Machine Learning Terminologies

Week 02 Instructor: Dr. Anam Qureshi

Key Terminologies

- Dataset: A collection of data used for training and testing a model.
- **Feature**: An individual measurable property or characteristic of data.
- Label: The output or target value in supervised learning.
- Model: The mathematical representation of a problem.
- Inference: The process of making predictions using a trained model. Happens after deployment.
- Hypothesis: A formal representation or function proposed by the learning algorithm to approximate the true relationship between input features and output labels

Types of Learning

Supervised Learning:

- Input data is labeled.
- Example: Predicting house prices.

Unsupervised Learning:

- Input data is not labeled.
- Example: Customer segmentation.

Reinforcement Learning:

- Learning by interacting with an environment.
- Example: Game playing bots.

Training, Testing, and Validation

- Training Set:
 - The subset of data used to train the model.
- Validation Set:
 - Used to tune model parameters.
- Test Set:
 - Evaluates the final performance of the model.

Testing vs. Inference:

- **Testing**: Measures model performance on a test dataset during development.
- Inference: Applies the trained model to real-world, unseen data after deployment.

Overfitting and Underfitting

Overfitting:

- Model performs well on training data but poorly on unseen data.
- Example: Memorizing data.

Underfitting:

- Model is too simple to capture the underlying patterns.
- o Example: High bias.

Underfitted

Good Fit/Robust

Overfitted

Key Performance Metrics

- Accuracy: Percentage of correct predictions.
- Precision: True positives / (True positives
 + False positives).
- Recall: True positives / (True positives + False negatives).
- **F1 Score**: Harmonic mean of precision and recall.
- Loss or Error Function: A mathematical function that quantifies the difference between predicted and actual values.
 Common examples include Mean Squared Error (MSE) and Cross-Entropy Loss.

		Ground truth		
		+	4	
Predicted	+	True positive (TP)	False positive (FP)	Precision = TP / (TP + FP)
	-	False negative (FN)	True negative (TN)	
		Recall = TP / (TP + FN)		Accuracy = (TP + TN) / (TP + FP + TN + FN)

Algorithms Overview

- Regression: Predicts continuous values.
- Classification: Predicts discrete categories.
- Clustering: Groups similar data points.
- Dimensionality Reduction: Reduces the number of features.

Some common terminologies

- Hyperparameters: Parameters set before training.
- Weights: Values adjusted during training.
- Learning Rate: Controls how much weights are updated.
- **Epoch**: One complete pass through the training dataset.