Semi-Supervised Learning

with Ladder Networks

Гущенко-Чеверда Иван, 141

Задача Semi-Supervised Learning

Задача Semi-Supervised Learning

Как работать со сложными данными?

Предложенный метод позволит адаптировать нейронные сети для извлечения пользы из неразмеченных данных на ряду с размеченными.

Свойства:

- Не имеет ограничение на глубину базовой модели.
- Адаптируется под разные архитектуры.
- Масштабируется. Время итерации увеличивается в константу раз.

Denoising autoencoder

Denoising source separation

Вместо восстановления входов алгоритм восстанавливает $\hat{\mathbf{z}} = g(\tilde{\mathbf{z}})$, где

$$\mathbf{z} = f(\mathbf{x})$$
. Минимизируем $\|\hat{\mathbf{z}} - \mathbf{z}\|^2$

Архитектура Ladder Network

- Noisy encoder
- Clean encoder
- Decoder

Архитектура Ladder Network

Noisy encoder

```
# Corrupted encoder and classifier \tilde{\mathbf{h}}^{(0)} \leftarrow \tilde{\mathbf{z}}^{(0)} \leftarrow \mathbf{x}(n) + \text{noise} for l = 1 to L do \tilde{\mathbf{z}}^{(l)} \leftarrow \text{batchnorm}(\mathbf{W}^{(l)}\tilde{\mathbf{h}}^{(l-1)}) + \text{noise} \tilde{\mathbf{h}}^{(l)} \leftarrow \text{activation}(\boldsymbol{\gamma}^{(l)} \odot (\tilde{\mathbf{z}}^{(l)} + \boldsymbol{\beta}^{(l)})) end for P(\tilde{\mathbf{y}} \mid \mathbf{x}) \leftarrow \tilde{\mathbf{h}}^{(L)}
```


Decoder and loss

```
for 1 = L to 0 do
      if l = L then
           \mathbf{u}^{(L)} \leftarrow \mathtt{batchnorm}(\tilde{\mathbf{h}}^{(L)})
      else
           \mathbf{u}^{(l)} \leftarrow \mathtt{batchnorm}(\mathbf{V}^{(l+1)}\hat{\mathbf{z}}^{(l+1)})
      end if
     \forall i : \hat{z}_i^{(l)} \leftarrow g(\tilde{z}_i^{(l)}, u_i^{(l)}) \text{ # Eq. (2)}
    orall i: \hat{z}_{i,	ext{BN}}^{(l)} \leftarrow rac{\hat{z}_i^{(l)} - \mu_i^{(l)}}{\sigma_i^{(l)}}
 end for
 # Cost function C for training:
 C \leftarrow 0
if t(n) then
      C \leftarrow -\log P(\tilde{\mathbf{y}} = t(n) \mid \mathbf{x}(n))
end if
\mathbf{C} \leftarrow \mathbf{C} + \sum_{l=0}^{L} \lambda_l \left\| \mathbf{z}^{(l)} - \hat{\mathbf{z}}_{\mathrm{BN}}^{(l)} \right\|^2 # Eq. (3)
```


Выбор функции д

Идеальный denoising для гауссовской случайной величины:

$$\hat{z} = g(\hat{z}) = \upsilon * \tilde{z} + (1 - \upsilon) * \mu = (\tilde{z} - \mu) * \upsilon + \mu$$

Мы хотим, чтобы мы могли провести идеальный denoising для

$$p(\mathbf{z}^{(l)} \mid \mathbf{z}^{(l+1)}) = \prod_{i} p(z_i^{(l)} \mid \mathbf{z}^{(l+1)})$$

распределенных нормально.

Выбор функции д

$$\begin{split} \hat{z}_i^{(l)} &= g_i(\tilde{z}_i^{(l)}, u_i^{(l)}) = \left(\tilde{z}_i^{(l)} - \mu_i(u_i^{(l)})\right) \upsilon_i(u_i^{(l)}) + \mu_i(u_i^{(l)}) \\ \mu_i(u_i^{(l)}) &= a_{1,i}^{(l)} \mathtt{sigmoid}(a_{2,i}^{(l)} u_i^{(l)} + a_{3,i}^{(l)}) + a_{4,i}^{(l)} u_i^{(l)} + a_{5,i}^{(l)} \\ \upsilon_i(u_i^{(l)}) &= a_{6,i}^{(l)} \mathtt{sigmoid}(a_{7,i}^{(l)} u_i^{(l)} + a_{8,i}^{(l)}) + a_{9,i}^{(l)} u_i^{(l)} + a_{10,i}^{(l)}, \end{split}$$

Почему алгоритм работает?

Permutation invariant MNIST

Test error % with # of used labels	100	1000	All
Semi-sup. Embedding (Weston et al., 2012)	16.86	5.73	1.5
Transductive SVM (from Weston et al., 2012)	16.81	5.38	1.40*
MTC (Rifai et al., 2011)	12.03	3.64	0.81
Pseudo-label (Lee, 2013)	10.49	3.46	
AtlasRBF (Pitelis et al., 2014)	$8.10 (\pm 0.95)$	$3.68 (\pm 0.12)$	1.31
DGN (Kingma et al., 2014)	$3.33 (\pm 0.14)$	$2.40 (\pm 0.02)$	0.96
DBM, Dropout (Srivastava et al., 2014)			0.79
Adversarial (Goodfellow et al., 2015)			0.78
Virtual Adversarial (Miyato et al., 2015)	2.12	1.32	$0.64 (\pm 0.03)$
Baseline: MLP, BN, Gaussian noise	$21.74 (\pm 1.77)$	$5.70 (\pm 0.20)$	$0.80 (\pm 0.03)$
Γ -model (Ladder with only top-level cost)	$3.06 (\pm 1.44)$	$1.53 (\pm 0.10)$	$0.78 (\pm 0.03)$
Ladder, only bottom-level cost	$1.09 (\pm 0.32)$	$0.90 (\pm 0.05)$	$0.59 (\pm 0.03)$
Ladder, full	1.06 (± 0.37)	$0.84 (\pm 0.08)$	$0.57 (\pm 0.02)$

MNIST

Table 2: CNN results for MNIST

Test error without data augmentation % with # of used labels	100	all
EmbedCNN (Weston et al., 2012)	7.75	
SWWAE (Zhao et al., 2015)	9.17	0.71
Baseline: Conv-Small, supervised only	$6.43~(\pm~0.84)$	0.36
Conv-FC	$0.99 (\pm 0.15)$	
Conv-Small, Γ-model	$0.89 (\pm 0.50)$	

CIFAR10

Table 3: Test results for CNN on CIFAR-10 dataset without data augmentation

Test error % with # of used labels	4 000	All
All-Convolutional ConvPool-CNN-C (Springenberg et al., 2014)		9.31
Spike-and-Slab Sparse Coding (Goodfellow et al., 2012)	31.9	
Baseline: Conv-Large, supervised only	$23.33 (\pm 0.61)$	9.27
Conv-Large, Γ-model	20.40 (\pm 0.47)	

Дополнительно: Вариации алгоритма

	100		1000		60000		
Variant	AER (%)	SE	AER (%)	SE	AER (%)	SE	
Gaussian	1.064	± 0.021	0.983	± 0.019	0.604	± 0.010	
GatedGauss	1.308	±0.038	1.094	±0.016	0.632	± 0.011	
MLP [4]	1.374	$\pm \ 0.186$	0.996	± 0.028	0.605	± 0.012	
MLP[2, 2]	1.209	± 0.116	1.059	± 0.023	0.573	± 0.016	
MLP[2, 2, 2]	1.274	± 0.067	1.095	± 0.053	0.602	± 0.010	
AMLP [4]	1.072	± 0.015	0.974	± 0.021	0.598	± 0.014	
AMLP[2,2]	1.193	± 0.039	1.029	± 0.023	0.569	± 0.010	
$AMLP\left[2,2,2\right]$	1.002	± 0.038	0.979	± 0.025	0.578	± 0.013	

Ссылки

- Semi-Supervised Learning with Ladder Networks(2015) (https://arxiv.org/abs/1507.02672)
- Deconstructing the Ladder Network Architecture(2016) (http://proceedings.mlr.press/v48/pezeshki16.pdf)