NONDETERMINISTIC FINITE AUTOMATA

- The main characteristic of a DFA is that for each input symbol, the automaton can move to only one state from any given current state.
- Consider a DFA that accepts strings over the alphabet $\Sigma = \{0, 1\}$ that starts with a 0 and ends with a 1.

Consider now the following finite automaton:

This machine also accepts strings that start with a O and end with 1.

Observe that if the machine is at state q_1 and a 1 arrives, the machine goes to state q_2 and stays at q_1 at the same time.

This machine is not a DFA because there is a situation in which an input symbol causes the automaton to move to more than one state.

In this case, the NFA will consider both possibilities.

The NFA will make a "copy" of itself. One copy continues the computation at state q_1 while the other continues at state q_2 .

Effectively, the NFA is said to be in two states, q_1 and q_2 .

This is in contrast with a DFA since DFAs can only be in one state at any given time.

- The given graph is the state diagram for a *nondeterministic finite* automaton (NFA).
- Because an NFA can move to more than one state given a single input symbol, an NFA is said to have "choices."
- Take the given NFA as an example. If the NFA is currently in state q_1 and an input symbol 1 arrives, the NFA has the option of staying in state q_1 or going to state q_2 .

 Notice also that in an NFA, it is possible for a state not to have a transition edge for one or more input symbols.

In the given example, take note that for state q_o , there is a transition edge for input symbol 0 but none for 1.

If a copy of the NFA is at state q_o and an input symbol 1 arrives, this copy stops processing because it has nowhere to go. This copy of the NFA simply "dies." Similarly, if a copy of the NFA is at q_2 and a 1 or a 0 arrives, this copy also stops processing and dies.

Here is an example to illustrate how an NFA processes strings:

Given the following NFA:

Determine if the string 01011 will be accepted.

1. Initially, the NFA will be at state q_o .

Assume the first input symbol (o) arrives.

So the NFA goes to state q_1 .

2. The second input symbol (1) arrives.

The NFA has two options, either it stays at q_1 or goes to q_2 .

The machine will try both possibilities at the same time.

The machine made another copy of itself.

One copy to continue the processing at q_1 and the other at q_2 .

3. Assume now that the third input symbol (0) arrives.

One copy of the NFA (the one at q_1) stays at q_2 .

The other copy (the one at q_2) dies because it has nowhere to go.

At this point, there will only be one remaining copy of the NFA (the one that is still at q_1).

4. Assume now that the fourth input symbol (1) arrives.

There are again two options, either stay at q_1 or go to q_2 .

The NFA will again consider both possibilities.

5. Assume now that the fifth and last input symbol (1) arrives.

One copy of the NFA (the one at q_1) has the option of staying at q_1 or going to q_2 . As usual, the NFA will consider both.

The other copy (the one at q_2) stops processing.

There are two copies of the NFA.

One copy is currently at state q_1 and the other at state q_2 . Since one of the copies is at a final state, the NFA accepts the string 01011.

If there is no copy of the NFA that is in a final state, then the string will be rejected.

Another example:

Given the following NFA:

Determine if the string 110110 will be accepted.

110110

input

1

1. Initially, the NFA will be at state q_o .

Assume that the first input symbol (1) arrives.

The NFA has two options, either to stay at q_o or go to q_1 . The machine will try both possibilities.

There will now be two copies of the NFA.

One copy is at state q_o while the other is at state q_1 .

110110

input

1

1

2. Assume the second input symbol (1) arrives

The copy of the NFA which is at state q_o has two options— stay at q_o or go to q_1 . The machine will try both possibilities.

The copy which is at state q_1 will go to q_2 .

There will now be three copies of the NFA.

One is at state q_o , the second one is at state q_1 , and the third is at state q_2 .

110110

3. Assume the third input symbol (o) arrives.

The copy of the NFA which is at state q_o stays at q_o .

The copy which is at state q_1 goes to q_2 .

And the copy which is at q_2 goes to state q_3 .

input

1

1

110110

4. Assume the fourth input symbol (1) arrives.

The copy of the NFA which is at state q_o has two options. Stay at q_o or go to q_{τ} . The machine will try both possibilities.

The copy which is at state q_2 will go to q_3 .

The copy which is at state q_3 stops computing because it has nowhere to go.

input

1

1

0

110110

5. Assume the fifth input symbol (1) arrives.

The copy of the NFA which is at state q_o has two options—stay at q_o or go to q_1 . The machine will try both possibilities.

The copy which is at state q_1 will go to q_2 .

The copy which is at q_3 dies.

input

1

1

0

1

110110

6. Assume the sixth and final input symbol (0) arrives.

The copy of the NFA which is at state q_o stays at q_o .

The copy at state q_1 goes to q_2 .

The copy at state q_2 goes to q_3 .

110110

The NFA is now at three states, q_0 , q_2 , and q_3 .

Since one of these states is a final state (q_3) , then the NFA accepts the input string 110110.

 One other difference between an NFA and a DFA is that an NFA may have ε-transitions. An ε-transition is shown below:

Whenever there is an ε -transition from state q_i to state q_j , this means that once an NFA goes to state q_i , it has the option of staying at q_i or it can go right away to state q_j even without any additional input arriving.

Example:

Given the following NFA:

Determine if the string 010010 will be accepted

1. Initially, the NFA will be at state q_o .

Assume the first input symbol (o) arrives.

The NFA goes to q_1 .

At q_1 , it has the option of immediately going to q_2 without any new input symbol arriving (because of the ϵ -transition from q_1 to q_2).

The NFA will consider both and will be in two states, q_1 and q_2 .

2. Assume the second input symbol (1) arrives.

The copy of the NFA which is at state q_1 stops computing since it has nowhere to go.

The copy at q_2 will go to q_0 .

The NFA will only be in one state which is q_o .

Assume the third input symbol (o) arrives.

The NFA goes to q_1 .

Once at q_1 , it has the option of immediately going to q_2 without any new input symbol arriving.

The NFA will consider both and will be in two states, q_1 and q_2 .

4. Assume the fourth input symbol (o) arrives.

The copy of the NFA which is at state q_1 stays at q_2 .

Since there is an ϵ -transition from q_1 to q_2 , it will also immediately go to q_2 .

The other copy of the NFA (the one at state q_2) stops because it has nowhere to go.

input state $q_0 \text{ (start)}$ $q_0 \text{ (start)}$ $q_1 \text{ } q_2 \text{ } q_2$

5. Assume the fifth input symbol (1) arrives.

The copy of the NFA which is at state q_1 stops since it has nowhere to go.

The remaining copy of the NFA (the one at state q_2) goes to q_0 .

input

0

0

0

The NFA goes to q_1 .

At q_1 , it has the option of immediately going to q_2 without any new input symbol arriving (because of the ε -transition from q_1 to q_2).

0

0

0

1

0

state

The NFA will then be at state q_1 and state q_2 .

Since one of these states is a final state (q_1) , the string 010010 is accepted.

- The formal definition of a NFA is similar to that of a DFA.
- The main difference lies in the transition function.
- The transition function of an NFA must consider the possibility of state transitions even if there is no input symbol (ε-transitions).
- The transition function must also consider the possibility that the NFA may go to several states given the same input symbol.

DIFFERENCES BETWEEN NFAs AND DFAs

- To summarize the differences between an NFA and a DFA:
 - 1. NFAs can move to more than one state from any given current state. They can therefore be in several states at the same time.
 - 2. In a given state, NFAs may not necessarily have a transition edge for each symbol in the alphabet.
 - 3. NFAs can move to a state even without any input symbol arriving (ϵ -transitions).

Example:

• The formal definition of this NFA is a 5-tuple $N_1 = \{Q, \Sigma, \delta, q_o, F\}$ where:

1.
$$Q = \{q_0, q_1, q_2\}$$

2.
$$\Sigma = \{0, 1\}$$

$$\delta$$
:

	0	1	ε
$q_{ m o}$	$q_{_1}$		
$q_{_1}$	$q_{_1}$	q_{1}, q_{2}	
q_2			

4. Start State =
$$q_o$$

5.
$$F = \{q_2\}$$

• The formal definition of this NFA is a 5-tuple $N_2 = \{Q, \Sigma, \delta, q_o, F\}$ where:

1.
$$Q = \{q_0, q_1, q_2\}$$

2.
$$\Sigma = \{0, 1\}$$

$$\delta$$
:

	0	1	3
$q_{\rm o}$	$q_{_1}$		
$q_{_1}$	$q_{_1}$		q_2
q_2		q_{o}	

4. Start State =
$$q_o$$

5.
$$F = \{q_1\}$$

Another example:

 In an NFA, a state may have zero, one, or many outgoing edges for each input symbol

- DFAs can only have one outgoing edge for each input symbol.
- This means that a DFA is a restricted type of NFA. It can therefore be said that all DFAs are NFAs.
- However, not all NFAs are DFAs.
- In other words, nondeterminism is a generalization of determinism.

Consider the following DFA M₁ from the previous discussions:

 M_1 accepts strings over the alphabet $\Sigma = \{0, 1\}$ that start with a 0 and end with a 1.

• Consider now the following NFA N_1 also from the previous discussions:

 N_1 also accepts strings over the alphabet $\Sigma = \{0, 1\}$ that start with a 0 and end with 1.

In other words, DFA M_1 and NFA N_1 recognize the same language. That is: $L(M_1) = L(N_1) = \{w \mid w \text{ starts with 0 and ends with 1}\}$

- Two machines are equivalent if they recognize the same language. Therefore, M_1 is equivalent to N_1 .
- If a language is recognized by a DFA, then there is an NFA that will also recognize it. This is because all DFAs are NFAs.
- The question now is: if there is a language that is recognized by an NFA, is there a DFA that will also recognize it?
- In other words, is there an equivalent DFA for any NFA?
- To answer this question, a procedure must be constructed to convert any NFA to its equivalent DFA.

- Recall that an NFA can be in one or more states at any given time.
- Consider NFA N_1 which has three states q_0 , q_1 , and q_2 . At any time, the NFA may be in:
 - 1. state q_o only
 - 2. state q_1 only
 - 3. state q_2 only
 - 4. states q_0 and q_1
 - 5. states q_o and q_z
 - 6. states q_1 and q_2
 - 7. states q_0 , q_1 , and q_2
 - 8. dead state (stop processing)

Observe that the possible states the NFA can be is the power set (set of all subsets) of its set of states Q. The dead state is equivalent to the null set.

- The DFA to be constructed from this NFA will have a state that will represent each of the subset of the power set.
- For example, the state in which the NFA is in states q_o and q_1 will be represented by a single state (that may be called q_{o1}) in its equivalent DFA.
- If the NFA has n states, then the equivalent DFA will have 2^n states (number of states is finite).

So the states of the equivalent DFA will be:

NFA State	DFA State
$q_{ m o}$	$q_{ m o}$
$q_{_1}$	$q_{_1}$
q_{2}	q_{2}
q_0, q_1	$q_{_{ m O1}}$
q_0, q_2	$q_{_{ m O2}}$
q_1, q_2	$q_{_{12}}$
q_0, q_1, q_2	$q_{_{\mathrm{O12}}}$
Dead State	$oldsymbol{q}_{dead}$

• The initial state of the NFA N_1 is q_0 so the initial state of the DFA will also be q_0 .

NFA State	DFA State
q_{o}	$q_{_{ m O}}$
$q_{_1}$	$q_{_1}$
q_2	q_2
q_0, q_1	$q_{_{\mathrm{O1}}}$
q_0, q_2	$q_{_{ m O2}}$
q_1, q_2	$q_{_{12}}$
q_0, q_1, q_2	$q_{_{\mathrm{O12}}}$
Dead State	$oldsymbol{q}_{dead}$

• The final state of NFA N_1 is q_2 . This means that the NFA will be in a final state if q_2 is included in the subset.

Therefore, the final states for the DFA are q_2 , q_{02} , q_{12} , and q_{012} .

 Take note that not all of the states of the equivalent DFA are reachable from the start state. So it is possible that some of these states will be removed eventually.

The states that will be removed will be determined upon the construction of the transition function of the DFA.

• Construction of the transition function for the equivalent DFA for NFA N_1 :

Starting at state q_o :

If input = 0, the NFA will go to state q_1 . For the DFA, this will be state q_2 .

If input = 1, the NFA will go to a dead state. For the DFA, this will be state q_{dead} .

The next states to be analyzed are states q_1 and q_{dead} (the states reachable from q_0).

	0	1
$q_{\rm o}$	$q_{_1}$	q_{dead}
$q_{_1}$		
q_2		
$q_{_{\mathrm{O1}}}$		
$q_{_{\mathrm{O2}}}$		
$q_{_{12}}$		
$q_{_{\mathrm{O12}}}$		
$q_{\sf dead}$		

• Construction of the transition function for the equivalent DFA for NFA N_1 :

From state q_1 :

If input = 0, the NFA will be at state q_1 only. For the DFA, this will be state q_1 .

If input = 1, the NFA will be in states q_1 and q_2 . For the DFA, this will be state q_{12} .

•	ı	
	0	1
q_{o}	$q_{_1}$	$q_{\sf dead}$
$q_{_{ m O}}$	$q_{_1}$	$q_{_{12}}$
q_2		
$q_{_{\mathrm{O1}}}$		
q_{02}		
$q_{_{12}}$		
$q_{_{\rm O12}}$		
$q_{\sf dead}$		

• Construction of the transition function for the equivalent DFA for NFA N_1 :

From state q_{dead} :

The NFA will stay at its dead state regardless of the input symbol received.

The next state to be analyzed is state q_{12} since it is reachable from state q_0 (through state q_1).

	I	
	0	1
q_{o}	$q_{_1}$	q_{dead}
$q_{_1}$	$q_{_1}$	$q_{_{12}}$
q_2		
$q_{_{\mathrm{O1}}}$		
$q_{_{\mathrm{O2}}}$		
$q_{_{12}}$		
$q_{_{\mathrm{O12}}}$		
q_{dead}	q_{dead}	$oldsymbol{q}_{dead}$

• Construction of the transition function for the equivalent DFA for NFA N_1 :

From state q_{12} :

If input = 0, the copy of the NFA at q_1 stays at q_1 .

The copy at q_2 will stop processing.

So the NFA will be at state q_1 only. For the DFA, this will be state q_1 .

	•	
	0	1
$q_{\rm o}$	$q_{_1}$	$q_{\sf dead}$
$q_{_1}$	$q_{_1}$	$q_{_{12}}$
q_2		
$q_{_{\mathrm{O1}}}$		
$q_{_{\mathrm{O2}}}$		
$q_{_{12}}$	$q_{_1}$	
$q_{_{\mathrm{O12}}}$		
q_{dead}	$q_{\sf dead}$	$q_{\sf dead}$

• Construction of the transition function for the equivalent DFA for NFA N_1 :

From state q_{12} :

If input = 1, the copy of the NFA at state q_1 will go to states q_1 and q_2 .

While the copy at q_2 will stop processing. So the NFA will be at states q_1 and q_2 .

For the DFA, this will be state q_{12} .

	1	
	0	1
$q_{\rm o}$	$q_{_1}$	q_{dead}
$q_{_1}$	$q_{_1}$	$q_{_{12}}$
q_2		
$q_{_{\mathrm{O1}}}$		
$q_{_{\mathrm{O2}}}$		
$q_{_{12}}$	$q_{_1}$	$q_{_{12}}$
$q_{_{\mathrm{O12}}}$		
q_{dead}	$q_{\sf dead}$	$q_{\sf dead}$

NFA TO DFA CONVERSION (WITHOUT ε - TRANSITIONS)

The final transition table will be:

	О	1
		<u> </u>
$q_{\rm o}$	$q_{_1}$	q_{dead}
$q_{_1}$	$q_{_1}$	$q_{_{12}}$
q_2		
$q_{_{ m O1}}$		
q_{02}		
$q_{_{12}}$	$q_{_1}$	$q_{_{12}}$
$q_{_{\mathrm{O12}}}$		
q_{dead}	q_{dead}	q_{dead}

Observe that states q_2 , q_{01} , q_{02} , and q_{012} are not reachable from state q_0 . They can therefore be removed from the transition table.

Since all the states reachable from q_o have been analyzed, the transition function will be:

	0	1
q_{o}	q_1	q_{dead}
$q_{_1}$	q_1	$q_{_{12}}$
$q_{_{12}}$	$q_{_1}$	$q_{_{12}}$
q_{dead}	q_{dead}	q_{dead}

The state diagram of the equivalent DFA is:

• As another example, consider now the following NFA N_2 :

 N_2 accepts strings over the alphabet Σ = {0, 1} that have the substring 11.

Since the NFA has three states, the possible states it can assume are q_o only, q_1 only, q_2 only, q_o and q_1 , q_o and q_2 , q_1 and q_2 , q_1 and q_2 , and the dead state.

So the states of the equivalent DFA will be:

NFA State	DFA State
q_{o}	q_{o}
$q_{_1}$	$q_{_1}$
q_2	q_{2}
q_{o}, q_{1}	$q_{_{ m O1}}$
q_{o} , q_{2}	$q_{_{ m O2}}$
q_1, q_2	$q_{_{12}}$
q_0, q_1, q_2	$q_{_{\mathrm{O12}}}$
Dead State	$q_{\sf dead}$

The initial state of the NFA is q_o so the initial state of the DFA will also be q_o . The final state of the NFA is q_o . This means that the NFA will be in a final state if q_o is included in the subset.

• Construction of the transition function for the equivalent DFA for NFA N_2 :

Starting at state q_o :

If input = 0, the NFA will stay at q_o . For the DFA, this will be state q_o .

If input = 1, the NFA will be at q_o and q_1 . For the DFA, this will be state q_{o1} .

The next state to be analyzed is state q_{01} .

	О	1
q_{o}	$q_{\rm o}$	$q_{_{\mathrm{O1}}}$
$q_{_1}$		
q_2		
$q_{_{\mathrm{O1}}}$		
q_{02}		
$q_{_{12}}$		
$q_{_{\mathrm{O12}}}$		
$q_{\sf dead}$		

• Construction of the transition function for the equivalent DFA for NFA N_2 :

From state q_{o1} :

If input = 0, the copy of the NFA at state q_o will stay at q_o .

The copy at q_1 will stop processing.

So the NFA will be at state q_o only. For the DFA, this will be state q_o .

	0	1
$q_{_{ m O}}$	$q_{\rm o}$	$q_{_{\mathrm{O1}}}$
$q_{_1}$		
q_2		
$q_{_{\mathrm{O1}}}$	$q_{\rm o}$	
$q_{_{\mathrm{O2}}}$		
$q_{_{12}}$		
$q_{_{\mathrm{O12}}}$		
q_{dead}		

• Construction of the transition function for the equivalent DFA for NFA N_2 :

From state q_{o1} :

If input = 1, the copy of the NFA at state q_o will be at states q_o and q_1 .

The copy at state q_1 will go to state q_2 .

So the NFA will be at states q_0 , q_1 , and q_2 . For the DFA, this will be state q_{012} .

	1	
	0	1
q_{o}	$q_{\rm o}$	$q_{_{\mathrm{O1}}}$
$q_{_1}$		
q_2		
$q_{_{\mathrm{O1}}}$	$q_{\rm o}$	$q_{_{\mathrm{O12}}}$
$q_{_{\mathrm{O2}}}$		
$q_{_{12}}$		
$q_{_{ m O12}}$		
q_{dead}		

The next state to be analyzed is state q_{012} .

• Construction of the transition function for the equivalent DFA for NFA N_2 :

From state q_{012} :

If input = 0, the copy of the NFA at q_o will stay at q_o .

The copy at q_1 will stop processing.

And the copy at q_2 will stay at q_2 .

So the NFA will be at states q_o and q_z . For the DFA, this will be state q_{oz} .

	0	1
$q_{ m o}$	$q_{\rm o}$	$q_{_{\mathrm{O1}}}$
$q_{_1}$		
q_2		
$q_{_{\mathrm{O1}}}$	$q_{ m o}$	$q_{_{\mathrm{O12}}}$
$q_{_{\mathrm{O2}}}$		
$q_{_{12}}$		
$q_{_{\rm O12}}$	$q_{_{\mathrm{O2}}}$	
$q_{\sf dead}$		

• Construction of the transition function for the equivalent DFA for NFA N_2 :

From state q_{012} :

If input = 1, the copy of the NFA at q_o will be at state q_o and q_1 .

The copy at q_1 will go to state q_2 .

And the copy of q_2 will stay at q_2 .

So the NFA will be at states q_0 , q_1 , and q_2 . For the DFA, this will be state q_{012} .

	О	1
$q_{\rm o}$	$q_{\rm o}$	$q_{_{\mathrm{O1}}}$
$q_{_1}$		
q_2		
$q_{_{\mathrm{O1}}}$	$q_{\rm o}$	$q_{_{\mathrm{O12}}}$
$q_{_{\mathrm{O2}}}$		
$q_{_{12}}$		
$q_{_{\mathrm{O12}}}$	q_{02}	$q_{_{\mathrm{O12}}}$
q_{dead}		

The next state to be analyzed is state q_{o2} .

• Construction of the transition function for the equivalent DFA for NFA N_2 :

From state q_{o2} :

If input = 0, the copy of the NFA at q_o will stay at q_o .

The copy at q_2 will stay at q_2 .

So the NFA will be at states q_o and q_z . For the DFA, this will be state q_{oz} .

	0	1
q_{o}	$q_{\rm o}$	$q_{_{\mathrm{O1}}}$
$q_{_1}$		
q_2		
$q_{_{\mathrm{O1}}}$	$q_{ m o}$	$q_{_{\mathrm{O12}}}$
q_{o2}	$q_{_{\mathrm{O2}}}$	
$q_{_{12}}$		
$q_{_{\mathrm{O12}}}$	$q_{_{\mathrm{O2}}}$	$q_{_{\mathrm{O12}}}$
$q_{\sf dead}$		

• Construction of the transition function for the equivalent DFA for NFA N_2 :

From state q_{02} :

If input = 1, the copy of the NFA at q_o will be at states q_o and q_1 .

The copy at q_2 will stay at state q_2 .

So the NFA will be at states q_0 , q_1 , and q_2 . For the DFA, this will be state q_{012} .

ı	
0	1
$q_{\rm o}$	$q_{_{\mathrm{O1}}}$
$q_{\rm o}$	$q_{_{\mathrm{O12}}}$
$q_{_{\mathrm{O2}}}$	$q_{_{\mathrm{O12}}}$
q_{02}	$q_{_{\mathrm{O12}}}$
	$q_{ m o}$ $q_{ m o}$ $q_{ m o2}$

Since all the states reachable from q_o have been analyzed, the transition function will be:

	0	1
$q_{\rm o}$	$q_{_{ m O}}$	$q_{_{\mathrm{O1}}}$
$q_{_1}$		
q_2		
$q_{_{\mathrm{O1}}}$	$q_{\rm o}$	$q_{_{\mathrm{O12}}}$
$q_{_{\mathrm{O2}}}$	$q_{_{\mathrm{O2}}}$	$q_{_{\mathrm{O12}}}$
$q_{_{12}}$		
$q_{_{\mathrm{O12}}}$	q_{02}	$q_{_{\mathrm{O12}}}$
$oldsymbol{q}_{dead}$		

Observe that states q_1 , q_2 , q_{12} , and q_{dead} are not reachable from state q_0 . They can therefore be removed from the transition table.

NFA TO DFA CONVERSION (WITHOUT ε - TRANSITIONS)

The transition function will be:

	0	1
$q_{\rm o}$	$q_{\rm o}$	$q_{_{\mathrm{O1}}}$
$q_{_{\mathrm{O1}}}$	$q_{ m o}$	$q_{_{\mathrm{O12}}}$
q_{02}	$q_{_{\mathrm{O2}}}$	$q_{_{\mathrm{O12}}}$
$q_{_{\rm O12}}$	$q_{_{\mathrm{O2}}}$	$q_{_{\mathrm{O12}}}$

The state diagram of the equivalent DFA is:

- The procedure for converting an NFA with εtransitions into its equivalent DFA is similar to the procedure discussed in the previous topic.
- The main difference is that special care has to be given to the ϵ -transitions.
- The main thing to remember is that once an NFA goes to a certain state q_i which has an ε -transition to state q_i , the NFA automatically goes to q_i also.

NFA TO DFA CONVERSION (WITH ε - TRANSITIONS)

• Consider the following NFA N_3 :

Since the NFA has three states q_0 , q_1 , and q_2 , the possible states it can assume are:

$$q_o$$
 only,
 q_1 only,
 q_2 only,
 q_o , q_1 and q_2 ,

$$q_o$$
 and q_1 ,
 q_o and q_2 ,
 q_1 and q_2 ,
the dead state.

So the states of the equivalent DFA will be:

NFA State	DFA State
$q_{\rm o}$	q_{o}
$q_{_1}$	$q_{_1}$
q_2	q_2
q_0, q_1	$q_{_{\mathrm{O1}}}$
q_0, q_2	$q_{_{\mathrm{O2}}}$
q_1, q_2	$q_{_{12}}$
q_0, q_1, q_2	$q_{_{\mathrm{O12}}}$
Dead State	$oldsymbol{q}_{dead}$

- The initial state of the NFA N_3 is q_o .
- However, state q_o has an ε -transition to state q_z .
- This means that before any input arrives, the NFA is at state q_o . But because of the ε -transition to state q_z , the NFA will also go to state q_z . So even before the start of any computation, the NFA will be at states q_o and q_z .
- Therefore, the start state of the equivalent DFA is state q_{o2} . This is where the construction of the transition function will begin.
- The final state of the NFA is q_o . This means that the NFA will be in a final state if q_o is included in the subset. Therefore, the final states for the DFA are q_o , q_{o1} , q_{o2} , and q_{o12} .

NFA TO DFA CONVERSION (WITH ε - TRANSITIONS)

• Construction of the transition function for the equivalent DFA for NFA N_3 :

Starting at state q_{o2} :

If input = 0, the copy of the NFA at state q_o stops processing.

The copy at q_2 will go to states q_0 and q_2 . For the DFA, this will be state q_{02} .

	0	1
q_{o}		
$q_{_1}$		
q_2		
$q_{_{\mathrm{O1}}}$		
$q_{_{\mathrm{O2}}}$	q_{02}	
$q_{_{12}}$		
$q_{_{ m O12}}$		
q_{dead}		

• Construction of the transition function for the equivalent DFA for NFA N_3 :

Starting at state q_{o2} :

If input = 1, the copy of the NFA at q_o will go to q_1 .

The copy at q_2 stops. For the DFA, this will be state q_1 .

The next state to be analyzed is state q_1 .

	0	1
$q_{ m o}$		
$q_{_1}$		
q_2		
q_{01}		
q_{02}	$q_{_{\mathrm{O2}}}$	$q_{_1}$
$q_{_{12}}$		
$q_{_{\mathrm{O12}}}$		
q_{dead}		

• Construction of the transition function for the equivalent DFA for NFA N_3 :

From state q_1 :

If input = 0, the NFA will go to states q_1 and q_2 . For the DFA, this will be state q_{12} .

If input = 1, the NFA will go to state q_2 . For the DFA, this will be state q_2 .

The next states to be analyzed are states q_{12} and q_2 .

	0	1
$q_{ m o}$		
$q_{_1}$	$q_{_{12}}$	q_2
q_2		
$q_{_{\mathrm{O1}}}$		
$q_{_{\mathrm{O2}}}$	$q_{_{\mathrm{O2}}}$	$q_{_1}$
$q_{_{12}}$		
$q_{\scriptscriptstyle{ extsf{O}12}}$		
q_{dead}		

• Construction of the transition function for the equivalent DFA for NFA N_3 :

From state q_{12} :

If input = 0, the copy of the NFA at state q_1 will go to states q_2 and q_3 .

While the copy at q_2 goes to q_0 and q_2 .

The NFA is therefore at states q_0 , q_1 , and q_2 . For the DFA, this will be state q_{012} .

	_	
	0	1
q_{o}		
$q_{_1}$	$q_{_{12}}$	q_2
q_2		
$q_{_{\mathrm{O1}}}$		
$q_{_{\mathrm{O2}}}$	q_{02}	$q_{_1}$
$q_{_{12}}$	$q_{_{\rm O12}}$	
$q_{_{\mathrm{O12}}}$		
$q_{\sf dead}$		

• Construction of the transition function for the equivalent DFA for NFA N_3 :

From state q_{12} :

If input = 1, the copy of the NFA at state q_1 will go to state q_2 .

While the copy at state q_2 will stop processing.

For the DFA, this will be state q_2 .

	О	1
$q_{\rm o}$		
$q_{_1}$	$q_{_{12}}$	q_2
q_2		
$q_{_{\mathrm{O1}}}$		
$q_{_{\mathrm{O2}}}$	q_{02}	$q_{_1}$
$q_{_{12}}$	$q_{_{\rm O12}}$	q_2
$q_{\scriptscriptstyle{\mathrm{O12}}}$		
q_{dead}		

• Construction of the transition function for the equivalent DFA for NFA N_3 :

From state q_2 :

If input = 0, the NFA at will go to states q_o and q_2 . For the DFA, this will be state q_{o2} .

If input = 1, the NFA will stop processing and will cease to exist. For the DFA, this will be state q_{dead} .

The next states to be analyzed are states q_{o12} and q_{dead} .

	1	
	0	1
$q_{\rm o}$		
$q_{_1}$	$q_{_{12}}$	q_2
q_2	$q_{_{\mathrm{O2}}}$	$oldsymbol{q}_{dead}$
$oldsymbol{q}_{ extsf{o1}}$		
$q_{_{\mathrm{O2}}}$	$q_{_{\mathrm{O2}}}$	$q_{_1}$
$q_{_{12}}$	$q_{_{\mathrm{O12}}}$	q_2
$q_{_{\mathrm{O12}}}$		
q_{dead}		

• Construction of the transition function for the equivalent DFA for NFA N_3 :

From state q_{012} :

If input = 0, the copy of the NFA at state q_o will stop processing.

The copy at q_1 goes to q_2 and q_3 .

The third copy at q_2 goes to q_0 and q_2 .

The NFA is therefore at states q_0 , q_1 , and q_2 . For the DFA, this will be state q_{012} .

	0	1
q_{o}		
$q_{_1}$	$q_{_{12}}$	q_2
q_2	$q_{_{\mathrm{O2}}}$	$oldsymbol{q}_{dead}$
$q_{_{\mathrm{O1}}}$		
$q_{_{\mathrm{O2}}}$	$q_{_{\mathrm{O2}}}$	$q_{_1}$
$q_{_{12}}$	$q_{_{\mathrm{O12}}}$	q_2
$q_{_{\mathrm{O12}}}$	$q_{_{ m O12}}$	
q_{dead}		

• Construction of the transition function for the equivalent DFA for NFA N_3 :

From state q_{012} :

If input = 1, the copy of the NFA at state q_o will go to state q_i .

The copy at q_1 will go to q_2 .

The third copy at q_2 will stop processing.

The NFA is therefore at states q_1 and q_2 . For the DFA, this will be state q_{12} .

	О	1
$q_{\rm o}$		
$q_{_1}$	q ₁₂	q_{2}
q_2	q_{02}	q_{dead}
$q_{_{\mathrm{O1}}}$		
$q_{_{\mathrm{O2}}}$	q_{02}	$q_{_1}$
$q_{_{12}}$	$q_{_{\mathrm{O12}}}$	q_2
$q_{\scriptscriptstyle{\mathrm{O}12}}$	$q_{_{\mathrm{O12}}}$	$q_{_{12}}$
$q_{\sf dead}$		

• Construction of the transition function for the equivalent DFA for NFA N_3 :

From state q_{dead} :

The NFA will stay at its dead state regardless of the input symbol received.

	О	1
$q_{\rm o}$		
$q_{_1}$	$q_{_{12}}$	q_{2}
q_2	$q_{_{\mathrm{O2}}}$	$oldsymbol{q}_{dead}$
$q_{_{\mathrm{O1}}}$		
$q_{_{\mathrm{O2}}}$	$q_{_{\mathrm{O2}}}$	$q_{_1}$
$q_{_{12}}$	$q_{_{\mathrm{O12}}}$	q_2
$q_{_{\mathrm{O12}}}$	q ₀₁₂	$q_{_{12}}$
q_{dead}	$q_{\sf dead}$	q_{dead}

Since all the states reachable from q_{o2} have been analyzed, the transition function will be:

	О	1
$q_{\rm o}$		
$q_{_1}$	$q_{_{12}}$	q_2
q_2	q_{02}	q_{dead}
$q_{_{\mathrm{O1}}}$		
q_{02}	q_{02}	$q_{_1}$
$q_{_{12}}$	q ₀₁₂	q_2
$q_{_{\mathrm{O12}}}$	q ₀₁₂	$q_{_{12}}$
$oldsymbol{q}_{dead}$	$oldsymbol{q}_{dead}$	q_{dead}

Observe that states q_o and q_{o1} are not reachable from state q_{o2} . These can therefore be removed from the transition table.

The final transition function will be:

	О	1
$q_{_1}$	$q_{_{12}}$	q_2
q_{2}	q_{02}	$q_{\sf dead}$
$q_{_{\mathrm{O2}}}$	q_{02}	$q_{_1}$
$q_{_{12}}$	$q_{_{\mathrm{O12}}}$	q_2
$q_{_{\mathrm{O12}}}$	$q_{_{\mathrm{O12}}}$	$q_{_{12}}$
q_{dead}	q_{dead}	$q_{\sf dead}$

The state diagram of the equivalent DFA is:

FORMAL DEFINITION OF NFA AND DFA EQUIVALENCE

- Since it has been shown that there is a procedure to construct an equivalent DFA for every NFA, it is now time to formalize the discussion on the equivalence of NFAs and DFAs.
- Theorem 1

Every NFA has an equivalent DFA.

The proof of this theorem is trivial at this point in time since the procedure for converting any NFA to DFA has been established.

FORMAL DEFINITION OF NFA AND DFA EQUIVALENCE

- It was mentioned previously that a language that is recognized by a DFA is called a regular language.
- Since all DFAs are NFAs and theorem 1 ascertains that every NFA has an equivalent DFA, then it can therefore be said that a language is regular if an NFA recognizes it.
- Corollary 1

A language is regular if and only if some nondeterministic finite automaton recognizes it.

 For each of the following NFA examples, formally describe the NFA by listing down the components of each (set of states, set of symbols, the transition table, the start state, and the final state or states). Then give a generalized statement on the strings accepted by the NFA:

- Give the state diagram of the following NFAs:
 - 1. An NFA that recognizes the language $L = \{w \mid w \text{ ends } w \text{ ith a 00}\}$. Assume that the alphabet $\Sigma = \{0, 1\}$.
 - 2. An NFA that recognizes the language $L = \{w \mid w \text{ contains} \}$ the substring 010. Assume that the alphabet $\Sigma = \{0, 1\}$.
 - 3. An NFA that recognizes the language $L = \{w \mid w \text{ does not contain the substring 010}\}$. Assume that the alphabet $\Sigma = \{0, 1\}$.

Construct the equivalent DFA for the following NFA:

