Properties of Eigenvalues and Eigenvectors Section 4.2 (Hartman)

Properties:

Let A be an $n \times n$ invertible matrix. The following are true:

1. If A is triangular, then the diagonal elements of A are the eigenvalues of A.

Example #1: Find eigenvalues of $B = \begin{pmatrix} 1 & -2 & 4 \\ 0 & 2 & 3 \\ 0 & 0 & -1 \end{pmatrix}$.

$$de+(B-\lambda I) = \begin{vmatrix} 1-\lambda & -2 & 4 \\ 0 & 2-\lambda & 3 \\ 0 & 0 & -1-\lambda \end{vmatrix} = (1-\lambda)(2-\lambda)(-1-\lambda) = 0$$

- 2. The product of the eigenvalues of A is equal to det(A).
- 3. If λ is an eigenvalue of A with eigenvector \vec{x} , then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with eigenvector \vec{x} .

Proof: Consider an invertible matrix A with eigenvalue λ and eigenvector \vec{x} . Then, by definition,

$$A\vec{x} = \lambda \vec{x}$$
.

Multiply both sides by A^{-1} . Then;

$$A^{-1}A\vec{x} = A^{-1}\lambda\vec{x}$$
$$I\vec{x} = \lambda A^{-1}\vec{x}$$
$$\frac{1}{\lambda}\vec{x} = A^{-1}\vec{x}$$

4. If λ is an eigenvalue of A then λ is an eigenvalue of A^T .

Proof: Recall $(A + B)^T = A^T + B^T$ and $det(A) = det(A^T)$.

Using the characteristic polynomial of A^T , we have

$$\det(A^T - \lambda I) = \det(A^T - \lambda I^T) = \det(A - \lambda I)^T = \det(A - \lambda I)$$

The characteristic polynomial of \mathbf{A}^T is the same as that for A. Therefore they have the same eigenvalues.