CLAIMS

What is claimed is:

1	1. A method of downconverting a signal and rejecting an image, comprising:
2	providing a first, second, third, fourth and fifth signal, wherein the first signal
3	has a frequency F, the second signal has a frequency F/N, the third signal has a
4	frequency F/N and is phase shifted 90° with respect the second signal; the fourth
5	signal has a frequency F/NM, and the fifth signal has a frequency F/NM and is phase
6	shifted 90° from the fourth signal;
7	mixing the first signal with an input signal to produce a first mixer output
8	signal;
9	splitting the first mixer output signal to produce a first splitter output signal and
10	a second splitter output signal;
11	mixing the first splitter output signal with the second signal to produce a
12	second mixer output signal;
13	mixing the second splitter output signal with the third signal to produce a third
14	mixer output signal;
15	mixing the second mixer output signal with the fourth signal to produce a
16	fourth mixer output signal;
17	mixing the third mixer output signal with the fifth signal to produce a fifth mixer
18	output signal; and
19	combining the fourth mixer output signal and the fifth mixer output signal to
20	produce a combiner output signal

- 1 2. The method of Claim 1, wherein mixing the first splitter output signal with the
- 2 second signal to produce a second mixer output signal further comprises low-pass
- 3 filtering.
- 1 3. The method of Claim 2, wherein mixing the second splitter output signal with
- 2 the third signal to produce a third mixer output signal further comprises low-pass
- 3 filtering.
- 1 4. The method of Claim 1, wherein N and M are integers greater than 1.
- 1 5. The method of Claim 4, wherein N and M are each multiples of 2.
- 1 6. The method of Claim 3, wherein providing the second, third, fourth, and fifth
- 2 signals comprises digitally dividing the first signal.
- 1 7. The method of Claim 5, wherein N equals 2 and M equals 4.
- 1 8. The method of Claim 3, wherein F is a frequency in the range of 3.113 GHz to
- 2 3.545 GHz.
- 1 9. The method of Claim 8, wherein the input signal has a frequency in the range
- 2 of 5.15 GHz to 5.825 GHz.
- 1 10. The method of Claim 9, wherein the combiner output signal has a frequency
- 2 of 90 MHz.
- 1 11. A method of upconverting a signal, and rejecting an image, comprising:

2	providing a first, second, third, fourth and fifth signal, wherein the first signal
3	has a frequency F, the second signal has a frequency F/N, the third signal has a
4	frequency F/N and is phase shifted 90° with respect the second signal; the fourth
5	signal has a frequency F/NM, and the fifth signal has a frequency F/NM and is phase
6	shifted 90° from the fourth signal;
7	splitting an input signal to produce a first splitter output signal a and second
8	splitter output signal;
9	mixing the first splitter output signal with the fifth signal to produce a first
10	mixer output signal;
11	mixing the second splitter output signal with the fourth signal to produce a
12	second mixer output signal;
13	high-pass filtering the first mixer output signal and the second mixer output
14	signal to produce, respectively a first filter output and a second filter output;
15	mixing the first filter output with the third signal to produce a third mixer output
16	signal;
17	mixing the second filter output with the second signal to produce a fourth
18	mixer output signal;
19	combining the third mixer output signal and the fourth mixer output signal to
20	produce combiner output signal; and
21	mixing the combiner output signal with the first signal to produce a transmitter
22	output signal

12. The method of Claim 11, wherein N and M are integers greater than 1.

1

17

1	13. The method of Claim 12, wherein N and M are each multiples of 2.
1	14. The method of Claim 11, wherein providing the second, third, fourth, and fifth
2	signals comprises digitally dividing the first signal.
1	15. The method of Claim 13, wherein N and M each equal 4.
1	16. A method of rejecting an image, comprising:
2	mixing an input signal with a local oscillator signal to produce a first
3	intermediate frequency signal;
4	splitting the first intermediate frequency signal into a first part and a second
5	part;
6	mixing the first part with a first clock signal to produce a first second-
7	intermediate-frequency signal, and mixing the second part with a second clock
8	signal, to produce a second second-intermediate-frequency signal;
9	filtering the first and second second-intermediate-frequency signals;
10	mixing the filtered first second-intermediate-frequency signal with a third clock
11	signal to produce a first third-intermediate-frequency signal, and mixing the filtered
12	second second-intermediate-frequency signal with a fourth clock signal to produce a
13	second third-intermediate-frequency signal; and
14	combining the first third-intermediate-frequency signal with the second third-
15	intermediate-frequency signal to produce an output signal;
16	wherein the first and second clock signals have a frequency that is less than

that of the local oscillator by a factor of N, and the second clock signal is phase

- 18 shifted 90° from the first clock signal, the third and fourth clock signals have a
- 19 frequency that is less than that of the local oscillator by a factor of NM, and the
- 20 fourth clock signal is phase shifted 90° from the third clock signal, and N and M are
- 21 integers greater than one.
 - 1 17. The method of Claim 16, wherein N is a multiple of 2.
 - 1 18. The method of Claim 16, wherein M is a multiple of 2.
 - 1 19. The method of Claim 16, wherein N and M are each a multiple of 2.
 - 1 20. The method of Claim 16, wherein the image is rejected in a receiver.
 - 1 21. The method of Claim 16, wherein the image is rejected in a receiver, N and M
 - 2 are each a multiple of 2, and the filtering comprises low-pass filtering.
 - 1 22. A method of rejecting an image, comprising:
 - 2 splitting a transmit baseband signal into a first part and a second part;
 - 3 mixing the first part with a first clock signal to produce a first second-
 - 4 intermediate-frequency signal, and mixing the second part with a second clock
 - 5 signal, to produce a second second-intermediate-frequency signal;
 - 6 high-pass filtering the first second-intermediate-frequency signal, and high-
 - 7 pass filtering the second second-intermediate-frequency signal;

8	mixing the high-pass filtered first second-intermediate-frequency signal with a
9	third clock signal to produce a first third-intermediate-frequency signal, and mixing
10	the high-pass filtered second second-intermediate-frequency signal with a fourth
11	clock signal to produce a second third-intermediate-frequency signal;
12	combining the first third-intermediate-frequency signal with the second third-
13	intermediate-frequency signal to produce a combined signal; and
14	mixing the combined signal with a local oscillator signal to produce a transmit
15	output signal;
16	wherein the first and second clock signals have a frequency that is less than
17	that of the local oscillator by a factor of NM, and the second clock signal is phase
18	shifted 90° from the first clock signal, the third and fourth clock signals have a
19	frequency that is less than that of the local oscillator by a factor of N, and the fourth
20	clock signal is phase shifted 90° from the third clock signal, and N and M are
21	integers greater than one.

- 1 23. The method of Claim 22, wherein N and M are multiples of 2.
- 1 24. The method of claim 23, wherein the second part of the split transmit
- 2 baseband signal is phase-shifted 180 degrees from the first part of the split transmit
- 3 baseband signal.
- 1 25. An image rejection circuit, comprising:
- a local oscillator, a first divider coupled to the local oscillator, and a second
- 3 divider coupled to the first divider network;

4	a first mixer having a first and second input terminals, and an output terminal;
5	a first splitter having an input terminal coupled to the output terminal of the
6	first mixer, and having a first and a second splitter output terminal;
7	a second mixer having a first input terminal coupled to the first output terminal
8	of the first splitter, a second input terminal coupled to an in-phase output terminal of
9	the first divider, and having an output terminal;
10	a third mixer having a first input terminal coupled to the second output
11	terminal of the first splitter, a second input terminal coupled to a quadrature-phase
12	output terminal of the first divider, and having an output terminal;
13	a first filter coupled to the second mixer output terminal, and a second filter
14	coupled to the third mixer output terminal;
15	a fourth mixer having a first input terminal coupled to the first filter, a second
16	input terminal coupled to an in-phase output terminal of the second divider, and
17	having an output terminal;
18	a fifth mixer having a first input terminal coupled to the second filter, a second
19	input terminal coupled to a quadrature-phase output terminal of the second divider,
20	and having an output terminal; and
21	a combiner having a first input terminal coupled to the output terminal of the
22	fourth mixer, a second input terminal coupled to the output terminal of the fifth mixer,
23	and having an output terminal.
1	26. The circuit of Claim 25, wherein the in-phase and quadrature-phase output
2	terminals of the first divider are adapted to provide signals that are phase shifted 90°

from each other.

3

- 1 27. The circuit of Claim 26, wherein the in-phase and quadrature-phase output
- 2 terminals of the first divider are adapted to provide signals that are the same
- 3 frequency as each other, and that frequency is less than that of the local oscillator by
- 4 a first factor which is a multiple of 2.
- 1 28. The circuit of Claim 27, wherein the in-phase and quadrature-phase output
- 2 terminals of the second divider are adapted to provide signals that are the same
- 3 frequency as each other, and that frequency is less than that of the local oscillator by
- 4 a second factor which is a multiple of 2.
- 1 29. The circuit of Claim 28, wherein the second factor is greater than the first
- 2 factor.
- 1 30. The circuit of Claim 25, wherein the first filter and the second filter are each
- 2 low-pass filters.
- 1 31. The circuit of Claim 25, wherein the first input terminal of the first mixer is
- 2 coupled to an input signal source.
- 1 32. The circuit of Claim 31, wherein the second input terminal of the first mixer is
- 2 coupled to the local oscillator.
- 1 33. An image rejection circuit, comprising:
- a local oscillator, a first divider coupled to the local oscillator, and a second
- 3 divider coupled to the first divider;

4	a first splitter having an input terminal coupled to an input signal source, a first
5	output terminal and a second output terminal;
6	a first mixer having a first input terminal coupled to the first output terminal of
7	the first splitter, a second input terminal coupled to a second output terminal of the
8	second divider, and an output terminal;
9	a first high-pass filter coupled to the output terminal of the first mixer;
10	a second mixer having a first input terminal coupled to the second output
11	terminal of the first splitter, a second input terminal coupled to a first output terminal
12	of the second divider, and an output terminal;
13	a second high-pass filter coupled to the output terminal of the second mixer;
14	a third mixer having a first input terminal coupled to first high-pass filter, a
15	second input terminal coupled to a second output terminal of the first divider, and an
16	output terminal;
17	a fourth mixer having a first input terminal coupled to the second filter, a
18	second input terminal coupled to a first output terminal of the first divider, and having
19	an output terminal;
20	a combiner having a first input terminal coupled to the output terminal of the
21	third mixer, a second input terminal coupled to the output terminal of the fourth
22	mixer, and an output terminal; and
23	a fifth mixer having a first input terminal coupled to the output terminal of the
24	combiner, a second input terminal coupled to an output of the local oscillator, and
25	having an output terminal.
1	34. The circuit of Claim 33, wherein the input terminal of the first splitter is
2	coupled to an input signal source.

20

1	35.	The circuit of Claim 33, wherein the input terminal of the first splitter is
2	coupl	ed to a transmit baseband signal source.
1	36.	The circuit of Claim 33, wherein the first divider and the second divider each
2	divide	by factor wherein the factor is a multiple of 2.
1	37.	An image rejection circuit, comprising:
2		a local oscillator, a first divider coupled to the local oscillator, and a second
3	divide	er coupled to the local oscillator;
4		a first mixer having two input terminals and an output terminal;
5		a first splitter having an input terminal coupled to the output terminal of the
6	first n	nixer, and having a first and a second splitter output terminal;
7		a second mixer having a first input terminal coupled to the first output terminal
8	of the	e first splitter, a second input terminal coupled to an in-phase output terminal of
9	the fi	rst divider, and having an output terminal;
0		a third mixer having a first input terminal coupled to the second output
1	termi	nal of the first splitter, a second input terminal coupled to a quadrature-phase
2	outpu	ut terminal of first divider, and having an output terminal;
13		a first filter coupled to the second mixer output terminal, and a second filter
14	coup	led to the third mixer output terminal;
15		a fourth mixer having a first input terminal coupled to the first filter, a second
16	input	terminal coupled to an in-phase output terminal of the second divider, and
17	havin	g an output terminal;
18		a fifth mixer having a first input terminal coupled to the second filter, a second
19	input	terminal coupled to a quadrature-phase output terminal of the second divider,

and having an output terminal; and

19

21	a combiner having a first input terminal coupled to the output terminal of the	
22	fourth mixer, a second input terminal coupled to the output terminal of the fifth mixer,	
23	and having an output terminal.	
1	38. The circuit of Claim 37, wherein the first divider and the second divider each	
2	divide by factor wherein the factor is a multiple of 2.	
1	39. An image rejection circuit, comprising:	
2	a local oscillator, a first divider coupled to the local oscillator, and a second	
3	divider coupled to the local oscillator;	
4	a first splitter having an input terminal coupled to an input signal source, a first	
5	output terminal and a second output terminal;	
6	a first mixer having a first input terminal coupled to the first output terminal of	
7	the first splitter, a second input terminal coupled to a second output terminal of the	
8	second divider, and an output terminal;	
9	a first high-pass filter coupled to the output terminal of the first mixer;	
10	a second mixer having a first input terminal coupled to the second output	
11	terminal of the first splitter, a second input terminal coupled to a first output terminal	
12	of the second divider, and an output terminal;	
13	a second high-pass filter coupled to the output terminal of the second mixer;	
14	a third mixer having a first input terminal coupled to first high-pass filter, a	
15	second input terminal coupled to a second output terminal of the first divider, and an	
16	output terminal;	
17	a fourth mixer having a first input terminal coupled to the second filter, a	
18	second input terminal coupled to a first output terminal of the first divider, and having	

an output terminal;

20	a combiner having a first input terminal coupled to the output terminal of the
21	third mixer, a second input terminal coupled to the output terminal of the fourth
22	mixer, and an output terminal; and
23	a fifth mixer having a first input terminal coupled to the output terminal of the
24	combiner, a second input terminal coupled to an output of the local oscillator, and
25	having an output terminal.

1 40. The circuit of Claim 39, wherein the first divider and the second divider each2 divide by factor wherein the factor is a multiple of 2.

3