Integrated System For Bodily Functions

Dr. Kushan Medagoda

Integration of system

- Homeostasis needs integration of body systems
- This is monthly achieved by way of hormones
- The cardiovascular and renal systems have intimate relationship
- This relationship is important mostly to maintain blood pressure

Integration of cardiovascular and renal system

- Important hormones in this regulation
- Angiotensin II
- Aldosterone
- -ADH
- Adrenaline
- Noradrenaline

Integration of cardiovascular and renal system

- Revise formation of angiotensin II
- Angiotensin II
 - Power full vasoconstrictor
 - Stimulates secretion of aldosterone
 - Stimulate thirst
 - Stimulate ADH secretion

Regulation blood pressure in healthy person

- $BP = CO \times TPR$
- Rising TPR immediately increases the blood pressure
- This is not going to sustain
- Kidney will respond by way of diuresis and natriuresis
- This results loss of water and salt
- Pressure returns to normal

ECF volume and BP

- Increase CSF volumes increases blood pressure
- Direct effect by way of increasing CO
- Secondary effect increased blood flow through tissue induces vasoconstriction by way of autoregulation

Hypertension

- Sustained increase in blood pressure
- Beyond the normal limits
- Hypertension results
 - Hypertrophy of the myocardium
 - Damage the major blood vessels
 - Renal damage leading to chronic renal failure

Renin-angiotensin system – its role in hypertension

- Result renal retention of salt and water
- Angiotensin II
 - Directly act on kidneys to causes salt and water retention
 - Stimulate aldosterone secretion

Renin-angiotensin system — its role in hypertension

Component of renin-angiotensin

Hypertension in renal artery stenosis

- In renal artery stenosis
 - Ischemic kidney releases renin
 - Increases angiotensin II
- In co-aractaion
 - Both kidneys are ischemic

Why is dangerous to give ACEI in bilateral renal artery stenosis?

Pressure control mechanisms

Rapidly acting mechanisms

- almost entirely neural
- fast and powerful
 - baro receptor mechanism
 - chemo receptor mechanism
 - CNS ischemic mechanism

Results

- venoconstriction and shifting of blood
- positive chronotropic and inotropic action
- peripheral vasoconstriction

Pressure control mechanisms

- Mechanisms act after minute
 - Renin angiotensin
 - Capillary fluid shift

Pressure control mechanisms

- Long term
 - Renal mechanisms

Shock

- A syndrome inadequate tissue perfusion
- Types
 - Hypovolaemic
 - Haemorrhagic
 - Traumatic

Shock

- Features
 - Cool, clammy, skin
 - Cyanosis
 - Tachycardia
 - Pallor
 - Hypotension
 - Tachypnoea

- Rapid compensatory mechanisms
- Reduction of CO -> less baroreceptor stimulation -> stimulation of
- Sympathetic out put
 - Tachycardia
 - Vasoconstriction
 - Generalized except brain and heart
 - Marked in skin clod clammy hands
 - Also in viscera and kidneys

- Venoconstriction
 - Widespread reflex venoconstriction
 - Splenic, skin, and pulmonary veins
 - Shift blood from capacitance vessels to systemic circulation
- Renal vasoconstriction
 - Both afferent and efferent arterioles
 - More in efferent
 - Result reduction of GFR

- Increase angiotensin II
 - Vasoconstriction
 - Stimulation of aldosterone secretion
 - Stimulation of thirst subfornical organ
 - Stimulation of ADH secretion
 - Vasoconstriction
 - Retention of water
- Stimulation of adrenal medullary secretions
 - Increased noradrenaline

- Chemoreceptor stimulation due to
 - Anemic and stagnant hypoxia
 - Acidosis
 - Results
 - Tachypnea

Long term compensatory mechanisms

- Mobilization of tissue fluids
 - Most are protein free
 - Rapid entry of albumin from stores
 - Increase in erythropoietin levels
 - Increase level of 2,3 DPG