1-4-3.로그방정식과 로그부등식

수학 계산력 강화

(1)로그방정식

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2019-02-13
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

01 / 로그방정식의 풀이

- (1) 로그방정식: 로그의 진수 또는 밑에 미지수가 있는 방정식
- (2) 로그방정식의 풀이
 - ① 밑을 같게 할 수 있는 경우 (f(x) > 0, g(x) > 0)
 - $: \log_a f(x) = \log_a g(x) (a > 0, a \neq 1) \Leftrightarrow f(x) = g(x)$
 - ② $\log_a f(x) = b$ 꼴인 경우 (단, a > 0, $a \ne 1$, f(x) > 0)
 - : $\log_a f(x) = b \iff f(x) = a^b$
 - ③ $\log_{n}x$ 꼴이 반복되는 경우
 - : $\log_a x = t$ 로 치환 후 t에 대한 방정식을 푼다.
 - ④ 진수가 같은 경우 (단, $a>0, a\ne1, b>0, b\ne1, f(x)>0$)
 - : 밑이 같거나 진수가 1이다.

 - ⑤ 지수에 로그가 있는 경우
- : 양변에 로그를 취하여 푼다.

☑ 다음 방정식을 풀어라.

1.
$$\log_{\frac{1}{2}} x = 4$$

- 2. $\log_x 64 = 2$
- 3. $\log_3(2x-5)=2$
- **4.** $\log_{\frac{1}{2}}(3x-1) = -3$
- **5.** $\log_5 x = \frac{1}{2}$

6.
$$\log_2(3x+2) = 3$$

7.
$$\log_2(x+4) = 5$$

8.
$$\log_{\sqrt{2}}(x+3) = 4$$

9.
$$\log_4(5x-3) = \frac{1}{2}$$

10.
$$\log_{\frac{1}{2}}(x+4) = -\log_3(8-x)$$

11.
$$\log_3(2x-1) = \log_3(x+2)$$

12.
$$\log_{\frac{1}{2}}(x+1) = \log_{\frac{1}{2}}(4x-2)$$

13.
$$\log_3(x+6) = \log_3(8-x)$$

14.
$$\log_{\sqrt{2}}(x+2) = \log_2(x+1) + 2$$

15.
$$\log_2(x+2) = 1 + \log_2(x-3)$$

16.
$$\log_2(x-1) = \log_2(3-x)$$

17.
$$2\log_5(3x-1) = \log_5(18x-15)$$

18.
$$\log_{\frac{1}{2}}(x-1) = \frac{1}{2}\log_{\frac{1}{2}}(x+5)$$

19.
$$\log_{\frac{1}{2}}(x+4) = \log_{\frac{1}{2}}(6-x)$$

20.
$$\log_{\sqrt{2}} x - \log_2 \left(x - \frac{3}{2} \right) = 3$$

21.
$$\log_{\frac{1}{3}}(3x+1) = \log_{\frac{1}{3}}(x+5)$$

22.
$$\log_{\frac{1}{3}}(x+1) = 2$$

23.
$$\log_2(x-2) = \log_4(x-2)$$

24.
$$\log_{\frac{1}{2}}(x-1)-1 = \log_{\frac{1}{2}}(4-x)$$

25.
$$\log_{\frac{1}{4}}(x+1) = \log_{\frac{1}{4}}(4-2x)$$

26.
$$\log_5(3x-2) = \log_5(2x+1)$$

27.
$$\log_2(x+1) + \log_2(x-2) = 2$$

28.
$$(\log_{\frac{1}{2}} x)^2 + 3\log_{\frac{1}{2}} x + 2 = 0$$

29.
$$\log_{\sqrt{2}}(x+1) - \log_2(x+1) = 1$$

30.
$$\log_6 x + \log_6 (x+1) = 1$$

31.
$$\log_2(x-1) = 2 - \log_2(x+2)$$

32.
$$\log x + \log (x-3) = 1$$

33.
$$\log_2(x-1) = \log_2(2x-3)$$

34.
$$(\log_3 x)^2 - 4\log_3 x + 3 = 0$$

35.
$$\log_{x+1} 9 = 2$$

36.
$$2\log_2(x+1) = \log_2(x+4) + 2$$

37.
$$\log_3(x+1) = \log_{\sqrt{3}}(x-1)$$

38.
$$-\log_3(x-2) = \log_{\frac{1}{3}}(8-x)$$

39.
$$\log_3(x+3) + \log_3(x+1) = 1$$

40.
$$\log_5(2x+1) = 1 + \log_5(x-4)$$

41.
$$\log_5(2x+3) = \log_5 3 + \log_5(x-2)$$

42.
$$\log_{\frac{1}{3}}(2x-5) = \log_{\frac{1}{3}}(3x+6) + 1$$

43.
$$\log_{(x^2-1)} 2 = \log_{(x+11)} 2$$

☑ 다음 방정식을 풀어라.

44.
$$\log_2 x + \log_x 16 = 5$$

45.
$$\log_3 x - \log_x 9 = 1$$

46.
$$2\left(\log_2\frac{x}{2}\right)^2 = 3\left(1 - \log_2 x\right)$$

47.
$$(\log_2 x)^2 - 5\log_2 x + 6 = 0$$

48.
$$(\log_{\sqrt{3}} x)^2 - 3\log_{\sqrt{3}} x^2 + 8 = 0$$

49.
$$\log \sqrt{5(x+1)} = 1 - \frac{1}{2} \log(2x-1)$$

50.
$$(\log_3 9x)^2 - 3\log_3 x - 6 = 0$$

51.
$$(\log_3 x)^2 + \log_3 x^2 - 15 = 0$$

52.
$$(\log_2 x)^2 + \log_2 x - 2 = 0$$

53.
$$(1 + \log_2 x)^2 - 3\log_2 x^2 + 2 = 0$$

54.
$$(\log_3 x)^2 - 2\log_3 x - 3 = 0$$

55.
$$(\log_2 4x)(\log_2 2x) = 20$$

56.
$$(\log 10x)(\log 100x) = 12$$

☑ 다음 방정식을 풀어라.

$$57. \quad 3^{\log 9x} - 2^{\log 4x} = 0$$

$$58. \quad 2^{\log 2x} = 5^{\log 5x}$$

59.
$$\log_2 \{\log_2 (\log_2 x)\} = 1$$

60.
$$\log_2 \{\log_3 (\log_2 x)\} = 1$$

☑ 다음 방정식을 풀어라.

61.
$$x^{\log_3 x} = \frac{x^3}{9}$$

62.
$$x^{\log x} = \frac{100}{x}$$

63.
$$x^{\log_3 x} = 81x^3$$

64.
$$x^{\log_2 x} = \frac{x^5}{16}$$

65.
$$x^{\log_2 x} = 32x^4$$

66.
$$x^{\log_5 x} = \frac{625}{x^3}$$

67.
$$x^{\log x} = \frac{1}{10x^2}$$

02 / 로그방정식의 응용

 $\log_a x$ 꼴이 반복되는 로그방정식의 두 근이 lpha, eta이면 $\log_a x = t(t > 0)$ 로 치환한 이차방정식의 두 근은 $\log_a \alpha$, $\log_a \beta$ 이다.

ightharpoonup 다음 방정식의 두 근을 $lpha,\ eta$ 라고 할 때, lphaeta의 값을 구 하여라.

68.
$$(\log_3 3x)^2 - 2\log_3 x^3 = 0$$

69.
$$(\log_5 x)^2 + \log_5 x^2 - 3 = 0$$

70.
$$\left(\log_2 \frac{x}{2}\right)^2 - \log_2 x - 2 = 0$$

71.
$$(\log_2 x)^2 - \log_2 x^4 - 3 = 0$$

72.
$$x^{\log_3 x} = 27x^2$$

- \blacksquare 주어진 방정식의 두 근의 곱이 주어질 때, 상수 k의 값을 구하여라.
- 73. 방정식 $(\log_{\frac{1}{2}} 2x)^2 + k \log_{\frac{1}{2}} x = 0$ 의 두 근의 곱이 $\frac{1}{8}$ 일 때

74. 방정식 $(\log_5 x)^2 - k \log_5 x - 6 = 0$ 이 두 근의 곱이 25일 때

75. 방정식 $(\log_2 2x) \left(\log_2 \frac{k}{x}\right) + 5 = 0$ 의 두 근의 곱이 4일 때

- **76.** 방정식 $(\log_3 x)^2 k \log_3 x^2 + 1 = 0$ 의 두 근의 곱 이 81일 때
- 77. 방정식 $(\log_2 x)^2 k \log_2 x 3 = 0$ 의 두 근의 곱이 16일 때

78. 방정식의 $\log_3 x - \frac{1}{3} \log_x 3 - k = 0$ 의 두 근의 곱이 3일 때

79. 방정식 $(\log x)^2 - k \log x - 2 = 0$ 의 두 근의 곱이 10일 때

로그방정식의 실생활의 활용

주어진 문장 속에서 알맞은 로그방정식을 세워 로그방정식의 여러 가지 풀이에 맞게 답을 구한다.

80. 세기가 xW/m^2 인 소리의 크기를 f(x)dB(데시벨) 이라고 할 때, $f(x)=10\log\frac{x}{4}$ (A는 양의 상수)가 성 립한다고 한다. 이어폰으로 음악을 들을 때, 소리의 크기가 100dB일 때의 소리의 세기는 소리의 크기가 80dB일 때의 소리의 세기의 몇 배인지 구하여라.

- 81. 어떤 전자회사의 핸드폰 신제품 가격이 매년 4%씩 상승한다고 하자. 이 회사의 핸드폰 신제품이 현 재 신제품 가격의 2배가 되는 것은 몇 년 후인지 구 하여라.(단. log2 = 0.3. log1.04 = 0.015로 계산한다.)
- 82. 어느 공장에서 매달 4%씩 상품 생산량을 증가시 키고 있다. 이 공장의 상품 생산량이 처음의 2배가 도는 것은 몇 개월 후인지 구하여라. (단, $\log 2 = 0.3$, $\log 1.04 = 0.015$ 로 계산한다.)

83. 화재가 발생한 건물의 온도는 시간에 따라 변한 다. 어느 건물의 초기 온도를 T_0 $^{\circ}$ C, 화재가 발생한 지 x분 후의 온도를 f(x) $^{\circ}$ C라고 하면

$$f(x) = T_0 + k \log(8x+1)$$
 (k는 상수)

이 성립한다고 한다. 초기 온도가 $20\,^{\circ}\,C$ 인 이 건물 에서 화재가 발생한 지 $\frac{7}{8}$ 분만에 온도가 $410\,^{\circ}\,C$ 까지 올라갔다고 할 때, 화재가 발생한 후 온도가 670°C가 되는데 걸리는 시간은 몇 분 인지 구하 여라.

84. 어떤 암석에 포함되어 있는 물질 A는 시간이 지남 에 따라 점차적으로 물질 B로 변한다. 암석이 생성 된 지 t억 년 후의 A의 양과 B의 양을 각각 a, b라고 하면 상수 k에 대하여 $t = k \log \left(\frac{6b}{a} + 2 \right)$ 이 성립 한다. 암석이 생성된 지 28억 년이 지난 후 A의 양 과 B의 양의 비가 2:1이 되었다. 암석이 생성되어 x억년이 지난 후 A의 양과 B의 양이 같아질 때, x의 값을 구하여라. (단, log2=0.3으로 계산한다.)

정답 및 해설

- 1) $x = \frac{1}{16}$
- $\Rightarrow \log_{\frac{1}{2}} x = 4 \text{ odd } x = \left(\frac{1}{2}\right)^4 = \frac{1}{16} \qquad \cdots \quad \bigcirc$ 이때 진수의 조건에서 x>0○은 ○을 만족하므로 주어진 방정식의 해는 $x = \frac{1}{16}$ 이다.
- 2) x = 8
- \Rightarrow 밑 조건에서 $x > 0, x \neq 1$ ⊖ $\log_x 64 = 2$ 에서 $x^2 = 64$ ∴ x=-8 또는 x=8 \bigcirc 에 의하여 x=8
- 3) x = 7
- \Rightarrow 진수의 조건에서 2x-5>0 \therefore $x>\frac{5}{2}$ $\cdots\cdots$ \bigcirc $\log_3(2x-5) = 2$ 에서 $2x-5 = 3^2$ 2x = 14 $\therefore x = 7$ x = 7은 \bigcirc 을 만족시키므로 해이다.
- 4) x = 3
- $\Rightarrow \log_{\frac{1}{2}}(3x-1) = -3$ 에서

 $3x-1 = \left(\frac{1}{2}\right)^{-3} = 2^3 = 8$ $\therefore x = 3$ \cdots

이때, 진수의 조건에서

3x-1>0 $\therefore x>\frac{1}{3}$

○은 ○을 만족하므로 주어진 방정식의 해는 x = 3이다.

- 5) $x = \sqrt{5}$
- \Rightarrow 진수 조건에서 x > 0

 $\log_5 x = \frac{1}{2}$ 에서 $x = 5^{\frac{1}{2}} = \sqrt{5}$

따라서 $x=\sqrt{5}$ 는 \bigcirc 을 만족하므로 주어진 방정 식의 해이다.

- 6) x = 2
- $\Rightarrow \log_2(3x+2) = 3$ 에서

 $3x+2=2^3=8$ $\therefore x=2$ \cdots 이때, 진수의 조건에서

3x+2>0 $\therefore x>-\frac{2}{3}$

○은 ○을 만족하므로 주어진 방정식의 해는 x=2이다.

- 7) x = 28
- $\Rightarrow \log_2(x+4) = 5$ 에서

 $x+4=2^5=32$: x=28

····· 🗇

이때, 진수의 조건에서

x+4>0 $\therefore x>-4$

○은 ○을 만족하므로 주어진 방정식의 해는 x=28이다.

- 8) x = 1
- \Rightarrow 진수 조건에서 x+3>0 $\therefore x>-3$ \cdots \bigcirc $\log_{\sqrt{2}}(x+3) = 4$ 에서 $x+3 = (\sqrt{2})^4 = 4$

따라서 x=1은 \bigcirc 을 만족하므로 주어진 방정식의 해이다.

- 9) x = 1
- $\Rightarrow \log_4(5x-3) = \frac{1}{2}$ 에서

 $5x - 3 = 4^{\frac{1}{2}} = 2 \qquad \therefore \quad x = 1 \qquad \cdots \quad \bigcirc$ 이때, 진수의 조건에서

 $5x - 3 > 0 \qquad \therefore \quad x > \frac{3}{5}$

○은 ○을 만족하므로 주어진 방정식의 해는 x=1이다.

- 10) x = 2
- \Rightarrow 진수 조건에서 x+4>0이고 8-x>0이므로

 $\log_{\frac{1}{3}}(x+4) = -\log_3(8-x)$ 에서

 $-\log_3(x+4) = -\log_3(8-x)$

 $x+4=8-x \qquad \qquad \therefore \ \, x=2$

따라서 x=2는 \bigcirc 을 만족하는 주어진 방정식의 해이다.

- 11) x = 3
- $\Rightarrow \log_3(2x-1) = \log_3(x+2)$ 에서

 $2x-1=x+2 \qquad \qquad \therefore \quad x=3$

이때, 진수의 조건에서

2x-1>0, x+2>0 $\therefore x>\frac{1}{2}$

○은 ○을 만족하므로 주어진 방정식의 해는 x = 3이다.

- 12) x = 1
- $\Rightarrow \log_{\frac{1}{2}}(x+1) = \log_{\frac{1}{2}}(4x-2)$ 에서

x+1 = 4x - 2 $\therefore x = 1$ 이때, 진수의 조건에서

x+1>0, 4x-2>0 $\therefore x>\frac{1}{2}$

○은 ○을 만족하므로 주어진 방정식의 해는 x = 1이다.

- 13) x = 1
- \Rightarrow 진수 조건에서 x+6>0이고 8-x>0

$$\log_3(x+6) = \log_3(8-x)$$
에서

$$x+6=8-x$$
 $\therefore x=1$

$$\therefore x = 1$$

따라서 x=1은 \bigcirc 을 만족하므로 주어진 방정식의 해이다.

14) x = 0

$$\Rightarrow$$
 진수 조건에서 $x+2>0$ 이고 $x+1>0$ 이므로

$$x > -1$$

$$\log_{\sqrt{2}}(x+2) = \log_2(x+1) + 2$$
에서

$$2\log_2(x+2) = \log_2(x+1) + \log_2 4$$

$$(x+2)^2 = 4(x+1)$$

$$x^2 = 0 \qquad \therefore \quad x = 0$$

따라서 x=0은 \bigcirc 을 만족하는 주어진 방정식의

15)
$$x = 8$$

$$\Rightarrow \log_2(x+2) = 1 + \log_2(x-3),$$

즉
$$\log_2(x+2) = \log_2 2(x-3)$$
에서

$$x+2=2x-6$$
 $\therefore x=8$ \cdots

$$x+2>0, x-3>0$$
 $\therefore x>3$ \cdots

○은 ○을 만족하므로 주어진 방정식의 해는 x=8이다.

16) x = 2

$$\Rightarrow \log_2(x-1) = \log_2(3-x) \circ |\mathcal{A}|$$

$$x-1=3-x$$
 $\therefore x=2$

이때, 진수의 조건에서

$$x-1 > 0, 3-x > 0$$
 : $1 < x < 3$

○은 ○을 만족하므로 주어진 방정식의 해는 x=2이다.

17)
$$x = \frac{4}{3}$$

$$\Rightarrow$$
 진수 조건에서 $3x-1>0$ 이고 $18x-15>0$

$$\therefore x > \frac{5}{6}$$

$$2\log_5(3x-1) = \log_5(18x-15)$$
에서

$$\log_5 (3x-1)^2 = \log_5 (18x-15)$$
이므로

$$(3x-1)^2 = 18x-15$$

$$9x^2 - 24x + 16 = 0$$

$$(3x-4)^2 = 0 \qquad \qquad \therefore \quad x = \frac{4}{3}$$

따라서 $x=\frac{4}{3}$ 는 \bigcirc 을 만족하므로 주어진 방정식 의 해이다.

18) x = 4

$$\Rightarrow$$
 진수 조건에서 $x-1>0$ 이고 $x+5>0$

$$\therefore x > 1$$

$$\log_{\frac{1}{2}}(x-1) = \frac{1}{2}\log_{\frac{1}{2}}(x+5)$$
에서

$$2\log_{\frac{1}{2}}(x-1) = \log_{\frac{1}{2}}(x+5)$$

$$(x-1)^2 = x+5$$

$$x^2 - 3x - 4 = 0$$

$$x - 3x - 4 = 0$$

$$(x+1)(x-4) = 0 \qquad \therefore x = -1 \, \stackrel{\sqsubseteq}{\sqsubseteq} x = 4$$

$$\bigcirc$$
에 의하여 $x=4$

19) x = 1

$$\Rightarrow$$
 진수 조건에서 $x+4>0$ 이고 $6-x>0$

$$\therefore -4 < x < 6$$

$$\log_{\frac{1}{2}}(x+4) = \log_{\frac{1}{2}}(6-x) \, \text{and}$$

$$x+4=6-x$$
 $\therefore x$

따라서 x=1은 \bigcirc 을 만족하므로 주어진 방정식의 해이다.

20)
$$x = 2$$
 또는 $x = 6$

$$\Rightarrow \log_{\sqrt{2}} x - \log_2 \left(x - \frac{3}{2} \right) = 3,$$

즉
$$\log_2 x^2 = \log_2 \left(x - \frac{3}{2} \right) + 3$$
에서

$$\log_2 x^2 = \log_2 8\left(x - \frac{3}{2}\right)$$
이므로

$$x^2 = 8x - 12$$
, $x^2 - 8x + 12 = 0$

$$(x-2)(x-6)=0$$

$$\therefore x = 2 \quad \text{E-} \quad x = 6 \quad \cdots \quad \bigcirc$$

$$x > 0, \ x - \frac{3}{2} > 0$$

$$\therefore x > \frac{3}{2} \qquad \cdots \bigcirc$$

○은 ○을 만족하므로 주어진 방정식의 해는 x=2 또는 x=6이다.

21) x = 2

$$\Rightarrow \log_{\underline{1}} (3x+1) = \log_{\underline{1}} (x+5)$$
에서

$$3x+1=x+5 \qquad \therefore \quad x=2$$

$$3x+1 > 0$$
, $x+5 > 0$

$$3x+1>0, x+5>0$$
 $\therefore x>-\frac{1}{3}$

○은 ○을 만족하므로 주어진 방정식의 해는 x=2이다.

22)
$$x = -\frac{8}{9}$$

$$x+1 > 0$$

$$x+1>0$$
 $\therefore x>-1$ \cdots

$$\log_{\frac{1}{3}}(x+1) = 2$$
 에서 $x+1 = \left(\frac{1}{3}\right)^2$

$$\therefore x = -\frac{8}{9}$$

$$x = -\frac{8}{9}$$
은 ①을 만족시키므로 해이다.

23)
$$x = 3$$

- $\Rightarrow \log_2(x-2) = \log_4(x-2)$, 즉 $\log_4 (x-2)^2 = \log_4 (x-2)$ 에서 $(x-2)^2 = x-2$, $x^2-5x+6=0$ (x-2)(x-3)=0 $\therefore x=2 \stackrel{\sqsubseteq}{\sqsubseteq} x=3$ \cdots 이때, 진수의 조건에서 x-2>0 $\therefore x>2$ ····· \bigcirc \bigcirc 에서 \bigcirc 을 만족하는 것은 x=3이므로 주어진
- 방정식의 해는 x=3이다. 24) x = 2 $\Rightarrow \log_{\frac{1}{2}}(x-1)-1 = \log_{\frac{1}{2}}(4-x)$

즉
$$\log_{\frac{1}{2}} 2(x-1) = \log_{\frac{1}{2}} (4-x)$$
에서 $2x-2=4-x$ $\therefore x=2$ \cdots 이때, 진수의 조건에서 $x-1>0, \ 4-x>0$ $\therefore \ 1< x<4$ \cdots ©

- ○은 ○을 만족하므로 주어진 방정식의 해는 x=2이다.
- 25) x = 1
- $\Rightarrow \log_{\frac{1}{4}}(x+1) = \log_{\frac{1}{4}}(4-2x)$ 에서 $x+1=4-2x \qquad \qquad \therefore \quad x=1$ 이때, 진수의 조건에서 $x+1 > 0, \ 4-2x > 0$ $\therefore -1 < x < 2$ ⊙은 ○을 만족하므로 주어진 방정식의 해는 x=1이다.
- 26) x = 3
- $\Rightarrow \log_5(3x-2) = \log_5(2x+1)$ 에서 3x-2=2x+1 $\therefore x=3$ 이때, 진수의 조건에서
 - $3x-2>0, \ 2x+1>0$ $\therefore \ x>\frac{2}{3}$
 - ○은 ○을 만족하므로 주어진 방정식의 해는 x = 3이다.
- 27) x = 3
- $\Rightarrow \log_2(x+1) + \log_2(x-2) = 2$, 즉 $\log_2(x+1)(x-2) = \log_2 4$ 에서 (x+1)(x-2) = 4, $x^2 - x - 6 = 0$ (x+2)(x-3)=0 $\therefore x = -2 \quad \text{£} \quad x = 3 \quad \cdots \quad \bigcirc$ 이때, 진수의 조건에서 x+1>0, x-2>0 $\therefore x > 2$ \bigcirc 에서 \bigcirc 을 만족하는 것은 x=3이므로 주어진 방정식의 해는 x=3이다.
- 28) x = 2 또는 x = 4
- \Rightarrow $(\log_{\frac{1}{2}}x)^2 + 3\log_{\frac{1}{2}}x + 2 = 0$ 에서 $\log_{\frac{1}{2}}x = t$ 로 놓으 면 $t^2+3t+2=0$, (t+1)(t+2)=0∴ t=-1 또는 t=-2

- 즉, $\log_{\frac{1}{2}}x = -1$ 또는 $\log_{\frac{1}{2}}x = -2$ 이므로 $x = \left(\frac{1}{2}\right)^{-1} = 2 \quad \text{EL} \quad x = \left(\frac{1}{2}\right)^{-2} = 4$
- 29) x = 1
- $\Rightarrow \log_{\sqrt{2}}(x+1) \log_2(x+1) = 1$ 에서 $\log_{\sqrt{2}}(x+1) = \log_2(x+1) + 1$ $\log_2(x+1)^2 = \log_2(x+1) + \log_2 2$ 즉, $\log_2(x+1)^2 = \log_2 2(x+1)$ 이므로 $(x+1)^2 = 2(x+1), x^2 + 2x + 1 = 2x + 2$ $x^2 = 1$ $\therefore x = \pm 1$ 이때, 진수의 조건에서 x+1>0 $\therefore x>-1$ \bigcirc 에서 \bigcirc 을 만족하는 것은 x=1이므로 주어진 방정식의 해는 x=1이다.
- 30) x = 2
- $\Rightarrow \log_6 x + \log_6 (x+1) = 1$, 즉 $\log_6 x(x+1) = \log_6 6$ 에서 $x^2 + x = 6$, $x^2 + x - 6 = 0$ (x+3)(x-2)=0 $\therefore x = -3 \quad \exists \pm x = 2 \quad \cdots \quad \bigcirc$ 이때, 진수의 조건에서 x > 0, x+1 > 0 $\therefore x > 0$ \bigcirc 에서 \bigcirc 을 만족하는 것은 x=2이므로 주어진 방정식을 만족시키는 x의 값은 2이다.
- 31) x = 2
- ⇒ 진수의 조건에서 x-1>0, x+2>0 $\therefore x>1$ ····· \bigcirc $\log_2(x-1) = 2 - \log_2(x+2)$ 에서 $\log_2(x-1) + \log_2(x+2) = 2$ $\log_2(x-1)(x+2) = \log_2 2^2$ (x-1)(x+2) = 4, $x^2 + x - 6 = 0$ $\therefore x = -3 \oplus x = 2$ (x+3)(x-2)=0 \bigcirc 에 의하여 x=2
- 32) x = 5
- □ 진수의 조건에서 x > 0, x-3 > 0 $\therefore x > 3$ $\log x + \log (x-3) = 1$ 에서 $\log x(x-3) = \log 10$ $x(x-3) = 10, x^2 - 3x - 10 = 0$ (x+2)(x-5)=0 $\therefore x = -2 \stackrel{\leftarrow}{=} x = 5$ \bigcirc 에 의하여 x=5
- 33) x = 2
- □ 진수의 조건에서 $x-1>0, \ 2x-3>0$ $\therefore \ x>\frac{3}{2}$

$$\log_2{(x-1)} = \log_2{(2x-3)}$$
에서 $x-1=2x-3$ $\therefore x=2$ $x=2$ 는 \bigcirc 을 만족시키는 해이다.

34)
$$x = 3$$
 또는 $x = 27$

35) x = 2

당 밑의 조건에서
$$x+1>0, \ x+1\ne 1$$
 $\therefore \ x>-1, \ x\ne 0$ ····· \bigcirc $\log_{x+1}9=2$ 에서 $(x+1)^2=9$ $x+1=3$ 또는 $x+1=-3$ $\therefore \ x=2$ 또는 $x=-4$ \bigcirc 에 의하여 $x=2$

36) x = 5

다 진수 조건에서
$$x+1>0$$
이고 $x+4>0$
 $\therefore x>-1$ \bigcirc
 $2\log_2(x+1)=\log_2(x+4)+2$ 에서
 $\log_2(x+1)^2=\log_2(x+4)+\log_24$
 $(x+1)^2=4(x+4), x^2-2x-15=0$
 $(x+3)(x-5)=0$ $\therefore x=-3$ 또는 $x=5$
 \bigcirc 에 의하여 $x=5$

37) x = 3

다
$$\log_3{(x+1)} = \log_{\sqrt{3}}{(x-1)}$$
 즉 $\log_3{(x+1)} = \log_3{(x-1)^2}$ 에서 $x+1=(x-1)^2, \ x^2-3x=0, \ x(x-3)=0$ $\therefore \ x=0$ 또는 $x=3$ \cdots \bigcirc 이때, 진수의 조건에서 $x+1>0, \ x-1>0$ $\therefore \ x>1$ \cdots \bigcirc \bigcirc 에서 \bigcirc 을 만족하는 것은 $x=3$ 이므로 주어진 방정식의 해는 $x=3$ 이다.

38) x = 5

39) x = 0

$$\Rightarrow$$
 진수 조건에서 $x+3>0$ 이고 $x+1>0$

40) x = 7

다
$$\log_5\left(2x+1\right)=1+\log_5\left(x-4\right)$$
 즉 $\log_5\left(2x+1\right)=\log_55\left(x-4\right)$ 에서 $2x+1=5x-20$ $\therefore x=7$ \cdots 이때, 진수의 조건에서 $2x+1>0, x-4>0$ $\therefore x>4$ \cdots © 으은 \bigcirc 을 만족하므로 주어진 방정식의 해는 $x=7$ 이다.

41) x = 9

42) x = 7

43) x = -3 $\pm \frac{1}{2}$ x = 4

x=7이다.

당 밑의 조건에서
$$x^2-1>0, \ x^2-1\ne 1, \ x+11>0, \ x+11\ne 1$$
이므로
$$x>1 \ \text{또는} \ -11< x<-1$$
이고,
$$x\ne \pm \sqrt{2}, \ x\ne -10\cdots\cdots$$
 이때, 진수가 2로 같으므로 $x^2-1=x+11$ 에서
$$x^2-x-12=0$$

$$(x+3)(x-4)=0 \qquad \therefore \ x=-3 \ \text{또는} \ x=4$$
 ③에 의하여 $x=-3$ 또는 $x=4$

44)
$$x = 2 \pm x = 16$$

다
$$\log_2 x + \frac{4}{\log_2 x} = 5$$
에서 $\log_2 x = t$ 로 치환하면 $t + \frac{4}{t} - 5 = 0$ 양변에 t 를 곱하면 $t^2 - 5t + 4 = 0$ $(t-1)(t-4) = 0$ $\therefore t = 1$ 또는 $t = 4$

따라서
$$\log_2 x = 1$$
 또는 $\log_2 x = 4$ 이므로 $x = 2$ 또는 $x = 16$

45)
$$x = \frac{1}{3}$$
 또는 $x = 9$

$$\Rightarrow \log_3 x - \frac{2}{\log_3 x} = 1$$
에서

$$\log_3 x = t$$
로 치환하면 $t - \frac{2}{t} - 1 = 0$

양변에
$$t$$
를 곱하면 $t^2-t-2=0$

$$(t+1)(t-2) = 0$$
 $\therefore t = -1 + 2$

따라서
$$\log_3 x = -1$$
 또는 $\log_3 x = 2$ 이므로

$$x = \frac{1}{3} \quad \underline{+} \quad \underline{-} \quad x = 9$$

46)
$$x = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = 2$$

$$\Rightarrow 2\left(\log_2\frac{x}{2}\right)^2 = 3\left(1 - \log_2 x\right) \text{ on }$$

$$2(\log_2 x - 1)^2 = 3 - 3\log_2 x$$

즉,
$$2(\log_2 x)^2 - \log_2 x - 1 = 0$$
에서

$$\log_2 x = t$$
로 놓으면

$$2t^2-t-1=0$$
, $(2t+1)(t-1)=0$

$$\therefore t = -\frac{1}{2} \quad \text{£} \quad t = 1$$

즉,
$$\log_2 x = -\frac{1}{2}$$
 또는 $\log_2 x = 1$ 이므로

$$x = 2^{-\frac{1}{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = 2$$

47)
$$x = 4$$
 또는 $x = 8$

$$\Rightarrow$$
 $(\log_2 x)^2 - 5\log_2 x + 6 = 0$ 에서 $\log_2 x = t$ 로 놓으면 $t^2 - 5t + 6 = 0$, $(t-2)(t-3) = 0$

$$t^2 - 5t + 6 = 0$$
, $(t - 2)(t - 3) = 0$

$$\therefore t=2$$
 또는 $t=3$

즉,
$$\log_2 x = 2$$
 또는 $\log_2 x = 3$ 이므로

$$x = 2^2 = 4 + x = 2^3 = 8$$

48)
$$x = 3 \pm \frac{1}{2} x = 9$$

$$\Rightarrow (\log_{\sqrt{2}} x)^2 - 3\log_{\sqrt{2}} x^2 + 8 = 0$$

즉
$$(\log_{\sqrt{3}} x)^2 - 6\log_{\sqrt{3}} x + 8 = 0$$
에서

$$\log_{1/2} x = t$$
로 놓으면

$$t^2 - 6t + 8 = 0$$
, $(t-2)(t-4) = 0$

$$\therefore t=2 \stackrel{}{\underline{}}\underline{} t=4$$

즉,
$$\log_{\sqrt{3}} x = 2$$
 또는 $\log_{\sqrt{3}} x = 4$ 이므로

$$x = (\sqrt{3})^2 = 3$$
 $\pm \frac{1}{2}$ $x = (\sqrt{3})^4 = 9$

49)
$$x = 3$$

$$\Rightarrow (\log_3 9 + \log_3 x)^2 - 3\log_3 x - 6 = 0$$
에서

$$(2 + \log_3 x)^2 - 3\log_3 x - 6 = 0$$

$$\log_3 x = t$$
로 치환하면

$$(2+t)^2-3t-6=0$$
, $t^2+t-2=0$

$$(t+2)(t-1) = 0$$
 $\therefore t = -2 \subseteq t = 1$

따라서
$$\log_3 x = -2$$
 또는 $\log_3 x = 1$ 이므로

$$x = \frac{1}{9}$$
 $\pm \frac{1}{6}$ $x = 3$

51)
$$x = \frac{1}{243}$$
 또는 $x = 27$

$$\Rightarrow (\log_3 x)^2 + 2\log_3 x - 15 = 0$$
에서

$$\log_3 x = t$$
로 치환하면

$$t^2+2t-15=0$$
, $(t+5)(t-3)=0$

$$\therefore t = -5 \oplus t = 3$$

따라서
$$\log_3 x = -5$$
 또는 $\log_3 x = 3$ 이므로

$$x = \frac{1}{243} + \Xi = 27$$

52)
$$x = \frac{1}{4}$$
 또는 $x = 2$

$$\Rightarrow (\log_2 x)^2 + \log_2 x - 2 = 0$$
에서

$$\log_2 x = t$$
로 치환하면

$$t^2+t-2$$
이므로 $(t+2)(t-1)=0$

$$\therefore t = -2 \quad \text{£} \stackrel{}{\vdash} t = 1$$

따라서
$$\log_2 x = -2$$
 또는 $\log_2 x = 1$ 이므로

$$x = \frac{1}{4}$$
 $\Xi = 2$

53)
$$x = 2$$
 또는 $x = 8$

$$\Rightarrow (1 + \log_2 x)^2 - 6 \log_2 x + 2 = 0 \text{ odd}$$

$$\log_2 x = t$$
로 치환하면

$$(1+t)^2-6t+2=0$$
이므로 $t^2-4t+3=0$

$$(t-1)(t-3) = 0$$
 $\therefore t=1 \oplus t=3$

따라서
$$\log_2 x = 1$$
 또는 $\log_2 x = 3$ 이므로

$$x=2$$
 \pm \pm $x=8$

54)
$$x = \frac{1}{2}$$
 $\pm \frac{1}{2}$ $x = 27$

$$\Rightarrow (\log_3 x)^2 - 2\log_3 x - 3 = 0$$
에서 $\log_3 x = t$ 로 놓으면

$$t^2-2t-3=0$$
 $(t+1)(t-3)=0$

$$\therefore t = -1 \oplus t = 3$$

즉,
$$\log_3 x = -1$$
 또는 $\log_3 x = 3$ 이므로

$$x = 3^{-1} = \frac{1}{3}$$
 $\pm \frac{1}{2}$ $x = 3^3 = 27$

55)
$$x = \frac{1}{64}$$
 또는 $x = 8$

$$\Rightarrow (\log_2 4 + \log_2 x)(\log_2 2 + \log_2 x) = 20 \text{ M/d}$$

$$(2 + \log_2 x)(1 + \log_2 x) = 20$$
이므로

$$\log_2 x = t$$
로 치환하면

$$(2+t)(1+t) = 20$$

$$t^3 + 3t - 18 = 0$$
 $(t+6)(t-3) = 0$ $\therefore t = -6$ 또는 $t = 3$ 따라서 $\log_2 x = -6$ 또는 $\log_2 x = 3$ 이므로 $x = \frac{1}{64}$ 또는 $x = 8$

56)
$$x = \frac{1}{100000}$$
 또는 $x = 100$

57)
$$x = \frac{1}{36}$$

$$\Rightarrow$$
 $3^{\log 9x} = 2^{\log 4x}$ 의 양변에 상용로그를 취하면 $\log 9x \times \log 3 = \log 4x \times \log 2$ $(\log 9 + \log x) \log 3 = (\log 4 + \log x) \log 2$ $(\log 3 - \log 2) \log x$ $= 2(\log 2)^2 - 2(\log 3)^2$ $= -2(\log 3 - \log 2)(\log 3 + \log 2)$ $\log x = -2(\log 3 + \log 2) = \log 6^{-2}$ $\therefore x = \frac{1}{36}$

58)
$$x = \frac{1}{10}$$

다
$$2^{\log 2x} = 5^{\log 5x}$$
의 양변에 상용로그를 취하면 $\log 2x \times \log 2 = \log 5x \times \log 5$ $(\log 2 + \log x) \log 2 = (\log 5 + \log x) \log 5$ $(\log 2 - \log 5) \log x$ $= (\log 5)^2 - (\log 2)^2$ $= -(\log 2 + \log 5)(\log 2 - \log 5)$ $\log x = -(\log 2 + \log 5)$ $\log x = -(\log 10 + \log 10)$ $\therefore x = \frac{1}{10}$

59) 16

는 실수 x의 값은 16이다.

60) x = 512

다
$$\log_2 \{\log_3 (\log_2 x)\} = 1$$
에서 $\log_3 (\log_2 x) = 2, \log_2 x = 3^2 = 9$ $\therefore x = 2^9 = 512$ \cdots 이때, 진수의 조건에서 $\log_3 (\log_2 x) > 0, \log_2 x > 1$ $\therefore x > 2$ \cdots \bigcirc \bigcirc 은 \bigcirc 을 만족하므로 주어진 방정식의 해는 $x = 512$ 이다.

61)
$$x = 3$$
 $\pm \frac{1}{2}$ $x = 9$

$$x = \frac{x^3}{9}$$
의 양변에 밑이 3인 로그를 취하면 $\log_3 x^{\log_3 x} = \log_3 \frac{x^3}{9}$, $(\log_3 x)^2 = \log_3 x^3 - \log_3 9$ $\therefore (\log_3 x)^2 - 3\log_3 x + 2 = 0$ $\log_3 x = t$ 로 놓으면 $t^2 - 3t + 2 = 0$, $(t-1)(t-2) = 0$ $\therefore t = 1$ 또는 $t = 2$ 즉, $\log_3 x = 1$ 또는 $\log_3 x = 2$ 이므로 $t = 3$ 또는 $t = 3$

62)
$$x = \frac{1}{100}$$
 또는 $x = 10$

63)
$$x = \frac{1}{3} + \frac{1}{2} = 81$$

$$\Rightarrow x^{\log_3 x} = 81x^3$$
의 양변에 밑이 3인 로그를 취하면 $\log_3 x^{\log_3 x} = \log_3 81x^3$ $\log_3 x \times \log_3 x = \log_3 3^4 + 3\log_3 x$ $\log_3 x = t$ 로 치환하면 $t^2 - 3t - 4 = 0, \ (t+1)(t-4) = 0$ $\therefore \ t = -1$ 또는 $t = 4$ 따라서 $\log_3 x = -1$ 또는 $\log_3 x = 4$ 이므로 $\therefore \ x = \frac{1}{3}$ 또는 $x = 81$

64)
$$x = 2 \pm x = 16$$

$$\Rightarrow x^{\log_2 x} = \frac{x^5}{16}$$
의 양변에 밑이 2인 로그를 취하면 $\log_2 x^{\log_2 x} = \log_2 \frac{x^5}{16}$, $(\log_2 x)^2 = \log_2 x^5 - \log_2 16$

$$(\log_2 x)^2 - 5 \log_2 x + 4 = 0$$
 $\log_2 x = t$ 로 놓으면 $t^2 - 5t + 4 = 0, (t - 1)(t - 4) = 0$ $t = 1$ 또는 $t = 4$ 즉, $\log_2 x = 1$ 또는 $\log_2 x = 4$ 이므로 $x = 2$ 또는 $x = 2^4 = 16$

65)
$$x = \frac{1}{2}$$
 또는 $x = 32$

$$\Rightarrow x^{\log_2 x} = 32x^4$$
의 양변에 밑이 2 인 로그를 취하면 $\log_2 x^{\log_2 x} = \log_2 32x^4$ $\log_2 x \times \log_2 x = \log_2 2^5 + 4\log_2 x$ $\log_2 x = t$ 로 치환하면 $t^2 - 4t - 5 = 0$, $(t+1)(t-5) = 0$ $\therefore t = -1$ 또는 $t = 5$ 따라서 $\log_2 x = -1$ 또는 $\log_2 x = 5$ 이므로 $x = \frac{1}{2}$ 또는 $x = 32$

66)
$$x = \frac{1}{625} \quad \text{EL} \quad x = 5$$

$$\Rightarrow x^{\log_5 x} = \frac{625}{x^3}$$
의 양변에 밑이 5인 로그를 취하면 $\log_5 x^{\log_5 x} = \log_5 \frac{625}{x^3}$ $\log_5 x \times \log_5 x = \log_5 5^4 - 3\log_5 x$ $\log_5 x = t$ 로 치환하면 $t^2 + 3t - 4 = 0$, $(t+4)(t-1) = 0$ $\therefore x = -4$ 또는 $t=1$ 따라서 $\log_5 x = -4$ 또는 $\log_5 x = 1$ 이므로

$$x = \frac{1}{625}$$
 또는 $x = 5$

67)
$$x = \frac{1}{10}$$

$$\log x^{\log x} = \log \frac{1}{10x^2}$$

$$(\log x)^2 = -(\log 10 + \log x^2)$$

$$\therefore (\log x)^2 + 2\log x + 1 = 0$$

$$\log x = t$$
로 놓으면

$$t^2 + 2t + 1 = 0$$
, $(t+1)^2 = 0$ $\therefore t = -1$

즉,
$$\log x = -1$$
이므로 $x = 10^{-1} = \frac{1}{10}$

68) 81

다
$$(\log_3 3 + \log_3 x)^2 - 6\log_3 x = 0$$
 $(1 + \log_3 x)^2 - 6\log_3 x = 0$ …… ① 에서 $\log_3 x = t$ 로 치환하면 $t^2 - 4t + 1 = 0$ …… ② 의 두 근이 α , β 이므로 ©의 두 근은

$$\log_3 \alpha$$
, $\log_3 \beta$
 \bigcirc 의 근과 계수의 관계에 의하여 $\log_3 \alpha + \log_3 \beta = 4$
 $\log_3 \alpha \beta = 4$ $\therefore \alpha \beta = 81$

69)
$$\frac{1}{25}$$

다
$$\log_5 x = t$$
라 하면 $t^2 + 2t - 3 = 0$, $(t - 1)(t + 3) = 0$ $t = 1$ 또는 $t = -3$ $\therefore \log_5 x = 1$ 또는 $\log_5 x = -3$ 따라서 $x = 5$ 또는 $x = \frac{1}{125}$ 이므로 $\alpha\beta = 5 \times \frac{1}{125} = \frac{1}{25}$ 이다.

71) 16

72) 9

다
$$x^{\log_3 x} = 27x^2$$
의 양변에 밑이 3인 로그를 취하면 $\log_3 x^{\log_3 x} = \log_3 27x^2$, $(\log_3 x)^2 = \log_3 27 + \log_3 x^2$ $\therefore (\log_3 x)^2 - 2\log_3 x - 3 = 0$ \bigcirc $\log_3 x = t$ 로 놓으면 $t^2 - 2t - 3 = 0$ \bigcirc $(t+1)(t-3) = 0$ \therefore $t = -1$ 또는 $t = 3$ 즉, $\log_3 x = -1$ 또는 $\log_3 x = 3$ 이므로 $x = 3^{-1} = \frac{1}{3}$ 또는 $x = 3^3 = 27$ 따라서 $\alpha = \frac{1}{3}$, $\beta = 27$ 또는 $\alpha = 27$, $\beta = \frac{1}{3}$ 이므로

$$\alpha\beta = 9$$

73) -1

다 (
$$\log_{\frac{1}{2}} 2x$$
)²+ $k \log_{\frac{1}{2}} x$ =0, 즉 ($\log_{\frac{1}{2}} x-1$)²+ $k \log_{\frac{1}{2}} x$ =0 ······ Э에서 $\log_{\frac{1}{2}} x=t$ 로 놓으면 ($t-1$)²+ kt =0, t ²-($2-k$) $t+1$ =0 ····· © 의 두 근을 α , β 라 하면 $\alpha\beta=\frac{1}{8}$ 이고, ©의 두 근은 $\log_{\frac{1}{2}} \alpha$, $\log_{\frac{1}{2}} \beta$ 이다. 방정식 ©에서 근과 계수의 관계에 의해 $\log_{\frac{1}{2}} \alpha + \log_{\frac{1}{2}} \beta = 2-k$, 즉 $\log_{\frac{1}{2}} \alpha\beta = 2-k$ 이므로 $2-k = \log_{\frac{1}{2}} \frac{1}{8} = 3$ $\therefore k=-1$

74) 2

 \Rightarrow 방정식 $(\log_5 x)^2 - k \log_5 x - 6 = 0$ 의 두 근을 α , β 라고 하면 $\alpha\beta = 25$ $\log_5 x = t$ 로 치환하면 주어진 방정식은 $t^2 - kt - 6 = 0$ 이 방정식의 두 근은 $\log_5 \alpha$, $\log_5 \beta$ 이므로 근과 계 수의 관계에 의하여 $\log_5 \alpha + \log_5 \beta = k$ $\log_5 \alpha \beta = \log_5 25 = 2 = k$ $\therefore k=2$

75) 8

 \Rightarrow 주어진 방정식의 두 근이 α , β 이고, $\alpha\beta=4$ 이다. 주어진 식을 정리하면 $\log_2 x = A$ 라 할 때, $A^{2} - (\log_{2}k - 1)A - \log_{2}k - 5 = 0$ $\log_2 \alpha + \log_2 \beta = \log_2 k - 1$ $\log_2 \alpha \beta = \log_2 k - 1, \ 2 = \log_2 k - 1$ $\log_2 k = 3$: k = 8

76) 2

 $(\log_3 x)^2 - 2k \log_3 x + 1 = 0$ ⊖ $\log_2 x = t$ 로 놓으면 $t^2 - 2kt + 1 = 0$ \bigcirc 의 두 근을 α , β 라 하면 $\alpha\beta=81$ 이고, \bigcirc 의 두 근은 $\log_3 \alpha$, $\log_3 \beta$ 이다. 방정식 ⓒ에서 근과 계수의 관계에 의해 $\log_3 \alpha + \log_3 \beta = 2k$, 즉 $\log_3 \alpha \beta = 2k$ 이므로 $2k = \log_3 81 = 4$: k = 2

77) 4

 \Rightarrow 주어진 로그 방정식의 두 근을 a, b라 할 때, 두

근의 곱이 16이므로 $\log_2 a + \log_2 b = \log_2 ab = \log_2 16 = 4$

근과 계수의 관계에 의해 k와 같다.

 $\therefore k=4$

78) 1

 $\Rightarrow \log_3 x = t$ 라 하면 $t-\frac{1}{3t}-k=0$ 에서 양변에 3t를 곱하면

$$3t^2 - 3kt - 1 = 0$$

이때 두 근의 곱이 3이므로 근과 계수의 관계에

$$\log_3 \alpha + \log_3 \beta = \log_3 \alpha \beta = \log_3 3 = 1 = -\frac{-3k}{3} = k$$

 $k = 1$

79) 1

 $\Rightarrow (\log x)^2 - k \log x - 2 = 0 \qquad \cdots \quad \Rightarrow$ $\log x = t$ 로 놓으면 $t^2 - kt - 2 = 0$ \bigcirc 의 두 근을 α , β 라 하면 $\alpha\beta = 10$ 이고, ©의 두 근은 $\log \alpha$, $\log \beta$ 이다. 방정식 ⓒ에서 근과 계수의 관계에 의해 $\log \alpha + \log \beta = k$, 즉 $\log \alpha \beta = k$ 이므로 $k = \log 10 = 1$

80) 100배

다
$$100 = f(x_1) = 10\log\frac{x_1}{A}$$
 ······ ① $80 = f(x_2) = 10\log\frac{x_2}{A}$ ····· ① ① - ①을 계산하면 $20 = 10\left(\log\frac{x_1}{A} - \log\frac{x_2}{A}\right) = 10\log\frac{x_1}{x_2}$ 따라서 $\log\frac{x_1}{x_2} = 2$ 이므로 $\frac{x_1}{x_2} = 10^2$ 이다.

81) 20년 후

$$\Rightarrow \left(\frac{104}{100}\right)^n = 2$$

$$n \log 1.04 = \log 2$$

$$\therefore n = \frac{\log 2}{\log 1.04} = \frac{0.3}{0.015} = \frac{300}{15} = 20$$

82) 20개월 후

 \Rightarrow 처음 상품 생산량을 a라고 하고 매달 4%씩 증가 시킨다고 하면 n개월 후의 상품 생산량은 $a(1+0.04)^n$ 이다. 이것이 처음의 2배가 되려면 $a(1+0.04)^n = 2a$ ①의 양변을 a로 나누고 상용로그를 취하면 $\log(1+0.04)^n = \log 2$

$$\therefore n = \frac{\log 2}{\log 1.04} = \frac{0.3}{0.015} = 20$$

따라서 처음으로 2배가 되는 것은 20개월 후이

$$\Rightarrow 410 = 20 + k \log \left(8 \cdot \frac{7}{8} + 1 \right) \qquad \therefore k = \frac{130}{\log 2}$$

화재가 발생한 후 온도가 670°C가 되는데 걸리는 시간을 x분이라고 하면

$$670 = 20 + k \log(8x + 1)$$
, k 를 대입하면

$$650 = \frac{130}{\log 2} \log(8x + 1)$$

$$5\log 2 = \log(8x+1) \qquad \qquad \therefore \ \ x = \frac{31}{8}$$

즉, 화재가 발생한 후 온도가 670°C가 되는데 걸 리는 시간은 $\frac{31}{8}$ 분 후가 된다.

84) 36

□ 28억년 후 암석의 양을 이용하여 k의 값을 구하

$$28 = k \log \left(\frac{6b}{2b} + 2\right) = k \log 5$$

$$\therefore k = \frac{28}{\log 5} = \frac{28}{1 - \log 2} = \frac{28}{0.7} = 40$$

x억년 후 A의 양과 B양이 같아질 때,

$$x = k \log \left(\frac{6b}{b} + 2\right) = 40 \times \log 8$$
$$= 40 \times 3 \log 2 = 120 \times \log 2 = 36$$