

⑩ BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑪ Offenlegungsschrift

⑪ DE 3243147 A1

⑤ Int. Cl. 3:

C02F 1/00

C02F 1/04

C02F 1/42

C02F 1/44

C01G 43/00

C01G 1/00

DE 3243147 A1

⑩ Aktenzeichen: P 32 43 147.3
⑩ Anmeldetag: 22. 11. 82
⑩ Offenlegungstag: 24. 5. 84

⑦ Anmelder:

Kraftwerk Union AG, 4330 Mülheim, DE

⑦ Erfinder:

Donath, Gerhard, Ing.(grad.), 8521 Rathsberg, DE

Benötigungen erfüllt

Prüfungsantrag gem. § 44 PatG ist gestellt

④ Verfahren zur Meerwasseraufbereitung

Zur Meerwasseraufbereitung durch Destillation mit einem Verdampfer (18) oder Umkehrosmose kann neben einer mechanischen Vorreinigung und Chlorbeigabe eine Behandlung vorgeschaltet werden, bei der durch Anwendung von mindestens teilweise wiedergewinnbaren Chemikalien Abagerungen von Calciumsulfat und Calciumcarbonat vermieden werden und Magnesium mit Hilfe von Ionentauscherharzen abgetrennt wird. Die Ionenaustauscherbehandlung umfaßt erfindungsgemäß drei Stufen (4, 10, 18), wobei die erste, an sich neue, insbesondere mit einem mit Magnesium beladenen, schwach sauren, stark erdalkaliselektiven Ionenaustauscher (4) ausgestattet ist.

DE 3243147 A1

Patentansprüche

1. Verfahren zur Meerwasseraufbereitung mit Hilfe von mindestens einem Verdampfer und/oder durch Umkehrosmose,
5 wobei Ablagerungen von Calciumsulfat und Calciumcarbonat durch Zugabe von mindestens teilweise wiedergewinnbaren Chemikalien in Kreisprozessen vermieden werden, wobei Magnesium mit Hilfe von Ionentauscherharzen abgetrennt wird und wobei außer einer mechanischen Vor-
10 reinigung die Zugabe von Chlor zur Keimabtötung und erforderlichenfalls die Beseitigung überschüssigen Chlors durch Aktivkohle vorgesehen ist, daß dadurch gekennzeichnet, daß
 1. mechanisch gereinigtes keimfreies Meerwasser
15 a) über einen mit Magnesium beladenen, schwach sauren, stark erdalkaliselektiven Ionenaustauscher geleitet wird, oder
b) über einen in einer Natrium-Magnesium-Mischform vorliegenden, stark sauren, erdalkaliselektiven
20 Ionenaustauscher geleitet wird,
 2. daß das Wasser dann über einen mit Natrium beladenen, stark sauren Ionenaustauscher geleitet wird,
 3. daß das Wasser dann über einen in der Chloridform befindlichen, schwach basischen Ionenaustauscher geleitet wird und
 - 25 4. daß das Wasser dann der Verdampfer- oder Umkehrosmoseanlage zugeführt wird.
2. Verfahren nach Anspruch 1, daß dadurch gekennzeichnet, daß das Meerwasser zum Zwecke der pH-Werterniedrigung mit CO_2 versetzt wird, das mit Hilfe eines Entgasers in einem Kreisprozeß geführt wird.
30

- 14 - VPA 82 P 6073 DE

3. Verfahren nach Anspruch 1 oder 2, d a d u r c h
gekennzeichnet, daß die Ionenaustauscher
der Stufen 2 und 3 mit mindestens 4-fach eingedicktem
Meerwasser zur Regenerierung durchspült werden, das
5 zuvor die Stufen 1 bis 3 durchlaufen hatte, und daß
das Regenerat der zweiten Stufe als Regeneriermittel
des Ionenaustauschers der ersten Stufe verwendet wird.

4. Verfahren nach Anspruch 3, d a d u r c h g e -
10 k e n n z e i c h n e t, daß das CO₂ mit Hilfe eines
Entgasers aus dem Regenerat des schwach basischen
Ionenaustauschers gewonnen wird.

5. Verfahren nach Anspruch 4, d a d u r c h g e -
15 k e n n z e i c h n e t, daß das CO₂ des Entgasers
mindestens zwei verschiedenen Ionenaustauschern der
Aufbereitung parallel zugeführt wird.

6. Verfahren nach einem der Ansprüche 3 bis 5, d a -
20 d u r c h g e k e n n z e i c h n e t, daß das ein-
gedickte Meerwasser in mehreren Fraktionen verwendet
wird, deren Volumen und/oder Konzentratgehalt ent-
sprechend dem Regenerationsgrad variiert wird.

25 7. Verfahren nach einem der Ansprüche 3 bis 6, d a -
d u r c h g e k e n n z e i c h n e t, daß die
Regeneration in an sich bekannter Weise mit einer
von unten nach oben verlaufenden Strömung vorgenom-
men wird.

30

8. Verfahren nach Anspruch 7, d a d u r c h g e -
k e n n z e i c h n e t, daß ein Regeneratüberschuß
mit einem Waschvorgang von oben nach unten verdrängt
wird.

22.11.90

3243147

3
- 25 - VPA 82 P 60730E

9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß der verdrängte Überschuß fraktioniert und wieder verwendet wird.
- 5 10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß mindestens der erste Ionenaustauscher in Zeitabständen mit Säure regeneriert, mit Natronlauge in die Natriumform und dann mit Hilfe einer Magnesiumchloridlösung in die Magnesiumform
10 übergeführt wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß das Regenerat der Säure-regeneration zur Gewinnung von Schwermetall, insbesondere Uran, weiterbehandelt wird.
15

KRAFTWERK UNION AKTIENGESELLSCHAFT Unser Zeichen
 VPA 82 P 60730E

5 Verfahren zur Meerwasseraufbereitung

Die Erfindung betrifft ein Verfahren zur Meerwasseraufbereitung mit Hilfe von mindestens einem Verdampfer und/ oder durch Umkehrosmose, wobei Ablagerungen von Calciumsulfat und Calciumcarbonat durch Zugabe von mindestens teilweise wiedergewinnbaren Chemikalien in Kreisprozessen vermieden werden, wobei Magnesium mit Hilfe von Ionentauscherharzen abgetrennt wird und wobei außer einer mechanischen Vorreinigung die Zugabe von Chlor zur Keimabtötung und erforderlichenfalls die Beseitigung überschüssigen Chlors durch Aktivkohle vorgesehen ist.

Ein zum Beispiel aus der US-PS 3 350 292 bekanntes Verfahren der oben genannten Art ist deshalb unbefriedigend, weil die Chemikalien nicht zur Regenerierung ausreichen, so daß der Kreisprozeß nur mit Hilfe ständiger Nachspeisung die erforderlichen Verfahrenswerte aufweist. Dieser Nachteil liegt auch bei praktisch allen anderen bekannten Verfahren zur Meerwasseraufbereitung vor, die deshalb hier nicht weiter behandelt werden.

Aufgabe der Erfindung ist somit eine Verbesserung der Vorbehandlungsstufen bei der Meerwasseraufbereitung, um störende Ablagerungen möglichst völlig zu vermeiden und einen geschlossenen Kreisprozeß zu erhalten, damit eine Nachspeisung von Chemikalien in großen Mengen überflüssig ist.

35 Das neue Verfahren ist erfindungsgemäß dadurch gekenn-

Sm 2 Hgr / 15.11.1982

5
- 2 - VPA 82 P 6073 DE

zeichnet, daß

1. mechanisch gereinigtes keimfreies Meerwasser
 - a) über einen mit Magnesium beladenen, schwach sauren, stark erdalkaliselektiven Ionenaustauscher geleitet wird, oder
 - b) über einen in einer Natrium-Magnesium-Mischform vorliegenden, stark sauren, erdalkaliselektiven Ionenaustauscher geleitet wird,
2. daß das Wasser dann über einen mit Natrium beladenen stark sauren Ionenaustauscher geleitet wird,
3. daß das Wasser dann über einen in der Chloridform befindlichen, schwach basischen Ionenaustauscher geleitet wird und
4. daß das Wasser dann der Verdampfer- oder Umkehr-
15 osmoseanlage zugeführt wird.

Die drei Behandlungsstufen mit Ionentauscherharzen, von denen die erste Stufe für die Meerwasseraufbereitung schon an sich neu ist, ergeben als Kombination eine
20 bisher unerreichte Abscheidung von Calcium und Sulfat-Ionen und eine erhebliche Reduzierung des Magnesiumgehalts, so daß störende Ablagerungen für die anschließenden Destillations- oder Osmoseprozesse praktisch völlig vermieden werden. Darüber hinaus können die drei
25 Stufen, wie später noch näher beschrieben wird, in vollständig regenerierbare Zyklen gefahren werden. Dabei sorgt die neue erste Stufe, vereinfacht ausgedrückt, dafür, daß die beiden nachfolgenden Stufen so ausgestaltet werden können, daß die im Prozeß anfallende
30 Regenerationsflüssigkeit, insbesondere Verdampfelauge, zum Regenerieren ausreicht.

Eine vorteilhafte Ausgestaltung der Erfindung besteht

darin, daß das Meerwasser zum Zwecke der pH-Wert-Erniedrigung mit CO_2 versetzt wird, das mit Hilfe eines Entgasers in einem Kreisprozeß geführt wird. Die damit erreichte "saure" Fahrweise hat sich beim Betrieb der

5 Ionentauscherharze ausgezeichnet bewährt.

Wie gefunden wurde, kann die Eindickung des aufbereiteten Meerwassers bei der Erfindung besonders weit getrieben werden, nämlich bis zur Löslichkeitsgrenze des

10 Natriumchlorids, so daß eine gute Ausbeute vorliegt. Die starke Eindickung ist zugleich für die Regenerierung günstig, weil man dann die Ionenaustauscher mit mindestens 4-fach eingedicktem Meerwasser zur Regenerierung durchspülen kann, das zuvor die Stufen 1 bis 3 durch-
15 laufen hatte. Eine solche Eindickung ist für die Meerwasseraufbereitung völlig neu. Der damit einhergehende geringe Anfall an Regenerationsflüssigkeit kann durch eine später beschriebene neue Regenerationstechnik vorteilhaft ausgeglichen werden.

20

Das vorstehend erwähnte CO_2 zum "Ansäuern" der Ionenaustauscherstufen erfolgt besonders vorteilhaft in der Weise, daß das CO_2 mit Hilfe eines Entgasers aus dem Regenerat des schwach basischen Ionenaustauschers
25 gewonnen wird. Dabei kann man eine vorteilhafte Anpassung an unterschiedlich optimale pH-Werte der verschiedenen Stufen dadurch erreichen, daß das CO_2 des Entgasers mindestens zwei verschiedenen Ionenaustau- schern der Vorbehandlung parallel zugeführt wird.

30

Zur weiteren Verbesserung des Wirkungsgrades und damit zur Verringerung der für die Regenerierung benötigten Chemikalienmengen kann das eingedickte Meerwasser in mehreren Fraktionen verwendet werden, deren Volumen

7
- 4 - VPA 82 P 6073 DE

und/oder Konzentratgehalt entsprechend dem Regenerationsgrad variiert wird. Eine derartige fraktionierte Arbeitsweise ist an sich bekannt. Sie erfolgt bei der praktischen Verwirklichung der Erfindung mit einer 5 konzentrationsabhängigen Steuerung, die für die Meerwasseraufbereitung mit ihren großen Durchsatzmengen ebenfalls neu ist und sich ausgezeichnet bewährt hat. Üblicherweise wird man mit drei oder vier Fraktionen auskommen.

10 Wie gefunden wurde, kann man zum Regenerieren des mit Calcium beladenen Ionenaustauschers das Regenerat des Ionenaustauschers für die Magnesiumanlagerung verwenden, d.h. die aus diesem nach dem Regenerieren austretende "verbrauchte" Regenerierflüssigkeit. Außerdem kann man so vorgehen, daß mindestens der erste Ionenaustauscher in Zeitabständen mit Säure regeneriert, mit 15 Natronlauge oder Sodalösung in die Natriumform und dann mit Hilfe einer Magnesiumchloridlösung in die 20 Magnesiumform übergeführt wird.

Eine verfahrenstechnisch besonders günstige Ausführungsform der Erfindung ist dadurch gekennzeichnet, daß die Regeneration in an sich bekannter Weise mit 25 einer von unten nach oben verlaufenden Strömung vorgenommen wird. Hierbei erhält man nämlich aufgrund der unterschiedlichen spezifischen Gewichte der Regenerationsflüssigkeit und des aufzubereitenden Meerwassers eine nur geringe Mischung von beiden, die sonst die 30 Regenerationswirkung beeinträchtigt. Diese vorteilhafte Ausgestaltung kann man noch dadurch verbessern, daß ein Regeneratüberschuß mit einem Waschvorgang von oben nach unten verdrängt wird. Dabei ist es in vorteilhafter Weise möglich, den verdrängten Überschuß wieder 35 zu verwenden.

8
 - 5 - VPA 82 P 6073 DE

Das Verfahren nach der Erfindung kann in der Ausführungsform, bei der der erste Ionenaustauscher in Zeitabständen mit Säure regeneriert wird, noch dadurch verbessert werden, daß das Regenerat der Säureregeneration

5 zur Gewinnung von Schwermetallen, insbesondere Uran, weiterbehandelt wird. Hiermit erhält man die Möglichkeit, die Kosten der Meerwasseraufbereitung durch den Erlös für die dabei gewonnenen Schwermetalle zu verringern.

10 Zur näheren Erläuterung der Erfindung wird anhand der beiliegenden Zeichnung ein Ausführungsbeispiel beschrieben. Dabei zeigt die Fig. 1 ein Fließschema des Verfahrens, während in der Fig. 2 tatsächliche Strömungsrichtungen in Ionenaustauschern dargestellt sind.

15

Die erfindungsgemäße Meerwasseraufbereitung beginnt mit der durch das Kästchen 1 symbolisierten Vorreinigung.

In dieser Stufe wird das durch den Pfeil 2 bezeichnete,

einlaufende Meerwasser nach an sich bekannten Verfahren

20 mechanisch vorgereinigt, insbesondere durch Siebe, Rechen oder dergleichen. Dabei können zusätzlich zum Abtöten von Mikroorganismen etwa 10 mg Chlor/Liter zugesetzt werden. Überschüssiges Chlor kann danach in bekannter Weise zum Beispiel mit Aktivkohle entfernt werden.

25

Das aus der Vorreinigung 1 entsprechend dem Pfeil 3 kommende, schwebstofffreie Meerwasser wird vorteilhaft auf 30°C vorgewärmt in den Ionenaustauscher 4 geführt.

30 Dies ist ein mit Magnesium (Mg^{++}) beladener, schwach saurer, stark erdalkaliselektiver Austauscher, zum Beispiel mit Carboxylgruppen, wie der Austauscher Duolite C 464 der Fa. Diamond Shamrock.

35 Der Austauscher 4 wird durch die im Meerwasser enthaltenen Natrium-Ionen nicht beeinflußt. Vielmehr wird wegen der 5 mal größeren Magnesium-Ionen-Konzentration

beim einfachen Gleichstromverfahren eine nutzbare Kapazität von nur 12% der Totalkapazität für die Anlagerung von Calcium erhalten.

- 5 Die für den Calcium-Rückhalt nutzbare Kapazität kann dadurch gesteigert werden, daß man den Ionenaustauscher 4 auch nach dem Durchbruch von Calcium-Ionen noch so lange weiter betreibt, wie das mit dem Pfeil 5 gekennzeichnete austretende, calciumfreie Meerwasser wesentlich calciumärmer als das durch den Pfeil 3 charakterisierte Meerwasser ist.
- 10

Das nach dem Durchbruch austretende calciumärmere Meerwasser kann zwischengelagert und beim nächsten Durch-

- 15 lauf nach einer Regenerierung wie das vorgereinigte Meerwasser 3 verwendet werden. Auf diese Weise können, wie gefunden wurde, bei dem gleichen Ionenaustauscher Duolite C 464 beispielsweise 27% der Totalkapazität genutzt werden, wenn 53% der Wasserproduktion jeweils in
- 20 Behältern zwischengelagert werden. Die Zwischenlagerung ist in der Fig. 1 durch den Behälter 6 angedeutet, der gemäß dem Pfeil 7 beschickt und dann gemäß dem Pfeil 8 in den Ionenaustauscher 4 entleert wird.

- 25 Eine andere gleichwertige Möglichkeit kann aber auch darin bestehen, statt des in der Fig. 1 dargestellten einzelnen Ionenaustauschers 4 mehrere in einer sogenannten Ringschaltung zu betreiben, wobei das Wasser jeweils mindestens zwei Ionenaustauscher in Reihe durch-
- 30 fließt, von denen der zweite jeweils frisch regeneriert ist.

Das durch den Pfeil 5 symbolisierte calciumfreie Meer-

- V - VPA 82 P 60730E

wasser wird dann zur Magnesiumabtrennung in der zweiten Stufe mit einem Ionenaustauscher 10 behandelt. Dies ist ein Natrium (Na^+) beladener, stark saurer Austauscher mit Sulfonsäuregruppen, zum Beispiel Lewatit SP 112
 5 der Fa. Bayer AG.

- Die mit dem Ionenaustauscher 10 ausgestattete zweite Stufe ist an sich bekannt. Auch sie kann aber in neuartiger Weise zur Sicherung einer hohen Effektivität 10 der Regeneration bis zu einem Magnesiumdurchbruch, der 50% oder mehr der Eingangskonzentration beträgt, "überfahren" werden. Das zwischen 10 bis 80% der Eingangskonzentration enthaltende Wasser, das durch einen Pfeil 12 angedeutet ist, wird in einem Behälter 13 zwischengelagert und beim nächsten Filterlauf entsprechend dem Pfeil 14 wieder verwendet oder direkt in ein nachgeschaltetes, frisch regeneriertes Filter eingeleitet, ähnlich wie dies bei der Ca^{++} -Abtrennung vorgesehen ist. Ein Unterschied besteht allerdings darin, daß 20 es bei der Magnesiumabtrennung nicht auf Vollständigkeit ankommt und je nach Schaltung der Gesamtanlage etwa 10% bis 30% Restmagnesium toleriert werden können.
- 25 Das aus dem Ionenaustauscher 10 kommende, calciumfreie und im Magnesiumgehalt reduzierte Meerwasser wird entsprechend dem Pfeil 15 zur Sulfatabtrennung in die dritte Stufe mit dem Ionenaustauscher 16 geführt. Dies ist ein in der Chloridform befindlicher, schwach basischer Ionenaustauscher mit Aminogruppen, zum Beispiel 30 der Austauscher Kastel A 102 der Fa. Montedison. Wie bei der Abtrennung des Magnesiums ist es auch hier wichtig, daß bei der Beladung des Ionenaustauschers 16 eine möglichst hohe Kapazitätsausnutzung erzielt und damit

H
- 8 - VPA 82P 6073DE

die Voraussetzung für eine hohe Effektivität der späteren Regeneration geschaffen wird. Das kann wiederum durch "Überfahren" eines Filters mit einer hier nicht nochmals dargestellten Zwischenlagerung des Wassers 5 oder durch Ringschaltung mehrerer Filter erreicht werden.

Aus dem Ionenaustauscher 16 tritt mit dem Pfeil 17 symbolisiertes Meerwasser, das praktisch calciumfrei 10 und sulfatfrei ist. Es wird dann dem in der Fig. 1 dargestellten Verdampfer 18 zugeführt, aus dem das Destillat gemäß dem Pfeil 19 erhalten wird. Alternativ kann anstelle des Verdampfers 18 auch eine Umkehr- 15 osmoseanlage eingesetzt werden, um Süßwasser zu gewinnen.

Die Ionenaustauscher 10 und 16 werden mit jeweils 5-fach eingedicktem Meerwasser regeneriert, das aus dem Verdampfer 18 gewonnen wird und somit vorher alle drei 20 Austauscherstufen durchlaufen hat, d.h. die Calcium-, Magnesium- und Sulfatabtrennung. Diese entsprechend dem Pfeil 20 aus dem Verdampfer 18 abgeleitete Regenerationsflüssigkeit, die auch als Verdampferlauge bezeichnet wird, enthält überwiegend Natriumchlorid in einer 25 Konzentration von ca. 3 mol/L. Davon wird etwa 1/4 entsprechend dem Pfeil 21 zum Sulfataustausch im Ionenaustauscher 16 verwendet. Die anderen 3/4 dienen entsprechend dem Pfeil 22 zum Magnesiumaustausch des Ionenaustauschers 10.

30 Die Regenerierung erfolgt in mehreren Stufen. Beispielhaft wird im folgenden von fünf Stufen ausgegangen. Dabei wird, wie in der Fig. 2 dargestellt ist, die Belaufschlagung der Ionenaustauscher 10, 16 mit Hilfe

2
- 8 - VPA 82 P 6073 DE

einer Pumpe 24 entsprechend dem Pfeil 25 von unten nach oben durchgeführt. Deshalb wird von dem speziell schweren Regeneriermittel das in dem Austauscher befindliche leichtere Meerwasser kolbenähnlich ver-
 5 drängt und abgeleitet, entsprechend Pfeil 34. Das Regenerat, das völlig umgesetzt ist, wird gemäß Pfeil 35 in den Entgaser 36 bzw. entsprechend Pfeil 32 abgeleitet. Danach wird entsprechend dem sich verzweigenden Pfeil 26 das noch nicht völlig umgesetzte Regenerat in die getrennten Behälter 27 und 28 eingefüllt.
 10 Das nach Beendigung der Regeneration im Austauscherbett verbleibende Regeneriermittel wird in einem Waschprozeß mit aufbereitetem Meerwasser oder auch Destillat entsprechend Pfeil 40 von oben nach unten verdrängt
 15 und in den Behälter 29 eingeleitet, wie durch Pfeil 11 angedeutet ist. Die Pumpe 24 saugt während der Regeneration nacheinander die Lösungen aus den Behältern 27, 28 und 29 an, entsprechend den Regenerationsstufen 1, 2 und 3. Während der Regenerationsstufe 4 wird Ver-
 20 dampferlauge, Pfeil 20, eingespeist.

Beim Sulfataustausch umfassen die Regenerier-Fraktionen jeweils etwa 0,8 des Volumens des Ionenaustauschers 16 (Bettvolumen). Dabei kann wenigstens eine Fraktion
 25 in ihrem Volumen so variabel gemacht werden, daß der Steuerung über die Füllstände der Fraktionsbehälter 27 bis 29 wenigstens zwei konzentrationsabhängige Messungen überlagert werden. Beispielsweise wird mit einer sulfatsensitiven Elektrode laufend die Konzentration
 30 im Regenerat bestimmt und der Beginn des Füllens des nächsten Fraktionsbehälters vom Unterschreiten einer bestimmten Sulfatkonzentration abhängig gemacht. Ferner kann über die Messung der Leitfähigkeit der Konzentra-

tionsabfall bei Beginn der Auswaschphase erkannt und das Füllen des letzten Fraktionsbehälters unterbrochen werden. Zur weiteren Optimierung des Prozesses kann es beitragen, auch die übrigen Fraktionsvolumina variabel

- 5 zu machen, entweder rechnerisch entsprechend dem Gesamtvolumen der Fraktionen, welches sich aus den beiden Konzentrationsmessungen ergibt, oder durch direkte Festlegung von Konzentrations-Grenzwerten für jede Fraktion. Die oberen Füllstandsmessungen sind dann nur noch
- 10 Maximalwerte, zum Beispiel für das Anfahren. Dieser Verfahrensablauf erfolgt vorzugsweise automatisiert mit Hilfe eines Prozeßrechners.

Der Ionenaustauscher 4 wird entsprechend dem Pfeil 32

- 15 mit dem Regenerat behandelt, das aus dem Ionenaustauscher 10 nach dem Magnesiumaustausch austritt. Da die stark erdalkaliselektiven, schwach sauren Austauscher praktisch nicht mit Natrium-Ionen reagieren, werden nur die im Regenerat in hoher Konzentration enthaltenen
- 20 Magnesium-Ionen wirksam und verdrängen die Calcium-Ionen. Das calciumhaltige Regenerat, das entsprechend dem Pfeil 33 austritt, wird verworfen. Es kann aber auch weiterbehandelt werden.
- 25 Zur erstmaligen Regeneration muß das Ionentauscherharz des Ionenaustauschers 4 mit Säure regeneriert, mit Natrionlauge in die Natriumform und schließlich durch Behandlung mit einer Magnesiumchloridlösung in die Magnesiumform überführt werden. Eine solche Behandlung
- 30 ist auch in Intervallen nötig, wenn die im allgemeinen sehr hohe Schwermetallselektivität der schwach sauren Harze dazu führt, daß ein nennenswerter Teil der Kapazität durch Schwermetalle blockiert wird. Aus dem

Regenerat 33 der Säureregeneration können die Schwermetalle gewonnen werden, so daß eine zusätzliche Einnahme die Kosten der Meerwasseraufbereitung verringert. Interessant ist hier zum Beispiel die Gewinnung von

5 Uran.

Dem aus dem Ionenaustauscher 6 entsprechend dem Pfeil 35 austretenden, hydrogencarbonat- und sulfathaltigen Regenerat wird durch thermische Zersetzung von Hydrogencarbonat (HCO_3^-) in einem Entgaser 36 Kohlendioxid CO_2 entnommen. Das Kohlendioxid wird dazu benutzt, die Ionenaustauscher 4, 10 und insbesondere 16 schwach sauer zu fahren. Zu diesem Zweck wird entsprechend dem Pfeil 37 eine Menge von etwa 0,5 mmol/l in den Ionenaustauscher 15 gegeben, während weitere 0,5 mmol/l parallel entsprechend dem Pfeil 38 in den Ionenaustauscher 4 gelangen. Das mit dem Pfeil 39 bezeichnete entgaste Regenerat kann verworfen werden.

- 20 Alternativ zu dem vorstehend beschriebenen Verfahren zur Calcium-Abtrennung können von den meisten handelsüblichen, stark sauren Kationenaustauschern, die zur Ca-Abtrennung an sich nicht geeignet sind, Austauscher, wie zum Beispiel Duolite C 264, welche eine relativ 25 hohe Ca^{++} und Mg^{++} Selektivität haben und außerdem Calcium gegenüber Magnesium stark bevorzugen, bei entsprechender Regenerationstechnik ebenfalls zur Calciumabtrennung verwendet werden. Der Austauscher muß dazu zunächst in eine Mg^{++} - Na^+ -Mischform gebracht werden. Das 30 Molverhältnis Mg^{++} zu Na^+ muß dabei genau dem Gleichgewichtszustand des Austauschers mit einem Meerwasser entsprechen, in welchem die Calcium-Ionen vollständig durch Magnesium-Ionen ersetzt wurden. Durch diesen Kunstgriff beteiligen sich die Na^+ - und Mg^{++} -Ionen des

15
- 42 - VPA 82 P 6073 DE

Meerwassers nicht mehr am Ionenaustausch, jedoch wird
 Ca^{++} gegen Mg^{++} ausgetauscht.

- Die Regeneration des calciumbeladenen Austauschers wird
5 mit einer sowohl Mg^{++} als auch Na^+ -Ionen enthalten-
den Lösung durchgeführt. Der Austauscher muß im Gleich-
gewichtszustand mit dieser Lösung genau wieder sein ur-
sprüngliches Mg^{++} - Na^+ Molverhältnis erreichen. Zum Bei-
spiel wird bei Verwendung des Austauschers C 264 das
10 richtige Molverhältnis durch Regeneration bei 40°C
mit einer Lösung erreicht, welche 21 Molprozent Magnesi-
umchlorid und 79 Molprozent Natriumchlorid enthält
und deren Chloridkonzentration 3 mol/l beträgt.
- 15 Zur Gewinnung einer solchen Lösung ist vorgesehen, einen
 Na^+ -beladenen, stark sauren Austauscher zur Magnesium-
abtrennung einzusetzen. Die Regeneration des Austau-
schers erfolgt nach dem schon beschriebenen, konzen-
trationsgesteuerten Fraktionsprozeß mit Verdampfer-
20 lauge 5-facher Eindickung (bzw. Konzentrat aus einer
Umkehrosmose). Aus dem Regenerat wird eine Fraktion
herausgeschnitten, deren Mg^{++} und Na^+ -Konzentration
genau den Anforderungen entspricht.

11 Patentansprüche

2 Figuren

-16-

Leerseite

17
1/1
Nummer:
Int. Cl. 3:
Anmeldetag:
Offenlegungstag:

32 43 147
C 02 F 1/00
22. November 1982
24. Mai 1984

FIG 1

FIG 2