

Multimodal Humor Detection

Peilin Li, Jiaqi Lu, Yihang Yin, Jayavibhav Niranjan Kogundi

Recognizing Laughter: A Multimodal Challenge

Humor: key in human communication

Types: sarcasm, irony, exaggeration

Multimodal deep learning approach

Detect humor from video data

Original
UR-FUNNY
dataset

Feature
extraction

Unimodal/
Bimodal
Fusion

UR-FUNNY Dataset: Filtering and Preparation:

Data Filtering Pipeline Overview

• Audio Speech Filtering

- Applied Voice Activity Detection (VAD) using WebRTC VAD.
- Kept clips with speech ratio > 85%.
- Batch processing enabled for 10,000+ videos.

• Face Presence Filtering

- Used OpenCV Haar Cascade to detect faces.
- Retained clips with face detected in >60% of frames
- Sampling 1 frame per second for efficiency.

• PPT Frame Filtering

- Detected static "slide-like" frames based on low edge density and low color variance.
- o low edge density and low color variance. Mark frames as "PPT-like" if edge ratio < 2% and color std < 15.
- Removed videos with >30% PPT-like frames.

Unimodal Method:

Approach:

- Training multiple kinds of classifiers on each modality to try and achieve better performance.
- Tested on different sets of filtered dataset to compare results
- Text: Embedding extracted using ModernBERT, trained on both punchline only and full sentence.
- Audio: Feature (pre transformer) and last hidden states from Wav2Vec2.0
- Visual: Feature from ViT

	Text (Punchline Only)		Text (Full Sentence)		Audio Features		Audio Last Hidden States		Visual	
	ACC	AUC	ACC	AUC	ACC	AUC	ACC	AUC	ACC	AUC
Unfiltered	65.44%	65.44%	66.85%	66.83%	67.97%	68.20%	71.05%	71.08%	58.05%	61.47%
Audio Filtered	64.04%	64.10%	71.80%	76.34%	67.32%	66.87%	71.05%	71.12%	51.24%	50.94%
Fully Filtered	60.65%	61.64%	71.36%	75.60%	65.16%	65.82%	68.92%	69.68%	57.29%	58.01%

Bimodal Fusion method:

Early Fusion Model: Concatenates features from both modalities, passes through a small MLP (Linear \rightarrow ReLU \rightarrow Linear) for final classification (input dim \rightarrow 128 \rightarrow 2).

Late Fusion Model: Projects each modality separately (64-dim), then concatenates and classifies.

Modality Pair	Fusion	Accuracy (%)	AUC	
Audio + Text	Early	73.87	0.765	
Audio + Text	Late	70.85	0.755	
Text + Visual	Early	66.83	0.761	
Text + Visual	Late	68.84	0.761	
Visual + Audio	Early	55.78	0.580	
Visual + Audio	Late	54.65	0.572	

Trimodal Fusion methods:

Cross-Modal Fusion:

- Load Extracted Features
- Cross-Modal Block
- Compute loss/ Update weights

Limitation:

- Only single-attention fusion
- Additive residual interaction may overlook multiplicative relations
- No robustness mechanism

Fig. 1: The overall architecture of CFN-SR. Left: the flow structure of the whole model, extracting the higher-order semantic features of video and audio by ResNeXt and 1D CNN, respectively. Right: the cross-modal fusion blocks, which enables the complementarity and completeness of modal interactions to play a role through the introduction of self-attention mechanism and residual structure.

Trimodal Fusion methods:

Cross-Modal MoE++:

- Bilinear fusion
 - Six tiny MLPs to learn view-specific transforms
 - A pairwise bilinear interaction to capture multiplicative relations
 - Return a single fused feature vector for MoE
- Deep Mixture of Experts (MoE)
 - Gives the right sub-network the freedom to model each humor flavors
 - Added a ReLU layer inside of each experts
- Ensemble Averaging
 - Train five independent seeds and average their logits
 - Lowers variance and boosts generalization


```
lass CrossModalFusionPlusBoosted(nn.Module):
  def init (self, dim visual, dim audio, dim text, output dim=128):
      super(), init ()
      self.visual proj = nn.Linear(dim visual, output dim)
      self.audio proj = nn.Linear(dim audio, output dim)
      self.text_proj = nn.Linear(dim_text, output_dim)
      self.v_to_va = nn.Sequential(nn.Linear(output_dim, output_dim), nn.ReLU();
      self.a to va = nn.Sequential(nn.Linear(output dim. output dim). nn.ReLU()
      self.v_to_vt = nn.Sequential(nn.Linear(output_dim, output_dim), nn.ReLU();
      self.t_to_vt = nn.Sequential(nn.Linear(output_dim, output_dim), nn.ReLU();
      self.a_to_at = nn.Sequential(nn.Linear(output_dim, output_dim), nn.ReLU();
      self.t_to_at = nn.Sequential(nn.Linear(output_dim, output_dim), nn.ReLU()
      self.fusion proj = nn.Linear(output dim * 6, output dim)
  def forward(self, v, a, t):
      v_proj = self.visual_proj(v)
      a_proj = self.audio_proj(a)
      t_proj = self.text_proj(t)
      va = self.v_to_va(v_proj) * self.a_to_va(a_proj)
      vt = self.v_to_vt(v_proj) * self.t_to_vt(t_proj)
      at = self.a_to_at(a_proj) * self.t_to_at(t_proj)
      concat = torch.cat([v_proj, a_proj, t_proj], dim=-1)
      fused = torch.cat([concat, va, vt, at], dim=-1)
      fused = self.fusion_proj(fused)
```


Results & Conclusion:

Trimodal fusion results:

- Validation ROC AUC steadily increased over epochs, indicating effective learning and convergence.

Conclusion:

- Trimodal fusion outperformed unimodal and bimodal methods
- Careful fusion design is more important than stronger single features

Trimodal Fusion results: Test accuracy: 0.7437 Test ROC AUC: 0.7737

Thank you!

Team Contribution:

Peilin Li: Designed and implemented the Cross-Modal MoE++ model. Explored on the visual single modality fusion approaches.

Jiaqi Lu: Unimodal/Bimodal design and training, Feature Extraction

Yihang Yin: Data filtering pipeline design and implementation. Contributed to the design of the trimodal fusion strategy, including investigating Cross-Modal Fusion limitations, modifying the cross-modal block. Also explored the feasibility of using Deep Mixture of Experts.

Jayavibhav Niranjan Kogundi: Unimodal (Text, Visual) and Bimodal design and training