Hierarchical Agglomerative Clustering (HAC)

Different methods:

- 1. Single –nearest distance or single linkage method- minimum
- 2. Complete farthest distance or complete linkage method maximum
- 3. Average distance or average linkage method -average

Problem 1:

Find the clusters using single linkage method. Use Euclidean distance and draw the dendrogram.

	Χ	Υ
P1	0.40	0.53
P2	0.22	0.38
Р3	0.35	0.32
P4	0.26	0.19
P5	0.08	0.41
Р6	0.45	0.30

Calculate the Euclidean distance and create the distance matrix.

For example:

Distance between (x,y) and (a,b)=
$$sqrt((x-a)^2+(y-b)^2)$$

Distance (p1,p2)= $sqrt((0.40-0.22)^2+(0.53-0.38)^2)$
= $sqrt((0.18)^2+(0.15)^2)$
= $sqrt(0.0324+0.0225)$
= $sqrt(0.0549)$
=0.23

	P1	P2	Р3	P4	P5	P6
P1	0					
P2	0.23	0				
Р3	0.22	0.15	0			
P4	0.37	0.20	0.15	0		
P5	0.34	0.14	0.28	0.29	0	
P6	0.23	0.25	0.11	0.22	0.39	0

Select the minimum entry in the distance matrix:

	P1	P2	Р3	P4	P5	P6
P1	0					
P2	0.23	0				
Р3	0.22	0.15	0			
P4	0.37	0.20	0.15	0		
P5	0.34	0.14	0.28	0.29	0	
P6	0.23	0.25	0.11	0.22	0.39	0

Update the distance matrix with the following criteria:

$$=$$
min(0.22,0.23)

$$Min(dist(P3,P6),P2)=min(dist(P3,P2),dist(P6,P2))$$

$$=$$
min(0.15,0.25)

	P1	P2	P3,P6	P4	P5
P1	0				

P2	0.23	0			
P3,P6	0.22	0.15	0		
P4	0.37	0.20	0.15	0	
P5	0.34	0.14	0.28	0.29	0

Min(dist(p2,p1),(p5,p1))

=min(0.23,0.34)

=0.23

Min(dist(p2,(p3,p6)),(p5,(p3,p6)))

=min(0.15,0.28)

=0.15

Min(dist(p2,p4),(p5,p4))

=min(0.20,0.29)

=0.20

Update the matrix based on the selected smallest distance between P2 and P5

	P1	P2,P5	P3,P6	P4
P1	0			
P2,P5	0.23	0		
P3,P6	0.22	0.15	0	
P4	0.37	0.20	0.15	0

	P1	P2,p5,p3,p6	P4
P1	0		
P2,p5,p3,p6	0.22	0	
P4	0.37	0.15	0

The updated matrix for the clusters {p1} and {p2,p5,p3,p6,p4}

	P1	P2,p5,p3,p6,p4
P1	0	
P2,p5,p3,p6,p4	0.22	0

Dendrogram:

Courtesy: https://www.youtube.com/watch?v=RdT7bhm1M3E