omega$	$39 \text{ K}\Omega$	$390 \text{ K}\Omega$	$3M9 \Omega$
$4,7 \Omega$	47Ω	470Ω	$4 \mathrm{K7} \Omega$	$47~\mathrm{K}\Omega$	$470~\mathrm{K}\Omega$	$4M7 \Omega$
$5,1 \Omega$	51Ω	510Ω	$5 \text{K1} \Omega$	$51 \mathrm{K}\Omega$	$510~\mathrm{K}\Omega$	$5M1\Omega$
$5,6 \Omega$	56Ω	560Ω	$5 \text{K6 } \Omega$	$56~\mathrm{K}\Omega$	$560~\mathrm{K}\Omega$	$5M6 \Omega$
6,8 Ω	68Ω	680Ω	$6 \text{K8} \Omega$	$68 \mathrm{K}\Omega$	$680~\mathrm{K}\Omega$	$6M8 \Omega$
$8,2 \Omega$	82Ω	820 Ω	$8 \text{K2} \Omega$	$82~\mathrm{K}\Omega$	820 KΩ	$8M2 \Omega$
						$10M \Omega$

Com funcionen els LED's a nivell atòmic

- Perquè un LED emet llum? Vídeo1 entre els instants 4:05-4:14
- Per què els LEDs són de diferents colors? Vídeo1 entre els instants 4:14-4:45
- A partir de quin voltatge s'il·lumina cada color? Vídeo2

Software per a dissenyar una placa PCB

Pel disseny de la forma	Pel disseny gràfic	Pel disseny electrònic i de la placa PCB
Fusion 360	Inkscape	KiCad EDA (open source)
(versió lliure d'ús personal)	(= Illustrator, open source)	Easy EDA (online i lliure)

- La pràctica d'aplicar un disseny estètic a les plaques PCB és coneix com PCB Art (recopilació d'exemples)

Disseny obert de la llanterna-PCB

- Tots els arxius creats disponibles a: https://github.com/trentadosics/Flashlight-PCB

Exercicis complementaris

Us animo a què simuleu amb el Tinkercad i munteu a la protoboard els següents circuits.

CIRCUIT 2

Mesurar i calcular els valor de Vtotal, VR, VLED i I pels diferents valor de resistència R

Link C2

R (ohm)	Vtotal (V)	I (mA)	VLED (V)	VR (V)	VR (V)
68					
220					
1.000					
4.700					
10.000					
Tester o colors	Tester	Tester	Tester	VR=R·I	VR=Vtotal - VLED

CIRCUIT 9

S'encenen tots els LEDs?

A la font d'alimentació indiqueu un voltatge de 6V o directament poseu dues piles de 3V en sèrie, com es fa en el circuit 5.

(Solució: si, s'encenen tots els LEDs)

CIRCUIT 10

S'encenen tots els LEDs?

Observació: amb el Tinkercad comprovareu que el circuit funciona, però no veureu l'efecte que haurieu de descobrir. Això ho experimentareu a la realitat amb la protoboard.

(Solució: només s'haurien d'encendre els LED's vermell i verd. Si els treieu, el LED blau s'hauria d'encendre. Es produeix el fenòmen del Vídeo2)

Link C10

CIRCUIT 11

Jugueu amb els pontenciòmetres. Com es comporta cada LED?

(Solució: la lluminostat de cada LED varia)

CIRCUIT 12

Quin valor de resistència obteniu a cada cas?

En aquest exercici col·loquem les resistències en SÈRIE i cadascuna té el valor de 1K (1000ohms)

(Solució: en col·locar les resistències en SÈRIE el que aconseguim és una resistencia total de valor igual a la suma de totes les resistències individuals)

Link C12

CIRCUIT 13

Quin valor de resistència obteniu a cada cas?

En aquest exercici col·loquem les resistències en PARAL·LEL i cadascuna té el valor de 1K (1000ohms)

(Solució: en col·locar les resistències en PARAL·LEL el que aconseguim és una resistencia total de valor inferior a la suma de totes les resistències individuals)

CIRCUIT 14

Quin és el voltatge de cada conjunt de piles? Les dues piles de la dreta estan en SÈRIE

(Solució: al col·locar les piles en SÈRIE aconseguim sumar els voltatges)

Link C14

CIRCUIT 15

Quin és el voltatge de cada conjunt de piles?

Les dues piles del centre estan en SÈRIE i les de la dreta estan en PARAL·LEL

(Solució: el voltatge total de les piles en SÈRIE és de 6V i les de piles en PARAL·LEL és de 3V)