содержащихся в записи осциллограммы. При вычислении следует использовать $h=10^{-3}\,\mathrm{c}$.

Для вычисления теоретического значения частоты собственных колебаний стола следует измерить параметры стоек l, b, h и далее воспользоваться формулами (1.3) и (1.5). В описываемой установке модуль Юнга материала стоек $E=2.2\cdot 10^{11}\, \Pi \rm a$, масса стола $M=9.1\, \rm kg$.

Работа №2

КОЛЕБАНИЯ МАССЫ ПРИ КИНЕМАТИЧЕСКОМ ВОЗБУЖДЕНИИ

В настоящей лабораторной работе студенты знакомятся с простейшей колебательной системой — массой, колеблющейся на пружине. Целью работы является исследование вынужденных колебаний в системе с кинематическим возмущением и построение амплитудно-частотной характеристики вынужденных колебаний.

Описание установки

Лабораторная установка, показанная на рис. 5, состоит из массы на пружине подвешенного вертикально механизма для введения в систему возмущающей силы и линейки для измерения амплитуды колебаний маятника. Груз 1 подвешен на пружине 2 и скользит по вертикальным направляющим стержням 3. Верхний консц пружины 2 соединен с кулисой 4. Кулиса 4 движется в вертикальном направлении под действием стержня 5, соединенного с камисм 6 кулисного механизма. Камень 6 вращается по часовой стрелке через червячную передачу 7 электродвигателем 8. Направплющие 9 ограничивают движение кулисы 4 только вертикальным паправлением. При вращении камня 6 с постоянной угловой скоростью кулиса 4 совершает гармонические колебания в вертикальном направлении и является источником возмущающей силы в системе. Частоту возмущающей силы можно менять, регулируя частоту пращения электропривода. Линейка 10 предназначена для измерепия амплитуды колебаний маятника.

Краткие теоретические сведения

Для построения математической модели вынужденных колебаний рассматриваемой системы введем ось координат x, направленную вертикально вниз, с началом координат в центре камня кулисного механизма. Вычислим проекции на ось x всех сил, дейсинующих на груз. Учтем силу тяжести, силу упругости и силу тре-

Рис. 5

ния. Проекция силы тяжести на ось x равна mg, где m — масса груза, а g — ускорение свободного падения. Проекция силы упругости равна $-k\Delta l$, где k — жесткость пружины, а Δl — удлинение пружины. Удлинение пружины можно представить в следующем виде: $\Delta l = x - l_0 - R \sin \Omega t$, где x — координата груза, l_0 — длина свободной пружины, R — радиус камня кулисного механизма, Ω — угловая скорость вращения камня. Предположим, что сила трения, действующая на груз, пропорциональна его скорости. Тогда ее проекция на ось x равна — $\mu \dot{x}$, где μ — коэффициент пропорциональности, а \dot{x} — проекция скорости груза.

Пользуясь проекциями всех сил, составим дифференциальное уравнение движения массы:

$$m\ddot{x} = -k(x - l_0 - R\sin(\Omega t)) - \mu \dot{x}. \tag{2.1}$$

Введем новую переменную по закону $y = x - l_0$ и обозначим ве-

личины $\frac{k}{m}$, $\frac{\mu}{m}$ и $\frac{kR}{m}$ как ω^2 , 2h и F соответственно. В новых переменных и обозначениях уравнение (2.1) примет следующий

пид:

 $\ddot{y} + 2h\dot{y} + \omega^2 y = F\sin(\Omega t). \tag{2.2}$

Уравнение (2.2) представляет собой хорошо известное уравнение вынужденных колебаний в системе с затуханием. Решение уравнения (2.2) при произвольных начальных условиях является, как известно, суммой общего решения соответствующего однородного уравнения

$$\ddot{y} + 2h\dot{y} + \omega^2 y = 0$$

и частного решения уравнения (2.2), которое имеет вид

$$y = A\sin(\Omega t + \varphi). \tag{2.3}$$

Общее решение соответствующего однородного уравнения имеет вид затухающих колебаний, поэтому с течением времени линжение возмущенной системы устанавливается в виде (2.3). Гармонические колебания по закону (2.3) называются вынужденными колебаниями. Вынужденные колебания происходят с частотой Ω нозмущающей силы, амплитуда A и фаза ϕ вынужденных колебаний зависят от частоты возмущающей силы (заметим, что вынужденные колебания не зависят от начальных условий). Зависимость амплитуды вынужденных колебаний от частоты возмущающей силы называется амплитудно-частотной характеристикой колебательной системы, зависимость фазы от частоты — фазово-частотной характеристикой.

Амплитудно-частотную и фазово-частотную характеристики колебательной системы найдем подстановкой (2.3) в (2.2) и подбором $A(\Omega)$ и $\varphi(\Omega)$ так, чтобы обеспечить тождественное равенство. Опуская подробности, приводим амплитудно-частотную и фазово-частотную характеристики системы:

$$A(\Omega) = \frac{F}{\sqrt{(\Omega^2 - \omega^2)^2 + 4h^2\Omega^2}},$$
 (2.4)

$$\varphi(\Omega) = \operatorname{arctg}\left(\frac{2\Omega h}{\Omega^2 - \omega^2}\right).$$
 (2.5)

По амплитудно-частотной характеристике системы найдем частоту возмущающей силы, при которой амплитуда вынужденных колебаний максимальна. Пользуясь тем, что функция (2.4) непрерывно дифференцируема при любых значениях Ω , получим необходимое условие максимума в виде A'=0. Из этого условия следует, что максимум амплитуды имеет место, если частота возмущающей силы удовлетворяет условию

$$\Omega^2 = \omega^2 - 2h^2. \tag{2.6}$$

Условие (2.6) выполнимо, если $\omega^2 > 2h^2$, максимум амплитуды наблюдается при этом на частоте

$$\Omega = \sqrt{\omega^2 - 2h^2},\tag{2.7}$$

которая называется частотой резонанса, а само явление, при котором амплитуда вынужденных колебаний достигает максимума, называется резонансом. Если условие $\omega^2 > 2h^2$ не выполнено, то резонанс в системе отсутствует.

На рис. 6 показаны амплитудно-частотные характеристики вынужденных колебаний при различных соотношениях между ω и h . Амплитудно-частотные характеристики построены для случая, когда $\omega=1$ и F=1. Кривая I соответствует системе с малым затуханием, имеющей отчетливо выраженный резонанс. Кривая 2 соответствует системе со значительными силами трения, но обладающей резонансом. Кривая 3 отражает пограничный случай, при котором $\omega^2=2h^2$. Кривая 4 соответствует системе, не имеющей резонанса.

Следует иметь в виду, что частота резонанса отличается от собственной частоты колебаний массы на пружине, равной ω^2 , и от условной частоты свободных колебаний, равной $\sqrt{\omega^2-h^2}$ (эту частоту мы считаем условной, так как свободные затухающие колебания маятника не являются, строго говоря, периодическим дви-

жением и потому не имеют определенной частоты). Разница между частотой резонанса и этими частотами образуется благодаря наличию сил трения в системе. В этой лабораторной работе силы трения имеют существенную величину, поэтому существует заметное различие между частотой резонанса, частотой свободных колебаний и собственной частотой. Часто, однако, силы трения в системах пренебрежимо малы, поэтому можно считать, что все эти три частоты равны. На этом основаны методы измерения собственных частот колебательных систем в большинстве лабораторных работ.

Обратившись к фазово-частотной характеристике, заметим, что фаза вынужденных колебаний при резонансе имеет вид

$$\varphi = -\arctan\left(\sqrt{\left(\frac{\omega}{h}\right)^2 - 2}\right). \tag{2.8}$$

Если затухание в системе достаточно мало, то фаза (2.8) близка к члачению $-\frac{\pi}{2}$. На этом основании резонанс иногда определяют как состояние, при котором фаза (2.5) вынужденных колебаний равна точно $-\frac{\pi}{2}$ (очевидно, что это происходит, когда частота

возмущающей силы Ω равна собственной частоте маятника ω). Так как фазу вынужденных колебаний измерить сложнее, чем амплитуду, то предпочтительнее определять резонанс как максимум амплитуды вынужденных колебаний. Если такой максимум отсутствует, то говорят, что система не имеет резонанса.

Порядок выполнения работы

Пользуясь секундомером, определить условную частоту колебаний маятника. Включить электропривод и, регулируя частоту вращения двигателя, добиться максимума амплитуды вынужденных колебаний маятника. Отметить амплитуду и частоту резонанса. Регулируя частоту вращения электропривода, отметить несколько значений частоты и соответствующих значений амплитуды вынужденных колебаний. По данным измерений вычислить собственную частоту ω колебаний маятника и показатель затухания h. Построить амплитудно-частотную характеристику системы и отметить на ней резонансную частоту и резонансную амплитуду.

Работа №3

ДИНАМИЧЕСКИЙ ГАСИТЕЛЬ КОЛЕБАНИЙ

В данной работе студенты изучают вынужденные колебания механической системы с двумя степенями свободы. Основной полью работы является теоретический расчет параметров динамического гасителя колебаний и последующая экспериментальная проперка этого расчета.

Описание установки

Оксперимент проводится на вибрационном столе, описанном в работе № 1 (см. рис. 1). При проведении эксперимента на плошадке вибрационного стола *1* (рис. 7) укрепляется динамический гаситель, который состоит из упругой пластинки *6* и груза *7*. Груз можно закреплять на пластине винтом *8* в различных положениях.

Рис. 7