HP 13220 POWER SUPPLY MODULE Manual Part No. 13220-91019 REVISED SEP-10-79



HP 13220

POWER SUPPLY MODULE

Manual Part No. 13220-91019

REV1SED

SEP-10-79

#### NOTICE

The information contained in this document is subject to change without notice.

HEWLEIT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUI NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard snall not be liable for errors contained herein or for incidental or consequential damages in connection with the turnishing, performance, or use of this material.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied or reproduced without the prior written consent of Hewlett-Packard Company.

Copyright c 1974 by HEALETI-PACKARD COMPANY

NOTE: This document is part of the 262XX DATA TERMINAL product series Technical Information Package (HP 13220).

. •

# Table 2.0 Reliability and Environmental Information

| <br>               | ( X ) HP (lass B ( ) Other:            |
|--------------------|----------------------------------------|
|                    |                                        |
| Restrictions: Type | tested at product level                |
| <br>               |                                        |
| i<br>  Failur      | e Rate: 2.277 (percent per 1000 hours) |
| 1                  |                                        |

#### 1.0 INTRODUCTION.

The Power Supply Module generates the following voltages: +16 volts at 8.0 amperes, +12 volts at 8.0 amperes, +5 volts at 8.0 amperes, and -12 volts at 0.5 amperes; constrained that the total output power shall not exceed 125 watts. The Power Supply Module also provides a TIL level signal indicating power-on and power-fail warning.

# 2.0 OPERATING PARAMETERS.

A summary of operating parameters for the Power Supply Module is contained in tables 1.0 through 3.0.

Table 1.0 Physical Parameters

| ***********                             | ======================================= | ====== |                                      |                        |
|-----------------------------------------|-----------------------------------------|--------|--------------------------------------|------------------------|
| Part<br>  Number<br> =======            |                                         |        | Size (L x W x D)<br>+/=/).100 Inches | Weight  <br>  (Pounds) |
| <br>  02620-60u19<br>                   | <br>  Power Supply PCA<br>              |        | 14.20 x 7.10 x 3.10                  | = = = = =  <br>        |
| *====================================== |                                         |        |                                      |                        |

#### 5.0 FUNCTIONAL DESCRIPTION.

Refer to the block diagram (figure 1), schematic diagram (figure 2), timing diagram (figure 3), component location diagram (figure 4), and parts list (U262U-6UU19) located in the appendix.

The Power Supply Module employs primary (off-line) switching to create + and - 16vh( sources. The -16v source is linearly regulated to create a -12v output, while the +16v source powers +12v and +5v switching regulators as well as being an output. Internal protection circuitry quards against under and over-voltage conditions. The logic signal interface consists of a Sync circuit which synchronizes the Power Supply Module switching rate to the video sweep rate, and a Power-On circuit which indicates that supply outputs are in regulation and warns of impending loss of regulation.

#### 3.1 PRIMARY SWITCHER.

The Primary (Off-Line) Switcher section of the Power Supply Module consists of the Line Recifier, Primary Switcher, Secondary Rectifier, and the Primary Switching Regulator blocks shown in figure 1. Indether these blocks transform power taken from the AC line to isolated the and - 16VDC sources.

- 3.1.1 Line Rectifier
  The Line Rectifier connects to the power line via the Power Panel
  Assy., and rectifies and filters the incoming AC power. Line volt—
  age selection is determined by fuse location which configures the
  Line Rectifier as mither a voltage—doubler (115VAC operation) or as a
  full-wave bridge (230VAC operation). Output voltage is + and 150VDC
  at nominal line.
- Primary Switcher
  The Primary Switcher plock uses a half-bridge topology to nower
  switching transformer T2. Two power transistors (41 and 32) are
  driven alternately by the Primary Switching Regulator via base-drive
  transformer T3. These transistors switch the primary of T2 between
  the + and 150V outputs of the Line Rectifier. Regulation is achieved through pulse-width modulation, as the average output voltage of
  transformer T2 is proportional to the duty cycle of 91 and 42. Diodes
  CR4 and CR5 clamp the primary of T2 to prevent voltage over-shoot.
- 3.1.3 Secondary Rectifier
  This block rectifies and filters the output of switching transformer
  This block rectifies and filters. A bipolar output is produced
  to using a full-wave pridge rectifier with a center-tapped secondary
  winding. Resistor R38 produces a voltage proportional to load current for current-limit sensing. Diodes Ck16 and CR17 together with
  resistors R41 and R42 form an Ok gate, whose output voltage remains
  high whenever switching transistors Q1 and Q2 overlap in conduction.

Table 3.0 Connector Information - Power Supply PCA

| Connector and Pin No.                           | Signal<br>  Name<br> ==========                    | Signal Description                                                |
|-------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------|
| J1, Pin 1<br>2<br>3<br>4                        | Ground<br>  Line Neutral<br>  115VAC<br>  Reserved | =====================================                             |
| J2 Pin 1<br>2<br>3                              | Line In<br>Line Neutral<br>Ground                  | )   )   Input power from   ) Power Panel Assy                     |
| J3 Pin 1,2  <br>3,4                             | +16V<br>Ground                                     | Power connection to TPM PCA                                       |
| J4 Pin 1   2   3   4,5   6,7,8   9              | +16V<br>Key<br>+12V<br>+5V<br>Ground<br>-12V       | ) ) ) Power connection ) reserved for expansion )                 |
| J5 Pin 1,3  <br>2  <br>4  <br>5,6  <br>7  <br>8 | +5V Key +12V Keturn  Power On/Fail -12V            | ) ) ) ) Power connection to Processor PCA ) )                     |
| 6 Pin 1   2   3   4   5                         | +5V<br>Key<br>+12V<br>Return<br>Sync               | ) ) Power connection to Sweep PCA ) ) Horizontal Drive from Sweep |

3.2 SECONDARY REGULATION.

The Secondary Regulation section of the Power Supply Module consists of the -12 Volt Linear Regulator, +12 Volt Switching Regulator and +5 Volt Switching Regulator blocks shown in figure 1.

- 3.2.1 -12 Volt Linear kegulator
  This block is composed of a 7812 three-terminal -12 volt regulator
  IC and output bypass capacitor C29. The 7812 incorporates internal
  thermal and current-limit protection. Output voltage is fixed, and
  therefore independent of the "Voltage Control" R71.
- 3.2.2 +1? Volt Switching Regulator The +12 Volt Switching Pegulator is powered by the +16 volt output of the Secondary Rectifier. Switch timing and voltage reference are derived from the Primary Switching Regulator.

The main switching element is Q5, a hybrid circuit containing a darlington transistor and power diode. When the darlington transistor is turned on, current flows from the +16 volt supply through inductor L2 and into the output filter capacitors C46 and C47. When the darlington transistor is turned off, the current flowing through L2 and C46 and C47 continues to flow through the power diode in Q5. The output voltage is regulated by controlling the duty cycle of the darlington transistor in Q5.

Inductor L4 and diode CR29 limit the input current while R5 is turning on, and rapacitor C40 with its associated resistor and diode hold off the output voltage while 95 is turning off. Together these two circuits substantially reduce switching noise and power dissipation in W5. Diode CR7 protects the darlington transistor in W5 from reverse bias breakdown should a short to ground occur on the +16 volt output.

Voltage regulation is accomplished by feeding back a fraction of the output voltage and comparing it to a 2.5V reference. The difference between the feedback voltage and the reference voltage is amplified by differential amplifier U7 to create a switching reference voltage. Comparator U6 compares the switching reference voltage to a linear ramp voltage. The comparator turns on current sink G7 until the ramp voltage exceeds the switching reference at which time it turns off G7. Current sink G7 provides base drive for the darlington transistor in G5, and therefore controls switching operation. In effect, the output of comparator H6 is pulsewidth modulated by the amplified error voltage. Capacitors C53, C54, and C48, and resistors R25 and R75 determine the transient response and stability of the +12 volt regulator. Diodes Cx35-37 clamp the switching reference voltage (output of differential amplifier U7) to a maximum of 4.3 volts, preventing voltage overshoot at turn-on.

# 3.1.4 Primary Switching Regulator

This block controls the Primary Switcher section of the Power Supply Module. The heart of this block is U11, an SG3524 regulator 1C. The SG3524 is a fixed-frequency bulse-width modulation voltage regulator circuit. The operating frequency is programmed by timing resistor R44 and timing capacitor C/. R44 establishes a constant charging current for C7, producing a linear voltage ramp. Internally, the SG3524 compares this linear ramp to the output of a feedback error amplifier. The result of this comparison is a fixed-frequency pulse train whose duty cycle (ratio of on-to-off time) is linearly proportional to the error amplifier's output. The modulated pulse-train toggles an internal pulse steering flip-flop, which in turn alternately powers two open-collector outputs, C1 and C2. The C1 and C2 outputs of the SG3524 are buffered by Q3 and Q4, respectively, which in turn power the primary of base-drive transformer

The SG3524 contains an internal 5 volt linear regulator which powers external CMUS ICs, as well as acting as a voltage reference. Forent-iometer R71 together with resistors R67 and R70 create a 2-by reference from the 5V output of the SG3524. Since this 2-5V reference is used by the +12V and +5V switching regulators as well, the +16V, 12V, and +5V outputs are all proportionally varied by adjusting potentiometer R71 (labeled "Voltage Control").

An internal current+limit circuit in the \$63524 inhibits switching operation when the secondary current of switching transformer T2 exceeds 11 amps.

The SG3524 provides an oscillator input/output which is high once each cycle during the discharge time of timing resistor C7. This oscillator output also serves as a planking pulse, inhibiting both C1 and C2 outputs.

During low-line conditions, the duty-cycle of the output pulses at C1 and C2 of the SG3524 will approach 50%. A 50% guty-cycle drive to switching transistors Q1 and Q2 will result in destructive conduction overlap, due to the storage-time of these transistors. To prevent this from occuring the overlap output from the Secondary Rectifier is used to force the SG3524's oscillator output high, thereby inhibiting both C1 and C2 outputs. After the transistor storage-time has elapsed, the overlap signal will return low allowing the oscillator output to go low.

Transistor 49 and OP amp U8 together with the related circuitry form a power-on soft-start circuit. This circuit ensures that switching operation is disabled at turn-on until the bootstrap supply voltage reaches approximately 5.5%. At this time the C1 and C2 outputs of U11 are allowed to increase from zero to full duty-cycle.

The Over-Voltage Shut Down circuit is manually reset by turning the AC line switch off and then back on. It is generally possible to engage the Over-Voltage Shut Down circuit by adjusting the Voltage Control, R71, fully Cw.

3.3.2 Under-voltage Shut Down
The Under-Voltage Shut Down circuit monitors the voltage of the +16v output. If the +16v output voltage drops below +13v, Resistor x4o will begin charging capacitor C25. If the +16v output remains below +13v for more then approximately two seconds, capacitor C25 will charge above 5.1v and comparator U5 will pull the compensation input of the switching regulator U11 to ground. This shuts down the Primary Switching Regulator, and hence the entire supply. Resistor R47 and capacitor C19 reduce the sensitivity of the under-Voltage Shut Down circuit to switching noise present on the +16v output.

The Under-Voltage Shut Down circuit is manually reset by turning the AC line switch off and then back on-

3.4 LUGIC SIGNAL INTERFACE.

The logic signal interface consists of a Sync circuit which synchronizes the Power Supply Hodule's switching rate to the video sweep rates and a Power-On circuit which indicates that supply outputs are in regulation and warns of impending loss of regulation.

3.4.1 Sync Circuit
The Sync Circuit is a digital phase-locked-loop which synchronizes the power supply switching rate to twice the video sweep rate. Locking range is restricted to input sync signals in the range of 20 to 30kHz, corresponding to power supply switching rates of 40 to oukhz. Synchronizing the power supply switching rate to the video sweep prevents switching noise from appearing on the terminal's CHT display.

Toggle flip-flop U9 divides the "OSC" output frequency of switching regulator U11 by two to create a feedback signal for digital phase comparator U10. U10 compares this feedback signal to the input sync signal and produces an output voltage proportional to the phase error between these two signals. Resistor x50 and capacitor C21 form a single pole low pass filter, which getermines the transient response and stability of the Sync Circuit. Operational amplifier U8 and resistor R43 form a non-inverting voltage-to-current puffer. The output current of this buffer varies the operating frequency of switching regulator U1 by varing the current flowing through timing resistor R44. The frequency lock range of the Sync Circuit is limited by the output voltage range of buffer amplifier U%.

Output current is sensed by comparator U2 across R72. The point of current limit is set by resistors R13 and R17 (8 amps). A foldback current reference, and as it decreases due to current limit the current limit reference also decreases. The latch formed by U3 is set from supplying current until the "OSC" output of the SG3524 switching regulator (U11) resets the latch. This prevents the current limit circuit from oscillating.

Comparator U2 disables the +12 volt switching regulator in the event of a short to ground on the -12 volt output.

- 45 Volt Switching Regulator
  The operation of the +5 Volt Switching Regulator is identical to that
  of the +12 Volt Switching Regulator with the following exceptions.
  Output voltage of the +5V supply is limited to 6.19V by zener diode
  damage the load before the output voltage from rising high enough to
  the Primary Switching Regulator. Operation of the +5 Volt Switching
  Regulator is inhibited by comparator U2 whenever the +12V output
- 5.3 PROTECTION CIRCUITRY.

Active circuitry is employed to quard against over and under-voltage conditions on the Power Supply Module's +16V, +12V, and +5V outputs.

3.3.1 Over-Voltage Shut Down
The Over-Voltage Shut Down circuit monitors the +16V, +12V, and +5V outputs for abnormally high voltage. The over-voltage thresholds are set at +17.2V, +13.4V, and +5.6V respectively.

Resistors R28 and R29 form a voltage divider from the +16V output. The output of this divider is compared by U6 to a 5.1v reference provided by the Bootstrap Supply. If the +10V output should rise above +17.2V, the output of comparator U6 will be pulled up by R11, which in turn nulls up, through CR24, the non-inverting input of comparator U5. This will cause the output of comparator U5 to go high and be latched high by CR22. With the output of U5 latched high, the shuthown input of the SG3524 switching regulator (U11) will be held high, and the Primary Switcher disabled.

The +12v and +5v outputs are monitored in a similar manner to that of the +16v output. The +5v output monitor uses a diode forward voltage drop above the 5.1v reference to establish the over-voltage threshold. Capacitors C27, C30, and C31 reduce the sensitivity of the Over-Voltage Shut Down circuit to switching noise and electrostatic discharge.





Figure 3
Power Supply PCA Component Location Diagram
SEP-10-79
13220-91019

### Replaceable Parts

| Reference<br>Designation                     | HP Part<br>Number                                             | ΟD        | Qty          | Description                                                                                                                                                                                                               | Mfr<br>Code                               | Mfr Part Number                                                                    |
|----------------------------------------------|---------------------------------------------------------------|-----------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------|
|                                              | 02020-00019                                                   | ,         | 1            | PONER BUPPLY, PCA<br>Date code: D-1917-42                                                                                                                                                                                 | 20400                                     | 02050-00019                                                                        |
| C1<br>C2<br>C3<br>C4<br>C5                   | 0180-2940<br>0180-2940<br>0180-3456<br>0180-3456<br>0180-4242 | 3         | 2<br>2<br>1  | CAPACITOR-FXD 780UF+50-101 200VDC AL<br>CAPACITOR-FXD 780UF+50-101 200VDC AL<br>CAPACITOR-FXD 1800PF +-101 14VDC CER<br>CAPACITOR-FXD 1800PF +-101 14VDC CER<br>CAPACITOR-FXD AUF +-101 200VDC MET-POLYC                  | 20480<br>20480<br>20400<br>20400<br>20400 | 0180-2940<br>0180-2940<br>0180-3956<br>0180-3456<br>0180-4242                      |
| C6<br>C7<br>C8<br>C9<br>C10                  | 0160-0162<br>0160-0162<br>0160-0161<br>0160-3335<br>0160-4554 | 5 4 0 7   | 1<br>0<br>14 | CAPACITOR-PXD .022UF +-10% 200VDC POLYE<br>CAPACITOR-FXD .022UF +-10% 200VDC POLYE<br>CAPACITOR-FXD .01UF +-10% 200VDC POLYE<br>CAPACITOR-FXD 470PF +-10% 100VDC CER<br>CAPACITOR-FXD .01UF +-20% 50VDC CER               | 28480<br>28480<br>28480<br>28480<br>28480 | 0100-0102<br>0100-0102<br>0100-0101<br>0100-03335<br>0100-0538                     |
| C11<br>C12<br>C13<br>C14<br>C16              | 0100-4554<br>0100-3335<br>0100-4554<br>0180-2713<br>0100-4554 | 7 0 7 0 7 | 1            | CAPACITOR-FXD .GIUF +-201 SOVDC CER<br>CAPACITOR-FXD 070PF +-101 100VDC CER<br>CAPACITOR-FXD .61UF +-201 SOVDC CER<br>CAPACITOR-FXD 470UF-50-101 SOVDC AL<br>CAPACITOR-FXD .61UF +-201 SOVDC CER                          | 28480<br>28480<br>28480<br>28480<br>28480 | 0100-4554<br>0100-3335<br>0100-4554<br>0100-4594                                   |
| C17<br>C18<br>C19<br>C20<br>C21              | 0100-2079<br>0100-0157<br>0100-4557<br>0100-4557              | 7 . 0 0 0 | 1 7          | CAPACITOR-FXD 22UF-S0-10% 25VDC AL CAPACITOR-FXD 4700PF +-10% 200VDC POLYE CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER                                       | 26480<br>26480<br>16299<br>16299          | 0180-2879<br>0180-0197<br>CACOEX7R104-050A<br>CACOEX7R104-050A<br>CACOEX7R184-050A |
| C26<br>C23<br>C25<br>C25                     | 0160-4554<br>0160-4554<br>0160-4557<br>0160-2879<br>0160-4554 | 7 7 0 7 7 |              | CAPACITOR-FXD .01UF +-20X 50VDC CER<br>CAPACITOR-FXD .01UF +-20X 50VDC CER<br>CAPACITOR-FXD .1UF +-20X 50VDC CER<br>CAPACITOR-FXD 22UF+50-10X 25VDC AL<br>CAPACITOR-FXD .01UF20X 50VDC CER                                | 28480<br>16299<br>28480<br>28480          | 0160-4554<br>0160-4554<br>0160-2679<br>0160-4654                                   |
| C27<br>C28<br>C29<br>C30<br>C31              | 0160-4554<br>6180-2879<br>0180-2879<br>0160-4554<br>0160-4557 | 77770     |              | CAPACITOR-FXD .01UF20X 50VDC CER<br>CAPACITOR-FXD 22UF+50-10X 25VDC AL<br>CAPACITOR-FXD 22UF+50-10X 25VDC AL<br>CAPACITOR-FXD .01UF20X 50VDC CER<br>CAPACITOR-FXD .1UF20X 50VDC CER                                       | 28480<br>28480<br>28480<br>18299          | 0160-0554<br>0180-2879<br>0180-2579<br>0160-4558<br>CACO4X7R104M050A               |
| C32<br>C33<br>C34<br>C35<br>C36              | 0160-4554<br>0160-3335<br>0160-4557<br>0180-2879<br>0160-4554 | 7 0 0 7 7 |              | CAPACITOR-FXD .01UF +-20% 50VDC CER<br>CAPACITOR-FXD .1UF +-20% 50VDC CER<br>CAPACITOR-FXD .1UF +-20% 50VDC CER<br>CAPACITOR-FXD .2UF-50-10% 25VDC AL<br>CAPACITOR-FXD .01UF -+20% 50VDC CER                              | 28480<br>28480<br>16299<br>28480          | 0160-4558<br>0160-3335<br>CACOBETRIOSMOSOA<br>0180-2879<br>0160-4554               |
| C37<br>C36<br>C39<br>C40                     | 0140-3335<br>0140-4557<br>0140-4554<br>0140-0380<br>0140-0380 | 0 0 7     |              | CAPACITOR-PXD 470PF +-10% 100VDC CER<br>CAPACITOR-FXD .1UF +-20% 50VDC CER<br>CAPACITOR-FXD .01UF +-20% 50VDC CER<br>CAPACITOR-FXD .22UF +-10% 200VDC POLYE<br>CAPACITOR-FXD .22UF +-10% 200VDC POLYE                     | 28480<br>16299<br>28480<br>28480<br>28480 | 0100-3335<br>CACO417R108M050A<br>0100-8594<br>0100-0380                            |
| C42<br>C43<br>C44<br>C45                     | 0100-2941<br>0180-2088<br>0180-2080<br>0100-4554<br>0180-2080 | 1         |              | CAPACITOR-FXD .012F+-20% 20VDC AL<br>CAPACITOR-FXD 220UF+50-10% 10VDC AL<br>CAPACITOR-FXD 220UF+50-10% 10VDC AL<br>CAPACITOR-FXD .01UF+-20% 50VDC CER<br>CAPACITOR-FXD 220UF+50-10% 10VDC AL                              | 28480<br>28480<br>28480<br>28480<br>28480 | 0180-2941<br>0180-2880<br>0180-2880<br>0180-2880                                   |
| C47<br>C40                                   | 0100-2000<br>0100-4554                                        | 1         | ;            | CAPACITOR-FXD 8200UF+50-10X 16VDC AL<br>CAPACITOR-FXD .01UF +-20X 50VDC CER                                                                                                                                               | 28480                                     | 0100-2000<br>0100-4554                                                             |
| CR1<br>CR2<br>CR3<br>CR4                     | 1906-0080<br>1901-0848<br>1901-0848<br>1901-1065              |           | 1            | DIGDE-PUR RECT 164936 406V 1A 200MS                                                                                                                                                                                       | 26480<br>26480<br>26480<br>14936          | 1996-9990<br>1991-9848<br>1991-9848<br>186936                                      |
| CRS<br>CR6<br>CR7<br>CR8<br>CR8              | 1901-1005<br>1906-8067<br>1901-1005<br>1901-0050<br>1901-0050 |           | 22 22        | DIDDE-DUR RECT 184936 444 14 2448  BIDDE-CT-RECT 1849 344  DIODE-PUR RECT 184936 444 285 DO-35  DIODE-SHITCHING 844 2848 285 DO-35  DIODE-SHITCHING 844 2848 DO-35  BIODE-SHITCHING 844 2848 DO-35                        | 27777<br>14936<br>26460<br>26460<br>26460 | 114936<br>114936<br>1901-0050<br>1901-0050                                         |
| CR10<br>CR11<br>CR12<br>CR13<br>CR14<br>CR15 | 1901-0050<br>1902-3094<br>1901-0731<br>1901-1065<br>1901-1065 |           | 3 1 1        | DIODE-BRITCHING SOV 200MA 2NS DD-35<br>DIODE-RWR S.11V 22 DD-7 PDm.4D TCm-,0002<br>DIODE-PWR RECT a00V 1A<br>DIODE-PWR RECT 1003D 400V 1A 200NS<br>DIODE-PWR RECT 1003D 400V 1A 200NS                                     | 26480<br>26480<br>28480<br>14936<br>14936 | 1901-9050<br>1902-3000<br>1901-0731<br>184936<br>184936                            |
| CR10<br>CR17<br>CR18<br>CR19<br>CR20         | 1901-0050<br>1901-0050<br>1901-0050<br>1901-0050              |           | 3 3 3 3 3    | DIDDE-Smitching Sev 200ma 248 DO-35<br>DIDDE-Smitching Sev 200ma 248 DO-35<br>DIDDE-Smitching Sev 200ma 248 DO-35<br>DIDDE-Smitching Sev 200ma 248 DO-35<br>DIDDE-Smitching Sev 200ma 248 DO-35                           | 20400<br>20400<br>20400<br>20400          | 1901-0050<br>1901-0050<br>1901-0050<br>1901-0050<br>1901-0050                      |
| CR21<br>CR22<br>CR23<br>CR24<br>CR24         | 1901-0050<br>1901-0050<br>1901-0731<br>1901-0050              |           | 3 3 7 3 3    | DIDDE-BHITCHING BOY 200MA 2NB DO-35<br>DIDDE-BHITCHING BOY 200MA 2NB DO-35<br>DIDDE-BHR RECT A00Y 1A<br>DIDDE-BHITCHING BOY 200MA 2NB DO-35<br>DIDDE-BHITCHING BOY 200MA 2NB DO-35<br>DIDDE-BHITCHING BOY 200MA 2NB DO-35 | 20480<br>20480<br>20400<br>20400<br>20400 |                                                                                    |



Figure 2
Power Supply PCA Schemetic Diagram
SEP-10-79
13220-91019

#### 3.4.2 Power-on

The Power-On circuit serves two functions. It senses the output voltage of the +5 volt Switching Regulator and indicates, by going high, when the +5v output is in regulation. It also senses the voltage on the +16v output and goes low to indicate a power fail condition snortly before the +5 volt Switching Regulator begins to lose regulation (the +5 volt Switching Regulator is powered by the +10v output). Comparator U5 monitors the +16v output voltage. When this voltage

drops helow +13v, U5 pulls the Power-Un/Fail output low. Comparator U6 monitors the +5v output voltage through a voltage divider formed

by resistors R52, R55, and R57. The Power-un/Fail output is pulled low by U6 when the +5V output drops out of regulation. Resistor R56 provides approximately ().2V of hysteresis to prevent the Power-

On/Fail output from oscillating. Capacitor C35 furnishes a delay at turn on to reset logic circuitry within the terminal.

# 3.5 BOOTSIPAP SUPPLY.

The Bootstran Supply operates off the AC power line through transformer T1. It provides the power necessary to start the operation of the Primary Switcher. Once the Primary Switcher is in operation diode CR13 furnishes power to the Bootstrap Supply from the +16V

# - Replaceable Parts

| Reference<br>Designation        | HP Part<br>Number                                             | CD               | Qty | Description                                                                                                                                                                                                    | Mfr<br>Code                               | Mfr Part Number                                                                 |
|---------------------------------|---------------------------------------------------------------|------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------|
| R42<br>R43<br>R44<br>R45        | 0083-4725<br>0048-3155<br>0048-0085<br>0083-4725<br>0083-4715 | 21020            | 1 3 | RESISTOR A.7H SE .25m FC TCs-400/+700<br>RESISTOR 4.64K IZ .125m F TCs0+-100<br>RESISTOR 2.61K IZ .125m F TCs0+-100<br>RESISTOR A.7M SE .25m FC TCs-400/+000<br>RESISTOR ATO SE .25m FC TCs-400/+000           | 01121<br>24546<br>24546<br>01121<br>01121 | C84725<br>C4-1/8-78-4661-F<br>C4-1/8-78-2611-F<br>C84725<br>C84715              |
| R47<br>R46<br>R49<br>R50<br>R51 | 9003-4725<br>9003-1045<br>9043-4725<br>9003-1045<br>9003-4705 | 5 3 6            |     | RESISTOR 4.7K St .25m PC TC=-400/+700<br>RESISTOR 100K St .25m PC TC=-400/+300<br>RESISTOR 4.7K St .25m PC TC=-400/+700<br>RESISTOR 100K St .25m PC TC=-400/+500<br>RESISTOR 47 St .25m PC TC=-400/+500        | 01121<br>01121<br>01121<br>01121          | C04725<br>CB1045<br>C04725<br>CB1045<br>CB4705                                  |
| R52<br>R53<br>R54<br>R55<br>R56 | 0757-0442<br>0090-3009<br>0003-4725<br>0757-0442<br>0003-1945 | 9 0 2 9 3        |     | RESISTOR 10K 1% .125# F TC#0+-100 RESISTOR 22 5% 2# MD TC#0+-200 RESISTOR 4.7K 5% 25# FC TC#-400/+780 RESISTOR 10K 1% .125# F TC#0+-100 RESISTOR 10K 5% .25# FC TC#-400/+800                                   | 24546<br>27167<br>01121<br>24546<br>01121 | Ca-1/8-T0-1002-F<br>FP42-2-T00-2200-J<br>CB4725<br>C4-1/8-T0-1002-F<br>CB1045   |
| RS7<br>RS8<br>RS9<br>R60<br>R61 | 0+98-0085<br>0+98-3+01<br>0+83-4725<br>0+83-1025<br>0+84-3315 | 0 48 8 0         | 1   | RESISTOR 2.614 1% .125M F TC00+-100 RESISTOR 10 5% 20 MD TC00+-200 RESISTOR 8.7K 5% .25M FC TC0-400/+700 RESISTOR 1K 5% .25M FC TC0-400/+600 RESISTOR 330 5% .5M CC TC00+529                                   | 24546<br>27167<br>01121<br>01121          | Ca-1/0-T0-2011-F<br>FP62-2-T00-10R0-J<br>CM4725<br>C81025<br>E83315             |
| R62<br>R63<br>R64<br>R65<br>R66 | 043-225<br>043-1025<br>043-2225<br>046-3315                   | 3 0 5            |     | RESISTOR 2,2K St ,2Sm FC TC==400/+700 RESISTOR 1K St ,2Sm FC TC==400/+000 RESISTOR 2,2K St ,25m FC TC==400/+700 RESISTOR 330 St ,5m CC TC==400/+800 RESISTOR 22K St ,25m FC TC==400/+800                       | 01121<br>01121<br>01121<br>01121<br>01121 | C02225<br>C01025<br>C02225<br>E03315                                            |
| R67<br>R68<br>R69<br>R70<br>R71 | 0757-0280<br>0483-4705<br>0498-4123<br>0757-0280<br>2100-3212 | 3<br>8<br>5<br>3 | 1   | RESISTOR 1K 1E .125m F TC80+-100 RESISTOR 47 5E .25m FC TC8-400/-500 RESISTOR 494 IE .125m F TC80+-100 RESISTOR 1K 1E .125m F TC80+-100 RESISTOR 1K 1E .125m F TC80+-100 RESISTOR TRMR 280 10E C TOP-ADJ 1-TRM | 24546<br>01121<br>24546<br>24546<br>28480 | Ca-1/8-T0-1001-F<br>CB4703<br>Ca-1/8-T0-499R-F<br>C4-1/8-T0-1001-F<br>2100-3212 |
| 872<br>873<br>874<br>875<br>876 | 0811-3526<br>0811-3526<br>0757-0442<br>0683-4725<br>0698-0085 | 5 6 5 0          |     | RESISTOR .018 31 Sh PH TC=0+=80 #ESISTOR .018 32 Sh Ph TC=0+=80 RESISTOR 10K 1X .125h F TC=0+=100 RESISTOR 4.7K SX .25h FC TC==800/+700 RESISTOR 2.61K 1X .125h F TC=0+=100                                    | 20480<br>20480<br>20540<br>01121<br>24540 | 0811-3520<br>0811-3520<br>C4-1/8-70-1002-F<br>C94725<br>C4-1/8-70-2011-F        |
| R77<br>R76<br>R79<br>R80<br>R81 | 0003-4725<br>0757-0447<br>0098-3158<br>0003-1045<br>0003-4725 | 3 2              |     | RESISTOR 4.7K ST .25m FC TC==400/+700 RESISTOR 16.2K 1X .125m F TC=0+-100 RESISTOR 23.7K 1X .125m F TC=0+-100 RESISTOR 100K ST .25m FC TC==400/+000 RESISTOR 4.7K ST .25m FC TC==400/+700                      | 01121<br>24546<br>24546<br>01121<br>01121 | C84725<br>C4-1/8-T0-1622-F<br>C4-1/8-T0-2372-F<br>C81045<br>C84725              |
| T1<br>T2<br>T3                  | 9100-4120<br>9100-4121<br>9100-4121                           | 37               | 1   | TRANSFORMER-POMER, 12V<br>Transformer-britching<br>Transformer-dual Pulse                                                                                                                                      | 26480<br>26480<br>26480                   | 0100-0120<br>0100-0121                                                          |
| TP1<br>TP2<br>TP3<br>TP4<br>TP5 | 0360-0124<br>0360-0124<br>0360-0124<br>0360-0124              | 3 3 3            |     | CONNECTOR-SEL CONT PIN .08-IN-88C-8Z RND CONNECTOR-98L CONT PIN .08-IN-88C-8Z RND CONNECTOR-98L CONT PIN .08-IN-88C-8Z RND CONTECTOR-88L CONT PIN .08-IN-88C-8Z RND                                            | 28480<br>28480<br>28480<br>28480<br>28480 | 0360-0124<br>0360-0124<br>0360-0124<br>0360-0124                                |
| TP6<br>TP7<br>TP8               | 0360-0124<br>0360-0124<br>0360-0124                           | 333              | 1   | CONNECTOR-SEL CONT PIN .84-NO-SEC-SCINCE CONNECTOR-SEC CONT PIN .84-NO-SEC-SE ROD CONNECTOR-SEC CONT PIN .84-IN-SEC-SE ROD                                                                                     | 59480<br>58480<br>58480                   | 0300-0124<br>0300-0124<br>0300-0124                                             |
| U1<br>U2<br>U3<br>U4<br>U5      | 1826-0221<br>1826-0138<br>1820-0946<br>1820-1886<br>1826-0138 |                  | ;   | IC BATE CHOS HOR GUAD 2-INP                                                                                                                                                                                    | 04713<br>04713<br>01928<br>01928<br>04713 | MC7918CT<br>MLM339P<br>CD4001AF<br>CD4001BF<br>MLM339P                          |
| U6<br>U7<br>U8<br>U9<br>U10     | 1826-0138<br>1826-0346<br>1826-0346<br>1826-0739              |                  | 1   | IC OP AMP BP DUAL B-DIP-P<br>IC PP CHOS D-TYPE POS-EDGE-TRIG DUAL                                                                                                                                              | 04713<br>27014<br>27014<br>01920<br>01920 | ML M338P<br>L M358P<br>CD4013AF<br>CD4004AF                                     |
| USS                             | 1850-0458                                                     | •                | 1   | MISCELLANGOUS PARTS                                                                                                                                                                                            | 01205                                     | 9632541                                                                         |
|                                 | #340-1945<br>#515-0055<br>#515-0047<br>#515-004               | 4                | 1   | SCREMACH M3 X 0.5 SMM-LE PAN-HD<br>SCREMACH M3.5 X 0.6 SSMM-LE PAN-HD<br>SCREMACH M3.5 X 0.6 SSMM-LE PAN-HD                                                                                                    | 90000<br>30400<br>30400<br>50400          | 0300-1945<br>0515-0055<br>0515-0007<br>0515-0000<br>OMDER BY DESCRIPTION        |
|                                 | 0535-007<br>0024-0411<br>0090-0732<br>1200-0077<br>1200-0105  |                  |     | SCRENTPO 0-10 ,313-IN-LG PAN-MD-POZI<br>TUBING-WB ,003-D/,031-RCVD ,017-MALL                                                                                                                                   | 20400<br>00000<br>00000                   | 1200-0077                                                                       |
|                                 |                                                               |                  |     |                                                                                                                                                                                                                |                                           |                                                                                 |

# Replaceable Parts

| Reference<br>Designation             | HP Part<br>Number                                             |           |                  | Description                                                                                                                                                                                          | Mfr<br>Code                                        | Mfr Part Number                                                                   |
|--------------------------------------|---------------------------------------------------------------|-----------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------|
| C#20<br>C#27<br>C#20<br>C#20<br>C#30 | 1901-0050<br>1901-1005<br>1901-1005<br>1901-1005<br>1901-0048 | 3 2 2 2 7 |                  | DIODE-BRITCHING SEV 200MA 2NS DO-35<br>DIODE-PHR RECT 1NS936 GOOV 1A 200NS<br>DIODE-PHR RECT 1NS936 GOOV 1A 200NS<br>DIODE-PHR RECT 1NS936 GOOV 1A 200NS                                             | 20400<br>14936<br>14936                            | 1 N4930<br>1 N4930                                                                |
| GR31<br>GR32<br>GR33<br>GR34<br>GR35 | 1902-0551<br>1901-0050<br>1901-0050<br>1901-0050              | 3 3 3 3   | 1                | DIODE-RNR 6.197 SE DO-15 PDBIN TCR4.022E<br>DIODE-SWITCHING SOV ZOOMA ZNR DO-35<br>DIODE-SWITCHING SOV ZOOMA ZNR DO-35<br>DIODE-SWITCHING SOV ZOOMA ZNR DO-35<br>DIODE-SWITCHING SOV ZOOMA ZNR DO-35 | 20480<br>20480<br>20480<br>20480<br>20480<br>20480 | 1901-0848<br>1902-655;<br>1901-0850<br>1901-0850<br>1901-0850                     |
| ER36<br>CR37<br>CR38<br>CR30<br>CR40 | 1901-0030<br>1901-0050<br>1901-0731<br>1901-0050<br>1901-0050 | 3 7 3 3   |                  | DIODE-SHITCHING SOV ZOOMA ZNS DD-35<br>DIODE-SHITCHING SOV ZOOMA ZNS DD-35<br>DIODE-PHR RECT SOOV IA<br>DIODE-SHITCHING SOV ZOOMA ZNS DD-35<br>DIODE-SHITCHING SOV ZOOMA ZNS DD-35                   | 28480<br>28480<br>28480<br>28480<br>28480          | 1901-0050<br>1901-0050<br>1901-0731<br>1901-0050                                  |
| 15<br>13<br>14<br>15                 | 1251-3637<br>1251-4761<br>1251-3195<br>1251-5522<br>1251-5520 | 4 5 3     | 1<br>1<br>1<br>1 | CONNECTOR 4-PIN M UTILITY CONNECTOR 3-PIN M UTILITY CONNECTOR 4-PIN M POST TYPE CONNECTOR 8-PIN M POST TYPE CONNECTOR 7-PIN M POST TYPE                                                              | 28480<br>00779<br>28480<br>28480<br>28480          | 1251-3837<br>350789-1<br>1251-3195<br>1251-5522<br>1251-5520                      |
| L1<br>L2<br>L3                       | 1251-5519<br>9140-0344<br>9140-0314                           | 2         | 1                | CONNECTOR 4-PIN M POST TYPE  COIL SESUM  COIL 188UM                                                                                                                                                  | 28480                                              | 1251-5519                                                                         |
| L4<br>L5                             | 9140-0314<br>9140-0341<br>9140-0341                           |           | 5                | COIL 1980H .3DX.5L8-NOM COIL 598NH .3DX.5L8-NOM                                                                                                                                                      | 28480<br>28480<br>28480                            | 9140-0314<br>9140-0314<br>9140-0341<br>9140-0341                                  |
| 01<br>01<br>02<br>02                 | 1854-0467<br>1854-0467<br>1854-0624<br>1854-0467<br>1854-0624 | 5 6 5     | 3 2              | COLL 198UM TRANSISTOR NPN 2M4401 81 TO-92 PD8310FM TRANSISTOR NPN 2M4401 81 TO-92 PD8310FM TRANSISTOR NPN 2M4401 81 TO-92 PD8310FM TRANSISTOR NPN 2M4508 81 TO-3 PD8325FM                            | 28480<br>04713<br>04713<br>04713                   | 9140-9340<br>244401<br>244308<br>244401                                           |
| 06<br>07<br>08                       | 1813-0114<br>1813-0114<br>1854-000<br>1854-000<br>1855-0404   | 3 0 0     | s<br>2           | IC-LINEAR IC-LINEAR TRANSISTOR NPN SI TO-39 POSIN FTRIOGNEZ TRANSISTOR NPN ST TO-39 POSIN FTRIOGNEZ                                                                                                  | 12969<br>12969<br>28480<br>28480                   | 2N6308<br>PIC605<br>PIC605<br>1834-0070<br>1834-0070                              |
| 010<br>R1<br>R2                      | 1054-0467<br>0498-3634<br>0764-0045<br>0764-0045              | 1 3 3     | 1 2              | TRANSISTOR JOFET POCHAN DOMODE SI<br>TRANSISTOR MPN PN4401 SI TO-92 PD0310Mm<br>RESISTOR 470 5% 20 MO TC#00-200<br>RESISTOR 22K 5% 20 MO TC#00-200                                                   | 32243<br>04713<br>28480<br>28480                   | 37110<br>204401<br>0648-303a<br>0764-0085                                         |
| 14<br>15                             | 0837-0135<br>0837-0135<br>0083-1015                           | 7,        | 2                | RESISTOR 22% 53 2M MO TC00-200 THEMISTOR DISC 5-0MM TC0-3.38/C-DEG THEMISTOR DISC 5-0MM TC0-3.38/C-DEG RESISTOR 100 52 .25m FC TC0-400/-500                                                          | 28480<br>15454<br>15454                            | 6764-0045<br>SDASR0-220-8IL-Z<br>SDASR0-220-8IL-Z                                 |
| 10                                   | 0683-1015<br>0683-1025<br>0757-0401<br>0757-0447              |           | ;                | REDISTOR 10 33 .25M FC TC=-400/-500<br>REDISTOR 100 15 .125m F TC=000-100<br>REDISTOR 10.2K 12 .125m F TC=00-100                                                                                     | 01121<br>01121<br>01121<br>24546<br>24546          | C01019<br>C01015<br>C01085<br>C4-1/0-70-101-F<br>C4-1/0-70-1022-F                 |
| 13<br>14<br>15<br>16                 | 0757-0442<br>0757-0447<br>0757-0401<br>0063-1035              | •         |                  | RESISTOR 10K 13 .125H F TC=0+-100<br>RESISTOR 10.2K 12 .125H F TC=0+-100<br>RESISTOR 100 12 .125H F TC=0+-100<br>RESISTOR 10K S2 .25H FC TC=0+00/+700<br>RESISTOR 10K S2 .25H FC TC=-0+0/+700        | 24544<br>24544<br>24544<br>01121                   | C4-1/0-T0-1002-F<br>C4-1/0-T0-1022-F<br>C4-1/0-T0-101-F<br>C81035<br>C81035       |
| 17<br>18<br>19<br>20<br>21           | 0003-2235<br>0003-2225<br>0003-2225                           | 1 1 9 3 5 | •                | REGISTOR 10K SE ,25m FC TC==00/*700<br>REGISTOR 10K SE ,PSm FC TC==000/*700<br>REGISTOR 2.0 FX 12 .125m F TC=00-100<br>REGISTOR 2.2 SE ,25m FC TC==000/*700<br>REGISTOR 22K SE ,25m FC TC==000/*800  | 01121<br>01121<br>24546<br>01121                   | C01035<br>C01035<br>C0-1/0-70-2671-F<br>C02225<br>C02235                          |
| 22<br>23<br>24<br>25<br>26           | 0757-0442<br>0757-0447<br>0643-4725<br>0643-1045<br>0643-2235 | ***       | 1:               | RESISTOR 10x 12 ,125m F TC000-100<br>RESISTOR 10,2x 12 ,125m F TC000-100<br>RESISTOR 40xx 52 ,25m FC TC0-400/0700<br>RESISTOR 100m 52 ,25m FC TC0-400/0000<br>RESISTOR 22x 51 ,25m FC TC0-400/0000   | 20546<br>20546<br>01121<br>01121                   | C0-1/8-70-1002-7<br>C0-1/8-70-1022-7<br>C04725<br>C01005                          |
|                                      | 0083-4725<br>0757-0442<br>0090-3150<br>0083-4705<br>0083-4715 |           | 2 3              | REBISTOR 4.7K St .25m FC TC=-400/-700<br>REBISTOR 10K 12 .125m F TC00100<br>REBISTOR 23.7K 12 .125m F TC00100<br>REBISTOR 47 St .25m FC TC=-600/-500<br>REBISTOR 470 SE .25m FC TC=-600/-500         | 01121<br>20500<br>01121                            | C02236<br>C04725<br>C4-1/8-70-1002-F<br>C4-1/8-70-2372-F<br>C04705                |
| 5                                    | 0083-1005<br>0083-2235<br>0757-0442                           | 233       |                  | ### ### ### ### ### ### ### ### #### ####                                                                                                                                                            | 01121<br>01121<br>01121                            | C04715<br>C04725<br>C01045<br>C02235<br>C4-1/0-70-1002-7                          |
|                                      | 0757-0442<br>0611-3526<br>060-360                             |           | 3                | RESISTOR 10K 1E .125m F TC00100 RESISTOR .013 35 SM PW TC0000 RESISTOR 22 55 2M MO TC000-200 RESISTOR 22 52 2M MO TC000-200 RESISTOR 22 52 2M MO TC000-200 RESISTOR 4.7K S5 .25m FC TC0-000/*700     | 27107                                              | C00729<br>C0-1/8-T0-1002-F<br>0011-3520<br>FP02-2-T00-2280-J<br>FP02-2-T00-2280-J |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MANUFACTUPERS CODE LIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AS OF 10/UE/79                                                                                                                                                                                          |                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MF R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ADDRESS                                                                                                                                                                                                 | CCOF                                                                                                                                                            |
| NO.<br>00000<br>00779<br>011295<br>01285<br>01728<br>017181<br>12009<br>11701<br>14710<br>2470<br>24540<br>27014<br>27107<br>27777<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>27477<br>2 | MANUFACTURER NAME  ANY SATISFACTORY SUPPLIER AMP INC ALLEN-SHADLEY CO TEXAS INSTR INC SEMICOND CMPNT DIV RCA CORP SOLID STATE DIV MOTOROLA SEMICUNDUCTOR PRODUCTS SEMICON INC UNITRODE CORP THERMALLOY CO SENERAL INSTR CORP SEMIDON PROD GP RODAN INDUSTRIES INC CORNING GL MX ELEC CMPNT DIV CORNING GLASS MORKS (SRADF)PRD) MATIONAL SEMICONDUCTOR CORP CORNING GLASS MORKS (SRADF)PRD) WARD SEMICONDUCTOR INC MEMLETT-PACKARD CO CORPORATE MG AMERICAN MICRO SYSTEMS INC INTERSIL INC MOSTEK CORP SPRAGUE ELECTRIC CO | MARMISBUNG MILMAUREE DALLAS BOMERVILLE MJ PHOENIX GIMLINGTON MA MATERIUMN OALLAS MICHSVILLE ANAMEIW RAMEIF BRADFORD BANTA CLARA GILMINGTON PALD ALTO SANTA CLARA CUMERTINO CA CAGROLLYON TX NOMTE ADAMS | 171(5<br>53cut<br>75222<br>08c70<br>85u02<br>01r(3<br>02173<br>175234<br>11r(4<br>92cut<br>10701<br>95051<br>28601<br>94304<br>95014<br>95014<br>75000<br>01247 |

•

# Replaceable Parts

| Reference<br>Designation | HP Part<br>Number                                                                                                                                             | C                | Qty                                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mfr<br>Code                                                                                                                                                             | Mfr Part Number                                                                                                                                                                   |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | 1205-0200<br>1205-0340<br>1300-0140<br>1300-0240<br>2110-0851<br>2100-0007<br>2100-0007<br>2100-00120<br>3050-0247<br>5001-2008<br>02020-20001<br>02020-40007 | 47376 38286 7931 | 2<br>1<br>4<br>4<br>1<br>1<br>1<br>5<br>6 | MEAT SINK TO-3-CS MEAT SINK S&L PLOTC-PMR-CS FASTENER-SNAP-IN SROW PANEL THEMS PASTENER-SNAP-IN PLOR PANEL THEMS PASTENER-SNAP-IN PLOR PANEL THEMS PASTENER-SNAP-IN PLOR PANEL THEMS PASTENER-SNAP-IN PLOR PANEL THEMS PUSEMOLDER-CLIP TYPE 15A 250 V .250-FUSE MASMER-LE INTL T NO. 6 .115-IN-ID MASMER-LE INTL T NO. 6 .141-IN-ID SCRED-MACH 10-32 .312-IN-LS PAN-MD-POZI MASMER-PL NM NO. 6 .141-IN-ID .375-IN-OD MEAT SINK MEAT SINK COVER, SCREN | 20400<br>13103<br>20400<br>20400<br>20400<br>20400<br>20400<br>20400<br>20400<br>20400<br>20400<br>20400<br>20400<br>20400<br>20400<br>20400<br>20400<br>20400<br>20400 | 1205-0200<br>00250-TT<br>1300-0100<br>1300-0201<br>1400-0202<br>2110-0551<br>2100-0007<br>2100-0007<br>2100-0001<br>DRDER BY DEBCRIPTION<br>3050-0247<br>5001-2000<br>02020-20001 |
|                          |                                                                                                                                                               |                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                         | •                                                                                                                                                                                 |
|                          |                                                                                                                                                               |                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                         |                                                                                                                                                                                   |
|                          |                                                                                                                                                               |                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                         |                                                                                                                                                                                   |
|                          |                                                                                                                                                               |                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                         |                                                                                                                                                                                   |