PRÁCTICA No. 10

CONVERTIDORES DIGITAL A ANALÓGICO

Objetivos

- El alumno realizará un circuito que le ayuden a comprender mejor los conceptos básicos de un convertidor digital a analógico implementado con un arreglo R/2R.
- Interpretar los resultados obtenidos por los circuitos realizados.

Material

1 Tablilla de experimentación (ProtoBoard)	16 Resistencias de 470 Ω
2 TL071 ó LM741 (Amplificadores	10 Resistencias de 1 k Ω
operacionales)	1 DIP Switch de 8 posiciones
8 Resistencias de 220 Ω	8 LEDs

Equipo

1 Fuente de alimentación triple	4 Cables CAIMAN – CAIMAN.
1 Multímetro digital.	3 Cables BANANA – CAIMAN.

Desarrollo Experimental

Convertidor Digital a Analógico de 8 bits con arreglo R/2R

Armar el siguiente circuito que permite convertir una señal digital a analógica.

Nota.- Recuerde que se debe de alimentar el amplificador operacional con ± 12 V.

Variar los bits de entrada según la tabla y medir el voltaje de salida, anotando el voltaje medido en la tabla.

	D	П	D	ח	D	D ₆ D ₇		D	_	V_0 (Volts)	
D_0	$ D_1 $	$ D_2 $	$ D_3 $	$ D_4 $	$ D_5 $	D_6	$D_6 \mid D_7 \mid$	Práctico	Teórico		
0	0	0	0	0	0	0	0				
1	0	0	0	0	0	0	0				
1	0	1	0	0	0	0	0				
0	1	0	1	0	0	0	0				
1	0	1	0	1	0	0	0				
0	0	1	1	0	1	0	0				
1	0	0	0	1	1	1	0				
1	1	1	1	1	1	1	0				
0	0	0	0	0	0	0	1				

	_	Б	Б	_	ח	D_6	D	D	Б	V ₀ (Volts)	
D_0	D_1	$ D_2 $	$ D_3 $	$ D_4 $	$ D_5 $	D_6		Práctico	Teórico		
0	1	0	0	0	0	0	1				
0	1	1	0	0	0	0	1				
1	0	1	1	0	0	0	1				
0	1	1	0	1	0	0	1				
0	1	0	1	1	1	0	1				
1	0	1	1	0	1	0	1				
1	1	1	1	1	1	1	1				

Determinar el valor del Bit Menos Significativo (LSB)

ANÁLISIS TÉORICO

Realizar el análisis teórico del circuito anterior.

COMPARACIÓN DE LOS RESULTADOS TEÓRICOS Y PRÁCTICOS.

Analizar todos los valores y dar una explicación de las variaciones ó diferencias que existan en los valores obtenidos tanto en lo teórico y práctico.

CUESTIONARIO

- 1. ¿Qué diferencia existe entre un convertidor digital a analógico con resistencia ponderadas y uno R/2R?
- 2. ¿Qué ventaja tiene el DAC armado con resistencias y el armado con el circuito integrado?
- 3. ¿Qué es el tiempo de establecimiento en un convertidor digital a analógico?
- 4. ¿A qué se deben las diferencias generadas entre los valores de los dos circuitos realizados en la práctica?

CONCLUSIONES

Dar las conclusiones de la práctica una vez que se desarrolla el análisis teórico y se desarrollan los circuitos experimentales. (Conclusiones individuales).