

Introdução ao Gazebo

Guilherme Marins Maciel André Marcato

Instalação

As instalações completas do ROS acompanham o Gazebo

```
sudo apt-get install ros-<version>-desktop-full
```

 Opção: Instalar o gerenciador de pacotes <u>synaptic</u> e verificar/instalar os seguintes pacotes:

Para o ubuntu 18.04: gazebo9 e ros-melodic

Arquitetura

Elementos da Simulação

World

 Collection of models, lights, plugins and global properties

Models

 Collection of links, joints, sensors, and plugins

Links

Collection of collision and visual objects

Collision Objects

Geometry that defines a colliding surface

Visual Objects

Geometry that defines visual representation

Joints

Constraints between links

Sensors

Collect, process, and output data

Plugins

 Code attached to a World, Model, Sensor, or the simulator itself

Links vs Joints

Collision and Visual Geometries

Simple shapes: sphere, cylinder, box, plane Complex shapes: heightmaps, meshes

Joints

Fixed: 0 DOF; Prismatic: 1 DOF translational; Revolute: 1 DOF rotational; Revolute2: Two revolute joints in series; Ball: 3 DOF rotational; Universal: 2 DOF rotational; Screw: 1 DOF translational, 1 DOF rotational

Prismatic

Revolute

Testando a Interface gráfica

Para testar o gazebo funcionando vinculado ao ROS:

roslaunch gazebo_ros empty_world.launch

Editor de Construções

 Criação de ambientes indoor: paredes, escadas, portas e janelas.

Edit >> building editor

Editor de modelos

 Edição de modelos simples.

Baseado em
 parelelepipedos,
 cilindros e esferas.

Criando mundos (.world)

 Após inseridos todos os modelos da cena, incluindo robôs, objetos, construções e plugins:

File >>> save world as

Salva todo o cenário e seu estado físico em um único arquivo.

Programação dos modelos

- XML
- Formatos: SDF, XACRO, URDF

Arquivos para exemplos e atividades da aula

cd ~/catkin_ws/src

git clone https://github.com/guimarinsjf/aulagazebo.git

catkin_make

abrindo mundo vazio:

roslaunch aulagazebo world.launch

Exemplo: robô diferencial

~catkin_ws/src/aulagazebo/models/my_robot/model.sdf

Adicionando sensores: exemplo kinect

- Adicionar um link com o formato e visual desejado e atribuir o código do sensor contendo o ros pluggin.
- Criar uma junta para acoplar esse link

Ferramenta de visualização rviz

Launch personalizado

roslaunch aulagazebo aulagazebo.launch

```
<?xml version="1.0"?>
<launch>
<!-- world respawn-->
    <include file="$(find aulagazebo)/launch/world.launch" >
        <arg name="qui" value="true"/>
        <arg name="headless" value="false"/>
        <arg name="world name" value="$(find aulagazebo)/worlds/empty.world" />
    </include>
<!-- models respawn-->
    <node name="spawn robot" pkg="gazebo ros" type="spawn model"
          args="-file /$(find aulagazebo)/models/my robot/model.sdf
                -sdf
                -model my robot
              -x 0 -y 0 -z 0
              -R 0 -P 0 -Y 0"/>
</launch>
```

~/catkin ws/src/aulagazebo/launch/aulagazebo.launch

Exemplo de aplicação do rospy: Controle de Posição

rosrun aulagazebo aulagazebo.py

Controlador

$$\rho = \sqrt{\Delta x^2 + \Delta y^2}$$

$$\gamma = \arctan 2(\Delta y, \Delta x)$$

$$\alpha = \gamma - \theta_R$$

$$\beta = \theta_G - \gamma$$

$$v = k_{\rho} \rho$$

$$\omega = k_{\alpha} \alpha + k_{\beta} \beta$$

Robótica Móvel - Prof. Leonardo Rocha Olivi

Atividade

- Edite a textura do modelo My Ground Plane com uma foto sua.
- Crie e salve um mundo com My Ground Plane na posição [x=0, y=0, z=0] e aulagazebo_parede na posição [x=0, y=0, z=0].
- Edite o modelo my_robot, adicionando um laser scan. Configure o frame para [x = 0, y = 0, z = 0.4, R= 0, P=0, Y= 0]. Configure o sensor para leituras de -3.14 a 3.14, 360 medidas de um em um grau, e alcance 10 metros.
- Crie um arquivo launch que abra o seu mundo e inicie seu robô na posição [x =-0.75, y = -0.85, z = 0, R= 0, P=0, Y= 0].
- Edite o programa aulagazebo.py para: reconhecer a passagem através do laser, e fazer um controle de posição para o centro com orientação perpendicular a passagem.

Ilustração do controle

