TUM Analysis für Informatik [MA0902], WiSe 2022/2023 Mitschriften basierend auf der Vorlesung von Prof. Dr. Silke Rolles

Zuletzt aktualisiert: January 20, 2023

Introduction

About

Hier sind die wichtigsten Konzepte / Formeln der Analysis Vorlesung von Prof. Dr. Silke Rolles im Wintersemester 2022/2023 zusammengefasst.

Die erstellten Notizen sind stark an den Vorlesungsfolien von Prof. Dr. Silke Rolles orientiert.

Die Mitschriften selbst sind in Markdown geschrieben und werden mithilfe einer GitHub-Action nach jedem Push mithilfe von Pandoc zu einem PDF konvertiert.

Eine stets aktuelle Version der PDFs kann über https://github.com/ManuelLerchner/analysis/releases/download/Release/merge.pdf heruntergeladen werden.

How to Contribute

- 1. Fork this Repository
- 2. Commit and push your changes to your forked repository
- 3. Open a Pull Request to this repository
- 4. Wait until the changes are merged

Contributors

Contents

	Introduction	 . 1
	About	 . 1
	How to Contribute	 . 1
	Contributors	 . 1
1.	. Reelle Zahlen	5
	1.1 Zahlenmengen	 . 5
	Definition Abzählbarkeit	
	Anordnung von Körpern	
	1.2 Eigenschaften der reellen Zahlen	
	Beschränktheit	
	Supremumsaxiom in den reellen Zahlen	
	$\mathbb R$ ist archimedisch	
	Die rationalen Zahlen liegen dicht in \mathbb{R}	
	1.3 Wichtige Ungleichungen	
	Dreiecksungleichung	
	Cauchy-Schwarz Ungleichung	 . 6
_		_
2.	. Folgen	7
	2.0 Definition	
	Rechenregeln Grenzwerte	
	2.1 Konvergenz	 . 7
	Definition Konvergenz	 . 7
	Definition Divergenz	
	Asymptotische Äquivalenz	
	Beschränktheit	
	Einschließungsregel	
	2.2 Monotone Folgen	
	Definition	
	Hilfreiche Formeln	 . 8
3	. Reihen	10
J.	3.1 Definition	
	Definition	
	Hilfreiche Reihen	
	3.2 Konvergenzkriterien	
	Notwendige Bedingung	
	Majorantenkriterium	 . 10
	Minorantenkriterium	 . 11
	Quotientenkriterium	 . 11
	Leibnitz Kriterium (Alternierende Reihen)	 . 11
	3.3 Wert einer Reihe	 . 11
	Wert einer Reihe	
	3.4 Rechenregeln Reihen	
	Addition von Reihen	
	Multiplikation mit einer Konstanten	
	Addition von konvergenten und divergenten Reihen	
	Divergence des Vehrwertes	 . 12

	Umordnungssatz Multiplikation von Reihen 3.5 Eigenschaften der Exponentialfunktion	12
4.	Stetigkeit	13
	4.1 Definition	
	Definition Stetigkeit	
	Beispiel Stetigkeit einer Funktion $f: \mathbb{D} \subseteq \mathbb{R}^d \to \mathbb{R}$	
	Konvergenz von Folgen in \mathbb{R}^d	13
	Stetigkeit der Exponentialfunktion in \mathbb{C}	13
	Komposition stetiger Funktionen	
	4.2 Zwischenwertsatz	
	4.2 Zwischenwertsatz	
	Satz von Bolzano-Weierstrass	
	4.4 Existenz von Maxima und Minima	
	Abgeschlossenheit von Mengen	
	Beschränktheit von Mengen	
	Kompaktheit von Mengen	
	Satz von Maximum und Minimum	15
5 .	Wichtige Funktionen	16
	5.1 Umkehrfunktion	
	Definition Umkehrfunktion	16
	Stetigkeit von Umkehrfunktionen	16
	5.2 Logarithmus	16
	Definition Logarithmus	16
	Asymptotisches Verhalten von exp und ln	16
	Allgemeine Potenzfunktion	17
	5.3 Trigonometrische Funktionen	17
	Reihendarstellung der Trigonometrischen Funktionen	
	Umkehrfunktionen der Trigonometrischen Funktionen	
Di	ifferenzierbarkeit	18
יכו	Landau Symbole	
	Definition	
	Spezielle Ableitungen	
	•	
	Ableitungsregeln	
	Ableitungsregeln für Potenzen	19
	Ableitungungen Triigonometrischer Funktionen	
	Kettenregel	
	Ableitung der Umkehrfunktion	
	Beispiele	19
Aı	nwendungen der Ableitung	20
	Extrema	-
	Mittelwertsatz	
	Veralgemeinerter Mittelwertsatz	
	Spezialfall Satz von Rolle	20
	Monotonie	20
	Monotoniekriterium	21
	Hinreichende Kriterien für Extrema	21
	Berechnung von Grenzwerten	21
	Regel von L'Hospital	
	Höhere Ableitungen	
	Krümmungsverhalten	
	Kurvendiskussion	
Ιn	tegration	23
	Riemann Integration	
	Bestimmtes Integral	

Eigenschaften	
Mittelwertsatz	
Stammfunktion	
Integrationsmethoden	
Partialbruchzerlegung	
Partielle Integration	
Integration durch Substitution	

1. Reelle Zahlen

1.1 Zahlenmengen

Definition Abzählbarkeit

A ist abzählbar, wenn es eine surjektive Abbildung von \mathbb{N} auf A gibt. $(f:\mathbb{N}\to A)$

- Mit anderen Worten: A kann durchnummeriert werden
- Beispiele:
 - $\mathbb Q$ ist abzählbar (Alle Brüche können "schlangenartig" durchnummeriert werden, siehe Diagonalargument)
 - $-\mathbb{R}$ ist nicht abzählbar (Widerspruchsbeweis)

Anordnung von Körpern

Der Körper \mathbb{R} ist angeordnet da:

- 1. $\forall a \in \mathbb{R}$ gilt entweder:
 - a = 0 oder
 - a > 0 oder
 - *a* < 0
- 2. $\forall a, b \in \mathbb{R} \text{ mit } a, b > 0 \text{ gilt:}$
 - a+b>0 und
 - $a \cdot b > 0$

Der Körper C kann nicht angeordnet werden da:

- Angenommen: Sei $a \in \mathbb{C}$ und $a \neq 0$ dann muss entweder:
 - -a > 0, und laut definition von Anordnung auch $a \cdot a > 0$ oder
 - -a > 0, und somit auch $(-a) \cdot (-a) = a^2 > 0$
- Somit gilt in jedem Fall $a^2 > 0$
 - Sei a = i dann gilt $a^2 = -1$
 - Das ist ein Widerspruch

1.2 Eigenschaften der reellen Zahlen

Beschränktheit

Eine Menge $M \subseteq \mathbb{R}$ ist nach **oben beschränkt**, falls ein $s_0 \in \mathbb{R}$ existiert, sodass $\forall s \in M$ gilt: $s \leq s_0$

• Die Zahl s_0 heißt **obere Schranke** von M

Supremumsaxiom in den reellen Zahlen

Jede nichtleere, nach oben beschränkte Menge von $\mathbb R$ hat eine kleinste obere Schranke, diese heißt sup $M \in \mathbb R$

Jede nichtleere, nach unten beschränkte Menge von $\mathbb R$ hat eine größte untere Schranke, diese heißt inf $M \in \mathbb R$

Falls das Supremum oder das Infimum einer Menge M auch selbst in M liegt, dann wird es auch als Maximum bzw. Minimum von M bezeichnet

- Konventionen:
 - $-\sup M = \infty$ falls M nicht nach oben beschränkt ist
 - $-\inf M = -\infty$ falls Mnicht nach unten beschränkt ist
 - $-\sup\emptyset = -\infty$

\mathbb{R} ist archimedisch

 $\forall a \in \mathbb{R}$ existiert $n \in \mathbb{N}$ mit a < n

Die rationalen Zahlen liegen dicht in \mathbb{R}

 $\forall a, b \in \mathbb{R} \text{ mit } a < b \text{ existiert } r \in \mathbb{N} \text{ mit } a < r < b$

1.3 Wichtige Ungleichungen

Dreiecksungleichung

 $\forall x, y \in \mathbb{R} \text{ gilt:}$

- $\begin{array}{ll} \bullet & |x+y| \leq |x| + |y| \\ \bullet & |x+y| \geq ||x| |y|| \end{array}$

Cauchy-Schwarz Ungleichung

 $\forall x, y \in \mathbb{R} \text{ gilt:}$

- $|\langle x, y \rangle| \le ||x|| \cdot ||y||$
- "Der Betrag vom Skalarprodukt ist kleiner oder gleich dem Produkt der Beträge der Vektoren"

2. Folgen

2.0 Definition

Eine Folge $(a_n)_{n\in\mathbb{N}}$ ist eine Abbildung $\mathbb{N}\to\mathbb{R}$ mit $n\mapsto a_n$

Rechenregeln Grenzwerte

Falls $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$ dann gilt:

- $\lim_{n \to \infty} (a_n + b_n) = a + b$

- $\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$ $\lim_{n \to \infty} (c \cdot a_n) = c \cdot a$ $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b} \text{ falls } b \neq 0$

2.1 Konvergenz

Besitzt eine Folge so einen Grenzwert, so spricht man von Konvergenz der Folge – die Folge ist konvergent; sie konvergiert –, andernfalls von **Divergenz**.

Figure 1: Bild Epsilonschlauch

Definition Konvergenz

Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert nach $a\in\mathbb{C}$ falls:

• $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : \ |a_n - a| < \varepsilon$

Kurzschreibweisen:

- $\lim_{n \to \infty} a_n = a$ $a_n \stackrel{n \to \infty}{\longrightarrow} a$

Definition Divergenz

Eine Folge $(a_n)_{n\in\mathbb{N}}$ divergiert falls:

• $\forall a \in \mathbb{R} \ \exists \varepsilon > 0 \ \forall n_0 \in \mathbb{N} \ \exists n > n_0 \ |a_n - a| \ge \varepsilon$

Eine Folge $(a_n)_{n\in\mathbb{N}}$ divergiert gegen ∞ / konvergiert uneigentlich falls:

• $\forall K > 0 \; \exists n_0 \in \mathbb{N} \; \forall n \geq n_0 \; a_n \geq K$

Eine Folge $(a_n)_{n\in\mathbb{N}}$ divergiert gegen $-\infty$ / konvergiert uneigentlich falls:

• $\forall K > 0 \; \exists n_0 \in \mathbb{N} \; \forall n \ge n_0 \; a_n \le -K$

Teilfolgen

Sollte es eine Teilfolge geben, die nicht konvergiert, dann ist die gesamte Folge nicht konvergent

Asymptotische Äquivalenz

Falls $a_n \xrightarrow{n \to \infty} a$ und $b_n \xrightarrow{n \to \infty} b$ mit $a, b \neq 0$ dann gilt:

• $a_n \simeq b_n$ falls $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$ bzw. $\lim_{n \to \infty} \frac{b_n}{a_n} = 1$

Außerdem: Falls $a_n \simeq b_n$ dann gilt:

- Es sind entweder beide Folgen konvergent oder beide divergent
- $\lim_{n\to\infty} (b_n a_n) = 0$ gilt nur für konvergente, asymptotisch gleiche Folgen.

Beschränktheit

Eine Folge $(a_n)_{n\in\mathbb{N}}$ ist beschränkt falls $\exists K\in\mathbb{R} \ \forall n\in\mathbb{N} \ |a_n|\leq K$

• Insbesondere ist eine Folge beschränkt falls sie konvergiert

Einschließungsregel

Falls $a_n \leq b_n \leq c_n$ für alle bis auf endlich viele n dann gilt:

• Falls $a \in \mathbb{R}$ mit $\lim_{n \to \infty} a_n = a = \lim_{n \to \infty} c_n$ dann gilt $\lim_{n \to \infty} b_n = a$

2.2 Monotone Folgen

Definition

Eine folge $(a_n)_{n\in\mathbb{N}}$ ist monoton wachsend falls $a_n \leq a_{n+1}$ für alle $n \in \mathbb{N}$

Eine folge $(a_n)_{n\in\mathbb{N}}$ ist monoton fallend falls $a_n\geq a_{n+1}$ für alle $n\in\mathbb{N}$

- Zusammenhang mit Supremum und Infimum
 - Falls $(a_n)_{n\in\mathbb{N}}$ eine monoton wachsende Folge ist dann gilt:
 - $* \lim_{n \to \infty} a_n = \sup_{n \in \mathbb{N}} a_n$
 - Falls $(a_n)_{n\in\mathbb{N}}$ eine monoton fallende Folge ist dann gilt:
 - $* \lim_{n \to \infty} a_n = \inf_{n \in \mathbb{N}} a_n$

Hilfreiche Formeln

Bernoulli-Ungleichung

• $(1+x)^n \ge 1 + nx$ für x > -1 und $n \in \mathbb{N}$

${\bf Binomial koeffizient en}$

•
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Endliche Geometrische Summe

•
$$\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$$

3. Reihen

3.1 Definition

Definition

Eine Reihe $(s_n)_{n\in\mathbb{N}}$ ist eine Reihe für die Folge $(a_n)_{n\in\mathbb{N}}$ mit

- $\bullet \quad s_n = \sum_{k=0}^n a_k$
- Hierbei ist s_n die n-te Partialsumme der Reihe.

Falls s_n konvergiert, dann heißt die Reihe konvergent. Der Grenzwert heißt dann der Wert der Reihe.

Falls die Reihe der Absolutbeträge einer Folge konvergiert, dann heißt die ursprüngliche Reihe absolut konvergent

Hilfreiche Reihen

Harmonische Reihe

- $s_n = \sum_{k=1}^n \frac{1}{k}$ s_n divergiert nach ∞

Geometrische Reihe

- $s_n = \sum_{k=0}^n q^k$
- s_n divergiert nach ∞ falls $|q| \ge 1$ und konvergiert nach $\frac{1}{1-q}$ falls |q| < 1

Teleskopreihe

- $s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n (\frac{1}{k} \frac{1}{k+1})$ s_n konvergiert gegen 1

3.2 Konvergenzkriterien

Notwendige Bedingung

Damit s_n konvergieren kann muss $\lim_{n\to\infty} a_n = 0$ gelten.

Majorantenkriterium

Sei $|a_k| \leq b_k$ für alle $k \in \mathbb{N}$. Wenn $\sum_{k=1}^{\infty} b_k$ konvergiert, dann konvergiert die Reihe $\sum_{k=1}^{\infty} a_k$ absolut.

Beispiel:

$$s_n = \sum_{k=1}^n \frac{k}{k^3 + k}$$

$$a_k = \frac{k}{k^3 + k} \le \frac{k}{k^3} = \frac{1}{k^2}$$
Da $\sum_{k=1}^n \frac{1}{k^2}$ konvergiert, ist auch s_n konvergent.

Minorantenkriterium

Falls $|a_n| \leq b_n$ für alle $n \in \mathbb{N}$, und a_n divergiert, dann ist auch b_n divergent.

Beispiel:

$$\begin{split} s_n &= \sum_{k=1}^n \frac{1}{\sqrt{k}} \\ a_k &= \frac{1}{\sqrt{k}} \geq \frac{1}{k} \\ \text{Da} \sum_{k=1}^n \frac{1}{k} \text{ divergiert, ist auch } s_n \text{ divergent.} \end{split}$$

Quotientenkriterium

Sei
$$q = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$
.

- Falls q < 1, dann ist konvergiert die Summe $\sum_{n=1}^{\infty} a_n$.
- Für q > 1 divergiert diese.
- Ansonsten ist keine Aussage möglich.

Beispiel:

$$s_n = \sum_{k=1}^n \frac{1}{n!}$$

$$q = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{1}{(n+1)!}}{\frac{1}{n!}} \right| = \lim_{n \to \infty} \frac{1}{n+1} = 0$$
Da $q < 1$, ist s_n konvergent.

Leibnitz Kriterium (Alternierende Reihen)

Sei $(a_n)_{n\in\mathbb{N}_{\neq}}$ monoton fallend mit $\lim_{n\to\infty}a_n=0$

• Dann konvergiert die alternierende Reihe $s=\sum\limits_{k=0}^{\infty}(-1)^ka_k$

Beispiel:

$$s_n = \sum_{k=0}^n (-1)^k \frac{1}{2^k}$$

Da $a_k = \frac{1}{2^k}$ monoton fallend ist, und gegen 0 konvergiert, ist s_n konvergent.

3.3 Wert einer Reihe

Wert einer Reihe

Die Summe einer Reihe ist der Grenzwert der Partialsummen.

Beispiele für konvergente Reihen:

•
$$\lim_{n\downarrow 0} x^a =$$

$$-0 \text{ falls } a > 0$$

$$-1 \text{ falls } a = 0$$

$$-\infty \text{ falls } a < 0$$

•
$$\lim_{n \to \infty} x^a =$$
 $- 0 \text{ falls } a < 0$

$$-1$$
 falls $a = 0$
 $-\infty$ falls $a > 0$

•
$$\lim_{x \downarrow 0} \ln(x) = -\infty$$

•
$$\lim_{x \to \infty} x \ln(x) = 0$$

•
$$\lim_{x \to 0} \frac{\sin(ax)}{x} = a$$

3.4 Rechenregeln Reihen

Addition von Reihen

Seien $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ konvergente Reihen. Dann folgt, dass auch die Summe der Beiden Reihen

•
$$\sum_{k=1}^{\infty} (a_k + b_k) = \sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} b_k$$
.

Multiplikation mit einer Konstanten

Falls $\sum_{k=1}^{\infty} a_k$ eine konvergente Reihe ist, dann konvergiert auch $\sum_{k=1}^{\infty} c \cdot a_k$ mit $c \in \mathbb{R}$.

Addition von konvergenten und divergenten Reihen

Seien $\sum_{k=1}^{\infty} a_k$ eine konvergente Reihe und $\sum_{k=1}^{\infty} b_k$ eine divergente Reihe. Dann divergiert auch die Reihe $\sum_{k=1}^{\infty} (a_k + b_k)$.

Divergenz des Kehrwertes

Sei $\sum_{k=1}^{\infty} a_k$ eine konvergente Reihe positiver Zahlen. Dann divergiert $\sum_{k=1}^{\infty} \frac{1}{a_k}$.

Umordnungssatz

$$\sum\limits_{k=1}^{\infty}a_k$$
konvergiert absolut $\iff \sum\limits_{k=1}^{\infty}a_{\sigma(k)}=\sum\limits_{k=1}^{\infty}a_k$

Jede Umordnung von Reihenelementen muss gegen denselben Grenzwert konvergieren.

Multiplikation von Reihen

Sind $\sum_{k=0}^{\infty} a_k$ und $\sum_{k=0}^{\infty} b_k$ absolut konvergent, dann ist auch $\sum_{k=0}^{\infty} c_k$ mit $c_k = \sum_{l=0}^{\infty} a_l b_{k-l}$ (Cauchy-Produkt)

12

3.5 Eigenschaften der Exponentialfunktion

$$\exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!} \exp(x) = \lim_{n \to \infty} (1 + \frac{x}{n})^n$$

•
$$\exp(w+z) = \exp(w) + \exp(z)$$

• $\exp(0) = 1 \ \forall z \in \mathbb{C}$
• $\exp(-z) = \frac{1}{\exp(z)} \ \forall z \in \mathbb{C}$
• $\exp(x) > 0 \ \forall x \in \mathbb{R}$

•
$$\exp(0) = 1 \ \forall z \in \mathbb{C}$$

•
$$\exp(-z) = \frac{1}{\exp(z)} \, \forall z \in \mathbb{C}$$

•
$$\exp(x) > 0 \ \forall x \in \mathbb{R}$$

•
$$\exp:\mathbb{R}\to\mathbb{R}$$
 ist streng monoton wachsend

•
$$|\exp(z)| \le \exp(|z|) \ \forall z \in \mathbb{C}$$

4. Stetigkeit

4.1 Definition

Definition Stetigkeit

Eine Funktion $f: \mathbb{D} \subseteq \mathbb{R}^d \to \mathbb{R}^q$ mit Definitionsbereich \mathbb{D} ist stetig im Punkt x falls:

- Für alle Folgen $(x_n)_{n\in\mathbb{N}}$ in \mathbb{D} mit $\lim_{n\to\infty}x_n=x$ gilt:
 - $-\lim_{n\to\infty} f(x_n) = f(x)$
- Man schreibt auch:
 - $-\lim_{x \to x_0} f(x) = f(x_0)$

Ist eine Funktion in allen Punkten $x \in \mathbb{D}$ stetig, nennt man sie auch stetig.

Beispiel Stetigkeit einer Funktion $f: \mathbb{D} \subseteq \mathbb{R}^d \to \mathbb{R}$

Um die Stetigkeit einer Funktion $f: \mathbb{D} \subseteq \mathbb{R}^d \to \mathbb{R}$ zu prüfen zeige, dass:

•
$$\lim_{x \to x_0} |f(x) - f(x_0)| = 0$$

Beispiel: f(x) = |x|

• $|f(x) - f(x_0)| = ||x| - |x_0|| \le |x_n - x_0|$ - Für $x_n \to x_0$ gilt $|x_n - x_0| \to 0$ - $\implies f$ ist stetig

Konvergenz von Folgen in \mathbb{R}^d

Eine Folge $(x_n)_{n\in\mathbb{N}}$ in \mathbb{R}^d konvergiert gegen einen Punkt $x\in\mathbb{R}^d$, falls alle Komponten der Folge gegen die entsprechenden Komponenten von x konvergieren.

Beispiel:

- $x_n = (1 + \frac{1}{n}, \frac{1}{n^2})$
- Die Folge konvergiert gegen den Punkt (1,0) da die Komponenten gegen 1 bzw. 0 konvergieren

Stetigkeit der Exponentialfunktion in \mathbb{C}

Die Exponentialfunktion e^x ist in \mathbb{C} stetig.

Komposition stetiger Funktionen

Seien $f: \mathbb{D} \subseteq \mathbb{R}^d \to \mathbb{R}^q$ und $g: \mathbb{R}^q \to \mathbb{R}^{\times}$ stetige Funktionen. Dann ist auch $g \circ f$ stetig.

Beispiele für stetige Funktionen:

- f(x) = c
- f(x) = x
- f(x,y) = x + y
- $f(x,y) = x \cdot y$

• $f(x,y) = \frac{x}{y}$ mit $\mathbb{D} = \mathbb{R} \times (\mathbb{R} \setminus \{0\})$

Damit sind auch Summen und Produkte stetiger Funktionen stetig.

- Somit sind insbesondere auch Polynome stetig
- Rationalen Funktionen mit $f(z) = \frac{p(z)}{q(z)}$ mit p und q Polynomen sind auf ihrem Definitionsbereich stetig

4.2 Zwischenwertsatz

Falls eine Funktion $f:[a,b]\to\mathbb{R}$ stetig auf dem Intervall [a,b] ist, dann nimmt sie jeden Wert zwischen f(a) und f(b) an.

Beispiel:

- Hat $f(x) = \cos(x) x$ eine Nullstelle auf $[0, \pi/2]$?
 - -f(0) = 1 und $f(\pi/2) = -\pi/2$
 - Da die Funktion stetig ist, nimmt sie auf $[0, \pi/2]$ jeden Wert zwischen 1 und $-\pi/2$ an. Somit $\exists x \in [0, \pi/2]$ mit f(x) = 0

4.3 Häufungspunkte

Sei $(a_{n_k})_{k\in\mathbb{N}}$ eine Teilfolge von $(a_n)_{n\in\mathbb{N}}$

• Dann heißt a^* ein $H\ddot{a}ufungspunkt$ von $(a_n)_{n\in\mathbb{N}}$ falls es eine Teilfolge mit $\lim_{k\to\infty}a_{n_k}=a^*$ gibt

Falls die Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert, dann ist der Häufungspunkt der Folge gleich dem Grenzwert. Beispiel:

- $a_n = (-1)^n$
- Diese Folge hat die Teilfolgen $(a_{2k})_{k\in\mathbb{N}}$ und $(a_{2k+1})_{k\in\mathbb{N}}$ welche jeweils konstant 1 bzw -1 sind. Somit hat die Folge a_n den Häufungspunkt 1 und -1

Satz von Bolzano-Weierstrass

Jede beschränkte Folge $(a_n)_{n\in\mathbb{N}}$ hat mindestens eine konvergente Teilfolge und somit auch mindestens einen Häufungspunkt.

Diese Aussage lässt sich auch auf \mathbb{R}^d mit $d \geq 2$ übertragen. Dabei heißt eine Folge $(x_n)_{n \in \mathbb{N}}$ mit $x_n \in \mathbb{R}^d$ beschränkt, falls:

• $\exists M > 0 \ \forall n \in \mathbb{N} \ ||x_n||_2 \leq M$.

4.4 Existenz von Maxima und Minima

Ein Punkt $x \in D$ heißt:

- Minimumstellen von f falls $f(x) \leq f(y)$ für alle $y \in D$
- Maximumstellen von f falls $f(x) \ge f(y)$ für alle $y \in D$

Nicht jede Funktion hat ein Maximum bzw. Minimum (z.B. $f: \mathbb{R} \to \mathbb{R}$, f(x) = x)

Abgeschlossenheit von Mengen

Eine Menge $A \in \mathbb{R}^d$ heißt abgeschlossen, falls der Grenzwert jeder Konvergenten Folgen aus A wieder in A liegt.

• $x_n \in A \ \forall n \ \text{und} \ \lim_{n \to \infty} x_n = x \implies x \in A$

Beschränktheit von Mengen

Eine Menge $A \in \mathbb{R}^d$ heißt beschränkt, falls es eine positive Zahl M gibt, sodass für alle $x \in A$ $|x| \leq M$ gilt.

Kompaktheit von Mengen

Eine Menge $A \in \mathbb{R}^d$ heißt kompakt, falls sie abgeschlossen und beschränkt ist.

Beispiel: [0, 1]

- $[0,1] \subseteq \mathbb{R}$ ist abgeschlossen, da für alle $0 \le x_n \le 1$ und $\lim_{n \to \infty} x_n = x$ gilt, dass $x \in [0,1]$
- Diese Menge ist auch beschränkt, da z.B. $|x| \le 1$ für alle $x \in [0,1]$ – Somit ist [0,1] kompakt

Beispiel: [0,1)

- Diese Menge ist nicht abgeschlossen, da z.B. $\lim_{n\to\infty}1-\frac{1}{n}=1$ und $1\notin[0,1)$
- Somit ist diese Menge auch nicht kompakt.

Jede kompakte Menge $K \in \mathbb{R}$ $K \neq \emptyset$ ist beschränkt und besitzt somit auch ein Maximum und ein Minimum.

Wenn $K \in \mathbb{R}^d$ kompakt ist \iff Jede Folge aus K besitzt eine Konvergente Teilfolge mit Grenzwert in K.

Wenn $f: K \to \mathbb{R}$ stetig ist und K kompakt ist, dann ist auch f(K) bzw. das Bild von f kompakt.

• Somit ist insbesondere auch f([a,b]) kompakt, falls f stetig ist. Somit besitzt f([a,b]) auch ein Maximum und ein Minimum.\$\$

Satz von Maximum und Minimum

Jede stetige Funktion $f: K \to \mathbb{R}$ besitzt ein Maximum und ein Minimum in K. falls K kompakt ist. Somit exisiteren $\underline{x}, \overline{x} \in K$ mit $f(\underline{x}) \leq f(\overline{x})$ für alle $x \in K$.

- $\underline{x} = \arg\min_{x \in K} f(x)$ bzw. $f(\underline{x}) = \min_{x \in K} f(x)$
- $\overline{x} = \arg \max_{x \in K} f(x)$ bzw. $f(\overline{x}) = \max_{x \in K} f(x)$

5. Wichtige Funktionen

5.1 Umkehrfunktion

Definition Umkehrfunktion

Eine Funktion $f: \mathbb{D} \subseteq \mathbb{R}^d \to B \subseteq \mathbb{R}^q$ heißt bijektiv, falls für alle $y \in B$ genau ein $x \in \mathbb{D}$ existiert, sodass f(x) = y gilt.

• Man schreibt auch: $f^{-1}: B \to \mathbb{D}, y \mapsto x$

Stetigkeit von Umkehrfunktionen

Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine stetige, und streng monoton wachsende Funktion.

- Dann ist $f: I \to f(I)$ bijektiv.
- Und $f^{-1}: f(I) \to I$ stetig und streng monoton wachsend.

5.2 Logarithmus

Definition Logarithmus

Der natürliche Logarithmus ist definiert als:

• $\ln:(0,\infty)\to\mathbb{R}$ mit $x\mapsto \ln(x)$

Er ist die Umkehrfunktion von e^x . Somit gilt auch:

- $e^{\ln(x)} = x$ für alle $x \in (0, \infty)$
- $\ln(e^x) = x$ für alle $x \in \mathbb{R}$

Rechenregeln:

- $\ln(xy) = \ln(x) + \ln(y)$ für alle x, y > 0
- $\ln(\frac{x}{y}) = \ln(x) \ln(y)$ für alle x, y > 0
- $\ln(x^k) = k \ln(x)$ für alle $k \in \mathbb{Z}$ und x > 0

Wichige Werte:

- ln(1) = 0
- $\ln(e) = 1$
- $\lim_{x \to 0} \ln(x) = -\infty$
- $\lim_{x \to \infty} \ln(x) = \infty$

Asymptotisches Verhalten von exp und ln

- Die Exponentialfunktion wächst schneller gegen unendlich als jedes Polynom: $\lim_{m\to\infty} \frac{e^x}{x^m} = \infty$ und $\lim_{x\to\infty}\frac{x^m}{e^x}=0$ • x wächst schneller gegen unendlich als jede Potenz des Logarithmus: $\lim_{x\to\infty}\frac{x}{(\ln x)^m}=\infty$
- Mehrfache Anwendung des Logarithmus führt zu langsamerem Wachstum: $\lim_{x\to\infty}\frac{\ln x}{\ln \ln x}=\infty$

Allgemeine Potenzfunktion

Definition:

•
$$x^a = e^{a \ln x}$$

Spezialfälle:

•
$$\forall n \in \mathbb{N} : x^n = e^{n \ln x} = e^{\ln x} \cdot e^{\ln x} \dots e^{\ln x} (\text{n-mal}) = x \cdot x \dots x (\text{n-mal})$$

•
$$\sqrt[n]{x} = x^{1/n}$$
, denn $(x^{1/n})^n = (e^{\frac{1}{n} \ln x})^n = e^{\ln x} = x$

Logarithmus zur Basis b:

$$\forall b > 1 \text{ und } a > 0$$

$$\log_b(a) = \frac{\ln(a)}{\ln b}$$

5.3 Trigonometrische Funktionen

Komplexe Zahlen mit Betrag 1 können in folgender Form dargestellt werden (Eulersche Formel):

•
$$e^{ix} = \cos x + i \sin x$$
 $\forall x \in \mathbb{R}$

Dies ist äquivalent zu:

$$\cos x = \frac{1}{2}(e^{ix} + e^{-ix}) \qquad \forall x \in \mathbb{R}$$

•
$$\cos x = \frac{1}{2}(e^{ix} + e^{-ix}) \quad \forall x \in \mathbb{R}$$

• $\sin x = \frac{1}{2i}(e^{ix} - e^{-ix}) \quad \forall x \in \mathbb{R}$

Daraus können auch die Additionstheoreme für die Trigonometrischen Funktionen abgeleitet werden:

•
$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

•
$$\sin(x+y) = \cos x \sin y + \sin x \cos y$$

Außerdem wird der Tangens und die Cotangens definiert als:

•
$$\tan x = \frac{\sin x}{\cos x}$$
 wenn $\cos x \neq 0$

•
$$\tan x = \frac{\sin x}{\cos x}$$
 wenn $\cos x \neq 0$
• $\cot x = \frac{\cos x}{\sin x}$ wenn $\sin x \neq 0$

Reihendarstellung der Trigonometrischen Funktionen

Die Trigonometrischen Funktionen können auch als unendliche Summen dargestellt werden:

•
$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$$

•
$$\sin x = \sum_{k=0}^{\kappa=0} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$

Über diese Reihendarstellung lassen sich auch Grenzwerte bestimmen:

•
$$\lim_{x \to 0} \frac{\sin x}{x} = \frac{\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}}{x} = \dots = 1$$

Umkehrfunktionen der Trigonometrischen Funktionen

Die Umkehrfunktionen der Trigonometrischen Funktionen sind:

•
$$\sin: [-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1]$$

$$-\arcsin(x):[-1,1]\to[-\frac{\pi}{2},\frac{\pi}{2}]$$

•
$$\cos : [0, \pi] \to [-1, 1]$$

$$-\arccos(x): [-1,1] \to [0,\pi]$$

•
$$\tan: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \left(-\infty, \infty\right)$$

$$-\arctan(x):(-\infty,\infty)\to(-\frac{\pi}{2},\frac{\pi}{2})$$

Differenzierbarkeit

Landau Symbole

- f(x) = O(g(x)) für $x \to x_0$ wenn:
 - $-\exists \epsilon > 0 \quad \exists C > 0 \quad \forall x \text{ mit } ||x x_0|| < \epsilon \quad |f(x)| \le C|g(x)|$
 - "f ist in der nähe von x_0 bis auf Konstanten asymptotisch kleiner gleich g"
- f(x) = O(q(x)) für $x \to \infty$ wenn:
 - $-\exists M > 0 \quad \exists C > 0 \quad \forall x \text{ mit } x < -M \quad |f(x)| \le C|g(x)|$
 - "Im unendlichen ist f bis auf Konstanten kleiner gleich g"
- f(x) = o(g(x)) für $x \to x_0$ wenn:

 - $\begin{array}{l} -\lim\limits_{x\to x_0}\frac{f(x)}{g(x)}=0\\ -\text{``f ist asymptotisch kleiner als g''} \end{array}$

Bemerkung:

$$\lim_{x \to x_0} \left| \frac{f(x)}{g(x)} \right| = c \quad \Longrightarrow \quad f(x) = O(g(x)) \quad \text{für} \quad x \to x_0$$

Definition

 $f:I\to\mathbb{R}$ auf einem offenen Intervall $I\subseteq\mathbb{R}$ ist differenzierbar in $x_0\in I$, falls für eine Zahl $f'(x_0) \in \mathbb{R}$ folgende Linearisierung gültig ist:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(|x - x_0|)$$
 für $x \to x_0$

Hierbei approximiert die Tangente die Funktion für $x \to x_0$ besser als jede andere Gerade:

$$x \mapsto f(x_0) + f'(x_0)(x - x_0)$$

Differenzierbarkeit in x_0 impliziert auch Stetigkeit in diesem Punkt.

Die Steigung der Tangente $f'(x_0)$ bezeichnet man als Ableitung von f an der Stelle x_0 .

Die Ableitung kann durch Umformung der oben genannten Linearisierung berechnet werden:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

$$\iff \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = f'(x_0) \quad \text{(Differenzenquotient)}$$

- Ist eine Funktion in jedem Punkt differenzierbar so heißt die Funktion differenzierbar.
- Nicht jede stetige Funktion ist differenzierbar (z.B. Betragsfunktion).

Spezielle Ableitungen

•
$$f(x) = e^x \longrightarrow f'(x) = e^x$$

•
$$f(x) = \sin x \longrightarrow f'(x) = \cos x$$

•
$$f(x) = \sin x$$
 \longrightarrow $f'(x) = \cos x$
• $f(x) = \cos x$ \longrightarrow $f'(x) = -\sin x$

Ableitungsregeln

(a)
$$(cf)'(x) = cf'(x)$$
 für alle $c \in \mathbb{R}$

(b)
$$(f+g)'(x) = f'(x) + g'(x)$$
 Summerregel

(c)
$$(fg)'(x) = f(x)g'(x) + f'(x)g(x)$$
 Produktregel

(d)
$$\left(\frac{f}{g}\right)'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2}$$
 falls $g(x) \neq 0$ Quotientenregel

Ableitungsregeln für Potenzen

Ist
$$f(x) = x^a$$
 mit $a \in \mathbb{R}$, so gilt:

$$f'(x) = ax^{a-1}$$

Ableitungungen Triigonometrischer Funktionen

•
$$f(x) = \tan x$$
 \longrightarrow $f'(x) = 1 + \tan(x)^2 = \frac{1}{\cos(x)^2}$
• $f(x) = \cot x$ \longrightarrow $f'(x) = -1 - \cot(x)^2 = \frac{1}{\sin(x)^2}$

•
$$f(x) = \cot x$$
 \longrightarrow $f'(x) = -1 - \cot(x)^2 = \frac{1}{\sin(x)^2}$

Kettenregel

•
$$f(x) = g(h(x)) \longrightarrow f'(x) = g'(h(x)) \cdot h'(x)$$

Ableitung der Umkehrfunktion

•
$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$
 Falls f bijektiv und in x differenzierbar ist.

Beispiele

Aus der Regel für Ableitung der Umkehrfunktion folgt:

• Ableitung des Logarithmus

$$-\ln'(x) = \frac{1}{\exp(\ln(x))} = \frac{1}{x}$$

• Ableitung von arcsin

$$-\arcsin'(x) = \frac{1}{\sin'(\arcsin(x))} = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1 - \sin^2(\arcsin(x))}} = \frac{1}{\sqrt{1 - x^2}}$$

$$-\arccos'(x) = \frac{1}{\cos'(\arccos(x))} = \frac{1}{-\sin(\arccos(x))} = \frac{1}{-\sqrt{1-\cos^2(\arccos(x))}} = -\frac{1}{\sqrt{1-x^2}}$$

19

• Ableitung von arctan

$$-\arctan'(x) = \frac{1}{\tan'(\arctan(x))} = \frac{1}{\sec^2(\arctan(x))} = \frac{1}{1+\tan^2(\arctan(x))} = \frac{1}{1+x^2}$$

Anwendungen der Ableitung

Extrema

Eine Funktion $f:[a,b]\to\mathbb{R}$ hat bei x_0 ein:

- globales Maximum, wenn $f(x_0) \ge f(x)$ für alle $x \in [a, b]$
- globales Minimum, wenn $f(x_0) \le f(x)$ für alle $x \in [a, b]$
- lokales Maximum, wenn es ein $\epsilon > 0$ gibt, sodass $f(x_0) \ge f(x)$ für alle $x \in [x_0 \epsilon, x_0 + \epsilon] \cap [a, b]$
- lokales Minimum, wenn es ein $\epsilon > 0$ gibt, sodass $f(x_0) \leq f(x)$ für alle $x \in [x_0 \epsilon, x_0 + \epsilon] \cap [a, b]$ Ersetzt man \leq mit < und \geq mit > spricht man von strikten Maxima und Minima.

Eine Notwendige Bedingung für ein Maximum oder Minimum ist, dass die Ableitung an der Stelle x_0 gleich 0 ist.

Mittelwertsatz

Der Mittelwertsatz besagt, dass eine Funktion $f:[a,b]\to\mathbb{R}$ welche auf dem Intervall [a,b] stetig ist und auf (a,b) differenzierbar ist, ein $\xi\in(a,b)$ besitzt, sodass

$$\frac{f(b) - f(a)}{b - a} = f'(\xi)$$

Das heißt, dass die Steigung der Tangente an der Stelle ξ gleich der Sekantensteigung zwischen den Punkten (a, f(a)) und (b, f(b)) ist.

Veralgemeinerter Mittelwertsatz

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(x)}{g'(x)}$$

Spezialfall Satz von Rolle

Ist f(a) = f(b), so besitzt f auf (a, b) eine waagerechte Tangente.

Monotonie

Eine Funktion $f: I \to \mathbb{R}$ ist auf \$ I\$:

- monoton steigend, falls
 - $\forall x, y \in I : x \le y \implies f(x) \le f(y)$
- monoton fallend, falls
 - $\forall x, y \in I : x \le y \implies f(x) \ge f(y)$
- streng monoton steigend, falls
 - $\forall x, y \in I : x \le y \implies f(x) < f(y)$
- streng monoton fallend, falls

Monotoniekriterium

Ist $f:[a,b]\to\mathbb{R}$ auf [a,b] differenzierbar, dann gilt:

- $f'(x) > 0 \ \forall x \in [a, b] \implies f$ ist streng monoton steigend
- $f'(x) < 0 \ \forall x \in [a,b] \implies f$ ist streng monoton fallend
- $f'(x) \ge 0 \ \forall x \in [a, b] \iff f \text{ ist monoton steigend}$
- $f'(x) \leq 0 \ \forall x \in [a,b] \iff f \text{ ist monoton fallend}$

Hinreichende Kriterien für Extrema

Eine funktion nimmt auf einem Intervall I ein

- Maximum an, wenn
 - Die Ableitung links von x_0 stets größer gleich 0 ist und die Ableitung rechts von x_0 stets kleiner gleich 0 ist.
- Minimum an, wenn
 - Die Ableitung links von x_0 stets kleiner gleich 0 ist und die Ableitung rechts von x_0 stets größer gleich 0 ist.
- Analog kann man ein lokales Maximum und Minimum bestimmen, wenn man nur einen kleinen Bereich um x_0 betrachtet.

Außerdem:

- $f''(x_0) > 0 \implies f$ hat ein striktes, lokales Minimum an x_0
- $f''(x_0) < 0 \implies f$ hat ein striktes, lokales Maximum an x_0

Berechnung von Grenzwerten

Regel von L'Hospital

Ist $f, g : [a, b] \to \mathbb{R}$ auf (a, b) differenzierbar und $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) \in \{0, \infty\}$, dann gilt:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

falls der Grenzwert von $\lim \frac{f'(x)}{g'(x)}$ existiert.

Höhere Ableitungen

Die höheren Ableitungen einer Funktion $f:[a,b]\to\mathbb{R}$ sind die Funktionen $f^{(n)}:[a,b]\to\mathbb{R}$, welche durch die Rekursion $f^{(n)}(x)=f^{(n-1)}(x)$ mit $f^{(0)}(x)=f(x)$ definiert werden.

- n-mal differenzierbar heißt, dass alle Ableitungen bis zur n-ten Ableitung existieren. (Falls $n=\infty$ schreibt man $f\in C^\infty$)
- n-mal stetig differenzierbar heißt, dass alle Ableitungen bis zur n-ten Ableitung stetig sind.

Krümmungsverhalten

Eine Funktion $f:[a,b]\to\mathbb{R}$ ist:

- konvex
 - falls alle Punkte der Funktion im Intervall [a, b] unterhalb der Verbindungslinie (a, f(a)) und (b, f(b)) liegen.
 - $-\iff f''(x) \ge 0 \ \forall x \in [a,b]$
- strikt konvex
 - falls $f''(x) > 0 \ \forall x \in [a, b]$
- konkav
 - falls alle Punkte der Funktion im Intervall [a, b] oberhalb der Verbindungslinie (a, f(a)) und (b, f(b)) liegen.

$$- \iff f''(x) \leq 0 \ \forall x \in [a,b]$$
 • strikt konkav
$$- \text{ falls } f''(x) < 0 \ \forall x \in [a,b]$$

Kurvendiskussion

Bei der Kurvendiskussion geht es darum, das Verhalten einer Funktion $f:[a,b] \to \mathbb{R}$ zu beschreiben.

Man interessiert sich für:

- Definitionsbereich
- Randverhalten
- Unstetigkeiten
- $\bullet \quad {\rm Differenzier barkeit}$
- Extrema
- Monotonie
- Krümmung
- \bullet Graph

Integration

Riemann Integration

Bei der Riemann Integration geht es darum, die Fläche unter einer Kurve zu bestimmen. Dazu wird die Kurve in kleine Rechtecke unterteilt und die Fläche der Rechtecke addiert.

Lässt man die breite der Rechtecke gegen 0 gehen. Erhält man die orientierte Fläche unter der Kurve.

Bestimmtes Integral

Das Bestimmte Integral ist die Fläche unter der Kurve zwischen zwei Punkten a und b.

$$I(f) = \int_{a}^{b} f(x)dx$$

Eigenschaften

- $\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$ $\int_{a}^{a} f(x)dx = 0$

Bestimmte Integrale $\left(\int\limits_a^b f(x)dx\right)$:

- behalten die positivität der Funktion bei
- behalten die monotonie eigenschaften zwischen zwei Funktionen bei
- haben linearitäts eigenschaften
- sind in Teilintegrale aufteilbar

Mittelwertsatz

Es gilt:
$$\int_a^b f(x)p(x)dx = f(\xi)\int_a^b p(x)dx$$
 mit $\xi \in [a,b]$

Stammfunktion

Eine Stammfunktion ist eine Funktion F(x), die abgeleitet die Funktion f(x) ergibt.

zum Beispiel:
$$F(x) = \int_{a}^{x} f(t)dt$$
 für $x \in [a, b]$

Alle Stammfunktionen einer Funktion unterscheiden sich nur durch eine Konstante.

Eine Stammfunktion kann auch als unbestimmtes Integral geschrieben werden: $\int f(t)dt = F(x) + C$

Integrationsmethoden

Partialbruchzerlegung

Bei der Partialbruchzerlegung wird eine Funktion in Brüche zerlegt.

zum Beispiel:
$$\frac{1}{x^2-4} = \frac{1}{x-2} - \frac{1}{x+2}$$

Diese kann dann leicht integriert werden:

$$\int \frac{1}{x^2-4} dx = \int \frac{1}{x-2} dx - \int \frac{1}{x+2} dx = \ln|x-2| - \ln|x+2|$$

Partielle Integration

Bei der partiellen Integration kann ein Produkt von zwei Funktionen elegant integriert werden.

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

Beispiel:
$$\int \sin(x)xdx = -\cos(x)x + \int \cos(x)dx = -\cos(x)x + \sin(x)$$

Integration durch Substitution