Math 220 Homework 2 Question 8

September 27, 2021

Question 8. Let $a, b, k \in \mathbb{Z}$ and assume that a, b are not zero. Then, using Bézout's Identity, show that if $k \not | \gcd(a, b)$, then $k \not | a$ or $k \not | b$.

We will prove the contrapositive, i.e. that if k|a and k|b then $k|\gcd(a,b)$. Applying Bézout's Identity, we have that $\exists x,y\in\mathbb{Z}$ s.t. $\gcd(a,b)=ax+by$. Applying the divisibility requirements we also have that $\exists m,n\in\mathbb{Z}$ s.t. a=km,b=kn. Putting these together we get

$$gcd(a,b) = ax + by = xmk + ynk = k(xm + yn)$$

This is clearly divisible by k so we're done. \square