9/29/2025

All homework problem's for math 220a will be coming from John Conway's book functions of one complex variable (See item 13 in the bibliography).

Exercise I.6.4: Let Λ be a circle lying in S^2 . Then (by the definition of a circle) there is a unique plane P in \mathbb{R}^3 such that $P \cap S^2 = \Lambda$. So, take $P = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1\beta_1 + x_2\beta_2 + x_3\beta_3 = \ell\}$ where $(\beta_1, \beta_2, \beta_3)$ is a unit vector orthogonal to P and $\ell \in \mathbb{R}$. Then show that if Λ contains (0,0,1), it's projection to \mathbb{C}_{∞} is a straight line, and meanwhile if Λ doesn't contain (0,0,1) then it's projection to \mathbb{C}_{∞} is another circle.

To start off, any point $z=x+iy\in\mathbb{C}$ corresponds to a point in Λ iff: $\frac{2x}{|z|^2+1}\beta_1 + \frac{2y}{|z|^2+1}\beta_2 + \frac{|z|^2-1}{|z|^2+1}\beta^3 = \ell$

After some rearranging this becomes $2\beta_1x+2\beta_2y+(x^2+y^2-1)\beta_3=\ell(x^2+y^2+1)$. Or in other words $(\beta_3-\ell)x^2+2\beta_1x+(\beta_3-\ell)y^2+2\beta_2y=\ell+\beta_3$. And now we break off into two cases.

- 1. Suppose $\beta_3 = \ell$. Then we know that $0\beta_1 + 0\beta_2 + 1\beta_3 = \ell$. So $(0,0,1) \in \Lambda$. At the same time, all the square terms in our condition cancel and we are left with the requirement $2\beta_1 x + 2\beta_2 y = \ell + \beta_3$. This is the equation of a line. Hence, we've shown that the projection of Λ onto \mathbb{C}_{∞} is a straight line unioned with the point at infinity.
- 2. Suppose $\beta_3 \neq \ell$. Then we know that $0\beta_1 + 0\beta_2 + 1\beta_3 \neq \ell$ and hence $(0,0,1) \notin \Lambda$. At the same time, we can now divide our equation from before by $\beta-\ell$ in order to get that $x^2+2\frac{\beta_1}{\beta_3-\ell}x+y^2+2\frac{\beta_2}{\beta_3-\ell}y=\frac{\ell+\beta_3}{\beta_3-\ell}$. And by completing the square we have:

$$(x + \frac{\beta_1}{\beta_3 - \ell})^2 + (y + \frac{\beta_2}{\beta_3 - \ell})^2 = \frac{\beta_3 + \ell}{\beta_3 - \ell} + \frac{\beta_1^2 + \beta_2^2}{(\beta_3 - \ell)^2} = \frac{1 - \ell^2}{(\beta_3 - \ell)^2}.$$

So, the projection of Λ onto \mathbb{C}_{∞} is a circle of radius $\frac{\sqrt{1-\ell^2}}{\beta_3-\ell}$ centered at $\frac{-\beta_1}{\beta_3-\ell}+i\frac{-\beta_2}{\beta_3-\ell}$. As a side note, let $\mathbf{b}=(b_1,b_2,b_3)$ and consider any $\mathbf{y}=(y_1,y_2,y_3)\in\Lambda.$ Then note by

the Cauchy Schwarts inequality that $\ell^2 = (\mathbf{b} \cdot \mathbf{y})^2 \le ||\mathbf{b}||^2 ||\mathbf{y}||^2 = 1 \cdot 1 = 1$. Hence, $\sqrt{1-\ell^2}$ is a well defined real number.

I'll continue with this class on *page*

Math 200a (lecture 2):

Given a group G and $a \in G$, we denote the order of a as $o(a) := o(\langle a \rangle)$ Now let C_n be a cyclic group of order n. In other words, $C_n = \langle a \rangle$ where o(a) = n. What is $\operatorname{Aut}(C_n)$?

Set 1 problem 5:

(a) Suppose $\theta \in \operatorname{Aut}(C_n)$ and pick any $m \in \mathbb{Z}$ with $\theta(a) = a^m$. Then $\gcd(m, n) = 1$. Since θ is a bijection, we know that $\theta(a^k)$ for each $k \in \{0, \dots, n-1\}$ is distinct. But also since θ is a group homomorphism, we know that $\theta(a^0) = a^0 = 1$ and $\theta(a^k)=(\theta(a))^k=(a^m)^k$ for k>0. Hence, we must have that $o(a^m)=n$. But now recall also that $o(a^m)=\frac{o(a)}{\gcd(o(a),m)}=\frac{n}{\gcd(n,m)}$. So, we must have that $\gcd(n,m)=1.$

(b) Suppose $m\in\mathbb{Z}$ satisfies that $\gcd(m,n)=1$ and define $\theta_m(a):C_n\to C_n$ by $\theta_m(a^k)=(a^k)^m$. Then $\theta\in\mathrm{Aut}(C_n)$.

To see that θ_m is a group homomorphism, just note that:

o see that
$$\theta_m$$
 is a group homomorphism, just note that:
$$\theta_m(a^{k_1}a^{k_2}) = \theta_m(a^{k_1+k_2}) \\ = (a^{k_1+k_2})^m = a^{m(k_1+k_2)} \\ = a^{mk_1+mk_2} = (a^{k_1})^m(a^{k_2})^m = \theta_m(a^{k_1})\theta_m(a^{k_2})$$
 Meanwhile note that $o(a^m) = \frac{o(a)}{\gcd(o(a), m)} = \frac{n}{1} = n$.

Meanwhile note that $o(a^m) = \frac{o(a)}{\gcd(o(a),m)} = \frac{n}{1} = n$.

Therefore, because $\theta_m(a^k)=(\theta_m(a))^k=(a^m)^k$ since θ_m is a group homomorphism, we know by pigeonhole principle that θ_m is both injective and surjective.

(c) The mapping $(\mathbb{Z}/n\mathbb{Z})^{\times} \to \operatorname{Aut}(C_n)$ is an isomorphism.