Practice Problems

Problem 1:

- 1. (D \wedge E) $\supset \neg F$
- 2. F \vee (G \wedge W)
- 3. D \supset E Derive: D \supset G

Problem 2:

- 1. $B \supset (F \lor D)$
- 2. $\neg(A \supset F)$
- 3. A $\supset \neg(C \lor D)$ Derive: $\neg(A \supset B)$

Problem 3:

- 1. A V B
- 2. $\neg A \lor \neg B$ Derive: $\neg (A \equiv B)$

Problem 4:

1. Derive: $((p \supset q) \supset p) \supset p$

Solutions:

Problem 1:

1. (D \wedge E) $\supset \neg F$

2. F \vee (G \wedge W)

3. D \supset E Derive: D \supset G

1.	(D	Λ E) ⊃ ¬F	Pr
2.	F V	(G ∧ W)	Pr
3.	D =) E	Pr
4.		D	Assp for CP
5.		E	MP 3,4
6.		DΛE	Conj 4, 5
7.	¬F		MP 1, 6
8.		G / W	DS 2, 7
9.		G	Simp 8
10.	D ⊃ G		CP 4-9

Problem 2:

Hint: Suppose (A \supset B) for IP. Then derive (A \supset F). Then let your contradiction be (A \supset F) \land \neg (A \supset F).

- 1. $B \supset (F \lor D)$
- 2. $\neg(A \supset F)$
- 3. A $\supset \neg(C \lor D)$ Derive: $\neg(A \supset B)$

1.	B ⊃ (F ∨ D)			Pr
2.	¬(A ⊃ F)			Pr
3.	$A \supset \neg(C \ \lor \ D)$			Pr
4.	A ⊃ B			Assp for IP
5.			A	Assp for CP
6.			¬(C ∨ D)	MP 3, 6
7.			¬C ∧ ¬D	DeM 6
8.			В	MP 4,5
9.			F V D	MP 8, 1
10.			¬D	Simp 7
11.			F	DS 9, 10
12.	A		D F	CP 5, 11
13.	$(A\supsetF)\ \land\ \neg(A\supsetF)$		⊃ F) ∧ ¬(A ⊃ F)	Conj 2, 12
14.	¬(A ⊃ B)			IP 4-13

Problem 3:

1. A V B

2. $\neg A \lor \neg B$ Derive: $\neg (A \equiv B)$

1.	A V B			Pr
2.	¬A \	/ ¬B		Pr
3.		(A	= B)	Assp for IP
4.		(A	⊃ B) ∧ (B ⊃ A)	BE 3
5.		$A\supset B$		Simp 4
6.		$B \supset A$		Simp 4
7.			А	Assp for IP
8.			¬¬А	DN 7
9.			¬В	DS 2, 8
10.			В	MP 7, 5
11.			В∧¬В	Conj 10, 9
12.		¬A		IP 7-11
13.		В		DS 1, 12
14.		Α		MP 6, 13
15.		A		Conj 14, 12
16.	$\neg(A \equiv B)$ IP:			IP 3-15

Problem 4:

1. Derive: $((p \supset q) \supset p) \supset p$

Hint: Assume $(p \supset q) \supset p$ for CP. Then assume $\neg p$ for IP.

1.		(p ⊃ q) ⊃ p		Assp for CP
2.			¬р	Assp for IP
3.			$\neg(p \supset q)$	MT 1,2
4.			¬(¬p ∨ q)	CE 3
5.			¬¬p ∧ ¬q	DeM 4
6.			¬¬р	Simp 5
7.			¬р Л ¬¬р	Conj 2, 6
8.		¬¬p		IP 2-7
9.		р		DN 8
10.	$((p \supset q) \supset p) \supset p$		CP 1-9	