CSEN1002 Compilers Lab, Spring Term 2020 Task 3: Fallback DFA

Due: Week starting 22.02.2020

1 Objective

For this task you need to implement a fallback deterministic finite automaton with actions (FDFA) abstract data type. Recall that an FDFA is a sextuple $(Q, \Sigma, \delta, q_0, F, \mathcal{A})$: Q is a non-empty, finite set of states; Σ is non-empty, finite set of symbols (an alphabet); $\delta: Q \times \Sigma \longrightarrow Q$ is the transition function; $q_0 \in Q$ is the start state; $F \subseteq Q$ is the set of accept states; and \mathcal{A} is function that maps every state in Q to an action. Refer to the slides of Lecture 2 of CSEN1003 for more details about the operation of FDFA.

2 Requirements

- You may use the programming language of your choice.
- We make the following assumptions for simplicity.
 - a) The alphabet Σ is always the binary alphabet $\{0,1\}$.
 - b) The set of states Q is always of the form $\{0,\ldots,n\}$, for some $n\in\mathbb{N}$.
 - c) The start state is always state 0.
 - d) A maps each state to a binary string; the action is to print this string.
- You should implement two functions: fdfa and run.
- fdfa (which could be a class constructor) takes one parameter which is a string description of an FDFA and returns (or constructs) an FDFA instance as per the description.
- A string describing an FDFA is of the form P # S, where P is a prefix representing both the transition function δ and the action function \mathcal{A} and S is a suffix representing the set F of accept state.
- P is a semicolon-separated sequence of quadruples. Each quadruple is a comma-separated sequence of items; the first three items are states and the fourth is a binary string. A quadruple i, j, k, s means that $\delta(i, 0) = j, \delta(i, 1) = k$, and A(i) = s.
- S is a comma-separated sequence of states.
- For example, consider the FDFA for which the state diagram appears below. Suppose that, for state i, $\mathcal{A}(i)$ is the two-bit binary representation of i. Thus, such an FDFA may have the following string representation.

• run simulates the operation of the constructed FDFA on a given binary string. For example, running the above FDFA on the string 1011100 produces the output 1000.

3 Evaluation

- Your implementation will be tested by constructing two FDFA and running each on five strings.
- You get one point for each correct output of run; hence, a maximum of ten points.