Manual for CAN-Controlled 4-Channel Power Distribution Module

Introduction	3
Features & Specifications	3
Key Features	4
Technical Specifications	4
Installation & Wiring	5
Power Supply Connection	5
Pinout	5
Wiring Diagram	6
Schematics	8
CAN Bus Connection	9
Input & Output Connections	10
Software Configuration	10
Programming with Arduino	10
CAN Bus Configuration	10
Operation & Testing	10
Troubleshooting	10
Support & Community	

Introduction

The CAN-Controlled Power Distribution Module (PDM) is an open-source, Arduino-compatible device designed for automotive, industrial, and automation applications. This manual provides installation, configuration, and usage guidelines to ensure optimal performance and integration with your system

Features & Specifications

Arduino Nano powered PDM

Key Features

- 4 High-Side Outputs (6A per Channel)
- Current Measurement on Each Channel
- 3 Analog Inputs (0-5V) for Sensors
- 2 Digital Inputs for Switches
- CAN Bus Communication for High-Speed Integration
- Arduino-Compatible for Customization
- Open-Source Hardware & Software
- Selectable CAN Termination via Pin-Header Jumper

Technical Specifications

• Input Voltage: DC 7V - 24V

• Channel Current: Up to 6A per output

• CAN Bus Baud Rate: Default 500 kbit/s (adjustable in software)

• Power Consumption: 0.25 W (20mA @ 12VDC)

• Connector: 24P FCI

• Enclosure Dimensions: 140x120x35mm

• Microcontroller: Arduino Nano

Installation & Wiring

Power Supply Connection

Ensure a stable DC power source within the 7V - 24V range is used. Connect the power input to the designated terminals. 12 volt plus to B1, B8 and C1 Labeled "12V_PWR. Ground to A8 labeled "GND".

Pinout

24 pin FCI connector				
	A	В	С	
1	OUT_CHN1	12V_PWR	12V_PWR	
2	OUT_CHN4	GND	IN_DI1	
3	OUT_CHN4	CAN_H	CAN_H	
4	OUT_CHN4	CAN_L	CAN_L	
5	OUT_CHN3	IN_DI2	5_volt	
6	OUT_CHN3	IN_AI2	IN_AI3	
7	OUT_CHN3	IN_AI1	Ignition	
8	GND	12V_PWR	OUT_CHN2	

Wiring Diagram

Schematics

CAN Bus Connection

Connect the CAN High (CANH) and CAN Low (CANL) wires to the respective terminals. If necessary, enable termination using the jumper (120 ohm).

Both CAN_H and CAN_L have two terminals on the 24 pin connector for daisy chain connection.

Input & Output Connections

- Outputs: Connect loads to the high-side outputs, ensuring they do not exceed 6A per channel.
- Analog Inputs: Accepts 0-5V signals, ideal for sensors.
- Digital Inputs: Suitable for switches and logic signals.

Software Configuration

Programming with Arduino

The module is fully compatible with the Arduino IDE. To modify the firmware:

- 1. Download and install the Arduino IDE.
- 2. Connect the module via USB.
- 3. Open the provided source code (https://github.com/filip-w/PDM).
- 4. Adjust CAN settings and logic as needed.
- 5. Upload the sketch to the Arduino Nano, make shur to select board "Arduino nano" and processor "ATmega328P Old bootloader".

CAN Bus Configuration

Refer to the **PDM.dbc** file for CAN message structure.

CAN baudrate is default set to 500 kbits/s. The speed can be changed by changing the variable "**BaudRate**" in the PDM.ino file.

CAN base ID is 0x500 (1820 deciamal) by default. The CAN base ID can be changed by changing the variable "BaseCanID" in the PDM.ino file.

Operation & Testing

- 1. Power up the module.
- 2. Verify CAN communication using a compatible tool.
- 3. Send test signals to control outputs and monitor current measurements.
- 4. Integrate with your automation or vehicle system.

Troubleshooting

- **No Power:** Verify the power source and connections.
- CAN Communication Issues: Check wiring, baud rate settings, and termination.
- Output Not Functioning: Ensure correct wiring, check for overload conditions.

Support & Community

For additional support, firmware updates, and community discussions, visit our open-source repository or contact us.

Link to GitHub Repository:

filip-w/PDM: Power Distribution Module (PDM) CAN controlled Arduino based

