Résolution d'équations différentielles par réseaux de neurones

Matthieu Carreau
Telecom Paris, Institut Polytechnique de Paris
F-91120, Palaiseau, France
matthieu.carreau@telecom-paris.fr

Supervisors:
Stam Nicolis
Institut Denis Poisson
Université de Tours, Université d'Orléans, CNRS (UMR7013)
Parc de Grandmont, F-37200, Tours, France
stam.nicolis@lmpt.univ-tours.fr

Pascal Thibaudeau
CEA Le Ripault
BP 16, F-37260, Monts, France
pascal.thibaudeau@cea.fr

Juillet 2022

Résumé

Faire un résumé de ce qu'il y a dans ce document

Table des matières

1	Inti	roduction	2
2	Equation différentielle d'ordre 1		3
	2.1	Solutions en séries de Fourier	3
		2.1.1 Première méthode : inversion d'un système linéaire	4
		2.1.2 Seconde méthode : descente de gradients	5
	2.2	Solutions par réseau de neurones	7
		2.2.1 Résultats obtenus	10
3	Mouvement de précession		11
	3.1	Solutions en séries de Fourier	11
	3.2	Solutions aprochées par un réseau de neurones	15
4	Equation de Précession et ajout du terme de Gilbert		17
	4.1	Première approche : résolution de l'équation "projetée"	17
		4.1.1 Résolution de l'équation sur M_z	18
5	Cor	nclusion et perspectives	21

Chapitre 1

Introduction

Cette partie positionne le travail dans un contexte. Décrire le contexte. Dire ici ce que l'on doit faire et proposer un petit résumé des documents lus de façon à montrer en quoi ils sont pertients pour le problème posé. Par exemple : Bidulle et Machin dans la référence [1] ont montré que ... tandis que Truc et Chmuc dans la référence [2] ont prouvé que... Dans la section 2, je montrerai que... Dans la section 3, je montrerai... Enfin dans la section 5, je discuterai des résultats obtenus et proposerai quelques perspectives.

Chapitre 2

Equation différentielle d'ordre 1

Soit Ψ une fonction réelle à une variable dont la solution satisfait l'équation différentielle suivante, où ψ_0 désigne la valeur initiale de la fonction.

$$\begin{cases} \frac{d\Psi(x)}{dx} + \cos(2\pi x) = 0\\ \Psi(0) = \psi_0 \end{cases}$$
 (2.1)

On cherche à tester les méthodes présentées dans la section 1 sur l'équation (2.1), pour tout $x \in [0, 1]$. L'équation (2.1) et sa condition initiale donnée en x = 0, admet une solution analytique unique qui s'écrit

$$\Psi(x) = \psi_0 - \frac{1}{2\pi} \sin(2\pi x) \tag{2.2}$$

Cela nous permettra par la suite d'évaluer nos solutions numériques, en les comparant à cette solution analytique.

2.1 Solutions en séries de Fourier

On cherche des solutions numériques approchées de l'équation (2.1) sous la forme de séries de Fourier tronquées avec M harmoniques. On écrit pour cela la solution approchée $\tilde{\Psi}$ comme la somme de deux termes, le premier ψ_0 constant non ajustable vérifiant la condition initiale, et le deuxième $\mathcal{N}(x, \mathbf{A})$ dépendant des coefficients $(A_m)_{m \in [\![1,M]\!]}$ représentés par le vecteur \mathbf{A} , construit de façon à ne pas influencer la valeur initiale de la fonction.

$$\begin{cases} \tilde{\Psi}(x) = \psi_0 + \mathcal{N}(x, \mathbf{A}) \\ \mathcal{N}(x, \mathbf{A}) = \sum_{m=1}^{M} A_m \sin(2\pi mx) \end{cases}$$
 (2.3)

On définit une fonction d'erreur pour ces solutions potentielles, à partir de la valeur de la dérivée de $\tilde{\Psi}$ aux N points suivants : $\forall i \in [\![1,N]\!], x_i = \frac{i-1}{N}$

$$E = \frac{1}{2} \sum_{i=1}^{N} \left(\sum_{m=1}^{M} 2\pi m A_m \cos(2\pi m x_i) + \cos(2\pi x_i) \right)^2$$
 (2.4)

On cherche à présent le minimum de E en tant que fonction de \mathbf{A} . Une condition nécessaire sur \mathbf{A} pour être un antécédent d'un minimum est

$$\forall l \in [1, M], \frac{\partial E}{\partial A_l} = 0 \tag{2.5}$$

Or ces dérivées partielles sont données pour $l \in [1, M]$ par :

$$\frac{\partial E}{\partial A_l} = \sum_{i=1}^{N} (\sum_{m=1}^{M} 2\pi m A_m \cos(2\pi m x_i) + \cos(2\pi x_i)) 2\pi l \cos(2\pi l x_i)$$
 (2.6)

Les deux méthodes suivantes ont pour objectif de trouver les coefficients $(A_m)_{m \in [\![1,M]\!]}$ qui vérifient la condition 2.5, et de vérifier que le vecteur de coefficients trouvé correspond bien à la solution analytique, i.e $\forall m \in [\![1,M]\!], A_m = -\frac{1}{2\pi}\delta_1^m$.

2.1.1 Première méthode : inversion d'un système linéaire

On cherche à résoudre le système linéaire donné par : $\forall l \in [\![1,M]\!], \frac{\partial E}{\partial A_l} = 0$, on définit pour cela les matrices suivantes :

$$\mathcal{M} = (r_{m,l})_{(m,l) \in \llbracket 1,M \rrbracket^2}, \mathbf{A} = \begin{pmatrix} A_1 \\ A_2 \\ \vdots \\ A_M \end{pmatrix}, \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_M \end{pmatrix}$$
(2.7)

$$\forall (m, l) \in [1, N]^{2}, \begin{cases} r_{m,l} = 2\pi m l \sum_{i=1}^{N} \cos(2\pi m x_{i}) \cos(2\pi l x_{i}) \\ b_{l} = -l \sum_{i=1}^{N} \cos(2\pi x_{i}) \cos(2\pi l x_{i}) \end{cases}$$

$$(2.8)$$

On souhaite alors résoudre le système linéaire en écrivant l'équation matricielle le représentant, c'est-à-dire :

$$\mathcal{M}\mathbf{A} = \mathbf{b} \Leftrightarrow \mathbf{A} = \mathcal{M}^{-1}\mathbf{b} \tag{2.9}$$

On réalise l'implémentation en python, en instanciant les matrices définies précédemment et à l'aide de la bibliothèque numpy. On peut constater que la matrice \mathcal{M} n'est pas toujours inversible selon le choix de M et N. En effet, on peut montrer (à rajouter en annexe) que c'est nécessairement le cas lorsque M>N, mais on remarque également qu'elle ne l'est pas non plus lorsque M et N sont proches par exemple pour M=N=10. Il serait interressant d'approfondir ce point pour savoir si cela se traduit par le fait que E admette plusieurs minimums locaux par exemple. Il semble que choisir $N\gg M$ soit suffisant pour que $\mathcal M$ soit inversible. On choisira alors M=10, N=100 pour la suite. On obtient alors les coefficients présentés en figure 2.1 avec les valeurs absolues des erreurs de chacun par rapport à la valeur théorique. On constate que les erreurs sur chaque coefficient est inférieure à 10^{-16} , on valide donc cette première méthode.

2.1.2 Seconde méthode : descente de gradients

On définit les paramètres suivants :

$$\alpha > 0, \mathbf{A^{(0)}} = \begin{pmatrix} A_1^{(0)} \\ A_2^{(0)} \\ \vdots \\ A_M^{(0)} \end{pmatrix}, \mathbf{g^{(0)}} = \begin{pmatrix} \frac{\partial E^{(0)}}{\partial A_1^{(0)}} \\ \frac{\partial E^{(0)}}{\partial A_2^{(0)}} \\ \vdots \\ \frac{\partial E^{(0)}}{\partial A_2^{(0)}} \end{pmatrix}, \tag{2.10}$$

Puis on calcule itérativement :

(a) Coefficients trouvés

(b) Valeurs absolue de l'erreur pour chaque coefficient

FIGURE 2.1 – Résultats de la méthode de l'inversion de système

$$\mathbf{A}^{(\mathbf{k}+\mathbf{1})} = \mathbf{A}^{(\mathbf{k})} - \alpha \mathbf{g}^{(\mathbf{k})} \tag{2.11}$$

On cherche à trouver le coefficient α optimal qui assure la convergence tout en maximisant la vitesse de convergence. On exprime tout d'abord le gradient en fonction de la matrice \mathcal{M} et du vecteur \mathbf{b} définis précédemment qui sont indépendants de \mathbf{A} et de k:

$$\mathbf{g}^{(\mathbf{k})} = \mathcal{M}\mathbf{A}^{(\mathbf{k})} - \mathbf{b} \tag{2.12}$$

Ainsi, l'équation de récurrence (2.11) se réécrit comme une suite arithméticogéométrique de vecteurs :

$$\mathbf{A}^{(\mathbf{k}+\mathbf{1})} = (\mathcal{I}_{\mathbf{M}} - \alpha \mathcal{M}) \mathbf{A}^{(\mathbf{k})} + \alpha \mathbf{b}$$
 (2.13)

On en déduit que la suite converge si et seulement si la norme $(\mathcal{R}^n_{\alpha})_{n\in\mathbb{N}}$ tend vers 0de le maximum du module des valeurs propres de la matrice $\mathcal{R}_{\alpha} = \mathcal{I}_M - \alpha \mathcal{M}$ est strictement inférieur à 1. De plus, elle convergera d'autant plus vit que ce maximum est faible. On trace donc ce maximum en fonction de α en figure 2.2. On en déduit la valeur critique $\alpha_c = 6.2807.10^{-5}$, pour laquelle le maximum des modules vaut 1, ainsi que la valeur $\alpha_{min} = 6.2189.10^{-5}$ pour laquelle le maximum des modules est minimum.

On éxécute l'algorithme en parallèle pour les deux valeurs de α trouvées précédemment ainsi que pour une valeur $\alpha_1 = 6.3.10^{-5}$, tel que le maximum des modules des valeurs propres de \mathcal{R}_{α} soit supérieur à 1. On montre

(b) Au voisinage de l'intersection avec 1

FIGURE 2.2 – Maximum des valeurs propres de \mathcal{R}_{α} en fonction de α

l'évolution de l'erreur en fonction du nombre d'itérations en figure 2.3. On constate que α_{min} donne lieu à une décroissance exponentielle de l'erreur pendant les 2000 premières itérations, qui devient ensuite stationnaire. Tandis que α_1 donne une erreur qui croît exponentiellement car la norme de $(\mathcal{R}^n_\alpha)_{n\in\mathbb{N}}$ diverge exponentiellement. La valeur α_c donne une erreur constante, elle correspond au cas limite entre les 2 cas précédents.

On retient donc les résultats obtenus pour α_{min} que l'on montre en figure 2.4 avec les valeurs absolues des erreurs de chacun par rapport à la valeur théorique. On constate que les erreurs sur chaque coefficient est inférieure à 10^{-16} , on valide donc cette seconde méthode.

2.2 Solutions par réseau de neurones

On cherche à présent à utiliser un réseau de neurones pour approcher la solution de l'équation différentielle. On cherche désormais des solutions approchées sous la forme suivante :

$$\begin{cases} \tilde{\Psi}(x) = \psi_0 + \mathcal{N}(x, P) \\ \mathcal{N}(x, P) = \sum_{j=1}^{H} v_j \sigma(w_j x + b_j) \end{cases}$$
 (2.14)

 $\mathcal{N}(x, P)$ correspond donc à la sortie d'un réseau de neurones dont l'architecture est présentée en figure 2.5, contenant une couche cachée intermédiaire,

FIGURE 2.3 – Erreurs en fonction du nombre d'itérations pour 3 valeurs de α

FIGURE 2.4 – Résultats de la méthode de descrite de gradients

FIGURE 2.5 – Réseau de neurones

qui réalise en sortie une somme pondérée de sigmoïdes, la fonction utilisée est $\forall x \in \mathbf{R}, \sigma(x) = \frac{1}{1+e^{-x}}$. Les paramètres P à ajuster sont désormais les coefficients $(w_j)_{j \in [\![1,H]\!]}$, $(b_j)_{j \in [\![1,H]\!]}$ et $(v_j)_{j \in [\![1,H]\!]}$.

Peux-tu donner une référence pour quelqu'un qui cherche ce que tout ceci veut dire?

On définit une nouvelle fonction d'erreur, calculée à partir des N points suivants : $\forall i \in [\![1,N]\!], x_i = \frac{i-1}{N-1}$

$$E(P) = \sum_{i=1}^{N} \left(\frac{d\tilde{\Psi}}{dx}(x_i) + \cos(2\pi x_i)\right)^2$$
 (2.15)

L'équation (2.15) est-elle correcte?

On calcule ensuite les expressions analytiques des dérivées partielles de E(P) par rapport à chaque paramètre ajustable, puis on cherche à minimiser cette erreur à l'aide de l'algorithme de descente de gradients.

FIGURE 2.6 – estimation de la solution par un réseau de neurones

2.2.1 Résultats obtenus

On initialise l'algorithme avec les paramètres suivants : (H=4,N=20)On obtient une erreur de $1,2.10^{-2}$ et une estimation visible en figure 2.6. Cela permet de valider notre modèle sur l'étude à une dimension.

Chapitre 3

Mouvement de précession

On s'intéresse désormais au problème de la précession d'un moment magnétique dans un champ magnétique constant. On le modélise par les équations suivantes pour $t \in [0,1]$:

$$\begin{cases}
\frac{dv_x}{dt} = \omega v_y \\
\frac{dv_y}{dt} = -\omega v_x
\end{cases}$$
(3.1)

avec les conditions initiales

$$\begin{cases} v_x(0) = V_0 \\ v_y(0) = 0 \end{cases}$$
 (3.2)

dont la solution analytique vaut

$$\begin{cases} v_x(t) = V_0 \cos(2\omega t) \\ v_y(t) = -V_0 \sin(2\omega t) \end{cases}$$
(3.3)

3.1 Solutions en séries de Fourier

On cherche des solutions numériques approchées sous la forme de séries de Fourier tronquées avec M harmoniques, en posant la forme suivante :

$$\begin{cases} \tilde{v}_x(t) = V_0 + \sum_{m=1}^M A_m(\cos(m\omega t) - 1) + B_m \sin(m\omega t) \\ \tilde{v}_y(t) = \sum_{m=1}^M -A_m \sin(m\omega t) + B_m(\cos(m\omega t) - 1) \end{cases}$$
(3.4)

Les coefficients $(A_m)_{m \in \llbracket 1,M \rrbracket}$ et $(B_m)_{m \in \llbracket 0,M \rrbracket}$ sont les paramètres à ajuster. On cherche à obtenir la solution analytique, i.e $\forall m \in \llbracket 0,M \rrbracket, A_m = \delta_1^m$ et $\forall m \in \llbracket 1,M \rrbracket, B_m = 0$. On remarque que le coefficient A_0 n'a aucune influence.

On définit une fonction d'erreur pour ces solutions potentielles, en s'interressant aux N points suivants : $\forall i \in [1, N], t_i = \frac{i-1}{N}$:

$$E(P) = \sum_{i=1}^{N} \left(\frac{d\tilde{v}_x}{dt}(t_i) - \omega \tilde{v}_y(t_i)\right)^2 + \left(\frac{d\tilde{v}_y}{dt}(t_i) + \omega \tilde{v}_x(t_i)\right)^2$$
(3.5)

On utilise ensuite la méthode de descente de gradients définie précédemment, en calculant les dérivées partielles suivantes : $(\frac{\partial E}{\partial A_l}, \frac{\partial E}{\partial B_l})_{l \in [\![1,M]\!]}$

On peut se ramener à l'écriture du cas à une dimension définissant le vecteur \mathbf{P} comme la concaténation des vecteurs \mathbf{A} et \mathbf{B} et le vecteur \mathbf{g} comme le vecteur contenant les dérivées partielles de E par rapport à chaque composante de \mathbf{P} .

$$\mathbf{P}^{(\mathbf{k})} = \begin{pmatrix} A_1^{(k)} \\ \vdots \\ A_M^{(k)} \\ B_1^{(k)} \\ \vdots \\ B_M^{(k)} \end{pmatrix}, \mathbf{g}^{(\mathbf{k})} = \begin{pmatrix} \frac{\partial E^{(k)}}{\partial A_1^{(k)}} \\ \vdots \\ \frac{\partial E^{(k)}}{\partial A_M^{(k)}} \\ \frac{\partial E^{(k)}}{\partial B_1^{(k)}} \\ \vdots \\ \frac{\partial E^{(k)}}{\partial B_M^{(k)}} \end{pmatrix}, \tag{3.6}$$

Il existe alors une nouvelle matrice \mathcal{M} d'ordre 2M ainsi qu'un nouveau vecteur \mathbf{b} de taille 2M tels que les équations définissant la descente de gradients soient les suivantes :

$$\mathbf{P}^{(\mathbf{k}+\mathbf{1})} = \mathbf{P}^{(\mathbf{k})} - \alpha \mathbf{g}^{(\mathbf{k})} \tag{3.7}$$

FIGURE 3.1 – Evolution du maximum du module en fonction de α

$$\mathbf{g}^{(\mathbf{k})} = \mathcal{M}\mathbf{P}^{(\mathbf{k})} - \mathbf{b} \tag{3.8}$$

$$\mathbf{P}^{(\mathbf{k}+\mathbf{1})} = (\mathcal{I}_{\mathbf{M}} - \alpha \mathcal{M})\mathbf{P}^{(\mathbf{k})} + \alpha \mathbf{b}$$
(3.9)

On réalise la même étude qu'en dimension 1 pour la recherche du coefficient α_{min} qui minimise le maximum des modules des valeurs propres de $\mathcal{R}_{\alpha} = \mathcal{I}_{M} - \alpha \mathcal{M}$, ainsi que le coefficient α_{c} à ne pas dépasser, à partir duquel ce maximum et supérieur à 1 et la suite diverge. On trouve les valeurs suivantes $\alpha_{min} = 6.0906.10^{-6}$ et $\alpha_{c} = 6.1146.10^{-6}$, et l'évolution du maximum en fonction de alpha est montré en figure 3.1.

On éxécute l'algorithme en choisissant la valeur α_{min} précédente et on montre l'évolution de l'erreur en fonction du nombre d'itérations en figure 3.2. On constate comme dans le cas à 1 dimension que α_{min} donne lieu à une décroissance exponentielle de l'erreur, cette fois pendant les 4500 premières itérations, qui devient ensuite quasiment stationnaire, de l'ordre de 10^{-25} .

Les coefficients finaux de P ainsi que les valeurs absolues de leurs erreurs sont représentées en figure 3.3. On peut constater que l'on retrouve bien les coefficients attendus, avec une erreur au maximum de l'ordre de 10^{-15} .

FIGURE 3.2 – Valeur de la fonction d'erreur en fonction du nombre d'itérations

(a) Coefficients trouvés

(b) Valeurs absolue de l'erreur pour chaque coefficient

FIGURE 3.3 – Résultats de la méthode de descente de gradients pour le mouvement de précession

3.2 Solutions aprochées par un réseau de neurones

On cherche dans ce paragraphe à approcher la solution du système des 2 équations grâce à un réseau de neurones. On choisit l'architecture suivante pour le réseau de neurones : 1 entrée pour la variable temporelle, une première couche intermédiaire de $h_1 = 32$ neurones, une seconde couche intermédiaire de $h_2 = 8$ neurones, toutes deux utilisant la sigmoïde définie précédement comme fonction d'activation, et enfin 2 neurones de sortie connectées à la deuxième couche intermédiaire, avec l'idientité comme fonction d'activation en sortie. On note les sorties de ces deux derniers neurones respectivement $\mathcal{N}_x(t,P)$ et $\mathcal{N}_y(t,P)$, où P représente l'ensemble des paramètres du réseau de neurones. On construit alors nos solutions approchées de la façon suivante :

$$\begin{cases} \tilde{v}_x(t) = V_0 + t\mathcal{N}_x(t, P) \\ \tilde{v}_y(t) = t\mathcal{N}_y(t, P) \end{cases}$$
(3.10)

On définit une fonction d'erreur pour ces solutions potentielles, en s'interressant aux N points suivants de l'intervalle $[-1,\ 1]: \forall i \in [\![1,N]\!], t_i = -1 + 2\frac{i-1}{N}:$

$$E(P) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{d\tilde{v}_x}{dt}(t_i) - \omega \tilde{v}_y(t_i)\right)^2 + \left(\frac{d\tilde{v}_y}{dt}(t_i) + \omega \tilde{v}_x(t_i)\right)^2$$
(3.11)

On choisit ensuite les paramètres d'entraı̂nement suivants : taux d'apprentissage : 0.007, 50000 itérations, et on lance 3 entraı̂nements pour $N \in \{10, 40, 100\}$. On obtient les résultats montrés en figure 3.4, où l'axe vertical représente le temps, et les axes horizontaux représentent v_x et v_y . La solution analytique est représentée en orange, la solution approchée est représentée en bleu, et les points rouges sont les points correspondant aux points d'entraı̂nement $(t_i)_{i \in [\![1,N]\!]}$.

(a) Solution obtenue pour N=10

(b) Solution obtenue pour N = 40

(c) Solution obtenue pour N=100

FIGURE 3.4 – Représentations graphiques de v_x et v_y en fonction du temps par le réseau de neurones

Chapitre 4

Equation de Précession et ajout du terme de Gilbert

On s'interesse désormais à l'équation suivante pour la précession du moment magnétique représenté par le vecteur $\mathbf{M} \in \mathbf{R}^3$, en fonction de la constante réelle λ sans dimension, et du vecteur $\omega = \begin{pmatrix} 0 \\ 0 \\ \omega_z \end{pmatrix}$ représentant le champ magnétique.

$$\frac{d\mathbf{M}}{dt} = \omega \times (\mathbf{M} + \lambda \frac{\mathbf{dM}}{\mathbf{dt}}) \tag{4.1}$$

4.1 Première approche : résolution de l'équation "projetée"

En prenant le produit vectoriel à gauche des deux membres de l'équation, on peut projetter cette équation différentielle sur le plan normal à \mathbf{M} , et obtenir une nouvelle équation qui peut être représentée par les 3 équations différentielles scalaires suivantes (après un chagement d'échelle temporelle) :

$$\begin{cases}
\frac{dM_x}{d\tilde{t}} = M_y \omega_z + \lambda M_x M_z \omega_z \\
\frac{dM_y}{d\tilde{t}} = -M_x \omega_z + \lambda M_y M_z \omega_z \\
\frac{dM_z}{d\tilde{t}} = \lambda \omega_z (M_z^2 - 1)
\end{cases}$$
(4.2)

On remarque que l'équation sur M_z est découplée des 2 autres, on cherche ainsi à résoudre celle-ci en premier lieu.

4.1.1 Résolution de l'équation sur M_z

On utilise la même approche avec un réseau de neurones que précédemment à l'aide d'un réseau de neurones. On réalisera à présent les implémentations en python à l'aide de la bibliothèque TensorFlow.

On choisit comme architecture du réseau de neurones une entrée pour la variable temporelle, suivie de couches intermédiaires contenant respectivement h_1 et h_2 neurones, connectés à la sortie unique du réseau de neurones, dont les paramètres sont représenté par le vecteur P. Comme précédemment, afin de satisfaire la condition initiale, on cherche les fonction \tilde{M}_z sous la forme suivante, où $\mathcal{N}(\tilde{t}, P)$ représente la sortie du réseau de neurones.

$$\tilde{M}_z(\tilde{t}) = M_z(0) + \mathcal{N}(\tilde{t}, P) \tag{4.3}$$

On définit la fonction d'erreur suivante :

On fixe les paramètres suivants : $\lambda = 0.3$, nombre de points de tests : N = 30, intervalle d'étude : $[t_a = -1, t_b = 1]$, $M_z(0) = 0$. Lors des essais d'entraînement du modèle on fait face à plusieurs problèmes. On remarque que souvent la sortie du réseau de neurones est quasiment constante sur l'intervalle d'étude. Ainsi, il semble que l'entraînement ne consiste alors dans ce cas qu'à ajuster cette valeur constante pour minimser la fonction d'erreur dans le cas où M_z est linéaire par rapport à \tilde{t} , (d'après l'équation 4.3, pour $\mathcal{N}(\tilde{t}, P) = \mu \in \mathbf{R}$ constante, et $M_z(0) = 0$).

Après plusieurs essais d'entraînement, on remarque que l'on tombe sur l'une ou l'autre des 2 solutions présentées en figure 4.1.

On peut valider cette hypothèse en exprimant analytiquement notre fonction d'erreur pour une fonction M_z linéaire : $\forall \tilde{t} \in \mathbf{R}, \tilde{M}_z(\tilde{t}) = \mu \tilde{t}$. On peut calculer notre erreur, en fonction de μ , en remplaçant la somme discrète par

(a) Première solution linéaire

(b) Seconde solution linéaire

FIGURE 4.1 – Solutions trouvées pour M_z après de rapides entraînements

une intégrale qui peut être calculée facilement car l'intégrande est alors une fonction polynomiale en \tilde{t} :

$$E(\mu) = \frac{1}{t_b - t_a} \int_{t_b}^{t_a} \left(\frac{d\tilde{M}_z}{d\tilde{t}}(\tilde{t}) - \lambda \omega_z (\tilde{M}_z(t)^2 - 1)\right)^2 d\tilde{t}$$

$$E(\mu) = \frac{16}{5} \lambda^2 \omega_z^2 \mu^4 - \frac{8}{3} \lambda \omega_z \mu^3 + (1 - \frac{8}{3} \lambda^2 \omega_z^2) \mu^2 + 2\lambda \omega_z \mu + \lambda^2 \omega_z^2$$
(4.4)

On remarque alors que cette fonction admet deux minimums locaux qui ont pour valeurs approchées : $\mu_a \approx 0.696$, $E(\mu_a) \approx 3.04$ et $\mu_b \approx -0.574$, $E(\mu_b) \approx -0.78$. Cela est effectivement proche des valeurs que l'on obtient lors des entraı̂nements montrés en figure 4.1, en effet, sur le premier exemple, la sortie du réseau de neurones varie entre 0.60 et 0.74 sur l'intervalle étudié, et la valeur finale de l'erreur est 3.04, ce qui correspond à μ_b et $E(\mu_b)$. Et pour le second exemple, la sortie est comprise entre -0.60 et -0.52, et l'erreur vaut 0.82, ce qui correspond bien au second minimum local $E(\mu_a)$.

On peut alors remettre en question le modèle choisit pour notre réseau de neurones, qui n'est pas forcément le plus adapté. On peut par exemple essayer de changer les fonctions d'activations utilisées par les couches intermédiaires, qui étaient des sigmoïdes, et les remplacer par la fonction relu.

On ainsi pu obtenir des résultats satisfaisants visibles en figure 4.2 en lançant l'entraînement avec les fonctions relu pour 10000 itérations, avec un taux d'apprentissage de 10^{-3} , N = 50, $[t_a = -1, t_b = 1]$. L'erreur finale est de 0.018.

Figure 4.2 – Résultats obtenus avec la fonction d'activation relu

Chapitre 5
Conclusion et perspectives

Bibliographie

- [1] C.Bidule and A.Machin, Journal of Computer Power 12 123 (2020)
- [2] C.Truc and T.Chmuc, (2020)