MULTIPLE REGRESSION

Example: OmniFoods

- You are the marketing manager for OmniFoods, a large food products company. The company is planning a nationwide introduction of OmniPower, a new highenergy bar. Originally marketed to runners, mountain climbers, and other athletes, high-energy bars are now popular with the general public. OmniFoods is anxious to capture a share of this thriving market.
- Because the marketplace already contains several successful energy bars, you need to develop an effective marketing strategy. In particular, you need to determine the effect that price and in-store promotions will have on sales of OmniPower. Before marketing the bar nationwide, you plan to conduct a test-market study of OmniPower sales, using a sample of 34 stores in a supermarket chain.
- How can you develop a model to predict monthly sales volume per store of OmniPower bars and to determine what variables influence sales?

Data

Store	Sales Volumn	Price (cents)	Promotion (\$)	Store	Sales Volumn	Price (cents)	Promotion (\$)
1	4141	59	200	18	2730	79	400
2	3842	59	200	19	2618	79	400
3	3056	59	200	20	4421	79	400
4	3519	59	200	21	4113	79	600
5	4226	59	400	22	3746	79	600
6	4630	59	400	23	3532	79	600
7	3507	59	400	24	3825	79	600
8	3754	59	400	25	1096	99	200
9	5000	59	600	26	761	99	200
10	5120	59	600	27	2088	99	200
11	4011	59	600	28	820	99	200
12	5015	59	600	29	2114	99	400
13	1916	79	200	30	1882	99	400
14	675	79	200	31	2159	99	400
15	3636	79	200	32	1602	99	400
16	3224	79	200	33	3354	99	600
17	2295	79	400	34	2927	99	600

import data

OmniPower <- read.csv(file="OmniPower.csv")
attach(OmniPower)</pre>

Model Fitting

```
# simple linear regression
OmniPowerFit <- lm(Sales ~ Price + Promotion)</pre>
```


Model Fit and Significance

model fit and significance summary(OmniPowerFit) call: lm(formula = Sales ~ Price + Promotion) Residuals: 1Q Median 3Q Min Max -1680.96 -406.40 53.45 297.48 1342.43 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 5837.5208 628.1502 9.293 1.79e-10 *** Price -53.2173 6.8522 -7.766 9.20e-09 *** Promotion 3.6131 0.6852 5.273 9.82e-06 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1 Residual standard error: 638.1 on 31 degrees of freedom Multiple R-squared: 0.7577, Adjusted R-squared: 0.7421

F-statistic: 48.48 on 2 and 31 DF, p-value: 2.863e-10

Residual Analysis

```
# observed sales value
                                 [1] 4141 3842 3056 3519 4226 4630 3507 3754 5000 5120 4011 5015 1916
Sales
                                [15] 3636 3224 2295 2730 2618 4421 4113 3746 3532 3825 1096
                                [29] 2114 1882 2159 1602 3354 2927
# predicted sales value
fitted(OmniPowerFit)
                                1291.616 1291.616 1291.616 1291.616 2014.228 2014.228 2014.228
                                2736.839 2736.839
  residuals
                                                                    254.46726
residuals (OmniPowerFit
                                   -439.96280 -1680.96280
                                                        1280.03720
                                                         311.81399
                                                                    -55.18601
                                                                             -269.18601
                                   -195.61607
                                    144.77232
                                                         617.16071
```


Residual Analysis

residual analyses
plot(OmniPowerFit)

Are the following assumptions adequately met?

- 1. Linearity
- 2. Independence of the residuals
- 3. Normality of residual distribution
- 4. Equal variance of residuals

Prediction

• You can use the multiple regression equation to predict values of the dependent variable. For example, what are the predicted sales for a store charging 79 cents during a month in which promotional expenditures are \$400?

Page 8 of 62

