In the Claims

Amend the claims as follows:

1(Currently Amended) A compound of the structural formula I:

$$R_5$$
 R_4
 Q
 R_2
 R_3

Formula I

or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof: wherein,

R represents hydrogen, or C₁₋₆ alkyl;

R₁ represents hydrogen or C₁₋₆ alkyl, CF₃, C₁₋₆ alkoxy, OH, COR^c, CO₂R₈, CONHCH₂CO₂R, N(R)₂, said alkyl and alkoxy optionally substituted with 1-3 groups selected from R^b;

X represents -(CHR7)p-;

Y represents $-CO(CH_2)_n$ -, or -CH(OR)-;

Q represents N, CRy, or O, wherein R2 is absent when Q is O;

Ry represents H, or C₁₋₆ alkyl;

 R_w represents H, C_{1-6} alkyl, $-C(O)C_{1-6}$ alkyl, $-C(O)OC_{1-6}$ alkyl, $-SO_2N(R)_2$, $-SO_2C_{1-6}$ alkyl, $-SO_2C_{6-10}$ aryl, NO_2 , CN or $-C(O)N(R)_2$;

R2 represents hydrogen, C₁₋₁₀ alkyl, C₁₋₆ alkylSR, -(CH₂)_nO(CH₂)_mOR, -(CH₂)_nC₁₋₆ alkoxy, -(CH₂)_nC₃₋₈ cycloalkyl, -(CH₂)_nC₃₋₁₀ heterocyclyl, -(CH₂)_nC₅₋₁₀ heteroaryl, -N(R)₂, -COOR, or -(CH₂)_nC₆₋₁₀ aryl, said alkyl, heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups selected from R^a;

R3 represents hydrogen, C1-10 alkyl, -(CH2)_nC3-8 cycloalkyl, -(CH2)_nC3-10 heterocyclyl, -(CH2)_nC5-10 heteroaryl, -(CH2)_nCOOR, -(CH2)_nC6-10 aryl, -(CH2)_nNHR8, -(CH2)_nN(R)2, -(CH2)_nN(R8)2, -(CH2)_nNHCOOR, -(CH2)_nNHCOOR, -(CH2)_nN(R8)CO2R, -(CH2)_nN(R8)COR, -(CH2)_nNHCOR, -(CH2)_nCONH(R8), aryl, -(CH2)_nC1-6-OR, CF3, -(CH2)_nSO2R, -(CH2)_nSO2N(R)2, -(CH2)_nCON(R)2, -(CH2)_nCONHC(R)3, -(CH2)_nCONHC(R)2CO2R, -(CH2)_nCOR8, nitro, cyano or halogen, said alkyl, alkoxy, heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups of Ra, provided R3 is not pyridinyl or substituted thiazolyl when R2 is hydrogen and Q is N or R3 is not pyridinyl when Q is O;

or, when Q is N, R₂ and R₃ taken together with the intervening N atom form a 4-10 membered heterocyclic carbon ring optionally interrupted by 1-2 atoms of O, S, C(O) or NR, and optionally having 1-4 double bonds, and optionally substituted by 1-3 groups selected from R^a;

R4 and R5 independently represent hydrogen, C₁₋₆ alkoxy, OH, C₁₋₆ alkyl, COOR, SO₃H, C₁₋₆ alkylcarbonyl, S(O)qRy, -O(CH₂)_nN(R)₂, -O(CH₂)_nCO₂R, -OPO(OH)₂, CF_{3.} -N(R)₂, nitro, cyano, C₁₋₆ alkylamino, or halogen;

R6 represents hydrogen, C_{1-10} alkyl, $-(CH_2)_nC_{6-10}$ aryl, $-NH(CH_2)_nC_{6-10}$ aryl, $-(CH_2)_nC_{5-10}$ heteroaryl, $-NH(CH_2)_nC_{5-10}$ heteroaryl, $-(CH_2)_nC_{3-10}$ heterocyclyl, $-(CH_2)_nC_{3-8}$ cycloalkyl, -COOR, $-C(O)CO_2R$, said aryl, heteroaryl, heterocyclyl and alkyl optionally substituted with 1-3 groups selected from R^a ;

R7 represents hydrogen, C_{1-6} alkyl, $-(CH_2)_nCOOR$ or $-(CH_2)_nN(R)_2$,

R8 represents - $(CH_2)_nC_{3-8}$ cycloalkyl, - $(CH_2)_n$ 3-10 heterocyclyl, C_{1-6} alkoxy or - $(CH_2)_nC_{5-10}$ heteroaryl, - $(CH_2)_nC_{6-10}$ aryl said heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups selected from R^a ;

Ra represents F, Cl, Br, I, CF₃, N(R)₂, NO₂, CN, -(CH₂)_nCOR₈, -(CH₂)_nCONHR₈, - (CH₂)_nCON(R₈)₂, -O(CH₂)_nCOOR, -NH(CH₂)_nOR, -COOR, -OCF₃, -NHCOR, -SO₂R, -SO₂NR₂, -SR, (C₁-C₆ alkyl)O-, -(CH₂)_nO(CH₂)_mOR, -(CH₂)_nC₁₋₆ alkoxy, (aryl)O-, -OH, (C₁-C₆ alkyl)S(O)_m-, H₂N-C(NH)-, (C₁-C₆ alkyl)C(O)-, (C₁-C₆ alkyl)OC(O)NH-, -(C₁-C₆ alkyl)NR_w(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₁-C₆ alkyl)S(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₁-C₆ alkyl)O(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(CH₂)_n-Z¹-C(=Z²)N(R)₂, -(C₂-6 alkenyl)NR_w(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₂-6 alkenyl)O(CH₂)_nC₃₋₁₀ heterocyclyl-R_w, -(C₂-6 alkenyl)-C₃₋₁₀ heterocyclyl-R_w, -(C₂-6 alkenyl)-C₃₋₁₀ heterocyclyl-R_w, -(C₂-6 alkenyl)-Z¹-C(=Z²)N(R)₂, -(CH₂)_nSO₂R, -(CH₂)_nSO₃H, -(CH₂)_nPO(OR)₂, cyclohexyl, morpholinyl, piperidyl, pyrrolidinyl, thiophenyl, phenyl, pyridyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thienyl, furyl, isothiazolyl, C₂-6 alkenyl, and C₁-C₁₀ alkyl, said alkyl, alkenyl, alkoxy, phenyl, pyridyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, thienyl, furyl, and isothiazolyl optionally substituted with 1-3 groups selected from C₁-C₆ alkyl, and COOR;

 Z^1 and Z^2 independently represents NR_w , O, CH_2 , or S;

Rb represents C_{1-6} alkyl, -COOR, -SO₃R, -OPO(OH)₂, -(CH₂)_nC₆₋₁₀ aryl, or -(CH₂)_nC₅₋₁₀ heteroaryl;

 R^c represents hydrogen, C_{1-6} alkyl, or $-(CH_2)_nC_{6-10}$ aryl;

m is 0-3; n is 0-3; q is 0-2; and p is 0-1,

provided that the compound of formula I is not 1H-Indole 3 acetamide, 1 (4-chlorobenzoyl) 5-methoxy 2 methyl-N [5 (1-methylethyl) 2 thizaolyl; 1H-Indole 3-acetic acid, 1 (4-chlorobenzoyl) 5-methoxy 2 methyl-3 pyridinyl ester; or 1H-Indole 3-acetamide, 1 (4-chlorobenzoyl) 5-methoxy 2-methyl-N 3 pyridinyl.

2(Original). A compound of the structural formula I wherein X is CHR7.

3 (Original). A compound according to claim 1 wherein Y is - $CO(CH_2)_n$.

4(Original). A compound according to claim 1 wherein Y is CH(OR).

5(Original). A compound according to claim 1 wherein Q is N.

6(Original). A compound according to claim 1 wherein Q is CH.

7(Original). A compound according to claim 2 wherein R_6 is $(CH_2)_nC_{6-10}$ aryl, $(CH_2)_nC_{5-10}$ heteroaryl, $(CH_2)_nC_{3-10}$ heterocyclyl, or $(CH_2)_nC_{3-8}$ cycloalkyl, said aryl, heteroaryl, heterocyclyl and alkyl optionally substituted with 1 to 3 groups of R_a .

8(Original). A compound according to claim 6 wherein R7 is hydrogen or C₁₋₆ alkyl.

9(Original). A compound according to claim 6 wherein Q is N and n is 0.

 $10 (Original). \quad A \ compound \ according \ to \ claim \ 1 \ wherein \ Y \ is \ - \\ CO(CH_2)_n, \ Q \ is \ N, \ n \ is \ 0, \ R_2 \ is \ C_{1-10} \ alkyl \ or \ C_{1-6} \ alkylOH \ and \ R_3 \ is \ (CH_2)_nC_{3-10}$ heterocyclyl, said heterocyclyl and alkyl optionally substituted with 1 to 3 groups of R^a .

Cancel claims 11-24.

25 (Original). A composition comprising a pharmaceutically acceptable carrier and an effective amount of a compound according to claim 1.

26 (Currently Amended). A compound according to claim 11 which is:

n is 0 to 3; X, Y and Z, independently represent hydrogen or C_{1-6} alkyl; and Rc represents hydrogen, halogen, C_{1-6} alkyl, CF3, OCF3, N(CH3)3, COC₁₋₆ alkyl, or methoxy;

or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.

27 (Original). The compound according to claim 11 which Table 2

$$R^{D}$$
 NH_{2}
 NH_{2}
 NH_{2}
 NH_{2}
 NH_{2}
 NH_{3}
 NH_{4}
 NH_{5}
 NH_{5}
 NH_{6}

n is 0 to 3; s is 1-5; X represents hydrogen or C_{1-6} alkyl; R^b and R^a independently represent hydrogen, methoxy, CO_2X , NHAc, or C_{1-6} alkyl; R^c represents hydrogen, halogen, C_{1-6} alkyl, CF_3 , OCF_3 , $N(CH_3)_2$, COC_{1-6} is: alkyl, or methoxy

or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.

28 (Original). The compound according to claim 11 which is:

Table 3

wherein R represents:

$$\begin{cases} N & (CH_2)_n \\ N & S \end{cases}$$

$$\begin{cases} -N - (CH_2)_s - N(CH_3)_s \\ N - S - (CH_3)_s - N(CH_3)_s \\ N - (CH_3)_s$$

$$\begin{cases} -N - (CH_2) = N \\ N - S \end{cases}$$

n is 0 to 3; s is 1-5; X represents hydrogen or C_{1-6} alkyl; and R^c represents hydrogen, halogen, C_{1-6} alkyl, CF_3 , OCF_3 , $N(CH_3)_2$, COC_{1-6} alkyl, or methoxy or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.

29 (Original). The compound according to claim 11 which is:

or
$$\begin{array}{c|c} O & O \\ \hline O & N \\ \hline O & N \\ \hline \\ R^d & O \\ \end{array}$$

wherein:

 R^b and R^a independently represent hydrogen, methoxy, CO_2X , NHAc, or C_{1-6} alkyl;

 R^d represents C1-6 alkyl, pyridinyl, -O-phenyl, phenyl, thienyl, said pyridinyl and phenyl optionally substituted with 1-3 halogen, CF3, OCF3, N(CH3)2, methoxy or C1-6 alkyl; and

Re represents methoxy, O(CH₂)₂N(CH₃)₂, or OH;

or a pharmaceutically acceptable salt, enantiomer, diastereomer or mixture thereof.