

Physique

Classe : 4^{ème} année secondaire sciences de l'informatique

Chapitre: Conversion des signaux (1) (Enoncé)

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice N°1:

On considère le convertisseur numérique **C.N.A** à **4 bits** de la figure **n°1**, utilisant une échelle de résistances pondèrées. L'amplificateur opérationnel fonctionne en régime linéaire.

Il est supposé parfait Il est polarisé à \pm Vcc, avec Vcc= 12V ; $E_{réf}$ =4V et R=R'. Les interrupteurs Kj sont commandés par un circuit logique tel que: j=0,1,2 et 3

- Pour a_j =1, ona K_j fermé,
- Pour **a**_i **= 0**, ona **K**_i ouvert.

1.

a- Définir un C.N.A et un C.A.N

Figure 1

b- Montrer que l'expression de l'intensité du courant I_3 qui parcourt le résistor de résistances R est :

$$I_3 = \frac{a_3 \cdot E_{ref}}{R}$$

- 2. Exprimer l'intensité du courant i qui traverse le résistor de résistance R' en fonction de a_j, E_{réf} et R.
- 3. Préciser l'importance de l'amplificateur opérationnel dans un montage pareil.
- 4. Exprimer U_s en fonction de a_j , E_{ref} , R et R' et montrer que U_s = K.N
- 5. En déduire le quantum ${f q}$ et la pleine échelle ${f U}_{\scriptscriptstyle smax}$ du ${f C.N.A.}$

Exercice N°2:

On considère le convertisseur numérique analogique à 8 bits schématisé par la figure n°2.

Les variables logiques \mathbf{a}_i du registre binaire commandent les interrupteurs \mathbf{K}_i associés aux résistances pondérées 128R à R. L'interrupteur \mathbf{K}_0 est associé au résistor 128 R.

1.

- a- Donner l'expression de l'intensité du courant électrique I₀ qui traverse le résistor 128 R
- b- Etablir l'expression de la tension de sortie Us du convertisseur en fonction de ao, R, R1 et Eref
- 2. Montrer que la tension de sortie associée à l'information numérique 11001010 est:

$$\mathsf{U}_{\mathsf{s}} \!= R_1 \cdot \big(\frac{E_{ref}}{R} \!+\! \frac{E_{ref}}{2R} \!+\! \frac{E_{ref}}{16R} \!+\! \frac{E_{ref}}{64R} \big)$$

- **3.** Calculer la valeur de tension Us correspondant à cette information sachant que la tension maximale de sortie de l'amplificateur opérationnel est **10V**.
- **4.** Comment faut-il choisir la valeur de \mathbf{E}_{ref} pour assurer un fonctionnement convenable du $\mathbf{C.N.A}$?

Figure 2

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000