Predictive modeling and unsupervised clustering

Thalita Drumond

Extra Exercises Learning predictive models

Gradient descent for linear regression

GD update with MSE cost function Ordinary least squares

Minimize the residual sum of squares (RSS):

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\varepsilon^{(i)})^{2}$$

With $\varepsilon^{(i)}$ being the error between the hypothesis h_{θ} for input $x^{(i)}$ and the ground truth values $y^{(i)}$:

CS229 course notes 1 - Supervised learning

Suppose we will minimize the least-squares cost function using gradient descent:

$$\theta_j[t+1] = \theta_j[t] - \eta \, \Delta \theta_j[t]$$

where η is the learning rate (or step size) and $\Delta\theta_j = \frac{\partial J}{\partial\theta_j}$.

Show that the parameter update is given by $\Delta\theta_j=x_j^{(i)}\varepsilon^{(i)}$

5

Binary classification with MLE

Binary logistic regression

Binary classification with logistic regression

The hypothesis function is:

$$h_{\theta}(\mathbf{x}) = \sigma \left(\sum_{j=0}^{d} \theta_{j} x^{j} \right) = \sigma(\boldsymbol{\theta}^{T} \mathbf{x}) \qquad \boldsymbol{\theta}^{T} : \left[\boldsymbol{\theta}_{1} \cdots \boldsymbol{\theta}_{j} \dots \boldsymbol{\theta}_{d} \right]$$

Where $\sigma(a)$ is the logistic function:

$$\sigma(a) = \frac{1}{1 + e^{-a}}$$

This hypothesis predicts values of

$$h_{\theta}(\mathbf{x}) \in [0,1]$$

$$x: \begin{bmatrix} x^1 \\ \vdots \\ x^j \\ \vdots \\ x^d \end{bmatrix}$$

CS229 course notes 1 – Supervised learning

8

Binary classification with logistic regression

$$p(y|\mathbf{x}; \boldsymbol{\theta}) = \text{Ber}(y|\boldsymbol{\sigma}(w^Tx + b))$$

$$a = \boldsymbol{w}^\mathsf{T} \boldsymbol{x} + b$$

$$p(y = 1|x; \theta) = \sigma(a) = \frac{1}{1 + e^{-a}}$$

$$p = \text{logistic}(a) = \boldsymbol{\sigma}(a) \triangleq \frac{1}{1 + e^{-a}} = \frac{e^a}{1 + e^a}$$
$$a = \text{logit}(p) = \boldsymbol{\sigma}^{-1}(p) \triangleq \log\left(\frac{p}{1 - p}\right)$$

Based on the NLL loss function derived in exercise 4,

$$NLL(\boldsymbol{\theta}) = -\sum_{i=1}^{N} y_i \log h_{\theta}(\boldsymbol{x}_i) + (1 - y_i) \log(1 - h_{\theta}(\boldsymbol{x}_i))$$

use the logistic hypothesis

$$p(y=1|\mathbf{x};\boldsymbol{\theta}) = \boldsymbol{\sigma}(a) = \frac{1}{1+e^{-a}}$$

to write the cost function for logistic regression.

Binary classification with MLE
GD update for logistic regression

Binary classification with MLE Gradient descent update

NLL cost function:

$$J(\theta) = NLL(\theta) = -\log \mathcal{L}(\theta)$$

$$= -\sum_{i=1}^{N} y_i \log h_{\theta}(x_i) + (1 - y_i) \log(1 - h_{\theta}(x_i))$$

$$\Delta \theta_j \triangleq \frac{\partial}{\partial \theta_i} J(\theta)?$$

Suppose we will minimize the binary classification NLL cost function using gradient descent:

$$\theta_j[t+1] = \theta_j[t] - \eta \, \Delta \theta_j[t]$$

where η is the learning rate (or step size) and $\Delta\theta_j = \frac{\partial J}{\partial\theta_j}$.

Given the NLL cost function

$$J(\boldsymbol{\theta}) = NLL(\boldsymbol{\theta}) = -\sum_{i=1}^{N} y_i \log h_{\theta}(\boldsymbol{x}_i) + (1 - y_i) \log(1 - h_{\theta}(\boldsymbol{x}_i))$$

Show that the parameter update is given by $\Delta \theta_j = x_{ij} \varepsilon_i$

Multiclass classification with MLE
Multinomial logistic regression

Multinomial logistic regression

Problem: learn a conditional probability distribution for each class \boldsymbol{l}

$$p(y = l | \mathbf{x}; \boldsymbol{\theta}) = f_l(\mathbf{x}; \boldsymbol{\theta})$$

Multinomial logistic regression:

$$p(y|\mathbf{x}; \boldsymbol{\theta}) = \text{Cat}(y|\mathbf{f}(\mathbf{x}; \boldsymbol{\theta}))$$

with

$$f(x; \theta) = S(Wx + b)$$

That is

$$p(y = l|\mathbf{x}; \boldsymbol{\theta}) = f_l = \mu_l(\mathbf{W}\mathbf{x} + \boldsymbol{b})$$

with $\mathbf{W} \subset \mathbb{R}^C \times \mathbb{R}^D$ and $\boldsymbol{\theta} = [\boldsymbol{W}; \boldsymbol{b}]$

The softmax function is defined as

$$\mathbf{S}: \mathbb{R}^{C} \to [0,1]^{C}$$

$$\mathbf{S}(\mathbf{a}) \triangleq \begin{bmatrix} \mu_{1}(\mathbf{a}) & \cdots & \mu_{j}(\mathbf{a}) & \cdots & \mu_{C}(\mathbf{a}) \end{bmatrix}$$

where

$$\mu_j : \mathbb{R}^C \to [0,1]$$

$$\mu_j(\boldsymbol{a}) = \frac{\exp(-a_j)}{\sum_{l=1}^C \exp(-a_l)}$$

a values are called logits

Based on the NLL loss function derived in exercise 5,

$$NLL(\theta) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{l=1}^{C} y_{il} \log f_{il}$$

use the softmax hypothesis

$$f(x; \theta) = \mathcal{S}(\mathbf{W}x + \mathbf{b})$$

to write the cost function for multinomial logistic regression.

Softmax function with temperature

As $T \rightarrow 0$

$$S(\boldsymbol{a}/T)_c = \begin{cases} 1.0 & \text{if } c = \operatorname{argmax}_{c'} a_{c'} \\ 0.0 & \text{otherwise} \end{cases}$$

High temperature → uniform distribution Low temperature → true max selection

ProbML Section 2.5, Figure 2.12

Multiclass classification with MLE
GD update

Multiclass classification with MLE GD update

NLL cost function:

$$J(\theta) = \frac{1}{N} NLL(\theta) = -\frac{1}{N} \sum_{n=1}^{N} \sum_{c=1}^{C} y_{nc} \log \mu_{nc}$$

with $\mu_{nc} = \mu_{nc}(a) = \frac{\exp(-a_{nc})}{\sum_{i=1}^{C} \exp(-a_{nj})}$ and a = Wx (assume the b term to be included in W)

Gradient descent update:

$$\Delta \theta_j \triangleq \frac{\partial}{\partial \theta_i} J(\theta)?$$

We are going to show that the parameter update $\Delta\theta_j = \frac{\partial J}{\partial\theta_j}$ is AGAIN given by $\Delta\theta_j = x_{ij}\varepsilon_i$.

We will assume the weight matrix $D \times C$ is flattened into a CD vector.

1. First, use the chain rule to decompose the derivative as follows

$$\nabla_{\boldsymbol{w}_{j}} NLL_{n} = \sum_{c} \frac{\partial NLL_{n}}{\partial \mu_{nc}} \frac{\partial \mu_{nc}}{\partial a_{nj}} \frac{\partial a_{nj}}{\partial \boldsymbol{w}_{j}}$$

where w_i denotes the vector of weights associated with class j

- 2. Then compute the partial derivatives.
- a) (optional) It can be derived that for any sample, $\frac{\partial \mu_c}{\partial a_j} = \mu_c (\delta_{cj} = \mu_j)$, where $\delta_{cj} = \mathbb{I}(c=j)$.
- b) Show that $\frac{\partial NLL_n}{\partial \mu_{nc}} = -\frac{y_{nc}}{\mu_{nc}}$
- c) Show that $\frac{\partial a_{nj}}{\partial w_j} = x_n$
- 3. Use these three partial derivatives to show that

$$\nabla_{\boldsymbol{w}_j} NLL_n = (\mu_{nj} - y_{nj})\boldsymbol{x}_n$$

Empirical risk minimization

Empirical risk minimization cost function

Average loss of the predictive model on the training set

$$\mathcal{L}(\theta) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n=1}^{N} \ell(\mathbf{y}_n, \boldsymbol{\theta}; \mathbf{x}_n)$$

Empirical distribution of the dataset \mathcal{D} with samples $\mathbf{y}_n \sim p(\mathbf{Y})$:

$$p_{\mathcal{D}}(\mathbf{y}_n) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n=1}^{N} \delta(\mathbf{y} - \mathbf{y}_n)$$

i. e., δ -functions centered at each sample y_n :

Data distribution p(X, Y)

Samples are drawn from data distribution

$$\mathbf{x}_n, \mathbf{y}_n \sim p(\mathcal{X}, \mathcal{Y})$$

Empirical risk minimization

Example using least-squares error

Cost = Mean squared error

$$\mathcal{L}(\theta) \stackrel{\text{def}}{=} \frac{1}{N} \sum_{n=1}^{N} (\mathbf{y}_n - f(\mathbf{x}_n; \theta))^2$$

Here the loss is the squared error:

$$\ell(\mathbf{y}_n, \boldsymbol{\theta}; \mathbf{x}_n) = (\mathbf{y}_n - f(\mathbf{x}_n; \boldsymbol{\theta}))^2$$

ProbML Section 1.2.1.4

Empirical risk minimization Example using misclassification rate

Cost = Misclassification rate

$$\mathcal{L}(heta) \stackrel{ ext{def}}{=} rac{1}{N} \sum_{n=1}^{N} \mathbb{I}(m{y}_n
eq f(m{x}_n; heta)) \qquad egin{array}{c} ext{Counts the number} \\ ext{of misclassified} \\ ext{samples} \ \end{array}$$
 $\mathbb{I}(e) = \left\{ egin{array}{c} 1 & ext{if e is true} \\ 0 & ext{if e is false} \ \end{array}
ight.$

Here the loss is the Indicator function

$$\ell(\mathbf{y}_n, \boldsymbol{\theta}; \mathbf{x}_n) = \mathbb{I}(\mathbf{y}_n \neq f(\mathbf{x}_n; \boldsymbol{\theta}))$$

ProbML Section 1.2.1.4

MLE is equivalent to empirical risk minimization (under a particular loss)

Looking back to the negative log likelihood cost function derived in exercise 1, compare it to the empirical risk cost function and identify the loss $\ell(y_n, \theta; x_n)$ that makes both cost functions equivalent.

Summary

	Hypothesis $p(y x; \theta) = p(y h_{\theta}(x))$	Error derivative $\begin{aligned} \varepsilon_i &= h_\theta(\boldsymbol{x_i}) - y_i \\ \frac{\partial}{\partial \theta_j} \varepsilon_i &= \frac{\partial}{\partial \theta_j} h_\theta(\boldsymbol{x_i}) \end{aligned}$	Loss	Parameter update for a single sample x_i $\nabla_{\theta_j} \text{NLL}(\boldsymbol{\theta})$
Linear regression	$\mathcal{N}(y \boldsymbol{\theta}^T\boldsymbol{x},\sigma^2)$	x_{ij}	MSE	$\Delta\theta_j = \varepsilon_i x_{ij}$
Logistic regression	$Ber(y \sigma(\boldsymbol{\theta}^{T}\boldsymbol{x}))$ $\sigma(z) = \frac{1}{1 + e^{-z}}$	$\sigma'(x_{ij})x_{ij}$	Cross-entropy	$\Delta\theta_j = \varepsilon_i x_{ij}$
Multinomial logistic regression	$\cot(y \mathcal{S}(\boldsymbol{\theta}^{T}\boldsymbol{x}))$ $p(y = k x; \theta) = [\mathcal{S}(\boldsymbol{\theta}^{T}\boldsymbol{x})]_{k}$ $[\mathcal{S}(\boldsymbol{a})]_{j} = \mu_{j}(\boldsymbol{a}) = \frac{\exp(-a_{j})}{\sum_{k=1}^{C} \exp(-a_{k})}$	$\mu_{l}(\delta_{lj} - \mu_{j})x_{ij}$ $= \begin{cases} 0 & \text{if } j = l \\ -\mu_{l}\mu_{j}x_{ij} & \text{if } j \neq l \end{cases}$	Cross-entropy	$\Delta \boldsymbol{\theta}_j = \varepsilon_i \boldsymbol{x_i}$