SemenovVlAl 10122024-181640

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -3$ дБ.

Ко входу этой цепи подключён генератор с внутренним сопротивлением $50~\mathrm{Om}$ и доступной мощностью $10.2~\mathrm{дБм}$.

Какая мощность рассеивается внутри цепи коррекции?

- 1) 5.2 mB_T
- 2) 5.5 mB_T
- 3) 5.6 mB_T
- 4) 0.9 mBT

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\scriptscriptstyle \rm H}=4.4~\Gamma\Gamma$ ц и $f_{\scriptscriptstyle \rm B}=4.9~\Gamma\Gamma$ ц, используя рисунок 1.

Рисунок 1 – Частотная характеристика усиления

- 1) 0.6 дБ
- 2) 0.1 дБ
- 3) 1.5 дБ
- 4) 1.2 дБ

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 2) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 2 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 3 ситуаций соответствует эта частотная характеристика?

Рисунок 3 – Различные реализаци и Г-образной цепи согласования

Варианты ОТВЕТА: 1) а 2) b 3) c 4) d

 \mathcal{A} ано значение коэффициента отражения от входа реактивной цепи коррекции

$$s_{11} = -0.04 + 0.19i.$$

Найти модуль (в дБ) коэффициента передачи s_{21} .

- 1) -0.2 дБ
- 2) -1 дБ
- 3) -0.7 дБ
- 4) -2 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.520	-110.9	25.458	110.7	0.026	52.1	0.535	-56.9
2.1	0.478	-153.8	13.250	84.8	0.037	50.9	0.314	-79.8
3.2	0.483	-175.4	8.691	69.9	0.049	51.6	0.256	-98.9
4.3	0.496	170.1	6.452	57.8	0.063	50.5	0.234	-110.7
5.4	0.503	159.3	5.055	46.8	0.078	48.1	0.209	-121.6
6.5	0.519	146.6	4.214	35.5	0.092	42.5	0.186	-138.4
8.6	0.601	127.5	3.048	14.5	0.120	31.7	0.151	157.8

Выбрать Γ -образный четырёхполюсник (см. рисунок 4), который может обеспечить согласование со стороны плеча 2 на частоте 5.4 $\Gamma\Gamma$ ц.

Рисунок 4 – Различные реализации Г-образного четырёхполюсника

- 1) A
- 2) B
- 3) C
- 4) D

Даны значения s-параметров на некоторой частоте:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.4	0.486	-129.9	19.485	99.7	0.029	50.5	0.431	-62.4

Требуется выбрать согласованный аттенюатор с *минимальным* затуханием, подключения которого будет *достаточно*, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

- 1) аттенюатор с затуханием 2.2 дБ, подключённый к плечу 1;
- 2) аттенюатор с затуханием 2.2 дБ, подключённый к плечу 1;
- 3) аттенюатор с затуханием 1.7 дБ, подключённый к плечу 1;
- 4) аттенюатор с затуханием 3 дБ, подключённый к плечу 2.