Propagation of Voltage in a Neuron The Cable Equation

Darice Guittet, Elise Niedringhaus, Sarah Liddle

Fall 2017

Overview

- 1. Motivation
- 2. Neuronal Cable Equation
- 3. Passive Membrane (Linear Cable Equation)
- 4. Bi-stable Ion Channels

How Do Neurons Communicate?

Within one cell

- ► Electrochemical signals
- ► Membrane Potential:

$$\Delta V_m = V_i - V_e$$

- ► lons: charge-carriers
- ► Ion Channels in Membrane

Between cells

Neurotransmitters

Figure: Mouse neurons, 40X. Bosch Institute Advanced Microscopy Facility, The University of Sydney

Action Potentials

Figure: Changes in axonal membrane voltage due to an action potential. Image from Khan Academy

Hodgkin-Huxley's Neuronal Cable Model

Figure: Differential membrane patches as circuit. Image from jh.edu/motn

- ▶ 1-D & Ohmic assumption
- ► Intracellular current
- Extracellular current
- ► Membrane current
- Membrane as capacitor
- lon channels as conductances
- Length Constant: $\lambda = \sqrt{\frac{r_m}{r_i + r_e}}$
- ► Time Constant: $r_m C_m$

Cable Equation

$$\frac{\partial v(x,t)}{\partial t} = \frac{\partial^2 v(x,t)}{\partial x^2} + f(v(x,t)) + J_{ext}(x,t)$$

 $ightharpoonup rac{\partial^2 v(x,t)}{\partial x^2}$ represents current coming in from adjacent segments

Passive Membrane

Green's Functions

Numerical Solutions

Traveling Wave Solutions

Speed of Traveling Wave

Stability of Traveling Wave

Numerical Solutions for Traveling Wave

Conclusion