

中央空调集控有线接口协议(TCP)

V1 1

TCP**通**讯协议应用说明

- 一、空调管理模块(gateway,以下简称GW)与上位机采用socket通讯,介绍如下:
 - 1、GW共开放了3个连接, 可支持同时链接, 分别为:

TCP/IP server(端口号为9999)

TCP/IP client(端口号为8899)

UDP (端口号为43708)

2、GW作为TCP/IP server 时, 上位机

以9999端口连接过来即可,建立连接后以约定协议内容进行通讯即可。

3、GW作为TCP/IP client 时, GW主动以

8899端口连接上位机,连接初次GW会发送自身地址(共16个字节),每过14秒左右会发送心跳包(0x12 0x34),上位机无需理会此心跳包。

4、说明:此心跳包只是作为GW自身判断已建立的socket连接健康与否的判断条件,当收到此心跳包时,上位机的TCP/IP底层会自动回复ACK给GW,无需上位机的应用层理会。

如果链接被切断或异常, GW每隔1分钟左右, 会定时发送连接请求

- 5、GW的IP设置在其自身的WEB页面中,可以设置其自身IP,连接的目标服务器IP,端口号等。(云端服务器IP及端口设置是为连接厂家自己的云端使用的,用户不需要理会)
- 6、如果通过路由器来跟GW连接的话, GW的IP地址可以设定为固定IP, 也可以设定为DHCP自动获取(将配置页面中的DHCP选项由0改为1), 路由器会动态为其

分配一个IP地址,如果中控方想知道这个IP地址,可以用以端口号43708发送UDP 广播,GW收到后会回复,籍此,中控系统可以知道GW的IP地址。

二、控制空调和空调状态查看时,从<u>弱电集成系统</u>到<u>网关</u>发送的数据结构组成如下

表1

本网关地 址	功能码	控制值	空调数量	空调地址	校验
1 byte	1 byte	1 byte	1 byte	空 调 数量 × 2 byte	1 byte

对应于空调状态查看, 网关反馈给弱电集成系统的状态数据结构组成如下

表2

本网关地 址	功能码	控制值	空调数量	空调地址 + 状态值	校验
1 byte	1 byte	1 byte	l byte	空 调 数 量 × 10 byte	1 byte

对应**于空调状**态变**化后主**动上传,**网关反**馈给**弱电集成系统的状态数据结构** 组成如下

表3

本网关地 址	功能码	控制值	空调数量	空调地址 + 状 态值	校验
1 byte	1 byte	1 byte	1 byte	10 byte	1 byte

网关地址:

本网关自身地址, 该地址根据现场情况进行设定, 出厂默认为"0x01"

功能码:

区分数据包要实现**的功能**, 是监视**、控制**还是**空调状**态变**化自**动上传**控制内容**:

相应于某个功能码,该位置给出具体的控制数值。例如,当功能码为控制开关时,该位置值为0x01时表示开机,0x02时表示关机;当功能码为温度设定时,该位置为0x13时表示将温度设定为 19° C,0x1E时表示将温度设定为 30° C。

空调数量:

表示该指令作用于空调的数量

空调地址:

每个空调的地址由2

byte组成, 第一个byte表示该空调室内机所在的制冷系统地址(或室外机地址),

第二个byte表示该空调室内机的地址。根据要控制空调数量的不同, 该数据域的 长度也会变化, 其长度 =空调数量 × 2 byte

空调地址 + 状态值:

该数据域可表示 1个或多个空调的地址和其相应状态值,每个空调由 10个byte组成,每个byte含义如下:

表 4

空调地址(空调地址(开关	温度	模式	风速	房间	故障	备	备
外)	内)	状态	设 定	设 定	设 定	温度	代码	用1	用2

校验:

校验数据域之前所有数据,即从"网关地址"到"空调地址"所有数据的和(checksum), 溢出不计, 只取低8位。

功能码与控制值结合,形成对空调的详细监控指令,详细内容含义如下。

表5控制功能

功能码	控制值	相应含义
0x31-向下控制开关	0x01	开机

所有空调 1种协议

	0x02	关机
0x32-向下控制温度	0x10~0x1E	设 定温度 16 [~] 30℃(+进制)
	0x01	设 定制冷
 0x33-向下控制模式	0x08	设 定制 热
	0x04	设 定送 风
	0x02	设 定除湿
	0x01	设定 高速
	0x02	设定 中速
│0x34- 向下控制 风速	0x03	
	0x04	设定 低速
	0x05	
0x35-向下控制风向		
0x36-向下控制湿度		
0x37-向下控制洁度		

表6监视功能

功能码	控制值	相应含义
	0x01	查询指定地址的 1台
	0x01	空调的状 态值
	0.05	查询指定地址的 多台
	0x0F	空 调 的状 态值
0x50- 向下 查询 空 调状态		查询网关所连接的
空调状态主动反 馈	Ox Pr	全部空 调的状态值, 如果反馈
		第4字 节为0(无室内机连接)
		,则 表示网关未准 备好
	0.00	查询网关所连接的某台或多
	0x02	台空调在线状 态

表7空调状态上传功能

功能码	控制值	相应含义
0x50- 空 调 状 态 主 动 反 馈	0x01	1台 空调的状态值上传

通过网关可监控1台空调,也可以同时监视和控制多台或全部空调

○监控1台空调时,空调数量及空调地址域为:

空调数量	空调地址(外)	空调地址(内)	
1	XX	XX	

○监**控全部空**调时, 空调数量及空调地址域为:

空调数量	空调地址(外)	空调地址(内)

0xFF	0xFF	0xFF

○监控多台空调时, 空调数量及空调地址域为(以控制2台空调室内机为例):

空调数量	空调地址(外)	空调地址(内)	空调地址(外)	空调地址(内)
2	0x01	0x01	0x02	0x03

以上表示同时监控2台室内机:"1-1"和"2-3"室内机

发送及接收数据举例(十六进制):

假设本网关地址为1, 其下共连接6台空调室内机, 地址分别为1-1, 1-2, 1-3, 2-0, 2-1, 2-

2, 示例收发的数据中, "<u>发送"表示弱电集成系统向本网关发送的数据</u>, "接收"表示本网关反馈给弱电集成系统的数据。

注意: 当弱电集成系统只控制1台空调时,本网关将接收到的控制指令复制返回,表示已经正确收到指令;当弱电集成系统同时控制多台或本网关所连接全部空调时,为了缩减反馈数据长度,提高效率,本网关将空调数量域的数据复制返回,但空调地址域的数据就不再将接收到的所有空调地址复制反馈,而是用0xFF、0xFF来代替。

◆控制空调

●控制"1-3"空调室内机开机运行:

发送:01 31 01 01 01 03 38

接收:01 31 01 01 01 03 38

●控制"1-1", "2-0"空调室内机关机:

发送:01 31 02 02 01 01 02 00 3A

接收:01 31 02 02 FF FF 34

●控制"1-1", "2-0", "2-2"空调室内机温度设定为26°C:

发送:01 32 1A 03 01 01 02 00 02 02 58

接收:01 32 1A 03 FF FF 4E

●控制全部空调室内机运行模式设定为制热:

发送:01 33 02 FF FF FF 33

接收:01 33 02 FF FF FF 33

◆查**看空调状**态

●查看"1-3"一台空调室内机参数:

发送:01 50 01 01 01 03 57

接收:01 50 01 01 01 03 01 14 08 04 20 00 00 00 91

解释:Byte.0 01---网关地址

Byte.1 50---功能码

Byte.2 01---表示查询单台空调

Byte.3 01---查询的空调数量

Byte.4 01---空调室外机地址

Byte.5 03---空调室内机地址

Byte.6 01---空调在开机运行中

Byte.7 14---空调被设定为20 ℃

Byte.8 08---空调被设定为制热

Byte.9 04---空调被设定为低速风

Byte.10 20---房间温度为32 ℃

Byte.11 00---故障代码为0(无故障)

Byte.12 00----备用1

Byte.13 00---备用2

Byte.14 90---校验值(前面所有数据checksum)

●查看"1-3", "2-2"二台空调室内机参数:

发送:01 50 0F 02 01 03 02 02 6A

接收:01 50 0F 02 01 03 01 14 02 01 20 00 00 00 02 02 00 14 04 01 23 00 00 00 DF

解释:Byte.0 01---网关地址

Byte.1 50---功能码

Byte.2 0F---表示查询多台空景的状态

Byte.3 02---查询2**个空**概

Byte.4 01---第1个空调的室外机地址

Byte.5 03---第1个空调的室内机地址

Byte.6 01---空调在开机运行中

Byte.7 14---空调被设定为20 ℃

Byte.8 02---空调被设定为除湿

Byte.9 01---空调被设定为高速风

Byte.10 20---房间温度为32 ℃

Byte.11 00---故障代码为0(无故障)

Byte.12 00----备用1

Byte.13 00----备用2

Byte.14 02---第2个空调的室外机地址

Byte.15 02---第2个空调的室内机地址

Byte.16 00---空调停机中

Byte.17 14---空调被设定为20℃

Byte.18 04---空调被设定为送风

Byte.19 01---空调被设定为高速风

Byte.20 23---房间温度为35 ℃

Byte.21 00---故障代码为0(无故障)

Byte.22 00----备用1

Byte.23 00----备用2

Byte.24 DF---校验值/前面所有数据checksum)

查看该网关下全部空调室内机参数

发送:01 50 FF FF FF FF 4D

接收:01 50 FF 06

01 01 01 14 02 03 20 00 00 00 (室内机01-01的10个参数)

01 02 00 14 02 01 23 00 00 00 (室内机01-02的10个参数)

01 03 01 14 02 03 24 00 00 00 (室内机01-03的10个参数)

02 00 01 14 03 01 20 00 00 00 (室内机02-00的10个参数)

02 01 00 14 02 03 20 00 00 00 (室内机02-01的10个参数)

02 02 00 14 03 01 20 00 00 (室内机02-02的10个参数)

3C

●查看该网关连接的"1-3"室内机在线状态(单台):

发送:01 50 02 01 01 03 58

接收:01 50 02 01 01 03 00 58

Byte.0 01---网关地址

Byte.1 50---功能码

Byte.2 02---表示查询空调的在线状态

Byte.3 01---查询1个空调

Byte.4 01---第1个空调的室外机地址

Byte.5 03---第1个空调的室内机地址

Byte.6 01---空调在线(接收数据)

Byte.7 58---校验值(前面所有数据checksum)

●查看该网关下连接的"1-3", "2-2"室内机在线状态(多台):

发送:01 50 02 02 01 03 02 02 510

接收:01 50 02 02 01 03 00 02 02 01 5E

发**送**:

Byte.0 01---网关地址

Byte.1 50---功能码

Byte.2 02---表示查询空调的在线状态

Byte.3 01---查询2个空调

Byte.4 01---第1个空调的室外机地址

Byte.5 03---第1个空调的室内机地址

Byte.6 02---第2个空调的室外机地址

Byte.7 02---第2个空调的室内机地址

Byte.8 5E---校验值(前面所有数据checksum)

接收

Byte.0 01---网关地址

Byte.1 50---功能码

Byte.2 02---表示查询空调的在线状态

Byte.3 01---查询2个空调

Byte.4 00---第1个空调的室外机地址

Byte.5 01---第1个空调的室内机地址

Byte.6 00---第1个空调不在线

Byte.7 00---第2个空调的室外机地址

Byte.8 03---第2个空调的室内机地址

Byte.9 00---第2个空调不在领

Byte.10 5E---校验值(前面所有数据checksum)

●查看该网关下连接的室内机%-0、0-3、1-4、3-5在线状态(全部):

发送:01 50 02 FF FF FF 50

接收:01 50 02 04 00 01 00 00 03 01 01 04 00 03 05 01 6A

发**送**:

Byte.0 01---网关地址

Byte.1 50---功能码

Byte.2 02---表示查询空调的在线状态

Byte.3 FF---查询**所有空**调

Byte.4 FF---所有地址

Byte.5 FF---所有地址

Byte.6 5A---校验值(前面所有数据checksum)

接收

Byte.0 01---网关地址

Byte.1 50---功能码

Byte.2 02---表示查询空调的在线状态

Byte.3 01---查询4个空调

Byte.4 00---第1个空调的室外机地址

Byte.5 01---第1个空调的室内机地址

Byte.6 00---第1个空调不在线

Byte.7 00---第2个空调的室外机地址

Byte.8 03---第2个空调的室内机地址

Byte.9 00---第2个空调在线

Byte.10 01---第3个 客调的室外机地址

Byte.11 04--- 第3个空调的室内机地址

Byte.12 00---第3个空调不在线

Byte.13 03---第4个空调的室外机地址

Byte.14 05---第4个空调的室内机地址

Byte.15 01---第4个空调在线

Byte.16 6A---校验值(前面所有数据checksum)

◆**空调状**态变**化后将当前状**态主动上传

当某台空调因用户的操作而发生变化后,本网关会将此空调的最新状态推送给弱电集成系统,在推送空调状态时,不是一次将其连接的全部空调的状态推送上去,而是一台一台空调的来推送,例如,2-2和3-5

两台空调状态同时发生变化,本网关会先将2-

2空调的当前状态推送给弱电集成系统, 然后再推送3-5空调的状态。

当某1台空调的开关和温度同时发生变化后,本网不会先推送开关状态,再推送温度设定,而是一次性将本台空调的所有数据打包推送给弱电集成系统。

●例如"1-

3"空调室内机的某个参数发生了变化(可能为开关状态变化,可能为温度设定变化,可能为风速设定变化,可能为冷热模式变化等):

发送:无 ———上位机无须发送查询码

接收:01 50 01 01 01 03 01 14 08 04 20 00 00 00 91

解释:Byte.0 01---网关地址

Byte.1 50---功能码

Byte.2 01---表示查询单台空调

Byte.3 01---查询的空调数量

Byte.4 01---空调室外机地址

Byte.5 03---空调室内机地址

Byte.6 01---空调在开机运行中

Byte.7 14---空调被设定为20 ℃

Byte.8 08---空调被设定为制热

Byte.9 04---空调被设定为低速风

Byte.10 20---房间温度为32 ℃

Byte.11 00---故障代码为0(无故障)

Byte.12 00----备用1

Byte.13 00---备用2

Byte.14 90---校验值(前面所有数据checksum)

网址 微信公众号