Î

MU Test Plan — Test 10 (Hierarchy Sweep: Varying Q-gap)

Goal

- To map explicitly how the **relative weight ratio** $w_{\text{fast}}/w_{\text{slow}}$ wfast/wslow depends on the difference in action costs ($\Delta Q = Q_{\text{fast}} Q_{\text{slow}}$).
- This will give us the first quantitative suppression law of MU.

Parameters

- $\hbar = 0.1$ (fixed)
- $\gamma = 1.0$ (fixed)
- $\beta = 9.0$ (fixed, in the survival window)
- Paths:
 - Slow path: r_slow(t) = 0.25-t (fixed baseline)
 - Fast path family: r_fast(t) = offset + slope·t, with slope varied so that Q_fast ranges from slightly above Q_slow to much larger.
 - Example slopes: 0.26, 0.35, 0.50, 0.75, 1.0
- Selector: $T(r) = 1/(1+|r-r_c|)$, $r_c=0.25$

Predictions

- When ΔQ is small \rightarrow ratio $w_{\rm fast}/w_{\rm slow}$ wfast/wslow \approx order 1 \rightarrow nearly equal coexistence.
- As ΔQ grows \rightarrow ratio drops exponentially \rightarrow clear **hierarchy** emerges.
- Expect log-suppression law:

$${
m log} rac{w_{
m fast}}{w_{
m slow}} \sim \, -rac{\Delta \, Q}{\hbar}.$$

This would mean MU assigns continuous weights to branches, not binary survival vs death.

What We're Looking For

- The curve of $w_{\rm fast}/w_{\rm slow}$ wfast/wslow vs ΔQ .
- If exponential suppression fits, that's our Hierarchy Law.
- This would give MU a formal statement:
 - **Degenerate branches** → coexist.
 - Non-degenerate branches → coexist with exponential hierarchy.