1

2

In the Claims

The following is a complete listing of the claims and replace all prior claims in the application:

- 1. (currently amended) A magnetic tunnel junction device, comprising: 1 2 a first magnetic layer and a second magnetic layer, at least one of the first and the second magnetic layers configured to include diffusion components selected to adjust one or more 3 properties of the tunnel junction device; and 4 a barrier layer disposed between the first and the second magnetic layers comprising 5 6 diffusion components from the at least one magnetic layer only in a diffusion region, wherein the diffusion components adjust the one or more properties of the tunnel junction device, and 7 8 wherein the diffusion region comprises a diffusion component-specific depth profile.
- 1 2. (original) The device of claim 1, wherein the diffusion components are selected to reduce a series resistance of the barrier layer.
 - 3. (original) The device of claim 1, wherein the diffusion components are selected to decrease a bandgap of the barrier layer.
- 4. (original) The device of claim 1, wherein the diffusion components are selected to passivate an interface of the barrier layer.
- 5. (original) The device of claim 1, wherein:
 the first magnetic layer is a pinned magnetic layer; and
 the second magnetic layer is a free magnetic layer.
- 6. (original) The device of claim 1, wherein at least one of the first and the second magnetic layers is a multi-layer structure.

Appl. No. 10/629,884 HSJ920030125US1/HITG.037PA Amdt. Dated April 11, 2005 Reply to Office Action of March 4, 2005

1

2

- 7. (currently amended) The device of claim 1, wherein the at least one layer at least one of the first and the second magnetic layers comprises an alloy of CoFe.
- 8. (original) The device of claim 7, wherein the alloy of CoFe comprises CoFeHf.
- 9. (original) The device of claim 8, wherein the CoFeHf comprises about 5 to about 10 atomic percent Hf.
- 1 10. (original) The device of claim 7, wherein the alloy including CoFe comprises 2 CoFeZr.
- 1 11. (original) The device of claim 10, wherein the CoFeZr comprises about 5 to about 10 atomic percent Zr.
- 1 12. (original) The device of claim 1, wherein the diffusion components comprise Hf.
- 1 13. (original) The device of claim 1, wherein the diffusion components comprise Zr.
- 1 14. (canceled) The device of claim 1, wherein the barrier layer has a thickness of about 3 to about 6 Å.
 - 15. (original) The device of claim 1, wherein the barrier layer including the migrated diffusion components comprises AlHfO_x.
- 1 16. (original) The device of claim 1, wherein the barrier layer including the migrated diffusion components comprises AlZrO_x.

1	17.	(currently amended) A magnetic tunnel junction sensor, comprising:	
2	a magnetic tunnel junction device comprising:		
3		a first magnetic layer and a second magnetic layer, at least one of the first and the	
4	secon	d magnetic layers configured to include diffusion components selected to adjust one	
5	or more properties of the tunnel junction device; and		
6		a barrier layer between the first and the second magnetic layers, the barrier layer	
7	comprising diffusion components from the at least one magnetic layer only in a diffusion		
8	region, wherein the diffusion components adjust the one or more properties;		
9	a current source coupled to the first magnetic layer and the second magnetic layer, and		
10	wherein the diffusion region comprises a diffusion component-specific depth profile; and		
11	a magnetoresistance detector, coupled to the first and the second magnetic layers, for		
12	detecting an electrical resistance through the magnetic tunnel junction device based on magnetic		
13	orientations of	of the first and the second magnetic layers.	
1	18.	(original) The device of claim 17, wherein the diffusion components are selected	
2	to reduce a se	eries resistance of the barrier layer.	
•	10	(anisinal). The device of claim 17 wherein the diffusion commonants are calcuted	
1	19.	(original) The device of claim 17, wherein the diffusion components are selected	
2	to decrease a	bandgap of the barrier layer.	
1	20.	(original) The device of claim 17, wherein the second magnetic layer is a free	
2	magnetic lay		
-			
1	21.	(original) The device of claim 17, wherein the first magnetic layer is a pinned	
2	multi-layer m	nagnetic structure.	
1	22.	(original) The device of claim 17, wherein the first magnetic layer comprises an	
2	alloy of CoFe.		
		·	
1	23.	(currently amended) The device of claim [[17]] 22, wherein the alloy of CoFe	
2	comprises CoFeHf.		

Appl. No. 10/629,884 HSJ920030125US1/HITG.037PA Amdt. Dated April 11, 2005 Reply to Office Action of March 4, 2005

- 1 24. (currently amended) The device of claim [[17]] 22, wherein the alloy of CoFe comprises CoFeZr.
- 1 25. (original) The device of claim 17, wherein the diffusion components comprise 2 Hf.
- 1 26. (original) The device of claim 17, wherein the diffusion components comprise Zr.
- 1 27. (canceled) The device of claim 17, wherein the barrier layer has a thickness of about 3 to about 6 Å.
- 1 28. (original) The device of claim 17, wherein the barrier layer including the 2 migrated diffusion components comprises AlHfO_x.
- 1 29. (original) The device of claim 17, wherein the barrier layer including the 2 migrated diffusion components comprises AlZrO_x.

1	30. (currently amended) A magnetic storage system, comprising:		
2	a movable magnetic recording medium;		
3	a magnetic tunnel junction sensor for detecting magnetic signals on the moveable		
4	recording medium, comprising:		
5	a first magnetic layer and a second magnetic layer, at least one of the first and the		
6	second magnetic layers configured to include diffusion components selected to adjust one or		
7	more properties of the tunnel junction sensor;		
8	a barrier layer between the first and the second magnetic layers, the barrier layer		
9	including diffusion components from the at least one magnetic layer only in a diffusion region,		
10	wherein the diffusion components adjust the one or more properties, and wherein the diffusion		
11	region comprises a diffusion component-specific depth profile; and		
12	a magnetoresistance detector, coupled to the first and the second magnetic layers,		
13	for detecting an electrical resistance through the magnetic tunnel junction sensor based on		
14	magnetic orientations of the first and the second magnetic layers; and		
15	an actuator, coupled to the magnetic tunnel junction sensor, for moving the sensor		
16	relative to the medium.		
1	31. (original) The device of claim 30, wherein the at least one of the first and the		
2	second magnetic layers comprises an alloy of CoFe.		
1	32. (original) The device of claim 31, wherein the alloy of CoFe comprises CoFeHf.		
1	33. (original) The device of claim 31, wherein the alloy of CoFe comprises CoFeZr.		
1	34. (original) The device of claim 30, wherein the diffusion components comprise		
2	Hf.		
1	35. (original) The device of claim 30, wherein the diffusion components comprise Zr		
1	36. (original) The device of claim 30, wherein the barrier layer including the		
2	migrated diffusion components comprises AlHfO _x .		

component-specific depth profile.

9

1	37. (original) The device of claim 30, wherein the barrier layer including the		
2	migrated diffusion components comprises AlZrO _x .		
	20 (
1	38. (currently amended) A memory device, comprising:		
2	an array of memory elements configured to store information for later access, each		
3	memory element comprising:		
4	a first magnetic layer and a second magnetic layer, at least one of the first and the		
5	second magnetic layers configured to include diffusion components selected to adjust one or		
6	more properties of the memory element; and		
7	a barrier layer between the first and the second magnetic layers, the barrier layer		
8	comprising diffusion components from the at least one magnetic layer only in a diffusion region		
9	wherein the diffusion components adjust the one or more properties, and wherein the diffusion		
10	region comprises a diffusion component-specific depth profile.		
1	39. (currently amended) A tunnel junction device, comprising:		
2	means for providing a first magnetic layer incorporating diffusion components		
3	selected to adjust one or more properties of the tunnel junction device;		
4	means for providing a second magnetic layer;		
5	means for providing a tunnel barrier layer between the first and the second		
6	magnetic layers, the tunnel barrier layer including diffusion components from the first magnetic		
7	layer only in a diffusion region, wherein the diffusion components adjust the one or more		
8	properties of the tunnel junction device, and wherein the diffusion region comprises a diffusion		

1	40. (currently amended) A magnetic tunnel junction sensor, comprising:		
2	means for providing a first magnetic layer configured to include diffusion		
3	components selected to adjust one or more properties of the tunnel junction sensor; and		
4	means for providing a second magnetic layer;		
5	means for providing a barrier layer between the first and the second magnetic		
6	layers, the barrier layer comprising diffusion components from the first magnetic layer		
7	only in a diffusion region, wherein the diffusion components alter the one or more		
8	properties, and wherein the diffusion region comprises a diffusion component-specific		
9	depth profile; and		
10	means for measuring an electrical resistance through the first and the second magnetic		
11	layers and the barrier layer based on magnetic orientations of the first and the second magnetic		
12	layers.		
1	41. (currently amended) A magnetic storage system, comprising:		
2	means for storing magnetic data;		
3	means for sensing the magnetically stored data, comprising:		
4	means for providing a first magnetic layer configured to include diffusion		
5	components selected to alter one or more properties of the sensing means;		
6	means for providing a second magnetic layer; and		
7	means for providing a barrier layer between the first and the second magnetic		
8	layers, the barrier layer including diffusion components from the first magnetic layer onl		
9	in a diffusion region and altering the one or more properties; and		
10	means for detecting an electrical resistance through the means for sensing based		
11	on magnetic orientations of the first and the second magnetic layers; and		
12	means for moving the means for sensing relative to the means for magnetic data storage		
13	storage.		