
(* (\$\frac{1}{2}\frac{1}{2}\frac{1}{2}\)
LABOR LATITIA, OSTU
ŭ o o o b
usacn

Universidad de Santiago de Chile Departamento de Matemática y C.C

	Puntaje
1.	
2.	
3.	

Cálculo I

Control 1

Miércoles 02 de noviembre de 2022

Nota

Pauta

1. En un laboratorio, cierto día se mide el número de bacterias presentes en un cultivo dando como resultado 600 bacterias. 4 días después, se vuelve a medir la población de bacterias presentes en el cultivo obteniéndose 1800 bacterias. Suponiendo que el crecimiento es exponencial y que la cantidad de bacterias en el cultivo, t días después de la primera medición está dada por:

$$f(t) = A(3)^{kt}$$

- a) Determine los valores de A y k.
- b) Indique el momento en que el cultivo contará con 3000 bacterias (deje este valor expresado).

Solución:

a) Como la cantidad inicial es de 600 bacterias, se tiene que A=600. Ahora, como a los 4 días hay 1800 bacterias, se tiene que

$$f(4) = 1800$$

$$600(3)^{4k} = 1800$$

$$3^{4k} = 3$$

$$\Rightarrow 4k = 1$$

$$k = \frac{1}{4}$$

Por lo tanto la función es $f(t) = 600(3)^{\frac{t}{4}}$

b) Debemos encontrar el valor de t para que

$$600(3)^{t/4} = 3000$$

$$3^{t/4} = \frac{3000}{600}$$

$$3^{t/4} = 5 / \log_3$$

$$\frac{t}{4} = \log_3(5)$$

$$t = 4\log_3(5)$$

2. Una torre de alta tensión de 10[m] de altura se instala en una colina que tiene una inclinación de 15° . Desde la parte superior de la torre salen dos cables tensores d_1 y d_2 que se deben fijar, en el piso, formando un ángulo de 30° con respecto al piso de la colina (ver figura).

Determine la longitud del cable tensor d_1

Solución:

Completando la información de los ángulos interiores del triángulo, tenemos que

Ahora, como la altura de la torre es 10[m], para calcular la longitud de d_1 usaremos el Teorema del Seno

$$\frac{d_1}{\text{sen}(105)} = \frac{10}{\text{sen}(30)}$$

$$d_1 = \frac{10 \text{sen}(105)}{\text{sen}(30)}$$

$$= \frac{10 \text{sen}(105)}{1/2}$$

$$= 20 \text{sen}(105)$$

Para calcular sen(105) usamos la suma de ángulos para el seno

$$sen(105) = sen(60 + 45)
= sen(60) cos(45) + sen(45) cos(60)
= $\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2}$
= $\frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4}$$$

Por lo tanto, la medida, en metros, de d_1 es

$$d_1 = 20 \left(\frac{\sqrt{6} + \sqrt{2}}{4} \right)$$
$$= 5 \left(\sqrt{6} + \sqrt{2} \right)$$

3. Considere el ángulo agudo α tal que

$$\tan(\alpha) = 2 - \sec(\alpha).$$

Determine el valor numérico de $cos(\alpha)$

Solución:

Tenemos que

$$\tan(\alpha) = 2 - \sec(\alpha)$$

$$\frac{\sin(\alpha)}{\cos(\alpha)} = 2 - \frac{1}{\cos(\alpha)}$$

$$\frac{\sin(\alpha) + 1}{\cos(\alpha)} = 2$$

$$\sin(\alpha) + 1 = 2\cos(\alpha)$$

$$\sin(\alpha) = 2\cos(\alpha) - 1$$

$$\sqrt{1 - \cos^2(\alpha)} = 2\cos(\alpha) - 1$$

$$1 - \cos^2(\alpha) = 4\cos^2(\alpha) - 4\cos(\alpha) + 1$$

$$0 = 5\cos^2(\alpha) - 4\cos(\alpha)$$

$$0 = \cos(\alpha)(5\cos(\alpha) - 4)$$

Entonces

$$\cos(\alpha) = 0 \quad \lor \quad \cos(\alpha) = \frac{4}{5}$$

Descartamos lo primero ya que α es un ángulo agudo, por lo tanto $\cos(\alpha) = \frac{4}{5}$