UNIVERSIDADE DO VALE DO ITAJAÍ ENGENHARIA DE COMPUTAÇÃO FABIO IVO PEREIRA DE OLIVEIRA JUNIOR

ELETRÔNICA APLICADA – RELATORIOS M1

Relatório apresentado como requisito parcial para a obtenção da M1 da disciplina de Eletrônica Aplicada do curso de Engenharia de Computação pela

Universidade do Vale do Itajaí da Escola Politécnica.

Prof. Walter Antonio Gontijo

1. OBJETIVO

O objetivo deste trabalho é aplicar os conhecimentos obtidos durante as aulas presenciais, através de cálculos teóricos e simulações para termos uma melhor compreensão do funcionamento e operação dos componentes a serem apresentados, assim como quais suas aplicações e limites.

Através do simulador MultiSim serão implementados os mais diversos tipos de reguladores e amplificadores e terão seus resultados validados através do método teórico.

2. DESENVOLVIMENTO

2.1. Fonte de tensão

Considerando Vz=5v, $Pz=\frac{1}{2}w$, Vi=10 <> 12v, $Rs=100\Omega$, $Rl=1K\Omega$

Vi = 10v

$$Vo = Vz = 5v$$

$$It = \frac{10-5}{100} = 50mA$$

$$Irl = \frac{Vo=Vz=5v}{1000} = 5mA$$

$$Iz = It - Irl = 45mA$$

$$Vi = 12v$$
)

$$Vo = Vz = 5v$$

$$It = \frac{12-5}{100} = 70mA$$

$$Irl = \frac{Vo=Vz=5v}{1000} = 5mA$$

$$Iz = It - Irl = 65mA$$

	10 V		,	12 V
	Teórico	Simulado	Teórico	Simulado
It	50mA	49,8mA	70mA	69,76mA
Iz	45mA	44,8mA	65mA	64,74mA

2.2. Regulador série (fonte de tensão)

Sendo
$$Vz = 6$$
, $2V Pz = \frac{1}{2}W$

$$Irs = \frac{Vrs}{Rs} = \frac{Vi-Vz}{Rs} = \frac{12-6,2}{120} = 48mA$$

$$Vo = Vz - Voe = 5,5V$$

$$Ie = Irl = (Vo)/Rl = 5,5/100 = 55mA$$

$$Ib = Ie/(\beta + 1) = 55/50 = 1,1mA$$

$$Iz = Irs - Ib = 48 - 1,1 = 46,9mA$$

$$Ptr = Vce * Ic = (Vc - Ve) * Ic = (Vi - Vo)*{\bf \beta}*Ib=(12-5,5)*(49*1,1m)=0,35W$$

 $Pz = Vz * Iz = 6, 2 * 46, 9m = 0,29W$

Para Vi=13,2 RI = 100
$$Vz = 6$$
, $2V Pz = \frac{1}{2}W$

$$Irs = \frac{Vrs}{Rs} = \frac{Vi-Vz}{Rs} = \frac{13,2-6,2}{120} = 58mA$$

$$Vo = Vz - Voe = 5,5V$$

$$Ie = Irl = (Vo)/Rl = 5,5/100 = 55mA$$

$$Ib = Ie/(\beta + 1) = 55/50 = 1,1mA$$

$$Iz = Irs - Ib = 58 - 1,1 = 56,9mA$$

$$Ptr = Vce * Ic = (Vc - Ve) * Ic = (Vi - Vo)*\beta$$

$$*Ib=(13,2-5,5)*(49*1,1m)=0,41W$$

$$Pz = Vz * Iz = 6,2 * 56,9m = 0,35W$$

	12 V		1.	3,2 V
	Teórico	Simulado	Teórico	Simulado
Iz	46, 9 mA	47.7 mA	56, 9 mA	57,6 mA
Vo	5, 5 <i>V</i>	5.3 V	5,5V	5,3V
Ptr	0,35 W	0,35 W	0,41 W	416 mW
Pz	0,29 W	0,29 W	0,35 W	356 mA

2.3. Regulador série (Modelo linear)

Considerando Vz= 7,5V, Izt=34 mA, Rz=4 Ohm, Rs=120 Ohm, Rl=100 Ohm, Vi=12V e utilizando o Zener **1N4737A**

$$Vzo = 7,5 - (34mA * 4) = 7,36V$$

$$Irs = Iz + Ib$$

$$(Vi - Vz)/Rs = (Vz - Vz)/Vz + ((Vz - Vbe)/Rl)/(\beta + 1)$$

$$(12 - Vz)/120 = (Vz - 7,5)/4 + ((Vz - 0,7))/(5000)$$

$$(12 - Vz) * 15000/120 = (Vz - 7,5) * 15000/4 + ((Vz - 0,7)) * 15000/(5000)$$

$$(12 - Vz) * 125 = (Vz - 7,5) * 3750 + ((Vz - 0,7)) * 3$$

$$3878*Vz=29627$$

$$Vz = 7,63V$$

$$Vo = 7,63 - 0,7 = 6,93V$$

$$Iz = (Vz - Vzo)/4 = 35mA$$

Ib = (6.93)/5000 = 1.52 mA

$$Ptr = VCE * IC = Vi - Vo * (\beta * IB) = 0,34W$$

 $Pz = 7,5 * 35mA = 0,26W$

	Simulado	Calculado
Ptr	353 mW	340 mW
Pz	276 mW	260 mW
Vz	7,5 V	7,63 V
Vo	6,62 V	6,93 V
Iz	36,8 mA	35 mA

Considerando Vz= 7,5V, Izt=34 mA, Rz=4 Ohm, Rs=120 Ohm, Rl=40 Ohm, Vi=13,2V e utilizando o Zener **1N4737A** :

$$Vzo = 7,5 - (34mA * 4) = 7,36V$$

$$Irs = Iz + Ib$$

$$(Vi - Vz)/Rs = (Vz - Vzo)/Vz + ((Vz - Vbe)/Rl)/(\beta + 1)$$

$$(13,2 - Vz)/120 = (Vz - 7,36)/4 + ((Vz - 0,7))/(2000)$$

$$mmc = 6000$$

$$(13,2 - Vz) * 50 = (Vz - 7,36) * 1500 + (Vz - 0,7) * 3$$

$$660 - 50Vz = 1500Vz - 11040 + 3Vz - 2,1$$

$$1553Vz = 11702,1$$

$$Vz = 7,53 V$$

$$Vo = 7,53 - 0,7 = 6,83V$$

$$Ib = (6,83)/5000 = 3,41 \text{ mA}$$

$$Iz = (Vz - Vzo)/4 = 42mA$$

$$Ptr = VCE * IC = Vi - Vo * (\beta * IB) = 1,04W$$

 $Pz = 7,53 * 42mA = 0,31W$

	Simulado	Calculado
Ptr	1,08 W	1,04 W
Pz	344 mW	310 mW
Vz	7,5 V	7,53 V
Vo	6,6 V	6,83 V
Iz	45,8 mA	42 mA

2.4.) Regulador paralelo (fonte de tensão)

$$Vo = Vz + Vbe = 6,9V$$

 $Vce = Vo = 6,9V$

$$Irl = Vo/Rl = 69 mA$$

$$It = (Vi - Vo)/Rs = (12 - 6, 9)/20 = 255mA$$

 $255 mA = Iz + \beta Iz + 69 mA$
 $Iz = 186/50 = 3,72 mA$

$$IC = 3,72 \, mA * 49$$

 $IC = 183 \, mA$

$$Ptr = VCE * IC$$

 $Ptr = 1,23 W$

$$Pz = IZ * Vz$$

 $Pz = 3,7 2mA * 6,2 = 23 \text{ mW}$

	Simulado	Calculado
Ptr	1,23 W	1,23 W
Pz	10,7 mW	23 mW
Irl	70,5 mA	69 mA
Vo	7 V	6,9 V
Iz	1,75 mA	3,7 mA

2.5.) Regulador paralelo (modelo linear)

Considerando Vz= 7,5V, Izt=34 mA, Rz=4 Ohm, Rs=20 Ohm, Rl=100 Ohm, Vi=12V e utilizando o Zener **1N4737A** :

$$Vzo = 7,5 - (34mA * 4) = 7,36V$$

 $(12 - Vo)/20 = (Vo - 8,06)/4 + \beta * (Vo - 6,5)/4 + Vo/100$
 $5 * (12 - Vo) = 25 * (Vo - 6,5) + 25 * (Vo - 6,5) + Vo$
 $30,65 * Vo = 253144$
 $Vo = 8,26 V$

$$Ie = (Vo - (Vzo + Vbe))/Rs = (6, 6 - 6, 5)/20 = 5 mA$$

$$Pz = Vz * Iz$$

$$Pz = 7,5 * 5mA = 0,37 mW$$

$$IC = \beta * Iz$$

$$IC = 0,245 A$$

$$Ptr = VCE * IC$$

$$Ptr = Vo * IC = 8,26 * IC$$

$$Ptr = 2,02W$$

$$Iz = \frac{Vo - (Vz0 + VBE)}{Rz} = \frac{8,26 - (7,36 + 0,7)}{4} = 5mA$$

	Simulado	Calculado
Ptr	838 mW	2,02 W
Pz	7,47 mW	0,37 mW
Vo	8,3 V	8,26 V
Iz	1,01 mA	5 mA

2.6.) Regulador completo (Ex 8 da lista)

$$Vo = ((Rx + Ry)/Ry) * Ry = ((220 + 880)/880) * (6, 2 + 0, 7) = 8,6V$$

 $Vf = ((Ry)/Rx + Ry) * Vo = 6,9V$
 $Irl = Vrl/Rl = 8,6/10 = 860mA$

$$Irs2 = (Vi - V2)/Rs2 = (14 - 6, 2)/1000 = 7,8mA$$

 $Irs1 = Vrs1/Rs1 = (Vi - Vo')/Rs1 = (14 - (Vo + 0,7))/100 = 47 mA$

$$Ir = Vo/(Rx + Ry) = 8,6/1100 = 7,8mA$$

$$Iet1 = Ir + Irl = 7,8 + 860 = 868 \, mA$$

$$Ibt1 = Ie/(B + 1) = 867/50 = 17 \text{ mA}$$

$$Iz = Irs2 + Ict2 = 7,8 + 30 = 37,8 \, mA$$

$$Pt1 = Vcet1 * Ict1 = (14 - 8, 6) * 851 mA = 4, 6 W$$

$$Pt2 = Vcet2 * Ict2 = (Vct2 - Vet2) * Ict2 = (9, 3 - 6, 2) * 30 mA = 93 mW$$

	14 V	
	Calculado	Simulado
Vo	8,6 V	8,9 V
Vf	6,9 V	7,2 V
IRL	860 mA	892 mA
IRS1	47 mA	41,3 mA
IRS2	7,8 mA	7,79 mA
IE	867 mA	891 mA
IBt1	17 mA	8,91 mA
Iz	37,8 mA	40,5 mA
Pt1	4,6 W	4,54 W
Pt2	93 mW	119 mW

2.7.) Projeto (Ex 6 da lista)

Projete o circuito dando valor aos resistores com base nos seguintes dados:

$$Vi = 15V, Vz = 6, 2V, Vo = 10V, RL = 50\Omega$$

$$IZ \rightarrow Precisa\ somar\ 40mA,\ \beta a = 50,\ \beta T2 = 100$$

IRL = 200mA

Sendo assim foram definidos os valores: 20 mA para Ir1, Ir2 e Ict2

$$R1 = Vr1/Ir1 = (Vi - Vz)/Ir1 = (15 - 6, 2)/20 \, mA = 440\Omega$$

 $Ir = 1 \% \, Irl = 2 \, mA$
 $R2 = Vr2/Ir2 = (Vi - Vo)/Ir2 = (15 - (Vo + 0, 7))/Ir2 = 180 \, \Omega$
 $Ir2 = Ict2 + Ibt1 = 20 \, mA + (202 \, mA)/51 = 24 \, mA$
 $Rb = Vt/Ir = 6, 9/2 \, mA = 3450 \, \Omega$
 $Ra = Vra/Ir = (10 - 6, 9)/2 \, mA = 1 \, k\Omega$

2.8.)Conversor de tensao com CI (Exemplo 1)

2.9.)Fonte regulada com CI (Exemplo 2)

2.10.) Fonte regulada completa (AC -> DC) 5V com CI

Sendo a linha vermelha (canal A) a entrada AC, linha amarela (canal B) a saída após o transformador e a linha verde (canal C) a saída do CI regulador, temos as seguintes formas de onda e valores:

2.11.) Fonte regulada Simétrica (AC -> DC) 12V com CI

2.12.) LM317

No multisim 14.2 não está presente o LM317, será usado um componente equivalente, o LM1117T-ADJ/NOPB

Com a resistência zerada:

Com a resistência em 15K:

$$I = \frac{1,25}{1k} = 1,25mA$$

$$Vo = 1,25 + (\frac{1,25}{RA} * 1000)$$

$$Vo = 1,25 + 1,25 = 2,5 \text{ V}$$

$$RB = 15k \implies Vo = 1,25 * (1 + \frac{15k}{1k})$$

$$Vo = 20 \text{ V}$$

$$VMin = 1,25 \text{ V}$$

$$VMax = 20 \text{ V}$$

$$IMin = \frac{1,25}{20} = 62,5 \text{ mA}$$

$$IMax = \frac{15k}{20} = 1A$$
 $RB = 0 e Vo = 1,25$
 $PReg = (25 - 1,25) * 62,5mA$
 $PotMin = 1,49W$

$$RB = 15k \ eVo = 20$$

 $PReg = (25 - 20) * 1A$
 $PotMin = 5W$

TABELA COMPARATIVA

Teórico			Simulação		
Vo	IRL	PReg	Vo	IRL	PReg
1,25 V	62,5mA	1,49W	1,254 V	62,7mA	1,52 W
20 V	1A	5W	19,99 V	999.8 mA	5,01 W

2.13) Projete um circuito usando o LM317 onde a saída varie de 1,25 V a 16,5 V $\,$

$$Vo = 1,25 * (1 + Ra/Rb)$$

 $16,5 = 1,25 * (1 + Ra/Rb)$
 $13,2 = 1 + Rb/Ra$
 $12,2 = Rb/Ra$
 $Ra = 1K$
 $12,2 = Rb/1000$
 $Rb = 12,2K$

Para Vo = 1,25V

$$Irl = Vo/Rl = 83 \, mA$$

 $PregMin = (20 - 1, 25) * 83 \, mA = 1,56 \, W$
 $PregMax = (22 - 1, 25) * 83 \, mA = 1,72 \, W$

Para Vo = 16,5V

$$Irl = Vo/Rl = 1,1 A$$

 $PregMin = (20 - 16,5) * 1,1 A = 3,85 W$
 $PregMax = (22 - 16,5) * 1,1 A = 6,05 W$

Com Rb em 0%

Com Rb em 100%

Teórico			Simulação		
Vo	IRL	PReg	Vo	IRL	PReg
1,25 V	83 mA	1,56 W	1,253 V	83,5 mA	1,56 W
16,5 V	1,1A	3,85 W	16,497 V	1,1 A	3,85 W

2.14.) Amplificador diferencial TBJ Ex1

Análise DC)
$$- Ib * Rb - Vbe - 2Ie * Rf + Vee = 0$$

$$Ib = (Vee - Vbe)/(Rb + 2(B + 1) * Rf) = (15 - 0,7)/10k + 102 * 71k = 0,019 mA$$

$$Ic = B * Ib = 0,97 mA$$

$$Ie = (B + 1) * Ib = 0,99 mA$$

$$Vc = Vcc - Ic * Rc$$

$$Vc = 15 - 0,97 * 6,8 = 8,4V$$

$$Vb = - Ib * Rb = - 0,19V$$

$$Vbe = Vb - Ve = 0,7$$

$$R'e = 26 \, mV/0,99 \, mA = 26 \, Ohm$$

Análise AC)

$$A = Rc/2 * R'e = 131$$

Adicionando um gerador de sinal AC com pico de 5 mV foi obtido o seguinte diagrama de ondas: (amarelo=entrada AC, vermelho=Vo)

Av = 642/2,48 * 2 = 129,43

Valor	Calculado	Simulado
IB	0, 019 mA	0, 019 <i>mA</i>
IC	0,97 mA	0,985 mA
IE	0,99 mA	0,995 mA
VB	-0,19 V	-0,19V
VC	8,4 V	8,3V
VE	-0,9 V	-0,87V
Ganho	131	129,43

2.15.) Amplificador diferencial TBJ Ex2, utilizar V1 aterrado e V2 um gerador frequência de 5mV e 1 KHz.

$$A * (V2 - V1) = V0$$

 $129,43 * (5mV - 0) = Vo$
 $Vo = 647 mV$

Valor próximo a simulação de 640 mV.

Ao inverter o lado dos componentes para V1:

$$A * (V2 - V1) = V0$$

 $129,43 * (-5mV) = Vo$
 $Vo = -647 mV$

Valor próximo a simulação de -642 mV.

2.16.) EX3

Adicione um resistor de 47 ohms no emissor:

$$IB = \frac{VEE - VBE}{RB + IERE + 2*IE*RF} = \frac{15 - 0.7}{10k + (\beta + 1)*47 + 2*(\beta + 1)*7100} = 19,41\mu A$$

$$Ic = B * Ib = 0,97 mA$$

$$Ie = (B + 1) * Ib = 0,99 mA$$

$$Vb = -Ib * Rb = -19,41 * 10000 = -0,2V$$

$$Ve = -(Vbe + Vb) = -0,9V$$

$$Vc = Vcc - Ie * Re = 8,2V$$

Utilizando modelo AC para calcular o ganho e adicionando um gerador de 5mv para simular:

$$A = Rc/2 * (R'e + RE) = 6800/2 * (26 + 47) = 46,57$$

A =	225 /	4,977	=45,20
-----	-------	-------	--------

Valor	Teórico	Simulação
IB	19,41μ <i>A</i>	19,3μΑ
IC	0,97 mA	0,966 mA
IE	0,990 mA	0,985 mA
VB	-0,2 V	-0,193V
VC	8,2 V	8,43V
VE	-0,9 V	-0,966 V
Ganho	46,57	45,20

2.17.) **OP-AMP**

A)

Il = 10/1k = 10 mA

B)

$$V_0 = -10$$

 $Il = -10/1k = -10 \text{ mA}$

C)

$$V2 = 1 V$$

 $V1 = 0,995 V$
 $A*(1-0,995)$
 $Vo = 500 = 10 V$

D)

Considerando ganho infinito, R1=1K e Rf=2K

$$Af = Vo/Vi = Rf/R1 = -2K/1K = -2$$

Para
$$A = 100000$$

$$Vo/Vi = (1/((1/100000 - 1)/2000 + (1/100000)/1000)/1000 = -2,002$$

Para A = 10000

$$Vo/Vi = (1/((1/10000 - 1)/2000 + (1/10000)/1000)/1000 = -2,002$$

Para
$$A = 1000$$

$$Vo/Vi = (1/((1/1000 - 1)/2000 + (1/1000)/1000)/1000 = -2,002$$

Para simular foi usada uma entrada de 4V numa frequência de 1Khz

4) CONCLUSÃO

Com este trabalho foi possível reforçar todos os conhecimentos obtidos em sala de aula e realmente poder experimentar com componentes e circuitos estudados. Sendo possível analisar as grandes mudanças que pequenas alterações podem ocasionar e entender como melhor desenvolver um circuito, tendo em vista as propriedades e comportamentos de componentes específicos.