

COPIE INTERNE 21/08/2025

Dr MINICHINI VIVIANA NEUROCHIRURGIE

Centre d'Anatomie Pathologique H.U.B.

Rue Meylemeersch 90 - 1070 Anderlecht Mijlemeerschstraat 90 – 1070 Anderlecht

> **Directrice de Service** Pr Myriam Remmelink

Equipe Médicale

Dr Nicolas de Saint Aubain
Pr Nicky D'Haene
Dr Maria Gomez Galdon
Dr Chirine Khaled
Pr Denis Larsimont
Pr Laetitia Lebrun
Dr Calliope Maris
Pr Jean-Christophe Noël
Dr Anne-Laure Trépant
Dr Marie Van Eycken
Pr Laurine Verset

Consultant (e) s

Dr Sarah Bouri Dr Xavier Catteau Dr Roland de Wind Dr Marie-Lucie Racu Dr Valérie Segers Dr Anne Theunis Dr Marie-Paule Van Craynest

Secrétariat Médical

T. +32 (0)2 541 73 23 +32 (0)2 555 33 35

SecMed.AnaPath@hubruxelles.be

Secrétariat Direction

T. +32 (0)2 555 31 15 Mme Kathia El Yassini Kathia.elyassini@hubruxelles.be

Mme Véronique Millecamps veronique.millecamps@hubruxelles.be

PATIENT:

ID:

Réf. Externe : EXAMEN : 25EM00503

Prélevé le 03/02/2025 à 03/02/2025 18:00 Prescripteur : Dr MINICHINI VIVIANA

Reçu le 06/02/2025

RECHERCHE PAR « NEXT GENERATION SEQUENCING » DE VARIANTS DANS 39 GENES IMPLIQUES DANS LES GLIOMES ET RECHERCHE DE CO-DELETION 1p19q

(CLINICAL GLIOMA PANEL V2)

HUB – Centre d'Anatomie Pathologique – est accrédité par BELAC sous le numéro de certificat B-727 MED

I. Renseignements anatomopathologiques

N° du prélèvement : 25EH01666 1.03.

Date du prélèvement : 03/02/25

Origine du prélèvement : Erasme

Type de prélèvement : Gliome diffus de la ligne médiane H3-K27 altéré

II. Evaluation de l'échantillon

- % de cellules tumorales : 80%

- Qualité du séquençage : Optimale (coverage moyen > 1000x)

Les exons à considérer comme non contributifs sont détaillés dans le tableau ci-dessous (point III).

- Commentaires : Nous attirons votre attention sur le fait que le délai de fixation est supérieur à 1h et que ceci pourrait éventuellement avoir un impact sur les résultats.

III. Méthodologie (effectué par : THMA, NADN, NIDH)

- Extraction ADN à partir de coupes paraffinées après macrodissection des zones tumorales ou à partir de frottis.
- Détection par « Next Generation Sequencing » (sur Ion Gene Studio S5, Ion Torrent avec Kit AmpliSeq) de variants dans 39 gènes liés aux tumeurs cérébrales :

Gène	RefSeq	Exons testés	Exons Non Contributifs (coverage <250x)*
ACVR1	NM_001105	6-11	7
ATRX	NM 00489	1-35 (whole CDS)	9, 29
BRAF	NM_004333	7, 10, 11, 12, 15	
CDK4	NM_000075	1-8 (whole CDS)	7
CDK6	NM_001259	2-8 (whole CDS)	
CDKN2A	NM_000077	1-3 (whole CDS)	1
CDKN2B	NM_004936 et NM_078487	1-2 (whole CDS)	
EGFR	NM_005228	1-28 (whole CDS)	
FGFR1	NM_23110	12, 14-16	15
FGFR2	NM_000141	5-7, 9-10, 12, 14	
FGFR3	NM_00142	7, 9, 10, 13-16	
H3F3A (=H3.3)	NM_002107	2	
Н3F3B	NM_005324	2-4 (whole CDS)	
HIST1H3B (=H3C2)	NM_003537	1	
HIST1H3C (=H3C3)	NM_003531	1	
HRAS	NM_005343	2-4 (whole CDS)	
IDH1	NM_005896	4	
IDH2	NM 002168	4	
KRAS	NM_033360	2-4 (whole CDS)	
MDM2	NM_002392	1-11 (whole CDS)	1

Gène	RefSeq	Exons testés	Exons Non Contributifs (coverage <250x)*
MDM4	NM_002393	2-11 (whole CDS)	
MYCN	NM 1293228	2-3 (whole CDS)	2
NF1	NM_001042492	1-58 (whole CDS)	7, 13, 15, 33
NF2	NM_00268	1-16 (whole CDS)	15
NRAS	NM_002524	2-4 (whole CDS)	
PDGFRA	NM_006206	5-12, 14-15, 18, 21-23	
PIK3CA	NM 006218	1-20 (whole CDS)	3
PIK3R1	NM_181523	2-16 (whole CDS)	
POLD1	NM_001256849	1-27 (whole CDS)	22
POLE	NM_006231	1-49 (whole CDS)	36, 46
PPM1D	NM_003620	1-6 (whole CDS)	1
PRKCA	NM-002737	1-17 (whole CDS)	
PTEN	NM_00314	1-9 (whole CDS)	
PTPN11	NM_02834	1-15 (whole CDS)	
RB1	NM_00321	1-27 (whole CDS)	1, 15, 16, 22
TERT	NM_001193376	Promoteur	Promoteur
TP53	NM_00546	1-11 (whole CDS)	4, 9
TSC1	NM 000368	3-23 (whole CDS)	
TSC2	NM_000548	2-42 (whole CDS)	14, 31, 34

^{*} Un coverage < 250x induit une perte de sensibilité et de spécificité de la méthode.

- Sensibilité : Seuls les variants avec une fréquence supérieure à 5% et un variant coverage >30x (sauf promoteur de TERT : variant coverage >20x) sont rapportés.
- Détection par « Next Generation Sequencing » (Ion Gene Studio S5, Ion Torrent avec Kit AmpliSeq) d'une perte d'hétérozygotie (LOH) 1p et 19q, sur base de 30 SNP sur le chromosome 1 et 25 SNP sur le chromosome 19. Sensibilité : la technique utilisée détecte la LOH 1p et 19q si l'échantillon contient > 40% de cellules tumorales.

IV. Résultats

a. Liste des variants détectés :

Variants pathogéniques ou présumés pathogéniques :

Gène	Exon	Variant	Coverage	% d'ADN muté		
Variants avec impact clinique potentiel						
H3C2 (HIST1H3B)	1	p.K27M	1994	41%		
ACVR1	8	p.G328E	2000	56%		
PIK3CA	20	p.H1047R	1999	39%		

Variants de significations biologiques et cliniques indéterminées :

/

b. Statut 1p19q:

Qualité de l'échantillon : optimale

Résultat : pas de perte d'hétérozygotie (LOH) des chromosomes 1p et 19 q.

V. Discussion

La mutation K27M du gène H3C2 est associée aux gliomes H3 K27-altérés. *Gielen et al., Am. J. Clin. Pathol 2013 (139) : 345-349.* WHO blue book

Les mutations du gène ACVR1 sont rarement décrites dans les gliomes. Elles sont associées aux DIPG (diffuse intrinsic pontine glioma - gliomes H3 K27-altérés). gnomad.broadinstitute.org cbioportal.org cancer.sanger.ac.uk/cosmic

Les mutations du gène PIK3CA sont décrites dans les gliomes H3 K27-altérés. Leur impact clinique est indéterminé. Il existe des thérapies ciblant la voie PI3K/mTOR. Leur efficacité n'est cependant pas encore avérée. WHO blue book www.oncokb.org **VI. Conclusion : (**NADN le 14/02/2025)

Absence de variant détecté dans les gènes IDH1 et IDH2. Présence du variant présumé pathogénique K27M du gène H3C2 (= HIST1H3B). Présence de la mutation G328E du gène ACVR1. Présence de la mutation H1047R du gène PIK3CA.

Absence de co-délétion des chromosomes 1p et 19q.

Pour toute information complémentaire, veuillez nous contacter au 02/555.85.08 ou par mail : Biomol.AnaPath@erasme.ulb.ac.be

N.B. Pour les prélèvements d'histologie et de cytologie ainsi que pour les examens complémentaires de biologie moléculaire, merci d'utiliser les nouvelles prescriptions disponibles sur le site internet du HUB:

 $\frac{https://www.hubruxelles.be/sites/default/files/2024-03-04_demande\%20analyse\%20anapath\%20cytologie\%20v3.pdf}{https://www.hubruxelles.be/sites/default/files/FO-HUB-BM-11\%20Demande\%20de\%20biologie\%20mol\%C3\%A9culaire-IPD\%20v1.doc$

Dr N D'HAENE

Dr LEBRUN LAETITIA