Chapter 6: Classification

Dong-Kyu Chae

PI of the Data Intelligence Lab @HYU
Department of Computer Science & Data Science
Hanyang University

Topics

- What is classification?
- Issues regarding classification
- □ Classification by decision tree
 - induction

- Associative classification
- Lazy learners (or learning from your neighbors)
- Accuracy and error measures
- Extended ver.

 Random Forest Composed of multiple D.T

 Ensemble methods
- Rule-based classification

Summary

What is Classification?

□ Classification

- predicts categorical class labels (discrete or nominal)
- constructs a model by learning the training set (having the class labels) and classifies new data by using the model

□ VS. Regression

It models a continuous-valued functions and predicts unknown or missing values by using the model

Classification

Model construction

- Goal: to describe a set of predetermined classes by using a training data
- Training data
 - A set of data points/tuples/samples used for model construction
 - Each data: <feat-1, feat-2,, feat-n, class label> (feature / attribute)
 - Each data is assumed to belong to one of all possible classese
- Model
 - Maps each data <feat-1, feat-2,, feat-n> to a specific class label
 - Represented as classification rules, decision trees, networks, mathematical formula, etc

■ Model usage

Goal: to classify the future or unknown samples by using the model

Example: Spam Mail Detection

Supervised vs. Unsupervised Learning

Supervised learning (classification)

- Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
- New data is classified based on the training set

Unsupervised learning (clustering)

- The class labels of training data is unknown
- Given a set of measurements, observations, etc. with the aim of analyzing clusters or distributions in the data

Issues in Classification: Data Preparation

Data cleaning

Preprocess data in order to reduce noise and handle missing values

■ Relevance analysis (feature selection)

□ Remove the irrelevant (index, ID, etc...) or redundant attributes (year-salary and monthly salary, etc...)

Data transformation

Generalize and/or normalize data

Issues in Classification: Evaluation Points

- Accuracy
 - # of correctly classified data / # of entire test data
- Speed
 - time to construct the model (training time)
 - time to use the model (testing time)
- Robustness: handling noise, error, outliers and missing values
- data of Solute acts of the Scalability: handling a growing size of data *** the training complexity: O(n) ⇒ Scalable → natural, affordable

 Interpretability

 O(n²) ⇒ Not scalable → ora 3 % septe stander environmental research.
- Interpretability

 - can explain how each classification result has been made understanding and insight provided by the model

Decision Tree

■What is Decision tree?

- A decision tree is a graphical representation of all the possible solutions to a decision based on certain conditions
- Each **branch node** represents a **choice** between alternatives, and each **leaf node represents a decision**

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Overview of Decision Tree Induction: Build DT

□Algorithm overview

- A greedy algorithm that constructs a decision tree in a top-down, recursive, divide-and-conquer manner
- At start, all the training examples are at the root
- Examples are partitioned recursively based on the selected feature
- □ Features are selected on the basis of a heuristic or statistical measure (e.g., information gain)

Conditions for stopping the partitioning process

- The training examples for a node belong to the same class perfectly classified on that branch
- □ There are no remaining features for further partitioning majority voting is employed for classifying the leaf

Decision Tree Induction

☐ Basic idea: greedy & recursive & divide and conquer

- Step 1 : Start with an empty tree
- Step 2 : Select a feature to split data
- For each split of the tree:
 - Step 3: If nothing more to, make predictions
 - Step 4 : Otherwise, go to Step 2
 & continue (recurse) on this split

Ideal case

Decision Tree Induction

Algorithms

1) ID3 : entropy

2) **C4.5**: **Gain Ratio**

3) CART: Gini index

all based on same concept: greedy approach, top-down manner, recursive, divide-and-conquer strategy

=> only Jiffrences: How to select the features

Common idea

- □ For each feature A: how heterogeneous the resulting separation is?
 - It measures how much different classes of data are mixed after separating them according to a given test feature A
 - The lower, the better The degree of heterogeneous is low, it is better.

Feature types

- Features are assumed to be categorical (for simplicity)
- If continuous-valued, they are discretized in advance

Feature Selection

■Which feature is the best?

- □ Partitions data into more homogeneous (less heterogeneous) groups
 - Similar keywords: entropy, impurity, heterogeneity, ...

ID3 (Iterative Dichotomiser 3)

- □ Information Gain is used, which is based on Entropy.
 - **Entropy** is a numerical expression of the amount of information in a probability distribution.

 Entropy can measure how the data mix or well partitioned
 - - p_i is the probability that an arbitrary example in our data D belongs to class i
 - □ The more **heterogeneous** the data distribution, the **greater** the entropy.

Stable, well seperated, well ordered Entropy is low Not stable, messed up Entropy is high

ID3 (Iterative Dichotomiser 3)

□Information gain (GAIN) of a given feature

- □ The difference of entropy before/after separating with A
- □ The feature with the most entropy reduction is the best choice!

$$Gain(A) = Info(D) - Info_A(D)$$

Info (D) =
$$-\frac{1}{2}\log_{2}\frac{1}{2} - \frac{1}{2}\log_{2}\frac{1}{2} = 1$$

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i) \qquad \text{(before)}$$

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$
 (after)

Select one feature that has the highest information gain

Entropy

$$=) I_{n}f_{0}(D) = \frac{4}{12} I_{n}f_{0}(D3)$$

Info(D₃)
=
$$-\frac{2}{4}l_{3/2}(\frac{2}{4}) - \frac{1}{4}l_{3/2}(\frac{1}{4})$$

Working Example

credit	term	income	age	loan
Fair	3years	High	<=30	risky
Fair	3years	High	<=30	risky
Excellent	3years	High	>50	safe
Poor	5years	High	3150	safe
Poor	5years	Low	3150	safe
Poor	5years	Low	>50	risky
Excellent	5years	Low	<=30	safe
Fair	3years	High	3150	risky
Fair	5years	Low	>50	safe
Poor	3years	Low	>50	safe
Fair	3years	Low	3150	safe
Excellent	3years	High	3150	safe
Excellent	5years	Low	<=30	safe
Poor	5years	high	>50	risky

credit	s _i	r _i	Info(p _i , n _i)
Excellent	4	0	0
Fair	2	3	0.971
Poor	3	2	0.971

$$Info(D) = I(9,5) = -\frac{9}{14}\log_2\frac{9}{14}$$
$$-\frac{5}{14}\log_2\frac{5}{14} = 0.940$$

$$Info_{credit}(D) = \frac{4}{14}I(4,0) + \frac{5}{14}I(2,3) + \frac{5}{14}I(3,2) = 0.694$$

$$Gain(credit) = Info(D) - Info_{credit}(D) = 0.246$$

Similarly,

- Gain(term) = 0.016
- Gain(income) = 0.152
- Gain(age) = 0.050

C4.5, an Evolution of ID3

- Information gain measure is biased towards features with a large number of values
 - □ If a feature "A" has 5 values and "B" has 2 values,
 - A tends to have higher information gain than B
- □ C4.5 uses Gain Ratio (normalization to information gain)
 - □ **Gain Ratio** takes the number and size of branches into account when choosing a feature $-\frac{3}{12}\log_2\left(\frac{1}{12}\right) \frac{5}{12}\log_2\frac{5}{12} \frac{4}{12}\log_2\frac{4}{12}$

SplitInfo_A(D) =
$$-\sum_{j=1}^{3_{p}} \frac{|D_{j}|}{|D|} \times \log_{2}(\frac{|D_{j}|}{|D|})$$

$$Gain(A) = Info(D) - Info_A(D)$$
 So Mixture of class label

Mixture of class labe is totally ignored

る SplitInfoilt 1 ラEntropy You CHAIDO ナー 十个

 $GainRatio(A) = Gain(A) / SplitInfo_A(D)$

Panalty (: how many partitions are created by feature A)

C4.5, an Evolution of ID3

Example

credit	term	income	age	loan
Fair	3years	High	<=30	risky
Fair	3years	High	<=30	risky
Excellent	3years	High	>50	safe
Poor	5years	High	3150	safe
Poor	5years	Low	3150	safe
Poor	5years	Low	>50	risky
Excellent	5years	Low	<=30	safe
Fair	3years	High	3150	risky
Fair	5years	Low	>50	safe
Poor	3years	Low	>50	safe
Fair	3years	Low	3150	safe
Excellent	3years	High	3150	safe
Excellent	5years	Low	<=30	safe
Poor	5years	high	>50	risky

credit	s _i	r _i	Info(p _i , n _i)
Excellent	4	0	0
Fair	2	3	0.971
Poor	3	2	0.971

 $Gain(credit) = Info(D) - Info_{credit}(D) = 0.246$

SplitInfo(credit) =
$$-\frac{5}{14}\log_2\frac{5}{14} - \frac{4}{14}\log_2\frac{4}{14} - \frac{5}{14}\log_2\frac{5}{14}$$

= 1.557

GainRatio(credit) = 0.246/1.577 = 0.1559

CART (Classification and Regression Trees)

- □ Gini index: shares same idea with the entropy
 - \square $gini(D) = 1 \sum_{i=1}^{v} p_i^2$, where j indicates the class index
 - \Box For a feature "A" , $gini_A(D) = \frac{|D_1|}{|D|}gini(D_1) + \frac{|D_2|}{|D|}gini(D_2)$
 - □ Its idea is very similar with ID3: ($Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$)

Reduction in impurity:

- ID30+ UISOPEZ Skip
- which is very similar with Information Gain
- □ The feature providing the largest reduction in impurity (using information gain) is chosen to as the test feature to split the node

$$\Delta gini(A) = gini(D) - gini_A(D)$$

Overfitting

■When to stop?

One way: stop when all samples for a given node belong to the same class

□100% accuracy for the training data

□ It is good? No, overfitting!

	# of words	# of attached files	# of links	# of malicious words	 spam
mail #1	256	0	3	7	 1 (Yes)
mail #2	56	1	0	3	 0 (No)
mail #3	24	1	0	1	 0
mail #4	672	0	0	0	 0
mail #5	67	2	4	3	 1
mail #6	48	0	2	6	 0
mail #7	79	1	3	8	 1

Overfitting

Overfitting of decision tree models

- □ Too many branches, some may reflect anomalies due to noise or outliers
- Poor accuracy for unseen samples

Tree Pruning

□ Pruning can be seen as smoothing the decision boundary

Tree Pruning

Two approaches to avoid overfitting

- □ Pre-pruning: Halt tree construction early

 → While construct tree
 - Do not split a node if this would result in the goodness measure falling below a threshold ____ រស់ថ្ងៃស់លោ ៤៩+១៦ ។២៦ ប្រក
 - Difficult to choose an appropriate threshold

: Minimum samples split, Maximum tree depth, Minimum gain

Post-pruning: Remove branches from a "fully grown" tree

- Get a sequence of progressively pruned trees
- Use a set of data (validation set) different from the training data to decide which is the "best pruned tree"
- Nodes are removed only if the resulting pruned tree performs no worse than the original over **the validation set.** pruning 中 accuracy 가 더 誓咒
- Pruning of nodes continues until further pruning is harmful (i.e., pruning this decreases accuracy of the tree over the validation set)

Overfitting whitegh to you steek with

Ensemble

It relies on multiple models to increase the predictive power

■Random Forest

- □ It is a decision tree version of ensemble
- □ Forest: it builds 500 (or less) ~ 10,000 (or more) decision trees

□ Graphical overview

Drawing a bootstrap sample

- Randomly sample data one-by-one with replacement
- Repeat N times (N is the number of examples in our training data)

\sim	
()riginal	Lintocot
	Dataset
00	_

×I	уl
x ²	y ²
x^3	y ³
× ⁴	y ⁴
x ⁵	y ⁵
x ⁶	y ⁶
x ⁷	y ⁷
x ⁸	λ_8
x ⁹	y ⁹
x ¹⁰	y 10

Bootstrap I

x ³	y ³	
x ⁶	y ⁶	
x ²	y ²	
x ¹⁰	y 10	
x ⁸	y, - 1	\ <u>'</u>
x7 Jupin	(°y ⁷	
x ⁷	y ⁷	
x^3	y ³	
x ²	y ²	
x ⁷	y ⁷	

Bootstrap 2

x ⁷	y ⁷
xl	yl
x ¹⁰	y ¹⁰
xl	yl
x ⁸	y 8
x ⁶	y ⁶
x^2	y ²
x ⁶	y ⁶
x ⁴	y ⁴
x ⁹	y ⁹

Bootstrap B

x ⁹	y ⁹
x ⁵	y ⁵
x^2	y ²
× ⁴	y ⁴
x ⁷	y ⁷
x ²	y ²
x ⁵	y ⁵
x ¹⁰	y 10
x ⁸	λ_8
x^2	y ²

original datasetzt 729 feel data points = 1733 79.

□ Randomly select several features from the entire feature set

□ Randomly select several features from the entire feature set

Aggregation: majority voting

$$\hat{y}_{Ensemble} = arg \max_{i} \left(\sum_{j=1}^{n} \delta(\hat{y}_j = i), \quad i \in \{0, 1\} \right)$$

Training Accuracy	Ensemble population	P(y=1) for a test instance	Predicted class label	n
0.80	Model I	0.90	I	$\sum \delta(\hat{y}_j = 0) = 4$
0.75	Model 2	0.92	1	$\overline{j=1}$
0.88	Model 3	0.87	I	n
0.91	Model 4	0.34	0	$\sum \delta(\hat{y}_j = 1) = 6$
0.77	Model 5	0.41	0	j=1
0.65	Model 6	0.84	1	
0.95	Model 7	0.14	0	$\hat{y}_{Ensemble} = 1$
0.82	Model 8	0.32	0	
0.78	Model 9	0.98	1	
0.83	Model 10	0.57	I	

Aggregation: weighted voting

 $\hat{y}_{Ensemble} = arg \max_{i} \left(\frac{\sum_{j=1}^{n} (TrnAcc_{j}) \cdot \delta(\hat{y}_{j} = i)}{\sum_{i=1}^{n} (TrnAcc_{i})}, \quad i \in \{0, 1\} \right)$

If you want to apply more opinion performing well decision tree, train accuracy & weigh 2 39%

$$i \in \{0, 1\} \Big)$$

Training
Accuracy

0.80
0.75
0.88
0.91
0.77
0.65
0.95
0.82
0.78

0.83

Ensemble
population

0.90	
0.92	
0.87	
0.34	
0.41	
0.84	
0.14	
0.32	
0.98	
0.57	

I
I
1
0
0
L
0
0
L
1

$$\frac{\sum_{j=1}^{n} (TrnAcc_j) \cdot \delta(\hat{y}_j = 0)}{\sum_{j=1}^{n} (TrnAcc_j)} = 0.424$$

$$\frac{\sum_{j=1}^{n} (TrnAcc_j) \cdot \delta(\hat{y}_j = 1)}{\sum_{j=1}^{n} (TrnAcc_j)} = 0.576$$

$$\hat{y}_{Ensemble} = 1$$

Summary

Decision tree model

- Recursively select the best feature/attribute in a greedy manner
- Information gain, entropy, gini index,

Overfitting

- Tree pruning
- Random forest

■Random forest

- Ensemble of 500~10,000 decision trees
- Each tree is trained on a bootstrapped sample
- When constructing each tree, we randomly select a small number of candidate features in every recursion

Thank You

