Conocimientos generales y calificaciones de cálculo

Joel Alejandro Zavala Prieto

Contents

Informacion de contacto	2	
Descripción del problema	3	
Modelo	4	
Coeficiente de correlación muestral	5	

Informacion de contacto

```
Mail: alejandro.zavala1001@gmail.com
Facebook: https://www.facebook.com/AlejandroZavala1001
Git: https://github.com/AlejandroZavala98

## Loading required package: zoo

## ## Attaching package: 'zoo'

## The following objects are masked from 'package:base': ##

## as.Date, as.Date.numeric
```

Descripción del problema

La siguiente tabla representa una muestra de las calificaciones de un examen de conocimientos matemáticos y las calificaciones de cálculo para 10 estudiantes de primer año de universidad seleccionados de manera independiente. Dada esta evidencia ¿diria usted que las calificaciones del examen de conocimientos matemáticos y las calificaciones de cálculo son independientes?

Estudiante	Conocimientos_matematicos	Calificacion_calculo
1	39	65
2	43	78
3	21	52
4	64	82
5	57	92
6	47	89
7	28	73
8	75	98
9	34	56
10	52	75

Cuyo grafico de dispersión es:

Calificaciones y conocimientos

Modelo

Se propone el modelo

$$y_i = \beta_0 + \beta_1 x_i + u_i$$

 $\boldsymbol{x}_i = \text{Calificaciones}$ del examen de conocimientos para el estudiante i-esimo

 $y_i = \mbox{Calificaciones de cálculo para el estudiante i-esimo }$

$$i = 1, 2, ..., 10$$

Finalmente el modelo ajustado es:

$$\hat{y_i} = \hat{\beta_0} + \hat{\beta_1} x_i$$

Haciendo una regresión lineal, se obtiene:

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	40.7841552	8.506861	4.794266	0.0013655
$Conocimientos_matematicos$	0.7655618	0.174985	4.375015	0.0023645

Finalmente el modelo ajustado es:

$$\hat{y_i} = 40.7841552 + 0.7655618x_i$$

Calificaciones y conocimientos

Calificaciones del examen de conocimientos

Coeficiente de correlación muestral

Ahora, obteniendo su coeficiente de correlación muestral "r"

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

[1] 0.8397859

Este coeficiente como es positivo nos dice que que para esta muestra los estudiantes de universidad con más altas calificaciones en el examen de conocimientos tienden a obtener mas altas calificaciones en cálculo.

Nuestro estadistico de prueba

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$
$$n = 10$$

Nuestra hipotesis queda de la siguiente manera:

$$H_o: \rho = 0 \ VS \ H_a: \rho \neq 0$$

Finalmente nos da

```
##
## Pearson's product-moment correlation
##
## data: data$Conocimientos_matematicos and data$Calificacion_calculo
## t = 4.375, df = 8, p-value = 0.002365
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4459632 0.9611846
## sample estimates:
## cor
## 0.8397859
```

Observemos que por tablas de la distribución t de Student, a un nivel del 95%. El punto critico es $t_{\alpha/2} = t_{0.025} = 2.306$. Por lo tanto la evidencia sugiere que las calificaciones de conocimientos matemáticos y las calificaciones de cálculo son **dependientes**. Esto es porque nuestr estadistico t recae en la región de rechazo

Notemos que nuestro coeficiente de determinacion r^2 . Las calificaciones finales de cálculo se explica al ajustar el modelo lineal usando las calificaciones de conocimientos matemáticos com ola variable independiente. El modelo de regresión funciona bien

[1] 0.7052403