Introduction to Quantum Mechanics by David J. Griffiths Problems

Chris Doble

March 2023

Contents

Ι	Theory	1
1	The Wave Function	2
	1.1	2
	1.2	3
	1.3	4
	1.4	5
	1.5	6
	1.6	7
	1.8	7
	1.9	8
	1.10	10
	1.14	11
	1.15	12
	1.16	12
	1.18	14
2	Time-Independent Schrödinger Equation	14
	2.1	14
	2.2	15

Part I

Theory

1 The Wave Function

1.1

(a)

$$\begin{split} \langle j^2 \rangle &= \sum j^2 P(j) \\ &= 14^2 \frac{1}{14} + 15^2 \frac{1}{14} + 16^2 \frac{3}{14} + 22^2 \frac{2}{14} + 24^2 \frac{2}{14} + 25^2 \frac{5}{14} \\ &= \frac{3217}{7} \\ &\approx 459.571 \\ \langle j \rangle^2 &= \left(\sum j P(j) \right)^2 \\ &= 441 \end{split}$$

$$\Delta j_{14} = -7$$

$$\Delta j_{15} = -6$$

$$\Delta j_{16} = -5$$

$$\Delta j_{22} = 1$$

$$\Delta j_{24} = 3$$

$$\Delta j_{25} = 4$$

$$\sigma^2 = \sum_{i=1}^{2} (\Delta j)^2 P(j)$$

$$= \frac{130}{7}$$

$$\approx 18.571$$

(c)
$$\sigma^2 = \sqrt{\langle j^2 \rangle - \langle j \rangle^2} = 18.571$$

(a)

$$\langle x^2 \rangle = \int_0^h x^2 \rho(x) \, dx$$

$$= \int_0^h \frac{x^{3/2}}{2\sqrt{h}} \, dx$$

$$= \frac{1}{2\sqrt{h}} \left[\frac{2}{5} x^{5/2} \right]_0^h$$

$$= \frac{h^2}{5}$$

$$\langle x \rangle^2 = \frac{h^2}{9}$$

$$\sigma = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$

$$= \sqrt{\frac{h^2}{5} - \frac{h^2}{9}}$$

$$= h\sqrt{\frac{4}{45}}$$

$$= \frac{2}{3\sqrt{5}} h$$

$$1 - \int_{\langle x \rangle - \sigma}^{\langle x \rangle + \sigma} \rho(x) \, dx = 1 - \frac{1}{2\sqrt{h}} [2\sqrt{x}]_{\langle x \rangle - \sigma}^{\langle x \rangle + \sigma}$$

$$= 1 - \frac{1}{\sqrt{h}} \left(\sqrt{\frac{1}{3}h} + \frac{2}{3\sqrt{5}}h - \sqrt{\frac{1}{3}h} - \frac{2}{3\sqrt{5}}h \right)$$

$$= 1 - \left(\sqrt{\frac{1}{3} + \frac{2}{3\sqrt{5}}} - \sqrt{\frac{1}{3} - \frac{2}{3\sqrt{5}}} \right)$$

$$\approx 0.393$$

(a)

$$\begin{split} \rho(x) &= A e^{-\lambda(x-a)^2} \\ 1 &= \int_{-\infty}^{\infty} \rho(x) \, dx \\ &= A \int_{-\infty}^{\infty} e^{-\lambda(x-a)^2} \, dx \\ &= A \sqrt{\frac{\pi}{\lambda}} \\ A &= \sqrt{\frac{\lambda}{\pi}} \end{split}$$

$$\langle x \rangle = \sqrt{\frac{\lambda}{\pi}} \int_{-\infty}^{\infty} x e^{-\lambda(x-a)^2} dx$$

$$= a$$

$$\langle x^2 \rangle = \sqrt{\frac{\lambda}{\pi}} \int_{-\infty}^{\infty} x^2 e^{-\lambda(x-a)^2} dx$$

$$= a^2 + \frac{1}{2\lambda}$$

$$\sigma = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$

$$= \sqrt{a^2 + \frac{1}{2\lambda} - a^2}$$

$$= \frac{1}{\sqrt{2\lambda}}$$

(a)

$$\begin{split} 1 &= \int_{-\infty}^{\infty} |\Psi(x,0)|^2 \, dx \\ &= \left(\frac{A}{a}\right)^2 \int_0^a x^2 \, dx + \left(\frac{A}{b-a}\right)^2 \int_a^b (b-x)^2 \, dx \\ &= \frac{1}{3} A^2 a + \left(\frac{A}{b-a}\right)^2 \left[-\frac{1}{3} (b-x)^3\right]_a^b \\ &= \frac{1}{3} A^2 a + \frac{1}{3} A^2 (b-a) \\ &= \frac{1}{3} A^2 b \\ A &= \sqrt{\frac{3}{b}} \end{split}$$

(c) x = a

(d)

$$\int_0^a |\Psi(x,0)|^2 dx = \frac{3}{a^2 b} \left[\frac{1}{3} x^3 \right]_0^a$$
$$= \frac{a}{b}$$

(e)

$$\begin{split} \langle x \rangle &= \int_{-\infty}^{\infty} x |\Psi(x,0)|^2 \, dx \\ &= \frac{3}{a^2 b} \left[\frac{1}{4} x^4 \right]_0^a + \frac{3}{b(b-a)^2} \int_a^b x (b-x)^2 \, dx \\ &= \frac{3a^2}{4b} + \frac{3}{b(b-a)^2} \int_a^b (b^2 x - 2bx^2 + x^3) \, dx \\ &= \frac{3a^2}{4b} + \frac{3}{b(b-a)^2} \left[\frac{1}{2} b^2 x^2 - \frac{2}{3} bx^3 + \frac{1}{4} x^4 \right]_a^b \\ &= \frac{3a^2}{4b} + \frac{3}{b(b-a)^2} \left(\frac{1}{2} b^4 - \frac{2}{3} b^4 + \frac{1}{4} b^4 - \frac{1}{2} a^2 b^2 + \frac{2}{3} a^3 b - \frac{1}{4} a^4 \right) \\ &= \frac{3a^2}{4b} + \frac{3}{b(b-a)^2} \frac{1}{12} (b-a)^3 (3a+b) \\ &= \frac{3a^2}{4b} + \frac{1}{4b} (3ab+b^2 - 3a^2 - ab) \\ &= \frac{1}{2} a + \frac{1}{4} b \end{split}$$

$$\begin{split} \Psi(x,t) &= A e^{-\lambda |x|} e^{-i\omega t} \\ \Psi(x,0) &= A e^{-\lambda |x|} \\ 1 &= A^2 \int_{-\infty}^{\infty} e^{-2\lambda |x|} \, dx \\ &= 2A^2 \int_{0}^{\infty} e^{-2\lambda x} \, dx \\ &= 2A^2 \left[-\frac{1}{2\lambda} e^{-2\lambda x} \right]_{0}^{\infty} \\ &= \frac{A^2}{\lambda} \\ A &= \sqrt{\lambda} \end{split}$$

(b)

$$\langle x \rangle = \int_{-\infty}^{\infty} x \lambda e^{-2\lambda|x|} dx$$

$$= \lambda \int_{-\infty}^{\infty} x e^{-2\lambda|x|} dx$$

$$= 0$$

$$\langle x^2 \rangle = \int_{-\infty}^{\infty} x^2 \lambda e^{-2\lambda|x|} dx$$

$$= 2\lambda \int_{0}^{\infty} x^2 e^{-2\lambda x} dx$$

$$= \frac{1}{2\lambda^2}$$

(c)

$$\sigma = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$

$$= \frac{1}{\sqrt{2}\lambda}$$

$$1 - \int_{-\sigma}^{\sigma} \lambda e^{-2\lambda|x|} dx = 1 - 2\lambda \int_{0}^{\sigma} e^{-2\lambda x} dx$$

$$= 1 - 2\lambda \left[-\frac{1}{2\lambda} e^{-2\lambda x} \right]_{0}^{\sigma}$$

$$= e^{-2\lambda\sigma}$$

$$= e^{-\sqrt{2}}$$

$$\approx 0.243$$

The chain rule requires that you apply it to both x and $|\Psi|^2$ which gives the same result

$$\frac{d\langle x \rangle}{dt} = \frac{d}{dt} \int x |\Psi|^2 dx$$

$$= \int \frac{d}{dt} (x|\Psi|^2) dx$$

$$= \int \left(0 \cdot |\Psi|^2 + x \frac{\partial |\Psi|^2}{\partial t}\right) dx$$

$$= \int x \frac{\partial |\Psi|^2}{\partial t} dx$$

1.8

$$\begin{split} i\hbar\frac{\partial}{\partial t}\left(e^{-iV_0t/\hbar}\Psi\right) &= -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\left(e^{-iV_0t/\hbar}\Psi\right) + (V+V_0)\left(e^{-iV_0t/\hbar}\Psi\right) \\ i\hbar\left(-\frac{iV_0}{\hbar}e^{-iV_0t/\hbar}\Psi + e^{-iV_0t/\hbar}\frac{\partial\Psi}{\partial t}\right) &= -\frac{\hbar^2}{2m}e^{-iV_0t/\hbar}\frac{\partial^2\Psi}{\partial x^2} + Ve^{-iV_0t/\hbar}\Psi + V_0e^{-iV_0t/\hbar}\Psi \\ V_0\Psi + i\hbar\frac{\partial\Psi}{\partial t} &= -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + V\Psi + V_0\Psi \\ i\hbar\frac{\partial\Psi}{\partial t} &= -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + V\Psi \end{split}$$

$$\begin{split} \langle Q(x,p)\rangle &= \int \left(e^{-iV_0t/\hbar}\Psi\right)^* \left[Q(x,-i\hbar\partial/\partial x)\right] e^{-iV_0t/\hbar}\Psi \, dx \\ &= \int e^{iV_0t/\hbar}\Psi^* \left[Q(x,-i\hbar\partial/\partial x)\right] e^{-iV_0t/\hbar}\Psi \, dx \\ &= \int \Psi^* \left[Q(x,-i\hbar\partial/\partial x)\right]\Psi \, dx \end{split}$$

No effect on the expectation value.

(a)

$$\begin{split} \Psi(x,t) &= A e^{-a[(mx^2/\hbar)+it]} \\ 1 &= A^2 \int_{-\infty}^{\infty} e^{-2a(mx^2/\hbar)} \, dx \\ &= A^2 \int_{-\infty}^{\infty} e^{-2a(mx^2/\hbar)} \, dx \\ &= A^2 \sqrt{\frac{\pi \hbar}{2am}} \\ A^2 &= \sqrt{\frac{2am}{\pi \hbar}} \\ A &= \left(\frac{2am}{\pi \hbar}\right)^{1/4} \end{split}$$

$$\begin{split} \Psi &= Ae^{-a[(mx^2/\hbar)+it]} \\ \frac{\partial \Psi}{\partial t} &= -ia\Psi \\ \frac{\partial \Psi}{\partial x} &= -\frac{2amx}{\hbar} \Psi \\ \frac{\partial^2 \Psi}{\partial x^2} &= -\frac{2am}{\hbar} \left(\Psi + x \frac{\partial \Psi}{\partial x}\right) \\ &= -\frac{2am}{\hbar} \left(1 - \frac{2amx^2}{\hbar}\right) \Psi \\ V\Psi &= i\hbar \frac{\partial \Psi}{\partial t} + \frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} \\ &= a\hbar \Psi - a\hbar \left(1 - \frac{2amx^2}{\hbar}\right) \Psi \\ V &= a\hbar - a\hbar + 2a^2 mx^2 \\ &= 2a^2 mx^2 \end{split}$$

$$\begin{split} \langle x \rangle &= A^2 \int_{-\infty}^{\infty} e^{-2a(mx^2/\hbar)} x \, dx \\ &= 0 \\ \langle x^2 \rangle &= A^2 \int_{-\infty}^{\infty} e^{-2a(mx^2/\hbar)} x^2 \, dx \\ &= 2A^2 \int_{0}^{\infty} e^{-2a(mx^2/\hbar)} x^2 \, dx \\ &= \frac{\hbar}{4am} \\ \langle p \rangle &= \int_{-\infty}^{\infty} \Psi^* \left[-i\hbar \frac{\partial}{\partial x} \right] \Psi \, dx \\ &= -i\hbar \int_{-\infty}^{\infty} A e^{-a[(mx^2/\hbar) - it]} \left(-\frac{2amx}{\hbar} A e^{-a[(mx^2/\hbar) + it]} \right) \, dx \\ &= 2iA^2 am \int_{-\infty}^{\infty} x e^{-2amx^2/\hbar} \, dx \\ &= 0 \\ \langle p^2 \rangle &= \int_{-\infty}^{\infty} \Psi^* \left[-\hbar^2 \frac{\partial^2}{\partial x^2} \right] \Psi \, dx \\ &= -\hbar^2 \int_{-\infty}^{\infty} A e^{-a[(mx^2/\hbar) - it]} \left[-\frac{2am}{\hbar} \left(1 - \frac{2amx^2}{\hbar} \right) A e^{-a[(mx^2/\hbar) + it]} \right] \, dx \\ &= 2A^2 am\hbar \int_{-\infty}^{\infty} e^{-2amx^2/\hbar} \left(1 - \frac{2amx^2}{\hbar} \right) \, dx \\ &= am\hbar \end{split}$$

(d)
$$\sigma_x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$

$$= \sqrt{\frac{\hbar}{4am}}$$

$$\sigma_p = \sqrt{am\hbar}$$

$$\sigma_x \sigma_p = \sqrt{\frac{1}{4}\hbar^2}$$

$$= \frac{1}{2}\hbar$$

$$> \frac{1}{2}\hbar$$

Yes, this is consistent with Heisenberg's uncertainty principle.

(a)

$$P(0) = 0$$

$$P(1) = \frac{2}{25}$$

$$= 0.08$$

$$P(2) = \frac{3}{25}$$

$$= 0.12$$

$$P(3) = \frac{1}{5}$$

$$= 0.2$$

$$P(4) = \frac{3}{25}$$

$$= 0.12$$

$$P(5) = \frac{3}{25}$$

$$= 0.2$$

$$P(6) = \frac{3}{25}$$

$$= 0.2$$

$$P(7) = \frac{1}{25}$$

$$= 0.04$$

$$P(8) = \frac{2}{25}$$

$$= 0.08$$

$$P(9) = \frac{3}{25}$$

$$= 0.12$$

- (b) The most probable digit is 3, the median digit is 4, and the average value is $\frac{118}{25}=4.72.$
- (c) $\sigma = 2.474$

(a)

$$\begin{split} P_{ab}(t) &= \int_a^b |\Psi(x,t)|^2 dx \\ \frac{dP_{ab}}{dt} &= \frac{d}{dt} \int_a^b |\Psi(x,t)|^2 dx \\ &= \int_a^b \frac{d}{dt} \left(|\Psi(x,t)|^2 \right) dx \\ &= \int_a^b \frac{\partial}{\partial x} \left[\frac{i\hbar}{2m} \left(\Psi^* \frac{\partial \Psi}{\partial x} - \frac{\partial \Psi^*}{\partial x} \Psi \right) \right] dx \\ &= J(a,t) - J(b,t) \end{split}$$

The units are s^{-1} .

$$\begin{split} \Psi(x,t) &= Ae^{-a[(mx^2/\hbar)+it]} \\ \frac{\partial \Psi}{\partial x} &= -\frac{2amx}{\hbar} \Psi \\ \Psi^*(x,t) &= Ae^{-a[(mx^2/\hbar)-it]} \\ \frac{\partial \Psi^*}{\partial x} &= -\frac{2amx}{\hbar} \Psi^* \\ J(x,t) &= \frac{i\hbar}{2m} \left(\Psi \frac{\partial \Psi^*}{\partial x} - \Psi^* \frac{\partial \Psi}{\partial x} \right) \\ &= \frac{i\hbar}{2m} \left[\Psi \left(-\frac{2amx}{\hbar} \Psi^* \right) - \Psi^* \left(-\frac{2amx}{\hbar} \Psi \right) \right] \\ &= 0 \end{split}$$

$$\begin{split} \frac{d}{dt} \int_{-\infty}^{\infty} \Psi_1^* \Psi_2 \, dx &= \int_{-\infty}^{\infty} \left(\frac{\partial \Psi_1^*}{\partial t} \Psi_2 + \Psi_1^* \frac{\partial \Psi_2}{\partial t} \right) \, dx \\ &= \int_{-\infty}^{\infty} \left[\left(-i \frac{\hbar}{2m} \frac{\partial^2 \Psi_1^*}{\partial x^2} + i \frac{V}{\hbar} \Psi_1^* \right) \Psi_2 \right. \\ &\quad \left. + \Psi_1^* \left(i \frac{\hbar}{2m} \frac{\partial^2 \Psi_2}{\partial x^2} - i \frac{V}{\hbar} \Psi_2 \right) \right] \, dx \\ &= i \frac{\hbar}{2m} \int_{-\infty}^{\infty} \left(\Psi_1^* \frac{\partial^2 \Psi_2}{\partial x^2} - \frac{\partial^2 \Psi_1^*}{\partial x^2} \Psi_2 \right) \, dx \\ &= i \frac{\hbar}{2m} \left[\left. \Psi_1^* \frac{\partial \Psi_2}{\partial x} \right|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \frac{\partial}{\partial x} (\Psi_1^* \Psi_2) \, dx \right. \\ &\left. \left. \frac{\partial \Psi_1^*}{\partial x} \Psi_2 \right|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \frac{\partial}{\partial x} (\Psi_1^* \Psi_2) \, dx \right] \\ &= 0 \end{split}$$

1.16

(a)

$$1 = \int_{-a}^{a} A^{2} (a^{2} - x^{2})^{2} dx$$
$$= A^{2} \int_{0}^{a} (a^{2} - x^{2})^{2} dx$$
$$= \frac{16}{15} A^{2} a^{5}$$
$$A = \sqrt{\frac{15}{16a^{5}}}$$

(b)

$$\langle x \rangle = \int_{-a}^{a} x A(a^2 - x^2) dx$$
$$= 0$$

(c)

$$\langle p \rangle = \int_{-a}^{a} \Psi^* \left(-i\hbar \frac{\partial}{\partial x} \right) \Psi \, dx$$
$$= 2iA^2 \hbar \int_{-a}^{a} x(a^2 - x^2) \, dx$$
$$= 0$$

$$\langle x^2 \rangle = \int_{-a}^{a} \Psi^* x^2 \Psi \, dx$$

$$= A^2 \int_{-a}^{a} x^2 (a^2 - x^2)^2 \, dx$$

$$= A^2 \frac{16}{105} a^7$$

$$= \frac{a^2}{7}$$

(e)

$$\begin{split} \langle p^2 \rangle &= \int_{-a}^{a} \Psi^* \left(-\hbar^2 \frac{\partial^2}{\partial x^2} \right) \Psi \, dx \\ &= -\hbar^2 \int_{-a}^{a} A (a^2 - x^2) (-2A) \, dx \\ &= 4A^2 \hbar^2 \int_{0}^{a} (a^2 - x^2) \, dx \\ &= 4A^2 \hbar^2 \left[a^2 x - \frac{1}{3} x^3 \right]_{0}^{a} \\ &= 4A^2 \hbar^2 \left(a^3 - \frac{1}{3} a^3 \right) \\ &= \frac{8}{3} A^2 a^3 \hbar^2 \\ &= \frac{8}{3} \frac{15}{16a^5} a^3 \hbar^2 \\ &= \frac{5}{2} \frac{\hbar^2}{a^2} \end{split}$$

(f)

$$\sigma_x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$
$$= \sqrt{\frac{a^2}{7}}$$
$$= \frac{a}{\sqrt{7}}$$

$$\sigma_p = \sqrt{\langle p^2 \rangle - \langle p \rangle^2}$$
$$= \sqrt{\frac{5}{2}} \frac{\hbar}{a}$$

$$\sigma_x \sigma_p = \sqrt{\frac{5}{14}} \hbar$$
$$\geq \frac{1}{2} \hbar$$

(a)

$$\begin{split} \frac{h}{\sqrt{3mk_BT}} &> d\\ \frac{\sqrt{3mk_BT}}{h} &< \frac{1}{d}\\ T_{\text{electron}} &< \frac{h^2}{3d^2mk_B}\\ &< 1.3 \times 10^5 \, \text{K}\\ T_{\text{nuclei}} &< 2.5 \, \text{K} \end{split}$$

(b)

$$PV = Nk_BT$$

$$\frac{V}{N} = \frac{k_BT}{P}$$

$$d = \left(\frac{k_BT}{P}\right)^{1/3}$$

$$\frac{h}{\sqrt{3mk_Bt}} > \left(\frac{k_BT}{P}\right)^{1/3}$$

$$T < \frac{1}{k_B} \left(\frac{h^2}{3m}\right)^{3/5} P^{2/5}$$

2 Time-Independent Schrödinger Equation

2.1

(a)

$$\begin{split} \int_{-\infty}^{\infty} |\Psi|^2 \, dx &= \int_{-\infty}^{\infty} \Psi^* \Psi \, dx \\ &= \int_{-\infty}^{\infty} \psi^* e^{i(E_0 - i\Gamma)t/\hbar} \psi e^{-i(E_0 + i\Gamma)t/\hbar} \, dx \\ &= e^{2\Gamma t/\hbar} \int_{-\infty}^{\infty} |\psi|^2 \, dx \end{split}$$

In order for this to equal 1 for all t, Γ must be 0.

(b) If $\psi(x)$ is a complex solution to the time-independent Schrödinger equation then so is $\psi^*(x)$ and $\psi(x) + \psi^*(x)$ which is real.

2.2

If ψ and its second derivative always have the same sign, ψ will increase or decrease without bound forever. This means there is no non-zero choice of constant A such that

$$\int_{-\infty}^{\infty} |A\Psi|^2 \, dx = 1$$

and thus the equation can't be normalised.

The classical analog of this is statements is that the potential energy of a system can't exceed its total energy.