40823117	L	方國丞	海工	113.

59. Find the orthogonal complement S^{\perp} of the subspace of R^3 spanned. by the two column vectors of the motion $A_2 \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$

 $S^{\perp} = N(A^{\top})$, the orthogonal complement of S is the nullspace of A^{\top} . $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \end{bmatrix} =$ $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \end{bmatrix} =$ $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \end{bmatrix} =$ $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \end{bmatrix} =$ $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \end{bmatrix} =$ $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \end{bmatrix} =$ $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \end{bmatrix} =$ $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \end{bmatrix} =$ $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \end{bmatrix} =$ $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \end{bmatrix} =$ $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \end{bmatrix} =$ $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \end{bmatrix} =$ $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \end{bmatrix} =$ $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & -1 \end{bmatrix} =$ $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \end{bmatrix} =$

bo, Find the projection of the vector $v = [1 \ o \ -2]^T$ onto the subspace. $S = span \{ [-1], [1] \}$

OPthonormal basis 75 \[\frac{1}{\frac{1}{2}} \] \[\frac{1}{\frac{1}{2}} \]

 $||||_{3}^{1} = (v, V_{1}) V_{1} + (v, V_{2}) V_{2} = (-\frac{2}{\sqrt{2}}) \left[-\frac{1}{\sqrt{2}} + (-\frac{2}{\sqrt{2}}) + \frac{1}{\sqrt{2}} \right]$ $= \left[-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right]$