Quantitative Economics Lecture 1 - Introduction to Quantitative Economics and Probability

Richard Povey

University of Oxford

23rd April 2018

richard.povey@hertford.ox.ac.uk, richard.povey@st-hildas.ox.ac.uk

With thanks to Ian Crawford, Margaret Stevens, Vanessa Berenguer-Rico.

Introduction to Quantitative Economics

Aims:

- Testing theories
- Quantifying / calibrating models
- Forecasting
- Policy recommendations

• Main Basic toolkit:

- Probability
- Statistics

Important:

Not only Economics!

Probability and Statistics are central to Science!

Applications of Probability and Statistics in Economics

- Econometrics "Economic measurement"
- Microeconometrics Analysis of microeconomic data concerning many distinct individual agents
 - Randomised Controlled Trials : Empirical Programme Evaluation
 - Public Economics / Public Policy
 - Development Economics
 - Competition Policy e.g. analysing market structure and outcomes
 - Fiscal Policy Analysis e.g. impact of policies such as taxation on income distribution and social welfare

Applications of Probability and Statistics in Economics

 Macroeconometrics / Time Series Econometrics -Analysis of macroeconomic variables over time

- Monetary Policy
- Empirical Finance
- Growth Theory

Introduction to Probability and Statistics

- This is the first of 6 lectures on probability and statistics.
- Problem: How to model environments with chance/randomness/stochasticity.
- **Unpredictable outcomes**: tossing a coin, gender of a new born, grade on an exam, first salary after graduation, etc...
- Probability Theory: Mathematical formalisation of randomness

Prerequisites:

- Differential and integral calculus.
- If you are rusty or not confident with integration, review chapter 10 of the "Maths Workbook".

Introduction to Probability and Statistics

Material based primarily on:

- "Introduction to Probability," by Hoel, Port, Stone
- "Introduction to Econometrics," by Stock and Watson

However, there are other good introductory books on statistics:

- R. L. Thomas, "Using Statistics in Economics", Prerequisites, and Chapters 1, 2
- T. H. Wonnacott and R. J. Wonnacott, "Introductory Statistics for Business and Economics", Chapters 1-5
- Sheldon Ross, "A First Course in Probability", Chapters 1-7
- ... and there are many others out there.

Objectives for Lectures 1 to 6

Primary Objective

 Lay conceptual foundations for remainder of Quantitative Economics course.

Secondary Objectives

- Material hopefully useful for expected utility theory in micro.
- ... and inter-temporal consumption macro topic with future uncertainty.
- We will not be able to cover everything, so you will need to read more broadly to fill in some of the details. We will, however, aim to provide a good overview of how the material fits together.
- 2 problem sets are available on Weblearn containing a variety of applications of this material. Your College tutors will tell you which problems from the problem sets to attempt for which weeks.

Some Philosophical / Methodological Issues

- Reality (physical and/or social) might be fundamentally stochastic (e.g. quantum mechanics)
- ... or it may just be that our knowledge about a deterministic reality is imperfect (e.g. the order of cards in poker is determined once the cards are shuffled, but we do not know this order, so we face a stochastic variable for each card until it is revealed).

Causal Explanation

- Statistics show us connections between observable variables.
 This is necessary but not sufficient to establish *causality*.
- This is where economic theory comes in, giving us models of the causal mechanisms underlying or generating the statistical relationships.

Sample Space and Events

Consider an experiment whose outcome is not predictable with certainty:

- Sample Space: the set of possible outcomes (Ω) . Elements in Ω will be denoted ω .
- **Event**: a subset of the sample space (A)

Examples: Sample Space: set of possible outcomes (discrete)

- Toss a coin: $\Omega = \{H, T\}$
- Flip two coins: $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}$
- Throw a die: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- Tossing two dice: $\Omega = \{(i,j) : i,j = 1,2,3,4,5,6\}$

Sample Space and Events

Examples: Events: Any subset of the sample space

- Flipping two coins: $A = \{(H, H), (H, T)\}$ i.e., event that a head appears on the first coin
- Tossing two dice:
 A = {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}, i.e., event that the sum of the dice equals 7

Some Special Events:

- Elementary Events: each outcome in the sample space
- Null Event (∅): the event consisting of no outcomes
- Certain Event (Ω) : the whole sample space

Continuous and Discrete Random Variables

- **Discrete r.v.** takes on a countable number of possible values.
- Examples: number of heads when tossing a coin, sum of points when throwing 2 dice, selecting ball from an urn, buying a good or not, etc...
- Continuous r.v. takes on a continuum of possible values
- **Examples:** waiting time of a bus, the life time of a transistor, height of a person, the wage of a worker, etc...

Examples: Sample Space: set of possible outcomes (continuous)

- ullet Time that it takes for a particle to decay: $\Omega = [0,\infty)$
- Choose a point at random from a subset of $\Omega = [a, b]$

Probability Space

- Probability Space: (Ω, A, P)
 - ullet Ω : Sample Space
 - ullet \mathcal{A} : Collection of events to which we assign probabilities.
 - ullet P: is a probability measure on ${\cal A}$
- How to choose A?
- A: should be a non-empty collection of subsets of Ω so that:
 - If A is in A so is A^c
 - If A and B are in A so are $A \cup B$ and $A \cap B$

Definition

- A non-empty collection of subsets $\mathcal A$ of Ω is called a σ -field of subsets of Ω provided that:
 - If A is in A, then A^c is also in A
 - If A_n is in $\mathcal A$ for n=1,2,... then $\cup_{n=1}^\infty A_n$ and $\cap_{n=1}^\infty A_n$ are both in $\mathcal A$

Probability Space

Assignment of Probabilities: P

Definition

- A **probability measure** P on a σ -sigma field of subsets $\mathcal A$ of a set Ω is a real-valued function having domain $\mathcal A$ satisfying:
 - $P(\Omega) = 1$
 - $P(A) \ge 0$ for all A in A
 - If A_n for n = 1, 2, 3... are mutually disjoint sets in $\mathcal A$ then

$$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} [P(A_n)]$$

Definition

• A **probability space**, denoted (Ω, \mathcal{A}, P) , is a set Ω , a σ -field of subsets \mathcal{A} , and a probability measure P defined on \mathcal{A}

Example: Experiment - Tossing a coin

- ullet Toss a coin where the probability of a head is 1/2
- If head we win £1, if tail nothing. Quantity of interest: X = total winnings.
- X can take two values: X = 1, X = 0

A	X(A)	P(A)
Н	1	1/2
Τ	0	1/2

- Event $\{\omega: X(\omega)=1\}$ corresponds to: $A_1=\{H\}$
- $P(\{\omega : X(\omega) = 1\}) = P(A_1) = P(X = 1) = 1/2$

Example: Experiment -Throw two dice

 Throw two dice where the probability of any outcome on an individual die is 1/6. X =sum of the outcomes from each die

A	X(A)	P(A)
$A_1 = \{(1,1)\}$	2	1/36
$A_2 = \{(1,2),(2,1)\}$	3	2/36
$A_3 = \{(1,3), (2,2), (3,1)\}$	4	3/36
$A_4 = \{(1,4), (2,3), (3,2), (1,4)\}$	5	4/36
$A_5 = \{(1,5), (2,4), (3,3), (4,2), (5,1)\}$	6	5/36
$A_6 = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$	7	6/36
$A_7 = \{(2,6), (3,5), (4,4), (5,3), (6,2)\}$	8	5/36
$A_8 = \{(3,6), (4,5), (5,4), (6,3)\}$	9	4/36
$A_9 = \{(4,6), (5,5), (6,4)\}$	10	3/36
$A_{10} = \{(5,6),(6,5)\}$	11	2/36
$A_{11} = \{(6,6)\}$	12	1/36

- Event $\{\omega: X(\omega) = 7\}$
- Corresponds to: $A_6 = \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$
- $P(\{\omega : X(\omega) = 7\}) = P(A_6) = P(X = 7) = 6/36$

- We would like to formally define random variables on a probability space (Ω, \mathcal{A}, P) , i.e. talk about the probability that $P(X = x_i)$ for each i. To do so we need to know that for each i, $\{\omega \in \Omega : X(\omega) = x_i\}$ is an event (i.e. is a member of \mathcal{A}) because then we can use the probability measure P. (Note: If \mathcal{A} is a σ -field of all subsets of Ω then this is indeed the case.)
- **Solution**: Define a random variable X as a function on Ω for which this property holds.

Definition

A discrete real-valued random variable X on a probability space (Ω, \mathcal{A}, P) is a function with domain Ω and range of a finite or countably infinite subset $\{x_1, x_2, ...\}$ of the real numbers \mathbb{R} such that $\{\omega \in \Omega : X(\omega) = x_i\}$ is an event for all i.

Example: Experiment - Flip two coins

- $\Omega = \{HH, HT, TH, TT\}$
- $\mathcal{A} = \{\Omega, \varnothing, \{HH\}, \{HT\}, \{TH\}, \{TT\}, \{HH, HT\}, \{HH, TH\}, \{HH, TT\}, \{HT, TH\}, \{HT, TT\}, \{TH, TT\}, \{HH, HT, TH\}, \{HH, HT, TT\}, \{HH, TH, TT\}, \{HT, TH, TT\}\}:$ power set: $2^4 = 16$ elements
- $P{\Omega} = 1$, $P{\emptyset} = 0$, $P{HH} = 1/4$,..., $P{HH, HT} = 1/2$, $P{HT, TH, TT} = 3/4$...
- X : number of heads we obtain when flipping two coins.
- Then P(X = 2) = 1/4, P(X = 1) = 1/2, and P(X = 0) = 1/4

Example: Experiment - Throw two dice

- $\Omega = \{(1,1), (1,2), ..., (6,6)\}$ (36 elementary events)
- A: power set $2^{36} = 68719476736$
- $P{\Omega} = 1$, $P{\emptyset} = 0$, $P{(1,1)} = 1/36$, ..., $P{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} = 6/36$, ...
- X : sum of the outcomes from each die
- P(X = 1) = 1/36, P(X = 7) = 6/36, ...

Next Lecture Tomorrow : Probability Distributions