

Khoa Công Nghệ Thông Tin Trường Đại Học Cần Thơ

Đánh giá hiệu quả của giải thuật học

Trần Nguyễn Minh Thư tnmthu@cit.ctu.edu.vn

> Cần Thơ 02-2015

Nội dung

- Nghi thức kiểm tra
- ■Các chỉ số đánh giá

Nghi thức kiểm tra

- nếu dữ liệu có 1 tập học và 1 tập kiểm tra sẵn dùng
 - dùng dữ liệu học để xây dựng mô hình,
 - dùng tập kiểm tra để đánh giá hiệu quả của giải thuật
- nếu dữ liệu **không có 1 tập kiểm tra** sẵn?

3

Nghi thức kiểm tra

- nếu dữ liệu không có 1 tập kiểm tra sẵn
 - sử dụng nghi thức k-fold :
 - chia tập dữ liệu thành k phần (fold) bằng nhau, lặp lại k lần, mỗi lần sử dụng k-1 folds để học và 1 fold để kiểm tra, sau đó tính trung bình của k lần kiểm tra
 - nghi thức hold-out: lấy ngẫu nhiên 2/3 tập dữ liệu để học và 1/3 tập dữ liệu còn lại dùng cho kiểm tra, có thể lặp lại quá bước này k lần rồi tính giá trị trung bình

Nghi thức kiểm tra

- nếu dữ liệu có số phần tử lớn hơn 300
 - sử dụng nghi thức k-fold với k = 10
- nếu dữ liệu có số phần tử nhỏ hơn 300
 - sử dụng nghi thức leave-1-out (k-fold với k = số phần tử)
 - => Vd leave 1 out

5

Chỉ số đánh giá

Confusion matrix (C) cho k lớp

dự đoán =>	1	 k
1		
k		

- \Box C[i, j]: số phần tử lớp **i** (**dòng**) được giải thuật dự đoán là lớp **j** (**cột**)
- ☐ C[i,i]: số phần tử phân lớp đúng
- □ Độ chính xác lớp **i**: C[i,i] / C[i,]
- \square Độ chính xác tổng thể: $\sum C[i,i] / C$

-

Confusion matrix (C) cho k lớp

dự đoán =>	Setosa	vesicolor	virginica
Setosa	15	0	0
vesicolor	0	16	2
virginica	0	3	14

- □Độ chính xác lớp i: C[i,i] / C[i,]
 - \square Setosa = ?
 - \square Vesicolor = ?
 - \Box Virginica = ?
- \square Độ chính xác tổng thể: $\sum C[i,i] / C = ?$

Confusion matrix (C) cho k lớp

dự đoán =>	Setosa	vesicolor	virginica
Setosa	15	0	0
vesicolor	0	16	2
virginica	0	3	14

- $\hfill \square$ C[i,j]: số phần tử lớp
 i (dòng) được giải thuật dự đoán
- là lớp j (cột)
- ☐ C[i,i]: số phần tử phân lớp đúng
- □ Độ chính xác lớp i: C[i,i] / C[i,]
 - \square Setosa = 15/15
 - \Box Vesicolor = 16/18
 - □ Virginica = 14/17
- \square Độ chính xác tổng thể: $\sum C[i,i] / C = 45/50$

Confusion matrix (C) cho 2 lớp (+/-)

Ma trận contingency

dự đoán =>	dương	âm
dương	TP	FN
âm	FP	TN

TP: true positive

tổng số phần tử lớp dương được giải thuật dự đoán lớp dương

TN: true negative

tổng số phần tử lớp âm được giải thuật dự đoán là lớp âm

FP: false positive

tổng số phần tử lớp âm được giải thuật dự đoán là lớp dương

FN: false negative

tổng số phần tử lớp dương được dự đoán là lớp âm

Confusion matrix (C) cho 2 lóp (+/-)

dự đoán =>	dương	âm
duong	TP	FN
âm	FP	TN

Precsion Recall Accuracy F1

$$prec = \frac{tp}{tp + fp}$$
$$rec = \frac{tp}{tp + fn}$$

$$acc = \frac{tp + tn}{tp + fn + tn + fp}$$

$$F1 = \frac{2 \times prec \times rec}{prec + rec}$$

11

Confusion matrix (C) cho 2 lớp (+/-)

dự đoán =>	dương	âm
duong	10 (TP)	5 (FN)
âm	8 (FP)	22 (TN)

$$prec = \frac{tp}{tp + fp}$$

$$rec = \frac{tp}{tp + fn}$$

Precision = 10/(10+8) = 0.56 Recall = 10/(10+5) = 0.67 Accuracy=(10+22)/10+5+8+22) = 32/45 = 0.71

F1 = 2 x precision x recall / (prec + recall) = 0.75/1.23 = 0.61

$$acc = \frac{tp + tn}{tp + fn + tn + fp}$$

$$F1 = \frac{2 \times prec \times rec}{prec + rec}$$

Dữ liệu không cân bằng

- nếu dữ liệu không cân bằng
 - lớp positive có số lượng rất nhỏ so với lớp negative
 - ví du : positive = 5%, negative = 95%
 - một giải thuật học có thể cho kết quả 95% độ chính xác khi phân loại, nhưng chúng ta có thể mất hoàn toàn lớp positive
- khả năng tách lớp positive từ lớp negative