Temperatura Crítica de Superconductores

Presentamos nuevos modelos

Grupo A - Estadística

Pontificia Universidad Católica de Chile Facultad de Matemáticas EYP2307 - Análisis de Regresión

1 de Diciembre de 2020

Contenido

- Avance 1
- Nuevos modelos
- Elegimos modelo
- Ridge y Lasso Regression
- Conclusiones
- Referencias bibliográficas

Contenido

Avance 1

Nuevos modelo

Elegimos modelo

Ridge y Lasso Regression

Conclusiones

Referencias bibliográficas

Recursos Utilizados

- 1. Usamos RStudio.
- 2. R Markdown y R Sweave.
- 3. GitHub.
- 4. Bases de datos.
 - train.csv
 - unique_m.csv

Objetivo Avance 1

Predecir la temperatura crítica de los superconductores, en base a nuestra variable respuesta critical_temp.

Limpieza de la base de datos

Como se tenían 169 variables en total, se decidió limpiar la base de datos.

Limpieza de la base de datos

- Como se tenían 169 variables en total, se decidió limpiar la base de datos.
- Al hacer la limpieza nos quedamos solo con 34 variables.

Se hizo un análisis de correlación.

- Se hizo un análisis de correlación.
- La variable std_ThermalConductivity tuvo la correlación más alta de 0.65, por lo tanto se utilizó para nuestro modelo de regresión lineal simple.

- Se hizo un análisis de correlación.
- La variable std_ThermalConductivity tuvo la correlación más alta de 0.65, por lo tanto se utilizó para nuestro modelo de regresión lineal simple.
- Al hacer el análisis de la varianza explicada: $R^2 = 0.43$.

- Se hizo un análisis de correlación.
- La variable std_ThermalConductivity tuvo la correlación más alta de 0.65, por lo tanto se utilizó para nuestro modelo de regresión lineal simple.
- Al hacer el análisis de la varianza explicada: $R^2 = 0.43$.
- Se decidió buscar alternativas para intentar aumentar este último valor.

Nos decidimos por un nuevo modelo.

- Nos decidimos por un nuevo modelo.
- Utilizamos la variable range_Valence por ser una variable discreta y así nos quedaron 7 modelos.

- Nos decidimos por un nuevo modelo.
- Utilizamos la variable range Valence por ser una variable discreta y así nos quedaron 7 modelos.
- El modelo final nos quedó:

- Nos decidimos por un nuevo modelo.
- Utilizamos la variable range_Valence por ser una variable discreta y así nos quedaron 7 modelos.
- ► El modelo final nos quedó:
 - $\rho = 0.75.$

- Nos decidimos por un nuevo modelo.
- Utilizamos la variable range_Valence por ser una variable discreta y así nos quedaron 7 modelos.
- ► El modelo final nos quedó:
 - $\rho = 0.75.$
 - $ightharpoonup R^2 = 0.56.$

Objetivo del Avance 2

Predecir la temperatura crítica de los superconductores en base a nuestra variable respuesta, utilizando modelos de regresión lineal múltiple para mejorar los resultados obtenidos en el Avance 1.

Contenido

Avance :

Nuevos modelos

Elegimos modelo

Ridge y Lasso Regression

Conclusiones

Referencias bibliográficas

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.
 - Forward.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - 1. Backward.
 - Forward.
 - Backward-Forward.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.
 - Forward.
 - Backward-Forward.
 - 4. add1.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.
 - Forward.
 - Backward-Forward.
 - 4. add1.
 - drop1.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.
 - Forward.
 - Backward-Forward.
 - 4. add1.
 - drop1.
 - 6. VIF.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.
 - Forward.
 - Backward-Forward.
 - 4. add1.
 - drop1.
 - 6. VIF.
 - 7. Modelo con la idea del Avance 1.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - Backward.
 - Forward.
 - Backward-Forward.
 - 4. add1.
 - 5. drop1.
 - 6. VIF.
 - Modelo con la idea del Avance 1.
 - 8. Ridge Regression.

- Creamos una serie de nuevos modelos de regresión lineal múltiple:
 - 1. Backward.
 - 2. Forward.
 - 3. Backward-Forward.
 - 4. add1.
 - drop1.
 - 6. VIF.
 - 7. Modelo con la idea del Avance 1.
 - 8. Ridge Regression.
 - 9. Lasso Regression.

Se utilizó la base de datos limpiada en el Avance 1 para trabajar solo con 34 variables.

Modelo con Backward

- Criterio AIC.
- ightharpoonup Multicolinearidad ightharpoonup variables eliminadas.
- Modelo conformado finalmente por 27 variables.

Modelo con Forward

- Criterio AIC.
- Multicolinearidad \rightarrow **0** variables eliminadas.
- Modelo conformado finalmente por 28 variables.

Modelo con Backward-Forward

- Criterio AIC.
- Multicolinearidad \rightarrow **0** variables eliminadas.
- Modelo conformado finalmente por 27 variables.

Modelo con add1

- Criterio AIC.
- ightharpoonup Multicolinearidad ightharpoonup variables eliminadas.
- Modelo conformado finalmente por 28 variables.

Modelo con drop1

- Criterio AIC.
- ightharpoonup Multicolinearidad ightharpoonup variables eliminadas.
- Modelo conformado finalmente por 25 variables.

Modelo con *VIF*

- Se consideró el modelo conformado por todas las variables de la base de datos.
- Se fue eliminando el problema de multicolinearidad progresivamente.
- Modelo conformado finalmente por 28 variables.

Modelo con la idea del Avance 1

- Se crearon 7 bases de datos según range Valence.
- Se creó un modelo para cada base de datos mediante selección Backward con criterio AIC.
- Cantidad de variables:
 - Modelo para range_Valence = 0: 25 variables.
 - Modelo para range_Valence = 1: 23 variables.
 - 3. Modelo para range_Valence = 2: 24 variables.
 - 4. Modelo para range Valence = 3: 25 variables.
 - 5. Modelo para range Valence = 4: 22 variables.
 - 6. Modelo para range_Valence = 5: 19 variables.
 - 7. Modelo para range Valence = 6: 27 variables.

Contenido

Avance :

Nuevos modelos

Elegimos modelo

Ridge y Lasso Regression

Conclusiones

Referencias bibliográficas

Modelo	AIC	BIC	R ²
Backward	126489.9	127064.9	0.66
Forward	126880.5	127103.5	0.66
Backward-Forward	126849.9	127064.9	0.66
add1	126858.4	127081.4	0.66
drop1	126849.6	127048.7	0.66
VIF	126880.5	127103.5	0.6
Idea Avance 1	121021.6	121840.3	0.74

Supuesto de *Independencia*

- Se utilizó el Test de Durbin-Watson.
- Independencia de residuos \Leftrightarrow Valor D entre **1.5** y **2.5**.
- Ningún modelo mencionado cumple este supuesto.

Supuesto de *Normalidad*

- Se utilizó el Test de Kolmogorov-Smirnov.
- Criterio: Valor-p > 0.05.
- Ningún modelo mencionado cumple este supuesto.
- Primera solución aplicada: Transformación de Box-Cox
- Segunda solución aplicada:

▶ abc

abc

abc

▶ abc

abc

▶ abc

abc

Contenido

Avance 1

Nuevos modelos

Elegimos modelo

Ridge y Lasso Regression

Conclusiones

Referencias bibliográficas

Ridge Regression

- Objetivo: Minimizar **RSS**.
- Shrinkage Penalty: $RSS_{Ridge} = RSS_{AMC} + \lambda \sum_{i=1}^{p} \beta_{i}^{2}$.
 - $\lambda = \mathbf{0} : RSS_{Ridge} = RSS_{AMC}.$
 - $\lambda > 0$: Impacto en valores de β .
 - $\lambda \to \infty : \beta \to \vec{\mathbf{0}}.$

Ridge Regression: λ óptimo

- Es aquel que reduce la mayor varianza del modelo sin apenas perder ajuste.
- Validación cruzada.

Ridge Regression: Ventajas

- Reduce la varianza.
- Datos de Entrenamiento vs. Datos de Prueba.
- Minimiza la influencia sobre el modelo de los predictores menos relacionados con la variable respuesta.

Ridge Regression: Limitación

Modelo final incluye todos los predictores.

Lasso Regression

- ▶ Misma idea que en *Ridge Regression*.
- Selección de predictores.
- ► Shrinkage Penalty : $RSS_{Lasso} = RSS_{AMC} + \lambda \sum_{j=1}^{p} |\beta_j|$.

Comparación entre Ridge y Lasso Regression

- Usamos uno u otro dependiendo del escenario.
- *Ridge Regression*: cuando los $\beta \neq \vec{0}$ y tienen la misma magnitud aproximadamente.
- Lasso Regression: cuando un gran grupo de parámetros \approx **0**.

Resultados de la implementación en R

► Ridge Regression:

•0

Contenido

Conclusiones

Conclusiones

▶ abc

Contenido

Avance 1

Nuevos modelos

Elegimos modelo

Ridge y Lasso Regression

Conclusiones

Referencias bibliográficas

Referencias bibliográficas

- https://online.stat.psu.edu/stat501/lesson/13/13.1

 Weighted Least Squares.

 2018
- https://rpubs.com/Joaquin_AR/242707

 Selección de predictores: Ridge y Lasso.

 2016
- https://rstatisticsblog.com/data-science-in-action/machine-learning/ridge-regression-in-r/
 Simple Guide To Ridge Regression In R.
 2020

