Animal models of human affective disorders: Manipulations and Readouts

- Aetiology, Pathophysiology, Psychopathology
- Gene x environment causation (aetiology)
- Animal model validity: Aetiological, Construct, Face
- Genetic aetiology (G)
- Environmental aetiology (E)
- Examples of valid animal models of G, E and GxE aetiology
- Face validity
- Behavioural readout tests

Understanding a complex psychiatric disorder in terms of neuro-behavioural components

Understanding a complex psychiatric disorder in terms of neuro-behavioural components

Dividing a complex disorder into translational components: e.g. Depression

Studying translational components in Animal models e.g. Depression

Animal models must have validity

Aetiological validity

are the changes that we cause to animal in terms of genetics and life history valid to the human situation (or are they irrelevant and therefore useless for human patients)

cellular/circuit changes in animal need to have relevance to the human striums. Valenty es of mouse brain need to have similarity to human disorder - but we know little about the human case

hard to have construct validity in animal models, so we cant be strict there, since we dont know what it is in humans and what should be similar

Face validity

changes in behaviour of animal: how similar are they to the psychopathology of human patients.

it can basically be observed by mere eye

we only want to understand some of human psychopathology. we assume it's already unrealistic to produce a depressed mouse etc.

Animal models must have validity: Aetiological validity

Approaches to studying Genes and Environments important in depression

Seritonin transp gene prom region 5-HTTLPR polymorphism interacts with stressful life events to increase prevalence of depression

Caspi et al. (2003) Science 301: 386

SLE = stressful life events

Kendler et al. (2005) Arch Gen Psych 62: 529

Serotonin transporter promoter (5-HTTP) gene-linked polymorphic region (5-HTTLPR):

modelling (s)hort and (l)ong genotypes in mouse using gene knockout

5-HTTLPR genotype and Brain Endophenotype for depression in healthy subjects

Absolute Cerebral Blood Flow at Rest

Evidence from human and mouse for fear endophenotype associated with low-activity 5-HTT genotype

measure personality in animals the higher T score the higher neuroticism Human Neuroticism personality trait scores

people who are neurotic probably carry S allele for SERT

5-HTT heterozygous knockout mouse Conditioned freezing to context

Pryce et al. (2012) Neuropharmacol 62: 358

Methods of gene manipulation in animals for study of gene-to-phenotype relationships

Gene knockout via homologous recombination

Fig. 1 Homologous recombination. In the example above the homologous recombination results in a gene knockout

used when not interested in where the transgenic gene is inserted

Animal models must have validity: Aetiological validity

Environment: From Uncontrollability to Helplessness to Emotional disorder

Uncontrollable Stressful life events:

• Employment we never evolved a mechanism,

• Finance because environemnt was either

• Health controllable or your dead (so no mechanism

• Housing can even evolve).

• Family no cns copes with the events to the left

Social relationships

Lack of social control
= Helplessness (in humans)

Early-life stress as an aetiological factor in depression

Examples of manipulations of the early-life environment

(environmental manipulations)

Rat and marmoset early deprivation

removed and placed in sterile environment for aorund 30mins before returned to parents - modelling early life-human stress in animals

Approaches to studying Genes and Environments important in depression

Corticotrophin Releasing Factor (CRF) is a Neurotransmitter and Neurohormone

LH, Lateral hypothalamus BNST, Bed nucleus of stria terminalis Thal, Thalamus DR, Dorsal raphe nucleus Amy, Amygdala

Interaction between the CRF receptor 1 genotype and childhood stressful life events in depression aetiology

CRF := corticotrophin releasing factor

Probability of GxE Interaction for CRFR1 SNPs

this one was identified:

GxE Interaction for SNP rs17689882

CNS-specific transgenic over-expression of corticotropin releasing factor in mice

Viral vector-induced gene-over expression: high spatial and temporal resolution

Järäs et al. (2007) Exp Hematol 35: 343

Keen-Rhinehart et al. (2009) Mol Psychiatry 14: 37

The rodent forced swim test

test if effect of CRF has effect on behaviour: test performed was rodent forced swim test: take large cyling and fill with warm water.observe swimming, climbing and floating behvaiour for 6 mins. during last 4 mins, is there swimming or floating.

CRF and Forced swim test: interpreting the findings to fit the hypothesis

lec: forced swim test is useless in his opinion - no face validity

Transgenic CRF over-expression in mouse

the more CRF, the less floating and the more swimming

"Decreased floating reflects increased stress responsiveness and active coping"

Viral-vector CRF over-expression in rat

here there was more floating, the opposite result

"Increased floating reflects depressive-like behaviour"

Animal models must have validity: Face Validity

Depression is altered emotional processing of aversive and rewarding stimuli

Aversive life events/stimuli	Rewarding life events/stimuli
Reactivity to UCS (个)	Motivation/Interest (↓)
Learning about CS (个)	Learning about CS (↓)
Uncontrollability of stimuli (个)	Uncontrollability of stimuli (个)
Expectancy of stimuli (个)	Expectancy of stimuli (↓)
Fatigue due to aversive stimuli (个)	Pleasure from (=↓)

 (\uparrow) (\downarrow) Direction of change, Depression vs Healthy control

 $(=\downarrow)$ Evidence is not convincing

Not all patients will exhibit all symptoms/states

Example of a State Marker in Depression:

Increased conditioned fear responses in depressed patients relative to healthy controls

Depressed patients exhibit increased CS-UCS fear conditioning, measured using skin conductance Depressed patients and healthy controls show similar and accurate expectancy of UCS depending on CS

Fear conditioned Freezing in Rodents - Adaptive emotional behaviour

Convergence of CS and UCS sensory neuron inputs at the lateral amygdala

why not do fear conditioning for CRF to see what was the case with CRF changes

pressure

Example of a State marker in depression Decreased nucleus accumbens response to reward in depression

Arrondo et al. (2015) Front Psychol 6: 1280

Food reward in Rodents - Adaptive goal-directed behaviours

Major modulating function of mesocorticolimbic Dopamine system on Motivation

Consumption Tests

Operant Response-Outcome Tests

Progressive ratio schedule test

Session Time

The forced swim test in depression research

the forced swim test is sensitive to antidepressants

Aetiological Validity:

4 5

Uncontrollable stress

Face Validity:

Uncontrollable stress

Despair

Despair

Floating

- Really the Uncontrollability?
- Really Despair?

Emotional stimuli ("life events"): the special case of uncontrollability

Translational research into depression needs valid animal models of emotional-cognitive function

thats the test for the previous slide

(Un)controllable foot shock escape test

Uncontrollable stress

Escape failure

- Really the Uncontrollability? YES
- Really learned helplessness?

Demonstrating the learning of uncontrollability in mice

Evidence for the specific learned helplessness effect in mice

Manipulations and Readouts

- Complex psychiatric disorders need to be divided into translational components for their scientific study
- Animal models of human brain-behaviour disorders must satisfy specific validity criteria to be models
- Genes, environments, and their interactions, are the causes (aetiology) of depression
- Aetiological validity: G(ene), E(nvironment), GxE
- Serotonin transporter polymorphism x developmental stressful life events: the major example of GxE
- 5-HTT knockout mice have G-Endophenotype validity
- Genetic manipulations in laboratory animals: Transgenic, Gene knockout, knockin, Viral vector gene delivery
- Emotional stimuli ("life events") that are uncontrollable are severe and chronic
- •The example of CRF, CRF receptor 1 and developmental stressful life events: human evidence and mouse models
- Face validity: Behavioural readout tests of specific psychopathologies
- Forced swim test: Not a model, only a readout test, and no face validity (only predictive validity)
- Learned helplessness: Not a model, only a readout test, but with face validity
- Universal neurobiology for processing emotional (important) stimuli across mammals is important for studying animals to understand adaptive/healthy human emotion and also human emotional disorders