Intro to Proofs

Aamod Varma

 MATH - 2106, Fall 2024

Contents

11 Relations	11
12 Functions	15
13 Abstract Algebra	18

Real Numbers

Definition 0.1 (Properties of real numbers). Properties of $\mathbb R$ are

- (d). \exists an order on \mathbb{R} which means $\forall x, y \in \mathbb{R}, x < y$ or x > y, or x = y Ordering follows the following properties,
 - (1). $x < y, y < z \Rightarrow x < z$ (transitivity)
 - (2). $x < y \Rightarrow x + z < y + z, \forall z \in \mathbb{R}$
 - (3). $x < y, z > 0 \Rightarrow xz < yz$

Theorem 0.2. $xy = 0 \Leftrightarrow x = 0 \text{ or } y = 0$

Proof. \Leftarrow Without loss of generality take, x = 0 Then we get,

0y.

We can write this as,

$$(0+0)y = 0y + 0y.$$

So,

$$0y = 0y + 0y.$$

Or, m

 \Rightarrow

Assume the contrary that, $x \neq 0$ and $y \neq 0$ We have, xy = 0. Without loss of generality we take the multiplicative inverse of x so,

$$\frac{xy}{x} = \frac{0}{x}.$$

We showed that 0(k) = 0 so y = 0

Which contradicts our assumption, hence our assumptoin must be wrong and x=0 or y=0

Theorem 0.3. (-)x = -x

Proof. We start with (-1)x and add x to both sides so,

$$(-1)x + x = x(1-1) = 0x = 0.$$

So we showed that (-1)x is the additive identity of x. We know that the additive identity is unique for any x. Therefore, (-1)x = -x

Theorem 0.4. $\forall x < y, z < 0$

xz > yz.

Proof. If z < 0 then that means z = -k for some k > 0. We can write x < y as x - y < 0Now if we multiply both sides be k we get,

$$k(x - y) < 0$$

Now if k(x-y)=z' we can say that $z'<0 \Rightarrow -z'>0$ Or that

$$(-1)k(x - y) > 0$$
$$z(x - y) > 0$$
$$xz > yz$$

Theorem 0.5. $\forall x \in \mathbb{R} \text{ if } x \neq 0 \text{ then } x^2 > 0$

Theorem 0.6. $x^2 = -(-x^2)$

Case 1, x > 0:

$$x \times x > x$$

$$x\times x>0x$$

$$x^2 > 0$$

Case 2, x < 0:

Then the additive inverse (-x) > 0

$$(-x)(-x) > (-x)0$$

$$(-)(-1)x^2 > 0$$

-(-1) = 1 as 1 is the additive inverse of -1

$$x^2 > 0$$

Example. $\forall a, b > 0$

$$\frac{a+b}{2} \ge \sqrt{ab}$$

 \Diamond

Proof.

$$0 \le (\sqrt{a} - \sqrt{b})^2 = a - 2\sqrt{ab} + b.$$
$$2\sqrt{ab} \le a + b$$
$$\sqrt{ab} \le \frac{a+b}{2}$$

Example. $x^2 - x + 1$

 \Diamond

Theorem 0.7. $\forall x, y \in \mathbb{R}$ we have,

$$|x| \ge x$$
 and $|x + y| \le |x| + |y|$.

Proof. We use proof by cases.

Proof related to Sets

Theorem 0.8.

$$A \cup B \backslash (A \cap B) = (A \backslash B) \cup (B \backslash A).$$

Proof. We need to show that,

$$A \cup B \setminus (A \cap B) \subseteq (A \setminus B) \cup (B \setminus A)$$
.

and,

$$(A \backslash B) \cup (B \backslash A) \subseteq A \cup B \backslash (A \cap B).$$

Theorem 0.9. $A \subseteq B \Leftrightarrow A \cup B = B$

Proof. \Rightarrow Take $\forall x \in A \cup B$, so either

Case 1, $x \in A$:

We know that by deifinition if, $A \subseteq B$ then for $x \in A, x \in B$ so $x \in B$ Case 2, $x \in B$: If $x \in B$ then we don't need to go further.

So we get $\forall x \in A \cup B, x \in B$

 \Leftarrow

 $\forall x \in A \Rightarrow x \in A \cup B = B$

So, $x \in B$ which means that, $A \subseteq B$

Disproofs

If we need to show existence, $\exists x.P(x)$. We can show using,

- 1. Direct constructions
- 2. Indirectly (contradiction). For instance we can show that, $\forall x, P(x)$ is false

Example. $\exists a, b, c \in R - Q \text{ s.t. } a^{bc} \in Q$

Example. Pigeonhole principle

Suppose there are m balls in n boxes, $m > n \ge 1$ then, \exists a box where there are at least, $\frac{m}{n} + 1$ balls

Proof. Assume pigeonhole is false.

Then, there are at most $\frac{m}{n}$ balls in each box. In case 1 where $\frac{m}{n} \notin N \Rightarrow$ total balls $\leq n[\frac{m}{n}] = \frac{nm}{n} = m$ which is a contradiction.

In case 2 where $\frac{m}{n} \in N$ there are at most $\frac{m}{n} - 1$ balls in each box. So total number of balls are $\frac{nm}{n} - n = m - n$ which is contradictory.

To disprove $\forall x P(x)$ we can show that, $\exists P(x)$

Example. 100 can't be written as the sum of two even integers and an odd integer.

Proof. Suppose it's false $\Rightarrow \exists a, b, c \in Z \text{ s.t. } 2|a, 2|b, 2 \not/c \text{ and } 100 = a+b+c$ But, $2|a, 2|b \Rightarrow 2|a+b$ but $2 / c \Rightarrow 2 / (a+b) + c = 100$ So we get, 2 / 100 which is a contradiction.

Which means that the original statement is true.

Example. ∄ the smallest positive real number

The smallest positive real number is defined as $x \in R$ s.t. x > 0 and $\forall y > 0, x \le 0$ y

Proof. Let's assume it is true which mean that $\exists x \in R \text{ s.t. } x > 0$ and $\forall y > 0, x \le y$

We know that $x > 0 \Rightarrow \frac{x}{2} > 0$ So if we set $y = \frac{x}{2}$ then we get

$$x \leq \frac{x}{2}$$
.

Which is a contradiction.

Hence it cannot be the case that there exists the smalest positive number.

Example. $\not\exists f(x)$: a polynomial with integer coefficients s.t. $\forall n, f(n)$ is prime \diamond

Proof. Consider the general form of a polynomial,

$$f(x) = a_1 x^n + \dots + a_n$$

Case 1: $a_n = 0$

If $a_n = 0$ then for any x > 1 we can take x common and get

$$f(x) = x(a_1x^{n-1} + \dots + a_{n-1})$$

So we get a factor $x \neq 1$

Case 2: $a_n = 1$

In this case we can just plug x=0 and we get f(x) is neither prime or composite

Case 3: $a_n > 1$????

Example. Let $f(x) = x^3 + 2x - 5$ then \exists unique $x_0 \in [1,2]$ s.t. $f(x_0) = 0$

Proof. Using intermediate value theorem.

$$f(1) = -2$$

$$f(2) = 7$$

So because -2 < 0 < 7 we know that there must exists an $x_0 \in [1, 2]$ s.t. this is the case.

To show unique we need to show its strictly increasing. Or in other words, we need to show for every $x_1, x_2 \in [1, 2], x_1 \leq x_2 \Rightarrow f(x_1) \leq f(x_2)$ So we need to show that,

$$x_1^3 + 2x_1 - 5 \le x_2^3 + 2x_2 - 5$$

$$x_1^3 + 2x_1 \le x_2^3 + 2x_2$$

$$(x_1^3 - x_2^3) + 2(x_1 - x_2) \le 0$$

It is enough to show that both $x_1^3 - x_2^3$ and $x_1 - x_2$ are smaller than or equal to 0.

$$x_1^3 - x_2^3 = (x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2) = k(x_1 - x_2) \le 0$$

Similarly,

$$2(x_1 - x_2) \le 0$$
 a $x_1 - x_2 \le 0$

So we have, $x_1^3 - x^3 + 2(x_1 - x_2) \le 0$

Which tells us that our function is strictly increasing which implies that we only have a unique $x_0 \in [1, 2]$

Mathematical Induction

Theorem 8.10 (Properties of Natural Numbers). (a). $1 \in N$

- (b). $\forall k \in \mathbb{N}, \exists k+1 \in \mathbb{N}$
- (c). $\forall k \in N \{1\}, \exists | n \in N, \text{ s.t. } k = n + 1 \in N$
- (d). Needs to be well-ordered.

An ordered set S is well-ordered if,

$$\forall A \in S \text{ s.t. } A \neq \phi, \exists x = \min A$$

Or,
$$\exists x \in A \text{ s.t. } y \in A, x \leq y$$

Example. \mathbb{Q} is not well-ordered as it does not have a minimum

Example. \mathbb{Z} is not well-ordered as it does not have a minimum

N is well-ordered

Theorem 8.11. If $A \subseteq S$ and S is a well-ordered set then A is well-ordered.

Proof. Let $B \subseteq A$ and $B \neq \phi \Rightarrow B \subseteq S$

So B has a min x which means that A is well-ordered by definition. \Box

Example. $[1, \infty)$ is not well-ordered because a subset $(1, \infty)$ does not have a min

Theorem 8.12. $\forall a \in \mathbb{Z}, d \in \mathbb{N}, \exists q, r \in \mathbb{Z} \times \{0, 1, \dots, d-1\} \text{ s.t.}$

$$a=dq+r$$

Proof. Let $S = \{a - nd : n \in \mathbb{Z}, a - nd \in \mathbb{N}\}$

First we can see that S is non-empty as we can take

$$n = -|a| - 1 \Rightarrow a - nd > 0$$

Now because this is a subset of $\mathbb N$ it follows the well-ordering principle implying that $\min S=a-nd=m$

$$m \in S \Rightarrow \exists l \in \mathbb{Z} \text{ s.t. } m = a - ld$$

Case 1: If m > d then

$$a - (l+1)d > 0$$

$$a - (l+1)d \in S \Rightarrow a - (l+1)d < m$$

Which is a contradiction. This means that $m \not> d$

Case 2: m = d

Let q = l + 1, r = 0

$$m = d \Rightarrow a - ld = d \Rightarrow a - (l+1)d = 0$$

Case 3: 0 < m < d

Let $q = l, r = m \Rightarrow a = dq + r$

Now to show uniqueness,

Suppose, $(q, r), (q', r') \in \mathbb{Z} \times \{0, 1, ..., d - 1\}$ and

$$a = qd + r = q'd + r'$$

We have,

$$(q - q')d = r' - r$$

$$0 - (d-1) \le r' - r \le d-1$$

And,

$$d|r' - r \Rightarrow r' - r = 0$$

Definition 8.13. Let $a, b \in \mathbb{N}, d = GCD(a, b) \in N$ if

- (a). d|a and d|b and
- (b). If $d' \in N$ s.t. d'|a and d'|b then $d \geq d'$

Theorem 8.14. $\forall a, b \in \mathbb{N}, \exists p, q \in \mathbb{Z} \text{ s.t. } GCD(a, b) = ap + bq$

Proof. Let $S = \{a_m + b_n : m, n \in \mathbb{Z}, a_m + b_n \subseteq \mathbb{N}\}$

We know S is non-empty as m, n = 1 makes it a + b > 0 as $a, b \in \mathbb{N}$ So by well-ordering principle we know that $\exists \min S = d$ and $p, q \in \mathbb{Z}$ s.t.

$$d = ap + bq$$

If $d' \in \mathbb{N}$ s.t. d'|a and $d'|b \Rightarrow d'|ap + bq = d$ So, $d \in \mathbb{N} \Rightarrow d \geq d'$

$$d \in \mathbb{N} \Rightarrow \exists m \in \mathbb{Z}, r \in \{0, \dots, d-1\} \text{ s.t. } a = md + r$$

Which means r = a - md = a - m(ap + bq) = a(1 - mp) + b(-mq)r < d but $d = \min S \Rightarrow r \notin S \Rightarrow r = 0$

So a = md so d|a. Similarly, d|b

This means d is the greatest common divisor.

Theorem 8.15 (Induction principle). Suppose $k \in N, S \subseteq N$ satisfy,

- (a). $k \in S$
- (b). if $n \in S$ then $n + 1 \in S$

then $\{k, k+1, \dots\} \subseteq$

Proof. Let $A = \{n \in \mathbb{N}, n \ge k : n \not\in S\}$

Suppose $A \neq \phi \Rightarrow n_0 = \min A$ exists

Which means $n_0 \ge k$ but $k \not\in A$ due to (a). So, $n_0 > k \Rightarrow n_0 - 1 \ge k$ and $n_0 - 1 \not\in A$ as $n_0 = \min A$

(b). and $n_0 - 1 \notin A \Rightarrow n_0 \notin A$ contradictiont which implies that $A = \phi$

Corollary 8.16. If a statement $P(n), n \in \mathbb{N}$ satisfies

- (a) P(k) is true
- (b) $P(n) \Rightarrow P(n+1)$

Then P(n) is true for all $n \geq k$

Theorem 8.17.
$$\sum_{k=1}^{n} k = \frac{n+1}{2}n$$

Proof. Proof by induction.

If n = 1, then (1) holds.

If n = k then we have,

$$1 + \dots + k = k \frac{k+1}{2}$$

Now we need to show that $1 + \cdots + k + k + 1 = (k+1)\frac{k+2}{2}$ Using the statement for n = k we can do,

$$k\frac{k+1}{2} + k + 1 = (k+1)\frac{k+2}{2}$$

Simplyfying the left hand side we get,

$$(k+2)\frac{k+1}{2} = (k+1)\frac{k+2}{2}$$

It is trivial to see that this is true.

Hence by induction our statement is true.

Definition 8.18. $C_n^m = \binom{n}{m} = \frac{n!}{m!(n-m)!}$ if $n \ge m \ge 0$ and 0 otherwise

Remark. $\Gamma(z) = \int_0^\infty r^z e^{-t} dt$ is a stronger definition of factorial

Theorem 8.19. $\binom{n+1}{m}=\binom{n}{m}+\binom{n}{m+1}, \forall n,m\in\mathbb{Z}$

Proof. We prove by cases.

Case 1: $m \le -2$ or m > n

Case 2: n = m = -1

Case 3: n > m = -1

Case 4: $m \ge 0$ and $m \le n$

Theorem 8.20. $\forall n \in N \cup \{0\}, a, b \in \mathbb{R}$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Chapter 11

Relations

Theorem 11.1. Relatoin from A to B is described by a subset of $A \times B$ which is a graph of the relation.

Theorem 11.2 (Equivalence Relation). R on A is an equivalence relation if it is, reflexive, symmetric and transitive.

Definition 11.3 (Equivalence Classes). $[a]_R = \{x \in A : aRx\}$

Property. $a \in [a]_R$ since R is reflexive

Theorem 11.4. Let R be an equivalence relatoin on A then,

- 1. aRb
- 2. $[a]_R = [b]_R$
- 3. $[a]_R \cap [b]_R \neq \phi$

Definition 11.5. A partition of A is a family of subsets, $(A_i)_{i \in I}$ where

- $A_i \subseteq A$. We have,
- 1. $A_i \neq \phi, \forall i \in I$
- 2. $UA_i = A$
- 3. If $i_1 \neq i_2$ then $Ai_1 \cap Ai_2 = \phi$

Definition 11.6. Let R be an equivalence relation on A, $A/R = \{$ equivalence classes of $R\}$

Theorem 11.7. Let R be an equivalence relation on A then $A/R = \{...\}$ form a partition of A.

Proof. (i) $\forall \alpha \in A/R, \exists a \in A, s.t. \alpha = [a]_R$ $\Rightarrow a \in \alpha \Rightarrow \alpha \neq \phi$ (ii) $\forall a \in A, a \in [a]_R \Rightarrow a \in U$ (iii) Suppose, $\alpha, \beta \in A/R, \alpha \neq \beta$ $\Rightarrow \exists a, b \in A, s.t. \alpha = [a]_R, \beta = [b]_R$ So, $\alpha \cap \beta \neq \phi$ Therefore, A/R form a partition of A

Example.
$$A = Z, n \in NR \equiv_n Z/\equiv_n = \{[0]_n, [1]_n, \dots, [n-1]_n\}$$

Example. $A \neq \phi$ and R = then R is not equivalent because of reflexivity

Theorem 11.8. Let $A \neq \phi$ and $\{S_i\}_{i \in I}$ is a parittion of A then $\exists |$ equivalence relation R on A s.t. $A/R = \{S_i\}_{i \in I}$

Proof. Let $R = \{(a, b) \in A \times A : \exists i \in I, s.t.a, b \in S_i\}$

(a) $\forall a \in A = US_i \Rightarrow \exists i \in I \text{ s.t. } a \in S_i$

Since, $a, a \in S_i \Rightarrow (a, a) \in R$. So it is reflexive

- (b). Suppose $(a,b) \in R \Rightarrow \exists i \in I \text{ s.t.} a, b \in S_i \Rightarrow b, a \in S_i \Rightarrow (b,a) \in R$ So, it is symmetric.
- (c). Suppose $(a,b), (b,c) \in R \Rightarrow \exists i_1, i_2 \in I \text{ s.t. } a,b \in S_i, b,c \in S_2 \Rightarrow b \in S_1 \cap S_2 \Rightarrow S_1 \cap S_2 \neq \phi \Rightarrow S_1 = S_2 \Rightarrow a,c \in S_1 \Rightarrow (a,c) \in R$

So we have R is an equivalence relation.

(d) $\forall i \in I, S_i \neq \phi \Rightarrow \exists a \in S_i$. If $b \in [a]_R \Rightarrow (a, b) \in R \Rightarrow \exists j \in I, s.t.a, b \in S_j$.

 $a \in Si \Rightarrow S_i \cap S_j \neq \phi \Rightarrow S_j = S_i so,$

 $a, b \in S_i \Rightarrow [a]_R \subseteq S_i$

 $\forall c \in S_i$ by definition of R, $aRc \Rightarrow c \in [a]_R \Rightarrow S_i \subseteq [a]_R$

Hence $S_i = [a]_R$

(e) Now we show that $A/R \subseteq \{S_i\}_{i \in I}$

Consider \equiv_n where $n \in N$ and let $[z]_n = z/\equiv_n$. Where,

$$[z]_n = \{[0]_n, \dots, [n-1]_n\}$$

Lemma 11.9. Suppose $a, b, a', b' \in z$ satisfying,

$$a \equiv_n a', b \equiv_n b'$$

then,

$$a+b \equiv_n a'+b'$$

and

$$a - b \equiv_n a' - b'$$

and

$$a'b' \equiv_n ab$$

Definition 11.10. For any $\alpha, \beta \in [z]_n \exists a, b \in z \text{ s.t.}$, $\alpha = [a]_n, \beta = [b]_n \text{ then,}$

$$\alpha + \beta = [a+b]_n, \alpha - \beta = [a-b]_n, \alpha\beta = [ab]_n$$

Example. n = 12 then

- 1. $[2]_n[3]_n$, = $[6]_n$
- 2. $[5]_n + [8]_n = [1]_n$ 3. $[5]_n [8]_n = [-3]_n = [9]_n$ 4. $[5]_n [8]_n = [40]_n = [4]_n$
- 5. $[8]_n[9]_n = [0]_n$

 \Diamond

Theorem 11.11. Suppose $n \in N - \{1\}, a \in N$

- (i). GCD(a, n) = 1
- (ii). $\forall b, c \in Z, [a]_n[b]_n = [a]_n[c]_n \Rightarrow [b]_n = [c]_n$

Proof. $\Rightarrow GCD(a, n) = 1 \Rightarrow \exists, d, q \in \mathbb{Z} \text{ s.t.}$

$$ad + nq = 1 \Rightarrow [a]_n [d]_n = [1]_n$$

$$[a]_n[b]_n = [a]_n[c]_n \Rightarrow [d]_n[a]_n[b]_n = [d]_n[a]_n[c]_n$$
$$\Rightarrow [1]_n[b]_n = [1]_n[c]_n \Rightarrow [b]_n = [c]_n$$

 \Leftarrow

Definition 11.12. A relation on a set $A \neq \phi$ is an order if it is reflexive, antisymmetric and transitive.

Definition 11.13. We say that $a, b \in A$ are comparable if $a \leq b$ or $b \leq a$

Definition 11.14. If $\forall a, b \in A$ are comparable then " \preccurlyeq " is a total order

Example.

$$(\mathbb{Z},\leq), (\mathbb{R},\leq), (\mathbb{Q},\leq)$$

 \Diamond

Example. $U \neq \phi, (P(U)), \subseteq)$

Chapter 12

Functions

Theorem 12.1. Let A, B be finite non-empty sets.

- (a). Suppose $\exists f: A \to B$ is injective then $|A| \leq |B|$
- (b). Suppose $\exists f: A \to B$ is surjective then $|A| \geq |B|$
- (b). Suppose $\exists f: A \to B$ is bijective then |A| = |B|

Proof. (a) by induction in |A|.

- (i) When |A| = 1, $|B| \ge 1 = |A|$
- (ii) Assume (a) holds for |A|=n where $n\in N$. Now consider when |A|=n+1

Let $a_0 \in A$ let $A_1 = A - \{a_0\}$. So $|A_1| = n$ and let $b_0 = f(a_0)$ and $B_1 = B - \{b_0\}$ and $|B_1| = |B| - 1 = |B| - 1$.

 $\forall a \in A, a \neq a_0 \text{ so } f(a) \neq f(a_0) \Rightarrow f(a) \in B_1.$ So define new function,

$$f_1: A_1 \to B_1 \text{ as } f_1(a) = f(a), \forall a \in A_1$$

Where we just proved $f(a) \in B_1$

Suppose $a_1, a_2 \in A_1$ such that $f_1(a_1) = f_1(a_2)$ which means $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$. So we know that f_1 is injective. So using our induction assumption we can say that,

$$|A_1| \le |B_1|$$

But we know that $|A_1| = |A| - 1$ and $|B_1| = |B| - 1$. So we have,

$$|A| - 1 \le |B| - 1$$

$$|A| \leq |B|$$

Hence by induction we show that the statement holds for all sets A where the cardinality of A is a natural number.

(b)

Theorem 12.2. Suppose $|A| = |B| \in N$ then (a). \exists bijective $f: A \to B$

- (b) The following are requivalent
- (i). f is 1-1
- (ii). f is onto
- (iii). f is bijective.

Proof. (a) by induction

- (i) |A| = |B| = 1 denote $A = \{a\}$ and $B = \{b\}$. We have $f: A \to B$ as f(a) = b.
- (ii) Assue (a) holds for $|A| = |B| = n \in \mathbb{N}$. Suppose A, B are sets such that |A| = |B| = n + 1.

Let $a_0 \in A$ and $b_0 \in B$ so $A_1 = A - \{a_0\}$ and $B_1 = B - \{b_0\}$. So,

$$|A_1| = n, |B_1| = n$$

By induction assumption we know that $\exists g: A_1 \to B_1$ that is bijective.

Now let us define a new function $f: A \to B$ such that if $\forall a \in A$ if $a = a_0$ then $f(a) = b_0$ if $a \neq a_0$ then f(a) = g(a).

Now we need to show that f is bijective.

(i) Injectivity, we show that $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$. Case 1. If $b \neq b_0$ then $a_1 \neq a_0$ and $a_2 \neq a_0$ so we have $g(a_1) = g(a_2)$ but we know that g is injective so $a_1 = a_2$.

Case 2. If $b = b_0$ then $a_1 = a_2$ using proof by contradiction.

(ii) Surjectivity

Case 1: $b = b_0$ then we know by construction $f(a_0) = b_0$ which is in the range of f. Case 2: If $b \neq b_0$ then $b \in B_1$. We know that g is surjective $\Rightarrow \exists a \in A_1$ such that g(a) = b but $A_1 \subseteq A$ so $\exists a \in A$ such that f(a) = g(a) = b. Which makes f surjective.

So we show that f is bijective.

Hence by induction we show that if |A| = |B| then there is a bijective map from A to B

(b).

 $(i) \Rightarrow (ii)$

Consider a function $f: A \to B$ such that |A| = |B|. And assume f is 1-1. Let $B_1 = f(A) \subseteq B$.

Define $g: A \to B_1$ as g(a) = f(a) and $f(A) = B_1$.

If $g(a_1) = g(a_2)$ where . . .

 $(ii) \Rightarrow (i)$

Assume for the sake of contradiction that f is not 1-1 this means we can find a_1, a_2 such that $f(a_1) = f(a_2)$ and $a_1 \neq a_2$. Now let us remove a_1 from A to get $A_1 = A - \{a_1\}$

Now we have $f_1: A_1 \to B$ such that $\forall a \in A_1 \ f_1(a) = f(a)$.

 $\forall b \in B \text{ we have}$

Case 1. $b = f(a_1)$, then $b = f(a_2), a_2 \in A_1$.

Case 2. $b \neq f(a_1)$. Then $f: A \to B$ is onto $\exists a \in A, \text{s..t } f(a) = b \neq f(a_1) \Rightarrow a \neq a_1 \Rightarrow a \in A_1 \Rightarrow b = f_1(a)$

So we showed that for any b there is an a such that $f_1(a) = b$. Meaning f_1 is onto.

However we removed an element a_1 from A which menas $|A_1| = |A| - 1$ and becase |A| = |B| we have $|A_1| < |B|$ and g is onto. But this contradicts the fact that $|B| \ge |A_1|$ for any surjective function.

Henc ewe get a contrdiction. Therefore f is 1-1.

Chapter 13

Abstract Algebra

Given a group (G, *), let,

$$S_A = \{ \text{bijections on G} \}$$

 $\forall g \in G$ we define $f_g : G \to G$ as,

$$x \in G, f_g(x) = g * x$$

Consider,

$$(f_{g_2} \circ f_{g_1})(x) = f_{g_2}(f_{g_1}(x))$$

$$= g_2 * f_{g_1}(x) = g_2 * (g_1 * x) = (g_2 * g_1) * x$$

So we have,

$$f_{g_2} \circ f_{g_1} = f_{g_2 * g_1}$$

Let
$$A_L(G) = \{ f_g : G \to G | g \in G \}$$