SEGURANÇA informação

Wilson Oliveira

Segurança da Informação Técnicas e Soluções

Reservados todos os direitos por Centro Atlântico, Lda. Qualquer reprodução, incluindo fotocópia, só pode ser feita com autorização expressa dos editores da obra.

SEGURANÇA DA INFORMAÇÃO - TÉCNICAS E SOLUÇÕES

Colecção: Sociedade da Informação

Autor: Wilson Oliveira

Direcção gráfica: Centro Atlântico

Revisão: Nuno Garcia Lopes

Capa: Paulo Buchinho

© Centro Atlântico, Lda., 2001

Ap. 413 – 4764-901 V. N. Famalicão

Porto - Lisboa

Portugal

Tel. 808 20 22 21

geral@centroatlantico.pt www.centroatlantico.pt

Fotolitos: Centro Atlântico

Impressão e acabamento: Inova

1ª edição: Outubro de 2001

ISBN: 972-8426-44-5

Depósito legal: 170.705/01

Marcas registadas: todos os termos mencionados neste livro conhecidos como sendo marcas registadas de produtos e serviços, foram apropriadamente capitalizados. A utilização de um termo neste livro não deve ser encarada como afectando a validade de alguma marca registada de produto ou serviço.

O Editor e os Autor não se responsabilizam por possíveis danos morais ou físicos causados pelas instruções contidas no livro nem por endereços Internet que não correspondam às *Home-Pages* pretendidas.

SOBRE O AUTOR

Wilson José de Oliveira é administrador de empresas e analista de sistemas, com larga experiência em desenvolvimento de sistemas cliente/servidor e sistemas para *e-commerce* utilizando principalmente as linguagens Delphi, Visual C++, C++ Builder, ASP, Java, PERL e as bases de dados Oracle, MS-SQL Server e Interbase. Actualmente o autor é gestor de TI, sendo responsável técnico por soluções de *e-business*, *m-business* e CRM, e lecciona MBA Executivo Internacional com ênfase em *e-business* na Fundação Getúlio Vargas (FGV – Brasil) e Ohio University (EUA).

INTRODUÇÃO

Diariamente, no mundo inteiro, redes de computadores e *hosts* são sendo invadidos. O nível de sofisticação destes ataques varia amplamente; enquanto geralmente se acredita que a maioria das invasões tem sucesso devido a códigos secretos fracos, há ainda um número grande de intrusões que usam técnicas mais avançadas para invadir. Pouco se sabe sobre a maioria das técnicas de invasão, porque elas podem ser de diversa natureza e então tornam-se muito mais difíceis de descobrir.

Até à década de 80, quando experiências iniciadas no projecto ARPANET conseguiram estabilizar um primeiro protocolo para routing de dados entre redes autónomas (BGP 4, que ainda faz parte do conjunto de padrões TCP/IP), a tecnologia para interligação de computadores permitia apenas redes com hierarquia fixa, que pressupõem o controlo de algum meio ou infra-estrutura de comunicação, usado para interligar os seus componentes. O projecto ARPANET foi motivado por um sentimento de insegurança e relativa paranóia em relação ao risco de ataque nuclear a que estava exposta a infra-estrutura de telecomunicações das forças armadas norte-americanas, dando início ao desenvolvimento de tecnologia para redes abertas, onde redes de computadores já operantes poderiam ser interligadas sem necessidade de reestruturação do meio de comunicação que fossem utilizar e sem necessidade de controlo centralizado no processo de routing adaptativo para o tráfego de pacotes de dados.

A tecnologia de redes com hierarquia aberta para transmissão de dados permitiu que interligações entre computadores pudessem

atingir escala mundial, ao evitar o colapso decorrente da explosão exponencial das tabelas de *routing*, já que tal explosão seria inevitável em arquitecturas fechadas nesta escala, criando assim o potencial de interligação via TCP/IP através da infra-estrutura mundial de telecomunicações então disponível. O serviço de tipo "melhor esforço" para *routing* de pacotes IP pôde utilizar-se da capacidade ociosa inerente às redes de transmissão e comutação telefónica, para fornecer ligações de dados em escala mundial às redes de computadores já existentes, pela adesão aos protocolos de transporte TCP e UDP. Este potencial de interligação relativamente simples e barato induziu a sua própria procura, forçando mudanças em cascata no perfil da procura tecnológica e de serviços nas telecomunicações.

Estas explosões da procura, e a transformação social que engendram, ocorrem num contexto cognitivo inédito para a humanidade. Até aos anos 80 a forma de se conceberem redes de computadores, a nossa tradição cultural que legitima a autoridade dos discursos, a nossa organização social que transmite e consolida valores, moldando assim a nossa percepção e acção no mundo, sempre se haviam enquadrado em modelos hierárquicos fechados de redes de comunicação. A Internet não se enquadra, e tentar enquadrá-la por força do hábito constitui aquilo que designamos por verdadeiro bug do milénio. Referências à "Internet comercial" não implicam, como o termo pode sugerir, a sua posse ou controlo por alguma empresa, mas a etapa da sua evolução na qual empresas vendendo transporte e distribuição de tráfego electrónico de dados, serviços ou produtos, passam a criar associações estratégicas para desempenhar com melhor fiabilidade e eficácia as suas funções. A Internet não tem dono, gestor, comando central ou direcção. Guia-se por um método de cooperação sui generis para propostas e validações de novos padrões operacionais e políticas de gestão cooperada.

A Criptografia pode proteger o acesso ao valor sintáctico e a integridade das cadeias de bits nas comunicações de dados, o

que é apenas um dos ângulos da questão que estamos a abordar. Precisamos confiar não apenas nos controlos de acesso a essas cadeias de bits e na sua integridade, mas principalmente no significado das mensagens que estas cadeias veiculam. Precisamos confiar no significado do que se desenha no ecrã do monitor e dos programas que se executam no CPU de nossas máquinas, expressos através dessas cadeias de bits, sendo portanto sensato associar este outro lado da questão, de natureza semântica, à nossa percepção sobre origens e intenções nas comunicações dessas cadeias. É aí que o alcance e os limites das técnicas criptográficas - e as diferenças fundamentais entre redes de hierarquia fixa e aberta – começam a se manifestar. A compreensão de significados inicia-se pela identificação de referências a significantes. E as redes "fluidas" apresentam sérios problemas relacionados com a confiança que se pode ter em processos de identificação que nelas operam.

Nenhuma área da informática é tão vasta e apreciada como a segurança da informação: o ponto principal da segurança leva a um outro ponto principal, o ser humano, isso mesmo, todo o processo de segurança se inicia e tem o seu término num ser humano. Não adianta nada gastarmos fortunas em equipamentos e sistemas de segurança se não conhecermos quem utilizará os nossos sistemas, e quem pode ter acesso a eles mesmo sem autorização.

No ciberespaço, a percepção do que é ser herói ou bandido dissipa-se nos interesses pessoais, opções políticas, ideologias e vínculos ao poder, e a acção puramente sintáctica da criptografia encontra enormes obstáculos para realizar o papel principal que pode exercer no processo da segurança de redes fechadas.

Neste livro iremos mostrar alguns métodos para segurança de sistemas. Em vez de meramente falar sobre os problemas, vamos observar através dos "olhos" de um intruso em potencial (com os olhos de um intruso), e mostrar "por que" ele é um intruso. Vamos mostrar que até mesmo aparentemente inofensivos serviços de

rede podem ser valiosas ferramentas para pesquisar os pontos fracos de um sistema, e que mesmo quando os serviços operam correctamente eles são usados para ataques.

Num esforço para irradiar alguma luz sobre a forma como as mais avançadas invasões ocorrem, este livro descreve vários mecanismos que os *crackers* usam actualmente para obter acesso a sistemas e, em complemento, algumas técnicas que qualquer intruso suspeito pode usar, ou que usamos nas nossas próprias máquinas ou em máquinas de amigos ou com autorização do administrador.

A motivação para escrever este livro é que se os administradores de sistemas frequentemente não sabem ou não sentem a presença do perigo também não conhecem os ataques triviais. Também para informar que o nível de protecção depende do que deve ser protegido. Muitos sites parecem ter carência de documentos para avaliar que nível de segurança é adequado para computadores e redes. Para mostrar o que os intrusos podem fazer para conseguir acesso a um computador remoto, vamos tentar montar uma ajuda para os administradores de sistemas ficarem "informados" de quanto os seus sites são seguros — ou não. Vamos limitar a discussão a técnicas que podem permitir a um intruso remoto ter acesso (talvez não interactivo) shell em máquinas UNIX.

Deixamos claro que o objectivo deste livro é testar a segurança do seu próprio *site*, e não invadir sistemas de terceiros. As técnicas de invasão que vamos mostrar aqui com frequência deixam registos nos seus ficheiros de *log* – isto talvez seja construtivo para examinar após tentar algumas das técnicas de ataque, para ver o que um ataque real talvez o deixe ver. Certamente outros *sites* e administradores de sistemas vão ver as suas actividades se você decidir usar estas técnicas nas máquinas deles para testar a segurança sem a sua autorização; pode ser que não digam nada, mas se perceberem que é um ataque é provável que acções legais sejam movidas contra si.

TERMOS TÉCNICOS

De início vamos fornecer alguns dos principais termos técnicos que serão utilizados no decorrer desta obra, sendo muito interessante que o leitor os verifique para ter um melhor entendimento global da mesma.

Access Control Lists (ACL):

Lista de permissões de acesso configuradas em dispositivos de rede, principalmente *routers* e *firewall*.

Ameaça:

A tentativa de atacar um sistema explorando as suas vulnerabilidades. Qualquer elemento humano ou da natureza que pode causar dano à confidencialidade, integridade e disponibilidade dos sistemas. As ameaças podem ser intencionais ou não intencionais, internas ou externas.

Ataque CGI:

Ataque que explora vulnerabilidades do Common Gateway Interface.

Backdoor:

Programa implementado secretamente num computador com o objectivo de obter informações e dados armazenados, interferir com a operação ou obter controlo total do sistema.

BSI - British Standard Institute:

Órgão britânico responsável pela publicação de normas, entre as quais as normas de segurança para informática BS 7799.

CERT - Computer Emergency Response Team:

Órgão destinado a investigar os ataques e a melhorar a segurança na Internet.

Detector de Intrusos:

Sistema inteligente de análise e detecção automática de ataques ou eventos suspeitos na rede ou nos servidores.

DIG - Domain Information Gopher:

Ferramenta utilizada para procurar informações em servidores DNS.

DMZ (de-militarized zone):

Termo que designa a rede localizada entre a rede interna e a Internet. Na DMZ normalmente estão localizados os servidores de acesso público.

DNS - Domain Name Service:

Serviço de replicação que interpreta os números pelos quais os servidores ligados à Internet são identificados e os apresenta ao utilizador como um nome textual. Por exemplo, 10.10.10.10 como www.nome.com.pt .

DoS; DDoS - Denial of Service e Distributed Denial of Service:

Ataques cujo objectivo é a retirada de serviço de um *site*, servidor ou outro dispositivo ligado à Internet. O termo Distributed refere-se a um aperfeiçoamento da técnica do ataque, na qual a sua origem é distribuída por até milhares de computadores.

ÍNDICE

AGRADECIMENTOS	5
SOBRE O AUTOR	5
INTRODUÇÃO	7
TERMOS TÉCNICOS	11
SEGURANÇA DA INFORMAÇÃO	17
SEGURANÇA	20
Necessidades de Segurança	23
PADRÕES DE SEGURANÇA NA INTERNET	23
ALVOS DOS HACKERS NA INTERNET	23
TÉCNICAS UTILIZADAS	24
QUAIS SÃO AS AMEAÇAS	24
O que é DoS e DdoS?	25
SEGURANÇA EM E-BUSINESS	27
Criptografia	27
Routers – Um aliado na sua segurança	31
Firewall	32
Regras de filtragem em screening router	38
Operações de Packet Filter	39
Vantagens e Desvantagens dos Packet Filters	40
Acções Screening Router	40
Riscos na filtragem	41
Múltiplos routers	43
BASTION HOST	43
Tipos Especiais	45
Criar um Bastion Host	46
Proxy Systems	48
Funcionamento do Proxy Server	49
Vantagens e Desvantagens	50
SCREENED HOST	52
SCREENED SLIBNET	53

Estratégias de Segurança	55
Criar uma screened subnet	57
Arquitectura firewall baseada em proxy	58
Arquitectura Baseada em Firewall Central	59
SET	60
SSL	61
Sistemas de Detecção de Intrusos (IDS)	65
Segurança de Servidores	65
GESTÃO	66
RISCO	67
IP SECURITY	69
ARQUITECTURA IP SECURITY	69
INTRODUÇÃO	69
ARQUITECTURA BÁSICA IPSEC	70
Objectivos e Plataforma Básica	70
PROTOCOLOS AH EESP	71
GESTÃO DE CHAVES	72
FUNCIONAMENTO	73
Onde pode ser implementado	74
ASSOCIAÇÃO DE SEGURANÇA	75
AH	77
ESP	78
CONCLUSÃO	80
O QUE/QUEM SÃO HACKERS, CRACKERS, ETC.	81
Definições	82
COMO SE TORNAR NUM HACKER	85
O UNIVERSO COMPUTACIONAL	87
SEGURANÇA FÍSICA	87
SEGURANÇA LÓGICA	88
CÓDIGOS SECRETOS	88
Regras para utilizadores e códigos secretos	89
PROTEGER-SE	91
CAVALO DE TRÓIA OU TROJAN HORSE	92
BACKDOORS	95
O que são realmente os Backdoors	95
O que são os Sockets de Troie	96

ÍNDICE	217
Como limpar o Back Oriffice e as Backdoors	97
FECHAR AS PORTAS	98
Um pouco mais do NetStat	100
DESMISTIFICAR O DDOS	103
Introdução	103
DESMISTIFICAR O ATAQUE	105
Os personagens	105
O ataque	106
FERRAMENTAS DE DDOS	108
TRIN00	109
TFN – Tribe Flood Network	109
Stacheldraht	111
TFN2K - Trible Flood Network 2000	112
COMO SE PREVENIR?	113
Incrementar a segurança do host	113
Instalar patches	114
Aplicar filtros "anti-spoofing"	114
Limitar banda por tipo de tráfego	114
Prevenir que a sua rede seja usada como "amplificadora"	114
Estabelecer um plano de contingência	115
Planeamento prévio dos procedimentos de resposta	115
COMO DETECTAR?	115
Auditoria	116
Ferramentas de detecção específicas	117
Sistemas de detecção de intrusão	117
COMO REAGIR?	117
Se ferramentas DDoS forem instaladas nos seus sistemas	117
Se os seus sistemas forem vítimas de ataque DDoS	118
CONSIDERA ÇÕES FINAIS	118
VÍRUS	119
O QUE É UM VÍRUS?	120
COMO OPERAM OS VÍRUS	121
Vírus de disco	121
Vírus de ficheiro	121
Vírus Multi-partite	121
Vírus Tipo DIR-II	121
PORQUE SÃO ESCRITOS OS VÍRUS?	122
O QUE É UM VÍRUS DE MACRO	123

PREVENIR-SE DA INVASÃO	127
MENOR PRIVILÉGIO	128
CONTAS DE UTILIZADOR ADMINISTRADOR	129
DETECTAR O PROBLEMA	129
ELIMINAR O PROBLEMA	132
PLANO DE RESPOSTA A ATAQUES	133
DETECÇÃO E CORRECÇÃO DE VULNERABILIDADES	133
ROTAS E LINKS DE ACESSO AO INTERNET BANKING	134
MONITORIZAÇÃO PERMANENTE	135
ATAQUES	137
FASES DE UM ATAQUE	137
Planeamento / Recolha de dados	137
Aproximação	138
Invasão	139
Exploração	140
ESTRATÉGIAS PARA SEGURANÇA	141
PROTOCOLOS DE SEGURANÇA	145
SSL	146
Vantagens do uso do SSL	152
Desvantagens do uso do SSL	153
Análise de segurança do SSL	153
SET	153
PROTOCOLOS DE DINHEIRO ELECTRÓNICO	157
iKP - Internet Keyed Payment Protocol	157
SEPP - Secure Eletronic Payment Protocol	159
Secure Courier	160
STT – Secure Transaction Technology	160
AUTENTICAÇÃO DE UTILIZADORES	163
CONCEITOS BÁSICOS	163
SISTEMAS BASEADOS EM ALGO CONHECIDO: CÓDIGOS SECRETOS	164
PRIVACIDADE	167
PRIVACIDADE NAS VISITAS AOS SITES	167
O QUE SÃO COOKIES?	168
PRIVACIDADE DOS E-MAILS	169
SPAM	170

ÍNDICE	219
HOAX	170
OS SEUS DADOS PESSOAS FORMULÁRIOS, COMÉRCIO ELECTRÓNICO E HOME-BANKING	171 171
INFRA-ESTRUTURA DE SEGURANÇA DA INFORMAÇÃO	173
DETECÇÃO DE INTRUSOS	174
Network Intrusion Detection System (NIDS)	174
Host Intrusion Detection Tool	174
System Integrity Verifiers (SIV)	175
Log File Monitors (LFM)	175
UM POUCO MAIS DE CRIPTOGRAFIA	177
Introdução	177
CRIPTOGRAFIA SIMÉTRICA	180
TDES	182
Funções Hash	183
TERMOS TÉCNICOS	189
BIBLIOGRAFIA	213
ÍNDICE	215