## Particle spectrograph

## Wave operator and propagator

|                                      | $\sigma_{1}^{\#1}{}_{\alpha\beta}$         | $\sigma_{1}^{\#2}{}_{\alpha\beta}$            | $\tau_{1}^{\#1}$                                                        | $\sigma_{1^{\bar{-}}\alpha}^{\#1}$ | $\sigma_{1^{^{-}}\alpha}^{\#2}$  | $\tau_{1^{-}\alpha}^{\#1}$ | ${\mathfrak l}_1^{\#2}{}_{\alpha}$         |
|--------------------------------------|--------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------|------------------------------------|----------------------------------|----------------------------|--------------------------------------------|
| $^{+1}$                              | 2 (t <sub>1</sub> +t <sub>2</sub> )        | $\sqrt{2} (t_1 - 2t_2)$                       | $i \sqrt{2} k(t_1-2t_2)$                                                | c                                  | c                                | C                          | C                                          |
| 1+ 1                                 | $3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2)$          | $(1+k^2)(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))$    | $(1+k^2)(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))$                              | 0                                  | O                                | )                          | D                                          |
| $^{+2}$                              | $\sqrt{2} (t_1-2t_2)$                      | $6k^2(2r_1+r_5)+t_1+4t_2$                     | $ik(6k^2(2r_1+r_5)+t_1+4t_2)$                                           | c                                  | c                                | C                          | C                                          |
| -<br>+ <sub>L</sub>                  | $(1+k^2)(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))$ | $(1+k^2)^2 (3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))$ | $(1+k^2)$                                                               | 0                                  | O                                | 0                          | D                                          |
| $-#1 + \alpha\beta$                  | $i \sqrt{2} k(t_1-2t_2)$                   | $ik(6k^2(2r_1+r_5)+t_1+4t_2)$                 | $k^2 (6k^2 (2r_1+r_5)+t_1+4t_2)$                                        | c                                  | c                                | C                          | Ó                                          |
| 1+ -                                 | $(1+k^2)(3t_1t_2+2k^2(2r_1+r_5)(t_1+t_2))$ | $-\frac{(1+k^2)}{(1+k^2)}$                    | $\overline{(1\!+\!k^2)^2(3t_1t_2\!+\!2k^2(2r_1\!+\!r_5)(t_1\!+\!t_2))}$ | 0                                  | O                                | )                          | D                                          |
| $\sigma_{1}^{\#_{1}} \dagger^{lpha}$ | 0                                          | 0                                             | 0                                                                       | 0                                  | $\frac{\sqrt{2}}{t_1 + 2k^2t_1}$ | 0                          | $\frac{2ik}{t_1 + 2k^2t_1}$                |
| π2 α                                 |                                            |                                               |                                                                         | $\sqrt{2}$                         | $-2k^{2}(r_{1}+r_{5})+t_{1}$     | (                          | $i \sqrt{2} k (2k^2 (r_1 + r_5) - t_1)$    |
| 0 <u>1</u> - T                       | O                                          | O                                             | O                                                                       | $t_1 + 2k^2t_1$                    | $(t_1+2k^2t_1)^2$                | 0                          | $-\frac{(t_1+2k^2t_1)^2}{(t_1+2k^2t_1)^2}$ |
| $\tau_{1}^{\#1} +^{\alpha}$          | 0                                          | 0                                             | 0                                                                       | 0                                  | 0                                | 0                          | 0                                          |
| _#2 ±α                               | C                                          | C                                             | C                                                                       | 2 ī k                              | $i\sqrt{2}k(2k^2(r_1+r_5)-t_1)$  | C                          | $-4k^4(r_1+r_5)+2k^2t_1$                   |
| $^{l_1}$                             | D                                          | D                                             | D                                                                       | $t_1 + 2 k^2 t_1$                  | $(t_1+2 k^2 t_1)^2$              | )                          | $(t_1+2k^2t_1)^2$                          |

|                                        | _            | $\omega_{2}^{\#1}{}_{\alpha\beta}$ | $f_{2+\alpha\beta}^{\#1}$ | ω      | #1<br>2 <sup>-</sup> αβ | <u> </u>        |   |
|----------------------------------------|--------------|------------------------------------|---------------------------|--------|-------------------------|-----------------|---|
| $\omega_{2}^{\#1}$ †                   | αβ           | <u>t</u> 1<br>2                    | $-\frac{ikt_1}{\sqrt{2}}$ |        | 0                       |                 |   |
| $f_{2}^{#1}$ †                         | αβ           | $\frac{ikt_1}{\sqrt{2}}$           | $k^2 t_1$                 | 0      |                         |                 |   |
| $\omega_{2}^{#1}\dagger^{lphaeta\chi}$ |              | 0                                  | 0                         | $k^2$  | $r_1 + \frac{1}{2}$     | <u>t</u> 1<br>2 |   |
| _                                      |              | $\omega_{0^+}^{\sharp 1}$          | $f_{0^{+}}^{#1}$          | ,      | $f_{0^{+}}^{#2}$        | $\omega_0^{\#}$ | 1 |
| $\omega_{0}^{\sharp 1}$ †              |              | -t <sub>1</sub>                    | ī √2 Å                    | $kt_1$ | 0                       | 0               |   |
| $f_{0^{+}}^{#1}\dagger$                | - <i>[</i> j | $\sqrt{2} kt_1$                    | $-2k^2$                   | $t_1$  | 0                       | 0               |   |
| $f_{0}^{\#2}\dagger$                   |              | 0                                  | 0                         |        | 0                       | 0               |   |
| $\omega_{0}^{	ext{#1}}$ †              |              | 0                                  | 0                         |        | 0                       | $t_2$           |   |

| Source constraints/ga                                                        | uge generators |
|------------------------------------------------------------------------------|----------------|
| SO(3) irreps                                                                 | Multiplicities |
| $\tau_{0+}^{#2} == 0$                                                        | 1              |
| $\tau_{0+}^{\#1} - 2  \bar{\imath}  k  \sigma_{0+}^{\#1} == 0$               | 1              |
| $\tau_{1}^{\#2\alpha} + 2ik \sigma_{1}^{\#2\alpha} == 0$                     | 3              |
| $\tau_{1}^{\#1\alpha} == 0$                                                  | 3              |
| $\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$         | 3              |
| $\tau_{2+}^{\#1\alpha\beta} - 2 \bar{i} k \sigma_{2+}^{\#1\alpha\beta} == 0$ | 5              |
| Total constraints:                                                           | 16             |

| $\sigma_{2^{-}}^{\#1}lphaeta\chi$  | 0                                    | 0                                   | $\frac{2}{2k^2r_1+t_1}$                |
|------------------------------------|--------------------------------------|-------------------------------------|----------------------------------------|
| $\tau_2^{\#1}_{+}$                 | $-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$ | $\frac{4k^2}{(1+2k^2)^2t_1}$        | 0                                      |
| $\sigma_{2}^{\#1}{}_{\alpha\beta}$ |                                      | $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$ | 0                                      |
|                                    | $\sigma_{2}^{\#1} + ^{\alpha\beta}$  | $\tau_{2}^{#1} + \alpha \beta$      | $\sigma_{2^{-}}^{\#1} +^{lphaeta\chi}$ |

|                           | $\sigma_{0}^{\#1}$                    | $\tau_{0}^{\#1}$                     | $	au_0^{\#2}$ | $\sigma_0^{\#1}$ |
|---------------------------|---------------------------------------|--------------------------------------|---------------|------------------|
| $\sigma_{0}^{\#1}$ †      | $-\frac{1}{(1+2k^2)^2t_1}$            | $\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$ | 0             | 0                |
| $\tau_{0}^{\#1}$ †        | $-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$ | $-\frac{2k^2}{(1+2k^2)^2t_1}$        | 0             | 0                |
| $\tau_{0^{+}}^{\#2}$ †    | 0                                     | 0                                    | 0             | 0                |
| $\sigma_{0}^{\sharp 1}$ † | 0                                     | 0                                    | 0             | $\frac{1}{t_2}$  |

| Quadratic | (free) | action |
|-----------|--------|--------|
|           | _      |        |

| -                                                                        |                                   |                                           |                                                               |                                   |                              |                              |                               |
|--------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|---------------------------------------------------------------|-----------------------------------|------------------------------|------------------------------|-------------------------------|
| $f_{1}^{\#2}$                                                            | 0                                 | 0                                         | 0                                                             | $i k t_1$                         | 0                            | 0                            | 0                             |
| $f_{1^-}^{\#1} \alpha$                                                   | 0 0                               | 0                                         | 0                                                             | 0                                 | 0                            | 0                            | 0                             |
| $\omega_{1^{-}\alpha}^{\#2} f_{1^{-}\alpha}^{\#1} f_{1^{-}\alpha}^{\#2}$ | 0                                 | 0                                         | 0                                                             | $\frac{t_1}{\sqrt{2}}$            | 0                            | 0                            | 0                             |
| $\omega_{1^{^{-}}\alpha}^{\#1}$                                          | 0                                 | 0                                         | 0                                                             | $k^2 (r_1 + r_5) - \frac{t_1}{2}$ | $\frac{t_1}{\sqrt{2}}$       | 0                            | - <i>ī</i> k t <sub>1</sub>   |
| $f_{1}^{\#1}$                                                            | $-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$ | $\frac{1}{3}$ $\bar{l}$ $k$ $(t_1 + t_2)$ | $\frac{1}{3}k^{2}(t_{1}+t_{2})$                               | 0                                 | 0                            | 0                            | 0                             |
| $\omega_1^{\#2}{}_+^2$                                                   | $-\frac{t_1-2t_2}{3\sqrt{2}}$     | $\frac{t_1+t_2}{3}$                       | $-\frac{1}{3}ik(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $ | 0                                 | 0                            | 0                            | 0                             |
| $\omega_1^{\#1}{}_{+}\alpha\beta$                                        | $\frac{1}{5}$ (6 $k^2$ (2         | $-\frac{t_1-2t_2}{3\sqrt{2}}$             | $\frac{ik(t_1-2t_2)}{3\sqrt{2}}$                              | 0                                 | 0                            | 0                            | 0                             |
| •                                                                        | $\omega_1^{\#_1} +^{lphaeta}$     | $\omega_{1}^{#2} + \alpha \beta$          | $f_{1+}^{#1} + \alpha \beta$                                  | $\omega_{1}^{\#1} +^{lpha}$       | $\omega_{1}^{#2} +^{\alpha}$ | $f_{1}^{\#1} \dagger^{lpha}$ | $f_{1}^{#2} \dagger^{\alpha}$ |

## Massive and massless spectra



|   | Massive particle |                                                                                                                               |  |  |
|---|------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
|   | Pole residue:    | $\frac{-3t_1t_2(t_1+t_2)+6r_1(t_1^2+2t_2^2)+3r_5(t_1^2+2t_2^2)}{(2r_1+r_5)(t_1+t_2)(-3t_1t_2+4r_1(t_1+t_2)+2r_5(t_1+t_2))}>0$ |  |  |
| 2 | Polarisations:   | 3                                                                                                                             |  |  |
| ? | Square mass:     | $-\frac{3t_1t_2}{2(2r_1+r_5)(t_1+t_2)} > 0$                                                                                   |  |  |
|   | Spin:            | 1                                                                                                                             |  |  |
|   | Parity:          | Even                                                                                                                          |  |  |



|   | Massive particle |                         |  |  |  |
|---|------------------|-------------------------|--|--|--|
| ? | Pole residue:    | $-\frac{1}{r_1} > 0$    |  |  |  |
|   | Polarisations:   | 5                       |  |  |  |
|   | Square mass:     | $-\frac{t_1}{2r_1} > 0$ |  |  |  |
|   | Spin:            | 2                       |  |  |  |
|   | Parity:          | Odd                     |  |  |  |
|   |                  |                         |  |  |  |

(No massless particles)

## Unitarity conditions