

1. Questions and Updates

- 2. Recap: Unit 7, Linear Algebra, and the Inverse of a Matrix
- 3. Recap: Cholesky Decomposition
- 4. Recap: Linear Regression in Matrix Notation

Tutorial 7

Course Overview

Week	Topic Lecture	Tutorial	Exercises	
07.04. & 08.04.	1 Probability Theory	Intro Julia		
14.04. & 15.04.	2 Inference Methods and Decision-Making	no tutorial	Exercise 1	
21.04. & 22.04.	no lecture	Theory Unit 1 & 2	(14.04 08.05.)	
28.04. & 29.04.	3 Graphical Models: Independence	Theory Unit 3		
05.05. & 06.05.	4 Graphical Models: Exact Inference	Theory Unit 4	Exercise 2	
12.05. & 13.05.	5 Graphical Models: Approximate Inference	Theory Unit 5	(05.05. – 19.05.)	
19.05. & 20.05.	6 Bayesian Ranking	Theory Unit 6	Exercise 3	
26.05. & 27.05.	7 Linear Basis Function Models	Theory Unit 7	(19.05. – 05.06 .)	
02.06. & 03.06.	8 Bayesian Regression	Theory Unit 8	Exercise 4	
09.06. & 10.06.	no lecture	9 Bayesian Classification	(02.06. – 23.06.)	Introduction to Probabilistic Machine
16.06. & 17.06.	10 Non-Bayesian Classification Learning	Theory Unit 9 & 10		Learning
23.06. & 24.06.	11 Gaussian Processes	Theory Unit 11	Exercise 5	
30.06. & 01.07.	12 Information Theory	Theory Unit 12	(23.06. – 07.07.)	3/37
07.07. & 08.07.	13 Real-World Applications			3/3/

3/37

- 1. Questions and Updates
- 2. Recap: Unit 7, Linear Algebra, and the Inverse of a Matrix
- 3. Recap: Cholesky Decomposition
- 4. Recap: Linear Regression in Matrix Notation

Tutorial 7

Recap Unit 7: Overview of Concepts and Focus

- a) Linear Basis Function Models
- b) Modelling Data (Text and Images)
- c) Linear Mappings and Matrices
- d) Singular Value Decomposition

Tutorial 7

Matrix-Multiplication

Vector: An n-dimensional vector \mathbf{x} is a column $\vec{x} = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$, $\vec{x}^T = (x_1 \dots x_n)$ is a row and m columns $\begin{pmatrix} m_{1,1} & m_{1,m} \\ \dots & m_{n,m} \end{pmatrix}$

$$\begin{pmatrix} m_{1,1} & m_{1,m} \\ m_{n,1} & m_{n,m} \end{pmatrix}$$

Tutorial 7

Matrix-Multiplication

Vector: An n-dimensional vector \mathbf{x} is a column $\vec{x} = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$, $\vec{x}^T = (x_1 \dots x_n)$ is a row $\begin{pmatrix} m_{1,1} & m_{1,m} \\ \end{pmatrix}$

$$egin{pmatrix} m_{1,1} & m_{1,m} \ m_{n,1} & m_{n,m} \ \end{pmatrix}$$

Product: An nxm matrix times an mxk matrix is of ??? Format

Does the order matter? Is AxB = BxA?

Matrix-Multiplication

Vector: An n-dimensional vector \mathbf{x} is a column $\vec{x} = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$, $\vec{x}^T = (x_1 \dots x_n)$ is a row $\begin{pmatrix} m_{1,1} & m_{1,m} \\ m_{1,1} & m_{1,m} \end{pmatrix}$

$$egin{pmatrix} m_{1,1} & m_{1,m} \ m_{n,1} & m_{n,m} \ \end{pmatrix}$$

Product: An $n \times m$ matrix times an $m \times k$ matrix is of $n \times k$ format

$$\underbrace{\left(x_{1} \ldots x_{n}\right)}_{1xn} \cdot \underbrace{\left(y_{1} \atop \ldots \atop y_{n}\right)}_{nx1} = \underbrace{\left(\ldots\right)}_{1x1} \in \mathbb{R}$$

Examples:
$$\underbrace{\left(x_{1} \dots x_{n}\right)}_{1 \times n} \cdot \underbrace{\left(y_{1} \dots y_{n}\right)}_{n \times 1} = \underbrace{\left(\dots\right)}_{1 \times 1} \in \mathbb{R}$$

$$\underbrace{\left(x_{1} \dots y_{n}\right)}_{1 \times n} \cdot \underbrace{\left(y_{1} \dots y_{n}\right)}_{1 \times n} = \underbrace{\left(m_{1,1} \dots m_{1,n} \dots m_{1,n}\right)}_{n \times n} \in \mathbb{R}^{n \times n}$$

Existence: An nxn matrix A is regular, i.e., has an inverse A^{-1} if, e.g.,

- A has full rank
- $\det(A) <> 0$

Property:
$$A \cdot A^{-1} = A^{-1} \cdot A = I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Solves:
$$A \cdot \vec{x} = \vec{b}$$
 \Leftrightarrow $A^{-1} \cdot A \cdot \vec{x} = A^{-1} \cdot \vec{b}$

Computation 1: Given a regular $n \times n$ matrix A, the inverse A^{-1} can be computed as follows ??

Computation 1: Given a regular $n \times n$ matrix A, the inverse A^{-1} can be computed as follows:

$$\begin{pmatrix}
A & \begin{vmatrix}
1 & 0 & 0 \\
0 & \dots & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad A^{-1}$$

Tutorial 7

PML SS 2025

Allowed: (i) switch rows, (ii) multiply row with nonzero scalars, (iii) add rows

Computation 2: Given a regular $n \times n$ matrix A, the inverse A^{-1} can be computed as follows:

$$\begin{pmatrix} & & \\ & A & \\ & & \end{pmatrix} \cdot \begin{pmatrix} & & \\ & X & \\ & & \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Solve a **Linear Program** (LP) with ??

Tutorial 7

Computation 2: Given a regular $n \times n$ matrix A, the inverse A^{-1} can be computed as follows:

$$\begin{pmatrix} & & \\ & A & \\ & & \end{pmatrix} \cdot \begin{pmatrix} & & \\ & X & \\ & & \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Solve a **Linear Program** (LP) with $n \times n$ variables (cf. X) and $n \times n$ constraints:

$$\sum_{k=1,...,n} A_{i,k} \cdot X_{k,j} = 1_{\{i=j\}} \qquad \forall i, j = 1,...,n$$

Computation 3: Given a regular $n \times n$ matrix A, the inverse A^{-1} can be computed as follows:

Use **Singular Value Decomposition** (U, V orthogonal, Σ diagonal):

$$A = U \cdot \Sigma \cdot V^T$$
 \Leftrightarrow $A^{-1} = ??$

Computation 3: Given a regular $n \times n$ matrix A, the inverse A^{-1} can be computed as follows:

Use **Singular Value Decomposition** (U, V orthogonal, Σ diagonal):

$$A = U \cdot \Sigma \cdot V^{T} \qquad \Leftrightarrow \qquad A^{-1} = V \cdot \Sigma^{-1} \cdot U^{T}$$

Note: $V^T \cdot V = U^T \cdot U = I$

$$A \cdot A^{-1} = U \cdot \Sigma \cdot \underbrace{V^T \cdot V}_{I} \cdot \Sigma^{-1} \cdot U^T = I$$

- 1. Questions and Updates
- 2. Recap: Unit 7, Linear Algebra, and the Inverse of a Matrix
- 3. Recap: Cholesky Decomposition
- 4. Recap: Linear Regression in Matrix Notation

Tutorial 7

Computation 4: Given a $n \times n$ matrix A (**symmetric**, positive-semidefinite) we can compute a lower triangular matrix L such that:

$$L \cdot L^{T} = \begin{pmatrix} \cdot & 0 & 0 \\ \bullet & \cdot & 0 \\ \bullet & \bullet & \cdot \end{pmatrix} \cdot \begin{pmatrix} \cdot & \bullet & \bullet \\ 0 & \cdot & \bullet \\ 0 & 0 & \cdot \end{pmatrix} = \begin{pmatrix} \cdot & A & \cdot \\ A & \cdot & \bullet \\ 0 & 0 & \cdot \end{pmatrix}$$

Then (Outlook): Ansatz: $L \cdot \underbrace{L^T \vec{x}}_{\vec{y}} = \vec{b}$ Then: $L, \vec{b} \Rightarrow \vec{y}$ $L, \vec{y} \Rightarrow \vec{x}$ (fast & stable!)

How to get L? Note, again the $\sim n \times n/2$ constraints determine L:

$$\sum_{k=1,...,n} L_{i,k} \cdot L_{k,j}^{T} = \sum_{k=1,...,n} L_{i,k} \cdot L_{j,k} = A_{i,j} \forall i, j = 1,...,n$$

$$egin{aligned} \mathbf{A} &= \mathbf{L} \mathbf{L}^T = egin{pmatrix} L_{11} & 0 & 0 \ L_{21} & L_{22} & 0 \ L_{31} & L_{32} & L_{33} \end{pmatrix} egin{pmatrix} L_{11} & L_{21} & L_{31} \ 0 & L_{22} & L_{32} \ 0 & 0 & L_{33} \end{pmatrix} \ &= egin{pmatrix} L_{11}^2 & & & & & & & & & & & & \\ L_{21}^2 & & & & & & & & & & & \\ L_{21}L_{11} & L_{21}^2 + L_{22}^2 & & & & & & & \\ L_{31}L_{11} & L_{31}L_{21} + L_{32}L_{22} & L_{31}^2 + L_{32}^2 + L_{33}^2 \end{pmatrix} \end{aligned}$$

Tutorial 7

$$egin{aligned} \mathbf{A} &= \mathbf{L} \mathbf{L}^T = egin{pmatrix} L_{11} & 0 & 0 \ L_{21} & L_{22} & 0 \ L_{31} & L_{32} & L_{33} \end{pmatrix} egin{pmatrix} L_{11} & L_{21} & L_{31} \ 0 & L_{22} & L_{32} \ 0 & 0 & L_{33} \end{pmatrix} \ &= egin{pmatrix} L_{11}^2 & & & & & & & & & & \\ L_{11}^2 & & & & & & & & & \\ L_{21}L_{11} & L_{21}^2 + L_{22}^2 & & & & & & \\ L_{31}L_{11} & L_{31}L_{21} + L_{32}L_{22} & L_{31}^2 + L_{32}^2 + L_{33}^2 \end{pmatrix} \end{aligned}$$

$$\sum_{k=1,\dots,n} L_{1,k} \cdot L_{1,k} = L_{1,1} \cdot L_{1,1} + 0 \cdot 0 + 0 \cdot 0 = A_{1,1}$$

Tutorial 7

$$\mathbf{A} = \mathbf{L}\mathbf{L}^T = egin{pmatrix} L_{11} & 0 & 0 \ L_{21} & L_{22} & 0 \ L_{31} & L_{32} & L_{33} \end{pmatrix} egin{pmatrix} L_{11} & L_{21} & L_{31} \ 0 & L_{22} & L_{32} \ 0 & 0 & L_{33} \end{pmatrix} \ = egin{pmatrix} L_{11}^2 & & & & & & & & & & & \\ L_{11}^2 & & & & & & & & & & \\ L_{21}L_{11} & & L_{21}^2 + L_{22}^2 & & & & & & & \\ L_{31}L_{11} & L_{31}L_{21} + L_{32}L_{22} & L_{31}^2 + L_{32}^2 + L_{33}^2 \end{pmatrix}$$

$$\sum_{k=1,\dots,n} L_{1,k} \cdot L_{1,k} = L_{1,1} \cdot L_{1,1} + 0 \cdot 0 + 0 \cdot 0 = A_{1,1}$$

$$\sum_{k=1,\dots,n} L_{2,k} \cdot L_{1,k} = L_{2,1} \cdot L_{1,1} + L_{2,2} \cdot 0 + 0 \cdot 0 = A_{2,1}$$

Tutorial 7

$$\sum_{k=1,\dots,n} L_{1,k} \cdot L_{1,k} = L_{1,1} \cdot L_{1,1} + 0 \cdot 0 + 0 \cdot 0 = A_{1,1}$$

$$\sum_{k=1}^{n} L_{2,k} \cdot L_{1,k} = L_{2,1} \cdot L_{1,1} + L_{2,2} \cdot 0 + 0 \cdot 0 = A_{2,1}$$

$$\sum_{k=1,\dots,n} L_{2,k} \cdot L_{2,k} = L_{2,1} \cdot L_{2,1} + L_{2,2} \cdot L_{2,2} + 0 \cdot 0 = A_{2,2}$$

• • •

Tutorial 7

$$\sum_{k=1, \dots, n} L_{1,k} \cdot L_{1,k} = L_{1,1} \cdot L_{1,1} + 0 \cdot 0 + 0 \cdot 0 = A_{1,1} \longrightarrow L_{1,1} \cdot L_{1,1} = A_{1,1} \implies L_{1,1} = \sqrt{A_{1,1}}$$

$$\sum_{k=1,\dots,n} L_{2,k} \cdot L_{1,k} = L_{2,1} \cdot L_{1,1} + L_{2,2} \cdot 0 + 0 \cdot 0 = A_{2,1}$$

$$\sum_{k=1,\dots,n} L_{2,k} \cdot L_{2,k} = L_{2,1} \cdot L_{2,1} + L_{2,2} \cdot L_{2,2} + 0 \cdot 0 = A_{2,2}$$

•••

Tutorial 7

$$\sum_{\mathbf{l}} \ L_{\mathbf{l},\mathbf{k}} \cdot L_{\mathbf{l},\mathbf{k}} \ = L_{\mathbf{l},\mathbf{l}} \cdot L_{\mathbf{l},\mathbf{l}} + 0 \cdot 0 + 0 \cdot 0 \ = \ A_{\mathbf{l},\mathbf{l}} \qquad \longrightarrow \qquad L_{\mathbf{l},\mathbf{l}} \cdot L_{\mathbf{l},\mathbf{l}} \ = \ A_{\mathbf{l},\mathbf{l}} \qquad \Longrightarrow \qquad L_{\mathbf{l},\mathbf{l}} = \sqrt{A_{\mathbf{l},\mathbf{l}}}$$

$$\sum_{k=1,\dots,n} L_{1,k} \cdot L_{1,k} = L_{1,1} \cdot L_{1,1} + 0 \cdot 0 + 0 \cdot 0 = A_{1,1} \longrightarrow L_{1,1} \cdot L_{1,1} = A_{1,1} \implies L_{1,1} = \sqrt{A_{1,1}}$$

$$\sum_{k=1,\dots,n} L_{2,k} \cdot L_{1,k} = L_{2,1} \cdot L_{1,1} + L_{2,2} \cdot 0 + 0 \cdot 0 = A_{2,1} \longrightarrow L_{2,1} \cdot L_{1,1} = A_{2,1} \implies L_{2,1} = A_{2,1} / \sqrt{A_{1,1}}$$

$$\sum_{k=1}^{n} L_{2,k} \cdot L_{2,k} = L_{2,1} \cdot L_{2,1} + L_{2,2} \cdot L_{2,2} + 0 \cdot 0 = A_{2,2}$$

Tutorial 7

$$\mathbf{A} = \mathbf{L}\mathbf{L}^T = egin{pmatrix} L_{11} & 0 & 0 \ L_{21} & L_{22} & 0 \ L_{31} & L_{32} & L_{33} \end{pmatrix} egin{pmatrix} L_{11} & L_{21} & L_{31} \ 0 & L_{22} & L_{32} \ 0 & 0 & L_{33} \end{pmatrix} \ = egin{pmatrix} L_{21}^2 & & & & & & & & & & \\ L_{21}L_{11} & & & & & & & & & \\ L_{21}L_{11} & & & & & & & & & \\ L_{31}L_{11} & L_{31}L_{21} + L_{32}L_{22} & L_{31}^2 + L_{32}^2 + L_{33}^2 \end{pmatrix}$$

$$\sum_{\mathbf{l}} \ L_{\mathbf{l},\mathbf{k}} \cdot L_{\mathbf{l},\mathbf{k}} \ = L_{\mathbf{l},\mathbf{l}} \cdot L_{\mathbf{l},\mathbf{l}} + 0 \cdot 0 + 0 \cdot 0 \ = \ A_{\mathbf{l},\mathbf{l}} \qquad \longrightarrow \qquad L_{\mathbf{l},\mathbf{l}} \cdot L_{\mathbf{l},\mathbf{l}} \ = \ A_{\mathbf{l},\mathbf{l}} \qquad \Longrightarrow \qquad L_{\mathbf{l},\mathbf{l}} = \sqrt{A_{\mathbf{l},\mathbf{l}}}$$

$$\sum_{k=1,\dots,n} L_{1,k} \cdot L_{1,k} = L_{1,1} \cdot L_{1,1} + 0 \cdot 0 + 0 \cdot 0 = A_{1,1} \longrightarrow L_{1,1} \cdot L_{1,1} = A_{1,1} \implies L_{1,1} = \sqrt{A_{1,1}}$$

$$\sum_{k=1,\dots,n} L_{2,k} \cdot L_{1,k} = L_{2,1} \cdot L_{1,1} + L_{2,2} \cdot 0 + 0 \cdot 0 = A_{2,1} \longrightarrow L_{2,1} \cdot L_{1,1} = A_{2,1} \implies L_{2,1} = A_{2,1} / \sqrt{A_{1,1}}$$

$$\sum_{k=1,\dots,n} L_{2,k} \cdot L_{2,k} = L_{2,1} \cdot L_{2,1} + L_{2,2} \cdot L_{2,2} + 0 \cdot 0 = A_{2,2} \longrightarrow L_{2,1}^2 \cdot L_{2,2}^2 = A_{2,2} \implies L_{2,2} = \sqrt{A_{2,2} / L_{2,1}^2} \text{ Tutorial 7 PML SS 2025}$$

$$\mathbf{A} = \mathbf{L}\mathbf{L}^T = egin{pmatrix} L_{11} & 0 & 0 \ L_{21} & L_{22} & 0 \ L_{31} & L_{32} & L_{33} \end{pmatrix} egin{pmatrix} L_{11} & L_{21} & L_{31} \ 0 & L_{22} & L_{32} \ 0 & 0 & L_{33} \end{pmatrix} \ = egin{pmatrix} L_{11}^2 & & & & & & & & & \\ L_{21}^2 L_{11} & L_{21}^2 + L_{22}^2 & & & & & & \\ L_{31} L_{11} & L_{31} L_{21} + L_{32} L_{22} & L_{31}^2 + L_{32}^2 + L_{33}^2 \end{pmatrix}$$

$$\mathbf{L} = egin{pmatrix} \sqrt{A_{11}} & 0 & 0 \ A_{21}/L_{11} & \longrightarrow \sqrt{A_{22} - L_{21}^2} & 0 \ A_{31}/L_{11} & (A_{32} - L_{31}L_{21})/L_{22} & \sqrt{A_{33} - L_{31}^2 - L_{32}^2} \end{pmatrix}$$

Tutorial 7

$$\mathbf{A} = \mathbf{L}\mathbf{L}^T = egin{pmatrix} L_{11} & 0 & 0 \ L_{21} & L_{22} & 0 \ L_{31} & L_{32} & L_{33} \end{pmatrix} egin{pmatrix} L_{11} & L_{21} & L_{31} \ 0 & L_{22} & L_{32} \ 0 & 0 & L_{33} \end{pmatrix} \ = egin{pmatrix} L_{11}^2 & & & & & & & & & & \\ L_{21}^2 L_{11} & & L_{21}^2 + L_{22}^2 & & & & & & \\ L_{31} L_{11} & L_{31} L_{21} + L_{32} L_{22} & L_{31}^2 + L_{32}^2 + L_{33}^2 \end{pmatrix}$$

$$\mathbf{L} = egin{pmatrix} \sqrt{A_{11}} & 0 & 0 \ A_{21}/L_{11} & \sqrt{A_{22} - L_{21}^2} & 0 \ A_{31}/L_{11} & (A_{32} - L_{31}L_{21})/L_{22} & \sqrt{A_{33} - L_{31}^2 - L_{32}^2} \end{pmatrix}$$

Tutorial 7

$$egin{aligned} \mathbf{A} &= \mathbf{L} \mathbf{L}^T = egin{pmatrix} L_{11} & 0 & 0 \ L_{21} & L_{22} & 0 \ L_{31} & L_{32} & L_{33} \end{pmatrix} egin{pmatrix} L_{11} & L_{21} & L_{31} \ 0 & L_{22} & L_{32} \ 0 & 0 & L_{33} \end{pmatrix} \ &= egin{pmatrix} L_{11}^2 & & & & & & & & & & & & \\ L_{21}^2 L_{11} & L_{21}^2 + L_{22}^2 & & & & & & & & \\ L_{31} L_{11} & L_{31} L_{21} + L_{32} L_{22} & L_{31}^2 + L_{32}^2 + L_{33}^2 \end{pmatrix} \end{aligned}$$

$$\mathbf{L} = egin{pmatrix} \sqrt{A_{11}} & 0 & 0 \ A_{21}/L_{11} & \sqrt{A_{22} - L_{21}^2} & 0 \ A_{31}/L_{11} & (A_{32} - L_{31}L_{21})/L_{22} & \sqrt{A_{33} - L_{31}^2 - L_{32}^2} \end{pmatrix}$$

Tutorial 7

$$\mathbf{L} = egin{pmatrix} \sqrt{A_{11}} & 0 & 0 \ A_{21}/L_{11} & \sqrt{A_{22} - L_{21}^2} & 0 \ A_{31}/L_{11} & (A_{32} - L_{31}L_{21})/L_{22} & \sqrt{A_{33} - L_{31}^2 - L_{32}^2} \end{pmatrix}$$

Tutorial 7

$$\mathbf{A} = \mathbf{L}\mathbf{L}^T = egin{pmatrix} L_{11} & 0 & 0 \ L_{21} & L_{22} & 0 \ L_{31} & L_{32} & L_{33} \end{pmatrix} egin{pmatrix} L_{11} & L_{21} & L_{31} \ 0 & L_{22} & L_{32} \ 0 & 0 & L_{33} \end{pmatrix} \ = egin{pmatrix} L_{11}^2 & & & & & & & & & & & \\ L_{21}L_{11} & & L_{21}^2 + L_{22}^2 & & & & & & & \\ L_{31}L_{11} & L_{31}L_{21} + L_{32}L_{22} & L_{31}^2 + L_{32}^2 + L_{33}^2 \end{pmatrix}$$

General formula to compute L ??

$$\mathbf{L} = \begin{pmatrix} \sqrt{A_{11}} & 0 & 0 \\ \sqrt{A_{21}} / L_{11} & \sqrt{A_{22} - L_{21}^2} & 0 \\ A_{31} / L_{11} & (A_{32} - L_{31} L_{21}) / L_{22} & \sqrt{A_{33} - L_{31}^2 - L_{32}^2} \end{pmatrix}$$

$$Order of computation = \begin{pmatrix} 1 & & & \\ 2 & 3 & & \\ 2 & 4 & 5 & \\ 2 & 6 & 7 & 8 \end{pmatrix} or \begin{pmatrix} 1 & & & \\ 2 & 3 & & \\ 4 & 5 & 6 & \\ 7 & 8 & 9 & 10 \end{pmatrix}$$

Tutorial 7

PML SS 2025

29

$$egin{aligned} \mathbf{A} &= \mathbf{L} \mathbf{L}^T = egin{pmatrix} L_{11} & 0 & 0 \ L_{21} & L_{22} & 0 \ L_{31} & L_{32} & L_{33} \end{pmatrix} egin{pmatrix} L_{11} & L_{21} & L_{31} \ 0 & L_{22} & L_{32} \ 0 & 0 & L_{33} \end{pmatrix} \ &= egin{pmatrix} L_{11}^2 & & & & & & & & & & & & \\ L_{21}^2 L_{11} & L_{21}^2 + L_{22}^2 & & & & & & & & \\ L_{31} L_{11} & L_{31} L_{21} + L_{32} L_{22} & L_{31}^2 + L_{32}^2 + L_{33}^2 \end{pmatrix} \end{aligned}$$

$$\mathbf{L} = \begin{pmatrix} \sqrt{A_{11}} & 0 & 0 \\ A_{21}/L_{11} & \sqrt{A_{22} - L_{21}^2} & 0 \\ A_{31}/L_{11} & (A_{32} - L_{31}L_{21})/L_{22} & \sqrt{A_{33} - L_{31}^2 - L_{32}^2} \end{pmatrix}$$

$$Order of computation = \begin{pmatrix} 1 & & & \\ 2 & 3 & & \\ 2 & 4 & 5 & \\ 2 & 6 & 7 & 8 \end{pmatrix} or \begin{pmatrix} 1 & & & \\ 2 & 3 & & \\ 4 & 5 & 6 & \\ 7 & 8 & 9 & 10 \end{pmatrix}$$

Tutorial 7

PML SS 2025

30

- 1. Questions and Updates
- 2. Recap: Unit 7, Linear Algebra, and the Inverse of a Matrix
- 3. Recap: Cholesky Decomposition
- 4. Recap: Linear Regression in Matrix Notation

Tutorial 7

Dependent variable y

Explanatory variables x₀, x₁, ..., x_K

Model: Find weights such that $\beta_0 \cdot x_0 + \beta_1 \cdot x_1 + ... + \beta_K \cdot x_K = \sum_{k=0,1,...,K} \beta_k \cdot x_k \approx y$

Tutorial 7

Dependent variable y

Explanatory variables x₀, x₁, ..., x_K

Model: Find weights such that $\beta_0 \cdot x_0 + \beta_1 \cdot x_1 + ... + \beta_K \cdot x_K = \sum_{k=0,1,...,K} \beta_k \cdot x_k \approx y$

Data (Example): $y_i, z_i = (a_i, b_i)$ i = 1,...,n

Basis Functions: (i) $y_i \approx \beta_0 + \beta_1 \cdot a_i + \beta_2 \cdot b_i + \beta_3 \cdot \sqrt{a_i \cdot b_i}$

(ii)

(iii)

Tutorial 7

Dependent variable y

Explanatory variables x₀, x₁, ..., x_K

Model: Find weights such that $\beta_0 \cdot x_0 + \beta_1 \cdot x_1 + ... + \beta_K \cdot x_K = \sum_{k=0,1,...,K} \beta_k \cdot x_k \approx y$

Data (Example): $y_i, z_i = (a_i, b_i)$ i = 1,...,n

Basis Functions: (i) $y_i \approx \beta_0 + \beta_1 \cdot a_i + \beta_2 \cdot b_i + \beta_3 \cdot \sqrt{a_i \cdot b_i}$

(ii)
$$y_i \approx \beta_0 + \beta_1 \cdot a_i + \beta_2 \cdot a_i^2 + ... + \beta_K \cdot a_i^K$$

(iii)

Tutorial 7

Dependent variable y

Explanatory variables x₀, x₁, ..., x_K

Model: Find weights such that $\beta_0 \cdot x_0 + \beta_1 \cdot x_1 + ... + \beta_K \cdot x_K = \sum_{k=0,1,...,K} \beta_k \cdot x_k \approx y$

Data (Example): $y_i, z_i = (a_i, b_i)$ i = 1,...,n

Basis Functions: (i) $y_i \approx \beta_0 + \beta_1 \cdot a_i + \beta_2 \cdot b_i + \beta_3 \cdot \sqrt{a_i \cdot b_i}$

(ii)
$$y_i \approx \beta_0 + \beta_1 \cdot a_i + \beta_2 \cdot a_i^2 + ... + \beta_K \cdot a_i^K$$

(iii)
$$y_i \approx \beta_0 + \beta_1 \cdot a_i + \beta_2 \cdot a_i^2 + \dots + \beta_K \cdot a_i^K + \beta_{K+1} \cdot b_i + \beta_{K+2} \cdot b_i^2 + \dots + \beta_{K+K} \cdot b_i^K$$

Tutorial 7

PML SS 2025

35

Dependent variable y

Explanatory variables x₀, x₁, ..., x_K

Model: Find weights such that $\beta_0 \cdot x_0 + \beta_1 \cdot x_1 + ... + \beta_K \cdot x_K = \sum_{k=0,1,...,K} \beta_k \cdot x_k \approx y$

Data (Example): $y_i, z_i = (a_i, b_i)$ i = 1,...,n

Basis Functions: (i) $y_i \approx \beta_0 + \beta_1 \cdot a_i + \beta_2 \cdot b_i + \beta_3 \cdot \sqrt{a_i \cdot b_i}$ $\longrightarrow \sum_{k=0,1,\dots,3} \beta_k \cdot x_k^{(i)} \approx y_i$

(ii)
$$y_i \approx \beta_0 + \beta_1 \cdot a_i + \beta_2 \cdot a_i^2 + \dots + \beta_K \cdot a_i^K$$
 $\longrightarrow \sum_{k=0,1,\dots,K} \beta_k \cdot x_k^{(i)} \approx y_i$ Tutorial 7 PML SS 2025

(iii) $y_i \approx \beta_0 + \beta_1 \cdot a_i + \beta_2 \cdot a_i^2 + \dots + \beta_K \cdot a_i^K \longrightarrow \sum_{k=0,1,\dots,2K} \beta_k \cdot x_k^{(i)} \approx y_i + \beta_{K+1} \cdot b_i + \beta_{K+2} \cdot b_i^2 + \dots + \beta_{K+K} \cdot b_i^K$

Recap: Linear Regression

Dependent variable y

Explanatory variables x_0 , x_1 , ..., x_K (cf. Basis function models)

Model: Find weights such that $\beta_0 \cdot x_0 + \beta_1 \cdot x_1 + ... + \beta_K \cdot x_K = \sum_{k=0,1,...,K} \beta_k \cdot x_k \approx y$

Objective of the Regression? What are the variables?

Tutorial 7

Dependent variable y

Explanatory variables x₀, x₁, ..., x_K (cf. Basis function models)

Model: Find weights such that $\beta_0 \cdot x_0 + \beta_1 \cdot x_1 + ... + \beta_K \cdot x_K = \sum_{k=0,1,...,K} \beta_k \cdot x_k \approx y$

Minimize the Sum of Squared Errors:

$$\min_{\beta_{k} \in \mathbb{R}, k=0,\dots,K} \sum_{i=1,\dots,N} \left(\beta_{0} \cdot x_{0,i} + \beta_{1} \cdot x_{1,i} + \dots + \beta_{K} \cdot x_{K,i} - y_{i} \right)^{2}$$

$$\approx \vec{\beta}^{*} := \underset{\vec{\beta} \in \mathbb{R}^{K+1}}{\min} \sum_{i=1,\dots,N} \left(y_{i} - \sum_{j=1,\dots,k} \beta_{j} \cdot x_{j,i} \right)^{2}$$

$$\underbrace{errors \ \varepsilon_{i}}$$

Tutorial 7

Let's take a Look: Residuals and Matrix Notation

Consider the errors:
$$\varepsilon_i := y_i - \sum_{k=0,1,...,K} \beta_k \cdot x_{k,i}$$
 $i = 1,...,n$

What is happening here in Matrix Notation?

Tutorial 7

Let's take a Look: Residuals and Matrix Notation

Consider the errors:
$$\mathcal{E}_i := y_i - \sum_{k=0,1,...,K} \beta_k \cdot x_{k,i}$$
 $i = 1,...,n$

What is happening here in Matrix Notation?

We have:

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}_{n \times 1} = \begin{pmatrix} 1 & x_{1,1} & x_{2,1} & \dots & x_{K,1} \\ 1 & x_{1,2} & x_{2,2} & & x_{K,2} \\ \dots & & & \dots \\ 1 & x_{1,n} & x_{2,n} & & x_{K,n} \end{pmatrix}_{n \times (K+1)} \cdot \begin{pmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_K \end{pmatrix}_{(K+1) \times 1} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \dots \\ \varepsilon_n \end{pmatrix}_{n \times 1}$$

Or just ??

Tutorial 7 PML SS 2025

Let's take a Look: Residuals and Matrix Notation

Consider the errors:
$$\varepsilon_i := y_i - \sum_{k=0,1,...,K} \beta_k \cdot x_{k,i}$$
 $i = 1,...,n$

What is happening here in Matrix Notation?

We have:

$$\begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}_{n \times 1} = \begin{pmatrix} 1 & x_{1,1} & x_{2,1} & \dots & x_{K,1} \\ 1 & x_{1,2} & x_{2,2} & & x_{K,2} \\ \dots & & & \dots \\ 1 & x_{1,n} & x_{2,n} & & x_{K,n} \end{pmatrix}_{n \times (K+1)} \cdot \begin{pmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_K \end{pmatrix}_{(K+1) \times 1} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \dots \\ \varepsilon_n \end{pmatrix}_{n \times 1}$$

Or just:

$$\vec{y} = X\vec{\beta} + \vec{\varepsilon} \quad \Leftrightarrow \quad \vec{\varepsilon} = \vec{y} - X\vec{\beta}$$

Tutorial 7

Consider the errors:
$$\varepsilon_i \coloneqq y_i - \sum_{k=0,1,\dots,K} \beta_k \cdot x_{k,i}$$
 $i = 1,\dots,n$ or $\vec{\varepsilon} = \vec{y} - X\vec{\beta}$

Sum of squared errors in Matrix notation?

Tutorial 7

Consider the errors:
$$\varepsilon_i := y_i - \sum_{k=0,1}^K \beta_k \cdot x_{k,i}$$
 $i = 1,...,n$ or $\vec{\varepsilon} = \vec{y} - X\vec{\beta}$

Consider the errors:
$$\mathcal{E}_i \coloneqq y_i - \sum_{k=0,1,\dots,K} \beta_k \cdot x_{k,i} \qquad i=1,\dots,n \qquad or \qquad \vec{\varepsilon} = \vec{y} - X\vec{\beta}$$
 Sum of squared errors:
$$\left(\mathcal{E}_1 \quad \mathcal{E}_2 \quad \dots \quad \mathcal{E}_n \right)_{1 \times n} \cdot \begin{pmatrix} \mathcal{E}_1 \\ \mathcal{E}_2 \\ \dots \\ \mathcal{E}_n \end{pmatrix}_{n \times 1} = \mathcal{E}_1^2 + \mathcal{E}_2^2 + \dots + \mathcal{E}_n^2 = \vec{\mathcal{E}}^T \vec{\mathcal{E}}$$

Great! What now?

Tutorial 7

Consider the errors:
$$\varepsilon_i := y_i - \sum_{k=0}^{K} \beta_k \cdot x_{k,i}$$
 $i = 1,...,n$ or $\vec{\varepsilon} = \vec{y} - X \vec{\beta}$

Consider the errors:
$$\mathcal{E}_i \coloneqq y_i - \sum_{k=0,1,\dots,K} \beta_k \cdot x_{k,i} \qquad i=1,\dots,n \qquad or \qquad \vec{\varepsilon} = \vec{y} - X\vec{\beta}$$
 Sum of squared errors:
$$\left(\mathcal{E}_1 \quad \mathcal{E}_2 \quad \dots \quad \mathcal{E}_n \right)_{1 \times n} \cdot \begin{pmatrix} \mathcal{E}_1 \\ \mathcal{E}_2 \\ \dots \\ \mathcal{E}_n \end{pmatrix}_{n \times 1} = \mathcal{E}_1^2 + \mathcal{E}_2^2 + \dots + \mathcal{E}_n^2 = \vec{\mathcal{E}}^T \vec{\mathcal{E}}$$

We have:
$$\vec{\varepsilon}^T \vec{\varepsilon} = (\vec{y} - X \vec{\beta})^T \cdot (\vec{y} - X \vec{\beta})$$
$$= ??$$

Tutorial 7

Consider the errors:
$$\varepsilon_i := y_i - \sum_{k=0,1,...,K} \beta_k \cdot x_{k,i}$$
 $i = 1,...,n$ or $\vec{\varepsilon} = \vec{y} - X\vec{\beta}$

Sum of squared errors:
$$(\varepsilon_1 \quad \varepsilon_2 \quad \dots \quad \varepsilon_n)_{1 \times n} \cdot \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \dots \\ \varepsilon_n \end{pmatrix}_{n \times 1} = \varepsilon_1^2 + \varepsilon_2^2 + \dots + \varepsilon_n^2 = \vec{\varepsilon}^T \vec{\varepsilon}$$

We have:
$$\vec{\varepsilon}^T \vec{\varepsilon} = (\vec{y} - X \vec{\beta})^T \cdot (\vec{y} - X \vec{\beta})$$
$$= (\vec{y}^T - (X \vec{\beta})^T) \cdot (\vec{y} - X \vec{\beta})$$

Tutorial 7

Consider the errors:
$$\mathcal{E}_i := y_i - \sum_{k=0,1,\dots,K} \beta_k \cdot x_{k,i}$$
 $i = 1,\dots,n$ or $\vec{\mathcal{E}} = \vec{y} - X\vec{\beta}$

Sum of squared errors:
$$\left(\varepsilon_1 \quad \varepsilon_2 \quad \dots \quad \varepsilon_n \right)_{1 \times n} \cdot \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \dots \\ \varepsilon_n \end{pmatrix}_{n \times 1} = \varepsilon_1^2 + \varepsilon_2^2 + \dots + \varepsilon_n^2 = \vec{\varepsilon}^T \vec{\varepsilon}$$

We have:

$$\vec{\varepsilon}^T \vec{\varepsilon} = (\vec{y} - X\vec{\beta})^T \cdot (\vec{y} - X\vec{\beta})$$

$$= (\vec{y}^T - (X\vec{\beta})^T) \cdot (\vec{y} - X\vec{\beta})$$

$$= \vec{y}^T \vec{y} - \vec{y}^T X \vec{\beta} - (X\vec{\beta})^T \vec{y} + (X\vec{\beta})^T X \vec{\beta}$$

Tutorial 7

Consider:
$$X\vec{\beta} = \begin{pmatrix} 1 & x_{1,1} & x_{2,1} & \dots & x_{K,1} \\ 1 & x_{1,2} & x_{2,2} & & x_{K,2} \\ \dots & & & \dots & \\ 1 & x_{1,n} & x_{2,n} & & x_{K,n} \end{pmatrix}_{n \times (K+1)} \cdot \begin{pmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_K \end{pmatrix}_{(K+1) \times 1} = \begin{pmatrix} \vec{x}_1^T \vec{\beta} \\ \vec{x}_2^T \vec{\beta} \\ \dots \\ \vec{x}_n^T \vec{\beta} \end{pmatrix}_{n \times 1}$$

Then: $(X\vec{\beta})^T = ??$

Tutorial 7

Consider:
$$X\vec{\beta} = \begin{pmatrix} 1 & x_{1,1} & x_{2,1} & \dots & x_{K,1} \\ 1 & x_{1,2} & x_{2,2} & & x_{K,2} \\ \dots & & & \dots & \\ 1 & x_{1,n} & x_{2,n} & & x_{K,n} \end{pmatrix}_{n \times (K+1)} \cdot \begin{pmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_K \end{pmatrix}_{(K+1) \times 1} = \begin{pmatrix} \vec{x}_1^T \vec{\beta} \\ \vec{x}_2^T \vec{\beta} \\ \dots \\ \vec{x}_n^T \vec{\beta} \end{pmatrix}_{n \times 1}$$

Then:
$$(X\vec{\beta})^T = (\vec{x_1}^T \vec{\beta} \quad \vec{x_2}^T \vec{\beta} \quad \dots \quad \vec{x_n}^T \vec{\beta})_{1 \times n} = ??$$

Tutorial 7

Consider:
$$X\vec{\beta} = \begin{pmatrix} 1 & x_{1,1} & x_{2,1} & \dots & x_{K,1} \\ 1 & x_{1,2} & x_{2,2} & & x_{K,2} \\ \dots & & & \dots \\ 1 & x_{1,n} & x_{2,n} & & x_{K,n} \end{pmatrix}_{n \times (K+1)} \cdot \begin{pmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_K \end{pmatrix}_{(K+1) \times 1} = \begin{pmatrix} \vec{x}_1^T \vec{\beta} \\ \vec{x}_2^T \vec{\beta} \\ \dots \\ \vec{x}_n^T \vec{\beta} \end{pmatrix}_{n \times 1}$$

Tutorial 7

Consider:
$$X\vec{\beta} = \begin{pmatrix} 1 & x_{1,1} & x_{2,1} & \dots & x_{K,1} \\ 1 & x_{1,2} & x_{2,2} & & x_{K,2} \\ \dots & & & \dots \\ 1 & x_{1,n} & x_{2,n} & & x_{K,n} \end{pmatrix}_{n \times (K+1)} \cdot \begin{pmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_K \end{pmatrix}_{(K+1) \times 1} = \begin{pmatrix} \vec{x}_1^T \vec{\beta} \\ \vec{x}_2^T \vec{\beta} \\ \dots \\ \vec{x}_n^T \vec{\beta} \end{pmatrix}_{n \times 1}$$

$$(1 \quad x_{1,n} \quad x_{2,n} \quad x_{K,n})_{n \times (K+1)} \quad (\beta_K)_{(K+1) \times 1} \quad (\vec{x}_n^T \beta)_{n \times 1}$$
 We have:
$$(X\vec{\beta})^T = (\vec{x}_1^T \vec{\beta} \quad \vec{x}_2^T \vec{\beta} \quad \dots \quad \vec{x}_n^T \vec{\beta})_{1 \times n} = (\beta_0 \quad \beta_1 \quad \dots \quad \beta_K)_{1 \times (K+1)} \cdot \begin{pmatrix} 1 & 1 & \dots & 1 \\ x_{1,1} & x_{1,2} & x_{1,n} \\ x_{2,1} & x_{2,2} & x_{2,n} \\ \dots & \dots & \dots \\ x_{K,1} & x_{K,2} & x_{K,n} \end{pmatrix}_{(K+1) \times n}$$

$$= \vec{\beta}^T X^T$$

Tutorial 7

PML SS 2025

Note: Switch the order!

Consider the errors: $\varepsilon_i := y_i - \sum_{k=0,1,...,K} \beta_k \cdot x_{k,i}$ i = 1,...,n or $\vec{\varepsilon} = \vec{y} - X\vec{\beta}$

Sum of squared errors: $\varepsilon_1^2 + \varepsilon_2^2 + ... + \varepsilon_n^2 = \vec{\varepsilon}^T \vec{\varepsilon}$

We have:

$$\vec{\varepsilon}^{T}\vec{\varepsilon} = (\vec{y} - X\vec{\beta})^{T} \cdot (\vec{y} - X\vec{\beta})$$

$$= (\vec{y}^{T} - (X\vec{\beta})^{T}) \cdot (\vec{y} - X\vec{\beta})$$

$$= \vec{y}^{T}\vec{y} - \vec{y}^{T}X\vec{\beta} - (X\vec{\beta})^{T}\vec{y} + (X\vec{\beta})^{T}X\vec{\beta}$$

$$= \vec{y}^{T}\vec{y} - \vec{y}^{T}X\vec{\beta} - (X\vec{\beta})^{T}\vec{y} + (X\vec{\beta})^{T}X\vec{\beta}$$

$$= \vec{y}^{T}\vec{y} - \vec{y}^{T}X\vec{\beta} - (X\vec{\beta})^{T}\vec{y} + (X\vec{\beta})^$$

Tutorial 7

Consider the errors: $\varepsilon_i := y_i - \sum_{k=0,1}^K \beta_k \cdot x_{k,i}$ i = 1,...,n or $\vec{\varepsilon} = \vec{y} - X\vec{\beta}$

Sum of squared errors: $\varepsilon_1^2 + \varepsilon_2^2 + ... + \varepsilon_n^2 = \vec{\varepsilon}^T \vec{\varepsilon}$

We have:

$$\vec{\varepsilon}^{T}\vec{\varepsilon} = (\vec{y} - X\vec{\beta})^{T} \cdot (\vec{y} - X\vec{\beta})$$

$$= (\vec{y}^{T} - (X\vec{\beta})^{T}) \cdot (\vec{y} - X\vec{\beta})$$

$$= \vec{y}^{T}\vec{y} - \vec{y}^{T}X\vec{\beta} - (X\vec{\beta})^{T}\vec{y} + (X\vec{\beta})^{T}X\vec{\beta}$$

$$= \vec{y}^{T}\vec{y} - \vec{y}^{T}X\vec{\beta} - \vec{\beta}^{T}X^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta}$$

$$= \vec{y}^{T}\vec{y} - (\vec{y}^{T}X\vec{\beta})^{T} - \vec{\beta}^{T}X^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta}$$

$$= ??$$

Tutorial 7

Consider the errors: $\varepsilon_i := y_i - \sum_{k=0,1}^{K} \beta_k \cdot x_{k,i}$ i = 1,...,n or $\vec{\varepsilon} = \vec{y} - X\vec{\beta}$

Sum of squared errors: $\varepsilon_1^2 + \varepsilon_2^2 + ... + \varepsilon_n^2 = \vec{\varepsilon}^T \vec{\varepsilon}$

We have:

$$\vec{\varepsilon}^{T}\vec{\varepsilon} = (\vec{y} - X\vec{\beta})^{T} \cdot (\vec{y} - X\vec{\beta})$$

$$= (\vec{y}^{T} - (X\vec{\beta})^{T}) \cdot (\vec{y} - X\vec{\beta})$$

$$= \vec{y}^{T}\vec{y} - \vec{y}^{T}X\vec{\beta} - (X\vec{\beta})^{T}\vec{y} + (X\vec{\beta})^{T}X\vec{\beta}$$

$$= \vec{y}^{T}\vec{y} - \vec{y}^{T}X\vec{\beta} - \vec{\beta}^{T}X^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta}$$

$$= \vec{y}^{T}\vec{y} - (\vec{y}^{T}X\vec{\beta})^{T} - \vec{\beta}^{T}X^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta}$$

$$= \vec{y}^{T}\vec{y} - (\vec{y}^{T}X\vec{\beta})^{T} - \vec{\beta}^{T}X^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta}$$

$$= \vec{y}^{T}\vec{y} - (\vec{\beta}^{T}X^{T}\vec{y} - \vec{\beta}^{T}X^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta})$$

$$= \vec{y}^{T}\vec{y} - 2\vec{\beta}^{T}X^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta}$$

Tutorial 7

PML SS 2025

53

Sum of squared errors: $\vec{\varepsilon}^T \vec{\varepsilon} = \vec{y}^T \vec{y} - 2 \vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \in \mathbb{R}$

Derivatives/FOC??

Tutorial 7

Sum of squared errors: $\vec{\varepsilon}^T \vec{\varepsilon} = \vec{y}^T \vec{y} - 2 \vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \in \mathbb{R}$

Derivatives/FOC:

$$\vec{\varepsilon}^{T}\vec{\varepsilon} = \vec{y}^{T}\vec{y} - 2\vec{\beta}^{T}X^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta} \in \mathbb{R}$$

$$\frac{\partial}{\partial \beta_{k}}\varepsilon_{1}^{2} + \varepsilon_{2}^{2} + ... + \varepsilon_{n}^{2} \quad \forall k = 0, 1, ..., K \Rightarrow \begin{pmatrix} \frac{\partial}{\partial \beta_{0}}\vec{\varepsilon}^{T}\vec{\varepsilon} \\ \frac{\partial}{\partial \beta_{1}}\vec{\varepsilon}^{T}\vec{\varepsilon} \\ ... \\ \frac{\partial}{\partial \beta_{K}}\vec{\varepsilon}^{T}\vec{\varepsilon} \end{pmatrix}_{(K+1)\times 1} = \vec{0}$$

Hence: $\frac{\partial \vec{\varepsilon}^T \vec{\varepsilon}}{\partial \vec{\beta}} = ??$

Tutorial 7

Sum of squared errors: $\vec{\varepsilon}^T \vec{\varepsilon} = \vec{y}^T \vec{y} - 2\vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \in \mathbb{R}$

Derivatives/FOC:
$$\frac{\partial}{\partial \beta_{k}} \varepsilon_{1}^{2} + \varepsilon_{2}^{2} + ... + \varepsilon_{n}^{2} \quad \forall k = 0, 1, ..., K \implies$$

$$\vec{\varepsilon}^{T}\vec{\varepsilon} = \vec{y}^{T}\vec{y} - 2\vec{\beta}^{T}X^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta} \in \mathbb{R}$$

$$\frac{\partial}{\partial \beta_{k}}\varepsilon_{1}^{2} + \varepsilon_{2}^{2} + ... + \varepsilon_{n}^{2} \quad \forall k = 0, 1, ..., K \Rightarrow \begin{pmatrix} \frac{\partial}{\partial \beta_{0}}\vec{\varepsilon}^{T}\vec{\varepsilon} \\ \frac{\partial}{\partial \beta_{1}}\vec{\varepsilon}^{T}\vec{\varepsilon} \\ \frac{\partial}{\partial \beta_{K}}\vec{\varepsilon}^{T}\vec{\varepsilon} \end{pmatrix}_{(K+1)\times 1} = \frac{\partial \vec{\varepsilon}^{T}\vec{\varepsilon}}{\partial \vec{\beta}} \stackrel{!}{=} \vec{0}$$

$$-2\vec{\beta}^{T}X^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta} \end{pmatrix}$$

Hence:
$$\frac{\partial \vec{\varepsilon}^T \vec{\varepsilon}}{\partial \vec{\beta}} = \frac{\partial}{\partial \vec{\beta}} \left(\vec{y}^T \vec{y} - 2 \vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \right)$$
$$= \underbrace{\frac{\partial}{\partial \vec{\beta}} \vec{y}^T \vec{y} - \frac{\partial}{\partial \vec{\beta}} 2 \vec{\beta}^T X^T \vec{y} + \frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}}_{??}$$

Tutorial 7

Sum of squared errors: $\vec{\varepsilon}^T \vec{\varepsilon} = \vec{y}^T \vec{y} - 2\vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \in \mathbb{R}$

Derivatives/FOC:
$$\frac{\partial}{\partial \beta_{k}} \varepsilon_{1}^{2} + \varepsilon_{2}^{2} + ... + \varepsilon_{n}^{2} \quad \forall k = 0, 1, ..., K = 0, 1, ..., K$$

$$\vec{\varepsilon}^{T}\vec{\varepsilon} = \vec{y}^{T}\vec{y} - 2\vec{\beta}^{T}X^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta} \in \mathbb{R}$$

$$\frac{\partial}{\partial \beta_{k}}\varepsilon_{1}^{2} + \varepsilon_{2}^{2} + ... + \varepsilon_{n}^{2} \quad \forall k = 0, 1, ..., K \Rightarrow \begin{pmatrix} \frac{\partial}{\partial \beta_{0}}\vec{\varepsilon}^{T}\vec{\varepsilon} \\ \frac{\partial}{\partial \beta_{1}}\vec{\varepsilon}^{T}\vec{\varepsilon} \\ \frac{\partial}{\partial \beta_{K}}\vec{\varepsilon}^{T}\vec{\varepsilon} \end{pmatrix} = \frac{\partial \vec{\varepsilon}^{T}\vec{\varepsilon}}{\partial \vec{\beta}} \stackrel{!}{=} \vec{0}$$

$$-2\vec{\beta}^{T}X^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta} \end{pmatrix}$$

$$-\frac{\partial}{\partial \vec{\rho}}2\vec{\beta}^{T}X^{T}\vec{y} + \frac{\partial}{\partial \vec{\rho}}\vec{\beta}^{T}X^{T}X\vec{\beta}$$

Hence:
$$\frac{\partial \vec{\varepsilon}^T \vec{\varepsilon}}{\partial \vec{\beta}} = \frac{\partial}{\partial \vec{\beta}} \left(\vec{y}^T \vec{y} - 2 \vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \right)$$

$$= \frac{\partial}{\partial \vec{\beta}} \vec{y}^T \vec{y} - \frac{\partial}{\partial \vec{\beta}} 2 \vec{\beta}^T X^T \vec{y} + \frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ (K+1) \text{ind} \end{bmatrix} \vec{y}^T \vec{y} = \frac{\partial}{\partial \beta_k} \left(y_1^2 + y_2^2 + ... + y_n^2 \right) = 0 \quad \forall k = 0, 1, ..., K$$

$$\forall k = 0, 1, ..., K$$

Tutorial 7

Sum of squared errors: $\vec{\varepsilon}^T \vec{\varepsilon} = \vec{y}^T \vec{y} - 2\vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \in \mathbb{R}$

Derivatives/FOC:
$$\frac{\partial}{\partial \beta_{k}} \varepsilon_{1}^{2} + \varepsilon_{2}^{2} + ... + \varepsilon_{n}^{2} \quad \forall k = 0, 1, ..., K \Rightarrow$$

$$\vec{\varepsilon}^{T}\vec{\varepsilon} = \vec{y}^{T}\vec{y} - 2\vec{\beta}^{T}X^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta} \in \mathbb{R}$$

$$\frac{\partial}{\partial \beta_{k}}\varepsilon_{1}^{2} + \varepsilon_{2}^{2} + ... + \varepsilon_{n}^{2} \quad \forall k = 0, 1, ..., K \Rightarrow \begin{pmatrix} \frac{\partial}{\partial \beta_{0}}\vec{\varepsilon}^{T}\vec{\varepsilon} \\ \frac{\partial}{\partial \beta_{1}}\vec{\varepsilon}^{T}\vec{\varepsilon} \\ \frac{\partial}{\partial \beta_{K}}\vec{\varepsilon}^{T}\vec{\varepsilon} \end{pmatrix}_{(K+1)\times 1} = \vec{0}$$

$$\vec{\varepsilon}^{T}\vec{x}^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta}$$

Hence:
$$\frac{\partial \vec{\varepsilon}^T \vec{\varepsilon}}{\partial \vec{\beta}} = \frac{\partial}{\partial \vec{\beta}} \left(\vec{y}^T \vec{y} - 2 \vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \right)$$
$$= \vec{0} - \underbrace{\frac{\partial}{\partial \vec{\beta}} 2 \vec{\beta}^T X^T \vec{y} + \frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}}_{??}$$

Sum of squared errors: $\vec{\varepsilon}^T \vec{\varepsilon} = \vec{y}^T \vec{y} - 2\vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \in \mathbb{R}$

Derivatives/FOC:
$$\frac{\partial}{\partial \beta_{k}} \varepsilon_{1}^{2} + \varepsilon_{2}^{2} + ... + \varepsilon_{n}^{2} \quad \forall k = 0, 1, ..., K \implies$$

$$\vec{\varepsilon}^{T}\vec{\varepsilon} = \vec{y}^{T}\vec{y} - 2\vec{\beta}^{T}X^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta} \in \mathbb{R}$$

$$\frac{\partial}{\partial \beta_{k}}\varepsilon_{1}^{2} + \varepsilon_{2}^{2} + ... + \varepsilon_{n}^{2} \quad \forall k = 0, 1, ..., K \Rightarrow \begin{pmatrix} \frac{\partial}{\partial \beta_{0}}\vec{\varepsilon}^{T}\vec{\varepsilon} \\ \frac{\partial}{\partial \beta_{1}}\vec{\varepsilon}^{T}\vec{\varepsilon} \\ \frac{\partial}{\partial \beta_{K}}\vec{\varepsilon}^{T}\vec{\varepsilon} \end{pmatrix}_{(K+1)\times 1} = \vec{0}$$

$$\vec{\varepsilon}^{T}\vec{x}^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta}$$

Hence:
$$\frac{\partial \vec{\varepsilon}^T \vec{\varepsilon}}{\partial \vec{\beta}} = \frac{\partial}{\partial \vec{\beta}} \left(\vec{y}^T \vec{y} - 2 \vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \right)$$
$$= \vec{0} - \underbrace{\frac{\partial}{\partial \vec{\beta}}}_{2X^T \vec{y}} 2 \vec{\beta}^T X^T \vec{y} + \underbrace{\frac{\partial}{\partial \vec{\beta}}}_{2X^T \vec{y}} \vec{\beta}^T X^T X \vec{\beta}$$
$$\underbrace{\frac{\partial}{\partial \beta_k}}_{1 \times (K+1)} \underbrace{X^T \vec{y}}_{\tilde{m} (K+1) \times 1} = ??$$

Tutorial 7

Sum of squared errors: $\vec{\varepsilon}^T \vec{\varepsilon} = \vec{y}^T \vec{y} - 2\vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \in \mathbb{R}$

Derivatives/FOC:

$$\vec{\varepsilon}^{T}\vec{\varepsilon} = \vec{y}^{T}\vec{y} - 2\vec{\beta}^{T}X^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta} \in \mathbb{R}$$

$$\frac{\partial}{\partial \beta_{k}}\varepsilon_{1}^{2} + \varepsilon_{2}^{2} + ... + \varepsilon_{n}^{2} \quad \forall k = 0, 1, ..., K \Rightarrow \begin{pmatrix} \frac{\partial}{\partial \beta_{0}}\vec{\varepsilon}^{T}\vec{\varepsilon} \\ \frac{\partial}{\partial \beta_{1}}\vec{\varepsilon}^{T}\vec{\varepsilon} \\ ... \\ \frac{\partial}{\partial \beta_{K}}\vec{\varepsilon}^{T}\vec{\varepsilon} \end{pmatrix}_{(K+1)\times 1} = \vec{0}$$

$$\vec{\varepsilon}^{T}\vec{\chi}^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta}$$

Hence:
$$\frac{\partial \vec{\varepsilon}^T \vec{\varepsilon}}{\partial \vec{\beta}} = \frac{\partial}{\partial \vec{\beta}} \left(\vec{y}^T \vec{y} - 2 \vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \right)$$
$$= \vec{0} - \underbrace{\frac{\partial}{\partial \vec{\beta}} 2 \vec{\beta}^T X^T \vec{y}}_{2X^T \vec{y}} + \underbrace{\frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}}_{2X^T \vec{y}}$$

$$\frac{\partial}{\partial \beta_k} 2\vec{\beta}_{1\times(K+1)}^T \underbrace{X^T \vec{y}}_{\vec{m}(K+1)\times 1} = 2\frac{\partial}{\partial \beta_k} (\beta_0 \cdot m_0 + \beta_1 \cdot m_1 \dots + \beta_K \cdot m_K) = ??$$

Tutorial 7

PML SS 2025

60

Sum of squared errors: $\vec{\varepsilon}^T \vec{\varepsilon} = \vec{y}^T \vec{y} - 2\vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \in \mathbb{R}$

Derivatives/FOC:
$$\frac{\partial}{\partial B_n} \varepsilon_1^2 + \varepsilon_2^2 + ... + \varepsilon_n^2 \quad \forall k = 0, 1, ..., K \implies$$

$$\vec{\varepsilon}^{T}\vec{\varepsilon} = \vec{y}^{T}\vec{y} - 2\vec{\beta}^{T}X^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta} \in \mathbb{R}$$

$$\frac{\partial}{\partial \beta_{k}}\varepsilon_{1}^{2} + \varepsilon_{2}^{2} + ... + \varepsilon_{n}^{2} \quad \forall k = 0, 1, ..., K \Rightarrow \begin{pmatrix} \frac{\partial}{\partial \beta_{0}}\vec{\varepsilon}^{T}\vec{\varepsilon} \\ \frac{\partial}{\partial \beta_{1}}\vec{\varepsilon}^{T}\vec{\varepsilon} \\ ... \\ \frac{\partial}{\partial \beta_{K}}\vec{\varepsilon}^{T}\vec{\varepsilon} \end{pmatrix}_{(K+1)\times 1} = \vec{0}$$

$$\vec{\varepsilon}^{T}\vec{\chi}^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta}$$

Hence:
$$\frac{\partial \vec{\varepsilon}^T \vec{\varepsilon}}{\partial \vec{\beta}} = \frac{\partial}{\partial \vec{\beta}} \left(\vec{y}^T \vec{y} - 2 \vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \right)$$
$$= \vec{0} - \underbrace{\frac{\partial}{\partial \vec{\beta}} 2 \vec{\beta}^T X^T \vec{y}}_{2X^T \vec{y}} + \underbrace{\frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}}_{2X^T \vec{y}}$$

PML SS 2025

61

$$\frac{\partial}{\partial \beta_{k}} 2\vec{\beta}_{1\times(K+1)}^{T} \underbrace{X^{T}\vec{y}}_{\vec{m}_{0}(K+1)\times 1} = 2\frac{\partial}{\partial \beta_{k}} (\beta_{0} \cdot m_{0} + \beta_{1} \cdot m_{1} \dots + \beta_{K} \cdot m_{K}) = 2 \cdot m_{k} \quad \forall k = 0, 1, ..., K$$

Hence:
$$\frac{\partial \vec{\varepsilon}^T \vec{\varepsilon}}{\partial \vec{\beta}} = \frac{\partial}{\partial \vec{\beta}} \left(\vec{y}^T \vec{y} - 2 \vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \right)$$
$$= \vec{0} - 2 X^T \vec{y} + \underbrace{\frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}}_{(K+1) \times 1}$$

Tutorial 7 PML SS 2025

$$\frac{\partial}{\partial \beta_{k}} \underbrace{\vec{\beta}^{T}_{\times (K+1)}}_{\underbrace{(K+1)\times(K+1)}} \underbrace{\vec{\beta}_{(K+1)\times 1}}_{(K+1)\times 1} = \frac{\partial}{\partial \beta_{k}} \underbrace{\vec{\beta}^{T}_{1\times (K+1)}}_{\underbrace{(K+1)}} \cdot \begin{pmatrix} \beta_{0} \cdot m_{0,0} & +\beta_{1} \cdot m_{0,1} & \dots & +\beta_{K} \cdot m_{0,K} \\ \beta_{0} \cdot m_{1,0} & +\beta_{1} \cdot m_{1,1} & \dots & +\beta_{K} \cdot m_{1,K} \\ & & \dots & \\ \beta_{0} \cdot m_{K,0} & +\beta_{1} \cdot m_{K,1} & \dots & +\beta_{K} \cdot m_{K,K} \end{pmatrix} = ??$$

Hence:
$$\frac{\partial \vec{\varepsilon}^T \vec{\varepsilon}}{\partial \vec{\beta}} = \frac{\partial}{\partial \vec{\beta}} \left(\vec{y}^T \vec{y} - 2 \vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \right)$$
$$= \vec{0} - 2 X^T \vec{y} + \underbrace{\frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}}_{(K+1) \times 1}$$

Tutorial 7

$$\frac{\partial}{\partial \beta_{k}} \underbrace{\vec{\beta}^{T}_{l \times (K+1)}}_{\text{in}} \underbrace{\vec{K}^{T}_{l \times (K+1)}}_{\text{in}} \underbrace{\vec{\beta}}_{\text{in}} = \frac{\partial}{\partial \beta_{k}} \underbrace{\vec{\beta}^{T}_{l \times (K+1)}}_{\text{in}} \cdot \begin{pmatrix} \beta_{0} \cdot m_{0,0} & +\beta_{1} \cdot m_{0,1} & \dots & +\beta_{K} \cdot m_{0,K} \\ \beta_{0} \cdot m_{1,0} & +\beta_{1} \cdot m_{1,1} & \dots & +\beta_{K} \cdot m_{1,K} \\ \dots & \dots & \dots & \dots \\ \beta_{0} \cdot m_{K,0} & +\beta_{1} \cdot m_{K,1} & \dots & +\beta_{K} \cdot m_{K,K} \end{pmatrix} = \frac{\partial}{\partial \beta_{k}} \begin{bmatrix} \beta_{0} \cdot (\beta_{0} \cdot m_{0,0} & +\beta_{1} \cdot m_{0,1} & \dots & +\beta_{K} \cdot m_{0,K}) \\ +\beta_{1} \cdot (\beta_{0} \cdot m_{0,0} & +\beta_{1} \cdot m_{1,1} & \dots & +\beta_{K} \cdot m_{1,K}) \\ \dots & \dots & \dots & \dots \\ +\beta_{K} \cdot (\beta_{0} \cdot m_{K,0} & +\beta_{1} \cdot m_{K,1} & \dots & +\beta_{K} \cdot m_{K,K}) \end{bmatrix}$$

Hence:
$$\frac{\partial \vec{\varepsilon}^T \vec{\varepsilon}}{\partial \vec{\beta}} = \frac{\partial}{\partial \vec{\beta}} \left(\vec{y}^T \vec{y} - 2 \vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \right)$$
$$= \vec{0} - 2 X^T \vec{y} + \underbrace{\frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}}_{(K+1) \times 1}$$

Tutorial 7

$$\frac{\partial}{\partial \boldsymbol{\beta}_{k}} \underbrace{\vec{\beta}^{T}_{l \times (K+1)} \underbrace{\vec{X}^{T} X}_{l \times (K+1)} \underbrace{\vec{\beta}}_{(K+1) \times (K+1)} = \frac{\partial}{\partial \boldsymbol{\beta}_{k}} \underbrace{\vec{\beta}^{T}_{l \times (K+1)}}_{l \times (K+1)} \cdot \begin{pmatrix} \boldsymbol{\beta}_{0} \cdot \boldsymbol{m}_{0,0} & + \boldsymbol{\beta}_{1} \cdot \boldsymbol{m}_{0,1} & \dots & + \boldsymbol{\beta}_{K} \cdot \boldsymbol{m}_{0,K} \\ \boldsymbol{\beta}_{0} \cdot \boldsymbol{m}_{1,0} & + \boldsymbol{\beta}_{1} \cdot \boldsymbol{m}_{1,1} & \dots & + \boldsymbol{\beta}_{K} \cdot \boldsymbol{m}_{1,K} \\ \dots & \dots & \dots & \dots & \dots \\ \boldsymbol{\beta}_{0} \cdot \boldsymbol{m}_{K,0} & + \boldsymbol{\beta}_{1} \cdot \boldsymbol{m}_{K,1} & \dots & + \boldsymbol{\beta}_{K} \cdot \boldsymbol{m}_{K,K} \end{pmatrix} = \underbrace{\frac{\partial}{\partial \boldsymbol{\beta}_{k}} \begin{pmatrix} \boldsymbol{\beta}_{0} \cdot \begin{pmatrix} \boldsymbol{\beta}_{0} \cdot \boldsymbol{m}_{0,0} & + \boldsymbol{\beta}_{1} \cdot \boldsymbol{m}_{0,1} & \dots & + \boldsymbol{\beta}_{K} \cdot \boldsymbol{m}_{0,K} \end{pmatrix}}_{\boldsymbol{\beta}_{0} \cdot \boldsymbol{m}_{K,0} & + \boldsymbol{\beta}_{1} \cdot \boldsymbol{m}_{K,1} & \dots & + \boldsymbol{\beta}_{K} \cdot \boldsymbol{m}_{K,K} \end{pmatrix}} = \underbrace{\frac{\partial}{\partial \boldsymbol{\beta}_{k}} \begin{pmatrix} \boldsymbol{\beta}_{0} \cdot \begin{pmatrix} \boldsymbol{\beta}_{0} \cdot \boldsymbol{m}_{0,0} & + \boldsymbol{\beta}_{1} \cdot \boldsymbol{m}_{0,1} & \dots & + \boldsymbol{\beta}_{K} \cdot \boldsymbol{m}_{0,K} \end{pmatrix}}_{\boldsymbol{\beta}_{0} \cdot \boldsymbol{m}_{K,0} & + \boldsymbol{\beta}_{1} \cdot \boldsymbol{m}_{K,1} & \dots & + \boldsymbol{\beta}_{K} \cdot \boldsymbol{m}_{K,K} \end{pmatrix}} = \underbrace{\frac{\partial}{\partial \boldsymbol{\beta}_{k}} \begin{pmatrix} \boldsymbol{\beta}_{0} \cdot \begin{pmatrix} \boldsymbol{\beta}_{0} \cdot \boldsymbol{m}_{0,0} & + \boldsymbol{\beta}_{1} \cdot \boldsymbol{m}_{0,1} & \dots & + \boldsymbol{\beta}_{K} \cdot \boldsymbol{m}_{0,K} \end{pmatrix}}_{\boldsymbol{\beta}_{0} \cdot \boldsymbol{m}_{K,0} & + \boldsymbol{\beta}_{1} \cdot \boldsymbol{m}_{K,1} & \dots & + \boldsymbol{\beta}_{K} \cdot \boldsymbol{m}_{K,K} \end{pmatrix}}$$

Hence:
$$\frac{\partial \vec{\varepsilon}^T \vec{\varepsilon}}{\partial \vec{\beta}} = \frac{\partial}{\partial \vec{\beta}} \left(\vec{y}^T \vec{y} - 2 \vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \right) = \begin{pmatrix} \beta_0 \cdot m_{0,k} \\ + \beta_1 \cdot m_{1,k} \\ + 1 \cdot \left(\beta_0 \cdot m_{k,0} + \beta_1 \cdot m_{k,1} \dots + \beta_K \cdot m_{k,K} \right) + \beta_k \cdot m_{k,k} \\ + \beta_K \cdot m_{K,k} \end{pmatrix}$$

$$= \vec{0} - 2 X^T \vec{y} + \frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}$$

$$= \vec{0} - 2 X^T \vec{y} + \frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}$$

$$= \vec{0} - 2 X^T \vec{y} + \frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}$$

$$= \vec{0} - 2 X^T \vec{y} + \frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}$$

$$= \vec{0} - 2 X^T \vec{y} + \frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}$$

$$= \vec{0} - 2 X^T \vec{y} + \frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}$$

$$= \vec{0} - 2 X^T \vec{y} + \frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}$$

$$= \vec{0} - 2 X^T \vec{y} + \frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}$$

$$= \vec{0} - 2 X^T \vec{y} + \frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}$$

$$= \begin{pmatrix} \boldsymbol{\beta}_0 \cdot \boldsymbol{m}_{0,k} \\ + \boldsymbol{\beta}_1 \cdot \boldsymbol{m}_{1,k} \\ + 1 \cdot \left(\boldsymbol{\beta}_0 \cdot \boldsymbol{m}_{k,0} + \boldsymbol{\beta}_1 \cdot \boldsymbol{m}_{k,1} \dots + \boldsymbol{\beta}_K \cdot \boldsymbol{m}_{k,K} \right) + \boldsymbol{\beta}_k \cdot \boldsymbol{m}_{k,k} \\ + \boldsymbol{\beta}_K \cdot \boldsymbol{m}_{K,k} \end{pmatrix}$$

Tutorial 7

$$\frac{\partial}{\partial \beta_{k}} \underbrace{\vec{\beta}^{T}}_{\mathbf{j} \times (K+1)} \underbrace{\vec{X}^{T} X}_{(K+1) \times (K+1)} \underbrace{\vec{\beta}}_{(K+1) \times 1} = \frac{\partial}{\partial \beta_{k}} \underbrace{\vec{\beta}^{T}}_{\mathbf{j} \times (K+1)} \cdot \begin{pmatrix} \beta_{0} \cdot m_{0,0} & +\beta_{1} \cdot m_{0,1} & \dots & +\beta_{K} \cdot m_{0,K} \\ \beta_{0} \cdot m_{1,0} & +\beta_{1} \cdot m_{1,1} & \dots & +\beta_{K} \cdot m_{1,K} \\ & \dots & & \\ \beta_{0} \cdot m_{K,0} & +\beta_{1} \cdot m_{K,1} & \dots & +\beta_{K} \cdot m_{K,K} \end{pmatrix} = \frac{\partial}{\partial \beta_{k}} \begin{pmatrix} \beta_{0} \cdot (\beta_{0} \cdot m_{0,0} & +\beta_{1} \cdot m_{0,1} & \dots & +\beta_{K} \cdot m_{0,K}) \\ +\beta_{1} \cdot (\beta_{0} \cdot m_{1,0} & +\beta_{1} \cdot m_{1,1} & \dots & +\beta_{K} \cdot m_{1,K}) \\ & \dots & \\ +\beta_{K} \cdot (\beta_{0} \cdot m_{K,0} & +\beta_{1} \cdot m_{K,1} & \dots & +\beta_{K} \cdot m_{K,K}) \end{pmatrix}$$

Hence:
$$\frac{\partial \vec{\varepsilon}^T \vec{\varepsilon}}{\partial \vec{\beta}} = \frac{\partial}{\partial \vec{\beta}} \left(\vec{y}^T \vec{y} - 2 \vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \right) = \begin{pmatrix} \beta_0 \cdot m_{0,k} \\ + \beta_1 \cdot m_{1,k} \\ + 1 \cdot \left(\beta_0 \cdot m_{k,0} + \beta_1 \cdot m_{k,1} \dots + \beta_K \cdot m_{k,K} \right) + \beta_k \cdot m_{k,k} \\ + \beta_K \cdot m_{K,k} \end{pmatrix}$$

$$= \vec{0} - 2 X^T \vec{y} + \underbrace{\frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}}_{(K+1) \text{sd}} = 2 \cdot \left(\beta_0 \cdot m_{k,0} + \beta_1 \cdot m_{k,1} \dots + \beta_K \cdot m_{k,K} \right)}_{= 2 \cdot k^{th} \ row \ of \ X^T X \vec{\beta}} \forall k = 0, 1, ..., K$$

$$= 2 \cdot k^{th} \ row \ of \ X^T X \vec{\beta} \qquad \forall k = 0, 1, ..., K$$

$$= \vec{0} - 2X^T \vec{y} + \underbrace{\frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}}_{2X^T X \vec{\beta}}$$

$$= 2 \cdot \left(\beta_0 \cdot m_{k,0} + \beta_1 \cdot m_{k,1} \dots + \beta_K \cdot m_{k,K}\right)$$

$$= 2 \cdot k^{th} \ row \ of \ X^T X \vec{\beta} \qquad \forall k = 0,1,...,K$$
Tutorial 7
$$\forall k = 0,1,...,K$$

Sum of squared errors: $\vec{\varepsilon}^T \vec{\varepsilon} = \vec{y}^T \vec{y} - 2 \vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \in \mathbb{R}$

Derivatives/FOC:
$$\frac{\partial}{\partial \beta_{\iota}} \mathcal{E}_{1}^{2} + \mathcal{E}_{2}^{2} + ... + \mathcal{E}_{n}^{2} \quad \forall k = 0, 1, ..., K \implies$$

$$\vec{\varepsilon}^{T}\vec{\varepsilon} = \vec{y}^{T}\vec{y} - 2\vec{\beta}^{T}X^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta} \in \mathbb{R}$$

$$\frac{\partial}{\partial \beta_{k}}\varepsilon_{1}^{2} + \varepsilon_{2}^{2} + ... + \varepsilon_{n}^{2} \quad \forall k = 0, 1, ..., K \Rightarrow \begin{pmatrix} \frac{\partial}{\partial \beta_{0}}\vec{\varepsilon}^{T}\vec{\varepsilon} \\ \frac{\partial}{\partial \beta_{1}}\vec{\varepsilon}^{T}\vec{\varepsilon} \\ \frac{\partial}{\partial \beta_{K}}\vec{\varepsilon}^{T}\vec{\varepsilon} \end{pmatrix}_{(K+1)\times 1} = \frac{\vec{\partial}\vec{\varepsilon}^{T}\vec{\varepsilon}}{\vec{\partial}\vec{\beta}} \stackrel{!}{=} \vec{0}$$

$$\vec{v} - 2\vec{\beta}^{T}X^{T}\vec{y} + \vec{\beta}^{T}X^{T}X\vec{\beta} \end{pmatrix}$$

Hence:
$$\frac{\partial \vec{\varepsilon}^T \vec{\varepsilon}}{\partial \vec{\beta}} = \frac{\partial}{\partial \vec{\beta}} \left(\vec{y}^T \vec{y} - 2 \vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \right)$$
$$= \frac{\partial}{\partial \vec{\beta}} \vec{y}^T \vec{y} - \frac{\partial}{\partial \vec{\beta}} 2 \vec{\beta}^T X^T \vec{y} + \frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}$$
$$= -2X^T \vec{y} + 2X^T X \vec{\beta} \stackrel{!}{=} \vec{0}$$

Tutorial 7

Sum of squared errors: $\vec{\varepsilon}^T \vec{\varepsilon} = \vec{y}^T \vec{y} - 2 \vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \in \mathbb{R}$

Derivatives/FOC:
$$\frac{\partial}{\partial \beta_{k}} \varepsilon_{1}^{2} + \varepsilon_{2}^{2} + ... + \varepsilon_{n}^{2} \quad \forall k = 0, 1, ..., K = 0, 1, ..., K$$

$$\vec{\varepsilon}^T \vec{\varepsilon} = \vec{y}^T \vec{y} - 2\vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \in \mathbb{R}$$

$$\frac{\partial}{\partial \beta_k} \varepsilon_1^2 + \varepsilon_2^2 + ... + \varepsilon_n^2 \quad \forall k = 0, 1, ..., K \implies \begin{pmatrix} \frac{\partial}{\partial \beta_0} \vec{\varepsilon}^T \vec{\varepsilon} \\ \frac{\partial}{\partial \beta_1} \vec{\varepsilon}^T \vec{\varepsilon} \\ \frac{\partial}{\partial \beta_1} \vec{\varepsilon}^T \vec{\varepsilon} \end{pmatrix}$$

$$\vdots$$

$$\vec{v} - 2\vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \end{pmatrix}$$

$$= \frac{\partial \vec{\varepsilon}^T \vec{\varepsilon}}{\partial \vec{\beta}} \stackrel{!}{=} \vec{0}$$

$$\vdots$$

$$\vec{v} - 2\vec{\beta}^T X^T \vec{y} + \frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}$$

$$\frac{\partial \vec{\varepsilon}^T \vec{\varepsilon}}{\partial \vec{\beta}} = \frac{\partial}{\partial \vec{\beta}} \left(\vec{y}^T \vec{y} - 2 \vec{\beta}^T X^T \vec{y} + \vec{\beta}^T X^T X \vec{\beta} \right)
= \frac{\partial}{\partial \vec{\beta}} \vec{y}^T \vec{y} - \frac{\partial}{\partial \vec{\beta}} 2 \vec{\beta}^T X^T \vec{y} + \frac{\partial}{\partial \vec{\beta}} \vec{\beta}^T X^T X \vec{\beta}
= -2 X^T \vec{y} + 2 X^T X \vec{\beta} \stackrel{!}{=} \vec{0}$$

$$\Leftrightarrow X^T X \vec{\beta} \stackrel{!}{=} X^T \vec{y}$$

Tutorial 7

Optimality condition:

$$\underbrace{X^{T}}_{(K+1)\times\dots}X\underbrace{\vec{\beta}}_{\dots\times 1} \stackrel{!}{=} \underbrace{X^{T}\vec{y}}_{(K+1)\times 1}$$

How to get the optimal weights $\vec{\beta}$?

Any ideas?

Tutorial 7

Optimality condition:

$$\underbrace{X^{T}}_{(K+1)\times\dots}X\underbrace{\vec{\beta}}_{\dots\times 1} \stackrel{!}{=} \underbrace{X^{T}\vec{y}}_{(K+1)\times 1}$$

How to get the optimal weights $\vec{\beta}$?

If X^TX has full rank, then the inverse exists and we get:

$$\Leftrightarrow (X^T X)^{-1} \cdot X^T X \vec{\beta} = (X^T X)^{-1} \cdot X^T \vec{y}$$

Tutorial 7

Optimality condition:

$$\underbrace{X^{T}}_{(K+1)\times\dots}X\underbrace{\vec{\beta}}_{\dots\times 1} \stackrel{!}{=} \underbrace{X^{T}\vec{y}}_{(K+1)\times 1}$$

How to get the optimal weights $\vec{\beta}$?

If X^TX has full rank, then the inverse exists and we get:

$$\Leftrightarrow (X^T X)^{-1} \cdot X^T X \vec{\beta} = (X^T X)^{-1} \cdot X^T \vec{y}$$

$$\Leftrightarrow I \cdot \vec{\beta} = (X^T X)^{-1} \cdot X^T \vec{y}$$

$$\Leftrightarrow \vec{\beta} = (X^T X)^{-1} \cdot X^T \vec{y}$$

Tutorial 7

Optimality condition:

$$X^T \times \vec{\beta} = X^T \vec{y}$$
 Other ideas to get $\vec{\beta}$??

How to get the optimal weights $\vec{\beta}$?

If X^TX has full rank, then the inverse exists and we get:

$$\Leftrightarrow (X^T X)^{-1} \cdot X^T X \vec{\beta} = (X^T X)^{-1} \cdot X^T \vec{y}$$

$$\Leftrightarrow I \cdot \vec{\beta} = (X^T X)^{-1} \cdot X^T \vec{y}$$

$$\Leftrightarrow \vec{\beta} = (X^T X)^{-1} \cdot X^T \vec{y}$$

Tutorial 7

Optimality condition:

$$\underbrace{X^{T}}_{(K+1)\times...}X\underbrace{\vec{\beta}}_{...\times 1} \stackrel{!}{=} \underbrace{X^{T}\vec{y}}_{(K+1)\times 1} \longleftarrow$$

or solve $A\vec{x} = \vec{b}$ for \vec{x}

where $A = X^T X$

and $\vec{x} = \vec{\beta}, \ \vec{b} = X^T \vec{y}$

How to get the optimal weights $\vec{\beta}$?

If X^TX has full rank, then the inverse exists and we get:

$$\Leftrightarrow (X^T X)^{-1} \cdot X^T X \vec{\beta} = (X^T X)^{-1} \cdot X^T \vec{y}$$

$$\Leftrightarrow I \cdot \vec{\beta} = (X^T X)^{-1} \cdot X^T \vec{y}$$

$$\Leftrightarrow \vec{\beta} = (X^T X)^{-1} \cdot X^T \vec{y}$$

Tutorial 7

Summary

- Recap I: Cholesky Decomposition
- Recap II: Linear Basis Function Models
- Recap III: Linear Regression & Matrix Algebra

y	$\frac{\partial \mathbf{y}}{\partial \mathbf{x}}$
Ax	\mathbf{A}^T
$\mathbf{x}^T \mathbf{A}$	\mathbf{A}
$\mathbf{x}^T \mathbf{x}$	$2\mathbf{x}$
$\mathbf{x}^T \mathbf{A} \mathbf{x}$	$\mathbf{A}\mathbf{x} + \mathbf{A}^T\mathbf{x}$

$$(A+B)^T = A^T + B^T$$
 $(c\cdot A)^T = c\cdot A^T$
 $(A^T)^T = A$
 $(A\cdot B)^T = B^T\cdot A^T$
 $(A^{-1})^T = (A^T)^{-1}$

Tutorial 7

See you next Week!