COA LAB

Experiment - 5

Write an assembly language for the following conditional statements:

- 1. If R02 is greater than R01, R03 is set to 8. (Use R01 as the first operand and R02 as the second operand).
- 2. If R01 = 0, R03 is set to 5, else R03 is set to R01 plus 1.
- 3. A loop that repeats 5 times where R02 is incremented by 2 every time the loop repeats.
- 4. A loop that repeats while R04 is > 0. Set the initial value of R04 to 8.
- 5. A loop that repeats until R05 is > R09. Set the initial values of R05 to 0 and R09 to 12.

Program no. 1

Algorithm:

- 1. Load the value 15 into R01
- 2. Load the value 5 into R02
- 3. Compare R01 and R02 with the CMP instruction
- 4. If R02 is greater than R01, jump to the ADD8 label
- 5. If R02 is not greater than R01, halt the program with the HLT instruction
- 6. At the ADD8 label, load the value 8 into R03
- 7. Halt the program with the HLT instruction

Assembly Language code:

MOV #15, R01; Load the value 15 into R01

MOV #5, R02; Load the value 5 into R02

CMP R01, R02 ; Compare R01 and R02

JGT ADD8 ;If R02 is greater than R01, jump to the ADD8 label

HLT ;If R02 is not greater than R01, halt the program

ADD8: ; Label for the ADD8 instruction

MOV #8, R03 : Load the value 8 into R03

HLT; Halt the program

Result:

Case 1: R02 > R01

Fig.1: CPU Simulator Window

Case 2: R02 < R01

Fig.2: CPU Simulator Window

Program no. 2

Algorithm:

- 1. Initialize R01 to 0
- 2. Compare R01 with 0

CS435P – Computer Organization & Architecture Lab Department of Computer Science & Engineering (AI/ML)

- 3. If R01 equals 0, go to IF statement
- 4. If R01 does not equal 0, go to ELSE statement
- 5. At IF statement, set R03 to 5
- 6. At ELSE statement, add 1 to R01 and set R03 to R01
- 7. Halt the program.

Assembly Language code:

MOV #0, R01 ; Initialize R01 to 0

CMP #0, R01; Compare R01 with 0

JEQ \$IF ;If R01 equals 0, go to IF statement

JNE \$ELSE; If R01 does not equal 0, go to ELSE statement

\$IF: ;At IF statement, set R03 to 5

MOV #5, R03

HLT ; Halt the program

\$ELSE: ;At ELSE statement, add 1 to R01 and set R03 to R01

ADD #1, R01 MOV R01, R03

HLT; Halt the program

Result:

Case 1: R01 = 0

Fig.3: CPU Simulator Window

Case 2: R01 != 0

Fig.4: CPU Simulator Window

Program no. 3

Algorithm:

- 1. Initialize the value of R01 to 1.
- 2. Initialize the value of R02 to 5.
- 3. Repeat the following steps until R01 is equal to 5:
 - a. Increment R02 by 2.
 - b. Increment R01 by 1.
- 4. Halt the program.

Assembly Language code:

MOV #1, R01; move the value 1 into register R01

MOV #5, R02; move the value 5 into register R02

LOOP: ; label the start of the loop as "LOOP"

ADD #2, R02 ;add the value 2 to register R02

ADD #1, R01; add the value 1 to register R01

CMP #5, R01; compare the value in register R01 to 5

JNE \$LOOP; jump to "LOOP" if R01 is not equal to 5

HLT; halt the program

Result:

Fig.5: CPU Simulator Window

Program no. 4

Algorithm:

- 1. Initialize R04 to 8.
- 2. Start the loop: "LOOP"
- 3. Subtract 1 from R04.
- 4. Compare R04 to 0.
- 5. If R04 is not equal to 0, go back to the loop.
- 6. If R04 is equal to 0, halt the program.

Assembly Language code:

MOV #8, R04; Move value 8 into register R04

LOOP: ; Label for the start of the loop

SUB #1, R04; Subtract value 1 from the contents of R04

CMP #0, R04; Compare the contents of R04 with value 0

JNE LOOP ;If R04 is not equal to 0, jump back to the label LOOP

HLT; Halt the program execution.

Result:

Fig.6: CPU Simulator Window

Program no. 5

Algorithm:

- 1. Initialize R05 to 0 and R09 to 12.
- 2. Start the loop with the label "LOOP".
- 3. Decrement R09 by 1.
- 4. Compare R05 and R09. If R05 is greater than R09, go to step 7.
- 5. If R05 is not greater than R09, repeat from step 3.
- 6. End the loop.
- 7. Halt the program.

Assembly Language code:

MOV #**0, R05** ; *Initialize R05 to 0* **MOV** #**12, R09** ; *Initialize R09 to 12*

LOOP: ;Start the loop

SUB #1, R09; Decrement R09 by 1

CMP R05, R09; Compare R05 and R09

JGT \$LOOP ;If R05 is greater than R09, jump to the end of the loop

HLT; Halt the program

Result:

Fig.7: CPU Simulator Window