Data 608 Story 3

Kevin Kirby

2025-03-04

```
library(tidyverse)
library(readxl)
library(httr)
library(ggplot2)
library(dplyr)
library(viridis)
```

Overview

The assignment states: "Do differences in per capita healthcare spending correlate with adult obesity prevalence? Your task is to analyze the provided obesity data and source additional data on healthcare spending to address this question."

I am to collect state-level per capita health spending and combine it with a provided obesity dataset to answer the above question.

Data preparation

I will import the datasets and create dataframes based on them. I used the Kaiser dataset 'Health Care Expenditures per Capita by State of Residence' to get state health expenditures. This data is refreshed every five years and the below is based on 2020 data.

```
obsesity_xls <- 'https://storage.googleapis.com/data_science_masters_files/adult%20obesity.xlsx'
statehealth_csv <- 'https://storage.googleapis.com/data_science_masters_files/statehealth_percapita.csv

obsesity_t <- tempfile(fileext = ".xlsx")
GET(obsesity_xls, write_disk(obsesity_t, overwrite = TRUE))

## Response [https://storage.googleapis.com/data_science_masters_files/adult%20obesity.xlsx]

## Date: 2025-03-04 17:13

## Status: 200

## Content-Type: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet

## Size: 10.7 kB

## <ON DISK> /var/folders/z2/2cg34qq110n7hgx5hd3b2rnr0000gn/T//Rtmp1CZIAQ/file7571768e7c4.xlsx

obesity_df <- read_excel(obsesity_t)

statehealth_df <- read_csv(statehealth_csv)</pre>
```

Data merging and quintiles

The two dataframes are merged based on state name, with anything not matching being dropped. I used ntile() from dplyr to create the quntiles, which are assigned as values 1-5.

```
state_health_df <- merge(obesity_df, statehealth_df, by.x = "State", by.y = "Location")

state_health_df <- state_health_df %>%
  rename(
    state_name = State,
    obesity_rank = Rank,
    obesity_pct = `Obesity %`,
    per_cap_health_spend = `Health Spending per Capita`
) %>%
  mutate(spend_quintile = ntile(per_cap_health_spend, 5))

state_health_df
```

##		state_name	obesity_rank	obesity_pct	per_cap_health_spend
##	1	Alabama	5	0.392	\$9,280
##	2	Alaska	17	0.352	\$13,642
##	3	Arizona	27	0.319	\$8,756
##	4	Arkansas	3	0.400	\$9,338
##	5	California	39	0.277	\$10,299
##	6	Colorado	42	0.249	\$8,583
##	7	Connecticut	35	0.294	\$12,489
##	8	Delaware	13	0.357	\$12,899
##	9	District of Columbia	51	0.215	\$14,381
##	10	Florida	34	0.301	\$9,865
##	11	Georgia	18	0.350	\$8,758
##	12	Hawaii	41	0.261	\$10,291
##	13	Idaho	29	0.310	\$8,148
##	14	Illinois	11	0.360	\$10,190
##	15	Indiana	7	0.378	\$10,517
##	16	Iowa	7	0.378	\$9,789
##	17	Kansas	12	0.359	\$9,408
##	18	Kentucky	50	0.387	\$10,257
##	19	Louisiana	2	0.399	\$10,515
	20	Maine	26	0.326	\$12,077
	21	Maryland	21	0.341	\$10,839
##	22	Massachusetts	40	0.274	\$13,319
##	23	Michigan	15	0.354	\$9,897
##	24	Minnesota	24	0.333	\$10,846
##	25	Mississippi	2	0.401	\$9,394
##	26	Missouri	16	0.353	\$9,921
	27	Montana	32	0.305	\$10,212
##	28	Nebraska	9	0.366	\$10,514
##	29	Nevada	30	0.308	\$8,348
	30	New Hampshire	25	0.328	\$11,793
	31	New Jersey	36	0.289	\$11,868
	32	New Mexico	16	0.353	\$8,902
	33	New York	38	0.280	\$14,007
##	34	North Carolina	22	0.340	\$8,917
##	35	North Dakota	14	0.356	\$11,301
##	36	Ohio	10	0.364	\$10,478
	37	Oklahoma	6	0.387	\$9,444
##	38	Oregon	23	0.336	\$10,071
##	39	Pennsylvania	31	0.324	\$11,603
##	40	Rhode Island	28	0.316	\$11,694

##	11	South Carolina	1.1	0.360	фо 7 <i>66</i>
##	42	South Dakota	11 11	0.360	\$8,766 \$12,495
	43	Tennessee	8	0.376	\$9,336
	44	Texas	19	0.344	\$8,406
	45	Utah	33	0.302	\$7,522
	46	Vermont	37	0.288	\$12,756
	47	Virginia	20	0.343	\$9,195
	48	Washington	31	0.306	\$9,265
	49	West Virginia	1	0.412	\$12,769
	50	Wisconsin	12	0.359	\$9,982
##	51	Wyoming	24	0.333	\$10,989
##		spend_quintile			
##	1	4			
##	2	3			
##	3	4			
##	4	5			
	5	1			
##	6	4			
	7	2			
##		3			
##		3			
	10	5			
##		4			
	12	1			
	13	3			
	14	1			
##		1			
##		5			
##		5 1			
##	18	1			
##		2			
##		1			
	22	3			
	23	5			
	24	2			
	25	5			
##		5			
##		1			
##	28	1			
##	29	3			
##	30	2			
##	31	2			
##	32	4			
##		3			
##		4			
##		2			
##		1			
##		5			
##		1			
##		2			
	40	2			
	41	4			
##	42	2			

```
## 43
                      5
## 44
                      4
## 45
                      3
                      3
## 46
## 47
                      4
                      4
## 48
## 49
                      3
                      5
## 50
## 51
                      2
```

Analysis and visualization of data

I used obesity_pct as the health outcome metric to analyze differences across the quintiles.

Below are five box plots, one for each of the five health spending quintiles. It's interesting to see the basically non-existent relationship between health spending and obesity percent. It speaks to the generally inefficient state of American healthcare spending, where there often seems to be very little connection between spending and outcomes. If anything, you would expect there to be pressure in the reverse direction, where states are spending less because their population is generally healthy. I can determine this by seeing the seeing very similar 50% markers for both the first and last quintile. The color shading also makes it easier to scan across as accessible colors are also easier for everyone to understand.

```
ggplot(state_health_df, aes(x = factor(spend_quintile), y = obesity_pct, fill = factor(spend_quintile))
geom_boxplot() +
scale_fill_viridis(discrete = TRUE, option = "C") +
labs(
    title = "Comparing obsesity prevelance to health spending",
    x = "Per capital health spending quintile",
    y = "Onsesity %",
    fill = "Spend quintile"
) +
theme_minimal()
```

