

DOC FILE COPY

MDA0 65997

John /Kulpinski, Theodore /Simonsen, Richard /Paskowsky, Donald /Van Alstyne Herbert /Labb

UNCLASSIFIED
SECURATE CASSIFICATION OF THIS PAGE (When

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
RADC-TR-78-275	D. 1 TECHPIENT'S CATALOG NUMBER
. TITLE (and Subtitle)	THE OF REPORT & PERIOD AVER
ELECTRICAL CHARACTERIZATION OF LINEAR INTEGRATED CIRCUITS	Final Technical Report 15 Jul 77 - 15 Jul 78
	N/A
AUTHOR(e)	S. CONTRACT OR GRANT NUMBER(e)
J. S. Kulpinski, et. al.	F39602-77-C-0153
PERFORMING ORGANIZATION NAME AND ADDRESS General Electric Company Ordnance Systems	10. PROGRAM ELEMENT, PROJECT, TAS AREA & WORK UNIT NUMBERS
100 Plastics Avenue Pittsfield MA 01201	23380130
CONTROLLING OFFICE NAME AND ADDRESS	2. REPORT DATE
Rome Air Development Center (RBRM)	January 379
Griffiss AFB NY 13441	220 AGED 221 P
. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	
Same	UNCLASSIFIED
	15. DECLASSIFICATION DOWNGRADING
	N/A
DISTRIBUTION ST. 4ENT (of the abstract entered in Block 20, if different to Same	rom Report)
RADC Project Engineer: Thomas L. Dellecave (RBRM	0
KEY WORDS (Continue on reverse side if necessary and identify by block number	9
Reliability Regulators Linear Microcircuit Comparators Characterization D/A Converters Op Amps	
ABSTRACT (Continue on reverse side if necessary and identify by block number,	
This report covers the work performed by Gen	neral Electric, Ordnance

DD 1 JAN 73 1473

UNGLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) Data resulting from this effort is available under separate cover. edwards La Lating Lancing and other principal foreign or experience of the first state of the fi age that better the fifth accounted to a latter of the or to same and be

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

PREFACE

The work on this project was performed by the Electronic Circuits Engineering Operation and Components Engineering Unit. Project responsibility was held by Mr. John Kulpinski of Circuit Design Engineering. Key individuals who made significant contributions to this report were Messrs. Theodore Simonsen, Richard Paskowsky, Donald Van Alstyne, Herbert Labb, and Jerry Yaple.

ATPS: Operational Amplication

LINEAR CHARACTERIZATION List of Sections

SECTIO	ON TITLE	PAGE NUMBER
I	Introduction	I-i
11	Quad Comparators	II-i
ш	Quad Operational Amplifiers	III-i
IV	BiFet Operational Amplifiers	IV-1
v	Voltage Regulators, negative	v-i
VI	Digital-To-Analog Converters	VI-1

Acronyms and Symbols

```
Ampere 349 100000 Ampere 10000
A/D
       Analog to Digital
       Aerospace Industries Association
AIA
AMD
                 Advanced Micro Devices
AVC
                 Voltage gain, collector output
AVE
                 Voltage gain, emitter output
Avs (±)
                 Open loop voltage gain (single-ended,
                    0 to +, 0 to 5)
                                                             IZ-A
BW
             Bandwidth
CM
                 Common mode
                                                             172
                 Centimeter 200 2000 cm and an area continued
cm
                 Common mode rejection
CMR
                 Channel Separation
CS
                 Digital to Analog
Decibel
D/A
dB
                 Decibel
DCR
                 Direct Current Resistance
DESC
                 Defense Electronics Supply Center
dI
                 Reference amplifier input slew rate
DOD
                 Department of Defense
DUT
                 Device Under Test
EIA
                 Electronic Industries Association
Eo
                 Output voltage
                 General Electric Company
GE
GEOS
                 General Electric Company, Ordnance Systems
GND
                Supply current from + V<sub>s</sub>
Supply current from - V<sub>s</sub>
Positive supply current
Negative
1
+ICC
                Negative supply current
-ICC
ICs
                 Integrated Circuits
                Full scale current, true output
Full scale current, complement
IFS (Io)
IFS (To)
IFSR1
                Full scale output current range, condition 1
+IIB
                 Input bias current, non-inverting input
                Input bias current, inverting input
-IIB
                High level input current
IIH
                Low level input current
IIL
                Change in full scale current due to voltage compliance
IIO
       Input offset current
AIIO/ AT
                Input offset current/temperature coefficient
```

V

TREE AND BELLISES

Acronyms and Symbols (Continued)

```
Lo
                     True current output (DAC-08)
Io
                     Complement current output (DAC-08)
                     Output short circuit current (for positive output)
IOS (+)
                     Output short circuit current (for negative output)
IOS (-)
ISCD
                     Standby current drain
                     Load current (/107)
IL
IZS (Io)
                     Zero scale current, true output
JAN
                     Joint Army Navy
JC-41
                     JEDEC Committee on Linear Integrated Circuits
JEDEC
                     Joint Electron Devices Engineering Council
LSI
                     Large Scale Integration
LTPD
                     Lot Tolerance Percent Defectives
mA
                     Milliampere
MPCAG
                     Military Parts Control Advisory Group
mV
                     Millivolt
NL
                     Non-linearity (error), positive bits
Ni (BB)
                     Broadband noise
No
                     Output noise voltage
                     Popcorn noise
Ni (PC)
                     (GE) Ordnance Systems
OS
PD
                     Quiescent power dissipation
                     peak
pk
+PSRR
                     Power Supply Rejection Ratio, positive supply
PSSIFS + 1
                     Power supply sensitivity from + Vs
                     Qualified Product List
QPL
q/kT
                     Charge/(Boltzman's constant) (Temperature, °K)
                          q/kT = 25 \text{ mV at } 25^{\circ}\text{C}
RADC
                     Rome Air Development Center
S/N
                     Serial number
SR(+)
                     Slew rate (max \Delta V_0/\Delta t), positive
TA
                     Ambient temperature
TC
                     Temperature coefficient
                     Propagation delay time, high-to-low
t PHL
                     Propagation delay time, low-to-high
tPLH.
                     Response time - low-to-high level - collector
tRLHC
                        output
tRHLC
                     Response time - high-to-low level - collector
                        output
TR(tr)
                     Transient response, rise time
TR(OS)
                     Transient response, overshoot
ts
                     Settling time of step response to specified accuracy
                     Settling time, low-to-high
tSLH
                     Settling time, high-to-low
tSHL.
RTN
                     Return
```

Acronyms and Symbols (Continued)

and working bes

do Autono edi

TTL STORE BASES	Transistor - transistor logic
T ² L	Transistor - transistor logic
Valensing 1993	Complement of V
Vcc 7 Meaning	Supply voltage
VIN	Input voltage
VIO	Input offset voltage
VIO ADJ(+)	Adjustment for input offset voltage
Δ VIO/ Δ T	Input offset voltage temperature coefficient
VOL	Output Voltage, Low Level
VOH	Output Voltage, High Level
VOP	Output voltage swing (peak)
VR LINE	Line regulation
VR LOAD	Load regulation
VRTH	Thermal voltage regulation
+V _S	Positive supply voltage
VSTART	Voltage start-up
A VTH/ A VCL	Change in threshold voltage due to change in control voltage (timer).
₹ •c 3014 3 3034	Data mean of X
°C OOTA 1 30 TA	Degrees centigrade
u	Micro Micro
uF	Microfarad
uV	Microvolt
us	Microsecond
A	Delta
~	Sigma

EVALUATION

The objective of this work effort was to characterize selected linear integrated circuit devices and to generate MIL-M-38510 slash sheets for the devices. The characterization effort includes determination of test parameters and limits, assessment of device anomalies, development of test procedures compatible with automatic test systems, generation of burn-in and life test circuits, and preparation of rough draft slash sheets. As a result of earlier studies, specification and test philosophies were fairly well established, and working relationships with the IC industry were developed. Device selection for new slash sheets was based upon various committee recommendations. Test parameters and limits were based upon JEDEC JC41 committee recommendations, data from a representative test sample, and laboratory evaluation. Test circuits developed were evaluated in the laboratory and on a Tektronix S-3260 Test System. The entire characterization process is negotiated at the committee level, from proposed slash sheet to dated issue.

Slash sheets were generated for the following device types:

TYPES

MIL-M-38510/110		124, 148, 149, 4136 & 4156
/112	Quad Comparators	139
	D/A Converters	DAC08 & DOC08A
/114	BiFET Op Amps	155, 156 & 157
	Neg Regulators	120H-05, 120H-12, 120H-15, 120H-24, 120K-05, 120K-12,
		120K-15, 120K-24

General Electric has done an excellent job in resolving differences of opinion between manufacturers and users and expeditiously preparing draft slash sheets for RADC review.

THOMAS L. DELLECAVE

Emas S. Dellecane

Project Engineer

SECTION I

INTRODUCTION

TABLE OF CONTENTS

	Page
Objectives	I-1
Scope of Applied Effort	I-1
Program Status	I-2
Background	I-3
Development of Slash Sheets	I-3

SECTION I

INTRODUCTION

Objectives

The major objective of this work effort is to characterize certain linear integrated circuit devices for inclusion in MIL-M-38510 ("General Specification for Microcircuits") slash sheets.

Generally, "characterization" of a device type includes several related tasks:

- * determination of test parameters and limits
- * development of test procedures, compatible with automatic test systems
- * generation of detailed burn-in and life test circuits
- * preparation of a rough draft slash sheet

A secondary objective of this effort is to provide follow-up support for maintaining existing linear MIL-M-38510 slash sheets to current status, including support to Rome Air Development Center for manufacturer qualification and related activities.

All of the characterization effort performed is guided by the fundamental objectives of the JAN 38510 program - namely quality, reliability, interchangeability, and standardization.

Scope of Applied Effort

The specific tasks were planned for this program in a meeting with Rome Air Development Center in July, 1977, when the following efforts were identified:

- (1) Develop slash sheets for Quad Comparators, D/A Converters, Negative Regulators and BiFET Op Amps.
- (2) Provide support to RADC on development of a slash sheet for Analog Switches.
- (3) Assess pending changes to existing slash sheets and recommend appropriate action.
- (4) Support RADC in the evaluation of manufacturer qualification submittals.
- (5) Interface with manufacturers as appropriate; attend JEDEC JC-41 committee meetings.

Program Status

A total of 15 device types have been characterized in this effort:

MIL-M-38510/110	Quad Op Amps	124	
/112	Quad Comparators	139	
/113	D/A Converters	DACOS, DACOSA	
/114 /115	BiFET Op Amps Negative Regulators	155, 156, 157 120H-05, 120H-12,	120H-15,
Totaves ambiliant s		120H-24 120K-05, 120K-12, 120K-24	120K-15,

TYPE

The /110 effort was a follow-on to a previous characterization effort; this slash sheet was issued on May 28, 1978. The Quad Comparator slash sheet is complete and ready for issue in mid-1978. The remaining three slash sheets (/113, /114, /115) are not yet finalized, awaiting JC-41 response to unresolved problems with the devices and/or specifications. It is anticipated that all of the problems will be resolved before the next JC-41 committee meeting, scheduled for October, 1978.

Ordnance Systems has also provided consultation to RADC on the development of MIL-M-38510/111 for Analog Switches.

Changes to existing slash sheets have been assessed and recommendations made to RADC on the following slash sheets:

MIL-M-38510/110 Quad Op Amps
/107 Positive Regulators
/104 Line Drivers and Receivers
/109 Precision Timers
/101 Op Amps

The following meetings of the JC-41 Committee on Linear Integrated Circuits were attended by the Ordnance Systems Program Manager:

August 23, 24, 1977 Sunnyvale, Cal.
March 7, 8, 1978 Dallas, Tex.
June 21, 22, 1978 Washington, D.C.

Characterization and specification activities were coordinated with device manufacturers at these meetings.

Background

Ordnance Systems began this effort in July of 1977, having previously completed a related characterization program in 38510 linears (Contract F30602-76-C-0345, Report RADC-TR-78-22). Philosophies for establishing parameters, limits, and test circuits were fairly well established in meetings of the JEDEC JC-41 Committee on Linear Integrated Circuits. These meetings, held at four month intervals (approximately), were attended by all of the major manufacturers of integrated circuits with one or two exceptions. Representatives from RADC, the Defense Electronics Supply Center (DESC), and General Electric Ordnance Systems were present at all of the meetings. Working relationships were developed with key personnel from each IC company.

In order to improve the efficiency of the meetings, and to increase the rate at which new specifications are developed, sub-committees or task groups were established for several generic families, such as op amps/comparators, D/A converters, regulators, and analog switches. These meetings were held to determine recommended parameters, limits, test circuits, and burn-in circuits to be presented to the full committee for approval.

Development of Slash Sheets

A procedure for developing new slash sheets to MIL-M-38510 has evolved through negotiations among all concerned parties. Device selection is influenced by user need, which is determined both by the marketplace and by organized committees, such as the Military Parts Control Group (MPCAG) at DESC, the G12 Solid State EIA Device Committee, and the Microelectronics Projects Group of the Electronics Systems Committee of AIA. These recommendations are balanced with manufacturer recommendations obtained via the JC-41 committee. Devices having high useage, multiple application potential in military systems, proven performance, and two or more sources are given priority. Single-source devices are acceptable, especially for hybrid devices, although multiple sources are preferred.

The industry data sheet forms the basis for the military specification. Typically, such data sheets do not specify all of the necessary parameters over the military temperature range and over the common-mode voltage range. The JC-41 subcommittee, or the device originating company, usually prepares a proposed spec. Ideally, the device manufacturers would like to have these proposed specs incorporated without further consideration. However, RADC and General Electric experiences in this current program have shown that all of the proposed specs have been deficient, and are unsuitable for issuance "as is".

Data provides another base for determining parameters and limits. Devices for test are purchased from distributors, are also obtained from manufacturers via RADC request. In some cases, the industry-donated sample is tested by a single manufacturer on a volunteer basis. The entire sample is tested further on a Tektronix S3263 Automatic Test System at GE Ordnance Systems Electronic Test Center. Data obtained at -55°C, +25°C, and +125°C ambient is statistically analyzed and reproduced in histogram format. Recommended limits are compared to the statistical sample data. Parameter limits which are grossly inconsistent with the data are readily identified.

Additions, changes, and alternate approaches are discussed at the committee level. Device anomalies are identified in lab bench tests, often using a curve tracer. Failure modes are also identified. User caution notes are added to the specification if it is deemed appropriate.

Burn-in circuits are usually recommended by the manufacturer and evaluated by RADC and/or GEOS. At this time, there is apparent disagreement among manufacturers as to the merits of reverse-bias burn-in vs. dynamic and maximum dissipation burn-in.

Device schematics are presently included in MIL-M-38510 slash sheets. A recent JC-41 committee recommendation is to delete the schematics and to replace them with a block diagram which shows the basic elements of the device.

Rough-draft copies of the final slash sheet are prepared at GEOS and are forwarded to RADC for review. DESC distributes copies of this spec for final comments, to manufacturers and users for final comments. Following assessment of the comments by all concerned parties, DESC prepares and issues the slash sheet.

equi arease vienacione and to le vieno, to be entre entre entre entre from ellaciny to arrest entre entre entre Arrest entre e

SECTION II

sisif sauges

12-12

3-8

QUAD COMPARATOR

Table of Contents

	AND	Page
2.1	Background and Introduction	II-l
2.2	Description of Device Type	11-1
2.3	Automatic Test Development	11-2
2.4	Tabulation of Test Data	11-3
2.5	Discussion	11-4
2.6	Conclusions & Recommendations	11-9
	Appendix	11-29

LIST OF FIGURES

Figure	Title ET MOFTOSE	Page
2-1	LM 139 schematic circuit	11-10
2-2	Test circuit for static and dynamic tests	11-11
2-3	Response time test circuit	11-13
2-4	Channel separation test circuit	11-15
2-5	Typical histogram of VIO	11-23

Automatic Test Duvelogment

LIST OF TABLES

Table	Title	Page
2-1	Programming conditions and equations	11-16
2-2	LM 139 test conditions and limits	11-18
2-3	Typical LM 139 data output sheet	11-19
2-4	LM 139 data at 25°C	11-20
2-5	LM 139 data at -55°C	11-21
2-6	LM 139 data at 125°C	11-22
2-7	Quad comparator M38510/112 limits comparison	11-24
2-8	MIL-M-38510/112 - 01 recommended specifications	11-26
A2-1	LM 139 data correlation between GEOS and AMD	11-30
A2-2	LM 139 device evaluation	11-32

SECTION II

QUAD COMPARATOR

2.1 Background and Introduction

In interfacing between low level analog signals and digital systems there are many applications which make use of voltage comparators. Zero crossing detectors, level/window detectors, pulse height detectors and pulse generators are popular application circuits of comparators. Quad voltage comparators have some additional advantage where circuit density and low power dissipation is required. Because of pin-out restrictions, offset voltage trimming and strobing are not available options.

The 139 comparator was chosen for linear characterization and MIL-M-38510 slash sheet action because it is popular among users, is multiple sourced from many manufacturers and has good performance characteristics useful for many applications.

The MIL-M-38510/112 specification originated from National Semiconductor's LM139 data sheets and a JC-41 joint industry recommendation of parameters, test conditions and limits. These recommendations were then modified by the results of characterization studies at GEOS.

A new ingredient for characterization was tried out by having all interested manufacturers ship typical devices to RADC. RADC unbranded and serialized these devices. This mixed industry sample was then sent to AMD (Advanced Micro Devices) a supplier who volunteered to test the devices to their standard factory test tape. The data and devices were then sent to GEOS via RADC for analysis.

In addition to reviewing the AMD data, GEOS built a test fixture and wrote a program for testing the device on its S-3260 automatic test system. While the S-3260 adapter and program were being developed, several devices were analyzed on a Tektronix 577 curve tracer. The curve tracer was useful in observing how each of the standard parameters (VIO, + IIB etc.) changed over a range of test condition voltage. Device trends and anomalies found with the curve tracer are useful in developing the automatic test procedures.

The test program and slash sheet generation were done in parallel so that any problems could be exposed and resolved.

2.2 Description of Device Type

Device type 01 consists of four independent voltage comparators sharing a common power source. Low power operation over a wide range of supply voltage is possible because of the current source biasing scheme used. A schematic circuit of a single comparator in the quad is

shown in Figure 2-1. PNP transistors are used in the input so that each comparator's common mode range includes ground for single as well as dual supply voltage applications.

The differential input voltage range is equal to the power supply range. In low voltage applications, the input can exceed the positive supply voltage without damaging the device. If large negative input excursions are possible, diode clamp protection should be added.

An open collector NPN transistor output is provided with the device. This permits compatibility with many logic systems. Also the outputs of several comparators can be tied together for output OR'ing applications. In most applications an external pull-up resistor is required.

2.3 Automatic Test Development

From past experience it was decided that, in order to maximize the data base from which characteristic limits and conditions could be specified, automatic test procedures would be developed. A test program and an adapter card were developed for the GEOS Tektronix S-3260 Automatic IC Test System.

Since the standard test parameters for comparators have been previously defined in MIL-M-38510/103 minimum effort was required to define the necessary types of tests. Limits recommended by JC-41 were used for initial testing.

Figure 2-2 shows the test circuit schematic for the S-3260 adapter and the MIL-M-38510/112 specification. Any one of the four comparators can be programmed into the test circuit. A forcing voltage $V_{\rm A}$ applied to the inverting input of the nulling amplifier causes the comparator device under test (D.U.T.) to drive its output to the same voltage. Frequency compensation is provided by the .047 uf capacitor at the D.U.T. output. All standby comparators have a positive IV bias voltage applied to their inverting inputs. This forces base drive to each comparator's output transistor and thus defines its standby mode output state. For test purposes this tends to maximize the $I_{\rm CC}$ supply current.

Measurement of the static front end parameters is permitted by the 1000:1 gain relationship between the D.U.T. differential input and the nulling amplifier output.

In order to permit response time measurements to be made, the features of the circuit shown in Figure 2-3 were combined with the basic circuit of Figure 2-2.

Table 2-1 shows the programming conditions and equations for the tests.

of supply wellage to postible becomes it the carrest socies blesing schaes used. A scheeper of newline a compercent in the one

2.4 Tabulation of Test Data

Measurements were taken on two sample lots as follows:

Lot 1 - 32 LM139's procured from distributors

Lot 2 - 99 LM139's supplied by several manufacturers and initially tested by Advanced Micro Devices, Inc.

Table 2-2 shows the conditions and limits programmed into the S-3260 for testing the devices. A typical data output sheet is shown in Table 2-3. The astericks indicate parameter values that exceed the limits of Table 2-2. Tables 2-4, 2-5 and 2-6 are statistical data summaries of lot 2 for 25°C, -55°C and 125°C, excluding devices supplied by manufacturer "X" (code identifier). Group "X" was excluded because the individual data sheets of these devices showed a much higher incidence of failures than the other devices.

The objective of each of these summaries was to get a comparison between the statistical data and the initial (JC-41) limits. Estimated limits were used when no other specification existed.

A figure of merit calculation was performed on each parameter-data-limit condition. This figure of merit indicates how many standard deviations (Sigma, σ) exists between the data mean X and the low and high JC-41 specification limits. Since in a normal distribution 99.7% of the data points will be within $X\pm30^\circ$, the figure of merit is one indication of how tight or locse the initial limits are.

In practice a few "way-out" data points have a big effect on T and therefore figure of merit. To counteract this effect high and low reject limits (determined by judgement) were included. Any data points beyond the reject limits were not used in the mean and sigma calculations.

The first data reductions yielded many figures of merit which were high (greater than 5). Certain parameter limits were tightened and the data reduction was rerun. Tables 2-4, 2-5 and 2-6 were generated with revised limits; histograms were generated for all of the data groups. Limit bars were drawn on each of the histograms, such as in Figure 2-4. The perspective of a data histogram with limits is superior to any other method. For the purpose of this report, however, the statistical summaries are a condensed way to show the data-to-limit relationships.

Table 2-7 gives a comparison between the catalog limits, the JC-41 limits and the limits recommended by GEOS for the /112 specification.

2.5 Discussion

2.5.1 Comparison of AMD and GEOS Test Results

Since 99 devices were tested at both AMD and GEOS it is of interest to know how well the data compares. There are fundamental differences between the data formats and some of the tests. The AMD data is organized in a matrix of test columns and serial number rows so that variations in parameter values between different devices can be checked. GEOS's data sheet format in Table 2-3 shows all parameters for a single device. Several tables were generated to display data comparisons from both sources.

Appendix Table A2-1 compares the AMD and GEOS data taken on S/N 1. How well the data compares is relative and depends on certain criteria.

At GEOS and other facilities which manufacture or test Navy Standard Electronic Modules, correlation measurements per MIL-M-28787 are required to demonstrate that data taken on one tester are traceable to the specification and the data of other correlated testers. MIL-M-28787 requires that for parameter tolerances greater than or equal to 3 percent:

Correlation tolerance = ± .11 (max limit - min limit)

Using this criteria the AMD and GEOS data correlate with only a few exceptions. Table A2-2 shows an overall evaluation of the devices in terms of good/bad or pass/fail criteria. For the front end parameters agreement was fairly good.

Besides the data format differences between the GEOS and AMD test results there are also differences in parameter types, parameter limits and histogram groupings. AMD type parameters, not tested at GEOS, were \pm Swing and V_{TO} at zero common mode. GEOS type parameters, not tested at AMD, were V_{TO} drift, I_{TO} drift, \pm I_{TB} at 5 V, \pm I_{TO} at 5 V, CMR, I_{CC} at 30 V and response times. The AMD parameter limits differ from the JC-41 limits in Table 2-7 as follows:

- 1. VTO at -55 ≤ TA ≤ 125°C = ± 9 mV
- 2. ± IIB upper limit = 10 nA (max)
- 3. ICEX at -55 & TA & 125°C = 0.5 uA
- 4. VOL at -55 & TA & 125°C, 1 KA and 5V = 0.5 V (max)
- 5. ISINK at -55 & TA & 125°C, 1 KA and 5V = 5.7 mA (min)

Both the AMD and GEOS individual data sheets have limit failures identified. Although histograms exist for both data sources. These can not be compared directly because the GEOS data includes all four comparators in a quad, while the AMD data has a histogram for each comparator.

A review of the GEOS individual data sheets gave the following yield information with respect to the initial JC-41 limits.

G.E. Results (per quad)

- 1. Number of parts tested = 99
- 2. Number of defective parts = 19

3. Overall yield =
$$\frac{99-19}{99}$$
 x 100% = 81%

- 4. % Fail = 100% 81% = 19%
- 5. Individual vendor yields

a) C1 - C10 yield =
$$\frac{10-2}{10}$$
 x 100% = 80%

b) P3 - P10 yield =
$$\frac{8-0}{8}$$
 x 100% = 100%

c)
$$X^2 - X^{10}$$
 yield = $\frac{10 - 8}{10} \times 100\% = 20\%$

d) U1 - U11 yield =
$$\frac{11-2}{11} \times 100\% = 82\%$$

f) S1 - S65 yield =
$$\frac{14^{10}}{14}$$
 x 100% = 79%

g)
$$G7 - G24$$
 yield = $\frac{18 - 1}{18} \times 100\% = 94.4\%$

h) R1 - R20 yield =
$$\frac{20-3}{20}$$
 x 100% = 85%

- 6. With the exception of the X parts most failures involved bias current.
- 2.5.2 Input Offset Voltage VTO (± CM)

As the parameter symbol suggests this parameter is measured over the input common mode range, which is from the negative supply, usually ground, and to within 2 volts of the positive power supply. The histograms, summaries and data sheets indicate the \pm 5 mV limits to be well chosen for the four 25°C tests. The same tests at -55°C and 125°C had initial JC-41 recommended limits of \pm 8 mV. Examination of the data shows that limits

of \pm 7 mV are very reasonable; 3.69 was the figure of merit of the worst condition.

2.5.3 Offset Voltage Temperature Sensitivity & V10/ & T

Most measurements were very much better than the proposed JC-41 limits of \pm 30 uV/°C. The theoretical $\triangle V_{10}/\triangle T$ for a simple differential input stage would be 3.3 uV/°C x 5 = 16.5 uV/°C. With revised units of \pm 25 uV/°C, the worst observed figure of merit was 5.74.

2.5.4 Input Offset Current Ito (± CM)

For $25 \le T_A \le 125$ °C applications the JC-41 I_{TO} limits of \pm 25 nA are very reasonable. Although the data shows that I_{TO} increases with decreasing temperature the JC-41 limits of \pm 100 nA at -55°C are not justified. With a compromise value of \pm 75 nA, the yield on this -55°C value is much better than that with \pm 25 nA at the higher temperatures. The revised \pm 75 nA limits correspond to a worst observed figure of merit of 7.52.

2.5.5 Offset Current Temperature Sensitivity \$ 110/\$T

With cold drift limits of \pm 400 pA/°C and hot drift limits of \pm 300pA/°C the summarized data minimum figures of merit are 5.96 and 5.30 respectively. The JC-41 recommended limits were \pm 600 pA/°C and \pm 300 pA/°C for cold and hot drift respectively. A figure of merit of 8.96 would result with \pm 600 pA/°C limits.

2.5.6 Input Bias Current + IIB (± CM), - IIB (± CM)

From a yield criteria, the bias current tests are the most difficult. Since these tests over the common mode range, supply voltage and temperature have the most failures, it is of interest to see where they occur and if a pattern is observable. Shown below is a tabulation of I_{1B} failures for the different conditions.

	25°C			-55°C				125°C					
+ v _{cc}	CM	+ II	B	Min	B	+ II Min	B Max	- II	B Max	+ II	B Max	Min	B
30V	+	1	7	1	4	0	6	0	0	0	9	0	10
30V	-	18	0	18	0	0	0	0	0	3	0	5	0
5V	+	0	0	1	1	0	1	0	1	0	0	0	1 2
5V	e liikuu Sevau	2	0	4	0	0	1	od 10	0	0	0	8.A.1	0
Limits (nA)	Logican	-100	-1	-100	-1	-200	-1	-200	-1	-100	-1	-100	Sing 1

These failures are based on a sample size of 396 (99 quads) and are supported by histograms. Some observations seen from this table, the histograms and the individual data sheets are:

- The 30 V negative common mode tests at 25°C have the most low limit magnitude failures.
- 2. The 30 V positive common mode tests at 25°C have the most high limit failures, some of which are wrong polarity bias currents.
- 3. The bias currents increase with decreasing temperature.
- 4. Most 5 V bias current failures occur at 30 V also.

2.5.7 Common Mode Rejection CMR

The CMR limits of 76 and 70 dB limit at 30 V and 5 V respectively are reasonable for the device. Most observed CMR failures also had V_{10} (+ CM) failures.

2.5.8 Output Leakage Current ICEX

The specified leakage current of 0.1 μA max at -55°C \leq $T_A \leq$ 25°C and 1.0 μA at $T_A = 125$ °C is reasonable for the device based on the data. Most devices had a measured I_{CEX} of "-5 μA ", which really means that their values were less than the measurement resolution of the test system. Although the user, in general, has little need for this leakage quality, the specification is a good indicator of surface contamination.

2.5.9 Input Leakage Current + IIL , IIL

Input leakage current was added as a specified requirement after the S-3260 characterization testing had been completed. The purpose of this test is to verify that the differential input breakdown voltage is greater than 34 volts when the supply voltage is 36 volts.

2.5.10 Low Level Output Voltage VOL

The saturation voltage of the device's output transistors is an important interface characteristic. S-3260 data was taken at 4 mA and 6 mA of output sink current. In order to have low saturation voltage at a specified level of sink current, the output transistor's require a combination of adequate base drive and low saturation resistance. The tests verified the specification for 4 mA and 6 mA drive requirements. It was subsequently decided that changing the 6 mA condition to 8 mA would be more useful.

2.5.11 Power Supply Current Icc

Having low power supply current over a wide range of V_{CC} is an important characteristic of this device. All of the data is well inside the specified maximum current limits. It was decided that a liberal specification on this parameter is justified because the user's benefit of a milliampere of supply current is not worth taking a possible future yield loss.

2.5.12 Open Loop Voltage Gain AVS

Most of the measured gains were better than the specification by a factor of from two to ten. In all cases where gain magnitude failures were observed, the comparator had other front end failures in some combination of V_{10} , I_{10} and I_{18} .

Negative gains were observed in 10 out of 396 devices. There were asterisk (*) on the data sheets for visability as failures. All of the devices with negative gain also had other front end failures. Consequently, any devices that would have been rejected for negative gain were rejected for other parameter failures first. Transient thermal effects cause the negative gain phenomenon.

2.5.13 Response Time tRLH , tRHL

Response time for the low-to-high and high-to-low transitions are the most important dynamic characteristics. Although these tests are usually done on a sampled bench set up basis, it was felt that getting a large volume of automatic tester data would be very worthwhile.

The test results showed that at five millivolts of overdrive the comparators performed very much better than the JC-41 recommended limit. This is especially true for the tRHL response time. Testing and specifying response time at 50 millivolts of overdrive was done so that the user has more information for applications having greater than 5 mV of overdrive. With the GEOS recommended limits, data figures of merit from 4 to 8.7 were calculated.

2.5.14 Channel Separation (CS)

It was decided not to add provisions for channel separation testing to the S-3260 adapter because it would have resulted in many more relays being added to it. Manual test data was taken on several devices using a Tektronix 577 curve tracer, modified for CS testing as shown in Figure 2-4. The \triangle V change in V₁₀ used in calculating channel separation varied between 0 and 0.2 millivolts. With this data the minimum observed calculation results in

 $CS = 20 \log \frac{30000}{0.2} = 103 dB$

This is better than the proposed 80 dB (min) spec limit by 23 dB or a factor of 14.

2.6 Conclusions and Recommendations

The preceeding paragraphs have discussed the characterization effort and properties of the proposed MIL-M-38510/112-01 quad comparator. For obvious economic reasons the complete portfolio of device data sheets and histograms cannot be included in this report. A device specification has been written using the results of this study. A 200 page report on the 139 characterization data was submitted to RADC and the I.C. vendors in February 1978. The report contains 99 device data sheets, 9 statistical sumaries and 90 histograms. Copies may be obtained by contacting GEOS or RADC.

Figure 2-1 LM139 schematic circuit.

Figure 2-2 Test circuit for static and dynamic tests.

- If Test circuit pin conditions shall be as specified in the schedule of this figure.
- 2/ Subgroups, test temperatures and limits shall be as specified in Table III.
- 3/ As required to prevent oscillations. Also, proper wiring procedures shall be followed to prevent oscillations. Loop response and settling time shall be consistant with test rate such that any value has settled to within 5% of its final value before measuring. Suggested values shown may not ensure loop stability for all layouts. Actual compensation also shall be approved by preparing activity prior to use.
- 4/ Precautions shall be taken to prevent damage to the D.U.T. during insertion into the socket and change of relay contacts.
- 5/ Any oscillation greater than 300 mV (pk-pk) shall be cause for device failure.
- 6/ Relays K1-K4 select the comparator under test. The comparators have IV applied to the (-) input to force their outputs to the low state.
- 7) These resistors are \pm 0.1% tolerance matched to \pm .01%. All other resistors are \pm 1% tolerance and capacitors are 10% tolerance.
- 8/ Common mode rejection is calculated using the offset voltage values measured at the common mode range end points.
- If the relays shown indicate test connections only. All relays are shown in their de-energized states. Relay coils are not shown.
- 10/ To minimize thermal drift, the reference voltage for gain measurement E3 shall be taken immediately prior to or after reading E22 and E23.
- 11 Saturation of the nulling amplifier is not allowed on tests where E value is measured.
- The equations take into account both the closed loop gain of 1000 and the scale factor multipliers, so that the calculated values are in Table I and III units.

Figure 2-2 Test circuit for static and dynamic tests (cont'd.)

Figure 2-3 Response time test circuit.

NOTES :

- 1. Adjust the signal generator so that $V_{\rm in}$ is a 100 mV pulse train with a 10 Ms pulse width at 50 kHz, $t_{\rm TLH}$ and $t_{\rm THL} \leq$ 10 ns and $\xi \sigma \approx 50 \Omega$.
- 2. Setup procedure
 - a. With V_{in} = 0, adjust V_{ref} from -5.0 mV to + 5.0 mV in 0.1 mV steps and stop when output switches from high to low.
 - b. Change V_{ref} from the value obtained in(a) above by the required V_{OD} (overdrive).
 - c. Apply Vin and measure the response time.
- 3. All resistor tolerances are ± 1% and all capacitor tolerances are ± 10%.
- 4. The output capacitance includes scope, probe and jig capacitance.

Figure 2-3 Response time test circuit. (cont'd.)

Channel separation test condition & equations $\frac{1}{2}$

Applied Voltages		plied Voltages			
+V _{cc} (V)	-V _{cc}	Vin (V)	V _A (V)	Measure (V)	Equation (dB)
+30 +30	0	+ 1	15 15	E(1-2)H E(1-2)L	CS ₁₋₂ = 20 log 30000 E(1-2)H - E(1-2

1/ The above table shows how to determine channel separation CS₁₋₂ with comparator 1 as the driven channel and comp. 2 as the monitored channel. Repeat for all combinations of driven and monitored channels (i.e. CS₁₋₃, CS₁₋₄, CS₂₋₁, CS₂₋₃, CS₂₋₄, CS₃₋₁, CS₃₋₂, CS₃₋₄, CS₄₋₁, CS₄₋₂, and CS₄₋₃)

Pigure 24. Channel separation test circuit.

Unite	•	इ हो	1	1	all'c	pA/°C	
Equetion	V ₁₀ (-cm) =E ₁ V ₁₀ (+cm) =E ₂ V ₁₀ (-cm) =E ₃ V ₁₀ (+cm) =E ₄	1 (-cm) = 50 (E1 - E5) 1 (-cm) = 50 (E1 - E5) 1 (-cm) = 50 (E2 - E5) 1 (-cm) = 50 (E3 - E7) 1 (-cm) = 50 (E4 - E6)	+[18(-cm)=20(E4 - E12) +[18(-cm)=20(E7 - E10) +[18(-cm)=20(E7 - E10) +[18(-cm)=20(E7 - E9)	-[18 (-cm) =50 (E13 - E1) -[18 (-cm) =50 (E14 - E2) -[18 (-cm) =50 (E15 - E3) -[18 (-cm) =50 (E16 - E4)		7 3 4	3
Unite		•	74 & 72	•		1.00	13
Pin Besured	2223	2,4,5,5	59 E10 E11	2422		11	· (E)
5 ·	(*)	•	•	•	A sept	28°C -	(2400/
Beleys Energized		13, 16	2	2	Calculate (E ₁ @ T - E ₁ @ 25°C)10 ³ /[25°C - T]	Calculate ((E ₁ - E ₅) @ T - (E ₁ -E ₅) @ 25°C) 10 ⁶ / 25°C - T	Calculate 20 LOC (28000/1E1 - E2!) and 20 LOC (2400/ [E5 - E4])
-	5555	8888	8888	8888	103/12	E3) @	()2
E	8888	8888	8888	8888	25°C)	(1)	- 12
=	W. 1.	15v -13v -1.0v	15v 1.0 1.0	15v -13v 1.4v -1.0v	E1 G	. 10	1/000
1	2222	2222	2222	2222	-	15	2 (2
					12	12	2 2
Z 3 4 S S	949 A	-287	-284	- 48 A	lete.	lete (late
į.	222	2222	2222	3222	Calcu	Caleu	Cale
1				er ia			
įį		3333			10/01V	10/01/10	8

Table 2-1 Programming conditions and equations.

Na edi a dile esimen edimen

there are the court separation type wifrest

	Onte	1	1	200	10 Oct	1	4/80	
	Equation	'cex " 1,17	+111 - 118	611 - 111-	Vot E20 Vot E21	221 : 321 221 : 321	Ay = 10	
2	Unte	1	1	1	•	1	18/31	A
Fin Measured	Value Unit	11,	118	611	F20	22 ₁	Eza	£25
	No.	4	•	,		2	•	•
Relays	Energized	K7. K8	K7. K8	K7. K8	10, 18	81 'A	8.0	940
	80	8	347	8	88	88	8	8
		8	8	347	88	88	8	8
7	•	8	8	8	88	88	11	21
Progresmable Adapter Pins 1/	3	8	8	8	88	88	15¢	15v
depte	•	300		E . F	11	1.1	1343	•
ble A	3	8	8	8	88	88	8	15v ov
	2	30V	367	36V	45.4	AG	15V	154
Progr	-	-15V	•	0 de	ISV ISV	ISV ISV	5 • 12	•
Personeter	Symbol	len.	Hg.		*at		*	

Table 2-i Programming conditions and equations. (cont'd.)

erns e**neks** p Osko America

2251 Mg

2 TO THRESHOP \$1222 25559

Table 2-2 LM139 test conditions and limits.

UNITS	£ £ ££\$\$	2222	11111111	68	3	22	22	UTTO	2225
19092	678.8 628.8 823.8 1.42	3.67	00000000000000000000000000000000000000	116.	-5.0em	871.F	516.P 636.P	200.	1.97 465.7 465.7
DEG C	-1.63 -1.63 -5.15 -5.15	256.H 256.H 256.H 265.H	# . 4 W	90.3	-5.8em	75.75 381.18	520.T	333.	2.03 405.n 1.20 445.n
135	#11111 1111111111111111111111111111111	. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.		96.1	-5.865	255.F	522.F	154.	2.50 4.50 5.4.50 5.4.50
	X=C. 2.	-500. r -500. r -32.5	7.5.1.1.1.1.1.2.2.2.3.2.3.2.3.2.3.2.3.2.3.2	113.	-5.8em	273.H 384.H	523.A 643.A	1.00%	2.99 105.71 1.21 440.71
3	585.8 585.8 512.8 512.8	651. x 651. x 578. s	200 21 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	95.3	8 .68 \$	169.m 240.m	30.1	213.	315.7
2 5 C	1.36 1.36 1.36 1.63 1.63				_				
16:22	266.1 266.1 266.1	756.7 -566.7 3.13	# 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1162.	-5.86M	174.F 245.F	911.8	-582	315.E 660.E 300.E
* oct 77	******	1.56 1.56 34.4	4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	98.1	-5.00H	175.H 245.H	906.H	. 299	310 310 310 310 310 310 310 310 310 310
728 ,	26.66 26 26 26 26 26 26 26 26 26 26 26 26 2	.35.6 x 653. x 162. x 683. x	6688. 6688. 6688. 7.5. 7.5. 7.5. 7.5. 7.5. 7.5. 7.5. 7	96.2	19.2 4	P.102	761.H 921.H	235.	345.H 860.H 355.H
TE CODE:	-950.R -1.70 -1.24		200 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	91.4	10.2 \$	283.M	761.M 922.M	100.	335.M 815.M 335.M
1 52 L	1.21 -950 -1.21 -950 -1.07 -1.12	586.7 256.7 256.7	4.00 m 0.00 m 0.	108.	1.37 x	283.H	764.8	250.	335.8 335.8 335.8
3.	7777	4.3% K3.5%	######################################	%.S.	1.45 8	283.H	768.R 931.R	. 199	335.8 335.8 345.8
DEVICE TYPE: 130 ;	UIDC-CR) AT 380 UIDC-CR) AT 380 UIDC-CR) AT 50 UIDC-CR) AT 50 B-UID P-T FROM 25 OC	1104-CR1 AT 30V 1104-CR1 AT 30V 1104-CR1 AT 5U 1104-CR1 AT 5U B-1107D-T FROM 25 OC		CHE AT 300	ICEX	UOL #T 4MA UOL #T 6MA	ICC AT PS - 50, 90	3	LRLH LITH MOD-SAND LRH LITH WOD-SAND LRHL LITH WOD-SAND

STATISTICAL BATA FOR	18 SE SE	RIALIZE	MINE SERIALIZED PARTS AT 25 DEG C	1 25	3 93d		2 390 7	1	15:54229		revised	54.417	exce.		Secret	mers.
	93.	E 24.	Aw.	100-	SAMPLE	SIGHA 2	X IR 3	K FAR	LIMIT	35	24.	Z FAIL HIGH	HIGH	REG	# P	STIM
UTDE-ENS AT 300	1	197	154.H	1.40	352			00.0	-8.00	-10.0	1.77	00.0	00.5	19	18	1
UTDEACH AT 300	***		44.84	72.	255			00.0	90	-10.0	3.74		8			
VIOC-CH) AT SV			288.11		352			00.0	-5.00	-10.0	3.6.		2.00	10.0		
UIDC+CH) AT SU	-4.01	4.32	237.H	1.29	352		1.00	0.00	-5.00	-10.0	4.05		2.00	10.0		2
B-VID/D-T FROM -55 C	-12.7	12.4	380.1	3.28	352		9.84	0.0	-25.0	-60.0	6		25.0	60.0	_	UV/0C
110(-CH) AT 30V	-135.	183.	-238.M	13.6	352		1.66	S48.H	-25.0	-300	1:70	3	25.0	200		*
TIDC+CH) AT 300	-131.	24.5	-820.M	7.82	320		48.4	284.8	-25.0	-300.	3.00		25.0	200.		2
IIOC-CH) AT SU	-134.	115.	-829.H	10.8	352	1.4	1.64	284.H	-25.0	-200-	2.24		25.0	200.		4
IIOC+CH) AT SV	-135.	135.	H.965-	11.2	352		46.4	284.H	-25:0	-200-	2.19		25.0	200.		1
D-110/0-1, FROM -55 C	-332.	553.	1.77	***	330		4.94	284.H	-400-	-1.20K	6.6		400.	1.20K	_	PA/00
IIBC+) (-CH) AT 300	-228.	-11.2	-43.2	21.7	352		***	568.H	-100.	-400	2.61		1.00	-10.0H		*
IIB(+)(+CH) AT 300	-:75.	-2.75	-25.1	16.4	349		1.66	284.H	-100.	-400-	4.58	•	1.00	-10.0H		1
IIB(+)(-CH) AT SV	-213.	19.30	-36,5	19.4	352		66.3	284.H	-700-	-400.	3.13		. 00.1	-10.0H		2
TIBECOLOCHEMO AT SW	-204.	-7.35	-34.1	10.7	352		49.7	284.H	-100.	-400-	3.51		1.00	-10.0H		5
IIB(-)(-CH) AT 30V	-244.	-11.6	-45.4	26.0	352		48.4	1.42	-1001-	-400.	2.10	•	1.00	-10.0H		*
TIB(-)(+CH) NT 300	-172.	-3.20	-24.7	16.1	352		2.66	284.H	-1001-	-400-	4.60		1.00	-10.0H		**
TIB(-)(-CH) AT 5V	-179.	-9.60	-38.4	18.5	352		49.7	284.H	-100-	-400-	3.31		1.00	-10.0H		*
(IBC-)(+CH) AT 5V	-144.	-7.75	-34.6	17.2	352		49.7	284.8	-100.	-400	3.79		1.00	-10.0H		*
CHR AT 300	18.2	143.	***	80.8	352		0.84	0.00	76.0	65.0	2.92		-	300.		6
THE AT SU	7.1	160.		10.4	352		\$8.3	0.0	20.0	65.0	2.19		-	300.		8
200	-5.00m	241.H	-1.75H	23.5H	345		\$6.3		-	-10.0H	-		100T	300.H		5
JOL AT 4MA	104.1	404.H	249.11	45.5H	352		98.9	-	1	100.H	1		400.H	8:		>
JOL AT SHA	263.H	587.H	360.4	65.2H	352		68.6	!	!	1001	-		#.009	8:1		>
ICC AT PS = 30. 00	592.H	1.54	7.88.H	280.H	352		100.	-	1	0.0	1		2.00	10.0		£
ICC AT PS - 30V, 0V	736.H	1.67	1.35	338.H	352		100.	-	-	0.0	1		3.00	10.0		£
2	37.0	1.00K	248.	155.	352		4.84	284.H	0.00	1.00	1.28		-	900.K		2/10
LALH UITH VOD-SHV	1.25	3.77	2.06	478.H	342		97.2	-	!	S.00	1		2.00	10.0		3
LALH WITH VCD-SONV	315.8	M.599	415.H	#2.9H	352		100.		-	5.00m	-		800.H	10.0		85
ERM MITH VOD-SHU	415.H	1.43	1.02	250.H	342		\$7.2	-	-	5.00H	1		2.50	10.0	Π,	S
ERM MITH VOD-SOHU	255.A	200.4	386.1	59.1H	352		100.	-	1	5.00H	1		800.H	10.0	-	S
T . EXCLUDE	S FOPULA	TION DU	DUTSIDE OF	F LOU R	EJ AND	HIGH REJ	,	7	Steute	8	HEELT.	DEFIN	211015			
Š,	,	-			> ""			7				200				
ה כי ה	o Jane	1		Wien I	1				10.F		X - 100	J CIMIT				
- 1000 m	3	THE T									1					
2	2 Fair 6	Geenter	THAN	3 %												
			0.5						W-Fr		HICK UNIT	Y LIV				

Table 2-4 LM139 data at 25°C.

UNICEDIA AT 300 -1-77 1-1-27 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	PARTACTER	33.	MIGH	April		SIZE	SIGNA	SIGNA SIGNA	Z FAIL	CINIT	32	. ¢	Z FAIL		RECH	#9-	UNITS
## 190	UTOC-CH1 AT 100	1		128.H	1.35	252	5.2		0.00	-2.00	-10.0	6	0.00	7.00	10.0	4.95	3
## 30	100 TO 10			-24		163			00.0	-7.00	-10.0	1	0.00	2.00	10.0	6.50	2
1				27.		100			0.00	-7.00	-10.0	E	0.00	2.00	10.0	6	2
## 300		12.2		* 571	3	165	2.3		0.00	-7.00	-10.0	68.5	0.00	2.00	10.0	65.50	2
## 30		-47.5		-S42.H		2			0.00	-75.0	-200-	6	00.0	73.0	200.	3	K
## 15 11.0 1		-22.5		M. 5445-		180	0.40	0.8	0.00	-75.0	-200.		568.N	75.0	200.		*
### 190 - 25.7		-41.0		-1.09		352	43.8	96.9	0.00	-75.0	-200-	1	0.00	75.0	200.	6.6	*
THE SECTION OF THE TOTAL STATE		-35.7		M. 624-	4.29	352	95.2	47.7	0.00	-75.0	-200.		284.H	75.0	200.		¥
10 10 10 10 10 10 10 10	10	-158.		-49.3	24.2	352	65.5	1.66	0.00	-200.	-400.		0.00	-1.00	-10.0H	1,99	*
	CHO AT	-87.5		-29.2	17.1	348	\$6.6	6.86	0.00	-200.	-400.	9	1.14	-1.00	-10.04	1.65	*
THE AT 30 124 125 125 125 125 125 125 125 125 125 125	THE AT	-141.	- 50	.44.	22.3	325	\$6.3	6.86	0.00	-200.	-400-	6.9	0.00	-1.00	-10.0H	1.96	•
HIS AT 30V 1335 1412 2501 2413 352 75.7 791 0.00 200. 1400. 65.3 0.00 1.100 1.	TA CHO	-124.		-39.7	20.7	351	66.3	1.66	0.00	-200.	-400-	67.7	284.H	-1.00	-10.0M	1.87	*
HILL AND THE TOTAL STATE A	CHU AT	-135.		-50.1	24.1	352	45.7	1.66	0.00	-200.	-400.	6::	0.00	-1.00	-10.0H	2.04	*
131	CHI AT	-72.2		-28.8	16.5	352	97.7	100.	0.00	-200.	-400.	6.6	0.00	-1.00	-10.04	1:68	*
135 AT 30 - 108. 1-23 - 40.3 20.0 352 75.2 75.2 75.0 100. 100. 100. 100. 100. 100. 100. 1	NO AT	-121-	0.35	-44.6	21.2	352	\$5.5	13.4	8.0	-200.	-400-		0.0	-1.00	-10.04	2.02	1
The state of her of the state o	H 4	-108.	233	-40.3	20.0	352	15.2	49.7	8.0	-200-	-400.	3	0.00	-1.00	-19.0H	1.76	
135.00 257.1 150. 151.1 150. 151.1 150.1 1	CHE AT 30V	83.4		0.44	7.40	352	12.7	\$8.6	0.00	26.0	45.0	3.05	-	-	200	1	=
15.00H 245.H 1150H 25.H 1359 74.4 74.4 10.0H 50.0H 50.0H 130.H 300.H 310.H 310	CHE AT SV	74.1		91.9	10.4	352	46.9	48.9	0.00	20.0	65.0	2.02	1	-	300.	-	8
135.H 319.H 211.H 319.H 312.F 91.O 970.H 100.H 1	ICEX	-5.00H		-1.50m	23.44	339	\$4.6	44.6	-		10.0H	-	6:10	100.H	300.4	3.9	3
1 SECULDES POPULATION OUTSIDE OF LOW RS. 190.7 M. S. 1	UDL AT ANA	135.H		211.4	38.4H	352	94.0	1.66	-	-	100.H	1	0.00	\$000	2.8	6	>
1 - 50, 00	VOL AT SHA	221.8		305.8	24.91	352	94.0	1.64	-		100.H	-	0.00	1.0	2.8		•
1 - 300, 00 - 647, H 2.07 1.43 340, H 352 140, 100, 100, 100, 100 1.37 0.00 5.00 100, 100, 100, 100, 100, 100, 100, 1	ICC AT PS - SU. OV	694.H		1.14	300.H	352	100.	100.	:	-	8.0	1	0.0	8.9	10.0	3	£
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ICC AT PS - 300, 0V	8.49.H		1.43	340.1	352	100.	100	!	1	8.0	1	8.0	8.00	10.0		£
1 ** STACLUDES POPULATION OUTSIDE OF LOU REJ AND HIGH REJ 2	3	47.6		254.	166.	352	\$6.6	0.84	0.0	25.0	8:-	1.37	1	-	*00.x	1	2
1 UDD-SONV 275.74 10.04 331.74 31.77	THEN WITH VOD-SHU	1.03		1.71	564.#	347	\$2.4	4.64	-	1	S.00H	1	8.0	8.8	10.0	3	5
1 VOD-55N 485.N 1.20 834.N 212.N 217 92.4 92.4 5.00N 6.00 2.50 10.0 6.30 10.0	THEN WITH VOD-SOM	295.H		381.4	14.7H	352	\$2.9	1001	1	-	2.00H	1	8.0		10.0	365	5
1 SECULDES POPULATION OUTSIDE OF LOU REJ AND HIGH REJ 12 O PIONE OF WERT GENITER THAN S 13 O FIGURE OF MERT GENITER THAN S 14 FIGURE OF NOTE THAN 1000 C.72 C.	that with vod-shu	485.H		836.H	212.4	347	***	19.6	-	-	5.00H	1	8.8	3,50	10.0	3	5
PIEME OF HERT CRAITER THAN S 40-FM - T- LOW FILL CLEATER THAN S 40-FM - T- LOW FILL CLEATER THAN S 10-FM - T- LOW MI-FM - MEN LIN	ERM WITH VOD-SONV	230.H		336.8	53.2H	352	48.4	.00	1	-	2.00	1	0.0	900.H	10.0	3	5
PIUME OF MERIT GRANTER THAN S 10-FM - T- LOW F. FALL GRANTER THAN 39.0	ON . EXCEND	ES POPULA	TTON OU	TSIDE OF				3		3 13		104 30	1. Ne	FIFIT	100		
To the elegater that 39.0 1			- HERIT	. :		5 14				3		X - 1	2 50	111			
7. File Cuenter 19.00 19.00			141	-						1000				1			
	(10	3	-				A COLOR	-		1.			
)		. servier							i i	- 44 .	Leuk	- inuit	1			

Table 2-5 LM139 data at -55°C.

STATISTICAL DATA FOR	LM139 SE	RIALIZE	D PARTS	AT'125	DEG C		34 PEC	2	14:3350	9 0	ENISED	units	SK		X-SERIOS	PHETS
PARAHETER	"ארת	MIGH VALUE	ğlı.	Angra	SAMPLE	SIGNE	X IN 3 SIGNA	Z FAIL LOU	LIMIT	35	\$ 47°	Z FAIL HIGH		REJ	1 m	STITS
VID(-Ch) AT 30V	-7.34	5.53	163.H	1.71	352	.4.3		284.H	-7.00	-10.0	1.31		7.00	10.0		1
VIDC+CH) AT 30V	-4.48	5.18	172.R	1.56	352	94.6	99.1	00.0	-7.90	-10.0	4.60			10.0		3
VIDI-CHI AT SV	-4.76	5.36	362.8	3	352	4.4.6	1.36	00.0	-7.86	-10.0	1:7			10.0		3
TA CH	-4.63	5.24	159. H	1.51	152	4.4.	***	0.00	-7.00	-10.0				10.0		2
10-T FR	-28.3	21.2	250.8	4.32	151	45.7	98.6	568.h	-25.0	-60.0	6			0.09		70/00
TA CH	-27.7	21.4	-85.5H	4.49	352	9.96	6.8	264.H	-25.0	-200-	C			200.		N.
H) AT		7.98	-447.R	1.57	351	25.5	58.3	284.8	-25.0	-200	2			200		
IIOC-CHI AT SU	-13.5	10.6	H-845-	2.74	352	93.8	98.3	0.00	-25.0	-200-	6.3			200.		44
TA CH	-11.0	9.95	M.044-	2.31	352	\$5.2	9.8.	0.00	-25.0	-200.	6.0			200.		NA
P-T FR	-290.	479.	2.98	26.1	350	\$5.5	98.3	568.H	-300.	-1.20K				1.20K		PA/OC
(-CM) AT	-204.	-7.50	-32.9	19.4	352	98.3	99.1	852.H	-100.	-400-	3.67	10		-19.0H		4.5
C+CH) AT	-48.0	-1,10	-17.2	10.4	331	47.7	100	0.0	-100.	-400	0	ŭ.		-10.0H		*
C-CHO AT	-67.9	-4.87	-27.1	13.0	352	97.2	49.7	00.0	-100.	-400.	0			-10.0H		1
IIBC+)C+CH) AT 5V	-58.2	-4.00	-23.8	12.3	352	\$7.2	100.	0.00	-100.	-400-	6:30	50		-10.0H		42
(-CH) AT	-219.	-7.25	-35.7	22.1	352	47.7	98.9	1.42	-100.	-400.	2.91			-10.0H		**
C+CHO AT	-46.7	-1.25	-16.8	10.4	330	4.94	2.66	00.0	-1001-	-400-	6:3			-10.0H		**
C-CHU AT	-61.9	-6.00	-27.1	12.0	352	4.94	100	0.00	-100.	-400-				-10.0H		N.
C+CH) AT	-57.2	-4.50	-24.0	12.2	352	97.2	100	0.00	-100.	-400-		-3		\$10.0H		4
CHR. AT 30V	72.6	135.	101.		352	94.0	98.0	284.8	76.0	63.0	2.73			300.		8
CHR AT SV	75.0	212.	\$2.5	14.0	352	17.7	98.3	0.00	20.0	65.0	1.60			300.		6
ICEX	-5.00n	550.R	1.348	36.78	349	98.3	98.6	!	1	-10.0M	1	113		2.00		5
VOL AT 4MA	247.8	585.H	352.8	63.8H	352	9.00	98.9	-	!	100.H	1			8:1		>
VOL AT AMA	349.4	870.H	513.H	MZ . 84	352	95.2	6.84	-	1	100.H	1			1.00		>
ICC AT PS - 50, 00	411.H	1.14	687.H	221.H	352	9.84	100.	-	!	0.00	1			10.0		2
ICC AT PS - 304, 92	523.H	1.41	865.H	270.H	352	100	100	!	-	8.0	1			10.0		1
*	4.25	1.54K	230.	185.	325	22.5	47.7	1.14	23.0	1.00	11.1			3.004		24/2
LRLH VITH VOD-SHV	1.60	5.30	2.62	1.03	334	87.2	100.	-	!	5.00H	1	00.0		10.0		85
ITH VOD-	355.A	840.H	209.H	131.8	352	\$2.6	100.	-	1	5.00H	-			10.0		5
LAME MITH VOD-SHU	895.H	2.01	1.45	340.8	336	25.24	95.5	-	-	2.00	1			10.0		SA
LANE MITH VOD-SONV	135.A	655.H	\$12.H	76.2H	352	48.9	100.	1	1	2.00H	1			10.0		5
3011 DX	S POPURA	TION OUT	TETDE OF	TON B	ONE !	MIGH	732		8 18	SIEURE	of here		DEFINITIO	54		
C	FURE OF		GEEN	TK 74	2 2				1	10.Fm	¥- 4	7	-			
AND HOME & TO	3 %	1 550	1 11								,	1				
000	% FAIL C	GREATER	MAP.	3%						- par	- mice	WIEN COMIT - 1	1-			

Table 2-6 LM139 data at 125°C.

Figure 2-5 Typical histogram of Vio.

Parameter Symbol	Conditions $5V < +V_{cc} < 30V$	T (°C)	Cat.	39 t. Max	Cat.	Cat.	JC-41 Rec.	41 c.	GE /1 Min	GEOS /112 Mex	Units
(HC) (TA	7	25 -55/125	6-	5	7- 7-	2 4	8- 8-	\$.s -7	5	
TA/01VA	VCH = -15V	-55/25 25/125	ON)	Spec)	(No	Spec)	-30	88	-25	25	D _e /An
(HOT) 0 ⁷ 1	1/ R.=20K.a.	25/125 -55	-25	25 100	-25	25	-25	100	-25 -75	25	¥
7 6/01/0	VCM = -15V	-55/25 25/125	OK)	Spec)	(No	Spec)	-900	98	900	300	Dø/ød
+1 ₁₈ (±CM)	1/ R=20KA	25/125 -55	-100	• •	-100		-100	77	-200	77	Ψu
-I ₁₈ (±CH)	1/ R ₆ =20KΩ	25/125 -55	-100	• •	-100	• •	-100	77	-100	77	γu
SE	+ Vcc = 30V + Vcc = 5V	-55/125 -55/125	ON)	Spec)	ON)	Spec)	22		22		qB
LCEX	+vcc = vo = +30v vtb = -15 =v	-55/25 25/125	0.1 Typ	46	0.1 Typ	٠ چ ـ		-:-		-: -1	γď
70 _A	+V _{CC} = I _O = 4mA 4.5V I _O = 4mA I _O = 8mA	25 -55/125 -55/125	∘N) -	0.4 0.7 Spec)	%	0.4 0.7 Spec)		0.4		0.4 0.6 1.5	٨
3 ¹	Vcc = 5V	-55 25 125	ON)	(Spec)	(No	Spec)		400		2 2 3	á
	Vec = 30V	-55 125	(No (No	Spec) 2 Spec)	% ' %	Spec) 2 Spec)		v m m		400	í

Table 2-7. Quad comparator M38510/112 (LM139) limits comparison.

Symbol	Sv < + v _{cc} < 30	(°C)	LM139 Cat. Min Max	Cat. Min Max	JC-41 Rec.	Hax M	GEOS /112 Min Max	Unite
т,	+ Vcc = 36V V+I 34V, V-I = 0V	-55/125	/ह	હા	No S _F	Spec	0 200	4
73 ₁₋	+ Vcc = 36V V+I = 0V, V-I = 34V	-55/125	/Ē	/E	No SF	Spec	0 200	Y
3,	+ Vcc - 15V RL - 15 K.A.	25/125	(200 typ) (No Spec)	50 - (No Spec)	25.50		25	Val.V
SS	+ Vcc = 30 V	25	(No Spec)	(No Spec)	(No Sp	Spec)	- 08	qp q
t RLH	+ Vcc = 5V. VOD= RL = 5.1K 5 mV	-55/25 125	1.3 typ @ 25°c	1.3 typ @ 25°C	@ 25°C	S		5 48
	Von= 50mV	-55/25 125	(No Spec)	(No Spec)	(No Spec)	(Dec	1.0	
t RHL	+ Vcc = 5V, Vop RL = 5.1Kg 5 =V	-55/25 125	1.3 typ @ 25°C	1.3 typ @ 25°C	@ 25°C	2	2.5	9
1000	MOS Nº08	-55/25 125	(No Spec)	(No Spec)	(No Spec)	()ac	- 0.8	8.10

JC-41 specified a Vol. condition of 15 V at which IOL (min) - 8 mA @ 25°C and 6mA @-55/125°C. Differential input voltage is specified at 36V for the LM139 and V+ for the LM139A. v_{10} , I_{10} and $^{\pm I_{1B}}$ are measured at $^{\pm V_{CC}}$ = 30V and 5V with an input range from ground to 2V below v_{CC} . नाला 7

Table 2-7. Quad comparator M38510/112 (LM139) comparison. (cont'd.)

Characteristic	Symbol	Conditions 5 V<+ V _{CC} < 30 V (Paragraph 3.4 and Figure 4	< 30 V	Limite	3	Units
Free and Con-	Sand Coupling	unless otherwise indicated)	icated)	Min	Hex	
Input offset	V4.0 (±CPO)	et vit as barliama n ad	TA = 25°C	\$. 5	À
ASSESSED ASSESSED		The second of th	-55°C ≤ TA ≤ 125°C	1.00	2,0000,00	
Input offset	۵۷c	ATA from -55°C to + 25°C	U	-25	25	D.//4
Voltage Temperature Sensitivity	10	4TA from +25°C to + 125°C	o (See Spec) o	-25	25	
Input offset	1 _{to} (± CM)	1/ R - 20 KA	25°C ≤ TA € 125°C	-25	25	1
current		845 CO. 100 CO. 100 CO.	TA = -55°C	-75	75	
Input offset	01.10	TA from -55°C to + 25°C	69 69 69 69 69 69 69 69 69 69 69 69 69 6	-400	007	pA/°C
current temperature Hensitivity	ΔΤ	TA from +25°C to + 125°C	C tee pheci so	-300	300	
Input bies	(HZH) 471+	1/ R3 = 20 KA	25°C ≤ TA ≤ 125°C	-100	1-1	1
10 T T 2 2 PEA.			TA = -55°C	-200	-1	
30.7	(HOF) ¶1-	1/ R = 20 KA	25°C ≤ TA ≤ 125°C	-100	6	ă
A 61 2 30 A			TA = -55°C	-200	7	
input Voltage	88 149 8	/Z	+ V _{cc} = 30 V	2/2		8
Common Mode Rejection	C-PK	CB C	+ Vcc = 5 V	20	F0/24	
Dutput Leskage	CE	+ Vcc - Vo - + 30 V	- 55°C ≤ TA € 25°C	•	0.1	1
			25°C C TA 4 125°C		1.0	

Table 2-8 MIL-M-38510/112-01 recommended specifications.

NOTES:

1. V_{10} , I_{10} and \pm I_{1B} shall be measured at the common mode extremes at 30 V and 5 V as shown below:

Condition	Common Mode	+ v _{cc}	- V _{cc}	v _{in}	v _o
1	(-CM)	30 V	o v	VO	15 V
2	(+CM)	2 V	-28 V	OV	-13 V
3	(-CM)	5 V	OV	OV	1.4 V
4	(+CM)	2 V	- 3 V	OV	-1.0 V

2. CMR shall be calculated from V_{10} measurements defined in note $\underline{1}/.$

Table 2-8 MIL-M-38510/112-01 recommended specification.

Characteristic	Symbol	Conditions 5 V + V _{CC} 30 V (Paragraph 3.4 and Figure 4 unless otherwise indicated)	Limits	¥ X	Units
Input leakage current	11 +	+ V _{cc} = 36 V, V _{+ I} = 34 V, V _{-I} = 0V	0	200	1
	т _г	+ V _{cc} = 36 V, V _{+ I} = 0V, V _{-I} = 34 V	•	200	
Low level output	VOL	- 4 m/ TA		4.0	>
Voltage	193	Io = 4 mA	•	9.0	
	pat	Io = mA - 55°C S TA \$ 125°C	•	1.5	
Power Supply	1 _{cc}	V _{1D} = 15 mV + V _{cc} = 5 V T _A = -55°C	•	3	
Current	a lotte		•	2	
	egal ar	TA - 125°C	-	2	1
	279	+ Vcc = 30 V TA = -55°C	•	7	
	117	-		3	
	-31	TA = 125°C		16	
Open loop	Avs	+ Vcc = 15 V, RL = 15 Kg. TA = 25°C	8		V=/V
Voltage Gain	e81	1V ≤ VO ≤ 11V - 55°C ≤ TA ≤ 125°C	25		
Channel Separation	cs	+ Vcc = 30 V, TA = 25°C F18. 9	98		8
Response Time -	ERLH.	- 5 V VOD = 5 EV - 55 5 TA	•	2	
low to high level		- 100 av		1	8
	Se.	2 58 - Vm 02 - 00V	Ŀ	8.0	1
		A The second sec		1:0	
Response time -	C. R. R.	+ Vec = 5 V VOD = 5 mV - 55 £ TA £ 25°C		2.5	
high to low level	I	- 100 av		-	
		VOD = 50 =V - 55 5 TA	•	8.0	
		TA - 125°C	•	1.0	

Table 2-8 MIL-M-38510/112-01 recommended specifications. (cont'd.)

APPENDIX A2-1 LM139 Data Correlation Between GEOS and AMD A2-2 LM139 Device Evaluation per GEOS and AMD 9 2,4 + 50°

LM139 DATA CORRELATION

BETWEEN GEOS AND AMD S/N 1 @ 25°C

TABLE A2-1

Parameter	Comp.	GEOS	AMD	Spec Limits	Corr.* Limits	Units	Corr.
Vio (-CM)	1	.785	1.42	± 5	± 1.1	mV	Yes
@ 30 V	2	-1.43	-1.08	STANCE SERVICE	400 000	1	"
	3	1.55	2.02				
	4	1.61	1.51	88 EV 51 3 394	aulian/aw	20 72-20 20 11-12	11
Vio (+CM)	1	.834	1.19				"
@ 30 V	2	995	-1.05				"
	3	1.30	1.60				"
	4	1.40	1.11				"
Vio (-CM)	1	1.02	1.17				"
@ 5 V	2	720	71				"
	3	1.32	1.49				"
	4	1.79	1.80				"
V ₁₀ (+CM)	1	.960	1.11				11
@ 5 V	2	670	64				
	3	1.21	1.35	Y	Y	Y	"
	4	1.74	1.72	± 5	± 1.1	mV	- 11
+I _{IB} (-CM) @ 30 V	1	-45.5	-34.0	-100/-1	±11	nA	No
-@ 30 V	2	-48.7	-31.0				No
	3	-36.5	-29.0				Yes
	4	-45.7	-33.0				No
+I _{IB} (+CM)	1	-27.8	-26				Yes
@ 30 V	2	-28.1	-25				"
	3	-25.5	-23	Y	*	*	"
	4	-29.0	-26	-100/-1	±11	nA	"
I _{OS} (-CM) @ 30 V	1	1.00	-1.00	± 25	± 5.5	nA	"
@ 30 V	2	75	0	1			"
	3	3.00	-3.00				"
	4	-4.50	0				"
IOS (+CM)	1	-1.12	-1.00				"
@ 30 V	2	-1.25	0				"
	3	1.25	-3.00	4	+	*	"
	4	-1.50	0	± 25	± 5.5	nA	"
Icc @ 5V	All	.72	0.67	2 (max)	± .22	nA	"
VOL	1	.197	•	.4	± .44	4	2
@ 4 mA	2	.190		.4	± .44		
Vcc = 4.5 1		.187	•	.4	± .44	+	
	4	.187		.4	± .44	V	

TABLE A2-1

LM139 DATA CORRELATION BETWEEN GEOS AND AMD S/N 1 @ 25°C (cont'd.)

Parameter	Comp.	GEOS	AMD	Spec Limits	Corr.* Limits	Units	Corr.
V _{OL} @ 1K,	1	-	.31	.5	± .055	v	2
@ lk,	2	•	.31	.5	± .055		1 41
V _{cc} = 5 V	3	•	.29	.5	± .055		0 1
	4		.29	.5	± .055		
VOL @ 6 mA	1	.277	•	1.0	± .11	BC I	8 1
@ 6 mA	2	.272	•	1.0	± .11		
Vcc = 4.5	4 3	.265		1.0	± .11		1
	4	.264	-	1.0	± .11	•	2

- 1/ Corr. limit = ± .11 x spec. limit range.
- 2/ Correlation cannot be checked since the tests are different.

TABLE A2-2

LM 139 DEVICE EVALUATION

Mfr.		GEOS R	esults	of S-3260	Testing	1	MD T	est Results	
Code	S/N	Good	Bad	Parameter	Notes	Good	Bad	Parameter	Notes
C1	3.1	×		-I _{IB} (-CM)	1/	×			
C2	2	x		10	-	×			
C4	4	¥	x	+I 1B (+CM)	2/	×	1		
C5	5	×	220.		-	E	x		100
C6	6	×	1.000.			×			1 3
C7	7		x	-IIB (-CM)	3/	×	1	2 2 2 3 3	
C8	8	x	F 141			×	1 55		- 4
C9	9	x		at 0		×			
C10	10	x		100		x	1.80		
P3	11	x	111				x	I _{IO} (+CM)	
P4	12	x				×		1	
P5	13	x				x			
P6	14	x		Legal I	District to	×	1		
P7	15	x				x			
P8	16	x	1. 82.5	a.ca.t.sc1 =	Mary Williams	×	137.31	EGEN BOLDELS	
P9	17	x				x			
P10	18	X				x			1
X2	19		x	V ₁₀ (+CM)	3,4,5/		×	V ₁₀ (+CM)	2,5/
Х3	20		x	V _{TO} (+CM)	3,4,5/		×	IIB	2,5/
X4	21		x	V _{TO} (+CM)	3,4,5/		×	I VIO(TOM)	5/5/
X6	22	x		-IIB (-CM)	1/		x	V10 (+CM)	5/
X7	23	x			6/	×		10	
X8	24		×	V ₁₀ (+CM)	3,5/		×	V ₁₀ (+CM)	5/
X9	25		x	VIO (+CM)	3,4,5/		×	VIO(+CM)	5/
X10	26		x	V _{IO} (+CM)	3,5,6/		x	+I _{IR} (-CM)	5/
X11	27		x	V ₁₀ (+CM)	3,4,5,6		×	V10 (+CM)	5/ 5/ 5/ 5/
X13	28		x	VIO (+CM)	3,5,6		x	V _{TO} (+CM)	5/
Ul	29		x	V _{IO} (+CM)	4,5,6		×	-I _{IB} (+CM)	3, <u>5</u> / 3, <u>5</u> /
U2	30	x					×	IIO	3,5/
U3	31	x					×	IIO	5/
U4	32	×					x	IIO	5/
U5	33		x	-I _{IB} (+CM)	2,4/		x	IIO	4/
U6	34	×				×			
U7	35	×				×		VOL	4/
U8	36	x				×			
U9	37	×	4 - 1000				×	+IIB (+CM)	3/
U10	38	×				×		8	1
U11	39	X					×	-IIB (+CM)	2,4/
J1	40	x				×		-	
J2	41	X				×		VOL	4/

TABLE A2-2 (Cont'd)

Mfr.		GEOS	Resul	ts of S-3260	Testing	3	AMD 1	Test Results	
Code	s/N	Good	Bad	Parameter	Notes	Good	Bad	Parameter	Notes
J3	42	×			ocs.		×	-I _{IB} (-CM)	3/
J4	43	x					x	IIB	$5,\frac{3}{2}$
J5	44		x	I _{CEX}	4/		x	ICEX	7.="
J6	45	×		VOL	1/		x	IIB	2/
J7	46	x	1 1	OL	=	x		-1B	- 程
J8	47	x		110(-CM)	1/		x	-I _{IB} (-CM)	3/
J9	48	x		-10, -13	=	x	1	-TIB(-OLD)	3
J10	49	x				x		100	3,530
SI	50	x				×		2 3 50 3	518
S9	51	x	3 1	I _{IB} (+), I _{IR} (-)	1/	x		* 50	EEN ALR
J26	52	x		-18 × ×		x			100
S33	53		x	I _{IO} , I _{IB}	3,4,5/	×			
S34	54	x		IO, IP	, ,=,	x			
S35	55		x	I-n(+)	2,4/	×			
S44	56	x		I _{IB} (+)	-,-	x			FIR
S45	57	x				x		x 0 1 100.5	1/2/8
549	58	x				x			
S65	59	x				x			
S71	60	×				x			
S77	61	x				x			
S84	62	×				1	x	VIO, IIB	5/
\$102	63	×				×	•	10, 1B	5/
8115		×				×			
37	65	×	+			×			
G8	66	×				×	1	DELETE OF STREET	
G9	67	x				x	F-72 Pag	7 - 12 m 7 m 8 m 1	
G10	68	x	reads!	PH 02/19/22/20	THE REAL PROPERTY.	^	x	-T (40V)	21
G11	69	x					x	-I _{IB} (+CM)	1 2/
G12	70	x			1/		x	VSAT @ 125°C	1 4
G13	71	x	1	RLH	1/1		x	VSAT	
G14	72	x	100	ERLH	=		×	V _{SAT} V _{SAT}	74
G15	73	×	1				×		
G16	74	x		5 5			×	VSAT	NS. 1
G17	75	×				1	1 State 1 State 1	VSAT VSAT	1
G18	76	×		MANUSA MARKET			×	SAT	21
G19	77	×					7 75 15	VSAT	2/
G20	78	×				X A	128 21	Transition of the second	
G21	79	×	1				×	VSAT	17/
G22	80	×				1 A	×	SAT	
G23	81	×	-		a designation of		×	VSAT	1
G24	82		×	+I _{IB} (+CM)	2,4/		×	I VSAT	1
R1	83		×	-I _{IB} (-CM)	3/	×	×	+I _{IR} (+CM)	

TABLE A2-2 (Cont'd)

Mfr.	12.05	GEOS R	esults	of S-3260 T	esting	AM	D Test	t Results	
Code	S/N	Good	Bad	Parameter	Notes	Good	Bad	Parameter	Notes
R2	84		x	+I _{IB} (-CM)	3/	x		2 20	1 32
R3	85		x	+ICEX	3/	×		2 1 50	1 16
R5	86	x		l on	-	×	-11	24	1 1
R6	87	x	100			x		2 1 24	100
R7	88	x					x	-I _{IB} (-CM)	3,4,5
R8	89	x			(30)-34	x		1 × 1 × 10	100
R10	90	×				x		2 32	PL.
R11	91	x				x		x 94	101
R12	92	x				x		W 100	18
R13	93	x		No.	(4)		x	-IIB	3/
R14	94	x				x		10	-
R15	95 96	x				x			126
R16	96	x		To the second		x			208
R17	97	x				x		- X	48.8
R18	98	x		100	141	x		8.8	288
R19	99	x			CALDEN	x		56 131	1 27.2
R20	100	x				x		C 20	To See

- 1/ Parameter is slightly out of spec.

 2/ Wrong polarity bias current

 3/ Low limit failure

 4/ High limit failure

 5/ Multiple parameter failures

 6/ Wrong polarity gain

 7/ There is a difference in V_{OL} test criteria between the GEOS and AMD tests as shown below tests as shown below

V = 4.5 V	(GEOS)	GEOS	i Stat	AMD	
V _{cc} = 4.5 V V _{cc} = 5 V	(AMD)	Lo Limit	Hi limit	Lo limit	Hi limit
VOL @ 4 mA	@ 25°C		.4		1 7
VOL @ 4 mA	-55°C < TA		•7		
VOL @ 6 mA	-55°C < TA	x •	1.0		87 1
VOL @ RL=1K	-55°C < TA		-	-0.2 -0.2	.5

SECTION III

QUAD OPERATIONAL AMPLIFIER MIL-M-38510/110

Table of Contents

eruh 19

		Page
3.1	Background and Introduction	111-1
3.2	Description of Device Types	111-1
3.3	Test Procedures	111-3
3.4	Tabulation of Data and Characterisitics	111-4
3.5	Discussion	111-5
3.6	Conclusions and Recommendations	111-8

List of Figures

Figure	Title	Page
3-1	Device type 01 and 02 (LM148, LM149)	111-9
3-2	Device type 03 (4156/4741)	111-9
3-3	Device type 04 (4136)	111-10
3-4	Device type 05 (LM124)	111-10
3-5	Test circuit for static tests	111-11
3-6	Transient response test circuit	111-16
3-7	LM124 gain magnitude histogram	111-22
3-8	LM124 Transient response vs. power supply conditions	111-23

List of Tables

Table	Title	Page
3-1	Table for static tests	III-12
3-2	LM124 data sheet	111-18
3-3	LM124 statistics at -55°C	111-19
3-4	LM124 statistics at 25°C	111-20
3-5	LM124 statistics at 125°C	111-21
3-6	Device type 05 limits comparison	111-25
3-7	MIL-M-38510/110 Electrical Specifications	III-27

SECTION III

QUAD OPERATIONAL AMPLIFIER MIL-M-38510/110

3.1 Background and Introduction

An earlier technical report, RADC-TR-78-22, described the characterization effort and results on quad operational amplifiers. MIL-M-38510/110 is the military specification on the following devices:

Device type	Commerical	type
01	LM148	
02	LM149	
03	4741,	4156
04	4136	
05	LM124	

At the time this earlier report was written, complete characterization data on device type 05 was not available. The purpose of this section is to update the information in the earlier report, with the main emphasis on device type 05.

3.2 Description of Device Types

3.2.1 General Characterisitics

All quad op amps possess certain common characteristics. The individual amplifiers are similar to single operational amplifiers, except that, because of pin out restrictions, external compensation and offset voltage adjustment are not available options. All have a differential input stage in order to provide high gain for differential signals and much lower gain for common-mode signals. These two inputs are called inverting (-) and non-inverting (+) for their polarity with respect to the output signal. Different techniques are used in the design of these front ends, depending on the electrical parameters to be enhanced. Low input offset voltage, low bias currents, high gain, high input impednance and high common mode rejection are the main desired input characteristics. A level-shifting stage which provides further gain couples the signal to the output. Internal frequency compensation is generally applied to the in-between, level-shifting stage. The output stage almost always is in the form of a complementary emitter follower to provide a single-ended, low-impedance, output signal.

Current limiting is generally incorporated in the output stage so that shorts to ground do not damage the op amp. Protection for shorts to either supply voltage also exists but can not be guaranteed over the full temperature range because the 175°C maximum junction temperature will be exceeded.

Since, from an application point of view, op amps are generally connected with external negative feedback to establish a precision gain, frequency compensation must be applied for stability reasons. Each gain stage of an op amp has an associated break frequency at which the gain rolls off from its DC value. An accompanying phase shift of 45° occurs at the break frequency. This increases to 90° at ten times the break frequency. If the sum of the stage phase shifts equals 180° before the loop gain magnitude has been rolled-off to unity or 0 db, the amplifier will oscillate. An internal frequency compensation capacitor connected across a gain stage provides a Miller effect capacitance to roll the gain off at 20 db/decade. In this way the gain is reduced before the stage phase shifts can render the system unstable.

3.2.2 Unique Device Characteristics

The following devices were chosen early in the characterization effort to be candidate types for the /110 specification. These selections were based on JC-41 recommendations, user anticipated need and enough difference in a major parameter to warrant another device type category.

3.2.2.1 Device type 01 (LM148)

This device is a general purpose op amp with characteristics similar to the /101-01 (741). NPN transistors are used in the input stage. This yields positive polarity input bias current. Its offset voltage specification is worse than its single counterpart (i.e., +6 mV versus ± 4 mV over the military temperature range, -55°C \leq TA \leq 125°C). The only parameter where this quad op amp is better than its single counterpart is in supply current (i.e., 4.5 mA for 4 op amps versus 4.2 mA for one op amp at -55°C). A few picofarads of internal compensation capacitance gives the device a specified transient response rise time of one microsecond (maximum). A schematic of one op amp in the device is shown in figure 3-1.

3.2.2.2 Device type 02 (LM149)

The characteristics of this device are identical with type 01 except for frequency compensation. Instead of conventional unity gain compensation, this op amp is compensated for a minimum closed-loop gain of 5. Thus the bandwidth is extended by a factor of five at the expense of unity gain stability.

3.2.2.3 Device type 03 (4156/4741)

Figure 3-2 shows device type 03. It has a PNP differential input and, consequently, negative polarity bias current. At the expense of power supply current, type 03 has a faster transient response and lower noise specs than type 01.

3.2.2.4 Device type 04 (4136)

Device type 04 is very similar to the type 03 except for its nonstandard pin out. In general its specifications are more liberal than for the type 03. It is one of the oldest quad op amps and, consequently, has many vendors. By specifying this device in /110, existing user applications are better protected than they would be otherwise. This device is not recommended for new design. The schematic is shown in figure 3-3.

3.2.2.5 Device type 05 (LM124)

All the previously mentioned op amps require dual power supplies. Device type 05, on the other hand, is meant to operate from a single supply. Its main advantage is in low power and single power applications. The input stage is designed with PNP transistors thus permitting the common mode range to include ground. The output stage has a 50 uA pull-down current source so that it can swing to ground for light loads. Dual supply operation is possible; however, since the output is a class B configuration crossover distortion will be present.

Where TTL interfacing is needed this device can be used with a pull-down resistor. Unlike a TTL output, the output of this device is much stronger on sourcing than sinking current. Device type 05 is shown in figure 3-4.

3.3 Test Procedures

Unlike the other operational amplifiers - 01 through - 04 in the MIL-M-38510/110 specification, device type 05 was designed for single power supply operation. It also has important applications in driving digital loads. For these reasons several parameters in the specification are unique to device type 05. Figure 3-5 shows the test circuit for quad op amp static tests. Table 3-1 shows how the test circuit is programmed for most tests. In order to perform the $V_{\rm OL}$ output voltage tests with a current source it was necessary to add relay K11. The only other change specifically added for device type 05 testing is the 10 K Ω load and relay K9. Except for these changes, the test procedure is the same as described in the previous quad operational amplifier report.

The S-3260 quad op amp test fixture was modified accordingly. The major change made to the S-3260 test program was to compare the measured data to the specification limits and then print an asterisk for each "out of spec" parameter. Without this feature it is very time consuming to locate parameter failures. Thirty-two (32) devices or 128 op amps were tested on GEOS's Tektronix S-3263 test system.

Transient response testing was done on a few samples on a bench test basis. Figure 3-6 illustrates the procedure for transient response testing.

3.4 Tabulation of Data and Characteristics

32 devices from 4 vendors were tested. A typical data sheet is shown in Table 3-2. The time required to take these measurements over temperature and print out the results was under four minutes per device. The data was also logged into a file so that a statistical analysis could be done on all the devices in the group. Tables 3-3, 3-4 and 3-5 are statistical summary sheets which were generated to show how well the data fits the specified limits. Most of the column headings are self explanatory. Low and high figures of merit were calculated to determine how many standard deviations (①, sigma) exist between the data mean and the low and high parameter limits.

Since in a normal distribution 99.7% of the data is within ±30, each figure of merit is a good indicator of how loose or tight the data is with respect to the specified limits. It was arbitrarily decided that if the figures of merit were greater than 5 or less than 1 some corrective action to the test conditions or limits should be considered. Observations showed that a few "way-out" failed data values tend to degrade sigma and consequently the figure of merit also. High and low reject limits were added to exclude "grossly out-of-spec" data from the statistical calculations.

Although the statistical summaries are a good economical way to show the data to limit relationships, they are not as comprehensive as individual histograms for each parameter - temperature combination. Consequently, histograms were generated to help assess where the parameter limits should be established. A typical histogram is shown in figure 3-7. Proposed limits were added later on to each of the S-3260 histograms.

Table 3-6 compares the worst case $\overline{X} \pm 3\sqrt{1}$ limits against the specification limits.

3.5 Discussion

The purpose of this discussion is to describe the characterization study results with regard to the device electrical parameters. Emphasis is on device type 05 since the other types were discussed in technical report RADC-TR-78-22. In general, the data values and the final adjusted specification limits are in good agreement. Additional comments on a parameter by parameter basis follow:

courses on GROS's Toktronia S-1263 test system,

3.5.1 Vio, Input Offset Voltage

It was originally intended that this parameter be tested and specified under four conditions, such that for + $V_{\rm cc}$ = 5 and 30 V, the input common mode range be from - $V_{\rm cc}$ at OV to 2V below + $V_{\rm cc}$. Test results showed that with $V_{\rm cc}$ = 5 V and $V_{\rm cm}$ = + .5 V, the limits would have to be doubled for acceptable yields.

By reducing the upper common mode range limit from + .5V to OV at $V_{\rm CC}$ = 5V, consistant limits could be maintained.

3.5.2 \$\Delta V_{10} / \Delta T\$, Offset Voltage Temperature Sensitivity

With most of the data values within $\pm 20 \,\mu\text{V/°C}$, limits of $\pm 30 \,\mu\text{V/°C}$ are safe and reasonable.

3.5.3 Ii0, Input Offset Current

The lowest yield condition for I_{10} occurs at -55°C with high supply voltage and high common mode input. The comments of 3.5.1 also apply here.

3.5.4 \$\Delta I_{10} \rangle T, Offset Current Temperature Sensitivity

As with $\triangle V_{10}/\triangle T$, this parameter is specified at low supply voltage and low common mode voltage. The -55°C yield of this parameter is 96.1% with the recommended limits of \pm 700 pA/°C. \triangle I₁₀/ \triangle T failures commonly occurred with I₁₀ and I_{1B} failures.

3.5.5 +IiB, -IiB, Input Bias Current

Wrong polarity bias current caused occasional failures at the high common mode input condition. Breakdown of the PNP base collector input junction is suspected for those failures. Overall yield on bias current tests, were much better for device type 05 than type 01. The deleted low supply, high common mode condition mentioned in 3.5.1 had the most wrong polarity bias current failures for device type 05.

3.5.6 PSRR(+), Power Supply Rejection Ratio

Data values for PSRR were comfortably inside the \pm 100 μ V/V specification limits.

3.5.7 CMR, Common Mode Rejection

This parameter is calculated from the V_{10} change over the input common mode range. Consequently, there is a close relationship between V_{10} and CMR failures. The worst condition at -55°C had a CMR yield of 94% against a 76 dB (min) limit.

3.5.8 + Ios , Output Short Circuit Current (for + output)

With a minimum limit of -70 mA, there were no failures on this parameter. Typically, the output short circuit current for sourcing is between 30 and 50 mA and the magnitude decreases with increasing temperature.

3.5.9 Icc , Power Supply Current

Supply current was tested at $V_{\rm cc}$ = 5V and 30V during the S-3260 characterization tests. Since the low voltage $I_{\rm cc}$ is approximately 70% of the value at 30 V, only one test was deemed necessary for the specification.

Typical values of $I_{\rm cc}$ are 50 to 100% less than the recommended limits. No benefit is seen in tightening the limit because the one to 2 mA of margin would not help power supply loading estimates that much.

3.5.10 + VOP, Output Voltage Swing

Maximum output voltage swing is generally well behaved with a tight histogram pattern. All observed failures were associated with multiple failures in other parameters. This is not too surprising since good VOP performance is mainly a function of the output Darlington transistor stage.

3.5.11 Avs, Open Loop Voltage Gain

Of all the parameter tested, AVS data forms the worst histogram in terms of "bell shape" criteria. The effect of thermal feedback in conjunction with output loading and high open loop gain gives rise to a non linear input-output relationship. Wrong polarity gains were not uncommon. No devices failed AVS without failing other front end tests as well. Although GEOS is in favor of deleting the 2K load requirement, the vendors state that this condition is needed to verify output swing linearity.

3.5.12 VOL, Low Level Output Voltage

Low level output voltage is a parameter one normally associates with digital circuits and not op amps. Since device type 05 is commonly interfaced to digital circuits, it is important to specify its drive capability for such applications. Three conditions of V_{OL} are specified. For TTL applications it is important to specify the drive current for V_{CC} (min) = 4.5 V and V_{OL} (max) = 0.4 V. Over the temperature range, the data indicates a maximum test current of only 2 uA can be specified and still have good yields. For higher current sinking applications with V_{CC} = 30 V, a 5 mA test current results in a typical V_{OL} of 1V. A 1.5 V (max) limit was specified. The third V_{OL} specification with a 10 K \sim load guarantees that the output current source is working. Data for this test shows that a 35 mV (max) limit is reasonable.

3.5.13 VOH, High Level Output Voltage

The companion specification to V_{OL} is V_{OH} , which defines the high level output voltage. Device type 05, unlike a TTL output, is much stronger in a current sourcing mode, than a current sinking mode. Thus at 10 mA of source current with supply voltages of 30 V and 4.5 V, minimum V_{OH} levels of 27 V and 2.4 V respectively can be specified.

3.5.14 TR (tr), TR (os), Transient Response (risetime), (overshoot)

Transient response measurements were not made automatically on the S-3260 test system as were the previous parameters. Oscilloscope observations of several sample devices showed that transient response rise time and overshoot depend quite significantly on input common mode conditions. Thus in a standard single supply application, device type 05 is not as responsive to ground referenced signals as it is to pulse inputs riding on a D.C. bias. Waveforms to illustrate this are shown in figure 3-8. Transistor saturation effects cause the response to be slower with less overshoot.

After some consultation with device manufacturers, it was decided that since, in the usual case, op amp transient response is specified with the device in the linear mode, the same conditions should apply to a single supply op amp. Using this rationale, the /110 slash sheet is being proposed with the 50 mV pulse referenced to \pm 5 V.

3.5.15 SR (+) and SR (-), Slew Rate

Typical data indicates that the - 05 can slew at a rate of 0.5 V/μ s. A minimum limit of 0.1 V/μ s is considered reasonable for temperature and yield variations.

3.5.16 N1 (BB), N1 (PC), Broadband and Popcorn Noise

Broadband and popcorn noise was observed with a curve tracer on a small sample of devices. The observed maximums of 10 Nrms and 5 Npk are conservatively inside the recommended limits.

3.5.17 CS, Channel Separation

Curve tracer observations on a few devices indicates that there is better than a 20 dB margin between the minimum limit of 80 dB and worst observed data. Channel separation is measured on a D.C. basis by the effect of a driven op amp on the offset voltage of the other monitored op amps. This D.C. method is easier to mechanize in an automatic tester than an equivalent A.C. method.

3.6 Conclusions and Recommendations

Thirty-two (32) device data sheets, three statistical summary sheets and 133 parameter/condition histograms were generated in order to determine typical device performance.

The results of the quad operational amplifier characterization effort show that the data, in general, supports the recommended limits proposed by JEDEC JC-41.

One area where the /110-05 specification differs from the original JC-41 recommendations is with regard to output current sourcing and sinking. The JC-41 specification measures the output sink and source currents with test conditions of + $V_{\rm CC}$ = 30 V and $V_{\rm O}$ = 15 V. The /110-05 specification forces test source and sink currents and then measures the output voltage to determine if $V_{\rm OH}$ (min) and $V_{\rm OL}$ (max) are in tolerance. How close the device output can get to the supply rails is not determined in the JC-41 test.

The quad op amp specification contain parameter limits and test conditions which best compromise user needs and vendor yields.

Table 3-7 shows the electrical specifications as incorporated in MIL-M-38510/110, dated 25 May 1978.

The bulk characterization data was issued in a bound report to representatives of the linear IC manufacturers on 6 July 1978. Copies of this data are available at RADC and GEOS.

Figure 3-1. Device type 01 and 02 (LM148, LM149)

Figure 3-2. Device type 03 (4156/4741)

Figure 3-3. Device type 04 (4136)

Figure 3-4. Device type 05 (LM 124)

CLASS DESCRIPTION OF THE CASE OF CASE

Figure 3-5. Test circuit for static tests.

Parameter Symbol		APP1 02,03	P 7	Applied Voltages			NOTES	Energized Relays	Measure		Measured Parameter		
	*	-Acc	><	+Vec -Vec VA +Vec -Vec VA	o A	_×		17, 6/	Value	Units	Equation		Units
OT _A	2020	. Se - 2	21.00	30 2 5 5 2 5 5 5 5	-28 -0 -2.5	5:- 1:1	77	None	E1 E3 E4	>	V10 - E1, E2, E3, E4		à
011	2222		21- 21 0	30 2 2 2 2 5 2 . 5	-28 0 -2.5	21: 11:4	/3	К5, К6	E5 E7 E8	>	$I_{10} = \frac{(E_1 - E_5) \times 10^6}{R_8}, (E_3 - E_7) \times 10^6, (E_5 - $	$\frac{(E_2 - E_6) \times 10^6}{R_8}$ $\frac{(E_4 = E_8) \times 10^6}{R_8}$	đ
*t.13	35 20 5	- 5 -35 -20 - 5	21.00	30 2 2 2 2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2	-28 0 -2.5	5:	13/	22	E9 E10 E11 E12	>	$+I_{IB} = \frac{(E_1-E_9)\times10^6}{R_9}$ ($E_3-E_{11}\times10^6$, R_9	$\frac{(E_2-E_{10})\times 10^6}{R_s}$ $\frac{(E_4-E_{12})\times 10^6}{R_s}$	4
81 ₁ -	8 2 8 2	- 5 -35 -20 - 5	215 15 0	30 2 5 2.5	0 -28 0 -2.5	25 11.4 1.1	7€	X6	E13 E14 E15 E16	٨	$-I_{IB} = \frac{(E_{13}-E_{1})\times10^{6}}{R_{S}}, \frac{(E_{14}-E_{2})\times10^{6}}{R_{S}}$ $\frac{(E_{15}-E_{3})\times10^{6}}{R_{S}}, \frac{(E_{16}-E_{4})\times10^{6}}{R_{S}}$	$\frac{(E_{14}-E_{2})\times10^{6}}{R_{8}},$ $\frac{(E_{16}-E_{2})\times10^{6}}{R_{8}}$	ă
+PSRR -PSRR	98	-20	00	8 2	00	-1.4		None	813 E18	>>	+PSRR=(E3-E17)×100 -PSRR=(E3-E18)×100	- 05 only +PSRR=(E ₁₇ -E ₁₈)x40	Λ/ΛШ
CHOR	82	- 5	-15	30	-28	ដំដ	17	None	12 23	>	CMR=20 10g 30000 E1-E2	- 05 only 28000 CMR=20 log E1-E2	gp
Ios (+) Ios (-)	33	-15 -15	-10	8 ,	0 '	-25	77	К9	10S1 10S2	Am .	los(+) * los1 los(-) * los2		á
Jec Jec	15	-13	0	30	0	-15		None	Icc	¥w	Ice " Ice		

TABLE 3-1. Test table for static tests.

Parameter Symbol	Applied Voltages -01,02,03,04 -05	App1	P 70	olta	Ses		NOTES	Energized Relays	Measure		Measured Parameter		
	Wce -Vcc	-Vec	×	VA +Vec -Vec		×	90	17. 6/	Value	Units	Equation	e 9 f	Units
400 + 400 +	22.	99.	20 -	8 . 2	0,0	-30	Rt- 10KA	K8	(E ₀) ₁ (E ₀) ₂ (E ₀) ₃	Þ	+ V _{OP} = (E ₀) 1 - V _{OP} = (E ₀) 2 + V _{OP} = (E ₀) 3	ilov .	A
40A +	22.	-50	22.	8.5	010	- 30	RL 2ΚΩ	K7	(E ₀) 5 (E ₀) 5 (E ₀) 6	>	+ V _{OP} = (E _o)4 - V _{OP} = (E _o)5 + V _{OP} = (E _o)6	1840 S. 1219 1867 S. 1870 S. 1870 S.	^
Avs (+)	22	-20	-15	•	• •		R₁= 10kΩ	К8	E19 E20	۸	$\frac{9}{2}$ + Avs = $\frac{15}{E3-E19}$, - 1	- Avs = 15 E20-E3	νш/ ν
Avs (+)	22	-20	-20 -15 -20 -15		• •		R _L - 2κΩ	К7	E21 E22	۸	$+ \text{ Avs} = \frac{15}{E_3 - E_2 1}, - \frac{1}{E_3}$	- Avs = 15 E22-E3	V/mV
Avs (+)			• •	33	00	-26	Rr. 10kn	K8	E23 E24	V	Avs = $\frac{25}{E_{24}-E_{23}}$	reza kara ka ba ka ba	V/mV
Avs (-)		.	••	30	00	-16 - 1	RL"	K7	E25 E26	0.0	Avs = 15 E26-E25	reach folian som m	Vm/V
Avs	2 5	20	- 2	5	00	- 3	R. I	К8	E27 E28	>	Avs - VA 0	01 - 04 DVA = 4 05 DVA = 2	V/mV
, v	~~	2.5	- 2	~~	00	- 1	^R L. 2ΚΩ	K7	E29	۸	Avs - VA 0	01 - 04 <u>AVA</u> = 4 05 AVA = 2	V/mV
(88) IN	20	-20	0	30	0	0		K10	(E ₀) 7	mVrms	N1 (BB) = (E _o) ₇ /1000	000	AVrms
(ac)	20	-20	0	30	0	0	777	K5,K6,K10	(Eo)8	mVpk	N1 (PC) = (E _o) g/1000	000	AVpk
JOL.	•		•	30	0	30	RL=10K	K11,K9	(Eo) 9	шV	VOL. = (Eo)9	b)	Λm
VOH VOH VOH	51 61	1.101619	. PW/	8 8 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0000	88.4	IOH-10mA IOL-5mA IOH-10mA	KII Klasso s	(E ₀) 10 (E ₀) 11 (E ₀) 12 (E ₀) 13	^	VOH (Eo) 10 VOL (Eo) 11 VOH (Eo) 12 VOL (Eo) 13	AZ, A METO DEN METO DEN METO DEN METO METO	>

TABLE 3-1. Test table for static tests. (cont'd.)

TABLE 3-1 NOTES

- 1/ Selection of the op amp under test is made with relay contacts K1, K2, K3 and K4. Use the parameter table to determine which others need to be energized for a particular test.
- 2/ Common mode rejection is calculated using the offset voltage values measured at the common mode range end points.
- 3/ Stabilizing capacitors may be added as required if needed to prevent oscillation. Also, proper wiring procedures shall be followed to prevent oscillation. Loop response and setting time shall be consistent with the test rate such that any value has settled for at least 5 loop time constants before the value is measured.
- 4/ Precautions shall be taken to prevent damage to the D.U.T. during insertion into socket and change of switch positions (e.g. disable voltage supplies, current limits).
- 5/ Rs = 20 Kn for -01, 02, 03, 04 and 05.
- 6/ All relays are shown in the normal de-energized state.
- Only one op amp at a time shall be tested with a short to ground for t \(\leq \) 25 ms.
- 8/ Any oscillation greater than 300 mV in amplitude (pk pk) shall be cause for device failure.
- 9/ To minimize thermal drift, the reference voltage for gain measurement E3 shall be taken immediately prior to or after the reading corre sponding to device gain (E21, E22, E23 and E24).
- 10/ All resistors are ±0.1% tolerance, capacitors are ± 10% tolerance.
- 11/ Adequate settling time shall be allowed such that each parameter has settled to 5% of its final value.
- 12/ Popcorn noise (E₀)8 shall be measured for 15 seconds. Breadboard noise (E₀)7 shall be measured with an RMS voltmeter with a bandwidth of 10 Hz to 5 kHz.
- 13/ Saturation of the nulling amplifier is not allowed on tests where E value is measured.

- 14/ The load resistors (2040 A and 11.1 KA) yield effective load resistances of 2 K A and 10 KA respectively.
- The equations take into account both the loop gain of 1000 and the scale factor multiplexer, so that the calculated value is in Table III units. Therefore, use measured value/units in the equations is i.e. El (volts).
- $\frac{16}{}$ The programmable current source is used to exercise the drive capability of device type 05 for sourcing I_{OH} and sinking I_{OL} .

Figure 3-6. Transient response test circuit.

Transient response test conditions

Device	+V _{cc}	-Vec	AV	R1	R2	R3	Pulse Gene	erator Input
Туре	(v)	(v)	(V/V)	(Ka)	(Ksl)	(KQ)	Rise Time Test	Slew Rate Test
-01,03,04	+20	-20	1	Open	10	10	+ 50 mV	-5V to +5V
-02	+20	-20	5	1	4.02	1	+ 50 mV	-1V to +1V
-05	+30	0	1	Open	10	10	+ 50 mV	+5V to +15V

Figures and the bond of transport the besides

Transient response parameters and equations

Parameter Symbol	Pulse Generator	Measure	Equation	Units
TR (tr)	+50 mV amplitude	△t Waveform 1	TR (tr) = 4 t	us
TR (os)	+50 mV amplitude	△v Waveform 1	TR (os) = AV x 100	7
SR (+) @ AV = 1	-5V to + 5V Step	∆Vo (+),∆t (+) Waveform 2	SR (+) = \(\frac{\Delta \nabla_0(+)}{\Delta t(+)} \)	V/us
SR (-) @ AV = 1	+5V to + 5V Step	△ Vo (-),△t (-) Waveform 3	$SR (-) = \frac{\Delta Vo(-)}{\Delta t(-)}$	V/us
SR (+) @ AV = 5	-1V to + 1V Step	△ Vo (+), △t (+) Waveform 2	$SR (+) = \frac{\Delta V_0(+)}{\Delta t(+)}$	V/us
SR (-) @ AV = 5	+1V to - 1V Step	ΔVo (-), Δt (-) Waveform 3	$SR (-) = \frac{\triangle Vo(-)}{\triangle t(-)}$	V/us
SR (+) @ AV = 1	+5V to + 15V Step	ΔVo (+), Δt (+) Waveform 2	$SR (+) = \frac{\triangle V_0(+)}{\triangle t(+)}$	V/us
SR (-) @ AV = 1	+15V to + 5V Step	△Vo (-),△t (-) Waveform 3	$SR (-) = \frac{\triangle Vo(-)}{\triangle t(-)}$	V/us

Figure 3-6. Transient response test circuit (cont'd).

PROTECTION AND THE REAL PROPERTY OF A PARTY OF A PARTY

STI 2000000000000000000000000000000000000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1111111		22 2	>>> >	2222	2>2>2>2
2.5.6. 2.6.6. 2.6.6. 2.6.6. 2.6.6. 3.	2.5.5. 2.5.5. 2.4.5. 2.4.5. 3.4.5. 3.4.5. 3.4.5.	4.00 81-4.00 A	83.8 62.4 x	-1.84 -549.F	28.8 24.8 3.91	262. -53.4 t 125. 80.0	2.4.1.855.4.4.55 2.4.1.855.4.4.55 2.4.1.855.4.4.55 2.4.1.855.4.4.55 2.4.1.855.4.4.55 3.4.1.655.4.4.55 3.4.1.655.4.4.55 3.4.1.655.4.4.55 3.4.1.655.4.4.55 3.4.1.655.4.4.55 3.4.1.655.4.4.55 3.4.1.655.4.4.55 3.4.1.655.4.4.55 3.4.1.655.4.4.55 3.4.1.655.4.55 3.4.1.655.4.55 3.4.1.655.4.55 3.4.1.655.4.55 3.4.1.655.4.55 3.4.1.655.4.55 3.4.1.655.4.55 3.4.1.655.4.55 3.4.1.655.4.55 3.4.1.655.4.55 3.4.1.65 3.
125 BEG 0004771 1.85 1.85 1.85 1.95 1.78 1.78 1.78 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.8	2.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	647.464 647.4667 647.4668 647.4668 86	16.E 34.2 62.2 a	-1.04 -551.m -31.1	80.15 80.09	-312. # -57.7 # 56.7 100.	24.56.5. 24.
24.14.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	-8-50 -8-50 -8-68 -8-68 -8-68 -8-68 -8-68 -8-68	8:18:18:18:18:18:18:18:18:18:18:18:18:18	83.9 61.7	-1.63 -550.n	3.6.4 8.6.3 8.6.4 8.6.4 8.6.4	-179. R -55.6 R 280.	5.58.54.5 5.58.54.5 5.58.54.5 5.58.54.5 5.58.54.5 5.58.54.5 5.58.54.5 5.58.54.5 5.58.54.5 5.58.5 5.5
18.45. 18.45. 18.45. 18.75. 18.75. 18.75.	M. 1.4.0.1.4 6.0.0.0.1.4 5.0.0.0.0.1.8 5.0.0.0.0.1.8	8.6.1.1.4.6.8.8.4.1.4.6.8.4.4.1.4.8.4.4.4.4.4.4.4.4.4.4.4.4.4.4	15.4 84.3 61.8 s	-1.84 -551.R -27.3	3.6.5 3.9.8 3.89	-152. 2 -50.0 1 66.7 190.	20000000000000000000000000000000000000
74-9-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	-8-66. -772. # 9.386. -3.516. -3.516.	103.8 103.8 103.8 103.8 103.8 103.8	12.9 88.7 52.8 #	-889.m -435.m	28.3 3.52 3.44	57.9 1.19K 58.1	25.5.5 25.5.5 25.5.5 25.5.5 25.5.5 25.5.5 25.5.5 25.5.5 25.5
- 00 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	4.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	139.0 131.7 131.6 19.0 19.0	10.3 57.4 55.4 \$	-888. -498.3	28.3 3.53.4 4.52.4	-417. F -83.3 K 200.	2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
25.50 25.50		-233.7 -19.5 -138. s -31.1 -19.9	12.2 87.2 55.3 *	-886.# -496.#	288.9 3.52 3.52	-132. 58.9 88.0 400.	28.1.1 25.2.1 25.2.1 2.65 1.0.2 1.0.
2.56 2.56 2.56 2.56 2.56 2.56 2.56 2.56	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	20000000000000000000000000000000000000	10.4 88.4 55.24	-878.A -497.A	33.83.3	-167. # -69.3 # -400. #	0.00 4 0.00 0.00 0.00 0.00 0.00 0.00 0.
97.6m 97.6m 77.5m	6.54 -21.0 1.21 34.2 8	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	14.9 57.4 x	-1.00 -554.m	28.5 28.1 3.71	758. -61.6 t 154. 290.	200.3 200.3
00000 00000 00000 1.57 64.5H 1.49	-5.25 -3.25 36.3 x	2.6.3.5.4.6.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	13.6 86.0 57.4 t	-997.R -556.R -49.7	288.1 3.71 3.63	2.50K -68.2 # 400.	24.00.00 0.00.00 0.00.00 0.00.00 0.00.00 0.00.0
177 2 BATE OPANT 2 OPA 1.14 1.5 -401.8 64.	-2.25 -125.m -1.25 40.0 #	25.55.55.55.55.55.55.55.55.55.55.55.55.5	85.8 57.2 #	-995.a	3.53.5	-625. # 286. 286. 286.	0884 0884 0884 0884 0884 0884 0884 0884
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.20	4895-4991 6000-600-1	12.2 36.9 57.3 £	-994.m -553.m	3.38.5	-625. 4 -58.8 1 133. 200.	
UTO MT 3915. 015. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	110 AT 30, 0, -15 D-110,D-T FROM 25 OC 110 AT 2.0, -28.8,15 D-110,D-T FROM 25 OC 110 AT 2.3, 114 D-110,D-T FROM 25 OC D-110,D-T FROM 25 OC	IIB(+)AT 3.6, -15 IIB(+)AT 2.6, -23.9, 15 IIB(+)AT 5, 9, -1.4 IIB(-)AT 30, 0, 15 IIB(-)AT 2.9, -23.6, 15 IIB(-)AT 2.9, -23.6, 15 IIB(-)AT 2.9, -1.6	CHRI AT UCH . 8-29U CHRZ AT UCH . 8-29U	ICC AT UCC + +39U ICC AT UCC + +5U 10S(+)	UOPP(+) PS-30V RL-10K UOPP(+) PS-32V FL-3K UOPP(+) PS-5V PL-10K UOPP(+) PS-5V RL-3K	AUS(+) RL-10K AUS(+) PL-3K AUS AT +-5U FL-13K AUS AT +-5U FL-12K	UOL-PS-38U; RL-18K UOH-PS-38U; FORCE 25U UCL-PS-38U; FORCE 3U UOL-PS-45U; ORCE 3U UOL-PS-45U; ORCE 2.4 UOL-PS-4.5U; FORCE 2.4 UOL-PS-4.5U; FORCE 2.4

Table 3-2. LM 124 Data Sheet.

اد
DEG
-55
F
MIXED LOT LM124 AT -55 D
101
MIXED
POR
DATA
TICAL
-

UND AT 30. 0513 VED A	PARAHETER	* WALUE	HIGH VALUE	Alx*	SIGNA *	SAMPLE SIZE	Z IN 2 SIGMA	X IN 3	z FAIL LOW	Lie Lie Lie Lie Lie Lie Lie Lie Lie Lie	REJ	- M- M-	Z FAIL HIGH	LIKIT	REJ	투 파	UNITS
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			-					!	1	-	1	1	1		-	-	
5.44 7.11 -1.51 1.72 121 89.8 73.8 73.8 7.70 110.0 31.0 0.0 4.75 0.0 10.	VID AT 30, 0, -15	-4.94		-93.7H	1.65		86.8		6.35	-2.00	-10.0			2.0	10.0	4.29	₹
25.6 4.88 5.33 124 73.8 75.3 5.00 -70.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	UID AT 2.01-28.0115	-5.64		-1.51	1.72		84.8		25.34	-7.00	-10.0			2.00	10.0	4.95	49
25.6 25.4 48.84 5.33 128 95.3 94.1 10.00 -30.0 -30.0 -30.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	JID AT 5: 0: -1.4	-6.26		-120.H	1.67		93.8		9	-7.00	-10.0			2.00	10.0	4:27	2
4.08 3.52 3.44.4 1.57 123 92.2 95.3 1.55 97.00 100 4.55 1.59 90.0 100 3.58 90.0 100 100 100 100 100 100 100 100 100	0-V10/D-T FROM 25 OC	-20.6		-4.83M	5.33		95.3		00.0	-30.0	-20.0			30.0	20.0	69.5	UV/OC
117. 5.59 22.4 125 89.4 85.3 1.26 90.0 120. 120. 120. 120. 120. 120. 120. 1	/ID AT 2.5,-2.5,-1.1	80.9-		-334.H	1.57		92.2		1.56	-2.00	-10.0			2.00	10.0	4.69	2
99. 30.0 2.48 14.5 119 89.1 89.1 6.03 70.0 -170. 4.85 (12) 78.4 10.0 120. 4.31 19.0 19.0 120. 4.31 19.0 19.0 120. 4.31 19.0 19.0 120. 4.31 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.	IIO AT 30, 0, -15	-30.1		3.90	22.4		91.4		1.56	-90.0	-120.			0.06	120.	3.84	W.
-23.4 95.0 5.32 19.7 125 92.2 93.8 0.00 -11.00 4.85 156 700. 11.00 4.81 15.9 15.8 15.6 700. 11.00 4.81 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.	(ID AT 2.0,-28.0,15	-99.2		-2.48	16.5		89.1		60.0	-90.0	-120.			0.06	120.	9.5	NA AN
936. 900. 37.3 185. 185. 182 92.2 93.0 1.000 1.1000 3.58 11.56 900. 17.0 10.00 3.58 11.56 900. 17.3 7.37 7.37 7.37 7.37 93.0 1.200 1	IIO AT 5: 0: -1.4	-20.4		5.32	19.7		92.2		9,0	-90.0	-120.			0.06	120.	4.31	NA A
15.5 40.8 1.77 127 94.5 97.7 0.00 -90.0 -120. 11.8 120. 11.0 120. 120.	0-110/D-T FROM 25 OC			-37.3	185.		92.2		6.5	-200-	-1.00K			700.	1.00K	3.98	PA/OC
-3502.50 -48.0 22.7 118 97.7 97.7 2.34 -300500. 61.9	IIO AT 2.5,-2.5,-1.1			1.73	7.77		94.5		0.00	-90.0	-120.			0.06	120.	411.4	NA A
-3547.95 - 28.8 32.7 118 97.7 97.7 2.34 -3005006.35 6.25 -1.00 -5.00H 65.0 5.0 6.25 -1.00 -5.0 H 65.0 5.0 H 65.0 H 65.0 5.0 H 65.0 H	(IB(+)AT 30. 015			-48.0	29.7		7.78		2.34	-300	-200			-1.00	-5.00H	1.59	A.
-60.1 - 12.8 - 29.2 11.0 120 85.9 93.8 0.00 -300. -500.	IB(+)AT 2.0,-28.0,15	-354.		-28.8	32.7		7.76		2.34	-300.	-200			-1.00	-5.00H	850.M	NA WA
	IB(+)AT 5, 0, -1.4	-60.1		-29.2	11.0		85.9		00.0	-300.	-200.			-1.00	-5.00M	2.56	NA
-408 - 18.2 - 55.8 40.5 119 96.1 98.4 781.H -300500. 6.02 7.02 -1.00 -5.00H 1.27 7.4 1.2	(IB(+) AT +-2.5,-1.1			-23.6	10.4		86.7		0.00	-300.	-200			-1.00	-5.00H	2.17	E P
-383 - 2.50 - 30.4 37.1 109 92.2 93.0 781.4 -300500. 5.22 0.00 -1.00 -5.004 93.1 100 -5.004	(IB(-)AT 30, 0, -15			-52.8	40.8		96.1		781.H	-300.	-200			-1.00	-5.00H	1.27	Z.
-3465.63 -38.2 43.7 127 76.9 77.7 2.34 -300500. 0.00 -1.00 -5.00H 853.H -1.00 -5.00	(IB(-)AT 2.0,-28.0,15	-383.		-30.4	37.1		\$2.2		781.H	-300.	-200.			-1.00	-2.00H	204.0	Z.
-3482.50 -27.0 30.8 125 99.2 99.2 781.H -300500. 923 7.100 -5.00H 844.D -5.00H 84.D	IB(-)AT .5. 01.4			-38.2	43.7		6.96		2.34	-300.	-200			-1.00	-5.00H	853.4	A.
-18.8 122. 16.5 19.4 126 95.3 95.3 1.56 -100200. 9.6. 2.34 100. 200. 4.31 100. 6.08 97.1 70.6 4.27 122 122 122 122 122 122 122 122 122 1	IB(-) AT +-2.5,-1.1			-27.0	30.8		99.2		781.H	-300-	-200			-1.00	-5.00M	844.6	NA.
60.8 160. 87.0 11.2 128 95.3 98.4 6.29 76.0 60.0 676.5 500	SRR(+)	-18.8		16.5	19.4		95.3		1.56	-100.	-200-			100.	200.	4.31	2/20
64.8 97.1 79.6 4.27 122 89.1 92.2 7.40 10.0 2.23 10.0 2.23 10.0 10.0 2.23 10.0 10.0 2.23 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	:MR1 AT UCH = 0-28U			87.0	11.2		95.3		6.29	76.0	0.09			-	200	-	8
1.10 9.00K 1.31K 3.23K 117 85.2 100. 8.59 5.00 1.00 9.52 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	CHR3 AT UCH = 0-2.50			29.6	4.27		89.1		4	20.0	0.09			-	200.	-	8
-10.09 -700.U -611.H 241.H 128 76.1 100. 0.00 -2.50 -10.0 1.50 -10.0 1.50 -10.0 1.50 -10.0 1.50 -10.0 1.50 -10.0 1.50 -10.0 1.50 -10.0 1.50 1.50 1.50 1.50 1.50 1.50 1.50	ICC AT VCC = +30V			-1.22	1.26		6.96			-4.00	-10.0			-	0.00		
30V RL=10K 24.9 28.1 27.3 74.8 122 92.2 92.2 70.0 70.0 3.3 7.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	CC AT VCC = +5V			-611.H	241.H		96.1		00.0	-2.50	-10.0			-	00.0		2 5
No. RL=2K 24.5 28.1 27.9 315.H 120 93.8 93.8 6.25 3.00 1.50 (14.2) 5.00		-69.3	*	-45.3	7.48		42.2		36	0.07	20.00				200		1
No. R. = 2x 24.5 24.5 24.7 3.44 32.9 33.8 6.25 3.00 1.50 1.50 1.42 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	PS=300	24.9		28.3	315.4		93.8		100	0.72	20.0				20.00		>:
FRE-10K 1.61 9.00K 2.58K 3.30K 55 93.8 93.8 6.25 3.00 1.50 974 1.10 9.00K 2.58K 3.30K 55 93.0 98.4 67.8 25.0 1.00 974 1.10 9.00K 4.51K 4.69K 12 100. 100 6.55 1.00 974 1.10 9.00K 4.51K 4.69K 12 100. 100 6.55 1.00 975 1.10 9.00K 1.38K 2.85K 117 89.1 100. 6.59 5.00 1.00 975 1.10 9.00K 1.38K 2.85K 117 89.1 100. 6.59 5.00 1.00 975 1.10 9.00K 1.38K 2.85K 117 89.1 100. 6.59 5.00 1.00 975 1.10 9.00K 1.38K 2.85K 117 89.1 100. 6.59 5.00 1.00 975 1.10 9.00K	PS=300			27.9	328.8		93.0		X	2000	20.07				200		• •
RL=10K 1.65 9.00K 2.58K 3.30K 55 93.0 98.4 \$7.8 25.0 1.00 \$74.H 10.00K 10.00K RL=2K 1.16 9.00K 4.51K 4.69K 12 100. 100. \$2.50 1.00 \$75.B 10.00K 10.00K RL=2K 1.16 9.00K 1.31K 2.85K 117 89.1 100. \$2.50 1.00 \$75.B 10.00K	20-00			7.10	100		0 7 0 0		Xix	200				-	00.5	-	
RL=2K 1.10 9.00K 4.51K 4.69K 12 100. 100. 64.5 25.0 1.00 655.8 10.0K 10.0K 10.0K 10.0K 10.0K 10.0K 1.3BK 2.85K 117 89.1 100. 6.59 5.00 1.00 632.8 10.0K 10.0K 10.0K 10.0K 10.0K 1.2K 23.5 9.00K 1.71K 3.23K 117 85.2 100. 6.59 5.00 1.00 622.8 10.0K 10.0K 10.0K 10.0K 1.20 23.6 9.3 97.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00	2-27			2.58K	7. TOK		03.0		Y	25.0	00:1			-	10.0K	-	UM/N
RL=10K 36.4 9.00K 1.38K 2.85K 117 89.1 100. 6.59 5.00 1.00 627.9 10.0K 10.0K 10.0K 1.21 8.2 1.21 91.0 6.59 5.00 1.00 6.27.9 10.0K 10.0K 1.22 8.0 1.23 97.7 1.00 6.50 1.00 6.20 1.00 6.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1				A.51K	4. 40K		100.		10	25.0	1.00			-	10.0K	-	V/HV
RL=2K 23.5 9.00K 1.71K 3.23K 117 85.2 100. 6.59 5.00 1.00 527.9 6.59 30.0 1.52 H 1.00 40.1 18.5 7.58 125 93.8 97.7 6.50 5.00 1.00 6.00 6.00 5.00 1.52 H 1.00 40.1 18.5 7.58 125 93.0 93.0 6.00 5.00 6.00 6.00 6.00 5.00 1.52 H 1.00 6.00 5.00 1.31 4.00 6.00 1.82 6.00 6.00 1.82 6.00 6.00 1.82 6.00 6.00 1.82 6.00 6.00 1.82 6.00 6.00 1.82 6.00 6.00 1.82 6.00 6.00 1.82 6.00 6.00 1.82 6.00 6.00 1.82 6.00 6.00 1.82 6.00 6.00 1.82 6.00 6.00 1.82 6.00 6.00 6.00 1.82 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.0				1.38K	2.85K		89.1		8.59	5.00	1.00	_		-	10.0K	1	UN/O
FORCE 24 150 40.1 18.5 7.58 125 93.8 97.7 5.0 0.00 5.00 1.52 1.00 1.52 1.00 1.52 1.00 1.52 1.00 1.52 1.00 1.00 1.00 1.52 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0				1.71K	3.23K		85.2		6:50	5.00	1.00			-	10.0K	-	U/M
RCE 25V -53.6 -50.0H -43.3 9.25 123 93.0 93.0 5.03 25.0 29.0 6.03 25.0 29.0 9.03 25.0 29.0 0.00 23.6 25.0 HRCE 3V -53.6 -50.0H -43.3 9.25 123 93.0 93.0 93.0 23.0 25.0 20.0 20.0 20.0 20.0 20.0 20.0 20	*			18.5	7.53		93.8) (-	00.0			30.0	20.0	1.52	₹
RCE 25V -53.6 -50.0H -43.3 9.25 123 93.0 93.0100 0.00 (3.03 -10.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	OHPS=300			28.0	336.H		93.0		6.03	25.0	50.0			-	30.0	-	>
DRCE 3V 100.H 39.9 20.1 8.31 121 91.4 97.7 4.69 5.00 0.00 1.82 40.0 5.00 5.00 5.00 5.00 5.00 5.00 5.00	DH-PS-30V/FORCE 25V	-53.6		-43.3	9.25		93.0		1	-	-100.			-10.0	0.00	3.60	E E
DRCE 3V 100.N 39.9 20.1 8.31 121 91.4 97.7 4.69 5.00 0.00 1.82 40.0 2.53 2.76 2.64 62.44 120 93.8 93.8 6.25 2.40 1.50 3.78 6.25 -10.0 0.00 FORCE 2.4 -19.0 -50.0H -15.6 3.50 125 93.8 93.8 30.0 30.0 50.0 0.00 FORCE 0.4 765.H 36.4 10.6 7.69 121 95.3 98.4 (5.3 8.00 0.00 (341.H) 50.0 0.00	OLPS=30V	898.M		1.08	703.H		6.96			-	0.00			5.00	2.00	1.31	>
FORCE 2.4 -19.0 -50.0H -15.6 3.50 125 93.8 93.8 30.0 4.50 5.78 4.50 5.0H -19.0 -50.0H -15.6 3.50 125 93.8 93.8 30.0 50.0H -15.6 3.50 125 93.8 93.8 30.0 50.0 5.0H -19.0 0.00 5.0H -19.0 0.0H -19.0	OL-PS-30V/FORCE 3V	100.H	39.9	20.1	8.31		91.4		4.69	2.00	00.0			-	40.0	-	E.
-PS=4.5U/FORCE 2.4 -19.0 -50.0H -15.6 3.50 125 93.8 93.830.0 50.0	10HPS=4.5V	2.53	2.76	2.64	62.4%		93.8		6.29	2.40	1.50			-	4.50	!!	>
-PS=4.5V/FORCE 0.4 765.H 36.4 10.6 7.69 121 95.3 98.4 (5.3 8.00 0.00 341.B 50.0 1.50 0.00 341.B 50.0 20.0 341.B 50.0 50.0 341.B 50.0 50.0 50.0 341.B 50.0 50.0 50.0 50.0 50.0 50.0 50.0	FORCE	-19.0	-50.0H	-15.6	3.50		93.8		-	-	-30.0			-10.0	0.0	1:30	E.
0.4 765.H 36.4 10.6 7.69 121 95.3 98.4 (5.3) 8.00 0.00 341.H 50.0	PS=4.5V	22.3H	675.H	357.H	290.H		6.96		1		0.0	_		400.H	1.50	144.5	> :
2/ 10-17 - 10-11 HI-FH = Non	OL-PS=4.5V/FORCE 0.4	765.H	36.4	10.6	1.69		95.3		3.5	8.00	0.00		-	M. 1.10	20.00		5
				-			-	12	10-64 =	- X	Man II	: HI-	FF = "		1		

ULATION OUTSIDE OF LOW REJ AND HIGH REJ $\mathcal J$ TIME Table 3-3. LM 124 Statistics at -55°C.

	3	1
2		
400	7	
	ī	

-	HI XED	
4		
	101	

T 30, 0, -15	*	VALUE *	1×*	P#	SIZE *	SIGNA	SIGMA	10	LIMIT	REJ	*[HIGH	LIMIT	REJ	M =	
-28.0.15	-	-		-			1	1	-	1			1			
	5.57	4.05	-73.8H	1.79	124	93.0		96.50	2.00	-10.0	2.73	00.0	2.00	10.0	2.83	2
	6.11	1.65	-1.79	1.64	123	93.0		06.50	2.00	-10.0	1.96	2.34	2.00	10.0	4.15	2
	-9.92	3.80	-200.H	1.94		94.5		69.0	2.00	-10.0	2.47	00.0	2.00	10.0	2.68	2
	4.32	3.36	-305.H	1.58		93.8		1.56	-5.00	-10.0	2.97	00.0	2.00	10.0	3.35	£
	-25.6	40.3	-1.12	8.92		9.06		1.56	-30.0	-120.	3.24	1.56	30.0	120.	3.49	4
	-12.0	25.2	1.13	4.38		9.06		781.H	-30.0	-120.	4.88	781.H	30.0	120.	4.52	¥
	20.3	41.3	-264.H	6.76	1	9.06		00.0	-30.0	-120.	4.40	3.91	30.0	120.	4.48	E
	-15.8	35.0	1.92	6.32		92.2		00.0	-30.0	-120.		781.H	30.0	120.	4.44	£
30.02		-27.8	0.15	21.0		92.2		2.34	-150.	-200-	4.68	2.34	-1.00	-5.00M	2.43	S Z
TIRCHIAT 2.0-28.0-15	-70.7	-4.45	-27.0	13.8	122	91.4	6.96	1.56	-150	-200	8.80	3.13	-1.00	-5.00M	1.95	£
CI 10:07-10:17			122 0			1.00		00.0	150	-500	6.75	4.69	-1.00	-5.00M	2.65	¥
118(+)AI 3: 0: -1.4			22.7	17.0		1.00		200	150		C	1.54	-1.00	-5.00M	2.34	AN
		00:1-	1.07	11.0		04.00		10.00			100	200		- S- OOK	***	4
30, 0, -15	-376.	-21.0	-53.5	35.8		40.4		107			10.7		3	200	100	1
10		-2.25	-31.6	34.2	A	7.66		781.0			200	10:51	38	200	Y	1
		-14.5	-39.3	44.3		49.4		2.34	120.	-200		191.0	30.1	200		
T +-2.5,-1.1		-10.0	-28.1	10.8		93.8		00.0	-120.	-200	4	1.56	-1.00	-2.00H	Y.	
		48.6	15.6	7.94		96.1		0.00	-1001-	-200-	14.6	781.H	100.	200.	9.00	3
		160.	85.6	8.66		94.5		9.9	76.0	0.09	1:11	-	-	200	-	8
		89.9	78.0	2.68		91.4		4.50	20.0	0.09	2.99	-		200.	-	8
ICC AT VCC = +30V -	-8.43	-515.H	-1.33	1.16		6.96		0	-3.00	-10.0	1.44	-		00.0	-	£
		-2.90M	-682.H	252.H		94.5		00.0	-2.00	-10.0	6.2			00.0	-	¥
		- NOO.	40.4	4.77		95.3		00.0	-70.0	0.06-	4.35			00.0		Z.
UNDP (+) PG= 10U PI = 10K	24.2	28.5	28.4	214.K		94.5		5.40	27.0	20.0	6.60			30.0	-	>
20-10			22.0	× 270		2 30		64.	0.40	20.0	9			30.0	-	>
KL=ZN	0.07	1000	****	207				100	000				1	2.00	-	-
KL=10K	3.57	3.72	3.64	44.00		1001		Y	300	200	1			200		
	3.48	3.63	3.56	44.0H		6.96		3	3.00	1.50		-		3		
	1.90	9.00K	2.81K	3.25K		96.1		58.6	20.0	1.00	243	1		10.01	-	
	1.12	9.00K	3.05K	4.46K		100.		6:95	20.0	1.00	672.E	-	-	10.0K	!	2
	45.1	9.00K	1.49K	3.04K		87.5		40.2	10.0	1.00	487.3		-	10.0K		2
RL=2K	44.4	9.00K	1.80K	3.28K		85.2		611.7	10.0	1.00	£46.4	!	1	10.0K	-	2
1 RI = 10K	2.10	41.2	18.0	66.9		96.1		-		0.00	1	2.34	30.0	20.0	1.71	£
	25.7	28.3	28.2	235.H		95.3		6.5	25.0	20.0	(13.4)	1	-	30.0	1	>
TOH-PS=300/FORCE 250	-49.9	-22.5	40.0	5.11		93.0				-1001-	1	3.91	-10.0	0.00	6.82	3
	864.H	1.41	915.H	48.4M		99.2			-	0.00	-	00.0	2.00	2.00	(22.3	>
TOPEE 30	11.2	34.45	20.9	8.58		96.1		1.56	5.00	00.0	2.42	-	-	40.0)	4
	2.57	2.89	2.75	71.6H		95.3		(1:5)	2.40	1.50	4.93		-	4.50	-	>
FUELE 2.4		- NO. OF-	14.5	2. 22		6.96		-	-	-30.0	-	3.13	-10.0	00.0	1.95	E
		571.H	246.H	231.H		100				00.0		67.3	400.M	1.50	669.	>
A A STOR	7. 7.			08.8		5.40		54.3		00.0)	1	50.0)	5
						1000)		0.00					1	
1 * EXCLUDES POPULATION OU	POPULAT	TION OUT	SIDE OF	LOW REJ AND		HIGH REJ	7	H3-07	1	tow LIM	1	HI-FM =	HIGH	11111	Χ,	
										•			100000000000000000000000000000000000000			

Table 3-4. LM 124 Statistics at 25°C.

u,
DEG C
125
AT 1
LN124
5
HIXED
FOR H
PATA
ICAL
STATISTICAL
STA

PARAMETER	WALUE WALUE	HIGH VALUE	A NA	SIGHA T	SAMPLE SIZE	Z IN 2 SIGNA	Z IN 3 SIGNA	z FAIL LOW	LIMIT	REJ.	- 12 F	Z FAIL HIGH	HIGH	REJ	# \\ *	UNITS
urn AT 30. 0: -15	-0.00	3.54		2.26	125	94.5	1	61.0	7.00	-10.0	2.93	0.00	7.00	10.0	3.26	3
1.0.15	-7.57		-2.36	1.98	123	93.8		2.34	-7.00	-10.0	2.34	2.34	2.00	10.0	4.73	2
	-6.10	3.50	-267.3	2.02	128	95.3		0.00	-7.00	-10.0	3.33	000	2.00	10.0	3.50	2
D/D-T FROM 25 OC	18.6		-2.05	2.00	124	92.2		0.00	-30.0	-20.0	6.59	6.13	30.0	20.0	6.40	20/00
	-5.01		-526.H	1.86	126	95.3		1.56	-2.00	-10.0	3.48	0.00	2.00	10.0	4.05	2
AT 30, 0, -15	-19.5		-131.H	7.32	124	88.3		1.56	-30.0	-120.	901	2.34	30.0	120.	7:1	W.
AT 2.0,-28.0,15	-8.25		1.81	4.02	126	92.2		781.H	.30.0	-120.	0.93	781.H	30.0	120.	30.0	4
	-21.7	34.0	-471.H	60.9	126	93.0		781.H	-30.0	-120.	4.85	1.56	30.0	120.	000	4
	-320.		-1.47	56.3	125	92.2		2.34	.320.	-1.00K	61.9	0.00	320.	1.00K	3	PA/DC
	-15.5		3.73	6.04	127	93.0		781.H	-30.0	-120.	6:50	0.00	30.0	120.	4.35	¥ :
	-180.	-25.8	-58.6	28.4	122	92.2		4.69	150.	-200-	3.22	2.34	-1.00	-5.00H	2.03	4
			-28.2	14.2	122	91.4		1.56	150.	-200-	8.69	6.13	-1.00	-5.00m	1.92	4
	-96-4	-16.8	-37.2	15.7	126	93.8		781.H	150.	-200.	2.7	781.H	-1.00	-00.00	2.30	4
	_		-27.9	13.6	126	92.2		787.1	.150.	-200-	8.0	/81.n	00:1-	-00.C-	1.78	£:
			-61.7	38.4	124	95.3		9	120.	-200-	2.30	1	1.00	-2.00m		
2.0,-28.0,15			-32.3	31.9	125	99.2		781.H	.150.	-200-	3.69	2.34	1.00	-00 m	25.59	¥ :
•			-38.0	31.6	127	47.7		781.H	150.	-200-	3.54	781.4	1.00	-2.00H	1:17	4
+-2.51.1			-32.6	14.1	126	94.5		00.0	.120	-200-	8:36	1.56	1.00	-5.00m		4
			19.1	10.2	127	94.5		9,0	100.	-200-	11.2	781.M	100.	200.	36.5	3
AT UCH = 0-28V	65.5		84.1	8.66	128	6.96		6.69	26.0	0.09	636.0		-	2000		8
8 AT UCH = 0-2.5V	68.3		77.6	4.15	126	93.0		9	20.0	0.09	1.83	-	-	2000	1	8
AT VCC = +30V			-1.35	1.05	128	6.96		9	3.00	-10.0	1:50			900		£ %
vcc = +5v	1.19	-388.H	-722.H	219.H	128	91.4		0000	5.00	-10.0	A Company	-	-	38		
	.52.5		-31.7	5.78	126	95.3		9	.70.0	-000	300	-	!	00.00		£ :
PS=30V RL=10K	22.4	28.8	28.6	579.H	124	95.3		3.90	27.0	20.0	2.80	-	-	20.0	-	>:
PS=300 RL=2K	22.1		27.8	626.M	124	95.3		4.69	26.0	20.0	2.85		-	30.0	•	>:
	3.81		3.91	61.3M	124	6.96		3.13	3.00	1.50	4.4	-		2.00	1	
PS-5V RL=2K	3.71		3.81	62.3H	124	6.96		3.13	3.00	1.50	9.5	!	-	2.00		
	1.40		977.	1.88K	2	94.5		20.0	22.0	1.00	£06.10	-		10.00	1	24/0
AUS(+) RL=2K	1.15		4.64K	4.68K	8	100.		34.5	22.0	1.00	986.F		-	10.0K	1	24/0
AUS AT +-5V RL=10K	30.8		872.	2.35K	121	92.2		3	2.00	1.00	369.0	-	-	10.0K		24/0
RL=2K	33.3		1.07K	2.63K	123	9.06		6.5	2.00	1.00	407.70	:(1	10.0K	!!	24/0
1 RL-10K	3.60		19.6	7.04	128	95.3		10	-	0.00	(69.2	30.0	20.0	1.4/	2:
	22.1		28.5	603.H	124	95.3		3	22.0	20.0	62.50	:(1	30.0		
FORCE 25V -	-41.5		-31.6	4.30	121	92.2		-	-	-100.		2:40	10.0	00.0		£ :
VOLPS=30V	798.H	1.22	863.M	38.4H	128	99.2			!	0.00	!!	0.00	2.00	2.00	9	
IOL-PS=30U/FORCE 3V	11.1		16.6	3.53	125	93.8		1.56	2.00	0.00	3.29	-	-	40.0	-	£ :
	2.24		2.79	188.H	124	86.8	_	9.3B	2.40	1.50	2.08		!	200		
FORCE 2.4 -	-21.0		-14.7	3.75	126	6.96		-	-	-30.0	!	X	2000	3		E :
	23.9H	438.M	137.8	119.H	128	89.1	100	(18	900	. 22		400.0	20.0	::	
IOL-PS=4.5V/FORCE 0.4	4.16	49.8	22.8	12.1	120	9.06		مرزية	8.00	00.0	1.60			12		5
			1	0		. 30 000		1 10.5	1 = 17	- 100 LIA	H : 1	11-FH :	TICK CO	-		
# EXCLUDES PUPULATION DUTSI	PUPULA	100 00	ISINE OF	LOW 7	LUW KEJ HAU	HIGH KE	1		Section 18	6			6			

Table 3-5. LM 124 Statistics at 125°C.

Figure 3-7. LM 124 Gain Magnitude Histogram.

+ V_{cc} = 25 V - V_{cc} = 0V TR(tr) = 0.75 us TR(os) = 24%

+ V_{cc} = 25 V - V_{cc} = - 1V TR(tr) = 0.55 us TR(os) = 30%

(sheet 1 of 2)

Figure 3-8. LM 124 Transient Response* v.s. Power Supply Conditions.

* Pulse generator risetime = 30 ns

III-23

+ V_{cc} = 15 V - V_{cc} = -15 V TR(tr) = 0.4 us TR(os) = 20%

+ V = 4.5 V - Vcc = 0V TR(tr) = 1.4 us TR(os) = 12%

Figure 3-8. LM 124 Transient Response* v.s. Power Supply Conditions. (sheet 2 of 2)

* Pulse generator risetime = 30 ns

III-24

Conditions 5V <+ V _{cc} < 30V	H. €	Cat Cat	Max	JC-41 Rec Min M	-41 sc Max	Worst Da X ± 3C	Worst Data \tilde{X} \pm 3C Min Max	GEOS /110-05 Min Ma	OS Max	Units
	25/125	2.4	26	2.5	2	-6.02	5.62 6.41	2.	27	Лш
	-55/25 25/125	(No Spec)	(bec)	-30	30	-20.82 -17.05	11.16	-30	88	J./V.
	25/125	-30	0.00	8,8,	8 8	-27.88	25.64	-30	82 22	Ą
214	-55/25 25/125	(No S	(No Spec)	-700	700	-592.3	517.7	-700	700	pA/°C
7	25/125 -55		150 300	-150	8e-1	-143.8 -126.9	26.6 69.3	-150	-1	Pu-
2	25/125		300	-150	-1 -1	-176.9 -175.2	53.5	-150	77	An.
à	-55/125	g P\$9	•	-100	100	1.14-	74.7	-100	100	NAW
4	-55/125	65	•	76	•	53.4	120.6	92	•	ЯР
	-55/125	D J	09		0/	71.73-	-22.86	-70	e Ar	Ψш
	-55		٠ ٤	• • •	4 3	-2.56 -2.32	5 4.81	• •	466	Ym .

Table 3-6. Device type -05 limits comparison

Parameter Symbol	Conditions 5v ≤ + v _{cc} ≤30v	4° €°	LM124 Cat Min 1	24 E Max	JC-41 Rec Min M	41 c Max	Worst X ± Min	t Data ± 3 Max	/110 Mfn	GEOS /110-05 in Max	Units
+ V _{OP}	V _{cc} =30V R _C =10KΛ R _C = 2KΛ	-55/125 -55/125	27 26		27 26		26.86 25.92	30.34	+27 +26	• •	Λ
Ays (+)	V _{cc} =30V R _C =10KΩ 2KΛ	25 -55/125	50 25	• •	50 25		-4663 0649-	12560 6617	50	• •	Vm/V
Avs	ν _{cc} = 5V R _C =10Kα 2KΩ	25 -55/125	(No	(No Spec)	10 01	-1	-7630 -6820	01901 8960	00	•	Vm/V
Vot.	30v, 10K.7. 30v, 3mA 4.5v, 2uA	-55/125 -55/125 -55/125	1 1 1	.02	on)	02 (No Spec)	004 -2.16 513	.041 3.19 1.23	1114	.035 1.5 0.4	Δ
^м он	30V, 10mA 4.5V, 10mA	-55/125 -55/125	(No	(No Spec)	ON)	(No Spec)	26.39	30.01	27	10.70	D
TR (tr)	Vcc = 30V	-55/125	(No	(No Spec)		1	(.75 typ)	typ)	•	1.0	Str
TR (0S)	Vin = 50 mV	-55/125	(No	(No Spec)	•	40	(24% typ)	typ)		07	2
SR(+), SR(-)	V _{cc} =30V, C _F =10pf V _{1n} = 10V	-55/125	(No	(No Spec)	0.1	. 2	(0.5 typ)	typ)	0.1	•	Sn/v
N ₁ (BB)	V _{cc} = 30V R _S = 50·Ω	25	(No	(No Spec)	•	15	(10	(10 max typ)	•	15	μVrms
N ₁ (PC)	V _{cc} = 30V R _S = 20 K.Ω.	25	(No S	(No Spec)	•	50	(5 ma	(5 max typ)	10	20	μVpk
SO	V _{cc} = 30V	25	(No	(No Spec)	80	•	(100	(100 min typ)	80	•	dB

Table 3-6. Device type -05 limits comparison (cont'd.)

TABLE I. Electrical performance characteristics.

Characteristics	Symbol						Device types	types		ľ		
A CONTRACTOR OF THE PARTY OF TH		(unless otherwise	herwise specified, require-	0 60	:	8	1	8	1	95		Unite
Status (2-4) and		ments of 3.4 and		Min Ma	Max	Min Ma	Nax	Min	Max	Min	Max	
Input offset voltage	V ₁₀	7	TA = 25°C -55°C <ta<125°c< td=""><td>-5</td><td>တလ</td><td>ů.ů</td><td>23</td><td>ې</td><td>o o</td><td>3.</td><td>\$ +</td><td>ì</td></ta<125°c<>	-5	တလ	ů.ů	23	ې	o o	3.	\$ +	ì
Input offset voltage	AV 10/ _	*	ΔT _A from -55°C to 25°C	-25	52	-20	80	-25	25	-30	+30	Jo/Au
temperature sensitivity	٩١		ΔTA from 25°C to 125°C	-25	52	-20	20	-25	25	-30	+30	
Input offset	1,00	Л	25°C <1 _A <125°C	-25	52	-30	30	-75	75	-30	+30	Ā
current		R _S = 20 ka	TA = -55°C	-75	75	-75	75	-150	150	-75	+75	
Input offset current	410/		ΔT _A from -55°C to 25°C	-400	400	-500	200	-1000	1000	-700 700	200	pA/°C
sensitivity	٩١		ΔT _A from 25°C to 125°C	-200	200	-200	200	-500	500	-400	400	
Input bias	+I IB	Л	25°C <1 _{A<} 125°C	1.0	00.	-200	-1	-250	1-	-150	-1	P.
THE LEGISLATION OF THE LEGISLATI		R _S = 20 kg	T _A = -55°C	0.1	325	-325	7	-400	7	-300	7	
	-1 IB	y	25°C ≤TA≤ 125°C	0.1	100	-200	-	-250	7	-150	7	NA Au
Carlo State Sheet		R _S = 20 kg	T _A = -55°C	1.0	325	-325	-	-400	-	-300	-	
Power supply rejection ratio	+PSRR	Device types $0^{-V_{CC}} = -20 \text{ V};$	Device types 01 through 04: $+V_{CC}$ = 10 V and $-V_{CC}$ = -20 V; device type 05: $+V_{CC}$ = 20 V	-100	90	-100	100	-100	100	-100	The state of the s	n//v
A Marie de Courant.	-PSRR	+V _{CC} = 20V and (Device types	= 20V and -V _{CC} = -10 V ice types 01 through 04 only}	-100	100	-100	100	-100	100			n//n
Input voltage common mode rejection	8	2/ Common mode range	(30 V for types 01-04 (28 V for type 05	9/	1	76	1	92		9/	1	8
Output short circuit current (for positive output)	(+)SO ₁	3/ (Only one ampl at one time) t <25 ms	(Only one amplifier shorted to ground at one time) t <25 ms	-55	1	-80	1	-80	1	-70		¥
Output short circuit current (for megative output)	(-)so ₁	For type For type	For types 01-04: $\pm V_{CC} = \pm 15 \text{ V}$ For type 05: $\pm V_{CC} = 30 \text{ V}$.	!	8	!-	88	i	8	1	1	4

See notes at end of table.

TABLE 3-7. MIL-M-38510/110 electrical specifications.

TABLE I. Electrical performance characteristics -Continued.

Characteristics	Symbol	(Ilalan athomates e	Conditions	20 10			Device types		100	90	T	Ilnite
		Uniess otherwise s	uniess otherwise specified, require-	0,10	1		2			5	Т	51110
		ments of 3.4 and	rigure 6 shall apply/	Min	Max	Min	n Max	Min	n Max	Min	Max	
Supply current	4/ I'c	For types 01-04:	T _A = -55°C	-	4.5	i	6	i	13	1	4	Ą
THE PERSON NAMED IN PORT OF	3	\S(_ = \)3\\+	TA = 25°C		3.6	:	7	:	=	!	3	
		For type 05: +V _{CC} = 30 V	T _A = 125°C		3.6		7		=	!	m	
Maximum output voltage swing	40 ₀ +	For types 01-04,	R _L = 10 kg	91+	1	+16	1	+16	1	+27	1	>
		For type 05,	R = 2 kg	+15	ŀ	+15	i	+15	1	+26	1	۸
	-V0P	+VCC = +20 V	R = 10 kg	11	-16	:	-16	:	-16	1	:	٨
			R = 2 kg		-15	:	-15	:	-15	!	1	>
Single ended open	Avs(+)	R _L = 10 ka For types 01-04: +V _n = +15 V	۱ً۸-℃	90	:	20		90		20	:	29
Constraint Constraints	and	For types 05: $V_0 = 1$ to 26 V	-55°C <ta-125°c< td=""><td>25</td><td>1</td><td>52</td><td>-</td><td>25</td><td>1</td><td>25</td><td>1</td><td></td></ta-125°c<>	25	1	52	-	25	1	25	1	
That's EMELY AND STATES	Avs(-)	R _L = 2 ka	T _A = 25°C	905	-	20	-	20	1	95	1	Vm/V
Spender		For types 01-04: -V ₀ = +15 V For type 05: V ₀ = 1 to 16 V	-55°C <u>-</u> T _A -125°C	25	1	52		52		25		
Loop voltage gain	Avs	R = 10 kg and 2 kg	T _A = 25°C	10		10		10	1	10	1	
A CONTRACTOR AND		For types 01-04: ${}^{+}_{CC}{}^{-+}_{C=+5}$ V, ${}^{0}_{0} = {}^{+}_{2}$ V For type 05: ${}^{+}_{VC}{}^{-}_{C} = {}^{+}_{5}$ V, ${}^{0}_{0} = {}^{-}_{1}$ to 3 V	-55°C <u><</u> T _A <125°C	01	9/ St 19/02	01		01		10	as L	N E Ju
Low level output	N _{OI}	= 30 V, R,	= 10 kg	i	1	1	1	1	i	-	35	/m
voltage		10	= 5 mA	1	1	1	:	:	:	:	1.5	٨
		4.5 V. JOL	= 2 µA		-	1	:		-		4.0	

TABLE 3-7. MIL-M-38510/110 electrical specifications. (cont'd.)

TABLE !. Electrical performance characteristics.-Continued.

Characteristics	Symbol	Conditions				Devi	Device types	Si			T	
		(Unless otherwise specified, require		01,02	2	03		90		90		
		ments of 3.4 and figure 6 shall apply)	spply)	Limits	its	Lim	Limits	Lim	imits		Limits	Units
				Min	Max	Min	Max	Min	Max	Min Max	Max	
High level output	ν _{OH}	+V _{CC} = 30 V, I _{OH} = 10 mA		1	1	1	1.	1	1	27	1	Δ
		+ V _{CC} = 4.5 V, I _{OH} = 10 mA		:					:	2.4	:	
Transient response	TR(tr)	5/ Figure 8; V _{IN} = 50 mV;	A _V = 1	- 1	1.0		tu e	1	0.3	1	1.0	Sn
		+ V _{CC} = +20V for types 01 - 04;	Ay = 5		1.0		0.2					
	TR(0S)	V _{CC} = +30 V for type 05	Overshoot	-01	25	S .bm -2	35		40	1	40	۶^
Slew rate	SR(+)		A _V = 1	0.2	i	* 313	1	9.0	1	1.0	1	
	SR(-)	V _{CC} = +30 V for type 05	A _V = 5	9.0		0.8	No.	1	1		1	, ns
Noise (broadband)	NI(88)	TA = 25°C, R _S = 50.		1	15	1	5		2		15	NT Nu
Noise (popcorn)	NI (PC)	TA = 25°C, RS = 20 k2			40		50		20		90	uVpeak
Channel separation	S	TA = 25°C (Figure 7)		08	1	80	1	08	-	80	1	8p
					1	1					1	1

See notes

TABLE 3-7. MIL-M-38510/110 electrical specifications. (cont'd.)

- 1/ Device types 01-04 shall be tested at V_{CM} = 0, +15 V and -15 V with $\pm V_{CC}$ = ± 20 V; and at V_{CM} = 0 V and -2.5 V with $\pm V_{CC}$ = ± 5 V. Device type 05 shall be tested at V_{CM} = 13 V and -15 V with $\pm V_{CC}$ = 30 V and $-V_{CC}$ = 0; and at V_{CM} = 0 and 2.5 V with $\pm V_{CC}$ = 5 V and $-V_{CC}$ = 0.
- 2/ CMR is determined by measuring input offset voltage as follows:

	Device types						
Offset voltage		01 - 04			05		11-14-
condition	+V _{CC}	-v _{cc}	V ₀	+V _{CC}	-V _{CC}	Vo	Units
1	35	-5	15	30	0	15	٧
2	5	-35	-15	2	-28	-13	٧

- 3/ Continuous limits will be considerably lower and apply for -55°C \leq T_A \leq 25°C.
- 4/ I_{CC} limits are the total for all four amplifiers at no load, connected as grounded followers.
- 5/ Device type 05 transient response is specified with the input pulse referenced to 5 V. For applications purposes the device may be operated with the input referenced to ground, however, saturation effects will cause the response time to increase by approximately 50 percent.

TABLE 3-7. MIL-M-38510/110 electrical specifications. (cont'd).

SECTION IV

Bi-FET OPERATIONAL AMPLIFIER

TABLE OF CONTENTS

		Page
4.1	Background and Introduction	IV-1
4.2	Device Type Descriptions	IV-1
4.3	Automatic Test Development	IV-2
4.4	Tabulation of Test Data	IV-4
4.5	Discussion	IV-4
4.6	Conclusions and Recommendations	IV-6

LIST OF FIGURES

Figure	Title	Page
4-1	Bi-FET Op Amp Schematic	IV-7
4-2	Bi-FET Op Amp with bias current compensation	IV-8
4-3	Test circuit for static tests	IV-9
4-4	Bi-FET bias current vs. common mode voltage and supply voltage	IV-11
4-5	Bi-FET bias current vs. common mode voltage and supply voltage	IV-12
4-6	Bi-FET bias current vs. common mode voltage and supply voltage	IV-13
4-7	Bi-FET bias current vs. common mode voltage and supply voltage	IV-14
4-8	Test correlation between Tektronix curve tracer and automatic tester on Bi-FET bias current	IV-15
4-9	Worst case bias current vs. ambient temperature	IV-16
4-10	Typical bias current vs. warm-up time	IV-17

LIST OF TABLES

Table	Title	Page
4-1	MIL-M-38510/114 Specifications	IV-18

SECTION IV

Bi-FET OPERATIONAL AMPLIFIER

4.1 Background and Introduction

Bi-FET operational amplifiers represent a new class of devices in the evolution towards perfecting the ideal op amp. As the name of the process implies, Bi-FET op amps combine bipolar and J-FET transistors on a monolithic integrated circuit. This marriage of technologies combines standard bipolar linear processing with ion implantation. The op amp parameters which are enhanced by the Bi-FET process are high input impedance, low output impedance, wide bandwidth, high slew rates and low noise. Since the debut of Bi-FET op amps, users have been interested in incorporating them into new designs.

A review of linear device applications in military systems as well as a priority list of the JC-41 Committee were key reasons to characterize Bi-FET op amps for MIL-M-38510 procurement.

4.2 Device Type Description

A typical schematic circuit of a Bi-FET op amp is shown in Figure 4-1. Matched J-FET transistors are used for the differential input gain stage, the input current source loads and the offset adjustment control. The drain outputs of the input J-FETS feed a bipolar transistor differential stage. Signal conversion from differential to single ended is made at the collector of Q8. Since current sources exist at both the source and drain terminals of the input J-FETS, some mechanism must also exist to deal with the excess common mode current which is sourced from Q1, but not sunk by J10 and J11. Common mode feedback from the differential bipolar stage current source to the source terminals of J1 and J2 solves this problem.

With J-FET input transistors the op amp bias currents + I_{iB} , and - I_{iB} are much smaller than is possible with bipolar transistors. Since these currents are leakage currents, they are temperature sensitive and approximately double for every 10°C increase in temperature. Low noise and good high frequency response are other benefits of the J-FET front end transistors. The single ended output signal from Q8 and its J3 current source load is further amplified by the class B output stage. This output stage is a little unusual in that a J-FET, J5, complements the other bipolar output transistors. This design configuration eliminates the need for a PNP output current sinking transistor. The output J-FET also improves the stability of the op amp in driving large capacitive loads.

A Bi-FET op amp with bias current compensation is shown in Figure 4-2. This design technique is used to maintain low bias currents at elevated temperatures.

4.3 Automatic Test Development

Developing the tests for the Bi-FET op amps was done in a manner similar to previous quad op amp characterizations. A test program and an adapter card were developed in order to enable testing with GEOS' Tektronix S-3260 automatic IC test system. While the program and adapter were being developed several devices were analyzed on a Tektronix 577 curve tracer. This manual test phase is good for discovering anomalies and possible automatic tester problems. During the early characterization phase, GEOS had a requirement to production test several types of op amps for a military system. For economic considerations it was decided to build a universal op amp tester which could be programmed to test 741's, LM108A's and the LF155 series Bi-FETS.

Only limited success was achieved with the programmable tester. Although all 741 type and most Bi-FET static parameters could be tested, the Bi-FET configuration was not stable in the test modes for $\rm I_{10}$ and + $\rm I_{1B}$. In these modes 5 megohm resistors are switched in to the op amp inputs, so that the low (picoamp) bias currents can make a measurable effect on the offset voltage. The complexity of the test adapter prevented any simple circuit "fixes" from working. Bench observations of a tightly configured "breadboard" test circuit showed that the length and location of the non-inverting input wiring determined whether the circuit would be stable, oscillate or be sensitive to 60 Hz pickup.

An antenna wire on the non-inverting input, depending on its placement, could yield a mix of sustained oscillations and 60 Hz pickup as well. The sensitivity to these disturbances was much less severe on the inverting input, and also when the 5 M \(\omega\) resistor(s) was (were) shorted out. Capacitance added from the non-inverting input to ground is also helpful in stabilizing the test circuit. Using the information from these observations a second adapter was built. This new adapter was built with the following characteristics:

- The D.U.T. (device under test) socket and all associated components were designed on an artwork for an etched copper printer circuit board.
- 2. The D.U.T. (+) and (-) input runs to their connections were made as short as possible.
- 3. Relay cans were grounded.
- 4. The component side of the board and much of the run side of the board were left as copper ground planes.

- After the component lead holes were drilled, all ungrounded holes had copper removed with a fluted drill bit.
- 6. De-coupling capacitors were added as close as possible to the I.C. Vcc's.

A test circuit is shown in Figure 4-3.

This circuit is very similar to the standard op amp test circuit for bipolar devices. One major difference is that with relay K8, the bias current measurement resistors can be programmed for 5 M or 100 K o. This feature is required in measuring Bi-FET bias current over the 25°C - 125°C temperature range, since its magnitude can increase by a factor of 1000.

Devices were submitted by six I.C. manufacturers to form an industry test sample. Unfortunately, there are enough difference in the devices to prevent all the devices from being pooled into a single statistical test group for all parameters.

Shown below is a schedule of the test groups, device types and quantities.

Test Group	Туре	Vendors	Qty.
11.111	155	F, S	24
2	156	F, S, A	24
3	157	S, A, N	24
4	155A	N	19
5	156A	N	20
6	157A	ALTO 13000, 1	0
7	155A	P	20
8	156A	P	19
9	157A	P	20
10	355	T	9
		TOTAL	179

The rationale for the designated test groups are as follows:

- Between the commercial type 155, 156 and 157 devices there are differences in supply current and slew rate.
- The A subscript parts have tighter front end tolerances that their non-A counterparts.

- 3. One vendor (P) employs a bias current compensation scheme to give improved front end characteristics. Statistically pooling this data with that of the other vendor sources may obscure the details of each group.
- 4. The 355 group is only guaranteed for the 0 70°C commercial temperature range.

4.4 Tabulation of Test Data

While this report was being written, the automatic testing of the sample population of Bi-FET op amps was proceeding. The test data format is similar to that presented for the quad op amps and quad comparators in this report (individual data sheets, statistical data summaries, and histograms).

With the Bi-FET op amps, emphasis is placed on the input bias currents of the devices. Typical curves of bias current vs. common mode voltage are shown in Figure 4-4, 4-5, 4-6 and 4-7. Correlation between curve tracer and automatic tester data is shown in Figure 4-8. How temperature effects bias current is shown in Figure 4-9.

4.5 Discussion

The purported improvement of Bi-FET op amps over conventional bipolar IC op amps is in input bias current. The degree of improvement must be qualified, however, since under certain conditions of either common mode voltage range or temperature or both, Bi-FET bias currents may be larger than bipolar device bias currents. With Bi-FET devices, + $\rm I_{1B}$ and - $\rm I_{1B}$ are gate leakage currents of the front end J-FETS. The curves of Figure 4-4 through 4-8 show how bias current varies with common mode voltage for different devices and power supply conditions. It can be seen that each of the curves is similar to a diode p-n junction volt - ampere characteristic turned up side down.

The orientation of a p-n junction with the same volt - ampere characteristic as in the observed figures is with the cathode end on the bottom and the anode end on top. Thus reverse junction current would be in the positive direction on the curve. The "zener - shape" breakdown at the negative common mode voltage extreme is actually the point where the J-FET P-n junction is forward biased. This is, of course, a forbidden zone to operate a J-FET and occurs for negative common mode voltage within two volts of the negative supply rack. Inspection of the device schematic confirms this, since the source terminal of the J-FET is elevated by three p-n junction drops from - $V_{\rm CC}$.

The common mode reverse bias voltage range to the right of the forward bias knee is the most desirable operating range for low bias current. With \pm $V_{\rm CC}$ = \pm 20 V and a common mode voltage range from $V_{\rm CM}$ = -15V to $V_{\rm CM}$ = +5V, bias current increases only slightly. Diffusion characteristics, geometry and minority concentration determine the amount of reverse current. Reverse voltage only effects the current indirectly by increasing the effective depletion layer thickness of the junction. For further increases in positive common mode voltage, the junction is technically operating in the multiplication range. In other words the minority carriers that comprise the reverse current have sufficient energy to break additional valence bonds and thus multiply the generation of hole-election pairs.

In a normal p-n junction avalanche breakdown eventually occurs. When this happens the current increases at an infinite rate with voltage and the well known "zener clamp" voltage has been reached. Because there is resistance in series with the J-FET P-N junction avalanche breakdown does not occur. However, the bias current that flows will be limited by the supply voltage levels, the series resistance and the junction breakdown characteristics. In practice this current could be a thousand times the current at zero common mode voltage.

In order to provide the user with information on bias current vs common mode voltage behavior as well as to guarantee it, the MIL-M-38510/114 slash sheet specifies bias current at four voltage conditions as follows:

Condition	± Vcc	V _{cm}	I _{iB} @ T (min)	= 25°((max)
1	± 20V	- 15V	-100pA	100 pA
2	± 20V	OV	-100pA	100 pA
3	± 20V	+ 15V	-100pA	2000 pA
4	± 15V	+ 100	-100pA	300 pA

Test condition 1 is a check to determine that at the negative common mode voltage limit the J-FET inputs are not forward biased. Test condition 2 indicates the normal zero common mode voltage leakage current. It is also the base line for delta I_{1B} measurements. The breakdown characteristics of the device are tested in condition 3 at the positive common mode voltage limit.

This will always represent the worst case maximum input bias current condition. In many user applications with ± 15V supplies, test condition 4 represents the maximum input bias current of the device. The reason for the non-zero minimum limit is that one of the popular suppliers of the Bi-FET op amps employs a bias current compensation scheme, which can yield "wrong polarity" bias current. In this scheme collector current of a bipolar transistor is designed to trim out the J-FET gate current that flows. Figure 4.2 shows how bias current compensation modifies the basic J-FET front end.

As observed at the Bi-FET input terminals, only the difference current between the J-FET and bipolar devices shows. Figure 4-5 shows an over-compensated bias current characteristic of a typical device with bias current compensation.

Ambient temperature is another important condition which effects bias current. This is so because the leakage current of the devices approximately double for each 10°C rise in temperature. Figure 4-9 illustrates how the worst case limits of the devices increase with temperature. It should be observed that the slash sheet specification on bias current is with regard to junction temperature conditions.

The reason for T_j measurements is that in automatic production testing, the devices are processed at a high through-put rate and their junction temperatures have not had time to stabilize at some delta above the ambient. If the bias current limits were specified as T_A , a wait time of from three to four minutes would be required. Figure 4-10 shows the effect of warm-up time on bias current. Not only would this add significantly to the cost of testing, but the limits would have to take into account the package thermal resistance, device type, and the power supply conditions according to the relationship $T_j = T_A + 2 \ V_{CC} \ I_{CC} \ \theta_{jA}$.

where T_j = Junction temperature in °C T_A = Ambient temperature in °C

Vcc = Power supply voltage

Icc = Worst case power supply current

9jA = Package thermal resistance (junction - ambient)

The user can expect the operating bias current to be from three to four times the value corresponding to the stated junction temperature value.

4.6 Conclusions and Recommendations

Characterization of the Bi-FET op amps is not complete at the time of this writing (September 1978). The recommendations of the JC-41 Committee as modified by GEOS with regard to bias current are submitted as a tentative specification. When the testing of an industry wide sample of over 100 parts has been completed, comparisons will be made between the statistical data and the JC-41 limits to confirm or modify those limits as required.

Figure 4-1. Typical Bi-FET op amp (LF155/156/157).

Figure 4-2. Bi-FET op amp with bias current compensation.

GENERAL ELECTRIC CO PITTSFIELD MASS ORDNANCE SYSTEMS F. ELECTRICAL CHARACTERIZATION OF LINEAR INTEGRATED CIRCUITS, (U) JAN 79 J KULPINSKI, T SIMONSEN, R PASKOWSKY F30602-77-C-0 AD-A065 997 F/G 9/5 F30602-77-C-0153 RADC-TR-78-275 UNCLASSIFIED NL 2 OF 3 065997 題

Figure 4-3. Test circuit for static tests.

NOTES:

- 1/ All resistors are ± 0.1% tolerance and all capacitors are ± 10% tolerance unless otherwise specified.
- 2/ Precautions shall be taken to prevent damage to the D.U.T. during insertion into socket and change of state of relays (i.e. disable voltage supplies, current limit ± V_{CC}, etc.)
- 3/ Compensation capacitors should be added as required for test circuit stability. Two general methods for stability compensation exist. One method is with a capacitor for nulling amp feed back. The other method is with a capacitor in parallel with the 49.9 K.A.closed loop feedback resistor. Both methods should not be used simultaneously. Proper wiring procedures shall be followed to prevent unwanted coupling and oscillations etc. Loop response and settling time shall be consistent with the test rate such that any value has settled for at least 5 loop time constants before the value is measured.
- 4/ Adequate settling time shall be allowed such that each parameter has settled to within 5% of its final value.
- 5/ All relays are shown in the normal de-energized state.
- 6/ The nulling amplifier shall be a M38510/10101XXX. Saturation of the nulling amplifier is not allowed on tests where the E (pin 5) value is measured.
- 7/ The load resistors 2050 and 11.1 Kg yield effective load resistances of 2 Kg and 10 Kg respectively.
- 8/ Any oscillation greater than 300 mV in amplitude (peak-to-peak) shall be a cause for device failure.

Figure 4-3. Test circuit for static tests. (cont'd.)

+ ItB @ 0.2 nA/div

V_{cm} @ 5V/div

LM 155A S/N A2 @ ± Vcc = ± 20V

V_{cm} @ 5V/div

Figure 4-4. Bi-FET bias current vs common mode voltage and supply voltage.

Vcm @ 5 V/div

LM 155A S/N B2 @ ± V_{cc} = ± 20V

+ IIB @ 0.2 nA/div

vcm @ 5 V/div

Figure 4-5. Bi-FET bias current vs. common mode voltage and supply voltage.

+ IIB @ 0.2 nA/div

Vcm @ 5 V/div

LM 155 S/N C2 @ ± V_{cc} = ± 20V

+ IIB @ 0.2 nA/div

V_{cm} @ 5 V/div

Figure 4-6. Bi-FET bias current vs. common mode voltage and supply voltage.

IV-13

+ IIB @ 0.2 nA/div

V_{cm} @ 5 V/div

LM 157 S/N K2 @ ± Vcc = ± 20V

+ IIB @ 0.2 nA/div

Vcm @ 5 V/div

Figure 4-7. Bi-FET bias current vs. common mode voltage and supply voltage.

PASSED
TEST PUNTINE: 107.6 SECONDS
THIS DATA UNS PUN AT 10:05:04 ON
30 AUG 78

Test correlation between Tektronix 577 curve tracer and Tektronix S-3260 automatic tester. Figure 4-8.

				<u> </u>		81-19		OF ANP	(127.	155 92 156			
			ï			8145	BIAS CURRENT	50 1	.	IER API	power APPOICATION	FINE	
BIA			1 286.5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	hod	FOR SEVERAL		A YOU	RANDOR PICKED	27.40		
5 6			1					-					
VRI													
CEN			/		**								
7 1			S. C.	7-95							7	11.56	
4			19055/			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1			- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10			
PA						_					11.		
		1					::						
	1	/										<u> </u>	
		1				1						100-35/2	
	1	1			1					8:	118(55)	22	
			\										
	/	/	\						-				+
\\ \$	1	\\			\						N/83		
A			NAL O								718(55)=	wd 57 =(
W. 101			16.										
				TIME	Ž	Secons							
	10	40	•3	80	100	120	140	09/	180	200	22.0	240	037

IV-17

Characteristics	Symbol	Conditions (par. 3.4 and Fig.	. 7		7	Limits			Units
		unless otherwise specified)		10		02		03	
			min.	. max.	min.	max.	min	max.	
Input offset		TA=25*C	7	7	-4	7	7-	7	Var
voltage	01,	Vem-0V -55°C 4.14-125°C	9-	9	9-	9	9-	9) III
		TA=25°C	4	4	4	4	4	7	1
		Vcc = 150, 0V -55°C + 1A +125°C	9-	9	9-	9	9-	s	Vm
Input offset volt-	-		-30	,	-30	•	-30	2	10/10.
age temperature sensitivity	A VIO	Vcm=0v		3		20		3	, , ,
Input offset		+ We = = 200 1 5 25°C	004- 2	400	-400	006	-400	400	PA
current	OI ₁	0 5 Ven 5+13 0 Tj= 125°6	06- 30	30	-30	38	-30	30	yu
		+ WC = +20V T = 28'C	02- 7	20	-20	20	-20	2	PA
		15 15 15 15 15 15 15 15 15 15 15 15 15 1	1 -20	20	-70	92	20	20	nA
Input bias	+Ira.	+ Vec = +20v T3 = 25°	201- 2	2000	-109	2000	2000 -100	0002	PA
current	i ,	05 Vene +13 V	7	3	1	09)-	09-	MA
	911	7.52= リ ハリニニコハギ	001- 7,	300	-/00	300	-100	700	pd
	7	05 KH =+101 T3=125")- J	50	-(2	1-1	2	MA
	জ	2,12= 1 APZ = 27 7 = 28.c	001- J.	100	-100	100	100	100	b/d
		352) = 12 1034375 151-	1- 35	20)-(20	1-	20	Y"
Power supply rejection ratio	+PSRR	+V _{cc} = 10V, -V _{cc} = -20V	85	:	85	i	85	1	q B
V	-PSRR	+Vcc = 20V, -Vcc = -10V	88		85	ł	88	i	ap

Table 4-1. MIL-M-38510/114 specification.

2004

Characteristics	Symbol	Conditions (par. 3.4 and Fig. 7			17	Limits			Units
		unless otherwise		10		02		03	
			min.	max.	min.	mex.	min.	max.	
Input voltage common mode rejection 2/	CHE	±V _{cc} = 20V VIN = ±15V	8	l.	88		85		g
Adjustment for input offset	VIO ADJ(+)	±V _{CC} = 20V	\$	70.53	8	1 8	&	1 4	N
voltage	V10 ADJ(-)	±V _{CC} = 20V	io.	8	- botto	8	i	80	Λш
Output short cir- cuit current (for positive output) 3/	-	±Vc = ±15V t £25 mS (Short circuit to ground)	09-	I	9		9-	la	¥
Output short cir- cuit current (for negative output) 3/	(-) so ₁	±V ₅ = ±15V t ≤25 mS (Short circuit to ground)	T QATE	09	**************************************	8	20 1	8	Ą
Supply current	Lcc	2°cc = ±15V TA = -55°C		9	:	=	:	11	
			1	7	:	7	:	1	Ą
		TA - +125°0	1	7	:	1	:	1	
- 5	VOP	±Vcc = 20V, RL = 10 KA	+16	:	+16	:	‡16	:	=
sving (meximum)		±Vcc = 20V, RL = 2 KA	±15	:	÷15	i	±15	1	
Open loop voltage	Avs (±)	±Vcc = 20V TA = 25°C	20		50	:	20	:	V/mV
/4	A		25		25		25	:	
Open loop voltage gain (single ended)	Avs	±V _{cc} = 5V R _L = 2 K.α. V _{OUT} = ± 2V	10	•	10	1	10	•	V/mV
: response	TR(tr)	Ü		300		200			
Rise time		RL = 2 KG AV=5	:	:	:	:	:	007	Su
response	TR(os)		:	07	:	07	::	:	
Overshoot		see Figure 8 AV=5	:	:	-	:	:	25	

See footnotes at end of table.

Characteristics Symbol	Symbol	Conditions (par. 3.4 and Fig. 7			LL	Limits			Units
おかれからます 12 mm まんではな		unless otherwise specified)		01		02		03	
			min.	min. max. min. max. min. max.	mfn.	max.	min.	max.	
Slew rate	SR(+)	VIN = ±5V; 25°C ≤ TA ≤ 125°C	2	:	7.5	1	-	:	12.0
	poe	See Fig. 8 TA = -55°C	1	:	2	1	1	:	V/us
Telephone (Educate) and a	SR(-)	VIN = ±5V; 25°C < TA < 125°C	1	:	1	ł	30	•	
		See Fig. 8 TA = -55°C	1	:	i	1	20	:	
Noise (referred N _I (BB) to input) Broad-	N _I (BB)	±Vcc = 20 V; TA = 25°C	!	10	1 2	9	i	01	uVrms
band									
Noise (referrred N _I (PC) to input) Popcorn	NI (PC)	TA = 25°C	:	07	:	07	i	07	uVpk

The measurements for bias currents must be made within 25 ms.c after power is first applied to the device for test. Measurement at TA = -55°C is not necessary since specified at Ty rather than TA, since normal warmup thermal transfents will affect the for each 10°C increase in junction temperature Tj. Measurement of bias current is Bias currents are actually junction leakage currents which double (approximately) expected values are too small for typical test systems. bias currents. 1 NOTES:

CMR shall be calculated from $V_{\rm IO}$ measurements at $V_{\rm CM}$ = +15V and -15V. 7

Continuous limits shall be considerably lower. Protection for shorts to either supply exists providing that T_J(max) ≤ 175°C. 3

requirements, if needed, should be specified by the user in additional procurement documents. Open loop gain is not guaranteed to be linear or positive over the operating range. 1

SECTION V

MIL-M-38510/115

VOLTAGE REGULATORS, NEGATIVE

TABLE OF CONTENTS

List of Figures List of Tables V- 5.1 Background and Introduction V- 5.2 Descriptions of Device Types V- 5.3 Test Circuits and Test Procedures V- 5.4 Device Characterization V- Constant and Test Procedures	ge
5.1 Background and Introduction V- 5.2 Descriptions of Device Types V- 5.3 Test Circuits and Test Procedures V- 5.4 Device Characterization V-	ii
5.2 Descriptions of Device Types v- 5.3 Test Circuits and Test Procedures v- 5.4 Device Characterization v-	111
5.3 Test Circuits and Test Procedures v- 5.4 Device Characterization v-	Ĺ
5.4 Device Characterization v-	2
5.4 Device Characterization V-	7
Will be all the second of the	8
5.5 Conclusions and Recommendations v-	10
5.6 Bibliography V-	43

presentation and the second

LIST OF FIGURES

Mil.-Wollisso/115

Figure	AVICADTO TICLE AND SOLLIOV	Page
5-1	Block diagram of the voltage regulator	V-3
5-2	7900 Equivalent circuit	V-4
5-3 OSAT	LM120 Equivalent circuit	V-5
5-4 11-V	Bandgap reference	V-5
5-5 *****	Test circuit for static tests	V-7
5-6	Test circuit for start-up test	V-8
5-7	Test circuit for output short circuit current	V-9
5-8	Regulation threshold versus input voltage and load current	V-39
5-9a	Overstressed negative regulator chip	V-40
5-9b	Overstressed negative regulator chip	V-40
5-9c	Overstressed negative regulator chip	V-41
5-9d	Overstressed negative regulator chip	V-41
5-9e	Overstressed negative regulator chip	V-42
5-9f	Overstressed negative regulator chip	V-42

LIST OF TABLES

Table	Title	Page
5-1	Device types specified	V-1
5-2	Device types characterization	V-2
5-3	Summary of failures and problems by vendor	v-14
5-4	Summary of failures and problems	y-15
5-5	Output voltage versus input voltage and load current for device type 01	V-16
5-6	Output voltage versus input voltage and load current for device type 02	V-17
5-7	Output voltage versus input voltage and load current for device type 03	V-18
5-8	Output voltage versus input voltage and load current for device type 04	V-19
5-9	Output voltage versus input voltage and load current for device type 05	v-20
5-10	Output voltage versus input voltage and load current for device type 08	V-21
5-11	Line regulation for device type 01	V-22
5-12	Line regulation for device type 02	V-22
5-13	Line regulation for device type 03	V-23
5-14	Line regulation for device type 04	V-23
5-15	Line regulation for device type 05	V-24
5-16	Line regulation for device type 08	V-24
5-17	Load regulation for device type 01	V-25
5-18	Load regulation for device type 02	V-25

LIST OF TABLES (cont'd.)

Table	Title	Page
5-19	Load regulation for device type 03	V- 26
5-20	Load regulation for device type 04	V- 26
5-21	Load regulation for device type 05	V-27
5-22	Load regulation for device type 08	V- 27
5-23	Output short circuit current for device type 01	V-28
5-24	Output short circuit current for device type 02	V-28
5-25	Output short circuit current for device type 03	V-29
5-26	Output short circuit current for device type 05	V-29
5-27	Output short circuit current for device type 08	v-30
5-28	Electrical performance characteristics for device type 01	v-31
5-29	Electrical performance characteristics for device type 02	V-32
5-30	Electrical performance characteristics for device type 03	v-33
5-31	Electrical performance characteristics for device type 04	v-34
ES=V	Electrical performance characteristics for device type 05	V-35
5-33	Electrical performance characteristics for device type 06	V-36
5-34	Electrical performance characteristics for device type 07	V-37
5-35	Electrical performance characteristics for device type 08	V-38

SECTION V

MIL-M-38510/115

VOLTAGE REGULATORS, NEGATIVE

5.1 Background and Introduction

The acceptance and popularity of the Integrated Circuit (+ 5 volt) Voltage Regulator has prompted the design and manufacture of both positive and negative fixed output three-terminal voltage regulator families. The families of positive fixed output voltage regulators chosen for MIL-M-38510/107A were the LM140K, LM141H, 7800 and 78M00. It was decided by the manufacturers, the government and GEOS that as a natural outgrowth, the negative fixed output voltage regulator specification should include regulators from the LM120K, LM120H, 7900 and 79M00 families.

A survey of power requirements for linear devices and data converters (i.e. A/D and D/A converters) indicates that all such devices require either \pm 15 VDC or \pm 12 VDC. A similar survey of microprocessors indicated a need for a - 5 VDC voltage regulator. Therefore, GEOS agrees with the decision to characterize and specify fixed negative output voltage regulators with output voltages of -5VDC, -12VDC, -15VDC and -24Vdc.

The following table shows the voltage regulators included in this specification from these families:

TABLE 5.1: Device Types Specified

Device Type	Output Voltage, V	Output Current, A	Commercial Type
01	5	- 0.5	79M05, LM120H-5.0
02	-12	- 0.5	79M12, LM12OH-12
03	-15	- 0.5	79M15, LM12OH-15
04	-24	- 0.5	79M24, LM12OH-24
05	- 5	- 1.0	7905 , LM120K-5.0
06	-12	- 1.0	7912 . LM120K-12
07	-15	- 1.0	7915 , LM120K-15
08	-24	- 1.0	7924 , LM120K-24

As a result of the observed design similarity throughout the families of positive fixed output voltage regulators, and in an effort to economize on the characterization effort small sample sizes were used. For the 1.0 ampere regulators, the -5VDC and -24VDC devices were obtained. For the 1/2 ampere regulators, -5VDC, -12VDC, -15VDC and -24VDC devices were obtained. The total quantities of the test samples indicated in the following table were supplied to GEOS by RADC.

TABLE 5.2: Device Types Characterized

Device	t Gircuit (4.5	Quantity of	Devices	s anealderes
Туре	Vendor A	Date Codes	Vendor B	Date Codes
01	4 + 4*	704, 806	w dangtan beat	642
02	yd 4 oblasb ar	626	DON'S HEADER	712
03	o Jeneryjano.	Andrea # 98 166	2 308 2 309	516
04	include eggs	almost subtack?	4 + 3*	543, 632
05	4	648	STANDARD BELLEVA	619
06				-
07	o grad day as	sived years to	图 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Report of America
08	poitAmpliant d	725	3 + 2*	628, 816

^{*} GEOS purchased 4 additional units of device type 01 and 3 additional units of device type 04 for evaluation. Vendor B shipped 2 additional units of device type 08 for evaluation.

5.2 Description of Device Types

The 7900 and LM120 three-terminal negative voltage regulators have designs with enough similarity that a common specification can be developed to describe both families. Although some design differences exist, both negative voltage families contain the same functional elements. A general block diagram of these regulators is shown in Figure 5.1. The voltage regulator consists of a) a start-up circuit to ensure that the device is rapidly brought into regulation, b) a temperature - compensated voltage reference, plus a current source to eliminate the effect of the unregulated input voltage on the reference voltage, c) an error amplifier, d) a current limiting circuit, e) a thermal shutdown circuit, f) a safe operating area protection circuit, g) a series pass transistor and h) laser trimmed resistors to factory-set the output voltage and peak output current.

Figure 5.1. Block diagram of the voltage regulator

A detailed discussion of regulator theory can be found in any of the references listed in section 5.6. A schematic of the 7900 series equivalent circuit is shown in Figure 5.2 and a schematic of the LM120 equivalent circuit is shown in Figure 5.3.

For the following discussion of the negative voltage regulator, refer to Figure 5.2. The start-up circuit for this regulator consists of zener diode D1 and transistors Q1 and Q2. The start-up circuit supplies current for Q3 which in turn activates the current source transistor Q7. Transistor Q7 now supplies current to zener diode D2, and transistor Q2 is shut off. Voltage reference options of -2.23 V or -6.2 V are made for output voltage ranges of -5 V to -8 V or -12 V to -24 V respectively.

Most of the voltage reference circuits used in today's monolithic voltage regulators are the bandgap reference type. A simplified schematic of a bandgap reference is shown in Figure 5.4.

Figure 5.2. 7900 Equivalent circuit

Figure 5.3. LM120 Equivalent circuit

mentes creamity via executation to and varieties & thirty via age confined as amplied and the street confined as

Figure 5.4. Bandgap reference

with through resistor All. When the weitegs drep medoes All whee suffit

In this circuit, two monolithic transistors operating at different collector current densities develop a voltage. Δ V_{BE}, at the emitter of Q2. This voltage has the relationship: Δ V_{BE} = $\frac{KT}{q}$ ln $\frac{(II)}{(I2)}$ and the temperature

coefficient (TC) of this voltage is positive. When the voltage is amplified and added to the base-emitter voltage of Q3, which has a negative TC, the resultant output is:

$$v_{REF} = v_{BEQ3} + \frac{R2}{R1} \Delta v_{BE}$$

By proper adjustment of the gain (R_2/R_1) , the negative TC of V_{BEQ3} can be made to cancel the positive TC of ΔV_{BE} . The result is a voltage reference that has nearly zero temperature drift.

In Figure 5.2, the bandgap reference voltage is coupled to the non-inverting input (Q10) of the error amplifier. The error amplifier consisting of transistors Q10 through Q13 also receives its bias from the voltage reference circuit via transistor, Q9 and resistor R8. Output voltage feedback is coupled from the feedback network of R24 & R25 to the inverting input (Q11) of the error amplifier. The output of the error amplifier is coupled to the series-pass transistor Q20 via transistors Q17, Q18 and resistor R12. Since the series-pass transistor Q20 is operating in an emitter follower mode the output must be stabilized with an external capacitor from output to ground.

The output voltage of the regulator is controlled by the ratio of the two resistors R24 and R25. These two resistors are adjusted to optimize both the bias current for Q11 and the output voltage. The output voltage is determined by the relationship:

$$v_{OUT} = (v_{ref}) \cdot \frac{(R24 + R25)}{(R24)}$$

The 7900 has three protection circuits to protect the device. Thermal overload protection is provided by transistor Q5. The transistor is physically located near the series-pass transistor. As the temperature rises, the VBE, necessary to turn on Q5, decreases. At a predetermined temperature (greater than 150°C), transistors Q5 and Q16 turn on and the current to Q17 is turned off. Short circuit protection is provided by detecting the current flow through resistor R13. When the voltage drop across R13 rises sufficiently, transistors Q19 and Q21 will turn on and the current to Q17 is turned off. Finally, the safe operating area protection circuit, made up of

NOTES:

- 1/ Adjust the frequency, amplitude and pulse width of the pulse voltage (V_p) equal to 200 pps, 1.0 volts and 100 usec, respectively.
- $\underline{2}$ / Apply an input voltage, $V_{in}(min) \leqslant V_{in} \leqslant V_{in}(max)$.
- $\frac{3}{V_E}$ Set S1 to position 2. With V_p = 0, adjust the offset null so that V_E = 0.
- 4/ Adjust the pulse voltage (Vp) so that the voltage pulse (VE) measured on the oscilloscope, is equal to the magnitude of the desired load current (IL).
- 5/ Set the oscilloscope time base to view the 100 us pulse. Set the type W plug-in for a vertical input attenuator setting of 2 mV/cm and the display for A-V_c.
- $\underline{6}/$ Set S1 to position 1 and adjust the comparison voltage (V_c) for a zero volt reading 50 usec from the start of the sweep.
- 7/ Measure and record the voltage V_c . $(V_o = -V_c)$.
- 8/ Observe the oscilloscope for any unusual spikes, oscillations, overshoot, undershoot, droop, blooming, etc.
- 9/ Repeat setps 4/ through 8/ for each specified combination of load current and input voltage.

Figure 5.5. Test Circuit for Static Tests.

Device Type	01	02	03	04	05	06	07	08	Test Condition Group
R ₁ for I ₁ = 5mA	1.0Km	2.4Kn	3.OKA	4.8Kn	1.0Km	2.4Kn	3.0K-2	4.8K4	
Vin (min)	8 Vde	15 Vde	18.5V&	28 Vde	8 Vdc	15 Vde	18.5Vd	28 Vde	1
Viw (men)	35 Vde	35 Vdc	35 Vole	401de	35 Kde	35 Vde	35 Kde	40 Vde	
Refor In = 350mAsoom	14.3a	34a	43.4	68 n	101	241	301	48 A	
1 Vin (min)	8 Vdc	15 Vde	18.5 KL	28 We	8 Vdc	15 Vde	18.5K	28 Vdc	2
Vincmax)	2516c	32Vde	35Vdc	40Vdc	25 Vde	32 Vde	35 Vde	40Vde	
R. for I. = I. (max)	10a	241	30.a	48r	52	121	15-2	242	
I Vin (min)	8 Vde	15 Vde	18.5 Kde	28 Vdc	8 Vde	15 Vde	18.516	28 Vde	3
[Vin (man)]	20Vde	27Vde	30 Vale	38 Vdc	20 Vde	27Vde	30 Vdc	38 He	

NOTES:

- $\underline{1}/$ For each device type, adjust R_L for a typical load current of 5 mA.
- 2/ Adjust V_s=- |V_{in(min)} for the device type under test. Close switch S1 and observe that the proper voltage is at V_o. Open S1.
- 3/ Repeat the conditions defined in 1/ and 2/ with $V_s = -|V_{in}(max)|$ for each device type under test.
- 4/ For each device type, adjust R_L for a load current of 350 mA or 500 mA per Group 2.
- 5/ Repeat the conditions defined in 2/ and 3/ with the load current conditions defined in 4/.
- 6/ For each device type, adjust RL for a typical maximum load current.
- $\underline{7}$ / Repeat the conditions defined in $\underline{2}$ / and $\underline{3}$ / with the load current conditions defined in $\underline{6}$ /.
- 8/ With S2 closed, repeat the conditions defined in 1/ through 7/.
 Figure 5.6. Test circuit for start-up test.

Device Type	01	02	03	04	05	06	07	08	Test Condition Group
R. for IL= SmA	1.0Kn	2.4Kn	3.0Kn	4.8Kn	1.0Kn	2.4Kn	3.0K2	4.8Ka	010 36
Vin (min)	8 Vde	15 Vde	18.5 Vde	28 Vde	8 Vdc	15 Vde	18.5 Vdc	28 Vdc	1
VIN (max)	35 Vdc	35 Vdc	35 Valc	40Vde	35 Vdc	35 Vde	35 Kde	40 Vde	
Rifor I. = 350 mA 50 m	14.3a	34.0	43 A	68 n	102	242	301	48 r	_
1 Vin (min)						15 Vde			2
Vincimax)	25 Vde	32Vde	35 Vde	40Vdc	25 Vdc	32 Vde	35Vdc	40Vde	to a
R_{L} for $I_{L} = I_{L}(max)$					52		15_1		0 201
IVIN (min)	8 Vdc	15 Vde	18.5 Vde	28 Vdc	8 Vde	15 Vde	18.514	28 Vde	3
[Vin (max)]	20 Vdc	27Vde	30 Vde	38 Vdc	20Vde	27Vde	30 Vdc	38 Vdc	erro ede

NOTES:

- 1/ For each device type, adjust RL for a load current of 5 mA per Group 1.
- 2/ Adjust Vin = Vin (min) for the device type under test. Close switch S1.
- 3/ Measure and record the output short circuit current. (Ios=Iin-Iscd)
- 4/ Repeat the conditions defined in 1/, 2/ and 3/ with $V_{in} = -|V_{in}(max)|$ for each device type under test.
- 5/ For each device type, adjust R2 for a load current of 350 or 500 mA per Group 2.
- 6/ Repeat the test conditions defined in 2/, 3/ and 4/ with the load conditions defined in 5/.
- 7/ For each device type, adjust RL for a maximum load current per Group 3.
- 8/ Repeat the conditions defined in 2/, 3/ and 4/ with the load conditions defined in 7/.

Figure 5.7. Test circuit for output short circuit current.

Q23, D3, R21, and R30, detects the voltage dropped across the series pass transistor, Q20, and the series resistor R22. When this voltage drop exceeds a predetermined value, zener diode D3 turns on and limits the maximum available regulator current as the input-output voltage increases. The circuit elements found in the LM120 series voltage regulators and their operation are very similar to those found in the 7900 series.

The major protective elements in this design are:

Thermal shutdown - Q8, Q13
Short circuit protection - Q16, Q20, Q21, R16
SOA protection - D3, R20, R21, R16

5.3 Test Circuits and Test Procedures

The test circuits and test procedures used during the characterization study are shown in Figures 5.5 through 5.7. These circuits are bench type setups using non-automatic test equipment; however, equivalents of these circuits are readily programmed into an automatic tester. In order to achieve ± 1 mV accuracy for the output voltage (Vout) measurements, nulling techniques were employed using the voltage comparator available in the Type W plug-in of the Tektronix Type 585A oscilloscope. Measurements of both the load current and the output voltage were made using this nulling technique. The two sockets used for the acceptance of both the T03 cases and the T039 cases were wired in parallel and the regulator input and output capacitors were soldered to the terminals on the T03 socket. The measurement probe was connected directly to either the precision one ohm resistor leads or the DUT socket terminals in order to ensure accurate current and voltage measurements.

The start-up test, shown in Figure 5.6, measures start-up under all of the extreme combinations of input voltage and load currents. The test is also performed with a 20 uF capacitor shunting the load to simulate distributed capacitors found in most system applications. The load resistance is obtained from a precision power resistor decade box and is preselected before power is applied to the DUT. The power supply is adjustable from 0 to 40 volts and is capable of supplying several amperes at any adjusted output voltage.

For the Output Short Circuit Test (Fig. 5.7), the ammeters were connected to read input current and standby current simultaneously. This was done to eliminate the meter resistance from the output circuit when the short is applied. The recorded value was the short circuit current ($I_{OS} = I_{in} - I_{scd}$). The power supply used for this test is the same unit that is used in the startup test.

5.4 Device Characterization

The initial effort, prior to receipt of the characterization device samples, was to generate a base line specification similar in format to the one used for positive regulators based upon the JC41 Committee recommendations. Additional recommendations were later made to

- a) tighten the standby current drain and standby current drain line regulation parameter requirements because the tighter requirements can be met by vendors
- b) delete output short circuit current with minimum input voltage applied because the maximum input voltage condition is a more stringent requirement
- c) move the ripple rejection test frequency to 2400 Hz because many military systems derive power from full wave rectified 3-phase 400 Hz generators
- d) delete line voltage and load current transient tests because the large capacitors at the regulator input and output terminals negates the validity of these tests
- e) delete the thermal coefficient tests because designs do not depend on this parameter and
- f) incorporate the thermal transient test because this test is both a measure of quality of the chip bond to the gase and a meansure of the device low frequency rejection capability.

A preliminary copy of the specification electrical peformance characteristics for device types 01 through 08 is shown in Tables 5.28 through 5.35. Test tables contain the recommendations of the JC41 Committee and also reflect recommendations arrived at as a result of device anomaly investigations.

The JC41 Committee also reported possible start-up problems on certain devices; GEOS evaluation therefore also included stringent start-up tests. Most of the remaining work effort on negative voltage regulators was devoted to the evaluation of device anomalies; such as, a) start-up and output short circuit current under different input voltage and load current conditions, b) emitter-follower type oscillations and c) hot socket insertion/extraction failures.

A programmable test circuit was built to allow device testing as originally defined in the base line specification and to allow for additional investigation of device anomalies. The test circuit schematics and the test procedures for each test performed are shown and discussed in section 5.3.

Data was taken in a bench type set up at room temperature on all of the devices listed in Table 5.2, except for those devices shown with an asterisk. These data measurements began with the evaluation of output voltage (Vout) and output short circuit current (Ios) under different input voltage and load current conditions. Data taken on device types 01, 02, 03, 04, 05 and 08 has been tabulated in Tables 5.5 through 5.27. These tables show the calculated mean values of data taken on device type samples for specified conditions. In addition, the tables show the minimum and maximum values and their percentage below and above the corresponding mean values. The results show that the values are all well within the limits shown in Tables 5.28 through 5.35. However, data was taken only at room temperature (i.e. 25°C ± 5°C). A summary of the device failures and problems is shown in Table 5.3 and Table 5.4. The significant failures include device failures resulting from hot socket insertion/extraction and output short circuit current testing Additionally six of sixteen units dropped out of regulation in such a way that the output voltage began to track the input voltage. Outputs as high as -11.8 volts were observed from the -5.0 volt regulator and as high as -28 volts were observed from the -24 volt regulator. Data was taken on the three device type 05 failures to show when the devices stopped regulating as the input voltage and the output load current were simultaneously varied. Figure 5.8 shows the threshold level at which three devices go out of regulation versus input voltage and load current. Below and to the left of the curve the output voltage was within specification. Above and to the right of the curve the output voltage magnitude increased as the input voltage magnitude increased.

The output short circuit current failures shown in Table 5.3 were all catastrophic. Several of these devices were delidded and photos were taken of the destroyed devices. These photos are shown in Figures 5.9b and 5.9c. In each case, the pass transistor of the device was destroyed. An examination of Table 5.3, Table 5.4 and Tables 5.23 through 5.27 shows that a) these failures occurred primarily to device type 04 from vendor B and that b) in general, power dissipation during the output short circuit condition for all units was far in excess of the capability of a TO-39 case. Power dissipation was generally in excess of five watts.

Start-up problems on the other hand were observed chiefly in devices from vendor A. These problems were observed in device types 01, 05 and 08 as the magnitude of the input voltage was increased. For device type 01, the problem was observed when the magnitude of the input voltage was greater than 20-25 volts. For device type 05 and 08, the problem was observed when the magnitude of the input voltage was greater than 30-35 volts. Since devices could be started at voltages lower than those mentioned above, it was possible to first start the device sample and then increase the input voltage beyond the point where start up problems occur. Data tabulation in Table 5.5 through 5.27 was obtained in this manner, when necessary.

Hot socket insertion/extraction problems were observed in five device samples from vendor A. After experiencing these failures, this practice was stopped. The failure mode of the regulators was a partial short from input to output.

Emitter-follower type oscillations were observed on several regulators when the output terminals were decoupled with a 1.0 uF ceramic capacitor at various load conditions. However, the addition of an extra 1.0 uF ceramic capacitor eliminated these oscillations. Vendors of both the LM120 series regulators and the 7900 series regulators recommended different stabilizing capacitors at the output terminals of the two regulator types. Spec sheets for the 7900 series recommended either a 1 uF ceramic or a 1 uF solid tantalum capacitor at the output terminals of the regulator. Spec sheets for the LM120 series recommended either a 1 uF solid tantalum or a 25 uF aluminum electrolitic at the output terminals of the regulator The JC41 Committee has agreed on a recommendation of a 2.0 uF solid tantalum at the output terminals of the regulator.

5.5 Conclusions and Recommendations

Several anomalies were observed in characterization of negative voltage regulators. These anomalies appear to be related and should be investigated further in order to determine a satisfactory resolution. By far, one of the most serious failure modes observed during these investigations is the one in which the output voltage begins to track the input voltage. This anomaly occurs when the load currents at the output terminals of the regulator are less than 5 mA. Since these currents are not specified for negative regulators, this anomaly will not be picked up during test. A failure mode of this type could result in multiple system failures if overvoltage protection is not designed into the system. It is, therefore, recommended that the specification contain a caution note to indicate the possible existance of this failure mode.

The output short circuit current failure mode generally results in the total destruction of the pass transistor; and thus, an open circuit results between input and output. This failure mode results in system shut down but does not cause multiple system failures because of an over-voltage condition. The desired test time for testing this parameter is five seconds; however, this would make the costs prohibitive.

In addition, this test and the output peak current test are stress tests and should not be performed last in a test sequence. The JC41 Committee has recommended that these tests be performed prior to the start-up test, which will be performed last in the test sequence. The JC41 Committee will also recommend an adequate start-up test. In order to eliminate excessive heating of the device under test, the switch, used to initiate start-up, should be operated at a 2% duty cycle.

Ordnance Systems is of the opinion that the device anomalies associated with negative regulators contradict the MIL-M-38510 objective of reliability. The industry none-the-less has experienced a great demand for these devices, including military system applications, and reportedly few complaints have been received. It is also necessary to point out that the device problems uncovered during this characterization have not been verified by the industry at the time of this writing. Further evidence and negotiation is required at the committee level to determine the appropriate final corrective action.

TABLE 5.3. Summary of Failures and Problems by Vendor

Test	Vendor A	Vendor B
Number of Induced Failures	ing Subsamus	es bug resis
Number of Hot Socket Failures	5	N/A
Number failed Vout	2 1144 0146	4
Number destroyed during Ios	Property and the	6
Number failed Start-up	12	1
Number dropped out of regulation	2	4
Number units oscillate	3	4

"Seni deserviren es jou blimas Des aless eservir es dais ineigen (ese supred

test sectiones the JOAN Consister will about recommend on advants scart up test, so order to silveride exact true hearting of the design woller mean time switch, start or some test of a consister at the sector of the sector of

TABLE 5.4. Summary of test failures and problems.

Device Type	Total Tested	Number of Induced Failures	Number of Hot Socket Failures	Number Failed Vout	Number Destroyed During Ios	Number Failed Start-up	Number Dropped out Regulation	Number Oscil- lating	Number Passed Spec.
91	13*	7	4/4	DE 500 ST	e e de la compa	1	and the state of		3
02	•		N/A	2 N - 2 N -	To the section	12v = 53100	1977 - 198	- 1 2 box	S
03	2	200 Sept. 100 Se	N/A	8		•	•	•	2
8	*		N/A	-	2			•	0
05	7		1/1	4		e	4	s	2
08	6	100 100 100 100 100 100 100 100 100 100	N/A	2	•	8	2	-	•
TOTAL	43	64 120	S	9	9 33	13	۰	7	20

* Four of device type 01 and three of device type 04 units were checked for start-up failures and output short circuit current failures only.

Output voltage (Vout) versus input voltage (Vin) and load current (IL) for device type 01.

Input		Output Voltage (Vout)	(Vout)			
S E	IL = 5 mA	I _L = 50 mA	I _L = 350 mA	I _L = 500 mA	Value	Unit
ı	(256) 110.5-	-5.007 (95%)	(276) 700.2-	-5.005 (-1.49%)	Mfn	Volts
6	4.964 (+1.212)	-4.959 -4.890 (+1.39%)	-4.959 -4.875 (+1.72%)	-4.931 -4.851 (+1.63Z)	Mean	
	-5.011 (91%)	-5.011 (977)	-5.009 (-1.15%)	-5.006 (-1.47%)	Mfn	_
-10v	7.966	-4.963	-4.952	-4.934	Mean	
	-4.905 (+1.23%)	-4.893 (+1.41%)	-4.877 (+1.51%)	-4.855 (+1.59%)	Max	
	-5.014 (84%)	-5.016 (97%)	-5.015 (-1.25%)	-5.006 (-1.29%)	Min	_
-20A	-4.972	-4.968	-4.953	-4.942	Mean	
N. S. GATE. N.	-4.905 (+1.34Z)	-4.905 (+1.27%)	-4.888 (+1.31%)	-4.862 (+1.63%)	Max	8 N.C. II
	-5.020 (86%)	-5.020 (99%)	(279' -) 210'5-		Mfn	
-35v	4.977	-4.971	-4.985 2/	N/A 3/	Mean	-
SECTION OF	-4.920 (+1.15Z)	-4.906 (+1.3%)	-4.968 (+ .34%)	10 To	Max	

Min value of Vout for all readings = -5.020 Volts Mean value of Vout for all readings = -4.959 Volts Max value of Vout for all readings = -4.851 Volts

Spec: -5.25V \$ Vout \$ -4.75V

For each indicated input voltage (V_{1n}) and load current (I_L) , the elements of the matrix show a) the mean value, based on six device samples from two manufacturers, of the output the maximum output voltage and the percentage above the mean and c) minimum output voltage and the percentage below the mean. voltage, b) OTES:

Only three samples continued to regulate the output voltage with V_1 = -35V and I_L = 350 mA. This is an unspecified condition. 71

None of the six samples continued to regulate the output voltage with V_1 = -35V and $I_{\rm L}$ = 500mA. This is an unspecified condition. is an unspecified condition. 13

1 TABLE 5-6. Output voltage (Vout) versus input voltage (Vin) and load current (IL) for device type 02.

Input		Output Vol	Output Voltage (Vout)			
(V _{1n})	I _L = 5 mA	IL = 50 mA	I _L = 350 mA	IL = 500 mA	Value	Unit
	-12.100 (85%)	-12.100 (927)	-12.100 (-1.11%)	-12.070 (91%)	Min	Volts
-15v	-11.998 -11.872 (+1.05%)	-11.990 -11.865 (+1.04%)	-11.967 -11.825 (+1.18%)	-11.962 -11.820 (+1.18%)	Mean	
-174	-12.110 (92%) -12.000	-12.100 (90%) -11.993	-12.100 (-1.08%) -11.971	-12.075 (90%) -11.968	Min	_
	-11.875 (+1.04%)	-11.867 (+1.05%)	-11.837 (+1.12%)	-11.825 (+1.19%)	Max	
	-12.110 (93%)	-12.110 (967)	-12.110 (-1.12%)	-12.080 (90%)	Mfn	
-27V	-11.998	-11.995	-11.976	-11.972	Mean	THE STATE OF
1.0	-11.877 (+1.012)	(+1.06%)	-11.840 (+1.13%)	-11.830 (+1.18%)	Max	61 22 Mg 45
	-12.110 (92%)	-12.110 (93%)	-1.2110 (-1.09%)	-12.080 (-1.06%)	Mfn	
-32v	-11.999	-11.998	-11.979	-11.953	Mean	_
A COLUMN	-11.875 (+1.042)	(+1.08%)	-11.840 (+1.162)	-11.830 (+1.03%)	Max	
	-12.115 (96%)	(-12.110 (93%)	(-12.110 (-1.062)	-12.080 (-1.36%)	Mfn	V-21-24
-35v	-12.000	-11.999	-11.983	-11.918	Mean	-
	-11.875 (+1.042)	-11.870 (+1.072)	-11.870 (+1.07%) -11.842 (+1.17%)	-11.795 (+1.032)	Max	•

Spec. -12.6 V ≤ Vout ≤-11.4 V Min value of Vout for all readings = -12.115 volts Mean value of Vout for all readings = -11.981 volts Max walue of Vout for all readings = -11.820 volts

NOTES:

For each indicated input voltage (V_{1n}) and load current (I_L) , the elements of the matrix show a) the mean value based on six device samples from two manufacturers, of the output voltage, b) the maximum output voltage and the percentage above mean and c) the minimum output voltage and the percentage below the mean.

1 Table 5.7. Output voltage (Vout) versus input voltage (Vin) and load current (IL) for device type 03.

Input		Out	put Vol	Output Voltage (Vout)				•	
(Afr)	IL = 5 mA	IL = 50 mA		IL = 350 mA	1	V= 200 = 71	1	Value	Unit
-18.5v	-14.500 (09%)	-14.505 (09%)	(260.	-14.470 (09%) -14.458	(260)	-14.520 (24%) -14.485	24	Z) Min Mean	Volte
	(760. +) 54.41-	(760. +) 8/4.41-	(260.	-14.445 (+ .09%)	(760. +)	-14.450 (+ .24%)	(+ .24		
	-14.500 (10%)	(210) 012.41-	(210.	-14.475 (12%)	(127)	-14.530 (242)	(24		September 1
-20v	-14.485	-14.494	10 May 2	-14.458	The state of	-14.495	STORES CO.	Mean	The Section State
14 LEG 1	-14.470 (+ .102)	-14.478 (+ .01Z)	(210.	-14.440 (+ .12%)	(+ .12%)	-14.460	(+ .24	Z) Max	PER SINGLES CO.
	-14.502 (11%)	-14.515 (12%)	.127)	-14.485 (127)	(12%)	-14.535 (24%)	(24		_ -
-30A	-14.486	-14.498	028.1	-14.468		-14.500		Mean	
dead her	-14.470 (+ .112)	-14.480 (+ .12X)	.12%)	-14.450 (+ .12%)	(+ .12%)	-14.465 (+ .24%)	(+ .24		
11 per 112	-14.505 (107)	-14.515 (12%)	.12%)	-14.495 (127)	(12%)	-14.530 (23%)	(23	Z) Min	_ -
-35V	-14.490	-14.498		-14.478		-14.496		Mean	•
	(401 +) 547 71-	-16 680 (+ 127)	1271	-14 660 (+ 127)	(+ 12%)	146 467 (4 224)	(+ 23	- New	

Min value of Vout for all readings = -14.515 Volts Mean value of Vout for all readings = -14.486 Volts Max value of Vout for all readings = -14.440 Volts

Spec. -15.75V ≤ Vout ≤ -14.25V

the mean value, based on two device samples from one manufacturer, of the output For each indicated input voltage (Vin) and load current (IL), the elements of the matrix the voltage, b) the maximum output voltage and the percentage above the mean and c) minimum output voltage and the percentage below the mean. show a) NOTES: 1/

7 Output voltage (Vout) versus input voltage (Vin) and load current (IL) for device type 04. TABLE 5.8.

.

Input		Output Vol	Output Voltage (Vout)			
(V _{fn})	I _L = 5 a.A	I _L = 50 mA	I _L = 350 mA	IL = 500 mA	Value	Unit
	-23.648 (-1.15%)	-23.643 (-1.17%)	-23.610 (-1.14%)	-23.590 (-1.07%)	Mfn	Volts
-28v	-23.377	-23.370	-23,343	-23.341	Mean	-
	(+ .50%)	-23.255 (+ .50%)	-23.240 (+ .447)	-23.245 (+ .41%)		
	-23.650 (-1.17%)	-23.645 (-1.15%)	-23.611 (-1.15%)	-23.595 (-1.07%)	Mfn	_
-30A	-23.376	-23.373	-23.343	-23,346	Mean	
	-23.255 (+ .52%)	-23.258 (+ .49%)	-23.235 (+ .46%)	-23.245 (+ .45%)	Max	
	-23.655 (-1.18%)	-23.650 (-1.187)	-23.622 (-1.17%)	-23.605 (-1.08%)	-	
-38v	-23.380	-23.375	-23.250	-23.352	Mean	0 Table 10 Table 10
Walder !	-23.265 (+ .49Z)	-23.258 (+ .50%)	-23.238 (+ .487)	-23.245 (+ .46%)		
	(-23.655 (-1.182)	-23.650 (-1.072)	-23.622 (-1.16%)	-23.610 (-1.11%)	Min	_
-40v	-23.379	-23.400	-23.352	-23,351	Mean	_
Designation and	(+ .51%)	-23.262 (+ .59%)	-23.238 (+ .492)	-23.240 (+ 487)		•

Min value of Vout for all readings = -23.655 Volts Mean value of Vout for all readings = -23.357 Volts Max value of Vout for all readings = -23.235 Volts

Spec. -25.20v Vout -22.80v

the mean value, based on four device samples from one manufacturer, of the output For each indicated input voltage (Vin) and load current (IL), the elements of the matrix voltage, b) the maximum output voltage and the percentage above the mean and c) the minimum output voltage and the percentage below the mean. show a) NOTES: 1/

TABLE 5.9. Output voltage Vout versus input voltage (Vin) and load current (IL) for device type 05. 1/

Input		Output	Output Voltage (Vout)			
(Vin)	IL = 5 mA	I _L = 100 mA	IL = 350 mA	I _L = 1.0 A	Values	Unit
	-5.115 (85%)	-5.116 (972)	-5.104 (96%)	-5.072 (93%)	Min	Volts
- 84	-5.072	-5.067	-5.055	-5.026	Mean	
	-5.024 (+ .94Z)	-5.018 (+ .97%)	(276. +) 600.5-	-4.984 (+ .837)	Max	
	-5.116 (83%)	(286) 611.5-	-5.106 (95%)	-5.074 (90%)	Min	
-10v	-5.074	-5.069	-5.058	-5.029	Mean	
	-5.025 (+ .962)	-5.021 (+ .95%)	-5.011 (+ .932)	-4.986 (+ .85%)	Max	
	-5.122 (85%)	-5.123 (96%)	(256) 111.5-	-5.081 (912)	Min	
-200	-5.079	-5.075	-5.063	-5.035	Mean	
18 TO S. C. L.	-5.030 (+ .96Z)	-5.026 (+ .96%)	-5.015 (+ .95%)	(+ .89%)	Max	
	-5.054 (21%)	-5.054 (25%)	-5.042 (22%)	-5.018 (25%)	Min	
-35v	-5.044 2/	-5.041 3/	-5.031 3/	-5.005 3/	Mean	•
新聞 に動をがい	-5.033 (+ .21Z)	-5.029 (+ .247)	-5.021 (+ .20%)	-4.993 (+ .242)	Max	•

Min value of Vout for all readings = -5.123 Volts Mean value of Vout for all readings = -5.055 Volts Max value of Vout for all readings = -4.985 Volts

Spec. -5.25V ≤ Vout ≤ -4.75V

For each indicated input voltage $(V_{\rm in})$ and load current $(I_{\rm L})$, the elements of the matrix show a) the mean value based on six device samples from two manufacturers, of the output the voltage b) the maximum output voltage and the percentage above the mean and c) minimum output voltage and the percentage below the mean. NOTES: 1/

[/ Only two samples continued to regulate the output voltage.

/ Only three samples continued to regulate the output voltage.

'8' S N 187

TABLE 5.10. Output voltage (Vout) versus input voltage (Vin) and load current (IL) for device type 08. 1/

Input		Output	Output Voltage (Vout)			
(V _{fn})	IL = 5 mA	IL = 100 mA	I _L = 500 mA	I _L = 1.0 A	Value	Unit
-28V	-24.540 (-1.80%) -24.106	-24.572 (-1.93%) -24.106	-24.565 (-1.99%) -24.087	-24.550 (-2.03%) -24.062	Min	Volts
	-23.650 (+1.89%)	-23.625 (+1.99%)	-23.600 (+2.02%)	-23.545 (+2.15%)	Max	
	-24.545 (-1.82%)	-24.570 (-1.93%)	-24.565 (-2.14%)	-24.550 (-2.02%)	Min	943
-30V	-24.107	-24.104	-24.094	-24.064	Mean	
	-23.640 (+1.94%)	-23.620 (+2.01%)	-23.608 (+2.02%)	-23.560 (+2.09%)	Max	-
8	-24.550 (-1.77%)	-24.570 (-1.93%)	-24.570 (-1.87%)	-24.545 (-1.98%)	Mfn	
-38v	-24.123 2/	-24.106	-24.119	-24.068	Mean	3411
	-23.645 (+1.98%)	-23.635 (+1.952)	-23.610 (+2.11%)	-23.570 (+2.07%)	Max	
940	(-24.550 (-1.77%)	-24.565 (-1.907)	-24.565 (-1.85%)	-24.540 (-1.97%)	Mfn	
V04-	-24.124 2/	-24.107	-24.119	-24.066	Mean	•
	-23.645 (+1.98Z)	-23.640 (+1.94%)	-23.610 (+2.11%)	-23.555 (+2.12%)	Max	

Min value of V_{out} for all readings = -24.572 Volts Mean value of V_{out} for all readings = -24.099 Volts Max value of V_{out} for all readings = -23.545 Volts

pec. -25.20v ≤ V_{out} ≤ -22.80v

For each indicated input voltage (V_{1D}) and load current (I_L) , the elements of the matrix show a) the mean value based on eight device samples from two manufacturers, of the output voltage, b) the maximum output voltage and the percentage above the mean and c) the minimum output voltage and the percentage below the mean. NOTES:

2/ Only seven samples continued to regulate the output voltage.

TABLE 5.11. Line Regulation for Device Type 01. $\frac{1}{2}$ /

Load	Line Regulati	ion (VRLINE)	AV	
Current (I _L)	-35V & V _{in}	-25v ≤ v _{in} ≤ -8v	Value	Unit
50 mA	+ 7 + 12.5 + 17	+ 5 + 9.5 + 15	Min Mean Max	mV
350 mA	- 56 - 17 <u>2</u> / + 10	+ 5 + 10.6 + 20	Min Mean Max	

Spec. (I_L = 50 mA; -35V \leq V_{in} \leq -8V) V_{RLINE} = \pm 150 mV (I_L = 350 mA; -25V \leq V_{in} \leq -8V) V_{RLINE} = \pm 50 mV

Notes: 1/ The mean value of the line regulation measurements is based on six device samples from two manufacturers.

2/ Only three samples from one manufacturer continued to regulate. This is an unspecified condition.

TABLE 5.12. Line Regulation for Device Type 02. 1/

Load Current	Line Regulat	ion (V _{RLINE})	Avout	
(I _L)	-35 ≤ V _{in} ≤ -15V	-32V & Vin & -15V	Value	Unit
50 mA	+ 3 + 8.8 + 15	+ 0 + 8 + 15	Min Mean Max	mV
350 mA	+ 3 + 15.8 + 30	+ 1 + 12.7 + 25	Min Mean Max	

Spec. (I_L = 50 mA; -35V \leq V_{in} \leq -15V) V_{RLINE} = \pm 360 mV (I_L = 350 mA; -32V \leq V_{in} \leq -15V) V_{RLINE} = \pm 120 mV

Notes: 1/ The mean value of the line regulation measurements is based on six device samples from two manufacturers.

TABLE 5.13. Line Regulation for Device Type 03. 1/

Load Current	Line Regulat	tion (V _{RLINE})		
(I _L)	$-35V \leq V_{in} \leq -18.5V$	-30V ≤ Vin ≤ -18.5V	Value	Unit
50 mA	+ 2 + 6 + 10	+ 2 + 6 + 10	Min Mean Max	mV
350 mA	+ 15 + 20 + 25	+ 5 + 10 + 15 Am 202	Min Mean Max	

Spec. (I_L = 350 mA; $-35V \le V_{in} \le -15.5V$) $V_{RLINE} = \pm 150 \text{ mV}$

Notes: 1/ The mean value of the line regulation measurements is based on two device samples from one manufacturer.

TABLE 5.14: Line Regulator for Device Type 04. 1/

Load Current	Line Regul	ation (V _{RLINE})	△Vout	
(I _L)	$-40v \leq v_{in} \leq -28v$	-40K ≤ Vin ≤ -28V	Value	Unit
50 mA	- 6 + 3.75 + 7	0 + 3.75 + 7	Min Mean Max	mV
350 mA	- 2 + 8.25 + 20	- 2 + 6.5 + 13	Min Mean Max	

Spec. (I_L = 50 mA; -40V \leq V_{in} \leq -28V) V_{RLINE} = \pm 720 mV (I_L = 350 mA; - 38V \leq V_{in} \leq -28V) V_{RLINE} = \pm 240 mV

Notes: 1/ The mean value of the line regulation measurements is based on four device samples from one manufacturer.

Page 1 100 rad - 400 d t - 287) Valida - 120 mg t - 287)

mother each 1905 is an arrange of leader 190 to the beautiful at

TABLE 5.15. Line Regulation for Device Type 05. 1/

Load	Line Regul	4Vout		
(I _L)	-35v ≤ v _{in} ≤ -8v	$-20v \leqslant v_{in} \leqslant -8v$	Value	Unit
100 mA	+ 9 + 10.3 <u>2</u> / + 12	+ 4 + 7.5 + 9	Min Mean Max	mV
350 mA	+ 10 + 12 <u>2</u> / + 14	+ 6 + 7.7 + 10	Min Mean Max]

Spec. (I_L = .1A; - 35V \leq V_{in} \leq -8V) V_{RLINE} = \pm 150 mA (I_L = .5A; - 25V \leq V_{in} \leq -8V) V_{RLINE} = \pm 150 mA

Notes: 1/ The mean value of the line regulation measurements is based on six device samples from two manufacturers.

 $\frac{2}{}$ Only three samples from one manufacturer continued to regulate at $V_{in} = -35V$.

TABLE 5.16. Line Regulation for Device Type 08. 1/

Load Current	Line Regul	ΔVout		
(I _L)	-40V ≤ Vin ≤ -28V	-38V ≤ V _{in} ≤ -28V	Value	Unit
100 mA	- 20 + 1.0 + 15	- 15 25 + 10	Min Mean Max	mV
500 mA	- 7 + 7.1 + 22	- 5 + 6.25 + 15	Min Mean Max	

Spec. (I_L = 100 mA; -40V \leq V_{in} \leq -28V) V_{RLINE} = \pm 720 mV (I_L = 500 mA; -38V \leq V_{in} \leq -28V) V_{RLINE} = \pm 240 mV

Note: 1/ The mean value of the line regulation measurements is based on eight device samples from two manufacturers.

TABLE 5.17. Load Regulation for Device Type 01. 1/

Input Voltage	Load Regulat	ΔV _{out}		
(Vin)	5 mA ≤ I _L ≤ 500 mA	5 mA \$ I _L \$ 50 mA	Values	Unit
-10V	- 50 - 32.3 - 5	- 12 - 3.5 + 1	Min Mean Max	mV
-35V	N/A <u>2</u> /	- 14 - 6.5 - 0	Min Mean Max	

Spec. (V_{in} = -10V; 5 mA \leq I_L \leq 500 mA) V_{RLOAD} = \pm 100 mV (V_{in} = -35V; 5 mA \leq I_L \leq 50 mA) V_{RLOAD} = \pm 150 mV

Notes: 1/ The mean value of the load regulation measurements is based on six device samples from two manufacturers.

2/ None of the device samples continued to operate. This is an unspecified condition. Three samples from one manufacturer continued to regulate with $V_{in} = -35V$ and $5 \text{ mA} \leqslant I_L \leqslant 350 \text{ mA}$. The mean ΔV_{out} for these conditions was -16.7 mV.

TABLE 5.18. Load Regulation for Device Type 02. 1/

Input Voltage (V _{in})	Load Regulat	ΔV _{out}		
	$5 \text{ mA} \leq I_L \leq 500 \text{ mA}$	5 mA ≤ I _L ≤ 50 mA	Values	Unit
- 17 V	- 50 - 32.2 - 15	- 12 - 6.7 - 1	Min Mean Max	mV
- 35 V	- 235 - 82 - 35	- 10 - 7 + 10	Min Mean Max	1

Spec. (V_{in} = - 17V; 5 mA \leq I_L \leq 500 mA) V_{RLOAD} = ± 240 mV (V_{in} = - 35V; 5 mA \leq I_L \leq 50 mA) V_{RLOAD} = ± 360 mV

Note: 1/ The mean value of the load regulation measurements is based on six device samples from two manufacturers.

TABLE 5.19. Load Regulation for Device Type 03. 1/

Input Voltage	Load Regulati	ΔVout		
(Vin)	$5 \text{ mA} \leq I_L \leq 500 \text{ mA}$	$5 \text{ mA} \leq I_L \leq 50 \text{ mA}$	Values	Units
- 18.5 V	- 25 - 2.5 + 20	+ 3 + 4 + 5	Min Mean Max	mV
- 35 V	+ 5 + 7.5 + 10	- 13 + 6 + 25	Min Mean Max	

Spec. (V_{in} = - 20V; 5 mA \leq I_L \leq 500 mA) V_{RLOAD} = ± 300 mV (V_{in} = - 35V; 5 mA \leq I_L \leq 50 mA) V_{RLOAD} = ± 450 mV

NOTE: 1/ The mean value of the load regulation measurements is based on two device samples from one manufacturer.

TABLE 5.20. Load Regulation for Device Type 04. 1/

Input Voltage (Vin)	Load Regula	AVout		
	5 mA \leq I _L \leq 500 mA	$5 \text{ mA} \leqslant I_L \leqslant 50 \text{ mA}$	AV _{out} Values	Units
- 30 V	- 70 - 36.3 - 2	- 10 - 3 + 3	Min Mean Max	mV
- 40 V	- 45 - 28 - 12	- 8 - 4.75 + 12	Min Mean Max	

Spec. $(V_{in} = -30V; 5 \text{ mA} \le I_L \le 500 \text{ mA})$ $V_{RLOAD} = \pm 480 \text{ mV}$ $(V_{in} = -40V; 5 \text{ mA} \le I_L \le 50 \text{ mA})$ $V_{RLOAD} = \pm 720 \text{ mV}$

NOTES: 1/ The mean value of the load regulation measurements is based on four device types from one manufacturer.

\$ 040 4 " LUCIS" (AM DOC 5 1 X AM C : VII - " mil") .coq2

ows mustimestance enough at a in beston

Ver 908 1 # GAOSAV (80.00) Pall 3 Am 8 1971 - 2 ms V)

TABLE 5.21. Load Regulation for Device Type 05. 1/

Input Voltage	Load Regul	ΔV _{out}		
(Vin)	5 mA ≤ I _L ≤ 1.0 A	5 mA ≤ I _L ≤ 100 mA	Value	Unit
- 10 V	- 13 - 4.3 + 3	- 53 - 45 - 38	Min Mean Max	mV
- 35 V	- 13 - 8.5 <u>2</u> / - 4	- 49 - 44.5 <u>2</u> / - 40	Min Mean Max	

Spec. (v_{in} = -10V; 5 mA \leq I_L \leq 1.0 A) v_{RLOAD} = \pm 100 mV (v_{in} = -35V; 5 mA \leq I_L \leq 100mA) v_{RLOAD} = \pm 150 mV

NOTES: 1/ The mean value of the load regulation measurements is based on six device samples from two manufacturers.

 $\frac{2}{V_{in}}$ = -35V, I_L = 5 mA

TABLE 5.22. Load Regulation for Device Type 08. 1/

Input Voltage	Load Regula	ΔVout		
(v _{in})	5 mA \(\) I _L \(\) 1,0 A	$5 \text{ mA} \leqslant I_L \leqslant 100 \text{ mA}$	Value	Unit
- 30V	- 80 - 42.5 + 25	- 15 - 0.5 + 25	Min Mean Max	mV
- 40V	- 90 - 45 <u>2</u> / + 20	- 10 - 2.8 <u>2</u> / + 15	Min Mean Max	

Spec. (V_{in} = -30V; 5 mA \leq I_L \leq 1.0 A) V_{RLOAD} = 480 mV (V_{in} = -40V; 5 mA \leq I_L \leq 100mA) V_{RLOAD} = 720 mV

NOTES: 1/ The mean value of the load regulation measurements is based on eight device samples from two manufacturers.

2/ One device sample failed to regulate with $V_{in} = -40 \text{ V}$, $I_L = 5 \text{ mV}$.

TABLE 5.23. Output Short Circuit Current for Device Type 01. 1/

Input Voltage		utput Short uit Current (I _{OS})		2
(Vin)	min	mean	max	Unit
- 10 V	600	650	740	mA
- 25 V	310	362	440	
- 35 V	1.2	146	300	

Spec.
$$(V_{in} = -10 \text{ V})$$
 10 mA $\leq I_{os} \leq 2.00 \text{ A}$
 $(V_{in} = -25 \text{ V})$ 10 mA $\leq I_{os} \leq 1.50 \text{ A}$
 $(V_{in} = -35 \text{ V})$ 10 mA $\leq I_{os} \leq 1.00 \text{ A}$

NOTE: 1/ The mean value of the output short circuit current measurements is based on six device samples from two manufacturers.

TABLE 5.24. Output Short Circuit Current for Device Type 02. 1/

Input Voltage		tput Short it Current	(Ios)	
(V _{in})	min	mean	max	Unit
- 17 V	560	679	780	mA
- 32 V	210	432 2/	560	e l
- 35 V	150	384 2/	480	

Spec.
$$(V_{in} = -17 \text{ V})$$
 10 mA $\leq I_{os} \leq 1.75 \text{ A}$
 $(V_{in} = -32 \text{ V})$ 10 mA $\leq I_{os} \leq 1.50 \text{ A}$
 $(V_{in} = -35 \text{ V})$ 10 mA $\leq I_{os} \leq 1.00 \text{ A}$

MOTES: If The mean salue of the Mose registation computerwise in

agencies out anti-entone entone action tagle no beaut

NOTES: 1/ The mean value of the output short circuit current measurements is based on six device samples from two manufacturers.

2/ One unit failed after the initial test measurement.

TABLE 5.25. Output Short Circuit Current for Device Type 03. 1/

Input Voltage		tput Shor		
(Vin)	min	mean	max	Unit
- 20 V	540	555	570	mA
- 27 V	350	355	360	
- 35 V	4	4	4	1

Spec. $(V_{in} = -20 \text{ V})$ 10 mA $\leq I_{os} \leq 1.75$ $(V_{in} = -35 \text{ V})$ 10 mA $\leq I_{os} \leq 1.00$

NOTE: 1/ The mean value of the output short circuit current measurements is based on two device samples from one manufacturer.

TABLE 5.26. Output Short Circuit Current for Device Type 05. 1/

Input Voltage		Output Short Circuit Current (Ios)				
(v _{in})	min	mean	max	Unit		
- 10 V	1.0	1.1	1.25	A		
- 25 V	.3	0.37	.4	A		
- 35 V	2.5	2.75	3.2	mA		

Spec. $(V_{in} = -10V)$ 20 mA $\leq I_{os} \leq 4.00$ A $(V_{in} = -25V)$ 20 mA $\leq I_{os} \leq 3.00$ A $(V_{in} = -35V)$ 20 mA $\leq I_{os} \leq 2.00$ A

NOTE: 1/ The mean value of the output short circuit current measurements is based on three samples from one vendor.

TABLE 5.27. Output Short Circuit Current for Device Type 08. 1/

Input Voltage		put Shor t Curren		en succ
(v _{in})	min	mean	max	Unit
- 30 V	13	696	1100	mA
- 38 V	2.9	469	800	mA
- 40 V	2.8	420	750	mA

Spec. $(V_{in} = -30V)$ 20 mA $\leq I_{os} \leq 2.50$ A $(V_{in} = -38V)$ 20 mA $\leq I_{os} \leq 2.00$ A $(V_{in} = -40V)$ 20 mA $\leq I_{os} \leq 2.00$ A

NOTE: 1/ The mean value of the output short circuit current is based on nine device samples from two manufacturers.

TABLE 5-28. Electrical performance characteristics for device type 0/

Characteristics	Symbol	Conditions (fi	gure 8 unless otherwise		The second second	its	Unit
Character raties	39	Input voltage	Load current	Other	Min	Мах	Unit
Output voltage	Vout	v _{IN} =-8 v v _{IN} =-35 v v _{IN} =-10 v	I _L = 5 mA, 0.5 A I _L = 5 mA, 0.5 A I _L = 5 mA. 50 mA I _L = 5 mA	T _A = 150°C	-2:32 -2:32	-4.75 -4.75 -4.75 -4.70	V
Line regulation	V _{RLINE}	35 V ≤ V _{IN} ≤ - 8 V	I _L = 50 mA I _L = 350 mA	161.93	-150 -50	150	mV
Load regulation	V _{RLOAD}	V _{IN} =-10 V V _{IN} =-35 V	5 mA < IL < 500 mA 5 mA < IL < 50 mA	T LENGTH TO	-100 -150	150	mV
Standby current drain	I _{SCD}	V _{IN} =-10 V V _{IN} =-35 V	I _L = S mA I _L = S mA	332 ¹	0.1	3.0	mA
Standby current drain change (versus line voltage)	Al _{SCD} (line)	350 ₹ A ^{IN} ₹ -8 A	I _L = 5 mA	32 32 3 1 30 1 1 154	-1.0	1.0	mA
Standby current drain change (versus load current)	ΔI _{SCD} (load)	V _{IN} =-10 V	5 mA < IL < Soom	(1.6.32 ¹) (4.600 ¹)	-0.5	0.5	mA
Output short circuit current	I _{OS}	V _{IH} =-25 V V _{IH} =-35 V	- 1 B		0.01	1.50	A A A
Peak output current	Ipk	V _{IN} =-8 V; forced AV _{OUT} = 0.48 V	50 m 7 ul- 21 l ule	See figure 9	0.5	2.0.	. A
Ripple rejection	AV _{IN} AV _{OUT}	V _{IN} =-10 V e _i = 1 V _{rms} 0 f = 2400 Hz	I _L = 125 mA	See figure 10 meter BW 10 Hz to 10 kHz	54	-	dB
Output noise voltage	No	V _{IN} = -10 V	I _L = 50 mA	See figure 11 T _A = 25°C	MIN	150	"Vrm
Thermal Regulation	VRTH	V _{IN} = - 15V	I _L = 500 mA	TA - 25°C	-50	+50	m V
Voltage Stattup	VSTART	VW = -20 V	I_= 500 m.4	Sec figure 14	-5.25	-4.75	V
Line transient response	AVout AVia	Van = -10 V	Iz= SmA	See figure A	1 2 1	30.0	עלים
Load transient tesponse	AVOUT AIL	Vin = -107	I_= SDMA AI_= 200mA	Seefigure/3	-	2.5	my

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DQC

TABLE 5-29. Electrical performance characteristics for device type 02

ACT AND PROPERTY PROPERTY OF THE PROPERTY OF T

Characteristics	Symbol	Conditions (fig	ure 8 unless otherwise	specified) Other	Lim	its	Uni t
Output voltage	V _{OUT}	V _{IN} =-15 V V _{IN} =-27 V V _{IN} =-35 V V _{IN} =-17 V	I _L = 5 mA, 0.5 A I _L = 5 mA, 0.5 A I _L = 5 mA, 50 mA I _L = 5 mA	T _A = 150°C	-12-60	- 11.46 -11.46	V
Line regulation	V _{RLINE}	-35V < V _{IN} <-15 V -32 V < V _{IN} <-15 V			-360 -120	360	mV mV
Load regulation	V _{RLOAD}	v _{IN} = -17 v v _{IN} = -35 v	5 mA < I _L <500mA 5 mA < I _L <50 mA	100000	-340 -360	240 360	mV mV
Standby current drain	ISCD	v _{IN} =-17 v v _{IN} =-35 v	I _L = 5 mA I _L = 5 mA	Text	0.1	3.0	mA mA
Standby current drain change (versus line voltage)	Al _{SCD} (line)	-35 V < V _{IN} <-15 V	I _L = 5 mA		-1.0	1.0	mΛ
Standby current drain change (versus load current)	ΔI _{SCD} (load)	V _{IN} =-17 V	5 mA < IL <500mA		-0.5	0.5	mA
Output short circuit current	I _{os}	v _{IN} = -25 v v _{IN} = -35 v	135-	4		1.50	A A A
Peak output current	I _{pk}	V _{IN} =-15 V; forced ΔV _{OUT} = 1.13 V	1900	See figure 9	05	2.0	A
Ripple rejection	AV IN AVOUT	V _{IN} =-17 V e _i = 1 V _{rms} A f = 2400 Hz	I _L = 126 mA	See figure 10 meter BW 10 Hz to 10 kHz	54	•	dB .
Output noise voltage	No	v _{IN} =-37 v	I _L = \$0 mA	See figure 11 T _A = 25°C		250	IIV MIS
Thermal Regulation	V _{RTH}	VIN = -22V	I.: 500mA	TA . 25 °C	-120	120	mV
Voltage Start up	VSTART	V 28V	IL= SCC mA	See figure 14	-12.60	-11.40	V
Line transient response	A Vour	Vin = - 17V	IL= SmA	See figure 12		30	my/,
Load transient response	Albur Al	Vin= -174	I.= SOMA AI.= 200 mA	Ta 25°C		2.5	~%A

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

TABLE 5-30. Electrical performance characteristics for device type 03

Characteristics	Symbo1	Conditions (fig	gure 8 unless otherwise	specified)	Lin	its	Unit
Characteristics	Symbol	Input voltage	Load current	Other	Min	Max	Uni
Output voltage	V _{OUT}	V _{IN} = -35 V V _{IN} = -35 V V _{IN} = -35 V	I _L = 5 mA, 0.5 A I _L = 5 mA, 0.5 A I _L = 5 mA, 50 mA I _L = 5 mA	T _A = 150°C	-15.75 -15.75	-14.25 -14.25 -14.25 -14.10	V
Line regulation	VRLINE	JEV EVIN SAL	1 = 350 mA		-150	150	m\
Load regulation	VRLOAD	v _{IN} =-20 v v _{IN} =-35 v	5 mA < IL < 500mA		-300 -450	300 450	mV mV
Standby current drain	1 _{SCD}	V _{III} =- 20 V V _{III} =- 35 V	I _L = 5 mA I _L = 5 mA		0.1	3.0	mA mA
Standby current drain change (versus line voltage)	AI _{SCD} (line)	-35 V ≤ V _{IN} ≤-184	ST _L = SmA		-1.0	1.0	mA
Standby current drain change (versus load current)	AI _{SCD} (load)	v _{IN} =-20 v	· SmA < IL < 500mA	arr) R	-0.5	0.5	mA
Output short circuit current	^I os	V _{IN} =-25V V _{IN} =-35 V			0.01	1.50	
Peak output current	I _{pk}	V _{IN} = -18.5 V; forced AV _{OUT} = 1.43 V	108-	See figure 9	0.5	2.0	A
Ripple rejection	y _N unt _v NIN	V _{IN} = -20 V c ₁ = 1 V _{rm} , 6 f = 2400 He	I _L = 125 mA	See figure 10 meter BW 10 Hz to 10 kHz	54	÷	dB
Output noise voltage	N _o	A ^{IN} =-50 A	IL = 50 mA	See figure 11 T _A = 25°C	•	300	µV rm
Thermal Regulation	VRTH	VIN = -25V	I,: 500mA	TA = 25 %	-50	150	mV
Voltage Start up	VSTART	V 30V	I_ = 500 mA	See figure 14	-15.75	-/4.25	V
Line transient response	A Vout	VIN = -20V	IL= SmA	See figure 12 Ta= 25°C	1-	30	my,
Load transjent response	A Vour	VIN = -20V	I = 50mA ΔI = 200mA	Saefigure 13 TA \$25°C	T (3)43	2.5	mx.

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

TABLE 5-31. Electrical performance characteristics for device type 04

Characteristics	Symbol	Conditions (figure Input voltage	re 8 unless otherwise Load current	specified) Other	Limi	ts Max	Units
Output voltage	V _{OUT}	V _{IN} =-28 V V _{IN} =-38 V V _{IN} =-46 V V _{IN} =-36 V	I _L = 5 mA, 0.5 A I _L = 5 mA, 0.5 A I _L = 5 mA, 50 mA I _L = 5 mA	T _A = 150°C	-25:20 -25:20	-22.80 -22.80 -22.80	V
Line regulation	V _{RLINE}	-407 ≤ V _{IN} ≤ -287 -387 ≤ V _{IN} ≤ -287		and is	-720 -240	720 240	mV mV
Load regulation	V _{RLOAD}	V _{IN} =-30 V V _{IN} =-40 V	5 mA < IL < 500 mA	me'	- 720	100 720	mV mV
Standby current drain	ISCD	V _{IN} =-30 V	I _L = 5 mA I _L = 5 mA	AND TO SERVICE OF THE	0.1	4.0	mA mA
Standby current drain change (versus line voltage)	Al _{SCD} (line)	-407 VIN <-287	IL = SmA	COE ^T	-1.0	1.0	mΛ
Standby current drain change (versus load current)	Al _{SCD} (load)	V _{IN} = -36 V	5 mA ≤ I (≤ 500 m/	100	-0.5	0.5	mΛ
Output short circuit current	^I os	v _{IN} =-30 v	224-	(a) 2 m	0.01		
Peak output current	Ipk	V _{IN} =-28 V; forced AV _{OUT} = 2.28 V	, We	See figure 9	05	2.0	A
Ripple rejection	ΔV _{IN} ΔV _{OUT}	V _{IN} = 30 V e _i = 1 V _{rms} 0 f = 2400He	I _L = .125 mA	See figure 10 meter BW 10 Hz to 10 kHz	54	A State	dB
Output noise voltage	No	v _{IN} =-30 v	I _L = 50 mA	See figure 11 T _A = 25°C	n.	500	μν,,,,,
Thermal Regulation	VRTH	V,n= - 34V	I_= 500mA	T _A : 25°C	-240	240	m٧
Voltage Start up	VSTART	VIN = -38 V	I_= 500mA	See figure 14			
Line transient response	Alber Die	VIN = - 30 V	IL= SmA	See figure 12 Ta= 25 E		30	- 9
Load transvent response	AVour DI.	V.w = -30 Y	I = 50 mA	See figure 15	-	2.5	"%

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

TABLE 5-32. Electrical performance characteristics for device type OS

Characteristics	Symbo1	Conditions (figure Input voltage	ure 8 unless otherwise	specified) Other	Limi	Max	Units
Output voltage	VOUT	V _{IN} =-8 V V _{IN} =-35 V V _{IN} =-8 V	I _L = 5 mA, 1.0 A I _L = 5 mA, 1.0 A I _L = 5 mA, 0.1 A I _L = 5 mA	T _A = 150°C	-5.25 -5.25 -6.30	-4.75 -4.25	V V V
Line regulation	VRLINE	-385 = AIN = -8 A	I _L = 0.1 A I ₁ = 0.5 A	5 3.5-1 AS LAN	-150 -75	1 50 75	mV mV
Load regulation	V _{RLOAD}	V _{IN} =-10 V V _{IN} =-35 V	5mA ≤ IL ≤ 1.0A 5mA ≤ IL ≤ 0.1A	21 12009 2	-100 -150	100 150	mV mV
Standby current drain	1 _{SCD}	V _{IN} =-10 V V _{IN} =-35 V	1 _L = 5 mA	85 ⁸ 638	0.5	3.0	mA
Standby current drain change (versus line voltage)	AI _{SCD} (line)	-35 M. VIN : -8V	1 _L = 5 mA	est entra	-10	1.0	mΛ
Standby current drain change (versus load current)	Al _{SCD} (load)	v _{IN} =-10 v	SmA & IL & J.DA	837) 10°12	-0.5	0.6	mΛ
Output short circuit current	t _{os}	v _{IN} -35 v	1 86		0.02		A A
Peak output current	Ipk	V _{III} =-8 V; forced	Leavery, St.	See figure 9	1.0	4.0	A
Ripple rejection	NI VA	V _{IN} =-10 V e _i = 1 V _{rms} e f = 2400m	I _L = 350 mA	See figure 10 meter BW 10 Hz to 10 kHz	54	-	dB
Thermal Regulation	VATH	VIN = - 15 V	I.= 1.0A	TA: 25 %	-50	50	mV
Output mise voltage	No	VIN= -10V	I.: 0.1A	WAY WIN	-	125	01.08
Voltage Startup	VSTART	V 20V	I_= KBAmp	Serfigure 14	-5,25	-4.75	V
Line transient response	AVOUT AVO	VIN= -10 V	IL= SmA	See figure 12		30	my,
Load transient response	A Ja		I. = 100mA ΔI = 400mA	See france 13	15.	2.5	11/2

THIS PAGE IS BEST QUALITY PRACTICABLE

TABLE 5-33. Electrical performance characteristics for device type 06

Characteristics	Symbo1	Conditions (figure Input voltage	ure 8 unless otherwis Load current	e specified) Other	Lim Min	its Max	Units
Output voltage	V _{OUT}	V _{IN} =-27 V	$I_L = 5 \text{ mA}, 1.0 \text{ A}$ $I_L = 5 \text{ mA}, 1.0 \text{ A}$ $I_L = 5 \text{ mA}, 0.1 \text{ A}$ $I_L = 5 \text{ mA}$	T _A = 150°C	-12.60 -12.60	-11.40 -11.40 -11.40	٧
Line regulation	VRLINE	$-35V \leq V_{IN} \leq -15V$ $-32V \leq V_{IN} \leq -15V$		STANT BOUGHT	-360 -120	360	mV mV
Load regulation	V _{RLOAD}	v _{IN} =-17 v v _{IN} =-35 v	5mA ≤ IL ≤ 1.0A · SmA ≤ IL ≤ 0.1A	et skie	-240 -360	240 360	mV mV
Standby current drain	1 _{SCD}	1 111	I _L = 5 mA I _L = 5 mA	4 1 98 1 0 1 1	0.5	3.0	mA mA
Standby current drain change (versus line voltage)	Δ1 _{SCD} (line)	-32 V < V _{IN} < -15V	I _L = 5 mA	V New York	-1.0	1.0	mA
Standby current drain change (versus load current)	AT _{SCD} (Yoad)	v _{IN} =-17 v	" SmA ≤ 1, ≤ 1.0A		-0.5	0.5	ıπΛ
Output short circuit current	Ios	V _{IN} =-32 V V _{IN} =-35 V	2.		0.02	3.50	A
Peak output current	^I pk	V _{IN} =-15 V; forced AV _{OUT} = 1.13 V	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	See figure 9	1.0	4.0	۸
Ripple rejection	ΔV _{IN}	V _{IN} =-17 V e _i = 1 V _{rms} @ f = 2400Hz	I _L = 350 mA	See figure 10 meter BW 10 Hz to 10 kHz	54	7 - 1	dB
Output noise voltage	No	v _{IN} =-17 v	IL = Q1 A	See figure 11 T _A = 25°C	-	250	11V _{rms}
Thermal Regulation	VRTH	VIN = -22V	I _L = 1.0 A	130	-120	120	mΥ
Voltage Start up	VSTART	V,0 = -27 V	I_= 1.0 A	Secfigure 14	-12.60	-11.40	V
Line transient response	DVout DVIN	Viu = - 17V	IL= SmA	See figure 12 TA = 25 t	A A	30	עלים
Load transient response	A Vout	VIN = -17 V	IL = 100mA AIL = 400mA	See figure 1	-	2.5	m/m

THIS PACE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

TABLE 5-34. Electrical performance characteristics' for device type 67

Characteristics	Symbo1	Conditions (fig Input voltage	ure 8 unless otherwise Load current	specified) Other	Lim	its Max	Units
Output voltage	V _{OUT}	V _{IN} =-18.5 V V _{IN} =-30 V V _{IN} =-35 V V _{IN} =-20 V	I _L = 5 mA, 1.0 A I _L = 5 mA, 1.0 A I _L = 5 mA, 0.1 A I _L = 5 mA	T _A = 150°C	-15.75 -16.75	-14.25 -14.25 -14.25 -14.10	٧
Line regulation	VRLINE	-35 V < VIN <-18-5	VIL = 0.5 A		-150	150	mV
Load regulation	V _{RLOAD}	v _{IN} =-20 v v _{III} =-35 v	5mA ≤ IL ≤ 1.0A 5mA ≤ IL ≤ 0.1A	\$4 7	-300 -450	300 450	mV mV
Standby current drain	1 _{SCD}	v _{IN} =-20 v v _{IN} =-35 v	IL = SmAc IL = SmA	2	0.5	3.0	ıııA ınA
Standby current drain change (versus line voltage)	ΔI _{SCD} (line)	-35.V < VIN <-186	VIL = S mA		-1.0	1.0	mA
Standby current drain change (versus load current)	AI _{SCD} (load)	V _{IN} =-20 V	Sm A ≤ I _L ≤ 1.0A	-08/81 68	-0.5	0.5	mA
Output short circuit current	105	Λ ^{III} =- 52 Λ Λ ^{III} =- 50 Λ		F. 61. 14.		350	A
Peak output current	I _{pk}	V _{IN} =-18.5 V; forced V _{OUT} = 1.43 V	4	See figure 9	1.0	4.0.	٨
Ripple rejection	AV _{OUT}	V _{IN} =-20 V c _i = 1 V _{rms} 0 f = 2400 Hz	I _L = 350 mA	See figure 10 meter BW 10 Hz to 10 kHz	54	-	dB
Output noise voltage	No	V _{IN} =-20 V	I _L = 0.1 A	See figure 11 T _A = 25°C	-	30.0	11V rms
Thermal Regulation	V _{RTH}	VIN= -25V	I_= 1.0A	T4=25°C	-150	150	mV
Voltage Start up	VSTART	VIN = -300	I_= 1.0A	See figure 14	-15.75	-14.25	V
Line transient response	A Vour	VIN = -20 V		see figures		30	עשיח
Loed transient response	A Vout	VIN = - 20V	I_= 100mA AI_= 400mA	See figure 13	Nan-	2.5	מארש

THIS PAGE IS BEST QUALITY FRACTICABLE FROM COPY FURNISHED TO DDC

TABLE 5-35. Electrical performance characteristics for device type 08

Load transient response	A Vout	VW = -30 V	I = 100mA AI = 400mA	See figure 13 The 25%	•	2.5	m/mA
Line transient response	A VOUT	1/2 -30V	IL= SmA	Seefigure 12 TA \$ 25°C		30	my/,
<u>U</u>	VSTART	VIN = -38V	I_= 1.0A	See figury	Annual Laboratory	9-22.82	V
Thermal Regulation	V _{RTH}	VIN = - 34V	I ₄ = 1.0A	TA - 25 %	-240	240	m٧
Output noise voltage	No	VIN =-30 V	I _L = 0.1 A	See figure 11 T _A = 25°C	•	500	WVs
Ripple rejection	VA ^U IN	V _{IN} = 30 V e _i = 1 V _{rms} e f = 2400Hz	I _L = 350 mA	See figure 10 meter BW 10 Hz to 10 kHz	54	17 194	dB
Peak output current	I _{pk}	V _{IN} = -28 V; forced AV _{OUT} = 2.28 V	95	See figure 9	1.0	4.0	٨
Output short circuit current	Ios	v _{IN} =-30 v	1225		0.02	3.00	A - A
Standby current drain change (versus load current)	ΔI _{SCD} (load)	V _{IN} =-30 V	SmA ≤ IL ≤ 1.0A		-0.5	0.5	mA
Standby current drain change (versus line voltage)	AI _{SCD} (line)	-40 V < V _{IN} <-28 V	I _L = 5 mA		-1.0	1.0	mΛ
Standby current drain	SCD	V _{IN} =-36 V V _{IN} =-40 V	I _L = 5 mA I _L = 5 mA		0.5	3.0	mA mA
Load regulation	ABLOVO	A ^{IN} = -30 A	$5 \text{ mA} \leq I_{L} \leq I \cdot OA$ $5 \text{ mA} \leq I_{L} \leq O \cdot IA$		-100 -200	200	mV
Line regulation	VRLINE	-40 V < V _{IN} <-28 V -38 V < V _{IN} <-28 V		985.85	-200 -100	200	mV mV
Output voltage	V _{OUT}	V _{IN} =-28 V V _{IN} =-38 V V _{IN} =-40 V V _{IN} =-30 V	$I_{L} = 5 \text{ mA}, 1.0 \text{ A}$ $I_{L} = 5 \text{ mA}, 1.0 \text{ A}$ $I_{L} = 5 \text{ mA}, 0.1 \text{ A}$ $I_{L} = 5 \text{ mA}$	T _A = 150°C	-2520 -2520	-22.80 -22.80 -22.56	V
Characteristics	Symbol	Conditions (figure Input voltage	Load current	other	Lim	its .	Units

Device Type 01

Unit #4

Unit was destroyed by incorrectly connecting the device to the curve tracer test circuit. Incorrect adapter used. The photograph shows evidence of being overstressed in several areas.

Figure 5.9a. Overstressed negative regulator chip.

Device Type 02

Unit #1

The unit showed no anomalies during the output voltage tests. Unit was destroyed during the output short circuit test.

With $V_{in} = -17$, $I_{OS} = 670 \text{ mA}$ and $P_{D} = 11.4\text{W}$

With Vin = -32V, IOS = 210 mA

During the latter measurement, the current dropped to 0 mA. The unit was destroyed.

Pigure 5.9b. Overstressed negative regulator chip.

Device Type 04

Unit #2

Unit failed during output short circuit test. Short circuit current I_{OS} was greater than 250 mA at V_{in} = -30V. Power dissipation was 7.5 Watts in a T05 case. Evidence of insufficient current fold-back.

Figure 5.9c. Overstressed negative regulator chip.

Device Type 08

Unit #1

Unit oscillates during initial testing. Developed an input to output short circuit while loaded. Eventually (matter of seconds), output opened.

Figure 5.9d. Overstressed negative regulator chip.

Unit #2 started motorboating at the output when $|V_1| > 24.5V$ and $I_L = 5.0$ mA. Low level oscillations were observed during the test interval (i.e., 98%) when the load current was zero. Device failed while checking for the maximum load current that will degrade the output voltage to -4.75V.

Figure 5.9e. Overstressed negative regulator chip.

Device Type 05

Unit #4

Unit #4 failed after the device was plugged into a hot socket.

Figure 5.9f. Overstressed negative regulator chip.

5.6 Bibliography

Below are listed some works which have topics devoted to integrated circuit voltage regulators.

- The Voltage Regulator Handbook; John D. Spencer and Dale E. Pippenger, Texas Instruments Corporation, 1977
- National Voltage Regulator Handbook; Nello Sevaslopoulos et al, National, 1975.
- Voltage Regulator Handbook; Andy Adamian, Fairchild Camera and Instrument Corporation, 1978.
- 4. Voltage Regulator Handbook, Theory and Practice; Henry Wurzburg et al, Motorola Inc, 1976.

SECTION VI

DIGITAL-TO-ANALOG CONVERTERS

MIL-M-38510/113

Table of Contents

6 1	Introduction and Background	Page
0.1	Introduction and background	VI-1
6.2	Description of Device	VI-1
6.3	Characterization of DACO8	VI-2
6.4	Automatic Test Development	VI-7
6.5	Evaluation of Data	VI-13
6.6	Conclusions and Recommendations	

SECTION VI

DIGITAL-TO-ANALOG CONVERTERS

MIL-M-38510/113

6.1 Introduction and Background

Since the advent of the microprocessor, the growth rate of the digitalto-analog converter and analog-to-digital converter market has increased markedly.

In response to that growth, the first characterization effort of a JAN 38510 digital-to-analog converter has been initiated. The DAC-08 device was selected for characterization because it meets the criteria of popularity, low cost (it is monolithic), multiple-sourcing, and quality of design. It was originally introduced by Precision Monolithics, Inc. and has become one of the most popular 8-bit digital-to-analog converters on the market today.

Initially, proposed specifications for the DACO8, the DACO8A, and the 1508 were received from the JC-41 Committee. As the characterization effort evolved, emphasis shifted to the DACO8, which has superior performance for at least three parameters ... namely, voltage compliance, settling time, and supply current. In order to include the needs of most users, both a standard version of the DACO8 (0.19% non-linearity) and the higher precision DACO8A (0.1% non-linearity) have been specified in the proposed slash sheet.

6.2 Description of Device

The DACO8 is an 8-bit monolithic multiplying D/A Converter, having dual complementary current outputs. The outputs have a large voltage compliance range of + 18V to -10V, and a full scale current of 2 mA. It is used with an external reference, which may be either positive or negative; however, in the true sense of the word, it is not a multiplying DAC that can be used with an AC reference directly (without biasing or additional external circuitry).

The DACO8 is a very high speed device, having a maximum settling time of 135 nsec to \pm 1/2 LSB. The device can interface directly with various logic families by appropriate pin programming of the adjustable logic input threshold. Supply voltages can range from \pm 4.5V to \pm 18V.

A functional diagram of the device is shown in Figure 6.1, along with typical external connections. With $V_{REF}(-)$ grounded and $V_{REF}(+)$ tied to 10 VDC through a 5K ohm resistor, a 2.0 mA current flows into $V_{REF}(+)$. That current then flows through the reference transistor and reference 1K ohm resistor which sets the base voltage at the reference transistor and at all the other current sink transistors. The MSB current sink sinks 1 mA. The second bit current sink sinks 1/2 mA; the current level decreases by a factor of 1/2 with each succeeding current sink due to the R-2R ladder configuration. The LSB current sink sinks 8 uA. The current switches only steer the current from either of the two output pins. The degree of insensitivity of the current sinks and switches to voltage variations at the outputs is termed high output compliance.

6.3 Characterization of the DAC-08

Static Test Parameters

Table 6-1 shows the electrical performance limits that were recommended by the JC-41 Committee for MIL-M-38510/113. Unless otherwise specified, all tests are performed with the supply voltage at ± 15 V and I_{REF} set to 2.00 mA (10V/5K Ω), and over the temperature range of -55°C to +125°C.

Supply current from both supplies is measured only with all input bits high. With proper device operation, the supply current is not dependent on the digital input word. GEOS checked supply current with all input bits low to verify no dependence.

The Full Scale Current is the sink current into output I_0 with all bits high, or at output $\overline{I_0}$ with all bits low. This test indicates to the user the gain error of the device over the temperature range.

The Zero Scale Current is the sink current into either I_O with all bits low, or into $\overline{I_O}$ with all bits high. This test indicates to the user the offset error of the device over the temperature range. Power supply sensitivity is checked for +V₈ from 4.5 V to 5.5 V and from 12 V to 18 V with -V₈ at -18V and for -V₈ from -4.5 V to -5.5V and from -12V to -18V with +V₈ at +18V during full scale current operation. This test checks the variation in full scale current into both the I_O and $\overline{I_O}$ outputs due to power supply variations.

The Output Current Range test indicates to the user the level of full scale current the device can sink with a low negative supply level.

The Reference Bias Current test measures the bias current into the grounded input of the voltage-to-current converter section of the device and checks for excessive leakage.

The High Level Input Current test checks leakage current at each of the digital inputs, and the Low Level Input Current test checks base current at each of the digital inputs.

Voltage compliance at both of the outputs is checked during full scale operation. This test verifies that only a small change in full scale current results when voltages of +18V and -10V are forced at the output. The full scale current is checked both to an absolute limit and a delta limit from +18V to -10V.

Linearity error is checked in several forms. The positive bit errors are summed and checked to a limit. The negative bit errors are summed and checked to a limit. The difference of these two sums are checked to assure sufficient freedom from bit interaction (see section — for a further discussion of this subject). A worst case linearity error is calculated by summing the absolute values of the positive and negative bit errors and the difference of the sums (which is a measure of bit interaction).

Monotonicity is checked to assure the user that the transfer characteristics (output current vs. digital input) never reverses in slope (i.e. - never changes in the wrong direction). The device manufacturers claim that it is only necessary to check the major carry points because this is the most likely transition point to encounter such a failure. GEOS data tends to substantiate that claim.

The Output Symmetry test assures a good match between $\mathbf{I_0}$ and $\overline{\mathbf{I_0}}$ full scale output currents.

The Full Scale Current Temperature Coefficient Check calculates the variation in full scale current due to a variation in temperature. This test gives the user the temperature coefficient of the gain error including the offset error. If zero scale current temperature coefficient was also calculated, then offset error TC and gain error TC could be separated out of out of the Full Scale Current Temperature Coefficient data.

Dynamic Test Parameters (25°C only)

The Propagation Delay Test measures the time it takes for the output to respond to an all-bits-high to all-bits-low transition and to an all-bits-low to all-bits-high transition. These measurements are made from the 50% point of input to the 50% point of the output.

The Settling Time Test measures the response time between the 50% point of the input transition (all-bits-high to all-bits-low or all-bits-low to all-bits-high) and the point at which the output settles to within 4 micro-amperes (one half of a least significant bit) of the final value. For a 500 \(\Omega\$ load resistor 4 micro-amperes corresponds to 2 millivolts.

Static Test Circuit

Figure 6-2 shows the static test circuit recommended by the JC-41 Committee. Although it is not readily apparent how the voltage compliance test is performed using this circuit, it appears that the following technique is used: (1) SW6 is set to the $I_{\rm out}$ position, (2) + 18 V is applied to $I_{\rm out}$ with SW1 and SW2 open, (3) the current drawn into $I_{\rm out}$ is measured with SW5 closed for 18 V compliance and with SW5 open for -10 V compliance.

The static test circuit shown in Figure 6-3 was used and may be more suitable for bench testing when a problem arises. The + 18 V voltage compliance test is performed by setting pin 15 to + 18 V and setting pin 13 to 35 V and pin 14 to 0V (i.e. - set the op-amp supply voltage to V + = 35 V and V - = 0V). Offset due to the finite common mode rejection ratio of the opamp and other offset errors are calibrated out by opening K3a and measuring the voltage at pin 24 with the reference DAC set to zero. The contribution of gain error associated with the .01% resistor tolerance is not a significant factor and does not contribute to the errors in the linearity tests. The 16 bit DAC is linear to .003% so that its error contribution to the linearity measurement is not significant.

At a recent meeting of the JC-41 D/A converter subcommittee this test circuit was criticized for:

- (1) use of .01% resistors which degrade the accuracy of the 16 bit reference DAC and
- (2) use of a voltage output reference DAC instead of a current output reference DAC.

The answer to (1) is that the .01% resistors only contribute gain error except during the compliance test when an offset error is generated (which is calibrated out). In any case, linearity error is certainly not degraded.

The answer to (2) is that a current output reference DAC could be used and such a variation would be quite acceptable.

Settling Time and Propagation Delay Test Circuit

Figure 6.4 shows the settling time and propagation delay test circuit recommended by the JC-41 Committee. The two diodes (Schottky, although not so identified) connected in opposite directions provide clamping to avoid saturation of the oscilloscope preamplifier. VADJ provides bias through Ql to determine the clamp level. When the settling time to be measured is for the low-to-high transition of the input, the output goes from OV to -0.67V without any bias. VADJ biases the output so that the settling level is at OV instead of -0.67 V. Therefore, with VADJ at 2.6 V, settling time due to the

low-to-high input transition is measured. When the settling time due to the high-to-low transition is measured, $V_{\mbox{ADJ}}$ is set to + 0.6 V which sets the emitter at 0 V.

This circuit seems to have several unnecessary parts. Q1, D3 and R2 could be eliminated and the V_{ADJ} simply applied to R1 where Q1 was connected. One potential problem with this circuit is the high parasitic capacitance at V_{out} . This circuit was used with non-Schottky diodes with poor results. While awaiting delivery of the Schottky diodes another test circuit specified in the PMI data sheet was built with non-Schottky diodes. The results were better, but were not acceptable until the Schottky diodes were installed.

Figure 6-5 shows the Settling Time and Propagation Delay Circuit that yielded the best results. The major advantage of this circuit is the lower parasitic capacitance made possible by the addition of Ql. Q2 isolates the clamping node from the scope probe capacitance.

The 0.1 uf bypass capacitor at $\rm V_L$ should be a BX ceramic and be as close as possible to RL. The Schottky diode GEOS used was a Motorola MBD501.

The key to measuring 100 nsec settling time is avoid saturation of the oscilloscope preamp. This can be accomplished in two ways. One way is to use a sampling preamp such as a Tektronix 3Sl and to advance the delay vernier to read the settling time. Since the sampling preamp only samples what is displayed, saturation of the preamp is avoided by not displaying that level. Another way to avoid saturation of the preamp is to use a differential comparator preamp such as the Tektronix 7Al3, which, at the 1 mv./div. sensitivity, will not saturate until the signal exceeds ± 800 millivolts. GEOS used the former approach. Slew Rate Test Circuit

Reference Amplifier Input Slew Rate is the measure of the maximum rate of change of the output current. Figure 6-6 shows the Slew Rate Test Circuit recommended by the JC-41 Committee. With all bits high, the reference current is stepped from 0 mA to 2 mA while Vout is monitored with an oscilloscope. The test is repeated with all bits low while monitoring Vout. This test circuit operated properly using a voltage source with a 50.0 source impedance, 50.0 coax and a 50.0 terminator. The 15 pf capacitor at pin 16 is a compensation capacitor for the op-amp (used as a voltage-to-current converter). The fast slew rate that is achieved in this configuration would not be obtained in the fast settling configuration. The compensation capacitor is selected according to the user's need (fast slew rate or fast settling time).

Comments on Test Parameters

Laboratory evaluation of the DACO8 revealed no apparent anomalies with the device. The test parameters recommended by the JC-41 Committee are adequate, although two additional parameters are recommended by Ordnance Systems. The first is a test for VLC, a logic control signal that permits interfacing with several types of logic control. This should be a 100% test, since it checks the functional operation of the device. A second test recommended is that of output glitching. Ordnance Systems has not tested glitching in this initial effort, but it is recommended for follow-on action. Due to the difficulty of performing the test, it should be a sample or qualification test to establish some form of control for this characteristic. The JC-41 Committee has been informed of these recommendations; the vendors do not presently test for these parameters in their own facilities, but would consider a test circuit proposal for the VLC test. (This will be developed by Signetics for consideration by all.) They would prefer to have the glitch test done during device characterization, and not have a test for it in the JAN spec. However, they do recognize the need to have some form of control for new vendors, or for device redesigns.

908 & Discouse Langes on line contents to the Carlinson with the

of the state of the same of the a sound of the same of

off-aghillar is an hoos' war-go and the property of the conserve of the

ing many many transfer of the measurest when the many South delivery

Devices Used For Testing

Devices used for testing were obtained by two methods: (1) a request for 10 devices from each manufacturer was made by RADC, this group being identified as the "industry sample"; (2) small quantities were purchased through standard Ordnance System procurement procedures from distributors, this group being identified as the "purchased sample".

Industry sample

DAC08	Signetics	20 devices	1508	AMD	10 devices
	AMD	10		Datel	15
	Datel	15		PMI	20
	Fairchild	13			
	PMI	20			Low almost shift b
(A.C.) (A.C.)		78			45

Late arrivals

Motorola	10	Motorola 10
National	_10_	
	98	55

Purchased sample (GEOS and RADC)

DAC08	Signetics	13 devices	1508 Signetics	3
	AMD	8	Fairchild	3
	Fairchild	3	PMI	3
	PMI	13	Motorola	3_
		37		12

The industry sample was first tested by Signetics, who volunteered to do the testing at their facility, using their standard factory test program (Signetics also chairs the JC-41 Subcommittee on Data Converters). The "late arrivals" identified above were not included in the Signetics test group.

Ordnance Systems tested two groups of devices... 33 devices from the purchased sample, and five devices from the industry sample. Data sheets which have a "manufacturer code" heading of "XXXX" are from the industry sample; all others are from the purchased sample. There is no correlation between the serial numbers in the two test groups, since each were assigned at different companies at different times.

Static data was taken on 49 samples. The static data includes a linearity plot of all 256 points for both the Io and I outputs at three temperatures (294 linearity plots). Bench data on at least 15 devices was also taken for all dynamic tests.

6.4 Automatic Test Development

Software was developed for the Tektronix S-3263 Test System to provide for automatic test of the DAC-08. All the static tests recommended by the JC-41 Committee plus some additional static tests were included in the software development.

General Static Testing

Figure 6-3 shows the test circuit for the static tests performed on the on the S-3263. Unless otherwise specified pin 11 is connected to + 15 Vdc, pin 12 is connected to -15 Vdc, K3b is switched to ground, K1 is switched to the MN2001, K3a is closed, K4 is switched to ground, pin 15 is grounded, pin 13 is connected to + 15 Vdc, pin 14 is connected to - 15 Vdc and pin 10 is grounded.

A calibration program is always run at the start of testing to assure proper adjustment of zero and full scale outputs levels of the reference DAC. Potentiometers are adjusted, when necessary, to provide negligible gain and offset error.

The test begins with positive and negative supply currents being checked with all bits high and all bits low.

An offset measurement is then performed with K3a open and K4 switched to the reference DAC with its inputs set to all zeros. The offset is subtracted out to improve measurement accuracy when necessary.

Full scale current out of $I_{\rm o}$ and $I_{\rm o}$ is measured using the reference DAC at its calibrated full scale setting. Offset correction is performed on the result.

A second offset measurement is performed with K4 switched to ground.

Zero scale current out of I_0 and $\overline{I_0}$ is then measured with K4 switched to ground. Offset correction (using the second offset measurement) is also performed on the result.

Power supply sensitivity tests are run as described in section 6.1.

An offset measurement at pin 26 with K3 open is performed in preparation for the output current range test which uses + 30V and -5V power supplies for OA1.

The Output Current Range Test is then performed with a -5V negative supply while using a +15V reference. The same test is repeated with a -7V negative supply while using a +25V reference. The measurement is made on output pin 26 with +30V and -5V power supplies on OAl. Both outputs of the DAC-08 are checked.

The Reference Bias Current of the op-amp which is internal to the DAC-08 is measured at pin 10. The tester forces OV and measures the cur-

High Level Input Current, which is leakage current, is measured for each digital input. Low Level Input Current, which is base current, is also measured for each digital input.

Another pair of offset measurements at pin 24 are performed with K3 open and the reference DAC set at zero. These measurements are made with +19V and -10V common mode voltages at OAl which are used for the voltage compliance tests.

The +18V Compliance Test is performed on both outputs by setting pin 15 to +18V and measuring full scale current. The -10V Compliance Test is performed similarly with pin 15 at -10V.

Linearity and Monotonicity Testing

For measuring DAC-08 linearity error the S-3263 compares the linearity of a reference DAC with the linearity of the DAC under test. This test measures relative bit weight difference (RBWD). Referring to Figure one can see that the difference in bit weights is linearly related to the significance of the bits. For perfect linearity and no offset error, the relative bit weight difference is linearly related to how significant that bit is and is due to the difference in gains. Any error from this linear relationship is, therefore, due to linearity error, assuming an insignificant linearity error for the reference DAC.

Two basic techniques for measuring linearity error are utilized. The first technique checks only the weight of each bit and proceeds to show that there is no bit weight interaction.

The question that now arises is what assurance does one have that there is no bit weight interaction. That is, when one activates one bit alone and determines its weight that same bit may have a slightly different weight when any or all other bits are activated. The converter industry tries to answer this question by summing the positive and negative deviations and comparing it to the deviation with all bits activated. The all bits "on" state mathematically forces the difference in positive and negative bit weight deviations to zero. The difference between the summed positive and negative deviations is a measure of the bit weight interactions. This approach assumes no cancellation effects in the all bits "on" state. That is, one bit weight may rise due to one interaction while another bit may drop due to another interaction, so that a worse case linearity error can occur only for a certain bit combination. The only way to check for that phenomenon is to check each digital word, which is our second approach.

The technique for checking linearity at each digital word is as follows:

- As in the first technique, establish a theoretical straight line between all bits "on" and all bits "off". Since the reference DAC will be used, all measurements will be relative to the reference DAC.
- All digital word values will then be predicted by on-line calculations and errors relative to the theoretical straight line determined.

The all bits "on" state is used to establish the theoretical straight line because the gain and adjustments are usually performed by the user for that condition. Therefore, any argument that it is not the best straight line is purely academic.

The offset errors are also a concern. The offsets of the DAC under test, the reference DAC and the op amps are simply measured all at once and subtracted out of each measurement as part of the data manipulation in software.

The basic steps used in the S-3263 software to accomplish the first technique are as follows:

- 1. Set the device under test (D.U.T.) to all bits "off" and the reference DAC to all bits "off" and measure the combined offset (V_{COS}).
- Set the D.U.T. to all bits "on" and the reference DAC to the 8 most significant bits "on" and determine the full scale difference (FSD) by subtracting V_{COS} from the measured value (V_{error}) and dividing by 100,000 ohms (20 x 5,000 ohms).

$$I_{FSD} = \frac{v_{error} - v_{COS}}{100,000 \text{ ohms}}$$
 amps

3. Set the D.U.T. and reference DAC to all bits "off" except the most significant bit (MSB). Subtract $V_{\rm COS}$ from the measured value ($V_{\rm error}$) and divide by 100,000 ohms.

Minima it to thook soon laterial way and of the memoral

$$I_{RBWD_1} = \frac{v_{error_1} - v_{COS}}{100,000 \text{ ohms}}$$

4. The linearity error is calculated as follows:

$$NL_{1} = I_{RBWD_{1}} - \left(\frac{256}{255} \times \frac{1}{2} \times I_{FSD}\right)$$

$$I_{FS}$$

- 5. Repeat steps 3 and 4 with the second most significant bit and replace $(1/2)^1$ with $(1/2)^2$.
- 6. Repeat 5 for the other Nth bits using the appropriate (1/2) M factor.
- 7. To check for worst case linearity error

8. To assure an insignificant amount of bit interaction

9. For the case where bit interaction is near the limit, a tighter bit weight error limitation is required as follows:

The next approach checks every digital word using the following steps:

- 1. Determine VCOS and IFSD as before.
- Step the D.U.T. from 00000001 to 11111110 and calculate the nonlinearity at each digital word. For example, for the 00000011 input the non-linearity is given by

$$NL_{3} = \frac{\left(\frac{V_{error} - V_{COS}}{100,000 \text{ ohms}}\right)\left(\frac{3 \times I_{FSD}}{256}\right)}{I_{FS}} = 0 \pm .19\%$$
(for DAC-08 only)

where I_{FS} is the full scale current out of the D.U.T. and is 2 mA. Of course, this is only the non-linearity relative to the reference DAC, but, since its linearity is .003% or better, the difference is not that significant. This test should also check for monotonicity at each point. The monotonicity calculation going from 00000010 to 000000011 is

% Change =
$$\frac{V_{error_3} - V_{error_2} - V_{COS}}{100,000 I_{FS}} = 0 to 0.8% (2 LSB)$$

The converter industry uses the bit interaction check to substantiate checking only the major carries for monotonicity. The data from every point will determine the validity of their approach.

As for the way of presenting the linearity data, a horizontal plot of the non-linearity of 255 points provides a good visual profile of the DAC performance. This plot also indicates if there is any monotonicity problem. A sample plot of the data points is shown in Figure 6-8.

obere leg is the full scale correst out of the D.U.T. and is 2 mA. OR course, this is only the pen-lingarity colsily of the inference of DAC. DEC. class its inderelty is 200% of better, the difference to the them in a start used in the case of the class in a color point in a color of the content of colors in going start in a content of colors in going star (The content of colors in going start (The colors in going

6.5 Evaluation of Data
6.5.1 Dynamic Test Data
Settling Time and Propagation Delay Data

Table 6-1 lists the bench data taken on devices from five manufacturers. All vendors except for vendor H had little or no problems with meeting the 135 nanosecond settling times. The vendor H devices also exhibited a 20 mV dip near the settling area of the curve which increased their total settling time for T_{SHL}.

The same test circuit was used to make propagation delay measurements. Table 6-3 shows that all the vendors' devices checked had prop delays in the range of 30-50 nsec, except for the vendor H device which was close to the 60 nsec limit. The typical settling time waveforms, shown in Figure 6-9, exhibit typical propagation delays for both transitions.

Slew Rate

Using the slew rate test circuit shown in Figure 6-6, slew rate data was taken on 13 devices from the purchased sample, and 5 devices from the industry sample. All of the data exceeded the minimum value of 1.5 mA/nsec. The data is tabulated in Table 6-4.

6.5.2 Static Test Data

Table 6-5 is a statistical tabulation of the static test data at three temperatures on all 33 samples tested by using wide reject limits. Table 6-6 uses the reject limits proposed by the JC41 Committee to present the statistical data.

Supply Currents

The positive and negative power supply current data indicates that the JC-41 limits are wide enough to avoid nuisance failures.

Full Scale and Zero Scale Current

The full scale current and zero scale current limits are wide enough to avoid unnecessary failures. The mean full scale current was 1.99 mA, which tends to support setting the acceptable range at 1.99 \pm .05 mA as proposed.

Power Supply Sensitivity from 7 Vs and from - Vs

All the power supply sensitivity limits were acceptable. A wider range is justified for the 12 V to 18 V variation than for the 4.5 V to 5.5 V variation, as is already specified.

Output Current Range

Some problems were encountered meeting the limits specified by the JC-41 Committee. The IFSR1 limit of 2.1 mA min. was only a problem for one vendor's devices. The IFSR2 limit of 4.2 mA min. was not realistic for $-V_S = -7.0V$. Not one device could meet it. The JC-41 D/A converter subcommittee has recently suggested setting $-V_S$ to -12 V instead of -7 V. This new setting has not been specifically tried, but earlier bench tests have indicated that changing $-V_S$ to -8 V or more will allow most devices to meet the 4.2 mA min; therefore, $-V_S = -12$ V should leave a comfortable margin.

Reference Bias Current

The limits recommended by the JC-41 Committee allow for 0.1 uA of current reversal. This reversal would be caused by approximately 1 uA of leakage current which may be due to surface contamination. The data taken by both Signetics and GEOS indicated no reversal of measured current. GEOS does not see the need for allowing for bias current reversal and would rather be rejecting devices that exhibited bias current reversal. The other end of the limit (-3.0 uA) does not present any problems.

High and Low Level Input Currents

The JC-41 Committee recommended limits for the high level input current (which is really leakage current) only specifies a maximum which is at 10 uA.

The Signetics data does not look sensitive enough to draw any conclusions from. The GEOS data varied from a maximum of + .04 uA to a minimum of - .002 uA. Therefore, GEOS recommends a maximum limit of 1 uA and a minimum limit of - 0.1 uA. The - 0.1 uA allows for leakage current in the test fixture.

The low level input current limit of - 10 uA (minimum) leaves a comfortable margin to avoid nuisance failures. A maximum limit of zero could be provided for the detection of excessive leakage current, but this is already provided by the high level input current test.

Full Scale Current at + 18 V Compliance and - 10 V Compliance

No problems were encountered with the compliance tests. The limits recommended by JC-41 are reasonable and should not lead to nuisance failures.

Change in F.S. Current Due to Voltage Compliance

The 4 uA (1/2 LSB) limit at - 55°C set by the JC-41 Committee for the change in full scale current due to voltage compliance is not easily achieved. In fact, Vendor H exhibits almost ten times that amount. Only Vendor E has no problem meeting the 4 uA limit. In order to avoid poor yields, an 8 uA (1 LSB) limit should be used at -55°C. One manufacturer will still be unable to achieve this limit unless he improves his design. The other five manufacturers should have no problems.

Linearity

Because linearity is the most important characteristic of the DAC-08 a great amount of effort was expended to determine validity of the measurement assumptions and the actual linearity of the devices.

The question concerning bit interaction was "Is the difference of the sum of the positive and the sum of the negative bit errors a conservative measure of bit interaction?" The answer seems to be yes. The worst case linearity was estimated by adding the absolute value of the difference (described above) to the sum of the positive bit errors (to get the positive worst case linearity) and to the sum of the negative bit errors (to get the negative worst case linearity). Comparing these worst case linearities with the actual linearity errors obtained by measuring all 256 digital words, one must conclude the worst case linearity was always considerably worse than the actual linearity error. That is, the bit interaction was never worse than that observed with all bits on.

As for the linearity of the devices, the worst linearity always occurred at -55°C. The positive and negative bit errors exceeded 0.19% only occasionally at -55°C. The Positive and Negative Bit Error Difference (Bit Interaction) had a mean of -0.045% and a standard deviation of 0.003% to 0.004% and rarely exceeded the .05% limit. Positive Relative Accuracy and Negative Relative Accuracy, which is the worst case linearity mentioned earlier, exceeded 0.19% for many devices. In most cases, exceeding this limit did not indicate an actual linearity error greater than 0.19%.

Other notable characteristics that were observed are that the sum of the negative bit errors was almost always larger than sum of the positive bit errors and the actual linearity plots exceeded the sum of the positive bit errors only slightly and rarely exceeded the sum of the negative bit errors.

The data taken by Signetics does not calculate worst case linearity as described earlier, but calculates a worst case word which is the same as the sum of the bit errors (positive and negative).

Monotonicity

The linearity data of all 256 digital words substantiates the industry position that worst case monotonicity (differential linearity) occurs at the major carry points. The largest amount of differential linearity is generally exhibited at the most significant carry or the second most significant carry.

The monotonicity of a converter is guaranteed by establishing a linearity within \pm 1/2 of a least significant bit. Therefore, as expected, no problems were encountered with the 16 uA limit to assure monotonicity.

Output Symmetry

The output symmetry of the ${\rm I}_{\rm O}$ and ${\rm I}_{\rm O}$ outputs was well below the 8 uA limit specified.

Full Scale Current Temperature Coefficient

Although Full Scale Current Temperature Coefficient was not specifically included in the static test software program (due to an oversight), some spot checks of this limit indicate no problem at all. The worst TC observed was about 25 PPM/°C (or about half the specified limit of 50 PPM/°C).

Comparison of GEOS and Signetics Static Test Data

An attempt was made to correlate GEOS and Signetics Static Test Data for five randomly selected devices. Table 6-7 tabulates both sets of data. In some cases, such as the Output Current Range Tests, no data was taken by Signetics.

The power supply currents correlate very well. IFS, IZS and power supply sensitivities correlate poorly. IREF correlates fairly well. High Level Input Current was difficult to correlate due to the low resolution of the Signetics data. Low Level Input Current correlated very well. The voltage compliance is measured by Signetics as a current change due to output voltage changes of 0 to + 18 V and 0 to - 10 V. Therefore, the difference in those measurements should correlate to the change resulting from a 18V to -10 V change as measured by GEOS. In fact, the correlation was very poor. Fair to good correlation was obtained for most of the bit errors except for an obvious difference in sign. The sum of the positive and negative bit errors measured by Signetics correlated fairly well with the GEOS data. The correlation for the difference between positive and negative bit error summations was very poor. The Signetics data was not even close to the limit, while the GEOS data was very close to the limit.

Comparison of GEOS and Signetics Dynamic Test Data

Table 6-8 tabulates GEOS and Signetics data on the same devices. The settling time test data shows fair correlation. The tply propagation delay data correlates very well, while the tpHL data correlates poorly. The Reference Amplifier Slew Rate data correlates very poorly. One reason for such disappointing correlation may be the difference in test circuits used. For example, all the GEOS test set-ups used $R_{\rm L}$ = 1 K ohm, while the Signetics' test set-ups used R_L = 200 α (settling time), R_L = 50 α (prop delsy) and R_L = 100_ (slew rate). The RL used by GEOS was proposed by the JC-41 Committee.

date canadarante indicated, no mand to group that devices which any indicate establi prespos entitative professional ligations, reference bias correct Ilaits

. Apr O of Ar O. E- sort ad blumda

6.6 Conclusions

6.6.1 Static Tests sales with Lon 2023 state with all show have been all

The following static tests and their limits are acceptable as recommended by the JC-41 D/A Converter Subcommittee (described in Table 6-1):

- 1. Supply current from + V.
- 2. Supply current from Vs
- 3. Full scale current
 - 4. Zero scale current
- 5. Power supply sensitivity from + Vs
 - 6. Power supply sensitivity from V_s
 - 7. Low level input current
 - 8. Full scale current at + 18 V compliance
 - 9. Full scale current at 10 V compliance
 - 10. Positive bit errors (NL+)
 - 11. Negative bit errors (NL-)
 - 12. Monotonicity
 - 13. Output symmetry
 - 14. Full scale current temperature coefficient

Output Current Range

The IFSR2 limit of 4.2 mA min is not realistic with - V_s = -7.0V. However, with - V_s = -12V the limit will present no problem with normal devices.

Reference Bias Current

GEOS recommends no bias reversal be allowed by the reject limits. All data measurements indicated no need to accept such devices which may indicate excessive surface contamination. Therefore, reference bias current limits should be from -3.0 uA to 0 uA.

High Level Input Currents

Since this is really leakage current and GEOS data indicated maximum of + .04 uA, the maximum limit should be reduced to + 2 uA to avoid accepting devices with excessive surface contamination. Since the lowest level measured was -.002 uA, GEOS recommends a minimum limit of - 0.01 uA so as to allow for possible leakage current in the test fixture. Therefore, the High Level Input Current limits should be + 2 uA to -0.01 uA instead of the + 10 uA to 0 uA recommended by the JC-41 Committee.

Change in F.S. Current Due to Voltage Compliance

GEOS data on this parameter indicates the need to increase the limit at -55°C from 4 uA to 8 uA to avoid yield problems.

Positive and Negative Bit Error Difference

All measurements taken by CEOS have a mean value of about -0.04% and a standard deviation of 0.003% to 0.004%. Looking at Table 6-5 one sees that the Signetics data was not even close to the GEOS data. Since the GEOS data exhibits this mean of -.04% and the expected mean is zero, it may be that the GEOS data is erroneous. On the other hand, a bias in the bit interaction (inherent in the device design) is also possible. It is recommended that additional effort be applied in order to identify the reason for the bias.

Positive and Negative Relative Accuracy

The positive/negative relative accuracy is calculated by adding the difference of the summations of the positive and negative bit errors to the positive/negative bit error summation. Since the positive and negative bit error difference data is questionable, it is impossible to draw any conclusions on the validity of this measurement or the need for it. If the GEOS data is erroneous and the Signetics data is valid, the positive and negative relative accuracy would be very close to the positive and negative bit error summations. On the other hand, if the GEOS data is valid and the Signetics data is erroneous, it appears that this parameter is simply a super conservative estimate of the worst-case linearity error.

6.6.2 Dynamic Tests

Using the Settling Time and Propagation Delay Test Circuit shown in Figure 6-5, the maximum limit settling time of 135 nsec and the maximum limit for propagation delay of 60 nsec are acceptable. Checking both \overline{I}_0 as well as I_0 for these two tests is recommended in spite of the fact that equal or faster times were observed at \overline{I}_0 . The slew rate limit of 1.5 mA/usec is also acceptable when tested according to Figure 6-6, but a slew rate check in both the on and off direction is recommended.

6.6.3 Recommended Additional Tests

Zero Scale Current Temperature Coefficient

If the data taken for the zero scale current test at the three temperatures was used to calculate the zero scale current temperature coefficient, the user would be able to calculate the worst case gain and offset temperature coefficient. Since this does not mean an additional test and it may have some value to the user, it is recommended by GEOS.

Output Glitch

Output glitches are caused by unequal turn-on/turn-off times in D/A converter switches. For example, when going from an input word of 10000000 to an input work of Olllllll, an intermediate state of 00000000 or llllllll is possible depending on the mismatch in response time of the switches. Ordnance Systems has not tested glitching in this initial effort, but it is recommended for follow-on action. Due to the difficulty of performing the test, it should be a sample or qualification test to establish some form of control for this characteristic.

Logic Level Control Input

The logic level control input, labeled $V_{\rm CC}$, controls the input threshold of the switches so that direct inputs from various digital logic families can be used. The test of this control input should be a 100% test since it checks functional operation of the device.

Have be at the contract of the contract of the calmin of the contract of

FIGURE 6-1 FUNCTIONAL BLOCK DIMGRAM

Figure 6.2. Test circuit for static tests, JC-41 Committee.

NOTES: 1. USE OSCILLO SEOPE WITH SO MHE MINIMUM BANDWIDTH. 2. SATURATION OF PREAMP SHOULD BE ANDED.

FIGURE 6-5 SETTLING TIME AND PROMENTION TIME

Figure 6-5 (cour's)

TURN-OFF

FIGURE 6-6 SLEW RATE

FRUME 6-7 - CHARGERY MENSUREMENT

a grand of Contains are receipt on constant

DIGITAL INPUT

NOTES:

- L ROWD IS RELATIVE BIT WEGGHT DIFFERENCE.
- 2. AK IS THE GAIN DIFFERENCE BETWEEN REFERENCE AND D.U.T.
- 3 DATA POINTS FROM THE D.U.T. ARE SMOUN AS EIRCLES.

FIGURE 6-7 - LINEARITY MEASUREMENT

Figure 6-8. DACO8 D/A Converter Linearity/Bit-Weight-Interaction Plot.

Vendor G, #6

tsm., tpm

.2V/cm

20 nsec/cm

Vendor G , #6

tsin, tpin
.2 V/cm
.20 nsec/cm

Figure 6-11 Settling time and propagation delay

MIL-M-38510/
TABLE 6-| ELECTRICAL PERFORMANCE CHARACTERISTICS (DEVICE TYPE 01)

JC-41 COMMITTEE RECOMMENDATIONS

TEST	SYMBOL CONDITIONS 1/		LI	MITS	UNITS
		A STATE OF THE STA	MIN	MAX	
Supply Current From +VS	I+	All input Bits High	0.4	3.8	mA
Supply Current From -VS	I-	All input Bits High	-7.8	-0.8	mA.
Full Scale Current	IFS	All input Bits High, 2/ Measure I _O All input Bits Low, Measure I _O	1.94	2.04	mA
Zero Scale Current	IZS	All input Bits Low, Measure Io All input_Bits High, Measure Io	-2.0	+2.0	A.
Power Supply Sensitivity From +VS	PSSIFS+ 1	+VS=+4.5% to +5.5V, -VS =-18V All input Bits high, Measure Io All input Bits Low, Measure Io	-4.0	+4.0	A.
	PSSIFS+ 2	+VS=+12V to +18V, -VS= -18V All input Bits High, Measure I _O All input Bits Low, Measure I _O	-8.0	+:8.0	uA
Power Supply Sensitivity From -VS	PSSIFS- 1	+VS = +18V, -VS = -12V to -18V All input Bits High, Measure I_O All input Bits Low, Measure \overline{I}_O	-8.0	+8.0	uA
	PSSIFS- 2	+VS=18V, -VS=74.5V to -5.5V R14 = R15 = 10.000K1 All input Bits High, Measure Io All input Bits Low, Measure Io	-2.0	+2.0	uA n s sur
Output Current Range	IFSRL	-VS=-5.0V, VREP=15V All input Bits High, Measure Io All input Bits Low, Measure Io	2.1	en i vide de constanti de constanti de constanti de	a \
	IFSR2	-VS = -7.0V, VREF = +25V All input Bits High, Measure I_O All input Bits Low, Measure \overline{I}_O	4.2	elikos Palkos Publishik	mA
Reference Bias Current	IREF-	All input Bits Low	-3.0	+0.1	uA.
'Meh Level Input Current	IIH	All input Bits VIN = +18V, Each input measured separately		10	A.
Low Level Input Current	IIL	All input Bits VIN = -10V, Each input measured separately	-10.		u A

MIL-M-38510/
TABLE 6-/ ELECTRICAL PERFORMANCE CHARACTERISTICS (DEVICE TYPE 01)

JC-41 COMMITTEE RECOMMENDATIONS

TEST	SYMBOL CONDITIONS 1/		LIM	UNITS	
3880 2 40.00			MIN	MAX	
Full Scale Current at +18V Compliance	IFS+	$VI_O \approx \overline{VI}_O = +18V$ All input Bits High, Measure I_O All input Bits Low, Measure \overline{I}_O	1.90	2.08	mA
Full Scale Current at -10V Compliance	IFS-	VI _O ≈ VI _O = -10V All input Bits High, Measure I _O All input Bits Low, Measure I _O	1.90	2.08	mA
Change in full scale current due to voltage compliance	ΔIFSC	VI _O = +18V to -10V, Measure I _O VI _O = +18V to -10V, Measure I _O	-4.0	+4.0	uh ye
Positive Bit Errors	\$NL+	(Positive Bit Errors)/IFS, Measure Io and To 3/		0.19	•
Negative Bit Errors	≰nl-	(Z'Negative Bit Errors)/IFS, Measure Io and To 3/	-0.19		•
Positive & Negative Bit Error Difference Mositive Relative	∆ ⊉ NL	12NL+1 - 14NL-1	-0.05	+0.05	
ositive Relative Accuracy	NL+	IZNI+1 + IAZINLI		0.19	1
Negative Relative Accuracy	NL-	MINL-1 + IADNI		0.19	•
Monotonicity	Δ(i)	(Ion - Ion-1) ≥ 0 at each major carry point. 4/ Measure Io and To	0	16.	uA
Output Symmetry	ΔIFS	IFS - IFS	-8.0	+8.0	uA
Full scale current Temp. Coefficient	TC (IFS)	Measure Io and To	-50.	+50.	ppm/o
Propagation Delay time, High-To-Low level	tpHL	Fig. 2, all bits switched simultaneously, Measure \overline{V}_{O}	6	60	nS
Propagation Delay time, Low-To-High level	tpLH	Fig. 2, all bits switched simultaneously, Measure \overline{V}_{O}	6	60	ns
Reference amplifier input slew rate	dI/dt	Fig. 3	1.5		mA/us
Settling Time, High-To-Low Level	tsHL	Fig. 2, output within 1/2 LSB of Final Value of Io	10	135	ns
Settling Time, Low To High Level	tsLH	Fig. 2, output within 1/2 LSB of final value of Io	10	135	nS .
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	College as	TOV SOLID COMPANIES OF THE COMPANIES OF		or yet	Maria M

MIL-M-38510/
TABLE 6-1 ELECTRICAL PERFORMANCE CHARACTERISTICS (DEVICE TYPE 02.)

JC-41 COMMITTEE RECOMMENDATIONS

TEST	SYMBOL	BOL CONDITIONS 1/		ITS	UNITS
208 204			MIN	MAX	
Supply Current From +VS	I+	All input Bits High ,	0.4	3.8	mA
Supply Current From -VS	I-	All input Bits High	-7.8	-0.8	mA
Full Scale Current	IFS	All input Bits High, 2/ Measure I _O All input Bits Low, Measure I _O	+1.984	+2.000	64 00 00 00 00 00 00 00 00 00 00 00 00 00
Zero Scale Current	IZS	All input Bits Low, 'Measure Io All input Bits High, Measure Io	-1.0	+1.0	ωλ
Power Supply Sensitivity From +VS	PSSIFS+1	+VS=+4.5V to +5.5V, -VS = 18V All input Bits high, Measure I _O All input Bits Low, Measure T _O	-4.0	+4.0	uA
s \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	PSSTFS+2	+VS=+12V to +18V, -VS= -18V All input Bits High, Measure I _O All input Bits Low, Measure I _O	-8.0	#8.0	αλ
Power Supply Sensitivity From -VS	PSSIFS-1	+VS = +18V, -VS = -12V to -18V All input Bits High, Measure Io All input Bits Low, Measure Io	-8.0	+8.0	w
70 0.5+ 0.3 20 0.5+ 0.3 207050 70+ 55+	PSSTFS-2	+VS=18V, -VS=4.5V to -5.5V, R14 = R15 = 10.000KG All input Bits High, Measure Io All input Bits Low, Measure Io	-2.0V	+2.0	u.
Output Current Range	IFSR1	-VS=-5.0V, VPEF=+15V All input Bits High, Measure Io All input Bits Low, Measure Io	2.1	ens (5) grap gra-es gra-es	20.
2015	IFSR2	-VS = -7.0V, VREF = \pm 25V All input Bits High, Measure I_0 All input Bits Low, Measure $\overline{I_0}$	4.2	esta o Litaro	a sor
Reference Bias Current	REF-	All input Bits Low	-3.0	+0.1	u.
High Level Input Current	CIH	All input Bits VIN = +18V, Each input measured separately	in the road	10	uA
Low Level Input Current	IIL	All input Bits VIN = -10V, Each input measured separately	-10		ul

MIL-M-38510/
TABLE 6-/ ELECTRICAL PERFORMANCE CHARACTERISTICS (DEVICE TYPE 02.)

JC-41 COMMITTEE RECOMMENDATIONS

TEST	SYMBOL	CONDITIONS 1/	NS 1/ LIMI		UNIT
THE PARTY OF THE P		_	MIN	МЛХ	
Full Scale Current at +18V Compliance	IFS+	$VI_O = \overline{VI}_O = +18V$ All input Bits High, Measure I_O All input Bits Low, Measure \overline{I}_O	1.90	2.08	mA
Full Scale Current at -10V Compliance	IFS-	VI _O = VI _O = -10V All input Bits High, Measure I _O All input Bits Low, Measure I _O	1.90	2.08	mA
Change in full scale current due to voltage compliance	ΔIFSC	VI _O = +18V to -10V, Measure I _O VI _O = +18V to -10V, Measure I _O	-4.0	+4.0	uA
Positive Bit Errors	\$NL+	(Positive Bit Errors)/IFS, Measure Io and Io 3/		0.1	•
Negative Bit Errors	ZNL-	(Negative Bit Errors) / IFS, Measure Io and Io 3/	-0.1		
Positive & Negative Bit Error Difference	ANL	3nl+ - 3nl-	-0.03	+0.03	
Positive Relative Accuracy	NL+	IZNL+1 + IAZNL		0.10	•
Negative Relative Accuracy	NL-	12nl-1 +102nl 1		0.10	•
Monotonicity	Δ(i)	(Ion - Ion-1) ≥ 0 at each major carry point. 4/ Measure Io and To	0	16	uA
Output Symmetry	ΔIFS	IFS - IFS	-4.0	+4.0	uA.
Full scale current Temp. Coefficient	TC (IFS)	Measure Io and To	-50.	+50.	ppm/c
Propagation Delay time, High-To-Low level	tpHL	Fig. 2, all bits switched simultaneously, Measure \overline{V}_{O}	6	60	nS
Propagation Delay time, Low-To-High level	tpLH	Fig. 2, all bits switched simultaneously, Measure \overline{V}_{O}	6	60	nS
Foference amplifier input slew rate	dI/dt	Fig. 3	1.5		nA/us
Settling Time, High-To-Low Level	tsHL	Fig. 2, output within 1/2 LSB of Final Value of Io	10	135	nS
Settling Time, Low-To-High	talH	Fig. 2, output within 1/2 LSB of final value of Io	10	135	ns
au os	4. 3012-	V e 26 dices (1) e 11 Eserces e si sal simil		2044	0 to 1

MC1508

MIL-M-38510/

TABLE 6-1 ELECTRICAL PERFORMANCE CHARACTERISTICS (DEVICE TYPE 03)

JC-41 COM	MITTEE	RECOMMEN	DATTONS
-----------	--------	----------	---------

TEST	SYMBOL	SYMBOL CONDITIONS 1/		MITS	UNITS
The straight of population and the straight of			MIN	MAX	
Supply Current From +VS	I+	All input Bits Low	0.4	22.0	mA
Supply Current From -VS	I-	All input Bits Low	-13.0	-0.8	mA
Full Scale Current	IFS	All input Bits High, 2/ Measure I _O	1.9	2.1	mA
Zero Scale Current	IZS	All input Bits Low, Measure Io	-4.0	+4.0	uA
Power Supply Sensitivity From +VS	PSSIFS+	+VS=+4.5V to +5.5V, -VS=-16.5V All input Bits High, Measure Io	-4.0	+4.0	uA
Power Supply Sensitivity From -VS	PSSIFS- 1	+VS=+5.0V, -VS=-13.5 to -16.5V All input Bits High, Measure Io	-8.1	+8.1	uA
	PSSIFS-2	+VS=+5.0V, -VS=-4.5V to -5.5V	-2.7	+2.7	uA
802 mz		All input Bits High, Measure Io		i draw	9-2-1
Output Current Range	IFSRL	-VS-5.0V, VREF=+15V All input Bits High, Measure I _O	2.1	2027/88 835 80. 1 0	mA
	IFSR2	-VS-7.0V, VREF-+25V All input Bits High, Measure I _O	4.2		mA.
Reference Bias Current	IREF-	All input Bits Low	-3.0	+0.1	uA.
High Level Input current	IIH	All input Bits VIN = +5.5V, Each input measured separately		40.	uA
Low Level Input Current	IIL	All input Bits VIN = OV, Each input measured separately	-800		uA
Full Scale Current at +.5V Compliance	IFS+	VIO = +0.5V All input Bits High, Measure Io	1.8	2.2	mA
Full Scale Current at -5.0V Compliance	IFS-	VI _O = -5.0V All input Bits High, Measure I _O , Pin 1 open	1.8	2.2	mA
Change in full scale current due to voltage compliance	AIFSC	VI _O =+.5V to -5.0V, Measure I _O	-4.0	+4.0	uA
Positive Bit Errors	ZNL+	(≰Positive Bit Errors)/IFS Measure Io 3/		0.19	
Nggative Bit Egrors	ZNL-	(Negative Bit Errors)/IFS	-0.19		•

MIL-M-38510/
TABLE 6-1 ELECTRICAL PERFORMANCE CHARACTERISTICS (DEVICE TYPE 03)

JC-41 COMMITTEE RECOMMENDATIONS

	SYMBOL CONDITIONS 1/			UNITS	
		/ SECTIONS - NEW	MIN	MAX	
Positive & Negative Bit Error Difference	∆≥'NL	4nl+ - 2nl-	-0.05	+0.05	
Positive Relative Accuracy	NL+	ISNL+1 + / AZNL/		0.19	
Negative Relative Accuracy	NL-	ZNL- + AZNL		0.19	
Monotonicity	Δ(i)	(Ion - I _{on-1}) <u>2</u> 0 at each major carry point. <u>4</u> /	0	16	uA
Full Scale current Temp. Coefficient	.TC(IFS)	Measure Io Bits High	-50.	+50.	ppm/o
Propagation Delay time, High-To-Low level	tpHL	Fig. 2, all bits switched simultaneously,	6	100	nS
Propagation Delay time, Low-To-High level	tpLH	Fig. 2, all bits switched simultaneously,	6	100	ns
Reference Amplifier WTput slew rate	dI/dt	Fig. 3	1.0		mA/uS
Settling Time, High- To-Low level	tsHL	Fig. 2, output within 1/2 LSB of final value of Io	10	600	ns
Settling Time, Low- To-High level	tsLH	Fig. 2, output within 1/2 LSB of final value of Io	10	600	ns
		Surregion rende final			
		- NEV all Jumps Aft Taken We taken to the Afternation of the Afternati			k = 1771
		page + 18 supplies			10 FE
	+	Annia odin ibgel 197			11 811 Vi.
	1	or an expension of	1		
	57.0%(2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			F , 89.3.
	0- 28L L	Tarich and in the Market	Marie 1		5 000

Western P.

H tribuel

- NOTES: 1/ VS = 15V, VREF = +10.000 1 .001V, R14 = R15 = 5.0000 \pm .0005k Ω , VLC = VIO = $\overline{\text{VI}_0}$ = -VREF = 0.0V, V_{HIGH} = 2.0V, V_{LOW} = 0.8V, and Figure 1, unless otherwise specified.

 - 2/ TA = 25°C test only.

 3/ Bit Error = \[\frac{2.000mA}{2N} \text{(IN-IZS)} \]; where IFS is adjusted to (1.992mA + IZS) and N = Positive integers 1 through 8.
 - 4/ The output either increases or remains the same for each 1LSB increase of input code.

(DEVICE TYPE 02)

- NOTES: 1/ VS = 15V, VREF = +10.000 1 .001V, R14 = R15 = 5.0000 \dot{x} .0005KΩ, VLC = VIO = \dot{VI}_{O} = .-VREF = 0.0V, V_{HIGH} = 2.0V, V_{LOW} = 0.8V, and Figure 1, unless otherwise specified.
 - 2/ TA = 25°C test only.
 - 3/ Bit Error = $\frac{2.000\text{mA}}{2\text{N}}$ (IN-IZS); where IFS is adjusted to (1.992mA + IZS) and N = Positive integers 1 through 8.
 - 4/ The output either increases or remains the same for each 1LSB increase of input code.

(DEVICE TYPE 03)

- MOTES: 1/ +VS = +5.0V, -VS = -15.0V, VREF = +10.000 ± .001V, R14 = R15 = 5.0000 ± .0005KG, VLC = VIO = -VREF = 0.0V, VHIGH = 2.0V VLOW = 0.8V, and Figure 1, unless otherwise specified.

- 2/ $T_A = 25^{\circ}C$ test only. 3/ Bit Error = $\frac{2.000\text{mA}}{2\text{N}}$ $(I_N I_{2S})$; Where IFS is adjusted to (1.992mA + ISS) and N = positive integers 1 through 8.
- The output either increases or remains the same for each LLSB increase of input code.

		tslh (ON)	tshi (OFF)
Vendor F		(n sec.)	(n sec.)
s/n	200000 0 - 010 - 120	120	126 V
	3	123	116
	4belliong salaren		192
	5		118
Vendor G			
		* U Date (SET * August) *	Il on best out be
S/N		110	100
	7		110
	8	114	110
	9	120	120
	10	112	112
Vendor E			
S/N		110	100
	12		100
	13		103
	14	100	103
Vendor H	0-19148		
S/N	101 1007 6000 8000 80		160
	102	165	160
	103	165	160
	104	165	160
	105 ,vane, 2 sea, c		155
Vendor A			Service Car + Day Car + Day Car + Day
S/N	19	93	100
	20	04	105
	21	OF	105

Table 6-2. Settling Time Data (taken by GEOS).

Table 6-3
PROPAGATION TIME TEST OF DAC 08's

Walnebal,

E.A.

Soom temperature only

nen . 1000 An 8 1 4 500 - 10

Ram . posn (36 % 3

Device S/N		Condi	tion 1	9	Condition 2
Industry Sample		1			2 nsec
1 (1)(1)		35			44
24		41			42
35		50			56
47		33			42
70 05-402		34			41
Purchased Sample	200.				
1		35			42 nsec
3		38			40
4		38			44
5		39			43
6 Sern		30			38
7		29			39
8		34			38
9		42			48
10		35			40
15		31			34
25		29			32
26		32			31
27		34	295	085	37

Condition 1 = t_{PLH}, V_L = 2.7 V

.7

Condition 2 = t_{PHL}, V_L = 0.7 V

SHOWING AND AND ADDITIONAL PROPERTY OF THE OFFICE AND CONTRACT TO A DESCRIPTION OF THE OFFICE AND ADDITIONAL PROPERTY OF THE OFFICE ADDITIONAL PROPERTY OF THE OFFICE

SLEW RATE DATA

	and the	Condi	tion					
Device S/	l da	(1)		(2)	_(3)	(4)	Unit	8
(Industry	Sample)	1		t o	t	t		35
1		225		235	250		nse	ic of
24		300		300	300			
35		490		500	480	and the same of th		l beswin
47		225		230	230	the contract of the contract o		
70		330		335	330	350		
(Purchased	Sample)							
1		400		405	395	400	nse	ic å
3		370		375	365			
4		460		480	440			
5		455		455	465	470		
6		290		295	295	300		
7		265		275	280			
8		295		285	295			
9		350		355	340			
10		290		295	280			7.5
15		235		240	220			
25		220		225	215	THE RESERVE THE PARTY OF THE PA		
26		245		240	230			
27		255		245	250			
Condition	(1) al	ll bits	low,	low-to-	high	transition	at the	output
	(2) al	ll bits	high,	low-to-	high	transition	at the	output
		ll bits				transition		
			ALCOHOL: NAME OF THE PARTY OF T			transition		

Room temperature only

 $\frac{dI}{dt} = \frac{lmA}{t} = 1.5 \text{ mA/usec. min}$

t = 667 nsec. max

Heal Bit High Heal H	* 4444444444444444444444444444444444444	0.001040.001040.00000000000000000000000	- 2							401		NE.		CAL
LOW) LOW) LOW) LOW) LOW) LOW) LOW) LOW)		00000000000000000000000000000000000000	33						•					
LOW) HIGH) HIGH) 1.98 1.98 1.98 1.98 1.98 1.09 1.03 1.05 1.05 1.05 1.05 1.05 1.05 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06		5,727.00.00.00.00.00.00.00.00.00.00.00.00.00	200	1	100		4004	-1 .00k	7.70	00.0	7.80	100	2 30	1 2
LOW) -7.13 LOW) -7.13 LOW) -7.13 1.98 1.25 1.09 1.05		5,222,222,222,232,232,232,232,232,232,23	11				400 W	1.00k	2.73	00.0	3.80		2.30	
1.98 1.98 1.198 1.108 1.		5.22.23.23.23.23.23.23.23.23.23.23.23.23.	3.5				7.80	-1.00k	2.73	00.0	800	200	00.0	
12.54 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25		2222222	3 2	100	100	1	-7.80	-1.00K	2.74	00.0	-800 H	1.00%	10.0	
TS LOW 2 256 11 1 22 1 1 22 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1		25.27.27.25.25.25.25.25.25.25.25.25.25.25.25.25.	33	63.6	100		1.94	-1.09K	38.8	0.00	2.04	1.00%	7.51	N A
12.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27		22.23.44.4 22.23.44.4 22.23.44.4 24.54.44.4	33	63.6	100.		1.94	-1.00K	9.01	00.0	2.04	1.00	7.61	z
13.04 -50.17 -50.17 -50.17 -50.17 -1.27 -1		22.23.44 22.23.44 25.54 25.54 25.54	33	63.6	67.0		2.00	-1.00K	6.55	0.00	2.00	1.00K	5.96	-
TS LOW) -2.56 1.00 1.055 1.00 1.055 1.00 1.00 1.00 1.		22.74 22.74 22.75 27.57 5.49	33	93.0	97.0		-2.00	-1.00K	139.	00.0	2.00	1.00%	139.	-
150.14 1.22 1.22 1.23 1.22 1.23 1.23 1.23 1.23		22.34 22.75 27.54 6.49	3.3	63.6	100.		4.00	-1.00K	176.	00.0	4.00	1.000	176.	-
TS LOW) 2.56 TS HIGH) 2.56 1.03 1.65 1.65 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03		22.74	3.3	100	100.		4.00	-1.00K	145.	0.00	4.00	1.00K	145.	-
13.3 1.37.3 1.37.3 1.22 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65		5.92	33	03.0	100.		00.8	-1.00K	352	00.0	8.00	1.00	353.	-
13.3 -34.1 -34.1 -2.17 -1.27 -1.27 -1.28 -1.65 -1.65 -1.65 -1.10H		5.92	33	100	100.		8.00	-1.00K	290.	00.0	8.00	1.00K	291.	
TS LOW) 2.56 TS MIGH) 2.56 TS MIGH) 2.56 1.65M -1.65M -1.00M	EAST NOT THE REAL PROPERTY.	5.92	33	0.26	97.0		8.00	-1.00K	1.05	00.0	8.00	1.00%	1.42	-
TS LOW) -2.56 TS HIGH) -2.56 TS HIGH) -2.56 -1.004 -1.004 -1.004			33	97.0	97.0		8.00	-1.00K	1.16	00.0	8.00	1.00	1.54	-
BITS LOW) -2.56 BITS HIGH) -2.56 BITS HIGH) -2.56 -1.00H		512.H	33	93.9	97.0		-2.00	-1.00K	3.14	00.0	2.00	1.00	4.68	-
,		274.1	33	93.9	97.0		-2.00	-1.00K	6.21	00.0	2.00	1.00%	8.41	-
122.23		4.6.4	33	97.0	100.		2.10	-1.00K	644.	00.0	5.80	1.00%	2.09	
22.56 22.56 11.65H		401.14	33	6.06	100.		2.10	-1.00K	1.51	00.0	5.80	1.00	7.71	
2.85 -2.56 -2.56 -1.65H		1.02	33	93.9	100.		4.20	-1.00K	H-898-	00.0	5.80	1.00K	2.47	-
22.56 22.56 11.65 12.00 14.10 14.10 15.00		386.M	33	93.9	100.		4.20	-1.00K	-1.23	00:0	5.80	1.00%	5.37	-
BITS HIGH) -2.56 -1.65H	3.	540.K	33	63.6	0.26		-3.00	-1.00K	3.84	00.0	100.H	1.00K	1.90	-
1.657	•	539.11	33	63.6	97.0		-3.00	-1.00K	3.82	00.00	100.4	1.00k	1.90	~
-1.00H		14.24	33	0.79	0.76			-1.00K		00.0	10.0	1.00%	705.	-
-1.104		5.60H	33	0.74	0.76			-1.00K		00.0	10.0	1.00K	1.79K	-
-400.U		4.48	33	0.74	0.26			-1.00K		00.0	10.0	1.00K	2.23K	-
-1.20M		3.00%	23	100.	100.			-1.00K		00.0	10.0	1.00%	3.33K	-
10711		42.44	33	63.6	97.0			-1.00K		0.00	10.0	1.00k	235.	-
-200.0		382.6	33	0.79	97.			-1.00K		0.00	10.0	1.00%	25.9	~
, -200.U		HO.69	33	0.26	97.0			-1.00K		00.0	10.0	1.00%	145.	-
		5.68	33	0.26	97.0			-1.00K		3.03	10.0	1.00K	3.56	~
1 -17.7	*	2.83	33	0.24	0.26		-10.0	-1.00K	2.43		-	1.00%		-
	•	2.61	33	0.79	0.79		-10.0	-1.00K	2.73			1.00K	-	-
		3.16	33	0.79	97.0		-10.0	-1.00K	2.20	-	-	1.00K	-	-
-16.4		2.70	33	97.0	97.0		-10.0	-1.00K	2.60			1.00%	-	~
-15.0		2.38	33	0.79	97.0		-10.0	-1.00K	2.94			1.00K		~
15.3		2.52	33	0.74	0.26		-10.0	-1.00K	2.76			1.00K		-
-17.2	•	2.79	33	67.0	97.0		-10.0	-1.00K	2.47		1	1.00K		-
-278.		47.9	9	0.24	0.76		10.0	-1.00K	-39.4M	-		1.00K	1	_
96.		15.2m	33	67.0	100.		1.85	-1.00K	10.2	00.0	2.08	1.00%	4.97	T
3.4		15.2M	33	0.74	100.		1.85	-1.00K	10.2	0000	2.08	1.00K	4.64	E
1.95		9.7/h	33	97.0	97.0	00.0	1.85	-1.00k	14.5	0000	2.08	1.000	50.6	Z
2::	1:77	1.27	25	0.74	0.74		28.1	NOO!	200	00.00	80.7	1.00K	60.6	
	13.2	13.0	55	0.74	100.		4.00	-1.00K	1.2/	27.6	4.00	1.00K	W. 119	

* EXCLUDES POPULATION OUTSINE OF LOW REJ AND HIGH REJ

Table 6-5. Statistical data for purchased sample (wide reject limits).

	2	
	DEG C CCONTINUED	
	5	
	Z	
	-	
	폵	
	ដ	
	-	
	u	Ŕ
	_	
	8	
	ā	
	-	
	ñ	
	-	
	•	
	DAC08 AT -55	
	õ	
	ä	
	ă	
	_	
	107	
	_	
	-	
	HIXED	
	×	
	E	
	204	
	4	
	0.000	
	DATA	
	4	
	-	
	7	
ĕ	3	
	ATISTICA	
	15	
	H	ì
	5	
	1	į
	S	ı

PARAHETER	LOW	HIGH	HEAN	SIGNA	SAMPLE	SIGNA SIGNA	% IN 3	X FAIL	LIMIT	REJ	F-6-1	X FAIL HIGH	HIGH	HIGH (FE)	HI-FR	TINO
	•		•				-	-	-	!			-	-		
ERROR(BIT#1)(I+)	-264.H	86.3M	-72.1H	82.3H	33	97.0	100.	90.9	H-061-	-1.00K	1.43	00.0	190.M	1.00K	1000	
ERROR(BIT#1)(I-)	-275.H	85.4H	-82.3H	86.6H	33	93.9	100.	90.9	-190.M	-1.00K	1.24	00.0	190.M	1.00K	۲,	*
ERROR(BIT#2)(I+)	-111.H	87.6M	-17.7H	53.47	33	100.	100.	00.0	-190.H	-1.00K	3.23	00.0	190.H	1.00K	0.7	*
ERROR(BIT#2)(I-)	-105.H	95.1M	-15.0H	51.47	33	97.0	100.	00.0	-190.H	-1.00K	3.40	00.0	190.M	1.00k	.,	*
ERROR(BIT#3)(I+)	-112.H	82.3H	582.0	44.5H	33	97.0	100.	00.0	-190.H	-1.00K	4.29	00.0	190.M	1.00K	4.26	.4
ERROR(BIT#3)(I-)	-75.3H	90.2H	5.88H	40.0H	33	93.9	100.	00.0	-190.H	-1.00K	4.89	00.0	190.M	1.00K	4.60	%
ERROR(BIT#4)(I+)	-34.0H	67.4M	12.5H	24.6H	33	97.0	100.	00.0	-190.H	-1.00K	8.24	00.0	190.4	1.00K	7.22	*
ERROR(BIT&4)(I-)	-33.7H	48.8M	11.2H	23.8H	33	97.0	100.	00.0	-190.M	-1.00K	8.47	00.0	190.H	1.006	7.53	*
ERROR (BIT#5)(I+)	-30.8H	60.6M	9.60M	18.74	33	93.9	100.	00.0	-190.H	-1.00K	10.7	00.0	190.H	1.00K	99.6	*
ERROR (BIT#5)(I-)	-19.5H	71.94	10.48	19.0H	33	97.0	97.0	00.0	-190.H	-1.00K	10.5	00.0	190.M	1.00K	9.44	×
FREDR (BIT#6)(I+)	-50.2H	40.6H	998.0	24.0H	33	97.0	100.	00.0	-190.H	-1.00K	7.97	00.0	190.H	1.00K	7.88	7
FREDRIBITAGO (I-)	-50.2H	71.14	2.21H	26.6H	33	97.0	100.	00.0	-190.M	-1.00K	7.23	00.0	190.4	1.00K	7.07	
RROR (BIT#7)(I+)	-8.43M	45.5H	16.14	12.18	33	93.9	100.		-190.H	-1.00K	17.0	00.0	190.H	1.00%	14.4	*
ERROR(BIT#7)(I-)	-7.90H	47.5H	16.7H	11.8H	33	93.9	100.		-190.H	-1.00K	17.5	00.0	190.M	1.00K	14.7	×
ERROR(BIT#8)(I+)	-20.2H	31.78	6.45H	13.0H	33	97.0	100.		-190.M	-1.00K	15.1	00.0	190.M	1.00K	14.2	*
RROR(BIT#8)(I-)	-90.0H	54.0H	7.11H	21.68	33	93.9	97.0		-190.M	-1.00K	9.11	00.0	190.H	1.00K	8.46	×
UM NC+CI+)	42.1H	221.H	108.H	42.7H	33	93.9	100.			-1.00K	-	90.9	190.M	1.00K	1.92	×
SUM NL+(I-)	40.1H	244.8	111.H	48.0H	33	93.9	100.		-	-1.00K		60.6	190.H	1.00K	1.65	*
SUM NL-(I+)	-268.H	-83.8H	-151.H	42.9H	33	93.9	100.	12.1	-190.H	-1.00K	903.H		-	1.00K	-	*
UM NL-(I-)	-285.H	-84.8H	-155.H	47.6H	33	93.9	100.		-190.H	-1.00K	741.H			1.00K		*
DELTA SUM NL(I+)	-52.4H	-22.8H	-43.5H	4.81H	33	0.26	97.0		-50.0H	-1.00K	1.35	00.0	50.0H	1.00K	19.5	**
DELTA SUH NL(I-)	-46.4H	-38.9H	-43.8H	1.694	33	97.0	100.		-50.0H	-1.00K	3.67	00.0	50.0H	1.00K	55.4	.4
NL+(I+)	83.8H	268.H	151.H	42.9H	33	63.6	100.	1	-	-1.00K		12.1	190.H	1.00K	903.M	~
NL+(I-)	84.8H	285.H	155.4	47.6H	33	63.6	100.	-		-1.00K		18.2	190.H	1.00K	741.M	~
NL-(1+)	125.H	315.4	195.H	43.6H	33	93.9	100.		-	-1.00K		54.5	190.M	1.00K	-110.M	
NL-(I-)	127.H	327.H	199.1	47.3H	33	63.6	100.		-	-1.00K		511.5	190.M	1.00K	-180.M	*
DELTA ICINCIA	4.03	17.9	10.3	3.28	33	97.0	100.	-		-1.00K	-	5.03	16.0	1.00K	1.75	-
DELTA ICINCI-)	3.97	18.4	10.6	3.45	33	93.9	100.		-	-1.00K		90.9	16.0	1.00K	1.55	=
	5.78	12.8	9.31	1.81	33	100	100.	-	!	-1.00K		0.00	16.0	1.00K	3.70	-
DELTA 1(2)(I-)	5.94	13.3	9.40	1.94	33	97.0	100		-	-1.00K	-	0.00	16.0	1.00K	3.40	2
	6.01	13.5	8.82	1.42	33	0.76	97.0	-		-1.00K		0.00	16.0	1.00k	5.05	-
المت	6.12	11:3	200	1:21	3:	20.0	190.		-	-1.00k	-	00.0	16.0	1.00k	9.00	~
4	2:0	1001	97.8	5000 H	55	43.4	100.	-		1.00K	-	00.0	16.0	1.00K	14.1	>
-	6.52	11.3	8.35	762.H	33	93.9	97.0		-	-1.00K	-	0.00	16.0	1.00K	10.0	-
-	7.17	10.4	40.8	347.8	33	93.9	100.	-		-1.00K		0.00	16.0	1.00K	22.8	>
-	5.32	8.79	8.13	280.H	33	97.0	97.0	-		-1.00K	-	00.0	16.0	1.00K	13.6	2
-	06.9	10.2	8.24	752.H	33	62.0	100.			-1.00K	-	0.00	16.0	1.00K	10.3	2
	6.26	10.2	8.25	834.K	33	63.6	100.			-1.00K	-	00.0	16.0	1.00K	9.30	2
DELTA ICTICITAL	7.19	8.61	7.63	344.8	33	63.6	100.	-		-1.00K		0.00	16.0	1.00K	24.3	S
	5.85	90.6	7.63	481.4	33	93.9	97.0			-1.00K		00.0	16.0	1.00K	17.4	-
	7.12	8.23	2.69	259.H	33	93.9	100.		-	-1.00K		00.0	16.0	1.00K	32.0	-
DELTA 1(8)(1-)	6.75	9.61	7.68	433.H	33	93.9	97.0		-	-1.00K		00.0	16.0	1.00K	19.2	-

* EXCLUDES POPULATION OUTSIDE OF LOW REJ AND HIGH REJ

Table 6-5. Statistical data for purchased sample (wide reject limits). (cont'd.)

1.43 2.45 525.H 33 100. 100. 0.00 400.H -1.00K 3.91 0.00 3.80 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.0	PARAHETER	LOW	HIGH VALUE	MEAN	SIGMA	SAMPLE	SIGNA	SIGNA 3	Z FAIL	LOW	LOW	LO-FM	Z FAIL	HIGH	HIGH	HI-FR	STIME
1.61 3.45 2.46 222-4 33 100. 100. 0.00 400. 1.00K 2.94 0.00 2.98 1.00K 2.55 0.00 2.98 0.00 2.98 0.00 2.98 0.00 2.98 0.00 2.98 0.00 2.98 0.00 2.98 0.00 2.98 0.00 2.98 0.00 2.98 0.00			•	•	*	*			20 1.00	5000	100		2.6.4.2		Sec.		
1.89 2.51 2.44 221 31 100, 100, 0.00 400, 1 1.008 2.89 0.00 3.89 1.008 1.008 2.89 0.00 2.001 1.008 1	BITS	1.60	3.43	2.45	525.H	33	100.	100.	00.0		-1:00K	3.91	00.0	3.80	1.00%	2.57	1 4
1.98 2.01 2.00 5.04 33 100. 100. 0.00 7.80 1.00k 2.85 0.00 80.04 1.00k 10.5 1.00k 1.00k 10.5 1.00k 1.00k 10.5 1.00k 1.00k 10.5 1.00k 1.00k 1.00k 10.5 1.00k	BITS	1.61		2.46	521.H	33	100.	100.		-	-1.00K	3.96	00.0	3.80	1.00K	2.57	3.5
1.58 2.01 2.00 2.04 3.4 100, 100, 100, 100, 100, 100, 100, 10	BITS	-7.28		-6.31	522.H	33	100.	100.			-1.00K	2.83	00.0	-800.M	1.00K	10.6	4
1988 2.01 2.00 2.19th 33 93.9 100; 0.00 1.94 1.00th 10.2 0.00 2.04 1.00th 8.33	I-(ALL RIIS LOW)	87./-	1	-0.27	204.F	33	100.	100.	1		-1.00K	2.99	0.00	-800.M	1.00K	10.9	.:
1,000 1,00	166(1+)	1.78		86	104.0	25	73.7	100.			-1.00K	10.2	0000	2.04	1.00K	8.33	
-11.24 127.1 2.13 1.13 1.13 1.13 1.10 1.10 1.10 1.10 1	176/11)	12.00		34.0	10.07	22		.001			-1.00r	10.2	00.0	2.04	1.00K	8.33	P.
-75.08 46.28 - 6.44 33 97.0 100: 0.00 -4.00 -1.00 135: 0.00 4.00 1.00 137: 0.00 4.00 1.00 137: 0.00 4.00 1.00 137: 0.00 4.00 1.00 137: 0.00 4.00 1.00 137: 0.00 4.00 1.00 137: 0.00 4.00 1.00 137: 0.00 4.00 1.00 137: 0.00 4.00 1.00 137: 0.00 4.00 1.00 1.00 1.00 1.00 1.00 1.00	175(1-)	1		24.2H	A1 7K	3.2	02.0	.001			-1.00h	200.7	00.0	2.00	1.00k	49.5	5.6
-75.014 40.04 -8.737 23.44 33 93.9 100. 0.00 4.00 1700 1710 0.00 14.00 1700 1700 1700 1700 1700 1700 1700 1	PSSIFS+1(I+)	-75.0H	45.2M	-16.4M	29.4K	33	97.0	100.			100x	175	000	00.7	1.00K	47.8	9 5
-75.0H 45.3H 16.4H 20.4H 33 97.0 100. 0.00 -E.00 -1.00K 271. 0.00 E.00 1.00K 272. 1.05.H 14.9H 194.H 100.H 33 97.0 97.0 0.00 -E.00 -1.00K 45.1 0.00 E.00 1.00K 51.2 0.00 B.01 1.00K 51.2 0.00 S.01 1.0	PSSIFS+1(I-)	-70.1H	40.0H	-8.93M	23.48	33	63.6	100			-1.00K	171	200	00.4	100		65
-70.1H 40.0H 48.83H 23.4H 33 93.9 100 0.00 -8.00 1.00K 342. 0.00 8.00 1.00K 46.5 1.20K 47.2 1.20K 1.20K 47.2 1.20K 1.20K 47.2 1.20K	PSSIFS+2(I+)	-75.0H	45.2M	-16.4M	29.4M	33	97.0	100.			-1.00x	271.	00.00	200	1.00		5
	PSSIFS+2(I-)	-70.1H	40.0M	-8.93H	23.48	33	93.9	1001			-1.00K	342.	0.00	8.00	1.00%	242	5
-1.05 B0.1H -215.H 176.H 33 97.0 97.0 0.00 -8.00 -1.00K 44.2 0.00 B.00 100K 46.5 1.00 1.00K 45.5 1.00 1.00K 45.5 1.00 1.00K 45.5 1.00 1.00K 45.5 1.00K 45.	PSSIFS-1(I+)	H-026-	14.9M	-194.H	160.H	33	97.0	97.0			-1.00K	48.7	00.0	8.00	1.00K	51.2	110
-2.27 -80.1M -389.4 507.4 33 83.9 83.9 6.06 -2.00 -1.00K 3.18 0.00 2.00 1.00K 4.71 -1.41 -130.4 -238.4 507.4 33 81.9 10.0 15.2 2.10 1.00K 525.0 0.00 2.00 1.00K 4.72 948.4 2.84 2.84 2.65 522.4 33 81.9 100. 15.2 2.10 1.00K 525.0 0.00 5.80 1.00K 5.33 1.25 2.94 2.73 785.4 33 87.9 100. 15.1 2.10 1.00K 825.4 0.00 5.80 1.00K 2.95 2.36 4.05 3.27 785.4 33 87.9 100. 100. 4.20 1.00K 825.4 0.00 5.80 1.00K 2.95 HIG 2.47 -426.4 1.01 545.4 33 87.9 100. 100. 4.20 1.00K 825.4 0.00 5.80 1.00K 2.95 1.804 9.634 3.234 4.184 33 100. 1003.00 1.00K 3.65 0.00 10.0 1.00K 2.95 1.804 9.634 3.234 3.434 3.240 1.00 1.00 1.00K 3.65 0.00 10.0 1.00K 2.53K 1.204 9.534 3.444 3.244 3.2 100. 100	PSSIFS-1(I-)	-1.05	80.1H	-215.H	176.₩	33	0.79	97.0			-1.00K	44.2	00.0	8.00	1.00K	46.6	45
1.00 1.00	PSSIFS-2(I+)	-2.27	-80.1M	-389.H	507.M	33	63.6	63.6			-1.00K	3.18	00.0	2.00	1.00K	4.71	45
1.25	PSSIFS-2(I-)	-1.41	-130.H	-323.H	293.H	33	93.9	93.9	1		-1.00K	5.72	00.0	2.00	1.00K	7.92	45
1.77 4.05 3.52 785.H 33 93.9 100. 100. 4.20 -1.00N -852.H 0.00 5.80 1.00N 6.46 2.36 4.04 3.73 498.H 33 97.9 100. 100. 4.20 -1.00N -852.H 0.00 5.80 1.00N 6.40 2.36 4.04 1.01 545.H 33 97.9 100. 100. 3.00 1.00N 3.65 0.00 1.00N 1.00N 2.90 1.65H 10.5H 3.26H 4.18H 33 100. 100. 0.00 3.00 1.00N 3.65 0.00 10.0 H.00N 2.05 -1.65H 10.5H 3.26H 4.18H 33 100. 100. 0.00 3.00 1.00N 3.65 0.00 10.0 H.00N 2.39N -1.65H 10.5H 3.26H 4.01H 33 97.0 100. 0.00 3.00N 0.00 10.0 H.00N 2.39N -1.65H 10.5H 3.26H 3.24H 3.24H 3.25H 3.32H 3.20N 3.44H 3.00N 100. 0.00 10.0N 0.00 10.0N 1.00N 2.49N -1.20H 9.55H 3.44H 3.25H 3.34H 3.3 H00. 100. 0.00 10.0N 0.00 10.0 H00N 2.91H -1.20H 9.35H 3.44H 3.25H 3.3 H00. 100. 0.00 10.0N 1.00N 0.0 H00. 1.00N 3.0N -1.20H 9.35H 3.44H 3.25H 3.3 H00. 100. 0.00 10.0N 0.0 H00. 1.00N 3.0N -1.20H 9.35H 3.44H 3.25H 3.3 H00. 100. 0.00 10.0N 0.0 H00. 1.00N 3.0N -1.20H 9.35H 3.44H 3.25H 3.3 H00. 100. 0.00 10.0N 0.0 H00. 1.00N 3.0N -1.20H 9.35H 3.44H 3.25H 3.3 P7.0 P7.0 P7.0 P7.0 P7.0 P7.0 P7.0 P7.0	IPSKI(I+)	748.4	2.74	2.63	372.6	33	67.9	100.	15.2		-1.00K	925.H	00.0	5.80	1.00K	5.33	MA
2.36	IFSR2(1+)	1.70	4.05	2.50	785.H	32	07.0	0000	17:1		1.00k	1.32	000	800	1.00K	6.46	HA.
High -2.49 -426.H -1.01 545.H 33 93.9 100. 0.00 -3.00 -1.00K 3.65 0.00 100.H 1.00K 2.05 1.05K -1.05K -1.05K -1.00K -1.00K 3.64 0.00 100.H 1.00K 2.04 -1.06K 3.38H 4.18H 33 100. 100. -1.00K -1.00K -1.00K -1.00K 3.54K -1.00K 3.38H 4.18H 33 100. 100. -1.00K -1.00K -1.00K -1.00K 3.94K -1.00K 3.94K 3.38H 3.28H 3.28H 3.28H 3.28H 3.28H 3.28H 3.28H 3.28H 3.38H 3.		2.36	4.04	3.73	498.H	33	6.06	100.	100		-1.00K	-936.H	0000	5.80	1.00	2.70	4 4
HIGG2.49 -423.H -1.01 545.H 33 93.9 100. 0.00 -3.00 1.00K 3.64 0.00 100.H 1.00K 2.04 1.05K 10.5H 3.69H 4.18H 33 100. 100. 100. 1.00K 2.04 1.00K 10.5H 3.40H 4.18H 33 100. 100. 1.00K 2.04 1.00K 10.0H 3.43H 3.33H 3.9 100. 100. 1.00K 2.04 1.00K 2.34K 1.00K 3.43H 3.33H 3.32H 3.33H 3.3 100. 100. 1.00K 2.00K 2.00K 1.00K 3.00K 1.20H 9.35H 3.44H 3.26H 3.3 100. 100. 100. 1.00K 2.0H 1.00K 9.35H 3.44H 3.26H 3.3 100. 100. 100. 1.00K 2.0H 1.00K 2.0H 1.00K 9.3 1.0K 1.0K 1.0K 1.0K 1.0K 1.0K 1.0K 1.0K	1	-2.49	-426.H	-1.01	545.M	33	93.9	100.	00.0		-1.00K	3.65	0.00	100.M	1.00K	2.05	10
-1.65H 10.5H 3.69H 4.18H 33 100. 1001.00K 0.00 10.0 10.0 1.00K 2.39K 1.80H 9.55H 3.32H 3.32H 33.29H 3.32 H 3.00K 100. 100 1.00K 0.00 10.0 10.0 1.00K 2.53K 1.30H 9.30H 3.49H 4.01H 33.2H 33.100. 100 1.00K 0.00 10.0 10.0 1.00K 2.53K 1.30H 9.30H 3.25H 3.43H 3.24H 3.2 H		-2.49	-423.H	-1.01	545.M	33	93.9	100.	0.00	3	-1.00K	3.64	0.00	100.M	1.00K	2.04	3
-1.80H 9.53H 3.32H 3.32H 3.39 H 33 100. 100 1.00K 0.00 10.0 10.0 1.00K 2.53K 1.30H 3.32H 3.3 100. 100 1.00K 0.00 10.0 10.0 10.0K 3.0KK 1.00K 9.33H 3.24H 3.3 100. 100 1.00K 0.00 10.0 10.0 10.0K 3.0KK 1.00K 9.33H 3.24H 3.3 100. 100. 100 1.00K 1.00K 0.00 10.0 10.0 10.0K 3.0KK 1.00K 1.00K 1.00K 1.00K 1.00K 1.00K 1.00K 9.3 1.00K 3.3 97.0 97.0 0.00 -10.0 1.00K 5.8 1.00K 9.3 1.00K 1.00K 1.00K 9.3 1.00K 1.00K 9.3 1.0	I IH(BIT#1)	-1.65H	10.5H	3.69M	4.18M	33	1001	100.			-1.00K		00.0	10.0	1.00K	2.39K	NA N
-1.75n 14:0n 3.40n 4.01n 33 97:0 1001:00K 0.00 10.0 10.0 1.00K 2.49K 1.30M 9.50N 3.41H 3.21H 3.21H 3.3 100: 100: 1.00K 0.00 10.0 10.0 1.00K 3.00K 1.20M 9.35H 3.44H 3.24H 3.24H 3.20H 3.3 100: 100: 1.00K 0.00 10.0 10.0 1.00K 3.01K 1.20M 9.35H 3.44H 3.24H 3.24H 3.20H 11.1H 33 100: 100: 1.00K 0.00 10.0 10.0 1.00K 3.01K 1.00M 9.30H 3.2.H 3.44H 3.3 100: 100: 100: 1.00K 0.00 10.0 10.0 1.00K 3.01K 1.00K 4.3.TH 5.29H 11.1H 33 97:0 97:0 1.00K 0.00 10.0 10.0 10.0 1.00K 2.91K 1.59K 1.75 -2.95 1.20 33 97:0 97:0 0.00 -10:0 1.00K 5.81 1.00K 9.3 1.75 -2.96 1.17 33 97:0 97:0 0.00 -10:0 1.00K 6.21 1.00K 1.00K 1.00K 1.75 -2.98 1.13 33 97:0 97:0 0.00 -10:0 1.00K 6.21 1.00K 1.00K 1.00K 1.75 -2.98 1.13 33 97:0 97:0 0.00 -10:0 1.00K 6.21 1.00K 1.00K 1.75 -2.98 1.13 33 97:0 97:0 0.00 -10:0 1.00K 6.21 1.00K 1.75 1.00K 1.85 -1.00K 26.8 0.00 2.08 1.00K 7.74 1.75 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2	I IH(BIT#2)	-1.80H	9.65H	3.32H	3.94	33	100.	100.			-1.00K		00.0	10.0	1.00K	2.53K	45
-130M 9.58M 3.45M 3.33M 33 100. 1001.00K 0.00 10.0 10.0 1.00K 3.00K -1.20M 9.55M 3.44M 3.24M 3.25M 3.44M 3.25M 3.44M 3.25M 3.44M 3.25M 3.44M 3.25M 3.44M 3.25M 3.44M 3.25M 3.45M 3.25M 3.44M 3.25M 3.24M 3.	IH(BIT#3)	-1.75#	14.04	3.40H	4.01H	33	0.76	100.			-1.00K		00.0	10.0	1.00K	2.49K	S.
-1500 9:304 3:414 3:214 33 100: 100: 100: 100K 1:00K 0:00 10:0 10:00 3:11K 1:00K 9:304 3:254 3:44 33 100: 100: 100: 100K 0:00 10:0 10:0 1:00K 3:01K 1:00K 9:304 3:254 3:44 33 100: 100: 100K 1:00K 0:00 10:0 10:0 1:00K 3:01K 1:00K 0:00 10:0 10:0 1:00K 3:01K 1:00K 0:00 10:0 1:00K 3:01K 0:00K 3:01K 0:00K 3:01K 3	TH(BIT#4)	-1.30#	9.30M	3.43H	3.33m	1	100.	100.			-1.00K		0.00	10.0	1.00K	3.00K	S
-1.20n 9.35n 3.44n 3.25h 33 100. 1001.00K 0.00 10.0 10.0 1.00K 3.06K 1.00K 9.35h 3.44h 33 97.0 97.0 97.0 1.00K 0.00 10.0 10.0 10.0 1.00K 2.91K 1.10M 63.7N 5.08H 11.1H 33 97.0 97.0 1.00K 0.00 10.0 10.0 10.0 10.0 1.00K 9.33 1.10 6 1.00K 0.00 10.0 10.0 10.0 1.00K 9.33 1.10 6 1.00K 0.00 10.0 10.0 10.0 1.00K 9.33 1.10 6 1.00K 9.3 1.1	(H(BI1#5)	-450.0	9.50M	3.41H	3.21M		1001	100.	-	-	-1.00K		00.0	10.0	1.00K	3.11K	NA UA
-1100f 51.30	IH(BIT#6)	-1.20m	4.35A	3.44H	3.26H		100.	100.			-1.00K	-	0.00	10.0	1.00K	3.06K	NA
-7.15 - 1.75 - 2.95 1.20	(Verification)	200.1	F. 50	3.43H	5.440		100.	100.	-	-	-1.00K	-	00.0	10.0	1.00K	2.91K	NA
-5.95 -1.68 -2.89 1.05 33 97.0 100.0 -10.0 -10.00 5.88 1.00K	(84 18) HT	101.1-	03./0	2.080	11.10	1	01/2	0.76	1		-1.00K		00.0	10.0	1.00K	903.	UA
-6.62 -1.71 -2.96 1.17 33 97.0 97.0 0.00 -10.0 1.00K 6.03 1.00K 6.03 1.00K 6.03 1.17 2.96 1.17 33 97.0 97.0 0.00 -10.0 1.00K 6.03 1.00K 6.21 1.00K 7.76 1.00K 6.21 1.00K 7.76 1.00K 6.21 1.00K 7.76 1.00K 6.21 1.00K 7.76 1.00K 7.77 1.77 7.73 7.75 7.75 7.75 7.75 7.75 7.75 7	11.(81142)	-5.07	89.1-	2.83	1.05		07.0	0.74		-10.0	-1.00k	5.85	-		1.00K		UA
-7.19 -1156 -2.92 11.24 33 97.0 97.0 0.00 -10.0 1.00K 6.21 1.00K 1.00K 1.00K 6.21 1.00K 7.74	IIL(BIT#3)	-6.62	-1.71	-2.96	1.17		0.24	97.0		10.0	100K	10.0			1.00K		¥ :
-6.39 -1.72 -2.98 1.13 33 97.0 97.0 0.00 -10.0 -1.00k 6.21 1.00k 1.00k 6.21 1.00k 7.76 1.00k 1.00k 1.00k 7.76 1.00k 1.00k 1.00k 7.76 1.00k 1	IIL(BIT#4)	-7.19	-1.56	-2.92	1.24		97.0	97.0		10.0	1.00	5.73			1000		5:
-7.64 -1.56 -2.95 11.30 33 97.0 97.0 0.00 -10.0 1.00K 5.41 1.00K 1.42 -1.62 -3.02 11.20 33 97.0 97.0 0.00 -10.0 1.00K 5.80 1.00K 1.42 -1.62 -7.49 25.4 33 97.0 97.0 0.00 1.00K 1.00K 18.0 1.00K	IIL (BIT#5)	-6:39	-1.72	-2.98	1.13	200	0.79	97.0		-10.01	-1.00K	6.21	1		100		110
-7.26 -1.62 -3.02 1.20 33 97.0 97.0 0.00 -10.0 5.80 1.60 6.00 10.24 33 97.0 97.0 0.00 -10.0 5.80 1.60 6.00 10.24 33 97.0 97.0 0.00 1.65 -10.0 6.00 2.08 1.00 6.70 1.99 2.02 2.00 10.24 33 93.9 100. 0.00 1.65 -1.00 6.19 0.00 2.08 1.00 6.70 1.99 2.00 1.99 5.364 33 93.9 97.0 0.00 1.85 -1.00 6.8 0.00 2.08 1.00 6.70 1.61 1.75 26.5 7.35 7.62 33 97.0 100. 0.00 -4.00 1.10 6.1 97 9.00 2.08 1.00 6.10 6.1	IIL(BIT#6)	-7.64	-1.56	-2.95	1.30		0.76	0.79	20	-10.0	-1.00K	5.41			1.00K	:	1
1.98 2.02 2.00 10.2H 33 97.9 97.0 1.05 1.00 1.00 98.5H 1.00K 14.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	(IL(BIT#7)	-7.26		-3.02	1.20		0.26	0.26		-10.0	-1.00K	5.80	1	1	1.60K		4
1.98 2.02 2.00 10.2H 33 93.9 100. 0.00 1.85 -1.00K 14.9 0.00 2.08 1.00K 7.76 1.99 2.02 2.00 10.2H 33 93.9 100. 0.00 1.85 -1.00K 14.9 0.00 2.08 1.00K 7.74 1.98 2.00 1.99 5.36H 33 93.9 97.0 0.00 1.85 -1.00K 26.8 0.00 2.08 1.00K 16.1 1.28 2.01 1.99 5.36H 33 93.9 97.0 0.00 1.85 -1.00K 26.8 0.00 2.08 1.00K 16.1 1.75 26.5 7.35 7.62 33 97.0 1.00 -4.00 1.00K 26.8 0.00 2.08 1.00K 16.1 1.75 26.7 7.41 7.73 33 97.0 1.00 -4.00 -1.00K 1.48 30.3 4.00 1.00K -44.0H	(IL(BIT#8)	-149.	1	-7.49	25.4	1	97.0	97.0		-10.0	-1.00K	98.5H			1.00K		2
1.98 2.02 2.00 10.27 33 93.9 100. 0.00 1.85 -1.00K 14.9 0.00 2.08 1.00K 7.74 1.98 2.00 1.99 5.36H 33 93.9 97.0 0.00 1.85 -1.00K 26.8 0.00 2.08 1.00K 16.1 1.98 2.01 1.99 5.36H 33 93.9 100. 0.00 1.85 -1.00K 26.8 0.00 2.08 1.00K 16.1 1.75 26.5 7.35 7.62 33 93.0 100. 0.00 -4.00 -1.00K 1.49 30.3 4.00 1.00K -440.H 1.73 26.7 7.41 7.73 33 97.0 100. 0.00 -4.00 -1.00K 1.48 30.3 4.00 1.00K -440.H	[FS+(I+)	1.98		2.00	10.2H		93.9	100.	00.0	1.85	-1.00K	14.9	00.0	2.08	1.00K	7.76	MA
1.78 2.01 1.97 5.364 33 93.9 97.0 0.00 1.85 -1.00K 26.8 0.00 2.08 1.00K 16.1 1.75 26.5 7.35 7.62 33 97.0 100. 0.00 -4.00 -1.00K 1.49 30.3 4.00 1.00K -440.1 1.73 26.7 7.41 7.73 33 97.0 100. 0.00 -4.00 -1.00K 1.48 30.3 4.00 1.00K -440.1	[FS+(]-)	1.98		2.00	10.2H		93.9	100.	00.0	1.85	-1.00K	14.9	00.0	2.08	1.00K	7.74	HA.
1.75 26.5 7.35 7.62 33 97.0 100. 0.00 -4.00 11.00K 1.48 30.3 4.00 11.00K -440.H	[FS-(1+)	86.1		1.00	5.36H		93.9	97.0	0.00	1.85	-1.00K	26.8	0.00	2.08	1.00K	16.1	MA
1.73 26.7 7.41 7.73 33 97.0 100. 0.00 4.00 1.000 1.48 30.13	DELTA TERCETAL	1.75	26.5	7.15	7.43	1	07.0		1	1.85	1.00k	8.07	00.00	2.08	1.00K	16.1	MA
	DELTA IFSC(I-)	1.73	26.7	7.41	7.73		97.0	100.		4.00	1.00k	1.49	20.02	00.4	1.000	-440.H	5

EDIZOTORO CYCLUC CORC AL TORS

T.

* EXCLUDES POPULATION OUTSIDE OF LOW REJ AND HIGH REJ

Table 6-5. Statistical data for purchased sample (wide reject limits). (cont'd.)

PARAMETER	LSW	HIGH	HEAN	SIGNA	SAMPLE	SIGNA 2	X IN 3	Z FAIL	LIMIT	REJ	LO-FH	Z FAIL HIGH	HIGH	HIGH	HI-FH	STITS
			•	*	•						*				*	
CREAR (BITAL)(I+)	-166.H	72.7	-45.2H	65.8H	33	100.	100.	0.00	-190.H	-1.00K	2.20	00.0	190.M	1.00K		74
ERROR (BIT#1)(I-)	-171.H		-48.8H	62.4M	33	100.	100.	00.0	-190.H	-1.00K	2.26	00.0	190.H	1.00K		*
ERROR(BIT#2)(I+)	-83.9H		-13.3H	41.0H	33	100.	100.	0.00	-190.H	-1.00K	4.31	0.00	190.H	1.00K		*
ERROR(BIT#2)(I-)	-79.3M		-12.8H	40.0H	33	100.	100.	0.0	-190.H	-1.90K	4.43	0.00	190.M	1.00K		*
ERROR(BIT#3)(I+)	-63.6M		5.23H	31.48	33	0.76	100	0.0	-190.H	-1.00K	6.22	0.00	190.H	1.00K		*
ERROR(BIT#3)(I-)	-47.1H		4.90H	29.7H	33	100.	100.	0.00	-190.H	-1.00K	6.62	0.00	190.M	1.00K		×
ERROR(BIT#4)(I+)	-42.5H		-1.00H	20.8H	33	100.	100.	0.00	-190.H	-1.00K	80.6	0.00	190.M	1.00K		*
ERROR(BIT#4)(I-)	-43.4H		-1.15H	21.18	33	0.79	100.	0.00	-190.H	-1.00K	96.8	0.00	190.H	1.00K		*
ERROR(BIT#5)(I+)	-25.6M		3.21H	15.1H	33	0.26	100	0.0	-190.H	-1.00K	12.8	0.00	190.H	1.00K		*
ERROR(BIT#5)(I-)	-21.2H		3.70H	15.3K	33	0.79	100	0.0	-190.H	-1.00K	12.7	0.00	190.H	1.00K		*
ERROR(BIT#6)(I+)	-56.5H		-4.69H	22.1H	33	0.79	100.	0.00	-190.H	-1.00K	8.37	0.00	190.H	1.00K	n	*
ERROR(BIT46)(I-)	-56.1H		-4.22H	22.2H	33	97.0	100		-190.H	-1.00K	8.39	0.0	190.H	1.00K		*
ERROR(BIT#7)(I+)	-9.88H		12.34	12.64	3:	97.0		000	-140.1	-1.00k	16.1	000	190.4	1.00×		**
ERRUR (BITAZ) (I-)	7.75	100	1000	12.21	3:	01.0			1001	300	70.01	300	100	3		
EKKOK (BIT#8) (I+)	HO. CA-	45.5N	141	17.34	3 2	01.0	67.0	0.0	-190.H	-1.00K	11.0	00.0	100 H	1 0 0 Y		
CHANGE 1148/11-1	27.18		77.04	27. BK	32	01.0	100		-	-1.00K	::	00.0	100 F	1.00K		
SUM ME +(1-)	28.48		76.9H	27.0H	33	93.9	100		-	-1.00K	-	0.0	190.H	1.00K	4.19	
60	-183.H		-122.H	27.18	33	93.9	100.		-190.H	-1.00K	2.50	1	1	1.00K		*
	-180.H		-121.H	25.9H	33	93.9	100.	00.0	-190.H	-1.00K	2.68			1.00K		×
DELTA SUH NL(I+)	-47.6H		-44.5H	2.10H	33	0.79	100.		-50.0H	-1.00K	2.62	00.0	50.0M	1.00K		*
DELTA SUM NL(I-)	-52.4H		-43.7H	3.10M	33	6.06	100.		-50.0H	-1.00K	2.04	000	50.0H	1.00K		×
	72.0M		122.H	27.1H	33	63.9	100.		-	-1.00K		00.0	190.M	1.00K		×
NL+(I-)	72.4H		121.H	25.9H	33	63.6	100.	-		-1.00K		0.00	190.H	1.00K		*
NL-(I+)	117.H		167.H	26.5H	33	0.79	100.			-1.00K		18.2	190.M	1.00K		*
ML-(I-)	116.M		164.H	25.2H	33	0.26	100.	-	!	-1.00K	1	18.2	190.H	1.00K		×
	4.59		9.18	2.62	33	100	100.	-		-1.00K		0.00	16.0	1.00K		5
DELTA ICIDAL-)	5.21		2.5		35	100.	36			100		000	10.0	200	2.69	5
DELTA 1(2)(1+)	27.4		27.0	1.20	3 2	02.0	100	1	1	-1.00K		00.0	14.0	100		5 5
	5.78	9.80	7.99	1.04	33	93.9	100	-	!	-1.00K	-	00.0	16.0	1.00K		5 5
DELTA 1(3)(1-)	5.83		8.00	1.00	33	97.0	100.	-		-1.00K	-	00.0	16.0	1.00K		45
	7.14	9.35	8.07	461.H	33	93.9	100.	1		-1.00K	-	00.0	16.0	1.00K		e S
	7.26	9.65	8.11	505.H	33	97.0	97.0	-	!	-1.00K	-	00.0	16.0	1.00K		45
	6.76	8.56	7.89	336.M	33	93.9	97.0	-	-	-1.00K	-	00.0	16.0	1.00K		5
	5.58	8.61	7.92	504.H	33	0.79	97.0	-		-1.00K		00.0	16.0	1.00K		45
DELTA 1(6)(1+)	6.77	10.2	8.13	778.H	33	0.79	100.	-	-	-1.00K	-	00.0	16.0	1.00K		e e
DELTA I(6)(I-)	6.76	10.1	8.16	807.M	33	0.79	1001	-		-1.00K	-	00.0	16.0	1.00K		5
an.	7.12		7.55	313.H	33	0.79	97.0	!	1	-1.00K	1	00.0	16.0	1.00K		A P
	6.37		7.58	391.H	33	63.6	63.9	!		-1.00K	-	00.0	16.0	1.00K		5
DELTA I(8)(I+)	7.26	8.36	7.84	253.M	33	63.6	100	-	-	-1.00K	-	00.0	16.0	1.00K		5
	6.92		7.82	346.H	33	93.9	97.0	1		-1.00K	-	0.00	16.0	1.00K		45
										1		~~				***

EDIADILSATE VYLIMIT FRA AT ADA

* EXCLUDES FOPULATION OUTSIDE OF LOW REJ AND HIGH REJ

Table 6-5. Statistical data for purchased sample (wide reject limits). (cont'd.)

er
-
(2)
DEG
=
-
10
N
-
+125
A
4
8
DAC OB
C
-
-
-
9
-
MIXED
w
×
-
E
-
3
w
L
•
2
ATO
DATA
DATA
FATISTICAL DATA

TACAL BITE UTGHY	WALLE VALUE	WALUE *	# #	SIGNA *	SIZE	SIGNA	SIGNA	LOW	CINI	2 P	-	Z FAIL HIGH	LIMIT	REJ	HI-FH	3130
	1.4	3.45	2.32	541.H	33	93.9	100.	00.0	400.H	-1.00K	3.55	0.00	3.80	1.00K	2.73	M.
	1.46	3.47	2.33	540.H	33	93.9	100	00.0		-1.00K	3.57	0.00	3.80	1.00K	2.72	#
BITS	-7.31	-5.36	-6.19	541.H	33	63.6	1001	00.0		-1.00K	2.98	00.0	H.008-	1.00K	86.6	N.
BITS	-7.31	-5.37	-6.17	529.H	33	63.6	100.	00.0		-1.00K	3.07	00.0	H-008-	1.00K	10.2	AA
	1.98	2.01	1.99	5.28H	33	63.6	100.	00.0		-1.00K	10.2	00.0	2.04	1.00K	8.71	MA
IFS(I-)	1.98	2.01	1.99	5.26H	33	63.6	100.	00.0		-1.00K	10.3	00.0	2.04	1.00K	8.75	MA
178(1+)	14.5H	544.7	136.H	160.M	33	6.06	100.	00.0		-1.00K	13.4	00.0	2.00	1.00K	11.7	UA
178(1-)	9.50H	356.H	93.9H	111.M	33	6.06	100.	00.0		-1.00K	18.9	00.0	2.00	1.00K	17.2	es.
(+1)(+541556	-115.H	44.9H	-35.8M	34.18	33	93.9	100			-1.50K	116.	00.0	4.00	1.00K	118.	C.
Dec16641(1-)	-140.M	20.0H		42.2H	33	93.9	100.			-1.00K	93.7	00.0	4.00	1.00K	95.7	5
Deerfeet2(14)	-115.H	44.9H		34.18	33	93.9	100.			-1.00K	233.	00.0	8.00	1.00K	235.	NA
PGETFC+2(T-)	-140.4	20.04		42.2H	33	93.9	100.	0.00	-8.00	-1.00K	188.	00.0	8.00	1.00K	190.	NA N
Deerec_1(14)	-440.	-60.1H		99.4H	33	100	100.		-8.00	-1.00K	78.0	00.0	8.00	1.00K	82.9	UA
(-1)1-531ES-	-455.H	-100.4		101.H	33	100	100.		-8.00	-1.00K	76.6	00.0	8.00	1.00K	81.9	45
PSSIFS-2(1+)	-45.5	-120.H		12.3	33	6.06	97.0		-2.00	-1.00K	-237.H	00.0	2.00	1.00K	562.H	45
PSSIFS-2(1-)	-59.9	-130.H		14.0	33	6.06	97.0		-2.00	-1.00K	-226.H	00.0	2.00	1.00k	512.M	NA
IFSR1(1+)	H-899	4.02		914.H	33	0.79	100.		2.10	-1.00K	617.H	00.0	5.80	1.00K	3.43	MA
IFSR1(1-)	811.H	4.05		882.M	33	0.79	100.		2.10	-1.00K	841.H	00.0	5.80	1.00K	3.35	MA
IFSR2(1+)	1.40	3.97	2.83	918.M	33	1001	1001		4.20	-1.00K	-1.50	00.0	5.80	1.00K	3.24	MA
IFSR2(I-)	1.81	4.04		720.H	33	1001	1001		4.20	-1.00K	-1.33	00.0	5.80	1.00K	3.56	MA
IREF-(ALL BITS LOW)	-2.22	-306.H		512.H	33	0.76	100.		-3.00	-1.00K	3.92	00.0	100.H	1.00K		45
IREF-(ALL BITS HIGH)	-2.23	-297.M		516.H	33	0.76	100.		-3.00	-1.00K	3.89	00.0	100.H	1.00K		NA AN
IIM(BIT#1)	1.70H	25.8M		7.22H	33	100.	100.			-1.00K		00.0	10.0	1.00K		S.
IIH(BIT#2)	1.55H	23.8H		7.42H	33	1001	100			-1.00K		00.0	10.0	1.00K		5
IIM(BIT#3)	1.70H	28.3H		8.15H	33	1001	100.		-	-1.00K	-	00.0	10.0	1.00K		5
IIH(BIT&4)	1.20H	29.1H		8.25H	33	0.79	100.			-1.00K		00.0	10.01	1.00K	-	5
IIH(BIT#5)	550.0	30.98	12.1H	8.14H	33	93.9	1001			-1.00K		00.0	10.0	1.00K	1.23K	5
IIH(BIT66)	7.006	75.4H		13.9H	33	0.79	97.0			-1.00K		00.0	10.0	1.00K	•	45
IIH(BIT#7)	1.05H	37.5H		9.46K	33	63.6	100.	-	-	-1.00K	-	00.0	10.0	1.00K		5
IIH(BIT48)	800.0	30.2H		7.72H	33	97.0	100.			-1.00K		00.0	10.0	1.00K	-	5
IIL (BITO1)	-6.01	-1.80		1.12	33	97:0	100		-10.0	-1.00K	6.19	-	-	1.00K	•	5
IIL(BIT42)	-5.20	-1.70		1.01	33	0.74	100.		-10.0	-1.00K	7.03			1.00K		45
IIL (BIT43)	-5.65	-1.77	-3.03	1.09	33	0.74	100.		-10.0	-1.00K	6.39	1	-	1.00K		5
IIL(BIT64)	-6.09	-1.66	-3.00	1.15	33	0.26	100.		-10.0	-1.00K	6.11	1	1	1.00K		5
IIL(BIT45)	-5.34	-1.77	-3.05	1.06	33	0.74	100.		-10.0	-1.00K	6.55			1.00K		5
IIL(BIT66)	-6.33	-1.64	-3.00	1.18	33	0.26	100.		-10.0	-1.00K	5.94			1.00K		5
111(81747)	-6.03	-1.74	-3.05	1.10	33	0.4	100.		-10.0	-1.00K	6.31			1.00K		5
IIL (BIT48)	-62.9	-1.71	-5.03	11.0	33	0.79	67.0		-10.0	-1.00K	452.H			1.00K		5
IFS+(I+)	1.98	2.01	2.00	8.12M	33	0.26	100.		1.85	-1.00K	18.2	0.00	5.08	1.00K		W.
IFS+(I-)	1.98	2.01	2.00	8.13H	33	0.79	100.	00.0	1.85	-1.00K	18.2	0.00	5.08	1.00K		£
IFS-(I+)	1.98	5.00	1.99	5.22H	3	6.06	100.	0.0	1.85	-1.00K	27.4	0.00	5.08	1.00K		E E
1FS-(1-)	1.98	2.01	1.99	5.20H	33	93.9	100.		1.85	-1.00K	27.4	0.00	5.08	1.00K		Z.
DELT. IFSC(1+)	1.48	16.7	5.10	4.66	33	97.0	100.	0.00	4.00	-1.00k	1.95	30.3	4.00	1.00K	-236.H	5
DELTA IFSC(I-)	1.41	10.7	2115	0/:	33	0.74	100.		4.00	-1.00k	1.72	30.3	4.00	1.00K	1	5

S EXCLUDES POPULATION OUTSIDE OF LOW REJ AND HIGH REJ

Table 6-5. Statistical data for purchased sample (wide reject limits). (cont'd.)

FROM COPY PURMISHED TO DDG

Column C	PARAMETER	LOW	HIGH VALUE	MEAN *	SIGNÁ.	SANFLE SIZE	SIGHA	S IN 3	Z FAIL	LIMIT	REJ	* *	Z FAIL HIGH	HIGH	REJ	HI-FH	811.65
157.7 8 4.8 m - 30.4 m - 31. m				1								1:	-	-		-	
7.3.44 46.27 7.44 10.54 33.67 33 100. 0.00 170.0 1.00 4.00 4	REOR(BIT#1)(I+)	-157.H	84.8M	-30.6M	58.14	55	0.74	100.	0000	H.041-	-1.00A	2.74	00.0	190.4	1.000	3.80	ч.
	AROR(BIT#1)(I-)	-160.H		-32.2M	27.18	25	0.74	100.	00.0	E . 061	1.000	0/:,	00.0	1,001	1.000	,,,,	٠.
-57.24 67.74 8.08 9.0.24 31 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	REOR(BIT#2)(I+)			-10.48	25.00	25			300	1001	200		200	1001	100	2.70	
	AROR (BIT#2)(I-)			2000	23.50	3 5			000	* 000	100	25.4	200	100	100	000	
-55.58 27.11 -8.121 27.44 33 97.0 100. 0.00 199.4 1.00K 8.10 0.00 199.4 1.00K 8.10 0.00 199.4 1.00K 8.10 0.00 199.4 1.00K 8.13 0.00K 9.13 0.00K	FRUR (BIT#3) (I+)			1000	31.02	1 2		100	000	100 F	-1.00k	¥5.4	200	100	100		
-23.58	RECREBITAS) (I-)			1000	30.20	3 7	02.00		38	100	100	000	3	1001	100		
10 10 10 10 10 10 10 10	SCOR (BIT#4)(I+)			-7.86M	22.78	33	97.0	100.	0000	-190.M	-1.00K	8.04	00.0	190.4	1.00K		
-21.27 31.01 -551.0 15.64	DDGC BTTAS (11)			-1.104	15.3M	33	93.9	100.	00.0	-190.M	-1.00K	12.3	00.0	190.M	1.00K		
-56.64 25.44 -7.554 1.00 4.00 1.00 4.00 1.00 4.00 8.35 0.00 190.H 1.00 4.554 4.554 -7.054 21.48 33 97.0 100. 0.00 190.H 1.00 8.35 0.00 190.H 1.00 4.521H 45.54 11.5 H 14.5 H 33 97.0 100. 0.00 190.H 1.00 H 13.9 0.00 190.H 13.9 0.00 190.H 1.00 H 13.9 0.00 190.H 1.00 H 13.9 0.00 190.H 13.9 0.00 190.H 13.9 0.00 190.H 13.9 0.00 190.H 13.00 H 13.9 0.00 190.H 13.00 H 13.9 0.00 190.H	REGERETES (1-)			-551.0	15.64	33	97.0	100.	00.0	-190.M	-1.00K	12.1	00.0	190.H	1.00K		. **
-58.64	REOR (BIT#6)(I+)			-7.55H	21.8H	33	0.79	100.	00.0	-190.H	-1.00K	8.36	00.0	190.H	1.00K	1	
-9.214 46.34 11.5% 14.5% 33 90.9 100. 0.00 -190.4 1.00k 13.9 0.00 190.4 1.00k 13.9 1.05k 13.9 10.0 1.00k 13.9 0.00 190.4 1.00k 13.9 10.0 1.00k 13.9 10.0 1.00k 13.9 10.0 10.0 1.00k 13.9 10.0 1.00k 13.9 10.0 1.00k 13.9 10.0 1.00k 13.9 10.0 190.4 1.00k 13.3 10.0 190.4 1.00k 13.3 10.0 190.4 1.00k 13.3 10.0 1.00k 13.3 10.0 1.00k 13.3 10.0 190.4 1.00k 13.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0	RROR(BIT#6)(I-)			-7.06H	21.48	33	97.0	100.		-190.M	-1.00K	8.53	00.0	190.H	1.00K	1	.×
-7.46# 44.6# 11.9# 14.7# 33 90.9 100. 0.00 -190.# 1.00k 13.8 0.00 190.# 1.00k 13.3 13.8 13.8 14.5 14.5	KROR(BIT#7)(I+)			11.5K	14.58	33	6.06	100.		-190.M	-1.00K	13.9	00.0	190.H	1.00K	200	. *
-33.6H 30.8H -5.52H 14.5H 33 97.0 100. 0.00 -190.H -1.00K 112.7 0.00 190.H 1.00K 113.7H 123.K 70.8H 55.6H 33 97.0 100. 0.00 -190.H -1.00K 11.0 0.00 190.H 1.00K 113.7H 123.K 70.8H 25.6H 33 97.0 100. 0.00 -190.H -1.00K 11.0 0.00 190.H 1.00K 11.8H 71.3H 24.7H 33 97.0 100. 0.00 -190.H -1.00K 3.02 1.00K -1.60.H 56.5H -115.H 24.7H 33 97.0 100. 0.00 -190.H -1.00K 3.02 1.00K -1.60.H 56.5H -115.H 24.7H 33 97.0 100. 0.00 -190.H -1.00K 3.13 1.00K -1.60.H 56.5H -115.H 24.7H 33 97.0 100. 0.00 -190.H -1.00K 3.13 1.00K 56.5H 113.H 24.2H 23.3H -42.6H 23.4H	RROR(BIT#7)(I-)			11.98	14.7H	33	6006	100.	3	-190.H	-1.00k	13.8	00.0	190.H	1.00K		*
-53.54 47.54 -4.42k 16.9h 33 93.9 97.0 0.00 -190.H 11.00k 11.0 0.00 190.H 1.00k 13.3 H 123.7 H 123.7 K 124.8 70.8	RROR(BIT#8)(I+)	-33.6H		-5.52K	14.5M	33	97.0	100.		-190.M	-1.00K	12.7	00.0	190.4	1.00K	13.5	*
13.7M 123.K 70.8H 25.6H 33 93.9 100;1.00K 0.00 190.M 1.00K 1.00K 0.00 190.M 1.00K 1.00K 0.00 190.M 1.00K 1.00K 0.00 190.M 1.00K 0.00 190.M 1.00K 0.00K	RROR(BIT#8)(I-)	-53.5H		-4.42H	16.91	33	93.9	97.0	Ť.	-190.H	-1.00K	11.0	00.0	190.H	1.00K	11.5	*
13.3H 116.H 71.3H 24.6H 33 97.0 100 11.00K 0.00 190.H 1.00K 1.40	UN MC+(I+)	13.7H	123.K	70.8M	25.6H	33	63.6	1001			-1.00K		00.0	190.M	1.00K	4.66	*
-168.H -56.5H -115.H 24.7H 33 93.9 100. 0.00 -190.H -1.00K 3.13 1.00K -56.5H -115.H 24.3H 33 97.0 100. 0.00 -190.H -1.00K 3.13 1.00K -55.5H -114.H 24.3H 33 97.0 100. 0.00 -190.H -1.00K 3.13 1.00K -55.5H 14.4 5K 2.94H 33 97.0 100. 0.00 -50.0H -1.00K 2.67 0.00 50.0H 1.00K 26.5H 14.5H 24.7H 33 97.0 100. 0.00 -50.0H -1.00K 0.00 190.H 1.00K 99.4H 24.3H	UN ML+(I-)	13.3M	118.M	71.3H	24.6M	33	0.79	100.			-1.00K		0.00	190.4	1.00K	4.83	×
-160.M -55.5H -114.N 24.3H 33 97.0 100. 0.00 -190.H 1.00K 3.13 1.00K 5.18H -38.3H -44.5E 2.76H 3.19 90.9 100. 0.00 -55.0H 1.00K 1.00K 5.67 0.00 55.0H 1.00K 5.65 1.00K 5.65 1.00K 5.65 1.00K 5.00K	UN M-(1+)	-168.H	-56.5M	-115.H	24.7H	33	63.9	100.	00.0	-190.H	-1.00K	3.02	-		1.00K		*
-51.8H -33.3H -44.5K 2.93H 33 90.9 100. 6.06 -50.0H 1.00K 1.8B 0.00 50.0H 1.00K 56.5H -32.6H -32.6H 2.75H 33 90.9 100. 0.00 -50.0H 1.00K 2.67 0.00 50.0H 1.00K 56.5H 168.H 115.H 24.3H 33 90.9 100. 0.00 -50.0H 1.00K 0.00 190.H 1.00K 99.7H 1.15.H 24.3H 33 90.9 100. 0.00 0.00 0.00K 0.00 190.H 1.00K 99.7H 201.H 157.H 24.3H 33 90.9 100. 0.00 0.00K 0.00 190.H 1.00K 4.02 13.7 8.60 2.33 33 97.0 100. 0.00 0.00K 0.00K 0.00 190.H 1.00K 4.02 13.7 8.60 2.33 397.0 100. 0.00 0.00K 0.00K 0.00 16.0 100K 4.02 13.7 8.60 2.33 397.0 100. 0.00 0.00K 0.00K 0.00 16.0 100K 4.02 11.3 8.23 11.16 33 97.0 100. 0.00 0.00K 0.00 16.0 100K 4.01 100K 4.	(-I)-W M	-160.H	-56.5H	-114.M	24.34	33	97.0	100.	00.0	-190.H	-1.00K	3.13			1.00K		*
-48 64 -42.64 -42.64 2.764 33 90.9 100. 0.00 -50.04 1.00K 2.67 0.00 50.04 1.00K 56.54 160.4 115.4 24.74 33 97.9 100. 0.00 -50.04 1.00K 0.00 190.4 1.00K 99.44 1114.4 24.37 33 97.0 100. 0.00 1.00K 0.00 190.4 1.00K 4.02 13.7 8.60 2.33 39 97.0 100. 0.00 1.00K 0.00 190.4 1.00K 4.02 13.7 8.60 2.33 39 97.0 100. 0.00 10.0K 0.00 190.4 1.00K 4.02 13.7 8.60 2.33 97.0 100. 0.00 1.00K 0.00K 0.00 1.00K 0.00K 0.00 1.00K 0.00K 0.0	ELTA SUN ML(I+)	-51.8H	-38.3M	-44.5M	2.93H	33	6.06	1001	90.9	-50.0H	-1.00K	1.88	00.0	50.0H	1.00K	32.2	*
56.5H 166.H 115.H 24.7H 33 93.9 100 1.00K 0.00 190.H 1.00K 99.4H 115.H 24.3H 33 93.9 100 1.00K 0.00K 99.4H 1.00K 99.4H 1	ELTA SUN NL(I-)	-48.6M	-36.6M	-42.6H	2.76M	33	6.06	100.	00.0	-50.0H	-1.00K	2.67	00.0	50.0M	1.00K	33.6	*
\$56.54 160.1 144.1 24.34 33 97.0 1001.00K 0.00 190.1 1.00K 1.00K 99.74 213.1 160.1 24.34 33 97.0 100 1.00K 0.00 190.1 1.00K 1.00K 99.74 201.1 160.1 24.34 33 97.0 100 1.00K 0.00 190.1 1.00K 1.00K 1.00K 99.74 201.1 160.1 24.34 33 97.0 100 1.00K 0.00 16.0 16.0 16.0 1.00K 1.00K 1.00K 1.1 1.2 13.7 8.60 2.33 33 97.0 100 1.00K 0.00 16.0 16.0 1.00K 1.2 11.3 8.20 11.7 33 97.0 100 1.00K 0.00 16.0 16.0 1.00K 1.2 11.3 8.20 11.7 33 97.0 100 1.00K 0.00 16.0 1.00K 1.2 11.3 8.20 11.7 33 97.0 100 1.00K 0.00 16.0 1.00K 1.2 11.3 8.20 11.7 97 97.0 100 1.00K 0.00 16.0 1.00K 1.2 11.3 8.20 11.4 11.5 33 97.0 100 1.00K 0.00 16.0 1.00K 1.00	L+(I+)	56.5H	168.H	115.H	24.7H	33	63.9	100.	1		-1.00K		00.0	190.M	1.00K	3.02	*
99.44 213.4 160.H 24.3H 33 93.9 1001.00K 6.06 190.H 1.00K 1.13 8.20 1.17 33 97.0 100 1.00K 0.00 16.0 1.00K 1.00K 1.13 8.23 1.16 33 97.0 100 1.00K 0.00 16.0 1.00K 1.00K 1.13 8.23 1.16 33 97.0 100 1.00K 1.	(+(1-)	56.5H	160.M	114.H	24.3M	33	97.0	1001			-1.00K		00.0	190.H	1.00K	3.13	*
4.02 13.7 8.40 2.33 37.0 100. -1.00k 9.07 100.kh 100.kh 11.00k 11	L-(I+)	99.4M	213.H	160.H	24.3H	33	93.9	100.	1		-1.00K		90.9	190.H	1.00K	1.25	*
1111(11)	(-0-)	99.7H	201.M	157.8	24.4M	33	0.79	100.			-1.00K		40.4	190.4	1.00K	1.37	*
(1) (1) (1) (1) (2) (1) (1) (2) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	ELTA ICIDCIA	4.02	13.7	8.60	2.33	33	97.0	100.			-1.00k		0.00	16.0	1.00K	3.18	45
(2)(1+) (5.72 11.3 8.20 1.17 33 93.9 100. -1.00K 0.00 16.0 1.00K 11.3 8.21 1.14 33 93.9 100. -1.00K 0.00 16.0 1.00K 11.3 8.23 1.14 33 97.0 100. -1.00K 0.00 16.0 1.00K 1.00K 11.3 8.23 1.14 33 97.0 100. -1.00K 0.00 16.0 1.00K	ELTA 1(1)(1-)	4.23	13.7	8.67	2.27	33	97.0	100.			-1.00k		0.00	16.0	1.00k	3.24	S S
(13)(1+)		5.72	11.3	8.20	1.17	33	93.9	100.			-1.00K		0.00	16.0	1.00K	69.9	5
(4)(1+) 4/91 9/85 7.57 11.9 33 97.0 100. -1.00K 0.00 16.0 1.00K (4)(1+) 6.93 9.31 7.97 469.H 33 97.9 100. -1.00K 0.00 16.0 1.00K (4)(1+) 6.64 8.48 7.82 356.H 33 97.0 100. -1.00K 0.00 16.0 1.00K (5)(1+) 6.64 8.48 7.82 356.H 33 97.0 97.0 -1.00K 0.00 16.0 1.00K (5)(1+) 6.67 10.1 8.09 857.0 97.0 -1.00K 0.00 16.0 1.00K (6)(1-) 6.67 10.1 8.09 857.0 100. -1.00K 0.00 16.0 1.00K (6)(1-) 6.64 8.98 7.49 35.9 97.0 -1.00K 0.00 16.0 1.00K (6)		•	11.3	8.23	1.16	33	97.0	100.			-1.00k		00.0	16.0	1.00K	69.9	45
(4)(1+) 5.19 10.0 7.58 1.16 33 93.9 100. -1.00K 0.00 16.0 1.00K (4)(1+) 5.00 9.31 7.97 49.04 33 93.9 100. -1.00K 0.00 16.0 1.00K (4)(1-) 5.64 8.48 7.82 35.4 97.0 97.0 -1.00K 0.00 16.0 1.00K (5)(1-) 6.67 10.1 8.09 855.K 33 97.0 97.0 1.00K 0.00 16.0 1.00K (4.6)(1-) 6.67 10.0 8.10 855.K 33 97.0 100. -1.00K 0.00 16.0 1.00K (4.6)(1-) 6.73 10.0 8.10 856.K 33 97.0 100. -1.00K 1.00K (5.1)(1+) 6.64 8.89 7.49	ELTA 1(3)(1+)		9.89	7.57	1.19	33	97.0	100.			-1.00K		0.00	16.0	1.00K	7.11	5
(4)(1+)	ELTA 1(3)(1-)		10.0	7.58	1.16	33	93.9	100.			-1.00K		00.0	16.0	1.00K	7.27	4
I(4)(1-) 7.00 9.31 7.97 490.H 33 93.9 100. -1.00K 0.00 16.0 1.00K I(5)(1+) 6.64 8.48 7.82 356.H 33 97.0 97.0 -1.00K 0.00 16.0 1.00K I(5)(1+) 6.67 10.1 8.09 855.H 33 97.0 100 -1.00K 0.00 16.0 1.00K I(6)(1+) 6.67 10.1 8.09 855.H 33 97.0 100 0.00 16.0 1.00K I(5)(1+) 6.64 8.89 7.49 36.H 33 97.0 -1.00K 0.00 16.0 1.00K I(8)(1+) 6.64 8.89 7.49 36.H 33 97.0 -1.00K 0.00 16.0 1.00K I(8)(1+) 7.18 8.51	ELTA 1(4)(I+)	•	9.31	7.97	469.M	33	6.06	100.			-1.00K		00.0	16.0	1.00K	17.1	S S
I(5)(I+) 6.64 8.48 7.82 356.H 33 97.0 97.0 -1.00K 0.00 16.0 1.00K I(5)(I+) 5.82 8.49 7.83 480.H 33 97.0 97.0 -1.00K 0.00 16.0 1.00K I(4)(I+) 6.93 10.0 810 856.H 33 97.0 97.0 -1.00K 0.00 16.0 1.00K I(3)(I+) 7.02 8:51 7.48 316.H 33 97.0 97.0 -1.00K 0.00 16.0 1.00K I(3)(I+) 7.02 8:51 7.49 368.H 33 97.0 97.0 -1.00K 0.00 16.0 1.00K I(8)(I+) 4.87 8:88 7.90 33 97.0 1.00 -1.00K 0.00 16.0 1.00K I(8)(I+) 4.87 8:88 <td>ELTA 1(4)(1-)</td> <td>2.00</td> <td>9.31</td> <td>2.99</td> <td>490.M</td> <td>33</td> <td>63.6</td> <td>100.</td> <td></td> <td></td> <td>-1.00K</td> <td></td> <td>00.0</td> <td>16.0</td> <td>1.00K</td> <td>16.4</td> <td>NA N</td>	ELTA 1(4)(1-)	2.00	9.31	2.99	490.M	33	63.6	100.			-1.00K		00.0	16.0	1.00K	16.4	NA N
1(5)(1-) 5.82 6.49 7.83 480.H 33 97.0 97.0 -1.00K 0.00 16.0 1.00K 1(6)(1+) 6.67 10.1 8.09 855.H 33 97.0 100. -1.00K 0.00 16.0 1.00K 1(7)(1+) 6.64 8.19 7.49 316.H 33 97.0 97.0 -1.00K 0.00 16.0 1.00K 1(7)(1+) 6.64 8.89 7.49 368.H 33 97.0 97.0 -1.00K 0.00 16.0 1.00K 1(8)(1+) 7.18 8.51 7.92 298.H 33 97.0 97.0 -1.00K 0.00 16.0 1.00K 1(8)(1+) 6.87 8.48 7.90 33 97.0 100. 1.00K 0.00 16.0 1.00K 1(8)(1-) 6.87 <td>ELTA 1(5)(1+)</td> <td></td> <td>8.48</td> <td>7.82</td> <td>356.M</td> <td>33</td> <td>97.0</td> <td>0.26</td> <td></td> <td></td> <td>-1.00K</td> <td></td> <td>00.0</td> <td>16.0</td> <td>1.00K</td> <td>23.0</td> <td>NA N</td>	ELTA 1(5)(1+)		8.48	7.82	356.M	33	97.0	0.26			-1.00K		00.0	16.0	1.00K	23.0	NA N
I(6)(I+) 6.67 10.1 8.09 855.H 33 97.0 100. -1.00K 0.02 16.0 1.00K I(2)(I-) 6.69 8.51 7.48 316.H 33 97.0 -1.00K 0.00 16.0 1.00K I(7)(I-) 6.64 8.89 7.49 358.H 33 97.0 -1.00K 0.00 16.0 1.00K I(8)(I+) 7.18 8.87 7.49 358.H 33 97.0 1.00K 0.00 16.0 1.00K I(8)(I+) 6.64 8.88 7.90 236.H 33 97.0 1.00K 0.00 16.0 1.00K I(8)(I+) 6.87 8.88 7.90 336.H 33 93.9 97.0 -1.00K 0.00 16.0 1.00K 165.H 3.90 3.70 3.70			8.49	7.83	480.M	33	0.79	0.26			-1.00K		00.0	16.0	1.00K	17.0	UA
I(6)(I-) 6.93 10.0 8.10 858.H 33 93.9 100. -1.00K 0.00 16.0 1.00K I(7)(I+) 6.64 8.58 7.49 368.H 33 97.0 97.0 -1.00K 0.00 16.0 1.00K I(8)(I+) 7.18 8.58 7.90 33 97.0 100. -1.00K 0.00 16.0 1.00K I(8)(I-) 6.87 8.86 7.90 33 93.9 97.0 -1.00K 0.00 16.0 1.00K Ifs -1.00K -1.00K 0.00 16.0 1.00K Ifs -1.00K 0.00 16.0 1.00K Ifs -1.00K 0.00 16.0 1.00K Ifs 0.00 16.0 1.00K Ifs 0.00 16.0 1.00K Ifs		6.67	10.1	8.09	855.M	33	97.0	100.			-1.00K		0.00	16.0	1.00K	9.26	NA N
I(7)(I+) 7.02 8.51 7.48 316.H 33 97.0 97.01.00K 0.00 16.0 1.00K 1.00		6.93	10.0	8.10	858.M	33	63.6	100.			-1.00K		00.0	16.0	1.00K	9.20	NA UA
1(3)(1-) 6.64 8:89 7.49 368.H 33 93.9 97.01.00K 0.00 16.0 1.00K 11(8)(1+) 7.9 298.H 33 97.9 97.0 1.00K 0.00 16.0 1.00K 1(8)(1-) 6.87 8.88 7.90 338.H 33 93.9 97.01.00K 0.00 16.0 1.00K 1FS 1FS 1.90 50.5 1.00K 37.5 0.00 8.00 1.00K 1FS	ELTA ICTICITI	7.02	8.51	7.48	316.H	33	97.0	97.0			-1.00K		0.00	16.0	1.00K	26.9	NA N
1(8)(1+) 7.18 8.51 7.92 298.h 33 97.0 1001.00k 0.00 16.0 1.00k 1(8)(1-) 6.87 8.88 7.90 338.h 33 93.9 97.01.00k 0.00 16.0 1.00k 1FS 0.00 16.0 1.00k 1 1.00k	ELTA 1(7)(1-)	6.64	8.89	7.49	368.H	33	93.9	0.26			-1.00K		0.00	16.0	1.00K	23.1	NA N
1(8)(1-) 6.87 8.88 7.90 338.H 33 93.9 97.01.00K 0.00 16.0 1.00K 1FS -555.H 505.H 57.3H 215.H 33 93.9 100. 0.00 -8.00 -1.00K 37.5 0.00 8.00 1.00K	ELTA I(8)(I+)	7.18	8.51	7.92	298.1	33	97.0	100.			-1.00K		0.00	16.0	1.00K	27.1	NA
IFS -555.N 505.N 57.3N 215.N 33 93.9 100. 0.00 -8.00 -1.00K 37.5 0.00 8.00 1.00K		4.87	8.88	7.90	338.M	33	63.6	62.0		1	-1.00K		0.00	16.0	1.00K	23.9	UA
		-555. H	505.A	57.3M	215.M	33	63.6	100.	00.0	-8.00	-1.00K	37.5	00.0	8.00	1.00K	37.0	NA N

* EXCLUDES POPULATION OUTSIDE OF LOW REJ AND HIGH REJ

Table 6-5. Statistical data for purchased sample (wide reject limits). (cont'd.)

2.46 559. H 33 100. 100. 0.00 400.H 400.H 3.73 -6.30 542.H 33 100. 100. 0.00 -7.80 -7.80 2.71 1.99 6.10H 33 100. 100. 0.00 -7.80 -7.80 2.72 1.99 6.10H 33 100. 100. 0.00 -7.80 -7.80 2.72 1.99 6.10H 33 100. 100. 0.00 -7.80 -7.80 2.72 1.99 6.10H 33 100. 100. 0.00 -7.80 -7.80 2.72 1.99 6.10H 33 100. 100. 0.00 -7.80 -7.80 2.72 1.99 6.10H 33 10O. 10O. 0.00 -7.80 -7.80 2.72 1.99 6.10H 33 10O. 10O. 0.00 -7.80 -7.80 2.72 1.99 6.10H 33 10O. 10O. 0.00 -7.80 -7.80 2.72 1.99 6.10H 33 10O. 10O. 0.00 -7.80 -7.80 2.72 1.99 6.10H 33 10O. 10O. 0.00 -7.80 -7.80 1.99 6.10H 33 10O. 10O. 0.00 -7.80 -7.80 1.99 6.10H 33 10O. 10O. 0.00 -7.80 -7.80 1.99 6.10H 32.24 1.99 1.99 1.90 1.90 1.90 1.90 1.90 1.90	PARAHETER	100	HIGH UAL UE	MEAN	SIGMA	SAMPLE	SIGHA 2	SIGNA	100	LIMIT	REJ	HJ-07	HIGH	LIMIT	R.F. J	n	UNI
1.63 3.29 2.46 559 4 33 100. 100. 0.00 400.1 400.1 3.73 1.64 2.13 2.513 5.514 33 100. 100. 0.00 7.80 7.80 2.74 1.88 2.01 1.99 6.024 33 100. 100. 0.00 1.94 1.94 6.15 1.88 2.01 1.99 6.024 33 310. 100. 0.00 1.94 1.94 6.15 1.89 2.01 1.99 6.024 33 31.0 100. 0.00 1.94 1.94 6.15 1.80 2.01 1.99 6.024 33 31.0 100. 0.00 1.94 1.94 6.15 1.90 2.01 1.99 6.024 33 31.0 100. 0.00 1.94 1.94 6.15 1.00 2.01 2.92 4.44 2.04 33 31.0 0.00 2.00 2.00 2.00 1.00 2.01 4.01 4.424 2.74 2.74 33 33.0 0.00 0.00 2.00 2.00 20 11 4.01 4.424 2.74 2.74 33 33.0 0.00 0.00 2.00 2.00 20 11 4.01 4.424 2.74 2.74 33 33.0 0.00 0.00 2.00 2.00 20 11 4.01 4.424 2.74 2.74 33 33.0 0.00 0.00 2.00 2.00 20 11 4.01 4.424 2.74 2.74 33 33.0 0.00 0.00 2.00 2.00 20 11 4.01 4.424 2.74 2.74 33 33.0 0.00 0.00 2.00 2.00 20 11 4.01 4.424 2.74 3.2 3.0 3.03 0.00 0.00 20 20 20 20 20 20 20		•		•	*	*						•			2	*	
MARCH 1.44 2.13 2.47 255.4 33 100. 100. 0.00 0.780 0.780 2.71	BITS WIGH	1.63	3.29	2.46	559.H	33	100.	100.	•	400.M	400.H	3.70	0.00	3.80	3.80	2.39	1 4
	BITS LOW)	1.64	3.30	2.47	555.M	33	100.	100		400.H	400.H	3.73	00.0	3.80	3.80	2.39	MA
1.98 2.01 1.99 6.02H 33 910, 100, 0.00 1.94 1.94 2.76 1.98 2.01 1.99 6.02H 33 910, 100, 0.00 1.94 1.94 9.01 1.98 2.01 1.99 6.02H 33 910, 100, 0.00 1.94 1.94 9.01 1.98 2.01 1.99 6.02H 33 910, 0.00 1.94 1.94 9.01 1.30H 30.0H 3.24H 22.7H 33 910, 0.00 -2.00 -2.00 1.35 -50.1H 40.0H -3.24H 22.7H 33 910, 0.00 -4.00 -4.00 1.45 -50.1H 40.0H -3.24H 22.7H 33 910, 0.00 -4.00 -4.00 1.45 -50.1H 40.0H -3.24H 22.7H 33 910, 0.00 -4.00 -4.00 1.45 -50.1H 40.0H -3.24H 22.7H 33 910, 0.00 -6.00 -6.00 1.45 -50.1H 40.0H -3.24H 22.7H 33 910, 0.00 -6.00 -6.00 1.45 -50.1H 40.0H -3.24H 22.7H 33 910, 0.00 -6.00 -6.00 1.45 -50.1H 40.0H -3.24H 22.7H 33 910, 0.00 -6.00 -6.00 1.45 -50.1H 40.0H -3.24H 22.7H 33 910, 0.00 -6.00 -6.00 1.45 -50.1H 40.0H -3.24H 22.7H 33 910, 0.00 -6.00 -6.00 1.45 -50.1H 40.0H -3.24H 22.7H 33 910, 0.00 -6.00 -6.00 1.40 -2.35 -364 1.40 -2.34H 33 910, 0.00 -3.00 -3.00 -3.00 -1.00 10.7H 40.2H 40.2H 33 910, 0.00 -3.00 -3.00 1.40 -1.00 10.7H 40.2H 40.2H 33 910, 0.00 -3.00 -3.00 1.40 -1.00 10.7H 10.7H 40.2H 40.2H 33 910, 0.00 -3.00 -3.00 1.40 -1.00 10.7H 10.7H 40.2H 32.8H 32.7H 33 910, 0.00 -3.00 -3.00 1.40 -1.00 10.7H 10.7H 40.2H 32.8H 32.7H 33 910, 0.00 -3.00 -3.00 1.40 -1.00 10.7H 10.7H 40.2H 33 910, 0.00 -3.00 -3.00 1.40 -1.00 10.7H 10.7H 40.2H 32.7H 33 910, 0.00 -3.00 1.40 -1.00 10.7H 10.7H 40.2H 32.7H 33 910, 0.00 -3.00 1.40 -1.00 10.7H 10.7H 40.2H 32.7H 33 910, 0.00 1.40 -1.00 10.7H 10.7H 40.2H 32.7H 33 910, 0.00 1.40 -1.00 10.7H 10.7H 10.7H 30.0H 30.0H 30.0H 10.0 10.0 1.40 -1.00 10.7H 10.7H 10.7H 30.0H 30.0H 30.0H 10.0 10.0 10.0 10.0 10.0 10.0 10.0	BITS HIGH)	-7.13	-5.51	-6.31	551.H	33	1001	100.		-7.80	-7.80	2.71	00.0	H.008-	-800.H	66.6	d E
1.98 2.01 1.99 6.10H 33 93.9 100. 0.00 194 1.94 8.88 -12.5H 1.62 94.6H 320.H 33 93.9 100. 0.00 1.94 1.94 8.88 -12.5H 1.62 94.6H 320.H 33 93.9 100. 0.00 2.00 2.00 6.50 -12.5H 1.62 94.6H 320.H 33 93.9 100. 0.00 2.00 2.00 1.00 -12.5H 1.62 94.6H 320.H 33 93.9 100. 0.00 2.00 2.00 1.00 -12.0H 50.H -4.2H 22.5H 33 93.9 100. 0.00 -4.00 1.00 -50.1H 50.H -4.2H 22.5H 33 100. 0.00 -6.00 -6.00 1.00 -50.1H 50.H -4.2H 22.5H 33 100. 0.00 -6.00 -6.00 1.00 -50.1H 50.H -4.2H 22.7H 33 100. 0.00 -6.00 -6.00 1.00 -50.H 50.H -4.2H 22.7H 33 100. 0.00 -6.00 -6.00 1.00 -50.H 50.H -4.2H 22.7H 32 93.9 93.9 93.0 -6.00 -6.00 1.00 -1.2P 12.6H -90.H -7.2H 22.7H 32 93.9 93.0 -0.00 -6.00 -6.00 1.00 -1.2P 12.6H -90.H 4.2H 22.7H 32 93.9 93.0 -0.00 -6.00 -6.00 1.00 -1.2P 12.6H -90.H 32.H 4.6H 32 93.9 93.0 0.00 -2.00 -2.00 -2.00 -1.2P 12.6H -90.H 33.H 4.6H 33 97.0 97.0 0.00 -2.00 -2.00 -2.00 -1.0P 12.7H 4.2H 52.H 4.6H 33 97.0 97.0 0.00 -2.00 -2.00 -1.0P 12.7H 4.2H 4.2H 32.H 4.6H 33 97.0 97.0 0.00 -2.00 -2.00 -1.0P 12.7H 4.2H 4.2H 32.H 4.6H 33 97.0 97.0 0.00 -2.00 -2.00 -1.0P 12.7H 4.2H 4.2H 32.H 4.6H 33 97.0 97.0 0.00 -2.00 -2.00 -1.0P 12.7H 4.2H 4.2H 32.H 4.6H 33 97.0 97.0 0.00 -2.00 -2.00 -1.0P 12.7H 4.2H 4.2H 32.H 4.6H 33 97.0 97.0 0.00 -2.00 -2.00 -1.0P 12.7H 4.2H 4.2H 32.H 32.H 33 97.0 97.0 0.00 -2.00 0.00 -1.0P 1.6H 9.4H 4.3H 4.3H 4.3H 33 97.0 97.0 0.00 0.00 0.00 0.00 0.00 -1.0P 1.6H 9.4H 4.3H 4.3H 32.H 33 97.0 97.0 0.00 0.00 0.00 0.00 0.00 0.00	BITS LOW!	-7.13	-5.53	-6:30	542.M	33	1001	100.		-7.80	-7.80	2.76	00.0	H.008-	-800.H	10.2	4
12.58 2.01 1.99 6.02H 33 93.9 100, 0.00 19.4 1194 9.01 13.04 92.01 1.99 6.02H 33 93.9 97.0 0.00 -2.00 -2.00 6.55 13.04 92.01H 40.0H 32.4H 22.7H 33 93.9 97.0 0.00 -2.00 -2.00 13950.1H 40.0H -3.24H 22.7H 33 93.9 97.0 0.00 -2.00 -2.00 13950.1H 40.0H -3.24H 22.7H 33 93.9 97.0 0.00 -2.00 -2.00 13950.1H 40.0H -3.24H 22.7H 33 93.9 97.0 0.00 -4.00 4.00 14550.1H 40.0H -3.24H 22.7H 33 93.9 97.0 0.00 -2.00 -8.00 3801.7B 33.2H -32.4H 22.7H 33 93.9 97.0 0.00 -8.00 8		1.98	2.01	1.99	6.10H	33	63.6	100.		1.94	1.94	8.88	00.0	2.04	2.04	7.51	A.Y
12.58 1.62 94.64 320.8 31 93.9 97.0 0.00 -2.00 -2.00 6.55 -50.11 6.4.4 14.4 14.4 14.4 14.4 14.4 14.4		1.98	2.01	1.99	6.02H	33	93.9	100.		1.94	1.94	9.01	00.0	2.04	2.04	7.61	A.
-13.0H 53.0H 53.0H 5.92k 14.4K 33 93.9 97.0 0.00 -2.00 -2.00 13950.1H 50.0H -3.24H 22.7H 33 93.9 100. 0.00 -4.00 -4.00 14550.1H 50.0H -3.24H 22.7H 33 93.9 100. 0.00 -4.00 -4.00 14550.1H 50.0H -3.24H 22.7H 33 100. 0.00 -8.00 -8.00 38050.1H 50.0H -3.24H 22.7H 33 100. 0.00 -8.00 -8.00 3804.5.H 558.1H 4.2H 27.5H 30 100. 0.00 -8.00 -8.00 3804.5.H 558.1H 4.2H 27.5H 30 100. 0.00 -8.00 -8.00 3804.5.H 558.1H 4.2H 27.5H 30 100. 0.00 -8.00 -8.00 3804.5.H 558.1H 4.2H 40.0H 32.7H 32 97.9 93.9 3.03 -8.00 -8.00 101.27 12.6H 300.H 27.4H 32 97.9 97.9 0.00 -2.00 -2.00 401.27 12.6H 300.H 27.4H 33 97.9 97.0 0.00 -2.00 -2.00 4.00 -2.56 -366.H 350.H 4.2H 33 97.0 97.0 0.00 -3.00 -3.00 3.85 -1.05H 78.2H 70.2H 4.2H 33 97.0 97.0 0.00 -3.00 -3.00 3.85 -1.05H 27.1H 4.2H 4.2H 33 97.0 97.0 0.00 -3.00 -3.00 3.85 -1.00H 19.7H 4.2H 4.2H 33 97.0 97.0 0.00 -3.00 -3.00 3.85 -1.00H 19.7H 4.2H 4.2H 33 97.0 97.0 0.00 -3.00 -3.00 3.85 -1.00H 19.7H 4.2H 4.2H 33 97.0 97.0 0.00 -3.00 -3.00 3.85 -1.00H 19.7H 4.2H 82.7H 33 97.0 97.0 0.00 -3.00 0.00 0.00 0.00 -1.00H 19.7H 4.2H 82.7H 33 97.0 97.0 0.00 -3.00 0.00 0.00 -1.00H 19.7H 4.2H 82.7H 33 97.0 97.0 0.00 0.00 0.00 0.00 -1.00H 19.7H 4.2H 82.7H 82.7H 83.7H 97.0 97.0 0.00 0.00 0.00 0.00 -1.00H 19.7H 4.2H 82.7H 82.7H 83.7H 93.9 93.9 93.9 93.9 93.9 93.9 93.9 93.		-12.5H	1.62	94.6H	320.H	33	93.9	, 0.26		-2.00	-2.00	6.55	00.0	2.00	2.00	5.96	617
-50.1M 40.0H 3.24H 22.7H 33 93.9 100. 0.00 4.00 4.00 17650.1M 40.0H 3.24H 22.5H 33 93.9 100. 0.00 64.00 68.00 38250.1M 50.1H 4.42H 22.5H 33 910. 100. 0.00 68.00 68.00 38250.1M 50.1M 4.42H 22.5H 33 910. 100. 0.00 68.00 68.00 38250.1M 50.1M 75.9H 22.5H 33 910. 100. 0.00 68.00 68.00 38250.1M 59.1M 85.6H 198.H 32 910. 910. 0.00 68.00 68.00 38244.H 558.H 85.6H 198.H 32 91.9 91.0 0.00 6.20 68.00 3801.27 12.6H 30.M 24.H 32 91.9 91.9 91.0 0.00 6.20 68.00 40.1 -2.39 2.97 2.89 154.H 24 49.9 10.0 0.00 6.20 6.20 6.20 -2.39 2.97 2.89 154.H 24 49.9 10.0 0.00 6.20 6.20 6.20 -1.00		-13.0H	58.0H	5.92K	14.48	33	93.9	97.0		-2.00	-2.00	139.	00.0	2.00	2.00	139.	C. A.
### 50.1M \$50.1M +4.42R 27.5H 33 100. 100. 0.00 -4.00 -4.00 145. ### 50.1M \$50.1M +4.42R 27.5H 33 100. 100. 0.00 -8.00 -8.00 290. ### 50.1M \$50.1M +4.42H 27.5H 33 100. 100. 0.00 -8.00 -8.00 290. ### 50.1M \$50.1M +4.42H 27.5H 33 100. 100. 0.00 -8.00 -8.00 290. ### 50.1M \$50.1M +6.42H 27.5H 33 100. 100. 0.00 -8.00 -8.00 380. ### 50.1M \$50.1M +6.42H 27.5H 33 100. 0.00 -8.00 -8.00 380. ### 50.1M \$50.1M +7.42H 27.5H 33 100. 0.00 -8.00 -8.00 4.01 ### 50.1M \$50.1M +7.42H 27.5H 33 10. 0.00 -2.00 -2.00 4.01 ### 50.1M \$50.1M \$50.1		-50.1M	40.0H	-3.24H	22.7H	33	93.9	100.		-4.00	-4.00	176.	00.0	4.00	4.00	176.	5
-50.1M 40.0M -3.24H 22.7M 33 93.9 100. 0.00 -8.00 -8.00 93.2 -50.1M 50.1M +4.22H 22.7M 33 100. 100. 0.00 -8.00 -8.00 95.0 -45.M 539.1M -75.9M 205.K 33 100. 100. 0.00 -8.00 95.0 -1.27 12.6M -300.M 274.M 33 93.9 93.9 3.03 -8.00 95.0 -1.27 12.6M -300.M 274.M 33 93.9 97.0 0.00 -2.00 -2.00 40.1 -2.56 -372.M -927.M 540.M 33 93.9 97.0 0.00 -2.00 -2.00 4.21 -1.56 178. 23.4 7.0 1 3.0 1 3.1 97.0 97.0 0.00 -2.00 -2.00 4.21 -1.56 178. 23.4 7.0 1 3.2 1 3.3 93.9 97.0 0.00 -3.00 -3.00 3.85 -1.00M 27.1M 4.62M 5.60M 33 97.0 97.0 0.00 -3.00 -3.00 3.85 -1.10M 19.7M 4.62M 5.60M 33 97.0 97.0 0.00 -3.00 -3.00 3.00 -1.20M 21.1M 4.62M 5.60M 33 97.0 97.0 0.00 -3.00 -3.00 3.00 -1.20M 21.1M 4.63M 4.24M 33 97.0 97.0 0.00 -3.00 -3.00 3.00 -1.20M 21.2M 14.3M 42.4M 33 97.0 97.0 0.00 -3.00 0.00 -1.20M 21.4M 4.64M 35.2M 33 97.0 97.0 0.00 -3.00 0.00 -1.10M 4.04M 4.08M 3.52M 33 97.0 97.0 0.00 0.00 0.00 -1.10M 4.04M 4.08M 3.52M 33 97.0 97.0 0.00 0.00 0.00 -1.10M 2.1 48 8.4 3.52M 32 93.9 93.9 3.03 -10.0 0.00 -1.10M -2.56 1.12 32 93.9 93.9 3.03 -10.0 0.00 0.00 -2.58 1.45 -2.65 1.12 3.2 93.9 93.9 3.03 -10.0 0.00 0.00 -2.59 1.48 -2.65 1.22 2.20 1.30 93.9 3.03 -10.0 0.00 0.00 -2.545 1.142 -2.65 1.22 3.2 93.9 93.9 3.03 -10.0 0.00 0.00 -2.545 1.142 -2.67 1.26 32 93.9 93.9 3.03 -10.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0		-50.1M	50.1M	-4.42M	27.5H	33	100.	1001		-4.00	-4.00	145.	00.0	4.00	4.00	145.	NA PA
-50.1H 50.1H -442H 27.5H 33 100, 100, 0.00 6.00 -8.00 -8.00 290, -455.H 558.H -55.4H 105.H 32 100, 110, 0.00 6.00 6.00 -8.00 381.6 -445.H 558.H -55.4H 105.H 32 93.9 93.9 3.03 -8.00 -8.00 930.6 -445.H 558.H -65.4H 106.H 32 93.9 93.9 3.03 -8.00 -8.00 4.09 11.7B 38.2H -340.H 406.H 32 93.9 93.9 3.03 -8.00 -2.00 -2.00 4.09 11.2B 38.2H -340.H 406.H 32 93.9 93.0 0.00 -2.00 -2.00 4.09 12.2 2.23 2.97 2.84 160.H 28 97.0 97.0 0.00 -3.00 -3.00 3.00 4.21 4.25 4.26 140.H 28 97.0 97.0 0.00 -3.00 -3.00 3.00 3.00 11.2 11.00H 19.7H 4.25H 4.48H 33 97.0 97.0 0.00 -3.00 -3.00 3.00 3.00 3.00 11.2 11.00H 19.7H 4.25H 4.48H 33 97.0 97.0 0.00 -3.00 -3.00 3.00 3.00 3.00 11.00H 19.7H 4.25H 4.48H 33 97.0 97.0 0.00 -3.00 -3.00 3.00 3.00 3.00 11.00H 19.7H 4.25H 4.48H 33 97.0 97.0 0.00 -3.00 -3.00 3.00 3.00 3.00 11.00H 19.7H 4.25H 4.48H 33 97.0 97.0 0.00 -3.00 -3.00 3.00 3.00 3.00 11.00H 19.7H 4.25H 4.48H 382.H 33 97.0 97.0 0.00 -3.00 -3.00 3.00 3.00 3.00 3.00		-50.1M	40.0H	-3.24H	22.7H	33	93.9	100.		-8.00	-8.00	352.	00.0	8.00	8.00	353.	CA A
-550.H 558.H -55.9H 205.K 32 90.9 93.9 3.03 -6.00 -8.00 38.6 -1.78 38.2H -32.9H 205.K 32 90.9 93.9 3.03 -6.00 -8.00 40.1 -1.78 38.2H -340.H 408.H 32 87.9 93.9 3.03 -6.00 -2.00 40.1 -1.78 38.2H -340.H 408.H 32 87.9 93.9 3.03 -2.00 -2.00 40.1 -2.32 2.97 2.86 160.H 22 87.9 93.9 3.03 -2.00 -2.00 4.09 -2.39 2.97 2.89 160.H 28 78.8 64.8 15.2 2.10 2.10 2.10 -2.36 -342.H -22.H 540.H 33 93.9 97.0 0.00 -3.00 -3.00 3.85 -1.00H 27.1H 4.62H 5.60H 33 97.0 97.0 0.00 -3.00 -3.00 3.85 -1.10H 9.7H 4.2ZH 4.2ZH 4.4ZH 3.97.0 97.0 0.00 -3.00 -3.00 3.85 -1.10H 9.60H 3.8SH 3.02H 33 97.0 97.0 0.00 -3.00 -3.00 3.85 -1.10H 9.60H 3.8SH 3.02H 33 97.0 97.0 0.00 -3.00 -3.00 3.85 -2.00.U 2.1H 86.4H 38.2H 33 97.0 97.0 0.00 -3.00 0.00 0.00 -2.00.U 2.1H 86.4H 38.2H 33 97.0 97.0 0.00 0.00 0.00 0.00 -2.00 4.01H 16.7H 69.0H 33 97.0 97.0 0.00 0.00 0.00 0.00 -2.00 4.01H 16.7H 69.0H 33 97.0 97.0 0.00 0.00 0.00 0.00 -2.00 4.01H 16.7H 69.0H 33 97.0 97.0 0.00 0.00 0.00 0.00 -2.00 4.01H 2.2.5 4.13 2.45 983.H 32 93.9 93.9 3.03 0.00 0.00 0.00 0.00 -2.00 5.00 5.00 5.00 5.00 5.00 0.00 0.00		-50.1H	50.1H	-4.42H	27.5H	33	100.	100.		-8.00	-8.00	290.	00.0	8.00	8.00	291.	S.
1.26		-550.N	583.M	-75.9H	205.K	32	6.06	63.6		-8.00	-8.00	38.6	00.0	8.00	8.00	39.4	NA N
15 2 2.27 2.64 -340.4 406.4 32 87.9 97.9 0.00 -2.00 -2.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00		-445.H	558.H	-85.6H	198.H	32	63.6	63.6		-8.00	-8.00	40.1	0.00	8.00	8.00	40.9	45
11.27 12.64 -300.4 274.8 33 93.9 97.0 0.00 -2.00 -2.00 6.21 2.39 2.97 2.89 154.4 24 69.7 27.3 27.3 2.10 2.10 5.15 2.39 2.97 2.89 154.4 24 69.7 27.3 27.3 2.10 2.10 5.15 2.39 2.97 2.89 154.4 24 64.7 24 64.7 27.3 2.10 2.10 2.10 5.15 1.654 32.2.4 7.02.4 1.39.4 33 93.9 97.0 0.00 -3.00 3.84 11.654 22.24 7.02.4 1.39.4 33 97.0 97.0 0.00 -3.00 3.85 -1.004 27.14 4.624 5.604 33 97.0 97.0 0.00 -3.00 3.85 -1.104 19.74 4.254 4.484 33 97.0 97.0 0.00 -3.00 0.00 -1.204 2.2.4 14.24 4.484 33 97.0 97.0 0.00 0.00 0.00 -1.204 2.2.4 14.24 4.484 33 97.0 97.0 0.00 0.00 0.00 -1.204 2.14 86.44 382.8 33 97.0 97.0 0.00 0.00 0.00 -1.204 2.14 86.44 4.88 3.3 97.0 97.0 0.00 0.00 0.00 -1.104 9.604 4.684 3.25 1.2 32 97.0 97.0 0.00 0.00 0.00 0.00 -1.104 9.604 1.32 -2.56 1.22 32 93.9 93.9 3.03 0.00 0.00 0.00 0.00 -1.204 2.1.45 -2.72 1.39 30 97.0 97.0 0.00 0.00 0.00 0.00 -1.204 2.00 1.99 9.774 33 97.0 0.00 0.00 1.85 1.85 10.2 1.98 2.04 2.00 15.24 33 97.0 0.00 0.00 1.85 1.85 10.2 1.98 2.04 2.00 1.99 9.774 33 97.0 0.00 0.00 1.85 1.85 10.2 1.99 2.04 2.00 1.99 9.774 34 97.0 0.00 0.00 1.85 1.85 10.2 1.99 2.00 1.99 9.774 14 45.5 0.00 0.00 0.00 1.85 1.85 1.79 2.82 2.92 1.93 3.47 416.8 14 45.5 0.00 0.00 0.00 1.99		-1.78	38.2H	-340.H	406.M	32	87.9	63.6		-2.00	-2.00	4.09	00.0	5.00	5.00	5.76	45
2.33 2.97 2.89 154.H 24 69.7 69.7 27.3 2.10 2.10 5.15 BITS LOW		-1.27	12.6H	-300.H	274.K	33	63.6	67.0		-2.00	-2.00	6.21	00.0	5.00	5.00	8.41	5
2.36 2.372.4 926.4 140.4 28 78.8 84.8 15.2 2.10 2.10 4.76 BITS LOU		2.23	2.97	2.89	154.H	24	69:7	69.7		2.10	2.10	5.15	00.0	2.80	5.80	18.9	Æ
BITS LOW: -2.56 -372.M -927.M 540.M 33 93.9 97.0 0.00 -3.00 -3.00 3.88 BITS HIGH: -2.56 -375.M -927.M 540.M 33 93.9 97.0 0.00 -3.00 -3.00 3.88 -1.60M 27.1M 4.62M 5.60M 33 97.0 97.010.0 -10.0 -1.00M 27.1M 4.62M 5.60M 33 97.0 97.010.0 -10.0 -1.00M 19.7M 4.22M 4.48M 33 97.0 97.010.0 -1.20M 212.M 14.3M 42.4M 33 97.0 97.010.0 -2.00.U 2.14 86.4M 382.M 33 97.0 97.010.0 -2.00.U 401.M 16.7M 5.20M 33 97.0 97.010.0 -2.00.U 401.M 16.7M 5.20M 33 97.0 97.010.0 -2.00.U 401.M 16.7M 5.20M 33.9 97.0 97.010.0 -2.00.U 401.M 16.7M 5.20M 33.9 97.0 97.010.0 -2.00.U 401.M 16.7M 5.20M 33.9 97.0 97.010.0 -2.00.U 401.M 16.7M 5.20M 33.0 97.0 97.010.0 -2.00.U 401.M 16.7M 5.20M 33.0 97.0 97.010.0 -2.00.U 401.M 16.7M 5.20M 33.0 97.0 97.010.0 -2.00.U 5.4M 5.20M 19.0 97.M 33 97.0 97.0 10.0 10.0 6.15 -2.00.U 4.00M 5.20M 19.0 97.M 33 97.0 97.0 0.00 1.85 1.85 10.2 1.98 2.04 2.00 15.2M 33 97.0 97.0 0.00 1.85 1.85 10.2 1.98 2.04 2.00 1.99 9.77M 33 97.0 97.0 0.00 1.85 1.85 10.2 1.98 2.04 2.00 1.99 9.77M 33 97.0 97.0 0.00 1.85 1.85 10.2 1.98 2.04 2.00 1.99 9.77M 34 97.0 97.0 0.00 1.85 1.85 10.2 1.98 2.04 2.00 1.99 9.77M 34 97.0 0.00 1.85 1.85 10.2 1.98 2.04 2.00 1.99 9.77M 34 97.0 0.00 1.85 1.85 10.2 1.98 2.04 2.00 1.99 9.77M 34 97.0 0.00 1.85 1.85 1.85 1.85 1.98 2.00 1.99 9.77M 14 45.5 6.6 0.00 -4.00 -4.00 17.9		2.39	2.97	2.86	160.M	28	78.8	84.8		2.10	2.10	4.76	0.00	2.80	2.80	18.4	¥
### HIGH: -2.56 -366.M -926.N 339.N 33 93.9 97.0 0.00 -3.00 -3.00 -3.00 3.85 -1.05N 22.24 7.02H 14.2H 33 97.0 97.010.010.0 -1.00H 19.7H 4.25H 4.48H 33 97.0 97.010.0 -1.10H 19.7H 4.25H 3.00H 33 97.0 97.010.0 -1.20H 212.H 14.3H 42.H 33 97.0 97.010.0 -2.00.U 2.14 86.4H 382.K 33 97.0 97.010.0 -2.00.U 2.14 86.4H 382.K 33 97.0 97.010.0 -2.00.U 40.1H 16.7H 67.0H 33 97.0 97.010.0 -2.00.U 40.1H 16.7H 67.0H 33 97.0 97.010.0 -2.00.U 40.1H 16.7H 67.0H 33 97.0 97.010.0 -2.13H -1.55 -2.53 11.7 32 93.9 93.9 3.03 -10.0 -10.0 6.67 -2.13 -1.55 -2.55 11.2 32 93.9 93.9 3.03 -10.0 -10.0 6.67 -2.149 -1.32 -2.56 11.22 32 93.9 93.9 3.03 -10.0 -10.0 6.07 -2.149 -1.32 -2.56 11.25 32 93.9 93.9 3.03 -10.0 -10.0 6.07 -2.145 -1.45 -2.72 11.9 32 93.9 93.9 10.0 -10.0 6.15 -2.145 -2.00 1.99 9.77H 33 97.0 0.00 1.85 1.85 10.2 1.98 2.04 2.00 15.2H 33 97.0 0.00 1.85 1.85 10.2 1.98 2.04 2.00 1.99 9.77H 33 97.0 0.00 1.85 1.85 10.2 1.98 2.04 2.00 1.99 9.77H 33 97.0 0.00 1.85 1.85 10.2 1.98 2.04 2.00 1.99 9.77H 33 97.0 0.00 1.85 1.85 10.2 1.98 2.04 2.00 1.99 9.77H 33 97.0 0.00 1.85 1.85 10.2 1.98 2.04 2.00 1.99 9.77H 33 97.0 0.00 1.85 1.85 10.2 1.98 2.04 2.00 1.99 9.77H 33 97.0 0.00 1.85 1.85 10.2 1.98 2.04 2.00 1.99 9.77H 33 97.0 0.00 1.85 1.85 10.2 1.98 2.04 2.00 1.99 9.77H 33 97.0 0.00 1.85 1.85 1.85 1.85 1.98 2.04 2.00 1.99 9.77H 34 45.5 60.6 0.00 -4.00 -4.00 17.9		-2.56	372.M .	-927.H	540.H	33	93.9	0.76		-3.00	-3.00	3.84	0.00	100.H	100.H	1.90	5
-1.65H 78.2H 7.02H 14.2H 33 97.0 97.010.010.0H 19.7H 4.22H 4.22H 33 97.0 97.010.0H 19.7H 4.22H 4.24H 33 97.0 97.010.0H 19.7H 4.3H 42.4H 33 97.0 97.010.0H 19.0H 4.3H 42.4H 33 97.0 97.010.0H 19.0H 19.7H 4.3H 42.4H 33 97.0 97.010.0H 19.0H 19.0H 19.	BITS HIGH!	-2.56	366.M	-926.H	339.H	33	63.6	0.26		-3.00	-3.00	3.85	00.0	100.H	100.H	1.90	5
-1.00H 27.1H 4.62H 5.60H 33 97.0 97.010.01.10H 19.7H 4.25H 4.48H 33 97.0 97.010.01.20H 212.H 14.3H 42.4H 33 97.0 97.010.01.20H 212.H 14.3H 42.4H 33 97.0 97.010.0200.U 21.H 86.4H 382.H 33 97.0 97.010.0200.U 21.H 86.4H 382.H 33 97.0 97.010.01.10H 9.40H 4.08H 3.52H 33 97.0 97.010.01.10H 9.40H 4.08H 3.52H 33 97.0 97.010.01.20F -1.45 -2.55 11.7 32 93.9 93.9 3.03 -10.0 -10.0 6.87 -5.85 -1.48 -2.55 11.2 32 93.9 93.9 3.03 -10.0 -10.0 6.87 -5.85 -1.48 -2.56 11.22 32 93.9 93.9 3.03 -10.0 -10.0 6.87 -5.95 -1.45 -2.67 11.05 32 93.9 93.9 3.03 -10.0 -10.0 6.88 -5.95 -1.45 -2.67 11.05 32 93.9 93.9 3.03 -10.0 -10.0 6.15 -5.95 -1.45 -2.67 11.9 32 93.9 93.9 3.03 -10.0 -10.0 6.15 -5.95 -1.45 -2.67 13.9 30 97.0 97.0 0.00 1.85 1.85 10.2 -5.95 -1.45 -2.67 13.9 30 97.0 97.0 0.00 1.85 1.85 10.2 -5.95 -1.45 -2.67 13.9 30 97.0 97.0 0.00 1.85 1.85 10.2 -5.95 -5.95 -5.97 33 97.0 97.0 0.00 1.85 1.85 10.2 -5.95 -5.95 -5.97 33 97.0 97.0 0.00 1.85 1.85 10.2 -5.95 -5.95 -5.97 41.4 45.5 60.6 0.00 -4.00 -4.00 17.9		-1.65H	78.2H	7.02H	14.2H	33	0.26	97.0		1	-10.0	-	00.0	10.0	10.0	705.	4
-1.10H 19.7H 4.25H 4.46H 33 97.0 97.010.01.20H 2.12.H 14.3H 38.2 H 34 100. 10010.01.20H 2.12.H 14.3H 382.H 33 97.0 97.010.01.20H 2.14 86.4H 382.H 33 97.0 97.010.01.20H 2.14 86.4H 382.H 33 97.0 97.010.01.20H 2.15 -2.53 1.17 32 97.0 97.010.01.10H 9.60H 4.08H 3.2 97.0 97.010.01.20H 14.3H 2.2.5 93.H 32 97.0 97.010.01.20H 2.15 -2.55 1.17 32 93.9 93.9 3.03 -10.0 10.0 6.07 -2.85 -1.48 -2.56 1.22 32 93.9 93.9 3.03 -10.0 10.0 6.08 -2.47 -1.45 -2.67 1.26 32 93.9 93.9 3.03 -10.0 10.0 6.08 -2.45 -1.45 -2.67 1.26 32 93.9 93.9 3.03 -10.0 10.0 6.08 -2.45 -1.45 -2.67 1.26 32 93.9 93.9 3.03 -10.0 10.0 6.15 -2.45 -1.45 -2.67 1.26 32 93.9 93.9 3.03 10.0 10.0 6.15 -2.45 -1.45 -2.67 1.26 32 93.9 93.9 3.03 10.0 10.0 6.15 -2.45 -1.45 -2.67 1.26 32 93.9 93.9 3.03 10.0 10.0 6.15 -2.45 -1.45 -2.67 1.26 32 93.9 93.9 3.03 10.0 10.0 6.15 -2.45 -1.45 -2.67 1.26 32 93.9 93.9 3.03 10.0 10.0 10.0 6.15 -2.45 -1.45 -2.67 1.26 32 93.9 93.9 3.03 10.0 10.0 10.0 6.15 -2.45 -1.45 -2.72 1.39 30 97.0 100. 0.00 1.85 1.85 10.2 -2.45 -2.45 -2.45 33 97.0 97.0 0.00 1.85 1.85 10.2 -2.45 -2.45 3.47 416.H 14 45.5 51.5 0.00 -4.00 -4.00 17.9		-1.00H	27.1H	4.62H	5.60H	33	97.0	97.0			-10.0		00.0	10.0	10.0	1.79K	5
-400.U 9.60H 3.85H 3.00H 33 100. 10010.01.20H 212.H 14.3H 42.H 33 97.9 97.010.0200.U 401.H 16.7H 69.0H 33 97.0 97.010.0200.U 401.H 16.7H 69.0H 33 97.0 97.010.01.10H 4.50H 4.50H 3.25 H 32 97.0 97.010.07.33 -1.55 -1.55 983.H 32 93.9 93.9 3.03 -10.0 -10.0 6.37 -7.39 -1.43 -2.45 983.H 32 93.9 93.9 3.03 -10.0 -10.0 6.37 -7.49 -1.32 -2.56 1.12 32 93.9 93.9 3.03 -10.0 -10.0 6.08 -6.47 -1.45 -2.61 1.05 32 93.9 93.9 3.03 -10.0 -10.0 6.08 -7.49 -1.42 -2.67 1.12 32 93.9 93.9 3.03 -10.0 -10.0 6.08 -7.49 -1.45 -2.72 1.39 30 87.9 87.9 9.09 -10.0 -10.0 5.23 -8.34 -1.45 -2.72 1.39 30 87.9 87.9 9.09 -10.0 1.85 1.85 10.2 -8.34 -1.45 -2.72 1.39 30 87.9 97.0 0.00 1.85 1.85 10.2 -1.95 2.00 1.99 9.77H 33 97.0 100. 0.00 1.85 1.85 10.2 -1.95 2.00 1.99 9.77H 34 95.5 51.5 0.00 -4.00 -4.00 17.9		-1.10H	19.7H	4.25M	4.48H	33	0.79	97.0			-10.0	-	00.0	10.0	10.0	2.23K	K
-1.20H 212.H 14.3H 42.4H 33 93.9 97.010.0 200.U 21.H 86.4H 382.K 33 97.0 97.010.0 200.U 21.H 86.4H 382.K 33 97.0 97.010.01.10H 9.40H 4.08H 3.52H 32 97.0 97.010.01.10H 2.45 -1.45 -2.45 11.2 32 93.9 93.9 3.03 -10.0 -10.0 6.08 -1.45 -1.45 -2.67 11.26 32 93.9 93.9 3.03 -10.0 -10.0 6.08 -1.45 -1.45 -2.67 11.9 32 93.9 93.9 3.03 -10.0 -10.0 6.15 -1.45 -1.45 -2.67 11.9 32 93.9 93.9 10.0 -10.0 6.15 -1.48 2.04 2.00 15.2H 33 97.0 100. 0.00 11.85 11.85 10.2 -1.95 2.00 15.2H 33 97.0 100. 0.00 11.85 11.85 10.2 -1.95 2.00 15.2H 33 97.0 97.0 0.00 11.85 11.85 10.2 -1.95 2.00 15.9 9.77H 33 97.0 97.0 0.00 11.85 11.85 11.5 -1.95 2.00 13.9 9.27H 33 97.0 97.0 0.00 11.85 11.85 11.5 -1.95 2.00 13.9 9.27H 33 97.0 97.0 0.00 11.85 11.85 11.5 -1.95 2.00 13.9 9.27H 33 97.0 97.0 0.00 11.85 11.85 11.5 -1.95 2.00 15.8H 34 97.0 97.0 0.00 11.85 11.85 11.5 -1.95 2.00 15.8H 34 97.0 97.0 0.00 11.85 11.85 11.5 -1.95 2.00 15.8H 34 97.0 97.0 0.00 11.85 11.85 11.5 -1.95 3.1H 4.55 51.5 0.00 -4.00 -4.00 17.9	•	-400.U	M09.4	3.85M	3.00H	33	100	100.			-10.0		00.0	10.0	10.0	3.33K	5
140	•	-1.20H	212.H	14.3M	42.4M	33	63.6	97.0			-10.0		00.0	10.0	10.0	235.	NA N
1,000 1,00		-200.0	2.14	86.48	382.K	33	0.26	97.0			-10.0	1	00.0	10.0	10.0	25.9	4
1, 104 9, 604 4, 684 3, 524 32 97, 0 97, 0 -1 104 9, 604 4, 684 3, 524 3, 29, 97, 0 97, 0 -1 104 9, 604 1, 17 1,		-200.U	401.H	16.7H	89.0H	33	0.26	97.0			-10.0	-	00.0	10.0	10.0	145.	\$
1.5	•	-1.10H	9.60M	4.08H	3.52H	32	97.0	97.0	!!		-10.0	!!	3.03	10.0	10.0	2.84K	5
1.52	•	-7.33	60.	2.53	1:17	32	43.4	75.7	5.03		-10.0	6.37			10.0	-	5
143		-2.67	200	200	F 55. F	25	12:1	75.7	200		-10.0	80.		-	10.01	-	5
155	~	-6.80	1.10	96.7	7:17	32	73.7	43.4	5.03		0.01-	19.9		1	10.0	1	5
145		1	70.1	200	27.1	3 6	07.0	02.0	200		200	200			0.01		5
14) -7.45 -1.45 -2.72 1.39 32 93.9 93.9 3.03 -10.0 -10.0 6.15 1.45 -2.72 1.39 30 87.9 87.9 93.03 -10.0 -10.0 6.15 1.45 -2.72 1.39 30 87.9 87.9 9.09 -10.0 -10.0 5.23 1.98 2.04 2.00 15.2H 33 97.0 100. 0.00 1.85 1.85 10.2 1.95 2.00 1.99 9.77H 33 97.0 97.0 0.00 1.85 1.85 10.2 1.95 2.00 1.99 9.77H 33 97.0 97.0 0.00 1.85 1.85 11.5 1.95 2.00 1.99 9.77H 34 97.0 97.0 0.00 1.85 1.85 11.5 11.5 1.95 2.00 1.99 9.77H 45.5 0.00 -1.00 -4.00 -4.00 1.99 1.97 9.70 0.00 1.85 1.85 11.5 1.95 1.95 1.95 1.95 1.95 1.95 1.9		-7.05	1.70	25.47	1.24	32	03.0	02.0	20.5		0.01						5 5
198 2.04 2.00 15.2H 33 97.0 100. 0.00 1.85 1.85 10.2 1.98 2.04 2.00 15.2H 33 97.0 100. 0.00 1.85 1.85 10.2 1.95 2.00 1.99 9.77H 33 97.0 0.00 1.85 1.85 10.2 1.95 2.00 1.99 9.77H 33 97.0 97.0 0.00 1.85 1.85 14.5 1.95 2.00 1.99 9.77H 14 45.5 51.5 0.00 -4.00 -4.00 26.1 IFGC(I+) 3.11 3.93 3.62 292.H 14 45.5 51.5 0.00 -4.00 -4.00 26.1 IFGC(I-) 2.82 3.98 3.47 416.H 14 45.5 60.6 0.00 -4.00 -4.00 17.9		-7.45	CA.	-2.40	1.10	2	01.0	03.0	7.07		-10.0	4.15		-		-	5 5
1.98 2.04 2.00 15.2M 33 97.0 100. 0.00 1.85 1.85 10.2 1.98 2.04 2.00 15.2M 33 97.0 100. 0.00 1.85 1.85 10.2 4) 1.95 2.00 1.99 9.77M 33 97.0 0.00 1.85 1.85 10.2 1.95 2.00 1.99 9.77M 34 97.0 0.00 1.85 1.85 14.5 1.95 2.00 1.99 9.77M 14 45.5 51.5 0.00 -4.00 -4.00 26.1 1.95 2.00 3.98 3.47 416.M 14 45.5 60.6 0.00 -4.00 -4.00 17.9		-8.34	1.45	-2.72	1.39	30	87.9	87.9	60.6		-10.0	5.23		1	10.0	-	5 9
1.98 2.04 2.00 15.2H 33 97.0 100. 0.00 1.85 1.85 10.2 4) 1.95 2.00 1.99 9.77H 33 97.0 97.0 0.00 1.85 1.85 14.5 1.95 2.00 1.99 9.27H 34 97.0 97.0 0.00 1.85 1.85 15.3 1.95 2.00 1.99 9.27H 14 45.5 51.5 0.00 -4.00 -4.00 26.1 IFSC(I+) 3.11 3.93 3.62 292.H 14 45.5 51.5 0.00 -4.00 -4.00 26.1 IFSC(I-) 2.82 3.98 3.47 416.H 14 45.5 60.6 0.00 -4.00 -4.00 17.9		1.98	2.04	2.00	15.2H	33	97.0	100.	00.0		1.85	10.2	00.0	2.08	2.08	4.97	¥
+) 1.95 2.00 1.99 9.77H 33 97.0 97.0 0.00 1.85 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.		1.98	2.04	2.00	15.2H	33	97.0	100.	00.0		1.85	10.2	00.0	2.08	2.08	4.94	W.
IFSC(I+) 3:11 3:93 3:62 292:H 14 45:5 51:5 0:00 -4:00 -4:00 26:1 IFSC(I-) 2:82 3:98 3:47 416:H 14 45:5 60:6 0:00 -4:00 -4:00 17:9		1.95	2.00	1.99	9.77H	33	0.79	97.0	00.0		1.85	14.5	00.0	2.08	2.08	6.05	£
IFSC(I+) 3:11 3:93 3:62 292:H 14 45:5 51:5 0:00 -4:00 -4:00 26:1 IFSC(I-) 2:82 3:98 3:47 416:H 14 45:5 60:6 0:00 -4:00 -4:00 17:9		1.95	2.00	1.99	9.27H	33	97.0	97.0	00.0		1.85	15.3	00.0	2.08	2.08	9.53	A
IFSC(I-) 2.82 3.78 3.47 416.8 14 45.5 60.6 0.00 -4.00 -4.00 17.9	IFSC(I+)	3.11	3.93	3.62	292.H	14	45.5	51.5	00.0		-4.00	26.1	57.6	4.00	4.00	1.30	5
	IFSC(I-)	2.82	3.98	3.47	416.M	1.4	45.5	9.09	00.0		-4.00	17.9	27.6	4.00	4.00	1.28	S

Table 6-6. Statistical data for purchased sample (tight reject limits).

* EXCLUDES POPULATION OUTSIDE OF LOW REJ AND HIGH REJ

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

PARAMETER	LOW	HIGH	MEAN	SIGNA	SAMPLE	SIGMA	SIGNA SIGNA	Z FAIL	LIMIT	2. 2. 2. 3.	LO-FM	Z FAIL HIGH	HIGH	REJ	HI-FR	UNITS
			*	*	*						*				*	
	1 00	MT . YO	MO. CA-	73.68	31	93.9	100	4.04	-190.H	-190.H	1.74	0.00	190.H		3.43	
EPPOPULATION (T-)	-186.M	85. 4H	-69.9M	73.4M	31	6.06	100.	90.9	-190.H	-190.H	1.64	00.0	190.M		3.54	
ERROR(BIT#2)(I+)	-111.H	87.6H	-17.7H	53.4M	33	100.	100.		-190.H	-190.M	3.23	00.0	190.H		3.89	*
FRROR(RIT#2)(I-)	-105.H	95.1M	-15.0H	51.4M	33	97.0	100.		-190.H	-190.H	3.40	00.0	190.H		3.99	*
ERROR(BIT#3)(I+)	-112.H	82.3M	582.0	44.5M	23	97.0	100.		-190.H	-190.H	4.28	00.0	190.H		4.26	*
ERROR(B1163)(I-)	-75.3H	90.2H	5.88M	40.0M	33	93.9	100.		-190.H	-190.K	4.89	0.00	190.H		4.60	*
ERROR(BIT#4)(I+)	-34.0H	67.4m	12.30	24.6m	100	27.0	100.		-190.H	-170.1	47.8	000	170.1		7.55	*:
ERROR(BIT#4)(I-)	-33.7H	M9.99	11.24	13.8m	55	01.0	.001		H.041-	-170.1	4.0	000	140.0		1.33	×:
ERROR(B1145)(1+)	-30.8m		200.4	10.01	2 5	13.7	100.	000		1100		200	1100	No.	00.4	4 :
ERROR(B1T#5)(1-)	-19.58	71.9H	10.45	17.04	33	07.0	0.74	800	1001	-190.H	7.07	000	100.0	100.4	7.44	**
ERROR(B1146)(1+)	-20.0G		2 22 22	24.40	25	07.0		3		H 001	7 22	200	100 ×		1.00	4 :
ERROR (BIT#6) (I-)	-300.ZH		14.18	12.14	3 2	07.0		30		H 1001-	17.0	200	100		1000	
EKKUK (BITE/)(1+)	1000	47 FM	14 78	×0.11	32	0 20		200	100	1 00 H	17.5	000	X 001			
EKKUK BILE/J(1-)	HC .00-		W. 4. A	17.0m	32	97.0	100	0.00		-190.H	15.1	00.0	190.H		14.2	
EDDID (BITAR) (1-)	-90.0H		7.118	21.6H	33	93.9	97.0	00.0		-190.M	9.11	00.0	190.M		8.46	. ~
SIN WITCH	42.1H		101.H	34.5M	31	6.06	97.0			00.0	-	90.9	190.M		2.58	7
SUM NE+(I-)	40.1H		M9.66	32.5M	30	6.06	93.9			00.0		60.6	190.H		2.78	. *
	-185.H	9	-140.H	30.8H	29	87.9	63.9			-190.M	1.62					*
SUM NL-(I-)	-188.M		-138.H	28.1M	27	84.8	6.06			-190.H	1.86					2
	-49.8H	-22.8M	-43.0H	4.50H	31	93.9	97.0	90.9	-50.0H	-50.0H	1.55	0.00	50.0H		20.7	×
DELTA SUM NL(I-)	-46.4M	•	-43.8H	1.07	200	01.0	100.			FO.00-	3.01	00.00	E0.00		4.00	×:
MC+CI+)	83.8H		140.1	30.8H	27	200	43.4			00.0		17.1	170.1		1.62	2
NL+(I-)	84.8H		138.4	Z8.1H	77	84.8	6.06	-		00.00	1	18.2	170.1		1.86	~
NL-(1+)	125.8		1001	24.8m	2:	/ . 00	4.78			00.0	1	04.0	170.0		1.21	*
	127.4		163.8	17.7	9 5	93.6	75.8		-	000	1	0110	190.0		1.37	× :
	50.4		20.01	2000	7 .	0.70	100.			200		3.03	10.0		1.98	5
	3.47		7.00	7.17	1 2		.001			300		000	0.01		2.00	5
	8/.0		100	100	25	100	.001			33		200	10.01		200	45
			200		3 2	0.7.0	100			200		3	200		04.0	5 5
DELTA 1(3)(1+)	10.0		20.0	10.1	22	000	1001			000	-	000	14.0		200	5 5
DELTA 1(3)(1-)	4.70		8.26	550.K	33	93.0	100	-		00.0		00.0	16.0		14.1	110
	6.52		8.35	762.H	33	93.9	97.0			00.0		00.0	16.0		10.0	2
200	7.17		8.09	347.H	33	63.6	100.	-	-	00.0		00.0	16.0		22,8	N
	5.32		8.13	580.M	33	97.0	97.0			00.0		00.0	16.0		13.6	NA
DELTA I(6)(I+)	06.9		8.24	752.M	33	97.0	100.			00.0		00.0	16.0		10.3	N
	6.26		8.25	834.H	33	63.6	100.			00.0	-	0.00	16.0		9.30	NA N
	7.19		7.63	344.H	33	63.6	100.		-	00.0		00.0	16.0		24.3	NA
DELTA 1(7)(I-)	5.85		7.63	431.M	33	63.6	97.0			0.00	-	0.00	16.0		17.4	d d
	7.12		7.69	259.M	33	63.6	100.			00.0		00.0	16.0		32.0	5
DELTA 1(8)(1-)	6.75		7.68	433.K	33	63.6	0.26			0.00	!	00.0	16.0		19.5	e o
							1				-					***

HALF IN HE TELL GENERAL PRODUCT OF A CONTROL OF THE CONTROL OF THE

* EXCLUDES POPULATION OUTSIDE OF LOW REJ AND HIGH REJ

Table 6-6. Statistical data for purchased sample (tight reject limits). (cont'd.)

SIGNA LOW LIMIT REJ # HIGH LIMIT REJ # H	PARAMETER	107	HIGH	MEAN	SIGMA	SAMPLE	2 IN 2	5 X IN 3	Z FAIL	TOM	MO7	LO-FH	X FAIL	HIGH	HIGH	HI-FH	UNITS
Name Column Col		NAL DE	VALUE			SIZE	SIGMA	SIGMA	rom		REJ	•	HIGH		REJ		
### 146							-			-	+	.	-	-	-		-
	BITS			2.45	525.M	33	100.	100.	00.0	400.M	400.H	3.91	00.0		3.80	2.57	A.A.
### 17.28 -5.51 -6.31 522.4 33 100. 100. 0.00 -7.80 -7.80 2.86 0.00 -800.4 11.54 10.2 2.00 5.34 135 57.5 100. 0.00 1.94 1.94 10.2 0.00 2.04 11.54 10.2 2.00 5.34 13. 57.5 100. 0.00 1.94 1.94 10.2 0.00 2.04 11.54 10.2 2.00 5.34 13. 57.5 100. 0.00 1.94 1.94 10.2 0.00 2.04 11.54 10.2 2.00 5.34 13. 57.5 100. 0.00 1.94 1.94 10.2 0.00 2.04 11.54 10.2 2.00 5.34 13. 57.5 100. 0.00 2.00 2.00 2.00 1.94 1.94 10.2 2.00 5.34 13. 57.5 100. 0.00 2.00 2.00 2.00 2.00 2.00 2.00	RITS			2.46	521.H	33	100	100.		_	4004	3.96	00.0		3.80		E.
11.55 LOW 1.7.28 -5.53 -5.54 -5.55 -5.54 -5.55 -5.54 -5.55				-6.31	522.H	33	100	100.			-7.80	2.86	00.0		-800.M	20	HA HA
1.98 2.01 2.00 5.40H 33 93.9 100. 0.00 1.94 1.94 10.2 0.00 2.04 1.98 2.01 2.00 5.40H 39.9H 33 93.9 100. 0.00 1.94 1.94 10.2 0.00 2.04 1.158 2.01 2.00 5.40H 39.9H 33 90.9 100. 0.00 1.94 1.94 10.2 0.00 2.04 1.15.				-6.29	504.H	33	1001	100.			-7.80	5.99	00.0		-800.H		MA
7.00H 1194 2.01 2.00 5.39H 33 93.9 100. 0.00 1.94 1.94 1.94 10.2 0.00 2.00 7.00H 1194 2.01 2.00 5.39H 33 93.9 100. 0.00 2.00 2.00 50.0 50.0 50.0 50.0 5	-			2.00	5.40M	33	63.6	100.	00.0		1.94	10.2	00.0		2.04		MA
75.004 119.1 22.41 24.04 41.37 33 90.9 100. 0.00 -2.00 50.7 0.00 2.00 2.00 2.00 2.00 2.00 49.0 0.00 2.00 49.0 0.00 2.00 49.0 0.00 2.00 49.0 0.00 2.00 49.0 0.00 2.00 49.0 0.00 2.00 49.0 0.00 2.00 49.0 0.00 4	IFS(I-)			2.00	5.39H	33	63.6	100.			1.94	10.2	00.0	2.04	2.04	8.33	H.A
75.0H 45.2H -16.4H 29.4H 33 93.9 100, 0.00 -2.00 -2.00 135. 0.00 2.00 2.00 2.00 2.00 2.00 2.00 2.	175(1+)			24.0H	39.9H	33	6.06	100.		-2.00	-2.00	20.7	00.0	2.00	2.00	49.5	UA
75.04 45.21 + 16.44 29.44 33 97.0 100. 0.00 -4.00 135. 0.00 4.00 175. 0.00 4.00 175. 0.00 4.00 175. 0.00 4.00 175. 0.00 4.00 175. 0.00 4.00 175. 0.00 4.00 175. 0.00 4.00 175. 0	178(1-)			24.2M	41.3M	33	93.9	100.		-2.00	-2.00	49.0	00.0	2.00	2.00	47.8	en en
70.1H 40.0H 89.23H 23.4H 33 97.9 100. 0.00 0 4.00 271. 0.00 8.00 70.1H 40.0H 89.23H 23.4H 33 97.9 100. 0.00 8.00 271. 0.00 8.00 70.1H 40.0H 89.23H 23.4H 33 97.0 97.0 0.00 8.00 8.00 271. 0.00 8.00 11.36 80.1H 225.H 130.H 33 97.0 97.0 0.00 8.00 8.00 8.00 11.36 80.1H 225.H 130.H 33 97.0 97.0 0.00 8.00 8.00 8.00 11.36 80.1H 225.H 23.4H 33 97.0 97.0 0.00 8.00 8.00 8.00 11.36 80.1H 225.H 23.4H 33 97.0 97.0 0.00 8.00 8.00 8.00 2.52 2.94 2.89 98.3H 23.8 13.9 97.0 97.0 0.00 8.00 8.00 9.00 2.52 2.94 2.89 98.3H 23.8 13.9 97.0 97.0 0.00 8.00 8.00 9.00 2.52 2.94 2.89 98.3H 23.8 13.9 97.0 97.0 0.00 8.00 8.00 9.00 2.52 2.94 2.89 98.3H 23.8 12.8 81.8 15.2 2.10 2.10 6.11 0.00 2.00 2.52 2.94 2.89 98.3H 23.8 13.9 100. 0.00 8.00 8.00 9.00 9.00 9.00 9.00 9	PSSIFS+1(I+)			-16.4M	29.4M	33	97.0	100.		-4.00	-4.00	135.	00.0	4.00	4.00	137.	NA
75.04 45.34 16.44 29.44 33 97.0 100. 0.00 -8.00 271. 0.00 8.00 -90.14 40.04 -8.934 13.44 33 97.0 97.0 0.00 8.00 18.00 342. 0.00 8.00 -1.05 80.14 -275.4 13.44 13.9 97.0 97.0 0.00 8.00 18.00 18.00 -1.05 80.14 -275.4 13.4 13.9 97.0 97.0 0.00 8.00 18.00 18.00 -1.05 80.14 -275.4 13.4 13.4 13.9 97.0 97.0 0.00 8.00 18.00 18.00 -1.05 80.14 -275.4 13.4 13.4 13.9 97.0 97.0 0.00 8.00 18.00 18.00 -2.55 2.94 2.90 130.4 29.8 91.8 12.1 2.10 2.10 2.10 0.00 2.00 -2.55 2.94 2.90 130.4 29.8 13.8 12.1 2.10 2.10 2.10 0.10 0.00 -2.45 42.34 1.01 545.4 33 97.9 90.0 0.00 -3.00 3.65 0.00 100.4 10.0 10.0 10.0 10.0 10.0 10.	PSSIFS+1(I-)			-8.93M	23.4M	33	93.9	100.		-4.00	-4.00	171.	00.0	4.00	4.00	171.	NA
-70.1H 40.0H -8.974 23.4H 33 97.9 97.0 0.00 -8.00 -8.00 48.7 0.00 8.00 -1.05 8.00 -1.05 8.00 48.7 0.00 8.00 -1.05 8.00 14.2 0.00 8.00 -1.05 8.00 14.2 0.00 8.00 -1.05 8.00 14.2 0.00 8.00 -1.05 8.00 14.2 0.00 8.00 -1.05 8.00 14.2 0.00 8.00 11.05 4.01 11.05 4.1 225.4H 236.4H 33 97.9 97.9 0.00 -2.00 2.00 2.00 2.00 2.00 2.25 2.94 2.94 2.99 13.0 4.0 4.0 11.2 12.1 2.10 2.10 8.0 10.0 10.0 10.0 10.0 10.0 10.0 10	PSSIFS+2(I+)			-16.4M	29.4M	33	97.0	100.		-8.00	-8.00	271.	00.0	8.00	8.00	272.	NA N
-950.H 14.94 -194.H 160.H 33 97.0 97.0 0.00 -8.00 -8.00 48.7 0.00 8.00 -8.00 -8.00 48.7 0.00 8.00 -1.35 80.1H -215.H 126.H 33 97.0 97.0 0.00 -8.00 -8.00 7.31 0.00 2.00 2.00 2.00 2.52 2.94 2.89 89.3 39.9 90.9 0.00 2.00 2.00 2.00 2.00 2.00 2	PSSIFS+2(1-)			-8.93M	23.4M	33	93.9	100.		-8.00	-8.00	342.	00.0	8.00	8.00	342.	NA UA
-1.05 80.1H -215.H 176.H 33 97.0 97.0 0.00 -8.00 -4.00 8.00 8.00 1.14.2 0.00 8.00 1.14.2 1.30.H -223.H 234.H 336.H 31 97.9 93.9 0.00 -2.00 -2.00 5.73 0.00 2.00 2.00 2.25 2.94 2.89 98.3H 31 91.9 91.9 0.00 -2.00 -2.00 5.73 0.00 2.00 2.00 2.25 2.94 2.89 98.3H 31 91.9 91.9 0.00 -2.00 -2.00 5.73 0.00 2.00 2.00 2.25 2.94 2.89 130.H 32.H 15.2 2.10 2.10 8.11 0.00 5.80 0.00 10.0 10.0 1.2.9 4.25.H 1.01 545.H 33 93.9 100. 0.00 -3.00 -3.00 3.00 3.00 10.0 10.0 1.2.9 4.25.H 1.01 545.H 33 100. 100. 0.00 -3.00 3.00 3.00 3.00 10.0 10.0 1.30.H 3.25H 3.94H 33 100. 100. 0.00 -3.00 3.00 3.00 10.0 10.0 1.30.H 3.25H 3.94H 33 100. 100. 0.00 -3.00 10.0 0.00 10.0 10.0 1.30.H 3.25H 3.94H 3.2 100. 100. 0.00 10.0 0.00 10.0 10.0 10	PSSIFS-1(I+)			-194.H	160.M	33	97.0	97.0		-8.00	-8.00	48.7	00.0	8.00	8.00	51.2	NA UA
TS LOW) 2.25 2.94 2.89 98.3H 28 73.9 90.9 6.06 -2.00 -2.00 7.31 0.00 2.00 2.25 2.94 2.89 98.3H 28 73.9 91.9 91.0 0.00 -2.00 7.00 2.00 2.25 2.94 2.89 98.3H 28 73.9 91.9 0.00 -2.00 -2.00 7.00 0.00 2.00 2.25 2.94 2.89 98.3H 28 73.9 91.0 0.00 -3.00 -3.00 7.00 9.00 2.00 2.00 2.25 2.94 2.89 98.3H 28 73.9 91.0 0.00 -3.00 -3.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	PGGTFG-1(T-)			-215.K	176.H	33	97.0	97.0		-8.00	-8.00	44.2	00.0	8.00	8.00	46.6	NA N
TS LOW) 2.25 2.94 2.89 98.3H 293.9 93.9 0.00 -2.00 -2.00 5.72 0.00 2.00 2.00 2.25 2.94 2.99 98.3H 298 18.8 15.2 2.10 2.10 6.11 0.00 5.80 1.00 H 2.25 2.94 2.99 18.3H 298 18.8 15.1 2.10 2.10 6.11 0.00 5.80 1.00 H 2.25 2.94 2.99 18.3H 298 19.0 100.0 -3.00 -3.00 3.65 0.00 100.H 2.49 -426.H -1.01 545.H 33 93.9 100. 0.00 -3.00 -3.00 3.65 0.00 100.H 1.65H 10.5H 3.67H 4.18H 33 100. 1003.00 -3.00 3.00 3.65 0.00 100.H 1.65H 10.5H 3.04H 4.01H 33 100. 1003.00 -3.00 3.00 3.00 10.0 11.0 H 3.04H 4.01H 3.2 H 3.0 H	PGGTEG-2(14)			-276.H	236.M	31	87.9	6.06		-2.00	-2.00	7.31	00.0	2.00	2.00	59.6	CA
2.55 2.94 2.89 98.3H 28 78.8 81.8 15.2 2.10 2.10 8.01 0.00 5.80 2.25 2.94 2.89 98.3H 28 78.8 81.8 15.1 2.10 2.10 8.01 0.00 5.80 2.25 2.94 2.89 98.3H 28 78.8 84.8 12.1 2.10 2.10 6.11 0.00 5.80 1.65H 10.5H 3.69H 4.18H 33 100. 0.00 -3.00 -3.00 3.65 0.00 100.H 1.65H 10.5H 3.69H 4.01H 33 97.0 100	Dec166-2(1-)			-323.H	293.M	33	93.9	93.9		-2.00	-2.00	5.72	00.0	2.00	2.00	7.92	C. P.
BITS LDW)	15601(14)			2.80	98. 3M	280	78.8	81.8		2.10	2.10	8.01	0.00	5.80	5.80	29.4	MA
BITS LOW) -2.49 -422.H -1.01 545.H 33 93.9 100. 0.00 -3.00 3.65 0.00 100.H 1.05 H 1.00	TESPI(T-)			2.90	130.H	25	84.8	84.8		2.10	2.10	6.11	00.0	5.80	5.80	22.3	MA
BITS HIGH -2.49 -423.H -1.01	PITC			-1.01	545.K	33	93.9	100.		-3.00	-3.00	3.65	00.0	100.H	100.H	2.05	S S
1.65H 10.5H 3.69H 4.18H 33 100. 100.				-1.01	545.M	33	93.9	100.		-3.00	-3.00	3.64	00.0	100.M	100.H	2.04	UA
-1.804 9.654 3.324 3.944 33 100. 10010.0 0.00 10.0 -1.754 14.04 3.404 4.014 33 100. 100 10.0 0.00 10.0 -1.304 9.304 3.414 3.214 33 100. 100 10.0 0.00 10.0 -1.204 9.354 3.444 3.284 33 100. 100 10.0 0.00 10.0 -1.004 9.354 3.444 3.284 33 100. 100 10.0 0.00 10.0 -1.104 63.74 5.084 11.14 33 97.0 97.0 10.0 0.00 10.0 -1.104 63.74 5.084 11.14 33 97.0 97.0 0.00 10.0 0.00 10.0 -1.105 -2.83 11.05 33 97.0 97.0 0.00 -10.0 6.81 0.00 10.0 -2.42 -1.73 -2.95 11.2 33 97.0 97.0 0.00 -10.0 6.81 0.00 10.0 -2.44 -1.56 -2.95 1.30 33 97.0 97.0 0.00 -10.0 6.03 0.00 10.0 -7.44 -1.56 -2.95 1.30 33 97.0 97.0 0.00 -10.0 6.03 0.00 10.0 -7.44 -1.56 -2.95 1.30 33 97.0 97.0 0.00 10.0 5.80 0.00 10.0 10.0 10.0 10.0 10.0 10.0				3.69H	4.18M	33	100	100.		-	-10.0		00.0	10.0	10.0	2.39K	NA UA
11.75H 14.0H 3.40H 4.01H 33 97.0 100 0.00 10.0 10.	TIMERITAZI			3.32H	3.94M	33	100	100.			-10.0		00.0	10.0	10.0	2.53K	UA
-1.30H 9.30H 3.43H 3.33H 33 100. 10010.0 0.00 10.0 -1.20H 9.55H 3.41H 3.21H 33 100. 10010.0 0.00 10.0 -1.20H 9.55H 3.41H 3.21H 33 100. 10010.0 0.00 10.0 -1.20H 9.55H 3.44H 3.21H 33 100. 10010.0 0.00 10.0 -1.30H 9.30K 3.25H 3.44H 33 100. 10010.0 0.00 10.0 -1.30H 9.30K 3.25H 3.44H 33 100. 10010.0 0.00 10.0 -1.30H 9.30K 3.25H 3.44H 33 100. 10010.0 0.00 10.0 -1.30H 9.30K 3.25H 3.44H 33 100. 10010.0 0.00 10.0 -1.30H 9.30K 3.25H 1.20H 33 97.0 97.0 0.00 -10.0 6.81 0.00 10.0 -1.30H 9.30K 9.30H 1.31 33 97.0 97.0 0.00 -10.0 6.21 0.00 -1.30H 9.30K 9.30H 9.33 97.0 97.0 0.00 -10.0 6.21 0.00 -1.30H 9.30K 9.30K 9.30H 9.3 97.0 97.0 0.00 -10.0 10.0 5.80 0.00 -1.30H 9.30K 9.30K 9.3 97.0 97.0 0.00 -10.0 10.0 5.80 0.00 -1.30H 9.30K 9.30K 9.3 97.0 97.0 0.00 -10.0 10.0 5.80 0.00 2.08 -1.30H 9.30K 9.30K 9.3 97.0 97.0 0.00 1.85 1.85 1.49 0.00 2.08 -1.30H 9.30K 9.30K 9.3 97.0 97.0 0.00 1.85 1.85 1.85 2.88 0.00 2.08 -1.30H 9.30K 9.30K 9.3 97.0 97.0 0.00 1.85 1.85 1.85 3.83 3.93 4.00 -1.73H 9.32 2.55 468.H 23 69.7 69.7 0.00 -4.00 1.50 1.50 30.3 4.00	TIH(BIT63)			3.40H	4.01K	33	97.0	100.		-	-10.0	-	00.0	10.0	10.0	2.49K	NA N
-450.U 9.50H 3.21H 3.3 100. 10010.0 0.00 10.0 -1.00H 9.35H 3.44H 3.26H 33 100. 10010.0 0.00 10.0 -1.00H 9.35H 3.44H 3.26H 33 100. 10010.0 0.00 10.0 -1.10H 63.7H 5.08H 11.1H 33 97.0 97.010.0 0.00 10.0 -1.10H 63.7H 5.08H 11.1H 33 97.0 97.010.0 0.00 10.0 -1.10H 63.7H 5.08H 11.1H 33 97.0 97.010.0 0.00 10.0 -2.42 -1.73 -2.85 1.05 33 97.0 97.0 0.00 -10.0 6.81 0.00 -2.45 -1.71 -2.96 1.17 33 97.0 97.0 0.00 -10.0 6.81 0.00 -2.44 -1.56 -2.93 1.13 33 97.0 97.0 0.00 -10.0 6.21 0.00 -7.44 -1.56 -2.95 1.30 33 97.0 97.0 0.00 -10.0 5.80 0.00 -7.44 -1.56 -2.95 1.30 33 97.0 97.0 0.00 -10.0 5.80 0.00 -7.44 -1.56 -2.95 1.30 33 97.0 97.0 0.00 -10.0 5.80 0.00 -7.44 -1.69 -2.02 1.20 33 97.0 97.0 0.00 -10.0 10.0 5.80 0.00 -7.44 -1.69 -2.02 1.20 33 97.0 97.0 0.00 1.85 1.85 1.49 0.00 2.08 -8.18 -1.49 -2.02 2.00 10.2H 33 93.9 100. 0.00 1.85 1.85 1.49 0.00 2.08 -9.18 -2.19 -2.25 4.88.H 23 49.7 69.7 0.00 -4.00 1.53 30.3 4.00 -4.00 -4.00 -4.00 -4.00 1.99 5.36H 33 93.9 100. 0.00 1.85 1.85 1.85 30.3 4.00 -4.00 -4.00 -4.00 -4.00 1.99 5.36H 33 93.9 100. 0.00 1.85 1.85 3.85 30.3 4.00 -4.00 -4.00 -4.00 -4.00 1.99 5.36H 33 93.9 100. 0.00 1.85 1.85 3.85 30.3 4.00 -4.00 -4.00 -4.00 -4.00 1.99 5.36H 33 93.9 100. 0.00 1.85 1.85 3.85 30.3 4.00 -4.00 -4.00 -4.00 -4.00 -4.00 1.90 30.3 4.00	IIH(BIT64)			3.43H	3.33H	33	100.	100.	1		-10.0		00.0	10.0	10.0	3.00K	na na
11.20H 9.35H 3.44H 3.26H 33 100. 10010.0 0.00 10.0 11.00H 9.35H 3.25H 3.44H 33 100. 10010.0 0.00 10.0 11.10H 9.35H 3.25H 3.44H 33 100. 10010.0 0.00 10.0 11.10H 9.35H 3.25H 3.44H 33 100. 10010.0 0.00 10.0 11.10H 9.35H 3.25H 3.44H 33 97.0 97.0 0.00 -10.0 6.03 12.13 -1.75 -2.95 1.20 33 97.0 97.0 0.00 -10.0 6.03 12.15 -2.52 1.24 33 97.0 97.0 0.00 -10.0 6.03 12.16 -2.95 1.30 33 97.0 97.0 0.00 -10.0 6.03 12.17 -2.96 1.30 33 97.0 97.0 0.00 -10.0 6.03 12.18 1.65 -2.95 1.30 33 97.0 97.0 0.00 -10.0 6.03 12.18 2.02 2.00 10.2H 33 97.0 97.0 0.00 -10.0 6.00 12.18 2.02 2.00 10.2H 33 97.0 97.0 0.00 1.85 1.85 1.49 0.00 2.08 12.18 2.02 2.00 10.2H 33 97.0 97.0 0.00 1.85 1.85 1.49 0.00 2.08 12.18 2.18 2.18 2.18 2.18 2.18 2.18 2.18	IIH(BIT#5)		9.50M	3.41M	3.21M	33	100	100.			-10.0		0.00	10.0	10.0	3.11K	NA NA
-1.004 9.30k 3.25H 3.44H 33 100. 10010.0 0.00 10.0 -1.104 63.7H 5.08H 11.1H 33 97.0 97.0 10.0 0.00 10.0 -1.104 63.7H 5.08H 11.1H 33 97.0 97.0 10.0 0.00 10.0 -5.97 -1.68 -2.83 1.05 33 97.0 97.0 0.00 -10.0 6.81 0.00 -6.62 -1.71 -2.96 1.17 33 97.0 97.0 0.00 -10.0 6.81 0.00 -6.39 -1.72 -2.98 1.13 33 97.0 97.0 0.00 -10.0 6.03 0.00 -7.64 -1.56 -2.95 1.30 33 97.0 97.0 0.00 -10.0 6.21 0.00 -7.64 -1.56 -2.95 1.30 33 97.0 97.0 0.00 -10.0 6.21 0.00 -7.64 -1.65 -2.95 1.30 33 97.0 97.0 0.00 -10.0 6.21 0.00 -7.64 -1.65 -2.95 1.30 33 97.0 97.0 0.00 -10.0 6.21 0.00 -7.64 -1.65 -2.95 1.30 33 97.0 97.0 0.00 -10.0 6.21 0.00 -7.64 -1.65 -2.95 1.30 33 97.0 97.0 0.00 -10.0 6.21 0.00 -7.64 -1.65 -2.95 1.30 33 97.0 97.0 0.00 -10.0 6.20 5.80 -7.64 -1.65 -2.95 1.30 33 97.0 97.0 0.00 -10.0 6.20 5.80 -7.64 -1.65 -2.95 1.30 33 97.0 97.0 0.00 -10.0 1.00 5.80 -7.64 -1.65 -2.95 1.30 33 97.0 97.0 0.00 -10.0 1.00 5.80 -7.64 -1.65 -2.95 1.30 33 97.0 97.0 0.00 -10.0 1.00 5.80 -7.64 -1.65 -2.95 1.30 33 97.0 97.0 0.00 -10.0 1.00 5.80 -7.64 -1.65 -2.95 1.30 33 97.0 97.0 0.00 -10.0 1.00 5.80 -7.64 -1.65 -2.95 1.30 33 97.0 97.0 0.00 1.85 1.85 1.85 1.85 -7.64 -1.65 -2.95 1.85 1.85 1.85 1.85 -7.64 -1.75 -7.84 2.86 4.88 2.86 2.80 0.00 2.08 -7.64 -1.75 -7.84 2.86 4.88 2.86 2.80 0.00 0.00 1.85 1.85 -7.64 -7.64 -7.60 -7.00 -7.00 -7.00 -7.00 1.80 0.00 2.08 -7.64 -7.64 -7.60 -7.00 -7.00 -7.00 -7.00 -7.00 1.50 0.00 2.08 -7.64 -7.64 -7.64 -7.66 -7.66 -7.00 -7.00 -7.00 -7.00 0.00 1.80 0.00 2.08 -7.64 -7.64 -7.64 -7.66 -7.66 -7.00 0.00 0.00 1.85 0.00 2.08 -7.64 -7.64 -7.66 -7.66 -7.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	IIH(BIT&6)		9.35M	3.44H	3.26M	33	100.	100.			-10.0		00.0	10.0	10.0	3.06K	en en
1) -1.10# 63.7# 5.08# 11.1# 33 97.0 97.010.0 0.00 10.0 10.0 0.00 10.0 10.	IIM(BIT#7)		9.30H	3.25M	3.44H	33	100	100.			-10.0		00.0	10.0	10.0	2.91K	NA NA
-7.13 -1.75 -2.95 1.20 33 97.0 97.0 -10.0 -10.0 5.886.62 -1.71 -2.96 1.17 33 97.0 10010.0 -10.0 5.886.62 -1.72 -2.96 1.17 33 97.0 10010.0 -10.0 6.036.63 -1.72 -2.96 1.17 33 97.0 97.0 0.00 -10.0 6.037.64 -1.56 -2.95 1.20 33 97.0 97.0 0.00 -10.0 5.727.64 -1.56 -2.95 1.20 33 97.0 97.0 0.00 -10.0 5.727.64 -1.62 -3.02 1.20 33 97.0 97.0 0.00 -10.0 5.417.64 -1.62 -3.02 1.20 33 97.0 97.0 0.00 -10.0 5.417.64 -1.65 -3.02 1.20 33 97.0 97.0 0.00 -10.0 5.417.64 -1.65 -3.02 1.20 33 97.0 97.0 0.00 -10.0 5.417.64 -1.65 -3.02 1.20 33 97.0 97.0 0.00 -10.0 5.417.64 -1.65 -3.02 1.20 33 97.0 97.0 0.00 -10.0 5.417.64 -1.65 -3.02 1.20 33 97.0 97.0 0.00 -10.0 5.40 1.40 0.00 2.08	IIH(BIT#8)		63.7H	5.08M	11.18	33	97.0	97.0		-	-10.0		0.00	10.0	10.0	903.	es es
-5.97 -1.68 -2.83 1.05 33 97.0 100. 0.00 -10.0 6.816.42 -1.71 -2.96 1.17 33 97.0 97.0 0.00 -10.0 6.036.39 -1.72 -2.92 1.13 33 97.0 97.0 0.00 -10.0 6.216.39 -1.72 -2.98 1.13 33 97.0 97.0 0.00 -10.0 6.217.44 -1.56 -2.95 1.30 33 97.0 97.0 0.00 -10.0 6.217.44 -1.56 -2.95 1.30 33 97.0 97.0 0.00 -10.0 6.217.44 -1.62 -3.02 1.20 33 97.0 97.0 0.00 -10.0 6.218.18 -1.62 -3.02 1.40 33 97.0 97.0 0.00 1.85 1.85 14.9 0.00 2.08 -9.98 2.02 2.00 10.2M 33 93.9 100. 0.00 1.85 1.85 14.9 0.00 2.08 -9.98 2.01 1.99 5.36M 33 93.9 100. 0.00 1.85 1.85 26.8 0.00 2.08 -9.98 2.01 1.99 5.36M 23 93.9 100. 0.00 1.85 1.85 26.8 0.00 2.08 -9.98 2.01 1.99 5.36M 23 93.9 100. 0.00 1.85 1.85 3.83 30.3 4.00	IIL(BIT#1)		-1.75	-2.95	1.20	33	97.0	97.0			-10.0	5.88			10.0		NA NA
-6.62 -1.71 -2.96 1.17 33 97.0 97.0 0.00 -10.0 6.036.19 -1.56 -2.92 1.24 33 97.0 97.0 0.00 -10.0 6.036.19 -1.75 -2.99 1.13 33 97.0 97.0 0.00 -10.0 6.21 -7.64 -1.56 -2.99 1.30 33 97.0 97.0 0.00 -10.0 6.21 -7.64 -1.65 -2.99 1.30 33 97.0 97.0 0.00 -10.0 6.21 -7.64 -1.65 -2.99 1.30 33 97.0 97.0 0.00 -10.0 6.21 -7.64 -1.65 -2.99 1.30 33 97.0 97.0 0.00 -10.0 6.21 -7.64 -1.65 -2.99 1.30 33 97.0 97.0 0.00 1.00 6.21 -7.64 -1.65 -2.99 1.30 33 97.0 97.0 0.00 1.00 6.21 -7.64 -1.65 -2.99 1.30 33 97.0 97.0 0.00 1.85 1.85 1.89 0.00 2.08	11L(81762)	-5.97	-1.68	-2.83	1.05	33	0.26	100.			-10.0	6.81			10.0		NA
1,	111 (81743)	-6.62	-1.71	-2.96	1.17	33	82.0	97.0			-10.0	6.03			10.0		es es
-6.39 -1.72 -2.98 1.13 33 97.0 97.0 0.00 -10.0 6.217.44 -1.56 -2.95 1.30 33 97.0 97.0 0.00 -10.0 6.217.26 -1.65 -2.95 1.30 33 97.0 97.0 0.00 -10.0 10.0 5.419.18 -1.67 -3.07 1.40 32 93.9 93.0 1.00 -10.0 1.00 5.809.18 -1.69 2.02 2.00 10.2M 33 93.9 100. 0.00 1.85 1.85 14.9 0.00 2.08 1.98 2.00 1.99 5.36M 33 93.9 97.0 0.00 1.85 1.85 1.85 0.00 2.08 1.98 2.00 1.99 5.36M 33 93.9 100. 0.00 1.85 1.85 26.8 0.00 2.08 1.99 2.00 1.99 5.36M 33 93.9 100. 0.00 1.85 1.85 26.8 0.00 2.08 1.75 3.19 2.56 428.M 23 69.7 69.7 0.00 -4.00 -4.00 15.3 30.3 4.00	IIL (BIT64)	-7.19	-1.56	-2.92	1.24	33	97.0	97.0			-10.0	5.72			10.0		es es
-7.64 -1.56 -2.95 1.30 33 97.0 97.0 0.00 -10.0 5.417.26 -1.62 -3.02 1.30 33 97.0 97.0 0.00 -10.0 5.417.26 -1.62 -3.02 1.30 33 97.0 97.0 0.00 -10.0 5.808.18 -1.69 2.02 2.00 10.2H 33 93.9 100. 0.00 1.85 1.85 14.9 0.00 2.08 1.98 2.02 2.00 10.2H 33 93.9 100. 0.00 1.85 1.85 14.9 0.00 2.08 1.98 2.01 1.99 5.36H 33 93.9 97.0 0.00 1.85 1.85 26.8 0.00 2.08 1.98 2.01 1.99 5.36H 23 93.9 100. 0.00 1.85 1.85 26.8 0.00 2.08 1.73 3.19 2.56 428.H 23 69.7 69.7 0.00 -4.00 15.3 30.3 4.00	IIL (BIT#5)	-6.39	-1.72	-2.98	1.13	33	0.76	97.0			-10.0	6.21			10.0		NA NA
7.26 -1.62 -3.02 1.20 33 97.0 97.0 0.00 -10.0 5.80 31 -8.18 -1.64 -3.02 1.20 33 97.0 97.0 0.00 -10.0 5.80 32 1.88 -1.64 -3.02 1.0.2 1.0 32 93.9 93.9 1.0 0.0 1.85 1.85 1.85 1.49 0.00 2.08 1.98 2.02 2.00 10.2H 33 93.9 100. 0.00 1.85 1.85 1.49 0.00 2.08 1.98 2.02 2.00 10.2H 33 93.9 97.0 0.00 1.85 1.85 1.49 0.00 2.08 1.98 2.01 1.99 5.36H 33 93.9 100. 0.00 1.85 1.85 26.8 0.00 2.08 1.75 3.19 2.56 428.H 23 69.7 69.7 0.00 -4.00 1.53 30.3 4.00	IIL (BIT#6)	-7.64	-1.56	-2.95	1.30	33	97.0	97.0			-10.0	5.41	-		10.0	1	NA NA
1.98 2.02 2.00 10.2M 33 93.9 93.9 3.03 -10.0 -10.0 4.96 1.98 2.02 2.00 10.2M 33 93.9 100. 0.00 1.85 1.85 14.9 0.00 2.08 1.98 2.02 2.00 10.2M 33 93.9 100. 0.00 1.85 1.85 14.9 0.00 2.08 1.98 2.00 1.99 5.36M 33 93.9 97.0 0.00 1.85 1.85 26.8 0.00 2.08 1.98 2.01 1.99 5.36M 33 93.9 100. 0.00 1.85 1.85 26.8 0.00 2.08 1.95 2.01 1.99 2.56 428.M 23 69.7 69.7 0.00 -4.00 1.53 30.3 4.00 2.08 1.73 3.22 2.55 468.M 23 69.7 69.7 0.00 -4.00 -4.00 14.0 30.3 4.00	111 (81767)	-7.26	-1.62	-3.02	1.20	33	97.0	97.0			-10.0	5.80	1	1	10.0	1	NA NA
1.98 2.02 2.00 10.2M 33 93.9 100. 0.00 1.85 11.85 14.9 0.00 2.08 1.98 2.02 2.00 10.2M 33 93.9 100. 0.00 1.85 11.85 14.9 0.00 2.08 1.98 2.00 1.99 5.36M 33 93.9 97.0 0.00 1.85 11.85 26.8 0.00 2.08 1.98 2.00 1.99 5.36M 33 93.9 100. 0.00 1.85 11.85 26.8 0.00 2.08 1.98 2.01 1.99 5.36M 33 93.9 100. 0.00 1.85 11.85 26.8 0.00 2.08 1.95 3.19 2.56 428.M 23 69.7 69.7 0.00 -4.00 -4.00 15.3 30.3 4.00 2.08 1.73 3.22 2.55 468.M 23 69.7 69.7 0.00 -4.00 -4.00 14.0 30.3 4.00	TILCRITAR	-8.18	-1.69	-3.07	1.40	32	93.9	63.9			-10.0	4.96			10.0		NA
1.98 2.02 2.00 10.2H 33 93.9 100. 0.00 1.85 1.85 14.9 0.00 2.08 1.99 2.00 1.99 5.36H 33 93.9 97.0 0.00 1.85 1.85 26.8 0.00 2.08 201 1.99 2.01 1.99 5.36H 33 93.9 100. 0.00 1.85 1.85 26.8 0.00 2.08 2.01 1.75 3.19 2.56 428.H 23 69.7 69.7 0.00 -4.00 1.85 1.85 3.03 4.00 2.08 2.08 2.02 2.55 468.H 23 69.7 69.7 0.00 -4.00 14.0 30.3 4.00	IFS+(I+)	1.98	2.05	2.00	10.2M	33	63.6	100.			1.85	14.9	00.0	2.08	5.08	7.76	MA
1.98 2.00 1.99 5.36H 33 93.9 97.0 0.00 1.85 1.85 26.8 0.00 2.08 1.99 2.01 1.99 5.36H 33 93.9 100. 0.00 1.85 1.85 26.8 0.00 2.08 1.99 2.54 428.H 23 69.7 69.7 0.00 -4.00 -4.00 15.3 30.3 4.00 \$C(I-) 1.73 3.22 2.55 468.H 23 69.7 69.7 0.00 -4.00 -4.00 14.0 30.3 4.00	IFS+(I-)	1.98	2.02	2.00	10.2M	33	63.6	100.	00.0		1.85	14.9	00.0	2.08	2.08	7.74	MA
1.98 2.01 1.99 5.36H 33 93.9 100. 0.00 1.85 1.85 26.8 0.00 2.08 SECIT+) 1.75 3.19 2.56 428.H 23 69.7 69.7 0.00 -4.00 15.3 30.3 4.00 SECIT-) 1.73 3.22 2.55 468.H 23 69.7 69.7 0.00 -4.00 14.0 30.3 4.00	IFS-(1+)	1.98	2.00	1.99	5.36M	33	93.9	97.0	00.0		1.85	26.8	00.0	2.08	5.08	16.1	MA
1.73 3.22 2.55 468:M 23 69.7 69.7 0.00 -4.00 15.3 30.3 4.00	IFS-(1-)	1.98	2.01	1.99	5.36H	33	63.6	100	0.00		1.85	26.8	00.0	2.08	2.08	16.1	H.
1.73 3.22 2.55 468.H 23 69.7 69.7 0.00 -4.00 -4.00 14.0 30.3 4.00	DELTA IFSC(1+)	1.75	3.19	2.56	428.M	23	69.7	2.69	0.00	-4.00	-4.00	15.3	30.3	4.00	4.00	3.37	4
	DELTA IFSC(I-)	1.73	3.22	2.55	468.M	23	1.69	69.7	00.0	-4.00	-4.00	14.0	30.3	4.00	4.00	3.10	5
The state of the s	Person wright			2000				į									

Table 6-6. Statistical data for purchased sample (tight reject limits). (cont'd.)

	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	PARAMETER	LOW	HIGH VALUE	MEAN	SIGNA	SAMPLE	SIGMA	SIGNA 3	Z FAIL	LINIT	R.C.	10-F#	X FAIL HIGH	LIMIT	REJ	HI-FH	UNITS
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			•	•	•	•	•										*	
19. 19.	18.3 1.5	CDOMO/BITAIN/141	-144.H			45.8H	33	100	100.	0.00	-190.H	-190.H	2.20	0.00	190.H	190.H	3.57	
### 195. ### 12.51 ## 14.00 ### 195. 100. 100. 195. ### 14.31 0.00 195. ### 195. ### 15.21 ### 14.00 ### 195. ### 15.21 ### 14.00 ### 195. ### 15.21 ### 14.00 ### 195. ### 15.21 ### 15.2		FREDRORENTED (T-)	-171.H			62.4H	33	1001	1001	00.0	-190.H	-190.H	2.20	00.0	190.H	190.H	3.82	*
		ERROR(BIT#2)(I+)	-83.9H			41.0H	33	100.	100	00.0	-190.H	H.061-	4.31	0.00	190.H	190.H	4.96	*
-2.54 39. 31. 31. 31. 31. 31. 31. 31. 31. 31. 31	-25.44 35.74 5.75 5.14 5.75 5.14 5.15 5.14 5.15 5.14 5.15 5.14 5.15 5.15	ERROR(BIT#2)(I-)	-79.3H			40.0H	21	100.	100	00.0	-190.8	-170.8	4.43	000	140.1	100.1	2000	
	-4.5. H 38. H 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	ERROR(BIT#3)(I+)	-63.6H			31.48	3	0.74	.001	00.0	2.001	2000	77.0	000	1.00	2001	20.0	4 2
	-2.5.	ERROR(BIT#3)(I-)	-47.18			27.78	3;				2000	1.00		300	2001	2000	01.0	41
-25.44 38.04 3.21	-25.48 38.08 32.08 32.18 32.19 32.19 32.20 300 190.0 190.0 190.0 120.0 190.0 1	ERROR(BIT#4)(I+)	-42.5H			20.8H	3:	100					2000	200	2001	1001	11.1	4 :
-25.26	-2.2. 39 86 H 3.70H 13.1H 13.1H 13.1 33 97.0 100. 0.00 199.H 190.H 12.7 0.00 190.H 190.H 15.0 15.1 4.459 12.1H 13.1 4 1.2 4 1.	ERROR(BIT#4)(I-)	-43.4H			71.17	3;	01.0					0000	33	1000	100	32	
-5.5.7 30.34 4.67 12.1 2.1 3.3 77.0 100. 0.00 -190.1 6.17 0.00 190.1 190.1 8.77 0.00 190.1 190.1 8.77 0.00 190.1 190.1 8.77 0.00 190.1 190.1 14.1 0.1 1.2 6.1 12.5 6.	-56.14 30.34 -4.274 22.14 33 97.0 100. 0.00 190.4 190.4 8.39 0.00 190.4 190.4 190.4 43.44 13.44 12.44 12.54 13.5 97.0 100. 0.00 190.4 190.4 190.4 190.4 43.44 12.4	ERROR(BIT#5)(I+)	-25.6H			12.11	3:	02.0				N. 001	12:0	3	1001		12.2	
-5.51 30.8H 4.12 H 12.6H 12.6H 133 97.0 100. 0.00 -190.H 190.H 8.39 0.00 190.H 190.H 197.H 190.H 197.H 190.H 197.H 190.H 197.H 12.6H 12.5H 12.6H 13.3 97.0 100. 0.00 -190.H 190.H 16.1 0.00 190.H 190.H 197.H 190.H 197.H 190.H 197.H 190.H 197.H 190.H 197.H 190.H 190.H 197.H 190.H 190.H 197.H 197.H 190.H 197.H 197.	-56.1H 30.8H -4.22H 22.2H 33 97.0 100. 0.00 190.H 16.1 0.00 190.H 190.H 190.H 16.1 0.00 190.H 190.	ERROR(BIT#5)(I-)	-Z1.Zn			20.00	3 5	02.0			W . 00	1001	8.17	200	100	100	9.70	
		ERROR(BIT66)(1+)	-00°-0			75. 5H	3 5	02.0			100	H. 001-	05.00	000	100	100	8.77	
-5,98H 44.1H 12.5H 12.5H 12.5H 13.9 97.0 100. 0.00 -190.H 150.1 H 150.1 H 150.1 H 14.1H 12.2H 13.9 97.0 100. 0.00 -190.H 150.0 H 150.1	-27.2H 45.0H 12.5H 12.6H 12.6H 13.5 97.0 100. 0.00 190.H 100.H 150. 0.00 190.H 100.H 150.H 45.5H 12.6H 12.6H 12.6H 13.5 97.0 100. 0.00 190.H 150.H 150	ENKOR(BIT66)(I-)	-20.1H			17.27	3 :	27.0				1		200	7 000	7		
-7.78 28.18 -1.08 12.05 35.9 77.0 100. 100. 170. 170. 170. 170. 170.	-27.3H 28.3H 12.6H 12.6H 12.6H 13.5	ERROR(BIT#7)(I+)	-9.88H			12.64	3:	0.74				2001	10.1	300	2000	200		.,
-27.34 45.34 141.01 17.36 13.5 13.5 13.0	-27.2H 28.3H -1.08H 12.4h 33 91.9 100. 0.00 -190.H 11.0 0.00 190.H 190.H 120.H 45.5H 141.U 11.2 0.00 190.H 190.H 120.H 45.5H 137.H 141.U 11.2 0.00 190.H 190.H 190.H 137.H 137.H 137.H 122.H 22.1H 13.9 91.9 100. 0.00 -190.H 11.0 0.00 190.H 190.H 190.H 137.H 137.H 132.H 22.1H 13.9 91.9 100. 0.00 -190.H 190.H 2.50 0.00 190.H 190.H 137.H 137.H 132.H 22.1H 13.9 91.9 100. 0.00 -190.H 190.H 2.50 0.00 190.H 190.H 190.H 137.H	ERROR(BIT#7)(I-)	-9.93H			12.54	33	0.74	100			-140.H	7.01	000	H.041	170.0	7.57	4:
22.4H 140.H 77.8H 27.8H 33 93.9 97.0 0.000 190.H 11.0 0.00 190.H 190.H 10.1 17.3H 13.9 93.9 97.0 0.000 190.H 11.0 0.00 190.H 190.H 10.1 17.3H 13.9 93.9 100. 0.00 0.90.H 0.00 0.00 190.H 10.0 H 1.1 183.H 122.H 27.1H 13.7 97.0 0.00 0.90.H 2.6B 0.00 0.00 190.H 190.H 4.03 0.00 190.H 122.H 27.1H 27.3H 27.3H 27.9 100. 0.00 0.90.H 2.6B 0.00 0.00 190.H 190.H 4.03 0.00 190.H 2.6B 0.00 0.00 190.H 2.7D 0.00 0.00 190.H 190.H 2.7D 0.00 0.00 190.H 190.H 1.6D 0.00 190.H 190.H 1.6D 0.00 0.00 190.H 190.H 1.6D 0.00 190.H	-27.14 45.5H 140.1 17.3 3 3 3 3 5 9 9 9 0 0 0 0 190.1 11.0 0 0 0 0 190.1 190.1 140.1 140.1 17.2 H 140.1 17.2 H 140.1 17.2 H 137.1 140.1 17.2 H 137.1 140.1 17.2 H 137.1 140.1 17.2 H 137.1 17.2 H 137.2 H 137.	ERROR(BIT#8)(I+)	-27.2H		•	12.6H	33	93.9	100			-190.H	15.0	00.0	190.H	190.4	15.2	× :
28.44 137.4 76.94 27.04 33 93.9 100 0.00 0.00 190.4 190.4 4.19 -183.4 772.04 -122.4 27.04 33 93.9 100. 0.00 -190.4 190.4 2.50 0.00 190.4 190.4 4.19 -183.4 772.04 -122.4 27.14 27.14 33 93.9 100. 0.00 -50.04 -90.4 2.69 0.00 190.4 190.4 4.19 -47.64 -39.44 -44.51 21.04 33 97.9 100. 0.00 -50.04 50.04 2.69 0.00 190.4 190.4 4.19 -50.04 -37.44 -44.51 22.14 27.14 33 97.9 100. 0.00 -50.04 -50.04 2.62 0.00 50.04 30.04 45.0 -50.04 -37.44 -44.51 22.14 27.14 33 97.9 100. 0.00 -50.04 50.04 2.62 0.00 190.4 190.4 190.4 12.4 2.50 -50.04 -37.44 -122.4 27.14 33 97.9 100. 0.00 -50.04 50.04 2.62 0.00 190.4 190.4 190.4 12.4 122.4 22.14 13.9 13.9 13.9 100. 0.00 0.00 0.00 190.4 190	28.4H 140.H 77.9H 27.8H 33 93.9 100 0.00 0.00 190.H 122.H 122.H 27.1H 33 93.9 100. 0.00 190.H 190.H 2.68 0.00 190.H 190.H 190.H 190.H 190.H 122.H 27.1H 33 93.9 100. 0.00 190.H 190.H 2.68 0.00 190.H 190.H 190.H 190.H 190.H 122.H 27.2H 122.H 27.2H 122.H 27.2H 122.H 27.2H 190.H 122.H 27.2H 27.2H 190.H 122.H 27.2H 27.2H 190.H 19	ERROR(BIT#8)(I-)	HO-29-			17.3H	33	63.6	67.0			-190.H	11.0	0.00	190.H	190.4	10.9	×:
183.4 137.0	28.44	SUM ML+(I+)	27.1H			27.8H	33	63.6	100.			0.00		0.00	190.H	190.M	4.03	*
183.4 - 72.44 - 122.4	183.4	SUM ML+(1-)	28.4H			27.0H	33	93.9	100.		-	0000	1	0.00	190.H	190.M	4.19	*
-180.H -72.4H -121.H 25.9H 33 97.9 100. 0.00 -190.H 26.0H 26.0 0.00 50.0H 26.0H 34.3 -190.H -72.4H -44.5H 2.72H 33 97.0 100. 0.00 -50.0H 26.2 0.00 50.0H 36.0H 34.3 -190.H 122.H 27.1H 33 97.0 10050.0H -50.0H 2.42 0.00 50.0H 50.0H 34.3 -190.H 122.H 122.H 122.H 27.1H 33 97.9 10050.0H -50.0H 2.42 0.00 50.0H 50.0H 34.3 17.9 10050.0H -50.0H 2.42 0.00 50.0H 50.0H 34.3 17.9 10050.0H -50.0H 2.42 0.00 50.0H 50.0H 34.3 11.7 H 189.H 158.H 19.4H 27 84.8 97.9 10050.0H 50.0 180. 180.2 190.H 190.H 126.H 185.H 19.4H 27 84.8 97.9 10050.0H 0.00 16.0 16.0 16.0 16.0 16.0 16.0 16.0	180.H - 37.4H - 41.21.H 25.9H 33 93.9 100. 0.00 -50.0H 2.62 0.00 50.0H 50.0H 190.H 190.H 183.H 122.H 27.1H 33 93.9 100. 0.00 -50.0H 50.0H 2.62 0.00 50.0H 50.0H 190.H 190.H 183.H 122.H 27.1H 33 93.9 100. 0.00 0.00 0.00 190.H 190.H 190.H 183.H 122.H 27.1H 33 93.9 100. 0.00 0.00 0.00 190.H 190.H 190.H 185.H 185.H 185.H 185.H 18.5H 27 84.8 93.9 0.00 0.00 0.00 0.00 190.H 190.H 190.H 185.H 185.H 185.H 18.5H 27 84.8 93.9 0.00 0.00 0.00 0.00 180.H 190.H 190.H 190.H 185.H 185.H 185.H 18.5H 27 84.8 93.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00	SUM ML-(1+)	-183.H			27.1H	33	93.9	100.		-190.H	-190.H	2.50			000	-	*
-47.6H -39.4H -44.5H 2.10H 33 97.0 100. 0.00 -50.0H 2.62 0.00 50.0H 30.0H 45.0 72.0H 183.4H 122.4F 2.72H 32 87.9 97.0 3.03 -50.0H -50.0H 2.62 0.00 50.0H 30.0H 34.3 72.0H 183.4H 122.4F 27.2H 33 93.9 100 0.00 0.00 190.H 190.H 2.68 117.4H 189.4H 122.4F 27.1H 33 93.9 100 0.00 0.00 190.H 190.H 2.68 1180.4H 185.4H 185.4H 185.4H 27 84.8 93.9 0.00 0.00 190.H 190.H 190.H 185 1181.4H 185.4H 185.4H 185.4H 27 84.8 93.9 0.00 0.00 190.H 190.H 185 4.59 14.0 9.18 2.62 33 100. 100 0.00 0.00 16.0 16.0 1	-47.6H -39.4H -44.5H 2.10H 33 97.0 100. 0.00 -50.0H 2.62 0.00 50.0H 50.0H 50.0H 2.62 0.00 50.0H 50.0H 2.62 0.00 50.0H 50.0H 172.H -43.4H 22.72H 32 97.9 10050.0H -50.0H 2.62 0.00 50.0H 50.0H 77.4H 192.H 122.H 22.71H 32 97.9 10050.0H -50.0H 2.42 0.00 190.H 190	SUN M(1-)	-180.H			25.9H	33	63.6	100.		-190.H	-190.H	2.68	-		0.00		×
-50.0H -37.4H -43.4H 27.2H 32 97.0 3.03 -50.0H 50.0H 24.2 0.00 50.0H 34.3 72.0H 180.H 122.H 27.2H 32 93.9 100	72.0H 183.H 121.H 2.72H 32 87.9 97.0 3.03 -50.0H 57.0H 2.42 0.00 50.0H 50.0H 50.0H 190.H 190.H 182.H 121.H 221.H 27.2H 33 93.9 100 0.00 0.00 0.00 190.H 190.H 190.H 182.H 183.H 121.H 221.H 27.8H 8 93.9 0.00 0.00 0.00 190.H 190.H 190.H 180.H 180.H 121.H 221.H 27.8H 8 93.9 0.00 0.00 0.00 190.H 190.H 190.H 180.H 1	DELTA SUM M.(I+)	-47.6H		•	2.10M	33	97.0	100.		-50.0H	-20.08	2.62	0.00	50.0H	20.0H	42.0	*
72.0H 183.H 122.H 27.1H 33 93.9 100 0.00 0.00 190.H 190.H 2.50 117.4H 180.H 121.H 25.9H 33 93.9 100 0.00 0.00 0.00 190.H 190.H 2.50 116.H 185.H 156.H 19.5H 27 84.8 93.9 0.00 0.00 0.00 190.H 190.H 2.68 116.H 185.H 156.H 19.4H 27 84.8 93.9 0.00 0.00 0.00 180.2 190.H 190.H 1.85 116.H 185.H 156.H 19.4H 27 84.8 93.9 0.00 0.00 0.00 180.2 190.H 190.H 1.85 116.H 185.H 156.H 19.4H 27 84.8 93.9 0.00 0.00 0.00 16.0 16.0 16.0 2.60 11.8 8.59 11.29 33 97.0 100 0.00 0.00 16.0 16.0 16.0 5.68 11.9 8.65 1.29 33 97.0 100 0.00 0.00 16.0 16.0 16.0 5.88 11.9 9.35 8.07 461.H 33 93.9 100 0.00 0.00 16.0 16.0 16.0 17.2 11.9 8.65 1.89 336.H 33 97.0 97.0 0.00 0.00 16.0 16.0 16.0 16.0 16.0 16	72.0H 183.H 122.H 27.1H 33 93.9 100 0.00 0.00 190.H 190.H 110.H 112.H 122.H 27.1H 33 93.9 100 0.00 0.00 190.H 190.H 1117.H 189.H 158.H 158.H 158.H 19.H 27.9 13.9 100 0.00 0.00 0.00 190.H 190.H 1117.H 189.H 158.H 158.H 19.H 27.9 18.8 93.9 0.00 0.00 0.00 0.00 190.H 190.H 190.H 1117.H 189.H 158.H 158.H 158.H 19.H 27.8 84.8 93.9 0.00 0.00 0.00 0.00 18.2 190.H 190.H 190.H 158.H 185.H 158.H 18.5 12.4 33 100. 100 0.00 0.00 0.00 18.0 18.0	DELTA SUM NL(I-)	-50.0H		•	2.72H	32	87.9	97.0		-50.0H	-50.0H	2.42	00.0	50.0H	50.0H	34.3	×
72.44 180.H 121.H 25.9H 33 93.9 100 0.00 0.00 190.H 190.H 2.68 116.H 190.H 130.H 130	117.4 180.4 121.4 25.94 33 93.9 100 0.00 0.00 190.4 190.4 116.4 117.4 180.4 121.4 25.94 33 93.9 100 0.00 0.00 190.4 190.4 116.4 185.4 156.4 190.4 12.4 27 84.8 93.9 0.00 0.00 18.2 190.4 190.4 116.4 185.4 156.4 180.4 12.4 27 84.8 93.9 0.00 0.00 0.00 16.0 16.0 16	ML+(I+)	72.0H			27.1H	33	63.9	100.			0.00		0.00	190.H	190.H	5.50	*
117.H 189.H 158.H 19.4H 27 84.B 93.9	117.H 189.H 158.H 19.4H 27 84.8 93.9	ML+(I-)	72.4H			25.9H	33	63.6	100.			0.00	!	0.00	190.H	190.H	5.68	*
116.H 185.H 156.H 18.5H 27 84.8 93.9 0.00 181.2 190.H 190.H 190.H 1.85 4.59 14.0 9.18 2.42 33 100. 100 0.00 0.00 0.00 16.0 16.0 2.60 5.61 6.02 11.8 8.59 1.29 33 100. 100 0.00 0.00 0.00 16.0 16.0 2.60 5.73 6.37 11.9 8.65 1.29 33 97.0 100 0.00 0.00 0.00 16.0 16.0 5.73 5.73 9.80 7.99 1.04 33 97.0 100 0.00 0.00 16.0 16.0 16.0 5.73 5.8 9.80 7.99 1.04 33 97.0 100 0.00 0.00 16.0 16.0 16.0 5.68 6.72 7.24 9.55 8.11 505.H 33 97.0 100 0.00 0.00 16.0 16.0 16.0 17.2 6.75 8.15 7.89 336.H 33 97.0 97.0 0.00 0.00 16.0 16.0 16.0 16.0 16.0 16.0	116.H 185.H 156.H 18.5H 27 84.8 93.9 0.00 181.2 190.H 190.H 190.H 190.H 190.H 185.F 126.Z 33 100. 100 0.00 0.00 16.0 16.0 16.0 16.0 16.0 16.0 16.0	ML-(1+)	117.H			19.4H	27	84.8	63.6	-		0.00	!	18.2	190.H	190.H	1.64	×
4.59 14.0 9.18 2.62 33 100. 100 0.00 0.00 16.0 16.0	4.57 14.0 9.18 2.62 33 100, 100, 0.00 16.0	ML-(I-)	116.H			18.5H	27	84.8	63.6	-		00.0		18.2	190.H	190.H	1.85	*
5.21 14.2 9.31 2.48 33 100. 100.	5.21 14.2 9.31 2.48 33 100. 1	DELTA ICID(I+)	4.59			2.62	33	1001	100.			00.0		0.00	16.0	16.0	5.60	5
123(14) 6.06 11.8 8.59 1.29 33 97.0 100.	1.5 1.5 1.5 1.5 1.2 1.5	DELTA I(1)(I-)	5.21			2.48	33	100.	100.			00.0		0.00	16.0	16.0	5.69	5
133 11.5 8.45 11.29 33 97.0 100. 0.00 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 17.2 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 17.2 16.0 16.0 16.0 16.0 16.0 17.2 16.0 16.0 16.0 17.2 16.0 16.0 16.0 17.2 16.0 16.0 16.0 16.0 16.0 16.0 17.2 16.0 16	123 11.5 8.45 11.29 33 97.0 100. 0.00 0.00 16.0	DELTA ICZ)(I+)	90.9			1.29	33	97.0	100.			00.0		00.0	16.0	16.0	5.73	NA NA
149.1(1+) 5.78 9.80 7.99 1.04 33 93.9 100. 0.00 0.00 16.0 16.0 7.72 16.0	131(14) 5.78 9.80 7.99 1.04 33 93.9 100 0.00 16.0 16.0 16.0 16.0		6.37			1.29	33	97.0	100.			0.00	-	0.00	16.0	16.0	2.68	\$
14.0 1.5	144 144	DELTA 1(3)(1+)	5.78			1.04	33	93.9	100.			0.00		0000	16.0	16.0	7.72	5
	144(114) 7.14 9.35 8.07 461.H 33 93.9 100. 1.00 1.	DELTA 1(3)(I-)	5.83			1.00	33	97.0	100.			0.00	-	0.00	16.0	16.0	8.00	\$
		DELTA ICA)(I+)	7.14			461.H	33	63.6	100.			0.00	-	0.00	16.0	16.0	17.2	5
(5)(14) 6.76 8.56 7.89 336.H 33 93.9 97.0 0.00 0.00 16.0 16.0 16.0 16.0 16.0 16.0 16.0	(5)(1+) 6.76 8.56 7.89 336.H 33 93.9 97.0 0.00 0.00 16.0 16.0 16.0 16.0 16.0 16.0 16.0	DELTA 1(4)(I-)	7.26			505.H	33	97.0	82.0	-		0.00	-	0.00	16.0	16.0	15.6	5
(5)(1-) 5.58 8.61 7.92 504.H 33 97.0 97.0 0.00 0.00 16.0 17.2 16.2 16.1 16.0 17.2 16.0 16.0 16.0 17.2 16.0 16.0 16.0 17.2 16.0 16.0 16.0 16.0 17.2 16.0 <	(5)(1-) 5.58 8.61 7.92 504.H 33 97.0 97.0 0.00 0.00 16.0	DELTA I(5)(I+)	9.76			336.M	33	63.6	67.0			00.0		00.0	16.0	16.0	24.1	45
(6)(1+) 6.77 10.2 8.13 778.4 33 97.0 100 0.00 0.00 16.0 16.0 10.1 (7)(1-) 6.74 10.1 8.14 807.4 33 97.0 100 0.00 0.00 16.0 16.0 16.0 17.0 17.12 8.58 7.55 3913.4 33 97.0 97.0 0.00 0.00 16.0 16.0 16.0 17.0 17.12 8.94 7.58 3913.4 33 93.9 93.9 0.00 0.00 16.0 16.0 16.0 27.0 17.0 17.2 8.34 7.59 391.4 33 93.9 100 0.00 0.00 16.0 16.0 16.0 16.0 16.0 16.0 16.0	(4)(1+) 6.77 10.2 8.13 778.H 33 97.0 100. 0.00 0.00 16.0 16.0 (46)(1-) 6.76 10.1 8.16 80.7H 33 97.0 100. 0.00 0.00 16.0 16.0 (7)(1-) 6.37 8.94 7.58 391.H 33 93.9 93.9 0.00 0.00 16.0 16.0 (8)(1+) 7.26 8.36 7.84 253.H 33 93.9 97.0 0.00 0.00 16.0 16.0 (8)(1-) 6.92 9.16 7.82 346.H 33 93.9 97.0 0.00 0.00 16.0 16.0 (8)(1-) 6.92 9.16 7.28 93.9 97.0 0.00 0.00 16.0 16.0 (8)(1-) 6.92 9.16 7.20 8.00 8.00 8.00 8.00 8.00		5.58			504.H	33	97.0	97.0		1	0.00	1	0.00	16.0	16.0	16.0	\$
(4)(I-) 6.76 10.1 8.16 807.H 33 97.0 100, 0.00 0.00 16.0 16.0 9.72 (7)(I+) 7.12 8.58 7.55 313.H 33 97.0 97.0 0.00 0.00 16.0 16.0 16.0 27.0 (10)(I-) 6.37 8.94 7.58 391.H 33 93.9 93.9 0.00 0.00 16.0 16.0 16.0 23.3 (10)(I+) 6.92 9.16 7.82 253.H 33 93.9 97.0 0.00 0.00 16.0 16.0 23.3 (10)(I-) 6.92 9.16 7.82 346.H 33 93.9 97.0 0.00 -8.00 -8.00 25.5 0.00 8.00 8.00 25.6	(4)(1-) 6.76 10.1 8.16 807.H 33 97.0 100 0.00 0.00 16.0 16.0 16.0 16.0 16.0 16.0 16.0		6.77			778.H	33	0.26	100.		1	0.00	1	0.00	16.0	16.0	10.1	S
(7)(1+) 7.12 8.58 7.55 313.H 33 97.0 97.0 0.00 0.00 16.0 16.0 27.0 (7)(1-) 6.37 8.94 7.58 391.H 33 93.9 93.9 0.00 0.00 0.00 16.0 16.0 21.5 (18)(1-) 7.26 8.36 7.84 253.H 33 93.9 97.0 0.00 0.00 16.0 16.0 33.3 18)(1-) 7.52 9.16 7.82 346.H 33 93.9 97.0 0.00 0.00 16.0 16.0 23.7 18]	(7)(1+) 7.12 8.58 7.55 313.H 33 97.0 97.0 0.00 0.00 16.0 16.0 16.0 16.0 16.0 16.0 16.0	DELTA 1(6)(1-)	6.76		8.16	807.H	33	97.0	100.			0.00	-	0.00	16.0	16.0	9.72	45
(G)(I-) 6.37 8.94 7.58 391.H 33 93.9 93.9 0.00 0.00 16.0 16.0 21.5 (G)(II-) 7.26 8.36 7.84 253.H 33 93.9 100 0.00 0.00 16.0 16.0 16.0 33.3 18.0 (II-) 6.92 9.16 7.82 346.H 33 93.9 97.0 0.00 0.00 16.0 16.0 23.7 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	(G)(I-) 6.37 8.94 7.58 391.H 33 93.9 93.9 0.00 0.00 16.0 16.0 16.0 16.0 16.0 16.0 16.0	DELTA 1(7)(1+)	7.12		7.55	313.M	33	97.0	97.0			0.00	-	0.00	16.0	16.0	27.0	S.
I(B)(I-) 6.92 9.16 7.82 346.H 33 93.9 97.0 0.00 0.00 16.0 16.0 32.3 I(B)(I-) 6.92 9.16 7.82 346.H 33 93.9 97.0 0.00 0.00 16.0 16.0 23.7 IFS -1.08 450.H -21.7H 313.H 33 93.9 97.0 0.00 -8.00 -8.00 25.5 0.00 8.00 8.00 25.6	I(8)(I+) 7.26 8.36 7.84 253.H 33 93.9 100 0.00 0.00 16.0 16.0 16.0 16.0 16.0 16.0 16.0	DELTA 1(7)(1-)	6.37		7.58	391.H	33	63.6	63.6			00.0	-	00.0	16.0	16.0	21.5	NA N
I(B)(I-) 6.92 9.16 7.82 346.H 33 93.9 97.0 0.00 0.00 16.0 16.0 23.7 IFS -1.08 450.H -21.7H 313.H 33 93.9 97.0 0.00 -8.00 -8.00 25.5 0.00 8.00 8.00 25.6	I(B)(I-) 6.92 9.16 7.82 346.H 33 93.9 97.0 0.00 -8.00 25.5 0.00 16.0 16.0 1FB -1.08 450.H -21.7H 313.H 33 93.9 97.0 0.00 -8.00 -8.00 25.5 0.00 8.00 8.00	DELTA I(8)(I+)	7.26		7.84	253.M	33	93.9	100.			00.0	-	00.0	16.0	16.0	32.3	es es
-1.08 450.H -21.7H 313.H 33 93.9 97.0 0.00 -8.00 -8.00 25.5 0.00 8.00 8.00 25.6	IFS -1.08 450.M -21.7M 313.M 33 93.9 97.0 0.00 -8.00 -8.00 25.5 0.00 8.00 8.00		6.92		7.82	346.M	33	93.9	0.26			00.0		00.0	16.0	16.0	23.7	e e
			-1.08		-21.7M	313.H	33	93.9	97.0	0.00	-8.00	-8.00	25.5	00.0	8.00	8.00	25.6	e e

* EXCLUDES POPULATION OUTSIDE OF LOW REJ AND HIGH REJ

Table 6-6. Statistical data for purchased sample (tight reject limits). (cont'd.)

o
0.50
+125
F
DAC08
107
MIXED
200
DATA
TICAL
STATISTICA
5

V

I+(ALL BITS HIGH) I+(ALL BITS HIGH) I+(ALL BITS HIGH)	VAL.UE	VALUE			SIZE	SIGNA	SIGMA	TO.	LIMIT	REJ	-	HIGH	LINIT	REJ	11.11	
8118 8118		*	•	*	*						*				*	
8118 8115								i								
BITS	1,44		2.32	541.A	33	93.9	100.		400.F	4004	3.55	00.0	3.80	3.80	2.73	
PITC	1.46		2.33	540.H	33	63.6	100.			400.H	3.57	00.0	3.80	3.80	2.72	
	-7.31	-5.36	-6.19	541.8	33	63.6	100.			-7.80	2.98	00.0	H-008-	-800.M	9.95	
BITS	-7.31		-6.17	529.M	33	63.6	100.			-7.80	3.07	00.0	-800.H	-800.H	10.2	
-	1.98		1.99	5.28M	33	63.6	100.			1.94	10.2	00.0	2.04	2.04	8.71	
IFS(I-)	1.98		1.99	5.26M	33	63.6	100.			1.94	10.3	00.0	2.04	2.04	8.75	
175(1+)	14.5H		136.M	160.M	33	6.06	100.			-2.00	13.4	00.0	2.00	2.00	11.7	
175(1-)	9.50H		93.9H	111.6	33	6.06	100.			-2.00	18.9	00.0	2.00	2.00	17.2	
PSS165+1(1+)	-115.H		-35.8H	34.18	33	93.9	100.			-4.00	116.	00.0	4.00	4.00	118.	
PSETFEAT(T-)	-140.H		-41.1M	42.2H	33	93.9	100.			-4.00	93.7	00.0	4.00	4.00	65.7	
541641641	-115.H		-35.8K	34.18	33	93.9	100			-8.30	233.	00.0	8.00	8.00	235.	
Deerfeet/T-1	-140.H		-41.1M	42.2M	33	63.6	100.			-8.00	188.	00.0	8.00	8.00	190.	
Peerfe-1(74)	-440.H		-244.K	99.4M	33	100.	100.			-8.00	78.0	00.0	8.00	8.00	82.9	
DEC156-117-1	H-455. H		-266.H	101.M	33	100.	100.			-8.00	76.6	0.00	8.00	8.00	81.9	
200010000	20		N LA	100 H	22	75.8	78.8			-2.00	7.83	0.00	2.00	2.00	4. 22	
193118-111			*	240	, 00	0.10	07.0			200	4.40	00.0	200	200	0 74	
1-117-6-1196-	21:12					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						200	200	200		
IFSR1(I+)	2.56		3.14	448.1	7.4	12.7	8.8/			2.10	2.33	00.00	000	2.80	5.42	
IFSR1(I-)	2.41		3.20	543.M	56	8.8/	87.9			2.10	2.03	00.0	2.80	2.80	4.78	
	-2.25	•	-993.H	512.H	33	97.0	100.			-3.00	3.92	000	100.H	100.H	2.13	
IREF-CALL BITS HIGH	-2.23		-992.H	516.H	33	97.0	100.			-3.00	3.89	0000	100.H	100.M	2.12	
IIH(BIT61)	1.70H		12.2H	7.22H	33	100	100.			-10.0		0000	10.0	10.0	1.38	×
IIH(BIT#2)	1.55K		12.2H	7.42H	33	100.	100.			-10.0		00.0	10.0	10.0	1.35	×
IIH(BIT#3)	1.70H		12.6H	8.15H	33	100.	100.	1	!	-10.0		00.0	10.0	10.0	1.23	×
I IH(BIT64)	1.20H		12.5H	8.25K	33	97.0	100.			-10.0		00.0	10.0	10.0	1.21	×
IIH(BIT65)	550.0		12.18	8.14M	33	63.6	100.			-10.0		00.0	10.0	10.0	1.23	×
IIH(BIT&6)	900.U		14.1K	13.9K	33	97.0	97.0			-10.0		00.0	10.0	10.0	721.	
IIH(BIT#7)	1.05H		13.3H	9.46H	33	93.9	100.	1111		-10.0		00.0	10.0	10.0	1.06	×
IIH(BIT48)	800.0		12.0H	7.72M	33	97.0	100.			-10.0		00.0	10.0	10.0	1.29	~
IIL (BIT61)	-6.01		-3.05	1.12	33	97.0	100.			-10.0	6.19	-	-	10.0	-	
IIL(BIT62)	-5.20		-2.91	1.01	33	0.26	100.			-10.0	7.03	!!!	-	10.0		
IIL(BITe3)	-5.65	G.	-3.03	1.09	33	97.0	100.			-10.0	6:39	-	-	10.0		
IIL (BIT64)	-6.09	-1.66	-3.00	1.15	33	97.0	100.	À		-10.0	6.11			10.0		
IIL (BIT45)	-5.34	-1.77	-3.05	1.06	33	0.79	100.	ā,		-10.0	6.55	-	1	10.0	-	
IIL (BIT66)	-6.33	-1.64	-3.00	1.18	33	97.0	1001			-10.0	5.94	!	-	10.0	-	
IIL (BIT67)	-6.03		-3.05	1.10	33	97.0	100.			-10.0	6.31		-	10.0		
ITL(BIT68)	-6.93		-3.13	1.30	32	63.9	97.0			-10.0	5.28		1	10.0		
IFS+(I+)	1.98		2.00	8.12H	33	97.0	100.			1.85	18.2	00.0	5.08	2.08	10.1	
IFS+(I-)	1.98		5.00	8.13M	33	97.0	100.			1.85	18.2	00.0	5.08	5.08	10.1	
IFS-(1+)	1.98	2.00	1.99	5.22H	33	6.06	100.	00.0	1.85	1.85	27.4	00.0	5.08	2.08	16.7	
IFS-(I-)	1.98		1.99	5.20M	33	63.6	100.			1.85	27.4	00.0	2.08	2.08	16.8	
DELTA IFSC(1+)	1.48		2.17	398.H	23	66.7	69.7			-4.00	15.5	30.3	4.00	4.00	4.59	
DELTA IFSC(I-)	1.41		2.13	404.M	23	69.7	69.7			-4.00	15.2	30.3	4.00	4.00	4.62	

S EXCLUDES POPULATION OUTSIDE OF LOW REJ AND HIGH REJ

Table 6-6. Statistical data for purchased sample (tight reject limits). (cont'd.)

	VALUE	HIGH	MEAN	SIGMA	SAMPLE	SIGHA	SIGHA 3	LOW LOW	LIMIT	REJ COR	LO-FH	Z FAIL HIGH	HIGH	HIGH	HI-FH	UNITS
	*		*	*	*						*				*	
ERROR(BIT#1)(1+)	-157.H		-30.6H	58.1M	33	97.0	100.			-190.H	2.74	00.0	190.1		3.80	1 %
ERROR(BIT#1)(I-)	-160.H		-32.2H	57.1H	33	62.0	100.			-190.H	2.76	00.0	190.H	-	3.89	*
ERROR(BIT#2)(I+)	-77.4H		-10.4H	33.6M	33	100	100.	00.0		-190.H	5.34	0.00	190.M	_	2.96	*
ERROR(B1T#2)(1-)	-73.4H		-10.5H	33.2M	33	100	100		-190.H	-190.H	5.40	0.00	190.H	_	6.04	×
ERROR(BIT#3)(I+)	-51.2M		7.41H	31.04	33	100	100.		-190.H	-190.H	6.37	00.0	190.H	_	5.89	*
ERROR(BIT#3)(I-)	-40.3M		8.08H	30.2H	21	100	100		-190.H	-190.H	6.56	0.00	190.M	_	6.02	×
EKKOK(BIT#4)(I+)	-55.8M		-8.21M	22.4K	33	0.76	100.		-190.8	-190.H	8.10	00.0	190.M	_	8.83	×
ERROR(BIT44)(I-)	-55.5M	29.3M	-7.86H	22.7H	33	97.0	100	0:0		-190.H	8.04	0.00	190.M	190.H	8.73	×
ERROR(BIT45)(I+)	-23.5H		-1.10H	15.3H	33	63.6	100.		-190.H	-190.M	12.3	0.00	190.M		12.5	×
ERROR (BIT#5)(I-)	-23.2H		-551.0	15.6M	33	97.0	100			-190.H	12.1	0.00	190.H		12.2	*
ERROR(BIT&6)(1+)	-60.6M	162	-7.55H	21.8M	33	97.0	100.		-190.H	-190.H	8.36	0.00	190.H		9.05	×
ERROR(BIT&6)(I-)	-58.6M	3	-7.06H	21.4H	33	62.0	100.		-190.H	-190.H	8.53	0.00	190.H		6.19	×
ERROR(BIT#7)(I+)	-9.21H	46.3M	11.54	14.07	33	6006	100		-190.H	-190.H	13.9	0.00	190.H		12.3	×
ENGROPH (BITAT) (I-)	-7.16H	45.6H	11.94	14.78	33	6.06	100		-190.H	-190.H	13.8	0000	190.H		12.2	×
ERROR (BIT#8) (I+)	-33.64	30.8H	-5.52H	14.54	21	97.0	100		-190.H	-190.H	12.7	000	190.H		13.5	*
1-17(84) 16 mm	PO:50-	47.50	174.FF	10.70	?!	1000	2000		-170.8	-170.6	11.0	00.00	140.4		11.5	×:
	13.77	123.8	10.8H	HO.CZ	3 5	75.7				9.0	!	000	190.8		4.66	×:
- THE STATE OF THE	E5.51		11.30	24.07	3:	27.0			1 000	2000	100	00.0	140.4		4.83	×:
	E-007		2	24.70	3 6	15.7			200	2000	2000				-	*
- THE PARTY OF THE	H-701-	-00-01-		2 752	3 :	27.0	0 20		200	2000	2:10	100	100	00.0	1	K :
STATE SOME AND	10.04	126.57	10.00	17.5 C	3 5	0000		000	20.00	20.00		300	20.00	500	0.0	× :
	10.01 10.01	10.05.	10.74.	74.70	2 5	200			10.00	1000	10.7	300	2000	20.00	0000	4 :
4(1-)	24.5x	1.001	114.K	24. AX	3 2	97.0	100			200		300	200	100	30.0	**
4-614)	77 00	1 00.	187 K	21.0		0 7 0	100	-	-	2		70	100			
M -(1-)	00.7M	184 ×	157.K	30.00	; 5	07.0		-	-	200		000	200	200	100	
STA TOUGH	4.02	17.7	0.40	27.6	3 2	07.0	100	-		3					100	
FITA TOTAL	1.21	17.7	27.8	2.22	32	02.0	100	-	-	000	-	200	14.0	20.41	200	5 5
	5.72	11.3	8.20	1.17	33	93.9	100	-	1	0.00		00.0	16.0	16.0	67.9	5 5
233	6.00	11.3	8.23	1.16	33	97.0	100		****	00.0		0.00	16.0	16.0	69.9	4
3.65	4.91	9.86	7.57	1.19	33	97.0	100.	-	1	00.0		0.00	16.0	16.0	7.11	5
	5.19	10.0	7.58	1.16	33	43.4	100.			0.00		0.00	16.0	16.0	7.27	5
	6.93	9.31	7.97	469.M	33	6.06	100.			0.00		0.00	16.0	16.0	17.1	5
	2.00	9.31	2.99	490.K	33	63.6	100.			0.00		0.00	16.0	16.0	16.4	5
	6.64	8.48	7.82	326.H	33	97.0	97.0			0.00		0.00	16.0	16.0	23.0	5
77.70	5.85	8.49	7.83	480.M	33	97.0	97.0	!	1	00.0		00.0	16.0	16.0	17.0	5
	6.67	10.1	8.09	855.K	33	97.0	100.		1	0.00		0.00	16.0	16.0	9.56	5
	6.93	10.0	8.10	858.M	33	93.9	100.			0.00		0.00	16.0	16.0	9.20	5
	•	8.51	7.48	316.H	33	97.0	97.0	-	-	0.00	-	0.00	16.0	16.0	56.9	5
	6.64	8.89	7.49	368.M	33	63.6	97.0	-	:	0.00	-	0.00	16.0	16.0	23.1	5
100		8.51	7.92	298.M	33	97.0	100.		1	0.00	-	0.00	16.0	16.0	27.1	5
DELTA I(8)(I-)	6.87	8.58	2.90	338.W	33	93.9	97.0	!!	!	0.0	!!	0.0	16.0	16.0	23.9	5
ELTA IFS	-555.4	505.K	57.3M	215.M	33	93.9	100	0.00	-8.00	-8.00	37.5	0.00	8.00	8.00	37.0	5

Table 6-6. Statistical data for purchased sample (tight reject limits). (cont'd.)

TABLE 6-7. Comparison of GE/Signetics

Data on 5 industry samples

	100	TA =	-55°C	TA =	+25°C	TA =	+125°C	
S/N	Parameter	GEOS	Sig	GEOS	Sig	GEÖS	Sig	Unit
1	I+ ab.0	3.280	3.27	3.320	3.35	3.240	3.28	mA
24		2.075	2.02	2.000	1.97	1.810	1.79	
35		1.555	1.55	1.455	1.47	1.290	1.31	
47		2.430	2.49	2.525	2.42	2.170	2.15	
70		2.095	2.05	2.120	2.13	1.985	2.00	
1	I-	-7.125	-7.17	-7.185	-7.24	-7.100	-7.17	mA
24		-5.930	-5.94	-5.870	-5.89	-5.690	-5.72	
35		-5.445	-5.50	-5.365	-5.43	-5.210	-5.27	
47		-6.365	-6.39	-6.280	-6.30	-6.025	-6.05	
70		-5.960	-5.97	-6.000	-6.04	-5.890	-5.93	
1	IFS(Io)	1.994	1.9828	1.995	1.9825	1.992	1.9802	mA
24		1.995	1.9824	1.996	1.9828	1.995	1.9819	
35		1.996	1.9869	1.999	1.9878	1.998	1.9878	
47		1.988	1.9782	1.987	1.9690	1.985	1.9745	
70		1.988	1.9761	1.990	1.9777	1.989	1.9781	
1	IFS (Io)	1.994	•	1.994		1.991		mÀ
24		1.994		1.996		1.995		1
35		1.996		1.999		1.998	• 16th	
47		1.988		1.987	• .	1.985		
70		1.988	-	1.991		1.989		
1	IZS (Io)	26.00M	-200M	97.50M	-510M	353.5M	-210M	uA
24	5.00 f	-1.000M	-220M	8.000M	-600M	82.50M	-390M	
35		-500.0u	-210M	30.00M	-590M	190.0M	-170M	
47		62.00M	-160M	158.5M	-440M	399.0M	-130M	
70		109.5M	-200M	81.00M	-530M	452.0M	-470M	
1	IZS (To)	26.00M	-190M	105.5M	-500M	325.5M	-260M	Au
24		-500.0u	-210M	10.50M	-590M	50.50M	-550M	
35		4.000M	-210M	22.00M	-570M	120.0M	-470M	
47		64.50M	-150M	157.0M	-440M	369.0M	-190M	\$4. \$4.
70		22.50M	-190M	81.50M	-520M	230.0M	-360M	

*M = milli (-200M = -0.2)

*u = micro (-500.0 u = -0.0005)

TABLE 6-7. Comparison of GE/Signetics (cont'd.)

Data on 5 industry samples

		TA -	-55°C	TA -	+25°C	TA =	+125°C	
S/N	Parameter	GEÖS	Sig	GEOS	Sig	GEÖS	Sig	Unit
1	PSSIFS+1	-24.91M	-10M	0.000	0.02	-70.08M	0.06	uA
24	(I ₀)	-19.79M	-20M	25.15M	0.0	-15.13M	0.02	
35	-144	10.01M	+10M	-24.91M	0.0	-30.04M	0.03	
47	C1.3	-49.83M	+50M	-50.06M	-60M	-100.1M	0.11	
70		0.000	0.0	-15.13M	-10M	-50.06M	0.04	
1	PSSIFS+1	34.92M		-20.02M		5.122M		uA
24	(\overline{I}_0)	20.02M		-40.05M		-80.09M		
35		-20.02M		-20.02M		-84.98M		
47		0.000		-50.06M	10.0	-99.88M		
70		0.000	AND THE STREET	-40.05M	15.5	-149.9M		
1	PSS IFS+2	-24.91M	-40M	0.000	-30M	-70.08M	10M	uA
24	(I ₀)	-19.79M	-30M	25.15M	-30M	-15.13M	0	
35		10.01M	-40M	-24.91M	-10M	-30.04M	10M	
47		-49.83M	-20M	-50.06M	+10M	-100.1M	50M	
70		0.000	-40M	-15.13M	-20M	-50.06M	10M	
1	PSS IFS+2	34.92M		-20.02M	-	5.122M	300	uA
24	(T ₀)	20.02M		-40.05M		-80.09M		
35	•	-20.02M		-20.02M		-84.98M		
47		0.000		-50.06M		-99.88M		
70		0.000		-40.05M	•	-149.9M		
1	PSSIFS-1	-74.97M	+90M	-114.8M	+120M	-115.0M	200M	uA.
24	(I ₀)	-100.1M	+60M	-70.08M	+120M	-84.98M	190M	
35	Milet-	-99.88M	+20M	-60.07M	+100M	-125.0M	150M	
47		250.1M	-40M	99.88M	+50M	50.06M	130M	
70		-150.2M	+140M	-64.96M	+170M	-149.9M	250M	
1	PSSIFS-1	-79.86M		-64.96M		-145.1M	(Fa)	uA
24	(T ₀)	-80.09M	-	-84.98M	-	-140.2M	•	
35	1000	-60.07M		-94.99M		-160.0M	•	
47		300.1M		149.9M		50.06M		
70		-149.9M	MUNC-	-180.0M	HIM .	-149.9M	•	

of the winders) tilling a pro-

TABLE 6-7. Comparison of GE/Signetics (cont'd.)

Data on 5 industry samples

		TA =	-55°C	TA -	+25°C	TA -	+125°C	
S/N	Parameters	GEOS	Sig	GEOS	Sig	GEOS	Sig	Unit
1	PSSIFS-2	-295.0M	270M	-255.2M	280M	-285.0M	360M	uA
24	(I ₀)	-129.9M	140M	-175.1M	200M	-655.0M	290M	
35	68.0	-329.9M	120M	-315.0M	160M	-4.865*	240M	
47		-150.2M	110M	-200.0M	170M	-600.0M	260M	
70		-299.9M	220M	-300.1M	280M	-450.1M	370M	
1	PSSIFS-2	-335.0M	2.0-	-270.1M	1.0-	-295.0M	(10 mia)	uA.
24	(\overline{I}_0)	-129.9M	1.6-	-165.1M	•7	-585.1M		
35		-220.0M	1.	-280.1M	-11	-3.190*	•	
47		-100.1M	1.0.	-149.9M	•	-349.9M		
70		-250.1M	1.	-299.9M		-400.0M		
1	IFSR1(Io)	2.110		2.880	•0	2.730	Ch -press	mA
24		2.930	(4)	2.930	-	2.640		
35		1.610*	11.0	1.730*	•	1.370*		
47		2.890	•	2.870	-	1.766*	-	
70	0.00	1.636*		2.680		2.016*		
1	IFSR1(Io)	2.750	•	2.930	• 3	2.910	Ein Baue an	mA.
24		2.930	1.0-	2.930		2.660		
35		2.029*		2.070*	1.	1.628*	•	
47		2.910		2.900	•	2.290		
70		2.240	•	2.860	•	2.310	•	
1	IFSR2(Io)	1.915*	•	3.780*		3.450*	Marine 84	mA.
24		4.010*	•	4.020*	1.	2.210*	•	
35		2.460*	•	2.290*	1.00	2.040*		
47		4.030*	•	3.680*	•	1.775*	*	
70	1.00	2.004*	•	2.100*	•	1.838*	A STATE OF THE STATE OF	
1	IFSR2(Io)	3.690*	1.	4.020*	•	4.020*	th surry	-
24		4.010*		4.020*	•	2.530*	•	
35		3.320*		2.970*	•	2.460*	•	
47		4.020*	•	4.030*		2.920*	•	
70		3.280*	1.0	3.340*	•	2.740*		

TABLE 6-7. Comparison of GE/Signetics (cont'd.)

Data on 5 industry samples

	17774	TA =	-55°C	TA =	+25°C	TA -	+125°C	
s/N	Parameter	GEÔS	Sig	GEOS	Sig	GEÖS	Sig	Unit
1/40	IREF-MORE	-1.875	-2.21	-1.980	-2.34	-1.915	-2.25	uA
24		-383.0M	-0.74	-452.5M	-0.83	-492.5M	-0.85	J) 8
35	240045	-452.0M	-0.81	-492.5M	-0.86	-484.0M	-0.86	
47		-1.965	-2.31	-1.925	-2.27	-1.570	-1.90	
70		-1.120	-1.47	-1.150	-1.50	-965.0M	-1.31	
100	IIH(Bit #1)	9.200M	-0.1	3.650M	-0.1	20.10M	0	uA
24		950.0u	0	6.750M	-0.1	6.000M	-0.1	
35		7.650M	0	4.700M	-0.1	3.750M	-0.1	
47	***	7.050M	0	-1.050M	-0.1	13.15M	-0.1	
70		9.200M	0	-300.0u	-0.1	15.05M	-0.1	
100	IIH(Bit #2)	7.900M	0	5.050M	0	16.95M	0	uA
24		3.150M	0	7.400M	0 .	4.950M	0	
35		8.150M	0	3.950M	-0.1	4.250M	0	
47		7.650M	0	-700.0u	0	11.65M	0	
70		9.500M	0	-1.350M	0	13.50M	0	
1	IIH(Bit #3)	6.700M	0	6.350M	0	16.70M	0	uA
24		4.700M	0	8.150M	-0.1	4.300M	0	
35		8.950M	+0.1	2.900M	0	11.50M	0	
47		8.400M	0	400.0u	0	11.25M	0	
70		9.200M	0	900.0u	0	11.50M	0	
1/42	IIH(Bit #4)	5.650M	0	7.550M	0	15.50M	0 13 582	uA.
24		6.150M	+0.1	9.000M	0	3.500M	0	
35		9.300M	+0.1	1.700M	0	10.55M	0	
47		9.050M	0	2.900M	0	10.10M	0	
70		8.350M	0	-1.850M	0	10.45M	+0.1	
1	IIH(Bit #5)	4.850M	0	8.350M	-0.1	13.25M	01)584	uA
24		7.250M	0	9.450M	-0.1	2.950M	0	
35		9.350M	0	900.0u	0	12.25M	0	5
47		9.400M	-0.1	4.600M	0	8.400M	0	
70	100	7.150M	0	-50.0u	-0.1	9.650M	0	

TABLE 6-7. Comparison of GE/Signetics

Data on 5 industry samples

s/N	Parameter	GEOS -	-55°C Sig	TA =	+25°C Sig		+125°C	Unit
1	IIH(Bit #6)	4.250M	0	9.050M	0	11.35M	0 81.71	uA
24	8 1 8	8.100M	0	9.550M	0	2.450M	0	15
35	8.7- 7	8.800M	0	-50.00u	0	13.90M	0	26
47	3 Eu 3	9.350M	0	5.950M	0	8.250M	0	1
70		6.100M	. 0	400.0u	0	8.850M	0	- 05
1	IIH(Bit #7)	3.600M	0	9.200M	0	10.30M	0	uA
24		8.850M	0	8.800M	0	2.250M	-0.1	2.6
35		7.900M	0	-1.150M	0	14.50M	0	
47		8.300M	0	7.000M	0	7.750M	0	143
70		5.200M	0	200.0u	0	8.750M	0	0.6
1	IIH(Bit #8)	3.200M	0	9.500M	0	9.250M	0.00111	uA
24		9.400M	0	7.800M	-0.1	2.150M	0	
35		6.700M	-0.1	-1.900M	-0.1	14.80M	0	
47		7.400M	-0.1	8.000M	0	8.900M	0	
70	5.5	4.500M	-0.1	250.0u	-0.1	6.700M	0	
1	IIL(Bit #1)	-4.705	-4.3	-5.195	-4.9	-5.245	-5.0	uA
24		-1.305	-1.4	-1.565	-1.6	-1.690	-1.7	24
35		-1.480	-1.6	-1.580	-1.7	-1.575	-1.7	3.8
47		-4.050	-4.0	-4.270	-4.0	-3.950	-3.6	
70		-2.810	-2.8	-3.050	-3.0	-2.720	-2.7	
1	IIL(Bit #2)	-4.170	-3.9	-4.600	-4.3	-4.595	-4.4	uA
24		-1.365	-1.5	-1.610	-1.7	-1.715	-1.7	45
35		-1.455	-1.7	-1.575	-1.7	-1.600	-1.7	
47		-3.655	-3.7	-3.905	-3.7	-3.625	-3.4	
70	9,5.5	-2.645	-2.7	-2.840	-2.8	-2.515	-2.5	
1	IIL(Bit #3)	-4.350	-4.1	-4.730	-4.4	-4.670	-4.4	uA
24		-1.385	-1.5	-1.615	-1.6	-1.700	-1.7	
35		-1.540	-1.8	-1.630	-1.8	-1.655	-1.8	33
47		-4.180	-4.2	-4.340	-4.1	-4.000	-3.7	47
70		-2.795	-2.8	-2.980	-3.0	-2.600	-2.6	70

TABLE 6-7. Comparison of GE/Signetics (cont'd.)

Data on 5 industry samples

		TA -	-55°C	TA =	+25°C	TA -	+125°C	
s/N	Parameter	GEOS	Sig	GEOS	Sig	GEOS	Sig	Unit
1	IIL(Bit #4)	-4.285	-4.0	-4.655	-4.4	-4.635	-4.4	uA
24	0. 10	-1.385	-1.5	-1.625	-1.7	-1.725	-1.8	
35		-1.585	-1.8	-1.660	-1.8	-1.645	-1.8	
47		-3.945	-3.9	-4.130	-3.9	-3.835	-3.6	
70		-2.700	-2.7	-2.860	-2.9	-2.550	-2.6	(F)
1	IIL(Bit #5)	-4.450	-4.1	-4.830	-4.5	-4.775	-4.5	uA
24	1.040 900	-1.345	-1.4	-1.590	-1.6	-1.700	-1.7	
35		-1.555	-1.7	-1.670	-1.8	-1.700	-1.8	
47		-4.370	-4.3	-4.515	-4.2	-4.045	-3.8	
70		-2.930	-2.9	-3.120	-3.1	-2.745	-2.7	
1	IIL(Bit #6)	-4.420	-4.1	-4.820	-4.6	-4.765	-4.6	uA
24		-1.400	-1.5	-1.645	-1.7	-1.730	-1.8	
35		-1.545	-1.8	-1.630	-1.8	-1.670	-1.8	
47		-4.205	-4.2	-4.350	-4.1	-3.915	-3.7	
70		-3.015	-3.0	-3.145	-3.2	-2.765	-2.8	
1	IIL(Bit #7)	-4.305	-4.1	-4.695	-4.5	-4.680	-4.5	uA
24		-1.330	-1.4	-1.610	-1.7	-1.740	-1.8	
35		-1.490	-1.7	-1.620	-1.8	-1.645	-1.8	
47		-4.230	-4.2	-4.385	-4.2	-3.935	-3.7	
70		-2.900	-2.9	-3.100	-3.1	-2.725	-2.7	
1	IIL(Bit #8)	-4.840	-4.5	-5.400	-5.1	-5.450	-5.2	
24		-1.445	-1.5	-1.660	-1.7	-1.775	-1.8	
35		-1.720	-1.9	-1.805	-2.0	-1.825	-1.9	
47		-4.200	-4.1	-4.445	-4.3	-4.070	-3.8	
70		-2.980	-3.0	-3.285	-3.3	-2.940	-2.9	
1	IFS+(Io)	1.997		1.996		1.993	w (da) 111	mA
24	17.7- 1	1.996	8,10	1.997		1.995		33
35		2.001	8. J.	2.001	8 I -	2.000		
47		1.991	1.1-	1.989	1 -	1.986	× •	
70		1.991	0.8	1.992		1.990		

TABLE 6-7. Comparison of GE/Signetics (cont'd.)

Data on 5 industry samples

	3" (53.84		-55°C		+25°C	TA =	+125°C	
S/N	Parameter	GEOS	Sig	GEOS	Sig	GEOS	Sig	Unit
1	IFS+ (\overline{I}_0)	1.996	* • 3	1.996	v • 100	1.992	Econo (Sic)	mA
24		1.996		1.997	a • 100	1.995	- 6.3)	
35		2.001	- · *	2.001	Mai	2.001		
47		1.992	• 10	1.989	· 150	1.986		
70		1.991	- A	1.992	- W1	1.990		
1	IFS-(Io)	1.993	H1.	1.994	.05 - HO	1.991	Kprox+385	1
24	196.00	1.994	(8) · (8)	1.995	181 - 181	1.994	• (al)	2.5
35		1.995	2.5- B	1.998	NE - X86	1.997	•	
47		1.987	4.4 · · · · · · · · · · · · · · · · · ·	1.986	11-10	1.984		
70		1.986		1.989	MET . HA	1.988		
1	IFS-(Io)	1.992		1.993	· 10	1.991	distributions.	
24		1.993		1.995	- MA	1.994	- 2.70	
35		1.995		1.998	- 111	1.997		
47		1.987		1.986		1.984		
70		1.987	- 10	1.989		1.988		0.
1	Delta IFSC	3.934	.28	2.243	29	1.749	41	uA
24	(I ₀)	2.499	.13	1.713	36	1.552	28	4.5
35	New Johnson	5.893*	.23	3.566	24	2.648	17	
47		4.739*	.11	2.862	33	1.956	14	
70		4.343*	.58	2.754	01	2.247	01	
1	Delta IFSC	3.964	.23	2,257	34	1.694	37	uA
24	(T ₀)	2.544	.13	1.753	43	1.507	33	18
35		5.901*	.23	3.543	28	2.707	18	
47		4.774*	.1	2.862	4	2.007	45	
70		4.233*	.53	2.689	04	2.347	12	
1	Error (Bit#		22M		4.5M		-6.0M	7.
24	(I ₀)	-22.97M		-4.198M	-19.5M	15.88M	-35.5M	
35	107 \$ 2.24	11.56M	-32.5M		-47M	35.94M	-58M	
47		-89.07M	70.5M		36.5M		22M	. 14
70		-54.23M		-32.45M	9.5M	-22.41M	9.5M	

TABLE 6-7. Comparison of GE/Signetics (cont'd.).

Data on 5 industry samples

s/N	Parameter	TA GEOS	-55°C Sig	GEOS	+25°C Sig	T _A =	+125°C Sig	Unit
Al	Error(Bit#1)	-55.70M		-36.30M	•	-26.34M	(.) +2 v :	7.
24	(T ₀)	-4.526M		2.843M		19.55M		
35		12.84M		28.57M		37.77M		
47		-81.24M	9	-47.88M		-37.43M	- 0 - 0	
70		-51.47M		-27.52M		-15.64M		
1	Error (Bit#2)	-50.60M	36.5M	-45.77M	33M	-45.20M	33.5M	7.
24	(I ₀)	-30.95M	18M	-30.73M	18.5M	-30.92M	20.5M	
35		-18.98M	7M	-16.45M	2.5M	-14.67M	3.5M	
47		1.310M	-16.5M	-11.81M	-3.5M	-17.05M	5M	
70		10.54M	-22M	12.97M	-24.5M	11.78M	18M	
1	Error (Bit#2)	-60.08M	•	-53.21M		-52.17M	1 (+ hours	7
24	(T ₀)	-36.22M		-30.64M		-31.05M	•	
35		-14.58M	•	-12.18M	- 4	-11.18M	•	
47		-18.50M	•	-19.06M		-21.20M	•	
70		13.11M	. •	14.93M		15.61M		
1	Error (Bit#3)	23.29M	-34M	13.80M	-23M.	6.927M	-15M	7.
24	(I ₀)	-1.601M	-7M	-5.421M	-2M	-9.693M	2.5M	
35	7 P. 1 9	-16.12M	7.5M	-19.92M	11M	-22.07M	14M	
47		-20.66M	11.5M	-21.81M	11M	-22.72M	13.5M	
70		-2.980M	-5.5M	-10.05M	2.5M	-16.39M	11M	
1	Error (Bit#3)	24.87M	- ·	14.70M		6.362M	er the tree	%
24	(\overline{I}_0)	-7.693M		7.042M		-10.10M	• 7 6	
35		-15.72M		-18.77M		-20.78M		
47		-19.32M		-21.38M		-21.90M		
70		-2.009M		-8.437M	2	-13.51M		
1	Error(Bit#4)	15.09M	-23M	11.85M	-20.5M	10.64M	-16M	%
24	(I ₀)	-13.42M		-15.44M	8.5M	-18.56M	13M	
35		-25.93M		-29.89M	23M	-32.57M	27M	
47	475 W	-4.106M		-7.308M	-1.5M	-8.174M	2M	
70		-9.262M		-17.26M	11M	-22.50M	19M	

TABLE 6-7. Comparison of GE/Signetics

Data on 5 industry samples 3

	F 13	TA =	-55°C				+125°C	
S/N	Parameter	GEOS	Sig	GEOS	Serie	GEOS	Sig	Unit
1	Error(Bit#4)	17.02M		13.88M		10.26M	75 - 828 Nove	7.
24	(\overline{I}_0)	-14.81M	•	-15.04M	•	-17.72M	- 2.4	
35		-25.50M		-29.32M		-31.20M	•	
47		7.048M	• •	-1.782M		-5.243M		
70		-8.939M		-16.23M	# J	-20.81M		
1	Error (Bit#5)	6.706M	-6M	3.631M	-3.5M	376.0u	-1.5M	7.
24	(1 ₀)	30.00M	-29M	30.97M	-32M	32.17M	-31.5M	
35	Mary Mary Co	12.52M	-12.5M	15.95M	-16M	16.04M	-16.5M	
47		7.166M	-5M	2.034M	-1M	-1.403M	1.5M	
70		5.594M	-3	967.8u	-1M	-1.671M	2.5M	
1	Error (Bit#5)	7.584M	•	\$ 4.070M		560.7u	(Bib) 287 year	7.
24	(Ī ₀)	30.18M	-	32.07M		31.56M	•	
35		13.55M	•	17.06M		17.92M		
47		5.146M		820.2u		-2.155M		
70		5.301M		1.583M		-197.9u		
1	Error (Bit#6)	-26.42M	27M	-30.52M	30.5M	-33.12M	32.5M	7.
24	(I ₀)	-8.926M	8.5M	-14.75M	15M	-17.48M	17.5M	
35	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-18.21M	18M	-22.27M	22M	-25.33M	25.5M	
47		-14.34M	14.5M	-16.75M	18M	-18.51M	19M	
70		19.02M	-17M	14.52M	14M	11.03M	-18.5M	
1	Error (Bit#6)	-25.84M		-29.97M		-32.71M	· · · ·	7.
24	(\overline{I}_0)	-10.62M		-14.83M		-16.77M		
35		-17.65M		-21.58M		-24.35M	•	
47		-15.12M	•	-17.95M		-19.38M	•	
70		18.62M		15.02M		12.66M	• // 4	
1	Error (Bit#2)	24.25M	-24M	24.12M	-24.5M	29.76M	-30M	7.
24	(I ₀)	-6.618M	7M	-10.71M	11M	-13.08M	12M	
35		1.277M	-1.5M	-2.103M	2.5M	-3.480M	1.5M	
47		35.51M	-35.5M	30.84M	-31M	33.10M	-33.5M	
70		-6.726M	7.5M	-7.276M	7M	-1.122M	-3.5M	

TABLE 6-7. Comparison of GE/Signetics

Data on 5 industry samples

		TA =	-55°C	TA =	+25°C	TA =	+125°C	
S/N	Parameter	GEÖS	Sig	GEOS	Sig	GEOS	Sig	Unit
1	Error(Bit#7)	25.05M		23.79M		29.63M	(25110)	%
24	(T ₀)	-6.774M		-10.34M		-12.46M		
35		1.107M		-1.871M	arat • ara	-3.327M		
47		34.40M		31.50M		32.14M	•	
70		-6.798M		-7.184M		-395.2u	• •	
1	Error (Bit#8)	4.940M	-4.5M	3.149M	-2.0M	3.772M	-4.5M	%
24	(I ₀)	11.78M	-12M	5.205M	-5.0M	317.5u	-1.5M	
35	tavale	10.72M	-11M	5.103M	-5.0M	1.576M	-3.0M	
47		42.47M	-45M	35.76M	-36.5M	33.72M	-34.5M	
70		2.900M	-2.5M	-2.420M	2.0M	-2.095M	-1.0M	
1	Error (Bit#8)	20.65M		19.61M		19.60M		%
24	(\overline{I}_0)	7.918M		827.3u		-4.487M		
35		1.831M		-3.987M	•	-7.569M		
47		44.72M		36.61M	•	33.24M		
70		-8.931M		-14.54		-14.55M		
1	Sum NL+	74.27M	90M	56.55M	71.5M	51.48M	675M	%
24	(I ₀)	41.78M	43.5M	36.18M	56.5M	48.37M	67M	
35	16.18	36.08M	56M	47.37M	65.5M	53.55M	73.5M	
47		86.45M	99.5M	68.63M	69M	66.82M	70.5M	
70		38.06M	49M	28.45M	38.5M	22.81M	40M	
1	Sum NL+	95.18M		76.05M		66.42M	e (el e lia)	%
24	(\overline{I}_0)	38.10M		35.74M		51.12M		
35		29.32M		45.63M		55.69M	•	
47		91.31M		68.94M	•	65.38M		
70		37.03M		31.53M		28.27M		
1	Sum NL-	-122.1M	-89M	-101.9M	-72M	-92.43M	-67M	%
24	(I ₀)	-84.48M	-46.5M	-81.24M	-55.5M	-89.73M	-66M	
35	- 40,11	-79.24M	-53.5M	-90.63M		-98.12M	-75M	
47		-128.2M	-101.5M			-105.3M	-68.5M	
70		-73.20M	-47M	-69.45M		-66.19M	-39.5M	

TABLE 6-7. Comparison of GE/Signetics

Data on 5 industry samples

7

	Т	-55°C	m -	+2500		110500	
Parameter	GEOS	Sig	GEOS	+25°C Sig	GEOS	+125°C Sig	Uni
Sum NL-					107	_	7
(\overline{I}_0)				•		-	
Sum NL	048	.001	045	0005	041	.0005	
(I ₀)	040	.002	045	.001	041	.0003	,
(-0)	043	.0025		.000	045	.0015	
	042	002	039	0005		.002	
	035	+.0002	041	+.002	043	.0005	
Sum NL		•		•		•	
(T ₀)		440		sagate.		· <u>- Ma</u>	
	71						
NL+(I _o)				15		24,	
NL+(To)		São -		10		10	
NL-(I ₀)		1 3 3 1 A		• 10		•	
	19081						
	56					1	

TABLE 6-7. Comparison of GEOS/Signetics Dynamic Data

Settling Time	eminima francisco P. 111, ordere			
	t _{SLH} (nsec)		t _{SHL} (nsec)	
<u>s/n</u>	GEOS	Signetics	GEOS	Signetics
76	100	86.8	110	83.2
30	107	122.8	110	83.2
63	110	86.8	106	90.4
66	104	86.8	104	79.6
68	104	76.0	107	90.4
Propagation D	elay		500.	\$40.4 200
(6000)	t _{PLH} (nsec)		t _{PHL} (nsec)	
s/n	GEOS	Signetics	GEOS	Signetics
1	35	31	44	15
24	41	32	42	14
35	50	43	56	36
47	33	29	42	5
70	34	33	41	13
Reference Amp		Lew Rate	▲toff (I	H - L) (nsec)
<u>s/n</u>	GEOS (bits hig	Signetics gh)	GEOS	Signetics
1	236	127	260	68
24	300	223	305	119
35	500	362	500	185
47	230	125	225	73
70	335	202	350	98

&U.S. GOVERNMENT PRINTING OFFICE: 1979-614-023/67

