Univerza v Ljubljani Fakulteta za matematiko in fiziko

Bor Rotar, Jani Metež

O ekstremnih grafih v povezavi z obteženim Szegedovim indeksom

1 Definiranje problema

V projektni nalogi bova pokazala, da so grafi, ki minimizirajo obteženi Szgadov indeks (wSz), za 26 ali več vozlišč drevesa in jih pokazala. Hkrati bova skušala ugotoviti čim več lastnosti teh dreves.

Obteženi Szgedov indeks:

$$wSz(G) = \sum_{e=uv \in E(G)} [deg(u) + deg(v)] \cdot n_u(e) \cdot n_v(e)$$

Pripombe:

- 1. deg(u) je stopnja vozlišča
- 2. $n_u(e)$ je moč množice vseh vozlišč, ki so bližje u kot pa v (vključno z u in v)
- 3. Obteženi Szgadov indeks je definiran za enostavne grafe

Potek dela:

V Sage-u oz. Cocalc-u bo potrebno definirati wSz in ugotoviti čim bolj enostaven način za generiranje grafov, ki minimizirajo ta indeks. Ko bo to storjeno, bo potrebno le še opaziti čim več možnih lastnosti teh grafov in od katerega števila vozlišč naprej veljajo. Nekatere lastnosti že poznamo iz vira na katergea se navezuje projekt.

2 Algoritmi

2.1 Obteženi Szgadov indeks

Obteženi Szgadov indeks bomo označili zwSz. Definiran bo tako, da se bo zapeljal čez vsako povezavo.

```
def wSz(M):
    indeks = []
    d = M.distance_all_pairs()
    for u,v in M.edges(labels = false):
        blizu_u = 0
        for a in M.vertices():
            if d[a][u] < d[a][v]:
                blizu_u += 1
                blizu_v = order(M) - blizu_u
            indeks += [(M.degree(u) + M.degree(v)) * blizu_u * blizu_v]
        return sum(indeks)</pre>
```

2.2 Spreminjanje grafa

Algoritem vzame nek povezan graf in mu dodaja ali odstranjuje povezave, pri tem pazi na to, da graf ostaja povezan (wSz je definiran za enostavne torej povezane grafe).

```
from sage.graphs.connectivity import is_connected
def spremeni_graf(G):
    H = Graph(G)
    if random() < 0.5:
        i = 0
        while True:
            H.delete_edge(H.random_edge())
            if is_connected(H):
                Η
                break
            else:
                H = Graph(G)
                i = i + 1
                True
            if i > 15:
                H.add_edge(H.complement().random_edge())
                break
    return H
```

Dodamo še preprosto funkcijo, ki grafu doda novo vozlišče in ga poveže z prvim vozliščem grafa.

```
def novo_vozlisce(G):
    H = Graph(G)
    novo_vzl = order(H)
    H.add_edge((0,novo_vzl,None))
    return H
```

2.3 Algoritem za minimiziranje wSz

Ko pogledamo grafe z minimalnim wSz do 25 vozlišč opazimo, da so si podobni. Sklepamo: če grafu na n vozliščih, ki že ima minimalni wSz, dodamo novo vozlišče s povezavo, bomo lažje prišli do grafa z minimalnim wSz, kot pa če to iščemo na čisto novem grafu.

Torej, da najdemo graf na n vozliščih z min(wSz) bomo grafu na (n-1) vozliščih z že minimiziranim wSz dodali vozlišle in povezavo in ga spreminjali ter te spremembe obdržali, če je wSz novega grafa manjši. Ko wSz ne bomo mogli več zmanjšati, algoritem oz. ponovitve algoritma zaključimo.

```
def min_wSz(H,koraki):
    k = 0
    primerjajH = H
    HwSz = wSz(H)
    while k < koraki:
        k = k + 1
        H = spremeni_graf(H)
        MwSz = wSz(H)
        if MwSz < HwSz:
            primerjajH = H
    return primerjajH</pre>
```

V algoritem pa lahko tudi vstavimo graf za katerega sklepamo, da ima minimalni wSz, in če ne najde boljšega grafa lahko sklepamo, da ima ta graf že minimalni wSz.

n				

3 Viri

Literatura

[1] Jan Boka, Boris Furtulab, Nikola Jedličkova in Riste Škrekovski On Extremal Graphs of Weighted Szeged Index https://arxiv.org/abs/1901.04764, 15 Jan 2019.