|                                                | Identikey:        |  |  |
|------------------------------------------------|-------------------|--|--|
| Artificial Intelligence (F19)                  |                   |  |  |
| Quiz 3 (QZ3)                                   |                   |  |  |
|                                                | First Name:       |  |  |
| Overview                                       |                   |  |  |
| 7.5 Point Quiz on Search (7.5% of final grade) | <b>Last Name:</b> |  |  |
| 30 minute closed book quiz                     |                   |  |  |

# **Learning Objective**

This assignment satisfies learning objective 1 (LO1) as specified in the syllabus. You will demonstrate conceptual understanding of the core AI topics.

The quiz is worth 7.5 points total but there are 8 points available. This means that you can lose 0.5 points, but still earn a perfect score of 7.5 points on the quiz. If you score above 7.5 points, your total score will be rounded down to 7.5 points.

- 1) Short answer/multiple choice questions
  - i) [Points: 0.25] Consider the problem of determining the price of a house in Boulder based on carpet area, location, number of rooms, and age. What kind of problem is this?
    - i) Unsupervised learning problem
    - ii) Classification problem
    - iii) Regression problem
    - iv) None of the above

Solution: iii) Regression Problem

ii) [Points: 0.25] What precise accuracy metric would you use to evaluate a model trained to solve the above problem?

**Solution:** R-Square measure/coefficient of determination is a good metric to evaluate such models.

iii) [Points: 0.25] When is accuracy (percent correct) an acceptable metric for a classification problem?

**Solution:** When the classes are approximately balanced.

- iv) [Points: 0.25] What is the role of the regularization (i.e., C) parameter in a support vector machine?
  - a) It controls the behavior of the kernel
  - b) It controls the width of the margin
  - c) Both (a) and (b)
  - d) Neither (a) nor (b)

**Solution:** b) It controls the width of the margin

v) [Points: 0.25] How does an SVM solve a difficult linearly inseparable problem?

**Solution:** By projecting the data to a higher dimensional space where it may be linearly separable. Note: adding slack variables doesn't help with severe linear inseparability

| <b>Identikey:</b> |  |
|-------------------|--|
|                   |  |

- vi) [Points: 0.25] Consider a classifier that randomly assigns instances to a positive or negative class. What is a likely AUROC for this classifier?
  - i) -0.5
  - ii) 0.01
  - iii) 0.52
  - iv) 0.98

Solution: iii) 0.52

- 2) [Points: 0.75] A decision tree of depth 6 has achieved 100% accuracy on a data set. Which of the following **two statements** are accurate?
  - i) The tree at depth 4 will have higher bias than the tree at depth 6
  - ii) The tree at depth 4 will have lower bias that the tree at depth 6
  - iii) The tree at depth 4 will have higher variance than the tree at depth 6
  - iv) The tree at depth 4 will have lower variance than the tree at depth 6

Justify your response:

**Solution:** i) and iv)

Justification:

- i) The tree at depth 6 would consider more features than the tree at depth 4, and hence it would have more information in making decisions and would be less biased.
- iv) In this case, it has 0 bias. However, it is likely overfitting to the data due to the fact that accuracy is perfect. Hence, the tree at depth 4 will have lower variance.
- 3) [Points: 0.75] What is the entropy of a feature with the following eight values: 0.0,0,1,1,1,1,1

$$H(S) = -\sum_{x \in X} p(x) \log_2 p(x)$$

- A)  $-5/8 \log(5/8) 3/8 \log(3/8)$
- B)  $7/8 \log(7/8) + 3/8 \log(3/8)$
- C)  $3/8 \log(5/8) + 5/8 \log(3/8)$
- D)  $-5/8 \log(3/8) 3/8 \log(5/8)$

**Solution:** A)  $-5/8 \log(5/8) - 3/8 \log(3/8)$ 

Identikey: \_\_\_\_\_

4) [Points: 0.75] Linear regression is said to be influenced by outliers. Graphically (draw a sketch) to illustrate this problem.

**Solution:** 





5) [Total points: 1.25] Consider the following plot of a dataset with two features X and Y used to classify A (plus sign) and B (diamonds).



a) [Points: 0.5] Is logistic regression an appropriate classifier for this dataset? Why or why not?

**Solution:** We cannot use logistic regression for this data because it is not linearly separable.

| <b>Identikey:</b> |  |
|-------------------|--|
|                   |  |

b) [Points: 0.75] Sketch a decision tree for the dataset above. You need not compute exact values – we are just asking for a rough sketch of the tree.

#### **Solution:**



7) [Points: 1] You train a logistic regression classifier to classify an email as spam or not spam and are considering two classification thresholds. Threshold A yields a precision of 80% and recall of 20% whereas Threshold B yields a precision of 20% and recall of 80%. Which one would you prefer in this case? You need to justify your response to get full credit and a good justification should communicate your assumption, an understanding of precision, recall, and the tradeoff among the two.

### **Solution:**

Either option is correct as long as it is justified using appropriate technical language.

Example: We would prefer Threshold A since in the case of email spam we want to reduce the number of non-spam emails that are labeled as spam. Higher precision means the fraction of emails classified as spam that were actually spam is higher. A higher recall would indicate that a larger fraction of all possible spam emails were classified as spam, but that's not ideal in this case since that would cause more non-spam emails to be labeled as spam.

8) [Points: 1] The data set below represents balls used for different games. List which instances would be used for testing and training in a 3-fold cross validation. You can assume that instances 1, 2, and 3 are assigned to fold 1, instances 4, 5, and 6 to fold 2, and instances 6, 7, and 9 to fold 3.

| Instance No. | Color  | Diameter | Material | Game       |
|--------------|--------|----------|----------|------------|
| 1            | orange | 12"      | leather  | basketball |
| 2            | black  | 10"      | iron     | quiditch   |
| 3            | red    | 12"      | leather  | quiditch   |
| 4            | cream  | 10"      | leather  | football   |
| 5            | cream  | 2"       | leather  | baseball   |
| 6            | red    | 10"      | leather  | basketball |
| 7            | brown  | 10"      | leather  | football   |

| Identikey:  |  |
|-------------|--|
| tuciiuixcy. |  |

| 8 | gold | 1" | wooden  | quiditch |
|---|------|----|---------|----------|
| 9 | red  | 2" | leather | baseball |

## **Solution:**

Training [1-6] Testing [7-9] Training [1-3, 7-9] Testing [4-6] Training [4-9] Testing [1-3]

9) [Points: 1] Consider the "House Inspection" dataset, which determines whether a house is acceptable or not (Acceptable column) based on Furniture, # Rooms, and Kitchen. Using a Naïve Bayes classifier, write out the equation for the probability that a house without furniture, 4 rooms, and a new kitchen will be deemed acceptable. *Note – we are only asking for the equation. You do not have to plug in any numbers or compute anything.* 

| House | Furniture    | # Rooms | Kitchen | Acceptable |
|-------|--------------|---------|---------|------------|
| 1     | Not Included | 3       | New     | Yes        |
| 2     | Included     | 3       | Old     | No         |
| 3     | Not Included | 4       | Old     | Yes        |
| 4     | Not Included | 3       | Old     | No         |
| 5     | Included     | 4       | Old     | Yes        |

The following equation should help you out. *Hint. We are mainly interested in the numerator.* 

$$P(h \mid E) = \frac{P(E \mid h)P(h)}{P(E)}$$

## **Solution:**

 $P(Yes \mid \{Not Included, 4 \text{ rooms}, New Kitchen}) = \frac{P(Not Included \mid Yes) * P(4 Rooms \mid Yes) * P(New Kitchen \mid Yes) * P(Yes)}{P(Not Included, 4 Rooms, New Kitchen) \text{ or } P(E)}$