

AU OPTRONICS CORPORATION

() Preli	minary	Specifi	ications
-----------	--------	----------------	----------

(v) Final Specifications

Module	10.4 Inch Color TFT-LCD
Model Name	G104SN03 V5

Customer Date	Approved by Date
Checked & Approved by	Prepared by
	ShengHsun Lin 2011/08/16
Note: This Specification is subject to change without notice.	General Display Business Division / AU Optronics corporation

Product Specification AU OPTRONICS CORPORATION

Contents

1. Operating Precautions	4
2. General Description	5
2.1 Display Characteristics	5
2.2 Optical Characteristics	6
3. Functional Block Diagram	9
4. Absolute Maximum Ratings	10
4.1 Absolute Ratings of TFT LCD Module	10
4.2 Absolute Ratings of Environment	10
5. Electrical Characteristics	11
5.1 TFT LCD Module	11
5.2 Backlight Unit	13
6. Signal Characteristic	
6.1 Pixel Format Image	14
6.2 Scanning Direction	14
6.3 Signal Description	15
6.4 The Input Data Format	16
6.5 Interface Timing	17
6.6 Power ON/OFF Sequence	18
7. Connector & Pin Assignment	19
7.1 TFT LCD Module: LVDS Connector	19
7.2 LED Backlight Unit (CN2): Driver Connector	19
7.3 LED Backlight Unit (CN4): Light bar Connector	20
8. Reliability Test Criteria	21
9. Mechanical Characteristics	22
9.1 LCM Outline Dimension (Front View)	22
9.2 LCM Outline Dimension (Rear View)	23
10. Label and Packaging	24
10.1 Shipping Label (on the rear side of TFT-LCD display)	24
10.2 Carton Package	24
11 Safety	25
11.1 Sharp Edge Requirements	25
11.2 Materials	
11.3 Capacitors	25
11.4 National Test Lab Requirement	25

AU OPTRONICS CORPORATION

Ve	ersion and Date	Page	Old description	New Description
0.0	April 25, 2011	All	First draft specification	-
1.0	July 25, 2011	5	TBD	Update view angle and color coordinates specification
		22 23	N/A	Update 2D drawing.
2.0		5	Typical Power Consumption 2.5W	Typical Power Consumption 3.5W
2.0		13	lvcc 0.12A	0.2A
		13	Pvcc 1.44W	2.4W
			P _{LED} 1.92W	1.95W
				1.000

AU OPTRONICS CORPORATION

1. Operating Precautions

- 1) Since front polarizer is easily damaged, please be cautious and not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or soft cloth.
- 5) Since the panel is made of glass, it may be broken or cracked if dropped or bumped on hard surface.
- 6) To avoid ESD (Electro Static Discharde) damage, be sure to ground yourself before handling TFT-LCD Module.
- 7) Do not open nor modify the module assembly.
- 8) Do not press the reflector sheet at the back of the module to any direction.
- 9) In case if a module has to be put back into the packing container slot after it was taken out from the container, do not press the center of the LED light bar edge. Instead, press at the far ends of the LED light bar edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) TFT-LCD Module is not allowed to be twisted & bent even force is added on module in a very short time. Please design your display product well to avoid external force applying to module by end-user directly.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Severe temperature condition may result in different luminance, response time and lamp ignition voltage.
- 14) Continuous operating TFT-LCD display under low temperature environment may accelerate lamp exhaustion and reduce luminance dramatically.
- 15) The data on this specification sheet is applicable when LCD module is placed in landscape position.
- 16) Continuous displaying fixed pattern may induce image sticking. It's recommended to use screen saver or shuffle content periodically if fixed pattern is displayed on the screen.

AU OPTRONICS CORPORATION

2. General Description

This specification applies to the Color Active Matrix Liquid Crystal Display G104SN03 V5 composed of a TFT-LCD display, a driver and power supply circuit, and a LED backlight system. The screen format is intended to support SVGA (800(H) x 600(V)) screen and 16.2M (RGB 8-bits) or 262k colors (RGB 6-bits).

LED driving board for backlight unit is included in G104SN03 V5 and the LED unit is replaceable.

All input signals are LVDS interface and compatible with G104SN03 V1.

G104SN03 V5 designed with wide viewing angle; wide temperature and long life LED backlight (30k hrs) is well suited for industial applications.

G104SN03 V5 is a RoHS product.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25 °C condition:

Items	Unit	Specifications
Screen Diagonal	[inch]	10.4
Active Area	[mm]	211.2(H) x 158.4(V)
Pixels H x V		800x3(RGB) x 600
Pixel Pitch	[mm]	0.264 x 0.264
Pixel Arrangement		R.G.B. Vertical Stripe
Display Mode		TN, Normally White
Nominal Input Voltage VDD	[Volt]	3.3 (typ.)
Typical Power Consumption	[Watt]	3.5W(ILED=25mA) All black pattern
Weight	[Grams]	300g(typ.)
Physical Size	[mm]	236.0(H)x 176.9(V) x 5.7(D) (typ.)
Electrical Interface		1 channel LVDS
Surface Treatment		Anti-glare, Hardness 3H
Support Color		16.2M / 262K colors
Temperature Range Operating Storage (Non-Operating)	[°C]	-20 to +70 -20 to +70
RoHS Compliance		RoHS Compliance

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25 °C (Room Temperature):

ltem	Unit	Conditions	Min.	Typ.	Max.	Note
White Luminance	[cd/m2]	ILED= 25mA (center point)	190	230	-	1
Uniformity	%	5 points	65	75	-	2,3
Contrast Ratio			400	500	-	4
	[msec]	Rising	-	25	30	
Response Time	[msec]	Falling	-	10	20	5
	[msec]	Rising + Falling	-	35	50	
	[degree]	Horizontal (Right)	70	80	-	
Viewing Angle	[degree]	CR = 10 (Left)	70	80	-	
	[degree]	Vertical (Upper)	50	60	-	6
	[degree]	CR = 10 (Lower)	60	70	-	
		Red x	0.563	0.593	0.623	
		Red y	0.321	0.351	0.381	
		Green x	0.321	0.351	0.381	
Color / Chromaticity Coordinates		Green y	0.545	0.575	0.605	
(CIE 1931)		Blue x	0.120	0.150	0.180	
		Blue y	0.082	0.112	0.142	
		White x	0.28	0.31	0.34	
		White y	0.30	0.33	0.36	
Color Gamut	%			50	-	

Note 1: Measurement method

Equipment Pattern Generator, Power Supply, Digital Voltmeter, Luminance meter (SR_3 or equivalent)

Aperture 1 □ with 50cm viewing distance

Test Point Center
Environment < 1 lux

AU OPTRONICS CORPORATION

Note 2: Definition of 5 points position (Display active area: 211.2mm (H) x 158.4mm (V))

Note 3: The luminance uniformity of 5 points is defined by dividing the minimum luminance values by the maximum test point luminance

$$\delta_{\text{W9}} = \frac{\text{Minimum Brightness of five points}}{\text{Maximum Brightness of five points}}$$

Note 4: Definition of contrast ratio (CR):

Note 5: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "White" to "Black" (falling time) and from "Black" to "White" (rising time), respectively. The response time interval is between 10% and 90% of amplitudes. Please refer to the figure as below.

AU OPTRONICS CORPORATION

Viewing angle is the measurement of contrast ratio $\Box 10$, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as below: 90° (θ) horizontal left and right, and 90° (Φ) vertical high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated to its center to develop the desired measurement viewing angle.

AU OPTRONICS CORPORATION

3. Functional Block Diagram

The following diagram shows the functional block of the 10.4 inch color TFT/LCD module:

4. Absolute Maximum Ratings

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit
Logic/LCD drive Voltage	Vin	-0.3	+4.0	[Volt]

4.2 Absolute Ratings of Environment

ltem	Symbol	Min	Max	Unit
Operating Temperature	TOP	-20	+70	[°C]
Operation Humidity	HOP	5	90	[%RH]
Storage Temperature	TST	-20	+70	[°C]
Storage Humidity	HST	5	90	[%RH]

Note: Maximum Wet-Bulb should be 39 °C and no condensation.

5. Electrical Characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Symbol	Parameter	Min	Тур	Max	Units	Remark
VDD	Logic/LCD Drive Voltage	3.0	3.3	3.6	[Volt]	
IDD	VDD Current	-	320	-	[mA]	All Black Pattern (VDD=3.3V, at 60Hz)
Irush	LCD Inrush Current	-	-	1.5	[A]	Note 1
PDD	VDD Power	-	1.06	-	[Watt]	All Black Pattern (VDD=3.3V, at 60Hz)
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	100	[mV] p-p	All Black Pattern (VDD=3.3V, at 60Hz)

Note 1: Measurement condition:

VDD rising time

AU OPTRONICS CORPORATION

5.1.2 Signal Electrical CharacteristicsInput signals shall be low or Hi-Z state when VDD is off.

Symbol	Item	Min.	Тур.	Max.	Unit	Remark
VTH	Differential Input High Threshold	-	-	100	[mV]	VCM=1.2V
VTL	Differential Input Low Threshold	100	-	-	[mV]	VCM=1.2V
VID	Input Differential Voltage	100	400	600	[mV]	
VICM	Differential Input Common Mode Voltage	1.125	1.25	1.375	[V]	VTH/VTL=+-100mV

Note: LVDS Signal Waveform.

Single-end Signal

Differential Signal

AU OPTRONICS CORPORATION

5.2.1 Parameter guideline for LED

Following characteristics are measured under a stable condition using an inverter at 25 □ (Room Temperature):

Symbol	Parameter	Min.	Тур.	Max.	Unit	Remark	
VCC	Input Voltage	10.8	12	12.6	[Volt]		
I _{vcc}	Input Current	-	0.2	-	[A]	100% Brightness	
P _{vcc}	Power Consumption	-	2.44	-	[Watt]	100% Brightness	
F _{PWM}	Dimming Frequency	200	_	10K	[Hz]		
Dimming	Swing Voltage	3	3.3	5.5	[Volt]	PWM Dimming	
	Dimming duty cycle	5	-	100	%		
Dimming	Dimming Voltage	0.6		3	[Volt]	Analogo Dimming	
	Dimming Range	30		100	%	Analoge Dimming	
I _F	LED Forward Current	-	25	-	[mA]	Ta = 25°C	
V _F	LED Forward Voltage	-	26	29.2	[Volt]	I _F = 25mA, Ta = 25°C	
_					50.0 4.5	I _F = 25mA, Ta = 25°C	
P _{LED}	LED Power Consumption	-	1.95	-	[Watt]	LED total Power	
Operation Life		25.000	20,000		Uro	Ta= 60°C RH<60%	
Operation Life		25,000	30,000	_	Hrs	I _F =25mA Tj<70 °C	

Note 1: Ta means ambient temperature of TFT-LCD module.

Note 2: VCC, I_{VCC} , $I_{\text{rush LED}}$, P_{VCC} are defined for LED backlight.(100% duty of PWM dimming)

Note 3: I_F, V_F are defined for one channel LED. There are three LED channel in back light unit.

Note 4: If G104SN03 V5 module is driven by high current or at high ambient temperature & humidity condition. The operating life will be reduced.

Note 5: Operating life means brightness goes down to 50% initial brightness. Minimum operating life time is estimated data.

AU OPTRONICS CORPORATION

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship between input signal and LCD pixel format.

6.2 Scanning Direction

The following figures show the image seen from the front view. The arrow indicates the direction of scan.

Fig. 1 Normal scan (Pin4, DPS = Low or NC)

Fig. 2 Reverse scan (Pin4, DPS = High)

AU OPTRONICS CORPORATION

6.3 Signal Description

The module uses a LVDS receiver embedded in AUO's ASIC. LVDS is a differential signal technology for LCD interface and a high-speed data transfer device.

(1)Input signal interface

Pin no	Symbol	Function	Etc.
1	V_{DD}	+3.3 V power supply	
2	V_{DD}	+3.3 V power supply	
3	GND	Ground	
4	DPS	Reverse Scan Function [H: Enable; L/NC:Disable]	
5	RxIN0-	LVDS receiver signal channel 0	
6	RxIN0+	LVDS Differential Data Input (R0, R1, R2, R3, R4, R5, G0)	
7	GND	Ground	
8	RxIN1-	LVDS receiver signal channel 1	
9	RxIN1+	LVDS Differential Data Input (G1, G2, G3, G4, G5, B0, B1)	
10	GND	Ground	
11	RxIN2-	LVDS receiver signal channel 2	
12	RxIN2+	LVDS Differential Data Input (B2, B3, B4, B5, HS, VS, DE)	
13	GND	Ground	
14	CKIN-	- 11/00	
15	CKIN+	LVDS receiver signal clock	
16	GND	Ground	
17	RxIN3-	LVDS receiver signal channel 3, NC for 6 bit LVDS Input	
18	RxIN3+	LVDS Differential Data Input (R6, R7, G6, G7, B6, B7, RSV)	
19	Reserved	Reserved for AUO internal test. Please treat it as NC.	
20	SEL68	6/8 bits LVDS input setting [H: 8 bits; L/NC:6 bits]	

Note 1: Input Signals shall be in low status when VDD is off.

Note 2: High stands for "3.3V", Low stands for "0V", NC means "No Connection".

Note 3: RSV means "Reserved".

AU OPTRONICS CORPORATION

6.4 The Input Data Format

SEL68 = "High" for 8 bits LVDS Input

Note1: Please follow PSWG.

Note2: R/G/B data 7:MSB, R/G/B data 0:LSB

Signal Name	Description	Remark
R7	Red Data 7	Red-pixel Data
R6	Red Data 6	
R5	Red Data 5	For 8Bits LVDS input
R4	Red Data 4	MSB: R7; LSB: R0
R3	Red Data 3	
R2	Red Data 2	For 6Bits LVDS input
R1	Red Data 1	MSB: R5 ; LSB: R0
R0	Red Data 0	
G7	Green Data 7	Green-pixel Data
G6	Green Data 6	· ·
G5	Green Data 5	For 8Bits LVDS input
G4	Green Data 4	MSB: G7 ; LSB: G0
G3	Green Data 3	
G2	Green Data 2	For 6Bits LVDS input
G1	Green Data 1	MSB: G5 ; LSB: G0
G0	Green Data 0	
B7	Blue Data 7	Blue-pixel Data
B6	Blue Data 6	
B5	Blue Data 5	For 8Bits LVDS input
B4	Blue Data 4	MSB: B7 ; LSB: B0
B3	Blue Data 3	
B2	Blue Data 2	For 6Bits LVDS input
B1	Blue Data 1	MSB: B5 ; LSB: B0
B0	Blue Data 0	
RxCLKIN	LVDS Data Clock	
DE	Data Enable Signal	When the signal is high, the pixel data
		shall be valid to be displayed.

Note: Output signals from any system shall be low or Hi-Z state when VDD is off.

6.5 Interface Timing

6.5.1 Timing Characteristics

Signal		Symbol	Min.	Тур.	Max.	Unit
Clock Frequency		1/ T _{Clock}	30	40	50	MHz
	Period	T_V	608	628	1024	
Vertical	Active	T_VD		600		T_{Line}
Section	Blanking	T_VB	8	28	424	
	Period	T _H	960	1056	1060	
Horizontal	Active	T_{HD}		800		T_{Clock}
Section	Blanking	T _{HB}	160	256	260	
Frame Rate		F	50	60	75	Hz

Note : DE mode.

6.5.2 Input Timing Diagram

6.6 Power ON/OFF Sequence

VDD power and lamp on/off sequence is as below. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

Power ON/OFF sequence timing

5 (Value			Units
Parameter	Min.	Тур.	Max.	
T1	0.5	-	10	[ms]
T2	30	40	50	[ms]
Т3	200			[ms]
T4	0.5		10	[ms]
T5	10	-	-	[ms]
Т6	10	-	-	[ms]
Т7	0	-	-	[ms]
Т8	10	-	-	[ms]
Т9			10	[ms]
T10	110			[ms]
T11	0	16	50	[ms]
T12	-	-	10	[ms]
T13	1000	-	-	[ms]

The above on/off sequence should be applied to avoid abnormal function in the display. Please make sure to turn off the power when you plug the cable into the input connector or pull the cable out of the connector.

AU OPTRONICS CORPORATION

7. Connector & Pin Assignment

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module: LVDS Connector

Connector Name / Designation	Signal Connector
Manufacturer	STM or compatible
Connector Model Number	MSB24013P20HA or compatible
Adaptable Plug	P24013P20 or compatible

Pin No.	Symbol	Pin No.	Symbol
1	VDD	2	VDD
3	GND	4	DPS
5	RxIN0-	6	RxIN0+
7	GND	8	RxIN1-
9	RxIN1+	10	GND
11	RxIN2-	12	RxIN2+
13	GND	14	RxCKIN-
15	RxCKIN+	16	GND
17	RxIN3-	18	RxIN3+
19	RSV	20	SEL68

7.2 LED Backlight Unit (CN2): Driver Connector

Connector Name / Designation	Lamp Connector
Manufacturer	Entery
Connector Model Number	3808K-F05N-02R or compatible
Mating Model Number	H208K-P05N-02B or compatible

Pin No.	Symbol	Description
Pin1	VCC	12V input
Pin2	GND	GND
Pin3	On/OFF	5V-ON,0V-OFF
Pin4	Dimming	PWM/Analog
Pin5	NA	

Product Specification AU OPTRONICS CORPORATION

7.3 LED Backlight Unit (CN4): Light bar Connector

Connector Name / Designation	Lamp Connector
Manufacturer	Entery or compatible
Connector Model Number	Entery H203K-D04N-02Bor compatible
Mating Model Number	Entery 3800K-F04N-03Ror compatible

Pin#	Symbol	Cable color	Signal Name
1	AN	RED	LED anode
2	CA1	BLACK	LED Cathode 1
3	CA2	WHITE	LED Cathode 2
4	CA3	BLUE	LED Cathode 3

AU OPTRONICS CORPORATION

8. Reliability Test Criteria

Items	Required Condition	Note
Temperature Humidity Bias	40 °C /90%,300Hr	
High Temperature Operation	70 °C, 300Hr (center point of panel surface)	
Low Temperature Operation	-20 °C, 300Hr	
Hot Storage	70 °C, 300 hours	
Cold Storage	-20 °C, 300 hours	
Thermal Shock Test	-20 °C /30 min ,60 °C /30 min ,100cycles, 40 °C minimun ramp rate	
Hot Start Test	70 °C /1 Hr min. power on/off per 5 minutes, 5 times	
Cold Start Test	-20 °C /1 Hr min. power on/off per 5 minutes, 5 times	
Shock Test (Non-Operating)	50G,20ms,Half-sine wave,(+-X,+-Y,+-Z)	
Vibration Test (Non-Operating)	1.5G, 10~200~10Hz, Sine wave 30mins/axis, 3 direction (X, Y, Z)	
On/off test	On/10 sec, Off/10 sec, 30,000 cycles	
ESD	Contact : ± 8KV/ operation, Class B Air : ± 15KV / operation, Class B	Note 1
ЕМІ	30-230 MHz, limit 40 dBu V/m, 230-1000 MHz, limit 47 dBu V/m	

Note1: According to EN61000-4-2 , ESD class B: Some performance degradation allowed. No data lost

. Self-recoverable. No hardware failures.

Note2:

- Water condensation is not allowed for each test items.
- Each test is done by new TFT-LCD module. Don't use the same TFT-LCD module repeatedly for reliability test.
- The reliability test is performed only to examine the TFT-LCD module capability.
- To inspect TFT-LCD module after reliability test, please store it at room temperature and room humidity for 24 hours at least in advance.

G104SN03 V5

AU OPTRONICS CORPORATION

9. Mechanical Characteristics

9.1 LCM Outline Dimension (Front View)

AU OPTRONICS CORPORATION

(S2,77) (CNI to AA Center) (23,92) (CN2 to AA Center) 0 0 (117,50) (CN2 to AA Center) (118.00) (CN1 to AA Center) Module 76.10G02.003 >PC<M1.0 G104SN03 V5 • • (52'69)

(41,70)

AU OPTRONICS CORPORATION

10. Label and Packaging

10.1 Shipping Label (on the rear side of TFT-LCD display)

10.2 Carton Package

AU OPTRONICS CORPORATION

11.1 Sharp Edge Requirements

There will be no sharp edges or comers on the display assembly that could cause injury.

11.2 Materials

11.2.1 Toxicity

There will be no carcinogenic materials used anywhere in the display module. If toxic materials are used, they will be reviewed and approved by the responsible AUO toxicologist.

11.2.2 Flammability

All components including electrical components that do not meet the flammability grade UL94-V1 in the module will complete the flammability rating exception approval process.

The printed circuit board will be made from material rated 94-V1 or better. The actual UL flammability rating will be printed on the printed circuit board.

11.3 Capacitors

If any polarized capacitors are used in the display assembly, provisions will be made to keep them from being inserted backwards.

11.4 National Test Lab Requirement

The display module will satisfy all requirements for compliance to:

UL 60950-1 second edition

U.S.A. Information Technology Equipment