Homework 8

Problem 1

d is the correct answer.

 \mathbf{w} has d number of variables and then we can also vary the constant b, so thus we have d + 1 variables, or choice d.

Problem 2

a is the correct answer.

See attached code. After running the code, I got that the highest $E_{\rm in}$ came from 0 versus all which had an $E_{\rm in} = 0.16376354409546015$.

Problem 3

a is the correct answer.

See attached code. After running the code, I got that the lowest $E_{\rm in}$ came from 1 versus all which had an $E_{\rm in}=0.015772870662460567$

Problem 4

c is the correct answer.

See attached code. After running the code, I got 2390 - 536 = 1854 support vectors, closest to answer choice c.

Problem 5

d is the correct answer.

See attached code. After running the code, I got that when C=1, the lowest $E_{\rm in}$ of 0.004484304932735426.

Problem 6

b is the correct answer.

See attached code. I ran the svm1.versus() method with degree = 2 and degree = 5 and C = 0.001. I found that the number of support vectors for Q = 2 is 152 while the number of support vectors for Q = 5 is 28, giving answer choice b.

Problem 7

b is the correct answer.

See attached code. For each run, I returned the C value that minimized E_{CV} and added it to a list. The mode of this list was 0.001, answer choice b.

Problem 8

 \mathbf{c} is the correct answer.

See attached code. For each run, in addition to the C value, I would also return E_{CV} and found that the average of these errors is 0.00452229293630573, closest to answer choice c.

Problem 9

e is the correct answer.

See attached code. The lowest $E_{\rm in}$ of the possible options came from $C=10^6$. The value of the error is 0.0012812299807815502.

Problem 10

 \mathbf{c} is the correct answer.

See attached code. Repeating the process in problem 9, but using the testing set for prediction, we found that the lowest E_{out} comes when C = 100. $E_{out} = 0.018867924528301886$.