# COMS30035, Machine learning: Markov Chain Monte Carlo

James Cussens

School of Computer Science University of Bristol

3rd September 2024

## The Bayesian approach

- Conceptually the Bayesian approach is easy: the goal is to compute the posterior distribution  $P(\theta|D=d)$  where  $\theta$  is the parameter vector and d is the observed value of the data.
- We choose a prior  $P(\theta)$  and assume a particular likelihood  $P(D|\theta)$  and then Bayes theorem gives us  $P(\theta|D=d) \propto P(\theta)P(D=d|\theta)$ .
- If we choose a *conjugate prior* for  $P(\theta)$ , then representing and computing  $P(\theta|D=d)$  is easy.

# Problems for the Bayesian approach

- "For most probabilistic models of practical interest, exact inference is intractable, and so we have to resort to some form of approximation." [Bis06, p. 523].
- We want to be able to just construct whatever joint distribution  $P(\theta, D)$  we think best models the data-generating process and then compute  $P(\theta|D=d)$ .
- However, with this flexibility there is a price: we may not even be able to represent  $P(\theta|D=d)$  easily, let alone compute it.
- The solution is to give up on getting  $P(\theta|D=d)$  exactly and instead draw samples (of  $\theta$ ) from  $P(\theta|D=d)$  which will allow us to approximately compute any posterior quantities, e.g. the mean of  $P(\theta|D=d)$ .

## Problems for the Bayesian approach

- "For most probabilistic models of practical interest, exact inference is intractable, and so we have to resort to some form of approximation." [Bis06, p. 523].
- We want to be able to just construct whatever joint distribution  $P(\theta, D)$  we think best models the data-generating process and then compute  $P(\theta|D=d)$ .
- However, with this flexibility there is a price: we may not even be able to represent  $P(\theta|D=d)$  easily, let alone compute it.
- ► The solution is to give up on getting  $P(\theta|D=d)$  exactly and instead draw samples (of  $\theta$ ) from  $P(\theta|D=d)$  which will allow us to approximately compute any posterior quantities, e.g. the mean of  $P(\theta|D=d)$ .

# Univariate sampling

- We will assume throughout that we have some mechanism for sampling from any univariate distribution.
- ► There are functions for sampling from a bunch of different distributions in Python's random module. Also, to sample from a Gaussian you can use numpy.random.normal.
- ▶ If a multivariate distribution is described by a Bayesian network then we can use *ancestral sampling* to sample a joint instantiation of the variables.

## Ancestral sampling

$$p(A, B, C, D, E) = p(A)p(B)p(C|A, B)p(D|C)p(E|B, C)$$



- ▶ Just ensure that we sample values for all parents of a node before we sample a value for that node (this is always possible due to acyclicity).
- So to sample from p(A, B, C, D, E) we first sample values for A and B, suppose we get the values A = 0, B = 1. We then sample a value for C from the conditional distribution P(C|A=0, B=1), and so on. [Bis06, §8.1.2].

# Sampling from marginal and conditional distributions

$$p(A, B, C, D, E) = p(A)p(B)p(C|A, B)p(D|C)p(E|B, C)$$

- We can approximate any marginal distribution (say, P(B, E)) by sampling full joint instantiations (by e.g. ancestral sampling) and then only keeping the values of the variables in the marginal.
- We can use rejection sampling to sample from conditional distributions.
- For example, to sample from P(B, D|E = 1) we sample from the marginal distribution P(B, D, E) and throw away those samples where  $E \neq 1$ .
- ▶ Rejection sampling is typically inefficient.

# Approximating expectations

Often we want to compute expected values with respect to some posterior distribution [Bis06, p. 524].

$$E[f] = \int f(\mathbf{z})p(\mathbf{z})d\mathbf{z} \tag{1}$$

If we draw independent samples  $\mathbf{z}^{(l)}$ ,  $l=1,\ldots,L$  from  $p(\mathbf{z})$  then we can approximate E[f] as follows:

$$\hat{f} = \frac{1}{L} \sum_{l=1}^{L} f(\mathbf{z}^{(l)})$$
 (2)

#### Markov chain Monte Carlo

- ▶ If we can sample from a distribution then we have a simple way to compute approximate values. But what if we cannot?
- If we can sample from a sequence of distributions which eventually reaches (or gets very close to) the desired distribution, then we can adopt the following strategy:
  - 1. Draw a sample from each distribution in this sequence.
  - Only keep the samples once we get 'close enough' to the desired distribution.
- ▶ This is the approach of Markov chain Monte Carlo (MCMC).

#### Markov chain Monte Carlo

- ▶ If we can sample from a distribution then we have a simple way to compute approximate values. But what if we cannot?
- ▶ If we can sample from a sequence of distributions which eventually reaches (or gets very close to) the desired distribution, then we can adopt the following strategy:
  - 1. Draw a sample from each distribution in this sequence.
  - Only keep the samples once we get 'close enough' to the desired distribution.
- ▶ This is the approach of Markov chain Monte Carlo (MCMC).

#### Markov chains

"A first-order Markov chain is defined to be a series of random variables  $\mathbf{z}^{(1)},\ldots,\mathbf{z}^{(M)}$  such that the following conditional independence property holds for  $m\in\{1,\ldots,M-1\}$ " [Bis06, p. 539].

$$p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(1)},...,\mathbf{z}^{(m)}) = p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(m)})$$
(3)

- **z**<sup>(m)</sup> often represents (or can be imagined to represent) the mth state of some dynamic system so that  $p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(m)})$  is a state transition probability.
- ▶ If  $p(\mathbf{z}^{(m+1)}|\mathbf{z}^{(m)})$  is the same for all m then the chain is homogeneous.
- (We also need an initial distribution  $p(\mathbf{z}^{(1)})$ .)
- ▶ Here's the Bayesian network representation of a Markov chain where M = 4.



Sampling from a Markov chain is easy: it's just a special case of ancestral sampling.

#### Markov chain Monte Carlo



- A Markov chain defines a sequence of marginal distributions; for the BN above these are  $P(x_1)$ ,  $P(x_2)$ ,  $P(x_3)$  and  $P(x_4)$ .
- ► The goal of MCMC is to design a Markov chain so that this sequence of marginal distributions converges on the distribution we want.
- ► Then we can just sample from the Markov chain and only keep the sampled values of the 'later' random variables.
- ► The sampled values we draw are **not** independent, but this is a price we have to pay.

## How to get MCMC to work?

- We have a clear goal: **given** a target probability distribution  $p(\mathbf{z})$ , **construct** a Markov chain  $\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(i)} \dots$  such that  $\lim_{i \to \infty} p(\mathbf{z}^{(i)}) = p(\mathbf{z})$ .
- (For Bayesian machine learning the target distribution will be  $P(\theta|D=d)$ , the posterior distribution of the model parameters given the observed data.)
- ▶ One solution to this is the *Metropolis-Hastings* algorithm.

# The Metropolis-Hastings (MH) algorithm

- We define a single transition probability distribution for a homogeneous Markov chain.
- Let the current state be  $\mathbf{z}^{(\tau)}$ . When using the MH algorithm sampling the next state happens in two stages:
  - 1. We generate a value  $\mathbf{z}^*$  by sampling from a *proposal distribution*  $q(\mathbf{z}|\mathbf{z}^{(\tau)})$ .
  - 2. We then accept  $\mathbf{z}^*$  as the new state with a certain acceptance probability. If we don't accept  $\mathbf{z}^*$  then we 'stay where we are', so that  $\mathbf{z}^{(\tau)}$  is both the old and new state.

## The Metropolis-Hastings acceptance probability

Let  $p(\mathbf{z})$  be the *target distribution*. The acceptance probability is: [Bis06, p. 541].

$$A(\mathbf{z}^*, \mathbf{z}^{(\tau)}) = \min\left(1, \frac{p(\mathbf{z}^*)q(\mathbf{z}^{(\tau)}|\mathbf{z}^*)}{p(\mathbf{z}^{(\tau)})q(\mathbf{z}^*|\mathbf{z}^{(\tau)})}\right)$$
(4)

- ▶ If  $p(\mathbf{z}) = \tilde{p}(\mathbf{z})/Z$  then we have  $p(\mathbf{z}^*)/p(\mathbf{z}^{(\tau)}) = \tilde{p}(\mathbf{z}^*)/\tilde{p}(\mathbf{z}^{(\tau)})$ , so we only need p up to normalisation. This is a big win!
- ▶ If the proposal distribution is symmetric then the 'q' terms cancel out: a special case known as the *Metropolis algorithm*.
- Note that for the Metropolis algorithm if  $p(\mathbf{z}^*) \geq p(\mathbf{z}^{(\tau)})$  then we always accept and 'move' to  $\mathbf{z}^*$ .

# Does Metropolis-Hastings (always) work?

- ▶ It can be shown [Bis06, p. 541] that the target distribution is an invariant distribution of the Markov chain: if the sequence of distributions  $p(\mathbf{z}^{(i)})$  reaches the target distribution then it stays there.
- Also, typically the Markov chain does converge to the target distribution.
- ► The *rate* at which we converge to the target distribution is greatly influenced by the choice of proposal distribution.

## MCMC in practice

- Straightforward Metropolis-Hastings is not the state-of-the-art in MCMC.
- Probabilistic programming systems like PyMC by default use more sophisticated MCMC algorithms (to avoid getting stuck).
- ► From the PyMC intro overview: "Probabilistic programming (PP) allows flexible specification of Bayesian statistical models in code. PyMC is a PP framework with an intuitive and readable, yet powerful, syntax that is close to the natural syntax statisticians use to describe models. It features next-generation Markov chain Monte Carlo (MCMC) sampling algorithms such as the No-U-Turn Sampler"
- ▶ When using MCMC we (1) throw away early samples ('burn-in') and (2) 'run independent chains' to check for convergence.
- ▶ PyMC uses  $\hat{R}$  (r\_hat) to check for convergence; this value should be close to 1.

## Let's do some Bayesian machine learning with PyMC!

- ► I've found the easiest way to get the introductory Jupyter notebooks mentioned in the PyMC website is to clone the PyMC github repo.
- You can then find them in pymc/docs/source/learn/core\_notebooks



Christopher M. Bishop.

Pattern Recognition and Machine Learning.

Springer, 2006.