Homework 2.

- The file name of your homework (in PDF) should be in the format: "學號-作業編號.pdf". For example: 00957999-hw2.pdf
- Please submit your homework to Tronclass before 23:59, October 27 (Sunday),
 2024.

(可以用 word 檔寫完後轉成 pdf 檔上傳,或是手寫後拍照後存成 pdf 檔上傳)

- 1. (5%) Determine whether f is a function from \mathbf{Z} to \mathbf{R} if
 - (a) $f(n) = \pm n$

(Sol.) No (寫出 Yes 或 No 即可). This is not a function because the rule is not well-defined. We do not know whether f(3) = 3 or f(3) = -3. For a function, it cannot be both at the same time.

(b)
$$f(n) = \sqrt{n^2 + 1}$$

(Sol.) Yes (寫出 Yes 或 No 即可). This is a function. For all integers n, $\sqrt{n^2 + 1}$ is a well-defined real number.

(c)
$$f(n) = 1/(n^2 - 4)$$

(Sol.) No (寫出 Yes 或 No 即可). This is not a function with domain Z, since for n = 2 (and also for n = -2) the value of f(n) is not defined by the given rule. In other words, f(2) and f(-2) are not specified since division by 0 makes no sense.

- 2. (10%) (a) If f and $f \circ g$ are one-to-one, does it follow that g is one-to-one?
 - (Sol.) Yes (寫出 Yes 或 No 即可). To clarify the setting, suppose that $g: A \to B$ and $f: B \to C$, so that $f \circ g: A \to C$. We will prove that if $f \circ g$ is one-to-one, then g is also one-to-one, so not only is the answer to the question "yes," but part of the hypothesis is not even needed. Suppose that g were not one-to-one. By definition this means that there are distinct elements a_1 and a_2 in A such that $g(a_1) = g(a_2)$. Then certainly $f(g(a_1)) = f(g(a_2))$, which is the same statement as $f \circ g(a_1) = f \circ g(a_2)$. By definition this means that $f \circ g$ is not one-to-one (contradiction!), and our proof is complete.
 - (b) If f and $f \circ g$ are onto, does it follow that g is onto?

(Sol.) No (寫出 Yes 或 No 即可). For example, suppose that $g:\{a\} \to \{b,c\}$ and $f:\{b,c\} \to \{d\}$, then $f \circ g:\{a\} \to \{d\}$. Assume g(a) = b, f(b) = d, and f(c) = d. Then f and $f \circ g$ are onto, but g is not.

- 3. (10%) Find the first five terms of the sequence defined by each of these recurrence relations and initial conditions.
 - (a) $a_n = 6a_{n-1}, a_0 = 2$ (Sol.) 2, 12, 72, 432, 2592
 - (b) $a_n = na_{n-1} + n^2 a_{n-2}$, $a_0 = 1$, $a_1 = 1$

(Sol.) 1, 1, 6, 27, 204

(c)
$$a_n = a_{n-1} + a_{n-3}$$
, $a_0 = 1$, $a_1 = 2$, $a_2 = 0$

(Sol.) 1, 2, 0, 1, 3

(d)
$$a_n = na_{n-1} + a_{n-2}^2$$
, $a_0 = -1$, $a_1 = 0$

(Sol.) -1, 0, 1, 3, 13

(e)
$$a_n = a_{n-1} - a_{n-2} + a_{n-3}$$
, $a_0 = 1$, $a_1 = 1$, $a_2 = 2$

(Sol.) 1, 1, 2, 2, 1

4. (15%) Find the solution to each of these recurrence relations and initial condition. (請寫出計算過程)

(a)
$$a_n = 2a_{n-1} - 3, a_0 = -1$$

(Sol.)

$$a_{n} = -3 + 2a_{n-1}$$

$$= -3 + 2(-3 + 2a_{n-2}) = -3 + 2(-3) + 4a_{n-2}$$

$$= -3 + 2(-3) + 4(-3 + 2a_{n-3}) = -3 + 2(-3) + 4(-3) + 8a_{n-3}$$

$$= -3 + 2(-3) + 4(-3) + 8(-3 + 2a_{n-4}) = -3 + 2(-3) + 4(-3) + 8(-3) + 16a_{n-4}$$

$$\vdots$$

$$= -3(1 + 2 + 4 + \dots + 2^{n-1}) + 2^{n}a_{n-n} = -3(2^{n} - 1) + 2^{n}(-1) = -2^{n+2} + 3$$

(b)
$$a_n = a_{n-1} + 2n + 3, a_0 = 4$$

(Sol.)
$$a_n = n^2 + 4n + 4$$

(c)
$$a_n = 2na_{n-1}$$
, $a_0 = 1$

(Sol.)
$$a_n = 2^n n!$$

5. (10%) Show that the sequence $\{a_n\}$ is a solution of the recurrence relation $a_n = a_{n-1} + 2a_{n-2} + 2n - 9$ if

(a)
$$a_n = -n + 2$$

(Sol.)
$$a_{n-1} + 2a_{n-2} + 2n - 9 = -(n-1) + 2 + 2[-(n-2) + 2] +$$

$$2n - 9 = -n + 2 = a_n$$
(b) $a_n = 3(-1)^n + 2^n - n + 2$
(Sol.) $a_{n-1} + 2a_{n-2} + 2n - 9 = 3(-1)^{n-1} + 2^{n-1} - (n-1) + 2 + 2[3(-1)^{n-2} + 2^{n-2} - (n-2) + 2] + 2n - 9 = 3(-1)^{n-2}(-1+2) + 2^{n-2}(2+2) - n + 2 = a_n$

- 6. (10%) (a) Show that the union of a countable number of countable sets is countable. (Sol.) Suppose that $A_1, A_2, A_3, ...$, are countable sets. Because A_i is countable, we can list its elements in a sequence as $a_{i1}, a_{i2}, a_{i3}, ...$. The elements of the set $\bigcup_{i=1}^{n} A_i$ can be listed by listing all terms a_{ij} with i + j = 2, then all terms a_{ij} with i + j = 3, then all terms a_{ij} with $a_{ij} = 4$, and so on.
 - (b) Show that the set $\mathbf{Z}^+ \times \mathbf{Z}^+$ is countable. (Sol.) We can think of $\mathbf{Z}^+ \times \mathbf{Z}^+$ as the countable union of countable sets, where the i^{th} set in the collection, noted as $A_i = \{(i,n) | n \in \mathbf{Z}^+\}$, for $i \in \mathbf{Z}^+$, is countable. By (a), $\mathbf{Z}^+ \times \mathbf{Z}^+ = \bigcup_{i=1}^{\infty} A_i$, the union of a countable number of
- 7. (10%) Show that if A and B are sets, then

countable sets is countable.

a)
$$A - B = A \cap \overline{B}$$
.

(Sol.) Both sides equal $\{x \mid x \in A \land x \notin B\}$.

b)
$$(A \cap B) \cup (A \cap \overline{B}) = A$$
.
(Sol.) $A = A \cap U = A \cap (B \cup \overline{B}) = (A \cap B) \cup (A \cap \overline{B})$

8. (10%) Show that if A, B, and C are sets, then $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$ a) by showing each side is a subset of the other side. (Sol.)

$$x \in \overline{A \cap B \cap C} \equiv x \notin A \cap B \cap C \equiv x \notin A \lor x \notin B \lor x \notin C \equiv x \in \overline{A} \lor x \in \overline{B} \lor x \in \overline{C} \equiv x \in \overline{A} \cup \overline{B} \cup \overline{C}$$

b) using a membership table.

(Sol.)

\boldsymbol{A}	\boldsymbol{B}	$\boldsymbol{\mathcal{C}}$	$A \cap B \cap C$	$\overline{A \cap B \cap C}$	\overline{A}	\overline{B}	\overline{c}	$\overline{A} \cup \overline{B} \cup \overline{C}$
1	1	1	1	0	0	0	0	0
1	1	0	0	1	0	0	1	1
1	0	1	0	1	0	1	0	1
1	0	0	0	1	0	1	1	1
0	1	1	0	1	1	0	0	1
0	1	0	0	1	1	0	1	1
0	0	1	0	1	1	1	0	1
0	0	0	0	1	1	1	1	1

9. (10%) (a) Find
$$\mathbf{AB}$$
 if $\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 3 \end{bmatrix}$, $\mathbf{B} = \begin{bmatrix} 3 & -2 & -1 \\ 1 & 0 & 2 \end{bmatrix}$.

(Sol.)
$$\begin{bmatrix} 2 & -2 & -3 \\ 1 & 0 & 2 \\ 9 & -4 & 4 \end{bmatrix}$$

(b) Let
$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $\mathbf{B} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$. Find $\mathbf{A} \vee \mathbf{B}$ and $\mathbf{A} \wedge \mathbf{B}$.

(Sol.)
$$\mathbf{A} \vee \mathbf{B} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
, $\mathbf{A} \wedge \mathbf{B} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

10. (10%) Draw the Venn diagrams for each of these combinations of the sets A, B, and C.

a)
$$(A \cap B) \cup (A \cap C)$$

(Sol.)

b)
$$(A \cap \overline{B}) \cup (A \cap \overline{C})$$

(Sol.)

