DOKUZ EYLÜL UNIVERSITY ENGINEERING FACULTY DEPARTMENT OF COMPUTER ENGINEERING

CME 4416 INTRODUCTION TO DATA MINING

NAIVE BAYES, K-NEAREST NEIGHBOR, K-MEANS, LINEAR REGRESSION, MULTILAYER PERCEPTRON, NON LINEAR REGRESSION (M5P) ALGORITHM WITH REAL ESTATE

by 2017510067 - Şefika Özlem PUL 2017510049 - Ece KAZAN

Advisor
Assoc. Prof. Dr. Feriştah DALKILIÇ

December 2020 İZMİR

CONTENTS

1.	Information About the Project	4
2.	Explanation About Our Algorithm	4
	2.1 Naive Bayes	4
	2.2 K-Nearest Neighbor	5
	2.3 K-Means	6
	2.4 Linear Regression	7
	2.5 Multilayer Perceptron	7
	2.6 Non Linear Regression (M5P)	8
3.	Tools Used in the Project	8
	3.1 Weka	8
	3.2 Using Weka in C#	9
4.	Project Results Screenshots	11
	4.1 Definition of Some Terms	11
	4.2 Naïve Bayes	12
	4.2.1 Use Training Set	12
	4.2.2 Cross Validation	14
	4.2.3 %90 Train, %10 Test Set	16
	4.2.4 Supplied Test Set	19
	4.2.4.1 Test 1	19
	4.2.4.2 Test 2	19
	4.2.5 Post-Classification Estimation Plot of the Data Set	20
	4.2.6 Weka in C#	22
	4.3 K-Nearest Neighbor	24
	4.3.1 When k is 5 and Euclidean Distance is Selected	24
	4.3.1.1 Use Training Set	24
	4.3.1.2 Cross Validation	27
	4.3.1.3 %90 Train, %10 Test Set	29
	4.3.1.4 Supplied Test Set	30
	4.3.2 When k is 9 and Manhattan Distance is Selected	31
	4.3.2.1 Use Training Set	31
	4.3.2.2 Cross Validation	33

	4.3	3.2.3 %90 Train, %10 Test	34
	4.3	3.2.4 Supplied Test Set	35
	4.3	3.2.5 Post –Classification Estimation Plot of the Data Set	36
	4.3	3.2.6 Weka in C#	38
	4.4 K-Me	eans	40
	4.4.1	When k is 5 and Euclidean Distance in Weka	40
	4.4.2	When k is 5 and Clustering in C#	43
	4.4.3	When k is 11 and Manhattan Distance in Weka	44
	4.4.4	When k is 11 and Clustering in C#	47
	4.5 Linea	r Regression	49
	4.5.1	Use Training Set	49
	4.5.2	Cross Validation	49
	4.5.3	%90 Train, %10 Test	50
	4.5.4	Supplied Test Set	50
	4.5	5.4.1 Test 1	50
	4.5	5.4.2 Test 2	51
	4.6 Multi	layer Perceptron	52
	4.6.1	Use Training Set	52
	4.6.2	Cross Validation	53
	4.6.3	%90 Train, %10 Test	53
	4.6.4	Supplied Test Set	53
	4.6	5.4.1 Test 1	53
	4.6	5.4.2 Test 2	54
	4.7 Non I	Linear Regression (M5P)	55
	4.7.1	Use Training Set	55
	4.7.2	Cross Validation	56
	4.7.3	%90 Train, %10 Test	56
	4.7.4	Supplied Test Set	57
	4.7	7.4.1 Test 1	57
	4.7	7.4.2 Test 2	57
5.	Reference	es	59

1. Information About the Project

The project to be done is to develop a mobile application in the field of real estate using augmented reality. Augmented Reality also allows the physical environment of the real world to be combined with the virtual environment via the phone. Therefore, the project will be developed by combining augmented reality and mobile application.

By using the mobile application, location information and phone camera to be developed, the information of the places for sale or rental will be displayed to the users. At the same time, advertisements similar to the advertisement watched by the user and advertisements viewed by other users will be shown to the user as suggestions. In addition, users will be able to make their ads visible to other users with the ad sharing feature. When users want to add ads, the existing ads are analyzed according to the selected features and a price suggestion is made to the user.

2. Explanation About Our Algorithm

2.1 Naive Bayes

It is a classification technique based on Bayes' Theorem with an assumption of independence among predictors. In simple terms, a Naive Bayes classifier assumes that the presence of a particular feature in a class is unrelated to the presence of any other feature. The Naive Bayes model is a conditional probability classification with Bayes Theorem applied.

Conditional probability defines the probability of an event occurring given the occurrence of another event. Another interesting thing we could do with the conditional probability is use it to calculate the joint probability – which is the probability of two or more simultaneous events. On the flip side, the joint probability could also be used to calculate the conditional probability.

Naive Bayes Classifier is one of the simple and most effective Classification algorithms which helps in building the fast machine learning models that can make quick predictions. It is a probabilistic classifier, which means it predicts on the basis of the probability of an object.

Naive Bayes model is easy to build and particularly useful for very large data sets. Along with simplicity, Naive Bayes is known to outperform even highly sophisticated classification methods.

The purpose of using this algorithm in the project is to provide a price suggestion to the user when the user wants to add a new ad, when the features of this ad and the features of the ads in the dataset are highly matched.

2.2 K-Nearest Neighbor

K-Nearest Neighbor is one of the simplest Machine Learning algorithms based on the Supervised Learning technique.

This algorithm assumes the similarity between the new state/data and the existing states and places the new state in the category most similar to the existing categories and classifies a new data point according to the similarity, keeping all existing data. This means that when new data appears, it can easily be classified into a well pack category using the K-NN algorithm.

It is also called a lazy learner algorithm because it does not learn from the training set immediately, but instead stores the dataset and performs an operation on the dataset at the time of classification. The K-NN working can be explained on the basis of the below algorithm:

Step-1: Select the number K of the neighbors

Step-2: Calculate the Euclidean distance of K number of neighbors

Step-3: Take the K nearest neighbors as per the calculated Euclidean distance.

Step-4: Among these k neighbors, count the number of the data points in each category.

Step-5: Assign the new data points to that category for which the number of the neighbor is maximum.

Step-6: Our model is ready.

The purpose of using this algorithm in the project is to list the k advertisement in the dataset as closely as possible to the features the user wants. In this way, the user can easily access the ads with the desired features instead of examining all the advertisement.

2.3 K-Means

K-Means Clustering is an unsupervised learning algorithm that is used to solve the clustering problems in machine learning or data science. K-Means Clustering is an Unsupervised Learning algorithm, which groups the unlabeled dataset into different clusters. It is an iterative algorithm that divides the unlabeled dataset into k different clusters in such a way that each dataset belongs only one group that has similar properties. It allows us to cluster the data into different groups and a convenient way to discover the categories of groups in the unlabeled dataset on its own without the need for any training.

It is a centroid-based algorithm, where each cluster is associated with a centroid. The main aim of this algorithm is to minimize the sum of distances between the data point and their corresponding clusters.

The algorithm takes the unlabeled dataset as input, divides the dataset into k-number of clusters, and repeats the process until it does not find the best clusters. The value of k should be predetermined in this algorithm.

The k-means clustering algorithm mainly performs two tasks: Determines the best value for K center points or centroids by an iterative process. Assigns each data point to its closest k-center. Those data points which are near to the particular k-center, create a cluster. Hence each cluster has datapoints with some commonalities, and it is away from other clusters. The working of the K-Means algorithm is explained in the below steps:

- Step-1: Select the number K to decide the number of clusters.
- Step-2: Select random K points or centroids. (It can be other from the input dataset).
- Step-3: Assign each data point to their closest centroid, which will form the predefined K clusters.
 - Step-4: Calculate the variance and place a new centroid of each cluster.
- Step-5: Repeat the third steps, which means reassign each datapoint to the new closest centroid of each cluster.
 - Step-6: If any reassignment occurs, then go to step-4 else go to FINISH.
 - Step-7: The model is ready.

The purpose of using this algorithm is to divide the data in the dataset into k clusters. In this way, the advertisements in the data set are clustered and the advertisements with similar characteristics are placed in the same cluster.

2.4 Linear Regression

Linear regression may be defined as the statistical model that analyzes the linear relationship between a dependent variable with given set of independent variables. Linear relationship between variables means that when the value of one or more independent variables will change (increase or decrease), the value of dependent variable will also change accordingly (increase or decrease).

Linear regression attempts to model the relationship between two variables by fitting a linear equation to observed data. One variable is considered to be an explanatory variable, and the other is considered to be a dependent variable.

The purpose of using this algorithm in the project is to offer a price suggestion to the user by analyzing the features of this ad and the features of the ads in the dataset when the user wants to add a new ad.

2.5 Multilayer Perceptron

A multilayer perceptron (MLP) is a feedforward artificial neural network that generates a set of outputs from a set of inputs. An MLP is characterized by several layers of input nodes connected as a directed graph between the input and output layers. MLP uses backpropagation for training the network. MLP is a deep learning method.

MLPs form the basis for all neural networks and have greatly improved the power of computers when applied to classification and regression problems. Computers are no longer limited by XOR cases and can learn rich and complex models thanks to the multilayer perceptron.

The purpose of using this algorithm in the project is to offer a price suggestion to the user by analyzing the features of this ad and the features of the ads in the dataset when the user wants to add a new ad.

2.6 Non-Linear Regression (M5P)

M5 model tree is a decision tree learner for regression task that is used to predict values of numerical response variable Y, which is a binary decision tree having linear regression functions at the terminal (leaf) nodes.

The splitting criterion of the M5 model tree algorithm is based on treating the standard deviation of the class values that reach a node as an error measure at that node and calculating the expected reduction in this error as a result of testing each attribute at that node.

3. Tools Used in the Project

3.1 Weka

WEKA - an open source software provides tools for data preprocessing, implementation of several Machine Learning algorithms, and visualization tools so that you can develop machine learning techniques and apply them to real-world data mining problems.

You would save the preprocessed data in your local storage for applying ML algorithms. Depending on the kind of ML model that you are trying to develop you would select one of the options such as Classify, Cluster, or Associate. The Attributes Selection allows the automatic selection of features to create a reduced dataset.

WEKA would give you the statistical output of the model processing. It provides you a visualization tool to inspect the data. The various models can be applied on the same dataset. You can then compare the outputs of different models and select the best that meets your purpose.

Analyzes were made by choosing Naive Bayes, K-NN Algorithm and K-Means algorithms in the data set Weka. Naive Bayes and K-NN classification algorithms were preferred for price suggestion. K-Means clustering algorithm was preferred to classify similar advertisements.

Figure 3.1 Working Diagram of Weka

3.2 Using Weka in C#

Classification and clustering algorithms made in Weka were imported into Weka libraries and Windows Form application was made in C# programming language. The user enters the arff file name of the data set as input. One of the Naive Bayes, K-NN and K-Means algorithms to be used is selected. If the K-NN or K-Means algorithm is selected, the k value is also requested from the user. As a result of the selections made, the model of the file is created. If the user chooses the Naive Bayes or K-NN algorithm, the user is asked to make input values and choices according to the features in the data set. As a result, if the selected algorithm is the classification algorithm, the class of the feature is determined, and if it is the clustering algorithm, it is determined which cluster the data in the data set belongs to.

Figure 3.2 KNN Algorithm Selected

4. Project Results Screenshots

4.1 Definition of Some Terms

The TPR, or "Sensitivity", is a measure of the proportion of positive cases in the data that are correctly identified as such. It is defined in eq. 1 as the total number of correctly identified positive cases divided by the total number of positive cases.

False positive rate (FPR) is a measure of accuracy for a test: be it a medical diagnostic test, a machine learning model, or something else. In technical terms, the false positive rate is defined as the probability of falsely rejecting the null hypothesis.

Precision (also called positive predictive value) is the fraction of relevant instances among the retrieved instances, while recall (also known as sensitivity) is the fraction of relevant instances that were retrieved.

The ability of a model to find all the relevant cases within a data set. Mathematically, we define recall as the number of true positives divided by the number of true positives plus the number of false negatives.

The F-score or F-measure is a measure of a test's accuracy. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all positive results, including those not identified correctly, and the recall is the number of true positive results divided by the number of all samples that should have been identified as positive.

The Matthews correlation coefficient (MCC), instead, is a more reliable statistical rate which produces a high score only if the prediction obtained good results in all of the four confusion matrix categories (true positives, false negatives, true negatives, and false positives), proportionally both to the size of positive elements and the size of negative elements in the dataset.

An ROC curve (receiver operating characteristic curve) is a graph showing the performance of a classification model at all classification thresholds. This curve plots two parameters: True Positive Rate, False Positive Rate

"Precision-Recall Curve classification tree" or simply the "PRC classification tree" modifies two crucial stages in tree building. The first stage is to maximize the area under the precision-recall curve in node variable selection.

4.2 Naïve Bayes

4.2.1 Use Training Set

By choosing the Naive Bayes algorithm, 59.0227% of the 2067 data, 1220 data, were classified correctly.

=== Evaluation of	on trainin	g set ===	:									
Time taken to te	est model	on traini	ng data: 0.	17 second	ls							
=== Summary ===												
Correctly Classi	ified Inst	ances	1220		59.0227	eg.						
Kappa statistic			0.56	83								
Mean absolute error			0.01	.77								
Root mean square	Root mean squared error			55								
Relative absolut		52.89	4 %									
Root relative so	or	73.80	09 %									
Total Number of	- Instances		2067									
=== Detailed Accuracy By Class ===												
	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class			
	0,767	0,066	0,345	0,767	0,476	0,483	0,947	0,425	250000-300000			
	0,179	0,014	0,194	0,179	0,187	0,172	0,934	0,206	300000-350000			
	0,220	0,017	0,239	0,220	0,229	0,211	0,899	0,268	350000-400000			
	0,347	0,042	0,231	0,347	0,278	0,252	0,888	0,241	400000-450000			
	0,299	0,017	0,370	0,299	0,331	0,313	0,900	0,270	450000-500000			
	0,173	0,012	0,273	0,173	0,212	0,201	0,886	0,164	500000-550000			
	0,379	0,046	0,212	0,379	0,272	0,252	0,885	0,212	550000-600000			
	0,098	0,007	0,222	0,098	0,136	0,136	0,886	0,198	600000-650000			
	0,324	0,039	0,230	0,324	0,269	0,242	0,870	0,193	650000-700000			
	0,114	0,007	0,250	0,114	0,156	0,157	0,886	0,234	700000-750000			
	0,140	0,005	0,353	0,140	0,200	0,212	0,910	0,208	750000-800000			
	0,333	0,009	0,345	0,333	0,339	0,329	0,901	0,259	800000-850000			
	0,146	0,007	0,333	0,146	0,203	0,209	0,879	0,168	850000-900000			
	0,000	0,001	0,000	0,000	0,000	-0,003	0,879	0,098	900000-950000			
	0,125	0,005	0,231	0,125	0,162	0,163	0,945	0,244	950000-1000000			
	0,000	0,000	?	0,000	?	?	0,957	0,214	1000000-1050000			

Figure 4.2.1 Result When "Use Training Set" Option is Selected in Weka (1)

0,059	0,001	0,250	0,059	0,095	0,118	0,945	0,166	1050000-1100000
0,333	0,000	1,000	0,333	0,500	0,577	0,962	0,638	1100000-1150000
0,000	0,000	0,000	0,000	0,000	-0,002	0,929	0,204	1150000-1200000
0,000	0,000	0,000	0,000	0,000	-0,002	0,938	0,156	1200000-1250000
0,280	0,012	0,219	0,280	0,246	0,237	0,935	0,364	1250000-1300000
0,143	0,000	1,000	0,143	0,250	0,377	0,955	0,332	1300000-1350000
0,000	0,000	?	0,000	?	?	0,903	0,104	1350000-1400000
0,167	0,000	1,000	0,167	0,286	0,408	0,985	0,438	1400000-1450000
0,500	0,012	0,242	0,500	0,327	0,341	0,968	0,409	1450000-1500000
0,083	0,000	1,000	0,083	0,154	0,288	0,939	0,272	1500000-1550000
0,176	0,003	0,300	0,176	0,222	0,225	0,962	0,337	1550000-1600000
0,083	0,001	0,333	0,083	0,133	0,164	0,934	0,124	1600000-1650000
0,125	0,003	0,222	0,125	0,160	0,162	0,951	0,242	1650000-1700000
0,000	0,000	?	0,000	?	?	0,974	0,110	1700000-1750000
0,143	0,001	0,333	0,143	0,200	0,217	0,976	0,260	1750000-1800000
0,000	0,000	?	0,000	?	?	0,998	0,546	1800000-1850000
0,500	0,000	1,000	0,500	0,667	0,707	1,000	1,000	1850000-1900000
0,000	0,000	?	0,000	?	?	0,967	0,282	1900000-1950000
0,000	0,000	?	0,000	?	?	0,997	0,564	1950000-2000000
0,653	0,052	0,436	0,653	0,523	0,499	0,939	0,584	2000000-2050000
0,926	0,001	0,893	0,926	0,909	0,908	0,997	0,945	500-1000
0,979	0,005	0,955	0,979	0,967	0,963	0,995	0,992	1000-2000
0,983	0,001	0,992	0,983	0,987	0,986	0,993	0,990	2000-3000
0,986	0,014	0,843	0,986	0,909	0,905	0,995	0,991	3000-4000
0,963	0,003	0,928	0,963	0,945	0,943	0,985	0,949	4000-5000
0,917	0,004	0,830	0,917	0,871	0,869	0,999	0,970	5000-6000
0,889	0,000	0,970	0,889	0,928	0,927	0,999	0,973	6000-7000
0,840	0,001	0,913	0,840	0,875	0,874	1,000	0,975	7000-8000
0,593	0,002	0,800	0,593	0,681	0,685	0,997	0,719	8000-9000
0,500	0,000	1,000	0,500	0,667	0,706	1,000	0,957	9000-10000
0,375	0,000	0,750	0,375	0,500	0,529	0,999	0,833	10000-11000
0,750	0,000	0,857	0,750	0,800	0,801	0,994	0,809	11000-12000
0,563	0,000	0,900	0,563	0,692	0,710	0,999	0,879	12000-13000

Figure 4.2.1 Result When "Use Training Set" Option is Selected in Weka (2)

	0,500	0,000	1,000	0,500	0,667	0,707	0,999	0,831	13000-14000
	0,333	0,000	0,667	0,333	0,444	0,470	0,997	0,659	14000-15000
	0,700	0,001	0,778	0,700	0,737	0,737	0,991	0,715	15000-16000
	0,000	0,000	?	0,000	?	?	0,999	0,478	16000-17000
	0,400	0,000	0,667	0,400	0,500	0,516	0,997	0,617	17000-18000
	0,250	0,000	1,000	0,250	0,400	0,500	0,999	0,635	18000-19000
	0,500	0,000	1,000	0,500	0,667	0,707	0,999	0,625	19000-20000
	0,954	0,005	0,849	0,954	0,899	0,897	0,999	0,974	20000-21000
Weighted Avg.	0.590	0.015	?	0.590	?	?	0.952	0.602	

Figure 4.2.1 Result When "Use Training Set" Option is Selected in Weka (3)

With the use training set, the actual values in the price class in the data set and the estimated price class values as a result of the Naive Bayes algorithm were compared.

=== Predictions on training set ===

inst# actual predicted error prediction 1 36:2000000-2050000 29:1650000-1700000 0.188 2 19:1150000-1200000 36:2000000-2050000 + 0.243 0.229 3 14:900000-950000 2:300000-350000 + 4 14:900000-950000 6:500000-550000 + 0.133 5 36:2000000-2050000 36:2000000-2050000 0.844 6 4:400000-450000 1:250000-300000 + 0.315 7 36:2000000-2050000 36:2000000-2050000 0.757 8 36:2000000-2050000 36:2000000-2050000 0.598 9 36:2000000-2050000 36:2000000-2050000 0.823 10 36:2000000-2050000 4:400000-450000 + 11 25:1450000-1500000 25:1450000-1500000 0.762 12 26:1500000-1550000 10:700000-750000 + 0.131 13 36:2000000-2050000 36:2000000-2050000 0.359 14 5:450000-500000 5:450000-500000 0.215 15 27:1550000-1600000 27:1550000-1600000 0.531 16 34:1900000-1950000 27:1550000-1600000 + 17 4:400000-450000 4:400000-450000 0.358 18 1:250000-300000 36:2000000-2050000 0.278 19 5:450000-500000 1:250000-300000 + 0.44 20 23:1350000-1400000 8:600000-650000 + 0.191 21 21:1250000-1300000 36:2000000-2050000 22 36:2000000-2050000 36:2000000-2050000 0.556 23 4:400000-450000 6:500000-550000 + 0.329 24 1:250000-300000 1:250000-300000 0.309 25 1:250000-300000 9:650000-700000 26 27:1550000-1600000 27:1550000-1600000 0.726 27 1:250000-300000 7:550000-600000 + 0.355 28 13:850000-900000 4:400000-450000 0.21 29 15:950000-1000000 5:450000-500000 0.138 30 36:2000000-2050000 36:2000000-2050000 0.908

Figure 4.2.1 Class Comparison in Dataset

4.2.2 Cross Validation

Cross-validation, a standard evaluation technique, is a systematic way of running repeated percentage splits. Divide a dataset into 10 pieces ("folds"), then hold out each piece in turn for testing and train on the remaining 9 together.

When the n value of the Cross Validation is 10, 47.7504 % of the 2067 data, 987 data were classified correctly.

```
Time taken to build model: 0.02 seconds
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances
                                                  47.7504 %
                                   0.4491
Kappa statistic
Mean absolute error
                                    0.0203
Root mean squared error
                                   0.1058
                                   60.6983 %
Relative absolute error
Root relative squared error
                                   81.7953 %
Total Number of Instances
=== Detailed Accuracy By Class ===
               TP Rate FP Rate Precision Recall F-Measure MCC
                                                                  ROC Area PRC Area Class
                                                          0,318 0,912
               0,544
                     0,079
                             0,239 0,544
                                                0,332
                                                                           0,269
                                                                                    250000-300000
               0,026
                     0,011
                             0,042
                                        0,026 0,032
                                                          0,018 0,855
                                                                            0,083
                                                                                     300000-350000
                             0,111
0,067
                                       0,100
0,111
                                                         0,084
0,043
               0,100
                      0,020
                                                0,105
                                                                  0,821
                                                                           0,110
                                                                                    350000-400000
                                               0,083
               0.111
                       0.056
                                                                  0.816
                                                                           0.094
                                                                                    400000-450000
               0,015
                       0,026
                             0,019
                                       0,015 0,017
                                                          -0,012 0,820
                                                                           0,089
                                                                                    450000-500000
               0,038
                       0,016
                              0,057
                                        0,038
                                                0,046
                                                          0,027
                                                                  0,777
                                                                           0,059
                                                                                    500000-550000
                                        0,227
               0,227
                       0,048
                              0,134
                                                0,169
                                                          0,139
                                                                  0,830
                                                                           0,140
                                                                                    550000-600000
               0,000
                      0,010
                             0,000
                                       0,000
                                               0,000
                                                          -0,014 0,747
                                                                           0,038
                                                                                     600000-650000
               0,183
                       0,055
                              0,107
                                        0,183
                                                0,135
                                                          0,099
                                                                  0,790
                                                                           0,092
                                                                                     650000-700000
               0.045
                       0,008
                              0,105
                                        0,045
                                                0,063
                                                          0,056
                                                                  0,790
                                                                           0,069
                                                                                    700000-750000
               0,000
                       0,008
                             0,000
                                       0,000 0,000
                                                          -0,013 0,813
                                                                            0,068
                                                                                    750000-800000
               0,033
                       0,012
                              0,040
                                        0,033
                                                0,036
                                                          0,024
                                                                  0,797
                                                                           0,071
                                                                                     800000-850000
                                               0,058
                              0,095
                                        0,042
                                                                  0,791
                                                                           0,075
                                                          0,048
                                                                                    850000-900000
               0.042
                       0,009
               0,000
                       0,001
                             0,000
                                         0,000 0,000
                                                          -0,004 0,700
                                                                            0,021
                                                                                     900000-950000
               0,083
                       0,004
                               0,182
                                        0,083
                                                0,114
                                                          0,116
                                                                  0,830
                                                                            0,060
                                                                                     950000-1000000
                                                          -0,002 0,736
               0,000
                       0,000
                               0,000
                                         0,000
                                                0,000
                                                                            0,017
                                                                                    1000000-1050000
```

Figure 4.2.2 Result When "Cross Validation" is Selected and n=10 in Weka (1)

0,000	0,003	0,000	0,000	0,000	-0,005	0,828	0,026	1050000-1100000
0,000	0,000	?	0,000	?	?	0,851	0,040	1100000-1150000
0,000	0,001	0,000	0,000	0,000	-0,003	0,743	0,020	1150000-1200000
0,000	0,000	?	0,000	?	?	0,759	0,014	1200000-1250000
0,200	0,012	0,167	0,200	0,182	0,172	0,855	0,154	1250000-1300000
0,000	0,000	?	0,000	?	?	0,631	0,054	1300000-1350000
0,000	0,000	?	0,000	?	?	0,737	0,016	1350000-1400000
0,000	0,000	0,000	0,000	0,000	-0,001	0,731	0,020	1400000-1450000
0,313	0,012	0,167	0,313	0,217	0,220	0,857	0,241	1450000-1500000
0,000	0,000	?	0,000	?	?	0,684	0,014	1500000-1550000
0,118	0,006	0,133	0,118	0,125	0,118	0,896	0,068	1550000-1600000
0,000	0,000	?	0,000	?	?	0,775	0,019	1600000-1650000
0,000	0,006	0,000	0,000	0,000	-0,007	0,848	0,035	1650000-1700000
0,000	0,000	?	0,000	?	?	0,334	0,002	1700000-1750000
0,000	0,000	?	0,000	?	?	0,761	0,013	1750000-1800000
0,000	0,000	?	0,000	?	?	0,688	0,010	1800000-1850000
0,000	0,000	?	0,000	?	?	0,141	0,001	1850000-1900000
0,000	0,000	0,000	0,000	0,000	-0,001	0,497	0,003	1900000-1950000
0,000	0,000	?	0,000	?	?	0,642	0,007	1950000-2000000
0,512	0,053	0,376	0,512	0,434	0,398	0,919	0,465	2000000-2050000
0,852	0,002	0,852	0,852	0,852	0,850	0,980	0,896	500-1000
0,979	0,009	0,917	0,979	0,947	0,942	0,993	0,988	1000-2000
0,975	0,004	0,971	0,975	0,973	0,970	0,990	0,986	2000-3000
0,980	0,019	0,796	0,980	0,878	0,873	0,990	0,985	3000-4000
0,913	0,005	0,880	0,913	0,896	0,892	0,980	0,925	4000-5000
0,813	0,010	0,650	0,813	0,722	0,720	0,988	0,819	5000-6000
0,667	0,003	0,774	0,667	0,716	0,714	0,976	0,816	6000-7000
0,480	0,002	0,750	0,480	0,585	0,596	0,916	0,735	7000-8000
0,333	0,002	0,643	0,333	0,439	0,458	0,986	0,491	8000-9000
0,000	0,000	0,000	0,000	0,000	-0,002	0,886	0,248	9000-10000
0,125	0,000	1,000	0,125	0,222	0,353	0,971	0,270	10000-11000
0,250	0,002	0,333	0,250	0,286	0,286	0,959	0,345	11000-12000
0,000	0,002	0,000	0,000	0,000	-0,004	0,941	0,175	12000-13000

Figure 4.2.2 Result When "Cross Validation" is Selected and n=10 in Weka (2)

	0,000	0,001	0,000	0,000	0,000	-0,002	0,609	0,041	13000-14000
	0,000	0,002	0,000	0,000	0,000	-0,002	0,943	0,038	14000-15000
	0,400	0,002	0,444	0,400	0,421	0,419	0,962	0,370	15000-16000
	0,000	0,000	?	0,000	?	?	0,117	0,001	16000-17000
	0,000	0,000	0,000	0,000	0,000	-0,001	0,796	0,063	17000-18000
	0,000	0,001	0,000	0,000	0,000	-0,001	0,413	0,003	18000-19000
	0,000	0,000	?	0,000	?	?	0,077	0,001	19000-20000
	0,877	0,012	0,704	0,877	0,781	0,778	0,994	0,883	20000-21000
Weighted Avg.	0,478	0,019	?	0,478	?	?	0,890	0,480	

Figure 4.2.2 Result When "Cross Validation" is Selected and n=10 in Weka (3)

4.2.3 %90 Train, %10 Test Set

Percentage Split (Fixed or Holdout) is a re-sampling method that leave out random N% of the original data.

When the data set was 90% train and 10% test set, 87 data, 42,029% of 207 data, were classified correctly.

```
=== Evaluation on test split ===
Time taken to test model on test split: 0.01 seconds
=== Summary ===
Correctly Classified Instances
                                                     42.029 %
                                     0.388
Kappa statistic
Mean absolute error
                                     0.0213
                                     0.1104
Root mean squared error
Relative absolute error
                                    63.4097 %
Root relative squared error
                                    85.2929 %
Total Number of Instances
                                    207
=== Detailed Accuracy By Class ===
               TP Rate FP Rate Precision Recall F-Measure MCC
                                                                     ROC Area PRC Area Class
               0,500
                       0,065
                               0,188
                                         0,500
                                                  0,273
                                                            0,273
                                                                     0,920
                                          0,000
                       0.020
                                                             -0.017
               0.000
                               0.000
                                                  0.000
                                                                     0.908
                                                                              0.125
                                                                                       300000-350000
               0,000
                       0,020
                              0,000
                                         0,000 0,000
                                                            -0,028
                                                                     0,880 0,181
                                                                                       350000-400000
               0,000
                       0,083
                               0,000
                                          0,000
                                                  0,000
                                                             -0,030
                                                                     0,478
                                                                              0,014
                                                                                        400000-450000
               0,000
                       0,035
                               0,000
                                          0,000
                                                  0,000
                                                             -0,040
                                                                     0,803
                                                                              0,129
                                                                                        450000-500000
               0,000
                       0,005
                               0,000
                                          0,000
                                                  0,000
                                                             -0,014
                                                                     0,844
                                                                              0,134
                                                                                        500000-550000
                               0,100
                                                 0,143
               0,250
                       0,044
                                          0,250
                                                            0,132
                                                                     0,868
                                                                              0,214
                                                                                        550000-600000
                                                                     0,776
               0,000
                        0,005
                                0,000
                                          0,000
                                                  0,000
                                                             -0,013
                                                                              0,129
                                                                                        600000-650000
               0,167
                       0,075
                               0,063
                                          0,167
                                                  0,091
                                                             0,058
                                                                     0,734
                                                                              0,068
                                                                                        650000-700000
               0,000
                                                                     0,793
                        0,000
                                          0,000
                                                                              0,106
                                                                                        700000-750000
               0,000
                        0,020
                                          0,000
                               0,000
                                                                     0,566
                                                                              0,048
                                                  0,000
                                                            -0,022
                                                                                        750000-800000
                                                                              0,108
               0,000
                        0,010
                                0,000
                                          0,000
                                                  0,000
                                                            -0,012
                                                                     0,915
                                                                                        800000-850000
               0,000
                        0,010
                               0,000
                                          0,000
                                                  0.000
                                                            -0.020
                                                                     0.653
                                                                              0,091
                                                                                        850000-900000
               0,000
                        0,000
                                          0,000
                                                  ?
                                                                     0,552
                                                                               0,071
                                                                                        900000-950000
               0,000
                        0,000
                                ?
                                          0,000
                                                  ?
                                                             ?
                                                                     0,913
                                                                               0,152
                                                                                        950000-1000000
               0,000
                        0,000
                                          0,000
                                                                     0,815
                                                                               0,087
                                                                                        1000000-1050000
```

Figure 4.2.3 Results with 10% of the Dataset (1)

_		_	_	_	_	_	_	
?	0,000	?	?	?	?	?	?	1150000-1200000
?	0,000	?	?	?	?	?	?	1200000-1250000
0,500	0,015	0,250	0,500	0,333	0,345	0,971	0,571	1250000-1300000
0,000	0,000	?	0,000	?	?	1,000	1,000	1300000-1350000
0,000	0,000	?	0,000	?	?	0,898	0,149	1350000-1400000
0,000	0,000	?	0,000	?	?	0,155	0,006	1400000-1450000
0,500	0,015	0,250	0,500	0,333	0,345	0,976	0,236	1450000-1500000
0,000	0,000	?	0,000	?	?	0,778	0,092	1500000-1550000
0,000	0,005	0,000	0,000	0,000	-0,007	0,902	0,080	1550000-1600000
0,000	0,000	?	0,000	?	?	0,756	0,034	1600000-1650000
0,000	0,010	0,000	0,000	0,000	-0,007	0,612	0,012	1650000-1700000
?	0,000	?	?	?	?	?	?	1700000-1750000
0,000	0,000	?	0,000	?	?	0,844	0,063	1750000-1800000
?	0,000	?	?	?	?	?	?	1800000-1850000
?	0,000	?	?	?	?	?	?	1850000-1900000
0,000	0,000	?	0,000	?	?	0,214	0,006	1900000-1950000
?	0,000	?	?	?	?	?	?	1950000-2000000
0,545	0,082	0,273	0,545	0,364	0,338	0,914	0,381	2000000-2050000
1,000	0,000	1,000	1,000	1,000	1,000	1,000	1,000	500-1000
1,000	0,000	1,000	1,000	1,000	1,000	1,000	1,000	1000-2000
0,935	0,023	0,879	0,935	0,906	0,890	0,968	0,973	2000-3000
0,917	0,005	0,917	0,917	0,917	0,912	1,000	1,000	3000-4000
0,875	0,000	1,000	0,875	0,933	0,933	0,996	0,946	4000-5000
1,000	0,005	0,667	1,000	0,800	0,815	1,000	1,000	5000-6000
0,833	0,000	1,000	0,833	0,909	0,911	1,000	1,000	6000-7000
0,000	0,005	0,000	0,000	0,000	-0,007	0,988	0,367	7000-8000
0,000	0,005	0,000	0,000	0,000	-0,007	0,990	0,450	8000-9000
?	0,000	?	?	?	?	?	?	9000-10000
?	0,000	?	?	?	?	?	?	10000-11000
0,000	0,010	0,000	0,000	0,000	-0,007	0,981	0,200	11000-12000
0,000	0,000	?	0,000	?	?	0,998	0,833	12000-13000
?	0,000	?	?	?	?	?	?	13000-14000
?	0,000	?	?	?	?	?	?	14000-15000
?	0,000	?	?	?	?	?	?	15000-16000
•	0,000	•	-	•	•	-	•	

Figure 4.2.3 Results with 10% of the Dataset (2)

	?	0,000	?	?	?	?	?	?	16000-17000
	?	0,000	?	?	?	?	?	?	17000-18000
	0,000	0,015	0,000	0,000	0,000	-0,008	0,908	0,050	18000-19000
	?	0,000	?	?	?	?	?	?	19000-20000
	0,500	0,010	0,333	0,500	0,400	0,401	0,983	0,611	20000-21000
rand other all many	0.400	0.010	0	0.400	0	0	0.070	0.404	

Figure 4.2.3 Results with 10% of the Dataset (3)

By splitting 90% of the data set, the actual values in the price class in the data set and the estimated price class values as a result of the Naive Bayes algorithm were compared.

```
Test mode: split 90.0% train, remainder test
=== Predictions on test split ===
            actual predicted error prediction
   inst#
       1 7:550000-600000 1:250000-300000 + 0.466
       2 39:2000-3000 39:2000-3000 0.989
       3 21:1250000-1300000 21:1250000-1300000
       4 10:700000-750000 7:550000-600000 + 0.717
       5 3:350000-400000 1:250000-300000 + 0.788
       6 38:1000-2000 38:1000-2000 0.994
7 39:2000-3000 39:2000-3000 0.808
       8 13:850000-900000 5:450000-500000 + 0.279
      9 10:700000-750000 7:550000-600000 + 0.303
10 13:850000-900000 1:250000-300000 + 0.408
      11 24:1400000-1450000 36:2000000-2050000
      12 39:2000-3000 39:2000-3000 0.994
      13 5:450000-500000 4:400000-450000 + 0.176
      14 16:1000000-1050000 36:2000000-2050000 + 0.552
      15 38:1000-2000 38:1000-2000 0.995
      16 36:2000000-2050000 36:2000000-2050000
      17 10:700000-750000 9:650000-700000 + 0.473
      18 41:4000-5000 41:4000-5000 0.883
      19 36:2000000-2050000 36:2000000-2050000
                                                   0.903
      20 29:1650000-1700000 4:400000-450000 + 0.255
      21 2:300000-350000 1:250000-300000 + 0.547
      22 41:4000-5000 41:4000-5000 0.835
      23 14:900000-950000 11:750000-800000 +
      24 38:1000-2000 38:1000-2000 0.982
      25 8:600000-650000 1:250000-300000 + 0.469
      26 39:2000-3000 39:2000-3000 0.993
      27 3:350000-400000 5:450000-500000 + 0.533
      28 28:1600000-1650000 36:2000000-2050000 + 0.424
      29 14:900000-950000 48:11000-12000 + 0.536
```

Figure 4.2.3 Classes in the Data Set of The Price Class of the Data and in the Algorithm Result (1)

```
207 40:3000-4000 57:20000-21000 + 0.378
=== Evaluation on test split ===
Time taken to test model on test split: 0.05 seconds
=== Summary ===
                             87
Correctly Classified Instances
                                                   42.029 %
                                    0.388
Kappa statistic
                                    0.0213
Mean absolute error
Root mean squared error
                                    0.1104
                                  63.4097 %
85.2929 %
Relative absolute error
Root relative squared error
Total Number of Instances
                                  207
```

Figure 4.2.3 How Many Data are Correctly Classified (2)

4.2.4 Supplied Test Set

4.2.4.1 Test 1

Test data: Satilik,4+2,300,2,5,Merkezi,5,Bilinmiyor,Esyali,4,Betonarme,Ikinci-El, Bos, 1500, Hayir,Kuzey-Dogu,20000-21000,Dogalgaz,?

In the test file, the 20000-21000 class was suggested at a rate of 0.987 for this data set.

Figure 4.2.4.1 Class Prediction in the Algorithm's Test-1 Data

4.2.4.2 Test 2

Test data: Kiralik,2+1,300,2, 5, Kombi, 5, Bilinmiyor, Esyali-Degil, 4, Betonarme, Ikinci-El, Bos, 30, Hayir, Kuzey-Dogu,20000-21000,Dogalgaz,?

In the test file, the 20000-21000 class was suggested at a rate of 0.992 for this data set.

```
=== Re-evaluation on test set ===

User supplied test set
Relation: temp
Instances: unknown (yet). Reading incrementally
Attributes: 19

=== Predictions on user test set ===

inst# actual predicted error prediction
 1 1:? 57:20000-21000 0.992

=== Summary ===

Total Number of Instances 0
Ignored Class Unknown Instances 1
```

Figure 4.2.4.2 Class Prediction in the Algorithm's Test-2 Data

4.2.5 Post-Classification Estimation Plot of the Data Set

In the price classification of the data in the data set, the data on the diagonal of the graph are classified correctly, as in the chart below, the ones other than the diagonal are classified incorrectly in the data set.

Figure 4.2.5 Post-Classification Estimation Plot of the Data Set

For example, when a point on the diagonal is selected, it is seen that the price is correctly classified.

Figure 4.2.5 Correctly Classified Data

For example, when a point other than the diagonal is selected, it has been observed that the price is incorrectly classified.

Figure 4.2.5 Misclassified Data

4.2.6 Weka in C#

When the Naive Bayes algorithm is run in the form application made in the C# programming language, a screen like the one in the figure is shown. Input values are requested from the user and the price class is suggested with the Naive Bayes algorithm.

Figure 4.2.6 Naive Bayes Classification in C#

Figure 4.2.6 Naive Bayes Classification in C#

4.3 K-Nearest Neighbor

4.3.1 When k is 5 and Euclidean Distance is Selected

4.3.1.1 Use Training Set

By choosing k=5 and Euclidean Distance in the KNN algorithm, 60.4257% of the 2067 data in the data set, 1249 data, were classified correctly.

Test mode: evaluate on training data											
=== Classifier m	=== Classifier model (full training set) ===										
IB1 instance-based classifier using 5 nearest neighbour(s) for classification											
Time taken to build model: 0 seconds											
=== Evaluation on training set ===											
Time taken to test model on training data: 0.38 seconds											
=== Summary ===											
Correctly Classified Instances 1249 60.4257 %											
Kappa statistic			0.58	122							
Mean absolute en	ror		0.01	.73							
Root mean square	ed error		0.09	002							
Relative absolut	e error		51.75	4 %							
Root relative so	quared err	or	69.74	11 %							
Total Number of	Instances	3	2067								
=== Detailed Accuracy By Class ===											
	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class		
	0,822	0,076	0,330	0,822	0,471	0,490	0,965	0,529	250000-300000		
	0,487	0,027	0,260	0,487	0,339	0,339	0,976	0,301	300000-350000		
	0,400	0,024	0,290	0,400	0,336	0,321	0,971	0,346	350000-400000		
	0,528	0,035	0,352	0,528	0,422	0,406	0,956	0,358	400000-450000		
	0,418	0,019	0,431	0,418	0,424	0,405	0,967	0,382	450000-500000		
	0,192 0,015 0,244 0,192 0,215 0,199 0,953 0,224 500000-550000										

Figure 4.3.1.1 Result when "Use Training Set" Option is Selected in Weka (1)

0	,379	0,025	0,329	0,379	0,352	0,330	0,955	0,325	550000-600000
0	,293	0,011	0,353	0,293	0,320	0,309	0,974	0,341	600000-650000
0	,423	0,022	0,411	0,423	0,417	0,396	0,960	0,401	650000-700000
0	,250	0,012	0,306	0,250	0,275	0,262	0,967	0,259	700000-750000
0	,233	0,009	0,345	0,233	0,278	0,271	0,964	0,253	750000-800000
0	,300	0,005	0,474	0,300	0,367	0,370	0,981	0,303	800000-850000
0	,167	0,010	0,276	0,167	0,208	0,200	0,965	0,274	850000-900000
0	,182	0,004	0,333	0,182	0,235	0,240	0,981	0,266	900000-950000
0	,083	0,002	0,286	0,083	0,129	0,149	0,985	0,292	950000-1000000
0	,300	0,001	0,600	0,300	0,400	0,422	0,995	0,365	1000000-1050000
0	,412	0,005	0,412	0,412	0,412	0,407	0,991	0,347	1050000-1100000
0	, 111	0,000	1,000	0,111	0,200	0,333	0,995	0,354	1100000-1150000
0	,200	0,002	0,429	0,200	0,273	0,289	0,989	0,282	1150000-1200000
0	,143	0,001	0,500	0,143	0,222	0,265	0,990	0,343	1200000-1250000
0	,400	0,005	0,500	0,400	0,444	0,441	0,985	0,388	1250000-1300000
0	,000	0,000	?	0,000	?	?	0,993	0,194	1300000-1350000
0	,063	0,001	0,250	0,063	0,100	0,122	0,987	0,243	1350000-1400000
0	,000	0,000	?	0,000	?	?	0,995	0,222	1400000-1450000
0	,188	0,007	0,176	0,188	0,182	0,175	0,987	0,275	1450000-1500000
0	,250	0,000	0,750	0,250	0,375	0,431	0,994	0,388	1500000-1550000
0	,294	0,001	0,714	0,294	0,417	0,456	0,991	0,423	1550000-1600000
0	,000	0,000	?	0,000	?	?	0,989	0,214	1600000-1650000
0	,000	0,001	0,000	0,000	0,000	-0,003	0,983	0,195	1650000-1700000
0	,000	0,000	?	0,000	?	?	0,997	0,235	1700000-1750000
0	,000	0,000	0,000	0,000	0,000	-0,001	0,992	0,171	1750000-1800000
0	,000	0,000	?	0,000	?	?	0,998	0,286	1800000-1850000
0	,000	0,000	?	0,000	?	?	0,999	0,250	1850000-1900000
0	,000	0,000	?	0,000	?	?	0,995	0,214	1900000-1950000
0	,000	0,000	?	0,000	?	?	0,998	0,333	1950000-2000000
0	,612	0,022	0,632	0,612	0,622	0,599	0,975	0,644	2000000-2050000
0	,852	0,002	0,821	0,852	0,836	0,834	0,998	0,834	500-1000
1	,000	0,017	0,858	1,000	0,923	0,918	1,000	0,994	1000-2000
0	,992	0,025	0,842	0,992	0,910	0,902	1,000	0,996	2000-3000

Figure 4.3.1.1 Result When "Use Training Set" Option is Selected in Weka (2)

	0,980	0,015	0,837	0,980	0,903	0,898	0,999	0,988	3000-4000
	0,825	0,005	0,868	0,825	0,846	0,840	0,998	0,957	4000-5000
	0,729	0,001	0,946	0,729	0,824	0,827	0,997	0,879	5000-6000
	0,667	0,000	0,960	0,667	0,787	0,797	0,998	0,887	6000-7000
	0,640	0,000	0,941	0,640	0,762	0,774	0,998	0,832	7000-8000
	0,593	0,000	1,000	0,593	0,744	0,768	0,998	0,847	8000-9000
	0,300	0,000	1,000	0,300	0,462	0,547	0,996	0,520	9000-10000
	0,375	0,000	1,000	0,375	0,545	0,612	0,999	0,768	10000-11000
	0,500	0,000	1,000	0,500	0,667	0,706	0,996	0,558	11000-12000
	0,438	0,000	1,000	0,438	0,609	0,660	0,997	0,738	12000-13000
	0,000	0,000	?	0,000	?	?	0,999	0,545	13000-14000
	0,333	0,000	1,000	0,333	0,500	0,577	0,999	0,714	14000-15000
	0,000	0,000	?	0,000	?	?	0,999	0,738	15000-16000
	0,000	0,000	?	0,000	?	?	0,998	0,231	16000-17000
	0,200	0,000	1,000	0,200	0,333	0,447	0,998	0,467	17000-18000
	0,250	0,000	1,000	0,250	0,400	0,500	1,000	0,750	18000-19000
	0,000	0,000	?	0,000	?	?	0,999	0,400	19000-20000
	0,923	0,002	0,923	0,923	0,923	0,921	0,999	0,971	20000-21000
Weighted Avg.	0,604	0,017	?	0,604	?	?	0,984	0,635	

Figure 4.3.1.1 Result When "Use Training Set" Option is Selected in Weka (3)

With the use training set, the actual values in the price class in the data set and the estimated price class values as a result of the K-NN Algorithm k=5 were compared.

=== Predictions on training set ===

```
actual predicted error prediction
 1 36:2000000-2050000 14:900000-950000
                                              0.222
 2 19:1150000-1200000 5:450000-500000
 3 14:900000-950000 36:2000000-2050000
 4 14:900000-950000 4:400000-450000
 5 36:2000000-2050000 36:2000000-2050000
                                                0.332
 6 4:400000-450000 1:250000-300000
                                          0.222
 7 36:2000000-2050000 36:2000000-2050000
                                                0.443
 8 36:2000000-2050000 36:2000000-2050000
                                                0.332
 9 36:2000000-2050000 36:2000000-2050000
                                                0.554
10 36:2000000-2050000 36:2000000-2050000
                                                0.332
11 25:1450000-1500000 25:1450000-1500000
                                                0.332
12 26:1500000-1550000 26:1500000-1550000
                                                0.332
13 36:2000000-2050000 36:2000000-2050000
                                                0.443
14 5:450000-500000 5:450000-500000
                                         0.222
15 27:1550000-1600000 27:1550000-1600000
16 34:1900000-1950000 27:1550000-1600000
17 4:400000-450000 1:250000-300000
18 1:250000-300000 11:750000-800000
                                           0.222
19 5:450000-500000 1:250000-300000
                                          0.332
20 23:1350000-1400000 5:450000-500000
21 21:1250000-1300000 25:1450000-1500000
                                                0.443
22 36:2000000-2050000 13:850000-900000
                                              0.222
23 4:400000-450000 9:650000-700000
                                         0.222
24 1:250000-300000 1:250000-300000
                                          0.332
25 1:250000-300000 12:800000-850000
                                           0.222
26 27:1550000-1600000 27:1550000-1600000
27 1:250000-300000 7:550000-600000
28 13:850000-900000 5:450000-500000
29 15:950000-1000000 6:500000-550000
                                           0.222
30 36:2000000-2050000 27:1550000-1600000
31 8:600000-650000 1:250000-300000
                                         0.222
```

Figure 4.3.1.1 Class Comparison in Dataset (1)

```
2067 37:500-1000 40:3000-4000 + 0.443
=== Evaluation on training set ===
Time taken to test model on training data: 1.02 seconds
=== Summary ===
Correctly Classified Instances 1155
                                                      55.8781 %
                                      0.5332
Kappa statistic
                                       0.0203
Mean absolute error
Root mean squared error
                                       0.0969
Relative absolute error
Root relative squared error
                                      60.5272 %
                                      74.9166 %
                                  2067
Total Number of Instances
```

Figure 4.3.1.1 Class Comparison in Dataset (2)

4.3.1.2 Cross Validation

When the n value of the Cross Validation is 10, 44.1219 % of the 2067 data, 912 data were classified correctly.

```
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances
                                  912
                                                   44.1219 %
Kappa statistic
                                     0.4084
Mean absolute error
                                     0.0221
Root mean squared error
                                    0.111
Relative absolute error
                                    65.9406 %
Root relative squared error
                                    85.8216 %
Total Number of Instances
                                  2067
```

Figure 4.3.1.2 Result When "Cross Validation" is Selected and n=10 in Weka (1)

===	Detailed	Accuracy	, By	Class	===
-----	----------	----------	------	-------	-----

TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class
0,456	0,098	0,174	0,456	0,252	0,230	0,755	0,193	250000-300000
0,051	0,032	0,030	0,051	0,038	0,015	0,650	0,044	300000-350000
0,120	0,047	0,059	0,120	0,079	0,052	0,676	0,086	350000-400000
0,222	0,047	0,147	0,222	0,177	0,144	0,698	0,103	400000-450000
0,104	0,032	0,099	0,104	0,101	0,070	0,719	0,099	450000-500000
0,000	0,026	0,000	0,000	0,000	-0,026	0,547	0,030	500000-550000
0,212	0,032	0,179	0,212	0,194	0,166	0,645	0,112	550000-600000
0,024	0,011	0,043	0,024	0,031	0,018	0,585	0,032	600000-650000
0,099	0,029	0,109	0,099	0,104	0,074	0,702	0,094	650000-700000
0,068	0,016	0,086	0,068	0,076	0,059	0,582	0,038	700000-750000
0,023	0,011	0,042	0,023	0,030	0,016	0,561	0,028	750000-800000
0,100	0,010	0,130	0,100	0,113	0,103	0,639	0,050	800000-850000
0,021	0,014	0,034	0,021	0,026	0,009	0,562	0,033	850000-900000
0,000	0,004	0,000	0,000	0,000	-0,006	0,589	0,018	900000-950000
0,000	0,001	0,000	0,000	0,000	-0,003	0,512	0,015	950000-1000000
0,000	0,000	?	0,000	?	?	0,579	0,014	1000000-1050000
0,118	0,002	0,286	0,118	0,167	0,179	0,712	0,076	1050000-1100000
0,000	0,001	0,000	0,000	0,000	-0,002	0,517	0,007	1100000-1150000
0,000	0,004	0,000	0,000	0,000	-0,005	0,485	0,010	1150000-1200000
0,000	0,001	0,000	0,000	0,000	-0,003	0,577	0,010	1200000-1250000
0,120	0,004	0,250	0,120	0,162	0,166	0,652	0,106	1250000-1300000
0,000	0,000	?	0,000	?	?	0,430	0,003	1300000-1350000
0,000	0,001	0,000	0,000	0,000	-0,003	0,501	0,008	1350000-1400000
0,000	0,000	?	0,000	?	?	0,478	0,003	1400000-1450000
0,125	0,007	0,118	0,125	0,121	0,114	0,621	0,048	1450000-1500000
0,250	0,001	0,600	0,250	0,353	0,385	0,525	0,154	1500000-1550000
0,059	0,002	0,167	0,059	0,087	0,095	0,649	0,033	1550000-1600000
0,000	0,000	0,000	0,000	0,000	-0,002	0,512	0,006	1600000-1650000
0,000	0,002	0,000	0,000	0,000	-0,004	0,499	0,008	1650000-1700000
0,000	0,000	?	0,000	?	?	0,645	0,003	1700000-1750000
0,000	0,001	0,000	0,000	0,000	-0,002	0,619	0,007	1750000-1800000

Figure 4.3.1.2 Result When "Cross Validation" is Selected and n=10 in Weka (2)

	0,000	0,000	?	0,000	?	?	0,648	0,001	1850000-1900000
	0,000	0,000	?	0,000	?	?	0,397	0,002	1900000-1950000
	0,000	0,000	?	0,000	?	?	0,548	0,003	1950000-2000000
	0,405	0,032	0,441	0,405	0,422	0,389	0,814	0,363	2000000-2050000
	0,593	0,002	0,762	0,593	0,667	0,668	0,895	0,683	500-1000
	1,000	0,028	0,788	1,000	0,881	0,875	0,998	0,978	1000-2000
	0,983	0,042	0,757	0,983	0,856	0,843	0,998	0,984	2000-3000
	0,959	0,026	0,738	0,959	0,834	0,828	0,997	0,962	3000-4000
	0,650	0,007	0,788	0,650	0,712	0,705	0,960	0,833	4000-5000
	0,521	0,002	0,833	0,521	0,641	0,653	0,918	0,674	5000-6000
	0,444	0,001	0,842	0,444	0,582	0,607	0,920	0,641	6000-7000
	0,240	0,000	0,857	0,240	0,375	0,451	0,937	0,499	7000-8000
	0,296	0,000	1,000	0,296	0,457	0,542	0,841	0,490	8000-9000
	0,000	0,000	?	0,000	?	?	0,757	0,163	9000-10000
	0,125	0,000	1,000	0,125	0,222	0,353	0,802	0,245	10000-11000
	0,250	0,001	0,400	0,250	0,308	0,314	0,862	0,233	11000-12000
	0,063	0,000	1,000	0,063	0,118	0,249	0,736	0,198	12000-13000
	0,000	0,000	?	0,000	?	?	0,649	0,004	13000-14000
	0,167	0,000	1,000	0,167	0,286	0,408	0,823	0,240	14000-15000
	0,000	0,000	?	0,000	?	?	0,688	0,179	15000-16000
	0,000	0,000	?	0,000	?	?	0,646	0,002	16000-17000
	0,000	0,000	?	0,000	?	?	0,589	0,095	17000-18000
	0,000	0,000	?	0,000	?	?	0,737	0,065	18000-19000
	0,000	0,000	?	0,000	?	?	0,152	0,001	19000-20000
	0,785	0,002	0,911	0,785	0,843	0,841	0,991	0,905	20000-21000
Weighted Avg.	0,441	0,025	?	0,441	?	?	0,793	0,444	

Figure 4.3.1.2 Result When "Cross Validation" is Selected and n=10 in Weka (3)

4.3.1.3 %90 Train, %10 Test Set

When the data set was 90% train and 10% test set, 85 data, 41,0628% of 207 data, were classified correctly.

Time taken to test model on test split: 0.04 seconds === Summary === Correctly Classified Instances 85 41.0628 % 0.3763 Kappa statistic Mean absolute error 0.0232 Root mean squared error 0.1148 Relative absolute error 69.2954 % Root relative squared error 88.733 % Total Number of Instances

Figure 4.3.1.3 Results with 10% of the Dataset (1)

=== Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 250000-300000 0.667 0.095 0,174 0.667 0.276 0.305 0.771 0,144 0.333 0.029 0,143 0.333 0.200 0.201 0.788 0.079 300000-350000 0,000 0,030 0,000 0,110 350000-400000 0,000 0,000 -0,035 0,702 0,000 0,073 0,000 0,000 0,000 -0,028 0,398 0,010 400000-450000 0.111 0.030 0.143 0.111 0.125 0,091 0.618 0.080 450000-500000 0,000 0,030 0,000 0,000 0,000 -0,035 0,493 0,038 500000-550000 0,108 0.059 0,250 0.118 0.680 550000-600000 0.250 0,077 0,273 0,143 0,010 0,333 0,143 0,200 0,201 0,689 0,219 600000-650000 0,167 0,035 0,125 0,167 0,143 0,115 0,584 0,049 650000-700000 ? 0,000 0,000 0,000 ? 0,452 0,039 700000-750000 0,000 0,000 0,030 0,000 0,000 -0,027 0,455 750000-800000 0.024 -0,012 0,463 0,000 0,010 0,000 0,000 0,014 800000-850000 0,000 0,015 0,000 0,000 0,000 -0,024 0,504 0,039 850000-900000 0,000 ? 0,000 ? 0,000 ? 0,600 0,037 900000-950000 0.000 0,005 0,000 0,000 0,000 -0,008 0,639 0,037 950000-1000000 ? 0,000 0,000 0,000 0,498 0,019 1000000-1050000 0,005 0,000 1050000-1100000 ? 0.000 0.000 1100000-1150000 0.000 ? ? 0.995 0.333 0,010 0,000 ? ? 1150000-1200000 ? ? 0.005 0.000 ? ? ? 1200000-1250000 0,000 0,010 0,000 0,000 0,000 -0,010 0,717 0,041 1250000-1300000 0,000 0,000 ? 0,000 ? ? 0,985 0,143 1300000-1350000 0,000 0,000 ? 0,000 ? ? 0,493 0,010 1350000-1400000 0,000 0,000 0,000 0,490 0,005 1400000-1450000 0,000 0,005 0,000 0,000 0,000 -0,007 0,732 0,067 1450000-1500000 0,000 0,000 ? 0,000 ? ? 0,493 0,014 1500000-1550000 0,500 0,000 1,000 0,500 0,667 0,705 0,740 0,505 1550000-1600000 0,000 0,000 0,000 0,490 0,010 1600000-1650000 0,005 0,000 0,000 -0,005 0,478 0.000 0.000 0.005 1650000-1700000 0,000 1700000-1750000

Figure 4.3.1.3 Results with 10% of the Dataset (2)

	0,000	0,000	?	0,000	?	?	0,493	0,010	1750000-1800000
	?	0,000	?	?	?	?	?	?	1800000-1850000
	?	0,000	?	?	?	?	?	?	1850000-1900000
	0,000	0,000	?	0,000	?	?	0,490	0,005	1900000-1950000
	?	0,000	?	?	?	?	?	?	1950000-2000000
	0,364	0,031	0,400	0,364	0,381	0,348	0,772	0,249	2000000-2050000
	0,500	0,000	1,000	0,500	0,667	0,705	0,746	0,505	500-1000
	1,000	0,021	0,810	1,000	0,895	0,890	0,998	0,973	1000-2000
	0,968	0,028	0,857	0,968	0,909	0,894	0,997	0,980	2000-3000
	1,000	0,021	0,750	1,000	0,857	0,857	0,996	0,901	3000-4000
	0,625	0,005	0,833	0,625	0,714	0,712	0,996	0,884	4000-5000
	1,000	0,000	1,000	1,000	1,000	1,000	1,000	1,000	5000-6000
	0,333	0,000	1,000	0,333	0,500	0,572	0,910	0,616	6000-7000
	0,000	0,000	?	0,000	?	?	0,994	0,643	7000-8000
	0,500	0,000	1,000	0,500	0,667	0,705	0,995	0,667	8000-9000
	?	0,000	?	?	?	?	?	?	9000-10000
	?	0,005	0,000	?	?	?	?	?	10000-11000
	0,000	0,000	?	0,000	?	?	0,998	0,500	11000-12000
	0,000	0,000	?	0,000	?	?	0,745	0,171	12000-13000
	?	0,000	?	?	?	?	?	?	13000-14000
	?	0,000	?	?	?	?	?	?	14000-15000
	?	0,000	?	?	?	?	?	?	15000-16000
	?	0,000	?	?	?	?	?	?	16000-17000
	?	0,000	?	?	?	?	?	?	17000-18000
	0,000	0,000	?	0,000	?	?	0,500	0,005	18000-19000
	?	0,000	?	?	?	?	?	?	19000-20000
	0,500	0,010	0,333	0,500	0,400	0,401	0,998	0,750	20000-21000
Weighted Avg.	0,411	0,021	?	0,411	?	?	0,763	0,426	

Figure 4.3.1.3 Results with 10% of the Dataset (3)

4.3.1.4 Supplied Test Set

Test data: Satilik,5+1,300,9,11,Merkezi,30,Uygun,Esyali-Degil,2,Betonarme,Ikinci-El, Kiraci-Oturuyor,10,Hayir,Guney-Dogu-Bati,20000-21000,Dogalgaz,?

In the test file, the 2000000-2050000 class was suggested at a rate of 0.995 for this data set.

```
=== Predictions on user test set ===

inst# actual predicted error prediction
1 1:? 36:2000000-2050000 0.995

=== Summary ===

Total Number of Instances 0

Ignored Class Unknown Instances 1
```

Figure 4.3.1.4 Class Prediction in the Algorithm's Test Data

4.3.2 When k is 9 and Manhattan Distance is Selected

4.3.2.1 Use Training Set

By choosing k = 9 and Manhattan Distance in the KNN algorithm, 55.8781% of the 2067 data in the data set, 1155 data, were classified correctly.

```
=== Evaluation on training set ===
Time taken to test model on training data: 1.18 seconds
=== Summary ===
Correctly Classified Instances 1155
                                                   55.8781 %
Kappa statistic
                                     0.5332
Mean absolute error
                                     0.0203
                                     0.0969
Root mean squared error
Relative absolute error
                                    60.5272 %
Root relative squared error
                                    74.9166 %
Total Number of Instances
                                   2067
```

Figure 4.3.2.1 Result When "Use Training Set" Option is Selected in Weka (1)

=== Detailed Accuracy By Class ===											
TF	Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class		
0,	733	0,073	0,313	0,733	0,439	0,445	0,953	0,440	250000-300000		
0,	282	0,019	0,220	0,282	0,247	0,233	0,961	0,215	300000-350000		
0,	300	0,021	0,263	0,300	0,280	0,262	0,952	0,275	350000-400000		
0,	333	0,037	0,245	0,333	0,282	0,256	0,921	0,231	400000-450000		
0,	418	0,021	0,406	0,418	0,412	0,392	0,949	0,329	450000-500000		
0,	135	0,018	0,159	0,135	0,146	0,126	0,919	0,188	500000-550000		
0,	439	0,030	0,322	0,439	0,372	0,352	0,928	0,247	550000-600000		
0,	195	0,011	0,267	0,195	0,225	0,215	0,956	0,253	600000-650000		
0,	394	0,029	0,326	0,394	0,357	0,333	0,937	0,272	650000-700000		
0,	136	0,010	0,222	0,136	0,169	0,160	0,940	0,178	700000-750000		
0,	233	0,010	0,323	0,233	0,270	0,261	0,941	0,209	750000-800000		
0,	200	0,007	0,300	0,200	0,240	0,236	0,967	0,208	800000-850000		
0,	229	0,010	0,355	0,229	0,278	0,272	0,944	0,224	850000-900000		
0,	182	0,001	0,667	0,182	0,286	0,345	0,966	0,207	900000-950000		
0,	000	0,002	0,000	0,000	0,000	-0,005	0,974	0,189	950000-1000000		
0,	100	0,001	0,333	0,100	0,154	0,180	0,989	0,180	1000000-1050000		
0,	176	0,005	0,214	0,176	0,194	0,188	0,982	0,220	1050000-1100000		
0,	000	0,000	?	0,000	?	?	0,990	0,201	1100000-1150000		
0,	067	0,002	0,200	0,067	0,100	0,112	0,979	0,153	1150000-1200000		
0,	071	0,001	0,250	0,071	0,111	0,131	0,980	0,188	1200000-1250000		
0,	280	0,006	0,350	0,280	0,311	0,306	0,974	0,361	1250000-1300000		
0,	000	0,000	?	0,000	?	?	0,985	0,106	1300000-1350000		
0,	063	0,002	0,167	0,063	0,091	0,098	0,974	0,129	1350000-1400000		
0,	000	0,000	?	0,000	?	?	0,988	0,107	1400000-1450000		
0,	375	0,008	0,261	0,375	0,308	0,306	0,982	0,233	1450000-1500000		
0,	250	0,002	0,375	0,250	0,300	0,303	0,987	0,243	1500000-1550000		
0,	294	0,003	0,417	0,294	0,345	0,346	0,981	0,240	1550000-1600000		
0,	000	0,000	?	0,000	?	?	0,978	0,125	1600000-1650000		
0,	000	0,003	0,000	0,000	0,000	-0,005	0,970	0,120	1650000-1700000		
0,	000	0,000	?	0,000	?	?	0,992	0,114	1700000-1750000		

Figure 4.3.2.1 Result When "Use Training Set" Option is Selected in Weka (2)

	0,143	0,002	0,200	0,143	0,167	0,167	0,988	0,157	1750000-1800000
	0,000	0,000	?	0,000	?	?	0,996	0,182	1800000-1850000
	0,000	0,000	?	0,000	?	?	0,998	0,222	1850000-1900000
	0,000	0,000	?	0,000	?	?	0,991	0,133	1900000-1950000
	0,000	0,000	?	0,000	?	?	0,996	0,250	1950000-2000000
	0,562	0,035	0,496	0,562	0,527	0,497	0,966	0,591	2000000-2050000
	0,630	0,001	0,895	0,630	0,739	0,748	0,997	0,858	500-1000
	1,000	0,021	0,832	1,000	0,908	0,903	1,000	0,999	1000-2000
	1,000	0,037	0,780	1,000	0,876	0,867	1,000	0,997	2000-3000
	0,986	0,020	0,788	0,986	0,876	0,872	1,000	0,993	3000-4000
	0,813	0,004	0,890	0,813	0,850	0,845	0,999	0,968	4000-5000
	0,646	0,001	0,912	0,646	0,756	0,763	0,996	0,881	5000-6000
	0,556	0,000	1,000	0,556	0,714	0,742	0,999	0,944	6000-7000
	0,480	0,000	0,923	0,480	0,632	0,663	0,998	0,882	7000-8000
	0,519	0,000	0,933	0,519	0,667	0,693	0,996	0,828	8000-9000
	0,000	0,000	?	0,000	?	?	0,995	0,453	9000-10000
	0,250	0,000	1,000	0,250	0,400	0,499	0,997	0,631	10000-11000
	0,375	0,000	0,750	0,375	0,500	0,529	0,994	0,448	11000-12000
	0,188	0,000	1,000	0,188	0,316	0,432	0,995	0,665	12000-13000
	0,000	0,000	?	0,000	?	?	0,997	0,300	13000-14000
	0,167	0,000	1,000	0,167	0,286	0,408	0,998	0,625	14000-15000
	0,100	0,000	1,000	0,100	0,182	0,316	0,997	0,554	15000-16000
	0,000	0,000	?	0,000	?	?	0,995	0,136	16000-17000
	0,000	0,000	?	0,000	?	?	0,998	0,521	17000-18000
	0,000	0,000	?	0,000	?	?	0,998	0,450	18000-19000
	0,000	0,000	?	0,000	?	?	0,999	0,250	19000-20000
	0,877	0,001	0,950	0,877	0,912	0,910	0,999	0,973	20000-21000
Weighted Avg.	0,559	0,020	?	0,559	?	?	0,975	0,589	

Figure 4.3.2.1 Result When "Use Training Set" Option is Selected in Weka (3)

```
=== Predictions on training set ===
   inst#
            actual predicted error prediction
       1 36:2000000-2050000 14:900000-950000 +
                                                0.222
       2 19:1150000-1200000 5:450000-500000 + 0.222
       3 14:900000-950000 36:2000000-2050000 +
       4 14:900000-950000 4:400000-450000 + 0.222
       5 36:2000000-2050000 36:2000000-2050000
       6 4:400000-450000 1:250000-300000 + 0.222
       7 36:2000000-2050000 36:2000000-2050000
       8 36:2000000-2050000 36:2000000-2050000
                                                 0.332
       9 36:2000000-2050000 36:2000000-2050000
                                                 0.554
      10 36:2000000-2050000 36:2000000-2050000
      11 25:1450000-1500000 25:1450000-1500000
      12 26:1500000-1550000 26:1500000-1550000
      13 36:2000000-2050000 36:2000000-2050000
      14 5:450000-500000 5:450000-500000 0.222
      15 27:1550000-1600000 27:1550000-1600000
                                                  0.332
      16 34:1900000-1950000 27:1550000-1600000 + 0.443
      17 4:400000-450000 1:250000-300000 + 0.222
      18 1:250000-300000 11:750000-800000
      19 5:450000-500000 1:250000-300000 + 0.332
      20 23:1350000-1400000 5:450000-500000 + 0.332
      21 21:1250000-1300000 25:1450000-1500000 + 0.443
      22 36:2000000-2050000 13:850000-900000 + 0.222
      23 4:400000-450000 9:650000-700000 + 0.222
      24 1:250000-300000 1:250000-300000
                                           0.332
      25 1:250000-300000 12:800000-850000 + 0.222
      26 27:1550000-1600000 27:1550000-1600000 0.443
      27 1:250000-300000 7:550000-600000 + 0.222
      28 13:850000-900000 5:450000-500000 + 0.111
```

Figure 4.3.2.1 Result When "Use Training Set" Option is Selected in Weka (4)

```
2067 37:500-1000 40:3000-4000 + 0.443
=== Evaluation on training set ===
Time taken to test model on training data: 3.22 seconds
=== Summary ===
Correctly Classified Instances 1155
                                                 55.8781 %
                                  0.5332
Kappa statistic
                                   0.0203
Mean absolute error
Root mean squared error
                                    0.0969
                                  60.5272 %
Relative absolute error
Relative absolute error
                                  74.9166 %
                               2067
Total Number of Instances
```

Figure 4.3.2.1 Result When "Use Training Set" Option is Selected in Weka (5)

4.3.2.2 Cross Validation

When the n value of the Cross Validation is 10, 44.9927 % of the 2067 data, 930 data were classified correctly.

=== Stratified cross-validation === === Summary ===											
1											
Correctly Classi	fied Inst	ances	930		44.9927 %						
Kappa statistic			0.41	66							
Mean absolute en	ror		0.02	32							
Root mean square	d error		0.10	9							
Relative absolut	e error		69.12	73 %							
Root relative so	quared err	or	84.25	72 %							
Total Number of	Instances		2067								
=== Detailed Accuracy By Class ===											
Detailed Acc	uracy by	CIASS									
	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class		
	0,578	0,091	0,224	0,578	0,323	0,315	0,817	0,225	250000-300000		
	0,103	0,026	0,071	0,103	0,084	0,064	0,697	0,058	300000-350000		
	0,120	0,031	0,088	0,120	0,102	0,077	0,721	0,090	350000-400000		
	0,181	0,049	0,118	0,181	0,143	0,108	0,715	0,095	400000-450000		
	0,134	0,032	0,123	0,134	0,129	0,098	0,737	0,106	450000-500000		
	0,000	0,015	0,000	0,000	0,000	-0,020	0,574	0,036	500000-550000		
	0,212	0,042	0,141	0,212	0,170	0,140	0,708	0,124	550000-600000		
	0,073	0,011	0,120	0,073	0,091	0,079	0,607	0,035	600000-650000		
	0,127	0,036	0,113	0,127	0,119	0,086	0,728	0,087	650000-700000		
	0,068	0,012	0,107	0,068	0,083	0,070	0,598	0,033	700000-750000		
	0,070	0,009	0,143	0,070	0,094	0,087	0,589	0,042	750000-800000		
	0,067	0,009	0,095	0,067	0,078	0,068	0,645	0,052	800000-850000		
	0,000	0,011	0,000	0,000	0,000	-0,016	0,613	0,040	850000-900000		
	0,045	0,001	0,333	0,045	0,080	0,120	0,586	0,019	900000-950000		
	0,000	0,003	0,000	0,000	0,000	-0,006	0,478	0,012	950000-1000000		
	0,000	0,000	?	0,000	?	?	0,612	0,015	1000000-1050000		
	0,000	0,003	0,000	0,000	0,000	-0,005	0,770	0,055	1050000-1100000		

Figure 4.3.2.2 Result When "Cross Validation" is Selected and n=10 in Weka

4.3.2.3 %90 Training, %10 Test

When the data set was 90% train and 10% test set, 85 data, 41,0628% of 207 data, were classified correctly.

```
=== Evaluation on test split ===
Time taken to test model on test split: 0.05 seconds
=== Summary ===
Correctly Classified Instances
                                    85
                                                     41.0628 %
Kappa statistic
                                      0.3751
Mean absolute error
                                      0.0236
Root mean squared error
                                      0.1114
                                     70.4583 %
Relative absolute error
Root relative squared error
                                    86.0966 %
Total Number of Instances
                                    207
```

Figure 4.3.2.3 Results with 10% of the Dataset (1)

=== Detailed Accuracy By Class ===										
	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Class	
	0,667	0,070	0,222	0,667	0,333	0,355	0,845	0,174	250000-300000	
	0,000	0,029	0,000	0,000	0,000	-0,021	0,924	0,120	300000-350000	
	0,250	0,045	0,182	0,250	0,211	0,176	0,755	0,165	350000-400000	
	0,000	0,049	0,000	0,000	0,000	-0,022	0,373	0,010	400000-450000	
	0,111	0,025	0,167	0,111	0,133	0,104	0,704	0,110	450000-500000	
	0,000	0,015	0,000	0,000	0,000	-0,024	0,659	0,072	500000-550000	
	0,000	0,059	0,000	0,000	0,000	-0,035	0,744	0,066	550000-600000	
	0,286	0,010	0,500	0,286	0,364	0,362	0,808	0,193	600000-650000	
	0,167	0,045	0,100	0,167	0,125	0,095	0,637	0,061	650000-700000	
	0,000	0,005	0,000	0,000	0,000	-0,014	0,447	0,039	700000-750000	
	0,000	0,025	0,000	0,000	0,000	-0,025	0,438	0,025	750000-800000	
	0,000	0,020	0,000	0,000	0,000	-0,017	0,600	0,021	800000-850000	
	0,000	0,010	0,000	0,000	0,000	-0,020	0,479	0,038	850000-900000	
	0,000	0,010	0,000	0,000	0,000	-0,014	0,582	0,027	900000-950000	
	0,000	0,010	0,000	0,000	0,000	-0,012	0,631	0,029	950000-1000000	
	0,000	0,000	?	0,000	?	?	0,500	0,020	1000000-1050000	
	?	0,010	0,000	?	?	?	?	?	1050000-1100000	
	0,000	0,000	?	0,000	?	?	0,985	0,143	1100000-1150000	
	?	0,010	0,000	?	?	?	?	?	1150000-1200000	
	?	0,000	?	?	?	?	?	?	1200000-1250000	
	0,000	0,010	0,000	0,000	0,000	-0,010	0,706	0,031	1250000-1300000	
	0,000	0,005	0,000	0,000	0,000	-0,005	0,973	0,100	1300000-1350000	
	0,000	0,000	?	0,000	?	?	0,485	0,010	1350000-1400000	
	0,000	0,000	?	0,000	?	?	0,488	0,005	1400000-1450000	
	0,000	0,015	0,000	0,000	0,000	-0,012	0,720	0,043	1450000-1500000	
	0,000	0,000	?	0,000	?	?	0,495	0,015	1500000-1550000	
	0,000	0,000	?	0,000	?	?	0,739	0,255	1550000-1600000	
	0,000	0,000	?	0,000	?	?	0,488	0,010	1600000-1650000	
	0,000	0,005	0,000	0,000	0,000	-0,005	0,468	0,005	1650000-1700000	
	?	0,000	?	?	?	?	?	?	1700000-1750000	
	0,000	0,000	?	0,000	?	?	0,735	0,060	1750000-1800000	

Figure 4.3.2.3 Results with 10% of the Dataset (2)

```
0,000
                                  ?
                                                                                   ?
                                                                                             1800000-1850000
                         0,000
                                                                                             1850000-1900000
                         0,000
                                            0,000
                                                                         0,495
                                                                                   0,005
                0,000
                                 ?
                                                                                             1900000-1950000
                         0,000
                                 2
                                            ?
                                                     ?
                                                                2
                                                                         ?
                                                                                   2
                                                                                             1950000-2000000
                         0,036
                0,364
                                 0,364
                                            0,364
                                                     0,364
                                                                0,328
                                                                         0,802
                                                                                   0,428
                                                                                             2000000-2050000
                                                                0,705
                                                                                             500-1000
                0,500
                         0,000
                                 1,000
                                            0,500
                                                     0,667
                                                                         0,995
                                                                                   0,667
                1,000
                         0,021
                                 0,810
                                            1,000
                                                     0,895
                                                                0,890
                                                                         1,000
                                                                                   1,000
                                                                                             1000-2000
                1,000
                         0,040
                                 0,816
                                            1,000
                                                     0,899
                                                                0,885
                                                                         0,999
                                                                                   0,990
                                                                                             2000-3000
                         0,015
                1.000
                                 0,800
                                            1,000
                                                     0,889
                                                                0,888
                                                                         1,000
                                                                                   0,988
                                                                                             3000-4000
                0,625
                         0,000
                                 1,000
                                            0,625
                                                     0,769
                                                                0,785
                                                                         0,991
                                                                                   0,869
                                                                                             4000-5000
                1,000
                         0,005
                                 0,667
                                            1,000
                                                     0,800
                                                                0,815
                                                                         1,000
                                                                                   1,000
                                                                                             5000-6000
                                                                                             6000-7000
                0.167
                         0.000
                                 1,000
                                            0,167
                                                     0,286
                                                                0,403
                                                                         0,995
                                                                                   0,833
                0,000
                         0,000
                                             0,000
                                                                         0,991
                                                                                   0,611
                                                                                             7000-8000
                0,500
                         0,005
                                 0,500
                                            0,500
                                                     0,500
                                                                0,495
                                                                         0,990
                                                                                   0,611
                                                                                             8000-9000
                         0,000
                                 ?
                                            ?
                                                     ?
                                                                ?
                                                                                   ?
                                                                                             9000-10000
                         0,000
                                                                                             10000-11000
                         0,005
                                                                -0,005
                                                                         0,995
                0,000
                                 0,000
                                            0.000
                                                     0.000
                                                                                   0.500
                                                                                             11000-12000
                                                                                             12000-13000
                0.000
                         0.000
                                 ?
                                            0,000
                                                     ?
                                                                         0,745
                                                                                   0,105
                         0,000
                                 ?
                                                                                             13000-14000
                         0,000
                                 ?
                                            ?
                                                     ?
                                                                ?
                                                                                             14000-15000
                ?
                                                                         ?
                                                                                   ?
                ?
                         0,000
                                 ?
                                             ?
                                                     ?
                                                                ?
                                                                         ?
                                                                                   ?
                                                                                             15000-16000
                         0,000
                                                                                             16000-17000
                ?
                         0.000
                                 ?
                                            ?
                                                                ?
                                                                         ?
                                                                                   ?
                                                                                             17000-18000
                0,000
                         0,000
                                  ?
                                             0,000
                                                     ?
                                                                ?
                                                                         0,510
                                                                                   0,005
                                                                                             18000-19000
                         0,000
                                                                                             19000-20000
                         0.005
                                                                0.495
                                                                                             20000-21000
                0.500
                                 0.500
                                            0.500
                                                     0.500
                                                                         0.993
                                                                                   0.667
Weighted Avg.
                0,411
                         0,022
                                             0,411
                                                                         0,795
                                                                                   0,447
```

Figure 4.3.2.3 Results with 10% of the Dataset (3)

4.3.2.4 Supplied Test Set

Test data: Kiralik,3+1,155,6,5,Kombi,6,Bilinmiyor,Esyali-Degil,2,Betonarme,Ikinci-El,Bos, 53, Hayir,Kuzey-Dogu-Bati,1000-2000,Dogalgaz,?

In the test file, the 20000-21000 class was suggested at a rate of 0.997 for this data set.

```
inst# actual predicted error prediction
    1 1:? 57:20000-21000 0.997

=== Summary ===

Total Number of Instances 0
Ignored Class Unknown Instances 1
```

Figure 4.3.2.4 Class Prediction in the Algorithm's Test Data

4.3.2.5 Post-Classification Estimation Plot of the Data Set

In the price classification of the data in the data set, the data on the diagonal of the graph are classified correctly, as in the chart below, the ones other than the diagonal are classified incorrectly in the data set.

Figure 4.3.2.5 Post-Classification Estimation Plot of the Data Set

For example, when a point on the diagonal is selected, it is seen that the price is correctly classified.

Figure 4.3.2.5 Correctly Classified Data

For example, when a point other than the diagonal is selected, it has been observed that the price is incorrectly classified.

Figure 4.3.2.5 Misclassified Data

4.3.2.6 Weka in C#

When the K-NN k=5 algorithm is run in the form application made in the C# programming language, a screen like the one in the figure is shown. Input values are requested from the user and the price class is suggested with the K-NN algorithm.

Figure 4.3.2.6 K-NN Classification and K=5 in C#

When the K-NN k=9 algorithm is run in the form application made in the C# programming language, a screen like the one in the figure is shown. Input values are requested from the user and the price class is suggested with the K-NN algorithm.

•				_		×
Naive Bayes Algorithm	K-NN Alg	gorithm	k	(-Means Alg	orithm	
RealEstate_Data.arff			9			
				Continue		
llan-Durumu :	Kiralik	~				
Oda-Salon-Sayisi :	3+1	~				
Brut-Net-M2 :	155]	DISCO	OVER		
Bulundugu-Kat :	6]				
Bina-Yasi :	5]				
Isinma-Tipi :	Kombi	~				
Kati-Sayisi :	6]				×
Krediye-Uygunluk:	Bilinmiyor	~		RESUIT:	1000-2000	
Esya-Durumu :	Esyali-Degil	~		NESSEN.		
Banyo-Sayisi :	2]			Tamam	
Yapi-Tipi :	Betoname	~	l			
Yapinin-Durumu :	lkinci-El	~				
Kullanim-Durumu :	Bos	~				
Aidat :	53]				
Takas :	Hayir	~				
Cephe :	Kuzey-Dogu-Bati	~				
Kira-Getirisi :	1000-2000	~				
Yakit-Tipi :	Dogalgaz	~				

Figure 4.3.2.6 K-NN Classification and K=9 in C#

4.4 K-Means

4.4.1 When k is 5 and Euclidean Distance in Weka

Euclidean Distance was used when measuring distance. As in Figure 4.4.1, 5 data were randomly selected from the data set and these were determined as the centers of the clusters.

Figure 4.4.1 Randomly Selected Centers

The centers of the clusters formed as a result of the K-Means clustering algorithm.

Final cluster centroids	:					
		Cluster#				
Attribute	Full Data	0	1	2	3	4
	(2067.0)	(306.0)	(434.0)	(166.0)	(902.0)	(259.0)
Ilan-Durumu	Satilik	Satilik	Satilik	Satilik	Kiralik	Satilik
Oda-Salon-Sayisi	3+1	3+1	2+1	3+1	3+1	3+1
Brut-Net-M2	140.3624	153.4542	116.5829	171.1325	135.5776	161.6834
Bulundugu-Kat	4.6933	4.8758	3.6636	6.6687	5.0443	3.7143
Bina-Yasi	18.3851	14.9837	16.7166	18.9819	19.3936	21.305
Isinma-Tipi	Kombi	Kombi	Kombi	Kombi	Kombi	Kombi
Kati-Sayisi	7.4194	7.1438	5.5184	9.7892	8.1918	6.722
Krediye-Uygunluk	Uygun	Uygun	Uygun	Uygun	Bilinmiyor	Uygun
Esya-Durumu	Esyali-Degil	Esyali-Degil	Esyali-Degil	Esyali-Degil	Esyali-Degil	Esyali-Degil
Banyo-Sayisi	1.4224	1.4804	1.1313	1.8193	1.3503	1.8378
Yapi-Tipi	Betonarme	Betonarme	Betonarme	Betonarme	Betonarme	Betonarme
Yapinin-Durumu	Ikinci-El	Ikinci-El	Ikinci-El	Sifir	Ikinci-El	Sifir
Kullanim-Durumu	Bos	Kiraci-Oturuyor	Bos	Bos	Bos	Bos
Aidat	326.9119	299.7712	261.8871	409.7831	343.3404	357.61
Takas	Hayir	Hayir	Hayir	Hayir	Hayir	Hayir
Cephe	Kuzey-Guney-Dogu-Bati	Guney Ku:	zey-Guney-Dogu-Bati	Guney-Dogu-Bati	Guney-Dogu Ku	zey-Guney-Dogu-Bati
Kira-Getirisi	2000-3000	2000-3000	1000-2000	2000-3000	2000-3000	6000-7000
Yakit-Tipi	Dogalgaz	Dogalgaz	Dogalgaz	Dogalgaz	Dogalgaz	Dogalgaz
Fiyat	2000-3000	2000000-2050000	250000-300000	2000000-2050000	2000-3000	2000000-2050000

Figure 4.4.1 Centers After Clustering Algorithm

The data numbers and rates in the clusters formed as a result of the algorithm are shown.

Figure 4.4.1 Number of Elements in Sets

It is the graph showing which clusters the data in the data set belongs to.

Figure 4.4.1 Post-Clustering Estimation Plot of the Dataset

It is the price distribution graph in the clusters.

Figure 4.4.1 Price-Instance Graph

4.4.2 When k is 5 and Clustering in C#

When the K-Means k=5 clustering algorithm is run in the form application made in the C# programming language, a screen like the one in the figure is shown. The result of the clusters are printed to the file.

Figure 4.4.2 K-Means Clustering and K=5 in C#

The centers of the clusters formed and which data belong to which cluster are shown.

Figure 4.4.2 Cluster Centers and Cluster Elements

4.4.3 When k is 11 and Manhattan Distance in Weka

Manhattan Distance was used when measuring distance. As in Figure 4.4.3, 11 data were randomly selected from the data set and these were determined as the centers of the clusters.

```
kMeans
======

Number of iterations: 7
Sum of within cluster distances: 7873.858457688149

Initial starting points (random):

Cluster 0: Satilik,5+1,300,3,13,Kombi,3,Uygun,Esyali-Degil,2,Betonarme,Ikinci-El,Kiraci-Oturuyor,255,Evet,Guney,1000-2000,Dogalgaz,650000-700000
Cluster 1: Satilik,3+1,125,2,8,Kombi,3,Uygun,Esyali-Degil,1,Betonarme,Sifir,Bos,340,Evet,Dogu-Bati,1000-2000,Dogalgaz,550000-600000
Cluster 2: Satilik,3+1,135,12,15,Kombi,13,Uygun,Esyali-Degil,1,Betonarme,Sifir,Bos,939,Evet,Guney-Dogu-Bati,8000-9000,Dogalgaz,1050000-1100000
Cluster 3: Kiralik,2+1,95,23,Kombi,3,Bilinmiyor,Esyali-Degil,1,Betonarme,Ikinci-El,Bos,257,Hayir,Kuzey-Guney-Dogu-Bati,3000-4000,Dogalgaz,3000-4000
Cluster 4: Satilik,3+1,195,4,2,Kombi,4,Uygun,Esyali-Degil,1,Betonarme,Ikinci-El,Bos,364,Evet,Dogu-Bati,6000-7000,Dogalgaz,1250000-13000000
Cluster 5: Kiralik,3+1,444,3,2,Merkezi,30,Bilinmiyor,Esyali-Degil,2,Betonarme,Ikinci-El,Bos,1000,Hayir,Kuzey-Bati,13000-4000,Dogalgaz,13000-14000
Cluster 6: Kiralik,2+1,130,2,11,Klima,3,Bilinmiyor,Esyali-Degil,2,Betonarme,Ikinci-El,Bos,280,Hayir,Kuzey-Dogu-Bati,2000-21000,Dogalgaz,20000-21000
Cluster 7: Kiralik,3+1,250,1,18,Kombi,13,Bilinmiyor,Esyali-Degil,2,Betonarme,Ikinci-El,Bos,280,Hayir,Kuzey-Dogu-Bati,2000-21000,Dogalgaz,20000-21000
Cluster 8: Kiralik,2+1,90,5,8,Kombi,5,Bilinmiyor,Esyali-Degil,1,Betonarme,Ikinci-El,Bos,75,Hayir,Bati,3000-4000,Dogalgaz,3000-4000
Cluster 9: Satilik,1+1,75,2,5,Klima,4,Uygun,Esyali-Degil,1,Betonarme,Ikinci-El,Bos,75,Hayir,Bati,3000-4000,Dogalgaz,3000-4000
Cluster 9: Satilik,1+1,75,2,5,Klima,4,Uygun,Esyali-Degil,1,Betonarme,Ikinci-El,Bos,75,Hayir,Bati,3000-4000,Dogalgaz,3000-4000
Cluster 9: Satilik,1+1,75,2,5,Klima,4,Uygun,Esyali-Degil,1,Betonarme,Ikinci-El,Bos,75,Hayir,Ruzey-Guney-Bati,2000-3000,Dogalgaz,2000-3000

Missing values globally replaced with mean/mode
```

Figure 4.4.3 Randomly Selected Centers

The centers of the clusters formed as a result of the K-Means clustering algorithm.

		Cluster#						
Attribute	Full Data (2067.0)	(333.0)	1 (215.0)	(174.0)	3 (178.0)	(202.0		
Ilan-Durumu	Satilik	Satilik	Satilik	Satilik	Kiralik	Satili		
Oda-Salon-Sayisi	3+1	3+1	3+1	3+1	2+1	3+:		
Brut-Net-M2	130	135	120	165	110	16		
Bulundugu-Kat	3	3	3	5	3			
Bina-Yasi	16	11	20	14	20	2		
sinma-Tipi	Kombi	Kombi	Kombi	Kombi	Kombi	Komb:		
Kati-Sayisi	5	5	4	7	5			
rediye-Uygunluk	Uygun	Uygun	Uygun	Uygun	Bilinmiyor	Uygu		
Sya-Durumu	Esyali-Degil	Esyali-Degil	Esyali-Degil	Esyali-Degil	Esyali-Degil	Esyali-Degi:		
Banyo-Sayisi	1	1	1	2	1			
api-Tipi	Betonarme	Betonarme	Betonarme	Betonarme	Betonarme	Betonarme		
apinin-Durumu	Ikinci-El	Ikinci-El	Sifir	Sifir	Ikinci-El	Sifi		
Kullanim-Durumu	Bos	Kiraci-Oturuyor	Bos	Bos	Bos	Bos		
Aidat	190	155	150	230	148	26		
akas	Hayir	Hayir	Hayir	Hayir	Hayir	Hayi		
ephe	Kuzey-Guney-Dogu-Bati	Guney	Guney-Dogu	Guney-Dogu-Bati	Kuzey-Guney-Dogu-Bati	Kuzey-Guney-Dogu-Bat:		
ira-Getirisi	2000-3000	1000-2000	1000-2000	2000-3000	3000-4000	6000-700		
akit-Tipi	Dogalgaz	Dogalgaz	Dogalgaz	Dogalgaz	Dogalgaz	Dogalga		
Fiyat	2000-3000	2000000-2050000	250000-300000	2000000-2050000	3000-4000	2000000-205000		

Figure 4.4.3 Centers After Clustering Algorithm (1)

10 (317.0)	9 (149.0)	8 (126.0)	7 (116.0)	6 (108.0)	5 (149.0)
Kiralik	Satilik	Kiralik	Kiralik	Kiralik	Kiralik
3+1	2+1	2+1	3+1	2+1	3+1
130	110	97.5	170	92	150
3	2	4	4	3	8
20	15	15	20	10	18
Kombi	Klima	Kombi	Kombi	Klima	Merkezi
5	4	6	5.5	5	13
Bilinmiyor	Uygun	Bilinmiyor	Bilinmiyor	Bilinmiyor	Bilinmiyor
Esyali-Degil	Esyali-Degil	Esyali	Esyali-Degil	Esyali	Esyali-Degil
1	1	1	2	1	2
Betonarme	Betonarme	Betonarme	Betonarme	Betonarme	Betonarme
Ikinci-El	Ikinci-El	Ikinci-El	Ikinci-El	Ikinci-El	Ikinci-El
Bos	Bos	Bos	Bos	Bos	Bos
100	50	120.5	280	239.5	440
Hayir	Evet	Hayir	Hayir	Hayir	Hayir
Guney-Bati	ey-Guney-Dogu-Bati	Guney-Dogu Ku	Guney-Dogu-Bati	Kuzey-Guney-Dogu-Bati	Guney-Dogu
2000-3000	2000-3000	3000-4000	20000-21000	1000-2000	5000-6000
Dogalgaz	Komur-Odun	Dogalgaz	Dogalgaz	Elektrik	Dogalgaz
2000-3000	400000-450000	3000-4000	20000-21000	1000-2000	5000-6000

Figure 4.4.3 Centers After Clustering Algorithm (2)

The data numbers and rates in the clusters formed as a result of the algorithm are shown.

```
Time taken to build model (full training data): 0.04 seconds
=== Model and evaluation on training set ===
Clustered Instances
       333 ( 16%)
        215 ( 10%)
       174 ( 8%)
        178 ( 9%)
        202 ( 10%)
        149 ( 7%)
 6
        108 ( 5%)
7
        116 ( 6%)
        126 ( 6%)
        149 ( 7%)
        317 ( 15%)
10
```

Figure 4.4.3 Number of Elements in Sets

It is the graph showing which clusters the data in the data set belongs to.

Figure 4.4.3 Post-Clustering Estimation Plot of the Dataset

It is the warming type distribution graph in the clusters.

Figure 4.4.3 Warning Type-Instance Graph

4.4.4 When k is 11 and Clustering in C#

When the K-Means k=11 clustering algorithm is run in the form application made in the C# programming language, a screen like the one in the figure is shown. The result of the clusters are printed to the file.

Figure 4.4.4 K-Means Clustering and k=11 in C#

The centers of the clusters formed and which data belong to which cluster are shown.

Figure 4.4.4 Cluster Centers and Cluster Elements

4.5 Linear Regression

Before performing linear regression, our data set was converted from nominal to binary.

4.5.1 Use Training Set

```
Linear Regression Model
 Fiyat =
 3405225.39 * Isinma-Tipi=Merkezi +
 1899989.5536 * Krediye-Uygunluk=Uygun +
 4411174.4238 * Kullanim-Durumu=Ev-Sahibi-Oturuyor +
 9954081.4521 * Cephe=Dogu-Bati +
 -1539129.7087
Time taken to build model: 0.63 seconds
=== Evaluation on training set ===
Time taken to test model on training data: 0.03 seconds
=== Summary ===
Correlation coefficient
Mean absolute error
Root mean squared error
Relative absolute error
Root relative squared error
                                               0.1263
                                       2707887.1112
                                       25186298.5016
                                            163.4609 %
                                             99.1988 %
Total Number of Instances
                                           2063
```

Figure 4.5.1 Result When "Use Training Set" Option is Selected in Weka

4.5.2 Cross Validation

```
Linear Regression Model

Fiyat =

3405225.39 * Isinma-Tipi=Merkezi +
1899989.5536 * Krediye-Uygunluk=Uygun +
4411174.4238 * Kullanim-Durumu=Ev-Sahibi-Oturuyor +
9954081.4521 * Cephe=Dogu-Bati +
-1539129.7087

Time taken to build model: 0.4 seconds

=== Cross-validation ===
=== Summary ===

Correlation coefficient 0.0078
Mean absolute error 2818274.9277
Root mean squared error 25589724.8511
Relative absolute error 169.5992 %
Root relative squared error 100.7337 %
Total Number of Instances 2063
```

Figure 4.5.2 Result When "Cross Validation" is Selected and n=10 in Weka

4.5.3 %90 Training, %10 Test

```
Linear Regression Model
Fiyat =
3405225.39 * Isinma-Tipi=Merkezi +
1899989.5536 * Krediye-Uygunluk=Uygun +
4411174.4238 * Kullanim-Durumu=Ev-Sahibi-Oturuyor +
9954081.4521 * Cephe=Dogu-Bati +
-1539129.7087
Time taken to build model: 0.36 seconds
=== Evaluation on test split ===
Time taken to test model on test split: 0 seconds
=== Summary ===
Correlation coefficient
                                        0.2806
                                2148167.9896
Mean absolute error
                                 3199254.6916
Root mean squared error
Relative absolute error
                                      207.8031 %
Root relative squared error
                                      267.9091 %
Total Number of Instances
                                      206
```

Figure 4.5.3 Results With 10% of the Dataset

4.5.4 Supplied Test Set

4.5.4.1 Test 1

Test data: Satilik,3+1,125,2,10,Kombi,8,Uygun,Esyali-Degil,1,Betonarme,Ikinci El,Bos,135,Evet,Guney,5000,Dogalgaz,1270000

While our actual value was 1270000 when estimating the price in the linear regression process, the number 1239916.54 was found as an estimate, and the error rate was found to be - 30083.46. This error rate is the difference between the estimated value and the true value.

```
inst# actual predicted error
1 1270000 1239916.54 -30083.46

=== Evaluation on test set ===

Time taken to test model on supplied test set: 0.02 seconds

=== Summary ===

Correlation coefficient 0
Mean absolute error 30083.4595
Root mean squared error 30083.4595
Relative absolute error 100 %
Root relative squared error 100 %
Total Number of Instances 1
```

Figure 4.5.4.1 Class Prediction in the Algorithm's Test Data

4.5.4.2 Test 2

Test data: Satilik, 3+1, 150, 10, 40, Kombi, 11, Uygun, Esyali-Degil, 2, Betonarme, Sifir, Bos, 274, Hayir, Dogu, 6500, Dogalgaz, 1650000

While our actual value was 1650000 when estimating the price in the linear regression process, the number 1239916.54 was found as an estimate, and the error rate was found to be - 410083.46. This error rate is the difference between the estimated value and the true value.

```
=== Predictions on test set ===
   inst# actual predicted
       1 1650000 1239916.54 -410083.46
=== Evaluation on test set ===
Time taken to test model on supplied test set: 0.01 seconds
=== Summary ===
Correlation coefficient
                                      0
                                410083.4595
Mean absolute error
Root mean squared error
                                 410083.4595
                                   100
Relative absolute error
Root relative squared error
                                   100
Total Number of Instances
                                     1
```

Figure 4.5.4.2 Class Prediction in the Algorithm's Test Data

4.6 Multilayer Perceptron

4.6.1 Use Training Set

```
Time taken to build model: 98.07 seconds

=== Evaluation on training set ===

Time taken to test model on training data: 0.09 seconds

=== Summary ===

Correlation coefficient 0.997

Mean absolute error 743718.8898

Root mean squared error 2033473.9017

Relative absolute error 44.8944 %

Root relative squared error 8.009 %

Total Number of Instances 2063
```

Figure 4.6.1 Result When "Use Training Set" Option is Selected in Weka

Figure 4.6.1 Neural Network in Weka

4.6.2 Cross Validation

```
=== Cross-validation ===

=== Summary ===

Correlation coefficient 0.0008

Mean absolute error 1924017.6324

Root mean squared error 33101559.4033

Relative absolute error 115.7842 %

Root relative squared error 130.304 %

Total Number of Instances 2063
```

Figure 4.6.2 Result When "Cross Validation" is Selected and n=10 in Weka

4.6.3 %90 Train, %10 Test

```
=== Evaluation on test split ===

Time taken to test model on test split: 0 seconds

=== Summary ===

Correlation coefficient 0.4613

Mean absolute error 660524.9381

Root mean squared error 1091370.8956

Relative absolute error 63.8959 %

Root relative squared error 91.3926 %

Total Number of Instances 206
```

Figure 4.6.3 Results With 10% of the Dataset

4.6.4 Supplied Test Set

4.6.4.1 Test1

Test Data: Satilik,4+1,250,4,15,Kombi,4,Uygun,Esyali-Degil,2,Betonarme,Ikinci-El,Bos,75,Hayir,Guney-Dogu,4500,Dogalgaz,969000

While our actual value was 969000 when estimating the price in the multilayer perceptron process, the number 1853268.342 was found as an estimate, and the error rate was found to be 884268.342. This error rate is the difference between the estimated value and the true value.

```
=== Predictions on test set ===
    inst# actual predicted error
       1 969000 1853268.342 884268.342
=== Evaluation on test set ===
Time taken to test model on supplied test set: 0 seconds
=== Summary ===
Correlation coefficient
                                        0
                                 0
884268.3415
Mean absolute error
Relative absolute error
Root relative
                                 884268.3415
                                    326.3988 %
Relative absolute ellol
Root relative squared error
                                    326.3988 %
                                       1
Total Number of Instances
```

Figure 4.6.4.1 Class Prediction in the Algorithm's Test Data

4.6.4.2 Test 2

Test Data: Satilik,4+1,250,2,20,Kombi,3,Bilinmiyor,Esyali,1,Betonarme,Ikinci-El,Bos,35,Hayir,Guney-Bati,15000,Dogalgaz,128000250

While our actual value was 128000250 when estimating the price in the multilayer perceptron process, the number 1292964579.111 was found as an estimate, and the error rate was found to be 1164964329.111. This error rate is the difference between the estimated value and the true value.

```
inst# actual predicted error
    1 128000250 1292964579.111 1164964329.111

=== Evaluation on test set ===

Time taken to test model on supplied test set: 0.01 seconds

=== Summary ===

Correlation coefficient 0
Mean absolute error 1164964329.1108
Root mean squared error 1164964329.1108
Relative absolute error 919.0291 %
Root relative squared error 919.0291 %
Total Number of Instances 1
```

Figure 4.6.4.2 Class Prediction in the Algorithm's Test Data

4.7 Non Linear Regression (M5P)

4.7.1 Use Training Set

```
Bina-Yasi <= 29.5 :
   Ilan-Durumu=Satilik <= 0.5 : LM1 (722/0.128%)
   Ilan-Durumu=Satilik > 0.5 :
   | Banyo-Sayisi <= 1.5 : LM2 (496/2.343%)
       Banyo-Sayisi > 1.5 :
      | Brut-Net-M2 <= 211.5 : LM3 (291/4.876%)
          Brut-Net-M2 > 211.5 :
              Isinma-Tipi=Dogalgaz-Sobasi, Isi-Pompasi, Belirtilmemis, Merkezi <= 0.5 : LM4 (67/8.945%)
              Isinma-Tipi=Dogalgaz-Sobasi, Isi-Pompasi, Belirtilmemis, Merkezi > 0.5 : LM5 (24/25.147%)
Bina-Yasi > 29.5 :
  Brut-Net-M2 <= 142.5 : LM6 (325/2.682%)
  Brut-Net-M2 > 142.5:
      Cephe=Kuzey-Guney-Bati,Guney-Dogu-Bati,Dogu-Bati <= 0.5 :
          Ilan-Durumu=Satilik <= 0.5 : LM7 (39/0.053%)
           Ilan-Durumu=Satilik > 0.5 :
           | Oda-Salon-Sayisi=1+4,3+1,4+2,8+1,5+2,5+1,6+2 <= 0.5 : LM8 (24/2.399%)
              Oda-Salon-Sayisi=1+4,3+1,4+2,8+1,5+2,5+1,6+2 > 0.5:
              | Aidat <= 158.5 : LM9 (10/1.005%)
                  Aidat > 158.5 :
               1
                      Aidat <= 471 : LM10 (15/6.059%)
                      Aidat > 471 :
                      | Kira-Getirisi <= 13388.5 : LM11 (12/3.288%)
                  - 1
             | | | Kira-Getirisi > 13388.5 : LM12 (4/9.252%)
      Cephe=Kuzey-Guney-Bati,Guney-Dogu-Bati,Dogu-Bati > 0.5:
          Kati-Sayisi <= 3.5 :
              Ilan-Durumu=Satilik <= 0.5 : LM13 (5/0.031%)
               Ilan-Durumu=Satilik > 0.5 : LM14 (4/984.472%)
          Kati-Sayisi > 3.5 :
              Bulundugu-Kat <= 2.5 : LM15 (7/24.487%)
               Bulundugu-Kat > 2.5 : LM16 (18/2.695%)
```

Figure 4.7.1 Result Equations When "Use Training Set" Option is Selected in Weka

Figure 4.7.1 Result Tree in Weka

```
Number of Rules: 16

Time taken to build model: 0.17 seconds

=== Evaluation on training set ===

Time taken to test model on training data: 0 seconds

=== Summary ===

Correlation coefficient 0.6252

Mean absolute error 1326882.9256

Root mean squared error 22446474.3381

Relative absolute error 80.0969 %

Root relative squared error 88.4078 %

Total Number of Instances 2063
```

Figure 4.7.1 Result When "Use Training Set" Option is Selected in Weka

4.7.2 Cross Validation

```
=== Cross-validation ===

=== Summary ===

Correlation coefficient 0.0098

Mean absolute error 2313789.0547

Root mean squared error 25681350.0946

Relative absolute error 139.24 %

Root relative squared error 101.0944 %

Total Number of Instances 2063
```

Figure 4.7.2 Result When "Cross Validation" is Selected and n=10 in Weka

4.7.3 %90 Train, %10 Test

```
Time taken to test model on test split: 0 seconds

=== Summary ===

Correlation coefficient 0.289

Mean absolute error 1837374.1298

Root mean squared error 2456394.1918

Relative absolute error 177.7384 %

Root relative squared error 205.7012 %

Total Number of Instances 206
```

Figure 4.7.3 Results with 10% of the Dataset

4.7.4 Supplied Test Set

4.7.4.1 Test 1

Test Data:Satilik,3+1,130,1,22,Kombi,2,Uygun,Esyali Degil,2,Betonarme,Sifir,Bos,50, Evet,Guney-Dogu,2500,Dogalgaz,585000

While our actual value was 585000 when estimating the price in the multilayer perceptron process, the number 537152.981 was found as an estimate, and the error rate was found to be -47847.019. This error rate is the difference between the estimated value and the true value.

```
=== Predictions on test set ===
   inst# actual predicted error
      1 585000 537152.981 -47847.019
=== Evaluation on test set ===
Time taken to test model on supplied test set: 0 seconds
=== Summary ===
                                     0
Correlation coefficient
                                47847.0185
Mean absolute error
Root mean squared error
                                 47847.0185
                                     7.3058 %
Relative absolute error
Root relative squared error
                                     7.3058 %
Total Number of Instances
                                     1
```

Figure 4.7.4.1 Class Prediction in the Algorithm's Test Data

4.7.4.2 Test 2

Test Data: Satilik,3+1,150,8,5,Kombi,9,Uygun,Esyali-Degil,1,Betonarme,Ikinci-El,Bos,50,Evet,Kuzey-Guney-Bati,6932,Dogalgaz,550000

While our actual value was 550000 when estimating the price in the multilayer perceptron process, the number 680892.991 was found as an estimate, and the error rate was found to be 130892.991. This error rate is the difference between the estimated value and the true value.

```
=== Predictions on test set ===

inst# actual predicted error
    1 550000 680892.991 130892.991

=== Evaluation on test set ===

Time taken to test model on supplied test set: 0 seconds

=== Summary ===

Correlation coefficient 0
Mean absolute error 130892.9906
Root mean squared error 130892.9906
Relative absolute error 18.9723 %
Root relative squared error 18.9723 %
Total Number of Instances 1
```

Figure 4.7.4.2 Class Prediction in the Algorithm's Test Data

5. References

https://www.hepsiemlak.com/satilik/daire

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/

https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning

https://www.javatpoint.com/k-means-clustering-algorithm-in-machine-learning

https://www.researchgate.net/publication/345970825_Precision-

Recall_Curve_PRC_Classification_Trees

https://datacadamia.com/data_mining/validation_set

https://machinelearningmastery.com/how-to-tune-a-machine-learning-algorithm-in-

weka/

https://developers.google.com/machine-learning/crash-course/classification/roc-and-

auc

https://builtin.com/data-science/precision-and-recall

https://en.wikipedia.org/wiki/Precision_and_recall

https://www.pico.net/kb/what-is-a-false-positive-rate/,

http://www.stat.yale.edu/Courses/1997-98/101/linreg.htm

https://www.techopedia.com/definition/20879/multilayer-perceptron-mlp

https://www.sciencedirect.com/topics/mathematics/linear-regression

https://www.sciencedirect.com/topics/engineering/model-tree