中控 BLE-手机通讯协议

版本号	日期	修改记录	作者
V0.1	2020-09-04	创建	Allen
V0.2	2020-10-21	增加第5章: 蓝牙名称定义	Allen

1. 概述

本协议为 APP 与中控系统之间 BLE 通讯的规范。

2. 协议定义

我们将命令分为两种:

Request: APP 主动发起, 比如查询车辆状态、解锁、激活车辆等。

Notify: 中控主动发起, 心跳数据、故障上报等。

两种命令都可以有应答 response,

UUID 列表:

Service UUID:

0x14839AC4-7D7E-415C-9A42-167340CF2339 0x14839AC4-7D7E-415C-9A42-167340CF2339

Command Characteristic UUID:

0x8B00ACE7-EB0B-49B0-BBE9-9AEE0A26E1A3

Notify Characteristic UUID:

0X0734594A-A8E7-4B1A-A6B1-CD5243059A57

2.1. 帧格式如下

APP 与中控数据通讯的是以帧单位的。每帧的最长有效长度有 20byte. 这是 BLE 协议所定义的。

LSB		MSB
Head		Payload
CMD/RSP	Data Length	Data
BYTE	BYTE	BYTE[N], N <= 20

2.2. 命令码定义

APP 发起(Request)

Frame ID 命令	冷 说明	
-------------	-------------	--

0x01	鉴权	APP 发送 16 字节 MD5 串给中控, 中控 直接和本地存储的字符串比较来判断 鉴权是否通过
0x04	获取电池信息	
0x07	获取体检结果	
0x08	获取 GPS/GPRS 信息	
0x20	AppRom Update Start	升级开始
0x21	AppRom Update	发送数据
0x22	AppRom Update Done	
0x23	MCU Reset	

2.3. 错误码定义

表格 1 错误码定义

ERROR CODE	名称	错误码说明
0x00	SUCCESS	执行成功
0x01	PARAM_INVALID	参数错误
0x02	UNSUPPORTED	不支持的命令
0x03	CRC_ERROR	校验码错误
0x04	DEVICE NOT READY	设备没准备好
0x05	USERID_ERROR	USER ID 长度错误
0x0B	ERR_USERID_INVALID	USER ID 无效
0x0C	ERR_BAT_NOT_IN_PRESENT	电池不在位
0x0D	ERR_RECORD_INVALID	记录号无效
0x0E	ERR_CMD_NOT_ALLOW	命令不允许执行,没有权限
0xFF		

3. APP 请求指令格式

3.1. Authentication (0x01)

身份认证请求,某些蓝牙命令(例如开锁,点火等)需要身份认证通过才能执行。 身份认证请求的策略如下:

- 服务器把字符串 "<MAC>immotor<Role>"使用 MD5 加密算法生产成为一个密文,作为 认证请求命令参数发送到终端,其中
 - <MAC>: 是 6 个字节的蓝牙地址。
 - <Role>: 是角色定义,取值范围[0-1], 1-Admin。
- 终端使用相同的加密算法进行解密,如果解密成功,即可认为身份认证通过。

表格 2 身份认证 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x04	命令码
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节
2-17	MD5	UINT8[16]		通过和本地密钥比较来决定鉴权通过与否

表格 3 身份认证 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x04	命令码
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节
2	Result	UINT8		参见附录 1,错误码的定义

3.1. GetPortState (0x03) *

获取电池槽位的电池在位信息。

表格 4 获取电池槽位状态 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Command	UINT8	0x03	命令码
1	Data Length	UINT8		Data 长度

表格 5 获取电池槽位状态 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Command	UINT8	0x03	命令码
1	Data Length	UINT8	VAR	Data 长度
2	Result	UINT8	0x00-0xFF	参考上面"错误码定义"
3	Port State	UINT8		电池槽位状态,每一个 BIT 表示一个槽位状态。
				BIT[0]: 槽位 0 状态,0-不在位,1-在位。
				BIT[1]: 槽位 1 状态,0-不在位,1-在位。
				BIT[2-7]: 保留,置零。
4	Port Desc Count	UINT8		端口号描述符个数
5-N	Port Descriptor[0]-			端口号描述符,参考 Port Descriptor 定义
	Port Descriptor[n]			

Port Descriptor 定义如下:

	or a decompton her year.					
Index	Name	Туре	Descriptor			
0	Port Number	UINT8	槽位号,0表示槽位1,后面递增			
1-2	Nominal Voltage	UINT16	额定电压,单位: 10mV。			
			OxFFFF: 无效值。			
3-4	Nominal Current	INT16	额定电流,单位: 10mA。			
			OxFFFF: 无效值。			

5-6	Capacity	UINT16	设计容量,单位: 100mA
-----	----------	--------	----------------

3.2. Get Battery Info(0x04)

获取电池信息命令。

表格 6 获取电池信息 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x04	命令码
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节
2	PortID	UINT8		电池槽位号 ID。 0: 槽位 0 电池信息。 1: 槽位 1 电池信息。 其他值: 保留

注意:如果请求的电池不在位,则返回 Result=0x0C,Result 以下的数据无效,只有当 Result=0x00 时,Result 以下的数据才有效。

表格 7 获取电池信息 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Command	UINT8	0x04	命令码
1	Data Length	UINT8		Data 长度
2	Result	UINT8		参见附录 1,错误码的定义,如果请求的电池不
				在位,返回 0x0C.
3	Battery Descriptor	UINT8		参考 Battery Descriptor 定义。

表格 8 Battery Descriptor 数据格式

Index	Name	Туре	Val	Descriptor
0-5	Battery ID	UINT8[6]		电池唯一表示号。
6	Port Number	UINT8		电池槽位号,最小值为0。
7	SOC	UINT8		电池剩余电量,单位为:%。
				0-100: 有效值。
				其他值:无效。
8-9	Voltage	UINT16		电池电压,单位: 10mV。
				OxFFFF: 无效值。
10-11	Current	INT16		电池电流,单位: 10mA。
				<0: 放电。
				>0: 充电。
				(-30 A)~(+30 A): 正常范围。
				OxFFFF: 无效值。
12	Temperature	INT8		电池问题,单位:摄氏度。
				(-40)~(+120): 有效范围。

13	Fault	UINT8	电池故障,每一 BIT 代表一个错误类型。
			BIT[0]: OVP,过压。
			BIT[1]: UVP,欠压。
			BIT[2]: OCP,过流。
			BIT[3]: OTP,过温。
			BIT[4]: UTP,低位。
			BIT[5]: Other,其他故障。
			BIT[6-7]: 保留,置 0。
14	Damage	UINT8	电池损坏,每一 BIT 代表一个损坏类型。
			BIT[0]: 撞击。
			BIT[1]: 拆开。
			BIT[2-7]: 保留,置 0。
15-16	cycleCount	UINT16	循环次数

3.3. Get Battery Info(0x05)-

Request 定义:

11090000				
	Cmd	UINT8	0x05	命令码
	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节
	PortID	UINT8		电池槽位号 ID。 0: 槽位 0 电池信息。 1: 槽位 1 电池信息。 其他值: 保留

注意:如果请求的电池不在位,则返回 Result=0x0C, Result 以下的数据无效,只有当 Result=0x00 时,Result 以下的数据才有效。

Response 定义:

 Neopolise (CX)					
Command	UINT8	0x05	命令码		
Data Length	UINT8		Data 长度		
Result	UINT8		参见附录 1,错误码的定义,如果请求的电池不在位,返回 0x0C.		
Battery Descriptor	UINT8		参考 Battery Descriptor 定义。		

Battery Descriptor 定义。

Max Cell Voltage	UINT16	最大电芯电压,单位 mV。
Min Cell Voltage	UINT16	最小电芯电压,单位 mV。
Max Volt Cell Num	UINT8	最大电压电芯序号
Min Volt Cell Num	UINT8	最小电压电芯序号
Bms Pcb Temp	INT8	BMS pcb 温度,单位:摄氏度。

		有效值: -40°~120。 其他值:无效值。
Connector Temp	INT8	BMS pcb 温度,单位: 摄氏度。 有效值: -40°~120。 其他值:无效值。
Mos State	UINT8	充电管和放电管的开关状态。 BIT[0]: 充电管的开关状态, 0-关; 1-开。 BIT[1]: 放电管的开关状态, 0-关; 1-开。 BIT[2-7]: 保留。

3.4. Get SelfTest Result(0x07)

获取设备自检结果命令。

表格 9 获取设备自检结果 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x07	命令码
1	Data Length	UINT8	0x02	数据包长度,包含本身和 Cmd 字节

表格 10 获取设备自检结果 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Command	UINT8	0x07	命令码
1	Data Length	UINT8		Data 长度
2	Result	UINT8		参见附录 1,错误码的定义
3	SIM State	UINT8		SIM 卡状态。
				BIT[0]: 通信状态, 0-失败; 1-成功。
				BIT[1]: 卡在位状态, 0-不在; 1-在位。
				BIT[2-7]: 保留。
4	GPRS State	UINT8		GPRS 状态。
				BIT[0]: GPRS 信号状态, 0-没信号; 1-有信号。
				BIT[1]: 服务器连接状态,0-失败; 1-成功。
				BIT[2-7]: 保留。
5	GPS State	UINT8		GPS 状态。
				BIT[0]: 定位状态, 0-失败; 1-成功。
				BIT[1]: PmsIsCommOk,Pms 是否通信正常。
				BIT[2]: Pms is ready,Pms 是否可以升级,0-不能升
				级(正在升级)。1-可以升级(没在升级)。
				BIT[3-7]: 保留。
6	Device State	UINT8		设备状态定义:
				BIT[0]: 点火状态,0-熄火; 1-点火。
				BIT[1]: 是否可以充电。
				BIT[2]: 是否测试电池。

			BIT[3]: 轮毂锁状态,0-开锁; 1-关锁
			BIT[4]: 座舱锁状态,0-开锁; 1-关锁。
			BIT[5-7]:保留。
7-8	18650	UINT8	18650 电池电压,低位在前。单位,0.1V
	Voltage		
9	Device State2	UINT8	设备状态 2。
			BIT[0]: 激活状态。0-未激活,1-已激活。
			BIT[1]: 打卡使能。0-否,1-是。
			BIT[2]:禁止放电。0-否,1-是。
			BIT[3]: 打卡成功。0-否,1-是。
			BIT[4]: 警戒模式。0-否,1-是。
			BIT[5]: 是否断电。0-否,1-是
			BIT[6-7]: 保留
10	Battery Verify	UINT8	电池认证状态。
			BIT[0]: 电池认证使能。0-未开启,1-开启。
			BIT[0-1]: Port0 电池认证。0-未知,1-认证成功,2-认
			证失败。
			BIT[2-4]: Port1 电池认证。0-未知,1-认证成功,2-
			认证失败。
			BIT[5-7]: 保留

3.5. Get GPS/GPRS Info (0x08)

获取 GPS/GPRS 位置和信号强度命令。

表格 11 获取 GPS/GPRS 位置信息 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x08	命令码
1	Data Length	UINT8	0x02	数据包长度,包含本身和 Cmd 字节

表格 12 获取 GPS/GPRS 位置信息 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x08	命令码
1	Data Length	UINT8	20	数据包长度,包含本身和 Cmd 字节
2	Result	UINT8		参见附录 1,错误码的定义
3	CSQ	UINT8		GPRS信号强度, 0到31之间(99表示无信号),
				数值越大表明信号质量越好
4	Satellites In View	UINT8		GPS 可见卫星数(0 – 16)
5	Max SNR	UINT8		GPS 信号强度,信噪比(00-99)dbHz,典型
				值在 0~50 之间, SNR 虽可达到 99, 但极罕见,
				50 已是非常好的情况
6-9	longitude	Int32		经度,发送方乘(1E7)发送,接收方必须除(1E7)

			0: 表示没有获取到定位。
10-13	latitude	Int32	纬度,发送方乘(1E7)发送,接收方必须除(1E7)
			0:表示没有获取到定位。
14-17	speed	Int32	速度,发东方乘 10 发送,接收方必须除 10,
			转化为(Km/h)。

3.6. Get Device Capacity(0x18) +

获取设备能力命令。

表格 13 获取设备能力 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x18	命令码
1	Data Length	UINT8	0x2	数据包长度,包含本身和 Cmd 字节
3	Version	UINT8		协议版本号,每次修改时递增(+1)。
				有效值: 1-0xFF。

表格 14 获取设备能力 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x18	命令码
1	Data Length	UINT8	0xD	数据包长度,包含本身和 Cmd 字节
2	Result	UINT8		参见附录 1,错误码的定义
3	Version	UINT8		协议版本号,每次修改时递增(+1)。
				有效值: 1-0xFF。
4	Capacity	UINT32		设备能力描述,按位解析
				BIT[0]: 是否有 Smart 板; 0-没有,1-有。
				BIT[1]: 是否有 Pms 板; 0-没有, 1-有。
				BIT[2-3]: 支持最多插入电池数量。
				BIT[4]: 保留。
				BIT[5]:是否支持陀螺仪;0-不支持,1-支持。
				BIT[6]:是否支持喇叭; 0-不支持,1-支持。
				BIT[7]:是否支持轮毂锁; 0-不支持,1-支持。
				BIT[8]:是否支持座舱锁; 0-不支持,1-支持。
				BIT[9]:是否支持钥匙点火;0-不支持,1-支持。
				BIT[10]: 是否有 18650 电池; 0-没有, 1-有。
				BIT[11-31]: 保留。

3.7. Get DeviceID (0x19) *

获取 Smart 板的硬件和固件版本信息命令。

表格 15 获取 Smart 板版本号 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x19	命令码
1	Data Length	UINT8	0x2	数据包长度,包含本身和 Cmd 字节

表格 16 获取 Smart 板版本号 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x19	命令码
1	Data Length	UINT8	0xD	数据包长度,包含本身和 Cmd 字节
2	Result	UINT8		参见附录 1,错误码的定义
3	Version	UINT8		协议版本号,每次修改时递增(+1)。
				有效值: 1-0xFF。
4	HwMainVer	UINT8		Smart 板硬件主版本
5	HwSubVer	UINT8		Smart 板硬件子版本
6	AppMainVer	UINT8		Smart 板固件主版本
7	AppSubVer	UINT8		Smart 板固件子版本
8	AppMinorVer	UINT8		Smart 板固件修订版本
9-12	AppBuildNum	UINT32		Smart 板固件 Build 号

3.8. Get PMS Info (0x1A)

获取 PMS 设备信息

表格 17 获取 Pms 版本号 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x1A	命令码
1	Data Length	UINT8	0x02	数据包长度,包含本身和 Cmd 字节

表格 18 获取 Pms 版本号 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x1A	命令码
1	Data Length	UINT8	13	数据包长度,包含本身和 Cmd 字节
2	Result	UINT8		参见附录 1,错误码的定义
3	Version	UINT8		PMS 协议版本号,每次修改时递增(+1)。
				有效值: 1-0xFF。
4	HwMainVer	UINT8		PMS 板硬件主版本
5	HwSubVer	UINT8		PMS 板硬件子版本
6	AppMainVer	UINT8		PMS 板固件主版本
7	AppSubVer	UINT8		PMS 板固件子版本
8	AppMinorVer	UINT8		PMS 板固件修订版本
9-12	AppBuildNum	UINT32		PMS 板固件 Build 号
13	State	UINT8		设备状态:
				BIT[0]: IsCommOk,是否通信正常。

		BIT[1]: Pms is read	ly,Pms 是否可以升级,	0-不能升级。
		1-可以升级。		
		BIT[2-7]:保留,置	零。	

3.9. Get BMS Info (0x1B)

获取 BMS 设备信息命令

表格 19 获取 Bms 版本号 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x1B	命令码
1	Data Length	UINT8	0x2	数据包长度,包含本身和 Cmd 字节

表格 20 获取 Bms 版本号 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x1B	命令码
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节
2	Result	UINT8		参见附录 1,错误码的定义
3	Version	UINT8		BMS 协议版本号,每次修改时递增(+1)。
				有效值: 1-0xFF, 排除 257。
4	HwMainVer	UINT8		BMS 板硬件主版本
5	HwSubVer	UINT8		BMS 板硬件子版本
6	AppMainVer	UINT8		BMS 板固件主版本
7	AppSubVer	UINT8		BMS 板固件子版本
8	AppMinorVer	UINT8		BMS 板固件修订版本
9-12	AppBuildNum	UINT32		BMS 板固件 Build 号

3.10. Active Device (0x1C)

激活车子命令,所有车子出厂时都是去激活状态,用户第一次使用车子之前必须要激活才能正常使用。

表格 21 激活设备 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x1C	命令码
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节
2	State	UINT8		状态: BIT[0]: 设备激活; 0-否; 1-是。 BIT[1]: 打卡使能; 0-否; 1-是。 BIT[2]: 电池认证使能; 0-否; 1-是。 BIT[3-7]: 保留,置零。

表格 22 激活设备 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x1C	命令码
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节
2	Result	UINT8		参见附录 1,错误码的定义

3.11. SignIn Req (0x1D)-

打卡功能,当车子的中控网络功能出现故障或者在无网络状态下导致"打卡"失败时,用户可以通过手机蓝牙功能发送该命令,进行打卡。

Request 定义:

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x1D	命令码
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节
2	SignIn	UINT8		是否打卡; 0: 否; 1: 是。
3	Device State	UINT8		可选字节,设置设备如下状态。 BIT[0]: 激活状态。0-未激活,1-已激活。 BIT[1]: 打卡使能。0-否,1-是。 BIT[2]: 禁止放电。0-否,1-是。 BIT[3]: 打卡定时器不复位。0-否,1-是。仅 用于测试 BIT[4-7]: 保留,置零
4-7	loginMaxMinute	UINT32		可选字节,设置最大打卡时间,默认值为180分钟(3小时),单位为分钟。

Response 定义:

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x1D	命令码
1	Data Length	UINT8	0x11	数据包长度,包含本身和 Cmd 字节
2	Result	UINT8		参见附录 1,错误码的定义
3	Device State	UINT8		设备状态 2。
				BIT[0]: 激活状态。0-未激活, 1-己激活。
				BIT[1]: 打卡使能。0-否,1-是。
				BIT[2]:禁止放电。0-否,1-是。
				BIT[3]: 打卡定时器不复位。0-否,1-是。
				BIT[4]: 打卡成功。0-否,1-是。
				BIT[5-7]: 保留
4-7	loginMaxMinute	UINT32		最大打卡时间,分钟,默认值为3小时
7-10	loginAfterMinute	UINT32		打卡之后时间,分钟

11-14	remainMinute	UINT32	打卡剩余时间,分钟	
			44 1 3/434 47 24 11	

3.12. Battery Verify Req (0x1E)

电池身份验证请求。

表格 23 电池身份验证 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x1E	命令码
1	Data Length	UINT8	0x04	数据包长度,包含本身和 Cmd 字节
2	Port0 Battery Verify	UINT8		设置 Port0 电池认证状态;
				0- 未知。
				1- 认证成功。
				2- 认证失败。
				其他值:保留
2	Port1 Battery Verify	UINT8		设置 Port1 电池认证状态;
				0- 未知。
				1- 认证成功。
				2- 认证失败。
				其他值:保留

表格 24 电池身份验证 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x1E	命令码
1	Data Length	UINT8	0x11	数据包长度,包含本身和 Cmd 字节
2	Result	UINT8		参见附录 1,错误码的定义

3.13. Set Nvds (0x29) *

设置 Nvds 的值。

表格 25 设置设备 NVDS 数据 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x29	命令码
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节
2-	NvdsParam	NvdsParam Struct		NvdsParam 列表,参考表格 26

表格 26 NvdsParam Struct 数据格式

Index	<mark>Name</mark>	<mark>Type</mark>	<mark>Value</mark>	Descriptor
0	Tag	UINT8		参数 ID
1	<mark>Len</mark>	UINT8		参数长度
<mark>2</mark>	<mark>Value</mark>	UINT8		参数值

参数定义如表格 27 所示:

表格 27 NVDS 参数定义

Tag	Len	Descriptor							
0x01	7	Smart 板固件版本号。							
		BYTE[0]: FwMainVer。							
		BYTE[1]: FwSubVer。 BYTF[2]: FwMinorVer。							
		BYTE[2]: FwMinorVer。							
		BYTE[3-6]: FwBuildNum,低位字节在前。							
0x02	7	Pms 板固件版本号。							
		BYTE[0]: FwMainVer。							
		BYTE[1]: FwSubVer。							
		BYTE[2]: FwMinorVer。							
		BYTE[3-6]: FwBuildNum,低位字节在前。							
0x04	2	Smart 板硬件版本号。							
		BYTE[0]: HwMainVer。							
		BYTE[1]: HwSubVer。							
0x10	1	服务器地址							
		0: 测试服务器地址							
		1: 正式库服务器地址							
		2: 预发布地址							
		3: 开发服务器地址							

表格 28 设置设备 NVDS 数据 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x29	命令码
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节
2	Result	UINT8		参见附录 1,错误码的定义

3.14. Get Nvds (0x2A)

读取设备的 Nvds 的参数值命令。

表格 29 获取设备 NVDS 数据 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x2A	命令码
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节
2-	Nvd Ind	UINT8		定义请参考表格 27

表格 30 获取设备 NVDS 数据 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x29	命令码

1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节
2	Result	UINT8		参见附录 1,错误码的定义
3-	NvdsDesc	NvdsDesc		参考上面定义。

3.15. Set Factory Setting (0x2B)

恢复出厂设置。

表格 31 恢复出厂设置 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x2B	命令码
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节
2	State	UINT8		恢复出厂设置,如果不包含该字节,表示切断 18650 电源。 1:恢复出厂设置。 其他值:保留

表格 32 恢复出厂设置 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x2B	命令码
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节
2	Result	UINT8		参见附录 1,错误码的定义

3.16. Set Alarm Mode (0x2C)

设置/解除警戒模式。

表格 33 设置警戒模式 REQ 数据格式

Index	Name	Туре	Value	Descriptor	
0	Cmd	UINT8	0x2C	命令码	
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节	
2	Alarm Mode	UINT8		设置警戒模式	
				BIT[0]: Alarm Mode, 0-DISABLE; 1-ENABLE。	
				BIT[1]: 断电, 0-DISABLE; 1-ENABLE。	
				BIT[2]: 断电模式, 0-停车断电; 1-立即断电。	
				BIT[3-7]: 保留。	

表格 34 设置警戒模式 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x2C	命令码
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节

3.17. Set LowSocPlay(0x2D) (喇叭)

设置低电量播报阈值。

表格 35 设置低电量播报阈值 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x2D	命令码
1	Data Length	UINT8	0x05	数据包长度,包含本身和 Cmd 字节
2	LP Soc 1	UINT8		第一级播报低电量阈值。默认为 10
				0: 不播报。
				取值范围: 1-30 之间的任何值。
3	LP Soc 2	UINT8		第二级低电量阈值数组。默认值为 20。
				0: 不播报。
				取值范围: 1-30 之间的任何值。
4	LP Soc 3	UINT8		第三次低电量阈值数组。默认值为 0。
				0: 不播报。
				取值范围: 1-30 之间的任何值。

表格 36 设置低电量播报阈值 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x2D	命令码
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节
2	Result	UINT8		参见附录 1,错误码的定义

3.18. Set SocPlay(0x2E) (喇叭)

设置电量播报阈值。

表格 37 设置低电量播报使能 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x2E	命令码
1	Data Length	UINT8	0x04	数据包长度,包含本身和 Cmd 字节
2	Soc1	UINT8		10%-80%电量值播报使能。
				BIT[0]: 10%,0-不播报,1-播报;默认值: 0。
				BIT[1]: 20%,0-不播报,1-播报;默认值: 0。
				BIT[2]: 30%,0-不播报,1-播报,默认值:1。
				BIT[3]: 40%,0-不播报,1-播报;默认值: 0。
				BIT[4]: 50%,0-不播报,1-播报;默认值:1。

			BIT[5]: 60%,	0-不播报,	1-播报;	默认值:	0。
			BIT[6]: 70%,	0-不播报,	1-播报;	默认值:	0。
			BIT[7]: 80%,	0-不播报,	1-播报;	默认值:	0。
3	Soc2	UINT8	90%-100%电	量值播报使	能。		
			BIT[0]: 90%,	0-不播报,	1-播报;	默认值:	0。
			BIT[1]: 100%	,0-不播报	,1-播报	; 默认值	: O _°
			BIT[2-7]:保留	1.			

表格 38 设置低电量播报使能 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x2E	命令码
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节
2	Result	UINT8		参见附录 1,错误码的定义

3.19. Get SocPlay(0x2F) (喇叭)

获取电量播报阈值。

表格 39 获取低电量播报使能 REQ 数据格式

Inde	ex	Name	Туре	Value	Descriptor
0		Cmd	UINT8	0x2F	命令码
1		Data Length	UINT8	0x02	数据包长度,包含本身和 Cmd 字节

表格 40 获取低电量播报使能 RSP 数据格式

Index	Name	Туре	Value	Descriptor			
0	Cmd	UINT8	0x2F	命令码			
1	Data Length	UINT8	0x08	数据包长度,包含本身和 Cmd 字节			
2	Result	UINT8		参见附录 1,错误码的定义			
3	Soc1	UINT8		10%-80%电量值播报使能。			
				BIT[0]: 10%,0-不播报,1-播报;默认值:0。			
				BIT[1]: 20%,0-不播报,1-播报;默认值:0。			
				BIT[2]: 30%,0-不播报,1-播报;默认值:1。			
				BIT[3]: 40%,0-不播报,1-播报;默认值:0。			
				BIT[4]: 50%,0-不播报,1-播报;默认值:1。			
				BIT[5]: 60%,0-不播报,1-播报,默认值: 0。			
				BIT[6]: 70%,0-不播报,1-播报,默认值: 0。			
				BIT[7]: 80%,0-不播报,1-播报,默认值: 0。			
4	Soc2	UINT8		90%-100%电量值播报使能。			
				BIT[0]: 90%,0-不播报,1-播报;默认值:0。			
				BIT[1]: 100%,0-不播报,1-播报; 默认值: 0。			
				BIT[2-7]:保留.			
5	LP Soc 1	UINT8		第一级播报低电量阈值。默认为10。			

			0: 不播报。
			取值范围: 1-30 之间的任何值。
6	LP Soc 2	UINT8	第二级低电量阈值数组。默认值为20。
			0: 不播报。
			取值范围: 1-30 之间的任何值。
7	LP Soc 3	UINT8	第三次低电量阈值数组。默认值为0。
			0: 不播报。
			取值范围: 1-30 之间的任何值。

3.20. Read Log Info(0x30)

获取 Log 信息,包括记录总数,记录的起始时间。

表格 41 读取日志信息 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x30	命令码
1	Data Length	UINT8	0x02	数据包长度,包含本身和 Cmd 字节

表格 42 读取日志信息 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x30	命令码
1	Data Length	UINT8	11	数据包长度,包含本身和 Cmd 字节
2	Result	UINT8		参见附录 1,错误码的定义
3-6	Records Count	UINT32		Log 的记录总数
7-10	DateTime	UINT32		Log 的记录起始时间。

3.21. Log Seek By Index (0x31)

根据 Log 记录号设置读指针位置,如果该记录号小于总记录数,则返回成功,否则返回失败。

设置读指针位置成功之后,如果设备接收到命令"Read Log Records",则返回当前位置的记录内容。

表格 43 设置日志读取位置 REQ 数据格式

PCIH 10	WH IS WELLOWING THE WANTED					
Index	Name	Туре	Value	Descriptor		
0	Cmd	UINT8	0x31	命令码		
1	Data Length	UINT8	0x02	数据包长度,包含本身和 Cmd 字节		
2-5	Index	UINT32		Log 记录号		

表格 44 设置日志读取位置 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x31	命令码
1	Data Length	UINT8	0x11	数据包长度,包含本身和 Cmd 字节
2	Result	UINT8		参见附录 1,错误码的定义

3.22. Log Seek By Data Time (0x32)

根据时间日期条件设置读指针位置,设备会检索所有的 Log 记录,比较 Log 记录的时间,如果找到大于或者等于指定日志的位置,返回成功,如果没有找到该位置,返回失败。

设置读指针位置成功之后,如果设备接收到命令"Read Log Records",则返回当前位置的记录。

表格 45 设置日志读取时间 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x32	命令码
1	Data Length	UINT8	11	数据包长度,包含本身和 Cmd 字节
2-5	Year	int		年
6	Month	UINT8		月
7	Day	UINT8		日
8	Hour	UINT8		时
9	Minute	UINT8		分
10	Second	UINT8		秒

表格 46 设置日志读取时间 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x32	命令码
1	Data Length	UINT8	1	数据包长度,包含本身和 Cmd 字节
2	Result	UINT8		参见附录 1,错误码的定义

3.23. Read Log Records (0x33)

读取当前 Log 记录内容,该命令的功能如下:

- Log 记录指针可由命令"Log Seek By Index"指定。
- 读完之后 Log 记录指针增 1。
- 如果返回空记录(3个字节),表示所有记录已经读完,没有下一条 Log 记录。

表格 47 读取日志 REQ 数据格式

Index	Name	Туре	Value	Descriptor

0	Cmd	UINT8	0x33	命令码
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节
2	Num of Record	UINT8		记录数,最多2条

表格 48 读取日志 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x33	命令码
1	Data Length	UINT8		数据包长度,包含本身和 Cmd 字节
2	Result	UINT8		参见附录 1,错误码的定义
				如果已经读完所有记录,返回 0x01
3-10	Record Desc[]	Record Desc		记录内容,参考下表。

表格 49 日志数据格式

Index	Name	Туре	Value	Descriptor
0	Head	UINT8	0x21	Log Head。
				BIT[0-2]:Version;
				BIT[3-7]:Reserved;
1-4	dateTime	UINT32		日期时间, unix 时间戳格式, 从 1970 年 1 月 1 日
				(UTC/GMT 的午夜)开始所经过的秒数,不考虑闰秒。
5	eventID	UINT8		时间 ID,参考下表。
6	Param1	UINT8		参数 1
7	Param2	UINT8		参数 2

3.24. Delete Log(0x34)

删除所有日志记录。

表格 50 删除日志 REQ 数据格式

Inde	X:	Name	Туре	Value	Descriptor
0		Cmd	UINT8	0x34	命令码
1		Data Length	UINT8	0x02	数据包长度,包含本身和 Cmd 字节

表格 51 删除日志 RSP 数据格式

Index	Name	Туре	Value	e Descriptor	
0	Cmd	UINT8	0x34	命令码	
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节	
2	Result	UINT8		参见附录 1,错误码的定义	

3.25. SetStopCondition(0x35)

设置停车条件, PMS 板监控电池"电流的放电大小"和"持续时间"来判定车子是否处于

停车状态,主要包括如下参数。

当 PMS 板没有接收到该命令时, 使用默认值。

- 1: 小电流阈值。
- 2: 小电流放电持续时间。

表格 52 设置停车条件 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x35	命令码
1	Data Length	UINT8	0x05	数据包长度,包含本身和 Cmd 字节
2	Time	UINT16		停车判定条件-小电流持续时间,单位(S)
				默认值: 30S
4	Current	UINT16		停车判定条件-小电流阈值,单位(mA)
				默认值: 2500

表格 53 设置停车条件 REQ 数据格式

Index	Name	Туре	Value	Descriptor	
0	Cmd	UINT8	0x35	命令码	
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节	
2	Result	UINT8		参见附录 1,错误码的定义	

3.26. GetRunParam(0x36)

获取骑行参数,包括锁状态,行驶速度和电池剩余电量。

表格 54 获取骑行参数 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x36	命令码
1	Data Length	UINT8	0x02	数据包长度,包含本身和 Cmd 字节

表格 55 获取骑行参数 RSP 数据格式

Index	Name	Туре	Value	Descriptor	
0	Cmd	UINT8	0x36	命令码	
1	Data Length	UINT8	0x07	数据包长度,包含本身和 Cmd 字节	
2	Result	UINT8		参见附录 1,错误码的定义	
3	Lock State	UINT8		锁状态。	
				BIT[0]: 轮毂锁状态, 0-开锁; 1-关锁。	
				BIT[1]: 座舱锁状态, 0-开锁; 1-关锁。	
				BIT[2]: 座舱锁故障,执行开锁命令后检测到没开锁。	
				BIT[3-7]: 保留	
4	Speed	UINT16		速度或者轮毂转速。	
				BIT[0]: 0-速度(0.01Km/小时); 1-轮毂转速(r/min)。	

			BIT[1-15]: 速度或者转速值,取决于 BIT[0]	
6	Soc	UINT8	电池剩余电量	

3.27. SetWheelLockState(0x37) (轮毂锁)

设置轮毂锁锁状态。

表格 56 设置轮毂锁状态 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x37	命令码
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节
2	Lock State	UINT8		锁状态;
				0: 开锁;
				1: 关锁。

表格 57 设置轮毂锁状态 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x37	命令码
1	Data Length	UINT8	0x03	数据包长度,包含本身和 Cmd 字节
2	Result	UINT8		参见附录 1,错误码的定义

3.28. SetCabinLockState Cmd (0x38) (座舱锁)

设置座舱锁状态, 开锁或者关锁。

表格 58 设置座舱锁状态 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x38	命令码
1	Data Length	UINT8	0x03	数据长度
2	Lock Flag	UINT8		锁状态标志。
				0: 开锁。
				1: 关锁。

表格 59 设置座舱锁状态 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x38	命令码
1	Data Length	UINT8	1	数据包长度
2	Result	UINT8		参见附录 1,错误码的定义

3.29. SetAccState Cmd (0x39)

设置 ACC ON/OFF 状态,远程点火或者熄火。

表格 60 远程点火 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x39	命令码
1	Data Length	UINT8	0x03	数据长度
2	Lock Flag	UINT8		ACC 状态标志。
				0: 熄火。
				1: 点火。

表格 61 远程点火 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x39	命令码
1	Data Length	UINT8	1	数据包长度
2	Result	UINT8		参见附录 1,错误码的定义

3.30. Horn Test Cmd (0x3A) (喇叭)

喇叭测试命令。

表格 62 喇叭测试 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x3A	命令码
1	Data Length	UINT8	0x05	数据长度
2	Audio Index	UINT8	-	语音文件编号。
				OxOF:滴,提示音。
				0x12: 叭,警告音。
3	Count	UINT8	-	播放次数。
4	Vol	UINT8	-	音量,1-8。数字越大,音量越大。
	_			

表格 63 喇叭测试 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x3A	命令码
1	Data Length	UINT8	1	数据包长度
2	Result	UINT8		参见附录 1,错误码的定义

3.31. Get Asy Info Cmd (0x3B) (调速控制器)

获取调速控制器信息。

表格 64 获取调速控制器版本信息 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x3B	命令码
1	Data Length	UINT8	0x02	数据长度

表格 65 获取调速控制器版本信息 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x3B	命令码
1	Data Length	UINT8	1	数据包长度
2	Result	UINT8		参见附录 1,错误码的定义
				控制器硬件版本号
3-4	硬件版本 号	UINT16		第一个字节: 控制器电压等级: 48,60,72 等
				第二个字节:控制器硬件版本;
4-5	SN1	UINT16		序列号字节 1、2,字符串
6-7	SN2	UINT16		序列号字节 3、4,字符串
8-9	SN3	UINT16		序列号字节5、6,字符串
10-11	SN4	UINT16		序列号字节 7、8,字符串
12-13	SN5	UINT16		序列号字节 9、10,字符串
14-15	SN6	UINT16		序列号字节 11、12,字符串
16-17	SN7	UINT16		序列号字节 13、14,字符串

3.32. Get Asy State Cmd (0x3C) (调速控制器)

获取调速控制器状态。

表格 66 获取调速控制器状态 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x3C	命令码
1	Data Length	UINT8	0x02	数据长度

表格 67 获取调速控制器状态 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x3C	命令码
1	Data Length	UINT8	-	数据包长度
2	Result	UINT8		参见附录 1,错误码的定义
				BITO 控制器故障 1: 故障状态 0: 正常状态
2-3	State1	UINT16		BIT1 转把故障 1: 故障状态 0: 正常状态
				BIT2 刹车故障 1: 故障状态 0: 正常状态

			BIT3 电机霍尔故障 1: 故障状态 0: 正常状态
			BIT4 保养 1: 需要保养; 0: 无需保养
			BIT5 欠压状态 1: 欠压状态 0: 非欠压状态
			BIT6 过压状态 1: 过压状态 0: 非过压状态
			BIT7 防盗状态 1: 防盗状态 0: 非防盗状态
			BIT8-BIT15 预留
			BITO 实时状态 1: 运行状态 0: 静止状态
			BIT1 巡航状态 1: 巡航状态 0: 非巡航状态
			BIT2 电动状态 1: 电动状态 0: 助力状态
			BIT3 能量回收 1: 回收状态 0: 非回收状态
4-5	State2	UINT16	BIT41 档状态 1: 1 档状态 0: 非 1 档状态
			BIT5 2 档状态 1: 2 档状态 0: 非 2 档状态
			BIT6 3 档状态 1: 3 档状态 0: 非 3 档状态
			BIT7 4 档状态 1: 4 档状态 0: 非 4 档状态
			BIT8-BIT15 预留
			BITO 总状态标志 1: 正常状态 0: 故障状态
			BIT1 修复状态 1: 修复状态 0: 非修复
			BIT2 驻车 P 档 1: 有效 0: 无效
			BIT3 电机锁标志 1: 锁定中 0: 解锁
6-7	State3	UINT16	BIT4 通信故障 1: 故障 0: 正常
0-7	States	OINTIO	BIT5 转把状态 1: 启动 0: 停止
			BIT6 刹车状态 1: 启动 0: 停止
			BIT7 READY(童锁) 1: READY 0: 非 READY
			BIT8-BIT15 预留
			BITO 限速 1: 限速模式 0: 非限速模式
			BIT1 电子刹车 1: 启动 0: 未启动
			BIT2 倒车 1: 倒车状态 0: 正常状态
			BIT3 堵转保护 1: 保护状态 0: 正常状态
8-9	State4	UINT16	BIT4 过流保护 1: 保护状态 0: 正常状态
			BIT5 备用电源 1: 启用 0: 未启用
			BIT6 启用一键通 1: 启用 0: 未启用
			BIT7 电流标记 1: 电流超过 70% 0: 未超过
			BIT8-BIT15 预留
10-11	速度	UINT16	速度,分辨率 1Km/小时
			BIT 0: 锁电机指令
			1: 锁电机; 0: 取消锁电机
			BIT 1: 限速指令
12-13	控制指令	UINT16	1: 使能限速控制; 0: 取消限速控制
			BIT 2: 能量回收
			1: 使能能量回收; 0: 取消能量回收
			BIT3-BIT15 保留
14-15	限速比例	UINT16	报文要正常回复,功能无需实现
16-17	当前里程	UINT16	控制器计算的当前里程;分辨率 1KM
10 17	一 1110 王/王	0.111.10	4

3.33. Set Asy Cmd (0x3D) (调速控制器)

设置调速控制器命令。

表格 68 设置调速控制器 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x3D	命令码
1	Data Length	UINT8	0x08	数据长度
2-3	控制指令	UINT16		BIT 0: 锁电机指令 1: 锁电机; 0: 取消锁电机 BIT 1: 限速指令 1: 使能限速控制; 0: 取消限速控制 BIT 2: 能量回收 1: 使能能量回收; 0: 取消能量回收 BIT3-BIT15 保留
4-5	限速比例	UINT16		0-100%电压比例值,分辨率 1%。0xFFFF 不 设置
6-7	累计里程	UINT16		累计里程:分辨率 1KM。OxFFFF 不设置里程。

表格 69 设置调速控制器 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x3A	命令码
1	Data Length	UINT8	1	数据包长度
2	Result	UINT8		参见附录 1,错误码的定义

3.34. Get Beacon Scan Cmd (0x3E) (信标)

获取信标信息命令。

表格 70 获取信标信息 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x3E	命令码
1	Data Length	UINT8	0x02	数据长度

表格 71 获取信标信息 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x3E	命令码
1	Data Length	UINT8	1	数据包长度
2	Result	UINT8		参见附录 1,错误码的定义
3	Beacon Count	UIN8	0-5	信标数量,最多5个。
4~	Beacon Desc	BeaconDesc[5]		信标描述符,最多5个,定义参考下表

表格 72 Beacon Description 数据格式

Index	Name	Туре	Value	Descriptor
0-1	Major	UINT16	-	Major 标识
2-3	Minor	UINT16	-	Minor 标识
4	RSSI	INT8		RSSI 值,0~-127

蓝牙使用 RSSI 计算距离:

计算公式:

 $d = 10^{(abs(RSSI) - A) / (10 * n)}$

其中:

d - 计算所得距离

RSSI-接收信号强度(负值)

A-发射端和接收端相隔 1米时的信号强度,默认值:59

n-环境衰减因子,默认值: 2.0

由于所处环境不同,每台发射源(蓝牙设备)对应参数值都不一样。按道理,公式里的每项 参数都应该做实验(校准)获得。

当你不知道周围蓝牙设备准确位置时,只能给 A 和 n 赋经验值(如本例)。

我们应该再安装道钉设备时,同时在实际环境中计算出 A 和 N。

3.35. Get Beacon Cmd (0x3F) (信标)

获取信标信息命令。

表格 73 获取信标配置信息 REQ 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x3F	命令码
1	Data Length	UINT8	0x08	数据长度
2-3	Major	UINT16	-	Major 标识
4-5	Minor	UINT16	-	Minor 标识

表格 74 获取信标配置信息 RSP 数据格式

Index	Name	Туре	Value	Descriptor
0	Cmd	UINT8	0x3E	命令码
1	Data Length	UINT8	1	数据包长度
2	Result	UINT8		参见附录 1,错误码的定义
3-8	Mac	UINT8[6]		信标 MAC
9	SOC	UINT8		电池电量百分比, 0-无效值, 没获取到。
10-11	Voltage	UINT16		电池实际电压值,单位为 mv,
				0-无效值,没获取到
12	rssiCalib	INT8		取值范围: -127~20

13-14	interval	UINT16	单位 ms,	范围:	100-10000
15	txPower	UINT8	发射功率,		
			取值范围:	4,0,-4	,-8,-12,-16,-20,-30

4. APPROM Update Process

APPROM OTA 升级软件 APP 运行在手机中,通过 UART 发送命令给 DEVICE,他们的通信连接示意图如下图:

APPROM OTA 通信连接示意图

4.1. 升级协议定义

APP 与设备间数据通讯的是以帧单位的。每帧的数据最长长度为 132 bytes (128 + 4)。

帧格式定义:

LSB				MSB		
Head	Payload					
0x7E	CMD/RSP	Data Length	Data	0xFF		
1 octet	1 octet	1 octet	Variable	1 octet		

- 1) 所有数据域以小端格式表示,即低字节先发送,高字节后发送。
- 2) Header: 0x7E,表示一帧数据的开始,后面是被传数据。
- 3) Tail: 0xFF,表示一帧数据的结束。
- 4) CMD/RSP: 命令或者响应。
- 5) Data Length: 传输的 Data 长度。
- 6) Data: 传输的数据。
- 7) 在发送方,如果 Payload 存在如下字节,必须要做转码处理,接收方接收到数据之后,必须做相反的转码处理。

字符	转码
0x7E	0x8C 0x81
0xFF	0x8C 0x00
0x8C	0x8C 0x73

4.2. 升级命令定义

4.2.1. FwUpdate Start (0x20)

固件更新开始请求

Request 定义:

Index	Name	Туре	Value	Descriptor
0	Head	UINT8	0x7E	包头
1	Cmd	UINT8	0x20	命令码
2	Length	UINT8	0x0D	数据包长度,不包含本身和 Cmd 字节
3	Target	UINT8		升级目标:
				0: Smart 板固件。
				1: PMS 板固件。
				2: BMS 板固件。
4	BMS Port	UINT8		BMS 槽位号:
				只有当 Target 是 BMS 板时,该域才有意义;
				当 Target 为其他值时,该域保持为 0.
5-8	File Length	UINT32		文件长度
9	MainVer	UINT8		固件主版本号
10	SubVer	UINT8		固件子版本号
11	MinorVer	UINT8		固件修订版本号
12-15	BuildNum	UINT32		固件 Build 版本号
16	Tail	UINT8	0xFF	包尾

Response 定义:

Index	Name	Туре	Value	Descriptor
0	Head	UINT8	0x7E	包头
1	Cmd	UINT8	0x20	命令码
2	Data Length	UINT8	0x03	数据包长度,不包含本身和 Cmd 字节
3	Result	UINT8		参见附录 1,错误码的定义
4	Tail	UINT8	0xFF	包尾

4.2.2. FwUpdate (0x21)

固件数据更新请求。

Request 定义:

indiana, es co					
Index	Name	Туре	Value	Descriptor	
0	Head	UINT8	0x7E	包头	

1	Cmd	UINT8	0x21	命令码
2	Length	UINT8	132	数据包长度,不包含本身和 Cmd 字节
3-6	offset	UINT32		偏移
7-134	File Data	UINT8[128]		文件数据
135	Tail	UINT8	0xFF	包尾

Response 定义:

Index	Name	Туре	Value	Descriptor
0	Head	UINT8	0x7E	包头
1	Cmd	UINT8	0x21	命令码
2	Data Length	UINT8	0x01	数据包长度,不包含本身和 Cmd 字节
3	Result	UINT8		参见附录 1,错误码的定义
4	Tail	UINT8	0xFF	包尾

4.2.3. FwUpdate Done (0x22)

固件更新结束请求。

Request 定义:

Index	Name	Туре	Value	Descriptor
0	Head	UINT8	0x7E	包头
1	Cmd	UINT8	0x22	命令码
2	Length	UINT8	0x04	数据包长度,不包含本身和 Cmd 字节
3-6	CRC	UINT32		检验和
7	Tail	UINT8	0xFF	包尾

Response 定义:

Index	Name	Туре	Value	Descriptor
0	Head	UINT8	0x7E	包头
1	Cmd	UINT8	0x22	命令码
2	Data Length	UINT8	0x01	数据包长度,不包含本身和 Cmd 字节
3	Result	UINT8		参见附录 1,错误码的定义
4	Tail	UINT8	0xFF	包尾

4.2.4. Mcu Reset (0x23)

Request 定义:

- 1 / = / - ·						
Index	Name	Туре	Value	Descriptor		
0	Head	UINT8	0x7E	包头		
1	Cmd	UINT8	0x23	命令码		

2	Length	UINT8	0x00	数据包长度,不包含本身和 Cmd 字节
3	Tail	UINT8	0xFF	包尾

该命令无应答。

4.3. APPROM OTA 的升级定义

- 1) APPROM OTA 文件的格式必须为标准的 BIN 文件格式。
- 2) APP 和被升级目标 DEVICE 之间采用请求-响应的工作方式,APP 向 DEVICE 发送"REQ", DEVICE 接收到"REQ"之后,必须回复一个"RSP",APP 如果在规定的时间内没有收到"RSP", 则必须重发"REQ",直到接收到"RSP"。

4.4. APPROM OTA 文件格式定义

APPROM 的文件格式定义如下:文件的前段数据是纯的固件数据,文件将会被逻辑划分成若干个块,每个块的大小是 64 字节对齐,文件尾部不完整块用 FFh 填充,文件的最后一个块包含文件的 CRC,文件有效长度信息,版本信息等。

说明:

- 1) BIN DATA CRC: 使用 CRC 校验算法对 BIN DATA 计算出一个 CRC 值,不包含补位的数据。
- 2) BIN DATA LEN: BIN DATA 的长度,不包含补位的数据。
- 3) Firwware version: 固件的版本号。
- 4) FILE INFO CRC: 使用 CRC 校验算法对文件最后的一个区块字节,从 BIN DATA CRC 位置开

```
始,长度为 128 - 4,计算出的 CRC 值,用于校验最后的区块是否是有效的内容。
5) CRC 算法如下:
uin 电池仓 6_t crc16_compute(const uint8_t * p_data, uint32_t size, const uin 电池仓 6_t * p_crc)
{
    uint32_t i;
    uin 电池仓 6_t crc = (p_crc == NULL) ? 0xffff : *p_crc;

    for (i = 0; i < size; i++)
    {
        crc = (unsigned char)(crc >> 8) | (crc << 8);
        crc ^= p_data[i];
        crc ^= (unsigned char)(crc & 0xff) >> 4;
        crc ^= ((crc << 8) << 4;
        crc ^= ((crc & 0xff) << 4) << 1;
    }
    return crc;
}
```

4.5. APPROM OTA 文件的升级过程

APP 的升级过程如下序列图:

- 1) APP 读取 OTA 文件, 检验合法性, 从最后一个扇区中取出文件的版本号和有效文件长度。
- 2)APP 发送命令" UpdateApp Start REQ"给 DEVICE
 - a) 如果在 2S 内没有接收到 RSP,则必须重发当前请求,重发总时长最大 10 秒。
 - b) 如果接收到 RSP, 错误码为 "NOT READY",则必须延时 2 秒重发当前请求,重发总时长最大 30 秒。
 - c) 如果接收到 RSP,错误码为 "SUCCESS",则执行下一步。
- 3) APP 发送命令 "FwUpdate",每次发送固件数据的长度固定为 128 字节。每次发送请求 之后等待 2 秒接收响应。
 - a) 如果接收到 RSP[SUCCESS],则跳到第 3 步,发送下一个区块,直至所有数据发送完毕,接着执行第 4 步。
 - b) 如果接收到 RSP[其他错误码],则终止当前升级。
 - c) 如果没有接收到 RSP,则终止当前升级
- 4) APP 发送命令" UpdateAppDone REQ"给 DEVICE。

- a) 如果接收到 RSP[SUCCESS],则认为固件升级成功。
- b) 如果接收到 RSP[其他错误码],认为固件升级失败,终止当前升级。
- 5) 升级结束。

注意:无论最终升级成功或者失败,Device 都会自动复位。APP 无须再发送复位命令"MCU Reset"。

5. 蓝牙名称定义

序号	制造商	蓝牙广播名称	产品描述
	代码		
0	41	IMTSEB-#####	电动助力车,#####表示蓝牙 MAC 的后 6 个字符。
1	30	IMT60-#####	普通中控,#####表示蓝牙 MAC 的后 6 个字符。
2	30	IMT-Bxx-#####	Bxx, xx 代表数字, 电池的外置模组,#####表示蓝牙
			MAC 的后 6 个字符。
			例如 B9 电池 BLE 的 MAC=24:B1:3C:2A:1B:0F
			蓝牙名称为 IMT-B9-2A1B0F
3	30	IMT-Cxx-######	Cxx,中控的外置模组, #####表示蓝牙 MAC 的后 6
			个字符。
			例如 C7 电池 BLE 的 MAC=24:B1:3C:2A:1B:0F
			蓝牙名称为 IMT-C7-2A1B0F

6. 日志格式定义

日志存储空间:为 32K,分为 8 个扇区存储,每个扇区为 4K Bytes。

日志存储方式:循环写入,当所有扇区全部写满内容,则删除最早的记录内容,写入新的记录内容。

日志由多条记录组成,每条记录的长度固定,为8个字节,因此,日志空间最多可存储32K/8 = 4096条记录。

记录格式如下:

Index	Name	Туре	Value	Descriptor
0	Head	UINT8	0x21	Log Head。
				BIT[0-2]:Version;
				BIT[3-7]:Reserved;
1-4	dateTime	UINT32		日期时间, unix 时间戳格式, 从 1970 年 1 月 1 日
				(UTC/GMT 的午夜)开始所经过的秒数,不考虑闰秒。
5	eventID	UINT8		时间 ID,参考下表。

6	Param1	UINT8	参数 1
7-	Param2	UINT8	参数 2

6.1. 日志 EventID 定义

日志 Event ID	值	参数1		参数 2		说明
ET_SYS_RESET = 1	1	00000001	上电复位	0	看门狗,上电等	系统复位
(硬复位源, 软复位原因)		00000010	复位脚复位	1	修改固件版本号	
		00000100	看门狗复位	2	修改硬件版本号	
		00010000	欠压复位	3	修改服务器地址	
		00100000	MO 复位信号	4	固件升级失败	
		10000000	CPU 复位	5	网络复位	
				6	升级固件成功	
				7	收到蓝牙复位命令	
				8	恢复出厂设置	
				9	切断 18650 供电	
				10	设备激活	
				11	拔出所有电池	
				12	短消息复位	
				13	pms 固件升级成功	
ET_SYS_SLEEP	2	打卡剩余分钟		1865	50 电压(0.1V)	系统休眠
ET_SYS_WAKEUP	3	设备状态值。		0	上电复位	系统唤醒
(设备状态值,复位原因)		BIT[0]:去激活		1	陀螺仪唤醒	
		BIT[1]: 打卡使[能	2	PMS 唤醒	
		BIT[2]:是否断电	Ī	3	SIM 唤醒	
		BIT[3]:是否警戒	花模式	4	蓝牙唤醒	
		BIT[4]:电池身份	分验证使能	5	RTC 唤醒	
		BIT[5-7]:保留				
ET_SYS_ACTIVE	4	设备状态值,同	司上	0		设备激活
ET_SYS_INACTIVE	5	设备状态值,同	司上	0		设备去激活
ET_SYS_DISCHARGE_ON	6	设备状态值,同	司上	0		远程断电-开
ET_SYS_DISCHARGE_OFF	7	设备状态值,同	司上	0		远程断电-关
ET_SYS_ALARM_MODE_ON	8	设备状态值,同	设备状态值,同上			警戒模式开
ET_SYS_ALARM_MODE_OFF	9	设备状态值,同	司上	0		警戒模式关
ET_SYS_SIGN_FAILED	10	设备状态值,同	司上			打卡失败

ET_SIM_PWR_RST	20	0	上电复位	CSQ	SIM 复位
(复位原因,CSQ)		1	网络看门狗		
		2	AT 命令错误重试失败		
		3	网络远程复位		
		4	TCP 连接服务器错误		
		5	关闭网络连接错误		
		6	网络状态异常		
		7	SIM 卡异常		
		8	SIM 卡不在位		
		9	服务器连接错误		
		10	调试串口指令		
		11	SIM 模组初始化失败		
ET_SIM_SLEEP	21	HbC	unt(发送心跳次数)	GpsCount	SIM 模组睡眠
				(发送定位次数)	
ET_SIM_WAKEUP	22	设备	状态值,同上	18650 电压(0.1V)	SIM 唤醒
ET_GPRS_CNT	30	打卡	剩余分钟	CSQ	网络连接
ET_GPRS_DIS_CNT	31	0	其他原因	CSQ	网络断开
(中断原因,CSQ)	31	1	TCP 连接关闭	000	[424 B]7]
(TEATANELY COOL)		2	IP INITIAL		
		3	PDP DEACT		
ET_GPRS_SEND_FAILED	32	1	50 电压(0.1V)	CSQ	发送数据失败
ET_GPRS_HEARBEAT_COUNT	33	1	ount,心跳次数	GpsCount,定位次数	心跳技术,每10次记录一次
ET_GPRS_SMS	34	1	寻车	CSQ	接收到短消息
L1_0+13_3M3	34	2	系统复位		1女1大工1八匹11八匹
		FF	其他。		
ET_GPRS_UPG_START	35	-		是否点火,	BITO: 升级 PMS 固件。
11_di 113_di d_31AM	33	71 200	. Б. П. Л. Ж.	0: ACC OFF,可以升级	BIT1: 升级 SMART 固件
				1: ACC ON,不能启动升级	其他值:保留
ET_GPRS_UPG_PROC	36	升级	固件过程	0: 网络协议切换到正常	18650 电压(0.1V)
				1: 网络协议切换到升级	18650 电压(0.1V)
				2: 获取固件 URL	0: 成功; 其他值: 失败。
				3: 获取固件文件长度	0: 获取成功, 状态码=200。
				o. wall of the	1: 获取失败。
					2: 文件长度无效。
				4: 下载文件数据	包技术,每包 4K,最有一个包
					可能不满 4K
				5: 下载完毕	0: 成功; 1: 失败。
ET_GPS_PWR_ON	40	1865	50 电压(0.1V)	CSQ	GPS 上电
	1	+			
ET_GPS_PWR_OFF	41	1865	50 电压(0.1V)	CSQ	GPS 美电

ET_GPS_LOC_FAILED	43	可见卫星数	SNR	定位失败
	44			
ET_BLE_CNT	50	0	0	蓝牙连接
ET_BLE_DIS_CNT	51	0	0	蓝牙断开
ET_PMS_ACC_ON	60	打卡剩余分钟	SOC	点火
ET_PMS_ACC_OFF	61	打卡剩余分钟	SOC	熄火
ET_PMS_BAT_PLUG_IN	62	电池总数	SOC	电池插入
ET_PMS_BAT_PLUG_OUT	63	电池总数	SOC	电池拔出
ET_PMS_BAT_VERIFY	64	电池验证	0	SOC
ET_PACK_STATE_CHANGED	65	电池状态改变	电池状态:	SOC
			0-电池休眠	
			1-电池充电。	
			2-电池放电。	
ET_PMS_COMM_EVENT	66	PMS 通信事件	通信状态。	SOC
			0-中断。	
			1-连接。	
ET_PMS_PWR_EVENT	67	PMS 上电事件	PMS 端口上电状态。	SOC
			0-断电。	
			1-上电。	
ET_PMS_SET_DISCHARGE	68	设置 PMS 放电模式	Bit[0-1]:Port 0 电池身份校	Port1 电池身份校验。
			验。	0-没校验。
			Bit[6]: 是否允许放电。	1-校验成功。
			Bit[7]: 是否警戒模式	2-校验失败
ET_UPGRADE_SMART_START	80	18650 电压(0.1V)	0	升级 SMART 板固件开始
ET_UPGRADE_SMART_DONE	81	18650 电压(0.1V)	0-成功; 1-失败	升级 SMART 板固件结束
ET_UPGRADE_PMS_START	82	18650 电压(0.1V)	0	升级 SMART 板固件开始
ET_UPGRADE_PMS_DONE	83	18650 电压(0.1V)	0-成功; 1-失败	升级 PMS 板固件结束

附录 1: Firmware Version 定义

MCU Firmware version adopts **GNU** style(Including 4 parts):

Major_Version_Number.Minor_Version_Number.Revision_Number.Build_Number

Main Version Number (主版号,1字节)
 从1开始,当项目在进行重大修改或局部修正较多,而导致项目整体发生全局变

化时,主版本号加1.

• Minor Version Number (子版本号,1字节)

当项目在原有的基础上增加了部分功能时,主版本号不变,子版本号加 1,修正版本号复位成 0.

- Revision Number (修正版本号, 1字节) 当项目进行了局部修改或 bug 修正时,主版本号和子版本号都不变,修正版本号加 1.
- Build Number (编译版本号, 4字节)

Build Number 是不断递增的,如果 IDE 比较智能的话,每次打包发布时,会自动加 1。如果不是自动加 1 的话,每次对外发布新的 firmware 时,都需要手动加 1 或者参考 SVN 修订号.

附录 2: Hardware Version 定义

Hardware adopts the below version style(Including 2 parts):

Device_Typer. Major_Version_Number

Product Typer 定义如下:

Product Typer	Description
1	电池仓 Smart
其他值	保留

附录 3: 设备类型定义 +

C7 和 C9 代表不同的设备型号,C7 支持 PMS 板和双电池,C9 仅支持单电池,没有 PMS 板,具体的设备特性请参考表格 75

表格 75 设备类型支持模块定义

序号	功能描述	C7	C9
1.	2G/4G	'	'
2.	GPS 功能	'	/
3.	BLE	'	/
4.	PMS 板	/	×
5.	电池	2	1
6.	18650 电池	/	×
7.	陀螺仪	/	/
8.	喇叭	~	×
9.	轮毂锁	~	×
10.	座舱锁	/	×
11.	控制器	×	×
12.	点火线	/	×

附录 4: 设备支持命令定义 +

序号	命令	是否需要 身份认证	C7	C9
1.	Authentication	×	~	/
2.	GetPortState	×	•	/
3.	Get Battery Info	×	•	'
4.	Get SelfTest Result	×	•	/
5.	Get GPS/GPRS Info	×	•	~
6.	Get Device Capacity	×	~	/
7.	Get SmartInfo	×	~	/
8.	Get PMS Info	×	~	/
9.	Get BMS Info	×	~	/
10.	Active Device	~	~	~
11.	Battery Verify Req	V	~	~
12.	Set Nvds	~	~	~
13.	Get Nvds	×	~	/
14.	Set Factory Setting	~	~	~
15.	Set Alarm Mode	~	~	~
16.	Set LowSocPlay	×	×	×
17.	Set SocPlay	×	×	×
18.	Get SocPlay	×	×	×
19.	Read Log Info	×	~	~
20.	Log Seek By Index	×	~	~
21.	Log Seek By Data Time	×	~	~
22.	Read Log Records	×	~	1
23.	Delete Log	V	~	~
24.	SetStopCondition	V	~	~
25.	GetRunParam	×	~	~
26.	SetWheelLockState	V	~	×
27.	SetCabinLockState	V	~	×
28.	SetAccState	~	~	×
29.	Horn Test	×	×	×
30.	Get Asy Info	×	×	×
31.	Get Asy State	×	×	×
32.	Set Asy	V	×	×
33.	Get Beacon Scan	×	~	
34.	Get Beacon	×	~	