

TAEG

TRAINING
ANALYSIS
AND
EVALUATION
GROUP

AEG REPORT O. 47 ACADEMIC ATTRITION FROM NAVY TECHNICAL TRAINING CLASS "A" SCHOOL COURSES

in him where we while is not not the form to make the contract of the

FOCUS ON THE TRAINED MAN

JULY 1977

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

TRAINING ANALYSIS AND EVALUATION GROUP ORLANDO, FLORIDA 32813

ACADEM'S ATTRITION FROM NAVY TECHNICAL TRAINING CLASS "A" SCHOOL COURSES

Morris G. Middleton William C. Rankin Eric K. Green Clarence J. Papetti

Training Analysis and Evaluation Group

July 1977

GOVERNMENT RIGHTS IN DATA STATEMENT

Reproduction of this publication in whole or in part is permitted for any purpose of the United States Government.

alfred F. Smode

ALFRED F. SMODE, Ph.D., Director, Training Analysis and Evaluation Group

WORTH SCANLAND, Ph.D.

Assistant Chief of Staff for Research and Program Development, Chief of Naval Education and Training

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
	ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
TAEG Report No47	(9)
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
ACADEMIC ATTRITION FROM NAVY TECHNICAL	
CLASS "A" SCHOOL COURSES	Nov 1976 - Jun 1977
	6. PERFORMING ORG. REPORT NUMBER
7. (AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(*)
Morris G. Middleton, William C. Rankin Eric K. Green and Clarence J. Papetti	,
	19 200 200 200 200 200 200 200 200 200 20
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Training Analysis and Evaluation Group Orlando, Florida 32813	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
	July 1977
	19. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(If different from Con	ntrolling Office) 15. SECURITY CLASS. (of this report)
	Unclassified
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
	DDC
Approved for public release; distribut	ion is unlimited.
	Whereigning
	SEP 13 1977
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 2	20, Il different from Report)
	B
18. SUPPLEMENTARY NOTES	
	100 101
	401 624
19. KEY WORDS (Continue on reverse side if necessary and identify	
	of training
	ition cost
Training attrition Training aptitude requirements	
Training approduce requirements	
20. ABSTRACT (Continue on reverse side if necessary and identify it	
Attrition of enlisted personnel du	uring first tour enlistment has become
a major area of concern in the all-volume	nteer II S Navy Attrition from the
a school crailling environment was never	Celved to be a part of the guarall
attrition problem. This study investiga	ated 147 Al and A3 Navy courses to:
identify factors associated w	

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102- LF- 014- 6601

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

20. ABSTRACT (continued)

identify the extent and pattern of attrition in these courses, and

determine the overall and specific cost of academic and nonacademic attrition.

Extensive data are provided on over 20 variables. Major variables are academic attrition, nonacademic attrition, qualified inputs, unqualified inputs, and cost per equivalent graduate.

NTIS		V/hile	S	ection	t
DBC		Buff	Set	ction	
INANE	HOUMBED				
JUSTI	CATION		•		
SY	INSTITUTE.	UAN AD	0.17	e nana	0
	EPECKER PROPERTY	Ville All	11 1	Little	
DISTR	AVAIL.				

5/N 0102- LF- 014- 6601

Unclassified

TABLE OF CONTENTS

Section		Page
I	INTRODUCTION	3
	Purpose	3 4 5
11	APPROACH	7
	Preliminary Descriptive Analysis	7 9 9 10 11
III	RESULTS AND DISCUSSION	13
	Preliminary Descriptive Analysis	13 18 21 23
IV	SUMMARY OF FINDINGS AND RECOMMENDATIONS FOR FUTURE	35
	CONSIDERATIONS	38
BIBLIOGRA	PHY	39
APPENDIX	A Attrition Data for Class Al and A3 Courses	41
APPENDIX	B Qualified and Unqualified Attrition	51

LIST OF ILLUSTRATIONS

Figure			Page
1	Relative Proportions of Attrition		14
2	Distribution of Total Attrition from A1 and A3 Courses		15
3	Distribution of Academic Attrition from Al and A3 Courses.		16
4	Distribution of Nonacademic Attrition from A1 and A3 Courses		17
5	Academic Attrition Costs Proportions Attributable to Courses Above or Below \$150,000 Threshold for Concern		27
6	Academic Attrition Cost As a Percent of Total Course Cost.		33
	LIST OF TABLES		
Table			Page
1	Courses Having Attrition (Academic or Nonacademic) Equal to or Greater Than 10 Percent		19
2	Correlations with Attrition		20
3	Courses in Which Unqualified Students (Waivers) Attrited at Higher Rates than Qualified Students		22
4	Distribution of Annual Cost of Courses		24
5	Distribution of Annual Cost of Total Attrition		24
6	Annual Cost of Academic Attrition		26
7	Annual Cost of Nonacademic Attrition		26
8	Courses With Academic Attrition Cost Greater Than \$150,000		28
9	Distribution of the Attrition Cost As a Percentage of Course Cost		30
10	Distribution of Academic Attrition Cost As a Percentage of Course Cost		31
11	Distribution of Nonacademic Attrition Cost As a Percentage of Course Cost	•	32
A-1	Attrition Data for Class Al and A3 Courses		43
B-1	Qualified and Unqualified Attrition		53

SECTION I

INTRODUCTION

Attrition of enlisted personnel during first-tour enlistment is a major area of concern in the all-volunteer U.S. Navy. Part of this concern centers on attrition in the class "A" school environment. The training community has become increasingly interested, both in terms of economic considerations and instructional effectiveness, in failures who do not complete this important phase of training. To provide solutions to attenuating attrition, training variables which impact on attrition are identified and assessed.

PURPOSE

The purpose of this study is to determine the extent and the nature of attrition in Navy class "A" schools. The intent is to examine the variables involved in students failure to complete technical training and to develop feasible solutions for ameliorating significant problems contributing to academic attrition.

The objectives of the study are to:

- . identify those factors associated with academic attrition
- . determine the overall and course-specific costs of academic attrition
- identify the extent and pattern of attrition in class Al and A3 courses
- suggest corrective courses of action for monitoring, controlling, or reducing academic attrition.

An operational goal of this effort is to identify those major variables that contribute to attrition and to recommend means for the Chief of Naval Education and Training (CNET) to control attrition in the schoolhouse environment.

APPROACH

In order to determine the magnitude of the attrition problem in class "A" schools, historical data were gathered on attrition rates and on numerous variables that logically appeared to have potential influence on attrition. Data reduction techniques were employed to determine the extent of attrition in the "A" school environment and to identify key variables impacting on attrition. These variables were then examined in terms of their contribution to the costs associated with attrition. In order to achieve meaningful results in a short time span, the attrition data were sought from readily available existing data bases and personnel reports. Also, the emphasis was placed on enlisted Navy class "A" school courses since 70 to 80 percent of the graduates of Recruit Training go to these courses, and the bulk of manhours of Navy training occurs in this setting. Both academic and nonacademic

attrition were analyzed and studied. However, the focus of the study was on academic attrition because of the greater perceived potential for effecting change through training management options.

BACKGROUND ON ATTRITION

With current attrition from the Navy prior to the end of first-term obligated service at 39 percent¹, the need for understanding the sources and conditions of attrition and developing counteractive solutions is of significant concern. Traditionally, attrition studies have examined the relationship of personnel background factors to enlistment success. Research of this type has focused on the use of aptitude scores, education level, and number of school expulsions to predict individual and recruiting district attrition rates (Lockman, 1976; Plag, 1968). Ongoing research employing reading level and personality measures to predict attrition of female enlistees and recruits is being conducted by the Navy Personnel Research and Development Center (NPRDC). In general, these studies have failed to establish the existence of highly predictive relationships between preenlistment factors and attrition from the Navy. According to Goodstadt and Glickman (1975), it may be naive to assume that preenlistment factors can predict behavior in the military environment.

Post enlistment factors have also been examined in the attempt to provide solutions to the attrition problem. Recently the Canadian Force Personnel Applied Research Unit (1975) conducted a study relating trainee attitude to attrition in training. Currently the Human Resources Laboratory (HRL) at Lackland Air Force Base and NPRDC are conducting studies of post enlistment factors. The HRL study is similar to the Canadian study while NPRDC is attempting to determine the relationship of job satisfaction and job performance to attrition of students from Navy Basic Electricity and Electronics training.

In their comprehensive review of Navy and Marine Corps attrition studies, Goodstadt and Glickman (1975) cited the need for research on organizational factors, administration factors, and personnel costs in relation to attrition. Bell and Holz (1975) have examined these types of factors in the Army environment. Similarly, a phase of the NPRDC study in Basic Electricity and Electronics training addresses the relationship between type of training management and academic attrition. Research underway at the Naval Health Research Center (Gunderson and Hoiberg, 1977) deals with the influence of shipboard environments on attrition.

In general, the studies conducted to date have placed emphasis on attrition outside the domain of training. Although addressing substantial issues, these studies are not appropriate to the objectives of the present study.

¹ Information supplied by BUPERS (Code 21211)

In addition, several attrition/training management issues appropriate to CNET require definition. Specifically:

- . the desirability and/or extent of CNET involvement in the personnel selection function must be established
- . the role of CNET in the reduction of attrition both from the Navy and technical training must be defined
- . attrition should be examined in terms of costs/benefits at various points in the pipeline of training
- the responsibility of CNET with regard to the Navy's social burden of reclaiming the marginal human resource must be determined.

CNET is obligated to control the quality of its product and attempts to accomplish this by producing instructional programs which accommodate the wide range of aptitudes and abilities present in the All-Volunteer Force. CNET Instruction 1540.4 establishes the overall policy and guidelines on attrition and setbacks. However, local management at the school level has available a variety of options to deal with the complex problem of attrition that in essence can negate any attrition policy or standard. The major options available provide for tutoring, additional classroom or laboratory instruction, the authority to increase setbacks, and counseling.

Since the CNET training community has no direct policy control for keeping personnel in the Navy vs. early elimination of "high risk" personnel, this study addresses attrition from training courses under CNET control. The intent is to examine the implications associated with the control of this attrition for the management of the resources allocated to operating the training system.

ORGANIZATION OF THE REPORT

region wow are included whater somethings are as as as it will a maintaine on

In addition to this Introduction, three major sections are provided. Section II presents the rationale for and the data sources used in the analyses and describes the analyses performed. Section III presents the results of the analyses. Section IV summarizes the major findings of the study with appropriate recommendations.

In addition two appendices are provided. Appendices A and B provide a compilation of the data used in the various analyses.

SECTION II

APPROACH

This section describes the sources of data, the variables identified, and the various analyses performed. The analyses described below do not exhaust the analytical options that might have been used. The analyses undertaken were those deemed most pertinent, relevant, and meaningful, given the available data. The four analyses conducted are described below with the data used and a brief description of the content of the data source.

PRELIMINARY DESCRIPTIVE ANALYSIS

The initial effort of this study was to examine the magnitude and variability of academic attrition among Al and A3 courses. The rationale was to let actual attrition data suggest problem areas as well as hypotheses about possible correlates of attrition. This purely descriptive analysis of academic attrition also served as a base line for subsequent analyses.

DATA SOURCE: NAVY INTEGRATED TRAINING RESOURCES AND ADMINISTRATIVE SYSTEM (NITRAS)

NITRAS is an automated training information system designed to provide direct support information for the Chief of Naval Personnel and the Navy Recruiting Command. NITRAS consists of four files, two of which were utilized in this study and are described below:

Master Course Reference File (MCRF). The MCRF collects and standardizes at one central point all formal training course data elements, schedules, and input/requirements plans. It is a compilation of student statistics on the course/class level. It interfaces with various automated systems to provide Navy training reports.

Training Summary File (TSF). The TSF is a repository for training summary statistics for all training courses. It provides the capability to monitor average trainees on board, course achievement, numbers of trainees under instruction, attrition, and other variations of statistical data.

The data utilized in this preliminary descriptive analysis were acquired from the TSF Reports 1500-1207 and 1500-1208 which are extracts from the TSF containing all FY 76 data on attrition. The data elements used from this report are listed below. Equations 1, 3, 5 and 7 were derived for utilization in the analysis of data and are based on the formulas identified here as formulas 2, 4, 6, and 8 respectively. These latter formulas are taken from the NITRAS Reports Manual, and CNET Report 1500-1207.

- . Input Actual number of students enrolling during the current FY
- Grads Actual number of students graduating during the current FY
- Standard attrition (percent). This value is the CNTECHTRA approved maximum acceptable rate of attrition for a particular course.

Attrition total (number)

$$TA = \frac{Percent \ attrition \ total \ (enrollments + graduates)}{2 - percent \ attrition \ total}$$
(1)

. Attrition total (percent)

Percent TA =
$$\frac{\text{Total attrition}}{\text{Total attrition} + \text{enrollments} + \text{graduates}}$$
 (2)

Academic attrition (number)

$$AA = \frac{\text{Percent academic attrition (enrollment + graduates)}}{2 - \text{percentage academic attrition}}$$
(3)

. Academic attrition (percent)

Percent AA =
$$\frac{\text{Academic Attrition}}{\frac{\text{Academic attrition + enrollment + graduates}}{2}}$$
 (4)

. Nonacademic attrition (number)

$$NAA = \frac{Percent \ nonacademic \ attrition \ (enrollment + graduates)}{2 - percentage \ nonacademic \ attrition}$$
(5)

Nonacademic attrition (percentage)

Percent NAA =
$$\frac{\text{Nonacademic attrition}}{\text{Nonacademic attrition} + \text{enrollments} + \text{graduates}}$$
 (6)

Setback (number)

$$SB = \frac{Percent total setback (enrollments + graduates)}{2 - percent total setback}$$
(7)

. Setback (percentage)

Percent SB =
$$\frac{\text{Total setbacks}}{\text{Total setbacks} + \text{enrol!ments} + \text{graduates}}$$
(8)

It was determined from report 1500-1208 that CNET has managerial control over 147 Al and A3 courses. Using equations 1 through 8, basic descriptive statistical summaries were inspected. Initial class intervals of 5 percent, less than or equal to 10 percent, less than or equal to 15 percent, less than

or equal to 20 percent, less than or equal to 25 percent, and greater than 25 percent were used because the extent of attrition in A1 and A3 courses was not known.

Based upon this first sampling, relatively few courses were found to have academic attrition greater than 10 percent. Therefore, it was decided to depict class intervals of 0 through 10 percent in 1 percent increments and to group an open interval for courses greater than 10 percent.

CORRELATION ANALYSIS

Several hypotheses concerning possible relationships between course variables and attrition were identified from the original analysis and correlation analyses were performed to test these hypotheses. Data on selected variables were obtained from the TSF Report 1500-1208. In addition, the minimum aptitude requirements for entering a course were obtained from the MCRF. This variable was expressed in terms of the minimum Armed Services Vocational Aptitude Battery (ASVAB) scores required to qualify an individual for specific "A" courses. The variables that were deemed appropriate for examination included:

- . course length (days)
- number of course convenings
- minimum ASVAB
- . student input
- student graduates
- standard attrition percentage
- method of instruction (lock-step/self-paced)
- percentage setback

WAIVER ANALYSIS

The availability or qualifications of incoming personnel often do not match the manpower requirements of the Navy. Thus, in spite of minimum (ASVAB) requirements for entry into most "A" courses, some personnel who do not meet minimum aptitude requirements are still admitted to these courses as waived students. To ascertain the implications of waiver policy and its impact on academic attrition, a correlation analysis was made. In performing this correlation analysis a number of additional variables were addressed.

DATA SOURCES: CNET REPORT 1500-1120, CNTECHTRA MONTHLY AND CUMULATIVE STUDENT ATTRITION REPORT AND CNET REPORT 1500-1121, CNTECHTRA MONTHLY CUMULATIVE STUDENT QUALITY REPORT

These reports are extracted from the same NITRAS data base as the Training Summary reports. Report 1500-1120 contains monthly and cumulative data on student attrition per Course Data Processing (CDP) Code and Unit Identification Code (UIC) by academic and nonacademic categories, mental group, USN/USNR, and other variables. Report 1500-1121 contains monthly and cumulative data on student accessions. This report summarizes trainee accessions by mental groups and the number of qualified and nonqualified persons entering courses based upon minimum ASVAB scores. These data covered a 12-month period from October 1975 to September 1976 which closely matched the TSF data base cited under the preliminary descriptive analysis described above.

ATTRITION COST ANALYSIS

A prescribed remedy for any attrition problem regardless of its magnitude, must be tempered by cost. High attrition percentages do not necessarily mean high attrition cost; low percentage attrition courses may reflect a very large cost due to large throughput and/or a high cost of training. The purpose of this analysis was to determine the magnitude and impact of attrition in terms of what it costs the training community on a per capita and on an aggregate per course basis. It is an attempt to determine the impact of academic attrition in terms of lost training resources. This kind of analysis provides a basis for weighing the potential benefits of various CNET options or policies designed to influence attrition. Courses experiencing the greater attrition cost may have greater potential for payoff, given that options are available for reducing attrition. Courses with high attrition cost and a relatively low number of attrites may be less likely to derive benefits from policies designed to influence attrition.

DATA SOURCE: RESOURCES MANAGEMENT SYSTEM (RMS) PER CAPITA REPORT NUMBER 7, FY 76

This report is derived from the RMS data base. The per capita report is based on an aggregate of RMS costs which includes cost elements such as student and instructor pay and allowances, equipment maintenance and depreciation, and other direct and indirect costs. For any course, the total attrition cost can be calculated by:

$$CTA = \frac{AW}{TW} C_{C}$$
 (9)

Where CTA = Total attrition cost

in the commence of the first of the state of the second of

AW = The actual man-weeks of training consumed by attrites
TW = The actual mean weeks of training consumed by all
 enrollees in a course (determined by multiplying average
 course length by equivalent graduates)

CTA is the ratio of man-weeks of training associated with attrites to the total man-weeks of training for a course. To determine the attrition cost attributable to academic and nonacademic reasons, total attrition costs were prorated by percentage of total attrites who were academic or nonacademic attrites from the data of CNET Report 1500-1120, cited previously.

SUMMARY

Four analyses representing four different perspectives on essentially the same data base were performed. The reader should be reminded that the data on which this report is based are characterized by a number of vagaries. Specifically:

- . Although the data of the NITRAS system exhibits substantial reliability, it is still subject to error
- . The classification of an attrite as either academic or nonacademic is made on judgment of circumstances on individual cases. It is difficult to classify borderline cases as academic and often academic attrites are classified as nonacademic attrites
- . CNET Instruction 1540.4 establishes the policy and guidelines on academic attrition. However, local commands have options at their disposal that can mask an attrition problem.

These variations cannot be accounted for in the aggregate data base of this report. The acquisition of an extensively validated data set would have required the expenditure of additional resources with questionable utility for the gains made by such an investment.

SECTION III

RESULTS AND DISCUSSION

This section presents the results of the four analyses in the same order as described in section II. Other results; e.g., tables of data summaries to support the rationale for the inferences and conclusions discussed in this section, are provided in appendices A and B. As was expected, the results rather than always being univocal, often raised many interesting questions and hypotheses about future courses of action with promising potential for reducing attrition.

PRELIMINARY DESCRIPTIVE ANALYSIS

There were many ways to depict the results of this initial analysis. The methods chosen for presentation in this report are deemed to be most appropriate for displaying the type of data upon which this study was based. To obtain a perspective on the magnitude of attrition in Navy Al and A3 courses, figure l is presented. Shown are total student average on board (AOB) for all Al and A3 courses, the number of academic and nonacademic attrites, and setbacks during FY 76. It is noteworthy that setbacks constitute more than twice the combined total of academic and nonacademic attrition. In the aggregate, the attrition during this phase of the Navy enlistment (while attending "A" school) is relatively low (i.e., 3.7 percent academic, 3.7 percent nonacademic) whereas individual courses experience much higher attrition (some greater than 25 percent).

Figure 2 presents a histogram of the percent total attrition from Al and A3 courses. It is noted that 30 courses have zero attrition. Twelve of these zero-attrition courses are language courses which have very small annual inputs (less than or equal to 12) of students who are highly selected. The remaining 18 of these courses can be grouped into Basic Sonar Operator, Submarine Communication Application and Theory Modules (SCAT MOD), Information Specialist, and other introductory courses which have relatively short durations; i.e., the majority of the Basic Sonar Operator and SCAT MOD courses are less than 20 days in length. It would appear that such courses are over before academic problems develop. Eighty-three courses have attrition less than 5 percent while 27 courses have attrition equal to or greater than 10 percent. Ten percent was selected as a threshold for courses to be analyzed in detail, since this percentage is the number most often referred to as a "rule of thumb" by management. The few courses that have attrition greater than 20 percent are EW Operator/Technician (43 percent), Nuclear Power (24 percent), MN (23 percent), and CTR A (21 percent). Appendix A presents a complete list of "A" courses and attrition data.

Figure 3 presents a histogram of the distribution of academic attrition of Al and A3 courses while figure 4 presents the nonacademic attrition for these courses. The total number of courses in figure 2 in the greater than 10 percent category exceeds the combined totals of figures 3 and 4; e.g., 31 courses have greater than 10 percent total attrition whereas in figures 3 and 4 only 13 courses have greater than 10 percent. This is due to adding percentages

in the home was the similarly a fire with the fire the most of the second second

SOURCE: TRAINING SUMMARY FILE (NITRAS) FY76

Figure 1. Relative Proportions of Attrition

SOURCE: TRAINING SUMMARY FILE (NITRAS)FY76

Figure 2. Distribution of Total Attrition from Al and A3 Courses

SOURCE: TRAINING SUMMARY FILE (NITRAS)FY76

Figure 3. Distribution of Academic Attrition from Al and A3 Courses

SOURCE: TRAINING SUMMARY FILE (NITRAS)FY76

Figure 4. Distribution of Nonacademic Attrition from A1 and A3 Courses

of academic and nonacademic attrition where each may be less than 10 percent, but together total greater than 10 percent. Those courses having academic or nonacademic attrition greater than 10 percent are listed in table 1 along with CDP, short title, CIN, and location. The CDP number is the four-digit NITRAS data processing code. The CIN is an alphanumeric code assigned on the following basis: the first letter is the command identifier, the next three digits represent the DOD skill code, with the last four digits representing the sequence within the skill code. All courses listed in table 1 are under the control of CNTECHTRA. The courses (C-100-2014 and C-222-2010) having the "C" command designation are CNTECHTRA courses for the aviation training community.

In summary, total annual "A" school attrition is relatively small when compared to annual AOB. Both subcomponents (academic/nonacademic) are extremely skewed to the right with the highest frequency of courses having zero attrition, and in the aggregate the academic and nonacademic attrition are almost identical. Since there are so few courses with a large amount of academic attrition (equal to or greater than 10 percent), it appears not feasible to establish an overall management policy concerning this attrition but, rather, specific "fixes/cures" must be addressed for individual courses on a course-by-course basis.

CORRELATION ANALYSIS

The results of the above analysis gave an indication of the scope of the problem of academic and nonacademic attrition. To ascertain the interrelationships of the variables that could have some bearing on attrition, available data on 10 variables for 147 Al and A3 courses were intercorrelated. Table 2 presents the results of this analysis in matrix format. The interrelationships of the variables are of interest in themselves. However, for this study, the main area of interest is the relationship of all variables to academic attrition. The linear correlations between academic attrition and such variables as course length, number of course convenings per year, were limited by the extreme positive skewness (highest frequency of courses having zero attrition) in the distribution of academic attrition (see figure 3).

Column 10 of table 2 shows the correlations between academic attrition and nine other course variables in 147 Al and A3 courses. Some of the relationships with academic attrition are fairly straightforward when sheer annual student throughput is considered. For example, the correlation between academic attrition and total attrition is .899 for the simple reason that academic attrition contributes to total attrition. And, the correlation between academic attrition and nonacademic attrition is fairly high, .643, because both are highly correlated with annual student input. Input and number of graduates, both fairly highly correlated with each other, correlate with academic attrition .507 and .433, respectively. The correlation between academic attrition and the established CNTECHTRA "standard percentage" for attrition, a moderate .302, is explicable in terms of the standard having been based on historical attrition experience and the impact of the standard as a policy influence in and of itself.

TABLE 1. COURSES HAVING ATTRITION (ACADEMIC OR NONACADEMIC) EQUAL TO OR GREATER THAN 10 PERCENT

CDP	SHORT TITLE	CIN	LOCATION	PERCENT ATTRITION
	ACA	ADEMIC ATTRITIO	N	
6178	EW-OP-MAINT/TECH	A-102-0154	Corry	14
6302	CTT-A-PREP	A-231-0023	Corry	10
6301	CTR-A	A-231-0044	Corry	17
6057	YN-A	A-510-0012	Meridian	10
6041	MN A	A-647-0016	Charleston	18
1301	NUC POWER	A-661-0010	Mare Island	18
340S	AVR-A1	C-100-2014	Memphis	10
6278	AC-A1	C-222-2010	Memphis	12
6264	ET-A1-CTM	A-100-0012	Great Lakes	10
1300	NUC POWER	A-661-0010	Orlando	18
	NONACA	ADEMIC ATTRITIO	N	
6299	EW-OP-TECH	A-102-0155	Corry	39
6047	QM-A	A-670-0018	Great Lakes	11
6144	RMA	A-202-0014	San Diego	10

CDP - Course Data Processing Code CIN - Course Identifying Number

TABLE 2. CORRELATIONS WITH ATTRITION

	Course Length (Days) (1)	Number of Convenings Per Year (2)	Minimum ASVAB (3)	Number Input For Year (4)	Number Grads For Year (5)	Standard Attrition Percent (6)	Setbacks For Year (7)	Total Attrition For Year (8)	Nonacademic Attrition For Year (9)	Academic Attrition For Year (10)
COURSE LENGTH (1)		980.	001.	860	650	. 149	. 305	.199	.063	. 293
NUMBER OF CONVENINGS (2)			181.	.216	.193	.082	028	.198	.200	.147
MINIMUM ASVAB (3)				100	005	336	075	.018	200.	.039
NUMBER INPUT (4)					. 984	.188	.573	.749	.832	.507
NUMBER OF GRADUATES (5)						.,32	.530	.683	.786	.433
ATTRITION STANDARD & (6)							.374	.300	.228	.302
SETBACKS FY 76 (7)								.396	774.	.213
TOTAL ATTRITION FY 76 (8)									116.	668.
NONACADEMIC ATTRITION FY 76 (9)										.643

The correlation between course length (in days) and academic attrition is .293 and is more highly related to academic attrition than to either total or nonacademic attrition. The most plausible explanation for this seems to be that the longer the course the greater the opportunity for the course to cover more and perhaps more difficult material, resulting in academic attrition. The correlation between setbacks and academic attrition is .213, but its explanation is not as clear as the previous relationships. It could be that setbacks are partially symptomatic of academic problems, or setbacks and academic attrition are not really independent of course length. Course length is correlated about the same with both setbacks and academic attrition, .305 and .293, respectively. Understanding the relationship between setbacks and academic attrition requires much more data than were available for this analysis. In fact, setbacks, setback policy, and the implications of setbacks on the cost of attrition and training in general, should be examined as a separate problem.

The final correlation result to be examined is the relationship between the minimum ASVAB requirement for entering a course and academic attrition. This correlation was extremely low (.039). However, this is understandable when it is recognized that the minimum ASVAB is designed to selectively minimize academic attrition. Thus, the academic attrition that remains is unpredictable (not capable of being correlated) error variance. To this can be added the confounding effect of students being waived into courses; i.e., being accepted without meeting the minimum ASVAB standard. It would appear that the minimum ASVAB levels are valid (Thomas, 1973), but the influence of waivers required that additional data be analyzed. The results of that analysis follow.

WAIVER ANALYSIS

Specific course data from CNET Reports 1500-1120 and 1500-1121 (CNTECHTRA) show considerable course variations in the numbers of qualified vs. nonqualified inputs of trainees and whether or not the trainees become academic failures. The data base for these two reports has not fully matured; data for some courses are for a period as short as 3 months. Thus, 12 complete months of waiver and academic attrition data were not available for all courses. Furthermore, the analysis required the combination of course data from the two reports, sometimes resulting in cases of missing data. All of these anomalies are taken into account in appendix B, which represents a recasting of the data from the two reports into a combined layout which is easier to comprehend than the original report formats.

Individual course data on waivers and academic attrition were analyzed by chi-square tests of the hypothesis that the proportion of qualified attrites was not significantly different than the proportion of unqualified attrites who succumbed to academic attrition. A significant chi-square, at the p<.05 level of statistical confidence, was any computed value of the chi-square statistic for a course that equalled or exceeded 3.841. Of the 82 courses for which complete data were available, there were 33 significant chi-squares (see table 3); in other words, the unqualified trainees in these courses had a significantly higher rate of academic attrition.

the second second of the second secon

TABLE 3. COURSES IN WHICH UNQUALIFIED STUDENTS (WAIVERS) ATTRITED AT SIGNIFICANTLY HIGHER RATES THAN QUALIFIED STUDENTS

CDP	SHORT TITLE	CIN	CHI-SQUARE*
6001	QM-A	A-061-0012	14.6
6002	QM-A	A-061-0012	8.7
6005	SM-A	A-061-0011	12.8
6006	SM-A	A-061-0011	5.2
6015	SURF-ST	A-130-0037	8.4
6041	MN-A	A-647-0016	10.5
6053	СТО	A-580-0016	6.3
6073	ICA	A-623-0012	9.1
6077	MLA	A-790-0010	4.7
6097	ED-A	A-730-0010	5.1
6103	OT-A	A-210-0011	18.6
6115	GMM-A	A-041-0010	15.5
6120	HT	A-780-0035	15.6
6131	DS-A	A-150-0025	9.2
6142	OSA	A-221-0011	24.0
6144	RM-A	A-202-0014	9.4
6178	EW-OP/Maint TECH	A-102-0154	23.3
6239	AVA-AT	C-100-2013	8.5
6242	AVA-TD	C-100-2013	6.6
6244	AFT-AT	C-100-2010	82.2
6246	AFT-AX	C-100-2010	11.2
6267	ETA2-CTM	A-100-0014	4.2
6278	AC	C-222-2010	27.6
6299	EW OP-TECH	A-102-0155	6.5
6301	CTR	A-231-0044	8.2
6302	CTT-PREP	A-231-0023	88.0
6321	CTI-RUSSIAN	A-232-0021	4.4
6501	ADJ	C-601-2010	22.4
6516	AME	C-602-2015	9.1
6520	AG	C-420-2010	12.5
6523	PH	C-400-2011	13.9
6530	ASE	C-602-2019	9.6
6537	AW	C-210-2010	15.4

and in special for the commence of the property of the second of the sec

^{*}Significant Chi-Square = 3.841 CDP - Course Data Processing Code CIN - Course Identifying Number

In the overall analysis of all courses in appendix B, the following result was observed:

OUTCOME

		Nonacademic Attrition & Grads	Academic Attrites	Total
*****	QUALIFIED	41,508	2,121	43,629
INPUT	NONQUALIFIED	6,593	653	7,246
	TOTAL	48,101	2,774	50,875

The chi-square value for this analysis was 206, indicating a significant effect of waivers on academic attrition.

Column 15 of table B-1 (appendix B) gives the chi-square values for all courses for which data were available. As can be seen, the chi-square values vary widely from 0.1 for BU and AVA-AX to 88.0 for CTT-PREP.

Although the data depicted in appendix B gives only a "snap shot" of 131 courses for periods of time ranging from 1 to 12 months of FY 76, a wealth of information is contained therein that was gathered from a variety of existing documents and reports. One of the main objectives of presenting the data in appendix B is to depict the interrelationship of data elements required to obtain an overview of the variables involved in attrition. It should be noted that several courses listed in appendix A that are found in appendix B (i.e., 340S - AVR Al, 1300 - NUC Power), have missing (not reported) data but are identified for the sake of completeness in comparing the two appendices.

COST ANALYSIS

The data base for this analysis consisted of 147 Al and A3 courses. From the courses listed in this data base, course cost for 118 courses could be obtained from the RMS cost system. The total cost for the 118 courses during FY 76 was \$254,308,000 which includes all direct and indirect costs associated with the courses. Utilizing equation 9 of section II, page 10, the cost of attrition (academic and nonacademic) was found to be \$15,200,000 for FY 76. Thus, 5.97 percent of the resources applied to these 118 courses was expended on personnel who attrited.

Tables 4 and 5 present frequency distributions for (1) total annual cost per course and (2) the annual cost of attrition per course, both with cumulative numbers and cumulative percents. The most interesting feature of table 4 is that 48 percent of the courses surveyed have an annual cost of less than \$1,000,000, whereas 10 courses had an annual cost in excess of \$6,000,000. Table 5 shows that 72 courses have attrition costs of less than \$50,000, while the attrition costs for 12 courses are more than \$400,000. Another noteworthy feature of table 5 is that there are no courses in the category of \$300,000 to \$400,000.

time from which with the first in the same of the terror was the same of the s

TAEG Report No. 47

TABLE 4. DISTRIBUTION OF ANNUAL COST OF COURSES

Cost in Thousands	Number of Courses	Cumulative Number of Courses	Cumulative Percent of Courses
Under 1,000	57	57	48
1,000-1,999	17	74	63
2,000-2,999	13	87	74
3,000-3,999	7	94	80
4,000-4,999	10	104	88
5,000-5,999	4	108	92
Over 6,000	10	118	100

TABLE 5. DISTRIBUTION OF ANNUAL COST OF TOTAL ATTRITION

Cost in Thousands	Number of Courses	Cumulative Number of Courses	Cumulative Percent of Courses
0 - 50	72	72	61
51 - 100	8	80	68
101 - 150	13	93	79
151 - 200	4	97	82
201 - 250	2	99	84
251 - 300	7	106	90
301 - 350	0	106	90
351 - 400	0	106	90
Over 400	12	118	100

While the obtained distributions of FY 76 data on course costs and course attrition costs are useful in presenting an overall picture, tables 6 and 7 show the costs for academic and nonacademic attrition. Again, for tables 6 and 7, data are limited to 118 "A" courses. Both distributions of the annual cost of academic attrition (table 6) and nonacademic attrition (table 7) are very similar. Both are highly skewed in a positive direction toward high costs; i.e., each distribution shows approximately 80 percent of the courses with attrition (academic and nonacademic) cost less than \$100,000. In the aggregate, academic attrition in FY 76 costs the Navy training community approximately \$8,800,000, while the nonacademic attrition costs \$6,400,000. These totals show that although attrition is almost evenly divided between academic and nonacademic (in absolute terms of numbers of attrites), their respective costs are not equal. As percentages of total attrition cost, 58 percent is attributable to academic and 42 percent to nonacademic.

From table 6 it is clear that very few courses have relatively large academic attrition costs. The problem is to determine a threshold for concern. In other words, there is no precise way to determine the cost point at which specific courses warrant a more detailed examination, for whatever remedial purpose. By examining the point at which cumulative academic attrition costs accelerate dramatically in table 6, a threshold of \$150,000 was taken. Given that value as a threshold for concern, 103 courses (87 percent of the "A" courses) have an academic attrition cost of \$2,500,000, 28 percent of the total attrition cost; whereas 15 courses (12.7 percent of the "A" courses) had an academic attrition cost of \$6,300,000, or 72 percent of the academic attrition cost (and 40 percent of the total attrition cost). In essence, the threshold for academic attrition costs of concern appears to be those courses with an academic attrition cost of \$150,000 per year (see figure 5).

Table 8 delineates by CDP and short title the 15 courses which have an annual academic attrition cost greater than \$150,000. This table also presents cost per equivalent graduate, percentage academic attrition, throughput, chisquare values of qualified/nonqualified trainees experiencing academic attrition, and mean values of each variable for all the courses. The threshold of \$150,000 was selected utilizing the information of table 5; i.e., 12.7 percent of the courses fell within this domain constituting a majority of the expenditures for academic attrition. Three parameters were selected for presentation in table 8 because high academic attrition cost may be attributed to one or more of these factors. For example, EW OP/Maint Tech (CDP 6178) was high, relative to the mean value, cost/equivalent graduate and high academic attrition percentage, but had low throughput. PN-A (CDP 6102), however, has high throughput and academic attrition percentage with relatively low cost per equivalent graduate. If and when attempts are made to lower the cost of academic attrition, it is recommended that the 15 courses identified in table 8 be subjected to the initial analysis. Analysis of the mean values for all courses of table 8 reveals an academic attrition percentage greater than the mean value of the 118 courses in the overall analyses. However, several of the courses have cost per equivalent graduate or throughput less than the mean values of the 118 courses. Therefore, even though all three parameters (cost per equivalent graduate, academic attrition rate, and throughput) influence the cost of academic attrition, the academic attrition percentage is considered to be the

entrolling refuter and there is not seen to be and a seen and the seen

TAEG Report No. 47

TABLE 6. ANNUAL COST OF ACADEMIC ATTRITION

Cost in Thousands	Number of Courses	Cumulative Number of Courses	Cumulative Percent of Courses
0 - 50	85	85	72
51 - 100	10	95	81
101 - 150	8	103	87
151 - 200	3	106	90
201 - 250	2	108	92
251 - 300	1	109	92
301 - 350	2	111	94
351 - 400	3	114	97
Over 400	4	118	100

TABLE 7. ANNUAL COST OF NONACADEMIC ATTRITION

Cost in Thousands	Number of Courses	Cumulative Number of Courses	Cumulative Percent of Courses
0 - 50	82	82	68
51 - 100	16	98	83
101 - 150	7	105	89
151 - 200	4	109	92
201 - 250	4	113	96
251 - 300	1	114	97
301 - 350	2	116	98
351 - 400	1	117	99
Over 400	1	118	100

Looks by The harman which we will be an army the comment of the co

* COST >\$150,000 PER ANNUM

Figure 5. Academic Attrition Costs Proportions Attributable to Courses above or below \$150,000 Threshold for Concern.

all the state of the second second

TABLE 8. COURSES WITH ACADEMIC ATTRITION COST GREATER THAN \$150,000

CDP	Short Title	Cost per Equivalent Grad.	Academic Attrition Percent	Throughput	Chi- Square***
6102	PN-A	2387	9	1103	. 579
6057	YN-A	2435	10	1286	3.06
1301	NUC POWER	8559	18	1700	*
6239	AVA-AT	4554	6	1523	8.459
6278	AC-A1	8921	12	664	27.588
6523**	PH-LEVEL 1	4627	5	352	13.920
6263	ET-A1-ETN	2540	5	1274	.320
6265	ET-A1-ETR	2540	5	1488	.751
6027	FTA-A	3583	7	1945	2.431
6144	RMA	4555	8	3421	9.361
1300	NUC POWER	8559	18	560	*
6065	MUSIC BASIC	5769	9	860	*
6178	EW-OP-MAINT TECH	17,503	14	339	23.310
6302	CTT-A-PREP	4157	10	732	88.027
6301	CTR-A	8347	17	690	8.183
Mean for	15 Courses	5936	10.2	1196	
Mean Valu	e for 118 Course	es 3636	3.45	675	

^{*} Waiver data unavailable.

^{**} To obtain academic attrition costs, RMS-supplied actual attrition weeks were used. In the case of Ph-level 1, RMS attrition weeks did not correspond with NITRAS attrition data.

^{***} Significant Chi-Square = 3.841 CDP - Course Data Processing Code

most important variable to study. The last column of this table lists the chi-square for each course. The relationship between waivers and academic attrition is positive and significant for 7 of the 15 courses, chi-square equal to or greater than 3.841.

In general, the higher the cost of the course due to large throughput and higher cost per equivalent graduate, the higher the cost of attrition. To negate this scale factor, the attrition cost as a percentage of course cost was analyzed. Tables 9 through 11 show the frequency distributions of total attrition cost, academic attrition cost, and nonacademic attrition cost as percentages of course cost, respectively, for the 118 courses. Again, each distribution is positively skewed from the 1 percent level to the higher levels of percentage of total course cost. It is of interest to note from table 9 that 14 courses have attrition cost equal to or greater than 10 percent of course cost. Whereas in tables 10 and 11 only five and one course(s), respectively, exceed 10 percent of the course cost. This discrepancy can be explained by the combinatorial aspects of the data. It is also of interest to note from table 10 that over half of the courses have an academic attrition-cost to course-cost ratio less than or equal to 1 percent. The courses that have this ratio greater than 10 percent are Nuclear Power courses, CTR, Ph level 1, and ET CTM. Figure 6 was constructed from the data in table 10; from this chart, the positive skewness of the data is quite apparent. For the majority of the courses analyzed, the cost of academic attrition is a very small percentage of the overall cost of a course. The obvious implication for where to focus any effort to reduce academic attrition should be only in those few extremely high attrition courses. In the few courses with relatively high attrition costs the opportunity to improve and the payoff are maximized. The cost of exploring attrition reducing policies and practices elsewhere would not be as likely to equal or exceed the benefit.

TABLE 9. DISTRIBUTION OF THE ATTRITION COST AS A PERCENTAGE OF COURSE COST

Percent Attrition Cost Course Cost	Number of Courses	Cumulative Number of Courses	Cumulative Percent of Courses
Under 1	41	41	35
1.0 to 1.9	14	55	47
2.0 to 2.9	16	71	60
3.0 to 3.9	14	85	72
4.0 to 4.9	6	91	77
5.0 to 5.9	7	98	83
6.0 to 6.9	1	99	84
7.0 to 7.9	0	99	84
8.0 to 8.9	1	100	85
9.0 to 9.9	4	104	88
10.0 to 10.9	2	106	90
11.0 to 11.9	2	108	92
12.0 to 12.9	5	113	96
13.0 to 13.9	0	113	96
14.0 to 14.9	2	115	97
15 & Above	3	118	100

TABLE 10. DISTRIBUTION OF THE ACADEMIC ATTRITION COST AS A PERCENTAGE OF COURSE COST

Percent Academic Attrition Course Cost	Number of Courses	Cumulative Number of Courses	Cumulative Percent of Courses
Under 1	62	62	53
1.0 - 1.9	21	83	70
2.0 - 2.9	12	95	81
3.0 - 3.9	4	99	84
4.0 - 4.9	1	100	85
5.0 - 5.9	0	100	85
6.0 - 6.9	6	106	90
7.0 - 7.9	4	110	93
8.0 - 8.9	1	111	94
9.0 - 9.9	2	113	96
10 & Above	5	118	100

TABLE 11. DISTRIBUTION OF THE NONACADEMIC COST AS A PERCENTAGE OF COURSE COST

Percent Nonacademic Attrition Course Cost	Number of Courses	Cumulative Number of Courses	Cumulative Percent of Courses	
Under 1	60	60	51	
1.0 - 1.9	21	81	69	
2.0 - 2.9	19	100	85	
3.0 - 3.9	4	104	88	
4.0 - 4.9	7	111	94	
5.0 - 5.9	1	112	95	
6.0 - 6.9	2	114	97	
7.0 - 7.9	1	115	97	
8.0 - 8.9	1	116	98	
9.0 - 9.9	1	117	99	
10 & Above	1	118	100	

Figure 6. Academic Attrition Cost as a Percent of Total Course Cost

TAEG Report No. 47

SECTION IV

SUMMARY OF FINDINGS AND RECOMMENDATIONS FOR FUTURE CONSIDERATIONS

This section presents the significant findings of this study with comments as appropriate. The findings are organized by attrition levels, attrition cost, and causes of attrition. A series of recommendations is also presented. The order in which the findings are presented does not represent a priority in which they should be addressed for correction of the problem, order of difficulty, or cost to be saved or expended. For each item the specific page(s) of the report is cited for convenience of the reader who wishes more detail.

Extent and Patterns of Attrition in Al and A3 Courses

- Total attrition in 147 Al and A3 courses was 7.4 percent (6,446) of total AOB (86,660) during FY 76 (pages 13, 14, 41).
- Compared with attrition from the Navy prior to the end of obligated service (39 percent) academic and nonacademic attrition represents a far smaller percentage. In fact the bulk of attrition from Al and A3 courses represents virtually no direct attrition from the Navy (page 4).
- Academic attrition and nonacademic attrition in the aggregate have the same amount of attrites; i.e., 3.7 percent (pages 13, 14).
- . Individual courses vary widely in the percentage of academic and non-academic attrites. No inferences can be made from individual courses (page 41).
- . Fourteen percent (7,246 ± 50,875) of the inputs to the 147 Al and A3 courses are waived; i.e., do not meet minimum ASVAB course entrance requirements. These percentages include waived personnel under special categories such as racial minority and reading difficulty (page 23).
- . Waived trainees produce significantly greater academic attrition than qualified trainees (page 21).
- Ten courses have academic attrition equal to or greater than 10 percent. Only three courses have nonacademic attrition equal to or greater than 10 percent (page 13).

Overall and Course Specific Costs of Academic Attrition

recommendation of the contraction of the contractio

Total cost for 118 courses analyzed in this study for FY 76 was \$254,308,000. Attrition constitutes \$15,200,000 of this total (page 23).

TAEG Report No. 47

- Academic attrition cost for the 118 courses analyzed is \$8,800,000 per year whereas nonacademic attrition is \$6,400,000 (page 25).
- . In the aggregate, academic attrition costs are greater than non-academic costs because a relatively few high cost courses have far greater academic than nonacademic attrites (page 25).
- . Fifteen courses account for more than two-thirds of all academic attrition cost (page 25).
- . Fifteen courses have academic attrition costing more than \$150,000 per year (page 25).
- . Five courses have attrition cost greater than 10 percent of the course cost (page 29).

Factors Associated with Academic Attrition

- . Variables such as course length, throughput, and number of convenings are positively related to academic attrition (page 18).
- . Thirty-three courses show significant course waiver effect (page 21).
- Seven of the 15 most costly courses show a significant course waiver effect (page 29).
- . Setbacks; i.e., trainees who repeat some portion of a course, represent a potentially greater area of uncertainty than course attrition. Setbacks represent 16 percent of AOB. Their cost and attrition implications are for the most part unknown (page 13).

TAEG Report No. 47

Recommendations

- . Careful in-depth monitoring and scrutiny should be continued by CNTECHTRA of all courses, and TAEG's assistance should be requested on specific attrition problems.
- . Special attention should be given to schools that have high waivers and high percentage of waiver failures.
- . Investigate "C" courses to ascertain if attrites that fail should have been attrited from "A" school.
- . Investigate entire pipeline of a rating to ascertain where and when personnel attrite. A hypothesis is that personnel who attrite from "C" schools do poorly in "A" schools. It is costly to train personnel in a series of courses (i.e., Basic Electricity and Electronics supplies input to Electronic Technician "A" school which supplies inputs to "C" school) and have them attrite after completion of "A" school.
- Investigate courses that have high attrition for a possible twotrack system. One track would continue to turn out graduates based on current time and material whereas the other track would increase the course length.
- . Perform detailed analyses on waivers to ascertain if waiver score point spread should be tightened.
- . Investigate further the relationship between setbacks and attrition. Revise/establish setback policy.
- Investigate when and where setback and/or failure occur during selected courses (i.e., time, subject matter, etc.).
- . Perform analysis on setbacks from the following perspectives:
 - (a) Academic setbacks
 - (b) Nonacademic setbacks
 - (c) Setback policy from individual course, school and CNET in the aggregate
 - (d) Cost of setbacks

and are appreciate and a super contraction which will be an analysis of the contraction o

. Identify the conditions under which academic failures leave the Navy.

POSTNOTE

Many individuals or activities are well aware of their own specific attrition problem. Beyond their own organization, however, most individuals have preconceived notions of the overall attrition situation. This is the first known attempt to provide a detailed examination of attrition for Al and A3 of Navy technical "A" schools. The challenge of this study was to present a composite of the extremes of attrition in technical training. In accomplishing this, it must be stressed how crucial the availability of an attrition data base in NITRAS and attrition cost data in the RMS were to support analytical work of the kind reported here. The analytical approaches documented here for FY 76 data will continue to be valid when applied to FY 77 data and beyond.

the section while which input our trackers while specifically and the first trackers and the section of

BIBLIOGRAPHY

- Bell, D. B. and Holz, R. F. <u>Summary of ARI research on military delinquency</u>. Research Report 1185. 1975. U.S. Army Research Institute for the Behavioral and Social Sciences. Arlington, Virginia.
- Canadian Forces Personnel Applied Research Unit. Canadian Forces Base Toronto, Downsview, Ontario, M3K 1Y6. Why do they leave? Attrition, 1975. Report No. 75-4. September 1975.
- Goodstadt, B. E. and Glickman, A. S. The current status of enlisted attrition in the U.S. Navy and in the U.S. Marine Corps and the search for remedies. Final Report. November 1975. American Institutes for Research, Washington, D.C. 20016. Prepared for Office of Naval Research under Contract No. N00014-76-C-0266.
- Gunderson, E. K. E. and Hoiberg, A. Personnel effectiveness in the all volunteer Navy. A study from the Naval Health Research Center, San Diego, CA 92152, presented at Department of Defense, Office of Naval Research Conference on First Term Enlisted Attrition, Xerox International Training Center, Leesburg, Virginia, 4-7 April 1977.
- Lockman, R. F., Jehn, C., and Shughart, W. F. Models for estimating premature losses and recruiting district performance. Professional Paper No. 142.

 1976. Center for Naval Analyses, Arlington, Virginia.
- Lockman, R. F. SCREEN test and projection. Memorandum June 1976. Institute of Naval Studies, Center for Naval Analyses, Arlington, Virginia 22209
- NITRAS Reports Manual. CNET P1510/2 (11-75). Naval Education and Training Command, Naval Air Station, Pensacola, Florida 32508
- Plag, J. A. Predicting the effectiveness of Naval enlistees. San Diego, California: U.S. Navy Medical Neuropsychiatric Research Unit, Tables and Summary of a Report prepared for Briefings at the Navy Department, Washington, D.C. May 1968.
- Sands, W. A. <u>Development of a revised odds for effectiveness (OFE) table</u>
 for screening male applicants for <u>Navy enlistment</u>. April 1976. Navy
 Personnel Research and Development Center, San Diego, California
 92152
- Thomas, Patricia J. <u>Basic test battery selection composite effectiveness</u>
 <u>during 1971</u>. Navy Personnel Research and Development Center, San
 <u>Diego</u>, California 92152. Letter report for Chief of Naval Training,
 August 1973.

really have an employment and the property of the formation of the same

APPENDIX A

ATTRITION DATA FOR CLASS AT AND A3 COURSES

CDP	COURSE SHORT TITLE		N I O		LOCATION	COURSE LENGTH (Days)	NUMBER OF CONVENINGS	TYPE OF COURSE*	MINIMUM ASVAB	INPUT	GRADUATES	ACADEMIC ATTRITION (#)	ACADEMIC ATTRITION (%)	NON-ACADEMIC ATTRITION (#)	NON-ACADEMIC ATTRITION (%)
130E 340S 532R 541U 1300	NUC PWR AVR-A1 MALRE-A SQS 53 OB BASIC NUC PWR	A C C A A	661 100 680 130 661	0010 2014 2015 0103 0010	ORLANDO MEMPHIS LAKEHURST S. DIEGO BN/ORL	166 33 40 19 166	1 12 2 AR 4	1 1 1 1 1	225 225 96 225 225	205 617 103 15 324	205 527 74 0 795	60 3 0 111	10 3 0 18	23 0 0 35	4 0 0 6
1301 2053 3197 3522 3585	NUC PWR CTT-FLR-11/15 OPS CTT-ELINT OP AVCC-A1 BASHEL-A1	A A C C	661 231 231 780 600	0010 0024 002A 2010 2010	MARE CORRY CORRY MEMPHIS MEMPHIS	166 40 68 26 42	3 50 50 7 13	1 0 0 1 1	225 100 100 225 193	1998 123 95 160 755	1403 115 101 175 752	336 0 1 0 15	18 0 1 0 2	142 1 1 3 23	8 1 1 2 3
3806 5261 5309 6001 6002	ET SEIR SCAT-MOD-2 SCAT-MOD-1 QMA QMA	A A A A	104 100 100 061 061	0012 0036 0035 0012 0012	G. LAKES N. LONDON N. LONDON ORLANDO S. DIEGO	54 26 26 40 40	13 12 12 23 4	1 1 1 1	225 100 100 101 101	585 92 183 546 341	590 76 155 548 334	0 6 9 5 7	0 7 5 1 2	12 4 7 0 7	2 5 4 0 2
6005 6006 6015 6020 6025	SM-A SM-A SURF-ST-CLASS-A CTA-A GMT-A	A A A A	061 061 130 510 644	0011 0011 0037 0015 0014	ORLANDO S. DIEGO S. DIEGO CORRY TRA GRU PAC	40 40 40 57 61	23 4 45 13 3	1 1 1 0	105 105 225 163 156	487 299 991 223 299	458 273 936 216 264	19 26 39 11 17	4 9 4 5 6	5 6 10 4 9	1 2 1 2 3
6027 6034 6036 6041 6046	FTA-A TM-SS-TORP-OP TM-OP-A/S-TORP MN/A IMA	A A A A	113 123 123 647 670	0010 0127 0127 0016 0010	G. LAKES ORLANDO ORLANDO CHAS G. LAKES	75 54 40 96 131	13 6 6 4 13	1 1 1 1 0	225 96 96 156 163	1973 392 237 187 101	1918 445 238 147 79	141 4 0 33 6	7 1 0 18 6	120 4 2 9	6 1 5 8
6047 6053 6057 6059 6061	QM-A CTO-A YN-A SK CLASS A DK-A	A A A A	670 580 510 551 542	0018 0016 0012 0014 0011	G. LAKES CORRY MERIDIAN MERIDIAN MERIDIAN	120 117 48 47 82	13 13 13 13 4	0 0 0 1	153 105 163 105 105	38 585 1301 1396 229	79 620 1272 1618 257	4 31 135 46 10	5 5 10 3 4	10 18 107 15 2	11 3 8 1
6063 6065 6068 6070 6071	INFO SPEC JO A1 MUSIC BASIC MR/A EM/A EM/A	A A A A	570 450 702 662 662	0011 0010 0019 0016 0016	B. HARBOR L. CREEK S. DIEGO G. LAKES S. DIEGO	75 106 80 59 59	16 6 7 13 50	1 1 1 1 1	163 100 156 156 156	86 938 543 1349 1212	90 781 549 1322 1185	0 81 34 13	0 9 6 1	0 62 11 27 24	0 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
6073 6076 6077 6078 6079	IC-A PM-A ML-A EA-A CE-A	A A A A	623 790 790 412 721	0012 0012 0010 0010 0018	S. DIEGO S. DIEGO S. DIEGO PT. HUE PT. HUE	61 138 96 81 58	13 1 1 1 2	1 1 1 1 1	156 156 156 105 156	1168 53 51 34 159	1188 52 38 51 193	0 4 3 0 2	0 7 7 0 1	12 1 1 1 1 4	1 2 2 2 2

and the first of the second second

^{*0 =} self paced 1 = not self paced

TABLE A-1. ATTRITION DATA FOR CLASS
A1 AND A3 COURSES

MINIMUM ASVAB	TUPUT	GRADUATES	ACADEMIC ATTRITION (#)	ACADEMIC ATTRITION (%)	NON-ACADEMIC ATTRITION (#)	NON-ACADEMIC ATTRITION (%)	TOTAL ATTRITION (#)	TOTAL ATTRITION (%)	STANDARD ATTRITION (%)	SETBACKS (#)	SETBACKS (%)	RMS COST CODE	TOTAL COURSE COST (000's)	COST PER EQUIVALENT GRAD	ACADEMIC ATTRITION COSTS (000's)	NON-ACADEMIC ATTRITION COSTS (000's)	TOTAL ATTRITION COST (000's)	
225 225 96 225 225 225	205 617 103 15 324	205 527 74 0 795	60 3 0 111	10 3 0 18	23 0 0 0 35	4 0 0 6	80 3 0 145	13 3 0 23	5 10 0	149 1 0 0	23 1 0 0	9BGB 9PDK 9SDN 9YBC	1004.8 379.7 30.5 6342.3	1513 3651 2030 8559	83.8 9.1 0 939.4	33.5 0 0 313.1	117.3 9.1 0 952.5	
225 100 100 225 193	1998 123 95 160 755	1403 115 101 175 752	336 0 1 0 15	18 0 1 0 2	142 1 1 3 23	8 1 1 2 3	464 1 2 3 39	24 1 2 2 5	0 5 5 8 10	0 40 71 2 79	0 29 53 1 10	9QBC 9QED 9QES 9AGB 9ACF	6400.7 255.4 47.8 478.1 1606.7	8559 2202 - 1568 2457	677.5 0 0 0 15.9	301.1 1.5 5.9 23.8	978.5 1.5 - 5.9 39.7	
225 100 100 101 101	585 92 183 546 341	590 76 155 548 334	0 6 9 5 7	0 7 5 1 2	12 4 7 0 7	2 5 4 0 2	12 10 16 11 14	2 11 9 2 4	5 20 20 12 10	116 0 0 22 24	18 0 0 4 7	9DCA - 9CBB 9DBP	1913 - 930.5 511.6	5960 - 1512 1560	0 - 6.8 7.8	5.2 - 0 7.8	5.2 - 6.8 15.6	
105 105 225 163 156	487 299 991 223 299	458 273 936 216 264	19 26 39 11 17	4 9 4 5 6	5 6 10 4 9	1 2 1 2 3	24 37 49 16 27	5 12 5 7 9	10 10 10 15 4	77 37 29 231 6	15 12 4 69 2	9CBC 9DDR 9SDB 9QCF	858.9 458.6 3105.5 615.4	1577 1587 2412 277.2	24.2 19.8 113.2 38.4	6.0 4.4 28.3 15.4	30.2 24.2 141.5 53.8	
225 96 96 156 163	1973 392 237 187 101	1918 445 238 147 79	141 4 0 33 6	7 1 0 18 6	120 4 2 9	6 1 1 5 8	248 8 2 43 14	12 2 1 23 14	9 5 5 12 10	226 17 5 64 0	11 4 2 32 0	9CBA 9ABB 9ABB 9CBB 9EBA	10831.6 889 441 1256.6 529.2	3583 1902 1902 6868 4725	226.7 8.0 0 88.7 9.6	194.3 8.0 7.9 24.6 12.9	421 16. 7.9 113.3 22.5	
153 105 163 105 105	38 585 1301 1396 229	79 620 1272 1618 257	4 31 135 46 10	5 5 10 3 4	10 18 107 15 2	11 3 8 1	15 57 239 62 12	16 9 17 4 5	10 17 19 8 8	0 607 454 62 5	0 67 30 4 2	9ECA 9QCB 9SCD 9SBB 9SBC	394.0 2945.4 2659.1 3008.8 954.7	4582 5077 2435 2096 3604	4.6 91.3 246.6 1.6	10.0 54.8 97.2 .5	14.6 146.1 343.8 2.1 2.4	
163 100 156 156 156	86 938 543 1349 1212	90 781 549 1322 1185	0 81 34 13 0	0 9 6 1	0 62 11 27 24	0 7 2 2 2	0 139 46 41 24	0 15 8 3 2	1 22 14 10 4	0 139 108 201 49	0 15 18 14 4	9KBB 9BBB 9GBA 9CCB	4840.4 1772.1 3720.3 2555.1	5769 2885 2501 2129	290.6 30.6 33.8 0	226.0 10.2 67.6 21.3	516.6 40.8 101.4 21.3	
156 156 156 105 156	1168 53 51 34 159	1188 52 38 51 193	0 4 3 0 2	0 7 7 0 1	12 1 1 1 4	1 2 2 2 2	12 5 4 1 5	1 9 9 2 3	6 14 10 7 4	219 4 0 0 2	17 7 0 0	9CDB 9BHD 9BHB 9ACB 9CBB	2358.8 321.6 218.8 247.9 701.6	2233 7482 5919 4679 3508	0 5.8 5.8 0 2.8	15.9 1.7 1.7 1.6 6.7	15.9 7.5 7.5 1.6 9.5	

consideration of the continue with a process with a second of the continue of

CDP	COURSE SHORT TITLE		2	4	LOCATION	COURSE LENGTH (Days)	NUMBER OF CONVENINGS	TYPE OF COURSE*	MINIMUM ASVAB	INPUT	GRADUATES	ACADEMIC ATTRITION (#)	ACADEMIC ATTRITION (T)	NON-ACADÉMIC ATTRITION (#)	NON-ACADEMIC ATTRITION (%)	TOTAL ATTRITION (#)
6081 6082 6083 6093 6097	BU-A SW-A UT-A TM SUB/TORP TECH EO-A	A A A A	710 711 720 123 730	0010 0015 0012 0127 0010	PT. HUE PT. HUE PT. HUE ORLANDO PT. HUE	66 61 79 40 61	3 2 2 6 3]]]]	150 150 150 96 150	199 109 112 150 258	217 75 107 206 282	0 1 0 0 3	0 1 0 0	4 5 3 2 8	2 5 3 1 3	4 6 3 2
6102 6103 6106 6108 6115	PN-A 01-A HT-A2 F1-A2 GM-A	A A A A	500 210 700 113 041	0014 0011 0010 0019 0010	MERIDIAN DET-KW S. DIEGO G. LAKES G.LAKES	48 68 60 96 82	13 16 64 6 13	0 1 1 1 1	110 258 156 225 163	1074 392 2363 916 1470	1133 360 2614 869 1129	104 31 0 9	9 8 0 1 7	45 11 0 27 108	4 3 0 3 8	153 44 25 36 196
6118 6119 6120 6121 6122	SQQ 23 PAIR OP-BAS HT-A1 HT-A1 CTI-A2-THAI CTI-A2-HEBREW	A A A A	130 780 780 232 232	0097 0035 0035 0043 0041	S. DIEGO S. FRAN PHIL GOODFELLON GOODFELLON		AR 42 13 1	1 0 0 1	225 156 156 206 206	63 1101 1402 1 7	53 1087 1510 1	0 0 0 0	0 0 0 0	0 11 15 0	0 1 1 0	0 11 15 0
6123 6125 6126 6131 6135	CT1-A2-ARABIC MS-A QRTR-MSTR-BASE DS-A ET A-3R	A F A A	232 800 772 150 104	0042 0013 0010 0025 0010	GOODFELLON S. DIEGO N. LONDON M. I. G. LAKES	70 54 33 180 26	1 21 6 7 13	1 1 1 1	206 100 101 225 225	12 2427 81 314 1151	10 2363 71 387 1163	0 48 3 33 12	0 2 4 9	0 0 7 4 23	0 0 9 1 2	0 48 10 37 2
6137 6140 6142 6144 6146	ET-A-3N CT1-A2-FRENCH OSA RMA PLRS-POS-ELECT-A	A A A A	102 232 221 202 121	0010 0040 0011 0014 0142	G. LAKES GOODFELLON G. LAKES S. DIEGO D. NECK	33 28 96 49 117	13 1 50 65 13	1 1 1 1	225 206 110 100 225	846 21 2244 3704 897	874 21 2140 3139 978	17 0 67 285 78	2 0 3 8 8	26 0 112 360 68	3 0 5 10 7	35 0 183 636 141
6149 6161 6167 6172 6178	CMA CTM-A DPA STS-CLASS A EW-OP-MAINT/TECH	A A A A	610 102 531 130 102	0022 0109 0016 0029 0154	PT. HUE CORRY S. DIEGO S. DIEGO CORRY	94 84 54 40 320	3 13 7 8 7	1 0 1 0	101 225 110 225 110	144 285 424 399 592	170 215 401 431 85	0 3 17 13 51	0 1 4 3 14	2 0 0 8 10	1 0 0 2 -3	2 3 17 21 63
6182 6183 6184 6193 6194	ASH A1 ASM-A1 INTRO-WELD MK-111-OP-BAS MK-114-OP-BAS	C C A A	602 602 700 130 130	2023 2024 0011 0088 0083	MEMPHIS MEMPHIS S. DIEGO S. DIEGO S. DIEGO	65 65 31 12 12	6 6 3 AR AR	1 1 1 1 1 1	156 156 156 225 225	167 185 3 119 675	169 182 4 125 711	2 6 0 1	1 3 0 1 0	3 7 0 0	2 4 0 0	5 13 0 1 0
6195 6196 6197 6198 6206	SQS-DG-OP-BAS SQS-35V-38-OPBAS SQS-26-BX-OPBAS SQS-26-CX/AXR SH-A	A A A A	130 130 130 130 823	0084 0085 0092 0086 0012	S. DIEGO S. DIEGO S. DIEGO S. DIEGO NORFOLK	19 12 19 19 26	AR AR AR AR 7	1 1 1	225 225 225 225 225 100	362 60 71 344 573	371 64 75 353 589	0 1 0 0 42	0 2 0 0 7	0 0 0 4 12	0 0 0	4 1 0 4 48

^{*0 =} self paced 1 = not self paced

to the second and the

TABLE A-1. ATTRITION DATA FOR CLASS A1 AND A3 COURSES (continued)

COURSE*	MINIMUM ASVAB	INPUT	GRADUATES	ACADEMIC ATTRITION (#)	ACADEMIC ATTRITION (%)	NON-ACADEMIC ATTRITION (#)	NON-ACADEMIC ATTRITION (%)	TOTAL (#)	TOTAL ATTRITION (%)	STANDARD ATTRITION (%)	ASETBACKS (#)	SETBACKS (E)	RMS COST CODE	T07AL COURSE C05T (in 000's)	COST PER EQUIVALENT GRAD	ACADEMIC ATTRITION COSTS (000's)	NON-ACADEMIC ATTRITION COSTS (000's)	TOTAL ALTRITION COST (000'S)
	150 150 150 96 150	199 109 112 150 258	217 75 107 206 282	0 1 0 0 3	0 1 0 0 1	4 5 3 2 8	2 5 3 1 3	4 6 3 2 11	2 6 3 1 4	5 4 6 5	6 0 1 2 11	3 0 1 1 4	9ABB 9AEB 9CCB 9ABB 9BBB	854.1 400.5 608.9 381 1560.9	3936 4171 5486 1902 5051	0 1.5 0 0 2.2	0 7.7 5.3 6.9 6.7	0 9.2 5.3 6.9
	110 258 156 225 163	1074 392 2363 916 1470	1133 360 2614 869 1129	104 31 0 9	9 8 0 1 7	45 11 0 27 108	4 3 0 3 8	153 44 25 36 196	13 11 1 4 14	15 10 2 1 7	245 133 0 74 137	20 20 0 8 10	9SCC 9ZBA 9BGE - 9BBA	2305.5 4356.4 5602.6 4745.6	2387 5036 2209 3546	177.0 24.9 0	78.7 9.3 0	255.7 34.2 0 281.8
	225 156 156 206 206	63 1101 1402 1 7	53 1087 1510 1	0 0 0 0	0 0 0 0	0 11 15 0	0 1 1 0 0	0 11 15 0	0 1 1 0	2 8 1 3 3	0 216 0 0	0 18 0 0	9SDH 9CEB 9BBC	182 2509.1 2215.7	2461 1256 1858	0 0 0	7.2 10.2	7.2 10.2
	206 100 101 225 225	12 2427 81 314 1151	10 2363 71 387 1163	0 48 3 33 12	0 2 4 9	0 0 7 4 23	0 0 9 1 2	0 48 10 37 2	0 2 12 10 23	3 1 7 13 5	0 123 0 87 84	0 5 0 22 7	9FCB 9FCA 9DBA	4436.7 97.2 1992	1821 3037 2540	78.3 1.0	2.4	78.3 3.4 373.6
	225 206 110 100 225	846 21 2244 3704 897	874 21 2140 3139 978	17 0 67 285 78	2 0 3 8 8	26 0 112 360 68	3 0 5 10 7	35 0 183 636 141	4 0 8 17 14	5 3 13 15	181 0 280 0 280	19 0 12 0 26	9DBA 9ABA 9DBB 9BAA	9216.9 13351.9 5907.2	4021 4555 5747	117.6 112.6 387.8 9.8	176.3 187.6 484.8 8.6	293,9 300.2 872.6 18.4
	101 225 110 225 110	144 285 424 399 592	170 215 401 431 85	0 3 17 13 51	0 1 4 3 14	2 0 0 8 10	1 0 0 2 3	2 3 17 21 63	1 1 4 5 17	5 5 5 9 7	2 275 72 4 1128	1 71 16 3 125	9BDB 9QCG 9FDB 9SCE 9BBF	917.2 1065.7 1125.4 3016.2 6388.4	5558 4037 2501 4274 17503	0 14.8 18.8 63.6 484.4	8.2 0 0 42.4 103.8	8.2 14.8 18.8 106. 588.2
	156 156 156 225 225	167 185 3 119 675	169 182 4 125 711	2 6 0 1	1 3 0 1 0	3 7 0 0 0	2 4 0 0	5 13 0 1 0	3 7 0 1 0	10 7 0 1	9 21 0 0	5 11 0 0	9ADC 9ADD 9BGC 9SDF 9SDE	681.6 703.8 16.6 89.1 615.4	3872 4069 1187 781 1584	0.9 1.3 - 2.3 0	1.9	2.8
	225 225 225 225 225 100	362 60 71 344 573	371 64 75 353 589	0 1 0 0 42	0 2 0 0 7	0 0 0 4 12	0 0 0 1 2	4 1 0 4 48	1 2 0 1 8	1 0 1 15	0 0 0 0 12	0 0 0 0 2	9SDG 9SDL 9SDJ 9SDK 9DGD	457.2 527.7 63.4 431.0 900.2	1252 824 1219 1418 1127	0 0.4 0 0 16.8	0 0 0 2.4 4.8	0 0.4 0 2.4 21.6

dOo	COURSE SHORT TITLE		Z U		LOCATION	COURSE LENGTH (Days)	NUMBER OF CONVENINGS	TYPE OF COURSE*	MINIMUM ASVAB	INPUT	GRADUATES	ACADEMIC ATTRITION (#)	ACADEMIC ATTRITION (%)	NON-ACADEMIC ATTRITION (#)	NON-ACADEMIC ATTRITION (%)	TOTAL ATTRITION (#)
6209 6239 6240 6241 6242	SH-A AVA-AT-A1 AVA-AQ-A1 AVA-AX-A1 AVA-TD-A1	A C C C C	823 100 100 100 100	0012 2013 2013 2013 2013	S. DIEGO MEMPHIS MEMPHIS MEMPHIS MEMPHIS	26 102 102 102 102	7 253 253 253 253	1 0 0 0	100 225 225 225 225 225	489 1687 418 679 558	485 1359 352 572 487	0 94 20 45 21	0 6 5 7 4	0 78 28 59 21	0 5 7 9 4	5 1 177 1 49 1 101 1 44 8
6244 6245 6246 6260 6261	AFTA-AT-A1 AFTA-AQ-A1 AFTA-AX-A1 BTA ENA	C C C A A	100 100 100 651 652	2010 2010 2010 0010 0018	MEMPHIS MEMPHIS MEMPHIS G. LAKES G. LAKES	166 166 166 23 42	13 13 13 51 13	1 1 0 0	225 225 225 156 156	536 253 260 3212 1704	273 130 125 2775 1790	21 12 12 0	5 6 6 0	21 6 10 217 35	5 3 5 7 2	43 1 18 9 20 1 217 7 35 2
6262 6263 6264 6265 6266	MMA ET-A1-ETN ET-A1-CTM ET-A1-ETR ET-A2-ETN	A A A A	651 100 100 100 100	0015 0012 0012 0012 0014	G LAKES G. LAKES G. LAKES G. LAKES G. LAKES	42 68 68 68 47	13 13 13 13	0 1 1 1	156 225 225 225 225 225	5218 1506 311 1667 1018		0 65 30 76 9	0 5 10 5	268 52 6 76 28	5 4 2 5 3	268 5 120 9 36 1 157 1 38 4
6267 6268 6278 6286 6287	ET-A2-CTN ET-A2-ETR AC-A1 BVA EA-A	A C A A	100 100 222 710 412	0014 0014 2010 0010 0010	G. LAKES G. LAKES MEMPHIS G. PORT G. PORT	47 47 96 65 81	13 13 13 16 4	1 0 1	225 225 110 150 105	296 1300 672 211 15	233 1108 656 156 12	8 37 85 2 0	3 3 12 1 0	11 37 27 2 0	4 3 4 1 0	19 7 74 6 115 1 4 2 0
6289 6290 6291 6292 6299	CE-A UT-A CM-A EO-A EW-OP-TECH	A A A A	721 720 610 730 102	0018 0012 0022 0010 0155	G. PORT G. PORT G. PORT G. PORT CORRY	58 79 94 61 138	2 2 3 12 7	1 1 1 1	156 150 150 150 110	59 91 76 214 143	58 71 60 148 79	0 0 0 2 7	0 0 0 1 6	1 1 1 4 54	2 1 1 2 39	1 2 1 1 1 1 4 2 61 4
6300 6301 6302 6319 6320	PCA CTR-A CTT-A-PREP CTT/ICR/NONMORSE CTT-SPE-NONMORSE	A A A A	515 231 231 231 231	0018 0044 0023 0047 0046	B. HARBOR CORRY CORRY CORRY CORRY	24 153 89 18 32	21 13 13 13 13	1 0 0 0 0	100 100 100 100 100	151 373 935 56 299	104 506 530 43 245	0 128 77 0	0 17 10 0	0 28 15 0	0 4 2 0 0	0 162 96 0
6322 (6323 (6326 (CTI-A2-RUSSIAN CTI-A1-CHI-MAN CTI-A2-VIETNAM CTI-A2-POLISH CTI-A2-BULGAR	A A A A	232 232 232 232 232 232	0021 0022 0023 0026 0027	GOODFELLOW GOODFELLOW GOODFELLOW GOODFELLOW	1 112 1 77 1 56	3 2 1 1	1 1 1 1	206 206 206 206 206	110 37 4 1 2	102 24 4 1 2	1 0 0 0	1 0 0 0	2 3 0 0	2 9 0 0	3 3 0 0
6329 (6330 (6331 (CTI-A2-KOREAN CTI-A2 COMMON BL CTI-A2-GERMAN CTI-A2-SPANISH CTI-A2-ROM	A A A A	232 232 232 232 232 232	0028 0029 0030 0031 0032	GOODFELLOW GOODFELLOW GOODFELLOW GOODFELLOW	28 56 63	1 1 1 3 1	1 1 1 1	206 206 206 206 206 206	5 6 1 52 1	6 6 0 45 1	0 0 0 3 0	0 0 0 6 0	0 0 0 0	0 0 0 0	0 0 0 3 0

^{*0 =} self paced 1 = not self paced

TABLE A-1. ATTRITION DATA FOR CLASS A1 AND A3 COURSES (continued)

CTIMODUS	ACADEMIC ATTRITION (#)	ACADEMIC ATTRITION (%)	NON-ACADEMIC ATTRITION (#)	NON-ACADEMIC ATTRITION (%)	TOTAL ATTRITION (#)	TOTAL ATTRITION (%)	STANDARD ATTRITION (%)	SETBACKS (#)	SETBACKS (%)	RMS COST CODE	TOTAL COURSE COST (in OGO's)	COST PER EQUIVALENT GRAD	ACADEMIC ATTRITION COSTS (000's)	NON-ACADEMIC ATTRITION (COSTS (000's)	TOTAL ATTRITION COSTS (000°s)	
85 159 152 172 187	0 94 20 45 21	0 6 5 7 4	0 78 28 59 21	0 5 7 9 4	5 177 49 101 44	1 11 12 15 8	4 10 10 10 10	25 15 8 13 5	5 1 2 2 1	9FFE 9BBB 9BBB 9BBB 9BBB	611.4 7236 1872 3036 2594	923 4554 4554 4554 4554	0 153.6 30.3 55.1 50.5	0 128.0 42.5 70.9 50.5	281.6 72.8 126 101	
173 30 25 175 190	21 12 12 0 0	5 6 6 0 0	21 6 10 217 35	5 3 5 7 2	43 18 20 217 35	10 9 10 7 2	10 10 10 10 10	190 87 82 740 243	38 37 35 22 13	9BBD 9BBD 9BBD 9JBA 9JFA	4857 2311 2226 6191.8 1596.1	8372 8372 8372 1583 769	127.0 80.6 69.9 0	127.0 40.3 58.2 264 76.8	254 120.9 128.1 264 76.8	
126 143 152 109 126	0 65 30 76 9	0 5 10 5	268 52 6 76 28	5 4 2 5 3	268 120 36 157 38	5 9 12 10 4	10 12 12 12 12 8	1424 315 63 387 160	24 22 20 23 16	9JBA 9DBA 9DBA 9DBA 9DBA	2967.7 4700 1141 588 2574	1583 2540 2540 2540 2540	0 326.5 118.9 368.0 80.5	126.5 261.2 23.8 368.0 241.4	126.5 587.7 142.7 736 321.9	
133 08 156 56 2	8 37 85 2 0	3 3 12 1 0	11 37 27 2 0	4 3 4 1 0	19 74 115 4 0	7 6 16 2 0	8 8 15 5 7	40 253 244 2 1	14 19 31 1	9DBA 9DBA 9FBB 9MBB 9MCB	716 3447 4781.8 838.4 121.7	2540 2540 8921 4631 5532	38.4 215.5 336.0 2.2 0	51.2 215.5 112.0 2.2 0	89.6 431 448 4.4	
8 1 10 48 9	0 0 0 2 7	0 0 0 1 6	1 1 1 4 54	2 1 1 2 39	1 1 1 4 61	2 1 1 2 43	4 6 5 7 1	0 1 0 2 145	0 1 0 1 69	9NCB 9NBB 9PDB 9PCB 9VBB	238.1 464.8 469.0 1025.3 958.1	4491 5533 6798 5728 7313	4.0 0 0 3.8 12.7	4.3 10.7 3.0 7.2 82.3	8.3 10.7 11 95	
04 i06 i30 i3	0 128 77 0	0 17 10 0 0	0 28 15 0	0 4 2 0 0	0 162 96 0	0 21 12 0 0	10 40 20 0	0 695 789 7 81	0 128 70 13 26	9QCH 9QCJ 9QCK 9QCM	4624.5 3389 163.1 406.5	8347 4157 4180 1494	1208.0 336.4 0	284.2 67.3 0	1492.2 403.7	
02	1 0 0 0	1 0 0 0	2 3 0 0	2 9 0 0	3 3 0 0 0	3 9 0 0	3 3 3 3 3	20 0 0 0 0	17 0 0 0	:		:		:	-	
5	0 0 0 3 0	0 0 0 6 0	0 0 0 0	0 0 0 0	0 0 0 3 0	0 0 0 6 0	3 3 3 3 3	0 0 0 1	0 0 0 2 0	:	-	:		:	:	

CUP	COURSE SHORT		. I		LOCATION	COURSE LENGTH (Days)	NUMBER OF CONVENINGS	TYPE OF COURSE*	MINIMUM ASVAB	INPUT	GRADUATES	ACADEMIC ATTRITION (#)	ACADEMIC ATTRITION (%)	NON-ACADEMIC ATTRITION (#)	NON-ACABEMIC ATTRITION (%)	TOTAL ATTRITION (#)	ATTRITION (%)
6337 6339 6340	CTI-A2-SERB-CRO UWFT - CLASS A HTA-PH 2 HT-MAINT SCAT-MOD-5	A A A A	232 130 700 790 100	0033 0138 0010 0013 0052	GOODFELLOW N. LONDON PHIL S. DIEGO N. LONDON	28 68 54 26 12	2 3 9 3 2	1 0 1 1	206 225 156 156 100	4 19 264 5 3	4 6 88 5 0	0 0 0	0 0 0 0	0 0 2 0 0	0 1 0	0 0 2 0	0 1 0 0
6347 6501	SCAT-MOD-4 SCAT-MOD-3 ADU-A1 ADR-A1 AO-A1	A C C C	100 100 601 601 646	0051 0050 2010 2012 2010	N. LONDON N. LONDON MEMPHIS MEMPHIS MEMPHIS	19 19 33 46 64	3 2 64 6 13	1 1 1 1 1	100 100 193 193 201	3 9 2483 247 1466	3 2524 251 1861	0 0 102 3 17	0 0 4 1	0 76 3 103	0 0 3 1 6	0 0 155 5 121	0 0 6 2 7
	ABF-A1 ABE-A1 AE-A1 AME-A1 AMH-A1	C C C C C	821 680 602 602 602	2010 2012 2012 2012 2015 2017	L. HURST L. HURST MEMPHIS MEMPHIS MEMPHIS	26 45 75 60 47	4 6 25 12 12	1 1 1 1 1	96 96 212 96 96	303 245 2075 722 1643	321 267 2313 910 1644	0 3 44 8 33	0 1 2 1 2	3 67 33 67	1 1 3 4 4	3 5 113 33 102	1 2 5 4 6
6518 6519 6520 6521 6522	AMS-/LI PR-BASIC AG-A1 TD-A1 AKA	00000	603 602 420 191 551	2010 2010 2010 2010 2010	MEMPHIS L. HURST L. HURST MEMPHIS MERIDAN	59 70 101 39 47	12 13 4 64 13	1 0 1 0 0	96 156 110 225 105	1463 471 287 400 274	1467 530 295 393 264	15 5 6 4 8	1 1 2 1 3	75 10 6 4 11	5 2 2 1 4	91 15 9 4 17	6 3 3 1 6
6523 6527 6528 6529 6530 6536 6537	PH-LEVEL 1 ABH-A1 AZ-A1 ISA ASE-A1 TM-AS-TORP-TECH AW-A1	C C C A C A C	400 822 516 242 602 123 210	2010 2010 2010 0010 2019 0127 2010	PNCLA L. HURST MERIDAN LOWRY MEMPHIS ORLANDO MEMPHIS	75 24 47 76 64 40 81	52 6 7 16 6 25 12	0 1 1 1 1 1 1 1 1 1	105 96 105 105 156 96 110	394 374 469 222 175 69 722	310 381 473 196 176 52 713	18 0 14 9 2 0 44	5 0 3 4 1 0 6	7 0 5 2 5 0 44	2 0 1 1 3 0 6	26 0 19 13 7 0 92	7 0 4 6 4 0 12

^{*0 =} self paced 1 = not self paced

TABLE A-1. ATTRITION DATA FOR CLASS A1 AND A3 COURSES (continued)

GRADUATES	ACADEMIC ATTRITION (#)	ACADEMIC ATTRITION (%)	NON-ACADEMIC ATTRITION (#)	NON-ACADEMIC ATTRITION (%)	TOTAL ATTRITION (#)	TOTAL ATTRITION (%)	STANDARD ATTRITION (%)	SETBACKS (#)	SETBACKS (%)	RMS COST CODE	rotal course cost (in 000's)	COST PER EQUIVALENT GRAD	ACADEMIC ATTRITION COSTS (000's)	NON-ACADEMIC ATTRITION COSTS (000's)	T01AL ATTRITION C0SYS (000's)
8	0 0 0 0	0 0 0 0 0	0 0 2 0	0 1 0 0	0 0 2 0 0	0 0 0	3 0 2 2 20	0 0 0	0 0 5 0	9BBF 9BGE	555.7	5097 1019	0 0	2.5	2.5
524 51 861	0 0 102 3 17	0 0 4 1 1	0 76 3 103	0 0 3 1 6	0 0 155 5 121	0 0 6 2 7	20 20 8 10	0 0 0 10 289	0 0 0 4 16	9ACC 9ACB 9AIB	549.8 780.5 5010.6	1767 2410 3037	113.9 3.4 17.0	85.5 3.4 102.1	199.4 6.8 119.1
21 67 313 10 644	0 3 44 8 33	0 1 2 1 2	3 67 33 67	1 1 3 4 4	3 5 113 33 102	1 2 5 4 6	10 8 10 10	13 51 305 50 191	4 18 13 6 11	9PDD 9PDB 9BFB 9AEB 9AED	996.8 1169.5 6694.1 2097.8 4043.9	1706 3241 3532 3550 2653	0 10.6 76.2 15.3 48.5	15.8 10.6 114.3 61.3 97.0	15.8 21.2 190.5 76.6 145.5
467 30 95 93 64	15 5 6 4 8	1 1 2 1 3	75 10 6 4 11	5 2 2 1 4	91 15 9 4 17	6 3 3 1 6	10 5 10 7 5	91 117 51 0 28	6 21 16 0 10	9AEC 9PCB 9PBB 9BEB 9SBD	4363.5 2010.4 1980.2 805.6 621.7	3158 5153 6691 2051 2656	18.7 27.1 25.0 6.0 1.3	93.3 54.3 25.0 6.0 1.7	112 81.4 50 12 3
110 181 173 196 176 12	18 0 14 9 2 0 44	5 0 3 4 1 0 6	7 0 5 2 5 0 44	2 0 1 1 3 0 6	26 0 19 13 7 0 92	7 0 4 6 4 0 12	8 8 8 10 10 5 15	22 19 24 6 5 0 224	6 5 5 3 3 0 27	9HBB 9PDC 9SCB 9MBB 9ADF 9ABB 9BCB	1489.5 1163.0 966.1 802.3 664.2 96 3102.1	4627 1836 2236 3303 3669 1902 4375	154.8 0 24.0 15.0 0.6 0 80.1	61.9 0 8.0 3.8 1.8 0 80.1	216.7 0 32 18.8 2.4 0 160.2

and the second of the second o

APPENDIX B

QUALIFIED AND UNQUALIFIED ATTRITION

									7	8
			1	2	3	4	5	66	1	1
			Months of	Total	Qualified		Unqualified Number	I of	Academic Number	
COP	Short Title	CIN	Data \star	Input	Number	of Total Input	Number	Total Input	1	Total Input
						3 + 2		5 + 2	•	7 + 2
130E	Nuc Powr	A-661-0010	1	367	367	100	0	0		0
3408	AVR A1	C-100-2014	0							
532R	MALRE A	C-680-2015	0						0	
5410	SQS-53-OP-Basic		2	25	23	92	2	8	U	
1300	Nuc Powr	A-661-0010	0				0	0	272	19
1301 2053	Nuc Powr CTT-FLR11	A-661-0010 A-231-0024	3	1423 16	1423 15	100 94	1	6	0	
3197	CTT-ELINT-OP	A-231-0024 A-231-0028	2	11	11	100	Ó	0	0	
3522	AVCC-A1	C-780-2010	9	17	3	18	14	82	0	8.9
5309	SCAT-MOD	A-100-0035	8	134	134	100	0	0	12	
6001	QM-A	A-061-0012	11	348	269	77	79	22	20 12	5.7
6002	QM-A	A-061-0012	11	262 316	194 233	74 74	68 83	26 26	21	6.6
6005 6005	SM-A SM-A	A-061-0011 A-061-0011	11	248	180	73	68	27	39	15.7
6015	SURF-ST	A-130-0037	12	852	828	97	24	3	31	3.6
6020	CTA-A	A-510-0015	12	175	133	76	42	24	15	8.6
6027	FTM-A	A-113-0010	12	1767	1679	95	88	5	119	6.7
6034	TM-SS-OPR	A-123-0127	11	330	229	69	101	31 29	5 4	1.5
6036	TM-OPR	A-123-0127	11	210 144	149 114	71 79	61 30	21	33	22.9
6041	MN-A	A-647-0016	11					28	7	8.8
6046 6047	IMA OMA	A-670-0010 A-670-0018	12 12	80 73	58 59	72 81	22 14	19	4	5.5
6053	CTO	A-580-0016	12	415	355	86	60	14	28	6.7
6057	YNA	A-510-0012	12	1040	716	69	324	31	134	12.9
6063	INFO-SPEC	A-570-0011	9	80	70	87	10	13	1	1.3
6065	MU-Basic	A-450-0010	10	65	65	100	0	0 21	1 30	1.5
6068	MR-A EMA	A-702-0019 A-662-0016	12 12	469 1298	371 1145	79 88	98 153	12	13	1.0
6070 6071	EMA EMA	A-662-0016	9	923	835	90	88	10	3	0.3
5073	ICA	A-623-0012	12	1103	1011	92	92	8	4	0.4
6076	PMA	A-790-0012	5	40	29	73	11	27	4	10.0
6077	MLA	A-790-0010	3	60	47	78	13	22	3	5.0
6078	EA-A CE-A	A-412-0010	3	13 141	13 136	100 96	0 5	0	0	
6079 5081	BU-A	A-721-0018 A-710-0010	8	174	133	76	41	24		
6082	SW-A	A-711-0015	7	102	73	72	29	28	. 0	
6083	UT-A	A-720-0012	10	89	62	70	27	30		
6093	TM-Sub-TECH	A-123-0127	11	151	112	74	39	26	1	0.7
5097	EO-A	A-730-0010	11	236	182	77	54 196	23 23	85	10.0
6102	PN-A	A-500-0014	12	846	650	77		13	63	15.8
6103	OT-A	A-210-0011	11 12	400 1909	349 1643	87 86	51 266	14	2	0.1
6106	HT-A FTM	A-700-0010 A-113-0019	12	806	775	96	31	4	12	1.5
5115	GMM-A	A-041-0010	12	1413	927	66	486	34	84	6.0
6118_	SQQ-23-PR-OPR	A-130-0097	1	6	6	100	0		0	
6119	HT-A	A-780-0035	12	893	800	90	93	10	5	0.5
6120	HT	A-780-0035	12	1140	961	84	179	16	4	0.4
6122	CTI HEBREW CTI ARABIC	A-232-0041 A-232-0042	0	13	7	54	6	46	0	
6126	ORT MASTER	F-772-0010	6	71	41	58	30	42	5	7.0
	A THE PARTY OF THE	776 0010								

^{*}Twelve complete months of data not available for all courses.

	7	8	9	10	11	12	13	14	16
6	1		Qualified			1	ied Attrites		1
nput	Academic A	of of		Attrites	% of Academic	Number I	of Unqualified	of Academic	Chi
Total Input		Total Input		alified Input	Attrites		Input	Attrites	Square
5 ÷ 2		7 + 2		9 + 2	9 + 7		12 + 2	12 + 7	
0	0	0	0			0			
		w 16							
8	0		0			0			
0	272	19	272	19	100	0			
6	0	**	0			0	**		
0	0		0			0			
82	0	8.9	12	8.9	100	0			
0	12				40.0	12	3.45	60	14.6
22	20	5.7 4.6	8 4	2.3	33.0	8	3.0	66.6	8.7
26	12 21	4.6 6.6	8	2.5	38.0	13	4.1	62.0	12.3
26 27	39	15.7	22	8.9	56.4	17	6.9	43.6	5.2
3	31	3.6	27	3.2	87.0	4	0.5	13.0	8.4
	15	8.6	8	4.6	53.3	7	4.0	46.6	3.4
24	119	6.7	109	6.2	91.6	10	0.6	8.4	2.4
31	5	1.5	1	0.3	20.0	4	1.2	80.0	3.7
29	4	1.9	4	1.9	100	0			3.4
21	33	22.9	19	13.2	57.6	14	9.7	42.4	10.5
28	7	8.8	4	5.0	57.1	3	3.8	42.9	0.3
19	4	5.5	4	5.5	100	0		17.0	2.7 6.3
14	28	6.7	23	5.5	82.1	5	1.2	- 17.9 38.1	3.1
31	134	12.9	83	7.9 1.3	61.9	51 0	4.9	30.1	3.6
13	1	1.3							
0	1	1.5	1	1.5	100	0	1.9	30.0	1.1
21	30	6.4	21	4.5 0.7	69.2	4	0.3	30.8	2.9
12	13	1.0	3	0.7	100	0			2.4
10	3	0.3	3	0.3	75.0	1	9.1	25.0	9.1
8			2	5.0	50.0	2	5.0	50.0	0.2
27	4	10.0	2	3.3	66.6	1	1.7	33.4	4.7
22	3	5.0	0			0			
0	0		0			0			
24			0			0			
28	0		0			0			
30			0			0	**		2.0
26	1	0.7	1	0.6	100	0	0.4	50.0	3.0 5.1
23	2	0.8	1	0.4	100 72.9	23	2.7	27.1	0.6
23	85	10.0	62	7.3					18.6
13	63	15.8	44	11.0	69.8	19	4.8	30.2	2.5
14	2	0.1	.2	0.1	100 83.3	0 2	0.2	16.6	2.5
4	12	1.5	10	1.2	45.2	46	3.3	54.8	15.5
34	84	6.0	0	2.9		0			
0	0			0.0	60	2	0.2	40	2.1
10	5	0.5	3 0	0.3	60	4	0.4	100	15.6
16	4	0.4	0						**
			0			0			
46	0 5	7.0	3	4.2	60.0	2	2.8	40.0	.3
42	5	7.0							

maring property and the contract which the property and the boundary of the contract of the co

			1	2	3	4	5	6
			Months of	Total	Qualified	Input	Unqualifie	d Input
COP	Short Title	CIN	Data	Input	Number	of	Number	of
						Total Input	1	Total Input
						3 + 2		5 + 2
6131	DS-A	A-150-0025	11	320	313	98	7	2
6135	ETA-3R	A-104-0010	12	1220	1208	99	12	1 2
6137	ETA-3N	A-102-0010	11	707	694	98 100	13	2
6140	CTI-FRENCH OSA	A-232-0040 A-221-0011	12	2025	1702	84	323	16
6142								12
6144 6146	RM-A	A-202-0014	12	3508	3080 675	88 93	428 54	7
6149	PLRS-POS-Elec CM-A	A-121-0142 A-510-0022	12	729 125	101	81	24	19
6161	CTM	A-102-0109	12	285	285	100	0	
6167	DP-A	A-531-0016	12	330	273	83	57	17
6172	STS-A	A-130-0029	12	408	385	94	23	6
6178	EW-OP/Maint TEC	A-102-0154	12	508	464	91	44	9
6182	ASH	C-602-2023	12	97	83	86	14	14
6183	ASM	C-602-2024	10	39	29	74	10	26
6184	INTRO-WELD	A-700-0011		1	1	100	0	
6193	MK 111 OP-Basic	A-130-0088	3	26	23	89	3	12
6194	MK 114 OP-Basic	A-130-0083	3	133	112	84	21	16
6195	SQS-23DG-0P	A-130-0084	3	100	88	88	12	12
6196	SQS-35V-0P	A-130-0085	1	5	3	60	2	40
6197	SQS-26BX-0P	A-130-0092	2	8	6	75	2	25
6198	SQS-26CX-OP	A-130-0086	3	79	64	81	15	19
6239	AVA-AT	C-100-2013	12	1570	1417	90	153	6
6240 6241	AVA-AQ AVA-AX	C-100-2013 C-100-2013	12	323 508	303 460	94 90	20 48	10
6242	AVA-TD	C-100-2013	12	531	460	87	71	13
						97	12	2
6244 6245	AFT-AT AFT-AO	C-100-2010 C-100-2010	12	482 195	470 190	97	5	2
6246	AFT-AX	C-100-2010	12	196	186	95	10	5
6260	BT-A	A-651-0010	3	515	388	75	127	25
6261	ENA	A-652-0018	3	288	215	75	73	25
6262	MMA	A-651-0015	4	972	718	74	254	26
6263	ETA1-ETN	A-100-0012	5	340	308	90	32	10
6264	ETA1-CTM	A-100-0012	3	71	60	84	11	16
6265	ETA1-ETR	A-100-0012	5	257	222	8€	35	14
6266	ETA2-ETN	A-100-0014	4	304	296	97	8	3
6267	ETA2-CTM	A-100-0014	4	39	38	97	1	3
6268	ETA2-ETR	A-100-0014	3	152	147	97	5	3
6278	AC	C-222-2010	12	471	396	84	75 29	16 17
6286 6287	BU-A EA-A	A-710-0010 A-412-0010	12	181	152	84 80	29	20
							4	6
6289	CE-A	A-721-0018	5	53	49	92 83	16	17
6290 6291	UT-A CM-A	A-720-0012 A-610-0022	10	95 91	79 64	70	27	30
6292	EO	A-730-0010	12	210	166	79	44	21
6299	EW OP-TECH	A-102-0155	12	104	93	89	11	11
6300	PC	A-515-0018	10	133	99	74	34	26
6301	CTR	A-231-0044	12	519	171	33	348	67
6302	CTT-PREP	A-231-0023	12	374	366	98	8	2
6319	CTT-ICR	A-231-0047	8	39	39	100	0	
6320	CTT-SPE	A-231-0046	10	79	74	94	5	- 6

2

TABLE B-1. QUALIFIED AND UNQUALIFIED ATTRITION (continued)

4			7	3	9	10	11			14	18
t	Unqualified	Imput		Attrition		Attrites			fied Attrites		
of	Number	& of	Number	# of	Number	of	of Academic	Number	of Unqualified	- f Academic	Chi
1 Input		Total Input		Total Input	100	alified Input	Attrites	1	Input	12 + 7	Sugare
+ 2		5 + 2		7 + 2		9 + 2	9 + 7				
8	7	2	26	8.1	25	7.8	96.1		0.3	3.8	9.2
19	12	1	9	0.7	8	0.7	88.8	1	8.2	11.1	1.9
8	13	2	10	1.4	10	1.4	100	0	**		2.6
00	0	**	0		0			0			24.0
34	323	16		4.3	57	2.8	64.8	31	1.5		
38	428	12	235	6.7	191	5.4	81.3	44	1.3	18.7	9.4
13	54	7	57	7.8	53	7.3	92.9	4	0.5	7.0	0.1
11	24	19	1	0.8	0			1	0.8		0.6
00	0		1	0.4	1	0.4	100	0			2.0
33	57	17	17	5.1	11	5.2	64.8	6	1.8	25:2	2.8
4	23	6	7	1.7	7	1.7	100		4.0		
91	44	9	76	14.9	58	11.4	76.3	18	3.5		23.3
16	14	14	0		0			0			
14	10	26	0		0			0			**
00	0		0		0			0			
	3	12	0		0		**	0	**	**	
39 34	21	16	0		0			Ö			
38	12	12	0		0			0			
50	2	40	0	**	0			0			
15	2	25	0		0			0			
	16	19	0		0			0			
11	15 153	10	103	6.6	84	5.3	81.5	19	1.2	18.4	8.5
00	20	6	17	5.3	14	4.3	17.6	3	0.9	17.7	2.2
94	48	10	44	8.7	40	7.9	90.9	4	0.8	9.1	0.1
37	71	13	20	3.8	13	2.4	65.0	7	1.3		6.6
			25	5.2	17	3.5	68.0	В	1.6	32	82.2
97	12	2 2	11	5.6	11	5.6	100	0	**		2.4
97	5	-	15	7.7	11	5.6	73.3	4	2.0	26.6	11.2
95 75	10 127	25	0		0						
75	73	25	0		0			0			
					0			0			
74	254	26	0		22	6.5	91.6	2	0.6	8.3	0.3
90	32	10	24	7.1	6	8.5	85.7	1	1.4	14.3	0.4
34	11	16 14	17	9.8 6.6	13	5.1	76.5	4	1.6	23.5	
36	35	3	5	1.6	5	1.6	100				
97							50.0	1	2.6	50.0	
97	1	3	2	5.1	4	2.6	80.0	1	0.7	20.0	
97	5	3	5	3.2	58	12.3	65.1	31	6.6	34.8	27.6
34	75	16 17	89	18.9	1	0.6	50.0	1	0.5	50.0	0.1
34	29	20	0	1.1	0			0			
30						* * * * * * * * * * * * * * * * * * * *		0			
92	4	6	0	**	0			0			
33	16	17	0		0	**		0			
70	27	30	0	0.5	1	0.5	100	0			3.1
79	44	21	-	0.5	3	2.8	50.0	3	2.8	50.0	6.5
39	11	!!		5.8				0		**	
74	34	26	0	**	0		21.0	96	18.5	78.1	8.2
33	348	67	123	23.7	27	5.2	21.9	12	3.2	17.9	88.0
98	8	2	67	17.9	55	14.7	82.1	0	3.6		00.0
00	0		0	**	0			0			10.10
94		6	0					-			

the solution of the same of the solution of the same o

BEST AVAILABLE COPY

55/56

Qualified Number input a of Months of Total Input 3 ± 2 CTI-RUSSIAN CTI CHJ CTI-VIETNAM CTI-COMMN BE CTI SPANISH 98 29 46 76 100 67 15 UWFT-ASCL HT-PH2 SCAT-MOD-5 SCAT-MOD-4 SCAT-MOD-3 A-130-0138 A-700-0010 A-100-0052 A-100-0051 88 12 34 99 66 A-100-0050 A-202-0026 A-202-0027 C-601-2010 C-601-2012 C-646-2010 RMA-SEA 87 88 86 13 12 14 11 18 206 227 1472 167 179 199 1272 149 RMA-SHORE ADJ ADR 89 AO 808 988 ABF ABE AE AME AMH 12 12 12 12 223 158 1047 454 C-821-2010 81 53 35 155 52 106 C-680-2012 C-602-2012 C-602-2015 82 87 90 900 0-602-2017 90 114 62 37 47 C-603-2010 C-602-2010 C-420-2010 C-191-2010 AMS 1123 328 268 472 200 1002 266 231 425 90 81 PR-Basic AG TD PH Level-1 181 0-400-2011 C-822-2010 C-516-2010 A-242-0010 C-602-2019 A-123-0127 C-210-2010 ABH AZ 227 227 185 54 26 369 21 22 14 17 40 33 64 20 11 17 182 291 214 65 43 551 78 86 83 60 67 TM-AS-TORP-TECH

MEAN.

TOTAL

to one is logic on the hope white specification in way to a street manage a west times and the

TABLE B-1. QUALIFIED AND UNQUALIFIED ATTRITION (continued)

PERMIT FULLY LEGISLE PROMUCTION

			6	7	8	9					14	
Number Total Input Number Stof Total Input Number Total Input Total Input Number Stof Nu		Unqualified Input Academic Attrition			Oualified Attrites			Unqualified Attrites				
53 54 1 1.0 1 1.0 100 0 5.4 7 24 0 0 0	nout		Tof	Number		Number	Tof		Number	of Unqualified		Chi Square
53 54 1 1.0 1 1.0 1 1.0 100 0	1		5 + 2		7 + 2		9 + 2	9 + 7		12 + 2	12 + 7	
7 24 0 0 0 0 0 0 1 333 0 1 12 2 2 5.0 2 25.0 100 0 2 6.1 100 0.2 1 1 12 2 2 25.0 2 25.0 100 0 3.4 50 34 3 2.0 1 0.7 33.3 2 1.3 66.6 0.4 0 0 0 0 1 33.3 100 0 1 33.3 100 1 27 13 3 0 0 0 0 1 33.3 100 1 27 13 10 0 0 0 1 33.3 100 1 28 12 0 0 1 0 0 1 33.3 100 1 12 28 12 0 0 1 0 0 1 0 0 1 1 33.3 3 100 1 12 28 12 0 0 1 0 0 1 0 0 1 1 33.3 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			54	1		1						4.4
1 33 0 0 0 0 0 0 0.2 1 1 12 2 2 25.0 2 25.0 100 0 2 6.1 100 0.2 1 1 12 2 2 25.0 1 0 0 0 100 0 3.4 50 34 3 2.0 1 0.7 33.3 2 1.3 66.6 0.4 0 0 0 0 0 0 0		7	24	0		0			0	**		
1				0		0						
1 12 2 2 25.0 2 25.0 100 0 3.4 50 34 3 2.0 1 0.7 33.3 2 1.3 66.6 0.4 0 0 0 0 0 0		1		0		0			0			
50			85	2	6.1	0			2	6.1	100	0.2
50 34 3 2.0 1 0.7 33.3 2 1.3 66.6 0.4 0 0 0 0 0 0 0 0		1	12	2	25.0	2	25.0					3.4
0 0 0 0 0 0 0		50		3		1			2	1.3	66.6	0.4
0 0 0 0 0 0 0 0 -				0		0			0			
27				0		0						
28		0				0				33.3	100	
28 12 0 0 0 3.1 35.8 22.4 4 4 1.0 6.0 1.0 1.0 6.0 1.0 </td <td>******</td> <td>27</td> <td>13</td> <td>0</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	******	27	13	0		0						
18				0		0						
18 11 4 2.4 3 1.8 75.0 1 0.6 25.0 1.3 180 18 9 0.9 7 0.7 77.7 2 0.2 22.3 1.5 53 19 1 0.4 1 0.4 100 0 3.1 35 18 5 2.6 3 1.5 60.0 2 1.0 40.0 0.5 185 13 22 1.8 18 1.5 81.8 4 0.3 18.2 0.2 52 10 2 0.4 0 2 0.4 100 9.1 106 10 8 0.8 5 0.5 62.5 3 0.3 37.5 3.7 114 10 3 0.3 3 0.3 100 0 2.8 37 14 8 2.9 3 1.1 37.5 5 1.9 62.5 12.5 47 10 </td <td></td> <td></td> <td>14</td> <td>56</td> <td>3.8</td> <td>36</td> <td>2.4</td> <td>64.2</td> <td>20</td> <td></td> <td></td> <td></td>			14	56	3.8	36	2.4	64.2	20			
100			11	4	2.4	3			1			
35 18 5 2.6 3 1.5 60.0 2 1.0 40.0 0.5 155 13 22 1.8 18 1.5 81.8 4 0.3 18.2 0.2 50 10 2 0.4 0 2.4 106 10 8 0.8 5 0.5 62.5 3 0.3 37.5 9.7 114 10 3 0.3 3 0.3 100 0 2.8 37 14 8 2.9 3 1.1 37.5 5 1.9 62.5 12.5 47 10 4 0.8 4 0.8 4 0.8 100 0 2.3 19 10 15 7.5 9 4.5 60.0 6 3.0 40.0 13.9 59 21 0 0 2.3 64 22 12 4.1 10 3.4 83.3 2 0.7 16.7 0.7 26 12 13 15 1 1 15 1 7 3.3 63.6 4 1.9 36.4 3.3 11 17 2 3.1 1 1.5 50.0 1 1.5 50.0 9.6		180	18	9	0.9	7	0.7	77.7	2	0.2	22.3	
35 18 5 2.6 3 1.5 60.0 2 1.0 40.0 0.5 155 13 22 1.8 18 1.5 81.8 4 0.3 18.2 0.2 52 10 2 0.4 0 2 0.4 100 9.1 106 10 8 0.8 5 0.5 62.5 3 0.3 37.5 3.7 114 10 3 0.3 3 0.3 100 0 2.4 62 19 5 1.5 5 1.5 100 0 2.8 37 14 8 2.9 3 1.1 37.5 5 1.9 62.5 12.5 47 10 4 0.8 4 0.8 100 0 2.3 19 10 15 7.5 9 4.5 60.0 6 3.0 40.0 13.9 59 21 0 0 0 2.3 64 22 12 4.1 10 3.4 83.3 2 0.7 16.7 0.7 26 4 22 12 4.1 10 3.4 83.3 2 0.7 16.7 0.7 27 64 20 14 11 5.1 7 3.3 63.6 4 1.9 36.4 3.3 11 17 2 3.1 1 1.5 50.0 1 1.5 50.0 9.6		2.5	19	1	0.4	1	0.4	100	0			
165 13 22 1.8 18 1.5 81.8 4 0.3 18.2 0.2 6.2 10 2 0.4 0 2 0.5 62.5 3 0.3 37.5 3.7 106 10 8 0.8 5 0.5 62.5 3 0.3 37.5 3.7 114 10 3 0.3 3 0.3 100 0 2.4 62 19 5 1.5 5 1.5 100 0 2.8 37 14 8 2.9 3 1.1 37.5 5 1.9 62.5 12.5 47 10 4 0.8 4 0.8 4 0.8 100 0 2.3 19 10 15 7.5 9 4.5 60.0 6 3.0 40.0 13.9 15 7.5 9 4.5 60.0 6 3.0 40.0 13.9 15 7.5 11 10 3.4 83.3 2 0.7 16.7 0.7 2.3 11 17 2 3.1 1 1.5 50.0 1 1 1.5 50.0 9.6 17 40 0 0 0 0 0 0 0				5		3		60.0		1.0		
52 10 2 0.4 0 2 0.4 100 9.1 106 10 8 0.8 5 0.5 62.5 3 0.3 37.5 3.7 114 10 3 0.3 3 0.3 100 0 2.4 62 19 5 1.5 5 1.5 100 0 2.8 62 19 5 1.5 5 1.5 100 0 2.8 62.5 12.5 47 10 4 0.8 4 0.8 100 0 2.3 19 10 10 15 7.5 9 4.5 60.0 6 3.0 40.0 13.9 159 21 0 0 4.5 60.0 6 3.0 40.0 13.9 159 21 0 0 3.4 83.3 2 0.7 16.7 0.7 20 14 11 5.1 7 3.3 63.6 4 1.9 36.4 3.3 11 1.5 50.0 11 1.5 50.0 9.6 117 40 0 0 0 1.5 50.0 1 1.5 50.0 9.6 117 40 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 1.5 50.0 1.5 50.0 9.6 1.5 50.0 9.6 117 40 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 0 0 1.5 50.0 1.5 50.0 9.6 117 40 0 0 0 0 0 0 0				22		18	1.5	81.8	4			
106 10 8 0.8 5 0.5 62.5 3 0.3 37.5 3.7 114 10 3 0.3 3 0.3 100 0 2.4 62 19 5 1.5 5 1.5 100 0 2.8 37 14 8 2.9 3 1.1 37.5 5 1.9 62.5 12.5 47 10 4 0.8 4 0.8 100 0 2.3 19 10 15 7.5 9 4.5 60.0 6 3.0 40.0 13.9 59 21 0 0 0 0 0 0 0 0 0			10	2	0.4	0			2			9.1
62 19 5 1.5 5 1.5 100 0 2.8 37 14 8 2.9 3 1.1 37.5 5 1.9 62.5 12.5 47 10 4 0.8 4 0.8 100 0 2.3 12.5 19 10 15 7.5 9 4.5 60.0 6 3.0 40.0 13.9 19 10 15 7.5 9 4.5 60.0 6 3.0 40.0 13.9 19 10 15 7.5 10 10 3.4 83.3 2 0.7 16.7 0.7 2.6 2.0 14 11 5.1 7 3.3 63.6 4 1.9 36.4 3.3 11 17 2 3.1 1 1.5 50.0 1 1 1.5 50.0 9.6 17 40 0 0 0 1 1.5 50.0 9.6 17 40 0 0 0 1 1.5 50.0 9.6 17 40 0 0 0 1 1.5 50.0 9.6 17 40 0 0 0 1 1.5 50.0 9.6 17 40 0 0 0 1 1.5 50.0 9.6 17 40 0 0 0 1 1.5 50.0 9.6 17 40 0 0 0 1 1.5 50.0 9.6 17 40 0 0 0 1 1.5 50.0 9.6 17 40 0 0 0 1 1.5 50.0 9.6 17 40 0 0 0 1 1.5 50.0 9.6 17 40 0 0 0 1 1.5 50.0 9.6 17 40 0 0 0 1 1.5 50.0 9.6 17 40 0 0 0 0 1 1.5 50.0 9.6 17 40 0 0 0 0 1 1.5 50.0 9.6 17 40 0 0 0 0 1 1.5 50.0 9.6 17 40 0 0 0 0 0 1 1.5 50.0 9.6 17 40 0 0 0 0 1 1.5 50.0 9.6 17 40 0 0 0 0 1 1.5 50.0 9.6 17 40 0 0 0 0 0 0 0		106	10	8	0.8	5	0.5	62.5	3	0.3	37.5	
62 19 5 1.5 5 1.5 100 0 2.8 37 14 8 2.9 3 1.1 37.5 5 1.9 62.5 12.5 47 10 4 0.8 4 0.8 100 0 2.3 12.5 19 10 15 7.5 9 4.5 60.0 6 3.0 40.0 13.9 59 21 0 0 0 0 0 0 0 0	*****	114	10	3	0.3	3	0.3	100				
37 14 8 2.9 3 1.1 37.5 5 1.9 62.5 12.5 47 10 4 0.8 4 0.8 100 0 2.3 19 10 15 7.5 9 4.5 60.0 6 3.0 40.0 13.9 59 21 0 0 0 0 1.5 64 22 12 4.1 10 3.4 83.3 2 0.7 16.7 0.7 20 14 11 6.1 7 3.3 63.6 4 1.9 36.4 3.3 11 17 2 3.1 1 1.5 50.0 1 1.5 50.0 9.6 17 40 0 0 0 1.5				5		5	1.5	100				
47 10 4 0.8 4 0.8 100 0 2.3 19 10 15 7.5 9 4.5 60.0 6 3.0 40.0 13.9 59 21 0 0 0 0 16.7 0.7 64 22 12 4.1 10 3.4 83.3 2 0.7 16.7 0.7 20 14 11 5.1 7 3.3 63.6 4 1.9 36.4 3.3 11 17 2 3.1 1 1.5 50.0 1 1.5 50.0 9.6 17 40 0 0 0 0 10.0 1.5 50.0 9.6			14	8		3			5	1.9	62.5	
19 21 0 0 0 16.7 0.7 16.7 0.7 20 14 11 5.1 7 3.3 63.6 4 1.9 36.4 3.3 11 17 2 3.1 1 1.5 50.0 1 1 1.5 50.0 9.6 17 40 0 0 0 0 0 0 0			10	4	0.8	4			0			
64 22 12 4.1 10 3.4 83.3 2 0.7 16.7 0.7 20 14 11 6.1 7 3.3 63.6 4 1.9 36.4 3.3 11 17 2 3.1 1 1.5 50.0 1 1.5 50.0 9.6 17 40 0 0 0 0 0 0 0		19	10	15	7.5	9	4.5	60.0	6	3.0	40.0	13.9
64 22 12 4.1 10 3.4 83.3 2 0.7 16.7 0.7 20 14 11 5.1 7 3.3 63.6 4 1.9 36.4 3.3 11 17 2 3.1 1 1.5 50.0 1 1.5 50.0 9.6 17 40 0 0 0 0 0 0 0	******	50	21	0		0			0			
20 14 11 5.1 7 3.3 63.6 4 1.9 36.4 3.3 11 17 2 3.1 1 1.5 50.0 1 1.5 50.0 9.5 17 40 0 0 0 0 0 0 0						10	3.4	83.3	- 2			
11 17 2 3.1 1 1.5 50.0 1 1.5 50.0 9.6 17 40 0 0 0 0 0 0 0						7			4			
17 40 11 11 11 11 11 11 11 11 11 11 11 11 11				2		1	1.5	50.0	1	1.5	50.0	9.5
182 33 49 8.9 20 3.6 40.8 29 5.3 59.2 15.4		17	40	0								17.
		182	33	49	8.9	20	3.6	40.8	29		59.2	15.4

BEST AVAILABILE COPY

DISTRIBUTION LIST

Air Force

Headquarters, Air Training Command (XPTD, Dr. D. E. Meyer)
Headquarters, Air Training Command (XPTIA, Mr. Goldman)
Air Force Human Resources Laboratory, Brooks Air Force Base
Air Force Human Resources Laboratory (Library), Lowry Air Force Base
Air Force Office of Scientific Research/AR (Dr. A. R. Fregly)

Army

Commandant, TRADOC (Technical Library)
Army Research Institute (Dr. Ralph R. Canter, 316C; Dr. Edgar Johnson)

Coast Guard

Commandant, U.S. Coast Guard Headquarters (G-P-1/62; G-RT/81)

Marine Corps

CMC (Code OT)
CGMCDEC (Mr. Greenup)
Director, Marine Corps Institute

the security of the second of the second

Navy

Assistant Secretary of the Navy (R&D) (4E741, Dr. S. Koslov) CNO (OP-987P7, CAPT Connery; OP-991B, M. Malehorn; OP-987P10, Dr. R. Smith; OP-987, H. Stone) NAVCOMPT (Code NCD-7) ONR (Code 458, 455) ONRBO Boston (J. Lester) ONRBO Chicago ONRBO Pasadena (E. E. Gloye) CNM (MAT-03424, Mr. A. L. Rubinstein) CNET (01, 00A, N-5 (6 copies) CNAVRES (Code 02) COMNAVSEASYSCOM (03, 047C1, 047C12) COMNAVAIRSYSCOM (03, 340F) CNET SUPPORT (00, 01A) CNTECHTRA (0161, Dr. Kerr (5 copies)) CNATRA (F. Schufletowski) COMTRALANT COMTRALANT (Educational Advisor) COMTRAPAC (2 copies)

DISTRIBUTION LIST (continued)

Navy (continued)

CO NAVPERSRANDCEN (Code Ol, Dr. Regan; Dr. Earl Jones; Library) NAVPERSRANDCEN Liaison (Code 01H) Superintendent NAVPGSCOL (Code 2124) Superintendent Naval Academy Annapolis (Chairman, Behavioral Science Dept.) CO NAVEDTRAPRODEVCEN (AH3) CO NAVEDTRASUPPCEN NORVA CO NAVEDTRASUPPCENPAC (5 copies) CO NAVAEROMEDRSCHLAB (Chief Aviation Psych. Div.) CO FLTCOMDIRSYSTRACENPAC CO NAMTRAGRU CISO, NTTC Corry Station CO NAVTRAEQUIPCEN (N-21, N-215, N-131 (2 copies), N-2211, N-00AF, N-00M, PM TRADE) Center for Naval Analyses (2 copies) U.S. Naval Institute (CDR Bowler) OIC NODAC (Code 2) CO TRITRAFAC (2 copies) CO NAVSUBTRACENPAC (2 copies)

Other DOD

Military Assistant for Human Resources, OAD (E&LS) ODDR&E (COL Henry Taylor)
OASD (I&L) - WR (LT COL Grossel)
Director, Human Resources Office, Defense Advanced Research Projects Agency
(R. Young)
Defense Advanced Research Projects Agency (CTO, Dr. H. F. O'Neil, Jr.)
Institute for Defense Analyses (Dr. Jesse Orlansky)

Non-DOD

Essex Corporation (Dr. John Collins)

Information Exchanges

DDC (12 copies)
DLSIE (James Dowling)
Scientific Technical Information Office, NASA.
Executive Editor, Psychological Abstracts, American Psychological Association
ERIC Processing and Reference Facility, Bethesda, MD (2 copies)

entire him make in the cope want six , to make make a more than the six of