

03012269

Fig. 1a

Fig. 1b

Fig. 3A

-145		ATGTC
-140	CATGAACCTGC TCACTGGATA AACAGCACCG GATATCTCTG TCTAAAGGAA TATTACTACA CCAGGAAAG	
-70	CACACATTCC ACAACACGAA AGGAGCCCTGT CACAGAAAAC CACAGTGTCC TGTGGCATGTG ACATTTGGCC	
1	ATG GGA AAC AAC TGT TAC AAC GTG GTG GTC ATT GTG CTG CTG CTA GTG CCC TGT GAG AAG	60
1	Met Gly Asn Asn Cys Tyr Asn Val Val Val Ile Val Leu Leu Val Gly Cys Glu Lys	20
61	GTG GGA GCC GTG CAG AAC TCC TGT GAT AAC TGT CAG CCT GGT ACT TTC TGC AGA AAA TAC	120
21	<u>Val</u> <u>Gly</u> Ala Val Gln Asn Ser Cys Asp Asn Cys Gln Pro Gly Thr Phe Cys Arg Lys Tyr	40
121	AAT CCA GTC TCC AAG ACC TGC CCT CCA ACT ACC TTC TCC ACC ATA GGT CGA CAG CCG AAC	180
41	Asn Pro Val Cys Lys Ser Cys Pro Pro Ser Thr Phe Ser Ser Ile Gly Gly Gln Pro Asn	60
181	TGT AAC ATC TGC ACA GTG TGT GCA GGC TAT TTC AGG TTC AAG AAG TTT TGC TCC TCT ACC	240
61	Cys Asn Ile Cys Arg Val Cys Ala Gly Tyr Phe Arg Phe Lys Phe Cys Ser Ser Thr	80
241	CAC AAC GCG GAC TGT GAG TGC ATT GAA GGA TTC CAT TGC TTG GGG CCA CAG TGC ACC AGA	300
81	His Asn Ala Glu Cys Glu Cys Ile Glu Gly Phe His Cys Leu Gly Pro Gln Cys Thr Arg	100
301	TGT GAA AAG GAC TGC AGG CCT GGC CAG GAG CTA ACC AAG CAG GGT TGC AAA ACC TGT ACC	360
101	Cys Glu Lys Asp Cys Arg Pro Gly Gln Glu Leu Thr Lys Gln Gly Cys Lys Thr Cys Ser	120
361	TTG GGA ACA TTT AAT GAC CAG AAC GGT ACT GGC GTC TGT CGA CCC TGG ACG AAC TGC TCT	420
121	Leu Gly Thr Phe Asn Asp Gln <u>Asn</u> <u>Gly</u> Thr Gly Val Cys Arg Pro Trp Thr <u>Asn</u> <u>Cys</u> Ser	140
421	CTA GAC GGA AGG TCT GTG CTT AAG ACC GGG ACC ACC GAC AAG GAC GTC GTG TGT GCA CCC	480
141	Leu Asp Gly Arg Ser Val Leu Lys Thr Gly Thr Thr Glu Lys Asp Val Val Cys Gly Pro	160
481	CCT GTG GTG AGC TTC TCT CCC ACT ACC ACC ATT TCT GTG ACT CCA GAG GGA GGA CCA GGA	540
161	Pro Val Val Ser Phe Ser Pro Ser Thr Thr Ile Ser Val Thr Pro Glu Gly Pro Gly	180
541	GGG CAC TCC TTG CAG GTC CTT ACC TTG TTC CTG CGG CTG ACA TCG GCT TTG CTG CTG CGC	600
181	Gly His Ser Leu Gln Val Leu Thr Leu Phe Leu Ala Leu Thr Ser Ala Leu Leu Ala	200
601	CTG ATC TTC ATT ACT CTC CTG TTC TCT GTG CTC AAA TGG ATC AGG AAA AAA TTC CCC CAC	660
201	Leu Ile Phe Ile Thr Leu Leu Phe Ser Val Leu Lys Trp Ile Arg Lys Phe Pro His	220
661	ATA TTC AAG CAA CCA TTT AAG AAC ACC ACT GGA GCA GCT CAA GAG GAA GAT GCT TGT ACC	720
221	Ile Phe Lys Gln Pro Phe Lys Lys Thr Thr Gly Ala Ala Gln Glu Glu Asp Ala Cys Ser	240
721	TGG CGA TGT CCA CAG GAA GAA GGA GGA GGA GCA CCC TAT GAG CTG TGA TGTACTATC	780
241	Cys Arg Cys Pro Gln Glu Glu Gly Gly Gly Gly Tyr Glu Leu ---	

Fig. 2B

781	CTAGGAGATG TCTGGCCCCA AACCGAGAAAG CACTAGGACC CCACCATCCT GTGGAACAGC ACAAGCAACC	850
851	CCACCCACCT GTTCTTACAC ATCATCCTAG ATCATGTCTG GGCCCCCACC TCATCCAAGT CTCTTCTAAC	920
921	GCTAACATAT TTGTCCTTAC CTTTTTAAAC TCTTTTTTAA ATTAAATT TTATGTCTG GACTGTTTTC	990
991	CCTGCCTGTA TGACACAGTG TGTGTGTG TGCTGTGAC ACTCCTGATG CCTGAGGAGG TCAGAAGAGA	1060
1061	AAGGGTTGGT TCCATAAGAA CTGGACTTAT CGATGGCTGT GAGCCGGnnn GATAGCTGG GACGGAGACC	1130
1131	TGTCTTCTTA TTTAACGTG ACTGTATAAT AAAA AAAAAA TGATATTTCG GGAATTGTAG AGATTGTCTT	1200
1201	GACACCCCTTC TACTTAATGA TCTAACAGGA ATTGGTATA CGTAGTATAC TGTATATGTC TATGTATATG	1270
1271	TATATGTATA TATAAGACTC TTTACTGTC AAAGTCACC TAGACTGCTC GGTTACCAAGG TCAATTITAT	1340
1341	TGGACATTTT ACCTCACACA CACACACACA CACACACACA CACCTTATA CTACGTACTGT TATCGGTAT	1410
1411	TCTACGTCA ATAATGGGAT ACGGTAAGG GAAACCAAAG ACTGAGTGT ATTATTGTGGA GGTGACAGA	1480
1481	CTACCCCTTC TGGGTACGTA CGGACACAGCC TCCTTCGGAC TGTCTAAAAC TCCCCTTACA AGTCTCGTCA	1550
1551	AGTTCCCGGA CGAACAGGAC ACAGGAGACA CACTCCAAAAGT TATTTTTT CCGGCAAATC CTTCCCTGT	1620
1621	TTCGTGACAC TCCACCCCTT GTGGACACTT GACTGTCACTC CTGGCCGGG AAGGTCAAGGT GGTACCCGTC	1690
1691	TGTAGGGGGG GGGAGACAGA GCCGGGGGG AGCTACAGA ATCGACTCAC AGGGCGCCCC GGGCTTCCCA	1760
1761	AATGAAACTT TTTAAATCTC ACAAGTTTCG TCCGGCTCG GCGGACCTAT GCGCTCGATC CTTATTACCT	1830
1831	TATCCCTGGCG CCAACATAAA ACAACAAAAA GCCTTGACTC CGGTACTAAT TCTCCCTGCC GGGCCCCCTA	1900
1901	ACCATAACGC GGGGATCTCC ACTTTAAGAA CCTGGCCGGG TTCTGCCTGG TCTCGCTTTC GTAAACGGTT	1970
1971	CTTACAAAAG TAATTAGTTC TTGCTTTCAG CCTCCAAGCT TCTGCTACTC TATGGCAGCA TCAAGGCTGG	2040
2041	TATTGCTAC GGCTGACCCG TACGGGGGG CAATAAGGT ACTGGGGGG CCGTCAAGG CCCTTTGGTT	2110
2111	TCAGAAACCC AAGGGCCCCC TCATACCAAC GTTTCGACTT TGATTCTTGC CGGTACGTGG TGGTGGGTGC	2180
2181	CTTAGCTCTT TCTCGATACT TAG AC	

OPR012269

Fig. 3a

Fig. 3.b

Fig. 3.c

0012369

Fig. 4

1 2 3 4

-21.7

-5.2

-2.0

OP012269

Fig. 6a

	TCR					IL-2
Hours after Stim.	0	1/2	6	12	24	6

28S-

→
0 0 0

Fig. 6b

	TCR					IL-2
Hours after Stim.	0	1/2	6	12	24	6

28S-

Fig. 6c

	TCR					IL-2
Hours after Stim.	0	1/2	6	12	24	6

28S-

→
0 0 0

Fig. 6d

	TCR					IL-2
Hours after Stim.	0	1/2	6	12	24	6

28S-

→
0 0 0

RA 012269

a

Fig. 7a

b

Fig. 7b

c

Fig. 7c

007012269

a

BW5147
BW5147 ConA
Md90
Md90 ConA
PN37
PN37 ConA

Fig. 8a

b

L2
A11
L3
Melanocyte

Fig. 8b

Fig. 9a

Fig. 9b

Fig. 9c

Fig. 9d

105112269

a

Fig. 10a

1 2 3 4

28S -

18S -

b

1 2 3 4

28S -

18S -

c

Fig. 10c

1 2 3 4

28S -

18S -

00212269

figure 11

figure 12

IRP 212269

Figure 13

Figure 14

DR 012269

Figure 15

Figure 16

00712269

Figure 17

4-1BB	(64)	C R V C A G Y F R F K K - - F - C S S T H N A E C - E C
Sina	(71)	C P V C F D Y V - - - I L Q C S S G H L V - C V S C
DG17	(25)	C P I C F E F I - Y K K Q I Y Q C K S G H H A - C K E C

Fig. 18

PP 2269

Fig 19.

Fig. 20

UH 0112269

M 1 2 3 4

106.0
80.0

49.5

32.5
27.5

18.5

Figure 22

4-1BB dimer

4-1BB monomer

1 2 3 4

110

55

30

Figure
23

Figure 24

Hours: 0 2 6 12 18 24 36 48 72 96

A. 1 1 1 1 1 1 1 1 1 1

— 28S

— 18S

1 2 3 4 5 6 7 8 9 10

B.

— 28S

— 18S

1 2 3 4 5 6 7 8 9 10

DR 012269

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

DR 012269

Figure 30

Figure 31

Figure 3A

Figure 3B

Figure 34c

Figure 35a

Figure 35b

Figure 36

