Audition pour le poste de Maître de Conférence 26MCF4575 en mathématiques appliquées et mathématiques à l'Université de Nice

Nicolas Barral

Laboratoire J.A. Dieudonnée, Nice 2 Mai 2019

Formation : Mathématiques appliquées, calcul scientifique

- 2012 Diplôme d'Ingénieur Ecole Centrale Paris
- 2012 M2 Master Modélisation et Simulation
- 2015 Doctorat UPMC / INRIA (Dir. : F. Alauzet)

Expérience Recherche : Adaptation de maillage

- 2011-2015 INRIA EPI GAMMA3
- 2016-2018 Research Associate, Imperial College London, Applied Modelling and Computational Group
- 2018-2019 Research Associate à mi-temps, Imperial College London

Expérience Enseignement

- 2014 ECP, Chargé de TD, 1ère année (L3)
- 2016-2019 ICL Teaching Assistant, 1ère année (L1)
- 2018-2019 ICL part time Teaching Fellow pour la création du Master ACSE

Formation : Mathématiques appliquées, calcul scientifique

2012 Diplôme d'Ingénieur - Ecole Centrale Paris

2012 M2 - Master Modélisation et Simulation

2015 Doctorat - UPMC / INRIA (Dir. : F. Alauzet)

⇒ Qualification section 26

Expérience Recherche : Adaptation de maillage

Expérience Enseignement

Formation : Mathématiques appliquées, calcul scientifique

Expérience Recherche : Adaptation de maillage

2011-2015 INRIA EPI GAMMA3

2016-2018 Research Associate, Imperial College London, Applied Modelling and Computational Group

2018-2019 Research Associate à mi-temps, Imperial College London

⇒ 3 articles dans des revues internationales, 6 actes de conférences avec comité de lecture, 10+ communications dans des conférences internationales

⇒ co-auteur de 3 dossiers de financement acceptés

⇒ Principaux collaborateurs : P.L. George, F. Alauzet, A. Loseille (Inria, France), M. Piggott, G. Gorman (ICL, RU), M. Knepley (UB, US), M. Park (Nasa, US), A. Angeloudis (UE, RU)

⇒ Logiciel : Wolf (Inria), Pramatic, PETSc, Firedrake (Open Source)

Expérience Enseignement

Formation : Mathématiques appliquées, calcul scientifique

Expérience Recherche : Adaptation de maillage

Expérience Enseignement

```
2014 ECP, Chargé de TD, 1ère année (L3)
```

2016-2019 ICL Teaching Assistant, 1ère année (L1)

2018-2019 ICL part time Teaching Fellow pour la création du Master ACSE

 \implies 130 HETD + corrections, conception de cours, responsabilités administratives

⇒ 1 étudiant de thèse co-encadré

Recherche: 50 nuances d'adaptation de maillage

Projet de recherche : trois axes dans la continuité

Enseignement

Problématique

Pipeline de la simulation numérique

 $\mathsf{CAO} \longrightarrow \mathsf{MAILLAGE} \longrightarrow \mathsf{SOLVEUR} \longrightarrow \mathsf{VISU} \ / \ \mathsf{ANALYSE}$

Un mauvais maillage conduit à une solution inexacte ou peu exacte.

- ▶ l'augmentation de la complexité géometrique
- Face à
- ▶ l'augmentation de la complexité physique
- ▶ des études de convergence en 3D : $\frac{h}{4} \rightsquigarrow 64N$ and $dt \sim h_{min} \rightsquigarrow \frac{dt}{4} \Longrightarrow \mathsf{CPU} \times \mathbf{256}$

Modifier la discrétisation pour contrôler la précision.

Problématique

Pipeline de la simulation numérique

 $\mathsf{CAO} \longrightarrow \mathsf{MAILLAGE} \longrightarrow \mathsf{SOLVEUR} \longrightarrow \mathsf{VISU} \ / \ \mathsf{ANALYSE}$

Un mauvais maillage conduit à une solution inexacte ou peu exacte.

- ▶ l'augmentation de la complexité géometrique
- Face à l'augmentation de la complexité physique
 - b des études de convergence en 3D : $\frac{h}{4} \rightsquigarrow 64N$ and $dt \sim h_{min} \rightsquigarrow \frac{dt}{4} \Longrightarrow \text{CPU} \times 256$

Modifier la discrétisation pour contrôler la précision.

Problématique

Pipeline de la simulation numérique

 $CAO \longrightarrow MAILLAGE \longrightarrow SOLVEUR \longrightarrow VISU / ANALYSE$

Un mauvais maillage conduit à une solution inexacte ou peu exacte.

- ▶ l'augmentation de la complexité géometrique
- Face à l'augmentation de la complexité physique
 - des études de convergence en 3D : $\frac{h}{4} \rightsquigarrow 64N \quad \text{and} \quad dt \sim h_{min} \rightsquigarrow \frac{dt}{4} \Longrightarrow \text{CPU} \times \textbf{256}$

Modifier la discrétisation pour contrôler la précision.

Métriques et adaptation hessian based

Métrique Riemanienne $(\mathcal{M}(\mathbf{x}))_{\mathbf{x}\in\Omega}$: définit localement des tailles et une orientation

$$\mathcal{H}$$
 Maillage unité $\iff \forall \mathbf{e}, \ \ell_{\mathcal{M}}(\mathbf{e}) \approx 1 \text{ and } \forall K, \ |K|_{\mathcal{M}} \approx \begin{cases} \sqrt{3}/4 & \text{in 2D} \\ \sqrt{2}/12 & \text{in 3D} \end{cases}$

[George, Hecht and Vallet., 1991]

- ► On considère l'erreur d'interpolation : $\|u \pi_h u\|$
- ▶ Pour une certaine classe de problèmes : $\|u \pi_h u\| \le Ch\|\frac{H_u}{H_u}\|$ [Ciarlet., 1978]
- ► Hessienne : bon indicateur des variations, presque une métrique
- ► Historiquement, $\mathcal{M} = \alpha |H_u|$
- ► Concept de maillage continu [Loseille, 2011] permet de transformer un problème d'optimisation discrète en problème d'optimisation continue

3 de mes contributions principales

- Estimateurs d'erreur pour calculs en géométries mobiles
- Dissémination de l'adaptation de maillage
- Application à la modélisation de l'océan

Estimateurs d'erreur pour des géométries mobiles

Problèmes:

- modifier le solveur pour le maillage mobile
- modifier l'estimateur d'erreur (la métrique optimale) pour prendre en compte le déplacement du maillage

Contexte:

- ► Euler, FV, 3D, déformation conforme du maillage par élasticité
- ► Algorithme d'adaptation de point fixe global

Contribution:

- modification du solveur avec ajout de termes ALE 3D [Barral, 2018, EwC]
- modification de la métrique optimale [Barral, 2017, JCP] pour "suivre" le maillage mobile.

Estimateurs d'erreur pour des géométries mobiles

 $\begin{array}{lll} \text{Maillage continu} & : & \text{métrique } \mathcal{M} \\ \text{équivalente au maillage discret } \mathcal{H} \end{array}$

 $\underset{\bullet}{\text{mesh}} \overset{\Psi}{\Phi(\mathcal{H}^n)} = \overset{\Psi}{\text{mesh}} \mathcal{H}^{n+1} \text{ On raisonne sur le passé d'une }$ arête adaptée à t^{n+1}

Métrique ALE optimale

$$\begin{split} \mathcal{M}_{L^p}^{\text{ALE}}(\mathbf{x}^n) &= \left(\frac{N^{n+1}}{\displaystyle\int\limits_{\Omega^n} \left[\det|\boldsymbol{H}_{\boldsymbol{u}}^*|\right]^{\frac{p}{2p+3}} \mathrm{d}\mathbf{x}^n}\right)^{\frac{2}{3}} \det(|\boldsymbol{H}_{\boldsymbol{u}}^*|)^{-\frac{1}{2p+3}} \, |\boldsymbol{H}_{\boldsymbol{u}}^*| \\ &\text{with } |\boldsymbol{H}_{\boldsymbol{u}}^*| = \left|\det\nabla^n \boldsymbol{\phi}(\mathbf{x}^n)\right|^{\frac{1}{p}} \left(\nabla^n \boldsymbol{\phi}(\mathbf{x}^n) \cdot |\widehat{H}_{\boldsymbol{u}}(\mathbf{x}^n, t^{n+1})| \cdot \nabla^n \boldsymbol{\phi}^T(\mathbf{x}^n)\right). \end{split}$$

Two F117s crossing flight paths

- Deux avions à Mach 0.4 dans un air inerte.
- Les avions sont en translation et rotation.
- ▶ 50 sous-intervalles et 4 boucles d'adaptation
- ➤ Taille moyenne des maillages : 747,000 sommets, 95,000 pas de temps

Dissémination de l'adaptation de maillage

Problème : mise en œuvre l'adaptation de maillage difficile

- Nombreux facteurs spécialisés : formation de la métrique, génération du maillage, transfert de solution, parallélisme
- ▶ codes pas compatibles ou pas open-source ou inutilisables

Solution : des librairies d'adaptation clés en main open source

PRAgMaTic

Contributions [Barral 2016, Ibanez, 2017, Park, 2018, 2019]

- Couplage avec PE 13C et Firedrake
- ► Implémentation et validation d'outils pour l'adaptation
- ▶ Problématique du parallélisme [projet eCSE11-12, en cours]

Intérêt scientifique

- Mise à disposition de ces outils au plus grand nombre
- Large spectre d'applications : modélisation côtière, tectonique, . . .
- ► Exploration de discrétisations variées + ordre élevé

Modélisation de l'océan : étude d'un barrage maréemoteur dans la baie de Swansea [Barral 2018, EGU]

Nécessité de simuler tout l'estuaire

Modèle côtier **Thetis** utilisant Firedrake :

- Génération automatique du code bas niveau
- Navier-Stokes moyenné selon z
- Discrétisation FEM :
 - $P_{1DG}P_2$ pour **v** et η
 - avec mouillage et séchage et modèle réduit pour les flux traversant le barrage
 - Discrétisation temporelle : Crank-Nicolson
 - $T_e nd = 2 \text{ days (4 cycles)}$

Paramètres d'adapt. :

- Nouveau maillage toutes les 1 000s
- InterpolationP₁ consistante
- ► Taille des maillages : entre 28,000 et 38,000 triangles

En cours

- Déterminer théoriquement le meilleur senseur pour l'adaptation
- Adaptation Goal oriented à partir de l'adjoint [Wallwork et al. TBP]

Recherche: 50 nuances d'adaptation de maillage

Projet de recherche : trois axes dans la continuité

Enseignement

Projet de recherche : 3 axes dans la continuité

- Estimateurs d'erreur pour des discrétisations avancées
- Applications variées de l'adaptation de maillage
- Modélisation de l'océan

Estimateurs d'erreur et algo. d'adaptation de maillage

- Estimateurs pour l'ordre élevé :
 - les dérivées secondes ne suffisent plus
 - on essaie de fitter des ellipsoïdes dans des polynômes
- Estimateurs pour des discrétisations avancées
 - Comment tirer parti des discrétisations DG?
- Estimateurs goal-oriented : on optimise l'erreur dans une (petite) zone du domaine
 - Utilisation de l'adjoint
 - Adjoint continu vs discret
- Stratégies d'adaptation hp (T. Chaumont-Frelet, F. Rapetti)
- Estimateurs pour l'adaptation structurée (AMR) : construction d'une interface unifiée dans PETSc
- Les solveurs automatiques (FreeFem, Firedrake...) sont un atout pour expérimenter

Dissémination de l'adaptation de maillage

Appliquer les estimateurs précédents dans des situations variées boucle de rétroaction pour les améliorer

Exemples d'applications :

- dynamique océanique, tectonique
- simulation du mucus dans les poumons (B. Mauroy)
- plasmas dans les Tokamaks (CASTOR)
- interactions ondes/matière : photovoltaïque, lentilles hautes précision (NACHOS)

A la fois une motivation et une validation

Cadre logiciel:

- utilisation/développement d'outils open-source qui s'interfacent facilement avec d'autre codes
- Nécessité de prendre en compte des architectures de calcul plurielles dans le remaillage
 - ⇒ Etude du parallélisme (repartitionnement, interpolation)
- ► Validation et adoption de standards : collaboration UGAWG (Inria, Nasa, Boeing, ICL, MIT)

Modélisation de l'océan

- Nice bien placé pour étudier la mer
- Problématiques nombreuses : énergies marines, hausse du niveau des mers, dispersion de polluants, propagation de tsunamis ou autres vagues, etc.
- Maths: écoulements à surfaces libres (en 2D ou 3D) + couplage
- Problème : trouver des modèles et schémas adaptés pour ces diverses applications
- Localement : formation et propagation de la houle (D. Clamond), dispersion de particules (COFFEE)
- Problèmes multiphysiques avec experts d'autres labos (IC Londres, U. Edimbourg, U. Nice, UPMC, ADEME, Monaco...)

Recherche : 50 nuances d'adaptation de maillage

Projet de recherche : trois axes dans la continuité

Enseignement

En France. à l'ECP:

- ▶ 1ère année (~L3)
 - Analyse théorique et numérique des EDP P. Lafitte
 TDs Des distributions aux FEM + TPs Scilab & FreeFem++

En Angleterre, dans le département de Géosciences de l'ICL :

- Niveau L1
 - ► Introduction à la programmation G. Gorman puis N. Barral
 - ► Méthodes numériques 1 Cours et TPs - Interpolation polynomiale, intégration numérique, résolution de systèmes (Gauss, Jacobi...)
- Niveau Master
 - ► Techniques de programmation modernes G. Gorman Cours Python avancé, développement collectif (git), tests
 - ► Applications du calcul scientifique G. Collins Conception et évaluation de 3 mini-projets d'une semaine

Administration:

- ► de facto responsable du cours de Python (cours + orga)
- ► Implication dans la création et organisation du Master ACSE

Encadrement: 1 étudiant de Master puis thèse co-encadré

Pratiques pédagogiques innovantes

Contexte : approche de type blended learning

- ► Capacité d'attention limitée à ~15min
- Comprendre par la pratique
- ► Inspiré par les préceptes de la Software Carpentry Foundation

Ecosystème:

- Python : Simplicité et puissance avec Numpy, Scipy et SimPy
- Jupyter Notebook : mélange de texte et de code
- Cloud : chaque étudiant peut travailler de chez lui

Problème

Extensibilité du retour aux étudiants sur leurs exercices

Solution choisie : plateforme de notation automatique OkPy

- ▶ Déploiement sur le Cloud Microsoft Azure et d'un client local
- Satisfaction des étudiants (surtout en 1ère année)
- Permet de concevoir de meilleurs exercices

Perspective

Je peux enseigner :

- des maths (de base)
- des maths appliquées (schémas, CFD,...)
- de la programmation
- de l'informatique

J'ai de l'expérience dans la création de cours.

Je peux contribuer

- à l'enseignement en Licence
- aux Masters IM ou MPA (cours de Modélisation et Simulation Numérique, Calcul Scientifique...)

Conclusion

- L'adaptation de maillage présente de vraies problématiques mathématiques
- Un peu à la marge du profil : je ne suis pas un EDPiste...
- Mais je peux travailler avec eux!
 - Je veux faire plus de maths!
 - Estimateurs d'erreur
 - Développement de modèles océaniques
- Je peux mener mes propres recherches, et m'insérer dans des projets existants
- ► Expérience de l'enseignement variée, centrée sur la pédagogie, et de l'organisation de l'enseignement