The Economics of FinTech, Lecture 9

Steven Kou¹

¹Department of Finance Questrom School of Business Boston University

Outline

Introduction

2 Robo-Advising: A Dynamic Mean Variance Approach

Outline

Introduction

Robo-Advising: A Dynamic Mean Variance Approach

Topics to be covered

- Black-Litterman Model
- Dynamic Mean Variance

Outline

Introduction

2 Robo-Advising: A Dynamic Mean Variance Approach

 Based on: M. Dai, H. Jin, S. Kou, and Y. Xu (2019). A dynamic Mean Variance Analysis for Log-Returns. To appear, *Management Science*.

- Based on: M. Dai, H. Jin, S. Kou, and Y. Xu (2019). A dynamic Mean Variance Analysis for Log-Returns. To appear, *Management Science*.
- Financial advisors: traditional vs robotic advisor
- A robo-advisor aims at giving general financial advices to large number of clients.

- Based on: M. Dai, H. Jin, S. Kou, and Y. Xu (2019). A dynamic Mean Variance Analysis for Log-Returns. To appear, *Management Science*.
- Financial advisors: traditional vs robotic advisor
- A robo-advisor aims at giving general financial advices to large number of clients.
- Some difficulties:
 - The traditional investment theory is based on utility functions. But it is difficult to measuring risk preference of clients automatically.
 - Consistent advice to financial advisors:
 - A client should rebalance portfolios dynamically, preferably in a time consistent way.
 - A rich client should invest more (dollar amount) in stocks than a poor client.
 - No short sale of stocks in the long run, due to positive equity premium.

- Based on: M. Dai, H. Jin, S. Kou, and Y. Xu (2019). A dynamic Mean Variance Analysis for Log-Returns. To appear, *Management Science*.
- Financial advisors: traditional vs robotic advisor
- A robo-advisor aims at giving general financial advices to large number of clients.
- Some difficulties:
 - The traditional investment theory is based on utility functions. But it is difficult to measuring risk preference of clients automatically.
 - Consistent advice to financial advisors:
 - A client should rebalance portfolios dynamically, preferably in a time consistent way.
 - A rich client should invest more (dollar amount) in stocks than a poor client.
 - $3.\,$ No short sale of stocks in the long run, due to positive equity premium.
- Due to Criertion 1, we will focus on dynamic asset allocation.

Motivation: Two Theories of Dynamic Asset Allocation

- Utility maximization, Merton (1969, 1971):
 - Exponential utility $-\exp(-\tilde{\gamma}W)$, resulting in a constant dolloar amount in stock.
 - Power utility $\frac{\dot{W}^{1-\tilde{\gamma}}}{1-\tilde{\gamma}}$, resulting in a constant proportion of wealth in stock.
 - It is difficult to estimate $\tilde{\gamma}$ for investors.

Motivation: Two Theories of Dynamic Asset Allocation

- Utility maximization, Merton (1969, 1971):
 - Exponential utility $-\exp(-\tilde{\gamma}W)$, resulting in a constant dolloar amount in stock.
 - Power utility $\frac{\dot{W}^{1-\tilde{\gamma}}}{1-\tilde{\gamma}}$, resulting in a constant proportion of wealth in stock.
 - It is difficult to estimate $\tilde{\gamma}$ for investors.
- Dynamic mean variance analysis is an extension to the one-period mean variance analysis by Markowitz (1952).
 - One-period mean variance: min $Var(R_1)$, s.t. $E(R_1) = a$..
 - Dynamic mean variance: $\min Var(W_T)$, s.t. $E(W_T) = a$, where W(T) is the total wealth.
 - It is easier to get the model input from the client, as only the expected portfolio return is required from the client.

Motivation: Time-Inconsistency in Dynamic Mean Variance

- The dynamic mean variance analysis has an issue of time inconsistency: A strategy that is optimal today may not be optimal tomorrow.
- More precisely, at time 0, a robo advisor gives a optimal strategy for the investor to do at time 1; say a function $f(X_1)$, where X_1 is the wealth at time 1. However, when time 1 arrives, the optimal strategy will be $g(X_1)$, $g \neq f$.
- This will create serious confusions among the investor.
- Time inconsistency is a broad issue, e.g. non-exponential discounting.
- Here the time inconsistency arises because the objective function is not a expectation, but a nonlinear function of expectation.
- More precisely, the objective function:

$$\label{eq:J} \textit{J}(\pi_t;t) = \mathrm{E}_t(\textit{W}_T) - \frac{\gamma}{2} \mathrm{Var}_t(\textit{W}_T),$$

but $\operatorname{Var}_t(W_T) = \operatorname{E}_t(W_T^2), -(\operatorname{E}_t(W_T))^2.$

Two Solutions: Time-Inconsistency in Dynamic Mean Variance

- Pre-committed strategy: min $Var(W_T)$, s.t. $E(W_T) = a$, at time 0.
- An equilibrium strategy $\hat{\pi}(t)$ (Bjork and Murgoci, 2010): for any perturbation v in [t, t+h)

$$h, v(\tau) = \begin{cases} v & \text{for } t \leq \tau < t + h \\ \hat{\pi}(\tau) & \text{for } t + h \leq \tau \leq T, \end{cases}$$

$$\liminf_{h\to 0^+} \frac{J(\hat{\pi};t) - J(\pi_{h,\nu};t)}{h} \ge 0 \quad \text{for any } h, \nu.$$

The associated equilibrium value function $V(t) =: J(\hat{\pi}; t)$.

Previous Literature

- Basak and Chabakauri (2010, RFS):
 - Objective function: $J(\pi_t;t) = \mathrm{E}_t(W_T) \frac{\gamma}{2} \mathrm{Var}_t(W_T)$, where γ is a constant.
 - Complete market: The optimal strategy is to invest, after discounting, a constant dollar amount in stock, which is against Criteria 2.
 Incomplete markets: Analytical solutions are available in some cases of incomplete markets, and the resulting strategies are also against Criteria 2.

Previous Literature

- Basak and Chabakauri (2010, RFS):
 - Objective function: $J(\pi_t; t) = E_t(W_T) \frac{\gamma}{2} Var_t(W_T)$, where γ is a constant.
 - Complete market: The optimal strategy is to invest, after discounting, a constant dollar amount in stock, which is against Criteria 2.
 Incomplete markets: Analytical solutions are available in some cases of incomplete markets, and the resulting strategies are also against Criteria 2.
- Bjork, Murgoci and Zhou (2014, MF):
 - Objective function: $E_t(W_T) \frac{\gamma}{2W_t} Var_t(W_T)$.
 - Complete market: The optimal strategy depends on the wealth level:

$$\frac{y_t}{W_t} = c(t) \frac{\mu - r}{\gamma \sigma^2},$$

where c(t) solves an integral equation. Incomplete markets: N.A.

• Unfortunately, $c(t) \to -\gamma < 0$ as $T - t \to \infty$, which is against Criterion 3.

Our Solution

Our Formulation

We propose a dynamic mean-variance model on log return.

- Our formulation: min $Var_{t,T}(R_{t,T})$, s.t. $\frac{1}{T-t}E_t(R_{t,T})=a$, or equivalently, $E_t(R_{t,T})-\frac{\gamma}{2}Var_t(R_{t,T})$, where $R_{t,T}=\log(\frac{W_T}{W_t})$, and γ is a constant dependent on a.
- In the one-period case, the formulation degenerates to the standard mean-variance one by Markowitz (1952).

Our Formulation

We propose a dynamic mean-variance model on log return.

- Our formulation: min $Var_{t,T}(R_{t,T})$, s.t. $\frac{1}{T-t}E_t(R_{t,T})=a$, or equivalently, $E_t(R_{t,T})-\frac{\gamma}{2}Var_t(R_{t,T})$, where $R_{t,T}=\log(\frac{W_T}{W_t})$, and γ is a constant dependent on a.
- In the one-period case, the formulation degenerates to the standard mean-variance one by Markowitz (1952).
- Optimal strategy in the complete market:

$$\frac{y_t}{W_t} = \frac{\mu - r}{(1 + \gamma)\sigma^2}.$$

Our Formulation

We propose a dynamic mean-variance model on log return.

- Our formulation: min $Var_{t,T}(R_{t,T})$, s.t. $\frac{1}{T-t}E_t(R_{t,T})=a$, or equivalently, $E_t(R_{t,T})-\frac{\gamma}{2}Var_t(R_{t,T})$, where $R_{t,T}=\log(\frac{W_T}{W_t})$, and γ is a constant dependent on a.
- In the one-period case, the formulation degenerates to the standard mean-variance one by Markowitz (1952).
- Optimal strategy in the complete market:

$$\frac{y_t}{W_t} = \frac{\mu - r}{(1 + \gamma)\sigma^2}.$$

- The risk averse parameter is obtained automatically as $\tilde{\gamma} = 1 + \gamma$.
- Analytical solutions are available in many cases of incomplete markets.

A comparison (complete market)

Complete Market	Comparison (with $\mu > r$)	
	rich invests more	no short-sale in long run
Basak and Chabakauri (2010)	No	Yes
Bjork, Murgoci and Zhou (2014)	Yes	No
This paper	Yes	Yes

Incomplete Markets	Comparison (with $\mu > r$)	
	rich invests more	no short-sale in long run
Basak and Chabakauri (2010)	No	Yes
Bjork, Murgoci and Zhou (2014)	N.A.	N.A.
This paper	Yes	Yes

Implied γ

A Comparison

Figure: a=0.08 (equivalently $\gamma=1$), $\sigma=0.15$, $\mu=0.08$, r=0.02, T=30