4

CSE 543 Information Assurance

Security Strategies

Professor Stephen S. Yau

Security Strategies

Obscurity Strategy

Perimeter Defense Strategy

Defense in Depth Strategy

Security by Obscurity Strategy (Stealth)

- If the existence of an organization's IA baseline and critical objects is <u>unknown</u>, the organization might not be subject to threats
- Intent to secure the system by *hiding* the details of security mechanisms
- IA involves use of obscurity strategy to a certain extent

Perimeter Defense Strategy

- Focus on threats from <u>outsiders</u>
- Intent to control flow of information between organization's internal trusted network and untrusted external internet
- Not much IA capabilities is allocated to secure *internal* system
- Examples: Firewalls, security access keys, access codes

Perimeter Defense Strategy (cont.)

- Two critical weaknesses:
 - Very little or nothing to protect against attacks by inside users
 - If the perimeter defenses fail, then the internal systems are open to attack

- Define a number of operationally interoperable and complementary technical and non-technical IA layers of defense
- Separate organization's network into enclaves
 - An *enclave* is an environment under control of a single authority with personnel and physical security measures.
- Perimeter defense for each enclave
- Complicated and multiple connections among enclaves and between an enclave and outside
- Need multiple layers and different solution for each connection

Defense in Depth Strategy

--- Layered Architecture Model

Layer 4-10 (Non-technical IA Infrastructure)

Layer 3: IA Architecture (Technical IA Infrastructure)

Layer 2: IA Management

Layer 1: IA Policies

IA Baseline

Critical Objects

- -Core consists of critical objects and IA baseline that collect, input, process, store, output, and communicate with any element in core.
- -IA Policies (Layer 1) define the actions and behavior required to accomplish the organization's IA needs.
- -IA Management (Layer 2) monitors and controls implementation of the IA policies.
- -IA Architecture (Layer 3) provides a means to allocate and integrate technical and non-technical controls

Defense in Depth Strategy (cont.) --- Layered Architecture Model

- Layers 4 to 10 involve non-technical implementations of IA policies, and provide infrastructure in support of IA Architecture
 - Layer 4 Operational security administration
 - Layer 5 Configuration management
 - Layer 6 Life-cycle security
 - Layer 7 Contingency planning
 - Layer 8 IA education, training, awareness
 - Layer 9 IA policy Compliance Oversight
 - Layer 10 IA incident response and reporting

Layer 3: IA Architecture

- Ensures that at least the minimum level of interoperability and services is available to authorized users to perform their tasks, to coordinate with other users, and to exchange information securely
- Integrates three levels of security:
 - Physical security
 - Procedure security
 - Logical security

- People:
 - Users: general and privileged
 - Separation of roles
 - Prevention
 - Limitation
 - Accountability
 - Detection
 - Deterrence
 - Outsourcing
- Security operations

Layer 5: Configuration Management

- Provide a mechanism to ensure documentation of all changes
- Identify anticipated effects of changes on cost/schedule as a basis for approving or disapproving proposed changes
- Maintain integrity of schedule
- Maintain updated documentation on status of each proposed change
- Ensure all changes communicated to appropriate personnel

Layer 6: Life-Cycle Security

- Security is involved in each state of the system's life cycle:
 - Initiation
 - Definition
 - Design
 - Acquisition
 - Development and Implementation
 - Operation and Maintenance
 - Destruction and Disposal

Layer 7: Contingency Plan

- Planning for the worst
 - Backups
 - Power outage
 - Emergency action plan/disaster recovery plan
 - Continuity of operations plan

14

Layer 8: IA Education, Training, and Awareness

- IA support services
- IA awareness programs
- IA curriculum development, certification and accreditation
- IA compliance inspection and validation
- Workshop, conference and symposia support

Layer 9: IA Policy Compliance Oversight

- Provide a means of detecting, reporting, and correcting noncompliance with the IA policies
- Implementation can be performed both internally and by external parties
- Mechanisms
 - Intrusion detection systems
 - Scanners
 - Probing vulnerabilities of network to prevent attacks
 - Specifying IP addresses to check origins of communication (OS, servers, routers, firewalls,...)
 - Automated auditing
 - Virus detectors
 - Periodic assessments of IA management and vulnerabilities

Layer 10: IA Incident Response & Reporting

- No perfect prevention systems, and incidents are expected
- General incident handling procedures:
 - 1. Determine appropriate response
 - 2. Collect and safeguard relevant information
 - 3. Contain the situation
 - 4. Assemble the incident management team
 - 5. Create evidence disks and printouts
 - 6. Eradicate/clean up/recover
 - 7. Prepare preliminary status report for management and other authorities
 - 8. Document and report all activities
 - 9. Lesson learned: make improvements

Mission Assurance

- Mission Assurance
 - A life-cycle engineering process to identify and mitigate the deficiencies of mission requirements, design, production, test, and field support for mission success
- *Goal* of Mission Assurance
 - To create a *state of resilience* that supports the *continuation* of an entity's *critical business processes and protects its employees, assets, services, and functions.*

Mission Assurance (cont.)

- Includes <u>disciplined application</u> of system engineering, risk management, quality and management principles to achieve success of the following,
 - Requirement analysis
 - Design
 - Development

- Testing
- Deployment
- Operations process
- Mission assurance also covers the enterprise, supply base, business partners, and customer base to enable mission success.

Mission Assurance (cont.)

- In practice, information assurance (IA) focuses on protection of data and systems often conflicts with the "get the job done" attitude of mission assurance.
- This conflict is largely eliminated when the focus of information assurance is bifurcated into
 - protecting the infrastructure and data, and
 - securely sharing information with authorized recipients.

Mission Assurance Use Cases

- The US Department of Defense 8500-series of policies has defined three mission assurance categories (MACs) that form the basis for *availability and integrity* requirements
 - MAC I systems handle information <u>vital</u> to the <u>operational readiness or effectiveness of deployed or</u> <u>contingency forces</u>.
 - Loss of MAC I data would cause <u>severe damage</u> to the successful completion of a DoD mission.
 - MAC I systems must maintain the highest levels of both <u>integrity and availability</u> and <u>use the most rigorous</u> measure of protection.

Mission Assurance Use Cases (cont.)

- MAC II systems handle information <u>important</u> to the support of deployed and contingency forces.
 - The loss of MAC II systems could have a <u>significant</u> <u>negative impact</u> on the success of the mission or operational readiness.
 - MAC II systems must maintain the highest level of *Integrity*.
 - The loss of availability of MAC II data can be <u>tolerated</u> only for a short period of time, so MAC II systems must maintain a medium level of availability.
 - MAC II systems require <u>protective measures above</u> <u>industry best practices</u> to ensure <u>adequate integrity and availability of data.</u>

S. S. Yau

Mission Assurance Use Cases (cont.)

- *MAC III* systems handle information that is <u>necessary</u> for *day-to-day operations*, but not directly related to the support of deployed or contingency forces.
 - Loss of MAC III data would <u>not have a significant</u> <u>immediate impact</u> on mission effectiveness or operational readiness in short term
 - MAC III systems are required to maintain <u>basic</u>
 <u>levels of integrity and availability</u>. MAC III systems must be protected by measures considered as <u>industry best practices</u>.

References

- J. G. Boyce, D. W. Jennings, *Information Assurance: Managing Organizational IT Security Risks*. Butterworth Heineman, 2002, ISBN 0-7506-7327-3
- M. E. Whitman and H. J. Mattord, Principles of Information Security, 5th edition, Thomson Course Technology, November 2014
- Rahul Gupta, "The Need for Mission Assurance". *PRTM Magazine*, 2006.

S. S. Yau