1.
$$\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x)$$
 是 $\lim_{x\to x_0} f(x)$ 存在的(**义是 公**

f(x) 在点 x_0 连续是 f(x) 在点 x_0 处可导的 (外等)条件.

2.
$$\lim_{n \to \infty} \frac{n^2 + 1}{2n^2 + 2n} = \frac{1}{2}. = \lim_{n \to \infty} \frac{1 + \frac{1}{12}}{2 + \frac{1}{12}} > \frac{1}{2}$$

3、求极限
$$\lim_{x\to\infty} \frac{(x+2021)^2(2x+1)^3}{x^5+3}$$
. - 以如 $\frac{(|t|^{\frac{2\pi M}{3}})^2 \cdot (|z+\frac{1}{3}|)^3}{|t+\frac{3}{3^2}|}$ 8

4.
$$\lim_{x \to +\infty} x \left(\sqrt{1 + x^2} - x \right) = \lim_{x \to +\infty} x \frac{1}{\sqrt{1 + x^2} + x} = \lim_{x \to +\infty} \frac{1}{\sqrt{\frac{1}{x^2} + 1} + 1} = \frac{1}{2}$$

5、计算
$$\lim_{x\to 0} (1-2\sin x)^{\cot x} \lim_{x\to 0} (1-2\sin x)^{\cot x} = \lim_{x\to 0} (1-2\sin x)^{\cot x} = \lim_{x\to 0} (1-2\sin x)^{\frac{1}{2}\cos x} = e^{-2}$$

$$= \lim_{x\to 0} (1-2\sin x)^{\cot x} = \lim_{x\to 0} (1-2\sin x)^{\cot$$

6、求极限:
$$\lim_{x\to 0} \frac{1}{x} \left(\frac{1}{\sin x} - \frac{1}{\tan x} \right) = \frac{1}{2} \cdot \frac{\lim_{x\to 0} \frac{1}{x}}{\lim_{x\to 0} \frac{1}{x}} \left(\frac{1}{\sin x} - \frac{\log x}{\sin x} \right) = \lim_{x\to 0} \frac{1}{x} \cdot \frac{1 - \log x}{\sin x}$$

$$\lim_{x \to 0} \frac{1}{x} \left(\frac{1}{\sin x} - \frac{1}{\tan x} \right) = \lim_{x \to 0} \frac{1}{x} \left(\frac{\tan x - \sin x}{\sin x \tan x} \right) = \lim_{x \to 0} \frac{x \cdot \frac{1}{2} x^2}{x^3} = \frac{1}{2}$$

7、 计算
$$\lim_{x\to 0} \frac{(1+x^2)^{\frac{1}{3}}-1}{\cos x-1} = \lim_{x\to 0} \frac{\frac{1}{3}x^2}{-\frac{1}{2}x^2} = -\frac{2}{3}$$
.

8.
$$\lim_{x\to 0} \left(\frac{1+x}{1-e^{-x}} - \frac{1}{x} \right)$$
 = $\lim_{x\to 0} \left(\frac{1+x}{1-e^{-x}} - \frac{1}{x} \right)$ = $\lim_{x\to 0} \left(\frac{1+$

9. 求极限
$$\lim_{x\to 0} (\sec x - \tan x)$$
.

9. 求极限
$$\lim_{x\to 0} (\sec x - \tan x)$$
.
$$= \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \sin x - 1}{(\arcsin x)^2} \right) = \lim_{x\to 0} \left(\frac{e^x - \cos x - 1}{(\arcsin$$

$$\text{\mathbb{H}: \mathbb{R}} \stackrel{=}{\text{\mathbb{H}}} = \lim_{x \to 0} \frac{e^x - \sin x - 1}{x^2} = \lim_{x \to 0} \frac{e^x - \cos x}{2x} = \lim_{x \to 0} \frac{e^x + \sin x}{2} = \frac{1}{2}.$$

11.
$$\lim_{x \to 0} \frac{2x(e^x - 1)}{\sin^2 x} = \lim_{x \to 0} \frac{2x}{x} = 2$$

为级为不能重接处 如于可上下国书学书室。