Computer Programming for Geosciences (GS543)

Tutorial-1

An inclined sheet-type structure (Figure 1) in two dimensions can be described by a set of five model parameters, namely, electric dipole density $k = I\rho/2\pi$ (I is the current density of the medium and ρ is the resistivity of the sheet), x coordinate of the center of the sheet x_0 , depth of the center of the sheet h, half-width of the sheet a and inclination angle a.

The general equation of SP anomaly V(x) at any point P on a profile perpendicular to the strike of a 2-D inclined sheet is written as:

$$V(x) = k \ln \left[\frac{\{(x - x_0) - a\cos\alpha\}^2 + (h - a\sin\alpha)^2}{\{(x - x_0) + a\cos\alpha\}^2 + (h + a\sin\alpha)^2} \right]. \tag{1}$$

Figure 1: Geometrical shaped body- 2D Inclined Sheet geometry.

Write down a **Fortran program** to compute the SP response using the equation 1 and complete the table accordingly:

x (m)	V (mv)	x (m)	V (mv)
-500		50	
-400		100	
-300		200	
-200		300	
-100		400	
-50		500	
0		-	

Program Script

```
! Program to compute SP anomaly over thin sheet
 Program sheet_sp
 implicit none ! Require all variables to be explicitly declared
 real :: k,xo,a,alpha,h,x,v
 real :: num1,num2,deno1,deno2,deno, num
  k=40.0
  xo=0.0
  a=10.0
  alpha=3.14/4 ! in radian
  h=30.0
 write(*,*) "SP measurement point location x"
 read(*,*) x
 num1=((x-xo)-a*cos(alpha))**2
 num2=(h-a*sin(alpha))**2
 num=num1+num2
 deno1=((x-xo)+a*cos(alpha))**2
 deno2=(h+a*sin(alpha))**2
 deno=deno1+deno2
 v=k*log(num/deno)
 write(*,*) v
 end program sheet_sp
```

Compilation and Execution

```
! Program to compute SP anomaly over thin sheet
 Program sheet_sp
! implicit none
                  ! Require all variables to be explicitly declared
 real :: k,xo,a,alpha,h,x,v,pai
 real :: num1,num2,deno1,deno2,deno, num
 pai=3.141592653589793
  k=40.0
  xo=0.0
  a=10.0
  alpha=45*pai/180 ! in radian
  h=30.0
 interactive_loop: do
 write(*,*) "SP measurement point location x"
 read(*,*) x
 num1=((x-xo)-a*cos(alpha))**2
 num2=(h-a*sin(alpha))**2
 num=num1+num2
 deno1=((x-xo)+a*cos(alpha))**2
 deno2=(h+a*sin(alpha))**2
 deno=deno1+deno2
 v=k*log(num/deno)
 write(*,*) v
 yn_loop: do
 write(*,*) 'Perform another calculation? y[n]'
     if (yn=='y' .or. yn=='Y') exit yn_loop
     if (yn=='n' .or. yn=='N' .or. yn==' ') exit interactive_loop
 end do yn_loop
 end do interactive_loop
 end program sheet_sp
```