Умножение в дополнительном коде с ручной коррекцией (без коррекции множителем)

Михаил Шихов m.m.shihov@gmail.com

Лекция по дисциплине «информатика» (17 марта 2017 г.)

Содержание

- 🕕 Обоснование корректности
 - Точка зрения на дополнительный код
 - Нужна коррекция
- Коррекция вовремя
 - Технические ограничения
 - Примеры

Точка зрения на дополнительный код

С помощью дополнительного кода в n-разрядной сетке можно представить целые числа из отрезка

$$X \in [-2^{n-1}, +(2^{n-1}-1)].$$

В этом случае:

ДК
$$(X)=egin{cases} |X|, & ext{если } X\geq 0, \ 2^n-|X|, & ext{если } X<0. \end{cases}$$

Масштабированный дополнительный код

Если выполнить масштабирование с масштабом $M=2^n$:

$$X = x \cdot 2^n$$
.

Тогда:

ДК
$$(X)=egin{cases} |x|\cdot 2^n, & ext{если } X\geq 0, \ (1-|x|)\cdot 2^n, & ext{если } X<0. \end{cases}$$

Для дробных представлений x справедливо:

ДК
$$(x) = \begin{cases} |x|, & \text{если } x \ge 0, \\ 1 - |x|, & \text{если } x < 0. \end{cases}$$
 (1)

Дополнительный код

Согласно формуле (1) дополнительный код после масштабирования можно рассматривать как

положительное дробное число.

Так как
$$X\in[-2^{n-1},+(2^{n-1}-1)]$$
, то $x\in[-2^{-1},\leq+(2^{-1}-2^{-n})]$, следовательно
$$(1-|x|)>0.$$

Пусть

$$A = a \cdot 2^n,$$

$$B = b \cdot 2^n,$$

далее выполняются операции с дробными a, b.

Коррекция псевдопроизведения ДК $(a)\cdot$ ДК(b)

- Оба сомножителя положительны. Поправок не требуется.
- Один из сомножителей отрицателен. Пусть $a<0,\ b\geq0,\$ тогда правильный код результата: ДК(ab)=(1-|ab|). Псевдопроизведение:

ДК
$$(a) \cdot$$
 ДК $(b) = (1 - |a|) \cdot |b| = |b| - |a| \cdot |b|$.

Нужна поправка: $(1-|b|)= \operatorname{ДK}(-b)$.

• Оба сомножителя отрицательны. Правильный код результата: ДK(ab) = |ab|. Псевдопроизведение:

ДК
$$(a) \cdot$$
 ДК $(b) = (1 - |a|)(1 - |b|) = 1 - |a| - |b| + |ab|$

Прибавив поправку (|a|+|b|), получим (1+|ab|), который, вследствие переноса единицы в целую часть, эквивалентен правильному |ab|.

Коррекция множителем представляет проблему, так как для этого требуются дополнительные аппаратные затраты a .

^аКоррекция множимым проблемы не представляет, так как множимое в любом случае прибавляется к СЧП

Пусть a — множитель, а b — множимое.

Дополнительный код множимого

В представлении дополнительного кода множимого b

ДК
$$(b)=egin{cases} |b|, & ext{если } b\geq 0, \ 1-|b|, & ext{если } b<0. \end{cases}$$

можно заменить (1-|b|) на выражение $(2^n-|b|)$, где n>0:

ДК
$$(b)=egin{cases} |b|, & ext{если } b\geq 0, \ 2^n-|b|, & ext{если } b<0. \end{cases}$$

Действительно, по смыслу, для дробно-масштабированного b:

$$1 \equiv 2^n \equiv$$
 «любое целое» $\equiv 0$.

• $a \ge 0, b \ge 0$: поправок не нужно.

$$\mathsf{ДK}(a) \cdot \mathsf{ДK}(b) = |a| \cdot |b| = \mathsf{ДK}(ab).$$

• $a \ge 0, b < 0$: поправок не нужно.

ullet $a < 0, b \geq 0$: поправка множимым $+(2^n - |b|)$.

ullet a < 0, b < 0: поправка множимым +|b|

- $a \ge 0, b \ge 0$: ДК(ab) = ДК $(a) \cdot$ ДК(b).
- $a \ge 0, b < 0$: ДК(ab) = ДК $(a) \cdot$ ДК(b).
- $a < 0, b \ge 0$: $\coprod K(ab) = \coprod K(a) \cdot \coprod K(b) + \coprod K(-b)$.
- a < 0, b < 0: $\coprod K(ab) = \coprod K(a) \cdot \coprod K(b) + \coprod K(-b)$.

Упрощенное правило ручной коррекции

Если множитель отрицателен, то из псевдопроизведения *вычитается* множимое.

- 1: if a < 0 then
- 2: $CY\Pi := CY\Pi b$;
- 3: end if

Основные способы умножения

Коррекции подлежит *старшая* половина 2n разрядного псевдопроизведения^a.

^а*п*-разрядное множимое вычитается из *старшей* половины псевдопроизведения

І-й способ: технические ограничения

Особенности І-го способа

- СЧП сдвигается вправо;
- Множимое прибавляется к старшей половине СЧП;
- Множимое не сдвигается.
- Коррекция выполняется только в конце цикла умножения. В противном случае все поправки «уедут» в младшие разряды СЧП.

Так как в цикле умножения к СЧП прибавляется *половина* множимого, а при коррекции нужно вычесть *целое* множимое, то нужно СЧП расширить одним разрядом справа (младшим) и, выполнив цикл, сделать последний сдвиг. Коррекцию выполнить половиной множимого и в качестве результата выдать младшие 2ⁿ разрядов (без старшего бита). Учесть, что нужно выполнять «знаковые сдвиги» СЧП.

II-й способ: технические ограничения

Особенности II-го способа

- СЧП не сдвигается;
- Множимое заносится в младшую часть 2n-разрадного регистра.
- Множимое сдвигается влево;
- Поправка множимым без дополнительных затрат выполняется в конце цикла, когда после серии сдвигов множимое выходит в старшую часть 2*n*-разрядного регистра.

III-й способ: технические ограничения

Особенности III-го способа

- СЧП сдвигается влево;
- Множимое прибавляется к младшей половине 2n-разрядной СЧП.
- Множимое сдвигается влево;
- Поправка множимым без дополнительных затрат выполняется в начале цикла умножения. В конце цикла, после серии сдвигов СЧП, она станет правильной.

IV-й способ: технические ограничения

Особенности IV-го способа

- СЧП не сдвигается;
- Множимое заносится в старшую часть 2n-разрадного регистра.
- Множимое сдвигается вправо;
- Поправка множимим без дополнительных затрат выполняется до цикла умножения. После поправки выполняется сдвиг регистра множимого и цикл выполняется как обычно.

Операнды для примеров

В качестве примера будем перемножать числа 9 и 11 с различными комбинациями знаков.

Выбрав масштаб $M=2^5$, получим следующие представления:

l-способ: $-9 \cdot 11$. ДК(-99) = ,11100 11101

мн-ль $ ightarrow$	СЧП →	прим.
,1011 <u>1</u>	+ ,00000 000000	+мн-е/2; сдвиг
	,00101 100000	
,.101 <u>1</u>	+ ,.0010 110000 + ,.0101 1	+мн-е/2; сдвиг
	,01000 010000	
, 10 <u>1</u>	+ ,.0100 001000	+мн-е/2; сдвиг
	,01001 101000	
,1 <u>0</u>	,.0100 110100	сдвиг
, <u>1</u>	+ ,010 011010	+мн-е/2
	,00111 111010	
	,.0011 111101	сдвиг; Рез-т?
	+ ,.0011 111101	корр: +ДК(-11)/2=ДК(-мн-е/2); Рез-т/2!
	, .1110 011101	
	,11100 11101	Рез-т!

І-способ (b < 0): $-9 \cdot -11$. ДК(99) = ,00011 00011

мн-ль $ ightarrow$	СЧП →	прим
,1011 <u>1</u>	+ ,00000 000000 + ,11010 1	+мн-е/2; сдвиг
	,11010 100000	
,.101 <u>1</u>	+ ,11101 010000 ,11010 1	+мн-е/2; сдвиг
	,10111 110000	
,10 <u>1</u>	,11011 111000	+мн-е/2; сдвиг
	<u>,11010 1</u>	-
	,10110 011000	
, 1 <u>0</u>	,11011 001100	сдвиг
, <u>1</u>	+ ,11101 100110 + ,11010 1	+мн-e/2; сдвиг;
	,11000 000110	
	,11100 000011	Рез-т?
	+ ,11100 000011 + ,.0101 1	корр: +ДК(11)=ДК(-мн-е/2); Рез-т/2!
	,10001 100011	
	,00011 00011	Рез-т!

II-способ: $-9 \cdot -11$. ДК(99) = ,00011 00011

мн-ль →	мн-е ←	СЧП	прим.
,1011 <u>1</u>	,11111 10101	_,00000 00000	LAULO: CERME
,1011≟	114 ,11111 10101	,11111 10101	+мн-е; сдвиг
		,11111 10101	
1011	,11111 0101.	,11111 10101	LAND OF CERMS
,.101 <u>1</u>		',11111 0101.	+мн-е; сдвиг
		,11110 11111	
101	,10 <u>1</u> ,11110 101	,11110 11111	LAND OF CERMS
,101		,11110 101	+мн-е; сдвиг
		,11101 10011	
, 1 <u>0</u>	,11101 01		сдвиг
1	,11010 1	,11101 10011	+мн-е;
, <u>1</u>	,11010 1	,11010 1	тмн-е,
		,11000 00011	
	10101	,11000 00011	иопр. I ЛК(11), Dop. т
	,10101	,01011	корр: +ДК(11); Рез-т!
		,00011 00011	

III-способ: $-11 \cdot -9$. ДК(99) = ,00011 00011

мн-ль ←	СЧП ←	прим.	
	,00000 00000	корр: +ДК(9)=ДК(-мн-е)	
	, 01001	корр. Т ДК(э)—ДК(-мн-е)	
	,00000 01001		
	,00000 1001.	сдвиг	
10101	,00000 1001.		
, <u>1</u> 0101	,11111 10111	+мн-е; сдвиг 	
	,00000 01001		
<u>,0</u> 101.	,00000 1001.	сдвиг	
101	,00001 001	LAMI OF CURING	
, <u>1</u> 01	11111 10111,	+мн-е; сдвиг	
	,00000 11011		
<u>,</u> <u>0</u> 1	,00001 1011.	сдвиг	
1	,00011 011	Рез-т!	
, <u>1</u>	,11111 10111	1 63-1:	
	,00011 00011		

V-способ:: $-11 \cdot -9$. ДК(99) = ,00011 00011

мн-ль ←	мн-е $ ightarrow$	СЧП	прим.
	,10111	+ ,00000 00000	корр: +ДK(9)=ДK(-мн-е); сдвиг
	,	,01001	керр. ТД. ((з) Д. (м. е), едви
		,01001 00000	
10101 11011 1	,01001 00000	LAND OF CERMEN	
, = 0101	, <u>1</u> 0101 ,11011 1	,11011 1	+мн-е; сдвиг;
		,00100 10000	
, <u>0</u> 101.	,11101 11		сдвиг
, <u>1</u> 01	,101 ,11110 111	,00100 10000	LMU OL CERMS
, <u>=</u> 01	,11110 111	',11110 111	+мн-е; сдвиг
		,00011 01100	
, <u>0</u> 1	,11111 0111.		сдвиг
1	1 11111 1()111 + 1	,00011 01100	+мн-е; Рез-т!
,		,11111 10111	
		,00011 00011	

Какая разрядность результата должна получиться, если дополнительные коды операндов занимают n бит?

Перемножить числа:

- 26 и −13 І-м способом;
- 26 и 13 II-м способом;
- 3 −26 и −13 III-м способом;
- \bullet -13 и -26 IV-м способом.

Обосновать выбор масштаба.

Прорешать одним из методов «краевые» случаи в *п*-разрядной сетке:

- $-2^n \cdot -2^n$;
- $-2^n \cdot x$, где x > 0;
- $(2^n-1)\cdot(2^n-1)$.

Модифицируйте схему умножения первым способом с учетом работы в ДК (можно использовать условный блок «получение ДК» и мультиплексор):

Советы самоучке

Рекомендуется почитать разделы посвященные работе с битами в [1].

Библиография I

Г. Уоррен-мл. Алгоритмические трюки для программистов / Г. Уоррен-мл. —

2 изд. —

М.: Издательский дом «Вильямс», 2014. —

512 c.