

اندازه گیری و کنترل کامپیوتری

تمرین چهارم دانشکده مهندسی کامپیوتر دانشگاه صنعتی شریف نیم سال دوم ۹۹-۰۰

استاد: **جناب آقای دکتر همتیار** نام و نام خانوادگی: **امیرمهدی نامجو - ۹۷۱۰۷۲۱۲**

$$150^{\circ}C = (150 + 273.15)K = 423.15K$$

$$150^{\circ}C = (\frac{9}{5}150 + 32)^{\circ}F = 302^{\circ}F$$

$$\frac{9}{5}350 + 32 = 550^{\circ}F$$

$$\frac{9}{5}550 + 32 = 1022^{\circ}F$$

برای تخمین خطی

$$\alpha_0 = \frac{1}{R(T_0)} \frac{R_2 - R_1}{T_2 - T_1} \alpha_0$$

در این جا

$$T_0 = 115^{\circ}C, T_1 = 100^{\circ}C, T_2 = 130^{\circ}C$$

$$R_0 = 589.48\Omega, R_1 = 573.40\Omega, R_2 = 605.52\Omega$$

$$\alpha_0 = \frac{1}{589.48} \frac{(605.52 - 573.40)}{130 - 100} = 0.0018 \frac{1}{^{\circ}C}$$

$$R(T) = 589.48[1 + 0.0018(T - 115)]$$

برای تخمین :Quadratic

$$R(T) = R(T_0)[1 + \alpha_1 \Delta T + \alpha_2 (\Delta T)^2]$$

مقادیر را برای $C^{\circ}C$ و $C^{\circ}C$ در نظر می گیریم و براساس آنها دو معادله دو مجهول تشکیل می دهیم:

$$573.40 = 589.48[1 - 15\alpha_1 + 225\alpha_2]$$

$$605.52 = 589.48[1 + 15\alpha_1 + 225\alpha_2]$$

$$-15\alpha_1 + 225\alpha_2 = -0.027278$$

$$15\alpha_1 + 225\alpha_2 = 0.027278$$

$$\alpha_1 = 1.82 \times 10^3 \frac{1}{{}^{\circ}C}, \alpha_2 = -1.51 \times 10^{-7} (\frac{1}{{}^{\circ}C})^2$$

$$R(T) = 589.48[1 + 0.00182\Delta T + 1.51 \times 10^{-7}(\Delta T)^{2}]$$

در مورد خطا برای نقطه $05^{\circ}C$ بررسی می کنیم که مقدار مقاومت در آن 578.77Ω است:

$$R_{Linear} = 589.48[1 + 0.0018(105 - 115)] = 578.87$$

که خطای 0.17 درصدی نسبت به مقدار واقعی دارد و از آن بیش تر است.

$$R_{Quadratic} = 589.48[1 + 0.00182(105 - 115) - 1.51 \times 10^{-7} \times (105 - 115)^2 = 578.74\Omega]$$

که خطای 0.005 درصدی دارد و به این میزان از عدد واقعی کمتر است.

برای این که اثر خودگرمایی را به $0.1^{\circ}C$ برسانیم داریم:

$$P = P_D \delta T = (5mW/^{\circ}C)(0.1^{\circ}C) = 500\mu W$$

همچنین داریم:

$$I = \sqrt{P/R} = \sqrt{\frac{5 \times 10^{-4}}{3.5 \times 10^{3}}} = 378\mu A$$

$$I = V/R + R_{TH} \rightarrow 378 \times 10^{-6} = 10/(R + 3500) \rightarrow R = 22955\Omega \approx 23k\Omega$$

 $3.5-0.35=3.15k\Omega$ با توجه به این که گفته شده شیب خط -10% $^{\circ}C$ است یعنی در 21 درجه گفته شده شیب خط -10% است. و در 19 درجه مقاومت $3.85k\Omega$ = $3.85k\Omega$ است. برای بدست آوردن ولتاژ تقسیم کننده داریم:

$$V_D = 10 \frac{R_{TH}}{23k\Omega + R_{TH}}$$

$$T = 20^{\circ}C \rightarrow V_D = 1.32V$$

$$T = 21^{\circ}C \rightarrow V_D = 1.20V$$

$$T = 19^{\circ}C \rightarrow V_D = 1.43V$$

اميرمهدى نامجو

۲ سوال ۱۵

جدول Type-S در شکل زیر آمده است:

				ocouple			,		htt	tp://reoten	
°C	0	1	2	3	4	5	6	7	8	9	10
							ige in m∖				
800 810	7.345	7.356	7.367	7.378	7.388	7.399	7.410 7.519	7.421	7.432	7.443	7.454
810 820	7.454	7.465	7.476	7.487	7.497	7.508	7.519	7.530	7.541	7.552	7.563
830	7.673	7.684	7.695	7.706	7.717	7.728	7.739	7.750	7.761	7.772	7.783
840	7.783	7.794	7.805	7.816	7.827	7.838	7.849	7.860	7.871	7.882	7.893
850	7.893	7 904	7.915	7.926	7 937	7.948	7 959	7 970	7.981	7 992	8.003
860	8.003	8.014	8.026	8.037	8.048	8.059	8.070	8.081	8.092	8.103	8.114
870	8.114	8.125	8.137	8.148	8.159	8.170	8.181	8.192	8.203	8.214	8.226
880	8.226	8.237	8.248	8.259	8.270	8.281	8.293	8.304	8.315	8.326	8.337
890	8.337	8.348	8.360	8.371	8.382	8.393	8.404	8.416	8.427	8.438	8.449
900	8.449	8.460	8.472	8.483	8.494	8.505	8 517	8.528	8.539	8.550	8.562
910	8.562	8.573	8.584	8.595	8.607	8.618	8.629	8.640	8.652	8.663	8.674
920	8.674	8.685	8.697	8.708	8.719	8.731	8.742	8.753	8.765	8.776	8.787
930	8.787	8.798	8.810	8.821	8.832	8.844	8.855	8.866	8.878	8.889	8.900
940	8.900	8.912	8.923	8.935	8.946	8.957	8.969	8.980	8.991	9.003	9.014
950	9.014	9.025	9.037	9.048	9.060	9.071	9.082	9.094	9.105	9.117	9.128
960	9.128	9.139	9.151	9.162	9.174	9.185	9.197	9.208	9.219	9.231	9.242
970	9.242	9.254	9.265	9.277	9.288	9.300	9.311	9.323	9.334	9.345	9.357
980	9.357	9.368	9.380	9.391	9.403	9.414	9.426	9.437	9.449	9.460	9.472
990	9.472	9.483	9.495	9.506	9.518	9.529	9.541	9.552	9.564	9.576	9.587
1000	9.587	9.599	9.610	9.622	9.633	9.645	9.656	9.668	9.680	9.691	9.703
1010	9.703	9.714	9.726	9.737	9.749	9.761	9.772	9.784	9.795	9.807	9.819
1020	9.819	9.830	9.842	9.853	9.865	9.877	9.888	9.900	9.911	9.923	9.935
1030	9.935	9.946	9.958	9.970	9.981	9.993	10.005	10.016	10.028	10.040	10.051
1040	10.051	10.063	10.075	10.086	10.098	10.110	10.121	10.133	10.145	10.156	10.168
1050	10.168	10.180	10.191	10.203	10.215	10.227	10.238	10.250	10.262	10.273	10.285
1060	10.285	10.297	10.309	10.320	10.332	10.344	10.356	10.367	10.379	10.391	10.403
1070	10.403	10.414	10.426	10.438	10.450	10.461	10.473	10.485	10.497	10.509	10.520
1080	10.520	10.532	10.544	10.556	10.567	10.579	10.591	10.603	10.615	10.626	10.638
1090	10.638	10.650	10.662	10.674	10.686	10.697	10.709	10.721	10.733	10.745	10.757
1100	10.757	10.768	10.780	10.792	10.804	10.816	10.828	10.839	10.851	10.863	10.875
1110	10.875	10.887	10.899	10.911	10.922	10.934	10.946	10.958	10.970	10.982	10.994
1120	10.994	11.006	11.017	11.029	11.041	11.053	11.065	11.077	11.089	11.101	11.113
1130	11.113	11.125	11.136	11.148	11.160	11.172	11.184	11.196	11.208	11.220	11.232
1140	11.232	11.244	11.256	11.268	11.280	11.291	11.303	11.315	11.327	11.339	11.351
1150	11.351	11.363	11.375	11.387	11.399	11.411	11.423	11.435	11.447	11.459	11.47
1160	11.471	11.483	11.495	11.507	11.519	11.531	11.542	11.554	11.566	11.578	11.590
1170	11.590	11.602	11.614	11.626	11.638	11.650	11.662	11.674	11.686	11.698	11.710
1180	11.710	11.722	11.734	11.746	11.758	11.770	11.782	11.794	11.806	11.818	11.830
1190	11.830	11.842	11.854	11.866	11.878	11.890	11.902	11.914	11.926	11.939	11.951
1200	11.951	11.963	11.975	11.987	11.999	12.011	12.023	12.035	12.047	12.059	12.07
1210	12.071	12.083	12.095	12.107	12.119	12.131	12.143	12.155	12.167	12.179	12.19
1220	12.191	12.203	12.216	12.228	12.240	12.252	12.264	12.276	12.288	12.300	12.312
1230	12.312	12.324	12.336	12.348	12.360	12.372	12.384	12.397	12.409	12.421	12.433
1240	12.433	12.445	12.457	12.469	12.481	12.493	12.505	12.517	12.529	12.542	12.554
°C	0	1	2	3	4	5	6	7	8	9	10

با توجه به رفرنس داده شده، باید تصحیح مربوط به آن را اعمال کنیم. برای 21 درجه رفرنس 0.119mV است. البته از طریق درون یابی روی نمودار هم میتوان به این عدد رسید. پس در اصل ولتاژ را باید

$$V_c = 12.120 + 0.119 = 12.239 mV$$

در نظر بگیریم. این عدد بین 1223 و 1224 در نمودار است. برای تعیین مقدار دقیق آن داریم:

$$T(12.239mV) = 1223 + \frac{1224 - 1223}{12.240 - 12.228}(12.239 - 12.228) = 1223.917 \approx 1223.92^{\circ}C$$

جدول ترموکوپل نوع K در شکل زیر آمده است.

$$70^{\circ}F = \frac{5}{9}(70 - 32) = 21.1^{\circ}C$$

70 درجه فارنهایت برابر حدودا 21 درجه سلسیوس است. برای 21 درجه رفرنس 0.838 میلیولت است. مقدار مربوط به 700 درجه هم 29.129 میلیولت است. در نتیجه ولتاژی که در این جا داریم:

$$29.129 - 0.838 = 28.291 mV$$

....

برای تولید ولتاژ 1.5V داریم:

1.5V/28.291mV = 53.0204

یعنی حدودا 53 یا 54 ترموکوپل به صورت سری نیاز داریم.

داریم:

$$70^{\circ}F = \frac{5}{9}(70 - 32) = 21.1^{\circ}C$$

$$200^{\circ}F = \frac{5}{9}(200 - 32) = 93.3^{\circ}C$$

FIGURE 15 Vapor-pressure curve for methyl chloride.

با توجه به شکل 15 کتاب در صفحه 222 مقدار نظیر برای 70 درجه فارنهایت حدود 60psi و برای 200 درجه فارنهایت حدودا مقداری بیش تر از 410psi یعنی 410psi است. باید توجه کرد که در شکل مقدار مربوط به 200 در نمودار قرار نگرفته است و در نتیجه با توجه به نزدیکی نقطه آخر نمودار به 400 میتوان متوجه این شد که احتمالا باید در حدود 410psi برای 200 فارنهایت معادل 93.3 درجه سلسیوس داشته باشیم.

برای ترموکوپل نوع k داریم:

$$200^{\circ}C \rightarrow 8.13mV$$

$$350^{\circ}C \rightarrow 14.29mV$$

همچنین رفرنس ADC که داریم 2.5 ولت است. ولتاژ گذار از FF به ADC به صورت

$$V_{ADC} = \frac{255}{256}V_{ref} = 2.5 - 2.5/256 = 2.49V$$

است. در نتیجه باید 8.13mv نظیر به 0 و 14.29mV نظیر به 8.13mv بشود.

$$0 = 0.00813m + V_0$$

$$2.49 = 0.01429m + V_0$$

در نتیجه

$$m = 404.2, V_0 = -3.286V = (404.2)(-0.00813)$$

شکل نهایی مدار مورد نظر بدین صورت است:

خروجی این مدار وارد ADC میشود.

با توجه به صورت سوال و اعداد گفته شده برای ADC یعنی هر بیت باید معادل با $^{\circ}F$ باشد. باید محدوده خودگرمایی را حدود $0.1^{\circ}F$ این مقدار نگه داریم. $^{\circ}F$ برابر $0.056^{\circ}C$ است. پس باید

$$P < P_D \delta T = (0.056)(0.005) = 0.28 mW$$

باشد. داریم:

$$I = sqrtP/R = \sqrt{0.000028/5000} = 240\mu A$$

یعین جریان نباید از این مقدار بیش تر بشود. از سوی دیگر برای ADC داریم:

$$90^{\circ}F: V_L = 5\frac{90}{256} = 1.758V$$

$$110^{\circ}F: V_H = 5\frac{110}{256} = 2.148V$$

همچنین باید مقاومت را در $110^{\circ}F$ تعیین کنیم که داریم:

$$R_{110^{\circ}F} = 5000 - (8\Omega/^{\circ}C)(110^{\circ}F - 90^{\circ}F)(5/9) = 4911\Omega$$

از آن جایی که جریان باید کمتر از 240 میکرو آمپر باشد، ترمیستور را در شاخه فیدبک منفی یک آپامپ قرار داده و به کمک مرجع -15V ای جریان 100 میکرو آمپری ایجاد میکنیم که مقدار جریان 15V از عدد گفته شده بالاتر نرود.

ر با توجه به این شرایط باید ولتاژ جلوی آپ آمپ که در شکل با V_a نمایش داده شده را بدست آوریم:

$$90^{\circ}F: V_a = -(5000\Omega) \times (-100\mu A) = 0.500V$$

$$110^{\circ}F: V_a = -(4911\Omega) \times (-100\mu A) = 0.4911$$

در نتیجه با توجه به ولتاژ هایی که برای ADC بدست آوردیم داریم:

$$1.758 = m(0.5000) + V_0$$

$$2.148 = m(0.4911) + V_0$$

با حل دستگاه داریم:

$$m = -43.82, V_0 = 23.67$$

یعنی معادله نهایی:

$$43.82(0.5401 - V_s)$$

است. در نتیجه مدار زیر را تشکیل می دهیم:

ADC بازه بین 50 تا 100 درجه با وضوح 0.1 معادل 500 واحد است. در نتیجه نیاز به حداقل 9 بیت در داريم و از آن جايي كه 9 بيت عدد رايجي براي ADC ها نيست، از ADC تك قطبي 10 بيتي استفاده می کنیم. ولتاژ رفرنس را هم 5V می گیریم. باید ابتدا مقاومتهای مربوطه را بدست آوریم:

$$R_{50^{\circ}C} = 306.5[1 + 0.0041(50 - 20)] = 344.2\Omega$$

$$R_{100^{\circ}C} = 306.5[1 + 0.0041(100 - 20)] = 407.0\Omega$$

برای این سوال از یک Bridge استفاده می کنیم. مدار های دیگر هم قابل استفاده هستند. باید اثر خودگرمایی را کمتر از $0.01^{\circ}C$ نگه داریم که از وضوح $0.1^{\circ}C$ مطمئن باشیم.

$$P_M ax = (0.030)(0.01) = 0.3mW$$

$$P = V^2/R \rightarrow V = \sqrt{PR} = \sqrt{0.3 \times 344.2} = 0.3V$$

RTD بنابراین باید در دمای 50 درجه ولتاژ دو سر RTD برابر 0.3 ولت باشد و در این حالت پل را کنیم. RTD را به عنوان R_3 قرار می دهیم و $R_4=1$ می گیریم. در این صورت:

$$R_1 = \frac{5 - 0.3}{(0.3 - 0)/344.2} = 5393\Omega$$

$$R_2 = \frac{5 - 0.3}{(0.3 - 0)/1000} = 15.7k\Omega$$

0.3 با توجه به این موارد بایید توجه کنیم که در $100^{\circ}C$ ولتاژ سر سمت راست پل در شکل همان خواهد بود ولی ولتاژ سر سمت چپ $5\frac{407}{407+5393}=0.3509$ خواهد بود ولی ولتاژ سر سمت چپ

$$\Delta V = 0.3509 - 0.3 - 0.0509V$$

خواهیم داشت. از آن جایی که ورودی ADC در حالت بیشینه باید $5V=4.995 \times 5V=1023/1024$) باشد، باید از آن جایی که ورودی $\frac{ADC}{1023/1024} \times 5V=1023/1024$ تقویت کننده با بهره 98.13 98.19 استفاده کنیم. در نهایت معادله کلی به صورت =

$$V_{out} = 98.13(5\frac{R}{R + 5393} - 0.3)$$

خواهد بود که V_{out} خروجی مدار شکل زیر و ورودی V_{out} خواهد بود.

