Introduction to Computer Networks

Lecture 2

Reference Models

- ISO OSI Model
 - International Standards Organization Open System Interface Model

TCP/IP Reference Model

ISO OSI Model

- International Standards Organization Open System Interface Model
 - A standard and network architecture model
 - Divides the many networking functions into seven different layers

Application	File transfer, Email, Remote Login
Presentation	ASCII Text, Sound
Session	Establish/manage connection
Transport	End-to-end communication: TCP
Network	Routing, Addressing: IP
Datalink	Media Sharing: Ethernet
Physical	How to transmit signal: Coding

OSI Flow Chart

- When a layer wants to send something to its peer layer in another computer, it calls a function in the layer below it to actually send the data
- Only the lowest layer actually sends bits to another computer

OSI (an Analogy)

Ex: U.S. Mail

- You do not have to worry about how to find your friends
- The post office does not need to know how to fly the airplane
- Each layer performs some particular functionalities

The Seven Layers of the OSI Model

Physical layer

- The lowest layer transmits raw bits over a communication channel. This is the only layer that actually sends bits to another computer
- Examples: SONET, RS-232C

Data link layer

- Converts the raw transmission of bits into an error-free data communication channel
- Provides media access control, flow control, network services
- Examples: Ethernet, Token Ring

The Seven Layers of the OSI Model

- Network layer
 - Directs (routes) packets from source to destination host
 - Worries about congestion
 - Deals with addressing
 - Internet Protocol (IP)
- Transport layer
 - Directs packets to the correct user on a computer. It is the first end-to-end layer.
 - Deals with retransmitting data if the network layer fails to deliver it.
 - Deals with suppressing duplicates.
 - May also provide error correction.
 - Examples: TCP, UDP

The Seven Layers of the OSI Model

- Session layer
 - Provides a cleaner interface to the transport layer
 - Provides synchronization such as recovering from transport layer failure
- Presentation layer
 - Encoding data in a standard format
 - Encrypting data for privacy
- Application layer
 - Refers to the user programs themselves
 - Examples: email, HTTP, FTP

TCP/IP Reference Model

- TCP/IP stands for Transport Control Protocol / Internet Protocol
- Similar, but slightly different model than OSI
- A base set of protocols
- Protocols came first, where in OSI reference model, the model came first
- OSI is not widely accepted, especially in the U.S.
- TCP/IP was already in wide use by the time.
- TCP/IP is not general. Ad hoc.

TCP/IP Reference Model

Nested Protocol Headers

		data]
I	АН	data]
PH	AH	data]
sн р н	АН	data]
TH SH PH	АН	data]
NH TH SH PH	AH	data]
DH NH TH SH PH	АН	data	DT
PH DH NH TH SH PH	AH	data	DΤ

- Each layer communicates with its peer layer by prefixing the data from the above layer with a header
- The data link layer often adds a trailer to the packet that contains a cyclic redundancy check (CRC) to detect errors. The physical layer might, or might not, append a header or trailer to the packet
- When it is received at the other end, the headers are stripped off as the packet is passed up the stack to the user application

Transmission Media

Copper wire

- Unshielded twisted pair, Coaxial cable,
 Shielded twisted pair
- They can carry digital or analog signals
- OData rate is several M bps
- They are usually used as local media, such as in a building, or a few rooms
- Low cost

Coaxial and Fiber

Coaxial cable:

- two concentric copper conductors
- ▶bidirectional
- ▶baseband:
 - *single channel on cable
 - **★**legacy Ethernet
- ▶broadband:
 - * multiple channels on cable
 - **★** HFC

Fiber optic cable:

- ➤glass fiber carrying light pulses, each pulse a bit
- ➤high-speed operation:
 - ★high-speed point-to-point transmission (e.g., 10's-100's Gps)
- ➤low error rate: repeaters spaced far apart; immune to electromagnetic noise

Wireless

- >signal carried in electromagnetic spectrum
- >no physical "wire"
- ▶bidirectional
- >propagation environment
 effects:
 - **★reflection**
 - **★**obstruction by objects
 - *interference

Radio link types:

- >terrestrial microwave
 - ★e.g. up to 45 Mbps channels
- ►LAN (e.g., Wifi)
 - **★11Mbps**, 54 Mbps
- wide-area (e.g., cellular)
 - ★e.g. 3G: hundreds of kbps
- ➤ satellite
 - *Kbps to 45Mbps channel (or multiple smaller channels)
 - **★**270 msec end-end delay
 - *geosynchronous versus low altitude