CMSC 474, Game Theory

8. Coalitional Game Theory

Dana Nau
University of Maryland

Introduction

- Coalition: group of agents that cooperate with each other
- Coalitional game: agents may choose to form into coalitions
 - ➤ How well can possible coalition do for itself?
 - payoff for the group
 - > Not concerned with
 - how the agents make individual choices within a coalition,
 - how they coordinate, or
 - any other such detail
- Transferable utility assumption
 - Payoffs to a coalition may be freely redistributed among its members
 - > Satisfied whenever there is a universal **currency** that's used for exchange in the system
 - Implies that each coalition can be assigned a single value as its payoff

Introduction

- Coalitional game with transferable utility: a pair $G = (N, \nu)$
 - \triangleright N = {1, 2, ..., n} is a finite set of players
 - $\triangleright v: 2^N \to \Re$ is the characteristic function
 - For each coalition $S \subseteq N$, an amount v(S) that the coalition members can distribute among themselves
 - $\rightarrow v(S)$ is the coalition's **payoff** or **worth**
 - Assume $v(\emptyset) = 0$
- Coalitional game theory is normally concerned with two questions
 - (1) Which coalition will form?
 - (2) How should that coalition divide its payoff among its members?
- The answer to (1) is often "the grand coalition" (all of the agents)
 - But that can depend on making the right choice about (2)

Example: A Voting Game

- Consider a parliament with 100 representatives from four political parties:
 - A (45 reps.), B (25 reps.), C (15 reps.), D (15 reps.)
 - ➤ Vote on whether to pass a \$100,000,000 spending bill
 - and how much of it should be controlled by each party
 - \triangleright Need a majority (≥ 51 votes) to pass legislation
 - If the bill doesn't pass, then every party gets 0
- More generally, a **voting game** would include
 - \triangleright A set of agents N
 - ➤ A set of winning coalitions $W \subseteq 2^N$
 - In the example, all coalitions that have enough votes to pass the bill
 - ightharpoonup If $S \in W$ then v(S) = 1; otherwise v(S) = 0
 - Or equivalently, use any fixed amount other than 1
 - If $S \in W$ then v(S) = \$100M; otherwise v(S) = \$0

Superadditive Games

- A coalitional game G = (N, v) is **superadditive** if the union of two disjoint coalitions is worth at least the sum of its members' worths
 - for all S, $T \subseteq N$, if $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$
 - > By working together, coalitions can accomplish as much or more than they could accomplish separately
- If G is superadditive, the grand coalition always has the highest possible payoff
 - For any $S \neq N$, $v(N) \geq v(S) + v(N-S) \geq v(S)$
- The parliament example is superadditive
 - > Why?

Superadditive Games

- A coalitional game G = (N, v) is **superadditive** if the union of two disjoint coalitions is worth at least the sum of its members' worths
 - for all S, $T \subseteq N$, if $S \cap T = \emptyset$, then $v(S \cup T) \ge v(S) + v(T)$
 - > By working together, coalitions can accomplish as much or more than they could accomplish separately
- If G is superadditive, the grand coalition always has the highest possible payoff
 - For any $S \neq N$, $v(N) \geq v(S) + v(N-S) \geq v(S)$
- The parliament example is superadditive
 - ightharpoonup If $S \cap T = \emptyset$, then at least one of the coalitions (say, T) is worth 0
 - Case 1: v(S) = v(T) = 0. Then $v(S \cup T) \ge 0$
 - Case 2: v(S) = 1 and v(T) = 0. Then $v(S \cup T) = 1$

Additive and Constant-Sum Games

- G = (N, v) is **additive** (or **inessential**) if combining disjoint coalitions produces no advantage, no disadvantage
 - if S, $T \subseteq N$ and $S \cap T = \emptyset$, then $v(S \cup T) = v(S) + v(T)$
- G is **constant-sum** if the worth of N (the grand coalition) equals the sum of the worths of any two coalitions that partition N
 - v(S) + v(N S) = v(N), for every $S \subseteq N$
- Every additive game is constant-sum
 - \triangleright additive \Rightarrow $v(S) + v(N S) = v(S \cup (N S)) = v(N)$
- But not every constant-sum game is additive (see next slide)

Relationships:

additive => constant-sum (but not vice versa)

A Constant-Sum Game That Isn't Additive

- Consider a game with $N = \{p | q, r\}$ and the following coalition worths:
 - $v(\emptyset) = 0$
 - $v({p}) = v({q}) = v({r}) = 3$
 - $v(\{p,q\}) = v(\{p,r\}) = v(\{q,r\}) = 9$
 - $v(\{p,q,r\}) = 12$
- Constant sum:
 - $\nu(N) + \nu(\emptyset) = 12 + 0 = 12$
 - $v({p,q}) + v({r}) = 9 + 3 = 12$
 - $v(\{p,r\}) + v(\{q\}) = 9 + 3 = 12$
 - $v({q,r}) + v({p}) = 9 + 3 = 12$
- Not additive:
 - $\triangleright v(\{p,q\}) = 9$
 - $\nu(\{p\}) + \nu(\{q\}) = 6$

Convex Games

- G is **convex** if for all $S, T \subseteq N$,
 - $v(S \cup T) \ge v(S) + v(T) v(S \cap T)$
- Recall the definition of a superadditive game:
 - ightharpoonup for all $S, T \subseteq N$, if $S \cap T = \emptyset$, then
 - $v(S \cup T) \ge v(S) + v(T)$
- Thus every convex game is superadditive

Relationships:

additive => constant-sum (but not vice versa) convex => superadditive

Simple Games

- G = (N, v) is **simple** for every coalition S,
 - either v(S) = 1 (i.e., S wins) or v(S) = 0 (i.e., S loses)
 - Used to model voting
- Often add a requirement that if S wins, all supersets of S would also win:
 - if v(S) = 1, then for all $T \supseteq S$, v(T) = 1
- Parliament game is simple and superadditive
 - Is every simple game superadditive?
- No
 - Consider a voting game G in which 50% of the votes is sufficient to pass a bill
 - \triangleright Two coalitions S and T, each is exactly 50% N
 - \triangleright v(S) = 1 and v(T) = 1, but $v(S \cup T) \neq 2$

Proper-Simple Games

- G is a **proper simple game** if it is both simple and constant-sum
 - simple $\rightarrow v(S) \subseteq \{0,1\}$
 - constant-sum $\rightarrow v(S) + v(N S) = v(N)$
- Properties
 - > If S is a losing coalition, then
 - either N-S is a winning coalition, or else **all** coalitions lose
 - \triangleright If S is a winning coalition, then N-S is a losing coalition

Relationships:

```
additive => constant-sum (but not vice versa)
      convex => superadditive
proper simple = simple and constant-sum
```

Analyzing Coalitional Games

- Main question in coalitional game theory: how to divide the payoff to the grand coalition?
- Why focus on the grand coalition?
 - Many widely studied games are super-additive
 - Expect the grand coalition to form because it has the highest payoff
 - Grand coalition may be the only acceptable option
 - E.g., public projects that are legally bound to include all participants
- Given a coalitional game G = (N, v), where $N = \{1, ..., n\}$
 - > We'll want to look at the agents' shares in the grand coalition's payoff
 - Notation
 - Payoff profile $\mathbf{x} = (x_1, ..., x_n)$
 - $\psi(N,v)$ = payoff profile for the grand coalition
 - $\psi_i(N,v)$ = agent i's payoff in the grand coalition

Terminology

- Let $\mathbf{x} = (x_1, ..., x_n)$ be a payoff profile
- x is **feasible** if it doesn't distribute more than the worth of the grand coalition

$$\rightarrow x_1 + x_2 + \dots + x_n \le v(N)$$

• x is a **pre-imputation** if it is feasible and **efficient** (distributes the entire worth of the grand coalition)

$$\rightarrow x_1 + x_2 + \dots + x_n = v(N)$$

- A pre-imputation is an **imputation** if each agent gets at least what he/she would get by going alone (i.e., forming a singleton coalition)
 - $\rightarrow \forall i \in N, x_i \ge v(\{i\})$
 - If $\psi(N,v)$ is an imputation, it would be reasonable for the grand coalition to form

im•pute: verb [trans.]
represent as being done,
caused, or possessed by
someone; attribute : the
crimes imputed to Richard.

Fairness Axioms: 1. Symmetry

- What is a **fair** division of the payoffs?
 - > Three axioms describing fairness
 - *Symmetry* axiom
 - Dummy player axiom
 - *Additivity* axiom
- Definition: agents i and j are **interchangeable** if they always contribute the same amount to every coalition of the other agents
 - ▶ for every S that contains neither i nor j, $v(S \cup \{i\}) = v(S \cup \{j\})$
- Symmetry axiom:
 - > In a fair distribution of the payoffs, interchangeable agents should receive the same payments
 - \triangleright If i and j are interchangeable and $(x_1, ..., x_n)$ is the payoff profile, then $x_i = x_i$

- The parliamentary voting game again
 - > Parties A, B, C, and D have 45, 25, 15, and 15 representatives
 - ➤ A simple majority (51 votes) is required to pass the \$100M bill
- Every coalition with ≥ 51 members has value 1; other coalitions have value
- Consider whether B and C are interchangeable
 - > Here are all coalitions of the other agents:
 - $\nearrow \emptyset$, {A}, {D}, and {A,D}
- **Poll 8.1**: much value does B add to each of them?

Updated 11/17/16

- The parliamentary voting game again
 - > Parties A, B, C, and D have 45, 25, 15, and 15 representatives
 - > A simple majority (51 votes) is required to pass the \$100M bill
- Every coalition with ≥ 51 members has value 1; other coalitions have value
- Consider whether B and C are interchangeable
 - > Here are all coalitions of the other agents:
 - $\nearrow \emptyset$, {A}, {D}, and {A,D}
- **Poll 8.1**: much value does B add to each of them?
 - > Answer: 0, 1, 0, and 0
- **Poll 8.2**: much value does C add to each of them?

- The parliamentary voting game again
 - > Parties A, B, C, and D have 45, 25, 15, and 15 representatives
 - ➤ A simple majority (51 votes) is required to pass the \$100M bill
- Every coalition with ≥ 51 members has value 1; other coalitions have value
- Consider whether B and C are interchangeable
 - > Here are all coalitions of the other agents:
 - $\nearrow \emptyset$, {A}, {D}, and {A,D}
- **Poll 8.1**: much value does B add to each of them?
 - > Answer: 0, 1, 0, and 0
- **Poll 8.2**: much value does C add to each of them?
 - > Answer: 0, 1, 0, and 0
- Same for D: 0, 1, 0, and 0
- B, C, and D are interchangeable
 - Fairness axiom says they should each get the same amount

Fairness Axioms: 2. Dummy Players

- Agent i is a **dummy player** if i's contribution to a coalition is always the same amount that i can achieve alone
 - \triangleright for every S that doesn't contain i, $v(S \cup \{i\}) = v(S) + v(\{i\})$

Dummy player axiom

- > In a fair distribution of the payoffs, dummy players should receive the same amount they can achieve on their own
- ightharpoonup If $(x_1, ..., x_n)$ is the payoff profile, then for every dummy player i,
 - $x_i = v(\{i\})$

- Agent *i* is a **dummy player** if *i*'s contribution to a coalition is always the same amount that i can achieve alone
 - \triangleright for every S that doesn't contain i, $v(S \cup \{i\}) = v(S) + v(\{i\})$
- Example: the parliamentary voting game again
 - Parties A, B, C, and D have 45, 25, 15, and 15 representatives
 - > A simple majority (51 votes) is required to pass the \$100M bill
- Every coalition with ≥ 51 members has value 1; other coalitions have value 0

Poll 8.3: How many dummy players are there?

- Agent *i* is a **dummy player** if *i*'s contribution to a coalition is always the same amount that i can achieve alone
 - > for every S that doesn't contain i, $v(S \cup \{i\}) = v(S) + v(\{i\})$
- Example: the parliamentary voting game again
 - > Parties A, B, C, and D have 45, 25, 15, and 15 representatives
 - > A simple majority (51 votes) is required to pass the \$100M bill
- Every coalition with ≥ 51 members has value 1; other coalitions have value 0

- **Poll 8.3:** How many dummy players are there?
 - > Answer: none

Fairness Axioms: 3. Additivity

- Let $G_1 = (N, v_1)$ and $G_2 = (N, v_2)$ be two coalitional games with the same agents
- Consider the combined game $G = (N, v_1 + v_2)$, where
 - $(v_1 + v_2)(S) = v_1(S) + v_2(S)$

Additivity axiom

- In a fair distribution of payoffs for G, the agents should get the sum of what they would get in the two separate games
- ► For each player *i*, $\psi_i(N, v_1 + v_2) = \psi_i(N, v_1) + \psi_i(N, v_2)$

Shapley Values

- Recall that a pre-imputation is a payoff division that is both feasible and efficient
 - Distributes exactly the worth of the grand coalition
- **Theorem.** Given a coalitional game (N,v), there's a unique pre-imputation $\varphi(N,v)$ that satisfies the Symmetry, Dummy player, and Additivity axioms. For each player i, i's share of $\varphi(N,v)$ is

$$\varphi_i(N,v) = \frac{1}{|N|!} \sum_{S \subseteq N - \{i\}} |S|! \ (|N| - |S| - 1)! \ (v(S \cup \{i\}) - v(S))$$

- $\phi(N,v)$ is called the **Shapley value**
 - Lloyd Shapley introduced it in 1953
- It captures agent i's average marginal contribution
 - > The average contribution that *i* makes to the coalition, averaged over every possible sequence in which the grand coalition can be built up from the empty coalition

Shapley Values

- Suppose agents join the grand coalition one by one, all sequences equally likely
- Let
 - \triangleright $S = \{\text{agents that joined before } i\}$
 - $ightharpoonup T = \{\text{agents that joined after } i\} = N (S \cup \{i\})$
- *i*'s marginal contribution is $v(S \cup \{i\}) v(S)$
 - independent of how S is ordered, independent of how T is ordered
- Pr[S, then i, then T]
 - = (# of sequences that include S then i then T) / (total # of sequences)
 - = |S|! |T|! / |N|! = |S|! (|T| |S| 1)! / |N|!
- Shapley's formula:
 - $\rightarrow \varphi_i(N,v)$ $=\sum_{S\in N-\{i\}} \Pr[S, \text{ then } i, \text{ then } T] \times (i'\text{s marginal contribution when } i \text{ joins})$ $= \frac{1}{|N|!} \sum_{S \in \mathcal{N}} |S|! \ (|N| - |S| - 1)! \ (v(S \cup \{i\}) - v(S))$

- The parliamentary voting game again
 - > Parties A, B, C, and D have 45, 25, 15, and 15 representatives
 - > A simple majority (51 votes) is required to pass the \$100M bill
- Let's compute $\varphi_A(N, v_1)$ = fair payoff for A in the grand coalition
- $N = \{A,B,C,D\}$, so S may be any of the following:
 - Ø, {B}, {C}, {D}, {B,C}, {B,D}, {C,D}, {B,C,D}
- For each, we need to compute two things:
 - \triangleright i's marginal contribution when i joins = $v_1(S \cup \{i\}) v_1(S)$
 - $ightharpoonup \Pr[S, \text{ then } i, \text{ then } T] = |S|! (|T| |S| 1)! / |N|!$

$$\varphi_{i,S} = \frac{\left| S \right|! \left(\left| N \right| - \left| S \right| - 1 \right)!}{\left| N \right|!} (v(S \cup \{i\}) - v(S))$$

 $v_1(\{A\} \cup S) - v_1(S) = 0 - 0 = 0$

A: 45 representatives

B: 25 representatives

C: 15 representatives

D: 15 representatives

Need 51 to win

 $Pr[S,A,T] = 0! \ 3! \ /4! = \frac{1}{4}$

 $Pr[S,A,T] = (2! 1!/4!) = \frac{1}{12}$

 $Pr[S,A,T] = (3! \ 0! \ /4!) = \frac{1}{4}$

$$S = \{B\}: \quad v_1(\{A\} \cup S) - v_1(S) = 100M - 0 = 100M \quad \Pr[S,A,T] = (1!\ 2!\ /4!) = \frac{1}{12}$$

$$S = \{C\}: \quad v_1(\{A\} \cup S) - v_1(S) = 100M - 0 = 100M \quad \Pr[S,A,T] = (1!\ 2!\ /4!) = \frac{1}{12}$$

$$S = \{D\}: \quad v_1(\{A\} \cup S) - v_1(S) = 100M - 0 = 100M \quad \Pr[S,A,T] = (1!\ 2!\ /4!) = \frac{1}{12}$$

$$S = \{B,C\}: \quad v_1(\{A\} \cup S) - v_1(S) = 100M - 0 = 100M \quad \Pr[S,A,T] = (2!\ 1!\ /4!) = \frac{1}{12}$$

$$S = \{B,D\}: \quad v_1(\{A\} \cup S) - v_1(S) = 100M - 0 = 100M \quad \Pr[S,A,T] = (2!\ 1!\ /4!) = \frac{1}{12}$$

•
$$\varphi_A(N, v_1) = \frac{1}{4}(0) + \frac{6(\frac{1}{12})(100M)}{100M} + \frac{1}{4}(0) = 50M$$

 $S = \{B,C,D\}: v_1(\{A\} \cup S) - v_1(S) = 100M - 1 = 0$

 $v_1(\{A\} \cup S) - v_1(S) = 100M - 0 = 100M$

 $S=\{C,D\}$:

 $S=\varnothing$:

- $ightharpoonup \phi_A(N, v) = \frac{1}{2}$
- Similarly, $\varphi_B(N, v) = \varphi_C(N, v) = \varphi_D(N, v) = 16^2/_3 M$
 - > The text calculates these using Shapley's formula
- Here's another way to get them:
 - ➤ If A gets ½, then the other ½ will be divided among B, C, and D
 - > B, C, and D are interchangeable
 - Divide the amount equally among them
- So distribute the money as follows:
 - \rightarrow A gets $\frac{1}{2}(100M) = 50M$
 - \rightarrow B, C, D each get $\frac{1}{3}$ (50M) = $16^{2}/_{3}$ M

A: 45 representatives

B: 25 representatives

C: 15 representatives

D: 15 representatives

Need 51 to win

- In addition to the spending bill in Example 1, suppose there's a 2nd one:
 - ➤ As before, parties A, B, C, D have 45, 25, 15, and 15 representatives
 - > \$50M bill, and needs a ³/₄ majority (75 votes)
- Every coalition with ≥ 75 members has value 1; other coalitions have value 0
 - > Consider whether B and C are interchangeable
- Here are all coalitions of the other agents:
 - $\nearrow \emptyset$, {A}, {D}, and {A,D}
- How much value does B add to each of them?
 - \triangleright 0, 0, 0, and 1
- Same for C, so B and C are interchangeable
- Like before, B, C, and D are all interchangeable

$$\varphi_{i,S} = \frac{\left| S \right|! \left(\left| N \right| - \left| S \right| - 1 \right)!}{\left| N \right|!} (v(S \cup \{i\}) - v(S))$$

A: 45 representatives

B: 25 representatives

C: 15 representatives

D: 15 representatives

Need 51 to win

$$S=\varnothing$$
: $v_2(\{A\} \cup S) - v_2(S) = 0 - 0 = 0$

$$S = \{B\}: v_2(\{A\} \cup S) - v_2(S) = 0 - 0 = 0$$

$$S = \{C\}: v_2(\{A\} \cup S) - v_2(S) = 0 - 0 = 0$$

$$S = \{D\}: v_2(\{A\} \cup S) - v_2(S) = 0 - 0 = 0$$

$$S = \{B,C\}: v_2(\{A\} \cup S) - v_2(S) = 50M - 0 = 50M$$

$$S = \{B,D\}: v_2(\{A\} \cup S) - v_2(S) = 50M - 0 = 50M$$

$$S = \{C,D\}: v_2(\{A\} \cup S) - v_2(S) = 50M - 0 = 50M$$

$$S = \{B,C,D\}: v_2(\{A\} \cup S) - v_2(S) = 50M - 0 = 50M$$

$$Pr[S,A,T] = 0! \ 3! \ /4! = \frac{1}{4}$$

$$Pr[S,A,T] = (1! 2! /4!) = 1/12$$

$$Pr[S,A,T] = (1!2!/4!) = 1/_{12}$$

$$Pr[S,A,T] = (1!2!/4!) = 1/_{12}$$

$$Pr[S,A,T] = (2! 1!/4!) = 1/12$$

$$Pr[S,A,T] = (2! 1!/4!) = 1/12$$

$$Pr[S,A,T] = (2! 1!/4!) = 1/_{12}$$

$$Pr[S,A,T] = (3! \ 0! \ /4!) = \frac{1}{4}$$

•
$$\varphi_A(N, v_2) = \frac{1}{4}(0) + 3(\frac{1}{12})(50M) + \frac{1}{4}(50M) = \frac{1}{2}(50M) = 25M$$

- $\varphi_A(N, v_2) = \frac{1}{2}$
- B, C, and D are interchangeable
 - Fair division: divide the other $\frac{1}{2}$ among them equally
- Each gets $\frac{1}{3}(25M) = \frac{81}{3}M$
- Let v_1 be the value function in Example 1
 - We had $\varphi_A(N, v_1) = 50M$, and $\varphi_B(N, v_1) = \varphi_C(N, v_1) = \varphi_D(N, v_1) = 16^2/_3 M$
- Combined game:
 - > Grand coalition: parliament decides to pass both spending bills
- Additivity axiom: in a fair division, each party gets the sum of what it would get for the two bills individually
 - $\phi_A(N, v_1 + v_2) = 50M + 25M = 75M$
 - $\phi_B(N, v_1 + v_2) = \phi_C(N, v_1 + v_2) = \phi_D(N, v_1 + v_2) = 16^2/_3 M + 8^1/_3 M = 25M$
- Sanity check: $75M + 3 \times 25M = 150M = \text{total of the two bills}$

Stability of the Grand Coalition

- Agents have incentive to form the grand coalition iff there aren't any smaller coalitions in which they could get higher payoffs
- Sometimes a subset of the agents may prefer a smaller coalition
- Example: the parliamentary voting game again
 - > Parties A, B, C, and D have 45, 25, 15, and 15 representatives
 - ➤ A simple majority (51 votes) is required to pass the \$100M bill
- Every coalition with ≥ 51 members has value 1; other coalitions have value 0
- Shapley values: A gets \$50M; B, C, D each get \$16\frac{2}{3}M
 - > A on its own can't do better
 - ➤ But {A, B} have incentive to deviate (leave and form their own coalition) and divide the \$100M between themselves
 - e.g., \$75M for A and \$25M for B
- What payment divisions would make the agents want to join the grand coalition?

The Core

- The **core** of a coalitional game includes every payoff vector **x** that gives every sub-coalition S at least as much in the grand coalition as S could get by itself
 - \triangleright All feasible payoff vectors $\mathbf{x} = (x_1, ..., x_n)$ such that
 - for every $S \subseteq N$, $\sum_{i \in S} x_i \ge v(S)$
- For every payoff vector **x** in the core, no S has any incentive to **deviate** from the grand coalition
 - i.e., form their own coalition, excluding the others
- It follows immediately that if x is in the core then x is an imputation
 - > Why?

Analogy to Nash Equilibria

- Nash equilibrium in a noncooperative game
 - No agent can do better by deviating from the equilibrium
- Core in a coalitional game
 - ➤ No *set* of agents can do better by deviating from the grand coalition
- Unlike the set of Nash equilibria, the core may sometimes be empty
 - In some cases, no matter what the payoff vector is, some agent or group of agents has incentive to deviate

Example of an Empty Core

- Consider the voting example again:
 - > Shapley values are \$50M to A, and \$16.33M each to B, C, D
- {B,C,D} can achieve 51 votes without A
 - ➤ If the sum of the payoffs to B, C, and D is < \$100M, they have incentive to deviate from the grand coalition
 - > Thus if x is in the core, x must allocate \$100M to {B, C, D}
- But if B, C, and D get the entire \$100M, then A gets \$0
 - ➤ At least one party in {B,C,D} got less than \$34M
 - That party and A have incentive to form their own coalition
 - e.g., form a coalition {A,D} without the others
 - \triangleright So if x allocates the entire \$100M to {B,C,D} then x can't be in the core
- So the core is empty

Simple Games

- Several situations in which there are guarantees whether the core exists
 - > The first two involve simple games
- Recall: G is simple for every coalition S, either v(S) = 1 or v(S) = 0
- Player i is a **veto player** if $v(N \{i\}) = 0$
- **Theorem**. In a simple game, the core is empty iff there is no veto player
- Example: previous slide
- **Theorem**. In a simple game in which there are veto players, the core is {All payoff profiles in which non-veto players get 0}
- **Example**: voting game, modified to require 80% majority
 - > Recall that A, B, C, and D have 45, 25, 15, and 15 representatives
 - Winning coalitions: {A, B, C}, {A, B, D} and {A, B, C, D}
 - > A and B are veto players; all winning coalitions include both of them
 - ➤ The core includes all distributions of the \$100M among A and B

Non-Additive Constant-Sum Games

- Recall that
 - ightharpoonup G = (N, v) is **additive** if combining disjoint coalitions adds their worths:
 - \rightarrow if S, $T \subseteq N$ and $S \cap T = \emptyset$, then $v(S \cup T) = v(S) + v(T)$
 - \triangleright G is **constant-sum** if the worth of N (the grand coalition) equals the sum of the worths of any two coalitions that partition N
 - v(S) + v(N S) = v(N), for every $S \subseteq N$

• Theorem. Every non-additive constant-sum game has an empty core

- **Theorem**. Every non-additive constant-sum game has an empty core
- **Example:** recall this example of a non-additive constant-sum game:
 - $v(\{p\}) = v(\{q\}) = v(\{r\}) = 3$
 - $v(\{p,q\}) = v(\{p,r\}) = v(\{q,r\}) = 9$
 - $v(\{p,q,r\}) = 12$
- Consider x = (4, 4, 4)
 - $\triangleright v(\{p,q\}) = 9$
 - \triangleright If $\{p,q\}$ deviate, they can allocate (4.5, 4.5)
- To keep $\{p,q\}$ from deviating, suppose we use $\mathbf{x} = (4.5, 4.5, 3)$
 - $\triangleright v(\{p,r\}) = 9$
 - \triangleright If $\{p,r\}$ deviate, they can allocate (5, 4)

Convex Games

- Recall:
 - ► *G* is **convex** if for all $S, T \subseteq N$, $v(S \cup T) \ge v(S) + v(T) v(S \cap T)$
- **Theorem**. Every convex game has a nonempty core
- **Theorem**. In every convex game, the Shapley value is in the core

- Modify the previous game:
 - $v(\{p\}) = v(\{q\}) = v(\{r\}) = 3$
 - $v(\{p,q\}) = v(\{p,r\}) = v(\{q,r\}) = 9$
 - $v(\{p,q,r\}) = 18$
- Is it convex?
 - \triangleright G is convex if for all $S, T \subseteq N$, $v(S \cup T) \ge v(S) + v(T) v(S \cap T)$
- All three players are interchangeable
 - \triangleright So the Shapley values are (6,6,6)
- Consider x = (6, 6, 6)
 - \triangleright $v(\{p\}) = 3$, so no incentive to deviate
 - Same for $\{q\}$ and for $\{r\}$
 - \triangleright $v(\{p,q\}) = 9$, can only allocate (4.5, 4.5) so no incentive to deviate
 - Same for $\{p,r\}$ and for $\{q,r\}$

Modified Parliament Example

• Suppose any coalition of parties can approve a spending bill worth \$1K times the number of representatives in the coalition:

$$v(S) = \sum_{i \in S} \$1000 \times \text{size}(i)$$

• Is the game convex?

A: 45 representatives

B: 25 representatives

C: 15 representatives

D: 15 representatives

Modified Parliament Example

Each party's Shapley value is the average value it adds to the grand coalition, averaged over all 24 of the possible sequences in which the coalition might be formed:

A: 45 representatives

B: 25 representatives

C: 15 representatives

D: 15 representatives

$$A, B, C, D;$$
 $A, B, D, C;$ $A, C, B, D;$ $A, C, D, B;$...

- In every sequence, every party adds exactly \$1K times its size
- Thus every party's Shapley value is \$1K times its size:

$$\varphi_{A} = \$45K, \qquad \varphi_{B} = \$25K, \qquad \varphi_{C} = \$15K, \qquad \varphi_{D} = \$15K$$

$$\varphi_{\rm B} = \$25{\rm K},$$

$$\varphi_{\rm C}$$
 = \$15K,

$$\varphi_{\mathrm{D}} = \$15\mathrm{K}$$

Modified Parliament Example

- Suppose we distribute v(N) by giving each party its Shapley value
- Does any party or group of parties have an incentive to leave and form a smaller coalition *T*?

- A: 45 representatives
- B: 25 representatives
- C: 15 representatives
- D: 15 representatives
- $\nu(T) = \$1K$ times the number of representatives in T= the sum of the Shapley values of the parties in T
- \triangleright If each party in T gets its Shapley value, it does no better in T than in N
- If some party in T gets more than its Shapley value, then another party in T will get less than its Shapley value
- No case in which every party in T does better in T than in N
- No case in which all of the parties in T will have an incentive to leave N and join T

Thus the Shapley value is in the core

Two More Examples

• Suppose each coalition *S* can approve a spending bill worth this amount:

$$v(S) = \sum_{i \in S} (\$1000 \times \text{size}(i)) - \$1000$$

- > Is the game convex?
- ➤ What is each party's Shapley value?
- > What is the game's core?

• What if we have this instead?

$$v(S) = \sum_{i \in S} (\$1000 \times \text{size}(i)) + \$1000$$

A: 45 representatives

B: 25 representatives

C: 15 representatives

D: 15 representatives

Schedule for the rest of the semester

- Tues. Nov 22: no class, you can leave for Thanksgiving early
- Tues. Nov 29: How to use AI planning in game programs
- Thur. Dec 1: Guest lecture by Bill Gasarch
- Tues. Dec 6: Guest lecture by VS Subrahmanian
- Thur. Dec 8: Last class, review for the final exam
- Tues. Dec 20, 10:30–12:30: Final exam
- Homework 7: I'll add some problems for Chapter 8, and postpone the due date
 - There were 2 problems, there will be 5 instead
 - I'll post it after class today
 - New due date: Tues. Dec 6
 - New late date: Thur. Dec 8