Zadaci:

1. (6 bodova) Zadan je kompleksni broj $a=\frac{3}{2}-\frac{\sqrt{3}}{2}i$. Odrediti $z\in\mathbb{C}$ iz jednadžbe

$$a^{10} \cdot z^2 = |a^3| \cdot \left(\frac{1+i}{1-i}\right)^3.$$

2. **(6 bodova)** Zadane su matrice $A = \begin{bmatrix} 1 & \alpha & 0 \\ 0 & 1 & -2\alpha \\ \alpha & 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 1 & 2 \\ 0 & 1 & 3 \\ 1 & 0 & 0 \end{bmatrix}$ i

$$C = \begin{bmatrix} -1 & 3 & -4 \\ 4 & -2 & -1 \\ 3 & 0 & 0 \end{bmatrix}.$$
 Za koji $\alpha \in \mathbb{R}$ je matrica A singularna matrica? Za
$$\alpha = -1$$
riješiti matričnu jednadžbu $A \cdot (X^T \cdot B)^T = C.$

- 3. (6 bodova) Neka su $\overrightarrow{a} = 3\overrightarrow{m} + 5\overrightarrow{n}$ i $\overrightarrow{b} = -2\overrightarrow{m} + \overrightarrow{n}$, pri čemu je $|\overrightarrow{m}| = 2, |\overrightarrow{n}| = 1, \angle(\overrightarrow{m}, \overrightarrow{n}) = \frac{\pi}{3}$. Odrediti duljine dijagonala paralelograma razapetog vektorima \overrightarrow{a} i \overrightarrow{b} , površinu paralelograma, te kut između dijagonala.
- 4. (6 bodova) Odrediti jednadžbu ravnine koja prolazi pravcem $p...\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z-2}{2}$, a okomita je na ravninu $\Pi...3x + 2y z 5 = 0$.
- 5. (6 bodova) Odrediti domenu funkcije $f(x) = \ln\left(\arcsin\left(\frac{x+2}{5-x}\right)\right) \sqrt{\frac{x^2-3x}{x^2-5x+4}}$.

Teorija:

1. (6 bodova) Objasniti što je i kako se provodi princip matematičke indukcije. Primjenom matematičke indukcije dokazati da za svaki $n \in \mathbb{N}$ vrijedi

$$\frac{3}{2} + \frac{9}{4} + \dots + \frac{2^{2n-1} + 1}{2^n} = \frac{2^{2n} - 1}{2^n}.$$

- 2. (7 bodova) Što je determinanta i kako ju računamo? Za regularnu matricu A dokazati da je $det \ (A^{-1}) = \frac{1}{det \ A}$. Ako za regularne matrice A, B, X vrijedi $AX^{-1}B^{-1} = BA^{-1}$, izraziti $det \ X$ pomoću $det \ A$ i $det \ B$. Ako je $det \ A = 6$ i $det \ B = 9$, koliko je $det \ X$?
- 3. (7 bodova) Definirati skalarni produkt dvaju vektora. Primjenom formule za skalarni produkt dokazati da su kosinusi smjerova vektora \vec{a} jednaki skalarnim komponentama jediničnog vektora $\vec{a_0}$. Dati jedan primjer navedene tvrdnje.

Rješenja:

1.
$$z = \sqrt{\frac{\sqrt{3}}{81}} \left(\cos \frac{\frac{7\pi}{6} + 2k\pi}{2} + i \sin \frac{\frac{7\pi}{6} + 2k\pi}{2} \right), k = 0, 1.$$

2.
$$\alpha = \sqrt[3]{\frac{1}{2}}, X = \begin{bmatrix} -2 & -25/3 & 26/3 \\ 2 & 17/3 & 7 \\ -3 & -8 & 7 \end{bmatrix}$$
.

3.
$$P = 13\sqrt{3}, |\overrightarrow{d}_1| = 2\sqrt{13}, |\overrightarrow{d}_2| = 12, \cos(\angle \overrightarrow{d}_1, \overrightarrow{d}_2) = \frac{-74}{24\sqrt{13}}.$$

4.
$$\Pi_1...x - 8y - 13z + 9 = 0$$
.

5.
$$D_f = <-2,0$$