Automatic Differentiation: An Overview of Forward and Reverse Mode in Applications to Optimization Problems

Who?

Overview

Bent Müller

From?

University of Hamburg

When?

6.7.2022

Table of Contents

Overview

Table of Contents

General problem layout

The Characterizing Sequence

Operation of Auto-Diff

Forward mode

Reverse mode

Applications

Use in optimization Algorithms

Use in neural networks

Literature

References used

Given a function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ that is *twice* differentiable, we want to efficiently and with good numerical stability compute

- f(x), the value of our function at a point x in \mathbb{R}^n ,
- $\nabla f(x)$, the gradient of our function at x, and
- $\nabla^2 f(x)$, the Hessian of our function at x.

Where ∇ is the *Differential Operator*, also called the *nabla* Operator or sometimes just *Del*.

Since $f: \mathbb{R}^n \longrightarrow \mathbb{R}$, we know that $f(x) \in \mathbb{R}$, now we define the Gradient and Hessian for $x \in O \subset \mathbb{R}^n$ where O is an open subset in \mathbb{R}^n as follows:

Since $f: \mathbb{R}^n \longrightarrow \mathbb{R}$, we know that $f(x) \in \mathbb{R}$, now we define the Gradient and Hessian for $x \in O \subset \mathbb{R}^n$ where O is an open subset in \mathbb{R}^n as follows:

$$\nabla f(x) := \begin{pmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x} \end{pmatrix}$$

The Gradient is the n-dimensional vector of partial derivatives of f at x. It describes how f changes with respect to each of the *n* variables x_1, \ldots, x_n .

Since $f: \mathbb{R}^n \longrightarrow \mathbb{R}$, we know that $f(x) \in \mathbb{R}$, now we define the Gradient and Hessian for $x \in O \subset \mathbb{R}^n$ where O is an open subset in \mathbb{R}^n as follows:

$$\nabla (\nabla f(x)) = \nabla^2 f(x) := \begin{pmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{pmatrix}$$

The Hessian is the real matrix of all second order partial derivatives of f at x. It describes how the gradient changes with respect to each of the *n* variables X_1, \ldots, X_n .

Since $f: \mathbb{R}^n \longrightarrow \mathbb{R}$, we know that $f(x) \in \mathbb{R}$, now we define the Gradient and Hessian for $x \in O \subset \mathbb{R}^n$ where O is an open subset in \mathbb{R}^n as follows:

$$\nabla (\nabla f(x)) = \nabla^2 f(x) := \begin{pmatrix} \frac{\partial^2 f(x)}{\partial x_1^2} & \frac{\partial^2 f(x)}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f(x)}{\partial x_2 \partial x_1} & \frac{\partial^2 f(x)}{\partial x_2^2} & \cdots & \frac{\partial^2 f(x)}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f(x)}{\partial x_n \partial x_1} & \frac{\partial^2 f(x)}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f(x)}{\partial x_n^2} \end{pmatrix}$$

Each row of the Hessian can be regarded as the gradient w.r.t. each component of the gradient vector of f. Specifically, it is the *Jacobian* matrix of the gradient.

П

П

П

We will only discuss functions that can be written as compositions of:

unary functions U and binary functions B.

constant functions C.

Where C, U and B are the corresponding function spaces.

The characterizing sequence computes f(x) in m-steps, with each step depending *only* on previously computed steps.

We decompose the computation of f(x) as follows:

$$f_i = x_i \text{ for } i \in \{1, \dots, n\}$$

$$f_{i+n} = \begin{cases} \omega_i & \text{if } \omega_i \in \mathcal{C} \\ \omega_i(f_{k_i}) & \text{if } \omega_i \in \mathcal{U} \\ \omega_i(f_{k_i}, f_{l_i}) & \text{if } \omega_i \in \mathcal{B} \end{cases}$$
 for $i \in \{1, \dots, m\}$

- $f_{m+n}=f(x)$
- $k_i, l_i < i + n$ and
- $\{n+1,\ldots,n+m-1\} \subset \bigcup_{i=1}^m \{k_i,l_i\}$ The last condition ensures that each of the *m*-steps in

the computation is actually used to compute f(x).

$$\Rightarrow \mathcal{S} := ((\omega_i, k_i, l_i))_{i \in \{1, ..., m\}}$$
 is char. seq. for f

that is defined in the following.

More specifically, we set $I := \{1, ..., m\}$ and $J := \{1, ..., n + m - 1\}$ as two sets of indices.

$$\Rightarrow S := ((\omega_i, k_i, l_i))_{i \in \{1, \dots, m\}}$$
$$\in ((\mathcal{C} \times \{0\}^2) \cup (\mathcal{U} \times J \times \{0\}) \cup (\mathcal{B} \times J^2))^m$$

The above is equivalent to the following three cases:

More specifically, we set $I := \{1, ..., m\}$ and $J := \{1, ..., n + m - 1\}$ as two sets of indices.

$$\Rightarrow S := ((\omega_i, k_i, l_i))_{i \in \{1, \dots, m\}}$$
$$\in ((\mathcal{C} \times \{0\}^2) \cup (\mathcal{U} \times J \times \{0\}) \cup (\mathcal{B} \times J^2))^m$$

The above is equivalent to the following three cases:

if
$$\omega_i \in \mathcal{U} \Rightarrow k_i \in J, l_i = 0$$

if
$$\omega_i \in \mathcal{B} \Rightarrow k_i, l_i \in J$$

The Computational Graph

An example computational graph constructed by a characterizing sequence for n=4 and m=4.

Forward mode

Computing the Gradient $\nabla f(x)$

The idea is to compute the gradient and hessian of f stepwise using the characterizing sequence S.

Computing the Gradient $\nabla f(x)$

$$g_j = e_j$$
 with $(e_j)_k = 1_{k=j}$ and $e_j \in \mathbb{R}^n$ for $j \in \{1, \dots, n\}$

$$g_{i+n} = \begin{cases} 0 & \text{if } \omega_i \in \mathcal{C} \\ \omega_i'(f_{k_i})g_{k_i} & \text{if } \omega_i \in \mathcal{U} \\ \partial_a\omega_i(f_{k_i},f_{l_i})g_{k_i} + \partial_b\omega_i(f_{k_i},f_{l_i})g_{l_i} & \text{if } \omega_i \in \mathcal{B} \end{cases}$$
for $i \in \{1,\ldots,m\}$

Note the following:

Computing the Gradient $\nabla f(x)$

$$g_j=e_j$$
 with $(e_j)_k=1_{k=j}$ and $e_j\in\mathbb{R}^n$ for $j\in\{1,\ldots,n\}$

$$g_{i+n} = \begin{cases} 0 & \text{if } \omega_i \in \mathcal{C} \\ \omega_i'(f_{k_i})g_{k_i} & \text{if } \omega_i \in \mathcal{U} \\ \partial_a\omega_i(f_{k_i},f_{l_i})g_{k_i} + \partial_b\omega_i(f_{k_i},f_{l_i})g_{l_i} & \text{if } \omega_i \in \mathcal{B} \end{cases}$$
for $i \in \{1,\ldots,m\}$

Note the following:

The g_i are n-dimensional vectors $\iff g_i \in \mathbb{R}^n$

Forward mode

Computing the Gradient $\nabla f(x)$

$$g_j=e_j$$
 with $(e_j)_k=1_{k=j}$ and $e_j\in\mathbb{R}^n$ for $j\in\{1,\ldots,n\}$

$$g_{i+n} = \begin{cases} 0 & \text{if } \omega_i \in \mathcal{C} \\ \omega_i'(f_{k_i})g_{k_i} & \text{if } \omega_i \in \mathcal{U} \\ \partial_a\omega_i(f_{k_i},f_{l_i})g_{k_i} + \partial_b\omega_i(f_{k_i},f_{l_i})g_{l_i} & \text{if } \omega_i \in \mathcal{B} \end{cases}$$
for $i \in \{1,\ldots,m\}$

Note the following:

For $\omega_i \in \mathcal{U}$ we have:

$$\omega'_i(f_{k_i}) \in \mathbb{R} \text{ since } \omega_i : \mathbb{R} \to \mathbb{R}$$

 $\Rightarrow \omega'_i(f_{k_i})g_{k_i} \in \mathbb{R}^n$

Overview

Computing the Gradient $\nabla f(x)$

$$g_j=e_j$$
 with $(e_j)_k=1_{k=j}$ and $e_j\in\mathbb{R}^n$ for $j\in\{1,\ldots,n\}$

$$g_{i+n} = \begin{cases} 0 & \text{if } \omega_i \in \mathcal{C} \\ \omega_i'(f_{k_i})g_{k_i} & \text{if } \omega_i \in \mathcal{U} \\ \partial_a \omega_i(f_{k_i}, f_{l_i})g_{k_i} + \partial_b \omega_i(f_{k_i}, f_{l_i})g_{l_i} & \text{if } \omega_i \in \mathcal{B} \end{cases}$$
for $i \in \{1, \dots, m\}$

And for $\omega_i \in \mathcal{B}$:

Applying the (multivariate) chain rule, we get:

$$\nabla \omega_{i} (f_{k_{i}}, f_{l_{i}}) \stackrel{\text{def}}{=} \left(\frac{\partial (\omega_{i} (f_{k_{i}}, f_{l_{i}}))}{\partial x_{1}}, \dots, \frac{\partial (\omega_{i} (f_{k_{i}}, f_{l_{i}}))}{\partial x_{n}} \right)^{T}$$

$$\stackrel{(*)}{=} \frac{\partial (\omega_{i} (f_{k_{i}}, f_{l_{i}}))}{\partial f_{k_{i}}} \nabla f_{k_{i}} + \frac{\partial (\omega_{i} (f_{k_{i}}, f_{l_{i}}))}{\partial f_{l_{i}}} \nabla f_{l_{i}}$$

Overview

Computing the Gradient $\nabla f(x)$

$$g_j = e_j$$
 with $(e_j)_k = 1_{k=j}$ and $e_j \in \mathbb{R}^n$ for $j \in \{1, \dots, n\}$

$$g_{i+n} = \begin{cases} 0 & \text{if } \omega_i \in \mathcal{C} \\ \omega_i'(f_{k_i})g_{k_i} & \text{if } \omega_i \in \mathcal{U} \\ \partial_a\omega_i(f_{k_i},f_{l_i})g_{k_i} + \partial_b\omega_i(f_{k_i},f_{l_i})g_{l_i} & \text{if } \omega_i \in \mathcal{B} \end{cases}$$
for $i \in \{1,\ldots,m\}$

And for $\omega_i \in \mathcal{B}$:

$$\Rightarrow \nabla \omega_i(f_{k_i}, f_{l_i}) = \partial_a \omega_i(f_{k_i}, f_{l_i}) \nabla f_{k_i} + \partial_b \omega_i(f_{k_i}, f_{l_i}) \nabla f_{l_i}$$
$$= \partial_a \omega_i(f_{k_i}, f_{l_i}) g_{k_i} + \partial_b \omega_i(f_{k_i}, f_{l_i}) g_{l_i}$$

With $\partial_a \omega_i(f_{k_i}, f_{l_i})$ being the partial derivative in the *first* argument, that is w.r.t. f_{k_i} .

Computing the Gradient $\nabla f(x)$

$$g_j=e_j$$
 with $(e_j)_k=1_{k=j}$ and $e_j\in\mathbb{R}^n$ for $j\in\{1,\ldots,n\}$

$$g_{i+n} = \begin{cases} 0 & \text{if } \omega_i \in \mathcal{C} \\ \omega_i'(f_{k_i})g_{k_i} & \text{if } \omega_i \in \mathcal{U} \\ \partial_a\omega_i(f_{k_i},f_{l_i})g_{k_i} + \partial_b\omega_i(f_{k_i},f_{l_i})g_{l_i} & \text{if } \omega_i \in \mathcal{B} \end{cases}$$
for $i \in \{1,\ldots,m\}$

Thus, we have for $i \in \{1, \dots, n+m\}$:

$$g_i =
abla f_i = egin{pmatrix} rac{\partial f_i}{\partial x_1} \ rac{\partial f_i}{\partial x_2} \ dots \ rac{\partial f_i}{\partial x_3} \end{pmatrix}$$

Computing the Gradient $\nabla f(x)$

$$g_j = e_j$$
 with $(e_j)_k = 1_{k=j}$ and $e_j \in \mathbb{R}^n$ for $j \in \{1, \dots, n\}$

$$g_{i+n} = \begin{cases} 0 & \text{if } \omega_i \in \mathcal{C} \\ \omega_i'(f_{k_i})g_{k_i} & \text{if } \omega_i \in \mathcal{U} \\ \partial_a\omega_i(f_{k_i},f_{l_i})g_{k_i} + \partial_b\omega_i(f_{k_i},f_{l_i})g_{l_i} & \text{if } \omega_i \in \mathcal{B} \end{cases}$$
for $i \in \{1,\ldots,m\}$

So for all $i \in \{1, ..., n+m\}$, g_i is really the gradient vector of f_i w.r.t. all inputs $(x_1, ..., x_n)$.

 \Rightarrow Auto-Diff applies the chain rule iteratively.

Reminder (*) - Multivariate chain rule

Inspect

$$\nabla \omega_i (f_{k_i}, f_{k_i})$$

and we can decompose as follows:

$$\nabla \omega_i (f_{k_i}, f_{k_i}) = D_s(f_{k_i}, f_{l_i}) \nabla s(x)$$

for a function $s: x \mapsto (f_{k_i}, f_{l_i})$ then we can see:

$$\nabla \omega_{i} (f_{k_{i}}, f_{k_{i}}) = \left(\frac{\partial \omega_{i}}{\partial f_{k_{i}}}, \frac{\partial \omega_{i}}{\partial f_{l_{i}}}\right) \cdot \begin{pmatrix} \nabla f_{k_{i}}^{T} \\ \nabla f_{l_{i}}^{T} \end{pmatrix}$$
$$= \partial_{a} \omega_{i} (f_{k_{i}}, f_{l_{i}}) \nabla f_{k_{i}}^{T} + \partial_{b} \omega_{i} (f_{k_{i}}, f_{l_{i}}) \nabla f_{l_{i}}^{T}$$

Where the last step applies the multivariate chain rule on the composition $\omega_i \circ s$.

Overview

Computing the Hessian $\nabla^2 f(x)$

$$H_{j} = 0 \in \mathbb{R}^{n \times n} \text{ for } j \in \{1, \dots, n\}$$

$$H_{i+n} = \begin{cases} 0 & \text{if } \omega_{i} \in \mathcal{C} \\ \omega'_{i}(f_{k_{i}})H_{k_{i}} + \omega''_{i}(f_{k_{i}})g_{k_{i}}g_{k_{i}}^{\mathsf{T}} & \text{if } \omega_{i} \in \mathcal{U} \\ \partial_{a}\omega_{i}(f_{k_{i}}, f_{l_{i}})H_{k_{i}} + \partial_{b}\omega_{i}(f_{k_{i}}, f_{l_{i}})H_{l_{i}} \\ +(g_{k_{i}}, g_{l_{i}})\nabla^{2}\omega_{i}(f_{k_{i}}, f_{l_{i}})(g_{k_{i}}, g_{l_{i}})^{\mathsf{T}} & \text{if } \omega_{i} \in \mathcal{B} \end{cases}$$

Note that $g_{k_i}g_{k_i}^T$ is a $n \times n$ matrix (outer product), while $g_{k_i}^T g_{k_i}$ is only a single number (dot product).

$$(n \times 1) \cdot (1 \times n) = (n \times n)$$
 whilst $(1 \times n) \cdot (n \times 1) = (1 \times 1)$ (scalar)

Computing the Hessian $\nabla^2 f(x)$

$$H_{j} = 0 \in \mathbb{R}^{n \times n} \text{ for } j \in \{1, \dots, n\}$$

$$H_{i+n} = \begin{cases} 0 & \text{if } \omega_i \in \mathcal{C} \\ \omega_i'(f_{k_i})H_{k_i} + \omega_i''(f_{k_i})g_{k_i}g_{k_i}^T & \text{if } \omega_i \in \mathcal{U} \\ \partial_a\omega_i(f_{k_i}, f_{l_i})H_{k_i} + \partial_b\omega_i(f_{k_i}, f_{l_i})H_{l_i} \\ +(g_{k_i}, g_{l_i})\nabla^2\omega_i(f_{k_i}, f_{l_i})(g_{k_i}, g_{l_i})^T & \text{if } \omega_i \in \mathcal{B} \end{cases}$$

Now assuming $a : \mathbb{R}^n \to \mathbb{R}$ and $b : \mathbb{R}^n \to \mathbb{R}^n$, we can see:

$$\nabla \left(a \cdot (b_1, \dots, b_n)^T \right) = \left(\frac{\partial (a \cdot b_k)}{\partial x_i} \right)_{i,k \in \{1, \dots, n\}}$$
$$= \left(\frac{\partial a}{\partial x_i} b_k + a \frac{\partial b_k}{\partial x_i} \right)_{i,k} = \nabla a b^T + a \cdot \nabla b$$

Overview

Computing the Hessian $\nabla^2 f(x)$

$$H_{j} = 0 \in \mathbb{R}^{n \times n} \text{ for } j \in \{1, \dots, n\}$$

$$H_{i+n} = \begin{cases} 0 & \text{if } \omega_i \in \mathcal{C} \\ \omega_i'(f_{k_i})H_{k_i} + \omega_i''(f_{k_i})g_{k_i}g_{k_i}^T & \text{if } \omega_i \in \mathcal{U} \\ \partial_a\omega_i(f_{k_i}, f_{l_i})H_{k_i} + \partial_b\omega_i(f_{k_i}, f_{l_i})H_{l_i} \\ +(g_{k_i}, g_{l_i})\nabla^2\omega_i(f_{k_i}, f_{l_i})(g_{k_i}, g_{l_i})^T & \text{if } \omega_i \in \mathcal{B} \end{cases}$$

Then we can easily see that:

$$\nabla \left(\omega_i'(f_{k_i})g_{k_i}\right) = \nabla \left(\omega_i'(f_{k_i})\right)g_{k_i}^T + \omega_i'(f_{k_i})\left(\nabla g_{k_i}\right)$$
$$= \omega_i'(f_{k_i})H_{k_i} + \omega_i''(f_{k_i})g_{k_i}g_{k_i}^T$$

With ∇ being the total Differential Operator.

Forward mode

Computing the Hessian $\nabla^2 f(x)$

Not so easy to see is the case $\omega_i \in \mathcal{B}$:

$$\nabla \left(\overbrace{\partial_{a}\omega_{i}(f_{k_{i}}, f_{l_{i}})g_{k_{i}}}^{\text{scalar} \cdot \text{vector}} + \partial_{b}\omega_{i}(f_{k_{i}}, f_{l_{i}})g_{l_{i}} \right)$$

$$= \nabla \left(\partial_{a}\omega_{i}(f_{k_{i}}, f_{l_{i}}) \right) g_{k_{i}}^{T} + \partial_{a}\omega_{i}(f_{k_{i}}, f_{l_{i}}) \cdot \nabla g_{k_{i}}$$

$$+ \nabla \left(\partial_{b}\omega_{i}(f_{k_{i}}, f_{l_{i}}) \right) g_{l_{i}}^{T} + \partial_{b}\omega_{i}(f_{k_{i}}, f_{l_{i}}) \cdot \nabla g_{l_{i}}$$

$$= \partial_{a}\omega_{i}(f_{k_{i}}, f_{l_{i}}) \cdot H_{k_{i}} + \partial_{b}\omega_{i}(f_{k_{i}}, f_{l_{i}}) \cdot H_{l_{i}}$$

$$+ \left(\partial_{a}^{2}\omega_{i}(f_{k_{i}}, f_{l_{i}})g_{k_{i}} + \partial_{b}\partial_{a}\omega_{i}(f_{k_{i}}, f_{l_{i}})g_{l_{i}} \right) g_{k_{i}}^{T}$$

$$+ \left(\partial_{b}^{2}\omega_{i}(f_{k_{i}}, f_{l_{i}})g_{l_{i}} + \partial_{a}\partial_{b}\omega_{i}(f_{k_{i}}, f_{l_{i}})g_{k_{i}} \right) g_{l_{i}}^{T}$$

Computing the Hessian $\nabla^2 f(x)$

$$= \partial_{a}\omega_{i}(f_{k_{i}}, f_{l_{i}}) \cdot H_{k_{i}} + \partial_{b}\omega_{i}(f_{k_{i}}, f_{l_{i}}) \cdot H_{l_{i}}$$

$$+ \left(\partial_{a}^{2}\omega_{i}(f_{k_{i}}, f_{l_{i}})g_{k_{i}} + \partial_{b}\partial_{a}\omega_{i}(f_{k_{i}}, f_{l_{i}})g_{l_{i}}\right)g_{k_{i}}^{T}$$

$$+ \left(\partial_{b}^{2}\omega_{i}(f_{k_{i}}, f_{l_{i}})g_{l_{i}} + \partial_{a}\partial_{b}\omega_{i}(f_{k_{i}}, f_{l_{i}})g_{k_{i}}\right)g_{l_{i}}^{T}$$

$$= \partial_{a}\omega_{i}(f_{k_{i}}, f_{l_{i}}) \cdot H_{k_{i}} + \partial_{b}\omega_{i}(f_{k_{i}}, f_{l_{i}}) \cdot H_{l_{i}}$$

$$+ \left(g_{k_{i}}, g_{l_{i}}\right)\left(\frac{\partial_{a}^{2}\omega_{i}(f_{k_{i}}, f_{l_{i}})}{\partial_{b}\partial_{a}\omega_{i}(f_{k_{i}}, f_{l_{i}})} \quad \frac{\partial_{a}\partial_{b}\omega_{i}(f_{k_{i}}, f_{l_{i}})}{\partial_{b}^{2}\omega_{i}(f_{k_{i}}, f_{l_{i}})}\right)\left(g_{k_{i}}^{T}\right)$$

Computing the Hessian $\nabla^2 f(x)$

$$= \partial_{a}\omega_{i}(f_{k_{i}}, f_{l_{i}}) \cdot H_{k_{i}} + \partial_{b}\omega_{i}(f_{k_{i}}, f_{l_{i}}) \cdot H_{l_{i}}$$

$$+ (g_{k_{i}}, g_{l_{i}}) \begin{pmatrix} \partial_{a}^{2}\omega_{i}(f_{k_{i}}, f_{l_{i}}) & \partial_{a}\partial_{b}\omega_{i}(f_{k_{i}}, f_{l_{i}}) \\ \partial_{b}\partial_{a}\omega_{i}(f_{k_{i}}, f_{l_{i}}) & \partial_{b}^{2}\omega_{i}(f_{k_{i}}, f_{l_{i}}) \end{pmatrix} \begin{pmatrix} g_{k_{i}}^{T} \\ g_{l_{i}}^{T} \end{pmatrix}$$

$$= \partial_{a}\omega_{i}(f_{k_{i}}, f_{l_{i}}) \cdot H_{k_{i}} + \partial_{b}\omega_{i}(f_{k_{i}}, f_{l_{i}}) \cdot H_{l_{i}}$$

$$+ \underbrace{(g_{k_{i}}, g_{l_{i}})}_{n \times 2} \underbrace{\nabla^{2}\omega_{i}(f_{k_{i}}, f_{l_{i}})}_{2 \times 2} \underbrace{(g_{k_{i}}, g_{l_{i}})^{T}}_{2 \times n}$$

Overview

Forward mode

Compute sequentially:

$$f_i, g_i, H_i, \text{ for } i \in \{1, \dots, n+m\}$$

and then we obtain:

- $f_{n+m} = f(x)$, the Function value,
- $g_{n+m} = \nabla f(x)$, the Gradient and
 - $H_{n+m} = \nabla^2 f(x)$, the Hessian matrix.

This mode is called *forward mode*.

Reverse mode

Reverse mode - layout

We define the following functions for $i \in \{1, \dots, m-1\}$

$$F_i: \mathbb{R}^{n+i-1} \to \mathbb{R}^{n+i}, F_i(y_1, \dots, y_{n+i-1}) = \begin{pmatrix} y_1 \\ \vdots \\ y_{n+i-1} \\ f_{i+n} \end{pmatrix}$$

And for i = m we set:

$$F_m: \mathbb{R}^{n+i-1} \to \mathbb{R}, F_m(y_1, \dots, y_{n+m-1}) = f_{m+n}$$

Technically we can only define the F_i on open subsets of \mathbb{R}^{n+i-1} on which the ω_i are defined, but here I left this out since it is obvious to see.

Reverse mode - layout

We set the intermediate state as $G_0 := x$ and

$$G_i^T := (f_1, \ldots, f_{n+i})^T = F_i \circ F_{i-1} \circ \ldots \circ F_1(x)$$

for $i \in \{1, ..., m-1\}$. Thus we have the identity:

$$f(x) = f_{m+n} = F_m \circ F_{m-1} \circ \cdots \circ F_1(x)$$

Differentiating this identity w.r.t. x yields:

$$\nabla f(x)^T = DF_m(G_{m-1})DF_{m-1}(G_{m-2})\cdots DF_1(x)$$
 (1)

Where DF denotes the Jacobian Matrix of F.

$$\nabla f(x)^{T} = DF_{m}(G_{m-1})DF_{m-1}(G_{m-2})\cdots DF_{1}(x)$$
 (1)

Evaluating equation (1) from *right to left* corresponds to the forward mode of Auto-Diff.

$$\nabla f(x)^T = DF_m(G_{m-1})DF_{m-1}(G_{m-2})\cdots DF_1(x)$$
 (1)

In reverse mode, we want to evaluate (1) from *left to right*.

This obviously yields the same gradient $\nabla f(x)$.

Reverse mode

Reverse mode - in detail

In detail we find:

$$DF_1(\overbrace{G_0}^{=x}) = \left(\begin{array}{c} I_n \\ \\ \\ \frac{\partial f_{1+n}}{\partial x_1} \cdots \frac{\partial f_{1+n}}{\partial x_n} \end{array}\right) \in \mathbb{R}^{(n+1)\times n}$$

With the last row being the gradient ∇f_{1+n}^T of f_{1+n} .

Reverse mode - in detail

This also works for $i \in \{1, ..., m-1\}$ and generalizes to:

$$DF_i(G_{i-1}) = egin{pmatrix} I_{n+i-1} \ \hline \ rac{\partial f_{i+n}}{\partial f_1} \cdots rac{\partial f_{i+n}}{\partial f_{n+i-1}} \end{pmatrix} \in \mathbb{R}^{(n+i) imes (n+i-1)}$$

But now the last row is the gradient of f_{i+n} w.r.t. $(f_1, ..., f_{n+i-1})$ and not x!

$$DF_i(G_{i-1}) = egin{pmatrix} I_{n+i-1} \ \hline \ rac{\partial f_{i+n}}{\partial f_1} \cdots rac{\partial f_{i+n}}{\partial f_{n+i-1}} \end{pmatrix} \in \mathbb{R}^{(n+i) imes (n+i-1)}$$

We now recognize that the f_{i+n} can only depend on at most 2 elements in (f_1, \ldots, f_{n+i-1}) .

Thus the last row can only contain 2 non-zero elements, namely at indices k_i and l_i .

Reverse mode

Reverse mode - in detail

$$DF_i(G_{i-1}) = egin{pmatrix} I_{n+i-1} \ \hline \ rac{\partial f_{i+n}}{\partial f_1} \cdots rac{\partial f_{i+n}}{\partial f_{n+i-1}} \end{pmatrix} \in \mathbb{R}^{(n+i) imes (n+i-1)}$$

So we can write:

$$DF_i(G_{i-1}) = \begin{pmatrix} I_{n+i-1} \\ \hline \kappa_i & \lambda_i \end{pmatrix}$$

Reverse mode - in detail

So we can write:

$$DF_i(G_{i-1}) = \begin{pmatrix} I_{n+i-1} \\ \hline & \\ \kappa_i & \lambda_i \end{pmatrix}$$

With κ_i and λ_i being the entries of the last row at indices k_i and l_i respectively, specifically:

$$\left(\frac{\partial f_{i+n}}{\partial f_1}, \ldots, \frac{\partial f_{i+n}}{\partial f_{n+i-1}}\right) = (\ldots, \kappa_i, \ldots, \lambda_i, \ldots)$$

The dots represent the zero-entries here.

$$\left(\frac{\partial f_{i+n}}{\partial f_1},\ldots,\frac{\partial f_{i+n}}{\partial f_{n+i-1}}\right)=(\ldots,\kappa_i,\ldots,\lambda_i,\ldots)$$

Notice that for $\omega_i \in \mathcal{U} \Rightarrow I_i = 0$ and in that case we only have one non-zero entry.

And if $\omega_i \in \mathcal{C}$ then the last row becomes entirely zero.

We verify quickly:

$$\nabla f(x)^{T} = \underbrace{DF_{m}(G_{m-1})}_{(1\times n+m-1)} \underbrace{DF_{m-1}(G_{m-2})}_{(n+m-1\times n+m-2)} \cdots \underbrace{DF_{1}(x)}_{(n+1\times n)}$$

And we can see that this equation really results in a $(1 \times n)$ matrix, i.e. $\nabla f(x)^T$.

Reverse mode - in detail

The reverse mode is carried out in m-steps (like the forward mode). We compute recursively:

$$v^{(i)} := egin{cases} DF^{(m)}(G_{m-1}) & ext{if } i = m \ \\ \\ v^{(i+1)}DF_i(G_{i-1}) & ext{if } i = m-1, \dots, 1 \end{cases}$$

$$v^{(i)} := egin{cases} DF^{(m)}(G_{m-1}) & ext{if } i = m \ \\ v^{(i+1)}DF_i(G_{i-1}) & ext{if } i = m-1,\dots,1 \end{cases}$$

Then $v^{(1)}$ will be $\nabla f(x)^T$ according to the previous equation.

And we compute in the *reverse* direction:

$$v^{(m)} \to v^{(m-1)} \to \ldots \to v^{(2)} \to v^{(1)} = \nabla f(x)^T$$

In detail we start with $v^{(m)}=(0,\ldots,\kappa_i,\ldots,\lambda_i,\ldots,0)$:

And we inspect:

In detail we start with $v^{(m)}=(0,\ldots,\kappa_i,\ldots,\lambda_i,\ldots,0)$:

And we inspect:

$$v^{(m-1)} = v^{(m)}DF_{m-1}(G_{m-2})$$

$$= (\kappa_i \quad \lambda_i) \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \dots & 1 \\ \kappa_{i-1} & & \lambda_{i-1} \end{pmatrix}$$

$$v^{(m-1)} = v^{(m)} DF_{m-1}(G_{m-2})$$

$$= (\kappa_i \quad \lambda_i) \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \dots & 1 \\ \kappa_{i-1} & \lambda_{i-1} \end{pmatrix}$$

$$= \left(v_1^{(m)}, v_2^{(m)}, \dots v_{n+m-2}^{(m)}, v_{n+m-1}^{(m)}\right) + \left(0, \dots, \kappa_{m-1} v_{n+m}^{(m)}, 0, \dots, 0, \kappa_{m-1} v_{n+m}^{(m)}, \dots, 0\right)$$

$$= \left(v_1^{(m)}, v_2^{(m)}, \dots v_{n+m-2}^{(m)}, v_{n+m-1}^{(m)}\right)$$

$$+ \left(0, \dots, \kappa_{m-1} v_{n+m}^{(m)}, 0, \dots, 0, \kappa_{m-1} v_{n+m}^{(m)}, \dots, 0\right)$$

To compute $v^{(i-1)}$ from $v^{(i)}$, we add $\kappa_{i-1}v^{(i)}_{n+i}$ to the k_i -th component and $\lambda_{i-1}v^{(i)}_{n+i}$ to the l_i -th component (if $k_i \neq 0$ and / or $l_i \neq 0$).

And of course delete the last component of $v^{(i)}$.

Reverse mode - in detail

Now remember that κ_i and λ_i are always entries of the gradients in g_i (the gradient vector).

Reverse mode - in detail

Now remember that κ_i and λ_i are always entries of the gradients in g_i (the gradient vector).

Compute $v^{(i)}$ efficiently by decomposing g_i and thus applying smart multiplication rules.

Applications - Optimization Problems

- Efficiently compute gradients and Hessians
- No need to *symbolically* calculate derivatives, especially for complex functions
- Auto-Diff achieves high numerical accuracy, better than numerical methods like finite differences

1

Applications - Neural Networks

General layout: Learn parameterized mapping $f_{\theta}: \mathcal{X} \to \mathcal{Y}$ from dataset $(x_i, y_i)_{i \in \{1, ..., n\}}$ where: $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$.

Initialize neural network with random parameters heta

Applications - Neural Networks

General layout: Learn parameterized mapping $f_{\theta}: \mathcal{X} \to \mathcal{Y}$ from dataset $(x_i, y_i)_{i \in \{1, ..., n\}}$ where: $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$.

- Initialize neural network with random parameters heta
- For samples from a dataset (x_i, y_i) , calculate $f_{\theta}(x_i) = \hat{y}_i$ and the *gradient* of specified *loss function L* w.r.t. θ :

$$\nabla_{\theta} L(\hat{y}_i, y_i)$$

3

Use in neural networks

Applications - Neural Networks

General layout: Learn parameterized mapping $f_{\theta}: \mathcal{X} \to \mathcal{Y}$ from dataset $(x_i, y_i)_{i \in \{1, ..., n\}}$ where: $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$.

- Initialize neural network with random parameters heta
- For samples from a dataset (x_i, y_i) , calculate $f_{\theta}(x_i) = \hat{y}_i$ and the *gradient* of specified *loss function L* w.r.t. θ :

$$\nabla_{\theta} L(\hat{y}_i, y_i)$$

Update the parameters heta using the computed $\emph{gradient}$

Applications - Neural Networks

General layout: Learn parameterized mapping $f_{\theta}: \mathcal{X} \to \mathcal{Y}$ from dataset $(x_i, y_i)_{i \in \{1, ..., n\}}$ where: $(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}$.

ightarrow Auto-Diff computes mentioned gradient at the same time when computing \hat{y}_i (the network outputs)

Literature used

"Automatic Differentiation: A Structure-Exploiting Forward Mode with Almost Optimal Complexity for Kantorovic Trees" - Michael Ulbrich and Stefan Ulbrich January 1996

References used

Thank you for your attention!