ELEMENTI DI TEORIA DELLA COMPUTAZIONE

M. Anselmo

a.a. 2022/23

RIDUZIONI E PROBLEMI INDECIDIBILI

11 maggio 2023

TEORIA DELLA COMPUTAZIONE

Obiettivo: analizzare i limiti della risoluzione dei "problemi" mediante "algoritmi".

Problemi = Linguaggi di stringhe

Algoritmi = Macchine di Turing

Proveremo che esistono problemi che possono essere risolti mediante algoritmi e altri no.

Risultati

Aggiungeremo altri elementi a questo schema.

Risultati

Sia $A_{TM} = \{ \langle M, w \rangle \mid M \text{ `e una MdT che accetta la parola } w \}$

- ► A_{TM} non `e decidibile
- A_{TM} `e riconoscibile
- ► A_{TM} non `e riconoscibile.

Per dimostrare che A_{TM} è riconoscibile abbiamo mostrato che è riconosciuta dalla Macchina di Turing Universale U. U ha un interesse che va oltre questa dimostrazione.

Una propriet`a dei linguaggi decidibili

Definizione

Diciamo che un linguaggio L`e co-Turing riconoscibile se il complemento di Lè Turing riconoscibile.

Teorema

Un linguaggio L `e decidibile se e solo se L `e Turing riconoscibile e co-Turing riconoscibile.

Chiusura per complemento

La classe dei linguaggi decidibili è chiusa rispetto al complemento.

La classe dei linguaggi riconoscibili non è chiusa rispetto al complemento.

Provare indecidibilità

E' importante riconoscere che un problema P è indecidibile.

Come? Abbiamo 3 possibilità:

- Per assurdo, supporre l'esistenza di una MdT che decide P e provare che questo conduce a una contraddizione.
- Considerare un problema P_{ind} di cui sia nota l'indecidibilit`a e dimostrare che P è "più difficile" di P_{ind}, ovvero che P "non è piu` facile" di P_{ind}.
- ► Teorema di Rice (per alcuni casi).

Introduzione alle riduzioni

Come formalizzare il concetto che un problema è "più difficile" di un altro?

Lezione 1 di PA: Scheduling di attività

Problema computazionale:

Input / Istanza:

```
S = { 1, 2, ..., n } insieme delle richieste
Per ogni richiesta i :
```

- s_i tempo di inizio
- f; tempo di fine

Output / Soluzione:

S' sottoinsieme di S di attività compatibili (= orari non si accavallano) tale che Card(S') massima

Scheduling di attività: una soluzione

Grafo della compatibilità: ogni nodo è un intervallo; due nodi collegati se si accavallano

Input: S = {1, 2, 3, 4, 5, 6} intervalli

Input: Grafo $G_S = (V, E)$

Scheduling di attività & Insieme indipendente

S = {1, 3, 6} Insieme di nodi indipendenti (tale che ogni coppia di nodi NON è collegata)

Scheduling di attività & Insieme indipendente

S = {1, 3, 6} Insieme di intervalli compatibili di cardinalità massima

S = {1, 3, 6} Insieme di nodi indipendenti di cardinalità massima

Scheduling di attività

Insieme indipendente

Scheduling di attività

Istanza:

 $S = \{ 1, 2, ..., n \} e \forall i in S:$

- s_i tempo di inizio
- f, tempo di fine

k intero

Soluzione:

SI se esiste S' sottoinsieme di S di attività compatibili di cardinalità k

NO, altrimenti

<u>Independent Set</u>

Istanza:

&

G = (V, E) grafo k intero

Soluzione:

SI se esiste V' sottinsieme di V indipendente di cardinalità k

NO, altrimenti

Scheduling di attività & Insieme indipendente		
Scheduling di attività Istanza: S = { 1, 2,, n } e ∀ i in S: • s _i tempo di inizio • f _i tempo di fine		Independent Set Istanza (particolare): G _S = (V, E) grafo k intero
k intero		
Soluzione:		Soluzione:
SI (esiste sottoinsieme di S di attività compatibili di cardinalità k)	←	SI (esiste sottinsieme di V indipendente di cardinalità k)
NO	\longleftrightarrow	NO

Se avessi un algoritmo per risolvere il problema dell'insieme indipendente ⇒ avrei un algoritmo per risolvere il problema dello scheduling di attività. Viceversa, non è detto.

Quindi il problema dello scheduling di attività ha difficoltà ≤ del problema dell'insieme indipendente.

Scheduling di attività ≤_m Insieme indipendente

Scheduling di attività si riduce mediante funzione (f) a Insieme indipendente

Allineamento di sequenze

Allineamento di sequenza (problema di ricerca)

Istanza: Due stringhe $X = x_1 x_2 ... x_m$ e $Y = y_1 y_2 ... y_n$ Soluzione: un allineamento di costo minimo

Allineamento di sequenza (problema decisionale)

Istanza: Due stringhe $X = x_1 x_2 ... x_m$ e $Y = y_1 y_2 ... y_n$ e un intero k Soluzione:

SI, se esiste un allineamento di costo k NO, altrimenti

Allineamento di sequenze & Cammini minimi

Ad $X = x_1 ... x_m$ e $Y = y_1 ... y_n$ associamo il grafo G_{XY} seguente:

nodo (i,j) in corrispondenza di x_i e y_j costi archi orizzontali e verticali = δ costo arco diagonale verso (i,j) = α_{x_i,y_j}

$$X = x_1 x_2 x_3$$

 $Y = y_1 y_2 y_3 y_4$
k intero

Figure 6.17 A graph-based picture of sequence alignment.

Allineamento di sequenze & Cammini minimi

 $X = x_1 x_2 x_3$ $Y = y_1 y_2 y_3 y_4$ **k** intero

 G_{XY} , k intero

 $\begin{tabular}{ll} Figure~6.17~{\rm A~graph-based~picture~of~sequence~alignment.} \end{tabular}$

SI, se esiste un allineamento di costo k

SI, se esiste un cammino di costo k da (0,0) a (m,n)

NO

Allineamento di sequenze ≤ Cammini minimi

Se avessi un algoritmo per risolvere il problema dei **cammini minimi** \Rightarrow avrei un algoritmo per risolvere il problema dello **allineamento di sequenze**. Viceversa, non è detto.

Quindi:

il problema dell'allineamento di sequenze ha difficoltà ≤ del problema dei cammini minimi.

Allineamento di sequenze ≤_m Cammini minimi

Allineamento di sequenze si riduce mediante funzione (f) a Cammini minimi

Esempio $\Sigma = \{0, 1\}.$

 $EVEN = \{w \in \Sigma^* \mid w \text{ `e la rappresentazione binaria di } n \in \mathbb{N} \text{ pari} \}$

 $ODD = \{w \in \Sigma^* \mid w \text{ `e la rappresentazione binaria di } n \in \mathbb{N}$ dispari}

Esempio
$$\Sigma = \{0, 1\}.$$

 $EVEN = \{w \in \Sigma^* \mid w \text{ `e la rappresentazione binaria di } n \in \mathbb{N} \text{ pari} \}$

 $ODD = \{w \in \Sigma^* \mid w \text{ `e la rappresentazione binaria di } n \in \mathbb{N} \text{ dispari} \}$

Sia $w \in \Sigma^*$ e sia n il corrispondente decimale di w . E' facile costruire la MdT *INCR*:

$$w \rightarrow |NCR| \rightarrow w'$$
 (= rappresentazione binaria di $n+1$)

► EVEN "non è più difficile" di ODD: se esiste una MdT R che decide ODD, la MdT S decide EVEN.

$$S: w \to \boxed{INCR} \to w' \to \boxed{R}$$

► EVEN "non è più difficile" di ODD: se esiste una MdT R che decide ODD, la MdT S decide EVEN.

$$S: w \to \lceil NCR \rceil \to w' \to \lceil R \rceil$$

Viceversa se EVEN è indecidibile proviamo così che anche ODD lo è:
se per assurdo esistesse una MdT R che decide ODD.

se per assurdo esistesse una MdT *R* che decide *ODD*, la MdT *S* deciderebbe *EVEN*.

Riducibilità: definizione informale

- Idea: convertire le istanze di un problema P nelle istanze di un problema P' in modo che un algoritmo per P', se esiste, possa essere utilizzato per progettare un algoritmo per P: P non è più difficile di P'.
- Sia A il linguaggio associato a P, sia B il linguaggio associato a P'. Allora proveremo che: B decidibile ⇒ A decidibile, A indecidibile ⇒ B indecidibile.
- Nota: nulla è detto sulla decidibilità di A o B ma solo sulla decidibilità di A assumendo di disporre di un algoritmo per decidere di B.

Funzioni calcolabili

Definizione

Una funzione $f: \Sigma^* \to \Sigma^*$ `e calcolabile se esiste una TM M tale che su ogni input w, M si arresta con f(w), e solo con f(w), sul suo nastro (e la testina sulla prima cella del nastro).

Funzioni calcolabili

Definizione

Una funzione $f: \Sigma^* \to \Sigma^*$ è calcolabile se esiste una TM M tale che su ogni input w, M si arresta con f(w), e solo con f(w), sul suo nastro (e la testina sulla prima cella del nastro).

Nota: questa definizione sottolinea la differenza tra definire una funzione f, cioé definire i valori di f e calcolare tali valori di f.

Funzioni calcolabili

Le seguenti funzioni aritmetiche sono calcolabili (dove $n, m \in N$):

$$\triangleright$$
 incr(n) = n + 1

$$dec(n) = \begin{cases} n-1 & \text{se } n > 0; \\ 0 & \text{se } n = 0 \end{cases}$$

- \blacktriangleright $(m, n) \rightarrow m + n;$
- $(m, n) \rightarrow m n;$
- \blacktriangleright $(m, n) \rightarrow m \cdot n$

Esempio di una funzione non calcolabile

Consideriamo A_{TM} e $B = \{ab\}$.

Consideriamo la funzione $f: \Sigma^* \to \Sigma^*$, dove $a, b \in \Sigma$, così definita.

$$f(y) = \begin{cases} ab & \text{se } y = \langle M, w \rangle \in A_{TM}; \\ a & \text{altrimenti} \end{cases}$$

Quindi f è una funzione tale che f(y) = a se y non è della forma $\langle M, w \rangle$, oppure se $y = \langle M, w \rangle$ con $\langle M, w \rangle \notin A_{TM}$.

Invece
$$f(y) = ab$$
 se $y = \langle M, w \rangle$ con $\langle M, w \rangle \in A_{TM}$.

Quindi per ogni $y \in \Sigma^*$,

$$y \in A_{TM} \Leftrightarrow f(y) \in \{ab\}$$

Concludere che f non `e calcolabile.

Riducibilità mediante funzione

Definizione

Un linguaggio $A \subseteq \Sigma^*$ `e riducibile mediante funzione a un linguaggio $B \subseteq \Sigma^*$, e scriveremo $A \leq_m B$, se esiste una funzione calcolabile $f: \Sigma^* \to \Sigma^*$ tale che $\forall w \in \Sigma^*$

$$w \in A \Leftrightarrow f(w) \in B$$

La funzione f`e chiamata una riduzione da A a B.

Riducibilità mediante funzione

Definizione

Un linguaggio $A \subseteq \Sigma^*$ `e riducibile mediante funzione a un linguaggio $B \subseteq \Sigma^*$, e scriveremo $A \leq_m B$, se esiste una funzione calcolabile $f: \Sigma^* \to \Sigma^*$ tale che $\forall w \in \Sigma^*$

$$w \in A \Leftrightarrow f(w) \in B$$

La funzione f`e chiamata una riduzione da A a B.

Riducibilit` a mediante funzione

Immagine tratta dalle dispense della Prof.ssa Emanuela Fachini

Una riduzione fornisce un modo per convertire problemi di appartenenza ad *A* in problemi di appartenenza a *B*.

Se un problema A è riducibile a B e sappiamo risolvere B allora sappiamo risolvere A cioè A "non è piùdifficile" di B.

Teorema

 $A \le_m B$ se e solo se $\overline{A} \le_m \overline{B}$.

Teorema

 $A \le_m B$ se e solo se $\overline{A} \le_m \overline{B}$.

Dimostrazione

Per ipotesi $A \leq_m B$, quindi esiste una riduzione di A a B.

Poiché f è una riduzione, f è calcolabile e inoltre

$$\forall w \in \Sigma^* \quad w \in A \Leftrightarrow f(w) \in B$$

Proviamo che f è anche una riduzione da \overline{A} a \overline{B} .

(cont.)

Infatti, poiché f è una riduzione, f è calcolabile e inoltre

$$\forall w \in \Sigma^* \quad w \in A \Leftrightarrow f(w) \in B$$

Quindi

$$\forall w \in \Sigma^* \quad w \notin A \Leftrightarrow f(w) \notin B$$

Cioè

$$\forall w \in \Sigma^* \quad w \in \overline{A} \Leftrightarrow f(w) \in \overline{B}$$

Quindi, per definizione, f è una riduzione da \overline{A} a \overline{B} .

Teorema

Se $A \le_m B$ e B `e decidibile, allora A `e decidibile.

Teorema

 $SeA \le_m B \ e \ B$ `e decidibile, allora A `e decidibile.

Dimostrazione

Sia M_B un decider per B, f una riduzione da A a B e M_f una MdT che calcola f. Costruiamo un decider N per A: su input w

- ightharpoonup simula M_f e calcola f(w)
- ▶ simula M_B su f(w) e da lo stesso output.

$$N: w \to \boxed{M_f} \to f(w) \to \boxed{M_B}$$

N si ferma su ogni input.

N riconosce A. Infatti

$$w \in L(N) \Leftrightarrow f(w) \in L(M_B) \Leftrightarrow f(w) \in B \Leftrightarrow w \in A.$$

Quindi N decide A.

Teorema

Se $A \le_m B$ e B `e Turing riconoscibile, allora A `e Turing riconoscibile.

Dimostrazione

Sia M_B una MdT che riconosce B, f una riduzione da A a B e M_f una MdT che calcola f. Consideriamo la MdT M_A : su input w

- ightharpoonup simula M_f e calcola f(w)
- ightharpoonup simula M_B su f(w)
- ▶ se M_B accetta f(w), accetta; se M_B rifiuta f(w), rifiuta.

$$M_A: w \to \boxed{M_f \to f(w) \to M_B}$$

Ovviamente se M_B cicla, anche M_A cicla. Analogamente a prima, M_A riconosce A.

Corollario

Se $A \le_m B$ e $A \stackrel{.}{e}$ indecidibile, allora $B \stackrel{.}{e}$ indecidibile.

(se *B* fosse decidibile lo sarebbe anche *A* in virtù del teorema precedente)

Corollario

Se $A \leq_m B$ e A è indecidibile, allora B è indecidibile.

(se *B* fosse decidibile lo sarebbe anche *A* in virtù del teorema precedente)

Corollario

Se $A \leq_m B$ e A non `e Turing riconoscibile, allora B non `e Turing riconoscibile.

(se *B* fosse Turing riconoscibile lo sarebbe anche *A* in virtu` del teorema precedente)

