浙江大学 2018 - 2019 学年秋冬学期

求是数学班《高等代数 I》测验 I

2018.10

1. 设
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 3 & 0 & -4 \end{pmatrix}$$
, $\alpha = \begin{pmatrix} x \\ 1 \\ 1 \end{pmatrix}$, 若 $A\alpha 与 \alpha$ 线性相关, 求 x 的值.

- 2. 设 D 为 $\mathbb{R}_n[x]$ 上的线性映射,对 $\mathbb{R}_n[x]$ 中的多项式 $p(x) = a_0 + a_1 x + \cdots + a_n x^n$, $D(p(x)) := a_1 + 2a_2 x + \cdots + na_n x^{n-1}$.
 - (1) 求 D 关于基 $\beta = 1, x, \dots, x^n$ 的矩阵;
 - (2) 已知 $\gamma = \{1, k_1 x, \cdots, k_n x^n\}$ 是 $\mathbb{R}_n[x]$ 的另一组基, D 关于 γ 的矩阵为

求 k_1, k_2, \cdots, k_n 的值.

3. 设 V 是由如下四个矩阵生成的 $M_2(\mathbb{F})$ 的子空间:

$$A_1 = \begin{pmatrix} -1 & 4 \\ 2 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 5 & 1 \\ 0 & 3 \end{pmatrix}, A_3 = \begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix}, A_4 = \begin{pmatrix} -2 & 9 \\ 4 & -5 \end{pmatrix}.$$

- (1) 求 dim V 和 V 的一组基;
- (2) 映射 $f: V \to F$ 定义为: $f(A) = \operatorname{tr} A$, (其中 $\operatorname{tr} A$ 表示矩阵 A 的迹), $\operatorname{ker} f = \{A \in V | f(A) = 0\}$, 求 dim $\operatorname{ker} f$ 并找出 $\operatorname{ker} f$ 的一组基.

- 4. 设 T 是 n 维线性空间 V 上的一个线性变换, 证明: 可以在 V 中选取这样的两组基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 和 $\beta_1, \beta_2, \cdots, \beta_n$,使得对 V 中的任意向量 v,若 $v = \sum_{i=1}^n k_i \alpha_i$,则 $T(v) = \sum_{i=1}^r k_i \beta_i (1 \le r \le n)$.
- 5. 设 V 是数域 \mathbb{F} 上的一个 n 维线性空间, $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是它的一组基,记 $V_1=\mathrm{span}\{\alpha_1+\alpha_2+\cdots+\alpha_n\}$, $V_2=\left\{\sum_{i=1}^n k_i\alpha_i\left|\sum_{i=1}^n k_i=0,k_i\in\mathbb{F}\right.\right\}$. (1) 证明: V_2 是 V 的子空间;
 - (2) 证明: $V = V_1 \oplus V_2$.
- 6. 设 V_1, V_1, \cdots, V_n 和 W 都是线性空间 V 的子空间, 证明: 如果 W 包含在 $\bigcup_{i=1}^n V_i$ 中, 那么 W 必包含在 某个 $V_i(1 \le i \le n)$ 中.
- 7. 向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关,且可以由向量组 $\beta_1, \beta_2, \dots, \beta_t$ 线性表出. 证明: 必存在某个向量 $\beta_i (1 \leq j \leq t)$,使得向量组 $\beta_j, \alpha_2, \dots, \alpha_s$ 线性无关.
- 8. 设 V 是实数域 \mathbb{R} 上的一个线性空间, 定义 $V_{\mathbb{C}} := \{u + \mathrm{i}v \mid u, v \in V\}$. 试给出 $V_{\mathbb{C}}$ 上的加法运算和在复数域 \mathbb{C} 上的数乘运算, 使得 $V_{\mathbb{C}}$ 成为复数域 \mathbb{C} 上的线性空间. 并试着猜测 V 的基和维数与 $V_{\mathbb{C}}$ 的基和维数之间的关系.