Beyond Message Passing: Expressive GNN Models

Jiaxuan You
Assistant Professor at UIUC CDS

CS598: Deep Learning with Graphs, 2024 Fall

https://ulab-uiuc.github.io/CS598/

Recap: GraphRNN Tractability via BFS

Breadth-First Search node ordering

BFS node ordering: Node 5 will never connect to node 1 (only need memory of 2 "steps" rather than n-1 steps)

Benefits:

- Reduce possible node orderings
 - From O(n!) to number of distinct BFS orderings
- Reduce steps for edge generation
 - Reducing number of previous nodes to look at

Recap: GraphRNN Tractability via BFS

BFS reduces the number of steps for edge generation

Adjacency matrices

Recap: Overview of GCPN

- (a) Insert nodes
- (b,c) Use GNN to predict which nodes to connect
- (d) Take an action (check chemical validity)
- (e, f) Compute reward

Recap: Training Graph Conv. Policy Network

- (1) Self-supervised training: Imitating the action given by real observed graphs with gradient
- → Goal 1: imitation

- (2) RL training: Train policy to optimize rewards with policy gradient (PPO)
- → Goal 2: optimization

ChatGPT [OpenAl, 2022] uses the similar idea: self-supervised + RL training

Recap: GCPN vs. GraphRNN

- Sequential graph generation
- GraphRNN: predict action based on RNN hidden states

RNN hidden state captures the generated graph so far

GCPN: predict action based on GNN node embeddings

Beyond Message Passing: Expressive GNN Models
Limitations of Graph Neural Networks

Recap: A General GNN Framework

A "Perfect" GNN Model

- A thought experiment: What should a perfect GNN do?
 - A k-layer GNN embeds a node based on the K-hop neighborhood structure

 A perfect GNN should build an injective function between neighborhood structure (regardless of hops) and node embeddings

A "Perfect" GNN Model

- Therefore, for a perfect GNN:
 - Observation 1: If two nodes have the same neighborhood structure, they
 must have the same embedding

 Observation 2: If two nodes have different neighborhood structure, they must have different embeddings

Imperfections of Existing GNNs

- However, Observations 1 & 2 are imperfect
- Observation 1 could have issues:
 - Even though two nodes may have the same neighborhood structure, we may want to assign different embeddings to them
 - Because these nodes appear in different positions in the graph
 - We call these tasks Position-aware tasks
 - Even a perfect GNN will fail for these tasks:

NYC road network

Imperfections of Existing GNNs

- Observation 2 often cannot be satisfied:
 - The GNNs we have introduced so far are not perfect
 - In Lecture 9, we discussed that their expressive power is upper bounded by the WL test
 - For example, message passing GNNs cannot count the cycle length:

 v_1 resides in a cycle with length 3

 v_2 resides in a cycle with length 4

The computational graphs for nodes v_1 and v_2 are always the same

Plan for the Lecture

- We will resolve both issues by building more expressive GNNs
- Fix issues in Observation 1:
 - Create node embeddings based on their positions in the graph
 - Example method: Position-aware GNNs
- Fix issues in Observation 2:
 - Build message passing GNNs that are more expressive than WL test
 - Example method: Identity-aware GNNs

Our Approach

We use the following thinking:

- Two different inputs (nodes, edges, graphs) are labeled differently
- A "failed" model will always assign the same embedding to them
- A "successful" model will assign different embeddings to them
- Embeddings are determined by GNN computational graphs:

Two inputs: nodes v_1 and v_2

Different labels: A and B

Goal: assign different embeddings to v_1 and v_2

Naïve Solution is not Desirable

A naïve solution: One-hot encoding

Encode each node with a different ID, then we can always differentiate

different nodes/edges/graphs

Computational graphs are clearly different if each node has a different ID

Naïve Solution is not Desirable

A naïve solution: One-hot encoding

Encode each node with a different ID, then we can always differentiate

different nodes/edges/graphs

- Issues:
 - Not scalable: Need O(N) feature dimensions (N is the number of nodes)
 - Not inductive: Cannot generalize to new nodes/graphs

Beyond Message Passing: Expressive GNN Models
Position-aware Graph Neural Networks

Two Types of Tasks on Graphs

There are two types of tasks on graphs

Structure-aware task

 Nodes are labeled by their structural roles in the graph

Position-aware task

 Nodes are labeled by their positions in the graph

Structure-aware Tasks

GNNs often work well for structure-aware tasks

Structure-aware task

- GNNs work ©
- Can differentiate v_1 and v_2 by using different computational graphs

Position-aware Tasks

GNNs will always fail for position-aware tasks

Position-aware task

- GNNs fail ⊗
- v₁ and v₂ will always have the same computational graph, due to structure symmetry
- Can we define deep learning methods that are position-aware?

Power of "Anchor"

- Randomly pick a node s_1 as an **anchor node**
- Represent v_1 and v_2 via their relative distances w.r.t. the anchor s_1 , which are different
- An anchor node serves as a coordinate axis
 - Which can be used to locate nodes in the graph

Relative

Distances

	s_1
v_1	1
v_2	2

Power of "Anchors"

- Pick more nodes s_1, s_2 as anchor nodes
- Observation: More anchors can better characterize node position in different regions of the graph
- Many anchors -> Many coordinate axes

Relative Distances

	S_1	S_2
v_1	1	2
v_2	2	1

Power of "Anchor-sets"

- Generalize anchor from a single node to a set of nodes
 - We define distance to an anchor-set as the minimum distance to all the nodes in the ancho-set
- Observation: Large anchor-sets can sometimes provide more precise position estimate
 - We can save the total number of anchors

Relative Distances

	s_1	S_2	s_3
v_1	1	2	1
v_3	1	2	0

Anchor s_1 , s_2 cannot differentiate node v_1 , v_3 , but anchor-set s_3 can

Anchor Set: Theory

- Goal: Embed the metric space (V, d) into the Euclidian space \mathbb{R}^k such that the original distance metric is preserved.
 - For every node pairs $u, v \in V$, the Euclidian embedding distance $||z_u z_v||_2$ is close to the original distance metric d(u, v).

Anchor Set: Theory

- Bourgain Theorem [Informal] [Bourgain 1985]
 - Consider the following embedding function of node $v \in V$.

$$f(v) = \left(d_{\min}(v, S_{1,1}), d_{\min}(v, S_{1,2}), \dots, d_{\min}(v, S_{\log n, c\log n})\right) \in \mathbb{R}^{c \log^2 n}$$

- where
 - c is a constant.
 - $S_{i,j} \subset V$ is chosen by including each node in V independently with probability $\frac{1}{2^i}$.
 - $d_{\min}(v, S_{i,j}) \equiv \min_{u \in S_{i,j}} d(v, u).$
- The embedding distance produced by f is provably close to the original distance metric (V, d).

Anchor Set: Theory

P-GNN follows the theory of Bourgain theorem

- First samples $O(\log^2 n)$ anchor sets $S_{i,j}$.
- Embed each node v via

$$(d_{\min}(v, S_{1,1}), d_{\min}(v, S_{1,2}), \dots, d_{\min}(v, S_{\log n, c\log n})) \in \mathbb{R}^{c \log^2 n}.$$

P-GNN maintains the inductive capability

- During training, new anchor sets are re-sampled every time.
- P-GNN is learned to operate over the new anchor sets.
- At test time, given a new unseen graph, new anchor sets are sampled.

Position Information: Summary

- Position encoding for graphs: Represent a node's position by its distance to randomly selected anchor-sets
 - Each dimension of the position encoding is tied to an anchor-set

	S_1	S_2	s_3
v_1	1	2	1
v_3	1	2	0

 v_1 's Position encoding

 v_3 's Position encoding

How to Use Position Information

- The simple way: Use position encoding as an augmented node feature (works well in practice)
 - Issue: Since each dimension of position encoding is tied to a random anchor set, dimensions of positional encoding can be randomly permuted, without changing its meaning
 - Imagine you permute the input dimensions of a normal NN, the output will surely change

How to Use Position Information

- A more expressive solution: Requires a special NN that can maintain the permutation invariant property of position encoding
 - Permuting the input feature dimension will only result in the permutation of the output dimension, the value in each dimension won't change
 - Position-aware GNN paper has more details

Beyond Message Passing: Expressive GNN Models

Identity-Aware Graph Neural Networks

More Failure Cases for GNNs

- We learned that GNNs would fail for position-aware tasks
- But can GNN perform perfectly in structure-aware tasks?
 - Unfortunately, NO.
- GNNs exhibit three levels of failure cases in structure-aware tasks:
 - Node level
 - Edge level
 - Graph level

GNN Failure 1: Node-level Tasks

Different Inputs but the same computational graph \rightarrow GNN fails

Example input graphs

Existing GNNs' COMPUTATIONAL BOOK STATES OF THE PROPERTY OF TH

GNN Failure 2: Edge-level Tasks

Different Inputs but the same computational graph -> GNN fails

Example input graphs

Edge A and B share node v_0 We look at embeddings for v_1 and v_2

Existing GNNs' computational graphs

GNN Failure 3: Graph-level Tasks

Different Inputs but the same computational graph \rightarrow GNN fails

Example input graphs

A

B

We look at embeddings for each node

For each node:

For each node:

Existing GNNs' computational graphs

Idea: Inductive Node Coloring

Idea: We can assign a color to the node we want to embed

Idea: Inductive Node Coloring

- This coloring is inductive:
 - It is invariant to node ordering/identities
 The node we want to embed The rest of nodes Input graph Permute the node ordering between v_2 and v_3 Computational graph

Inductive Node Coloring – Node level

Inductive node coloring can help node classification

Example input graphs

We color root nodes with identity

Different
computational graphs
→ Successfully
differentiate nodes

Two types of nodes:

node with augmented identity

node without augmented identity

Inductive Node Coloring – Graph Level

Inductive node coloring can help graph classification
 Graph classification

Example input graphs

We color root nodes with identity

#

ID-GNNs' computational graphs

Different computational graphs → Successful differentiate graphs

Two types of nodes:

node with augmented identity

node without augmented identity

Inductive Node Coloring – Edge Level

Inductive node coloring can help link prediction

Link prediction

Example input graphs

ID-GNNs' computational graphs

An edge-level task involves classifying a pair of nodes:

- 1. We color one of the node (v_0)
- 2. We then embed the other node in the node pair $(v_1 \text{ or } v_2)$
- 3. We use the node embedding for v_1 or v_2 conditioned on v_0 being colored or not to make edge-level prediction

Two types of nodes:

- node with augmented identity
 - node without augmented identity

Different computational graphs

→ Successfully differentiate edges

Inductive Node Coloring – Edge Level

Inductive node coloring can help link prediction

Link prediction

Example input graphs

An edge-level task involves classifying a pair of nodes:

- 1. We color one of the node (v_0)
- 2. We then embed the other node in the node pair $(v_1 \text{ or } v_2)$
- 3. We use the node embedding for v_1 or v_2 conditioned on v_0 being colored or not to make edge-level prediction

ID-GNNs' computational graphs

How to build a GNN using node coloring?

hs

Two t

- Utilize inductive node coloring in embedding computation
 - Idea: Heterogenous message passing
 - Normally, a GNN applies the same message/aggregation computation to all the nodes

GNN: At a given layer, we apply the same message/aggregation to each node

- Idea: Heterogenous message passing
 - Heterogenous: different types of message passing is applied to different nodes
 - An ID-GNN applies different message/aggregation to nodes with different colorings

- Output: Node embedding $h_v^{(K)}$ for $v \in \mathcal{V}$.
- Step 1: Extract the ego-network
 - $\mathcal{G}_{v}^{(K)}$: K-hop neighborhood graph around v
 - Set the initial node feature
 - For $u \in \mathcal{G}_v^{(K)}$, $\boldsymbol{h}_u^{(0)} \leftarrow \boldsymbol{x}_u$ (input node feature)

- Step 2: Heterogeneous message passing
 - For k = 1, ..., K do
 - For $u \in \mathcal{G}_v^{(K)}$ do $\boldsymbol{h}_u^{(k)} \leftarrow AGG^{(k)}\left(\left\{\mathrm{MSG}_{\mathbf{1}[s=v]}^{(k)}\left(\boldsymbol{h}_s^{(k-1)}\right), s \in N(u)\right\}, \boldsymbol{h}_u^{(k-1)}\right)$

Depending on whether s = v (s is the center node v) or not, we use different neural network functions to transform $\boldsymbol{h}_s^{(k-1)}$.

- Why does heterogenous message passing work:
 - Suppose two nodes v_1, v_2 have the same computational graph structure, but have different node colorings
 - Since we will apply different neural network for embedding computation, their embeddings will be different

GNN vs. ID-GNN

- Why does ID-GNN work better than GNN?
- Intuition: ID-GNN can count cycles originating from a given node, but GNN cannot

Simplified Version: ID-GNN-Fast

- length-3 cycles = 2 length-3 cycles = 0
 Based on the intuition, we present a simplified version ID-GNN-Fast
 - Include identity information as an augmented node feature (no need to do heterogenous message passing)
 - Use cycle counts in each layer as an augmented node feature. Also can be used together with any GNN

- Summary of ID-GNN: A general and powerful extension to GNN framework
 - We can apply ID-GNN on any message passing GNNs (GCN, GraphSAGE, GIN, ...)
 - ID-GNN provides consistent performance gain in node/edge/graph level tasks
 - ID-GNN is more expressive than their GNN counterparts. ID-GNN is the first message passing GNN that is more expressive than 1-WL test
 - We can easily implement ID-GNN using popular GNN tools (PyG, DGL, ...)