Пример 6.9.1 Важную роль в математическом анализе играет последовательность $x_n = 1 + \frac{1}{2} + ... + \frac{1}{n}$. Оказывается, что она не имеет конечного предела. Согласно отрицанию критерия Коши:

$$\exists \varepsilon_0 > 0 : \forall n_0 \in \mathbb{N} \ \exists n > n_0, p \in \mathbb{N} : |x_{n+p} - x_n| \ge \varepsilon_0.$$

Пусть $n_0 \in \mathbb{N}$, $n > n_0$, p = n, тогда

$$|x_{2n} - x_n| = \left| \frac{1}{n+1} + \dots + \frac{1}{2n} \right| > \left| \frac{1}{2n} \cdot n \right| = \frac{1}{2}.$$

Это значит, что для $\varepsilon_0 = \frac{1}{2}$ выполнено отрицание критерия Коши. Значит, последовательность предела не имеет.

Можно заметить, что данная последовательность монотонна и имеет предел в $\overline{\mathbb{R}}$, равный $+\infty$.

6.10 Контрольные вопросы и задачи

- 1. Приведите пример последовательности, имеющей ровно одну предельную точку, ровно две предельные точки, ровно пять предельных точек. Сколько частичных пределов имеет такая последовательность?
- 2. Может ли последовательность быть ограничена сверху, но не ограничена снизу?
- 3. Покажите, что теоремы о предельном переходе в неравенствах, о сжатой переменной, Вейерштрасса справедливы даже если все утверждения начинаются не с n=1, а с $n=n_0$.
- 4. Докажите, что любая подпоследовательность сходящейся последовательности сходится и имеет тот же самый предел, что и исходная последовательность.
- 5. Проиллюстрируйте графически теоремы о сжатой переменной, о предельном переходе в неравенствах.

7 ПРЕДЕЛ ФУНКЦИИ

7.1 Понятие предела функции по Коши

Определение 7.1.1 ($\varepsilon - \delta$ определение предела функции) Пусть $f: E \to \mathbb{R}$ и x_0 – предельная точка для E. Число A называется пределом функции f(x) в точке x_0 , если

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : 0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \varepsilon.$$

При этом пишут, что $\lim_{x\to x_0} f(x) = A$ или $f(x) \xrightarrow[x\to x_0]{} A$.

Легко заметить, что это же определение, используя понятия ε -окрестности и δ -окрестности можно переписать в виде

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow f(x) \in U_{\varepsilon}(A).$$

Замечание 7.1.1 Геометрически определение предела функции означает, что какую бы полосу шириной 2ε не взять, найдется δ , что при всех x из области определения, лежсащих в проколотой окрестности $(x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$, значения функции f(x) лежсат в этой полосе. При уменьшении ε значение δ , вообще говоря, уменьшается. На рисунке 2 наглядно продемонстрировано, как c изменением ε меняется и δ .

Определение 7.1.2 (Определение предела функции через окрестности) Пусть $f: E \to \mathbb{R}$ и x_0 – предельная точка для E. Число A называется пределом функции f(x) в точке x_0 , если

$$\forall V(A) \ \exists \overset{\circ}{U}(x_0) : \forall x \in E : x \in \overset{\circ}{U}(x_0) \Rightarrow f(x) \in V(A).$$

Как и в случае последовательности, справедлива следующая лемма.

Лемма 7.1.1 Определения (7.1.1) и (7.1.2) эквивалентны.

Доказательство. Докажите самостоятельно аналогично доказательству леммы (6.1.1).

Пример 7.1.1 Доказать, что

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4.$$

Пусть $\varepsilon > 0$. Нужно найти те x, при которых выполняется неравенство

$$\left| \frac{x^2 - 4}{x - 2} - 4 \right| < \varepsilon.$$

 $Ta\kappa \ \kappa a\kappa \ x \neq 2, \ mo$

$$\left| \frac{x^2 - 4}{x - 2} - 4 \right| = |x + 2 - 4| = |x - 2| < \varepsilon.$$

Значит, если положить $\delta=\varepsilon$, то при $0<|x-2|<\delta$ выполняется

$$\left| \frac{x^2 - 4}{x - 2} - 4 \right| < \varepsilon.$$

Рис. 2 Предел функции

Пример 7.1.2 Доказать, что

$$\lim_{x \to 3} (x^2 - x) = 6.$$

Пусть $\varepsilon > 0$. Справедлива цепочка преобразований

$$|f(x) - A| = |x^2 - x - 6| = |(x - 3)(x + 2)|.$$

Можно предполагать, что $x \in (2,4), x \neq 3$. Тогда

$$|(x-3)(x+2)| \le 6|x-3|$$

и если потребовать, чтобы выполнялось неравенство $6|x-3|<\varepsilon$, то при $0<|x-3|<\delta=\min(1,\frac{\varepsilon}{6})$ будет выполняться $|f(x)-A|<\varepsilon$.

Пример 7.1.3 Доказать, что функция (см. рисунок 3)

$$sign x = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

Puc. 3 $\Gamma pa\phi u\kappa y = \operatorname{sign} x$

не имеет предела в точке $x_0 = 0$. Ниже записано отрицание определения того, что число A является пределом функции $f(x): E \to \mathbb{R}$ в точке x_0 ,

$$\exists \varepsilon_0 > 0 : \forall \delta > 0 \ \exists x_\delta \in E : 0 < |x_\delta - x_0| < \delta \Rightarrow |f(x_\delta) - A| \ge \varepsilon_0.$$

Пусть $\varepsilon_0 = 1 \ u \ \delta > 0$. Достаточно положить $x_\delta = -\frac{\delta}{2}, \ ecnu \ A \ge 0 \ u \ x_\delta = \frac{\delta}{2}, \ ecnu \ A < 0, \ mor \partial a$

$$|\operatorname{sign} x_{\delta} - A| \ge 1.$$

Пример 7.1.4 Доказать, что $\lim_{x\to 0} |\operatorname{sign} x| = 1$. Пусть $\varepsilon > 0$, тогда какое бы число $\delta > 0$ не взять, для всех $x:0<|x|<\delta$ выполняется $|\operatorname{sign} x-1|=|1-1|=0<\varepsilon$.

Замечание 7.1.2 Последний пример еще раз иллюстрирует, что при изучении предела функции при $x \to x_0$ важно поведение функции около точки x_0 , а не в самой точке. В определении предела это отмечается рассмотрением проколотой окрестности x_0 .

Определение предела легко обобщается как на случаи, когда $x_0 = +\infty$, $x_0 = -\infty$, $x_0 = \infty$, так и на случаи, когда $A = +\infty$, $A = -\infty$, $A = \infty$. Требование, что x_0 – предельная точка, сохраняется.

Определение 7.1.3 Пусть $f: E \to \mathbb{R}$. Говорят, что $\lim_{x \to \infty} f(x) = +\infty$, если

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : |x| > \frac{1}{\delta} \Rightarrow f(x) > \frac{1}{\varepsilon}.$$

Определение 7.1.4 Пусть $f: E \to \mathbb{R}$. Говорят, что $\lim_{x \to x_0} f(x) = -\infty$ (x_0 – число), если

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : 0 < |x - x_0| < \delta \Rightarrow f(x) < -\frac{1}{\varepsilon}.$$

Определение 7.1.5 Пусть $f: E \to \mathbb{R}$. Говорят, что $\lim_{x \to \infty} f(x) = A$ (A – число), если

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \forall x \in E : |x| > \frac{1}{\delta} \Rightarrow |f(x) - A| < \varepsilon.$$

Читателю предлагается самому сформулировать определения предела в остальных случаях.

Замечание 7.1.3 Данные определения можно переписать через ε окрестности и через окрестности, как сделано в определениях (7.1.1) и (7.1.2) . Лемма об эквивалентности сохраняется. Читателю предлагается самостоятельно заполнить данный пробел по аналогии со сделанным выше.

Замечание 7.1.4 Запись $\lim_{x\to x_0} f(x) = A$ будет всегда снабжена уточнением: либо $A\in\mathbb{R}$, либо $A\in\overline{\mathbb{R}}$.

Замечание 7.1.5 В определении предела в дальнейшем для краткости часто опускается тот факт, что $\delta = \delta(\varepsilon)$.

7.2 Понятие предела функции по Гейне

Определение 7.2.1 (Определение предела функции по Гейне)

Пусть $f: E \to \mathbb{R}$ и x_0 – предельная точка для E. Число A называется пределом функции f(x) в точке x_0 , если для любой последовательности x_n , сходящейся к x_0 , такой, что $x_n \in E$, $x_n \neq x_0$, выполняется равенство

$$\lim_{n \to \infty} f(x_n) = A.$$

Замечание 7.2.1 Определение предела по Гейне легко обобщается как на случаи, когда либо $x_0 = +\infty$, $x_0 = -\infty$, $x_0 = \infty$, так и на случаи, когда $A = +\infty$, $A = -\infty$, $A = \infty$. Требование, что x_0 – предельная точка, сохраняется. Сделайте это самостоятельно.

Оказывается, что определения предела по Коши и по Гейне эквивалентны.

Теорема 7.2.1 (Об эквивалентности определений) Определения предела по Коши и Гейне эквиваленты.

Доказательство. Доказательство будет приведено в предположении, что x_0 и A – числа, оставив другие случаи в качестве упражнения.

Сначала будет доказано, что если $\lim_{x \to x_0} f(x) = A$ в смысле определения по

Коши, то $\lim_{x \to x_0} f(x) = A$ в смысле определения по Гейне.

Пусть $\varepsilon > 0$, тогда, согласно определению по Коши,

$$\exists \delta > 0 : \forall x \in E : x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow f(x) \in V_{\varepsilon}(A).$$

Пусть последовательность x_n сходится к x_0 , причем $x_n \in E$ и $x_n \neq x_0$, тогда по ранее найденному числу $\delta > 0$

$$\exists n_0 : \forall n > n_0 \Rightarrow x_n \in \overset{\circ}{U}_{\delta}(x_0).$$

Значит, при $n > n_0$

$$f(x_n) \in V_{\varepsilon}(A),$$

что означает, что $\lim_{n\to\infty} f(x_n) = A$.

Теперь будет доказано, что если $\lim_{x\to x_0} f(x) = A$ в смысле определения по Гейне, то $\lim_{x\to x_0} f(x) = A$ в смысле определения по Коши.

От противного, пусть не выполнено определение по Коши, то есть

$$\exists \varepsilon_0 : \forall \delta > 0 \ \exists x \in E, x \in \overset{\circ}{U}_{\delta}(x_0) : |f(x) - A| \ge \varepsilon_0.$$

Так как δ может быть любой, то взяв $\delta_n = \frac{1}{n}$

$$\exists x_n \in E, x \in \overset{o}{U}_{\delta_n}(x_0) : |f(x_n) - A| \ge \varepsilon_0.$$

Последовательность x_n удовлетворяет условиям, что $x_n \in E$ и $x_n \neq x_0$ (по построению). Кроме того, так как $\lim_{n \to \infty} \delta_n = 0$, то $\lim_{n \to \infty} x_n = x_0$, однако так как $\forall n \in \mathbb{N} \Rightarrow |f(x_n) - A| \geq \varepsilon_0$, то $\lim_{n \to \infty} f(x_n) \neq A$, то есть не выполнено определение по Гейне.

Определение предела по Гейне часто помогает доказать, что какое-то число не является пределом данной функции, или что функция не имеет предела вовсе.

Пример 7.2.1 Доказать, что не существует предела $\lim_{x \to +\infty} \sin x$.

Достаточно рассмотреть две последовательности

$$x_n^1 = 2\pi n \xrightarrow[n \to \infty]{} +\infty, \quad x_n^2 = \frac{\pi}{2} + 2\pi n \xrightarrow[n \to \infty]{} +\infty.$$

Τακ κακ

$$f(x_n^1) = \sin(2\pi n) \xrightarrow[n \to \infty]{} 0, \quad f(x_n^2) = \sin\left(\frac{\pi}{2} + 2\pi n\right) \xrightarrow[n \to \infty]{} 1$$

и пределы между собой не равны, то это означает, что предела не существует.

7.3 Свойства функций, имеющих предел

Для функций справедливы теоремы, аналогичные теоремам для последовательностей.

Теорема 7.3.1 Пусть $f: E \to \mathbb{R}$ $u \lim_{x \to x_0} f(x) = A$, тогда:

- 1. При $A \in \overline{\mathbb{R}}$ предел единственен.
- 2. При $A \in \mathbb{R}$ существует окрестность $U(x_0)$ такая, что в $U(x_0) \cap E$ функция f(x) ограничена.
- 3. Если $A \neq 0$, $A \in \mathbb{R}$, то существует окрестность $\overset{o}{U}(x_0)$ такая, что в $\overset{o}{U}(x_0) \cap E$ знаки f(x) и A совпадают.

Доказательство. 1. От противного, пусть существует два предела $A_1 \neq A_2$. Пусть $x_n \xrightarrow[n \to \infty]{} x_0, x_n \in E, x_n \neq x_0$. Согласно определению предела по Гейне, $\lim_{n \to \infty} f(x_n) = A_1$ и $\lim_{n \to \infty} f(x_n) = A_2$. В силу единственности предела последовательности $A_1 = A_2$. Тем самым получено противоречие.

2. Пусть $\varepsilon = 1$. Согласно определению предела функции,

$$\exists \delta > 0 : \forall x \in E : 0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < 1 \Leftrightarrow$$
$$(A - 1) < f(x) < (A + 1),$$

что и означает ограниченность.

3. Пусть $A \in \mathbb{R}$. Пусть $\varepsilon = \frac{|A|}{2}$. Тогда, согласно определению предела,

$$\exists \delta > 0 : \forall x \in E : 0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \frac{|A|}{2} \Leftrightarrow$$
$$A - \frac{|A|}{2} < f(x) < A + \frac{|A|}{2},$$

откуда и следует требуемое. Случай $A \in \overline{\mathbb{R}}$ остается в качестве упражнения.

7.4 Арифметические свойства пределов

Теорема 7.4.1 (Арифметические свойства пределов) *Пусть* f,g : $E \to \mathbb{R}, \lim_{x \to x_0} f(x) = A \ u \lim_{x \to x_0} g(x) = B, \ A, B \in \mathbb{R}, \ mor\partial a$:

1.
$$\lim_{x \to x_0} (f(x) + g(x)) = A + B$$
.

2.
$$\lim_{x \to x_0} (f(x) \cdot g(x)) = A \cdot B.$$

3.
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B} npu B \neq 0.$$

Доказательство. Используя определение предела по Гейне, доказательство этой теоремы сводится к применению соответствующей теоремы для последовательностей. Для примера будет доказано первое утверждение. Пусть $x_n \xrightarrow[n \to \infty]{} x_0, \ x_n \in E, \ x_n \neq x_0$. Согласно определению предела по Гейне, $\lim_{n \to \infty} f(x_n) = A, \lim_{n \to \infty} g(x_n) = B$. Тогда по теореме о пределе суммы для последовательностей, $\lim_{n \to \infty} (f(x_n) + g(x_n)) = A + B$. В силу произвольности x_n это означает, что $\lim_{x \to x_0} (f(x) + g(x)) = A + B$.

Аналогично тому, как сделано в последовательностях, можно сформулировать и более общую теорему.

Теорема 7.4.2 Пусть $f, g : E \to \mathbb{R}$, $\lim_{x \to x_0} f(x) = A$ и $\lim_{x \to x_0} g(x) = B$, $A, B \in \overline{\mathbb{R}}$, тогда, если определена соответствующая операция (сложение, умножение, деление) в $\overline{\mathbb{R}}$, то

1.
$$\lim_{x \to x_0} (f(x) + g(x)) = A + B$$
.

2.
$$\lim_{x \to x_0} (f(x) \cdot g(x)) = A \cdot B.$$

3.
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B} npu B \neq 0.$$

Доказательство. Доказательство предлагается в качестве упражнения.

7.5 Теорема о сжатой переменной

Теорема 7.5.1 Пусть $f,g,h: E \to \mathbb{R}$, причем на E выполнено условие $f(x) \le h(x) \le g(x)$ и $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = A$, $A \in \overline{\mathbb{R}}$. Тогда $\lim_{x \to x_0} h(x) = A$.

Доказательство. Пусть $x_n \underset{n \to \infty}{\longrightarrow} x_0, x_n \in E, x_n \neq x_0$. Согласно определнию по Гейне, $\lim_{n \to \infty} f(x_n) = A$, $\lim_{n \to \infty} g(x_n) = A$. По теореме о сжатой переменной для последовательностей получим, что $\lim_{n \to \infty} h(x_n) = A$. В силу произвольности последовательности x_n получается, что $\lim_{x \to x_0} h(x) = A$.

7.6 Предельный переход в неравенствах

Теорема 7.6.1 Пусть $f,g:E\to\mathbb{R},\ \lim_{x\to x_0}f(x)=A,\ \lim_{x\to x_0}g(x)=B,\ A,B\in\overline{\mathbb{R}}$ и $A< B,\ mor\partial a$

$$\exists \overset{\circ}{U}(x_0) : \forall x \in \overset{\circ}{U}(x_0) \cap E \Rightarrow f(x) < g(x).$$

Доказательство. Доказательство этой теоремы совершенно аналогично доказательству соответствующей теоремы для последовательностей и предоставляется читателю.

Следствие 7.6.2 (Предельный переход в неравенствах) $\Pi ycmb\ f,g: E \to \mathbb{R}, \ \lim_{x \to x_0} f(x) = A, \ \lim_{x \to x_0} g(x) = B, \ A, B \in \overline{\mathbb{R}}, \ mor\partial a:$

- 1. Если f(x) > g(x) на E, то $A \ge B$.
- 2. Если $f(x) \geq g(x)$ на E, то $A \geq B$.

Доказательство. Доказательство следствия аналогично доказательству следствия (7.3.1) и оставляется в качестве упражнения.

Пример 7.6.1 В первом пункте следствия нельзя утверждать, что A > B. Действительно, рассмотрев функции $f(x) = \frac{1}{x}, \ g(x) = 0$ видно, что f(x) > g(x) при x > 0, но $\lim_{x \to +\infty} f(x) = 0$ и $\lim_{x \to +\infty} g(x) = 0$.

7.7 Односторонние пределы

Определение 7.7.1 Пусть $f: E \to \mathbb{R}$, x_0 – предельная точка для множества $U_+(x_0) = \{x \in E: x > x_0\}$. Говорят, что число A является пределом функции f в точке x_0 справа, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in E : 0 < x - x_0 < \delta \Rightarrow |f(x) - A| < \varepsilon,$$

npu этом $numym \lim_{x \to x_0 + 0} f(x) = A.$

Определение 7.7.2 Пусть $f: E \to \mathbb{R}$, x_0 – предельная точка для множества $U_-(x_0) = \{x \in E: x < x_0\}$. Говорят, что число A является пределом функции f в точке x_0 слева, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in E : 0 < x_0 - x < \delta \Rightarrow |f(x) - A| < \varepsilon,$$

npu этом $numym \lim_{x \to x_0 - 0} f(x) = A.$

Замечание 7.7.1 Аналогично тому, как сделано в пределе функции, определения обобщаются на случай $A \in \overline{\mathbb{R}}$.

Замечание 7.7.2 Полезно заметить, что при $x_0 = +\infty$ или $x_0 = -\infty$ определение предела и так является односторонним.

Замечание 7.7.3 Для краткости часто применяют обозначения $\lim_{x \to x_0 = 0} f(x) = f(x_0 - 0)$ и $\lim_{x \to x_0 + 0} f(x) = f(x_0 + 0)$.

Пример 7.7.1 Пусть

$$sign x = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}.$$

Ясно, что $\lim_{x\to 0+0} \operatorname{sign} x = 1$, $a \lim_{x\to 0-0} \operatorname{sign} x = -1$.

Пример 7.7.2 Пусть $y = 5^{\frac{1}{x}}$. Так как при $x \to 0+0$ имеет место равенство $\lim_{x\to 0+0} \frac{1}{x} = +\infty$, то легко показать, что

$$\lim_{x \to 0+0} 5^{\frac{1}{x}} = +\infty.$$

Аналогично, так как $\lim_{x\to 0-0}\frac{1}{x}=-\infty$, то легко показать, что

$$\lim_{x \to 0-0} 5^{\frac{1}{x}} = 0.$$

Теорема 7.7.1 (Критерий существования предела функции)

Пусть $f: E \to \mathbb{R}$ и x_0 – предельная точка для множеств $U_-(x_0) = \{x \in E: x < x_0\}$ и $U_+(x_0) = \{x \in E: x > x_0\}$. Тогда

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow \lim_{x \to x_0 + 0} f(x) = \lim_{x \to x_0 - 0} f(x) = A, \quad A \in \overline{\mathbb{R}}.$$

Доказательство. Пусть $A \in \mathbb{R}$. Необходимость. Пусть $\varepsilon > 0$, тогда

$$\exists \delta > 0 : \forall x \in E : 0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \varepsilon,$$

в частности,

$$\forall x \in E : 0 < x - x_0 < \delta \Rightarrow |f(x) - A| < \varepsilon,$$

то есть $\lim_{x\to x_0+0} f(x) = A$. Аналогично,

$$\forall x \in E : 0 < x_0 - x < \delta \Rightarrow |f(x) - A| < \varepsilon,$$

TO ECTH $\lim_{x \to x_0 - 0} f(x) = A.$

Достаточность. Пусть $\varepsilon > 0$, тогда

$$\exists \delta_1 > 0 : \forall x \in E : 0 < x - x_0 < \delta_1 \Rightarrow |f(x) - A| < \varepsilon,$$

$$\exists \delta_2 > 0 : \forall x \in E : 0 < x_0 - x < \delta_2 \Rightarrow |f(x) - A| < \varepsilon.$$

Пусть $\delta = \min(\delta_1, \delta_2)$, тогда

$$\forall x \in E : 0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \varepsilon.$$

7.8 Критерий Коши существования предела функции

Теорема 7.8.1 (Критерий Коши) Пусть $f: E \to \mathbb{R}, x_0$ – предельная точка для E. Тогда

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow$$

$$\forall \varepsilon > 0 \,\exists \delta > 0 : \forall x', x'' \in E : 0 < |x' - x_0| < \delta,$$
$$0 < |x'' - x_0| < \delta \Rightarrow |f(x') - f(x'')| < \varepsilon.$$

Доказательство. Необходимость. Пусть $\varepsilon > 0$, тогда

$$\exists \delta > 0 : \forall x \in E : 0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \frac{\varepsilon}{2}.$$

Пусть $x', x'' \in E : 0 < |x_0 - x'| < \delta, 0 < |x_0 - x''| < \delta$, тогда

$$|f(x') - f(x'')| = |(f(x') - A) + (A - f(x''))| \le$$

$$\leq |(f(x') - A)| + |(f(x'') - A)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Достаточность. Пусть $\varepsilon > 0$, тогда

$$\exists \delta > 0 : \forall x', x'' \in E : 0 < |x' - x_0| < \delta,$$

$$0 < |x'' - x_0| < \delta \Rightarrow |f(x') - f(x'')| < \varepsilon.$$

Пусть x_n – последовательность такая, что $x_n \in E, x_n \neq x_0, \lim_{n \to \infty} x_n = x_0,$ тогда

$$\exists n_0 : \forall n > n_0 \Rightarrow 0 < |x_n - x_0| < \delta,$$

а значит при $n > n_0$ и $p \in \mathbb{N}$ выполняется также и $0 < |x_{n+p} - x_0| < \delta$, а значит $|f(x_n) - f(x_{n+p})| < \varepsilon$, что означает, что последовательность $f(x_n)$

фундаментальна, а значит имеет предел (согласно критерию Коши для последовательностей). Тем самым доказано, что для любой последовательности, удовлетворяющей условиям $x_n \in E, x_n \neq x_0, \lim_{n\to\infty} x_n = x_0$, последовательность $f(x_n)$ сходится.

Теперь нужно показать, что все эти пределы одинаковы, для этого можно предположить (от противного), что $x_n^1 \in E, \ x_n^1 \neq x_0, \ \lim_{n \to \infty} x_n^1 = x_0, \ x_n^2 \in E,$ $x_n^2 \neq x_0, \ \lim_{n \to \infty} x_n^2 = x_0,$ но

$$\lim_{n \to \infty} f(x_n^1) = A_1 \neq A_2 = \lim_{n \to \infty} f(x_n^2).$$

Составив последовательность

$$x_n^3 = \{x_1^1, x_1^2, x_2^1, x_2^2, \dots, x_n^1, x_n^2, \dots\}$$

видно, что $x_n^3 \in E, x_n^3 \neq x_0, \lim_{n \to \infty} x_n^3 = x_0$. С одной стороны, по только что доказанному выше, $f(x_n^3)$ сходится, а с другой стороны

$$\lim_{k \to \infty} f(x_{2k-1}^3) = A_1 \neq A_2 = \lim_{k \to \infty} f(x_{2k}^3).$$

Противоречие.

7.9 Предел монотонной функции

Определение 7.9.1 Говорят, что функция $f: E \to \mathbb{R}$ возрастает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \Rightarrow f(x_1) < f(x_2).$$

Определение 7.9.2 Говорят, что функция $f: E \to \mathbb{R}$ не убывает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \Rightarrow f(x_1) \le f(x_2).$$

Определение 7.9.3 Говорят, что функция $f: E \to \mathbb{R}$ убывает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \Rightarrow f(x_1) > f(x_2).$$

Определение 7.9.4 Говорят, что функция $f: E \to \mathbb{R}$ не возрастает на E, если

$$\forall x_1, x_2 \in E : x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2).$$

Определение 7.9.5 Про возрастающую (убывающую, не убывающую, не возрастающую) функцию также говорят, что она монотонна.

Теорема 7.9.1 Пусть $f: E \to \mathbb{R}$, $s = \sup E \ (i = \inf E)$ – предельная для E. Для того чтобы неубывающая (невозрастающая) функция f имела предел при $x \to s \ (x \to i)$ необходимо и достаточно, чтобы функция f была ограничена сверху (снизу). Иначе предел равен $+\infty \ (-\infty)$.

Доказательство. Пусть функция не убывает. Необходимость следует из того, что функция, имеющая предел, ограничена, а поскольку f – неубывающая на E, то имеет место ограниченность сверху.

Достаточность. Пусть $A = \sup_{x \in E} f(x)$. Пусть $\varepsilon > 0$, тогда, согласно определе-

нию супремума, $\exists x_0 \in E$, что $A - \varepsilon < f(x_0) \le A$. В силу неубывания f на E, при $x > x_0, x \in E$ имеем $A - \varepsilon < f(x_0) \le f(x) \le A$. Тем самым, $\lim_{x \to s} f(x) = A$.

7.10 Бесконечно малые и бесконечно большие функции

Определение 7.10.1 Функция $\alpha(x)$ называется бесконечно малой при $x \to x_0$, если

$$\lim_{x \to x_0} \alpha(x) = 0.$$

Определение 7.10.2 Функция $\beta(x)$ называется бесконечно большой при $x \to x_0$, если

$$\lim_{x \to x_0} \beta(x) = \infty.$$

Лемма 7.10.1 (О связи бесконечно малой и бесконечно большой)

Пусть $\beta(x): E \to \mathbb{R}$ – бесконечно большая при $x \to x_0$. Тогда $\alpha(x) = \frac{1}{\beta(x)}$ – бесконечно малая при $x \to x_0$.

Обратно, пусть $\alpha(x): E \to \mathbb{R}$ – бесконечно малая при $x \to x_0$ и $\exists \delta > 0: \forall x \in E: 0 < |x - x_0| < \delta \Rightarrow \alpha(x) \neq 0$. Тогда $\beta(x) = \frac{1}{\alpha(x)}$ – бесконечно большая при $x \to x_0$.

Доказательство. Первое утверждение. Пусть $\varepsilon > 0$, тогда:

$$\exists \delta > 0 : \forall x \in E : 0 < |x - x_0| < \delta \Rightarrow |\beta(x)| > \frac{1}{\varepsilon},$$

откуда

$$|\alpha(x)| < \varepsilon$$
,

что и доказывает утверждение.

Второе утверждение. Пусть $\varepsilon > 0$, тогда

$$\exists \delta_1 > 0, \delta_1 < \delta : \forall x \in E : 0 < |x - x_0| < \delta_1 \Rightarrow |\alpha(x)| < \varepsilon.$$

Так как на множестве $x \in E: 0 < |x-x_0| < \delta_1$ выполнено, что $\alpha(x) \neq 0$, то определена функция $\beta(x) = \frac{1}{\alpha(x)}$ и

$$\left| \frac{1}{\alpha(x)} \right| > \frac{1}{\varepsilon},$$

то есть $\beta(x)$ – бесконечно большая при $x \to x_0$.

7.11 Свойства бесконечно малых функций

В следующей теореме отмечены свойства бесконечно малых.

Теорема 7.11.1 Пусть $\alpha, \beta: E \to \mathbb{R}$ – бесконечно малые при $x \to x_0,$ тогда:

- 1. Функция $\alpha(x) + \beta(x)$ бесконечно малая при $x \to x_0$.
- 2. Функция $\alpha(x) \cdot \beta(x)$ бесконечно малая при $x \to x_0$.
- 3. Если функция $\theta(x): E \to \mathbb{R}$ ограничена в некоторой проколотой окрестности $\overset{o}{U}_{\delta}(x_0),$ тогда функция $\alpha(x)\cdot\theta(x)$ бесконечно малая при $x\to x_0$.

Доказательство. Первые два пункта немедленно следуют из теоремы об арифметических операциях над пределами.

3. Согласно условию,

$$\exists \overset{\circ}{U}_{\delta}(x_0) : \forall x \in E, x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow |\theta(x)| < C.$$

Пусть $\varepsilon > 0$, тогда

$$\exists \delta_1 < \delta : \forall x \in E : 0 < |x - x_0| < \delta_1 \Rightarrow |\alpha(x)| < \frac{\varepsilon}{C}.$$

Тогда при $x \in E: 0 < |x-x_0| < \delta_1$ выполняется

$$|\theta(x) \cdot \alpha(x)| < \varepsilon,$$

что и завершает доказательство.

Пример 7.11.1 Вычислить предел

$$\lim_{x \to \infty} \frac{\sin x}{x}.$$

Предел $\lim_{x\to\infty}\sin x$ не существует. В то же время, $|\sin x|<1$ при $x\in\mathbb{R}$, а значит функция $\sin x$ является ограниченной. Кроме того, $\lim_{x\to\infty}\frac{1}{x}=0$,

значит функция $\frac{1}{x}$ является бесконечно малой при $x \to \infty$. Тогда, согласно теореме,

$$\lim_{x \to \infty} \frac{\sin x}{x} = 0.$$

Теорема 7.11.2 (О связи функции, ее предела и бесконечно малой) $\Pi y cmb \ \phi y n k u u s \ f : E \to \mathbb{R}, \ x_0 - n p e d e л b h a s \ d л s \ E, \ morda$

$$\lim_{x \to x_0} f(x) = A \Leftrightarrow f(x) = A + \alpha(x),$$

 $rde \ \alpha(x)$ – бесконечно малая $npu \ x \to x_0$.

Доказательство. Необходимость. Пусть $\lim_{x \to x_0} f(x) = A$, а значит

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \in E : 0 < |x - x_0| < \delta \Rightarrow |f(x) - A| < \varepsilon.$$

Обозначив $\alpha(x) = f(x) - A$ получается определение того, что $\alpha(x)$ – бесконечно малая при $x \to x_0$ и представление $f(x) = A + \alpha(x)$. Достаточность. Пусть $f(x) = A + \alpha(x)$, где $\alpha(x)$ – бесконечно малая при $x \to x_0$, тогда

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} (A + \alpha(x)) = \lim_{x \to x_0} A + \lim_{x \to x_0} \alpha(x) = A + 0 = A.$$

7.12 Контрольные вопросы и задачи

1. Докажите арифметические свойства пределов, не используя непосредственно соответствующие свойства для пределов последовательности.

- 2. Докажите теорему о сжатой переменной, не используя непосредственно соответствующую теорему для последовательности.
- 3. Проиллюстрируйте критерий Коши существования предела функции рисунком.
- 4. Сформулируйте все недостающие определения предела функции.
- 5. Сформулируйте определение предела функции по Гейне, используя кванторы.