A Few Notes On The Dirac Delta Function

David Meyer

dmm@{1-4-5.net,uoregon.edu,...}

Last update: May 28, 2021

1 Introduction

These notes began life as some thoughts on the Dirac Delta Function and evolved into notes on several related topics including Laplace Transforms. The Dirac Delta function has all kinds of crazy and interesting properties. More TBD.

2 The Dirac Delta Function

The Dirac Delta Function is defined as shown in Figure 1. In the limit $(\epsilon \to 0)$ the Dirac Delta function is written $\delta_a(t)$ or sometimes $\delta(t-a)$. As we will see in a moment, the $\delta_{a,\epsilon}(t)$ form of the delta function is useful when we want to use the Mean Value Theorem for Integrals [2] to evaluate integrals involving the delta function.

Figure 1: The Dirac Delta Function $\delta_{a,\epsilon}(t)$

So $\delta_{a,\epsilon}(t)$ is defined to be

$$\delta_{a,\epsilon}(t) = \begin{cases} \frac{1}{\epsilon} & a \le t \le a + \epsilon \\ 0 & \text{otherwise} \end{cases}$$

and has the constraint that

$$\int_{0}^{\infty} \delta_{a,\epsilon}(t) = 1$$

That is, $\delta_{a,\epsilon}(t)$ is in some sense a probability density.

In the limit the Dirac Delta Function looks like

$$\lim_{\epsilon \to 0} \delta_{a,\epsilon}(t) = \delta_a(t) = \begin{cases} \infty & t = a \\ 0 & t \neq a \end{cases}$$

or sometimes

$$\delta(t-a) = \begin{cases} 0 & t \neq a \\ \infty & t = a \end{cases}$$

 $\delta_a(t)$ also has the constraint that

$$\int_0^\infty \delta_a(t) = 1$$

and so is also a probability density. $\delta_a(t)$ is shown in Figure 2.

Figure 2: The Dirac Delta Function $\delta_a(t)$

2.1 Integrals Involving $\delta_{a,\epsilon}(t)$

 $\delta_{a,\epsilon}(t)$ has all kinds of interesting properties. One of them involves the integral of the product $\delta_{a,\epsilon}(t)$ with some function g(t). Here we would like to evaluate integrals of the form

$$\int_{0}^{\infty} \delta_{a,\epsilon}(t)g(t)dt \tag{1}$$

where g(t) is continuous on the interval $[a, a + \epsilon]$.

The Mean Value Theorem for Integrals [2] tells us that

$$\int_{a}^{b} g(t)dt = (b-a)g(c) \tag{2}$$

where the point c lies in the interval $[a, a + \epsilon]$. Now, since we know that $\delta_{a,\epsilon}(t)$ is zero everywhere except on the interval $[a, a + \epsilon]$ we can rewrite the improper integral in Equation 1 as the proper integral

$$\int_{a}^{a+\epsilon} \delta_{a,\epsilon}(t)g(t)dt$$

Here we can notice that $\delta_{a,\epsilon}(t) = \frac{1}{\epsilon}$ on the interval $[a, a + \epsilon]$ so we can rewrite our integral as

$$\int_{a}^{a+\epsilon} \frac{1}{\epsilon} g(t)dt = \frac{1}{\epsilon} \int_{a}^{a+\epsilon} g(t)dt$$

Now we can use Equation 2, the Mean Value Theorem for Integrals¹, by setting $b = a + \epsilon$ and a = a so that $b - a = \epsilon$. Then

$$\frac{1}{\epsilon} \int_{a}^{a+\epsilon} g(t)dt = \frac{1}{\epsilon} \underbrace{\left[(a+\epsilon) - a \right]}_{b-a} g(c) = \frac{1}{\epsilon} \epsilon g(c) = g(c)$$

where $c \in [a, a + \epsilon]$.

Finally, if we look at what happens to c as $\epsilon \to 0$ we see that $\lim_{\epsilon \to 0} c = a$ (sorry about the notation abuse) so that

$$\int_0^\infty \delta_a(t)g(t)dt = g(a) \tag{3}$$

¹This is where the $\delta_{a,\epsilon}(t)$ form of the delta function comes in handy.

Essentially $\delta_a(t)$ pulls out the value of g at a, that is, g(a).

Another way to get this result [1] is to notice that the integrand of

$$\int_0^\infty \delta(t-a)g(t)dt$$

is zero everywhere except where t=a, so we can rewrite our integral as $\int_0^\infty \delta(t-a)g(a)dt=g(a)\int_0^\infty \delta(t-a)dt$ (since g(a) doesn't depend on t). Then since by definition $\int_0^\infty \delta(t-a)dt=1$ we get

$$\int_0^\infty \delta(t-a)g(t)dt = g(a)$$

3 The Laplace Transform

We start by defining the integral transform of some function f(t).

Definition 3.1. Integral Transform

If a function f(t) is defined on $[0, \infty)$ then we can define an integral transform to be the improper integral

$$F(s) = \int_0^\infty K(s, t) f(t) dt$$

If the improper integral converges then we say that F(s) is the integral transform of f(t). The function K(s,t) is called the kernel of the transform. When $K(s,t) = e^{-st}$ the transform is called the **Laplace Transform**.

Definition 3.2. Laplace Transform

The Laplace Transform of a function f(t) is defined to be

$$\mathcal{L}{f(t)} = F(s) = \int_0^\infty e^{-st} f(t)dt \tag{4}$$

and is useful when solving ordinary differential equations (ODEs). Interestingly, the Laplace Transform of the Dirac Delta Function turns out to be

$$\mathcal{L}\{\delta_a(t)\} = \int_0^\infty e^{-st} \delta_a(t) dt \qquad \text{\# definition (Equation 4 with } f(t) = \delta_a(t))$$

$$= \int_0^\infty g(t) \delta_a(t) dt \qquad \text{\# set } g(t) = e^{-st}$$

$$= g(a) \qquad \text{\# by Equation 3}$$

$$= e^{-sa} \qquad \text{\# since } g(t) = e^{-st}$$

3.1 The Linearity Property Of The Laplace Transform

 \mathcal{L} is a linear operator, in other words: $\mathcal{L}\{af(t)+bg(t)\}=a\mathcal{L}\{f(t)\}+b\mathcal{L}\{g(t)\}$. Why? Consider:

$$\mathcal{L}\{af(t) + bg(t)\} = \int_0^\infty e^{-st} \left[af(t) + bg(t)\right] dt \qquad \text{\# definition of the Laplace Transform (Definition 3.2)}$$

$$= \int_0^\infty e^{-st} af(t) dt + \int_0^\infty e^{-st} bg(t) dt \qquad \text{\# by the linearity of improper integrals [3]}$$

$$= a \int_0^\infty e^{-st} f(t) dt + b \int_0^\infty e^{-st} g(t) dt \qquad \text{\# constant multiple rule: } \int k f(x) dx = k \int f(x) dx$$

$$= a \mathcal{L}\{f(t)\} + b \mathcal{L}\{g(t)\} \qquad \text{\# definition of the Laplace Transform (Definition 3.2)}$$

3.2 So Does Every Function Have A Laplace Transform?

The answer is no (consider a function like $f(t) = t^{-1}$). OK, then what are the properties that f(t) must have in order to have a Laplace Transform? First, f(t) must be of "exponential order".

Definition 3.3. Exponential Order

A function f is said to be of exponential order c if there exist constants c, M, and T > 0 such that $|f(t)| \leq Me^{ct}$ for all t > T.

Said another way, in order for f(t) to be of exponential order c we require that

$$\lim_{t \to \infty} \frac{f(t)}{e^{ct}} = 0$$

Basically this is saying that in order for f(t) to have a Laplace Transform then in a race between |f(t)| and e^{ct} as $t \to \infty$ e^{ct} must approach its limit first. This situation is depicted in Figure 3.

Figure 3: f(t) is of exponential order with constants c, M and T

Next we need the following theorem:

Theorem 3.1. Existence Theorem for Laplace Transforms: If f is s piecewise continuous on the interval $[0, \infty)$ and is of exponential order c then $F(s) = \mathcal{L}\{f(t)\}$ is defined for all s > c.

Ok, but why? Consider

$$\mathcal{L}\{f(t)\} = F(s) \qquad \# \text{ definition of the Laplace Transform (Definition 3.2)}$$

$$= \int_0^\infty e^{-st} f(t) dt \qquad \# \text{ definition of the Laplace Transform (Definition 3.2)}$$

$$\leq \int_0^\infty e^{-st} M e^{ct} dt \qquad \# f \text{ is of exponential order } c \text{ (Definition 3.3)}$$

$$= M \int_0^\infty e^{-st} e^{ct} dt \qquad \# M \text{ doesn't depend on } t$$

$$= M \int_0^\infty e^{(c-s)t} dt \qquad \# x^n \cdot x^m = x^{n+m}$$

$$= M \int_0^\infty e^u dt \qquad \# \text{ use a } u \text{ substitution with } u = (c-s)t$$

$$= M \int_0^\infty e^u \frac{du}{c^{-s}} \qquad \# du = (c-s) dt \Rightarrow dt = \frac{du}{c-s}$$

$$= \left[\frac{M}{c-s}\right] \int_0^\infty e^u du \qquad \# \text{ neither } c \text{ nor } s \text{ depend on } t$$

$$= \left[\frac{M}{c-s}\right] e^u \Big|_0^\infty \qquad \# \int_0^\infty e^u du = e^u + C$$

$$= \left[\frac{M}{c-s}\right] e^{(c-s)t} \Big|_0^\infty \qquad \# evaluate \text{ at the limits}$$

$$= \lim_{d \to \infty} \left[\frac{M}{c-s} e^{(c-s)d}\right] - \frac{M}{c-s} e^{(c-s)0} \qquad \# \text{ evaluate at the limits}$$

$$= \lim_{d \to \infty} \left[\frac{M}{c-s} e^{(c-s)d}\right] - \frac{M}{c-s} \qquad \# e^{(c-s)0} = 1 \text{ and } \frac{M}{c-s} \cdot 1 = \frac{M}{c-s}$$

$$= 0 - \frac{M}{c-s} \qquad \# \text{ we assumed that } s > c \text{ so } c - s < 0 \Rightarrow \lim_{d \to \infty} \left[\frac{M}{c-s} e^{(c-s)d}\right] = 0$$

$$= \frac{M}{s-c} \qquad \# \text{ simplify}$$

Note that if s = c then $\frac{M}{s - c}$ is not defined and $\mathcal{L}\{f(t)\}$ does not exist. Similarly, if s < c then $\lim_{d \to \infty} \left[\frac{M}{c - s} e^{(c - s)d}\right]$ does not converge and $\mathcal{L}\{f(t)\}$ does not exist. All of this implies that functions that do not satisfy the conditions of the Existence Theorem do not have Laplace Transforms.

Acknowledgements

References

- [1] Leonard Susskind. Lecture 4 Modern Physics: Quantum Mechanics (Stanford). https://www.youtube.com/watch?v=oWe9brUw00Q&t=1130s, 2008. [Online; accessed 11-May-2021].
- [2] Proof Wiki Contributors. Mean Value Theorem For Integrals. https://proofwiki.org/wiki/Mean_Value_Theorem_for_Integrals, 2020. [Online; accessed 11-May-2021].
- [3] Tom Lewis. Improper Integrals. http://math.furman.edu/~tlewis/math450/ash/chap7/sec9.pdf, 2014. [Online; accessed 25-May-2021].