Anomalías y formas normales

Álvaro González Sotillo

8 de noviembre de 2018

Índice

1. Iı	ntroducción	1
2. A	anomalías	1
3. D	Dependencias funcionales	3
4. N	Normalización	5
5. R	Referencias	8
1.	Introducción	
•	El diseño de base de datos es necesario para evitar anomalías	

- De inserción
- De modificación
- De borrado
- Las anomalías hacen el uso de una base de datos
 - Engorroso
 - Lento
 - Propenso a errores
- A medio plazo, las anomalías hacen fracasar una base de datos

2. Anomalías

2.1. Cambios de la BD (diseño E-R)

- Desde el punto de vista del diseño E-R, un cambio en la base de datos es:
 - Modificación de atributos de una instancia de entidad
 - Modificación de atributos de una instancia de interrelación
 - Creación/borrado de una nueva instancia de entidad
 - Creación/borrado de una nueva instancia de interrelación

2.2. Cambios de la BD (relaciones)

- Desde el punto de vista del diseño relacional, un cambio en la base de datos es:
 - Modificación de atributos de una fila
 - Creación de una fila
 - Borrado de una fila

2.3. Anomalía

- Decimos que hay una anomalía cuando **un** cambio desde el punto de vista E-R implica **más de un** cambio en la base de datos relacional
 - Anomalía de inserción
 - Anomalía de borrado
 - Anomalía de modificación

2.3.1. Anomalía de inserción/borrado

	Idempleado	NombreP	Puesto	Salario	Centro	DirecciónC	Teléfono
Ī	123A	Ana Almansa	Profesor	20.000	Informática	Complutense	123
	456B	Bernardo Botín	Administrativo	15.000	Matemáticas	Complutense	456
	789C	Carlos Crespo	Catedrático	30.000	CC . Empresariales	Somosaguas	789
	012D	David Díaz	Ayudante	10.000	Informática	Complutense	123

- ¿Cómo inserto un empleado que aún no tiene centro de trabajo?
- ¿Cómo inserto un centro de trabajo que aún no tiene empleados?

2.3.2. Anomalía de modificación

Idempleado	NombreP	Puesto	Salario	Centro	DirecciónC	Teléfono
123A	Ana Almansa	Profesor	20.000	Informática	Complutense	123
456B	Bernardo Botín	Administrativo	15.000	Matemáticas	Complutense	456
789C	Carlos Crespo	Catedrático	30.000	CC . Empresariales	Somosaguas	789
012D	David Díaz	Ayudante	10.000	Informática	Complutense	123

• ¿Cómo muevo la facultad de informática a Somosaguas?

2.3.3. Origen de las anomalías

- Redundancia de las interrelaciones
- Mala elección de la clave
- Mala elección de la cardinalidad de las interrelaciones

3. Dependencias funcionales

- Decimos que un campo B depende funcionalmente de otro A si, al conocer el valor de A, conocemos el valor de B.
- Las dependencias pueden ser
 - $\bullet\,$ Solo de un campo a otro campo: $\mathbb{A}\to\mathbb{B}$
 - De varios campos a un campo: $(A, B) \rightarrow C$
- Las dependencias se extraen del **significado** de los datos
 - Sólo el cliente/usuario final conoce dicho significado
 - El diseñador de bases de datos debe extraer dicho conocimiento y formalizarlo

3.1. Ejemplo

- Se desea una base de datos que guarde los atributos (DNI, Nombre, CódigoTienda, DirecciónTienda, Fecha, Turno)
- Los empleados tienen un turno, y cada día pueden trabajar en una tienda.
- No hay dos tiendas en la misma dirección
- Dependencias:
 - DNI \rightarrow Nombre
 - DNI \rightarrow Turno
 - \bullet Código Tienda \to Dirección Tienda
 - $\bullet \ \, {\rm Direcci\'onTienda} \rightarrow {\rm C\'odigoTienda}$
 - $\bullet \ ({\rm DNI}, \, {\rm Fecha}) \rightarrow {\rm C\'odigoTienda}$
- Hay más dependencias, pero pueden deducirse de las anteriores
 - Por ejemplo (DNI, Fecha, Turno) → DirecciónTienda

3.2. Ejercicio

- Se desea una base de datos que guarde los atributos (DNI, Nombre, CódigoTienda, DirecciónTienda, Fecha, Turno)
- Los empleados no tienen un turno fijo, y cada día pueden trabajar en una tienda en un turno
- En una misma dirección puede haber varias tiendas

3.2.1.	. Solución
	./media/ejercicio-formas-normales-1.svg.pdf
L	

4. Normalización

- Procedimiento para eliminar anomalías en la base de datos
- ullet Es formal: a partir de las dependencias funcionales es un procedimiento automático

4.1. Clave de una relación

- La clave de una relación es el conjunto mínimo de campos que es imposible que se repitan en la relación
 - Coinciden con los campos de los que depende funcionalmente el resto de campos

- Sirven para localizar cada fila de la relación
- Si hay varias claves posibles
 - Todas ellas son claves candidatas
 - Se elige una como clave primaria

4.2. Primera forma normal (1FN)

■ Una relación está en 1FN si no tiene atributos multivaluados

4.2.1. Ejemplo 1FN

IDCliente	Nombre	Apellido	Teléfono
123	Rachel	Ingram	555-861-2025
456	James	Wright	555-403-1659, 555-776-4100
789	Cesar	Dure	555-808-9633

- La clave es IDCLIENTE
- La relación se parte en dos:
 - $\bullet\,$ Una con todos los atributos que respetan 1FN
 - Otra con la clave IDCLIENTE y el atributo que no respeta 1FN

IDCliente	Nombre	Apellido
123	Rachel	Ingram
456	James	Wright
789	Cesar	Dure

IDCliente	Teléfono	
123	555-861-2025	
456	555 - 403 - 1659	
456	555-776-4100	
789	555-808-9633	

4.3. Segunda forma normal (2FN)

- Una relación está en 2FN si
 - Está en 1FN
 - Todos los atributos que no son parte de una clave candidata dependen de la totalidad de las claves candidatas
- Como consecuencia, si está en 1FN y la clave candidata es de un atributo, está en 2FN

4.3.1. Ejemplo 2FN

Empleado	Habilidad	Lugardetrabajo
Jones	Mecanografía	114 Main Street
Jones	Taquigrafía	114 Main Street
Jones	Tallado	114 Main Street
Bravo	Limpieza ligera	73 Industrial Way
Ellis	Alquimia	73 Industrial Way
Ellis	Malabarismo	73 Industrial Way
Harrison	Limpieza ligera	73 Industrial Way

- La clave es (Empleado, Habilidad)
- Lugardetrabajo depende de Empleado
- Hay anomalías de modificación
- \blacksquare Hay redundancias de datos
- Para conseguir 2FN se parte la relación en dos
 - Se deja la clave y todos los atributos que dependen totalmente de ella
 - Se crea una relación con el atributo que depende de una parte de la clave, con esa parte de la clave

Empleado	Lugaractualdetrabajo	
Jones	114 Main Street	
Bravo	73 Industrial Way	
Ellis	73 Industrial Way	
Harrison	73 Industrial Way	

Empleado	Habilidad
Jones	Mecanografía
Jones	Taquigrafía
Jones	Tallado
Bravo	Limpieza ligera
Ellis	Alquimia
Ellis	Malabarismo
Harrison	Limpieza ligera

4.4. Tercera forma normal (3FN)

- Una relación está en 3FN si
 - Está en 2FN
 - No hay dependencias transitivas de la clave

4.4.1. Ejemplo 3FN

Torneo	Año	Ganador	Fechadenacimientodelganador
Indiana Invitational	1998	Al Fredrickson	21 de julio de 1975
Cleveland Open	1999	Bob Albertson	28 de septiembre de 1968
Des Moines Masters	1999	Al Fredrickson	21 de julio de 1975
Indiana Invitational	1999	Chip Masterson	14 de marzo de 1977

- La clave es (Torneo, Año)
- Fecha de nacimiento depende de Ganador, que depende de la clave
- Hay anomalías de modificación
- Para conseguir 3FN se parte la relación en 2
 - Se deja la clave y los atributos sin dependencia transitiva
 - Se crea una relación que tiene como clave y campos la dependencia transitiva

Torneo	Año	Ganador
Indiana Invitational	1998	Al Fredrickson
Cleveland Open	1999	Bob Albertson
Des Moines Masters	1999	Al Fredrickson
Indiana Invitational	1999	Chip Masterson

Ganador	Fechadenacimiento
Chip Masterson	14 de marzo de 1977
Al Fredrickson	21 de julio de 1975
Bob Albertson	28 de septiembre de 1968

5. Referencias

- Formatos:
 - Transparencias
 - PDF
- Creado con:
 - Emacs
 - org-reveal
 - Latex