Algebra II: Tutorial 1

January 26, 2022

1. If R is an integral domain, then either char(R) is equal to zero or a prime number.

Solution. Since $\operatorname{char}(R) \in \mathbb{N}$, $\operatorname{char}(R) = 0$ or $\operatorname{char}(R) > 0$. In the first case, there is nothing to prove. Suppose that $\operatorname{char}(R) = n > 0$, and that n is not prime, i.e. there exist integers $1 < n_1, n_2 < n$ such that $n = n_1 n_2$. Then, $n \cdot 1_R = (n_1 n_2) \cdot 1_R = (n_1 \cdot 1_R)(n_2 \cdot 1_R) = 0$, using the fact that (R, +) is associative. Since R is an integral domain, this implies that either $n_1 \cdot 1_R = 0$ or $n_2 \cdot 1_R = 0$, which contradicts the assumption that n is the characteristic of R. Our assumption must be false, and n must be prime.

2. If R is an integral domain and a, b are non-zero, then (a) = (b) if and only if a = ub where $u \in \mathbb{R}^{\times}$.

Solution. Suppose that a = ub with $u \in R^{\times}$. Then, $a \in (b)$ and $b \in (a)$, and so (a) = (b). Suppose now that (a) = (b). In particular, $a \in (b)$ and $b \in (a)$. In other words, a = ub for some $u \in R$ and b = ra for some $r \in R$. In particular, (1 - ur)a = 0. Since R is assumed integral and a assumed non-zero, 1 = ur, which implies that both u and r are units. \blacksquare

3. Every Euclidean domain is a PID.

Solution. Suppose that (R,v) is a Euclidean domain, and consider any non-zero ideal I in R. Then, the set $\{v(g) \mid g \in I, g \neq 0\} \subset \mathbb{N}$ admits a minimal element. Let $f \in I$ be any non-zero element in I realising that minimal value. Then, for any other $g \in I$, there exists elements $q, r \in R$ such that f = qg + r, where either r = 0 or $r \neq 0$, in which case v(r) is well-defined and v(r) < v(f). Note that $f \in I$ and $g \in I$ imply that $r \in I$, and the minimality assumption on f implies that r = 0, i.e. $g \in (f)$. Since g is an arbitrary element in I, we get I = (f), which proves that R is a PID. \blacksquare

Problem 1 (Ideal correspondence). Let R, S be commutative rings, with additive identities 0_R and 0_S respectively. Suppose that $f: R \to S$ is a surjective ring homomorphism.

- 1. Show that if I is an ideal of R, then $f(I) = \{f(r) \mid r \in I\}$ is an ideal of S.
- 2. Show that if J is an ideal of S, then $f^{-1}(J) = \{r \in R \mid f(r) \in J\}$ is an ideal of R containing Ker(f), the kernel of f.
- 3. Deduce that there is a one-to-one correspondence between ideals of S and ideals of R containing Ker(f).
- 4. Show that this correspondence descends to a bijection between prime (resp. maximal) ideal of S and prime (resp. maximal) ideals of R containing Ker(f).

Solution. Throughout the solutions, denote by 0_R and 1_R (respectively 0_S and 1_S) the additive and multiplicative identity elements in R (resp. in S).

- 1. Since $f(0_R) = 0_S$, $0_S \in f(I)$. If $s_1 = f(r_1) \in f(I)$, then $-1_S \cdot s_1 = f(-1_R)f(r_1) = f(-r_1) \in f(I)$. If $s_1, s_2 \in f(I)$, say $s_1 = f(r_1), s_2 = f(r_2)$, then $s_1 + s_2 = f(r_1 + r_2) \in f(I)$. Finally, if $s \in S$ and $s_1 \in f(I)$, say $s_1 = f(r_1)$, then $s \cdot s_1 = s \cdot f(r_1)$. By assumption, f is surjective, and so there exists $r \in R$ such that f(r) = s. Then, $s \cdot f(r_1) = f(rr_1) \in f(I)$, which concludes the proof that f(I) is an ideal.
- 2. That $(f^{-1}(J), +)$ is an abelian subgroup of (R, +) is immediate from the properties of f. Suppose that $r_1 \in f^{-1}(J)$, and $r \in R$. Then $f(r \cdot r_1) = f(r)f(r_1) \in J$, which implies that $r \cdot r_1 \in f^{-1}(J)$. Finally, notice that $\text{Ker}(f) = f^{-1}(0)$, so $f^{-1}(J)$ necessarily contains Ker(f).
- 3. Suppose that I is an ideal of R containing Ker(f). Then, $f(I) = \{f(r) \mid r \in R\}$, and

$$f^{-1}(f(I)) = \{ r \in R \mid f(r) \in f(I) \}$$

$$= \{ r \in R \mid f(r) = f(y) \text{ for } y \in I \}$$

$$= \{ r \in R \mid r - y \in \text{Ker}(f) \}$$

$$= I + \text{Ker}(f) = I.$$

where in the last line we have used the fact that I contains Ker(f) by assumption. Suppose now that J is an ideal of R. Then, $f(f^{-1}(J)) = \{f(r) \mid r \in f^{-1}(J)\} = \{f(r) \mid f(r) \in J\} = J$, where in the last equality we have used the assumption that f is surjective. This concludes our claim.

4. We prove the equivalence for prime ideals, the corresponding one for maximal ideals being straightforward. Suppose that I is a prime ideal in R containing $\operatorname{Ker}(f)$. Take $s_1, s_2 \in S$ such that $s_1s_2 \in f(I)$, say $s_1s_2 = f(r)$ for some $r \in I$. Since f is surjective, there exist $r_1, r_2 \in R$ such that $f(r_1) = s_1$ and $f(r_2) = s_2$. Therefore, $s_1s_2 = f(r_1r_2) = f(r)$, which implies that $r_1r_2 - r \in \operatorname{Ker}(f) \subset I$; in particular $r_1r_2 \in I$. By assumption, I is a prime ideal, so either r_1 or r_2 belongs to R, implying either s_1 or s_2 belongs to f(I), proving our claim. Conversely, suppose that I is a prime ideal in S. Take $r_1, r_2 \in R$ such that $r_1r_2 \in f^{-1}(I)$. By definition, $f(r_1r_2) = f(r_1)f(r_2) \in I$. Since I is prime, either I or I belongs to I, and so either I or I belongs to I.