Stochastics II Stochastic Processes Winterterm 2016/17

Prof. Dr. U. Rösler S. Hallmann

Sheet 3

Aufgabe 1

For all $x \in E$ let $Y_1(x), Y_2(x), \ldots$ be independent discrete identically distributed random variables, taking values in Y and $h : E \times Y \to E$ a measurable function. For some initial random variable X_0 , independent of all the others, we call the stochastic process $(X_n)_{n \in \mathbb{N}_0}$ given by

$$X_n = h(X_{n-1}, Y_n(X_{n-1})), n \in \mathbb{N}$$

a dynamical (stochastic) system of Y_1, Y_2, \ldots and h.

Show that: $(X_n)_{n\in\mathbb{N}_0}$ is a homogeneous Markov chain and its transition matrix is given by

$$P(x,y) = P(h(x, Y_1(x)) = y), x, y \in E.$$

Aufgabe 2

A fair die is rolled repeatedly. Which of the following processes $X = (X_n)_{n \in \mathbb{N}_0}$ are Markov chains? Give the transition matrices where applicable.

- (a) X_n : biggest face that appeared up to the *n*-th roll.
- (b) X_n : number of sixes up to the *n*-th roll.
- (c) X_n : number of rolls since the last six appeared.

Aufgabe 3

Let $(\Omega, \mathcal{A}, (\mathcal{A}_n)_{n \in \mathbb{N}}, \mathbb{P})$ be a filtered probability space and τ a stopping time. Show that:

- (a) \mathcal{A}_{τ} is a σ -algebra.
- (b) τ is \mathcal{A}_{τ} -measurable.

Aufgabe 4

Let σ, τ be stopping times. Show that:

- (a) $\sigma \wedge \tau$ and $\sigma \vee \tau$ are also stopping times.
- (b) $\sigma + \tau$ is also a stopping time.
- (c) $\mathcal{A}_{\sigma} \subseteq \mathcal{A}_{\tau}$ for $\sigma \leqslant \tau$.

Hand in until friday, 18.11.2016, 12:00