

N74 11116

CR 132353

OCTOBER 1972

INTRODUCTION

**ANALYSIS AND DESIGN OF THREE
DIMENSIONAL SUPERSONIC NOZZLES**

**ATL TR 166 - VOLUME IV
SIMILARITY LAWS FOR NOZZLE FLOWS**

By

A. Ferri and G. Roffe

PREPARED FOR

**NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
HAMPTON, VIRGINIA**

UNDER

CONTRACT NO. NAS1-10327

**ADVANCED TECHNOLOGY LABORATORIES, INC.
Merrick and Stewart Avenues
Westbury, New York 11590**

INDEX

	<u>Page</u>
I. INTRODUCTION DEFINITION OF RATE SIMILARITY RATIO, CRITICAL RATIO	1
II. SIMILARITY REQUIREMENTS	3
III. THERMODYNAMIC RELATIONS	5
IV. COLD FLOW SIMULATION	11

APPENDIX

LIST OF FIGURES

	<u>Page</u>
FIG. 1. VARIATION OF THERMOPHYSICAL PROPERTIES OF AIR AND COOL HYDROCARBONS DURING ISENTROPIC EXPANSION	11
FIG. 2. VARIATION OF EQUILIBRIUM Γ THROUGH NOZZLE EXPANSION	14
FIG. 3. EQUILIBRIUM ISENTROPIC EXPONENT FOR SEVERAL HYDROCARBON GASES.	15
FIG. 4. COMPARISON OF Γ VARIATION FOR ACTUAL NOZZLE GAS AND TWO COOL HYDROCARBONS	16
FIG. 5. COMPARISON OF c_p VARIATION FOR ACTUAL NOZZLE GAS AND TWO COOL HYDROCARBONS	17
FIG. 6. COMPARISON OF STATIC PRESSURE DISTRIBUTION AND IMPULSE FUNCTION FOR EQUILIBRIUM H_2 -AIR ($\phi=0.6$) AND CH_4 ($T_i=550^{\circ}K$)	22
FIG. 7. COMPARISON OF STATIC PRESSURE DISTRIBUTION AND IMPULSE FUNCTION FOR EQUILIBRIUM STOICHIOMETRIC H_2 -AIR AND C_2H_4 ($T_i=500^{\circ}K$)	23

I. INTRODUCTION

The development of nozzles for hypersonic aircraft requires the ability to analyze the behavior of high temperature gases, often chemically reactive, flowing through ducts of complicated geometry. For this purpose, analyses such as those presented in the preceeding volumes of this report have been and will continue to be developed. However, the extremely complicated nature of these flow fields necessitates the adoption of certain simplifying assumptions in the construction of the analytical models. It is therefore both necessary and desirable to carry out the parallel development of an experimental program aimed at assessing the accuracy and areas of applicability of the analytical results as well as at the acquisition of data for those physically interesting configurations for which suitable analytical tools may not yet be available.

Since the exact duplication of all gas conditions at the nozzle entrance station, especially the extremely high temperature levels, makes experiments both difficult and expensive, it is logical to investigate the possibility of simulating the actual nozzle flows with low temperature nonreactive gases. To pursue this goal, it is necessary to develop the similarity laws for nozzle flows and determine the parameters which must be duplicated. This effort has been carried out and the results of the

analysis are presented here. In addition to the development of these similarity rules, a number of cool gas flows have been considered to determine their suitability as substitutes for actual high temperature gases in an experimental program.

II. SIMILARITY REQUIREMENTS

The proper simulation of a flow field requires that at any geometrically similar point the Mach number and flow direction be the same as those which exist at the corresponding point in the alternate flow and that the ratio of static pressure from one point to another in each of the flows be identical. The necessity to match the variation of p with θ requires that the value of Γ used in the characteristics equations and defined for equilibrium chemistry as

$$\Gamma = \frac{\rho}{p} \left(\frac{\partial p}{\partial \rho} \right)_S$$

be duplicated at corresponding points. The requirement that the Mach number and flow deflection be identical at corresponding points requires that the initial conditions be similar in p and identical in M and θ . In addition, the variation of V/V_i and a/a_i with p must be the same, where V_i and a_i are the gas velocity and speed of sound at the reference initial conditions.

It should be noted that although the ratio V_i/a_i must be the same for the nozzle and the model, the actual values V_i and a_i can be different since only the local Mach number must be the same.

The assumption is made that the chemistry is in equilibrium. Therefore, the conditions of similarity require that the variation of pressure ratio (p/p_i), Γ and c_p with temperature ratio (T/T_i) be the same at geometrically similar points. This will assure that the variation of velocity ratio, Mach number and pressure ratio, as functions of temperature ratio are also the same. These conditions imply that the variation of three thermodynamic parameters with temperature must be closely simulated in the model, within the range of temperature ratio existing from the throat to the nozzle exit.

III. THERMODYNAMIC RELATIONS

Consider a volume containing a unit weight of gas in thermodynamic equilibrium consisting of n moles and with a static enthalpy H per mole. In this case, the following thermodynamic relations are valid if the gas is a mixture of species i and n_i is the number of moles of each specie:

$$\sum n_i = n \quad (1)$$

$$(\frac{\partial H}{\partial T})_p = n c_p = T (\frac{\partial S}{\partial T})_p \quad (2)$$

where c_p is the specific heat per mole at constant pressure.

The flow is isentropic between discontinuities and is in chemical equilibrium. Therefore,

$$(\frac{\partial S}{\partial T})_p dT + (\frac{\partial S}{\partial p})_T dp = 0 \text{ (isentropic flow)} \quad (3)$$

$$(\frac{\partial n}{\partial T})_p dT + (\frac{\partial n}{\partial p})_T dp = 0 \text{ (equilibrium chemistry)} \quad (4)$$

The Gibbs free energy is given by

$$G = H - TS \quad (4)$$

and

$$dH = T dS - Vdp \quad (5)$$

Then

$$\left(\frac{\partial V}{\partial T}\right)_P = \left(\frac{\partial S}{\partial P}\right)_T \quad (6)$$

because

$$\left(\frac{\partial n}{\partial P}\right)_T = V, \quad \left(\frac{\partial n}{\partial T}\right)_P = S \quad (7)$$

but Equation (3) gives

$$\left(\frac{\partial S}{\partial P}\right)_T = - \left(\frac{\partial S}{\partial T}\right)_P \left(\frac{\partial T}{\partial P}\right)_S \quad (8)$$

Therefore,

$$\left(\frac{\partial T}{\partial P}\right)_S = \frac{T \left(\frac{\partial V}{\partial T}\right)_P}{n c_p} \quad (9)$$

The equation of state gives

$$\left(\frac{\partial V}{\partial T}\right)_P = \frac{R_0 T}{P} \left(\frac{\partial n}{\partial P}\right)_T + \frac{n R_0}{P} \quad (10)$$

Therefore
Thus

$$\left(\frac{\partial \ln T}{\partial \ln P}\right)_S = \frac{R_0}{c_p} \left[\left(\frac{\partial \ln n}{\partial \ln P}\right)_T + 1 \right] \quad (11)$$

If we define where

$$D_T = \sum_i \left(\frac{\partial \ln n}{\partial \ln T} \right)_P = n c_D T_i \quad (12)$$

and

the relation between p and T is given by

$$\left(\frac{\partial p}{\partial T} \right)_S = \frac{\left(\frac{\partial \ln p}{\partial \ln T} \right)_P - \left(\frac{\partial \ln c_p}{\partial \ln T} \right)_P}{\left(\frac{\partial \ln n}{\partial \ln T} \right)_P} \left[\frac{1}{1+D_T} \right] \quad (13)$$

(19)

c_T must be the same at corresponding points or at the same value of temperature ratio ($\frac{T}{T_i}$). In addition, since

$$p = \frac{p_{T_i}}{R_0 T} \quad (20)$$

$$nH = \sum_i n_i H_i \quad (14)$$

where W is the molecular weight and $nW = 1$, then

In addition,

$$n c_p = \left(\frac{\partial nH}{\partial T} \right)_P = \sum_i n_i c_{p,i} + \sum_i \frac{n_i H_i}{T} D_{T,i} \quad (15)$$

$$\left(\frac{\partial p}{\partial T} \right)_S = \frac{p}{R_0 T} \left(\frac{\partial p}{\partial T} \right)_{S,P} + \frac{p}{R_0 T} \left(\frac{\partial W}{\partial T} \right)_S = \frac{p}{R_0 T^2} \quad (21)$$

where $D_{T,i}$ is defined as

and

$$D_{T,i} = \frac{\left(\frac{\partial \ln n_i}{\partial \ln T} \right)_P}{\left(\frac{\partial \ln n}{\partial \ln P} \right)_T + \left(\frac{\partial \ln n}{\partial \ln T} \right)_P \left(\frac{\partial p}{\partial T} \right)_S} \quad (16)$$

(22)

Thus

then, if we define

$$c_p = \sum_i \frac{n_i c_{p,i}}{n} + \sum_i \frac{n_i H_i D_{T,i}}{nT} \quad (17)$$

$$D_p = \left(\frac{\partial \ln n}{\partial \ln P} \right)_T \quad (23)$$

$$a_p^2 = \frac{c_p \cdot D_p}{(1+D_p)(1+D_p)^2 n} \quad (24)$$

where

$$\sum n_i D_{T_i} = n D_T \quad (18)$$

The relation between p and ρ is given by

$$\left(\frac{\partial p}{\partial \rho}\right)_S = a^2 = -\frac{\left(\frac{\partial p}{\partial T}\right)_S}{\left(\frac{\partial \rho}{\partial T}\right)_S} \quad (19)$$

But

$$\rho = \frac{pW}{R_0 T} \quad (20)$$

where W is the molecular weight and $nW = 1$.

In addition,

$$\left(\frac{\partial p}{\partial T}\right)_S = \frac{W}{R_0 T} \left(\frac{\partial p}{\partial T}\right)_S + \frac{p}{R_0 T} \left(\frac{\partial W}{\partial T}\right)_S - \frac{pW}{R_0 T^2} \quad (21)$$

and

$$\left(\frac{\partial W}{\partial T}\right)_S = \left(\frac{\partial W}{\partial T}\right)_P + \left(\frac{\partial W}{\partial P}\right)_T \left(\frac{\partial P}{\partial T}\right)_S \quad (22)$$

where c_p is the molar capacity at constant pressure and D_{T_i} is the coefficient defined in equation (16).

Then, if we define

$$D_P = \left(\frac{\partial \ln n}{\partial \ln p}\right)_T \quad (23)$$

$$a^2 = \frac{c_p \frac{p}{\rho}}{(1-D_P)c_p - (1+D_T)^2 R_0} \quad (24)$$

Then if Γ is defined as

$$\text{constant } \Gamma = \frac{c_p R_0}{(1-D_p)c_p - (1+D_T)^2 R_0} \quad (25)$$

Unfortunately, the gases entering the nozzle is not actual

$$a^2 = \Gamma \left(\frac{p}{\rho} \right) \quad (26)$$

If we transform c_p into specific heat per unit mass c_{pm}

then

$$\text{constant } \Gamma = \frac{c_{pm}}{c_{pm}(1-D_p) - (1+D_T)^2 R_0} \quad (27)$$

and finally we have the constant value of α_T for the nozzle

$$\text{define } \alpha_T = \sum \alpha_i c_{pmi} + \alpha_i \bar{n}_i D_{Ti} \quad (28)$$

$$\alpha_T = \frac{c_{pm}}{R_0 W} \cdot \left(\frac{1}{1+D_T} \right) \quad (29)$$

where α_i is the mass fraction of species i and D_{Ti} is the coefficient defined in Equation (16).

From the preceding we conclude that the three thermodynamic parameters which must be duplicated are T , α_T and c_p or equivalently D_p , D_T and c_p .

Unfortunately, the gases entering the nozzle of an actual vehicle undergo a substantial change in chemical composition as they flow through the duct and this change has a pronounced effect on the values of D_T and D_p . Since any cold gas simulation will, of necessity, preclude these chemical reactions, it does not appear possible to obtain perfect simulation over the entire range of temperatures existing in the nozzle. However, gases are available which permit close simulation of T , c_p and α_T for some conditions of interest. Some of these gases are investigated and defined in the next section where their variation of critical thermodynamic properties with temperature ratio is presented within the temperature range of interest.

IV. COLD FLOW SIMULATION

In order to assess the relative merits of various gases with regard to their ability to simulate the hot exhaust flow through a hypersonic nozzle, it is first necessary to define the properties of a typical hot flow. To do this, we select the case of a scramjet propelled vehicle flying at a Mach number of 8 at an altitude of 100,000 feet. The scramjet engine operation is characterized by an inlet static pressure ratio of 140 with a total pressure recovery of 60% and constant pressure combustion. For hydrogen-air combustion at equivalence ratios of 0.6 and 1.0 these operational assumptions result in the following set of gas stream characteristics at the nozzle entrance.

<u>ϕ</u>	<u>p(pa)</u>	<u>h(j/kg)</u>	<u>ρ(kg/m³)</u>	<u>T(°K)</u>
0.6	1.56×10^5	6×10^6	0.162	2821
1.0	1.56×10^5	4.2×10^6	0.204	2381

Assuming equilibrium chemistry, the temperature-pressure history through an isentropic expansion from the nozzle entrance conditions to a static pressure 200 times lower than the initial value is obtained from the tables of Reference (1) and is shown in Figure (1). It should be noted that the actual degree of expansion would be expected to be significantly less than a factor

FIGURE 1. PRESSURE-TEMPERATURE PATH THROUGH EQUILIBRIUM ISENTROPIC EXPANSION.

of 200 but this wider range provides an adequate margin for the purposes of comparison. The values of Γ corresponding to the expansion curves of Figure (1) are plotted in Figure (2), having also been obtained from Reference (1).

The values of Γ for several hydrocarbon gases (CH_4 , C_2H_4 , C_2H_6 , C_4H_8 -2) are shown in Figure (3) as functions of temperature. Since it is necessary to match the function $\Gamma(T/T_i)$ through the expansion, several values of T_i were tried for each gas and the resulting Γ compared with the requirement of Figure (2). The best simulation was found to be obtained by the use of CH_4 with an initial temperature of 550°K when $\phi=0.6$ was to be simulated and by the use of C_2H_4 with an initial temperature of 500°K when $\phi=1.0$ was to be simulated. It is evident from Figure (4) that the ability to provide the proper value of Γ is easily attained.

In addition to Γ , it is also desirable to match the variation of c_p with temperature ratio (T/T_i). This variation is presented in Figure (5) for the equilibrium H_2 -air mixtures at $\phi=0.6$ and $\phi=1.0$ along with that of the methane and ethylene discussed above. It can be seen from the figure that although the level of c_p can be matched fairly closely for $\phi=0.6$ simulation, the high initial temperature associated with stoichiometric combustion produces a significant degree of dissociation whose effect cannot be closely matched with a relatively cool gas.

FIGURE 2. VARIATION OF EQUILIBRIUM THROUGH NOZZLE EXPANSION.

FIGURE 2. VARIATION OF EQUILIBRIUM Γ THROUGH NOZZLE EXPANSION.

FIGURE 3. EQUILIBRIUM ISENTROPIC EXPONENT FOR SEVERAL HYDROCARBON GASES.

(REFERENCE 2)

FIGURE 5. COMPARISON OF Γ VARIATION FOR ACTUAL NOZZLE GAS AND TWO COOL HYDROCARBONS. (REFERENCE 2)

FIGURE 4. COMPARISON OF Γ VARIATION FOR ACTUAL NOZZLE GAS AND TWO COOL HYDROCARBONS.

FIGURE 5. COMPARISON OF c_p VARIATION FOR ACTUAL NOZZLE GAS AND TWO COOL HYDROCARBONS. (REFERENCE 2)

Finally, the value of α_T is zero for the nonreactive substitute gases while it varies from zero to a small negative number for the high temperature gases. Although a quantitative evaluation of the small but finite value of α_T for the real gas cannot be made here, it is of interest to note that its maximum magnitude for $\phi=0.6$ is an order of magnitude smaller than it is for $\phi=1.0$.

Summarizing, excellant duplication of Γ can be obtained using a cool gas for any value of ϕ . Good c_p and α_T matching can be obtained for moderate values of ϕ , but a quantitative definition of the error associated with small mismatches of the three where δ is the angle defining the wave orientation from the thermodynamic functions is certainly required. To do this, we will integrate the equations of motion used in an equilibrium (26). From the definition of our coordinate system, we have characteristics analysis to analyze a one wave expansion of both real gases and substitute hydrocarbons. The results of this simple analysis can then be used as a good indicator of the error which is associated with the use of a cool substitute gas.

If α_T is assumed constant, we have

The momentum equation can be written as

$$\frac{dp}{\rho} + \frac{1}{2} dV^2 = 0 \quad (30)$$

Solving for dV^2 , we have

and the isentropic law in the form

$$\frac{dp}{p} = \Gamma \frac{dp}{p} \quad (31)$$

For a one wave flow, a convenient coordinate system can be defined by the local Mach line and a normal to it. Defining the velocity component along the characteristic as v_t , we have for one wave flow

$$\frac{dv_t}{d\delta} = a \quad (32)$$

where δ is the angle defining the wave orientation from the y-axis and a is the local sonic velocity, given by Equation (26). From the definition of our coordinate system, we have

$$v^2 = v_t^2 + a^2 \quad (33)$$

Integrating (30) and (31) over a small step in Δp through which Γ may be assumed constant, we obtain

$$\frac{(\Gamma+1)}{\Gamma-1} \frac{a^2 + v^2}{v^2} = \frac{c^2}{v^2} \quad (34)$$

programmed for numerical solution with the subroutines for $I(T, p, \phi)$ and $I(T, p, v)$ described in Volume I of this report.

Substituting into (32), we have in the Appendix the program

$$\frac{dv_t}{d\delta} = \sqrt{\frac{\Gamma-1}{\Gamma+1}} \sqrt{c^2 - v_t^2} \quad (35)$$

or

$$\int_{V_{t_1}}^{V_{t_2}} \frac{dV_t}{\sqrt{c^2 - V_t^2}} = \int_{\delta_1}^{\delta_2} \sqrt{\frac{\Gamma-1}{\Gamma+1}} d\delta \quad (36)$$

which yields

$$\beta_2 = \beta_1 - \sqrt{\frac{\Gamma-1}{\Gamma+1}} (k_2 - k_1) \quad (37)$$

where

$$k \equiv \tan^{-1} \frac{V_t/c}{\sqrt{1-(V_t/c)^2}} \quad (38)$$

and

$$\beta = \theta + \mu = \pi/2 - \delta \quad (39)$$

Equations (33), (34), (37) and (38) can be used to evaluate the expansion of a gas through a series of steps in Δp , the value of Γ being a constant in each step. This analysis was programmed for numerical solution using the curvefits for $h(T,p,\phi)$ and $\Gamma(T,p,\phi)$ described in Volume I of this report. The program listing is presented in the Appendix. The program was used to compute the variation of pressure and impulse

function* with flow turning angle through a one wave expansion for the $\phi=0.6$ and 1.0 nozzle entrance conditions described earlier. The program was also used with the curvefits of Reference (1) for the functions $h(T)$ and $[c_p/R](T)$ for the gases CH_4 and C_2H_4 . Since the temperature range for the hydrocarbons was fairly low, the equilibrium isentropic exponent was defined by the expression

$$\Gamma = \frac{c_p/R}{(c_p/R)-1} \quad (40)$$

The results of these calculations are presented in Figures (6) and (7) where it is clear that fairly good representation of pressure distribution and impulse can be achieved with the use of cool substitute gases.

*Impulse function is defined here as

$$\frac{F/F^*}{m} = \frac{\Gamma_1 + \Gamma m^2}{m\sqrt{2(\Gamma+1)[1+(\frac{\Gamma-1}{2})m^2]}}$$

following the notation of Reference (3).

FIGURE 6. COMPARISON OF STATIC PRESSURE DISTRIBUTION AND IMPULSE FUNCTION FOR EQUILIBRIUM H₂-AIR ($\phi=0.6$) AND CH₄ ($T_i=550^{\circ}\text{K}$).

FIGURE 7. COMPARISON OF STATIC PRESSURE DISTRIBUTION AND IMPULSE FUNCTION FOR EQUILIBRIUM STOICHIOMETRIC H_2 -AIR AND C_2H_4 ($T_i = 500^\circ K$).

REFERENCES

1. Properties of Air and Combustion Products with Kerosene and Hydrogen Fuels. - Propulsion and Energetics Panel, AGARD (1967).
2. McBride, B.J., Heimer, S.; et al., "Thermodynamic Properties to 6000°K for 210 Substances Involving the First 18 Elements," NSAS SP-3001.
3. Shapiro, A., "The Dynamics and Thermodynamics of Compressible Fluid Flow," The Ronald Press Company (1954).

5	TR 166 - Vol. IV
6	166-17
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	
93	
94	
95	
96	
97	
98	
99	
100	
101	
102	
103	
104	
105	
106	
107	
108	
109	
110	
111	
112	
113	
114	
115	
116	
117	
118	
119	
120	
121	
122	
123	
124	
125	
126	
127	
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	
139	
140	
141	
142	
143	
144	
145	
146	
147	
148	
149	
150	
151	
152	
153	
154	
155	
156	
157	
158	
159	
160	
161	
162	
163	
164	
165	
166	
167	
168	
169	
170	
171	
172	
173	
174	
175	
176	
177	
178	
179	
180	
181	
182	
183	
184	
185	
186	
187	
188	
189	
190	
191	
192	
193	
194	
195	
196	
197	
198	
199	
200	
201	
202	
203	
204	
205	
206	
207	
208	
209	
210	
211	
212	
213	
214	
215	
216	
217	
218	
219	
220	
221	
222	
223	
224	
225	
226	
227	
228	
229	
230	
231	
232	
233	
234	
235	
236	
237	
238	
239	
240	
241	
242	
243	
244	
245	
246	
247	
248	
249	
250	
251	
252	
253	
254	
255	
256	
257	
258	
259	
260	
261	
262	
263	
264	
265	
266	
267	
268	
269	
270	
271	
272	
273	
274	
275	
276	
277	
278	
279	
280	
281	
282	
283	
284	
285	
286	
287	
288	
289	
290	
291	
292	
293	
294	
295	
296	
297	
298	
299	
300	
301	
302	
303	
304	
305	
306	
307	
308	
309	
310	
311	
312	
313	
314	
315	
316	
317	
318	
319	
320	
321	
322	
323	
324	
325	
326	
327	
328	
329	
330	
331	
332	
333	
334	
335	
336	
337	
338	
339	
340	
341	
342	
343	
344	
345	
346	
347	
348	
349	
350	
351	
352	
353	
354	
355	
356	
357	
358	
359	
360	
361	
362	
363	
364	
365	
366	
367	
368	
369	
370	
371	
372	
373	
374	
375	
376	
377	
378	
379	
380	
381	
382	
383	
384	
385	
386	
387	
388	
389	
390	
391	
392	
393	
394	
395	
396	
397	
398	
399	
400	
401	
402	
403	
404	
405	
406	
407	
408	
409	
410	
411	
412	
413	
414	
415	
416	
417	
418	
419	
420	
421	
422	
423	
424	
425	
426	
427	
428	
429	
430	
431	
432	
433	
434	
435	
436	
437	
438	
439	
440	
441	
442	
443	
444	
445	
446	
447	
448	
449	
450	
451	
452	
453	
454	
455	
456	
457	
458	
459	
460	
461	
462	
463	
464	
465	
466	
467	
468	
469	
470	
471	
472	
473	
474	
475	
476	
477	
478	
479	
480	
481	
482	
483	
484	
485	
486	
487	
488	
489	
490	
491	
492	
493	
494	
495	
496	
497	
498	
499	
500	
501	
502	
503	
504	
505	
506	
507	
508	
509	
510	
511	
512	
513	
514	
515	
516	
517	
518	
519	
520	
521	
522	
523	
524	
525	
526	
527	
528	
529	
530	
531	
532	
533	
534	
535	
536	
537	
538	
539	
540	
541	
542	
543	
544	
545	
546	
547	
548	
549	
550	
551	
552	
553	
554	
555	
556	
557	
558	
559	
560	
561	
562	
563	
564	
565	
566	
567	
568	
569	
570	
571	
572	
573	
574	
575	
576	
577	
578	
579	
580	
581	
582	
583	
584	
585	
586	
587	
588	
589	
590	
591	
592	
593	
594	
595	
596	
597	
598	
599	
600	
601	
602	
603	
604	
605	
606	
607	
608	
609	
610	
611	
612	
613	
614	
615	
616	
617	
618	
619	
620	
621	
622	
623	
624	
625	
626	
627	
628	
629	
630	
631	
632	
633	
634	
635	
636	
637	
638	
639	
640	
641	
642	
643	
644	
645	
646	
647	
648	
649	
650	
651	
652	
653	
654	
655	
656	
657	
658	
659	
660	
661	
662	
663	
664	
665	
666	
667	
668	
669	
670	
671	
672	
673	
674	
675	
676	
677	
678	
679	
680	
681	
682	
683	
684	
685	
686	
687	
688	
689	
690	
691	
692	
693	
694	
695	
696	
697	
698	
699	
700	
701	
702	
703	
704	
705	
706	
707	
708	
709	
710	
711	
712	
713	
714	
715	
716	
717	
718	
719	
720	
721	
722	
723	
724	
725	
726	
727	
728	
729	
730	
731	
732	
733	
734	
735	
736	
737	
738	
739	
740	
741	
742	
743	
744	
745	
746	
747	
748	
749	
750	
751	
752	
753	
754	
755	
756	
757	
758	
759	
760	
761	
762	
763	
764	
765	
766	
767	
768	
7	

APPENDIX

PROGRAM LISTING IN BASIC LANGUAGE

```

500 PRINT "I", "P", "T", "RHO", "H"
510 PRINT "GAMMA", "MACH", "THETA"
520 PRINT
530 DIM J[1000], K[1000]
540 DIM B[1000], Z[1000]
550 GOTO 512
560 LET T=T0=1500
570 GOSUB 180
580 LET EO=(H-H1)/H
590 LET HO=H1
600 LET TI=T0*I.1
610 LET T=TI
620 GOSUB 180
630 LET EI=(H-H1)/H
640 IF ABS(EI)<.0001 THEN 390
650 LET T9=T0-EO*(TI-T0)/(EI-EO)
660 LET EO=EI
670 LET T0=TI
680 LET HO=H1
690 LET TI=T9
700 GOTO 80
710 LET A=1.E-07*(-.1042*F^2+.8242*F+.987)
720 LET B=.001*(.01167*F^2+.1503*F+.938)
730 LET C=-.0284*F^2+.6731*F+.4293
740 IF F <= 1 THEN 250
750 LET A=1.E-07*(1.787*F^2-5.48*F+5.4)
760 LET B=.001*(-.1867*F^2+1.11*F+.176)
770 LET C=-.0933*F^2+3.975*F-2.808
780 IF T <= 2000 THEN 330
790 LET A=.000001*(1.792*F^2+.3983*F+.31)
800 LET B=.001*(-.05*F^2-.07917*F+.245)
810 LET C=10.86*F^2-.1183*F+.97
820 IF F <= 1 THEN 330
830 LET A=.000001*(4.81*F^2-13.9*F+11.59)
840 LET B=.001*(-23.08*F^2+66.82*F-52.61)
850 LET C=27.05*F^2-73.73*F+58.39
860 LET H1=A*T^2+B*T+C
870 IF T <= 2000 THEN 370
880 LET Z9=.125*(LOG(P)/2.3-5)*2-.275*(LOG(P)/2.3-5)
890 LET H1=H1*(1+(1+F)*(T/2000-1)*Z9)
900 LET H1=H1*1.E+06
910 RETURN
920 LET M=0
930 IF T <= 1000 THEN 420
940 LET M=2.15E-08*T^2+.000091*T-.0695
950 LET N=4.E-09*T^2-.00002*T-.019
960 IF F <= 1 THEN 450
970 LET N=.0339*SQR(T)-.000391*T-.681
980 LET G=-1.833E-07*T^2+.000075*T+1.367
990 IF T<500 THEN 500
1000 LET G=2.E-08*T^2-.000138*T+1.423
1010 IF T<2000 THEN 500
1020 LET G=7.267E-08*T^2-.000457*T+1.85.
1030 LET G=G+M*(LOG(P)/2.3-5)+N*(F-1)
1040 RETURN
1050 READ P,P9,R1,D1,H,V,F
1060 DATA 1.56E+06,15600,1.62,5000,6.E+06,2075,1
1070 GOTO 600
1080 PRINT "INITIAL PRESSURE";
1090 INPUT P
1100 PRINT "FINAL PRESSURE";
1110 INPUT P9

```

```

560 PRINT "RHO";
570 INPUT R1
580 PRINT "DELTA PRESSURE";
590 INPUT D1
600 LET I1=1000
610 LET J[1]=P
620 LET K[1]=R1
622 GOTO 690
630 PRINT "ENTHALPY";
640 INPUT H
650 PRINT "VELOCITY";
660 INPUT V
670 PRINT "FUEL TO AIR RATIO";
680 INPUT F
690 LET H2=H+.5*V*V
700 GOSUB 30
710 LET C8=P/R1+G
720 LET R=R1
722 GOSUB 2000
724 LET Z[1]=ATN(V1/C1/SQR(1-(V1/C1)^2))
726 LET B[1]=ATN(1/SQR((V/A1)^2-1))
728 LET T1=0
730 FOR I=2 TO I1
740 LET C8=P/R+G
744 IF I<2 THEN 750
746 : BETA(####)=#####. MU=##### THETA#####
750 IF INT(I/20)*20 <> I THEN 770
760 PRINT I,P,T,R,H
765 PRINT G,V/A1,57.3*T1
766 PRINT
770 LET J[I]=J[I-1]-D1
780 LET K[I]=(J[I]/C8)+(1/G)
790 LET V=SQR(V*V+2*G/(G-1)*(J[I-1]/K[I-1]-J[I]/K[I]))
800 LET H=H2-.5*V*V
810 LET P=J[I]
820 LET R=K[I]
830 GOSUB 30
835 GOSUB 950
840 LET I2=I
850 IF J[I] <= P9 THEN 890
860 IF J[I]-D1>P9 THEN 880
870 LET D1=J[I]-P9
880 NEXT I
890 LET I=K[I2]*V*V+J[I2]
900 LET R=K[I2]
910 LET P=J[I2]
920 GOSUB 30
925 GOSUB 950
930 PRINT I2,J[I2],T,K[I2],H,G,V,I
940 STOP
950 GOSUB 2000
990 LET Z[I]=ATN(V1/C1/SQR(1-(V1/C1)^2))
1000 LET B[I]=B[I-1]-SQR(G1)*(Z[I]-Z[I-1])
1010 LET U=ATN(1/SQR((V/A1)^2-1))
1020 LET T1=B[I]-U
1024 GOTO 1030
1025 PRINT USING 746,I,B[I],57.3*U,57.3*T1
1030 RETURN
1990 STOP
2000 LET A1=SQR(G*P/R)
2010 LET G1=(C+1)/(G-1)
2020 LET C1=SQR(G1*A1^2+V^2-A1^2)
2030 LET V1=SQR(V^2-A1^2)
2040 RETURN
3000 END

```