Working with the forest.plot function

Greg Cicconetti September 23, 2014

Contents

1 The figures2::forest.plot and figures2::table.plot functions		1
	1.1 Example 1: Labels for each line segments	1

1 The figures2::forest.plot and figures2::table.plot functions

The forest.plot, dot.plot and table.plot functions share some similarites. These are simple figures to describe, but labeling, idiosyncracies in data structure, and aesthetic considerations complicate their construction. To get these figures to look appealing, one must have a good understanding of the incoming data structure and iterate towards a final product. These can be very time consuming in terms of design and execution.

This first example will demonstrate that pre-processing and post-processing are essential steps. First, start a session:

```
remove(list=ls())
require(figures2)
require(survival)
require(ggplot2)
require(scales)
require(stringr)
require(plyr)
require(grid)
require(gridExtra)
require(gridExtra)
require(gtable)
default.settings()
```

1.1 Example 1: Labels for each line segments

Suppose we are handed the following data set with the task of producing a 1x2 panel of 2 graphics - a forest plot on the left and a table plot on the left. Let's inspect the data:

```
data(forest.data)
working.df <- forest.data
head(working.df)</pre>
```

```
    n1
    n2
    e1
    p1
    e2
    p2
    hr
    low high intchi
    level

    1
    3252
    3253
    278
    8.548585
    308
    9.468183
    1.11
    0.95
    1.31
    0.382
    No

    2
    4656
    4667
    493
    10.588488
    502
    10.756375
    1.02
    0.90
    1.15
    0.382
    Yes

    4
    2002
    1963
    240
    11.988012
    232
    11.818645
    0.99
    0.82
    1.18
    0.393
    No

    5
    5906
    5957
    531
    8.990857
    578
    9.702871
    1.08
    0.96
    1.22
    0.393
    Yes

    7
    6706
    6732
    625
    9.320012
    663
    9.848485
    1.06
    0.95
    1.19
    0.668
    No
```

dim(working.df)

[1] 89 12

We have a data frame with 89 rows and 35 different subgroup analyses. Clearly, 89 line segments on a single page would be a bit too much. Suppose we plan to have 15-20 rows displayed on figures and therefore will ultimately need to partition this dataset into 5 or 6 smaller data frames. For the present example then, we work with the first 16 rows. Determining how to divide up the remaining rows is an exercise left to the reader.

Our smaller working data.frame becomes:

```
working.df.1 <- working.df[1:16,]
working.df.1</pre>
```

```
n1
          n2
                                               low high intchi
                                                                  level
                        р1
                            e2
                                            hr
  3252 3253 278
                  8.548585 308
                                 9.468183 1.11 0.95 1.31
                                                          0.382
                                                                     No
  4656 4667 493 10.588488 502 10.756375 1.02 0.90 1.15
                                                          0.382
                                                                    Yes
  2002 1963 240 11.988012 232 11.818645 0.99 0.82 1.18
                                                          0.393
                                                                     No
  5906 5957 531
                  8.990857 578
                                9.702871 1.08 0.96 1.22
                                                          0.393
                                                                    Yes
7
  6706 6732 625
                  9.320012 663
                                9.848485 1.06 0.95 1.19
                                                          0.668
                                                                     No
  1202 1188 146 12.146423 147 12.373737 1.01 0.80 1.26
                                                          0.668
                                                                    Yes
10 1914 1906 178
                  9.299896 185
                                9.706191 1.05 0.85 1.29
                                                          0.972 Recent
                  9.912927 624 10.401734 1.05 0.94 1.18
                                                          0.972 Remote
11 5972 5999 592
                                7.930549 0.84 0.69 1.03
13 2140 2131 200
                  9.345794 169
                                                          0.014
                                                                     No
14 5768 5789 571
                  9.899445 641 11.072724 1.13 1.01 1.26
                                                          0.014
                                                                    Yes
16 5279 5198 441
                  8.353855 468
                                9.003463 1.08 0.95 1.23
                                                          0.522
                                                                     No
17 2629 2722 330 12.552301 342 12.564291 1.01 0.87 1.18
                                                          0.522
                                                                    Yes
                  9.298280 503
                                9.639709 1.04 0.91 1.17
19 5173 5218 481
                                                          0.664
                                                                     No
20 2734 2698 289 10.570593 305 11.304670 1.08 0.92 1.27
                                                          0.664
                                                                    Yes
22 6239 6286 601 9.632954 637 10.133630 1.06 0.95 1.18
                                                          0.708
                                                                     No
23 1635 1593 166 10.152905 165 10.357815 1.01 0.82 1.25
                                                          0.708
                                                                    Yes
                                      subgroup
                        Qual. diag.: Prior MI
1
2
                        Qual. diag.: Prior MI
4
           Qual. diag.: Prior Coronary Revas.
5
           Qual. diag.: Prior Coronary Revas.
7
                 Qual. diag.: Multivessel CHD
8
                 Qual. diag.: Multivessel CHD
         Time from CHD event to randomization
10
         Time from CHD event to randomization
11
13
                CV risk factor: Age>=60 years
14
                CV risk factor: Age>=60 years
         CV risk factor: Diabetes req. pharm.
16
```

```
17 CV risk factor: Diabetes req. pharm.
19 CV risk factor: HDL-C <40 mg/dL
20 CV risk factor: HDL-C <40 mg/dL
22 CV risk factor: Current or previous smoker
23 CV risk factor: Current or previous smoker
```

Suppose this data.frame is sorted as we'd like to see it in the forest plot. (If not, accomplish this with additional pre-processing!) Namely, we'd like the top rows reporting line segments associated with Qual. diag.: Prior MI and the bottoms rows reporting line segments for CV risk factor: Current or previous smoker. The lower and upper endpoints of the line segments are associated with columns low and high containing the endpoints of 95% confidence intervals for the hazard ratio. The following items need to be added to the data.frame in order to make use of the forest.plot, table.plot and dot.plot functions. Columns need to be created for the following aspects of the graph:

- rank at which line segments are plotted
- color to be associated with the line segments and points
- ranks for the y-axis labels
- labels for the y-axis

First, we assign ranks for the line segments.

```
working.df.1$rank <- rev(1:16)</pre>
```

Next we assign a column for color. In this example, the color of all line segments will be the same, so we are creating a dummy column holding a factor with a single value. (In the next example, we'll see multiple colors.)

```
working.df.1$category <- factor(0)</pre>
```

In this example, each line segment will have a label associated with it. As such, the following step is superfluous; we could just as well reuse the rank column.

```
working.df.1$label.rank <- rev(1:16)</pre>
```

The actual labels to be used can be deduced from the data.frame. These will need to be a combination of values from subgroup and level columns.

```
working.df.1$labels <- paste(working.df.1$subgroup, working.df.1$level)
working.df.1</pre>
```

```
n1
          n2
              e1
                        p1
                            e2
                                       p2
                                            hr
                                               low high intchi
                                                                 level
  3252 3253 278
                  8.548585 308
                                9.468183 1.11 0.95 1.31
                                                          0.382
                                                                     No
  4656 4667 493 10.588488 502 10.756375 1.02 0.90 1.15
                                                          0.382
                                                                    Yes
  2002 1963 240 11.988012 232 11.818645 0.99 0.82 1.18
                                                          0.393
                                                                     No
                                                          0.393
                                                                   Yes
  5906 5957 531
                  8.990857 578
                                9.702871 1.08 0.96 1.22
  6706 6732 625
                  9.320012 663
                                9.848485 1.06 0.95 1.19
                                                                     No
  1202 1188 146 12.146423 147 12.373737 1.01 0.80 1.26
                                                          0.668
                                                                    Yes
10 1914 1906 178
                  9.299896 185
                                9.706191 1.05 0.85 1.29
                                                          0.972 Recent
11 5972 5999 592
                  9.912927 624 10.401734 1.05 0.94 1.18
                                                          0.972 Remote
                                7.930549 0.84 0.69 1.03
13 2140 2131 200
                  9.345794 169
                                                                     No
14 5768 5789 571
                  9.899445 641 11.072724 1.13 1.01 1.26
                                                          0.014
                                                                    Yes
```

```
16 5279 5198 441 8.353855 468 9.003463 1.08 0.95 1.23
                                                                     No
17 2629 2722 330 12.552301 342 12.564291 1.01 0.87 1.18
                                                           0.522
                                                                    Yes
19 5173 5218 481 9.298280 503 9.639709 1.04 0.91 1.17
                                                           0.664
                                                                     No
20 2734 2698 289 10.570593 305 11.304670 1.08 0.92 1.27
                                                           0.664
                                                                    Yes
22 6239 6286 601 9.632954 637 10.133630 1.06 0.95 1.18
                                                           0.708
                                                                     No
23 1635 1593 166 10.152905 165 10.357815 1.01 0.82 1.25
                                                           0.708
                                                                    Yes
                                      subgroup rank category label.rank
                         Qual. diag.: Prior MI
1
                                                 16
                                                            0
                                                                      16
2
                         Qual. diag.: Prior MI
                                                 15
                                                            0
                                                                      15
4
           Qual. diag.: Prior Coronary Revas.
                                                 14
                                                            0
                                                                      14
5
           Qual. diag.: Prior Coronary Revas.
                                                 13
                                                            0
                                                                      13
7
                 Qual. diag.: Multivessel CHD
                                                            0
                                                 12
                                                                      12
                 Qual. diag.: Multivessel CHD
8
                                                 11
                                                            0
                                                                      11
         Time from CHD event to randomization
                                                            0
10
                                                 10
                                                                      10
         Time from CHD event to randomization
                                                            0
                                                                       9
11
                                                  9
13
                CV risk factor: Age>=60 years
                                                            0
                                                                       8
14
                CV risk factor: Age>=60 years
                                                  7
                                                            0
                                                                       7
         CV risk factor: Diabetes req. pharm.
16
                                                            0
                                                                       6
17
         CV risk factor: Diabetes req. pharm.
                                                            0
                                                                       5
                                                  5
              CV risk factor: HDL-C <40 mg/dL
19
                                                  4
                                                            0
                                                                       4
20
              CV risk factor: HDL-C <40 mg/dL
                                                  3
                                                            0
                                                                       3
22 CV risk factor: Current or previous smoker
                                                            0
                                                                       2
23 CV risk factor: Current or previous smoker
                                                            0
                                                                       1
                                                  1
                                            labels
                         Qual. diag.: Prior MI No
1
2
                        Qual. diag.: Prior MI Yes
4
            Qual. diag.: Prior Coronary Revas. No
5
           Qual. diag.: Prior Coronary Revas. Yes
7
                  Qual. diag.: Multivessel CHD No
8
                 Qual. diag.: Multivessel CHD Yes
      Time from CHD event to randomization Recent
10
11
      Time from CHD event to randomization Remote
                 CV risk factor: Age>=60 years No
13
14
                CV risk factor: Age>=60 years Yes
16
          CV risk factor: Diabetes req. pharm. No
         CV risk factor: Diabetes req. pharm. Yes
17
19
               CV risk factor: HDL-C <40 mg/dL No
20
              CV risk factor: HDL-C <40 mg/dL Yes
    CV risk factor: Current or previous smoker No
23 CV risk factor: Current or previous smoker Yes
```

We will return to fine tuning these labels in post-processing because of the need for mathematical symbol for less than or equal to; in the absence of this issue, an alternative attack would be to coerce the labels column into a factor and rename the levels at this stage.

1.1.1 Building the forest plot graphic

```
y.label.rank.col = "label.rank", # label's y-axis rank
y.label.col = "labels", # label's text value
x.label = "Estimate",
y.label = NULL,
log.trans = TRUE,
x.limits = c(0.21, 5),
x.ticks = 2^(-2:2),
category.color = "category", # This colors the points and line segments
background.palette = c("red", "blue"),
category.palette = c("red", "blue"),
shape.palette = c(16, 16),
flip.palette = FALSE)
```

y.limits are set to NULL; defaults are used.

print(p1)

Figure 1: First Pass at a Forest Plot

1.1.2 Post-processing the forest plot graphic

The following is a necessarily manual task.

```
p2 <- p1 + scale_y_continuous(</pre>
  breaks = p1$data$LABEL.RANKS,
  labels = c(
    "Prior Myocardial Infaction: No",
    "Yes",
    "Prior coronary revasc.: No",
    "Yes",
    "Multivessel CHD: No",
    "Yes",
    "CHD Event Relative to Randomization: Recent",
    expression(paste("Age ", phantom() >= 60,": No")),
    "Diabetes req. pharm.: No",
    "Yes",
    "HDL-C < 40 mg/dL: No",
    "Yes",
    "Current or previous smoker: Yes",
    "No"))
print(p2)
```

1.1.3 Building the table plot graphic

We turn to the corresponding table plot.

```
t1 <- table.plot(
   parent.df = working.df.1,
   y.rank.col= "rank",
   category.color= "category",
   text.col1 = "hr",
   text.col2 = "low",
   text.col3 = "high",
   text.col4 = NULL,
   text.size = 3,
   xtick.labs = c("Estimate", "LCI", "UCI"),
   x.label= "Text",
   y.label= "Item",
   y.label.rank.col = "label.rank", # this identifies the y-axis values for labels
   y.label.col = "subgroup",
   category.palette = c("red", "blue"))</pre>
```

```
y.limits are set to NULL; defaults are used.
x.limits are set to NULL; defaults are used.
print(t1)
```

Since we're planning to juxtapose the table plot and the forest plot, we can suppress the labels here. In practice, it is worth verifying that labels in the forest and table plots agree before suppressing the labels.

Figure 2: Second Pass: Label fix

	Qual. diag.: Prior MI	1.11	0.95	1.31
	Qual. diag.: Prior MI	1.02	0.9	1.15
	Qual. diag.: Prior Coronary Revas.	0.99	0.82	1.18
	Qual. diag.: Prior Coronary Revas.	1.08	0.96	1.22
	Qual. diag.: Multivessel CHD	1.06	0.95	1.19
	Qual. diag.: Multivessel CHD	1.01	0.8	1.26
	Time from CHD event to randomization	1.05	0.85	1.29
Item	Time from CHD event to randomization	1.05	0.94	1.18
Ite	CV risk factor: Age>=60 years	0.84	0.69	1.03
	CV risk factor: Age>=60 years	1.13	1.01	1.26
	CV risk factor: Diabetes req. pharm.	1.08	0.95	1.23
	CV risk factor: Diabetes req. pharm.	1.01	0.87	1.18
	CV risk factor: HDL-C <40 mg/dL	1.04	0.91	1.17
	CV risk factor: HDL-C <40 mg/dL	1.08	0.92	1.27
	CV risk factor: Current or previous smoker	1.06	0.95	1.18
	CV risk factor: Current or previous smoker	1.01	0.82	1.25
		Estimate	LCI Text	UCI

Figure 3: First Pass at a Table plot

Note that arguments associated with y.label and y.label.rank.col are simply set to NULL. In addition teh x.label is set to white space. (A good exercise is to see what results when you step through the remainder of this exercise with NULL used in place of white space in the x.label argument.) Finally, the category.palette's first argument is changed from red to grey40.

```
t2 <- table.plot(
   parent.df = working.df.1,
   y.rank.col= "rank",
   category.color= "category",
   text.col1 = "hr",
   text.col2 = "low",
   text.col3 = "high",
   text.col4 = NULL,
   text.size=3,
   xtick.labs = c("Estimate", "LCI", "UCI"),
   x.label= "",
   y.label=NULL,
   y.label.rank.col = "label.rank", # this identifies the y-axis values for labels
   y.label.col = NULL,
   category.palette = c("grey40", "blue"))
y.limits are set to NULL; defaults are used.
x.limits are set to NULL; defaults are used.
print(t2)
```

1.1.4 Assembling the page

Here's a first pass at assembling the forest plot figure, allocating 50% of available width to the forest plot graphic and table plot raphic.

Perhaps allocating more space for the figure and less space for the table would look better:

Pushing to an extreme.

Recall comments in previous sections about altering plot.margins to decrease the padding between p2 and t2.

Figure 4: Second pass at table plot

Footnote1: Up to five lines of footnotes can be annotated.

Footnote2: Graphic region height can be flexed.

Footnote3 Footnote4

Footnote5: In large–scale production, this may hold file name, time stamp, etc. 08FEB2015 03:51

Figure 5: An assembled forest plot figure

Footnote1: Up to five lines of footnotes can be annotated.

Footnote2: Graphic region height can be flexed.

Footnote3 Footnote4

Footnote5: In large-scale production, this may hold file name, time stamp, etc. 08FEB2015 03:51

Figure 6: Experimenting with the width: 60%/40%

Footnote1: Up to five lines of footnotes can be annotated.

Footnote2: Graphic region height can be flexed.

Footnote3 Footnote4

Footnote5: In large–scale production, this may hold file name, time stamp, etc. 08FEB2015 03:51

Figure 7: An assembled forest plot figure

1.1.5 Manipulating the vertical placement of line segments

Suppose we want to separate the subgroups a bit better. The user has control over this when defining the rank columns.

```
working.df.1$rank2 <- working.df.1$rank + duplicated(working.df.1$subgroup)*.5</pre>
p3 <- forest.plot(parent.df = working.df.1,
            y.rank.col = "rank2", # line segment's y-axis rank
           Point.Est = "hr", # line segment's dot
           lower.lim = "low",
                               # line segment's lower endpoint
           upper.lim = "high",
                                # line segment's upper endpoint
            y.label.rank.col = "rank2", # label's y-axis rank
           y.label.col = "labels", # label's text value
           x.label = "Estimate",
           y.label = NULL,
           log.trans = TRUE,
           x.limits = c(0.21, 5),
           x.ticks = 2^{(-2:2)}
           category.color = "category", # This colors the points and line segments
           background.palette = c("red", "blue"),
            category.palette = c("red", "blue"),
            shape.palette = c(16, 16),
            flip.palette = FALSE)
```

y.limits are set to NULL; defaults are used.

```
# This step is same as before, with swap in the breaks argument
p4 <- p3 + scale_y_continuous(
 breaks = p3$data$RANK,
  labels = c(
    "Prior MI: No",
    "Yes",
    "Prior Coronary Revasc.: No",
    "Yes",
    "Multivessel CHD: No",
    "Yes",
    "CHD Event Relative to Randomization: Recent",
    "Remote",
    expression(paste("Age ", phantom() >= 60,": No")),
    "Yes",
    "Diabetes req. pharm.: No",
    "Yes",
    "HDL-C < 40 \text{ mg/dL}: No",
    "Yes",
    "Current or previous smoker: No",
    "Yes"))
# This is same as t2, save swap of rank for rank2
t3 <- table.plot(
    parent.df = working.df.1,
    y.rank.col = "rank2",
    category.color = "category",
   text.col1 = "hr",
   text.col2 = "low",
```

```
text.col3 = "high",
text.col4 = NULL,
text.size=3,
xtick.labs = c("Estimate", "LCI", "UCI"),
x.label= "",
y.label = NULL,
y.label.rank.col = "rank2", # this identifies the y-axis values for labels
y.label.col = NULL,
category.palette = c("grey40", "blue"))
```

y.limits are set to NULL; defaults are used. x.limits are set to NULL; defaults are used.

Footnote1: Up to five lines of footnotes can be annotated.

Footnote2: Graphic region height can be flexed.

Footnote3

Footnote5: In large-scale production, this may hold file name, time stamp, etc. 08FEB2015 03:51

Figure 8: Manipulating the vertical placement of line segments