Glossary

Variable	Description
Q_{uk}	Discharge at upstream end of superlink k
C_{uk}	Coefficient of discharge at upstream end of superlink k
A_{uk}	Cross-sectional area of flow at upstream end of superlink k
ΔH_{uk}	Head difference at upstream end of superlink k
H_{juk}	Head at junction upstream of superlink k (ground elevation + water depth)
h_{uk}	Water depth at upstream of superlink k
$z_{inv,uk}$	Invert elevation at upstream end of superlink k
Q_{dk}	Discharge at downstream end of superlink k
C_{dk}	Coefficient of discharge at downstream end of superlink k
A_{dk}	Cross-sectional area of flow at downstream end of superlink k
ΔH_{dk}	Head difference at downstream end of superlink k
H_{jdk}	Head at junction downstream of superlink k (ground elevation + water depth)
h_{dk}	Water depth at downstream of superlink k
$z_{inv,dk}$	Invert elevation at downstream end of superlink k
NBDj	Number of superlinks with downstream end attached to superjunction j
NBUj	Number of superlinks with upstream end attached to superjunction j
H_j	Head at junction j
U_{Ik}, V_{Ik}, W_{Ik}	Coefficients
X_{Ik}, Y_{Ik}, Z_{Ik}	Coefficients

Basic equations

Continuity:

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = q_0 \tag{1}$$

Conservation of momentum:

$$\frac{\partial Q}{\partial t} + \frac{\partial}{\partial x}(Qu) + gA\left(\frac{\partial h}{\partial x} - S_0 + S_f + S_L\right) = 0$$
 (2)

Discretization of momentum

Discretizing the momentum equation:

$$(Q_{ik}^{t+\Delta t} - Q_{ik}^{t}) \frac{\Delta x_{ik}}{\Delta t} + u_{I+1k} Q_{I+1k}^{t+\Delta t} - u_{Ik} Q_{Ik}^{t+\Delta t} + gA(h_{I+1k}^{t+\Delta t} - h_{Ik}^{t+\Delta t}) - gA_{ik} S_{o,ik} \Delta x_{ik} + gA_{ik} (S_{f,ik} + S_{L,ik}) \Delta x = 0$$
(3)

This equation can be written in terms of the following coefficient equation:

$$a_{ik}Q_{i-1k}^{t+\Delta t} + b_{ik}Q_{ik}^{t+\Delta t} + c_{ik}Q_{i+1k}^{t+\Delta t} = P_{ik} + gA_{ik}(h_{Ik}^{t+\Delta t} - h_{I+1k}^{t+\Delta t})$$

$$\tag{4}$$

Where:

$$a_{ik} = -\max(u_{Ik}, 0) \tag{5}$$

$$c_{ik} = -\max(-u_{I+1k}, 0) \tag{6}$$

$$b_{ik} = \frac{\Delta x_{ik}}{\Delta t} + \frac{g n_{ik}^2 |Q_{ik}^t| \Delta x_{ik}}{A_{ik} R_{ik}^{4/3}} + \frac{A_{ik} |Q_{ik}^t|}{A_{cik}^2 C_{ik}^2} - a_{ik} - c_{ik}$$

$$(7)$$

$$P_{ik} = Q_{ik} \frac{\Delta x_{ik}}{\Delta t} + g A_{ik} S_{o,ik} \Delta x_{ik}$$
(8)

Substituting the coefficients:

$$-\max(u_{Ik}, 0)Q_{i-1k}^{t+\Delta t} + \left(\frac{\Delta x_{ik}}{\Delta t} + \frac{gn_{ik}^{2}|Q_{ik}^{t}|\Delta x_{ik}}{A_{ik}R_{ik}^{4/3}} + \frac{A_{ik}|Q_{ik}^{t}|}{A_{cik}^{2}C_{ik}^{2}} + \max(u_{Ik}, 0) + \max(-u_{I+1k}, 0)\right)Q_{ik}^{t+\Delta t} - \max(-u_{I+1k}, 0)Q_{i+1k}^{t+\Delta t}$$

$$= Q_{ik}\frac{\Delta x_{ik}}{\Delta t} + gA_{ik}S_{o,ik}\Delta x_{ik} + gA_{ik}(h_{Ik}^{t+\Delta t} - h_{I+1k}^{t+\Delta t})$$
(9)

Assuming $u_{ik} > 0$ and $u_{i-1k} \approx u_{ik} \approx u_{i+1k}$:

$$-u_{Ik}Q_{i-1k}^{t+\Delta t} + \left(\frac{\Delta x_{ik}}{\Delta t} + \frac{gn_{ik}^{2}|Q_{ik}^{t}|\Delta x_{ik}}{A_{ik}R_{ik}^{4/3}} + \frac{A_{ik}|Q_{ik}^{t}|}{A_{cik}^{2}C_{ik}^{2}} + u_{Ik}\right)Q_{ik}^{t+\Delta t}$$

$$= Q_{ik}^{t}\frac{\Delta x_{ik}}{\Delta t} + gA_{ik}S_{o,ik}\Delta x_{ik} + gA_{ik}(h_{Ik}^{t+\Delta t} - h_{I+1k}^{t+\Delta t})$$
(10)

$$(Q_{ik}^{t+\Delta t} - Q_{ik}^{t}) \frac{\Delta x_{ik}}{\Delta t} + (Q_{ik}^{t+\Delta t} - Q_{i-1k}^{t+\Delta t}) u_{Ik}$$

$$+ g A_{ik} (\frac{n_{ik}^{2} | Q_{ik}^{t} | Q_{ik}^{t+\Delta t}}{A_{ik}^{2} R_{ik}^{4/3}} + \frac{| Q_{ik}^{t} | Q_{ik}^{t+\Delta t}}{g C_{ik}^{2} A_{cik}^{2} \Delta x_{ik}}) \Delta x_{ik}$$

$$= g A_{ik} S_{o,ik} \Delta x_{ik} + g A_{ik} (h_{Ik}^{t+\Delta t} - h_{I+1k}^{t+\Delta t})$$
(11)

$$(Q_{ik}^{t+\Delta t} - Q_{ik}^t) \frac{\Delta x_{ik}}{\Delta t} + (Q_{ik}^{t+\Delta t} - Q_{i-1k}^{t+\Delta t}) u_{Ik} + g A_{ik} (S_{f,ik} + S_{L,ik}) \Delta x_{ik}$$

$$= g A_{ik} S_{o,ik} \Delta x_{ik} + g A_{ik} (h_{Ik}^{t+\Delta t} - h_{I+1k}^{t+\Delta t})$$
(12)

$$(Q_{ik}^{t+\Delta t} - Q_{ik}^t) \frac{\Delta x_{ik}}{\Delta t} + (Q_{ik}^{t+\Delta t} - Q_{i-1k}^{t+\Delta t}) u_{Ik}$$

$$+ g A_{ik} (h_{I+1k}^{t+\Delta t} - h_{Ik}^{t+\Delta t}) + g A_{ik} (S_{f,ik} - g A_{ik} S_{o,ik} \Delta x_{ik} + S_{L,ik}) \Delta x_{ik}$$

$$(13)$$

Alternatively, assuming $u_{ik} < 0$ and $u_{i-1k} \approx u_{ik} \approx u_{i+1k}$:

$$u_{I+1k}Q_{i+1k}^{t+\Delta t} + \left(\frac{\Delta x_{ik}}{\Delta t} + \frac{gn_{ik}^{2}|Q_{ik}^{t}|\Delta x_{ik}}{A_{ik}R_{ik}^{4/3}} + \frac{A_{ik}|Q_{ik}^{t}|}{A_{cik}^{2}C_{ik}^{2}} - u_{I+1k}\right)Q_{ik}^{t+\Delta t}$$

$$= Q_{ik}^{t}\frac{\Delta x_{ik}}{\Delta t} + gA_{ik}S_{o,ik}\Delta x_{ik} + gA_{ik}(h_{Ik}^{t+\Delta t} - h_{I+1k}^{t+\Delta t})$$
(14)

$$(Q_{ik}^{t+\Delta t} - Q_{ik}^{t}) \frac{\Delta x_{ik}}{\Delta t} + (Q_{i+1k}^{t+\Delta t} - Q_{ik}^{t+\Delta t}) u_{I+1k}$$

$$+ g A_{ik} \left(\frac{n_{ik}^{2} | Q_{ik}^{t}| Q_{ik}^{t+\Delta t}}{A_{ik}^{2} R_{ik}^{4/3}} + \frac{|Q_{ik}^{t}| Q_{ik}^{t+\Delta t}}{g C_{ik}^{2} A_{cik}^{2} \Delta x_{ik}}\right) \Delta x_{ik}$$

$$= g A_{ik} S_{o,ik} \Delta x_{ik} + g A_{ik} (h_{Ik}^{t+\Delta t} - h_{I+1k}^{t+\Delta t})$$
(15)

$$(Q_{ik}^{t+\Delta t} - Q_{ik}^{t}) \frac{\Delta x_{ik}}{\Delta t} + (Q_{i+1k}^{t+\Delta t} - Q_{ik}^{t+\Delta t}) u_{I+1k} + g A_{ik} (S_{f,ik} + S_{L,ik}) \Delta x_{ik}$$

$$= g A_{ik} S_{o,ik} \Delta x_{ik} + g A_{ik} (h_{Ik}^{t+\Delta t} - h_{I+1k}^{t+\Delta t})$$
(16)

$$(Q_{ik}^{t+\Delta t} - Q_{ik}^{t}) \frac{\Delta x_{ik}}{\Delta t} + (Q_{i+1k}^{t+\Delta t} - Q_{ik}^{t+\Delta t}) u_{I+1k}$$

$$+ g A_{ik} (h_{I+1k}^{t+\Delta t} - h_{Ik}^{t+\Delta t}) + g A_{ik} (S_{f,ik} - g A_{ik} S_{o,ik} \Delta x_{ik} + S_{L,ik}) \Delta x_{ik}$$

$$(17)$$

Recurrence relationships

Forward recurrence

Starting at the upstream end of superlink k:

$$Q_{2k}^{t+\Delta t} - Q_{1k}^{t+\Delta t} + E_{2k}h_{2k}^{t+\Delta t} = D_{2k}$$
(18)

$$a_{1k}Q_{0k}^{t+\Delta t} + b_{1k}Q_{1k}^{t+\Delta t} + c_{1k}Q_{2k}^{t+\Delta t} = P_{1k} + gA_{1k}(h_{1k}^{t+\Delta t} - h_{2k}^{t+\Delta t})$$

$$(19)$$

Assuming $Q_{0k}^{t+\Delta t} = Q_{1k}^{t+\Delta t}$:

$$a_{1k}Q_{1k}^{t+\Delta t} + b_{1k}Q_{1k}^{t+\Delta t} + c_{1k}(Q_{1k}^{t+\Delta t} - E_{2k}h_{2k}^{t+\Delta t} + D_{2k}) = P_{1k} + gA_{1k}(h_{1k}^{t+\Delta t} - h_{2k}^{t+\Delta t})$$
(20)

$$(a_{1k} + b_{1k} + c_{1k})Q_{1k}^{t+\Delta t} = E_{2k}c_{2k}h_{2k}^{t+\Delta t} + (P_{1k} + c_{1k}D_{2k}) + gA_{1k}(h_{1k}^{t+\Delta t} - h_{2k}^{t+\Delta t})$$
(21)

$$(a_{1k} + b_{1k} + c_{1k})Q_{1k}^{t+\Delta t} = (E_{2k}c_{1k} - gA_{1k})h_{2k}^{t+\Delta t} + (P_{1k} - D_{2k}c_{1k}) + gA_{1k}h_{1k}^{t+\Delta t}$$
(22)

$$Q_{1k}^{t+\Delta t} = \frac{(E_{2k}c_{1k} - gA_{1k})h_{2k}^{t+\Delta t} + (P_{1k} - D_{2k}c_{1k}) + gA_{1k}h_{1k}^{t+\Delta t}}{a_{1k} + b_{1k} + c_{1k}}$$
(23)

Thus for the upstream end of superlink k:

$$Q_{1k}^{t+\Delta t} = U_{1k} h_{2k}^{t+\Delta t} + Y_{1k} + Z_{1k} h_{1k}^{t+\Delta t}$$
(24)

$$T_{1k} = a_{1k} + b_{1k} + c_{1k}$$
 (25)

$$U_{1k} = \frac{E_{2k}c_{1k} - gA_{1k}}{T_{1k}} \tag{26}$$

$$V_{1k} = \frac{P_{1k} - D_{2k}c_{1k}}{T_{1k}} \tag{27}$$

$$W_{1k} = \frac{gA_{1k}}{T_{1k}} \tag{28}$$

For the next element downstream:

$$Q_{3k}^{t+\Delta t} - Q_{2k}^{t+\Delta t} + E_{3k} h_{3k}^{t+\Delta t} = D_{3k}$$
(29)

$$a_{2k}Q_{1k}^{t+\Delta t} + b_{2k}Q_{2k}^{t+\Delta t} + c_{2k}Q_{3k}^{t+\Delta t} = P_{2k} + gA_{2k}(h_{2k}^{t+\Delta t} - h_{3k}^{t+\Delta t})$$
(30)

Substituting:

$$a_{2k}(Q_{2k}^{t+\Delta t} + E_{2k}h_{2k}^{t+\Delta t} - D_{2k}) + (b_{2k})Q_{2k}^{t+\Delta t} + c_{2k}(Q_{2k} - E_{3k}h_{3k}^{t+\Delta t} + D_{3k}) -P_{2k} - gA_{2k}(h_{2k}^{t+\Delta t} - h_{3k}^{t+\Delta t}) = 0$$
(31)

$$(a_{2k} + b_{2k} + c_{2k})Q_{2k}^{t+\Delta t} + (E_{2k}a_{2k} - gA_{2k})h_{2k}^{t+\Delta t} + (gA_{2k} - c_{2k}E_{3k})h_{3k}^{t+\Delta t} + (-D_{2k}a_{2k} + D_{3k}c_{2k} - P_{2k}) = 0$$
(32)

Multiplying $h_{2k}^{t+\Delta t}$ by $(U_{1k}-E_{2k})/(U_{1k}-E_{2k})$ and rearranging:

$$(a_{2k} + b_{2k} + c_{2k})Q_{2k}^{t+\Delta t} + \frac{(E_{2k}a_{2k} - gA_{2k})(U_{1k} - E_{2k})}{(U_{1k} - E_{2k})}h_{2k}^{t+\Delta t} + (gA_{2k} - c_{2k}E_{3k})h_{3k}^{t+\Delta t} + (-P_{2k} - D_{2k}a_{2k} + D_{3k}c_{2k}) = 0$$
(33)

Note that:

$$U_{1k}h_{2k}^{t+\Delta t} = (Q_{1k}^{t+\Delta t} - V_{1k} - W_{1k}h_{1k}^{t+\Delta t})$$
(34)

$$E_{2k}h_{2k}^{t+\Delta t} = (D_{2k} - Q_{2k}^{t+\Delta t} + Q_{1k}^{t+\Delta t})$$
(35)

Thus:

$$(a_{2k} + b_{2k} + c_{2k})Q_{2k}^{t+\Delta t} + \frac{(E_{2k}a_{2k} - gA_{2k})}{(U_{1k} - E_{2k})}[(Q_{1k}^{t+\Delta t} - V_{1k} - W_{1k}h_{1k}^{t+\Delta t}) - (D_{2k} - Q_{2k}^{t+\Delta t} + Q_{1k}^{t+\Delta t})] + (gA_{2k} - c_{2k}E_{3k})h_{3k}^{t+\Delta t} + (-P_{2k} - D_{2k}a_{2k} + D_{3k}c_{2k}) = 0$$

$$(36)$$

Allowing $Q_{1k}^{t+\Delta t}$ to be eliminated:

$$(a_{2k} + b_{2k} + c_{2k})Q_{2k}^{t+\Delta t} + \frac{(E_{2k}a_{2k} - gA_{2k})}{U_{1k} - E_{2k}}Q_{2k}^{t+\Delta t} + \frac{(E_{2k}a_{2k} - gA_{2k})(-W_{1k})}{U_{1k} - E_{2k}}h_{1k}^{t+\Delta} + (gA_{2k} - c_{2k}E_{3k})h_{3k}^{t+\Delta t} + (-P_{2k} - D_{2k}a_{2k} + D_{3k}c_{2k} + (E_{2k}a_{2k} - gA_{2k})\frac{(-V_{1k} - D_{2k})}{(U_{1k} - E_{2k})}) = 0$$

$$(37)$$

Rearranging:

$$\left(a_{2k} + b_{2k} + c_{2k} - \frac{gA_{2k} - E_{2k}a_{2k}}{U_{1k} - E_{2k}}\right)Q_{2k}^{t+\Delta t} + \frac{(gA_{2k} - E_{2k}a_{2k})W_{1k}}{U_{1k} - E_{2k}}h_{1k}^{t+\Delta} + (gA_{2k} - c_{2k}E_{3k})h_{3k}^{t+\Delta t} + \left(-P_{2k} - D_{2k}a_{2k} + D_{3k}c_{2k} + (gA_{2k} - E_{2k}a_{2k})\frac{V_{1k} + D_{2k}}{U_{1k} - E_{2k}}\right) = 0$$
(38)

$$\left(a_{2k} + b_{2k} + c_{2k} - \frac{gA_{2k} - E_{2k}a_{2k}}{U_{1k} - E_{2k}}\right)Q_{2k}^{t+\Delta t}
= (E_{3k}c_{2k} - gA_{2k})h_{3k}^{t+\Delta t}
+ \left(P_{2k} + D_{2k}a_{2k} - D_{3k}c_{2k} - (gA_{2k} - E_{2k}a_{2k})\frac{V_{1k} + D_{2k}}{(U_{1k} - E_{2k})}\right)
- \frac{(gA_{2k} - E_{2k}a_{2k})W_{1k}}{U_{1k} - E_{2k}}h_{1k}^{t+\Delta}$$
(39)

Generalizing for i = 2, I = 2:

$$\left(a_{ik} + b_{ik} + c_{ik} - \frac{gA_{ik} - E_{Ik}a_{ik}}{U_{I-1k} - E_{Ik}}\right)Q_{ik}^{t+\Delta t}
= (E_{I+1k}c_{ik} - gA_{ik})h_{I+1k}^{t+\Delta t}
+ \left(P_{ik} + D_{Ik}a_{ik} - D_{I+1k}c_{ik} - (gA_{ik} - E_{ik}a_{ik})\frac{V_{I-1k} + D_{Ik}}{U_{I-1k} - E_{Ik}}\right)
- \frac{(gA_{ik} - E_{Ik}a_{ik})W_{I-1k}}{U_{I-1k} - E_{Ik}}h_{1k}^{t+\Delta}$$
(40)

Condensing in terms of coefficients:

$$Q_{ik}^{t+\Delta t} = U_{Ik} h_{I+1k}^{t+\Delta t} + V_{Ik} + W_{Ik} h_{1k}^{t+\Delta t}$$
(41)

$$U_{Ik} = \frac{E_{I+1k}c_{ik} - gA_{ik}}{T_{ik}} \tag{42}$$

$$V_{Ik} = \frac{P_{ik} + D_{Ik}a_{ik} - D_{I+1k}c_{ik} - (gA_{ik} - E_{Ik}a_{ik})\frac{V_{I-1k} + D_{Ik}}{U_{I-1k} - E_{Ik}}}{T_{ik}}$$
(43)

$$W_{Ik} = \frac{(gA_{ik} - E_{Ik}a_{ik})W_{I-1k}}{U_{I-1k} - E_{Ik}}$$
(44)

$$T_{ik} = \left(a_{ik} + b_{ik} + c_{ik} - \frac{gA_{ik} - E_{Ik}a_{ik}}{U_{I-1k} - E_{Ik}}\right)$$
(45)

Backward recurrence

Starting at the downstream end of superlink k:

$$Q_{nk}^{t+\Delta t} - Q_{nk-1}^{t+\Delta t} + E_{Nk} h_{Nk}^{t+\Delta t} = D_{Nk}$$
(46)

$$a_{nk}Q_{nk-1}^{t+\Delta t} + b_{nk}Q_{nk}^{t+\Delta t} + c_{nk}Q_{nk+1}^{t+\Delta t} = P_{nk} + gA_{nk}(h_{Nk}^{t+\Delta t} - h_{Nk+1}^{t+\Delta t})$$

$$(47)$$

Assuming $Q_{nk}^{t+\Delta t} = Q_{nk+1}^{t+\Delta t}$:

$$a_{nk}(Q_{nk}^{t+\Delta t} + E_{Nk}h_{Nk}^{t+\Delta t} - D_{Nk}) + b_{nk}Q_{nk}^{t+\Delta t} + c_{nk}Q_{nk}^{t+\Delta t} = P_{nk} + gA_{nk}(h_{Nk}^{t+\Delta t} - h_{Nk+1}^{t+\Delta t})$$
(48)

$$(a_{nk} + b_{nk} + c_{nk})Q_{nk}^{t+\Delta t} = -E_{Nk}a_{nk}h_{Nk}^{t+\Delta t} + (P_{nk} + a_{nk}D_{Nk}) + gA_{nk}(h_{Nk}^{t+\Delta t} - h_{Nk+1}^{t+\Delta t})$$
(49)

$$(a_{nk} + b_{nk} + c_{nk})Q_{nk}^{t+\Delta t} = (gA_{nk} - E_{Nk}a_{nk})h_{Nk}^{t+\Delta t} + (P_{nk} + D_{Nk}a_{nk}) - gA_{nk}h_{Nk+1}^{t+\Delta t}$$
(50)

$$Q_{nk}^{t+\Delta t} = \frac{(gA_{nk} - E_{Nk}a_{nk})h_{Nk}^{t+\Delta t} + (P_{nk} + D_{Nk}a_{nk}) - gA_{nk}h_{Nk+1}^{t+\Delta t}}{(a_{nk} + b_{nk} + c_{nk})}$$
(51)

Thus for the downstream end of superlink k:

$$Q_{nk}^{t+\Delta t} = X_{Nk} h_{Nk}^{t+\Delta t} + Y_{Nk} + Z_{Nk} h_{Nk+1}^{t+\Delta t}$$
(52)

$$O_{nk} = a_{nk} + b_{nk} + c_{nk} \tag{53}$$

$$X_{Nk} = \frac{(gA_{nk} - E_{Nk}a_{nk})}{O_{nk}} \tag{54}$$

$$Y_{Nk} = \frac{P_{nk} + D_{Nk}a_{nk}}{O_{nk}} \tag{55}$$

$$Z_{Nk} = -\frac{gA_{nk}}{O_{nk}} \tag{56}$$

For the next element upstream:

$$Q_{nk-1}^{t+\Delta t} - Q_{nk-2}^{t+\Delta t} + E_{Nk-1} h_{Nk-1}^{t+\Delta t} = D_{Nk-1}$$
(57)

$$a_{nk-1}Q_{nk-2}^{t+\Delta t} + b_{nk-1}Q_{nk-1}^{t+\Delta t} + c_{nk-1}Q_{nk}^{t+\Delta t} = P_{nk-1} + gA_{nk-1}(h_{Nk-1}^{t+\Delta t} - h_{Nk}^{t+\Delta t})$$

$$(58)$$

$$a_{nk-1}(Q_{nk-1}^{t+\Delta t} + E_{Nk-1}h_{Nk-1}^{t+\Delta t} - D_{Nk-1}) + (b_{nk-1})Q_{nk-1}^{t+\Delta t} + c_{nk-1}(Q_{nk-1} - E_{Nk}h_{Nk}^{t+\Delta t} + D_{Nk}) -P_{nk-1} - gA_{nk-1}(h_{Nk-1}^{t+\Delta t} - h_{Nk}^{t+\Delta t}) = 0$$
(59)

$$(a_{nk-1} + b_{nk-1} + c_{nk-1})Q_{nk-1}^{t+\Delta t} + (-E_{Nk}c_{nk-1} + gA_{nk-1})h_{Nk}^{t+\Delta t} + (E_{Nk-1}a_{nk-1} - gA_{nk-1})h_{Nk-1}^{t+\Delta t} + (-D_{Nk-1}a_{nk-1} + D_{Nk}c_{nk-1} - P_{nk-1}) = 0$$

$$(60)$$

Multiplying $h_{Nk}^{t+\Delta t}$ by $(X_{Nk}+E_{Nk})/(X_{Nk}+E_{Nk})$ and rearranging:

$$(a_{nk-1} + b_{nk-1} + c_{nk-1})Q_{nk-1}^{t+\Delta t} + \frac{(gA_{nk-1} - E_{Nk}c_{nk-1})(X_{Nk} + E_{Nk})}{(X_{Nk} + E_{Nk})}h_{Nk}^{t+\Delta t} + (E_{Nk-1}a_{nk-1} - gA_{nk-1})h_{Nk-1}^{t+\Delta t} + (-P_{nk-1} - D_{Nk-1}a_{nk-1} + D_{Nk}c_{nk-1}) = 0$$

$$(61)$$

Note that:

$$X_{Nk}h_{Nk}^{t+\Delta t} = (Q_{nk}^{t+\Delta t} - Y_{Nk} - Z_{Nk}h_{Nk+1}^{t+\Delta t})$$
(62)

$$E_{Nk}h_{Nk}^{t+\Delta t} = (D_{Nk} - Q_{nk}^{t+\Delta t} + Q_{nk-1}^{t+\Delta t})$$
(63)

Thus:

$$(a_{nk-1} + b_{nk-1} + c_{nk-1})Q_{nk-1}^{t+\Delta t} + \frac{(gA_{nk-1} - E_{Nk}c_{nk-1})}{(X_{Nk} + E_{Nk})}[(Q_{nk}^{t+\Delta t} - Y_{Nk} - Z_{Nk}h_{Nk+1}^{t+\Delta t}) + (D_{Nk} - Q_{nk}^{t+\Delta t} + Q_{nk-1}^{t+\Delta t})] + (E_{Nk-1}a_{nk-1} - gA_{nk-1})h_{Nk-1}^{t+\Delta t} + (-P_{nk-1} - D_{Nk-1}a_{nk-1} + D_{Nk}c_{nk-1}) = 0$$

$$(64)$$

Allowing $Q_{nk}^{t+\Delta t}$ to be eliminated:

Rearranging:

$$\left(a_{nk-1} + b_{nk-1} + c_{nk-1} + \frac{(gA_{nk-1} - E_{Nk}c_{nk-1})}{(X_{Nk} + E_{Nk})}\right)Q_{nk-1}^{t+\Delta t} + (E_{Nk-1}a_{nk-1} - gA_{nk-1})h_{Nk-1}^{t+\Delta t} - \frac{(gA_{nk-1} - E_{Nk}c_{nk-1})Z_{Nk}}{(X_{Nk} + E_{Nk})}h_{Nk+1}^{t+\Delta t} + \left(-P_{nk-1} - D_{Nk-1}a_{nk-1} + D_{Nk}c_{nk-1} + (gA_{nk-1} - E_{Nk}c_{nk-1})\frac{(D_{Nk} - Y_{Nk})}{(X_{Nk} + E_{Nk})}\right) = 0$$
(66)

$$\left(a_{nk-1} + b_{nk-1} + c_{nk-1} + \frac{(gA_{nk-1} - E_{Nk}c_{nk-1})}{(X_{Nk} + E_{Nk})}\right)Q_{nk-1}^{t+\Delta t}
= (gA_{nk-1} - E_{Nk-1}a_{nk-1})h_{Nk-1}^{t+\Delta t}
+ \left(P_{nk-1} + D_{Nk-1}a_{nk-1} - D_{Nk}c_{nk-1} - (gA_{nk-1} - E_{Nk}c_{nk-1})\frac{(D_{Nk} - Y_{Nk})}{(X_{Nk} + E_{Nk})}\right)
+ \frac{(gA_{nk-1} - E_{Nk}c_{nk-1})Z_{Nk}}{(X_{Nk} + E_{Nk})}h_{Nk+1}^{t+\Delta t}$$
(67)

Generalizing for i = nk - 1, I = Nk - 1:

$$\left(a_{ik} + b_{ik} + c_{ik} + \frac{(gA_{ik} - E_{I+1k}c_{ik})}{(X_{I+1k} + E_{I+1k})}\right)Q_{ik}^{t+\Delta t}
= (gA_{ik} - E_{Ik}a_{ik})h_{Ik}^{t+\Delta t}
+ \left(P_{ik} + D_{Ik}a_{ik} - D_{I+1k}c_{ik} - (gA_{ik} - E_{I+1k}c_{ik})\frac{(D_{I+1k} - Y_{I+1k})}{(X_{I+1k} + E_{I+1k})}\right)
+ \frac{(gA_{ik} - E_{I+1k}c_{ik})Z_{I+1k}}{(X_{I+1k} + E_{I+1k})}h_{Nk+1}^{t+\Delta t}$$
(68)

Condensing in terms of coefficients:

$$Q_{ik}^{t+\Delta t} = X_{ik} h_{Ik}^{t+\Delta t} + Y_{Ik} + Z_{Ik} h_{Nk+1}^{t+\Delta t}$$
(69)

$$X_{Ik} = \frac{gA_{ik} - E_{Ik}a_{ik}}{O_{ik}} \tag{70}$$

$$Y_{Ik} = \frac{P_{ik} + D_{Ik}a_{ik} - D_{I+1k}c_{ik} - (gA_{ik} - E_{I+1k}c_{ik})\frac{(D_{I+1k} - Y_{I+1k})}{(X_{I+1k} + E_{I+1k})}}{O_{ik}}$$
(71)

$$Z_{Ik} = \frac{(gA_{ik} - E_{I+1k}c_{ik})Z_{I+1k}}{(X_{I+1k} + E_{I+1k})O_{ik}}$$
(72)

$$O_{ik} = \left(a_{ik} + b_{ik} + c_{ik} + \frac{gA_{ik} - E_{I+1k}c_{ik}}{X_{I+1k} + E_{I+1k}}\right)$$
(73)

Inlet hydraulics

Depth at upstream end of superlink

The discharge at the upstream end of a superlink is given by:

$$Q_{uk} = C_{uk} A_{uk} \sqrt{2g\Delta H_{uk}} \tag{74}$$

Where:

$$\Delta H_{uk} = H_{juk} - h_{uk} - z_{inv,uk} \tag{75}$$

Squaring and rearranging provides the depth boundary condition at the upstream end:

$$Q_{uk}^2 = 2C_{uk}^2 A_{uk}^2 g(H_{juk} - h_{uk} - z_{inv,uk})$$
(76)

$$|Q_{uk}^t|Q_{uk}^{t+\Delta t} = 2C_{uk}^2 A_{uk}^2 g(H_{juk} - h_{uk} - z_{inv,uk})$$
(77)

$$h_{uk} = -\frac{|Q_{uk}^t|Q_{uk}^{t+\Delta t}}{2C_{uk}^2A_{uk}^2g} + H_{juk} - z_{inv,uk}$$
(78)

Depth at downstream end of superlink

The discharge at the downstream end of a superlink is given by:

$$Q_{dk} = C_{dk} A_{dk} \sqrt{2g\Delta H_{dk}} \tag{79}$$

Where:

$$\Delta H_{dk} = h_{dk} + z_{inv,dk} - H_{idk} \tag{80}$$

Squaring and rearranging provides the depth boundary condition at the downstream end:

$$Q_{dk}^2 = 2C_{dk}^2 A_{dk}^2 g(h_{dk} + z_{inv,dk} - H_{jdk})$$
(81)

$$|Q_{dk}^t|Q_{dk}^{t+\Delta t} = 2C_{dk}^2 A_{dk}^2 g(h_{dk} + z_{inv,dk} - H_{idk})$$
(82)

$$h_{dk} = \frac{|Q_{dk}^t|Q_{dk}^{t+\Delta t}}{2C_{dk}^2A_{dk}^2g} + H_{jdk} - z_{inv,dk}$$
(83)

Superlink boundary conditions

From the recurrence relations:

$$Q_{uk}^{t+\Delta t} = X_{1k} h_{uk}^{t+\Delta t} + Y_{1k} + Z_{1k} h_{dk}^{t+\Delta t}$$
(84)

$$Q_{uk}^{t+\Delta t} = X_{1k}h_{uk}^{t+\Delta t} + Y_{1k} + Z_{1k}h_{dk}^{t+\Delta t}$$

$$Q_{dk}^{t+\Delta t} = U_{Nk}h_{dk}^{t+\Delta t} + V_{Nk} + W_{Nk}h_{uk}^{t+\Delta t}$$
(84)

From the depth boundary conditions at the ends of each superlink:

$$h_{uk} = \gamma_{uk} Q_{uk}^{t+\Delta t} + H_{juk} - z_{inv,uk} \tag{86}$$

$$h_{dk} = \gamma_{dk} Q_{dk}^{t+\Delta t} + H_{jdk} - z_{inv,dk} \tag{87}$$

Where:

$$\gamma_{uk} = -\frac{|Q_{uk}^t|}{2C_{uk}^2 A_{uk}^2 g}$$

$$\gamma_{dk} = \frac{|Q_{dk}^t|}{2C_{dk}^2 A_{dk}^2 g}$$
(88)

$$\gamma_{dk} = \frac{|Q_{dk}^t|}{2C_{dk}^2 A_{dk}^2 g} \tag{89}$$

Substituting into the recurrence relations:

$$Q_{uk}^{t+\Delta t} = X_{1k}(\gamma_{uk}Q_{uk}^{t+\Delta t} + H_{juk} - z_{inv,uk}) + Y_{1k} + Z_{1k}(\gamma_{dk}Q_{dk}^{t+\Delta t} + H_{jdk} - z_{inv,dk})$$
(90)

$$Q_{dk}^{t+\Delta t} = U_{Nk}(\gamma_{dk}Q_{dk}^{t+\Delta t} + H_{jdk} - z_{inv,dk}) + V_{Nk} + W_{Nk}(\gamma_{uk}Q_{uk}^{t+\Delta t} + H_{juk} - z_{inv,uk})$$
(91)

Expanding:

$$Q_{uk}^{t+\Delta t} = X_{1k}\gamma_{uk}Q_{uk}^{t+\Delta t} + X_{1k}H_{juk}^{t+\Delta t} - X_{1k}z_{inv,uk} + Y_{1k} + Z_{1k}\gamma_{dk}Q_{dk}^{t+\Delta t} + Z_{1k}H_{jdk}^{t+\Delta t} - Z_{1k}z_{inv,dk}$$
(92)

$$Q_{dk}^{t+\Delta t} = U_{Nk}\gamma_{dk}Q_{dk}^{t+\Delta t} + U_{Nk}H_{jdk} - U_{Nk}z_{inv,dk} + V_{Nk} + W_{Nk}\gamma_{uk}Q_{uk}^{t+\Delta t} + W_{Nk}H_{juk} - W_{Nk}z_{inv,uk}$$
 (93)

Rearranging:

$$0 = (X_{1k}\gamma_{uk} - 1)Q_{uk}^{t+\Delta t} + Z_{1k}\gamma_{dk}Q_{dk}^{t+\Delta t} + X_{1k}H_{iuk}^{t+\Delta t} + Z_{1k}H_{idk}^{t+\Delta t} + \pi_1$$
(94)

$$0 = W_{Nk}\gamma_{uk}Q_{uk}^{t+\Delta t} + (U_{Nk}\gamma_{dk} - 1)Q_{dk}^{t+\Delta t} + W_{Nk}H_{juk} + U_{Nk}H_{jdk} + \pi_2$$
(95)

Where:

$$\pi_1 = Y_{1k} - X_{1k} z_{inv,uk} - Z_{1k} z_{inv,dk} \tag{96}$$

$$\pi_2 = V_{Nk} - W_{Nk} z_{inv,uk} - U_{Nk} z_{inv,dk} \tag{97}$$

(98)

Writing as a matrix equation:

$$\begin{bmatrix} (X_{1k}\gamma_{uk} - 1) & Z_{1k}\gamma_{dk} \\ W_{Nk}\gamma_{uk} & (U_{Nk}\gamma_{dk} - 1) \end{bmatrix} \begin{bmatrix} Q_{uk}^{t+\Delta t} \\ Q_{dk}^{t+\Delta t} \end{bmatrix} = \begin{bmatrix} -X_{1k}H_{juk}^{t+\Delta t} - Z_{1k}H_{jdk}^{t+\Delta t} - \pi_1 \\ -W_{Nk}H_{juk}^{t+\Delta t} - U_{Nk}H_{jdk}^{t+\Delta t} - \pi_2 \end{bmatrix}$$
(99)

Taking the matrix inverse:

$$\begin{bmatrix} Q_{uk}^{t+\Delta t} \\ Q_{dk}^{t+\Delta t} \end{bmatrix} = \frac{1}{D_k^*} \begin{bmatrix} (U_{Nk}\gamma_{dk} - 1) & -Z_{1k}\gamma_{dk} \\ -W_{Nk}\gamma_{uk} & (X_{1k}\gamma_{uk} - 1) \end{bmatrix} \begin{bmatrix} -X_{1k}H_{juk}^{t+\Delta t} - Z_{1k}H_{jdk}^{t+\Delta t} - \pi_1 \\ -W_{Nk}H_{juk}^{t+\Delta t} - U_{Nk}H_{jdk}^{t+\Delta t} - \pi_2 \end{bmatrix}$$
(100)

Where:

$$D_k^* = (X_{1k}\gamma_{uk} - 1)(U_{Nk}\gamma_{dk} - 1) - (Z_{1k}\gamma_{dk})(W_{Nk}\gamma_{uk})$$
(101)

Expanding:

$$\begin{bmatrix} Q_{uk}^{t+\Delta t} \\ Q_{dk}^{t+\Delta t} \end{bmatrix} = \frac{1}{D_k^*} \begin{bmatrix} (U_{Nk}\gamma_{dk} - 1)(-X_{1k}H_{juk}^{t+\Delta t} - Z_{1k}H_{jdk}^{t+\Delta t} - \pi_1) + (-Z_{1k}\gamma_{dk})(-W_{Nk}H_{juk}^{t+\Delta t} - U_{Nk}H_{jdk}^{t+\Delta t} - \pi_2) \\ (-W_{Nk}\gamma_{uk})(-X_{1k}H_{juk}^{t+\Delta t} - Z_{1k}H_{jdk}^{t+\Delta t} - \pi_1) + (X_{1k}\gamma_{uk} - 1)(-W_{Nk}H_{juk}^{t+\Delta t} - U_{Nk}H_{jdk}^{t+\Delta t} - \pi_2) \end{bmatrix}$$

$$(102)$$

Arranging in terms of the unknown heads:

$$Q_{uk}^{t+\Delta t} = [(U_{Nk}\gamma_{dk} - 1)(-X_{1k}) + (-Z_{1k}\gamma_{dk})(-W_{Nk})]H_{juk}^{t+\Delta t} +$$

$$[(U_{Nk}\gamma_{dk} - 1)(-Z_{1k}) + (-Z_{1k}\gamma_{dk})(-U_{Nk})]H_{jdk}^{t+\Delta t} +$$

$$[(U_{Nk}\gamma_{dk} - 1)(-\pi_1) + (-Z_{1k}\gamma_{dk})(-\pi_2)]$$

$$(103)$$

$$Q_{dk}^{t+\Delta t} = [(-W_{Nk}\gamma_{uk})(-X_{1k}) + (X_{1k}\gamma_{uk} - 1)(-W_{Nk})]H_{juk}^{t+\Delta t} +$$

$$[(-W_{Nk}\gamma_{uk})(-Z_{1k}) + (X_{1k}\gamma_{uk} - 1)(-U_{Nk})]H_{jdk}^{t+\Delta t} +$$

$$[(-W_{Nk}\gamma_{uk})(-\pi_1) + (X_{1k}\gamma_{uk} - 1)(-\pi_2)]$$

$$(104)$$

Finally, the upstream and downstream flows can be expressed as:

$$Q_{uk}^{t+\Delta t} = \alpha_{uk} H_{juk}^{t+\Delta t} + \beta_{uk} H_{jdk}^{t+\Delta t} + \chi_{uk}$$
(105)

$$Q_{dk}^{t+\Delta t} = \alpha_{dk} H_{juk}^{t+\Delta t} + \beta_{dk} H_{jdk}^{t+\Delta t} + \chi_{dk}$$
(106)

$$\alpha_{uk} = \frac{(1 - U_{Nk}\gamma_{dk})X_{1k} + Z_{1k}\gamma_{dk}W_{Nk}}{D_{h}^{*}}$$
(107)

$$\beta_{uk} = \frac{(1 - U_{Nk}\gamma_{dk})Z_{1k} + Z_{1k}\gamma_{dk}U_{Nk}}{D_k^*}$$
(108)

$$\chi_{uk} = \frac{(1 - U_{Nk}\gamma_{dk})(Y_{1k} - X_{1k}z_{inv,uk} - Z_{1k}z_{inv,dk}) + (Z_{1k}\gamma_{dk})(V_{Nk} - W_{Nk}z_{inv,uk} - U_{Nk}z_{inv,dk})}{D_k^*}$$
(109)

$$\alpha_{dk} = \frac{(1 - X_{1k}\gamma_{uk})W_{Nk} + W_{Nk}\gamma_{uk}X_{1k}}{D_k^*}$$
(110)

$$\beta_{dk} = \frac{(1 - X_{1k}\gamma_{uk})U_{Nk} + W_{Nk}\gamma_{uk}Z_{1k}}{D_k^*} \tag{111}$$

$$\chi_{dk} = \frac{(1 - X_{1k}\gamma_{uk})(V_{Nk} - W_{Nk}z_{inv,uk} - U_{Nk}z_{inv,dk}) + (W_{Nk}\gamma_{uk})(Y_{1k} - X_{1k}z_{inv,uk} - Z_{1k}z_{inv,dk})}{D_k^*}$$
(112)

$$D_k^* = (X_{1k}\gamma_{uk} - 1)(U_{Nk}\gamma_{dk} - 1) - (Z_{1k}\gamma_{dk})(W_{Nk}\gamma_{uk})$$
(113)

$$\gamma_{uk} = -\frac{|Q_{uk}^t|}{2C_{uk}^2 A_{uk}^2 g} \tag{114}$$

$$\gamma_{dk} = \frac{|Q_{dk}^t|}{2C_{dk}^2 A_{dk}^2 g} \tag{115}$$

Forming the solution matrix

The equations for the flows at the ends of each superlink are given by:

$$\sum_{l=1}^{NBDj} Q_{dk_l}^{t+\Delta t} - \sum_{m=1}^{NBUj} Q_{uk_m}^{t+\Delta t} + Q_{o,j} = \frac{A_{sj}(H_j^{t+\Delta t} - H_j)}{\Delta t}$$
(116)

Substituting the linear expressions for the upstream and downstream flows:

$$\frac{A_{sj}(H_{j}^{t+\Delta t} - H_{j}^{t})}{\Delta t} = \sum_{l=1}^{NBDj} (\alpha_{dk_{l}} H_{juk_{l}}^{t+\Delta t} + \beta_{dk_{l}} H_{jdk_{l}}^{t+\Delta t} + \chi_{dk_{l}})
- \sum_{m=1}^{NBUj} (\alpha_{uk_{m}} H_{juk_{m}}^{t+\Delta t} + \beta_{uk_{m}} H_{jdk_{m}}^{t+\Delta t} + \chi_{uk_{m}}) + Q_{o,j}$$
(117)

Because $H_{jdk_l} = H_j$ and $H_{juk_m} = H_j$:

$$\frac{A_{sj}(H_{j}^{t+\Delta t} - H_{j}^{t})}{\Delta t} = \sum_{l=1}^{NBDj} (\alpha_{dk_{l}} H_{juk_{l}}^{t+\Delta t} + \beta_{dk_{l}} H_{j}^{t+\Delta t} + \chi_{dk_{l}})
- \sum_{m=1}^{NBUj} (\alpha_{uk_{m}} H_{j}^{t+\Delta t} + \beta_{uk_{m}} H_{jdk_{m}}^{t+\Delta t} + \chi_{uk_{m}}) + Q_{o,j}$$
(118)

Rearranging:

$$\frac{A_{sj}(H_{j}^{t})}{\Delta t} + \sum_{l=1}^{NBDj} \chi_{dk_{l}} - \sum_{m=1}^{NBUj} \chi_{uk_{m}} + Q_{o,j}$$

$$= \left(\frac{A_{sj}}{\Delta t} + \sum_{m=1}^{NBUj} \alpha_{uk_{m}} - \sum_{l=1}^{NBDj} \beta_{dk_{l}}\right) H_{j}^{t+\Delta t}$$

$$- \sum_{l=1}^{NBDj} \alpha_{dk_{l}} H_{juk_{l}}^{t+\Delta t} + \sum_{m=1}^{NBUj} \beta_{uk_{m}} H_{jdk_{m}}^{t+\Delta t}$$
(119)

For the example network in Ji (1998):

$$Ax = b (120)$$

$$A = \begin{bmatrix} \left(\frac{A_{s0}}{\Delta t} + \alpha_{u0}\right) & \beta_{u0} & 0 & 0 & 0 & 0 \\ -\alpha_{d0} & \left(\frac{A_{s1}}{\Delta t} + \alpha_{u1} + \alpha_{u3} - \beta_{d0}\right) & \beta_{u1} & 0 & \beta_{u3} & 0 \\ 0 & -\alpha_{d1} & \left(\frac{A_{s2}}{\Delta t} + \alpha_{u2} - \beta_{d1} - \beta_{d5}\right) & \beta_{u2} & -\alpha_{d5} & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & -\alpha_{d3} & \beta_{u5} & 0 & \left(\frac{A_{s4}}{\Delta t} + \alpha_{u4} + \alpha_{u5} - \beta_{d3}\right) & \beta_{u4} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(121)$$

$$b = \begin{bmatrix} \frac{A_{s0}H_0^t}{\Delta t} - \chi_{u0} + Q_{o0} \\ \frac{A_{s1}H_1^t}{\Delta t} + \chi_{d0} - (\chi_{u1} + \chi_{u3}) + Q_{o1} \\ \frac{A_{s2}H_2^t}{\Delta t} + (\chi_{d1} + \chi_{d5}) - \chi_{u2} + Q_{02} \\ H_{3,bc} \\ \frac{A_{s4}H_4^t}{\Delta t} + \chi_{d3} - (\chi_{u4} + \chi_{u5}) + Q_{04} \\ H_{5,bc} \end{bmatrix}$$

$$(122)$$