Семинар 6 часть 1. Несобственные интегралы. Знакопостоянные несобственные интегралы.

Скубачевский Антон 9 апреля 2023 г.

Определение. Несобственный интеграл. Пусть $f:[a,b)\to\mathbb{R}$ интегрируема по Риману $\forall [a,b']\subset [a,b)$. $\int\limits_a^b f(x)dx$ называется несобственным интегралом по полуинтервалу [a,b) с особенностью на верхнем пределе. Аналогично дается определение несобственного интеграла с особенностью на нижнем пределе. Несобственный интеграл называется сходящимся, если $\exists\lim_{b'\to b-0}\int\limits_a^b f(x)dx$. Если несобственный интеграл не сходится, его называют расходящимся.

Особенность на каком-то из пределах интегрирования - значит бяка: например, ноль в знаменателе подынтегральной функции при иксе равном пределу интегрирования. Или если предел интегрирования равен бесконечности - на бесконечности всегда особенность, на то она и бесконечность.

В задачах на несобственные интегралы нам чаще всего не нужно будет их считать, нам нужно будет исследовать их на сходимость, то есть понять, а существует ли и конечен такой интеграл. Если доказать, что он существует и конечен, то можно вообще написать программу, которая численно считает его на компе (сумма маленьких прямоугольничков - площадь под графиком, из определения интеграла Римана, чем меньше мелкость разбиение, тем меньше численно посчитанный интеграл отличается от истинного значения интеграла).

Исследовать на сходимость несобственные интегралы мы будем, сводя их к более простым, так называемым шаблонным. Например, шаблон

$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx$$
 сходится $\Leftrightarrow \alpha > 1$.

Давайте докажем, что этот шаблон верный. Перед нами интеграл с особенностью только на верхнем пределе. Будем исследовать этот интеграл по определению. При $\alpha=1$ этот интеграл равен логарифму, а логарифм бесконечности равен бесконечности, значит, при $\alpha=1$ интеграл расходится. При $\alpha\neq 1$:

$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx = \lim_{x \to +\infty} \int_{1}^{x} \frac{1}{x^{\alpha}} dx = \frac{1}{-\alpha + 1} x^{-\alpha + 1} \Big|_{1}^{+\infty} = \begin{cases} -\frac{1}{-\alpha + 1}, & \alpha > 1\\ \infty, & \alpha < 1 \end{cases}$$

То есть интеграл равен конечному числу при $\alpha > 1$, иначе бесконечности. То есть сходится при $\alpha > 1$, иначе расходится. Ч.т.д.

Также аналогичные шаблоны (ну и этот тоже сюда напишем, чтобы все были в одном месте):

1.
$$\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx$$
 сходится $\Leftrightarrow \alpha > 1$

2.
$$\int_{1}^{+\infty} x^{\alpha} dx$$
 сходится $\Leftrightarrow \alpha < -1$

3.
$$\int_{0}^{1} \frac{1}{x^{\alpha}} dx$$
 сходится $\Leftrightarrow \alpha < 1$

4.
$$\int_{0}^{1} x^{\alpha} dx$$
 сходится $\Leftrightarrow \alpha > -1$

У последних двух интегралов особенность на нижнем пределе.

Будем в начале рассматривать знакопостоянные интегралы, то есть те, у которых подынтегральная функция либо всегда >0, либо всегда <0.

Для исследования таких интегралов с помощью шаблонных нам понадобятся 2 признака сравнения:

Теорема(Первый признак сравнения). Пусть f,g интегрируемы $\forall [a,b'] \subset [a,b); \ 0 \leq f \leq g$ на [a,b). Тогда если $\int\limits_a^b g(x)dx$ сходится, то и

интеграл $\int\limits_a^b f(x)dx$ сходится. А если $\int\limits_a^b f(x)dx$ расходится, то и $\int\limits_a^b g(x)dx$ расходится.

Этот признак сравнения легко запомнить: если больший интеграл сходится, то и меньший сходится (если больший - конечное число, то и меньший конечное число); если меньший расходится, то и больший расходится (если меньший интеграл - не конечное число, то больший - тем более). И это работает ТОЛЬКО для знакопостоянных интегралов.

Пример 1. Исследовать на сходимость несобственный интеграл $\int\limits_{1}^{+\infty} \frac{\cos^2 x}{x^2} dx$.

Это интеграл с особенностью только на верхнем пределе.

$$\frac{\cos^2 x}{x^2} \leq \frac{1}{x^2}$$
. Интеграл $\int\limits_1^{+\infty} \frac{1}{x^2}$ сходится по шаблону (1). Значит, интеграл $\int\limits_1^{+\infty} \frac{\cos^2 x}{x^2} dx$ тоже сходится по признаку сравнения.

Теорема(Второй признак сравнения). Пусть f,g - интегрируемы $\forall [a,b'] \subset [a,b); \ f>0; \ g>0$ на $[a,b); \ \exists \lim_{x\to b-0} \frac{f(x)}{g(x)} = k \neq 0; \ k\in \mathbb{R}, \ \text{т.e.} \ k-$ конечное число, не равное нулю. Тогда интегралы $\int\limits_a^b f(x) dx$ и $\int\limits_a^b g(x) dx$ сходятся или расходятся одновременно. Если особенность не на верхнем, а на нижнем пределе, то смотрим, соответственно, предел при $x\to a+0$.

Пример 2. Исследовать на сходимость несобственный интеграл $\int\limits_0^1 \frac{e^x-1-x}{x^3} dx$

Тут у интеграла особенность в нуле (на нижнем пределе интегрирования). Поэтому нас будет интересовать предел $\lim_{r\to 0+0}$.

$$\lim_{x \to 0+0} \frac{e^x - 1 - x}{x^3} = [Teilor] = \lim_{x \to 0+0} \frac{1 + x + \frac{x^2}{2} - 1 - x}{x^3} = \lim_{x \to 0+0} \frac{1}{2x}$$

Эта последовательность выкладок, в силу второго признака сравнения, означает, что интегралы от функций под пределами сходятся или расходятся одновременно, то есть "эквивалентны в плане сходимости". Эквивалентность в плане сходимости записывается так: ~. Также очевидно, что умножение подынтегральной функции на константу никак не влияет на сходимость: если интеграл был конечным числом до умножения на константу, то останется конечным числом после умножения на константу. Итак, мы можем записать:

$$\int_{0}^{1} \frac{e^{x} - 1 - x}{x^{3}} dx \sim \int_{0}^{1} \frac{1 + x + \frac{x^{2}}{2} - 1 - x}{x^{3}} dx = \int_{0}^{1} \frac{1}{2x} dx \sim \infty$$

 $_{\rm cx.}^{\sim} \, [$ т.к. константа не влияет на сходимость несобственного интеграла $] \, _{\rm cx.}^{\sim} \, \int \limits_{0}^{1} \frac{1}{x} dx$

Интеграл $\int_0^1 \frac{1}{x} dx$ расходится по шаблону (4), следовательно, интеграл $\int_0^1 \frac{e^x-1-x}{x^3} dx$ тоже расходится по второму признаку сравнения. Строчку про пределы, кстати, вообще писать не надо при решении таких задач. Значка \sim вполне хватит.

Важное замечание. Похожий значок мы можем ставить также не между интегралами, а между функциями, т.е. мы можем написать $\frac{e^x-1-x}{x^3}\sim \frac{1+x+\frac{x^2}{2}-1-x}{x^3}$ при $x\to 0$ (сх. мы над значком намеренно не написали). Но значить он будет совершенно другое:

Определение. Функции f и g называются эквивалентными (асимптотически равными) при $x \to a$ (записывается $f \sim g$ при $x \to a$), если $\lim_{x \to a} \frac{f(x)}{g(x)} = 1$ (при $g(x) \neq 0$). Тут существенно, что мы рассматриваем именно в окрестности некоторой точки.

Итак, имеем 2 значка: \sim - ставится между двумя функциями, значит, что они асимптотически равны в окрестности определенной точки. \sim - ставится между двумя несобственными интегралами. Значит, что они сходятся или расходятся одновременно.

Переформулируем второй признак сравнения в терминах \sim :

Теорема(Второй признак сравнения'). Если $\forall x \in [a,b)$ выполнено f(x) > 0, g(x) > 0, и $f(x) \sim g(x)$ при $x \to b - 0$, то $\int\limits_a^b f(x) dx$ и $\int\limits_a^b g(x) dx$ сходятся или расходятся одновременно, т.е. $\int\limits_a^b f(x) dx \sim \int\limits_{\rm cx.}^b \int\limits_a^b g(x) dx$

Конец важного замечания

Пример 3. Исследовать на сходимость несобственный интеграл $\int_{0}^{1} \frac{x^2 + x^3}{\sin x} dx$

Помимо разложения по формуле Тейлора в таких задачах можно также забивать на что-то малое по сравнению с соседом. Например, при $x \to 0$ x^3 бесконечно мал по сравнению с x^2 , поэтому на него мы можем забить. Особенность у этого интеграла на нижнем пределе, поэтому мы будем колдовать с функциями в окрестности нуля.

$$\int_{0}^{1} \frac{x^2 + x^3}{\sin x} dx \sim \int_{0}^{1} \frac{x^2}{\sin x} dx \sim \int_{0}^{1} \frac{x^2}{x} dx \sim \int_{0}^{1} x dx$$

 $\int\limits_0^1 x dx$ сходится как шаблонный, следовательно, $\int\limits_0^1 \frac{x^2 + x^3}{sinx} dx$ сходится по второму признаку сравнения.

Приведем еще один шаблонный интеграл и исследуем его на сходимость, сведя к уже известным шаблонным:

Пример 4. (Важный шаблон) Исследовать на сходимость при всех значениях $\alpha,\ \beta$ интеграл $\int\limits_2^{+\infty} x^{\alpha} ln^{\beta}x dx$

Рассмотрим три разных случая относительно α .

а). $\alpha < -1$. Очевидно, что $x^{\alpha} = x^{\frac{\alpha+1}{2}} x^{\frac{\alpha-1}{2}}$. В выкладках ниже учтем, что $x^{\frac{\alpha+1}{2}} ln^{\beta}x \to 0$ при $x \to +\infty$; $\alpha < -1$. Это значит, в частности, что эта функция ограничена, начиная с некоторого x_0 : $\exists C \in \mathbb{R} : x^{\frac{\alpha+1}{2}} ln^{\beta}x \leq C$. Имеем:

$$\int_{2}^{+\infty} x^{\alpha} ln^{\beta} x dx = \int_{2}^{x_{0}} x^{\alpha} ln^{\beta} x dx + \int_{x_{0}}^{+\infty} x^{\alpha} ln^{\beta} x dx$$

Представили наш интеграл в виде суммы двух. Первый из них - обычный интеграл Римана без особенностей, равный площади под графиком, некоторой конечной величине, то есть он сходится. Исследуем второй. Если он тоже сходится, то и исходный сходится как сумма двух сходящихся.

$$\int_{x_0}^{+\infty} x^{\alpha} l n^{\beta} x dx = \int_{x_0}^{+\infty} x^{\frac{\alpha - 1}{2}} (x^{\frac{\alpha + 1}{2}} l n^{\beta} x) dx \le C \int_{x_0}^{+\infty} x^{\frac{\alpha - 1}{2}} dx$$

 $\int\limits_{x_0}^{+\infty}x^{\frac{\alpha-1}{2}}dx$ шаблонный. Он сходится $\Leftrightarrow \frac{\alpha-1}{2}<-1\Rightarrow \alpha<-1$. Значит,

интеграл $\int\limits_{x_0}^{+\infty} x^{\alpha} ln^{\beta}x dx$ сходится при $\alpha<-1$ $\forall\beta$ по признаку сравнения. Значит и исходный сходится при $\alpha<-1$ $\forall\beta$ как сумма двух сходящихся. б). $\alpha=-1$.

$$\int_{2}^{+\infty} x^{-1} ln^{\beta} x dx = [lnx = t] = \int_{ln2}^{+\infty} t^{\beta} dt$$

Получили шаблонный интеграл, сходящийся $\Leftrightarrow \beta < -1$. Значит, при $\alpha = -1$ наш интеграл сходится при $\beta < -1$. в). $\alpha > -1$.

Очевидно, что $x^{\alpha} = x^{\frac{\alpha+1}{2}} x^{\frac{\alpha-1}{2}}$. В выкладках ниже учтем, что $x^{\frac{\alpha+1}{2}} ln^{\beta}x \to +\infty$ при $x \to +\infty$; $\alpha > -1$. Это значит, в частности, что эта функция начиная с некоторого x_0 , больше некоторой константы: $\exists C \in \mathbb{R}: x^{\frac{\alpha+1}{2}} ln^{\beta}x > C$. Имеем:

$$\int_{2}^{+\infty} x^{\alpha} ln^{\beta} x dx = \int_{2}^{x_{0}} x^{\alpha} ln^{\beta} x dx + \int_{x_{0}}^{+\infty} x^{\alpha} ln^{\beta} x dx$$

Представили наш интеграл в виде суммы двух. Первый из них - обычный интеграл Римана без особенностей, равный площади под графиком, некоторой конечной величине, то есть он сходится. Исследуем второй. Если он расходится, то и исходный расходится как сумма сходящегося и расходящегося (константа + бесконечность = бесконечность).

$$\int_{x_0}^{+\infty} x^{\alpha} l n^{\beta} x dx = \int_{x_0}^{+\infty} x^{\frac{\alpha - 1}{2}} (x^{\frac{\alpha + 1}{2}} l n^{\beta} x) dx \ge C \int_{x_0}^{+\infty} x^{\frac{\alpha - 1}{2}} dx$$

Интеграл $\int\limits_{x_0}^{+\infty}x^{\frac{\alpha-1}{2}}dx$ расходится как шаблонный при $\alpha>-1.$ Зна-

чит, $\int_{x_0}^{+\infty} x^{\alpha} l n^{\beta} x dx$ расходится по признаку сравнения. Значит, исходный расходится как сумма сходящегося и расходящегося, причем при любом значении β .

Ответ: при $\alpha<-1$ сходится $\forall \beta.$ при $\alpha=-1$ сходится $\Leftrightarrow \beta<-1.$ при $\alpha>-1$ расходится $\forall \beta.$

Запомните этот интеграл также как шаблонный.

Замечание. До сих пор мы работали с интегралами с одной особенностью. А что, если особенность и на верхнем, и на нижнем пределах??? Ну тогда определение сходимости интеграла с 2 особенностями $\int\limits_a^b f(x)dx$ следующее: возьмем точку $c\in(a,b)$, в которой нет особенности. Тогда $\int\limits_a^b f(x)dx$ сходится \Leftrightarrow сходятся ОБА интеграла $\int\limits_a^c f(x)dx$ и $\int\limits_c^b f(x)dx$. Если хотя бы один из них расходится, или даже оба расходятся, значит, $\int\limits_b^b f(x)dx$ расходится.

Замечание. ТУТ ВСЕ, ВКЛЮЧАЯ МЕНЯ, ПО НАЧАЛУ ЧАСТО ПУТАЮТСЯ! Мы в замечании выше поняли, как у несобственного интеграла обстоят дела с "аля аддитивностью". А теперь пусть у нас опять несобственный интеграл с особенностью ТОЛЬКО на верхнем пределе $\int_a^b (f(x)+g(x))dx$. Если $\int_a^b f(x)dx$ и $\int_a^b g(x)dx$ сходятся, то он сходится. Если один из $\int_a^b f(x)dx$, $\int_a^b g(x)dx$ расходится, а второй сходится, то $\int_a^b (f(x)+g(x))dx$ расходится. А вот если $\int_a^b f(x)dx$, $\int_a^b g(x)dx$ расходится ся оба, то $\int_a^b (f(x)+g(x))dx$ может как сходиться, так и расходиться!!! Для примера достаточно взять f=g=1/x. Тогда каждый из интегралов $\int_1^b f(x)dx$, $\int_1^b g(x)dx$ расходится, и $\int_1^b (f(x)+g(x))dx$ расходится при этом. А теперь давайте возьмем f=1/x, g=-1/x. Тогда f+g=0, $\int_1^b f(x)dx$, $\int_1^b g(x)dx$ расходятся, а $\int_1^b (f(x)+g(x))dx = \int_1^b (0)dx$ сходится.

Пример 5. Найти все $\alpha \geq 0$, при которых интеграл $I = \int\limits_0^{+\infty} \frac{\sqrt{1+x^3+x^\alpha}-1}{x^3} dx$ сходится.

Этот интеграл имеет две особенности: в нуле и в $+\infty$. Мы не умеем пользоваться признаком сравнения в случае наличия двух особенностей. Поэтому разобьем его на два, каждый из которых имеет только одну особенность, и исследуем по-отдельности.

$$I = \int_{0}^{+\infty} \frac{\sqrt{1 + x^3 + x^{\alpha}} - 1}{x^3} dx = \int_{0}^{1} \frac{\sqrt{1 + x^3 + x^{\alpha}} - 1}{x^3} dx + \int_{1}^{+\infty} \frac{\sqrt{1 + x^3 + x^{\alpha}} - 1}{x^3} dx =: I_1 + I_2$$

1). Рассмотрим I_1 .

Если интеграл жирный и сложный, я советую числитель и знаменатель сначала по-отдельности причесать с помощью значков \sim , а уже потом подставлять в интеграл. Мб даже по кускам разбивать числитель и знаменатель.

При $x \to 0$:

•
$$(1+x^3+x^\alpha)^{1/2}-1\sim 1+\frac{x^3+x^\alpha}{2}-1=\frac{x^3+x^\alpha}{2}$$

•
$$\frac{\sqrt{1+x^3+x^{\alpha}}-1}{x^3} \sim \frac{1}{2} \frac{x^3+x^{\alpha}}{x^3} \sim \frac{1}{2} (1+x^{\alpha-3})$$

Имеем (на 1/2 забьем: константа не влияет на сходиомсть):

$$I_1 \underset{\text{cx.}}{\sim} \int_0^1 (1 + x^{\alpha - 3}) dx = \int_0^1 1 dx + \int_0^1 x^{\alpha - 3} dx = 1 + \int_0^1 x^{\alpha - 3} dx \underset{\text{cx.}}{\sim} \int_0^1 x^{\alpha - 3} dx$$

 $\int_0^1 x^{\alpha-3} dx$ - шаблонный. Он сходится $\Leftrightarrow \alpha-3>-1 \Leftrightarrow \alpha>2$. Значит, I_1 сходится $\Leftrightarrow \alpha>2$ по признаку сравнения.

2). Рассмотрим I_2 :

При $x \to +\infty$:

- $1 + x^3 + x^\alpha \sim x^3 + x^\alpha$, т.к. 1 константа, малая по сравнению со стоящими рядом стремящимися к бесконечности функциями.
- $x^3+x^{\alpha}\sim x^{\beta}$, где $\beta=max(3,\alpha)$ т.к. x в меньшей степени бесконечно мал по сравнению с иксом в большей степени.
- Значит, $\sqrt{1+x^3+x^{lpha}}-1\sim x^{eta/2}-1\sim x^{eta/2}$

Имеем:

$$I_2 \sim \int_{1}^{+\infty} \frac{x^{\beta/2}}{x^3} dx = \int_{1}^{+\infty} x^{\beta/2-3} dx$$

Интеграл $\int_{1}^{+\infty} x^{\beta/2-3} dx$ сходится как шаблонный $\Leftrightarrow \beta/2-3 < -1 \Leftrightarrow \beta < 4$. Значит, т.к. $\beta = max(3,\alpha)$, получаем $\alpha < 4$. Значит, I_2 сходится $\Leftrightarrow \alpha < 4$ по признаку сравнения.

3). При $\alpha \in (2,4)$ наш интеграл $I = I_1 + I_2$ сходится, т.к. сходятся одновременно I_1 и I_2 .

Ответ: I сходится $\Leftrightarrow \alpha \in (2,4)$

Еще один шаблон $\int_{1}^{+\infty} e^{\alpha x} x^{\beta} dx$ сходится при $\alpha < 0 \forall \beta$; сходится при $\alpha = 0 \Leftrightarrow \beta < -1$; расходится при $\alpha > 0$. Что логично: как только степень экспоненты хоть немного отрицательно, весь интеграл с поросячьим визгом убывает к нулю (e^{-x} супер быстро стремится к 0, быстрее степенной функции), вне зависимости от степенной функции, на которую домножена. Если $\alpha = 0$, то экспонента пропадает, и все зависит от степенной функции, а если $\alpha > 0$, то экспонента очень сильно возрастает, и интеграл никак не может сойтись.

Пример 6. Исследовать на сходимость при всех значениях параметра α : $I=\int\limits_0^{+\infty} \frac{\ln^{\alpha}(1+shx)}{chx-cosx} dx$

У нас опять же 2 особенности: в нуле (т.к. при x=0 знаменатель =0) и в бесконечности (на то она и бесконечность, в ней всегда особенность). По классике разобъем наш интеграл на 2, в каждом из которых по одной особенности:

$$I = \int_{0}^{+\infty} \frac{\ln^{\alpha}(1+shx)}{chx - cosx} dx = \int_{0}^{1} \frac{\ln^{\alpha}(1+shx)}{chx - cosx} dx + \int_{1}^{+\infty} \frac{\ln^{\alpha}(1+shx)}{chx - cosx} dx =: I_1 + I_2$$

- 1). Исследуем I_1 : при $x \to 0$:
- $shx \sim x$
- $ln^{\alpha}(1+shx) \sim ln^{\alpha}(1+x) \sim x^{\alpha}$
- $chx \sim 1 + \frac{x^2}{2}$
- $cosx \sim 1 \frac{x^2}{2}$

• Значит, $chx - cosx \sim x^2$

Имеем:

$$I_1 \sim \int_{0}^{1} \frac{x^{\alpha}}{x^2} dx = \int_{0}^{1} x^{\alpha - 2} dx$$

 $\int_0^1 x^{\alpha-2} dx$ - шаблонный. Сходится при $\alpha-2>-1\Leftrightarrow \alpha>1$. Значит, I_1 сходится $\Leftrightarrow \alpha>1$ по признаку сравнения.

2). Исследуем I_2 . при $x \to +\infty$:

- $shx = \frac{e^x e^{-x}}{2} \sim \frac{e^x}{2}$
- $ln^{\alpha}(1+shx) \sim ln^{\alpha}(1+\frac{e^{x}}{2}) \sim ln^{\alpha}(\frac{e^{x}}{2}) = ln^{\alpha}e^{x} ln^{\alpha}2 = x^{\alpha} ln^{\alpha}2$
- $chx = \frac{e^x + e^{-x}}{2} \sim \frac{e^x}{2}$
- Значит, т.к. косинус ограничен, $chx cosx \sim \frac{e^x}{2}$

Имеем:

$$I_2 \sim \int\limits_{\rm cx.}^{+\infty} \frac{x^{\alpha} - \ln^{\alpha}2}{e^x} dx$$

 $\int\limits_{1}^{+\infty} \frac{x^{\alpha}-ln^{\alpha}2}{e^{x}}dx$ сходится $\forall \alpha$, т.к. e^{x} в знаменателе. Значит, I_{2} сходится $\forall \alpha$ по признаку сравнения.

3). $I=I_1+I_2$, где I_2 сходится $\forall \alpha,$ а I_1 сходится при $\alpha>1$. Значит, I сходится при $\alpha>1$.

Ответ: I сходится $\Leftrightarrow \alpha > 1$.

Пример 7. Исследовать на сходимость при всех значениях параметра α : $I = \int\limits_0^{+\infty} (\frac{1-thx}{arctg(e^x-1)})^{\alpha} dx$.

Особенности на 2 пределах интегрирования, значит, опять же представим в виде суммы двух интегралов.

$$I = \int_{0}^{+\infty} \left(\frac{1 - thx}{arctg(e^{x} - 1)}\right)^{\alpha} dx = \int_{0}^{1} \left(\frac{1 - thx}{arctg(e^{x} - 1)}\right)^{\alpha} dx + \int_{1}^{+\infty} \left(\frac{1 - thx}{arctg(e^{x} - 1)}\right)^{\alpha} dx =: I_{1} + I_{2}$$

1). Исследуем на сходимость I_1 . При $x \to 0$:

- $1 thx \sim 1 x \sim 1$
- $arctg(e^x 1) \sim arctg(1 + x 1) \sim arctgx \sim x$

Значит,

$$I_1 \sim \int_{-\infty}^{1} (\frac{1}{x})^{\alpha} dx = \int_{0}^{1} \frac{1}{x^{\alpha}} dx$$

 $\int\limits_0^1 \frac{1}{x^{\alpha}} dx$ - шаблонный. Он сходится $\Leftrightarrow \alpha < 1$. Следовательно, I_1 сходится $\Leftrightarrow \alpha < 1$ по признаку сравнения.

2). Исследуем на сходимость I_2 .

$$thx = \frac{shx}{chx} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1} = 1 - \frac{2}{e^{2x} + 1}$$

Тогда при $x \to +\infty$:

- $1 thx = \frac{2}{e^{2x} + 1} \sim \frac{2}{e^{2x}}$
- \bullet $e^x 1 \sim e^x$
- $arctg(e^x-1) \sim arctg(e^x) \sim \pi/2$, t.k. $\lim_{x\to\infty} arctgx = \pi/2$

Таким образом,

$$I_2 \sim \int_{-\infty}^{+\infty} \frac{2}{e^{2\alpha x}} dx$$

Интеграл в правой части сходится при e в положительной степени в знаменателе, т.е. при $\alpha>0$. Значит, I_2 - сходится $\Leftrightarrow \alpha>0$ по признаку сравнения.

3). При $\alpha \in (0,1)$ оба интеграла I_1 и I_2 сходятся, следовательно, I сходится. Ответ: $\alpha \in (0,1)$

Пример 8. Исследовать на сходимость при всех значениях параметра α : $I=\int\limits_0^{+\infty}(\frac{\ln(1+\frac{x}{x+1})}{\sqrt[5]{5+x^5}-x})^{\alpha}dx$

На первый взгляд кажется, что в нуле особенности не будет: знаменатель при x=0 не ноль. Однако при x=0 $ln(1+\frac{x}{x+1})=0$. А при отрицательных альфа этот логарифм очутится в знаменателе. И будет бяка. Так что, как и в предыдущем примере, особенности на верхнем и нижнем пределах.

$$I = \int_{0}^{+\infty} \left(\frac{\ln(1+\frac{x}{x+1})}{\sqrt[5]{5+x^{5}}-x}\right)^{\alpha} dx = \int_{0}^{1} \left(\frac{\ln(1+\frac{x}{x+1})}{\sqrt[5]{5+x^{5}}-x}\right)^{\alpha} dx + \int_{1}^{+\infty} \left(\frac{\ln(1+\frac{x}{x+1})}{\sqrt[5]{5+x^{5}}-x}\right)^{\alpha} dx = I_{1} + I_{2}$$

1). Исследуем на сходимость I_1 . При $x \to 0$:

- $ln(1+\frac{x}{x+1}) \sim ln(1+x) \sim x$
- $\sqrt[5]{5+x^5}-x\sim \sqrt[5]{5}$

Имеем:

$$I_1 \sim \int_{0}^{1} x^{\alpha} dx$$

Этот интеграл сходится $\Leftrightarrow \alpha > -1$ (шаблон), следовательно, I_1 также сходится $\Leftrightarrow \alpha > -1$ по признаку сравнения.

2). Исследуем на сходимость I_2 .

При $x \to +\infty$:

- $ln(1+\frac{x}{x+1}) \sim ln2$
- $\sqrt[5]{5+x^5} x = x(1+\frac{5}{x^5})^{1/5} x \sim x(1+\frac{1}{5}\frac{5}{x^5}) x \sim \frac{1}{x^4}$

Имеем (на ln2 в числителе забили, т.к. умножение на константу не влияет на сходимость):

$$I_2 \sim \int_{-\infty}^{+\infty} x^{4\alpha} dx$$

Интеграл справа сходится при $\alpha < -\frac{1}{4}$. Значит, I_2 также сходится $\Leftrightarrow \alpha < -\frac{1}{4}$ по признаку сравнения.

3). При $\alpha \in (-1, -\frac{1}{4})$ оба интеграла сходятся, а в остальных случаях один сходится, а второй - расходится. Значит, Ответ: I сходится $\Leftrightarrow \alpha \in (-1, -\frac{1}{4})$.

Пример 9. Исследовать на сходимость при всех значениях парамет $^{+\infty}$

pa
$$\alpha \colon I = \int\limits_0^{+\infty} \frac{arctgx}{(1+x^2)(e^x-1)^{\alpha}} dx$$

Особенности в нуле и в бесконечности.

$$I = \int_{0}^{1} \frac{arctgx}{(1+x^{2})(e^{x}-1)^{\alpha}} dx + \int_{1}^{+\infty} \frac{arctgx}{(1+x^{2})(e^{x}-1)^{\alpha}} dx =: I_{1} + I_{2}$$

- 1). Исследуем на сходимость I_1 . При $x \to 0$:
- $arctgx \sim x$
- $1 + x^2 \sim 1$
- $(e^x 1)^\alpha \sim (1 + x 1)^\alpha = x^\alpha$

Имеем:

$$I_1 \underset{\text{cx.}}{\sim} \int_0^1 \frac{x}{x^{\alpha}} dx = \int_0^1 x^{-\alpha + 1} dx$$

Этот интеграл сходится $\Leftrightarrow -\alpha + 1 > -1 \Leftrightarrow \alpha < 2$ (шаблон), следовательно, I_1 также сходится $\Leftrightarrow \alpha < 2$ по признаку сравнения.

2). Исследуем на сходимость I_2 .

При $x \to +\infty$:

- $arctgx \sim \pi/2$
- $(1+x^2) \sim x^2$
- $(e^x 1)^\alpha \sim e^{\alpha x}$

Имеем:

$$I_2 \sim \int\limits_{\rm cx.}^{+\infty} \frac{1}{x^2 e^{\alpha x}} dx$$

Интеграл справа сходится при $\alpha>0$, т.к. экспонента в знаменателе. Но также он сходится и при $\alpha=0$, т.к. тогда экспонента уйдет, но останется x^2 в знаменателе, и такой интеграл сойдется. То есть забивать на x^2 в знаменателе никак нельзя, он влияет на ответ! При $\alpha<0$ интеграл расходится. Значит, I_2 сходится $\Leftrightarrow \alpha\geq 0$ по признаку сравнения.

3). При $\alpha \in [0,2)$ оба интеграла сходятся, а в остальных случаях один сходится, а второй - расходится. Значит, Ответ: I сходится $\Leftrightarrow \alpha \in [0,2)$.

Замечание. Если особенность помимо нуля не в бесконечности, а, например, в 1, то есть если мы имеем \int_0^1 , то для исследования в точке 1 поможет замена t=1-x. Так особенность в интеграле после замены параметра уже будет в нуле, а это мы умеем исследовать.