Лабораторная работа № 2

Тема: Решение нелинейных уравнений. Метод итерации.

Задание: 1) Отделить корни уравнения графически и программно.

- 2) Уточнить один из корней уравнения методом итерации с точностью ε = 0,001, указать число итераций.
- 3) Нарисовать схему применения метода итерации к данному корню уравнения.

Вопросы самоконтроля.

- 1) Как отделяются корни уравнения?
- 2) Какой должна быть величина шага при отделении корней?
- 3) Какие условия должны быть выполнены для применения метода итерации?
- 4) Какова идея метода итерации? Геометрическая иллюстрация.
- 5) Какое условие должно выполняться для сходимости итерационной последовательности?
- 6) Как находится равносильное уравнение, применяемое для итерационного процесса? Критерий выбора равносильного уравнения.
- 7) Как определяется погрешность метода итерации при заданной точности?

8) Какие положительные и отрицательные стороны метода итерации (сравнить с методом деления отрезка пополам)?

Вариант	Уравнение	
1	$\lg(x) - \frac{5}{3x+2} = 0$	
2	$2e^x + 3x + 1 = 0$	
3	$x^3 + x - 3 = 0$	
4	$x^3 - 1,2x^2 + x + 3 = 0$	
5	$x^3 - x^2 + 2x + 1 = 0$	
6	$x^2 - 2\cos(x) = 0$	
7	$x^3 - 3x - 3 = 0$	
8	$3x - \cos(x) - 2 = 0$	
9	$x + 3 \cdot \lg(x) = 1,25$	

Вариант	Уравнение	
31	$3x - \cos(x) - 1 = 0$	
32	$x + 2 \cdot \lg(x) = 1,45$	
33	$x + \lg(x) = 0.35$	
34	$tg(3x+0,5) = x^2$	
35	$x^3 - 3x^2 + 2x - 5 = 0$	
36	$3x - 2\cos(x) - 1 = 0$	
37	$\cos(2x+0,3) = x^2 - 2x + 3x = -2x + 3x = -2x + 3x = -2x + 3x = -2x = -2x$	-1
38	$2x - \lg(x) - 3 = 0$	
39	$x^4 + 2x^2 + 2x - 1 = 0$	

10	$tg(0,5x-1,2) = x^2-1$	
11		
11	$x^3 - 2x^2 + 3x - 4 = 0$	
12	$2x - \lg(x) - 2 = 0$	
13	$\lg(x) - \frac{5}{2x+1} = 0$	
14	$5x + \lg(x) = 2$	
15	$x^3 - 3x^2 + 4x - 2 = 0$	
16	$x^3 - 4x^2 + 2x - 3 = 0$	
17	$3e^x + 5x + 1 = 0$	
18	$3\sin(x) = x - 1,2$	
19	$\cos(2x-0.5) = x^2$	
20	$x^4 - 5x^2 + 6 = 0$	
21	$0.5x + \lg(x) = 1.5$	
22	$\cos(2x+0,3) = x^2$	
23	$x^4 - x^2 - 1 = 0$	
24	$3 \cdot \lg(x) - \frac{x}{4} + 1 = 0$	
25	$2x^2 - 0.5^x - 1 = 0$	
26	$2^x - 3x - 1 = 0$	
27	$ctg(x) - \frac{3x}{4} = 0$	
28	$x^3 - 3x + 2 = 0$	
29	$x^2 + 5\sin(x+1) = 0$	
30	$x^3 - 6x^2 - 7 = 0$	

40	$x^2 - 2\sin(x) = 0$
41	$4 \cdot \lg(x) - \frac{x}{3} + 1 = 0$
42	$3x^2 - 0.5^x - 2 = 0$
43	$2^x - 3x + 2 = 0$
44	$ctg(x-1,5) - \frac{x}{3} = 0$
45	$x^3 + x^2 + 3 = 0$
46	$x^2 - 2 + 2\sin(x) = 0$
47	$x^3 - 2x^2 - 7 = 0$
48	$4x - 3\cos(x) - 1 = 0$
49	$x + 2 \cdot \lg(x) = 2,5$
50	$tg(0,2x+0,3) = x^2 - 2$
51	$x^3 - 3x^2 + x - 1 = 0$
52	$3x - 3 \cdot \lg(x) - 2 = 0$
53	$3 \cdot \lg(x) - \frac{4}{2x+3} = 0$
54	$1,5x + \lg(x) = 3$
55	$x^3 + 4x^2 - 3 = 0$
56	$x^3 - 2x^2 - 4 = 0$
57	$x^3 - 5x^2 + 2x + 3 = 0$
58	$3x^2 - 2\cos(x) = 0$
59	$x^3 + 2x^2 - 3x - 1 = 0$
60	$x^2 + 4\sin(x) = 0$

Образец выполнения лабораторной работы № 2

(Решение нелинейных уравнений. Метод итерации.)

Постановка задачи. Найти корень нелинейного уравнения $3 \cdot \sin(x) - 1,75 = 0$ методом итерации с точностью $\varepsilon = 0,001$.

Решение задачи. Отделим корень уравнения на отрезке [-1; 4] графическим методом. Для этого табулируем функцию $y(x) = 3 \cdot \sin(x) - 1,75$ на данном отрезке.

$$\varepsilon = 0,0001,$$
 $a = -1,$
 $b = 4,$
 $n = 20,$
 $h = 0,25.$

x =	$y(x) = 3 \cdot \sin(x) - 1,75$	$y'(x) = 3 \cdot \cos(x)$
-1	-4,274412954	1,620906918
-0,75	-3,79491628	2,195066607
-0,5	-3,188276616	2,632747686
-0,25	-2,492211878	2,906737265
0	-1,75	3
0,25	-1,007788122	2,906737265
0,5	-0,311723384	2,632747686
0,75	0,29491628	2,195066607
1	0,774412954	1,620906918
1,25	1,096953858	0,945967087
1,5	1,24248496	0,212211605
1,75	1,201957841	-0,534738167

2	0,97789228	-1,24844051
2,25	0,584219591	-1,884520868
2,5	0,045416432	-2,403430847
2,75	-0,605017024	-2,772907136
3	-1,326639976	-2,96997749
3,25	-2,074585404	-2,982389028
3,5	-2,802349683	-2,809370062
3,75	-3,464683956	-2,461678072
4	-4,020407486	-1,960930863

Выделим отрезок [0;1], где находится корень, и уточним его методом итерации.

Получим равносильное уравнению $F(x) = 3 \cdot \sin(x) - 1,75 = 0$ уравнение $x = \varphi(x)$.

Функцию $\varphi(x)$ будем искать в виде $\varphi(x) = x - \frac{F(x)}{M}$, где $0 < m < F'(x) \le M$.

$$a_1 = 0,$$
 $0 < 1,620906918 < F'(x) \le 3,$ $b_1 = 1,$ $0 < m < F'(x) \le M,$

$$m = 1,620906918, \qquad M = 3.$$

При таком выборе функция $\varphi(x)$ удовлетворяет условию сходимости итерационной последовательности $x_i = \varphi(x_{i-1}), \ i = 1, 2, 3, \dots, \ \left| \varphi'(x) \right| \le q < 1 \ ,$ где $q = 1 - \frac{m}{M} \ .$

Тогда получим следующее значение q=0,459697694, условие остановки итерационной последовательности $|x_i-x_{i-1}|<\varepsilon\frac{1-q}{q}=0,000118$, при выборе приближенного решения $\tilde{\xi}=x_i$ с погрешностью приближенного решения $\Delta \tilde{\xi}=|\xi-x_i|\leq |x_i-x_{i-1}|\frac{q}{1-q}=\Delta_{\tilde{\xi}}$.

Если свести результаты в таблицу получим

	x_i	$\varphi(x_{i-1})$	$ x_i - x_{i-1} $	$\Delta_{ ilde{arxeta}}$	Условие остановки
				۳	итерации
x_0	0,5				
x_1	0,603908	0,603908	0,10390779	0,08840638	нет
x_2	0,619378	0,619378	0,01546994	0,01316207	нет
x_3	0,622182	0,622182	0,00280474	0,00238631	нет
x_4	0,622706	0,622706	0,00052329	0,00044523	нет
x_5	0,622804	0,622804	0,00009814	0,00008350	да
x_6	0,622822	0,622822	0,00001842	0,00001568	да
x_7	0,622826	0,622826	0,00000346	0,00000294	да
		0,622826	0,00000065	0,00000055	да

Приближенное решение $\tilde{\xi}=x_5=0,622804$, погрешность $\Delta_{\tilde{\xi}}=0,0000835$, число итераций k=5.

Следовательно, приближенное значение корня равно $\tilde{\xi} = 0,622804 \pm 0,00008350$.

Запишем приближенное значение корня только верными значащими цифрами в узком смысле.

Имеем $\Delta_{\tilde{\xi}}=0,00008350\leq \frac{1}{2}10^{-3}=\frac{1}{2}10^{m-n+1}$, m=0, n=4. Округлим $\tilde{\xi}=0,622804$ до n=4. Получим $\tilde{\xi}_1=0,623$, $\Delta_{o\kappa p}=\left|\tilde{\xi}-\tilde{\xi}_1\right|\leq 0,000196$, $\Delta_{\tilde{\xi}_1}=\Delta_{o\kappa p}+\Delta_{\tilde{\xi}_1}=0,0002795$. Найдем число верных знаков для $\tilde{\xi}_1=0,623$. Имеем $\Delta_{\tilde{\xi}_1}=0,0002795\leq \frac{1}{2}10^{-3}=\frac{1}{2}10^{m-n_1+1}$, m=0, $n_1=4$. Так как $n_1=n$, то получим приближенное значение корня с числом верных знаков $n_1=4$.

Otbet: $\tilde{\xi} = 0.623 \pm 0.0002795$; k = 5.