- · High-level Motivation Till now us assumed all distributions were known while optimizing for revenue.
 - How can we simultaneously learn these distributions while optimizing rewards?
 - Applications dynamic pricing with joint market-response

 forecasting
 AIB testing and randomized trials
 Assortment optimization

Bandit Settings

- Sequential decision making with incomplete information and learning
- US. Exploitation - Explosation
- Mankovian' (discounted, Gittin's Index)

 Stochastic' (finite-time, regnet) - Different approaches Adversarial (finite-time, minmax)

Setup - K'anns' (Dessible setof , Tunkowntine horizon

Xi,1, Xi,2,... Xi, = Payoff from arm i in to sounds

· $X_{i,t} \in [0,1]$ id, $\mathbb{E}[X_{i,t}] = \mathcal{M}_i$ (unknown)

- $\mu^* \stackrel{\text{def}}{=} \max_{i \in [K]} \mu_i$, $i^* \stackrel{\text{def}}{=} \arg\max_{i \in [K]} \mu_i$

- It E[K] = Arm chosen in the sound

Ti (sh) = \(\frac{1}{1} \) \{\tau_{t=1}} \(\frac{1}{2} \) \{\tau_{t=1}} \(\frac{1}{2} \) \{\tau_{t=1}} \(\frac{1}{2} \) \(\frac{1}{2

Doppe Regnet - R-= max (\(\sum_{t=1}^{\text{T}} \times_{i,t}\) - \(\sum_{t=1}^{\text{T}} \times_{i,t}\)

Expected regnet - E[R-] = E[max(\(\sum_{i\in (\vert x)} \) \(\sum_{t=1} \) \tag{XI, t}

Pseudo nogret $\overline{R}_{T} = \max_{i \in [K]} \overline{E}[\sum_{t=i}^{T} x_{i,t} - \sum_{t=i}^{T} x_{I_{t,t}}]$

Note: $R_T \leq E[R_T]$ We focus on minimizing R_T

- | RT = Tu* - \(\sum_{i \in [k]} \mathbb{N}_i \mathbb{E}[T_i(\bar{\tau})] \) Policy II

- · Why pseudo negret?
 - Even if we know $\{U_i\}$, the expected regret is still $\Theta(\sqrt{T})$ because of randomness
 - Pseudo-regret however can be much smaller (2(logT))
 in spite of not knowing {\mu_i}
 - More natural comparison Given all information, we would play it

Key algorithmic ideas

- · Optimism in the face of uncertainty
 - Given data, construct a 'prior' over possible states of the world'
 - Use this prior to pick actions
 - greaty over prior = UCB style strategies
 - sample from Prior = Thompson Sampling
- . Use knowledge of lower bounds to guide choices

Thrn (Lail Robbins 85) - For any policy TI, RT (TI) = - 12 (log T)

. To get optimal legist, we first need some concentration (a) results for sums of random variables

then $\forall \lambda \in \mathbb{R}$, $\mathbb{E}[e^{\lambda x}] \leq \exp(\frac{\lambda^2(b-a)^2}{8})$

$$\frac{\text{Pf} - e^{2x} \text{ is convex } \Rightarrow e^{2x} \leq \frac{b-x}{b-a} e^{2a} + \frac{n-a}{b-a} e^{2b} \forall x \in [a,b]}{b-a} \tag{Jensen's}$$

$$=) \quad \mathbb{E}\left[e^{\lambda x}\right] \leq \frac{be^{\lambda a} - ae^{\lambda b}}{b^{-a}} = \exp\left[\lambda(ba)\left(\frac{a}{b^{-a}}\right) + \log\left(1 - \frac{a}{b^{-a}}\right)\right]$$

=
$$exp[-h\theta + log(1-\theta+a^h\theta)]$$
 where $h = \lambda(6-a)$

$$\theta = -\frac{a}{b-a}$$

$$g'(0) = -\theta + \frac{\theta e^h}{1-\theta + e^h}\Big|_{h=0} = 0, \quad g''(h) = \frac{\theta e^h(1-\theta)}{1-\theta + \theta e^h} \leq \frac{1}{4}$$

=)
$$6000$$
 [g(h)] $6=19(0)+hg'(0)+h^2g'(u)$ for some $n \in [0,h]$
 $\leq h^2/8$

$$=) \mathbb{E}\left[e^{\lambda x}\right] \leq \exp\left(\frac{h^2}{8}\right) = \exp\left(\frac{\lambda^2}{8}(b-a)^2\right)$$

(5)

Let $X_1, X_2, ... X_n$ be iid so, $X_i \in [\mathbf{q}_i, b_i] \text{ a.s.}, \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ - Let X1, X2, ... Xn · Hoeffding's Inequality $|P\left[\overline{X} - E\left[\overline{X}\right] \geqslant t\right] \leq e \times P\left(-\frac{2n^{2}t^{2}}{\sum_{i=1}^{n}(b_{i}-a_{i})^{2}}\right)$ $\mathbb{P}\left[\times -\mathbb{E}\left[\bar{x}\right] \leq -t \right] \leq \exp\left(\frac{-2n^2t^2}{\sum_{i=1}^{n} (b_i - a_i)^2}\right)$ $P[\bar{x} - E[\bar{x}] > t] = P[exp(2\bar{x} - E[x])) > exp(2nt)$ < [T] E[ex(xi-E[xi])]]e-2nt $\leq \min_{3 \geq 0} \left[\exp \left(\frac{3^2}{8} \underbrace{\hat{b}_{i-q,i}}^2 - \lambda_n t \right) \right]$ $< exp\left(-\frac{2n^2+2}{3b_{i-ai})^2}\right)$ $\left(2 \times p\left(-\frac{2n^2+2}{3b_{i-ai}}\right)\right)$ $\left(2 \times p\left(-\frac{2n^2+2}{3b_{i-ai}}\right)\right)$

Similarly for {X-E[x] <-t}

The UCB 1 Algorithm (Auer, Casa Bianchi, Fischer 102)

· Algorithm

Define
$$N_i(n) = T_i(na) = H$$
 of pulls of arm is

 $X_i(n) = \frac{1}{n_i} \sum_{t=1}^{n_i} X_{i,t} = X$

$$VCB_{i}(n) = \overline{X}_{i}(n) + \sqrt{\frac{2\log(n)}{n_{i}(n)}}$$

· Pull arm i with highest UCB: (n)

The region of UCBI satisfies
$$R_T \leq \frac{\log T}{i : \mu_i < \mu^*(\mu^* - \mu_i)} + 12$$

Pf - We first need some definitions $\Delta_i = \mu^* - \mu_i + j \notin \underset{s}{\text{argmax}} \{\mu_i\}$ $C_{\bullet}t_{,s} = \sqrt{\frac{2\log t}{s}} \quad \left(\text{hence } \mathbb{K}B_i(n_{\bullet}) = X_i(n) + C_{n_i,n}\right)$

6

From the Hoeffding bound, we have

- For i*, $P[\overline{X_{i*}}(s) \leq \mu^* - C_{t,s}] \leq exp(\frac{-2s^2(\frac{2\log t}{s})}{s})$ $(\forall s \leq t)$ = t^{-4}

- For $i \neq i *$, $P[X_i(s) > \mu_i + C_{t,s}] \leq t^{-4}$

. Via the union bound, we have $\forall t \geq 1$

(3) \Rightarrow $\forall t \leq T$, $C_{t,s_i} + \mu_i \leq \mu^* - C_{t,s_i}$

· Now we will show that for anmiti*, after $S_i = \frac{8\log T}{\Delta_i^2}$ pulls, it does not get Pulled again with high probability

Formally, we have - (with
$$OC$$
 $S_i = 8 \log T/\Delta_i^2$) (8)

 $T_i(T) \leq S_i + \sum_{t=K+1}^{T} \frac{1}{2} \left\{ T_{i} = i \mid T_{i}(t) \geqslant S_i \right\}$
 $\leq S_i + \sum_{t=k+1}^{T} \frac{1}{2} \left\{ X_{i}(t) \geqslant \mu_{i} + C_{t,S_i}, X_{i} \neq (t) \leq \mu^{T} + C_{t,S_i} \right\}$
 $\Rightarrow \mathbb{E}\left[T_i(T)\right] \leq S_i + \sum_{t=K+1}^{T} \mathbb{P}\left[X_{i}(t) \geqslant \mu_{i} + C_{t,S_i}\right] + \mathbb{P}\left[X_{i} \neq \mu_{i} \leq \mu^{T} + C_{t,S_i}\right]$
 $\leq S_i + \sum_{t=1}^{\infty} 2t^{-3}$
 $\leq S_i + \sum_{t=1}^{\infty} 2t^{-3}$

· Finally, for arm i, the regret incurred is Di E[Ti(ti)]

$$= \sum_{i \neq i^*} \Delta_i \left\{ E[T_i(\tau)] \right\}$$

$$\leq \sum_{i \neq i^*} \left(\frac{8l_{\Delta}T}{\Delta_i} + 2\Delta_i \right)$$