Chapitre 13 : Systèmes thermodynamiques

1 Description d'un système thermodynamique

Système. Portion de l'univers limité par une frontière, où l'on peut distinguer l'intérieur et l'extérieur de cette portion.

Système thermodynamique. Système possédant un très grand nombre de degrés de liberté.

Système fermé. Un système est fermé s'il n'échange pas de matière avec l'extérieur. Sinon il est ouvert.

État macroscopique / microscopique.

<u>L'état microscopique</u> est la description de la position et de la vitesse de chacun des constituants (impossible à déterminer).

<u>L'état macroscopique</u> est donné par des variables thermodynamique qui décrivent l'ensemble.

Variable extensive. Variable thermodynamique qui décrit le système dans son ensemble et s'ajoute avec l'union de deux systèmes.

Exemples: mole, masse molaire, ...

Mole. Une mole correspond à $\mathcal{N}_A=6,02\cdot 10^{23}$ éléments. \mathcal{N}_A est le nombre d'Avogadro.

Masse molaire. Masse d'une mole d'un entité $(M = m \cdot \mathcal{N}_A)$.

Variables intensives. Variable thermodynamique qui décrit le système localement et ne varie pas lorsque l'on prend l'union de deux systèmes.

Exemples : température, pression, masse volumique, . . .

Température. Variable intensive qui caractérise l'agitation désordonnée des atomes.

 $\underline{\text{Unit\'e}}$: Kelvin (K)

Ou en **Celsius** : $\theta(^{\circ}C) = T(K) - 273, 15$

Masse volumique d'un système. Quotient de la masse par le volume du système : $\rho = \frac{m}{V}$ en kg/m^3

Pression. Caractérise la force exercée par un fluide sur une paroi en contact avec lui. Cette force est :

$$\vec{F} = P \cdot S \cdot \vec{n}$$

Avec P la pression du fluide et S la surface en contact.

Unité:

- Pascal $(1Pa = 1N/m^2)$
- $\mathbf{bar} \ 1bar = 10^5 Pa$

2 Coefficients thermoélastiques

Coefficient de dilatation isobare. Pour un système fermé, le coefficient α est défini par :

$$\alpha = \frac{1}{V} \frac{\partial V}{\partial T} \Big|_{P,n} \text{ en } K^{-1}$$

Interprétation : lorsque la température augmente de $\mathrm{d}T$ à pression constante, le volume augmente de $\boxed{\mathrm{d}V = V\alpha\mathrm{d}T}$

Coefficient de compressibilité isotherme. Pour un système fermé, le coefficient χ est défini par :

$$\chi_T = -\frac{1}{V} \frac{\partial V}{\partial P} \Big|_{T,n}$$
 en Pa^{-1}

Interprétation : lorsque la pression augmente de dP à température constante, le volume varie de $\boxed{\mathrm{d}V = -V\chi_T\mathrm{d}P}$

Coefficient sans nom β . Pour un système fermé, le coefficient β est défini par :

$$\beta = \frac{1}{P} \frac{\partial P}{\partial T} \Big)_{V,n} \text{ en } K^{-1}$$

3 Modèle de phases simples

Vitesse quadratique d'un gaz. Elle est définie par :

$$v^* = \sqrt{\langle \|\vec{v}\|^2 \rangle}$$

Énergie cinétique d'un gaz parfait.

L'énergie cinétique moyenne $\langle e_c \rangle = \frac{1}{2} m v^{*2}$ d'une molécule de masse m dans un gaz à la température T vaut :

$$\langle e_c \rangle = \frac{3}{2} k_B \cdot T$$

 $\label{eq:kb} \text{Avec}\,\,k_B=1,38.10^{-23}J.K^{-1}\,\text{constante}\,\,\text{de}$ Boltzmann.

L'énergie cinétique de n moles de gaz parfait à la température T vaut donc :

$$E_c = \frac{3}{2} n. \mathcal{N}_A. k_B. T$$

On peut également poser $R=k_B.\mathcal{N}_A=8,314J.K^{-1}.mol^{-1}$ qui est la constante des gaz parfaits.

Vitesse quadratique d'un gaz parfait. On sait que pour un gaz parfait :

$$\langle e_c \rangle = \frac{1}{2} m v^{*2} = \frac{3}{2} k_B T$$

Donc
$$v^* = \sqrt{\frac{3k_BT}{m}} = \sqrt{\frac{3RT}{M}}$$

Équation d'état du gaz parfait. Un gaz parfait homogène à l'équilibre vérifie :

$$PV = Nk_BT = nRT$$

Avec $R = 8,314 J.K^{-1}.mol^{-1}$

Pression partielle d'un gaz dans un mélange. Pression qu'aurait le constituant i d'un mélange s'il était seul dans les mêmes conditions de température et de volume.

Pression d'un mélange idéal de gaz.

Dans un mélange idéal de gaz, les gaz sont indépendants les un des autres. Donc :

$$P = \sum_{k} P_{k}$$

Pression d'un mélange idéal de gaz parfait. Pour un mélange de gaz parfait :

$$PV = \sum_{k} n_k RT = n_{\text{total}} RT$$

Un mélange de gaz parfait se comporte comme un gaz parfait.

Liquide/Solide incompressible/indila-

table. Conditions :

- Un solide/liquide indilatable à un coefficient $\alpha = 0$
- Un solide/liquide incompressible a un coefficient $\chi = 0$
- Si un solide/liquide est incompressible et indilatable alors V = cst