Lógica

	2º teste — 26 de maio de 2022 –		— duração: 2 horas
nome:		número:	

Grupo I

Responda a cada uma das 8 questões deste grupo no enunciado, no espaço disponibilizado a seguir à questão, sem apresentar justificações.

1. Seja L um tipo de linguagem com um símbolo de função binário g. Dê exemplo de um L-termo t_1 e de um L-termo t_2 tais que: $g(x_1, g(x_1, x_2))[t_1/x_1] = g(x_0, x_2)[t_2/x_2]$.

Resposta:

2. Seja L um tipo de linguagem com um símbolo de relação binário R. Dê exemplo de uma L-fórmula φ que tenha no máximo 4 subfórmulas e tal que $LIV(\varphi) = \{x_0, x_1\}$ e $LIG(\varphi) = \{x_0\}$.

Resposta:

3. Seja φ a L_{Arit} -fórmula: $\exists x_0(x_0 = x_1) \land \neg(x_0 = x_1)$. Determine a L_{Arit} -fórmula $\varphi[\mathsf{s}(x_0)/x_0]$. Resposta:

Nas questões 4., 5. e 6. deste grupo, considere o tipo de linguagem $L = (\{c, f, g\}, \{P, R\}, \mathcal{N})$ em que $\mathcal{N}(c) = 0$, $\mathcal{N}(f) = 1$, $\mathcal{N}(g) = 2$, $\mathcal{N}(P) = 1$ e $\mathcal{N}(R) = 2$, e considere a L-estrutura $E = (\mathbb{Z}, \overline{})$ tal que:

$$\begin{split} \overline{\mathsf{c}} &= 2 \\ \overline{\mathsf{f}} &: \mathbb{Z} \to \mathbb{Z} \text{ tal que } \overline{\mathsf{f}}(n) = n^2 \end{split} \qquad \overline{\mathsf{g}} &: \mathbb{Z}^2 \to \mathbb{N} \text{ tal que } \overline{\mathsf{g}}(m,n) = 3m + n \\ \overline{\mathsf{R}} &= \{(m,n) \in \mathbb{Z}^2 : m \text{ e } n \text{ têm o mesmo resto na divisão inteira por } 3\} \end{split}$$

- 4. Seja a a atribuição em E tal que, para todo $i \in \mathbb{N}_0$, $a(x_i) = i-2$. Indique o valor de: $f(g(x_1, f(c)))[a]_E$. Resposta:
- 5. Dê exemplo de uma atribuição a' em E tal que $\mathsf{P}(\mathsf{f}(x_0)) \to \forall x_0 \, \mathsf{R}(x_0,\mathsf{c}) \, [a']_E = 0.$

Resposta:

6. Indique uma L-fórmula válida em E que represente a afirmação: O resto da divisão inteira do quadrado de um qualquer inteiro por 3 não é 2.

Resposta:

7. Considere o tipo de linguagem $L = (\{c\}, \{P\}, \mathcal{N})$ em que $\mathcal{N}(c) = 0$ e $\mathcal{N}(P) = 1$. Dê exemplo de uma L-estrutura E cujo domínio seja $\{1, 2\}$ e tal que E seja um modelo de $\{\exists x_0 P(x_0), \neg P(c)\}$.

Resposta:

8. Seja L um tipo de linguagem com uma constante c e um símbolo de relação binário R e seja $\Gamma = \{R(c, x_0), \exists x_0 \, R(x_0, c), R(c, c)\}$. Dê exemplo de $\varphi \in \Gamma$ tal que: $\forall x_0 \, R(x_0, x_0) \not\vdash \varphi$.

Resposta:

Grupo II

Responda às 6 questões deste grupo na folha de exame, justificando convenientemente as respostas.

- 1. Mostre que $\Gamma = \{p_0 \to \perp, p_0 \land p_1\}$ é sintaticamente inconsistente.
- 2. Sejam $\varphi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$. Mostre que, se $\Gamma \models \varphi$ e Γ é sintaticamente consistente, então $\Gamma \not\vdash \neg \varphi$.

Nas questões 3. e 4. deste grupo, considere de novo o tipo de linguagem $L = (\{c, f, g\}, \{P, R\}, \mathcal{N})$ e a L-estrutura $E = (\mathbb{Z}, \overline{})$ das perguntas 4. a 6. do Grupo I.

- 3. Seja ψ a L-fórmula: $\neg P(x_0) \to \exists x_1 R(g(x_0, x_1), c)$. Diga, justificando, se a seguinte afirmação é verdadeira: Toda a variável está livre para qualquer L-termo t em ψ .
- 4. Seja φ a L-fórmula: $\forall x_1 (P(x_1) \to P(g(c, x_1)))$. Mostre que:
 - (a) φ é válida em E.
 - (b) φ não é universalmente válida.
- 5. Sejam φ e ψ fórmulas para um tipo de linguagem L e seja x uma variável. Mostre que: se $\varphi \to \psi$ é universalmente válida e $x \notin \text{LIV}(\varphi)$, então $\varphi \models \forall x \psi$.
- 6. Considere o tipo de linguagem $L = (\{c, f\}, \{P, Q\}, \mathcal{N})$ em que $\mathcal{N}(c) = 0$, $\mathcal{N}(f) = 1$ e $\mathcal{N}(P) = \mathcal{N}(Q) = 1$. Construa uma derivação em DN que mostre que: $\forall x_0(P(x_0) \to Q(f(x_0))) \vdash P(c) \to \exists x_1 Q(x_1)$.

Cotações	II (8 valores)	II (12 valores)
Cotações	1+1+1+1+1+1+1	2+1,5+2+3+1,5+2