Minitab

Practical 5: Correlation and Regression

Part (I)

What type of correlation does the Scatter Graph have? Positive

Part (ii)

Sum of Number of TV Ads (x)

Sum of Number of TV Ads (x) = 145

Sum of Number of Cars Sold (y)

Sum of Number of Cars Sold (y) = 212

Part (ii) (a)

Sum of Xy

Sum of Xy = 3764

Part (ii) (b)

Sum of x"2

Sum of x"2 = 2785

Part (iii)

Data Display

Row	Number of TV ads (x)	Number of Cars Sold (y)	Ху	x"2
1	6	15	90	36
2	20	31	620	400
3	0	10	0	0
4	14	16	224	196
5	25	28	700	625
6	16	20	320	256
7	28	40	1120	784
8	18	25	450	324
9	10	12	120	100
10	8	15	120	64

Part (iv)

$$\sum x = 145$$

$$\sum y = 212$$

$$\sum xy = 3764$$

$$\sum x^2 = 2785$$

n =

Part (v)

Row B1 A1 1.01099 6.54066

 $\mathbf{b} = 1.01099$

a =6.54066

Part (vi) Write the Line of Regression, y = a + bx

Part (vi)

Regression Analysis: Number of Cars Sold (y) versus Number of TV Ads (x)

```
The regression equation is Number of Cars Sold (y) = 6.541 + 1.011 Number of TV Ads (x) S = 4.00027 \quad R-Sq = 84.5\% \quad R-Sq(adj) = 82.6\% Analysis of Variance Source \quad DF \quad SS \quad MS \quad F \quad P Regression 1 697.582 697.582 43.59 0.000 Error \quad 8 \quad 128.018 \quad 16.002 Total 9 825.600
```


Part (ii)

What type of correlation does the Scatter Graph have?

Positive

Part (ii)

Sum of Temperature (in Celsius)

Sum of Temperature (in Celsius) = 323

Sum of No. of Customers Eating Outside

Sum of No. of Customers Eating Outside = 455

Part (ii) (a)

Sum of Xy(2)

Sum of Xy(2) = 11508

Sum of x^2

Sum of $x^2 = 7942.5$

Part (iii)

Scatterplot of Temperature (in Celsius) vs No. of Customers Eating

Data Display

Row	Temperature (in Celsius)	No. of Customers Eating Outside	Xy(2)	x^2
1	28.0	45	1260.0	784.00
2	16.0	15	240.0	256.00
3	11.0	3	33.0	121.00
4	25.0	42	1050.0	625.00
5	29.0	49	1421.0	841.00
6	26.5	41	1086.5	702.25
7	18.0	26	468.0	324.00
8	22.0	33	726.0	484.00
9	21.0	31	651.0	441.00
10	26.5	37	980.5	702.25
11	35.0	49	1715.0	1225.00
12	26.0	36	936.0	676.00
13	20.0	29	580.0	400.00
14	19.0	19	361.0	361.00

Part (iv)

$$\Sigma x = 323$$

$$\sum x = 323 \qquad \qquad \sum y = 455$$

$$\sum xy = 11508$$

$$\sum xy = 11508$$
 $\sum x^2 = 7942.5$

Part (v)

B2 A2 1.28032 4.156

$$b = 1.28$$

a = 4.156

Part (vi)

Write the Line of Regression,
$$y = a + bx$$

45 = 4.15 + 1.28 (28.0)

Part (vii)

Regression Analysis: Temperature (in versus No. of Customers

```
The regression equation is Temperature (in Celsius) = 8.86 + 0.437 No. of Customers Eating Outside
```

```
        Predictor
        Coef
        SE Coef
        T
        P

        Constant
        8.864
        1.464
        6.05
        0.000

        No. of Customers Eating Outside
        0.43716
        0.04189
        10.44
        0.000
```

```
S = 2.01404  R-Sq = 90.1%  R-Sq(adj) = 89.2%
```

Analysis of Variance

```
Source DF SS MS F P
Regression 1 441.75 441.75 108.90 0.000
Residual Error 12 48.68 4.06
Total 13 490.43
```

Unusual Observations

Analysis of Variance

```
No. of
   Customers
      Eating
             Temperature
                         Fit SE Fit Residual St Resid
Obs
     Outside
             (in Celsius)
                11.000 10.175 1.348 0.825 0.55 X
 3
       3.0
                  35.000 30.285 0.876
11
        49.0
                                        4.715
                                                  2.60R
```

R denotes an observation with a large standardized residual. ${\tt X}$ denotes an observation whose ${\tt X}$ value gives it large leverage.

Regression Analysis: Temperature (in Celsius) versus No. of Customers Eating

```
The regression equation is Temperature (in Celsius) = 8.864 + 0.4372 No. of Customers Eating Outside S = 2.01404 R-Sq = 90.1\% R-Sq(adj) = 89.2\%
```

Source	DF	SS	MS	F	P
Regression	1	441.752	441.752	108.90	0.000
Error	12	48.676	4.056		
Total	13	490.429			

