

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
13 April 2006 (13.04.2006)

PCT

(10) International Publication Number
WO 2006/039405 A2

(51) International Patent Classification:
CI2Q I/68 (2006.01) *G06F 19/00* (2006.01)

(74) Agents: BASCH, Melissa, L. et al.; Fliesler Meyer LLP,
Four Embarcadero Center, Fourth Floor, San Francisco, CA
94111-4156 (US).

(21) International Application Number:
PCT/US2005/035027

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(22) International Filing Date:
30 September 2005 (30.09.2005)

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(25) Filing Language: English

Published:

(26) Publication Language: English

— without international search report and to be republished upon receipt of that report

(30) Priority Data:
60/614,746 30 September 2004 (30.09.2004) US
60/651,344 8 February 2005 (08.02.2005) US
11/242,111 29 September 2005 (29.09.2005) US

(71) Applicant (for all designated States except US): INTELLIGENESCAN, INC. [US/US]; 3702 Autumn Glen Court, Santa Rosa, CA 95403 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): LEE, Nancy, M. [US/US]; 1830 Funston Avenue, San Francisco, CA 94116 (US).

[Continued on next page]

(54) Title: DRUG SCREENING AND MOLECULAR DIAGNOSTIC TEST FOR EARLY DETECTION OF COLORECTAL CANCER: REAGENTS, METHODS AND KITS THEREOF

(57) Abstract: A novel approach to the early detection of colorectal cancer ("CRC"), using a molecular diagnostic test to evaluate grossly normal-appearing colonic tissue for the early detection of colorectal cancer is disclosed. Such grossly normal-appearing colonic mucosal cells may be collected from non-invasive or minimally invasive procedures. The use of novel biomarker panels for drug screening also is disclosed. Such biomarker panels may be used wholly or in part as surrogate endpoints for monitoring effectiveness of a prospective drug in the intervention of pathologies, such as cancers, for example CRC, lung, prostate, and breast, and neurodegenerative diseases, for example Alzheimer's and ALS.

WO 2006/039405 A2

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

-1-

**DRUG SCREENING AND MOLECULAR DIAGNOSTIC TEST FOR EARLY DETECTION OF COLORECTAL
CANCER: REAGENTS, METHODS, AND KITS THEREOF**

5

Claim of Priority

U.S. Provisional Patent Application No. 60/614,746 entitled MOLECULAR DIAGNOSTIC TEST FOR EARLY DETECTION OF COLORECTAL CANCER: REAGENTS, METHODS, AND KITS THEREOF, by Nancy M. Lee, *et al.*, filed September 30, 2004 (Attorney Docket No. NLEE-01001US0);

10 U.S. Provisional Patent Application No. 60/651,344 entitled METHODS OF USE OF A BIOMARKER PANEL FOR DRUG SCREENING, by Nancy M. Lee, *et al.*, filed February 8, 2005 (Attorney Docket No. NLEE-01002US0); and

15 U.S. Patent Application No. 11/_____, ____ entitled DRUG SCREENING AND MOLECULAR DIAGNOSTIC TEST FOR EARLY DETECTION OF COLORECTAL CANCER: REAGENTS, METHODS, AND KITS THEREOF, by Nancy M. Lee, filed September 29, 2005 (Attorney Docket No. NLEE-01001US1).

Cross-Reference to Related Applications

This application is related to PCT/US2004/022594, entitled "Biomarker Panel for Colorectal Cancer," by Nancy M. Lee *et al.*, filed July 14, 2004 (Attorney Docket No. NLEE-01000WO0), which claims priority to U.S. Provisional Application No. 60/488,660, entitled "Molecular Biomarker Panel for Determination of Colorectal Cancer," by Nancy M. Lee *et al.*, filed July 18, 2003 (Attorney Docket No. CPMC-01000US0), and also to U.S. Patent Application No. 10/690,880, entitled "Biomarker Panel for Colorectal Cancer," by Nancy M. Lee *et al.*, filed October 22, 2003 (Attorney Docket No. CPMC-01000US1), each of which is incorporated herein in full, by reference.

Nucleotide and/or amino acid sequence listings are included in this application in computer-readable form and in hard-copy. The information included in computer-readable form is incorporated herein in full by reference. The information in computer-readable form is also included on diskette, and such information submitted on diskette is incorporated herein in full by reference. Compact diskette No. 1 contains the following file: NLEE1001WO0.ST25.txt (created 9/30/2005, 96K). The total number of diskettes submitted is one.

-2-

Background

The field of art of this disclosure concerns reagents, methods, and kits for the early detection of colorectal cancer ("CRC"), and methods for drug screening effective in the treatment of pathologies, such as cancers, for example, CRC, lung, prostate, and breast, 5 and neurodegenerative diseases, for example Alzheimer's and ALS. These reagents, methods, and kits are based on a panel of biomarkers that are useful for risk assessment, early detection, establishing prognosis, evaluation of intervention, recurrence of CRC and other such pathologies, and drug discovery for therapeutic intervention.

In the field of medicine, clinical procedures providing for the risk assessment and 10 early detection of CRC have been long sought. Currently, CRC is the second leading cause of cancer-related deaths in the Western world. One picture that has clearly emerged through decades of research into CRC is that early detection is critical to enhanced survival rates.

Thus, one long-sought approach for the early detection of CRC has been the search 15 for biomarkers that are effective in the early detection of CRC, and therefore that are effective for the treatment of CRC. For more than four decades, since the discovery of carcinogenic embryonic antigen ("CEA"), the search for biomarkers effective for early detection of CRC has continued. It is further advantageous for sampling methods used in conjunction with an early diagnostic test for CRC to be minimally invasive or non-invasive. 20 Non-invasive and minimally invasive sampling methods increase patient compliance, and generally reduce cost. Additionally, bioinformatic methods for analysis of complex, multivariate data typical of bioanalysis, yielding a reliable diagnostic evaluation based on such data sets, are also desirable.

Therapeutic intervention for numerous types of cancers, such as CRC, lung, 25 prostate, and breast, includes surgery, chemotherapy, and radiation treatment, and combinations thereof. For CRC, a current area of continued research and development, in addition to search for non-invasive methods for early detection, is in the area of drug development.

One picture that has clearly emerged through decades of research into CRC is that 30 early detection, coupled with effective therapeutic intervention is critical to enhanced survival rates. To date, the most commonly used drug in the treatment of CRC is 5-fluorouracil ("5FU"), which frequently is administered intravenously, in combination with the folic acid vitamin, leucovorin. A strategy referred to as primary chemotherapy is used when metastasis has occurred, and the cancer has spread to different parts of the body. For 35 CRC, the current strategy for primary chemotherapy is the administration of an oral form of

-3-

5FU, capecitabine, in combination with Camptosar, a topoisomerase I inhibitor, or Eloxatin, an organometallic, platinum-containing drug that inhibits DNA synthesis.

Currently, strategies for new drug development for CRC include two areas of research: angiogenesis inhibitors, and signal transduction inhibitors.

5 Novel biopharmaceutical drugs include both protein- and ribozyme-based therapeutics. Humanized antibody-based therapeutics include examples such as Erbitux and Avastin. Erbitux, a signal transduction inhibitor, is aimed at inhibiting epidermal growth factor receptors ("EGFR") on the surface of cancerous cells. Avastin, an angiogenesis inhibitor, is aimed at inhibiting vascular endothelial growth factor ("VEGF"), which is known
10 to promote the growth of blood vessels. Additionally, Angiozyme, an example of a ribozyme-based therapeutic, is an angiogenesis inhibitor directed against the expression of the VEGF-R1 receptor. New traditional small molecule-based drugs include examples such
15 as Iressa, based on a quinazoline template, and acting as a signal transduction inhibitor, and SU11248, based on an indolinone template, which acts as an anti-angiogenesis inhibitor.

Still, a number of potential drawbacks and uncertainties remain for these nascent drug therapies for CRC. In addition to typical contraindications such as nausea, vomiting, headache, and diarrhea, other more serious side effects, such as gastrointestinal perforation, elevated or lowered blood pressure, extreme fatigue, and internal bleeding have
20 been observed for many of the promising candidates. Additionally, though many of the drug therapies based on angiogenesis inhibition or signal transduction inhibition appear promising, they are in the very early stages of clinical trials.

Accordingly, a need exists in the art for biomarkers that are effective in the early detection of CRC, coupled with sampling methods that are minimally or non-invasive, and
25 bioinformatic methods, which together produce a robust diagnostic test for the early detection of CRC. A need also exists in the art for drug development, which can provide effective treatment prior to the development of cancer for individuals diagnosed with pathologies, such as cancers, for example CRC, lung, prostate, and breast, and neurodegenerative diseases, for example Alzheimer's and ALS, while minimizing serious
30 side effects.

Brief Description of Figures

Fig. 1 is a table listing an embodiment of sequence listings for a panel of biomarkers of the disclosed invention.

-4-

Fig. 2 is a distribution plot of control subjects versus test subjects evaluated using an aspect of the panel of biomarkers of **Fig. 1**, and an aspect of a bioinformatic evaluation of the disclosed invention.

5 **Fig. 3** shows the distribution of the log (base2) expression values for genes, PPAR- γ , IL-8, SAA 1 and COX-2 and their cut-off points.

Figs. 4A and 4B show that expression of different genes is altered at different sites of MNCM from individuals with a family history of colon cancer.

Fig. 5 displays a flow diagram of an aspect of the bioinformatic process used for evaluating data.

10 **Fig. 6** is an embodiment of a swab sampling and transport system for the minimally invasive sampling of colonic mucosal cells.

Fig. 7 is a flow chart depicting one aspect of the drug screening disclosure.

Fig. 8 is a flow chart depicting another aspect of the drug screening disclosure.

15

Detailed Description

To date, a greater understanding of the biology of CRC has been gained through the research on adenomatous polyposis coli ("APC"), p53, and Ki-ras genes, as well as the corresponding proteins, and related pathways involved regulation thereof. However, there is a distinct difference between research on a specific gene, its expression, protein product, 20 and regulation, and understanding what genes are critical to include in a panel used for the analysis of CRC that is useful in the management of patient care for the disease. Panels that have been suggested for CRC are comprised of specific point mutations of the APC, p53, and Ki-ras, as well as BAT-26, which is a gene that is a microsatellite instability marker.

25 For CRC, biomarkers for risk assessment and early detection of CRC long have been sought. The difference between risk assessment and early detection is the degree of certainty regarding acquiring CRC. Biomarkers that are used for risk assessment confer less than 100% certainty of CRC within a time interval, whereas biomarkers used for early detection confer an almost 100% certainty of the onset of the disease within a specified time interval. Risk factors may be used as surrogate end points for individuals not diagnosed 30 with cancer, providing that there is an established relationship between the surrogate end point and a definitive outcome. An example of an established surrogate end point for CRC is the example of adenomatous polyps. What has been established is that the occurrence of adenomatous polyps is a necessary, but not sufficient condition for an individual later to develop CRC. This is demonstrated by the fact that 90% percent of all preinvasive

cancerous lesions are adenomatous polyps or precursors, but not all individuals with adenomatous polyps go on later to develop CRC.

Adenomatous polyps have been established as surrogate end points for CRC, and adenomatous polyps are macroscopically identifiable by colonoscopy or sigmoidoscopy.

- 5 During such invasive procedures, biopsy samples can be taken from polyps or lesions for histological evaluation of the tissue. The molecular diagnostic approach disclosed herein may be used on grossly normal-appearing colonic mucosal cells that are not from a macroscopically identifiable polyp or lesion. However, as further disclosed herein, an invasive procedure need not be used to obtain a patient sample for histological evaluation.
- 10 A non-invasive or minimally-invasive procedure can be employed to obtain, for example, a blood sample, stool sample, or swab of grossly normal-appearing rectal cells, upon which a molecular diagnostic test can be performed to evaluate the presence or absence of CRC. No previously-described approach for early detection of CRC has disclosed the non-invasive or minimally invasive collection of grossly normal-appearing colonic mucosal cells (biopsy or
- 15 swab of rectal cells), blood samples, and/or stool samples, followed by a molecular and/or protein expression diagnostic test, which can detect changes in the tissue before any untoward histological changes indicating CRC are manifest.

Fig. 1 is a table that gives an overview of the sequence listings included with this disclosure. The table of **Fig. 1** lists a panel of biomarkers useful in practicing the disclosed invention. One embodiment of a biomarker panel is the 16 identified coding sequences given by SEQ. ID NOS 1-16, while another embodiment of a biomarker panel is the 16 identified proteins given by SEQ. ID NOS 17-32. These two embodiments represent molecular marker panels that provide the selectivity and sensitivity necessary for the early detection of CRC. It is to be understood that fragments and variants of the biomarkers described in the sequence listings are also useful biomarkers in embodiments of panels used for the early detection of CRC. What is meant by fragment is any incomplete or isolated portion of a polynucleotide or polypeptide in the sequence listing. Further, it is recognized that almost daily, new discoveries are announced for gene variants, particularly for those genes under intense study, such as genes implicated in diseases like cancer.

25 Therefore, the sequence listings given are exemplary of what now is reported for a gene, but it is recognized that for the purpose of an analytical methodology, variants of the gene and their fragments also are included.

In **Fig. 1**, the entries 1-16 in the table are one aspect of a panel of biomarkers, which are polynucleotide coding sequences, and include the name and abbreviation of the gene.

- 35 Entries 17-32 in **Fig. 1** are another embodiment of a panel of biomarkers, which are protein,

-6-

or polypeptide, amino acid sequences that correspond to the coding sequences for entries 1-16. A biomarker, as defined by the National Institutes of Health ("NIH") is a molecular indicator of a specific biological property; a biochemical feature or facet that can be used to measure the progress of disease or the effects of treatment. A panel of biomarkers is a
5 selection of biomarkers, which taken together can be used to measure the progress of disease or the effects of treatment. Biomarkers may be from a variety of classes of molecules. As previously mentioned, there remains a need for biomarkers for CRC having the selectivity and sensitivity required to be effective for early detection of CRC. Therefore,
10 one embodiment of what is disclosed herein is the selection of an effective set of biomarkers that is differentiating in providing the basis for early detection of CRC.

In one aspect of this disclosure, for the early detection of CRC, expression levels of polynucleotides indicated as SEQ. ID NOs 1-16 are determined from cells in samples taken from patients by non-invasive or minimally invasive methods. The contemplated methods include blood sampling, stool sampling, and rectal cell swabbing or biopsy. Such analysis of
15 polynucleotide expression levels frequently is referred to in the art as gene expression profiling. For gene expression profiling, levels of mRNA in a sample are measured as a leading indicator of a biological state -- in this case, as an indicator of CRC. One of the most common methods for analyzing gene expression profiling is to create multiple copies from mRNA in a biological sample (said sample taken from a patient as disclosed above, by
20 non- or minimally-invasive methods) using a process known as reverse transcription. In the process of reverse transcription, the mRNA from the sample is isolated from cells in the biological sample, by methods well-known in the art. The mRNA then is used to create copies of the corresponding DNA sequence from which the mRNA was originally transcribed. In the reverse transcription amplification process, copies of DNA are created
25 without the regulatory regions in the gene (*i.e.*, introns). These multiple copies made from mRNA are therefore referred to as "cDNA," which stands for complementary, or copy DNA. Entries 33-64 are the sets of primers that can be used in the reverse transcription process for each biomarker gene listed in entries 1-16. All nucleotide and amino acid biomarker sequences identified in SEQ. ID NOs 1-64 are found in a printout attached and included as
30 subject matter of this application, and are found on a diskette also included as part of this application and incorporated herein by reference.

Since the reverse transcription procedure amplifies copies of cDNA proportional to the original level of mRNA in a sample, it has become a standard method that allows the identification and quantification of even low levels of mRNA present in a biological sample.

-7-

Genes either may be up-regulated or down-regulated in any particular biological state, and hence mRNA levels shift accordingly.

In one aspect of this disclosure, a method for gene expression profiling comprises the quantitative measurement of cDNA levels for at least two of the biomarkers of the panel of biomarkers selected from SEQ. ID NOs. 1-16, in a biological sample taken from a patient by a non- or minimally-invasive procedure, such as blood sampling, stool sampling, rectal cell swabbing, and/or rectal cell biopsy. The tissue taken need not be apparently diseased; in fact, the disclosed invention is contemplated to be useful in evaluating even grossly normal-appearing cells for detection of CRC. Such a method for gene expression profiling requires the use of primers, enzymes, and other reagents for the preparation, detection, and quantifying of cDNAs. The method of creating cDNA from mRNA in a sample is referred to as the reverse transcriptase polymerase chain reaction ("RT-PCR"). The primers listed in SEQ. ID NOs 33-64 are particularly suited for use in gene expression profiling using RT-PCR based on the disclosed biomarkers in the biomarker panel. A series of primers were designed using Primer Express Software (Applied Biosystems, Foster City, CA). Specific candidates were chosen, and then tested to verify that only cDNA was amplified, and not contaminated by genomic DNA. The primers listed in SEQ. ID NOs 33-64 were specifically designed, selected, and tested accordingly.

The primers listed in SEQ. ID NOs 33-64 are important in the step subsequent to creating cDNA from isolated cellular RNA, for quantitatively amplifying copies in the real time PCR of gene expression products of interest. Optimal primer sequence, and optimal primer length are key considerations in the design of primers. The optimal primer sequence may impact the specificity and sensitivity of the binding of the primer with the template. A primer length between 18-30 bases is considered an optimal range. Theoretically, 18 bases is the minimal length representing a unique sequence, which would hybridize at only one position in most eukaryotic genomes. The primers listed in SEQ. ID NOs 33-64 range in primer length between 21-27 bases, and were designed and validated to amplify cDNA for the panel of nucleotides selected from SEQ. ID NOs 1-16. The specificity of the primers was demonstrated by a single product on 10% polyacrylamide gel electrophoresis ("PAGE"), and a single dissociation curve of the PCR product.

Once the primer pairs have been designed, and validated for specificity, they may be synthesized in large quantities, and stored for convenient future use. Since the PCR reaction is sensitive to buffer concentration and buffer constituents, primers should be maintained in a suitable diluent that will not interfere in the amplification reaction. One example of a suitable diluent is 10 mM Tris buffer, with or without 1mM EDTA, depending on

the assay sensitivity to EDTA. Alternatively, another example of a suitable diluent for the primers is deionized water that is nuclease-free. The primers may be aliquoted in appropriate containers, such as siliconized tubes, and lyophilized if so desired. The liquid or lyophilized samples are preferably stored at refrigeration temperatures defined as long-term
5 for biological samples, which is between about -20C° to about -70C°. The concentration of primer in the amplification reaction is typically between 0.1 to 0.5 µM. The typical dilution factor from the stock solution to the final reaction mixture is about 10 times, so that the aliquoted stock solution of the primers is typically between about 1 and 5 µM.

In addition to the specifically designed primers listed in SEQ. ID Nos. 33-64,
10 reagents such as one including a dinucleotide triphosphate mixture having all four dinucleotide triphosphates (e.g., dATP, dGTP, dCTP, and dTTP), one having the reverse transcriptase enzyme, and one having a thermostable DNA polymerase, are required for RT-PCR. Additionally buffers, inhibitors, and activators also are required for the RT-PCR process.

15 **Fig. 2** depicts one aspect of a bioinformatic data reduction process used for the early detection of CRC, showing a distribution of Mahalanobis distance for 17 controls (left), compared with 14 individuals with family history of CRC (middle), and 24 individuals with polyps (right). Tissue samples taken from grossly normal-appearing colonic mucosal tissue were evaluated using the biomarker panel of polynucleotides selected from SEQ. ID NOs. 1-
20 16. The means for the gene expression levels for each of the 16 genes represented by polynucleotides selected from SEQ. ID NOs 1-16 for each control and test subject were calculated in log base 2 domain. The multivariate means, in a 16 dimensional hyperspace, were then determined for the controls, based on a multivariate normal distribution, in order to establish limits of normal expression levels. For each control, the Mahalanobis distance
25 ("M-dist") from the multivariate mean of the other 16 controls was measured, while the M-dist for each of the test subjects was determined from the multivariate mean of the 17 controls. In each group displayed in **Fig. 2**, all the biopsies from a single individual form a vertical row. For the individuals with polyps, asterisks mark the biopsies from individuals with hyperplastic polyps. The horizontal line indicates the 95th percentile of a chi-square
30 distribution with 16 degrees of freedom. All values above this line (corresponding to an M-dist of about 25) are different from the mean of controls at a level of p < 0.05. The data presented clearly show that there is an altered gene expression pattern in grossly normal colonic mucosal tissue samples for the test subjects. The data accordingly demonstrate the enhanced sensitivity and selectivity of a diagnostic test using the biomarker panel of
35 polynucleotides selected from SEQ. ID NOs. 1-16.

-9-

Fig. 3 displays a flow diagram 300 of an aspect of the bioinformatic process used for evaluating the data from samples analyzed using expression profiling of polynucleotides selected from SEQ. ID Nos. 1-16. The goal of the bioinformatic analysis used to analyze the gene expression data for the molecular diagnostic test using the panel of polynucleotides selected from SEQ. ID NOS 1-16 was to use a single, easy-to-calculate measure of abnormality. It is desirable to analyze expression patterns of all genes in the panel selected from SEQ. ID NOs 1-16 by multivariate analysis, since multivariate analysis determines the significance of changes of all expression levels, taken together. There are several kinds of multivariate tests which may be useful for the bioinformatic analysis used to assess the presence or absence of colorectal cancer in patient samples tested using the molecular diagnostic test disclosed herein. Examples of multivariate analysis tests useful in the assessment of data from patient samples tested using the panel of polynucleotide biomarkers selected from SEQ. ID NOs 1-16 include the ANOVA and the Mahalanobis distance ("M-Dist") tests.

ANOVA is a global test that accounts for correlations among expression levels. It is desirable for the multivariate ANOVA tests to be based on Wilks' lambda criterion and to be carried out on log(base 2) values for the data obtained using the molecular diagnostic test using the panel of polynucleotides selected from SEQ. ID NOs 1-16 to achieve normal distribution of values.

M-dist analysis is another example of a multivariate analysis that summarizes, in a single number, the differences between two patterns of gene expression, taking into account variability of each gene's expression and correlations among pairs of genes. M-dist is often used as a test for outliers (individual cases that are significantly different from all other individual cases in the group) in multivariate data. M-dist can be converted to p-values by reference to a chi-square distribution with degrees of freedom equal to the number of variables (i.e., genes). However, to avoid reliance on an assumption of multivariate normality, it is desirable to compare M-dist for individual cases (i.e., those with polyps) to controls using a rank sum test, the Mann-Whitney test. By using the Mann-Whitney analysis, the inferences concerning differences in expression patterns do not depend on the assumption of multivariate normality. Therefore, this method allows the determination of the significance of all the experimental subjects' expression levels taken together, as well as the significance of each individual expression value.

A working example of the foregoing disclosure is provided below. Hao, C-Y, et al., *Alteration of Gene Expression in Macroscopically Normal Colonic Mucosa from Individuals with a Family History of Sporadic Colon Cancer*, 11 Clin. Cancer Res., 1400-07 (Feb. 15,

-10-

2005). The example presented is provided as a further guide to the practitioner of ordinary skill in the art, and is not to be construed as limiting the invention in any way.

This example was undertaken to investigate whether expression of several genes was altered in morphologically normal colonic mucosa ("MNCM") of individuals who have not developed colon cancer, but are at high risk of doing so because of a family history of CRC.

Human subjects

Biopsies of MNCM from the rectum and sigmoid colon were performed at the time of routine colonoscopy from individuals seen at the California Pacific Medical Center ("CPMC") who had no history of prior colon cancer, and who were free of adenomatous polyps, colon cancer or other colonic lesions at the time of examination. Twelve individuals with a family history of colon cancer in a first-degree relative (Table 3) and sixteen individuals with no known family history of colon cancer were included in the study. Although the information of family cancer history is obtained by patients' self-reports without confirmation from the hospital's cancer registry, a recent study has confirmed the accuracy of self-reported family history with regard to colon cancer. Of the twelve individuals with a family history of colon cancer, two are mother and daughter (cases #6 and 7 in Table 3), two are sister and brother (cases #11 and 12), and the rest are not related. Study subjects ranged in age from 18 to 64 years in the group with a family history of colon cancer, and 16 to 83 years in the control group (the 16-year-old had undergone colonoscopy for chronic abdominal pain). The research protocols for obtaining normal biopsy specimens for study were approved by the CPMC Institutional Review Board. The appropriate procedure for obtaining informed consent was followed for all study subjects.

Extraction and preparation of RNA and cDNA

Biopsy samples obtained from the segment of colon between the cecum and the hepatic flexure were classified as ascending colon samples; those from the segment of colon between the hepatic flexure and the splenic flexure as transverse colon samples; those from the segment of colon below the splenic flexure as descending colon; those from the winding segment of colon below the descending colon were classified as rectosigmoid colon samples (approximately 5-25 cm from rectum). The number of biopsy samples obtained from each patient varied. Two to eight biopsy samples were obtained from each colon segment, except that only one sample was obtained from the transverse and the descending colon segments in one subject of the family history group. A total of 39 ascending colon, 37 transverse colon, 45 descending colon and 77 rectosigmoid specimens were obtained from the 12 individuals with a family history of colon cancer; and a total of 53 ascending colon, 48 transverse colon, 49 descending colon and 104 rectosigmoid

-11-

specimens were obtained from the 16 individuals with no family history of colon cancer. All biopsy samples were snap-frozen on dry ice and taken immediately to the laboratory for RNA preparation and reverse transcription as described.

Analysis of gene expression

5 The expression levels of oncogene c-myc, CD44 antigen ("CD44"), cyclooxygenase 1 and 2("COX-1" and "COX-2"), cyclin D1, cyclin-dependent kinase inhibitor ("p21^{cip/waf1}"), interleukin 8 ("IL-8"), interleukin 8 receptor ("CXCR2"), osteopontin ("OPN"), melanoma growth stimulatory activity ("Gro α /MGSA"), GRO3 oncogene ("Gro γ "), macrophage colony stimulating factor 1 ("MCSF-1"), peroxisome proliferative activated receptor, alpha, delta and
10 gamma ("PPAR- α , δ and γ) and serum amyloid A 1("SAA 1") were analyzed by quantitative RT-PCR. Quantitative RT-PCR were carried out. In brief, the cycle numbers ("C_T value") were recorded when the accumulated PCR products crossed an arbitrary threshold. To normalize this value, a ΔC_T value was determined as the difference between the C_T value for each gene tested and the C_T value for β -actin. The average ΔC_T value for each gene in
15 the control group was calculated. The $\Delta\Delta C_T$ value was determined as the difference between the ΔC_T value for each individual sample and the average ΔC_T value for this gene obtained from the control samples. These $\Delta\Delta C_T$ values were then used to calculate relative gene expression values as described. (Applied Biosystems, User Bulletin #2, December 11, 1997). All PCR were performed in duplicate when cDNA samples were available. The
20 results were also verified using histidyl-tRNA synthetase as internal control. Relative gene expression values yielded similar results using either β -actin or his-tRNA synthetase as a reference. Statistical analyses reported here were obtained using β -actin as normalization controls.

Statistical analysis

25 Gene expression patterns were compared between individuals with a family history of colon cancer and the control group subjects who had no family history of colon cancer. Rather than testing expression of each gene separately and adjusting for multiple comparisons by methods that reduce statistical power, we tested the expression patterns of all genes by multivariate analysis of variance ("MANOVA") with Wilks' lambda criterion. This
30 test is a multivariate analog of the F-test for univariate analysis of variance, which tests the equality of means. This type of analysis takes into account correlations among gene expression levels and controls the false-positive rate by providing a single test of whether the expression patterns, based on all the genes in the subset, differ between groups.

If there was evidence that expression patterns differed between groups, we used
35 univariate t-tests to determine which genes were contributing to the global difference. All

-12-

MANOVA tests were based on the Wilks' lambda criterion and were carried out on log (base 2) of the expression levels, since this transformation was required to achieve normal distributions. Our data consisted of a variable number of samples per subject with different numbers of individuals per group (family history vs. no family history). The analysis included 5 random effects terms for individuals within group and for samples within individuals to account for the sampling scheme. If Y_{ijk} denotes a log2 gene expression value for the k^{th} sample from the j^{th} patient from the i^{th} group, the statistical model is described mathematically by the equation: $Y_{ijk} = M + A_i + B_{ij} + e_{ijk}$, where A_i is the (fixed) group effect, B_{ij} is the (random) patient effect, and e_{ijk} is the (random) sample within patient effect.

10 We also tested whether or not the magnitude of the differential expression (over or under expression) increased along the colon from the ascending portion toward rectum, by defining a variable with value 1 for samples from the ascending, 2 for samples from the transverse, 3 for samples from the descending and 4 for samples from the rectosigmoid portion of the colon. This variable was added to the model so that its effect could be tested 15 for certain genes using univariate ANOVA.

Definition of cut-off point

The log (base 2) of the expression levels of all the biopsy samples from the control group was used to calculate the cut-off point for either up-regulation or down regulation of each gene. A table of tolerance bounds for a normal distribution was used to define cut-off 20 points so that a fraction of the distribution of no more than P would lie above the cut-off point for up-regulated genes or below the cut-off point for down-regulated genes. Each cut-off point was defined by cut-off point = mean + $k(\text{SD})$, where the mean and SD (Standard Deviation) are based on values from the control group. Values of k are found in the table and depend on the P value and the number of normal samples. Owen, D.B., Noncentral t 25 and tolerance limits, in Brimbaum ZW, ed. Handbook of Statistical Tables, Reading, MA: Addison-Wesley, 1962, 108-127. Assuming a Gaussian distribution of expression levels of each gene, one would expect less than 1% of the biopsies from a normal population to have an expression level exceeding the 99% tolerance limit ($p = 0.01$).

To calculate the probability that the number of observed samples outside the upper 30 99 percentile was due to chance in each case, we used the binomial distribution method with $p = 0.01$ and $n =$ the number of samples for each case multiplied by the number of genes tested. For example, for case #1 (Table 3) we had 2 samples; both showed abnormal expression for PPAR- γ and SAA1, one of two for PPAR- δ and neither was abnormal for IL-8 and COX-2. Thus, for this case, 5 of 10 tested were beyond the upper

-13-

0.01 boundary. The probability that this happened by

chance is 2.4×10^{-8} . The general formula is given by: $\Pr\{x \geq k | p, n\} = \sum_{i=k}^{5n} (0.01)^i (0.99)^{5n-i}$

5 where k is the number beyond the 99 percentile and n is the number of samples (5 is the number of genes tested).

Results

Altered gene expression in the rectosigmoid mucosa of individuals with a family history of colon cancer:

10 Twelve individuals (ten women and two men) comprised the group with a family history of colon cancer; 16 individuals (nine women and seven men) served as the control group. (Table 1.) We analyzed a total of 92 ascending colon biopsy samples, 85 transverse colon samples, 94 descending colon biopsy samples and 181 rectosigmoid biopsy samples for levels of expression of 16 genes. Expressions of these genes are known to be altered in 15 the late stages of human colon cancers. We have also shown that some of these genes are altered in the MNCM from surgical resections of colon cancer patients.

20 Continuing to refer to Table 1, results represent analysis of 104 biopsy samples from the 16 individuals without family history and 77 biopsy samples from 12 individuals with family history of colon cancer in a first-degree relative. Samples were analyzed for gene expression as described in Methods. The numbers in the table represent the expression level relative to the average MC_T of the control group. If there is no variation among individuals, the normal gene expression level in the control group should equal to 25 1. Multivariate analysis using the Wilks Lambda criterion was carried out on log₂ expression values of the 16 genes to determine the significance of the difference between the two groups. Genes are listed from smallest to largest P value.

Multivariate analysis of the expression values of all 16 genes indicated a significant difference in the biopsy samples from the rectosigmoid region ($p = 0.01$) between those with and those without a family history of sporadic colon cancer. Gene expression in biopsy samples from the descending, ascending and transverse colon did not vary significantly 30 between these two groups of individuals ($p = 0.06, 0.22$ and 0.52 respectively). Most of the differences in rectosigmoid biopsy samples were contributed by just five of these genes (Table 1): PPAR- γ , SAA1, IL-8, COX-2 and PPAR- δ . Similar to the alterations of gene expression in the MNCM of cancer patients, we found that the expression levels of SAA1, IL-8 and COX-2 were up-regulated and those of PPAR- γ and PPAR- δ were down-regulated 35 in the MNCM of individuals with a family history of sporadic colon cancer.

-14-

The mean (\pm SD) age in the family history group was younger (45 ± 12 years) than that of the control group (56 ± 16 years), presumably because of heightened awareness of the need for early colonoscopy in the group with a family history of colon cancer. In addition, there is a sex difference between these two groups (ten women and two men in the 5 family history group versus nine women and seven men in the control group). However, we found that sex did not affect the level of gene expression ($p=0.67$). Moreover, there was no correlation between age and the expression levels of SAA1, IL-8, COX2 and PPAR- γ (all $p > 0.05$) except for PPAR- δ 0.01). Nevertheless, abnormal expression (down-regulation) of PPAR- δ increases with age. Thus comparison between younger family history group and 10 older controls, would be biased toward finding fewer, rather than more, abnormal expressions in the family history group. In other words, we may underestimate the incidence of altered expression of PPAR- δ in the family history group.

Table 1. Gene expression levels in normal rectosigmoid biopsy samples from 15 individuals with family history of colorectal cancer as compared with controls

Genes	Controls (n=104)		Patients with family history (n=77)		P Values
	Range	Mean \pm (S.D.)	Range	Mean \pm (S.D.)	
PPAR- γ	0.44 - 1.65	1.07 \pm 0.41	0.20 - 2.59	0.79 \pm 0.40	0.006
SAA1	0.17 - 22	2.16 \pm 3.67	0.33 - 2343	151 \pm 452	0.02
IL-8	0.14-13	1.71 \pm 1.94	6.84-13	6.84 \pm 2.82	0.02
COX-2	0.17 - 1.8	1.82 \pm 2.75	0.24 - 30	5.11 \pm 9.01	0.07
PPAR- δ	0.39 - 2.66	1.11 \pm 0.48	0.16 - 2.22	0.89 \pm 0.46	0.07
CD44	0.35 - 4.13	1.14 \pm 0.64	0.11 - 4.98	1.41 \pm 0.78	0.12
c-Myc	0.24 - 3.66	1.21 \pm 0.75	0.26 - 4.31	1.48 \pm 0.82	0.14
MCSF-1	0.38-22	1.81 \pm 2.59	0.20-11	2.04 \pm 2.19	0.21
Gro- α	0.01 - 5.1	2.61 \pm 5.48	0.34-57	5.76 \pm 11.63	0.22
Gro- γ	0.16-35	2.18 \pm 4.29	0.12-41	2.55 \pm 5.91	0.25
P21	0.51 - 2.15	1.10 \pm 0.62	0.20-7.68	0.90 \pm 0.32	0.27
PPAR- α	0.31 - 2.38	1.09 \pm 0.55	0.26-2.21	1.00 \pm 0.40	0.54
CXCR2	0.22 - 1.3	1.45 \pm 1.78	0.43 - 4.44	1.49 \pm 1.55	0.55
OPN	0.19 - 1.3	1.66 \pm 2.05	0.15 - 1.2	1.41 \pm 1.92	0.73
CyclinD	0.34 - 3.48	1.28 \pm 0.85	0.13 - 3.21	1.29 \pm 0.79	0.81
COX-1	0.27 - 5.97	1.21 \pm 0.85	0.25 - 2.63	1.09 \pm 0.51	0.87

Comparison with cut-off points for "normal" gene expression

Relative gene expression levels in the rectosigmoid samples varied among 20 individuals, much more so in samples obtained from the individuals with a family history of

-15-

colon cancer than the corresponding values from the controls (Table 1). We therefore use the expression level of each gene in the control group to define the "normal" expression level for each gene by calculating a cut-off point ($p = 0.01$) for each gene. Figure 3 shows the distribution of the log (base2) expression values for genes, PPAR- γ , IL-8, SAA 1 and COX-2 and their cut-off points. As expected, less than 1% of the biopsy samples from the control group had expression of these genes above or below the cut-off lines ($p = 0.01$, Figure 3). However, 21%, 12% and 8% of the biopsy samples from the family history group had expression of SAA1, IL-8 and COX-2, respectively, above the cut-off points, and 12% of them had expression of PPAR- γ below the cut-off point (Table 2).

10

Table 2. Number of biopsy samples (N) with gene expression above/below the cut-off point in normal individuals and individuals with a family history of colon cancer

Genes	Biopsy samples from Normal Controls (n=104) N (%)	Biopsy samples from individuals with Family History (n= 77) N (%)
PPAR- γ	0	9 (12%)†‡
SAAI	0	16(21%)*‡
IL-8	0	9 (12%)*‡
COX-2	1 (1%)*	6 (8%)*‡
PPAR- δ	0	2 (3%)†
Gro- γ	1 (1%)*	2 (3%)*
PPAR- α	0	2 (3%)†
Gro- α	0	0
MCSF-1	1 (1%)*	0
OPN	1 (1%)*	0
P21	0	0
CD44	1 (1%)*	0
CXCR2	1 (1%)*	0
c-Myc	0	0
CyclinD	0	0
COX-1	0	0

15

† with gene expression level below the cut-off point

* with gene expression level above the cut-off point

‡ number of patients with alterations are listed in Table 3.

-16-

We next analyzed each individual in the family history group (Table 3). The number of biopsy samples which exhibited expression levels below (for PPAR- γ and δ) or above (for IL-8, SAA1 and COX-2) the cut-off point ($p=0.01$) are indicated. Individuals with all the biopsy samples exhibiting expression levels within the normal range are indicated with a (-) sign. All the grandparents with colon cancers in this study are maternal. Ages of the family member when colon cancer was diagnosed are indicated as follows: *** indicates that colon cancer was diagnosed before 50 years of age; ** indicates before 60 years of age; and * indicates after 60 years of age. Ages of the rest of the family members when colon cancer was diagnosed are not available. None of the twelve patients in the family history group reported other types of cancer in the family except that father of the patient for case #10 had lung cancer in the 1970's.

As evidenced in Table 3, for the five most commonly altered genes, nine of the twelve individuals with a family history of colon cancer had at least one biopsy sample with expression levels below or above the cut-off point. Two individuals (cases #1 and 2) had altered expression of three of these genes in apparently normal rectosigmoid mucosa. In contrast, only one of the sixteen individuals in the control group had altered expression of one of these five genes (see Table 2). The cut-off is set so that 1% of expressions could be false positives. However, the numbers of biopsy samples obtained from each individual are different. To make an adjustment for the number of specimens, we also calculated, for each case, the probability that the number of observed samples outside the upper 99 percentile was due to chance. This calculation was based on the binomial distribution. As shown in Table 3, the observed altered gene expression in seven of the twelve individuals of the family history group is unlikely due to chance ($p < 0.01$). In these seven cases, expressions of at least two of the five genes were altered. In addition, among the sixteen genes analyzed, PPAR- γ and SAA1 are the most frequently altered genes that occurred in five of the twelve individuals with a family history of colon cancer (Table 3).

Table 3. Summary of Expression of PPAR γ , IL-8, SAA1, COX-2 and PPAR- δ in Rectosigmoid Biopsy Samples from Individuals with a Family History of Colon Cancer

Case	Sex	Age (years)	Family member with cancer	# of biopsy samples analyzed	# of samples with altered expression				# of genes with altered expression	Probability that changes are due to chance
					PPAR- γ	SAA1	IL-8	COX-2		
1	F	53	mother**	2	2	-	-	-	1	<0.001
2	F	53	mother*	6	2	-	1	-	1	<0.001
3	M	43	father*	5	3	1	-	-	-	<0.001
4	F	47	mother*	7	-	7	1	-	-	<0.001
5	F	52	mother	8	-	-	-	-	0	1
6	F	52	Father and daughter***	6	-	-	1	-	1	0.26
7	F	18	grandfather and sister**	8	2	-	-	1	-	<0.01
8	F	35	Mother* and grandmother	8	-	-	8	6	-	<0.001
9	F	46	father**	8	-	-	-	-	0	1
10	F	64	sister*	6	-	1	-	-	1	0.26
11	F	36	mother and grandfather	7	-	-	-	-	0	1
12	M	38	mother and grandfather	6	1	6	-	-	2	<0.001

of individuals with altered gene expression

5 5 4 2 2

Expression of different genes are altered at different sites of MNCM from individuals with a family history of colon cancer.

Analysis of individual cases from the family history group showed that different genes were altered in rectosigmoid biopsy samples in different subjects. For instance, SAA1 and PPAR- γ were altered in case #3, IL-8 and SAA1 were altered in case #4; while COX-2 and IL-8 but not SAA1 were altered in case #8 (Figure 4A). In addition, some genes were altered in all the rectosigmoid biopsy samples from the same patient (such as SAA 1 in case #4 and IL-8 in case #8), while others were only altered in some of these biopsy samples (i.e. SAA1 and PPAR- γ in case #3, IL-8 in case #4 and COX-2 in case #8). In addition, some of these alterations are restricted to the rectosigmoid regions; such as IL-8 in case #4; while others can be extended to other regions of the colon, such as SAA1 in case #4 (Figure 4B).

We also observed that the difference in gene expression between the two groups of individuals increased along the length of the colon for PPAR- γ ($p=0.001$ for trend) and SAA1 ($p < 0.001$), but not for IL-8 ($p = 0.20$), COX2 ($p = 0.58$), nor PPAR- δ ($p = 0.54$). These results suggest that there is an increasing abnormality along the colon going from the ascending to the rectal portion between the two groups of individuals that can be detected despite reduced numbers of samples toward the ascending portion in this study.

From the foregoing example, it was possible to draw the following conclusions. Approximately 5-10% of colorectal cancers occur among patients with one of the two autosomal dominant hereditary forms of colon cancer (familial adenomatous polyposis and hereditary nonpolyposis colorectal cancer), or who have inflammatory bowel disease (Burt R., Peterson G.M. In: Young G., Rozen, P. & Levin, B. Saunders, ed. in *Prevention and Early Detection of Colorectal Cancer*, Philadelphia, 171-194 (1996)). Of the remaining colon cancers, approximately 20% are associated with a family history of colon cancer, which is associated with a two-fold increased risk of developing colon cancer (Smith R.A., von Eschenbach A.C., Wender R., et al., *American Cancer Society guidelines for the early detection of cancer: update of early detection guidelines for prostate, colorectal, and endometrial cancers, and Update 2001—testing for early lung cancer detection*, 51 CA Cancer J Clin. 38-75; quiz 77-80 (2001)). Although linkage to chromosomes 15q13-14 and 9q22.2-31.2 has been reported in a subset of patients with familial colorectal cancer (Wiesner G.L., Daley D., Lewis S., et al., *A subset of familial colorectal neoplasia kindreds linked to chromosome 9g22.2-31.2*, 100 Proc Natl Acad Sci U S A, 12961-5 (2003)), the genetic basis for most of these cases is not known. In this study, we have demonstrated substantial alterations in the expression of PPAR- γ , IL-8 and SAA1 in the rectosigmoid MNCM from individuals with a family history of sporadic colon cancer, even though these individuals had no detectable colon abnormalities. Our previous study showed that, in addition to PPAR- γ , IL-

8 and SAA1, expressions of PPAR- δ , p21, OPN, COX-2, CXCR2, MCSF-1 and CD44 were also altered significantly in the MNCM of colon cancer patients when compared to normal controls without colon cancer, polyps, or family history. These observations suggest that altered expression of genes related to cancer development in the MNCM may be a sequential
5 event and may occur earlier than the appearance of gross morphological abnormalities. For example, altered expression of PPAR- γ , SAA1 and IL-8 may occur in MNCM of individuals who have not developed colon cancer, but are at high risk of doing so; while altered expressions of other genes, such as PPAR- δ , p21, OPN, COX-2, CXCR2, MCSF-1 and CD44, may occur later in MNCM of individuals who have already developed a colon cancer (Chen L-C, Hao C-Y, Chiu Y.S.Y., et al., *Alteration of Gene Expression in Normal Appearing Colon Mucosa of APC^{min} Mice and Human Cancer Patients*, 64 Cancer Research 3694-3700 (2004)).

10 Genetic and epigenetic changes have been reported in macroscopically normal tissues for several neoplasms (Tycko B., *Genetic and epigenetic mosaicism in cancer precursor tissues*, 983 Ann N Y Acad Sci., 43-54 (2003)). For example, allelic loss has been demonstrated in normal breast terminal ductal lobular units adjacent to primary breast cancers. (Deng G., Lu Y., Zlotnikov G., Thor A.D., Smith H.S., *Loss of heterozygosity in normal tissue adjacent to breast carcinomas*, 274 Science, 2057-9 (1996)). Such allelic loss is associated with an increased risk of local recurrence (Li Z., Moore D.H., Meng Z.H., Ljung B.M., Gray J.W., Dairkee S.H., *Increased risk of local recurrence is associated with allelic loss in normal lobules of breast cancer patients*, 62 Cancer Res., 1000-3 (2002)). In addition, normal-appearing colonic mucosal cells from individuals with a prior colon cancer are more resistant to bile acid-induced apoptosis than mucosal cells from individuals with no prior colon cancer (Bernstein C., Bernstein H., Garewal H., et al., *A bile acid-induced apoptosis assay for colon cancer risk and associated quality control studies*, 59 Cancer Res., 2353-7 (1999); and
15 Bedi A., Pasricha P.J., Akhtar A.J., et al., *Inhibition of apoptosis during development of colorectal cancer.*, 55 Cancer Res., 1811-6 (1995)). Since apoptosis is important in colonic epithelium to eliminate cells with unrepaired DNA damage (Payne C.M., Bernstein H., Bernstein C., Garewal H., *Role of apoptosis in biology and pathology: resistance to apoptosis in colon carcinogenesis*, 19 Ultrastruct Pathol., 221-48 (1995)), reduction in apoptosis could
20 result in the retention of DNA-damaged cells and increase the risk of carcinogenic mutations.
25

30 PPAR- γ is down-regulated in several carcinomas. Ligands of PPAR- γ inhibit cell growth and induce cell differentiation (Kitamura S., Miyazaki Y., Shinomura Y., Kondo S., Kanayama S., Matsuzawa Y., *Peroxisome proliferator-activated receptor gamma induces growth arrest and differentiation markers of human colon cancer cells*, 90 Jpn J Cancer Res 75-80 (1999)), and loss-of-function mutations in PPAR- γ have been reported in human colon cancer (Sarraf P., Mueller E., Smith W.M., et al., *Loss-of-function mutations in PPAR gamma*

-20-

associated with human colon cancer, 3 Mol. Cell, 799-804 (1999)). Thus, our observation of down-regulation in PPAR- γ expression in MNCM may represent an early event that promotes colonic epithelial cell growth and inhibits cellular differentiation. In addition, PPAR- γ also negatively regulates inflammatory response (Welch J.S., Ricote M., Akiyama T.E., Gonzalez F.J., Glass C.K., *PPAR gamma and PPAR delta negatively regulate specific subsets of lipopolysaccharide and IFN-gamma target genes in macrophages*, 100 Proc Natl Acad Sci U S A 6712-7 (2003)). Inflammation favors tumorigenesis by stimulating angiogenesis and cell proliferation (Nakajima N., Kuwayama H., Ito Y., Iwasaki A., Arakawa Y., *Helicobacter pylori, neutrophils, interleukins, and gastric epithelial proliferation*, 25 Suppl. 1 J Clin Gastroenterol., 98-202 (1997)). Similarly, IL-8 and the acute-phase protein SAA1 modulate the inflammatory process (Dhawan P., Richmond A., *Role of CXCL 1 in tumorigenesis of melanoma*, 72 J Leukoc Biol., 9-18 (2002); and Urieli-Shoval S., Linke R.P., Matzner Y., *Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states*, 7 Curr Opin Hematol., 64-9 (2000)). Up-regulation of pro-inflammatory cytokines and acute phase proteins has been reported in the colon mucosa of individuals with inflammatory bowel disease (Niederau C., Backmerhoff F., Schumacher B., *Inflammatory mediators and acute phase proteins in patients with Crohn's disease and ulcerative colitis*, 44 Hepatogastroenterology, 90-107 (1997); and Keshavarzian A., Fusunyan R.D., Jacyno M., Winship D., MacDermott R.P., Sanderson I.R., *Increased interleukin-8 (IL-8) in rectal dialysate from patients with ulcerative colitis: evidence for a biological role for IL-8 in inflammation of the colon*, 94 Am J Gastroenterol., 704-12 (1999)), who are at very high risk of developing colon cancer (Bachwich D.R., Lichtenstein G.R., Traber P.G., *Cancer in inflammatory bowel disease*, 78 Med Clin North Am., 1399-412 (1994)). Epidemiological observations also suggest that chronic inflammation predisposes to colorectal cancer (Rhodes J.M., Campbell B.J., *Inflammation and colorectal cancer: IBD-associated and sporadic cancer compared*, 8 Trends Mol Med., 10-6 (2002); and Farrell R.J., Peppercorn M.A., *Ulcerative colitis*, 359 Lancet 331-40 (2002)). Thus, the observation of down-regulation of PPAR- γ and up-regulation of IL-8 and SAA1 in the normal mucosa of individuals with a family history of sporadic colon cancer and individuals with inflammatory bowel disease may indicate the involvement of common pathways leading to colon carcinogenesis in these two groups.

Our observation of altered expression of genes associated with cancer and inflammation in normal colonic mucosa in some individuals with a family history of colon cancer is consistent with the recent report of association of elevated serum C-reactive protein ("CRP") concentration prior to the development of colon cancer (Erlinger T.P., Platz E.A., Rifai N., Helzlsouer K.J., *C-reactive protein and the risk of incident colorectal cancer*, 291 JAMA, 585-90 (2004)). These findings suggest that inflammation is a risk factor for the development

-21-

of colon cancer in average-risk individuals (*id.*). However, CRP is a nonspecific marker of inflammation that may indicate inflammation in tissues other than colon. In our study, we have analyzed the tissue where colon cancer arises and would be more specific in assessing the risk of developing colon cancer.

5 We do not know which cell type is responsible for the observed altered gene expression. There are many cell types in the colonic mucosa, including several types of mucosal epithelial cells, stromal cells and blood-born cells. Studies from our group and others have demonstrated that the up-regulation of COX-2 protein in MNCM is localized primarily to the infiltrating macrophages and secondarily to the epithelial cells in aberrant crypt 10 foci in the MNCM of APC^{min} mice (Chen L-C, Hao C-Y, Chiu Y.S.Y., et al., *Alteration of Gene Expression in Normal Appearing Colon Mucosa of APC^{min} Mice and Human Cancer Patients*, 64 Cancer Research 3694-3700 (2004); and Hull M.A., Booth J.K., Tisbury A., et al., *Cyclooxygenase 2 is up-regulated and localized to macrophages in the intestine of Min mice*, 79 Br J Cancer, 1399-405 (1999)). From our previous studies of MNCM of APC^{min} mice, 15 detection of the gene products that are up- or down- regulated in MNCM by immunohistochemical staining was found to be technically difficult, perhaps because the secreted proteins, such as IL-8 and SAA1, are evanescent in tissue sections (Chen L-C, Hao C-Y, Chiu Y.S.Y., et al., *Alteration of Gene Expression in Normal Appearing Colon Mucosa of APC^{min} Mice and Human Cancer Patients*, 64 Cancer Research 3694-3700 (2004)). Due to 20 the limited amount of the biopsy samples and technical difficulties, we were unable to perform immunohistochemical staining to demonstrate the cell types contributing to the altered gene expression. If the absolute RNA quantities are sufficient, RNA *in situ* hybridization may be a better method to determine the cellular locations of alterations. Alternatively, laser microdissection followed by RT-PCR may be able to define the cell types involved. 25 Regardless of the cell types responsible for the altered gene expression, our results demonstrate that relative to normal individuals without family history of colon cancer, altered gene expression is present in normal colon mucosa of some individuals with a family history of colon cancer and these individuals are known to have an increased risk of developing colon cancer (Burt R., Peterson G.M. In: Young G., Rozen, P. & Levin, B. Saunders, ed. in 30 *Prevention and Early Detection of Colorectal Cancer*, Philadelphia, 171-194 (1996)).

Among patients with altered gene expression in the rectosigmoid biopsy samples, some showed alterations in all biopsy samples (*i.e.*, expression of SAA1 in cases #4 and 12), while others showed altered expression in some biopsy samples only (*i.e.*, PPAR- γ in cases #2 and #3, figure 2). Since most samples were assayed with multiple genes in duplications to 35 ensure the quality of cDNA, such heterogeneity is unlikely due to technical variation. We speculate that this heterogeneity might reflect the frequency and/or the distribution of "hot

-22-

spots" in these individuals. It is possible that the individuals with altered gene expression in all rectosigmoid biopsy samples may have wide-spread molecular abnormalities in their rectosigmoid mucosa, while those with altered expression in some of the biopsy samples have discrete hot spots. Thus, individuals in the former group may have a global 5 predisposition to development of colon polyps or cancer, while those in the latter group may have local predisposition. Whether the risks in developing colon cancer or polyps differ between these two groups is unknown. In addition, altered expression of different combination of genes were observed in the rectosigmoid biopsy samples of individuals in the family history group. This observation suggests that different molecular pathways may be 10 involved in the early stages of colon carcinogenesis. Whether altered gene expression in certain molecular pathways is associated with higher risk of polyps or cancer also remains to be determined.

Consistent with the reports of more aberrant crypt foci (the preneoplastic colonic lesions) in the distal colon than in the proximal colon of the sporadic colon cancer patients 15 and the carcinogen-treated mice (Shpitz B., Bomstein Y., Mekori Y., et al., *Aberrant crypt foci in human colons: distribution and histomorphologic characteristics*, 29 Hum Pathol., 469-75 (1998); and Salim E.I., Wanibuchi H., Morimura K., et al., *Induction of tumors in the colon and liver of the immunodeficient (SCID) mouse by 2-amino-3-methylimidazo[4,5-f]quinoline (IQ)-modulation by long chain fatty acids*, 23 Carcinogenesis, 1519-29 (2002)), we found that 20 most of the alterations in gene expression were found in the distal colon of the individuals from the family history group. We speculate that the distal colon mucosa of the susceptible individuals may be exposed to higher concentration of exogenous substances present in the stool than mucosa in other colon regions after most of the water is re-absorbed at the end of the large intestine, and such exposure may lead to higher rate of altered gene expression at 25 this region.

We have shown that family history of colon cancer, but not age or sex, is the factor responsible for the observed differences in gene expression in the rectosigmoid mucosa of the two groups. The available information did not indicate any specific difference in diet or medication between these two groups of patients. However, we cannot eliminate the 30 possibility that diet or medication affect gene expression without further study. Not all individuals with a family history of colon cancer will develop cancer or adenomatous polyps of the colon (Smith, R.A., von Eschenbach A.C., Wender, R., et al., *American Cancer Society guidelines for the early detection of cancer: update of early detection guidelines for prostate, colorectal, and endometrial cancers, and Update 2001—testing for early lung cancer detection*, 51 CA Cancer J. Clin., 38-75; quiz 77-80 (2001).). Consistent with this clinical 35 observation, our analysis also showed that not all the individuals with a family history of colon

cancer have altered gene expression in MNCM. Since the genes analyzed in this study are involved in the development of colon cancer, we hypothesize that individuals with altered gene expression in the MNCM may be more susceptible to developing polyps or cancer than those without altered gene expression. To test this hypothesis, a prospective study with a
5 larger number of study subjects will be needed. If such an association is confirmed, it may be possible to identify individuals at increased risk of developing colon cancer by using gene expression analysis of rectosigmoid biopsy samples. Theoretically, it is easier to identify individuals with global alterations in the MNCM than individuals with local alterations by analysis of random MNCM samples. However, if an appropriate panel of genes was selected
10 for analysis using multiple samples, it may have enough predictive power to identify such patients.

Turning now to **Fig. 5**, various aspects of **Fig. 5** may be implemented using a conventional general purpose or specialized digital computer(s) and/or processor(s) programmed according to the teachings of the present disclosure, as will be apparent to those
15 skilled in the computer arts. Appropriate software coding can be prepared readily by skilled programmers based on the teachings of the present disclosure, as will be apparent to those skilled in the software arts. The invention also may be implemented by the preparation of integrated circuits and/or by interconnecting an appropriate network of component circuits, as will be readily apparent to those skilled in the arts.

20 Various aspects include a computer program product which is a storage medium having instructions and/or information stored thereon/in which can be used to program a general purpose or specialized computing processor(s)/device(s) to perform any of the features presented herein. The storage medium can include, but is not limited to, one or more of the following: any type of physical media including floppy disks, optical discs, DVDs,
25 CD-ROMs, microdrives, magneto-optical disks, holographic storage devices, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, PRAMS, VRAMs, flash memory devices, magnetic or optical cards, nano-systems (including molecular memory ICs); paper or paper-based media; and any type of media or device suitable for storing instructions and/or information. Various aspects include a computer program product that can be transmitted in whole or in parts and
30 over one or more public and/or private networks wherein the transmission includes instructions and/or information which can be used by one or more processors to perform any of the features presented herein. In various aspects, the transmission may include a plurality of separate transmissions.

35 Stored on one or more of the computer readable medium (media), the present disclosure includes software for controlling both the hardware of general purpose/specialized computer(s) and/or processor(s), and for enabling the computer(s) and/or processor(s) to

-24-

interact with a human user or other mechanism utilizing the results of the present invention. Such software may include, but is not limited to, device drivers, operating systems, execution environments/containers, user interfaces and applications.

The execution of code can be direct or indirect. The code can include compiled, 5 interpreted and other types of languages. Unless otherwise limited by claim language, the execution and/or transmission of code and/or code segments for a function can include invocations or calls to other software or devices, local or remote, to do the function. The invocations or calls can include invocations or calls to library modules, device drivers and remote software to do the function. The invocations or calls can include invocations or calls in 10 distributed and client/server systems.

Fig. 6 depicts an aspect of this disclosure having a swab sampling and transport system **400** for the minimally invasive sampling of colonic mucosal cells. The system **400** of **Fig. 6** is comprised of a swab **410** and a container **420**. A container **420**, such as one depicted by the aspect of the disclosure shown in **Fig. 6**, is configured to stabilize, extract, 15 and store the sample of colonic mucosal cells until the diagnostic test for early detection of CRC using the disclosed biomarker panel can be done on the sample.

The swab **410** has a tip **412** extending from the end of a shaft **414**. The tip **410** may be of a number of shapes such as oblate, square, rectangular, round, etc., and has a maximum width of about 0.5 cm to 1.0 cm, and a length of about 1.0 cm to 10.0 cm around 20 the end of the rod. The tip **412** may be composed of a number of materials, such as cotton, rayon, polyester, and polymer foam, for example, or combinations of such materials. The shaft **414** is made of a material with sufficient mechanical strength for effectively swabbing the rectal area, but with enough flexibility to prevent injury. Examples of shaft materials having the strength and flexibility properties for a rectal swab include wood, paper, and a variety of 25 polymeric materials, such as polyester, polystyrene, and polyurethane, and composites of such polymers.

The container **420** has a body **412** and a cap **424**. The body **412** may have a variety of lengths and diameters to accommodate a swab **410** having dimensions of the tip **412** and the range of lengths of the shaft **414** as described in the above. The body **412** of the 30 container may be made of a number of polymeric materials, such as polyethylene, polypropylene, polycarbonate, polyfluorocarbon, or glass, while the cap **424** typically is made of a desirable polymeric material, such as the examples given for the body **412**. The container **420** has a reagent **426** in the bottom that is suitable for stabilizing and extracting the colonic mucosal cells collected on the swab **410** when swabbing of the rectal area is done as 35 a minimally invasive sampling technique. Additionally, a container **420** having a reagent **426**

-25-

suitable for stabilizing and extracting a sample of colonic mucosal cells from a stool sample may be used without the need for the swab **410**.

The reagent **426** contains a buffered solution of guanidine thiocyanate in a concentration of at least about 0.4M and other tissue denaturing reagents such as a biological surfactant in a concentration of at about between 0.1 to 10%. Desirable biological surfactants can be zwitterionic, such as CHAPS or CHAPSO, non-ionic, such as TWEEN, or any of the alkylglucoside surfactants, or ionic, such as SDS. A variety of buffers, for example, those generally known as Good's buffers, such as Tris, may be used. The concentration of the buffer may vary in order to buffer the reagent **426** effectively to a pH of between about 7.0 to
10 8.5.

It is further contemplated that the sample taken using an aspect of the disclosure as in **Fig. 6** of a swab sampling and transport system **400** can be processed and the data analyzed in a single apparatus using the computer hardware and software disclosed above. That is, the sample obtained from the aspect of the disclosure of **Fig. 6** can be analyzed according to
15 **Fig. 5** in a single apparatus. However, it is also contemplated that a patient's blood or stool sample can be analyzed in the single apparatus. In one embodiment, one aspect of the apparatus is a first component that is used to carry out RT-PCR for a sample from a patient for gene expression profiling, as described above. Gene expression profiling allows quantifying of cDNA of SEQ. ID Nos 1-16, which is reverse-transcribed from mRNA made by
20 cells in the sample from the patient. The sets of primers from SEQ. ID Nos 33-64 are used in the RT-PCR reaction to prime strands of mRNA corresponding to SEQ. ID Nos 1-16, and thereby to synthesize cDNA corresponding to SEQ. ID Nos 1-16.

After obtaining the cDNAs from the RT-PCR, data are compared by a second component of the apparatus to control data already stored in the apparatus on a storage
25 medium. Multivariate analysis as disclosed above is applied using software to execute instructions for the ANOVA, M-Dist, or other means of multivariate analysis. Based on the statistical analysis, a qualified diagnostician can assess the presence or absence of CRC, the progress of CRC, and/or the effects of treatment of CRC.

In a further aspect of this disclosure, protein expression profiling of patient samples
30 can be carried out for early detection of CRC, using a single apparatus. The term "polypeptide" or "polypeptides" is used interchangeably herein with the term "protein" or "proteins." As discussed previously, proteins long have been investigated for their potential as biomarkers, with limited success. There is value in protein biomarkers as complementary to polynucleotide biomarkers. Reasons for having the information provided by both types of
35 biomarkers include the current observations that mRNA expression levels are not good predictors of protein expression levels, and that mRNA expression levels tell nothing of the

post-translational modifications of proteins that are key to their biological activity. Therefore, in order to understand the expression levels of proteins, and their complete structure, the direct analysis of proteins is desirable.

Disclosed herein are proteins listed in SEQ. ID NOs 17-32, which correspond to the genes indicated in SEQ. ID NOs 1-16. A further aspect of the disclosed invention is to determine expression levels of the proteins indicated by SEQ. ID NOs. 17-32. A sample from the patient, taken by non- or minimally-invasive methods as disclosed above, can be used to prepare fixed cells or a protein extract of cells from the sample. The cells for protein expression profiling can be obtained either through the method of **Fig. 6**, or alternatively for example by a blood sample or stool sample, or other non-invasive or minimally invasive method (or of course by more conventional invasive methods, including for example sigmoidoscopy and other procedures).

In a first component of the apparatus, the cells or protein extract can be assayed with a panel of antibodies – either monoclonal or polyclonal – against the claimed panel of biomarkers for measuring targeted polypeptide levels. The objective of the assay is to detect and quantify expression of proteins corresponding to the biomarker gene sequences in SEQ. ID NOs 1-16, *i.e.*, SEQ. ID NOs 17-32.

In one aspect of the disclosure contemplated for the method, the antibodies in the antibody panel, which are based on the panel of biomarkers, can be bound to a solid support. The method for protein expression profiling may use a second antibody having specificity to some portion of the bound, targeted polypeptide. Such second antibody may be labeled with molecules useful for detecting and quantifying the bound polypeptides, and therefore in binding to the polypeptide, label it for detection and quantification. Additionally, other reagents are contemplated for labeling the bound polypeptides for detection and quantification. Such reagents may either directly label the bound polypeptide or, analogous to a second antibody, may be a moiety with specificity for the bound polypeptide having labels. Examples of such moieties include but are not limited to small molecules such as cofactors, substrates, complexing agents, and the like, or large molecules such as lectins, peptides, oligonucleotides, and the like. Such moieties may be either naturally occurring or synthetic.

Examples of detection modes contemplated for the disclosed methods include, but are not limited to spectroscopic techniques, such as fluorescence and UV-Vis spectroscopy, scintillation counting, and mass spectroscopy. Complementary to these modes of detection, examples of labels for the purpose of detection and quantitation used in these methods include, but are not limited to chromophoric labels, scintillation labels, and mass labels. The expression levels of polynucleotides and polypeptides measured in a second component of the apparatus using these methods may be normalized to a control established for the

-27-

purpose of the targeted determination. The control data is stored in a computer which is a third component of the apparatus.

A fourth software component compares the data obtained from a patient's or a plurality of patients' samples to the control data. The comparison will comprise at least one multivariate analysis, and can include ANOVA, MANOVA, M-Dist, and others known to those of ordinary skill in the art. Once the statistical analysis and comparison is performed and complete, a physician or other qualified person can make a diagnosis concerning the patient's or patients' CRC status.

Turning now to the drug screening aspect of the present disclosure, it is noted that the panel of biomarkers disclosed herein are genes and expression products thereof that also are known to be involved in the following metabolic pathways and processes: 1) oxidative stress/inflammation; 2) APC/b-catenin pathway; 3) cell cycle/ transcription factors; and 4) actions of cytokines and other factors involved in cell/cell communications, growth, repair and response to injury or trauma. There is increasing evidence that these pathways, and hence members of the subject panel of biomarkers, are also involved in many other kinds of cancers than CRC, such as lung, prostate and breast, as well as neurodegenerative diseases, such as Alzheimer's and amyotrophic lateral sclerosis ("ALS"). In such pathologies, genes and expression products thereof involved in these pathways are fundamental to the growth, maintenance and response to stress of cells of many different types. During a pathology such as cancer or neurodegeneration, altered expression of certain altered genes results in a pathological symptom or symptoms, so that a shift in those genes, and expression products thereof, are characteristic biomarkers of that particular pathology. In that regard, seemingly unrelated pathologies, such as various cancers and neurodegenerative diseases, are manifestations of very complex pathologies that each involve discrete members of the subject biomarkers, which are genes and expression products thereof drawn from the above group of pathway and processes. As practical evidence of this, it is now appreciated that COX-2 inhibitors have therapeutic value for a wide variety of disorders, including not only colon and other cancers, but for some neurodegenerative diseases as well.

What is disclosed herein is the use of the subject biomarker panel in **Fig. 1** in the drug discovery process for pathologies such as cancers, for example CRC, lung prostate, and breast, and neurodegenerative diseases, for example Alzheimer's and ALS. As mentioned in the above, the discrete pattern of altered genes and expression products thereof provides a unique signature for each specific disease, so the panel provides the necessary selectivity for a variety of pathologies. What is meant by drug is any therapeutic agent that is useful in the treatment of a pathology. This includes traditional synthetic molecules, natural products,

-28-

natural products that are synthetically modified, and biopharmaceutical products, such as polypeptides and polynucleotides, and combinations, extracts and preparations thereof.

Drug screening is part of the first stage of drug development referred to as the drug discovery phase. Prospective drugs that are qualified through the drug screening process are typically referred to as leads, which is to say that in passing the criteria of the screening process they are advanced to further testing in a stage of drug discovery generally referred to as lead optimization. If passing the lead optimization stage of drug discovery, the leads are qualified as candidates, and are advanced beyond the drug discovery stage to the next stage of drug development known as preclinical trials, and are referred to as investigative new drugs ("IND"). If the IND is advanced, it is advanced to clinical trials, where it is tested in human subjects. Finally, if the IND shows promise through the clinical trial stage, after approval from FDA, it may be commercialized. The entire drug development process for a single candidate is known to take 10-15 years and hundreds of millions of dollars in development costs. For that reason, the current strategy within the pharmaceutical drug development community is to focus on the drug discovery stage as effective in weeding out prospective drugs efficiently, and advancing only candidates with high potential for success through the remaining drug development cycle.

In the screening stage of drug discovery, a specific assay for evaluating prospective drugs is performed against a qualified biological model system for which a specific endpoint is monitored. A biomarker panel that is used as a surrogate endpoint for drug screening for pathologies, such as cancers, for example CRC, lung, prostate, and breast, and neurodegenerative diseases, for example Alzheimer's and ALS, is not only a panel useful for early detection of such pathologies, but additionally demonstrates modulation by a drug in a fashion that correlates with a decrease in the pathology occurrence or recurrence. Additionally, one or more members of a biomarker panel useful in the early detection of such pathologies may also be useful as targets for drug screening for such pathologies. As will be discussed subsequently, the biomarkers described by **Fig. 1** may be useful both as surrogate endpoints in model biological systems, as well as targets in drug screening.

During the screening phase, large libraries of prospective drugs may be evaluated, representing a throughput of tens of thousands of compounds over a single screening regimen. What is regarded as low-throughput screening ("LTS") is about 10,000 to about 50,000 prospective drugs, while medium-throughput screening ("MTS") represents about 50,000 to about 100,000 prospective drugs, and high-throughput screening ("HTS") is 100,000 to about 500,000 prospective drugs.

What is meant by screening regimen includes both the testing protocol and analytical methodology by which the screening is conducted. The screening regimen, then, includes

-29-

factors such as the type of biological model that will be used in the test; the conditions under which the testing will be conducted; the type of prospective drug candidates, or library of prospective candidates that will be used; the type of equipment that will be used; and the manner in which the data are collected, processed, and stored. The scale of the screening regimen --LTS, MTS, or HIS -- is impacted by factors such as testing protocol (e.g., type of assay), analytical methodology (e.g., miniaturization, automation), and computational capability and capacity. What is meant by biological model system includes whole organism, whole cell, cell lysate, and molecular target. What is meant by prospective drug candidate is any type of molecule, or preparation or suspension of molecules, under consideration for having therapeutic use. For example, the prospective drug candidates could be synthetic molecules, natural products, natural products that are synthetically modified, and biopharmaceutical products, such as polypeptides and polynucleotides, and combinations, extracts, and preparations thereof.

As discussed above, **Fig. 1** provides sequence listings of a panel of biomarkers useful in practicing the disclosed invention. One aspect of the disclosure is a biomarker panel of 16 identified coding sequences given in SEQ. ID NOs 1-16, while another aspect of a biomarker panel is the 16 identified proteins given by SEQ. ID NOs 17-31. These two aspects of the present invention provide the selectivity and sensitivity necessary for the early detection of pathologies, such as cancers, for example CRC, lung, prostate, and breast, and neurodegenerative diseases, for example Alzheimer's and ALS.

As previously mentioned, CRC is an exemplary pathology contemplated for development of novel drugs. For CRC, no biomarker or biomarker panel has been identified that has an acceptably high degree of selectivity and sensitivity to be effective for early detection of CRC. Therefore, what is described in **Fig. 1** are aspects of biomarker panels that are differentiating in providing the basis for early detection of CRC. Selectivity of a biomarker defined clinically refers to percentage of patients correctly diagnosed. Sensitivity of a biomarker in a clinical context is defined as the probability that the disease is detected at a curable stage. Ideally, biomarkers would have 100% clinical selectivity and 100% clinical sensitivity. To date, no biomarker or biomarker panel has been identified that has an acceptably high degree of selectivity and sensitivity required to be effective for the broad range of needs in patient care management.

The analytical methodology by which the screening is conducted may include the methodologies disclosed above for early detection of CRC, *i.e.* gene expression profiling from the mRNA of a biological sample to determine the gene expression of biomarkers and how their expression level(s) might have been affected by a prospective drug candidate (including use of RT-PCR), and/or determining protein expression levels of the **Fig. 1** polypeptide

-30-

biomarkers due to application of a prospective drug candidate; and then applying multivariate statistical analysis to determine the statistical significance of the expression levels of the various markers in the panel, with and without the prospective drug candidate(s).

Referring to **Fig. 7**, one aspect of the drug screening disclosure contemplates obtaining a tissue sample, such as a swab (see **Fig. 6**), blood sample, or biopsy, which can be taken by, for example, minimally invasive, invasive, or non-invasive means. An appropriate lysis buffer can be used to extract and preserve the RNA of the cells in the tissue sample. RT-PCR then can be carried out on the extracted RNA and converted to cDNA, as disclosed above, using, for example, at least two of the primers listed in SEQ. ID NOs 33-64, specific to the biomarker panel of **Fig. 1**, to screen the effect of the drug. The results of the assay can then be subjected to a multivariate analysis and M-dist., as disclosed above, and the results compared to control data.

Figure 8 depicts a further aspect of the drug screening disclosure in which antibodies are made against at least two biomarker proteins listed as SEQ. ID NOs 17-32, and the antibodies are used to assay a biological system, for example whole cells, cell lysates, etc. from, for example, biopsies or other tissue samples as set forth above. The antibodies are used to detect and quantify expression of the biomarker peptides identified by SEQ. ID NOs 17-32, so that the expression of these biomarker peptides can be monitored as a function of dosing the biological system with a potential drug. The results can be subjected to multivariate or univariate analysis and M-dist., as disclosed above, and compared to control data.

What has been disclosed herein has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit what is disclosed to the precise forms described. Many modifications and variations will be apparent to the practitioner skilled in the art. What is disclosed was chosen and described in order to best explain the principles and practical application of the disclosed embodiments of the art described, thereby enabling others skilled in the art to understand the various embodiments and various modifications that are suited to the particular use contemplated.

The references cited above are incorporated by reference in full.

CLAIMS

What is claimed:

- 5 1. A method for making a reagent composition for the early detection of colorectal cancer, lung cancer, prostate cancer, breast cancer, Alzheimer's and ALS, the method comprising:

synthesizing a pair of primers for each polynucleotide pair from SEQ. ID NOs 33-64;
10 adjusting to at least one desired concentration in a plurality of separate stock solutions each of said primers, using a diluent;

aliquoting each of said stock solutions of each of said primers into a plurality of
15 containers; and

storing the plurality of containers in long-term storage conditions.
2. The method of claim 1 wherein the method further comprises lyophilizing the aliquoted
20 stock solutions of each of said primer pairs.
3. A method for early detection of colorectal cancer, lung cancer, prostate cancer, breast cancer, Alzheimer's and ALS, the method comprising:

25 obtaining a tissue sample by a non-invasive or a minimally invasive method from grossly-normal appearing tissue;

isolating RNA from the sample;
- 30 amplifying copies of cDNA from the RNA sample using a plurality of pairs of primers selected from the group consisting of SEQ. ID NOs 33-64, to detect a panel of polynucleotides selected from SEQ. ID NOs. 1-16;

quantifying the amplified copies of cDNA; and
35

-32-

using the quantified amplified copies of cDNA to assess at least one of disease progress and treatment effectiveness for at least one of colorectal cancer, lung cancer, prostate cancer, breast cancer, Alzheimer's and ALS.

- 5 4. The method as in claim 3 wherein the obtaining step further comprises sampling rectal mucosal cells.
- 10 5. The method of claim 3 wherein the obtaining step further comprises one of drawing blood, sampling stool, and taking a rectal biopsy.
- 15 6. The method of claim 3 wherein the using step further comprises:
analyzing by multivariate analysis the quantified levels of tissue sample cDNA;
comparing the multivariate analysis of the quantified levels of tissue sample cDNA with a plurality of control data, wherein the comparison determines a significance of differences from the control data to assess the presence of colorectal cancer.
- 20 7. The method of claim 6 wherein the analyzing step further comprises using one of an ANOVA test and a Mahalanobis distance test.
- 25 8. A method for early detection of colorectal cancer and for evaluation of treatment efficacy of colorectal cancer, the method comprising the steps of:
obtaining by a non-invasive or minimally-invasive method a tissue sample containing cells that grossly appear cancer-free;
generating a plurality of antibodies having different specificities against each of the polypeptides identified by SEQ. ID NOS 17-32;
- 30 assaying for expression of polypeptides in a panel of polypeptides identified by SEQ. ID NOS 17-32 with the plurality of antibodies, wherein the assaying step allows for quantifying specific binding of the antibodies to the polypeptides;
- 35 quantifying the levels of each of the different polypeptides in the panel of polypeptides based on the quantified specific antibody binding; and

analyzing the quantified levels of each of the different polypeptides in the panel of polypeptides, wherein the quantified levels are used to assess at least one of the presence, progress, and treatment of colorectal cancer.

5

9. The method of claim 8 wherein the obtaining step further comprises one of sampling blood, sampling stool, swabbing for colonic cells, and performing a rectal biopsy.

10. A method for analyzing data for the early detection and treatment monitoring of colorectal cancer, the method comprising the following steps:

obtaining a plurality of quantified levels of cDNA for polynucleotides selected from SEQ. ID Nos. 1-16 from a patient sample, wherein the sample is taken by a non-invasive method or a minimally-invasive method;

15

comparing said data from the patient sample to a plurality of stored control data using multivariate statistical analysis; and

20 making a determination concerning one of diagnosis of colorectal cancer, colorectal cancer progress, and treatment efficacy for the patient based on the comparison.

11. A machine readable medium having instructions stored thereon that, when executed by one or more processors, cause a system to:

25 obtain the data of quantified levels of cDNA for polynucleotides listed in SEQ. ID NOs. 1-16, wherein the quantified levels of cDNA are from a patient tissue sample and a control tissue sample;

30 compare the quantified levels of cDNA from the patient tissue sample to the quantified levels of cDNA from the control tissue sample using at least one multivariate statistical analysis; and

provide said multivariate statistical analysis for evaluation by an individual trained to evaluate colorectal cancer.

35

-34-

12. A computer signal embodied in a transmission medium, comprising:

a code segment including instruction for obtaining quantified levels of cDNA for polynucleotides selected from SEQ. ID NOS. 1-16, wherein the quantified levels of cDNA are from a patient tissue sample;

5 a code segment including instruction for comparing the quantified levels of cDNA from the patient tissue sample to a plurality of control data using multivariate statistical analysis; and

10 a code segment including instruction for making a diagnosis of colorectal cancer for the patient tissue sample based on the comparison.

13. A computer signal embodied in a transmission medium, comprising:

15 a code segment including instruction for obtaining quantified levels of polypeptides selected from SEQ. ID NOS. 17-33, wherein the quantified levels of polypeptides are from a patient sample containing colonic mucosal cells;

20 a code segment including instruction for comparing the quantified levels of polypeptides from the patient sample to a plurality of control data using multivariate statistical analysis; and

25 a code segment including at least one instruction based on the comparison for at least one of a diagnosis of colorectal cancer, a progress of colorectal cancer, and an efficacy of treatment of colorectal cancer.

14. A kit for use in the early detection of colorectal cancer, the kit comprising:

30 a collection container for receiving a sample containing rectal mucosal cells obtained through a non-invasive procedure, wherein the collection container is configured to stabilize and store the sample; and

35 at least one reagent that is used in the analysis of polynucleotide expression levels, wherein the polynucleotides are selected from SEQ. ID Nos. 1-16.

-35-

15. A kit for use in the detection of colorectal cancer, the kit comprising:

a swab sampling and sample transport system for the minimally invasive sampling of rectal mucosal cells, which system is comprised of:

5

a swab configured to sample colonic mucosal cells from the rectum; and

10 a collection container for receiving the swab after the sample has been taken, wherein the collection container is configured to stabilize, extract and store the sample; and

at least one reagent that is used in the analysis of polynucleotide expression levels, wherein the polynucleotides are selected from SEQ. ID Nos. 1-16.

15

16. A method for drug screening, the method comprising the following steps:

selecting a model biological system for at least one of colorectal cancer, lung cancer, prostate cancer, breast cancers, Alzheimer's and ALS;

20

selecting at least one prospective drug for screening using the suitable model biological system;

selecting at least two biomarkers from a panel of biomarkers identified by SEQ. ID 1-32;

25

dosing the model biological system with the at least one prospective drug; and

monitoring the response of the at least two biomarkers in the model biological system as a function of the dosing step.

30

17. The method of claim 16, further comprising: determining the efficacy of the prospective drug based on the monitoring step.

1/10

Sequence ID No. / ID	NCBI Entrez Database	Name	Abbreviation
1. Coding sequence	XM_031289	Interleukin 8	IL8
2. Coding sequence	XM_051900	Prostaglandin-endoperoxide synthase 2	PTGS2
3. Coding sequence	M94582	Interleukin 8 receptor B	ILR8RB
4. Coding sequence	NM_000757	Macrophage colony stimulating factor 1	CSF1 (MCSF1)
5. Coding sequence	X54489	Melanoma growth stimulatory activity	MGSA
6. Coding sequence	NM_002090	Chemokine (C-X-C motif) ligand 3	CXCL3
7. Coding sequence	XM_032429	Secreted phosphoprotein 1	SPP1 (OPN)
8. Coding sequence	M64349	Cyclin D	CCND1
9. Coding sequence	AX057136	c-Myc	c-Myc
10. Coding sequence	L25610	Cyclin-dependent kinase inhibitor	HUMCDK1
11. Coding sequence	NM_005036	Peroxisome proliferative activated receptor, alpha	PPARA
12. Coding sequence	XM_003059	Peroxisome proliferative activated receptor, gamma	PPARG
13. Coding sequence	NM_006238	Peroxisome proliferative activated receptor, delta	PPARD
14. Coding sequence	XM_030326	CD44 antigen	CD44
15. Coding sequence	XM_044882	Prostaglandin-endoperoxide synthase 1	PTGS1
16. Coding sequence	NM_000331	Serum amyloid A1	SAA1
17. Protein	XP_031289	Interleukin 8	IL8
18. Protein	XP_051900	Prostaglandin-endoperoxide synthase 2	COX2
19. Protein	AAA36108	Interleukin 8 receptor B	CXCR2
20. Protein	NP_000757	Macrophage colony stimulating factor 1	MCSF1
21. Protein	CAA38361	Melanoma growth stimulatory activity	Groα
22. Protein	NM_002090	Chemokine (C-X-C motif) ligand 3	Groy
23. Protein	XP_032429	Osteopontin	OPN
24. Protein	AAA52136	Cyclin D	cyclin D1
25. Protein	CAC22425	c-Myc	c-Myc

FIG. 1

2/10

Sequence ID No. / ID	NCBI Entrez Database	Name	Abbreviation
26. Protein	AAA16109	Cyclin-dependent kinase inhibitor	p21
27. Protein	NP_005027	Peroxisome proliferative activated receptor, alpha	PPAR α
28. Protein	XP_003059	Peroxisome proliferative activated receptor, gamma	PPARY
29. Protein	NP_006229	Peroxisome proliferative activated receptor, delta	PPAR δ
30. Protein	XP_030326	CD44 antigen	CD44
31. Protein	XP_044882	Prostaglandin-endoperoxide synthase 1	COX1
32. Protein	NP_000331	Serum amyloid A1	SAA1
33. Forward primer		Interleukin 8	IL8
34. Reverse primer			
35. Forward primer		Prostaglandin-endoperoxide synthase 2	PTGS2
36. Reverse primer			
37. Forward primer		Interleukin 8 receptor B	ILR8RB
38. Reverse primer			
39. Forward primer		Macrophage colony stimulating factor 1	CSF1 (MCSF1)
40. Reverse primer			
41. Forward primer		Melanoma growth stimulatory activity	MGSA
42. Reverse primer			
43. Forward primer		Chemokine (C-X-C motif) ligand 3	MGSA
44. Reverse primer			
45. Forward primer		Secreted phosphoprotein 1	SPP1 (OPN)
46. Reverse primer			
47. Forward primer		Cyclin D	CCND1
48. Reverse primer			
49. Forward primer		c-Myc	c-Myc
50. Reverse primer			

FIG. 1 (cont'd)

3/10

Sequence ID No. / ID	NCBI Entrez Database	Name	Abbreviation
51. Forward primer		Cyclin-dependent kinase inhibitor	HUMCDK1
52. Reverse primer			
53. Forward primer		Peroxisome proliferative activated receptor, alpha	PPAR α
54. Reverse primer			
55. Forward primer		Peroxisome proliferative activated receptor, gamma	PPAR γ
56. Reverse primer			
57. Forward primer		Peroxisome proliferative activated receptor, delta	PPAR δ
58. Reverse primer			
59. Forward primer		CD44 antigen	CD44
60. Reverse primer			
61. Forward primer		Prostaglandin-endoperoxide synthase 1	COX1
62. Reverse primer			
63. Forward primer		Serum amyloid A1	SAA1
64. Reverse primer			

FIG. 1 (cont'd)

4/10

FIG. 2

5/10

FIG. 3

6/10

FIG. 4

7/10

FIG. 5

8/10

FIG. 6

9/10

FIG. 7

10/10

FIG. 8

NLEEO1001WO0.ST25.txt

SEQUENCE LISTING

:110> Lee, Nancy M
:120> DRUG SCREENING AND MOLECULAR DIAGNOSTIC TEST FOR EARLY DETECTION
OF COLORECTAL CANCER: REAGENTS, METHODS, AND KITS THEREOF
:130> NLEEO1001WO0 MCF/MLB
:150> 60/614,746
:151> 2004-09-30
:150> 60/651,344
:151> 2005-02-08
:150> Not Assigned
:151> 2005-09-29
:160> 64
:170> PatentIn version 3.3
:210> 1
:211> 1629
:212> DNA
:213> HUMAN
:400> 1
|cagagcaca caagcttcta ggacaagagc caggaagaaa ccaccggaag gaaccatctc 60
|ctgtgtgt aacatgactt ccaagctggc cgtggctctc ttggcagcct tcctgatttc 120
|gcagctctg tgtgaagggtg cagtttgcc aaggagtgct aaagaactta gatgtcagtg 180
:ataaagaca tactccaaac ctttccaccc caaatttatac aaagaactga gagtgattga 240
|agtggacca cactgcgcca acacagaaaat tatgtaaagc tttctgatgg aagagagctc 300
:gtctggacc ccaaggaaaa ctgggtgcag agggttgtgg agaagttttt gaagagggct 360
:jagaattcag aattcataaa aaaattcatt ctctgtgtta tccaagaatc agtgaagatg 420
:cagtgaaac ttcaagcaaa tctacttcaa cacttcatgt attgtgtggg tctgtttag 480
:jgttgccaga tgcaatacaa gattccttgt taaatttcaa tttcagtaaa caatgaatag 540
:ttttcatgt taccatgaaa tatccagaac atacttatat gtaaagtatt atttatttga 600
:utctacaaaa aacaacaaat aattttaaa tataaggatt ttcctagata ttgcacggga 660
:jaatatacaa atagcaaaaat tgaggccaag ggccaagaga atatccgaac tttatattca 720
:jgaattgaat gggttgcta gaatgtgata tttgaagcat cacataaaaa tgatggac 780
:taaaattttg ccataaagtc aaatttagct ggaaatcctg gattttttc tgtaaatct 840
:jgcaacccta gtctgctagc caggatccac aagtccttgt tccactgtgc cttggtttct 900
:ctttatttc taagtggaaa aagtattagc caccatcttta cctcacagtg atgttgtgag 960

NLEEO1001WO0.ST25.txt

gacatgtgga	agcactttaa	gtttttcat	cataacataa	attatttca	agtgttaactt	1020
attaacctat	ttattatTTA	tgtatTTTATT	taagcatcaa	atatttgc	aagaatttgg	1080
aaaaatagaa	gatgaatcat	tgattgaata	gttataaaga	tgttatAGTA	aatttATTTT	1140
atTTtagata	ttaaatgatg	ttttattAGA	taaattCAA	tcagggttt	tagattAAAC	1200
aaacaaacaa	ttgggtaccc	agttAAATT	tcatttcaga	taaacaacaa	ataattttt	1260
agtataagta	cattattgtt	tatctgaaat	tttaattgaa	ctaacaatcc	tagttgata	1320
ctcccagtct	tgtcattGCC	agctgtgtt	gtagtgtgt	gttgaattac	ggaataatga	1380
gttagaacta	ttaaacacgc	caaaaCTCCA	cagtcaatat	tagtaattc	ttgctggTTG	1440
aaacttgttt	attatgtaca	aatagattct	tataatatta	tttaaatgac	tgcatttttA	1500
aatacaaggc	tttatTTTTT	taactttaag	atgttttat	gtgctctcca	aattttttt	1560
actgtttctg	attgtatgga	aatataaaag	taaataatgaa	acatttaaaa	tataatttgt	1620
tgtcaaagt						1629

<210> 2
<211> 3356
<212> DNA
<213> HUMAN

<400> 2	gtccaggaac	tcctcagcag	cgcctccttc	agctccacag	ccagacgccc	tcagacagca	60
	aaggctaccc	ccgcgcgcgc	ccctgcccgc	cgctgcgatg	ctcgcccgcg	ccctgctgct	120
	gtgcgcggc	ctggcgctca	gccatacagc	aaatccttgc	tgttcccacc	catgtcaaaa	180
	ccgaggtgta	tgtatgagt	tgggatttga	ccagtataag	tgcgattgta	cccgacagg	240
	attctatgga	gaaaactgct	caacacccga	atTTTGACA	agaataaaaat	tatttctgaa	300
	acccactcca	aacacagtgc	actacatact	tacccacttc	aagggatttt	ggaacgttgt	360
	gaataacatt	cccttccttc	gaaatgcaat	tatgagttat	gtgttgacat	ccagatcaca	420
	tttgattgac	agtccaccaa	cttacaatgc	tgactatggc	tacaaaagct	gggaagcctt	480
	ctctaacctc	tccttattata	ctagagccct	tcctcctgtg	cctgatgatt	gcccgactcc	540
	cttgggtgTC	aaaggtaaaa	agcagcttcc	tgattcaaAT	gagattgtgg	aaaaattgct	600
	tctaagaaga	aagttcatcc	ctgatcccc	gggctcaaAC	atgatgttt	catttttgc	660
	ccagcacttc	acgcatcagt	tttcaagac	agatcataag	cgagggccag	ctttcaccaa	720
	cgggctggc	catggggTGG	acttaaatca	tatTTACGt	gaaactctgg	ctagacagcg	780
	taaactgcgc	ctttcaagg	atggaaaaat	gaaatATCAG	ataattgatg	gagagatgt	840
	tcctccaca	gtcaaagata	ctcaggcaga	gatgatctac	cctcctcaag	tccctgagca	900
	tctacggTT	gctgtggggc	aggaggtctt	tggtctggT	cctggTctga	tgtatgtatgc	960

NLEE01001WO0.ST25.txt

cacaatctgg	ctgcgggaac	acaacagagt	atgcgatgtg	cttaaacagg	agcatcctga	1020
atggggtgat	gagcagttgt	tccagacaag	caggctaata	ctgataggag	agactattaa	1080
gatttgatt	gaagattatg	tgcaacactt	gagtggctat	cacttcaaac	tgaaatttga	1140
cccagaacta	ctttcaaca	aacaattcca	gtacaaaaat	cgtattgctg	ctgaatttaa	1200
caccctctat	cactggcatc	cccttctgcc	tgacaccctt	caaattcatg	accagaaata	1260
caactatcaa	cagtttatct	acaacaactc	tatattgctg	gaacatggaa	ttacccagtt	1320
tgttgaatca	ttcaccaggc	aaattgctgg	cagggttgct	ggtggtagga	atgttccacc	1380
cgcagtacag	aaagtatcac	aggcttccat	tgaccagagc	aggcagatga	aataccagtc	1440
ttttaatgag	taccgcaaac	gctttatgct	gaagccctat	gaatcatttgc	aagaacttac	1500
aggagaaaag	gaaatgtctg	cagagttgga	agcactctat	ggtgacatcg	atgctgtgg	1560
gctgtatcct	gcccttctgg	tagaaaagcc	tcggccagat	gccatcttgc	gtgaaaccat	1620
ggtagaagtt	ggagcaccat	tctccttgaa	aggacttatg	ggtaatgtta	tatgttctcc	1680
tgcctactgg	aagccaagca	ctttgggtgg	agaagtggtt	tttcaaatac	tcaacactgc	1740
ctcaattcag	tctctcatct	gcaataacgt	gaaggctgt	cccttactt	cattcagtgt	1800
tccagatcca	gagctcatta	aaacagtcac	catcaatgca	agttcttccc	gctccggact	1860
agatgatatac	aatcccacag	tactactaaa	agaacgttcg	actgaactgt	agaagtctaa	1920
tgatcatatt	tatttattta	tatgaaccat	gtctattaat	ttaatttattt	aataatattt	1980
atattaaact	ccttatgtta	cttaacatct	tctgtaacag	aagtcagtac	tcctgttg	2040
gagaaaggag	tcataacttgt	gaagactttt	atgtcaactac	tctaaagatt	ttgctgttg	2100
tgttaagttt	ggaaaacagt	ttttattctg	ttttataaaac	cagagagaaa	tgagtttga	2160
cgtctttta	cttgaatttc	aacttatatt	ataagaacga	aagtaaagat	gtttgaatac	2220
ttaaacactg	tcacaagatg	gcaaaatgct	gaaagttttt	acactgtcga	tgttccaat	2280
gcatcttcca	tcatgcatta	gaagtaacta	atgtttgaaa	ttttaaagta	ctttgggtta	2340
ttttctgtc	atcaaacaaa	aacaggtatc	agtgcattat	taaatgaata	tttaaatttag	2400
acattaccag	taatttcatg	tctactttt	aaaatcagca	atgaaacaat	aattgaaat	2460
ttctaaattc	ataggtaga	atcacctgta	aaagctgtt	tgatttctta	aagttattaa	2520
acttgtacat	ataccaaaaa	gaagctgtct	tggattttaa	tctgtaaaat	cagtagaaat	2580
tttactacaa	ttgcttgta	aaatattttt	taagtgtatgt	tccttttca	ccaagagtt	2640
aaacctttt	agtgtgactg	ttaaaacttc	cttttaaattc	aaaatgcca	atttattaag	2700
gtggtgagc	cactgcagt	ttatcttaaa	ataagaatat	tttggtaga	tattccagaa	2760
tttggttata	tggctggtaa	catgtaaaat	ctatatcagc	aaaagggtct	acctttaaaa	2820
taagcaataa	caaagaagaa	aaccaaatta	ttgttcaaata	ttaggtttaa	actttgaag	2880

NLEE01001w00.ST25.txt

caaactttt tttatccttg tgcactgcag gcctggtaact cagatttgc tatgaggta	2940
atgaagtacc aagctgtgct tgaataatga tatgtttct cagatttct gttgtacagt	3000
ttaatttagc agtccatatc acattgaaa agtagcaatg acctcataaa ataccttc	3060
aaaatgctta aattcatttc acacattaat tttatctcag tcttgaagcc aattcagtag	3120
gtgcattgga atcaaggctg gctacctgca tgctgtcct tttctttct tcttttagcc	3180
atttgctaa gagacacagt ctctcatca ctgcgttct cctatttgt tttactagtt	3240
ttaagatcag agttcactt cttggactc tgcctatatt ttcttacctg aactttgca	3300
agtttcagg taaacctcag ctcaggactg ctat tagct cctcttaaga agatta	3356

<210> 3
<211> 1750
<212> DNA
<213> HUMAN

<400> 3	
cctacaggtg aaaagcccag cgacccagtc aggatttaag tttacctcaa aaatggaaga	60
ttttaacatg gagagtgaca gcttgaaga tttctggaaa ggtgaagatc ttagtaatta	120
cagttacagc tctaccctgc cccctttct actagatgcc gccccatgtg aaccagaatc	180
cctggaaatc aacaagtatt ttgtggtcat tatctatgcc ctggtattcc tgctgagcct	240
gctggaaac tccctcgta tgctggtcat cttatacagc agggtcggcc gctccgtcac	300
tgatgtctac ctgctgaacc tagccttggc cgaccta tttgccctga cttgcccatt	360
ctggggcc tccaaggta atggctggat tttggcaca ttccctgtca aggtggtctc	420
actcctgaag gaagtcaact tctatagtgg catcctgcta ctggcctgca tcagtgtgga	480
ccgttacctg gccattgtcc atgccacacg cacactgacc cagaagcgct acttggtaa	540
attcatatgt ctcagcatct ggggtctgca cttgctcctg gccctgcctg tcttacttt	600
ccgaaggacc gtctactcat ccaatgttag cccagcctgc tatgaggaca tggcaacaa	660
tacagcaaac tggcggatgc tgttacggat cctgccccag tccttggct tcatcggtcc	720
actgctgatc atgctgttct gctacggatt caccctgcgt acgctgttta aggcccacat	780
ggggcagaag caccggcca tgcgggtcat cttgctgca gtcctcatct tcctgcttt	840
ctggctgccc tacaacctgg tcctgctggc agacaccctc atgaggaccc aggtgatcca	900
ggagacctgt gagcgccgca atcacatgca ccgggcctg gatgccaccc agattctggg	960
catccttcac agctgcctca accccctcat ctacgccttc attggccaga agttcgcca	1020
tggactcctc aagattctag ctatacatgg cttgatcagc aaggactccc tgcccaaaga	1080
cagcaggcct tccttggat gctcttcttcc agggcacact tccactactc tctaagacct	1140
cctgccttaag tgcagccccg tgggttcctt ccctcttcc cacagtcaca ttccaagcct	1200

NLEE01001wo0.ST25.txt

catgtccact ggttcttctt ggtctcagtg tcaatgcagc ccccatttgtg gtcacaggaa	1260
gcagaggagg ccacgttctt actagttcc cttgcattgtt tttagaaagct tgccctggtg	1320
cctcacccct tgccataatt actatgtcat ttgctggagc tctgcccattt ctgcccctga	1380
gcccatggca ctctatgttc taagaagtga aaatctacac tccagtgaga cagctctgca	1440
tactcattag gatggctagt atcaaaaagaa agaaaaatcag gctggccaac gggatgaaac	1500
cctgtctcta ctaaaaatac aaaaaaaaaa aaaaaaaaaa gccgggcgtg gtggtgagtg	1560
cctgtaatca cagctacttg ggaggctgag atgggagaat cacttgaacc cgggaggcag	1620
aggttgcagt gagccgagat tgtccccctg cactccagcc tgagcgacag tgagactctg	1680
tctcagtcca tgaagatgta gaggagaaac tggaactctc gagcgttgct gggggggatt	1740
gtaaaaatggt	1750

<210> 4
<211> 3939
<212> DNA
<213> HUMAN

<400> 4 cctgggtcct ctcggcgcca gagccgctct ccgcatttcca ggacagcggt gcggccctcg	60
gccggggcgc ccactccgca gcagccagcg agccagctgc cccgtatgac cgcccccggc	120
gccggccggc gctgccctcc cacgacatgg ctgggctccc tgctgttggt ggtctgtctc	180
ctggcgagca ggagtatcac cgaggaggtg tcggagttact gtagccacat gattggagtg	240
ggacacctgc agtctctgca gcggctgatt gacagtca gtagccacat gttggggat	300
acatttgagt ttgttagacca ggaacagttg aaagatccag tgtagtaccc taagaaggca	360
tttctcctgg tacaagacat aatggaggac accatgcgct tcagagataa caccgccaat	420
cccatcgcca ttgtgcagct gcaggaactc tctttgaggc tgaagagctg cttcaccaag	480
gattatgaag agcatgacaa ggcctgcgtc cgaactttct atgagacacc tctccagttg	540
ctggagaagg tcaagaatgt cttaatgaa acaaagaatc tccttgacaa ggactggaat	600
attttcagca agaactgcaa caacagctt gctgaatgct ccagccaaga tgtggtgacc	660
aagcctgatt gcaactgcct gtaccccaaa gccatcccta gcagtgaccc ggcctctgtc	720
tccccctcatc agccccctgc cccctccatg gcccctgtgg ctggcttgac ctgggaggac	780
tctgagggaa ctgagggcag ctccctcttg cctggtgagc agccccctgca cacagtggat	840
ccaggcagtg ccaagcagcg gccacccagg agcacctgcc agagcttga gcccggagag	900
accccagttg tcaaggacag caccatcggt ggctcaccac agcctcgccc ctctgtcgaa	960
gccttcaacc ccgggatgga ggatattctt gactctgcaa tgggcactaa ttgggtccca	1020
gaagaagcct ctggagaggc cagtgagatt cccgtacccc aaggagacaga gctttcccc	1080

NLEE01001WO0.ST25.txt

tccaggccag gagggggcag catcagaca gagcccaca gacccagcaa cttccctca	1140
gcattttctc cactccctgc atcagcaaag ggccaacagc cgccagatgt aactgctaca	1200
gccttgcggc gggggggccc cgtatgcgg actggccagg actggaaatca cacccccca	1260
aagacagacc atccatctgc cctgctcaga gaccccccgg agccaggctc tcccaggatc	1320
tcatcactgc gcccccaaggc cctcagcaac ccctccaccc tctctgctca gccacagctt	1380
tccagaagcc actcctcggg cagcgtgctg ccccttgggg agctggaggg caggaggagc	1440
accaggatc ggacgagccc cgccagagcca gaagcagcac cagcaagtga agggcagcc	1500
aggccccctgc cccgttttaa ctccgttcct ttgactgaca caggccatga gaggcagtcc	1560
gagggatcct ccagcccgca gctccaggag tctgtttcc acctgcttgt gcccagtgtc	1620
atcctggtct tgctggctgt cggaggcctc ttgttctaca ggtggaggcg gcggagccat	1680
caagagcctc agagagcgga ttctcccttg gagcaaccag agggcagccc cctgactcag	1740
gatgacagac aggtggact gccagtgttag agggaaattct aagctggacg cacagaacag	1800
tctcttcgtg ggaggagaca ttatggggcg tccaccacca cccctccctg gccatccctc	1860
tggaatgtgg tctgccctcc accagagctc ctgcctgcca ggactggacc agagcagcca	1920
ggctggggcc cctctgtctc aacccgcaga cccttgactg aatgagagag gccagaggat	1980
gctccccatg ctgccactat ttattgtgag ccctggaggc tcccatgtgc ttgaggaagg	2040
ctggtgagcc cggctcagga ccctttccc tcagggctg cagcctcctc tcactccctt	2100
ccatgccgga acccaggcca gggacccacc ggcctgttgt ttgtggaaa gcagggtgca	2160
cgctgaggag taaaacaacc ctgcacccag agggcctgccc tggtgccaaat gtatcccagc	2220
ctggacaggc atggacctgt ctccagacag aggacctga agttcgtgg gcggacagc	2280
ctcggcctga ttccccgtaa aggtgtgcag cctgagagac gggaaagagga ggcctctgca	2340
cctgctggtc tgcactgaca gcctgaaggg tctacaccct cggctcacct aagtccctgt	2400
gctggttgcc agggccagag gggaggccag ccctgcctc aggacctgcc tgacctgcca	2460
gtgatgccaa gagggggatc aagactggc ctctgcccct cctccttcca gcacctgcca	2520
gagttctcc agcaggccaa gcagaggctc ccctcatgaa ggaagccatt gcactgtgaa	2580
cactgtaccc gcctgctgaa cagcctcccc ccgtccatcc atgagccagc atccgtccgt	2640
cctccactct ccagcctctc cccagcctcc tgcactgagc tggcctcacc agtcgactga	2700
gggagccct cagccctgac ctctcctgaa cctggccttt gactccccgg agtggagtgg	2760
ggtggagaa cctccctggc cgccagccag agccgcttt taggctgtgt tcttcgccc	2820
ggtttctgca tcttccactt tgacattccc aagagggaaag ggactagtgag gagagagcaa	2880
gggagggag ggcacagaca gagagcctac agggcagct ctgactgaag atggccctt	2940

NLEE01001wo0.ST25.txt

gaaatatagg tatgcacctg aggttgggg agggtctgca ctccccaaacc ccagcgcagt	3000
gtcctttccc tgctgccgac aggaacctgg ggctgagcag gttatccctg tcaggagccc	3060
tggactgggc tgcacatctcag ccccacctgc atggtatcca gctcccatcc acttctcacc	3120
cttcttcctt cctgacacctg gtcagcagtg atgacacctca actctcaccc accccctcta	3180
ccatcacctc taaccaggca agccagggtg ggagagcaat caggagagcc aggcctcagc	3240
ttccaatgcc tggagggcct ccactttgtg gccagcctgt ggtgctggct ctgaggccta	3300
ggcaacgagc gacagggctg ccagttgccc ctgggttcct ttgtgctgct gtgtgcctcc	3360
tctccgtccg cccttgcctc tccgctaaga gaccctgccc tacctggccg ctggggccccg	3420
tgactttccc ttccctgccc ggaaagttag ggtcggtctgg ccccaccttc cctgtcctga	3480
tgccgacagc ttagggaagg gcactgaact tgcatatggg gcttagcctt ctagtcacag	3540
cctctatatt tgatgctaga aaacacatatt ttttaatgg aaaaaaaaata aaaaggcatt	3600
cccccttcat cccccctaccc taaacatata atattttaaa ggtaaaaaaaaa gcaatccaac	3660
ccactgcaga agctttttt gagcaattgg tggcatcaga gcaggaggag cccagagcc	3720
acctctggtg tcccccaaggc tacctgctca ggaaccctt ctgttctctg agaactcaac	3780
agaggacatt ggctcacgca ctgtgagatt ttgttttat acttgcaact ggtgaattat	3840
tttttataaaa gtcattttaa tatctattta aaagatagga agctgcttat atatttaata	3900
ataaaaagaag tgcacaagct gccgttgacg tagctcgag	3939

<210> 5
<211> 1024
<212> DNA
<213> HUMAN

<400> 5
atggcccgcg ctgctcttc cgccgcccc agcaatcccc ggctcctgcg agtggcactg 60
ctgctcctgc tcctggtagc cgctggccgg cgcgacgcag gagcgtccgt ggccactgaa 120
ctgcgctgcc agtgcttgca gaccctgcag ggaattcacc ccaagaacat ccaaagtgtg 180
aacgtgaagt ccccccggacc ccactgcgcc caaaccgaag tcatagccac actcaagaat 240
gggcggaaag cttgcctaa tcctgcatcc cccatagttt agaaaatcat cgaaaagatg 300
ctgaacagtg acaaattccaa ctgaccagaa gggaggagga agctcaactgg tggctttcc 360
tgaaggaggc cctgccccta taggaacaga agagggaaaga gagacacagc tgcagaggcc 420
acctggattt tgcctaattgt gttttagcat cgcttaggag aagtcttcta ttttattttt 480
tattcattttt ttttgaagat tctatgtttaa tatttttaggt gtaaaaataat taagggtatg 540
attaactcta cctgcacact gtccattttt attcattctt tttgaaatgt caaccccaag 600
ttagttcaat ctggattcat atttaatttg aaggtagaat gttttcaaat gttctccagt 660

NLEE01001WO0.ST25.txt

cattatgtta atatttctgca ggagcctgca acatgccagc cactgtgata gaggctggcg	720
gatccaagca aatggccaat gagatcattg tgaaggcagg ggaatgtatg tgcacatctg	780
ttttgtaact gtttagatga atgtcagttg ttatatttgc aaatgatttc acagtgtgtg	840
gtcaacatcc ctcatgttga aactttaaga actaaaatgt tctaaatatc cttggacat	900
tttatgtctt tcttgtaagg catactgcct tgttaatgg tagtttaca gtgttctgg	960
cttagaacaa aggggcttaa ttattgtatgt tttcatagag aatataaaaaa taaagcactt	1020
atag	1024

<210> 6
<211> 1064
<212> DNA
<213> HUMAN

<220>
<221> misc_feature
<222> (27)..(27)
<223> n = a, c, g, t

<220>
<221> misc_feature
<222> (766)..(766)
<223> n = a, c, g, t

<400> 6 cacagccggg tcgcaggcac ctccccngcc agctctccc cattctgcac agcttcccga	60
cgcgtctgct gagccccatg gcccacgcca cgctctccgc cgccccccagc aatccccggc	120
tcctgcgggt ggcgctgctg ctccctgctcc tggtggcag ccggcgcgca gcaggagcgt	180
ccgtggtcac tgaactgcgc tgccagtgc tgcagacact gcagggaaatt cacctaaga	240
acatccaaag tgtgaatgta aggtcccccg gaccccactg cgcccaaacc gaagtcatag	300
ccacactcaa gaatgggaag aaagcttgct tcaacccgc atccccatg gttcagaaaa	360
tcatcgaaaa gatactgaac aaggggagca ccaactgaca ggagagaagt aagaagctta	420
tcagcgtatc attgacactt cctgcagggt ggtccctgccc cttaccagag ctgaaaatga	480
aaaagagaac agcagcttc tagggacagc tggaaaggga cttaatgtgt ttgactattt	540
cttacgaggg ttctacttat ttatgtattt attttgaaa gcttgtattt taatatttt	600
catgctgtta tttaaagatg tgagtgtgtt tcatcaaaca tagctcagtc ctgattattt	660
aatttggata tggatgggtt taaatgtgtc attaaactaa tatttagtgg gagaccataa	720
tgtgtcagcc accttgataa atgacagggt gggaaactgg agggtnggg gattgaaatg	780
caagcaatta gtggatcact gttagggtaa gggaaatgtat gtacacatct atttttata	840
ctttttttt taaaaaagaa tgtcagttgt tatttattca aattatctca cattatgtgt	900
tcaacatttt tatgctgaag tttcccttag acatttatg tcttgcttgt agggcataat	960

NLEE01001wo0.ST25.txt

gccttgtta atgtccattc tgcagcgaaa ctctttccct tgaaaaagag aatttatcat	1020
tactgttaca tttgtacaaa tgacatgata ataaaaagttt tatg	1064

<210> 7
<211> 1469
<212> DNA
<213> HUMAN

<400> 7 agcagcagga ggaggcagag cacagcatcg tcgggaccag actcgtctca ggccagttgc	60
agccttctca gccaaacgcc gaccaaggaa aactcactac catgagaatt gcagtgattt	120
gctttgcct cctaggcatc acctgtgcca taccagttaa acaggctgat tctgaaagtt	180
ctgagggaaaa gcagcttac aacaaatacc cagatgctgt ggccacatgg ctaaacccctg	240
acccatctca gaagcagaat ctccctagccc cacagaccct tccaagtaag tccaaacgaaa	300
gccatgacca catggatgat atggatgatg aagatgatga tgaccatgtg gacagccagg	360
actccattga ctcgaacgac tctgatgatg tagatgacac ttagtattct caccagtctg	420
atgagtctca ccattctgat gaatctgatg aactggtcac tgatttccc acggacctgc	480
cagcaaccga agttttcact ccagttgtcc ccacagtaga cacatatgat ggccgaggtg	540
atagtgttgtt ttatggactg aggtcaaaat ctaagaagtt tcgcagaccc gacatccagt	600
accctgatgc tacagacgag gacatcacct cacacatgga aagcgaggag ttgaatggtg	660
catacaaggc catccccgtt gcccaggacc tgaacgcgcc ttctgattgg gacagccgtg	720
ggaaggacag ttatgaaacg agtcagctgg atgaccagag tgctgaaacc cacagccaca	780
agcagtccag attatataag cgaaaagcca atgatgagag caatgagcat tccgatgtga	840
ttgatagtca ggaactttcc aaagtcagcc gtgaattcca cagccatgaa tttcacagcc	900
atgaagatat gctggttgtt gacccaaaaa gtaaggaaga agataaacac ctgaaatttc	960
gtatttctca tgaatttagat agtgcattttt ctgaggtcaa taaaaggag aaaaaataaca	1020
atttctcaact ttgcatttag tcaaaagaaaa aaatgcctt tagaaaaatg aaagagaaca	1080
tgaaaatgctt ctttctcagt ttattgggtt aatgtgtatc tatttggatc tggaaataac	1140
taatgtgttt gataatttagt ttatgggtt gcttcatttggaa aactccctgt aaactaaaag	1200
cttcagggtt atgtctatgt tcattctata gaagaaatgc aaactatcac tgtatttaa	1260
tatttggat tctctcatga atagaaattt atgtagaagc aaacaaaata ctttaccca	1320
cttaaaaaga gaatataaca ttttatgtca ctataatctt ttgttttttta agtttgta	1380
tattttgggtt tgattatctt ttgtgggtt gaataaatct tttatcttga atgtataag	1440
aaaaaaaaaaaa aaaaaacaaa aaaaaaaaaa	1469

NLE01001w00.ST25.txt

<210> 8
<211> 1256
<212> DNA
<213> HUMAN

<400> 8
gcagtagcag cgagcagcag agtccgcacg ctccggcgag gggcagaaga gcgcgaggga 60
gcgcggggca gcagaagcga gagccgagcg cggaccacagc caggaccac agccctcccc 120
agctgcccag gaagagcccc agccatggaa caccagctcc tgtgctgcga agtgaaacc 180
atccgcccgcg cgtaccccgta tgccaacctc ctcaacgacc gggtgctgcg gccatgctg 240
aaggcggagg agacctgcgc gcccctgggt tcctacttca aatgtgtgca gaaggaggtc 300
ctgcccgtcca tgcggaaagat cgtcgccacc tggatgctgg aggtctgcga ggaacagaag 360
tgcgaggagg aggtcttccc gctggccatg aactacctgg accgcttcct gtcgctggag 420
cccgtaaaaa agagccgcct gcagctgctg ggggccactt gcatgttcgt ggccctctaag 480
atgaaggaga ccattccct gacggccgag aagctgtgca tctacaccga cggctccatc 540
cggcccggagg agctgctgca aatggagctg ctccctggta acaagctcaa gtggAACCTG 600
gccgcaatga ccccgacacgaa ttccattgaa cacttcctct caaaatgcc agaggcggag 660
gagaacaaac agatcatccg caaacacgcg cagacccctcg ttgcctcttgc tgccacagat 720
gtgaagttca ttccaatcc gcccctccatg gtggcagcgg ggagcgtggt ggccgcagtg 780
caaggcctga acctgaggag ccccaacaac ttccctgtcct actaccgcct cacacgcttc 840
ctctccagag tgatcaagtg tgacccagac tgcctccggg cctgcccaggaa gcagatcgaa 900
gccctgctgg agtcaaggct gcgccaggcc cagcagaaca tggaccccaa ggccgcggag 960
gaggaggaag aggaggagga ggaggtggac ctggcttgca caccaccga cgtgcgggac 1020
gtggacatct gaggggcccga ggcaggcggg cgccaccgc acccgagcg agggcggagc 1080
cggccccagg tgctccacat gacagtccct cctctccggaa gcattttgat accagaaggg 1140
aaagcttcat tctccattgtt gttgggttggat tttcccttgc ctctttcccc cttccatctc 1200
tgacttaagc aaaagaaaaa gattacccaa aaactgtctt taaaagagag agagag 1256

<210> 9
<211> 2121
<212> DNA
<213> HUMAN

<400> 9
ctgctcgccgg cggccaccgc cgggccccgg ccgtccctgg ctcccttcct gcctcgagaa 60
gggcagggtct tctcagaggc ttggcgggaa aaaagaacgg agggagggat cgcgtgagt 120
ataaaaagccg gttttcgggg ctttatctaa ctcgctgttag taattccagc gagaggcaga 180
gggagcggcggc ctaggggtggaa agagccgggc gagcagagct ggcgtgcggg 240

NLEE01001wo0.ST25.txt

cgtcctggga	agggagatcc	ggagcgaata	gggggcttcg	cctctggccc	agccctcccc	300
cttgcatcccc	caggccagcg	gtccgcaacc	cttgcgcac	ccacgaaact	ttgcccata	360
cagcgggccc	gcactttgca	ctgaaactta	caacaccga	gcaaggacgc	gactctcccc	420
acgcggggag	gctattctgc	ccatttgggg	acacttcccc	gccgctgcca	ggacccgctt	480
ctctgaaagg	ctctccttgc	agctgcttag	acgctggatt	tttttcgggt	agtggaaaac	540
cagcagcctc	ccgcgacgat	gccctcaac	gttagctca	ccaacaggaa	ctatgacctc	600
gactacgact	cggtgcagcc	gtatttctac	tgcgacgagg	aggagaactt	ctaccagcag	660
cagcagcaga	gcgagctgca	ccccccggcg	cccagcgagg	atatctggaa	gaaattcgag	720
ctgctgccc	ccccgcccc	gtccccctagc	cgccgctccg	ggctctgctc	gccctcctac	780
gttgcggtca	cacccttctc	cttcggggaa	gacaacgacg	gcgggtggcg	gagcttctcc	840
acggccgacc	agctggagat	ggtgaccgag	ctgctggag	gagacatggt	gaaccagagt	900
ttcatctgcg	acccggacga	cgagaccttc	atcaaaaaca	tcatcatcca	ggactgtatg	960
tggagcggct	tctcggccgc	cgc当地agctc	gtctcagaga	agctggcctc	ctaccaggct	1020
gcgc当地aaag	acagcggcag	ccc当地acccc	gccgc当地ggcc	acagcgtctg	ctccacctcc	1080
agcttgc当地	tgc当地ggatct	gagc当地ccgccc	gc当地tcagagt	gcatc当地accc	ctc当地gggtc	1140
ttccc当地tacc	ctctcaacga	cagc当地agctcg	ccc当地agtcct	gc当地cctcgca	agactcc当地	1200
gc当地ttctctc	cgtc当地ctcgga	ttctctgctc	tc当地tcgacgg	agtc当地tcccc	gc当地agggc当地	1260
ccc当地agcccc	tggtgctcca	tgaggagaca	ccgccc当地acca	ccagc当地agcga	ctctgaggag	1320
gaacaagaag	atgaggaaga	aatc当地gatgtt	gtttctgtgg	aaaagaggca	ggctc当地tggc	1380
aaaaggtc当地	agtctggatc	accttctgct	ggaggccaca	gcaaaacctcc	tc当地acagcccc	1440
ctggc当地ctca	agaggtgcca	cgtctccaca	catc当地agcaca	actacglocal	gc当地tccc当地	1500
actc当地ggaagg	actatcctgc	tgcca当地agagg	gtcaagttgg	acagtgctc当地	agtc当地ctgaga	1560
cagatc当地agca	acaaccgaaa	atgc当地accaggc	ccc当地aggtcct	cgga当地acccga	ggagaatgtc	1620
aagaggc当地aa	cacacaacgt	cttggagcgc	cagaggagga	acgagctaaa	acggagctt	1680
tttgc当地ctgc	gtgaccagat	ccc当地ggagttg	gaaaacaatg	aaaaggcccc	caaggtagtt	1740
atc当地ctaaaa	aagccacagc	atacatcctg	tccgtccaag	cagaggagca	aaagctc当地	1800
tctgaagagg	acttgttgc当地	gaaacgacga	gaacagttga	aacaca当地aaact	tgaacagcta	1860
c当地ggaactctt	gtgc当地gttaagg	aaaagtaagg	aaaacgattc	cttctaaacag	aaatgtc当地	1920
agcaatcacc	tatgaacttg	tttcaaatgc	atgatcaa	gcaacctcac	aaccttggct	1980
gagtc当地ttgag	actgaaagat	ttagccataa	tgtaaactgc	ctcaaattgg	actttgggca	2040
taaaaagaact	tttttatgct	taccatctt	ttttttctt	taacagattt	gtatthaaga	2100
attgtttta	aaaaatttta	a				2121

NLEE01001wo0.ST25.txt

<210> 10
 <211> 2098
 <212> DNA
 <213> HUMAN

<400> 10	
cctgccgaag tcagttcctt gtggagccgg agctgggcgc ggattcgccg aggacaccgag	60
gcactcagag gaggcgccat gtcagaaccg gctggggatg tccgtcagaa cccatgcggc	120
agcaaggcct gccgcccctt cttcggccca gtggacagcg agcagcttag ccgcgactgt	180
gatgcgctaa tggcgggctg catccaggag gcccgtgagc gatggaaactt cgactttgtc	240
accgagacac cactggaggg tgacttcgccc tgggagcgtg tgcggggcct tggcctgccc	300
aagctctacc ttccccacggg gccccggcga ggccgggatg agttgggagg aggcaaggcgg	360
cctggcacct cacctgctct gctgcagggg acagcagagg aagaccatgt ggacctgtca	420
ctgtcttgta cccttgtgcc tcgctcaggg gagcaggctg aagggtcccc aggtggacct	480
ggagactctc agggtcgaaa acggcggcag accagcatga cagattctca ccactccaaa	540
cgccggctga tcttctccaa gaggaagccc taatccgccc acaggaagcc tgcagtccctg	600
gaagcgcgag ggcctcaaag gcccgtcta catcttctgc cttagtctca gtttgtgtgt	660
cttaattatt atttgtgttt taatttaaac acctcctcat gtacatacc tggccggccc	720
ctgccccca gcctctggca ttagaattat taaaacaaaa actaggcggt tgaatgagag	780
gttcctaaga gtgctggca tttttatattt atgaaatact atttaaagcc tcctcatccc	840
gtgttctcct tttcctctct cccggagggtt ggggtggccg gcttcatgcc agctacttcc	900
tcctcccccac ttgtccgctg ggtgttaccc tctggagggg tgtggctcct tcccatcgct	960
gtcacaggcg gttatgaaat tcacccctt tcctggacac tcagacctga attcttttc	1020
atttgagaag taaacagatg gcactttgaa ggggcctcac cgagtggggg catcatcaaa	1080
aactttggag tcccctcacc tcctctaagg ttgggcaggg tgaccctgaa gtgagcacag	1140
cctaggcg agctggggac ctggtaccct cctggcttt gataccccc tctgtcttgt	1200
gaaggcaggg ggaagggtggg gtccctggagc agaccacccc gcctgcctc atggccctc	1260
tgacctgcac tggggagccc gtctcagtgt tgagcccttt ccctcttgg ctccctgtta	1320
cctttgagg agccccagct acccttcttc tccagctggg ctctgcaatt cccctctgct	1380
gctgtccctc ccccttgccttcc ttcccttca gtaccctctc agctccaggt ggctctgagg	1440
tgcctgtccc accccccaccc ccagctcaat ggactggaag gggaaaggac acacaagaag	1500
aagggcaccc tagttctacc tcaggcagct caagcagcga ccgccccctc ctctagctgt	1560
gggggtgagg gtcccatgtg gtggcacagg cccccctttag tggggttatc tctgtgttag	1620
gggtatatga tgggggagta gatctttcta ggagggagac actggccctt caaatcgtcc	1680

NLEE01001WO0.ST25.txt

agcgaccttc	ctcatccacc	ccatccctcc	ccagttcatt	gcactttgat	tagcagcgg	1740
acaaggagtc	agacattta	agatggtggc	agtagaggct	atggacaggg	catgccacgt	1800
gggctcatat	ggggctggga	gtagttgtct	ttcctggcac	taacgtttag	cccctggagg	1860
caactgaagt	cttagtgtac	ttggagtatt	ggggcttgac	cccaaacacc	ttccagctcc	1920
tgtacatac	tggcctggac	tgtttctct	cggctcccc	tgtgtcctgg	ttcccgtttc	1980
tccaccta	ctgtaaacct	ctcgagggca	gggaccacac	cctgtactgt	tctgtgtctt	2040
tcacagctcc	tcccacaatg	ctgatataca	gcaggtgctc	aataaacat	tcttagtg	2098

<210> 11
<211> 1850
<212> DNA
<213> HUMAN

<400> 11	ggcccaggct	gaagctcagg	gccctgtctg	ctctgtggac	tcaacagttt	gtggcaagac	60
	aagctcagaa	ctgagaagct	gtcaccacag	ttctggaggc	tggaaagttc	aagatcaaag	120
	tgccagcaga	ttcagtgtca	tgtgaggacg	tgcttcctgc	ttcatagata	agagcttgg	180
	gctcggcgca	caaccagcac	catctggtcg	cgatggtgg	cacggaaagc	ccactctgcc	240
	ccctctcccc	actcgaggcc	ggcgatctag	agagccg	ttctgc	atctgaagag	300
	aaatggaaa	catccaagag	atttcgcaat	ccatcgccg	ggatagttct	ggaagctt	360
	gctttacgga	ataccagtat	ttaggaagct	gtcctggctc	agatggctcg	gtcatcacgg	420
	acacgctttc	accagcttcg	agccccctcc	cggtgactta	tcctgtggc	cccggcagcg	480
	tggacgagtc	tcccagtgg	gcattgaaca	tcgaatgtag	aatctgcggg	gacaaggc	540
	caggctatca	ttacggagtc	cacgcgtgt	aaggctgca	gggcttctt	cgcgac	600
	ttcgactcaa	gctggtgtat	gacaagtgcg	accgcagctg	caagatccag	aaaaagaaca	660
	gaaacaaatg	ccagtattgt	cgatttcaca	agtgccttc	tgtcggatg	tcacacaacg	720
	cgattcg	tggacgaatg	ccaagatctg	agaaagcaaa	actgaaagca	gaaattctt	780
	cctgtgaaca	tgacatagaa	gattctgaaa	ctgcagatct	caaatctctg	gccaaagagaa	840
	tctacgaggc	ctacttgaag	aacttcaaca	tgaacaaggt	caaagcccgg	gtcatcctct	900
	cagggaaaggc	cagtaacaat	ccacctttt	tcatacatga	tatggagaca	ctgttatgg	960
	ctgagaagac	gctggtgcc	aagctgg	ccaatggcat	ccagaacaag	gaggcggagg	1020
	tccgcac	tcactgctgc	cagtgcacgt	cagtggagac	cgtcacggag	ctcacgg	1080
	tcgccaaggc	catcccaggc	ttcgcaaact	tggacctgaa	cgatcaagt	acattgctaa	1140
	aatacggagt	ttatgaggcc	atattcgcca	tgctgttttc	tgtgatgaac	aaagacggg	1200
	tgctggtagc	gtatggaaat	gggttataa	ctcgtaatt	cctaaaaagc	ctaaggaaac	1260

NLEE01001WO0.ST25.txt

cgttctgtga tatcatggaa cccaagtttg attttgc当地 gaagttcaat gcactggaac	1320
tggatgacag tgatatctcc ct当地tgtgg ctgctatcat ttgctgtgg gatcgtcctg	1380
gccttctaaa ctaggacac attaaaaaa tgcaggaggg tattgtacat gtgctcagac	1440
tccacctgca gagcaaccac cc当地gacgata tctttctctt cccaaaactt cttcaaaaaa	1500
tggcagacct cc当地gagctg gtgacggagc atgc当地gact ggtgcagatc atcaagaaga	1560
cggagtc当地ga tgctgc当地g caccgc当地 ac tgc当地ggagat ctacaggac atgtactgag	1620
ttc当地tc当地ga tcagccacac ct当地ccagg agttctgaag ctgacagcac tacaaaggag	1680
acgggggagc agc当地gattt tgc当地aaata tccaccactt taaccttaga gcttggacag	1740
tctgagctgt aggttaaccgg catattattc catatctt当地 ttttaaccag tacttctaag	1800
agcatagaac tcaaatgctg gggaggtgg ctaatctc当地 gactggaaag	1850

<210> 12
<211> 1609
<212> DNA
<213> HUMAN

<400> 12 ttcaagtctt tttctttaa cggattgatc ttttgc当地 tagagacaaa atatc当地gt gaattacagc aaaccctat tccatgctgt tatgggtgaa actctggag attctc当地t tgacccagaa agcgattcct tc当地tgc当地 ac tgc当地tgc当地 aacatatcac aagaaatgac catggttgac acagagatgc cattctggcc caccaactt当地 gggatc当地 ctgtggatct ctccgtaatg gaagaccact cccactc当地 tgc当地tcaag cc当地tcaacta ctgtt当地actt ctccagcatt tctactccac attacgaaga cattccattc acaagaacag atccagtg tgc当地gattt aagtatgacc tgaaacttca agagtagccaa agtgc当地tca aagtggagcc tgc当地tcca ccttattt当地 ctgagaagac tc当地tctac aataagc当地tca atgaagagcc ttccaactcc ctcatggcaa ttgaaatgtcg tgtctgtgg gataaaagctt ctggatttca ctatggagtt catgctt当地t aaggatgcaa gggtt当地tcc cggagaacaaa tc当地gattt gctt当地tat gacagatgt atctt当地actg tc当地gatccac aaaaaaaatgaaataat tc当地gactgt cggtt当地caga aatgc当地tgc agtggggatg tctc当地ataatg ccatc当地agg tggc当地ggatg cc当地aggccg agaaggagaa gctgtt当地ggc gaggatc当地ca gtgatatc ccagctgaaat ccagagtccg ctgacctccg ggccctt当地ca aaacattt当地t atgactc cataaaatcc ttccc当地gtga ccaaagcaa ggcgaggccg atctt当地gacag gaaagacaac agacaaaatca ccattc当地tta tctatgacat gaattc当地tta atgatggag aagataaaat caagttcaaa cacatcaccc cc当地tgc当地ga gc当地gacaaa gaggtggcc tc当地aggctgc cagttt当地cgct cc当地tggaggc tgtgc当地ggag atcacagatg atgc当地aaaag	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080
---	---

NLEE01001W00.ST25.txt

cattcctgg	tttgtaaatc	ttgacttgaa	cgacccaagta	actctcctca	aatatggagt	1140
ccacgagatc	atttacacaa	tgctggcctc	cttcatgtaa	aaagatgggg	ttctcatatc	1200
cgagggccaa	ggcttcatga	caagggagtt	tctaaagagc	ctgcgaaagc	ctttgggtga	1260
ctttatggag	cccaagttt	agtttgcgt	gaagttcaat	gcactggaat	tagatgacag	1320
cgacttggca	atatttattt	ctgtcattat	tctcagtgg	gaccgcccag	gtttgctgaa	1380
tgtgaagccc	attgaagaca	ttcaagacaa	cctgctacaa	gccctggagc	tccagctgaa	1440
gctgaaccac	cctgagtctt	cacagctgtt	tgccaaagctg	ctccagaaaa	tgacagacct	1500
cagacagatt	gtcacggAAC	acgtgcagct	actgcaggTG	atcaagaaga	cgagacaga	1560
catgagtctt	cacccgctcc	tgcaggagat	ctacaaggac	ttgtactag		1609

<210> 13
<211> 3301
<212> DNA
<213> HUMAN

<220>
<221> misc_feature
<222> (2966)..(2973)
<223> n = a, c, g, t

<400> 13	gaattctgcg	gagcctgcgg	gacggcggcg	ggttggcccg	taggcagccg	ggacagtgtt	60
	gtacagtgtt	ttgggcatgc	acgtgatact	cacacagtgg	cttctgctca	ccaacagatg	120
	aagacagatg	caccaacgag	ggtctggaaat	ggtctggagt	ggtctggaaa	gcagggtcag	180
	ataccctgg	aaaactgaag	cccgtagggc	aatgatctct	acaggactgc	ttcaaggctg	240
	atggAACCA	ccctgttagag	gtccatctgc	gttcagaccc	agacgatgcc	agagctatga	300
	ctggcctgc	agggtgtggcg	ccgaggggag	atcagccatg	gagcagccac	aggaggaagc	360
	ccctgaggTC	cgggAAAGAGG	aggAGAAAGA	ggaagtggca	gaggcagaag	gagccccaga	420
	gctcaatggg	ggaccacAGC	atgcacttcc	ttccagcagc	tacacagacc	tctccggag	480
	ctcctcgCCA	ccctcaCTGC	tggaccaact	gcagatgggc	tgtgacgggg	cctcatgcgg	540
	cagcctcaac	atggagtGCC	gggtgtgcgg	ggacaaggca	tcgggcttcc	actacggtgt	600
	tcatgcatgt	gaggggtgca	agggcttctt	ccgtcgtaCG	atccgcatga	agctggagta	660
	cgagaagtgt	gagcgcagct	gcaagattca	gaagaagaAC	cgcaacaagt	gccagtaCTG	720
	ccgcttccAG	aagtgcctgg	cactgggcat	gtcacacaac	gctatccgtt	ttggcggat	780
	gccggaggCT	gagaAGAGGA	agctggtggc	agggctgact	gcaaACGAGG	ggagccagta	840
	caacccacAG	gtggccgacc	tgaaggcctt	ctccaagcac	atctacaatg	cctacctgaa	900
	aaacctcaac	atgacaaaaa	agaaggcccg	cagcatcctc	accggcaaag	ccagccacac	960

NLEE01001w00.ST25.txt

ggcgcccttt	gtgatccacg	acatcgagac	attgtggcag	gcagagaagg	ggctggtgtg	1020
gaagcagttg	gtaatggcc	tgcctcccta	caaggagatc	agcgtgcacg	tcttctaccg	1080
ctgccagtgc	accacagtgg	agaccgtgcg	ggagctca	gagttcgcca	agagcatccc	1140
cagcttcagc	agcctcttcc	tcaacgacca	ggttaccctt	ctcaagtatg	gcgtgcacga	1200
ggccatcttc	gccatgctgg	cctctatcgt	caacaaggac	gggctgctgg	tagccaacgg	1260
cagtggctt	gtcacccgtg	agttcctgcg	cagcctccgc	aaacccttca	gtgatatatcat	1320
tgagcctaag	tttgaattt	ctgtcaagtt	caacgcctg	gaacttgatg	acagtgacct	1380
ggccctattc	attgcggcca	tcattctgtg	tggagaccgg	ccaggcctca	tgaacgttcc	1440
acgggtggag	gctatccagg	acaccatcct	gcgtccctc	gaattccacc	tgcaggccaa	1500
ccaccctgat	gcccagtacc	tcttccccaa	gctgctgcag	aagatggctg	acctgcggca	1560
actggtcacc	gagcacgccc	agatgatgca	gcggatcaag	aagaccgaaa	ccgagacctc	1620
gctgcaccct	ctgctccagg	agatctacaa	ggacatgtac	taacggcggc	acccaggcct	1680
ccctgcagac	tccaatgggg	ccagcaactgg	aggggcccac	ccacatgact	tttccattga	1740
ccagctctct	tcctgtcttt	gttgtctccc	tctttctcag	ttcctctttc	ttttctaatt	1800
cctgttgctc	tgtttcttcc	tttctgttagg	tttctctt	cccttctccc	ttctcccttg	1860
ccctcccttt	ctctctccta	tccccacgtc	tgtcctcctt	tcttattctg	tgagatgttt	1920
tgtattattt	caccagcagc	atagaacagg	acctctgctt	ttgcacacct	tttccccagg	1980
agcagaagag	agtgggcctg	ccctctgccc	catcattgca	cctgcaggct	taggtcctca	2040
cttctgtctc	ctgtcttcag	agcaaaagac	ttgagccatc	caaagaaaca	ctaagctctc	2100
tggcctggg	ttccagggaa	ggctaagcat	ggcctggact	gactgcagcc	ccctatagtc	2160
atgggtccc	tgctgcaaag	gacagtggca	gacccggca	gtagagccga	gatgcctccc	2220
caagactgtc	attgcccctc	cgatcgtgag	gccacccact	gacccaatga	tcctctccag	2280
cagcacacct	cagccccact	gacacccagt	gtccttccat	cttcacactg	gtttgccagg	2340
ccaatgtgc	tgtatggcccc	tccagcacac	acacataagc	actgaaatca	ctttacctgc	2400
aggcaccatg	cacccctt	ccctccctga	ggcaggtgag	aacccagaga	gaggggcctg	2460
caggtgagca	ggcagggctg	ggccaggtct	ccggggaggc	aggggtcctg	caggtcctgg	2520
tgggtcagcc	cagcacctcg	cccagtggga	gcttcccggg	ataaaactgag	cctgttcatt	2580
ctgatgtcca	tttgtccaa	tagtctact	gccctccct	tccctttac	tcagcccagc	2640
tggccaccta	gaagtctccc	tgcacagcct	ctagtgtccg	gggacttgt	gggaccagtc	2700
ccacaccgct	ggtccctgcc	ctccctgtct	cccaggttga	ggtgcgtca	cctcagagca	2760
gggccaaagc	acagctgggc	atgccatgtc	tgagcggcgc	agagccctcc	aggcctgcag	2820

NLEE01001WO0.ST25.txt

ggccaagggg	ctggctggag	tctcagagca	cagaggtagg	agaactgggg	ttcaagccca	2880
ggcttcctgg	gtcctgcctg	gtcctccctc	ccaaggagcc	attctatgt	actctgggtg	2940
gaagtgcucca	gcccctgcct	gacggnnnnn	nngatcaactc	tctgctggca	ggattcttcc	3000
cgctccccac	ctacccagct	gatgggggtt	ggggtgcttc	tttcagccaa	ggctatgaag	3060
ggacagctgc	tgggaccac	ctccccctt	ccccggccac	atgccgcgtc	cctgccccca	3120
cccggtctg	gtgctgagga	tacagctctt	ctcagtgtct	gaacaatctc	caaaattgaa	3180
atgtatattt	ttgcttaggag	ccccagcttc	ctgtgtttt	aatataaata	gtgtacacag	3240
actgacgaaa	ctttaaataa	atggaaatta	aatatttaaa	aaaaaaagcg	gccgcgaatt	3300
c						3301

<210> 14
<211> 3083
<212> DNA
<213> HUMAN

<400> 14

aaaaactgca	gccaacttcc	gaggcagcct	cattgcccag	cggacccca	cctctgccag	60
gttcggtccg	ccatcctcgt	cccgctctcc	gccggccccc	cccccgcc	cagggatcct	120
ccagctcctt	tcgcccgcgc	cctccgttcg	ctccggacac	catggacaag	ttttgggtggc	180
acgcagcctg	gggactctgc	ctcgtgccgc	tgagcctggc	gcagatcgat	ttgaatataa	240
cctgcccctt	tgcaggtgta	ttccacgtgg	agaaaaatgg	tcgctacagc	atctctcgga	300
cgaggccgc	tgacctctgc	aaggcttca	atagcacctt	gcccacaatg	gcccgatgg	360
agaaagctct	gagcatcgga	tttgagacct	gcaggtatgg	gttcatagaa	gggcacgtgg	420
tgattccccg	gatccacccc	aactccatct	gtgcagcaaa	caacacaggg	gtgtacatcc	480
tcacatccaa	cacctccag	tatgacacat	attgctcaa	tgcttcagct	ccacctgaag	540
aagattgtac	atcagtaca	gacctgccc	atgccttga	tggaccaatt	accataacta	600
ttgttaaccg	tgatggcacc	cgctatgtcc	agaaaggaga	atacagaacg	aatcctgaag	660
acatctaccc	cagcaaccct	actgatgatg	acgtgagcag	cggctttct	actgtacacc	720
ccatcccaga	cgaagacagt	ccctggatca	cctcctccag	tgaaaggagc	agcacttcag	780
gaggttacat	cttttacacc	gacagcacag	acagaatccc	tgctaccact	ttgatgagca	840
ctagtgctac	agcaactgag	acagcaacca	agaggcaaga	aacctggat	tggtttcat	900
ggttgtttct	accatcagag	tcaaagaatc	atcttcacac	aacaacacaa	atggctggta	960
cgtcttcaa	taccatctca	gcaggctggg	agccaaatga	agaaaatgaa	gatgaaagag	1020
acagacacct	cagttttct	ggatcaggca	ttgatgatga	tgaagattt	atctccagca	1080
ccatttcaac	cacaccacgg	gctttgacc	acacaaaaca	gaaccaggac	tggacccagt	1140

NLEE01001wo0.ST25.txt

ggaacccaag ccattcaaat ccggaagtgc tacttcagac aaccacaagg atgactgatg	1200
tagacagaaa tggcaccact gcttatgaag gaaactggaa cccagaagca caccctcccc	1260
tcattcacca tgagcatcat gaggaagaag agacccaca ttctacaagc acaatccagg	1320
caactcctag tagtacaacg gaagaaacag ctacccagaa ggaacagtgg tttggcaaca	1380
gatggcatga gggatatcgc caaacaccca aagaagactc ccattcaac ccaatctcac	1440
accccattggg acgaggtcat caagcaggaa gatcgacaac agggacagct gcagcctcag	1500
ctcataccag ccatccaatg caaggaagga caacaccaag cccagaggac agttcctgga	1560
ctgatttcag gatggatatg gactccagtc atagtataac gcttcagcct actgcaaattc	1620
caaacacagg ttttgtggaa gatttgaca ggacaggacc tctttcaatg acaacgcagc	1680
agagtaattc tcagagcttc tctacatcac atgaaggctt ggaagaagat aaagaccatc	1740
caacaacttc tactctgaca tcaagcaata ggaatgatgt cacaggtgga agaagagacc	1800
caaatcattc tgaaggctca actactttac tggaggatca tacctctcat taccacacca	1860
cgaaggaaag caggacccatc atcccagtga cctcagctaa gactgtcaat cgttccttat	1920
caggagacca agacacattc cacccagtg ggggtcctt tggagttact gcagttactg	1980
ttggagattc caactctaattt gggcccata ccactcatgg atctgaatca gatggacact	2040
cacatggag tcaagaaggt ggagcaaaca caacctctgg tcctataagg acacccaaa	2100
ttccagaatg gctgatcatc ttggcatccc tcttggcctt ggctttgatt cttgcagttt	2160
gcattgcagt caacagtcga agaagggtgtg ggcagaagaa aaagctagtg atcaacagtg	2220
gcaatggagc tgtggaggac agaaagccaa gtggactcaa cggagaggcc agcaagtctc	2280
aggaaatggt gcatttggtg aacaaggagt cgtcagaaac tccagaccag tttatgacag	2340
ctgatgagac aaggaacctg cagaatgtgg acatgaagat tgggtgtaa cacctacacc	2400
attatcttgg aaagaaacaa ccgttggaaa cataaccatt acagggagct gggacactta	2460
acagatgcaa tgtgctactg attgtttcat tgcgaatctt ttttagcata aaattttcta	2520
ctcttttgtt ttttgtgtt ttgttcttta aagtcaggc caatttgtaa aaacagcatt	2580
gctttctgaa attagggccc aattaataat cagcaagaat ttgatcggtc cagttccac	2640
ttggaggcct ttcatccctc ggggtgtcta tggatggctt ctaacaaaaa ctacacatat	2700
gtattcctga tcgccaacct ttccccccacc agctaaggac atttcccagg gttaataggg	2760
cctggccct gggagggaaat ttgaatgggt ccatttgcc cttccatagc ctaatccctg	2820
ggcattgctt tccactgagg ttgggggttg ggggtgtacta gttacacatc ttcaacagac	2880
cccctctaga aatttttcag atgcttctgg gagacaccca aagggtgaag ctatttatct	2940
gtagtaaact atttatctgt gttttgaaa tattaaaccc tggatcagtc ctttgatcag	3000
tataattttt taaagttact ttgtcagagg cacaaaaggg tttaaactga ttcataataa	3060

NLEE01001W00.ST25.txt

atatctgtac ttcttcgatc ttc	3083
<210> 15	
<211> 2539	
<212> DNA	
<213> HUMAN	
<400> 15	
ggagtcttctt gctctggttc ttgctgttcc tgctcctgct cccgcccgtc cccgtcctgc	60
tcgcggaccc agggcgcccc acgccagtga atccctgttg ttactatcca tgccagcacc	120
agggcatctg tgtccgcttc ggccttgacc gctaccagtg tgactgcacc cgcacggct	180
attccggccc caactgcacc atccctggcc tgtggacctg gctccggaat tcactgcggc	240
ccagccccctc tttcacccac ttccctgctca ctcacggcg ctggttctgg gagtttgtca	300
atgccacctt catccgagag atgctcatgc gcctggtaact cacagtgcgc tccaacctta	360
tccccagtc cccccacccatc aactcagcac atgactacat cagctggag tctttctcca	420
acgtgagcta ttacactcgt attctgcctt ctgtgcctaa agattgcccc acaccatgg	480
gaaccaaagg gaagaagcag ttgccagatg cccagctcct ggcccgcgc ttccctgctca	540
ggaggaagtt catabctgac ccccaaggca ccaacctcat gtttgccttc tttgcacaac	600
acttcaccca ccagttcttc aaaacttctg gcaagatggg tcctggcttc accaaggcct	660
tgggccatgg ggtagacccgc ggcacattt atggagacaa tctggagcgt cagtatcaac	720
tgcggctctt taaggatggg aaactcaagt accaggtgct ggatggagaa atgtacccgc	780
cctcggtaga agaggcgccct gtgttgcattc actaccccg aggcatcccg ccccaagagcc	840
agatggctgt gggccaggag gtgtttgggc tgcttcctgg gctcatgctg tatgccacgc	900
tctggctacg tgagcacaac cgtgtgtgtg acctgctgaa ggctgagcac cccacctggg	960
gcgtgagca gctttccag acgacccgccc tcatacctcat aggggagacc atcaagattg	1020
tcatacgagga gtacgtgcag cagctgagtg gctatttcct gcagctgaaa tttgacccag	1080
agctgctgtt cgggtccag ttccaataacc gcaaccgcatt tgccatggag ttcaaccatc	1140
tctaccactg gcaccccccctc atgcctgact cttcaaggt gggctcccgag gagtacagct	1200
acgagcagtt cttgttcaac acctccatgt tggtgacta tggggtttag gcccgttgg	1260
atgccttctc tcgccagatt gctggccgga tcgggtgggg caggaacatg gaccaccaca	1320
tcctgcatgt ggctgtggat gtcatcaggag agtctcggga gatgcggctg cagcccttca	1380
atgagtacccg caagagggtt ggcattaaac cctacacccctc cttccaggag ctcgttaggag	1440
agaaggagat ggcagcagag ttggaggaat tggatggaga cattgatgcg ttggagttct	1500
accctggact gcttcttcaa aagtgcacccatc caaactctat ctttggggag agtatgatag	1560
agattggggc tccctttcc tcataagggtc tccttagggaa tcccatctgt tctccggagt	1620

NLEE01001wo0.ST25.txt

actggaaagcc gagcacattt	ggcggcgagg tgggcttaa cattgtcaag acggccacac	1680
tgaagaagct ggtctgcctc	aacaccaaga cctgtcccta cgtttccttc cgtgtgccgg	1740
atgccagtca ggatgatggg	cctgctgtgg agcgaccatc cacagagctc tgaggggcag	1800
gaaagcagca ttctggaggg	gagagcttg tgcttgtcat tccagagtgc tgaggccagg	1860
gctgatggtc ttAAATGCTC	atTTTCTGGT ttggcatggt gagtgttggg gttgacattt	1920
agaactttaa gtctcaccca	ttatctggaa tattgtgatt ctgtttattc ttccagaatg	1980
ctgaactcct tgtagccct	tcagattgtt aggagtggc ttcatttggc tgccagaat	2040
actgggttct tagtgacaa	cctagaatgt cagatttctg gttgatttgc aacacagtca	2100
ttctaggatg tggagctact	gatgaaatct gctagaaaatg tagggggttc ttatttgca	2160
ttccagaatc ttgactttct	gattggtgat tcaaagtgtt gtgttccctgg ctgatgatcc	2220
agaacagtgg ctcgtatccc	aaatctgtca gcatctggct gtctagaatg tggatttgat	2280
tcattttcct gttcagttag	atatcataga gacggagatc ctaagggtcca acaagaatgc	2340
atccctgaa tctgtgcctg	cactgagagg gcaaggaatg ggggtgttct tcttgggacc	2400
cccactaaga ccctggtctg	aggatgtaga gagaacaggt gggctgtatt cacgcccattg	2460
gttggaaagct accagagctc	tatccccatc caggtcttga ctcatggcag ctgtttctca	2520
tgaagcta ataaattcgc		2539

<210> 16
<211> 369
<212> DNA
<213> HUMAN

<400> 16		
atgaagcttc tcacgggcct	gttttctgc tccttggtcc tgggtgtcag cagccgaagc	60
ttctttcgt tccttggcga	ggctttgat ggggctcggg acatgtggag agcctactct	120
gacatgagag aagccaatta	catcggtca gacaaatact tccatgctcg gggaaactat	180
gatgctgcca aaaggggacc	tgggggtgtc tgggctgcag aagcgatcag cgatgccaga	240
gagaatatcc agagatttt	tggccatggt gcggaggact cgctggctga tcaggctgcc	300
aatgaatggg gcaggagtgg	caaagacccc aatcacttcc gacctgtgg cctgcctgag	360
aaatactga		369

<210> 17
<211> 67
<212> PRT
<213> HUMAN

<400> 17

Met Thr Ser Lys Leu Ala Val Ala Leu Leu Ala Ala Phe Leu Ile Ser

NLE01001w00.ST25.txt

1 5 10 15

Ala Ala Leu Cys Glu Gly Ala Val Leu Pro Arg Ser Ala Lys Glu Leu
20 25 30

Arg Cys Gln Cys Ile Lys Thr Tyr Ser Lys Pro Phe His Pro Lys Phe
35 40 45

Ile Lys Glu Leu Arg Val Ile Glu Ser Gly Pro His Cys Ala Asn Thr
50 55 60

Glu Ile Met
65

<210> 18
<211> 604
<212> PRT
<213> HUMAN

<400> 18

Met Leu Ala Arg Ala Leu Leu Cys Ala Val Leu Ala Leu Ser His
1 5 10 15

Thr Ala Asn Pro Cys Cys Ser His Pro Cys Gln Asn Arg Gly Val Cys
20 25 30

Met Ser Val Gly Phe Asp Gln Tyr Lys Cys Asp Cys Thr Arg Thr Gly
35 40 45

Phe Tyr Gly Glu Asn Cys Ser Thr Pro Glu Phe Leu Thr Arg Ile Lys
50 55 60

Leu Phe Leu Lys Pro Thr Pro Asn Thr Val His Tyr Ile Leu Thr His
65 70 75 80

Phe Lys Gly Phe Trp Asn Val Val Asn Asn Ile Pro Phe Leu Arg Asn
85 90 95

Ala Ile Met Ser Tyr Val Leu Thr Ser Arg Ser His Leu Ile Asp Ser
100 105 110

Pro Pro Thr Tyr Asn Ala Asp Tyr Gly Tyr Lys Ser Trp Glu Ala Phe
115 120 125

Ser Asn Leu Ser Tyr Tyr Thr Arg Ala Leu Pro Pro Val Pro Asp Asp
130 135 140

Cys Pro Thr Pro Leu Gly Val Lys Gly Lys Lys Gln Leu Pro Asp Ser

NLEE01001WO0.ST25.txt

145	150	155	160
Asn Glu Ile Val Glu Lys Leu Leu Leu Arg Arg Lys Phe Ile Pro Asp 165 170 175			
Pro Gln Gly Ser Asn Met Met Phe Ala Phe Phe Ala Gln His Phe Thr 180 185 190			
His Gln Phe Phe Lys Thr Asp His Lys Arg Gly Pro Ala Phe Thr Asn 195 200 205			
Gly Leu Gly His Gly Val Asp Leu Asn His Ile Tyr Gly Glu Thr Leu 210 215 220			
Ala Arg Gln Arg Lys Leu Arg Leu Phe Lys Asp Gly Lys Met Lys Tyr 225 230 235 240			
Gln Ile Ile Asp Gly Glu Met Tyr Pro Pro Thr Val Lys Asp Thr Gln 245 250 255			
Ala Glu Met Ile Tyr Pro Pro Gln Val Pro Glu His Leu Arg Phe Ala 260 265 270			
Val Gly Gln Glu Val Phe Gly Leu Val Pro Gly Leu Met Met Tyr Ala 275 280 285			
Thr Ile Trp Leu Arg Glu His Asn Arg Val Cys Asp Val Leu Lys Gln 290 295 300			
Glu His Pro Glu Trp Gly Asp Glu Gln Leu Phe Gln Thr Ser Arg Leu 305 310 315 320			
Ile Leu Ile Gly Glu Thr Ile Lys Ile Val Ile Glu Asp Tyr Val Gln 325 330 335			
His Leu Ser Gly Tyr His Phe Lys Leu Lys Phe Asp Pro Glu Leu Leu 340 345 350			
Phe Asn Lys Gln Phe Gln Tyr Gln Asn Arg Ile Ala Ala Glu Phe Asn 355 360 365			
Thr Leu Tyr His Trp His Pro Leu Leu Pro Asp Thr Phe Gln Ile His 370 375 380			
Asp Gln Lys Tyr Asn Tyr Gln Gln Phe Ile Tyr Asn Asn Ser Ile Leu 385 390 395 400			

NLEEO1001WO0.ST25.txt

Leu	Glu	His	Gly	Ile	Thr	Gln	Phe	Val	Glu	Ser	Phe	Thr	Arg	Gln	Ile
				405				410							415
Ala	Gly	Arg	Val	Ala	Gly	Gly	Arg	Asn	Val	Pro	Pro	Ala	Val	Gln	Lys
				420				425							430
Val	Ser	Gln	Ala	Ser	Ile	Asp	Gln	Ser	Arg	Gln	Met	Lys	Tyr	Gln	Ser
				435		440						445			
Phe	Asn	Glu	Tyr	Arg	Lys	Arg	Phe	Met	Leu	Lys	Pro	Tyr	Glu	Ser	Phe
				450		455						460			
Glu	Glu	Leu	Thr	Gly	Glu	Lys	Glu	Met	Ser	Ala	Glu	Leu	Glu	Ala	Leu
				465		470					475				480
Tyr	Gly	Asp	Ile	Asp	Ala	Val	Glu	Leu	Tyr	Pro	Ala	Leu	Leu	Val	Glu
				485		490									495
Lys	Pro	Arg	Pro	Asp	Ala	Ile	Phe	Gly	Glu	Thr	Met	Val	Glu	Val	Gly
				500		505							510		
Ala	Pro	Phe	Ser	Leu	Lys	Gly	Leu	Met	Gly	Asn	Val	Ile	Cys	Ser	Pro
				515		520						525			
Ala	Tyr	Trp	Lys	Pro	Ser	Thr	Phe	Gly	Gly	Glu	Val	Gly	Phe	Gln	Ile
				530		535						540			
Ile	Asn	Thr	Ala	Ser	Ile	Gln	Ser	Leu	Ile	Cys	Asn	Asn	Val	Lys	Gly
				545		550						555			560
Cys	Pro	Phe	Thr	Ser	Phe	Ser	Val	Pro	Asp	Pro	Glu	Leu	Ile	Lys	Thr
				565		570									575
Val	Thr	Ile	Asn	Ala	Ser	Ser	Arg	Ser	Gly	Leu	Asp	Asp	Ile	Asn	
				580		585									
Pro	Thr	Val	Leu	Leu	Lys	Glu	Arg	Ser	Thr	Glu	Leu				
				595		600									

<210> 19
<211> 360
<212> PRT
<213> HUMAN

<400> 19

Met Glu Asp Phe Asn Met Glu Ser Asp Ser Phe Glu Asp Phe Trp Lys
1 5 10 15

NLEEO1001WO0.ST25.txt

Gly	Glu	Asp	Leu	Ser	Asn	Tyr	Ser	Tyr	Ser	Ser	Thr	Leu	Pro	Pro	Phe
			20			25					30				
Leu	Leu	Asp	Ala	Ala	Pro	Cys	Glu	Pro	Glu	Ser	Leu	Glu	Ile	Asn	Lys
	35				40					45					
Tyr	Phe	Val	Val	Ile	Ile	Tyr	Ala	Leu	Val	Phe	Leu	Leu	Ser	Leu	Leu
	50			55					60						
Gly	Asn	Ser	Leu	Val	Met	Leu	Val	Ile	Leu	Tyr	Ser	Arg	Val	Gly	Arg
	65			70					75			80			
Ser	Val	Thr	Asp	Val	Tyr	Leu	Leu	Asn	Leu	Ala	Leu	Ala	Asp	Leu	Leu
	85					90				95					
Phe	Ala	Leu	Thr	Leu	Pro	Ile	Trp	Ala	Ala	Ser	Lys	Val	Asn	Gly	Trp
	100				105					110					
Ile	Phe	Gly	Thr	Phe	Leu	Cys	Lys	Val	Val	Ser	Leu	Leu	Lys	Glu	Val
	115				120					125					
Asn	Phe	Tyr	Ser	Gly	Ile	Leu	Leu	Leu	Ala	Cys	Ile	Ser	Val	Asp	Arg
	130				135					140					
Tyr	Leu	Ala	Ile	Val	His	Ala	Thr	Arg	Thr	Leu	Thr	Gln	Lys	Arg	Tyr
	145			150			155				160				
Leu	Val	Lys	Phe	Ile	Cys	Leu	Ser	Ile	Trp	Gly	Leu	Ser	Leu	Leu	Leu
	165					170					175				
Ala	Leu	Pro	Val	Leu	Leu	Phe	Arg	Arg	Thr	Val	Tyr	Ser	Ser	Asn	Val
	180				185					190					
Ser	Pro	Ala	Cys	Tyr	Glu	Asp	Met	Gly	Asn	Asn	Thr	Ala	Asn	Trp	Arg
	195				200					205					
Met	Leu	Leu	Arg	Ile	Leu	Pro	Gln	Ser	Phe	Gly	Phe	Ile	Val	Pro	Leu
	210				215					220					
Leu	Ile	Met	Leu	Phe	Cys	Tyr	Gly	Phe	Thr	Leu	Arg	Thr	Leu	Phe	Lys
	225				230					235			240		
Ala	His	Met	Gly	Gln	Lys	His	Arg	Ala	Met	Arg	Val	Ile	Phe	Ala	Val
	245					250					255				
Val	Leu	Ile	Phe	Leu	Leu	Cys	Trp	Leu	Pro	Tyr	Asn	Leu	Val	Leu	Leu
	260				265					270					

NLEE01001w00.ST25.txt

Ala Asp Thr Leu Met Arg Thr Gln Val Ile Gln Glu Thr Cys Glu Arg
275 280 285

Arg Asn His Ile Asp Arg Ala Leu Asp Ala Thr Glu Ile Leu Gly Ile
290 295 300

Leu His Ser Cys Leu Asn Pro Leu Ile Tyr Ala Phe Ile Gly Gln Lys
305 310 315 320

Phe Arg His Gly Leu Leu Lys Ile Leu Ala Ile His Gly Leu Ile Ser
325 330 335

Lys Asp Ser Leu Pro Lys Asp Ser Arg Pro Ser Phe Val Gly Ser Ser
340 345 350

Ser Gly His Thr Ser Thr Thr Leu
355 360

<210> 20
<211> 554
<212> PRT
<213> HUMAN

<400> 20

Met Thr Ala Pro Gly Ala Ala Gly Arg Cys Pro Pro Thr Thr Trp Leu
1 5 10 15

Gly Ser Leu Leu Leu Leu Val Cys Leu Leu Ala Ser Arg Ser Ile Thr
20 25 30

Glu Glu Val Ser Glu Tyr Cys Ser His Met Ile Gly Ser Gly His Leu
35 40 45

Gln Ser Leu Gln Arg Leu Ile Asp Ser Gln Met Glu Thr Ser Cys Gln
50 55 60

Ile Thr Phe Glu Phe Val Asp Gln Glu Gln Leu Lys Asp Pro Val Cys
65 70 75 80

Tyr Leu Lys Lys Ala Phe Leu Leu Val Gln Asp Ile Met Glu Asp Thr
85 90 95

Met Arg Phe Arg Asp Asn Thr Ala Asn Pro Ile Ala Ile Val Gln Leu
100 105 110

Gln Glu Leu Ser Leu Arg Leu Lys Ser Cys Phe Thr Lys Asp Tyr Glu
115 120 125

NLEE01001WO0.ST25.txt

Glu His Asp Lys Ala Cys Val Arg Thr Phe Tyr Glu Thr Pro Leu Gln
 130 135 140

Leu Leu Glu Lys Val Lys Asn Val Phe Asn Glu Thr Lys Asn Leu Leu
 145 150 155 160

Asp Lys Asp Trp Asn Ile Phe Ser Lys Asn Cys Asn Asn Ser Phe Ala
 165 170 175

Glu Cys Ser Ser Gln Asp Val Val Thr Lys Pro Asp Cys Asn Cys Leu
 180 185 190

Tyr Pro Lys Ala Ile Pro Ser Ser Asp Pro Ala Ser Val Ser Pro His
 195 200 205

Gln Pro Leu Ala Pro Ser Met Ala Pro Val Ala Gly Leu Thr Trp Glu
 210 215 220

Asp Ser Glu Gly Thr Glu Gly Ser Ser Leu Leu Pro Gly Glu Gln Pro
 225 230 235 240

Leu His Thr Val Asp Pro Gly Ser Ala Lys Gln Arg Pro Pro Arg Ser
 245 250 255

Thr Cys Gln Ser Phe Glu Pro Pro Glu Thr Pro Val Val Lys Asp Ser
 260 265 270

Thr Ile Gly Gly Ser Pro Gln Pro Arg Pro Ser Val Gly Ala Phe Asn
 275 280 285

Pro Gly Met Glu Asp Ile Leu Asp Ser Ala Met Gly Thr Asn Trp Val
 290 295 300

Pro Glu Glu Ala Ser Gly Glu Ala Ser Glu Ile Pro Val Pro Gln Gly
 305 310 315 320

Thr Glu Leu Ser Pro Ser Arg Pro Gly Gly Ser Met Gln Thr Glu
 325 330 335

Pro Ala Arg Pro Ser Asn Phe Leu Ser Ala Ser Ser Pro Leu Pro Ala
 340 345 350

Ser Ala Lys Gly Gln Gln Pro Ala Asp Val Thr Ala Thr Ala Leu Pro
 355 360 365

Arg Val Gly Pro Val Met Pro Thr Gly Gln Asp Trp Asn His Thr Pro
 370 375 380

NLEE01001w00.ST25.txt

Gln Lys Thr Asp His Pro Ser Ala Leu Leu Arg Asp Pro Pro Glu Pro
 385 390 395 400

Gly Ser Pro Arg Ile Ser Ser Leu Arg Pro Gln Ala Leu Ser Asn Pro
 405 410 415

Ser Thr Leu Ser Ala Gln Pro Gln Leu Ser Arg Ser His Ser Ser Gly
 420 425 430

Ser Val Leu Pro Leu Gly Glu Leu Glu Gly Arg Arg Ser Thr Arg Asp
 435 440 445

Arg Thr Ser Pro Ala Glu Pro Glu Ala Ala Pro Ala Ser Glu Gly Ala
 450 455 460

Ala Arg Pro Leu Pro Arg Phe Asn Ser Val Pro Leu Thr Asp Thr Gly
 465 470 475 480

His Glu Arg Gln Ser Glu Gly Ser Ser Ser Pro Gln Leu Gln Glu Ser
 485 490 495

Val Phe His Leu Leu Val Pro Ser Val Ile Leu Val Leu Leu Ala Val
 500 505 510

Gly Gly Leu Leu Phe Tyr Arg Trp Arg Arg Arg Ser His Gln Glu Pro
 515 520 525

Gln Arg Ala Asp Ser Pro Leu Glu Gln Pro Glu Gly Ser Pro Leu Thr
 530 535 540

Gln Asp Asp Arg Gln Val Glu Leu Pro Val
 545 550

<210> 21
 <211> 107
 <212> PRT
 <213> HUMAN

<400> 21

Met Ala Arg Ala Ala Leu Ser Ala Ala Pro Ser Asn Pro Arg Leu Leu
 1 5 10 15

Arg Val Ala Leu Leu Leu Leu Leu Val Ala Ala Gly Arg Arg Ala
 20 25 30

Ala Gly Ala Ser Val Ala Thr Glu Leu Arg Cys Gln Cys Leu Gln Thr
 35 40 45

NLEE01001wo0.ST25.txt

Leu Gln Gly Ile His Pro Lys Asn Ile Gln Ser Val Asn Val Lys Ser
50 55 60

Pro Gly Pro His Cys Ala Gln Thr Glu Val Ile Ala Thr Leu Lys Asn
65 70 75 80

Gly Arg Lys Ala Cys Leu Asn Pro Ala Ser Pro Ile Val Lys Lys Ile
85 90 95

Ile Glu Lys Met Leu Asn Ser Asp Lys Ser Asn
100 105

<210> 22

<211> 106

<212> PRT

<213> HUMAN

<400> 22

Met Ala His Ala Thr Leu Ser Ala Ala Pro Ser Asn Pro Arg Leu Leu
1 5 10 15

Arg Val Ala Leu Leu Leu Leu Leu Val Gly Ser Arg Arg Ala Ala
20 25 30

Gly Ala Ser Val Val Thr Glu Leu Arg Cys Gln Cys Leu Gln Thr Leu
35 40 45

Gln Gln Ile His Leu Lys Asn Ile Gln Ser Val Asn Val Arg Ser Pro
50 55 60

Gly Pro His Cys Ala Gln Thr Glu Val Ile Ala Thr Leu Lys Asn Gly
65 70 75 80

Lys Lys Ala Cys Leu Asn Pro Ala Ser Pro Met Val Gln Lys Ile Ile
85 90 95

Glu Lys Ile Leu Asn Lys Gly Ser Thr Asn
100 105

<210> 23

<211> 300

<212> PRT

<213> HUMAN

<400> 23

Met Arg Ile Ala Val Ile Cys Phe Cys Leu Leu Gly Ile Thr Cys Ala
1 5 10 15

NLEE01001w00.ST25.txt

Ile Pro Val Lys Gln Ala Asp Ser Gly Ser Ser Glu Glu Lys Gln Leu
20 25 30

Tyr Asn Lys Tyr Pro Asp Ala Val Ala Thr Trp Leu Asn Pro Asp Pro
35 40 45

Ser Gln Lys Gln Asn Leu Leu Ala Pro Gln Thr Leu Pro Ser Lys Ser
50 55 60

Asn Glu Ser His Asp His Met Asp Asp Met Asp Asp Glu Asp Asp Asp
65 70 75 80

Asp His Val Asp Ser Gln Asp Ser Ile Asp Ser Asn Asp Ser Asp Asp
85 90 95

Val Asp Asp Thr Asp Asp Ser His Gln Ser Asp Glu Ser His His Ser
100 105 110

Asp Glu Ser Asp Glu Leu Val Thr Asp Phe Pro Thr Asp Leu Pro Ala
115 120 125

Thr Glu Val Phe Thr Pro Val Val Pro Thr Val Asp Thr Tyr Asp Gly
130 135 140

Arg Gly Asp Ser Val Val Tyr Gly Leu Arg Ser Lys Ser Lys Lys Phe
145 150 155 160

Arg Arg Pro Asp Ile Gln Tyr Pro Asp Ala Thr Asp Glu Asp Ile Thr
165 170 175

Ser His Met Glu Ser Glu Glu Leu Asn Gly Ala Tyr Lys Ala Ile Pro
180 185 190

Val Ala Gln Asp Leu Asn Ala Pro Ser Asp Trp Asp Ser Arg Gly Lys
195 200 205

Asp Ser Tyr Glu Thr Ser Gln Leu Asp Asp Gln Ser Ala Glu Thr His
210 215 220

Ser His Lys Gln Ser Arg Leu Tyr Lys Arg Lys Ala Asn Asp Glu Ser
225 230 235 240

Asn Glu His Ser Asp Val Ile Asp Ser Gln Glu Leu Ser Lys Val Ser
245 250 255

Arg Glu Phe His Ser His Glu Phe His Ser His Glu Asp Met Leu Val
260 265 270

NLEE01001w00.ST25.txt

Val Asp Pro Lys Ser Lys Glu Glu Asp Lys His Leu Lys Phe Arg Ile
275 280 285

Ser His Glu Leu Asp Ser Ala Ser Ser Glu Val Asn
290 295 300

<210> 24
<211> 295
<212> PRT
<213> HUMAN

<400> 24

Met Glu His Gln Leu Leu Cys Cys Glu Val Glu Thr Ile Arg Arg Ala
1 5 10 15

Tyr Pro Asp Ala Asn Leu Leu Asn Asp Arg Val Leu Arg Ala Met Leu
20 25 30

Lys Ala Glu Glu Thr Cys Ala Pro Ser Val Ser Tyr Phe Lys Cys Val
35 40 45

Gln Lys Glu Val Leu Pro Ser Met Arg Lys Ile Val Ala Thr Trp Met
50 55 60

Leu Glu Val Cys Glu Glu Gln Lys Cys Glu Glu Glu Val Phe Pro Leu
65 70 75 80

Ala Met Asn Tyr Leu Asp Arg Phe Leu Ser Leu Glu Pro Val Lys Lys
85 90 95

Ser Arg Leu Gln Leu Leu Gly Ala Thr Cys Met Phe Val Ala Ser Lys
100 105 110

Met Lys Glu Thr Ile Pro Leu Thr Ala Glu Lys Leu Cys Ile Tyr Thr
115 120 125

Asp Gly Ser Ile Arg Pro Glu Glu Leu Leu Gln Met Glu Leu Leu Leu
130 135 140

Val Asn Lys Leu Lys Trp Asn Leu Ala Ala Met Thr Pro His Asp Phe
145 150 155 160

Ile Glu His Phe Leu Ser Lys Met Pro Glu Ala Glu Glu Asn Lys Gln
165 170 175

Ile Ile Arg Lys His Ala Gln Thr Phe Val Ala Ser Cys Ala Thr Asp
180 185 190

NLEE01001WO0.ST25.txt

Val Lys Phe Ile Ser Asn Pro Pro Ser Met Val Ala Ala Gly Ser Val
195 200 205

Val Ala Ala Val Gln Gly Leu Asn Leu Arg Ser Pro Asn Asn Phe Leu
210 215 220

Ser Tyr Tyr Arg Leu Thr Arg Phe Leu Ser Arg Val Ile Lys Cys Asp
225 230 235 240

Pro Asp Cys Leu Arg Ala Cys Gln Glu Gln Ile Glu Ala Leu Leu Glu
245 250 255

Ser Ser Leu Arg Gln Ala Gln Gln Asn Met Asp Pro Lys Ala Ala Glu
260 265 270

Glu Glu Glu Glu Glu Glu Glu Val Asp Leu Ala Cys Thr Pro Thr
275 280 285

Asp Val Arg Asp Val Asp Ile
290 295

<210> 25
<211> 439
<212> PRT
<213> HUMAN

<400> 25

Met Pro Leu Asn Val Ser Phe Thr Asn Arg Asn Tyr Asp Leu Asp Tyr
1 5 10 15

Asp Ser Val Gln Pro Tyr Phe Tyr Cys Asp Glu Glu Asn Phe Tyr
20 25 30

Gln Gln Gln Gln Ser Glu Leu Gln Pro Pro Ala Pro Ser Glu Asp
35 40 45

Ile Trp Lys Lys Phe Glu Leu Leu Pro Thr Pro Pro Leu Ser Pro Ser
50 55 60

Arg Arg Ser Gly Leu Cys Ser Pro Ser Tyr Val Ala Val Thr Pro Phe
65 70 75 80

Ser Leu Arg Gly Asp Asn Asp Gly Gly Gly Ser Phe Ser Thr Ala
85 90 95

Asp Gln Leu Glu Met Val Thr Glu Leu Leu Gly Gly Asp Met Val Asn
100 105 110

NLEE01001w00.ST25.txt

Gln Ser Phe Ile Cys Asp Pro Asp Asp Glu Thr Phe Ile Lys Asn Ile
115 120 125

Ile Ile Gln Asp Cys Met Trp Ser Gly Phe Ser Ala Ala Ala Lys Leu
130 135 140

Val Ser Glu Lys Leu Ala Ser Tyr Gln Ala Ala Arg Lys Asp Ser Gly
145 150 155 160

Ser Pro Asn Pro Ala Arg Gly His Ser Val Cys Ser Thr Ser Ser Leu
165 170 175

Tyr Leu Gln Asp Leu Ser Ala Ala Ser Glu Cys Ile Asp Pro Ser
180 185 190

Val Val Phe Pro Tyr Pro Leu Asn Asp Ser Ser Ser Pro Lys Ser Cys
195 200 205

Ala Ser Gln Asp Ser Ser Ala Phe Ser Pro Ser Ser Asp Ser Leu Leu
210 215 220

Ser Ser Thr Glu Ser Ser Pro Gln Gly Ser Pro Glu Pro Leu Val Leu
225 230 235 240

His Glu Glu Thr Pro Pro Thr Thr Ser Ser Asp Ser Glu Glu Glu Gln
245 250 255

Glu Asp Glu Glu Glu Ile Asp Val Val Ser Val Glu Lys Arg Gln Ala
260 265 270

Pro Gly Lys Arg Ser Glu Ser Gly Ser Pro Ser Ala Gly Gly His Ser
275 280 285

Lys Pro Pro His Ser Pro Leu Val Leu Lys Arg Cys His Val Ser Thr
290 295 300

His Gln His Asn Tyr Ala Ala Pro Pro Ser Thr Arg Lys Asp Tyr Pro
305 310 320

Ala Ala Lys Arg Val Lys Leu Asp Ser Val Arg Val Leu Arg Gln Ile
325 330 335

Ser Asn Asn Arg Lys Cys Thr Ser Pro Arg Ser Ser Asp Thr Glu Glu
340 345 350

Asn Val Lys Arg Arg Thr His Asn Val Leu Glu Arg Gln Arg Arg Asn

NLE01001WO0.ST25.txt
355 360 365

Glu Leu Lys Arg Ser Phe Phe Ala Leu Arg Asp Gln Ile Pro Glu Leu
370 375 380

Glu Asn Asn Glu Lys Ala Pro Lys Val Val Ile Leu Lys Lys Ala Thr
385 390 395 400

Ala Tyr Ile Leu Ser Val Gln Ala Glu Glu Gln Lys Leu Ile Ser Glu
405 410 415

Glu Asp Leu Leu Arg Lys Arg Arg Glu Gln Leu Lys His Lys Leu Glu
420 425 430

Gln Leu Arg Asn Ser Cys Ala
435

<210> 26
<211> 164
<212> PRT
<213> HUMAN

<400> 26

Met Ser Glu Pro Ala Gly Asp Val Arg Gln Asn Pro Cys Gly Ser Lys
1 5 10 15

Ala Cys Arg Arg Leu Phe Gly Pro Val Asp Ser Glu Gln Leu Ser Arg
20 25 30

Asp Cys Asp Ala Leu Met Ala Gly Cys Ile Gln Glu Ala Arg Glu Arg
35 40 45

Trp Asn Phe Asp Phe Val Thr Glu Thr Pro Leu Glu Gly Asp Phe Ala
50 55 60

Trp Glu Arg Val Arg Gly Leu Gly Leu Pro Lys Leu Tyr Leu Pro Thr
65 70 75 80

Gly Pro Arg Arg Gly Arg Asp Glu Leu Gly Gly Arg Arg Pro Gly
85 90 95

Thr Ser Pro Ala Leu Leu Gln Gly Thr Ala Glu Glu Asp His Val Asp
100 105 110

Leu Ser Leu Ser Cys Thr Leu Val Pro Arg Ser Gly Glu Gln Ala Glu
115 120 125

Gly Ser Pro Gly Gly Pro Gly Asp Ser Gln Gly Arg Lys Arg Arg Gln

NLEE01001wo0.ST25.txt

130

135

140

Thr Ser Met Thr Asp Phe Tyr His Ser Lys Arg Arg Leu Ile Phe Ser
145 150 155 160
Lys Arg Lys Pro

<210> 27
<211> 468
<212> PRT
<213> HUMAN

<400> 27

Met Val Asp Thr Glu Ser Pro Leu Cys Pro Leu Ser Pro Leu Glu Ala
1 5 10 15

Gly Asp Leu Glu Ser Pro Leu Ser Glu Glu Phe Leu Gln Glu Met Gly
20 25 30

Asn Ile Gln Glu Ile Ser Gln Ser Ile Gly Glu Asp Ser Ser Gly Ser
35 40 45

Phe Gly Phe Thr Glu Tyr Gln Tyr Leu Gly Ser Cys Pro Gly Ser Asp
50 55 60

Gly Ser Val Ile Thr Asp Thr Leu Ser Pro Ala Ser Ser Pro Ser Ser
65 70 75 80

Val Thr Tyr Pro Val Val Pro Gly Ser Val Asp Glu Ser Pro Ser Gly
85 90 95

Ala Leu Asn Ile Glu Cys Arg Ile Cys Gly Asp Lys Ala Ser Gly Tyr
100 105 110

His Tyr Gly Val His Ala Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg
115 120 125

Thr Ile Arg Leu Lys Leu Val Tyr Asp Lys Cys Asp Arg Ser Cys Lys
130 135 140

Ile Gln Lys Lys Asn Arg Asn Lys Cys Gln Tyr Cys Arg Phe His Lys
145 150 155 160

Cys Leu Ser Val Gly Met Ser His Asn Ala Ile Arg Phe Gly Arg Met
165 170 175

Pro Arg Ser Glu Lys Ala Lys Leu Lys Ala Glu Ile Leu Thr Cys Glu

NLEE01001wo0.ST25.txt
180 185 190

His Asp Ile Glu Asp Ser Glu Thr Ala Asp Leu Lys Ser Leu Ala Lys
 195 200 205

Arg Ile Tyr Glu Ala Tyr Leu Lys Asn Phe Asn Met Asn Lys Val Lys
 210 215 220

Ala Arg Val Ile Leu Ser Gly Lys Ala Ser Asn Asn Pro Pro Phe Val
 225 230 235 240

Ile His Asp Met Glu Thr Leu Cys Met Ala Glu Lys Thr Leu Val Ala
 245 250 255

Lys Leu Val Ala Asn Gly Ile Gln Asn Lys Glu Ala Glu Val Arg Ile
 260 265 270

Phe His Cys Cys Gln Cys Thr Ser Val Glu Thr Val Thr Glu Leu Thr
 275 280 285

Glu Phe Ala Lys Ala Ile Pro Gly Phe Ala Asn Leu Asp Leu Asn Asp
 290 295 300

Gln Val Thr Leu Leu Lys Tyr Gly Val Tyr Glu Ala Ile Phe Ala Met
 305 310 315 320

Leu Ser Ser Val Met Asn Lys Asp Gly Met Leu Val Ala Tyr Gly Asn
 325 330 335

Gly Phe Ile Thr Arg Glu Phe Leu Lys Ser Leu Arg Lys Pro Phe Cys
 340 345 350

Asp Ile Met Glu Pro Lys Phe Asp Phe Ala Met Lys Phe Asn Ala Leu
 355 360 365

Glu Leu Asp Asp Ser Asp Ile Ser Leu Phe Val Ala Ala Ile Ile Cys
 370 375 380

Cys Gly Asp Arg Pro Gly Leu Leu Asn Val Gly His Ile Glu Lys Met
 385 390 395 400

Gln Glu Gly Ile Val His Val Leu Arg Leu His Leu Gln Ser Asn His
 405 410 415

Pro Asp Asp Ile Phe Leu Phe Pro Lys Leu Leu Gln Lys Met Ala Asp
 420 425 430

NLEEO1001wo0.ST25.txt
Leu Arg Gln Leu Val Thr Glu His Ala Gln Leu Val Gln Ile Ile Lys
435 440 445

Lys Thr Glu Ser Asp Ala Ala Leu His Pro Leu Leu Gln Glu Ile Tyr
450 455 460

Arg Asp Met Tyr
465

<210> 28
<211> 505
<212> PRT
<213> HUMAN

<400> 28

Met Gly Glu Thr Leu Gly Asp Ser Pro Ile Asp Pro Glu Ser Asp Ser
1 5 10 15

Phe Thr Asp Thr Leu Ser Ala Asn Ile Ser Gln Glu Met Thr Met Val
20 25 30

Asp Thr Glu Met Pro Phe Trp Pro Thr Asn Phe Gly Ile Ser Ser Val
35 40 45

Asp Leu Ser Val Met Glu Asp His Ser His Ser Phe Asp Ile Lys Pro
50 55 60

Phe Thr Thr Val Asp Phe Ser Ser Ile Ser Thr Pro His Tyr Glu Asp
65 70 75 80

Ile Pro Phe Thr Arg Thr Asp Pro Val Val Ala Asp Tyr Lys Tyr Asp
85 90 95

Leu Lys Leu Gln Glu Tyr Gln Ser Ala Ile Lys Val Glu Pro Ala Ser
100 105 110

Pro Pro Tyr Tyr Ser Glu Lys Thr Gln Leu Tyr Asn Lys Pro His Glu
115 120 125

Glu Pro Ser Asn Ser Leu Met Ala Ile Glu Cys Arg Val Cys Gly Asp
130 135 140

Lys Ala Ser Gly Phe His Tyr Gly Val His Ala Cys Glu Gly Cys Lys
145 150 155 160

Gly Phe Phe Arg Arg Thr Ile Arg Leu Lys Leu Ile Tyr Asp Arg Cys
165 170 175

NLEE01001WO0.ST25.txt

Asp	Leu	Asn	Cys	Arg	Ile	His	Lys	Lys	Ser	Arg	Asn	Lys	Cys	Gln	Tyr
180							185						190		
Cys Arg Phe Gln Lys Cys Leu Ala Val Gly Met Ser His Asn Ala Ile															
195					200				205						
Arg Phe Gly Arg Met Pro Gln Ala Glu Lys Glu Lys Leu Leu Ala Glu															
210				215				220							
Ile Ser Ser Asp Ile Asp Gln Leu Asn Pro Glu Ser Ala Asp Leu Arg															
225				230				235				240			
Ala Leu Ala Lys His Leu Tyr Asp Ser Tyr Ile Lys Ser Phe Pro Leu															
245					250					255					
Thr Lys Ala Lys Ala Arg Ala Ile Leu Thr Gly Lys Thr Thr Asp Lys															
260				265					270						
Ser Pro Phe Val Ile Tyr Asp Met Asn Ser Leu Met Met Gly Glu Asp															
275				280					285						
Lys Ile Lys Phe Lys His Ile Thr Pro Leu Gln Glu Gln Ser Lys Glu															
290				295					300						
Val Ala Ile Arg Ile Phe Gln Gly Cys Gln Phe Arg Ser Val Glu Ala															
305				310				315				320			
Val Gln Glu Ile Thr Glu Tyr Ala Lys Ser Ile Pro Gly Phe Val Asn															
325					330					335					
Leu Asp Leu Asn Asp Gln Val Thr Leu Leu Lys Tyr Gly Val His Glu															
340				345					350						
Ile Ile Tyr Thr Met Leu Ala Ser Leu Met Asn Lys Asp Gly Val Leu															
355				360					365						
Ile Ser Glu Gly Gln Gly Phe Met Thr Arg Glu Phe Leu Lys Ser Leu															
370				375					380						
Arg Lys Pro Phe Gly Asp Phe Met Glu Pro Lys Phe Glu Phe Ala Val															
385				390				395				400			
Lys Phe Asn Ala Leu Glu Leu Asp Asp Ser Asp Leu Ala Ile Phe Ile															
405					410					415					
Ala Val Ile Ile Leu Ser Gly Asp Arg Pro Gly Leu Leu Asn Val Lys															
420				425						430					

NLEE01001wo0.ST25.txt

Pro Ile Glu Asp Ile Gln Asp Asn Leu Leu Gln Ala Leu Glu Leu Gln
435 440 445

Leu Lys Leu Asn His Pro Glu Ser Ser Gln Leu Phe Ala Lys Leu Leu
450 455 460

Gln Lys Met Thr Asp Leu Arg Gln Ile Val Thr Glu His Val Gln Leu
465 470 475 480

Leu Gln Val Ile Lys Lys Thr Glu Thr Asp Met Ser Leu His Pro Leu
485 490 495

Leu Gln Glu Ile Tyr Lys Asp Leu Tyr
500 505

<210> 29

<211> 441

<212> PRT

<213> HUMAN

<400> 29

Met Glu Gln Pro Gln Glu Glu Ala Pro Glu Val Arg Glu Glu Glu Glu
1 5 10 15

Lys Glu Glu Val Ala Glu Ala Glu Gly Ala Pro Glu Leu Asn Gly Gly
20 25 30

Pro Gln His Ala Leu Pro Ser Ser Ser Tyr Thr Asp Leu Ser Arg Ser
35 40 45

Ser Ser Pro Pro Ser Leu Leu Asp Gln Leu Gln Met Gly Cys Asp Gly
50 55 60

Ala Ser Cys Gly Ser Leu Asn Met Glu Cys Arg Val Cys Gly Asp Lys
65 70 75 80

Ala Ser Gly Phe His Tyr Gly Val His Ala Cys Glu Gly Cys Lys Gly
85 90 95

Phe Phe Arg Arg Thr Ile Arg Met Lys Leu Glu Tyr Glu Lys Cys Glu
100 105 110

Arg Ser Cys Lys Ile Gln Lys Lys Asn Arg Asn Lys Cys Gln Tyr Cys
115 120 125

Arg Phe Gln Lys Cys Leu Ala Leu Gly Met Ser His Asn Ala Ile Arg
130 135 140

NLEEO1001W00.ST25.txt

Phe Gly Arg Met Pro Glu Ala Glu Lys Arg Lys Leu Val Ala Gly Leu
145 150 155 160

Thr Ala Asn Glu Gly Ser Gln Tyr Asn Pro Gln Val Ala Asp Leu Lys
165 170 175

Ala Phe Ser Lys His Ile Tyr Asn Ala Tyr Leu Lys Asn Phe Asn Met
180 185 190

Thr Lys Lys Lys Ala Arg Ser Ile Leu Thr Gly Lys Ala Ser His Thr
195 200 205

Ala Pro Phe Val Ile His Asp Ile Glu Thr Leu Trp Gln Ala Glu Lys
210 215 220

Gly Leu Val Trp Lys Gln Leu Val Asn Gly Leu Pro Pro Tyr Lys Glu
225 230 235 240

Ile Ser Val His Val Phe Tyr Arg Cys Gln Cys Thr Thr Val Glu Thr
245 250 255

Val Arg Glu Leu Thr Glu Phe Ala Lys Ser Ile Pro Ser Phe Ser Ser
260 265 270

Leu Phe Leu Asn Asp Gln Val Thr Leu Leu Lys Tyr Gly Val His Glu
275 280 285

Ala Ile Phe Ala Met Leu Ala Ser Ile Val Asn Lys Asp Gly Leu Leu
290 295 300

Val Ala Asn Gly Ser Gly Phe Val Thr Arg Glu Phe Leu Arg Ser Leu
305 310 315 320

Arg Lys Pro Phe Ser Asp Ile Ile Glu Pro Lys Phe Glu Phe Ala Val
325 330 335

Lys Phe Asn Ala Leu Glu Leu Asp Asp Ser Asp Leu Ala Leu Phe Ile
340 345 350

Ala Ala Ile Ile Leu Cys Gly Asp Arg Pro Gly Leu Met Asn Val Pro
355 360 365

Arg Val Glu Ala Ile Gln Asp Thr Ile Leu Arg Ala Leu Glu Phe His
370 375 380

Leu Gln Ala Asn His Pro Asp Ala Gln Tyr Leu Phe Pro Lys Leu Leu
385 390 395 400

NLEE01001w00.ST25.txt

Gln Lys Met Ala Asp Leu Arg Gln Leu Val Thr Glu His Ala Gln Met
405 410 415

Met Gln Arg Ile Lys Lys Thr Glu Thr Glu Thr Ser Leu His Pro Leu
420 425 430

Leu Gln Glu Ile Tyr Lys Asp Met Tyr
435 440

<210> 30
<211> 742
<212> PRT
<213> HUMAN

<400> 30

Met Asp Lys Phe Trp Trp His Ala Ala Trp Gly Leu Cys Leu Val Pro
1 5 10 15

Leu Ser Leu Ala Gln Ile Asp Leu Asn Ile Thr Cys Arg Phe Ala Gly
20 25 30

Val Phe His Val Glu Lys Asn Gly Arg Tyr Ser Ile Ser Arg Thr Glu
35 40 45

Ala Ala Asp Leu Cys Lys Ala Phe Asn Ser Thr Leu Pro Thr Met Ala
50 55 60

Gln Met Glu Lys Ala Leu Ser Ile Gly Phe Glu Thr Cys Arg Tyr Gly
65 70 75 80

Phe Ile Glu Gly His Val Val Ile Pro Arg Ile His Pro Asn Ser Ile
85 90 95

Cys Ala Ala Asn Asn Thr Gly Val Tyr Ile Leu Thr Ser Asn Thr Ser
100 105 110

Gln Tyr Asp Thr Tyr Cys Phe Asn Ala Ser Ala Pro Pro Glu Glu Asp
115 120 125

Cys Thr Ser Val Thr Asp Leu Pro Asn Ala Phe Asp Gly Pro Ile Thr
130 135 140

Ile Thr Ile Val Asn Arg Asp Gly Thr Arg Tyr Val Gln Lys Gly Glu
145 150 155 160

Tyr Arg Thr Asn Pro Glu Asp Ile Tyr Pro Ser Asn Pro Thr Asp Asp
165 170 175

NLEE01001w00.ST25.txt

Asp Val Ser Ser Gly Ser Ser Ser Glu Arg Ser Ser Thr Ser Gly Gly
180 185 190

Tyr Ile Phe Tyr Thr Phe Ser Thr Val His Pro Ile Pro Asp Glu Asp
195 200 205

Ser Pro Trp Ile Thr Asp Ser Thr Asp Arg Ile Pro Ala Thr Thr Leu
210 215 220

Met Ser Thr Ser Ala Thr Ala Thr Glu Thr Ala Thr Lys Arg Gln Glu
225 230 235 240

Thr Trp Asp Trp Phe Ser Trp Leu Phe Leu Pro Ser Glu Ser Lys Asn
245 250 255

His Leu His Thr Thr Thr Gln Met Ala Gly Thr Ser Ser Asn Thr Ile
260 265 270

Ser Ala Gly Trp Glu Pro Asn Glu Glu Asn Glu Asp Glu Arg Asp Arg
275 280 285

His Leu Ser Phe Ser Gly Ser Gly Ile Asp Asp Asp Glu Asp Phe Ile
290 295 300

Ser Ser Thr Ile Ser Thr Thr Pro Arg Ala Phe Asp His Thr Lys Gln
305 310 315 320

Asn Gln Asp Trp Thr Gln Trp Asn Pro Ser His Ser Asn Pro Glu Val
325 330 335

Leu Leu Gln Thr Thr Arg Met Thr Asp Val Asp Arg Asn Gly Thr
340 345 350

Thr Ala Tyr Glu Gly Asn Trp Asn Pro Glu Ala His Pro Pro Leu Ile
355 360 365

His His Glu His His Glu Glu Glu Thr Pro His Ser Thr Ser Thr
370 375 380

Ile Gln Ala Thr Pro Ser Ser Thr Thr Glu Glu Thr Ala Thr Gln Lys
385 390 395 400

Glu Gln Trp Phe Gly Asn Arg Trp His Glu Gly Tyr Arg Gln Thr Pro
405 410 415

Lys Glu Asp Ser His Ser Thr Thr Gly Thr Ala Ala Ala Ser Ala His
41

NLEE01001w00.ST25.txt
420 425 430

Thr Ser His Pro Met Gln Gly Arg Thr Thr Pro Ser Pro Glu Asp Ser
435 440 445

Ser Trp Thr Asp Phe Phe Asn Pro Ile Ser His Pro Met Gly Arg Gly
450 455 460

His Gln Ala Gly Arg Arg Met Asp Met Asp Ser Ser His Ser Ile Thr
465 470 475 480

Leu Gln Pro Thr Ala Asn Pro Asn Thr Gly Leu Val Glu Asp Leu Asp
485 490 495

Arg Thr Gly Pro Leu Ser Met Thr Thr Gln Gln Ser Asn Ser Gln Ser
500 505 510

Phe Ser Thr Ser His Glu Gly Leu Glu Glu Asp Lys Asp His Pro Thr
515 520 525

Thr Ser Thr Leu Thr Ser Ser Asn Arg Asn Asp Val Thr Gly Gly Arg
530 535 540

Arg Asp Pro Asn His Ser Glu Gly Ser Thr Thr Leu Leu Glu Gly Tyr
545 550 555 560

Thr Ser His Tyr Pro His Thr Lys Glu Ser Arg Thr Phe Ile Pro val
565 570 575

Thr Ser Ala Lys Thr Gly Ser Phe Gly Val Thr Ala Val Thr Val Gly
580 585 590

Asp Ser Asn Ser Asn Val Asn Arg Ser Leu Ser Gly Asp Gln Asp Thr
595 600 605

Phe His Pro Ser Gly Gly Ser His Thr Thr His Gly Ser Glu Ser Asp
610 615 620

Gly His Ser His Gly Ser Gln Glu Gly Gly Ala Asn Thr Thr Ser Gly
625 630 635 640

Pro Ile Arg Thr Pro Gln Ile Pro Glu Trp Leu Ile Ile Leu Ala Ser
645 650 655

Leu Leu Ala Leu Ala Leu Ile Leu Ala Val Cys Ile Ala Val Asn Ser
660 665 670

NLEE01001wo0.ST25.txt
 Arg Arg Arg Cys Gly Gln Lys Lys Lys Leu Val Ile Asn Ser Gly Asn
 675 680 685

Gly Ala Val Glu Asp Arg Lys Pro Ser Gly Leu Asn Gly Glu Ala Ser
 690 695 700

Lys Ser Gln Glu Met Val His Leu Val Asn Lys Glu Ser Ser Glu Thr
 705 710 715 720

Pro Asp Gln Phe Met Thr Ala Asp Glu Thr Arg Asn Leu Gln Asn Val
 725 730 735

Asp Met Lys Ile Gly Val
 740

<210> 31
 <211> 489
 <212> PRT
 <213> HUMAN

<400> 31

Met Leu Met Arg Leu Val Leu Thr Val Arg Ser Asn Leu Ile Pro Ser
 1 5 10 15

Pro Pro Thr Tyr Asn Ser Ala His Asp Tyr Ile Ser Trp Glu Ser Phe
 20 25 30

Ser Asn Val Ser Tyr Tyr Thr Arg Ile Leu Pro Ser Val Pro Lys Asp
 35 40 45

Cys Pro Thr Pro Met Gly Thr Lys Gly Lys Lys Gln Leu Pro Asp Ala
 50 55 60

Gln Leu Leu Ala Arg Arg Phe Leu Leu Arg Arg Lys Phe Ile Pro Asp
 65 70 75 80

Pro Gln Gly Thr Asn Leu Met Phe Ala Phe Phe Ala Gln His Phe Thr
 85 90 95

His Gln Phe Phe Lys Thr Ser Gly Lys Met Gly Pro Gly Phe Thr Lys
 100 105 110

Ala Leu Gly His Gly Val Asp Leu Gly His Ile Tyr Gly Asp Asn Leu
 115 120 125

Glu Arg Gln Tyr Gln Leu Arg Leu Phe Lys Asp Gly Lys Leu Lys Tyr
 130 135 140

NLEE01001WO0.ST25.txt

Gln	Val	Leu	Asp	Gly	Glu	Met	Tyr	Pro	Pro	Ser	Val	Glu	Glu	Ala	Pro
145				150						155					160
Val	Leu	Met	His	Tyr	Pro	Arg	Gly	Ile	Pro	Pro	Gln	Ser	Gln	Met	Ala
				165					170					175	
Val	Gly	Gln	Glu	Val	Phe	Gly	Leu	Leu	Pro	Gly	Leu	Met	Leu	Tyr	Ala
				180			185						190		
Thr	Leu	Trp	Leu	Arg	Glu	His	Asn	Arg	Val	Cys	Asp	Leu	Leu	Lys	Ala
					200						205				
Glu	His	Pro	Thr	Trp	Gly	Asp	Glu	Gln	Leu	Phe	Gln	Thr	Thr	Arg	Leu
					215						220				
Ile	Leu	Ile	Gly	Glu	Thr	Ile	Lys	Ile	Val	Ile	Glu	Glu	Tyr	Val	Gln
					230					235				240	
Gln	Leu	Ser	Gly	Tyr	Phe	Leu	Gln	Leu	Lys	Phe	Asp	Pro	Glu	Leu	Leu
				245				250					255		
Phe	Gly	Val	Gln	Phe	Gln	Tyr	Arg	Asn	Arg	Ile	Ala	Met	Glu	Phe	Asn
				260			265					270			
His	Leu	Tyr	His	Trp	His	Pro	Leu	Met	Pro	Asp	Ser	Phe	Lys	Val	Gly
					275		280						285		
Ser	Gln	Glu	Tyr	Ser	Tyr	Glu	Gln	Phe	Leu	Phe	Asn	Thr	Ser	Met	Leu
					290		295					300			
Val	Asp	Tyr	Gly	Val	Glu	Ala	Leu	Val	Asp	Ala	Phe	Ser	Arg	Gln	Ile
					305		310			315				320	
Ala	Gly	Arg	Ile	Gly	Gly	Gly	Arg	Asn	Met	Asp	His	His	Ile	Leu	His
				325				330					335		
Val	Ala	Val	Asp	Val	Ile	Arg	Glu	Ser	Arg	Glu	Met	Arg	Leu	Gln	Pro
					340		345					350			
Phe	Asn	Glu	Tyr	Arg	Lys	Arg	Phe	Gly	Met	Lys	Pro	Tyr	Thr	Ser	Phe
				355			360			365					
Gln	Glu	Leu	Val	Gly	Glu	Lys	Glu	Met	Ala	Ala	Glu	Leu	Glu	Leu	
					370		375				380				
Tyr	Gly	Asp	Ile	Asp	Ala	Leu	Glu	Phe	Tyr	Pro	Gly	Leu	Leu	Leu	Glu
				385			390			395			400		

NLEE01001WO0.ST25.txt

Lys Cys His Pro Asn Ser Ile Phe Gly Glu Ser Met Ile Glu Ile Gly
405 410 415

Ala Pro Phe Ser Leu Lys Gly Leu Leu Gly Asn Pro Ile Cys Ser Pro
420 425 430

Glu Tyr Trp Lys Pro Ser Thr Phe Gly Gly Glu Val Gly Phe Asn Ile
435 440 445

Val Lys Thr Ala Thr Leu Lys Lys Leu Val Cys Leu Asn Thr Lys Thr
450 455 460

Cys Pro Tyr Val Ser Phe Arg Val Pro Asp Ala Ser Gln Asp Asp Gly
465 470 475 480

Pro Ala Val Glu Arg Pro Ser Thr Glu
485

<210> 32
<211> 122
<212> PRT
<213> HUMAN

<400> 32

Met Lys Leu Leu Thr Gly Leu Val Phe Cys Ser Leu Val Leu Gly Val
1 5 10 15

Ser Ser Arg Ser Phe Phe Ser Phe Leu Gly Glu Ala Phe Asp Gly Ala
20 25 30

Arg Asp Met Trp Arg Ala Tyr Ser Asp Met Arg Glu Ala Asn Tyr Ile
35 40 45

Gly Ser Asp Lys Tyr Phe His Ala Arg Gly Asn Tyr Asp Ala Ala Lys
50 55 60

Arg Gly Pro Gly Gly Val Trp Ala Ala Glu Ala Ile Ser Asp Ala Arg
65 70 75 80

Glu Asn Ile Gln Arg Phe Phe Gly His Gly Ala Glu Asp Ser Leu Ala
85 90 95

Asp Gln Ala Ala Asn Glu Trp Gly Arg Ser Gly Lys Asp Pro Asn His
100 105 110

Phe Arg Pro Ala Gly Leu Pro Glu Lys Tyr
115 120

NLEE01001w00.ST25.txt

<210> 33
<211> 26
<212> DNA
<213> HUMAN

<400> 33
agatattgca cgggagaata tacaaa

26

<210> 34
<211> 27
<212> DNA
<213> HUMAN

<400> 34
tcaattcctg aaattaaagt tcggata

27

<210> 35
<211> 23
<212> DNA
<213> HUMAN

<400> 35
tctgcagagt tggaaggact cta

23

<210> 36
<211> 21
<212> DNA
<213> HUMAN

<400> 36
gccgaggctt ttctaccaga a

21

<210> 37
<211> 20
<212> DNA
<213> HUMAN

<400> 37
catggcttga tcagcaagga

20

<210> 38
<211> 21
<212> DNA
<213> HUMAN

<400> 38
tggaagtgtg ccctgaagaa g

21

<210> 39
<211> 21
<212> DNA
<213> HUMAN

<400> 39
aagcagcacc agcaagtcaa g

21

NLEE01001wo0.ST25.txt

<210> 40
<211> 21
<212> DNA
<213> HUMAN

<400> 40 tcatggcctg tgtcagtc aa 21

<210> 41
<211> 22
<212> DNA
<213> HUMAN

<400> 41 acatgccagc cactgtgata ga 22

<210> 42
<211> 21
<212> DNA
<213> HUMAN

<400> 42 ccctgccttc acaatgatct c 21

<210> 43
<211> 23
<212> DNA
<213> HUMAN

<400> 43 ggaattcacc tcaagaacat cca 23

<210> 44
<211> 23
<212> DNA
<213> HUMAN

<400> 44 agtgtggcta tgacttcggt ttg 23

<210> 45
<211> 22
<212> DNA
<213> HUMAN

<400> 45 cagccacaag cagtccagat ta 22

<210> 46
<211> 24
<212> DNA
<213> HUMAN

<400> 46 cctgactatc aatcacatcg gaat 24

NLEE01001WO0.ST25.txt

<210> 47
<211> 21
<212> DNA
<213> HUMAN

<400> 47
ccaggtgctc cacatgacag t 21

<210> 48
<211> 24
<212> DNA
<213> HUMAN

<400> 48
aaacaaccaa caacaaggag aatg 24

<210> 49
<211> 21
<212> DNA
<213> HUMAN

<400> 49
cgtctccaca catcagcaca a 21

<210> 50
<211> 22
<212> DNA
<213> HUMAN

<400> 50
tcttggcagc aggatagtcc tt 22

<210> 51
<211> 22
<212> DNA
<213> HUMAN

<400> 51
gcagaccagc atgacagatt tc 22

<210> 52
<211> 20
<212> DNA
<213> HUMAN

<400> 52
gcggattagg gcttcctctt 20

<210> 53
<211> 23
<212> DNA
<213> HUMAN

<400> 53
tgaagttcaa tgcactggaa ctg 23

NLEE01001WO0.ST25.txt

<210> 54
<211> 20
<212> DNA
<213> HUMAN

<400> 54
caggacgatc tccacagcaa 20

<210> 55
<211> 23
<212> DNA
<213> HUMAN

<400> 55
tggagtccac gagatcattt aca 23

<210> 56
<211> 19
<212> DNA
<213> HUMAN

<400> 56
agccttggcc ctcggatat 19

<210> 57
<211> 21
<212> DNA
<213> HUMAN

<400> 57
cactgagttc gccaaagagca t 21

<210> 58
<211> 23
<212> DNA
<213> HUMAN

<400> 58
cacgccatac ttgagaaggg taa 23

<210> 59
<211> 23
<212> DNA
<213> HUMAN

<400> 59
gcttagtgatc aacagtggca atg 23

<210> 60
<211> 18
<212> DNA
<213> HUMAN

<400> 60
gctggcctct ccgttgag 18

NLEE01001wo0.ST25.txt

<210> 61
<211> 22
<212> DNA
<213> HUMAN

<400> 61 tgttcggtgt ccagttccaa ta 22

<210> 62
<211> 22
<212> DNA
<213> HUMAN

<400> 62 tgccagtggt agagatggtt ga 22

<210> 63
<211> 22
<212> DNA
<213> HUMAN

<400> 63 gggacatgtg gagagcctac tc 22

<210> 64
<211> 21
<212> DNA
<213> HUMAN

<400> 64 catcatagtt cccccgagca t 21