Variables aleatorias discretas (Poisson)

Probabilidad I

25 de noviembre de 2020.

Variable aleatoria Poisson

- Muchos experimentos consisten en observar los tiempos de ocurrencia de llegadas aleatorias. Por ejemplo:
 - El número de marcaciones de teléfono erróneas en un día.
 - El número de personas que entran en un establecimiento cada día
 - El número de personas que sobreviven a cierta edad.
 - El número de accidentes reportadas sobre una avenida en un día.
- La distribución Poisson se usa para modelar el número de arribos que ocurren en un periodo de tiempo fijo
- La distribución Poisson también es de utilidad para aproximar a la distribución binomial cuando la probabilidad de éxito es pequeña.

Definición(Variable aleatoria Poisson)

Una v.a. X se dice que tiene distribución Poisson con parámetro $\lambda > 0$, denotada como $X \sim Po(\lambda)$, si su función de masa de probabilidad está dada por la siguiente expresión:

$$f(x) = \begin{cases} \frac{e^{-\lambda}\lambda^x}{x!} & \text{para } x = 0, 1, 2, \dots \\ 0 & \text{en otro caso} \end{cases}$$

Momentos

Para una variable aleatoria X tal que $X \sim Po(\lambda)$ se tiene que:

$$\mathbb{E}(X) = \lambda$$
 $\operatorname{Var}(X) = \lambda$ $m_X(t) = e^{-\lambda(e^t - 1)}$

Función de masa de probabilidad en R

Se puede encontrar la probabilidad acumulada para una v.a. con distribución Poisson usando la función dpois(), por ejemplo:

$$\mathbb{P}(X=x)$$
 para $0 \le x \le 15$, $x \in \mathbb{N}$, donde $X \sim Po(4)$

```
round(dpois(0:15,4),3) #Redondeo con tres decimales
    [1] 0.018 0.073 0.147 0.195 0.195 0.156 0.104 0.060 0.030 0.013
##
   [13] 0.001 0.000 0.000 0.000
```

$$\mathbb{P}(X=5)$$
 donde $X \sim Po(4)$

```
dpois(5,lambda=4)
## [1] 0.1562935
```

```
1-(dpois(0,4)+dpois(1,4))
## [1] 0.9084218
```

Función de distribución acumulada en R.

Se puede encontrar la probabilidad acumulada para una v.a. con distribución Poisson usando la función ppois(), por ejemplo:

 $\mathbb{P}(X \leq x)$ para $0 \leq x \leq 15$ donde $X \sim Po(4)$

```
##
    [1] 0.01831564 0.09157819 0.23810331 0.43347012 0.62883694 0.785
        0.88932602 0.94886638 0.97863657 0.99186776 0.99716023 0.999
   [13] 0.99972628 0.99992367 0.99998007 0.99999511
\mathbb{P}(X < 6) donde X \sim Po(4)
ppois(6,4)
  [1] 0.889326
```

ppois(0:15,4)

```
1-(ppois(1,4))
## [1] 0.9084218
```

$f(x) = \mathbb{P}(X = x)$

$F(x) = \mathbb{P}(X \le x)$

Gráficas $F_X(x)$ y $f_X(x)$

Simulación de valores de la distribución Poisson en R.

Para simular valores de la distribución Poisson en R se puede hacer uso de la función rbinom(valores a simular, λ), por ejemplo:

```
#Simulación de 150 valores de la distribución Poisson(lambda=10)
rpois(150,10)
        6 7 12 14 12 14 11 8 11 6 12 9 10 9 10 11 9 7 10 9 6 10 13 11 11
        9 11 10 11 18 13 9 9 15 11 7 9 11 11 7 13 5 12 11 15 8 10
       6 11 15 7 9 10 14 13 5 13 11 12 8 11 15 7 10 4 13 9 19 7 9 9 14
## [126] 13 12 11 13 10 7 13 14 12 6 10 8 8 11 10 7 12 7 10 10 11 15 12 7 9
```

```
simula_pois<-rpois(1000,4.5)
ggplot(mapping = aes(simula_pois))+
 geom_histogram(binwidth = 0.5,color="darkblue",fill="lightblue")+
  scale_x_continuous(name = "X",breaks = seq(0, 15, 1),
                     limits=c(-1,16)
```



```
table(simula_pois)
## simula_pois
    0 1 2 3 4 5 6 7 8 9 10 11 12
##
   13 52 121 176 196 165 132 69 50 15 7 3 1
##
cumsum(simula_pois)[1000]/length(simula_pois)
## [1] 4.356
```

```
library(latex2exp)
kable(data.frame("x"=c(0:10), "y"=dpois(0:10,4), "z"=ppois(0:10,4)),
col.names = c("$x$","$\mathbb{P}(X)=x$","$\mathbb{P}(X)\leq x$"),
escape = F, booktabs = T)%>%
 kable_styling(latex_options = c("striped", 'hover'), font_size = 8)
```

$x \mathbb{P}(X) = x \mathbb{P}(X)$	$(x) \leq x$
- () (
0 0.0183156 0.01	83156
1 0.0732626 0.09	15782
2 0.1465251 0.23	81033
3 0.1953668 0.43	34701
4 0.1953668 0.62	88369
5 0.1562935 0.78	51304
6 0.1041956 0.88	93260
7 0.0595404 0.94	88664
8 0.0297702 0.97	86366
9 0.0132312 0.99	18678
10 0.0052925 0.99	71602

library(kableExtra)

Histograma para diferentes valores de λ


```
library(dplyr)
library(latex2exp)
 kable(data_frame("x"=c(0:10), "y"=dpois(0:10,4), "z"=ppois(0:10,4)),
                                                                 \verb|col.names| = c("$x$","$\\\mathbb{P}(X) = x$","$\\\mathbb{P}(X)\\\mathbb{P}(X) \\\mathbb{P}(X) \\
                    kable_styling(latex_options = c("striped"),font_size = 8, bootstra
```

x	$\mathbb{P}(X) = x$	$\mathbb{P}(X) \le x$
0	0.0183156	0.0183156
1	0.0732626	0.0915782
2	0.1465251	0.2381033
3	0.1953668	0.4334701
4	0.1953668	0.6288369
5	0.1562935	0.7851304
6	0.1041956	0.8893260
7	0.0595404	0.9488664
8	0.0297702	0.9786366
9	0.0132312	0.9918678
10	0.0052925	0.9971602

library(kableExtra)