Отчёт по лабораторной работе №2 по дисциплине Компьютерный практикум по статистическому анализу данных

Структуры данных

Шаповалова Диана Дмитриевна

Содержание

1	Целі	ь работы	5
2	Вып	олнение лабораторной работы	6
	2.1	Кортежи	6
	2.2	Словари	7
	2.3	Множества	8
	2.4	Массивы	10
		Задания для самостоятельного выполнения	11
	2.6	1. Даны множества: $\square = \{0, 3, 4, 9\}, \square = \{1, 3, 4, 7\}, \square = \{0, 1, 2, 4, 7, 8, 9\}.$	
		Найти 🛮 = 🗎 🗎 🗎 🗎	11
	2.7	2. Приведите свои примеры с выполнением операций над множе-	
		ствами элементов разных типов	12
		3. Создайте разными способами:	14
		3.1) массив $(1, 2, 3, \square - 1, \square)$, \square выберите больше $20; \ldots \ldots$	14
		3.2) массив (\square , \square – 1, 2, 1), \square выберите больше 20;	15
		3.3) массив $(1, 2, 3,, \square - 1, \square, \square - 1,, 2, 1)$, \square выберите больше 20; .	16
		3.4) массив с именем tmp вида (4, 6, 3);	17
	2.13	3.5) массив, в котором первый элемент массива tmp повторяется 10	
		раз;	18
	2.14	5. Подключите пакет Primes (функции для вычисления простых	
		чисел). Сгенерируйте массив myprimes, в котором будут храниться	
		первые 168 простых чисел. Определите 89-е наименьшее простое	
		число. Получите срез массива с 89-го до 99-го элемента включи-	4.0
	0.45	тельно, содержащий наименьшие простые числа	19
	2.15	6. Вычислите следующие выражения	20
3	Выв	оды	21

Список иллюстраций

2.1	Выполняем примеры по Кортежам	7
2.2	Выполняем примеры по Словарям	8
2.3	Выполняем примеры по Множествам	9
2.4	задание 1	1
2.5	задание 2	2
2.6	задание 2	3
2.7	задание 3.1	4
2.8	задание 3.2	5
2.9	задание 3.3	6
2.10	задание 3.4	7
2.11	задание 3.5	8
2.12	задание 5	9
2.13	залание 6	n

Список таблиц

1 Цель работы

Основная цель работы— изучить несколько структур данных, реализованных в Julia, научиться применять их и операции над ними для решения задач.

2 Выполнение лабораторной работы

2.1 Кортежи

```
Примеры кортежей:
#пустой кортеж:
()
#кортеж из элементов типа String:
favoritelang = ("Python", "Julia", "R")
#кортеж из целых чисел:
x1 = (1, 2, 3)
#кортеж из элементов разных типов:
x2 = (1, 2.0, "tmp")
#именованный кортеж:
x3 = (a=2, b=1+2)
Примеры операций над кортежами:
#длина кортежа x2:
length(x2)
и т.д.
```


Рис. 2.1: Выполняем примеры по Кортежам

2.2 Словари

```
Словарь — неупорядоченный набор связанных между собой по ключу данных.

Синтаксис определения словаря:

Dict(key1 => value1, key2 => value2, ...)

Примеры словарей и операций над ними:

#создать словарь с именем phonebook:

phonebook = Dict("Иванов И.И." => ("867-5309","333-5544"), "Бухгалтерия" => "555-2368")

#вывести ключи словаря:

keys(phonebook)

#вывести значения элементов словаря:

values(phonebook)
```

```
Untitled.ipynb
                          • +
1 + % □ □ > ■ C >> Code
                                                   葦
            Словари
     [13]: phonebook = Dict("Иванов И.И." => ("867-5309", "333-5544"), "Бухгалтерия" => "555-2368")
     [13]: Dict{String, Any} with 2 entries:
              "Бухгалтерия" => "555-2368"
"Иванов И.И." => ("867-5309", "333-5544")
     [14]: keys(phonebook)
     [14]: KeySet for a Dict{String, Any} with 2 entries. Keys:
              "Бухгалтерия"
              "Иванов И.И."
     [15]: values(phonebook)
     [15]: ValueIterator for a Dict{String, Any} with 2 entries. Values:
              "555-2368"
              ("867-5309", "333-5544")
     [16]: pairs(phonebook)
     [16]: Dict{String, Any} with 2 entries:
              "Бухгалтерия" => "555-2368"
"Иванов И.И." => ("867-5309", "333-5544")
     [17]: haskey(phonebook, "Иванов И.И.")
     [17]: true
     [18]: phonebook["Сидоров П.С."] = "555-3344"
     [18]: "555-3344"
```

Рис. 2.2: Выполняем примеры по Словарям

2.3 Множества

Множество, как структура данных в Julia, соответствует множеству, как математическому объекту, то есть является неупорядоченной совокупностью элементов какого-либо типа. Возможные операции над множествами: объединение, пересечение, разность; принадлежность элемента множеству.

Примеры множеств и операций над ними:

#создать множество из четырёх целочисленных значений:

A = Set([1, 3, 4, 5])

#создать множество из 11 символьных значений:

```
B = Set("abrakadabra") #проверка эквивалентности двух множеств: S1 = Set([1,2]); S2 = Set([3,4]); issetequal(S1,S2)
```

```
Untitled.ipynb
a + % 🗇 🖺 🕨
                                 Code
           b = Dict("baz" => 17, "bar" => 13.0);
           merge(a, b), merge(b,a)
    [20]: (Dict{String, Real}("bar" => 13.0, "baz" => 17, "foo" => 0.0), Dict{String, Real}("
           Множества
    [21]: A = Set([1, 3, 4, 5])
    [21]: Set{Int64} with 4 elements:
             4
             3
             1
    [22]: B = Set("abrakadabra")
    [22]: Set{Char} with 5 elements:
             'a'
             'd'
             'k'
             'ь'
    [23]: S1 = Set([1,2]);
           S2 = Set([3,4]);
           issetequal(S1,S2)
    [23]: false
     []:
```

Рис. 2.3: Выполняем примеры по Множествам

2.4 Массивы

Массив — коллекция упорядоченных элементов, размещённая в многомерной сетке. Векторы и матрицы являются частными случаями массивов.

```
Общий синтаксис одномерных массивов:

array_name_1 = [element1, element2, ...]

array_name_2 = [element1 element2 ...]

Примеры массивов:

#создание пустого массива с абстрактным типом:

empty_array_1 = []

#создание пустого массива с конкретным типом:

empty_array_2 = (Int64)[]

empty_array_3 = (Float64)[]
```

2.5 Задания для самостоятельного выполнения

2.6 1. Даны множества: $\square = \{0, 3, 4, 9\}, \square = \{1, 3, 4, 7\}, \square = \{0, 1, 2, 4, 7, 8, 9\}.$ Найти $\square = \square \square$.

Рис. 2.4: задание 1

2.7 2. Приведите свои примеры с выполнением операций над множествами элементов разных типов

```
Untitled.ipynb
1 + % □ □ > ■ C >> Code
                                      ✓ 
          с. приведите свои пришеры с выполнением операции
    [78]: x = ["apple", 40, 3.14]
    [78]: 3-element Vector{Any}:
            "apple"
           3.14
    [79]: y = [40, "banana", 2.17]
    [79]: 3-element Vector{Any}:
            "banana"
            2.17
    [80]: z = [3.14, "apple", "banana"]
    [80]: 3-element Vector{Any}:
           3.14
                               Do
            "apple"
           "banana"
```

Рис. 2.5: задание 2

Рис. 2.6: задание 2

2.8 3. Создайте разными способами:

2.9 3.1) массив (1, 2, 3, ... 🛘 − 1, 🗘), 🗓 выберите больше 20;

Рис. 2.7: задание 3.1

2.10 3.2) массив (□, □ - 1 ... , 2, 1), □ выберите больше 20;

Рис. 2.8: задание 3.2

2.11 3.3) массив (1, 2, 3, ..., 🛮 – 1, 🗓, 🗓 – 1, ..., 2, 1), 🗓 выберите больше 20;

Рис. 2.9: задание 3.3

2.12 3.4) массив с именем tmp вида (4, 6, 3);

3.4) массив с именем tmp вида (4, 6, 3);

Рис. 2.10: задание 3.4

2.13 3.5) массив, в котором первый элемент массива tmp повторяется 10 раз;

3.5) массив, в котором первый элемент массива tmp повторяется 10 раз;

Рис. 2.11: задание 3.5

(Заданий слишком много в пункте 3, поэтому все остальные задания находятся тут)

2.14 5. Подключите пакет Primes (функции для вычисления простых чисел). Сгенерируйте массив myprimes, в котором будут храниться первые 168 простых чисел. Определите 89-е наименьшее простое число. Получите срез массива с 89-го до 99-го элемента включительно, содержащий наименьшие простые числа.

Рис. 2.12: задание 5

2.15 6. Вычислите следующие выражения

Рис. 2.13: задание 6

3 Выводы

Мы изучили несколько структур данных, реализованных в Julia, и научились применять их и операции над ними для решения задач