Imagerie ultrasonore par inversion de formes d'onde

Alice DINSENMEYER

encadrée par Romain BROSSIER & Ludovic MOREAU Maîtres de conférences, ISTerre

12 juillet 2016

Contexte

Macrographie d'une soudure austénitique*

- méthodes par sommation cohérente de signaux
- Décomposition des matrices de covariance (DORT)

Macrographie d'une soudure austénitique*

Forte anisotropie

Comparaison d'un modèle (lancer de rayons) et d'une mesure **

- méthodes par sommation cohérente de signaux
- Décomposition des matrices de covariance (DORT)

- X requièrent une connaissance a priori de la vitesse
 - X sujettes aux artefacts

Contexte

Macrographie d'une soudure austénitique*

Forte anisotropie

Comparaison d'un modèle (lancer de rayons) et d'une mesure **

- méthodes par sommation cohérente de signaux
- Décomposition des matrices de covariance (DORT)
- Résolution d'un problème d'optimisation

- x requièrent une connaissance a priori de la vitesse
- x sujettes aux artefacts
- ▶ optimisation topologique : Dominguez et al., Rodriguez et al.
- ✓ reconstruction d'un ensemble de paramètres : FWI

La FWI

- ► Full waveform inversion : utilise la totalité du champ d'onde (toutes les arrivées et les amplitudes)
- ► Développée pour la géophysique
- ► Méthode d'optimisation locale

La FWI

► Fonction de coût : $C(m) = \frac{1}{2}||\boldsymbol{d}_{obs} - \boldsymbol{d}_{cal}(\boldsymbol{m})||^2$

Inversions en milieu isotrope

lacktriangle Perturbation du modèle : $oldsymbol{\Delta} m = -(C'')^{-1}C'$

- ► Fonction de coût : $C(m) = \frac{1}{2}||\boldsymbol{d}_{obs} \boldsymbol{d}_{cal}(m)||^2$
- lacktriangledown Perturbation du modèle : $oldsymbol{\Delta} m = -(C'')^{-1} \cline{C'}$

$$\frac{\partial C}{\partial m_i} = {}^t \tilde{\boldsymbol{d}}_{cal} \left(\frac{\partial \boldsymbol{A}}{\partial m_i} \right) \boldsymbol{A}^{-1} (\tilde{\boldsymbol{d}}_{obs} - \tilde{\boldsymbol{d}}_{cal}) \tag{1}$$

A: opérateur équation d'onde (élastique ou acoustique)

Références

Contexte

- ► Fonction de coût : $C(\mathbf{m}) = \frac{1}{2} ||\mathbf{d}_{obs} \mathbf{d}_{cal}(\mathbf{m})||^2$

$$\frac{\partial C}{\partial m_i} = {}^t \tilde{\boldsymbol{d}}_{cal} \left(\frac{\partial \boldsymbol{A}}{\partial m_i} \right) \underbrace{\boldsymbol{A}^{-1} (\tilde{\boldsymbol{d}}_{obs} - \tilde{\boldsymbol{d}}_{cal})}_{\text{résidus rétropopagés}}$$
(1)

A: opérateur équation d'onde (élastique ou acoustique)

Résolution de la FWI

Contexte

$$\begin{split} \frac{\partial C}{\partial m_i} &= \underbrace{\overset{t}{d}_{cal}}_{\text{champ incident}} \overset{t}{\left(\frac{\partial \boldsymbol{A}}{\partial m_i}\right)} \underbrace{\boldsymbol{\lambda}}_{\text{résidus rétropopagés}} \\ &\sim & \Re\left(e^{jk_0\boldsymbol{s}.\boldsymbol{x}}\right) &\sim & \Re\left(e^{jk_0\boldsymbol{r}.\boldsymbol{x}}\right) \end{split}$$

$\frac{\partial C}{\partial m_i} = \underbrace{\overset{t}{\tilde{d}_{cal}}}_{\text{champ incident}} \overset{t}{\left(\frac{\partial A}{\partial m_i}\right)}_{\text{r\'esidus r\'etropopag\'e}} \underbrace{\boldsymbol{\lambda}}_{\text{r\'esidus r\'etropopag\'e}}$

$$\sim \Re\left(e^{jk_0 \boldsymbol{s}.\boldsymbol{x}}\right) \sim \Re\left(e^{jk_0 \boldsymbol{r}.\boldsymbol{x}}\right)$$

► Résolution du gradient :

$$|\mathbf{k}| = |\mathbf{s} + \mathbf{r}| = \frac{\omega}{c} 2\cos\left(\frac{\theta}{2}\right)$$

élément source

Résolution de la FWI

$$rac{\partial C}{\partial m_i} = \underbrace{\check{m{d}}_{cal}}_{ ext{champ incident}}^t \left(rac{\partial m{A}}{\partial m_i}
ight)_{ ext{résidus rétropopagés}} m{\lambda}_{ ext{résidus rétropopagés}} \ \sim \Re\left(e^{jk_0 m{s.x}}
ight) \ \sim \Re\left(e^{jk_0 m{r.x}}
ight)$$

► Résolution du gradient :

$$|m{k}| = |m{s} + m{r}| = \frac{\omega}{c} 2\cos\left(\frac{ heta}{2}\right)$$

Résolution de la FWI

$$egin{aligned} rac{\partial C}{\partial m_i} &= \underbrace{d_{cal}}_{ ext{champ incident}} \left[\left(rac{\partial oldsymbol{A}}{\partial m_i}
ight)
ight]_{ ext{résidus rétropopagés}} oldsymbol{\lambda} \ &\sim \Re \left(e^{jk_0 oldsymbol{s}.oldsymbol{x}}
ight) \end{aligned} \ \sim \Re \left(e^{jk_0 oldsymbol{r}.oldsymbol{x}}
ight)$$

► Résolution du gradient :

$$|\mathbf{k}| = |\mathbf{s} + \mathbf{r}| = \frac{\omega}{c} 2\cos\left(\frac{\theta}{2}\right)$$

► Rayonnement des paramètres :

Génération des données de référence

Vitesse vraie

Masse volumique vraie

Inversions en milieu isotrope

Modèle initial de vitesse :

Modèle initial de vitesse :

Inversions en milieu isotrope

Modèle initial de vitesse :

Vitesse Reconstruite :

$f{\approx}~400~kHz$

Modèle initial de vitesse :

Vitesse Reconstruite :

Inversions en milieu isotrope

Modèle initial de vitesse :

Vitesse Reconstruite :

$f{\approx}~1~\text{MHz}$

Modèle initial de vitesse :

Vitesse Reconstruite :

Inversions en milieu isotrope

Modèle initial de vitesse :

Modèle initial de vitesse :

Vitesse Reconstruite :

Inversions en milieu isotrope

Modèle initial de vitesse :

Vitesse Reconstruite :

$f \approx 2 \ MHz$

Modèle initial de vitesse :

Vitesse Reconstruite:

Inversions en milieu isotrope

Modèle initial de vitesse :

Vitesse Reconstruite :

f≈ 3 MHz

Modèle initial de vitesse :

Vitesse Reconstruite:

Inversion monoparamètre

Signaux issus de ρ homogène

Signaux issus de ho vraie

Inversions en milieu isotrope

Vitesse initiale :

Vitesse reconstruite:

Masse volumique reconstruite :

- B. Chassignole. Influence de la structure métallurgique des soudures en acier inoxydable austénitique sur le contrôle non-destructif par ultrasons. PhD thesis, INSA Lyon, 1999.
- A. Gardahaut, H. Lourme, F. Jenson, S. Lin, and M. Nagai. Ultrasonic wave propagation in dissimilar metal welds—application of a ray-based model and comparison with experimental results. In 11th European Conference on Non-Destructive Testing, 2014.

questions : différence avec tomo diffraction

défaut : air

Contexte