

By MohamedElfatih MohamedElkhair

### **Abstract**

• Contrastive learning approaches are well designed for vision domains only.

Combine Contrastive learning approaches with Mixup.

 Improve the performance of contrastive learning approaches in across domains (image, speech, tabler)

# What is contrastive learning?



# What is Mixup?



+ 0.6 x





Cat: 1.0 Dog: 0.0

Cat: 0.0 Dog: 1.0

Cat: 0.4 Dog: 0.6

# How Mixup is applied in Supervised setting?

$$\ell_{\text{Sup}}(x_i, y_i) = -\sum_{c=1}^{C} y_{i,c} \log \frac{\exp(w_c^{\top} f_i)}{\sum_{k=1}^{C} \exp(w_k^{\top} f_i)}$$

$$\ell_{\operatorname{Sup}}^{\operatorname{MixUp}}\big((x_i,y_i),(x_j,y_j);\lambda\big) = \ell_{\operatorname{Sup}}(\lambda x_i + (1-\lambda)x_j,\lambda y_i + (1-\lambda)y_j)$$

How to apply it in Self-Supervised settings?

Then....

$$(x_i, x_j; \lambda) = \lambda x_i + (1 - \lambda) x_j$$
 $\ell^{i ext{-Mix}}ig((x_i, v_i), (x_j, v_j); \mathcal{B}, \lambdaig) = \ell( ext{Mix}(x_i, x_j; \lambda), \lambda v_i + (1 - \lambda) v_j; \mathcal{B})$ 

CutMix $(x_i, x_i; \lambda) = M_{\lambda} \odot x_i + (1 - M_{\lambda}) \odot x_i$ 

# **Contrastive Learning Approaches**

SimCLR

Moco

Byol

# **SimCLR**

**After** 

$$\ell_{\text{SimCLR}}(x_i; \mathcal{B}) = -\log \frac{\exp\left(s(f_i, f_{(N+i) \bmod 2N})/\tau\right)}{\sum_{k=1, k \neq i}^{2N} \exp\left(s(f_i, f_k)/\tau\right)}$$

After introducing virtual labels 
$$\ell_{\text{N-pair}}(x_i, v_i; \mathcal{B}) = -\sum_{n=1}^N v_{i,n} \log \frac{\exp\left(s(f_i, \tilde{f}_n)/\tau\right)}{\sum_{k=1}^N \exp\left(s(f_i, \tilde{f}_k)/\tau\right)}$$

$$\text{Affect} \quad \text{applying} \quad \text{Mixup} \quad \mathcal{\ell}^{i\text{-Mix}}_{\text{N-pair}}\big((x_i,v_i),(x_j,v_j);\mathcal{B},\lambda\big) = \ell_{\text{N-pair}}\big(\lambda x_i + (1-\lambda)x_j,\lambda v_i + (1-\lambda)v_j;\mathcal{B}\big)$$

After Linearization  $\lambda \ell_{ ext{N-pair}}(\lambda x_i + (1-\lambda)x_j, v_i; \mathcal{B}) + (1-\lambda)\ell_{ ext{N-pair}}(\lambda x_i + (1-\lambda)x_j, v_j; \mathcal{B})$ 

# **Implementation**

# **Pre-train step**



5 Layers MLP with batchnormalization

### Fine-tune step



5 Layers MLP with batchnormalization

# Npair pre-train code

```
def training step(self, train batch, batch idx):
 t = 0.1
 x,y = train batch
 aug x, = covtype aug(x.shape, x.float(), args.alpha, self.device)
 x outs = self.forward(x.float())
 aug x outs = self.forward(aug_x.float())
 norm aug x = F.normalize(aug x outs, dim=-1)
 norm x = F.normalize(x outs, dim=-1)
 logits = norm x @ norm aug x.T / t
 labels = torch.tensor(range(len(x))).to(self.device)
  loss = self.cross entropy loss(logits, labels)
  self.log('train loss', loss)
  self.saved fts.append(x outs)
  self.saved labels.append(y)
 return loss
```

# imix-Npair pre-train code

```
def training step(self, train batch, batch idx):
   t = 0.1
   x,y = train batch
   aug x, = covtype aug(x.shape, x.float(), args.alpha, self.device
   # Code added
   lam = np.random.beta(args.beta, args.beta)
   randidx = np.random.permutation(len(x))
   x = 1am * x + (1 - 1am) * x | randidx |
   x outs = self.forward(x.float())
   aug x outs = self.forward(aug x.float())
   norm aug x = F.normalize(aug x outs, dim=-1)
   norm x = F.normalize(x outs, dim=-1)
   logits = norm x @ norm aug x.T / t
   labels = torch.tensor(range(len(x))).to(self.device)
   labels_perm = randidx
   loss = lam * self.cross entropy loss(logits, labels) \
   + (1 - lam) * self.cross_entropy_loss(logits, labels_perm)
   self.log('train loss', loss)
   self.saved fts.append(x outs)
   self.saved labels.append(y)
   return loss
```

Linearized form of the mixup loss

# **Experiment**

### Setup

• 500/150 (pretrain/finetune) epochs

• 512 Batch size

• Learning rate of .125

• Linear warmup for 10 epochs a followed consine Annealing

Covertype tabular data 15k training and 566k for testing

# Results



pretrain\_loss



Test ACC 67.7

#### NPair + imix

pretrain\_loss



Test ACC 74.8

# Comparing with the paper

# **Test Accuracy**

#### Implementation

#### Paper

| Npair | + imix | Npair | + imix |
|-------|--------|-------|--------|
| 67.7  | 74.8   | 68.5  | 72.1   |

### **Future Works**

Implementing BYOL, MOCO

Experimenting in Speech commands and CIFAR

Organizing the code

# **QUESTIONS?**