ADDRESSING SURPRISAL DEFICIENCIES IN READING TIME MODELS

Marten van Schijndel William Schuler

December 11, 2016

Department of Linguistics, The Ohio State University

• Surprisal (PCFG, N-gram) is a way to estimate text complexity

- Surprisal (PCFG, N-gram) is a way to estimate text complexity
- Experienced complexity is reflected in reading speed

- Surprisal (PCFG, N-gram) is a way to estimate text complexity
- Experienced complexity is reflected in reading speed

Claim:

Current surprisal models inadequately estimate reading complexity

- Surprisal (PCFG, N-gram) is a way to estimate text complexity
- Experienced complexity is reflected in reading speed

Claim:

Current surprisal models inadequately estimate reading complexity

This work:

A simple tweak to fix surprisal

The red apple that the girl ate ...

The red apple that the
$$\underset{w_1}{\text{girl}}$$
 ate ...

Reading model of 'girl': sentence position

Reading model of 'girl': sentence position, word length

The red apple that the
$$girl$$
 ate ...

SURPRISAL: PROBABILITY OF OBSERVATION GIVEN CONTEXT

This study: n-gram and PCFG surprisal

SURPRISAL: PROBABILITY OF OBSERVATION GIVEN CONTEXT

This study: n-gram and PCFG surprisal

The red apple that the girl ate ...

N-gram-surp(girl) = $-\log P(girl \mid the)$

Surprisal: probability of observation given context

This study: n-gram and PCFG surprisal

$$PCFG$$
-surp(girl) = $-log P(T_6 = girl \mid T_1 ... T_5 = The ... the)$

Cumulative N-gram Surprisal

The red apple that the girl ate \dots

The
$$\underline{\text{red}}$$
 apple that the girl ate ...

cumu-*n*-gram
$$(w, f_{t-1}, f_t) = \sum_{i=f_{t-1}+1}^{f_t} -\log P(w_i \mid w_{i-n} \dots w_{i-1})$$

The red
$$apple$$
 that the girl ate ...

cumu-*n*-gram
$$(w, f_{t-1}, f_t) = \sum_{i=f_{t-1}+1}^{f_t} -\log P(w_i \mid w_{i-n} \dots w_{i-1})$$

The red apple that the girl ate ...
$$\frac{1}{2}$$

cumu-*n*-gram
$$(w, f_{t-1}, f_t) = \sum_{i=f_{t-1}+1}^{f_t} -\log P(w_i \mid w_{i-n} \dots w_{i-1})$$

cumu-*n*-gram
$$(w, f_{t-1}, f_t) = \sum_{i=f_{t-1}+1}^{f_t} -\log P(w_i \mid w_{i-n} \dots w_{i-1})$$

Cumu-PCFG(
$$w, f_{t-1}, f_t$$
) = $\sum_{i=f_{t-1}}^{f_t} -\log P(T_i = w_i \mid T_1 \dots T_{i-1} = w_1 \dots w_{i-1})$

Cumu-PCFG(
$$w, f_{t-1}, f_t$$
) = $\sum_{i=f_{t-1}}^{f_t} -\log P(T_i = w_i \mid T_1 \dots T_{i-1} = w_1 \dots w_{i-1})$

Cumu-PCFG(
$$w, f_{t-1}, f_t$$
) = $\sum_{i=f_{t-1}}^{f_t} -\log P(T_i = w_i \mid T_1 \dots T_{i-1} = w_1 \dots w_{i-1})$

Cumu-PCFG
$$(w, f_{t-1}, f_t) = \sum_{i=f_{t-1}}^{f_t} -\log P(T_i = w_i \mid T_1 \dots T_{i-1} = w_1 \dots w_{i-1})$$

HOW WELL DOES THIS FIX WORK?

N-gram surprisal

- 5-grams
- Trained on Gigaword 3.0 (Graff and Cieri, 2003)
- Computed with KenLM (Heafield et al., 2013)

HOW WELL DOES THIS FIX WORK?

N-gram surprisal

- 5-grams
- Trained on Gigaword 3.0 (Graff and Cieri, 2003)
- Computed with KenLM (Heafield et al., 2013)

PCFG surprisal

- Nguyen et al., (2012) Generalized Categorial Grammar
- Trained on WSJ 02-21 (Marcus et al., 1993)
- Computed with van Schijndel et al., (2013) parser

HOW WELL DOES THIS FIX WORK?

University College London (UCL) Corpus (Frank et al., 2013)

- 43 subjects
- reading short sentences from online novels
- frequent comprehension questions

How well does this fix work?

Baseline mixed effects model

Fixed Factors

- sentence position
- word length
- region length
- whether the previous word was fixated

How well does this fix work?

Baseline mixed effects model

Fixed Factors

- sentence position
- word length
- region length
- whether the previous word was fixated

Random Factors

- All fixed factors as by-subject random slopes
- Item, subject and subject x sentence intercepts

ACCUMULATION IMPROVES N-GRAM SURPRISAL

Baseline

ACCUMULATION IMPROVES N-GRAM SURPRISAL

ACCUMULATION IMPROVES N-GRAM SURPRISAL

After adding cumulative *n*-gram surprisal to model:

ACCUMULATION DOES NOT HELP PCFG SURPRISAL

After adding cumulative *n*-gram surprisal to model:

• PCFG surprisal is not useful (p > 0.05)

ACCUMULATION DOES NOT HELP PCFG SURPRISAL

After adding cumulative *n*-gram surprisal to model:

- PCFG surprisal is not useful (p > 0.05)
- Cumulative PCFG surprisal is not useful (p > 0.05)

What does accumulation model?

Subsequent regression

Subsequent regression

The red apple that the girl ate \dots

Subsequent regression

Subsequent regression

Subsequent regression

Parafovial processing

Parafovial processing

Parafovial processing

Prediction (entropy)

Prediction (entropy)

Prediction (entropy)

The red (apple that the girl) ate \dots

ACCUMULATION ALTERNATIVE: SUCCESSOR SURPRISAL

Cumulative surprisal only handles subsequent regression

ACCUMULATION ALTERNATIVE: SUCCESSOR SURPRISAL

Cumulative surprisal only handles subsequent regression

Parafovial: Th(e red apple that t)he girl ate ...

Prediction: The red (apple that the girl) ate ...

accumulated

ACCUMULATION ALTERNATIVE: SUCCESSOR SURPRISAL

Cumulative surprisal only handles subsequent regression

Parafovial: Th(e red apple that t)he girl ate ...

Prediction: The red (apple that the girl) ate ...

Other accumulation mechanisms presuppose earlier accumulation

Upcoming material influences reading times

SUCCESSOR EFFECTS INFLUENCE READING TIMES

Upcoming material influences reading times

• Orthographic effects (Pynte, Kennedy, & Ducrot, 2004; Angele, Tran, & Rayner, 2013)

SUCCESSOR EFFECTS INFLUENCE READING TIMES

Upcoming material influences reading times

- Orthographic effects
 (Pynte, Kennedy, & Ducrot, 2004; Angele, Tran, & Rayner, 2013)
- Lexical effects (Kliegl et al., 2006; Li et al., 2014; Angele et al., 2015)

The red apple that the girl ate \dots

future-*n*-gram
$$(w, f_t, f_{t+1}) = \sum_{i=f_t}^{f_{t+1}} -\log P(w_i \mid w_{i-n} \dots w_{i-1})$$

The
$$\underline{\text{red}}$$
 apple that the girl ate ...

future-*n*-gram
$$(w, f_t, f_{t+1}) = \sum_{i=f_t}^{f_{t+1}} -\log P(w_i \mid w_{i-n} \dots w_{i-1})$$

The red
$$apple$$
 that the girl ate ...

future-*n*-gram
$$(w, f_t, f_{t+1}) = \sum_{i=f_t}^{f_{t+1}} -\log P(w_i \mid w_{i-n} \dots w_{i-1})$$

The red apple that the girl ate ...
$$\frac{1}{2}$$

future-*n*-gram
$$(w, f_t, f_{t+1}) = \sum_{i=f_t}^{f_{t+1}} -\log P(w_i \mid w_{i-n} \dots w_{i-1})$$

future-*n*-gram
$$(w, f_t, f_{t+1}) = \sum_{i=f_t}^{f_{t+1}} -\log P(w_i \mid w_{i-n} \dots w_{i-1})$$

Future-PCFG(w,
$$f_t$$
, f_{t+1}) = $\sum_{i=f_t}^{f_{t+1}}$ -log P($T_i = w_i \mid T_1 \dots T_{i-1} = w_1 \dots w_{i-1}$)

Future-PCFG(w,
$$f_t$$
, f_{t+1}) = $\sum_{i=f_t}^{f_{t+1}}$ -log P($T_i = w_i \mid T_1 \dots T_{i-1} = w_1 \dots w_{i-1}$)

Future-PCFG(w,
$$f_t$$
, f_{t+1}) = $\sum_{i=f_t}^{f_{t+1}}$ -log P($T_i = w_i \mid T_1 \dots T_{i-1} = w_1 \dots w_{i-1}$)

Future-PCFG(
$$w, f_t, f_{t+1}$$
) = $\sum_{i=f_t}^{f_{t+1}} -\log P(T_i = w_i \mid T_1 \dots T_{i-1} = w_1 \dots w_{i-1})$

Successor PCFG works better

• N-gram surprisal should be accumulated to predict reading times

- *N*-gram surprisal should be accumulated to predict reading times
- N-gram surprisal accumulates post-saccade
- PCFG surprisal accumulates pre-saccade

- N-gram surprisal should be accumulated to predict reading times
- N-gram surprisal accumulates post-saccade
- PCFG surprisal accumulates pre-saccade
 - Likely approximates entropy ($\rho = 0.2$)

- N-gram surprisal should be accumulated to predict reading times
- N-gram surprisal accumulates post-saccade
- PCFG surprisal accumulates pre-saccade
 - Likely approximates entropy ($\rho = 0.2$)
 - Evidence that entropy directly predicts RTs

- N-gram surprisal should be accumulated to predict reading times
- N-gram surprisal accumulates post-saccade
- PCFG surprisal accumulates pre-saccade
 - Likely approximates entropy ($\rho = 0.2$)
 - Evidence that entropy directly predicts RTs
 - Evidence of syntactic successor effects

THANKS! QUESTIONS?

Thanks to:

- Stefan Frank
- National Science Foundation (DGE-1343012)

Successor n-grams are most predictive for 2 future words (p < 0.001)

SUCCESSOR N-GRAMS WORK

Successor n-grams are most predictive for 2 future words (p < 0.001) 6% of UCL saccades (n=3500) >2 words