

AMA 564 Deep Learning 2025 Spring

Lecture 3

Revisit: Deep Nonparametric Regression

Recall the regression problem

- Data $(X_i, Y_i), i = 1, ..., n$.
- To find a network $f(x; \theta)$ such that $\sum \phi(Y_i f(X_i; \theta))$ is minimized over

$$\mathcal{F} = \{f: f(x; \boldsymbol{\theta}) \text{ is a}$$

$$neural \ network$$

$$parameterized \ by \ \boldsymbol{\theta} \in \mathbb{R}^s \ \}$$

- How do we solve for #?
 - 1. Initialize $\theta_0 \in \mathbb{R}^s$
 - 2. Calculate the gradient at θ_t (with different ϕ)
 - 3. Move a step α_t
 - 4. Iterate until stop

Revisit: Deep Nonparametric Regression

Recall the regression problem

- Data $(X_i, Y_i), i = 1, ..., n$.
- To find a network $f(x; \theta)$ such that $\sum (Y_i f(X_i; \theta))^2$ is minimized over

$$\mathcal{F} = \{f: f(x; \boldsymbol{\theta}) \text{ is a }$$

$$neural \ network$$

$$parameterized \ by \ \boldsymbol{\theta} \in \mathbb{R}^s \ \}$$

- How do we solve for \(\theta\)?
 - 1. Initialize $\theta_0 \in \mathbb{R}^s$
 - 2. Calculate the gradient at θ_t
 - 3. Move a step α_t
 - 4. Iterate until stop.

Revisit: The Optimization Problem

The optimization problem

- Data $(X_i, Y_i), i = 1, ..., n$.
- The empirical risk

$$R_n(\boldsymbol{\theta}) = R_n(f(\cdot, \boldsymbol{\theta})) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(X_i; \boldsymbol{\theta}))^2.$$

• To minimize $R_n(\theta)$ over $\theta \in \mathbb{R}^s$.

Initialize $\theta_0 \in \mathbb{R}^s$ by some randomization

For
$$t=1,\cdots,T$$
 Calculate $\frac{dR_n(\theta)}{d\theta}|_{\theta=\theta_{t-1}}$ Set stepsize $\alpha_t>0$ Update $\theta_t=\theta_{t-1}-\alpha_t\cdot[\frac{dR_n(\theta)}{d\theta}|_{\theta=\theta_{t-1}}]$

After T times iterations, we got θ_T such that $R_n(\theta_T)$ is small.

The Optimization Problem

Question

How to calculate the gradient

$$\frac{d}{d\theta}R_n(\theta) = -\frac{2}{n}\sum(Y_i - f(X_i; \theta))\frac{d}{d\theta}f(X_i; \theta)$$

especially how to compute $\frac{d}{d\theta}f(X_i;\theta)$ exactly?

BackPropogation

Warm-Start: Chain Rule

$$\frac{d}{dx}[f(g(x))] = \frac{df}{dg} \times \frac{dg}{dx}$$

Warm-Start: Chain Rule

$$\frac{d}{dx}[f(g(x))] = \frac{df}{dg} \times \frac{dg}{dx}$$

The arrow shows functional dependence of z on y

- i.e. given y, we can calculate z.
- e.g., for example: $z(y) = 2y^2$

The derivative of z, with respect to y.

• e.g., for example:
$$\frac{\partial z(y)}{\partial y} = 4y$$
.

Simple Chain Rule

Simple chain rule

- If z is a function of y, and y is a function of x
 - Then z is a function of x, as well.
- Question: how to find $\frac{\partial z}{\partial x}$

We will use these facts to derive the details of the Backpropagation algorithm.

z will be the error (loss) function.

- We need to know how to differentiate *z*

Intermediate nodes use a logistics function (or another differentiable step function).

- We need to know how to differentiate it.

Multiple Path Chain Rule

$$z(x) \coloneqq z(y_1(x), y_2(x))$$

Multiple Path Chain Rule

$$z(x) \coloneqq z(y_1(x), y_2(x), \dots, y_n(x))$$

Backpropogation

Loop over instances:

1. The forward steps

 Given the input, make predictions layer-by-layer, starting from the first layer)

2. The backward steps

- Calculate the error in the output
- Update the weights layer-by-layer, starting from the final layer

A simple example

Backpropogation: An example

One Layer Percepton

Neuron is modeled by a unit connected by weighted links w_i to other units i.

$$L(w) = \frac{1}{2}(o(w) - y)^2,$$

$$o(w) = sigmoid(z(w)),$$

$$z(w) = w_0 + \sum_{i=1}^{n} w_i x_i$$
.

One Layer Percepton

$$\frac{\partial L}{\partial w_i} = \frac{dL}{do(w)} \times \frac{do(z(w))}{dz(w)} \times \frac{\partial z(w)}{\partial w_i}$$

$$\frac{dL}{do(w)} = \frac{d}{do(w)} \left[\frac{1}{2} (o(w) - y)^2 \right] = o(w) - y$$

$$\frac{do(z(w))}{dz(w)} = \frac{d}{dz(w)} \left[\frac{1}{1 + e^{-z(w)}} \right] = \frac{1}{1 + e^{-z(w)}} \times (1 - \frac{1}{1 + e^{-z(w)}})$$

$$\frac{\partial z(w)}{\partial w_i} = \frac{\partial}{\partial w_i} \left[w_0 + \sum_{j=1}^n w_j x_j \right] = x_i$$

Note: we denote $x_0 = 1$.

A simple example

A simple example

Source:https://medium.com/analytics-vidhya/backpropagation-for-dummies-e069410fa585

A good tutorial: https://youtu.be/tleHLnjs5U8?si=fmmHycZ7rscG8eJE

The Optimization Problem

Questions

- 1. How to initialize $\theta_0 \in \mathbb{R}^s$?
- 2. How to choose the stepsize $\alpha_t > 0$?
- 3. What if the sample size n is very large?

Optimization Algorithms

- 1. Stochastic Gradient Descent
- 2. Momentum Acceleration
- 3. AdaGrad
- 4. ADAM

Problem Set-up

Given data (X_i, Y_i) , i = 1, ..., n. Minimize a **loss function** over $\theta \in \mathbb{R}^s$:

$$\min_{\theta \in \mathbb{R}^s} f(\theta) := \frac{1}{n} \sum_{i=1}^n l(\theta; X_i, Y_i).$$

Gradient Descent Algorithm

Start from some $\theta^0 \in \mathbb{R}^s$, gradient descent (GD) algorithm updates as:

$$\theta^{k+1} = \theta^k - \alpha_k \nabla f(\theta^k),$$

until

$$||\nabla f(\theta^{k+1})|| \le \varepsilon,$$

for some tolerance $\varepsilon > 0$.

Gradient Descent Algorithm

Start from some $\theta^0 \in \mathbb{R}^s$, gradient descent (GD) algorithm updates as:

$$\theta^{k+1} = \theta^k - \alpha_k \nabla f(\theta^k),$$

until

$$||\nabla f(\theta^{k+1})|| \le \varepsilon,$$

for some tolerance $\varepsilon > 0$.

Key points:

- 1. Compute $\nabla f(\theta^k)$.
- 2. Choose step size $\alpha_k > 0$ satisfying

$$f(\theta^{k+1}) < f(\theta^k)$$
.

Feasible step sizes for L-smooth functions

Assumption 3.1

 $f(\theta)$ is continuously differentiable and $\nabla f(\theta)$ is Lipschitz continuous: $||\nabla f(x) - \nabla f(y)|| \le L||x - y||$ for some L > 0. We call f satisfying this property is a L-smooth function.

Lemma 3.1 Given an L-smooth function f, then for any $x, y \in dom(f)$, we have

$$f(y) \le f(x) + \nabla f(x)^T (y - x) + \frac{L}{2} ||y - x||^2.$$

Consequence: If we choose $\alpha_k = 1/L$, then

$$\begin{split} f(\theta^{k+1}) - f(\theta^k) &= f(\theta^k - \frac{1}{L}\nabla f(\theta^k)) - f(\theta^k) \\ &\leq \nabla f(\theta^k)^T (-\frac{1}{L}\nabla f(\theta^k)) + \frac{L}{2} \|\frac{1}{L}\nabla f(\theta^k)\|^2 \\ &\leq -\frac{1}{2L} \|\nabla f(\theta^k)\|^2. \end{split}$$

Question: If we apply Lemma 3.1, what is the optimal fixed step size?

Convergence of Gradient Descent Algorithm

Theorem 3.1 Let f be a L-smooth function and $f(\theta) \ge \bar{f} > -\infty$ for any θ . Let $\{\theta^k\}_{k=0}^T$ be the sequence generated by the gradient descent algorithm with step size 1/L, then

$$\min_{1 \leq k \leq T} \|\nabla f(\theta^k)\|^2 \leq \frac{2L(f(\theta^0) - \bar{f})}{T}.$$

Convergence of Gradient Descent Algorithm

Theorem 3.1 Let f be a L-smooth function and $f(\theta) \ge \overline{f} > -\infty$ for any θ . Let $\{\theta^k\}_{k=0}^T$ be the sequence generated by the gradient descent algorithm with step size 1/L, then

$$\min_{1 \le k \le T} \|\nabla f(\theta^k)\|^2 \le \frac{2L(f(\theta^0) - \bar{f})}{T}.$$

We leave the proof as a question in Assignment 1.

Hint:

Step 1: Apply Lemma 3.1 at step k.

Step 2: Sum them up for k = 0, 1, ..., T.

Step 3: Realize that f is bounded from below.

Computation Bottleneck in Deep Learning

In gradient descent, we need to compute

$$\nabla f(\theta^k) = \frac{1}{n} \sum_{i=1}^n \nabla_{\theta} l(\theta^k; X_i, Y_i).$$

This computation is expensive if n is huge !!!

Question: How to overcome it?

Hint: How to estimate the expectation of a random variable?

Stochastic Gradient

Instead of computing the exact gradient, we consider

$$g(\theta, \xi)$$
,

which is a stochastic estimation satisfying

$$\mathbb{E}_{\xi}[g(\theta,\xi)] = \nabla f(\theta).$$

Stochastic Gradient

Instead of computing the exact gradient, we consider

$$g(\theta, \xi)$$
,

which is a stochastic estimation satisfying

$$\mathbb{E}_{\xi}[g(\theta,\xi)] = \nabla f(\theta).$$

Examples:

Noisy gradients: Assume ξ is a random noise satisfying $\mathbb{E}[\xi] = 0$, we consider

$$g(\theta, \xi) = \nabla f(\theta) + \xi.$$

Stochastic gradients: Assume ξ is an index uniformly sampling from $\{1, 2, ..., n\}$, we consider

$$g(\theta, \xi) = \nabla_{\theta} l(\theta; X_{\xi}, Y_{\xi}).$$

Stochastic Gradient Descent (SGD)

Start from some $\theta^0 \in \mathbb{R}^s$, the SGD algorithm updates iteratively as:

$$\theta^{k+1} = \theta^k - \alpha_k g(\theta^k, \xi_k),$$

where $g(\theta^k, \xi_k)$ is the stochastic gradient computed at θ^k .

Key points:

- 1. Sampling strategy to compute $g(\theta^k, \xi_k)$.
- 2. Choose step size $\alpha_k > 0$.

A natural question: How to check the quality of the solution?

We measure $\mathrm{E}_{\xi}||g(\theta^k,\xi)||!!!$

Convergence of SGD

Assumption 3.2 f is a convex function and

$$\mathbb{E}_{\xi}[g(\theta, \xi)] = \nabla f(\theta),$$

$$\mathbb{E}_{\xi}[\|g(\theta, \xi)\|^2] \le B^2, \ \forall \theta.$$

where B is a given parameters.

Theorem 3.2 Let $\{\theta^k\}$ be the sequence generated by SGD with step size $\alpha_k > 0$, under Assumption 3.2, for any T > 0,

$$\mathbb{E}[f(\bar{\theta}^T) - f^*] \le \frac{\|\theta^0 - \theta^*\|^2 + B^2 \sum_{j=0}^T \alpha_j^2}{2 \sum_{j=0}^T \alpha_j},$$

where

$$\lambda_k = \sum_{j=0}^k \alpha_j, \ \bar{\theta}^k = \lambda_k^{-1} \sum_{j=0}^k \alpha_j \theta^j.$$

Implications

Proposition 3.1 If we take $\alpha_i = \alpha > 0$, then

$$\mathbb{E}[f(\bar{\theta}^T) - f^*] \le \frac{\|\theta^0 - \theta^*\|^2 + B^2(T+1)\alpha^2}{2(T+1)}.$$

As $T \to \infty$, the estimator

 $\hat{\theta}^T$ will be in a ball with radius

$$B^2\alpha^2/2$$

Implications

Proposition 3.1 If we take $\alpha_j = \alpha > 0$, then

$$\mathbb{E}[f(\bar{\theta}^T) - f^*] \le \frac{\|\theta^0 - \theta^*\|^2 + B^2(T+1)\alpha^2}{2(T+1)}.$$

Implication: We need to choose decreasing step size.

For example, choose
$$\alpha_t = \frac{1}{t+1}$$
 , then

$$\sum_{t=0}^{\infty} \alpha_t = \sum_{t=1}^{\infty} \frac{1}{t} = \infty$$
 and

$$\sum_{t=0}^{\infty} \alpha_t^2 = \sum_{t=1}^{\infty} \frac{1}{t^2} = \frac{\pi^2}{6} < \infty$$

1. Slow convergence.

2. Converge to local optimal solution.

Is SGD Good Enough?

3. Converge to saddle points.

$$f(x,y) = x^2 - y^2.$$

$$\frac{\partial}{\partial x} f(0,0) = 2 * 0 = 0,$$

$$\frac{\partial}{\partial y} f(0,0) = -2 * 0 = 0.$$

SGD with Momentum

Start from some $\theta^0\in\mathbb{R}^s$, $v_0=g(\theta^0,\xi_0)$, for $k\geq 0$: $v^{k+1}=\gamma v^k+(1-\gamma)g(\theta^k,\xi_k),$ $\theta^{k+1}=\theta^k-v^{k+1}.$

 γ is usually chosen to be 0.9 in practice.

A Simple Example

$$\gamma = 0.9$$

$$\gamma = 0$$

Reading Material: Why Momentum Real Works?

Nesterov Momentum

Start from some $\theta^0 \in \mathbb{R}^s$, $v_0 = g(\theta^0, \xi_0)$, for $k \ge 0$:

$$\begin{array}{rcl}
\vartheta^k & = & \theta^k - \beta_k v^k, \\
v^{k+1} & = & \beta_k v^k + \alpha_k g(\vartheta^k, \xi_k), \\
\theta^{k+1} & = & \theta^k - v^{k+1}.
\end{array}$$

An advantage: prevent overshot!

AdaGrad: Adaptive Learning Rates

Key idea: Rescale the learning rate of each coordinate by the historical progress.

Start from some $\theta^0 \in \mathbb{R}^s$, $n_g = 0$, for $k \ge 0$:

$$n_g = n_g + g(\theta^k, \xi_k) \cdot * g(\theta^k, \xi_k),$$

 $\theta^{k+1} = \theta^k - \alpha_k g(\theta^k, \xi_k) \cdot / (n_g + 10^{-8}).$

Issue: The learning rate (step size) goes to zero quickly.

RMSProp: "Leaky AdaGrad"

Key idea: Discount the accumulated norm of the gradients.

Start from some $\theta^0 \in \mathbb{R}^s$, $n_g = 0$, for $k \ge 0$:

$$n_g = \gamma n_g + (1 - \gamma)g(\theta^k, \xi_k). * g(\theta^k, \xi_k),$$

 $\theta^{k+1} = \theta^k - \alpha_k g(\theta^k, \xi_k)./(n_g + 10^{-8}).$

Key idea: Consider momentum and adaptive learning rate (second-order momentum) together.

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
   m_0 \leftarrow 0 (Initialize 1st moment vector)
   v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
   t \leftarrow 0 (Initialize timestep)
   while \theta_t not converged do
      t \leftarrow t + 1
      g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
      m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate)
      v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
      \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
      \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
      \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
```

Recommended Hyper-parameter Settings in ADAM

Adam: A Method for Stochastic Optimization,

Diederik P. Kingma, Jimmy Ba,

International Conference for Learning Representations, 2015

Google Citation: 130,829

In the original paper of ADAM, the following hyper-parameter settings are recommended:

$$\alpha = 0.001$$
, $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 10^{-8}$.

Stories about ADAM

ADAM is arguably **the most popular** optimization algorithm in training deep neural networks now. But the convergence analysis contains some **mistakes** in the original paper. ADAM can be **non-convergent**!

S. J. Reddi, S. Kale, and S. Kumar.

On the convergence of adam and beyond.

International Conference for Learning Representations, 2018

Best Paper Award!

Stories about ADAM

RMSProp can be convergent for large parameters $(\beta_2)!$

N. Shi, D. Li, M. Hong, and R. Sun.

RMSprop converges with proper hyper-parameter.

International Conference on Learning Representations, 2020.

Not address the issue for ADAM since they set $\beta_1 = 0$.

Stories about ADAM

Y. Zhang, C. Chen, N. Shi, R. Sun, Z.-Q. Luo Adam Can Converge Without Any Modification on Update Rules. NeurIPS 2022

Practical Implementation Tricks

Minibatch: Instead of sampling one random gradient $g(\theta^k, \xi_k)$, we sample p random gradient $g(\theta^k, \xi_{k_1}), \dots, g(\theta^k, \xi_{k_p})$, Update

$$\theta^{k+1} = \theta^k - \alpha_k \frac{1}{p} \sum_{i=1}^p g(\theta^k, \xi_{k_i}).$$

Practical Implementation Tricks

Minibatch: Instead of sampling one random gradient $g(\theta^k, \xi_k)$, we sample p random gradient $g(\theta^k, \xi_{k_1}), \dots, g(\theta^k, \xi_{k_p})$, Update

$$\theta^{k+1} = \theta^k - \alpha_k \frac{1}{p} \sum_{i=1}^p g(\theta^k, \xi_{k_i}).$$

Epoch: a central concept in training. In each epoch, n_E SGD updates will be executed. Usually, we select

$$n_E = ceil(n/p)$$
.

Practical Implementation Tricks

Minibatch: Instead of sampling one random gradient $g(\theta^k, \xi_k)$, we sample **p** random gradient $g(\theta^k, \xi_{k_1}), \dots, g(\theta^k, \xi_{k_p})$, **Update**

Epoch: a central concept in training. In each epoch, n_E SGD updates will be executed. Usually, we select

$$n_E = ceil(n/p)$$
.

Dynamic Step Size Adjusting:

- (a) Decrease the step size by ratio $0 < \gamma < 1$ every K epochs.
- (b) **Epoch Doubling Strategy**: Run K epochs with step size α , then, run 2K epochs with step size $\alpha/2$,