实验7: 利用IP核设计

Intelligent Property Core

IP核: 快速开发的法宝

- > SIMULATION
- > RTL ANALYSIS
- > SYNTHESIS
- > IMPLEMENTATION
- > PROGRAM AND DEBUG

- 具有知识产权的集成电路芯核
- 反复验证过的、具有特定功能的宏模块
- 软核(HDL语言)、固核(网表形式)、硬核(版图形式)

IP目录

~		۷i۱	vado Repository
	>		Alliance Partners
	>		Audio Connectivity & Processing
	>		Automotive & Industrial
	>		AXI Infrastructure
	>		AXIS Infrastructure
	>		BaselP
	>		Basic Elements
	>		Communication & Networking
	>		Debug & Verification
	>		Digital Signal Processing
	>		Embedded Processing
	>		FPGA Features and Design
	>		Kernels
	>		Math Functions
	>		Memories & Storage Elements
	>		Network on Chip (NoC)
	>		Partial Reconfiguration
	>		SDAccel DSA Infrastructure
	>		Standard Bus Interfaces
	>		Test NOC
	>		Video & Image Processing
	>		Video Connectivity

• **数学运算**:整数运算、浮点运算,加减法、乘除法、比较器、移位器...

• 输入输出: 时钟控制器、锁相环(PLL)、DDR...

• 设计调试:逻辑分析仪(ILA)

• 存储器类: ROM、RAM、FIFO、Flash...

• **图像处理**: 视频监视器、视频IO、图像裁减器、滤波器、混合器、矫正器...

• **处理器**: MicroBlaze(嵌入在FPGA中的RISC处理器软核) 32位、64位

• 数字信号处理:

• 通信+网络∶

Adder

Add_IP

利用IP核实现"加法器"

IP Catalog ? □										
Cores Interfaces										
Search: Q										
Name	^1	AXI4	Status	License	VLNV					
∨ □ Math Functions						^				
Adders & Subtracters										
₹ Adder/Subtracter			Production	Included	xilinx.com:ip:c_a	dds				
> Conversions										
> CORDIC										
> Dividers										
> 🖨 Floating Point										
> 🗀 Multipliers										
> 🖨 Square Root										
> 🗀 Trig Functions					5 /	19				

配置IP参数

实例化 模板

实例化 IP核


```
Adder.sv
                               module Adder (
       input logic [7:0] a, b,
       input logic
                         clk,
       output logic [8:0] sum );
5
       add8 a8(.A(a), .B(b),
                .CLK(c1k),
                .S(sum));
   endmodule
                                      8 /19
```

原理图

逻辑分析仪工人

ILA

ILA 可定制集成逻辑分析器

ILA IP核是一款逻辑分析器内核,可用于监控设计中的内部信号。

上板子后如何实时查错?

ILA 会将所采集到的探针数据存放在 RAM 中, 然后, 通过 JTAG 和下载器上传到 Vivado。

查找 ILA

配置 ILA

实例化 ILA, 生成bit, 下载

- ▼ PROGRAM AND DEBUG
 - Generate Bitstream
 - > Open Hardware Manager


```
Gray_Top.sv
                                              ? 🗆 🖸 X
     module Gray Top(
         input logic
                              CLK100MHZ,
         input logic [15:12] SW,
         output logic [15:12] LED,
         output logic [6:0]
                              A2G.
         output logic [7:0]
                              AN
         assign LED = SW;
         logic [3:0] GravData:
10
                                      实例化
         Gray G1 (SW, GrayData);
         ila G iG1(.clk
                          (CLK100MHZ),
                   .probe0(SW
                   .probel(GrayData));
16
17
         x7seg x7(CLK100MHZ,
                  {SW, GrayData},
18
                  A2G,
19
                  AN ):
20
                                        14 /19
     endmodule
```

ILA 的调试窗口

无触发条件时运行: 板子现状

设置触发条件1: ==010

设置触发条件1: 1-to-0

收尾工作

```
Gray_Top.sv
                                              ? 🗆 🖸 X
        ★ | ★ | ¾ | ■ | ■ | X | // | ■ | ♀
     module Gray Top(
                              CLK100MHZ,
         input logic
         input logic [15:12] SW,
         output logic [15:12] LED,
         output logic [6:0]
                              A2G,
         output logic [7:0]
         assign LED = SW;
         logic [3:0] GrayData;
10
         Gray G1 (SW, GrayData);
12
         ila G iG1(.clk
                          (CLK100MHZ),
13
                   .probe0(SW
14
                   .probe1(GrayData ) );
15
16
         x7seg x7(CLK100MHZ,
                  {SW, GrayData},
18
                  A2G,
19
                  AN );
     endmodule
```

- 调试正确后,删除ila_G模块,及实例化代码,
- 再重新生成bit文件。

