2019-ST-'14-26'

1

d) 5.5

EE24BTECH11057 - SHIVAM SHILVANT*

1) A fair die is rolled two times independently. Given that the outcome on the first roll

2) The dimension of the vector space of 7×7 real symmetric matrices with trace zero

c) 3

is 1, the expected value of the sum of the two outcomes is:

b) 4.5

and the sum of the off-diagonal elements zero is: .

a) 4

a) 47	b) 28	c) 27	d) 26			
	3) Let A be a 6×6 complex matrix with $A^3 \neq 0$ and $A^4 = 0$. Then the number of Jordan blocks of A is:					
a) 1 or 6	b) 2 or 3	c) 4	d) 5			
4) Let $X_1,,X_n$ be a random sample from a uniform distribution defined over $(0,\theta)$, where $\theta > 0$ and $n \ge 2$. Let $X(1) = \min\{X_1,,X_n\}$ and $X(n) = \max\{X_1,,X_n\}$. Then the covariance between $X(n)$ and $X(1)/X(n)$ is:						
a) 0	b) $n(n+1)\theta$	c) <i>n</i> θ	d) $n^2(n+1)\theta$			
5) Let $X_1,,X_n$ be a random sample drawn from a population with probability density function $f(x;\theta)=\theta x^{\theta-1}, 0 \le x \le 1, \theta > 0$. Then the maximum likelihood estimator of θ is:						
a) $\frac{-n}{\sum_{i=1}^{n} \log_{e} X_{i}}$	b) $\frac{-\sum_{i=1}^{n}\log_{e}X_{i}}{n}$	c) $\left(\prod_{i=1}^n X_i\right)^{1/n}$	$d) \frac{\left(\prod_{i=0}^{n} X_{i}\right)}{n}$			
6) Let $Y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon_i$, for $i = 1,, 10$, where $x'_{1i}s$ and $x'_{2i}s$ are fixed covariates and ϵ_i 's are uncorrelated random variables with mean 0 and unknown variance σ^2 . Here β_0 , β_1 , and β_2 rare unknown parameteres. Further, define $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \hat{\beta}_2 x_{2i}$, where $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)$ is the unbiased least square estimator of $(\beta_0, \beta_1, \beta_2)$. Then an unbiased estimator of σ^2 is						
a) $\frac{\sum_{i=1}^{1} 0(Y_i - \hat{Y}_i)^2}{10}$	b) $\frac{\sum_{i=1}^{1} 0(Y_i - \hat{Y}_i)^2}{7}$	c) $\frac{\sum_{i=1}^{1} 0(Y_i - \hat{Y}_i)^2}{8}$	d) $\frac{\sum_{i=1}^{1} O(Y_i - \hat{Y}_i)^2}{9}$			
7) For $i=1,2,3$, let $Y_i=\alpha+\beta x_i+\epsilon_i$, where x_i 's are fixed covariates, and ϵ_i 's are independent and identically distributed standard normal random variables. Here, α and β are unknown parameters. Given the following observation, the best linear unbiased estimate of $\alpha+\beta$ is equal to						

Y_i	0.5	2.5	0.5
x_i	1	1	-2

a) 1.5

b) 1

c) 1.8

d) 2.1

8) Consider a discrete time Markov chain on the space {1, 2, 3} with one-step transition probablity matrix. Which of the following statements is true?

$$\begin{array}{ccccc}
1 & 2 & 3 \\
1 & 0.7 & 0.3 & 0 \\
2 & 0 & 0.6 & 0.4 \\
3 & 0 & 0 & 1
\end{array}$$

Fig. 8.1: Probablity matrix

- a) States 1, 3 are recurrent and state 2 is transient.
- b) State 3 is recurrent and states 1, 2 are transient.
- c) States 1, 2, 3 are recurrent.
- d) States 1, 2 are recurrent and state 3 is transient.
- 9) The minimal polynomial of the matrix $\begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$ is

a)
$$(x-1)(x-2)$$

b)
$$(x-1)^2(x-2)$$

c)
$$(x-1)(x-2)^{-1}$$

a)
$$(x-1)(x-2)$$
 b) $(x-1)^2(x-2)$ c) $(x-1)(x-2)^2$ d) $(x-1)^2(x-2)^2$

				3
10)	Let (X_1, X_2, X_3) be a trivariate	norma	al rand	dom vector with mean vector $(-3, 1, 4)$ and
	(4	0	0)	
	variance-covariance matrix 0	3	-3 .	Which of the following statements are true
	(0	-3	4 <i>J</i>	
	!			
	a) X_2 and X_3 are independent	•		
	b) $X_1 + X_3$ and X_2 are independent	ndent.		

- c) (X_2, X_3) and X_1 are independent.
- d) $\frac{1}{2}(X_2 + X_3)$ and X_1 are independent.
- a) (*i*) and (*iii*)

c) (*i*) and (*iv*)

b) (*ii*) and (*iii*)

- d) (*iii*) and (*iv*)
- 11) A factorial experiment with factors A, Band blocks of four plots follows: ranged in two each as (Below, (1) denotes the treatment in which A, B, and C are at the lower level, ac denotes the treatment in which A, B, and C are at the lower level, ac denotes the context of th The treatment contrast that is confounded with the blocks is

Block 1	(1)	ab	ac	bc
Block 2	a	b	С	abc

a) BC

- b) AC
- c) AB
- d) ABC
- 12) Consider a fixed effects two-way analysis of variance model $Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_{ij} + \epsilon_{ijk}$, where i = 1, ..., a; j = 1, ..., b; k = 1, ..., r and ϵ_{ijk} 's are independent and identically distributed normal random variables with zero mean and constant variance. Then the degrees of freedom available to estimate the error variance is zero when
 - a) a = 1

c) r = 1

b) b = 1

- d) None of the above.
- 13) For k = 1, 2, ..., 10, let the probability density function of the random variable X_k be

$$f_{X_k} = \begin{cases} \frac{e^{-\frac{x}{k}}}{k}, & x > 0\\ 0, & \text{otherwise.} \end{cases}$$

Then $E\left(\sum_{k=1}^{10} kX_k\right)$ is equal to ...