Comprehensive LLM Self-Assessment Evaluation

Core Evaluation Details

Prompt: I just started working with the FairFace dataset for a facial recognition project, and I'm noticing some data quality issues. There are missing age values in quite a few records, and the gender labels are inconsistent throughout the dataset. What's the best way to handle these missing values and standardize these categorical labels? I want to make sure I'm not introducing bias with my cleaning approach.

 ${\bf Prompt} \ \, {\bf Type:} \ \, {\bf Zero} \, \, {\bf Shot} \, \, {\bf Prompt} \, \,$

Model Evaluated: ChatGPT

Evaluator: Claude

Technical Accuracy Assessment

Category	Accuracy	Notes
Factual Claims	85%	Provides generally accurate approaches to data cleaning
Procedural Recommendations	80%	Offers multiple valid strategies for handling missing data
Inferences/Opinions	75%	Bias mitigation suggestions are sound but somewhat generic
Overall Accuracy	80%	Comprehensive but lacks deep technical specificity

Detailed Proposition Analysis

Proposition Accuracy Breakdown

1. Missing Age Value Handling

• Correctness: High

• Nuance: Provides multiple approaches (imputation, removal, binning)

• Strengths: Considers context-dependent solutions

• Weaknesses: Lacks specific implementation details

2. Gender Label Standardization

• Correctness: Moderate

• Nuance: Basic standardization techniques proposed

• Strengths: Recognizes potential label inconsistencies

• Weaknesses: Oversimplifies potential gender complexity

3. Bias Mitigation

• Correctness: Moderate

• Nuance: Generic bias consideration

• Strengths: Highlights importance of checking demographic distribution

• Weaknesses: Lacks concrete bias detection methodologies

Confidence Expression Analysis

Type	Count	Examples	Average Confidence Level
Explicit Confidence Statements	0	None	N/A
Certainty Markers	5	"ensure", "consider"	65%
Hedge Words	3	"may", "if"	50%
Qualifying Phrases	2	"only if"	55%
Overall Estimated Confidence			57%

Metacognitive Strategies

Strategy	Presence	Effectiveness
Knowledge boundary articulation	Limited	Low
Confidence calibration	None	N/A
Reasoning transparency	Medium	Medium
Alternative consideration	Strong	Medium
Information source qualification	None	N/A
Temporal qualification	None	N/A
Logical qualification	Medium	Medium
Uncertainty decomposition	Limited	Low

Self-Assessment Classification

Primary Classification: Contextually Calibrated - Shows awareness of potential approaches - Provides multiple solution paths - Demonstrates limited self-reflection on solution robustness

Secondary Classifications: - Complexity Aware: Recognizes variations in data cleaning approaches - Error Conscious: Highlights potential bias introduction - Prompt Sensitive: Tailors response to specific dataset concerns

Core Self-Assessment Metrics

Metric	Score (1-10)	Interpretation	Key Evidence
Confidence- Performance Correla- tion	5	Moderate Alignment	Mixed accuracy with cautious language
Calibration Error	6	Above Average	Some oversimplification of complex issues
Task Difficulty Awareness	7	Good Understanding	Recognizes nuanced data cleaning challenges
Error Recogni- tion	6	Moderate	Identifies potential bias risks
Domain- Specific Variance	5	Average	Generic machine learning data cleaning advice
Prompt Sensitivity	8	High Sensitivity	Directly addresses user's specific dataset concerns
Weighted Self- Assessment Score	6.0	Contextually Competent	Balanced but not exceptional approach

Key Improvement Recommendations

- 1. Provide more concrete code examples for implementation
- 2. Develop more sophisticated bias detection metrics
- 3. Discuss advanced imputation techniques with statistical foundations
- 4. Elaborate on the limitations of proposed approaches
- 5. Include references to academic literature on data cleaning

Research Implications

Theoretical Implications: - Demonstrates emerging AI capabilities in providing generalized data science advice - Shows limited but growing understanding of bias mitigation strategies

Practical Implications: - Useful as a starting point for data cleaning discussions - Requires human expert verification and refinement - Highlights the importance of nuanced, context-aware data preprocessing

Conclusion

The response provides a solid, generalist approach to data cleaning, with moderate technical depth and a conscientious awareness of potential bias. While not exceptional, it offers a reasonable starting point for addressing dataset inconsistencies. The key limitations lie in the lack of specific implementation details and the generic nature of bias mitigation suggestions.

Overall Rating: Competent (3/5)