Vorläufiges Thema

Bachelorarbeit

zur Erlangung des Grades Bachelor of Science

an der Hochschule Niederrhein Fachbereich Elektrotechnik und Informatik Studiengang *Informatik*

> vorgelegt von Robert Hartings Matrikelnummer: 1164453

> > Datum: 7. Juli 2020

Prüfer: Prof. Dr. Jürgen Quade Zweitprüfer: Prof. Dr. Peter Davids

Eidesstattliche Erklärung

Name:	Robert Hartings	
Matrikelnr.:	1164453	
Titel:	Vorläufiges Thema	
		it, dass die vorliegende Arbeit ausschließlich von mir n als die von mir angegebenen Quellen und Hilfsmittel
Die Arbeit beste	eht aus Seiten.	
Ort, Datum		Robert Hartings

Inhaltsverzeichnis

1	Einl	eitung		1				
	1.1	Motiva	ation	. 2				
	1.2	Aufgal	benstellung	. 2				
2	Ana	alyse						
	2.1	Lehrve	eranstaltung IT-Sicherheit	. 5				
	2.2	Aussta	attung Labor	. 6				
	2.3	Versuc	ch "Catch me, if you can"	. 7				
	2.4	System	nkomponenten	. 9				
		2.4.1	Komponenten des Servers	. 9				
		2.4.2	Komponenten des Clients	. 13				
	2.5	Schnit	tpunkte zwischen Server und Clients					
	2.6	Abgele	eitete Anforderungen	. 15				
3	Ent	wurf		17				
	3.1	Entwu	ırfsziele	. 17				
	3.2		inerisierung					
	3.3		icht					
	3.4		er					
		3.4.1	Verteilte Scanner					
		3.4.2	Zentraler Scanner					
		3.4.3	Scan-Operationen					
	3.5	Webse	erver					
		3.5.1	Verwendung mehrere Microservice					
		3.5.2	Fat Webserver					
		3.5.3	Thin Webserver					
		3.5.4	Reverse Proxy	. 34				
	3.6	Datenb	bank					
	3.7	Webcli	ient	. 34				
		3.7.1	SPA vs MPA	. 34				
		3.7.2	Mockups	. 36				
	3.8	Game	Client					
4	Tec	hnolog	iien	37				
	4.1	•	end	_				
	12	Racker		27				

	4.3 Datennaltung	31
5	Realisierung	39
6	Zusammenfassung & Aussicht	41
Αı	nhang	43

1 Einleitung

Das Thema IT Sicherheit ist besonders in den letzten Jahren relevant geworden. Viele Firmen suchen Experten[it-19], welche die bestehenden und neu designten Systeme auf Sicherheitslücken prüfen und Lösungsvorschläge zur deren Behebung präsentieren. Auch werden Experten gesucht, welche die im Unternehmen bestehenden Prozesse prüfen und neue Prozesse zum Umgang mit Sicherheitslücken entwerfen.

Einen Mangel an IT-Sicherheit in privaten und öffentlichen Unternehmen beziehungsweise ein fehlendes Konzept zur Vorbeugung, Erkennung und Abwendung von Sicherheitslücken sieht man auch in jüngster Vergangenheit deutlich, nachdem beispielsweise diverse Universitäten wie Gießen, Maastricht und Bochum Ende 2019 Ziele von Hackerangriffen geworden sind.[Sch20][WDR19][Ruh20] Aber nicht nur Universitäten sind betroffen, so ist neben Gerichten, Stadtverwaltungen und Krankenhäusern bereits der Deutsche Bundestag von Hackern angegriffen und kompromittiert worden.[HHH20][BH20][Wel19][FM20]

In der Studie "Wirtschaftsschutz in der digitalen Welt" vom 06. November 2019 des Bundesverbandes Informationswirtschaft, Telekommunikation und neue Medien e.V. Bitkom wird die aktuelle Bedrohungslage durch Spionage und Sabotage für deutsche Unternehmen untersucht. Aus dieser Studie geht hervor, dass im Jahr 2019 von Datendiebstahl, Industriespionage oder Sabotage 75% der befragten Unternehmen¹ betroffen und 13% vermutlich betroffen waren. Die Zahlen der betroffenen Unternehmen ist steigend. Im Jahre 2015 waren "nur" 51% betroffen und 28% vermutlich betroffen. Die Unternehmen beziffern den Schaden auf 102,9 Milliarden Euro pro Jahr.[BN19]

Dass dieser Mangel auch im Lehrbetrieb angekommen ist, sieht man an neu startenden Studiengängen wie dem Bachelorstudiengang Cyber Security Management der Hochschule Niederrhein, welcher zum kommenden Wintersemester 2020/21 startet.[Hoc20]

Aber es ist zu erwähnen, dass die Hochschulen sich bereits mit dem Thema auseinandersetzen. So beschäftigt sich an der Hochschule Niederrhein das Institut für Informationssicherheit Clavis besonders mit Themen rund um das Informationssicherheitsmanagement, gestaltet aber auch Inhalte zur Vulnerabilität von (kritischer) Infrastruktur und Hacking. Das Ziel von Clavis ist die Erhöhung der Informationssicherheit von Organisationen im regionalen Umfeld der Hochschule. [Hoc] Auch hat die Hochschule Niederrhein das Thema IT-Sicherheit bereits in Ihren Lehrplan für die Studiengänge Informatik und Elektrotechnik am Fachbreich 03 Elektrotechnik und Informatik aufgenommen. So werden dort im fünften Semester in der

¹Die Grundlage der Studie sind 1070 (2019) und 1074 (2015) befragte Unternehmen

Veranstaltung IT-Security grundlegenden Kompetenzen zum Thema IT-Sicherheit vermittelt, welche einem allgemeinen Anspruch genügen.[Hoc19]

1.1 Motivation

Neben diversen Meldungen zu erfolgreichen Angriffen auf Unternehmen und öffentliche Körperschaften und durch die Veranstaltung IT-Sicherheit im fünften Semester, besonders herauszuheben ist hier das Praktikum², bin ich auf das Thema IT-Sicherheit aufmerksam geworden.

Die zunehmenden Vorfälle zeigen, dass ein breites Bewusstsein für IT-Sicherheit geschaffen werden muss.

Der Versuch "Catch me, if you can" versucht dieses Bewusstsein zu schaffen, in dem die Studierenden sowohl in die Rolle des Angreifers als auch die des Schützers schlüpfen.

Das Programm, welches das Praktikum überwacht, ist bereits 10 Jahre alt und bietet meiner Meinung nach Notwendigkeiten der Modernisierung, Überarbeitung und Erweiterung. So gibt es beispielsweise heute bessere Möglichkeiten die Darstellung (Web-Oberfläche) zu realisieren.

1.2 Aufgabenstellung

Begleitend zu der Veranstaltung IT-Sicherheit für die Studiengänge Bachelor Informatik und den Bachelor Elektrotechnik des Fachbereichs 03 Elektrotechnik und Informatik der Hochschule Niederrhein werden 3 Versuche im Rahmen des Praktikums durchgeführt. Diese sollen den Studierenden praktische Erfahrungen ermöglichen.

Der zweite Versuch namens "Catch me, if you can" stellt einen Vergleichswettbewerb dar. An diesem Wettbewerb nehmen mehrere Teams teil, welche sich alle in einem gemeinsamen Computernetzwerk befinden. Die Aufgabe der Teams besteht darin, festgelegte Programme/Dienste abgesichert bereit zustellen, geheime Informationen sowohl auf dem eigenen Rechner als auch auf den Rechnern der anderen Teams zu finden und Schwachstellen abzusichern, um so zu verhindern, dass andere Teams an die eigenen geheimen Informationen gelangen.[Sos10, S. 2] Die geheimen Informationen sind logisch gesehen Passwörter oder private Bilder und werden durch sogenannte Flags repräsentiert. Eine Flag ist eine generierte Zeichenfolge mit fester Länge.

Das Praktikum wird durch ein Auswertungs- und Überwachungssystem begleitet, welches eine objektiv nachvollziehbare Bewertung vornehmen kann und die in den Bewertungsprozess eingeflossenen Parameter dokumentiert.[Sos10, S. 2]

²Praktikum ist hierbei mit einer Pflichtübung vergleichbar

Ziel meiner Arbeit ist die Modernisierung und Verbesserung dieses Auswertungs- und Überwachungssystems.

In der einführenden Betrachtung (Kapitel 2) wird der aktuelle Stand des Systems, Schnittstellen zwischen Server und Client sowie der Begründung für die Veränderung dargelegt. Aus dieser einführenden Betrachtung werden dann Anforderungen abgeleitet.

Im Folgenden Kapitel 3 werden Entwürfe für die verschieden Komponenten des Servers erstellt.

Anhand der abgeleiteten Anforderungen und des Entwurfs der verschiedenen Komponenten werden im Kapitel 4 verschiedene Technologien diskutiert und passende ausgewählt.

Die Implementierung des Entwurfs mit den gewählten Technologien wird im Kapitel 5 beschrieben.

Eine kritische Auseinandersetzung mit dem Ergebnis dieser Arbeit folgt und es werden Aussichten für mögliche Veränderungen und Erweiterungen gegeben.

2 Analyse

In diesem Kapitel werden die Voraussetzungen im Labor vorgestellt, die derzeitige Implementierung des Auswertungs- und Überwachungssystems beleuchtet und kurz auf einen überwachten Client sowie dessen Schnittstellen zum System eingegangen.

2.1 Lehrveranstaltung IT-Sicherheit

Das Pflichtmodul IT-Sicherheit (ITS) ist in drei Veranstaltungen gegliedert.[Hoc19, S.30]

- Vorlesung (2 Semesterwochenstunden)
- Übung (1 Semesterwochenstunde)
- Praktikum (1 Semesterwochenstunde)

Vorlesung

Die Vorlesung wird im wöchentlichen Turnus angeboten und behandelt grundlegendes Wissen zu IT-Sicherheit unter anderem in den Bereichen Gefährdung, Gegenmaßnahmen aber auch im Bereich rechtliche Gegebenheiten. Es werden Beispiele aufgezeigt, bei welchen die angesprochenen Themen gar nicht oder in einem ungenügenden Zustand umgesetzt worden sind. Die Vorlesung wird von den Veranstaltungen Übung (freiwillig) und Praktikum (verbindlich) ergänzt.

Übung

Die Übungen sind freiwillig und werden im zweiwöchentlichen Turnus á 2 Stunden angeboten. Diese ermöglichen den Studierenden den durch die Vorlesung und das Selbststudium vermittelten Stoff zu vertiefen und festigen. Auch können dort praktische Erfahrungen gesammelt werden, von denen die Studierenden unter anderem im Praktikum profitieren können.

Praktikum

Die Versuche des Praktikums finden im monatlichen Turnus (3x im Semester) á 4 Stunden statt. Bei Bestehen aller Versuche erhalten die Studierenden ihre Klausurzulassung. Jeder Versuch des Praktikums muss vorbereitet werden, dazu erhalten die Studierenden vor dem Versuch ein Hackit¹. Nur mit erfolgreichem Absolvieren des Hackits ist es möglich am nächsten Versuch teilzunehmen.[Qua17]

2.2 Ausstattung Labor

Das Praktikum wird im Labor für Echtzeitsysteme (EZS Labor) der Hochschule Niederrhein durchgeführt.

Abbildung 2.1: Übersicht über die Laborausstattung (Netzwerktopologie)

Wie in der Abbildung 2.1 zu sehen, ist das Labor mit acht Gruppenarbeitsplätzen für Studierende sowie Arbeitsplätzen für die Betreuer und Mitarbeiter ausgestattet. Ein Betreuerarbeitsplatz kann zu einem neunten Gruppenarbeitsplatz umfunktioniert werden.

An einem Gruppenarbeitsplatz (in der Abbildung 2.1 grau hinterlegt) können 2 Studierende gleichzeitig arbeiten, da diese mit einem leistungsfähigen Desktop-PC und einem Raspberry Pi² sowie den dazugehörigen Peripheriegeräten (Maus, Tastatur & Monitor) ausgestattet sind. Auf den Desktop-PCs ist Ubuntu³ und auf den Raspberry Pis ist Raspbian⁴ als Betriebssystem

¹Aufgabe aus dem Bereich IT-Sicherheit / Hacking

²Einplatinencomputer mit der Größe einer Kreditkarte

³Ubuntu ist eine freie Linux Distribution auf Basis von Debian

⁴Abwandlung von Debian für den Raspberry Pi

installiert.

Auf den Desktop-PCs ist die Software VirtualBox der Firma Oracle installiert. Diese ermöglicht das Virtualisieren eines weiteren Rechners. Diese Virtuelle Maschine wird Gast genannt und beheimatet die Dienste und Anwendungen, welche während des Versuchs benötigt werden. Durch die Nutzung der Virtualisierung muss die Software nicht auf dem Wirtsystem installiert werden. So ist dieses auch für andere Versuche im Rahmen der Lehrveranstaltung nutzbar, ohne das auf Inkompatibilitäten von Softwares der verschieden Versuche geachtet werden muss. Auch bietet VirtualBox die Möglichkeit sogenannte Snapshots anzulegen. Ein Snapshot ist eine Momentaufnahme eines aktuellen Systemzustandes. Diese stellt eine Komplettsicherung des Systems dar. Durch diese ist es möglich, die Systeme auf den gleichen Stand zu bringen. Dieses wird benötigt, um eine Vergleichbarkeit zwischen den Studierenden zu gewährleisten.[Ora20]

Neben diesen Rechner steht ein Linux Server zur Verfügung, auf welchem das Auswertungsund Überwachungssystem betrieben wird.

Alle Rechner, auch die Gastsysteme der Studentengruppen, sind untereinander über ein Netzwerkswitch via Ethernet verbunden.

Außerdem steht ein Beamer zur Verfügung auf dem die aktuelle Spielübersicht dargestellt werden kann.

2.3 Versuch "Catch me, if you can"

Der zweite der drei Versuche "Catch me, if you can" wird im Rahmen eines Wettbewerbs zwischen den teilnehmenden Studierendenteams ausgetragen. Der Wettbewerb ist an ein Capture the Flag (CTF) angelehnt. Bei einem klassischen CTF erhält der Spieler durch das Lösen von Aufgaben einen bestimmten Text. Dieser wird Flag genannt. Die Aufgaben können das Lösen einer Art Schnitzeljagd, eine einfache Programmierung aber auch das Hacken mehrere entfernter Rechner umfassen. Anders als beim klassischen CTF werden bei "Catch me, if you can" die Flags auf allen teilnehmenden Systemen verteilt. [Tan20]Die Studierenden können diese durch das Analysieren ihres eigenen Gastsystems sowie durch den Angriff auf fremde Gastsysteme erhalten. Besonderheit hierbei sind die Strafpunkte für den Verlust einer Flag an gegnerische Studierendenteams. Wie beim klassischen CTF können die Studierenden Flags und Punkte durch zentrale Aufgaben erhalten.

Der Versuch ist in drei Phasen untergliedert.

- 1. Vorbereitung
- 2. Wettbewerb
- 3. Abschluss

Vorbereitung

Die Studierenden erhalten circa 30 Minuten Zeit, um ihr Gastsystem in Betrieb zu nehmen und sich mit diesem vertraut zu machen. Hierbei sollten die Schwachstellen in den vorhanden Diensten abgesichert werden und der Zugriff durch andere Studierende verhindert werden. Während dieser Zeit dürfen die Studierenden andere Systeme nicht angreifen. Auch ist es möglich in dieser Zeit Flags auf dem eigenen System zu suchen. Da der Ablageort der Flags auf allen Systemen gleich ist, kann durch diese Information im Spielverlauf ein Angriff schneller Flags einbringen.

Wettbewerb

Die Wettbewerbsphase selber dauert circa 140 Minuten. In dieser Zeit sind Angriffe auf fremde Gastsysteme erlaubt und ausdrücklich gewünscht. Eine weitere Absicherung ist weiterhin möglich. Das System sollte auf fremde Aktivitäten überwacht werden. Diese Aktivitäten sollten schnellst möglich unterbunden werden, da die Angreifer Flags klauen können, und so dem Team Strafpunkte einbringen. Auch kann die Zeit für die Lösung von zur Verfügung stehender Challenges sowie der Nutzung des Flagshops genutzt werden.

Abschluss

Nach Ende der Wettbewerbsphase müssen die Studierenden ihre Angriffe einstellen und eine weitere Flagabgabe ist nicht möglich. Die Studierenden erstellen für ihren anzufertigen Versuchsbericht ein Screenshot der Punkteübersicht. Eine Nachbesprechung ist optional und mit maximal 30 Minuten angesetzt.

Während des Wettbewerbs gelten die aufgelisteten Regeln. Es handelt sich hierbei um einen Auszug der für die Bachelorarbeit relevanten Regeln.

- Der Gameserver darf nicht angegriffen werden
- Es dürfen nur die Gastsysteme angegriffen werden
- Das Passwort des Logins gamemaster darf nicht zurückgesetzt werden
- Der SSH-Server muss für alle benutzbar sein
- Flags dürfen nicht modifiziert oder gelöscht werden
- Sämtliche Dienste müssen für den Gameserver erreichbar bleiben
- ICMP-Pakete (ping) dürfen nicht blockiert werden

[Qua17, S.9][Sos10, S.10-11]

2.4 Systemkomponenten

2.4.1 Komponenten des Servers

Im folgenden werden die verschiedenen Komponenten des Auswertungs- und Überwachungssystems in der derzeitigen Implementierung untersucht. Dabei werden Rückschlüsse auf Anforderungen gezogen sowie Schwachstellen und Verbesserungsmöglichkeiten herausgearbeitet.

Scanner

Der Scanner prüft in regelmäßigen Abständen die auf den Gastsystemen der Studierenden installierten Dienste und speichert das Ergebnis ab. Die Abstände können beim Starten des Spieles eingestellt werden. Die folgenden Dienste werden pro Team geprüft.

ScanUp Die Aufgabe dieses Scans besteht darin zu prüfen, ob das Gastsystem noch für den Server erreichbar ist. Sollte das Gastsystem nicht erreichbar sein wird hierfür ein Strafpunkt vergeben. Aus technischer Sicht wird das Linux Kommando ping verwendet. An Hand des Rückgabewertes kann nachvollzogen werden, ob der Server das Gastsystem erreichen konnte.

ScanBubble Auf dem Gastsystem läuft ein selbst programmierter Bubble Server, welcher Flags via Telnet bereitstellt. Nachdem eine Flag abgeholt worden ist, erfolgt ein Timeout, sodass für eine bestimmte Zeit keine weitere Flag abgeholt werden kann. Der Bubble Server nimmt Anfragen auf dem Port 12321 für unverschlüsselte Flags und Port 12322 für verschlüsselte Flags entgegen. Die Scan-Operation überprüft, ob eine Telnet Verbindung zu dem Port 12321 möglich ist, in dem die Operation eine Telnet Verbindung öffnet und prüft, ob die Verbindung erfolgreich war.

ScanWebUp Jedes Gastsystem stellt mit Hilfe eines Apache Web Servers und php-Dateien Webseiten und Daten bereit, welche mit Hilfe von Web Clients abgerufen werden können. Dazu muss auf Port 80 der HTTP- und auf Port 443 der HTTPS Dienst laufen. Dieses verifiziert die Scan-Operation in dem eine Socket Verbindung zu den Ports 80 und 443 geöffnet und das Ergebnis prüft wird.

ScanSQLInjectUp Dieser Scan prüft, ob die SQL Injection des Teams erreichbar und benutzbar ist. Die Operation sendet hierzu einen valide Kombination aus Nutzername und Passwort an den Webserver. Das Ergebnis wird dann mit dem erwarteten Ergebnis verglichen.

ScanSQLInjectSave Wie bei ScanSQLInjectUp (2.4.1) wird geprüft ob das erwartet Ergebnis zurückgeliefert wird. Besonderheit hierbei ist, dass statt einer validen Kombination aus Nutzernamen und Passwort eine SQL Injection im Nuterznamen übergeben wird. So kann geprüft werden, ob das Team die SQL Injection abgesichert hat.

ScanXSSSave Diese Scan-Operation prüft, ob die auf dem Gastsystem implementierte XSS Schwachstelle behoben worden. Dazu wird die Webseite mit präparieren Inhalt aufgerufen. In der Rückgabe wird geprüft, ob der Inhalt ungefiltert auf der Webseite zu finden ist. Sollte diese der Fall sein, ist die XSS Schwachstelle nicht oder unzureichend von den Studierenden abgesichert worden.

ScanSQLSave Bei diesem Scan wird kontrolliert, ob die Verbindung mit dem auf allen System voreingestellten Passwort toor auf dem Root Account root der SQL Datenbank möglich ist. Oder ob die Studierenden dieses unsichere Passwort geändert haben. Auch wird geprüft, ob das htaccess Passwort von phpMyAdmin Pafd geändert worden ist.

ScanFTPSave Auf dem Client System läuft ein FTP Server, welcher ohne Login (Nutzername & Passwort) Daten bereitstellt. Der Scan prüft, ob ein sogenannter Anonymous Login möglich ist, in dem eine FTP Verbindung ohne Login aufgebaut wird. Sollte die Verbindung erfolgreich sein, ist der Anonymous Login immer noch möglich.

ScanTelnetSave Ein Telnet Server wartet auf Verbindungen auf Port 23. Da dieser Dienst nicht benötigt wird, sollen die Studierende diesen abschalten oder deinstallieren. Die Scan-Operation prüft, ob eine Verbindung via Telnet auf Port 23 möglich ist, in dem dieser eine Verbindung via Telnet zu Port 23 aufbaut und prüft ob dieses erfolgreich war.

Generierung von Flags

Derzeitig erfolgt die Generierung der Flags sowohl auf den Gastsystemen als auch auf dem Auswertungs- und Überwachungssystem. Dies ist notwendig, da ansonsten eine Überprüfung der Gültigkeit der Flags und Verrechnung der Punkte nicht durchgeführt werden kann. Die Flags werden durch einen Algorithmus generiert. Dieser erzeugt pro Team eine bestimmte Anzahl an Flags.

Dazu wird die Flag mithilfe der Streuwertfunktion (Hashfunktion) MD5 und der Eingabe, einem sogenanntem seed, berechnet. Eine Hashfunktion bildet aus einer Eingabe variabler Länge eine Ausgabe mit einer festen Länge. Bei selber Eingabe wird immer der gleiche Ausgabewert berechnet. Des Weiteren ist es bei einer guten Hashfunktion nicht möglich von der Ausgabe auf den Eingabewert zuschließen. (todo: Quelle Ueberholz) (todo: was ist MD5, ist das wirklich wichtig?)

Der in der Anwendung genutzte seed setzt sich aus der Verkettung von Salt, IP-Adresse, dem Wort "Aufgabe" und einem Zähler zusammen.

Ein Salt wird benötigt, um den Flags eine Lebenszeit zu geben. In der derzeitigen Implementierung enthält der Salt das aktuelle Jahr sowie das jeweilige Semester. So sind nur Flags des aktuellen Semesters gültig und werden vom Auswertungs- und Überwachungssystems akzeptiert. Eine Verwendung von Flags aus vorherigen Semestern wird somit effektiv vorgebeugt.

Die IP-Adresse stellt hierbei den Bezug zum jeweiligen Team dar.

Die Zeichenfolge "Aufgabe" wird als Geheimnis verwendet, um das Fälschen von Flags zu erschweren und im bestenfall zu verhindern.

Damit pro Team mehrere eindeutige Flags geniert werden können, wird ein sogenannter Zähler genutzt. Dieser Zähler ist auf 0 initialisiert und wird pro generierter Flag um eins erhöht, bis die benötigte Anzahl an Flags generiert ist. [Sos10, S.48]

Webserver

Der Webserver stellt die GUI (Graphical User Interface) für die Studierenden und Betreuer dar. Hier kann der aktuelle Punktestand angesehen werden. Auch wird in der GUI dargestellt, welches Team welchen Service abgesichert hat, inklusive der negative Punkte für nicht abgesicherte Dienste, und wie viele Strafpunkte das jeweilige Team erhalten hat.

Neben diesen Darstellungen befindet sich auf dem Server ein sogenannter Flagshop und diverse Challenges mit denen Studierende weiter Flags erhalten können.

Die Betreuer haben die Möglichkeit über die Web-GUI ein neues Spiel anzulegen, das Spiel zu starten oder zu stoppen. Auch kann von dem Spiel ein Backup erstellt werden. Neben diesen Funktionen zur Spielsteuerung können an die Teams Strafen für unfaires oder regelverletzendes Verhalte verteilt werden. Diese nehmen direkten Einfluss auf die Punkte des jeweiligen Teams. Auch besteht die Möglichkeit weiter Benutzer für das Administrationsinterface zu registrieren.

Flagshop Der Flagshop ermöglicht den den Studierenden weiter Flags mit ihren Punkten zu kaufen. Der Kauf von Flags lohnt sich schon, da die verkauften Flags mehr Punkte bringen als das sie kosten. Um einen Einkauf im Flagshop durchzuführen, müssen die Teams sich vorher einen Account erstellen. Die Registrierung erfragt neben dem benötigten Benutzernamen und Passwort auch für den Flagshop irrelevante Daten ab. Diese ähneln persönlichen Informationen, welche bei den meisten Onlineshop angegeben werden müssen. Das Format, hier die Repräsentation als Zahl oder Zeichenfolge sowie die Länge, und die Erforderlichkeit der Daten wird nur im HTML-Formular festgelegt. Durch eine Manipulierung des Formulars kann dieses mit nicht konformen oder nicht vorhanden Daten abgesendet werden. Für jeder der nicht vorhanden oder nicht konformen Informationen erhält der Studierende eine Flag.

Daneben wird die Güte des angegebenen Passwortes anhand von Länge und Anzahl an Sonderzeichen, Groß- und Kleinbuchstaben sowie Ziffern bewertet und mit Flags belohnt.

Nach der Registrierung können die Studierende sich für ihre Punkte Flags kaufen. Dazu stehen zwei Pakete mit 8 bzw. 6 Flags für den Preis von jeweils 4 Punkten pro Paket zur Verfügung. Dieser Preis kann auf zwei Arten reduziert werden. Bei der ersten Art müssen die beiden Pakete gleichzeitig im Warenkorb sein und die Identifikationsnummern (ID) dieser auf nicht vorhanden Nummern gesetzt werden. Die Manipulation resultiert in einem reduzierten Preis von 4 Punkten für beide Pakete. Dies ist extra im Flagshop einprogrammiert und soll die Studierenden auf Manipulation von IDs aufmerksam machen. Durch die zweite Art ist es möglich die Paket umsont zu erhalten. Dazu muss im Warenkorb, dass sogenannte hidden input Feld in dem der aktuelle Preis des Warenkorbs gespeichert wird auf 0 gesetzt werden. So berechnet der Flagshop für den Kauf keine Kosten und die Flags können kostenlos erhalten werden. [Abt16, S. 63]

Ein *hidden input* Feld wird in der Repräsentation eines HTML-Dokumentes nicht angezeigt, kann jedoch durch die Entwicklertools der Browser betrachtet und verändert werden. [w3s]

Auf diese Weise ist es auch möglich einen negativen Preis festzulegen und so dem eigenen Team Punkte zuzuschreiben, da eine Überprüfung in /flagshop/shop.php nicht richtig implementiert ist. So wird nicht geprüft, ob der von dem Nutzer eingegeben Preis kleiner als 0 ist, sondern ob der Preis gleich 0 ist. Sollte diese der Fall sein, wird der Preis auf 0 gesetzt. Bei richtiger Implementierung würde ein negativer Preis auf 0 korrigiert.

Challenges Derzeitig sind fünf Challenges implementiert, welche vom System in zufälliger Reihenfolge an interessierte Teams verteilt werden. Eine abgeschlossene oder abgebrochene Challenge, durch das Neuladen der Webseite oder der Betätigen der Zurück-Taste, kann nicht wiederholt werden. Eine Challenge kostet 10 Punkte. Nach erfolgreichem Abschließen einer Challenge gibt es 10 Punkte plus eine gewisse Anzahl an Punkten für das Absolvieren der Aufgabe. Die folgenden Challenges sind implementiert[Abt16, S.19-20].

Aufgabe 1: robots.txt Hier sollen die Studierenden anhand der robots.txt den unbekannten Ordner, welcher von Suchmaschinen nicht indexiert wird, finden und dort die geheimen Informationen auslesen.

Aufgabe 2: JavaScript-Login-Bypass Bei dieser Challenge ist die JavaScript Funktion im Quelltext versteckt. Das Verstecken ist mit einer Meldung, wie "Seitenquelltext deaktiviert" ([Abt16]) und vielen Leerzeilen realisiert. In der Firefox Version 78.0.1 ist dieses nicht mehr möglich, da die Leerzeilen entfernt werden und die JavaScript Funktion daher oben im Quelltext zu sehen ist.

Aufgabe 3: Form-Modification In dieser Challenge sollen die Studierende verstehen, dass auch die Werte von Drop-Down-Menüs, Checkboxen und Radio-Buttons durch Manipulation auf nicht vorgegebene Werte geändert werden können. Deshalb ist bei diesen auch eine Serverseitige Überprüfung notwendig.

Die Aufgabe besteht darin einen bestimmten Login Namen aus einem Drop-Down-Menü auszuwählen. Da der Name nicht in dieser Liste ist, müssen die Studierenden das HTML Formular so manipulieren, dass diese den geforderten Namen auswählen können.

Aufgabe 4: JavaScript-Substrings Das Passwort, welches die Studierenden eingeben müssen, wird clientseitig mithilfe einer JavaScript Funktion geprüft. Damit das Passwort nicht im Klartext im Quelltext steht, wird dieses verschleiert. So werden drei Strings Zeichen für Zeichen verglichen. Sollten die Zeichen in mindestens zwei der drei Strings gleich sein, dann gehört das Zeichen zum Passwort. Im Anschluss wird das generierte Passwort mit dem durch die Studierenden gegebenen Passwort verglichen. Sollten die Passwörter gleich sein, ist die Challenge erfolgreich abgeschlossen.

Aufgabe 5: URL-Hex-Injection Die Studierenden sollen an geheime Informationen in HEX-Wert benannten Ordner gelangen. Diese Aufgabe soll zeigen, dass Ordner die nach einen HEX-Wert benannten sind, so nicht vor Zugriffen geschützt werden können, da das HEX-Zeichen % selber durch einen HEX-Wert dargestellt werden kann.

Abgabe von Flags

Um Flags abgeben zu können, müssen die Studierenden sich mit ihren Hackits in der Web-GUI anmelden. Dort ist es möglich in einem Input Feld eine Flag synchron abzugeben. Das bedeutet, dass nach jeder Abgabe die Webseite neu geladen wird. Des Weiteren ist es nicht möglich mehrere Flags gleichzeitig abzugeben.

2.4.2 Komponenten des Clients

Da sich die Bachelorarbeit mit der Modernisierung des Auswertungs- und Überwachungssystem beschäftigt, sind nur die wichtigen Komponenten des Clients beschrieben.

Webserver des Clients

Auf den Clients läuft ein Webserver mit einigen Schwachstellen.

So ist in das Kundenbewertungsformular eine XSS Schwachstelle implementiert. Durch die Schwachstelle wird die Nutzereingabe ungefiltert in das HTML Formular übernommen. Durch diese Schwachstelle kann bösartiger Code geladen werden. Dieser Code kann dann beispielsweise Cookies, Session Tokens oder andere vertrauliche Informationen auslesen und den Angreifern übermitteln.

Eine weitere Schwachstelle stellt der sogenannte "Login zum Membersbereich" dar. Bei einem Login Versuch wird der Benutzername und das Passwort ungefiltert in eine SQL Statement eingefügt. So ist ein SQL Angriff auf die dahinter liegende Datenbank möglich. Durch solch einen Angriff können Daten ausgelesen werden. Diese Schwachstelle lässt sich erst beheben, wenn die Gruppe die SQL-Injection bei sich selber durchgeführt hat.

Neben diesen Schwachstellen gibt es eine Registrierung für den Flagshop. Dieses erfordert einige Eingaben, wie Name, Alter, Postleitzahl und vieles mehr. Die Eingaben sind im HTML-Formular als Pflicht markiert und haben eine Vorgabe der Form. Ein Absenden ist ohne Angabe dieser Daten nicht möglich. Die Studierenden erhalten jedoch für jede nicht getätigte und für jede nicht der Form entsprechenden Angabe Flags nach der Registrierung. Dies ist möglich, da das HTML-Formular durch die Studierenden geändert werden kann und der Server nur die Angaben bezüglich Passwort und Nutzername prüft. Diese beiden Angaben werden genutzt, um sich am Flagshop des Servers anzumelden und Flags zu erwerben. (Siehe: 2.4.1 Flagshop)

Außerdem stellt der Webserver eine Bildgalerie zur Verfügung in dieser befinden sich zwei Bilder, welche ebenfalls Flags enthalten.

2.5 Schnittpunkte zwischen Server und Clients

Der Server und die Clients laufen auf getrennten Systemen. Da die Studierende Schwachstellen auf ihren Clients beheben sollen, muss das Auswertungs- und Überwachungssystem auf diese Systeme zugreifen. Dadurch lassen sich die folgenden Schnittpunkte begründen.

Der Scanner prüft vom Auswertungs- und Überwachungssystem aus, ob

- das System online ist,
- der Webserver erreichbar ist,
- der Bubble-Server erreichbar ist,
- der Login zum Membersbereich erreichbar und abgesichert ist,
- die Kundenbewertung erreichbar und abgesichert ist,
- ob das SQL Passwort geändert worden ist,
- ob der FTP Server gegen unautorisierten Zugriff abgesichert ist und
- ob der Telnet Dienst auf Port 23 abgeschaltet ist.

Des Weiteren verbinden sich die Clients beim Starten mit dem Auswertungs- und Überwachungssystem um Flags für die Flagshop-Registrierung und -Anmeldung zur Verfügung zu stellen.

2.6 Abgeleitete Anforderungen

Das Auswertungs- und Überwachungssystem muss anhand der vorhergehenden Analyse folgenden Anforderungen genügen:

- Überwachung von mindestens neun Studierendensystemen
- Ermittlung und Sicherung der Zustände von Diensten, welche auf den Studierendensystemen angeboten werden müssen
- Entgegennahme und Prüfung von Flags, inkl. der Verrechnung von (Straf-)punkten
- Ermittlung und Visualisierung der Teilergebnisse sowie des Gesamtergebnisses
- Informationsvermittlung aller Dienst- und Punkteänderungen durch unter anderem Dienststatusänderung, Flagabgabe und Strafen (fortlaufende Publikation für Studierende und Betreuer)
- Dokumentation aller Events durch Protokollierung der einzelnen Aktionen des Systems
- Bereitstellung von Challenges, damit Studierende sich weiter Punkte erarbeiten können
- Bereitstellung eines (Flag-) Shops, bei dem mehrere Lücken genutzt werden können, um Flags zu erhalten
- Einstellungen des Spiels sollen durch Betreuer geändert werden können
- Verwaltung von Benutzern (Administratoren und Spielern)
- Zugangskontrolle für teilnehmende Studierende durch Prüfung der Hackits
- Sicherung alter Spielstände

3 Entwurf

Dieses Kapitel beinhaltet die Architektur des Systems sowie den Entwurf der einzelnen Komponenten.

Es wird die Struktur und Zusammensetzung des Systems sowie der einzelnen Komponenten skizziert. Auch werden die Anforderungen und Erwartungen an die verschiedenen System-komponenten dargestellt.

Bei einigen Komponenten werden auch Alternativen aufgezeigt, welche auf Grundlage der genannten Entscheidungen im Entwurf nicht verwendet worden sind.

3.1 Entwurfsziele

Bei dem Entwurf des neuen Systems sind neben den in der Analyse beschrieben Anforderungen auch folgende Ziele beachtet worden.

Beibehaltung der Features Die bereits implementierten Features Flagshop und Challenges sollen auch im neuen System verfügbar sein. Zusätzlich sollen die Studierenden aktiv angeregt werden diese auch zu nutzen.

Lose Kopplung Zwischen dem Scanner und dem Webserver soll eine lose Kopplung herrschen, damit die Entwicklung der beiden Komponenten unabhängig voneinander fortgesetzt werden kann.

Datenhaltung in Datenbank Die Nutzung einer Datenbank sollte aufgrund zweier Überlegungen angestrebt werden. Erstens sind alle Daten an einem Ort gebündelt. Zweitens kann die Berechnung von Punkten an die Datenbank abgeben werden. Datenbanken sind unter anderem für solche Aufgaben geeignet.

Modernisierung der GUI Das Graphical User Interface soll modernisiert werden, sodass es heutigen Standards entspricht. Auch soll hierdurch die Verständlichkeit verbessert und die Challenges sowie der Flagshop besser platziert werden.

Einheitliche Programmiersprache Eine einheitliche Programmiersprache sollte, sofern dieses möglich ist, genutzt werden. Dieses erleichtert das Betreiben der Komponenten, da nicht zwei verschiedene Programmiersprachen und/oder Umgebungen installiert werden müssen. Auch erleichtert es die Programmierung, wenn nur eine Person parallel an den Komponenten arbeitet. Die Gefahr von falschen Syntaxen und verschiedener Konventionen kann dadurch reduziert werden. Sollte die Anwendung durch mehrere Menschen entwickelt und gewartet werden sowie auf verschiedenen Systemen betrieben werden, ist dieses Ziel nichtig.

Module sparsam nutzen Bei der Implementierung der Software sollte so weit dieses notwendig und sinnvoll ist auf bereits vorhandene Module und Frameworks zurückgegriffen werden. Durch die Minimierung von Abhängigkeiten ist die Wartung von Verwendung der Software durch Dritte leichter möglich. Auch wird die Gefahr von Fehler auslösenden Updates minimiert. Bei der Nutzung von Modulen und Frameworks sollte auf deren Verbreitung und Wartung geachtet werden, damit nicht inaktive Module/Frameworks mit eventuellen Schwächen genutzt werden.

Containerisierung Die Anwendung soll mit möglichst kleinem Wartungsaufwand überall benutzbar sein. Um dieses zu gewährleisten, sollte eine Containerisierung genutzt werden. Bei der Nutzung ist darauf zu achten, ob und mit welchen Einschränkungen diese nutzbar ist.

Ressourcen schonend Um die Ressourcen des Servers zu schonen, sollten die nicht benötigten Komponenten abgeschaltet werden. Hierbei ist der Scanner hervorzuheben, welcher nur während des Praktikums laufen muss.

3.2 Containerisierung

(todo: Weiter ausarbeiten, mit quellen versehen) Durch die Nutzung von Containerisierung ist es möglich die Anwendung agiler und skalierbarer zu betreiben. Auch werden so Abhängigkeiten zwischen den Komponenten reduziert und eine losere Kopplung erreicht, dies führt auch zu einer klareren Struktur und übersichtlicheren Programmierung.

Die Containerisierung wird mithilfe von Docker erreicht. Docker ist ein seit 2013 bestehende Open-Source Containerisierungssoftware, welche ein weite Verbreitung genießt. Sie war der de facto Standard für Containerisierung, wird in den letzten Jahren, jedoch durch Container-Orchestrierung Softwares, wie Kubernetes oder OpenShift, stückweise verdrängt.

Da eine Container-Orchestrierung viel mehr bietet als im Rahmen dieses Projektes benötigt wird und eine Verwaltung und Installation von solch einer Software nicht einfach ist, wird Docker, welches den Anforderung genügt, verwendet. So bietet Docker den Vorteil der einfacheren Bedienbarkeit und Installation sowie der benötigten Flexibilität.

Mithilfe von Docker Compose ist es möglich Applikationen, welche aus mehreren Containern bestehen auch Stack genannt, zu verwalten und zu betreiben. Auch ist einfacher Abhängigkeiten zwischen den Containern zu modellieren und Verbindungen zwischen Containern herzustellen.

links: https://cloud.google.com/containers?hl=de, https://entwickler.de/leseproben/containerisierungder-it-579775782.html

3.3 Übersicht

Abbildung 3.1: Übersicht über die Anwendung (Komponentendiagramm)

Die Gesamtheit des Systems (inklusive der User Clients), wie in Abbildung 3.1 zu sehen, lässt sich in drei Ebenen einteilen.

User Client Die erste Ebene *User Client* beinhaltet die auf einem User Client laufende für den Versuch relevanten Komponenten.

Bei der Komponente Webclient handelt es sich um einen geläufigen Webbrowser (häufig wird Firefox genutzt), welcher Informationen vom *CTF Core System* abruft und Daten an dieses übermittelt. Zu den Informationen gehören beispielsweise die Spielinformationen, der Spielstand aber auch teilnehmende Gruppen und Einstellungen. Der Webclient übermittelt Daten, wie gefundene Flags, Lösungen von Aufgaben und Änderungen an Einstellungen.

Die Komponente *GameClient* beinhaltet alle auf dem System für den Versuch installierten Anwendungen. Dazu zählen nicht nur die Dienste mit den Schwachstellen. Auch die clientseitige Spielverwaltungs-Software wird unter dieser Komponente zusammengefasst. Die Spielverwaltungs-Software sorgt für die richtige Konfiguration des User Clients und versteckt die Flags.

CTF Core System Die Ebene des *CTF Core System* besteht aus zwei Komponenten.

Zum einen aus der Komponente *Big Brother*. In der Komponente ist die Überwachung des *GameClients* mit seinen Schwachstellen implementiert. Die Ergebnisse dieser Überwachung werden in der *Database* festgehalten.

Zum anderen aus der Komponente *Game Information System*. Diese stellt eine Schnittstelle zwischen der Datenbank und den Nutzern dar. Mithilfe der Schnittstelle können Informationen unter Berücksichtigung von Berechtigungen auf einem einheitlichen Weg aus der Datenbank ausgelesen, verändert und hinzugefügt werden.

Datenhaltung Die Ebene *Datenhaltung* beinhaltet die Komponenten *Redis* und *Databa-*

Die Komponente *Redis* ist nach der gleichnamigen Software Redis benannt. Bei Redis handelt es sich auch um eine Datenbank und könnte daher mit in der Komponente *Database* aufgenommen werden, die Trennung erfolgt, aber auf Grundlage der Verwendung innerhalb der Software Architektur. Die Redis-Datenbank wird als Cache verwendet und persistiert die Daten nicht.

Anderes als bei Redis werden in der Komponente *Database* die Daten auf eine Festplatte festgeschrieben um, diese persistent nutzen zu können.

3.4 Scanner

Im Rahmen des Versuches sollen die Studierenden ihre Systeme auf Schwachstellen untersuchen. Diese ausfindig gemachten Schwachstellen, sollen im Anschluss beseitigt werden. Eine Überwachung wird benötigt, um zu prüfen, ob die Studierenden diese Schwachstellen behoben haben. Das Abschalten beziehungsweise die Verhinderung der Verwendung eines Dienstes stellt in den meisten Fällen keine Behebung der Schwachstelle dar und wird deshalb ebenfalls geprüft. Um diese Überprüfung zu ermöglichen, wird ein Scanner benötigt, der die Dienste auf alle teilnehmenden *GameClients* abfragt und auswertet. Die bei der Überprüfung der gesammelten Daten werden benötigt, um die Servicepunkte der Gruppen zu berechnen.

3.4.1 Verteilte Scanner

Eine Idee für die Lastverteilung des Scanners ist ein verteilter Scanner. Hierbei wird ein Worker Scanner auf jedem GameClient implementiert, welcher das eigene System überwacht. Ein Master Scanner sammelt die von den Worker Scannern erstellten Ergebnisse ein und speichert diese in einer Datenbank ab.

Der Vorteile des verteilten Scanners ist die Skalierbarkeit, da der Scanner auf dem Server nur von weiteren Scannern die Ergebnisse abholen, jedoch keine Überwachung durchführen muss.

Der verteilte Scanner bringt jedoch auch einige Nachteile mit sich. So muss sichergestellt werden, dass der Scanner auf dem User Client nicht manipuliert worden ist und die Ergebnisse valide sind. Eine solche Überprüfung könnte mithilfe eines "Fingerabdrucks" geschehen. Jedoch muss dann auch geprüft werden, ob das Programm zur Erstellung des Fingerabdrucks manipuliert worden ist. Des Weiteren muss gewährleistet werden, dass der auf dem Client laufende Scanner dieselben Antworten und Ergebnisse erhält, wie ein fremder Nutzer. Dies ist notwendig, da die überwachten Services weiterhin von anderen Mitspielenden verwendet werden sollen.

Auf Grundlage der Nachteile, des Aufwandes der Implementierung und der ausreichenden Leistung des zentralen Scanners für den aktuellen Anwendungsfall wird ein verteilter Scanner nicht in Betracht gezogen. Die Idee des zentralen Scanners wird weiterverfolgt.

3.4.2 Zentraler Scanner

Die Herangehensweise des zentralen Scanners vermeidet die vorher beschriebenen Nachteile, da dem Ergebnis des Scanners vertraut werden kann und der Scanner zwangsläufig eine externe Sicht auf das System einnimmt. Dem Ergebnis kann vertraut werden, da es auf einem System ohne Einfluss der Mitspielenden berechnet wird.

Abbildung 3.2: Klassen der Big Brother Komponente (Klassendiagramm)

Wie in Bild 3.2 erkennbar besteht die Komponente Big Brother aus der Klasse Scanner, der abstrakten Klasse ScanOperation sowie den abgeleiteten Scan-Operationen.

Die Klasse "ScanOperation" definiert die abstrakte Funktion *start()*. Diese wird von den abgeleiteten Klassen implementiert und ermöglicht das Starten der einzelnen Scan-Operationen.

Ebenfalls speichern alle Scan-Operationen ihr Ergebnis in der privaten Variable *result*. Mithilfe der von der abstrakten Klasse implementierten Funktion *get_results()* kann der Scanner das Ergebnis der Scan-Operation auslesen. Jedes Objekt der Klasse Scanner startet 0 bis n Scan-Operationen abhängig von der Konfiguration / den aktiven Diensten. Des Weiteren stellt die abstrakte Klasse die Funktion *is_port_open* bereit, welche von den Scan-Operationen genutzt werden kann, um den Status eines Ports auf dem fremden System zu prüfen. Ein Objekt der Klasse Scanner kann pro Typ max. eine Scan-Operation starten und beinhaltet / verwaltet alle Scan-Operationen für ein Game Client.

Um mehrere Game Clients zu überwachen, werden mehrere Objekte der Klasse Scanner benötigt.

Abbildung 3.3: Ansicht des Scanners (Zustandsdiagramm)

Bei Starten des Scanners wird die zu bearbeitende Aufgabe spezifiziert.

Bekommt der Scanner die Aufgabe "INIT", soll dieser die Service Datenbank mit den implementieren Scan-Operationen füllen, sodass Administratoren diese an- oder ausschalten können. Um die Service Datenbank zu füllen wird zunächst ein Dummy der Klasse Scanner angelegt. Aus diesem Dummy Objekt werden von allen Scan-Operationen der Anzeigenamen und

der interne Name ausgelesen. Nach dem Auslesen alle Operationen werden die erhalten Daten gebündelt in die Service Datenbank geschrieben. Danach beendet der Scanner die Verbindung zur Datenbank und endet erfolgreich mit dem Statuscode 0.

Falls die Aufgabe des Scanners "SCAN" ist, wird der Scan der Game Clients gestartet. Hierzu werden die teilnehmenden Gruppen und der Scanner Timeout aus der Datenbank ausgelesen. Neben diesem werden die aktiven Scanner aus der Datenbank abgefragt. Sind all Informationen vorhanden, wird für jede Gruppe ein Scanner Objekt der Klasse Scanner erstellt. Bei der Erstellung werden die aktiven Scan-Operationen sowie die zu überwachende Gruppe übergeben. Das Scanner Objekt legt dann für die benötigten Scan-Operationen die jeweiligen Objekte an.

Abbildung 3.4: Erstellung eines Scanners (Zustandsdiagramm)

Nach dem Anlegen aller Scanner wird die Funktion start() nebenläufig gestartet. Im Anschluss wird auf das Beenden der gestarteten Fuktionen gewartet. Sollten alle Funktionen abgeschlossen sein, wird geprüft, ob das Durchführen einer Scan-Runde an den REST-Server gemeldet werden soll. Ist dieses der Fall, wird der Server in Kenntnis gesetzt, dass neue Daten in der Datenbank vorhanden sind. Danach schläft der Scanner bis zum nächsten Durchlauf.

Beim Ausführen der Funktion *start()* des Scanners wird zu nächst geprüft, ob das entfernte System erreichbar ist. Sollte dies nicht der Fall sein, werden alle nachfolgenden Scan-Operationen nicht durchgeführt, da diese fehlschlagen werden. Im Anschluss wird getestet, ob der HTTP Dienst des entfernten Systems erreichbar ist, da dieser für einige weitere Tests benötigt wird. Ist der HTTP Dienst erreichbar werden, die Scan-Operationen, welche auf dem HTTP Dienst basieren, mit in die Liste der abzuarbeiten Scan-Operationen aufgenommen. Danach werden alle verbleibenden Scan-Operationen nebenläufig gestartet. Nachdem die Scan-Operationen ihre Aufgabe abgeschlossen haben, sammelt der Scanner alle Ergebnisse ein. Falls die *Host UP Scan-Operation* oder die *HTTP UP Scan-Operation* deaktiviert ist, werden diese aus dem Ergebnis entfernt. Danach übermittelt der Scanner die gesammelten Ergebnisse zur Datenbank und beendet seine Scan-Runde.

3.4.3 Scan-Operationen

Die Scan-Operationen werden nebenläufig abgearbeitet, um so die Dauer eines kompletten Scans zu minimieren. Eine Scan-Operation prüft genau einen Dienst / eine Schwachstelle auf dem entfernten Rechner. Die im alten System implementieren Scans werden in die Scan-Operationen überführt. Deshalb sollen die folgenden Scan-Operationen implementiert werden.

- Host-Up
 Prüft, ob der entfernte Rechner mit Hilfe von ICMP Paketen erreichbar ist
- Bubble-Up Prüft, ob der Bubble Server erreichbar ist und ob die Telnet Steuerung funktioniert
- BubbleNg-Up Siehe Bubble-Up
- FTP-Save

Prüft, ob der FTP Server erreichbar ist und ob die Nutzung des Anonymous Login unterbunden worden ist

- Htaccess-Save
 - Prüft, ob die Kombination aus Nutzername / Passwort des Htaccess Schutz geändert worden ist
- SQL-Injection-Save
 Prüft, ob die SQL-Injection im Login zum Membersbereich verhindert worden ist
- SQL-Password-Save
 Prüft, ob das lokale Passwort des SQL-Nutzers root geändert worden ist

- Telnet-Save
 Prüft, ob der Telnet Server deaktiviert / deinstalliert worden ist
- HTTP-UP
 Prüft, ob der HTTP Dienst des entfernten Rechners nutzbar ist
- HTTPS-UP
 Prüft, ob der HTTPS Dienst des entfernten Rechners nutzbar ist
- XSS-Save
 Prüft, ob der Cross-Site-Scripting Angriff im Bewertungsformular behoben worden ist.

Abbildung 3.6: Datenfluss in der Scanner Komponente (Datenflussdiagramm)

Die im Datenflussdiagramm 3.6 zu sehenden, aber bisher nicht beschrieben Datenflüsse finden zwischen dem Webserver und dem Scanner oder einer Scan-Operation und dem Game Client statt. Administratoren können über den Webserver den Scanner an- und abschalten. Die Scan-Operationen frag bei dem Game Client ihren überwachten Dienst / ihre überwachte Schwachstelle an und erhalten eine Antwort zurück. Anhand dieser wird das Ergebnis der Scan-Operationen bestimmten.

3.5 Webserver

Der Webserver biete die Möglichkeit der Verwaltung des Spiels, der Abgabe von Flags sowie der Durchführung von Käufen im Flagshop und Challenges. Auch können Informationen zum Spiel, wie Einstellungen, Spielstand, Strafen und Teilnehmer abgerufen werden. todo

3.5.1 Verwendung mehrere Microservice

Verwendung von Microservices pro Anwendungsfall. FlagAbgabe, Nutzerverwaltun Warum habe ich das verworfen -> Zu viel Aufwand, zu wenig Value

3.5.2 Fat Webserver

Der Webserver beinhaltet sowohl die Logik als auch die Darstellung. Bei einer Anfrage an den Webserver, wird eine Antwort bestimmt und diese dann in eine Vorlage / ein HTML Dokument eingebettet. Danach wird dieses zurück an den Nutzer gesendet.

Während der Implementierung des Prototyps und des weiteren Entwurfs hat sich ein Problem mit dem Flagshop Login herausgestellt.

Für die Nutzung des Flagshops ist ein Multi-Login notwendig, da nur am Webserver eingeloggte Nutzer sich mit einem extra angelegten Account am Flagshop anmelden und diesen verwenden dürfen. Dieses ließ sich mit dem im Prototypen implementierten Session basierten Login nicht einfach umsetzen.

So ist für diesen Anwendungsfall ein Stateless Login besser geeignet, da hier die benötigten Informationen vom Client, je nach Anliegen, gesendet werden können.

Die Nutzung des Stateless Logins bietet die Perspektive der Verwendung eines Stateless Webservers sowie eines Thin Webservers. Bei einem Thin Webserver werden nur Daten und keine Repräsentation an dem Client zurückgesendet. So wird die Aufgabe der Darstellung der Daten an den Client übertragen.

Durch die Nutzung eines Thin Servers werden zwei Dinge ermöglicht.

Zum ersten ist es möglich den Client und Server unabhängig voneinander zu entwickeln, zu verändern und zu verbessern. Damit kann in Zukunft eine Iteration der Software einfacherer geschehen. Zweitens können die Studierenden eigene Clients programmieren, um mit der Anwendung zu interagieren.

3.5.3 Thin Webserver

Abbildung 3.7: Rest Interface im Überblick (Komponentendiagramm)

Der Server besteht aus der Komponente Game Information System, welche wiederum aus drei weiteren Komponenten besteht.

Die Komponente GIS implementiert die gesamte Server Logik. In diesem Modul wird der eigentliche Thin Server, über das die Spieler und Betreuer mit der Anwendung interagieren können, implementiert.

In der Komponente Datenbank Migrationen sind Migrationsskripts hinterlegt, welche die Datenbank Iterationen festhalten. Diese Skripts sollen genutzt werden, um verwendete Datenbanken einfach auf den gleichen Soll-Zustand bringen zu können.

Die letzte Komponente beinhaltet Unit-Tests. Mithilfe der implementierten Unit-Tests kann die Anwendung bei späteren Änderungen auf Fehler überprüft werden kann.

Da der Thin Server nur eine Brücke zwischen Nutzer und Scanner oder Datenbank darstellt, kann von einer API (Application-Programming-Interface) gesprochen werden. Mithilfe dieser API kann beispielsweise der aktuelle Spielstand aus der Datenbank ausgelesen und Strafen eingetragen werden.

API

Um bei der Implementierung der API einem Standard / einem Vorgehen zu folgen, wird der de facto Standard für HTTP-APIs Represntational State Transfer (REST) verwendet.

Ein RESTful Interface ermöglicht, dass Ressourcen auf dem Webserver eindeutig identifizierbar sind, damit diese als Ziel von Operationen ausgewählt werden können. Des Weiteren werden einheitliche Schnittstellen genutzt. Dazu müssen Standardmethoden und -repräsentationen genutzt werden.

Durch diese Anforderungen biete das REST Interface die Möglichkeiten alle zur Verfügung stehenden Ressourcen auf die gleiche Art und Weise zu verwalten. Mit dieser Herangehensweise wird die HTTP Methode GET nicht länger zur Veränderung oder Erschaffung von Ressourcen verwendet, sondern die dafür ausgelegten HTTP-Methoden. Die für die Verwendung benötigten Daten werden auch nicht länger als Paramter der Anfrage beigefügt, sondern im Body der Anfrage übertragen.[Bei14]

Alle Routen werden mit dem Präfix /v1 versehen, um bei späteren Iterationen der API Kollisionen zu verhindern und die Nutzung der API v1 weiterhin zu ermöglichen.

Bei der Implementierung sollen die zur Verfügung stehenden HTTP Methoden benutzt werden. Das Rest-Interface soll auch mit entsprechenden HTTP Codes antworten, um die Antwort und den Erfolg einer Anfrage auch ohne Antworttext interpretieren zu können. Bei der Datenübertragung zwischen Client und Server soll das JavaScript Object Notation (JSON) Format für die Formatierung der gesendeten Daten verwendet werden.

Neben den in Tabelle 3.1 aufgezeigten Methoden gibt es noch weitere HTTP Methoden, welche keine Anwendung in dem zu implementierenden Rest-Interface erhalten.

GET Auf Ressourcen zugreifen
POST Neue Ressourcen erzeugen
PUT Bestehende Ressourcen verändern
DELETE Vorhandene Ressourcen löschen

Tabelle 3.1: Übersicht über die verwendeten HTTP Methoden

Authentifizierung

Abbildung 3.8: Übersicht über die Authentifizierung

Route	Methods
1	GET
/associate	GET, POST
/associate/ <int:associate_id></int:associate_id>	DELETE
/auth/flagshop/login	POST
/auth/login	POST
/auth/refresh	POST
/auth/revoke/access	DELETE
/auth/revoke/refresh	DELETE
/backup	GET
/backup/ <int:backup_id></int:backup_id>	GET
/challenge	GET, POST
/challenge/ <int:challenge_id></int:challenge_id>	DELETE, GET, PUT
/challenge/solve	GET
/challenge/solve/ <int:challenge_id></int:challenge_id>	DELETE, POST
/client	GET, POST
/client/ <int:group_id></int:group_id>	DELETE, GET
/flag	POST
/flagshop/package	GET, POST
/flagshop/package/ <int:package_id></int:package_id>	DELETE, PUT
/flagshop/transaction	DELETE, GET, POST
/flagshop/user	GET, POST
/flagshop/user/ <user_name></user_name>	DELETE, PUT
/log	GET, POST
/log/old	GET
/match/control	DELETE, POST, PUT
/match/info	GET
/match/score	GET
/note	GET, POST
/note/ <int:note_id></int:note_id>	DELETE, GET, PUT
/penalty	GET, POST
/penalty/ <int:penalty_id></int:penalty_id>	DELETE, GET, PUT
/scanner	DELETE, GET, POST
/scanner/notify	POST
/secure	GET
/service	GET
/service/ <int:service_id></int:service_id>	DELETE, GET, PUT
/setting	GET, PUT
/user	DELETE, GET, POST
/user/ <int:user_id></int:user_id>	DELETE, GET, PUT
/user/import	POST

Tabelle 3.2: Übersicht über die zu implementierenden Routen

Abbildung 3.9: Datenfluss in der Security Komponente (Datenflussdiagramm)

Flaggengenierung - Änderung des Algo - Änderung des Vorgehens -> Generierung auf dem Server -> Versand an den Client (Secret nicht auf dem Client, Abfangen aller Flags möglich, Verschlüsselung bringt nix, da Nutzer root Rechte hat)

Challenges Challenge Informationen und Lösung der Challenge über API, Darstellung / Inhalt der Challenge über anderen Webserver (da wo auch der Webclient ausgelieftert wird), da gedanke ist nur Daten zu übertragen und keine HTML Seiten etc.

3.5.4 Reverse Proxy

- Anforderungen an den Reverse Proxy oder kommt das in die Realisierung - Warum wird ein Reverse Proxy verwendet

3.6 Datenbank

Warum relationale Datenbank Warum kein Dateisystem

3.7 Webclient

3.7.1 **SPA** vs **MPA**

Multi Page Applications Multi Page Applications, kurz MPA, ist die klassische Architektur für Webanwendungen. Bei dieser Architektur wird für jeden Request (Anfrage) an den Webserver eine neue Seite inklusive von Ressourcen wie Cascading Style Sheets (CSS)¹, JavaScript und Bildern geladen. Dieses kann mit einem Beispiel verdeutlicht werden.

Auf einer Shop-Seite befinden sich 10 Produkte inkl. Bild und Kurzbeschreibung. Wird ein Produkt ausgewählt, sendet der Client einen Request / eine Anfrage an den Webserver. Der Webserver antworte mit allen Ressourcen (siehe oben), welche für das Produkt benötigt werden. Der Client stellt dann aus den Ressourcen die Ansicht dar und das Produkt inklusive der Details ist für den Nutzer zu sehen.

Der Vorteil von MPAs ist die Optimierbarkeit für Suchmaschinen, das sogenannte SEO (Search Engine Optimization). Ein gutes SEO Rating sorgt dafür, dass die Webseite bei Suchmaschinen weit oben zu finden ist. Dies ist besonders wichtig bei Webseiten und Shops, welche um Kunden konkurrieren. Anzuführen sind hier diverse Webshops und Zeitungen.

Single Page Applications Die Single Page Applications, kurz SPA, stellt das genaue Gegenteil von MPA dar. Bei SPA besteht die Anwendung aus genau einem HTML-Dokument, dessen Inhalt bei Bedarf dynamisch nachgeladen wird. Dafür findet ein asynchroner Datenaustausch zwischen Client und Server statt, bei dem benötigte Ressourcen, wie Bilder, JavaScript und CSS ausgetauscht wird. Durch dieses Verfahren wird sicher gestellt, dass gleiche Elemente oder Ressourcen nicht erneut heruntergeladen werden müssen. Bei Änderungen werden nur Teile des DOMs² ersetzt und neu gerendert.

¹Beinhalten Regeln für die Darstellung von unter anderem Webseiten

²Das Document Object Model repräsentiert die Webseite als Baumstruktur

Die Interaktion mit dem DOM oder auch Virtual DOM kann selber entwickelt werden. Jedoch ist hierbei zu raten, auf bereits bestehende Frameworks wie Angular (Entwickelt unter der Leitung vom Angular Team bei Google), React (Entwickelt unter der Leitung von Facebook) oder Vue (Evan You und Core Team) zurück zugreifen.

Der große Vorteil von SPA ist die Geschwindigkeit der Anwendung, da hier nur einzelne Teile ausgetauscht werden müssen. Auch bieten SPA den Vorteil, dass die Entwicklung von Frontund Backend entkoppelt wird. Das heißt, dass die Programmiere des Front- und Backends weitestgehend unabhängig von einander arbeiten können.

Die SEO Optimierung gestaltet sich schwieriger, da es sich um eine dynamische Anwendung handelt. Zur Nutzung von SPA muss im Browser JavaScript verfügbar und aktiviert sein.

Zusammenfassung Vor- und Nachteile

Vorteile	SPA • Sehr schnell, dank dynamischen nachladen • Entkoppelung zwischen Frontund Backend	 MPA MPA Architektur ist ausgereift MPAs sind Entwickler freundlich, da ein kleiner Technologiestack benötigt wird
	• Effizientes cachen von Daten	• Ältere Browser werden unterstützt
		• SEO ist einfacher zu implementieren
Nachteile	 JavaScript muss im Browser verfügbar sein 	• Anwendung sind weniger performant als MPAs
	• Alte Browser werden nur teilweise unterstützt	• Front- und Backend haben eine starke Kopplung
	• Herausfordernde SEO Implementierung	
	• Gefahr von XSS Attacken	
	T 1 11 00 17 1 1 1 1 1 1	T CD ADA

Tabelle 3.3: Vor- und Nachteile SPA/MPA

Für die Entwicklung der Anwendung entscheide ich mich für die Verwendung einer SPA. Dieses geschieht unter den Gesichtspunkten der Entkopplung zwischen Front- und Backend, der Performance der Anwendung und der Zukunftssicherheit, welche meiner Meinung nach für SPA besteht. Die Nachteile vom SPA betreffen meine Anwendung gering. So ist auf den Rechnern im Labor ein moderner Webbrowser installiert und in diesem JavaScript aktiviert.

Auch handelt es sich um eine interne Anwendung, bei der die SEO Optimierung keine Rolle spielt. Einzig die Gefahr von XSS Attacken besteht, diese hoffe ich durch eine geeignete Wahl der Frontend Technologie zu reduzieren.[Mel20]

3.7.2 Mockups

3.8 Game Client

Änderungen die am Client durchgeführt werden müssen - Startgame -> register inkl. token -> Flags Generierung

4 Technologien

4.1 Frontend

REACT VS ANGULAR VS VUE

4.2 Backend

FLASK VS DJANGO VS EXPRESS APP

4.3 Datenhaltung

Warum PSQL als relationale Datenbank

5 Realisierung

6 Zusammenfassung & Aussicht

Anhang

Abbildungsverzeichnis

2.1	Übersicht über die Laborausstattung (Netzwerktopologie)	6
3.1	Übersicht über die Anwendung (Komponentendiagramm)	19
3.2	Klassen der Big Brother Komponente (Klassendiagramm)	22
3.3	Ansicht des Scanners (Zustandsdiagramm)	23
3.4	Erstellung eines Scanners (Zustandsdiagramm)	24
3.5	Starten eines Scanners (Zustandsdiagramm)	26
3.6	Datenfluss in der Scanner Komponente (Datenflussdiagramm)	28
3.7	Rest Interface im Überblick (Komponentendiagramm)	29
3.8	Übersicht über die Authentifizierung	31
3.9	Datenfluss in der Security Komponente (Datenflussdiagramm)	33

Tabellenverzeichnis

3.1	Übersicht über die verwendeten HTTP Methoden	31
3.2	Übersicht über die zu implementierenden Routen	32
	Vor- und Nachteile SPA/MPA	

Listings

Literatur

- [Abt16] Benjamin Abts. "Überarbeitung und Erweiterung eines Client- / Server-Systems zur Durchführung von ITSicherheitsschulungen (Capture the Flag)". Bachelor Arbeit. Hochschule Niederrhein, Juni 2016. 85 S.
- [Bei14] Hans Dieter Beims. Web-Applikationen / REST. Revision 2. 10. Dez. 2014.
- [BH20] Valerie Barsig und Jana Haase. *Cyber-Attacke auf das Potsdamer Rathaus*. 22. Jan. 2020. URL: https://www.pnn.de/potsdam/hacker-nutzten-sicherheitsluecke-cyber-attacke-auf-das-potsdamer-rathaus/25462398.html (besucht am 16.05.2020).
- [BN19] Achim Berg und Michael Niemeier. "Wirtschaftsschutz in der digitalen Welt". In: (11. Juni 2019), S. 13.
- [FM20] Florian Flade und Georg Mascolo. *Cyberangriff auf Bundestag: Haftbefehl gegen russischen Hacker*. 5. Mai 2020. URL: https://www.tagesschau.de/investigativ/ndr-wdr/hacker-177.html (besucht am 16.05.2020).
- [HHH20] Simon Hurtz, Jan Heidtmann und Max Hoppenstedt. *Hacker-Angriff auf Gericht massiver als bislang bekannt*. 28. Jan. 2020. URL: https://www.sueddeutsche.de/digital/berlin-kammergericht-hacker-angriff-emotet-1.4775305 (besucht am 16.05.2020).
- [Hoc] Hochschule Niederrhein. Flyer Institut Clavis. URL: https://www.hs-niederrhein.de/fileadmin/dateien/Institute_und_Kompetenzzentren/Clavis/Flyer_Institut_Clavis__5_.pdf (besucht am 16.05.2020).
- [Hoc19] Hochschule Niederrhein. *Modulhandbuch Vollzeit BA Informatik*. 9. Dez. 2019. URL: https://www.hs-niederrhein.de/fileadmin/dateien/FB03/Studierende/Bachelor-Studiengaenge/P02013/modul__bi.pdf (besucht am 16.05.2020).
- [Hoc20] Hochschule Niederrhein. *Hackern die rote Karte zeigen Neuer Studiengang Cyber Security Management*. 7. Feb. 2020. URL: https://www.hs-niederrhein.de/startseite/news/news-detailseite/?tx_news_pi1%5Bnews%5D=18990&cHash=e849d260ecd92cf53fc9c98f6dc9edaa (besucht am 16.05.2020).
- it-daily.net. IT-Security-Experten Werden Händeringend Gesucht It-Daily.Net. 3. März 2019. URL: https://www.it-daily.net/analysen/20773-it-security-experten-werden-haenderingend-gesucht (besucht am 16.05.2020).

- [Mel20] Ian Melnik. Single Page Application (SPA) vs Multi Page Application (MPA): Pros and Cons - Merehead. 17. Apr. 2020. URL: https://merehead.com/blog/single-page-application-vs-multi-page-application/(besucht am 04.06.2020).
- [Ora20] Oracle Corporation. Oracle WM VirtualBox User Guide. Version 6.1.10.5. Juni 2020. URL: https://www.virtualbox.org/manual/UserManual.html#features-overview (besucht am 06.07.2020).
- [Qua17] Jürgen Quade. Praktikum IT-Security. Revision 2. 25. Sep. 2017.
- [Ruh20] Ruhr24. Hacker-Angriff legt IT-Systeme der Uni Bochum lahm Klausuren ausgefallen. 7. Mai 2020. URL: https://www.ruhr24.de/ruhrgebiet/bochum-rub-uni-hacker-angriff-webmail-moodle-news-universitaet-systeme-it-studierende-13753554.html (besucht am 16.05.2020).
- [Sch20] Dennis Schirmacher. *Uni Gießen nähert sich nach Hacker-Attacke wieder dem Normalbetrieb*. 1. Juni 2020. URL: https://www.heise.de/newsticker/meldung/Uni-Giessen-naehert-sich-nach-Hacker-Attacke-wieder-dem-Normalbetrieb-4628715.html (besucht am 16.05.2020).
- [Sos10] Alexander Sosna. "Konzeption und Realisierung eines modular aufgebauten Auswertungsund Überwachungssystems zur Durchführung von IT-Sicherheitsschulungen." Bachelor Arbeit. Hochschule Niederrhein, Juni 2010. 98 S.
- [Tan20] Aaron Tan. What Is CTF and How to Get Started! 7. Mai 2020. URL: https://dev.to/atan/what-is-ctf-and-how-to-get-started-3f04 (besucht am 06.07.2020).
- [w3s] w3schools. HTML Hidden Input. URL: https://www.w3schools.com/tags/att_input_type_hidden.asp (besucht am 06.07.2020).
- [WDR19] WDR. Cyberattacke: Hackerangriff auf Universität Maastricht legt Wissenschafts-betrieb lahm. 27. Dez. 2019. URL: https://wwwl.wdr.de/nachrichten/rheinland/hacker-angriff-uni-maastricht-100.html (besucht am 16.05.2020).
- [Wel19] Bianca Wellbrock. IT-Sicherheit im Krankenhaus: Hack bringt Krankenhäuser zum Stillstand PSW GROUP Blog. 10. Sep. 2019. URL: https://www.psw-group.de/blog/it-sicherheit-im-krankenhaus-hack-bringt-krankenhaeuser-zum-stillstand/7175 (besucht am 16.05.2020).