COURSE SYLLABUS

Course Number: CS123

Title: Introduction to Software Engineering

Department/Program: DISCS School: Science and Engineering

Semester: First Semester School Year: 2015-2016

Instructor/s: Marlene M. De Leon, Ph.D.

Guillermo Paolo M. Agloro, M.S.

A. COURSE DESCRIPTION

This course provides an overview of the software engineering process. Topics include requirement analysis, analysis modeling, software design fundamentals, software testing, quality assurance, software maintenance, and object-oriented software engineering.

B. COURSE OUTCOMES

By the end of this course, students should be able to:

- Compare various System Development Life Cycle approach
- Plan and estimate time and cost of a software development project
- Construct UML diagrams
- Apply an object oriented methodology and agile process to analyze and solve a real-world problem
- Write a well-designed, coherent, requirements and design specification
- Develop actual software with accompanying documents

C. COURSE OUTLINE / TIMEFRAME

WEEK/ TOPIC	LEARNING OBJECTIVES	ACTIVITIES	STUDENT OUTPUT
Weeks 1-2:	Identify characteristics of software.	Lecture & Discussion	Selection of Team members
Introduction to			
Software	Describe software quality.		Short Project Proposal
Engineering			
	Explain why software engineering is important.		Recitation
	Discuss the most probable reasons for software development success and failure.		
	To distinguish between classical and modern approaches in software engineering.		
Weeks 2-3:	Explain various types of team	Lecture & Discussion	Selection of Team
Teams Management	organizations.		Organization & Member roles
		Quiz	
	Select appropriate team organization for the project.		Recitation
			Answers to quiz
Weeks 4-5:	Explain the main tasks undertaken by	Lecture & Discussion	Estimate of budget & schedule
Software Planning &	project managers		
Project Management		Lab Practice	Risk list
	Describe software project management		
	and to identify its distinctive characteristics	Quiz	Answers to quiz
	Discuss project planning and the planning		

	process		
	process		
	Explain how graphical schedule representations are used by project management		
	Plan the software process		
	Estimate duration and cost		
	Discuss the notion of risks and the risk management process		
Week 5-6: Software Process &	Discuss the characteristics, strengths & weaknesses Software Life Cycle (SLC):	Lecture & Discussion	Choice SLC to be used
Life Cycle	Code-and-fix WaterfallRapid prototyping	Lab Practice: User stories	User Stories
	Iterative & Incremental Agile and XP	Lab Practice: Agile Estimation	Working Code of the first iteration (GUI prototype)
	Open-source Synchronize-and-stabilize		
Week 7-8:	Spiral Discuss important principles in	Lecture & Discussion	Recitation
Requirement	requirement engineering		W. I. I. C.I. I
Engineering	Identify requirement process steps		Working code of the second iteration (input validation, automatic testing)
	Develop use case diagram		Use cases & use case diagram
Weeks 8-9: UML Diagrams	Discuss principles and reasons for using UML diagrams	Lecture & Discussion	Recitation
	To develop UML diagram Class diagram Interaction diagram State chart diagram Activity diagrams Packages diagram Component diagram Deployment diagram Review UML diagrams	Quiz	Set of UML diagrams (minimum of class diagram, and interaction or activity diagram) Answers to quiz
	Relate UML and iteration & incremental		
***	SLC		D. C. C.
Weeks 10-11: Software Analysis	Describe the importance need of specifications document	Lecture & Discussion	Recitation
	Apply structured systems analysis using	Midterm Exam	Specification Document.
	Data Flow Diagram (DFD) and Entity-relationship modeling (ERM)		Answers to the midterm exam
	Describe formal specifications using Finite state machines and Petri nets		
	Use Noun Extraction, CRC card and boundary extraction of classes for object-oriented analysis		
Weeks 11-12:	Distinguish module from object	Lecture & Discussion	Recitation
Software Design	Compare level of Cohesion and Coupling		Design Documents
	Discuss data encapsulation,		

Weeks 13-14:	Abstract data types, Information hiding, Object Inheritance, polymorphism, abstraction, and dynamic binding Distinguish Operation-oriented design, Data-oriented design and Object-oriented design Justify reasons for choice of	Lecture & Discussion	Recitation
Software Implementation	programming language Apply good programming practice for code reuse and coding standard	Quiz	Working code of the third iteration (object-oriented code, classes, interface) Answers to quiz
Weeks 14-15: Software Testing, Maintenance & Quality Assurance	Distinguish between Non-execution-based testing and Execution-based testing Describe Capability Maturity Models (CMM) Compare various testing methods Black-box unit-testing Glass-box unit-testing Code walkthroughs Clean room Integration testing Product testing Acceptance testing	Lecture & Discussion Lab Practice	Recitation Working code of the fourth iteration (abstract classes, refactoring, error free code, developer guide documentation)
Weeks 15-17: Reusability & Portability	Discuss the concept of reuse during design and implementation and maintenance Describe the need and techniques for achieving portability Discuss the aspects and requirements of post-delivery maintenance including Software Versions, Configuration Control, Management of maintenance, and Reverse engineering	Lecture & Discussion Quiz	Recitation Working code of the fifth iteration (executable, auto deployment, error free code, user guide documentation)
Week 18: Final Exam	Describe important concepts covered during the second half of the semester	Final Exam	Final Exam

D. REQUIRED READING

Schach. *Object Oriented and Classical Software Engineering (8th ed)*. McGraw Hill, 2010. Saleh. *Software Engineering*, Cengage Learning Asia, 2010.

E. SUGGESTED READINGS

Vliet, Software Engineering: Principles and Practice 3rd ed, 2008 Sommerville, Software Engineering 10th Edition, 2015 Booch, Rumbauch & Jacobson, The Unified Modeling Language user guide, Addison Wesley, 1999 Laplante, What every engineer should know about software engineering, CRC Press, 2007 Martin, Clean Code: A Handbook of Agile Software Craftsmanship, Pearson Education, Inc., 2009

F. COURSE REQUIREMENTS

Project	40%
Final Exam	20%
Midterm Exam	20%
Quizzes / HW / Exercises	10%
Recitation & Participation	10%

Project

- The main objective of this exercise is to allow the students to simulate a real world project from the definition of requirement, analysis to design specification stage, implementation with appropriate documentation using Use Case, Class diagram and other UML diagrams.
- Select a creative project that will be assigned in the class.
- Select any combination of life cycle model (with reasoning) with at least four iterations of implementation (see student's output in course outline and timeframe above)
- Students are free to use any programming language for the implementation.
- Students are allowed to group themselves in teams of three (3) to five (5). Groupings to be submitted are considered permanent.
- Evidence of collaboration must also be submitted together with PDF source of literatures and Certificate of Authorships.
- Submission due:
 - o Deliverable of milestone (throughout the course)
 - o 5 minutes presentation of milestone (throughout the course)
 - o Final presentation one week before the Final Exam
 - o Final Report (must be submitted at the Final exam)
- Final report should contain
 - o life cycle model to be used & reasoning
 - o requirement: Use Case
 - o analysis: UML
 - o design: detail specification (UML)
 - o Testing (plan, actual and results)
 - o implementation: working code, testing code for each iteration
 - o final documentation
 - o break down cost & time estimation vs actual
 - o Role and contribution of each team member
 - o lessons learned

G. GRADING SYSTEM

93-100	A	Excellent
87-92	B+	Very Good
81-86	В	Good
75-80	C+	Satisfactory
69-74	C	Sufficient
60-68	D	Passing
<60	F	Failure

Notes:

- Rounding off of grades is at the discretion of the instructor. Rounding off of grades is not automatic (even if the grade is x.9999999.).
- No exemptions will be given for the final exam.

H. CLASSROOM POLICIES

- 1. Attendance will be checked by the class beadle every meeting. If you exceed your allowable cuts for the semester, you may be given a W grade.
- 2. In case you cut, it will be your responsibility to know the material covered for the day. The instructor also reserves the right to give unannounced quizzes or graded lab exercises at any time.

- 3. No make-up tests will be given unless you have a very valid reason, and proof supporting it
- 4. Playing games is strictly prohibited during class hours. Web browsing and reading email are also prohibited, unless done in connection with the current lecture or lab topic *and* allowed by the teacher.
- 5. Cheating will not be tolerated. Cheating in any requirement will result in a *minimum* penalty of having a grade of 0 for that requirement, and will be reported to the appropriate authorities, as provided for by the Student Handbook. Duplicate work will merit penalties for *both* the student who copied and the student from whom the work was copied.
- 6. Students are expected to comply with the DISCS Academic Integrity Policy. With each submission, students must include a certification that their work is substantially their own and not copied from others. In addition, students must clearly acknowledge and specify any help from outside sources such as other classmates, the Web, books, etc., that they received while doing their projects. Failure to acknowledge such may be interpreted as intellectual dishonesty. Consult the course website for details on these policies.
- 7. Additional policies, with due consultation with the students, may be implemented by the instructor to adapt to the class environment.

I. CONSULTATION HOURS

Marlene M. De Leon, Ph.D.

TTh 0800-1000 @ F208

I would appreciate an appointment is set in advance. You may contact me via the following:

Email: mmana@ateneo.edu Phone: 426-6001 loc 5660 Guillermo Paolo M. Agloro, M.S.

MWF 1600 - 1730 @F208

I would appreciate an appointment is set in advance. You may contact me via the following:

Email: <u>pagloro@ateneo.edu</u> Phone: 426-6001 loc 5660