UNIVERSIDADE DO MINHO

23 de Janeiro de 2009

Álgebra Linear

 $2^{\underline{o}}$ Teste - A

LEI Duração: 2 horas

Nome: _______ Nº: _____

Ι

Relativamente às questões deste grupo indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), colocando uma circunferência no símbolo correspondente. Para cada resposta incorrectamente assinalada desconta-se 20% do seu valor.

1. Seja
$$A = \begin{pmatrix} 3 & 2 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

- a) A matriz A tem um valor próprio duplo. V F
- **b**) Tem-se $|A 3I_3| = 0$. V F
- c) Existe $x \in \mathbb{R}^3$, $x \neq 0$, tal que Ax = 3x.
- d) O vector (0,0,3) é solução do sistema homogéneo cuja matriz dos coeficientes é A-3I. V F
- 2. Sendo A e B duas matrizes $n \times n$ invertíveis quaisquer, tais que n > 1 e $AB = I_n$, tem-se
 - a) |A| = 1 e |B| = 1. V F
 - b) $A^{-1} = B e B^{-1} = A$.
 - $\mathbf{c}) |A| = \frac{1}{|B|}.$
 - d) $|2(AB)^T| = 2|AB|$. V F
- **3**. Considere a matriz $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$.
 - a) O polinómio característico de A é $p(\lambda) = -\lambda^3 + 3\lambda^2 2\lambda$. V F

 - c) Se A for a matriz de uma aplicação linear f, definida relativamente às bases canónicas de \mathbb{R}^3 , tem-se f(x,y,z)=(x+y+z,y-z,-y+z). V F
 - d) Se A for a matriz de uma aplicação linear f, definida relativamente às bases canónicas de \mathbb{R}^3 , então f é injectiva. V F
- 4. Seja (e_1, e_2, e_3, e_4) a base canónica de \mathbb{R}^4 . Se f é a aplicação linear definida em \mathbb{R}^4 por $f(e_1) = e_1 + e_2$, $f(e_2) = e_2 3e_3$, $f(e_3) = e_1$ e $f(e_4) = e_4$, então
 - a) $f(e_1 + 2e_2 e_3 + 3e_4) = 0.$ V F
 - **b**) f(1,1,1,1) = (2,2,-3,4).
 - $\mathbf{c}) \dim (\mathrm{Im}(f)) = 4.$ V F
 - d) não existe um vector $(x,y,z,t) \in \mathbb{R}^4$ tal que f(x,y,z,t) = (0,0,0,0). V

(v.s.f.f.)

Responda à questão deste grupo justificando a sua resposta e apresentando todos os cálculos efectuados.

1. Considere a matriz A definida por:

$$\left(\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
b+c & c+a & a+b
\end{array}\right)$$

Mostre que o determinante de A é igual a zero para qualquer valor real de a, b e c.

2. Seja
$$A = \begin{pmatrix} 4 & -4 & 6 \\ 3 & -4 & 6 \\ 1 & -2 & 3 \end{pmatrix}$$

- a) Calcule os valores próprios da matriz A.
 Indique o valor das respectivas multiplicidades algébricas.
- b) Determine o subespaço próprio associado ao valor próprio de maior módulo determinado na alínea anterior.

Indique o valor da multiplicidade geométrica desse valor próprio.

3. Considere a aplicação $f: \mathbb{R}^3 \to \mathbb{R}^2$ definida por:

$$f(x, y, z) = (x + y, x - y + 2z)$$

- a) Mostre que a aplicação f é linear.
- b) Determine a matriz da aplicação linear f relativamente às bases canónicas de \mathbb{R}^3 e \mathbb{R}^2 .
- c) Determine o núcleo da aplicação e a sua dimensão.
- d) Verifique se a aplicação é sobrejectiva.
- 4. Sejam λ_1 e λ_2 valores próprios distintos de uma matriz A. Mostre que, se u_1 é um vector próprio associado a λ_1 e u_2 é um vector próprio associado a λ_2 , então u_1 e u_2 são vectores linearmente independentes.

Cotações	Parte I	Parte II - 1	Parte II - 2	Parte II - 3	Parte II - 4
	8	2	1.5 + 2	1.5 + 1 + 1.5 + 1	1.5