

Project report – Calcul scientifique

Gautier Rancoule, Ewen Le Bihan

ENSEEIHT, département Sciences du Numérique

Contents

1 Limitations of the power method			
	1.1 Main computing time drawback of the improved deflation method	1	

1 Limitations of the power method

We test with matrices of the following shapes

$$\mathbf{1} \begin{pmatrix}
1 & & & & (0) \\
 & 2 & & & \\
 & & 3 & & \\
 & & & \ddots & \\
 & & & & n
\end{pmatrix}$$

2 diag(random(1e-10, 1))

3 diag
$$\left((10^5)^{-\frac{i-1}{n-1}} \right)_{i \in [\![1,n]\!]}$$

4 diag
$$\left(1 - (1 - 10^{-2})\frac{i-1}{n-1}\right)_{i \in [\![1,n]\!]}$$

Type / Alg	1	2	3	4
eig(10)	$20\mathrm{ms}$	$0\mathrm{ms}$	$10\mathrm{ms}$	$10\mathrm{ms}$
power(11)	$1.77\mathrm{s}$	$40\mathrm{ms}$	$60\mathrm{ms}$	$1.81\mathrm{s}$
power(12)	$0.9\mathrm{s}$	$60\mathrm{ms}$	$60\mathrm{ms}$	$0.93\mathrm{s}$
v0 (0)				

Table 1: Computation time comparisons

1.1 Main computing time drawback of the improved deflation method

power_v12 is slower than power_v11 on matrices of type 2 (diagonal matrices of random floating point values close to zero). It is twice as fast on matrices of type 1 or 4.