(20%) 1. Figs. 1(a) and 1(b) show a basic current source and Widlar current source, respectively. Assume that V_{BE} is 0.7V at a current of 1mA, the thermal voltage V_{T} =25mV, V_{CC} =10V, and neglect the effect of finite β . To generate a current I_{O} =10 μ A,

- (a) find $\mathbf{R_1}$ in Fig. 1(a). (5%)
- (b) for Fig. 1(b), if $I_{REF}=1mA$, find R_2 and R_3 . (10%)
- (c) explain the advantage of Widlar current source. (5%)

Fig. 1

- (15%) 2. Figs. 2(a) and 2(b) show two different types of output stage, respectively. Assume that V_T =25mV, I_S =3×10⁻¹⁴A for Q_{14} and Q_{20} , while I_S =10⁻¹⁴A for the other BJTs, R_{10} =40k Ω , and I_{C13A} =280 μ A. Neglect the base currents of all BJTs.
 - (a) In Fig. 2(a), if V_{BE18} is found to be 0.6V iteratively, find I_{C18} , I_{C19} , and I_{C20} . (10%)
 - (b) In Fig. 2(b), if Q_{25} and Q_{26} are used to establish the voltage drop between the bases of Q_{14} and Q_{20} , find I_{C14} . (5%)

Fig. 2

- (15%) 3. Please give definitions of the following terms.
 - (a) slew rate (5%)
 - (b) inter-modulation distortion (5%)
 - (c) total harmonic distortion (5%)
- (20%) 4. For a class-B output stage in Fig. 4, let dual-supply voltage V_{CC} =10V and R_L =8 Ω . If the output v_O is an **8-V-peak** sinusoid.
 - (a) Neglecting the crossover distortion, please find the average power delivered to the load R_L , the average power drawn from the supplies, and the power-conversion efficiency η . (15%)
 - (b) Please explain the crossover distortion for the output stage in Fig. 4 (5%)

Fig. 4

- (15%) 5. Figs. 5(a) and 5(b) show two different types of CMOS class AB output stage, respectively. Assume $|V_{OV}|$ =0.2V for all transistors, $|V_{tp}|$ =0.8V, V_{tn} =0.7V, and dual-supply voltage V_{CC} =2.5V.
 - (a) Fig. 5(a) shows a class AB utilizing source followers Q_1 and Q_2 , please find the **output** swing range of v_0 (5%)
 - (b) Fig. 5(b) shows a class AB utilizing common-source transistors Q_5 and Q_6 , please find the **output swing range of** v_0 (5%)
 - (c) Please **draw** a modified output stage to reduce the output resistance of Fig. 5(b) **by using feedback**. Briefly explain your reason. (5%)

(15%) 6. When a power transistor is operated at junction temperature T_J of 150°C with a heat sink, the case temperature T_C is found to be 120°C. The case is attached to the heat sink with a bond having a thermal resistance θ_{CS} =0.7°C/W and the thermal resistance of the heat sink θ_{SA} =0.2°C/W, as shown in Fig. 6. If the ambient temperature T_A is 30°C, please calculate

- (a) heat sink temperature T_S . (5%)
- (b) power dissipated in the device P_D . (5%)
- (c) thermal resistance from junction to case, θ_{JC} . (5%)

