

SEQUENCE LISTING

- <110> BOZZONI, IRENE CAFFARELLI, ELISA LANEVE, PIETRO <120> PURIFICATION, CLO
- <120> PURIFICATION, CLONING AND BIOCHEMICAL CHARACTERIZATION OF XENDOU, ENDORIBONUCLEASIC ACTIVITY INVOLVED IN SMALL NUCLEAR RNA SPLICING-INDEPENDENT BIOSYNTHESIS IN XENOPUS LAEVIS
- <130> 2520-1050
- <140> 10/520,401
- <141> 2005-09-12
- <150> PCT/IT03/00424
- <151> 2003-07-04
- <150> IT RM2002A000365
- <151> 2002-07-08
- <160> 10
- <170> PatentIn Ver. 3.3
- <210> 1
- <211> 1268
- <212> DNA
- <213> Xenopus laevis
- <220>
- <221> CDS
- <222> (39)..(914)
- <400> 1
- attggggaac tgggagcaga gagtgacggg caggagcc atg gcg agt aac agg ggg 56

 Met Ala Ser Asn Arg Gly

 1 5
- cag ctg aac cat gaa ctc tcc aag ctg ttt aat gag ctg tgg gac gca 104
 Gln Leu Asn His Glu Leu Ser Lys Leu Phe Asn Glu Leu Trp Asp Ala
 10 15 20
- gat cag aac cgg atg aag tcc ggg aag gat tat cgg atc tcc ttg cag
 Asp Gln Asn Arg Met Lys Ser Gly Lys Asp Tyr Arg Ile Ser Leu Gln
 25 30 35
- ggt aaa gca ggg tac gta ccc gcc ggt tcc aac cag gcc agg gac agc 200 Gly Lys Ala Gly Tyr Val Pro Ala Gly Ser Asn Gln Ala Arg Asp Ser
- gcc tcg ttc ccg ctc ttc cag ttc gtc gat gag gag aag ctg aag agc 248
 Ala Ser Phe Pro Leu Phe Gln Phe Val Asp Glu Glu Lys Leu Lys Ser
 55 60 65 70

	_	_		_	acc Thr				_	_	_				_	296
					gag Glu											344
			_	_	gcc Ala		_	_				_	_	_	_	392
	_		-		agg Arg	_			-						_	440
					tac Tyr 140											488
					gat Asp											536
					cag Gln											584
					aag Lys					_						632
-				_	agt Ser		_	-	_	-	_			_		680
_	_				aag Lys 220		_				_		_	_		728
		-	_	_	gaa Glu		-		-					-		776
			_		aag Lys	_	_	_	_	_	_		_	_	_	824
					gtc Val											872
_			_		ctg Leu	_				_	_	_		t		915
gaggggggg ggctagagat cacagccggt tcccacggtt								tggg	gtgca	att t	acta	acaaa	975			

actgcaccaa	tgcaacaaca	atgcaagcag	ataatggggg	caggtccata	tccctctgct	1035
ttccctagcg	tgtgtggggc	acattaaccc	tataactgtc	actcactgca	ccagacccat	1095
tatttaaccc	cacaagggac	atcaagccag	tgccttgtta	tgagagagcg	cagccggggc	1155
ttctctactg	tgaaacttct	gtattgtata	gagtttactt	ggtttcttcc	tccagacaat	1215
ttcactttt	ttttgctttg	cctttaacca	ttaaaagtcc	atgacatttc	tgt	1268

<210> 2

<211> 292

<212> PRT

<213> Xenopus laevis

<400> 2

Met Ala Ser Asn Arg Gly Gln Leu Asn His Glu Leu Ser Lys Leu Phe 1 5 10 15

Asn Glu Leu Trp Asp Ala Asp Gln Asn Arg Met Lys Ser Gly Lys Asp 20 25 30

Tyr Arg Ile Ser Leu Gln Gly Lys Ala Gly Tyr Val Pro Ala Gly Ser 35 40 45

Asn Gln Ala Arg Asp Ser Ala Ser Phe Pro Leu Phe Gln Phe Val Asp 50 55 60

Glu Glu Lys Leu Lys Ser Arg Lys Thr Phe Ala Thr Phe Ile Ser Leu 65 70 75 80

Leu Asp Asn Tyr Glu Met Asp Thr Gly Val Ala Glu Val Val Thr Pro
85 90 95

Glu Glu Ile Ala Glu Asn Asn Asn Phe Leu Asp Ala Ile Leu Glu Thr $100 \hspace{1.5cm} 105 \hspace{1.5cm} 110$

Lys Val Met Lys Met Ala His Asp Tyr Leu Val Arg Lys Asn Gln Ala 115 120 125

Lys Pro Thr Arg Asn Asp Phe Lys Val Gln Leu Tyr Asn Ile Trp Phe 130 140

Gln Leu Tyr Ser Arg Ala Pro Gly Ser Arg Pro Asp Ser Cys Gly Phe 145 150 155 160

Glu His Val Phe Val Gly Glu Ser Lys Arg Gly Gln Glu Met Met Gly 165 170 175

Leu His Asn Trp Val Gln Phe Tyr Leu Gln Glu Lys Arg Lys Asn Ile 180 185 190

Asp Tyr Lys Gly Tyr Val Ala Arg Gln Asn Lys Ser Arg Pro Asp Glu 195 200 205

Asp Asp Gln Val Leu Asn Leu Gln Phe Asn Trp Lys Glu Met Val Lys 210 215 220

Pro Va 225	al Gly	Ser	Ser	Phe 230	Ile	Gly	Val	Ser	Pro 235	Glu	Phe	Glu	Phe	Ala 240	
Leu T	yr Thr	Ile	Val 245	Phe	Leu	Ala	Ser	Gln 250	Glu	Lys	Met	Ser	Arg 255	Glu	
Val Va	al Arg	Leu 260	Glu	Glu	Tyr	Glu	Leu 265	Gln	Ile	Val	Val	Asn 270	Arg	His	
Gly A	rg Tyr 275	Ile	Gly	Thr	Ala	Tyr 280	Pro	Val	Leu	Leu	Ser 285	Thr	Asn	Asn	
	sp Leu 90	Tyr													
<210> 3 <211> 20 <212> RNA <213> Artificial Sequence															
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide															
<400> 3 ggaaacguau ccuuugggag													20		
<210> 4 <211> 20 <212> RNA <213> Artificial Sequence															
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide															
<400> 4 ggaaacguau ccuugggagg													20		
<210><211><212><213>	20	icial	l Sed	quenc	ce										
<220> <223>	Descri				cific	cial	Sequ	uence	e: S}	nthe	etic				
<400>	5 cquau o	ccuci	ıqqaa	aq											20

```
<210> 6
<211> 20
<212> RNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 6
                                                                    20
ggaaacguau ccugugggag
<210> 7
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6)
<223> inosine
<220>
<221> modified_base
<222> (18)
<223> inosine
<400> 7
                                                                    20
atggcncayg aytayytngt
<210> 8
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (3)
<223> inosine
<220>
<221> modified_base
<222> (9)
<223> inosine
```

```
<220>
<221> modified_base
<222> (12)
<223> inosine
<220>
<221> modified_base
<222> (15)
<223> inosine
<220>
<221> modified_base
<222> (18)
<223> inosine
<400> 8
                                                                    20
acnggrtang cngtnccnat
<210> 9
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
                                                                    27
aagcttcttc atggcggctc ggccaat
<210> 10
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 10
                                                                    15
tcttttcatt cattt
```