

Report No.: 31550197.001 Page 1 of 30

Electromagnetic Compatibility Test Report

Prepared in accordance with

FCC Part 15C, RSS-210 Issue 8 and ANSI C63.10

On

VirtualZone® Family

Model: DAMPER SSD

SmartStuff, Inc.
7001 Sassafrass CT
Summerville, SC 29485 USA

Prepared by:

TUV Rheinland of North America, Inc.

Report No.: 31550197.001 Page 2 of 30

Manufacturer's statement - attestation

The manufacturer; SmartStuff, Inc., as the responsible party for the equipment tested, hereby affirms:

- a) That he has reviewed and concurs that the test shown in this report are reflective of the operational characteristics of the device for which certification is sought;
- b) That the device in this test report will be representative of production units;
- c) That all changes (in hardware and software/firmware) to the subject device will be reviewed.
- d) That any changes impacting the attributes, functionality or operational characteristics documented in this report will be communicated to the body responsible for approving (certifying) the subject equipment.

Richard Day Jr.	RQCDay 15
Printed name of official	Signature of official
SmartStuff, Inc. 7001 Sassafrass CT Summerville, SC 29485 USA	05 February 2015
Address	Date
860-202-1845	rday@SmartStff.com
Telephone number	Email address of official

FCC ID: 2ADJJ-SSI-DAMPER

Report No.: 31550197.001 Page 3 of 30

Richard Day Jr. SmartStuff, Inc. Ph: 860-202-1845 Client: 7001 Sassafrass CT Fax: Summerville, SC 29485 USA Email: rday@SmartStff.com SmartStuff, Inc. Identification: Serial No.: PRODUCTION PROTOTYPE VirtualZone® Family Date tested: 31 January 2015 Model DAMPER SSD Test item: TUV Rheinland of North America 762 Park Avenue Tel: (919) 554-3668 Testing location: Youngsville, NC 27596-9470 Fax: (919) 554-3542 U.S.A. Emissions: FCC Part 15, Subpart C, RSS-210 Issue 8: FCC Parts 15.207(a) and RSS-GEN 7.2.4, Test specification: FCC Parts 15.249(d), 15.209, 15.215(c) and RSS-210 A2.9, RSS-GEN 7.2.1 FCC Part 15.249 and RSS-210 Annex 2.9, FCC Parts 15.249(a), 15.249(c), RSS-210 A2.9(a), FCC Part 2.1093 and RSS-102, Issue 4, Test Result The above product was found to be Compliant to the above test standard(s) tested by: Mark Ryan reviewed by: Michael Moranha Michal Moranda 7 March 2015 Signature Date Date Other Aspects: None

Abbreviations: OK, Pass, Compliant, Complies = passed

 $Fail,\,Not\;Compliant,\,Does\;Not\;Comply\;=failed$

N/A = not applicable

Industry Canada

90552 and 100881 Testing Cert #3331.05 2932H-1 and 2932H-2

Report No.: 31550197.001 Page 4 of 30

TABLE OF CONTENTS

I	GE	NERAL INFORMATION	5
	1.1 1.2 1.3 1.1	SCOPE	5 5
2	LAI	BORATORY INFORMATION	7
	2.1 2.2 2.3 2.4	ACCREDITATIONS	8 8
3	PRO	ODUCT INFORMATION	9
	3.1 3.2	PRODUCT DESCRIPTION	
4	RA	DIATED EMISSIONS IN TRANSMIT MODE	.10
	4.1 4.2 4.1 4.1	RADIATED EMISSIONS - FCC PARTS 15.249, RSS-210 A2.9(A) BAND EDGE REQUIREMENTS - FCC PART 15.249(D), RSS-210 2.2 CONDUCTED EMISSIONS ON AC MAINS – FCC 207(A) AND RSS-GEN 7.2.4 99% POWER BANDWIDTH	.21 .24
5	RF	EXPOSURE	. 29
	5.1	EXPOSURE REQUIREMENTS – FCC KDB # 447498 DO1 AND RSS-102 ISSUE 4	.29

Report No.: 31550197.001 Page 5 of 30

1 General Information

1.1 Scope

This report is intended to document the status of conformance with the requirements of the FCC Part 15C, RSS-210 Issue 8 and ANSI C63.10 based on the results of testing performed on 31 January 2015 on the VirtualZone® Family, Model No. SENSOR SSS, manufactured by SmartStuff, Inc. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT (Equipment Under Test) in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

1.3 Revision History

Revision	Date	Description of Revision
	05February2015	Initial Release
В	12February2015	Updated testing procedures
С	6 March 2015	Correct typo in FCC ID

Report No.: 31550197.001 Page 6 of 30

1.	1 Sum	ma	ry of Test Results							
Annlicant	SmartStuff 7001 Sassa			Tel	860-202-184	5	Contact	Richard Day Jr	Richard Day Jr.	
Applicant			C 29485 USA	Fax			e-mail	rday@SmartSt	ff.com	
Description		DA	MPER	Model		DAN	MPER SSD			
Serial Num	ber	Pro	oduction Prototype	Test V	oltage/Freq.	24 V	'AC			
Test Date C	completed:	31.	January 2015	Test E	ngineer	Mar	k Ryan			
Sta	ndards		Description		Severity Leve	l or L	imit	Worst-case Values	Test Result	
FCC Part 15, Subpart C Standard			Radio Frequency Devices- Subpart C: Intentional Radiators	See cal	led out parts be	See Below	Complies			
RSS-210 Issue 8 Standard			Low-Power Licence-exempt Radiocommunication Devices Category I Equipment	See called out parts below			See Below	Complies		
FCC Part 15 RSS-210 Ar			Operation within the band 2400 to 2483.5 MHz	See called out parts below			See Below	Complies		
FCC Parts 1 15.249(c), R	5.249(a), SS-210 A2.9)(a)	Radiated Output Power for Fundamental and Harmonic Frequencies	Fund: Shall not exceed 50 mV/m at 3m Harmonics: Shall not exceed 500µV/m (0.5 mV/m) at 3m, (unresticted bands)			19.4 mV/m 243.2 μV/m	Complies		
	5.249(d), 15(c) and RS SS-GEN 7.2		Out-of-Band Spurious Emissions and Band Edges (EUT in Transmit Mode)	Below the applicable limits			20.72 dBμV	Complies		
FCC Parts 1 RSS-GEN 7	5.207(a) and .2.4		Conducted Emissions on AC Mains		(a) and RSS-21 z - 30MHz	0,		64.58 dBμV	Complies	
RSS-GEN 4	.6.1		Occupied Bandwidth	99% Power Band Width			1.09 MHz	Complies		
FCC Part 2. RSS-102, Is			RF Exposure and Antenna Gain Calulation	SAR or MPE Requirements			0.226 mW	Complies		

Report No.: 31550197.001 Page 7 of 30

2 Laboratory Information

2.1 Accreditations

2.1.1 US Federal Communications Commission

TUV Rheinland of North America located at 762 Park Avenue, Youngsville, NC 27596-9470 is accredited by the commission for performing testing services for the general public on a fee basis. This laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (Registration No 90552 and 100881). The laboratory scope of accreditation includes: Title 47 CFR Part 15, and 18. The accreditation is updated every 3 years.

2.1.2 ILAC / A2LA

The laboratory has been assessed and accredited by A2LA in accordance with ISO Standard 17025:2005 (Certificate Number: 3331.05, Master Code: 134288). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 Industry Canada

Registration No.: 2932H-1 The OATS has been accepted by Industry Canada to perform testing to 3 and to 10 meters, based on the test procedures described in ANSI C63.4-2009.

Registration No.: 2932H-2 The 5 meter chamber has been accepted by Industry Canada to perform testing to 3 meters, based on the test procedures described in ANSI C63.4-2009.

2.1.4 Japan – VCCI

The Voluntary Control Council for Interference by Information Technology Equipment (VCCI) is a group that consists of Information Technology Equipment (ITE) manufacturers and EMC test laboratories. The purpose of the Council is to take voluntary control measures against electromagnetic interference from Information Technology Equipment, and thereby contribute to the development of a socially beneficial and responsible state of affairs in the realm of Information Technology Equipment in Japan. TUV Rheinland at the 762 Park Ave. Youngsville, N.C 27596 address has been assessed and approved in accordance with the Regulations for Voluntary Control Measures. (Laboratory Registration No: A-0034).

Report No.: 31550197.001 Page 8 of 30

2.1.5 Sample Calculation – radiated & conducted emissions

The field strength is calculated by subtracting the Amplifier Gain and adding the Cable Loss and Antenna Correction Factor to the measured reading. The basic equation is as follows:

Field Strength
$$(dB\mu V/m) = RAW - AMP + CBL + ACF$$

Where: $RAW = Measured level before correction (dB<math>\mu V$)

AMP = Amplifier Gain (dB)

CBL = Cable Loss (dB)

ACF = Antenna Correction Factor (dB/m)

$$\mu V/m = 10^{\frac{\textit{dB}\mu V \, / \, \textit{m}}{20}}$$

Sample radiated emissions calculation @ 30 MHz

Measurement +Antenna Factor-Amplifier Gain+Cable loss=Radiated Emissions (dBuV/m)

$$25 \text{ dBuV/m} + 17.5 \text{ dB} - 20 \text{ dB} + 1.0 \text{ dB} = 23.5 \text{ dBuV/m}$$

2.2 Measurement Uncertainty Emissions

	$ m U_{lab}$	$ m U_{cispr}$								
Radiated Disturbance @ 10m										
30 MHz – 1,000 MHz	3.3 dB	5.2 dB								
Conducted Disturbance @ M	ains Terminals									
150 kHz – 30 MHz	1.18 dB	3.6 dB								
Disturbance Power										
30 MHz – 300 MHz	3.88 dB	4.5 dB								

2.3 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

Report No.: 31550197.001 Page 9 of 30

2.4 Measurement Equipment Used

Equipment	Manufacturer	Model #	Serial/Inst #	Last Cal dd/mm/yy	Next Cal dd/mm/yy
	Radiate	ed Emissions (5 Meter Chan	nber)	₁ aa/mm/yy	ı aanınıyy
Receiver, EMI	Rohde & Schwarz	ESIB40	100043	19-Aug-14	19-Aug-15
Spectrum Analyzer	Agilent Tec.	E7405A	US39440161	20-Aug-14	20-Aug-15
Amplifier, preamp	Agilent Technologies	8449B	3008A01480	14-Aug-13	14-Aug-15
Ant. BiconiLog	Chase	CBL6140A	1108	16-Sep-13	16-Sep-15
Antenna Horn 1-18 GHz	EMCO	3115	3115	30-Dec14	30-Dec15
Antenna Horn 18-26.5 GHz	ATM	42-442-6/cal	G181104-01	31-Dec-14	31-Dec-15
Cable, Coax	MicroCaox	MKR300C-0-0-1200-500500	002	22-Aug-14	22-Aug-15
Cable, Coax	MicroCaox	MKR300C-0-1968-500310	005	22-Aug-14	22-Aug-15
Cable, Coax	MicroCaox	UFB29C-1-5905-50U-50U	009	22-Aug-14	22-Aug-15
Cable, Coax	Andrew	FSJ1-50A	045	22-Aug-14	22-Aug-15
3.0 GHz High Pass Filter	Bonn Electronik	BHF 3000	025155	14-Aug-13	14-Aug-15
Notch Filter	Micro-tronics	BRM50702	049	14-Aug-13	14-Aug-15
	Ge	neral Laboratory Equipmen	t		
Meter, Multi & Thermocouple	Fluke	179	90580752	19-Aug-14	19-Aug-15
Meter, Temp/Humid/Barom	ExTech	SD700	Q677933	06-May-13	06-May-15
Meter, Temp/Humid/Barom	ExTech	SD700	Q677942	06-May-13	06-May-15

3 Product Information

3.1 Product Description

The EUT is a family of wireless Zone Temperature Control System with a Bluetooth Low-Energy (BLE) transmitter. The models in the family are SENSOR SSS, DAMPER SSD and CONTROLLER SSC.

Two sets of each EUT were provided for testing. One is normal a configuration for unintentional cabinet radiation. The second was modified with test firmware to allow the low, medium and high hopping channels to continuously transmit with modulation. External batteries were included on the modified devices to allow long-term transmissions.

There is enough difference is size and layout of the circuit boards to require separate testing and certification. The Model DAMPER SSD was the device provided for testing in this report.

For the other members of the family, refer to TUV test report Number 31453815.001 for the Sensor and report number 31550198.001 for the Controller.

3.2 Equipment Modifications

No modifications were needed to bring product into compliance.

Report No.: 31550197.001 Page 10 of 30

4 Radiated Emissions in Transmit mode

4.1 Radiated emissions - FCC Parts 15.249, RSS-210 A2.9(a)

The field strength of emissions from intentional radiators operated within these frequency bands shall

comply with the following limits:

Fundamental Frequency: 2400 to 2483.5 MHz $-50\,$ mV/m (94 dB μ V/m) at 3m.

Harmonic Frequencies: $500 \mu V/m$ (54 dB $\mu V/m$) at 3m.

Spurious Emissions: To the limits of FCC Part 15.209 and RSS-GEN 7.2.1.

4.1.1 Over View of Test

Results	Complies (as tested	l per this	report)		Date	27-30 Janu	uary 2015					
Standard		FCC Parts 15.205, 15.209, 15.215(c), 15.249(a), 15.249(c), 15.249(d) RSS-210 A2.9, and RSS-GEN										
Product Model	DAMPER SSD				Serial#	Produ	action Prototy	/pe				
Test Set-up	Tested in a 5m Semi placed on a 1.0m x 1 Emissions above 1 C the ground plane	1.5m foar	n table 80)cm	above the	ground	plane on a tu	rn-table. For				
EUT Powered By	24 VAC	Temp	74° F	Hı	umidity	19%	Pressure	1008 mbar				
Perf. Criteria	(Below Limit)		Perf. Verification			Readings Under Limit						
Mod. to EUT	None		Test Pe	rfor	rmed By	Mark	Mark Ryan					

4.1.2 Test Procedure

Testing was performed in accordance with 47 CFR Part 15, ANSI C63.10:2009, RSS-GEN Issue 4. These test methods are listed under the laboratory's A2LA Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices.

4.1.3 Deviations

Since all emissions outside the band are within the limits of FCC Part 15.209 and RSS-GEN 7.2.1, the emissions shown below are also compliant with FCC Parts 15.205, 15.209, 15.215(c), 15.249(d), RSS-210 A8.5, and RSS-GEN 7.2.1.

4.1.4 Final Test

All final radiated spurious emissions measurements were below (in compliance) the limits.

The worst –case emissions are shown below. All other emissions are on file at TUV Rheinland.

Report No.: 31550197.001 Page 11 of 30

4.1.4.1 Final Graphs and Tabulated Data

Orientations:

ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
V	1.8	29	55.66	0.00	5.89	28.54	90.09		
V	1.2	246	56.93	0.00	5.89	28.54	91.36		
Н	1.8	29	54.01	0.00	5.89	28.54	88.44		
V	1.2	246	55.27	0.00	5.89	28.54	89.70		
Н	1.3	333	53.75	0.00	5.95	28.56	88.26		
V	1.2	137	55.27	0.00	5.95	28.56	89.78		
Н	1.3	333	52.06	0.00	5.95	28.56	86.57		
V	1.2	137	50.28	0.00	5.95	28.56	84.79		
Н	1.9	146	58.90	0.00	5.89	28.54	93.33	114.00	-20.06
V	2.2	70	51.81	0.00	5.89	28.54	86.24		
Н	1.9	146	57.50	0.00	5.89	28.54	91.93	94.00	-2.07
V	2.2	70	49.82	0.00	5.89	28.54	84.25		
	Polar (H/V) V V H V H V H V H V H V H H V	Polar Pos (H/V) (m) V 1.8 V 1.2 H 1.8 V 1.2 H 1.3 V 1.2 H 1.3 V 1.2 H 1.3 V 1.2 H 1.3	Polar Pos (H/V) (m) (deg) V 1.8 29 V 1.2 246 H 1.8 29 V 1.2 246 H 1.3 333 V 1.2 137 H 1.3 333 V 1.2 137 H 1.9 146 V 2.2 70 H 1.9 146	Polar Pos (H/V) (m) (deg) (dBuV) V 1.8 29 55.66 V 1.2 246 56.93 H 1.8 29 54.01 V 1.2 246 55.27 H 1.3 333 53.75 V 1.2 137 55.27 H 1.3 333 52.06 V 1.2 137 50.28 H 1.9 146 58.90 V 2.2 70 51.81 H 1.9 146 57.50	Polar (H/V) Pos (deg) Value (dBuV) Gain (dB) V 1.8 29 55.66 0.00 V 1.2 246 56.93 0.00 H 1.8 29 54.01 0.00 V 1.2 246 55.27 0.00 H 1.3 333 53.75 0.00 V 1.2 137 55.27 0.00 H 1.3 333 52.06 0.00 V 1.2 137 50.28 0.00 H 1.9 146 58.90 0.00 V 2.2 70 51.81 0.00 H 1.9 146 57.50 0.00	Polar (H/V) Pos (deg) Value (dBuV) Gain (dB) Loss (dB) V 1.8 29 55.66 0.00 5.89 V 1.2 246 56.93 0.00 5.89 H 1.8 29 54.01 0.00 5.89 V 1.2 246 55.27 0.00 5.89 H 1.3 333 53.75 0.00 5.95 V 1.2 137 55.27 0.00 5.95 H 1.3 333 52.06 0.00 5.95 V 1.2 137 50.28 0.00 5.95 H 1.9 146 58.90 0.00 5.89 H 1.9 146 57.50 0.00 5.89	Polar (H/V) Pos (deg) Value (dBuV) Gain (dB) Loss (dB) Factor (dB/m) V 1.8 29 55.66 0.00 5.89 28.54 V 1.2 246 56.93 0.00 5.89 28.54 H 1.8 29 54.01 0.00 5.89 28.54 V 1.2 246 55.27 0.00 5.89 28.54 H 1.3 333 53.75 0.00 5.95 28.56 V 1.2 137 55.27 0.00 5.95 28.56 V 1.2 137 50.28 0.00 5.95 28.56 V 1.2 137 50.28 0.00 5.95 28.56 H 1.9 146 58.90 0.00 5.89 28.54 V 2.2 70 51.81 0.00 5.89 28.54 H 1.9 146 57.50 0.00 5.89 28.54 <td>Polar (H/V) Pos (H/V) Pos (H/V) Value (GB) Gain (GB) Loss (GB) Factor (GB/M) Value (GB/M) V 1.8 29 55.66 0.00 5.89 28.54 90.09 V 1.2 246 56.93 0.00 5.89 28.54 91.36 H 1.8 29 54.01 0.00 5.89 28.54 88.44 V 1.2 246 55.27 0.00 5.89 28.54 89.70 H 1.3 333 53.75 0.00 5.95 28.56 88.26 V 1.2 137 55.27 0.00 5.95 28.56 86.57 V 1.2 137 55.27 0.00 5.95 28.56 86.57 V 1.2 137 50.28 0.00 5.95 28.56 84.79 H 1.9 146 58.90 0.00 5.89 28.54 93.33 V 2.2 70<</td> <td>Polar (H/V) Pos (H/V) Pos (H/V) Value (GB) Gain (GB) Loss (GB/m) Factor (GB/m) Value (GB/V/m) Limit (GB/V/m) V 1.8 29 55.66 0.00 5.89 28.54 90.09 V 1.2 246 56.93 0.00 5.89 28.54 91.36 H 1.8 29 54.01 0.00 5.89 28.54 88.44 V 1.2 246 55.27 0.00 5.89 28.54 89.70 H 1.3 333 53.75 0.00 5.95 28.56 88.26 V 1.2 137 55.27 0.00 5.95 28.56 89.78 H 1.3 333 52.06 0.00 5.95 28.56 86.57 V 1.2 137 50.28 0.00 5.95 28.56 84.79 H 1.9 146 58.90 0.00 5.89 28.54 93.33 114.00</td>	Polar (H/V) Pos (H/V) Pos (H/V) Value (GB) Gain (GB) Loss (GB) Factor (GB/M) Value (GB/M) V 1.8 29 55.66 0.00 5.89 28.54 90.09 V 1.2 246 56.93 0.00 5.89 28.54 91.36 H 1.8 29 54.01 0.00 5.89 28.54 88.44 V 1.2 246 55.27 0.00 5.89 28.54 89.70 H 1.3 333 53.75 0.00 5.95 28.56 88.26 V 1.2 137 55.27 0.00 5.95 28.56 86.57 V 1.2 137 55.27 0.00 5.95 28.56 86.57 V 1.2 137 50.28 0.00 5.95 28.56 84.79 H 1.9 146 58.90 0.00 5.89 28.54 93.33 V 2.2 70<	Polar (H/V) Pos (H/V) Pos (H/V) Value (GB) Gain (GB) Loss (GB/m) Factor (GB/m) Value (GB/V/m) Limit (GB/V/m) V 1.8 29 55.66 0.00 5.89 28.54 90.09 V 1.2 246 56.93 0.00 5.89 28.54 91.36 H 1.8 29 54.01 0.00 5.89 28.54 88.44 V 1.2 246 55.27 0.00 5.89 28.54 89.70 H 1.3 333 53.75 0.00 5.95 28.56 88.26 V 1.2 137 55.27 0.00 5.95 28.56 89.78 H 1.3 333 52.06 0.00 5.95 28.56 86.57 V 1.2 137 50.28 0.00 5.95 28.56 84.79 H 1.9 146 58.90 0.00 5.89 28.54 93.33 114.00

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor

Notes: Red = Peak Detector, Blue = Average Detector

The Limit using the Peak Detector is 20dB higher than the Average Detector limit.

EUT in Orientation C is worst case as shown. All other data is on file at TUV Rheinland.

This highlighted frequency and orientation was worst case (2402 MHz, Orientation A).

Notes:

The maximum average Field Value of 91.93 dBµV/m is below the limit of FCC Part 15.249 and RSS-210 (A2.9).

Therefore, this report is tested to the requirements of FCC Part 15.249 and RSS-210 (A2.9)

Date: 28.JAN.2015 09:17:26

Plot of all hopping frequencies, Showing Orientation C – Horizontal is worst case near the low channel. Plots of the other orientations and polarities are on file at TUV Rheinland.

4.1.4.2 Maximum Time-weighted Emission:

The EUT was modified to transmit continuously at 100% Duty cycle.

Even at 100% Duty Cycle the EUT is compliant to the rules.

Report No.: 31550197.001 Page 13 of 30

4.1.4.3 Emissions Outside the Frequency Band:

Radiated Emissions – 30 MHz to 1 GHz Horizontal

Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
40.56										

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor \pm Uncertainty

Notes: All emissions were below the noise floor of the instrumentation.

The EUT was set to hopping all channels.

The signals shown below 200 MHz are anomalies in the preamp of the measuring instrument. A notch filter at the transmitter fundamental frequency was used.

Report No.: 31550197.001 Page 14 of 30

Radiated Emissions – 30 MHz to 1 GHz Vertical

Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
40.56	V	1.4	10	6.43	0.00	0.75	9.19	16.36	40.00	-23.64

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor ± Uncertainty

Notes: All emissions were below the noise floor of the instrumentation.

The EUT was set to hopping all channels.

The signals shown below 200 MHz are anomalies in the preamp of the measuring instrument. A notch filter at the transmitter fundamental frequency was used.

Report No.: 31550197.001 Page 15 of 30

Radiated Emissions – 1 GHz to 10 GHz Horizontal

Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
4804.00	V	1.6	309	43.23	33.84	11.60	32.88	53.87	54.00	-0.13
4804.00	Н	1.6	309	50.74	33.84	11.60	32.88	61.38	74.00	-12.62
Mid:										
4880.00	Н	1.5	302	42.87	33.77	11.71	33.03	53.83	54.00	-0.17
4880.00	Н	1.5	302	49.88	33.77	11.71	33.03	60.84	74.00	-13.16
Hi:										
4960.00	Н	1.3	307	42.52	33.66	11.81	33.19	53.87	54.00	-0.13
4960.00	Н	1.3	307	49.75	33.66	11.81	33.19	61.10	74.00	-12.90

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor ± Uncertainty

Notes: A Band-Notch filter was used to attenuate the fundamental frequency.

The EUT was set to hopping all channels.

The worst case emission was a harmonic at 53.87 dBµV/m at 3m, (avg) which is equivalent to 493 µV/m.

The Blue emissions are using the Average detector

The **RED** emissions are using the Peak detector

Report No.: 31550197.001 Page 16 of 30

Radiated Emissions - 1 GHz to 10 GHz

Vertical

Emission	ANT	ANT	Table	FIM	Amp	Cable	ANT	E-Field	Spec	Spec
Freq	Polar	Pos	Pos	Value	Gain	Loss	Factor	Value	Limit	Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
4804.00	V	1.6	330	41.60	33.84	11.60	32.88	52.24	54.00	-1.76
4804.00	V	1.6	330	49.18	33.84	11.60	32.88	59.82	74.00	-14.18
Mid:										
4880.00	V	1.8	335	39.66	33.77	11.71	33.03	50.62	54.00	-3.38
4880.00	V	1.8	335	47.74	33.77	11.71	33.03	58.70	74.00	-15.30
Hi:										
4960.00	V	1.9	330	37.94	33.66	11.81	33.19	49.29	54.00	-4.71
4960.00	V	1.9	330	49.39	33.66	11.81	33.19	60.74	74.00	-13.26

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor ± Uncertainty

Notes: The EUT was set to hopping all channels.

Worst case emission is in the Horizontal Polarity (see previous page)

The **Blue** emissions are using the Average detector

The **RED** emissions are using the Peak detector

All spurious and harmonic emissions are below the level of Part 15.209, including those not in restricted bands. A Band- Notch filter was used to attenuate the fundamental frequency.

Report No.: 31550197.001 Page 17 of 30

Radiated Emissions – 10 GHz to 18 GHz Horizontal

Emission Freq (MHz)	ANT Polar (H/V)	ANT Pos (m)	Table Pos (deg)	FIM Value (dBuV)	Amp Gain (dB)	Cable Loss (dB)	ANT Factor (dB/m)	E-Field Value (dBuV/m)	Spec Limit (dBuV/m)	Spec Margin (dB)

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor ± Uncertainty

Notes: The EUT was set to hopping all channels.

No measureable emissions were noted.

A High-Pass filter was used to attenuate the fundamental frequency.

No emissions were seen above the noise floor of the instrumentation.

Report No.: 31550197.001 Page 18 of 30

Radiated Emissions – 10 GHz to 18 GHz Vertical

Emission Freq	ANT Polar	ANT Pos	Table Pos	FIM Value	Amp Gain	Cable Loss	ANT Factor	E-Field Value	Spec Limit	Spec Margin
(MHz)	(H/V)	(m)	(deg)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)

Spec Margin = E-Field Value - Limit, E-Field Value = FIM Value - Amp Gain + Cable Loss + ANT Factor ± Uncertainty

Notes: The EUT was set to hopping all channels.

No measureable emissions were noted.

A High-Pass filter was used to attenuate the fundamental frequency.

No emissions were seen above the noise floor of the instrumentation.

Report No.: 31550197.001 Page 19 of 30

Radiated Emissions – 18 GHz to 25 GHz Horizontal

Report No.: 31550197.001 Page 20 of 30

Radiated Emissions - 18 GHz to 25 GHz Vertical

Notes: The EUT was set to hopping all channels.

No measureable emissions were noted.

No correction factors were used for the above graph. The number of Sweep Points was increased to 8000.

The Measuring distance was decreased to 1 meter.

No notch filter was used for this frequency range.

Report No.: 31550197.001 Page 21 of 30

4.2 Band Edge requirements - FCC Part 15.249(d), RSS-210 2.2

4.2.1 Test Over View

Results	Complies (as tested	Complies (as tested per this report)							uary 2015	
Standard	FCC Part 15.249(d).	, RSS 210	2.2							
Product Model	DAMPER SSD				Serial#	Prod	Production Prototype			
Test Set-up	Radiated Measurem	ent								
EUT Powered By	24 VAC	Temp	73° F	H	umidity	18%	Pres	sure	1010 mbar	
Perf. Criteria	(Below Limit)		Perf. V	ication	Read	Readings Under Limit				
Mod. to EUT	None		Test Pe	rmed By	Mark	Ryan				

4.2.2 Test Procedure

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Sec. 15.209, whichever is the lesser attenuation.

4.2.3 Deviations

There were no deviations from the test methodology listed in the test plan.

4.2.4 Final Test

The EUT met the performance criteria requirement as specified in the standards.

Report No.: 31550197.001 Page 22 of 30

Date: 29.JAN.2015 08:51:57

Notes: Measured using the Peak Detector, Line F1 is the Band Edge is at 2.4 GHz. Line D2 is the Restricted Band limit line and line D1 is the -20dBc Limit.

Plot includes Correction Factors.

The nearest restricted band (2390MHz) is 10 MHz below the band edge

The Highest frequency outside the band is at $61.88 \text{ dB}\mu\text{V}$ (using the Peak Detector) which is more than 20dB below peak level of the lowest channel.

Figure 1: Lower Band Edge Measurement (Radiated Emission)

Report No.: 31550197.001 Page 23 of 30

Date: 29.JAN.2015 09:01:11

Note: Measured using the Peak detector. Band Edge is at 2.483.5 MHz (Line F1), line D1 is the average restricted band limit and line D2 is the peak restricted band limit.

Band edge at 2483.5 MHz is also the start of a restricted band, so the restricted band rules apply.

The Highest frequency outside the band is at $50.28dB\mu V$ (using the Peak Detector) which is below the Average restricted-band limits)

Figure 2: Upper Band Edge Measurement (Radiated Emission)

The EUT is compliant with the rules.

Report No.: 31550197.001 Page 24 of 30

4.1 Conducted Emissions on AC Mains – FCC 207(a) and RSS-GEN 7.2.4

This test measures the electromagnet levels of spurious signals generated by the EUT on the AC power line that may affect the performance of other nearby electronic equipment.

4.1.1 Over View of Test

Results	Complies (as tested per this report)						27 Janua	ry 2015	
Standard	FCC Parts 15.207(a)	and RS	S-GEN 7	.2.4					
Product Model	DAMPER SSD			Se	rial#	NA	NA		
Test Set-up	Tested in shielded ro	Tested in shielded room. EUT placed on table, see test plans for details							
EUT Powered By	24 VAC	Temp	71° F	Hun	nidity	28%	Pressure	994 mbar	
Frequency Range	150 kHz – 30 MHz								
Perf. Criteria	(Below Limit)	Perf.	Perf. Verification Reading				ngs Under Limit for L1 & Neutral		
Mod. to EUT	None	Test P	Test Performed By Engine				me		

4.1.1 Test Procedure

Conducted and FCC emissions tests were performed using the procedures of ANSI C63.10 including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration.

The frequency range from 150kHz – 30MHz was investigated for conducted emissions.

Conducted Emissions measurements were performed in either the shielded room or ground plane location (with attached vertical ground plane) using procedures specified in the test plan and standard.

The EUT was powered by a 24 VAC transformer. The emissions were made on the AC Mains side of the transformer.

4.1.2 Deviations

There were no deviations from the test methodology listed in the test plan for the conducted emission test.

4.1.3 Final Test

All final conducted emissions measurements were below (in compliance) the limits. It lists the final measurement data under the worst case operating modes, configurations, and/or cable positions. It also reflects the results including any modifications and/or special accessories.

Report No.: 31550197.001 Page 25 of 30

Final Graphs and Tabulated Data

Conducted Emissions @ 120V/60Hz

Line 1

Freq	ID	Quasi	Ave	Loss	T Limiter	Limit	Limit	Margin	Margin
(MHz)	(1,2,3,N)	(dBuV)	(dBuV)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)	(dB)
0.15	1	32.70	3.61	0.02	9.97	66.00	56.00	-23.30	-42.39
0.16	1	33.07	3.14	0.03	9.97	65.46	55.46	-22.40	-42.33
0.33	1	22.84	0.15	0.03	9.98	59.55	49.55	-26.70	-39.39

Quasi Spec Margin = Quasi FIM + Cable Loss + LISN CF - Quasi Limit ± Uncertainty Ave Spec Margin = Ave FIM + Cable Loss + LISN CF - Ave Limit ± Uncertainty

Combined Standard Uncertainty $u_c(y) = \pm 1.66$ dB Expanded Uncertainty $U = ku_c(y)$ k = 2 for 95% confidence

Notes: EUT in continuous hopping mode.

All other Quasi-Peak and Average emissions are below 0 dBµV.

Report No.: 31550197.001 Page 26 of 30

Conducted Emissions @ 120V/60Hz

Neutral

Freq	ID	Quasi	Ave	Loss	T Limiter	Limit	Limit	Margin	Margin
(MHz)	(1,2,3,N)	(dBuV)	(dBuV)	(dB)	(dB)	(dBuV)	(dBuV)	(dB)	(dB)
0.15	N	33.01	3.77	0.02	9.97	66.00	56.00	-22.99	-42.23
0.18	N	33.30	3.04	0.03	9.96	64.58	54.58	-21.29	-41.55
0.33	N	24.24	0.43	0.03	9.96	59.35	49.35	-25.12	-38.93

Quasi Spec Margin = Quasi FIM + Cable Loss + LISN CF - Quasi Limit \pm Uncertainty Ave Spec Margin = Ave FIM + Cable Loss + LISN CF - Ave Limit \pm Uncertainty

Notes: EUT in continuous hopping mode.

All other Quasi-Peak and Average emissions are below 0 dBµV.

Report No.: 31550197.001 Page 27 of 30

4.1 99% Power Bandwidth

For the purpose of Section A1.1, the 99% bandwidth shall be no wider than .25% of the center frequency for devices operating between 70-900MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. This device operates above 900 MHz.

4.1.1 Test Over View

Results	Complies (as tested	Complies (as tested per this report)							uary 2015
Standard	RSS-GEN 4.6.1								
Product Model	DAMPER	DAMPER Serial# Production Prototype							pe
Test Set-up	Radiated Measureme	ent							
EUT Powered By	24 VAC	Temp	73° F	H	umidity	18%	Pressu	ure	1010 mbar
Perf. Criteria	(Below Limit) Perf. Ver			Perf. Verification		Read	Readings Under Limit		
Mod. to EUT	None Test Performed By						Ryan		

4.1.2 Test Procedure

Using the procedures of RSS-GEN section 4.6.1, the 30 kHz resolution bandwidth is 1% of the 3 MHz span. The 100 kHz video bandwidth is \geq 3 times that of the resolution bandwidth.

4.1.3 Deviations

There were no deviations from the test methodology listed in the test plan for the Electrical Fast transients (EFT) Immunity test.

4.1.4 Final Results

The Maximum measured 99% bandwidth is 1.08 MHz, which is well below the 12 MHz limit.

Frequency	99% BW
(MHz)	(MHz)
2402	1.070
2440	1.070
2480	1.082

99% Power Band Width.

Report No.: 31550197.001 Page 28 of 30

4.1.5 Final Data

Date: 29.JAN.2015 09:05:53

Figure 3-99% Power Bandwidth = 1.088 MHz. The Worst-Case shown.

Span = 3MHz, RBW = 30 kHz (1% of Span), VBW = 100 kHz ($\geq 3x \text{ RBW}$)

The EUT is compliant to the requirements of RSS-210 A1.1.3

Report No.: 31550197.001 Page 29 of 30

5 RF Exposure

5.1 Exposure Requirements – FCC KDB # 447498 DO1 and RSS-102 Issue 4

FCC KDB # 447498 DO1 V05r02 - Mobile and Portable Device RF Exposure and Procedures and Equipment, Appendix A shows that the SAR Text Exclusion Threshold for a device with a separation distance of 5 mm at 2450 MHz is 10 mW.

RSS-102 section 2.5.1 states that a device is exempt from SAR evaluation if the frequency is "above 2.2 GHz and up to 3 GHz inclusively, and with output power (i.e. the higher of the conducted or radiated (EiRP.) source-based, time-averaged output power) that is less than or equal to 20 mW for general public use...".

5.1.1 Test Procedure

If the antenna is located > 20cm from the user, then an MPE calculation is acceptable.

If the antenna is located < 20cm (portable / mobile / hand-held device) from the user, then SAR evaluation is required.

5.1.2 Evaluation

The EUT will be used as a portable device where the antenna may be located less than 20cm from the user, therefore SAR evaluation is required.

5.1.2.1 Evaluation for FCC

FCC 447498 DO1 Mobile Portable RF Exposure V05r02, Appendix A shows that the SAR Text Exclusion Threshold for a device with a worst-case separation distance of 5mm at 2450 MHz is 10 mW.

The minimum power that requires SAR testing with a separation distance of 5mm at 2.445 GHz is 10 mW.

The maximum EiRP peak power output of the EUT is: 0.646 mW (See calculation next page).

The EUT is well below the 25mW power level.

5.1.2.2 Evaluation for Industry Canada

The maximum EiRP peak power output of the EUT is: 0.646 mW (See calculation next page).

The EUT is well below the 20mW power level.

5.1.3 Conclusion

SAR data is not required for either FCC or Industry Canada.

Note: The 0.646 mW power level has not been time-averaged. (100% Duty Cycle).

This is considered to be the absolute worst case.

Report No.: 31550197.001 Page 30 of 30

5.1.4 Calculated EiRP Level

Notes: The EUT does not have a means to make direct measurements.

This EiRP calculation was made using the maximum peak value in section 4.1.4.1 of this report (Page 10) which is $93.33 \text{ dB}\mu\text{V/m}$ at 3m.

Per the equation in section 1.3.1 of FCC Document # 412172 D01 Determining ERP and EiRP v01;

EiRP =
$$p_t \times g_t = (E \times d)^2 / 30$$
,

where:

 $\mathbf{p_t}$ = transmitter output power in watts,

 $\mathbf{g_t} = \text{Numeric gain of transmitting antenna (unitless)},$

 $\textbf{E} = \text{electric field strength in V/m}; \quad E = 10^{(93.33\ /20)} \ / \ 10^6 \ = 0.0464 \ V/m,$

 \mathbf{d} = measurement distance in meters; d = 3m,

EiRP = $(0.0464 \times 3)^2 / 30 = 0.000646$ Watts or 0.646 mW

5.1.5 Antenna Gain Calculation:

The antenna used in the EUT is a Rufa antenova® Model A5887, SDM type antenna that is soldered to the circuit.

The stated Maximum output power by the Manufacturer is 1 mW or 0 dBm.

The Maximum EiRP output is 0.646 mW or -1.9 dBm.

The Gain of the antenna would be 0 dBm + (-1.09 dBm) = -1.9 dBi or a numeric gain of: 0.65.