Mathématiques pour la mécanique

I Généralités sur les EDP

I.1 Définitions

Definition I.1. (Ordre d'une EDP)

L'ordre d'une EDP est l'ordre le plus élevé parmi les dérivées partielles

Definition I.2. (Linéarité d'une EDP)

- Une EDP est dite linéaire si elle ne fait intervenir que des combinaisons linéaires des dérivées partielles par rapport à la fonction.
- Une EDP est dite quasi-linéaire si elle est linéaire par rapport aux dérivées les plus élevées.

I.2 Problème bien posé au sens d'Hadamard

Definition I.3. On dit qu'un problème est bien posé au sens d'Hadamard si :

- 1. il existe une solution;
- 2. la solution est unique;
- 3. la solution dépend de façon continue des données. Cela signifie qu'une petite variation d'une condition aux limites ou du second membre de l'équation implique une petite variation de la solution.

I.3 Classification des EDP quasi-linéaires d'ordre 2

I.3.1 A deux variables indépendantes

Definition I.4. Soit l'EDP suivante :

$$a\frac{\partial^2 u}{\partial x^2} + b\frac{\partial^2 u}{\partial y^2} + c\frac{\partial^2 u}{\partial z^2} + [\ldots] = 0$$

où a, b, c et [...] peuvent dépendre de x,y,u, $\frac{\partial u}{\partial x}$, etc. On dira de cette EDP qu'elle est :

- parabolique si $b^2 4ac = 0$ (problèmes de diffusion)
- hyperbolique si $b^2 4ac > 0$ (problèmes de propagation)
- elliptique si $b^2 4ac < 0$ (phénomènes d'équilibre)

L'équation est dite mixte si elle change de famille.

I.3.2 A plus de deux variables indépendantes

Definition I.5. Soit l'EDP suivante :

$$\sum_{i,j}^{N} a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} + [\dots] = 0$$

- Si les valeurs propres de $[a_{ij}]$ sont non nulles et de même signe, on dit que l'équation est **elliptique**.
- Si les valeurs propres de $[a_{ij}]$ sont non nulles et si au moins deux sont de signes opposés, on dit que l'équation est **hyperbolique**.
- Si les valeurs propres de $[a_{ij}]$ sont nulles on dit que l'équation est **parabolique**.

II Équations et systèmes hyperboliques à deux variables

II.1 Forme standard

Soit le problème suivant (corde vibrante infinie):

$$\begin{cases} w \in C^2(\mathbb{R} \times \mathbb{R}^+) \\ \frac{\partial^2 w}{\partial t^2} - c^2 \frac{\partial^2 w}{\partial x^2} = 0 \text{ dans } \mathbb{R} \times \mathbb{R}^+ \\ w(x,0) = f(x) \\ \frac{\partial w}{\partial t}(x,0) = g(x) \end{cases}$$

Pour obtenir la forme standard de ce problème, on pose :

$$w_1 = \frac{\partial w}{\partial x} et \frac{\partial w}{\partial t}$$

On a alors, en rajoutant le Lemme de Schwartz (car la fonction est C^2):

$$\begin{cases} \frac{\partial w_1}{\partial t} - \frac{\partial w_2}{\partial x} = 0 \text{ dans } \mathbb{R} \times \mathbb{R}^+\\ \frac{\partial w_2}{\partial t} - c \frac{\partial w_1}{\partial x} = 0 \text{ dans } \mathbb{R} \times \mathbb{R}^+\\ w_1(x,0) = f'(x)\\ w_2(x,0) = g(x) \end{cases}$$

La forme standard du problème est alors :

$$\frac{\partial W}{\partial t} + A \frac{\partial W}{\partial x} = G$$

avec $W = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$, $A = \begin{pmatrix} 0 & -1 \\ -c^2 & 0 \end{pmatrix}$ et G = 0. Dans la matrice A, la ligne i correspond à l'équation i, et la ligne j correspond à w_i .

Definition II.1. (Classification des systèmes hyperboliques)

On peut alors caractériser le **système** (et non pas l'équation du système) **dans le cas où il est hyperbolique** (les valeurs propres de A sont non nuls et au moins deux sont de signes opposés). Un système est soit hyperbolique, soit rien. Dans le second cas, les règles suivantes ne s'appliquent pas.

- Si la matrice A ne dépend pas de l'inconnue, et le vecteur G dépend de l'inconnue de manière linéaire, alors le système est linéaire.
- Si la matrice A ne dépend pas de l'inconnue, et le vecteur G dépend de l'inconnue de manière non-linéaire, alors le système est semi-linéaire.
- Si la matrice A dépend de l'inconnue, et le vecteur G dépend de l'inconnue de manière linéaire, alors le système est quasi-linéaire.

II.2 Méthode des courbes caractéristiques

Considération la forme normal d'un systeme hyperbolique (au moins) semi-linéaire :

$$\frac{\partial V_k}{\partial t} + \lambda_k \frac{\partial V_k}{\partial x} = F_k$$

Definition II.2. (Courbe caractéristique du problèmes)

Soit $C_k: t \to x_k(t)$ une courbe du plan (x,t) telle que

$$\frac{\partial x_k}{\partial t}(t) = \lambda_k(x_k(t), t)$$

Il y a autant de famille de courbe caractéristiques que de valeurs propres dinstinctes λ_k Pour chaque point (x,t) du domaine étudié, passent une seule courbe de chaque familles.

Definition II.3. (Variation de la solution sur une courbe caractéristique)

Soit une courbe caractéristique $t \xrightarrow{x}_k (t)$ de la famille C_k :

$$\frac{\partial V_k}{\partial t}(t) = F_k(x_k(t), t, U(x_k(t), t))$$

Dans le cas d'un systeme homogene $(V_k = 0)$, la composante V_k (alors appelé **Invariante de Riemann**) de la solution reste constante le long de la courbe.

III Systèmes hyperboliques et discontinuités