Programming for Biololgy Similarity Searching II –

Practical search strategies

Bill Pearson wrp@virginia.edu

CSHL Programming for Biology

1

Why is this material important?

- · You might be asked to find a homolog
- You might be asked to what your gene/protein does
 - Annotated homologs are missed because databases are large and redundant
 - Short domains and short exons are missed because the "standard" matrix needs long alignments
 - Sometimes, alignments include non-homologous regions

CSHL Programming for Biology

Effective Similarity Searching

- Always search protein databases (possibly with translated DNA)
- 2. Use E()-values, not percent identity, to infer homology
 - E() < 0.001 is significant in a single search
- 1. Search smaller (comprehensive) databases
- 2. Change the scoring matrix for:
 - short sequences (exons, reads)
 - short evolutionary distances (mammals, vertebrates, aproteobacteria)
 - high identity (>50% alignments) to reduce over-extension
- 3. Is every aligned residue homologous?
 - alignment overextension
- 4. (Tomorrow) All methods (pairwise, HMM, PSSM) miss homologs, and find homologs the other methods miss

CSHL Programming for Biology

3

3

Review – Sequence Similarity - Conclusions

- <u>Homologous</u> sequences share a common ancestor, but most sequences are <u>non-</u> <u>homologous</u>
- Always compare Protein Sequences
- Sequence Homology can be reliably inferred from statistically significant similarity (non-homology cannot from non-similarity)
- Homologous proteins share common structures, but not necessarily common functions
- Sequence statistical significance estimates are accurate (verify this yourself)10⁻⁶ < E() < 10⁻³ is statistically significant

CSHL Programming for Biology

Similarity Searching II

- 1. What question to ask?
- 2. What program to use?
- 3. What database to search?
- 4. When to do something different (changing scoring matrices)
- 5. Is every aligned domain homologous?
- 6. (Tomorrow) more sensitive methods (PSI-BLAST, HMMER)

CSHL Programming for Biology

5

5

1. What question to ask?

- Is there an homologous protein (a protein with a similar structure)?
- Does that homologous protein have a similar function?
- Does XXX genome have YYY (kinase, GPCR, ...)?

Questions not to ask:

- Does this DNA sequence have a similar regulatory element (too short – never significant)?
- Does (non-significant) protein have a similar function/modification/antigenic site?

CSHL Programming for Biology

6

2. What program to run?

- · What is your query sequence?
 - protein BLASTP (NCBI), SSEARCH (EBI)
 - protein coding DNA (EST) –
 BLASTX (NCBI), FASTX (EBI)
 - DNA (structural RNA, repeat family) –
 BLASTN (NCBI), FASTA (EBI)
- Does XXX genome have YYY (protein)?
 - TBLASTN YYY vs XXX genome
 - TFASTX YYY vs XXX genome
- Does my protein contain repeated domains?
 - LALIGN (UVa http://fasta.bioch.virginia.edu, EBI)

CSHL Programming for Biology

7

7

NCBI BLAST Server blast.ncbi.nlm.nih.gov NCBI National Center for Biotechnology Information BLAST ® Recent Results Saved Strategies Help **Basic Local Alignment Search Tool BLAST** finds regions of similarity between biological sequences. Try QuickBLASTP for a fast protein search of nr. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance. Tue, 23 May 2017 13:00:00 EST More BLAST news Yes Yes Web BLAST **Nucleotide BLAST Protein BLAS** tblastn Always compare protein sequences Search **CSHL** Programming for Biology

3. What database to search?

- Search the smallest comprehensive database likely to contain your protein
 - vertebrates human proteins (40,000)
 - NCBI Landmark sequences (human, mouse, no rat)
 - Quest for Orthologs reference proteomes (1,000,000)
- Search a richly annotated protein set (SwissProt, 500,000)
- Always search NR (> 50 million) LAST
- Never Search "GenBank" (DNA)

CSHL Programming for Biology

Effective Similarity Searching

- Always search protein databases (possibly with translated DNA)
- 2. Use E()-values, not percent identity, to infer homology
 E() < 0.001 is significant in a single search
- 1. Search smaller (comprehensive) databases
- 2. Change the scoring matrix for:
 - short sequences (exons, reads)
 - short evolutionary distances (mammals, vertebrates, aproteobacteria)
 - high identity (>50% alignments) to reduce over-extension
- Is every aligned residue homologous?
 - alignment overextension
- 4. (Tomorrow) All methods (pairwise, HMM, PSSM) miss homologs, and find homologs the other methods miss

CSHL Programming for Biology

11

11

Homology inferences are reliable because similarity statistics are accurate (I) (we know how unrelated sequences behave)

Distributions of similarity scores in searches with 5 human enzymes. Open circles (_nh) show scores for non-homologs. Closed circles show homolog (_h) scores.

Local similarity statistics

```
\begin{split} S' &= \lambda S_{raw} \text{ - In K m n } \text{ m: query length, n: subj length} \\ S_{bit} &= (\lambda S_{raw} \text{ - In K)/ln(2)} \\ P(S'>x) &= 1 \text{ - exp(-e^{-x})} \\ P(S'>x) &= e^{-x} \text{ (for P < 0.1)} \\ \\ P(S_{bits} > \text{bits}) &= 1 \text{ -exp(-mn2}^{-x}) \\ P(S_{bits} > \text{bits}) &= \text{mn2}^{-\text{bits}} \text{ (for P < 0.1)} \\ \\ E(S', S_{bits} \text{ ID}) &= \text{PD} \\ E(S_{bits} \text{ ID}) &= \text{D mn2}^{-\text{bits}} \text{ Bonferroni correction} \\ \\ \text{dblength} &= \text{D n} \\ E(S_{bit}) &= \text{m dblength 2}^{-\text{bits}} \text{ (BLAST)} \\ \\ \\ CSHL \text{ Programming for Biology} \end{split}
```

15

What is a "bit" score (I)?

- Scoring matrices (PAM250, BLOSUM62, VTML40) contain "log-odds" scores:
 - $-s_{i,j}$ (bits) = $log_2(q_{i,j}/p_ip_j)$ ($q_{i,j}$ freq. in homologs / p_ip_j freq. by chance)
 - $-s_{i,j}$ (bits) = 2 -> a residue is 2^2 =4-times more likely to occur by homology compared with chance (at one residue)
 - s_{i,j} (bits) = -1 -> a residue is 2^{-1} = 1/2 as likely to occur by homology compared with chance (at one residue)
- 2. An alignment score is the maximum sum of s_{i,j} bit scores across the aligned residues.
 - $-\,$ A 40-bit score is 2^{40} more likely to occur by homology than by chance.
- 3. How often should a score occur by chance? In a 400 * 400 alignment, there are ~160,000 places where the alignment could start by chance, so we expect a score of 40 bits would occur: $P(S_{bit} > x) = 1 exp(-mn2^{-x}) \sim mn2^{-x}$
 - $-400 \times 400 \times 2^{-40} = 160,000 / 2^{40} (10^{13.3}) = 1.5 \times 10^{-7}$ times
 - Thus, the probability of a 40 bit score in ONE alignment is ~ 10⁻⁷

CSHL Programming for Biology

What is a "bit" score (II)?

- 4. But we did not ONE alignment, we did 4,000, 40,000, 500,000, or 20 million alignments when we searched the database:
 - $E(S_{bit} \mid D) = p(40 \text{ bits}) \text{ x database size}$
 - $E(40 \mid 4,000) = 10^{-7} \times 4,000 = 4 \times 10^{-4}$ (significant)
 - $E(40 \mid 40,000) = 10^{-7} \times 4 \times 10^{4} = 4 \times 10^{-3}$ (not significant)
 - E(40 | 500,000) = 10^{-7} x 5 x 10^5 = 0.05 (not significant)
 - E(40 | 20 million) = 10^{-7} x 2.0 x 10^{7} = 2.0 (not significant)

Not significant does not mean not-homologous

CSHL Programming for Biology

19

19

How many "bits" do I need?

E() = p() x database size

 $E(40 \mid 4,000) = 10^{-7} \times 4,000 = 4 \times 10^{-4}$ (significant) $E(40 \mid 40,000) = 10^{-7} \times 4 \times 10^{4} = 4 \times 10^{-3}$ (not significant) $E(40 \mid 500,000) = 10^{-7} \times 5 \times 10^{5} = 0.05$ (not significant)

To get E() $\sim 10^{-3}$, how many bits do I need? p = m n 2 $^{-bits}$ bits = -log2(p/(m n)) = $-log2(E()/(database_size m n))$ genome (10,000) p $\sim 10^{-3}/10^4$ = $10^{-7}/160,000$ = 40 bits SwissProt (500,000) p $\sim 10^{-3}/10^6$ = $10^{-9}/160,000$ = 47 bits Uniprot/NR (108) p $\sim 10^{-3}/10^8$ = $10^{-11}/160,000$ = 53 bits

CSHL Programming for Biology

Effective Similarity Searching

- Always search protein databases (possibly with translated DNA)
- 2. Use E()-values, not percent identity, to infer homology
 E() < 0.001 is significant in a single search
- 1. Search smaller (comprehensive) databases
- Change the scoring matrix for:
 - short sequences (exons, reads)
 - short evolutionary distances (mammals, vertebrates, aproteobacteria)
 - high identity (>50% alignments) to reduce over-extension
- Is every aligned residue homologous?
 - alignment overextension
- 4. (Tomorrow) All methods (pairwise, HMM, PSSM) miss homologs, and find homologs the other methods miss

CSHL Programming for Biology

Scoring matrices

- Scoring matrices can set the evolutionary lookback time for a search
 - Lower PAM (PAM10/VT10 ... PAM/VT40) for closer (10% ... 50% identity)
 - Higher BLOSUM for higher conservation (BLOSUM50 distant, BLOSUM80 conserved)
- Shallow scoring matrices for short domains/short queries (metagenomics)
 - Matrices have "bits/position" (score/position), 40 aa at 0.45 bits/position (BLOSUM62) means 18 bit ave. score (50 bits significant)
- Deep scoring matrices allow alignments to continue, possibly outside the homologous region

CSHL Programming for Biology

23

23

Scoring matrices and alignment length

Pam40			Pam250
A R	N D E	I L	A R N D E I L
A 8			A 2
R -9 12			R -2 6
N - 4 - 7	11		N 0 0 2
D -4 -13	3 11		D 0 -1 2 4
E -3 -11	-2 4 11		E 0 -1 1 3 4
I -6 -7	-7 -10 -7 1	12	I -1 -2 -2 -2 5
L - 8 - 11	-9 -16 -12 -	-1 10	L -2 -3 -3 -4 -3 2 6

$$\lambda S_{i,j} = \log_b(\frac{q_{i,j}}{p_i p_j})$$

```
q_{ij}: homolog frequency wat PAM40, 250 q_{R:N(40)} = 0.000435 p_R = 0.051 q_{R:N(250)} = 0.002193 p_N = 0.043 \lambda_2 S_{ij} = \lg_2 (q_{ij}/p_ip_j) \lambda_e S_{ij} = \ln(q_{ij}/p_ip_j) p_Rp_N = 0.002193 \lambda_2 S_{R:N(40)} = \lg_2 (0.000435/0.00219) = -2.333 \lambda_2 = 1/3; S_{R:N(40)} = -2.333/l_2 = -7 \lambda S_{R:N(250)} = \lg_2 (0.002193/0.002193) = 0
```

CSHL Programming for Biology

24

Empirical matrix performance (median results from random alignments)

Matrix	target % ident	bits/position	aln len (50 bits)
VT160 -12/-2	23.8	0.26	192
BLOSUM50 -10/-2	25.3	0.23	217
BLOSUM62* -11/-1	28.9	0.45	111
VT120 -11/-1	27.4	1.03	48
VT80 -11/-1	51.9	1.55	32
PAM70* -10/-1	33.8	0.64	78
PAM30* -9/-1	45.5	1.06	47
VT40 -12/-1	72.7	2.76	18
VT20 -15/-2	84.6	3.62	13
VT10 /16/-2	90.9	4.32	12

HMMs can be very "deep"

Pearson (2013) Curr. Prot. Bioinformatics 3.5.1

CSHL Programming for Biology

26

	name	start	end	len	MD10	bits	BP62	bits	ı
	ex 1	1	23	23	=	58	+5	45	ı
	ex 2	24	31	8	_	30	-	<25	
	ex 3	32	42	11	=	36	+1	27	
	ex 4	43	81	39	=	88	=	61	
	ex 5	82	125	44	=	96	=	66	
	ex 6	126	168	43	_	96	+5	65	
	ex 7	169	197	29	=	69	+2	50	
	ex 8	198	228	31	=	76	+43	53	
	ex_9	229	242	14	+4	40	+4	32	
	ex_10	243	266	24	+5	60	+87	45	
	ex_11	267	280	14	=	42	+38	32	
	ex_12	281	297	17	=	49	+2	34	
	ex_13	298	354	57	=	120	=	78	
	ex_14	355	365	11	=	37	=	32	
### BP62 gRegion: 181-197: bits=1.6; Id=0.500: exon_7-7 gRegion: 198-228: bits=52.7; Id=1.000: exon_8-8 gRegion: 292-242: bits=0.0; Id=0.333; exon_9-9 1100									

Scoring Matrices - Summary

- PAM and BLOSUM matrices greatly improve the sensitivity of protein sequence comparison – low identity with significant similarity
- PAM matrices have an evolutionary model lower number, less divergence – lower=closer; higher=more distant
- BLOSUM matrices are sampled from conserved regions at different average identity – higher=more conservation
- Shallow matrices set maximum look-back time
- Short alignments (domains, exons, reads) require shallow (higher information content) matrices

CSHL Programming for Biology

Effective Similarity Searching

- Always search protein databases (possibly with translated DNA)
- Use E()-values, not percent identity, to infer homology
 - E() < 0.001 is significant in a single search
- 1. Search smaller (comprehensive) databases
- 2. Change the scoring matrix for:
 - short sequences (exons, reads)
 - short evolutionary distances (mammals, vertebrates, aproteobacteria)
 - high identity (>50% alignments) to reduce over-extension
- 3. Is every aligned residue homologous?
 - alignment overextension
- (Tomorrow) All methods (pairwise, HMM, PSSM) miss homologs, and find homologs the other methods miss

CSHL Programming for Biology

31

31

Over-extension into random sequence

> pf26|15978520|E6SGT6|E6SGT6_THEM7 Heavy metal translocating P-type ATPase EC=3.6.3.4 Length=88

Score = 299 bits (766), Expect = 1e-90, Method: Compositional matrix adjust. Identities = 170/341 (50%), Positives = $\frac{224}{341}$ (66%), Gaps = $\frac{19}{341}$ (6%)

- Query 84 FLFVNVFAALFNYWPTEGKILMFGKLEKVLITLILLGKTLEAVAKGRTSEAIKKLMGLKA 143

 Sbjct 312 WLYSTVAVAFPQIFPSMALAEVFYDVTAVVVALVMLGLALELRARGRTSEAIKKLIGLQA 371

 Query 144 KRARVIRGGRELDIPVEAVLAGDLVVVRPGEKFPVDGVVEEGASAVDESMLTGESLPVDK 203
- Query 144 KRARVIRGGRELDIPVEAVLAGDLVVVÄRPGEKIPVDGVVEEGASAVDESMLTGESLPVDK 203 + ARV+R G E+DIPVE VL GD+VVVNPGEKIPVDGVV EG S+VDESM+TGESS+PV+ Sbjct 372 RTARVKROGTEVDIPVEEVLVGDIVVVRPGEKIPVDGVVIEGTSSVDESMITGESIPVEM 433
- Query 204 QPGDTVIGATLNKQGSFKFRATKVGRDTALAQIISVVEEAQGSKAPIQRLADTISGYFVP 263
 +PGD VIGAT+N+ GSF+FRATKVG+DTAL+QII +V++AQGSKAPIQR+ D +S YFVP
 Sbjct 432 KPGDEVIGATINQTGSFRFRATKVGKDTALSQIIRLVQDAQGSKAPIQRIVDRVSHYFVP 491
- Query 264 VVVSLAVITFFVWYAVPANETRALLNFTAVLVIACPCALGLATPTSIMVGTGKGAEKG 323 V+ LA++ VWY + AL+ F L+IACPCALGLATPTS+ VG GKGAE+G Sbjct 492 AVLILAIVAAVVWYVFGPEPAYIYALIVFVTTLIIACPCALGLATPTS+UVGIGKGAEQG 551
- Query 324 ILFKGGEHENGG------GGAHTEGAENKAELLKTRATGISILVTLGLTAKGRDRS 374
 IL + G+ L+ A G T+G +++ ATG + L LTA
 Sbjct 552 IIRSGDALQMASRLDVIVLDKTGTITKGKPELTDVVA—ATGFDEDLILRLTA------ 603
- | \$\frac{562}{90} \] \$\frac{562}

CSHL Programming for Biology

Mills and Pearson (2013) Bioinformatics 29:3007₂

r	name	start	end	len	MD10	bits	BP62	bits
	ex_1	1	23	23	=	58	+5	45
_	ex_2	24	31	8	=	30	-	<25
	ex_3	32	42	11	=	36	+1	27
	ex_4	43	81	39	=	88	=	61
	ex_5	82	125	44	=	96	=	66
		126	168	43	=	96	+5	65
_	ex_7	169	197	29	=	69	+2	50
	ex_8	198	228	31	=	76	+43	53
	ex_9	229	242	14	+4	40	+4	32
	ex_10	243	266	24	+5	60	+87	45
	ex_11	267	280	14	=	42	+38	32
	ex_12	281	297	17	=	49	+2	34
	ex_13	298	354	57	=	120	=	78
e	ex_14	355	365	11	=	37	=	32
BP62								

Homology, non-homology, and over-extension

- Sequences that share statistically significant sequence similarity are homologous (simplest explanation)
- But not all regions of the alignment contribute uniformly to the score
 - lower identity/Q-value because of non-homology (overextension) ?
 - lower identity/Q-value because more distant relationship (domains have different ages) ?
- · Test by searching with isolated region
 - can the <u>distant domain (?)</u> find closer (significant) homologs?
- Similar (homology) or distinct (non-homology) structure is the gold standard
- Multiple sequence alignment can obscure over-extension
 - if the alignment is over-extended, part of the alignment is NOT homologous

CSHL Programming for Biology

35

35

Effective Similarity Searching

- Always search protein databases (possibly with translated DNA)
- 2. Use E()-values, not percent identity, to infer homology
 - E() < 0.001 is significant in a single search
- 1. Search smaller (comprehensive) databases
- 2. Change the scoring matrix for:
 - short sequences (exons, reads)
 - short evolutionary distances (mammals, vertebrates, aproteobacteria)
 - high identity (>50% alignments) to reduce over-extension
- 3. Is every aligned residue homologous?
 - alignment overextension
- 4. (Tomorrow) All methods (pairwise, HMM, PSSM) miss homologs, and find homologs the other methods miss

CSHL Programming for Biology

workshop II – parsing blast results

Goto:

fasta.bioch.virginia.edu/mol_evol/pfb_python_matrices.html

Your goal is to reproduce a version of this table:

Matrix	target % ident	align_len	evalue
VT160	29.7	67	2.1
BLOSUM50	34.0	121	1.2
BLOSUM62* -11/-1	31.2	90	0.37
VT80	66.7	50	1.8
VT40	72.7	11	1.3

CSHL Programming for Biology

37