An Example CRIME calculation: The cohomology ring of Q₈

May 31, 2011

Let $G = Q_8 = \langle x, y | x^2 = y^2 = (xy)^2, x^4 = 1 \rangle = \langle x, y, z | x^2 = y^2 = z = (xy)^2, x^4 = 1 \rangle$. Observe that z in the second presentation is redundant, but simplifies the notation later. In GAP, we execute the following commands.

```
gap> G:=SmallGroup(8,4);
<pc group of size 8 with 3 generators>
gap> Pcgs(G);
Pcgs([ f1, f2, f3 ])
```

Then a little manipulation in GAP reveals that f1, f2, and f3 correspond with x, y, and z from the presentation above, and with i, j, and -1 from the standard presentation of Q_8 .

Let $k = \mathbb{F}_2$. It's well known that k has a periodic minimal kG-projective resolution. To see this, we start with the following commands.

```
gap> C:=CohomologyObject(G);
<object>
gap> ProjectiveResolution(C,10);
[ 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2 ]
```

ProjectiveResolution returns the kG-ranks of the terms of the minimal projective resolution. These numbers are called the *Betti numbers* of the resolution. Therefore, this tells us that k has a minimal kG-projective resolution

$$P_*: \qquad \cdots \longrightarrow kG \xrightarrow{\partial_4} kG \xrightarrow{\partial_3} (kG)^{\oplus 2} \xrightarrow{\partial_2} (kG)^{\oplus 2} \xrightarrow{\partial_1} kG \xrightarrow{\epsilon} k \longrightarrow 0$$
 (1)

We can see from (1) that P_* appears to be periodic, but we confirm this below by looking at the boundary maps. The map ϵ is the usual augmentation $\epsilon\left(\sum_g \alpha_g g\right) = \sum_g \alpha_g$. Since P_* is minimal, the cohomology groups $H^i(G) = Ext^i(k,k)$ are simply

$$\operatorname{Hom}_{kG}(P_{i}, k) = k^{b_{i}}.$$

Here, b_i is the (i+1)st element in the list returned by ProjectiveResolution, so the first element in this list is the dimension of P_0 . Thus, the Betti numbers give the ranks of the cohomology groups as well.

To look at the boundary maps, we need some notation. Recall that for a p-group G of size p^n and a field k of characteristic p, which is exactly the situation that we're in in this example, the group algebra kG has a basis

$$\mathcal{B}' = \left\{ x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n} \,\middle|\, 0 \le \alpha_1, \alpha_2, \dots, \alpha_n \le p - 1 \right\} \tag{2}$$

where x_1, x_2, \ldots, x_n is a polycyclic generating set for G. In fact, the fact that \mathcal{B}' is a basis merely expresses the fact the x_1, x_2, \ldots, x_n is a polycyclic generating set. When we arrange the elements in the example $G = Q_8$ such that the exponent tuples $(\alpha_1, \alpha_2, \ldots, \alpha_n)$ are in reverse lexicographic order, we have

$$\mathcal{B}' = (1, x, y, xy, z, xz, yz, xyz)$$

= $(1, i, j, k, -1, -i, -j, -k)$.

However, a more computationally efficient basis of kG is the following.

$$\mathcal{B} = \left\{ \left. (x_1 - 1)^{\alpha_1} (x_2 - 1)^{\alpha_2} \dots (x_n - 1)^{\alpha_n} \right| 0 \le \alpha_1, \alpha_2, \dots \alpha_n \le p - 1 \right\}$$
 (3)

Let I = x + 1, J = y + 1, and K = xy + 1. Observe that $I^2 = J^2 = z + 1$. Observe also that K = I + J + IJ. The element K was included to make the boundary maps below look more symmetric. Then in the example $G = Q_8$ we have

$$\mathcal{B} = (1, I, J, IJ, I^2, I^3, I^2J, I^3J)$$

The boundary maps returned by Boundary Maps are with respect to the basis \mathcal{B} .

Observe first that $\vartheta_5 = \vartheta_1$, so we see that P_* is in fact periodic as mentioned above. The matrices for ϑ_n give only the image of 1_G from each direct factor of P_n since the images of the the other elements of P_n are determined by linearity. For example, since

$$\vartheta_1: P_1 = kG \oplus kG \to P_0 = kG$$

the matrix returned above tells us that $\partial_1(1_G, 0) = I$ and $\partial_1(0, 1_G) = J$. Summarizing the information above, we have the following.

$$\partial_{n} = \begin{cases} \begin{pmatrix} I \\ J \end{pmatrix} & \text{if } n \equiv 1 \pmod{4} \\ \begin{pmatrix} I & J \\ J & K \end{pmatrix} & \text{if } n \equiv 2 \pmod{4} \\ \begin{pmatrix} J & K \end{pmatrix} & \text{if } n \equiv 3 \pmod{4} \\ \begin{pmatrix} I^{3}J \end{pmatrix} & \text{if } n \equiv 0 \pmod{4} \end{cases}$$

$$(4)$$

The matrices in (4) are meant to be multiplied on the right as usual in GAP.

Now since $H^1(G) = Hom_{kG}(P_1, k)$, we have a natural basis $\{\eta_1, \eta_2\}$ of $H^1(G)$ where η_1 is the map sending $(1_G, 0) \mapsto 1_k$ and $(0, 1_G) \mapsto 0$ and η_2 is the other way around.

Then the following are chain maps representing η_1 and η_2 .

In the rows of the diagrams in (5) we have copies of P_{*}, while in the columns, we have maps making the diagrams commute. These maps were produced by inspection, but would be much harder to compute for larger groups. Fortunately, this is exactly what the CRIME package does for us, as we will see below.

For the purpose of multiplication, the pictures in (5) represent η_1 and η_2 , so the composition of the two pictures represents the product, as in the following picture.

$$P_{3} \longrightarrow P_{2} \longrightarrow P_{1}$$

$$(01) \downarrow \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \downarrow \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \downarrow \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \downarrow \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \downarrow \qquad \begin{pmatrix} 0 & 1 \\ 1 + J & 1 \end{pmatrix} \downarrow \qquad \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \downarrow \qquad \begin{pmatrix} 0 &$$

From (6), we can see that $\eta_1\eta_2 = \zeta_2$ where $\{\zeta_1, \zeta_2\}$ is the natural basis of $H^2(G)$. This is the map going from P_2 in the top row to k in the bottom, as in the diagrams in (5).

By composing the first diagram with itself, we find that $\eta_1^2 = \zeta_1$. Similarly, by more chain map production and composition, we find that $\eta_2\zeta_2$ is a nonzero element of degree 3, but that no product of elements of degree < 4 produces a nonzero element of degree 4.

Let $\{\xi\}$ be the natural basis of $H^4(G)$. We lift ξ to a chain map.

This time, the production of the chain map is easy because of the periodicity of P_* . From (7) we see that all the elements of degree 4–7 arise as products of ξ with elements of degree 0–3, which in turn are products of η_1 and η_2 .

Thus, by recursion, we find that η_1 , η_2 , and ξ generate the entire ring $H^*(G)$. This is precisely what GAP tells us from the following commands.

```
gap> CohomologyGenerators(C,10);
[ 1, 1, 4 ]
gap> A:=CohomologyRing(C,10);
<algebra of dimension 17 over GF(2)>
gap> LocateGeneratorsInCohomologyRing(C);
[ v.2, v.3, v.7 ]
```

CohomologyGenerators merely tells us the degrees of the generators, and they agree with those which we computed above.

The ring returned by <code>CohomologyRing</code> has basis <code>[A.1, A.2, ... A.17]</code> corresponding with the concatenation of the natural bases of the $H^i(G)$'s. Thus, <code>A.1</code> is the identity element, <code>A.2</code> and <code>A.3</code> correspond with η_1 and η_2 , <code>A.4</code> and <code>A.5</code> correspond with ζ_1 and ζ_2 , etc. Observe that $17 = \sum_{i=0}^{10} b_i$ which explains the dimension of <code>A</code>. The true cohomology ring is infinite-dimensional, so that <code>A</code> can be seen as a degree-10-truncation, that is, <code>A \cong H^*(G)/J_{>10}</code> where $J_{>10}$ is the subring of all elements of degree > 10.

The following commands verify the calculations mentioned above.

```
gap> A.2^2;
v.4
gap> A.2*A.3;
v.5
gap> A.3*A.5;
v.6
```

The command LocateGeneratorsInCohomologyRing tells us that η_1 , η_2 , and ξ correspond with A.2, A.3, and A.7, which we had already deduced by degree considerations, but if dim H⁴(G) had been greater than 1, we wouldn't have known which element corresponded with ξ .

Finally, GAP gives us a presentation of H* (G) with the following command.

```
gap> CohomologyRelators(C,10); [ [ z, y, x ], [ z^2+z*y+y^2, y^3 ] ]
```

This tells us that

$$H^{*}(G) \cong k[z, y, x]/(z^{2} + yz + y^{2}, y^{3})$$

is a polynomial ring in the variables z, y and x, modulo the ideal generated by $z^2 + yz + y^2$ and y^3 .