Black Scholes Stock Puts

September 29, 2021

1 Black Scholes Stock Puts Inputs

```
[1]: import numpy as np
     import scipy.stats as ss
     import matplotlib.pyplot as plt
     import yfinance as yf
[2]: dfo = yf.Ticker("AAPL")
    dfo.options
[3]: ('2020-10-15',
      '2020-04-23',
      '2021-09-16',
      '2020-04-30',
      '2021-01-14',
      '2020-06-18',
      '2021-06-17',
      '2020-12-17',
      '2020-05-21',
      '2022-01-20',
      '2020-09-17',
      '2020-04-16',
      '2022-06-16',
      '2020-05-14',
      '2020-05-07',
      '2020-05-28',
      '2020-07-16')
[4]: dfo_exp = dfo.option_chain('2020-05-28')
[5]:
     dfo_exp.puts
[5]:
              contractSymbol
                                     lastTradeDate
                                                    strike
                                                             lastPrice
                                                                          bid
                                                                                  ask
     0
         AAPL200529P00195000 2020-04-09 18:05:46
                                                     195.0
                                                                  2.15
                                                                          1.87
                                                                                 2.09
         AAPL200529P00200000 2020-04-09 18:38:33
                                                     200.0
                                                                  2.37
                                                                          1.99
                                                                                 2.67
     1
     2
         AAPL200529P00205000 2020-04-09 19:44:51
                                                                  2.69
                                                                          2.29
                                                     205.0
                                                                                 3.05
```

3	AAPL200529P	00220000	2020-04-09	19:57:24	220.0	4.15	3.65	4.15	
4	AAPL200529P	00225000	2020-04-09	17:52:28	225.0	4.85	4.30	5.05	
5	AAPL200529P	00235000	2020-04-09	19:46:45	235.0	6.32	5.90	6.40	
6	AAPL200529P	00240000	2020-04-09	19:59:54	240.0	7.21	6.85	7.85	
7	AAPL200529P				245.0	8.80	8.00	8.55	
8	AAPL200529P				250.0	9.68	9.25	10.30	
9	AAPL200529P				260.0	13.52	12.55	13.55	
10	AAPL200529P				262.5	14.85	13.40	14.05	
11	AAPL200529P				265.0	14.00	14.35	15.40	
12	AAPL 200529P				267.5	15.75	15.75	16.50	
13	AAPL200529P				270.0	16.50	16.35	17.60	
14	AAPL200529P				275.0	19.50	17.70	20.65	
15	AAPL200529P	00280000	2020-04-09	13:44:29	280.0	21.26	20.55	23.45	
	change perc	•		openInterest	-	edVolatili	•	CheMoney	\
0	2.15	Infinity		NaN		0.6330	60	False	
1	2.37	Infinity	7 2	NaN		0.6185	0.618534		
2	2.69	Infinity	7 10	NaN		0.5999	0.599980		
3	4.15	Infinity	7 3	NaN		0.5404	0.540410		
4	4.85	Infinity	7 1	NaN		0.5313	77	False	
5	6.32	Infinity	12	NaN		0.5064	14	False	
6	7.21	Infinity	7 24	NaN		0.5071	46	False	
7	8.80	Infinity		NaN			0.478582		
8	9.68	Infinity		NaN			0.477849		
9	13.52	Infinity		Nal		0.4522		False False	
10	14.85	Infinity		Nal		0.4344		False	
11	14.90	Infinity		Nan		0.4376		False	
12	15.75	Infinity		Nan		0.4327		False	
13	16.50	Infinity		Nan Nan		0.4263			
	19.50	•		NaN		0.4311		True	
14		Infinity			NaN			True	
15	21.26	Infinity	7 5	Nan	V	0.4234	68	True	
•	contractSize	•							
0	REGULAR								
1	REGULAR								
2	REGULAR	USI							
3	REGULAR								
4	REGULAR	USI)						
5	REGULAR	USI)						
6	REGULAR	USI)						
7	REGULAR	USI)						
8	REGULAR	USI)						
9	REGULAR	USI)						
10	REGULAR	USI)						
11	REGULAR	USI)						
12	REGULAR	USI							
13	REGULAR	USI							
		001	-						

```
14
            REGULAR
                          USD
     15
            REGULAR
                          USD
[6]:
    symbol = 'AAPL'
     start = '2019-12-01'
     end = '2020-04-02'
[7]: df = yf.download(symbol,start,end)
    [******** 100%*********** 1 of 1 completed
[8]: df.head()
[8]:
                 Adj Close
                                  Close
                                               High
                                                            Low
                                                                       Open \
    Date
                 263.534546
                             264.160004
                                         268.250000
                                                                 267.269989
     2019-12-02
                                                     263.450012
     2019-12-03
                 258.835724
                             259.450012
                                         259.529999
                                                     256.290009
                                                                 258.309998
                                                     260.679993
     2019-12-04
                 261.120270
                             261.739990
                                         263.309998
                                                                 261.070007
     2019-12-05
                 264.951172
                             265.579987
                                         265.890015
                                                     262.730011
                                                                 263.790009
     2019-12-06
                270.069031
                             270.709991
                                         271.000000
                                                     267.299988
                                                                 267.480011
                   Volume
     Date
     2019-12-02
                 23621800
     2019-12-03
                 28607600
     2019-12-04
                 16795400
     2019-12-05
                 18606100
     2019-12-06
                 26518900
[9]: df.tail()
[9]:
                                                                       Open \
                  Adj Close
                                  Close
                                               High
                                                            Low
     Date
                 258.440002
                             258.440002
                                         258.679993
                                                                 246.520004
     2020-03-26
                                                     246.360001
     2020-03-27
                 247.740005
                             247.740005
                                         255.869995
                                                     247.050003
                                                                 252.750000
     2020-03-30
                 254.809998
                             254.809998
                                         255.520004
                                                     249.399994
                                                                 250.740005
     2020-03-31
                 254.289993
                             254.289993
                                         262.489990
                                                     252.000000
                                                                 255.600006
     2020-04-01
                 240.910004
                             240.910004
                                         248.720001
                                                     239.130005
                                                                 246.500000
                   Volume
     Date
     2020-03-26
                63021800
     2020-03-27
                 51054200
     2020-03-30
                41994100
     2020-03-31
                 49250500
     2020-04-01
                44054600
```

```
[10]: returns = df['Adj Close'].pct_change().dropna()
[11]: from datetime import datetime
      from dateutil import relativedelta
      d1 = datetime.strptime(start, "%Y-%m-%d")
      d2 = datetime.strptime('2020-05-28', "%Y-%m-%d")
      delta = relativedelta.relativedelta(d2,d1)
      print('How many years of investing?')
      print('%s years' % delta.years)
     How many years of investing?
     0 years
[12]: maturity_days = (df.index[-1] - df.index[0]).days
      print('%s days' % maturity_days)
     121 days
[13]: SO = df['Adj Close'][-1]
      K = dfo_exp.puts['strike'][6]
      r = 0.1
      sigma = returns.std()
      T = maturity_days/252
[14]: print("S0\tCurrent Stock Price:", S0)
      print("K\tStrike Price:", K)
      print("r\tContinuously compounded risk-free rate:", r)
      print("sigma\tVolatility of the stock price per year:", sigma)
      print("T\tTime to maturity in trading years:", T)
             Current Stock Price: 240.91000366210938
     S0
     K
             Strike Price: 240.0
             Continuously compounded risk-free rate: 0.1
             Volatility of the stock price per year: 0.0369388726875486
     sigma
     Т
             Time to maturity in trading years: 0.4801587301587302
[15]: def d1(S0, K, r, sigma, T):
          d1 = (np.log(SO/K) + (r + sigma**2 / 2) * T)/(sigma * np.sqrt(T))
          return d1
[16]: def d2(S0, K, r, sigma, T):
          d2 = (np.log(S0 / K) + (r - sigma**2 / 2) * T) / (sigma * np.sqrt(T))
          return d2
[17]: def BlackScholesCall(SO, K, r, sigma, T):
```

```
BSC = S0 * ss.norm.cdf(d1(S0, K, r, sigma, T)) - K * np.exp(-r * T) * ss. \\ \hookrightarrow norm.cdf(d2(S0, K, r, sigma, T))
return \ BSC
```

```
[18]: def BlackScholesPut(S0, K, r, sigma, T):

BSP = K * np.exp(-r * T) * ss.norm.cdf(-d2(S0, K, r, sigma, T)) - S0 * ss.

→norm.cdf(-d1(S0, K, r, sigma, T))

return BSP
```

```
[19]: Put_BS = BlackScholesPut(SO, K, r, sigma, T)
Put_BS
```

[19]: 0.04785864194304423