Serie 2, Aufgabe 2

Sei $\mathcal{M} = \mathcal{P}(\mathbb{N})$ und μ das Zählmass auf \mathbb{N} , d.h.,

$$\mu: \mathcal{M} \to [0, \infty],$$

$$A \mapsto \begin{cases} \#A, & A \text{ endlich,} \\ \infty & \text{sonst.} \end{cases}$$

(a) Zeige, dass $(\mathbb{N}, \mathcal{M}, \mu)$ ein Massraum ist, und bestimme alle messbaren Funktionen $\mathbb{N} \to \overline{\mathbb{R}}$.

Beweis. Kontrolliere die Axiome aus Definition 2.1.

(i) Sind $A_k, k \in \mathbb{N}$ disjunkt und alle abzählbar, so ist

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \#(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \#A_k = \sum_{k=1}^{\infty} \mu(A_k).$$

Existiert ein $j \in \mathbb{N}$ mit A_j unendlich, dann ist auch die Vereinigung der A_k s unendlich, somit

$$\mu\left(\bigcup_{k=1}^{\infty} A_k\right) = \infty = \infty + \sum_{k=1, k \neq j}^{\infty} \mu(A_k).$$

(ii)
$$\{1\} \in \mathcal{M}. \ \mu(\{1\}) = 1 < \infty.$$

Sei nun $f: \mathbb{N} \to \overline{\mathbb{R}}$, dann ist jedes Urbild von $W \subset \overline{\mathbb{R}}$ in der Potenzmenge von \mathbb{N} . Also ist f messbar. Also sind alle solchen Funktionen messbar.

(b) Sind die Funktionen $f: \mathbb{N} \to \overline{\mathbb{R}}$, $f(x) = e^{-x}$, und $g: \mathbb{N} \to \overline{\mathbb{R}}$, $g(x) = (-1)^x$, bezüglich μ messbar (sic.)?

Funktionen sind bzgl. σ -Algebren messbar oder nicht, nicht bzgl. Masse.

Die Frage ergibt also keinen Sinn.