MATH-UA 120 Section 6

Ishan Pranav

September 12, 2023

Palindrome

An integer n is a palindrome if it reads the same forward and backward when expressed in base-10.

1 Disprove: Given $a, b \in \mathbb{Z}$, if $a \mid b$, then $a \leq b$

Consider $a=1\in\mathbb{Z}, b=0\in\mathbb{Z}$. Let $c\in\mathbb{Z}$ such that b=ac. Note 0=1c. Let c=0. Note 0=1(0)=0. There exists $c\in\mathbb{Z}$ such that b=ac. Therefore, $a\mid b$. However, 1>0, so a>b. We reject the claim that $a\mid b$ implies $a\leq b$.

2 Disprove: Given $a, b \in \mathbb{Z}$, if $a \ge 0$ and $a \mid b$, then $a \le b$

Consider $a = 1 \in \mathbb{Z}$, $b = 0 \in \mathbb{Z}$. Note $1 \ge 0$, so $a \ge 0$. Let $c \in \mathbb{Z}$ such that b = ac. Note 0 = 1c. Let c = 0. Note 0 = 1(0) = 0. There exists $c \in \mathbb{Z}$ such that b = ac. Therefore, $a \mid b$. However, 1 > 0, so a > b. We reject the claim that $a \mid b$ implies $a \le b$.

3 Disprove: Given $a, b, c \in \mathbb{N}$, if $a \mid (bc)$, then $a \mid b$ or $a \mid c$

Consider $a = 4 \in \mathbb{N}$, $b = 2 \in \mathbb{N}$, $c = 6 \in \mathbb{N}$. Let $d \in \mathbb{Z}$ such that bc = ad. Note 12 = 4d. Let d = 3. There exists $d \in \mathbb{Z}$ such that bc = ad. Therefore, $a \mid (bc)$. However, no such $x \in \mathbb{Z}$ exists such that 2 = 4x and no such $y \in \mathbb{Z}$ exists such that 6 = 4y. Therefore, $a \nmid b$ and $a \nmid c$. We reject the claim that $a \mid (bc)$ implies $a \mid b$ or $a \mid c$.

4 Disprove: Given $a, b, c \in \mathbb{Z}$, if a > 0, b > 0, and c > 0, then $a^{(b^c)} = (a^b)^c$

Consider $a = 3 \in \mathbb{Z}, b = 3 \in \mathbb{Z}, c = 3 \in \mathbb{Z}$. Note (a = b = c = 3) > 0. However, $(3^{\binom{3^3}{3}} = 3^{27}) \neq ((3^3)^3 = 27^3)$.

5 Disprove: Given $p, q \in \mathbb{Z}$, if p and q are prime, then p + q is composite

Consider $p = 2 \in \mathbb{Z}$, $q = 3 \in \mathbb{Z}$. Note (p = 2) > 1. The only positive divisors of 2 are 1 and 2. Therefore, p is prime. Note (q = 3) > 1. The only positive divisors of 3 are 1 and 3. Therefore, q is prime. However, p + q = 5. Let $a \in \mathbb{Z}$; p + q is called composite provided there exists $a \in \mathbb{Z}$ such that 1 < a < p + q and $a \mid (p + q)$. No such $a \in \mathbb{Z}$ exists, therefore p + q is not composite. We reject the claim that p and q being primes implies that p + q is composite.

6 Disprove: Given $p \in \mathbb{Z}$, if p is prime, then $2^p - 1$ is prime

Consider $p = 5 \in \mathbb{Z}$. Note (p = 11) > 0. The only positive divisors of 11 are 1 and 11. Therefore, p is prime. However, $2^p - 1 = 2^{11} - 1 = 2047$. 2047 is called prime provided the only positive divisors of 2047 are 1 and 2047. However, let 89(23) = 2047. There exists $a \in \mathbb{Z}$ such that 2047 = 89a. Thus, $89 \mid 2047$. Note $89 \neq 1$ and $89 \neq 2047$. Therefore $2^p - 1$ is not prime.

7 Disprove: Given $p \in \mathbb{Z}$, if p is a palindrome and p has more than 1 digit, then p is divisible by 11

Consider p = 232; p has more than 1 digit. However, there exists no $a \in \mathbb{Z}$ such that 232 = 11a. Therefore, $11 \nmid 232$. We reject the claim that if p is a palindrome and p has more than 1 digit, then p is divisible by 11.