4.10 1) (a) Fixons un indice i où $1 \le i \le n$.

Vu que m_1, m_2, \ldots, m_n sont des entiers deux à deux premiers entre eux, on a que $\operatorname{pgcd}(m_i, m_j) = 1$ pour tout $j \neq i$.

Il en résulte que $pgcd(m_i, M_i) = 1$, c'est-à-dire que les entiers m_i et M_i sont premiers entre eux.

La proposition de la première page implique que l'équation $M_i x \equiv 1 \mod m_i$ admet une solution x_i .

En particulier, $M_i x_i \equiv 1 \mod m_i$ implique $b_i M_i x_i \equiv b_i \mod m_i$, au vu de l'exercice 4.1 1).

(b) Soit $1 \leq i \leq n$.

Comme m_i divise \mathbf{M}_j pour tout $j \neq i$, on obtient $\mathbf{M}_j \equiv 0 \mod m_i$. Par suite, $b_j \, \mathbf{M}_j \, x_j \equiv 0 \mod m_i$ pour tout $j \neq i$. Il en découle que $x \equiv b_i \, \mathbf{M}_i \, x_i \equiv b_i \mod m_i$.

Attends we are wife n = h and a point out $1 \leq i \leq n$

Attendu que x vérifie $x \equiv b_i \mod m_i$ pour tout $1 \leqslant i \leqslant n$, il apparaît que x constitue une solution du système de congruences.

2) Soient x et x' deux solutions du système de congruences.

Par définition, $x \equiv b_i \mod m_i$ et $x' \equiv b_i \mod m_i$ pour tout $1 \leqslant i \leqslant n$. Cela signifie que $x \equiv x' \equiv b_i \mod m_i$ pour tout $1 \leqslant i \leqslant n$.

Étant donné que les entiers m_1, m_2, \ldots, m_n sont deux à deux premiers entre eux, l'exercice 4.4 implique :

$$x \equiv x' \mod \underbrace{m_1 m_2 \dots m_n}_{M}$$
 c'est-à-dire $x \equiv x' \mod M$.