FUNCOIN: A whole-brain functional connectivity regression method for normative modelling

Janus Rønn Lind Kobbersmed, MD, BaSc, Phd-student, Center of Functionally Integrative Neuroscience, Aarhus University

Professor Diego Vidaurre, Center of Functionally Integrative Neuroscience, Aarhus University

Analysis workshop, May 26 2025, Aarhus University

Motivation:

Brain function biomarkers of disease/disorder

Challenges:

Complex nature

Heterogenous symptoms

• Described on a spectrum

Hard to recruit cases

Suggestion:

Normative modelling

Normative modelling

- Like growth charting of children
- Describes the normal variation in height and weight given sex and age
- Individual measures are evaluated as percentiles or Z-scores
- Allows identifying outliers or spotting longitudinal effects

The W.H.O. growth charts for girls (left) and boys (right) from birth to age 2, published by the *C.D.C.* (Centers for Disease Control and Prevention), 2009

Elements in normative modelling

- A large dataset of healthy subjects and (possibly fewer) subjects with diagnoses
- 2. A method to predict the brain meassure from sex and age

UK Biobank, fMRI data

- rs-fMRI from >60k subjects
 - 10684 with diagnoses in ICD10 F or G
 - 49721 with no diagnoses in ICD10 F or G
- Scan time 6 minutes (TR = 0.735 s)
- Network parcellations from ICA (p=55)

Normative modelling of brain function

Assessing brain function with functional connectivity (FC)

FUNCOIN: Functional Connectivity Integrative Normative Modelling¹

- A novel framework for network-level normative modelling
- An adaptation of a recently developed covariance regression method: Covariate Assisted Principal Regression²
 - Modified for normative modelling
 - Dimensionality reduction and regression in one go
- Released as a ready-to-use Python package

^{1:} Kobbersmed, J.R.L. et al. (2025). 'One-shot normative modelling of whole-brain functional connectivity', *BioRxiv*.

²: Zhao, Y. et al. (2021). 'Covariate Assisted Principal regression for covariance matrix outcomes', *Biostatistics*, 22(3), pp. 629-45.

Background: Principal components analysis

- We identify the components that capture most variation in the data
- => Benefits:
 - We reduce data to fewer dimensions
 - The component loadings reveal which brain regions contribute most to each component

Background: Principal components analysis

- We identify the components that capture most variation in the data
- => Benefits:
 - We reduce data to fewer dimensions
 - The component loadings reveal which brain regions contribute most to each component
 - From the strength of a component we can compute how much variance the component explains

Functional Connectivity Integrative Normative Modelling (FUNCOIN)

- Identifies components in a way similar to PCA
- The identified components are *shared* among the subjects
- The **strength** of the components **depend on covariates** (e.g. sex and age)

Model:

$$\mathbf{u}_{i} = \log(\boldsymbol{\gamma}^{T} \boldsymbol{\Sigma}_{i} \boldsymbol{\gamma}) = \beta_{0} + \boldsymbol{X}_{i}^{T} \boldsymbol{\beta}$$

Normative modelling of FC

- Healthy training: n=32000; healthy test: n=14000
- Deviation is assessed as two Z-scores

Individual deviation:

$$z_{k,i} = \frac{u_{k,i} - \overline{u_k}}{\sigma_k}$$

$$u_k = \frac{u_{k,i} - \overline{u_k}}{\sigma_k}$$

$$Age$$

Results: Normative models with FUNCOIN

- We identify 2 components:
 - 1: Depends on sex and age
 - 2: Depends (mainly) on sex

Results: Inspecting components and coefficients

- ullet The weighting of the brain regions are the values of $oldsymbol{\gamma}$ s
- The association with covariates is seen from the $oldsymbol{eta}$ coefficients

	Coeff.	Variable	Estimate	95%-CI
			(SE)	
	β _{1,0}	Intercept	-1.085	[-1.101;
			(0.010)	-1.066]
First	β _{1,1}	Sex	0.6129	[0.585;
projection			(0.014)	0.641]
	$\beta_{1,2}$	Age	0.4755	[0.440;
			(0.018)	0.511]
	$\beta_{1,3}$	Sex-age	-0.0935	[-0.145;
			(0.026)	-0.043]
				13

Results: Sex and age components

Components illustrated with brain maps:

Projection 1: Dependents on sex and age

Projection 2: Depends on sex

Diagnosis prediction

- We consider |Z|>2 as an outlier
 - Expect 2,3 % of healthy subjects to be outliers in each direction
- Reasons for being an outlier
 - Coincidence
 - Non-identified pathology
 - Brain disease/disorder

Diagnosis data

- Focus on chronic conditions
- Focus on N>100

Diagnosis	N
Alzheimer's dementia (F00)	34
Vascular dementia (F01)	25
Unspecified dementia (F03)	55
Mild cognitive impairment (F06)	28
Schizophrenia (F20)	33
Bipolar disorder (F31)	101
Autism/Asperger's (F840 and F845)	24
Parkinson's disease (G20)	132
Alzheimer's disease (G30)	48
Multiple sclerosis (G35)	164

Diagnosis prediction

- FUNCOIN reveals significant FC alterations in Parkinson's disease and bipolar disorder
- Subjects with bipolar disorder divided into two groups

Early diagnosis prediction

- Some subjects were diagnosed with PD years after their scan
 - 54 subjects were scanned 0-8 years before PD diagnosis (average ~3.7 years before)

Future work

- Currently finishing a version of FUNCOIN for MEG/EEG
 - Spectral properties
 - High dimensionality (large p)
 - Large amount of time points

See more:

- Paper: <u>https://www.biorxiv.org/content/10.1101/2025.01.13.632752v1</u>
- The FUNCOIN Python package: https://github.com/kobbersmed/funcoin
- FUNCOIN tutorial for this workshop:

 https://github.com/CFIN analysis/analysis_workshop_26May/blob/main/Notebooks/4_Tutorial_funcoin.ipynb

Extra slides (leftout but feel free to ask)

Covariate-assisted principal regression

- For each subject, i, let $y_{it} \in \mathbb{R}^p$, $t = 1, ... T_i$ be independent, identically distributed multivariate, normal random variables with mean zero and variance Σ_i
- Assume that there exists a vector, $\gamma \in \mathbb{R}^p$, such that $z_{it} = \gamma^T y_{it}$ satisfies the following multiplicative heteroscedasticity model:

$$\log(Var(z_{it})) = \log(\boldsymbol{\gamma}^T \boldsymbol{\Sigma}_i \boldsymbol{\gamma}) = \beta_0 + \boldsymbol{X}_i^T \boldsymbol{\beta}$$

where $\beta_0 \in \mathbb{R}$ and $\boldsymbol{\beta} \in \mathbb{R}^{q-1}$ model coefficients.

Disease prediction – elementwise model

Taking scanning site into account

Benefits of normative modelling

Brain function biomarkers of disease/disorder

- Challenges:
 - Complex nature

• Heterogenous symptoms

• Described on a spectrum

Hard to recruit cases

- Benefits of normative models:
 - Subject-level inference
 - Inference is per definition on a spectrum
 - Does not require a large number of cases

Prediction from FC

- Age and other traits can be predicted from rsfMRI FC, e.g. with
 - Linear models
 - SVMs (and other ML)
 - HMM

From: Ahrends, C. et al. (2025). Predicting individual traits from models of brain dynamics accurately and reliably using the Fisher kernel. eLife.

Previous normative models in rsfMRI FC

- Normative models of FC have predicted individual connections
 - Gaussian-Gamma mixed models (Looden et al, Molecular Autism, 2022)
 - Warped Bayesian Linear Regression (e.g. Fraza et al, Neuroimage, 2021)
 - Gaussian Processes (e.g. Marquand et al, Biological Psychiatry, 2016)

• Good overview in: Marquand et al, Molecular Psychiatry, 2019

Elementwise FC prediction

• Predicting each correlation value (Fisher z) from sex and age

• Best ec

Problems in elementwise FC prediction

- 1. Massive amount of models to validate
- 2. Each element holds little information about sex and age
- 3. Massive hypothesis testing
- 4. Not predicting valid FC matrices

Z-score distribution

 The out-of-sample Z-scores from healthy subjects follow a standard normal distribution

