Department of Electrical and Electronic Engineering

Summer 2022

EEE 204: Numerical Techniques in Engineering *Section (1)*

Mid-2 Project

Total marks: 35. Rubrics for assessment given in a separate file.

Instructions:

- 1. Deadline: Aug. 18, 2022 (submission of report + online submission + viva)
- 2. You can discuss with TA or instructor.
- 3. Students who copy will either withdraw the course or be sent to disciplinary committee.

The circuit was kept with the current source on for a long time. Then the source is turned off at time t=0 triggering a transient response of voltage and current before reaching steady values. The goal of this project is to analyze the transient behavior of the system. The voltage v(t) across RLC at t=0 is v(0)=0 mV, and at t=10 ms is v(10ms)=-1.816 mV. The circuit parameters are: $I_S=4$ A, $R=0.5\Omega$, L=1mH, C=1mF.

- 1. Setting up the equations:
 - a. Appropriately mark the directions (arrows and +/-) of v, i_R, i_L, i_C in the circuit.
 - b. Find the differential equation for the system and also write its boundary conditions.

- c. Then derive the difference equation along with appropriate coefficient values.
- d. Write the system equations in a matrix forms including the boundary conditions.
- 2. In MATLAB, write a code to solve the differential equation (for now you can set n =1000).
- 3. The exact solution can be found as follows:

$$\alpha = \frac{1}{2RC}$$
 and $\omega_0 = \frac{1}{\sqrt{LC}}$
 $s = -\alpha$
 $A = -\frac{I_S}{C}$
 $v_{exact}(t) = A t \exp(s t)$

- 4. Find and plot the following:
 - a. Current through the capacitor $i_{\mathcal{C}}(t)$. [Hint: how is $i_{\mathcal{C}}$ related to v?]
 - b. Instantaneous power $P_R(t)$ dissipated in the resistor.
 - c. Instantaneous power absorbed by the inductor P_L vs t.
- 5. Visualizations and plots:
 - a. Plot the numerically solved v vs t for n = 100. Also plot the exact solution in the same plot. What is the amount of error $E_n = \sqrt{\sum e_i^2/n}$?
 - b. Plot the numerically solved i_C vs t for n = 100.
 - c. Plot the numerically solved P_R vs t for n = 100. Also plot the exact solution in the same plot.
 - d. Repeat a, b, c for n = 200,500,1000,5000. [n = 5000 may take couple of]minutes to run].
 - e. Comment on the accuracy of the solution for different n. Does the accuracy improve with n? Why?
- 6. Find and plot E_n vs n for $n = [75:25:1000 \ 2000 \ 3500 \ 5000]$. (You may need to write another code with a loop for n). Comment on the accuracy/error.

Bonuses:

- 1. First three students to complete [Bonus 2pts]
- 2. If you choose to do a higher difficulty level problem-set [Bonus 3pts]

