Kernel functions for structured data

Lecture by Klaus-Robert Müller, TUB 2015

Outline

Brief Review: Kernels

Definition and Properties

Kernels for Strings

Generic String Kernel
Bag-of-words, N-grams and Substrings
Efficient Implementation

Kernels for Trees

Parse Tree Kernel Efficient Implementation

Structured Data

Structured data ubiquituous in applied sciences

- Bioinfomaticse.g. DNA and protein sequences
- Natural language processing
 e.g. text documents and parse trees
- Computer security
 e.g. network traffic and program behavior
- Chemoinformatics
 e.g. molecule structures and relations

Structured data \neq vectors \Rightarrow No machine learning?

Brief review: Kernels

What is a Kernel

Kernel function or short kernel:

- ▶ A positive semi-definite function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$
- ightharpoonup Similarity measure for objects in a domain ${\mathcal X}$
- Basic building block of many learning algorithms

Definition

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a *kernel* iff k is symmetric and positive semi-definite for any subset $\{x_1, \dots, x_l\} \subset \mathcal{X}$, that is

$$\sum_{i,j=1}^m c_i c_j k(x_i,x_j) \geq 0 \text{ with } c_1,\ldots,c_m \in \mathbb{R}.$$

Kernels and Feature Spaces

Theorem

A kernel k induces a feature map $\psi : \mathcal{X} \to \mathcal{F}$ to a Hilbert space, where k equals an inner product. That is, for all $x, y \in \mathcal{X}$

$$k(x, y) = \langle \psi(x), \psi(y) \rangle$$
.

Interface to geometry in feature space

Access to inner products, vector norms and distances, e.g.,

$$||\psi(x)||_2 = \sqrt{k(x,x)}$$

$$||\psi(x) - \psi(y)||_2 = \sqrt{k(x,x) + k(y,y) - 2k(x,y)}$$

Classic Kernels

Let $\mathcal{X} \subseteq \mathbb{R}^d$. Then kernels $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ are given by

- $\blacktriangleright k(x,y) := \langle x,y \rangle = \sum_{i=1}^{d} x_i y_i$ (Linear kernel)
- $\blacktriangleright k(x,y) := (\langle x,y \rangle + \theta)^p$ (Polynomial kernel)
- $k(x,y) := \exp\left(\frac{-||x-y||^2}{\gamma}\right)$ (Gaussian kernel)
- $\blacktriangleright k(x,y) := \tanh(\langle x,y \rangle + \theta)$ (Sigmoidal kernel)

However: Domain \mathcal{X} not restricted to vectorial data!

Kernels for structured data

- ▶ Definition of kernel k over non-vectorial domain \mathcal{X}
- Any k valid, if symmetric and positive semi-definite
- Integration with kernel-based learning methods

Kernels for Strings

Strings

Alphabet

An alphabet A is a finite set of discrete symbols

- ▶ DNA, $A = \{A,C,G,T\}$
- ▶ Natural language text, $A = \{a,b,c,...A,B,C,...\}$

String or Sequence

A string x is concatenation of symbols from A

- \blacktriangleright \mathcal{A}^n = all strings of length n
- \blacktriangleright \mathcal{A}^* = all strings of arbitary length
- |x| = length of a string

Embedding Strings

Mapping of strings to a feature space

- ▶ Characterize strings using a *language* $L \subseteq A^*$.
- ▶ Feature space spanned by occurrences of words $w \in L$

Feature map

A function $\phi: \mathcal{A}^* \to \mathbb{R}^{|\mathcal{L}|}$ mapping strings to $\mathbb{R}^{|\mathcal{L}|}$ given by

$$\phi: x \longmapsto \left(\#_w(x) \cdot \sqrt{N_w}\right)_{w \in L}$$

where $\#_w(x)$ returns the occurrences of w in string x and N_w is a weighting of individual words.

String Kernels

Generic String Kernel

A generic string kernel $k: \mathcal{A}^* \times \mathcal{A}^* \to \mathbb{R}$ is given by

$$k(x,z) = \langle \phi(x), \phi(z) \rangle = \sum_{w \in L} \#_w(x) \cdot \#_w(z) \cdot N_w$$

Proof.

By definition k is an inner product in $\mathbb{R}^{|L|}$ and thus symmetric and positive semi-definite.

Bag-of-Words

Characterization of strings using non-overlapping substrings

Bag-of-Words Kernel

String kernel using embedding language of words with delimiters D

$$k(x,y) = \sum_{w \in L} \#_W(x) \cdot \#_W(y) \cdot N_W$$
 with $L = (A \setminus D)^*$

 Suitable for analysis of strings with known structure e.g., natural language text, tokenized data, log files

N-grams

Characterization of strings using substrings of length n

N-gram Kernel

String kernel using embedding language of *n-grams*:

$$k(x,y) = \sum_{w \in L} \#_w(x) \cdot \#_w(y) \cdot N_w$$
 with $L = \mathcal{A}^n$

 Suitable for analysis of strings with unknown structure, e.g., DNA sequences, network attacks, binary data

All Substrings

Characterization of strings using all possible substrings

All-Substring Kernel

String kernel using embedding language of all strings:

$$k(x,y) = \sum_{w \in L} \#_w(x) \cdot \#_w(y) \cdot N_w$$
 with $L = \mathcal{A}^*$

- Suitable for analysis of generic string data
- ▶ Encoding of prior knowledge in weighting N_w

Implementing String Kernels

Efficient computation of string kernel k(x, z)

- Feature space high-dimensional but sparsely populated
- ▶ Sufficient to consider only w with $\#_w(x) \neq 0$ and $\#_w(z) \neq 0$
- Application of special data structures for strings

Implementation strategies

- Explicit but sparse representation of feature vectors,
 - → hash tables, tries and sorted arrays
- 2. Implicit representation of feature vectors,
 - → suffix trees and arrays

Sorted Arrays

Example: strings x and y with embedding language $L = A^3$

$$X =$$
abbaa $Z =$ baaaab

Extracted words w stored with $\#_w(x)$ in sorted array

- Explicit kernel computation → parallel loop over arrays
- ▶ Run-time $\mathcal{O}(|x| + |z|)$ for words with no or bounded overlap

Tries

Figure 2: Tries of 3-grams for $\mathbf{x} = abbaa$ and $\mathbf{y} = baaaab$. The number in brackets at leaves indicate the number of occurrences. Marked nodes are squared. White nodes are implicit and not maintained in a compact trie representation.

Algorithm: to compare, recursively traverse both tries in parallel $\mathcal{O}(|x|+|z|)$

Suffix Trees

Data structure. A generalized suffix tree (GST) is a compact trie containing all suffixes of a set of sequences $\mathbf{x}_1, \dots, \mathbf{x}_l$ (Gusfield, 1997). Every path in a GST from the root to a leaf corresponds to one suffix. A GST is obtained by extending each sequence \mathbf{x}_i with a delimiter $\mathbf{x}_i \notin \mathcal{A}$ and constructing a suffix tree from the concatenation $\mathbf{z} = \mathbf{x}_1 \mathbf{x}_1 \dots \mathbf{x}_l \mathbf{x}_l$.

For each GST node v we denote by children[v] the set of child nodes, by length[v] the number of symbols on the incoming edge, by depth[v] the total number of symbols on the path from the root node to v and by phi[v,i] the number of suffixes of \mathbf{x}_i passing through node v. As every subsequence of \mathbf{x}_i is a prefix of some suffix, phi[v,i] reflects the occurrences (alternatively frequency or binary flag) for all subsequences terminating on the edge to v. An example of a GST is given in

Figure 3. In the remaining part we focus on the case of two sequences \mathbf{x} and \mathbf{y} delimited by $\$_1$ and $\$_2$, computation of similarity measures over a set of sequences being a straightforward extension.

Suffix Trees

Strings jointly stored in generalized suffix tree

Generalized suffix tree for $\mathbf{x} = abbaa\$_1$ and $\mathbf{y} = baaaab\$_2$. The numbers in brackets at each inner node v correspond to phi[v, 1] and phi[v, 2]. Edges are shown with associated subsequences instead of indices.

- ► Implicit kernel computation → depth first traversal
- ▶ Run-time $\mathcal{O}(|x| + |z|)$ for arbitrary embedding languages

Kernels for Trees

Trees and Parse Trees

Tree

A tree $x = (V, E, v^*)$ is an acyclic graph (V, E) rooted at $v^* \in V$.

Parse tree

A tree x deriving from agrammar, such that each node $v \in V$ is associated with a production rule p(v).

Further notation

- $\triangleright v_i = i$ -th child of node $v \in V$
- ▶ |v| = number of children of $v \in V$
- ightharpoonup T = set of all possible parse trees

Parse Trees

Tree representation of "sentences" derived from a grammar

Parse tree for "mary ate lamb" with production rules

- $\triangleright p_1:A\longrightarrow B$
- \triangleright $p_2: B \longrightarrow$ "mary" "ate" C
- $ightharpoonup p_3: C \longrightarrow "lamb"$

Common data structure in several application domains, e.g., natural language processing, compiler design, ...

EmbeddingTrees

Characterization of parse trees using contained subtrees

Feature map

A function $\phi: T \to \mathbb{R}^{|T|}$ mapping trees to $\mathbb{R}^{|T|}$ given by

$$\phi: \mathbf{x} \longmapsto (\#_t(\mathbf{x}))_{t \in T}$$

where $\#_t(x)$ returns the occurrences of subtree t in x.

Parse Tree Kernel

Parse Tree Kernel

A tree kernel $k: T \times T \to \mathbb{R}$ is given by

$$k(x,z) = \langle \phi(x), \phi(z) \rangle = \sum_{t \in T} \#_t(x) \cdot \#_t(z)$$

Proof.

By definition k is an inner product in the space of all trees T and thus symmetric and positive semi-definite.

Counting shared subtrees

Parse tree kernel and counting

- Parse tree kernel counts the number of shared subtrees
- ▶ For each pair (v, w) determine shared subtrees at v and w.

$$k(x,z) = \sum_{t \in T} \#_t(x) \cdot \#_t(z) = \sum_{v \in V_x} \sum_{w \in V_z} c(v,w)$$

Counting function

- ightharpoonup c(v,w) = 0 if $p(v) \neq p(w)$ (different production)
- \triangleright c(v, w) = 1 if |v| = |w| = 0 (leaf nodes)
- otherwise

$$c(v, w) = \prod_{i=1}^{|v|} (1 + c(v_i, w_i))$$

Implementation of tree kernels

Efficient implementation using dynamic programming

- Explicit feature vector representations intractable
- Implicit kernel computation by counting shared subtrees

Matrix of counts c(v, w) for all shared subtrees sorted by height

- Count small subtrees first
- Gradually aggregate counts

Run-time $\mathcal{O}(|V_x| \cdot |V_z|)$.

Kernels from probabilistic models

- idea
 - make use of probabilistic modeling for discriminative training (e.g. a HMM model)
 - find natural comparison between objects (of **various** types) that is induced by a generative probability model $P(X|\Theta)$
- Thus: derive a SV-Kernel that reflects this probabilistic model!
- parametric class of models: $P(X|\theta), \theta \in \Theta$ forms a Riemannian manifold M_{Θ} with a metric: the Fisher Information G

$$G = E_X \{ U_X U_X^{\top} \}, \text{ where } U_X = \nabla_{\theta} \log P(X|\theta) \text{ [Fisher Score]}$$

• "natural" mapping to feature space $\Phi_X = G^{-1}U_X$, so $K(X_i, X_j) \sim \Phi_{X_i}G\Phi_{X_j} = U_{X_i}G^{-1}U_{X_j} \quad \text{for fixed parameter } \theta$

A geometrical picture

idea: compute similarity between X_i and X_k in terms of probabilistic model with fixed parameters θ_l between $P(X_i|\theta_l)$ and $P(X_k|\theta_l)$ by appropriately computing scalar products of tangent vectors $U_{X_i}(\theta)$ and $U_{X_k}(\theta)$

Protein superfamily classification

- 4541 sequences are hierarchically labeled into 7 classes, 558 folds, 845 superfamilies and 1343 families according to the SCOP scheme
- task: classify top category classes.
- number of sequences: 791, 1277, 1015, 915, 84, 76, 383
- classify as a set of 2-class problems
- train HMMs to obtain $p(\mathbf{x}, \Theta)$ for each class and
- construct Fisher Kernel: $K(X_i, X_j) \sim U_{X_i} G^{-1} U_{X_j}$
- **note**: FK can be improved by TOP kernel (cf. Tsuda et al. 2001 & 2002)

Top Kernel

• The new feature extractor is described as

$$f_{\hat{\boldsymbol{\theta}}}(\mathbf{x}) := (v(\mathbf{x}, \hat{\boldsymbol{\theta}}), \partial_{\theta_1} v(\mathbf{x}, \hat{\boldsymbol{\theta}}), \dots, \partial_{\theta_p} v(\mathbf{x}, \hat{\boldsymbol{\theta}}))^{\top}$$

where

$$v(\mathbf{x}, \boldsymbol{\theta}) = F^{-1}(P(y = +1|\mathbf{x}, \boldsymbol{\theta}))$$
$$= \log(P(y = +1|\mathbf{x}, \boldsymbol{\theta})) - \log(P(y = -1|\mathbf{x}, \boldsymbol{\theta})),$$

• We refer the inner product in the feature space as the TOP kernel

$$K_T(\mathbf{x}, \mathbf{x}') = f_{\hat{\boldsymbol{\theta}}}(\mathbf{x})^{\top} f_{\hat{\boldsymbol{\theta}}}(\mathbf{x}').$$

• Plug-in Estimate performs classification by means of the posterior probabilities derived from class conditional likelihoods

$$\hat{y} = \operatorname{sgn}(P(y = +1|\mathbf{x}, \hat{\boldsymbol{\theta}}) - 0.5)$$

Protein superfamilies

Comparison plots in protein classification

Engineering Kernels

Conclusion

Kernels for strings and trees

- Effective means for learning with structured data
- Several efficient kernels and implementations

More interesting kernels for structured data

- Kernel for graphs, images, sounds, ...
- Convolution kernels, approximate kernels, ...

Interesting applications (upcoming lectures)

- "Catching hackers": Network intrusion detection
- "Discovering genes": Analysis of DNA sequences

Acknowledgement

This lecture is based on a 2011 lecture at TU Berlin prepared and given by Konrad Rieck within the ML 2 cycle.

Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenburg, S., & Müller, K. R. (2002). A new discriminative kernel from probabilistic models. *Neural Computation*, *14*(10), 2397-2414.

Rieck, K., Krueger, T., Brefeld, U., and Müller, K.-R. (2010).

Approximate tree kernels.

Journal of Machine Learning Research, 11(Feb):555–580.

Rieck, K. and Laskov, P. (2008).

Linear-time computation of similarity measures for sequential data.

Journal of Machine Learning Research, 9(Jan):23–48.

Shawe-Taylor, J. and Cristianini, N. (2004).

Kernel methods for pattern analysis.

Cambridge University Press.

