296.3: Algorithms in the Real World

Finite Fields review

15-853 Page 1

Groups

A <u>Group</u> (G, *, I) is a set G with operator * such that:

- 1. Closure. For all $a,b \in G$, $a * b \in G$
- 2. Associativity. For all $a,b,c \in G$, $a^*(b^*c) = (a^*b)^*c$
- 3. Identity. There exists $I \in G$, such that for all $a \in G$, a*I=I*a=a
- **4.** Inverse. For every $a \in G$, there exist a unique element $b \in G$, such that a*b=b*a=I

An <u>Abelian or Commutative Group</u> is a Group with the additional condition

5. Commutativity. For all $a,b \in G$, a*b=b*a

15-853 Page 3

Finite Fields Outline

Groups

- Definitions, Examples, Properties
- Multiplicative group modulo n

Fields

- Definition, Examples
- Polynomials
- Galois Fields

Why review finite fields?

15-853 Page 2

Examples of groups

- Integers, Reals or Rationals with Addition
- The nonzero Reals or Rationals with Multiplication
- Non-singular n x n real matrices with Matrix Multiplication
- Permutations over n elements with composition $[0\rightarrow1,1\rightarrow2,2\rightarrow0]$ o $[0\rightarrow1,1\rightarrow0,2\rightarrow2]$ = $[0\rightarrow0,1\rightarrow2,2\rightarrow1]$

We will only be concerned with <u>finite groups</u>, I.e., ones with a finite number of elements.

15-853 Page 4

Key properties of finite groups

Notation: $a^j \equiv a * a * a * ... j times$

Theorem (Fermat's little): for any finite group (G, *, I) and $g \in G$, $g^{|G|} = I$

<u>Definition</u>: the order of $g \in G$ is the smallest positive integer m such that $g^m = I$

<u>Definition</u>: a group G is cyclic if there is a $g \in G$ such that order(g) = |G|

<u>Definition</u>: an element $g \in G$ of order |G| is called a generator or primitive element of G.

15-853 Page 5

Other properties

 $|Z_p^*|$ = (p-1) By Fermat's little theorem: $a^{(p-1)}$ = 1 (mod p) Example of Z_7^*

	×	X ²	x ³	X ⁴	x ⁵	X ⁶
	1	1	1	1	1	1
<i>G</i> enerators	2	4	1	2	4	1
	<u>3</u>	2	6	4	5	1
	4	2	1	4	2	1
	5	4	6	2	3	1
	6	1	6	1	6	1

For all p the group is cyclic.

Page 7

Groups based on modular arithmetic

The group of positive integers modulo a prime p

$$Z_{p}^{*} \equiv \{1, 2, 3, ..., p-1\}$$

 $*_{p}^{r} \equiv \text{ multiplication modulo } p$

Denoted as: $(Z_p^*, *_p)$

Required properties

- 1. Closure. Yes.
- 2. Associativity. Yes.
- 3. Identity. 1.
- 4. Inverse. Yes.

Example: $Z_7^* = \{1,2,3,4,5,6\}$

$$1^{-1} = 1$$
, $2^{-1} = 4$, $3^{-1} = 5$, $6^{-1} = 6$

15-853 Page 6

Fields

A Field is a set of elements F with binary operators

* and + such that

- 1. (F, +) is an abelian group
- 2. $(F \setminus I_+, *)$ is an <u>abelian group</u> the "multiplicative group"
- 3. Distribution: $a^*(b+c) = a^*b + a^*c$
- 4. Cancellation: a*I. = I.

The order of a field is the number of elements.

A field of finite order is a finite field.

The reals and rationals with + and * are fields.

15-853 Page 8

Finite Fields

 Z_{p} (p prime) with + and * mod p, is a <u>finite</u> field.

- 1. $(Z_n, +)$ is an <u>abelian group</u> (0 is identity)
- 2. $(Z_n \setminus 0, *)$ is an <u>abelian group</u> (1 is identity)
- 3. Distribution: $a^*(b+c) = a^*b + a^*c$
- 4. Cancellation: a*0 = 0

Are there other finite fields?

What about ones that fit nicely into bits, bytes and words (i.e., with 2^k elements)?

15-853 Page 9

Division and Modulus

Long division on polynomials
$$(Z_5[x])$$
:

$$x^{2}+1$$
 $x^{3}+4x^{2}+0x+3$

$$x^3 + 0x^2 + 1x + 0$$

$$4x^2 + 4x + 3$$

$$4x^2 + 0x + 4$$

4x+4

Page 11

 $(x^3 + 4x^2 + 3)/(x^2 + 1) = (x + 4)$ with remainder 4x + 4

$$(x^3 + 4x^2 + 3) \operatorname{mod}(x^2 + 1) = (4x + 4)$$

$$(x^2+1)(x+4)+(4x+4)=(x^3+4x^2+3)$$

Polynomials over Z_p

 $Z_{\rm p}[x]$ = polynomials on x with coefficients in $Z_{\rm p}$.

- Example of $Z_5[x]$: $f(x) = 3x^4 + 1x^3 + 4x^2 + 3$
- deg(f(x)) = 4 (the **degree** of the polynomial)

Operations: (examples over $Z_5[x]$)

- Addition: $(x^3 + 4x^2 + 3) + (3x^2 + 1) = (x^3 + 2x^2 + 4)$
- Multiplication: $(x^3 + 3) * (3x^2 + 1) = 3x^5 + x^3 + 4x^2 + 3$
- I. = 0, I* = 1
- + and * are associative and commutative
- Multiplication distributes and 0 cancels

Do these polynomials form a field?

Page 10

Polynomials modulo Polynomials

15-853

How about making a field of polynomials modulo another polynomial? This is analogous to Z_p (i.e., integers modulo another integer).

e.g., $Z_5[x] \mod (x^2+2x+1)$

Does this work? Problem: (x+1)(x+1) = 0

Multiplication not closed over non-zero polynomials!

<u>Definition:</u> An irreducible polynomial is one that is not a product of two other polynomials both of degree greater than 0.

e.g.,
$$(x^2 + 2)$$
 for $Z_5[x]$

Analogous to a prime number.

15-853

Page 12

Galois Fields

```
The polynomials Z_p[x] \bmod p(x) where p(x) \in Z_p[x], p(x) \text{ is irreducible,} and \deg(p(x)) = n \text{ (i.e., n+1 coefficients)} form a finite field. Such a field has p^n elements. These fields are called <u>Galois Fields</u> or <u>GF(p^n)</u>. The special case n = 1 reduces to the fields Z_p The multiplicative group of GF(p^n)/\{0\} is cyclic (this will be important later).
```

i-853 Page 13

Multiplication over GF(2ⁿ)

If n is small enough can use a table of all combinations.

The size will be $2^n \times 2^n$ (e.g. 64K for $GF(2^8)$). Otherwise, use standard shift and add (xor)

Note: dividing through by the irreducible polynomial on an overflow by 1 term is simply a test and an xor.

15-853 Page 15

GF(2ⁿ)

Hugely practical!

The coefficients are bits {0,1}.

For example, the elements of $GF(2^8)$ can be represented as a byte, one bit for each term, and $GF(2^{64})$ as a 64-bit word.

 $-e.g., x^6 + x^4 + x + 1 = 01010011$

How do we do addition?

Addition over Z₂ corresponds to xor.

 Just take the xor of the bit-strings (bytes or words in practice). This is dirt cheap

15-853

Page 14

Multiplication over GF(28)

```
typedef unsigned char uc;

uc mult(uc a, uc b) {
   int p = a;
   uc r = 0;
   while(b) {
      if (b & 1) r = r ^ p;
      b = b >> 1;
      p = p << 1;
      if (p & 0x100) p = p ^ 0x11B;
   }
   return r;
}</pre>
```

15-853

Page 16

Finding inverses over GF(2n)

Again, if n is small just store in a table.

- Table size is just 2ⁿ.

For larger n, use Euclid's algorithm.

- This is again easy to do with shift and xors.

15-853 Page 17

Polynomials with coefficients in GF(pⁿ)

We can make a <u>finite field</u> by using an irreducible polynomial M(x) selected from $GF(p^n)[x]$.

For an order m polynomial and by <u>abuse of notation</u> we write: $GF(GF(p^n)^m)$, which has p^{nm} elements.

Used in **Reed-Solomon codes** and **Rijndael**.

- In Rijndael p=2, n=8, m=4, i.e. each coefficient is a byte, and each element is a 4 byte word (32 bits).

Note: all finite fields are isomorphic to $GF(p^n)$, so this is really just another representation of $GF(2^{32})$. This representation, however, has practical advantages.

15-853 Page 19

Polynomials with coefficients in GF(pn)

Recall that GF(pⁿ) were defined in terms of coefficients that were themselves fields (*i.e.*, Z_p). We can apply this **recursively** and define:

 $GF(p^n)[x]$ = polynomials on x with coefficients in $GF(p^n)$.

- Example of $GF(2^3)[x]$: $f(x) = 001x^2 + 101x + 010$ Where 101 is shorthand for x^2+1 .

15-853

Page 18