TP2: Autómatas celulares

Grupo 5 Tomás Álvarez Escalante (60127) Lucas Agustín Ferreiro (61595) Román Gómez Kiss (61003)

TABLA DE CONTENIDOS

01

Introducción

Sistema real y fundamentos

Implementación

Arquitectura y algoritmo

03

Simulaciones

Parámetros fijos, observable y variables a estudiar

Resultados

Animaciones y gráficos

05 Conclusiones

Introducción Sistema real y fundamentos

Sistema real

Simular el comportamiento de agrupamiento de partículas autopropulsadas

Sistemas biológicos reales (bandadas de aves, rebaños de ovejas, etc.)

Fundamentos

Cada agente se desplaza

el sistema evoluciona con MRU:

$$x_i(t+1) = x_i(t) + v_i(t)\Delta t$$
$$\theta_i(t+1) = \langle \theta(t) \rangle_r + \Delta \theta$$

Promedio de los ángulos

$$\langle \theta(t) \rangle_r = atan2 \left[rac{\langle \sin(\theta(t)) \rangle_r}{\langle \cos(\theta(t)) \rangle_r} \right]$$

- x_i(t) posición en el tiempo t
- v_i(t) velocidad en el tiempo t
- Δt paso temporal
- θ_i(t) ángulo en el tiempo t
- <θ_i(t)>_r promedio de los ángulos de todas las partículas que se encuentran dentro del radio de interacción r
- $\Delta\theta \in [-\eta/2;\eta/2]$ valor de ruido uniforme
- η amplitud de ruido

02

Implementación

Arquitectura y algoritmo

<u>Diagrama UML</u>

<u>Algoritmo</u>

Algorithm 1: Algoritmo del modelo Off-Lattice

for tiempo t do

Guardar la posición y velocidad de la partículas en el instante t;

Actualizar la posición de las partículas para el instante t+1;

for partícula do

Calcular sus vecinos usando Cell Index Method;

Mover la partícula;

Calcular la nueva velocidad de la partícula;

Actualizar la nueva velocidad de la partícula;

Actualizar la celda donde se encuentra la partícula;

03

Simulaciones

Parámetros fijos, observable y variables a estudiar

<u>Parámetros</u>

- Cantidad de partículas N
- Largo del área de simulación L
- Amplitud de ruido η

Las partículas son puntuales y los contornos periódicos

Se genera una disposición inicial aleatoria de las partículas para posteriormente simular la evolución temporal del mismo.

<u>Variables fijas</u>

- Velocidad v = 0.03
- Radio de interacción $r_c = 1.0$
- Paso temporal Δt = 1
- 2000 iteraciones fueron apropiadas para asegurarnos de alcanzar el estado estacionario.

<u>Observable</u>

Velocidad promedio normalizada

$$v_a = \frac{1}{Nv} \left| \sum_{i=1}^N v_i \right|$$

- $N \rightarrow$ cantidad de partículas
- $v \rightarrow m\acute{o}dulo de velocidad de las partículas$

Los promedios se calculan según el promedio aritmético.

<u>Variables a estudiar</u>

- 1. Efecto del ruido η y la densidad ρ = N/L² sobre el parámetro de orden v_a
- 2. Pruebas a densidad constante variando η entre 0 y 5.
- 3. Pruebas variando densidad entre 1 y 10 con distintos valores de ruido.
- 4. v_a tiende a $0 \rightarrow$ partículas desordenadas.
- 5. v_a tiende a 1 \rightarrow partículas polarizadas.

04

Resultados

Animaciones y gráficos

Variación de v_a a densidad constante y distintos ruidos

Animaciones con $\rho=4$ y distinto ruido

N=100, L=5, ρ=4 η =1 Polarización N=100, L=5, ρ=4 η =2,5 Se mueven con cierta correlación y poco desorden

Animaciones con $\rho=4$ y distinto ruido

N=400, L=10, ρ=4 η =0.5 Polarización N=400, L=10, ρ=4 η =4 Desorden alto

Evolución de v_a en iteraciones con diferente ruido y distintas combinaciones de densidad

Promedio de v_a en el estado estacionario para 5 simulaciones en función de n

A mayor N, el promedio de v_a muestra resultados más irregulares, pues es mayor el tiempo que se tarda en converger al estado estacionario y hay mayores fluctuaciones en los valores de v_a

Variación de v_a con distintos valores de densidad

Animaciones con p=1 y distinto ruido

N=100, L=10, ρ=1 η =1 Forman grupos y se

mueven coherentemente

Desorden alto, intentan formar grupos

Animaciones con p=3.11 y distinto ruido

N=700, L=15, ρ=3.11 η =0.5 Polarización

η =2
Se mueven coherentemente
con cierto desorden

21

Animaciones con p=10 y distinto ruido

N=1000, L=10, ρ=10 η =1 Polarización N=1000, L=10, ρ=10 η =3

Aumenta el desorden, pero se mueven con cierta correlación

Evolución de v_a en iteraciones para distintas densidades con el mismo ruido

23

<u>Promedio de</u> v_a <u>en n el estado estacionario</u> <u>para 5 simulaciones función de o</u>

Mayor densidad conduce a una polarización más marcada en el estado estacionario. A medida que aumenta el ruido, se alcanza el estado estacionario con valores de v₃ más bajos.

Comportamientos observados

N=400 L=10 ρ=4 η=0.5

N=1000 L=20 ρ=2.5 η =2

25

L=25 ρ=0.32 η=1

N=400 L=10 ρ=4 η=4

05

Conclusiones

Conclusiones

- A mayor nivel de ruido se reduce la polarización de las partículas en el estado estacionario.
- 2. A menor nivel de densidad, las partículas son más susceptibles a la influencia del ruido, observándose una alta variabilidad de v_a lo largo de las iteraciones.
- 3. A niveles constantes de ruido, una mayor densidad presenta mayor uniformidad en v_a (es decir, ocurre polarización).
- 4. Para valores de densidad y ruidos bajos, las partículas tienden a formar grupos, moviéndose coherentemente en direcciones aleatorias.
- 5. Las configuraciones que polarizan convergen más rápido.

¡Muchas gracias!