2021

Theory of Computation

Kun-Ta Chuang
Department of Computer Science and Information Engineering
National Cheng Kung University

Outline

Minor Variations on the Turing Machine Theme

Turing Machines with More Complex Storage

Nondeterministic and Universal Turing Machines

The Standard Model

Infinite Tape

Read-Write Head

(Left or Right)

Control Unit

Deterministic

Variations of the Standard Model

Turing machines with:

- Stay-Option
- Semi-Infinite Tape
- Off-Line
- Multitape
- Multidimensional
- Nondeterministic

The variations form different Turing Machine Classes

We want to prove:

Each Class has the same power with the Standard Model

Same Power of two classes means:

Both classes of Turing machines accept the same languages

Same Power of two classes means:

For any machine M_1 of first class

there is a machine $\,M_{\,2}\,$ of second class

such that:
$$L(M_1) = L(M_2)$$

And vice-versa

Simulation: a technique to prove same power

Simulate the machine of one class with a machine of the other class

First Class
Original Machine

M₁

Second Class
Simulation Machine

Configurations in the Original Machine correspond to configurations in the Simulation Machine

Instantaneous description

Original Machine:
$$d_0 \vdash d_1 \vdash \cdots \vdash d_n$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$* \qquad *$$

Simulation Machine:
$$d_0' \vdash d_1' \vdash \cdots \vdash d_n'$$

Final Configuration

Original Machine:

$$d_f$$

Simulation Machine:

$$d_f'$$

The Simulation Machine and the Original Machine accept the same language

Turing Machines with Stay-Option

The head can stay in the same position

L,R,S: moves

Example:

Time 1

Time 2

Theorem:

Stay-Option Machines have the same power with Standard Turing machines

Proof:

Part 1: Stay-Option Machines are at least as powerful as Standard machines

Proof: a Standard machine is also a Stay-Option machine (that never uses the S move)

Proof:

Part 2: Standard Machines are at least as powerful as Stay-Option machines

Proof: a standard machine can simulate a Stay-Option machine

Stay-Option Machine

Simulation in Standard Machine

Similar for Right moves

Stay-Option Machine

Simulation in Standard Machine

For every symbol χ

Example

Stay-Option Machine:

Simulation in Standard Machine:

Standard Machine--Multiple Track Tape

$$(b,a),(c,d),L$$
 q_1

Semi-Infinite Tape

Standard Turing machines simulate Semi-infinite tape machines:

Trivial

Semi-infinite tape machines simulate Standard Turing machines:

Semi-infinite tape machine

Semi-infinite tape machine with two tracks

Right part

Left part

				\Diamond	\Diamond	
#	С	b	a	\Diamond	\Diamond	
					l	

Ch 10

Semi-infinite tape machine

Ch 10

Semi-infinite tape machine

Right part

$$\begin{array}{ccc}
 & (a,x),(g,x),R \\
\hline
 & q_2^R
\end{array}$$

Left part

$$\underbrace{q_1^L} \xrightarrow{(x,a),(x,g),L} \underbrace{q_2^L}$$

For all symbols χ

Time 1

Standard machine

Semi-infinite tape machine

Right part

Left part

Ch 10

Time 2

Standard machine

.

Semi-infinite tape machine

Right part

Left part

Ch 10

At the border:

Semi-infinite tape machine

Right part

$$\overbrace{q_1^R} \xrightarrow{(\#,\#),(\#,\#),R} \overbrace{q_1^L}$$

Left part

$$\underbrace{q_1^L} (\#,\#),(\#,\#),R \longrightarrow \underbrace{q_1^R}$$

Semi-infinite tape machine

Right part

Left part

Time 2

Right part

Left part

Ch 10

Theorem:

Semi-infinite tape machines have the same power with Standard Turing machines

The Off-Line Machine

Input File

Off-line machines simulate Standard Turing Machines:

Off-line machine:

- Copy input file to tape
- Continue computation as in Standard Turing machine

Off-line machine

1. Copy input file to tape

Off-line machine

2. Do computations as in Turing machine

Ch 10

Standard Turing machines simulate Off-line machines:

Use a Standard machine with four track tape to keep track of the Off-line input file and tape contents

Off-line Machine

Four track tape -- Standard Machine

#	\boldsymbol{a}	h	C	d		 Input File
 #	0	0		0		head position
#	e	f	g			Tape
#	0	1	0			head position
	^				<u>. </u>	

Reference point

Repeat for each state transition:

- Return to reference point
- Find current input file symbol
- Find current tape symbol
- Make transition

Theorem: Off-line machines have the same power with Standard machines

Outline

Minor Variations on the Turing Machine Theme

Turing Machines with More Complex Storage

Nondeterministic and Universal Turing Machines

Multitape Turing Machines

Time 2

$$\underbrace{q_1} (b,f),(g,d),L,R \qquad q_2$$

Multitape machines simulate Standard Machines:

Use just one tape

Standard machines simulate Multitape machines:

Standard machine:

Use a multi-track tape

 A tape of the Multiple tape machine corresponds to a pair of tracks

Multitape Machine

Standard machine with four track tape

	#	а	b	C				Tape 1
	#	0	1	0				head position
	#	e	f	g	h			Tape 2
	#	0	0	1	0			head position
10	ı		1	I	ı	1	<u> </u>	

Ch

Reference point

#	a	b	C			Tape 1
#	0	1	0			head position
#	e	f	g	h		Tape 2
# /	0	0	1	0		head position

Repeat for each state transition:

- Return to reference point
- •Find current symbol in Tape 1
- •Find current symbol in Tape 2
- Make transition

Theorem:

Multi-tape machines have the same power with Standard Turing Machines

Same power doesn't imply same speed:

Language
$$L = \{a^n b^n\}$$

Acceptance Time

Standard machine

 n^2

Two-tape machine

n

$$L = \{a^n b^n\}$$

Standard machine:

Go back and forth n^2 steps

Two-tape machine:

Copy b^n to tape 2 (n steps)

Leave a^n on tape 1 (n steps)

Compare tape 1 and tape 2 (n steps)

MultiDimensional Turing Machines

MOVES: L,R,U,D

D: down

Position: +2, -1

Ch 10

U: up

Multidimensional machines simulate Standard machines:

Use one dimension

Standard machines simulate Multidimensional machines:

Standard machine:

- Use a two track tape
- Store symbols in track 1
- Store coordinates in track 2

Two-dimensional machine

a				b				C	
1	#	1	#	2	#	 1	#		1
Ch 10)			↑					

symbols

coordinates

53

Standard machine:

Repeat for each transition

- Update current symbol
- Compute coordinates of next position
- Go to new position

Theorem:

MultiDimensional Machines have the same power with Standard Turing Machines

NonDeterministic Turing Machines

Non Deterministic Choice

Time 1

Choice 2

Input string w is accepted if this is a possible computation

Nondeterministic Machines simulate Standard (deterministic) Machines:

Every deterministic machine is also a nondeterministic machine

Deterministic machines simulate NonDeterministic machines:

Deterministic machine:

Keeps track of all possible computations

Non-Deterministic Choices

Non-Deterministic Choices

Simulation

Deterministic machine:

Keeps track of all possible computations

 Stores computations in a two-dimensional tape

NonDeterministic machine

Deterministic machine

#	#	#	#	#	#	
#	a	b	$\boldsymbol{\mathcal{C}}$	#		
#	q_1			#		
#	#	#	#	#		

Computation 1

Ch 10

NonDeterministic machine

Deterministic machine

	#	#	#	#	#	#	
#		b	b	$\boldsymbol{\mathcal{C}}$	#		Computation 1
#	q_2				#		
#		\mathcal{C}	b	C	#		Computation 2
#			q_3		#		

Ch 10

Repeat

Execute a step in each computation:

- If there are two or more choices in current computation:
 - 1. Replicate configuration
 - 2. Change the state in the replication

Theorem: NonDeterministic Machines have the same power with Deterministic machines

Remark:

The simulation in the Deterministic machine takes time exponential time compared to the NonDeterministic machine

A Universal Turing Machine

A limitation of Turing Machines:

Turing Machines are "hardwired"

they execute only one program

Real Computers are re-programmable

Solution: Universal Turing Machine

Attributes:

- Reprogrammable machine
- Simulates any other Turing Machine

Universal Turing Machine simulates any other Turing Machine M

Input of Universal Turing Machine:

Description of transitions of M

Initial tape contents of M

We describe Turing machine M as a string of symbols:

We encode M as a string of symbols

Alphabet Encoding

State Encoding

Head Move Encoding

76

Transition Encoding

Transition:

$$\delta(q_1, a) = (q_2, b, L)$$

Encoding:

Machine Encoding

Transitions:

$$\delta(q_1, a) = (q_2, b, L) \qquad \delta(q_2, b) = (q_3, c, R)$$

Encoding:

10101101101 00 1101101110111011

Ch 10

Tape 1 contents of Universal Turing Machine:

encoding of the simulated machine M as a binary string of 0's and 1's

A Turing Machine is described with a binary string of 0's and 1's

Therefore:

The set of Turing machines forms a language:

each string of the language is the binary encoding of a Turing Machine

Language of Turing Machines

Countable Sets

Infinite sets are either:

Countable

or

Uncountable

Countable set:

Any finite set or

Any Countably infinite set:

There is a one to one correspondence between

elements of the set

and

Natural numbers

Example: The set of even integers is countable

Even integers: $0, 2, 4, 6, \dots$

Correspondence:

Positive integers: $1, 2, 3, 4, \dots$

Example: The set of rational numbers is countable

Rational numbers: $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \dots$

Naïve Proof

Rational numbers:

Correspondence:

Positive integers:

1, 2, 3, ...

Doesn't work:

we will never count numbers with nominator 2:

$$\frac{2}{1}, \frac{2}{2}, \frac{2}{3}, \dots$$

Better Approach

$$\frac{1}{1}
 \frac{1}{2}
 \frac{1}{3}
 \frac{1}{4}
 .$$

$$\frac{2}{1}$$
 $\frac{2}{2}$ $\frac{2}{3}$...

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

$$\frac{1}{1} \longrightarrow \frac{1}{2}$$

$$\frac{1}{3}$$

$$\frac{1}{4}$$
 ...

$$\frac{2}{1}$$

$$\frac{2}{2}$$

$$\frac{2}{2}$$
 ...

$$\frac{3}{1}$$

$$\frac{3}{2}$$
 ...

$$\frac{4}{1}$$
 ...

Ch 10

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

$$\frac{3}{1}$$
 $\frac{3}{2}$...

$$\frac{4}{1}$$
 ...

Ch 10

Rational Numbers:

$$\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{2}{2}, \dots$$

Correspondence:

Positive Integers:

We proved:

the set of rational numbers is countable by describing an enumeration procedure

Definition

Let S be a set of strings

An enumeration procedure for S is a Turing Machine that generates all strings of S one by one

and

Each string is generated in finite time

$$s_1, s_2, s_3, \ldots \in S$$

Enumeration Machine for *S*

output

(on tape)

 $\rightarrow s_1, s_2, s_3, \dots$

Finite time:

 t_1, t_2, t_3, \dots

Enumeration Machine

Configuration

Time 0

Time t_1

Time
$$t_2$$

Time
$$t_3$$

Observation:

If for a set there is an enumeration procedure, then the set is countable

Example:

The set of all strings $\{a,b,c\}^+$ is countable

Proof:

We will describe an enumeration procedure

Naive procedure:

Produce the strings in lexicographic order:

a

aa

aaa

aaaa

• • • • •

Doesn't work:

strings starting with b will never be produced

Better procedure: Proper Order

- 1. Produce all strings of length 1
- 2. Produce all strings of length 2
- 3. Produce all strings of length 3
- 4. Produce all strings of length 4

.

 α length 1 b aa ab acba length 2 bbbcca cbCCaaa aab length 3 aac

Produce strings in **Proper Order**:

Ch 10

Theorem 10.3:

The set of all Turing Machines is countable

Proof: Any Turing Machine can be encoded with a binary string of 0's and 1's

Find an enumeration procedure for the set of Turing Machine strings

Enumeration Procedure:

Repeat

- Generate the next binary string of 0's and 1's in proper order
- Check if the string describes a
 Turing Machine
 if YES: print string on output tape if NO: ignore string

Uncountable Sets

Definition: A set is uncountable if it is not countable

Theorem:

Let S be an infinite countable set

The powerset 2^S of S is uncountable

Proof:

Since S is countable, we can write

$$S = \{s_1, s_2, s_3, \ldots\}$$
Elements of S

Elements of the powerset have the form:

$$\{s_1, s_3\}$$

$$\{s_5, s_7, s_9, s_{10}\}$$

.

We encode each element of the power set with a binary string of 0's and 1's

Powerset element	Encoding					
	s_1	s_2	<i>s</i> ₃	s_4	• • •	
{ <i>s</i> ₁ }	1	0	0	0	• • •	
$\{s_2,s_3\}$	0	1	1	0	• • •	
$\{s_{1,53,54}\}$	1	0	1	1	• • •	

Let's assume (for contradiction) that the powerset is countable.

Then: we can enumerate the elements of the powerset

Powerset element

Encoding

Ch 10

Take the powerset element whose bits are the complements in the diagonal

New element: 0011...

(binary complement of diagonal)

Ch 10

The new element must be some t_i of the powerset

However, that's impossible:

from definition of t_i

the i^{th} bit of t_i must be the complement of itself

Contradiction!!!

Since we have a contradiction:

The powerset 2^S of S is uncountable

An Application: Languages

Example Alphabet : $\{a,b\}$

The set of all Strings:

$$S = \{a,b\}^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$
infinite and countable

Example Alphabet : $\{a,b\}$

The set of all Strings:

$$S = \{a,b\}^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$
 infinite and countable

A language is a subset of S:

$$L = \{aa, ab, aab\}$$

Example Alphabet : $\{a,b\}$

The set of all Strings:

$$S = \{a,b\}^* = \{\lambda,a,b,aa,ab,ba,bb,aaa,aab,...\}$$
 infinite and countable

The powerset of S contains all languages:

$$2^{S} = \{\{\lambda\}, \{a\}, \{a,b\}, \{aa,ab,aab\}, \ldots\}$$

 $L_1 \ L_2 \ L_3 \ L_4 \ \ldots$

uncountable

Languages: uncountable

Turing machines: countable

There are more languages than Turing Machines

Conclusion:

There are some languages not accepted by Turing Machines

(These languages cannot be described by algorithms)

Languages not accepted by Turing Machines

Linear Bounded Automata LBAs

Linear Bounded Automata (LBAs) are the same as Turing Machines with one difference:

The input string tape space is the only tape space allowed to use

Linear Bounded Automaton (LBA)

All computation is done between end markers

Example languages accepted by LBAs:

$$L = \{a^n b^n c^n\}$$

$$L = \{a^{n!}\}$$

LBA's have more power than NPDA's

LBA's have also less power than Turing Machines