

ПРОЕКТ

ПО

Диференциални уравнения и приложения спец. Софтуерно инженерство, 2 курс, летен семестър, учебна година 2020/2021

Тема № СИ21-П-124

15.06.2021	Изготвил: Мария Георгиева Велева
София	Ф. № 62445
	Група 5

_																								
Оценка	•																							
Оценка		 •	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	٠	٠	•	•	• •	• •	٠

Съдържание

1. Тема (задание) на проекта	3
2. Решение на задачата	4
2.1 Теоретична част	4
2.2. MatLab код и получени в командния прозорец	
резултати при изпълнението му	7
2.3. Графики	9
2.4. Коментари към получените с MatLab резултати	10

1. Тема (задание) на проекта

Учебен проект по "Диференциални уравнения и приложения" спец. Софтуерно инженерство, 2 курс, летен семесътр, уч. год. 2020-2021

Име		 	 	
Ф. No	, група			

Тема СИ21-П-124. Дадена е системата

$$\begin{vmatrix} \dot{x} = (y-1)(y+2) \\ \dot{y} = x - 2y. \end{vmatrix}$$

- 1. Намерете нейните равновесни точки. Напишете линейното приближение на системата в околност на една от намерените равновесни точки.
- 2. Начертайте фазов портрет на написанта линейна система в подточка (1). Към всяка една от изобразените фазови криви (без равновесната точка) начертайте по един тангенциален вектор. Маркирайте със символа звезда положението на равновесие.

2. Решение на задачата

2.1 Теоретична част

 $|\dot{x} = (y-1)(y+2)$ $\dot{y} = x - 2y$

1. Равновесните тогки са там където скоростите се нулират. В нашие слугай, това е когато десните страни на системата те нулират.

$$(y-1)(y+2)=0$$
 $y_1=1$ $y_2=-2$
 $x-2y=0$ $x=2y$ $x_1=2$ $x_2=-4$

Pabhobechure Torku ha cucremana ca: $B_1(2,1)$ n $B_2(-4,-2)$

Намираме вковианья на системага:

$$f_X = 0$$

$$f_{X} = 24 + 1$$

$$Ja(x,y) = \begin{pmatrix} f'x & f'y \\ g'x & g'y \end{pmatrix} = \begin{pmatrix} 0 & \lambda y + 1 \\ 1 & -\lambda \end{pmatrix}$$

Линейното триблинаване ще толугим като пресшетнем янобианыт в съответните равновесни тогки:

$$J_{\alpha}(8_{1}) = J_{\alpha}(2, 1) = \begin{pmatrix} 0 & 3 \\ 1 & -2 \end{pmatrix}$$

$$A_{1} = \begin{pmatrix} 0 & 3 \\ 1 & -2 \end{pmatrix}$$

=> (
$$\frac{1}{y}$$
 = $\frac{1}{3}a(2,1)(x-2)=(0.3)(x-2)(y-1)=(0.3)(x-2)(y-1)=(0.4)(y$

2. 3a $B_{\perp}(2,1)$ majorinata na cuctemata e A_{\perp} . Ot характеристичного уравнение $\det(A_1-\lambda E)=0$ получаваме съствените числа.

OT XAPARTEPUCTULHOIS GPUCHEHUR ART NO)=0 HONG TOOL

COSCIDENTIE YUCIA,

$$\begin{vmatrix} 0-\lambda & 3 \\ 1 & -2-\lambda \end{vmatrix} = 0$$
 $(\lambda + 3)(\lambda - 1) = 0$

$$\lambda_1 = -3$$
 $\lambda_2 = 1$

Тъй каго обствените числа са реални, разлигни и с разлигни знаци, то фазовият портрет е сезло. (нестабилно) За $B_2(-4,-2)$ матризульта на системова е A_2 . От характеристичното уравнение $\det(A_2-\lambda E)=0$ полугаваме собствените числа.

$$\begin{vmatrix} 0 - \lambda - 3 \\ 1 - 2 - \lambda \end{vmatrix} = 0 \qquad \frac{\lambda^2 + 2\lambda + 3 = 0}{\nabla y} = \left(\frac{2}{2}\right)^2 - 3 = 1 - 3 = -2 = 2i^2$$

$$\lambda_3 = \frac{-1 + \sqrt{2}i^2}{4} = -1 + \sqrt{2}i$$

$$\lambda_{y} = -1 - \sqrt{2}i^2 = -1 - \sqrt{2}i$$

Тъй като собствените числа са комплексни, трява за Определим посоксаа на въртене на фазовите криви относно положнението на равновесие. Това еднознагно се определя от вектора:

Тъй като $\alpha_{21}=1>0$, то посоката на въртене на фазовите криви е срещу гасовника.

Тъй кого собствените гисла са компексни се с отрицателна реална таст, то фазовит портрет е устойгив фокус.

2.2 MatLab код и получени в командния прозорец резултати при изпълнението му.

Код и резултати за равновесна точка В1

```
function zad1
clc
clf
% Инициализираме матрицата А - матрицата А1 от теоретичното решение
A=[0,3;1,-2];
% Вектор стълб със свободните членове
b = [-3; 0];
% Равновесна точка
eqp = A \setminus (-b)
% Собствени стойности и собствени вектори
[T,D]=eig(A)
x = eqp(1) - 4:1:eqp(1) + 4;
y=eqp(2)-4:1:eqp(2)+4;
% Чертаем равновесната точка със звезда
plot(-4,-2,'r*')
axis([eqp(1)-5,eqp(1)+5,eqp(2)-5,eqp(2)+5])
hold on
% Прави, върху които лежат фазови криви
if imag (D(1,1)) == 0
      if T(1,1) \sim = 0
            plot(x, eqp(2) + T(2, 1) * (x-eqp(1)) / T(1, 1), 'k')
      else plot (0*x+eqp(1),x,'k')
      end
      if T(1,2) \sim = 0
            plot(x, eqp(2) + T(2, 2) * (x-eqp(1)) / T(1, 2), 'k')
      else plot (0*x+eqp(1),x,'k')
      end
end
% Функция за дясната страна
function z=ff(t,y)
z=A*y+b;
end
% Фазов портрет
[X,Y] = meshgrid(x,y);
tmax=50;
for i=1:length(x)
      for j=1:length(y)
             [T1, Y1] = ode45(@ff, [0, tmax], [X(i,j), Y(i,j)]);
             [T2, Y2] = ode45(@ff, [0, -tmax], [X(i,j), Y(i,j)]);
             plot(Y1(:,1),Y1(:,2),'b',Y2(:,1),Y2(:,2),'b')
      end
end
% Танценциални вектори
deltaX=A(1,1)*X+A(1,2)*Y+b(1);
deltaY=A(2,1)*X+A(2,2)*Y+b(2);
d=sqrt(deltaX.^2+deltaY.^2);
quiver(X,Y,deltaX./d,deltaY./d,0.5,'m')
                                                              D =
                              T =
eqp =
                                                                  1.0000
                                  0.9487
                                            -0.7071
     2
                                                                            -3.0000
                                             0.7071
                                  0.3162
      1
```

Код и резултати за равновесна точка В2

```
function zad2
clc
clf
% Инициализираме матрицата А - матрицата А2 от теоретичното решение
A = [0, -3; 1, -2];
% Вектор стълб със свободните членове
b = [-6; 0];
% Равновесна точка
eqp = A \setminus (-b)
% Собствени стойности и собствени вектори
[T,D]=eig(A)
x = eqp(1) - 4:1:eqp(1) + 4;
y=eqp(2)-4:1:eqp(2)+4;
% Чертаем равновесната точка със звезда
plot(-4,-2,'r*')
axis([eqp(1)-5,eqp(1)+5,eqp(2)-5,eqp(2)+5])
hold on
% Прави, върху които лежат фазови криви
if imag (D(1,1)) == 0
      if T(1,1) \sim = 0
            plot(x, eqp(2) + T(2, 1) * (x-eqp(1)) / T(1, 1), 'k')
      else plot(0*x+eqp(1),x,'k')
      end
      if T(1,2) \sim = 0
            plot(x, eqp(2) + T(2, 2) * (x-eqp(1)) / T(1, 2), 'k')
      else plot (0*x+eqp(1),x,'k')
      end
end
% Функция за дясната страна
function z=ff(t,y)
z=A*y+b;
end
% Фазов портрет
[X,Y] = meshgrid(x,y);
tmax=50;
for i=1:length(x)
      for j=1:length(y)
             [T1, Y1] = ode45(@ff, [0, tmax], [X(i,j), Y(i,j)]);
             [T2, Y2] = ode45(@ff, [0, -tmax], [X(i,j), Y(i,j)]);
            plot(Y1(:,1),Y1(:,2),'b',Y2(:,1),Y2(:,2),'b')
      end
end
% Танценциални вектори
deltaX=A(1,1)*X+A(1,2)*Y+b(1);
deltaY=A(2,1)*X+A(2,2)*Y+b(2);
d=sqrt(deltaX.^2+deltaY.^2);
                                             T =
quiver(X,Y,deltaX./d,deltaY./d,0.5,'m')
end
                                                0.8660 + 0.0000i
                                                                     0.8660 + 0.0000i
                                                                   0.2887 + 0.4082i
                                                0.2887 - 0.4082i
 eqp =
     -4
                                             D =
     -2
                                               -1.0000 + 1.4142i
                                                                     0.0000 + 0.0000i
                                                0.0000 + 0.0000i -1.0000 - 1.4142i
```

2.3 Графики

Това представлява изпълнението на по-горните кодове в MatLab.

Графика за равновесна точка В1

Графика за равновесна точка В2

2.4 Коментари към получените с MatLab резултати.

За равновесна точка В1

От резултатите получени с MatLab се потвърждават намерените в теоритичната част факти. Вижда се, че равновесната точка е (2, 1) и е от тип седло.Тя е маркирана със символа звазда. Получените собствени стойности са реални числа, които са различни и с различни знаци, което потвърждава, че точката е от тип седло.

За равновесна точка В2

От графиката се вижда, че равновесната точка наистина е (-4,-2). Тя е маркирана със символа звезда и е устойчив фокус. Фазовият портрет на системата се състои от равновесната точка и спирали. Към всяка една от фазовите криви (спирали) без равновесната точка е начертан по един тангенциален вектор. Векторите са насочени в посока приближаване на равновесната точка, което потвърждава нейната устойчивост.