Wengi Wei

https://wenqiwei789.github.io/Homepage/

EDUCATION

Georgia Institute of Technology

Atlanta, GA

Ph.D. student in Computer Science

Aug. 2017 to present

Areas of interest:machine learning, privacy-preserving machine learning, data privacy.

Huazhong University of Science and Technology

Wuhan, China

Bachelor of Engineering in Electronics and Information Engineering

Sept. 2013 to June. 2017

Email: wenqiwei@gatech.edu

Mobile: +1-404-213-8068

Graduated with Honors

Cumulative GPA: 86.15 (ranking 17/185)

RESEARCH EXPERIENCE

Georgia Institute of Technology

Atlanta, GA

Distributed Data Intensive Systems Lab Graduate Research Assistant(Aug 2017 - present) $advisor \hbox{:}\ Prof.\ Ling\ Liu$

- **Deep Learning**: Research on tuning neural network (hyper)parameters, designing new neural network models to produce better accuracy results, Coding under TensorFlow.
- Generative Adversarial Network: Research on how the adversarial model are generated and how to defend the attack caused by the perturbed data.
- Data Privacy: Research on privacy-preserving deep learning, mainly using techniques from differential privacy to protect data privacy.

Huazhong University of Science and Technology

Wuhan, China

Signal Processing and Information Networking in Communication Lab Undergraduate Research Assistant(Sept 2015 - June 2017)

advisor: Prof. Pan Zhou

- Online Learning: Research on designing contextual multi-armed bandit-based recommendation for social network advertising big data(third author, submitted to IEEE ICC 2016). Also, I worked on designing a contextual X-armed bandit-based recommendation for self-diagnosis in ubiquitous healthcare(Undergraduate thesis).
- o **Differential Privacy**: Research on designing differentially private online learning algorithm for social network advertising big data to protect user's personal information while providing them nearly accurate advertising recommendation. Also, I worked on designing a mechanism for large-scale spectrum sharing using techniques from differential privacy, hoping to protect the privacy of the user's personal information in spectrum sharing setting.
- Algorithmic Game Theory: Research on algorithmic game-theoretical mechanism design in improving utility for large-scale spectrum sharing. We considered truthfulness in the mechanism design to ensure that users are reporting their actual spectrum demand to our aggregative game model. So that a approximate Nash Equilibrium is reached.

PUBLICATIONS

[1] P. Zhou, W. Wei(co-first author), K. Bian, D. O. Wu, Y. Hu, Q. Wang. Private and Truthful Aggregative Game for Large-Scale Spectrum Sharing. IEEE Journal on Selected Areas in Communications, 35(2), 463-477,2017.

SKILLS

- Language: Python, Tensorflow, C, HTML, SQL, Verilog HDL, assembly.
- Tools: matlab, Latex, Git, CCS(TI DSP), Quartus, Xilinx ISE, FPGA, SPSS.