Estadística con R

intro-R

Febrero 2018

- 0. ¿Qué vamos o no vamos a hacer en estos 10-15 minutos?
- 1. Estadística ¿para qué?
- 2. Mi hipótesis. Errores de tipo I y de tipo II
- 3. Comparación de la media dos grupos: Test de hipótesis: t-Student.
- 4. Modelos lineales generales (MLG)
 - Regresión lineal
 - Anova

- 0. ¿Qué vamos o no vamos a hacer en estos 10-15 minutos?
- 1. Estadística ¿para qué?
- 2. Mi hipótesis. Errores de tipo I y de tipo II
- 3. Comparación de la media dos grupos: Test de hipótesis: t-Student.
- 4. Modelos lineales generales (MLG)
 - Regresión lineal
 - Anova

3

- 0. ¿Qué vamos o no vamos a hacer en estos 10-15 minutos?
- 1. Estadística ¿para qué?
- 2. Mi hipótesis. Errores de tipo I y de tipo II
- 3. Comparación de la media dos grupos: Test de hipótesis: t-Student.
- 4. Modelos lineales generales (MLG)
 - Regresión lineal
 - Anova

1. Estadística ¿para qué?

A) Saciar nuestra curiosidad.

- ¿Ocurren las cosas por azar? ¿Puede deberse a algún motivo?
- ¿Hay diferencias entre dos o más cosas?
- ¿Existe relación entre dos o más cosas?
- Si las cosas ocurren por azar o siguen patrones.

B) Ayudar a la toma de decisiones.

Pasos 1) Diseño del experimento 2) Observar algo Toma de datos 3) Análisis estadístico 1) Nuevo conocimiento 2) Predecicciones

- 0. ¿Qué vamos o no vamos a hacer en estos 10-15 minutos?
- 1. Estadística ¿para qué?
- 2. Mi hipótesis. Errores de tipo I y de tipo II
- 3. Comparación de la media dos grupos: Test de hipótesis: t-Student.
- 4. Modelos lineales generales (MLG)
 - Regresión lineal
 - Anova

2. Mi hipótesis. Errores de tipo I y de tipo II

Teorema del mono infinito

 H_0 = El mono escribe por azar Siendo cierta H_0 , no es imposible que el mono escriba un libro. Mi hipótesis: Quiero probar si ocurre algo.

 H_0 = Hipótesis nula H_1 = Hipótesis alternativa

- Aceptamos Ho, cometemos un error de tipo II, porque existe la posibilidad de que escriba un libro.
- Rechazamos Ho, cometemos un error de tipo I, porque el mono escribe por azar.

Test estadísticos

Tratan de minimizar los errores de tipo I (valor de α o p-valor).

- 0. ¿Qué vamos o no vamos a hacer en estos 10-15 minutos?
- 1. Estadística ¿para qué?
- 2. Mi hipótesis. Errores de tipo I y de tipo II
- 3. Comparación de la media dos grupos: Test de hipótesis: t-Student.
- 4. Modelos lineales generales (MLG)
 - Regresión lineal
 - Anova

3. Comparación de la media de grupos: Test de hipótesis ¿t-Student o Anova?

<u>Variable</u>	Test paramétrico		
2 poblaciones	t-Student		
N poblaciones	Anova		

Test de la t-Student: se utiliza para comparar los valores <u>cuantitativos</u> de la variable respuesta (VR) de **2** muestras/grupos.

Asunciones de la t-Student: hay que comprobarlo SIEMPRE

- Normalidad de la variable respuesta (VR).
 - Test de Siegel
 - Test de Kolmogorov-Smirnov; Test de Shapiro-Wilks
- 2. Homocedasticidad: la varianza de los grupos son iguales.
 - Test de la F de Snedecor (poco recomendable porque es muy sensible a la violación de normalidad).
 - Test de Levene
 - Test de Brown-Forsythe
- Las muestras son independientes (→ Muestreo aleatorio).

```
Si esto no se cumple:

> for (i in 1:10^9){

    print("Debo

    cambiar de test")

}
```

3. Comparación de la media de grupos: Test de hipótesis **t-Student**

Ejemplo (caso particular)

Observamos dos grupos de 30 niños de la misma edad y medimos su altura. Un grupo de niños juega al fútbol y el otro grupo de niños juega al baloncesto. ¿Serán sus alturas diferentes?

H₀ = la alturas medias no son distintas

 H_1 = la alturas medias no son distintas

basket<-rnorm(30, 133, 8); futbol<-rnorm(30, 130,10)

kids<-(c(basket,futbol)); deportes<-c(rep("basket",30),rep("futbol",30))

alturas<-data.frame(kids, deportes)

Exploro mis datos

> boxplot(alturas\$niños~alturas\$deportes)

#Comprueba siempre si en tus datos hay valores "raros/extremos" #esos valores pueden ser verdaderos, es decir, ocurren en la realidad o #puede ser un error al introducir tus datos. Si es/son un error estás a tiempo #de corregirlo y evitar problemas futuros.

3. Comparación de la media de grupos: Test de hipótesis **t-Student**

 $H_0 = VR$ es normal $H_1 = VR$ no es normal

H₀ = varianzas de VR son iguales H₁ = varianzas de VR no son iguales

Compruebo las asunciones del modelo

- Normalidad de la variable respuesta (VR)
- > shapiro.test(alturas\$kids)
 Shapiro-wilk normality test data:
 alturas\$kids

W = 0.95322, p-value = 0.9995>0.05

Acepto H₀ => No puedo decir que VR no es normal/varianzas no son iguales.

- 2) Homocedasticidad de mis variables
- Levene's Test for Homogeneity of Variance (center = median)

 Df F value Pr(>F)
 group 1 0.258 0.6134 >0.05

> leveneTest(alturas\$niños, group=deportes)

> t.test(alturas\$kids~ alturas\$deportes)

Welch Two Sample t-test data: alturas\$kids by alturas\$deportes

$$t = 0.61362$$
, $df = 57.984$, p-value = 0.5419 > 0.05

alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -1.015654 1.913598 sample estimates: mean in group basket mean in group futbol

133.2709 132.8219

Cuidado con poner el botón automático!!!

Recuerda:

H₀ = la alturas medias no son distintas

H₁ = la alturas medias son distintas

La probabilidad de equivocarnos al rechazar Ho es muy alta => Acepto Ho

→ Las alturas medias de niños de 10 años que juegan a baloncesto y fútbol no son distintas.

- 0. ¿Qué vamos o no vamos a hacer en estos 10-15 minutos?
- 1. Estadística ¿para qué?
- 2. Mi hipótesis. Errores de tipo I y de tipo II
- 3. Comparación de la media dos grupos: Test de hipótesis: t-Student.
- 4. Modelos lineales generales (MLG)
 - Regresión lineal
 - Anova

12

4. Modelos lineales generales (MLG)

Relación entre una variable respuesta (VR) y una variable explicativa (VE)

Modelo predictivo en el que conozco y a través de x.

Asunciones de los modelos lineales: hay que comprobarlo SIEMPRE

Objetivo de la regresión: mínimas distancias verticales (y) a la recta

Método de mínimos cuadrados (LM).

intro-R Estadística con R Febrero 2018 15

Objetivo de la regresión: mínimas distancias verticales (y) a la recta

Método de mínimos cuadrados (LM).

Variabilidad total (VT)

Valor de y – Valor de y_{media}

Y_{media}

$$R^2 = \frac{VE}{VT}$$

Muy dependiente del tamaño de la muestra

```
>alturas<-read.csv("alturas.csv")
>modelo1<-lm(alturas$peso~alturas$kids)

#compruebo las asunciones de mi modelo
>ggplot(alturas, aes(kids,peso))+
  geom_point(pch=1, size=3.5)+
  geom_smooth(method = "lm", col="red")+
  xlab("Altura(cm)")+ylab("Peso (kg)")+theme_minimal()
>qqnorm(residuals(modelo1))
```


#La relación entre VR y VE parece ser lineal

#Comprobación visual de normalidad. Los residuos se

#distribuyen de manera normal

#Comprobación estadística de normalidad

#Igualdad de varianzas: si no hay patrón (el gráfico me da una nube de puntos), igenial! hay homocedasticidad

→ Los residuos se distribuyen con igual varianza, eso conlleva que mi modelo vaya a ser igual de bueno o malo en todos los puntos.

> plot(residuals(modelo1),predict(modelo1))

>shapiro.test(residuals(modelo1))

#se puede ver tanto la comprobación de la normalidad como de la #homocedasticidad a la vez:

>par(mfrow=c(1,4))

>plot(modelo1)

Nube de puntos. No existe un patrón definido.

→ Hay homocedasticidad

Mis valores siguen más o menos la línea guay, me preocupo cuando se alejen mucho.

<u>Distancia de Cook:</u> sirve para ver datos aberrantes.

El valor más frecuente de los residuos estandarizados es 0, y no suelen sobrepasar \pm 2.

- Si encuentras patrones: no te fíes de las predicciones.

Me preocupo por ser un punto aberrante en el eje de las X, si hi > a 2 * p/n

p: nº de parámetros;

b: tamaño de la muestra.

18

Analysis of Variance Table Response:

> anova(modelo1) #comprueba la significación del modelo

```
alturas$peso

Df Sum Sq Mean Sq F value Pr(>F)

alturas$kids 1 0.4368 0.43677 7.4296 0.008469 **

Residuals 58 3.4097 0.05879

--- Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

>summary(modelo1) #resumen del modelo

```
Call: lm(formula = alturas$peso ~ alturas$kids)
Residuals:
                   Median 30
   Min
            10
                                  Max
   -0.5826 -0.1994 -0.0039 0.1909 0.6566
Coefficients:
            Estimate Std.Error t value Pr(>|t|)
(Intercept) 16.03683 1.46949
                              10.913
                                        1.1e-15 ***
alturas$kids 0.03011 0.01105
                             2.726
                                       0.00847 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2425 on 58 degrees of freedom
Multiple R-squared: 0.1136, Adjusted R-squared: 0.09827
F-statistic: 7.43 on 1 and 58 DF, p-value: 0.008469
```


¿Es válido mi modelo?

Un buen modelo debe explicar obligatoriamente mayor varianza que la varianza que explican los residuos.

4. Anova

El Anova es un modelo predictivo lineal que sirve para testar la hipótesis de si existen diferencias entre las medias de unas poblaciones debido a una variable explicativa <u>cualitativa</u>.

El resultado del Anova te dice si las medias son o no diferentes, **pero** no te dice cuánto lo son. Hay que hacer pruebas a posteriori (test post-hoc) para ver cómo de diferentes son las medias de los grupos (e.g. Test de Bonferroni, test de Tukey).

SST: Desviación individual respecto a la media total de los grupos

SSE: Desviación de cada grupo respecto a la media de su grupo.

$$SSA = SST - SSE$$

SSA tamaño del efecto de VE

 X_{media} total X_{media} pastizal X_{media} bosque

4. Anova

Asunciones de la Anova: hay que comprobarlo SIEMPRE

- 1. Normalidad de la variable respuesta (VR).
- 2. Homocedasticidad: la varianza de los grupos son iguales.
- 3. Las muestras son independientes (→ Muestreo aleatorio).
- 4. Independencia de los residuos: cualquier variación que hay en mi VR se debe <u>al</u> <u>azar</u> y no a otro factor que esté influyendo sin que nos demos cuenta.

4. Anova

P value adjustment method: bonferroni

```
>diverso<-read.csv("diverso.csv")
>ggplot(diverso, aes(names,div))+
              geom boxplot()+xlab("Tipo de hábitat")+ylab("Diversidad")
>shapiro.test(diverso$div)
>leveneTest(diverso$div, diverso$names)
>diver<-lm(diverso$div~diverso$names)
>anova(diver)
Analysis of Variance Table
Response: diverso$div
                 Df Sum Sq Mean Sq F value Pr(>F)
diverso$names 3 422.85 140.950 43.819 1.037e-14 ***
Residuals
                56 180.13 3.217
--- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>pairwise.t.test(x=diverso$div, g=diverso$names,
             p.adjust.method=c("bonferroni"))
             Pairwise comparisons using t tests with pooled SD
data: diverso$div and diverso$names
             bosque desierto matorral
desierto
             0.0012
            1.0000 1.8e-05 -
matorral
            5.9e-09 2.7e-15 6.1e-07
pastizal
```


>TukeyHSD(aov(diver))

Tukey multiple comparisons of means 95%

family-wise confidence level Fit: aov(formula = diver)

\$`diverso\$names`

	diff	lwr	upr	p adj
desierto-bosque	-2.6	-4.3340911	-0.8659089	0.0011565
matorral-bosque	8.0	-0.9340911	2.5340911	0.6159418
pastizal-bosque	4.8	3.0659089	6.5340911	0.0000000
matorral-desierto	3.4	1.6659089	5.1340911	0.0000176
pastizal-desierto	7.4	5.6659089	9.1340911	0.0000000
pastizal-matorral	4.0	2.2659089	5.7340911	0.0000006