TD Logique Feuille 2 / MAM3 – SI3

Sémantique: Interprétation et validité

1 Validité

- 1. $p(a,b) \land \neg p(f(a),b)$
- 2. $\exists y p(y,b)$
- 3. $\exists y p(y,x)$
- 4. $\forall x \exists y p(x,y)$
- 5. $\forall x p(x,y)$
- 6. $\exists y \forall x p(x,y)$
- 7. $\exists y ((p(y,a) \lor p(f(y),b))$

Soit l'interprétation I1 telle que:

- le domaine est les entiers naturels
- a est le chiffre 0
- b est le chiffre 1
- f est la fonction successeur
- p est la relation <

Les propositions précédentes sont elles valides dans l'interprétation I1?

Même question pour l'interprétation I2 :

- domaine : les listes de longueur quelconque contenant des 0 et des 1
- a est la liste vide
- b est la liste $\{1, 1, 1, 1, 1, 1\}$
- f est la fonction $cons_1$ qui ajoute un 1 en tête d'une liste
- p est la relation length(x) < length(y)

2 Interprétations

1. Trouver (si possible) une interprétation I_1 qui prouve que la formule Φ_1 ($(\exists x \ p(x)) \land (\exists x \ q(x))$) \Leftrightarrow ($\exists x (p(x) \land q(x))$) n'est pas universellement valide et une interprétation I_2 où la formule Φ_1 est valide.

- 2. Même question en remplaçant dans Φ_1 tous les \wedge par des \vee , c'est à dire : Trouver (si possible) une interprétation I_3 qui prouve que la formule Φ_2 ($(\exists x \ p(x)) \vee (\exists x \ q(x))) \Leftrightarrow (\exists x (p(x) \vee q(x)))$ n'est pas universellement valide et une interprétation I_4 où la formule Φ_2 est valide.
- 3. Même question en remplaçant dans Φ_2 tous les \exists par des \forall , c'est à dire : Trouver (si possible) une interprétation I_5 qui prouve que la formule Φ_3 (($\forall x \ p(x)$) \lor ($\forall x \ q(x)$)) \Leftrightarrow ($\forall x \ (p(x) \lor q(x)$)) n'est pas universellement valide et une interprétation I_4 où la formule Φ_2 est valide.
- 4. Même question en remplaçant dans Φ_3 tous les \vee par des \wedge , c'est à dire : Trouver (si possible) une interprétation I_7 qui prouve que la formule Φ_4 ($(\forall x \ p(x)) \wedge (\forall x \ q(x))$) $\Leftrightarrow (\forall x (p(x) \wedge q(x)))$ n'est pas universellement valide et une interprétation I_8 où la formule Φ_4 est valide.
- 5. Trouver une interprétation I dans laquelle la formule : $(\forall x \exists y \ p(x,y)) \land (\forall x \neg p(x,x))$ est valide. Cette formule peut-elle être valide pour une interprétation dont le domaine a un seul élément ?
- 6. Trouver une interprétation I dans laquelle la formule :

```
(\forall \ x \exists \ y \ p(x,y)) \land \ (\forall \ x \neg p(x,x))
```

est valide.

Cette formule peut-elle être valide pour une interprétation dont le domaine a un seul élément ?

3 Interprétation et Validité

Soit le langage :

- variable : x , y

- symboles fonctionnels : f (arité 2), a (arité 0)

- symboles de prédicat : p (arité 2)

Soit l'interprétation I :

- domaine : les entiers positifs
- f est la fonction somme, a la constante 0
- p est l'égalité

Caractériser la validité des propositions suivantes (cf cours 3.20) :

- 1. $\forall x p(f(x,y),x)$
- 2. $(\forall x p(f(x,y),x)) \Rightarrow (\exists x p(f(x,y),x))$
- 3. $\forall x \exists y p(f(x,y),a)$
- 4. $\forall x \forall y p(f(x,y),f(y,x))$