Week 12: Nonlinear Transformation

Table of Contents

- 1. Quadratic Hypothesis
- 2. Nonlnear Transform
- 3. Price of Nonlinear Transform
- 4. Structured Hypothesis Set

Quadratic Hypothesis

1. Limitations of linear hypothesis

- Linear hypothesis have small VC dimension and computational complexity
- \circ However, not every input set $\mathcal D$ can be learned well by linear hypothesis as is
- 2. Nonlinear feature transform
 - Map a **non linear-separable** set $\{(x_n, y_n)\}$ in χ space to **linear separable** $\{(z_n, y_n)\}$ in \mathcal{Z} space
 - $x \in \chi \stackrel{\phi}{\mapsto} z \in \mathcal{Z}$: (nonlinear) feature transform

- 3. Linear hypotheses in Z-space
 - Given a general (quadratic) \mathcal{Z} space with $\phi(x) = (1, x_1, x_2, x_1^2, x_1x_2, x_2^2)$, **perceptrons** in \mathcal{Z} -space \Leftrightarrow **quadratic hypotheses** in 2D χ -space

$$\mathcal{H}_{\phi} = \{h(x) : h(x) = \tilde{h}(\phi(x)) \text{ for some linear } \tilde{h} \text{ on } \mathcal{Z}\}$$

- Such nonlinear transformation could implement all possible quaratic curve boundaries in \mathcal{Z} space as lines in χ -space
 - Circle, ellipse, **rotated** ellipse, hyperbola, parabola
 - Including lines and constants as degenrate cases

Nonlinear Transform

- 1. Nonlinear transform: process of learning a **good perceptron** in \mathcal{Z} -space with data $\{(z_n = \phi(x_n), y_n)\}$
- 2. Nonlinear transform steps

- Learn a good perceptron weight vector \tilde{w} using $\{(z_n, y_n)\}$ and some linear classification algorithm A
 - The learning happens in \mathcal{Z} -space
 - Can use any linear classification algorithm, i.e. PLA, linear regression, logistic regression
- Return $g(x) = sign(\tilde{w}^T \phi(x))$
 - On the surface, the reverse of step 1
 - But really, a process of mapping each training data **in** χ **-space**, to a corresponding point **in** \mathcal{Z} **-space**, and use the learned model to classify the mapped z_n
- 3. Both the **feature transform** ϕ and **linear model** \mathcal{A} are open to choices in nonlinear transform learning

Price of Nonlinear Transform

For Q - thorder polynomial transform

$$\phi(x) = (1, \\ x_1, x_2, \dots, x_d, \\ x_1^2, x_1x_2, \dots, x_d^2, \\ \dots, \\ x_1^Q, x_q^{Q-1}x_2, \dots, x_d^Q)$$

1. Computation/storage price

Efforts needed for computing/storing $z = \phi_Q(x)$ and \tilde{w} $= \underbrace{1}_{\tilde{w_0}} + \underbrace{\tilde{d}}_{\text{others}} \text{ dimensions}$ = Choose smaller or equal to Q items from d with repetition $= \begin{pmatrix} Q+d \\ Q \end{pmatrix}$ $= \begin{pmatrix} Q+d \\ d \end{pmatrix}$

- Explanation for above equation
 - Total of x (and product of x) terms
 - Pick Q (up to order) or few than Q (special case, some terms are zero) from the set to form possible feature transforms
 - Total number of possible transforms is d choose Q with replacement
- 2. Model complexity price
 - $\circ~$ For Q-th order polynomial transform with $\underbrace{1}_{\widetilde{W_0}} + \underbrace{\tilde{d}}_{others}$ dimensions
 - Number of free parameters: $\widetilde{w}_i = \widetilde{d} + 1 \approx d_{vc}(\mathcal{H}_{\phi_o})$
 - Since $\tilde{d} + 1$ dimensions is required to learn a linear model in \mathcal{Z} space, any $\tilde{d} + 2$ inputs cannot be shattered in \mathcal{Z} -space
 - By definition, this implies $d_{vc}(\mathcal{H}_{\phi_Q}) \leq \tilde{d} + 1$
 - No line in \mathcal{Z} -space shatters $\tilde{d}+2$ inputs \Rightarrow No line in χ -space shatters $\tilde{d}+2$ inputs (in χ -space)
 - Large $Q \Rightarrow \text{Large } d_{vc}$
- 3. Higher-order nonlinear transformation also risk **overfitting** the training data set
 - Generalization issue

- 4. Keep in mind the two objectives of learning (and tradeoff between the two)
 - Make $E_{out}(g)$ **close** enough to $E_{in}(g)$
 - Make $E_{in}(g)$ **small** enough

$\tilde{d}(\mathbf{Q})$	E_{in} close to E_{out}	Small Ein
High	Bad	Good
Low	Good	Bad

Structured Hypothesis Set

1. Given polynomial transforms from o-th order to Q-th order:

$$\begin{split} \phi_0(x) &= 1 \\ \phi_1(x) &= (\phi_0(x), x_1, x_2, \dots, x_d) \\ \phi_2(x) &= (\phi_1(x), x_1^2, x_1 x_2, \dots, x_d^2) \\ \phi_3(x) &= (\phi_2(x), x_1^3, x_1^2 x_2, \dots, x_d^3) \\ &\dots \dots \\ \phi_Q(x) &= (\phi_{Q-1}(x), x_1^Q, x_1^{Q-1} x_2, \dots, x_d^Q) \end{split}$$

• In other words, there is a **nested** relationship from lower-order polynomial transformations to higher order ones

2. Model complexity is positively correlated with order of nonlinear transform. In-sample error negatively correlates with order of nonlinear transform. For optimal model learned with i-th order nonlinear transform, the following inequalities hold.

3. However, as model complexity grows, there is a **decreasing marginal return** in terms of in-sample error reduction. And out-of-sample error tends to be large with complex models since they don't generalize well.

- 4. Rule of thumb for choosing models: Linear model first
 - Start from \mathcal{H}_1 , because linear models are simple, efficient, **safe** (from generalization problems), and often produe workable results for the problem of interest
 - If \mathcal{H}_1 fails to produce plausible result, move right on model complexity curve. Computation wasted on \mathcal{H}_1 is still minimal