```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
```

df

	age	sex	chest_pain	blood pressure	serum_cholestoral	fasting_blood_sugar	electr
0	63.0	1.0	1.0	145.0	233.0	1.0	
1	67.0	1.0	4.0	160.0	286.0	0.0	
2	67.0	1.0	4.0	120.0	229.0	0.0	
3	37.0	1.0	3.0	130.0	250.0	0.0	
4	41.0	0.0	2.0	130.0	204.0	0.0	
298	45.0	1.0	1.0	110.0	264.0	0.0	
299	68.0	1.0	4.0	144.0	193.0	1.0	
300	57.0	1.0	4.0	130.0	131.0	0.0	
301	57.0	0.0	2.0	130.0	236.0	0.0	
302	38.0	1.0	3.0	138.0	175.0	0.0	

303 rows × 14 columns

df.describe()

```
blood
                                                            serum cholestoral fasting blo
                   age
                               sex chest pain
                                                  pressure
      202 00000 202 00000
                                                                   202 000000
                                    202 000000 202 000000
                                                                                        20
df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 303 entries, 0 to 302
     Data columns (total 14 columns):
          Column
                                Non-Null Count Dtype
                                -----
                                                float64
      0
          age
                                303 non-null
      1
          sex
                                303 non-null
                                                float64
                                                float64
      2
                                303 non-null
          chest pain
      3
          blood pressure
                                303 non-null
                                                float64
                                                float64
      4
          serum_cholestoral
                                303 non-null
      5
          fasting_blood_sugar
                                303 non-null
                                                float64
      6
          electrocardiographic 303 non-null
                                                float64
      7
          max heart rate
                                                float64
                                303 non-null
          induced_angina
                                                float64
      8
                                303 non-null
      9
          ST_depression
                                303 non-null
                                                float64
                                                float64
      10 slope
                                303 non-null
      11 vessels
                                303 non-null
                                                object
      12 thal
                                303 non-null
                                                object
                                                int64
      13 diagnosis
                                303 non-null
     dtypes: float64(11), int64(1), object(2)
     memory usage: 33.3+ KB
# checking for null
df.isna().sum()
                             0
     age
     sex
     chest_pain
     blood pressure
                             0
     serum_cholestoral
     fasting_blood_sugar
                             0
     electrocardiographic
     max heart rate
                             0
     induced_angina
                             0
     ST_depression
                             0
                             0
     slope
     vessels
                             0
     thal
                             0
                             0
     diagnosis
     dtype: int64
## vessel and thal variables have some missing values shown as '?'
(df == '?').sum()
                             0
     age
     sex
                             0
     chest pain
     blood pressure
                             0
     serum cholestoral
                             0
     fasting_blood_sugar
                             0
```

electrocardiographic

```
0
     max_heart_rate
     induced_angina
                              0
                              0
     ST depression
                              0
     slope
     vessels
                              4
     thal
                              2
     diagnosis
                              0
     dtype: int64
df['vessels'].value_counts()
     0.0
            176
     1.0
             65
     2.0
             38
     3.0
             20
              4
     Name: vessels, dtype: int64
df['thal'].value_counts()
     3.0
            166
     7.0
            117
     6.0
             18
              2
     Name: thal, dtype: int64
## removing the '?' misssing values
df[df['vessels'] == '?']['vessels']
     166
            ?
     192
     287
     302
     Name: vessels, dtype: object
df[df['thal'] == '?']['thal']
     87
            ?
     266
     Name: thal, dtype: object
missing_vessels = df[df['vessels'] == '?']['vessels'].index
missing_thals = df[df['thal'] == '?']['thal'].index
df.drop(missing_vessels,inplace=True)
df.drop(missing_thals,inplace=True)
## After removing 6 missing values
df
```

	age	sex	chest_pain	blood pressure	serum_cholestoral	fasting_blood_sugar	electr
0	63.0	1.0	1.0	145.0	233.0	1.0	
1	67.0	1.0	4.0	160.0	286.0	0.0	
2	67.0	1.0	4.0	120.0	229.0	0.0	
3	37.0	1.0	3.0	130.0	250.0	0.0	
4	41.0	0.0	2.0	130.0	204.0	0.0	
297	57.0	0.0	4.0	140.0	241.0	0.0	
298	45.0	1.0	1.0	110.0	264.0	0.0	
299	68.0	1.0	4.0	144.0	193.0	1.0	
300	57.0	1.0	4.0	130.0	131.0	0.0	
301	57.0	0.0	2.0	130.0	236.0	0.0	

297 rows × 14 columns

Checking for age distribution
plt.figure(figsize=(12,8))
sns.distplot(df['age'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please

<matplotlib.axes. subplots.AxesSubplot at 0x7fdc6b89c590>

```
### age range of people with their gender 1: Male 0: Female
plt.figure(figsize=(10,6))
px.histogram(df,'age',color='sex')
```


<Figure size 720x432 with 0 Axes>

```
### Target distribution
df['diagnosis'].value_counts()
```

```
0 1601 543 352 354 13
```

Name: diagnosis, dtype: int64

```
# ''' As given in the Dataset :The "goal" field refers to the presence of heart disease
in the patient. It is integer valued from 0 (no presence) to 4.

Experiments with the Cleveland database have concentrated on simply
attempting to distinguish presence (values 1,2,3,4) from absence (value
0). '''
```

df['Target'] = df['diagnosis'].apply(lambda x : 1 if x >= 1 else 0)

df

	age	sex	chest_pain	blood pressure	serum_cholestoral	fasting_blood_sugar	electr
0	63.0	1.0	1.0	145.0	233.0	1.0	
1	67.0	1.0	4.0	160.0	286.0	0.0	
2	67.0	1.0	4.0	120.0	229.0	0.0	
3	37.0	1.0	3.0	130.0	250.0	0.0	
4	41.0	0.0	2.0	130.0	204.0	0.0	
297	57.0	0.0	4.0	140.0	241.0	0.0	
298	45.0	1.0	1.0	110.0	264.0	0.0	
299	68.0	1.0	4.0	144.0	193.0	1.0	
300	57.0	1.0	4.0	130.0	131.0	0.0	
301	57.0	0.0	2.0	130.0	236.0	0.0	

297 rows × 15 columns

```
#### Distribution of Diagnosis to sex
plt.figure(figsize=(10,6))
px.histogram(df,x='diagnosis',color='sex',barmode="group")
```


Finding correlation of variables
df.corr()

	age	sex	chest_pain	blood pressure	serum_cholestoral	fa
age	1.000000	-0.092399	0.110471	0.290476	0.202644	
sex	-0.092399	1.000000	0.008908	-0.066340	-0.198089	
chest_pain	0.110471	0.008908	1.000000	-0.036980	0.072088	
blood pressure	0.290476	-0.066340	-0.036980	1.000000	0.131536	
serum_cholestoral	0.202644	-0.198089	0.072088	0.131536	1.000000	
fasting_blood_sugar	0.132062	0.038850	-0.057663	0.180860	0.012708	
electrocardiographic	0.149917	0.033897	0.063905	0.149242	0.165046	
max_heart_rate	-0.394563	-0.060496	-0.339308	-0.049108	-0.000075	
induced_angina	0.096489	0.143581	0.377525	0.066691	0.059339	
ST_depression	0.197123	0.106567	0.203244	0.191243	0.038596	
slope	0.159405	0.033345	0.151079	0.121172	-0.009215	
diagnosis	0.222156	0.226797	0.404248	0.159620	0.066448	
Target	0.227075	0.278467	0.408945	0.153490	0.080285	

plt.figure(figsize=(12,8))
sns.heatmap(df.corr())

df['diagnosis']

Name: diagnosis, Length: 297, dtype: int64

```
### Train test split
```

```
X= df.drop(['diagnosis','Target'],axis=1)
y = df['Target']
```

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

Model Classification

```
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
```

Taking average of 10 training examples

```
dt_avg = []
for i in range(10):
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    clf1 = DecisionTreeClassifier()
    dt_model = clf1.fit(X_train,y_train)
    dt_pred = dt_model.predict(X_test)
    dt_avg.append(accuracy_score(y_test,dt_pred))

print('Average Decision Tree Test accuracy:',sum(dt_avg)/10)
```

Average Decision Tree Test accuracy: 0.73333333333333334

from sklearn.metrics import classification_report, confusion_matrix,accuracy_score,log_los
print(classification_report(y_test,dt_pred))

print(confusion_matrix(y_test,dt_pred))

	precision	recall	f1-score	support
0 1	0.77 0.64	0.75 0.67	0.76 0.65	36 24
accuracy macro avg weighted avg	0.71 0.72	0.71 0.72	0.72 0.71 0.72	60 60 60

[[27 9] [8 16]]

print('Log loss for Decision Tree model:',log_loss(y_test,dt_pred))

Log loss for Decision Tree model: 8.059114458598343