UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETRÔNICA CURSO TÉCNICO DE NÍVEL MÉDIO INTEGRADO – ELETRÔNICA

LUDWIG AUMANN
NICHOLLAS PAVLOSKI

VENDING MACHINE

Proposta para o Projeto da Disciplina de Eletrônica Aplicada do Curso Técnico de Nível Médio Integrado - Eletrônica da Universidade Tecnológica Federal do Paraná. Professor Cesar Yukata Ofuchi.

CURITIBA

SUMÁRIO

1 INTRODUÇÃO	. 3
2 OBJETIVOS	. 4
2.1 OBJETIVO GERAL	. 4
2.2 OBJETIVOS ESPECÍFICOS	. 4
3 METODOLOGIA	. 5
3.1 PROCESSAMENTO	. 6
3.2 INTERFACE COM O USUÁRIO	. 6
3.3 ESTRUTURA	. 6
3.4 TESTES	. 6
4 CRONOGRAMA	. 8
5 ORÇAMENTO	. 9
6 RISCOS	. 9

1. INTRODUÇÃO

As máquinas de venda automáticas convencionais ocupam muito espaço em lojas e estabelecimentos comerciais. Por isso, usualmente máquinas novas custam em torno de dez mil reais e sua manutenção gera despesas elevadas.

Pensando nisso, nosso projeto visa o desenvolvimento de uma vending machine mais barata, para locais de pequeno e médio porte, com um melhor custo benefício do que as atuais.

Para atingir esse objetivo, pensamos em economizar com o material da carcaça sem abrir mão da segurança e da durabilidade do nosso produto. Nossa máquina vai contar com uma estrutura resistente e um sistema de segurança com alerta.

Além disso, apesar da nossa máquina ser menor do que as convencionais, iremos reduzir o tamanho da carcaça de forma a aproveitar melhor o espaço interno para as prateleiras de "snacks".

O sistema de pagamento será feito com um mecanismo de moedas (moedeiro) ou notas (noteiro). Em ambos os casos, a identificação do dinheiro é feita com um sensor de cor, que contará o dinheiro pago e só após irá liberar o "snack". O sistema de troco funciona de maneira similar, onde retornará o dinheiro também por noteiro ou moedeiro. Internamente a máquina terá uma gaveta para armazenar troco e pagamento.

As prateleiras internas possuem molas que giram conforme o acionamento de um motor DC usado na seleção do produto, quando o usuário definir o que ele deseja. Quando as molas girarem o produto irá se deslocar e cair no compartimento.

2. OBJETIVOS

Construir uma vending machine mais acessível, voltada para locais de pequeno a médio porte graças às suas dimenções reduzidas, sem abrir mão das features das máquinas comercializadas atualmente, visando a rentabilidade do cliente e baixo custo de manutenção.

2.1 OBJETIVO GERAL

Desenvolver uma vending machine que entregue os atributos dos modelos atualmente comercializados com um bom custo-benefício.

2.2 OBJETIVOS ESPECÍFICOS

Levantar dados sobre as vending machines comercializadas atualmente;

Identificar as necessidades do cliente intermediário baseando-se nas informações da loja onde a máquina será instalada, no gosto dos clientes finais (frequentadores do estabelecimento), entre outros parâmetros;

Avaliar a viabilidade comercial de uma máquina menor mas com características similares das vending machines de grande porte;

Traçar um planejamento orçamentário para ficar dentro do budget inicial;

3. METODOLOGIA

Primeiramente serão feitas pesquisas para qual será a melhor forma de desenvolver cada sistema que estará embutido na vending machine (e.g. segurança, ventilação, noteiro e moedeiro, etc), por exemplo, averiguar qual o jeito com maior custo-benefício para aplicarmos todas ideias juntas na carcaça do projeto. Após a decisão dos métodos, os sistemas serão desenvolvidos separadamente, com ensaios primeiramente independentes da estrutura da vending machine e, depois que tivermos a carcaça da nossa máquina, realizar os testes praticamente finais. A princípio os sistemas de software, hardware e montagem serão desenvolvidos pelos alunos, e devido à complexidade do sistema de hardware e estrutura cogitamos em terceirizar, o único empecilho seria o preço desta terceirização.

3.1 PROCESSAMENTO

O microcontrolador escolhido foi o ATMEGA328P, que se encontra na plataforma microcontrolada Arduino UNO. O motivo de escolha desse aparelho é a vantagem em relação ao preço do próprio Arduino e os infinitos *shields* e sensores que estão acessíveis no mercado, diferente de outras plataformas. Inicialmente, pretendemos utilizar todas as entradas/saídas digitais, já que são vários sistemas que teremos que desenvolver.

3.2 INTERFACE COM O USUÁRIO

O usuário poderá escolher o que irá consumir, entre as quatro opções oferecidas, apenas clicando em algum dos botões que instalaremos na carcaça da vending machine. Assim que o cliente inserir o dinheiro (nota ou moeda) e decidir o que deseja o produto escolhido cairá para o compartimento onde o consumidor poderá pegá-lo.

Além disto, a máquina terá um sistema de segurança que alertará o proprietário pelo celular instantaneamente em qualquer caso de furto ou similares. O sistema só será ativado quando o usuário decidir.

3.3 ESTRUTURA

A carcaça será montada com madeira (e.g. MDF, compensado), com um material leve e resistente, além do material transparente (e.g. acrílico, vidro) que irá ser instalado na parte frontal da máquina para visualização dos produtos disponíveis.

A estrutura será projetada pelos alunos com conhecimentos em softwares de CAD para desenvolvimento dos tamanhos que encaixem com os planos do grupo para manter o objetivo de uma vending machine compacta e com um ótimo custo-benefício.

3.4 TESTES

A princípio serão realizados testes em cada sistema (segurança, ventilação e noteiro/moedeiro) separadamente, com o desenvolvimento de cada um destes independentemente da estrutura. Buscaremos ideias para deixá-los mais simples e com uma grande eficácia. Assim que a estrutura estiver montada, aí podemos juntar todas as ideias dentro da carcaça para aplicarmos testes finais.

4. CRONOGRAMA

Recurso (Equipe): Le = Leonardo, Lu = Ludwig, N = Nichollas.

Atividade	Recurso	ago			set			out				nov				dez			
		s1	s2	s3	s4	s1	s2	s3	s4	s1	s2	s3	s4	s1	s2	s3	s4	s1	s2
Definição dos objetivos do projeto, montagem do PMC	Le, Lu, N																		
Levantamento de informações sobre mecanismos da máquina	Le, N																		
Procura de materiais e componentes que integram o hardware	Lu																		
Início do desenvolvimento do código na plataforma microcontrolada	N, Le, Lu																		
Montagem do Hardware	Le, Lu																		
Implementação do código	N, Lu																		
Montagem carcaça	N, Le, Lu																		
Fabricação PCI	Lu																		
Testes e ajustes finais	N, Le, Lu																		

5. ORÇAMENTO

Componentes	Quantidade	Custo Unitário	Custo do Item	Observações*				
Sensor de Cor TCS3200	2	24,90	49,80	Mercado Livre - 13 dias úteis				
Shield Teclado Arduino	1	28,00	28,00	Box Electronica - 20 dias úteis				
Motores DC 9V	6	15,90	95,4	Mercado Livre - 10 dias úteis				
Display LCD 16x2	1	19,90	18,90	Já adquirido				
Arduino UNO	1	30,00	30,00	Já adquirido				
Fonte 12V	1	35,00	35,00	KITLED - 9 dias úteis				
Carcaça	1	80,00	80,00	Ainda à definir				
PCI	1	50,00	50,00	Laboratório do professor Castaldo				
Cu	sto Total		387,10					

6. RISCOS

Risco	P	I	Ação	Descrição
Produção da PCB exceder o custo esperado	baixo	alto	Evitar	Produzir uma PCB caseira
Encomendas atrasarem e desacelerarem o andamento do projeto	alta	alto	Evitar	Encomendar de lojas locais
Custo total ultrapassar mais do que o esperado	médio	alto	Mitigar	Sempre planejar os gastos
A equipe não conseguir entregar o projeto dentro das características estabelecidas	baixo	alto	Transferir	Entregar o básico