Undegraduate Mathematics

David Cardozo

December 2, 2016

Preface

This project started as a posible review of all topics revisited in an undergraduate math course.

Introduction to Mathematics

First, a word about sets. These are the most primitive objects in mathematics. We use the following observation by Cantor

By an aggregate [set] we are to understand any collection into a whole M of definite and separate objects m of our intution or our thought. These objects we call the elements of M

Cantor

We start with an informal definition of Natural numbers, recall that we can put this in stone observations, using the Peano axioms.

Vector Calculus

3.0.1 Stokes Theorem

Stokes'theorem relates the line integral of a vector field around a simple closed curve C in \mathbb{R}^3 to an integral over a surface S for wic C is the boundary.

Stokes Theorem for Graph Consider S that is the graph of a function f(x, y) so that is parametrized by

$$\begin{cases} x = u \\ y = v \\ z = f(u, v) \end{cases}$$

Stokes' Theorem for Graphs Let S be the oriented surface by a C^2 function z = f(x, y), where $(x, y) \in D$, a region to which Green's theorem applies, and let \mathbf{F} be a C^1 vector field on S. Then if ∂S denotes the oriented boundary curves of S as just defined, we have

$$\iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \int_{\partial S} \mathbf{F} \cdot d\mathbf{s}$$

Stokes' Theorem for Parametrized surfaces

Let S be an oriented surfaces defined by a one-to-one parametrization $\Phi: D \subset \mathbb{R}^2 \to S$, where D is a region to which Green's theorem applies. Let ∂S denote the oriented boundary of S and let \mathbf{F} be a C^1 vector field on S. Then

$$\iint_{s} (\nabla \times \mathbf{F}) \cdot d\mathbf{S} = \int_{\partial S} \mathbf{F} \cdot d\mathbf{s}$$

Linear Algebra

A vector space V over a filed \mathbb{F} is an abelian group (V, +), for which a binary product, $(a, v) \to av$, of $\mathbb{F} \times V$ into V is defined satisfying the following axioms for all $a, b \in \mathbb{F}$ and $u, v \in V$

- 1v = v
- (ab)v = a(bv)
- (a+b)v = av + bv and a(v+u) = av + au

The elements of V are usually referred as vectors; the elements of the underlying field as scalars.

Examples of vector spaces:

- \mathbb{F}^n the space of all F-valued n-tuples with addition and multiplication by scalars defined pointwise. To be able to differentiate between row and column spaces we will denote by the following \mathbb{F}_c^n or \mathbb{F}_r^n .
- $M(n, m; \mathbb{F})$ are the default matrices with entries from F.

Definition: A map $\phi: V \to W$ is linear if for all scalars a, b and vectors v_1, v_2 , we have

$$\phi(av_1 + bv_2) = a\phi(v_1) + b\phi(v_2)$$

A map ϕ is an isomorphism if it is both bijective and linear.

We observe that the relation of being isomorphic is an equivalence relation.

Definition: A (vector) subspace of a vector space V is a subset that is closed under the operations of addition and multiplication by scalars inherited from V.

An interesting subspace of a vector space is to take W_j be a family of subsets, then we have that the sum of subspaces, is the set

$$\sum W_j = \bigcup_{J_1 \subset J} \left\{ v : v = \sum_{j \in J_1} v_j, v_j \in W_j \right\}$$

4.0.1 Quotient spaces

A subspace W of a vector space V defines an equivalence relation in V

$$x \equiv y \mod W$$

This equivalence relation partitions V into equivalence classes, called the cosets of W in V. For $x \in V$, the coset of W that contains x is the set $\tilde{x} = x + W$ the translate of x by W.

Proposition

$$\tilde{x} = x + W$$

Consider an arbitrary element of b of \tilde{x} ,

$$b \equiv x \mod W$$
$$b - x = w_1$$

For some w_1 in W, so that $b \in x + W$. The other side is similar.

We define the quotient space V/W to be the space whose elements are the cosets of W in V

Definition **Direct Sums** If V_1, \ldots, V_k are vector spaces over \mathbb{F} , the (formal) direct sum

$$\bigoplus_{1}^{k} V_{j}$$

is the set $\{(v_1, ..., v_k) : v_j \in V\}$

Complex Analysis

The central objects are functions from the complex plane to itself

$$f: \mathbb{C} \to \mathbb{C}$$

A more interesting anotation is that f is differentiable in the complex sense. This condition is called holomorphicity, and it shapes all of complex analysis.

A function $f: \mathbb{C} \to \mathbb{C}$ is holomorphic at the point $z \in \mathbb{C}$ if the limit

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} \quad h \in \mathbb{C}$$

This encompasses a multiplicity of conditions: so to speak, one for each angle that h can approach zero.

Our main goals is to observe the following properties.

• Contour Integration. If f is holomorphic in ω , then for appropriate closed paths in ω .

$$\int_{\gamma} f(z)dz = 0$$

- Regularity. If f is holomorphic, then f is indefinitely differentiable
- Analytic continuation. If f and g are holomorphic functions in ω which are equal in an arbitrary small disc in ω , then f = g everywhere in ω

Basic Properties

A complex number takes the form z = x + iy where x, y are real numbers and i is an imaginary number that satisfies $i^2 = -1$, we denote x = -1

Re(z), y = Im(z), we observe that the real numbers are precisely those complex numbers for which the imaginary part is zero. An important observation is the multiplication of two complex numbers:

$$z_1 z_2 = (x_1 + iy_1)(x_2 + iy_2)$$

= $(x_1 x_2 - y_1 y_2) + i(x_1 y_2 + y_1 x_2)$

We observe that addition correspond naturally to the addition of two vectors, while multiplication consist of a rotation plus a dilatation, multiplication of i is a rotation of $\frac{\pi}{2}$. We define, the absolute value of a complex number z by

$$|z| = (x^2 + y^2)^{\frac{1}{2}}$$

We observe then |z| consists of the distance from the origin to the point (x, y).

We observe that the triangle inequality holds

$$|z+w| \le |z| + |w| \quad \forall z, w \in \mathbb{C}$$

We observe the above since

$$|z + w|^2 = (z + w)(\overline{z + w}) = (z + w)(\overline{z} + \overline{w})$$
$$= |z|^2 + w\overline{z} + z\overline{w} + |w|^2$$
$$= |z|^2 + w\overline{z} + w\overline{z} + |w|^2$$

Now, we make the observation that

$$Re(a) = \frac{a + \overline{a}}{2}$$

$$|z+w|^2 = (z+w)(\overline{z+w}) = (z+w)(\overline{z}+\overline{w})$$

$$= |z|^2 + 2\operatorname{Re}(w\overline{z}) + |w|^2$$

$$\leq |z|^2 + 2|w||\overline{z}| + |w|^2$$

$$= (|z| + |w|)^2$$

The reverse triangle inequality is

$$||z| - |w|| \le |z - w|$$

and is proven as: with the triangle inequality we have

$$|z| + |w - z| \ge |z + w - z| = |w|$$

 $|w| + |z - w| \ge |w + z - w| = |z|$

and we observe then

$$|w - z| \ge |w| - |z|$$
$$|z - w| \ge |z| - |w|$$

from absolute values we know that |w-z| = |z-w|, and if $t \ge a$ and $t \ge -a$, implies $t \ge |a|$, so that

$$|z - w| \ge ||w| - |z||$$

We already have used \overline{z} to denote the complex conjugate of z. we observe that

$$z\overline{z} = |z|^2 \implies \frac{1}{z} = \frac{\overline{z}}{|z|^2}$$

Any non-zero complex number z can be written in polar form

$$z = re^{i\theta}$$

From here, we obtain the observation that if z and w are complex numbers, we have that their multiplication is:

$$zw = rse^{i(\theta + \phi)}$$

so multiplication by a complex number corresponds to a homothety in the plane.

5.0.1 Convergence

A sequence $\{z_1, z_2, \ldots\}$ of complex numbers is said to converge to w if

$$\lim_{n \to \infty} |z_n - w| = 0$$

Since absolute values in \mathbb{C} and Euclidean distances in the plane coincide, we see that z_n converges to w if and only if the corresponding sequence of points in ht complex plane converges to the point that correspond to w

In fact the sequence $\{z_n\}$ converges to w if and only if the sequence of real and imaginary parts of z_n converge to the real and imaginary parts of w, respectively