

3007855 - Inteligencia Artificial 3010476 - Introducción a la Inteligencia Artificial

Semestre: 02/2021

Prof. Demetrio Arturo Ovalle Carranza
Departamento de Ciencias de la Computación
y de la Decisión
Facultad de Minas

Octubre 12 de 2021

LMS: https://minaslap.net/user/index.php?id=560

Link Clases: meet.google.com/quy-okvi-ugq

3007855 - Inteligencia Artificial 3010476 - Introducción a la Inteligencia Artificial Semestre: 02/2021

Monitoría Grupo 1 y 2 – Jueves (Oct 14) 10-12 m Monitora: Ana María Osorio Mondragón (e-mail: anmosoriomo@unal.edu.co)

Link Monitorías Jueves: meet.google.com/jrm-ippw-rgz

Contenido

- Lógica Difusa (Fuzzy Logic)
- Micro-proyecto1 (15 %)

LÓGICA DIFUSA - Introducción

"Con frecuencia las clases de objetos del mundo físico real no poseen criterios de pertenencia definidos con precisión" (* Lofti Zadeh).

* Matemático, ingeniero eléctrico, informático y profesor del Departamento de Ingeniería Eléctrica de la Universidad de California en Berkeley.

Lofti Zadeh "Fuzzy Logic Theory"

Evolución del Pensamiento Matemático

El lenguaje natural esta plagado de conceptos ambiguos y mal definidos. Por ejemplo:

- La temperatura está caliente
- Alejandro es alto pero Ana no es bajita
- AMAZON es una compañía grande y agresiva

LÓGICA DIFUSA - Introducción

El **lenguaje natural** está plagado de **conceptos ambiguos** y mal definidos.

Las variables pueden tener varios niveles de verdad o falsedad representados por rangos de valores entre el 0 (falso) y el 1 (verdadero).

La teoría de Zadeh ha permitido plasmar en fórmulas, descripciones vagas donde no se aplican las leyes clásicas de la lógica.

LÓGICA DIFUSA - Introducción

Es una manera de representar conocimientos y datos inexactos, vagos o mal definidos. "Variables Lingüísticas".

Lógica Bi-valuada: Teoría de Conjuntos Clásica

En la teoría de conjuntos clásica (lógica bi-valuada), un conjunto es una colección de objetos o de elementos que existen dentro de un universo. Un elemento seleccionado puede pertenecer o no al conjunto.

Teoría de Conjuntos Clásica

En la Lógica bi-valuada: la pertenencia de un elemento a un conjunto determinado, se expresa mediante un calificativo binario, de sólo dos posibles valores:

Si pertenece (1)

No pertenece (0)

En la Lógica bi-valuada No hay pertenencias parciales. Todo es exacto, sin incertidumbre, sin vaguedad.

Conjuntos Crisp

En la lógica **bi-valuada**, los conjuntos definidos dentro del universo U son de tipo Crisp (de bordes definidos).

En un **Conjunto Crisp** (de bordes definidos), para cada elemento **x** del universo U, sólo existen dos posibilidades para cualquier subconjunto **C** definido en el universo **U**: **x** pertenece ó **x** No pertenece.

Caudal Bajo

Evolución del Pensamiento Matemático

- Lofti A. Zadeh, profesor del Departamento de Ingeniería Eléctrica de la Universidad de California en Berkeley, publicó el artículo "Fuzzy Sets ".
- En él, propuso una "nueva" lógica multi-valuada, retomando los conceptos expuestos de tiempo atrás por lógicos como Lukasiewicz, Russell y Max Black.
- ¿Hacía falta una "nueva lógica"?

Teoría de Conjuntos Difusos

Conjuntos Difusos: colección de objetos o de elementos que pueden pertenecer total o parcialmente al conjunto.

Un elemento tiene un grado de pertenencia o de membrecía en el conjunto total.

Por lo tanto, en el razonamiento intervienen los conceptos de **vaguedad** e **incertidumbre**.

Vaguedad vs Incertidumbre

Vaguedad: Nace del concepto lingüístico mismo, se refiere al significado diferente que toma para cada persona una misma etiqueta lingüística: ¿Cómo es su concepto de estatura Baja? 1.60? 1.50 m? 1.40 m? 1.30?

Incertidumbre: Hace referencia al desconocimiento sobre eventos futuros. Se debe a que los humanos usualmente utilizan lenguaje natural (el cual está plagado de incertidumbre, ej. tal vez, quizás, de pronto, ojalá, etc) en el proceso de razonamiento y a partir de ahí sacan conclusiones.

Teoría de Conjuntos Difusos

Ejemplo: Variable lingüística **Temperatura**.

Sean los elementos del Universo {0º,10º,20º,22º, 25º...,45º, 100º}

=>

Grado de pertenencia

Conjuntos difusos:

Fría = $\{1/0^{\circ}, 1/10^{\circ}, 0.5/15^{\circ}, 0.2/22^{\circ}, 0.1/25^{\circ}\}$

Tibia = $\{0.1/10^{\circ}, 0.6/22^{\circ}, 1/25^{\circ}, 0.2/30^{\circ}\}$

Caliente = {0.1/10°, 0.3/22°, 0.4/25°, 0.8/28°, 1/30°, 1/35°, 1/40°, 1/45°, 1/100°}

Teoría de Conjuntos Difusos vs Teoría de Conjuntos Clásica

Conjunto Clásico	Conjunto Difuso
Toma sólo valores de 0 ó 1	Toma valores en el rango comprendido entre 0 y 1
Razonamiento matemático	Se acerca más a la precisión del razonamiento humano
Un elemento no puede pertenecer a dos o más conjuntos al mismo tiempo	El elemento puede estar incluido en diferentes conjuntos

Variables Lingüísticas (conjuntos difusos)

- ✓ Edad (niño, joven, adulto, adulto mayor, viejo, anciano)
- ✓ Altura (muy bajo, bajo, medio, alto, muy alto)
- ✓ Temperatura (muy fría, fría, normal, alta, muy alta)
- ✓ Velocidad (muy lento, lento, normal, rápido, muy rápido)
- ✓ Consistencia de la materia (poca, normal, elevada)
- ✓ Corriente del motor (baja, media, alta)
- ✓ El precio de las acciones (muy bajo, bajo, medio, alto, muy alto)

Lógica Difusa vs Probabilidad

La **lógica difusa** y la **probabilidad** operan sobre el mismo rango numérico [0,1] pero son semánticamente diferentes.

- Las **probabilidades** dicen si algo va a ocurrir o no. Se utiliza la función de densidad de probabilidad.
- Ej. Una **probabilidad** de 0,33 de *botellas vacías* nos indica que de cada 100 botellas que tomemos 33 estarán vacías.
- La **lógica difusa** utiliza la función de pertenencia para indicar el grado de pertenencia de un elemento dentro de cierto conjunto. Es decir mide el grado en el cual alguna condición existe.
- **Ej. Una botella B** tiene una pertenencia de 0,33 con respecto al conjunto **"botellas vacías"** significa que nuestra botella incluye dos tercios de líquido (suponiendo una capacidad de 1 litro / botella). También tiene una pertenencia de 0,66 con respecto al conjunto **"botellas llenas".**

Terminología

- Variable Lingüística
- Universo de Discurso
- Conjunto Difuso
- Valor Lingüístico
- Función de Pertenencia

Universo de Discurso y Factor de Pertenencia

Este número se denomina **Factor de Pertenencia** y se simboliza por la letra griega μ .

La función de pertenencia μF (.) de un conjunto Difuso F asigna a cada elemento u del conjunto el factor de pertenencia μF (u).

Por lo tanto, cada elemento u de U tiene un grado de pertenencia al **conjunto Difuso F**.

Ejemplo Terminología

- Variable Lingüística
- Universo de Discurso
- Conjunto Difuso
- Valor Lingüístico
- Función de Pertenencia


```
Fría = \{1/0^{\circ}, 0.7/10^{\circ}, 0.5/20^{\circ}, 0.2/30^{\circ}\}

Tibia = \{0.1/20^{\circ}, 0.6/30^{\circ}, 1/40^{\circ}, 0.6/50^{\circ}, 0.2/60^{\circ}\}

Caliente = \{0.4/50^{\circ}, 0.8/60^{\circ}, 1/70^{\circ}, 1/80^{\circ}, 1/90^{\circ}, 1/100^{\circ}\}
```


Factor de Pertenencia

El número que determina el grado de pertenencia de un elemento a un conjunto se denomina **Factor de Pertenencia** y se simboliza por la letra griega µ.

La función de pertenencia μF () de un conjunto difuso F asigna a cada elemento \mathbf{x} del conjunto el factor de pertenencia μF (\mathbf{x}).

Por lo tanto, cada elemento **x** de **U** tiene un grado de pertenencia al conjunto difuso **F**.

Ejemplo:

$$\mu F(x) = \begin{cases} 0 \text{ si } x \le \alpha \text{ ó } x > \gamma \\ (x - \alpha)/(\beta - \alpha) \text{ si } \alpha \le x \le \beta \\ (\gamma - x)/(\gamma - \beta) \text{ si } \beta \le x \le \gamma \end{cases}$$

- •Función de incremento lineal.
- •Función de decremento lineal.
- •Función Triangular (lineal a tramos).
- •Función Trapezoidal (lineal a tramos).
- •Función de incremento No lineal ó Tipo S.
- •Función Campana de Gauss.

Función de incremento lineal.

$$f(x;\alpha,\beta) = \begin{cases} 0, & x < \alpha \\ (x - \alpha)/(\beta - \alpha) & \alpha \le x \le \beta \\ 1, & x > \beta \end{cases}$$

Función de decremento lineal.

• Función Triangular (lineal a tramos).

$$f(x;\alpha,\beta,\gamma) = \begin{cases} 0, & x < \alpha \\ (x - \alpha)/(\beta - \alpha), & \alpha \le x \le \beta \\ (\gamma - x)/(\gamma - \beta), & \beta \le x \le \gamma \\ 0, & x > \gamma \end{cases}$$

Función Trapezoidal (lineal a tramos).

$$f(x;\alpha,\beta,\gamma,\delta) = \begin{cases} 0, & x < \alpha \\ (x-\alpha)/(\beta-\alpha), & \alpha \le x < \beta \\ 1, & \beta \le x < \gamma \\ (\delta-x)/(\delta-\gamma), & \gamma < x \le \delta \\ 0, & x > \delta \end{cases}$$

Función de incremento No lineal ó Tipo S.

$$, x \le a$$

 $, a < x \le \beta$

• Función Campana de Gauss. Donde x es el elemento del universo, c es el centro de la campana, σ (sigma) es la amplitud de la campana cuando el grado de pertenencia es 0,5. $(x-c)^2$

 $f(x, \sigma, c) = e^{-\frac{(x-c)^2}{2\sigma^2}}$

Ejemplo de Función de Pertenencia no lineal

Diagnóstico de apnea del sueño - problema crónico (constante) de salud que altera el sueño.

S5. ¿Se duerme usted mientras conduce por la autopista?

Figura 6.12. Ejemplo de representación para una pregunta crítica.

Consideraciones Funciones de Pertenencia

- La asignación de una función de pertenencia de un conjunto difuso es de naturaleza subjetiva, sin embargo, no se puede asignar arbitrariamente.
- Los grados de pertenencia básicamente reflejan un ordenamiento de los objetos en un conjunto difuso.
- La suma de los grados de pertenencia de un conjunto difuso no necesariamente es igual a 1.

Ejercicio Conjuntos Difusos

¿A qué conjuntos difusos y con qué grado de pertenencia corresponde una entrada para la variable *Temperatura* de 22°?

Formulación de Sistemas de Inferencia Difusa (FIS)

El método estándar para crear un sistema de control difuso involucra:

- Identificación y denominación de las entradas y salidas difusas.
- Creación de las funciones de pertenencia de cada una de las entradas y salidas.
- Construcción de la base de conocimientos.

Las partes iníciales de un problema de control difuso son esbozadas a partir de la **experiencia intuitiva de un experto**.

Formulación de Sistemas de Inferencia Difusa (FIS)

Ejemplo

Supongamos que se desea crear un sistema difuso para controlar el aire acondicionado de un recinto.

Recurrimos a la **experiencia de un fabricante de aires acondicionados**, para elaborar un sistema de **dos variables lingüísticas de entradas** y **una salida**.

Variables Lingüísticas Difusas de Entrada:

- Temperatura del Ambiente (°C)
- Volumen del Salón (m3)

Variable Lingüística Difusas de Salida:

- Potencia de Trabajo del Aire Acondicionado

Conjuntos difusos para las variables lingüísticas de Entrada: Temperatura (°C) y Volumen (m³)

Conjuntos difusos para la variable lingüística de Salida: Potencia

Ejemplos de Reglas de Inferencia Difusa tipo Mandami

R: SI volumen_del_salón es MP (Muy Pequeño) AND temperatura_requerida es B (Baja)

ENTONCES *Potencia_del_Aire_Acondicionado* debe ser B (Baja, o sea entre 0 y 1500 W).

R: SI volumen_del_salón es G (Grande) AND temperatura_requerida es C (Cálida)

ENTONĜES Potencia_del_Aire_Acondicionado debe ser MA (muy Alta, o sea entre 3500 y 4000 W).

Evaluación (Orden cronológico)

• Micro-proyecto
$$1 - SE + LD \rightarrow 15\%$$

• COURSERA Curso 1
$$\rightarrow$$
 10%

• Parcial
$$\rightarrow$$
 10%

• COURSERA Curso 2
$$\rightarrow$$
 10%

• Micro-proyecto
$$3 - DT + BC \rightarrow 15\%$$

TOTAL:

→ 100%

Micro-proyecto1 (Equipos de 3 estudiantes) — 15%

Parte 1: Sistema de Inferencia Difuso (FIS) en un tema específico

Parte 2: Sistema Experto de Recomendación en PROLOG

Fecha Enunciado: Jueves 14 de noviembre

Fecha de entrega: Lunes 1 de noviembre, informe y código de la implementación

(3 Prototipos: FIS en MATLAB, FIS en JFuzzyLogic y SE en PROLOG)

Sustentación: Martes, 2 de noviembre.

Temas Micro-proyecto1 (Equipos de 3 estudiantes)

- 1. E-Salud (Diágnostico Médico)
- 2. Nutrición y Cuidado
- 3. Cambio Climático y Sostenibilidad
- 4. Agricultura
- 5. E-movilidad y transporte
- 6. Consumo de productos según origen
- 7. IoT
- 8. Diagnóstico de Fallas
- 9. Psiquiatría
- 10. Asistentes Virtuales Inteligentes (Chatbots)
- 11. E-Learning (Cursos Virtuales, e-Evaluación)
- 12. Visión por Computador
- 13. Turismo
- 14. Finanzas, Toma de decisiones bancarias, etc.
- 15. Videojuegos

