Advanced Python for Neuroscientists Lecture 7: Convolutional Neural network

Summer 2022

Princeton Neuroscience Institute Instructors: Yisi Zhang & Bichan Wu

July 19, 2022

Recap

Lecture 5

- Feedforward neural network
- Gradient descent

Lecture 6

- Backpropagation
- Stochastic Gradient Descent
- Application

Outline

- Motivation & concept
- Overview
- Architectures

We may want to preserve the spatial structure.

Fully connected layer A CIFAR10 image size $32x32x3 \rightarrow 3072 \times 1$

This does not maintain the spatial information.

Receptive field

Cite Kandel et al., Principles of neural science. Ed6

Convolutional neural network (ConvNet)

Slide (convolve) the filter over all spatial locations. At each location perform a dot product.

Convolutional neural network (ConvNet)

Each filter produces a 2D activation map.

Convolutional neural network (ConvNet)

Each filter produces a 2D activation map.

Convolutional neural network (ConvNet)

The same logic applied to each layer.

 $\mathsf{Low\text{-}level} \to \mathsf{Mid\text{-}level} \to \mathsf{High\text{-}level} \text{ features} \to \mathsf{linearly} \text{ separable}$ $\mathsf{classifier}$

[Zeiler & Fergus 2013]

How does the convolution work?

Apply a 3x3 filter to a 7x7 grid with stride 2

How does the convolution work?

Apply a 3x3 filter to a 7x7 grid with stride 2

How does the convolution work?

Apply a 3x3 filter to a 7x7 grid with stride 2

How does the convolution work?

N							
N							

Output size
$$= (N-F)/stride + 1$$

e.g.
$$(7-3)/2 + 1 = 3$$

Common to zero-pad the border

				N+2					
0	0	0	0	0	0	0	0	0	
0			F					0	
0								0	
0	F							0	
0								0	N+2
0								0	
0								0	
0								0	
0	0	0	0	0	0	0	0	0	

If N = 7, F = 3, stride = 3 what is the output size?

$$I[x, y] * F[x, y] = \sum_{m} \sum_{n} I[m, n] F[x - m, y - n]$$

Input

					•			
0	0	0	0	0	0	0	0	0
0	1	2	3	4	12	9	8	0
0	5	2	3	4	12	9	8	0
0	5	2	1	4	10	9	8	0
0	7	2	1	4	12	7	8	0
0	7	2	1	4	14	9	8	0
0	5	2	3	4	12	7	8	0
0	5	2	1	1	12	9	8	0
0	0	0	0	0	0	0	0	0

Filte
3x3

1 2 1 2 4 2 1 2 1

Stride=3 Output

=

 20
 69
 75

 60
 84
 96

 36
 53
 73

How many parameters in this layer (or what are being learned)?

Image: 32x32x3, Filter: 10 of 5x5x3, stride 1, pad 2

How many parameters in this layer (or what are being learned)?

Image: 32x32x3, Filter: 10 of 5x5x3, stride 1, pad 2 each filter has

$$5x5x3 + 1 = 76$$
 parameters (+1 for bias) total # parameters = $76 \times 10 =$ **760**

Consider convolution as Θx

A complex layer consists of Convolution, Activation (e.g. ReLU), Pooling (e.g. Max pooling)

Intuition of pooling: Invariance to local translation

Pooling over individual activation map

Max pooling

1	3	3	4
2	5	8	2
3	0	1	0
2	2	1	2

Max-pooling	
with 2x2 filters	
and stride 2	

5	8
3	2

A complete ConvNet for classification

7.3 Architectures

LeNet-5

[LeCun et al., 1998]

Conv filters 5x5, stride 1, 2x2 pooling at stride 2

7.3 Architectures

AlexNet

[Krizhevsky et al., 2012]

CONV1→MAX POOL1→ CONV2→MAX POOL2→ CONV3→CONV4→CONV5→ MAX POOL3→FC6→FC7→FC8 Architectures

7.3 Architectures

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Architectures

7.3 Architectures Transfer Learning

Homework

- Make sure you understand all the exercises above
- Run through the codes here that should replicate all the figures https://github.com/yisiszhang/AdvancedPython/ blob/main/colab/Lecture7.ipynb
- Make sure to understand the inputs to Conv and FC layers
- Try to improve the performance of the ConvNet model