Winter Math Camp: Number Theory

Dan Brown, Certicom Research

January 9, 2004, Toronto

- 1. Let $n, x \in \mathbb{Z}$, with n > h Show $x^2 \not\equiv 3 \mod 2^n$.
- 2. Let $f_p(x) = \frac{x^{p-1}-1}{p}$. If $a, p \in \mathbb{Z}$ with p prime, show $f_p(a) \in \mathbb{Z}$.
- 3. With a, p, f_p as above, and $b \in \mathbb{Z}$, $p \nmid ab$, show $f_p(ab) \equiv f_p(a) +$ $f_p(b) \bmod p$.
- 4. With p and f_p as above, is it true that $f_p(g^p \mod p) \equiv y f_p(g) \mod p$? Why, or why not?
- 5. Let $a, b \in \mathbb{Z}$. If $a, b \ge 0$ and $c = \frac{a^2 + b^2}{1 + ab} \in \mathbb{Z}$, show $\sqrt{c} \in \mathbb{Z}$.
- 6. If $n \in \mathbb{Z}$ has prime factorization $n = p^r q^s$, what's the chance $x^n \equiv$ $y \mod n$ has an integer solution x given random $y \in \mathbb{Z}$?
- 7. Let p be a prime, and let $d_{i,j}$ be integers in [0, p-1]. Let $n_i =$ $\sum_{j\geq 0} d_{i,j} p^j$. Show $\binom{n_1+n_2}{n_1} \equiv \prod_{j\geq 0} \binom{d_{1,j}+d_{2,j}}{d_{1,j}} \mod p$.
- 8. Let p_i be the i^{th} prime, and let $w(p_{i_1}p_{i_2}\dots p_{i_s})=1+w(i_1)+\cdots+w(i_s)$. For each $n \ge 1$, find maximal and minimal solutions to w(z) = n.
- 9. For each n, find $P_1,\ldots,P_n\in\mathbb{R}^2$ with $P_iP_jP_k$ non-collinear and $|P_iP_j|\in\mathbb{R}^2$ \mathbb{Z} for all i, j, k.
- 10. Let $C_0 = 2$. Let $C_{n+1} = 2^{C_n} 1$. Show $C_n | 2^{C_n 1} 1$ for all n.
- 11. With C_n as above, show that if C_{n+1} is prime then $2C_n+1$ is composite.
- 12. Let p be prime, and let 1 < t < p. Let q = tp + 1. Suppose $a^p \equiv$ $1 \mod q$ and gcd(a-1,q) = 1. Show q is prime.
- 13. What's the least number k with every number being the sum of ktriangular numbers $(T_m = m(m+1)/2, m \ge 0)$?
- 14. At 2004 ever the least value of m with $gcd(a, n) = 1 \Rightarrow a^m \equiv 1 \mod n$? Does 7 n st