$$2 + \frac{5}{x-4} = \frac{x+1}{x-4}$$

for X.

$$(x-4)\left(2+\frac{5}{x-4}\right)=\left(\frac{x+1}{x-4}\right)(x-4)$$

$$(x-4)2 + 5 = x+1$$

$$2x-8+5=2x-3=x+1$$

$$\Rightarrow$$
 2x-3-x = x+1-x

$$=$$
 $x - 3 = 1$

$$3 \times 3+3 = 1+3$$

Extraneous solution. This is because \$ 4-4=0, and we cannot divide by Zero. There are no real solutions to this equation.

C-3 Solving Inequalities

An inequality is just two expressions separated by ۷, ٤, >, ≥

operations on Inequalities
operations on Inequalities 1. Add/subtract the same quantity from both sides of
Han 'aga in 1994
2. Multiply divide by the same positive quantity on both
s. Multiply Aivide by the same negative quantity on both sides and flip the symbol.
subtract 9x from both sides
-6x<4 Divide both sides by-6 and flipthe symbol
raphically: $\times > \frac{4}{6} = \frac{-2}{3}$
-2/3
19: $x^2 - 2x - 8 = 0$ Start by solving $x^2 - 2x - 8 = 0$
Factor $x^2 - 2x - 8 = (x-4)(x+2)$, this says
$x^{2}-2x-8=0$
if either x=4 or x=-2.

2 - 2 O Y

The solutions to $x^2-2x-8=0$ partition the number line into three intervals

 $(-\infty, -2), (-2, 4), (4, \infty)$ Test on number from each interval and test to See if it satisfies the strict inequality v2_7v-C-1= $x^2 - 2x - 8 < 0$ If it does, so does every other number in that interval. De checked

02-2(0)-8=-8<0 so every number in (-2,4) also satisfies this inequality. $(-3)^{2}-2(-3)-8=9+6-8=1+6=7\neq0$ no other number in (-00,-2) satisfies this inequality. De check $(5)^{2}-2(5)-8=25-10-8$ = 15-8=7 × 0 so no other number in (4,00) satisfies this equation. The solutions to x2-2x-8<0 are the numbers in the interval land wany justification: every degree 2 polynomial has a graph that looks like

Ch 1.3: Equations: Describing Relationships in Dosta (5) Making a Linear Model from Data

A model is a mathematical representation of some phenomenon. A linear model is an equation of the form

X=A+BX, AB∈R

The value A is called the initial value; this is the value of y when the variable x=0.

The value B is the amount by which y changes for each unit increase in X.

E.g.; Table

× (1 C	cost		
(hairs	dollars		, , , 1	-1
0	80	0	initial	(057
1	92			
2	104			
3	116			
4	128			

The chair maker wants to represent the cost, G in terms of the number of chairs produced, X, as a linear model. Each time a choir is produced, the cost increases by \$12

(= 80 + 12x

This is a linear model by definition, and it fits the data in the table in the sense that 80 = 80 + 17(0) \$9Z= 80 + (Z(1) 128 = 80 + 12(4). Plot- the linear model on the cartesian plane (5,140)

(2,04) (4,128)

Linear models are called "linear" because they are lines; that is to say that the graph of a linear model is a line.