Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное учреждение образовательное учреждение высшего образования «Национальный исследовательский университет «Московский институт электронной техники»

Институт микроприборов и систем управления

Численное интегрирование

Выполнил студент группы ИВТ-32

Лыков Иван Андреевич

Оглавление

1.	Введение	3
2.	Определенный интеграл	4
3.	Простейший метод прямоугольников	5
	Алгоритм метода прямоугольников	5
	Варианты метода прямоугольников	5
	Пример использования метода левых прямоугольников	6
	Метод прямоугольников для кратных интегралов	7
4.	Метод трапеций	7
	Алгоритм метода трапеций	7
	Пример метода трапеций	8
	Метод трапеций для кратных интегралов	8
5.	Метод Симпсона	9
	Алгоритм метода Симпсона	9
	Пример метода Симпсона	9
	Пример метода Симпсона для двойного интеграла	10
6.	Метод Монте-Карло	10
	Основная идея метода Монте-Карло	10
	Пример метода Монте-Карло для двойного интеграла	11
7.	Оценка погрешностей	11
8.	Заключение	12

1. Введение

Численное интегрирование — это область численных методов, которая изучает алгоритмы для приближенного вычисления определенных интегралов. В случаях, когда аналитическое решение интеграла затруднено или невозможно, используются методы численного интегрирования.

Численное интегрирование нашло широкое применение в различных науках, таких как физика, химия, биология и экономика, где часто требуется вычислять значения функций, для которых нет элементарных первообразных. Методы численного интегрирования помогают находить приближенные значения интегралов с контролируемой погрешностью.

План работы:

- 1. Введение в численное интегрирование.
- 2. Простейший метод прямоугольников.
- 3. Метод трапеций.
- 4. Метод Симпсона.
- 5. Адаптивные методы интегрирования.
- 6. Численные методы для кратных интегралов.
- 7. Оценка погрешностей.
- 8. Заключение.

2. Определенный интеграл

Определенный интеграл функции f(x) на интервале [a, b] задается как:

$$I = \int_{a}^{b} f(x) dx$$

Геометрически определенный интеграл представляет собой площадь под графиком функции f(x) на промежутке [a, b], где значения функции могут быть как положительными, так и отрицательными. Однако для многих функций нахождение первообразной затруднительно или невозможно в аналитическом виде, поэтому приходится прибегать к численным методам.

Численное интегрирование применяется в следующих ситуациях:

- Для функций, которые не имеют элементарной первообразной (например, e^{-x^2})).
- Для функций, определенных таблично или экспериментально.
- Для сложных функций, интегралы которых трудно выразить в аналитическом виде.
- В инженерных и физических приложениях, где требуется высокая точность вычислений.

Рисунок 1 — Определенный интеграл

3. Простейший метод прямоугольников

Метод прямоугольников — один из базовых методов численного интегрирования. Он основан на замене площади под графиком функции суммой площадей прямоугольников.

Алгоритм метода прямоугольников

- 1. **Разбиение интервала.** Интервал [a,b] делится на n равных частей длиной $h=\frac{b-a}{n}$, где n количество шагов, а h длина каждого шага.
- 2. **Аппроксимация функции.** На каждом отрезке $[x_i, x_{i+1}]$ функция заменяется постоянной, равной значению функции в одной из характерных точек интервала (например, в начале или конце отрезка).
- 3. **Приближенное значение интеграла.** Интеграл $I = \int_a^b f(x) dx$ аппроксимируется суммой площадей прямоугольников:

$$I \approx \sum_{i=0}^{n-1} f(x_i) h$$

Здесь $x_i = a + ih$.

Рисунок 2 — Метод прямоугольников

Варианты метода прямоугольников

1. **Метод левых прямоугольников**: Для каждого интервала значение функции f(x) берется в левой точке отрезка $[x_i, x_{i+1}]$:

$$I \approx \sum_{i=0}^{n-1} f(x_i) h$$

2. **Метод правых прямоугольников**: Значение функции берется в правой точке отрезка $[x_i, x_{i+1}]$:

$$I \approx \sum_{i=1}^{n} f(x_i) h$$

3. **Метод средних прямоугольников**: Значение функции берется в середине каждого отрезка $x_i = \frac{x_i + x_{i+1}}{2}$:

$$I \approx \sum_{i=0}^{n-1} f\left(\frac{x_i + x_{i+1}}{2}\right) h$$

Пример использования метода левых прямоугольников

Вычислим приближенное значение интеграла:

$$I = \int_{0}^{1} x^{2} dx$$

по методу левых прямоугольников с n=4 шагами.

1. Ширина шага:

$$h = \frac{1 - 0}{4} = 0.25$$

2. Значения функции в точках $x_0 = 0, x_1 = 0.25, x_2 = 0.5, x_3 = 0.75$:

$$f(0) = 0^{2} = 0,$$

$$f(0.25) = 0.25^{2} = 0.0625,$$

$$f(0.5) = 0.5^{2} = 0.25,$$

$$f(0.75) = 0.75^{2} = 0.5625$$

3. Приближенное значение интеграла:

$$I \approx 0.25 \times (0 + 0.0625 + 0.25 + 0.5625) = 0.21875$$

Аналитическое значение интеграла $\int_0^1 x^2 dx = \frac{1}{3} \approx 0.3333$ так что погрешность метода левых прямоугольников составляет 0.3333 - 0.21875 = 0.114550.

Метод прямоугольников является простым, но точность его оставляет желать лучшего, особенно для функций с сильными изменениями.

Метод прямоугольников для кратных интегралов

Метод прямоугольников может быть обобщён на многомерный случай. Рассмотрим двойной интеграл:

$$I = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$

Для вычисления этого интеграла область интегрирования $[a,b] \times [c,d]$ на сетку с шагами h_x и h_y . Каждой ячейке сетки соответствует прямоугольник с площадью $h_x \times h_y$ и функция f(x,y) аппроксимируется постоянным значением в каждой ячейке (например, берется значение в центре ячейки). Тогда приближенное значение интеграла вычисляется как сумма значений функции в узлах сетки, умноженная на площадь прямоугольников:

$$I \approx \sum_{i=0}^{n_x-1} \sum_{j=0}^{n_y-1} f(x_i, y_j) h_x h_y$$

где $x_i = a + ih_x$ и $y_j = c + jh_y$.

4. Метод трапеций

Метод трапеций является более точным методом по сравнению с методом прямоугольников. Основная идея метода заключается в замене кривой подынтегральной функции ломаной линией. На каждом шаге интегрирования рассматривается трапеция, образованная линиями, соединяющими точки функции на концах отрезков.

Алгоритм метода трапеций

- 1. **Разбиение интервала**. Подобно методу прямоугольников, интервал [a,b] делится на правных частей с шагом $h = \frac{b-a}{n}$.
- 2. **Приближенное значение интеграла**. На каждом интервале $[x_i, x_{i+1}]$ подынтегральная функция аппроксимируется линейной функцией, что соответствует площади трапеции. Приближенное значение интеграла:

$$I \approx \frac{h}{2} \left(f(a) + 2 \sum_{i=1}^{n-1} f(x_i) + f(b) \right)$$

где $x_i = a + ih$.

Рисунок 3 — Метод трапеций

Пример метода трапеций

Вычислим приближенное значение интеграла $\int_0^1 x^2 dx$ методом трапеций с n=4.

1. Шаг:

$$h = 0.25$$

2. Значения функции в точках
$$x_0=0,\ x_1=0.25,\ x_2=0.5,\ x_3=0.75,\ x_4=1$$

$$f(0)=0,$$

$$f(0.25)=0.0625,$$

$$f(0.5)=0.25,$$

$$f(0.75)=0.5625,$$

$$f(1)=1$$

3. Приближенное значение интеграла:

$$I \approx \frac{0.25}{2}(0 + 2(0.0625 + 0.25 + 0.5625) + 1) = 0.328125$$

Аналитическое значение интеграла 0.3333, погрешность составляет 0.3333-0.328125=0.0051750.

Метод трапеций точнее метода прямоугольников, так как использует аппроксимацию функции линейной, а не постоянной функцией.

Метод трапеций для кратных интегралов

Метод трапеций для кратных интегралов также обобщает одномерный метод. В этом случае на каждом шаге интегрирования функция аппроксимируется линейной

поверхностью, что позволяет учесть изменение функции вдоль каждой оси. В двумерном случае метод трапеций можно записать как:

$$I pprox rac{h_\chi h_y}{4} \Biggl(f(a,c) + f(a,d) + f(b,c) + f(b,d) + 2 \sum_{ ext{внутренние точки}} f(x_i,x_j) \Biggr)$$

Метод трапеций может использоваться для вычисления кратных интегралов с высокой точностью, особенно если функция f(x, y) изменяется не слишком резко.

5. Метод Симпсона

Метод Симпсона — это метод более высокого порядка точности, чем метод трапеций. Основная идея метода заключается в аппроксимации функции на каждом шаге параболой (квадратичной функцией). Это позволяет значительно увеличить точность вычисления интегралов, особенно для гладких функций.

Алгоритм метода Симпсона

- **1. Разбиение интервала.** Интервал [a, b] делится на n равных частей с шагом h. Важно, чтобы число отрезков n было четным.
- **2. Приближенное значение интеграла.** Метод Симпсона использует комбинацию средних и крайних значений функции, что позволяет точно аппроксимировать интеграл:

$$I \approx \frac{h}{3} \left((f(a) + 4 \sum_{i=1, \text{He e e T}}^{n-1} f(x_i) + 2 \sum_{i=2, \text{ve T}}^{n-2} f(x_i) + f(b) \right)$$

Пример метода Симпсона

Вычислим приближенное значение интеграла $\int_0^1 x^2 dx$ методом Симпсона с n=4.

1. Шаг:

$$h = 0.25$$

2. Значения функции:

$$f(0) = 0, f(0.25) = 0.0625, f(0.5) = 0.25, f(0.75) = 0.5625, f(1) = 1$$

3. Приближенное значение интеграла:

$$I \approx 0.253(0 + 4(0.0625 + 0.5625) + 2(0.25) + 1) = 0.3333333$$

Метод Симпсона дает практически точное значение интеграла для квадратичной функции, так как параболическая аппроксимация идеально подходит для этой функции.

Пример метода Симпсона для двойного интеграла

Метод Симпсона можно обобщить на кратные интегралы, используя ту же идею аппроксимации функции параболами.

Для вычисления двойного интеграла

$$I = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$

область интегрирования $[a,b] \times [c,d]$ делится на четное количество участков вдоль обеих осей. При этом используется аналог метода Симпсона для каждой переменной. Приближенная формула будет включать веса функции в разных точках сетки:

$$I \approx \frac{h_x h_y}{9} \sum_{i=0}^{n_x} \sum_{j=0}^{n_y} w_i w_j f(x_i, y_j)$$

где w_i и w_j — коэффициенты Симпсона (например, w=1 для крайних точек, w=4 для нечетных точек, w=2 для четных).

6. Метод Монте-Карло

Метод Монте-Карло — это вероятностный метод, который особенно полезен для интегралов в высоких размерностях. Его основная идея заключается в случайном выборе точек внутри области интегрирования и использовании среднего значения функции в этих точках для оценки интеграла.

Основная идея метода Монте-Карло

Для вычисления многомерного интеграла

$$I = \int_{\Omega} f(x_1, x_2, \dots, x_n) dV$$

где Ω — область интегрирования, метод Монте-Карло выбирает случайные точки $(x_1, x_2, ..., x_n)$ в пределах области Ω . Приближенное значение интеграла вычисляется как среднее значение функции $f(x_1, x_2, ..., x_n)$ в этих точках, умноженное на объем области Ω :

$$I \approx \frac{V}{N} \sum_{i=1}^{N} f(x_1^{(i)}, x_2^{(i)}, \dots, x_n^{(i)})$$

где V — объем области интегрирования, N — количество случайных точек, а $f(x_1^{(i)}, x_2^{(i)}, ..., x_n^{(i)})$ — значение функции в случайно выбранной точке.

Метод Монте-Карло особенно эффективен для многомерных интегралов, так как его точность не сильно зависит от размерности пространства. Однако для получения высокой точности требуется большое количество случайных точек.

Пример метода Монте-Карло для двойного интеграла

Рассмотрим пример вычисления двойного интеграла

$$I = \int_{0}^{1} \int_{0}^{1} e^{-(x_i^2 + y_i^2)} dy dx$$

с помощью метода Монте-Карло.

- 1. Случайным образом выбираются N точек (x_i, y_i) в пределах единичного квадрата $[0,1] \times [0,1]$.
- 2. Для каждой точки вычисляется значение функции $f(x_i, y_i) = e^{-(x_i^2 + y_i^2)}$.
- 3. Приближенное значение интеграла:

$$I \approx \frac{1}{N} \sum_{i=1}^{N} e^{-(x_i^2 + y_i^2)}$$

Метод Монте-Карло особенно удобен, когда область интегрирования имеет сложную форму или когда функция сильно изменяется в различных точках области интегрирования.

7. Оценка погрешностей

Точность численного метода зависит от размера шага h и типа аппроксимации:

- Метод прямоугольников имеет погрешность порядка O(h).
- Метод трапеций $O(h^2)$.
- Метод Симпсона $O(h^4)$.

Для повышения точности можно либо уменьшить шаг h, либо использовать методы более высокого порядка.

8. Заключение

Численные методы интегрирования, включая методы прямоугольников, трапеций, Симпсона и Монте-Карло, играют ключевую роль в современных вычислительных приложениях. Каждый из этих методов имеет свои особенности и области применения, что позволяет выбрать наиболее эффективный подход для конкретной задачи. Простые методы, такие как метод прямоугольников, являются интуитивно понятными и легко реализуемыми, однако они требуют большого числа шагов для достижения высокой точности. В то время как методы более высокого порядка, такие как метод Симпсона, обеспечивают большую точность при меньшем количестве вычислений.

Метод Монте-Карло, в свою очередь, особенно ценен при решении задач с многомерными интегралами, где традиционные методы сталкиваются с трудностями. Он использует случайные числа для оценки интеграла и оказывается эффективным даже в случаях сложных и высокоразмерных областей интегрирования.

Таким образом, выбор численного метода зависит от специфики задачи, ее сложности, требуемой точности и доступных вычислительных ресурсов. Каждый из описанных методов является важным инструментом в арсенале современных вычислительных методов, позволяя решать задачи, которые иначе было бы крайне трудно или невозможно решить аналитически.