# Artificial Neural Network - Long Short-Term Memory

**Sarit Maitra** 

Alliance University, Bengaluru, India

## Biological Intelligence

| Feature                | Description                                                                           |  |
|------------------------|---------------------------------------------------------------------------------------|--|
| Incremental Processing | Processes sensory inputs and information in real time, step-by-step.                  |  |
| Internal<br>Model      | Maintains a constantly evolving mental representation of the environment and context. |  |
| Learning               | Continuous and online, updates models from new experiences instantly or gradually.    |  |
| Robustness             | Adapts well to noisy, ambiguous, or novel situations.                                 |  |
| Memory<br>Integration  | Seamlessly integrates long-term, short-term, and working memory.                      |  |
| Energy<br>Efficiency   | Extremely energy-efficient, using around 20 watts to power the brain.                 |  |

## Artificial Intelligence

| Feature                   | Description                                                                                                                                        |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Incremental<br>Processing | Most models (like GPT or CNNs) process data in batches or fixed-length inputs. Real-time or streaming models are rarer and more complex.           |  |
| Internal Model            | Deep learning models have internal representations (weights, embeddings), but they are not always interpretable or dynamically updated on the fly. |  |
| Learning                  | Typically done in offline mode—a model is trained on a large dataset, and then deployed. To learn new things, it often requires retraining.        |  |
| Robustness                | Can struggle with out-of-distribution data, noise, or ambiguity unless specifically trained to handle it.                                          |  |
| Memory Integration        | Lacks human-like memory systems. Some efforts (e.g., retrieval-augmented models or memory networks) aim to imitate this.                           |  |
| Energy Efficiency         | Computationally expensive, especially during training (e.g., large GPUs, data centers).                                                            |  |

## **Key Differences**

| Aspect            | Biological         | Artificial                                 |
|-------------------|--------------------|--------------------------------------------|
| Learning mode     | Online, adaptive   | Mostly offline, retrain-<br>heavy          |
| Context awareness | Strong, integrated | Often limited or shallow                   |
| Memory handling   | Rich, layered      | Primitive, task-specific                   |
| Flexibility       | General-purpose    | Narrow/specialized<br>(unless multi-modal) |

#### **RNN**

- RNN processes sequences by iterating through the sequence elements
- Maintaining a state containing information relative to what it has seen so far.
- RNN neural network has an internal loop.
- State of the RNN is reset between processing two different, independent sequences.
- The network internally loops over sequence elements.



#### **Anatomy of NN**

- Long Short-Term Memory (LSTM)
  algorithm fundamental was developed
  in 1997 and has barely changed since.
- NN revolves around the following objects:
  - Layers are combined into a model
  - The input data and corresponding targets
  - Loss function defines the feedback signal used for learning
  - Optimizer (SGD) determines how learning proceeds
- DNN involves multiple layers

#### **Training loop**



### Simple RNN



- Each RNN Cell receives the current input  $(X_t)$  and previous hidden state  $(h_{t-1})$
- Produces new hidden state  $(h_t) \rightarrow$  which can also be the output depending on the task
- Repeated over each time step

#### **LSTM & GRU**

- Simple RNN has a major issue
  - Theoretically retain information about inputs, in practice, such long-term dependencies are impossible to learn → vanishing gradient problem.
  - Hochreiter and Schmidhuber (1997) → LSTM



https://en.wikipedia.org/wiki/Lo ng short-term memory#

#### ~END~