CMPT 409/981: Optimization for Machine Learning

Lecture 16

Sharan Vaswani

November 5, 2024

Recap

Generic Online Optimization (w_0 , Algorithm \mathcal{A} , Convex set $\mathcal{C} \subseteq \mathbb{R}^d$)

- 1: **for** k = 1, ..., T **do**
- 2: Algorithm \mathcal{A} chooses point (decision) $w_k \in \mathcal{C}$
- 3: Environment chooses and reveals the (potentially adversarial) loss function $f_k:\mathcal{C}\to\mathbb{R}$
- 4: Algorithm suffers a cost $f_k(w_k)$
- 5: end for
- **Regret**: For any fixed decision $u \in C$, $R_T(u) := \sum_{k=1}^T [f_k(w_k) f_k(u)]$.
- Online Gradient Descent (OGD): At iteration k, the algorithm chooses the point w_k . After the loss function f_k is revealed, OGD suffers a cost $f_k(w_k)$ and uses the function to compute: $w_{k+1} = \Pi_C[w_k \eta_k \nabla f_k(w_k)]$ where $\Pi_C[x] = \arg\min_{y \in C} \frac{1}{2} \|y x\|^2$.
- Claim: If the convex set $\mathcal C$ has a diameter D i.e. for all $x,y\in\mathcal C$, $\|x-y\|\leq D$, for an arbitrary sequence of losses such that each f_k is convex, differentiable and G-Lipschitz, OGD with $\eta_k=\frac{\eta}{\sqrt{k}}$ and $w_1\in\mathcal C$ has the following regret for all $u\in\mathcal C$, $R_T(u)\leq \frac{D^2\sqrt{T}}{2\eta}+G^2\sqrt{T}\eta$.

1

Recap

- Given a differentiable, strictly-convex mirror map ϕ , $D_{\phi}(y,x) := \phi(y) \phi(x) \langle \nabla \phi(x), y x \rangle$.
- Online Mirror Descent (OMD): $w_{k+1} = \arg\min_{w \in \mathcal{C}} \left[\langle \nabla f_k(w_k), w \rangle + \frac{1}{\eta_k} D_{\phi}(w, w_k) \right]$. Setting $\phi(x) = \frac{1}{2} \|x\|^2$ results in $D_{\phi}(y, x) = \frac{1}{2} \|y x\|^2$ and recovers OGD.
- Example: For prediction with expert advice, $C = \Delta_d = \{w_i | w_i \geq 0 : \sum_{i=1}^d w_i = 1\}$ and we typically use the *negative-entropy mirror map* i.e. $\phi(w) = \sum_{i=1}^d w_i \ln(w_i)$. In this case, $D_{\phi}(u, v) = \text{KL}(u||v)$.
- The OMD update can be equivalently written as:

GD in dual space: $w_{k+1/2} = (\nabla \phi)^{-1} (\nabla \phi(w_k) - \eta_k \nabla f_k(w_k))$ Bregman projection: $w_{k+1} = \arg \min_{w \in \mathcal{C}} D_{\phi}(w, w_{k+1/2})$

• With the negative-entropy mirror map, OMD results in the **multiplicative weights update**: $w_{k+1}[i] = \frac{w_k[i] \exp(-\eta_k g_k[i])}{\sum_{j=1}^d w_k[j] \exp(-\eta_k g_k[j])}$.

2

Online Mirror Descent – Convex, Lipschitz functions

In order to analyze OMD, we will make some assumptions about C, f_k and ϕ .

- **Assumption 1**: C is a convex set and $\forall k$, f_k is a convex function.
- Assumption 2: $\forall k$, f_k is G-Lipschitz in the ℓ_p norm (for $p \geq 1$), implying that $\forall w \in \mathcal{C}$,

$$\|\nabla f_k(w)\|_p \leq G$$

• Assumption 3: ϕ is ν strongly-convex in the ℓ_q norm (for $q \ge 1$ s.t. $\frac{1}{p} + \frac{1}{q} = 1$) i.e.

$$\phi(y) \ge \phi(x) + \langle \nabla \phi(x), y - x \rangle + \frac{\nu}{2} \|y - x\|_q^2$$

Example: For prediction from expert advice,

- ullet $\mathcal{C}=\Delta_d$ is a convex set and $f_k(w_k)=\langle c_k,w_k
 angle$ is a convex function.
- If the costs are bounded by M, then, $\|\nabla f_k(w)\|_{\infty} = \|c_k\|_{\infty} \leq M$. Hence, $p = \infty$, G = M.
- ullet If $\phi(w)$ is negative-entropy, then by Pinsker's inequality, q=1 and $\nu=1$ i.e.

$$\phi(y) - \phi(x) - \langle \nabla \phi(x), y - x \rangle = D_{\phi}(y, x) = \mathsf{KL}(y||x) \ge \frac{1}{2} \|y - x\|_{1}^{2}.$$

Online Mirror Descent - Convex, Lipschitz functions

Claim: For an arbitrary sequence of losses such that each f_k is convex, G-Lipschitz and differentiable, then OMD with a ν strongly-convex mirror map ϕ , $\eta_k = \eta = \sqrt{\frac{2\nu}{T}} \frac{D}{G}$ where $D^2 := \max_{u \in \mathcal{C}} D_{\phi}(u, w_1)$ has the following regret for all $u \in \mathcal{C}$,

$$R_T(u) \leq \frac{\sqrt{2} DG}{\sqrt{\nu}} \sqrt{T}$$
,

Proof: Recall the mirror descent update: $\nabla \phi(w_{k+1/2}) = \nabla \phi(w_k) - \eta_k \nabla f_k(w_k)$. Setting $\eta_k = \eta$ and using the definition of regret,

$$R_T(u) = \sum_{k=1}^T f_k(w_k) - f_k(u) \le \sum_{k=1}^T [\langle g_k, w_k - u \rangle] \qquad \text{(Convexity of } f_k \text{ and } g_k := \nabla f_k(w_k))$$

$$= \sum_{k=1}^T \frac{1}{\eta} \left\langle \nabla \phi(w_k) - \nabla \phi(w_{k+1/2}), w_k - u \right\rangle \qquad \text{(Using the OMD update)}$$

Online Mirror Descent - Convex, Lipschitz functions

Recall that $R_T(u) = \sum_{k=1}^T \frac{1}{\eta} \left\langle \nabla \phi(w_k) - \nabla \phi(w_{k+1/2}), w_k - u \right\rangle$

Three point property: for any 3 points x, y, z,

$$\langle \nabla \phi(w_k) - \nabla \phi(w_{k+1/2}), w_k - u \rangle = D_{\phi}(u, w_k) + D_{\phi}(w_k, w_{k+1/2}) - D_{\phi}(u, w_{k+1/2})$$

$$\Longrightarrow R_T(u) = \sum_{k=1}^T \frac{1}{n} \left[D_{\phi}(u, w_k) + D_{\phi}(w_k, w_{k+1/2}) - D_{\phi}(u, w_{k+1/2}) \right]$$

 $\langle \nabla \phi(z) - \nabla \phi(y), z - x \rangle = D_{\phi}(x, z) + D_{\phi}(z, y) - D_{\phi}(x, y)$

From the OMD update, we know that, $w_{k+1} = \arg\min_{w \in \mathcal{W}} D_{\phi}(w, w_{k+1/2})$. Recall the optimality condition: for a convex function f and a convex set \mathcal{C} , if $x^* = \arg\min_{x \in \mathcal{C}} f(x)$, then $\forall x \in \mathcal{X}$, $\langle \nabla f(x^*), x^* - x \rangle \leq 0$. Using this condition for $D_{\phi}(w, w_{k+1/2})$, for $u \in \mathcal{C}$,

$$\langle \nabla \phi(w_{k+1}) - \nabla \phi(w_{k+1/2}), w_{k+1} - u \rangle \le 0$$

$$\implies -D_{\phi}(u, w_{k+1/2}) \le -D_{\phi}(u, w_{k+1}) - D_{\phi}(w_{k+1}, w_{k+1/2})$$
 (3 point property)

$$\implies R_T(u) \leq \sum_{k=1}^T \frac{1}{\eta} \left[D_{\phi}(u, w_k) - D_{\phi}(u, w_{k+1}) \right] + \frac{1}{\eta} \left[D_{\phi}(w_k, w_{k+1/2}) - D_{\phi}(w_{k+1}, w_{k+1/2}) \right]$$

Online Mirror Descent - Convex, Lipschitz functions

Telescoping we conclude that
$$R_T(u) \leq \frac{1}{\eta} D_{\phi}(u, w_1) + \frac{1}{\eta} \sum_{k=1}^{T} \left[D_{\phi}(w_k, w_{k+1/2}) - D_{\phi}(w_{k+1}, w_{k+1/2}) \right].$$

$$D_{\phi}(w_{k}, w_{k+1/2}) - D_{\phi}(w_{k+1}, w_{k+1/2}) = \phi(w_{k}) - \phi(w_{k+1}) - \langle \nabla \phi(w_{k+1/2}), w_{k} - w_{k+1} \rangle$$

$$\leq \langle \nabla \phi(w_{k}) - \nabla \phi(w_{k+1/2}), w_{k} - w_{k+1} \rangle - \frac{\nu}{2} \|w_{k} - w_{k+1}\|_{q}^{2}$$

(Using strong-convexity of
$$\phi$$
 with $y=w_{k+1}$ and $x=w_k$)

$$= \eta \langle g_k, w_k - w_{k+1} \rangle - \frac{\nu}{2} \| w_k - w_{k+1} \|_q^2$$
 (Using the OMD update)
$$\leq \eta G \| w_k - w_{k+1} \|_q - \frac{\nu}{2} \| w_k - w_{k+1} \|_q^2$$

(Holder's inequality:
$$\langle x,y\rangle \leq \|x\|_p \|y\|_q$$
 s.t. $\frac{1}{p} + \frac{1}{q} = 1$ and since $\|g_k\|_p \leq G$)

$$\leq \frac{\eta^2 G^2}{2\nu} \qquad \qquad \text{(For all } z, \ az - bz^2 \leq \frac{a^2}{4b}\text{)}$$

$$\implies R_T(u) \leq \frac{1}{\eta} D_\phi(u, w_1) + \frac{\eta G^2 T}{2\nu} \leq \frac{D^2}{\eta} + \frac{\eta G^2 T}{2\nu} \qquad \qquad \text{(Since } D_\phi(u, w_1) \leq D^2\text{)}$$

$$\implies R_T(u) \le \frac{\sqrt{2}DG}{\sqrt{\nu}} \sqrt{T}$$
 (Setting $\eta = \sqrt{\frac{2\nu}{T}} \frac{D}{G}$)

Online Mirror Descent – Example

We have proved that for any fixed comparator u, $R_T(u) \leq \frac{\sqrt{2DG}}{\sqrt{\nu}} \sqrt{T}$ where,

(i)
$$\|\nabla f_k(w)\|_p \le G$$
, (ii) $\phi(y) \ge \phi(x) + \langle \nabla \phi(x), y - x \rangle + \frac{\nu}{2} \|y - x\|_q^2$ and (iii) $D_{\phi}(u, w_1) \le D^2$.

• Using OMD with negative-entropy for prediction with expert advice, $p=\infty$, q=1, $\nu=1$. Since $\|c_k\|_{\infty} \leq M$, G=M. If $\forall i \in [d]$, $w_1[i]=\frac{1}{d}$, $D_{\phi}(u,w_1)=\sum_{i=1}^d u_i \ln(u_i\,d) \leq \ln(d)$.

$$\implies R_T(u) \le \sqrt{2}M\sqrt{\ln(d)}\sqrt{T}$$

• Since OGD is a special case of OMD with $\phi(w) = \frac{1}{2} \|w\|^2$, using OGD for prediction with expert advice, p=2, q=2, $\nu=1$. Since $\|c_k\|_{\infty} \leq M$, using the relation between norms, $G=M\sqrt{d}$. If $\forall i \in [d]$, $w_1[i]=\frac{1}{d}$, $D_{\phi}(u,w_1)=\frac{1}{2} \|u-w_1\|^2 \leq \sqrt{2}$

$$\implies R_T(u) \leq 2M\sqrt{d}\sqrt{T}$$

• Hence, using multiplicative weights results in $O(\sqrt{\ln(d)}\sqrt{T})$ regret which is better than the $O(\sqrt{d}\sqrt{T})$ regret obtained by OGD. For prediction with expert advice, when the number of experts is large, this can be a substantial advantage.

Online Gradient Descent - Strongly-convex, Lipschitz functions

Claim: If the convex set $\mathcal C$ has a diameter D, for an arbitrary sequence of losses such that each f_k is μ_k strongly-convex (s.t. $\mu:=\min_{k\in[T]}\mu_k>0$), G-Lipschitz and differentiable, then OGD with $\eta_k=\frac{1}{\sum_{i=1}^k\mu_i}$ and $w_1\in\mathcal C$ has the following regret for all $u\in\mathcal C$,

$$R_{\mathcal{T}}(u) \leq rac{G^2}{2\mu} \left(1 + \log(\mathcal{T})\right)$$

Proof: Similar to the convex proof, use the update $w_{k+1} = \Pi_{\mathcal{C}}[w_k - \eta_k \nabla f_k(w_k)]$. Since $u \in \mathcal{C}$,

$$\implies R_{T}(u) \leq \sum_{k=1}^{T} \left[\frac{\|w_{k} - u\|^{2} (1 - \mu_{k} \eta_{k}) - \|w_{k+1} - u\|^{2}}{2 \eta_{k}} \right] + \frac{G^{2}}{2} \sum_{k=1}^{T} \eta_{k}$$
(Since f_{k} is G -Lipschitz)

Online Gradient Descent - Strongly-convex, Lipschitz functions

Recall that
$$R_T(u) \leq \sum_{k=1}^T \left[\frac{\|w_k - u\|^2 (1 - \mu_k \eta_k) - \|w_{k+1} - u\|^2}{2\eta_k} \right] + \frac{G^2}{2} \sum_{k=1}^T \eta_k$$
.

$$\sum_{k=1}^{T} \left[\frac{\|w_{k} - u\|^{2} (1 - \mu_{k} \eta_{k}) - \|w_{k+1} - u\|^{2}}{2 \eta_{k}} \right]$$

$$= \sum_{k=2}^{T} \left[\|w_k - u\|^2 \underbrace{\left(\frac{1}{2\eta_k} - \frac{1}{2\eta_{k-1}} - \frac{\mu_k}{2}\right)}_{=0} \right] + \|w_1 - u\|^2 \underbrace{\left[\frac{1}{2\eta_1} - \frac{\mu_1}{2}\right]}_{=0} - \frac{\|w_{T+1} - u\|^2}{2\eta_T} \le 0$$
(Since $\eta_k = \frac{1}{\sum_{k=1}^k \mu_i}$)

Putting everything together,

$$\begin{array}{c} \text{Ref}, \\ R_T(u) \leq \frac{G^2}{2} \sum_{k=1}^T \frac{1}{\mu k} \leq \frac{G^2}{2\mu} \ (1 + \log(T)) \\ & \text{(Since } \mu := \min_{k \in [T]} \mu_k \text{ and } \sum_{k=1}^T \frac{1}{k} \leq 1 + \log(T)) \end{array}$$

Lower Bound: There is an $\Omega(\log(T))$ lower-bound on the regret for strongly-convex, Lipschitz functions and hence OGD is optimal (in terms of T) for this setting!

