

点石文本分类大赛决赛

2018年01月

队长: 骆金昌 队名: 666

目录

- □ 赛题介绍 & 整体思路
- □我们的解决方案
 - 文本预处理 & 特征
 - 训练集分割
 - 深度学习模型
 - 传统分类模型
 - 模型合并
 - 解决方案效果
- □比赛经验总结
- QA

比赛介绍与整体思路

比赛介绍

赛题提供一批网民真实的短文本评论数据,期望开发者通过建立模型分析出网民评论的的**正向、中立、负向**情感极性。

数据集 & 评价方法

初赛设置A/B榜,提供**训练集**1999条、A榜提供测试集5000条,B
榜提供测试集5000条。采用**加权F1**作
为评价指标。

比赛排名

我们的方法取得成绩如下:

A榜第一名,B榜第三名

解决方案总架构及亮点

技术创新

- 1、深度学习模型与传统模型相结合,最好的解决方案合并了
- 100个模型预测结果;
- 2、10-fold的数据分割,增强模型的泛化性与稳定性;
- 3、bagging训练方法,合理使用全量数据,提高整体泛化能

力。

3

解决方案 | 文本预处理 & 特征提取

· 文本预处理

- 格式化
 - 全角转半角
 - 繁体转简体, nstool
- 删除词或短语
 - 特殊字符,如:日本字符
 - 停词,如:的/是
 - 短语,如:回复XXX

・文本特征提取

- 对句子进行:分词/分字
 - 分词: 今天/我/很/开心
 - 分字: 今/天/我/很/开/心
 - 原句子:今天我很开心
- N-gram
- n=1: 今/天/我/很/开/心
- n=2: 今天/天我/我很/很开/开心
- /• n=3: 今天我/天我很/我很开/很开心

解决方案 | 训练集分析及K-fold分割

超参选择:交叉验证

- 通过交叉验证方法确定超参选择
- 训练集分为K份,每次留出一个作为Valid集, 剩下作为Train集,如上图
- 分别在不同fold中训练,得到该fold下Valid 集的F1
- 取所有fold的**平均值作为该次超参数的效果**

如何选择选择 K

- 训练集非常小(2W),模型不稳定,如上图
- K=4或5时, Valid集效果好, 但A榜效果不一定好, 泛化性无法保证
- 当K越大时,两fold交集也越大,每fold利用
 更多数据,整体模型效果更稳定
- 综合权衡下,选择K=10

解决方案 | 深度学习模型

TextCNN

- 卷积层+Maxpooling层,提取句子词的局部相关性
- 通过调整卷积核大小捕捉比N-gram更丰富的信息
- 卷积核大小: 1,2,3,4,5,6; 词向量长度256,
 L2惩罚项

FastText

- 句子中所有的词向量进行平均,再接 Softmax层分类
- 加入n-gram 特征的 trick 来捕获局部 序列信息
- 文本进行分词或分字后作为特征输入
- 词向量长度100, 迭代15次

解决方案 | 传统模型

Xgboost

- 综合多棵树结果作预测,泛化性好,稀疏特征
- 诸多比赛中使用广泛,并且取得了不少好成绩

Logistic Regression

- 线性,简单高效、可解释性强
- · 在工业界中广泛应用,如CTR预估

lightGBM

- · 基于叶子(Leaf-wise)的树增长方式
- 更快速度,更少内存,更高的精度

Naive Bayes

- 概率图模型、假设特征之间相互独立
- 特征分布: Bernoulli / Multinomial 分布

解决方案 | 模型合并

模型合并

- 相同的输入,独立训练基础模型GBDT、LR等
- 每个单独的模型预测三个极性的分布概率作为输出
- 综合所有单独模型的输出,构建新的训练集
- · 重新在训练集上训练LR模型,合并所有模型的结果

类似Bagging的训练模式

- 训练集(2W)按10-fold分割,构造不同的训练集1、训练集2...
- 分别在训练集i上训练模型,得到测试集的 预测结果
- 平均所有的测试集结果,提交到网站评估

解决方案 | 模型效果

Single Model					
Algorithm	Feature	F1-Valid	F1-TestA		
BernoulliNB	N-gram	0.821	-		
MultinomialNB	N-gram	0.803	-		
LogisticRegression	N-gram	0.864	-		
XGBoost	N-gram	0.860	0.803		
lightGBM	N-gram	0.862	-		
FastText	Char	0.863	0.792		
rastiext	Word	0.843	-		
TextCNN	Char	0.863	0.803		
TEXTOTAL	Word	0.847	-		

- 5个传统模型+4个深度学习模型
- 1个ensemble模型LR
- 10-fold取平均进行预测
- · 总模型个数:(5 +4 + 1) * 10 = 100

Combine Model				
Algorithm	Ensemble	F1-Valid	F1-TestA	
FastText[Char] + FastText[Word]	Average	0.865	0.8057	
	LR	0.874	0.8143	
Tradition Model + FastText[Char/Word] + TextCNN[Char]	LR	0.8770	0.8200	
Tradition Model + FastText[Char/Word] + TextCNN[Char/Word]	LR	0.8777	0.8210	

解决方案 | 排名

A榜第一名

排名	团队名	参赛者	f1- score	最优成绩提 交日
1	666	jchluo123	0.8210	2018-01-16
2	成金	AaronLee22,dx,bert1018,lemondy9,stowho	0.8193	2018-01-16
3	天下第一	ms_xiaomao。搬砖的搬砖的搬砖的	0.8065	2018-01-16

B榜第三名

排名	团队名	参赛者	f1-score	最优成绩提交日
1	成金	AaronLee22,dx,bert1018,lemondy9,stowho	0.8060	2018-01-18
2	P90rushB	superDii,bleach92,mafing	0.7923	2018-01-19
3	666	jchluo123	0.7920	2018-01-18

比赛经验总结

什么路可能不work

□ 特征层

- ➤ 文本主题特征,如LDA、NMF,文本太短,主题模型效果不好
- ➤ Ngram特征, N >=4 效果无提高, 耗时无法接受
- ➤ 语义向量特征+LR/SVM,效果无明显提升
- ➤ TFIDF+Ngram,效果无明显提升

□ 模型层

- ➤ SVM跑2万样本,50万维Ngram特征,耗时无法接受
- ➤ 随机森林, KNN效果差
- ➤ LSTM模型在短文本中分类不稳定,需要提高模型稳定性

ensemble层

- ➤ 用GBDT作模型合并,质量无提高,容易过拟合,可能是因为特征维数太少
- ➤ 一般来说,用LR作模型合并效果优于Average策略

比赛经验总结

什么方法可能work

□ 特征层

> 文本切分:单个模型,分字效果优于分词;组合模型,分字+分词效果更优

➤ 参数选择:Ngram应该选择合适的N,这里为3最好

□ 模型层

▶ 模型比较 :深度学习模型和传统模型同样重要,都可提高组合模型的效果

➤ 高维稀疏特征: GBDT/LR可能更适合, 高效、稳定、泛化性好

▶ 模型实现 : 可以考虑多种实现,如GBDT,可以同时考虑XGBoost和lightGBM

> 泛化性 : 尽量提高模型的泛化性与稳定性,如10-fold等

➤ 探索 : LSTM模型可能有效果,值得进一步探索

ensemble层

- ▶ 组合模型一般来优于单个模型,选择正确的组合算法,如LR/GBDT,组合效果可能非常惊人
- ▶ 单个模型尽量要多样性,如树+线性+bayes+CNN等
- > stacking可以提高模型的泛化性

Q&A