- α) Γενικά, η εξίσωση $(x-x_0)^2+(y-y_0)^2=\rho^2$ παριστά κύκλο με κέντρο $K(x_0,y_0)$ και ακτίνα ρ , αν $\rho>0$ (ή ακτίνα $|\rho|$, αν $\rho\neq 0$). Συνεπώς, αν $\lambda\neq 0$, η εξίσωση $(x-\lambda)^2+(y-\lambda)^2=\lambda^2$ παριστά κύκλο με κέντρο $K(\lambda,\lambda)$ και ακτίνα $|\lambda|$.
- β) Παρατηρούμε ότι για $x = \lambda$ και $y = \lambda$ επαληθεύεται η εξίσωση y = x. Επομένως, για κάθε $\lambda \neq 0$, το κέντρο $K(\lambda, \lambda)$ του κύκλου C_{λ} είναι σημείο της ευθείας y = x.

Για τα ερωτήματα γ), δ), ε) υπενθυμίζουμε ότι μία ευθεία ε: $Ax+By+\Gamma=0$ (με $|A|+|B|\neq 0$) εφάπτεται σε ένα κύκλο με κέντρο $K(x_0,y_0)$ και ακτίνα ρ αν και μόνο αν $d(K,\epsilon)=\rho$ ή ισοδύναμα αν

$$\frac{|Ax_0+By_0+\Gamma|}{\sqrt{\alpha^2+\beta^2}}=\rho\quad (1).$$

Επίσης, από το α) ερώτημα, για κάθε $\lambda \neq 0$, η εξίσωση $(x - \lambda)^2 + (y - \lambda)^2 = \lambda^2$ παριστά κύκλο C_{λ} με κέντρο $K(\lambda, \lambda)$ και ακτίνα $|\lambda|$. Οπότε:

$$x_0 = \lambda$$
, $y_0 = \lambda$, $\rho = |\lambda|$

γ) Θεωρούμε την ευθεία x=0. Εδώ: A=1, B=0, $\Gamma=0$. Οπότε, η σχέση (1) ικανοποιείται για κάθε $\lambda \neq 0$, αφού: $\frac{|1\cdot\lambda+0\cdot\lambda+0|}{\sqrt{1^2+0^2}}=|\lambda|$ (ταυτότητα).

Άρα, η ευθεία x=0 εφάπτεται σε όλους τους κύκλους C_{λ} , $\lambda \neq 0$.

Για να δείξουμε ότι η ευθεία y=0 εφάπτεται σε όλους τους κύκλους C_{λ} θα μπορούσαμε να εργαστούμε όμοια με παραπάνω ή να παρατηρήσουμε ότι υπάρχει συμμετρία ως προς την 1^{η} διχοτόμο, καθώς η εξίσωση $(x-\lambda)^2+(y-\lambda)^2=\lambda^2$ παραμένει αναλλοίωτη αν εναλλάξουμε τους ρόλους των x και y.

δ) Έστω $\alpha \neq 0$. Θεωρούμε την ευθεία $x=\alpha$. Εδώ: A=1, B=0, $\Gamma=-\alpha$. Οπότε, η σχέση (1) γίνεται: $\frac{|1\cdot\lambda+0\cdot\lambda-\alpha|}{\sqrt{1^2+0^2}}=|\lambda| \Leftrightarrow |\lambda-\alpha|=|\lambda| \Leftrightarrow \lambda-\alpha=\pm \lambda \ .$ Το θετικό πρόσημο δίνει $\alpha=0$ (πράγμα αδύνατο, αφού έχει υποτεθεί $\alpha\neq 0$), ενώ το αρνητικό πρόσημο δίνει την μοναδική αποδεκτή τιμή του λ που είναι το $\frac{\alpha}{2}$.

Λόγω συμμετρίας, το ίδιο συμβαίνει και για την ευθεία $y = \alpha$.