CHE 260-MID-TERM EXAM

AU =1 RJ -0.2375 RJ

0.7625 kJ

2)
$$\frac{10}{200^{\circ}c} + \frac{1}{200^{\circ}c} +$$

3
$$\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \, \text{kHz}}$
 $\frac{15}{200 \, \text{kHz}} = \frac{110 \, \text{kHz}}{210 \,$

4)

ETHANE	P	Tsun = 20°C
2bg	Tsun = 20°C	
2bg	Tsun = 20°C	
Q + W =		
$$\Delta U$$		
= $M \cdot C_V (T_2 - T_1)$		
$\Delta S = \Omega + Sgen$	Tsun	
$P_1V_1 = P_2V_2$ and $P_2V_1^{-3} = P_2V_2$		
T_1	T_2	T_2