Relatório: Recorte Sutherland

Aluno: Kaio Guilherme Ferraz De Sousa Silva

1. Introdução

Este relatório analisa o algoritmo de recorte de polígonos **Sutherland- Hodgman**, explicando seu funcionamento e principais características. O algoritmo é amplamente utilizado para recortar polígonos arbitrários contra janelas de recorte convexas, garantindo que apenas a parte do polígono dentro da área visível seja mantida.

Algoritmo Analisado

1. **Sutherland-Hodgman**: Algoritmo iterativo que processa o polígono um lado de cada vez, mantendo apenas os vértices dentro da região visível.

2. Descrição do Funcionamento

2.1 Algoritmo de Sutherland-Hodgman

O algoritmo **Sutherland-Hodgman** realiza o recorte iterativamente, processando cada aresta da janela de recorte contra todos os vértices do polígono. Ele determina quais vértices devem ser mantidos ou descartados com base em sua posição relativa à borda de recorte.

Processo:

- 1. Começa com a lista original de vértices do polígono.
- 2. Para cada aresta da janela de recorte:
 - Verifica quais vértices estão dentro e fora da região visível.
 - Mantém os vértices dentro.
 - Adiciona pontos de interseção quando um segmento atravessa a borda da janela.

Relatório: Recorte Sutherland 1

3. O polígono resultante é o recortado.

3. Características do Algoritmo

Característica	Sutherland-Hodgman
Tipo de Algoritmo	Iterativo, baseado em teste de interseção
Uso de Memória	Depende da complexidade do polígono original
Velocidade	Eficiente para polígonos convexos
Preenchimento de Áreas	Mantém apenas as partes dentro da janela de recorte
Limitações	Requer que a janela de recorte seja convexa

4. Análise de Desempenho

Relatório: Recorte Sutherland

O algoritmo **Sutherland-Hodgman** é eficiente para polígonos convexos e garante um recorte preciso. Ele utiliza interseções entre os segmentos do polígono e a borda da janela para determinar os novos vértices. A implementação inclui a visualização progressiva do recorte, permitindo acompanhar a transformação do polígono em tempo real.

Foram testados polígonos de diferentes tamanhos dentro de uma janela de recorte 500×500 pixels, analisando o impacto da velocidade e complexidade do recorte.

5. Conclusão

O algoritmo **Sutherland-Hodgman** é uma solução eficiente para recorte de polígonos contra janelas convexas, garantindo um resultado preciso e um bom desempenho computacional. Sua implementação iterativa reduz problemas de empilhamento de recursão e facilita a visualização do processo de recorte. Apesar de suas vantagens, ele é restrito a janelas convexas, necessitando de adaptações para recortes mais complexos.

Relatório: Recorte Sutherland 3