

TOPICS IN ECONOMETRICS— DISCRETE CHOICE MODELS MULTINOMIAL MODELS AND COUNT DATA

Yao Thibaut Kpegli

Master II Advanced Economics, ENS Lyon $2022{-}2023$

CONTEXT AND OBJECTIVE

Context

Introduction

• You have observed a sample $\mathbf{y} = \{y_1, ..., y_n\}$ and y_i has J possible values (say 1, 2, ... J)

$$y_i = \begin{cases} 1 & \text{with probability} & p_{i1} \\ 2 & \text{with probability} & p_{i2} \\ \dots & \dots \\ J & \text{with probability} & p_{iJ} \end{cases}$$
 (1)

- ② You have also observed a vector of characteristics \boldsymbol{x}_i (K,1) associated to the individual i
- **9** You suspect that x_i determines p_{ij} :
 - and you assume this is through a function g_j depending on vectors of parameters $\boldsymbol{\theta}$ (K,1)

$$p_{ij} = g_j(\boldsymbol{x}_i, \boldsymbol{\theta})$$
 with $\sum_{i=1}^J p_{ij} = \sum_{i=1}^J g_j(\boldsymbol{x}_i, \boldsymbol{\theta}) = 1$

CONTEXT AND OBJECTIVES

OBJECTIVE

Provide an estimate of θ

EXAMPLE

Examples of multiple-choice context:

- Opinions: strongly opposed / opposed / neutral / support (ranked choices),
- Occupational field: lawyer / farmer / engineer / doctor / ...,
- Occupational field: lawyer / farmer / engineer / doctor / ...,
- Alternative shopping areas,
- Transportation types
- ..

GENERAL MODELING

General modeling

• From y, we can extract J binary variables $y^1, ..., y^J$ as follows

$$y_i^j = \begin{cases} 1 & \text{if } y_i = j \\ 0 & \text{otherwise} \end{cases}$$
 $j = 1, 2, ..., J$ (2)

 $oldsymbol{\circ}$ The log-likelihood function associated to $(oldsymbol{y},oldsymbol{x})$ is

$$log \mathcal{L}(\boldsymbol{\theta}, ...; \boldsymbol{y}, \boldsymbol{x}) = \sum_{i=1}^{n} \sum_{j=1}^{J} y_i^j log \Big(g_j(\boldsymbol{x}_i, \boldsymbol{\theta}) \Big)$$
(3)

The ordered case

Context

- The J alternatives feature a natural ordering
 - example: income groups (low, lower-middle, upper-middle, and high-income countries)

<u>Latent</u> variable approach

1 A continuous but unobservable variable y_i^* :

$$y_i^* = \boldsymbol{\theta}' \boldsymbol{x}_i + \epsilon_i$$

- ϵ_i a continuous random variable (e.g. normal or logistic) with F the c.d.f of ϵ_i
- 2 Assume that $-\infty = c_0 < c_1 < c_2 < ... < c_J = +\infty$, such that $\forall i \in \{1, 2, ..., J\}$

$$\mathbb{P}(y_i = j) = \mathbb{P}(c_{j-1} < y_i^* \le c_j) = F(c_j - \theta' x_i) - F(c_{j-1} - \theta' x_i)$$

The ordered case

ESTIMATION

- **①** Ordered Logit: F(.) is the c.d.f of logistic distribution
- **2** Ordered Probit: F(.) is the c.d.f of standard normal distribution
- **3** If one component of x_i is 1 (intercept), then set $c_1 = 0$ for identifiability (like in binary logit/probit cases)
- **1** The log-likelihood equation (3) becomes

$$log \mathcal{L}(\boldsymbol{\theta}, c_2, ..., c_{J-1}; \boldsymbol{y}, \boldsymbol{x}) = \sum_{i=1}^{n} \sum_{j=1}^{J} y_i^j log \left(g_j(\boldsymbol{x}_i, \boldsymbol{\theta}) \right)$$
(4)

with
$$g_i(\mathbf{x}_i, \boldsymbol{\theta}) = F(c_i - \boldsymbol{\theta}' \mathbf{x}_i) - F(c_{i-1} - \boldsymbol{\theta}' \mathbf{x}_i)$$

6 Apply MLE to estimate θ as well as the cutoffs $, c_2, ..., c_{J-1}$

MARGINAL EFFECTS

MARGINAL EFFECTS

• The marginal effects:

$$\frac{\partial \mathbb{P}(y_i = j)}{\partial x_i} = \underbrace{\left(f(c_j - \boldsymbol{\theta}' x_i) - f(c_{j-1} - \boldsymbol{\theta}' x_i)\right)}_{A} \boldsymbol{\theta}$$
(5)

- therefore the signs of the marginal effects are not necessarily those of the components of θ . (The sign of A is a priori unknown.)
- **2** The sign of the components of θ allows to know whether or not the latent variable y^* increases with the the corresponding regressor.

APPLICATION 1

FIGURE: Data

variable name	type	format	label	variable label
warm	byte	%10.0g	SD2SA	Mom can have warm relations with child
yr89	byte	%10.0g	yrlbl	Survey year: 1=1989 0=1977
male	byte	%10.0g	sexlbl	Gender: 1=male 0=female
white	byte	%10.0g	race21bl	Race: 1=white 0=not white
age	byte	%10.0g		Age in years
ed	byte	%10.0g		Years of education
prst	byte	%10.0g		Occupational prestige

warm: 1 (cold relations) to 4 (warm relations)

APPLICATION 1

Ordered Logit

Table: Estimation results : ologit

Variable	Coefficien	nt	(Std. Err	.)
yr89	0.524**		(0.080)	
male	-0.733**		(0.078)	
white	-0.391**		(0.118)	
age	-0.022**		(0.002)	
ed	0.067**		(0.016)	
prst	0.006^{\dagger}		(0.003)	
c_1	-2.465**		(0.239)	
c_2	-0.631**		(0.233)	
c_3	1.262**		(0.234)	
Significand	ce levels :	†: 10%	*:5%	**: 1%

APPLICATION 1 (MARGINAL EFFECT)

	ME	M		AME			
yr89							
1. predict	-0.0518***	(0.00814)	-0.0557***	(0.00879)			
2. predict	-0.0773***	(0.0122)	-0.0608***	(0.00918)			
3. predict	0.0582***	(0.00962)	0.0435***	(0.00691)			
4. predict	0.0708***	(0.0109)	0.0730***	(0.0112)			
male							
 predict 	0.0725***	(0.00813)	0.0780***	(0.00881)			
2. predict	0.108***	(0.0125)	0.0851***	(0.00892)			
3. predict	-0.0815***	(0.01000)	-0.0609***	(0.00678)			
4. predict	-0.0992***	(0.0109)	-0.102***	(0.0112)			
white							
 predict 	0.0387**	(0.0118)	0.0416**	(0.0127)			
2. predict	0.0577**	(0.0176)	0.0454***	(0.0137)			
3. predict	-0.0435**	(0.0134)	-0.0325**	(0.00997)			
4. predict	-0.0529***	(0.0160)	-0.0545***	(0.0165)			
age							
 predict 	0.00214***	(0.000255)	0.00230***	(0.000275)			
2. predict	0.00319***	(0.000390)	0.00252***	(0.000282)			
3predict	-0.00241***	(0.000313)	-0.00180***	(0.000214)			
$4{\rm predict}$	-0.00293***	(0.000340)	-0.00302***	(0.000350)			
ed							
1predict	-0.00664***	(0.00160)	-0.00714***	(0.00171)			
2predict	-0.00990***	(0.00240)	-0.00780***	(0.00185)			
3predict	0.00746***	(0.00184)	0.00558***	(0.00133)			
4predict	0.00908***	(0.00217)	0.00936***	(0.00224)			
prst							
1predict	-0.000600	(0.000326)	-0.000646	(0.000351)			
2. predict	-0.000895	(0.000487)	-0.000705	(0.000382)			
3predict	0.000675	(0.000368)	0.000505	(0.000275)			
4. predict	0.000821	(0.000445)	0.000846	(0.000458)			

MULTINOMIAL LOGIT (MNL)

- Alternative-invariant x: the explanatory variables vary only with i, but not with j
- 2 The probabilities are given by:

$$\mathbb{P}(y_i = j) = \frac{\exp(\boldsymbol{\theta}_j' \boldsymbol{x}_i)}{\sum_{k=1}^{J} \exp(\boldsymbol{\theta}_k' \boldsymbol{x}_i)}, \ j = 1, ..., J$$
 (6)

with $\theta_1 = \mathbf{0}$ (normalization)

3 The log-likelihood equation (3) becomes

$$log \mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{x}) = \sum_{i=1}^{n} \sum_{j=1}^{J} y_i^j log(\mathbb{P}(y_i = j))$$
 (7)

• Apply MLE to estimate $\theta_2, ..., \theta_J$

MULTINOMIAL LOGIT (MNL)

INTERPRETATION OF COEFFICIENTS

$$\frac{\mathbb{P}(y_i = j)}{\mathbb{P}(y_i = 1)} = \exp(\boldsymbol{\theta}_j' \boldsymbol{x}_i)$$

The sign of coefficient indicates how the probability of alternative j varies in comparison to the baseline (y = 1).

Marginal Effects

• The marginal effects:

$$\frac{\partial \mathbb{P}(y_i = j)}{\partial \boldsymbol{x}_i} = \mathbb{P}(y_i = j) \left(\boldsymbol{\theta}_j - \overline{\boldsymbol{\theta}_i}\right)$$
 (8)

with
$$\overline{\boldsymbol{\theta}_i} = \sum_{l=1}^J \mathbb{P}(y_i = l)\boldsymbol{\theta}_l$$

- the sign of the marginal effect is the one of A which is priori unknown.)

CONDITIONAL LOGIT (CL)

4. Alternative-varying x: the explanatory variables vary with j

$$\mathbb{P}(y_i = j) = \frac{\exp(\boldsymbol{\theta}' \boldsymbol{x}_i^j)}{\sum_{k=1}^{J} \exp(\boldsymbol{\theta}' \boldsymbol{x}_i^k)}, \ j = 1, ..., J$$
 (9)

2 The log-likelihood equation (3) becomes

$$log \mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{x}) = \sum_{i=1}^{n} \sum_{j=1}^{J} y_i^j log \Big(\mathbb{P}(y_i = j) \Big)$$
 (10)

3 Apply MLE to estimate θ

CONDITIONAL LOGIT (CL)

INTERPRETATION OF COEFFICIENTS AND MARGINAL EFFECTS

• The marginal effects:

$$\frac{\partial \mathbb{P}(y_i = j)}{\partial \boldsymbol{x}_i^j} = \mathbb{P}(y_i = j) \Big(1 - \mathbb{P}(y_i = j) \Big) \boldsymbol{\theta}$$
 (11)

$$\frac{\partial \mathbb{P}(y_i = j)}{\partial \boldsymbol{x}_i^k} = -\mathbb{P}(y_i = j)\mathbb{P}(y_i = k)\boldsymbol{\theta}$$
 (12)

- \bullet The sign of own-effect is the one of the corresponding component of $\boldsymbol{\theta}$
- ullet The sign of cross-effect is the opposite of the one of the corresponding component of eta

MIXTURE OF MNL AND CL

• Mixture of MNL and CL

$$\mathbb{P}(y_i = j) = \frac{\exp(\gamma' z_i^j + \delta'_j x_i)}{\sum_{k=1}^{J} \exp(\gamma' z_i^k + \delta'_k x_i)}, j = 1, ..., J$$
 (13)

- z: Alternative-varying variables
- x: Alternative-invariant variables
- 2 The log-likelihood equation (3) becomes

$$log \mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{x}) = \sum_{i=1}^{n} \sum_{j=1}^{J} y_i^j log \Big(\mathbb{P}(y_i = j) \Big)$$
 (14)

- **3** Apply MLE to estimate γ and δ
- Interpret coefficients and marginal effects as in MNL and

DEFINITION (GUMBEL DISTRIBUTION)

A random variable X follows the Gumbel distribution (W) if its c.d.f (F) and p.d.f (f) are given by

$$F(x) = \exp(-\exp(-x))$$
 and $f(x) = \exp(-x - \exp(-x))$

DEFINITION (RANDOM UTILITY)

The random utility $U_{i,j}$ associated to the alternative $j \in \{1, 2, ..., J\}$ of the unit i is:

$$U_{i,j} = V_{i,j} + \epsilon_{i,j}$$

with $V_{i,j}$ a deterministic component of the utility and $\epsilon_{i,j}$ a random variable (response error)

Proposition (Utility Model Justification)

In the context of the random utility, if $\epsilon_{i,j}$ are independent and follow the Gumbel distribution (W), then

$$\mathbb{P}(y_i = j) = \frac{\exp(V_j)}{\sum_{k=1}^{J} \exp(V_k)}, \ j = 1, ..., J$$
 (15)

Proof

$$\mathbb{P}(y_i = j) = \mathbb{P}\left(U_{i,j} > U_{i,k}; \forall k \neq j\right) \\
= \mathbb{P}\left(\epsilon_{i,k} < V_{i,j} - V_{i,k} + \epsilon_{i,j}; \forall k \neq j\right)$$

After computing

$$\mathbb{P}(y_i = j) \qquad = \qquad \int \prod_{k \neq j} F(V_{i,j} - V_{i,k} + \epsilon) f(\epsilon) d\epsilon$$

After computing, we have

$$\prod_{k \neq i} F(V_{i,j} - V_{i,j} + \epsilon) f(\epsilon) = \exp(-\epsilon - \exp(-\epsilon + \lambda_{i,j}))$$

with
$$\lambda_{i,j} = -\log\left(\frac{\exp(V_{i,j})}{\sum_{k=1}^{J} \exp(V_{i,k})}\right)$$

$$\mathbb{P}(y_i = j) = \int \exp\left(-\epsilon - \exp(-\epsilon + \lambda_{i,j})\right) d\epsilon$$

$$= \int \exp\left(-t - \lambda_{i,j} - \exp(-t)\right) dt$$

$$= \exp\left(-\lambda_{i,j}\right) \int f(t) dt = \exp(-\lambda_{i,j})$$

$$\mathbb{P}(y_i = j) = \frac{\exp(V_{i,j})}{\sum_{k=1}^{J} \exp(V_{i,k})}$$

- **3** MNL & CL : $V_{i,j} = \boldsymbol{\gamma}' \boldsymbol{z}_i^j + \boldsymbol{\delta}'_j \boldsymbol{x}_i$

IIA

• For any individual, the ratio of probabilities of choosing two alternatives is independent of the availability or attributes of any other alternatives:

$$\frac{\mathbb{P}(y_i = j)}{\mathbb{P}(y_i = k)} = \exp(V_{i,j} - V_{i,k})$$

$$\mathbb{P}(y_i = j | y_i \in \{j, k\}) = \frac{\exp(V_{i,j})}{\exp(V_{i,j}) + \exp(V_{i,k})}$$

2 IIA is driven by Independence of errors

EXAMPLE: THE RED BUS VS BLUE BUS PROBLEM

- \bullet Transportation: car (y=1), red bus (y=2), blue bus (y=3)
 - The only difference between red and blue bus is the color

EXAMPLE: THE RED BUS VS BLUE BUS PROBLEM

- Transportation: car (y=1), red bus (y=2), blue bus (y=3)
- The only difference between red and blue bus is the color
- ② IIA: the conditional probability of commute by car given commute by car or red bus, i.e. $\mathbb{P}(y=1|y\in\{1,2\})$ is independent on whether there is a blue bus option or not

- **●** Transportation: car (y=1), red bus (y=2), blue bus (y=3)
 - The only difference between red and blue bus is the color
- ② IIA: the conditional probability of commute by car given commute by car or red bus, i.e. $\mathbb{P}(y=1|y\in\{1,2\})$ is independent on whether there is a blue bus option or not
- 3 But, in "fact" ...
 - how would the probability of red bus commuting changes when introducing a blue bus? Halve?

- **●** Transportation: car (y=1), red bus (y=2), blue bus (y=3)
 - The only difference between red and blue bus is the color
- ② IIA: the conditional probability of commute by car given commute by car or red bus, i.e. $\mathbb{P}(y=1|y\in\{1,2\})$ is independent on whether there is a blue bus option or not
- 3 But, in "fact" ...
 - how would the probability of red bus commuting changes when introducing a blue bus ? Halve ?
 - how would the probability of car commuting change when introducing a blue bus ? no effect ?

- Transportation: car (y=1), red bus (y=2), blue bus (y=3)
 - The only difference between red and blue bus is the color
- 2 IIA: the conditional probability of commute by car given commute by car or red bus, i.e. $\mathbb{P}(y=1|y\in\{1,2\})$ is independent on whether there is a blue bus option or not
- 3 But, in "fact" ...
 - how would the probability of red bus commuting changes when introducing a blue bus? Halve?
 - how would the probability of car commuting change when introducing a blue bus? no effect?
 - how would $\mathbb{P}(y=1|y\in\{1,2\})$ change? Increases?

- Transportation: car (y=1), red bus (y=2), blue bus (y=3)
 - The only difference between red and blue bus is the color
- 2 IIA: the conditional probability of commute by car given commute by car or red bus, i.e. $\mathbb{P}(y=1|y\in\{1,2\})$ is independent on whether there is a blue bus option or not
- 3 But, in "fact" ...
 - how would the probability of red bus commuting changes when introducing a blue bus? Halve?
 - how would the probability of car commuting change when introducing a blue bus? no effect?
 - how would $\mathbb{P}(y=1|y\in\{1,2\})$ change? Increases?
- While IIA is driven by independence of errors, we expect that ϵ_2 and ϵ_3 are highly correlated.

Intuition: The red bus vs blue bus problem

- First, the individual chooses between two modes of transportation: "car" vs "bus"
- ② Second, if the individual chooses the mode "bus"; then he needs to chose the color of the bus

CONTEXT: NESTING STRUCTURE

The decision three is as follows:

- The individual chooses a **limb** j among the available J limbs
- 2 If the individual chooses the limb j, then he will choose one of the K_j branches available in the limb j

• Specification of the deterministic part of utility associated to limb j and branch k:

$$U_{j,k} = \mathbf{z}'_{j}\alpha + \mathbf{x}'_{j,k}\beta_{j} + \epsilon_{j,k}$$
, $j = 1, 2, ..., J$ and $k = 1, 2, ..., K_{j}$

- z vary only across limbs.
- x vary across limbs and branches.
- ② The joint probability of being in limb j and choosing branch k is the product of the probability of being in limb j times the conditional probability of choosing branch k given that limb j have been chosen.

• The probability of choosing $\lim_{j \to \infty} j$ and $\lim_{j \to \infty} k$:

$$p_{j,k} = \underbrace{\frac{exp(\mathbf{z}_{j}'\boldsymbol{\alpha} + \tau_{j}I_{j})}{\sum_{m=1}^{J} exp(\mathbf{z}_{m}'\boldsymbol{\alpha} + \tau_{m}I_{m})}}_{p_{j}} \times \underbrace{\frac{exp(\mathbf{x}_{j,k}'\boldsymbol{\beta}_{j}/\tau_{j})}{\sum_{l=1}^{K_{j}} exp(\mathbf{x}_{j,l}'\boldsymbol{\beta}_{j}/\tau_{j})}}_{p_{k|j}}$$
(16)

• I_j is the inclusive value or the log-sum

$$I_j = \ln \left(\sum_{l=1}^{K_j} exp(\boldsymbol{x}'_{j,l}\beta_j/\tau_j) \right)$$

- dissimilarity parameters: $\tau_j = \sqrt{1 Corr(\epsilon_{j,k}, \epsilon_{j,l})}$, which is inversely related to the correlation within each limb
- Apply MLE to estimate α , β_j and τ_j

• IIA holds within the limbs

$$\frac{p_{j,k}}{p_{j,t}} = \frac{exp(\mathbf{x}'_{j,k}\boldsymbol{\beta}_j/\tau_j)}{exp(\mathbf{x}'_{j,t}\boldsymbol{\beta}_j/\tau_j)}$$

② But, IIA does not hold between the limbs as $\frac{p_{j,k}}{p_{j',t'}}$ depends on all alternatives in nest j and j'.

APPLICATION 2

Data description (Cameron and Trivedi)

- mode: 4 mutually exclusive categories (fishing mode)
 - beach (y=1)
 - pier (y=2)
 - private boat (y=3)
 - charter boat (y=4)
- 2 alternative-varying regressors:
 - price (pbeach, ppier, pprivate and charter)
 - catch rate (qbeach, qpier, qprivate and qcharter)
- 3 alternative-invarying regressor: income

APPLICATION 2

MNL (ALTERNATIVE-INVARIANTE REGRESSOR)

Table: Estimation results: mlogit

Variable	Coefficien	t (Std. Err	.)							
	Equa	tion 1 : beach								
o.income	0.000	(0.000)								
$o._cons$	0.000	(0.000)								
	Equation 2: pier									
income	-0.143**	(0.053)								
Intercept	0.814**	(0.229)								
	Equat	ion 3: private								
income	0.092*	(0.041)								
Intercept	0.739**	(0.197)								
	Equat	ion 4 : charter								
income	-0.032	(0.042)								
Intercept	1.341**	(0.195)								
Significand	ce levels :	†: 10% *: 5%	** : 1%							

MNL (MARGINAL EFFECTS)

	ME	EM	AME		
income					
$1._\mathrm{predict}$	0.0000750	(0.00393)	0.000165	(0.00376)	
$2._$ predict	-0.0207***	(0.00487)	-0.0208***	(0.00514)	
3predict	0.0326***	(0.00569)	0.0318***	(0.00526)	
4predict	-0.0120*	(0.00608)	-0.0112	(0.00594)	

Standard errors in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

APPLICATION 2

CL (ALTERNATIVE-VARYING REGRESSORS)

Table: Estimation results: asclogit

Variable	Coefficient	(Std. Err.)
р	-0.020**	(0.001)
q	0.953**	(0.089)
Significan	ce levels : †	: 10% *: 5% **: 1%

CL (MARGINAL EFFECTS)

• Beach

variable	dp/dx	Std. Err.	Z	P> z	[95%	C.I.]	Х
p							
beach	002641	.000089	-29.53	0.000	002816	002465	103.42
charter	.001013	.000034	29.88	0.000	.000947	.001079	84.379
pier	.000439	.00001	43.50	0.000	.00042	.000459	103.42
private	.001188	.000067	17.67	0.000	.001057	.00132	55.257
q							
beach	.122915	.010319	11.91	0.000	.10269	.14314	.24101
charter	04715	.005116	-9.22	0.000	057177	037122	. 62937
pier	020454	.001623	-12.60	0.000	023635	017272	.16222
private	055312	.00395	-14.00	0.000	063054	04757	.17121

• Pier

variable	dp/dx	Std. Err.	Z	P> z	[95%	C.I.]	X
p							
beach	.000439	.00001	43.50	0.000	.00042	.000459	103.42
charter	.00094	.000027	35.04	0.000	.000887	.000992	84.379
pier	002481	.000083	-29.93	0.000	002644	002319	103.42
private	.001102	.000064	17.31	0.000	.000978	.001227	55.257
q							
beach	020454	.001623	-12.60	0.000	023635	017272	.24101
charter	043739	.004456	-9.82	0.000	052472	035005	. 62937
pier	.115503	.009035	12.78	0.000	.097795	.133211	.16222
private	051311	.003303	-15.53	0.000	057784	044837	.17121

CL (MARGINAL EFFECTS)

• Private

variable	dp/dx	Std. Err.	Z	P> z	[95%	C.I.]	X
p							
beach	.001188	.000067	17.67	0.000	.001057	.00132	103.42
charter	.002541	.000219	11.61	0.000	.002112	.00297	84.379
pier	.001102	.000064	17.31	0.000	.000978	.001227	103.42
private	004832	.000336	-14.39	0.000	00549	004174	55.257
q							
beach	055312	.00395	-14.00	0.000	063054	04757	.24101
charter	118281	.013546	-8.73	0.000	14483	091732	. 62937
pier	051311	.003303	-15.53	0.000	057784	044837	.16222
private	.224904	.020701	10.86	0.000	.18433	.265477	.17121

• Charter

variable	dp/dx	Std. Err.	Z	P> z	[95%	C.I.]	Х
p							
beach	.001013	.000034	29.88	0.000	.000947	.001079	103.42
charter	004494	.000276	-16.26	0.000	005036	003952	84.379
pier	.00094	.000027	35.04	0.000	.000887	.000992	103.42
private	.002541	.000219	11.61	0.000	.002112	.00297	55.257
q							
beach	04715	.005116	-9.22	0.000	057177	037122	.24101
charter	.209169	.022337	9.36	0.000	.16539	.252949	. 62937
pier	043739	.004456	-9.82	0.000	052472	035005	.16222
private	118281	.013546	-8.73	0.000	14483	091732	.17121

APPLICATION 2

MIXTURE OF MNL AND CL

Table: Estimation results: asclogit

Variable	Coefficient	(Std. Err.)						
Equation 1 : fishmode								
p	-0.025**	(0.002)						
q	0.358**	(0.110)						
Equation 2 : charter								
income	-0.033	(0.050)						
Intercept	1.694**	(0.224)						
Equation 3: pier								
income	-0.128*	(0.051)						
Intercept	0.778**	(0.220)						
	Equati	on 4 : private						
income	0.089^{\dagger}	(0.050)						
Intercept	0.527*	(0.223)						
Significand	ce levels :	†: 10% *: 5% **: 1%						

APPLICATION 2 (NESTED LOGIT)

APPLICATION 2 (NESTED LOGIT)

Table: Estimation results: nlogit

Variable	Coefficient	(Std. Err.)					
Equation 1 : fishmode							
P	-0.027** (0.002)						
q	1.347**	(0.283)					
	Equa	tion 2 : charter					
income	-5.469	(12.490)					
Intercept	48.310	(96.493)					
	Equ	nation 3: pier					
income	-6.426	(12.884)					
Intercept	39.889	(81.529)					
	Equa	tion 4 : private					
income	-1.289	(2.035)					
Intercept	28.221	(56.683)					
	Equati	on 5 : shore_tau					
Intercept	55.932	(118.953)					
	Equati	ion 6 : boat tau					
Intercept	32.626	(86.884)					
Significa	nce levels :	†: 10% *: 5% **: 1%					

Even though the model is mathematically correct, with probabilities between 0 and 1 that add up to 1, the fitted model is not consistent with the random utility framework (the dissimilarity parameters "tau" are much greater than 1).

CONTEXT AND OBJECTIVE

Context

- y_i is in \mathbb{N} , often with a large proportion of zeros. The data is usually skewed to the right.
- **3** You have also observed a vector of characteristics \boldsymbol{x}_i (K,1) associated to the individual i

OBJECTIVE

Propose and estimate parametric models accounting for the distribution of y_i conditional on explanatory variables x_i

EXAMPLES

EXAMPLES

- number of doctor visits
- number of customers
- number of hospital stays
- number of borrowers' defaults
- number of recreational trips
- number of accidents
- ...

Poisson model

Poisson model

1 Natural model: $Y \rightsquigarrow \mathcal{P}(\lambda)$, i.e.

$$\mathbb{P}(Y = k) = \frac{\lambda^k \exp(-\lambda)}{k!}$$

implying $E(Y) = Var(Y) = \lambda$ (equidispersion property)

2 Standard assumption:

$$Y_i \rightsquigarrow \mathcal{P}(\lambda_i)$$
 with $\lambda_i = \exp(\boldsymbol{\theta}' \boldsymbol{x}_i)$

Poisson model

ESTIMATION

• Log-likelihood of the sample:

$$\mathcal{L}(\boldsymbol{\theta}; \boldsymbol{y}, \boldsymbol{x}) = \sum_{i=1}^{n} \left(y_i \boldsymbol{\theta}' \boldsymbol{x}_i - \exp(\boldsymbol{\theta}' \boldsymbol{x}_i) - \ln(y_i!) \right)$$

2 F.O.C of of MLE:

$$\sum_{i=1}^{n} (y_i - \exp(\boldsymbol{\theta}' \boldsymbol{x}_i)) \boldsymbol{x}_i = \mathbf{0}$$

Poisson model

MARGINAL EFFECT AND COEFFICIENT

• The sign of marginal effects are the ones of the components of $oldsymbol{ heta}$

$$\frac{\partial \mathbb{E}(y_i|\boldsymbol{x}_i)}{\partial x_{i,j}} = \theta_j \exp(\boldsymbol{\theta}' \boldsymbol{x}_i)$$

- depends on the considered individual, then AME and MEM

APPLICATION (CAMERON AND TRIVEDI)

FIGURE: description of data

variable name	storage type	display format	value label	variable label
docvis	float	%9.0g		# doctor visits
private	byte	%8.0g	%8.0g =1 if has private supplementary insurance	
medicaid	byte	%8.0g		=1 if has Medicaid public insurance
age	byte	%8.0g Age		Age
age2	float	%9.0q		Age-squared
educyr	byte	%8.0q		Years of education
actlim	byte	%8.0g	=1 if activity limitation	
totchr	byte	%8.0g		# chronic conditions

APPLICATION 3

Table: result: poisson model

main private medicaid age	Coef.		MEM		AME	
	0.142*** 0.0970*** 0.294***	(0.0143) (0.0189) (0.0260)	0.891*** 0.608*** 1.841***	(0.0896) (0.119) (0.162)	0.970*** 0.662*** 2.004***	(0.0980) (0.129) (0.178)
age2 educyr	-0.00193*** 0.0296***	(0.000172) (0.00188)	-0.0121*** 0.185***	(0.00108) (0.0117)	-0.0132*** 0.202***	(0.00118) (0.0129)
actlim totchr	0.186*** 0.248***	(0.0146) (0.00464)	1.168*** 1.557***	(0.0911) (0.0280)	1.272*** 1.695***	(0.0997) (0.0334)
$\underline{\underline{\text{cons}}}$	-10.18*** 3677	(0.972)	3677		3677	

Standard errors in parentheses p < 0.05, ** p < 0.01, *** p < 0.001

LIMIT

LIMIT

- The problem of Poisson model is that the distribution of y_i conditional on x_i depends on a single parameter λ_i , so cannot account for the fact that data often :
 - suggest $\mathbb{E}(y_i) < V(y_i)$ (overdispersion)
 - contain important proportion of zero
- ② Generalizations: negative binomial model, hurdle Models, zero-inflated models, etc...

