



# MIDDLE EAST TECHNICAL UNIVERSITY ELECTRICAL & ELECTRONICS ENGINEERING DEPARTMENT

EE-472 Power System Analysis II

Spring 2024 Project-1

Canberk Kaçan

01.06.2024

#### Introduction

In the operation of electrical power systems, load flow analysis is a fundamental analysis for ensuring the safe operation and planning of power networks. The Newton-Raphson Load Flow Analysis is a widely utilized method due to its ease of convergence and robustness in handling non-linear equations. This project aims to develop a generic Python function capable of performing Newton-Raphson Load Flow Analysis while incorporating generator reactive power limit considerations. The implementation takes place in Python 3.12 environment and is designed to be adaptable to various power systems that are presented in a common IEEE data format, such as the IEEE 30-bus and IEEE 118-bus systems. Moreover, by considering the reactive power limits of generators, the function ensures a more realistic and accurate representation of the power network's operating conditions. Consideration of reactive power limitations is crucial for preventing voltage instability and maintaining system reliability along with the bus voltages.

### The Project

The Python function I have implemented takes the file path of the CDF file and gives the calculated bus voltages, bus angles, computation time, iteration number, power losses in the system and PV bus numbers that have stayed in the Q-limits.

First, the Y<sub>BUS</sub> is constructed using bus and line data supplied by the CDF file. Then, necessary vectors are constructed such as voltage vectors for the flat start. Due to the flat start assumption, the initial voltages and angles of the buses are assumed to be 1 p.u. and 0 degrees respectively. After the flat start adjustments, a mismatch vector is formed by differencing the calculated and given power values of the buses. Jacobian is formed after the mismatch vector. With Jacobian being constructed, the function starts to Newton-Raphson iteration since all the necessary parameters are known: initial bus angles, initial PQ bus voltages, calculated bus powers and Y<sub>BUS</sub>. The algorithm stops when a certain convergence is met. For the operation, the minimum convergence of the iterations is determined as 0.01 which gives the end values a maximum error percentage of 1%. After the convergence is met the function specifies the PV buses that did not stick to the respective Q limits. A block diagram showing the fundamental operating principle of the algorithm is given in Figure 1.



Figure 1. Block diagram of the algorithm

The function also saves the final bus voltages, final bus angles and PV buses that were not stuck to the Q limits to Excel files for the ease of user. The bus voltages and angles are given with their respective bus numbers. Moreover, at the end, the function prints final bus voltages in p.u., bus angles in degrees, solution time in hh:mm:ss format, number of iterations, active losses in the system along with the reactive losses in the system and numbers of the PV buses that did not stick to their respective Q limits. The function also writes bus voltages, bus angles and PV buses that stick to their limits to Excel files to make reading the values easier.

## Convergence threshold and assumptions

The convergence threshold ( $\epsilon$ ) was chosen as 0.01. The reason for this choice is to keep the computation time small while having a reasonable convergence.

There were three main assumptions I have made:

- The slack bus and PV bus voltages were always kept at 1 p.u..
- The slack bus angle is always 0 degrees.
- The PV buses supply the exact P values that are given in CDF.

### **Test Results**

The test results given below are the outputs of the implemented power flow solution and it should be noted that the results are based on the IEEE 300 bus system.



Figure 2. IEEE 300 bus system, sparsity plot of the admittance matrix

Table 1. Buses and their respective final voltages and angles

| Bus Numbers | Bus Voltages (p.u.) | Bus Angles (Degrees) |
|-------------|---------------------|----------------------|
| 1           | 1.000922            | 27.54901             |
| 2           | 1.008224            | 29.32434             |

| 3       0.98892       28.12708         4       1.028565       25.86464         5       0.995164       26.19958         6       1.007437       28.51498         7       0.984373       27.74349         8       1       23.43937         9       0.985012       24.28621         10       1       22.78748 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5       0.995164       26.19958         6       1.007437       28.51498         7       0.984373       27.74349         8       1       23.43937         9       0.985012       24.28621                                                                                                                  |
| 6       1.007437       28.51498         7       0.984373       27.74349         8       1       23.43937         9       0.985012       24.28621                                                                                                                                                          |
| 7     0.984373     27.74349       8     1     23.43937       9     0.985012     24.28621                                                                                                                                                                                                                  |
| 8 1 23.43937<br>9 0.985012 24.28621                                                                                                                                                                                                                                                                       |
| 9 0.985012 24.28621                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                           |
| 22.767.16                                                                                                                                                                                                                                                                                                 |
| <b>11</b> 0.992039 23.84979                                                                                                                                                                                                                                                                               |
| 12 0.984822 26.76818                                                                                                                                                                                                                                                                                      |
| 13 0.991426 20.90259                                                                                                                                                                                                                                                                                      |
| <b>14</b> 0.990304 15.31371                                                                                                                                                                                                                                                                               |
| <b>15</b> 1.021397 10.58447                                                                                                                                                                                                                                                                               |
| 16 1.036156 16.86671                                                                                                                                                                                                                                                                                      |
| <b>17</b> 1.026055 6.601909                                                                                                                                                                                                                                                                               |
| <b>19</b> 0.981222 22.44418                                                                                                                                                                                                                                                                               |
| 20 1 19.09332                                                                                                                                                                                                                                                                                             |
| <b>21</b> 0.97139 23.15152                                                                                                                                                                                                                                                                                |
| <b>22</b> 0.989263 19.67615                                                                                                                                                                                                                                                                               |
| <b>23</b> 1.017047 26.15752                                                                                                                                                                                                                                                                               |
| <b>24</b> 0.990777 27.85933                                                                                                                                                                                                                                                                               |
| <b>25</b> 0.99613 23.42273                                                                                                                                                                                                                                                                                |
| <b>26</b> 0.979245 20.0764                                                                                                                                                                                                                                                                                |
| <b>27</b> 0.964624 16.89058                                                                                                                                                                                                                                                                               |
| <b>33</b> 1.033957 3.303234                                                                                                                                                                                                                                                                               |
| <b>34</b> 1.047975 9.492985                                                                                                                                                                                                                                                                               |
| <b>35</b> 1.005959 353.4031                                                                                                                                                                                                                                                                               |
| <b>36</b> 1.024841 356.3658                                                                                                                                                                                                                                                                               |
| <b>37</b> 1.023086 3.140558                                                                                                                                                                                                                                                                               |
| <b>38</b> 1.029162 2.594237                                                                                                                                                                                                                                                                               |
| <b>39</b> 1.052762 12.10921                                                                                                                                                                                                                                                                               |
| <b>40</b> 1.029502 2.463505                                                                                                                                                                                                                                                                               |
| <b>41</b> 1.038179 4.322007                                                                                                                                                                                                                                                                               |
| <b>42</b> 1.051286 10.26755                                                                                                                                                                                                                                                                               |
| <b>43</b> 1.017201 359.8877                                                                                                                                                                                                                                                                               |
| <b>44</b> 1.031944 0.313385                                                                                                                                                                                                                                                                               |
| <b>45</b> 1.046124 3.526292                                                                                                                                                                                                                                                                               |
| <b>46</b> 1.050682 6.313071                                                                                                                                                                                                                                                                               |
| <b>47</b> 1.007126 355.1294                                                                                                                                                                                                                                                                               |
| <b>48</b> 1.003545 0.995603                                                                                                                                                                                                                                                                               |
| <b>49</b> 1.000412 0.333293                                                                                                                                                                                                                                                                               |
| <b>51</b> 1.014133 2.262708                                                                                                                                                                                                                                                                               |
| <b>52</b> 0.997837 1.691289                                                                                                                                                                                                                                                                               |
| <b>53</b> 1.012914 359.1303                                                                                                                                                                                                                                                                               |
| <b>54</b> 1.022195 0.593049                                                                                                                                                                                                                                                                               |

| 55   | 1.021381 | 3.69929  |
|------|----------|----------|
| 57   | 1.028814 | 11.55977 |
| 58   | 0.991991 | 14.48116 |
| 59   | 0.979352 | 15.43259 |
| 60   | 1.052449 |          |
| 61   | 0.989998 | 9.897418 |
|      |          | 17.32124 |
| 62   | 1.028276 | 20.18897 |
| 63   | 1        | 4.41274  |
| 64   | 0.989955 | 8.674794 |
| 69   | 0.994174 | 353.8849 |
| 70   | 0.986114 | 344.6163 |
| 71   | 1.00673  | 349.5504 |
| 72   | 0.997553 | 351.8261 |
| 73   | 1.006907 | 353.2057 |
| 74   | 1.024287 | 356.7534 |
| 76   | 1        | 352.4758 |
| 77   | 1.005147 | 354.3663 |
| 78   | 1.006913 | 355.277  |
| 79   | 1.003258 | 354.3119 |
| 80   | 1.003103 | 354.5082 |
| 81   | 1.039802 | 0.234128 |
| 84   | 1        | 2.248721 |
| 85   | 0.996127 | 1.552633 |
| 86   | 0.995577 | 5.409268 |
| 87   | 0.995573 | 12.67202 |
| 88   | 1.033417 | 358.0151 |
| 89   | 1.002705 | 7.274299 |
| 90   | 1.011966 | 5.603312 |
| 91   | 1        | 10.74016 |
| 92   | 1        | 12.93291 |
| 94   | 0.989037 | 10.77792 |
| 97   | 0.998914 | 6.313011 |
| 98   | 1        | 4.681676 |
| 99   | 0.999699 | 358.7076 |
| 100  | 0.999045 | 4.956683 |
| 102  | 0.998251 | 4.157445 |
| 103  | 1.002293 | 6.89821  |
| 104  | 0.998325 | 1.907704 |
| 105  | 1.001633 | 5.686046 |
| 107  | 1.007358 | 2.018887 |
| 108  | 1        | 358.7316 |
| 109  | 0.998877 | 352.9214 |
| 110  | 0.991912 | 354.2719 |
| 112  | 1.005531 | 350.5292 |
| 113  | 0.998578 | 353.1888 |
| -1-9 | 0.550576 | 333.1000 |

| 114 | 1.008791 | 350.629  |
|-----|----------|----------|
| 115 | 0.966632 | 9.660357 |
| 116 | 1.004357 | 10.81245 |
| 117 | 0.934563 | 18.3556  |
| 118 | 0.928699 | 18.88998 |
| 119 | 1        |          |
| 120 | 0.953294 | 28.12265 |
| 121 | 0.993896 | 14.43382 |
| 122 | 0.978073 | 10.43385 |
| 123 | 0.989041 | 9.001082 |
| 124 | 0.989041 | 5.792623 |
| 125 | 1        | 10.06559 |
|     |          | 4.922071 |
| 126 | 1.00105  | 10.46532 |
| 127 | 0.998593 | 12.83824 |
| 128 | 1.00645  | 18.33664 |
| 129 | 1.00807  | 18.68609 |
| 130 | 1.030088 | 27.75369 |
| 131 | 0.983133 | 27.75366 |
| 132 | 1.035102 | 25.1829  |
| 133 | 1.000369 | 17.84809 |
| 134 | 1.002811 | 15.7276  |
| 135 | 0.99859  | 17.23026 |
| 136 | 1.013343 | 26.3943  |
| 137 | 1.001956 | 22.74473 |
| 138 | 1        | 17.38012 |
| 139 | 0.969208 | 20.48593 |
| 140 | 0.99826  | 20.62135 |
| 141 | 1        | 24.67383 |
| 142 | 0.981589 | 21.11323 |
| 143 | 1        | 28.00473 |
| 144 | 1.024785 | 20.81335 |
| 145 | 0.971756 | 23.99461 |
| 146 | 1        | 29.1112  |
| 147 | 1        | 33.6273  |
| 148 | 1.022498 | 24.18327 |
| 149 | 1        | 29.82847 |
| 150 | 0.985633 | 28.02327 |
| 151 | 1.034745 | 26.18727 |
| 152 | 1        | 35.21372 |
| 153 | 1        | 36.71895 |
| 154 | 0.982793 | 24.73169 |
| 155 | 1.04358  | 32.03729 |
| 156 | 1        | 30.46043 |
| 157 | 0.989221 | 11.44175 |
| 158 | 0.997858 | 12.01176 |
|     |          |          |

| 159 | 0.990348 | 13.55429 |
|-----|----------|----------|
| 160 | 0.987353 | 10.98549 |
| 161 | 1.016257 | 34.73138 |
| 162 | 1.027633 | 43.64266 |
| 163 | 1.031247 | 27.77521 |
| 164 | 1.010732 | 34.92507 |
| 165 | 1.023192 | 51.46597 |
| 166 | 1.006375 | 55.37987 |
| 167 | 0.982832 | 16.13891 |
| 168 | 1.00642  | 18.31569 |
| 169 | 0.993248 | 16.49997 |
| 170 | 1        | 22.36255 |
| 171 | 1        | 13.42792 |
| 172 | 0.987114 | 17.89558 |
| 173 | 0.958293 | 11.67321 |
| 174 | 1.019488 | 21.77214 |
| 175 | 0.944805 | 16.92316 |
| 176 | 1        | 30.05368 |
| 177 | 1        | 24.83605 |
| 178 | 0.922435 | 17.87778 |
| 179 | 0.947525 | 15.01582 |
| 180 | 0.951687 | 21.13178 |
| 181 | 1.001222 | 22.94285 |
| 182 | 0.999743 | 19.81396 |
| 183 | 0.946881 | 33.40506 |
| 184 | 0.999691 | 17.14    |
| 185 | 1        | 19.97491 |
| 186 | 1        | 26.89893 |
| 187 | 1        | 26.04643 |
| 188 | 1.000116 | 23.61646 |
| 189 | 1.0273   | 353.7683 |
| 190 | 1        | 359.8707 |
| 191 | 1        | 32.36242 |
| 192 | 0.973927 | 9.626421 |
| 193 | 1.048471 | 353.093  |
| 194 | 1.033102 | 0.577711 |
| 195 | 1.025176 | 358.902  |
| 196 | 1.044268 | 353.197  |
| 197 | 1.01831  | 355.718  |
| 198 | 1        | 359.5021 |
| 199 | 0.982603 | 353.6867 |
| 200 | 0.983689 | 353.9069 |
| 201 | 1.015497 | 352.4132 |
| 202 | 0.995603 | 354.3974 |
| 203 | 0.998195 | 357.555  |

| 204 | 1.04462  | 353.6619 |
|-----|----------|----------|
| 205 | 1.048004 | 353.2121 |
| 206 | 1.044275 | 351.9497 |
| 207 | 1.055123 | 351.9218 |
| 208 | 1.035403 | 353.1615 |
| 209 | 1.019875 | 354.276  |
| 210 | 1.00777  | 355.3123 |
| 211 | 1.008478 | 356.4156 |
| 212 | 1.015647 | 357.2703 |
| 213 | 1        | 8.398605 |
| 214 | 0.995482 | 2.467912 |
| 215 | 0.987403 | 359.7881 |
| 216 | 0.968867 | 357.6342 |
| 217 | 0.998004 | 357.9806 |
| 218 | 0.98378  | 357.5503 |
| 219 | 1.01922  | 359.0415 |
| 220 | 1        | 358.5487 |
| 221 | 1        | 357.9244 |
| 222 | 1        | 356.905  |
| 223 | 0.996148 | 357.7276 |
| 224 | 0.993012 | 358.9959 |
| 225 | 0.979632 | 9.408385 |
| 226 | 1.000645 | 358.9477 |
| 227 | 1        | 352.7232 |
| 228 | 1.007468 | 359.4497 |
| 229 | 1.012747 | 0.58071  |
| 230 | 1        | 7.268177 |
| 231 | 1.010997 | 359.0687 |
| 232 | 1.004399 | 356.8956 |
| 233 | 1        | 354.0109 |
| 234 | 1.015336 | 359.4446 |
| 235 | 0.999195 | 359.3087 |
| 236 | 1        | 5.237871 |
| 237 | 1.014912 | 359.1805 |
| 238 | 1        | 359.3924 |
| 239 | 1        | 4.504472 |
| 240 | 0.971977 | 0.392252 |
| 241 | 1        | 4.290918 |
| 242 | 1        | 2.461468 |
| 243 | 1        | 1.148042 |
| 244 | 0.986889 | 0.126554 |
| 245 | 0.974712 | 359.3003 |
| 246 | 0.966659 | 358.539  |
| 247 | 0.979035 | 358.48   |
| 248 | 0.995805 | 354.8298 |

| 249  | 0.996711 | 354.4243 |
|------|----------|----------|
| 250  | 1.042448 | 356.2714 |
| 281  | 0.973359 | 0.468674 |
| 319  | 1.00358  | 23.22431 |
| 320  | 0.995495 | 19.57012 |
| 322  | 1.00304  | 1.61985  |
| 323  | 0.985897 | 5.89478  |
| 324  | 0.986851 | 355.6835 |
| 526  | 1.023866 | 349.543  |
| 528  | 1.007545 | 342.3784 |
| 531  | 0.989144 | 350.3147 |
| 552  | 1.022841 | 355.9193 |
| 562  | 1.014035 | 350.8948 |
| 609  | 0.982984 | 350.7383 |
| 664  | 1.015186 | 2.970336 |
| 1190 | 0.971105 | 26.78836 |
| 1200 | 1.020539 | 15.65727 |
| 1201 | 0.990166 | 7.7532   |
| 2040 | 1.057849 | 4.839874 |
| 7001 | 1        | 32.77467 |
| 7002 | 1        | 34.59258 |
| 7003 | 1        | 35.43424 |
| 7011 | 1        | 26.428   |
| 7012 | 1        | 33.41816 |
| 7017 | 1        | 9.547843 |
| 7023 | 1        | 28.59545 |
| 7024 | 1        | 34.64831 |
| 7039 | 1        | 20.84233 |
| 7044 | 1        | 3.944107 |
| 7049 | 1        | 0        |
| 7055 | 1        | 8.461375 |
| 7057 | 1        | 16.36198 |
| 7061 | 1        | 22.7758  |
| 7062 | 1        | 27.18662 |
| 7071 | 1        | 353.9343 |
| 7130 | 1        | 42.04073 |
| 7139 | 1        | 27.1838  |
| 7166 | 1        | 60.25929 |
| 9001 | 1.014716 | 3.144417 |
| 9002 | 1        | 355.5651 |
| 9003 | 1.010106 | 354.7032 |
| 9004 | 1.003897 | 354.5628 |
| 9005 | 1.015455 | 3.251116 |
| 9006 | 1.025681 | 356.9521 |
| 9007 | 1.016422 | 355.688  |

| 9012 | 1.009187 | 357.1229 |
|------|----------|----------|
| 9021 | 0.994399 | 355.3454 |
| 9022 | 0.972066 | 352.8893 |
| 9023 | 0.981145 | 355.0293 |
| 9024 | 0.977475 | 353.0873 |
| 9025 | 0.971708 | 354.0309 |
| 9026 | 0.972805 | 354.1156 |
| 9031 | 0.965712 | 349.7975 |
| 9032 | 0.975688 | 350.8383 |
| 9033 | 0.963673 | 349.5255 |
| 9034 | 1.02564  | 353.3058 |
| 9035 | 0.980064 | 351.4256 |
| 9036 | 0.988942 | 351.8871 |
| 9037 | 0.986264 | 351.9605 |
| 9038 | 0.971274 | 350.3177 |
| 9041 | 0.991394 | 353.146  |
| 9042 | 0.979331 | 352.0827 |
| 9043 | 0.992553 | 353.0516 |
| 9044 | 1.00599  | 354.6035 |
| 9051 | 1        | 355.1434 |
| 9052 | 0.989904 | 357.3974 |
| 9053 | 1        | 17.62028 |
| 9054 | 1        | 7.795016 |
| 9055 | 1        | 7.077558 |
| 9071 | 1.001316 | 353.9574 |
| 9072 | 1.005828 | 354.4892 |
| 9121 | 0.987945 | 355.1349 |
| 9533 | 1.847456 | 54.6141  |

Table 2. PV buses that stuck to Q limits

| Bus Count | Bus Number |
|-----------|------------|
| 0         | 63         |
| 1         | 84         |
| 2         | 91         |
| 3         | 92         |
| 4         | 98         |
| 5         | 108        |
| 6         | 119        |
| 7         | 124        |
| 8         | 125        |
| 9         | 138        |
| 10        | 141        |

| 11 | 143  |
|----|------|
| 12 | 146  |
| 13 | 147  |
| 14 | 149  |
| 15 | 170  |
| 16 | 171  |
| 17 | 176  |
| 18 | 185  |
| 19 | 186  |
| 20 | 187  |
| 21 | 191  |
| 22 | 198  |
| 23 | 213  |
| 24 | 221  |
| 25 | 222  |
| 26 | 227  |
| 27 | 230  |
| 28 | 233  |
| 29 | 238  |
| 30 | 239  |
| 31 | 241  |
| 32 | 243  |
| 33 | 7001 |
| 34 | 7002 |
| 35 | 7003 |
| 36 | 7011 |
| 37 | 7012 |
| 38 | 7017 |
| 39 | 7024 |
| 40 | 7039 |
| 41 | 7044 |
| 42 | 7055 |
| 43 | 7057 |
| 44 | 7061 |
| 45 | 7062 |
| 46 | 7071 |
| 47 | 7130 |
| 48 | 7139 |
| 49 | 7166 |
| 50 | 9051 |
| 51 | 9054 |
| 52 | 9055 |
|    |      |

# Computational Methods for Improved Performance, and Hardware Specifications

Several techniques were used to improve the computation performance.

- Use of arrays instead of lists to prevent dynamic memory allocation.
- Precreating arrays with their final sizes to prevent dynamic array resizing.
- Adding a breakpoint to prevent an infinite loop in case of not finding a convergent solution.

The average solution time for the 300 bus system is 1 second.

#### Hardware:

Processor: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz 2.20 GHz

RAM: 8GB

Windows 10-64 byte operating system

• Brand: MSI

Model: GL73 8RD

#### Requirements

- Python 3.12 environment
- Pandas library
- Numpy library
- Math library
- Matspy library
- Datetime library
- IEEE CDF file
- IEEE CDF file path

#### Additional Remarks

In the case of a non-convergent case, I have added a so-called "choose the best algorithm". If 250 iterations are made and the solution cannot be in the convergence threshold, the function prints that the solution cannot be reached; however, it outputs the voltage values which had the lowest mismatch values among the iterations.

Moreover, writing the outputs to Excel can cause problems sometimes, if this happens which means an error regarding pandas, just delete the already constructed Excel files and run the script again.