COMP 1433: Introduction to Data Analytics & COMP 1003: Statistical Tools and Applications

Lecture 7 – Programming with R: Statistics

Dr. Jing Li

Department of Computing

The Hong Kong Polytechnic University

1&3 Mar 2022

Keypoints Recap (R Programing)

- Different types of data representation:
 - Vectors, Matrices, Arrays, Dataframes, Lists, etc.
- Import data (from texts), viewing data, and exporting results (to texts).
- Data Manipulation
 - Control Structure (e.g., for loop, if condition, etc.)
 - Arithmetic and Logical Operations
 - **Built-in Functions**: numeric, character, probability, statistics, etc.

Graphs vs. Statistics

- Numbers are boring while graphs are straightforward
- Visualize the data
- Helpful to analyze the data statistics

ggplot2 Package

• R has built-in functions for charts and graphs (base graphics), such as plot().

 The R package ggplot2 extend the charting and graphing functions.

install.packages("ggplot2")
library("ggplot2")

Roadmap

- Barplot
- Histograms
- Scatterplot
- Example: Big Mart Sales Datasets

Roadmap

- Barplot
- Histograms
- Scatterplot
- Example: Big Mart Sales Datasets

Input Data

```
quiz <- c(100, 80, 70, 20, 80)
exam <- c(80, 30, 90, 40, 90)
name <- c("Peter", "Kenny", "Tom", "Tiffany", "Susanna")
gender <- c("Male", "Male", "Female", "Female")
student_id <- c(1:5) #same as c(1,2,3,4,5)</pre>
record <- data.frame(student_id, name, gender, quiz, exam)
```

• Define a chart:

```
ggplot(record, aes(x=gender))
```

• Define a chart: ggplot(record, aes(x=gender))

- The chart can then be enhanced step by step.
 - E.g. creates a bar chart and fill it with blueviolet color and black border.

```
chart <- ggplot(record,aes(x=gender))
bars <- geom_bar(fill="blueviolet", color="black")
chart+bars</pre>
```


- Add additional commands to specify the chart/axis titles.
 - ggtitle: chart title; xlab,ylab: Label for x-axis/y-axis

xlabel <- xlab("Student's
Gender")
ylabel <- ylab("Frequency")
title <- ggtitle("Frequency
Distribution of Students' Gender
")
chart+bars+xlabel+ylabel+title</pre>

Identity: Make the heights of the bars to represent values in the data.

```
ggplot(record, aes(x=name, y=quiz)) + Gata.
geom_bar(fill="blueviolet", color="black", stat="identity") +
xlab("Student")+ ylab("Quiz Mark") + ggtitle("Quiz marks for student")
```


What if we want to color the bars with students' genders?

 First group by gender and create individual bars for each student.

Within each gender, we breakdown the data into different students and fill the bars with different colors.

```
ggplot(record, aes(x=gender, y=quiz, fill=name)) +
  geom_bar(color="black", stat="identity") +
  xlab("Student")+ ylab("Quiz Mark") + ggtitle("Quiz marks for student")
```


A stacked bar plot is created by default. How about interleaved bars?

• First group by gender and create individual bars for each student.

To create interleaved bars!

```
ggplot(record, aes(x=gender, y=quiz, fill=name)) +
  geom_bar(color="black", stat="identity", position="dodge") +
  xlab("Student")+ ylab("Quiz Mark") +
  ggtitle("Quiz marks for student")
```


Roadmap

- Barplot
- Histograms
- Scatterplot
- Example: Big Mart Sales Datasets

Histograms

- A histogram consists of parallel vertical bars that graphically shows the frequency distribution of a quantitative variable (e.g. quiz, exam).
 - We can use them to visualize data distributions!

Roadmap

- Barplot
- Histograms
- Scatterplot
- Example: Big Mart Sales Datasets

Scatter Plot

 Add the points using a geom layer called geom_point with the '+' operator.

ggplot(record, aes(x=quiz, y=exam)) + geom_point()

Scatter Plot

 Add the points using a geom layer called geom_point with the '+' operator.

```
ggplot(record, aes(x=quiz, y=exam)) + geom_point()
```


Scatter Plot

 customize the point size and color of the points, add the axis titles and chart title.

```
ggplot(record, aes(x=quiz, y=exam, color=gender, shape=gender)) +
  geom_point(size = 3) +
  xlab("Quiz") + ylab("Exam") +
  ggtitle("Exam vs. Quiz marks")
```


Roadmap

- Barplot
- Histograms
- Scatterplot
- Example: Big Mart Sales Datasets

Example: Big Mart Sales Dataset

- Data Description:
 - The data scientists at Big Mart collected 2013 sales data for 1559 products across 10 stores in different cities.
- Item_Identifier: Unique product ID
- Item_Weight: Weight of product
- Item Fat Content: Whether the product is low fat or not
- Item_Visibility: The % of total display area of all products in a store allocated to the particular product
- Item_Type: The category to which the product belongs
- Item_MRP: Maximum Retail Price (list price) of the product
- Outlet_Identifier: Unique store ID
- Outlet_Establishment_Year: The year in which store was established
- Outlet_Size: The size of the store in terms of ground area covered
- Outlet_Location_Type: The type of city in which the store is located
- Outlet_Type: Whether the outlet is just a grocery store or some sort of supermarket
- Item_Outlet_Sales:Sales of the product in a particular store. This is the outcome variable to be predicted.

Example: Big Mart Sales Dataset

- Data Description:
 - The data scientists at Big Mart collected 2013 sales data for 1559 products across 10 stores in different cities.

Item_Identifier	Item_Weight	Item_Fat_Content	Item_Visibility	Item_Type	Item_MRP	Outlet_Identifier	Outlet_Establishment_Year	Outlet_Size	Outlet_Location_Type	Outlet_Type	Item_Outlet_Sales
FDA15	9.3	Low Fat	0.016047301	Dairy	249.8092	OUT049	1999	Medium	Tier 1	Supermarket Type1	3735.138
DRC01	5.92	Regular	0.019278216	Soft Drinks	48.2692	OUT018	2009	Medium	Tier 3	Supermarket Type2	443.4228
FDN15	17.5	Low Fat	0.016760075	Meat	141.618	OUT049	1999	Medium	Tier 1	Supermarket Type1	2097.27
FDX07	19.2	Regular	0	Fruits and Vegetables	182.095	OUT010	1998		Tier 3	Grocery Store	732.38
NCD19	8.93	Low Fat	0	Household	53.8614	OUT013	1987	High	Tier 3	Supermarket Type1	994.7052
FDP36	10.395	Regular	0	Baking Goods	51.4008	OUT018	2009	Medium	Tier 3	Supermarket Type2	556.6088
FDO10	13.65	Regular	0.012741089	Snack Foods	57.6588	OUT013	1987	High	Tier 3	Supermarket Type1	343.5528
FDP10		Low Fat	0.127469857	Snack Foods	107.7622	OUT027	1985	Medium	Tier 3	Supermarket Type3	4022.7636
FDH17	16.2	Regular	0.016687114	Frozen Foods	96.9726	OUT045	2002		Tier 2	Supermarket Type1	1076.5986
FDU28	19.2	Regular	0.09444959	Frozen Foods	187.8214	OUT017	2007		Tier 2	Supermarket Type1	4710.535

• • • • • •

8523 records altogether

Example: Barplot for Sales

 Create a bar plot to show the total sales for different outlet types and add fill=Item_Type to ggplot to distinguish varying item types.

ggplot(sales, aes(x=Outlet_Type, y=Item_Outlet_Sales, fill=Item_Type)) + geom_bar(stat="identity")

Example: Histograms for Sales

 Create a histogram to show the distribution of item outlet sales and fill the bars with blue color and black border.

```
ggplot(sales, aes(x=Item_Outlet_Sales)) +
  geom_histogram(binwidth=500, fill="blue", color="black")
```


Example: Scatterplots for Sales

 Create a scatter plot to show the relationship between item retail price (x-axis) and item outlet sales (y-axis).

```
ggplot(sales,aes(y=Item_Outlet_Sales, x=Item_MRP)) + geom_point() +
  geom_smooth(method="lm") #add the regresion line
```


Example: Scatterplots for Sales

 Use different colors and shapes for data points with different outlet types.

```
ggplot(sales, aes(x=Item_MRP, y=Item_Outlet_Sales, color=Outlet_Type)) + geom_point(size = 1) +
xlab("Item Retail Price") + ylab("Item Outlet Sales") +
ggtitle("Item outlet sales vs. Item Retail Price")
```


Example: Scatterplots for Sales

 Create a facet graph to create separate scatterplots for each outlet type.

```
ggplot(sales, aes(x=Item_MRP, y=Item_Outlet_Sales, color=Outlet_Type)) + geom_point(size = 1) +
   xlab("Item Retail Price") + ylab("Item Outlet Sales") +
   ggtitle("Item outlet sales vs. Item Retail Price") +
   facet_wrap(~Outlet_Type)
```

Item outlet sales vs. Item Retail Price

A slide to take away

- How to draw barplot, histograms, and scatter plots for data?
- How to customize the graphs, e.g., the x and y axis, colors and the size of the bars and plots, etc.