COMP5046 Natural Language Processing

Lecture 13: Content Review and Exam Guide

Semester 1, 2020
School of Computer Science
The University of Sydney, Australia

Lecture 13: Content Review and Exam Guide

- Overview
- 2. Learning Content Summary
- 3. Final Exam Guide

Your Journey...!

You are a survivor!!

COMP5046 Natural Language Processing

Survey (5 mins)

Have your say! ☺

If you are reading this outside of the lecture, please do this now!

Unit of Study Evaluation survey at:

https://student-surveys.sydney.edu.au/students/

- Your answers are completely anonymous
- Please write specific comments
- I personally read every single comment

COMP5046 Natural Language Processing

What we learned in this course!

Week 1: Introduction to Natural Language Processing (NLP) Week 2: Word Embeddings (Word Vector for Meaning) Week 3: Word Classification with Machine Learning I Week 4: Word Classification with Machine Learning II	NLP and Machine Learning
Week 5: Language Fundamental Week 6: Part of Speech Tagging Week 7: Dependency Parsing Week 8: Language Model	NLP Techniques
Week 9: Information Extraction: Named Entity Recognition Week 10: Advanced NLP: Attention and Reading Comprehension Week 11: Advanced NLP: Transformer and Machine Translation Week 12: Advanced NLP: Graph Neural Network with NLP	Advanced Topic

Week 13: Future of NLP and Exam Review

COMP5046 Natural Language Processing

What we learned in this course!

Week 1: Introduction to Natural Language Processing (NLP) Week 2: Word Embeddings (Word Vector for Meaning) Week 3: Word Classification with Machine Learning I Week 4: Word Classification with Machine Learning II	NLP and Machine Learning
Week 5: Language Fundamental Week 6: Part of Speech Tagging Week 7: Dependency Parsing Week 8: Language Model	NLP Techniques
Week 9: Information Extraction: Named Entity Recognition Week 10: Advanced NLP: Attention and Reading Comprehension Week 11: Advanced NLP: Transformer and Machine Translation Week 12: Advanced NLP: Graph Neural Network with NLP	Advanced Topic

Week 13: Future of NLP and Exam Review

Lecture 1 Summary

Word Representation with WordNet

- Use e.g. WordNet, a thesaurus containing lists of synonym sets and hypernyms ("is a" relationships).
- Problems with resources like WordNet

Representing words as discrete symbols

One-hot vector ©
 motel = [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
 hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

In web search, if user searches for "Seattle motel", we would like to match documents containing "Seattle hotel"

Problems with words as discrete symbols

Lecture 1 Summary

Count based Word representation

Important to know: how each techniques works / pros and cons

One-hot encoding

Bag of Words

а	are	been	day	have	how	nice	see	to	you
1	1	1	1	2	2	2	1	1	3

• Term Frequency-Inverse Document Frequency

TF is a count of how many times a word occurs in a given document (= bag of words) **IDF** is the number of times a word occurs in a corpus of documents

$$w_{i,j} = t f_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

Lecture 2 Summary

Prediction-based Word Representation

Important to know: how each techniques works / pros and cons

Word2Vec (CBOW, Skip-Gram)

Key parameter for training methods: window size, negative samples

Lecture 2 Summary

Prediction-based Word Representation

Important to know: how each techniques works / pros and cons

FastText with n-gram embedding

Glove

"Methods like skip-gram may do better on the analogy ask, but they poorly utilize the statistics of the corpus since they train on separate local context windows instead of on global co-occurrence counts."

Lecture 3 Summary

Word Embedding Evaluation

- Intrinsic Evaluation
- Extrinsic Evaluation

Туре	How to work / Benefit
	Evaluation on a specific/intermediate subtask
Intrinsic	 Fast to compute Helps to understand that system Not clear if really helpful unless correlation to real task is established
	Evaluation on a real task
Extrinsic	 Can take a long time to compute accuracy Unclear if the subsystem is the problem or its interaction or other subsystems

Lecture 3 Summary

Deep Learning for Natural Language Processing

Perceptron and Neural Network (NN)

Multilayer Perceptron

Input: x=number of apple given by Lisa

Output: y=number of banana received by Lisa

Parameters: Need to be estimated

Lecture 3 Summary

Deep Learning for Natural Language Processing

- Perceptron and Neural Network (NN)
- Multilayer Perceptron

Nonlinear Neural Network

Data

x 🍑	у 🤛
1	0
5	16
6	20
9	20
11	20

Lecture 4 Summary

- 1. RNN (Recurrent Neural Network)
- 2. LSTM (Long Short-Term Memory)
- GRU (Gated Recurrent Unit)

Reflect

all information

and the past Data

Data 3

Lecture 4 Summary

- RNN (Recurrent Neural Network) 1.
- LSTM (Long Short-Term Memory)
- 3. GRU (Gated Recurrent Unit)

Lecture 4 Summary

- 1. RNN (Recurrent Neural Network)
- 2. LSTM (Long Short-Term Memory)
- 3. GRU (Gated Recurrent Unit)

Lecture 4 Summary

- 1. RNN (Recurrent Neural Network)
- 2. LSTM (Long Short-Term Memory)
- 3. GRU (Gated Recurrent Unit)

Lecture 5 Summary

Language Fundamental

1. Phonology, Morphology, Syntax, Semantics, Pragmatics

Text Preprocessing

- 1. Tokenization
- 2. Cleaning and Normalisation
- 3. Stemming and Lemmatisation
- 4. Stopword
- 5. Regular Expression

Lecture 6 Summary

- Part-of-Speech Tagging
- 2. Baseline Approaches
 - 1. Rule-based Model
 - 2. Look-up Table Model
 - 3. N-Gram Model
- 3. Probabilistic Approaches
 - 1. Hidden Markov Model
 - 2. Conditional Random Field
- 4. Deep Learning Approaches

Predicting the **weather (hidden variable)** based on the type of **clothes that someone wears (observed)**

Initial

Rainy	0.6	
Cloudy	0.3	
Sunny	0.1	

Transitions

		Tomorrow		
		Rainy	Cloudy	Sunny
Today	Rainy	0.6	0.3	0.1
	Cloudy	0.4	0.3	0.3
	Sunny	0.1	0.4	0.5

Emissions

	Shirts	Jacket	Hoodies
Rainy	0.8	0.19	0.01
Cloudy	0.5	0.4	0.1
Sunny	0.01	0.2	0.79

	N	v	М
Emma	4/9	0	0
John	2/9	0	0
Will	1/9	0	3/4
Pin	2/9	1/4	0
Can	0	0	1/4
Meet	0	2/4	0
Pat	0	1/4	0

	N	V	M	<e></e>
<\$>	3/4	0	1/4	0
N	1/9	1/9	3/9	4/9
v	4/4	0	0	0
М	1/4	3/4	0	0

Lecture 6 Summary

- 1. Part-of-Speech Tagging
- 2. Baseline Approaches
 - 1. Rule-based Model
 - 2. Look-up Table Model
 - 3. N-Gram Model
- 3. Probabilistic Approaches
 - 1. Hidden Markov Model
 - Conditional Random Field
- 4. Deep Learning Approaches

Lecture 7 Summary

Linguistic Structure
Dependency Structure
Dependency Parsing Algorithms

- 1. Transition-based Dependency Parsing
- 2. Deep Learning-based Dependency Parsing

Lecture 7 Summary

Linguistic Structure
Dependency Structure
Dependency Parsing Algorithms

- 1. Transition-based Dependency Parsing
- 2. Deep Learning-based Dependency Parsing

Graph-based
Dependency Parsing

Transaction-based Dependency Parsing

Stack	Buffer
ROOT	book me a morning flight
Dependency Graph	
Dependency Graph	

How to choose next action?

*Unlabeled Attachment Score
*Labeled Attachment Score

Lecture 8 Summary

Language Model

Traditional Language Model

Neural Language Model

Natural Language Generation

Other NLG Approaches

Language Model and NLG Evaluation

P(An, adorable, little, boy, is, spreading, smiles)

 $= P(An) \times P(adorable|An) \times P(little|An adorable) \times P(boy|An adorable little) \times P(is|An)$ adorable little boy) \times P(spreading|An adorable little boy is) \times P(smiles|An adorable little boy is spreading)

Trained Corpus

An adorable little boy is
An adorable little boy is
An adorable little boy laughed

- Count-based
- N-gram Language Models

Lecture 8 Summary

Language Model

Traditional Language Model

Neural Language Model
Natural Language Generation
Other NLG Approaches
Language Model and NLG Evaluation

Lecture 8 Summary

Language Model
Traditional Language Model
Neural Language Model
Natural Language Generation
Other NLG Approaches
Language Model and NLG Evaluation

Decoding Algorithm

1: Greedy Decoding

2: Beam Search

Lecture 8 Summary

Language Model

Traditional Language Model

Neural Language Model

Natural Language Generation

Other NLG Approaches

Language Model and NLG Evaluation

"Flights from ORIGIN to DEST on DEPT_DATE DEPT_TIME. Just one moment please"

Lecture 8 Summary

Language Model

Traditional Language Model

Neural Language Model

Natural Language Generation

Other NLG Approaches

Language Model and NLG Evaluation

Perplexity

perplexity =
$$\prod_{t=1}^{T} \left(\frac{1}{P_{\text{LM}}(\boldsymbol{x}^{(t+1)}|\ \boldsymbol{x}^{(t)},\dots,\boldsymbol{x}^{(1)})} \right)^{1/T1/T}$$

So, Lower Perplexity is better!

Lecture 9 Summary

Information Extraction Named Entity Recognition (NER)

- Traditional NER
- 2. Sequence Model for NER
- 3. NER Evaluation

Coreference Resolution

- 1. Mention-pair
- 2. Mention Ranking model
- 3. Coreference Evaluation

Rule-based NER

- 1. Determining which person holds what office in what organization
- 2. Determining where an organization is located

Unigram	Mr.	Scott	Morrison	flew	to	Beijing
Lowercase unigram	mr.	scott	morrison	flew	to	beijing
POS tag	nnp	nnp	nnp	vbd	to	nnp
length	3	5	4	4	2	7
In first-name gazetteer	no	yes	no	no	no	no
In location gazetteer	no	no	no	no	no	yes
3-letter suffix	Mr.	ott	son	lew	-	ing
2-letter suffix	r.	tt	on	ew	to	ng
1-letter suffix		t	n	w	0	g
Tag predictions	0	B-per	l-per	0	0	B-loc

Lecture 9 Summary

Information Extraction Named Entity Recognition (NER)

- 1. Traditional NER
- 2. Sequence Model for NER
- 3. NER Evaluation

Coreference Resolution

- 1. Mention-pair
- 2. Mention Ranking model
- 3. Coreference Evaluation

	Josiah	tells	Caren	John	Smith	is	а	student
IO encoding	PER	0	PER	PER	PER	0	0	0
IOB encoding	B-PER	0	B-PER	B-PER	I-PER	0	0	О

Lecture 9 Summary

Information Extraction Named Entity Recognition (NER)

- 1. Traditional NER
- 2. Sequence Model for NER
- 3. NER Evaluation

Coreference Resolution

- 1. Mention-pair
- 2. Mention Ranking model
- 3. Coreference Evaluation

Ivanka

Ivanka was happy that Donald said he considered nominating her because she is very good with numbers

Donald

he

Gold cluster 1

Gold cluster 2

her

she

Lecture 9 Summary

Information Extraction Named Entity Recognition (NER)

- 1. Traditional NER
- 2. Sequence Model for NER
- NER Evaluation

Coreference Resolution

- 1. Mention-pair
- 2. Mention Ranking model
- 3. Coreference Evaluation

Lecture 9 Summary

Information Extraction Named Entity Recognition (NER)

- Traditional NER
- 2. Sequence Model for NER
- 3. NER Evaluation

Coreference Resolution

- 1. Mention-pair
- 2. Mention Ranking model
- Coreference Evaluation

Iterate through Iterate through candidate mentions antecedents (previously occurring mentions)

Lecture 9 Summary

Information Extraction Named Entity Recognition (NER)

- Traditional NER
- Sequence Model for NER
- **NER** Evaluation

Coreference Resolution

- Mention-pair
- Mention Ranking model
- Coreference Evaluation

Predicted Cluster 1

Predicted Cluster 2

Actual clusters | Gold cluster 1

Gold cluster 2

Lecture 10 Summary

Question Answering

Knowledge-based Question Answering

IR-based Question Answering and Reading Comprehension

Additional: Visual Question Answering

Question	Logical Form
When was Justin Bieber born?	birth-year(Justin Bieber, x)
What is the largest state?	$argmax(\lambda x.state(x),\lambda x.size(x))$

Subject	Predicate (relation)	Object
Justin Bieber	birth-year	1994
Frédéric Chopin	birth-year	1810

Lecture 10 Summary

Question Answering

Knowledge-based Question Answering

IR-based Question Answering and Reading Comprehension

Lecture 10 Summary

Question Answering

Knowledge-based Question Answering

IR-based Question Answering and Reading Comprehension

Lecture 10 Summary

Question Answering

Knowledge-based Question Answering

IR-based Question Answering and Reading Comprehension

Lecture 10 Summary

Question Answering

Knowledge-based Question Answering

IR-based Question Answering and Reading Comprehension

Lecture 11 Summary

Machine Translation

- Statistical Machine Translation
- Neural Machine Translation
- Attention and Transformer for MT

Lecture 11 Summary

Machine Translation

- Statistical Machine Translation
- Neural Machine Translation
- Attention and Transformer for MT

Lecture 11 Summary

Machine Translation

- Statistical Machine Translation
- Neural Machine Translation
- Attention and Transformer for MT

Lecture 11 Summary

Machine Translation

- Statistical Machine Translation
- Neural Machine Translation
- Attention and Transformer for MT

Lecture 11 Summary

Machine Translation

- Statistical Machine Translation
- Neural Machine Translation
- Attention and Transformer for MT

Lecture 12 Summary

Graph and Natural Language Processing
Graph Neural Networks
Graph Neural Networks – Task-based
Graph Neural Networks and NLP Application

- Text Classification
- Document Timestamping
- Text to image generation

Γ	0	1	1	0	0	
	1	0	1	1	1	
	1	1	0	1	1	
	0	1	1	0	1	
	0	1	1	1	0	
L						

Feature matrix A+I

1	1	1	0	$\overline{0}$
1	1	1	1	1
1	1	1	1	1
0	1	1	1	1
0	1	1	1	1
	1 1 0	1 1 1 1 0 1	1 1 1 1 1 1 0 1 1	1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1

Vanilla GCN updates information of neighbor atoms with same importance.

Attention mechanism enables it to update nodes with different importance

Lecture 12 Summary

Graph and Natural Language Processing
Graph Neural Networks
Graph Neural Networks – Task-based
Graph Neural Networks and NLP Application

- Text Classification
- Document Timestamping
- Text to image generation

Assessment Update

[Original Assessment Plan]

Assessment	Weight	Due	Length	
Lab exercises	10%	Multiple weeks (By Monday 6pm or Tuesday 6pm)	n/a	To pass UoS,
Assignment 1	20%	Week 8	n/a	achieve at least 40% (20 out of 50)
Assignment 2	20%	Week 14	n/a	To pass UoS,
Final exam	50%	Formal Exam Period	2 hours =	achieve at least 40% (20 out of 50)

[Updated Assessment Plan]

[Opuated Assessing	ent Pianij			
Assessment	Weight	Due	Length	
Lab exercises	10%	Multiple weeks (All by Tuesday 6pm)	n/a	To pass UoS,
Assignment 1	20%	Week 8	n/a	achieve at least 40% (24 out of 60)
Assignment 2	30%	Week 14	n/a	,
Oral Quiz – Case Study (5Qs interview style)	15%	1 day after the formal exam period via Zoom [the exact date will be announced soon]	10 mins	To pass UoS, achieve at least
Take-home Exam (Open Book)	25%	Formal exam period	1 hours	40% (16 out of 40)

Sample Q would be demonstrated in Week 13.

Assessment Update

[Original Assessment Plan]

Assessment	Weight	Due	Length	
	10%	Multiple weeks (By Monday 6pm or Tuesday 6pm)	n/a	To pass UoS,
Assignment 1	20%	Week 8	n/a	achieve at least 40% (20 out of !
			n/a	To pass UoS,
Final exam	50%	Formal Exam Period	2 hours	_

[Updated Assessment Plan]

[Opuated Assessine	ent Pianj			
Assessment	Weight	Due	Length	
Lab exercises		Multiple weeks (All by Tuesday 6pm)	n/a	To pass UoS,
Assignment 1	20%	Week 8	n/a	achieve at least 40% (24 out of 60)
Assignment 2			n/a	, , , ,
Oral Quiz – Case Study (5Qs interview style)	15%	1 day after the formal exam period via Zoom [the exact date will be announced soon]	10 mins	To pass UoS, achieve at least
Take-home Exam	25%	Formal exam period	1 hours	40% (16 out of 40)

Sample Q would be demonstrated in Week 13.

Final Exam (40%) - Take-home (25%) and Oral (15%)

Take home exam (25%) - Canvas

1:00PM Saturday 20 June 2020 *Check your personal exam timetable at Sydney Student

Canvas Exam Site

- The canvas exam site is different that the Canvas site we use during the semester for teaching
- It is called Final exam for COMP5046
- The Exams office will give you access to the exam site
- The recommended browsers for Canvas: Chrome and Firefox, not Internet Explorer or others

Exam Conditions

- 1 hour, Online exam (+10 minutes reading time)
- Open book examination, Unsupervised (Un-proctored)
- Complete ALL questions in the space provided on the exam paper
- Eight (8) questions (total 25 marks) = five (5) 2 marks questions + three (3) 5 marks questions

Final Exam (40%) - Take-home (25%) and Oral (15%)

Oral exam (15%) - Zoom

21-23 June 2020 *The oral exam timetable will be shared on 31st of May

Exam Conditions

- 10mins, Zoom-based Interview.
- Oral Interview Style

Before the Oral Exam:

- Your candidate timetable will tell you when your oral examination is scheduled to begin (The oral exam timetable will be shared on 31st of May)
- You will be asked to arrive earlier than the scheduled time for your examination. For all candidates, this will be no later than 10 minutes prior to their examination start time. These arrangements are to ensure the quality of the internet connection.
- When you arrive at the room, you will be asked to show your student ID (card)
- You will be asked to stand by in the waiting room.

Final Exam Preview! (All available in Canvas)

Let's Have a Look at this Together!

Sample Online Exam – Question and Answer Sample Oral Exam – Interview

Reminder! Suggestion!

The questions are not easily googlalable.

Your answer will be checked by the plagiarism checking software.

Well organized and be quick

Allocate time according to the marks for each question

Students in different time zones

- Important for international students who could not come to Australia and exchange students who had to return to their country.
- If you are in a different time zone and the exam is too early/too late for you, you can apply for Special Consideration to have special arrangements for the exam:

https://www.sydney.edu.au/students/special-consideration.html#time-zone

All Good! Thanks for following and surviving

GOOD LUCK in YOUR FINAL EXAM