Recitation 1

CS 3843 Fall 2013

Representation: Hexadecimal

- Binary <-> hexadecimal:
 - 0001~1001 <-> 1~9
 - 1010 ~1111 <-> A~F
- Decimal-> hexadecimal:

$$x = q*16 + r$$
, e.g: $71 = 4*16 + 7$, $71_{10} = 47_{16}$

Hexadecimal -> Decimal :

```
- E.g : ABC_{16} = A*16^2 + B*16^1 + C*16^0
=2560+176+12
```

Conversion of base R to decimal

- $(a_n ... a_1 a_0)_R = (?)_{10}$
- $? = a_0 * R^0 + a_1 * R^1 + a_n * R^n$
- Generally
- $(a_n ... a_1 a_0 . a_{-1} a_{-2} ... a_{-m})_R$ = $a_0 * R^0 + a_1 * R^1 + ... a_n * R^n +$ $a_{-1} * R^{-1} + a_{-2} * R^{-2} + ... a_{-m} * R^{-m}$

Conversion of decimal to base R

- Division method(Integer part)
 - Divide the decimal by R and then the quotient each time generated until the quotient is zero.
 - record the remainders a_0 , a_1 ,... a_n
 - reverse the remainders
 - E.g: 53_{10} to base 4 number
 - $53/4 = 13*4 + 1 -> a_0 = 1$
 - $13/4 = 3*4 + 1 -> a_1 = 1$
 - $3/4 = 0*4 + 3 -> a_2 = 3$ so $53_4 = 311_4$

- Multiply method(fraction part)
- Multiply the number by base R and get the integer part of the result as a₀
- Repeat using the fractional part of each production to multiply $R: a_1, a_2... a_n$
- Result: (. a₀, a₁... a_n), sometimes it is infinite
- E.g: $0.25_{10} = (.01)_2$

Data sizes

С	32bit	64bit
Char	1	1
Short int	2	2
Int	4 (1 word)	4 (1 word)
Long int	4 (1 word)	8 (double word)
Long long int	8 (double word)	8 (double word)
Char *	4 (1 word)	8 (double word)
float	4 (1 word)	4 (1 word)
double	8 (double word)	8 (double word)