COMPULET VISION CSE/ECE 344/544

2-D Wavelet Transform: Decomposition

2-D Wavelet Transform: Reconstruction (IDWT)

Discrete Wavelet Transform

@ 2-D DWT for Image

Common Wavelet

- Haar: simplest, orthogonal, not very good
- Daubechies 8/8: orthogonal
- Daubechies 9/7: bi-orthogonal most commonly used if numerical reconstruction errors are acceptable
- LeGall 5/3: bi-orthogonal, integer operation, can be implemented with integer operations only, used for lossless image coding

Example of DMT (Haar Basis)

Let's consider a 1D 4-pixel Image [9 7 3 5]

a b c d

FIGURE 7.23 A three-scale FWT.

Spatial and Frequency Properties

Image Denoising Using Wavelets

- © Calculate DWT of the image.
- Threshold the wavelet coefficients. The threshold may be universal or subband adaptive.
- © Compute the IDWT to get the denoised estimate.
- Soft thresholding is used in the different thresholding methods. Visually more pleasing images.

One example of Threshold

a Apply Donoho's universal threshold,

$$\sigma \sqrt{2 \log M}$$

- o M is the number of pixels.
- The threshold is usually high, overly smoothing.

Threshold

Hard threshold

Soft threshold

Image

- Image contrast enhancement with wavelets, especially important in medical imaging
- Make the small coefficients very small and the large coefficients very large.
- Apply a nonlinear mapping function to the coefficients.

EMAANCEMENE

(a) Original Image

(c) Proposed Method

Denoising and Enhancement

- a Apply DWT
- Shrink transform coefficients in finer scales to reduce the effect of noise
- Emphasize features within a certain range using a nonlinear mapping function
- @ Perform IDWT to reconstruct the image.

EXAMPLES

Original

Denoised

Denoising with Enhancement

(a)

(c)

Edge Delection using Wavelets

Can you think of the algorithm to do it?

JPEC 2000 COMPTESSION

Not in the course but for completeness we will discuss the idea

DWT for Image Compression

Image Decomposition

- o Parent
- o Children
- Descendants:
 corresponding coeff. at finer scales
- Ancestors:
 corresponding coeff. at
 coarser scales

-Parent-children dependencies of subbands: arrow points from the subband of parents to the subband of children.

DWT for Image

Image Decomposition

- o Feature 1:
 - Energy distribution concentrated in low frequencies
- o Feature 2:
 - Spatial self-similarity across subbands

Different Coding

Watermarking

Watermarks: Secret Code for Protection

Watermarking

How Watermarking in Wavelet Works?

Fusion: How do we combine two images?

