Развиване на функции в степенен ред

сходящ се нарича интервал (област) на сходимост.

1. Нека функцията f(x) притежава производни от произволен ред. Степенният ред $\sum_{n=0}^{\infty} f^{(n)}(a) \frac{(x-a)^n}{n!}$ се нарича **ред на Тейлор за функцията** f(x). При a=0 редът се нарича ред на Маклорен.

Ако редът $\sum_{n=0}^{\infty} f^{(n)}(a) \frac{(x-a)^n}{n!}$ е сходящ и неговата сума е равна на f(x), казваме, че функцията може да се развие в ред на Тейлор.

Да припомним, че съществува число R , такова че за всяко |x-a| < R степенния ред $\sum_{n=0}^{\infty} f^{(n)}(a) \frac{(x-a)^n}{n!}$ е сходящ и за всяко |x-a| > R редът е разходящ. Числото R се нарича **радиус на сходимост.** (R може да бъде и ∞). В точките a-R и a+R редът може да бъде сходящ или разходящ. Множеството от всички точки, в които редът е

2. Редовете, получени чрез диференциране или чрез интегриране имат същия радиус на сходимост като дадения ред, т.е.

$$\sum_{n=0}^{\infty}a_n(x-a)^n=a_0+a_1(x-a)+a_2(x-a)^2+\dots$$

$$\sum_{n=1}^{\infty}a_nn(x-a)^{n-1}=a_1+2a_2(x-a)+3a_3(x-a)^2+\dots$$

$$\sum_{n=0}^{\infty}a_n\frac{(x-a)^{n+1}}{n+1}=C+a_0(x+a)+a_1\frac{(x-a)^2}{2}+a_2\frac{(x-a)^3}{3}+$$

$$f(x)=\sum_{n=0}^{\infty}a_n(x-a)^n=a_0+a_1(x-a)+a_2(x-a)^2+\dots$$

$$f'(x)=\sum_{n=1}^{\infty}a_nn(x-a)^{n-1}=a_1+2a_2(x-a)+3a_3(x-a)^2+\dots$$

$$\int f(x)dx=\sum_{n=0}^{\infty}a_n\frac{(x-a)^{n+1}}{n+1}=C+a_0(x+a)+a_1\frac{(x-a)^2}{2}+a_2\frac{(x-a)^3}{3}+$$

Теорема на Абел. Сумата на реда $\sum_{n=0}^{\infty} a_n (x-a)^n$ е непрекъсната функция в областта на сходимост.

3. Основни суми на степенни редове.

а)
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$$
 радиус на сходимост $R = 1$
б) $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ сходящ за всяко x
в) $e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$

г)
$$(1+x)^{\alpha} = {\alpha \choose 0} + {\alpha \choose 1}x + {\alpha \choose 2}x^2 + \dots = \sum_{n=0}^{\infty} {\alpha \choose n}x^n$$
 радиус на сходимост $R=1$

Забележка. Първият ред се получава от третия при $\alpha\!=\!-1$. Направете съответните пресмятания.

4. Други основни степенни редове.

д)
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
, сходящ за всяко x

e)
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$$
, радиус на сходимост $R = 1$

ж)
$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{2n-1}$$
, радиус на сходимост $R = 1$

з)*
$$\arcsin x = x + \frac{1}{2.3}x^3 + \frac{1.3}{2.4.5}x^5 + \frac{1.3.5}{2.4.6.7}x^7 + \dots = \sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!(2n+1)}x^{2n+1}$$
, радиус на

сходимост R=1.

Втората група отделихме, защото следват непосредствено от а), б) и г). Тяхното извеждане е типичен начин за намиране на развития на функции и за това ще ги покажем.

д) Съгласно теоремата за диференциране редът

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$
е диференцуема за всяко x и
$$\cos x = (\sin x)' = (x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots)' = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$
 за всяко x .

е) Производната $\frac{1}{1+x} = \frac{1}{1-(-x)}$ на функцията $\ln(1+x)$ е сума на геометрична прогресия с частно равно на (-x). Съгласно а)

$$\frac{1}{1+x} = \frac{1}{1-(-x)} = 1 + (-x) + (-x)^2 + (-x)^3 + \dots = 1 - x + x^2 - x^3 + \dots$$

Радиусът на сходимост е 1. Тогава при -1 < x < 1 можем да интегрираме почленно:

$$\ln(1+x) = \int \frac{1}{1+x} dx = \int (1-x+x^2-x^3+...) dx =$$

$$= \int 1 dx - \int x dx + \int x^2 dx - ... = x - \frac{x^2}{2} + \frac{x^3}{3} - ... + C.$$

(Да припомним, че съгласно основната теорема на интегралното смятане, ако производните на две функции са равни в **интервал,** то в този интервал функциите се различават с константа.)

За да определим константата C да дадем на x стойност 0:

$$\ln(1+0) = 0 - \frac{0^2}{2} + \frac{0^3}{3} - \frac{0^4}{4} + \dots + C \Rightarrow 0 = C \text{ или}$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots \text{ при } -1 < x < 1.$$

При x=1 редът $1-\frac{1^2}{2}+\frac{1^3}{3}-...$ е сходящ по критерия на Лайбниц и следователно $x-\frac{x^2}{2}+\frac{x^3}{3}-...$ е непрекъсната функция в $-1< x \le 1$ по теоремата на Абел. И тъй като $\ln(x+1)$ е непрекъсната функция в същия интервал, то

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$
 при $-1 < x \le 1$. Така получихме равенството

$$\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

ж) Производната $\frac{1}{1+x^2} = \frac{1}{1-(-x^2)}$ на функцията $\arctan x$ е сума на геометрична прогресия с частно равно на $(-x^2)$. Съгласно а)

$$\frac{1}{1+x^2} = \frac{1}{1-(-x^2)} = 1 + (-x^2) + (-x^2)^2 + (-x^2)^3 + \dots = 1 - x^2 + x^4 - x^6 + \dots = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

Радиусът на сходимост е 1. Тогава при -1 < x < 1 можем да интегрираме почленно:

$$\arctan x = \int \frac{1}{1+x^2} dx = \int (1-x^2+x^4-x^6+...) dx =$$

$$= \int 1 dx - \int x^2 dx + \int x^4 dx - ... = x - \frac{x^3}{3} + \frac{x^5}{5} - ... + C.$$

За да определим константата C да дадем на x стойност 0: $arctg 0 = 0 + 0 + 0 + ... + C \Rightarrow 0 = C$ или

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$
 при $-1 < x < 1$.

Отново $x=\pm 1$ редът $1-\frac{1^3}{3}+\frac{1^5}{5}-...$ е сходящ по критерия на Лайбниц и следователно $x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+...$ е непрекъсната функция в $-1 \le x \le 1$ по теоремата на Абел. И тъй като $\arctan x$ е непрекъсната функция в същия интервал, то

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$$
 при $-1 \le x \le 1$. Така получихме равенството
$$\frac{\pi}{4} = \arctan 1 = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^n}{2n+1}.$$

е) Производната $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$ може да се представи така

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}} = (1-x^2)^{-\frac{1}{2}} = (1+(-x^2))^{-\frac{1}{2}}.$$

Тази функция може да се развие в Маклоренов ред в по формула г):

$$\frac{1}{\sqrt{1-x^2}} = (1+(-x^2))^{-\frac{1}{2}} = 1 + \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix} (-x^2) + \begin{pmatrix} -\frac{1}{2} \\ 2 \end{pmatrix} (-x^2)^2 + \begin{pmatrix} -\frac{1}{2} \\ 3 \end{pmatrix} (-x^2)^3 + \dots + \begin{pmatrix} -\frac{1}{2} \\ n \end{pmatrix} (-x^2)^n + \dots$$

Радиусът на сходимост е 1. Тогава при -1 < x < 1 можем да интегрираме почленно:

$$\arcsin x = \int \frac{1}{\sqrt{1 - x^2}} dx = \int (1 - \left(-\frac{1}{2}\right)x^2 + \left(-\frac{1}{2}\right)x^4 - \left(-\frac{1}{2}\right)x^6 + \dots + (-1)^n \left(-\frac{1}{2}\right)x^{2n} + \dots + (-1)^n \left(-\frac{1}{2}\right)x^{2n+1} + \dots + C$$

За да определим константата C да дадем на x стойност 0: $\arcsin 0 = 0 + 0 + 0 + \dots + C \Rightarrow 0 = C$ или

$$\arcsin x = x - \left(-\frac{1}{2}\right) \frac{x^3}{3} + \left(-\frac{1}{2}\right) \frac{x^5}{5} - \dots + (-1)^n \left(-\frac{1}{2}\right) \frac{x^{2n+1}}{2n+1} + \dots = \sum_{n=0}^{\infty} (-1)^n \left(-\frac{1}{2}\right) \frac{x^{2n+1}}{2n+1}.$$

Да пресметнем коефициента $(-1)^n \begin{pmatrix} -\frac{1}{2} \\ n \end{pmatrix}$:

$$(-1)^0 \begin{pmatrix} -\frac{1}{2} \\ 0 \end{pmatrix} = 1$$
 и при $n \neq 0$

$$(-1)^n \left(-\frac{1}{2} \right) = (-1)^n \frac{(-\frac{1}{2})(-\frac{1}{2}-1)(-\frac{1}{2}-2)...(-\frac{1}{2}-n+1)}{n(n-1)(n-2)...2.1} =$$

$$=(-1)^{n}\frac{(-1)^{n}(\frac{1}{2})(\frac{1}{2}+1)(\frac{1}{2}+2)...(\frac{1}{2}+n-1)}{n(n-1)(n-2)...2.1}=\frac{1.3.5...(2n-1)}{2^{n}n!}=\frac{(2n-1)!!}{(2n)!!}.$$

Така окончателно получихме

$$\arcsin x = x + \frac{1}{2.3}x^3 + \frac{1.3}{2.4.5}x^5 + \dots + \frac{(2n-1)!!}{(2n)!!(2n+1)}x^{2n+1} + \dots = \sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!(2n+1)}x^{2n+1}.$$

Да изследваме реда при $x=\pm 1$

$$\frac{u_{n+1}}{u_n} = \frac{(2n+1)!!}{(2n+2)!!(2n+3)} \cdot \frac{(2n)!!(2n+1)}{(2n-1)!!} = \frac{(2n+1)^2}{(2n+2)(2n+3)} = \frac{4n^2+4n+1}{4n^2+10n+6} \xrightarrow[n \to \infty]{} 1.$$

Тъй като $\frac{4n^2+4n+1}{4n^2+10n+6}$ <1, критерия на Даламбер не дава резултат.

А от
$$n(\frac{4n^2+10n+6}{4n^2+4n+1}-1)=\frac{6n^2+5n}{4n^2+4n+1} \xrightarrow[n\to\infty]{} \frac{6}{4}>1$$
 и критерия на Раабе и Дюамел

редът
$$\sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!(2n+1)}$$
 е сходящ.

Тогава по теоремата на Абел

$$\arcsin x = x + \frac{1}{2.3}x^3 + \frac{1.3}{2.4.5}x^5 + \dots + \frac{(2n-1)!!}{(2n)!!(2n+1)}x^{2n+1} + \dots = \sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!(2n+1)}$$
 при

 $-1 \le x \le 1$. Така при x = 1 имаме

$$\frac{\pi}{2} = \arcsin 1 = 1 + \frac{1}{2.3} + \frac{1.3}{2.4.5} + \dots + \frac{(2n-1)!!}{(2n)!!(2n+1)} + \dots = \sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!(2n+1)} + \dots$$

Задача 1. Да се развие в степенен ред функцията

а)
$$f(x) = \frac{3x+4}{x^2+x-6}$$
 около точката 0 (ред на Маклорен)

б)
$$f(x) = \frac{3x+4}{x^2+x-6}$$
 около точката $-\frac{1}{2}$.

Решение. а) За да използваме основно развитие а) (геометрична прогресия) ще разложим на елементарни дроби:

$$\frac{3x+4}{x^2+x-6} = \frac{3x+4}{(x-2)(x+3)} = \frac{A}{x-2} + \frac{B}{x+3} \quad \Rightarrow \quad 3x+4 = A(x+3) + B(x-2)$$

$$\begin{cases} x=-3 & \Rightarrow \quad -5 = -5B \quad \Rightarrow \quad B = 1 \\ x=2 & \Rightarrow \quad 10 = 5A \quad \Rightarrow \quad A = 2 \end{cases}$$
 или
$$\frac{3x+4}{x^2+x-6} = \frac{2}{x-2} + \frac{1}{x+3}.$$
 От
$$\frac{2}{x+3} = -\frac{1}{1-(-\frac{x}{3})}$$
 се вижда, че това е сума на геометрична прогресия с частно

$$-\frac{x}{3}$$
 или
$$\frac{2}{x-2} = -\frac{1}{1-\frac{x}{2}} = -\sum_{n=0}^{\infty} (\frac{x}{2})^n = \sum_{n=0}^{\infty} (-\frac{1}{2^n})x^n .$$

Редът е сходящ при $\left|\frac{x}{2}\right| < 1$ или |x| < 2 и разходящ при |x| > 2. Радиусът на сходимост е равен на 2.

От $\frac{2}{x-2} = -\frac{1}{1-\frac{x}{2}}$ се вижда, че това е сума на геометрична прогресия с частно $\frac{x}{2}$

или
$$\frac{1}{x+3} = \frac{1}{1-(-\frac{x}{3})} = \sum_{n=0}^{\infty} (-\frac{x}{3})^n = \sum_{n=0}^{\infty} (-1)^n \frac{1}{3^n} x^n$$
.

Редът е сходящ при $\left|\frac{x}{3}\right| < 1$ или |x| < 3 и разходящ при |x| > 2. Радиусът на сходимост е равен на 3.

$$f(x) = \frac{3x+4}{x^2+x-6} = \frac{2}{x-2} + \frac{1}{x+3} = \sum_{n=0}^{\infty} (-\frac{1}{2^n})x^n + \sum_{n=0}^{\infty} (-1)^n \frac{1}{3^n} x^n = \sum_{n=0}^{\infty} [-\frac{1}{2^n} + (-1)^n \frac{1}{3^n}]x^n.$$

Радиусът на сходимост R на този ред е по-малкия от двата радиуса, т.е. R=2.

б) За да сведем задачата до намиране на Маклоренов ред ще положим $t = x + \frac{1}{2}$:

$$\frac{3x+4}{x^2+x-6} = \frac{3(t-\frac{1}{2})+4}{(t-\frac{1}{2})^2+(t-\frac{1}{2})-6} = \frac{3t+\frac{5}{2}}{t^2-\frac{25}{4}}.$$

Преобразуваме тази функция, за да приложим формулата за сума на геометрична

прогресия:
$$\varphi(t) = \frac{3t + \frac{5}{2}}{t^2 - \frac{25}{4}} = -\frac{4}{25}(3t + \frac{5}{2}) \cdot \frac{1}{1 - (\frac{2}{5}t)^2}$$
. Тогава

$$\varphi(t) = -\frac{4}{25} \cdot (3t + \frac{5}{2}) \cdot \frac{1}{1 - (\frac{2}{5}t)^2} = -\frac{4}{25} (3t + \frac{5}{2}) \sum_{n=0}^{\infty} (\frac{4}{25}t^2)^n = -(3t + \frac{5}{2}) \sum_{n=0}^{\infty} (\frac{4}{25})^{n+1} t^{2n}.$$

Този ред е сходящ при $\frac{4t^2}{25} < 1 \Leftrightarrow |t| < \frac{5}{2}$ и разходящ при $\frac{4t^2}{25} > 1 \Leftrightarrow |t| > \frac{5}{2}$. Така радиусът на сходимост е $R = \frac{5}{2}$.

Окончателно, като се върнем към променливата x, получаваме

$$f(x) = \frac{3x+4}{x^2+x-6} = -\left[3(x+\frac{1}{2}) + \frac{5}{2}\right] \sum_{n=0}^{\infty} \left(\frac{4}{25}\right)^{n+1} (x+\frac{1}{2})^{2n} = -\left(3x+4\right) \sum_{n=0}^{\infty} \left(\frac{4}{25}\right)^{n+1} (x+\frac{1}{2})^{2n}.$$

Радиусът на сходимост е $R = \frac{5}{2}$.

Задача 2. (За самостоятелна работа). Да се развие в степенен ред функцията

а)
$$f(x) = \frac{x}{1 - x^2}$$
 около точката 0 (ред на Маклорен)

б)
$$f(x) = \frac{x}{1 - x^2}$$
 около точката 2.

Задача 3. Да се развие в Маклоренов ред

a)
$$f(x) = \ln[(1-x)(x+3)]$$
;

а) Ще разгледаме производната на $f(x) = \ln[(1-x)(x+3)] = \ln(1-x) + \ln(x+3)$:

$$f'(x) = -\frac{1}{1-x} + \frac{1}{x+3} = -\frac{1}{1-x} + \frac{1}{3} \cdot \frac{1}{1+\frac{x}{3}} = -\frac{1}{1-x} + \frac{1}{3} \cdot \frac{1}{1-(-\frac{x}{3})}$$

Съгласно формулата за сума на геометрична прогресия имаме

$$f'(x) = -\sum_{n=0}^{\infty} x^n + \frac{1}{3} \sum_{n=0}^{\infty} (-\frac{x}{3})^n = \sum_{n=0}^{\infty} [-1 + (-1)^n \frac{1}{3^{n+1}}] x^n$$

Тъй като радиусът на сходимост на първия ред е равен на 1, а на втория – 3 (защо?), то радиусът на редът, получен събиране на двата реда е по-малкото число, т.е.

радиусът на сходимост на $\sum_{n=0}^{\infty} [-1 + (-1)^n \frac{1}{3^{n+1}}] x^n$ е равен на 1.

Във интервала -1 < x < 1 можем да интегрираме почленно:

$$f(x) = C + \int f'(x)dx = C + \int (\sum_{n=0}^{\infty} [-1 + (-1)^n \frac{1}{3^{n+1}}]x^n)dx =$$

$$=C+\sum_{n=0}^{\infty}\int [-1+(-1)^n\frac{1}{3^{n+1}}]x^ndx=C+\sum_{n=0}^{\infty}[-1+(-1)^n\frac{1}{3^{n+1}}]\frac{x^{n+1}}{n+1}.$$

При
$$x\!=\!0$$
 имаме $f(0)\!=\!\ln 1\!+\!\ln 3\!=\!C\!+\!\sum_{n\!=\!0}^{\infty}[-1\!+\!(-1)^n\frac{1}{3^{n\!+\!1}}]\frac{0^{n\!+\!1}}{n\!+\!1}\!=\!C\!-\!1\!+\!\frac{1}{3}$ или

$$\ln 3 = C - \frac{2}{3} \Rightarrow C = \frac{2}{3} + \ln 3$$
.

Окончателно в -1 < x < 1 получаваме

$$\ln[(1-x)(x+3)] = \frac{2}{3} + \ln 3 + \sum_{n=0}^{\infty} [-1 + (-1)^n \frac{1}{3^{n+1}}] \frac{x^{n+1}}{n+1} = \ln 3 + \sum_{n=1}^{\infty} [-1 + (-1)^n \frac{1}{3^{n+1}}] \frac{x^{n+1}}{n+1}.$$

При x=1 редът е разходящ като сума на един сходящ и един разходящ ред.

При x = -1 редът е сходящ като сума на два сходящи реда:

$$\sum_{n=1}^{\infty} -\frac{(-1)^n}{n+1}$$
 е сходящ по критерия на Лайбниц

$$\sum_{n=1}^{\infty}[(-1)^n\frac{1}{3^{n+1}}]\frac{(-1)^{n+1}}{n+1}=\sum_{n=1}^{\infty}\frac{1}{3^{n+1}(n+1)}$$
е сходящ (мажорира се от геометрична прогресия).

Така по теоремата на Абел равенството

$$\ln[(1-x)(x+3)] = \frac{2}{3} + \ln 3 + \sum_{n=0}^{\infty} [-1 + (-1)^n \frac{1}{3^{n+1}}] \frac{x^{n+1}}{n+1} = \ln 3 + \sum_{n=1}^{\infty} [-1 + (-1)^n \frac{1}{3^{n+1}}] \frac{x^{n+1}}{n+1}$$
е в сила $-1 \le x < 1$.

б) Ще разгледаме производната на $f(x) = \frac{x^2 + 1}{2} \arctan x - \frac{x}{2}$:

$$f'(x) = x \arctan x + \frac{x^2 + 1}{2} \cdot \frac{1}{x^2 + 1} - \frac{1}{2} = x \arctan x$$
.

Ще използваме развитието на $\arctan x$ в степенен ред (вж. ж)). Тогава при -1 < x < 1 е в сила

$$f'(x) = x \arctan x = x \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+2}}{2n+1}$$

В интервала -1 < x < 1 можем да интегрираме и да приложим основната теорема на интегралното смятане

$$f(x) = \frac{x^2 + 1}{2} \arctan x - \frac{x}{2} = C + \int f'(x) dx =$$

$$= C + \int (\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+2}}{2n+1}) dx = C + \sum_{n=0}^{\infty} \int [(-1)^n \frac{x^{2n+2}}{2n+1}] dx = C + \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+3}}{(2n+1)(2n+3)}.$$

При x=0 имаме f(0)=0=C+0 \Rightarrow C=0

Така в -1 < x < 1е в сила

$$f(x) = \frac{x^2 + 1}{2} \arctan x - \frac{x}{2} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+3}}{(2n+1)(2n+3)}.$$

При $x=\pm 1$ редът $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+3}}{(2n+1)(2n+3)}$ е сходящ (защо?) следователно по

$$f(x) = \frac{x^2 + 1}{2} \arctan x - \frac{x}{2} = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+3}}{(2n+1)(2n+3)}$$

е изпълнено при $-1 \le x \le 1$.

Задача 4. (За самостоятелна работа) Да се развие в Маклоренов ред функцията

a)
$$f(x) = \ln \frac{4x+2}{3x^2+4x+1}$$

6)
$$f(x) = 2\sqrt{3} \arctan \frac{2x+1}{\sqrt{3}} + \ln \frac{(1-x)^2}{x^2+x+1}$$
.

Задача 5. Да се развие в степенен ред функцията $f(x) = \arctan \frac{2-2x}{1+4x}$.

Решение. Намираме производната на функцията $f(x) = \arctan \frac{2-2x}{1+4x}$ при $x \neq -\frac{1}{4}$

$$f'(x) = \frac{1}{1 + (\frac{2 - 2x}{1 + 4x})^2} \cdot \frac{(-2)(1 + 4x) - 4(1 - 2x)}{(1 + 4x)^2} = \frac{-2}{1 + 4x^2} \text{ при } x \neq -\frac{1}{4}.$$

Функцията $\frac{-2}{1+4x^2}$ е сума на геометрична прогресия с частно $-4x^2$, т.е.

$$\frac{-2}{1+4x^2} = -2\sum_{n=0}^{\infty} (-4x^2)^n = -2\sum_{n=0}^{\infty} (-4)^n x^{2n} = \sum_{n=0}^{\infty} (-1)^{n+1} 2^{2n+1} x^{2n} \qquad \text{с} \qquad \text{радиус} \qquad \text{на}$$

сходимост равен на $\frac{1}{2}$.

Този ред можем да интегрираме в интервала $(-\frac{1}{2};\frac{1}{2})$. Тъй като функцията $f(x) = \arctan \frac{2-2x}{1+4x}$ не е дефинирана в т. $-\frac{1}{4}$, то основната теорема на интегралното смятане може да се приложи само в интервала $(-\frac{1}{4};\frac{1}{2})$:

$$f(x) = \arctan \frac{2-2x}{1+4x} = \int f'(x)dx = C + \int \frac{-2}{1+4x^2}dx =$$

$$= C + \int (\sum_{n=0}^{\infty} (-1)^{n+1} 2^{2n+1} x^{2n}) dx = C + \sum_{n=0}^{\infty} \int (-1)^{n+1} 2^{2n+1} x^{2n} dx = C + \sum_{n=0}^{\infty} \frac{(-1)^{n+1} 2^{2n+1}}{2n+1} x^{2n+1}.$$
При $x = 0$ имаме $f(0) = \arctan 2 = C$. Така

$$f(x) = \arctan \frac{2-2x}{1+4x} = \arctan 2 + \sum_{n=0}^{\infty} \frac{(-1)^{n+1}2^{2n+1}}{2n+1} x^{2n+1} \text{ при } (-\frac{1}{4}; \frac{1}{2}).$$

При $x = \frac{1}{2}$ редът $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} 2^{2n+1}}{2n+1} (\frac{1}{2})^{2n+1} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2n+1}$ е сходящ по критерия на

Лайбниц и по теоремата Абел равенството

$$f(x) = \arctan \frac{2-2x}{1+4x} = \arctan 2 + \sum_{n=0}^{\infty} \frac{(-1)^{n+1}2^{2n+1}}{2n+1} x^{2n+1}$$
 е в сила при $(-\frac{1}{4}; \frac{1}{2}]$.

От направените разглеждания е ясно, че в интервала $(-\frac{1}{2};-\frac{1}{4})$ функциите $f(x) = \arctan \frac{2-2x}{1+4x}$ и $g(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}2^{2n+1}}{2n+1} x^{2n+1}$ имат една и съща производна $\frac{-2}{1+4x^2}$ и според ОТИС се различават с константа (която може да бъде различна от константата в интервала $(-\frac{1}{4};\frac{1}{2})$ или в $(-\frac{1}{2};-\frac{1}{4})$ имаме

$$\arctan \frac{2-2x}{1+4x} = C_1 + \sum_{n=0}^{\infty} \frac{(-1)^{n+1} 2^{2n+1}}{2n+1} x^{2n+1}.$$

Съгласно теоремата на Абел

$$\lim_{x \to -\frac{1}{2}} \arctan \frac{2-2x}{1+4x} = \lim_{x \to -\frac{1}{2}} [C_1 + \sum_{n=0}^{\infty} \frac{(-1)^{n+1} 2^{2n+1}}{2n+1} x^{2n+1}]$$
или

$$\operatorname{arctg} \frac{2+1}{1-2} = C_1 + \sum_{n=0}^{\infty} \frac{(-1)^{n+1} 2^{2n+1}}{2n+1} (-\frac{1}{2})^{2n+1} \implies$$

$$\Rightarrow$$
 $\operatorname{arctg}(-3) = C_1 + \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = C_1 + \frac{\pi}{4} \Rightarrow C_1 = -\operatorname{arctg} 3 - \frac{\pi}{4}$. (вж. Други основни

степенни редове ж) $-\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$).

Получихме

$$arctg \frac{2-2x}{1+4x} = -arctg 3 - \frac{\pi}{4} + \sum_{n=0}^{\infty} \frac{(-1)^{n+1} 2^{2n+1}}{2n+1} x^{2n+1}$$
 при $[-\frac{1}{4}; -\frac{1}{2})$.

Задача 6. Да се развие в степенен ред функцията $f(x) = \frac{1}{(1-x)^2}$.

Решение. Да разгледаме функцията

$$F(x) = \int \frac{dx}{(1-x)^2} = -\int \frac{d(1-x)}{(1-x)^2} = \frac{1}{1-x}.$$

Това е сума на геометрична прогресия

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n \quad \text{при} \quad -1 < x < 1.$$

Този ред можем да диференцираме при -1 < x < 1:

$$\frac{1}{(1-x)^2} = F'(x) = (\frac{1}{1-x})' = (\sum_{n=0}^{\infty} x^n)' = \sum_{n=0}^{\infty} (x^n)' = \sum_{n=0}^{\infty} nx^{n-1} \text{ при } -1 < x < 1.$$