Package 'RDBqc'

October 5, 2022

Title Quality check functions for RDBFIS

Version 0.0.11 **Date** 2022-09-29

escription The package contains functions used to perform a priori and a posteriori quality checks on RDBFIS data.
icense GPL (>= 3)
ncoding UTF-8
oxygen list(markdown = TRUE)
oxygenNote 7.2.1
epends R ($>= 4.1.0$)
nports dplyr, ggplot2, rworldmap, sp, rworldxtra, pander, data.table, grDevices, magrittr, tictoc,tidyverse, fishmethods,tidyr,gridExtra, scales
azyData true
liggests rmarkdown, knitr, markdown ignetteBuilder knitr R topics documented:
ALK_tab_example

eck lw TaskVII.2	11
	12
	13
	13
— —	14
	14
	15
	15
	16
	16
	17
	17
	18
	18
	19
•	20
	20 20
	20 21
-	
<u> </u>	21
	22
	22
1 _	23
	23
- 6	24
	25
	26
	27
	27
	28
	28
&	29
	30
i_g_effort	30
i_h_spatial_land	31
i_h_spatial_landings	31
i_i_spatial_effort	32
	32
OI_landweight_cov	33
OI_prices_cov	33
OI_prices_not_null	34
OI_ts_tableJ	35
OI_vessel_lenth	36
OI_vessel_numbers	36
P_tab_example	37
<u>.</u>	37
	38
.	38
-	39
<i>E</i>	39
	40
_ 1 1	41
_ 1 ,	41

MEDBS_comp_land_Q_VL_fishery
MEDBS_comp_land_YQ
MEDBS_comp_land_YQ_fishery
MEDBS_discard_coverage
MEDBS_disc_mean_weight
MEDBS_GP_check
MEDBS_ks
MEDBS_Landing_coverage
MEDBS_land_mean_weight
MEDBS_lengthclass_0
MEDBS_length_ind
MEDBS_LW_check
MEDBS_MA_check
MEDBS_ML_check
MEDBS_plot_discard_ts
MEDBS_plot_disc_vol
MEDBS_plot_landing_ts
MEDBS_plot_land_vol
MEDBS_SA_check
MEDBS_SL_check
MEDBS_SOP
MEDBS_weight_0
MEDBS_weight_minus1
MEDBS_yr_missing_length
minmaxLtaskVII2
minmaxLtaskVII31
ML_tab_example
RCG_check_AL
RCG_check_CL
RCG_check_LFD
RCG_check_LFD_comm_cat
RCG_check_loc
RCG_check_lw
RCG_check_mat
RCG_check_mat_ogive
RCG_summarize_ind_meas
RCG_summarize_trips
SA_tab_example
sex mat
SL_tab_example
task_ii2
task_iii
task_vii2
task_vii31
task_vii32

4 Catch_tab_example

ALK_tab_example

ALK table in MED&BS datacall format

Description

ALK table in MED&BS datacall format

Usage

ALK_tab_example

Format

An object of class data. frame with 62 rows and 114 columns.

Author(s)

Isabella Bitetto

bitetto@coispa.it>

Catch_tab_example

Catch table in MED&BS datacall format

Description

Catch table in MED&BS datacall format

Usage

Catch_tab_example

Format

An object of class data. frame with 57 rows and 171 columns.

Author(s)

catfau_check 5

catfau_check

catfau_check in GFCM datacall format

Description

catfau_check in GFCM datacall format

Usage

catfau_check

Format

An object of class data. frame with 16 rows and 4 columns.

Author(s)

Isabella Bitetto

bitetto@coispa.it>

check_EF_FDI_A

Check empty fields in FDI A table

Description

The function checks the presence of not allowed empty data in the given table, according to the Fisheries Dependent Information data call 2021 - Annex 1

Usage

```
check_EF_FDI_A(data, verbose = TRUE)
```

Arguments

data GFCM Task A table

verbose boolean. If TRUE a message is printed.

Value

Two lists are returned by the function. The first list gives the number of NA for each reference column. The second list gives the index of each NA in the reference column.

```
check_EF_FDI_A(fdi_a_catch)
```

6 check_EF_FDI_H

check_EF_FDI_G

Check empty fields in FDI G table

Description

The function checks the presence of not allowed empty data in the given table, according to the Fisheries Dependent Information data call 2021 - Annex 1

Usage

```
check_EF_FDI_G(data, verbose = TRUE)
```

Arguments

data GFCM Task G table

verbose boolean. If TRUE a message is printed.

Value

Two lists are returned by the function. The first list gives the number of NA for each reference column. The second list gives the index of each NA in the reference column.

Examples

```
check_EF_FDI_G(fdi_g_effort)
```

check_EF_FDI_H

Check empty fields in FDI H table

Description

The function checks the presence of not allowed empty data in the given table, according to the Fisheries Dependent Information data call 2021 - Annex 1

Usage

```
check_EF_FDI_H(data, verbose = TRUE)
```

Arguments

data GFCM Task H table

verbose boolean. If TRUE a message is printed.

Value

Two lists are returned by the function. The first list gives the number of NA for each reference column. The second list gives the index of each NA in the reference column.

check_EF_FDI_I 7

Examples

```
{\tt check\_EF\_FDI\_H(fdi\_h\_spatial\_landings)}
```

 ${\sf check_EF_FDI_I}$

Check empty fields in FDI I table

Description

The function checks the presence of not allowed empty data in the given table, according to the Fisheries Dependent Information data call 2021 - Annex 1

Usage

```
check_EF_FDI_I(data, verbose = TRUE)
```

Arguments

data GFCM Task I table

verbose boolean. If TRUE a message is printed.

Value

Two lists are returned by the function. The first list gives the number of NA for each reference column. The second list gives the index of each NA in the reference column.

Examples

```
check_EF_FDI_I(fdi_i_spatial_effort)
```

check_EF_FDI_J

Check empty fields in FDI J table

Description

The function checks the presence of not allowed empty data in the given table, according to the Fisheries Dependent Information data call 2021 - Annex 1

Usage

```
check_EF_FDI_J(data, verbose = TRUE)
```

Arguments

data GFCM Task J table

8 check_EF_taskIII

Value

Two lists are returned by the function. The first list gives the number of NA for each reference column. The second list gives the index of each NA in the reference column.

Examples

```
check_EF_FDI_J(fdi_j_capacity)
```

check_EF_taskII2

Check empty fields in GFCM Task II.2 table

Description

The function checks the presence of not allowed empty data in the given table, according to the GFCM, 2018. GFCM Data Collection Reference Framework (DCRF). Version: 20.1

Usage

```
check_EF_taskII2(data, verbose = TRUE)
```

Arguments

data GFCM Task II.2 table

verbose boolean. If TRUE a message is printed.

Value

Two lists are returned by the function. The first list gives the number of NA for each reference column. The second list gives the index of each NA in the reference column.

Examples

```
check_EF_taskII2(task_ii2)
```

check_EF_taskIII

Check empty fields in GFCM Task III table

Description

The function checks the presence of not allowed empty data in the given table, according to the GFCM, 2018. GFCM Data Collection Reference Framework (DCRF). Version: 20.1

Usage

```
check_EF_taskIII(data, verbose = TRUE)
```

check_EF_taskVII2 9

Arguments

data GFCM Task III table

verbose boolean. If TRUE a message is printed.

Value

Two lists are returned by the function. The first list gives the number of NA for each reference column. The second list gives the index of each NA in the reference column.

Examples

```
check_EF_taskIII(task_iii)
```

check_EF_taskVII2

Check empty fields in GFCM Task VII.2 table

Description

The function checks the presence of not allowed empty data in the given table, according to the GFCM, 2018. GFCM Data Collection Reference Framework (DCRF). Version: 20.1

Usage

```
check_EF_taskVII2(data, verbose = TRUE)
```

Arguments

data GFCM Task VII.2 table

verbose boolean. If TRUE a message is printed.

Value

Two lists are returned by the function. The first list gives the number of NA for each reference column. The second list gives the index of each NA in the reference column.

```
check_EF_taskVII2(task_vii2)
```

10 check_EF_TaskVII32

check_EF_TaskVII31

Check empty fields in GFCM Task VII.3.1 table

Description

The function checks the presence of not allowed empty data in the given table, according to the GFCM, 2018. GFCM Data Collection Reference Framework (DCRF). Version: 20.1

Usage

```
check_EF_TaskVII31(data, verbose = TRUE)
```

Arguments

data GFCM Task VII.3.1 table

verbose boolean. If TRUE a message is printed.

Value

Two lists are returned by the function. The first list gives the number of NA for each reference column. The second list gives the index of each NA in the reference column.

Examples

```
check_EF_TaskVII31(task_vii31)
```

check_EF_TaskVII32

Check empty fields in GFCM Task VII.3.2 table

Description

The function checks the presence of not allowed empty data in the given table, according to the GFCM, 2018. GFCM Data Collection Reference Framework (DCRF). Version: 20.1

Usage

```
check_EF_TaskVII32(data, verbose = TRUE)
```

Arguments

data GFCM Task VII.3.2 table

verbose boolean. If TRUE a message is printed.

Value

Two lists are returned by the function. The first list gives the number of NA for each reference column. The second list gives the index of each NA in the reference column.

Examples

```
check_EF_TaskVII32(task_vii32)
```

```
check_lmat_TaskVII.3.2
```

Plot of the maturity stages per length for each sex and species

Description

Function to plot the lengths at maturity stages by species and sex to easily identify outliers.

Usage

```
check_lmat_TaskVII.3.2(data, MS, GSA, SP)
```

Arguments

data	GFCM Task VII.3.2 table
MS	member state code
GSA	GSA code
SP	species reference code in the three alpha code format

Value

The function return a plot of the maturity stages per length and sex per species.

Examples

```
check_lmat_TaskVII.3.2(task_vii32)
```

check_lw_TaskVII.2 Plot of the relationship length weight for each species

Description

Function to check the consistency of length-weight relationship in the GFCM Task VII.2 table per species.

Usage

```
check_lw_TaskVII.2(data, MS, GSA, SP, verbose = TRUE)
```

Arguments

data	GFCM Task VII.2 table
MS	member state code
GSA	GSA code

SP species reference code in the three alpha code format

verbose boolean value to obtain further explanation messages from the function

Value

The function return a plot of the length weight relationship per species.

Examples

```
check_lw_TaskVII.2(task_vii2, MS = "ITA", GSA = "18", SP = "BOG")
```

check_minmax150_TaskVII.3.1

Comparison between min/max L50 observed for each species and sex with theoretical values

Description

Function to verify the consistency of L50 reported in the TaskVII.3.1 table with the theoretical values reported in the minmaxLtaskVII31 table. The function allows to identify the records in which the observed L50 are greater or lower than the expected ones.

Usage

```
check_minmax150_TaskVII.3.1(data, tab_L50, MS, GSA)
```

Arguments

data	GFCM Task	VII.3.1 table

tab_L50 Theoretical values of min/max L50 for each species and sex

MS member state code

GSA GSA code

Value

The function returns a table with the comparison between min/max L50 observed for each species and sex with theoretical values.

```
check_minmax150_TaskVII.3.1(task_vii31,minmaxLtaskVII31,MS="ITA",GSA="19")
```

```
check_minmaxl_TaskVII.2
```

Comparison between min/max observed for each species with theoretical values

Description

Function to verify the consistency of the lengths reported in the TaskVII.2 table with the theoretical values reported in the minmaxLtaskVII2 table. The function allows to identify the records in which the observed lengths are greater or lower than the expected ones.

Usage

```
{\tt check\_minmaxl\_TaskVII.2(data,\ tab\_length,\ MS,\ GSA)}
```

Arguments

data GFCM Task II.2 table

tab_length Theoretical values of min/max length for each species

MS member state code

GSA GSA code

Value

The function returns a table with the comparison between min/max lengths observed for each species with theoretical values.

Examples

```
check_minmaxl_TaskVII.2(task_vii2,minmaxLtaskVII2,MS="ITA",GSA="18")
```

```
check_presence_taskII2
```

Check of missing combination GSA/Fleet segment per year

Description

Function to verify the completeness of the GSA/Fleet segments in Task II.2 table, as reported in the combination_taskII2 table.

Usage

```
check_presence_taskII2(data1, data2, MS, GSA)
```

Arguments

data2 List of combination of the expected GSA/Fleet segments per year for Task II.2

table

MS member state code

GSA GSA code

14 check_RD_FDI_G

Value

The function returns a list of missing combinations GSA/Fleet segment per year.

Examples

```
check_presence_taskII2(task_ii2,combination_taskII2,MS="ITA",GSA="18")
```

check_RD_FDI_A

Check duplicated records in FDI A table

Description

The function check the presence of duplicated records. In particular, it checks whether the combination of the first 19 columns generates duplicate records.

Usage

```
check_RD_FDI_A(data, verbose = TRUE)
```

Arguments

data GFCM Task A table

verbose boolean. If TRUE a message is printed.

Value

The function returns the indices of the duplicated rows, checking the unique combinations of the first 19 columns of the FDI A table.

Examples

```
check_RD_FDI_A(fdi_a_catch)
```

check_RD_FDI_G

Check duplicated records in FDI G table

Description

The function check the presence of duplicated records. In particular, it checks whether the combination of the first 15 columns generates duplicate records.

Usage

```
check_RD_FDI_G(data, verbose = TRUE)
```

Arguments

data GFCM Task G table

check_RD_FDI_H

Value

The function returns the indices of the duplicated rows, checking the unique combinations of the first 15 columns of the FDI G table.

Examples

```
{\tt check\_RD\_FDI\_G(fdi\_g\_effort)}
```

check_RD_FDI_H

Check duplicated records in FDI H table

Description

The function check the presence of duplicated records. In particular, it checks whether the combination of the first 15 columns generates duplicate records.

Usage

```
check_RD_FDI_H(data, verbose = TRUE)
```

Arguments

data GFCM Task H table

verbose boolean. If TRUE a message is printed.

Value

The function returns the indices of the duplicated rows, checking the unique combinations of the first 20 columns of the FDI G table.

Examples

```
check_RD_FDI_H(fdi_h_spatial_landings)
```

check_RD_FDI_I

Check duplicated records in FDI I table

Description

The function check the presence of duplicated records. In particular, it checks whether the combination of the first 15 columns generates duplicate records.

Usage

```
check_RD_FDI_I(data, verbose = TRUE)
```

Arguments

data GFCM Task I table

16 check_RD_taskII2

Value

The function returns the indices of the duplicated rows, checking the unique combinations of the first 19 columns of the FDI G table.

Examples

```
{\tt check\_RD\_FDI\_I(fdi\_i\_spatial\_effort)}
```

check_RD_FDI_J

Check duplicated records in FDI J table

Description

The function check the presence of duplicated records. In particular, it checks whether the combination of the first 15 columns generates duplicate records.

Usage

```
check_RD_FDI_J(data, verbose = TRUE)
```

Arguments

data GFCM Task J table

verbose boolean. If TRUE a message is printed.

Value

The function returns the indices of the duplicated rows, checking the unique combinations of the first 7 columns of the FDI G table.

Examples

```
check_RD_FDI_J(fdi_j_capacity)
```

check_RD_taskII2

Check duplicated records in GFCM Task II.2 table

Description

The function check the presence of duplicated records. In particular, it checks whether the combination of the first 5 columns generates duplicate records.

Usage

```
check_RD_taskII2(data, verbose = TRUE)
```

Arguments

data GFCM Task II.2 table

check_RD_taskIII 17

Value

The function returns the indices of the duplicated rows, checking the unique combinations of the first 5 columns of the Task II.2 table.

Examples

```
check_RD_taskII2(task_ii2)
```

check_RD_taskIII

Check duplicated records in GFCM Task III table

Description

The function check the presence of duplicated records. In particular, it checks whether the combination of the first 10 columns generates duplicate records.

Usage

```
check_RD_taskIII(data, verbose = TRUE)
```

Arguments

data GFCM Task III table

verbose boolean. If TRUE a message is printed.

Value

The function returns the indices of the duplicated rows, checking the unique combinations of the first 10 columns of the Task Task III table.

Examples

```
check_RD_taskIII(task_iii)
```

check_RD_taskVII2

Check duplicated records in GFCM Task VII.2 table

Description

The function check the presence of duplicated records. In particular, it checks whether the combination of the first 9 columns generates duplicate records.

Usage

```
check_RD_taskVII2(data, verbose = TRUE)
```

Arguments

data GFCM Task VII.2 table

check_RD_TaskVII32

Value

The function returns the indices of the duplicated rows, checking the unique combinations of the first 9 columns of the Task Task VII.2 table.

Examples

```
check_RD_taskVII2(task_vii2)
```

check_RD_taskVII31

Check duplicated records in GFCM Task VII.3.1 table

Description

The function check the presence of duplicated records. In particular, it checks whether the combination of the first 5 columns generates duplicate records.

Usage

```
check_RD_taskVII31(data, verbose = TRUE)
```

Arguments

data GFCM Task VII.3.1 table

verbose boolean. If TRUE a message is printed.

Value

The function returns the indices of the duplicated rows, checking the unique combinations of the first 5 columns of the Task Task VII.3.1 table.

Examples

```
check_RD_taskVII31(task_vii31)
```

check_RD_TaskVII32

Check duplicated records in GFCM Task VII.3.2 table

Description

The function check the presence of duplicated records. In particular, it checks whether the combination of the first 10 columns generates duplicate records.

Usage

```
check_RD_TaskVII32(data, verbose = TRUE)
```

Arguments

data GFCM Task VII.3.2 table

Value

The function returns the indices of the duplicated rows, checking the unique combinations of the first 10 columns of the Task Task VII.3.2 table.

Examples

```
check_RD_TaskVII32(task_vii32)
```

```
check_species_catfau_TaskVII.3.2
```

Check mismatching species/Catfau and Sex per maturity stages for Task VII.3.2 table

Description

Function to check the correct codification of faunistic category according to species and sex in Task VII.3.2 table.

Usage

```
check_species_catfau_TaskVII.3.2(data, species, matsex, MS, GSA)
```

Arguments

data	GFCM Task VII.3.2 table
species	List of combination of species/faunistic category for Task VII.3.2 table
matsex	List of combination of sex/maturity stages for Task VII.3.2 table
MS	member state code
GSA	GSA code

Value

Two vectors are returned by the function. The first provides the list of mismatching combination of species/faunistic categories. The second vector provides the list of mismatching combination of sex/maturity stages.

```
check_species_catfau_TaskVII.3.2(task_vii32,catfau_check,sex_mat, MS="ITA",GSA="18")
```

20 combination_taskII2

circabc

Ports coordinates according to codification CIRCABC

Description

Ports coordinates according to codification CIRCABC

Usage

circabc

Format

An object of class data. frame with 24335 rows and 5 columns.

Author(s)

CIRCABC <https://circabc.europa.eu>

combination_taskII2

combination_taskII2 in GFCM datacall format

Description

combination_taskII2 in GFCM datacall format

Usage

 ${\tt combination_taskII2}$

Format

An object of class data. frame with 60 rows and 4 columns.

Author(s)

data_ex 21

data_ex

RCG CS example

Description

RCG CS example

Usage

data_ex

Format

An object of class data. frame with 9099 rows and 40 columns.

Author(s)

Isabella Bitetto

ditetto@coispa.it>

 ${\tt data_exampleCL}$

RCG CL example

Description

RCG CL example

Usage

data_exampleCL

Format

An object of class data.frame with 35 rows and 22 columns.

Author(s)

fdi_a_catch

Discard_tab_example

Discard table in MED&BS datacall format

Description

Discard table in MED&BS datacall format

Usage

Discard_tab_example

Format

An object of class data. frame with 21 rows and 114 columns.

Author(s)

Isabella Bitetto

bitetto@coispa.it>

fdi_a_catch

fdi_a_catch in FDI DGMAREMED&BS datacall format

Description

fdi_a_catch in FDI DGMAREMED&BS datacall format

Usage

fdi_a_catch

Format

An object of class data. frame with 2450 rows and 23 columns.

Author(s)

FDI_checks_spatial_HI check NA values in spatial columns of both table H and I

Description

The function checks the incorrect combination of NA in the spatial columns in both table H (Landings by rectangle) and table I (Effort by rectangle). The following check are included:

- 1. presence of NA values in 'c_square' field when 'rectangle_type', 'rectangle_lat', 'rectangle_lon' are all NA;
- 2. the presence any data in 'rectangle_type', 'rectangle_lat', 'rectangle_lon' when 'c_square' is reported;
- 3. the presence of any data in 'c-squares' when 'rectangle_type', 'rectangle_lat', 'rectangle_lon' are filled in.

Furthermore the function identifies the records without any sub-region assignment.

Usage

```
FDI_checks_spatial_HI(data, MS, verbose = FALSE)
```

Arguments

data frame of one between FDI table H (Landings by rectangle) and table I

(Effort by rectangle)

MS Country code

verbose boolean. If TRUE a message is printed.

Value

The function returns a list of 2 tables. The first (NA_inconsistencies) reports the records with the inconsistencies detected in spatial of the selected table, while the second one reports the record without any sub_region assignment.

Examples

```
FDI_checks_spatial_HI(data=fdi_h_spatial_landings,MS="PSP", verbose=TRUE)
FDI_checks_spatial_HI(data=fdi_i_spatial_effort,MS="PSP", verbose=TRUE)
```

FDI_check_coord

Compatibility of the geographical coordinates with rectangle type

Description

The function checks the compatibility of the geographical coordinates (latitude and longitude) with the value provided for the rectangle type.

Usage

```
FDI_check_coord(data, MS, verbose = FALSE)
```

24 FDI_coverage

Arguments

data frame of one between FDI table H (Landings by rectangle) and table I

(Effort by rectangle)

MS Country code

verbose boolean. If TRUE a message is printed.

Value

The data frame of the input table is returned retaining the only records in which at least one among latitude and longitude is not compatible with the rectangle type. Two more columns (lat.check and lon.check) are added to the data frame to report the results of the check respectively for latitude and longitude.

Examples

```
FDI_check_coord(data=fdi_i_spatial_effort, MS="PSP", verbose=TRUE)
```

FDI_coverage

Coverage of data by GSA and year (reporting the number of records)

Description

Coverage of data by GSA and year (reporting the number of records)

Usage

```
FDI_coverage(data, MS, verbose = TRUE)
```

Arguments

data frame. One of the allowed FDI table among A, G, H, I, J

MS Country

verbose boolean. If TRUE a message is printed.

Value

the function returns a data frame reporting the coverage of the selected table in terms of number of records by country, GSA and year

```
FDI_coverage(data=fdi_a_catch,MS="PSP", verbose = FALSE)
FDI_coverage(data=fdi_h_spatial_landings,MS="PSP", verbose = FALSE)
FDI_coverage(data=fdi_g_effort,MS="PSP", verbose = FALSE)
```

FDI_cov_tableA 25

FDI_cov_tableA

Check number of record in FDI A table

Description

The function checks and count the numbers of records data in the given table A grouped by year, GSA, MS, species, vessels length, and fishing techniques for three variables (Total live weight landed (ton), total value of landings (euro), and total discards (ton)) according to the Fisheries Dependent Information data call 2021 - Annex 1. If SP, Vessel length, and fishing technique are not specified by the user the function combines those by default.

Usage

```
FDI_cov_tableA(
  data,
  MS,
  SP = "COMBINED",
  vessel_len = "COMBINED",
  fishtech = "COMBINED",
  GSA,
  verbose = TRUE
)
```

Arguments

data	FDI table A catch
MS	member state code
SP	species reference code in the three alpha code format ("COMBINED" values perform the analysis for all species present in data)
vessel_len	vessels length code ("COMBINED" values perform the analysis for all vessels length present in data)
fishtech	selected fishing techniques ("COMBINED" values perform the analysis for all fishing techniques present in data)
GSA	GSA code
verbose	boolean. If TRUE a message is printed.

Value

The function returns a list. The first element gives the summary table of records number. From the second to the fourth element gives 3 plots for each variables among: of total live weight landed, total value of landings (euro), and total discards (ton)).

```
FDI_cov_tableA(data=fdi_a_catch, SP="MUT", MS="PSP", GSA="GSA99")
FDI_cov_tableA(data=fdi_a_catch, SP="MUT", MS="PSP",
fishtech=unique(fdi_a_catch$fishing_tech), GSA="GSA99")
FDI_cov_tableA(data=fdi_a_catch, SP="MUT", MS="PSP", GSA="GSA99")
```

26 FDI_cov_tableG

FDI_cov_tableG

Check number of record in FDI G table

Description

The function checks and count the numbers of records data in the given table grouped by year, GSA, MS, vessels length, fishing techniques, and metier for the following 8 variables: Total days at sea; Total Fishing Days; Total kW days at Sea; total GT days at sea; Total kW fishing days; totgtfishdays; Hours at Sea; kW hours at sea; according to the Fisheries Dependent Information data call 2021 - Annex 1 If Vessel length, fishing technique, and metier are not specified by the user the function combines those by default.

Usage

```
FDI_cov_tableG(
  data,
  MS,
  GSA,
  vessel_len = "COMBINED",
  fishtech = "COMBINED",
  met = "COMBINED",
  verbose = TRUE
)
```

Arguments

data FDI table G effort MS member state code

GSA GSA code

vessel_len vessels length code ("COMBINED" values perform the analysis for all vessels

length present in data)

fishtech selected fishing techniques ("COMBINED" values perform the analysis for all

fishing techniques present in data)

met selected metiers ("COMBINED" values perform the analysis for all metiers

present in data)

verbose boolean. If TRUE a message is printed.

Value

The function returns a list. The first element gives the summary table of records number. From the second to the nineth element gives 8 plots for each variables among:

- · totseadays,
- totfishdays,
- · totkwdaysatsea,
- · totgtdaysatsea,
- · totkwfishdays,
- · totgtfishdays,
- hrsea,
- kwhrsea

FDI_cross_checks_AG

27

Examples

```
FDI_cov_tableG(data=fdi_g_effort, MS="PSP", GSA="GSA99")
FDI_cov_tableG(fdi_g_effort, MS="PSP", GSA="GSA99", fishtech="DTS", met="OTB_MDD_>=40_0_0")
```

FDI_cross_checks_AG

Cross check between FDI tables A and G

Description

The function checks the possible data inconsistency between landings and effort. The two table shall have the same size. according to the Fisheries Dependent Information data call 2021 - Annex 1

Usage

```
FDI_cross_checks_AG(data1, data2, verbose = FALSE)
```

Arguments

data1 FDI table A catch data2 FDI table G effort

verbose boolean. If TRUE a message is printed.

Value

The function returns a list where all the miss matches between landings and effort are shown.

Examples

```
FDI_cross_checks_AG(data1=fdi_a_catch, data2=fdi_g_effort)
FDI_cross_checks_AG(fdi_a_catch, fdi_g_effort)
```

FDI_cross_checks_AH

Cross check between FDI tables A and H

Description

The function checks the possible data inconsistency between landings in table A and spatial landings in table H.

Usage

```
FDI_cross_checks_AH(data1, data2, verbose = FALSE)
```

Arguments

data1 FDI catch table A

data2 FDI spatial landings table H

Value

The function returns a list with two tables. In the first table all the miss matches between landings in table A and spatial landings in table H are shown, in the second table the comparison between total landings of table A and total spatial landings in table H is shown.

Examples

```
FDI_cross_checks_AH(data1 = fdi_a_catch, data2 = fdi_h_spatial_landings)
```

FDI_cross_checks_IG

Cross check between FDI tables I and G

Description

The function checks the possible data inconsistency between spatial effort in table I and effort in table G.

Usage

```
FDI_cross_checks_IG(data1, data2, verbose = FALSE)
```

Arguments

data1 FDI spatial effort in table I

data2 FDI effort table G

verbose boolean. If TRUE a message is printed.

Value

The function returns a list with two tables. In the first table all the miss matches between spatial effort in table I and effort in table G are shown, in the second table the comparison between total spatial effort of table I and total effort in table G is shown.

Examples

```
\label{local_formula} FDI\_cross\_checks\_IG(data1=fdi\_i\_spatial\_effort,\ data2=fdi\_g\_effort)
```

 ${\tt FDI_cross_checks_JG}$

Cross check between FDI tables J and G

Description

The function checks the possible data inconsistency between the amount of vessels in table J capacity and the amount of vessels in table G.

Usage

```
FDI_cross_checks_JG(data1, data2, verbose = FALSE)
```

FDI_disc_coverage 29

Arguments

data1 FDI capacity in table J

data2 FDI effort table G

verbose boolean. If TRUE a message is printed.

Value

The function returns a list with all the miss matches between number of vessels in table J and G are shown.

Examples

```
FDI_cross_checks_JG(data1=fdi_j_capacity, data2=fdi_g_effort,verbose=TRUE)
FDI_cross_checks_JG(fdi_j_capacity, fdi_g_effort)
```

FDI_disc_coverage

Coverage of FDI discard data

Description

The functions checks the discard coverage in table A (table 2.2.1) for the selected MS by GSAs

Usage

```
FDI_disc_coverage(data, MS, verbose = TRUE)
```

Arguments

data frame of the FDI table A

MS Country

verbose boolean. If TRUE a message is printed.

Value

The function returns a list of data frames by GSA reporting the landing volumes (with discard >0, =0 and =NK and total landing) by year

```
FDI_disc_coverage(fdi_a_catch, MS="PSP", verbose=TRUE)
```

fdi_g_effort

FDI fi	ishdav	vs_cov
--------	--------	--------

Coverage comparison of totfishdays between FDI tables G and I

Description

The function checks the coverage comparison of totfishdays in FDI tables G and I

Usage

```
FDI_fishdays_cov(dataG, dataI, MS, verbose = TRUE)
```

Arguments

dataG data frame of FDA table G dataI data frame of FDA table I

MS country code

verbose boolean. If TRUE a message is printed.

Value

The function returns a data frame of the comparison of totfishdays between FDI tables G and I

Examples

```
FDI_fishdays_cov (dataG=fdi_g_effort, dataI=fdi_i_spatial_effort, MS="PSP", verbose = TRUE)
```

fdi_g_effort

 fdi_g_effort in FDI DGMAREMED&BS datacall format

Description

fdi_g_effort in FDI DGMAREMED&BS datacall format

Usage

```
fdi_g_effort
```

Format

An object of class data.frame with 2450 rows and 26 columns.

Author(s)

fdi_h_spatial_land 31

fdi_h_spatial_land

fdi_h_spatial_land in FDI DGMAREMED&BS datacall format

Description

fdi_h_spatial_land in FDI DGMAREMED&BS datacall format

Usage

```
fdi_h_spatial_land
```

Format

An object of class data. frame with 5 rows and 23 columns.

Author(s)

Isabella Bitetto

bitetto@coispa.it>

```
fdi_h_spatial_landings
```

fdi_h_spatial_landings in FDI DGMAREMED&BS datacall format

Description

fdi_h_spatial_landings in FDI DGMAREMED&BS datacall format

Usage

```
fdi_h_spatial_landings
```

Format

An object of class data. frame with 2450 rows and 23 columns.

Author(s)

32 fdi_j_capacity

fdi_i_spatial_effort fdi_i_spatial_effort in FDI DGMAREMED&BS datacall format

Description

fdi_i_spatial_effort in FDI DGMAREMED&BS datacall format

Usage

```
fdi_i_spatial_effort
```

Format

An object of class data.frame with 2450 rows and 21 columns.

Author(s)

Isabella Bitetto

bitetto@coispa.it>

fdi_j_capacity

fdi_j_capacity in FDI DGMAREMED&BS datacall format

Description

fdi_j_capacity in FDI DGMAREMED&BS datacall format

Usage

```
fdi_j_capacity
```

Format

An object of class data.frame with 2450 rows and 14 columns.

Author(s)

FDI_landweight_cov 33

FDI_landweight_cov	Coverage of weight of landings in FDI table A and H	
--------------------	---	--

Description

The functions checks the coverage of weight of landings comparing data reported in table A and H

Usage

```
FDI_landweight_cov(dataA, dataH, MS, verbose = FALSE)
```

Arguments

dataA data frame of the FDI table A data frame of the FDI table H

MS Country code

verbose boolean. If TRUE a message is printed.

Value

The function returns a data frame reporting the weight of landings by GSA and by year

Examples

```
FDI_landweight_cov(dataA=fdi_a_catch, dataH=fdi_h_spatial_landings, MS="PSP", verbose = TRUE)
```

FDI_prices_cov Check prices trend in FDI A table
--

Description

The function checks the trend prices in the given table grouped by year, GSA, MS, and species. According to the Fisheries Dependent Information data call 2021 - Annex 1. If SP are not specified by the user the function combines those by default.

Usage

```
FDI_prices_cov(data, MS, SP = "COMBINED", GSA = "COMBINED", verbose = TRUE)
```

Arguments data

data	FDI table A catch
MS	member state code
SP	species reference code in the three alpha code format ("COMBINED" perform the analysis for all species present in data)

values

GSA GSA code

Value

The function returns a list. The first element gives the summary table of records number. From the second to the fourth element gives 3 plots for each variables among: of total live weight landed, total value of landings (euro), and total discards (ton)).

Examples

```
FDI_prices_cov(data = fdi_a_catch, SP = c("MUT", "HKE"), MS = "PSP", GSA = "GSA99")
FDI_prices_cov(data = fdi_a_catch, SP = "MUT", MS = "PSP", GSA = "GSA99")
```

FDI_prices_not_null

Check of species value

Description

The function estimates from the FDI table A an average price per species and year and compares it with average price calculated per country (by species). Furthermore, the function performs comparisons between total weight landings and total value landings. In particular it identifies the cases with total landings > 0 but landings value = 0. In case SP parameter is not specified, the analysis is conducted over all the species in the provided data frame.

Usage

```
FDI_prices_not_null(data, MS, SP = NA, verbose = FALSE)
```

Arguments

data data frame of FDA table A catch.

MS country code

SP vector of the species code for which the check should be performed verbose boolean. If TRUE a message is printed.

Value

the function returns a list of two data frames. The first one reports the prices comparison by species, while the second one reports the cases in which total landings > 0 but landings value = 0.

```
FDI_prices_not_null(
  data = fdi_a_catch, MS = "PSP",
  SP = c("ARA", "BOG", "HKE"), verbose = TRUE
)
```

FDI_ts_tableJ 35

FDI_ts_tableJ	Check empty fields in FDI J table
IDI_tS_tableJ	Check emply fields in TDI I lable

Description

The function checks and count the numbers of records data in the given table grouped by year, GSA, MS, vessels length, and fishing techniques for the following 4 variables: total trips; total kW; total GT; total vessels; according to the Fisheries Dependent Information data call 2021 - Annex 1

Usage

```
FDI_ts_tableJ(
  data,
  MS,
  GSA,
  vessel_len = "COMBINED",
  fishtech = "COMBINED",
  verbose = TRUE
)
```

Arguments

data FDI table J capacity

MS member state code

GSA GSA code

vessel_len vessels length code ("COMBINED" values perform the analysis for all vessels length present in data)

fishtech selected fishing techniques ("COMBINED" values perform the analysis for all fishing techniques present in data)

boolean. If TRUE a message is printed.

Value

verbose

The function returns a list. The first element gives the summary table of records number. From the second to the fifth element gives 4 plots for each variables among:

- · total trips;
- total kW;
- total GT;
- · total vessels;

```
FDI_ts_tableJ(data=fdi_j_capacity, MS="PSP", GSA="GSA99")
FDI_ts_tableJ(data=fdi_j_capacity, MS="PSP", GSA="GSA99", fishtech = c("DTS","PGP"))
```

36 FDI_vessel_numbers

FDI_vessel_lenth Check of vessel lenght in FDI table J

Description

The function checks the average length vessels with the vessel length category (table J)

Usage

```
FDI_vessel_lenth(data, MS, verbose = TRUE)
```

Arguments

data frame of table J

MS country code

verbose boolean. If TRUE a message is printed.

Value

The function returns a list of two data frames. The first reports the cases with NAs in either vessel length or vessel category or both, while the second table reports the cases in which vessel length does not match vessel length category.

Examples

```
FDI_vessel_lenth(data=fdi_j_capacity, MS="PSP", verbose = TRUE)
```

FDI_vessel_numbers Check number of vessels in FDI table J and G

Description

The function cross-checks the number of vessels in table J in comparison of the number reported in table G.

Usage

```
FDI_vessel_numbers(dataJ, dataG, MS, verbose = TRUE)
```

Arguments

data frame of FDA table J catch.
dataG data frame of FDA table G catch.

MS country code

verbose boolean. If TRUE a message is printed.

Value

The function returns a list of data frames. The first element reports the number of vessel in table J in comparison to table G and the relative difference percentage.

GP_tab_example 37

Examples

FDI_vessel_numbers(dataJ=fdi_j_capacity, dataG=fdi_g_effort, MS="PSP", verbose = TRUE)

GP_tab_example

GP table in MED&BS datacall format

Description

GP table in MED&BS datacall format

Usage

GP_tab_example

Format

An object of class data.frame with 12 rows and 22 columns.

Author(s)

Isabella Bitetto

bitetto@coispa.it>

 ${\tt Landing_tab_example}$

Landing table in MED&BS datacall format

Description

Landing table in MED&BS datacall format

Usage

Landing_tab_example

Format

An object of class data. frame with 57 rows and 114 columns.

Author(s)

Isabella Bitetto

bitetto@coispa.it>

38 MEDBS_ALK

MA_tab_example

MA table in MED&BS datacall format

Description

MA table in MED&BS datacall format

Usage

```
MA_tab_example
```

Format

An object of class data.frame with 71 rows and 11 columns.

Author(s)

Isabella Bitetto

ditetto@coispa.it>

MEDBS_ALK

Plot of Age-Length Keys

Description

The function allows to check the data in the ALK table providing plots by sex for a selected species

Usage

```
MEDBS_ALK(data, SP, MS, GSA, verbose = TRUE)
```

Arguments

data ALK table in MED&BS datacall format

SP species (three alpha code)

MS Country

GSA (Geographical sub-area (GFCM sensu))

verbose boolean value to obtain further explanation messages from the function

Value

a list of ALK plots by sex is returne

```
MEDBS_ALK(data=ALK_tab_example, SP="MUT", MS="ITA", GSA="GSA 99")
```

Description

The function allows to check the coverage in Catch table by mean of summary tables summarizing both landing and discard volumes and producing relative plots for the selected species.

Usage

```
MEDBS_Catch_coverage(data, SP, MS, GSA, verbose = TRUE)
```

Arguments

data	Catch table in MEDBS format
SP	species (three alpha code)

MS Country

GSA (Geographical sub-area (GFCM sensu))

verbose boolean value to obtain further explanation messages from the function

Value

summary table and plots

Examples

```
MEDBS_Catch_coverage(Catch_tab_example, "DPS", "ITA", "GSA 9")
```

MEDBS_check_duplicates

Check for duplicated data rows

Description

The function checks the presence of duplicated rows in both landings and discards data.

Usage

```
MEDBS_check_duplicates(data, type = "1", SP, MS, GSA, verbose = TRUE)
```

Arguments

data	data frame containing landing data
type	string vector indicating the type of table to be checked. "l" for landing; "d" for discards; "c" for catch table.
SP	vector of the species reference codes in the three alpha code format
MS	member state code
GSA	vector of the GSA codes to be included in the chack
verbose	Boolean value to obtain further explanation messages from the function

Value

The function returns a data frame containing the duplicated rows to be likely deleted from the data.

Author(s)

Alessandro Mannini alessandro.mannini@ec.europa.eu

Walter Zupa zupa@coispa.it

Isabella Bitetto bitetto@coispa.it

Examples

```
MEDBS_check_duplicates(data=Discard_tab_example,type="d",SP="DPS",MS="ITA",GSA="GSA 9",verbose=TRUE)
MEDBS_check_duplicates(data=Landing_tab_example,type="1",SP="DPS",MS="ITA",GSA="GSA 9",verbose=TRUE)
MEDBS_check_duplicates(data=Catch_tab_example,type="c",SP="DPS",MS="ITA",GSA="GSA 9",verbose=TRUE)
```

MEDBS_comp_disc_YQ

Comparison between discards in weight by quarter and -1

Description

The function allows to compare the discards weights aggregated by quarter and by year for a selected species at the gear level.

Usage

```
MEDBS_comp_disc_YQ(data, MS, GSA, SP)
```

Arguments

data data frame containing discards data

MS member state code as it is reported in the discards data

GSA GSA code

SP species reference code in the three alpha code format

Value

The function returns a data frame for the comparison of discards aggregated by quarters and by year

Author(s)

Alessandro Mannini alessandro.mannini@ec.europa.eu Walter Zupa zupa@coispa.it

Isabella Bitetto bitetto@coispa.it

```
MEDBS_comp_disc_YQ(data=Discard_tab_example,MS="ITA",GSA="GSA 9",SP="DPS")
```

```
MEDBS_comp_disc_YQ_fishery
```

Comparison between discards in weight by quarter, quarter -1 and by fishery

Description

The function allow to estimates the discards in weight for a selected species by quarter and fishery

Usage

```
MEDBS_comp_disc_YQ_fishery(data, MS, GSA, SP, verbose = TRUE)
```

Arguments

data	data frame containing discards data
пата	data trame containing discards data

MS member state code as it is reported in the discards data

GSA GSA code

SP species reference code in the three alpha code format

verbose boolean value to obtain further explanation messages from the function

Value

The function returns a data frame for the comparison of discards aggregated by quarters and by year and fishery

Author(s)

Alessandro Mannini alessandro.mannini@ec.europa.eu

Walter Zupa zupa@coispa.it

Isabella Bitetto bitetto@coispa.it

Examples

```
MEDBS_comp_disc_YQ_fishery(data=Discard_tab_example,MS="ITA",GSA="GSA 9",SP="DPS")
```

MEDBS_comp_land_Q_VL Comparison between landings in weight by quarter accounting for vessel length

Description

The function allows to perform the comparison of landings of a selected species aggregated by quarters accounting for the presence of vessel length

Usage

```
MEDBS_comp_land_Q_VL(data, SP, MS, GSA, verbose = TRUE)
```

Arguments

data data frame containing landing data

SP species reference code in the three alpha code format

MS member state code

GSA GSA code

verbose boolean value to obtain further explanation messages from the function

Value

The function returns a dataframe for the comparison of landings aggregated by quarters accounting for the presence of vessel length information.

Author(s)

Alessandro Mannini alessandro.mannini@ec.europa.eu

Walter Zupa zupa@coispa.it

Isabella Bitetto bitetto@coispa.it

Examples

```
MEDBS_comp_land_Q_VL(data = Landing_tab_example, MS = "ITA", GSA = "GSA 9", SP = "DPS")
```

```
MEDBS_comp_land_Q_VL_fishery
```

Comparison between landings in weight by quarter and fishery accounting for vessel length

Description

The function allows to perform the comparison of landings of a selected species aggregated by quarters and fishery accounting for the presence of vessel length

Usage

```
MEDBS_comp_land_Q_VL_fishery(data, SP, MS, GSA, verbose = TRUE)
```

Arguments

data data frame containing landing data

SP species reference code in the three alpha code format

MS member state code

GSA GSA code

verbose boolean value to obtain further explanation messages from the function

Value

The function returns a data frame for the comparison of landings aggregated by quarters and fishery accounting for the presence of vessel length information.

Author(s)

Alessandro Mannini alessandro.mannini@ec.europa.eu

Walter Zupa zupa@coispa.it

Isabella Bitetto bitetto@coispa.it

Examples

```
MEDBS_comp_land_Q_VL_fishery(data = Landing_tab_example, SP = "DPS", MS = "ITA", GSA = "GSA 9")
```

MEDBS_comp_land_YQ

Comparison between landings in weight by quarter and -1

Description

The function allows to perform the comparison of landings of a selected species aggregated by quarters and by year

Usage

```
MEDBS_comp_land_YQ(data, SP, MS, GSA, verbose = TRUE)
```

Arguments

data data frame containing landing data

SP species reference code in the three alpha code format

MS member state code

GSA GSA code

verbose boolean value to obtain further explanation messages from the function

Value

The function returns a data frame for the comparison of landings aggregated by quarters and by year

Author(s)

Alessandro Mannini alessandro.mannini@ec.europa.eu

Walter Zupa zupa@coispa.it

Isabella Bitetto bitetto@coispa.it

```
MEDBS_comp_land_YQ(data=Landing_tab_example,SP="DPS",MS="ITA",GSA="GSA 9")
```

MEDBS_comp_land_YQ_fishery

Comparison between landings in weight by quarter, quarter -1 and by fishery

Description

The function allows to perform the comparison of landings of a selected species aggregated by quarters and by year and fishery

Usage

```
MEDBS_comp_land_YQ_fishery(data, SP, MS, GSA, verbose = TRUE)
```

Arguments

data data frame containing landing data

SP species reference code in the three alpha code format

MS member state code

GSA GSA code

verbose boolean value to obtain further explanation messages from the function

Value

The function returns a data frame for the comparison of landings aggregated by quarters and by year and fishery

Author(s)

Alessandro Mannini alessandro.mannini@ec.europa.eu

Walter Zupa zupa@coispa.it

Isabella Bitetto bitetto@coispa.it

Examples

```
MEDBS_comp_land_YQ_fishery(data = Landing_tab_example, SP = "DPS", MS = "ITA", GSA = "GSA 9")
```

MEDBS_discard_coverage

Discard_cov: function to check the coverage in discard table

Description

The function allows to check the coverage of the time series in discard table for a selected species.

Usage

```
MEDBS_discard_coverage(Discard_tab, SP, MS, GSA, verbose = TRUE)
```

Arguments

SP species (three alpha code)

MS Country

GSA (Geographical sub-area (GFCM sensu))

verbose boolean value to obtain further explanation messages from the function

Value

summary table and plots of discard time series by year and gear

Examples

```
MEDBS_discard_coverage(Discard_tab_example, "DPS", "ITA", "GSA 9")
```

MEDBS_disc_mean_weight

Mean weight by year, gear and fishery aggregation

Description

The function allows to check consistency of mean discard of a selected species plotting the discards' weight by year, gear and fishery

Usage

```
MEDBS_disc_mean_weight(data, SP, MS, GSA, verbose = TRUE)
```

Arguments

data data frame containing discards data

SP species reference code in the three alpha code format

MS member state code as it is reported in the discards data

GSA GSA code

verbose boolean value to obtain further explanation messages from the function

Value

The function returns a plot of the mean discards weight by year, gear and fishery aggregation

Author(s)

Alessandro Mannini alessandro.mannini@ec.europa.eu

Walter Zupa zupa@coispa.it

Isabella Bitetto bitetto@coispa.it

```
MEDBS_disc_mean_weight(data=Discard_tab_example,SP="DPS",MS="ITA",GSA="GSA 9")
```

46 MEDBS_ks

MEDBS_GP_check GP_tab (growth params) table check

Description

The function allows to check the growth parameters by sex and year for a selected species

Usage

```
MEDBS_GP_check(data, SP, MS, GSA)
```

Arguments

data	growth params table in MED&BS datacall format
SP	species (three alpha code)
MS	Country
GSA	GSA (Geographical sub-area (GFCM sensu))

Value

a list of objects containing a summary table and different plots of the growth curves by sex and year.

Examples

```
MEDBS_GP_check(GP_tab_example,"MUT","ITA","GSA 18")
```

MEDBS_ks	Kolmogorov-Smirnov test
TIEDDO_KO	Romogorov Smirnov test

Description

The function allows to perform the Kolmogorov-Smirnov test on both landings and discards for a selected species providing cumulative length distribution plots by fishery and year. The function performs Kolmogorov-Smirnov tests on couples of years to assess if they belong to the same population.

Usage

```
MEDBS_ks(data, type, SP, MS, GSA, Rt = 1, verbose = TRUE)
```

Arguments

do+o	data franca of landings on discounds data
data	data frame of landings or discards data
type	type of data frame. "I" for landing and "d" for discard
SP	species reference code in the three alpha code format
MS	member state code
GSA	GSA code
Rt	ratio to be applied to subsample data to reduce the risk of rejection of H0 Hypothesis
verbose	boolean value to obtain further explanation messages from the function

Value

the function returns a list of data frames and cumulatine distribution plots

Author(s)

```
Alessandro Mannini alessandro.mannini@ec.europa.eu
```

Isabella Bitetto bitetto@coispa.it

Walter Zupa zupa@coispa.it

Examples

```
MEDBS_ks(data=Landing_tab_example, type="l", SP="DPS", MS="ITA", GSA="GSA 9", Rt=1)
```

```
MEDBS_Landing_coverage
```

Landing_cov: function to check the coverage in Landing table

Description

the function allows to check the coverage in landing table providing a summary table and a plot of landing

Usage

```
MEDBS_Landing_coverage(data, SP, MS, GSA, verbose = TRUE)
```

Arguments

data	Landing table in MED&BS	format
------	-------------------------	--------

SP species (three alpha code)

MS Country

GSA (Geographical sub-area (GFCM sensu))

verbose boolean value to obtain further explanation messages from the function

Value

a list containing a summary table and coverage plot is provided

```
MEDBS_Landing_coverage(Landing_tab_example, "DPS", "ITA", "GSA 9")
```

MEDBS_land_mean_weight

Mean weight by year, gear and fishery aggregation

Description

The function allows to check consistency of mean landing of a selected species plotting the landings' weight by year, gear and fishery

Usage

```
MEDBS_land_mean_weight(data, SP, MS, GSA, verbose = TRUE)
```

Arguments

data data frame containing landing data

SP species reference code in the three alpha code format

MS member state code

GSA GSA code

verbose boolean value to obtain further explanation messages from the function

Value

The function returns a plot of the mean landing weight by year, gear and fishery aggregation, and return the data frame as well.

Author(s)

Alessandro Mannini alessandro.mannini@ec.europa.eu

Walter Zupa zupa@coispa.it

Isabella Bitetto bitetto@coispa.it

Examples

```
MEDBS_land_mean_weight(data=Landing_tab_example,SP="DPS",MS="ITA",GSA="GSA 9")
```

MEDBS_lengthclass_0 Length classes number 0 in landings and discards

Description

The function checks landings and discards for the presence of length class filled in having weigth > 0.

Usage

```
MEDBS_lengthclass_0(data, type = "1", SP, MS, GSA, verbose = TRUE)
```

MEDBS_length_ind 49

Arguments

data	data frame containing landing data
type	string vector indicating the type of table to be checked. "I" for landing; "d" for discards.
SP	species reference code in the three alpha code format
MS	member state code
GSA	GSA code
verbose	Boolean value to obtain further explanation messages from the function

Value

The function returns a data frame with the rows with 0 values length class having weigth > 0.

Author(s)

```
Alessandro Mannini alessandro.mannini@ec.europa.eu
Walter Zupa zupa@coispa.it
Isabella Bitetto bitetto@coispa.it
```

Examples

```
\label{lengthclass_0} $$ MEDBS_lengthclass_0(data=Landing_tab_example,type="l",SP="DPS",MS="ITA",GSA="GSA 9",verbose=TRUE) $$ MEDBS_lengthclass_0(data=Discard_tab_example,type="d",SP="DPS",MS="ITA",GSA="GSA 9",verbose=TRUE) $$ MEDBS_lengthclass_0(data=Discard_tab_example,type="d",SP="DPS",MS="TTA",GSA="GSA 9",verbose=TRUE) $$ MEDBS_lengthclass_0(data=Discard_tab_example,type="d",SP="DPS",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="TTA",MS="T
```

MEDBS_length_ind

Main length size indicators

Description

The function allows to check the consistency of length data for a selected species on both landings and discards: Main length size indicators

Usage

```
MEDBS_length_ind(
  data,
  type,
  SP,
  MS,
  GSA,
  splines = c(0.2, 0.4, 0.6, 0.8),
  Xtresholds = c(0.25, 0.5, 0.75),
  verbose = TRUE
)
```

50 MEDBS_LW_check

Arguments

data frame of landings or discards data

type type of data frame. "I" for landing and "d" for discard SP species reference code in the three alpha code format

MS member state code

GSA GSA code

splines spline values assignment to fit cumulative distributions

Xtresholds threshold value

verbose boolean value to obtain further explanation messages from the function

Value

The function returns a plot of the Main length size indicators time series by fishery

Author(s)

Alessandro Mannini alessandro.mannini@ec.europa.eu

Walter Zupa zupa@coispa.it

Isabella Bitetto bitetto@coispa.it

Examples

```
\label{eq:medbs_length} $$ MEDBS_length_ind(Landing_tab_example,type="1",SP="DPS",MS=c("ITA"), GSA=c("GSA 9"), splines=c(0.2,0.4,0.6,0.8), $$ Xtresholds = c(0.25,0.5,0.75)) $$ MEDBS_length_ind(Discard_tab_example,type="d",SP="DPS",MS=c("ITA"), GSA=c("GSA 9"), splines=c(0.2,0.4,0.6,0.8), $$ Xtresholds = c(0.25,0.5,0.75)) $$
```

MEDBS_LW_check

LW params in GP_tab in table check

Description

The function allows to check the length-weight parameters included in the GP table for a selected species

Usage

```
MEDBS_LW_check(data, SP, MS, GSA, verbose = TRUE)
```

Arguments

data growth params table in MED&BS datacall format

SP species (three alpha code)

MS Country

GSA (Geographical sub-area (GFCM sensu))

verbose boolean value to obtain further explanation messages from the function

MEDBS_MA_check 51

Value

a summary table and plots of the LW params

Examples

```
MEDBS_LW_check(GP_tab_example,"MUT","ITA","GSA 18")
```

MEDBS_MA_check

MA_tab (maturity at age) table check

Description

The function allows to check the maturity at age (MA) table providing a summary table of the data coverage and plots for the selected species of the proportion of matures for age class by sex and year.

Usage

```
MEDBS_MA_check(data, SP, MS, GSA, verbose = TRUE)
```

Arguments

data	maturity at	AGE table in	n MED&BS (datacall format

SP species (three alpha code)

MS Country

GSA (Geographical sub-area (GFCM sensu))

verbose boolean value to obtain further explanation messages from the function

Value

a summary table and plots

```
MEDBS_MA_check(MA_tab_example,"DPS","ITA","GSA 99")
```

Description

The function allows to check the maturity at length (ML) table providing a summary table of the data coverage and plots for the selected species of the proportion of matures for age class by sex and year.

Usage

```
MEDBS_ML_check(data, SP, MS, GSA, verbose = TRUE)
```

Arguments

data	maturity at length table in MED&BS datacall format
SP	species (three alpha code)
MS	Country
GSA	GSA (Geographical sub-area (GFCM sensu))

verbose boolean value to obtain further explanation messages from the function

Value

a summary table and plots

Examples

```
MEDBS_ML_check(ML_tab_example, "DPS", "ITA", "GSA 99")
```

```
{\tt MEDBS\_plot\_discard\_ts} \quad \textit{Plot of total discards}
```

Description

The function estimates the total discard time series by both year and quarters for a selected combination of member state, GSA and species.

Usage

```
MEDBS_plot_discard_ts(data, SP, MS, GSA, by = "year")
```

Arguments

data	data frame containing discard data
SP	species reference code in the three alpha code format
MS	member state code as it is reported in the discard data
GSA	GSA code
by	string defining the temporal aggregation level of discard data to be plotted. Allowed values are: "year" and "quarter

Value

The function returns a plot of the total discard time series by year or by quarters. The plot by year also reports the landing by gear.

Author(s)

Alessandro Mannini alessandro.mannini@ec.europa.eu Walter Zupa zupa@coispa.it

Isabella Bitetto bitetto@coispa.it

Examples

```
MEDBS_plot_discard_ts(data=Discard_tab_example,SP="DPS",MS="ITA",GSA="GSA 9",by="quarter")
MEDBS_plot_discard_ts(data=Discard_tab_example,SP="DPS",MS="ITA",GSA="GSA 9",by="year")
```

MEDBS_plot_disc_vol

Plot of total discards by gear and fishery

Description

The function allows to visual check the time series of discard volumes by fishery of a selected species

Usage

```
MEDBS_plot_disc_vol(data, SP, MS, GSA)
```

Arguments

data data frame containing discard data

SP species reference code in the three alpha code format

MS member state code as it is reported in the discard data

GSA GSA code

Value

The function returns a plot of the total discards time series by fishery and gear

Author(s)

Alessandro Mannini alessandro.mannini@ec.europa.eu Walter Zupa zupa@coispa.it Isabella Bitetto bitetto@coispa.it

```
MEDBS_plot_disc_vol(data=Discard_tab_example, SP="DPS", MS="ITA", GSA="GSA 9")
```

Description

The function estimates the total landings time series by both year and quarters for a selected combination of member state, GSA and species.

Usage

```
MEDBS_plot_landing_ts(data, SP, MS, GSA, by = "year", verbose = TRUE)
```

Arguments

data	data frame containing landing data
SP	species reference code in the three alpha code format
MS	member state code
GSA	GSA code
by	string defining the temporal aggregation level of landing data to be plotted. Allowed values are: "year" and "quarter
verbose	boolean value to obtain further explanation messages from the function

Value

The function returns a plot of the total landing time series by year or by quarters. The plot by year also reports the landing by gear.

Author(s)

Alessandro Mannini alessandro.mannini@ec.europa.eu

Walter Zupa zupa@coispa.it

Isabella Bitetto bitetto@coispa.it

```
MEDBS_plot_landing_ts(data=Landing_tab_example,SP="DPS",MS="ITA",GSA="GSA 9",by="quarter")
MEDBS_plot_landing_ts(data=Landing_tab_example,SP="DPS",MS="ITA",GSA="GSA 9",by="year")
```

MEDBS_plot_land_vol

Plot of total landing by gear and fishery

Description

The function allows to visual check the time series of landing volumes by fishery of a selected species

Usage

```
MEDBS_plot_land_vol(data, SP, MS, GSA, verbose = TRUE)
```

Arguments

data frame containing landing data

SP species reference code in the three alpha code format

MS member state code

GSA GSA code

verbose boolean value to obtain further explanation messages from the function

Value

The function returns a plot of the total landing time series by fishery and gear

Author(s)

Alessandro Mannini alessandro.mannini@ec.europa.eu

Walter Zupa zupa@coispa.it

Isabella Bitetto bitetto@coispa.it

Examples

```
MEDBS_plot_land_vol(data=Landing_tab_example,SP="DPS",MS="ITA",GSA="GSA 9")
```

MEDBS_SA_check

SA_tab (sex ratio at age) table check

Description

The function allows to check the sex ratio at age (SA) table providing a summary table of the data coverage and plots for the selected species of the proportion of sex ratio for age class by year.

Usage

```
MEDBS_SA_check(data, SP, MS, GSA, verbose = TRUE)
```

56 MEDBS_SL_check

Arguments

data sex ratio at age table in MED&BS datacall format

SP species (three alpha code)

MS Country

GSA (Geographical sub-area (GFCM sensu))

verbose boolean value to obtain further explanation messages from the function

Value

a summary table and plots

Examples

```
MEDBS_SA_check(SA_tab_example, "DPS", "ITA", "GSA 99")
```

MEDBS_SL_check SL_tab (sex ratio at length) table check

Description

The function allows to check the sex ratio at length (SL) table providing a summary table of the data coverage and plots for the selected species of the proportion of sex ratio for length class by year.

Usage

```
MEDBS_SL_check(data, SP, MS, GSA, verbose = TRUE)
```

Arguments

data sex ratio at length table in MED&BS datacall format

SP species (three alpha code)

MS Country

GSA (Geographical sub-area (GFCM sensu))

verbose boolean value to obtain further explanation messages from the function

Value

a summary table and plots

```
MEDBS_SL_check(SL_tab_example, "DPS", "ITA", "GSA 99")
```

MEDBS_SOP 57

MEDBS_SOP	um of products	

Description

um of products

Usage

```
MEDBS_SOP(data, SP, MS, GSA, threshold = 5, verbose = TRUE)
```

Arguments

data	Catch table in MED&BS datacall format
SP	species (three alpha code)
MS	Country
GSA	GSA (Geographical sub-area (GFCM sensu))
threshold	threshold value in percentage to check the percentage difference between SOP and both volumes of landing and discard. Default value is 5%
verbose	boolean value to obtain further explanation messages from the function

Value

the function returns a data frame of the record with values of percentage difference between SOP and both volumes of landing and discard greater then threshold value.

Examples

```
\label{eq:medbs_sop} $$ MEDBS_SOP(data=Catch\_tab\_example,SP="DPS",MS="ITA",GSA="GSA 9",threshold = 5) $$
```

MEDBS_weight_0	weight 0 in landings and discards	
----------------	-----------------------------------	--

Description

The function checks landings or discards in weight equal to 0 having length classes filled in

Usage

```
MEDBS_weight_0(data, type = "1", SP, MS, GSA, verbose = TRUE)
```

Arguments

data	data.table object containing landing or discard data
type	type of table: "I" for landings; "d" for discards
SP	species reference code in the three alpha code format
MS	member state code as it is reported in both landing and discard data
GSA	GSA code
verbose	boolean value to obtain further explanation messages from the function

Value

The function returns the number of rows with 0 values in weights having length classes filled in.

Author(s)

```
Alessandro Mannini alessandro.mannini@ec.europa.eu
Walter Zupa zupa@coispa.it
Isabella Bitetto bitetto@coispa.it
```

Examples

```
\label{lem:medbs_weight_0} $$ $$ MEDBS_{weight_0}(data=Landing_tab_example, type="l",SP="DPS",MS="ITA",GSA="GSA 9", verbose=TRUE) $$ MEDBS_{weight_0}(data=Discard_tab_example, type="d",SP="DPS",MS="ITA",GSA="GSA 9", verbose=TRUE) $$ MEDBS_{weight_0}(data=Discard_tab_example, type="d",SP="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="DPS",MS="
```

MEDBS_weight_minus1 weight -1 in landings

Description

The function checks landings in weight equal to -1 having length class filled in

Usage

```
MEDBS_weight_minus1(data, type = "1", SP, MS, GSA, verbose = TRUE)
```

Arguments

data	data.table object containing landing or discards data
type	type of table: "l" for landings; "d" for discards
SP	species reference code in the three alpha code format

MS member state code

GSA GSA code

verbose Boolean value to obtain further explanation messages from the function

Value

The function returns the number of rows with -1 values in landing weights having length class filled in.

Author(s)

```
Alessandro Mannini alessandro.mannini@ec.europa.eu
Walter Zupa zupa@coispa.it
Isabella Bitetto bitetto@coispa.it
```

```
MEDBS_weight_minus1(data=Landing_tab_example,type="1",SP="DPS",MS="ITA",GSA="GSA 9",verbose=TRUE)
MEDBS_weight_minus1(data=Discard_tab_example,type="d",SP="DPS",MS="ITA",GSA="GSA 9",verbose=TRUE)
```

MEDBS_yr_missing_length

Years with missing length distributions

Description

The function checks the presence of years with missing length distributions in both landings and discards for a selected species

Usage

```
MEDBS_yr_missing_length(data, type, SP, MS, GSA)
```

Arguments

data	data frame of landings or discards data
type	type of data frame. "I" for landing and "d" for discard
SP	species reference code in the three alpha code format
MS	member state code
GSA	GSA code

Value

the function returns a data frame containing the reference combination of year, gear and fishery missing length distributions

Author(s)

```
Alessandro Mannini alessandro.mannini@ec.europa.eu
Walter Zupa zupa@coispa.it
Isabella Bitetto bitetto@coispa.it
```

Examples

```
MEDBS_yr_missing_length(data=Discard_tab_example,type="d",SP="DPS",MS="ITA",GSA="GSA 9")
MEDBS_yr_missing_length(data=Landing_tab_example,type="1",SP="DPS",MS="ITA",GSA="GSA 9")
```

minmaxLtaskVII2

minmaxLtaskVII2 in GFCM datacall format

Description

minmaxLtaskVII2 in GFCM datacall format

Usage

minmaxLtaskVII2

60 ML_tab_example

Format

An object of class data. frame with 26 rows and 3 columns.

Author(s)

Isabella Bitetto

bitetto@coispa.it>

minmaxLtaskVII31

minmaxLtaskVII31 in GFCM datacall format

Description

minmaxLtaskVII31 in GFCM datacall format

Usage

minmaxLtaskVII31

Format

An object of class data. frame with 36 rows and 4 columns.

Author(s)

Isabella Bitetto

bitetto@coispa.it>

 ${\tt ML_tab_example}$

ML table in MED&BS datacall format

Description

ML table in MED&BS datacall format

Usage

ML_tab_example

Format

An object of class data. frame with $437\ rows$ and $12\ columns$.

Author(s)

Isabella Bitetto

bitetto@coispa.it>

RCG_check_AL 61

DCC	مام ماد	A I
RCG	check	AL

Check consistency of age-length relationship

Description

Check consistency of age-length relationship

Usage

```
RCG_check_AL(data, MS, GSA, SP, min_age = 0, max_age = 30, verbose = TRUE)
```

Arguments

data	table of detailed data in RCG format
MS	member state code
GSA	GSA code
SP	reference species for the analysis

min_age minimum age expected max_age maximum age expected

verbose boolean. If it is TRUE messages are reported with the outputs

Value

summary table length-age and error (if any)

Examples

```
RCG_check_AL(data_ex,MS="ITA",GSA="GSA99",SP="Mullus barbatus",min_age=0,max_age=30)
```

RCG_check_CL

Quality checks on CL RCG table

Description

The output is a list of 6 data frames:

- 1. Sum of Landings by year, quarter and month;
- 2. Sum of Landing value by year, quarter and month;
- 3. Sum of landings by LandCtry, VslFlgCtry, Area, Rect, SubRect, Harbour;
- 4. Sum of landing value by LandCtry, VslFlgCtry, Area, Rect, SubRect, Harbour;
- 5. Sum of landings by Year, Species, foCatEu5, foCatEu6;
- 6. Sum of landing value by Year, Species, foCatEu5, foCatEu6.

Usage

```
RCG_check_CL(data, MS, GSA, SP, verbose = TRUE)
```

62 RCG_check_LFD

Arguments

data Landing table in RCG CL format

MS member state code

GSA GSA code

SP reference species for the analysis

verbose boolean. If it is TRUE messages are reported with the outputs

Value

Checks_CL list of tables for temporal, spatial, species and metier coverage

Examples

```
RCG_check_CL(data_exampleCL, MS="COUNTRY1", GSA="GSA99", SP="Parapenaeus longirostris")
```

Description

The function allows to check the consistency of LFDs (length frequency distributions) by year on a given species generating a multi-frame plot. The function also returns the records in which the length classes are greater or lower than the expected ones (min_len and max_len parameters).

Usage

```
RCG_check_LFD(data, MS, GSA, SP, min_len = 1, max_len = 1000, verbose = TRUE)
```

Arguments

data	RCG CS table
MS	member state code

GSA GSA code

SP reference species for the analysis

min_len minimum length
max_len maximum length

verbose boolean. If it is TRUE messages are reported with the outputs

Value

comparison plot of LFDs among the years and check of length range of the data using allowed range

```
RCG_check_LFD(data_ex,MS="ITA",GSA="GSA99", SP="Mullus barbatus",min_len=1,max_len=35)
```

```
RCG_check_LFD_comm_cat
```

Check consistency of LFD by year and commercial category

Description

The function allows to check the consistency of LFDs (length frequency distributions) by year and commercial size cetegory on a given species generating a multi-frame plot. The function also returns a data frame with the length range by year and commercial size category.

Usage

```
RCG_check_LFD_comm_cat(data, MS, GSA, SP, verbose = TRUE)
```

Arguments

data	RCG CS table
MS	member state code
GSA	GSA code
SP	reference species for the analysis

verbose boolean. If it is TRUE messages are reported with the outputs

Value

plot and a summary table with ranges by year and commercial category

Examples

```
RCG_check_LFD_comm_cat(data_ex,MS="ITA",GSA="GSA99", SP="Mullus barbatus")
```

Description

The function allows to check the spatial distribution of data using the initial and final coordinates, where available, and the ports position included in the data.

If Initial and/or Final coordinates are included in the data, maps of them are produced. If not the locations of the harbours are mapped.

Usage

```
RCG_check_loc(data, ports = circabc)
```

Arguments

data detailed data in RCG CS format

ports ports codification file

64 RCG_check_lw

Value

map of trip locations

Examples

```
RCG_check_loc(data_ex)
```

RCG_check_lw

Consistency of length-weight relationship and consistency with allowed ranges

Description

The function allows to check the consistency of length-weight relationship by sex and year on a given species generating a multi-frame plot. The function also returns the records in which the individual weights are greater or lower than the expected ones (Min and Max parameters).

Usage

```
RCG_check_lw(data, MS, GSA, SP, Min = 0, Max = 1000, verbose = TRUE)
```

Arguments

data	table of detailed data in RCG format
MS	member state code
GSA	GSA code
SP	reference species for the analysis
Min	min weight expected in the data
Max	max weight expected in the data

verbose boolean. If it is TRUE messages are reported with the outputs

Value

Plot and error message

```
RCG_check_lw(data_ex,MS="ITA",GSA="GSA99", SP="Mullus barbatus",Min=0,Max=1000)
```

RCG_check_mat 65

RCG_check_mat Che	ck consistency sex and maturity stage
-------------------	---------------------------------------

Description

The function allows to perform a visual check of the maturity stage composition by length class, sex and year.

Usage

```
RCG_check_mat(data, MS, GSA, SP, verbose = TRUE)
```

Arguments

data	table of detailed data in RCG format
MS	member state code
GSA	GSA code
SP	reference species for the analysis
verbose	boolean. If it is TRUE messages are reported with the outputs

Value

The function the returns the plot of the maturity stages by length class

Examples

```
RCG_check_mat(data_ex,MS="ITA",GSA="GSA99",SP="Mullus barbatus")
```

```
RCG_check_mat_ogive Maturity ogives by sex
```

Description

The function allows to check the maturity stages composition estimating the maturity ogives by sex for the selected species, using a selected pool of stages to classify the immature stages in the sample.

Usage

```
RCG_check_mat_ogive(
  data,
  MS,
  GSA,
  SP,
  sex,
  immature_stages = c("0", "1", "2a"),
  verbose = TRUE
)
```

Arguments

data table of detailed data in RCG format

MS member state code

GSA GSA code

SP reference species for the analysis

sex defines the sex of the individuals selected for the analysis ('F' for females, 'M'

for males)

immature_stages

maturity stages considered immature

verbose boolean. If it is TRUE messages are reported with the outputs

Value

Plot ogive by sex

Examples

```
 RCG\_check\_mat\_ogive(data\_ex,MS="ITA",GSA="GSA99",SP="Mullus barbatus",sex="F",immature\_stages=c("0","1","2a"))
```

RCG_summarize_ind_meas

Number of individual by trip for which biological data have been collected (length, sex, maturity, weight and age)

Description

Number of individual by trip for which biological data have been collected (length, sex, maturity, weight and age)

Usage

```
RCG_summarize_ind_meas(data, MS, GSA, SP, verbose = TRUE)
```

Arguments

data detailed data in RCG CS format

MS member state code

GSA GSA code

SP species reference code in the three alpha code format

verbose boolean value to obtain further explanation messages from the function

Value

a list containing a summary of measurements by trip for each biological variable

```
RCG_summarize_ind_meas(data=data_ex,MS="ITA",GSA="GSA99",SP="Mullus barbatus")
```

RCG_summarize_trips summarizing the number of trips/hauls monitored by year by port, metier, sampling method;

Description

summarizing the number of trips/hauls monitored by year by port, metier, sampling method;

Usage

```
RCG_summarize_trips(data, MS, GSA, SP, verbose = TRUE)
```

Arguments

data	RCG CS table
MS	member state code

GSA code

SP species reference code in the three alpha code format

verbose boolean value to obtain further explanation messages from the function

Value

Number of trips by area, year, port, metier and sampling method

Examples

```
RCG_summarize_trips(data_ex,MS="ITA",GSA="GSA99",SP="Mullus barbatus")
```

SA_table in MED&BS datacall format

Description

SA table in MED&BS datacall format

Usage

SA_tab_example

Format

An object of class data. frame with 74 rows and 9 columns.

Author(s)

Isabella Bitetto

ditetto@coispa.it>

SL_tab_example

sex_mat

sex_mat in GFCM datacall format

Description

sex_mat in GFCM datacall format

Usage

sex_mat

Format

An object of class spec_tbl_df (inherits from tbl_df, tbl, data.frame) with 42 rows and 5 columns.

Author(s)

Isabella Bitetto

bitetto@coispa.it>

SL_tab_example

SL table in MED&BS datacall format

Description

SL table in MED&BS datacall format

Usage

SL_tab_example

Format

An object of class data. frame with 454 rows and 10 columns.

Author(s)

Isabella Bitetto

bitetto@coispa.it>

task_ii2

task_ii2

task_ii2 in GFCM DCRF datacall format

Description

task_ii2 in GFCM DCRF datacall format

Usage

task_ii2

Format

An object of class data. frame with 5 rows and 9 columns.

Author(s)

Isabella Bitetto

bitetto@coispa.it>

task_iii

task_iii in GFCM DCRF datacall format

Description

task_iii in GFCM DCRF datacall format

Usage

task_iii

Format

An object of class data. frame with 5 rows and 16 columns.

Author(s)

Isabella Bitetto

bitetto@coispa.it>

70 task_vii31

task_vii2

task_vii2 in GFCM DCRF datacall format

Description

```
task_vii2 in GFCM DCRF datacall format task_vii31 in GFCM DCRF datacall format
```

Usage

```
task_vii2
```

task_vii2

Format

An object of class data. frame with 20 rows and 13 columns.

An object of class data.frame with 20 rows and 13 columns.

Author(s)

Isabella Bitetto

bitetto@coispa.it>

task_vii31

task_vii31 in GFCM datacall format

Description

```
task_vii31 in GFCM datacall format
```

Usage

```
task_vii31
```

Format

An object of class data. frame with 5 rows and 8 columns.

Author(s)

Isabella Bitetto

bitetto@coispa.it>

task_vii32 71

task_vii32

task_vii32 in GFCM DCRF datacall format

Description

task_vii32 in GFCM DCRF datacall format

Usage

task_vii32

Format

An object of class data. frame with 10 rows and 15 columns.

Author(s)

Isabella Bitetto

ditetto@coispa.it>

Index

* CIRCABC	Landing_tab_example, 37
circabc, 20	MA_tab_example, 38
* CL,	ML_tab_example, 60
data_exampleCL, 21	SA_tab_example, 67
* CS	SL_tab_example, 68
data_ex, 21	* RCG,
* DCRF	data_exampleCL, 21
task_ii2, 69	* RCG
task_iii, 69	data_ex, 21
task_vii2, 70	* datacall
task_vii32, 71	ALK_tab_example, 4
* DGMAREMED&BS	Catch_tab_example, 4
fdi_a_catch, 22	catfau_check, 5
fdi_g_effort, 30	<pre>combination_taskII2, 20</pre>
fdi_h_spatial_land, 31	Discard_tab_example, 22
fdi_h_spatial_landings, 31	fdi_a_catch, 22
fdi_i_spatial_effort, 32	fdi_g_effort, 30
fdi_j_capacity, 32	fdi_h_spatial_land, 31
* FDI	fdi_h_spatial_landings, 31
fdi_a_catch, 22	<pre>fdi_i_spatial_effort, 32</pre>
fdi_g_effort, 30	fdi_j_capacity, 32
fdi_h_spatial_land, 31	GP_tab_example, 37
fdi_h_spatial_landings, 31	Landing_tab_example, 37
fdi_i_spatial_effort, 32	MA_tab_example, 38
fdi_j_capacity, 32	minmaxLtaskVII2, 59
* GFCM	minmaxLtaskVII31,60
catfau_check, 5	ML_tab_example, 60
<pre>combination_taskII2, 20</pre>	SA_tab_example, 67
minmaxLtaskVII2, 59	sex_mat, 68
minmaxLtaskVII31, 60	SL_tab_example, 68
sex_mat, 68	task_ii2, 69
task_ii2, 69	task_iii, 69
task_iii, 69	task_vii2, 7 0
task_vii2, 70	task_vii31, 7 0
task_vii31, 7 0	task_vii32, 71
task_vii32, 71	* data
* Harbour	data_exampleCL, 21
circabc, 20	* landing
* MED&BS	data_exampleCL, 21
ALK_tab_example, 4	* samplingData
Catch_tab_example, 4	data_ex, 21
Discard_tab_example, 22	
<pre>GP_tab_example, 37</pre>	ALK_tab_example, 4

INDEX 73

Catch_tab_example, 4	FDI_prices_cov, 33
catfau_check, 5	FDI_prices_not_null, 34
check_EF_FDI_A, 5	FDI_ts_tableJ, 35
check_EF_FDI_G, 6	FDI_vessel_lenth, 36
check_EF_FDI_H, 6	FDI_vessel_numbers, 36
check_EF_FDI_I, 7	
check_EF_FDI_J, 7	GP_tab_example, 37
check_EF_taskII2, 8	
check_EF_taskIII, 8	Landing_tab_example, 37
check_EF_taskVII2, 9	
check_EF_TaskVII31, 10	MA_tab_example, 38
check_EF_TaskVII32, 10	MEDBS_ALK, 38
check_lmat_TaskVII.3.2, 11	MEDBS_Catch_coverage, 39
	MEDBS_check_duplicates, 39
check_lw_TaskVII.2, 11	MEDBS_comp_disc_YQ, 40
check_minmax150_TaskVII.3.1, 12	MEDBS_comp_disc_YQ_fishery, 41
check_minmaxl_TaskVII.2, 13	MEDBS_comp_land_Q_VL, 41
check_presence_taskII2, 13	MEDBS_comp_land_Q_VL_fishery, 42
check_RD_FDI_A, 14	MEDBS_comp_land_YQ, 43
check_RD_FDI_G, 14	
check_RD_FDI_H, 15	MEDBS_comp_land_YQ_fishery, 44
check_RD_FDI_I, 15	MEDBS_disc_mean_weight, 45
check_RD_FDI_J, 16	MEDBS_discard_coverage, 44
check_RD_taskII2, 16	MEDBS_GP_check, 46
check_RD_taskIII, 17	MEDBS_ks, 46
check_RD_taskVII2, 17	MEDBS_land_mean_weight, 48
check_RD_taskVII31, 18	MEDBS_Landing_coverage, 47
check_RD_TaskVII32, 18	MEDBS_length_ind,49
<pre>check_species_catfau_TaskVII.3.2, 19</pre>	MEDBS_lengthclass_0,48
circabc, 20	MEDBS_LW_check, 50
combination_taskII2, 20	MEDBS_MA_check, 51
, , , , , , , , , , , , , , , , , , ,	MEDBS_ML_check, 52
data_ex, 21	MEDBS_plot_disc_vol, 53
data_exampleCL, 21	<pre>MEDBS_plot_discard_ts, 52</pre>
Discard_tab_example, 22	MEDBS_plot_land_vol, 55
, , , , , , , , , , , , , , , , , , ,	MEDBS_plot_landing_ts, 54
fdi_a_catch, 22	MEDBS_SA_check, 55
FDI_check_coord, 23	MEDBS_SL_check, 56
FDI_checks_spatial_HI, 23	MEDBS_SOP, 57
FDI_cov_tableA, 25	MEDBS_weight_0,57
FDI_cov_tableG, 26	MEDBS_weight_minus1, 58
FDI_coverage, 24	MEDBS_yr_missing_length, 59
FDI_cross_checks_AG, 27	
FDI_cross_checks_AH, 27	minmaxLtaskVII2, 59
FDI_cross_checks_IG, 28	minmaxLtaskVII31, 60
	ML_tab_example, 60
FDI_cross_checks_JG, 28	DCC abank AL 61
FDI_disc_coverage, 29	RCG_check_AL, 61
FDI_fishdays_cov, 30	RCG_check_CL, 61
fdi_g_effort, 30	RCG_check_LFD, 62
fdi_h_spatial_land, 31	RCG_check_LFD_comm_cat, 63
fdi_h_spatial_landings, 31	RCG_check_loc, 63
fdi_i_spatial_effort, 32	RCG_check_1w, 64
fdi_j_capacity, 32	RCG_check_mat, 65
FDI_landweight_cov, 33	RCG_check_mat_ogive, 65

74 INDEX

```
RCG_summarize_ind_meas, 66
RCG_summarize_trips, 67

SA_tab_example, 67
sex_mat, 68
SL_tab_example, 68

task_ii2, 69
task_iii, 69
task_vii2, 70
task_vii31, 70
task_vii32, 71
```