Exercise 56 Using mathematical induction, show that, for any finite set A with |A| = n, that $|\wp A| = 2^n$

Answer By mathematical induction.

(*Base case*): Take A such that |A| = 0; then $A = \emptyset$. Notice that $|\wp A| = |\wp \emptyset| = |\{\emptyset\}| = 1 = 2^0$. (*Inductive case*): Take A such that |A| = k + 1 with $k \ge 0$; then there exists $a \in A$ such that $A = A \setminus \{a\} \cup \{a\}$.

Let $V \in \wp A$; then $V \subseteq A$, and V either contains a or not. So we can write

$$\wp A = \{ V \subseteq A \mid a \in V \} \cup \{ V \subseteq A \mid a \notin V \}$$

Since these two sets are disjoint, we have

$$|\wp A| = |\{V \subseteq A \mid a \in V\}| + |\{V \subseteq A \mid a \notin V\}|$$

Notice that

$$\{V \subseteq A \mid a \notin V\} = \{V \subseteq A \mid V \subseteq A \setminus \{a\}\}\$$

and

$$\{ V \subseteq A \mid a \in V \} = \{ V \subseteq A \mid V \setminus \{a\} \subseteq A \setminus \{a\} \}$$

=
$$\{ V \cup \{a\} \subseteq A \mid V \subseteq A \setminus \{a\} \}$$

Notice that

$$|\{V \subseteq A \mid V \subseteq A \setminus \{a\}\}| = |\{V \cup \{a\} \subseteq A \mid V \subseteq A \setminus \{a\}\}\}|$$

and therefore

$$|\wp A| = |\{V \subseteq A \mid V \subseteq A \setminus \{a\}\}\}| + |\{V \subseteq A \mid V \setminus \{a\} \subseteq A \setminus \{a\}\}\}|$$

Notice that $|A \setminus \{a\}| = k$ and that then, by induction, $|\wp(A \setminus \{a\})| = 2^k$. So $|\wp A| = 2^k + 2^k = 2^{k+1}$.

Exercise 57 Let A_1, \ldots, A_n be a collection of finite sets. Show that, for any $n \in \mathbb{N}$, $|A_1 \times \cdots \times A_n| = |A_1| \times \cdots \times |A_n|$.

Answer By mathematical induction:

(Base case): Take n = 1 (note that the case n = 0 is non-existent); the case is immediate.

(*Inductive case*): Take n = k + 1. Notice that, by Example 4.29,

$$A_1 \times \cdots \times A_{k+1} \approx (A_1 \times \cdots \times A_k) \times A_{k+1}$$

so these sets have the same cardinality. By Proposition 1.20 we have

$$|(A_1 \times \cdots \times A_k) \times A_{k+1}| = |A_1 \times \cdots \times A_k| \times |A_{k+1}|$$

By induction, we can assume that $|A_1 \times \cdots \times A_k| = |A_1| \times \cdots \times |A_k|$, so in particular

$$|(A_1 \times \cdots \times A_k) \times A_{k+1}| = |A_1| \times \cdots \times |A_k| \times |A_{k+1}|$$

and therefore

$$|A_1 \times \cdots \times A_{k+1}| = |(A_1 \times \cdots \times A_k) \times A_{k+1}|$$

= $|A_1| \times \cdots \times |A_k| \times |A_{k+1}|$

Exercise 58 Prove that, for any natural number n, that there are exactly n! permutations (rearrangements of the elements of an ordered list) of n objects.

Answer By mathematical induction.

(*Base case*): Than n = 1; there is only one permutation, and 1! = 1.

(*Inductive case*): Let $a_1, ..., a_{k+1}$ be the k+1 (different) objects under consideration. For every permutation of the sequence of objects, there is a permutation of the first k objects, $a_1, ..., a_k$, wherein

 a_{k+1} gets placed. By induction, there are k! permutations of a_1, \ldots, a_k ; we have k+1 places to put a_{k+1} in each (at the beginning, or at the end, or in-between two elements), so the total becomes $k+1\times k!=(k+1)!$.

Exercise 59 Let the set of Bool be defined through the grammar:

$$b ::= true \mid false \mid not b \mid b \&\& b \mid b \mid \mid b$$

and let the function eval : Bool \rightarrow Bool be defined by:

$$eval(\texttt{true}) = \top$$
 $eval(\texttt{false}) = \bot$
 $eval(\texttt{not}\,b) = \neg eval(b)$
 $eval(b_1 \&\& b_2) = eval(b_1) \land eval(b_2)$
 $eval(b_1 \mid\mid b_2) = eval(b_1) \lor eval(b_2)$

Show that, for all $b \in Bool$, $eval(b) = \top or eval(b) = \bot$.

Answer By induction the definition of boolean expressions.

(Base case 1): By definition,
$$eval(\texttt{true}) = \top$$
, so in particular, $eval(\texttt{true}) = \top$ or $eval(\texttt{true}) = \bot$. (Base case 2): By definition, $eval(\texttt{false}) = \bot$, so in particular, $eval(\texttt{false}) = \top$ or $eval(\texttt{false}) = \bot$.

(*Inductive case 1*): By definiton, $eval(not b) = \neg eval(b)$. By induction,

$$eval(b) = \top \text{ or } eval(b) = \bot$$
,

so

$$eval(not b) = \neg eval(b) = \neg \top = \bot \text{ or }$$

 $eval(not b) = \neg eval(b) = \neg \bot = \top.$

Therefore $eval(not b) = \top$ or $eval(not b) = \bot$.

(*Inductive case 2*): By definition, $eval(b_1 \&\& b_2) = eval(b_1) \land eval(b_2)$. By induction,

$$eval(b_1) = \top \text{ or } eval(b_1) = \bot,$$

 $eval(b_2) = \top \text{ or } eval(b_2) = \bot,$

Then

$$eval(b_1) \land eval(b_2) = \top \land \top = \top \text{ or }$$

 $eval(b_1) \land eval(b_2) = \top \land \bot = \bot \text{ or }$
 $eval(b_1) \land eval(b_2) = \bot \land \top = \bot \text{ or }$
 $eval(b_1) \land eval(b_2) = \bot \land \bot = \bot$

So, in particular, $eval(b_1 \&\& b_2) = \top$ or $eval(b_1 \&\& b_2) = \bot$.

(*Inductive case 3*): By definition, $eval(b_1 || b_2) = eval(b_1) \vee eval(b_2)$. By induction,

$$eval(b_1) = \top \text{ or } eval(b_1) = \bot$$
,
 $eval(b_2) = \top \text{ or } eval(b_2) = \bot$,

Then

$$eval(b_1) \lor eval(b_2) = \top \lor \top = \top \text{ or }$$

 $eval(b_1) \lor eval(b_2) = \top \lor \bot = \top \text{ or }$
 $eval(b_1) \lor eval(b_2) = \bot \lor \top = \top \text{ or }$
 $eval(b_1) \lor eval(b_2) = \bot \lor \bot = \bot$

So, in particular, $eval(b_1 \mid\mid b_2) = \top$ or $eval(b_1 \mid\mid b_2) = \bot$.

So, for all $b \in Bool$, $eval(b) = \top$ or $eval(b) = \bot$.