Patent claims

1. A composition comprising a synergistically effective active compound combination of compounds of the formula (I) (group 1)

$$A^{4} \xrightarrow{G^{1}} X \xrightarrow{Z_{m}} Y$$

$$(I)$$

in which

5

10

15

20

X represents C₁-C₆-alkyl, bromine, C₁-C₆-alkoxy or C₁-C₃-haloalkyl,

Y represents hydrogen, C₁-C₆-alkyl, halogen, C₁-C₆-alkoxy, C₁-C₃-haloalkyl,

Z represents C₁-C₆-alkyl, halogen, C₁-C₆-alkoxy,

m represents a number 0-3,

A³ represents hydrogen or in each case optionally halogen-substituted straight-chain or branched C₁-C₁₂-alkyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, C₁-C₁₀-alkoxy-C₁-C₈-alkyl, C₁-C₈-polyalkoxy-C₂-C₈-alkyl, C₁-C₁₀-alkylthio-C₂-C₈-alkyl, cycloalkyl having 3-8 ring atoms which may be interrupted by oxygen and/or sulfur or in each case optionally halogen-, C₁-C₆-alkyl-, C₁-C₆-haloalkyl-, C₁-C₆-alkoxy-, C₁-C₆-haloalkoxy, nitro-substituted phenyl or phenyl-C₁-C₆-alkyl,

 A^4 represents hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -alkoxy- C_1 - C_4 -alkyl or in which

A³ and A⁴ together with the carbon atom to which they are attached form a saturated or unsaturated 3- to 8-membered ring which is optionally interrupted by oxygen and/or sulfur and optionally substituted by halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio or optionally substituted phenyl or is optionally benzo-fused,

25 G¹ represents hydrogen (a) or represents the groups

$$-CO-R^{20} -CO_2-R^{21} -SO_2-R^{22} -P_0 R^{23} -P_0 R^{23} + P_0 R^{25} R^{26}$$
(b) (c) (d) (e) (f)

in which

R²⁰ represents in each case optionally halogen-substituted C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₁-C₈-alkoxy-C₁-C₈-alkyl, C₁-C₈-alkyl,

C₁-C₈-polyalkoxy-C₂-C₈-alkyl or cycloalkyl having 3-8 ring atoms which may be interrupted by oxygen and/or sulfur atoms, represents optionally halogen-, nitro-, C1-C6-alkyl-, C1-C6-alkoxy-, C1-C6haloalkyl-, C₁-C₆-haloalkoxy-substituted phenyl; 5 represents optionally halogen-, C₁-C₆-alkyl-, C₁-C₆-alkoxy-, C₁-C₆haloalkyl-, C₁-C₆-haloalkoxy-substituted phenyl-C₁-C₆-alkyl, represents in each case optionally halogen- and/or C₁-C₆-alkyl-substituted pyridyl, pyrimidyl, thiazolyl or pyrazolyl, represents optionally halogen- and/or C₁-C₆-alkyl-substituted phenoxy-10 C₁-C₆-alkyl, R^{21} represents in each case optionally halogen-substituted C₁-C₂₀-alkyl, C2-C20-alkenyl, C1-C8-alkoxy-C2-C8-alkyl or C1-C8-polyalkoxy-C2-C8alkyl, represents in each case optionally halogen-, nitro-, C₁-C₆-alkyl, C₁-C₆-15 alkoxy, C₁-C₆-haloalkyl-substituted phenyl or benzyl, R^{22} represents optionally halogen-substituted C1-C8-alkyl, represents in each case optionally C₁-C₄-alkyl-, halogen-, C₁-C₄-haloalkyl-, C₁-C₄-alkoxy-, C₁-C₄-haloalkoxy-, nitro- or cyano-substituted phenyl or benzyl. R²³ and R²⁴ independently of one another represent in each case optionally 20 C_1 - C_8 -alkoxy, halogen-substituted C_1 - C_8 -alkyl, C_1 - C_8 -alkylamino, $di(C_1-C_8)alkylamino$, C₁-C₈-alkylthio, C₂-C₅-alkenylthio, C2-C5-

25

30

phenyl, phenoxy or phenylthio,

R²⁵ and R²⁶ independently of one another represent in each case optionally halogen-substituted C₁-C₁₀-alkyl, C₁-C₁₀-alkoxy, C₃-C₈-alkenyl, C₁-C₈-alkoxy-C₁-C₈-alkyl, represent optionally halogen-, C₁-C₆-haloalkyl-, C₁-C₆-alkyl- or C₁-C₆-alkoxy-substituted phenyl, represent optionally halogen-, C₁-C₆-alkyl-, C₁-C₆-haloalkyl- or C₁-C₆-alkoxy-substituted benzyl or together represent a 5- to 6-membered ring which is optionally interrupted by oxygen or sulfur and which may optionally be substituted by C₁-C₆-alkyl,

alkynylthio, C_3 - C_7 -cycloalkylthio, represent in each case optionally halogen-, nitro-, cyano-, C_1 - C_4 -alkoxy-, C_1 - C_4 -haloalkoxy-, C_1 - C_4 -haloalkylthio-, C_1 - C_4 -haloalkylthio-, C_1 - C_4 -haloalkyl-substituted

or an acaricidally active compound (group 2), preferably

(2-1) the phenylhyrazine derivative of the formula

and/or

5

(2-2) the macrolide with the common name abamectin and/or

(2-3) the naphthalenedione derivative of the formula

O-CO-CH₃

$$C_{12}H_{25}$$
(acequinocyl)

and/or

10 (2-4) the pyrrole derivative of the formula

$$F_3C$$
 CH_2
 CH_2
 CC_2H_5
(chlorfenapyr)

and/or

(2-5) the thiourea derivative of the formula

$$CH(CH_3)_2$$

$$-O-CH(CH_3)_2$$

$$CH(CH_3)_2$$

$$CH(CH_3)_2$$

$$(discontinuous)$$

(diafenthiuron)

15 and/or

(2-6) the oxazoline derivative of the formula

$$\begin{array}{c|c}
F & & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

(etoxazole)

and/or

(2-7) an organotin derivative of the formula

in which

R represents
$$-N =$$
 (2-7-a = azocyclotin),

or

R represents -OH (2-7-b = cyhexatin),

and/or

5

(2-8) the pyrazole derivative of the formula

and/or

10 (2-9) the pyrazole derivative of the formula

$$H_3C$$
 $CH\equiv N-O-CH_2$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

(fenpyroximate)

and/or

(2-10) the pyridazinone derivative of the formula

$$CI$$
 $CH_{3}C-N$
 $S-CH_{2}$
 $C(CH_{3})_{3}$

(pyridaben)

15 and/or

(2-11) the benzoylurea derivative of the formula

(flufenoxuron)

and/or

(2-12) the pyrethroid of the formula

(bifenthrin)

and/or

(2-13) the tetrazine derivative of the formula

5 and/or

(2-14) the organotin derivative of the formula

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ &$$

(fenbutatin oxide)

and/or

(2-15) the sulfenamide of the formula

$$\begin{array}{c} CH_{3} \\ H_{3}C \\ \hline \end{array} \begin{array}{c} CH_{3} \\ CH_{3} \\ S-CCI_{2}F \end{array} \hspace{0.5cm} \text{(tolylfluanid)}$$

10

und/or

(2-16) the pyrimidyl phenol ethers of the formula

$$CI \longrightarrow O \longrightarrow O \longrightarrow CF_3$$

in which

15

20

R represents fluorine (2-16-a = 4-[(4-chloro- α , α , α -trifluoro-3-tolyl)oxy]-6-[(α , α , α -4-tetrafluoro-3-tolyl)oxy]pyrimidine)

R represents nitro (2-16-b = 4-[(4-chloro- α , α , α -trifluoro-3-tolyl)oxy]-6-[(α , α , α -trifluoro-4-nitro-3-tolyl)oxy]pyrimidine)

R represents bromine $(2-16- = 4-[(4-\text{chloro}-\alpha,\alpha,\alpha-\text{trifluoro}-3-\text{tolyl})\text{oxy}]-6-[(\alpha,\alpha,\alpha-\text{trifluoro}-4-\text{bromo}-3-\text{tolyl})\text{oxy}]\text{pyrimidine}$

and/or

(2-17) the macrolide of the formula

a mixture comprising, preferably,

(spinosad)

85% spinosyn A (R = H)

15% spinosyn B ($R = CH_3$)

and/or

(2-18) ivermectin

and/or

(2-19) milbemectin

10 and/or

5

(2-20) endosulfan

$$\begin{array}{c|c} CI & O \\ \hline CI & O \\ \hline CI & O \end{array}$$

and/or

(2-21) fenazaquin

15

(2-22) pyrimidifen

$$H_5C_2$$
 N
 N
 O
 CH_3
 OC_2H_4
 CH_3

and/or

and/or

20 (2-23) triarathen

and/or

(2-24) tetradifon

5 and/or

(2-25) propargite

and/or

(2-26) hexythiazox

10

and/or

(2-27) bromopropylate

and/or

15 (2-28) dicofol

and/or

(2-29) chinomethionat

and at least one active compound from the group of the anthranilamides of the formula (II).

- 5 2. The composition as claimed in claim 1, comprising at least one compound of the formula (I) in which
 - X represents C₁-C₄-alkyl, bromine, C₁-C₄-alkoxy or C₁-C₃-haloalkyl,
 - Y represents hydrogen, C₁-C₄-alkyl, fluorine, chlorine, bromine, C₁-C₄-alkoxy, C₁-C₃-haloalkyl,
- 10 Z represents C₁-C₄-alkyl, chlorine, bromine, C₁-C₄-alkoxy,
 - m represents a number 0-2,
 - A³ represents hydrogen or in each case optionally mono- to trifluoro-substituted straight-chain or branched C₁-C₆-alkyl, C₂-C₆-alkenyl, C₁-C₄-alkoxy-C₁-C₂-alkyl, cycloalkyl having 3-8 ring atoms which may optionally be interrupted by oxygen and/or sulfur or represents benzyl or phenyl which is optionally mono- to disubstituted by fluorine, chlorine, bromine, C₁-C₂-alkyl, C₁-C₂-haloalkyl, C₁-C₂-alkoxy, C₁-C₂-haloalkoxy, nitro,

 A^4 represents hydrogen, C_1 - C_2 -alkyl or C_1 - C_2 -alkoxy- C_1 - C_2 -alkyl or in which

- A³ and A⁴ together with the carbon atom to which they are attached form a saturated or unsaturated 3- to 7-membered ring which is optionally interrupted by oxygen and/or sulfur and optionally mono- to disubstituted by fluorine, chlorine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or C₁-C₂-alkylthio,
 - G¹ represents hydrogen (a) or represents groups

$$-CO-R^{20} -CO_{2}-R^{21} -SO_{2}-R^{22} - \prod_{i=0}^{R^{23}} R^{23} - \prod_{i=0}^{R^{25}} R^{25}$$
(b) (c) (d) (e) (f)

in which

R²⁰ represents in each case optionally mono- to pentafluoro- or -chloro-substituted C₁-C₁₆-alkyl, C₂-C₁₆-alkenyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl or cycloalkyl having 3-6 ring atoms which may be interrupted by oxygen and/or sulfur atoms, represents phenyl which is optionally mono- to disubstituted by fluorine,

25

30

chlorine, bromine, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, represents benzyl which is optionally mono to disubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-5 haloalkoxy, represents pyridyl, pyrimidyl, thiazolyl or pyrazolyl, each of which is optionally mono- to disubstituted by chlorine, bromine and/or C₁-C₄-alkyl, R^{21} represents C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₁-C₆-alkoxy-C₂-C₆-alkyl, C₁-C₆polyalkoxy-C2-C6-alkyl, each of which is optionally mono- to 10 pentasubstituted by fluorine or chlorine, represents phenyl or benzyl, each of which is optionally mono- to disubstituted by fluorine, chlorine, bromine, nitro, C₁-C₆-alkyl, C₁-C₆alkoxy, C₁-C₄-haloalkyl, R^{22} represents C₁-C₄-alkyl which is optionally mono- to pentasubstituted by 15 fluorine or chlorine, represents phenyl or benzyl, each of which is optionally mono- to disubstituted by C₁-C₄-alkyl, fluorine, chlorine, bromine, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, nitro or cyano, R²³ and R²⁴ independently of one another represent C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylamino, di(C₁-C₄)alkylamino, C₁-C₄-alkylthio, C₂-C₄-alkenyl-20 thio, C₃-C₆-cycloalkylthio, each of which is optionally mono- to trisubstituted by fluorine or chlorine, represent phenyl, phenoxy or phenylthio, each of which is optionally mono- to disubstituted by fluorine, chlorine, bromine, nitro, cyano, C₁-C₂-alkoxy, C₁-C₂-haloalkoxy, C₁-C₂alkylthio, C₁-C₂-haloalkylthio, C₁-C₂-alkyl, C₁-C₂-haloalkyl, R^{25} and R^{26} independently of one another represent $C_1\text{-}C_6\text{-alkyl}$, $C_1\text{-}C_6\text{-alkoxy}$, 25 C₃-C₆-alkenyl, C₁-C₄-alkoxy-C₁-C₂-alkyl, each of which is optionally mono- to trisubstituted by fluorine or chlorine, represent benzyl which is optionally mono- to disubstituted by fluorine, chlorine, bromine, C₁-C₂haloalkyl, C₁-C₄-alkyl or C₁-C₄-alkoxy or together represent a 5- to 6-30 membered ring which is optionally interrupted by oxygen or sulfur and which may optionally be substituted by C₁-C₂-alkyl,

3. The composition as claimed in claim 1 or 2, comprising at least one compound of the formula (I) in which

and at least one anthranilamide of the formula (II).

- X represents C₁-C₄-alkyl, C₁-C₄-alkoxy or trifluoromethyl,
- Y represents hydrogen, C₁-C₄-alkyl, chlorine, bromine, C₁-C₄-alkoxy, C₁-C₂-haloalkyl,
- Z represents C₁-C₄-alkyl, chlorine, bromine, C₁-C₄-alkoxy,

m represents 0 or 1,

A³ and A⁴ together with the carbon atom to which they are attached represent a saturated 5- to 6-membered ring which is optionally monosubstituted by C₁-C₄-alkyl or C₁-C₄-alkoxy,

G¹ represents hydrogen (a) or represents the groups

$$-CO-R^{20}$$
 $-CO_{2}-R^{21}$

, in which

10

15

20

5

(b) (c)

R²⁰ represents in each case optionally mono- to trifluoro- or -chloro-substituted C₁-C₁₂-alkyl, C₂-C₁₂-alkenyl, C₁-C₄-alkoxy-C₁-C₂-alkyl, or cycloalkyl having 3-6 ring atoms which may be interrupted by 1 to 2 oxygen atoms,

represents phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, nitro, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, trifluoromethyl or trifluoromethoxy;

R²¹ represents C₁-C₁₂-alkyl, C₂-C₁₂-alkenyl, C₁-C₄-alkoxy-C₂-C₄-alkyl, represents phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, bromine, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy or trifluoromethyl,

and at least one anthranilamide of the formula (II).

- 4. The composition as claimed in claim 1, 2 or 3, comprising at least one compound of the formula (I) in which
 - X represents methyl, ethyl, methoxy, ethoxy or trifluoromethyl,
 - Y represents hydrogen, methyl, ethyl, chlorine, bromine, methoxy or trifluoromethyl,
 - Z represents methyl, ethyl, chlorine, bromine or methoxy,
 - m represents 0 or 1,
- A³ and A⁴ together with the carbon atom to which they are attached form a saturated 5- to 6-membered ring which is optionally monosubstituted by methyl, ethyl, propyl, methoxy, ethoxy, propoxy, butoxy or isobutoxy,
 - G¹ represents hydrogen (a) or represents the groups

5

10

15

$$-CO-R^{20}$$
 $-CO_2-R^{21}$, in which (b) (c)

- R²⁰ represents in each case mono- to trifluoro- or -chloro-substituted C₁-C₈-alkyl, C₂-C₈-alkenyl, C₁-C₃-alkoxy-C₁-C₂-alkyl, or cycloalkyl having 3-6 ring atoms which may be interrupted by 1 to 2 oxygen atoms, represents phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, methyl, methoxy, trifluoromethyl or trifluoromethoxy;

 R²¹ represents C₁-C₈-alkyl, C₂-C₈-alkenyl, C₁-C₄-alkoxy-C₂-C₃-alkyl,
- represents C₁-C₈-alkyl, C₂-C₈-alkenyl, C₁-C₄-alkoxy-C₂-C₃-alkyl,
 represents phenyl or benzyl, each of which is optionally monosubstituted
 by fluorine, chlorine, bromine, nitro, methyl, methoxy or trifluoromethyl,
 and at least one anthranilamide of the formula (II).
- 5. The composition as claimed in claim 1, 2, 3 or 4, comprising the compound of the formula (I-1)

$$\begin{array}{c} O \\ II \\ C - CH_{2} - C(CH_{3})_{3} \\ H_{3}C \\ O \\ H_{3}C \end{array}$$

$$CH_{3} \qquad (I-1)$$

and/or the compound of the formula (I-2)

and at least one anthranilamide of the formula (II).

6. The composition as claimed in claim 1, 2, 3, 4 or 5, comprising at least one anthranilamide of the formula (II)

in which

A¹ and A² independently of one another represent oxygen or sulfur,

X¹ represents N or CR¹⁰,

R¹ represents hydrogen or represents in each case optionally mono- or polysubstituted C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl or C₃-C₆-cycloalkyl, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₂-C₄-alkoxycarbonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, (C₁-C₄-alkyl)C₃-C₆-cycloalkylamino and R¹¹,

R² represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, C₂-C₆-alkoxycarbonyl or C₂-C₆-alkylcarbonyl,

represents hydrogen, R¹¹ or represents in each case optionally mono- or polysubstituted C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylcarbonyl, C₃-C₆-trialkylsilyl, R¹¹, phenyl, phenoxy and a 5- or 6-membered heteroaromatic ring, where each phenyl, phenoxy and 5- or 6-membered heteroaromatic ring may optionally be substituted and where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹², or

 R^2 and R^3 may be attached to one another and form the ring M,

represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₃-C₆-halocycloalkyl, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkyl-

10

5

15

20

sulfinyl, C1-C4-haloalkylsulfonyl, C1-C4-alkylamino, C2-C8-dialkylamino, C3-C6cycloalkylamino, C3-C6-trialkylsilyl or represents in each case optionally mono- or polysubstituted phenyl, benzyl or phenoxy, where the substituents independently of one another may be selected from the group consisting of C1-C4-alkyl, C2-C4alkenyl, C2-C4-alkynyl, C3-C6-cycloalkyl, C1-C4-haloalkyl, C2-C4-haloalkenyl, C2-C4-haloalkynyl, C3-C6-halocycloalkyl, halogen, cyano, nitro, C1-C4-alkoxy, C1-C4-haloalkoxy, C1-C4-alkylthio, C1-C4-alkylsulfinyl, C1-C4-alkylsulfonyl, C1-C4alkylamino. C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, C₃-C₆-(alkyl)cycloalkylamino, C₂-C₄-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, C2-C6-alkylaminocarbonyl, C3-C8-dialkylaminocarbonyl and C3-C6-trialkylsilyl,

10

15

5

R⁵ and R⁸ in each case independently of one another represent hydrogen, halogen or represent in each case optionally substituted C₁-C₄-alkyl, C₁-C₄-haloalkyl, R¹², G, J, -OJ, -OG, -S(O)_p-J, -S(O)_p-G, -S(O)_p-phenyl, where the substituents independently of one another may be selected from one to three radicals W or from the group consisting of R¹², C₁-C₁₀-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₄-alkoxy and C₁-C₄-alkythio, where each substituent may be substituted by one or more substituents independently of one another selected from the group consisting of G, J, R⁶, halogen, cyano, nitro, amino, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-trialkylsilyl, phenyl and phenoxy, where each phenyl or phenoxy ring may optionally be substituted and where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹²,

20

G in each case i

25

in each case independently of one another represents a 5- or 6-membered nonaromatic carbocyclic or heterocyclic ring which optionally contains one or two ring members from the group consisting of C(=O), SO and $S(=O)_2$ and which may optionally be substituted by one to four substituents independently of one another selected from the group consisting of C_1 - C_2 -alkyl, halogen, cyano, nitro and C_1 - C_2 -alkoxy, or independently of one another represents C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_3 - C_7 -cycloalkyl, (cyano) C_3 - C_7 -cycloalkyl, (C_1 - C_4 -alkyl) C_3 - C_6 -cycloalkyl, (C_3 - C_6 -cycloalkyl, where each cycloalkyl, (alkyl)cycloalkyl and (cycloalkyl)-alkyl may optionally be substituted by one or more halogen atoms,

30

in each case independently of one another represents an optionally substituted 5or 6-membered heteroaromatic ring, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹²,

35

J

	R ⁶	independently of one another represent -C(=E ¹)R ¹⁹ , -LC(=E ¹)R ¹⁹ , -C(=E ¹)LR ¹⁹ ,
		-LC(= E^1)LR ¹⁹ , -OP(=Q)(OR ¹⁹) ₂ , -SO ₂ LR ¹⁸ or -LSO ₂ LR ¹⁹ , where each E^1
		independently of the others represents O, S, N-R ¹⁵ , N-OR ¹⁵ , N-N(R ¹⁵) ₂ , N-S=O,
		N-CN or N-NO ₂ ,
5	\mathbb{R}^7	represents hydrogen, C ₁ -C ₄ -alkyl, C ₁ -C ₄ -haloalkyl, halogen, C ₁ -C ₄ -alkoxy, C ₁ -C ₄ -
•		haloalkoxy, C ₁ -C ₄ -alkylthio, C ₁ -C ₄ -alkylsulfinyl, C ₁ -C ₄ -alkylsulfonyl, C ₁ -C ₄ -halo-
		alkylthio, C1-C4-haloalkylsulfinyl, C1-C4-haloalkylsulfonyl,
	R^9	represents C ₁ -C ₄ -haloalkyl, C ₁ -C ₄ -haloalkoxy, C ₁ -C ₄ -haloalkylsulfinyl or halogen,
	\mathbb{R}^{10}	represents hydrogen, C ₁ -C ₄ -alkyl, C ₁ -C ₄ -haloalkyl, halogen, cyano or C ₁ -C ₄ -halo-
10		alkoxy,
	\mathbb{R}^{11}	in each case independently of one another represents in each case optionally mono-
		to trisubstituted C ₁ -C ₆ -alkylthio, C ₁ -C ₆ -alkylsulfenyl, C ₁ -C ₆ -haloalkythio, C ₁ -C ₆ -
		haloalkylsulfenyl, phenylthio or phenylsulfenyl, where the substituents
		independently of one another may be selected from the list consisting of W,
15		$-S(O)_nN(R^{16})_2$, $-C(=O)R^{13}$, $-L(C=O)R^{14}$, $-S(C=O)LR^{14}$, $-C(=O)LR^{13}$,
		$-S(O)_nNR^{13}C(=O)R^{13}$, $-S(O)_nNR^{13}C(=O)LR^{14}$ and $-S(O)_nNR^{13}S(O)_2LR^{14}$,
	L	in each case independently of one another represents O, NR ¹⁸ or S,
	R^{12}	in each case independently of one another represents -B(OR ¹⁷) ₂ , amino, SH, thio-
		cyanato, C_3 - C_8 -trialkylsilyloxy, C_1 - C_4 -alkyl disulfide, -SF ₅ , -C(= E^1) R^{19} ,
20		$-LC(=E^{1})R^{19}$, $-C(=E^{1})LR^{19}$, $-LC(=E^{1})LR^{19}$, $-OP(=Q)(OR^{19})_{2}$, $-SO_{2}LR^{19}$ or
		-LSO ₂ LR ¹⁹ ,
	Q	represents O or S,
	R^{13}	in each case independently of one another represents hydrogen or represents in
		each case optionally mono- or polysubstituted C ₁ -C ₆ -alkyl, C ₂ -C ₆ -alkenyl, C ₂ -C ₆ -
25		alkynyl or C ₃ -C ₆ -cycloalkyl, where the substituents independently of one another
		may be selected from the group consisting of R ⁶ , halogen, cyano, nitro, hydroxyl,
		C ₁ -C ₄ -alkoxy, C ₁ -C ₄ -alkylsulfinyl, C ₁ -C ₄ -alkylsulfonyl, C ₁ -C ₄ -alkylamino, C ₂ -C ₈ -
•		dialkylamino, C ₃ -C ₆ -cycloalkylamino and (C ₁ -C ₄ -alkyl)C ₃ -C ₆ -cycloalkylamino,
•	R^{14}	in each case independently of one another represents in each case optionally mono-
30		or polysubstituted C ₁ -C ₂₀ -alkyl, C ₂ -C ₂₀ -alkenyl, C ₂ -C ₂₀ -alkynyl or C ₃ -C ₆ -
		cycloalkyl, where the substituents independently of one another may be selected
		from the group consisting of R ⁶ , halogen, cyano, nitro, hydroxyl, C ₁ -C ₄ -alkoxy, C ₁ -
		C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -alkylamino, C_2 - C_8 -dialkylamino, C_3 -
		C ₆ -cycloalkylamino and (C ₁ -C ₄ -alkyl)C ₃ -C ₆ -cycloalkylamino or represents
35		optionally substituted phenyl, where the substituents independently of one another
		may be selected from one to three radicals W or one or more radicals R ¹² ,

35

R15 in each case independently of one another represent hydrogen or represent in each case mono- or polysubstituted C1-C6-haloalkyl or C1-C6-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, nitro, hydroxyl, C1-C4-alkoxy, C1-C4-haloalkoxy, C1-C4-5 alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄haloalkylsulfinyl, C1-C4-haloalkylsulfonyl, C1-C4-alkylamino, C2-C8-dialkylamino, C2-C6-alkoxycarbonyl, C2-C6-alkylcarbonyl, C3-C6-trialkylsilyl and optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹², or N(R¹⁵)₂ 10 represents a cycle which forms the ring M, R^{16} represents C₁-C₁₂-alkyl or C₁-C₁₂-haloalkyl, or N(R¹⁶)₂ represents a cycle which forms the ring M. R^{17} in each case independently of one another represents hydrogen or C1-C4-alkyl, or B(OR¹⁷)₂ represents a ring, where the two oxygen atoms are attached via a chain to 15 two or three carbon atoms which are optionally substituted by one or two substituents independently of one another selected from the group consisting of methyl and C2-C6-alkoxycarbonyl, R^{18} in each case independently of one another represents hydrogen, C1-C6-alkyl or C₁-C₆-haloalkyl, or N(R¹³)(R¹⁸) represents a cycle which forms the ring M, R^{19} 20 in each case independently of one another represents hydrogen or represents in each case optionally mono- or polysubstituted C1-C6-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, nitro, hydroxyl, C1-C4-alkoxy, C1-C4-haloalkoxy, C1-C4-alkylthio, C1-C4-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-25 haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, CO₂H, C₂-C₆-alkoxycarbonyl, C2-C6-alkylcarbonyl, C3-C6-trialkylsilyl and optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W, C₁-C₆-haloalkyl, C₃-C₆-cycloalkyl or phenyl or pyridyl, each of which is optionally mono- to trisubstituted by W. 30 M in each case represents an optionally mono- to tetrasubstituted ring which, in addition to the nitrogen atom which is attached to the substituent pair R¹³ and R¹⁸, (R15)2 or (R16)2, contains two to six carbon atoms and optionally additionally a further nitrogen, sulfur or oxygen atom, and where the substituents independently of one another may be selected from the group consisting of C₁-C₂-alkyl, halogen,

W in each case independently of one another represents C₁-C₄-alkyl, C₂-C₄-alkenyl,

cyano, nitro and C₁-C₂-alkoxy,

5

 C_2 - C_4 -alkynyl, C_3 - C_6 -cycloalkyl, C_1 - C_4 -haloalkyl, C_2 - C_4 -haloalkenyl, C_2 - C_4 -haloalkynyl, C_3 - C_6 -halocycloalkyl, halogen, cyano, nitro, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -alkylamino, C_2 - C_8 -dialkylamino, C_3 - C_6 -cycloalkylamino, C_2 - C_4 -alkylcarbonyl, C_2 - C_6 -alkoxycarbonyl, C_2 - C_6 -alkylaminocarbonyl, C_3 - C_6 -dialkylaminocarbonyl, C_3 - C_6 -trialkylsilyl,

- n in each case independently of one another represents 0 or 1,
- p in each case independently of one another represents 0, 1 or 2.

where in the case that (a) R⁵ represents hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkynyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio or halogen and (b) R⁸ represents hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, halogen, C₂-C₄-alkylcarbonyl, C₂-C₆-alkynynyl, C₂-C₆-alkylaminocarbonyl or C₃-C₈ dialkylaminocarbonyl, (c) at least one substituent selected from the group consisting of R⁶, R¹¹ and R¹² is present and (d), if R¹² is not present, at least one R⁶ or R¹¹ is different from C₂-C₆-alkylcarbonyl, C₂-C₆ alkylaminocarbonyl and C₃-C₈-dialkylaminocarbonyl.

7. The composition as claimed in claim 1, 2, 3, 4, 5 or 6, comprising an anthranilamide of the formula (II-1)

$$\begin{array}{c|c}
R^2 & & & & & & & \\
R^3 & & & & & & & \\
R^5 & & & & & & & \\
R^5 & & & & & & & \\
\end{array}$$

$$\begin{array}{c|c}
R^2 & & & & & & \\
N & & & & & & \\
N & & & & & & \\
R^9 & & & & & & \\
\end{array}$$
(II-1)

in which

25

R² represents hydrogen or C₁-C₆-alkyl,

R³ represents C₁-C₆-alkyl which is optionally substituted by a radical R⁶,

R⁴ represents C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,

R⁵ represents hydrogen, C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,

represents -C(=E²)R¹⁹, -LC(=E²)R¹⁹, -C(=E²)LR¹⁹ or -LC(=E²)LR¹⁹, where each E² independently of the others represents O, S, N-R¹⁵, N-OR¹⁵, N-N(R¹⁵)₂, and each L independently of the others represents O or NR¹⁸,

30 R⁷ represents C₁-C₄-haloalkyl or halogen,

R⁹ represents C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy, S(O)_pC₁-C₂-haloalkyl or halogen,

R¹⁵ in each case independently of one another represents hydrogen or represents in

each case optionally substituted C_1 - C_6 -haloalkyl or C_1 - C_6 -alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -haloalkylsulfinyl, C_1 - C_4 -haloalkylsulfinyl, C_1 - C_4 -haloalkylsulfonyl,

- R¹⁸ in each case represents hydrogen or C₁-C₄-alkyl,
- R¹⁹ in each case independently of one another represents hydrogen or C₁-C₆-alkyl,
- p independently of one another represents 0, 1, 2.
- 10 8. The composition as claimed in claim 1, 2, 3, 4, 5, 6 or 7, comprising compounds of the formula (I) (group 1) or at least one acaricidally active compound (group 2) and at least one anthranilamide of the formula (II) in a ratio of from 500:1 to 1:50.
- 9. The use of a synergistically effective mixture as defined in claims 1, 2, 3, 4, 5 6 or 7 for controlling animal pests.
 - 10. A process for preparing pesticides, characterized in that a synergistically effective mixture as defined in claims 1, 2, 3, 4, 5 6 or 7 is mixed with extenders and/or surfactants.