Arithmetization-Oriented Primitives

An overview of recent advances

Clémence Bouvier

Université de Lorraine, CNRS, Inria, LORIA

WRACH, Roscoff, France April 24th, 2025

Introduction •000

New symmetric primitives

Performance metric

What does "efficient" mean for Zero-Knowledge Proofs?

Introduction 0000

Performance metric

What does "efficient" mean for Zero-Knowledge Proofs? "It depends"

Performance metric

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

$$y = (ax + b)^3(cx + d) + ex$$

$$t_0 = a \cdot x$$

$$t_1 = t_0 + b$$

$$t_2 = t_1 \times t_1$$

$$t_3 = t_2 \times t_1$$

$$t_4 = c \cdot x$$

$$t_5 = t_4 + d$$

$$t_6 = t_3 \times t_5$$

$$t_7 = e \cdot x$$

$$t_8 = t_6 + t_7$$

Performance metric

What does "efficient" mean for Zero-Knowledge Proofs?

"It depends"

Example

R1CS (Rank-1 Constraint System): minimizing the number of multiplications

$$y = (ax + b)^3(cx + d) + ex$$

$$t_0 = a \cdot x$$

$$t_1 = t_0 + b$$

$$t_2 = t_1 \times t_1$$

$$t_3 = t_2 \times t_1$$

$$a = c \cdot x$$

$$t_5 = t_4 + d$$

$$t_6 = t_3 \times t_5$$

$$r = e \cdot x$$

$$t_8 = t_6 + t_7$$

3 constraints

Traditional case

$$y \leftarrow E(x)$$

Optimized for: implementation in software/hardware

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

 Optimized for: integration within advanced protocols

Traditional case

Introduction

$$y \leftarrow E(x)$$

- * Optimized for: implementation in software/hardware
- * Alphabet size: \mathbb{F}_2^n , with $n \simeq 4,8$
 - Ex: Field of AES: \mathbb{F}_{2^n} where n=8

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

- * Optimized for: integration within advanced protocols
- * Alphabet size: \mathbb{F}_{q} , with $q \in \{2^{n}, p\}, p \simeq 2^{n}, n > 64$

Ex: Scalar Field of Curve BLS12-381: \mathbb{F}_p where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001

Traditional case

Introduction

$$y \leftarrow E(x)$$

- * Optimized for: implementation in software/hardware
- * Alphabet size: \mathbb{F}_2^n , with $n \simeq 4,8$
- * Operations: logical gates/CPU instructions

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

- * Optimized for: integration within advanced protocols
- * Alphabet size: \mathbb{F}_{q} , with $q \in \{2^{n}, p\}, p \simeq 2^{n}, n > 64$
- * Operations: large finite-field arithmetic

Traditional case

Introduction

$$y \leftarrow E(x)$$

- * Optimized for: implementation in software/hardware
- * Alphabet size: \mathbb{F}_2^n , with $n \simeq 4,8$
- * Operations: logical gates/CPU instructions

Cryptanalysis

Decades of analysis

Arithmetization-oriented

$$y \leftarrow E(x)$$
 and $y == E(x)$

- * Optimized for: integration within advanced protocols
- * Alphabet size: \mathbb{F}_{q} , with $q \in \{2^{n}, p\}, p \simeq 2^{n}, n > 64$
- * Operations: large finite-field arithmetic

Cryptanalysis

< 8 years of analysis

ZKP Primitives overview

DESIGN

Iterated constructions

Block Ciphers $E_{\kappa}: \mathbb{F}_q^n \to \mathbb{F}_q^n$ (*n* fixed)

- (a) Block cipher
- (b) Random permutation

Iterated constructions

Block Ciphers $E_{\kappa}: \mathbb{F}_{q}^{n} \to \mathbb{F}_{q}^{n}$ (*n* fixed)

(a) Block cipher

(b) Random permutation

Iterated constructions

Block Ciphers $E_{\kappa}: \mathbb{F}_{q}^{n} \to \mathbb{F}_{q}^{n}$ (*n* fixed)

Hash functions $H: \mathbb{F}_q^{\ell} \to \mathbb{F}_q^{h}$ (ℓ arbitrary, h fixed)

Sponge construction

- \star rate r > 0
- * capacity c > 0
- \star permutation of \mathbb{F}_q^n (n=r+c)

ZKP Primitives overview

ZKP Primitives overview

Type I

Low-Degree Primitives

Type I

Low-Degree Primitives

Type I

Low-Degree Primitives

MiMC / Feistel-MiMC

M. Albrecht, L. Grassi, C. Rechberger, A. Roy and T. Tiessen, 2016

- ★ *n*-bit blocks (*n* odd \approx 129): $x \in \mathbb{F}_{2^n}$
- **★** *n*-bit key: $k \in \mathbb{F}_{2^n}$
- ★ 82 rounds when n = 129

MiMC / Feistel-MiMC

M. Albrecht, L. Grassi, C. Rechberger, A. Roy and T. Tiessen, 2016

- ★ *n*-bit blocks (*n* odd \approx 129): $x \in \mathbb{F}_{2^n}$
- ⋆ *n*-bit key: $k ∈ \mathbb{F}_{2^n}$
- \star 82 rounds when n = 129

Feistel-MiMC

Poseidon

L. Grassi, D. Khovratovich, C. Rechberger, A. Roy and M. Schofnegger, 2021

★ S-box:

$$x \mapsto x^3$$

* Nb rounds:

$$R = 2 \times Rf + RP$$
$$= 8 + (from 56 to 84)$$

ZKP Primitives overview

ZKP Primitives overview

Type II

Primitives based on Equivalence

Type II

Primitives based on Equivalence

Example

In \mathbb{F}_p with

If
$$F(x) = x^5$$
 then $F^{-1}(x) = x^{5^{-1}}$ with

 $5^{-1} = 0$ x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332ccccccd

Type II

Primitives based on Equivalence

Example

In \mathbb{F}_p with

If
$$F(x) = x^5$$
 then $F^{-1}(x) = x^{5^{-1}}$ with

 $5^{-1} = 0$ x2e5f0fbadd72321ce14a56699d73f002217f0e679998f19933333332ccccccd

A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A.

Rescue / Rescue-Prime

1 round (2 steps)

* S-box:

Szepieniec, 2020

$$x \mapsto x^3$$
 and $x \mapsto x^{1/3}$

* Nb rounds:

$$R = \text{from } 8 \text{ to } 26$$
 (2 S-boxes per round)

Anemoi

Need: verification using few multiplications.

* First approach: evaluation using few multiplications, e.g. Poseidon [GKRRS21]

$$y \leftarrow E(x)$$

 \sim *E*: low degree

 \sim *E*: low degree

Anemoi

Need: verification using few multiplications.

* First approach: evaluation using few multiplications, e.g. Poseidon [GKRRS21]

$$y \leftarrow E(x)$$

 \sim *E*: low degree

 \sim E: low degree

* First breakthrough: using inversion, e.g. Rescue [AABDS20]

$$y \leftarrow E(x)$$

 \sim E: high degree

$$x == E^{-1}(y)$$
 $\sim E^{-1}$: low degree

Anemoi

Need: verification using few multiplications.

* First approach: evaluation using few multiplications, e.g. Poseidon [GKRRS21]

$$y \leftarrow E(x)$$

 $y \leftarrow E(x)$ $\sim E$: low degree

 \sim E: low degree

* First breakthrough: using inversion, e.g. Rescue [AABDS20]

$$y \leftarrow E(x)$$

 $y \leftarrow E(x)$ $\sim E$: high degree

$$x == E^{-1}(y)$$

 $x == E^{-1}(y)$ $\sim E^{-1}$: low degree

* Our approach: using $(\underline{u}, \underline{v}) = \mathcal{L}(x, \underline{v})$, where \mathcal{L} is linear

$$y \leftarrow F(x)$$

 \sim *F*: high degree

 $\sim G$: low degree

CCZ-equivalence

Inversion

$$\Gamma_{F} = \{(x, F(x)), x \in \mathbb{F}_q\} \quad \text{and} \quad \Gamma_{F^{-1}} = \{(y, F^{-1}(y)), y \in \mathbb{F}_q\}$$

Noting that

$$\Gamma_{F} = \left\{ \left(F^{-1}(y), y \right), y \in \mathbb{F}_{q} \right\} ,$$

then, we have:

$$\Gamma_{\digamma} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma_{\digamma^{-1}} \ .$$

CCZ-equivalence

Inversion

$$\Gamma_{F} = \{(x, F(x)), x \in \mathbb{F}_q\} \quad \text{and} \quad \Gamma_{F^{-1}} = \{(y, F^{-1}(y)), y \in \mathbb{F}_q\}$$

Noting that

$$\Gamma_{F} = \left\{ \left(F^{-1}(y), y \right), y \in \mathbb{F}_{q} \right\} ,$$

then, we have:

$$\Gamma_{\digamma} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Gamma_{\digamma^{-1}} \ .$$

Definition [Carlet, Charpin and Zinoviev, DCC98]

 $F: \mathbb{F}_a \to \mathbb{F}_a$ and $G: \mathbb{F}_a \to \mathbb{F}_a$ are CCZ-equivalent if

$$\Gamma_F = \mathcal{L}(\Gamma_G) + c$$
, where \mathcal{L} is linear.

The FLYSTEL

C. Bouvier, P. Briaud, P. Chaidos, L. Perrin, R. Salen, V. Velichkov and D. Willems, 2023

$$Butterfly + Feistel \Rightarrow FLYSTEL$$

A 3-round Feistel-network with

 $Q_{\gamma}: \mathbb{F}_q \to \mathbb{F}_q$ and $Q_{\delta}: \mathbb{F}_q \to \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q \to \mathbb{F}_q$ a permutation

High-Degree permutation

Open FLYSTEL \mathcal{H} .

Low-Degree function

Closed Flystel \mathcal{V} .

17 / 36

The FLYSTEL

C. Bouvier, P. Briaud, P. Chaidos, L. Perrin, R. Salen, V. Velichkov and D. Willems, 2023

$$Butterfly + Feistel \Rightarrow FLYSTEL$$

A 3-round Feistel-network with

 $Q_{\gamma}: \mathbb{F}_q \to \mathbb{F}_q$ and $Q_{\delta}: \mathbb{F}_q \to \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q \to \mathbb{F}_q$ a permutation

High-Degree permutation

Open FLYSTEL \mathcal{H} .

Low-Degree function

Closed Flystel \mathcal{V} .

$$\Gamma_{\mathcal{H}} = \mathcal{L}(\Gamma_{\mathcal{V}})$$
 s.t. $((x_1, x_2), (y_1, y_2)) = \mathcal{L}(((y_2, x_2), (x_1, y_1)))$

Advantage of CCZ-equivalence

★ High-Degree Evaluation.

High-Degree permutation

Open FLYSTEL \mathcal{H} .

Example

if $E: x \mapsto x^5$ in \mathbb{F}_p where

p = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfefffffff00000001

then
$$E^{-1}: x \mapsto x^{5^{-1}}$$
 where

 $5^{-1} = 0$ x2e5f0fbadd72321ce14a56699d73f002 217f0e679998f19933333332ccccccd

Advantage of CCZ-equivalence

- * High-Degree Evaluation.
- ★ Low-Degree Verification.

$$(y_1, y_2) == \mathcal{H}(x_1, x_2) \Leftrightarrow (x_1, y_1) == \mathcal{V}(x_2, y_2)$$

High-Degree permutation

Open FLYSTEL \mathcal{H} .

Low-Degree function

Closed Flystel \mathcal{V} .

The SPN Structure

The SPN Structure

ZKP Primitives overview

ZKP Primitives overview

Type III

Primitives using Look-up-Tables

Reinforced Concrete

L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rechberger, M. Schofnegger and R. Walch, 2022

★ S-box:

* Nb rounds:

$$R = 7$$

Skyscraper

C. Bouvier, L. Grassi, D. Khovratovich, K. Koschatko, C. Rechberger, F. Schmid and M. Schofnegger, 2025

Skyscraper

C. Bouvier, L. Grassi, D. Khovratovich, K. Koschatko, C. Rechberger, F. Schmid and M. Schofnegger, 2025

	Туре І	Type II	Type III
	Low-degree primitives	Equivalence relation	Look-up tables
Alphabet	\mathbb{F}_q^m	\mathbb{F}_q^m	specific fields
	for various q and m	for various q and m	
Nb of rounds	many	few	fewer
Plain performance	fast	slow	faster
Nb of constraints	often more	fewer	it depends
			on the proof system
Examples	Feistel-MiMC	Rescue	Reinforced Concrete
	Poseidon	Anemoi	Skyscraper

CRYPTANALYSIS

Cryptanalysis overview

Some cryptanalysis techniques

- * Statistical attacks (differential and linear)
- * Algebraic attacks
- * Higher-Order differential attacks
- * ...

Cryptanalysis overview

Some cryptanalysis techniques

- * Statistical attacks (differential and linear)
- * Algebraic attacks
- * Higher-Order differential attacks
- * ...

Approaches so far:

- * Type I: HO attacks and algebraic attacks
- * Type II: algebraic attacks
- * Type III: combining statistical and algebraic attacks

Algebraic Attack

CICO: Constrained Input Constrained Output

Definition

Let $P : \mathbb{F}_q^t \to \mathbb{F}_q^t$ and u < t.

The CICO problem is:

Finding
$$X, Y \in \mathbb{F}_q^{t-u}$$
 s.t. $P(X, 0^u) = (Y, 0^u)$.

when
$$t = 3$$
, $u = 1$.

Algebraic Attack

CICO: Constrained Input Constrained Output

Definition

Let $P : \mathbb{F}_q^t \to \mathbb{F}_q^t$ and u < t.

The CICO problem is:

Finding
$$X, Y \in \mathbb{F}_q^{t-u}$$
 s.t. $P(X, 0^u) = (Y, 0^u)$.

when
$$t = 3$$
, $u = 1$.

Need to solve a polynomial system

FreeLunch Attack

A. Bariant, A. Boeuf, A. Lemoine, I. Manterola Ayala, M. Øygarden, L. Perrin, and H. Raddum, 2024

Multivariate solving:

- ⋆ Define the system
- * Compute a grevlex order GB (**F5** algorithm)
- * Convert it into lex order GB (**FGLM** algorithm)
- \star Find the roots in \mathbb{F}_q^n of the GB polynomials using univariate system resolution.

Freel unch Attack

A. Bariant, A. Boeuf, A. Lemoine, I. Manterola Ayala, M. Øygarden, L. Perrin, and H. Raddum, 2024

Multivariate solving:

- ⋆ Define the system
- * Compute a grevlex order GB (F5 algorithm) → can be skipped
- * Convert it into lex order GB (**FGLM** algorithm)
- \star Find the roots in \mathbb{F}_q^n of the GB polynomials using univariate system resolution.

Impact on the security of:

- * Griffin (practical attack for 7 out of 10 rounds)
- * Arion
- * Anemoi (need some tweak)

Resultant Attack

- * **First approach** by HS. Yang, QX. Zheng, J. Yang, QF. Liu, D. Tang, 2024 Impact on the security of:
 - * Anemoi (practical attack for 8 out of 20 rounds)
 - * Rescue (practical attack for 5 out of 18 rounds)
 - * Jarvis (practical attack for 8 out of 10 rounds)

Resultant Attack

- * First approach by HS. Yang, QX. Zheng, J. Yang, QF. Liu, D. Tang, 2024 Impact on the security of:
 - * Anemoi (practical attack for 8 out of 20 rounds)
 - * Rescue (practical attack for 5 out of 18 rounds)
 - * Jarvis (practical attack for 8 out of 10 rounds)
- * Improved by A. Bariant, A. Boeuf, P. Briaud, M. Hostettler, M. Øygarden, H. Raddum, 2025 Impact on the security of:
 - * Griffin (practical attack for 8 out of 10 rounds)
 - * Anemoi (practical attack for 11 out of 20 rounds)
 - * Rescue (practical attack for 6 out of 18 rounds)
 - ★ Arion

Linear attacks

Definition

Let $F: \mathbb{F}_q^n \to \mathbb{F}_q^m$ be a function and ω a primitive element.

The Linearity \mathcal{L}_{F} of $\mathsf{F}:\mathbb{F}_q^n\to\mathbb{F}_q^m$ is the highest Walsh coefficient.

$$\mathcal{L}_{\mathsf{F}} = \max_{u,v \neq 0} \left| \sum_{x \in \mathbb{F}_q^n} \frac{\omega^{(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)}}{} \right| \ .$$

Linear attacks

Definition

Let $F: \mathbb{F}_q^n \to \mathbb{F}_q^m$ be a function and ω a primitive element.

The Linearity \mathcal{L}_{F} of $\mathsf{F}: \mathbb{F}_q^n \to \mathbb{F}_q^m$ is the highest Walsh coefficient.

$$\mathcal{L}_{\mathsf{F}} = \max_{u,v \neq 0} \left| \sum_{x \in \mathbb{F}_q^n} \frac{\omega^{(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)}}{} \right| \ .$$

Examples:

 \star If $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$, then

$$\mathcal{L}_{\mathsf{F}} = \max_{u,v \neq 0} \left| \sum_{x \in \mathbb{F}_{2^n}^n} (-1)^{(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)} \right|$$

* If $F: \mathbb{F}_p^n \to \mathbb{F}_p^m$, then

$$\mathcal{L}_{\mathsf{F}} = \max_{u,v \neq 0} \left| \sum_{x \in \mathbb{F}_p^n} e^{\left(\frac{2i\pi}{p}\right) (\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)} \right|$$

Weil bound

Proposition [Weil, 1948]

Let $f \in \mathbb{F}_p[x]$ be a univariate polynomial with $\deg(f) = d$. Then

$$\mathcal{L}_f \leq ({\color{red}d}-1)\sqrt{p}$$

Weil bound

Proposition [Weil, 1948]

Let $f \in \mathbb{F}_p[x]$ be a univariate polynomial with $\deg(f) = d$. Then

$$\mathcal{L}_f \leq (\mathbf{d} - 1)\sqrt{p}$$

Closed Flystel.

$$\mathcal{L}_{\mathsf{F}} \leq (d-1)p\sqrt{p} \; ? \qquad egin{cases} rac{\mathcal{L}_{\gamma+eta\mathrm{x}^2}}{\mathcal{L}_{\chi d}} & \leq \sqrt{p} \; , \ \mathcal{L}_{\chi d} & \leq (d-1)\sqrt{p} \; , \ \mathcal{L}_{\delta+eta\mathrm{x}^2} & \leq \sqrt{p} \; . \end{cases}$$

Conjecture

$$\mathcal{L}_{\mathsf{F}} = \max_{u,v \neq 0} \left| \sum_{x \in \mathbb{F}_p^2} e^{\left(\frac{2i\pi}{p}\right)(\langle v, \mathsf{F}(x) \rangle - \langle u, x \rangle)} \right| \leq p \log p$$

Experimental results

Exponential sums

T. Beyne and C. Bouvier, 2024

* Direct applications of results for exponential sums (generalization of Weil bound)

Exponential sums

T. Beyne and C. Bouvier, 2024

- * Direct applications of results for exponential sums (generalization of Weil bound)
- * 3 different results... for 3 important constructions
 - * Deligne, 1974
 - * Denef and Loeser, 1991
 - * Rojas-León, 2006

Generalization of the Butterfly construction

3-round Feistel network

Generalization of the Flystel construction

Functions with 2 variables

$$F \in \mathbb{F}_q[x_1, x_2], \ \exists C \in \mathbb{F}_q, \ \mathcal{L}_F \leq C \times q$$

Exponential sums

T. Beyne and C. Bouvier, 2024

- * Direct applications of results for exponential sums (generalization of Weil bound)
- * 3 different results... for 3 important constructions
 - * Deligne, 1974
 - * Denef and Loeser, 1991
 - * Rojas-León, 2006

Generalization of the Butterfly construction

3-round Feistel network

Generalization of the Flystel construction

Functions with 2 variables

$$\mathsf{F} \in \mathbb{F}_q[x_1, x_2], \ \exists C \in \mathbb{F}_q, \ \mathcal{L}_\mathsf{F} \leq C \times q$$

* Solving conjecture on the linearity of the Flystel construction (for $d \leq \log p$)

$$\mathcal{L}_{\mathsf{F}} \leq (\mathbf{d} - 1)p$$
.

Solving conjecture

Website

stap-zoo.com

STAP Zoo STAP primitive types STAP use-cases All STAP primitives

STAP

Symmetric Techniques for Advanced Protocols

The term STAP (Symmetric Techniques for Advanced Protocols) was first introduced in STAP23, an affiliated workshop of Eurocrypt²3. It, generally feets to algorithms in symmetric cryptography specifically designed to be efficient in new advanced cryptography specifically designed to be efficient in new advanced cryptography specifically designed to be efficient in new advanced until the multiparty computation (MPC) and (fully) homomorphic encryption (Field) environments. It encompasses everything from arithmetization-oriented hash functions to homomorphic encryption-friendly stram ciphers.

* Many new primitives have been proposed

Poseidon, Rescue, Anemoi, Skyscraper and many others...

* Many new primitives have been proposed

Poseidon, Rescue, Anemoi, Skyscraper and many others...

* Some cryptanalysis progress have been done

in particular for algebraic attacks, and very recently for statistical attacks using algebraic geometry.

* Many new primitives have been proposed

Poseidon, Rescue, Anemoi, Skyscraper and many others...

* Some cryptanalysis progress have been done

in particular for algebraic attacks, and very recently for statistical attacks using algebraic geometry.

Cryptanalysis and design of AOPs remain to be explored

* Many new primitives have been proposed

Poseidon, Rescue, Anemoi, Skyscraper and many others...

★ Some cryptanalysis progress have been done

in particular for algebraic attacks, and very recently for statistical attacks using algebraic geometry.

Cryptanalysis and design of AOPs remain to be explored

Thank you

