

Universidade do Minho

Escola de Engenharia

Catarina da Cunha Malheiro da Silva Pereira Catarina Marinho Amorim Inês Cabral Neves Leonardo Dias Martins

Comunicação pela Luz: Li-Fi em Ação para Conversação e Transferência de **Ficheiros**

Comunicação pela Luz: Li-Fi em Ação para Conversação e Transferência de Ficheiros

Catarina Pereira Catarina Amorim Inês Neves Leonardo Martins

Universidade do Minho

Escola de Engenharia

Catarina da Cunha Malheiro da Silva Pereira Catarina Marinho Amorim Inês Cabral Neves Leonardo Dias Martins

Comunicação pela Luz: Li-Fi em Ação para Conversação e Transferência de Ficheiros

Relatório de Especificação da Fase C Projeto Integrador em Telecomunicações e Informática Mestrado em Engenharia Telecomunicações e Informática

Trabalho efetuado sob a orientação de:

Professor Doutor Joaquim Melo Henriques Macedo Professor Doutor Adriano Jorge Cardoso Moreira Professor Doutor Bruno Daniel Mestre Viana Ribeiro

e de

Professor Doutor José Augusto Afonso

Identificação do Grupo

O Grupo 03 é constituído por quatro membros, sendo que três deles são do 1° ano do Mestrado em Engenharia de Telecomunicações e Informática (METI), sendo identificados por Pós-Graduação (PG) seguido dos seus números mecanográficos, enquanto o quarto membro pertence ao 4° ano de Mestrado Integrado em Engenharia de Telecomunicações e Informática (MIETI) e é identificado pelo código Aluno (A) seguido do seu número mecanográfico.

Imagem

Nome / Número Mecanográfico / E-mail institucional

Catarina da Cunha Malheiro da Silva Pereira PG53733 pg537336@alunos.uminho.pt

Catarina Marinho Amorim A93094 a93094@alunos.uminho.pt

Inês Cabral Neves PG53864 pg53864@alunos.uminho.pt

Leonardo Dias Martins PG53996 pg53996@alunos.uminho.pt

Índice

lde	entificação do Grupo	i
ĺno	dice de Figuras	iv
ĺno	dice de Tabelas	`
Lis	sta de Acrónimos	v
Ac	crónimos	v
1	Introdução	1
2	Revisão da Literatura	2
3	Recursos e Instrumentos Utilizados 3.1 Software	3
4	Arquitetura do Sistema	4
5	Protocolo de Comunicação5.1PC-ESP325.2Aplicação-Aplicação	5
6	Interface Gráfica	7
7	Melhorias Relativas á Fase Anterior	g
8	Requisitos Funcionais e Não Funcionais	10
9	Plano de Atividades9.1 Atividades9.2 Lista de Riscos	11 11 11
10	Conclusão	13
Re	eferências Bibliográficas	14
Ar	nexo I - Diagrama de Gantt	14

Índice de Figuras

1	Placa ESP32 [8]	3
2	Arquitetura Geral da fase C	4
3	Pinout do Circuito Emissor	4
4	Pinout do Circuito Emissor	4
5	Mecanismo de Controlo de Fluxo Stop-and-Wait	5
6	Especificação das Tramas da Camada de Aplicação	6
7	Aplicação do emissor	7
8	Aplicação do recetor	8

Índice de Tabelas

Tabela 1:	Requisitos Funcionais do projeto									10
Tabela 2:	Requisitos Não Funcionais do projeto									10
Tabela 3:	Plano de Atividades									11
Tabela 4:	Riscos inerentes ao desenvolvimento do projeto.									12

Acrónimos

A Aluno

GPIO General Purpose Input/Output

IDE Integrated Development Environment

LEDs Díodos Emissores de Luz

Li-Fi Light Fidelity

METI Mestrado em Engenharia de Telecomunicações e Informática MIETI Mestrado Integrado em Engenharia de Telecomunicações e

Informática

OSI Open Systems Interconnection

PG Pós-Graduação

RF Requisitos Funcionais RNF Requisitos Não Funcionais

TINA Toolkit for Interactive Network Analysis

UC Unidade Curricular

1 Introdução

Este relatório faz parte da Unidade Curricular (UC) Projeto Integrador em Telecomunicações e Informática, do 2º semestre do 1º ano do Mestrado (Integrado) em Engenharia de Telecomunicações e Informática. Este projeto foi desenvolvido como resposta a um problema apresentado pelos docentes.

A ascensão dos Díodos Emissores de Luz (LEDs) transformou significativamente o panorama das tecnologias de iluminação, proporcionando eficiência, durabilidade e versatilidade notáveis. Presentes em diversas aplicações, desde iluminação residencial até sinalização avançada e iluminação automóvel, os LEDs não apenas redefiniram a maneira como se ilumina a área circunvante de cada pessoa, mas também desbravaram novos caminhos para a comunicação e inovação.

Na Fase C do projeto, é atingido uma fase crucial onde espera-se que se concretize o culminar dos esforços no desenvolvimento do protótipo para transmissão ótica de dados entre dois PCs. Esta fase marca a integração de todos os componentes e funcionalidades num sistema coeso que incorpora a essência dos objetivos do projeto. O foco principal da Fase C é finalizar a implementação, realizar testes abrangentes e apresentar uma solução totalmente funcional que demonstre o uso inovador da tecnologia Light Fidelity (Li-Fi) para permitir a comunicação perfeita entre dispositivos. Este relatório descreve as especificações detalhadas, o progresso, os desafios superados e a reflexão abrangente sobre a jornada para alcançar um resultado bem-sucedido.

O projeto não só proporciona uma aplicação prática dos conceitos de comunicação ótica, mas também desafia os estudantes a integrarem eficazmente hardware e software, contribuindo para o seu desenvolvimento técnico e científico em áreas como eletrónica. O relatório oferecerá um relato detalhado do pensamento da criação do projeto para atual fase.

A lista de tarefas a executar na Fase C é:

- Implementar um protocolo de nível 7 (camada de aplicação);
- Criar o programa com as funcionalidades de chat e transferência de ficheiros entre PCs. Este programa deverá utilizar o protocolo da camada 7 deve ser o mesmo para os dois PCs;
- Criar uma interface gráfica para o programa;

2 Revisão da Literatura

O modelo Open Systems Interconnection (OSI), uma estrutura fundamental para comunicação em rede, consiste em sete camadas, cada uma com funções e interações específicas. Estas camadas incluem as camadas Física, Ligação de Dados, Rede, Transporte, Sessão, Apresentação e Aplicação, que gerem coletivamente a transferência de dados e garantem uma comunicação segura. É destacado o papel do modelo em facilitar a transferência de informações entre diferentes endereços lógicos, com os gateways desempenhando um papel crucial neste processo [1]. Também é enfatizada a importância do modelo OSI no estabelecimento de protocolos de comunicação para redes de computadores [2].

A camada 7 do modelo OSI, conhecida como Camada de Aplicação, é a camada superior do modelo e é responsável por fornecer serviços de rede diretamente às aplicações dos utilizadores [3]. Esta camada permite a comunicação entre diferentes aplicações e é onde os utilizadores interagem com a rede. Esta camada define os protocolos e métodos que as aplicações usam para trocar dados pela rede [4]. A camada de aplicação inclui protocolos como HTTP, FTP, SMTP e DNS, que são essenciais para vários tipos de comunicação de rede e troca de dados. Em essência, a Camada 7 concentra-se nos requisitos de comunicação das aplicações de software e garante que os dados sejam apresentados ao utilizador de forma significativa [5].

3 Recursos e Instrumentos Utilizados

Neste capítulo explora-se em detalhe os elementos que desempenham um papel fundamental na condução deste projeto, com um foco predominante em ferramentas conforme a sua categoria: *Software* e *Hardware*. O conjunto de ferramentas e recursos utilizados abrange uma ampla variedade de aplicações, cada uma desempenhando um papel específico e vital no desenvolvimento do projeto.

3.1 Software

As ferramentas e recursos utilizados são:

- **Smartsheet:** Emprega-se o programa Smartsheet para o planeamento temporal das tarefas do grupo, garantindo uma gestão eficaz do cronograma de trabalho.
- Miro: Utiliza-se a plataforma Miro para criar diagramas de blocos e fluxogramas, facilitando a visualização e a comunicação de conceitos complexos.
- Arduino Integrated Development Environment (IDE): Para a edição, compilação e envio do código para a placa ESP32.
- **PyCharm:** Para desenvolvimento e execução de código Python.
- Simulador Toolkit for Interactive Network Analysis (TINA) (versão 9) e Circuit Diagram: Permitem fazer simulações tanto de circuitos analógicos como digitais.
- **Plataformas de Comunicação:** Para facilitar a comunicação, colaboração e organização do código desenvolvido pelo grupo, utiliza-se as plataformas Discord e Whatsapp.
- **OverLeaf:** Para a elaboração de relatórios em formato LEX, utiliza-se a plataforma OverLeaf, que simplifica a formatação e a colaboração em documentos técnicos.

Estas ferramentas e recursos desempenham um papel essencial na pesquisa, contribuindo para a eficiência na recolha e análise de dados, bem como na comunicação e documentação dos resultados.

3.2 Hardware

Para as ferramentas de *hardware* utilizar-se-à uma placa ESP32, Amplificador operacional UA741CN, Fotodetetor PL-51P3C, Fotodiodo PL-53F3BT e Transístor 2N2222A para o projeto.

A placa ESP32, Figura 1, é uma placa de desenvolvimento de *hardware* que utiliza o microcontrolador ESP32. O ESP32 é um microcontrolador de baixo custo e baixo consumo de energia que possui recursos avançados como conectividade Wi-FI e Bluetooth, memória *flash* integrada, entrada e saída de dados digitais e analógicos, entre outros [6, 7].

Figura 1: Placa ESP32 [8].

4 Arquitetura do Sistema

A arquitetura geral da Fase C é delineada na Figura 2, destacando os componentes essenciais e os protocolos envolvidos. Nesta figura, são apresentados o emissor, o circuito driver, o LED de infravermelhos, o fotodetetor, o PC, a ESP32 e a conexão ótica, juntamente com o protocolo UART.

O circuito driver é um circuito eletrónico projetado para amplificar e controlar a corrente ou tensão num dispositivo, como um LED infravermelhos, neste caso. Este circuito será conectado ao Digital Lab, fornecendo os sinais ao driver, que os amplificará e controlará de acordo com as especificações do dispositivo.

Por outro lado, o circuito frontend é projetado para receber e processar sinais de entrada de uma fonte externa, que será o emissor. Este circuito é responsável por amplificar, filtrar e converter os sinais de entrada num formato adequado para processamento posterior pelo circuito eletrónico.

Figura 2: Arquitetura Geral da fase C.

A Figura 3 mostra a conexão do circuito Driver ao ESP32 através do pino General Purpose Input/Output (GPIO) 3 para o uso do protocolo UART, enquanto a Figura 4 mostra a conexão do circuito Frontend ao ESP32 através do pino GPIO16.

Figura 3: Pinout do Circuito Emissor.

Figura 4: Pinout do Circuito Emissor.

5 Protocolo de Comunicação

Pretende-se desenvolver aplicações de interface com o utilizador por isso, será necessário desenvolver protocolos de comunicação entre PC (aplicação) e a ESP32 e, entre as aplicações.

5.1 PC-ESP32

Este protocolo de comunicação irá focar-se essencialmente no controlo de fluxo e será adotada a estratégia *Stop-and-Wait*, ou seja, a aplicação envia uma trama e aguarda a receção de um *Acknowledgement* (ACK) para enviar outra trama. Também é ativado um *timeout* de 1 segundo para caso não receba a confirmação, retransmitir a trama. Este controlo de fluxo apenas ocorrerá no lado do emissor. Do lado do recetor, caso a aplicação recetora esteja a receber um fluxo de dados e detete que não recebeu uma trama, por exemplo, recebeu as tramas número 1, 2 e 4, detetou que não recebeu a trama número 3, então envia uma mensagem de erro para a ESP32. Por sua vez, a ESP32 não envia mais dados para a aplicação, pois não vale a pena. A Figura 5 exemplifica o protocolo de comunicação usado entre o PC e ESP32.

Figura 5: Mecanismo de Controlo de Fluxo Stop-and-Wait.

Ao receber os dados da aplicação, a placa ESP32 não se deve preocupar com o seu conteúdo ou formato, simplesmente encapsula esses dados com o seu cabeçalho e envia-os através do link ótico. O cabeçalho é simples, apenas contém um campo com o tamanho dos dados enviados pela aplicação.

5.2 Aplicação-Aplicação

Para uma eficiente comunicação e interpretação dos dados entre o remetente e o destinatário, deverá definirse um conjunto de mensagens (que apenas serão enviadas do remetente para o destinatário, uma vez que a comunicação é unidirecional):

- Início de transmissão antes do envio de um fluxo de dados, o emissor envia uma mensagem para indicar ao recetor que está prestes a iniciar o envio de um conjunto de dados. Também indica qual o tipo de dados do stream, se é texto simples, ou se for um ficheiro, indica também o nome do ficheiro.
- Fim de transmissão indica ao recetor que a transmissão daquele fluxo de dados terminou.
- Dados mensagem com os dados que o emissor quer fazer chegar ao recetor, pode ser texto, um ficheiro, etc.

A Figura 6 apresenta a especificação das tramas da camada de aplicação que se encontra encapsulada dentro do campo "Dados" da trama da camada de ligação.

5.2. APLICAÇÃO-APLICAÇÃO

Figura 6: Especificação das Tramas da Camada de Aplicação.

6 Interface Gráfica

Nesta fase do projeto, serão desenvolvidas duas aplicações diferentes, ambas com uma interface gráfica, que permita ao utilizador efetuar a comunicação de uma forma mais intuitiva, sendo uma para o lado do transmissor e outra para o lado do recetor, tendo características a nível de funcionalidades muito diferentes entre elas. Nos pontos abaixo serão explicadas as funcionalidades e as diferenças entre cada programa.

A aplicação de transmissão, observada na Figura 7 irá permitir enviar dados, como por exemplo, mensagens de texto e até mesmo ficheiros do modulo emissor para o recetor. A aplicação permite também selecionar a porta COM associada à placa ESP32 que se encontra conectada ao PC. Para se ter uma perceção do estado do envio de pacotes, principalmente em ficheiros ou mensagens grandes, a aplicação irá conter uma barra de progresso para mostrar a evolução do transmissão dos dados ao longo do tempo.

Figura 7: Aplicação do emissor.

A aplicação de receção, observada na Figura 8 apenas irá fazer a receção dos dados enviados a partir da aplicação de transmissão e fazer a correção dos erros dos blocos de dados que lhe chegam. No caso de ser uma simples mensagem, disponibilizar a mesma na caixa de texto da aplicação ou no caso de ser um ficheiro aguardar por todas as tramas correspondentes a ele e disponibilizar o ficheiro ao utilizador. Tal como na aplicação de transmissão, é também possível selecionar a porta COM associada à placa ESP32 que se encontra conectada ao PC.

Figura 8: Aplicação do recetor.

7 Melhorias Relativas à Fase Anterior (API)

Durante o desenvolvimento da Fase B, foram implementadas melhorias significativas na API de Comunicação Aplicação, conforme descrita no protocolo de especificação da fase anterior.

Funções disponíveis para a interação entre a camada de aplicação e a camada de ligação, do ponto de vista do emissor:

- Ler ACKs: Permite ao emissor monitorizar e interpretar os acknowledgments (ACKs) recebidos da camada de ligação, confirmando a receção bem-sucedida dos pacotes de dados enviados.
- Encapsular o pacote: Permite o emissor a encapsular os dados provenientes da camada de aplicação em pacotes apropriados para transmissão, preparando-os para serem enviados através da camada de ligação.
- Enviar o pacote: Oferece a funcionalidade de enviar os pacotes encapsulados pela camada de ligação, transmitindo-os para o destino final ou para a próxima etapa do processo de comunicação.

Funções disponíveis para a interação entre a camada de aplicação e a camada de ligação, do ponto de vista do recetor:

- Enviar ACKs: Permite ao recetor enviar acknowledgments (ACKs) à camada de ligação, confirmando a receção bem-sucedida dos pacotes de dados transmitidos.
- Ler o pacote: Permite o recetor a ler e interpretar os pacotes recebidos da camada de ligação, extraindo os dados encapsulados e encaminhando-os para a camada de aplicação para processamento posterior.

8 Requisitos Funcionais e Não Funcionais

Neste capítulo, são apresentados os Requisitos Funcionais (RF), Tabela 1, e Requisitos Não Funcionais (RNF), Tabela 2, duas categorias essenciais de especificações que direcionam o desenvolvimento do sistema de software e hardware em questão. Estes requisitos delineiam o que o sistema deve realizar (RF) e as condições nas quais deve operar (RNF).

Tabela 1: Requisitos Funcionais do projeto.

ID	Requisitos Funcionais	Justificação						
RF1	Implementação um protocolo da	Desenvolver um protocolo para a Camada de Aplicação para						
KLT	Camada 7 (Camada de Aplicação).	permitir a comunicação entre diferentes aplicações.						
RF2	Criação um programa de conversa e	Desenvolver um programa com funcionalidades de conversa						
RF2	transferência de arquivos	e transferência de arquivos entre dois PCs.						
RF3	Projeção uma interface gráfica de	Criar uma interface intuitiva e fácil de usar para o programa						
KI 3	utilizador (GUI)	Char uma interface intuitiva e facil de usar para o programa						

Tabela 2: Requisitos Não Funcionais do projeto.

ID	Requisitos Não Funcionais	Justificação							
RNF1	Desempenho.	O sistema deve ser capaz de transferir arquivos e mensagens de chat de forma rápida e eficiente.							
RFN2	Confiabilidade	Garantir a transferência confiável de dados sobre a ligação sem fios, mesmo em caso de interrupção momentânea do feixe ótico.							
RFN3	Segurança	Implementar medidas de segurança para proteger a privacidade e integridade dos dados transmitidos.							

Para demonstração, o sistema deve conseguir transferir com sucesso um arquivo de imagem e um arquivo de texto entre dois computadores através da camada 2 e da porta série, cumprindo todos os requisitos funcionais e não funcionais estabelecidos.

9 Plano de Atividades

Neste capítulo, detalha-se as atividades planeadas, definimos prazos e recursos necessários. Além disso, abordamos a sequência lógica das tarefas e como elas se relacionam umas com as outras, garantindo uma execução eficiente e coordenada.

A compreensão deste Plano de Atividades é fundamental para a gestão eficaz do projeto, permitindo que todas as partes interessadas tenham uma visão clara das etapas a serem seguidas e dos marcos a serem alcançados. Isso assegura que o projeto seja concluído dentro do prazo e com sucesso.

9.1 Atividades

Na Tabela 3, são apresentadas as atividades planeadas, juntamente com datas de início e conclusão. Além disso, no Anexo I, encontra-se o Diagrama de Gantt que fornece uma representação visual do plano de trabalho.

ID **Atividade** Início Conclusão 1 Fase C - Camada de aplicação e respetivas aplicações 23/04/2024 19/05/2024 Estudo e Pesquisa 1.1 23/04/2024 30/04/2024 1.1.1 Conhecimento da Camada 7. 23/04/2024 30/04/2024 1.2 Relatório de Especificação 23/04/2024 30/04/2024 1.2.1 Preparar esquemas detalhados do emissor e do recetor. 23/04/2024 30/04/2024 1.2.2 Definir o formato das tramas. 23/04/2024 30/04/2024 1.2.3 Entregar o relatório de especificação. 23/04/2024 30/04/2024 1.3 Projeto e Implementação 23/04/2024 19/05/2024

23/04/2024

26/04/2024

30/04/2024

30/04/2024

08/05/2024

10/05/2024

10/05/2024

19/05/2024

30/04/2024

01/05/2024

08/05/2024

08/05/2024

15/05/2024

19/05/2024

19/05/2024

19/05/2024

Especificação das Funcionalidades da Aplicação.

Desenvolver das aplicações nos PCs.

Integração do link ótico com ESP32.

Desenvolver da Apresentação Final.

Testes e Análise de Resultados.

Desenvolver do Relatório Final.

Entrega da Fase C

Desenvolver o protocolo de comunicação PC-ESP32.

Tabela 3: Plano de Atividades.

9.2 Lista de Riscos

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.3.7

1.4

Nesta secção identifica-se e descreve-se os riscos potenciais associados ao projeto, Tabela 4. Cada risco é avaliado quanto à probabilidade de ocorrência, impacto, seriedade e os seus impactos/efeitos. Também são fornecidas ações de mitigação para lidar com estes riscos e minimizar os seus impactos. A cada um dos itens, para a probabilidade e o impacto, é atribuída uma pontuação numa escala de 1 a 5, em que o 1 corresponde a baixo e 5 corresponde a alto. A seriedade de cada risco obtém-se multiplicando a probabilidade pelo impacto, permitindo enaltecer os riscos que mais impacto poderão causar no projeto caso ocorram, de forma a estar mais atentos a eles.

A gestão dos riscos é uma parte essencial do planeamento do projeto, pois ajuda a prevenir problemas e a manter o projeto no caminho certo. Portanto, a identificação e avaliação destes riscos são cruciais para o sucesso do projeto.

9.2. LISTA DE RISCOS

Tabela 4: Riscos inerentes ao desenvolvimento do projeto.

ID	Risco	Mitigação	P	I	S
R1	Problemas de integração entre hardware e software.	Realizar testes frequentes de integração.	4	5	20
R2	Falhas nos testes de comunicação.	Realizar testes em diferentes condições de rede e ambiente, implementar mecanismos de deteção e correção de erros.	3	4	12
R3	Problemas de compatibilidade entre as plataformas de comunicação.	Escolher e testar plataformas de comunicação adequadas desde o início do projeto, manter backups e documentação atualizada.	2	3	6
R4	Falta de conhecimento técnico adequado.	Promover a partilha de conhecimento entre membros da equipa.	3	3	9
R5	Compreensão inadequada das interações de API entre camadas.	Definir e implementar minuciosamente as funções da API.	2	3	6

10 Conclusão

A realização deste trabalho destaca a importância dos Díodos Emissores de Luz (LEDs) na transformação das tecnologias de iluminação, abrindo caminho para inovações em comunicação. A implementação da tecnologia Light Fidelity (Li-Fi) para a transmissão ótica de dados entre dois PCs representa um marco significativo no projeto, culminando esforços para criar uma solução funcional e inovadora. A Fase C concentra-se na finalização da implementação, realização de testes abrangentes e apresentação de uma solução totalmente operacional, demonstrando a aplicação prática dos conceitos de comunicação ótica. A arquitetura do sistema, os protocolos de comunicação entre PC-ESP32 e aplicações, e a interface gráfica desenvolvida refletem a integração de hardware e software, contribuindo para o desenvolvimento técnico dos estudantes.

Referências Bibliográficas

- [1] Syed V. Ahamed e Victor B. Lawrence. "The Role of the OSI Model". Em: Springer US, 1997, pp. 94–123. DOI: 10.1007/978-1-4615-6341-9_4.
- [2] Sushmita Biya e Renuka Uday Kotwal. "The OSI Model: Overview of All Seven Layers of Computer Networks". Em: *International Journal of Advanced Research in Science, Communication and Technology* (set. de 2023), pp. 427–432. ISSN: 2581-9429. DOI: 10.48175/IJARSCT-13064.
- [3] Peter Boait et al. "Data Link Layer Layer 2". Em: Macmillan Education UK, 1988, pp. 62–89. DOI: 10.1007/978-1-349-10306-5_5.
- [4] Gerry Howser. "The OSI Seven Layer Model". Em: Springer International Publishing, 2020, pp. 7–32. DOI: 10.1007/978-3-030-34496-2_2.
- [5] Pradeep Kumar Srivastava e Sandhya Tiwari. "An Overview of Open System Interconnection (OSI): A Seven Layered Model". Em: 2017. URL: https://api.semanticscholar.org/CorpusID:113631165.
- [6] Espressif Systems. ESP32 Series Datasheet. https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf. Acedido em 13 de fevereiro de 2023. Jan. de 2023.
- [7] https://www.botnroll.com/pt/arduino-controladores/3540-esp32-placa-de-desenvolvimento-wifi-bluetooth-esp-32s-ai-thinker.html. Acedido em 15 de fevereiro de 2023.
- [8] BangGood. https://pt.banggood.com/ESP32-Development-Board-WiFi+bluetooth-Ultra-Low-Power-Consumption-Dual-Cores-ESP-32-ESP-32S-Board-Geekcreit-for-Arduino-products-that-work-with-official-Arduino-boards-p-1109512. html?cur_warehouse=CN. Acedido em 13 de fevereiro de 2023.

Anexo I - Diagrama de Gantt

