```
Courage du DS Nº 2
```

```
questions de cours
```

A) a)
$$\bar{x} = 1$$
 y $\in E$, y Rx $\frac{1}{2}$

3) [A e Mon (IK) est inversible s'il esciste Be Mon (IK) iq AB-BA = In

Exercice 1

1) a) Nest réflexive can $\forall (a_1b) \in E$, ab = ab, c'est à due $(a_1b) R(a_1b)$

v est symétrique:

soienr (a,b), (a',b') ∈ E

Supposons que (a,6) R(a1,6)

Alors ab'=a'b, ponc a'b=ab'

Done (a', b') & (a, b)

vest transitive.

Solent (a,b), (a',b') er (a",b") e E

supposons que (a,b) ~ (a,b) er (a,b)~ (a",b")

Acres ab = ab er a'b" = a"b'

Donc $\frac{a}{b} = \frac{a'}{b'}$ et $\frac{a'}{b'} = \frac{a''}{b''}$ (can $b,b',b'' \in \mathbb{Z}^{*}$)

Donc $\frac{a}{b} = \frac{a''}{b''}$. Donc ab'' = a''b

c'est \overline{a} due $(a,b) \sim (a'',b'')$

Donc n'est une relation d'équivalence.

b) sour (a,b) & E

 $(a_1b) \in \overline{(1,5)} = (a_1b) \sim (1,5) = 5a = b$

Donc (1,5) = 1 (a,5a), a ∈ Z* 6

2) [Non, \mathbb{R} n'est pas une relation d'équivalence] can \mathbb{R} n'est pas neflexive. En effet, pour (0,16) = (1,1) $\in \mathbb{E}$ on a (1,1) \mathbb{R} (1,11) can $1\times 1\neq -1\times 1$.

Exercice L

- 1). Le produir CB n'est pas défini car le mombre de colonnes de C (qui est 2) n'est pas égal au nombre de ligne de B (que es r 3).
 - · Le produir AB est défini car le nombre de colonnes de A (qui est 3) est le même que le nombre de lignes de B (quesr3),

2)
$$23 + I_3 = \begin{vmatrix} 3 & 2 & 2 \\ -2 & -1 & 0 \\ -2 & 2 & 1 \end{vmatrix}$$

3)
$$AC = \begin{pmatrix} 1 & 4 \\ 1 & -5 \end{pmatrix}$$
 er $CA = \begin{pmatrix} 3 & 1 & 3 \\ -6 & 0 & -4 \\ -6 & -3 & -7 \end{pmatrix}$
4) $B^2 = BB = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 0 & -1 \\ -2 & -2 & -1 \end{pmatrix}$

4)
$$B^2 = BB = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 0 & -1 \\ -2 & -2 & -1 \end{pmatrix}$$

Exercice 3

1) Pour Si: on chower x en Li, pur y en Le, pur 2 en La comme pivots; il n'y a aucun calculs à faire. Le système (S) est donc de Cramen con troutes les inconnues sont choises comme pivots.

Il n'y a qu'une seule solution a(S)

Pour Sz: on chower oc en Li, pur yen Le comme pivots; il m'y a aucun calcul à faire.

Le système (se) est indérerminé déndre 1 can z'est la seule inconnue qui n'est pas pivot.

(52) a une infinité de solutions.

Le système (So) est impossible

3) Sovenir
$$X = \begin{pmatrix} \chi \\ \psi \\ \xi \end{pmatrix}$$
, $Y = \begin{pmatrix} 0 \\ 0 \\ \zeta \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$: $PX = Y = (S)$

on (S) ear de Cranner danc Pinnersible et

$$PX = Y \iff X = \begin{pmatrix} -1 & 3 & 1 \\ -2 & 6 & 1 \\ 2 & -5 & -1 \end{pmatrix} Y \quad donc = \begin{pmatrix} -1 & 3 & 1 \\ -2 & 6 & 1 \\ 2 & -5 & -1 \end{pmatrix}$$

4) on a
$$PP^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 donc il n'y a pas d'eneun de cal cul.

1)
$$gof: N \rightarrow N$$

 $n \mapsto g(f(n)) = g(2n) = n$

fog:
$$N \longrightarrow N$$

$$n \longmapsto f(g(n)) = \begin{cases} f(\frac{n}{2}) = 2\frac{n}{2} = n \text{ si } n \text{ pair} \\ f(0) = 2x0 = 0 \text{ si } n \text{ simpair} \end{cases}$$

2),
$$g n' ext pas injective$$

Pour $n = 1$ er $n' = 3$, on a $n \neq n'$ er $g(n) = g(n')$

of
$$g$$
 est surjective |
Sout $y \in IN$; posons $x = 2y$; alons $x \in IN$ et
 $g(x) = g(2y) = y$