A multi-scale story of the diffusion of a new technology: the web

Emmanouil Tranos^{a,*}

^a University of Bristol and The Alan Turing Institute, UK

Abstract

This paper maps the participation in the digital economy and its evolution in the UK over space and time. Most of the existing economic geography literature which dealt with the spatiality of the internet employed supply-side measures, such as infrastructural capacity, in order to understand the geography of the digital economy and its potential spatial economic effects. Useful as these approaches might have been, they cannot capture the micro-processes and the characteristics of the individual online behaviour. Using large volumes of archived and geolocated web content, this paper models the diffusion of web technologies over space and time in the UK. The data and geolocation strategy allow to capture these processes at a very granular spatial scale. The modelling approach, which is based on simple spatial analytical methods and on the estimation of diffusion curves at various scales, enables to depict the role of geography and other cognitive factors which drove the diffusion of web technologies. Although the focus is on a recent historical period – 1996-2012 – the results of the analysis depict diffusion mechanisms which can be very useful in understanding the evolutionary patterns of the adoption of other newer technologies.

Keywords: keyword1, keyword2

1. Introduction

Geographers were always interested in how new technologies and innovations diffuse across space and time and, importantly, how such spatio-temporal processes can be modeled. After all, diffusion together with invention and innovation are considered the pillars of technological change (Das, 2022). The seminal contribution of Hägerstrand et al. (1968) is illustrative of this early interest. However, the torch of exploring and modelling such processes had been passed to other disciplines such as economics, business studies and sociology well before the 'cultural turn' of economic geography (Perkins and Neumayer, 2005). A potential explanation of the lack of geographical studies exploring the diffusion of new and, more specifically for this paper, digital technologies across both space and time can be attributed to the scarcity of relevant and granular enough data. As Zook and McCanless (2022) highlight, digital activities are hardly ever captured in official data.

This paper offers such a contribution: a geographical study illustrating how a new technology that is the web diffused over space and time in the UK at a high level of spatial granularity during the 1996-2012 period. It does so by employing a novel source of big data which captures the active engagement with web technologies during that period. By addressing this empirical question this paper exemplifies how the combination of data sources which escape the traditional social science domain and adequate research methods can offer new lenses to geographical research regarding the understanding of technological diffusion.

SAY SOMETHING ABOUT SPATIAL ANALYTICS, DIST PAPER BY ARP, NOT SPECIFIC EXPLANATORY VARIABLES, INTANGIBLE

Email address: e.tranos@bristol.ac.uk (Emmanouil Tranos)

 $^{^*}$ Corresponding author

The motivation for this paper lies in the fact that there are various stakeholders who are interested in knowing how new digital technologies diffused over space and time and use this knowledge to make predictions regarding the diffusion of related future technologies. As per Leibowicz et al. (2016), historical studies agree that technologies diffuse differently in terms of times, rates, and geographies and can be driven by related policies (Victor, 1993). Meade and Islam (2021) highlight that a variety of actors have a direct interest in gaining such knowledge including network equipment suppliers; network operators, regulatory and local authorities. These processes and their effects vary a lot across scales: although the diffusion of a new technology might not be optimal at a local level, it might be beneficial from a global perspective as it could lead to faster diffusion to less advantaged places (Leibowicz et al., 2016). Despite the spatial heterogeneity of such diffusion mechanisms and the policy relevance, there are very limited attempts in the literature to analyse the diffusion of new digital technologies at a detailed geographical level.

Technological diffusion, which is by definition an aggregated process, can be discussed in parallel with individual adoption mechanisms. On the one hand, Rogers (2010) identifies early adopter of new technologies as 'knowledgeable risk takers' and Griliches (1957) as 'profit maximisers' (Ding et al., 2010). Such individual agents are rewarded because of their attitude towards new technologies and innovations. On the other hand, Perkins and Neumayer (2011) attribute diffusion to two processes: (i) epidemic-like mechanisms, which are governed by distance, proximity and social interactions, and (ii) economic mechanisms as new innovations are adopted by users as they become more profitable, valueable and useful.

This paper focuses on the diffusion of the web as new technology during the 1996-2012 period. This was an exciting period for digital technologies as it corresponds with the commercialisation of the internet and, consequently, its almost universal adoption. The reader is reminded that it was only in 1994 when Netscape Navigator was introduced, a year before Microsoft's Internet Explorer. Also, only 9 per cent of UK's households had access to the internet in 1998 (Office for National Statistics, 2018), the web included mostly static webpages, there were no social media and web browsing was happening exclusively from desktop PCs as there were no smartphones (Tranos et al., 2021). Hence, it is fair to say that the study period captures the very early stages of the diffusion on a new technology that is the web as well as its maturity. The former is a key point in the lifecycle of a new technology. Firstly, during this period new technologies are expensive, crude and imperfect (Rosenberg, 1994; Wilson, 2012). A simple comparison between Web 1.0 and Web 3.0 applications clearly illustrates this (Tranos, 2020); for instance a static website compared with a platform like github, which enables cooperation between users and the creation of new information, meaning, and knowledge (Faraj et al., 2016; Barassi and Treré, 2012). During this period the performance of a new technology is the main attraction and not the cost to access and use it (Wilson and Grubler, 2011). There is a broader theoretical discussion in the literature regarding the motivation behind early adoption. As summarised by Perkins and Neumayer (2005), on the one hand, epidemic models highlight the role of interpersonal contacts as a way for new technologies to diffuse. On the other hand, economic models underline the importance of heterogeneity. Different firms have different structures and business plans, which define the potential economic returns of the adoption of a new technology and, therefore, the choice to adopt a new technology becomes an individual option. From a broader and evolutionary perspective, initial conditions are essential for the creation and evolution of path-dependent technological development trajectories (Neffke et al., 2011; Simmie et al., 2014). This argument is even more relevant when the focus is on digital technologies because of the commonly found lag between investment and economic returns as reflected in the Solow paradox (Acemoglu et al., 2014; Brynjolfsson et al., 2018).

Importantly, the data used here depicts the *active* engagement with the web in the UK as it contains all commercial websites that (i) are part of the UK's relevant second level domain (SLD, .co.uk), (ii) have been archived by the Internet Archive², and (iii) include a mention to at least one valid UK postcode in the web text. The act of creating a website is understood here as active engagement with the web vis-à-vis the more passive act of browsing the web or having an internet connection (Tranos et al., 2021). Previous studies

¹https://www.theguardian.com/global/2015/mar/22/web-browser-came-back-haunt-microsoft

²https://archive.org/.

have focused mostly on more passive notions of engaging with digital technologies such as internet adoption and internet speeds (e.g. Blank et al., 2018; Riddlesden and Singleton, 2014). More details about the data and the data generation process can be found in Section 3.

S curve??

Grubler (1990) Later Hagerstrand conceptualized physical "barrier" effects like lakes or uninhabited areas, which, in addition to distance, act as further retarding effects on diffusion. These are formalized in the form of "zero" or "half" contact multiplicators on the (distance decaying) message flows.

Grubler (1990) With respect to the formalization of the communication flows Hagerstrand defines a "mean information field" (MIF), in which the probability of communication is a negative function of distance between individuals

Wilson (2012) Logistic growth describes an initial period of gradual diffusion as a technology is introduced as a new commercial application, moving then through a rapid, exponential growth phase, before slowing and eventually saturating (Grübler et al., 1999). The substitution of incumbent technologies by new competitors leads to subsequent decline and eventual obsolescence.

2. Literature review

Geographical diffusion is a synthesis of different processes. On the one hand, a purely spatial or, in other words, contagious processes can be identified. Adjacency and, more broadly, distance are the key drivers of diffusion. This perspective draws similarities with epidemics: innovation just like pathogens spreads because of contagion and, consequently, proximity and exposure (Hivner et al., 2003). On the other hand, there is a hierarchical processes. Instead of horizontal distance-based diffusion mechanisms, the top-down hierarchy of urban systems shapes technological diffusion. In reality, the synthesis of these two processes represents how new technologies diffuse over space and time (Morrill et al., 1988).

These ideas were firstly introduced by Torsten Hägerstrand and his thesis entitled 'Innovation Diffusion as a Spatial Process' (Hägerstrand et al., 1968). Hägerstrand was the first one to identify diffusion as a geographical process. The starting point was the idea that diffusion is based on passing information through social networks, which themselves tend to be defined by geography. Hence, he identified the 'neighbourhood' effect of how information, and consequently, innovation diffuse. He used agricultural innovations to test and model his ideas using Monte Carlo simulations. Hägerstrand also incorporated the role of hierarchy and how some phenomena maybe firstly adopted in larger cities and then diffuse to second tier ones. This is a sequential instead of a simultaneous process, which resembles the 'lead-lag' spatial acceleration effect in market research (Bento et al., 2018; Peres et al., 2010). Hägerstrand is more widely known though for highlighting the role time plays in the diffusion of innovations: an early-pioneering period, a middle fast accelerating period and a final saturation one (Morrill et al., 1988).

The temporal dimension was further explored by Everett Rogers and his seminal work on 'Diffusion of Innovations' (Rogers, 2010). Rogers being a sociologist focused not on the diffusion of innovations over space and time, but instead on the adoption of new technologies and innovations by individuals and the individual mechanisms that drive the decisions behind adoption. He identified five groups of individuals regarding their adoption speed: innovators, early adopters, early majority, late majority and laggards. The key mechanism of diffusion and adoption is communication and how knowledge is transferred within a social system. Therefore, all approaches agree on the S-shaped diffusion and cumulative adoption pattern (Grubler, 1990).

Schmidt's Law empirically illustrates a similar pattern. *Core* and usually highly agglomerated regions is where new technologies are invented and commercially deployed (Grubler, 1990). This is where the first adopters tend to be based. Then, technologies spread to the *rim* and eventually to the *periphery*. Although adoption pace might be higher when new technologies finally arrive to the periphery, the saturation levels there may never reach the ones in the core because of the lack of infrastructure or other necessary institutions

(Leibowicz et al., 2016). Grubler (1990) effectively summarises the three key characteristics of the spatial diffusion process: (i) the cumulative level of adoption follows an S-shaped pattern just like purely temporal models; (ii) diffusion is shaped by a hierarchy effect in a form of a centrifugal force: from core to periphery; and (iii) diffusion is also shaped by distance and a neighbourhood effect and contaminate nearby locations. These are the three mechanisms that the empirical analysis in Section 4 investigates.

The remaining of this section reviews empirical studies which analysed the diffusion on new technologies over space and time. Although the spatial dimension is present in most of the following studies, the level of spatial detail is always more coarse than the one adopted here. Beardsell and Henderson (1999) studied the evolution of the computer industry in 317 US metro areas during the 1977 - 1992 period using employment data. Their analysis indicated that the relative size distribution holds for urban computer employment and also urban heterogeneity is essential in explaining this distribution. In a recent study, Bednarz and Broekel (2020) focused on wind turbines and modelled their spatial diffusion across 402 German regions during 1970 - 2015. Their key finding is that local demand than local supply was the main driving factor.

At a global scale Perkins and Neumayer (2005) explored whither the diffusion rate of new technologies is driven by a latecomer advantage and the engagement with the global economy via foreign direct investments and trade. Their results illustrate that indeed latecomers and developing countries experience diffusion of new technologies more rapidly than early adopters and developed countries. At the same scale, Perkins and Neumayer (2011) explored whether the adoption of previous communication technologies that is mail, telegrams and telephones was shaped by similar socioeconomic factors as the internet. Their results indicated common patterns regarding the drivers behind the adoption of different communication technologies.

Turning to studies that share more technological and scalar similarities with this paper, Ding et al. (2010) modelled the spatial diffusion of mobile telecommunications across regions in China. Their analysis indicated that socioeconomic characteristics are important determinants of the timing, speed and the level of mobile diffusion within China. Using data from a Hungarian online social network, Lengyel et al. (2020) analysed its adoption and the churn at a very granular spatial level. Their results are in agreement with early theoretical and empirical contributions reviewed here: assortativity, urban scaling and distance are the key drivers of spatial diffusion. At a global scale Papagiannidis et al. (2015) modelled the diffusion of different web technologies and practices. Interestingly, they did so by using similar, but less extensive data as the one used here. Their analysis illustrated how the diffusion of different web technologies and practices follow an S-shaped pattern as well as the different diffusion rates of the different technologies and practices.

All in all, ...

3. Data and Methods

ADD FAMILY OF WEB TECHNOLOGIES

To capture the diffusion of web technologies, a website density metric is developed for two different geographical scales: the Local Authority Districts (LAD) and the Output Areas (OA). The former is an administrative unit and there are c. 374 such units in the UK. The latter is a census-based geographical unit, which is very small as there are c. 230,000 of them in the UK. This methodological choice will allow the mapping of the diffusion of web technologies and the assessment of the diffusion mechanisms at these two very different spatial scales.

The counts of websites at these scales are calculated using data from the Internet Archive ³ and, specifically, the JISC UK Web Domain Dataset (JISC and the Internet Archive, 2013). The Internet Archive is one of the most complete and oldest archive of webpages in the world operating since 1996 (Ainsworth et al., 2011; Holzmann et al., 2016). It is a web crawler, which discovers webpages by following the hyperlinks of every webpage its archives. This dataset, which is curated by the British Library, contains all the archived

³https://archive.org/.

webpages from the UK ccTLD (.uk) from the 1996–2012 period. In essence, this is a long list of 2.5 billion URLs of archived webpages including also the archival timestamp.

Instead of using the whole .uk country code top-level domain (ccTLD), this paper focuses on its commercial subset, the .co.uk SLD. This choice decrease the heterogeneity of the web data as such commercial websites have rather specific aims: they are used to diffuse information, support online transactions and share opinions (Thelwall, 2000; Blazquez and Domenech, 2018). Although a UK company can adopt a generic TLD such as .com and these cases escape the data used here, such omissions should not affect our results given the popularity of the .uk ccTLD (Tranos et al., 2021): UK consumers prefer to visit a .uk website when they are searching for products or services (Hope, 2017); and anecdotal evidence indicates that during the first half of 2000, three .co.uk domains were registered every minute (OECD, 2001). Importantly, previous studies illustrated that .co.uk is the most popular UK SLD (Tranos et al., 2021).

The text from these webpages was scanned using a regular expression (regex) to identify strings of text which resemble UK postcodes and one fifth of them included a mention to a postcode (Jackson, 2017). This information allows the geolocation of the data and the creation of the LAD and OA counts.

The data cleaning process included an aggregation step, through which the archived webpages were aggregated to the parent websites. This website reconstruction allows the creation of a *website* instead of a *webpage* density metric. Websites, which are hierarchical structures, tend to represent specific organisations or entities, and, arguably, are more meaningful observational units than webpages, which ignore the upstream dependencies. Based on the following example, all three webpages are part of the same website (http://www.website.co.uk) and at the end only websites and not the nested webpages were considered as otherwise the metric would have been biased towards large, place specific, websites.

- http://www.website.co.uk/webpage_a B15 2TT
- http://www.website.co.uk/webpage_b BS8 1TH
- http://www.website.co.uk/webpage_c B15 2TT

What is challenging is that this aggregation approach, which has been used elsewhere (Tranos et al., 2021; Stich et al., 2023) may lead to websites with multiple postcodes. As per the above example, www.website.co.uk includes two unique postcodes: B15 2TT and BS8 1SS. The distribution of postcodes for 2000 is presented in Table 1, which clearly illustrates the wide range. At the left end of the distribution, there are websites anchored to a unique location (72% of all the reconstructed websites in 2000), which may represent a small company with a single trading location. At the right end, we have websites with thousands of different postcodes. Considering the time period of the analysis, such cases can represent directories which used to be popular in the pre-search engines early times of the commercial internet (Tranos et al., 2021).⁴

The analysis presented here is based on two subsets of these data. Firstly, on websites, which only contain only one unique postcode and, therefore, the geolocation process does not suffer from noise. As a robustness check, the analysis is replicated for an extended subset of websites, which include up to ten unique postcodes. These websites are geolocated by equally attaching them to multiple locations. This extended sample includes 94 percent of all the archived websites in 2000.

Another data cleaning step dealt with some extreme outliers. Figure 1 plots the website counts for the top 1000 postcodes. Some obvious outliers can be observed for the 2004-2006 period. We attribute these to web link farms ... These website counts for six postcodes (SE24 9HP, CV8 2ED, GL16 7YA, CW1 6GL, M28 2SL, DE21 7BF), which in 2004 or 2005 had more than 1000 websites pointing to them, were replaced with predicted values based on a simple panel regression model with postcode fixed effects and yearly dummy variables. As the Section 4 illustrates, this led to a small increase of the model predictive capability. To put the magnitude of the data imputation into perspective, this process affected six out of c. **XXX** poscodes.

⁴See Figure A1 in Appendix A in the supplemental data online for examples.

Table 1: Number of unique postcodes per .co.uk website, 2000.

Postcodes	\mathbf{F}	F (%)	Cummulative F
(0,1]	41,596	0.718	0.718
(1,2]	$6,\!451$	0.111	0.830
(2,10]	$6,\!163$	0.106	0.936
(10,100]	2,975	0.051	0.988
(100,1000]	646	0.011	0.999
(1000, 10000]	62	0.001	1.000
(10000, 100000]	4	0.000	1.000

Source: Tranos et al. 2021

Figure 1: Yearly website counts per postcode (top 1000)

To create the website density metric, the yearly website counts at the LAD level are standardised by the number of firms in LAD to avoid biases associated with LAD hosting a large number of firms. Given that there is no such statistic for the OA, the actual OA level counts are used. However, because of the the

consistent spatial definition of OA (they host 40-250 households),⁵ website counts in OA are interpreted as a density metric too.

These website density metrics are used for the three different steps of the analysis. Firstly, a system-level analysis explores how the diffusion of web technologies in the UK fits with the well-established S-curve. To do so, the following logistic function (Equation 1) is estimated for the whole of the UK and for each LAD separately:

$$y = k/(1 + e^{-(t - t_o)}) \tag{1}$$

k is the asymptote or, in other words, the saturation level, b the overall growth rate, and t_0 the inflection point of maximum growth at k/2, where the logistic function is symmetrical (Wilson, 2012). We compare the LAD t_0 of each LAD against the t_0 of the UK to delineate whether a LAD reached that point faster or slower than the country average. Importantly, an accuracy criterion was imposed and only S-curves with $R^2 > 0.9$ were included in the analysis. To estimate Equation 1 a self-starting logistic growth model was employed using the nls and SSlogis functions in R.

The system-level analysis also focuses on the volatility of the web adoption to depict places with high concentration of early adopters and, equally, latecomers. To do so, the change of the ranking of the UK LAD over time is plotted and discussed. Both the S-curve and the volatility analysis focus only on LAD as the very large number of OA would have made such analysis diffucult to visualise and interpret.

Next, exploratory spatial data analysis depicts whether the two main drivers of spatial diffusion – namely neighbourhood and hierarchy – underpin the diffusion of web technologies in the UK. To capture the former and following Ding et al. (2010) the Moran's I and the Local Index of Spatial Association (LISA) are estimated for website density. To address the hierarchy mechanism, the Gini coefficient – a well established metric of inequality – is calculated. All the above are computed and plotted longitudinally both for the LAD and the OA.

Lastly, a modelling framework is developed to test the above diffusion mechanisms. The overarching aim is to build a model that can test the relationship between the website density and these mechanisms:

$$Website Density_t \sim Hierarchy_{t-1} + Neighbourhood_{t-1} + S - curve_t$$
 (2)

To estimate Equation 2, Random Forest (RF) models were built. This is a popular machine learning algorith for both regression and classification problems (Biau, 2012). It was introduced by Breiman (2001) and has

gained popularity, becoming a go-to data science tool. RF can effectively handle skewed distributions and outliers, model non-linear relationships, require minimal hyperparameter tuning, exhibit low sensitivity to these parameters, and have relatively short training times (Caruana et al., 2008; Liaw et al., 2002; Yan et al., 2020). These attributes match well with the website density data characteristics including skewness especially for OA. Also, the large data size (c. 230k data points for each of the 17 years) call for fast training times. Importantly, RF predictions tend to be more accurate than those from single regression trees and outperform Ordinary Least Squares in out-of-sample predictions, even with moderate-sized training data and a small number of predictors (Mullainathan and Spiess, 2017; Athey and Imbens, 2019; Sulaiman et al., 2011; Pourebrahim et al., 2019; Biau, 2012).

RF is a tree-based ensemble learning algorithm (Breiman, 2001). It begins by generating random samples of the training data, which are then used to grow regression trees to predict the dependent variable. Data

 $^{^{\}bf 5} https://www.ons.gov.uk/methodology/geography/ukgeographies/statisticalgeographies/$

points and predictors are randomly sampled for the different trees. The trees are trained in parallel using their own bootstrapped samples of the training data. A crucial feature of RF is their ability not to overfit, meaning they can generalize well to unseen test data. While each tree may overfit individually, the ensemble of trees does not because the errors of individual trees are averaged, reducing the overall variance and preventing overfitting (Last et al., 2002). For regression problems, RF predictions are made by averaging the predictions of all decision trees.

RF have been widely employed to address regression research problems. Pourebrahim et al. (2019) combined a spatial interaction modeling framework with ML algorithms including RF to predict commuting flows in New York City. Sinha et al. (2019) advocated for adopting spatial ensemble learning approaches, such as RF, to model spatial data with high autocorrelation and heterogeneity. Credit (2021) predicted employment density in Los Angeles using spatially explicit RF. Guns and Rousseau (2014) used RF to build a recommendation system for research collaborations. Ren et al. (2019) trained RF to predict the socioeconomic status of cities using various online and mobility predictors. Tranos et al. (2023) utilised hyperlinks data and RF to make out-of-sample predictions of interregional trade. Zhou et al. (2023) employed such a framework to assess whether key predictors of obesity differ across English cities.

4. Results

- 1. S-shaped diffusion curves: S for LAD per firm. UK, fast/slow/examples
- 2. ranks: there is stability and movement
- 3. Neighbourhood effect: diffusion proceeds outwards from innovation centers, first "hitting" nearby rather than far-away locations (Grubler 1990)
- Moran's I: for OA and LAD over time
- LISA maps: for OA and LAD over time More and less expected clusters. Different scales show different results
- 4. Hierarchy effect: from main centers to secondary ones central places
- Gini coefficient. Almost perfect polarisation of web adoption in the early stages at a granular level More equally diffused at the Local Authority level Plateau overtime
- 5. RF
- ideal: (i) train RF for all years and all (1) LAD and (2) OA with CAST and report metrics. (ii) train for all years and all but one region for (1) LAD and (2) OA to predict to the holdout region. Reports predictions as region similarities.

Figure 2 plots the S curve for the cumulative adoption of website technologies in the UK during the 1996-2012 period. It demonstrates a pattern well aligned with previous studies discussed in Section 2. The vertical line for year 2003 illustrates the point where the modeled cumulative adoption was equal to 50% of the maximum. This t_0 inflection point signals the maximum adoption speed and is used here to determine whether the UK LAD reached that inflection point earlier or later than the UK average. Specifically, the S curve and the inflection point are estimated for every LAD individually and then compared with the UK average. LAD that reached their inflection point earlier than the country average are labelled as fast and the rest as slow. Figure 3 maps this pattern and the picture is not entirely clear. On the one hand, there are some expected examples of LAD with relevant industrial backgrounds delineated as fast: the City of London, a world-renowned cluster of finance industries (Cook et al., 2007), and Reading, a town with high-tech service industries in proximity to London and its main airport, Heathrow (Pain and Walker, 2005). On the other hand, LAD which were expected to appear as fast – e.g. Hackney in central London and Bristol, a well-established creative cluster (Oatley et al., 1999; Bassett et al., 2002) – were delineated as slow. Nevertheless, out of the 10 fastest LAD, eight were located in Greater London and one in Cambridge (see Appendix), but in overall there is a spatially heterogenous and not easy to explain spatial pattern.

Figure 2: Grwoth curve, UK

Website diffusion speed in Local authorities

Figure 3: LAD adoption rates

The next step is to assess the stability and volatility of the LAD in terms of their adoption of web technologies. As we know from the literature (Stuck and Walker, 2019), different agents have different perceptions about and levels of acceptance of the risks and the potential economic returns associated with the adoption of new technologies – see for instance the seminal work of Venkatesh and Davis (2000). To reveal such aggregated patterns, Figures 4 and 5 plot the ranking of UK LAD based on website density. To decrease noise, the average ranking of 1996-1998 and 2010-2012 is plotted instead of the individual years. While there are quite a few obvious cases of LAD that maintained their position between the beginning and the end of the study period either at the top or at the bottom of the hierarchy (Figure 4), there are also quite a few LAD that changed drastically their position. Some of these LAD enjoyed a process

that at the first instance looks like leapfrogging since they managed to jump at the top of the hierarchy despite their slow start (top of Figure ??). There is extensive literature regarding the potential benefits of technological leapfrogging. The underpinning argument is that latecomers can adopt and benefit from new technologies that have been developed elsewhere without incurring the hefty initial R&D costs (Teece). Although the leapfrogging literature does not pay much attention to cities and regions (Yu and Gibbs, 2018), previous research highlighted the long term and sustained productivity benefit of the early adopters of web technologies in the UK (Tranos et al., 2021). So, although the LAD system is volatile, it is not clear whether the LAD with high concentration of late adopters will gain any latecomer benefits in a way similar to countries experiencing such technological leapfrogging.

Figure 4: Dynamics of wed diffusion: stability of LAD

Figure 5: Dynamics of wed diffusion: volatility LAD

Then, figures 6 and 7 offer a first insight into whether a neighbourhood effect underpins the diffusion of web technologies in the UK as they plot the Moran's I and the LISA maps of website density respectively for LAD and OA. Starting from the former, spatial autocorrelation was higher in the beginning and then around year 2000 dropped slightly and stabled at 0.2. This reflects the early concentration of high website density around London, which over time diffused as high-high clusters can be seen in other parts of the country away from London as seen in Figure 7. An almost reverse pattern can be observed for OA. At the beginning of the study period Moran's I was around 0.1 and it plateaued after 2000-2001 around 0.2. Because of the very small size of OA, at the early stages of the diffusion of web technologies their adoption was spatially scattered. This is reflected in the lack of any significant clusters in 1996. Eventually, as the adoption rate increased, more such clusters of high website density were formed and this is reflected both in the Moran's I and the LISA maps in Figures 6 and 7. All in all, the exploratory spatial data analysis advocates towards an underpinning neighbourhood effect and the different scales of analysis illustrate how it evolved differently over time.

Figure 6: Website density Moran's I

Figure 7

Figure 7: Website density LISA maps

To illustrate whether a hierarchical process underpins the diffusion of web technologies, the Gini coefficient is calculated yearly both for LAD and OA. As a metric of inequality, the Gini coefficient demonstrates whether website density is concentrated in a small number of LAD/OA, or whether it is more equally spread across the country. Both scales of analysis in Figure 8 illustrate the same picture. At the beginning of the commercial internet website density was extremely unequal, or in other words, only a few places had websites associated with them. Inequality dropped and plateaued after 2000 for both scales illustrating that at the first stages of the commercial internet, website density was concentrated in a limited number

of places. This is an indication of a hierarchical diffusion mechanism that led over time to a more equal spread. Interestingly, the year 2000 is again a period of change for this diffusion mechanisms as it was for the neighbourhood process. There is a substantial difference between the Gini coefficient magnitude for LAD and OA, but this is well expected as the very small size of OA equates to a lot polygons without any websites pointing to them – for instance residential OA. LAD/OA

Figure 8: Website density Gini coefficient

The next section incorporates the above discussed spatial processes of the diffusion of web technologies into a modelling framework. The aim is to use variables depicting these spatial processes in order to predict the diffusion of web technologies in the UK over space and time and across different scales. Specifically, four different models are estimated. Firstly, all the data points for the OA and LAD are utilised in order to build two respective RF models and assess their capacity to predict the adoption of web technologies. These two models will reveal the predictive capacity of the diffusion mechanisms and also allow to see how the importance of such variables changes across scales. The next two sets of models will be again trained on web diffusion at the two working scales: OA and LAD. However, instead of using all the data points, the OA and the LAD from one of the twelve UK regions are held out and then the trained model is used to predict website density in the OA or the LAD of the held-out region. This process takes place recursively for all UK regions. The difference in the predictive capacity of the different samples will reveal how dissimilar are these spatial process across regions and, importantly, at different scales.

It needs to be highlighted here that the cross-validation for all models is spatially and temporally sensitive. Instead of using 10 random folds, we employ the CAST package which allows holding back data points from specific years and spatial units and use them for testing in order to estimate the model performance (Meyer et al., 2018).

The models include variables that capture the three processes that the relevant literature and the descriptive

analysis presented above highlighted. Namely, the models capture: (i) a hierarchy effect with diffusion running from main centres to secondary ones, (ii) a neighborhood effect according to which diffusion first hits nearby locations, and (iii) the rather canonical pattern of diffusion over time as reflected in the S-shaped pattern in the cumulative level of adoption.

To capture the hierarchy effect the models include as predictors a one year lag of website density in London, the largest city in the UK, a one year lag of the website density in the nearest city and the same for the nearest retail centre. Due to the small sizes of the retail centres, the latter is only relevant for the OA-level models. In addition, the models include the distance to London, the nearest city and the nearest retail centre. The underlying logic is that the level of website adoption in a spatial unit depends on the level of the adoption in places further up in the urban hierarchy the previous year. The inclusion of the distance variables incorporates spatial structure into the hierarchy argument. To depict the neighbourhood effect, the website density of the neighbouring spatial units in the previous year is employed. Again, the underpinning rationale is that the level of web adoption within a spatial unit depends on the level of web adoption in the neighbouring spatial units the year before. This represents the 'hitting nearby locations first' argument. Therefore, the spatial and temporal lag of the website density in LAD and OA is calculated. Lastly, the time effect which is reflected on the S-curve for the cumulative adoption is captured by a time trend variable. Hence, all four model will follow the following generic form (Eq. 3):

$$Website\ Density_{t} \sim Distance\ London + Website\ density\ London_{t-1} + \\ Distance\ Nearest\ City + Website\ density\ Nearest\ City_{t-1} + \\ Distance\ Nearest\ Retail_{i} + Website\ density\ Nearest\ Retail_{t-1} + \\ W*\ Website\ density_{t-1} + \\ year_{t}$$
 (3)

To assess the predictive capability of the model, three broadly utilised metrics are employed: the coefficient of determination (R^2) , mean absolute error (MAE) and root mean square error (RMSE):

$$R^{2} = 1 - \frac{\sum_{k} (y_{k} - \hat{y_{k}})^{2}}{\sum_{k} (y_{k} - \overline{y_{k}})^{2}}$$
 (4)

$$MAE = \frac{1}{N} \sum_{k=1}^{N} |\hat{y_k} - y_k|$$
 (5)

$$RMSE = \sqrt{\frac{\sum_{k=1}^{N} (\hat{y_k} - y_k)^2}{N}}$$
 (6)

 y_k is the k^{th} observation of the dataset, which consists of N observations in total. $\hat{y_k}$ is the k_{th} predicted value for the dependent variable and $\overline{y_k}$ is the average value of y. The last two metrics are expressed in the same units as the dependent variable – websites per firm for the LAD modes and the number of websites for the OA models – while the first one is the coefficient of determination between the observed and the predicted values of website adoption. Regarding MAE, it is the absolute difference between the observed and the predicted website adoption. While MAE does not penalise for large errors, RSME does so as it is proportional to the squared difference between the observed and the predicted trade flows. Hence larger errors weigh more for RMSE (Pontius et al., 2008).

Table 2 presents the model performance for the first set of models, for which all data points are employed for training and testing via cross validation. The first one is trained and tested on 374 LAD and the second on 232,296 OA, both for a 16 year period (1997-2012). The results are remarkably good considering that the are the outcome of space and time sensitive CV, so the the model does not suffer from overfitting. At the LAD level the model predicts 81% of the variation of website density. Both error metrics indicate that the model error is $(\frac{1}{20}, \frac{1}{30})$ of a website per firm. At the OA the R^2 drops down to 21%. Considering its granularity, this is still a remarkable performance. To contextualise it, the model results in a MAE of one website for areas small enough to host less than 140 households. Because of the small size of the spatial units, the distribution is highly skewed and a significant part of them is not linked to any websites. In 1997 only 1% of the UK OA were associated with at least one website. This should not come as a surprise as this was the very beginning of the commercial internet and any activities with a digital footprint were concentrated in a handful of areas. This was clearly illustrated in Figure 7. At the end of the study period almost half of the UK OA were not associated with a website. Again, given the granularity of the data this should not come as a surprise.

Table 2: Model metrics

	RMSE	R^2	MAE
Local Authorities	0.032	0.810	0.019
Output Areas	5.000	0.205	1.047

Figures 9 and 10 plot the importance of the different predictors. When the focus is on the LAD, the website density in the nearest city, in London and in the neighbouring LAD the year before are the most important predictors. They are followed by the yearly trend, while the spatial configuration as reflected in distances to London or the nearest city only play a minor role. This can be attributed to the rather coarse spatial scale of analysis. Nevertheless, all previously discussed spatial processes are at play in the diffusion of web technologies at the LAD level: the first two predictors depict the hierarchical effect, the spatial and temporal lag of website density depict the neighbourhood effect and the yearly trend the time-sensitive cumulative adoption pattern.

When the much more granular scale of OA is adopted, the picture is reversed. The most important predictors are the three distance variables to London, the nearest city and the nearest retail centre. They stil depict the hierarchical effect, but proximity to the different population centres is more important than their lagged web densities in predicting website diffusion. The neighbouring effect is less important at this scale. What is interesting is the almost negligible role of the yearly trend and London's website density. While the former probably illustrates the large heterogeneity in how web technologies have been adopted at this very fine scale, the later highlights that the importance of past web adoption rates in large population centres is surpassed by proximity to them and spatial configuration at this scale.

 $^{^6} According to the Office for National Statistics, 80\% of OA in England and Wales host 110-139 households, \\ \underline{www.ons.gov.uk}.$

Figure 9: Variable importance, LAD

Figure 10: Variable importance, OA

Figure 11 to replace Figures 9 and 10 once I have the variable importance for LAD.

Figure 11: Variable importance

Table 3 presents the results of the recursive hold out models, which aim to highlight the potential regional heterogeneity of the spatial processes behind the diffusion of web technologies. To begin with, as highlighted before, there is a difference of magnitude of one order between the LAD and the OA prediction errors, which is aligned with previous results that employed all data points. What is of interest here is the regional comparison. Table 3 illustrates some striking similarities, but also a few significant differences. The regions the web diffusion of which is better predicted using models trained in the rest of the country are the same despite the scale of analysis: South East, Wales, Yorkshire and The Humber and the North East of England. In other words, these are the regions whose spatial diffusion mechanisms of web technologies is closer to the country's average. Despite the consistency across scales, this is a diverse set of regions: **ADD CHARACTERISTICS**.

At the other end of the spectrum, Scotland's and the North West's web diffusion mechanisms are consistently diverging from the country's average. This should not come as a surprise as these regions are characterised of high levels of rurality and remoteness. Similarly, London diffusion mechanisms diverge from the country's average and this is consistent across scales. London's uniqueness in UK's urban system and economy is also reflected in the spatial diffusion mechanisms of web technologies within its LAD and OA. It needs to be highlighted though that the difference between the R^2 of LAD and OA is more that an order of magnitude signaling how difficult is to predict diffusion at such a small spatial scale. Northern Ireland is an interesting case. While it ranks at the bottom of the scale when the models are trained and tested on LAD data, when the modelling adopts the more granular OA scale, the spatial mechanisms that shape the web diffusion within this region appear to be closer to the country's average. At this scale, proximity, or lack of, relative to the rest of the country become less important and the internal to the region spatial structure predictors start playing a more important role **CHECK NI OA model**.

Table 3: Regional differences

Region	R^2 LAD	Rank LAD	R^2 OA	Rank OA
South East	0.947	1	0.134	2
Wales	0.916	2	0.131	3
Yorkshire and The Humber	0.906	3	0.144	1
North East	0.895	4	0.128	4
West Midlands	0.883	5	0.070	9
East Midlands	0.882	6	0.088	8
East of England	0.876	7	0.106	6
South West	0.864	8	0.117	5
London	0.805	9	0.055	10
Scotland	0.770	10	0.035	11
North West	0.664	11	0.017	12
Nortern Ireland	0.576	12	0.101	7

5. Discussion and conclusions

contrary to results from future studies regarding social media (Lengyel et al., 2020), web technologies did not exclusively spread from a central location.

A. Appendices

$A.1.\ t_0\ estumates\ for\ all\ LAD$

Table A.1: S-curve estiamtes for LAD

LAD	t_0 estimate	Std. error	R^2	Diffusion speed
Horsham	2001.423	0.254	0.950	fast
Fareham	2001.443	0.346	0.925	fast
Kingston upon Thames	2001.513	0.354	0.933	fast
Kensington and Chelsea	2001.581	0.341	0.943	fast
Runnymede	2001.582	0.266	0.943	fast
Bracknell Forest	2001.586	0.324	0.928	fast
Elmbridge	2001.656	0.333	0.932	fast
Reigate and Banstead	2001.665	0.253	0.964	fast
South Cambridgeshire	2001.680	0.433	0.905	fast
Walsall	2001.715	0.413	0.901	fast
Surrey Heath	2001.718	0.333	0.933	fast
Woking	2001.759	0.292	0.951	fast
South Norfolk	2001.874	0.358	0.931	fast
City of London	2001.874	0.499	0.930	fast
Wokingham	2001.891	0.287	0.958	fast
Reading	2001.900	0.318	0.948	fast
Sevenoaks	2001.904	0.407	0.926	fast
Huntingdonshire	2001.912	0.402	0.925	fast
Pendle	2001.924	0.407	0.923	fast
St Albans	2001.933	0.396	0.927	fast
Perth and Kinross	2001.943	0.228	0.970	fast
Bromley	2001.945	0.396	0.919	fast
Rushmoor	2001.962	0.518	0.912	fast

LAD	t_0 estimate	Std. error	R^2	Diffusion speed
Powys	2001.969	0.278	0.963	fast
Swindon	2001.996	0.390	0.916	fast
Chelmsford	2002.008	0.545	0.911	fast
Crawley	2002.008	0.379	0.949	fast
Dumfries and Galloway	2002.012	0.251	0.967	fast
Inverclyde	2002.030	0.330	0.915	fast
North Hertfordshire	2002.031	0.475	0.920	fast
Moray	2002.050	0.358	0.947	fast
Orkney Islands	2002.070	0.283	0.958	fast
Fife	2002.070	0.363	0.945	fast
Mole Valley	2002.071	0.460	0.925	fast
Guildford	2002.113	0.413	0.941	fast
Buckinghamshire	2002.114	0.390	0.942	fast
Cotswold	2002.116	0.375	0.946	fast
Shetland Islands	2002.120	0.332	0.949	fast
South Oxfordshire	2002.146	0.367	0.950	fast
Watford	2002.157	0.451	0.929	fast
Aberdeenshire	2002.168	0.416	0.931	fast
Southampton	2002.189	0.472	0.922	fast
Mid Suffolk	2002.196	0.442	0.922	fast
Eden	2002.196	0.334	0.949	fast
South Lakeland	2002.197	0.238	0.974	fast
Stoke-on-Trent	2002.203	0.419	0.927	fast
Babergh	2002.209	0.449	0.927	fast
Bexley	2002.213	0.493	0.909	fast
Torbay	2002.215	0.374	0.942	fast
Brentwood	2002.219	0.336	0.936	fast
Ceredigion	2002.227	0.241	0.971	fast
Spelthorne	2002.232	0.451	0.933	fast
Bath and North East Somerset	2002.238	0.402	0.941	fast
Falkirk	2002.245	0.367	0.938	fast
Broxtowe	2002.258	0.435	0.932	fast
East Hertfordshire	2002.261	0.453	0.928	fast
Stirling	2002.268	0.251	0.975	fast
Ealing	2002.294	0.523	0.922	fast
Mid Sussex	2002.295	0.453	0.936	fast
Barrow-in-Furness	2002.303	0.284	0.959	fast
West Oxfordshire	2002.322	0.467	0.929	fast
Sutton	2002.326	0.544	0.911	fast
Portsmouth	2002.356	0.479	0.921	fast
Great Yarmouth	2002.369	0.265	0.968	fast
East Hampshire	2002.370	0.474	0.931	fast
Wyre Forest	2002.376	0.561	0.916	fast
Angus	2002.378	0.396	0.939	fast
Argyll and Bute	2002.427	0.321	0.962	fast
Scottish Borders	2002.428	0.298	0.962	fast
East Suffolk	2002.431	0.533	0.919	fast
Blackpool	2002.443	0.294	0.962	fast
Cherwell	2002.448	0.533	0.923	fast
Wandsworth	2002.449	0.570	0.921	fast

LAD	t_0 estimate	Std. error	R^2	Diffusion speed
Tendring	2002.456	0.456	0.935	fast
Westminster	2002.459	0.437	0.952	fast
Richmond upon Thames	2002.462	0.389	0.956	fast
Test Valley	2002.463	0.553	0.920	fast
Isle of Wight	2002.478	0.377	0.953	fast
Vale of White Horse	2002.496	0.408	0.949	fast
Croydon	2002.510	0.504	0.927	fast
Hounslow	2002.521	0.426	0.952	fast
Copeland	2002.524	0.237	0.971	fast
Wiltshire	2002.528	0.450	0.940	fast
Gwynedd	2002.536	0.372	0.954	fast
Hillingdon	2002.560	0.470	0.940	fast
Conwy	2002.564	0.372	0.954	fast
Highland	2002.566	0.270	0.972	fast
Basingstoke and Deane	2002.572	0.461	0.947	fast
Harrow	2002.587	0.509	0.936	fast
West Berkshire	2002.595	0.696	0.902	fast
North Lincolnshire	2002.596	0.501	0.933	fast
East Dunbartonshire	2002.598	0.528	0.925	fast
Bradford	2002.598	0.613	0.916	fast
Waverley	2002.606	0.512	0.928	fast
Stroud	2002.608	0.559	0.916	fast
Herefordshire, County of	2002.622	0.388	0.956	fast
North Norfolk	2002.624	0.422	0.945	fast
Nottingham	2002.630	0.531	0.936	fast
Castle Point	2002.645	0.470	0.936	fast
North Warwickshire	2002.657	0.380	0.955	fast
Gravesham	2002.680	0.473	0.933	fast
Lancaster	2002.692	0.336	0.963	fast
West Suffolk	2002.699	0.536	0.930	fast
Stafford	2002.719	0.499	0.933	fast
Tunbridge Wells	2002.720	0.401	0.958	fast
Oxford	2002.723	0.583	0.934	fast
East Lothian	2002.731	0.537	0.927	fast
Redcar and Cleveland	2002.750	0.509	0.929	fast
Tamworth	2002.755	0.551	0.929	fast
South Hams	2002.773	0.422	0.952	fast
Allerdale	2002.784	0.376	0.958	fast
Central Bedfordshire	2002.825	0.620	0.921	fast
East Cambridgeshire	2002.843	0.636	0.927	fast
Havant	2002.853	0.541	0.932	fast
South Lanarkshire	2002.874	0.486	0.932 0.938	fast
Stratford-on-Avon	2002.879	0.470	0.945	fast
Arun	2002.882	0.526	0.945 0.938	fast
Fenland	2002.891	0.632	0.938 0.918	fast
Monmouthshire	2002.893	0.501	0.918 0.935	fast
Denbighshire	2002.893	0.457	0.935 0.947	fast
Southend-on-Sea	2002.901	0.457 0.551	0.947 0.932	fast
High Peak	2002.903	0.488	0.932 0.946	fast
Pembrokeshire	2002.905	0.488 0.387	0.940 0.958	fast
1 GHINIOKESHIIG	2002.900	0.301	0.900	idSt

LAD	t_0 estimate	Std. error	R^2	Diffusion speed
Malvern Hills	2002.907	0.524	0.940	fast
Camden	2002.915	0.599	0.941	fast
North Devon	2002.926	0.426	0.950	fast
Wyre	2002.927	0.553	0.927	fast
Darlington	2002.933	0.615	0.929	fast
Swale	2002.940	0.447	0.948	fast
Welwyn Hatfield	2002.951	0.628	0.922	fast
Mid Devon	2002.960	0.485	0.946	fast
Lewes	2002.964	0.507	0.945	fast
Dorset	2002.968	0.407	0.958	fast
Brighton and Hove	2002.976	0.578	0.934	fast
Braintree	2002.978	0.534	0.938	fast
Epsom and Ewell	2002.979	0.746	0.908	fast
Sefton	2002.980	0.616	0.928	fast
Eastleigh	2002.992	0.595	0.929	fast
Craven	2002.993	0.379	0.965	fast
Hammersmith and Fulham	2002.997	0.585	0.944	fast
Greenwich	2003.014	0.571	0.930	slow
Cheltenham	2003.025	0.602	0.937	slow
Worcester	2003.041	0.659	0.920	slow
Tower Hamlets	2003.043	0.660	0.926	slow
New Forest	2003.046	0.554	0.941	slow
East Renfrewshire	2003.046	0.739	0.900	slow
Fylde	2003.056	0.501	0.946	slow
Carmarthenshire	2003.067	0.390	0.958	slow
West Lancashire	2003.076	0.547	0.937	slow
Hastings	2003.086	0.685	0.911	slow
Carlisle	2003.111	0.541	0.934	slow
Wychavon	2003.115	0.570	0.935	slow
Isle of Anglesey	2003.144	0.403	0.960	slow
Dudley	2003.150	0.678	0.925	slow
Ryedale	2003.152	0.380	0.961	slow
Rother	2003.162	0.366	0.966	slow
Leicester	2003.167	0.686	0.924	slow
Breckland	2003.182	0.567	0.938	slow
Tandridge	2003.190	0.747	0.918	slow
Shropshire	2003.206	0.621	0.928	slow
West Devon	2003.228	0.489	0.949	slow
Milton Keynes	2003.231	0.700	0.929	slow
Sandwell	2003.234	0.760	0.916	slow
Winchester	2003.234	0.443	0.956	slow
Redditch	2003.238	0.706	0.923	slow
Rugby	2003.265	0.709	0.922	slow
North Somerset	2003.278	0.558	0.939	slow
West Lindsey	2003.285	0.674	0.924	slow
Richmondshire	2003.286	0.425	0.958	slow
Melton	2003.292	0.534	0.946	slow
Chichester	2003.295	0.582	0.942	slow
Torridge	2003.301	0.532	0.942	slow
Dundee City	2003.303	0.568	0.939	slow

LAD	t_0 estimate	Std. error	R^2	Diffusion speed
South Ayrshire	2003.303	0.626	0.931	slow
East Devon	2003.308	0.492	0.947	slow
Bolton	2003.323	0.774	0.913	slow
Hertsmere	2003.326	0.726	0.924	slow
Bournemouth, Christchurch and Poole	2003.347	0.662	0.936	slow
Maldon	2003.349	0.495	0.951	slow
Barnet	2003.352	0.766	0.919	slow
Brent	2003.389	0.762	0.925	slow
Midlothian	2003.413	0.732	0.921	slow
Boston	2003.416	0.593	0.933	slow
Scarborough	2003.421	0.431	0.963	slow
Kirklees	2003.435	0.725	0.925	slow
Tameside	2003.441	0.819	0.907	slow
Newport	2003.449	0.635	0.930	slow
Glasgow City	2003.451	0.759	0.922	slow
Clackmannanshire	2003.454	0.585	0.936	slow
Three Rivers	2003.458	0.628	0.947	slow
Harborough	2003.488	0.549	0.950	slow
Rochdale	2003.496	0.685	0.937	slow
Tonbridge and Malling	2003.497	0.710	0.927	slow
Somerset West and Taunton	2003.502	0.491	0.955	slow
Wrexham	2003.512	0.553	0.942	slow
Worthing	2003.522	0.622	0.938	slow
Tewkesbury	2003.540	0.580	0.946	slow
City of Edinburgh	2003.541	0.685	0.941	slow
Coventry	2003.592	0.564	0.948	slow
Northumberland	2003.607	0.504	0.954	slow
Mid and East Antrim	2003.609	0.893	0.994	slow
Wigan	2003.617	0.755	0.929	slow
Lichfield	2003.629	0.625	0.929	slow
Ashford	2003.633	0.535	0.933 0.944	slow
Cornwall	2003.638	0.443	0.963	slow
Mendip	2003.652	0.505	0.955	slow
Stevenage	2003.665	0.525	0.958	slow
Blaenau Gwent	2003.666	0.643	0.933	slow
Lincoln	2003.666	0.634	0.933 0.940	slow
South Somerset		0.553	0.940 0.948	slow
Charnwood	2003.676	0.699	0.948 0.934	slow
	2003.677			
North Ayrshire	2003.682	0.607	0.942	slow
Folkestone and Hythe	2003.684	0.792	0.905	slow
Eastbourne	2003.684	0.697	0.930	slow
Blackburn with Darwen	2003.685	0.680	0.938	slow
Dover	2003.699	0.574	0.948	slow
Adur	2003.735	0.551	0.954	slow
Haringey	2003.739	0.667	0.943	slow
Gosport	2003.751	0.600	0.934	slow
Trafford	2003.752	0.640	0.949	slow
Norwich	2003.756	0.742	0.939	slow
West Lothian	2003.758	0.652	0.943	slow
North East Lincolnshire	2003.811	0.858	0.920	slow

LAD	t_0 estimate	Std. error	R^2	Diffusion speed
Bristol, City of	2003.828	0.831	0.928	slow
Rushcliffe	2003.839	0.591	0.954	slow
Hinckley and Bosworth	2003.857	0.749	0.934	slow
Torfaen	2003.861	0.841	0.922	slow
Swansea	2003.875	0.650	0.947	slow
Wolverhampton	2003.882	0.793	0.931	slow
Kingston upon Hull, City of	2003.885	0.757	0.936	slow
Calderdale	2003.889	0.714	0.939	slow
North Northamptonshire	2003.902	0.746	0.935	slow
Stockton-on-Tees	2003.902	0.955	0.916	slow
Wealden	2003.906	0.736	0.938	slow
Thanet	2003.953	0.667	0.947	slow
Broadland	2003.962	0.727	0.938	slow
West Northamptonshire	2003.972	0.736	0.940	slow
North Kesteven	2003.976	0.633	0.942	slow
Neath Port Talbot	2003.981	0.767	0.933	slow
Rhondda Cynon Taf	2003.991	0.769	0.925	slow
Enfield	2003.992	0.588	0.954	slow
East Lindsey	2004.010	0.577	0.952	slow
Teignbridge	2004.015	0.681	0.941	slow
York	2004.025	0.739	0.944	slow
Harlow	2004.030	0.803	0.936	slow
Vale of Glamorgan	2004.033	0.592	0.951	slow
Newark and Sherwood	2004.034	0.668	0.946	slow
Merton	2004.041	0.932	0.922	slow
Hambleton	2004.065	0.636	0.953	slow
Bedford	2004.068	0.852	0.933	slow
Stockport	2004.075	0.757	0.942	slow
South Ribble	2004.126	0.674	0.948	slow
Uttlesford	2004.144	0.905	0.926	slow
Rossendale	2004.160	0.976	0.923	slow
Oldham	2004.162	0.801	0.938	slow
Sheffield	2004.189	0.770	0.944	slow
Ribble Valley	2004.204	0.718	0.945	slow
Maidstone	2004.222	0.854	0.932	slow
Cheshire West and Chester	2004.234	0.742	0.947	slow
Thurrock	2004.241	0.841	0.924	slow
Telford and Wrekin	2004.241	1.024	0.917	slow
Cardiff	2004.246	0.823	0.937	slow
County Durham	2004.250	0.626	0.953	slow
Plymouth	2004.252	0.785	0.934	slow
Bridgend	2004.256	0.547	0.956	slow
Rotherham	2004.273	0.722	0.938	slow
Hyndburn	2004.298	0.881	0.932	slow
Newcastle upon Tyne	2004.305	0.906	0.932	slow
Wakefield	2004.314	0.905	0.923	slow
Havering	2004.345	0.822	0.938	slow
South Kesteven	2004.353	1.026	0.915	slow
Canterbury	2004.354	0.602	0.960	slow
Broxbourne	2004.363	0.817	0.944	slow

LAD	t_0 estimate	Std. error	R^2	Diffusion speed
Peterborough	2004.382	0.937	0.932	slow
Redbridge	2004.411	1.028	0.925	slow
Bury	2004.431	0.735	0.953	slow
Harrogate	2004.433	0.971	0.927	slow
Birmingham	2004.435	1.182	0.912	slow
South Tyneside	2004.446	0.636	0.948	slow
Chorley	2004.462	1.093	0.913	slow
North East Derbyshire	2004.483	0.703	0.953	slow
Lambeth	2004.485	0.958	0.937	slow
Doncaster	2004.496	0.672	0.953	slow
South Gloucestershire	2004.499	0.881	0.937	slow
Caerphilly	2004.499	0.819	0.938	slow
East Staffordshire	2004.501	1.132	0.910	slow
North Tyneside	2004.509	0.864	0.933	slow
South Holland	2004.534	0.851	0.941	slow
Gateshead	2004.535	0.869	0.934	slow
St. Helens	2004.542	1.097	0.923	slow
Flintshire	2004.549	0.764	0.951	slow
Selby	2004.549	0.716	0.947	slow
Belfast	2004.556	1.332	0.906	slow
Sedgemoor	2004.613	0.540	0.966	slow
Exeter	2004.617	0.964	0.936	slow
South Derbyshire	2004.629	0.934	0.938	slow
Derbyshire Dales	2004.668	0.648	0.963	slow
East Riding of Yorkshire	2004.683	0.728	0.955	slow
Basildon	2004.691	1.067	0.925	slow
Barking and Dagenham	2004.800	1.198	0.916	slow
Causeway Coast and Glens	2004.834	1.024	0.928	slow
North Lanarkshire	2004.839	0.878	0.945	slow
Chesterfield	2004.887	1.173	0.927	slow
Newcastle-under-Lyme	2004.933	1.172	0.925	slow
East Ayrshire	2004.934	1.280	0.903	slow
Nuneaton and Bedworth	2004.956	0.950	0.941	slow
Blaby	2004.959	1.059	0.929	slow
Leeds	2004.979	0.836	0.956	slow
Erewash	2004.987	0.939	0.944	slow
Bassetlaw	2004.998	0.982	0.944	slow
Hackney	2005.026	1.157	0.934	slow
Barnsley	2005.055	0.912	0.942	slow
Amber Valley	2005.105	1.017	0.941	slow
Colchester	2005.144	1.250	0.927	slow
Ashfield	2005.176	1.073	0.942	slow
Wirral	2005.170	1.084	0.942 0.939	slow
Knowsley	2005.184	1.160	0.933	slow
Windsor and Maidenhead	2005.195	1.746	0.923 0.902	slow
Bromsgrove	2005.494	1.144	0.902 0.941	slow
Liverpool	2005.494	1.144 1.276	0.941 0.936	slow
Staffordshire Moorlands	2005.583	1.426	0.930 0.924	slow
Islington	2005.970	1.420 1.223	0.924 0.955	slow
~				
Warrington	2006.015	1.387	0.942	slow

LAD	t_0 estimate	Std. error	R^2	Diffusion speed
Newham	2006.078	1.908	0.907	slow
Bolsover	2006.188	1.143	0.957	slow
Lisburn and Castlereagh	2006.193	1.970	0.903	slow
Manchester	2006.449	1.434	0.950	slow
Sunderland	2006.479	1.679	0.928	slow
South Staffordshire	2006.490	1.837	0.922	slow
Rutland	2006.529	0.986	0.967	slow
Cannock Chase	2006.700	2.231	0.917	slow
Mansfield	2006.889	1.579	0.946	slow
Ards and North Down	2006.947	2.485	0.907	slow
Halton	2007.069	0.932	0.967	slow
Burnley	2007.372	2.286	0.919	slow
Middlesbrough	2010.074	5.297	0.900	slow
Isles of Scilly	2012.163	4.257	0.953	slow

References

Acemoglu, D., Autor, D., Dorn, D., Hanson, G.H., Price, B., 2014. Return of the solow paradox? it, productivity, and employment in us manufacturing. American Economic Review 104, 394–399.

Ainsworth, S.G., Alsum, A., SalahEldeen, H., Weigle, M.C., Nelson, M.L., 2011. How much of the web is archived?, in: Proceedings of the 11th annual international ACM/IEEE joint conference on Digital libraries, pp. 133–136.

Athey, S., Imbens, G.W., 2019. Machine learning methods that economists should know about. Annual Review of Economics 11, 685–725.

Barassi, V., Treré, E., 2012. Does web 3.0 come after web 2.0? deconstructing theoretical assumptions through practice. New media & society 14, 1269–1285.

Bassett, K., Griffiths, R., Smith, I., 2002. Cultural industries, cultural clusters and the city: the example of natural history film-making in bristol. Geoforum 33, 165–177.

Beardsell, M., Henderson, V., 1999. Spatial evolution of the computer industry in the usa. European Economic Review 43, 431–456.

Bednarz, M., Broekel, T., 2020. Pulled or pushed? the spatial diffusion of wind energy between local demand and supply. Industrial and Corporate Change 29, 893–916.

Bento, N., Wilson, C., Anadon, L.D., 2018. Time to get ready: Conceptualizing the temporal and spatial dynamics of formative phases for energy technologies. Energy Policy 119, 282–293.

Biau, G., 2012. Analysis of a random forests model. Journal of Machine Learning Research 13, 1063–1095.

Blank, G., Graham, M., Calvino, C., 2018. Local geographies of digital inequality. Social Science Computer Review 36, 82–102. Blazquez, D., Domenech, J., 2018. Big data sources and methods for social and economic analyses. Technological Forecasting and Social Change 130, 99–113.

Breiman, L., 2001. Random forests. Machine learning 45, 5-32.

Brynjolfsson, E., Rock, D., Syverson, C., 2018. Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics, in: The economics of artificial intelligence: An agenda. University of Chicago Press, pp. 23–57.

Caruana, R., Karampatziakis, N., Yessenalina, A., 2008. An empirical evaluation of supervised learning in high dimensions, in: Proceedings of the 25th International Conference on Machine Learning, Association for Computing Machinery, New York, NY, USA. p. 96–103. URL: https://doi.org/10.1145/1390156.1390169, doi:10.1145/1390156.1390169.

Cook, G.A., Pandit, N.R., Beaverstock, J.V., Taylor, P.J., Pain, K., 2007. The role of location in knowledge creation and diffusion: evidence of centripetal and centrifugal forces in the city of london financial services agglomeration. Environment and Planning A 39, 1325–1345.

Credit, K., 2021. Spatial models or random forest? evaluating the use of spatially explicit machine learning methods to predict employment density around new transit stations in los angeles. Geographical Analysis .

Das, B., 2022. Diffusion of innovations: Theoretical perspectives and empirical evidence. African Journal of Science, Technology, Innovation and Development 14, 94–103.

Ding, L., Haynes, K.E., Li, H., 2010. Modeling the spatial diffusion of mobile telecommunications in china. The Professional Geographer 62, 248–263.

Faraj, S., von Krogh, G., Monteiro, E., Lakhani, K.R., 2016. Special section introduction—online community as space for knowledge flows. Information systems research 27, 668–684.

Griliches, Z., 1957. Hybrid corn: An exploration in the economics of technological change. Econometrica 25, 501-522.

Grubler, A., 1990. The rise and fall of infrastructures: dynamics of evolution and technological change in transport. Physica-Verlag.

- Grübler, A., Nakićenović, N., Victor, D.G., 1999. Dynamics of energy technologies and global change. Energy policy 27, 247–280.
- Guns, R., Rousseau, R., 2014. Recommending research collaborations using link prediction and random forest classifiers. Scientometrics 101, 1461–1473.
- Hägerstrand, T., et al., 1968. Innovation diffusion as a spatial process. Innovation diffusion as a spatial process.
- Hivner, W., Hopkins, W.E., Hopkins, S.A., 2003. Facilitating, accelerating, and sustaining the innovation diffusion process: an epidemic modeling approach. European Journal of innovation management 6, 80–89.
- Holzmann, H., Nejdl, W., Anand, A., 2016. The dawn of today's popular domains: A study of the archived german web over 18 years, in: Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries, pp. 73–82.
- Hope, O., 2017. The changing face of the online world. https://www.nominet.uk/changing-face-online-world/. Accessed: 2021-03-05.
- Jackson, A.N., 2017. Jisc uk web domain dataset (1996-2010) geoindex. doi:https://doi.org/10.5259/ukwa.ds.2/geo/1.
- JISC, the Internet Archive, 2013. Jisc uk web domain dataset (1996-2013). The British Library doi:https://doi.org/10.525 9/ukwa.ds.2/1.
- Last, M., Maimon, O., Minkov, E., 2002. Improving stability of decision trees. International Journal of Pattern Recognition and Artificial Intelligence 16, 145–159.
- Leibowicz, B.D., Krey, V., Grubler, A., 2016. Representing spatial technology diffusion in an energy system optimization model. Technological Forecasting and Social Change 103, 350–363.
- Lengyel, B., Bokányi, E., Di Clemente, R., Kertész, J., González, M.C., 2020. The role of geography in the complex diffusion of innovations. Scientific reports 10, 1–11.
- Liaw, A., Wiener, M., et al., 2002. Classification and regression by randomforest. R news 2, 18–22.
- Meade, N., Islam, T., 2021. Modelling and forecasting national introduction times for successive generations of mobile telephony. Telecommunications Policy 45, 102088.
- Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., Nauss, T., 2018. Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environmental Modelling & Software 101, 1–9
- Morrill, R., Gaile, G.L., Thrall, G.I., 1988. Spatial diffusion .
- Mullainathan, S., Spiess, J., 2017. Machine learning: an applied econometric approach. Journal of Economic Perspectives 31, 87–106.
- Neffke, F., Henning, M., Boschma, R., 2011. How do regions diversify over time? industry relatedness and the development of new growth paths in regions. Economic geography 87, 237–265.
- Oatley, N., Griffiths, R., Bassett, K., Smith, I., 1999. Cultural policy and the cultural economy in bristol. Local Economy 14, 257–264.
- OECD, 2001. OECD Communications Outlook 2001. URL: https://www.oecd-ilibrary.org/content/publication/comms_outlook-2001-en, doi:https://doi.org/https://doi.org/10.1787/comms_outlook-2001-en.
- Office for National Statistics, 2018. Internet access-households and individuals: 2018. London.
- Pain, K., Walker, D., 2005. Polynet action 1.2 quantitative
- Papagiannidis, S., Gebka, B., Gertner, D., Stahl, F., 2015. Diffusion of web technologies and practices: A longitudinal study. Technological Forecasting and Social Change 96, 308–321. URL: https://www.sciencedirect.com/science/article/pii/S00401 62515001043, doi:https://doi.org/10.1016/j.techfore.2015.04.011.
- Peres, R., Muller, E., Mahajan, V., 2010. Innovation diffusion and new product growth models: A critical review and research directions. International Journal of Research in Marketing 27, 91–106. URL: https://www.sciencedirect.com/science/article/pii/S0167811610000236, doi:https://doi.org/10.1016/j.ijresmar.2009.12.012.
- Perkins, R., Neumayer, E., 2005. The international diffusion of new technologies: A multitechnology analysis of latecomer advantage and global economic integration. Annals of the Association of American Geographers 95, 789–808.
- Perkins, R., Neumayer, E., 2011. Is the internet really new after all? the determinants of telecommunications diffusion in historical perspective. The Professional Geographer 63, 55–72.
- Pontius, R.G., Thontteh, O., Chen, H., 2008. Components of information for multiple resolution comparison between maps that share a real variable. Environmental and Ecological Statistics 15, 111–142.
- Pourebrahim, N., Sultana, S., Niakanlahiji, A., Thill, J.C., 2019. Trip distribution modeling with twitter data. Computers, Environment and Urban Systems 77, 101354.
- Ren, Y., Xia, T., Li, Y., Chen, X., 2019. Predicting socio-economic levels of urban regions via offline and online indicators. PloS one 14.
- Riddlesden, D., Singleton, A.D., 2014. Broadband speed equity: A new digital divide? Applied Geography 52, 25-33.
- Rogers, E.M., 2010. Diffusion of innovations. Simon and Schuster.
- Rosenberg, N., 1994. Exploring the black box: Technology, economics, and history. Cambridge University Press.
- Simmie, J., Sternberg, R., Carpenter, J., 2014. New technological path creation: evidence from the british and german wind energy industries. Journal of Evolutionary Economics 24, 875–904.
- Sinha, P., Gaughan, A.E., Stevens, F.R., Nieves, J.J., Sorichetta, A., Tatem, A.J., 2019. Assessing the spatial sensitivity of a random forest model: Application in gridded population modeling. Computers, Environment and Urban Systems 75, 132–145.
- Stich, C., Tranos, E., Nathan, M., 2023. Modeling clusters from the ground up: A web data approach. Environment and Planning B: Urban Analytics and City Science 50, 244–267. URL: https://doi.org/10.1177/23998083221108185, arXiv:https://doi.org/10.1177/23998083221108185.
- Stuck, R.E., Walker, B.N., 2019. Risk perceptions of common technologies. Proceedings of the Human Factors and Ergonomics

- Society Annual Meeting 63, 1316–1320. URL: https://doi.org/10.1177/1071181319631128, doi:10.1177/1071181319631128.
- Sulaiman, S., Shamsuddin, S.M., Abraham, A., Sulaiman, S., 2011. Intelligent web caching using machine learning methods. Neural Network World 21, 429.
- Teece, D.J., . Firm capabilities and economic development: implications for newly industrializing economies, in: Technology, learning and innovation: Experiences of newly industrializing economies.
- Thelwall, M., 2000. Who is using the .co.uk domain? professional and media adoption of the web. International Journal of Information Management 20, 441–453. URL: https://www.sciencedirect.com/science/article/pii/S0268401200000384, doi:https://doi.org/10.1016/S0268-4012(00)00038-4.
- Tranos, E., 2020. Social network sites and knowledge transfer: An urban perspective. Journal of Planning Literature 35, 408–422.
- Tranos, E., Carrascal-Incera, A., Willis, G., 2023. Using the web to predict regional trade flows: Data extraction, modeling, and validation. Annals of the American Association of Geographers 113, 717–739.
- Tranos, E., Kitsos, T., Ortega-Argilés, R., 2021. Digital economy in the uk: regional productivity effects of early adoption. Regional Studies 55, 1924–1938.
- Venkatesh, V., Davis, F.D., 2000. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science 46, 186–204.
- Victor, D., 1993. Overt diffusion as technology transfer. International Journal of Research in Marketing 18, 535–538.
- Wilson, C., 2012. Up-scaling, formative phases, and learning in the historical diffusion of energy technologies. Energy Policy 50, 81–94. URL: https://www.sciencedirect.com/science/article/pii/S030142151200393X, doi:https://doi.org/10.1016/j.enpol.2012.04.077. special Section: Past and Prospective Energy Transitions Insights from History.
- Wilson, C., Grubler, A., 2011. Lessons from the history of technological change for clean energy scenarios and policies, in: Natural Resources Forum, Wiley Online Library. pp. 165–184.
- Yan, X., Liu, X., Zhao, X., 2020. Using machine learning for direct demand modeling of ridesourcing services in chicago. Journal of Transport Geography 83, 102661.
- Yu, Z., Gibbs, D., 2018. Sustainability transitions and leapfrogging in latecomer cities: the development of solar thermal energy in dezhou, china. Regional Studies 52, 68–79.
- Zhou, Y., Harris, R., Tranos, E., 2023. Where is the geography? a study of the predictors of obesity using uk biobank data and machine learning. Journal of Geovisualization and Spatial Analysis 7, 17.
- Zook, M., McCanless, M., 2022. Mapping the uneven geographies of digital phenomena: The case of blockchain. The Canadian Geographer/Le Géographe canadien 66, 23–36.