Fuerzas intermoleculares Química IS-2018

Fuerzas ion-dipolo

Fuerzas de atracción entre un ión y una molécula polar en la que podemos ver un dipolo. (µ≠0)

Fuerzas intermoleculares

Fuerzas de dispersión

Fuerzas de atracción que se generan como resultado de los **dipolos temporales inducidos** en átomos o moléculas

Interacción ión-dipolo inducido

Interacción dipolo-dipolo inducido

Fuerzas intermoleculares

Fuerzas de dispersión London

Polarización es la facilidad con que la distribución del electrón en el átomo o molécula puede distorsionarse

La polarización aumenta con:

- mayor número de electrones
- más difusa la nube del electrón

Las fuerzas de dispersión aumentan con la masa molar

Puntos de fusión de compuestos no polares similares

Compound	Melting Point (°C)		
CH ₄ CF ₄ CCl ₄ CBr ₄	-18 <mark>2</mark> .5		
CF ₄	-15 <mark>0</mark> .0		
C <mark>C</mark> l ₄	- 23.0		
CBr₄	9 <mark>0</mark> .0		
CI ₄	171.0		
▼	• • • • • • • • • • • • • • • • • • •		

¿Qué tipo de fuerzas intermoleculares existe entre cada una de las moléculas siguientes?

HBr

HBr es una molécula polar: fuerzas dipolo-dipolo. Hay también fuerzas de dispersión entre las moléculas HBr.

CH₄

CH₄ es no polar: fuerzas de dispersión.

SO₂ es una molécula polar: fuerzas dipolo-dipolo. Hay también fuerzas de dispersión entre las moléculas SO₂.

Fuerzas intermoleculares

Enlace de hidrógeno

El <u>enlace de hidrógeno</u> es una interacción especial dipolo-dipolo entre ellos y el átomo de hidrógeno en un enlace polar N-H, O-H, o F-H y un átomo electronegativo de O, N, o F.

0

$$A - H \cdots A$$

A y B son N, O, o F

¿Por qué el enlace de hidrógeno se considera una interacción "especial" dipolo-dipolo?

Tipo de interacción		Principales factores responsables		Energía Típica*		Dependencia de la	
		de la ei	nergía de interacción		en i	kJ/mol	energía con la distancia
Ion-ion Carga de los iones		le los iones		250		1/ <i>d</i>	
Enlace de hidrógeno (t		(tipo especial de interacción dipolo-dipolo)		20			
Ion-dipolo		Carga del ion; momento dipolar		15		$1/d^2$	
Dipolo–dipolo		Momentos dipolares			2 a 0,3		$1/d^3$ a $1/d^6$
Dispersión o London		Polariz	abilidades		2		1/d ⁶
•		Momer	nto dipolar; polarizabilidad		0,05		
* A una distan	cia de 5,00 Å						
Tabla 7.3. Coi	ntribuciones apr	oximado	as a la energía total de inte	racción en	tre mol	éculas en kJ/s	mol.
	Momento dip	oolar	Energía permanente	Energi	ia	Energía	Entalpía molar de
Molécula	permanente	(D)	dipolo-dipolo	de Lona	lon	total	vaporización (kJ/mol)
Ar	0		0	8,5		8,5	6,7
CO	0,1		0	8,7		8,7	8,0
HC1	1,03		3,3	17,8		21	16,2
NH_3	1,5		13*	16,3		29	27,4
H_2O	1,8		36*	10,9		47	40,7
* Enlace de hi	drógeno						

Propiedades de los Líquidos

Propiedades de los líquidos

Viscosidad –Resistencia a fluir

- Tuerzas intermoleculares Viscosidad Temperatura;
- Fuerzas Intermoleculares ↓ Viscosidad

Cohesión es la atracción intermolecular entre moléculas iguales

Adhesión es la atracción entre moléculas diferentes

Menisco cóncavo del agua

Chemistry; The Science in Context; by Thomas R Gilbert, Rein V. Kirss, and Geoffrey Davies, Norton Publisher, 2004, p 458

Tensión

Superficial

Consecuencias de la Tensión Superficial

Chemistry; The Science in Context; by Thomas R Gilbert, Rein V. Kirss, and Geoffrey Davies, Norton Publisher, 2004, p 457

Consecuencias de la Tensión Superficial

Chemistry; The Science in Context; by Thomas R Gilbert, Rein V. Kirss, and Geoffrey Davies, Norton Publisher, 2004, p 458

Acción Capilar; Subida de un líquido por un tubo de vidrio de muy pequeño diámetro

Chemistry; The Science in Context; by Thomas R Gilbert, Rein V. Kirss, and Geoffrey Davies, Norton Publisher, 2004, p 459 Un *sólido cristalino* posee un ordenamiento estricto y regular. En un sólido cristalino, los átomos, moléculas o iones ocupan posiciones específicas (predecibles).

Un *sólido amorfo* no posee un ordenamiento bien definido ni un orden molecular repetido.

Una *celda unitaria* es la unidad estructural esencial repetida de un sólido cristalino.

En los puntos reticulares:

- Átomos
- Moléculas
- lones

Celda unitaria Celda unitaria en 3 dimensiones

Tipos de sólidos

Comparación entre las propiedades de los distintos tipos de sólidos

Tipo de sólido	Iónico	Metálico	Covalente 3D	Molecular
Unidad estructural	Ion	Atomo	Atomo	Molécula
Enlace entre unidades	Enlace iónico	Enlace metálico	Enlace covalente	Fuerzas de Van de
Dureza	Duro	Amplia gama	Duro	Blando
Punto de fusión	Alto (600 a 3000 °C)	Amplia gama (–39 a 3400 °C)	Alto (1200 a 4000 °C)	Bajo (-272 a 400 °C)
Conductividad	Aislante	Conductor	Aislante o semicond.	Aislante
Generalmente se presenta en	Compuestos de los metales y no metales	Metales de la mitad izquierda	No metales del centro	No metales de la derecha
Ejemplos	KI, Na ₂ CO ₃ , LiH	Na, Zn, bronce	Diamante, Si, SiO ₂	O_2, C_6H_6, H_2O

Un *sólido amorfo* no posee una distribución regular ni orden molecular de gran alcance.

Un *vidrio* es un producto de fusión de materiales inorgánicos ópticamente transparente que se ha enfriado a un estado *rígido sin cristalizar*.

11.7

Problemas de FIM

1-a)Las siguientes moléculas: AlCl₂I; O₃; PH₃;CS₂; PF₃Cl₂; ¿son todas polares- μ=0 (NP) ó μ≠0 (P)?. Comente sobre los **momentos de enlace** en estas moléculas b)Establezca según la TRPEV si los compuestos mencionados son muy solubles en H₂O ó en CS₂, justificando su respuesta.

2-a)Por que' en NH₄⁺ y CH₄ coincide la geometría electrónica y molecular? Es igual a la de NH₃? b) Por qué BF₃ y H₃O⁺ no presentan la misma geometría electrónica o molecular, siendo especies con 4 átomos?

Aumentando las Fuerzas Intermoleculares en los líquidos veo.....

- Mayor punto de Ebullición y
- de Fusión
- Mayor Tensión Superficial
- Mayor Viscosidad
- Presión de vapor de equilibrio más baja
- a similares temperaturas Qué es esto?????
- Qué vence las fuerzas intermoleculares?
- El aumento de la temperatura

...los cambios de estado..

:: Estados de la materia

Cambios de fase

E₁ Kinetic energy E

 $T_2 > T_1$

Cambios de fases

$$H_2O(s) \longrightarrow H_2O(g)$$

Calor molar de sublimación es la energía necesaria para sublimar un mol de un sólido.

Gas Sublimación Temperatura Líquido Sólido

El *presión de vapor de equilibrio* es la presión de vapor medida cuando hay un equilibrio dinámico entre la condensación y la evaporación.

$$H_2O(h) \implies H_2O(g)$$

Recordando...

Equilibrio dinámico

Velocidad de condensación = Velocidad de evaporación

Tiempo

Tiene que estar tapado para que el equilibrio se alcance

ABIERTO

CERRADO

Llego al Equilibrio??

NO

SI

El agua

Se EVAPORA

NO se evapora

IMPORTANTE

Para VAPORIZAR un líquido tenemos que dar CALOR

*Vamos a indicar calor con Q

Aumentamos la velocidad de las moléculas

Al dar calor

*Se pueden escribir ecuaciones que muestren cambios de estado

*Mire bien los ejes de los gráficos SIEMPRE. Analice qué significa el eje y y el eje x

Curva de calentamiento

Tiempo

Calor molar de vaporización es la energía requerida para evaporar 1 mol de un líquido (Q).

Curvas de P vapor

Presión de vapor versus la temperatura

El *punto de ebullición* es la temperatura a la cual la presión de vapor de un líquido es igual a la presión externa.

El *punto de ebullición <u>normal</u>* es la temperatura a la cual un líquido hierve cuando la presión externa es 1 atm.

El punto de ebullición cuando la P ext=1 atm es único (normal).

Calor de vaporización para ciertos líquidos a t. amb

Veamos P y NP		Teb °C	Calor de vap
y PM	Argon (Ar) NP-40 g/mol	-186	6.3
	Benzene (C ₆ H ₆) NP-78 g/mol	80.1	31.0
	Ethanol (C ₂ H ₅ OH) P-46 g/mol	78.3	39.3
74 g/mol	Diethyl ether ($C_2H_5OC_2H_5$) NP	34.6	26.0
	Mercury (Hg)	357	59.0
	Methane (CH ₄) NP-16g/mol	-164	9.2
	Water (H₂O) P-18 g/mol	100	40.79

^{*} Measured at 1 atm.

VAPOR Y GAS NO ES LO MISMO!!

Condiciones normales son 0C (273 K) y 1 atmósfera

Si Hablamos de Condiciones Standard son 25 C (298 K) y 1 atm.

Si un compuesto se encuentra gaseoso en ciertas condiciones cuando a esas condiciones tiene otro estado de agregación se llama vapor.

Decimos que tenemos VAPOR DE AGUA

(y no agua GAS) a 25 C y 1 atm porque a 25 C y 1 atm H₂O es líquida. La Teb normal es 100 C.

La *temperatura crítica* (*T*_c) es un
temperatura sobre la
cual el gas no se
puede licuar, no
importa la magnitud
de la presión
aplicada.

La *presión crítica*(*P*_c) es la mínima presión que se debe aplicar para licuar a la temperatura crítica.

Substance	T _c (°C)	$P_{\rm c}$ (atm)
Ammonia (NH₃)	132.4	111.5
Argon (Ar)	-186	6.3
Benzene (C ₆ H ₆)	288.9	47.9
Carbon dioxide (CO ₂)	31.0	73.0
Ethanol (C ₂ H ₅ OH)	243	63.0
Diethyl ether (C ₂ H ₅ OC ₂ H ₅)	192.6	35.6
Mercury (Hg)	1462	1036
Methane (CH ₄)	-83.0	45.6
Molecular hydrogen (H ₂)	-239.9	12.8
Molecular nitrogen (N ₂)	-147.1	33.5
Molecular oxygen (O ₂)	-118.8	49.7
Sulfur hexafluoride (SF ₆)	45.5	37.6
Water (H ₂ O)	374.4	219.5

Cambios de fase

$$H_2O$$
 (s) $\longrightarrow H_2O$ (1)

El *punto de fusión* de un sólido o el *punto de congelación* de un líquido es la temperatura a la cual las fases sólida y líquida coexisten en equilibrio.

Gas Temperatura Líquido Fusión Sólido

11.8

Calor molar de fusión es la energía necesaria para fundir un mol de un sólido.

kJ/mol

kCal/mol

Ejemplo

1 mol de hielo

Punto de fusión C

Calor de fusión

Argon (Ar)	-190	1.3
Benzene (C ₆ H ₆)	5.5	10.9
Ethanol (C ₂ H ₅ OH)	-117.3	7.61
Diethyl ether $(C_2H_5OC_2H_5)$	-116.2	6.90
Mercury (Hg)	-39	23.4
Methane (CH₄)	-183	0.84
Water (H ₂ O)	0	6.01

^{*} Measured at 1 atm.

Al comparar 2 compuestos A y B

A MAYORES Fuerzas Intermoleculares

MENOR Presión de vapor a =T

Si A presenta menor presión de vapor que B a =T

Entonces A tiene MAYOR Punto de ebullición normal

MAYORES FUERZAS INTERMOLECULARES

MAYOR Temperatura de Ebullición normal

MAYOR Temperatura de Fusión normal

MENOR Presión de Vapor de Equilibrio L-V

Diagrama de FASES

Gráfico donde aparecen las 3 fases de un compuesto

Presión (eje y) versus Temperatura (eje x)

Tenemos varias PARTES del diagrama, existen ZONAS delimitadas por curvas ó rectas y PUNTOS importantes

Punto triple- coexisten las 3 Fases- E

Punto crítico- Combinación de T y P por encima de la cual no puedo licuar un gas-C

Curva de Equilibrio Líquido-Vapor- 2 Fases-EC

Curva de Equilibrio Sólido-Vapor-2 Fases-OE

Curva de Equilibrio Sólido-Líquido-2 Fases-EI

Zonas de una sola FASE

Diagrama de fases del Dióxido de Carbono

