

EE/CSCI 451: Parallel and Distributed Computation

Lecture #13

10/1/2020

Viktor Prasanna

prasanna@usc.edu

ceng.usc.edu/~prasanna

University of Southern California

Announcement

- PHW4 due 10/9
- HW5 due 10/4
- HW3 & 4 grades are out

HW3 Statistics	
Average	90
Median	94.0
Standard Deviation	14

HW4 Statistics	
Average	91.4
Median	96.0
Standard Deviation	8.8

- Midterm 1 solution is posted on Piazza
 - Grades and statistics will be out by next Tuesday

Outline

Last class

- Communication primitives (Chapter 4)
 - Communication (cost) models
 - Definitions of communication primitives
 - Example implementation of some communication primitives

Today

- Communication primitives implementation analysis
 - One-to-all broadcast
 - Scatter and gather
- Example parallel programs using primitives
 - Matrix vector multiplication
 - Matrix multiplication
 - Sorting on a linear array
 - K-means clustering

One-to-all Broadcast in a 2-D Mesh (1)

Each row = 1-D Mesh Each column = 1-D Mesh

$$(\sqrt{p}-1,\sqrt{p}-1)$$

 $P_{00} \rightarrow \text{all processes}$

One-to-all Broadcast in a 2-D Mesh (2)

- Broadcast in Row₀
- P_{0j} broadcasts along column j in parallel for all j, $0 \leq j < \sqrt{p}$

 $(\sqrt{p} \text{ concurrent broadcasts})$

Total time = $(\sqrt{p} - 1 + \sqrt{p} - 1)$ in the Network Model

One-to-all Broadcast in a Hypercube (1)

 P_0 to all processes

Recursive doubling

Copy from P_0 to $P_{n/2}$

Two hypercube of size n/2

Recursively broadcast

One-to-all Broadcast in a Hypercube (2)

Network Model, message size = m

Time taken by using
$$p$$
 processes $T_p(m) = T_{\frac{p}{2}}(m) + m$

Message size = m
 $T_2(m) = m$
 $T_p(m) = O(m \log p)$

One-to-all Broadcast in a Hypercube (4) Prefix/Suffix

$$p = 8$$

One-to-all Broadcast in a Hypercube (5)

Implementation of recursive doubling

Do
$$j=\log p$$
 to 1
$$i'=j \text{ bit suffix of Processor ID } i$$
 if $i'=0\dots 0$ then
$$j \text{ bits} \qquad P_i \text{ sends to } P_{i+2^{j-1}} \text{ in parallel}$$

End

In iteration j, $2^{\log_2 p - j}$ processes active (send message)

All-to-one Reduction

At the end, P_0 has $\sum_{i=0}^{p-1} x_i$

Reduction operator

Dual of One-to-all Broadcast

Hypercube with p nodes = $O(\log p)$ time

Performing All-to-all Broadcast (1)

Message size = 1

Performing All-to-all Broadcast (2) On a Linear Array with wrap around (Ring) (Network model)

Idea: Cyclic Shift (Right)

Make a local copy

Performing All-to-all Broadcast (3)

Algorithm on a p-node ring

```
procedure ALL_TO_ALL_BC_RING(my_id, my_msg, p, result)
2.
   begin
3.
       left := (my_id - 1) \mod p;
                                                                    my id
      right := (my id + 1) mod p;
4.
5.
      result := my_msg;
6.
      msg := result;
                                                                     msg
7.
      for i := 1 to p - 1 do
8.
         send msg to right;
                                                                     Result
9.
         receive msg from left;
         result := result U msg;
10.
11.
       endfor;
12. end ALL_TO_ALL_BC_RING
```

Performing All-to-all Broadcast (4)

Total parallel time = O(p)

(Time) Optimal on a linear array?

(Time) Optimal on any network? (Single port communication)

Scatter and Gather (1)

Scatter: one node

unique message to each of the nodes

one-to-all personalized communication Total # of messages = p

Gather:

Each node has a unique message (No reduction)
Single node collects all messages

Scatter and Gather (2) Scatter and Gather operations

Scatter on Hypercube

Idea of one-to-all broadcast can be used

Recursive doubling

 P_0 has the p messages initially

$$A(0), ..., A(p-1)$$

- 1. Send $A\left(\frac{p}{2}\right)$, ..., A(p-1) to $P_{\frac{p}{2}}$
- 2. Recursively perform Scatter (Two Scatter operations of size $\frac{p}{2}$ in parallel)

Performing Scatter (2)

On hypercube (Network model)

$$T_p(p) = {}^p/_2 + T_{p/_2}({}^p/_2)$$
 $T_2(2) = 1$
 $T_p(p) = O(p)$
Message size = ${}^p/_2$

Note: Single port communication

Overlap Step 1 and 2

Each message = 1 unit

Send
$$A\left(\frac{p}{2}\right)$$
, ..., $A(p-1)$ from P_0 to $P_{\frac{p}{2}}$

Pipeline

Time =
$$({}^{p}/_{2} - 1) + ({}^{p}/_{2} - 1)$$

Perform two Scatter operations recursively on two linear arrays of size p/2

Parallel Algorithms using Communication Primitives

Application Developer

Communication Primitives (eg. All-to-all Broadcast, ...)

Basic communication Primitives (eg. Send/Receive/Barrier)

Hardware

Example: Dense Matrix Vector Multiplication (1)

$$C \leftarrow A \times B$$

 $C: n \times 1$ vector

 $A: n \times n$ matrix

 $B: n \times 1$ vector

 n^2 Processors in $n \times n$ mesh

Initial data alignment

- $P_{i,j}$ has $A_{i,j}$ $(0 \le i, j < n)$
- $P_{0,j}$ has B_j $(0 \le j < n)$ [Row 0 has B]

 $n \times n$ mesh for n = 4

Example: Dense Matrix Vector Multiplication (2)

Step 1:

One-to-all broadcast along each column

(*n* concurrent broadcasts)

Do j = 0 to n - 1 in parallel

 $P_{0,j}$ broadcasts B_j to $P_{1,j}, \dots, P_{n-1,j}$

End

Example: Dense Matrix Vector Multiplication (3)

Step 2:

Perform local computation in each processor

```
Do i=0 to n-1 in parallel Do j=0 to n-1 in parallel P_{i,j} computes A_{i,j}\times B_j End End Time =O(1)
```

Example: Dense Matrix Vector Multiplication (4)

Step 3:

All-to-one Reduction in each row

Do i = 0 to n - 1 in parallel

$$C_i = \sum_{j=0}^{n-1} A_{i,j} \times B_j$$

End

Example: Dense Matrix Vector Multiplication (5)

Analysis using Network model ($n \times n$ mesh)

Total time = O(n)

Total time =
$$(n-1)$$
 Broadcast (Step 1)
+1 Compute (Step 2)
+ $(n-1)$ Reduction (Step 3)

26

Example: Matrix Multiplication (1)

$$C \leftarrow A \times B$$

 $n \times n$ matrices

 $n \times n$ Processors in 2D mesh

Initial data alignment

• $P_{i,j}$ has $A_{i,j}$ and $B_{i,j}$

 $n \times n$ mesh for n = 4

Example: Matrix Multiplication (2)

28

Example: Matrix Multiplication (3)

Analysis using Network model ($n \times n$ mesh)

Total time =
$$[(n-1)]$$
 Broadcast +1 Compute $1 \times n$ n iterations

Total time = $O(n^2)$

Not work optimal

Note: By overlapping broadcast operations (iterations), total time can be improved to O(n)

Example: Sorting on a Linear Array using Communication Primitives (1)

p elements x_0 , ..., x_{p-1}

p processors in a linear array with wraparound

Initial data alignment: P_i has x_i ($0 \le i < p$)

Compute rank (x_i) = # of elements < x_i

Example: Sorting on a Linear Array using Communication Primitives (2)


```
In each processor P_i
Rank(x_i) \leftarrow 0
M_{sent} \leftarrow x_i
                                                         x_0
Do k = 1 to p
         Send M_{sent} to P_{(i+1)\%p} Rotate right
         Receive M_{received} from P_{(i-1)\%p}
         If (M_{received} < x_i) then
                  Rank(x_i) \leftarrow Rank(x_i) + 1
         End
          M_{sent} \leftarrow M_{received}
End
```


Example: Sorting on a Linear Array using Communication Primitives (3)

Compute Rank

Permute: Send x_i to Rank (x_i)

Total time = O(p)

Example: K-Means Clustering (1)

N data points x_0 , ..., x_{N-1} where $x_i \in \mathbb{R}^2$

k clusters

Input: $x_0, ..., x_{N-1}$ and k

Objective: Assign *N* data points to *k* clusters such that the distance between each data point and the cluster centroid to which it is assigned is minimized.

Example: K-Means Clustering (2)

+ : centroid

$$k = 2$$

Example: K-Means Clustering (3)

- Unsupervised learning is a type of machine learning algorithm used to draw inferences from datasets consisting of input data without labeled responses. The most common unsupervised learning method is cluster analysis.
- Common clustering algorithms include:
 - Hierarchical clustering: builds a multilevel hierarchy of clusters by creating a cluster tree
 - k-Means clustering: partitions data into k distinct clusters based on distance to the centroid of a cluster

Example: K-Means Clustering (4)

Centroid of a cluster

- Given points $x_0 = (a_0, b_0), \ x_1 = (a_1, b_1), ..., x_l = (a_l, b_l)$ in a cluster:
- Centroid = (Average of x-axis, Average of y-axis)
- Centroid $c = \sum_{i} \frac{x_i}{l} = (\sum_{i} \frac{a_i}{l}, \sum_{i} \frac{b_i}{l})$ Equation 1

Example: K-Means Clustering (5)

Serial Program:

• Initialize c_0, \ldots, c_{k-1}

Repeat:

- Initialize number of points assigned to cluster $i: n_i \ \forall i$ to 0.
- In each Iteration
 - 1. (Clustering) For each data point:
 - Compute its 'distance' to each $c_i \ \forall i \in \{0, ..., k-1\}$.
 - Assign it to the cluster *j* with the closest centroid.
 - $n_i \leftarrow n_i + 1$
 - 2. (Centroid) Recompute
 - $c_i \ \forall i \in \{0, ..., k-1\}$
 - using Equation 1

Example: K-Means Clustering (6)

- Total work (number of operations) per iteration:
 - Clustering (step 1): O(Nk)
 - Centroid recomputation (step 2): O(Nk)
 - Overall: O(Nk) operations

Example: K-Means Clustering (7)

Parallel Algorithm for K-Means using Communication Primitives

N processors for N points + 1 processor (P_0) for centroids

Step 1 Broadcast k centroids to all processors

Step 2 Local Computation: Calculate distance from k clusters for the point and assign to the cluster with minimum distance

Step 3 **Reduction**: All-to-one reduce new centroids for each point to processor P_0

Step 4 Centroid Update: Processor P_0 updates all centroids

Example: K-Means Clustering (8)

Data structure for re-computing centroids

Example: K-Means Clustering (9) Data structure for re-computing centroids

If (x_i, y_i) is assigned to j cluster, then set j^{th} entry $= (x_i, y_i)$

Number of 1 in the j^{th} position over all the processors = number of inputs assigned to cluster j

 j^{th} bit = 1 if (x_i, y_i) assigned to cluster j

Example: K-Means Clustering (8)

K-means using communication primitives

p processors P_0 , ..., P_{p-1} in a linear array

 P_0 has the centroid values

Assign data as follows:

$$P_i \text{ has } x_{i \times \frac{N}{p}}, ..., x_{(i+1) \times \frac{N}{p} - 1} \ (0 \le i < p) \quad ...$$

Example: K-Means Clustering (9)

K-means using communication primitives

Each process P_i creates local clusters using data assigned to it

Local variables in Process P_i :

Local cluster centroids: c_0^i , ..., c_{k-1}^i

Local cluster sizes: n_0^i , ..., n_{k-1}^i

centroid-size product: w_0^i , ..., w_{k-1}^i

Master Process P_0 :

Update centroid values using cluster centroids and sizes from all processes

centroid value = weighted mean of cluster centroids from all processes with cluster sizes as weights

$$c_{j} = \frac{\sum_{i=0}^{p-1} w_{j}^{i}}{\sum_{i=0}^{p-1} n_{j}^{i}}$$
, where $w_{j}^{i} = n_{j}^{i}$. c_{j}^{i} Equation 2

Example: K-Means Clustering (10)

In each iteration

- 1. P_0 broadcasts c_0 , ..., c_{k-1} to P_1 , ..., P_{p-1}
- 2. In each processor P_i : do in parallel

$$c_0^i, ..., c_{k-1}^i \leftarrow c_0, ..., c_{k-1}$$

 $n_0^i, ..., n_{k-1}^i \leftarrow 0, 0, ..., 0$
 $w_0^i, ..., w_{k-1}^i \leftarrow 0, 0, ..., 0$

For each data point assigned to it

Compute its 'distance' to each $c_i \ \forall i \in \{0, ..., k-1\}$.

Assign it to the cluster *j* with minimum 'distance'

$$n_i \leftarrow n_i + 1$$

$$\mathsf{Update}\, c^i_j \; \forall j \in \{0, \dots, k-1\}$$

Assign
$$w_j^i = n_j c_j^i \ \forall j \in \{0, ..., k-1\}$$

- 3. All-to-one reduce $w_0^i, ..., w_{k-1}^i$ to P_0 all $i \in \{0, 1, ..., p-1\}$
- 4. All-to-one reduce $n_0^i, ..., n_{k-1}^i$ to P_0 all $i \in \{0, 1, ..., p-1\}$
- 5. P_0 updates c_j for all $j \in \{0,1,\dots,k-1\}$ using Equation 2

Example: K-Means Clustering (11)

All to one Reduction

P_0		P_0	P_1		P_{p-1}	P_0		P_0	P_1		P_{p-1}
w_0	←————————————————————————————————————	w_0^0	w_0^1	 	w_0^{p-1}	n_0		n_0^0	n_0^1		n_0^{p-1}
$\begin{bmatrix} w_1 \end{bmatrix}$	←	$\begin{bmatrix} w_1^0 \end{bmatrix}$	w_1^1	r 	w_1^{p-1}	n_1		n_1^0	n_1^1	 	n_1^{p-1}
	←				¦				! ! !	 !	
w_{k-1}	←	$\begin{bmatrix} w_{k-1}^0 \end{bmatrix}$	$\begin{bmatrix} w_{k-1}^1 \end{bmatrix}$		w_{k-1}^{p-1}	n_{k-1}	←	n_{k-1}^{0}	n_{k-1}^{1}		n_{k-1}^{p-1}

Example: K-Means Clustering (12)

Time per iteration

Message size: k (number of clusters)

Step 1 (Broadcast): k messages

Step 2 (Local Computation): Calculate distance from k clusters for $\frac{N}{p}$ points and assign to cluster with minimum distance

Step 3, 4 (Reduction): k messages

Step 5 (Centroid update): k centroid updates

Assume no pipelining for broadcast and reduction

Total time per iteration =
$$O(p \cdot k)$$
 Broadcast
$$+ O(\frac{N}{p} \cdot k)$$
 Local computation
$$+ O(p \cdot k)$$
 Reduction
$$+ O(k)$$
 Centroid Update

Summary

Implementation of communication primitives

- One-to-all Broadcast in a 2-D Mesh
- One-to-all Broadcast in a Hypercube
- All-to-all Broadcast
- Scatter and Gather

Examples

- Dense Matrix Vector Multiplication
- Matrix Multiplication
- Sorting on a linear array
- K-means clustering