Lecture 12:

Inequalities and limit theorems

Theorem 10.1.1 (Cauchy-Schwarz) For any r.v.-s X, Y with finite variances:

$$|E(XY)| \le \sqrt{E(X^2)E(Y^2)}$$

Proof: For any real *t*, we have:

$$0 \le E(Y - tX)^2 = E(Y^2) - 2tE(XY) + t^2E(X^2)$$

- this gives infinitely many inequalities (for different t-s). But the best (tightest) one is given at the minimum of the r.h.s. – where the derivative = 0, which is at $t^* = E(XY)/E(X^2)$.

If X, Y are uncorrelated, E(XY) = E(X)E(Y) – depends only on marginal exp-s. In general, calculating E(XY) requires knowledge of the joint distr. CS gives a bound in terms of 2nd moments.

Theorem 10.1.1 (Cauchy-Schwarz) For any r.v.-s X, Y with finite variances:

$$|E(XY)| \le \sqrt{E(X^2)E(Y^2)}$$

If E(X) = E(Y) = 0 (centred r.v.-s) – CS says the correlation is between -1 and 1.

CS can be applied in creative ways: by writing $X = X \cdot 1$, CS tells

$$|E(X \cdot 1)| \le \sqrt{E(X^2)E(1)}$$
, which gives $E(X^2) \ge (EX)^2$.

Theorem 10.1.1 (Cauchy-Schwarz) For any r.v.-s X, Y with finite variances:

$$|E(XY)| \le \sqrt{E(X^2)E(Y^2)}$$

Example 10.1.3 (Second moment method). Let X – non-negative r.v., and we want an upper bound on P(X=0).

Rewrite $X = X \cdot I(X > 0)$ – with an indicator of X being positive.

Then
$$E(X) \le \sqrt{E(X^2)} E(I(X > 0))$$
. By the fundamental bridge,

this gives
$$P(X>0)\geq \frac{(EX)^2}{E(X^2)}$$
, or equivalently: $P(X=0)\leq \frac{\text{Var}(X)}{E(X^2)}$

Example 10.1.3 (Second moment method). For a non-negative r.v.

we have
$$P(X = 0) \le \frac{\text{Var}(X)}{E(X^2)}$$
.

Let $X = I_1 + \ldots + I_n$ – sum of n uncorrelated indicator r.v.-s.

Let $p_i = E(I_i)$. Then:

$$\text{Var}(X) = \sum_{j=1}^{n} \text{Var}(I_j) = \sum_{j=1}^{n} (p_j - p_j^2) = \sum_{j=1}^{n} p_j - \sum_{j=1}^{n} p_j^2 = \mu - c$$

Recall that $E(X^2) = Var(X) + (EX)^2 = \mu^2 + \mu - c$, and we have:

$$P(X=0) \le rac{{
m Var}(X)}{E(X^2)} = rac{\mu - c}{\mu^2 + \mu - c} \le rac{1}{\mu + 1}$$
 – for such an r.v. we

can say that "the larger the mean – the less the chance of X=0".

Example 10.1.3 (Second moment method). For a non-negative r.v.

$$X = I_1 + \dots + I_n$$
 we have $P(X = 0) \le \frac{1}{E(X) + 1}$.

Suppose there are 14 people in a room. How likely is it that there are 2 people with the same birthday or birthdays one day apart?

This is much harder than the birthday paradox, but we can use this bound – let X = (# of "near birthday" pairs).

Using indicator r.v.-s,
$$E(X) = {14 \choose 2} \frac{3}{365} \approx 0.748$$

So
$$P(X=0) \le \frac{1}{E(X)+1} \approx 0.572$$
, while the true $P(X=0) \approx 0.46$, so our bound is consistent

For nonlinear functions g, E(g(X)) and g(E(X)) may be very different.

If g is either a **convex** or a **concave** function – Jensen's inequality tells us which of E(g(X)) and g(E(X)) is greater.

Recall that to test convexity/concavity one can take the 2nd derivative:

g – convex	$g''(x) \geq 0$
g – concave	$g''(x) \leq 0$

Theorem 10.1.5 (Jensen). Let X – r.v.

If g – convex function, then $E(g(X)) \ge g(E(X))$.

If g – concave function, then $E(g(X)) \leq g(E(X))$.

The only way the equality can hold is g(X) = a + bX (with proba 1).

Proof: Let g be convex – then all its tangent lines lie below g. Let $\mu = E(X)$ and consider the tangent at $(\mu, g(\mu))$ – it is unique if g is diff., if not – take any. For this tangent a + bx, $g(x) \ge a + bx$ for any x. Taking expectation of both sides:

$$E(g(X)) \ge E(a+bX) = a + bE(X) = g(E(X))$$

Here are some cases of Jensen:

- $g(x) = x^2$ is convex, so $E(X^2) \ge (EX)^2$ recall Cauchy-Schwarz.
- In St.Petersburg paradox we found $E(2^N) > 2^{EN}$ for $N \sim FS(1/2)$. This agrees with Jensen, since $g(x) = 2^x$ is convex but moreover, it tells that the direction of inequality doesn't depend on the distribution of N.
- $\cdot E|X| \ge |EX|$
- $E(1/X) \ge 1/(EX)$ for positive r.v.s X
- $E(\log X) \le \log(EX)$ for positive r.v.s X

Example 10.1.6 (Bias of sample std). Let X_1, \ldots, X_n – be i.i.d. r.v.s with variance σ^2 . We've seen that sample variance S_n^2 (with n-1 in denominator) is an *unbiased* estimator for $\sigma^2 - E(S_n^2) = \sigma^2$. But for std, however:

$$E(S_n) = E(\sqrt{S_n^2}) \le \sqrt{E(S_n^2)} = \sigma$$

- sample std tends to underestimate the true std!

How biased it is depends on the distribution, there is no universal way to fix this (as with dividing by n-1 instead of n in the variance). Fortunately, for large samples this bias is typically small.

Example 10.1.7 (Entropy). The **surprise** of learning that an event happened with prob p is defined as $\log_2(1/p)$, measured in **bits** (event of prob 1/2 has surprise of 1 bit, low proba = high surprise).

Let X be a discrete r.v. taking values a_1, \ldots, a_n with probas p_1, \ldots, p_n (so $p_1 + \ldots + p_n = 1$). The **entropy** of X is the average surprise of learning the value of X:

$$H(X) = \sum_{j=1}^{n} p_{j} \log_{2}(1/p_{j})$$

- note that it only depends on the probabilities, not the values a_j . Using Jensen, let's show that $p_j=1/n \ \forall j$ has maximum entropy!

Proof: For
$$X \sim \text{DUnif}(a_1, ..., a_n)$$
, $H(X) = \sum_{j=1}^{n} \frac{1}{n} \log_2 n = \log_2 n$.

Let's make an r.v. Y that takes values $1/p_1, \ldots, 1/p_n$ with probabilities p_1, \ldots, p_n .

Then $H(Y) = E(\log_2(Y))$ and, clearly, E(Y) = n. By Jensen,

 $H(Y) = E(\log_2(Y)) \le \log_2(E(Y)) = \log_2(n) = H(X)$ and since the entropy of an r.v. depends only on the probabilities p_j , not the specific values the r.v. takes – it is unchanged if we change the support from $1/p_1, \ldots, 1/p_n$ to a_1, \ldots, a_n . So X has largest possible entropy of all r.v.s with support on n points!

Example 10.1.8 (Kullback-Leibler divergence). Let $\mathbf{p} = (p_1, ..., p_n)$ & $\mathbf{q} = (q_1, ..., q_n)$ be probability vectors (nonnegative and sum to 1) – the same support.

The KL-divergence between **p** and **q** is:

$$KL(\mathbf{p}, \mathbf{q}) = \sum_{j=1}^{n} p_j \log_2(1/r_j) - \sum_{j=1}^{n} p_j \log_2(1/p_j)$$

– the difference between average surprises when the actual probabilities are \mathbf{p} , but we instead are working with \mathbf{q} (i.e., true \mathbf{p} is unknown, and \mathbf{q} is our current guess for it).

Show that KL-divergence is non-negative.

Proof: By properties of logs,

$$KL(\mathbf{p}, \mathbf{q}) = -\sum_{j=1}^{n} p_j \log_2\left(\frac{q_j}{p_j}\right)$$

Let Y be a r.v. that takes values q_j/p_j with probabilities p_j , so $KL(\mathbf{p},\mathbf{q})$ is its negative average surprise: $-E(\log_2(Y))$.

By Jensen,

$$KL(\mathbf{p}, \mathbf{q}) = -E(\log_2(Y)) \ge -\log_2(E(Y)) = -\log_2(1) = 0$$

with equality iff $\mathbf{p} = \mathbf{q}$. So we're more surprised on average when working with wrong probabilities than when working with correct ones.

Theorem 10.1.10 (Markov). For any r.v. X and constant a > 0,

$$P(|X| \ge a) \le \frac{E|X|}{a}$$

Proof: Let Y = |X|/a. We need to show $P(Y \ge 1) \le E(Y)$. Note that $I(Y \ge 1) \le Y$, since if I = 0, this reduces to $0 \le Y$, and if I = 1, this reduces to $1 \le Y$, which is the argument of the indicator. Taking expectations of both sides, we have Markov's inequality.

Let X – income of a randomly selected individual from a population. If a=2E(X) – then Markov says $P(X\geq 2E(X))\leq 1/2$ – its impossible for more than half to make twice the average income. Similarly, $P(X\geq 3E(X))\leq 1/3$, etc.

Theorem 10.1.10 (Chebyshev). Let X have mean μ and variance σ^2 . Then for any a > 0,

$$P(|X - \mu| \ge a) \le \frac{\sigma^2}{a^2}$$

Proof: By Markov's inequality,

$$P(|X - \mu| \ge a) = P((X - \mu)^2 \ge a^2) \le \frac{E(X - \mu)^2}{a^2} = \frac{\sigma^2}{a^2}$$

Substituting $c\sigma$ with c>0 for a, Chebyshev takes form:

$$P(|X - \mu| \ge c\sigma) \le 1/c^2$$

- e.g. there can't be more than 25% chance of being 2std-s or more from the mean.

Theorem 10.1.12 (Chernoff). For any r.v. X and constants a > 0 and t > 0,

$$P(X \ge a) \le \frac{E(e^{tX})}{e^{ta}}$$

Proof: $g(x) = e^{tx}$ is invertible and strictly increasing, so by Markov's inequality we have

$$P(X \ge a) = P(e^{tX} \ge e^{ta}) \le \frac{E(e^{tX})}{e^{ta}}$$

It might be not clear what Chernoff has to offer that Markov couldn't, but actually the r.h.s. can be optimised w.r.t. *t* to give the tightest upper bound.

Example 10.1.13 (Bounds on Normal tail probability). $Z \sim \mathcal{N}(0,1)$. By the 68-95-99% rule, we know that $P(|Z| > 3) \approx 0.003$. Let's compare that to bounds from Markov, Chebyshev and Chernoff.

1) Markov: using $E|Z| = \sqrt{2/\pi}$,

$$P(|Z| > 3) \le \frac{E|Z|}{3} = \frac{1}{3} \cdot \sqrt{\frac{2}{\pi}} \approx 0.27$$

- 2) Chebyshev: $P(|Z| > 3) \le 1/9 \approx 0.11$
- 3) Chernoff: $P(|Z| > 3) = 2P(Z > 3) \le 2e^{-3t}E(e^{tZ}) = 2e^{-3t}e^{t^2/2}$
- minimized at t=3, which gives $P(|Z|>3) \le 2e^{-9/2} \approx 0.022$.