MAS241 해석학 I Note

한승우

June 11, 2023

CONTENTS

CHAPTER	STRUCTURE OF THE REAL NUMBERS	Page 2
1.1	Completeness of the Real Numbers	2
1.2	Neighborhoods and Limit Points	5
1.3	The Limit of a Sequence	7
1.4	Cauchy Sequences	12
1.5	The Algebra of Convergent Series	14
1.6	Cardinality	14
Chapter	Euclidean Spaces	Page 15
2.1	Euclidean n -Space Sequences in \mathbb{R}^n — 17	15
2.2	Open and Closed Sets	19
2.3	Completeness	24
2.4	Relative Topology and Connectedness	26
2.5	Compactness	29
Chapter	Continuity	Page 32
3.1	Limit and Continuity	32
3.2	The Topological Description of Continuity The Composition of Continuous Functions — 36 • Limiting Behavi	35 ior at Infinity — 37
3.3	The Algebra of Continuous Functions	38
	Uniform Continuity	39
	The Uniform Norm: Uniform Convergence	40
3.6	Vector-Valued Functions on \mathbb{R}^n	47
Chapter	Differentiation	Page 51
4.1	The Derivative	51
4.2	Composition of Functions: The Chain Rule	53
	The Mean Value Theorem	54
4.4	L'Hôpital's Rule	55
4.5	Taylor's Theorem	57

CHAPTER	FUNCTIONS OF BOUNDED VARIATION	PAGE 59
5.1	Partitions	59
5.2	Monotone Functions on $[a, b]$ Saltus Functions — 61	60
5.3	Functions of Bounded Variation	62
5.4	Total Variation as a Function	63
5.5	Continuous Functions of Bounded Variation	63

Chapter 1

Structure of the Real Numbers

1.1 Completeness of the Real Numbers

Definition 1.1.1: Cauchy Sequence

Let *X* be a space. A sequence $\{x_n\}_{n\in\mathbb{N}}$ is a *Cauchy sequence* if $\|x_n-x_m\|\to 0$ as $n,m\to\infty$.

Definition 1.1.2: Completeness

A set *X* is *complete* if every Cauchy sequnce has a limit in *X*, i.e.,

$$x_n \to x_\infty \in X$$
.

Definition 1.1.3: Boundedness

Let $\emptyset \neq S \subseteq \mathbb{R}$.

- a) S is bounded above if $\exists M \in \mathbb{R}, \ \forall x \in S, \ x \leq M$.
 - *M* is called an *upper bound* of *S*.
- b) *S* is bounded below if $\exists M \in \mathbb{R}, \forall x \in S, x \geq M$.
 - *M* is called an *lower bound* of *S*.
- c) *S* is bounded if *S* is bounded above and below.

Theorem 1.1.1 Archimedes' Principle

Let ε and M be any two positive real numbers. Then, there exists a k in \mathbb{N} such that $M < k\varepsilon$.

The proof of Theorem 1.1.1 can be done by integrating Theorem 1.1.2 and Theorem 1.1.4.

Definition 1.1.4: Supremum and Infimum

- a) Let *S* be bounded above. Then, the smallest upper bound is called the *supremum* of *S*, sup *S*.
- b) Let *S* be bounded below. Then, the largest lower bound is called the *infimum* of *S*, inf *S*.

Example 1.1.1

Let $S = \{(-1)^k (1-1/k) \mid k \in \mathbb{N}\}$. It is clear that -1 < S < 1; 1 is an upper bound and -1 is a lower bound. We now claim that $\sup S = 1$. To show this, let us assume that M < 1 is an upper bound of S. By Archimedes' principle, there exists an natural number k_0 such that $(1-M)/2 < k_0$, which implies $(-1)^{2k_0} (1-1/(2k_0)) > M$; M is not an upper bound. Therefore, 1 is the smallest upper bound. It can be similarly shown that $\inf S = -1$.

Theorem 1.1.2 Completeness Axiom for \mathbb{R}

If $\emptyset \neq S \subseteq \mathbb{R}$ and S is bounded above, then $\sup S$ exists in \mathbb{R} .

Corollary 1.1.1

If $\emptyset \neq S \subseteq \mathbb{R}$ and S is bounded below, then $\inf S$ exists in \mathbb{R} .

Proof. Let $B := \{-x \mid x \in S\}$. Then, $M = \sup S \in \mathbb{R}$ by Theorem 1.1.2. We now claim that $\inf S = -M$.

For all $x \in S$, $-x \in B$, which implies $-x \le M$, and therefore $x \ge -M$. Thus, -M is a lower bound of S.

Suppose there is a $M_1 > -M$ such that M_1 is a lower bound of S. For all $x \in S$, $x \ge M_1$, which implies $-x \le -M_1$. Thus, $-M_1$ is an upper bound of B but $-M_1 < M = \sup B$, #.

Therefore, $\inf S = -M \in \mathbb{R}$.

Example 1.1.2

• $S := \left\{ \sum_{i=0}^{k} \frac{1}{j!} \mid k \in \mathbb{N} \right\}$. S is bounded above.

$$\sum_{j=0}^{k} \frac{1}{j!} = 1 + \sum_{j=1}^{k} \frac{1}{j!} \le 1 + \sum_{j=1}^{k} \frac{1}{2^{j-1}} < 3$$

In fact, $e := \sup S$.

• $S := \left\{ \left(1 + \frac{1}{k}\right)^k \mid k \in \mathbb{N} \right\}$. S is bounded above.

$$\left(1 + \frac{1}{k}\right)^k = \sum_{j=0}^k \binom{k}{j} \frac{1}{k^j} \le \sum_{j=0}^k \frac{1}{j!} \le e$$

Theorem 1.1.3

Let *S* be a finite nonempty subset of \mathbb{R} . Then, $\sup S \in S$ and $\inf S \in S$.

Proof. (Induction on |S|) For $S = \{x\}$, $x = \inf S = \sup S \in S$.

Take any $k \in \mathbb{N}$ and suppose the statement holds for every S with |S| = k. Now, take any $S' \subseteq \mathbb{R}$ such that |S'| = k + 1. Let $x \in S'$, $\mu := \sup(S' \setminus \{x\})$, and $\nu := \inf(S' \setminus \{x\})$. By the induction hypothesis, $\mu, \nu \in S' \setminus \{x\}$. Letting $\mu' := \max(\mu, x)$ and $\nu' := \min(\nu, x)$, μ' and ν' are the supremum and infimum of S', respectively. Moreover, μ' and ν' are elements of S'.

Theorem 1.1.4

Let $\emptyset \neq S \subseteq \mathbb{R}$.

- If *S* is bounded above, then " $\mu = \sup S$ if and only if μ is an upper bound and $\forall \varepsilon \in \mathbb{R}_+$, $\exists x \in S$, $\mu \varepsilon < x \le \mu$ ".
- If *S* is bounded below, then " $\nu = \inf S$ if and only if ν is an lower bound and $\forall \varepsilon \in \mathbb{R}_+, \exists x \in S, \ \nu \leq x < \nu + \varepsilon$ ".

Proof. Let *S* be bounded above. If there is no $x \in S$ in $(\mu - \varepsilon, \mu]$, then $\mu - \varepsilon$ would be a smaller upper bound.

For the converse, assume M is an upper bound and $M < \mu$. Let $\varepsilon \coloneqq \mu - M > 0$. Then, there is some $x \in S$ such that $M = \mu - \varepsilon < x \le \mu$, # to M is an upper bound. Therfore, μ is the least upper bound.

The same logic may be applied for bounded below *S*.

Proof of Theorem 1.1.1. Let $S := \{k\varepsilon \mid k \in \mathbb{N}\}$. Assume S is bounded above and nonempty. Then, by Theorem 1.1.2, there is $\mu = \sup S$. We also know, from Theorem 1.1.4, that there is $k \in \mathbb{N}$ such such that $\mu - \varepsilon < k\varepsilon \le \mu$, which implies $\mu < (k+1)\varepsilon$. Since $(k+1)\varepsilon \in S$, μ is not an upper bound of S, which is a contradiction. Therefore, S is not bounded above. In other words, for any M > 0, there is some $k \in \mathbb{N}$ such that $M < k\varepsilon$.

Theorem 1.1.5

Theorem 1.1.1 (Archimedes' principle) is equivalent to the following statement:

$$\forall c \in \mathbb{R}_+, \exists k \in \mathbb{N}, k-1 \le c < k.$$

Proof. Assume Archimedes' principle. If c < 1, k = 1 satisfies, and it is done. Now, let us suppose $c \ge 1$. By Theorem 1.1.1, there is a $k \in \mathbb{N}$ such that c < k. We may let $k_0 := \min\{k \in \mathbb{N} \mid k > c\}$ by Well-Ordering of \mathbb{N} . We note that $k_0 - 1 \le c$ since $k_0 - 1 \in \mathbb{N}$ since $k_0 > 1$. Therefore, $k_0 - 1 \le c < k_0$.

Now, assume " $\forall c \in \mathbb{R}_+$, $\exists k \in \mathbb{N}$, $k-1 \le c < k$ ". Take any M > 0 and $\varepsilon \in \mathbb{R}_+$ and let $c := M/\varepsilon$. The assumption tells the existence of a $k \in \mathbb{N}$ such that $M/\varepsilon = c < k$, which directly implies $M < k\varepsilon$.

Theorem 1.1.6

Let *c* and *d* be real numbers with c < d. Then, $\exists x \in \mathbb{Q}$, c < x < d.

Proof. There are three cases: 0 < c < d, $c \le 0 < d$, or $c < d \le 0$.

Case 1) By Archimedes' principle, $\exists q \in \mathbb{N}, \ 1 < (d-c)q$, which implies cq+1 < dq. By Theorem 1.1.5, $\exists p \in \mathbb{N}, \ p-1 \le cq < p$ since cq > 0. To sum up, $p-1 \le cq , which implies <math>c < p/q < d$.

Case 2) By Archimedes' principle, $\exists q \in \mathbb{N}$, 1 < dq. Then, $c \le 0 < 1/q < d$ holds.

Case 3) By case 1 and 2, there is $r \in \mathbb{Q}$ such that -d < r < -c. Then, c < -r < d holds.

1.2 Neighborhoods and Limit Points

Definition 1.2.1: Neighborhood and Deleted Neighborhood

For each $x \in \mathbb{R}$ and $r \in \mathbb{R}_+$,

$$N(x;r) := \{ y \in \mathbb{R} : |y - x| < r \} = (x - r, x + r)$$

is called the *neighborhood* of x with radius r, and

$$N'(x;r) := \{ y \in \mathbb{R} : 0 < |y - x| < r \} = N(x;r) \setminus \{x\}$$

is called the *deleted neighborhood* of x with radius r.

Definition 1.2.2: Limit Point and Isolated Point

For $\emptyset \neq S \subseteq \mathbb{R}$, $x \in \mathbb{R}$ is a limit point of S if

$$\forall \varepsilon \in \mathbb{R}_+, N'(x, \varepsilon) \cap S \neq \emptyset.$$

If $x \in \mathbb{R}$ is not a limit point of S, then it is called an *isolated point* of S.

Definition 1.2.3: Discrete Set

If $\emptyset \neq S \subseteq \mathbb{R}$ has no limit points, then *S* is said to be *discrete*.

Example 1.2.1

Let $S := \{(-1)^k (1+1/k) \mid k \in \mathbb{N}\}$. Then, 1 and -1 are limit points of *S*.

To see 1 is a limit point, take any $\varepsilon \in \mathbb{R}_+$ and, using Theorem 1.1.1, choose a $k \in \mathbb{N}$ such that $1 < (2\varepsilon)k$. Then, $1 < 1 + \frac{1}{2k} = (-1)^{2k} \left(1 + \frac{1}{2k}\right) < 1 + \varepsilon$; $N'(1, \varepsilon) \cap S \neq \emptyset$. Therefore, 1 is a limit point.

Theorem 1.2.1

Let $\emptyset \neq S \subseteq \mathbb{R}$. Then, $x \in \mathbb{R}$ is a limit point of S if and only if

$$\exists \varepsilon_0 \in \mathbb{R}_+, \ \forall \varepsilon \in (0, \varepsilon_0), \ N'(x, \varepsilon) \cap S \neq \emptyset.$$

Proof. Trivial; $0 < \varepsilon_1 < \varepsilon_2$ implies $N'(x, \varepsilon_1) \subsetneq N'(x, \varepsilon_2)$.

Theorem 1.2.2

Let $\emptyset \neq S \subseteq \mathbb{R}$ and $x \in \mathbb{R}$ be a limit point of S. Then, every deleted neighborhood of x must contain infinitely many points of S.

Proof. Assume $N'(x;\varepsilon) \cap S$ were to contain only finitely many points, namely, $N'(x;\varepsilon) \cap S = \{x_1, x_2, \cdots, x_k\}$. Let $S_1 \coloneqq \{|x - x_i| : i \in [k]\}$. Since S_1 is finite, we may let x_j be an element of $N'(x;\varepsilon) \cap S$ that satisfies $|x - x_j| = \min S_1 = \inf S_1 > 0$. If we let $\varepsilon_0 \coloneqq |x - x_j|/2$, $N'(x;\varepsilon_0) \cap S = \emptyset$, #.

Corollary 1.2.1

If *S* is a finite subset of \mathbb{R} , then *S* has no limit point.

Example 1.2.2

 \mathbb{Z} has no limit point.

Theorem 1.2.3 Bolzano-Weierstrass Theorem

If $S \subseteq \mathbb{R}$ is bounded and has an infinite number of elements, then S has a limit point.

Proof. Since S is bounded, $a_0 := \inf S$ and $b_0 := \sup S$ exist; $S \subseteq [a_0, b_0]$. At least one of $[a_0, (a_0 + b_0)/2]$ and $[(a_0 + b_0)/2, b_0]$ has an infinite number of elements in S, otherwise S must be finite. Choose whichever has an infinite number of elements in S, and let us denote it as $[a_1, b_1]$. Since, $S \cap [a_1, b_1]$ is bounded and has an infinite number of elements, we may find a_2 and b_2 in the same manner. Note that

- (a) for every natural number k, $S \cap [a_k, b_k]$ has an infinite number of elements,
- (b) $\forall k \in \mathbb{N}, b_k a_k = (b_0 a_0)/2^k > 0$, and
- (c) $\forall k \in \mathbb{N}, a_{k-1} \leq a_k < b_k \leq b_{k-1}.$

The sequence $\{a_k\}_{k=0}^{\infty}$ is bounded above by b_0 , and the sequence $\{b_k\}_{k=0}^{\infty}$ is bounded below by a_0 . Therefore, we may let $\alpha \coloneqq \sup\{a_k\}$ and $\beta \coloneqq \inf\{b_k\}$.

Since a_j is a lower bound of $\{b_k\}_{k=0}^{\infty}$ for all $j \in \mathbb{N}$, $\forall j \in \mathbb{N}$, $a_j \leq \beta$. This implies β is an upper bound of $\{a_k\}_{k=0}^{\infty}$, therefore $\alpha \leq \beta$. Since $a_j \leq \alpha \leq \beta \leq b_j$ for all $j \in \mathbb{N}$, we get $0 \leq \beta - \alpha \leq b_j - a_j = (b_0 - a_0)/2^j$. Therefore, $\beta - \alpha = 0$.

We now claim that α is a limit point of S. Take any $\varepsilon \in \mathbb{R}_+$. By Theorem 1.1.4, $\exists k_0 \in \mathbb{N}$, $\alpha - \varepsilon < a_{k_0} \le \alpha$. We may take $k \in \mathbb{N}$ such that $k > k_0$ and $|b_k - a_k| < \varepsilon$ thanks to (b). Since $\alpha \in [a_k, b_k]$, $\alpha - \varepsilon < a_{k_0} \le a_k \le \alpha \le b_k < \alpha + \varepsilon$, which implies $[a_k, b_k] \subseteq N(\alpha; \varepsilon)$.

In conclusion, $S \cap [a_k, b_k]$ has infinitely many elements by (a), and so does $(S \cap [a_k, b_k]) \setminus \{\alpha\}$. $S \cap N'(\alpha; \varepsilon)$ is, therefore, nonempty.

Definition 1.2.4: Bolzano-Weierstrass Property

We say that a nonempty set X has the $Bolzano-Weierstrass\ property$ if every bounded, infinite subset S of X has a limit point in X.

1.3 The Limit of a Sequence

Definition 1.3.1: Cluster Point

 $c \in \mathbb{R}$ is a *cluster point* of the sequence $\{x_k\}$ if,

$$\forall (\varepsilon, k) \in \mathbb{R}_+ \times \mathbb{N}, \ \exists k_1 \in \mathbb{N}_{>k}, \ x_{k_1} \in N(c; \varepsilon).$$

Lemma 1.3.1

 $c \in \mathbb{R}$ is a cluster point of $\{x_k\}$ if and only if $\{k \in \mathbb{N} \mid x_k \in N(c; \varepsilon)\}$ is infinite for every $\varepsilon \in \mathbb{R}_+$.

Proof. (\Rightarrow) Suppose $S := \{k \in \mathbb{N} \mid x_k \in N(c; \varepsilon)\}$ is finite for some $\varepsilon \in \mathbb{R}_+$. If S were empty, then, c is not a cluster point by Definition 1.3.1. Therefore, S is nonempty and has a maximum element $k_0 := \max S$ by Theorem 1.1.3. Since c is a cluster point, there is a natural number $k_1 > k_0$ such that $x_{k_1} \in N(c; \varepsilon)$; $k_1 \in S$. This contradicts the maximality of k_0 .

(⇐) Take any $\varepsilon \in \mathbb{R}_+$ and $k_0 \in \mathbb{N}$. If there is no $k_1 \in \mathbb{N}$ such that $k_1 > k_0$ and $x_{k_1} \in N(c; \varepsilon)$, S will be bounded above by k_0 and finite, which is a contradiction. Therefore, c is a cluster point of S.

Definition 1.3.2: Convergence and Divergence of a Sequnce

The sequnce $\{x_k\}$ converges to x_0 and x_0 is the limit of $\{x_k\}$ if,

$$\forall \varepsilon \in \mathbb{R}_+, \exists k_0 \in \mathbb{N}, \forall k \in \mathbb{N}_{>k_0}, x_k \in N(x_0; \varepsilon).$$

We write $\lim_{k\to\infty} x_k = x_0$. If there is no such x_0 , then $\{x_k\}$ *diverges*.

Lemma 1.3.2

 $\lim_{x\to\infty} x_k = x_0 \text{ if and only if } \{k\in\mathbb{N} \mid x_k \notin N(x_0;\varepsilon)\} \text{ is finite for every } \varepsilon\in\mathbb{R}_+.$

Proof. (\Rightarrow) Take any $\varepsilon \in \mathbb{R}_+$. There is some $k_0 \in \mathbb{N}$ such that $k \in N(x_0; \varepsilon)$ for all natural numbers $k \ge k_0$. Therefore, $\{k \in \mathbb{N} \mid x_k \notin N(x_0; \varepsilon)\} \subseteq [k_0]$ and thus finite.

(⇐) Take any $\varepsilon \in \mathbb{R}_+$. Let $k_0 \coloneqq \max\{k \in \mathbb{N} \mid x_k \notin N(x_0; \varepsilon)\}$. Then, for every natural number k larger than k_0 satisfies $x_k \in N(x_0; \varepsilon)$.

Lemma 1.3.3

The limit x_0 of a sequence, if it exists, is a cluster point of the sequence.

Theorem 1.3.1 Uniqueness of the Limit

The limit of a convergent sequence of \mathbb{R} is unique.

Proof. Suppose a and b are two limits of a sequence $\{x_k\}$ and $a \neq b$. Let $\varepsilon := |b-a|/2$. Then, by Lemma 1.3.2, $A := \{k \in \mathbb{N} \mid x_k \notin N(a; \varepsilon)\}$ and $B := \{k \in \mathbb{N} \mid x_k \notin N(b; \varepsilon)\}$ are both finite, which means $A \cup B = \mathbb{N}$ is finite, #.

Theorem 1.3.2

If a sequence has two (or more) cluster points, then it diverges.

Proof. Suppose x_0 is the limit of $\{x_k\}$. Since, by Lemma 1.3.3, x_0 is a cluster point, there is another cluster point c different from x_0 . Let $\varepsilon := |x_0 - c|/2$.

Although $S := \{k \in \mathbb{N} \mid x_k \notin N(x_0; \varepsilon)\}$ should be finite by Lemma 1.3.2, $\{k \in \mathbb{N} \mid x_k \in N(c; \varepsilon)\}$, a subset of S, is infinite by Lemma 1.3.1, #.

Theorem 1.3.3

A convergent sequence is bounded.

Proof. Let x_0 is the limit of $\{x_k\}$. There is some $k_0 \in \mathbb{N}$ such that $|x_k - x_0| < 1$ for all $k \in \mathbb{N}_{k_0}$. Let $A := \{x_k \mid k \in \mathbb{N} \text{ and } k \leq k_0\}$ and $B := \{x_k \mid k \in \mathbb{N} \text{ and } k \geq k_0\}$. Then, A is finite and B is bounded above and below by $x_0 + 1$ and $x_0 - 1$, respectively. Therefore, $\{x_k\}$ is bounded above by $\max(\max A, x_0 + 1)$ and below by $\min(\min A, x_0 - 1)$.

Corollary 1.3.1

An unbounded sequence diverges.

Lemma 1.3.4

The following hold.

- (i) $\lim_{k\to\infty} x_k = 0 \iff \lim_{k\to\infty} |x_k| = 0$
- (ii) $\lim_{k\to\infty} x_k = x_0 \implies \forall c \in \mathbb{R}, \lim_{k\to\infty} cx_k = cx_0$

Proof of (ii). If c=0, then it is done; so suppose $c\neq 0$. Take any $\varepsilon\in\mathbb{R}_+$. Then, there is some $k_0\in\mathbb{N}$ such that $|x_k-x_0|<\varepsilon/|c|$ for all $k\geq k_0$. This directly implies for all $k\geq k_0$, $|cx_k-cx_0|=|c|\cdot|x_k-x_0|<|c|\cdot\varepsilon/|c|=\varepsilon$.

Theorem 1.3.4

A bounded, monotone sequence converges.

Proof. Suppose $\{x_k\}$ is a monotone increasing sequence. Since it is bounded, $\{x_k\}$ has $\mu \coloneqq \sup\{x_k \mid k \in \mathbb{N}\}$. Take any $\varepsilon \in \mathbb{R}_+$. By Theorem 1.1.4, there is some $k_0 \in \mathbb{N}$ such that $\mu - \varepsilon < x_{k_0} \le \mu$. Then, for all $k \in \mathbb{N}_{\ge k_0}$, $\mu - \varepsilon < x_{k_0} \le x_k \le \mu$, which implies $|x_k - \mu| < \varepsilon$. Therefore $\lim_{k \to \infty} x_k = \mu$.

Theorem 1.3.5 The Squeeze Play

Let $\{x_k\}$, $\{y_k\}$, and $\{z_k\}$ be sequences that satisfy $x_k \le y_k \le z_k$ for $k \in \mathbb{N}$. If both $\{x_k\}$ and $\{z_k\}$ converges to $L \in \mathbb{R}$, then $\{y_k\}$ also converges to L.

Proof. Take any $\varepsilon > 0$. There is $k_1 \in \mathbb{N}$ such that $\forall k \in \mathbb{N}_{\geq k_1}$, $x_k \in N(L; \varepsilon)$. Similarly, there is $k_2 \in \mathbb{N}$ such that $\forall k \in \mathbb{N}_{\geq k_2}$, $x_k \in N(L; \varepsilon)$. Then, for all $k \in \mathbb{N}$ not smaller than $\max\{k_1, k_2\}$, $L - \varepsilon < x_k \le y_k \le z_k < L + \varepsilon$ holds, which implies $y_k \in N(L; \varepsilon)$.

Theorem 1.3.6 Limit is Order Preserving on Convergent Sequences

If both $\{x_k\}$ and $\{y_k\}$ converge and if $x_k \leq y_k$ for each $k \in \mathbb{N}$, then

$$\lim_{k\to\infty}x_k\leq\lim_{k\to\infty}y_k.$$

Proof. Let $L_x := \lim_{k \to \infty} x_k$ and $L_y := \lim_{k \to \infty} y_k$, and suppose $L_x > L_y$. Let $\varepsilon := (L_x - L_y)/2 > 0$. Then, there is $k \in \mathbb{N}$ such that $x_k \in N(L_x; \varepsilon)$ and $y_k \in N(L_y; \varepsilon)$, which implies $y_k < L_y + \varepsilon = L_x - \varepsilon < x_k$, #.

Definition 1.3.3: Subsequence

Let $\{x_k\}$ be any sequence. Choose any strictly monotone increasing sequence $k_1 < k_2 < k_3 < \cdots$ of natural numbers. For each $j \in \mathbb{N}$, let $y_j := x_{k_j}$. The sequence $\{y_j\}_{j=1}^{\infty}$ is called an *subsequence* of $\{x_k\}$.

Theorem 1.3.7

The point c is a cluster point of $\{x_k\}$ if and only if there exists a subsequence of $\{x_k\}$ that converges to c.

Proof. (\Rightarrow) Let $\{\varepsilon_k\}$ be an arbitrary sequence of positive real numbers that converges to 0. (e.g. $\varepsilon_k = 1/k$) Define $\{k_j\}_{j=1}^{\infty}$ by the inductive definition below.

- $k_0 := 0$
- For each $j \in \mathbb{N}$, $k_j \in \{k \in \mathbb{N} \mid k > k_{j-1} \text{ and } x_k \in N(c; \varepsilon_j)\}$.

Since c is a cluster point, $\{k \in \mathbb{N} \mid k > k_{j-1} \text{ and } x_k \in N(c; \varepsilon_j)\} \neq \emptyset$ for all $j \in \mathbb{N}$. Therefore, $\{k_j\}$ is well-defined. It is immediate that $\lim_{j\to\infty} x_{k_j} = c$.

(\Leftarrow) Let $\{x_{k_j}\}_{j=1}^{\infty}$ be a sequence such that $\lim_{j\to\infty} x_{k_j} = c$. Take any $\varepsilon \in \mathbb{R}_+$ and $k \in \mathbb{N}$. Then, there is some $j_0 \in \mathbb{N}$ such that $\forall j \in \mathbb{N}_{\geq j_0}$, $x_{k_j} \in N(c; \varepsilon)$. Let $k_0 := \min\{k_j \in \mathbb{N} \mid j > j_0 \text{ and } k_j > k\}$. Then, $x_{k_0} \in N(c; \varepsilon)$ and $k_0 > k$. Therefore, c is a cluster point.

Theorem 1.3.8

Any bounded sequence $\{x_k\}$ has a cluster point.

Proof. If the set $S := \{x_k \mid k \in \mathbb{N}\}$ is finite, there is some x_{k_0} that is repeated infinitely. Then, x_{k_0} is surely a cluster point.

Now, suppose *S* is infinite. Then, by Theorem 1.2.3, *S* has a limit point ℓ . To prove ℓ is a cluster point, take any $\varepsilon \in \mathbb{R}_+$ and $k \in \mathbb{N}$.

Let $S' := \{x_{k'} \mid k' \in \mathbb{N}_{>k}\}$. We first claim that ℓ is a limit point of S'. Take any $\varepsilon' \in \mathbb{R}_+$ less than $m = \min\{|x_{k'} - \ell| \in \mathbb{R}_+ \mid k' \in \mathbb{N}_{\leq k}\}$. (m exists due to Theorem 1.1.3.) Then, $S' \cap N'(\ell; \varepsilon') = S \cap N'(\ell; \varepsilon')$ is nonempty. Therefore, ℓ is a limit point of S' by Theorem 1.2.1.

Finally, we can say $S' \cap N(\ell; \varepsilon)$ is nonempty. This implies there is some $k_0 \in \mathbb{Z}_{>k}$ such that $x_{k_0} \in N(\ell; \varepsilon)$. Therefore, ℓ is a cluster point of $\{x_k\}$.

Corollary 1.3.2

If a sequence has no cluster point, then the sequence is unbounded.

Corollary 1.3.3

Any bounded sequence converges if and only if it has exactly one cluster point.

Corollary 1.3.4

A sequence $\{x_k\}$ diverges if and only if at least one of the following conditions holds.

- $\{x_k\}$ has two or more cluster points.
- $\{x_k\}$ is unbounded.

Proof. (\Rightarrow) Suppose $\{x_k\}$ is diverging and bounded. By Theorem 1.3.8, it has at least one cluster point. Also, if it had exactly one cluster point, it would converge by Corollary 1.3.3.

 (\Leftarrow) It is direct from Theorem 1.3.2 and Corollary 1.3.1.

Theorem 1.3.9

A sequence $\{x_k\}$ converges if and only if every subsequence of $\{x_k\}$ converges.

Proof. (\Rightarrow) Take any subsequence $\{x_{k_i}\}_{i=1}^{\infty}$ of $\{x_k\}_{k=1}^{\infty}$ and $\varepsilon \in \mathbb{R}_+$. There is $i_0 \in \mathbb{N}$ such that $\forall i \in \mathbb{N}_{\geq i_0}, \ |x_i| < \varepsilon$. Since $k_i \geq i$ for all natural number $i, \ \forall i \in \mathbb{N}_{\geq i_0}, \ |x_{k_i}| < \varepsilon$.

 (\Leftarrow) { x_k } is a subsequence of itself.

Definition 1.3.4: Limit Superior and Inferior

Let $\{x_k\}$ be a sequence and C be a set of cluster points of the sequence.

- $\limsup x_k \triangleq \begin{cases} \sup C & \text{if } \{x_k\} \text{ is bounded} \\ \infty & \text{if } \{x_k\} \text{ is unbounded above} \\ \sup C & \text{if } \{x_k\} \text{ is bounded above but unbounded below and } C \neq \emptyset \\ -\infty & \text{if } \{x_k\} \text{ is bounded above but unbounded below and } C = \emptyset \end{cases}$ is called *limit superior* of $\{x_k\}$.
- $\lim\inf x_k \triangleq \begin{cases} \inf C & \text{if } \{x_k\} \text{ is bounded} \\ -\infty & \text{if } \{x_k\} \text{ is unbounded below} \\ \inf C & \text{if } \{x_k\} \text{ is bounded below but unbounded above and } C \neq \emptyset \\ \infty & \text{if } \{x_k\} \text{ is bounded below but unbounded above and } C = \emptyset \\ \text{is called } limit inferior \text{ of } \{x_k\}. \end{cases}$

Note:-

In all cases, $\liminf x_k \leq \limsup x_k$.

Theorem 1.3.10

- If $\mu = \limsup x_k$ is finite, then μ is in C. ($\mu = \max C$)
- If $v = \liminf x_k$ is finite, then v is in C. ($v = \min C$)

Proof. Suppose $\mu = \limsup x_k$ is finite. Take any $\varepsilon \in \mathbb{R}_+$ and $k \in \mathbb{N}$. The finiteness of μ implies $\mu = \sup C$. By Theorem 1.1.4, there is some $c \in C$ such that $\mu - \varepsilon < c \le \mu$. If $c = \mu$, then we are done. So let $c < \mu$.

Choose any positive ε_1 less than $\min\{c-(\mu-\varepsilon), \mu-c\}$ so $N(c;\varepsilon_1)\subseteq N(\mu;\varepsilon)$. Then, $\{k \in \mathbb{N} \mid x_k \in N(\mu; \varepsilon)\}$ is infinite since it has an infinite set $\{k \in \mathbb{N} \mid x_k \in N(c; \varepsilon_1)\}$ as its subset. (See Lemma 1.3.1.)

The second part can be proven analogously.

Theorem 1.3.11

Let $\{x_k\}$ be any bounded sequence in \mathbb{R} . Fix any $\varepsilon \in \mathbb{R}_+$.

- Let $\mu = \limsup x_k$. $\exists k_0 \in \mathbb{N}, \ \forall k \in \mathbb{N}_{\geq k_0}, \ x_k < \mu + \varepsilon$. $\forall k \in \mathbb{N}, \ \exists k_1 \in \mathbb{N}_{>k}, \ x_{k_1} > \mu \varepsilon$. Let $\nu = \liminf x_k$. $\exists k_0 \in \mathbb{N}, \ \forall k \in \mathbb{N}_{\geq k_0}, \ x_k > \nu \varepsilon$. $\forall k \in \mathbb{N}, \ \exists k_1 \in \mathbb{N}_{>k}, \ x_{k_1} < \nu + \varepsilon$.

Proof. Take any $\varepsilon \in \mathbb{R}_+$. Then, $\{k \in \mathbb{N} \mid x_k \ge \mu + \varepsilon\}$ is finite. If it were not, then there would be a cluster point larger than μ since Theorem 1.3.8 implies the existence of a cluster point in a subsequence of $\{x_k\}$ which is composed of x_k 's not smaller than $\mu + \varepsilon$. Therefore, if $k_0 := \max\{k \in \mathbb{N} \mid x_k \ge \mu + \varepsilon\} + 1$, then $x_k < \mu + \varepsilon$ for all k not smaller than k_0 .

Also, since μ is a cluster point by Theorem 1.3.10, $\forall k \in \mathbb{N}, \exists k_1 \in \mathbb{N}_{>k}, x_{k_1} > \mu - \varepsilon$. (See Lemma 1.3.1.)

The second part can be proven analogously.

Theorem 1.3.12

Let $\{x_k\}$ be any sequence in \mathbb{R} .

- (i) $\{x_k\}$ converges to x_0 if and only if $\liminf x_k = \limsup x_k = x_0$.
- (ii) $\{x_k\}$ diverges if and only if one of the following holds.
 - Either $\lim \inf x_k$ or $\lim \sup x_k$ is infinite.
 - Both $\liminf x_k$ or $\limsup are finite and <math>\liminf x_k < \limsup x_k$.

Proof.

- (i) (\Rightarrow) $C = \{x_0\}$, therefore $\liminf x_k = \limsup x_k = x_0$.
 - (⇐) Take any $\varepsilon \in \mathbb{R}_+$. There are natural numbers k_1 and k_2 such that $\forall k \in \mathbb{N}_{>k_1}$, $x_k < \infty$ $x_0 + \varepsilon$ and $\forall k \in \mathbb{N}_{\geq k_0}$, $x_k > x_0 - \varepsilon$. Then, for all natural number k not smller than $k_0 := \max\{k_1, k_2\}, x_0 - \varepsilon < x_k < x_0 + \varepsilon \text{ holds.}$
- (ii) If it is not $\liminf x_k = \limsup x_k \in \mathbb{R}$, then it is either "One of them is infinite." or "They are both finite but they are different."

Exercise 1.3.1

Let $\{x_k\}$ be a bounded sequence of positive numbers. For each $k \in \mathbb{N}$ define $y_k :=$ x_{k+1}/x_k and $z_k := (x_k)^{1/k}$. Prove that $\liminf y_k \le \liminf z_k \le \limsup z_k \le \limsup y_k$.

Solution: ($\liminf y_k \le \liminf z_k$) Let $L := \liminf y_k$. Now, we claim that

$$\forall \varepsilon \in \mathbb{R}_+, \ \exists k_0 \in \mathbb{N}, \ \forall \ k \in \mathbb{N}_{\geq k_0}, \ z_k > L - \varepsilon.$$

If L=0, then it is done. Therefore, suppose L>0. To prove this, take any $\varepsilon\in\mathbb{R}_+$ smaller than L. Then, there is some $k_1 \in \mathbb{N}$ such that $y_k > L - \varepsilon/2$ for all k not smaller than k_1 by

Theorem 1.3.11. Then, for all $k \in \mathbb{N}_{\geq k_1}$, $x_k > (L - \varepsilon/2)^{k-k_1} x_{k_1}$, which is equivalent to

$$z_k = x_k^{1/k} > \left(L - \frac{\varepsilon}{2}\right) \left[\left(L - \frac{\varepsilon}{2}\right)^{-k_1} x_{k_1}\right]^{1/k}.$$

Since $\lim_{k\to\infty}\left[(L-\varepsilon/2)^{-k_1}x_{k_1}\right]^{1/k}=1$, there is some $k_2\in\mathbb{N}$ such that

$$\left[\left(L - \frac{\varepsilon}{2}\right)^{-k_1} x_{k_1}\right]^{1/k} > 1 - \frac{\varepsilon/2}{L - \varepsilon/2} = \frac{L - \varepsilon}{L - \varepsilon/2}.$$

for all $k \in \mathbb{N}_{\geq k_2}$. Thus, for every natural number k not smaller than $\max\{k_1, k_2\}$,

$$z_k > \left(L - \frac{\varepsilon}{2}\right) \left[\left(L - \frac{\varepsilon}{2}\right)^{-k_1} x_{k_1} \right]^{1/k} > \left(L - \frac{\varepsilon}{2}\right) \cdot \frac{L - \varepsilon}{L - \varepsilon/2} = L - \varepsilon.$$

The claim is now proven.

For the main proof, assume that $\liminf z_k < L$ for the sake of contradiction. Take $\varepsilon_0 := (L - \liminf z_k)/2$. Then, by the previous claim, $\exists k_3 \in \mathbb{N}, \ \forall k \in \mathbb{N}_{\geq k_3}, \ z_k > L - \varepsilon_0 =$ $(L + \liminf z_k)/2$.

Nevertheless, by Theorem 1.3.11, there is some $k_4 \in \mathbb{N}_{>k_3}$ such that $z_{k_4} < \liminf z_k + \varepsilon_0 =$ $(L + \liminf z_k)/2$, which is a contradiction.

 $\limsup z_k \leq \limsup y_k$ can be proven analogously.

Cauchy Sequences 1.4

Definition 1.4.1: Cauchy Sequence

A sequence $\{x_k\}$ in $\mathbb R$ is called a *Cauchy sequence* if

$$\forall \varepsilon \in \mathbb{R}_+, \exists k_0 \in \mathbb{N}, \forall k, m \in \mathbb{N}_{\geq k_0}, |x_k - x_m| < \varepsilon.$$

Theorem 1.4.1

If $\{x_k\}$ is a convergent sequence of real numbers, then $\{x_k\}$ is a Cauchy sequence.

Proof. Let $x_0 := \lim_{k \to \infty} x_k$. Take any $\varepsilon \in \mathbb{R}_+$. Then, there is some $k_0 \in \mathbb{N}$ such that $|x_k - x_0| < \infty$ $\varepsilon/2$ for all $k \in \mathbb{N}$ not smaller than k_0 . Then, for all $k, m \in \mathbb{N}$ greater than $k_0, |x_k - x_m| \le \varepsilon/2$ $|x_k - x_0| + |x_k - x_m| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$

Theorem 1.4.2 If $\{x_k\}$ is a Cauchy sequence, then $\{x_k\}$ is bounded.

Proof. There is $k_0 \in \mathbb{N}$ such that $|x_k - x_m| < 1$ for all $k, m \in \mathbb{N}_{\geq k_0}$. It implies that $|x_k - x_m| < 1$ $|x_{k_0}|<1$, for all $k\in\mathbb{N}_{\geq k_0}$, which implies $|x_k|<|x_{k_0}|+1$. Therefore, for all $k\in\mathbb{N},\,|x_k|\leq 1$ $\max\{|x_1|,|x_2|,\cdots,|x_{k_0}|,|x_{k_0}|+1\}.$

Theorem 1.4.3

A Cauchy sequence has exactly one cluster point.

Proof. Since a Cauchy sequence is bounded, it has at least one cluster point by Theorem 1.3.8. So, we should prove that the sequence does not have more than one cluster point. Assume c_1 and c_2 are cluster points for the sake of contradiction. Let $\varepsilon := |c_1 - c_2|/3$. Choose $k_0 \in \mathbb{N}$ such that $\forall k, m \in \mathbb{N}_{\geq k_0}$, $|x_k - x_m| < \varepsilon$. Also, there are $k_1, k_2 \in \mathbb{N}_{>k_0}$ such that $|x_{k_1} - c_1| < \varepsilon$ and $|x_{k_2} - c_2| < \varepsilon$. Note that $|c_1 - c_2| \le |c_1 - x_{k_1}| + |x_{k_1} - x_{k_2}| + |x_{k_2} - c_2|$. Nevertheless, then

$$\varepsilon > |x_{k_1} - x_{k_2}| \ge |c_1 - c_2| - |c_1 - x_{k_1}| - |c_2 - x_{k_2}|$$

 $> 3\varepsilon - \varepsilon - \varepsilon = \varepsilon.$

which is a contradiction.

Theorem 1.4.4 Cauchy Completeness of \mathbb{R}

A sequence in \mathbb{R} is convergent if and only if it is a Cauchy sequence.

Proof. By Corollary 1.3.3, a Cauchy sequence is convergent since it is bounded (Theorem 1.4.2) and has exactly one cluster point (Theorem 1.4.3). A convergent sequence in \mathbb{R} is Cauchy. (Theorem 1.4.1)

Definition 1.4.2: Cauchy Completeness

A set X is said to be *Cauchy complete* if every Cauchy sequence in X converges to a point of X.

Example 1.4.1

 \mathbb{R} is Cauchy complete.

Definition 1.4.3: Contractive Sequence

A sequence $\{x_k\}$ is said to be *contractive* if there exists a constant C, with 0 < C < 1, such that

$$\forall k \in \mathbb{N}_{>1}, |x_{k+1} - x_k| \le C|x_k - x_{k-1}|.$$

Theorem 1.4.5

Any contractive sequence in \mathbb{R} is a Cauchy sequence.

Proof. Suppose 0 < C < 1 and $\forall k \in \mathbb{N}_{>1}$, $|x_{k+1} - x_k| \le C|x_k - s_{k-1}|$. If it is trivial when $|x_2 - x_1| = 0$, so supose $|x_2 - x_1| \ne 0$. By induction, $\forall k \in \mathbb{N}_{>1}$, $|x_{k+1} - x_k| \le C^{k-1}|x_2 - x_1|$. To prove $\{x_k\}$ is a Cauchy sequence, take any $\varepsilon \in \mathbb{R}_+$. Since $\lim_{k \to \infty} C^{k-1} = 0$,

$$\exists k_0 \in \mathbb{N}, \ \forall k \in \mathbb{N}_{\geq k_0}, \ C^{k-1} < \frac{(1-C)\varepsilon}{|x_2 - x_1|}.$$

Then, for any $k, m \in \mathbb{N}$ with $k_0 \le m < k$,

$$\begin{split} |x_k - x_m| &= \left| \sum_{j=m}^{k-1} (x_{j+1} - x_j) \right| \leq \sum_{j=m}^{k-1} |x_{j+1} - x_j| \\ &\leq \sum_{j=m}^{k-1} C^{j-1} |x_2 - x_1| = C^{m-1} |x_2 - x_1| \sum_{j=0}^{k-m-1} C^j \\ &= C^{m-1} |x_2 - x_1| \frac{1 - C^{k-m}}{1 - C} < \frac{C^{m-1}}{1 - C} |x_2 - x_1| \\ &< \frac{(1 - C)\varepsilon}{|x_2 - x_1|} \cdot \frac{1}{1 - C} |x_2 - x_1| = \varepsilon. \end{split}$$

The Algebra of Convergent Series

Theorem 1.5.1

Let $\{x_k\}$ and $\{y_k\}$ be convergent sequences in \mathbb{R} and $\lim_{k\to\infty} x_k = x_0$ and $\lim_{k\to\infty} y_k = y_0$.

- $\lim_{k \to \infty} (x_k + y_k) = x_0 + y_0$ $\lim_{k \to \infty} x_k y_k = x_0 y_0$

 - $\lim_{k\to\infty}\frac{y_k}{x_k}=\frac{y_0}{x_0} \text{ if } x_0\neq 0.$

Theorem 1.5.2

Let $\{x_k\}$ and $\{y_k\}$ be convergent sequences in \mathbb{R} and $\lim_{k\to\infty} x_k = x_0$. Then, if $r \in \mathbb{Q}$, then

$$\lim_{k\to\infty} x_k^r = x_0^r.$$

Nevertheless, we requre $x_0 \neq 0$ if r < 0.

Cardinality 1.6

Definition 1.6.1: Dense Set

We say a subset S of T is dense in T if every neighborhood of any point $x \in T$ contains points of S.

Theorem 1.6.1

- \mathbb{N} , \mathbb{Z} , and \mathbb{Q} are countably infinite.
- \mathbb{R} is uncountable.
- \mathbb{Q} is dense in \mathbb{R} .

Chapter 2

Euclidean Spaces

2.1 Euclidean *n*-Space

Definition 2.1.1: Inner Product

The inner product of two vectors $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ in \mathbb{R}^n is

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{j=1}^{n} x_j y_j.$$

Theorem 2.1.1

If \mathbf{x} , \mathbf{y} , and \mathbf{z} are arbitrary vectors in \mathbb{R}^n and if a and b are real numbers, then the following hold:

(i) The inner product is additive in both its variables:

$$\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$$

 $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{x}, \mathbf{z} \rangle$

- (ii) The inner product is *symmetric*: $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$.
- (iii) The inner product is homogeneous in both its variables: $\langle a\mathbf{x}, b\mathbf{y} \rangle = ab\langle \mathbf{x}, \mathbf{y} \rangle$.

Definition 2.1.2: Euclidean Norm

The *Euclidean norm* of a vector \mathbf{x} in \mathbb{R}^n is

$$||\mathbf{x}|| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}.$$

Theorem 2.1.2 The Cauchy-Schwarz Inequality

If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, then

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||$$
.

Proof. For any $t \in \mathbb{R}$, $0 \le ||t\mathbf{x} + \mathbf{y}||^2 = ||\mathbf{x}||^2 t^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle t + ||\mathbf{y}||^2$. Thus, the discriminant $|\langle \mathbf{x}, \mathbf{y} \rangle|^2 - ||\mathbf{x}||^2 ||\mathbf{y}||^2$ is nonpositive.

Theorem 2.1.3

For vectors **x** and **y** in \mathbb{R}^n and any $c \in \mathbb{R}$, the Euclidean norm has the following proper-

ties.

- (i) $\|\mathbf{x}\| \ge 0$; $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$. (Positive Definiteness)
- (ii) $||c\mathbf{x}|| = |c| \cdot ||\mathbf{x}||$. (Absolute Homogeneity)
- (iii) $||x + y|| \le ||x|| + ||y||$. (Subadditivity)

Proof of (iii).

$$0 \le ||\mathbf{x} + \mathbf{y}||^2 = ||\mathbf{x}||^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle + ||\mathbf{y}||^2$$

$$\le ||\mathbf{x}||^2 + 2||\mathbf{x}|| ||\mathbf{y}|| + ||\mathbf{y}||^2 = (||\mathbf{x}|| + ||\mathbf{y}||)^2$$

Definition 2.1.3: Norm

A *norm* on \mathbb{R}^n is any function $n: \mathbb{R}^n \to \mathbb{R}$ that is positive definite, absolutely homogeneous, and subadditive.

Definition 2.1.4: Metric

A *metric* on \mathbb{R}^n is a function from $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ having the following properties.

- (i) $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $d(\mathbf{x}, \mathbf{y}) \ge 0$; $d(\mathbf{x}, \mathbf{y}) = 0 \iff \mathbf{x} = \mathbf{y}$. (Positive Definiteness)
- (ii) $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{y})$. (Symmetry)
- (iii) $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$, $d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$. (The Triangle Inequality)

Definition 2.1.5: Euclidean Metric

The *Euclidean metric* on \mathbb{R}^n is defined by

$$d(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}|| = \left[\sum_{j=1}^{n} (x_j - y_j)^2\right]^{1/2}.$$

Theorem 2.1.4

The Euclidean metric is a metric on \mathbb{R}^n .

Definition 2.1.6: Orthogonality

Two vectors **x** and **y** in \mathbb{R}^n are said to be *orthogonal* if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$.

Definition 2.1.7: Neighborhood and Deleted Neighborhood

A neighborhood $N(\mathbf{x}; r)$ or $\mathbf{x} \in \mathbb{R}^n$ with radius r is the set

$$N(\mathbf{x}; r) = \{ \mathbf{y} \in \mathbb{R}^n \mid ||\mathbf{x} - \mathbf{y}|| < r \}.$$

A deleted neighborhood $N'(\mathbf{x}, r)$ of \mathbf{x} is $N'(\mathbf{x}; r) = N(\mathbf{x}; r) \setminus \{\mathbf{x}\}.$

Definition 2.1.8: Limit Point

Let *S* be nonempty subset of \mathbb{R}^n . We say that **x** is a *limit point* of *S* if

$$\forall \varepsilon \in \mathbb{R}_+, N'(\mathbf{x}; \varepsilon) \cap S \neq \emptyset.$$

Theorem 2.1.5

 \mathbb{Q}^n is dense in \mathbb{R}^n .

Proof. Take any $\mathbf{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$ and $\varepsilon \in \mathbb{R}_+$. For each $j = 1, 2, \dots, n$, choose a rational $x_j \in N(y_j; \varepsilon/\sqrt{n})$ and form $\mathbf{x} \triangleq (x_1, x_2, \dots, x_n) \in \mathbb{Q}^n$. Then,

$$\|\mathbf{x} - \mathbf{y}\|^2 = \sum_{j=1}^n (x_j - y_j)^2 < n(\varepsilon/\sqrt{n})^2 = \varepsilon^2.$$

Therefore **y** is a limit point of \mathbb{Q}^n .

Definition 2.1.9: Boundedness

A subset *S* of \mathbb{R}^n is said to be *bounded* if

$$\exists M \in \mathbb{R}_+, \ \forall \mathbf{x} \in S, \ ||\mathbf{x}|| \leq M.$$

2.1.1 Sequences in \mathbb{R}^n

Definition 2.1.10: Cluster Point

 $\mathbf{c} \in \mathbb{R}^n$ is a *cluster point* of the sequence $\{\mathbf{x}_k\}$ if,

$$\forall (\varepsilon,k) \in \mathbb{R}_+ \times \mathbb{N}, \ \exists k_1 \in \mathbb{N}_{>k}, \ \mathbf{x}_{k_1} \in N(\mathbf{c};\varepsilon).$$

Definition 2.1.11: Convergence and Divergence of a Sequence

The sequnce $\{\mathbf{x}_k\}$ converges to \mathbf{x}_0 and \mathbf{x}_0 is the *limit* of $\{\mathbf{x}_k\}$ if,

$$\forall \varepsilon \in \mathbb{R}_+, \ \exists k_0 \in \mathbb{N}, \ \forall k \in \mathbb{N}_{\geq k_0}, \ \mathbf{x}_k \in N(\mathbf{x}_0; \varepsilon).$$

We write $\lim_{k \to \infty} \mathbf{x}_k = \mathbf{x}_0$. If there is no such \mathbf{x}_0 , then $\{\mathbf{x}_k\}$ diverges.

Theorem 2.1.6

Let $\{\mathbf{x}_k\} = (x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)})$ for each $k \in \mathbb{N}$. Let $\mathbf{x}_0 = (x_1^{(0)}, x_2^{(0)}, \dots, x_n^{(0)})$. The sequence $\{\mathbf{x}_k\}$ converges to \mathbf{x}_0 if and only if, for each $j \in [n]$, the sequence $\{x_j^{(k)}\}$ converges to $\{x_j^{(0)}\}$.

Proof. (\Rightarrow) Take any $\varepsilon \in \mathbb{R}_+$. There there is $k_0 \in \mathbb{N}$ such that

$$\forall k \in \mathbb{N}_{>k_0}, \mathbf{x}_k \in N(\mathbf{x}_0; \varepsilon).$$

Then, for each $j \in [n]$,

$$\left(x_{j}^{(k)}-x_{0}^{(k)}\right)^{2} \leq \sum_{i=1}^{n} \left(x_{i}^{(k)}-x_{0}^{(k)}\right)^{2} = \|\mathbf{x}_{k}-\mathbf{x}_{0}\|^{2} < \varepsilon.$$

(⇐) Take any $\varepsilon \in \mathbb{R}_+$. Then, for each $j \in [n]$, there is some $k_j \in \mathbb{N}$ such that

$$\forall k \in \mathbb{N}_{\geq k_j}, \ x_j^{(k)} \in N(x_0^{(k)}; \varepsilon/\sqrt{n}).$$
18

Then, for all natural number k not smaller than $\max_{i \in [n]} k_i$,

$$\|\mathbf{x}_k - \mathbf{x}_0\|^2 = \sum_{i=1}^n \left(x_j^{(k)} - x_0^{(k)}\right)^2 < n(\varepsilon/\sqrt{n})^2 = \varepsilon^2.$$

Definition 2.1.12: Cauchy Sequence

A sequence $\{\mathbf{x}_k\}$ in \mathbb{R}^n is called a *Cauchy sequence* if

$$\forall \varepsilon \in \mathbb{R}_+, \exists k_0 \in \mathbb{N}, \forall k, m \in \mathbb{N}_{\geq k_0}, \|\mathbf{x}_k - \mathbf{x}_m\| < \varepsilon.$$

Theorem 2.1.7 Cauchy's Completeness Theorem in \mathbb{R}^n

A sequence $\{\mathbf{x}_k\}$ in \mathbb{R}^n is Cauchy if and only if it converges. \mathbb{R}^n is Cauchy complete.

Proof. (\Leftarrow) The proof if similar to Theorem 1.4.1.

(⇒) Let some Cauchy sequence $\{\mathbf{x}_k\}$ in \mathbb{R}^n be given. Take any $\varepsilon \in \mathbb{R}_+$. There is some $k_0 \in \mathbb{N}$ such that for every natural number k and m not smaller than k_0 , $\|\mathbf{x}_k - \mathbf{x}_m\| < \varepsilon$. Then, for each $j \in [n]$, $|x_j^{(k)} - x_j^{(m)}| \le \|\mathbf{x}_k - \mathbf{x}_m\| < \varepsilon$, which implies each $\{x_j^{(k)}\}_{k \in \mathbb{N}}$ is Cauchy. By Theorem 1.4.4, $\{x_j^{(k)}\}_{j \in \mathbb{N}}$ converges to some number $x_j^{(0)}$. Then, Theorem 2.1.6 ensures that $\lim_{k \to \infty} \mathbf{x}_k = (x_1^{(0)}, x_2^{(0)}, \cdots, x_n^{(0)})$.

Theorem 2.1.8 The Generalized Bolzano-Weierstrass Theorem

Every bounded infinite set in \mathbb{R}^n has a limit point in \mathbb{R}^n .

Proof. Suppose that S is any bounded, infinite set in \mathbb{R}^n . Being bounded, S is contained in some n-cube $C(2M) = [-M, M]^n$ centered at **0**. Construct C_1, C_2, \cdots as following.

- $C_1 \triangleq C(2M) = [a_1^{(1)}, b_1^{(1)}] \times \cdots \times [a_n^{(1)}, b_n^{(1)}]$
 - Note that C_1 ∩ S = S is infinite.
- For each $k \in \mathbb{N}$, C_{k+1} is any cube of the form $[a_1^{(k+1)}, b_1^{(k+1)}] \times \cdots \times [a_n^{(k+1)}, b_n^{(k+1)}]$ where each $[a_j^{(k+1)}, b_j^{(k+1)}]$ is either $[a_j^{(k)}, (a_j^{(k)} + b_j^{(k)})/2]$ or $[(a_j^{(k)} + b_j^{(k)})/2, b_j^{(k)}]$ so that $C_{k+1} \cap S$ is infinite.
 - This is possible since there is at least one cube among 2^n possible choices that $C_{k+1} \cap S$ is infinite.

Then, the main diagonal d_k of C_k equals to $Mn^{1/2}/2^{k-2}$. Also, note that $C_k \supseteq C_{k+1}$ for all $k \in \mathbb{N}$. Now, we may construct a sequence $\{\mathbf{x}_k\}_{k\in\mathbb{N}}$ as following.

- \mathbf{x}_1 is any element in $C_1 \cap S$.
- For each $k \in \mathbb{N}$, \mathbf{x}_{k+1} is arbitrarily taken from $C_{k+1} \cap S \setminus \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$.

We claim that $\{\mathbf{x}_k\}_{k\in\mathbb{N}}$ is a Cauchy sequence. To show this, take any $\varepsilon\in\mathbb{R}_+$. There is some $k_0\in\mathbb{N}$ such that $d_{k_0}=Mn^{1/2}/2^{k_0-2}<\varepsilon$ by Theorem 1.1.1. Then, for all $k,m\in\mathbb{N}_{\geq k_0}, \|\mathbf{x}_k-\mathbf{x}_m\|\leq d_{k_0}<\varepsilon$. Therefore, since $\{\mathbf{x}_k\}$ is Cauchy, and therefore convergent by Theorem 2.1.7.

Clearly, $\mathbf{x}_0 \triangleq \lim_{k \to \infty} \mathbf{x}_k$ is a limit point of S since any deleted neighborhood $N'(\mathbf{x}_0)$ of \mathbf{x}_0 intersects infinitely many points with $\{\mathbf{x}_k\}_{k \in \mathbb{N}} \subseteq S$.

Definition 2.1.13: Subsequence

Let $\{\mathbf{x}_k\}$ be any sequence in \mathbb{R}^n . Choose any strictly monotone increasing sequence $k_1 < k_2 < k_3 < \cdots$ of natural numbers. For each $j \in \mathbb{N}$, let $\mathbf{y}_j \coloneqq \mathbf{x}_{k_j}$. The sequence $\{\mathbf{y}_j\}_{j=1}^{\infty}$ is called an *subsequence* of $\{\mathbf{x}_k\}$.

Theorem 2.1.9

The point **c** is a cluster point of $\{\mathbf{x}_k\}$ if and only if there exists a subsequence of $\{\mathbf{x}_k\}$ that converges to **c**.

Proof. Analogous to Theorem 1.3.7.

Theorem 2.1.10

Any bounded sequence $\{x_k\}$ has a cluster point.

Proof. Analogous to Theorem 1.3.8.

Corollary 2.1.1

If a sequence in \mathbb{R}^n has no cluster point, then the sequence is unbounded.

Corollary 2.1.2

Any bounded sequence in \mathbb{R}^n converges if and only if it has exactly one cluster point.

Corollary 2.1.3

A sequence $\{x_k\}$ diverges if and only if at least one of the following conditions holds.

- $\{\mathbf{x}_k\}$ has two or more cluster points.
- $\{\mathbf{x}_k\}$ is unbounded.

2.2 Open and Closed Sets

Definition 2.2.1: Interior/Boundary Point and Open/Closed Set

Let *S* be any subset of \mathbb{R}^n and let **x** be any point in \mathbb{R}^n .

- (i) **x** is an interior point of S if $\exists r \in \mathbb{R}_+$, $N(\mathbf{x}; r) \subseteq S$.
- (ii) If every point of *S* is an interior point of *S*, then *S* is said to be *open*.
- (iii) We call **x** is a boundary point of *S* if $\forall r \in \mathbb{R}_+$, $N(\mathbf{x}; r) \cap S \neq \emptyset \land N(\mathbf{x}; r) \setminus S \neq \emptyset$.
- (iv) If *S* continas all its boundary points, then *S* is said to be *closed*.

Definition 2.2.2

Let $S \subseteq \mathbb{R}^n$.

- (i) The *interior* of S, denoted \mathring{S} , is the set of all interior points of S.
- (ii) The boundary of S, denoted bd S, is the set of all boundary points of S.
- (iii) The *derived set* of S, denoted S', is the set of all limit points of S.
- (iv) The *closure* of S, denoted S, is the union of S and S'.
- (v) The *complement* of S, denoted S^c , is the set $\mathbb{R}^n \setminus S$.

Note:-

- For $S \subseteq \mathbb{R}^n$, $\mathring{S} \subseteq S \subseteq \overline{S}$.
- For $S \subseteq \mathbb{R}^n$, S is open if and only if $\mathring{S} = S$.
- For $S \subseteq \mathbb{R}^n$, \mathring{S} is open.

Theorem 2.2.1

The union of any collection of open sets in \mathbb{R}^n is open. The intersection of any finite collection of open sets in \mathbb{R}^n is also open.

Proof. To prove the first assertion, suppose that $\{U_{\alpha} \mid \alpha \in J\}$ is any collection of open sets in \mathbb{R}^n . Let $U \triangleq \bigcup_{\alpha \in J} U_{\alpha}$. Take any $\mathbf{x} \in U$. Then, there is some $\alpha_0 \in J$ such that $\mathbf{x} \in U_{\alpha_0}$. Since U_{α_0} is open, there is some neighborhood $N(\mathbf{x}; \varepsilon)$ such that $N(\mathbf{x}; \varepsilon) \subseteq U_{\alpha_0}$, which, in turn, $N(\mathbf{x}; \varepsilon) \subseteq U$. Therefore, \mathbf{x} is an interior point of U; U is open.

To prove the second assertion, let U be the intersection of any finite collection $\{U_1, U_2, \cdots, U_k\}$ of open sets and take any $\mathbf{x} \in U$. For each $j \in [k]$, since $\mathbf{x} \in U_j$, there is some $r_j \in \mathbb{R}_+$ such that $N(\mathbf{x}; r_j) \subseteq U_j$. Then, take $r_0 \triangleq \min_{j \in [k]} r_j \in \mathbb{R}_+$. Since, for all $j \in [k]$, $N(\mathbf{x}; r_0) \subseteq U_j$, it is implied that $N(\mathbf{x}; r_0) \subseteq U$. Therefore, \mathbf{x} is an interior point of U; U is open.

Note:-

Intersection of infinitely many open sets may fail to be open. For instance, consider

$$U_k \triangleq N(\mathbf{0}; 1/k),$$

for each $k \in \mathbb{N}$. Then, $\bigcap_{k \in \mathbb{N}} U_k = \{0\}$, which is not open.

Theorem 2.2.2

A set $C \subseteq \mathbb{R}^n$ is closed if and only if C^c is open.

Proof. (\Rightarrow) Take any $\mathbf{x} \in C^c$. Since C is closed and contains all of its boundary points, \mathbf{x} is not a boundary point of C. Therefore, there is some neighborhood $N(\mathbf{x})$ of \mathbf{x} such that $N(\mathbf{x}) \cap C = \emptyset$ or $N(\mathbf{x}) \cap C^c = \emptyset$. The second case is not possible since $\mathbf{x} \in N(\mathbf{x}) \cap C^c$. Therefore, $N(\mathbf{x}) \cap C = \emptyset$, which implies $N(\mathbf{x}) \subseteq C^c$; \mathbf{x} is an interior point of C^c . Therefore, C^c is open.

(⇐) Take any bounddary point \mathbf{x} of C. Assume $\mathbf{x} \in C^c$ for the sake of contradiction. Since C^c is open, there is a neighborhood $N(\mathbf{x})$ of \mathbf{x} such that $N(\mathbf{x}) \subseteq C^c$. However, that implies $N(\mathbf{x}) \cap C = \emptyset$, which contradicts \mathbf{x} is a boundary point of C. Therefore, $\mathbf{x} \in C$; C contains all of its boundary points.

Theorem 2.2.3

The intersection of any collection of closed sets in \mathbb{R}^n is closed. The union of any finite collection of closed sets in \mathbb{R}^n is also closed.

Proof. To prove the first assertion, let $\{C_{\alpha}\}_{\alpha \in J}$ be any collection of closed sets in \mathbb{R}^n . Then, each $C_{\alpha}{}^c$ is open by Theorem 2.2.2, and thus $\bigcup_{\alpha \in J} C_{\alpha}{}^c$ is open by Theorem 2.2.1. Its complement $(\bigcup_{\alpha \in J} C_{\alpha}{}^c)^c$ is closed by Theorem 2.2.2. And note that $(\bigcup_{\alpha \in J} C_{\alpha}{}^c)^c = \bigcap_{\alpha \in J} C_{\alpha}$ by De Morgan's law.

To prove the second assertion, let $\{C_1, C_2, \cdots, C_k\}$ be a finite collection of closed sets in \mathbb{R}^n . Then, each C_i^c is open by Theorem 2.2.2, and thus $\bigcap_{i=1}^k C_i^c$ is open by Theorem 2.2.1. Its complement $\left(\bigcap_{i=1}^k C_i^c\right)^c$ is closed by Theorem 2.2.2. And note that $\left(\bigcap_{i=1}^k C_i^c\right)^c = \bigcup_{i=1}^k C_i$ by De Morgan's law.

Theorem 2.2.4

 $C \subseteq \mathbb{R}^n$ is closed if and only if $C' \subseteq C$.

Proof. (\Rightarrow) Let $\mathbf{x} \in C'$. Assume $\mathbf{x} \in C^c$ for the sake of contradiction. Since C^c is open by Theorem 2.2.2, there is a neighborhood $N(\mathbf{x})$ of \mathbf{x} such that $N(\mathbf{x}) \subseteq C^c$. Such $N(\mathbf{x})$ satisfies $N(\mathbf{x}) \cap C = \emptyset$, which contradicts $\mathbf{x} \in C'$. Therefore, $\mathbf{x} \in C$; C contains all its limit points.

(⇐) It is enough to prove C^c is open by Theorem 2.2.2. Take any $\mathbf{x} \in C^c$. \mathbf{x} is not a limit point of C by the hypothesis. Therefore, there is a deleted neighborhood $N'(\mathbf{x})$ of \mathbf{x} such that $N'(\mathbf{x}) \cap C = \emptyset$. Then, $N'(\mathbf{x}) \subseteq C^c$, and thus $N(\mathbf{x}) \subseteq C^c$, which implies \mathbf{x} is an interior point of C^c . Thus, C^c is open.

Corollary 2.2.1

 $C \subseteq \mathbb{R}^n$ is closed if and only if $\overline{C} = C$.

Theorem 2.2.5

Let $S \subseteq \mathbb{R}^n$. The interior of S is the union of all open sets contained in S.

Proof. Let $\mathcal{U} \triangleq \{U \subseteq S \mid U \text{ is open in } \mathbb{R}^n\}.$

- (⊆) Let $\mathbf{x} \in \mathring{S}$. Then, there is an open neighborhood $N(\mathbf{x})$ of \mathbf{x} such that $N(\mathbf{x}) \subseteq S$. Noting that $\mathbf{x} \in N(\mathbf{x}) \in \mathcal{U}$, we conclude $\mathring{S} \subseteq \bigcup \mathcal{U}$.
- (⊇) Take any $\mathbf{x} \in \bigcup \mathcal{U}$. Then, there is an open set U in \mathbb{R}^n such that $x \in U \subseteq S$. There is a neighborhood $N(\mathbf{x})$ of \mathbf{x} such that $N(\mathbf{x}) \subseteq U$. Therefore, $N(\mathbf{x}) \subseteq S$; \mathbf{x} is an interior point of S. Thus; $\mathring{S} \supseteq \bigcup \mathcal{U}$.

Theorem 2.2.6

The closure of *S* is the intersection of all closed sets that contain *S*.

Proof. Let $C \triangleq \{C \subseteq \mathbb{R}^n \mid S \subseteq C \text{ and } C \text{ is closed}\}.$

- (⊆) Since $S \subseteq \bigcap \mathcal{C}$ is obvious, we only need to show $S' \subseteq \bigcap \mathcal{C}$. Let $\mathbf{x} \in S'$. Then, it is direct that $\forall C \in \mathcal{C}$, $\mathbf{x} \in C'$ since each $C \in \mathcal{C}$ satisfies $S \subseteq C$. As C is closed and thus $\mathbf{x} \in C' \subseteq C$ by Theorem 2.2.4, Consequently, $\mathbf{x} \in \bigcap \mathcal{C}$; $\overline{S} \subseteq \bigcap \mathcal{C}$.
- (\supseteq) It is enough to show that \overline{S} is closed, which, in turn, is sufficient to show that $(\overline{S})' \subseteq \overline{S}$ by Theorem 2.2.4. Let $\mathbf{y} \in (\overline{S})'$ and take any deleted neighborhood $N'(\mathbf{y}; \varepsilon)$ of \mathbf{y} . Then, there is some element \mathbf{z} in $N'(\mathbf{y}; \varepsilon) \cap \overline{S}$. Then, $\mathbf{z} \in S$ or $\mathbf{z} \in S'$.

If $\mathbf{z} \in S$, then $\mathbf{z} \in N'(\mathbf{y}; \varepsilon) \cap S \neq \emptyset$. If $\mathbf{z} \in S'$, take $\varepsilon' \triangleq \min\{\|\mathbf{z} - \mathbf{y}\|, \varepsilon - \|\mathbf{z} - \mathbf{y}\|\}$. Then, $N(\mathbf{z}; \varepsilon') \subseteq N'(\mathbf{y}; \varepsilon)$. Since $\mathbf{z} \in S'$, there is some \mathbf{x} in $N'(\mathbf{z}; \varepsilon') \cap S$. Thus, $\mathbf{x} \in N'(\mathbf{z}; \varepsilon') \cap S \subseteq N'(\mathbf{y}; \varepsilon) \cap S \neq \emptyset$.

In both cases, $N'(\mathbf{y}; \varepsilon) \cap S \neq \emptyset$. Thus, we proved that $\mathbf{y} \in S' \subseteq \overline{S}$; $(\overline{S})' \subseteq \overline{S}$.

Corollary 2.2.2

For any $S \subseteq \mathbb{R}^n$, the set \overline{S} is closed.

Corollary 2.2.3

For any $C \subseteq \mathbb{R}^n$, C is closed if and only if $\overline{C} = C$.

Theorem 2.2.7

Let $S \subseteq \mathbb{R}^n$.

- (i) $\mathring{\ddot{S}} = \mathring{S}$
- (ii) $\overline{(\overline{S})} = \overline{S}$
- (iii) $\mathring{S} \cap \text{bd} S = \emptyset$

- (iv) $\mathring{S} \cup \text{bd} S = \overline{S}$
- (v) $\overline{S} \cap \overline{S^c} = \text{bd} S$

Proof.

- (i) \mathring{S} is open and an open set is the interior of itself.
- (ii) \overline{S} is closed and a closed set is the closure of itself. (See Corollary 2.2.2 and Corollary 2.2.3).
- (iii) Suppose there is some $\mathbf{x} \in \mathring{S} \cap \mathrm{bd} S$. There is a neighborhood $N(\mathbf{x})$ of \mathbf{x} such that $N(\mathbf{x}) \subseteq S$. Then, $N(\mathbf{x}) \cap C^c = \emptyset$, which contradicts $\mathbf{x} \in \mathrm{bd} S$.
- (iv) (\subseteq) Since it is already $\mathring{S} \subseteq S \subseteq \overline{S}$, we only need to show $\operatorname{bd} S \subseteq \overline{S}$. Let $\mathbf{x} \in \operatorname{bd} S$. If $\mathbf{x} \in S$, then it is done; so suppose $\mathbf{x} \in S^c$. Take any neighborhood $N(\mathbf{x}; \varepsilon)$ of \mathbf{x} . Then, $N(\mathbf{x}; \varepsilon) \cap S \neq \emptyset$. Noting that $N'(\mathbf{x}; \varepsilon) \cap S = N(\mathbf{x}; \varepsilon) \cap S \neq \emptyset$, $\mathbf{x} \in S'$.
 - (⊇) Let $\mathbf{x} \in \overline{S}$. If $\mathbf{x} \in S$, then it is either "There is a neighborhood $N(\mathbf{x})$ of \mathbf{x} such that $N(\mathbf{x}) \subseteq S$." or "Every neighborhood $N(\mathbf{x})$ of \mathbf{x} satisfies $N(\mathbf{x}) \cap S^c \neq \emptyset$." The first case is $\mathbf{x} \in \mathring{S}$ and the latter case is $\mathbf{x} \in \mathring{S}$.

Now the only left case if $\mathbf{x} \in S' \setminus S$. Take any deleted neighborhood $N'(\mathbf{x})$ of \mathbf{x} . Then, $N(\mathbf{x}) \cap S = N'(\mathbf{x}) \cap S \neq \emptyset$. Also, $\mathbf{x} \in N(\mathbf{x}) \cap S^c$. Thus, $\mathbf{x} \in \mathrm{bd} S$.

(v) Using $\overline{S} = \mathring{S} \cup \text{bd } S$, we get

$$\overline{S} \cap \overline{S^{c}} = (\mathring{S} \cup \text{bd} S) \cap ((\mathring{S^{c}}) \cup \text{bd} S^{c})$$

$$= (\mathring{S} \cap (\mathring{S^{c}})) \cup (\mathring{S} \cap \text{bd} S^{c}) \cup (\text{bd} S \cap (\mathring{S^{c}})) \cup (\text{bd} S \cap \text{bd} S^{c})$$

 $\mathring{S} \cap (\mathring{S^c}) = \emptyset$ since $S \cap S^c = \emptyset$ and $\mathring{S} \subseteq S$ and $\mathring{S^c} \subseteq S^c$. bd $S = \text{bd } S^c$ is direct from their definitions. Thus,

$$\mathring{S} \cap \operatorname{bd} S^{c} = \mathring{S} \cap \operatorname{bd} S = \emptyset$$

$$\operatorname{bd} S \cap (\mathring{S}^{c}) = \operatorname{bd} S^{c} \cap (\mathring{S}^{c}) = \emptyset$$

by (iv). Therefore, $\overline{S} \cap \overline{S^c} = \operatorname{bd} S \cap \operatorname{bd} S^c = \operatorname{bd} S$.

Definition 2.2.3: Diameter

Let $\emptyset \neq S \subseteq \mathbb{R}^n$ be a bounded set. The *diameter* of *S* is defined to be

$$d(S) \triangleq \sup\{ \|\mathbf{x} - \mathbf{y}\| \mid \mathbf{x}, \mathbf{y} \in S \}.$$

Definition 2.2.4: Distance

Let $\emptyset \neq S \subseteq \mathbb{R}^n$ and $\mathbf{x} \in \mathbb{R}^n$. The distance from \mathbf{x} to S is defined to be

$$d(\mathbf{x}, S) \triangleq \inf\{\|\mathbf{x} - \mathbf{y}\| \mid \mathbf{y} \in S\}.$$

Exercise 2.2.1

Let *S* be a nonempty set in \mathbb{R}^n and let **x** be a point of \mathbb{R}^n .

- (i) $d(\mathbf{x}, S) = 0$ if and only if $\mathbf{x} \in \overline{S}$.
- (ii) *S* is closed if and only if $d(\mathbf{x}, S) > 0$ for every $\mathbf{x} \in S^c$.
- (iii) If S is closed, then there exists $\mathbf{y}_0 \in S$ such that $d(\mathbf{x}, S) = ||\mathbf{x} \mathbf{y}_0||$.
- (iv) If S is open and if $\mathbf{x} \in S^c$, then there exists no $\mathbf{y} \in S$ such that $d(\mathbf{x}, S) = \|\mathbf{x} \mathbf{y}\|$.

Solution:

- (i) (\Rightarrow) We shall show that if such **x** is not in *S*, then it is in *S'*. So, suppose **x** \notin *S*. By Theorem 1.1.4, for any $\varepsilon \in \mathbb{R}_+$, there is some **y** \in *S* such that $0 \le ||\mathbf{x} \mathbf{y}|| < \varepsilon$. Since $\mathbf{x} \notin S$, $\mathbf{x} \ne \mathbf{y}$, and thus $\mathbf{y} \in N'(\mathbf{x}; \varepsilon) \cap S$, implying **x** is a limit point of *S*.
 - (⇐) Conversely, if $\mathbf{x} \in S' \setminus S$, then for all $\varepsilon \in \mathbb{R}_+$, there is some $\mathbf{z} \in S$ such that $0 < \|\mathbf{x} \mathbf{z}\| < \varepsilon$. Therefore, $0 \le d(\mathbf{x}, S) < \varepsilon$. Since ε is arbitrary, $d(\mathbf{x}, S) = 0$. \checkmark
- (ii) (\Rightarrow) $d(\mathbf{x}, S) = 0$ if and only if $\mathbf{x} \in \overline{S} = S$. Therefore, $d(\mathbf{x}, S) > 0$ if and only if $\mathbf{x} \in S^c$. (\Leftarrow) For every $\mathbf{x} \in S^c$, $\mathbf{x} \notin \overline{S}$ by (i). Thus, if $\mathbf{x} \in \overline{S}$, then $\mathbf{x} \in S$, or, $\overline{S} \subseteq S$. S is therefore closed. \checkmark
- (iii) If *S* is finite, then we can easily see $d(\mathbf{x}, S) = \min\{ ||\mathbf{x} \mathbf{y}|| | \mathbf{y} \in S \}$. Therefore, now suppose *S* is infinite. Let $\{\varepsilon_k\}_{k \in \mathbb{N}}$ be a sequence defined by $\varepsilon_k = 1/k$ for each $k \in \mathbb{N}$. By Theorem 1.1.4, for each $k \in \mathbb{N}$, we can find $\mathbf{y}_k \in S$ that satisfies

$$d(\mathbf{x}, S) \leq ||\mathbf{x} - \mathbf{y}_k|| < d(\mathbf{x}, S) + \varepsilon_k$$

If the set $\{\mathbf{y}_k \mid k \in \mathbb{N}\}$ is finite, then there must be some \mathbf{y}_k such that $\|\mathbf{x} - \mathbf{y}_k\| = d(\mathbf{x}, S)$, and we are done.

Suppose $\{\mathbf{y}_k \mid k \in \mathbb{N}\}$ is infinite. Since the set is also bounded $(\|x-y_k\| < d(\mathbf{x},S) + \varepsilon_1$ for each $k \in \mathbb{N}$), by Theorem 2.1.8, there is a convergent subsequence $\{\mathbf{y}_{k_j}\}_{j\in\mathbb{N}}$ of $\{\mathbf{y}_k\}_{k\in\mathbb{N}}$. Let $\mathbf{y}_0 \triangleq \lim_{j\to\infty} \mathbf{y}_{k_j}$. Since

$$d(\mathbf{x}, S) \le ||\mathbf{x} - \mathbf{y}_{k_i}|| < d(\mathbf{x}, S) + \varepsilon_{k_i}$$

still holds, it follows that $\|\mathbf{x} - \mathbf{y}_0\| = d(\mathbf{x}, S)$ by Theorem 1.3.5.

 $\mathbf{y}_0 \in S$ since S is closed and $\mathbf{y}_0 \in S$ is a limit point of S. \checkmark

(iv) Suppose there is some $\mathbf{y} \in S$ such that $d(\mathbf{x}, S) = \|\mathbf{x} - \mathbf{y}\|$. $\|\mathbf{x} - \mathbf{y}\| > 0$ since $\mathbf{x} \neq \mathbf{y}$. Since S is open, there is some neighborhood $N(\mathbf{y}; r_0)$ of \mathbf{y} such that $N(\mathbf{y}; r_0) \subseteq S$. It must be $r_0 \leq \|\mathbf{x} - \mathbf{y}\|$. Let

$$\mathbf{z} \triangleq \mathbf{y} + \frac{r_0}{2} \cdot \frac{\mathbf{x} - \mathbf{y}}{\|\mathbf{x} - \mathbf{y}\|}$$

Then,

$$\|\mathbf{z} - \mathbf{y}\| = \frac{r_0}{2} < r_0,$$

thus $\mathbf{z} \in N(\mathbf{y}; r_0) \subseteq S$. However,

$$\|\mathbf{z} - \mathbf{y}\| = \left|1 - \frac{r_0}{2\|\mathbf{x} - \mathbf{y}\|}\right| \|\mathbf{x} - \mathbf{y}\| < \|\mathbf{x} - \mathbf{y}\|,$$

contradicting the minimality of $\|\mathbf{x} - \mathbf{y}\|$, #. \checkmark

Exercise 2.2.2

Let *S* be a nonempty set in \mathbb{R}^n . Then, $d(S) = d(\overline{S})$.

Solution: Since $S \subseteq \overline{S}$, $d(S) \le d(\overline{S})$ is direct.

To prove $d(S) = d(\overline{S})$, take any $\varepsilon \in \mathbb{R}_+$. Let **x** and **y** be any point in \overline{S} . Then, each of $S \cap N(\mathbf{x}; \varepsilon/2)$ and $S \cap N(\mathbf{y}; \varepsilon/2)$ is nonempty. Thus, we take **x**' and **y**' from each set. Then,

$$||\mathbf{x} - \mathbf{y}|| \le ||\mathbf{x} - \mathbf{x}'|| + ||\mathbf{x}' - \mathbf{y}'|| + ||\mathbf{y}' - \mathbf{y}||$$
$$< \varepsilon/2 + d(S) + \varepsilon/2 = d(S) + \varepsilon$$

Therefore, $d(S) + \varepsilon$ is an upper bound of $\{ ||\mathbf{x} - \mathbf{y}|| \mid \mathbf{x}, \mathbf{y} \in \overline{S} \}$. Thus, $d(S) \le d(\overline{S}) \le d(S) + \varepsilon$. Since ε was arbitrary, we conclude $d(S) = d(\overline{S})$.

2.3 Completeness

Definition 2.3.1: Nested Sets

A sequence $\{S_k\}$ of sets in \mathbb{R}^n such that $S_k \supset S_{k+1}$ for each $k \in \mathbb{N}$ is said to be *nested*.

Theorem 2.3.1 Cantor's Nested Interval Theorem

For each $k \in \mathbb{N}$, let $I_k = [a_k, b_k]$ with $a_k < b_k$. Suppose that $\{I_k\}_{k \in \mathbb{N}}$ is a nested sequence in \mathbb{R} . Then

$$\bigcap_{k=1}^{\infty} I_k = [\alpha, \beta]$$

where $\alpha = \sup\{a_k \mid k \in \mathbb{N}\}\$ and $\beta = \inf\{b_k \mid k \in \mathbb{N}\}\$.

Proof. Let $A \triangleq \{a_k \mid k \in \mathbb{N}\}$ and $B \triangleq \{b_k \mid k \in \mathbb{N}\}$. Then, A is bounded above by any b_k and B is bounded below by any a_k . Thus, by Theorem 1.1.2, $\alpha = \sup A$ and $\beta = \sup B$ exist.

Any a_k is a lower bound of B, therefore $a_k \leq \beta$ for each $k \in \mathbb{N}$, which implies β is an upper bound of A. Hence $\alpha \leq \beta$.

To prove $\bigcap_{k=1}^{\infty} I_k \supseteq [\alpha, \beta]$, take any $x \in [\alpha, \beta]$. Then, for each $k \in \mathbb{N}$, $a_k \le \alpha \le x \le \beta \le b_k$, which means $x \in I_k$. Thus, $[\alpha, \beta] \subseteq \bigcap_{k=1}^{\infty} I_k$. Now, to prove the reverse containment, take any $x \in \bigcap_{k=1}^{\infty} I_k$. This means $\forall k \in \mathbb{N}$, $a_k \le x \le b_k$; x is an upper bound of A and is a lower bound of B at the same time. Therefore, $\alpha \le x \le \beta$, hence $\bigcap_{k=1}^{\infty} I_k \subseteq [\alpha, \beta]$.

Another Proof. Since the sequences $\{a_k\}$ and $\{b_k\}$ are bounded and monotone, there are limits $\alpha = \lim_{k \to \infty} a_k$ and $\beta = \lim_{k \to \infty} b_k$ by Theorem 1.3.4. By Theorem 1.3.6, $\alpha \le \beta$.

Since $a_k \le \alpha \le \beta \le b_k$ for each $k \in \mathbb{N}$, $[a, b] \subseteq \bigcap_{k=1}^n I_k$.

Now, take any $x \in \bigcap_{k=1}^{\infty} I_k$. Then, for all $k \in \mathbb{N}$, $a_k \le x \le b_k$. If it were $\alpha > x$, there is some $k_0 \in \mathbb{N}$ such that $a_{k_0} > x$. It is similar for the case when $\beta < x$. Therefore, $\alpha \le x \le \beta$. We have proven that $\bigcap_{k=1}^{\infty} I_k \subseteq [\alpha, \beta]$.

Corollary 2.3.1

If, in the notation of the previous theorem, $\lim_{k\to\infty}(b_k-a_k)=0$, then $\bigcap_{k=1}^{\infty}I_k$ is a singleton.

Proof. Take any $\varepsilon \in \mathbb{R}_+$. Then, there is some $k_0 \in \mathbb{N}$ such that $b_{k_0} - a_{k_0} < \varepsilon$.

$$0 \leq \beta - \alpha \leq b_{k_0} - a_{k_0} < \varepsilon$$

holds. This implies that $0 \le \beta - \alpha < \varepsilon$ for arbitrary $\varepsilon \in \mathbb{R}_+$; therfore $\alpha = \beta$.

Theorem 2.3.2 Cartor's Criterion

If $\{C_k\}$ is a nested sequence of closed, bounded, nonempty subsets of \mathbb{R}^n , then

$$\bigcap_{k=1}^{\infty} C_k \neq \emptyset.$$

Furthermore, if $\lim_{k\to\infty} d(C_k) = 0$, then $\bigcap_{k=1}^{\infty} C_k$ is a singleton.

Proof. If any of C_k is finite, it is trivial. So, we suppose every C_k is infinite. Construct a sequence $\{\mathbf{x}_k\}$ of points in \mathbb{R}^n as following.

- Take any \mathbf{x}_1 in C_1 .
- For each $k \in \mathbb{N}$, take any \mathbf{x}_{k+1} in $C_{k+1} \setminus {\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k}$.

Since $S \subseteq C_1$ is bounded and contains infinitely many points, by Theorem 2.1.8, there is a limit point \mathbf{x}_0 of S in \mathbb{R}^n . We now claim that $\mathbf{x}_0 \in \bigcap_{k=1}^{\infty} C_k$.

Fix any $k \in \mathbb{N}$ and choose any deleted neighborhood $N'(\mathbf{x}_0)$ of \mathbf{x}_0 . Since $N'(\mathbf{x}_0) \cap S$ is infinite, there is some $k_1 \in \mathbb{N}_{>k}$ such that $\mathbf{x}_{k_1} \in N'(\mathbf{x}_0)$. By the construction, $\mathbf{x}_{k_1} \in C_{k_1} \subseteq C_k$. This shows that every deleted neighborhood of \mathbf{x}_0 contains a point in C_k ; $\mathbf{x}_0 \in C_k'$. As each C_k is closed, $\mathbf{x}_0 \in C_k$, and thus $\mathbf{x}_0 \in \bigcap_{k=1}^{\infty} C_k$.

Suppose, in addition, $\lim_{k\to\infty} d(C_k) = 0$. Assume $\bigcap_{k=1}^{\infty} C_k$ has two distinct points \mathbf{x} and \mathbf{y} for the sake of contradiction. Choose any $\varepsilon \in (0, \|\mathbf{x} - \mathbf{y}\|)$ and then there is some $k \in \mathbb{N}$ with $d(C_k) < \varepsilon$. Nonetheless, $\varepsilon < \|\mathbf{x} - \mathbf{y}\| \le d(C_k) < \varepsilon$, #.

Theorem 2.3.3 Cantor's Criterion in \mathbb{R}^n implies Cantor's Criterion in \mathbb{R} Cantor's criterion in \mathbb{R}^n implies Cantor's criterion also holds in \mathbb{R} .

Proof. $\mathbb{R} \times \{0\} \times \cdots \times \{0\}$ is a closed subset of \mathbb{R}^n .

Theorem 2.3.4

Cantor's criterion in $\mathbb R$ and Archimedes' principle implies the existence of supremum of any bounded above nonempty subset of $\mathbb R$.

Proof. Let *S* be a nonempty, bounded above set in \mathbb{R} . Let *B* denote the set of upper bounds of *S* and let $A = B^c$. Since $x - 1 \in A$ for all $x \in S$, $A \neq \emptyset$.

We first show that for all $a \in A$ and $b \in B$, a < b. If otherwise, i.e., $a \ge b$, $x \le b \le a$ for each $x \in S$, which implies $a \in B$, which is a contradiction.

Moreover, $S \cap [a, b] \neq \emptyset$ for each $a \in A$ and $b \in B$. Assume $S \cap [a, b] = \emptyset$ for the sake of contradiction. Since $S \cap (b, \infty) = \emptyset$ as b is an upper bound of S, then it follows $S \subseteq (-\infty, a)$, which implies a is an upper bound of S, which is a contradiction.

Construct a nested sequence $\{[a_k, b_k]\}_{k \in \mathbb{N}}$ of closed interval of which each a_k is in A and b_k is in B.

- Take any a_1 in A and b_1 in B.
- For each $k \in \mathbb{N}$, if $(a_k + b_k)/2 \in A$, then let $a_{k+1} \triangleq (a_k + b_k)/2$ and $b_{k+1} \triangleq b_k$. If $(a_k + b_k)/2 \in B$, then let $a_{k+1} \triangleq a_k$ and $b_{k+1} \triangleq (a_k + b_k)/2$.

Then it is immediate that $\lim_{k\to\infty}(b_k-a_k)=\lim_{k\to\infty}(b_k-a_1)=0$. Therefore, by Cantor's criterion in \mathbb{R} , $\bigcap_{k=1}^{\infty}[a_k,b_k]=\{x_0\}$ for some $x_0\in\mathbb{R}$.

We now show that x_0 is an upper bound of S. Assume not for the sake of contradiction, that is, there is some $x \in S$ such that $x > x_0$. Then, we may find some $k \in \mathbb{N}$ such that $b_k - a_k < x - x_0$. Then it follows $b_k - x_0 \le b_k - a_k < x - x_0$, and therefore $b_k < x_0$. This contradicts that b_k is an upper bound of S. Thus, $x_0 \in B$.

We now claim that x_0 is the least upper bound. Assume to the contrary that there is some $b \in B$ such that $b < x_0$. Then, we may find some $k \in \mathbb{N}$ such that $b_k - a_k < x_0 - b$. It follows $x_0 - a_k \le b_k - a_k < x_0 - b$, and therefore $b < a_k$. This contradicts that $a_k \in A$.

Theorem 2.3.5

Assuming that Archimedes' principle holds in \mathbb{R} , the following are equivalent.

- (i) Eery nonempty supset in \mathbb{R} which is bounded above has a supremum in \mathbb{R} .
- (ii) Every bounded monotone sequence in \mathbb{R} converges.
- (iii) \mathbb{R} has Bolzano–Weierstrass property.
- (iv) \mathbb{R} is Cauchy complete.

- (v) \mathbb{R}^n is Cauchy complete.
- (vi) \mathbb{R}^n has Bolzano–Weierstrass property.
- (vii) Cantor's criterion holds in \mathbb{R}^n .
- (viii) Cantor's criterion holds in \mathbb{R} .

Proof.

Definition 2.3.2: Completeness

When the word *complete* is applied to \mathbb{R}^n , it is assumed that it means any of these statements:

- the existence of least upper bounds in \mathbb{R} ,
- the Monotone Convergence theorem in \mathbb{R}^n ,
- Cantor's criterion,
- the Bolzano-Weierstrass property, or
- Cauchy completeness.

2.4 Relative Topology and Connectedness

Definition 2.4.1: Relatively Open and Relatively Closed Set

A set *S* is said to be *relatively open* in *X* if there exists an open set *U* in \mathbb{R}^n such that $S = U \cap X$. Likewise, a set *S* is said to be *relatively closed* if there exists a closed set *C* in \mathbb{R}^n such that $S = C \cap X$.

Note:-

Every relatively open set in X is open in \mathbb{R}^n if and only if X is open in \mathbb{R}^n . Every relatively closed set in X is closed in \mathbb{R}^n if and only if X is closed in \mathbb{R}^n .

Definition 2.4.2

- A relative neighborhood of \mathbf{x} in X is $N(\mathbf{x}; r) \cap X$. A deleted neighborhood is $N'(\mathbf{x}; r) \cap X$.
- A sequence $\{\mathbf{x}_k\}$ in X converges in X if $\lim_{k\to\infty} \mathbf{x}_k \in X$.
- The relative closure of *S* is $\overline{S} \cap X$.
- A point \mathbf{x}_0 in X is a relative limit point of S in X if \mathbf{x}_0 is a limit point of S.

Note:-

Depending on X, X may not be complete, i.e., a Cauchy sequence in X may not converge in X, an infinite and bounded subset of X may not have a limit point in X, or a nested sequence of nonempty, bounded, relatively closed subsets of X may have an empty intersection.

П

Lemma 2.4.1

Let *X* be a subset of \mathbb{R}^n and *C* be a subset in *X*. Then, *C* is relatively closed in *X* if and only if *C* is the relative closure of *C*.

Proof. The "if" part is trivial; we only prove the "only if" part.

- (⊆) It is direct since $C \subseteq \overline{C}$.
- (\supseteq) There exists a closed set \hat{C} in \mathbb{R}^n such that $C = \hat{C} \cap X$. Since $C \subseteq \hat{C}$ and \hat{C} is closed, $\overline{C} \subseteq \hat{C}$ by Theorem 2.2.6. Thus, $\overline{C} \cap X \subseteq \hat{C} \cap X = C$.

Lemma 2.4.2

Let $C \subseteq X \subseteq \mathbb{R}^n$. Then, C is relatively closed in X if and only if C contains all its relative limit points in X.

Proof. (⇒) If \mathbf{x}_0 is a relative limit point of C in X, then $\mathbf{x}_0 \in \overline{C} \cap X = C$. (Lemma 2.4.1) (⇐) It means $\overline{C} \cap X \subseteq C$. And it is already $C \subseteq \overline{C} \cap X$. Therefore, C is relatively closed in X by Lemma 2.4.1.

Theorem 2.4.1

Let *X* be any nonempty subset of \mathbb{R}^n . The following statements are equivalent.

- (i) Every Cauchy sequence $\{\mathbf{x}_k\}$ in X converges to a point of X. Thus X inherits Cauchy completeness from \mathbb{R}^n .
- (ii) If *S* is a bounded, infinite subset of *X*, then *S* has a limit point in *X*. Thus *X* inherits the Bolzano–Weierstrass property from \mathbb{R}^n .
- (iii) If $\{C_k\}$ is any nested sequence of nonempty, bounded, relatively closed subsets of X, then $\bigcap_{k=1}^{\infty} \neq \emptyset$. Furthermore, if $\lim_{k\to\infty} d(C_k) = 0$, then $\bigcap_{k=1}^{\infty}$ is a singleton. Thus X inherits Cantor's criterion from \mathbb{R}^n .

Proof. We shall first prove (i) \Longrightarrow (ii). Let S be any bounded and infinite subset of S. Since S is a bounded and infinite subset of \mathbb{R}^n at the same time, by Theorem 2.1.8, there is a limit point \mathbf{x}_0 of S in \mathbb{R}^n . We may construct a Cauchy sequence in S that converges to \mathbf{x}_0 as we did in the proof of Theorem 1.3.7. Thus, \mathbf{x}_0 , which the Cauchy sequence converges to, is in S by Cauchy completeness of X. Therefore, S has a limit point in X.

We next prove (ii) \implies (iii). Suppose that X has the Bolzano–Weierstrass property. Take any nested sequence $\{C_k\}$ be bounded, nonempty, and *relatively closed* subsets of X. We assume each C_k is infinite since it is trivial otherwise.

As in the proof of Theorem 2.3.2, recursively choose an infinite set $S = \{\mathbf{x}_k \mid k \in \mathbb{N}\}$ of distinct points such that $\mathbf{x}_k \in C_k$ for each $k \in \mathbb{N}$. By the assumption (ii), there is a limit point $\mathbf{x}_0 \in X$ of S. Since $\mathbf{x}_k \in C_k \subseteq \overline{C_k}$ for each $k \in \mathbb{N}$ and $\{\overline{C_k}\}_{k \in \mathbb{N}}$ is a nested sequence of bounded, nonempty, and closed subsets of \mathbb{R}^n , as in the proof of Theorem 2.3.2, $\mathbf{x}_0 \in \overline{C_k}$ for each k, also. As $C_k = \overline{C_k} \cap X$ for each $k \in \mathbb{N}$ by Lemma 2.4.1, $\mathbf{x}_0 \in C_k$ for each $k \in \mathbb{N}$. Thus, $\mathbf{x}_0 \in \bigcap_{k=1}^{\infty} C_k$.

If, in addition, $\lim_{k\to\infty} d(C_k) = 0$, then $\lim_{k\to\infty} d(\overline{C_k}) = 0$ by Exercise 2.2.2. By Theorem 2.3.2, $\bigcap_{k=1}^{\infty} \overline{C_k} = \{\mathbf{x}_0\}$. But since $C_k \subseteq \overline{C_k}$ for each $k \in \mathbb{N}$, $\emptyset \neq \bigcap_{k=1}^{\infty} C_k \subseteq \bigcap_{k=1}^{\infty} \overline{C_k} = \{\mathbf{x}_0\}$. Thus, (ii) implies Cantor's criterion holds in X.

Finally, it is left to prove (iii) \implies (i). Let $\{\mathbf{x}_k\}$ be a Cauchy sequence in X. We must show it converges to some point in X. By Cauchy completeness of \mathbb{R}^n , $\{\mathbf{x}_k\}$ converges to some point \mathbf{x}_0 in \mathbb{R}^n . We shall show that $\mathbf{x}_0 \in X$.

Let $\{\varepsilon_k\}_{k\in\mathbb{N}}$ be any sequence of positive numbers that converge monotonically to 0, e.g., $\varepsilon_k = 1/k$. Let $C_k \triangleq \overline{N(\mathbf{x}_0; \varepsilon_k)} \cap X$. Then $\{C_k\}$ is a nested sequence of bounded and relatively closed sets in X.

Take any $k_1 \in \mathbb{N}$. Since $\{\mathbf{x}_k\}$ converges to \mathbf{x}_0 , there is some $k_0 \in \mathbb{N}$ such that $\forall k \in \mathbb{N}_{\geq k_0}$, $\mathbf{x}_k \in N(\mathbf{x}_k; \varepsilon_{k_1})$. And such \mathbf{x}_k 's are also in $N(\mathbf{x}_k; \varepsilon_{k_1}) \cap X$; hence each C_k is nonempty.

Moreover, as $d(C_k) \le d(N(\mathbf{x}_0; \varepsilon_k)) = 2\varepsilon_k$, $\lim_{k\to\infty} d(C_k) = 0$. Thus, by assumption (ii), $\bigcap_{k=1}^{\infty} C_k$ is a singleton in X. Then,

$$\bigcap_{k=1}^{\infty} C_k = \bigcap_{k=1}^{\infty} \left(\overline{N(\mathbf{x}_0; \varepsilon_k)} \cap X \right) \subseteq \bigcap_{k=1}^{\infty} \overline{N(\mathbf{x}_0; \varepsilon_k)} = \{\mathbf{x}_0\}.$$

Therefore, $\mathbf{x}_0 \in \bigcap_{k=1}^{\infty} C_k \subseteq X$.

Definition 2.4.3: Completeness of a Subset of \mathbb{R}^n

Let *X* be a nonempty subset of \mathbb{R}^n . If any of the equivalent properties of Theorem 2.4.1 hold in the set *X*, then *X* is said to be *complete*.

Theorem 2.4.2

A nonempty subset X of \mathbb{R}^n is complete if and only if X is closed in \mathbb{R}^n .

Proof. (\Rightarrow) Let \mathbf{x}_0 be a limit point of X. Then, there is a Cauchy sequence $\{\mathbf{x}_k\}$ that converges to \mathbf{x}_0 . By Cauchy completeness of X, $\mathbf{x}_0 \in X$. Since we have proven that $X' \subseteq X$, X is closed by Theorem 2.2.4.

(⇐) Let S be any bounded, infinite set in X. By Bolzano–Weierstrass property of \mathbb{R}^n , S has a limit point \mathbf{x}_0 in \mathbb{R}^n . As X being closed, $\mathbf{x}_0 \in X$. Therefore, X has Bolzano–Weierstrass property; X is complete by Theorem 2.4.1.

Definition 2.4.4: Connectedness

A set S is disconnected if there are two open sets U, V such that

- (i) $U \cap V = \emptyset$,
- (ii) $S \subseteq U \cup V$, and
- (iii) $S \cap U \neq \emptyset$ and $S \cap V \neq \emptyset$.

S is *connected* if *S* is not disconected.

Example 2.4.1

- $[0,1) \cup (1,2]$ is disconnected. (U = (-1,1) and V = (1,3))
- \mathbb{Q} is disconnected. $(U = (-\infty, r) \text{ and } V = (r, \infty) \text{ where } r \in \mathbb{R} \setminus \mathbb{Q})$

Theorem 2.4.3

Any interval of the form of [a, b], (a, b], [a, b), or (a, b) is connected. \mathbb{R} itself is connected.

Proof. Let *I* be any of these sets. The only fact needed for this proof is that $(u, v) \subseteq I$ for any u < v in *I*.

Suppose *I* is disconnected. Then, there are disjoint open sets $U, V \subseteq \mathbb{R}$ such that $I \subseteq U \cup V$, $I \cap U \neq \emptyset$, and $I \cap V \neq \emptyset$. Take any $u \in I \cap U$ and $v \in I \cap V$. WLOG, u < v.

Construct sequences $\{u_k\}$ in $I \cap U$ and $\{v_k\}$ in $I \cap V$ as following.

• $u_1 \triangleq u$ and $v_1 \triangleq v$.

• For each
$$k \in \mathbb{N}$$
, $u_{k+1} \triangleq \begin{cases} \frac{u_k + v_k}{2} & \frac{u_k + v_k}{2} \in U \\ u_k & \text{otherwise} \end{cases}$ and $v_{k+1} \triangleq \begin{cases} \frac{u_k + v_k}{2} & \frac{u_k + v_k}{2} \in V \\ v_k & \text{otherwise} \end{cases}$.

Then, $\{u_k\}$ and $\{v_k\}$ are bounded, monotone sequences $(u_k < v \text{ and } v_k > u \text{ for each } k \in \mathbb{N})$; hence they converge by Theorem 1.3.4.

Since $(u_k + v_k)/2 \in I \subseteq U \cup V$ for each $k \in \mathbb{N}$ and $U \cap V = \emptyset$, $v_{k+1} - u_{k+1} = (v_k - u_k)/2 = (v - u)/2^k$. They converge to the same point x_0 since $\lim_{k \to \infty} (v_k - u_k) = 0$.

If x_0 is ever equal to u_k , then by openness of U, there is some neighborhood $N(x_0; \varepsilon)$ of x_0 such that $N(x_0; \varepsilon) \subseteq U$, which contradicts $\lim_{k \to \infty} v_k = x_0$. Thus, x_0 is never equal to u_k ; by the same reason, x_0 is never equal to v_k . We conclude x_0 is a relative limit point in I of both $I \cap U$ and $I \cap V$.

Since $I \cap U = I \cap V^c$ and V^c is closed, $I \cap U$ is closed and thus any relative limit point of $I \cap U$ in I, x_0 , in particular, is in $I \cap U$ by Lemma 2.4.2. Similarly, $x_0 \in I \cap V$, which contradicts $U \cap V = \emptyset$.

2.5 Compactness

Definition 2.5.1: Open Cover

Let *S* be any nonempty subset of \mathbb{R}^n . An *open cover* of *S* is any collection $\mathcal{C} = \{ U_\alpha \mid \alpha \in A \}$ of open sets such that $S \subseteq \bigcup_{\alpha \in A} U_\alpha$.

Definition 2.5.2: Compactness

A set S in \mathbb{R}^n is said to be *compact* if, for every open cover C of S, there exists a finite subcover, that is, there is some finite subset A_0 of A such that $S \subseteq \bigcup_{\alpha \in A_0} U_\alpha$.

Theorem 2.5.1 Heine-Borel

Let *S* be any closed and bounded set in \mathbb{R}^n . Then any *countable* open cover of *S* has a finite subcover.

Proof. Let $\{I_k \mid k \in \mathbb{N}\}$ be any open cover of S. Let $U_k \triangleq \bigcup_{j=1}^k I_j$, $C_k \triangleq U_k^c$, and $D_k \triangleq C_k \cap S$ for each $k \in \mathbb{N}$. Then, for each $k \in \mathbb{N}$, $U_k \subseteq U_{k+1}$, $C_k \supseteq C_{k+1}$, and $D_k \supseteq D_{k+1}$. Note that each U_k is open and thus C_k and D_k are closed.

Assume that every D_k is nonempty. Then, since $\{D_k\}$ is a nested sequence of bounded, nonempty, closed sets, by Cantor's criterion, there is some $x \in \bigcap_{k=1}^{\infty} D_k$. Then,

$$x \in \bigcap_{k=1}^{\infty} (S \cap C_k) = S \cap \left(\bigcap_{k=1}^{\infty} C_k\right) = S \cap \left(\bigcup_{k=1}^{\infty} U_k\right)^c = S \cap \left(\bigcup_{k=1}^{\infty} I_k\right)^c$$

Thus, x is a point in S that is not covered by $\{I_k \mid k \in \mathbb{N}, \}$, which is a contradiction.

Hence, some D_{k_0} is empty, and it means that $S \subseteq \bigcup_{j=1}^{k_0} I_k$.

Theorem 2.5.2 Lindelöf

Let *S* be any subset of \mathbb{R}^n . Then, every open cover of *S* has a countable subcover.

Proof. Since the set $\{N(\mathbf{y};r) \mid \mathbf{y} \in \mathbb{Q}^n, r \in \mathbb{Q}\}$ has the trivial one-to-one correspondence with \mathbb{Q}^{n+1} , the set is countable. Thus, we may index them as $\{N_k \mid k \in \mathbb{N}\}$.

Let $C = \{U_{\alpha} \mid \alpha \in A\}$ be any open cover of S. Take any $\mathbf{x} \in S$. Then there is some U_{α} such that $\mathbf{x} \in U_{\alpha}$. Since U_{α} is open, there is a neighborhood $N(\mathbf{x}; \varepsilon)$ such that $N(\mathbf{x}; \varepsilon) \subseteq U_{\alpha}$.

As \mathbb{Q}^n is dense in \mathbb{R}^n , there is some $\mathbf{y} \in N(\mathbf{x}; \varepsilon/2) \cap \mathbb{Q}^n$. As \mathbb{Q} is dense in \mathbb{R} , there is some $r \in (\|\mathbf{x} - \mathbf{y}\|, \varepsilon - \|\mathbf{x} - \mathbf{y}\|) \cap \mathbb{Q}$. Then, $\mathbf{x} \in N(\mathbf{y}; r) \subseteq N(\mathbf{x}; \varepsilon) \subseteq U_{\alpha}$. The neighborhood $N(\mathbf{y}; r)$ is in the set $\{N_k \mid k \in \mathbb{N}\}$.

Let us define $K(\mathbf{x}) \triangleq \{k \in \mathbb{N} \mid \mathbf{x} \in N_k \subseteq U_\alpha \text{ for some } U_\alpha \in \mathcal{C}\}$. Then, by Well-Ordering Property of \mathbb{N} , there is $k(\mathbf{x}) \triangleq \min K(\mathbf{x})$.

The collection $\{N_{k(\mathbf{x})} \mid \mathbf{x} \in S\}$ is an open cover of S and is countable since it is a subset of $\{N_k \mid k \in \mathbb{N}\}$.

By construction, for each $N_{k(\mathbf{x})}$, there is $U_{\alpha} \in \mathcal{C}$ such that $N_{k(\mathbf{x})} \subseteq U_{\alpha}$. Hence, if we denote one of such sets as $U_{k(\mathbf{x})}$, the collection $\{U_{k(\mathbf{x})} \mid \mathbf{x} \in S\}$ is a countable subcover of S.

Corollary 2.5.1

If $S \subseteq \mathbb{R}^n$ is closed and bounded, then S is compact.

Proof. Simply combine Theorem 2.5.2 and Theorem 2.5.1.

Theorem 2.5.3

If *S* is a compact subset of \mathbb{R}^n , then *S* is closed and bounded.

Proof. Suppose $S \subseteq \mathbb{R}^n$ is not closed. Then S has a limit point \mathbf{x}_0 that is not in S. Let $\{\varepsilon_k\}$ be any sequence of positive numbers that monotonically converges to 0. Define $U_k \triangleq \left[\overline{N(\mathbf{x}_0; \varepsilon_k)}\right]^c$.

Then $C \triangleq \{U_k \mid k \in \mathbb{N}\}\$ is an open cover of S. To prove this, take any $\mathbf{x} \in S$. There exists $k_0 \in \mathbb{N}$ such that $\varepsilon_k < ||\mathbf{x} - \mathbf{x}_k||$ for all $k \in \mathbb{N}_{\geq k_0}$. Thus, for $k \geq k_0$, $\mathbf{x}_0 \notin \overline{N(\mathbf{x}_0; \varepsilon_k)}$, i.e., $\mathbf{x}_0 \in U_k$.

We now claim there is no finite subcover. Take finitely many subsets $\{U_{k_1}, U_{k_2}, \cdots, U_{k_p}\}$ from the open cover. Let $k_0 = \max_{i \in [p]} k_i$. Note that $\bigcup_{i=1}^p U_{k_i} = U_{k_0}$. Take ε from $(0, \varepsilon_{k_0})$. Then, since \mathbf{x}_0 is a limit point of S, we may take $\mathbf{x} \in S \cap N'(\mathbf{x}_0; \varepsilon)$. Then, $\mathbf{x} \notin U_{k_0}$. Therefore, $\{U_{k_i}\}_{i \in [p]}$ does not cover S. Thus, we proved that a set which is not closed is not compact.

Now, suppose S is not bounded. Let $U_k = N(\mathbf{0}; k)$. Then, $S \subseteq \mathbb{R}^n = \bigcup_{k=1}^{\infty} U_k$; $\{U_k\}$ is an open cover of S.

Take finitely many subsets $\{U_{k_1}, U_{k_2}, \cdots, U_{k_p}\}$ from the open cover. Let $k_0 = \max_{i \in [p]} U_{k_i}$. Note that $\bigcup_{i=1}^p U_{k_i} = U_{k_0}$. Because S is unbounded, there is some $\mathbf{x} \in S$ such that $\|\mathbf{x}\| > k_0$; $\mathbf{x} \notin U_{k_0} = \bigcup_{i=1}^p U_{k_i}$. Thus, we proved that an unbounded set is not compact.

Note:-

A set $S \subseteq \mathbb{R}^n$ is complete if and only if S is closed. A set S is compact if and only if S is closed and bounded. Thus, compactness implies completeness, but not vice versa.

Theorem 2.5.4

Let *S* be a nonempty subset of \mathbb{R}^n . Then the following statements are equivalent.

- (i) *S* is closed and bounded.
- (ii) *S* is compact.
- (iii) Every infinite subset of *S* has a limit point which is in *S*.

Proof. We already know (i) is equivalent to (ii). Therefore, we only need to prove (i) and (iii) are equivalent. (i) \implies (iii) is direct since S is complete by Theorem 2.4.2. So we are left to prove (iii) implies (i).

Suppose *S* is not bounded. Then we may construct a sequence $\{\mathbf{x}_k\}$ in *S* as following.

- Take any $\mathbf{x}_1 \in S$.
- For each $k \in \mathbb{N}$, take $\mathbf{x}_{k+1} \in S \setminus N(\mathbf{0}; ||\mathbf{x}_k|| + 1)$.

The construction is valid since S is unbounded. Then, the set $\{\mathbf{x}_k \mid k \in \mathbb{N}\}$ is infinite but it does not have a limit point since $\|\mathbf{x}_k - \mathbf{x}_m\| \ge 1$ for each $\{k, m\} \subseteq \mathbb{N}$. Thus, (iii) implies S is bounded.

Now, we shall prove (iii) implies S is closed. Let \mathbf{x} be a limit point of S. Let $\{\varepsilon_k\}$ be a monotonic sequence of positive numbers that converges to 0. Construct a sequence $\{\mathbf{x}_k\}$ as following.

• For each $k \in \mathbb{N}$, take $\mathbf{x}_k \in S \cap N'(\mathbf{x}; \varepsilon_k)$.

The construction is valid since \mathbf{x} is a limit point of S. Then, the set $\{\mathbf{x}_k \mid k \in \mathbb{N}\}$ has the only limit point \mathbf{x} . Then, by (iii), $\mathbf{x} \in S$. We proved that S contains all its limit points, thus S is closed by Theorem 2.2.4.

Chapter 3

Continuity

3.1 Limit and Continuity

Definition 3.1.1: Limit of a Function

Let $f: S \to \mathbb{R}$ where $S \subseteq \mathbb{R}^n$. Let $\mathbf{c} \in \overline{S}$. We say f has limit L as \mathbf{x} approaches \mathbf{c} provided that, for every neighborhood N(L), there exists a deleted neighborhood $N'(\mathbf{c})$ such that

$$S \cap N'(\mathbf{c}) \subseteq f^{-1}(N(L)).$$

We write $\lim_{x\to c} f(x) = L$.

Note:-

Limit is unique if it exists.

Note:-

Note that $S \cap N'(\mathbf{c}; \delta) = \emptyset$ for sufficiently small δ if \mathbf{c} is an isolated point of S. This implies any real number can be a limit of f as \mathbf{x} approaches \mathbf{c} . Somehow, Douglass defined that $\lim_{\mathbf{x} \to \mathbf{c}} f(\mathbf{x}) = f(\mathbf{c})$ (since $\mathbf{c} \in S$ in this case). Actually I do not think we should define limit for isolated points.

Note:-

This definition of limit is equivalent to the normal ε - δ definition of limit, except that it defines a limit for isolated points.

Definition 3.1.2: Continuity

Let $f: S \to \mathbb{R}$ where $S \subseteq \mathbb{R}^n$. Let $\mathbf{c} \in S$. We say f is continuous at \mathbf{c} if

$$\lim_{\mathbf{x}\to\mathbf{c}} f(\mathbf{x}) = f(\mathbf{c}).$$

In other words, for every neighborhood $N(f(\mathbf{c}))$, there exists a neighborhood $N(\mathbf{c})$ such that

$$S \cap N(\mathbf{c}) \subseteq f^{-1}(N(f(\mathbf{c}))).$$

If f is continuous at every $\mathbf{c} \in S$, then f is said to be *continuous*.

Theorem 3.1.1

Let $f: S \to \mathbb{R}$ where $S \subseteq \mathbb{R}^n$. Let $\mathbf{c} \in \overline{S}$ where $\lim_{\mathbf{x} \to \mathbf{c}} f(\mathbf{c}) = L$ exists and. Then, f is locally bounded on some deleted neighborhood of \mathbf{c} , that is, there are $M, \delta \in \mathbb{R}_+$ such that

$$\mathbf{x} \in S \cap N'(\mathbf{c}; \delta) \Longrightarrow |f(\mathbf{x})| \leq M.$$

Proof. There exists $\delta \in \mathbb{R}_+$ such that $S \cap N'(\mathbf{c}; \delta) \subseteq f^{-1}(N(L; 1))$. Then, $|f(\mathbf{x})| \le |L| + 1$ if $\mathbf{x} \in S \cap N'(\mathbf{x}; \delta)$.

Theorem 3.1.2

Let $f: S \to \mathbb{R}$ where $S \subseteq \mathbb{R}^n$. Let $\mathbf{c} \in \overline{S}$ where $\lim_{\mathbf{x} \to \mathbf{c}} f(\mathbf{c}) = L$ exists and $L \neq 0$. Then, f is locally bounded away from 0 on some deleted neighborhood of \mathbf{c} , that is, there are $m, \delta \in \mathbb{R}_+$ such that

$$\mathbf{x} \in S \cap N'(\mathbf{c}; \delta) \Longrightarrow |f(\mathbf{x})| \ge m.$$

Proof. There exists $\delta \in \mathbb{R}_+$ such that $S \cap N'(\mathbf{c}; \delta) \subseteq f^{-1}(N(L; |L|/2))$. Then, $|f(\mathbf{x})| \ge |L|/2$ if $\mathbf{x} \in S \cap N'(\mathbf{x}; \delta)$. □

Theorem 3.1.3

Let $f_1: S \to \mathbb{R}$ and $f_2: S \to \mathbb{R}$ where $S \subseteq \mathbb{R}^n$. Let $\mathbf{c} \in \overline{S}$, and suppose $\lim_{\mathbf{x} \to \mathbf{c}} f_1(\mathbf{x}) = L_1$ and $\lim_{\mathbf{x} \to \mathbf{c}} f_2(\mathbf{x}) = L_2$. Then

- (i) $\lim_{\mathbf{x}\to\mathbf{c}} (f_1(\mathbf{x}) + f_2(\mathbf{x})) = L_1 + L_2$.
- (ii) For any $a \in \mathbb{R}$, $\lim_{\mathbf{x} \to \mathbf{c}} af(\mathbf{x}) = aL_1$.
- (iii) $\lim_{\mathbf{x}\to\mathbf{c}} f_1(\mathbf{x}) f_2(\mathbf{x}) = L_1 L_2$.
- (iv) $\lim_{\mathbf{x}\to\mathbf{c}} f_1(\mathbf{x})/f_2(\mathbf{x}) = L_1/L_2$ provided that $L_2 \neq 0$.

Proof. Proved in MAS102 (Calculus II).

Theorem 3.1.4 The Squeeze Play

Let \underline{f} , g, and h be three real-valued functions sharing a common domain $S \subseteq \mathbb{R}^n$. Let $\mathbf{c} \in \overline{C}$ where $\lim_{\mathbf{x} \to \mathbf{c}} f(\mathbf{x}) = \lim_{\mathbf{x} \to \mathbf{c}} h(\mathbf{x}) = L$ exist. Suppose also that, for some $\delta_0 \in \mathbb{R}_+$,

$$\mathbf{x} \in S \cap N'(\mathbf{c}; \delta_0) \implies f(\mathbf{x}) \leq g(\mathbf{x}) \leq h(\mathbf{x})$$

Then, $\lim_{\mathbf{x}\to\mathbf{c}} g(\mathbf{x}) = L$.

Proof. Proved in MAS102 (Calculus II).

Theorem 3.1.5 Limit is Order Preserving

Let f and g be two real-valued functions sharing a common domain $S \subseteq \mathbb{R}^n$. Let $\mathbf{c} \in \overline{C}$ where $\lim_{\mathbf{x} \to \mathbf{c}} f(\mathbf{x}) = L_1$ and $\lim_{\mathbf{x} \to \mathbf{c}} g(\mathbf{x}) = L_2$ exist. Suppose also that, for some $\delta_0 \in \mathbb{R}_+$,

$$\mathbf{x} \in S \cap N'(\mathbf{c}; \delta_0) \Longrightarrow f(\mathbf{x}) \leq g(\mathbf{x})$$

Then, $L_1 \leq L_2$.

Proof. Proved in MAS102 (Calculus II).

Theorem 3.1.6

Let S be a nonempty subset of \mathbb{R}^n , $\mathbf{c} \in S'$, and $f: S \to \mathbb{R}$. $\lim_{\mathbf{x} \to \mathbf{c}} f(\mathbf{x}) = L$ if and only if, for every Cauchy sequence $\{\mathbf x_k\}$ in $S\setminus\{\mathbf c\}$ such that $\lim_{k\to\infty}\mathbf x_k=\mathbf c$, it follows that $\lim_{k\to\infty} f(\mathbf{x}_k) = L.$

Proof. (\Rightarrow) Let $\{\mathbf{x}_k\}$ be any of such Cauchy sequences. Take any $\varepsilon \in \mathbb{R}_+$. By continuity, there exists $\delta \in \mathbb{R}_+$ such that $S \cap N'(\mathbf{c}; \delta) \subseteq f^{-1}(N(L; \varepsilon))$. On the other hand, by convergence, there exists $k_0 \in \mathbb{N}$ such that $\forall k \in \mathbb{N}$, $(k \ge k_0 \implies \mathbf{x}_k \in N(\mathbf{c}; \delta))$. Since $\mathbf{x}_k \ne \mathbf{c}$ for each $k \in \mathbb{N}$, we may say

$$\forall k \in \mathbb{N}, (k \ge k_0 \implies \mathbf{x}_k \in N'(\mathbf{c}; \delta) \implies \mathbf{x}_k \in f^{-1}(N(L; \varepsilon)) \implies f(\mathbf{x}_k) \in N(L; \varepsilon)).$$

Thus, $\lim_{k\to\infty} f(\mathbf{x}_k) = L$ holds.

- (⇐) Suppose it is not $\lim_{x\to c} f(x) = L$. Then, it is equivalent to say that, there is some neighborhood $N(L; \varepsilon_0)$ such that $S \cap N'(\mathbf{c}; \delta) \not\subseteq f^{-1}(N(L; \varepsilon_0))$ for every deleted neighborhood $N'(\mathbf{x}; \delta)$. Construct a sequence $\{\mathbf{x}_k\}$ in $S \setminus \{\mathbf{c}\}$ as following.
 - $\mathbf{x}_1 \in S \setminus \{\mathbf{c}\} \setminus f^{-1}(N(L; \varepsilon_0)).$

• For each $k \in \mathbb{N}$, $\mathbf{x}_{k+1} \in S \cap N'(\mathbf{x}; |\mathbf{x}_k - \mathbf{c}|/2) \setminus f^{-1}(N(L; \varepsilon_0))$. Then, $\lim_{k \to \infty} \mathbf{x}_k = \mathbf{c}$ indeed holds, but it is not $\lim_{k \to \infty} f(\mathbf{x}_k) = L$ since $f(\mathbf{x}_k) \notin (N(L; \varepsilon_0))$ for each $k \in \mathbb{N}$.

Theorem 3.1.7

Let S be a nonempty subset of \mathbb{R}^n , $\mathbf{c} \in S$, and $f: S \to \mathbb{R}$. f is continuous at \mathbf{c} if and only if, for every Cauchy sequence $\{\mathbf{x}_k\}$ in S such that $\lim_{k\to\infty}\mathbf{x}_k=\mathbf{c}$, it follows that $\lim_{k\to\infty} f(\mathbf{x}_k) = f(\mathbf{c}).$

Proof. (\Rightarrow) If at most finitely many \mathbf{x}_k are distinct from \mathbf{c} , then $\exists k_0 \in \mathbb{N}, \ \forall k \in \mathbb{N}_{\geq k_0}, \ \mathbf{x}_k = \mathbf{c}$; $\lim_{k\to\infty} f(\mathbf{x}_k) = \mathbf{c}$ is evident.

If there are infinitely many \mathbf{x}_k are distinct from \mathbf{c} , then we may extract a subsequence $\{\mathbf{x}_{\mathbf{k}_i}\}_{i\in\mathbb{N}}$ such that each \mathbf{x}_{k_i} is in $S\setminus\{c\}$. By Theorem 3.1.6, $\lim_{j\to\infty}f(\mathbf{x}_{k_i})=\mathbf{c}$. This implies $\lim_{k\to\infty} f(\mathbf{x}_k) = \mathbf{c}$, regardless of the number of \mathbf{x}_k 's equal to \mathbf{c} .

(\Leftarrow) If **c** ∈ S', then we may directly apply Theorem 3.1.6 since every Cauchy sequence in $S \setminus \{c\}$ is a Cauchy sequence in S.

If $\mathbf{c} \notin S'$, then \mathbf{c} is an isolated point. Then, $\lim_{\mathbf{x} \to \mathbf{c}} f(\mathbf{x}) = f(\mathbf{c})$ by definition.

Theorem 3.1.8

Let $S \subseteq \mathbb{R}^n$ and $f: S \to \mathbb{R}$. Let $\mathbf{c} = (c_1, \dots, c_n) \in \mathring{S}$. For $j = 1, 2, \dots, n$, let

$$g_j(t) = f(c_1, c_2, \dots, c_{j-1}, t, c_{j+1}, \dots, c_n).$$

- (i) If $\lim_{\mathbf{x}\to\mathbf{c}} f(\mathbf{x}) = L$, then, for each $j \in [n]$, $\lim_{t\to c_j} g_j(t) = L$.
- (ii) If f is continuous at c, then, for each $j \in [n]$, g_i is continuous at c_i and $\lim_{t\to c_i}g_i(t)=f(\mathbf{c}).$

Proof.

(i) Take any $j \in [n]$ and $\varepsilon \in \mathbb{R}_+$. By convergence, there exists $\delta_1 \in \mathbb{R}_+$ such that $S \cap$ $N'(\mathbf{c}; \delta_1) \subseteq f^{-1}(N(L; \varepsilon))$. Since $\mathbf{x} \in \mathring{S}$, there exists $\delta_2 \in \mathbb{R}_+$ such that $N(\mathbf{c}; \delta_2) \subseteq S$. Let $\delta \triangleq \min\{\delta_1, \delta_2\}$. Then, $N'(\mathbf{c}; \delta) \subseteq f^{-1}(N(L; \varepsilon))$ and $N(\mathbf{c}; \delta) \subseteq S$ hold. Hence, for any $t \in N'(c_i; \delta),$

$$g_j(t) = f(c_1, \dots, c_{j-1}, t, c_{j+1}, \dots, c_n) \in N(L; \varepsilon)$$
35

as $||(c_1, \dots, c_{j-1}, t, c_{j+1}, \dots, c_n) - \mathbf{c}|| = |t - c_j| < \delta$.

(ii) Since $\lim_{\mathbf{x}\to\mathbf{c}} f(\mathbf{x}) = f(\mathbf{c})$, by (a), for each $j \in [n]$, $\lim_{t\to c_j} g(t) = f(\mathbf{c}) = g(c_j)$.

Note:-

The converse of Theorem 3.1.8 is not true.

3.2 The Topological Description of Continuity

Theorem 3.2.1

A surjective function $f: S \to T$ where $S \subseteq \mathbb{R}^n$ and $T \subseteq \mathbb{R}$ is continuous if and only if $f^{-1}(U)$ is relatively open in S for every relatively open set U in T.

Proof. (\Rightarrow) Let U be a relatively open set in T and $\mathbf{c} \in f^{-1}(U)$. Since U is open and $f(\mathbf{c}) \in U$, there is a neighborhood $N(f(\mathbf{c}))$ such that $T \cap N(f(\mathbf{c})) \subseteq U$. By continuity, there is a neighborhood $N(\mathbf{c})$ such that $S \cap N(\mathbf{c}) \subseteq f^{-1}(N(f(\mathbf{c}))) \subseteq f^{-1}(U)$. Therefore, \mathbf{c} is a relative interior point of $f^{-1}(U)$. Since \mathbf{c} was arbitrary, $f^{-1}(U)$ is relatively open in S.

(⇐) Take any $\mathbf{c} \in S$ and a neighborhood $N(f(\mathbf{c}))$. Then, $f^{-1}(T \cap N(f(\mathbf{c})))$ is relatively open in S. Since $\mathbf{c} \in f^{-1}(T \cap N(f(\mathbf{c})))$, there is a neighborhood $N(\mathbf{c})$ such that $S \cap N(\mathbf{c}) \subseteq f^{-1}(N(f(\mathbf{c})))$.

Theorem 3.2.2

If *S* is a connected subset of \mathbb{R}^n and $f: S \to \mathbb{R}$ is continuous on *S*, then T = f(S) is also connected.

Proof. Suppose T is disconnected for the sake of contradiction. There exists two disjoint open sets $U, V \subseteq \mathbb{R}$ such that $T \subseteq U \cup V$, $T \cap U \neq \emptyset$, and $T \cap V \neq \emptyset$. Since $T \cap U$ and $T \cap V$ are relatively open in T, $U_1 = f^{-1}(T \cap U)$ and $V_1 = f^{-1}(T \cap V)$ are relatively open in S. Then, $S \subseteq U_1 \cup V_1 = S$, $U_1 \cap V_1 = \emptyset$, $S \cap U_1 \neq \emptyset$, and $S \cap V_1 \neq \emptyset$, which contradicts S is connected, #.

Theorem 3.2.3

If *S* is a compact subset of \mathbb{R}^n and $f: S \to \mathbb{R}$ is continuous on *S*, then T = f(S) is also compact.

Proof. Let $\{U_{\alpha}\}_{{\alpha}\in J}$ be an open cover of T. Then, for each ${\alpha}\in J$, $f^{-1}(U_{\alpha})$ is relatively open in S since U_{α} is open and f is continuous. Because

$$S = f^{-1}(T) = f^{-1}\left(\bigcup_{\alpha \in J} U_{\alpha}\right) = \bigcup_{\alpha \in J} f^{-1}(U_{\alpha}),$$

 $\{f^{-1}(U_a)\}_{a\in J}$ is a relative open cover of S. Since S is compact, there is a finite subcover $\{f^{-1}(U_a) \mid i \in [p], \alpha_i \in J\}$ of S. Then,

$$T = f(S) = f\left(\bigcup_{i=1}^p f^{-1}(U_{\alpha_i})\right) = \bigcup_{i=1}^p f\left(f^{-1}(U_{\alpha_i})\right) \subseteq \bigcup_{i=1}^p U_{\alpha_i},$$

implying $\{U_{\alpha_i}\}_{i=1}^p$ is a finite subcover of T.

Theorem 3.2.4

If *S* is a compact subset of \mathbb{R}^n and $f: S \to \mathbb{R}$ is continous on *S*, then *f* has a minimum and a maximum value on *S*.

Proof. Theorem 3.2.3 implies $T = f(S) \subseteq \mathbb{R}$ is compact, and thus bounded and closed. Thus, $m = \inf T = \min T$ and $M = \sup T = \max T$ exist.

Theorem 3.2.5 The Intermediate Value Theorem

If $f : [a, b] \to \mathbb{R}$ is continuous and c is any number between f(a) and f(b), then there exists an $x \in [a, b]$ such that f(x) = c.

Proof. Since [a, b] is connected and compact, Theorem 3.2.2 and Theorem 3.2.3 imply that f([a, b]) is connected and compact. Thus, f([a, b]) = [m, M] where

$$m = \min f([a, b]) \le \min\{f(a), f(b)\}\$$

and

$$M = \max f([a, b]) \ge \max\{f(a), f(b)\}.$$

This implies $c \in [m, M] = f([a, b])$, i.e., there exists $x \in [a, b]$ such that f(x) = c.

Theorem 3.2.6 The General Intermediate Value Theorem

If *S* is any connected and compact subset of \mathbb{R}^n and $f: S \to \mathbb{R}$ is continuous, if $f(\mathbf{x}_1)$ and $f(\mathbf{x}_2)$ are any two values of f on S, and if c is any number between them, then there exists a point $\mathbf{x} \in S$ such that $f(\mathbf{x}) = c$.

Proof. Since *S* is connected and compact, by Theorem 3.2.2 and Theorem 3.2.3, f(S) is an closed interval [m, M] as in the proof of Theorem 3.2.5. Since $m \le \min\{f(\mathbf{x}_1), f(\mathbf{x}_2)\}$ and $M \ge \max\{f(\mathbf{x}_1), f(\mathbf{x}_2)\}, c \in [m, M] = f(S)$, and thus $\exists \mathbf{x} \in S, f(\mathbf{x}) = c$.

3.2.1 The Composition of Continuous Functions

Theorem 3.2.7

Let $S \subseteq \mathbb{R}^n$, $f: S \to \mathbb{R}$, $f(S) \subseteq T \subseteq \mathbb{R}$, and $g: T \to \mathbb{R}$. If f is continuous at $\mathbf{c} \in S$ and if g is continuous at $f(\mathbf{c}) \in T$, then $g \circ f$ is continuous at \mathbf{c} .

Proof. Let $d = (g \circ f)(\mathbf{c})$. Take any neighborhood N(d) of d. By continuity of g at $f(\mathbf{c})$, there exists a neighborhood $N(f(\mathbf{c}))$ such that

$$T \cap N(f(\mathbf{c})) \subseteq g^{-1}(N(d)).$$

By the continuity of f at \mathbf{c} , there exists a neighborhood $N(\mathbf{c})$ such that

$$S \cap N(\mathbf{c}) \subseteq f^{-1}(N(f(\mathbf{c}))).$$

These imply $S \cap N(\mathbf{c}) \subseteq f^{-1}(g^{-1}(N(d))) = (g \circ f)^{-1}(N(d))$.

Corollary 3.2.1

Let $S \subseteq \mathbb{R}^n$, $f: S \to \mathbb{R}$, $f(S) \subseteq T \subseteq \mathbb{R}$, and $g: T \to \mathbb{R}$. If f and g are continuous, then

 $g \circ f$ is continuous.

Theorem 3.2.8

If $f : [a, b] \rightarrow [c, d]$ is strictly monotone, continuous function, then the inverse function f^{-1} is also strictly monotone, continuous, and bijective.

Proof. All are immediate except for the continuity. Denote f^{-1} by g. By Theorem 3.1.7, it suffices to prove that whenever a Cauchy sequence $\{y_k\}$ in f(S) converges to g(y) in S.

Choose any such sequence and let $x_k \triangleq g(y_k)$ for each $k \in \mathbb{N}$. Since g is bijective, $\{y_k \mid k \in \mathbb{N}\}$ is finite if and only if $\{x_k \mid k \in \mathbb{N}\}$ is finite. If they are finite, then $\{y_k\}$ is eventually g(y), and it is done.

If they are infinite, since domain and codomain are bounded and closed, by Theorem 1.2.3, $\{x_k \mid k \in \mathbb{N}\}$ has a limit point x. But since [a,b] is complete by Theorem 2.4.2, $x \in [a,b]$ by (ii) of Theorem 2.4.1. x is a cluster point of $\{x_k\}$, thus there is a subsequence $\{x_{k_j}\}$ of $\{x_k\}$ such that $\lim_{j\to\infty} x_{k_j} = x$ by Theorem 1.3.7. Now the continuity of f guarantees that

$$\lim_{j\to\infty}f(x_{k_j})=f(x).$$

At the same time, since $f(x_{k_j}) = y_{k_j}$, $\{f(x_{k_j})\}$ is a subsequence of $\{y_k\}$. As $\{y_k\}$ converges to y, we get

$$\lim_{j\to\infty}f(x_{k_j})=y.$$

By Theorem 1.3.1, f(x) = y, or x = g(y).

If there were another limit point x' of $\{x_k \mid k \in \mathbb{N}\}$, by the same procedure, we get x = g(y) = x'; x = x'; x is the unique limit point of the set. Thus, $\{x_k\}$ converges to x, i.e., $\{g(y_k)\}$ converges to g(y).

3.2.2 Limiting Behavior at Infinity

Definition 3.2.1: Function Space C(S) **and** $C_{\infty}(S)$

Let $S \neq \emptyset$ be a subset of \mathbb{R}^n .

- C(S) is the set of real-valued function on S which is continuous on S.
- $C_{\infty}(S)$ is the set of real-valued function on S which is bounded and continuous on S.

Note:-

In general, $C_{\infty}(S) \subseteq C(S)$. If $\emptyset \neq S \subseteq \mathbb{R}^n$ is compact, then $C(S) = C_{\infty}(S)$.

Definition 3.2.2: Neighborhood of ∞ **and** $-\infty$

In \mathbb{R} ,

- $N(\infty; M) \triangleq (M, \infty) = \{x \in \mathbb{R} \mid x > M\}$
- $N(-\infty, -M) \triangleq (-\infty, -M) = \{x \in \mathbb{R} \mid x < -M\}$

In \mathbb{R}^n ,

• $N(\infty; M) \triangleq \{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}|| > M \}$

Definition 3.2.3: Limit at Infinity

- (i) Let *S* be an unbounded set in \mathbb{R} . Let $f: S \to \mathbb{R}$.
 - We say f has limit L at ∞ if, for all $\varepsilon \in \mathbb{R}_+$, there exists $M \in \mathbb{R}_+$ such that $S \cap N(\infty; M) \subseteq f^{-1}(N(L; \varepsilon))$. We write $\lim_{x \to \infty} f(x) = L$.
 - We say f has limit L at $-\infty$ if, for all $\varepsilon \in \mathbb{R}_+$, there exists $M \in \mathbb{R}_+$ such that $S \cap N(-\infty; -M) \subseteq f^{-1}(N(L; \varepsilon))$. We write $\lim_{x \to -\infty} f(x) = L$.
- (ii) Let S be an unbounded set in \mathbb{R}^n . Let $f: S \to \mathbb{R}$. We say that f has limit L at ∞ , if, for all $\varepsilon \in \mathbb{R}_+$, there exists $M \in \mathbb{R}_+$ such that $S \cap N(\infty; M) \subseteq f^{-1}(N(L; \varepsilon))$. We write $\lim_{\|\mathbf{x}\| \to \infty} f(\mathbf{x}) = L$.

Theorem 3.2.9 The Squeeze Play

Let f, g, and h be three real-valued functions sharing a common unbounded domain $S \subseteq \mathbb{R}^n$. Suppose $\lim_{\|\mathbf{x}\| \to \infty} f(\mathbf{x}) = \lim_{\|\mathbf{x}\| \to \infty} h(\mathbf{x}) = L$. Suppose also that, for some $M \in \mathbb{R}_+$,

$$\mathbf{x} \in S \cap N(\infty; M) \implies f(\mathbf{x}) \le g(\mathbf{x}) \le h(\mathbf{x})$$

Then, $\lim_{\|\mathbf{x}\|\to\infty} g(\mathbf{x}) = L$.

Theorem 3.2.10

Let *S* be a closed and unbounded set in \mathbb{R}^n and let $f \in C(S)$. Suppose $\lim_{\|\mathbf{x}\| \to \infty} f(\mathbf{x}) = L$ exists. Then $f \in C_{\infty}(S)$.

Proof. There exists $M \in \mathbb{R}_+$ such that, for $\mathbf{x} \in S \cap N(\infty; M)$, $|f(\mathbf{x}) - L| < 1$. Thus, for such \mathbf{x} , we have $|f(\mathbf{x})| < |L| + 1$.

Since $S \cap N(\mathbf{0}; M)$ is a closed, bounded set in \mathbb{R}^n , it is compact by Theorem 2.5.3. Therefore the continuous f is bounded on $S \cap \overline{N(\mathbf{0}; M)}$ by Theorem 3.2.3. In other words, there is some $K \in \mathbb{R}_+$ such that, for $\mathbf{x} \in S \cap \overline{N(\mathbf{0}; M)}$, we have $|f(\mathbf{x})| \leq K$. Thus, $|f(\mathbf{x})| \leq \max\{K, |L| + 1\}$ for all $\mathbf{x} \in S$.

3.3 The Algebra of Continuous Functions

Note:-

Let $\emptyset \neq S \subseteq \mathbb{R}^n$. One can easily find that C(S) is a commutative ring and is a vector space.

Theorem 3.3.1

Let $\emptyset \neq S \subseteq \mathbb{R}^n$ and $f_1, f_2 \in C(S)$. Then, the following hold.

- (i) $f_1 + f_2 \in C(S)$.
- (ii) For any $a \in \mathbb{R}$, $af \in C(S)$.
- (iii) $f_1 f_2 \in C(S)$.
- (iv) $1/f_2 \in C(S)$, provided that $\forall \mathbf{x} \in S$, $f_2(\mathbf{x}) \neq 0$.
- (v) $f_1/f_2 \in C(S)$, provided that $\forall \mathbf{x} \in S$, $f_2(\mathbf{x}) \neq 0$.

Proof. Directly import Theorem 3.1.3.

Theorem 3.3.2

Suppose f is continuous at a point \mathbf{c} in \mathbb{R}^n . Then f is locally bounded at \mathbf{c} . that is, there are $M, \delta \in \mathbb{R}_+$ such that

$$\mathbf{x} \in S \cap N(\mathbf{c}; \delta) \Longrightarrow |f(\mathbf{x})| \leq M.$$

Theorem 3.3.3

Suppose f is continous at a point \mathbf{c} in \mathbb{R}^n and $f(\mathbf{c}) \neq 0$. Then f is locally bounded away from 0 at \mathbf{c} . that is, there are $m, \delta \in \mathbb{R}_+$ such that

$$\mathbf{x} \in S \cap N(\mathbf{c}; \delta) \Longrightarrow |f(\mathbf{x})| \ge m.$$

3.4 Uniform Continuity

Definition 3.4.1: Uniform Continuity

A function $f: S \to \mathbb{R}$ with $S \subseteq \mathbb{R}^n$ is said to be uniformly continuous on S if,

$$\forall \varepsilon \in \mathbb{R}_+, \ \exists \delta \in \mathbb{R}_+, \ \forall \mathbf{c} \in S, \ S \cap N(\mathbf{c}; \delta) \subseteq f^{-1}(N(f(\mathbf{c}); \varepsilon)).$$

Or, equivalently,

$$\forall \varepsilon \in \mathbb{R}_+, \ \exists \delta \in \mathbb{R}_+, \ \forall \mathbf{x}, \mathbf{y} \in S, \ (\|\mathbf{x} - \mathbf{y}\| < \delta \implies |f(\mathbf{x}) - f(\mathbf{y})| < \varepsilon).$$

Example 3.4.1

 $f:[0,b]\to\mathbb{R}$ defined by $f(x)=x^2$ is uniformly continuous on [0,b]. Given any $\varepsilon\in\mathbb{R}_+$, let $\delta\triangleq\varepsilon/2b$. Then, whenever $|x-y|<\delta$ where $x,y\in[0,b],\,|x^2-y^2|=|x-y|\,|x+y|<\delta\cdot2b=\varepsilon$.

Example 3.4.2

 $f:(0,M)\to\mathbb{R}$ defined by f(x)=1/x is not uniformly continuous on (0,M). Let any $\delta\in\mathbb{R}_+$ is given. Let $a\in(0,\min\{\delta,1/2,M/2\})$. Then, $|a-(2a)|=a<\delta$ but |f(a)-f(2a)|=|1/a-1/(2a)|=1/(2a)>1.

This is an example in which f is continuous but the domain is not compact.

Example 3.4.3

 $f: [-1,1] \to \mathbb{R}$ defined by $f(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$ is not uniformly continuous on

[-1, 1]. Let any $\delta \in \mathbb{R}_+$ is given. Let $a \in (0, \min\{\delta/2, 1\})$. Then, $|a - (-a)| = 2a < \delta$ but |f(a) - f(-a)| = 1 > 0.5.

This is an example in which the domain is compact but f is not continuous.

Theorem 3.4.1

Suppose that $f: S \to \mathbb{R}$ is continuous on a compact subset S of \mathbb{R}^n . Then f is uniformly

continuous on S.

Proof. Let $\varepsilon \in \mathbb{R}_+$ be given. Since f is continuous at each point of S, for each \mathbf{c} of S, we may choose $\delta(\mathbf{c}) \in \mathbb{R}_+$ such that

$$S \cap N(\mathbf{c}; \delta(\mathbf{c})) \subseteq f^{-1}\left(N\left(f(\mathbf{c}); \frac{\varepsilon}{2}\right)\right).$$

Then the set $C \triangleq \{N(\mathbf{c}; \delta(\mathbf{c})/2) \mid \mathbf{c} \in S\}$ is an open cover of the compact set S. Since S is compact, there is a finite subcover

$$C_1 = \left\{ N\left(\mathbf{c}_1; \frac{\delta(\mathbf{c}_1)}{2}\right), N\left(\mathbf{c}_2; \frac{\delta(\mathbf{c}_2)}{2}\right), \cdots, N\left(\mathbf{c}_k; \frac{\delta(\mathbf{c}_k)}{2}\right) \right\}.$$

Let $\delta_0 \triangleq \min_{i=1}^k \delta(\mathbf{c}_i)/2$.

Now, take any $\mathbf{c} \in S$. Since C_1 is an open cover,

$$\exists i \in [k], \mathbf{c} \in N\left(\mathbf{c}_i; \frac{\delta(\mathbf{c}_i)}{2}\right).$$

Then, for any $\mathbf{x} \in N(\mathbf{c}; \delta_0)$,

$$\|\mathbf{x} - \mathbf{c}_i\| \le \|\mathbf{x} - \mathbf{c}\| + \|\mathbf{c} - \mathbf{c}_i\| < \delta_0 + \frac{\delta(\mathbf{c}_i)}{2} \le \delta(\mathbf{c}_i).$$

Thus, $N(\mathbf{c}; \delta_0) \subseteq N(\mathbf{c}_i; \delta(\mathbf{c}_i))$; or

$$S \cap N(\mathbf{c}; \delta_0) \subseteq S \cap N(\mathbf{c}_i; \delta(\mathbf{c}_i)) \subseteq f^{-1}\left(N\left(f(\mathbf{c}_i); \frac{\varepsilon}{2}\right)\right).$$

Hence, for any $\mathbf{x} \in S \cap N(\mathbf{c}; \delta_0)$,

$$|f(\mathbf{x}) - f(\mathbf{c})| \le |f(\mathbf{x}) - f(\mathbf{c}_i)| + |f(\mathbf{c}_i) - f(\mathbf{c})| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

as $\mathbf{x}, \mathbf{c} \in S \cap N(\mathbf{c}_i; \delta(\mathbf{c}_i))$.

3.5 The Uniform Norm: Uniform Convergence

Definition 3.5.1: Function Space B(S)

Let $S \neq \emptyset$ be a subset of \mathbb{R}^n . B(S) denotes the vector space and ring of all bounded, real-valued functions on S.

Note:-

- For each $f \in B(S)$, $\sup\{|f(\mathbf{x})| \mid \mathbf{x} \in S\}$ exists.
- $C_{\infty}(S) = C(S) \cap B(S)$

Definition 3.5.2: Uniform Norm

The *uniform norm* of $f \in B(S)$ is defined to be

$$||f||_{\infty} = \sup\{|f(\mathbf{x})| \mid \mathbf{x} \in S\}.$$

Theorem 3.5.1

The uniform norm is a norm.

Proof. The positive definiteness and the absolute homogeneity is direct.

Take any $f, g \in f$. Then, for any $\mathbf{x} \in S$,

$$|(f+g)(\mathbf{x})| \le |f(\mathbf{x})| + |g(\mathbf{x})| \le ||f||_{\infty} + ||g||_{\infty}.$$

Thus, $||f + g||_{\infty} = \sup\{ |(f + g)(\mathbf{x})| \mid \mathbf{x} \in S \} \le ||f||_{\infty} + ||g||_{\infty}; ||\cdot||_{\infty}$ satisfies the subadditivity.

Definition 3.5.3: Uniform Metric

The *uniform metric* on B(S) is

$$d_{\infty}(f,g) = ||f - g||_{\infty}.$$

Note:-

The uniform metric is naturally a metric since the uniform norm is a norm.

Definition 3.5.4: (Deleted) Uniform Neighborhood

The (uniform) neighborhood N(f;r) of f with radius r is the set

$$N(f;r) \triangleq \{ g \in B(S) \mid d_{\infty}(f,g) < r \}.$$

The deleted (uniform) neighborhood N'(f;r) of f with radius r is the set

$$N'(f;r) \triangleq \{ g \in B(S) \mid 0 < d_{\infty}(f,g) < r \}.$$

Definition 3.5.5: Limit Point of a Set of Functions

A function $f_0 \in B(S)$ is said to be a *(uniform) limit point* of a set $F \subseteq B(S)$ if

$$\forall \varepsilon \in \mathbb{R}_+, F \cap N'(f_0; \varepsilon) \neq \varnothing.$$

Definition 3.5.6: Convergence of a Sequence of Functions

• A sequence $\{f_k\}_{k\in\mathbb{N}}$ in B(S) is said to converge uniformly to $f_0\in S\to\mathbb{R}$ on S if

$$\forall \varepsilon \in \mathbb{R}_+, \exists k_0 \in \mathbb{N}, \forall k \in \mathbb{N}, (k \ge k_0 \implies f_k \in N(f_0; \varepsilon)).$$

We write

$$\lim_{k\to\infty} f_k = f_0 \text{ [uniformly]}.$$

• A sequence $\{f_k\}_{k\in\mathbb{N}}$ in B(S) is said to converge pointwise to $f_0\colon S\to\mathbb{R}$ on S if

$$\forall (\mathbf{c}, \varepsilon) \in S \times \mathbb{R}_+, \ \exists k_0 \in \mathbb{N}, \ \forall k \in \mathbb{N}, \ \left(k \ge k_0 \implies f_k(\mathbf{c}) \in N(f_0(\mathbf{c}); \varepsilon)\right).$$

We write

$$\lim_{k\to\infty} f_k = f_0 \text{ [pointwise]}.$$

• A sequence $\{f_k\}_{k\in\mathbb{N}}$ in B(S) is said to be (uniformly) Cauchy if

$$\forall \varepsilon \in \mathbb{R}_+, \exists k_0 \in \mathbb{N}, \forall k, m \in \mathbb{N}, (k, m \ge k_0 \Longrightarrow ||f_m - f_k||_{\infty} < \varepsilon).$$

Note:-

A pointwise convergent sequence in $C_{\infty}(S)$ may fail to have a limit that is in $C_{\infty}(S)$.

Note:-

If $\{f_k\}$ in B(S) converges uniformly, then it converges pointwise.

Theorem 3.5.2

Let $\emptyset \neq S \subseteq \mathbb{R}^n$. Suppose that $\{f_k\}$ is a sequence in C(S) and it converges uniformly to $f_0: S \to \mathbb{R}$ on S. Then $f_0 \in C(S)$.

Proof. Take any $\mathbf{c} \in S$ and $\varepsilon \in \mathbb{R}_+$. By uniform convergence, there exists $k \in \mathbb{N}$ such that

$$||f_k - f_0||_{\infty} < \frac{\varepsilon}{4}.$$

Since f_k is continuous, there exists $\delta \in \mathbb{R}_+$ such that

$$S \cap N(\mathbf{c}; \delta) \subseteq f_k^{-1} \left(N\left(f_k(\mathbf{c}); \frac{\varepsilon}{2}\right) \right).$$

Thus, for any $\mathbf{x} \in S \cap N(\mathbf{c}; \delta)$,

$$|f_0(\mathbf{x}) - f_0(\mathbf{c})| \le |f_0(\mathbf{x}) - f_k(\mathbf{x})| + |f_k(\mathbf{x}) - f_k(\mathbf{c})| + |f_k(\mathbf{c}) - f_0(\mathbf{c})|$$

$$< \frac{\varepsilon}{4} + \frac{\varepsilon}{2} + \frac{\varepsilon}{4} = \varepsilon.$$

This exactly means that f_0 is continuous at **c**. Since **c** is arbitrary, f_0 is continuous on S.

Theorem 3.5.3

Let $\emptyset \neq S \subseteq \mathbb{R}^n$. A Cauchy sequence $\{f_k\}$ in B(S) is bounded. That is, $\exists M \in \mathbb{R}_+, \ \forall k \in \mathbb{N}, \ \|f_k\|_{\infty} \leq M$.

Proof. Immitate the proof of Theorem 1.4.2.

Theorem 3.5.4

 $C_{\infty}(S)$ is complete. That is, given any Cauchy sequence $\{f_k\}$ in $C_{\infty}(S)$, there exists $f_0 \in C_{\infty}(S)$ such that $\lim_{k \to \infty} f_k = f_0$ [uniformly] on S.

Proof. Since, for each $\mathbf{c} \in S$, $\{f_k(\mathbf{c})\}_{k \in \mathbb{N}}$ is Cauchy, by Theorem 1.4.4, $\{f_k(\mathbf{c})\}_{k \in \mathbb{N}}$ converges in \mathbb{R} . Thus we may define $f_0 \colon S \to \mathbb{R}$ by

$$f_0(\mathbf{c}) = \lim_{k \to \infty} f_k(\mathbf{c}).$$

Now, we first claim that $\lim_{k\to\infty} f_k = f_0$ [uniformly]. Take any $\varepsilon \in \mathbb{R}_+$. Since $\{f_k\}$ is Cauchy,

$$\exists k_0 \in \mathbb{N}, \ \forall k, m \in \mathbb{N}, \ (k, m \ge k_0 \implies ||f_k - f_m||_{\infty} < \varepsilon/2).$$

Then, for each $k \in \mathbb{N}_{\geq k_0}$,

$$\forall \mathbf{c} \in S, |f_k(\mathbf{c}) - f_0(\mathbf{c})| = \lim_{m \to \infty} |f_k(\mathbf{c}) - f_m(\mathbf{c})| \le \varepsilon/2.$$

This means $||f_k - f_0||_{\infty} \le \varepsilon/2 < \varepsilon$; $\{f_k\}$ converges to f_0 uniformly on S. It directly follows from Theorem 3.5.2 that f_0 is continuous on S.

Now, we are left to show f_0 is bounded on S. Since $\{f_k\}$ uniformly converges to f_0 ,

$$\exists k_0 \in \mathbb{N}, \ \forall k \in \mathbb{N}, \ (k \ge k_0 \Longrightarrow \|f_k - f_0\|_{\infty} < 1).$$

This implies $\forall \mathbf{c} \in S$, $|f_{k_0}(\mathbf{c}) - f_0(\mathbf{c})| < 1$. Hence, $\forall \mathbf{c} \in S$, $|f_0(\mathbf{c})| < |f_{k_0}(\mathbf{c})| + 1 \le ||f_{k_0}||_{\infty} + 1$. Thus, $\{|f_0(\mathbf{c})| \mid \mathbf{c} \in S\}$ is bounded above by $||f_{k_0}||_{\infty} + 1$.

Corollary 3.5.1

If $\emptyset \neq S \subseteq \mathbb{R}^n$ is compact, then C(S) is complete.

Definition 3.5.7: Unifrom Denseness

Let $\emptyset \neq S \subseteq \mathbb{R}^n$. A collection $F \subseteq C_{\infty}(S)$ is uniformly dense in $C_{\infty}(S)$ if, for all $f_0 \in C_{\infty}(S)$ and its neighborhood $N(f_0)$, $F \cap N(f_0) \neq \emptyset$.

Definition 3.5.8: Polynomial Space

Let $\emptyset \neq S \subseteq \mathbb{R}$. Let P(S) denote the set of polynomial functions $f: S \to \mathbb{R}$ in the single variable x.

Note:-

If $S \neq \emptyset$ is a compact subset of \mathbb{R} , then P(S) is certainly a subset of $C_{\infty}(S) = C(S)$.

Theorem 3.5.5 The Weierstrass Approximation Theorem

If *S* is a compact subset of \mathbb{R} , then P(S) is uniformly dense in C(S).

Definition 3.5.9: Bernstein Polynomial

Given a continuous function on [0,1], for each $k \in \mathbb{N}$, the k^{th} Bernstein polynomial for f, $B_k(x)$, is defined as follows.

$$B_k(x) \triangleq \sum_{j=0}^k {k \choose j} f\left(\frac{j}{k}\right) x^j (1-x)^{k-j}$$

where $\binom{k}{j}$ is the binomial coefficient $\frac{k!}{j!(k-j)!}$.

Note:-

The following lemmas are for the proof of Theorem 3.5.5.

Lemma 3.5.1

For any $k \in \mathbb{N}$, $\sum_{j=0}^{k} {k \choose j} x^{j} (1-x)^{k-j} = 1$.

Proof. Expand $1 = (x + (1 - x))^k$ via the binomial theorem.

Lemma 3.5.2

For any $k \in \mathbb{N}$, $\sum_{j=0}^{k} {k \choose j} \frac{j}{k} x^{j} (1-x)^{k-j} = x$.

Proof. Using Lemma 3.5.1, we get

$$\begin{split} x &= x \left[\sum_{j=0}^{k-1} \binom{k-1}{j} x^{j} (1-x)^{(k-1)-j} \right] \\ &= \sum_{j=0}^{k-1} \binom{k-1}{j} x^{j+1} (1-x)^{k-(j+1)} = \sum_{j=1}^{k} \binom{k-1}{j-1} x^{j} (1-x)^{k-j} \\ &= \sum_{j=1}^{k} \binom{k}{j} \frac{j}{k} x^{j} (1-x)^{k-j} = \sum_{j=0}^{k} \binom{k}{j} \frac{j}{k} x^{j} (1-x)^{k-j}. \end{split}$$

Lemma 3.5.3

For any $k \in \mathbb{N}$, $\sum_{j=0}^{k} {k \choose j} (j^2 - j) x^j (1 - x)^{k-j} = k(k-1)x^2$.

Proof. Note that, for each $j \in \{2, 3, \dots, k\}$,

$$\binom{k}{j}(j^2-j) = \binom{k-2}{j-2}k(k-1).$$

Therefore, using Lemma 3.5.1, we get

$$\sum_{j=0}^{k} {k \choose j} (j^2 - j) x^j (1 - x)^{k-j} = \sum_{j=2}^{k} {k \choose j} (j^2 - j) x^j (1 - x)^{k-j}$$

$$= x^2 \sum_{j=2}^{k} {k \choose j} (j^2 - j) x^{j-2} (1 - x)^{(k-2) - (j-2)}$$

$$= x^2 \sum_{j=2}^{k} {k-2 \choose j-2} k(k-1) x^{j-2} (1-x)^{(k-2) - (j-2)}$$

$$= k(k-1) x^2 \sum_{j=0}^{k-2} {k-2 \choose j} x^j (1-x)^{(k-2) - j}$$

$$= k(k-1) x^2$$

For any $k \in \mathbb{N}$, $\sum_{j=0}^{k} {k \choose j} \left(\frac{j}{k}\right)^2 x^j (1-x)^{k-j} = \left(1-\frac{1}{k}\right) x^2 + \frac{x}{k}$.

Proof. Using Lemma 3.5.2 and Lemma 3.5.3, we get

$$\left(1 - \frac{1}{k}\right)x^2 + \frac{x}{k} = \frac{k(k-1)x^2}{k^2} + \frac{x}{k}$$

$$= \frac{1}{k^2} \sum_{j=0}^k \binom{k}{j} (j^2 - j)x^j (1 - x)^{k-j} + \frac{1}{k} \sum_{j=0}^k \binom{k}{j} \frac{j}{k} x^j (1 - x)^{k-j}$$

$$= \sum_{j=0}^k \binom{k}{j} \left(\frac{j^2 - j}{k^2} + \frac{j}{k^2}\right) x^j (1 - x)^{k-j}$$

$$= \sum_{j=0}^k \binom{k}{j} \left(\frac{j}{k}\right)^2 x^j (1 - x)^{k-j}.$$

Lemma 3.5.5 For any $k \in \mathbb{N}$ and any $x \in [0,1]$, $\sum_{j=0}^{k} {k \choose j} \left(x - \frac{j}{k}\right)^2 x^j (1-x)^{k-j} = \frac{x(1-x)}{k} \le \frac{1}{4k}$.

Proof. Using Lemma 3.5.1, Lemma 3.5.2, and Lemma 3.5.4, we get

$$\sum_{j=0}^{k} {k \choose j} \left(x - \frac{j}{k} \right)^2 x^j (1 - x)^{k-j} = \sum_{j=0}^{k} {k \choose j} \left[x^2 - 2x \left(\frac{j}{k} \right) - \left(\frac{j}{k} \right)^2 \right] x^j (1 - x)^{k-j}$$

$$= x^2 \sum_{j=0}^{k} {k \choose j} x^j (1 - x)^{k-j} + 2x \sum_{j=0}^{k} {k \choose j} \left(\frac{j}{k} \right) x^j (1 - x)^{k-j}$$

$$+ \sum_{j=0}^{k} {k \choose j} \left(\frac{j}{k} \right)^2 x^j (1 - x)^{k-j}$$

$$= x^2 - 2x^2 + \left(1 - \frac{1}{k} \right) x^2 + \frac{x}{k} = \frac{x(1 - x)}{k}.$$

Theorem 3.5.6 Bernstein's Approximation Theorem

Let $f \in C([0,1])$. Then, for any $\varepsilon \in \mathbb{R}_+$, there exists $k_0 \in \mathbb{N}$ such that, for $k \ge k_0$, $||f - B_k||_{\infty} < \varepsilon$ where B_k is the k^{th} Bernstein polynomial for f.

Proof. Take any $\varepsilon \in \mathbb{R}_+$. Since f is continuous on a compact set [0,1], then f is uniformly continuous on [0,1] by Theorem 3.4.1. Therefore,

$$\exists \delta \in \mathbb{R}_+, \forall x, y \in [0, 1], (|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon/4).$$

Also, f is bounded on [0,1] by Theorem 3.2.3. Thus, by Theorem 1.1.1, there exists $k_0 \in \mathbb{N}$ such that $2\|f\|_{\infty} < \varepsilon \delta^2 k_0$. Now, suppose $k \ge k_0$.

Fix some $x \in [0,1]$ and let $A_1 \triangleq \{j \in \mathbb{Z} \mid 0 \le j \le k \text{ and } |x-j/k| < \delta \}$ and $A_2 \triangleq \{j \in \mathbb{Z} \mid 0 \le j \le k \text{ and } |x-j/k| \ge \delta \}$. Now, we are ready to prove $||f - B_k||_{\infty} < \varepsilon$.

Using Lemma 3.5.1 at the first step, we get

$$|f(x) - B_k(x)| = \left| \sum_{j=0}^k {k \choose j} f(x) x^j (1 - x)^{k-j} - \sum_{j=0}^k {k \choose j} f\left(\frac{j}{k}\right) x^j (1 - x)^{k-j} \right|$$

$$= \left| \sum_{j=0}^k {k \choose j} \left[f(x) - f\left(\frac{j}{k}\right) \right] x^j (1 - x)^{k-j} \right|$$

$$\leq \sum_{j=0}^k {k \choose j} \left| f(x) - f\left(\frac{j}{k}\right) \right| x^j (1 - x)^{k-j}$$

$$= \sum_{j \in A_1} {k \choose j} \left| f(x) - f\left(\frac{j}{k}\right) \right| x^j (1 - x)^{k-j} + \sum_{j \in A_2} {k \choose j} \left| f(x) - f\left(\frac{j}{k}\right) \right| x^j (1 - x)^{k-j}$$

$$= S_1 + S_2$$

where S_1 and S_2 are the sums over A_1 and A_2 , respectively.

Since $\left| x - \frac{j}{k} \right| < \delta$ for $j \in A_1$, the following holds.

$$S_{1} \triangleq \sum_{j \in A_{1}} {k \choose j} \left| f(x) - f\left(\frac{j}{k}\right) \right| x^{j} (1 - x)^{k - j}$$

$$< \sum_{j \in A_{1}} {k \choose j} \left(\frac{\varepsilon}{4}\right) x^{j} (1 - x)^{k - j} \le \frac{\varepsilon}{4} \sum_{j = 0}^{k} {k \choose j} x^{j} (1 - x)^{k - j} = \frac{\varepsilon}{2}$$

$$47$$

We now investigate S_2 . Note that $\frac{1}{|x-j/k|} \le \frac{1}{\delta}$ for $j \in A_2$. Using Lemma 3.5.5, we get

$$\begin{split} S_2 &\triangleq \sum_{j \in A_2} \binom{k}{j} \left| f(x) - f\left(\frac{j}{k}\right) \right| x^j (1 - x)^{k - j} \\ &\leq 2 \|f\|_{\infty} \sum_{j \in A_2} \binom{k}{j} \left(x - \frac{j}{k}\right)^2 \frac{1}{\left(x - \frac{j}{k}\right)^2} x^j (1 - x)^{k - j} \\ &\leq \frac{2 \|f\|_{\infty}}{\delta^2} \sum_{j \in A_2} \binom{k}{j} \left(x - \frac{j}{k}\right)^2 x^j (1 - x)^{k - j} \\ &\leq \frac{2 \|f\|_{\infty}}{\delta^2} \sum_{j = 0}^k \binom{k}{j} \left(x - \frac{j}{k}\right)^2 x^j (1 - x)^{k - j} \\ &\leq \frac{2 \|f\|_{\infty}}{\delta^2} \sum_{j = 0}^k \binom{k}{j} \left(x - \frac{j}{k}\right)^2 x^j (1 - x)^{k - j} \\ &\leq \frac{2 \|f\|_{\infty}}{\delta^2} \frac{1}{4k} \leq \frac{\|f\|_{\infty}}{2k\delta^2} \leq \frac{\|f\|_{\infty}}{2k_0\delta^2} < \frac{\varepsilon}{4}. \end{split}$$

Thus, we have $|f(x)-B_k(x)| \le S_1+S_2 < \varepsilon/4+\varepsilon/4 = \varepsilon/2$. Since x is arbitrary, $||f-B_k||_{\infty} \le \varepsilon/2 < \varepsilon$.

3.6 Vector-Valued Functions on \mathbb{R}^n

Definition 3.6.1: Component Function

Let **f** be a function with domain $S \subseteq \mathbb{R}^n$ and codomain $T \subseteq \mathbb{R}^m$. For $\mathbf{x} \in S$, we write

$$f(x) = y = (y_1, y_2, \dots, y_m).$$

Then, for each $j \in [m]$, there is a real-valued function $f_i : S \to \mathbb{R}$ defined by $f_j(\mathbf{x}) = y_j$. The functions f_1, f_2, \dots, f_m are called *component functions* of **f**. We write

$$\mathbf{f} = (f_1, f_2, \cdots, f_m).$$

Definition 3.6.2: Limit and Continuity of Vector-Valued Functions

Let $\emptyset \neq S \subseteq \mathbb{R}^n$ and $\mathbf{f} \colon S \to \mathbb{R}^m$.

• Let $\mathbf{c} \in \overline{S}$. We say that \mathbf{f} has *limit* \mathbf{v} as \mathbf{x} approaches \mathbf{c} , and we write

$$\lim_{x\to c} f(x) = v$$

if, for every neighborhood $N(\mathbf{v})$, there exists a deleted neighborhood $N'(\mathbf{c})$ such that

$$S \cap N'(\mathbf{c}) \subseteq \mathbf{f}^{-1}(N(\mathbf{v})).$$

• Let $\mathbf{c} \in S$. We say that \mathbf{f} is continuous at \mathbf{c} if

$$\lim_{\mathbf{x}\to\mathbf{c}}\mathbf{f}(\mathbf{x})=\mathbf{f}(\mathbf{c}).$$

• We say that **f** is *continuous on S* if **f** is continuous at every point of *S*.

Theorem 3.6.1

- Let $\emptyset \neq S \subseteq \mathbb{R}^n$, $\mathbf{f}: S \to \mathbb{R}^m$, and $\mathbf{f} = (f_1, f_2, \dots, f_m)$. (i) Let $\mathbf{c} \in \overline{S}$. Then $\lim_{\mathbf{x} \to \mathbf{c}} \mathbf{f}(\mathbf{x}) = \mathbf{v} = (v_1, v_2, \dots, v_m)$ if and only if, for each $j \in [m]$, $\lim_{\mathbf{x}\to\mathbf{c}}f_j(\mathbf{x})=\nu_j.$
 - (ii) Let $\mathbf{c} \in S$. Then \mathbf{f} is continuous at \mathbf{c} if and only if, for each $j \in [m]$, f_j is continuous
 - (iii) **f** is continuous on *S* if and only if, for each $j \in [m]$, f_j is continuous on *S*.

Proof. (ii) and (iii) directly follows from (i). So, we only need to prove (i).

(⇒) Take any $\varepsilon \in \mathbb{R}_+$. Then, there exists $\delta \in \mathbb{R}_+$ such that

$$\forall \mathbf{x} \in S, (0 < ||\mathbf{x} - \mathbf{c}|| < \delta \implies ||\mathbf{f}(\mathbf{x}) - \mathbf{v}|| < \varepsilon).$$

Then, for each $j \in [m]$, whenever $\mathbf{x} \in S \cap N'(\mathbf{c}; \delta)$,

$$|f_j(\mathbf{x}) - \nu_j|^2 \le \sum_{i=1}^m |f_j(\mathbf{x}) - \nu_i|^2 = ||\mathbf{f}(\mathbf{x}) - \mathbf{v}||^2 < \varepsilon^2,$$

which implies $S \cap N'(\mathbf{c}; \delta) \subseteq f_j^{-1}(N(\nu_j; \varepsilon))$; $\lim_{\mathbf{x} \to \mathbf{c}} f_j(\mathbf{x}) = \nu_j$. (\Leftarrow) Take any $\varepsilon \in \mathbb{R}_+$. Then, for each $j \in [m]$, there exists $\delta_j \in \mathbb{R}_+$ such that

$$\forall \mathbf{x} \in S, (0 < ||\mathbf{x} - \mathbf{c}|| < \delta_i \implies |f_i(\mathbf{x}) - v_i| < \varepsilon / \sqrt{m}).$$

Then, whenever $\mathbf{x} \in S \cap N'(\mathbf{c}; \delta_0)$ where $\delta_0 \triangleq \min_{i=1}^m \delta_i$,

$$\|\mathbf{f}(\mathbf{x}) - \mathbf{v}\|^2 = \sum_{i=1}^m |f_i(\mathbf{x}) - v_i|^2 < \sum_{i=1}^m \left(\frac{\varepsilon}{\sqrt{m}}\right)^2 = \varepsilon^2,$$

which implies $S \cap N'(\mathbf{c}; \delta_0) \subseteq \mathbf{f}^{-1}(N(\mathbf{v}; \varepsilon))$; $\lim_{\mathbf{x} \to \mathbf{c}} \mathbf{f}(\mathbf{x}) = \mathbf{v}$.

Theorem 3.6.2

Let $\emptyset \neq S \subseteq \mathbb{R}^n$ and $\mathbf{f}: S \to \mathbb{R}^m$.

- (i) Let **c** be a point in \overline{S} . Then $\lim_{x\to c} f(x) = \mathbf{v}$ if and only if, for every sequence $\{\mathbf{x}_k\}$ in $S \setminus \{c\}$ such that $\lim_{k \to \infty} \mathbf{x}_k = \mathbf{c}$, we have $\lim_{k \to \infty} \mathbf{f}(\mathbf{x}_k) = \mathbf{v}$.
- (ii) Let **c** be a point in S. Then **f** is continuous at **c** if and only if, for every sequence $\{\mathbf{x}_k\}$ in S such that $\lim_{k\to\infty}\mathbf{x}_k=\mathbf{c}$, we have $\lim_{k\to\infty}\mathbf{f}(\mathbf{x}_k)=\mathbf{f}(\mathbf{c})$.

Proof. By Theorem 3.6.1,

$$\lim_{\mathbf{x}\to\mathbf{c}}\mathbf{f}(\mathbf{x})=\mathbf{v}\iff\forall j\in[m],\lim_{\mathbf{x}\to\mathbf{c}}f_j(\mathbf{x})=\nu_j$$

where $\mathbf{v} = (v_1, v_2, \dots, v_m)$. By Theorem 3.1.6, for each $j \in [m]$,

$$\lim_{\mathbf{x}\to\mathbf{c}} f_j(\mathbf{x}) = v_j \iff \forall \{\mathbf{x}_k\} \in (S \setminus \{\mathbf{c}\})^{\omega}, \left(\lim_{k\to\infty} \mathbf{x}_k = \mathbf{c} \implies \lim_{k\to\infty} f_j(\mathbf{x}_k) = v_j\right).$$

By Theorem 2.1.6,

$$\lim_{k\to\infty} \mathbf{f}(\mathbf{x}_k) = \mathbf{v} \iff \forall j \in [m], \lim_{k\to\infty} f_j(\mathbf{x}_k) = v_j.$$

Thus, (i) is proven, and (ii) can be proven similarly with the aid of Theorem 3.1.7.

Theorem 3.6.3

Let $f: S \to T$ where $S \subseteq \mathbb{R}^n$ and $T \subseteq \mathbb{R}^m$. Suppose f is surjective. Then \mathbf{f} is continuous on S if and only if the inverse image of every relatively open set in T is relatively open in S.

Proof. Repeat the proof of Theorem 3.2.1 verbatim.

Theorem 3.6.4

If *S* is a connected subset of \mathbb{R}^n and $\mathbf{f} \colon S \to \mathbb{R}^m$ is continuous on *S*, then $T = \mathbf{f}(S)$ is also connected.

Proof. Repeat the proof of Theorem 3.2.2 verbatim.

Theorem 3.6.5

If *S* is a compact subset of \mathbb{R}^n and $\mathbf{f}: S \to \mathbb{R}^m$ is continuous on *S*, then $T = \mathbf{f}(S)$ is also compact.

Proof. Repeat the proof of Theorem 3.2.3 verbatim.

Theorem 3.6.6

Let $S \subseteq \mathbb{R}^n$, $f: S \to \mathbb{R}^m$, $f(S) \subseteq T \subseteq \mathbb{R}^m$, and $g: T \to \mathbb{R}^p$. If f is continuous at $\mathbf{c} \in S$ and if g is continuous at $f(\mathbf{c}) \in T$, then $g \circ f$ is continuous at \mathbf{c} .

Proof. Repeat the proof of Theorem 3.2.7 verbatim.

Theorem 3.6.7

Let $\emptyset \neq S \subseteq \mathbb{R}^n$ is compact and $\emptyset \neq T \subseteq \mathbb{R}^m$. Let $\mathbf{f}: S \to T$ is continuous on S and bijective. Then, \mathbf{f}^{-1} is also continuous on $\mathbf{f}(S)$.

Proof. Repeat the proof of Theorem 3.2.8 verbatim.

Definition 3.6.3: Uniform Continuity

A function $f: S \to \mathbb{R}^m$ with $S \subseteq \mathbb{R}^n$ is said to be uniformly continuous on S if,

$$\forall \varepsilon \in \mathbb{R}_+, \exists \delta \in \mathbb{R}_+, \forall \mathbf{c} \in S, S \cap N(\mathbf{c}; \delta) \subseteq \mathbf{f}^{-1}(N(\mathbf{f}(\mathbf{c}); \varepsilon)).$$

Or, equivalently,

 $\forall \varepsilon \in \mathbb{R}_+, \ \exists \delta \in \mathbb{R}_+, \ \forall \mathbf{x}, \mathbf{y} \in S, \ \big(\|\mathbf{x} - \mathbf{y}\| < \delta \implies \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})\| < \varepsilon \big).$

Theorem 3.6.8

Let $\mathbf{f} = (f_1, f_2, \dots, f_m)$ be a function $\mathbf{f} : S \to \mathbb{R}^m$ where $S \subseteq \mathbb{R}^n$. Then, \mathbf{f} is uniformly continuous if and only if f_i is uniformly continuous on S for each $j \in [m]$.

Proof. (\Rightarrow) Take any $j \in [m]$ and $\varepsilon \in \mathbb{R}_+$. Then, there exist $\delta \in \mathbb{R}_+$ such that,

$$\forall \mathbf{x}, \mathbf{y} \in S, (\|\mathbf{x} - \mathbf{y}\| < \delta \implies \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})\| < \varepsilon).$$

Since $|f_j(\mathbf{x}) - f_j(\mathbf{y})| \le ||\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})||$, f_j is uniformly continuous. (\Leftarrow) Take any $\varepsilon \in \mathbb{R}_+$. Then, for each $j \in [m]$, there exists $\delta_j \in \mathbb{R}_+$ such that

$$\forall \mathbf{x}, \mathbf{y} \in S, (\|\mathbf{x} - \mathbf{y}\| < \delta_i \implies |f_i(\mathbf{x}) - f_i(\mathbf{y})| < \varepsilon / \sqrt{m}).$$

Let $\delta \triangleq \min_{j \in [m]} \delta_j$. Then,

$$\forall \mathbf{x}, \mathbf{y} \in S, (\|\mathbf{x} - \mathbf{y}\| < \delta \implies \|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{y})\| < \varepsilon).$$

Theorem 3.6.9

Suppose that $f: S \to \mathbb{R}^m$ is continuous on a compact subset S of \mathbb{R}^n . Then f is uniformly continuous on S.

Proof. Repeat the proof of Theorem 3.4.1 verbatim.

Chapter 4

Differentiation

4.1 The Derivative

Definition 4.1.1: Derivative

Let f be defined on an interval I on \mathbb{R} . Let c be a point in I. The *derivative* of f at c is defined to be

$$\lim_{h\to 0}\frac{f(c+h)-f(c)}{h}$$

provided this limit exists. The derivative of f at c is denoted by f'(c). We say that f is differentiable at c if f'(c) exists. We say that f is differentiable on I if f'(x) exists for each $x \in I$.

Definition 4.1.2: Differential

Let f be a real-valued function defined on an interval I in \mathbb{R} . Suppose that f is differentiable at a $c \in I$. The function $df(c; \cdot) \colon \mathbb{R} \to \mathbb{R}$ defined by

$$df(c;t) = f'(c)t$$

is called the *differential* of f at c.

Theorem 4.1.1

Suppose f is differentiable at c in its domain. Then, for any $\varepsilon \in \mathbb{R}_+$, there exists a deleted neighborhood N'(0) such that,

$$|f(c+t)-f(c)-df(c;t)| < \varepsilon |t|,$$

for all $t \in N'(0)$.

Proof. There is a deleted neighborhood N'(0) such that

$$\left| \frac{f(c+t) - f(c)}{t} - f'(c) \right| < \varepsilon$$

for all $t \in N'(0)$.

Theorem 4.1.2

If f is differentiable at c, then f is continuous at c.

Proof.

$$\lim_{x \to c} (f(x) - f(c)) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \cdot (x - c) = f'(c) \cdot 0 = 0$$

Hence, $\lim_{x\to c} f(x) = f(c)$; f is continuous at c.

Corollary 4.1.1

If f is differentiable on I, then $f \in C(I)$.

Theorem 4.1.3

Suppose that f and g are two functions each differentiable at c and that $a \in \mathbb{R}$.

(i) f + g is differentiable at c and

$$(f+g)'(c) = f'(c) + g'(c).$$

(ii) af is differentiable at c and

$$(af)'(c) = af'(c).$$

(iii) f g is differentiable at c and

$$(fg)'(c) = f'(c)g(c) + f(c)g'(c).$$

(iv) If $g(c) \neq 0$, then 1/g is differentiable at c and

$$\left(\frac{1}{g}\right)'(c) = -\frac{g'(c)}{g(c)^2}.$$

(v) If $g(c) \neq 0$, then f/g is differentiable at c and

$$\left(\frac{f}{g}\right)'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{g(c)^2}.$$

(i)
$$\lim_{x \to c} \frac{(f+g)(x) - (f+g)(c)}{x - c} = \lim_{x \to c} \left[\frac{f(x) - f(c)}{x - c} + \frac{g(x) - g(c)}{x - c} \right] = f'(c) + g'(c).$$
(ii)
$$\lim_{x \to c} \frac{(af)(x) - (af)(c)}{x - c} = \lim_{x \to c} a \cdot \frac{f(x) - f(c)}{x - c} = af'(c).$$

(ii)
$$\lim_{x \to c} \frac{(af)(x) - (af)(c)}{x - c} = \lim_{x \to c} a \cdot \frac{f(x) - f(c)}{x - c} = af'(c).$$

$$(fg)(x) - (fg)(c) = f(x)g(x) - f(c)g(x) + f(c)g(x) - f(c)g(c)$$

= $(f(x) - f(c))g(x) + (g(x) - g(c))f(c)$.

Since g is continuous at c,

$$\lim_{x \to c} \frac{(fg)(x) - (fg)(c)}{x - c} = \lim_{x \to c} \left[\frac{f(x) - f(c)}{x - c} g(x) + \frac{g(x) - g(c)}{x - c} f(c) \right]$$
$$= f'(c)g(c) + f(c)g'(c).$$

(iv)
$$\lim_{x \to c} \frac{1/g(x) - 1/g(c)}{x - c} = \lim_{x \to c} \left[\frac{g(x) - g(c)}{(x - c)} \cdot \frac{1}{g(x)g(c)} \right] = -\frac{g'(c)}{g(c)^2}.$$

(v)
$$\left(\frac{f}{g}\right)'(c) = f'(c)\left(\frac{1}{g}\right)(c) + f(c)\left(\frac{1}{g}\right)'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{g(c)^2}.$$

Definition 4.1.3: *kth* **Derivative**

Suppose $f' = f^{(1)}$, $f'' = f^{(2)}$, ..., $f^{(k)}$ is defined on a neighborhood of c and if

$$f^{(k+1)}(c) \triangleq \lim_{h \to 0} \frac{f^{(k)}(c+h) - f^{(k)}(c)}{h}$$

exists, then $f^{(k)}(c)$ is called the kth derivative of f at c and f is said to be k times

If $f^{(k)}(c)$ exists for all $k \in \mathbb{N}$, then f is said to have derivatives of all orders at c. If $f^{(k)}(c)$ exists for all $k \in \mathbb{N}$ and at all $x \in I$, then f is said to have derivatives of all orders on I.

Composition of Functions: The Chain Rule 4.2

Theorem 4.2.1 The Chain Rule

Suppose the following.

- *c* is an interior point of an interval *I*.
- g is differentiable at c.

d = g(c) is an interior point of g(I).
f is defined on g(I).
f is differentiable at d.
Then, f ∘ g is differentiable at c and (f ∘ g)'(c) = f'(g(c))g'(c).

Proof. For y in g(I), define

$$h(y) = \begin{cases} \frac{f(y) - f(d)}{y - d} - f'(d) & \text{if } y \neq d \\ 0 & \text{if } y = d. \end{cases}$$

Since $\lim_{y\to d} h(y) = 0 = h(d)$, h is continuous at d. Also, since h is defined on g(I), we may composite it with g;

$$(h \circ g)(x) = \begin{cases} \frac{f(g(x)) - f(g(c))}{g(x) - g(c)} - f'(g(c)) & \text{if } g(x) \neq g(c) \\ 0 & \text{if } g(x) = g(c) = d. \end{cases}$$

Multiplying by g(x) - g(c), we get

$$f(g(x)) - f(g(c)) = \{(h \circ g)(x) + f'(g(c))\}\{g(x) - g(c)\}.$$

Hence,

$$\lim_{x \to c} \frac{f(g(x)) - f(g(c))}{x - c} = \lim_{x \to c} \left\{ (h \circ g)(x) + f'(g(c)) \right\} \frac{g(x) - g(c)}{x - c}$$
$$= \left\{ 0 + f'(g(c)) \right\} g'(c) = f'(g(c))g'(c).$$

4.3 The Mean Value Theorem

Definition 4.3.1: Local Minimum and Maximum

Let f be a real-valued function defined on the interval I and c is an interior point of I.

- f has a local maximum at c if there exists a neighborhood N(c) such that $\forall x \in N(c), f(x) \le f(c)$.
- f has a local minimum at c if there exists a neighborhood N(c) such that $\forall x \in N(c), f(x) \ge f(c)$.

Theorem 4.3.1

If f has either a local maximum or a local minimum at an interior point c of I and if f is differentiable at c, then f'(c) = 0.

Proof. Let N(c) be a neighborhood of c such that $\forall x \in N(c)$, $f(x) \ge f(c)$. Then, since

$$\frac{f(x)-f(c)}{x-c} \ge 0$$
 on $N(c) \cap (c, \infty)$ and

$$\frac{f(x)-f(c)}{x-c} \le 0 \quad \text{on } N(c) \cap (-\infty, c),$$

It follows that

$$f'(c) = \lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} \ge 0$$
 and $f'(c) = \lim_{x \to c^-} \frac{f(x) - f(c)}{x - c} \le 0$.

Hence, f'(c) = 0.

Definition 4.3.2: Critical Point

If a function f is differentiable at a point c and if f'(c) = 0, then c is called a *critical* point of f.

Theorem 4.3.2 Rolle's Theorem

Suppose that f is continuous on [a, b] and is differentiable on (a, b). Suppose further that f(a) = f(b). Then there exists $c \in (a, b)$ such that f'(c) = 0.

Proof. If f(x) = f(a) for all $x \in [a, b]$, then f' = 0 on [a, b], and it is done.

Otherwise, f has a maximum value or a minimum value at some point c in (a, b) by Theorem 3.2.4. c is either a local maximum or a local minimum of f as well. Hence, by Theorem 4.3.1, f'(c) = 0.

Theorem 4.3.3 The Mean Value Theorem

Suppose f is continuous on [a, b] and and is differentiable on (a, b). Then,

$$\exists c \in (a, b), \frac{f(b) - f(a)}{b - a} = f'(c).$$

Proof. Let

$$h(x) = f(x) - \left[\frac{f(b) - f(a)}{b - a} (x - a) + f(a) \right].$$

Then, h is continuous on [a, b], differentiable on (a, b), and h(a) = h(b) = 0. Hence, by Theorem 4.3.2, there exists $c \in (a, b)$ such that

$$h'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0.$$

Corollary 4.3.1

Suppose f is continuous on [a, b] and is differentiable on (a, b). If f'(x) = 0 for each $x \in (a, b)$, then f is constant on [a, b].

Proof. Take any $x \in (a, b]$. By Theorem 4.3.3, there exists $c \in (a, x)$ such that

$$f'(c) = \frac{f(x) - f(a)}{x - a}.$$

Since f'(c) = 0, it follows that f(x) = f(a). Since x was arbitrary, f is constant on [a, b]. \Box

Corollary 4.3.2

Suppose f and g are continuous on [a, b] and are differentiable on (a, b). If f'(x) = g'(x) for each $x \in (a, b)$, then f and g differ by a constant.

Proof. Let h(x) = f(x) - g(x) and apply Corollary 4.3.1.

Corollary 4.3.3

Suppose f is continuous on [a, b] and is differentiable on (a, b).

- If f'(x) > 0 for all $x \in (a, b)$, then f is strictly increasing.
- If f'(x) < 0 for all $x \in (a, b)$, then f is strictly decreasing.

Proof. Suppose f' is positive on (a, b). Take any $x_1, x_2 \in [a, b]$ with $x_1 < x_2$. By Theorem 4.3.3, there exists $c \in (x_1, x_2)$ such that

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} > 0.$$

Hence, $f(x_2) > f(x_1)$; f is strictly increasing. It is analogous to show for negative f'.

Theorem 4.3.4 Cauchy's Generalized Mean Value Theorem

Suppose f and g are continuous on [a,b] and are differentiable on (a,b). Then, there exists $c \in (a,b)$ such that

$$f'(c)\{g(b) - g(a)\} = g'(c)\{f(b) - f(a)\}.$$

Proof. Let $h(x) = f(x)\{g(b) - g(a)\} - g(x)\{f(b) - f(a)\}$. Then h is continuous on [a, b] and is differentiable on (a, b). A calculation will verify that h(a) = h(b). Hence, by Theorem 4.3.2, there exists $c \in (a, b)$ such that

$$h'(c) = f'(c) \{g(b) - g(a)\} - g'(c) \{f(b) - f(a)\} = 0.$$

4.4 L'Hôpital's Rule

Theorem 4.4.1 L'Hôpital's Rule, Form I

Suppose that f and g are continuous on [a,b] and are differentiable on (a,b). Suppose $c \in [a,b]$ and f(c) = g(c) = 0. Suppose also that, for some deleted neighborhood N'(c), $g'(x) \neq 0$ for each $x \in N'(c)$. Then,

$$\lim_{x\to c} \frac{f'(x)}{g'(x)} = L \implies \lim_{x\to c} \frac{f(x)}{g(x)} = L.$$

Proof. Take any $\varepsilon \in \mathbb{R}_+$. Then, there exists some $\delta \in \mathbb{R}_+$ such that

$$\forall x \in [a,b], \left(0 < |x-c| < \delta \implies \left| \frac{f'(x)}{g'(x)} - L \right| < \varepsilon \right).$$

Take any $x \in [a, b]$ such that $0 < |x - c| < \delta$. Then, by Theorem 4.3.4, there exists d between x and c such that

$$f'(d)g(x) = f'(d)\{g(x) - g(c)\} = g'(d)\{f(x) - f(c)\} = g'(d)f(x).$$

Hence, f(x)/g(x) = f'(d)/g'(d). (Note that $g(x) \neq 0$ on N'(c) since $g'(x) \neq 0$.) Therefore,

$$\left|\frac{f(x)}{g(x)} - L\right| = \left|\frac{f'(d)}{g'(d)} - L\right| < \varepsilon.$$

Theorem 4.4.2 L'Hôpital's Rule, Form II

Suppose f and g are differentiable on some neighborhood $N(\infty, M)$. Suppose $g'(x) \neq 0$ for each $x \in N(\infty, M)$ and $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = \infty$. Then,

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = L \implies \lim_{x \to \infty} \frac{f(x)}{g(x)} = L.$$

Proof. Take any $\varepsilon \in (0,1)$. Let $\varepsilon' \triangleq \varepsilon/(2+|L|)$. There exists $M_1 \geq M$ such that,

$$\forall x \in N(\infty, M_1), \left| \frac{f'(x)}{g'(x)} - L \right| < \varepsilon'.$$

There exists $M_2 \ge M_1$ such that,

$$\forall x \in N(\infty, M_2), f(x) > \max\{f(M_1), 1\} \text{ and } g(x) > g(M_1).$$

For each $x \in N(\infty, M_2)$, By Theorem 4.3.4, there exists $c_x \in (M_1, x)$ such that

$$\frac{f'(c_x)}{g'(c_x)} = \frac{f(x) - f(M_1)}{g(x) - g(M_1)} = \frac{f(x)\left(1 - \frac{f(M_1)}{f(x)}\right)}{g(x)\left(1 - \frac{g(M_1)}{g(x)}\right)}$$

Let
$$h(x) = \frac{1 - g(M_1)/g(x)}{1 - f(M_1)/f(x)}$$
. Then,

$$\frac{f(x)}{g(x)} = \frac{f'(c_x)}{g'(c_x)}h(x).$$

Since $\lim_{x\to\infty} h(x) = 1$, there exists $M_3 \ge M_2$ such that $\forall x \in N(\infty, M_3), |h(x)-1| < \varepsilon'$. Then, for any $x \in N(\infty, M_3)$,

$$\left| \frac{f(x)}{g(x)} - L \right| = \left| \frac{f'(c_x)}{g'(c_x)} h(x) - L \right|$$

$$= \left| \frac{f'(c_x)}{g'(c_x)} h(x) - L h(x) + L h(x) - L \right|$$

$$\leq \left| \frac{f'(c_x)}{g'(c_x)} - L \right| |h(x)| + |L||h(x) - 1|$$

$$< \varepsilon'(1 + \varepsilon') + |L|\varepsilon' = (1 + |L|)\varepsilon' + \varepsilon'^2 < (2 + |L|)\varepsilon' = \varepsilon.$$

4.5 Taylor's Theorem

Definition 4.5.1: kth-degree Taylor Polynomial

Suppose f is k times differentiable at $x = x_0$. Then, a polynomial p_k defined by

$$p_k(x) \triangleq \sum_{i=0}^k \frac{f^{(i)}(x_0)}{j!} (x - x_0)^j$$

is called the k^{th} -degree Taylor polynomial of f at $x = x_0$.

Note:-

 p_k is the only k^{th} degree polynomial such that $p_k^{(j)}(x_0) = f^{(j)}(x_0)$ for each $j = 0, 1, \dots, k$.

Theorem 4.5.1

Let f and g be continuous and k times continuously differentiable on [a, b]. Suppose f and g also have (k + 1) times differentiable on (a, b). Let $x_0 \in [a, b]$. Then, for every $x \in [a, b] \setminus \{x_0\}$, there exists c between x and x_0 such that

$$f^{(k+1)}(c)\{g(x)-q_k(x)\}=g^{(k+1)}(c)\{f(x)-p_k(x)\}$$

where p_k and q_k are k^{th} -degree Taylor polynomial at x_0 of f and g, respectively.

Proof. WLOG, suppose $x_0 < x$. For each $t \in [x_0, x]$, define

$$F(t) \triangleq f(t) + \sum_{j=1}^{k} \frac{f^{(j)}(t)}{j!} (x-t)^{j}$$

and

$$G(t) \triangleq g(t) + \sum_{j=1}^{k} \frac{g^{(j)}(t)}{j!} (x-t)^{j}$$

Since $f^{(j)}$ and $g^{(j)}$ are continuous on $[x_0, x]$ for each $j = 0, 1, \dots, k$, F and G are continuous on $[x_0, x]$. Since $f^{(j)}$ and $g^{(j)}$ are differentiable on (x_0, x) for each $j = 0, 1, \dots, k$, F and G are differentiable on (x_0, x) .

Hence, by Theorem 4.3.4, there exists $c \in (x_0, x)$ such that

$$F'(c)\{G(x) - G(x_0)\} = G'(c)\{F(x) - F(x_0)\}.$$

Note that F(x) = f(x), G(x) = g(x), $F(x_0) = p_k(x)$, and $G(x_0) = q_k(x)$. Moreover,

$$F'(t) = \frac{f^{(k+1)}(t)}{k!}(x-t)^k$$
 and $G'(t) = \frac{g^{(k+1)}(t)}{k!}(x-t)^k$.

Therefore, the result follows.

Theorem 4.5.2 Taylor's Theorem

Suppose that f is k times continuously differentiable on [a, b] and is (k + 1) times differentiable on (a, b). Let $x_0 \in [a, b]$. Then, for each $x \in [a, b] \setminus \{x_0\}$, there exists cbetween x and x_0 such that

$$f(x) = p_k(x) + \frac{f^{(k+1)}(c)}{(k+1)!}(x - x_0)^{k+1}.$$

where p_k is the k^{th} -degree Taylor polynomial of f at x_0 .

Proof. Let $g(x) = (x - x_0)^{k+1}$. Apply Theorem 4.5.1 to f and g. There exists c between x_0 and x such that

$$f^{(k+1)}(c)\{g(x)-q_k(x)\}=g^{(k+1)}(c)\{f(x)-p_k(x)\}$$

where q_k is the k^{th} -degree Taylor polynomial of g at x_0 . Since $g^{(j)}(x_0)=0$ for each j=0 $0, 1, \dots, k, q_k = 0$. Also, $g^{(k+1)}(x) = (k+1)!$. Hence, we get

$$f^{(k+1)}(c)(x-x_0)^{k+1} = (k+1)!\{f(x)-p_k(x)\}.$$

The result follows.

Let f has derivatives of all orders on [a,b]. Suppose that there exists $M \in \mathbb{R}_+$ such that $\|f^{(k)}\|_{\infty}^{1/k} \leq M$ for all $k \in \mathbb{N}$. Then, for any $x_0 \in [a,b]$, $\lim_{k \to \infty} p_k = f \quad \text{[uniformly]}$ where p_k is the k^{th} -degree Taylor polynomial of f at x_0 .

$$\lim_{k \to \infty} p_k = f \quad [uniformly]$$

Proof. Since $f^{(k)}$ is continuous on [a, b] for each $k \in \mathbb{N}$, $f^{(k)}$ is bounded on [a, b] and thus $||f^{(k)}||_{\infty}$ is finite. Fix any $x_0 \in [a, b]$ and take $x \in [a, b]$. Then, for each $k \in \mathbb{N}$, there exists some $c \in [a, b]$ such that

$$f(x) - p_k(x) = \frac{f^{(k+1)}(c)}{(k+1)!} (x - x_0)^{k+1}.$$

Hence,

$$0 \le |f(x) - p_k(x)| \le \frac{\|f^{(k+1)}\|_{\infty}}{(k+1)!} |b - a|^{k+1} \le \frac{(M|b - a|)^{k+1}}{(k+1)!}.$$

Since $\lim_{k\to\infty} \frac{(M|b-a|)^{k+1}}{(k+1)!} = 0$ and the terms do not depend on x, p_k uniformly converges to

Chapter 5

Functions of Bounded Variation

5.1 Partitions

Definition 5.1.1: Partition

A (finite) partition π of the interval [a, b] is a finite collection of points $\{x_0, x_1, \dots, x_p\}$, called *parition points*, such that

$$a = x_0 < x_1 < \dots < x_p = b.$$

The partition π partitions the interval [a, b] into subintervals $[x_{j-1}, x_j]$, for $j \in [p]$. The length of the interval $[x_{j-1}, x_j]$ is denoted $\Delta x_j = x_j - x_{j-1}$. The collection of all finite partitions of [a, b] is denoted $\Pi[a, b]$.

Definition 5.1.2: Refinement

Let $\pi_1, \pi_2 \in \Pi[a, b]$. If every parition point in π_2 also belongs to π_1 , we say π_1 is a refinement of π_2 . We also say that π_1 is finer than π_2 or that π_2 is coarser than π_1 . If π_1 is a refinement of π_2 , we write $\pi_2 \leq \pi_1$.

Note:-

 \leq is a partial order on $\Pi[a, b]$.

Definition 5.1.3: Least Common Refinement

Given any $\pi_1, \pi_2 \in \Pi[a, b]$, the *least common refinement* of π_1 and π_2 is formed by taking the union of the partition points in π_1 and in π_2 . It is written as $\pi_1 \vee \pi_2$.

Note:-

 \vee is a commutative and associative binary operation on $\Pi[a, b]$.

Note:-

Let $\pi_1, \pi_2 \in \Pi[a, b]$. $\pi_1 \leq \pi_2$ if and only if $\pi_1 \vee \pi_2 = \pi_2$.

Definition 5.1.4: Guage

Let $\pi = \{x_0, x_1, \dots, x_p\}$ be any partition in $\Pi[a, b]$. The *guage*of the partition π , denoted $\|\pi\|$, is

$$\|\pi\| \triangleq \max_{j \in [p]} \Delta x_j.$$

5.2 Monotone Functions on [a, b]

Definition 5.2.1: Monotone Function

Let f be a real-valued function defined on the closed interval [a, b].

- f is said to be increasing on [a, b] if $a \le x_1 < x_2 \le b \implies f(x_1) \le f(x_2)$.
- f is said to be decreasing on [a, b] if $a \le x_1 < x_2 \le b \implies f(x_1) \ge f(x_2)$.
- f is said to be stringly increasing on [a, b] if $a \le x_1 < x_2 \le b \implies f(x_1) < f(x_2)$.
- f is said to be stringly decreasing on [a, b] if $a \le x_1 < x_2 \le b \implies f(x_1) > f(x_2)$.

f is said to be (strictly) monotone on [a, b] if it is either (strictly) increasing or

Theorem 5.2.1

Let f be increasing on [a, b] and let $\pi = \{x_0, x_1, \dots, x_p\}$ be any partition on $\Pi[a, b]$. Then,

$$\sum_{j=0}^{p} (f(x_{j}^{+}) - f(x_{j}^{-})) \leq f(b) - f(a)$$

where $f(a^{-}) = f(a)$ and $f(b^{+}) = f(b)$.

Proof. For each $j \in [p]$. Select $y_i \in (x_{i-1}, x_i)$. Since f is increasing, we have

$$f(y_i) \le f(x_i^-) \le f(x_i^+) \le f(y_{i+1})$$

for each $j \in [p-1]$. Hence, for each $j \in [p-1]$,

$$f(x_j^+) - f(x_j^-) \le f(y_{j+1}) - f(y_j).$$

Hence,

$$\sum_{j=0}^{p} (f(x_{j}^{+}) - f(x_{j}^{-})) = f(a^{+}) - f(a) + \sum_{j=1}^{p-1} (f(x_{j}^{+}) - f(x_{j}^{-})) + f(b) - f(b^{-})$$

$$\leq f(y_{0}) - f(a) + \sum_{j=1}^{p-1} (f(y_{j+1}) - f(y_{j})) + f(b) - f(y_{p})$$

$$= f(b) - f(a).$$

Theorem 5.2.2

If f is monotone on [a, b], then the set of discontinuites of f is countable.

Proof. WLOG, f is increasing. Hence, f is discontinuous at c if and only if $f(c^+) - f(c^-) > 0$. Therefore, the set of discontinuites is $\bigcup_{k=1}^{\infty} D_k$ where

$$D_k \triangleq \{x \in [a, b] \mid f(x^+) - f(x^-) > 1/k \}.$$

If $x_1 < x_2 < \dots < x_p$ are p points in D_k , then Theorem 5.2.1 implies $p/k \le f(b) - f(a)$. Hence, D_k is finite. Therefore, $\bigcup_{k=1}^{\infty} D_k$ is countable.

5.2.1 Saltus Functions

Definition 5.2.2: Saltus Function

Given a monotone increasing function f on [a, b], we define following.

$$u(x) \triangleq \begin{cases} 0 & \text{if } x = a \\ f(x) - f(x^{-}) & \text{if } x \in (a, b] \end{cases} \quad \text{and} \quad v(x) \triangleq \begin{cases} f(x^{+}) - f(x) & \text{if } x \in [a, b) \\ 0 & \text{if } x = b. \end{cases}$$

Let $S = \{x_1, x_2, \dots\}$ be the set of discontinuites, which is countable by Theorem 5.2.2. If T is any subset of \mathbb{R} , $\sum_{x_j \in S \cap T} u(x_j)$ and $\sum_{x_j \in S \cap T} v(x_j)$ are defined to be

$$\sum_{x_j \in S \cap T} u(x_j) \triangleq \sup \left\{ \left. \sum_{x_j \in F} u(x_j) \right| F \subseteq S \cap T \text{ and } F \text{ is finite} \right\}$$

and

$$\sum_{x_j \in S \cap T} v(x_j) \triangleq \sup \left\{ \left. \sum_{x_j \in F} v(x_j) \right| F \subseteq S \cap T \text{ and } F \text{ is finite} \right\}.$$

It can be easily shown that

$$\sum_{x_j \in S \cap T} u(x_j) + \sum_{x_j \in S \cap T} v(x_j) = \sum_{x_j \in S \cap T} \left(u(x_j) + v(x_j) \right) = \sum_{x_j \in S \cap T} \left(f(x^+) - f(x^-) \right) \le f(b) - f(a).$$

To simplify the notation, let

$$S[x,y] \triangleq S \cap [x,y] \qquad S(x,y] = S \cap (x,y]$$

$$S[x,y) \triangleq S \cap [x,y) \qquad S(x,y) = S \cap (x,y).$$

The saltus function s_f associated with f is defined by

$$s_f(x) = \begin{cases} f(a) & \text{if } x = a \\ f(a) + \sum_{x_j \in S(a, x]} u(x_j) + \sum_{x_j \in S[a, x)} v(x_j) & \text{if } x \in (a, b]. \end{cases}$$

Lemma 5.2.1

Let f be a monotone increasing function on [a, b]. Then, the following hold.

- (i) s_f is monotone increasing on [a, b].
- (ii) For any $x, y \in [a, b]$ such that x < y, we have

$$0 \le s_f(y) - s_f(x) \le f(y) - f(x).$$

(iii) Let S denote the set of all discontinuites of f. Then s_f is continuous on $[a,b] \setminus S$.

Theorem 5.2.3

Let f be a monotone function on [a, b] and let s_f be the saltus function associated with f. Then, $f_c \triangleq f - s_f$ is continuous. If f is increasing (decreasing), then s_f and f_c are also increasing (decreasing) on [a, b].

5.3 Functions of Bounded Variation

Definition 5.3.1: Bounded Variation and Total Variation

Let f be a real-valued function defined on [a,b] and let $\pi=\{x_0,x_1,\cdots,x_p\}\in\Pi[a,b]$. Let

$$\Delta f_i \triangleq f(x_i) - f(x_{i-1})$$

for each $j \in [p]$. If the set

$$\left\{ \left. \sum_{i=1}^{p} |\Delta f_j| \, \right| \, \pi = \left\{ x_0, \cdots, x_p \right\} \in \Pi[a, b] \right\}$$

is bounded, then f is said to be of *bounded variation* on [a, b]. BV(a, b) is the set of all functions of bounded variation on [a, b].

For $f \in BV(a, b)$, the number

$$V(f;a,b) \triangleq \sup \left\{ \left. \sum_{j=1}^{p} |\Delta f_j| \, \middle| \, \pi = \{x_0,\cdots,x_p\} \in \Pi[a,b] \right\}$$

is called the *total variation* of f on [a, b].

Theorem 5.3.1

If $f \in BV(a, b)$, then f is bounded on [a, b], i.e., $BV(a, b) \subseteq B([a, b])$.

Theorem 5.3.2

If f is monotone on [a, b], then $f \in BV(a, b)$.

Theorem 5.3.3

Suppose f is continuous on [a, b] and differentiable on (a, b). If $f' \in B((a, b))$, then $f \in BV(a, b)$.

Theorem 5.3.4

Let $f, g \in BV(a, b)$. Then the following hold.

(i) $f \pm g \in BV(a, b)$ and

$$V(f \pm g; a, b) \le V(f; a, b) + V(g; a, b).$$

(ii) $fg \in BV(a,b)$ and

$$V(f g; a, b) \le ||g||_{\infty} V(f; a, b) + ||f||_{\infty} V(g; a, b).$$

(iii) If there exists some $m \in \mathbb{R}_+$ such that $|f(x)| \ge m$ for all $x \in [a, b]$, then $1/f \in BV(a, b)$ and

$$V\left(\frac{1}{f};a,b\right) \le \frac{V(f;a,b)}{m^2}.$$

5.4 Total Variation as a Function

Theorem 5.4.1

Suppose $f \in BV(a, b)$. Let $c \in (a, b)$. Then, $f \in BV(a, c)$ and $f \in BV(c, b)$. Furthermore,

$$V(f; a, b) = V(f; a, c) + V(f; c, b).$$

Definition 5.4.1: Variation

Let $f \in BV(a, b)$. The variation of f is the function V_f on [a, b] defined by

$$V_f(x) \triangleq \begin{cases} 0 & \text{if } x = a \\ V(f; a, x) & \text{if } x \in (a, b]. \end{cases}$$

Theorem 5.4.2

If $f \in BV(a, b)$, then V_f is an increasing function on [a, b].

Theorem 5.4.3

If $f \in BV(a, b)$, then $V_f - f$ is an increasing function on [a, b].

Theorem 5.4.4

Let f be a real-valued function on [a, b]. $f \in BV(a, b)$ if and only if there exists two increasing functions g and h on [a, b] such that f = g - h.

5.5 Continuous Functions of Bounded Variation

Theorem 5.5.1

Let $f \in BV(a, b)$. Then $f(x^+)$ exists at every $x \in [a, b)$ and $f(x^-)$ exists at every $x \in (a, b]$.

Theorem 5.5.2

Let $f \in BV(a, b)$. Then f is continuous at $c \in [a, b]$ if and only if V_f is continuous at c.