A NOVEL METHOD FOR HANDWRITTEN DIGIT RECOGNITION SYSYTEM

TEAM ID: PNT2022TMID06256

SUBMITTED BY:

- 1) D.V.BHARATHI PRASAD 71051902011
 - 2) PRASHANTH.R 71051902038
 - 3)THARUNRAJ.T -71051902053
 - 4)THIRUKUMARAN.PK -71051902054

TABLE OF CONTENTS

1 INTRODUCTION

- 1.1 PROJECT OVERVIEW
- 1.2 PURPOSE

2 LITERATURE SURVEY

- 2.1 EXISTING PROBLEM
- 2.2 REFERENCES
- 2.3 PROBLEM STATEMENT DEFINITION

3. IDEATION AND PROPOSED SOLUTION

- 3.1 EMPATHY MAP CANVAS
- 3.2 IDEATION AND BRAINSTORMING
- 3.3 PROPOSED SOLUTION
- 3.4 PROBLEM SOLUTION FIT

4. REQUIREMENT ANALYSIS

- 4.1 FUNCTIONAL REQUIREMENTS
- 4.2 NON-FUNCTIONAL REQUIREMENTS

5. PROJECT DESIGN

- 5.1 DATA FLOW DIAGRAM
- 5.2 SOLUTION AND TECHNICAL ARCHITECTURE
- 5.3 USER STORIES

6. PROJECT PLANNING AND SCHEDULING

- 6.1 SPRINT PLANNING AND ESTIMATION
- 6.2 SPRINT DELIVERY SCHEDULE

7.CODING AND SOLUTIONING

8.TESTING

- 8.1 TEST CASES
- 8.2 USER ACCEPTANCE TESTING
 - 8.2.1 DEFECT ANALYSIS
 - 8.2.2 TEST CASE ANALYSIS

9. RESULTS

9.1 PERFORMANCE METRICS

10. ADVANTAGES AND DISADVANTAGES

10.1 ADVANTAGES 10.2 DISADVANTAGES

11 CONCLUSION

12 FUTURE SCOPE

13 APPENDIX

SOURCE CODE GITHUB PROJECT DEMO

1) INTRODUCTION:

1.1) Project Overview:

The user interacts with the UI (User Interface) to upload the image as input. The uploaded image is analyzed by the model which is integrated. Once the model analyses the uploaded image, the prediction is showcased on the UI.

1.2) Purpose:

Humans with the help of their brain can recognize the things that they see. Similarly, deep neural networks are developed for the computers to recognize what they see through the User Interface(UI). Handwritten digit recognition is the ability of a computer to receive and interpret intelligible handwritten digit input from sources such as paper documents, photographs, touch-screens and other devices. The applications of digit recognition includes postal mail sorting, bank check processing, form data entry, etc. The heart of the problem lies within the ability to develop an efficient algorithm that can recognize handwritten digits and which is submitted by users by way of a scanner, tablet, and other digital devices.

2)LITERATURE SURVEY:

2.1) EXISTING PROBLEM:

The different architectures of CNN, hybrid CNN,CNN - RNN and CNNHMM models, and domain - specific recognition system, are not thoroughly inquired and evolutionary algorithms are not clearly explored for optimizing CNN learning parameters ,the number of layers, learning rate and kernel sizes of convolutional filters. The fluctuation of accuracies for handwritten digits was observed for 15 epochs by varying the hidden layers. There is no clear explanation given for observing variation in the overall classification accuracy by varying the number of hidden layers and batch size.

2.2)REFERENCES:

S.NO	Author	Paper	Journal/	Page	Yearof	Description
	Name	Title	Conferenc	No/Volum	Publicatio	
			e- title	e No	n	
1	Savita	Improved	IEEE		2020	In this paper,
	Ahlawat,	Handwrit	Sensors			with the aim of
	Amit	t en Digit	Journal			improving the
	Choudhar	Recogniti				performance of
	y, Anand	on Using				handwritten
	Nayyar,	Convoluti				digit
	Saurabh	onal				recognition,the
	Singh and	Neural				y valuated
	Byungun	Networks				variants of a
	Yoon	(CNN)				convolutional
						neural network
						to avoid
						complex
						preprocessin g,
						costly feature
						extraction and
						a complex
						ensemble
						(classifier
						combination)
						approach of a
						traditional
						recognition
						system

2	Vijayalax	Handwrit	Internati	Volume-4	2019	In this paper,
_	mi R	t en Digit	onal	Issue-6	2015	the most
	Rudraswa	Recogniti	Journal of	13300 0		widely used
			Innovative			Machine used
	mimath,	on using				
	Bhavanis	CNN	Science			learning
	h ankar		and Resear			algorithms,
	and		chTechnol			KNN, SVM, RFC
	Channas		ogy			and CNN have
	a ndra.					been trained
						and tested on
						the same data
						in order acquire
						the comparison
						between the
						classifiers
3	Akanksha	Review	Internati	Volume-9	2021	In this paper,
	Gupta,	on Deep	onal	Issue-5		Object
	Ravindra	Learning	Journal of			Character
	Pratap	Handwrit	Recent			Recognition
	Narwaria	t en Digit	Technol			(OCR) is used
	and	Recogniti	ogy and			on printed or
	Madhav	on using	Engine			documented
	Singh.	Convoluti	ering			letters to
		onal	(IJRTE)			convert them
		Neural				into text. The
		Network				database has
		Treework				training image
						database of
						60,000 images
						•
						and testing
						image
						database of
						10,000 images.
						The KNN
						algorithm
						describes
						categorical
						value by
						making use of
						majority of
						votes of K -
						nearest

			neighbors,	the
			K value use	d to
			differ here.	

2.3) PROBLEM STATEMENT DEFINITION:

Handwriting recognition is one of the compelling research works going on because every individual in this world has their own style of writing. It is the capability of the computer to identify and understand handwritten digits or characters automatically. Because of the progress in the field of science and technology, everything is being digitalized to reduce human effort. Hence, there comes a need for handwritten digit recognition in many realtime applications. MNIST data set is widely used for this recognition process and it has 70000 handwritten digits. We use Artificial neural networks to train these images and build a deep learning model. Web application is created where the user can upload an image of a handwritten digit. this image is analyzed by the model and the detected result is returned to UI(User Interface).

3.IDEATION & PROPOSED SOLUTION:

3.1) EMPATHY MAP CANVAS:

Share your feedback

Build empathy and keep your focus on the user by putting yourself in their shoes.

3.2) IDEATION & BRAINSTORMING:

Brainstorming:

3.3) Proposed Solution:

S.No	Parameter	Description
1.	Problem Statement (Problem to be solved)	To design an application that identifies numbers from written script.
2.	Idea / Solution description	Using the concepts of neural networks, an application will be created. From an image the user gives as input the application will identify the numbers in it and display it.
3.	Novelty / Uniqueness	We will provide the options to give mathematical operations from which they can choose. Accordingly the result will be displayed. Our application will only recognize digits and not all text like OCR

4.	Social Impact / Customer Satisfaction	To correctly and accurately identify handwritten scriptures. This is to ease people when they don't understand something that's written somewhere. For example a prescription given by a doctor
5.	Business Model (Revenue Model)	This application can be used in the world as well in places like i. Traffic surveillance - To make note of the license plate of vehicles. This application can be improved upon to solve complicated mathematical equations.
<u>6.</u>	Scalability of the Solution	It will be a very scalable application as it will be generic and easily adaptable.

3.4) Problem Solution Fit:

4)REQUIREMENT ANALYSIS:

4.1) Functional Requirement:

The functional requirement for the proposed solution are

FR NO.	FUNCTIONAL REQUIREMENT	SUB REQUIREMENT(story/subtask
FR1	The product essentially converts	The user is first asked to draw a
	handwritten digits to digital form.	number on the canvas, and the
		model that is built is then utilised to
		compare the data and provide an
		output in digitalized form.
FR2	Recognizing the handwritten digit and	Recognizing the handwritten digit
	displaying.	and displaying
FR3	Import dataset file directly to the	Installing packages and applications.
	program from a command that will	
	download the dataset from its website.	
	Save the dataset file in the same	
	directory as the program	

FR4	Build a Neural Network with a number	NIL
	of nodes in the input layer equal to the	
	number of pixels in the arrays	
FR5	Activating the Neural Network	Packages – tensorflow

4.2)Non- Functional Requirements:

The non-functional requirements of the proposed solution

FR NO.	NON FUNCTIONAL REQUIREMENT	DESCRIPTION
NFR1	Usability	System design should be
		easily understood and user
		friendly to users.
		Furthermore, users of all
		skill levels of users should
		be able to navigate it
		without problems
NFR2	Security	The system should
		automatically be able to
		authenticate all users with
		their unique username and
		password
NFR3	Performance	Should reduce the delay in
		information when hundreds
		of requests are given.
NFR4	Availability	Information is restricted to
		each users limited access
NF	Scalability	the system should be able to
		handle 10000 users
		accessing the site at the
		same time

5)PROJECT DESIGN:

5.1)Data Flow Diagrams:

5.2) Solution & Technical Architecture:

Solution:

S.NO	PARAMETER	DESCRIPTION
1.	Problem Statement (Problem to be	A Novel Method for Handwritten
	solved)	Digit Recognition System
2.	Idea / Solution description	The proposed solution is to
		classify the digits which is in
		handwritten format by using CNN
		based model and this model can
		be trained by using MNIST
		database which contains 60,000
		training samples and 10,000 test
		samples.
3.	Novelty / Uniqueness	To classify the image datasets
		by using CNN, which provides
		efficient solution compare to
		other methods. Here ANN
		algorithm is used for voice
		recognition which helps blind
		people.
4.	Social Impact / Customer Satisfaction	Users no need to use external
		dependencies or devices to
		recognize the digits, this process
		can be done through our mobile
		phones.

5.	Business Model (Revenue Model)	1. Input module 2. Image processing module 3. Segmentation module 4. Feature extraction module 5. Data set training module 6. Classification module
6.	Scalability of the Solution	The accuracy of the result for the training data set is 99.98%, and 99.40% with 50% noise by using MNIST. Even we can improve this model to achieve the better results by training different types of datasets.

Solution architecture is a complex process – with many sub-processes – that bridges the gap between business problems and technology solutions. Its goals are to:

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software to project stakeholders.
- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, and delivered

TECHNICAL ARCHITECTURE

5.3)User Stories:

The user stories for the solution:

User Type	Functional Requiremen t (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer	Application	USN-1	As a user, I can application by opening it easily.	I can download the application	High	Sprint-1
		USN-2	As a user, I will be given access to the canvas board to draw or write the number	I can access the canvas	High	Sprint-1
		USN-3	As a user, I can change the colour of the pen ink.	I can use the canvas pen	Medium	Sprint-2

6)PROJECT PLANNING AND SCHEDULING:

6.1)Sprint Planning & Estimation:

Sprint	Functional Requirement	Task
Sprint-1	Image Data	As a User need to collect the Image Data of Handly Written Images to train the model.
Sprint-2	Dash Board or Website	We using Python Flask Framework to create a dynamic Webpage to host our model (UI).
Sprint-3	Classifier Model	Using CNN Model for Image Classification.

Sprint-4	Cloud	Hosting the Organized
		appication in Cloud
		platform.

6.2)Sprint Delivery Schedule:

The backlog and sprint delivery schedule for the solution:

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint- 1	Data Collection & pre processing	USN-1	As a user, I can upload any kind of image with the pre-processi ng step is involved in it.	10	High	Tharunraj.T
Sprint- 1		USN-2	As a user, I can upload the image in any resolution.	10	High	BharathiPrasad.D V
Sprint- 2	Building the Machine learning model	USN-3	As a user, I will get a application with ML model which provides high accuracy of recognized handwritten digit	3	Medium	Thirukumaran.PK

Sprint-	USN-4	As a user, I	2	Medium	Prashanth.R
2		can pass the			
		handwritten			
		digit image			
		for			
		recognizing			
		the digit.			

Sprint	Functional Requiremen	User Story	User Story / Task	Story Points	Priority	Team Members
	t (Epic)	Number	Idsk	Folities		
Sprint-2	(Lpro)	USN-5	As a user, I can get the most suitable recognized digit.	10	High	Prashanth.R
Sprint-3	Building User Interface Application	USN-6	As a user, I will upload the handwritten digit image to the application by clicking a upload button.	8	Medium	Tharunraj.T
Sprint-3		USN-7	As a user, I can know the details of the fundamental usage of the application	2	High	BharathiPrasad.D V
Sprint-3		USN-8	As a user, I can see the predicted / recognized digits in the application	10	Medium	Prashanth.R

Sprint-4	Train and	USN-9	As a user, I	20	Medium	Tharunraj.T
	deployment		can access			Thirukumaran.PK
	of model in		the web			
	IBM Cloud		application			
			and make the			
			use of the			
			product from			
			anywhere			

6.3)Reports From JIRA:

7)CODING & Solutioning:

7.1)Feature-1:

This is the index or the home page of the web application which describes what this web application is for and how to use this web application to predict the numbers. There is an option where we can choose a file and upload the file and click on the 'Predict' option to predict the number.

There is also one more option 'Clear', next to 'Predict' which can be used to clear the current image and upload a new one.

7.2) Feature - 2:

An image of a handwritten digit is uploaded into the web application and then by clicking on predict, it leads to opening of a new web page where the predicted number by the model is displayed.

CODES:

Code for the required features is written in the files "index.html", "predict.html", "style.css" and "app.py"

The "index.html" file renders the home page which gives the information about prediction and the 'predict' and 'clear' options.

"index.html" code:

<html>

<head>

<title>HDR</title>

```
<meta name="viewport" content="width=device-width">
 <link rel="stylesheet" href="../static/css/style.css">
 k href="https://fonts.googleapis.com/css2?family=Prompt:wght@600&display=swap"
rel="stylesheet">
 k href="https://fonts.googleapis.com/css2?family=Varela+Round&display=swap"
rel="stylesheet">
 k href="https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@500&display=swap"
rel="stylesheet">
 k
href="https://fonts.googleapis.com/css?family=Calistoga|Josefin+Sans:400,700|Pacifico&display=sw
ap" rel="stylesheet">
 k rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"
integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1
T" crossorigin="anonymous">
 k rel="stylesheet" type= "text/css" href= "{{ url_for('static',filename='css/style.css') }}">
 <script src="https://kit.fontawesome.com/b3aed9cb07.js" crossorigin="anonymous"></script>
 <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"</pre>
integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
crossorigin="anonymous"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js"</pre>
integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dlHNDz
0W1" crossorigin="anonymous"></script>
 <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"</p>
integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzlxFDsf4x0xIM+B07jRM"
crossorigin="anonymous"></script>
 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"></script>
 k rel="stylesheet"
href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/css/bootstrap.min.css">
 <script src="https://cdn.jsdelivr.net/npm/jquery@3.6.0/dist/jquery.slim.min.js"></script>
 <script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.1/dist/umd/popper.min.js"></script>
 <script src="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/js/bootstrap.bundle.min.js"></script>
```

</head>

```
<style>
  body{
  background-image: url('../static/images/1.png');
  background-repeat: no-repeat;
  background-size: cover;
</style>
<script>
 function preview() {
  frame.src=URL.createObjectURL(event.target.files[0]);
}
  $(document).ready(function() {
     $('#clear_button').on('click', function() {
        $('#image').val(");
        $('#frame').attr('src',"");
      });
    });
</script>
<body>
  <div class="container p-3 my-3 text-dark" id="inst">
       This application will recognise hand written digits in pictures and print the result. The
model used here is Convolutional Neural Networks.
       Instructions:
        <0|>
         Choose your file that is image.
          Press the predict button
          The digit will be printed on the next screen!!
        </div>
    <section id="content">
```

```
<div class="leftside">
       <form action="./predict" method="POST" enctype="multipart/form-data">
       <a href="label"><label</a>> Upload Image File: <a href="label"></abel></a>
       <input id="image" type="file" name="image" accept="image/png, image/jpeg"
onchange="preview()"><br><br>
        <img id="frame" width="100px" height="100px"/>
        <div class="buttons div">
          <button type="submit" class="btn btn-light" id="bt1">Predict</button>
          <button type="button" class="btn btn-light" id="bt1">&nbsp Clear &nbsp</button>
        </div>
       </form>
       </div>
   </section>
  </body>
</html>
The "style.css" file contains the code for styling the index page and the predict page.
"style.css" code:
#clear_button{
  margin-left: 15px;
  font-weight: bold;
  color: rgb(0, 174, 255);
 }
 #inst{
  color: rgb(172, 167, 167);
  background-color:rgb(250, 214, 250);
  font-family: URW Chancery L, cursive;
  font-weight: bold;
 }
 #confidence{
  font-family: 'Josefin Sans', sans-serif;
  margin-top: 7.5%;
 }
```

```
#content{
 color: rgb(15, 15, 15);
 margin: 0 auto;
 padding: 2% 15%;
 padding-bottom: 0;
 font-family: URW Chancery L, cursive;
}
.welcome{
  text-align: center;
  position: relative;
  color: rgb(253, 253, 253);
  background-color: skyblue;
  padding-top: 1%;
  padding-bottom: 1%;
  font-weight: bold;
  font-family: 'Bookman', 'URW Bookman L', serif;
}
#team_id{
  text-align: right;
  font-size: 25px;
  padding-right: 3%;
}
#predict_button{
 margin-right: 15px;
 color: rgb(0, 255, 72);
 font-weight: bold;
}
#prediction_heading{
 font-family: 'Josefin Sans', sans-serif;
 margin-top: 7.5%;
}
#result{
```

```
font-size: 5rem;
}
#title{
 padding: 1.5% 15%;
 margin: 0 auto;
 text-align: center;
}
.btn {
  font-size: 15px;
  padding: 10px;
  /* -webkit-appearance: none; */
  background: rgb(250, 214, 250);
  border: 1px solid #888;
  margin-top: 20px;
  margin-bottom: 20px;
}
.buttons_div{
 margin-bottom: 30px;
 margin-right: 80px;
}
#bt1{
 background-color: rgb(255, 210, 10);
}
#bt1:hover{
 background-color: white;
}
.heading{
 font-family: "American Typewriter", serif;
 font-weight: 700;
 font-size: 2rem;
 display: inline;
}
.leftside{
```

```
text-align: center;
  margin: 0 auto;
  margin-top: 2%;
  /* padding-left: 10%; */
 }
 #frame{
  margin-right: 10%;
 }
 .predicted_answer{
  text-align: center;
  margin: 0 auto;
  padding: 3% 5%;
  padding-top: 0;
  /* padding-left: 10%; */
 }
 h1{
  text-align: center;
  color:black;
  padding: 100px 50px 65px 100px;
}
 @media (min-width: 720px) {
  .leftside{
   padding-left: 10%;
  }
 }
```

The app.py contains the backend code and also integrates front end with backend.

"app.py" code:

```
import numpy as np
import os
from PIL import Image
from flask import Flask, request, render_template, url_for
from werkzeug.utils import secure_filename, redirect
#from gevent.pywsgi import WSGIServer
```

```
from keras.models import load model
from keras preprocessing import image
from flask import send_from_directory
UPLOAD FOLDER = r"C:\Users\Bharathi
Prasad\Downloads\IBM--5\IBM-Project-16835-1659623726-main\Final Deliverables\Code\data"
app = Flask(__name__)
app.config['UPLOAD FOLDER'] = UPLOAD FOLDER
model = load model("./models/mnistCNN.h5")
@app.route('/')
def index():
  return render_template('index.html')
@app.route('/predict/', methods=['GET','POST'])
def upload():
  if request.method == "POST":
    f = request.files["image"]
    filepath = secure filename(f.filename)
    f.save(os.path.join(app.config['UPLOAD_FOLDER'], filepath))
    upload_img = os.path.join(UPLOAD_FOLDER, filepath)
    img = Image.open(upload_img).convert("L") # convert image to monochrome
    img = img.resize((28, 28)) # resizing of input image
    im2arr = np.array(img) # converting to image
    im2arr = im2arr.reshape(1, 28, 28, 1) # reshaping according to our requirement
    pred = model.predict(im2arr)
    num = np.argmax(pred, axis=1) # printing our Labels
    return render_template('predict.html', num=str(num[0]))
if __name__ == '__main__':
  app.run(debug=True, threaded=False)
```

app.debug = True
app.run()

8)TESTING:

8.1)Test Cases:

Test caseID	Feature	Componen	Test	Expected	Actual	Status
	Туре	t	Scenario	Result	Result	
HP_TC_001	UI	Home	Verify UI	The Home	Working	PASS
		Page	elements in	page must	as	
			the Home	be displayed	expected	
			Page	properly		
HP_TC_002	UI	Home	Check if	The Home	The UI is	FAIL
		Page	the UI	page must	not	
			elements	be displayed	displayed	
			are	properly in	properly	
			displayed	all sizes	in screen	
			properly in		size 2560	
			different		x 1801	
			screen		and 768 x	
			sizes		630	
HP_TC_003	Functiona	Home	Check if	The input	Working	PASS
	1	Page	user can	imageshoul	as	
			upload	d be	expected	
			their file	uploaded to		
				theapplicati		
				on		
				successfully		
HP_TC_004	Functiona	Home	Check if	The	User is	FAIL
	1	Page	user	application	able to	
		_	cannot	should not	uploadan	
			upload	allowuser to	y file	
			unsupporte	select a non		
			d files	image file		
HP_TC_005	Functiona	Home	Check if	The page	Working	PASS
	1	Page	the page	shouldredire	as	
		_	redirectsto	ct to	expected	
			the result	theresults	'	
			page once	page		

			theinputis			
DE TO 001		5	given	A II . I	NA	D4.00
BE_TC_001	Functiona	Back end	Check if all	All the	Working	PASS
	1		theroutes	routes	as	
			are working	should	expected	
			properly	properly		
14.70.001			01 1 16	work		D100
M_TC_001	Functiona	Model	Check if	The model	Working	PASS
	1		the model	shouldrescal	as	
			can handle	e the	expected	
			various	imageand		
			image	predict the		
14.70.555			sizes	results		D165
M_TC_002	Functiona	Model	Check if	The model	Working	PASS
	1		the model	shouldpredi	as	
			predicts	ct the	expected	
			thedigit	number		
M_TC_003	Functiona	Model	Check if	The model	The	FAIL
			the model	shouldpredi	model	
			can handle	ct the	fails to	
			complex	number in	identify	
			inputimage	the complex	the digit	
				image	since the	
					model is	
					not built	
					to handle	
					such data	
RP_TC_001	UI	Result	Verify UI	The Result	Working	PASS
		Page	elements in	page must	as	
			the Result	be displayed	expected	
			Page	properly		
RP_TC_002	UI	Result	Check if	The input	The size	FAIL
		Page	the input	image	of	
			image is	should be	theinput	
			displayed	displayed	image	
			properly	properly	exceeds	
					the	
					display	
					container	

RP_TC_003	UI	Result	Check if	The result	Working	PASS
		Page	the result is	shouldbe	as	
			displayed	displayed	expected	
			properly	properly		

8.2) User Acceptance Testing:

Purpose of Document:

The purpose of this document is to briefly explain the test coverage and open issues of the A Novel Method for Handwritten Digit Recognition System project at the time of the release to User Acceptance Testing (UAT).

Defect Analysis:

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	2	4	7	10	23
Duplicate	1	0	1	2	4
External	2	3	0	1	6
Fixed	6	2	4	20	32
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't Fix	0	5	2	1	8
Totals	11	14	16	35	76

Test Case Analysis:

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client Application	80	0	0	80
Security	2	0	0	2

9)RESULTS

9.1) Performance Metrics:

Model Performance Testing:

Project team shall fill the following information in model performance testing template

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: MAE - 0.005652044, MSE - 0.004229254, RMSE - 0.06503271,R2 score0.95292078663940 55	□ Open delicate metrica or metrica **Topic or metrica or or metrica

Classification Model: Confusion Matrix Accuracy Score0.9727 & Classification Report

10.Advantages & Disadvantages:

Advantages:

- Reduces manual work
- More accurate than average human
- Capable of handling a lot of data
- Can be used anywhere from any device

Disadvantages:

- Cannot handle complex data
- All the data must be in digital format
- Requires a high performance server for faster predictions
- Prone to occasional errors

11. Conclusion:

Using Neural Network system, back-propagation learning, to recognize handwritten digits was very successful. An image, which contained 100 samples of each number, was trained and tested. The accuracy rate of recognizing the number was 96%. This accuracy rate is high. It gave different training and testing results every day for each numeral. It will need to take a close look at the system and should look for improvements for the future. From the net-file, the system was able to produce an image-file. This part will also need more improvements. Apart from the above problems and parts that need improvements, the overall recognition system was successful.

12.Future Scope:

The task of handwritten digit recognition using a classifier has a great importance and use such as online hand writing recognition on computer tablet, recognize zipcodes on

mail for postal mail sorting, processing bank check amount, numeric enteries informs filledup by hand and so on.

13.Appendix:

Source Code:

Firstly the model has been trained and saved as "mnistCNN.h5" and is used in the "app.py" file where everything is integrated. Following are the codes of all the files for the project.

The model (saved as mnistCNN.h5):

```
Importing Libraries
In [1]: ▶ import numpy
             import tensorflow
             from tensorflow.keras.datasets import mnist
             from tensorflow.keras.models import Sequential
             from tensorflow.keras import layers
from tensorflow.keras.layers import Dense, Flatten
             from keras.layers import Convolution2D as Conv2D
             from keras.optimizers import Adam
from keras.utils import np_utils
         Loading Data
In [2]: M (X_train,y_train),(X_test,y_test)=mnist.load_data()
             Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
             11490434/11490434 [=====
                                                         ======] - 1s Ous/step
In [ ]: M print(X_train.shape)
             print(X_test.shape)
             (60000, 28, 28)
             (10000, 28, 28)
```

Analyzing the data

```
[3]: X_train[0]
                          0,
                                    0,
                                          0,
                                                          0,
                                                               0,
                                                                     0,
                                                                          0,
                                                                                     0,
Out[3]: array([[
                                               0,
                                                                                0,
                               0,
                                                     0,
                     0,
                          0,
                               0,
                                     0,
                                          0,
                                                0,
                                                     0,
                                                                0,
                                                                           0,
                                                                                0,
                                                                                      0,
                          0],
                     0,
                    0,
                          0,
                               0,
                                     0,
                                          0,
                                                0,
                                                     0,
                                                          0,
                                                                0,
                                                                     0,
                                                                                0,
                                                                                      0,
                 [
                     0,
                                          0,
                                               0,
                                                          0,
                                                               0,
                                                                     0,
                          0.
                               0,
                                    0,
                                                     0,
                                                                           0,
                                                                                0,
                                                                                      0,
                     0,
                          0],
                    0,
                          0,
                               0,
                                    0,
                                               0,
                                                          0,
                                                                0,
                                                                     0,
                                                                          0,
                                          0,
                                                                                0,
                 [
                                                     0,
                                                                                      0,
                     0,
                          0,
                               0,
                                    0,
                                          0,
                                                0,
                                                     0,
                                                          0,
                                                                0,
                                                                     0,
                                                                           0,
                                                                                0,
                                                                                      0,
                          0],
                     0,
                    0,
                          0,
                               0,
                                    0,
                                          0,
                                                0,
                                                     0,
                                                          0,
                                                                0,
                                                                     0,
                                                                           0,
                                                                                0,
                                                                                      0,
                     0,
                          0,
                               0,
                                    0,
                                          0,
                                               0,
                                                          0,
                                                                0,
                                                                     0,
                                                                          0,
                                                     0,
                                                                                0,
                                                                                      0,
                     0,
                          0],
                 [
                    0,
                          0,
                               0,
                                     0,
                                          0,
                                                0,
                                                     0,
                                                          0,
                                                                0,
                                                                     0,
                                                                           0,
                                                                                      0,
                     0,
                          0,
                               0,
                                     0,
                                          0,
                                                0,
                                                     0,
                                                          0,
                                                                0,
                                                                     0,
                                                                           0,
                                                                                0,
                                                                                      0,
                          0],
                    0,
                    0,
                          0,
                               0,
                                    0,
                                          0,
                                               0,
                                                     0,
                                                          0,
                                                                0,
                                                                     0,
                                                                           0,
                                                                                      3,
                              18, 126, 136, 175,
                                                    26, 166, 255, 247, 127,
                   18,
                         18,
                                                                                      0,
                         0],
                    0,
                                         0,
                                               0,
                    0,
                          0,
                               0,
                                    0,
                                                    0,
                                                          0, 30, 36, 94, 154, 170,
                  253, 253, 253, 253, 253, 225, 172, 253, 242, 195,
                                                                        64,
                          0],
                    0,
                                               0,
                    0,
                          0,
                               0,
                                                    0, 49, 238, 253, 253, 253, 253,
                                    0,
                                         0,
                  253, 253, 253, 253, 251,
                                              93,
                                                    82, 82, 56, 39,
                                                                          0,
                    0,
                          0],
                 [ 0,
                          0,
                               0,
                                    0,
                                          0,
                                                0,
                                                     0,
                                                         18, 219, 253, 253, 253, 253,
                  253, 198, 182, 247, 241,
                                                          0,
                                               0,
                                                     0,
                                                               0,
                                                                     0,
                                                                          0,
                    0,
                          0],
                         0,
                                    0,
                                          0,
                                               0,
                                                     0,
                                                          0,
                    0,
                                                               80, 156, 107, 253, 253,
                  205,
                        11,
                               0, 43, 154,
                                               0,
                                                     0,
                                                                          0,
```

```
0, 0jj, dtype=uint8)
```

```
In [6]: M X_train = X_train.reshape(60000,28,28,1).astype('float32')
X_test = X_test.reshape(10000,28,28,1).astype('float32')
```

One-hot Encoding

#Reshaping the data

Model Building

Creating Model (Add CNN Layers)

```
In [9]: M model = Sequential()
    model.add(Conv2D(64,(3,3),input_shape=(28,28,1),activation='relu'))
    model.add(Conv2D(32,(3,3),activation='relu'))
    model.add(Flatten())
    model.add(Dense(num_of_classes,activation='softmax'))
```

Compiling the model

```
In [10]: M model.compile(loss='categorical_crossentropy',optimizer="Adam",metrics=['accuracy'])
```

Fitting the model

```
In [11]: M model.fit(X_train,y_train,validation_data=(X_test,y_test),epochs=5,batch_size=32)
        acy: 0.9652
        Epoch 2/5
        1875/1875 [===========] - 124s 66ms/step - loss: 0.0778 - accuracy: 0.9769 - val_loss: 0.0907 - val_accur
        acy: 0.9739
        acy: 0.9734
        Epoch 4/5
        1875/1875 [============] - 122s 65ms/step - loss: 0.0421 - accuracy: 0.9865 - val_loss: 0.1090 - val_accur
        acy: 0.9707
        Epoch 5/5
        1875/1875 [=
                  ================================ ] - 122s 65ms/step - loss: 0.0315 - accuracy: 0.9898 - val_loss: 0.1161 - val_accur
        acy: 0.9731
  Out[11]: <keras.callbacks.History at 0x7f34a4958790>
```

Observing the metrics

```
print("Metrics(Loss& Accuracy)")
              print(project_metrics)
              Metrics(Loss& Accuracy)
[0.11606404930353165, 0.9731000065803528]
In [27]: ▶ import sklearn.metrics as metrics
              import numpy as np
              import matplotlib.pyplot as plt
             y_predict = model.predict(X_test)
              mae = metrics.mean_absolute_error(y_test, y_predict)
              mse = metrics.mean_squared_error(y_test, y_predict)
rmse = np.sqrt(mse) # or mse**(0.5)
              r2 = metrics.r2_score(y_test,y_predict)
             print("Results of sklearn.metrics:")
print("MAE:", mae)
print("MSE:", mse)
print("RMSE:", rmse)
print("R-Squared:", r2)
              313/313 [======== - - 5s 17ms/step
              Results of sklearn.metrics:
              MAE: 0.005652044
              MSE: 0.004229254
              RMSE: 0.06503271
              R-Squared: 0.9529207866394055
```

```
Predicting the model
   print(prediction)
               1/1 [======] - 0s 66ms/step
               [[5.4520988e-12 1.0888041e-21 7.5880036e-13 1.2055289e-11 2.6268963e-19
                 3.1448650e-15 1.1666435e-19 1.0000000e+00 2.1508427e-11 2.9282635e-11]
                [4.4279619e-12 1.2889054e-12 1.0000000e+00 2.0362232e-17 5.6934279e-20
                 5.3493605e-19 4.8295710e-13 5.0981827e-21 1.0086084e-15 1.9516000e-19]
                [9.2632938e-08 9.9921167e-01 6.2528164e-07 4.8549702e-11 7.8550651e-04
                1.5237079e-07 6.6308399e-09 1.0095750e-09 1.9272488e-06 1.2933888e-12]
[1.0000000e+00 1.6884626e-16 2.7246841e-10 5.4617701e-15 1.6128288e-14
                 1.5063359e-10 5.7584715e-10 9.0131895e-14 7.9959858e-11 2.1980879e-08]]
   In [ ]: M metrics=model.evaluate(X_test,y_test,verbose=0)
              print("Metrics(Loss& Accuracy)")
print(metrics)
               Metrics(Loss& Accuracy)
               [0.09232578426599503, 0.9797999858856201]
   In [ ]: M prediction=model.predict(X_test[:4])
              print(prediction)
               1/1 [======] - Øs 48ms/step
               [[5.4520988e-12 1.0888041e-21 7.5880036e-13 1.2055289e-11 2.6268963e-19
                 3.1448650e-15 1.1666435e-19 1.0000000e+00 2.1508427e-11 2.9282635e-11]
                [4.4279619e-12 1.2889054e-12 1.0000000e+00 2.0362232e-17 5.6934279e-20
                 5.3493605e-19 4.8295710e-13 5.0981827e-21 1.0086084e-15 1.9516000e-19]
                [9.2632938e-08 9.9921167e-01 6.2528164e-07 4.8549702e-11 7.8550651e-04 1.5237079e-07 6.6308399e-09 1.0095750e-09 1.9272488e-06 1.2933888e-12]
                [1.000<u>0000e+00 1.6884626e-16 2.7246841e-10 5.4617701e-15 1.6128288e-14</u>
            print(prediction)
             1/1 [======] - 0s 48ms/step
             [[5.4520988e-12 1.0888041e-21 7.5880036e-13 1.2055289e-11 2.6268963e-19
               3.1448650e-15 1.1666435e-19 1.00000000e+00 2.1508427e-11 2.9282635e-11]
              [4.4279619e-12 1.2889054e-12 1.00000000e+00 2.0362232e-17 5.6934279e-20
               5.3493605e-19 4.8295710e-13 5.0981827e-21 1.0086084e-15 1.9516000e-19]
              [9.2632938e-08 9.9921167e-01 6.2528164e-07 4.8549702e-11 7.8550651e-04
               1.5237079e-07 6.6308399e-09 1.0095750e-09 1.9272488e-06 1.2933888e-12]
              [1.00000000e+00 1.6884626e-16 2.7246841e-10 5.4617701e-15 1.6128288e-14
               1.5063359e-10 5.7584715e-10 9.0131895e-14 7.9959858e-11 2.1980879e-08]]
In [ ]: ▶ import numpy as np
             print(np.argmax(prediction,axis=1))
             print(y_test[:4])
             [[0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
              [0. 0. 1. 0. 0. 0. 0. 0. 0. 0. ]
              [0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
              [1. 0. 0. 0. 0. 0. 0. 0. 0. 0. ]]
         Saving the model
In [ ]:  M model.save('models/mnistCNN.h5')
```

The "index.html" file renders the home page which gives the information about prediction and the 'predict' and 'clear' options.

"index.html" code:

<html>

<head>

<title>HDR</title>

```
<meta name="viewport" content="width=device-width">
 <link rel="stylesheet" href="../static/css/style.css">
 k href="https://fonts.googleapis.com/css2?family=Prompt:wght@600&display=swap"
rel="stylesheet">
 k href="https://fonts.googleapis.com/css2?family=Varela+Round&display=swap"
rel="stylesheet">
 k href="https://fonts.googleapis.com/css2?family=Source+Code+Pro:wght@500&display=swap"
rel="stylesheet">
 k
href="https://fonts.googleapis.com/css?family=Calistoga|Josefin+Sans:400,700|Pacifico&display=sw
ap" rel="stylesheet">
 k rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"
integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1
T" crossorigin="anonymous">
 k rel="stylesheet" type= "text/css" href= "{{ url_for('static',filename='css/style.css') }}">
 <script src="https://kit.fontawesome.com/b3aed9cb07.js" crossorigin="anonymous"></script>
 <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"</pre>
integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo"
crossorigin="anonymous"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/umd/popper.min.js"</pre>
integrity="sha384-UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1clHTMGa3JDZwrnQq4sF86dlHNDz
0W1" crossorigin="anonymous"></script>
 <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"</p>
integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6VrjIEaFf/nJGzlxFDsf4x0xIM+B07jRM"
crossorigin="anonymous"></script>
 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"></script>
 k rel="stylesheet"
href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/css/bootstrap.min.css">
 <script src="https://cdn.jsdelivr.net/npm/jquery@3.6.0/dist/jquery.slim.min.js"></script>
 <script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.1/dist/umd/popper.min.js"></script>
 <script src="https://cdn.jsdelivr.net/npm/bootstrap@4.6.1/dist/js/bootstrap.bundle.min.js"></script>
```

</head>

```
<style>
  body{
  background-image: url('../static/images/1.png');
  background-repeat: no-repeat;
  background-size: cover;
</style>
<script>
 function preview() {
  frame.src=URL.createObjectURL(event.target.files[0]);
}
  $(document).ready(function() {
     $('#clear_button').on('click', function() {
        $('#image').val(");
        $('#frame').attr('src',"");
      });
    });
</script>
<body>
  <div class="container p-3 my-3 text-dark" id="inst">
       This application will recognise hand written digits in pictures and print the result. The
model used here is Convolutional Neural Networks.
       Instructions:
        <0|>
         Choose your file that is image.
          Press the predict button
          The digit will be printed on the next screen!!
        </div>
    <section id="content">
```

```
<div class="leftside">
       <form action="./predict" method="POST" enctype="multipart/form-data">
       <a href="label"><label</a>> Upload Image File: <a href="label"></abel></a>
       <input id="image" type="file" name="image" accept="image/png, image/jpeg"
onchange="preview()"><br><br>
         <img id="frame" width="100px" height="100px"/>
         <div class="buttons div">
          <button type="submit" class="btn btn-light" id="bt1">Predict</button>
          <button type="button" class="btn btn-light" id="bt1">&nbsp Clear &nbsp</button>
         </div>
       </form>
       </div>
    </section>
  </body>
</html>
The "style.css" file contains the code for styling the index page and the predict page.
"style.css" code:
#clear_button{
  margin-left: 15px;
  font-weight: bold;
  color: rgb(0, 174, 255);
 }
 #inst{
  color: rgb(172, 167, 167);
  background-color:rgb(250, 214, 250);
  font-family: URW Chancery L, cursive;
  font-weight: bold;
 }
 #confidence{
  font-family: 'Josefin Sans', sans-serif;
  margin-top: 7.5%;
 }
```

```
#content{
 color: rgb(15, 15, 15);
 margin: 0 auto;
 padding: 2% 15%;
 padding-bottom: 0;
 font-family: URW Chancery L, cursive;
}
.welcome{
  text-align: center;
  position: relative;
  color: rgb(253, 253, 253);
  background-color: skyblue;
  padding-top: 1%;
  padding-bottom: 1%;
  font-weight: bold;
  font-family: 'Bookman', 'URW Bookman L', serif;
}
#team_id{
  text-align: right;
  font-size: 25px;
  padding-right: 3%;
}
#predict button{
 margin-right: 15px;
 color: rgb(0, 255, 72);
 font-weight: bold;
}
#prediction_heading{
 font-family: 'Josefin Sans', sans-serif;
 margin-top: 7.5%;
}
```

```
#result{
 font-size: 5rem;
}
#title{
 padding: 1.5% 15%;
 margin: 0 auto;
 text-align: center;
}
.btn {
  font-size: 15px;
  padding: 10px;
  /* -webkit-appearance: none; */
  background: rgb(250, 214, 250);
  border: 1px solid #888;
  margin-top: 20px;
  margin-bottom: 20px;
}
.buttons_div{
 margin-bottom: 30px;
 margin-right: 80px;
}
#bt1{
 background-color: rgb(255, 210, 10);
}
#bt1:hover{
 background-color: white;
}
.heading{
 font-family: "American Typewriter", serif;
 font-weight: 700;
 font-size: 2rem;
 display: inline;
}
```

```
.leftside{
  text-align: center;
  margin: 0 auto;
  margin-top: 2%;
  /* padding-left: 10%; */
 #frame{
  margin-right: 10%;
}
 .predicted_answer{
  text-align: center;
  margin: 0 auto;
  padding: 3% 5%;
  padding-top: 0;
  /* padding-left: 10%; */
 }
 h1{
  text-align: center;
  color:black;
  padding: 100px 50px 65px 100px;
}
 @media (min-width: 720px) {
  .leftside{
   padding-left: 10%;
  }
}
The app.py contains the backend code and also integrates front end with backend.
"app.py" code:
import numpy as np
import os
from PIL import Image
from flask import Flask, request, render_template, url_for
from werkzeug.utils import secure_filename, redirect
```

```
#from gevent.pywsgi import WSGIServer
from keras.models import load model
from keras.preprocessing import image
from flask import send from directory
UPLOAD_FOLDER = r"C:\Users\Bharathi
Prasad\Downloads\IBM--5\IBM-Project-16835-1659623726-main\Final Deliverables\Code\data"
app = Flask( name )
app.config['UPLOAD FOLDER'] = UPLOAD FOLDER
model = load model("./models/mnistCNN.h5")
@app.route('/')
def index():
  return render_template('index.html')
@app.route('/predict/', methods=['GET','POST'])
def upload():
  if request.method == "POST":
    f = request.files["image"]
    filepath = secure filename(f.filename)
    f.save(os.path.join(app.config['UPLOAD_FOLDER'], filepath))
    upload_img = os.path.join(UPLOAD_FOLDER, filepath)
    img = Image.open(upload_img).convert("L") # convert image to monochrome
    img = img.resize((28, 28)) # resizing of input image
    im2arr = np.array(img) # converting to image
    im2arr = im2arr.reshape(1, 28, 28, 1) # reshaping according to our requirement
    pred = model.predict(im2arr)
    num = np.argmax(pred, axis=1) # printing our Labels
    return render template('predict.html', num=str(num[0]))
if __name__ == '__main__':
```

```
app.run(debug=True, threaded=False)
app.debug = True
app.run()
```

Github link: IBM-EPBL/IBM-Project-874-1658327661: A Novel Method for Handwritten Digit Recognition System (github.com)

DEMOLINK:

https://drive.google.com/file/d/1PRz01XYyClVGsKUxr2u4Fbbex_Gm1gLw/view?usp=share_lin k

https://drive.google.com/file/d/1PRz01XYyClVGsKUxr2u4Fbbex_Gm1gLw/view?usp=share_lin k