

IDIS 3802: The Rise, Fall and Potential

Database analysis of NFL Data and the San Francisco 49ers

Comeback of an Empire

What Problems we Addressed?

- 1) What NFL statistics matter and how the 49ers rank in them since their last Super Bowl performance?
- 2) How does the 49ers passing game breakdown?
- 3) How does the 49ers running game breakdown?

1) What NFL statistics matter and how the 49ers rank in them in the past five seasons?

- Run regression models to determine which NFL statistics show the best predictive power associated with Wins
- Top two statistical categories:
 - Turnover %: .92 adjusted R2
 - Scoring Drive %:. 91 adjusted R2
- 49ers Ranks in Categories:
 - o 2012: TO% (13) SC%(7) Record 11-4-1
 - o 2018: TO% (32) SC%(25) Record: 4-14
- Recommendation: Focus on TO% with Team Building

							411	
Tm	w	TO%	Sc%	Tm	W	TO%	Sc%	df_to = df_teamd.corr()
Jacksonville Jaguars	4.571429	10.000000	35.514288	Seattle Seahawks	10.714288	13.900000	29.257143	<pre>df_to.loc['TO%'].nlargest(5)</pre>
Tampa Bay Buccaneers	5.428571	12.757143	38.128571	Los Angeles Chargers	10.500000	13.450000	31.100000	l TO% 1.000000
Oakland Raiders	5.714288	9.671429	39.728571	Denver Broncos	10.000000	11.900000	30.514288	TO 0.959832 Int 0.842392
New York Jets	6.000000	9.428571	34.528571	Pittsburgh Steelers	10.000000	11.314288	33.800000	FL 0.651481
Tennessee Titans	6.428571	10.285714	36.914288	Kansas City Chiefs	9.571429	12.671429	33.428571	W 0.554721 Name: TO%, dtype: float64
New York Giants	6.714288	12.928571	35.514288	Los Angeles Rams	9.333333	13.433333	33.366667	Name: 10%, drype: float64
St. Louis Rams	6.750000	12.700000	31.900000	Carolina Panthers	9.285714	14.285714	33.714288	<pre>df_sc = df_teamo.corr()</pre>
San Diego Chargers	6.800000	11.460000	36.160000	Dallas Cowboys	9.142857	11.142857	35.685714	
San Francisco 49ers	6.857143	10.357143	34.542857	Green Bay Packers	9.142857	12.000000	36.514286	<pre>df_sc.loc['Sc%'].nlargest(6)</pre>
Washington Redskins	6.857143	13.128571	36.757143	Indianapolis Colts	9.000000	11.642857	35.914288	Sc% 1.000000
Chicago Bears	7.000000	13.300000	38.100000	New Orleans Saints	9.000000	12.214288	38.828571	EXP 0.916799
Buffalo Bills	7.285714	12.371429	34.200000	Cincinnati Bengals	8.857143	12.442857	33.742857	PF 0.886193 Y/P 0.786419 NY/A 0.786102 Yds 0.773771 Name: Sc%, dtype: float64
Miami Dolphins	7.428571	11.000000	35.428571	Minnesota Vikings	8.857143	11.085714	33.657143	
Detroit Lions	7.571429	10.685714	34.828571	Baltimore Ravens	8.571429	11.714288	31.985714	
Houston Texans	8.000000	11.157143	31.571429	Philadelphia Eagles	8.571429	12.042857	34.057143	

2) How does the 49ers passing game breakdown?

- -Importance of passing as a more efficient way to move the ball
- -Issue: number of times the 49ers took advantage of their best moving offense
- -How the 49ers do with protecting the QB

Recommendation: Pass more up the middle and deeper

air_yards yards_after_catch

pass_location						
left	6.163158	6.320312				
middle	9.376812	7.111111				
right	6.240964	7.576923				

air vards	yards_after_catch

pass_length				
deep	23.149254	9.322581		
short	4.566745	6.680851		

df_SF['pass_location'].value_counts()

left 190 right 166 middle 138

Name: pass_location, dtype: int64

df_SF['pass_length'].value_counts()

short 427 deep 67

Name: pass_length, dtype: int64

3) How does the 49ers running game breakdown?

- -Splits for running right, left, middle
- -Number of plays show the 49ers did not take advantage of efficiency on the outside

Recommendation: Track location efficiency and rely on advantages

df_SF.groupby('run_location')['yards_gained'].mean() df_SF['run_location'].value_counts()

run_location left 5.333333 middle 3.682692 right 4.620000

Name: yards_gained, dtype: float64

right 150 left 144 middle 104

Name: run_location, dtype: int64

df_2018.groupby('run_location')['yards_gained'].mean()

run_location left 4.875925 middle 4.047632 right 4.894570

Name: yards_gained, dtype: float64

So what?

Potential rise of sabermetrics and NFL Strategy

A BRIEF HISTORY OF SABERMETRICS

Sabermetrics is a science of sport.

It is the empirical analysis of baseball through statistics, used to predict the performance of players, giving teams a winning edge. Q&A?

Now onto the Code!