Pixels and Histogram

DongJoon Kim

Phone: +82-2-940-8461

Email: dongjoonkim@kw.ac.kr

Pixel

• Each pixel is made up of a red, green and blue subpixel that lights up at different intensities to create different colors.

Pixel: DPI vs PPI

- DPI (Dots Per Inch) is a measure of spatial printing, video or image scanner dot density
- PPI (Pixels Per Inch) is a measure of the pixel density of an electronic image/display device
- Number of dots/pixels that can be placed in a line within the span of 1 inch (2.54 cm)

https://photographycourse.net/dpi-vs-ppi/

PPI vs DPI: Do they affect each other?

- Imagine you want to print a 300 PPI image at 600 DPI
 - Simply divide 600 DPI/ 300 PPI and you have your answer 2 (DPI/PPI)

PPI vs DPI

- Display resolution
- Number of pixels displayed in one inch of a digital image

- Printer resolution
- Number of dots of ink on a printed image

Pixel Values

Pixel array on a display monitor

Pixel array on an Image

Image vs (Image) Map

- Image represents a pixel array what we see, or a picture
- (Image or 2D) Map represents an array where each element is mapped to each pixel of the target image

Now we have pixels and their values Let's analyze them! for further processing

Where do we start?

Histograms

- How many students received, at most, a score of 69 on the exam?
- 2. How many students received a score of at least 80 on the exam?
- 3. How many students received a score between 60 and 90?

Grades Vs freq.

Test Scores: 74, 83, 69, 95, 78, 85, 42, 98, 73, 68, 90, 85, 84, 71, 88, 52, 94

(Image) Histogram

- A plot with pixel values in x-axis and corresponding number of pixels in the image on y-axis
- For a RGB image, there are three histograms
- A representative value per pixel is normally used, i.e., gray scale image

Thresholding

- Do something if a metric value is larger/less than a criterion value, i.e., threshold value
- Specific function is applied to pixels whose values are larger/less than a threshold value
- Simple thresholding (global thresholding) uses <u>a single threshold value</u>
- Adaptive thresholding uses 'per-pixel-dynamic' threshold values
 - Locally determined by considering a target pixel's neighborhood pixel values
 - This kind of approach is called 'adaptive' method

OpenCV

Simple (Global) Thresholding

```
import cv2 as cv
                          "matplotlib is a very useful plot GUI in python!!"
                                                                                                           Original Image
                                                                                                                           BINARY
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('gradient.png',0)
ret,thresh1 = cv.threshold(img,127,255,cv.THRESH_BINARY)
                                                                                                              TRUNC
                                                                                                                          TOZERO
ret, thresh2 = cv.threshold(img, 127, 255, cv. THRESH BINARY INV)
ret, thresh3 = cv.threshold(img, 127, 255, cv. THRESH TRUNC)
ret,thresh4 = cv.threshold(img,127,255,cv.THRESH_TOZERO)
ret, thresh5 = cv.threshold(img, 127, 255, cv. THRESH TOZERO INV)
titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]
                                                                                                                           image
for i in range(6):
    plt.subplot(2,3,i+1),plt.imshow(images[i],'gray',vmin=0,vmax=255)
    plt.title(titles[i])
    plt.xticks([]),plt.yticks([])
plt.show()
                                                                   Open Source Computer Vision
                                                               Main Page Related Pages Modules Namespaces ▼
                                                                                               Classes ▼ Files ▼ Examples
                                                                                             THRESH TRUNC CV
                                                              OpenCV-Python Tutorials Image Processing in OpenCV
                                                                                             thresh trunc func cyrroudes
                                                              Image Thresholding
```

Goal

 In this tutorial, you will learn simple thresholding, ad · You will learn the functions cv.threshold and cv.ad

threshold types

Threshold Value

- It is important to determine the appropriate threshold value
- Otsu method (or, Otsu thresholding) determines the threshold value automatically
 - Otsu threshold value minimizes the within-cluster(or class) variance of the histogram
 - useful for a simple binary classification case

Adaptive Thresholding

- Locally-determined threshold for a pixel based on a small region around it
 - How do we decide the threshold value? ©

image

Which image looks better?

Histogram Equalization (HE)

- Generally, consider 1-channel histogram (e.g., gray image histogram)
- To enhance the image's contrast, we can modify the individual pixel values
 - Use the histogram processing, Histogram Equalization

the image uses a small range of intensity values

the small range pixel values are stretched out along the valid pixel values

Cumulative Histogram

• The histogram can be though of a distribution function

Inverse Transform of a Histogram

Histogram Equalization (HE)

- HE is accomplished by the following steps
 - 1. Making a histogram of an image
 - 2. Making a cumulative histogram of the histogram
 - 3. Mapping min/max (user-defined) pixel values to 0/255 satisfying linearized CDF!!
- HE allows to gain a higher contrast!

Is only HE enough?

Adaptive Histogram Equalization (AHE)

- In the previous, only considered the global contrast of the image
 - In many cases, over- or under- brightness occurs
- Obviously, Adaptive method exists based on local analysis of the image histogram
 - At a pixel, HE is performed on a tile, or block, centered at the pixel

OpenCV uses 8x8 tile size by default

[https://3months.tistory.com/407]

Adaptive Histogram Equalization (AHE)

- In the previous, only considered the global contrast of the image
 - In many cases, over- or under- brightness occurs
- Obviously, Adaptive method exists based on local analysis of the image histogram
 - At a pixel, HE is performed on a **tile**, or **block**, centered at the pixel

Low contrast image

over- or under- brightness

better local details!! with more consistent contrast enhancement!

Contrast Limited AHE (CLAHE)

- AHE often suffers from overamplification problem
 - Due to the pixels whose values are biased at a narrow range of the local histogram

original

global HE

over-brightness

adaptive HE

noise-like areas (by overamplified)

 $cv.createCLAHE(clipLimit=\infty,...).apply(...)$

Contrast Limited AHE (CLAHE)

0 50 100 180 200 200

- AHE often suffers from overamplification problem
 - Due to the pixels whose values are biased at a narrow range of the local histogram
- By limiting contrast (or, clipping contrast), avoid an over-sloped CDF of the local histogram

Imagine the CDF of each histogram (before/after clipping)!

Note that the linear-like slope of CDF provides better contrast!

Min/Max values of pixel x (in a tile) are preserved

Contrast Limited AHE (CLAHE)

- AHE often suffers from overamplification problem
 - Due to the pixels whose values are biased at a narrow range of the local histogram
- By limiting contrast (or, clipping contrast), avoid an over-sloped CDF of the local histogram

original adaptive HE

CLAHE

 $cv.createCLAHE(clipLimit = \infty,...).apply(...)$

cv.createCLAHE(clipLimit=2,...).apply(...)

cv.createCLAHE(clipLimit= ∞,...).apply(...)

cv.createCLAHE(clipLimit=2,...).apply(...)

Can you apply HE to Color Image?

Hint: remember color space you already learned!

Mathematical Approaches for Image Processing

Variance and Standard Deviation in Statistics

Although they are same concept, Why Standard Deviation? instead of Variance?

Otsu Thresholding

- Considering the histogram variance enables to detect a global threshold value for binary classification automatically
- Otsu threshold value maximizes the inter-class variance of the histogram (or minimizes the within-class variance)

Otsu Thresholding

We know 'variance'

$$\sigma^2 = \frac{\sum_{i=0}^{N} (X_i - \mu)^2}{N}$$

 X_i : i-th pixel value (histogram), μ : mean, N: # of pixels on an image

- Let's assume that pixels are classified into 2 classes
- The within-class variance $(V_w) = \sum_{i=1}^{n} (W_i * \sigma_i^2)$ W_i : # of pixels in class i / N

$$W_1 = 5/9$$
 $W_2 = 4/9$
 $\sigma_1^2 = 4/5$ $\sigma_2^2 = 3/16$

$$V_w = W_1 * \sigma_1^2 + W_2 * \sigma_2^2 = 0.52777$$

compute V_w along the pixel values in histogram, and find the value that minimizes the $V_{\rm w}$

Otsu Thresholding

$$\sigma^2 = \frac{\sum_{i=0}^{N} (X_i - \mu)^2}{N}$$

• We know 'variance' $\sigma^2 = \frac{\sum_{i=0}^{\infty} (X_i - \mu)^2}{N}$ X_i : i-th pixel value (histogram), μ : mean, N: # of pixels on an image

- Let's assume that pixels are classified into 2 classes
- The within-class variance $(V_w) = \sum_{i=1}^{N} (W_{i} * \sigma_{i}^{2})$ W_{i} : # of pixels in class i / N
- The inter-class variance $(V_b) = V_T V_w$ V_T : total variance

compute V_w along the pixel values in histogram, and find the value that minimizes the V_w

compute V_b along the pixel values in histogram, and find the value that maximizes the $V_{\rm h}$

here, the value is the Otsu threshold value

Adaptive Thresholding

- Locally-determined threshold for a pixel based on a small region around it
 - How do we decide the local threshold value?

How about Local-Otsu Thresholding? ©