# PRÁCTICA B1 RSI

Parte 1.

# Procesado de variaciones rápidas de señal debidas a multitrayecto

Samuel John Suffern Sánchez

# ${\rm \acute{I}ndice}$

| 1. | Inicio del entorno en Matlab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 2. | Estudio de la tensión  2.1. Tensión en Matlab 2.1.1. Función densidad de probabilidad  2.2. Tensión normalizada en Matlab 2.2.1. Función densidad de probabilidad y Función de distribución  2.3. Relación forma teórica respecto a la experimental 2.3.1. Función densidad de probabilidad teórica vs experimental 2.3.2. Función de Distribución teórica vs experimental                                                                                                                                                                                                                         | 4 5 5               |
| 3. | Estudio de la potencia  3.1. Representación de la potencia en Matlab  3.1.1. Función densidad de probabilidad  3.2. Representación de la potencia normalizada en Matlab  3.2.1. Función de densidad y distribución de la potencia normalizada  3.2.2. Función de densidad de probabilidad teórica vs experimental                                                                                                                                                                                                                                                                                  |                     |
| 4. | Superposición de las funciones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                  |
| Ír | dice de figuras                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
|    | 1. Potencia recibida en unidades logarítmicas 2. Representación de la potencia recibida en unidades naturales 3. Tensión en unidades lineales 4. Voltaje normalizado 5. Función densidad y distribución de probabilidad de la tensión normalizada calculada con Matlab 6. Relación entre la forma teórica y la experimental de la fdp 7. Función de distribución teórica con respecto a la experimental 8. Potencia en unidades lineales 9. Potencia normalizada en unidades lineales 10. Curvas exponencial de la función densidad de probabilidad y función de distribución teóricas de potencia |                     |
|    | <ol> <li>Similitud entre la función densidad de probabilidad teórica y experimental</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9<br>10<br>10<br>11 |

# 1. Inicio del entorno en Matlab

Los gráficos y resultados de esta práctica se obtienen con la función pr10.mat. Lo primero que haremos será cargar en nuestro workspace el fichero: series11.mat

```
1 load series11.mat
```

Contiene una señal que a tiene en la primera columna el eje de tiempo y en la segunda, la potencia recibida en dBm. El eje de tiempos está muestreado cada  $t_s = 0.05 \ s$ , es decir,  $f_s = \frac{1}{t_s} = 20 \ Hz$ . Existe un muestreo uniforme. La resta entre dos muestras consecutivas, me da el muestreo que estamos utilizando.

```
tAxix = series11(:,1); % eje temporal
ts = tAxix(2)-tAxix(1); % muestreo del eje de tiempos

pdBm = series11(:,2);

figure, plot(tAxix, PdBm)

xlabel('Elapsed time, s')
ylabel('Received power, dBm');title('Potencia recibida [dBm]');
```

Las líneas de código muestran la forma de la señal recibida a lo largo del tiempo en unidades logarítmicas .



Figura 1: Potencia recibida en unidades logarítmicas

La señal ha sido recibida en un instrumento de medida o receptor de prueba, cuando el transmisor emite una portadora sin modular a una frecuencia  $f_0 = 2.0 \; GHz$ . El receptor se supone que tiene una impedancia  $Z = R = 50\Omega$ .

Los valores medidos están en dBm (dB relativos a 1 mW).

En Matlab, podemos obtener la misma gráfica pero en unidades naturales.

```
pW = 10.^(PdBm/10)/1000; % divide by 1000 to go from mW to W
figure, plot(tAxix, pW)
xlabel('Elapsed time, s')
ylabel('Received power, W');title('Potencia recibida [W]');
```

En la siguiente carilla observamos la gráfica de la señal a lo largo del tiempo en unidades lineales.



Figura 2: Representación de la potencia recibida en unidades naturales

# 2. Estudio de la tensión

Utilizando las expresiones del capítulo 2 de Teoría, las variaciones de voltaje se podían expresar como:

$$v = \sqrt{2p_r}|h_0|$$
 (amplitud de la señal RF)

con  $p_r$ : Potencia media recibida y  $|h_0|$ : variaciones aleatorias del canal.

V, es función de  $|h_0|$ , variable aleatoria que representa la envolvente de la señal y sabemos que se puede caracterizar mediante una distribución Rayleigh. Por tanto V, seguirá también una distribución Rayleigh con función densidad de probabilidad:

$$f_v(v) = \frac{v}{p_r} exp\left(-\frac{v^2}{2p_r}\right)$$
 (función densidad de probabilidad)

En Clase de Teoría (Grupos A) supusimos que la impedancia era R=1 Modificamos la expresión anterior para tener en cuenta la impedancia:

$$v = \sqrt{2p_r R} |h_0|$$
 (voltaje a la entrada del receptor)

#### 2.1. Tensión en Matlab

En matlab por tanto será de la siguiente manera:

```
R = 50; %Impedancia
v = sqrt(2*pW*R); % Convierto a voltios
figure, plot(tAxix,v)
xlabel('Elapsed time, s')
ylabel('Voltage at Rx input, V'); title('Tensi n a la entrada del receptor [V]')
```

En la siguiente carilla observamos la tensión de la señal recibida en unidades lineales sin normalizar.



Figura 3: Tensión en unidades lineales

# 2.1.1. Función densidad de probabilidad

Su función de densidad de probabilidad en función de la impedancia:

$$f_v(v) = \frac{v}{Rp_r} exp\left(-\frac{v^2}{2Rp_r}\right)$$
 (función densidad de probabilidad (R))

# 2.2. Tensión normalizada en Matlab

Definiendo ahora una nueva variable aleatoria, normalizada con respecto a la potencia media:

$$v' = \frac{v}{\sqrt{2p_r R}} = |h_0|$$
 (voltaje a la entrada del receptor normalizado)

En matlab serían las siguientes líneas de código:

```
vnorm = v / sqrt(2*meanPw*R); %normalizo
figure, plot(tAxix, vnorm)
xlabel('Elapsed time, s')
ylabel('Normalized voltage (linear)'); title('Voltaje normalizado');
```



Figura 4: Voltaje normalizado

#### 2.2.1. Función densidad de probabilidad y Función de distribución

En cuanto a su función densidad de probabilidad:

$$f_v(v') = 2v'e^{-v'^2}$$
 (función densidad de probabilidad normalizada)

Función de distribución:

$$P(v' \le U) = F_{v'}(U) = 1 - exp(-U^2)$$
 (Función de distribución normalizada)

Probabilidad que mi voltaje normalziado esté por debajo de un determinado valor.

Recordemos como son las formas teóricas de función densidad de probabilidad normalizada y Función de distribución normalizada. Para ello hacemos los siguientes cálculos en Matlab.

Queremos verificar que v' ( en Matlab vnorm ) sigue una distribución Rayleigh.:

```
Woy a pintar la fdp normalizada
                    Max = 3.0;
2
                    vnormAxis = [0:0.01:Max]; % Creo un eje para pintar, no debo usar Vnorm, son valroes
3
                        desordenado
                    fdp = 2*vnormAxis.*exp(-vnormAxis.^2);
4
                    FD = 1-exp(-vnormAxis.^2);
5
                    figure, plot(vnormAxis, fdp, vnormAxis, FD, '--', 'LineWidth',2)
                    title('Theoretical, rms = 1 Rayleigh pdf and CDF')
                    xlabel('Normalized voltage (linear)')
                    vlabel('Probability')
9
                    legend('pdf','CDF')
10
                    arid
11
```

Observo que la salida se corresponden con los valores teóricos de la fpd y FD del voltaje normalizado.



Figura 5: Función densidad y distribución de probabilidad de la tensión normalizada calculada con Matlab

# 2.3. Relación forma teórica respecto a la experimental

# 2.3.1. Función densidad de probabilidad teórica vs experimental

Vamos a relacionar la función densidad de probabilidad teórica con la experimental.

```
Nbins = 20; %bins por defecto es 20

[a,b] = hist(vnorm, Nbins);

a = a/length(vnorm); %Probabilidad estimada

histBin = b(2)-b(1);

figure, bar(b,a,'y'), hold on

plot(vnormAxis, fdp*histBin,'r','LineWidth',2)

plot(vnormAxis, fdp,'.r','LineWidth',2)

title('Theoretical, rms = 1 Rayleigh pdf and experimental pdf')
```



Figura 6: Relación entre la forma teórica y la experimental de la fdp

# 2.3.2. Función de Distribución teórica vs experimental

Ahora queremos observar la función de distribución teórica con respecto a la experimental.

La función de distribución experimental se aproxima mucho a la calculada teóricamente.



Figura 7: Función de distribución teórica con respecto a la experimental

Una vez estudiado el efecto de la tensión, pasamos a ver el comportamiento en potencia.

# 3. Estudio de la potencia

Vamos a realizar el estudio de la potencia y vamos a ver si coinciden las funciones densidad y distribución de probabilidad teóricas con la experimental.

Para empezar vamos a definir la potencia:

$$P = \frac{v^2}{2}$$
 (Variable aleatoria de la potencia)

No añadimos la impendancia debido a que ya está incluido en el término v.

# 3.1. Representación de la potencia en Matlab

```
p = (v.^2)/2; % Defino la potencia en lugar del voltaje
figure, plot(tAxix, p)

xlabel('Elapsed time, s')
ylabel('Power (linear)')
```

Observamos la forma de la potencia en función del tiempo.



Figura 8: Potencia en unidades lineales

#### 3.1.1. Función densidad de probabilidad

En este caso se tiene que la potencia sigue una distribución exponecial con función densidad de probabilidad:

$$f_p(P) = \frac{1}{P_r} e^{-\frac{P}{P_r}}$$
 (Función densidad de probabilidad de la potencia)

# 3.2. Representación de la potencia normalizada en Matlab

Ahora vamos a normalizar para obtener una nueva variable aleatoria:

$$P' = \frac{P}{P_r \cdot R} \tag{1}$$

Si ahora observamos la potencia normalizada con respecto a al tiempo:

```
pnorm = p / (mean(pW)*R); %normalizo
figure, plot(tAxix, pnorm)
xlabel('Elapsed time, s')
ylabel('Normalized power (linear)')
```



Figura 9: Potencia normalizada en unidades lineales

# 3.2.1. Función de densidad y distribución de la potencia normalizada

Vamos a estudiar de manera conjunta la función densidad de probabilidad y la función de distribución teóricas de la potencia normalizada. Para ello utilizamos las siguientes expresiones:

Función densidad de probabilidad:

$$f_p(P') = e^{-P'}$$
 (Función densidad de probabilidad)

Función de distribución:

$$F_{v'}(U) = P(P' \le U) = 1 - e^{-U}$$
 (Función de distribución)

Ahora aplicamos las ecuaciones utilizando matlab:

La salida corresponde a las curvas función de distribución y función densidad de probabilidad teóricas de la potencia.



Figura 10: Curvas exponencial de la función densidad de probabilidad y función de distribución teóricas de la potencia

#### 3.2.2. Función de densidad de probabilidad teórica vs experimental

Una vez conocemos como es la curva teórica de la fdp, tenemos que comprobar si la curva experimental se acerca o no.

```
Nbins = 20;
                    [a,b] = hist(pnorm, Nbins);
                    a = a/length(pnorm);
3
                    histBin = b(2) - b(1);
                    figure, bar(b,a,'y'), hold on
                    plot(pnormAxis, fdp_p*histBin,'r','LineWidth',2)
6
                    plot (pnormAxis, fdp_p,'.r','LineWidth',2)
                    title('Theoretical, mean=1 exponential pdf and experimental pdf')
8
                    xlabel('Normalized voltage (linear)')
                    ylabel('Probability')
10
                    legend('Histogram', 'pdf x histBin', 'pdf')
11
12
                    xlim([0 Max])
```

Obtenemos la siguiente salida:



Figura 11: Similitud entre la función densidad de probabilidad teórica y experimental

Observamos que las probabilidades obtenidas son bastante bajas y no se aproximan al valor teórico. Si quisiemos mejorar esto, basta con hacer la derivada:

```
Nbins = 20;
                    [a,b] = hist(pnorm, Nbins);
2
                    a = a/length(pnorm);
                    a=[0.0 , a];
                    histBin = b(2) - b(1);
                    aAcum = cumsum(a);
6
                    aAprox = diff(aAcum)/histBin;
                    figure, bar(b,aAprox,'y'), hold on
                    plot(pnormAxis, fdp_p,'.r','LineWidth',2)
9
                    title('Theoretical, mean=1 exponential pdf and experimental pdf')
10
                    xlabel('Normalized voltage (linear)')
11
                    ylabel('Probability')
12
                    legend('Histogram', 'pdf')
13
                    xlim([0 Max])
14
```

Obtendríamos la siguiente salida:



Figura 12: Aumento de la probabilidad al hacer la media de los valores tomados en el histograma

Podemos observar una mejoría en la aproximación haciendo una derivada discreta. Esta verifiación a ojo no vale, tendríamos que hacer la prueba de chi cuadrado.

Si ahora comparamos función de distribución teórica con respecto a la experimental:

```
[a,b] = hist(pnorm, Nbins);
a = a/length(pnorm);
aa = cumsum(a);
figure, bar(b, aa, 'y'),hold
plot(pnormAxis, FD.p, 'r', 'LineWidth',2)
title('Theoretical, mean = 1 Exponential CDF and experimental CDF')
xlabel('Normalized voltage (linear)')
ylabel('Probability')
xlim([0 Max])
```



Figura 13: Comparación función distribución teórica vs experimental

Aproximación bastante ajustada.

# 4. Superposición de las funciones

Por último vamos a representar en la misma gráfica superpuestas, las pdfs y CDFs de las dos series v' y p' con el eje-x en dB.Basta con escribir las siguientes líneas de código:

```
pnormdb= 20*log10(vnormAxis);
pnormdb=10*log10(pnormAxis);
semilogy(vnormdb,fdp);hold on;
semilogy(pnormdb,fdp_p);hold off;title('Superposicin pdfs');ylabel("Probability");xlabel("dB");legend('Pdf tensin normalizada','Pdf potencia normalizada')
```



Figura 14: Superposición funciones densidad de probabilidad teóricas de la tensión y potencia normalizadas Ahora vemos la superposición de las funciones distribución:

```
semilogy(vnormdb,FD);hold on;
semilogy(pnormdb,FD-p);hold off;title('Superposici n FDs');ylabel("Probability");xlabel("dB");
legend('FD tensi n normalizada','FD potencia normalizada');
```



Figura 15: Superposición funciones distribución de probabilidad teóricas de la tensión y potencia normalizadas Se superponen una encima de la otra debido a la normalización que se le hacen a las variables aleatorias v' y p'