18-02-2020 Meeting Minutes - Nanoparticles Case Study

General Notes

- Mistake in the previous minutes:
 - The ODE for R on our long timescale is given by: $\frac{dR}{dt}(t) = \frac{\hat{c}_{\infty}(0) c_s^*}{\Delta c} \frac{e^{\frac{l_m}{\hat{R}(0)R(t)}}}{\Delta c (D_a + R(t))}$
- Asymptotics
 - \circ When $D_a \gg 1$ the right-hand side of our governing ODE becomes zero and hence the nanoparticle remains the same size.
 - \circ When $D_a \ll 1$ and we assume that there is a constant boundary condition at infinity (i.e. $c_{\infty}(t) = c_{\infty}(0)$) we can use that for large values of t and R(t) we may approximate our exponential term by a constant.
 - This gives us that for large time and small Damköhler number, the growth of our nanoparticle has a square root dependence on time (i.e. $R(t) \sim \sqrt{t}$).
 - We can find an expression for the boundary condition at infinity by using a conservation of mass argument, which yields:
 - $c_{\infty}(t) = c_{\infty}(0) \frac{4\pi N_0}{3V_m} \Big(\hat{R}(0) R(t) \Big)^3$ for the case of one nanoparticle.
 - By substituting out time dependent boundary condition at infinity into our ODE for R we get more complicated asymptotic behaviour.

Numerics

- o Initially found that when using the constant boundary condition at infinity, our nanoparticle never saturates, it simply continues to grow forever.
- It is more appropriate to use a time dependent boundary condition at infinity (even when we are considering only a single nanoparticle), which is given by Equation (26) in:

https://arxiv.org/pdf/1901.08990.pdf?fbclid=IwAR0pAeutJR0zm74UTRQ6YDZfAY5i4 2AYoy JS-QHBgld4u4qXSrswl96D3g and can be derived by using conservation of mass.

Are now able to better replicate the simulation data provided by our supervisor.

Plan of Action

- William
 - \circ Write up the derivation of the asymptotic behaviour when $D_a\gg 1$ for large time, when the boundary condition c_∞ depends on time.
 - o Bring a copy of this derivation to our meeting on Thursday.
- Peifeng
 - \circ Write up the derivation of the asymptotic behaviour when $D_a\gg 1$ for large time, when the boundary condition c_∞ does not depend on time.
 - o Bring a copy of this derivation to our meeting on Thursday.
- Shyam and Lewis
 - Produce a numerical simulation of our ODE model for the growth of a single nanoparticle, by using the parameters provided in the Peng paper and compare with the data provided by our supervisor.
 - Bring a copy of the code on a laptop to our meeting on Thursday so that it can be demonstrated.

0	If time permits, then try and work on developing a numerical simulation for the case when there are multiple nanoparticles in the solution.