# **Import libraries**

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   import warnings as w
   w.filterwarnings("ignore")
```

# Import dataset

```
In [2]: df=pd.read_csv("healthcare-dataset-stroke-data.csv")
df
```

#### Out[2]:

|      | id    | gender | age  | hypertension | heart_disease | ever_married | work_type         | Residence_typ |
|------|-------|--------|------|--------------|---------------|--------------|-------------------|---------------|
| 0    | 9046  | Male   | 67.0 | 0            | 1             | Yes          | Private           | Urba          |
| 1    | 51676 | Female | 61.0 | 0            | 0             | Yes          | Self-<br>employed | Rura          |
| 2    | 31112 | Male   | 80.0 | 0            | 1             | Yes          | Private           | Rura          |
| 3    | 60182 | Female | 49.0 | 0            | 0             | Yes          | Private           | Urba          |
| 4    | 1665  | Female | 79.0 | 1            | 0             | Yes          | Self-<br>employed | Rura          |
|      |       |        |      |              |               |              |                   |               |
| 5105 | 18234 | Female | 80.0 | 1            | 0             | Yes          | Private           | Urba          |
| 5106 | 44873 | Female | 81.0 | 0            | 0             | Yes          | Self-<br>employed | Urba          |
| 5107 | 19723 | Female | 35.0 | 0            | 0             | Yes          | Self-<br>employed | Rura          |
| 5108 | 37544 | Male   | 51.0 | 0            | 0             | Yes          | Private           | Rura          |
| 5109 | 44679 | Female | 44.0 | 0            | 0             | Yes          | Govt_job          | Urba          |

5110 rows × 12 columns

# **Summary of dataset**

```
In [3]: |df.info()
                    # df.info() give us the summary of dataset
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 5110 entries, 0 to 5109
        Data columns (total 12 columns):
             Column
                               Non-Null Count Dtype
             _____
         0
             id
                               5110 non-null
                                               int64
         1
                               5110 non-null object
             gender
         2
             age
                               5110 non-null float64
         3
             hypertension
                               5110 non-null int64
         4
                               5110 non-null int64
             heart_disease
         5
             ever_married
                               5110 non-null object
         6
             work_type
                               5110 non-null object
         7
             Residence_type
                               5110 non-null object
             avg_glucose_level 5110 non-null float64
         9
                               4909 non-null
                                               float64
         10 smoking_status
                               5110 non-null
                                               object
                               5110 non-null
                                               int64
         11 stroke
        dtypes: float64(3), int64(4), object(5)
        memory usage: 479.2+ KB
In [4]: # In the above dataset there are 12 columns and 5110 entries
        # In this dataset id, hypertension, heart_disease, stroke columns have integer
        # And gender, ever_married, work_type, Residence_type, smoking_status have obj
        # And rest of the columns have float datatype
        # This dataset take 479.2 KB memory
```

## Handling missing values (Null Values)

```
In [5]: df.isnull().sum()
Out[5]: id
                                0
        gender
                                0
                                0
        age
        hypertension
        heart_disease
        ever_married
                                0
        work_type
                                a
        Residence_type
                                0
        avg_glucose_level
                                0
                              201
                                0
        smoking_status
        stroke
                                0
        dtype: int64
        # Column bmi have 201 null values
In [6]:
In [7]: (201/5110)*100
                           # Finding how many percent of null value present in column
Out[7]: 3.9334637964774952
```

```
In [8]: # We are going to fill bmi null values with mean value as percent of null value
In [9]: bmimean=df["bmi"].mean()
         df["bmi"].fillna(bmimean,inplace=True)
In [10]: df.isnull().sum()
                               # df.isnull is boolean function which give us output
Out[10]: id
         gender
                               0
                               0
         age
         hypertension
                               0
         heart_disease
                               0
         ever_married
                               0
         work_type
         Residence_type
         avg_glucose_level
                               0
         bmi
                               0
                               0
         smoking_status
         stroke
         dtype: int64
```

## Removing unwanted column

| In [11]: | # In the above dataset id column is unwanted column<br># As id column don't give us more or required information in the analysis or p<br># So we are going to remove id column from this dataset |         |       |              |                |              |                   |                 |          |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|--------------|----------------|--------------|-------------------|-----------------|----------|--|--|
| In [12]: | df.                                                                                                                                                                                              | drop(": | id",i | .nplace=True | ,axis=1)       | # df.drop()  | ) is use t        | o drop column   | as wel   |  |  |
| In [13]: | df.head() # df.head() gives us top 5 records of dataset                                                                                                                                          |         |       |              |                |              |                   |                 |          |  |  |
| Out[13]: |                                                                                                                                                                                                  | gondor  | 200   | hyportonsion | hoart dispaso  | over married | work type         | Residence_type  | ava alıı |  |  |
|          |                                                                                                                                                                                                  | genuei  | aye   | nypertension | ileait_uisease | ever_marrieu | work_type         | Residerice_type | avy_giu  |  |  |
|          | 0                                                                                                                                                                                                | Male    | 67.0  | 0            | 1              | Yes          | Private           | Urban           |          |  |  |
|          | 1                                                                                                                                                                                                | Female  | 61.0  | 0            | 0              | Yes          | Self-<br>employed | Rural           |          |  |  |
|          | 2                                                                                                                                                                                                | Male    | 80.0  | 0            | 1              | Yes          | Private           | Rural           |          |  |  |
|          | 3                                                                                                                                                                                                | Female  | 49.0  | 0            | 0              | Yes          | Private           | Urban           |          |  |  |
|          |                                                                                                                                                                                                  |         |       |              |                | Yes          | Self-             |                 |          |  |  |

Now let's plot some graph and try to find little bit more information about dataset

In [14]: sns.pairplot(df,hue="stroke") #is used to create a matrix of scatter plots
plt.show() # use to display the plot



In [15]: df["gender"].value\_counts()

Out[15]: Female 2994 Male 2115 Other 1

Name: gender, dtype: int64





In [17]: # In the gender column there are 3 categories which is Female, Male and Others # In the gender column Females are 2994, Males are 2115,Other is 1





```
In [19]: df["hypertension"].value_counts()
```

Out[19]: 0 4612 1 498

Name: hypertension, dtype: int64

```
In [20]: sns.countplot(data=df,x="hypertension",hue="stroke")
plt.show()
```



In [21]: # From the above graph it shows that 4162 people don't have hypertendion while

In [22]: df["heart\_disease"].value\_counts()

Out[22]: 0 4834 1 276

Name: heart\_disease, dtype: int64

In [23]: plt.pie(df["heart\_disease"].value\_counts(),labels=["No","Yes"],colors=["hotpin
plt.show()



In [24]: # From above graph it shows that 5.4 percent of people have heart dieses and r

In [25]: df["ever\_married"].value\_counts()

Out[25]: Yes 3353 No 1757

Name: ever\_married, dtype: int64



In [27]: # From the above graph it shows that 3353 people married and 1757 people not m

ever\_married

No

In [28]: df["work\_type"].value\_counts()

Out[28]: Private 2925 Self-employed 819 children 687 Govt\_job 657 Never\_worked 22

0

Name: work\_type, dtype: int64

Yes

In [29]: sns.countplot(data=df,x="work\_type")
plt.show()



In [30]: # from the above graph it shows that 2925 people are work at private company, # 687 people are children and 657 people are work at government job and 22 peop



In [33]: # From the above dataset it shows that almost 50% of people live at rural area

```
In [34]: x = df['avg_glucose_level']
y = df['stroke']

# Create a scatter plot
plt.scatter(x, y)

# Set the title and axis labels
plt.title('Average Glucose Level vs. Target')
plt.xlabel('Average Glucose Level')
plt.ylabel('stroke')

# Display the plot
plt.show()
```



```
In [35]: x = df['bmi']
y = df['stroke']

# Create a scatter plot
plt.scatter(x, y)

# Set the title and axis labels
plt.title('Average Glucose Level vs. Target')
plt.xlabel('Average Glucose Level')
plt.ylabel('stroke')

# Display the plot
plt.show()
```



```
In [36]: df["smoking_status"].value_counts().plot(kind="bar")
```

### Out[36]: <AxesSubplot:>



### **Describe dataset**

```
In [39]: df.describe()
```

#### Out[39]:

|       | age         | hypertension | heart_disease | avg_glucose_level | bmi         | stroke      |
|-------|-------------|--------------|---------------|-------------------|-------------|-------------|
| count | 5110.000000 | 5110.000000  | 5110.000000   | 5110.000000       | 5110.000000 | 5110.000000 |
| mean  | 43.226614   | 0.097456     | 0.054012      | 106.147677        | 28.893237   | 0.048728    |
| std   | 22.612647   | 0.296607     | 0.226063      | 45.283560         | 7.698018    | 0.215320    |
| min   | 0.080000    | 0.000000     | 0.000000      | 55.120000         | 10.300000   | 0.000000    |
| 25%   | 25.000000   | 0.000000     | 0.000000      | 77.245000         | 23.800000   | 0.000000    |
| 50%   | 45.000000   | 0.000000     | 0.000000      | 91.885000         | 28.400000   | 0.000000    |
| 75%   | 61.000000   | 0.000000     | 0.000000      | 114.090000        | 32.800000   | 0.000000    |
| max   | 82.000000   | 1.000000     | 1.000000      | 271.740000        | 97.600000   | 1.000000    |

In [40]: # In the above data minimum age is 0.08 years & maximum age is 82 years and av # maximum glucose level is 271.74 and minimum glucose level is 55.12 and avera # minimum bmi is 10.30 and maximum bmi is 97.60 and average bmi is 28.89

## Encode categorical column into numerical column

In [42]: df

### Out[42]:

|      | gender | age  | hypertension | heart_disease | ever_married | work_type | Residence_type | avg_ |
|------|--------|------|--------------|---------------|--------------|-----------|----------------|------|
| 0    | 1.0    | 67.0 | 0            | 1             | 1.0          | 2.0       | 1.0            |      |
| 1    | 0.0    | 61.0 | 0            | 0             | 1.0          | 3.0       | 0.0            |      |
| 2    | 1.0    | 80.0 | 0            | 1             | 1.0          | 2.0       | 0.0            |      |
| 3    | 0.0    | 49.0 | 0            | 0             | 1.0          | 2.0       | 1.0            |      |
| 4    | 0.0    | 79.0 | 1            | 0             | 1.0          | 3.0       | 0.0            |      |
|      |        |      |              |               |              |           |                |      |
| 5105 | 0.0    | 80.0 | 1            | 0             | 1.0          | 2.0       | 1.0            |      |
| 5106 | 0.0    | 81.0 | 0            | 0             | 1.0          | 3.0       | 1.0            |      |
| 5107 | 0.0    | 35.0 | 0            | 0             | 1.0          | 3.0       | 0.0            |      |
| 5108 | 1.0    | 51.0 | 0            | 0             | 1.0          | 2.0       | 0.0            |      |
| 5109 | 0.0    | 44.0 | 0            | 0             | 1.0          | 0.0       | 1.0            |      |

5110 rows × 11 columns

## **Skewness removing**

```
In [44]: for col in df[colname]:
    print(col)
    print(skew(df[col]))

    plt.figure()
    sns.distplot(df[col])
    plt.show()
```

# gender 0.35290826168415185



In [45]: df.corr().style.background\_gradient()

#### Out[45]:

|                   | gender    | age       | hypertension | heart_disease | ever_married | work_type | F |
|-------------------|-----------|-----------|--------------|---------------|--------------|-----------|---|
| gender            | 1.000000  | -0.028202 | 0.020994     | 0.085447      | -0.031005    | 0.056422  |   |
| age               | -0.028202 | 1.000000  | 0.276398     | 0.263796      | 0.679125     | -0.361642 |   |
| hypertension      | 0.020994  | 0.276398  | 1.000000     | 0.108306      | 0.164243     | -0.051761 |   |
| heart_disease     | 0.085447  | 0.263796  | 0.108306     | 1.000000      | 0.114644     | -0.028023 |   |
| ever_married      | -0.031005 | 0.679125  | 0.164243     | 0.114644      | 1.000000     | -0.352722 |   |
| work_type         | 0.056422  | -0.361642 | -0.051761    | -0.028023     | -0.352722    | 1.000000  |   |
| Residence_type    | -0.006738 | 0.014180  | -0.007913    | 0.003092      | 0.006261     | -0.007316 |   |
| avg_glucose_level | 0.055180  | 0.238171  | 0.174474     | 0.161857      | 0.155068     | -0.050513 |   |
| bmi               | -0.026109 | 0.325942  | 0.160189     | 0.038899      | 0.335705     | -0.299448 |   |
| smoking_status    | -0.062581 | 0.265199  | 0.111038     | 0.048460      | 0.259647     | -0.305927 |   |
| stroke            | 0.008929  | 0.245257  | 0.127904     | 0.134914      | 0.108340     | -0.032316 |   |

In [46]: # in the case of stroke dataset when i found out that co-relation is low and s # in the hypertension and avg\_glocuse\_level and bmi column but i think it is n # beacuse it show continuous value and on the top of the hand it gives us the # and people may differ person to person in glocuse level and bmi and hyperten

## Split data into X and Y

```
In [47]: x=df.iloc[:,:-1]
x
```

#### Out[47]:

|      | gender | age  | hypertension | heart_disease | ever_married | work_type | Residence_type | avg_ |
|------|--------|------|--------------|---------------|--------------|-----------|----------------|------|
| 0    | 1.0    | 67.0 | 0            | 1             | 1.0          | 2.0       | 1.0            |      |
| 1    | 0.0    | 61.0 | 0            | 0             | 1.0          | 3.0       | 0.0            |      |
| 2    | 1.0    | 80.0 | 0            | 1             | 1.0          | 2.0       | 0.0            |      |
| 3    | 0.0    | 49.0 | 0            | 0             | 1.0          | 2.0       | 1.0            |      |
| 4    | 0.0    | 79.0 | 1            | 0             | 1.0          | 3.0       | 0.0            |      |
|      |        |      |              |               |              |           |                |      |
| 5105 | 0.0    | 80.0 | 1            | 0             | 1.0          | 2.0       | 1.0            |      |
| 5106 | 0.0    | 81.0 | 0            | 0             | 1.0          | 3.0       | 1.0            |      |
| 5107 | 0.0    | 35.0 | 0            | 0             | 1.0          | 3.0       | 0.0            |      |
| 5108 | 1.0    | 51.0 | 0            | 0             | 1.0          | 2.0       | 0.0            |      |
| 5109 | 0.0    | 44.0 | 0            | 0             | 1.0          | 0.0       | 1.0            |      |
|      |        |      |              |               |              |           |                |      |

5110 rows × 10 columns

```
In [48]: y=df.iloc[:,-1]
Out[48]: 0
                  1
         1
                  1
         2
         3
         5105
                 0
         5106
                 0
         5107
                 0
         5108
                 0
         5109
         Name: stroke, Length: 5110, dtype: int64
```

# Split data into training data and testing data

```
In [49]: from sklearn.model_selection import train_test_split
    xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3,random_state=0,st
```

# Apply different algorithm

```
In [50]: def mymodel(model):
    #model creation
    model.fit(xtrain,ytrain)
    ypred=model.predict(xtest)

#cheaking bias and variance
    train=model.score(xtrain,ytrain)
    test=model.score(xtest,ytest)

print(f"Training Accuracy= {train}")
    print(f"Testing Accuracy= {test}")

#model evaluation

print(classification_report(ytest,ypred))
    return model
```

## Import algorithm which we need

```
In [51]: from sklearn.neighbors import KNeighborsClassifier
    from sklearn.linear_model import LogisticRegression
    from sklearn.svm import SVC
    from sklearn.tree import DecisionTreeClassifier

from sklearn.metrics import classification_report
```

```
In [52]: knn=mymodel(KNeighborsClassifier())
```

Training Accuracy= 0.9516354487000279 Testing Accuracy= 0.9471624266144814

|                                       | precision    | recall       | +1-score             | support              |
|---------------------------------------|--------------|--------------|----------------------|----------------------|
| 0<br>1                                | 0.95<br>0.12 | 1.00<br>0.01 | 0.97<br>0.02         | 1458<br>75           |
| accuracy<br>macro avg<br>weighted avg | 0.54<br>0.91 | 0.50<br>0.95 | 0.95<br>0.50<br>0.93 | 1533<br>1533<br>1533 |

```
In [53]: logreg=mymodel(LogisticRegression())
         Training Accuracy= 0.9513558848196813
         Testing Accuracy= 0.9510763209393346
                        precision
                                     recall f1-score
                                                        support
                    0
                             0.95
                                       1.00
                                                 0.97
                                                           1458
                    1
                             0.50
                                       0.01
                                                 0.03
                                                             75
             accuracy
                                                 0.95
                                                           1533
                             0.73
                                       0.51
                                                 0.50
            macro avg
                                                           1533
         weighted avg
                             0.93
                                       0.95
                                                 0.93
                                                           1533
In [54]:
         svm=mymodel(SVC())
         Training Accuracy= 0.9513558848196813
         Testing Accuracy= 0.9510763209393346
                                     recall f1-score
                        precision
                                                        support
                    0
                                                 0.97
                             0.95
                                       1.00
                                                           1458
                    1
                             0.00
                                       0.00
                                                 0.00
                                                             75
             accuracy
                                                 0.95
                                                           1533
                                                 0.49
            macro avg
                             0.48
                                       0.50
                                                           1533
         weighted avg
                             0.90
                                       0.95
                                                 0.93
                                                           1533
         dt=mymodel(DecisionTreeClassifier())
In [55]:
         Training Accuracy= 1.0
         Testing Accuracy= 0.9106327462491846
                        precision
                                    recall f1-score
                                                        support
                    0
                             0.95
                                       0.95
                                                 0.95
                                                           1458
                    1
                             0.11
                                       0.12
                                                 0.12
                                                             75
                                                 0.91
             accuracy
                                                           1533
            macro avg
                             0.53
                                       0.54
                                                 0.53
                                                           1533
         weighted avg
                             0.91
                                       0.91
                                                 0.91
                                                           1533
In [56]: # After applying different classification model we get training and testing ac
         # In case of KNN regression Training Accuracy= 0.9516354487000279 and Testing
         # In case of logistic regession Training Accuracy= 0.9513558848196813 and Test
         # In case of support vector machine Training Accuracy= 0.9513558848196813 and
         # In case if Decision Tree Training Accuracy= 1.0 and Testing Accuracy= 0.9145
In [57]: # From the above observation it shown that support vector machine and logistic
         # Perfect training and testing accuracy so that i'll go for support vector mac
In [58]: from sklearn.pipeline import Pipeline
         from sklearn.preprocessing import StandardScaler
```

```
In [59]: pipe=Pipeline(
             steps=[
                  ("scaler", StandardScaler()),
                  ("svm", SVC())
             ]
         )
In [60]:
         pipe.fit(xtrain,ytrain)
         ypred=pipe.predict(xtest)
         print(classification_report(ytest,ypred))
         train = pipe.score(xtrain,ytrain)
         test = pipe.score(xtest,ytest)
         print(f"Training Accuracy:- {train}\n Testing Accuracy:- {test}")
                        precision
                                     recall f1-score
                                                         support
                     0
                                                  0.97
                                                            1458
                             0.95
                                       1.00
                     1
                             0.00
                                       0.00
                                                  0.00
                                                              75
              accuracy
                                                  0.95
                                                            1533
            macro avg
                             0.48
                                       0.50
                                                  0.49
                                                            1533
         weighted avg
                             0.90
                                       0.95
                                                  0.93
                                                            1533
         Training Accuracy: - 0.9519150125803746
          Testing Accuracy: - 0.9510763209393346
In [61]: from sklearn.model_selection import GridSearchCV
In [62]:
         parameter = {
                       "C":[0.1,1,10],
                       "gamma":[0.1,1,10],
                       "kernel":["rbf"]
         }
```

```
In [63]: grid = GridSearchCV(SVC(), parameter, verbose=2)
    grid.fit(xtrain,ytrain)
```

```
Fitting 5 folds for each of 9 candidates, totalling 45 fits
1.3s
1.3s
1.2s
1.2s
1.2s
2.1s
2.1s
2.1s
2.2s
[CV] END ......C=0.1, gamma=10, kernel=rbf; total time=
2.0s
[CV] END ......C=0.1, gamma=10, kernel=rbf; total time=
[CV] END ......C=0.1, gamma=10, kernel=rbf; total time=
2.0s
[CV] END ......C=0.1, gamma=10, kernel=rbf; total time=
2.1s
[CV] END ......C=0.1, gamma=10, kernel=rbf; total time=
2.1s
1.4s
1.4s
[CV] END ......C=1, gamma=0.1, kernel=rbf; total time=
1.4s
1.5s
[CV] END ......C=1, gamma=0.1, kernel=rbf; total time=
1.4s
[CV] END .....C=1, gamma=1, kernel=rbf; total time=
[CV] END ......C=1, gamma=1, kernel=rbf; total time=
2.0s
[CV] END .....C=1, gamma=1, kernel=rbf; total time=
2.1s
[CV] END .....C=1, gamma=1, kernel=rbf; total time=
2.8s
[CV] END .....C=1, gamma=1, kernel=rbf; total time=
2.8s
[CV] END ......C=1, gamma=10, kernel=rbf; total time=
2.4s
```

```
2.5s
     [CV] END ......C=1, gamma=10, kernel=rbf; total time=
     2.1s
     2.2s
     [CV] END ......C=1, gamma=10, kernel=rbf; total time=
     2.2s
     1.5s
     1.1s
     [CV] END ......C=10, gamma=0.1, kernel=rbf; total time=
     1.5s
     1.5s
     1.5s
     [CV] END ......C=10, gamma=1, kernel=rbf; total time=
     2.2s
     [CV] END ......C=10, gamma=1, kernel=rbf; total time=
     2.0s
     [CV] END ......C=10, gamma=1, kernel=rbf; total time=
     2.4s
     [CV] END ......C=10, gamma=1, kernel=rbf; total time=
     [CV] END ......C=10, gamma=1, kernel=rbf; total time=
     2.4s
     2.4s
     2.5s
     [CV] END ......C=10, gamma=10, kernel=rbf; total time=
     2.3s
     [CV] END ......C=10, gamma=10, kernel=rbf; total time=
     2.8s
     [CV] END ......C=10, gamma=10, kernel=rbf; total time=
     2.8s
Out[63]: GridSearchCV(estimator=SVC(),
             param_grid={'C': [0.1, 1, 10], 'gamma': [0.1, 1, 10],
                    'kernel': ['rbf']},
             verbose=2)
In [64]: grid.best params
Out[64]: {'C': 1, 'gamma': 0.1, 'kernel': 'rbf'}
In [65]: grid.best_score_
Out[65]: 0.9516357385631128
In [66]: grid.best estimator
Out[66]: SVC(C=1, gamma=0.1)
```

[CV] END ......C=1, gamma=10, kernel=rbf; total time=

```
In [67]: svm = grid.best_estimator_
    svm.fit(xtrain,ytrain)
    ypred = svm.predict(xtest)
    print(classification_report(ytest,ypred))
```

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
|              |           |        |          |         |
| 0            | 0.95      | 1.00   | 0.97     | 1458    |
| 1            | 0.00      | 0.00   | 0.00     | 75      |
|              |           |        |          |         |
| accuracy     |           |        | 0.95     | 1533    |
| macro avg    | 0.48      | 0.50   | 0.49     | 1533    |
| weighted avg | 0.90      | 0.95   | 0.93     | 1533    |

## **Cross validation**

```
In [68]: from sklearn.model_selection import cross_val_score

# Create an SVM classifier with default hyperparameters
svm = SVC()

# Perform 10-fold cross-validation on the SVM model
scores = cross_val_score(svm, x, y, cv=10)

# Print the mean and standard deviation of the cross-validation scores
print("Cross-validation accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.
```

Cross-validation accuracy: 0.95 (+/- 0.00)

## **Ensemble learning**

```
In [69]: from sklearn.ensemble import BaggingClassifier

# Create a bagging classifier with 10 SVM base estimators
bagging = BaggingClassifier(base_estimator=svm, n_estimators=10)

# Train the bagging classifier on the training data
bagging.fit(xtrain, ytrain)

# Evaluate the bagging classifier on the testing data
score = bagging.score(xtest, ytest)
print(f"Bagging accuracy: {score}")
```

Bagging accuracy: 0.9510763209393346

In [70]: from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier

```
In [71]: mymodel(AdaBoostClassifier())
```

Training Accuracy= 0.9513558848196813 Testing Accuracy= 0.9504240052185258

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.95      | 1.00   | 0.97     | 1458    |
| 1            | 0.40      | 0.03   | 0.05     | 75      |
| accuracy     |           |        | 0.95     | 1533    |
| macro avg    | 0.68      | 0.51   | 0.51     | 1533    |
| weighted avg | 0.93      | 0.95   | 0.93     | 1533    |

### Out[71]: AdaBoostClassifier()

### In [72]: mymodel(GradientBoostingClassifier())

Training Accuracy= 0.9611406206318144 Testing Accuracy= 0.9497716894977168

|                           | precision    | recall       | f1-score     | support      |
|---------------------------|--------------|--------------|--------------|--------------|
| 0                         | 0.95         | 1.00         | 0.97         | 1458         |
| 1                         | 0.25         | 0.01         | 0.03         | 75           |
| accuracy                  |              |              | 0.95         | 1533         |
| macro avg<br>weighted avg | 0.60<br>0.92 | 0.51<br>0.95 | 0.50<br>0.93 | 1533<br>1533 |
|                           |              |              |              |              |

### Out[72]: GradientBoostingClassifier()

#### In [73]: !pip install xgboost

Requirement already satisfied: xgboost in c:\users\omkar\anaconda3\lib\site-p ackages (1.7.4)

Requirement already satisfied: numpy in c:\users\omkar\anaconda3\lib\site-pac

kages (from xgboost) (1.21.5)

Requirement already satisfied: scipy in c:\users\omkar\anaconda3\lib\site-pac

kages (from xgboost) (1.7.3)

#### In [74]: from xgboost import XGBClassifier

```
In [75]: mymodel(XGBClassifier())
         Training Accuracy= 0.9980430528375733
         Testing Accuracy= 0.9399869536855838
                                     recall f1-score
                        precision
                                                        support
                    0
                             0.95
                                       0.98
                                                 0.97
                                                           1458
                    1
                             0.23
                                       0.09
                                                 0.13
                                                             75
             accuracy
                                                 0.94
                                                           1533
                                       0.54
                                                 0.55
            macro avg
                             0.59
                                                           1533
         weighted avg
                             0.92
                                       0.94
                                                 0.93
                                                           1533
Out[75]: XGBClassifier(base_score=None, booster=None, callbacks=None,
                        colsample_bylevel=None, colsample_bynode=None,
                        colsample_bytree=None, early_stopping_rounds=None,
                        enable_categorical=False, eval_metric=None, feature_types=None,
                        gamma=None, gpu_id=None, grow_policy=None, importance_type=Non
         e,
                        interaction_constraints=None, learning_rate=None, max_bin=None,
                        max_cat_threshold=None, max_cat_to_onehot=None,
                        max_delta_step=None, max_depth=None, max_leaves=None,
                        min_child_weight=None, missing=nan, monotone_constraints=None,
                        n_estimators=100, n_jobs=None, num_parallel_tree=None,
                        predictor=None, random_state=None, ...)
```

## Hyper parameter tuning

```
In [76]: # Train the final model on the entire dataset
    final_model = SVC(C=1.0, kernel='rbf')
    final_model.fit(x, y)
Out[76]: SVC()
```

#### , ac[, o]. 5vc()

22 of 23

## **Predict new observation**

```
In [81]: from sklearn.svm import SVC
svm=SVC()
svm.fit(xtrain,ytrain)
svm.predict(xtrain)
Out[81]: array([0, 0, 0, ..., 0, 0, 0], dtype=int64)
```

27-03-2023, 10:39

In [ ]:

```
In [82]: def new_observation():
             gender=input("Enter gender(Male/Female/Other)=")
             age=float(input("Enter age="))
             hypertension=int(input("Do you have hypertension (Yes=1/No=0)="))
             heart_disease=int(input("Do you have heart disease (Yes=1/No=0)="))
             ever_married=input("Are you married (Yes/No)=")
             work_type=input("Enter work type(Private/Self_employed/children/Govt_job/N
             residence_type=input("Enter residence type (Urban/Rural)=")
             avg_glucose_level=float(input("Enter average glucose level="))
             bmi=float(input("Enter BMI="))
             smoking_status=input("Enter smoking status (formerly smoked/never smoked/u
             newob=[gender,age,hypertension,heart_disease,ever_married,work_type,reside
             newob[0], newob[4], newob[5], newob[6], newob[-1] = oe.transform([[newob[0], newob[0]])
             y=svm.predict([newob])[0]
             if y==1:
                 print("person have stroke")
                 print("person don't have stroke")
             return y
In [83]: new_observation()
         Enter gender(Male/Female/Other)=Female
         Enter age=34
         Do you have hypertension (Yes=1/No=0)=0
         Do you have heart disease (Yes=1/No=0)=0
         Are you married (Yes/No)=Yes
         Enter work type(Private/Self_employed/children/Govt_job/Never_worked)=Never_w
         Enter residence type (Urban/Rural)=Urban
         Enter average glucose level=34
         Enter BMI=23
         Enter smoking status (formerly smoked/never smoked/unknown/smokes)=smokes
         person don't have stroke
Out[83]: 0
```