

Packet Tracer - VLSM Design and Implementation Practice Topology

You will receive one of three possible topologies.

Addressing Table

Device	Interface	IP Address	Subnet Mask	Default Gateway
Building 1	G0/0	10.11.48.97	225.255.255.240	N/A
	G0/1	10.11.48.65	225.255.255.224	N/A
	S0/0/0	10.11.48.121	225.255.255.252	N/A
Building 2	G0/0	10.11.48.113	225.255.255.248	N/A
	G0/1	10.11.48.1	225.255.255.192	N/A
	S0/0/0	10.11.48.122	225.255.255.252	N/A
ASW1	VLAN 1	10.11.48.98	225.255.255.240	10.11.48.97
ASW2	VLAN 1	10.11.48.66	225.255.255.224	10.11.48.65
ASW3	VLAN 1	10.11.48.114	225.255.255.248	10.11.48.113
ASW4	VLAN 1	10.11.48.2	225.255.255.192	10.11.48.1
Host - A	NIC	10.11.48.110	225.255.255.240	10.11.48.97
Host - B	NIC	10.11.48.94	225.255.255.224	10.11.48.65
Host - C	NIC	10.11.48.118	225.255.255.248	10.11.48.113
Host - D	NIC	10.11.48.62	225.255.255.192	10.11.48.1

Objectives

Part 1: Examine the Network Requirements

Part 2: Design the VLSM Addressing Scheme

Part 3: Assign IP Addresses to Devices and Verify Connectivity

Background

In this activity, you are given a /24 network address to use to design a VLSM addressing scheme. Based on a set of requirements, you will assign subnets and addressing, configure devices and verify connectivity.

Instructions

Part 1: Examine the Network Requirements

Step 1: Determine the number of subnets needed.

You will subnet the network address

. The network has the following requirements:

Packet Tracer - VLSM Design and Implementation Practice

•	LAN will require	host IP addresses
•	LAN will require	host IP addresses
•	LAN will require	host IP addresses
•	LAN will require	host IP addresses

How many subnets are needed in the network topology? 5

Step 2: Determine the subnet mask information for each subnet.

- a. Which subnet mask will accommodate the number of IP addresses required for Phow many usable host addresses will this subnet support? 255.255.240/28
 b. Which subnet mask will accommodate the number of IP addresses required for Phow many usable host addresses will this subnet support? 255.255.255.224/27
 c. Which subnet mask will accommodate the number of IP addresses required for Phow many usable host addresses will this subnet support? 30 (10.11.48.65 10.11.48.94)
 d. Which subnet mask will accommodate the number of IP addresses required for Phow many usable host addresses will this subnet support? 255.255.255.248/29
- e. Which subnet mask will accommodate the number of IP addresses required for the connection between Building1 and Building2 ? 255.255.255.252/30

Part 2: Design the VLSM Addressing Scheme

Step 1: Divide the

network based on the number of hosts per subnet.

- a. Use the first subnet to accommodate the largest LAN.
- b. Use the second subnet to accommodate the second largest LAN.
- c. Use the third subnet to accommodate the third largest LAN.
- d. Use the fourth subnet to accommodate the fourth largest LAN.
- e. Use the fifth subnet to accommodate the connection between

Step 2: Document the VLSM subnets.

Complete the **Subnet Table**, listing the subnet descriptions (e.g. [[S1Name]] LAN), number of hosts needed, then network address for the subnet, the first usable host address, and the broadcast address. Repeat until all addresses are listed.

Subnet Table

and

Subnet Description	Number of Hosts Needed	Network Address/CIDR	First Usable Host Address	Broadcast Address
Host – D LAN	60	10.11.48.0/26	10.11.48.1	10.11.48.63
Host – B LAN	30	10.11.48.64/27	10.11.48.65	10.11.48.95
Host – A LAN	14	10.11.48.96/28	10.11.48.97	10.11.48.111
Host – C LAN	6	10.11.48.112/29	10.11.48.113	10.11.48.119
WAN	2	10.11.48.120/30	10.11.48.121	10.11.48.123

Step 3: Document the addressing scheme.

- a. Assign the first usable IP addresses to for the two LAN links and the WAN link.
- b. Assign the first usable IP addresses to for the two LAN links. Assign the last usable IP address for the WAN link.
- c. Assign the second usable IP addresses to the switches.
- d. Assign the last usable IP addresses to the hosts.

Part 3: Assign IP Addresses to Devices and Verify Connectivity

Most of the IP addressing is already configured on this network. Implement the following steps to complete the addressing configuration.

Step 1: Configure IP addressing on the router LAN interfaces.

Step 2: Configure IP addressing on the , switch including the default gateway.

Step 3: Configure IP addressing on , including the default gateway.

Step 4: Verify connectivity.

You can only verify connectivity from , , and . However, you should be able to ping every IP address listed in the **Addressing Table**.