Una antena formada por dos dipolos ortogonales, como la indicada en la figura, está situada en el origen de coordenadas. La longitud de cada uno de los brazos es H=0,2 λ . La impedancia para el dipolo sin carga es de 75- j75 Ω . La carga inductiva situada a la entrada de cada uno de los brazos del dipolo vale $L\omega$ = 75 Ω . Suponer que no hay efectos mutuos entre los dipolos.

a) Calcular la tensión en circuito abierto cuando incide una onda de la forma

 $\vec{E} = \hat{x} e^{j(\omega t + kz)}$

- b) Repetir el apartado anterior para la onda
 - ¿Qué polarización tendrán los campos radiados por esa antena, en la dirección z, cuando actúe como transmisora?

 $\vec{E} = \hat{\mathbf{v}} e^{j(\omega t + kz)}$

- d) Diseñar un balun basado en líneas de transmisión que adapte la impedancia de la antena a un cable coaxial de 75 Ω .
- coaxial de 75 Ω . En campo lejano, centrado en el eje z, se sitúa a una distancia z_0 una segunda antena, que es un dipolo de brazos $H = \lambda/4$, orientado según \hat{y} .

Representar gráficamente la variación de la impedancia mutua, R_{12} y X_{12} , cuando la separación entre las dos antenas varía entre 8λ y 10λ .