ГУАП

		КАФЕДРА №	43		
ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ:					
ПРЕПОДАВАТЕЛЬ:					
доцент	/	/		/	В. Н.
(должность, учёная степень, звание)		(подпись)	(дата защиты)		Коромысличенко (инициалы, фамилия)

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №1

«Концепт требований к системе хранения онтологической модели структур данных»

ПО КУРСУ: «Разработка и анализ требований»

РАБОТУ ВЫПОЛНИЛ СТУДЕНТ:	4134к (номер группы)	H.A. Костяков (инициалы, фамилия)
	1	
	/ (подпись сту,	/ дента) (дата отчета)

Концепция требований к системе хранения онтологической модели структур данных

Система хранения онтологической модели структур данных предназначена для организации, хранения, управления и использования онтологий в различных предметных областях. Данная система должна обеспечивать целостность данных, гибкость расширения и поддержку интеграции с другими системами.

Основные требования

Функциональные требования

1. Поддержка хранения онтологий

- Поддержка различных онтологических моделей
- Версионирование онтологий.

2. Механизмы управления онтологиями

- CRUD-операции (создание, чтение, обновление, удаление) для онтологий.
- Импорт и экспорт онтологий в различных форматах.
- Валидация структуры онтологий перед сохранением.

3. Запросы и поиск

- Поддержка языков запросов.
- Фильтрация и поиск по классам, свойствам и связям.
- Поддержка семантического поиска и reasoning.

4. Интеграция с внешними системами

• Поддержка REST API для взаимодействия с другими системами.

5. Управление доступом и безопасностью

- Аутентификация и авторизация
- Поддержка шифрования данных.
- Логирование действий пользователей.

Нефункциональные требования

1. Производительность

- Оптимизация хранения данных для быстрого выполнения запросов.
- Поддержка индексирования онтологий для ускорения поиска.

2. Масштабируемость

- Возможность горизонтального масштабирования.
- Поддержка распределенного хранения данных.

3. Надежность и отказоустойчивость

- Механизмы резервного копирования и восстановления данных.
- Автоматическое дублирование и распределение нагрузки.

4. Совместимость

• Интеграция с существующими системами хранения данных

Техническая архитектура

- База данных: Гибридное хранилище (для метаданных).
- Сервер приложений: REST API
- Интерфейс пользователя: Веб-платформа для администрирования и управления онтологиями.

Заключение

Предложенная концепция системы хранения онтологической модели структур данных предоставляет мощные инструменты для работы с онтологиями, обеспечивая гибкость, масштабируемость и безопасность хранения. Реализация такой системы позволит повысить эффективность обработки знаний и интеграции данных в различных доменах.