

planetmath.org

Math for the people, by the people.

one-to-one function from onto function

Canonical name OnetooneFunctionFromOntoFunction

Date of creation 2013-03-22 16:26:55 Last modified on 2013-03-22 16:26:55 Owner mathcam (2727) Last modified by mathcam (2727)

Numerical id 8

Author mathcam (2727)

Entry type Definition Classification msc 03E25 Related topic function

Related topic ChoiceFunction Related topic AxiomOfChoice

Related topic set Related topic onto

Related topic SchroederBernsteinTheorem

Related topic AnInjectionBetweenTwoFiniteSetsOfTheSameCardinalityIsBijective AsurjectionBetweenTwoFiniteSetsOfTheSameCardinalityIsBijective

Related topic Set

Related topic Surjective

Theorem. Given an onto function from a set A to a set B, there exists a one-to-one function from B to A.

Proof. Suppose $f: A \to B$ is onto, and define $\mathcal{F} = \{f^{-1}(\{b\}) : b \in B\}$; that is, \mathcal{F} is the set containing the pre-image of each singleton subset of B. Since f is onto, no element of \mathcal{F} is empty, and since f is a function, the elements of \mathcal{F} are mutually disjoint, for if $a \in f^{-1}(\{b_1\})$ and $a \in f^{-1}(\{b_2\})$, we have $f(a) = b_1$ and $f(a) = b_2$, whence $b_1 = b_2$. Let $\mathscr{C}: \mathcal{F} \to \bigcup \mathcal{F}$ be a choice function, noting that $\bigcup \mathcal{F} = A$, and define $g: B \to A$ by $g(b) = \mathscr{C}(f^{-1}(\{b\}))$. To see that g is one-to-one, let $b_1, b_2 \in B$, and suppose that $g(b_1) = g(b_2)$. This gives $\mathscr{C}(f^{-1}(\{b_1\})) = \mathscr{C}(f^{-1}(\{b_2\}))$, but since the elements of \mathcal{F} are disjoint, this implies that $f^{-1}(\{b_1\}) = f^{-1}(\{b_2\})$, and thus $b_1 = b_2$. So g is a one-to-one function from B to A.