Pie-Lab 2025年暑期培训 Practice1

徐浩

Pie-Lab 北京理工大学计算机学院 北京市海淀区中关村南大街 526358612@qq.com

Abstract

本文是"任务一:图片分类"和"任务二:文本分类"的实验报告。

1 图片分类

1.1 各网络结构的原理解释

1.1.1 残差连接

在传统的神经网络中,当不断加深网络深度,会面临:梯度消失/爆炸、训练误差反而上升、训练难以收敛等问题。

引入残差连接可以解决这一问题,设输入为x,网络为F,则输出为:

$$F(x) + x$$

在反向传播时,对x求导,其导数就不会趋近于0,也就规避了梯度消失问题。

1.1.2 resnet34

resnet34是resnet系列中的一个模型,由多个残差块组成。其网络结构的文字表述见图1。

Layer Name	Output Size	Building Blocks	Stride
Conv1	112x112	7x7 conv, 64, stride 2	2
MaxPool	56x56	3x3 maxpool, stride 2	2
Conv2_x	56x56	[3x3, 64] x 3	1
Conv3_x	28x28	[3x3, 128] x 4	2
Conv4_x	14x14	[3x3, 256] x 6	2
Conv5_x	7x7	[3x3, 512] x 3	2
AvgPool + FC	1x1 → 1000		

Figure 1: resnet34_architecture

Conv1: 1 层

BasicBlock = 2 层卷积

Residual Blocks:

Conv2_x: 3 blocks \times 2 = 6 Conv3_x: 4 blocks \times 2 = 8

Pie-Lab 2025年暑期培训

Layer Name	Output Size	Building Blocks	Stride	修改说明
Conv1	32x32	3x3 conv, 64, stride 1	1	替换原来的7x7+stride 2
MaxPool	່★移除			避免过度下采样
Layer1	32x32	[3x3, 64] x 3	1	
Layer2	16x16	[3x3, 128] x 4	2	下采样
Layer3	8x8	[3x3, 256] x 6	2	下采样
Layer4	4x4	[3x3, 512] x 3	2	下采样
AvgPool + FC	1x1 → 10			输出 CIFAR-10 分类

Figure 2: resnet34 architecture cifar

Conv4_x: 6 blocks \times 2 = 12 Conv5 x: 3 blocks \times 2 = 6

fc = 1 层

合计: 1+6+8+12+6+1=34 层

要想将resnet34用到CIFAR-10,需要对其网络进行微调,描述见图2。

1.2 模型结构设计与损失函数选择

resnet的架构在上文已经给出,这里仅说明本实验使用的模型:

mycnn: 自己实现的resnet34去掉所有残差连接。

resnet34: 封装的模型。

myresnet34: 自己实现的模型。

1.3 实验设置

本实验的设置如下:

 $BATCH_SIZE = 128$

NUM EPOCHS = 20/30

LEARNING RATE = 1e-3

 $NUM_CLASSES = 10$

其他网络的参数见上文。

1.4 实验结果与可视化

本实验在租的服务器上训练,显卡为NVIDIA GeForce RTX 3090 (做一晚上扣我10块,555)。 这里仅给出myresnet34的图表作为代表,损失见图3,准确率见图4。 本实验的所有输出见github。

1.5 总结与分析

对上述实验结果进行分析如下:

- 整体结果 经过超参数调整之后,各个模型的结果大差不差,准确率基本都在0.84左右。
- **残差的作用** 实验中发现如果只是深层的cnn,例如上面的mycnn,其收敛速度非常 慢;如果加上残差,变成resnet34,则收敛速度明显变快,这与前文提到的残差的作用是吻合的。

Figure 3: myresnet34_loss

Figure 4: myresnet34_accuracy

• **残差解决网络退化** 残差为什么能让网络变深的同时,效果至少不会退化? 残差可以 选择性地跳过某些层,变成浅层网络,所以能保障层数越多,至少不会退化。

2 文本分类

2.1 各网络结构的原理解释

2.1.1 循环神经网络

循环神经网络(Recurrent Neural Network, RNN)是一种专门用于处理序列数据的神经网络结构。与前馈神经网络和卷积神经网络不同,RNN在网络中引入了时间维度上的循环连接,使得网络在每个时间步不仅接收当前输入,还能利用之前时刻的信息。这种特性使得RNN在处理时序相关的数据(如自然语言、时间序列信号、音频数据)时具有天然优势。

在标准的RNN结构中,给定一个长度为T的输入序列 (x_1,x_2,\ldots,x_T) ,其中 x_t 是当前时刻t的输入向量。 h_t 表示t时刻的隐状态向量,它积累了 (x_1,x_2,\ldots,x_{t-1}) 的信息。则RNN计算 h_t 公式如下:

$$h_t = \sigma (W_{xh} x_t + W_{hh} h_{t-1} + b_h)$$

其中 $W_x h \pi W_h h$ 表示权重, b_h 表示偏置, σ 表示激活函数。由该式子可以看出, h_t 来源于之前的隐状态 h_{t-1} 和当前的输入 x_t 。随着t的推移,隐状态 h_t 就会存储历史信息,所以当前时刻的输出会受到之前输入的影响。

而t时刻的输出 y_t 则取决于隐状态 h_t ,公式如下:

$$y_t = w_{hy}h_t + b_y$$

Figure 5: lstm_architecture

上述所有权重和偏置通过学习得到。而在所有时间步中参数是共享的,也就是说,所有时刻使用相同的 W_{xh} 、 W_{hh} 、 W_{hy} 、 b_h 、 b_y ,这种设计大大减少了模型参数量,使得模型能够灵活地处理不同长度的输入序列,理论上RNN可以捕捉任意时间跨度的依赖关系。

2.1.2 LSTM

在实际训练过程中,标准RNN面临着严重的梯度消失(vanishing gradient)和梯度爆炸(exploding gradient)问题。具体而言,当进行反向传播时,误差信号在时间步上递归传播:如果权重较小,梯度会逐步衰减,趋近于0,导致早期输入无法有效影响当前输出(梯度消失);而如果权重较大,则可能出现梯度不断累积、数值发散的现象(梯度爆炸)。这使得标准RNN很难捕捉长距离的依赖关系。

为了克服上述问题,研究者提出了多种改进版本的RNN,其中最为经典的是长短期记忆网络(Long Short-Term Memory, LSTM),它在结构上引入了门控机制,能够有效缓解梯度问题,提高模型在长序列建模中的性能。

LSTM的架构如图5所示。

设t时刻输入为 x_t ,神经元为 c_t ,输出为 y_t 。设W表示权重,b表示偏置, σ 和tanh表示激活函数。考虑t时刻到t+1时刻的变化如下。

遗忘门的公式如下:

$$f_{t+1} = \sigma(W_f[c_t, h_t, x_{t+1}] + b_f)$$

输入门i的公式如下:

$$i_{t+1} = \sigma(W_i[c_t, h_t, x_{t+1}] + b_i)$$

候选神经元状态 \tilde{c} 的公式如下:

$$\tilde{c}_{t+1} = tanh(W_c[c_t, h_t, x_{t+1}] + b_c)$$

神经元c的公式如下:

$$c_{t+1} = f_{t+1} \odot c_t + i_{t+1} \odot \tilde{c}_{t+1}$$

输出门o的公式如下:

$$o_{t+1} = \sigma(W_o[c_t, h_t, x_{t+1}] + b_o)$$

隐状态h(也即输出)的公式如下:

$$h_{t+1} = o_{t+1} \odot tanh(c_{t+1})$$

2.2 模型结构设计与损失函数选择

lstm的架构与计算在上文已经给出,这里仅说明本实验使用的模型:

bilstm2:已封装,两层的双向lstm。

lstm4/8: 已封装, 4/8层的lstm。

Figure 6: bilstm2_loss

res_lstm8:已封装,8层的lstm,每层lstm之后都带有残差连接。

my_lstm1: 自己实现的1层lstm, 训练速度极慢无比。

2.3 实验设置

本实验的设置如下:

NUM_LAYERS = ?, LSTM层数, 视模型而定

MAX LEN = 300

BATCH SIZE = 64

EMBED DIM = 200, 词嵌入维度

HIDDEN_SIZE = 256, lstm隐藏层大小,每个词被表示为EMBED_DIM的向量,经过lstm计算变为HIDDEN SIZE的向量

NUM CLASSES = 2

NUM EPOCHS = 10

LEARNING RATE = 1e-3

DROPOUT = 0.5

MAX_VOCAB_SIZE = 20000, 只留下最常用的词, 其他一律当作unk

2.4 实验结果与可视化

本实验在租的服务器上训练,显卡为NVIDIA GeForce RTX 3090。

本实验的图表不如数据直观,这里仅给出BiLSTM2的图表作为代表,损失见图6,准确率见图7。

本实验的所有输出见github。

2.5 总结与分析

对上述实验结果进行分析如下:

- 整体结果 经过超参数调整之后,各个模型的结果大差不差,准确率基本都在0.88左右。
- **残差的作用** 实验中发现一个特殊现象,lstm设置为4层,还能训得动,结果较为正常;lstm设置为8层,完全训不动,几乎没变化;加入残差连接之后,就能回归正常。这是因为,lstm堆叠较深时存在梯度消失,加入残差连接可以避免这个问题。

Figure 7: bilstm2_accuracy

• **自定义lstm运行太慢** 实验中发现自己实现的lstm,虽然只有1层,但是训练速度极慢无比,其训练时间是加了残差连接的封装好的8层lstm的两倍多,暂时不清楚原因。