Épreuve de la première session de l'examen de

L'UE D'ANALYSE 3

ECU 1: INTEGRALE ET SERIE

Licence 2 : Mathématiques - Informatique

Durée: 1 heure 30

EXERCICE 1

1. Déterminer la nature de la série de terme général u_n dans chacun des cas suivants :

a)
$$u_n = \frac{1}{\sqrt{n(n+1)(n+2)}}$$

b)
$$u_n = \frac{(n!)^2}{2^{n^2}}$$
.

2. Déterminer l'ensemble des triplets (a, b, c) de nombres réels strictement positifs tels que la série de terme général $u_n = \frac{1}{an+b} - \frac{c}{n}$ soit convergente.

3. En utilisant une série, montrer que la suite de nombres réels $u_n = \sum_{k=1}^n \frac{1}{k} - \ln n$ est convergente.

EXERCICE 2

1. Montrer que l'intégrale généralisée $\int_0^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) dt$ est convergente.

A l'aide d'une intégration par parties, calculer la valeur de $\int_0^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) dt$.

2. a) Montrer que l'intégrale généralisée $\int_1^{+\infty} \frac{x+\sin x}{x^2+1} dx$ est divergente.

b) Pour tout $x \ge 1$, on pose $f(x) = \frac{x + \sin x}{x^2 + 1} - \frac{1}{x}$. Montrer que l'intégrale généralisée $\int_1^{+\infty} f(x) dx$ convergente. En déduire que $\lim_{x \to +\infty} \int_x^{2x} f(t) dt = 0$ et calculer $\lim_{x \to +\infty} \int_x^{2x} \frac{t + \sin t}{t^2 + 1} dt$.

EXERCICE 3

Soit la suite de fonctions $(f_n)_n$ définies sur $[0, \pi/2]$ par $f_n(x) = n^{\alpha} \sin^n x \cos x$, $n \in \mathbb{N}^*$ et $\alpha \in \mathbb{R}$.

1. Montrer que la suite de fonctions f_n convergence simplement sur $[0, \pi/2]$ vers la fonction nulle pour tout $\alpha \in \mathbb{R}$.

2. Étudier la convergence uniforme sur $[0, \pi/2]$ de la suite de fonctions f_n .

EXERCICE 4

Pour tout entier $n \geq 0$, on considère l'application $f_n : \mathbb{R}_+ \to \mathbb{R}$ $x \mapsto \frac{e^{-nx}}{1+x^2}$

1. Montrer que la série de fonctions $\sum_{n\geq 0} f_n$ converge uniformément sur \mathbb{R}_+ .

2. Montrer que la série des dérivées $\sum_{n\geq 0} f'_n$ converge simplement sur $]0,+\infty[$ et uniformément sur tout intervalle $[a,+\infty[$ où a>0.

3. En déduire que la fonction $f = \sum_{n=\geq 0}^{+\infty} f_n$ est continue sur $[0, +\infty[$ et dérivable sur $]0, +\infty[$.