Solução de equações em uma variável

Crescimento populacional

Uma população cresce continuamente no tempo a uma taxa proporcional à população em cada instante.

$$\frac{dN(t)}{dt} = \lambda N(t)$$

Solução: $N(t) = N_0 e^{\lambda t}$, onde N_0 é a população inicial.

E se houver imigração a uma taxa constante v?

$$\frac{dN(t)}{dt} = \lambda N(t) + v$$

Solução:
$$N(t) = N_0 e^{\lambda t} + \frac{v}{\lambda} (e^{\lambda t} - 1)$$

$$\frac{dN(t)}{dt} = \lambda N(t) + v$$
 Solução:
$$N(t) = N_0 e^{\lambda t} + \frac{v}{\lambda} (e^{\lambda t} - 1).$$

Suponha que N(0) = 1.000.000 e que 435.000 indivíduos imigrem por ano no primeiro ano, e que 1.564.000 indivíduos existam no fim do primeiro ano. Determine N(t).

Precisamos achar λ :

$$1,564,000 = 1,000,000e^{\lambda} + \frac{435,000}{\lambda}(e^{\lambda} - 1)$$

Nota 10 nas 2 médias para quem resolver esta equação.

Alternativa: métodos numéricos.

Método da bisseção

Como achar a raiz de uma equação?

$$f(x) = 0$$

Método baseado no Teorema do Valor Intermediário:

Seja f contínua em um intervalo fechado [a,b], e N um número qualquer entre f(a) e f(b), onde $f(a) \neq f(b)$. Então existe um número $c \in (a,b)$ tal que f(c) = N.

Algoritmo

INPUT endpoints a, b; tolerance TOL; maximum number of iterations N_0 .

OUTPUT approximate solution p or message of failure.

Step 1 Set
$$i = 1$$
;
 $FA = f(a)$.

Step 2 While $i \le N_0$ do Steps 3–6.

Step 3 Set
$$p = a + (b - a)/2$$
; (Compute p_i .) $FP = f(p)$.

Step 4 If
$$FP = 0$$
 or $(b - a)/2 < TOL$ then OUTPUT (p) ; (Procedure completed successfully.) STOP.

Step 5 Set
$$i = i + 1$$
.

Step 6 If
$$FA \cdot FP > 0$$
 then set $a = p$; (Compute a_i, b_i .)
$$FA = FP$$
else set $b = p$. (FA is unchanged.)

Step 7 OUTPUT ('Method failed after N_0 iterations, $N_0 =$ ', N_0); (The procedure was unsuccessful.) STOP.

Outras condições de parada

Step 4 If FP = 0 or (b - a)/2 < TOL then OUTPUT (p); (Procedure completed successfully.) STOP.

Gere p_1, \ldots, p_N até que:

$$|p_N - p_{N-1}| < \varepsilon,$$
 $\frac{|p_N - p_{N-1}|}{|p_N|} < \varepsilon, \quad p_N \neq 0,$
 $|f(p_N)| < \varepsilon.$

Problemas:

- 1 Pode ser que $p_n p_{n-1}$ convirja, mas p_n não.
- 2 $f(p_n)$ pode ser pequeno mas p_n ser bem diferente de p.
- 3 Loop infinito.

Melhor opção.

Como escolher [a,b]?

Quanto menor [a,b], menor o número de iterações.

Exemplo:

$$f(x) = 2x^3 - x^2 + x - 1$$
$$f(-4) \cdot f(4) < 0 \quad \text{e} \quad f(0) \cdot f(1) < 0$$

Iniciando em [0,1], teremos 3 iterações a menos.

Mostre que $f(x) = x^3 + 4x^2 - 10 = 0$ tem uma raiz em [1, 2] e use o método da bisseção para determinar uma aproximação para a raiz com

precisão (relativa) de pelo menos 10-4.

1 - Aplicar TVI.

$$f(1) = -5$$

$$f(2) = 14$$

$$f \text{ continua.}$$

Pelo TVI, f tem raiz real em (1,2).

Primeiro vamos mostrar que:

$$|p - p_n| < b_{n+1} - a_{n+1}$$

2 - Como medir a precisão?

Primeiro vamos mostrar que:

$$|p - p_n| < b_{n+1} - a_{n+1}$$

Prova:

Sabemos que $a_n \le p \le b_n$, pois a raiz exata está no intervalo $[a_n, b_n]$.

Por outro lado,
$$p_n = \frac{a_n + b_n}{2}$$
 por definição.

Vamos subtrair p_n da primeira inequação e usar sua definição:

$$a_n - p_n \le p - p_n \le b_n - p_n$$

$$\frac{a_n - b_n}{2} \le p - p_n \le \frac{b_n - a_n}{2}$$

$$-\left(\frac{b_n - a_n}{2}\right) \le p - p_n \le \frac{b_n - a_n}{2}$$

$$|p - p_n| \le \frac{b_n - a_n}{2} = b_{n+1} - a_{n+1}$$

Teorema: Seja $f \in C[a,b]$ e $f(a) \cdot f(b) < 0$. O método da Bisseção gera uma sequência $\{p_n\}_{n=1}^{\infty}$ que se aproxima de uma raiz p, onde

$$|p_n - p| \le \frac{b - a}{2^n}$$
, para $n \ge 1$

Prova:

Para cada
$$n \ge 1$$
, $b_n - a_n = \frac{1}{2^{n-1}}(b-a)$ e $p \in (a_n, b_n)$.

Mas
$$p_n = \frac{1}{2}(a_n + b_n)$$
 para todo $n \ge 1$. Então:
$$|p_n - p| < \frac{1}{2}(b_n - a_n) = \frac{b - a}{2^n}.$$
 $|p - p_n| \le \frac{b_n - a_n}{2} = b_{n+1} - a_{n+1}$

Como $|p_n - p| < (b - a) \frac{1}{2^n}$, a sequência $\{p_n\}_{n=1}^{\infty}$ converge para p com taxa de convergência $O\left(\frac{1}{2^n}\right)$, ou seja, $p_n = p + O\left(\frac{1}{2^n}\right)$. Mostre que $f(x) = x^3 + 4x^2 - 10 = 0$ tem uma raiz em [1, 2] e use o método da bisseção para determinar uma aproximação para a raiz com

precisão (relativa) de pelo menos 10-4.

1 - Aplicar TVI.

$$f(1) = -5$$

$$f(2) = 14$$

$$f \text{ continua.}$$

Pelo TVI, f tem raiz real em (1,2).

f(b) - y = f(x) $f(p_1) - p_3$ $a = a_1 \quad p_2 \quad p_{p_1} \quad b = b_1 \quad x$ $f(p_2) - f(a) + a_1 \quad p_1 \quad b_1$ $a_2 \quad p_2 \quad b_2$ $a_3 \quad p_3 \quad b_3$

2 - Como medir a precisão?

Como
$$|p - p_n| < b_{n+1} - a_{n+1}$$
:

$$\frac{|p - p_n|}{|p|} < \frac{|b_{n+1} - a_{n+1}|}{|p|} < \frac{|b_{n+1} - a_{n+1}|}{|a_{n+1}|} < 10^{-4}$$

Mostre que $f(x) = x^3 + 4x^2 - 10 = 0$ tem uma raiz em [1, 2] e use o método da bisseção para determinar uma aproximação para a raiz com precisão (relativa) de pelo menos 10^{-4} .

2 - Como medir a precisão?

Como $|p - p_n| < b_{n+1} - a_{n+1}$:

$$\frac{|p - p_n|}{|p|} < \frac{|b_{n+1} - a_{n+1}|}{|p|} < \frac{|b_{n+1} - a_{n+1}|}{|a_{n+1}|} < 10^{-4}$$

Obs.: note que p > 0 porque $p \in [1, 2]$.

Como $p \in (a_{n+1}, b_{n+1})$, então $|p - a_{n+1}| < |b_{n+1} - a_{n+1}| = \frac{1}{2^n}(b - a)$

Daí $|p - a_{n+1}| \to 0$ quando $n \to \infty$, logo $a_{n+1} > 0$ para n suficientemente grande. Portanto, $|p| > |a_{n+1}|$.

Mostre que $f(x) = x^3 + 4x^2 - 10 = 0$ tem uma raiz em [1, 2] e use o método da bisseção para determinar uma aproximação para a raiz com precisão de pelo menos 10^{-4} .

n	a_n	b_n	p_n	$f(p_n)$
1	1.0	2.0	1.5	2.375
2	1.0	1.5	1.25	-1.79687
3	1.25	1.5	1.375	0.16211
4	1.25	1.375	1.3125	-0.84839
5	1.3125	1.375	1.34375	-0.35098
6	1.34375	1.375	1.359375	-0.09641
7	1.359375	1.375	1.3671875	0.03236
8	1.359375	1.3671875	1.36328125	-0.03215
9	1.36328125	1.3671875	1.365234375	0.000072
10	1.36328125	1.365234375	1.364257813	-0.01605
11	1.364257813	1.365234375	1.364746094	-0.00799
12	1.364746094	1.365234375	1.364990235	-0.00396
13	1.364990235	1.365234375	1.365112305	-0.00194

Observação interessante: $|f(p_9)| < |f(p_{13})|$

Discussão:

O método da bisseção sempre converge para a solução, mas pode ser lento (N pode ser alto).

Determine o número de iterações necessário para resolver

$$f(x) = x^3 + 4x^2 - 10 = 0$$

com precisão (absoluta) 10^{-3} usando $a_1 = 1$ e $b_1 = 2$.

Precisamos encontrar o menor inteiro N que satisfaz

$$|p_N - p| \le 2^{-N}(b - a) = 2^{-N} < 10^{-3}.$$

$$\log_{10} 2^{-N} < \log_{10} 10^{-3} = -3$$

$$-N \log_{10} 2 < -3$$

$$N > \frac{3}{\log_{10} 2} \approx 9.96.$$

Portanto, precisamos de 10 iterações para garantir esta precisão.