1. Consider using this encoder-decoder model for machine translation.

1 / 1 point

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

- True
- False

✓ Correct

2. In beam search, if you increase the beam width B, which of the following would you expect to be true? Check all that apply.

1 / 1 point

Beam search will generally find better solutions (i.e. do a better job maximizing $P(y \mid x)$)

✓ Correct

Beam search will use up more memory.

✓ Correct

Beam search will converge after fewer steps.

Beam search will run more slowly.

Correct

3. In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.

1 / 1 point

- True
- False
 - ✓ Correct
- 4. Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses beam search to try to find the value of y that maximizes $P(y \mid x)$.

1 / 1 point

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an Al system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 10^{-7}$$

$$P(y^* \mid x) = 7.21 * 10^-8$$

Would you expect increasing the beam width B to help correct this example?

Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

5.

6.

O No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.	
O Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.	
No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.	
✓ Correct	
Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggests you should focus your attention on improving the search algorithm.	1 / 1 point
C False.	
True.	
✓ Correct	
	1 / 1 point

Consider the attention model for machine translation.

Further, here is the formula for $\alpha^{< t, t'>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_x} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha^{< t,t'>}$ are true? Check all that apply.

- We expect $\alpha^{< t, t'>}$ to be generally larger for values of $a^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)

✓ Correct

- We expect $\alpha^{< t,t'>}$ to be generally larger for values of $a^{< t>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)
- $igstyle \sum_{t'} lpha^{< t, t'>} = 1$ (Note the summation is over t'.)

7. The network learns where to "pay attention" by learning the values $e^{< t,t'>}$, which are computed using a small neural network:

1 / 1 point

We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t,t'>}$ which in turn depends on $e^{< t,t'>}$; so at the time we need to evaluate this network, we haven't computed $s^{< t>}$ yet.

- True
- False

8. Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:

1 / 1 point

- lacksquare The input sequence length T_x is large.
- igcup The input sequence length T_x is small.

9. Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?

1 / 1 point

__c_oo_o_kk___b_ooooo__oo__kkk

3/2/2021		Sequence Models & Attention Mechanism Coursela	
0	cokbok		
•	cookbook		
0	coookkbooooookkk		
0	cook book		
	✓ Correct		
10. In t	rigger word detection, $x^{< t>}$ is:		1 / 1 point
0	Whether someone has just finish	ned saying the trigger word at time $t.$	
•	Features of the audio (such as sp	pectrogram features) at time t .	
0	The t -th input word, represented	l as either a one-hot vector or a word embedding.	
0	Whether the trigger word is being	g said at time $t.$	
	✓ Correct		