Paradygmaty programowania

IT, inż. II rok

Imię i nazwisko	Data	Godzina		
Paweł Kluska	3.11.2021	11:15		

	1	2	3	4	5	6	7	8	9	10
Lista 3										
	V	Ocaml	V	V	V					
Lista 4										
	V	V	V	V	V					

1) a) let
$$f1 x = x 2 2;$$
;

Jest to funkcja jednoargumentowa zwracająca typ polimorficzny

Z kontekstu mogę odczytać że x jest funkcją przyjmującą 2 argumenty Int i zwracającą typ polimorficzny

x: Int -> Int -> 'a

Zatem całość ma typ

f1: x -> 'a

f1: (Int -> Int -> 'a) -> 'a

b) let
$$f2 \times y z = x (y^z);$$

Z kontekstu mogę odczytać że y i z są stringami (została użyta konkatenacja stringów)

x jest funkcją przyjmującą string i zwracającą typ polimorficzny

x: String -> 'a

Zatem całość ma typ

f2: x -> y -> z -> 'a

f2: (String -> 'a) -> String -> String -> 'a

2) a) let curry3 f x y z = f(x,y,z);;

Z kontekstu mogę odczytać że f jest funkcją przyjmującą 3 elementową krotkę i zwracającą typ polimorficzny. Zatem

Całość ma typ

Curry3:
$$f -> x -> y -> z -> 'd$$

b) let uncurry3
$$f(x,y,z) = f x y z;$$

Z kontekstu mogę odczytać że f jest funkcją przyjmującą 3 argumenty w postaci rozwiniętej zwracającą typ polimorficzny

Zatem całość ma postać

$$f -> x*y*z -> 'd$$

- 4) Jeżeli nastąpi przypadek, dla którego głowa listy będzie najmniejszym elementem listy, przestanie się ona dzielić i będą wywoływane kolejne wywołania rekurencyjne tej metody dla niezmienionych list aż nastąpi przepełnienie stosu.
 - b) Jeżeli lista ma kilka takich samych elementów zostaną one pominięte i w posortowanej tablicy będzie tylko jeden element z jednego rodzaju.

Lista 4

1) a) let $f1 \times yz = xyz$;

Z kontekstu możemy odczytać że x jest funkcją dwu argumentową, , z i y są wartościami polimorficznymi. A zatem

Zatem całość ma postać

b) let f2 x y = function z -> x::y;;

Z kontekstu można odczytać że x jest typem polimorficznym 'a, y jest listą z typami polimorficznymi 'a, wynikiem jest funkcja przyjmująca inny typ polimorficzny 'b i zwracająca listę typu polimorficznego 'b. A zatem

$$f2: x -> y -> fw$$