Foundations of data science, summer 2020

JONATHAN LENNARTZ, MICHAEL NÜSKEN, ANNIKA TARNOWSKI

2. Exercise sheet Hand in solutions until Thursday, 30 April 2020, 12:00

Exercise 2.1 (When is Markov sharp?). (4 points)

Show that for any a>0 there exists a probability distribution such that the Markov inequality is sharp, ie. prob $(X\geq a)=\frac{\mathrm{E}(X)}{a}$. Use the prob (\ldots) -notation to write down the distribution explicitly.

Hint: Recall the proof from the lecture. If it helps you, restrict to the discrete setting.

Exercise 2.2 (Maximum of two dies). (8 points)

Take two independent fair dies $D_i \stackrel{\text{\tiny de}}{\longleftarrow} \mathcal{D} := \{ \boxdot, \boxdot, \boxdot, \boxdot, \boxdot, \boxdot \}$ and consider the larger outcome

$$M := \max(D_0, D_1).$$

(i) Compute prob
$$(M \leq a)$$
 for $a \in \mathbb{N}_{\leq 6}$.

(ii) Compute prob
$$(M = a)$$
 for $a \in \mathbb{N}_{\leq 6}$.

(iii) Compute
$$E(M)$$
.

(iv) Compute
$$E(M^2)$$
 and derive $var(M)$.

Exercise 2.3 (Random variables).

(0+8 points)

Consider the following experiment:

- 1. Throw a coin $C \stackrel{\text{\tiny \$}}{\longleftarrow} \{0,1\}$.
- 2. Choose $X \stackrel{\text{\tiny ω}}{\longleftarrow} [0,1]$ uniformly.
- 3. Roll a die $D \stackrel{\text{\tiny 69}}{\longleftarrow} \{1, 2, 3, 4, 5, 6\}$.
- 4. If C = 0 then
- 5. Let $Z \leftarrow D + X$.
- 6. Else

- 7. Let $Z \leftarrow D X$.
- 8. Return Z

The output Z of this algorithm is a random variable.

- +3 (i) Compute its expection E(Z).
- +4 (ii) Compute its second moment $E(Z^2)$.
- +1 (iii) Compute its variance var(Z).