

Seja muito bem-vindo(a)!

Classificação com Naive Bayes

Conhecendo o Naive Bayes

Classificação

A classificação consiste no processo de encontrar, através de aprendizado de máquina, um modelo ou função que descreva diferentes classes de dados.

Classificação

- Detecção de SPAM
- Organização automática de e-mails
- Identificação de páginas com conteúdo adulto
- Detecção de expressões e sentimentos

Classificador Naïve Bayes

Aplicações do Algoritmo Naive Bayes

- Previ<mark>sões multi-classes</mark>
- Class<mark>if</mark>icaçã<mark>o</mark> de textos/Filtragem de spam/Análise de sentimento
- Pr<mark>evisões</mark> em tempo real
- Sistema de Recomendação

Naive Bayes no Scikit-Learn

Gaussian

Multinomial

Bernoulli

A Teoria da Probabilidade

Probabilidade é o estudo sobre experimentos que, mesmo realizados em condições bastante parecidas, apresentam resultados que não são possíveis de prever.

Estudamos Probabilidade com a intenção de prever as possibilidades de ocorrência de uma determinada situação ou fato.

Experimento Aleatório

Um experimento é considerado aleatório quando suas ocorrências podem apresentar resultados diferentes. Um exemplo disso acontece ao lançarmos uma moeda que possua faces distintas, sendo uma cara e outra coroa. O resultado desse lançamento é imprevisível, pois não há como saber qual a face que ficará para cima.

Espaço Amostral

O espaço amostral (S) determina as possibilidades possíveis de resultados. No caso do lançamento de uma moeda o conjunto do espaço amostral é dado por: S = {cara, coroa}, isso porque são as duas únicas respostas possíveis para esse experimento aleatório.

Evento

Na probabilidade a ocorrência de um fato ou situação é chamado de evento. Sendo assim, ao lançarmos uma moeda estamos estabelecendo a ocorrência do evento. Temos então que, qualquer subconjunto do espaço amostral deve ser considerado um evento. Um exemplo pode acontecer ao lançarmos uma moeda três vezes, e obtermos como resultado do evento o seguinte conjunto:

E = {Cara, Coroa, Cara}

Razão de Probabilidade

A razão de probabilidade é dada pelas possibilidades de um evento ocorrer levando em consideração o seu espaço amostral. Essa razão, que é uma fração, é igual ao número de elementos do evento (numerador) sobre o número de elementos do espaço amostral (denominador).

Razão de Probabilidade

Considere os seguintes elementos:

E é um evento.

n(E) é o número de elementos do evento.

S é espaço amostral.

n(S) é a quantidade de elementos do espaço amostral.

$$0 \le P(E) \le 1$$

Com $n(S) \neq 0$

Probabilidade Condicional

Data Science Academy marxv49@gmail.com 5e686b2be32fc3447a0e403be Learning

Probabilidade de A

$$P(A) = \frac{\#(A)}{\#(\Omega)} = \frac{3}{10}$$

Probabilidade de B

$$P(B) = \frac{\#(B)}{\#(\Omega)} = \frac{4}{16} = \frac{1}{4}$$

Probabilidade de A

$$P(A) = \frac{\#(A)}{\#(\Omega)} = \frac{3}{10}$$

Probabilidade de B

$$P(B) = \frac{\#(B)}{\#(\Omega)} = \frac{4}{16} = \frac{1}{4}$$

Espaço de possibilidades

Evento A

Evento B

Probabilidade de A dado B

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1/16}{4/16} = \frac{1}{4}$$

Quando avaliamos A, saber/supor que B ocorre reduz o espaço de possibilidades para Bl

Probabilidade de B dado A

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{1/16}{3/16} = \frac{1}{3}$$

Teorema de Bayes

A regra de Bayes mostra como alterar as probabilidades a priori tendo em conta novas evidências de forma a obter probabilidades a posteriori.

$$P(c \mid x) = \frac{P(x \mid c)P(c)}{P(x)}$$

P(x) e P(c) são as probabilidades a priori de x e c.

P(c|x) e P(x|c) são as probabilidades a posteriori de c condicional a x e de x condicional a c respectivamente.

$$P(c|X) = P(x_1|c)xP(x_2|c)x...xP(x_n|c)xP(c)$$

- P (c | x) é a probabilidade posterior da classe
 (c, alvo) dada o preditor (x, atributos).
- P (c) é a probabilidade original da classe.
- P (x | c) é a probabilidade do preditor dada a classe.
- P (x) é a probabilidade original do preditor.

 $P(c|X) = P(x_1|c)xP(x_2|c)x...xP(x_n|c)xP(c)$

Como funciona o Teorema de Bayes?

Em teoria da probabilidade o Teorema de Bayes mostra a relação entre uma probabilidade condicional e a sua inversa.

Aqui nós temos um conjunto de dados de treinamento sobre clima (tempo) e da correspondente variável-alvo 'Play' (Jogar).

TEMPO	"PLAY"
Sol	Não
Nublado	Sim
Chuva	Sim
Sol	Sim
Sol	Sim
Nublado	Sim
Chuva	Não
Chuva	Não
Sol	Sim
Chuva	Sim
Sol	Não
Nublado	Sim
Nublado	Sim
Chuva	Não

Passo 1: Converter o conjunto de dados em uma tabela de frequência

TEMPO	"PLAY"
Sol	Não
Nublado	Sim
Chuva	Sim
Sol	Sim
Sol	Sim
Nublado	Sim
Chuva	Não
Chuva	Não
Sol	Sim
Chuva	Sim
Sol	Não
Nublado	Sim
Nublado	Sim
Chuva	Não

Tabela de Frequência		
Clima	Não	Sim
Nublado	0	4
Sol	2	3
Chuva	3	2
Total	5	9

Passo 2: Criar tabela de Probabilidade para encontrar as probabilidades de cada combinação.

TEMPO	"PLAY"
Sol	Não
Nublado	Sim
Chuva	Sim
Sol	Sim
Sol	Sim
Nublado	Sim
Chuva	Não
Chuva	Não
Sol	Sim
Chuva	Sim
Sol	Não
Nublado	Sim
Nublado	Sim
Chuva	Não

Tabela de Frequência		
Clima	Não	Sim
Nublado	0	4
Sol	2	3
Chuva	3	2
Total	5	9
	=5/14	=9/14
	0.36	0.64

=4/14	0.29
=5/14	0.36
=5/14	0.36

Passo 3: Usamos a equação do Teorema de Bayes para calcular a probabilidade posterior para cada classe. A classe com maior probabilidade posterior é o resultado da previsão.

TEMPO	"PLAY"
Sol	Não
Nublado	Sim
Chuva	Sim
Sol	Sim
Sol	Sim
Nublado	Sim
Chuva	Não
Chuva	Não
Sol	Sim
Chuva	Sim
Sol	Não
Nublado	Sim
Nublado	Sim
Chuva	Não

Tabela de Frequência		
Clima	Não	Sim
Nublado	0	4
Sol	2	3
Chuva	3	2
Total	5	9
	=5/14	=9/14
	0.36	0.64

=4/14	0.29
=5/14	0.36
=5/14	0.36

$$P(c \mid x) = \frac{P(x \mid c)P(c)}{P(x)}$$

Os jogadores irão praticar esporte se o tempo estiver ensolarado. Esta afirmação está correta?

Tabela de Frequência		
Clima	Não	Sim
Nublado	0	4
Sol	2	3
Chuva	3	2
Total	5	9

=5/14	=9/14
0.36	0.64

=4/14	0.29
=5/14	0.36
=5/14	0.36

$$P(Sim \mid Sol) = P(Sol \mid Sim) * P(Sim) / P(Sol)$$

Os jogadores irão praticar esporte se o tempo estiver ensolarado. Esta afirmação está correta?

Tabela de FrequênciaClimaNãoSimNublado04Sol23Chuva32Total59

Aqui temos:

$$P (Sol | Sim) = 3/9 = 0.33$$

 $P (Sol) = 5/14 = 0.36$

Os jogadores irão praticar esporte se o tempo estiver ensolarado. Esta afirmação está correta?

Tabela de Frequência		
Clima	Não	Sim
Nublado	0	4
Sol	2	3
Chuva	3	2
Total	5	9

Aqui temos:

$$P(Sol \mid Sim) = 3/9 = 0.33$$

$$P(Sol) = 5/14 = 0.36$$

$$P(Sim) = 9/14 = 0.64$$

Os jogadores irão praticar esporte se o tempo estiver ensolarado. Esta afirmação está correta? Sim, a afirmação está correta!

Agora, é só colocar na fórmula:

$$P(Sim | Sol) = P(Sol | Sim) * P(Sim) / P(Sol)$$

$$P (Sim | Sol) = 0.33 * 0.64 / 0.36 = 0.60$$

Problema da Frequência Zero

- Probabilidade correspondente será zero!
- Probabilidade a posteriori será também zero!

A ideia principal é que a probabilidade de um evento A dado um evento B (i.e. a probabilidade de alguém ter câncer de mama sabendo, ou dado, que a mamografia deu positivo para o teste) depende não apenas do relacionamento entre os eventos A e B (i.e., a precisão, ou exatidão, da mamografia), mas também da probabilidade marginal (ou "probabilidade simples") da ocorrência de cada evento.

Melhorando o Poder de Classificação do Modelo Naive Bayes

Se os atributos contínuos não têm distribuição normal, devemos usar a transformação ou métodos diferentes para convertê-los em distribuição normal.

Remova variáveis correlacionadas. Os atributos altamente correlacionadas podem levar a um excesso de importância de uma característica, reduzindo a capacidade de generalização do modelo.

Classificadores Naive Bayes têm opções limitadas para ajuste de parâmetros, tais como como alfa = 1 para suavização, fit_prior = [Verdade | Falso] para aprendizagem a partir de probabilidades anteriores. Nós recomendamos focar no pré-processamento de dados e seleção de atributos.

Você pode querer aplicar alguma técnica ensemble como "bagging" e "boosting", mas na prática esses métodos não ajudariam, pois a finalidade destes métodos é reduzir a variância.

Naive Bayes não tem variância para minimizar.

Vantagens e Desvantagens de Modelos Naive Bayes

Vantagens

- É fácil e rápido para prever o conjunto de dados da classe de teste. Também tem um bom desempenho na previsão de classes múltiplas.
- Quando a suposição de independência prevalece, um classificador Naive Bayes tem melhor desempenho em comparação com outros modelos como regressão logística, e você precisa de menos dados de treinamento.
- O desempenho é bom em caso de variáveis categóricas de entrada em comparação a variáveis numéricas. Para variáveis numéricas, assume-se a distribuição normal (curva de sino, que é uma suposição forte).

Desvantagens

- Se a variável categórica tem uma categoria (no conjunto de dados de teste) que não foi observada no conjunto de dados de treinamento, então o modelo irá atribuir uma probabilidade de 0 (zero) e não será capaz de fazer uma previsão. Isso é muitas vezes conhecido como "Zero Frequency". Para resolver esse problema, podemos usar a técnica de "suavização" (smoothing). Uma das técnicas mais simples de "suavização" (smoothing) é a chamada estimativa de Laplace.
- Uma limitação do Naive Bayes é a suposição de preditores independentes. Na vida real, é quase impossível ter um conjunto de indicadores que sejam completamente independentes.

