Formation Java Frameworks

Les Services Web

Sommaire

- Les services web: originalité et bénéfices
- La seconde vague
- Orchestration
- Interactivité
- Adaptation
- Administration

Les années « services web »

- Implication totale des grands acteurs.
- Apparition de nombreux acteurs dédiés, principalement dans le monde Java (CapeClear, The Mind Electric, Systinet, Bowstreet, Shinka etc.)
- Virage des ASP, des éditeur d'EAI et de middleware classique.
- Support multi-plate formes, multi-langages (C, Perl, Smalltalk, Python, Cobol, PL1, Ada etc.)
- Explosion des séminaires, revues etc.

Rappel technique sur les services web

- Les services web constituent une solution, parmi d'autres, à un problème ancien: comment faire communiquer des programmes (potentiellement distants) entre eux?
- Services web, RPC, objets distribués (Corba, RMI, DCOM, .NET Remoting etc.), MOM etc.
- => Variations sur un même thème.

D'où viens le succès ?

- Utilisation d'XML pour représenter le échanges entre applications et le interfaces des services Web.
- Émergence les architectures « orientées services
- Accord, pour la gremière fois, de toute l'industrie d'compris Mich soft, autour d'un standard d'interopérabilé (SOAP).
- An daires mondiaux de services.

Bien que ces éléments soient importants, ils ne fondent pas aujourd'hui le succès de l'approche service web.

Une idée simple et astucieuse

➡ Utiliser l'infrastructure web existante, c.a.d. tout ce qui tourne autour d'HTTP, comme support des interactions entre applications distribuées.

Services web: interactions programmatiques sur HTTP

Web classique interactif: interaction utilisateur/serveur

Services Web = Appels programmatiques sur le Web Communication « Application to Application » (A2A)

Bénéfice: réduction radicale des coûts

- Réutilisation des outils actuels, qu'il soient basés sur un serveur d'application, du scripting à la PHP, des programmes cgi etc.
- Réutilisation des compétences.
- Seuls les éléments touchant directement à la génération du HTML ou à la gestion d'une interaction utilisateur ne sont pas réutilisés.
- Coté client, il suffit de savoir émettre une requête HTTP!

Réutilisation de l'infrastructure web

- Mise en ligne d'un service web
- Authentification
- Cryptage
- Firewalls
- Scalabilité
- Load-balancing, clustering, fault-tolerance
- Environnement d'exécution
- Administration / Logs
- Semantic web & nouveaux standards du web: approche REST

Types d'utilisation

Orchestration - Adaptation - Administration

Partenariats multiples

Structure Fonctionnelle

Composants des Web ervices

O Acteurs

- Utilisateurs: individus utilisant une interface d'abstraction
- Requesters: "Clients" des Web Services
- Intermediary : capable de traiter une partie de la requête
- Providers : servent la requête

2 Ressources

- Registres : fournissent la description et les points d'accès
- Portail : Frontal des "Requester" pour les utilisateurs
- Communication : Basée entièrement sur SOAP

6 Coordination

- Organise le traitement entre "providers"
- Orchestration: 1 service appelle les autres
- Chorégraphie : plusieurs services en appellent d'autres •

Exemple de Web Srvice

UDDI: Registres de Web Services

Technologies

Le socle technologique de base

- L'Architecture Web Services met en œuvre conjointement les spécifications :
- SOAP : Simple Object Access Protocol
 - Protocole de type RPC utilisant XML pour la structuration de ses messages
 - Initialement proposé par Microsoft, désormais géré par le W3C
- WSDL : Web Service Description Language
 - ► Il faut être capable de décrire de manière unifiée les services pour pouvoir les invoquer
 - WSDL est une spécification de description des Web Services
 - ▶ WSDL est un complément de SOAP (peut être vu comme l'IDL de CORBA)
- UDDI: Universal Description, Discovery and Integration
 - Annuaire des Services Web mis à disposition par les entreprises, la sélection et la mise à disposition des descriptions de services

SOAP - Le protocole

- Est un protocole entièrement <u>basé sur le langage XML</u> :
 - Définit la structure du message (l'enveloppe) et les données véhiculées (le corps)
- Utilise des <u>protocoles standards de l'Internet</u> : HTTP, SMTP ou encore FTP :
 - Le choix du protocole est guidé par les contraintes techniques du système ou encore le mode de communication désiré (synchrone ou asynchrone)
- <u>Est extensible</u>, il peut être complété par d'autres spécifications XML pour apporter des services de plus haut niveau tels que :
 - Les pièces jointes
 - Le routage et les intermédiaires
 - La garantie de délivrance
 - La sécurité
 - Le contexte et la confidentialité
 - Les transactions
 - La qualité de Service (QoS)
- Le protocole SOAP peut être considéré comme un « <u>standard de fait</u> » de par son adoption par un grand nombre d'éditeurs et sa prise en main par le W3C

SOAP - Un exemple

```
POST /StockQuote HTTP/1.1
Host: www.stockquoteserver.com
Content-type: text/xml; charset="utf-8"
Content-length: nnnn
SOAPAction: "Some URI"

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:GetLastTradePrice xmlns:m="Some URI">
<symbole>DIS</symbole>
</m:GetLastTradePrice>
</SOAP-ENV:Body>
</SOAP-ENV:Body>
</SOAP-ENV:Body>
</SOAP-ENV:Body>
</SOAP-ENV:Body>
```

SOAP – Données échangées

- SOAP Véhicule des données au format XML
 - Enveloppe, en-tête et corps
 - Données échangées dans le cadre de l'appel du service (Contenu du corps, Pièces jointes éventuelles)
- Ces données peuvent être :
 - Des données quelconques
 - Des données XML
 - Des données XML + Schéma (XSI
 - Définies dans le Contrat (WSDL)

Document libre (forme et contenu)

Document libre (contenu)

Document métier définition externe

Définition interne

- Du choix technique et de la granularité de description dépends :
 - Le contrôle sur la qualité des données échangées (typage +/- fort)
 - Le travail d'analyse des données en réception
 - Requête → Fournisseur de service
 - Réponse Consommateur de service
 - Le couplage technique entre consommateurs et fournisseurs
 - Le couplage métier entre consommateurs et fournisseurs

<u>L'approche par document validé par un schéma combine</u> : grand degrés de liberté, qualité des contrôles et interopérabilité

WSDL

- WSDL est un <u>langage XML de description des Web Services</u>
- Un document WSDL décrit :
 - Ce que fait un Web Service
 - Où il se situe (i.e. quelles URLs et quels protocoles vont permettre son invocation)
 - Comment l'invoquer (i.e. quelles sont les méthodes disponibles et leurs paramètres, les types de données sont définies à base de XML Schema)
- Le rôle de WSDL est essentiel, puisque ce sont les documents WSDL qui seront échangés entre les partenaires de manière à ce qu'ils puissent techniquement mettre en œuvre la communication basée sur les Web Services
- L'intérêt de WSDL réside dans les quatre points suivants :
 - Le langage WSDL peut être utilisé pour définir complètement l'interface d'accès d'un service distant
 - Côté serveur, le fichier WSDL peut être généré automatiquement par introspection des classes qui implémentent le service
 - Côté client, le fichier WSDL peut être utilisé pour générer automatiquement un proxy (java, C#...) permettant d'invoquer le service
 - Le fichier WSDL peut être exporté dans un <u>annuaire UDDI</u> permettant ainsi qu'il soit découvert par interrogation de cet annuaire

UDDI

• UDDI (*Universal Description, Discovery, and Integration*) distingue trois types de registres :

Informations sur les contacts, adresses, téléphones, etc.

Publier

Comment enregistrer un nouveau service dans le registre

Catégorisation des différents services, basée sur l'utilisation de taxinomies standards

Rechercher

Comment on peut trouver un service Web particulier

Pages Vertes

Informations techniques sur les Services proposés par une entreprise particulière

Connecter

Comment une application va pouvoir se connecter et interagir avec un Service Web

JAX-RPC: standard mais lourd

```
import java.net.*;
import javax.xml.namespace.*;
import javax.xml.rpc.*;
...

URL WSDLLocation = new URL("http://test.on.com/h/s1?WSDL");
QName serviceName = new QName("http://www.on.com/Message.xsd", "ONWS");
Qname portName = new QName("http://www.on.com/Message.xsd", "ONWS");
ServiceFactory serviceFactory = ServiceFactory.newInstance();
Service service = serviceFactory.createService(WSDLLocation, serviceName);
Call call = service.createCall(portName, "HelloWorld");
call.invoke(new Object[]{});
```

```
import electric.registry.*;
...
Registry.bind("http://test.on.com/h/s1?WSDL").invoke("HelloWorld",new Object[]{});
```

Adaptation

- Les services web peuvent intégrer une technologie d'adaptation.
- Le comportement des services web est configuré différemment selon les différents contextes d'appels (partenaires).
- Les outils d'adaptation doivent êtres utilisables par des hommes métiers.
- Tests.
- Adaptation en masse.
- Impact méthodologique.

Adaptation

- Deux types d'adaptation
 - Adaptation graphique (uniquement pertinente pour les services web interactifs).
 - Adaptation métier.
- L'adaptation implique les différents partenaires.
- Délégation de certains droits d'adaptation par le propriétaire du service web.
- Plateforme commune d'adaptation.

REST c'est quoi?

- Thèse de Roy Fielding en 2000
- Un style d'architecture
- Un ensemble de contraintes
 - Client /serveur
 - Sans états (Stateless)
 - Cache
 - Interface uniforme
- La plus connue des implémentations de REST est HTTP

Les principes clefs

- Une ressource
- Un identifiant de ressource
- Une représentation
- Interagir avec les ressources
 - Exemple avec HTTP: GET, POST, PUT et DELETE

Pour résumer

Un service RESTful

- Identifier les ressources
- Définir les URIs
- Spécifier les méthodes des interfaces
- Lier les ressources

Exemple (1/6)

 Un traiteur propose sur son site plusieurs services à ses clients :

- Obtenir la liste des plats disponibles
- Obtenir des informations sur un plat précis
- Passer une commande

Exemple (2/6)

Exemple (3/6)

- La liste des plats est disponible à l'URL suivante : http://www.monresto.com/plats/
- Le client reçoit une réponse sous la forme suivante :

```
<?xml version="1.0"?>
  <p:Plats xmlns:p="http://www.monresto.com/"
xmlns:xlink="http://www.w3.org/1999/xlink">
        <Plat id="0001" xlink:href="http://www.
monresto.com/Plats/0001"/>
        <Plat id="0002" xlink:href="http://www.
monresto.com/Plats/0002"/>
        <Plat id="0003" xlink:href="http://www.
monresto.com/Plats/0003"/>
[...]
        </p:Plats>
```

Exemple (4/6)

- Les détails d'un plat se trouvent à l'URL : http://www.monresto.com/plats/0002
- D'où la réponse :

Exemple (5/6)

Le service « Passer commande »

- Créer une instance de « commande » conforme à

Exemple (6/6)

 Le service « Passer une commande » répond par une URL vers la comman<u>de so</u>umise.

