Sample Business Report

NAME- SOUMIK MUKHOPADHYAY ROLL- 1928127

Contents

- 1. Exploratory Data Analysis
- 1.1 Introduction of the business problem
 - 2: Structure of Data
- 2.1 Data Description
- 2.2 Visual inspection of data (rows, columns, descriptive details)
- 2.3 Understanding of attributes (variable info, renaming if required)
 - 3. Predictive Power of Data
- 3.1 Univariate analysis (distribution and spread for every continuous attribute, distribution of data in categories for categorical ones)
- 3.2 Bivariate analysis (relationship between different variables, correlations)
 - 4. Quality of Data
- 4.1 Missing Value treatment (if applicable)
- 4.2 Outlier treatment (if required)
 - 5. Feature Engineering
- 5.1 Removal of unwanted variables (if applicable)
- 5.2 Variable transformation (if applicable)
- 5.3 Addition of new variables (if required)
 - 6. Business Insights from EDA
- 6.1 Is the data unbalanced? If so, what can be done? Please explain in the context of the business
- 6.2 Any business insights using clustering (if applicable)
- 6.3 Any other business insights

1 Exploratory Data Analysis

1.1 Introduction of the business problem

The major objective of this data set is to help the company to predict the bonus for its agents so that it may design appropriate engagement activity for their high performing agents and up skill programs for low performing agents.

2: Structure of Data

2.1 Data Description

The data belongs to a leading life insurance company's agent. This dataset contains strong as well as weak attributes about the performance of the agents working in the company.

Variable	Description
CustID	Unique customer ID
AgentBonus	Bonus amount given to each agents in last month
Age	Age of customer
CustTenure	Tenure of customer in organization
Channel	Channel through which acquisition of customer is done
Occupation	Occupation of customer
EducationField	Field of education of customer
Gender	Gender of customer
ExistingProdType	Existing product type of customer
Designation	Designation of customer in their organization
NumberOfPolicy	Total number of existing policy of a customer
MaritalStatus	Marital status of customer
MonthlyIncome	Gross monthly income of customer
Complaint	Indicator of complaint registered in last one month by customer
ExistingPolicyTenur	
e	Max tenure in all existing policies of customer
SumAssured	Max of sum assured in all existing policies of customer
Zone	Customer belongs to which zone in India. Like East, West, North and South
PaymentMethod	Frequency of payment selected by customer like Monthly, quarterly, half yearly and yearly
LastMonthCalls	Total calls attempted by company to a customer for cross sell
CustCareScore	Customer satisfaction score given by customer in previous service call

2.2 Visual inspection of data (rows, columns, descriptive details)

The following dataset after inspection indicates:

- Name of the column attributes
- Datatype of the column attributes- int, float, object.
- The number of of rows contained in each column
- The total number of rows and columns in the dataset are 4520 * 20
- Dataset also shows the null values or missing values.

#	Column	Non-Null Count	Dtype
	(5.5.5.5.5.		
0	CustID	4520 non-null	int64
1	AgentBonus	4520 non-null	int64
2	Age	4251 non-null	float64
3	CustTenure	4294 non-null	float64
4	Channel	4520 non-null	object
5	Occupation	4520 non-null	object
6	EducationField	4520 non-null	object
7	Gender	4520 non-null	object
8	ExistingProdType	4520 non-null	int64
9	Designation	4520 non-null	object
10	NumberOfPolicy	4475 non-null	float64
11	MaritalStatus	4520 non-null	object
12	MonthlyIncome	4284 non-null	float64
13	Complaint	4520 non-null	int64
14	ExistingPolicyTenure	4336 non-null	float64
15	SumAssured	4366 non-null	float64
16	Zone	4520 non-null	object
17	PaymentMethod	4520 non-null	object
18	LastMonthCalls	4520 non-null	int64
19	CustCareScore	4468 non-null	float64
	63	-\	

dtypes: float64(7), int64(5), object(8)

memory usage: 706.4+ KB

	Θ	1	2	3	4	5	6	7	8	9
CustID	7000000	7000001	7000002	7000003	7000004	7000005	7000006	7000007	7000008	7000009
AgentBonus	4409	2214	4273	1791	2955	3252	3850	2073	2719	3247
Age	22.0	11.0	26.0	11.0	6.0	7.0	12.0	6.0	8.0	6.0
CustTenure	4.0	2.0	4.0	NaN	NaN	NaN	23.0	4.0	11.0	3.0
Channel	Agent	Third Party Partner	Agent	Third Party Partner	Agent	Third Party Partner	Agent	Agent	Agent	Online
Occupation	Salaried	Salaried	Free Lancer	Salaried	Small Business	Salaried	Salaried	Small Business	Salaried	Small Business
EducationField	Graduate	Graduate	Post Graduate	Graduate	UG	Graduate	Graduate	Under Graduate	Graduate	Under Graduate
Gender	Female	Male	Male	Fe male	Male	Male	Male	Female	Male	Male
ExistingProdType	3	4	4	3	3	3	4	3	4	2
Designation	Manager	Manager	Exe	Executive	Executive	Executive	VP	Executive	Manager	Exe
NumberOfPolicy	2.0	4.0	3.0	3.0	4.0	2.0	3.0	4.0	3.0	2.0
MaritalStatus	Single	Divorced	Unmarried	Divorced	Divorced	Single	Divorced	Unmarried	Divorced	Married
MonthlyIncome	20993.0	20130.0	17090.0	17909.0	18468.0	18068.0	34999.0	17279.0	20916.0	17089.0
Complaint	1	0	1	1	0	0	0	0	1	0
ExistingPolicyTenure	2.0	3.0	2.0	2.0	4.0	2.0	2.0	2.0	1.0	1.0
SumAssured	806761.0	294502.0	NaN	268635.0	366405.0	487836.0	392689.0	369079.0	405143.0	NaN
Zone	North	North	North	West	West	North	North	West	West	West
PaymentMethod	Half Yearly	Yearly	Yearly	Half Yearly	Half Yearly	Half Yearly	Yearly	Half Yearly	Yearly	Quarterly
LastMonthCalls	5	7	0	0	2	6	9	3	1	2
CustCareScore	2.0	3.0	3.0	5.0	5.0	5.0	2.0	3.0	4.0	4.0

2.3 Understanding of attributes (variable info, renaming if required)

	Column	Count	Data type	Remark
1	CustID	4520	int64	Numeric (Redundant Column and can be remove)
2	Agent Bonus	4520	int64	Numeric value and TARGET value
3	Age	4251	float64	Numeric

4	Cust Tenure	4294	float64	Numeric
5	Channel	4520	object	Categorical
6	Occupation	4520	object	Categorical
7	Educational Field	4520	object	Categorical
8	Gender	4520	object	Categorical
9	ExistingProdtype	4520	int64	Numeric
10	Designation	45201	object	Categorical
11	Number of Policy	4475 1	float64	Numeric
12	Marital Status	4520	object	Categorical
13	Monthly Income	4284	float64	Numeric
14	Complaint	4520	int64	Numeric
15	Existing Policy Tenure	4336	float64	Numeric
16	Sum Assured	4366	float64	Numeric
17	Zone	4520	object	Categorical
18	Payment method	4520	object	Categorical
19	Last month Calls	4520	int64	Numeric
20	Cust Care Score	4468	float64	Numeric

Here we got the list of categorical values and we are focusing on changing spelling errors. We are also organizing the data in a logical form, for example, here we had UG and Undergraduate as different data blocks, since they mean the same thing, we have removed one.

Unique values of various Categories

Channel: 3

Online 468 Third Party Partner 858 Agent 3194

Name: Channel, dtype: int64

Occupation: 5
Freelancer 2
Large Business 153
Large Business 255
Small Business 1918
Salaried 2192

Name: Occupation, dtype: int64

EducationField: 7 MBA 74 UG 230 Post Graduate 252 Engineer 408 Diploma 496 Under Graduate 1190 Graduate 1870

Name: EducationField, dtype: int64

Gender: 3 Fe male 325 Female 1507 Male 2688

Name: Gender, dtype: int64

Designation: 6
Exe 127
VP 226
AVP 336
Senior Manager 676
Executive 1535
Manager 1620

Name: Designation, dtype: int64

MaritalStatus: 4 Unmarried 194 Divorced 804 Single 1254 Married 2268

Name: MaritalStatus, dtype: int64

Zone: 4 South 6 East 64 North 1884 West 2566

Name: Zone, dtype: int64

PaymentMethod: 4
Quarterly 76
Monthly 354
Yearly 1434
Half Yearly 2656

Name: PaymentMethod, dtype: int64

Post fixing of the data

Gender: 2 Female 1832 Male 2688 Name: Gender, dtype: int64

Occupation: 4
Free Lancer 2
Large Business 408
Small Business 1918
Salaried 2192

Name: Occupation, dtype: int64

Designation: 5 VP 226 AVP 336 Senior Manager 676 Manager 1620 Executive 1662

Name: Designation, dtype: int64

EducationField: 7
MBA 74
Under Graduate 230
Post Graduate 252
Engineer 408
Diploma 496
Under Graduate 1190
Graduate 1870

Name: EducationField, dtype: int64

3. Predictive Power of Data

3.1 Uni variate analysis (distribution and spread for every continuous attribute, distribution of data in categories for categorical ones)

Analysing without any alteration in the dataset

1: No Change

2: Slightly right skewed and continuous data

3:Slightly right skewed and continuous data

4:Slightly right skewed and continuous data

5: More Discrete Kind of data,4 is the most frequent observation

6: Discontinuous Kind of data

7: Discrete Kind of data,1 is the most frequent observation

8: Slightly right skewed and continuous data

Most of the numerical data is discrete since the nature of the domain is such. So even if the data seems continuous but is limited to a range.

Analysing after alteration of the Dataset

1: No Change 2: Slightly right skewed and continuous data

0.7 0.6 0.5 20 0.3 0.2 0.1 0.0 0 1 2 3 4 5 6 7 NumberOfPolicy

3: Discrete Kind of data,4 is the most frequent observation

4: More Discrete Kind of data,4 is the most

5: Discontinuous Kind of data

6: Discontinuous Kind of data

After Treatment there is no change in the UniVariate Analysis. Most of the numerical data is discrete since the nature of the domain is such. So even if the data seems continuous but is limited to a range.

Bivariate analysis (relationship between different variables, correlations)

Most of the variables don't seem to be related closely to each other which means there is low multi-collinearity in the data and each feature would have its importance in building the right model . Because of this we have not dropped any columns and would want to build the model to see the variable importance.

The pair plot also seems to suggest the same thing. But due to the huge number of columns, the pair plot was not providing very clear insight and hence resorted to bi variate plots with every combination possible.

Correlation matrix

	0	1	2	3	4	5	6	7	8	9
CustID	7000000	7000001	7000002	7000003	7000004	7000005	7000006	7000007	7000008	7000009
AgentBonus	4409	2214	4273	1791	2955	3252	3850	2073	2719	3247
Age	22.0	11.0	26.0	11.0	6.0	7.0	12.0	6.0	8.0	6.0
CustTenure	4.0	2.0	4.0	NaN	NaN	NaN	23.0	4.0	11.0	3.0
Channel	Agent	Third Party Partner	Agent	Third Party Partner	Agent	Third Party Partner	Agent	Agent	Agent	Online
Occupation	Salaried	Salaried	Free Lancer	Salaried	Small Business	Salaried	Salaried	Small Business	Salaried	Small Business
EducationField	Graduate	Graduate	Post Graduate	Graduate	UG	Graduate	Graduate	Under Graduate	Graduate	Under Graduate
Gender	Female	Male	Male	Fe male	Male	Male	Male	Female	Male	Male
ExistingProdType	3	4	4	3	3	3	4	3	4	2
Designation	Manager	Manager	Exe	Executive	Executive	Executive	VP	Executive	Manager	Exe
NumberOfPolicy	2.0	4.0	3.0	3.0	4.0	2.0	3.0	4.0	3.0	2.0
MaritalStatus	Single	Divorced	Unmarried	Divorced	Divorced	Single	Divorced	Unmarried	Divorced	Married
MonthlyIncome	20993.0	20130.0	17090.0	17909.0	18468.0	18068.0	34999.0	17279.0	20916.0	17089.0
Complaint	1	0	1	1	0	0	0	0	1	0
ExistingPolicyTenure	2.0	3.0	2.0	2.0	4.0	2.0	2.0	2.0	1.0	1.0
SumAssured	806761.0	294502.0	NaN	268635.0	366405.0	487836.0	392689.0	369079.0	405143.0	NaN
Zone	North	North	North	West	West	North	North	West	West	West
PaymentMethod	Half Yearly	Yearly	Yearly	Half Yearly	Half Yearly	Half Yearly	Yearly	Half Yearly	Yearly	Quarterly
LastMonthCalls	5	7	0	0	2	6	9	3	1	2
CustCareScore	2.0	3.0	3.0	5.0	5.0	5.0	2.0	3.0	4.0	4.0

CustID	1.00	0.19	0.09	0.11	0.42	0.26	0.31	0.00	0.10	0.16	0.12	-0.03	1.0
AgentBonus	0.19	1.00	0.56		0.11	0.08	0.61	0.01	0.39	0.85	0.20	0.02	
Age	0.09	0.56	1.00	0.33	0.07	0.04	0.35	0.02	0.22	0.47	0.11	0.04	- 0.8
CustTenure	0.11		0.33	1.00	0.08	0.05	0.34	0.00	0.21		0.12	0.01	
ExistingProdType	0.42	0.11	0.07	0.08	1.00	0.15	0.20	-0.00	0.06	0.10	0.03	0.00	- 0.6
NumberOfPolicy	0.26	0.08	0.04	0.05	0.15	1.00	0.14	-0.02	0.05	0.06	0.07	-0.00	
MonthlyIncome	0.31	0.61	0.35	0.34	0.20	0.14	1.00	-0.00	0.22	0.51	0.36	0.04	
Complaint	0.00	0.01	0.02	0.00	-0.00	-0.02	-0.00	1.00	0.00	-0.00	-0.03	-0.00	- 0.4
ExistingPolicyTenure	0.10	0.39	0.22	0.21	0.06	0.05	0.22	0.00	1.00	0.34	0.11	-0.01	
SumAssured	0.16	0.85			0.10	0.06	0.51	-0.00	0.34	1.00	0.16	0.00	- 0.2
LastMonthCalls	0.12	0.20	0.11	0.12	0.03	0.07	0.36	-0.03	0.11	0.16	1.00	0.01	
CustCareScore	-0.03	0.02	0.04	0.01	0.00	-0.00	0.04	-0.00	-0.01	0.00	0.01	1.00	- 0.0
	OustID	AgentBonus	Age	OustTenure	ExistingProdType	NumberOfPolicy	MonthlyIncome	Complaint	cistingPolicyTenure	SumAssured	LastMonthCalls	QustCareScore	

Analysing after alteration of the Dataset

4. Quality of Data

4.1 Missing Value treatment (if applicable)

Before treating the values:

CustTenure 226
NumberOfPolicy 45
MonthlyIncome 236
ExistingPolicyTenure 184
SumAssured 154
CustCareScore 52
dtype: int64

The missing values have been replaced with median and mode according to the pattern in the data set. For categorical data we have chosen MODE and for the numerical data we opted MEDIAN. The main reason for choosing mode or most frequent entry was it was making more sense considering to which the problem belongs.

After treating the values:

[]	df.isnull().sum()	
	AgentBonus	0
	CustTenure	0
	Channel	0
	ExistingProdType	0
	NumberOfPolicy	0
	MonthlyIncome	0
	Complaint	0
	ExistingPolicyTenure	0
	SumAssured	0
	Zone	0
	PaymentMethod	0
	LastMonthCalls	0
	CustCareScore	0
	dtype: int64	

4.2 Outlier treatment (if required)

Before Outlier treatment

After Outlier treatment

5. Feature Engineering

5.1 Removal of unwanted variables (if applicable)

CustID,Age,Occupation,EducationField,Gender,Designation,MaritalStatus are all redundant columns and have been removed. Chose not to remove any other columns and left to the model phase where the variable importance would be judged.

5.2 Variable transformation (if applicable)

```
Occupation: 5
Free Lancer
                2
Laarge Business
                153
Large Business
                255
Small Business
               1918
Salaried
            2192
Name: Occupation, dtype: int64
EducationField: 7
MBA
              74
UG
            230
Post Graduate 252
Engineer
              408
Diploma
              496
Under Graduate 1190
Graduate
            1870
Name: EducationField, dtype: int64
Occupation: 5
Free Lancer
Laarge Business
                153
Large Business
                255
Small Business
                1918
Salaried
             2192
Name: Occupation, dtype: int64
Gender: 3
Fe male 325
Female
        1507
        2688
Male
Name: Gender, dtype: int64
Designation: 6
Exe
            127
VP
            226
AVP
             336
Senior Manager 676
Executive
             1535
Manager
              1620
Name: Designation, dtype: int64
```

The highlighted data seems to be recorded incorrectly and required replacement and this was done to ensure the right categories are picked up by the model

In Gender Column "Female" is misspelled as "Fe male". So we replace "Fe male" as "Female"

```
df['Gender'] = df['Gender'].replace(['Fe male'], 'Female')
print('Gender',': ',df['Gender'].nunique())
print(df['Gender'].value_counts().sort_values())
print('\n')
```

In Occupation Column "Large" is misspelled as "Laarge". So we replace "Laarge" as "Large"

```
df['Occupation'] = df['Occupation'].replace(['Laarge Business'],'Large Business')
print('Occupation',': ',df['Occupation'].nunique())
print(df['Occupation'].value_counts().sort_values())
print('\n')
```

In the Designation Column "Exe" and "Executive" refer the same. So we replace "Exe" as "Executive"

```
df['Designation'] = df['Designation'].replace(['Exe'], 'Executive')
print('Designation',': ',df['Designation'].nunique())
print(df['Designation'].value_counts().sort_values())
print('\n')
```

In the Education Field Column "Under Graduate" and "UG" refer the same. So we replace "UG" as "Undergraduate"

```
df['EducationField'] = df['EducationField'].replace(['UG'],'Under Graduate ')
print('EducationField',': ',df['EducationField'].nunique())
print(df['EducationField'].value_counts().sort_values())
print('\n')
```

The variables has been encoded to numeric values from Categorical data for the following variables:-

```
df["Complaint"]= pd.Categorical(df['Complaint'])
df["Channel"]= pd.Categorical(df['Channel'])
df["Zone"]= pd.Categorical(df['Zone'])
df["PaymentMethod"]= pd.Categorical(df['PaymentMethod'])
```

5.3 Addition of new variables (if required)

No new variables were added at this stage.

6. Business Insights from EDA

6.1 Is the data unbalanced? If so, what can be done? Please explain in the context of the business

```
Total Agents = 4520

Low performance agent according to the AgentBonus 1130

High performance agent according to the AgentBonus 3390
```

Data is not balanced with more high performance than low performance but that would be the nature of each agent such that to perform better more and more on each sale so as to get more bonus and hence this should be the way the data is expected. Don't see any treatment on this would be needed.

As the problem statement is to predict the bonus of the agents so it may design appropriate engagement activity for their high performing agents and upskill programs for low performing agents.

6.2 Any business insights using clustering (if applicable)

According to the observation, the North Zone will get the most Agent Bonus while the South Zone will get the least.

According to the observation, the Half-Yearly will get the most Agent Bonus while the Quarterly will get the least.

According to the observation, the Online Channel will get the most Agent Bonus while the Third-Party will get the least.

According to the observation, the Agent having one complaint will get the most Agent Bonus while the Agent having zero complaint will get the least.

6.3 Any other business insights

- Agent Bonus having positively correlated with SumAssured and having least correlated with Customer Care Score.
- Quest Tenure having positively correlated with **AgentBonus** and having least correlated with **Customer Care Score.**
- Existing Product Type having positively correlated with MonthlyIncome and having least correlated with Customer Care Score.
- Number Of Policy having positively correlated with **ExistingProdType** and having least correlated with **Customer Care Score**.
- Monthly Income having positively correlated with AgentBonus and having least correlated with Customer Care Score.
- Existing PolicyTenure having positively correlated with **AgentBonus** and having least correlated with **Customer Care Score**.
- Sum Assured having positively correlated with Sum Assured and least correlated with Customer Care Score.
- <u>Last Month Calls</u> having positively correlated with Monthly Income and least correlated with Customer Care Score.
- <u>Customer Care Score</u> correlates best positively with **Monthly Income** and least correlates to **Existing Policies Tenure**.

From above observation least correlated is Customer Care score.