CSE508 Information Retrieval

Winter 2023

Assignment-1

Submitted by: Sehban Fazili (MT21143) Asmita Mukherjee (MT21115) Amaan Khan (2020388)

Question 1 - Link Analysis

Represent the network in terms of its 'adjacency matrix' as well as 'edge list'

Edge list:

Methodology:

Make a dictionary consisting of keys of all nodes.

Each node is associated with a list

Read each line of the file and split each line by '\t'

Append the node2 to the list associated list of node 1

Result:

```
'5346': ['1658',
    '4822',
    '5052',
    '6864',
    '7689',
    '7926',
    '9124',
    '10268',
    '12971',
    '15159',
    '18600',
    '20421',
    '20886',
    '21048',
    '233186',
    '23298',
    '23995',
    '23945',
    '23945',
    '2393'],
    '15159': ['5052', '5346', '20421', '22393'],
```

Adjacency matrix:

Methodology:

- 1) Make a dataframe where all the nodes make up the rows and columns. Dimension: Nos_of_nodes * Nos_of_nodes
- 2) For each edge in the edge list indicate 1 when there is an edge between df[node1][node2]

Result:

	3466	10310	5052	5346	15159	19640	10243	18648	16470	17822	 16590	16730	19957	21848	22320	5774	4836	17464	10154	11113
3466	0	1	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
10310	1	0	0	0	0	1	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
5052	0	0	0	1	1	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
5346	0	0	1	0	1	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
15159	0	0	1	1	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
5774	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
4836	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
17464	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
10154	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0
11113	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	0	0	0	0	0

5242 rows × 5242 columns

Number of Nodes

1. Number of Nodes

```
In [12]: 1 print("Nos of nodes in the graph",len(edge_list))
Nos of nodes in the graph 5242
```

Number of edges:

2. Number of Edges

```
print("Number of edges in the graph")
sum(len(val) for val in edge_list.values()) #Since it is a directed graph, there as many number of edges in edge list as in

| |
```

Number of edges in the graph

28980

Avg In-degree

3. Avg In-degree

Avg. Out-Degree

As the graph is undirected hence it has the same avg indegree and avg outdegree $\,$

Node with Max In-degree

The node 21012 has the max_in_degree of 81

Node with Max out-degree

The density of the network

```
In [29]: 1
2 nos_of_edges = sum(adj_matrix.apply(pd.value_counts).loc[1].values)

In [31]: 1 nos_of_edges = nos_of_edges/2 #since undirected

In [32]: 1 potential_edges = (nos_of_nodes*(nos_of_nodes-1))/2

In [33]: 1 density = nos_of_edges/potential_edges

In [34]: 1 print(f"The density of the network is {density}")

The density of the network is 0.0010548414931401452
```

Degree distribution of the graph

Clustering-coefficient distribution (Icc vs frequency of Icc) of the network.

Question 2 - PageRank, Hubs and Authority

PageRank score for each node

Authority and Hub score for each node

