ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)"

ЖУРНАЛ ПРАКТИКИ

Студента 2 курса	Гординского Дмитрия Михайловича			
Институт №8 «Информационные т	гехнологии и прикладная математика»			
Кафедра №804 <u>«Теория вероятно</u>	стей и компьютерное моделирование»			
Учебная группа М80-204Б-20				
Направление 01.03.04	Прикладная математика			
Вид практики Учебная (вычислительная) в Московском Авиационном Институте(НИУ)				
Руководитель практики от МАИ <u>3</u>	айцева О.Б.			
Гординский Д.М /	/ 11 июля 2022 г.			

1. Место и сроки проведения практики

Дата начала практики	29 <u>июня</u> 2022 г.	
Дата окончания практики	11 <u>июня</u> 2022 г.	
Наименование предприятия \underline{N}	ИОСКОВСКИЙ АВИАЦИОННЫ	ІЙ ИНСТИТУТ(НИУ)
Название структурного подра	аздления <u>Кафедра 804</u>	
2. Инструктаж по технике б	езопасности	
	/ 29 <u>июня</u> 2022 г.	
3. Индивидуальное задание	студенту	
1. Разобраться с теорией.		
2. Привести пример решения за	адачи.	
3. Написать отчет.		
4. План выполнения индиви	идуального задания	
1. Изучить теорию по Моделям	выживаемости.	
2. Ознакомиться с необходимых ским представлением.	ми библиотеками для работы с	с данными и их графиче
3. Решить задачу по анализу да	анных с применением методов	анализа выживаемости
Руководитель практики от М	'АИ:/	
	/ 29 <u>июня</u> 2022 г.	
5. Отзыв руководителя праг Задание на практику выполне чете студента, полностью соог оценку отлично.	ено в полном объеме. Матери	
Руководитель	/	/ 11 <u>июля</u> 2022 г.

Отчет студента

Содержание

1	Что такое "Анализ выживаемости"?	3
	1.1 Основные понятия	3
	1.1.1 Функция выживания (Survival function)	3
	1.1.2 Функция риска (Hazard function)	3
	1.1.3 Цензурирование (censoring)	4
	1.1.4 Медиана ожидаемого времени жизни (median number of survival days)	4
	1.1.5 Доверительный интервал (confidence interval)	4
	1.1.6 Усечение (truncation)	4
	1.1.7 Оценка Каплана — Мейера, оценка Нельсона — Аалена	4

1 Что такое "Анализ выживаемости"?

Анализ выживаемости — набор статистических моделей, благодаря которым можно оценить вероятность наступления того или иного события. Анализ занимается моделированием процессов наступления интересующих нас (критических) событий для элементов той или иной совокупности (изначально — «смерти» для элементов совокупности живых существ).

Интересным событием может быть что угодно. Это может быть фактическая смерть, рождение, выход на пенсию и т. д.

Hазвание "survival analysis" взято из медицины, т.к. цель анализа заключается в изучении продолжительности жизни пациента после приема препарата или других факторов влияния на здоровье.

1.1 Основные понятия

1.1.1 Функция выживания (Survival function)

Пусть T — неотрицательная случайная величина, представляющая собой время ожидания до наступления некоторого события. Для простоты будем использовать терминологию анализа выживаемости, называя исследуемое событие «смертью», а время ожидания – временем «выживания»

 Φ ункция выживания сопоставляет некоторому числу t вероятность того, что случайная величина T примет значение, не меньшее t. Иначе говоря, это вероятность того, что некоторое состояние «проживет» как минимум t единиц времени:

$$S(t) = \mathbb{P}\{T > t\} = 1 - \mathbb{P}\{T \le t\}$$

Например, если мы хотим знать, какова вероятность того, что безработный индивид не сможет найти работу в течение полугода после начала поиска, то достаточно рассмотреть функцию выживания для t=6 месяцев.

1.1.2 Функция риска (Hazard function)

 Φ ункцию риска можно охарактеризовать как вероятность того, что событие произойдет за бесконечно малый интервал времени при условии, что оно не произошло к моменту времени t.

$$h(t) = \lim_{dt \to 0} \frac{\mathbb{P}(t \le T < t + dt | T \ge t)}{dt}$$

Числитель этого выражения — условная вероятность того, что событие произойдет в интервале (t,t+dt), если оно не произошло ранее, а знаменатель — ширина интервала. Разделив одно на другое, получаем интенсивность осуществления события в единицу времени. Устремляя ширину интервала к нулю и переходя к пределу, получаем мгновенную интенсивность осуществления события.

Т. к. вышесвязанные функции связаны друг с другом, можно показать, что:

$$S(t) = \exp\left(-\int_0^t h(x)dx\right)$$

Интеграл в фигурных скобках в этом уравнении называют *кумулятивным риском* и обозначают как:

$$H(t) = \int_0^t h(x)dx$$

Можно рассматривать H(t) как сумму всех рисков при переходе от момента времени $0\ \mathrm{K}\ t$.

1.1.3 Цензурирование (censoring)

Цензурирование — вид неполноты информации, при котором наблюдения не содержат точной длительности изучаемого состояния. Различают цензурирование справа, слева и интервальное:

- 1. Цензурировано справа о наблюдаемом состоянии известно лишь, что оно продлилось не менее определенного времени.
- 2. Цензурировано слева о состоянии известно лишь, что оно продлилось не более определенного времени.
- 3. На интервале известны только границы длительности.

1.1.4 Медиана ожидаемого времени жизни (median number of survival days)

Это точка на временной оси, в которой кумулятивная функция выживания равна 0,5. Другими словами, медиана — время, выраженное в месяцах или годах, когда ожидается, что половина пациентов будет жива. Это означает, что шанс выжить после этого времени составляет 50 процентов.

1.1.5 Доверительный интервал (confidence interval)

Доверительный интервал — интервал, который покрывает неизвестный параметр с заданной надёжностью. Вероятность, с которой в условиях данного эксперимента полученные экспериментальные данные можно считать надежными (достоверными), называют доверительной вероятностью или надежностью. Величина доверительной вероятности определяется характером производимых измерений. Мы будем считать доверительную вероятность равной 95 %.

1.1.6 Усечение (truncation)

Усечением, или урезанием, называется вид неполноты информации, при котором какая-то область возможных значений длительности оказывается недостаточно представленной в выборке: состояния, длительность которых слишком велика или, наоборот, слишком мала, просто не включаются в анализируемые данные. В нашей задаче мы будем называть их (removed) — пациенты, которые больше не являются частью нашего эксперимента. Если человек умирает или подвергается цензуре, то он попадает в эту категорию.

1.1.7 Оценка Каплана — Мейера, оценка Нельсона — Аалена

При отсутствии цензурирования и усечения для оценивания закона распределения вероятностей может использоваться эмпирическая функция распределения, из которой легко получить оценки для других характеристик случайной величины: survival function etc. Но в нашем случае это невозможно, т. к. мы имеем дело с неполнотой данных. Эту проблему решают непараметрические методы оценки.

Оценка Каплана — Мейера

Оценка Каплана-Мейера — это непараметрическая статистика, используемая для оценки функции выживания на основе данных о жизни. В медицинских исследованиях он часто используется для измерения доли пациентов, живущих в течение определенного времени после лечения или постановки диагноза. Например: подсчет

количества времени, которое прожил конкретный пациент после того, как у него был диагностирован рак или началось его лечение.

$$\hat{S}(t) = \prod_{t_j \le t} \frac{n_j - d_j}{n_j}$$

 $\hat{S}(t)=$ Вероятность того, что испытуемый жив в момент времени t

 $n_i =$ Количество испытуемых, оставшихся в живых непосредственно перед моментом времени t_i

 $d_j = \ddot{\text{Количество}}$ событий в момент времени t_j Можем переписать формулу выше так:

$$S(t_j) = S(t_{j-1})(1-\frac{d_j}{n_j})$$

 $S(t_j)=$ Вероятность того, что испытуемый жив в момент времени t_j $n_j=$ Количество испытуемых, оставшихся в живых непосредственно перед моментом

 $d_j =$ Количество событий в момент времени t_j S(0) = 1 $t_0 = 0$ Оценка Нельсона — Аалена

Мы можем визуализировать совокупную информацию о выживании, используя функцию риска $Hельсона-Aaлeнa\ h(t)$. Функция риска h(t) дает нам вероятность того, что субъект, находящийся под наблюдением в момент времени t, имеет интересующее событие (смерть) в это время. Чтобы получить информацию о функции опасности, мы не можем преобразовать оценку Каплана-Мейера. Для этого существует соответствующая непараметрическая оценка кумулятивной функции опасности:

$$\hat{H}(t) = \sum_{t_j \leq t} \frac{d_j}{n_j}$$

где

 $\hat{H}(t)=$ Кумулятивная вероятность опасности

 $n_i =$ Количество испытуемых, оставшихся в живых непосредственно перед моментом времени t_i

 $d_{j}=$ Количество событий в момент времени t_{j}