Final Project Prsentation

Testing the One-sided Pairs Trading Investment Strategy

Review prepared by: Yuriy Podvysotskiy

Date: December 05, 2017

Course: INFSCI 2160 Data Mining

1. Motivation

- Pairs trading strategy, which belongs to the category of statistical arbitrage investment strategies. Known strategy from 1980s, widely used, so probably cannot get rich quickly.
- Requires selection of a pairs of stocks, which move similarly or are 'cointegrated'.
- Traditional trading: a) Invest into underprices stock and 'sell short' overpriced, b) close the position when both prices get together
- Institutional investors can 'sell short', but not individual investors
- Therefore, suggested 'One-sided' Trading: a) Invest into underprices stock,
 b) sell the stock when its price returns back

2. Data

- Yahoo Finance, 12/5/2013 12/5/2017 (4 years), daily frequency
- Stocks S&P500 constituents

Ticker	Exp Return, %	
ACN	18.99	
ADBE	27.91	
ADS	-0.05	
AET	26.37	
AKAM	5.58	
AMZN	26.98	
BAC	17.06	
BSX	19.62	
CAT	16.21	
CSCO	17.98	
MMM	7.26	
T	18.99	

Exp Return = Mean[(log(p_t)-log(p_{t-1})]x251x100

3. Method

• Separate database into: T_1 - 'testing', T_2 - 'trading'

 T_1 to find the best Pair, get Mean, SD, T_2 for 'paper trading'

• Select the 'best' pair(s) $N_{pairs} = (N^2 - N)/2$ $(N=12, N_{pairs}=66)$

 $Min_{\{Pair\}} \qquad \left(\sum_{t} (\log P_{1,t} - \log P_{2,t})^2\right)^{0.5}$

Trading exercise:

Key dates: $D_1 = 0.5 \text{ SD}$, $D_2 = 0.1 \text{ SD}$

Rules: when $D > D_1$ -> Buy underprices stock (spend all cash) when $D < D_2$ -> Sell the possessed stock (and get cash)

Assessment metrics:

* FV of \$1,000 * Annualized Return * Jensen's Alpha *Sharpe ratio

4. Results - select pair

Considered stocks: ACN, ADBE, ADS, AET, AKAM, AMZN, BAC, BSX, CAT, CSCO, MMM, T

Selected pair: *BAC* and *BSX* Benchmark: S&P500

Plot of normalized prices:

4. Results - performance

	Pair	S&P500
FV of \$1000	1,110.64	1,169.02
Return	11.35%	16.9%
Sharpe ratio	0.56	2.33
Jensen's Alpha	-380	0.0
Beta	1.46	1.00

4. Results - performance

5. Further steps

• Increase number of stocks: from *N*=12 to *N*=500 (later maybe ... 1,000)

$$(N_{pairs} = (N^2 - N)/2,$$
 for $N=500$, $N_{pairs}=124,750$

- Consider simultaneous trading with K pairs:
 - For K=2 pairs: 50%/ 50% of portfolio in each
 - For K=3 pairs: 33%/ 33%/ 34% of portfolio in each
- Alternative pairs selection methods: Co-integration test, Cluster analysis
- Optimization of parameters: D_1 , D_2 , T_1 , T_2
- Include risk managent (e.g. sell when D gets too high)
- Test whether profitability of strategy declines over time

Thank you for attention!