Interview Questions (optional)

4/4 points earned (100%)					
Excellent!					
Retake					
Course Home					

1/1 points

1.

Java autoboxing and equals(). Consider two double values a and b and their corresponding <tt>Double</tt> values x and y.

- Find values such that (a == b) is true but x. equals(y) is false.
- Find values such that (a == b) is false but x. equals(y) is true.

Note: these interview questions are ungraded and purely for your own enrichment. To get a hint, submit a solution.

_	
a	
	/

Thank you for your response.

Hint: IEEE floating point arithmetic has some peculiar rules for 0.0, -0.0, and NaN. Java requires that equals() implements an equivalence relation.

2.

Check if a binary tree is a BST. Given a binary tree where each Node contains a key, determine whether it is a binary search tree. Use extra space proportional to the height of the tree.

a		
		//

Thank you for your response.

 Hint : design a recursive function $\mathtt{isBST}(\mathtt{Nodex}, \mathtt{Keymin}, \mathtt{Keymax})$ that determines whether x is the root of a binary search tree with all keys between \mathtt{min} and \mathtt{max} .

1/1 points

3.

Inorder traversal with constant extra space. Design an algorithm to perform an inorder traversal of a binary search tree using only a constant amount of extra space.

a

Thank you for your response.

Hint: you may modify the BST during the traversal provided you restore it upon completion.

4

Web tracking. Suppose that you are tracking n web sites and m users and you want to support the following API:

- User visits a website.
- How many times has a given user visited a given site?

What data structure or data structures would you use?

Thank you for your response.

Hint: maintain a symbol table of symbol tables.

