MA 523: Homework 5

Carlos Salinas

October 4, 2016

CARLOS SALINAS PROBLEM 5.1

PROBLEM 5.1

Prove that Laplace's equation $\Delta u=0$ is rotation invariant; that is, if O is an orthogonal $n\times n$ matrix and we define $\nu(x):=u(Ox), x\in\mathbb{R}^n$, then $\Delta\nu=0$.

Solution.

MA 523: Homework 5 —1 of 3—

CARLOS SALINAS PROBLEM 5.2

PROBLEM 5.2

Let n=2 and U be the halfplane $\{x_2>0\}$. Prove that

$$\sup_{U} u = \sup_{\partial U} u$$

for $u \in C^2(U) \cap C(\bar{U})$ which are harmonic in U under the additional assumption that u is bounded from above in \bar{U} . (The additional assumption is needed to exclude examples like $u=x_2$.) [Hint: Take for $\varepsilon>0$ the harmonic function

$$u(x_1, x_2) + \epsilon \ln \sqrt{x_1^2 + (x_2 + 1)^2}.$$

Apply the maximum principle to a region $\left\{\,x_1^2+(x_2+1)^2<\alpha_2,x_2>0\,\right\}$ with large $\alpha.$ Let $\epsilon\to0.$]

Solution.

MA 523: Homework 5 —2 of 3—

CARLOS SALINAS PROBLEM 5.3

PROBLEM 5.3

Let $U \subset \mathbb{R}^n$ be an open set. We say $v \in C^2(U)$ is subharmonic if

$$-\Delta v \leqslant 0$$
 in U.

(a) Let $\phi\colon \mathbb{R}^m \to \mathbb{R}$ be smooth and convex. Assume u^1,\dots,u^m are harmonic in U and

$$\nu := \varphi(\mathfrak{u}_1, \ldots, \mathfrak{u}_m).$$

Prove v is sub harmonic.

[*Hint*: Convexity for a smooth function $\varphi(z)$ is equivalent to $\sum_{j,k=1}^{m} \varphi_{z_j,z_k}(z)\xi_j\xi_j \geqslant 0$ for any $\xi \in \mathbb{R}^m$.]

(b) Prove $\nu := |Du|^2$ is subharmonic, whenever u is harmonic. (Assume that harmonic functions are C^{∞} .)

Solution.

MA 523: Homework 5 —*3 of 3*—