# Contents

| 1 | Intr | oduzione                                      | 2 |
|---|------|-----------------------------------------------|---|
|   | 1.1  | Intro                                         | 2 |
| 2 | Intr | oduction                                      | 3 |
|   | 2.1  | Formule di Logica modale e significato        | 3 |
|   |      | 2.1.1 Relazione seriale                       |   |
|   |      | 2.1.2 Relazione simmetrica                    | 4 |
|   |      | 2.1.3 Funzione parziale                       | 5 |
|   |      | 2.1.4 Funzione totale                         |   |
|   |      | 2.1.5 Relazione euclidea                      | 6 |
| 3 | Sen  | antica                                        | 7 |
|   | 3.1  | Simboli secessari                             | 7 |
|   | 3.2  | Logiche                                       |   |
| 4 | Ver  | o la decidibilità - Logica determinata        | 9 |
|   | 4.1  | Insieme $\Lambda$ consistente e sue proprietà | 9 |
|   | 4.2  | Insieme $\Lambda$ consistente massimale       |   |
|   |      | 4.2.1 Teorema                                 |   |
|   | 4.3  | Lemma di Verità                               |   |
|   | 4.4  | Correttezza e completezza della logica K      |   |

# Introduzione

### 1.1 Intro

Se voi signorine finirete questo corso, e se sopravviverete sarete dispensatori di fbf e pregherete per modellizzare sistemi assurdi in modo ancora più assurdo, ma fino a quel giorno non siete altro che buoni annulla convinti che tutti i cretesi sono stupidi e forse mentono.

Lasciate il formaggio fuori dall'aula.

# Introduction

a è vera nel mondo  $\alpha$ , e scriviamo  $\mu \models_{\alpha} a$  se

- a è una lettera enunciativa allora deve valere  $a \in V(\alpha)$
- a è del tipo:  $a \vee b$  .... allora....  $\mu \models_{\alpha} a$  oppure  $\mu \models_{\alpha} b$

## 2.1 Formule di Logica modale e significato

#### 2.1.1 Relazione seriale

Ip) Frame F con relazione R seriale

Ts) 
$$\Box a \implies \diamond a$$

Dimostrazione:

Se non vale:  $\mu \models_{\alpha} \Box a$  allora immediatemente si ha la tesi in quanto l'antecedente è falso.

Se invoce:  $\mu \models_{\alpha} \Box a$  allora

 $\forall \beta : \alpha R \beta \implies \mu \models_{\beta} a \text{ per definizione di box,}$ 

inoltre dato che R seriale per Ip si ha anche che  $\exists \beta : (\alpha, \beta) \in R$ 

da cui:  $\mu \models_{\alpha} \diamond a$  per definizione di diamond (esiste  $\beta$  in relazione con  $\alpha$  per la serialità e in  $\alpha$  vale a dato che  $\mu \models_{\alpha} \Box a$ )

- Ip)  $\Box a \implies \diamond a$
- Ts) Frame F con relazione R seriale



Per assurdo:

Suppongo di trovarmi in un mondo come quello in figura (wow) in cui  $\mu \models_{\alpha} \Box a$ , e suppongo che la relazione R del frame NON sia seriale cioè  $\sim \exists \beta : (\alpha R \beta)$ , se è così vale sicuramente  $\mu \models_{a} \Box a$  (dato che  $\alpha$  non ha successori), d'altra parte per come è il mondo considerato, cioè si nega la tesi, assurdo-

#### 2.1.2 Relazione simmetrica

Ip) R simmetrica

Ts)  $a \implies \Box \diamond a$ 

Suppongo che  $\mu \models_{\alpha} a$  (se no avrei già la tesi), due casi:

Caso 1: Da  $\alpha$  non parte nessun arco, allora sicuramente  $\mu \models_{\alpha} \Box x$  con x qualsiasi e in particolare  $\mu \models_{\alpha} \Box \diamond a$ 



Caso 2: Esiste almeno un  $\beta$  tale che  $\alpha R\beta$ .



Dato che la relazione è simmetrica se  $\alpha R\beta$  allora  $\beta R\alpha$ . Dato che  $\mu \models_{\alpha} a$ , in ognuno di questi  $\beta$ ,  $\beta'$ , $\beta''$  ecc. vale  $\diamond a$  perché ognuno di loro è in relazione con  $\alpha$ .

Allora per ognuno di questi  $\beta$  si ha  $\mu \models_{\beta} \diamond a$ , (esiste infatti un mondo,  $\alpha$ , in cui vale a) da cui:  $\mu \models_{\alpha} \square \diamond a$ 

Ip)  $a \implies \Box \diamond a$ 

Ts) R simmetrica

Per assurdo:

suppongo R non sia simmetrica e considero un frame con soli  $\alpha$  e  $\beta$  e in cui  $R = \{(\alpha, \beta)\}$ . In questo frame considero un modello con funzione di verità tale che:  $V(A) = \{\alpha\}$ .

In  $\beta$  non vale  $\diamond a$  perché  $\beta$  non è in relazione con nessun mondo, per questo:  $\mu \nvDash_{\alpha} \square \diamond a$ 



#### 2.1.3 Funzione parziale

 $\diamond a \implies \Box a$  | funzione parziale |  $\forall \alpha : \alpha R \beta, \beta R \gamma \implies \beta = \gamma$ 

Funzione parziale, dimostrazione

٠

Ip) funzione parziale

Ts) 
$$\diamond a \implies \Box a$$

.

 $\diamond a$  falsa allora dato che l'antecedente è falso di ha  $\diamond a \Longrightarrow \Box a$   $\diamond a$  vera allora  $\exists \beta : \alpha R \beta \in V(\beta)$ , ma dato che la funzione è parziale questo  $\beta$  è unico! da cui  $\mu \models \diamond a \Longrightarrow \Box a$ 

•

$$Ip) \diamond a \implies \Box a$$

Ts) funzione parziale

•

Per assurdo: suppongo non che la funzione non sia parziale. Se è così  $\exists \alpha : \alpha R\beta, \alpha R\gamma,$  considero un modello in cui V(A) =  $\{\beta \}$ ,  $\Box A$  non vale in  $\alpha$  dato che A è falsa in  $\gamma$ , il che contraddice l'ipotesi (BAM!)

#### 2.1.4 Funzione totale

| $\diamond a \iff \Box a$ | funzione totale | $\forall \alpha \exists ! \beta : \alpha R \beta$ |
|--------------------------|-----------------|---------------------------------------------------|
|--------------------------|-----------------|---------------------------------------------------|

non ci sono "conti" da fare, R è seriale sse R è seriale  $\Box a \implies \diamond a$ , e se R è una funzione parziale  $\diamond a \implies \Box a$ 

quindi dato che l'implica prevede un and di implica da una parte e dall'altra per definizione abbiamo la tesi

.

#### 2.1.5 Relazione euclidea

 $\diamond a \implies \Box \diamond a$  relazione euclidea  $\forall \alpha, \beta, \gamma : (\alpha R \beta, \alpha R \gamma) \implies \beta R \gamma$  da cui anche:  $\beta R \beta, \gamma R \gamma, \gamma R \beta$ 

Ip) relazione euclidea

Ts)  $\diamond a \implies \Box \diamond a$ 

Suppongo sia vero l'antecedente (se falso ho finito), quindi vale:  $\diamond a$  da cui:  $\mu \models \diamond a$  dato che  $\diamond a$  si ha che esiste almeno un  $\beta$  tale che in beta vale a solo un beta: autoanello perché euclidea e quindi  $\square \diamond a$ 

diversi beta: ognuno dei vari  $\beta'$ ,  $\beta''$ , ecc. sono in relazione con  $\beta$ , dato che la relazione è euclidea, pertanto dato che in  $\beta$  vale a, in ognuno di loro vale  $\diamond a$ 



 $\operatorname{Ip}) \diamond a \implies \Box \diamond a$ 

Ts) relazione euclidea

Per assurdo, suppondo valga ip) ma non la tesi

Considero un Frame in cui:  $\alpha R\beta$ ,  $\alpha R\gamma$ ,  $\beta R\gamma$  ma NON  $\beta R\gamma$  cioè si ha un frammento in cui non vale l'euclidea. Poniamo che il modello sia tale che  $V(A) = \{\gamma\}$ 

In queste ipotesi vale  $\diamond a$  dato che in  $\gamma$  vale a. In  $\beta$  non vale a e neppure  $\diamond a$  perché non ha "uscite", da cui in a non vale  $\square \diamond a$  contraddicendo così l'ipotesi (BAM!)

## Semantica

#### 3.1 Simboli secessari

 $a \vdash b$ cioè a è conseguenza semantica di b<br/>, se in ogni Frame, Modello e Mondo in cui  $\mu \models b$  si ha anche<br/>  $\mu \models a$ 

```
\begin{array}{l} \diamond a \equiv \neg \Box \neg a \\ \text{Vale da sinistra a destra,} \\ \text{Infatti:} \\ \text{se } \mu \models_{\alpha} \diamond a \text{ allora} \\ \exists \beta : \alpha R \beta \in \mu \models_{\beta} a \text{ da cui:} \\ \mu \nvDash_{\beta} \neg a \\ \text{per questo in } \alpha \text{ non vale } \Box \neg a \text{ (perché non vale } \neg a \text{ in } \beta) \\ \text{allora in } \alpha \text{ vale } \neg \Box \neg a \text{ cioè } \mu \models_{\alpha} \neg \Box \neg a \text{ cioè la tesi.} \end{array}
```

Vale anche da destra a sinistra, dimostrazione simile.

## 3.2 Logiche

Una logica  $\Lambda$  su L è un insieme di fbf su L che:

- contiene tutte le tautologie
- è chiusa rispetto al Modus Ponens

Ad esempio;  $PL(\phi)$  cioè i teoremi della logica proposizionale Altro esempio  $\Lambda_C = \{a \mid F \models a \ per \ ogni \ F \in C\}$  infatti:

• contiene tutte le tautologie perché sono vere mondo per mondo dappertutto

• MP : suppongo che in un mondo  $\alpha$  accada che:  $\mu \nvDash_{\alpha} b$ ,  $\mu \models_{\alpha} a$ . Se vale anche  $\mu \models_{\alpha} a \implies b$  ... l'antecedente è vero, quindi dato che l'implicazione è vera, deve essere vero anche il conseguente da cui non può che essere  $\mu \models_{\alpha} b$ 

Una logica si dice **uniforme** se è chiusa rispetto a sostituzioni uniformi cioè se sostituendo a una lettere uguali formule uguali in una tautologia, ottengo una tautologia. Es.  $\Lambda_C = \{a \mid F \models a \ per \ ogni \ F \in C\}$  NON è uniforme infatti se considero V(A) = S, dove S sono tutti gli stati possibili (mondi), vale anche  $\mu \models_{\alpha} A$ , e cioè A è una tautologia, se al posto di A sostituisco  $B \land \neg B$  (falsa in ogni modello e mondo) non ottengo una tautologia.

#### Teorema

Sono equivalenti:

- 1.  $\Lambda$  è normale
- 2. per ogni intero  $n \ge 0$ ,  $\vdash_{\Lambda} a1 \land a2 \land ... \land an \implies a \text{ implica} \vdash_{\Lambda} \Box a1 \land \Box a2 \land ... \land \Box an \implies \Box a$
- 3. valgono:
  - (a)  $\vdash_{\Lambda} \Box T$
  - (b)  $\vdash_{\Lambda} \Box a \land \Box b \implies \Box (a \land b)$
  - (c)  $\vdash_{\Lambda} a \implies b \text{ implica} \vdash_{\Lambda} \Box a \implies \Box b$

Dimostrazione

 $1 \implies 2$ 

per induzione.

se n = 0 allora  $\vdash_{\Lambda} a$  allora  $\vdash_{\Lambda} \Box a$  per la regola RN che vale in  $\Lambda$  per ipotesi se n > 0 (passo induttivo) suppongo valga l'antecedente, altrimenti 2 vale senz'altro; Ricordiamo che  $a1 \land a2 \land ... \land an \implies a \equiv a1 \land a2 \land ... a_{n-1} \implies (an \implies a)$ 

# Verso la decidibilità - Logica determinata

## 4.1 Insieme $\Lambda$ consistente e sue proprietà

Sia  $\Lambda$  una logica (cioè ha tutte le tautologie ed è chiusa rispetto al Modus Ponens)  $\Gamma$  si dice  $\Lambda$ -consistente se:  $\Gamma \nvdash_{\Lambda} \bot$ , dove  $\bot = A \land \neg A$   $\Delta$  si dice  $\Lambda$ -consistente massimale se per ogni fbf  $a \ a \in \Delta$  oppure  $\neg a \in \Delta$ 

#### Proprietà:

- 1. Se  $\Gamma \vdash_{\Lambda} a$  e  $\Gamma \subseteq \Delta$  allora  $\Delta \vdash_{\Lambda} a$ . Ovvero se alcune premesse non mi servono posso comunque metterle per dedurre una formula
- 2. Se  $\Gamma \vdash_{\Lambda} a$  e  $\Lambda \subseteq \Lambda'$  allora  $\Gamma \vdash_{\Lambda'} a$ . Ovvero quello che posso dedurre in una logica più scarna (es. PL) lo posso dedurre anche in una più ricca che la contien (es. Modale)
- 3. se  $a\in\Gamma$  allora  $\Gamma\vdash_\Lambda a$  . Infatti  $\vdash_\Lambda a\implies a$  è un teorema dato che  $a\implies a$  è una tautologia
- 4.  $\{a|\Gamma \vdash_{\Lambda} a\}$  è la minima logica che contiene  $\Gamma \cup \Lambda$ . Infatti posso dedurre tutte le tautologie da  $\Gamma$ , anche se non userò nessuna formula di  $\Gamma$  ma solo quelle che già sono nella logica  $\Lambda$
- 5. Se  $\Gamma \vdash_{\Lambda} a$  e  $\{a\} \vdash_{\Lambda} b$  allora  $\Gamma \vdash_{\Lambda} b$ Infatti: per dedurre a uso regole di inferenza, formule di  $\Gamma$ , assiomi di  $\Lambda$ . Per arrivare in b uso assiomi di  $\Lambda$  e regole di inferenza, quindi posso arrivare da  $\Gamma$  direttamente in b usando formule di  $\Gamma$ , regole di inf. e assiomi di  $\Lambda$
- 6. Se  $\Gamma \vdash_{\Lambda} a$  e  $\Gamma \vdash_{\Lambda} a \implies b$  allora  $\Gamma \vdash_{\Lambda} b$ , dato che  $\Lambda$  è chiusa rispetto al MP
- 7.  $\Gamma \cup \{a\} \vdash_{\Lambda} b$  se e solo se  $\Gamma \vdash_{\Lambda} a \Longrightarrow b$ **Andata**:  $\vdash_{\Lambda} a_1 \land ... \land a \land ... \land a_n \Longrightarrow b$  (per definizione di teorema), si può portare

a alla destra dell'implicazione  $\vdash_{\Lambda} a_1 \land ... \land a_n \implies (a \implies b)$ **Ritorno**:  $\vdash_{\Lambda} a_1 \land ... \land a_n \implies (a \implies b)$ , basta portare a tra le and.

8.  $\Gamma \vdash_{\Lambda} a$  se e solo se  $\Gamma \cup \{\neg a\}$  non è  $\Lambda$ -consistente

**Andata**:  $\Gamma \vdash_{\Lambda} a$ ,  $\Gamma \vdash_{\Lambda} \neg a$ , posso dedure  $\bot$  che è contro la definizione di  $\Lambda$ -consistenza

**Ritorno**: Se $\Gamma \cup \{\neg a\}$  non è  $\Lambda$ -consistente, allora  $\Gamma \cup \{\neg a\} \vdash_{\Lambda} \bot$  da cui per 7.  $\Gamma \vdash_{\Lambda} \neg a \implies \bot$  (sposto  $\neg a$  a destra e metto l'implica), Dato che  $(\neg a \implies \bot) \implies a$  è una tatutologica, per MP ottengo

9.  $\Gamma \stackrel{.}{e} \Lambda - consistente$  se e solo se  $\exists \beta : \Gamma \nvdash_{\Lambda} \beta$ 

**Andata**: Basta prendere  $\neg a \land a$ 

**Ritorno**: Se deducessi tutte le formule  $(\neg \exists \beta : \Gamma \nvdash_{\Lambda} \beta \text{ significa } \forall \beta : \Gamma \vdash_{\Lambda} \beta)$ , potrei dedurre anche  $\bot$ , da cui la non consistenza

10.  $\Gamma$  è  $\Lambda$  – consistente se per ogni a

 $\Gamma \cup \{a\} \circ \Gamma \cup \{\neg a\} \grave{e} \Lambda - consistente$ 

se  $\Gamma \vdash_{\Lambda} a$  allora  $\Gamma \cup \{ \neg a \}$  non è consistente perché con a e  $\neg a$  posso dedurre  $\bot$ , ma  $\Gamma \cup \{ a \}$  lo è

se  $\Gamma \vdash_{\Lambda} \neg a$  allora  $\Gamma \cup \{\neg a\}$  è consistente ma non  $\Gamma \cup \{a\}$ 

- 11.  $\perp \notin \Gamma$  se  $\Gamma$  è  $\Lambda$  consistente (altrimenti potrei dedurlo per il 3.)
- 12. Se  $\Delta$ è  $\Lambda$  consistente massimale e  $\Delta \vdash_{\Lambda} a$  allora  $a \in \Delta$  se  $a \notin \Delta$  allora  $\neg a \in \Delta$  (dato che  $\Delta$ è massimale) ma se  $\Delta$  contiene  $\neg a$  allora per il 2.)  $\Delta \vdash_{\Lambda} \neg a$ , che insieme a  $\Delta \vdash_{\Lambda} a$  mi da  $\Delta \vdash_{\Lambda} \bot$
- 13. Se  $\Delta$  è  $\Lambda$  consistente massimale e  $a \in \Delta$ .  $a \implies b \in \Delta$  allora  $b \in \Delta$ . Lo si vede subito usando 2.) se tutti e tre, e poi 6.) (deduco  $a, a \implies b$ , allora deduco anche b)

#### 4.2 Insieme $\Lambda$ consistente massimale

Lemma di Lindelman - Esistenza dell'insieme  $\Lambda$  - consistente massimale in una logica  $\Lambda$  consistente

Considero tutte le formule  $b1, b2, b3, \ldots$  della logica  $\Lambda$  (posso farlo perché sono un'infinità numerabile)

Chiamo  $\Gamma_0$  un insieme che contiene una sola formula (ad esempio una tautologia) Dopodichè iterativamente, per ogni formula mi chiedo

$$\Gamma_0 \vdash_{\Lambda} b1 ? \begin{cases} si: & \Gamma_1 = \Gamma_0 \cup b1 \\ no: & \Gamma_1 = \Gamma_0 \cup \neg b1 \end{cases}$$
$$\Gamma_1 \vdash_{\Lambda} b2 ? \begin{cases} si: & \Gamma_2 = \Gamma_1 \cup b2 \\ no: & \Gamma_2 = \Gamma_1 \cup \neg b2 \end{cases}$$

 $\Delta = \bigcup_{n \geq 0} \Gamma_i \ \ (\text{nota, questa unione è infinita})$ 

 $\Delta$  è consistente massimale infatti:

- 1. Massimale in quanto contiene a oppure  $\neg a$  per costruzione
- 2. Consistente. Per assurdo se non lo fosse avrei:  $\Delta \vdash_{\Lambda} \bot$  cioè esiste un numero finito di formule di  $\Delta$  da cui deduco il falso, dato che è un numero finito di formule, sta in  $\Gamma_i$ , cioè esiste un  $\Gamma_i$  non consistente, assurdo perché lo sono tutti per costruzione 4

Nota:

- $\bullet$  Non sappiamo costruire  $\Delta$  perché nasce da unione infinita
- Non è unico, infatti se considero formule in ordine diverse potrei "dire" si o no in modo diverso

```
es. a, a \implies b, b \text{ (allora } \Delta \text{ contiene } b)
es. b, c \text{ (allora } \Delta \text{ contiene } \neg b)
```

#### 4.2.1 Teorema

 $\Gamma \vdash_{\Lambda} a$  se e solo se  $a \in a$  tutti i quei  $\Delta \Lambda - consistenti massimali tali che: <math>\Gamma \subseteq \Delta$ 

#### Andata:

 $\Gamma \vdash_{\Lambda} a$ , anche  $\Delta \vdash_{\Lambda} a$  per la 1.)

#### Ritorno:

Per assurdo, se  $\Gamma \nvdash_{\Lambda} a$  allora  $\Gamma \cup \{\neg a\}$  è  $\Lambda - consistente$  (per la 8.) da cui per Lindellman esiste  $\Delta'$  che contiene  $\Gamma \cup \{\neg a\}$  consistente massimale data la consistenza  $\Delta'$  non contiene a, il che è contro l'ipotesi 4

#### 4.3 Lemma di Verità

Sia  $M^{\Lambda}(S^{\Lambda}, R^{\Lambda}, V^{\Lambda})$  il modello canonico di  $\Lambda$   $M^{\Lambda} \models_{\alpha} a$  se e solo se  $a \in \alpha$ 

Ip) 
$$M^{\Lambda} \models_{\alpha} a$$
  
TS)  $a \in \alpha$ 

Dimostrazione per **induzione** sul numero n dei connettivi della formula a

 $\boxed{\mathbf{n}=0}$  cioè a è del tipo A (lettera enunciativa) da cui  $M^{\Lambda}\models_{\alpha} a$  se e solo se  $\alpha\in V^{\Lambda}(A)$  se e solo se  $A\in\alpha$ 

[Ipotesi di Induzione] a con n connettivi, può essere dei seguenti tipi:

- 1.  $\neg b$
- $2. b \implies c$
- $3. \Box b$

Caso 1:  $M^{\Lambda} \models_{\alpha} a$  se e solo se  $M^{\Lambda} \models_{\alpha} \neg b$  se e solo se  $M^{\Lambda} \nvDash_{\alpha} b$ 

b ha n-1 connettivi (dato che b) ne ha n, quindi vale l'ipotesi di induzione da cui:  $b \notin \alpha$ , d'altra parte  $\alpha$  è  $\Lambda$  – consistente massimale (per come è definito  $S^{\Lambda}$ ) da cui:  $b \notin \alpha$  se e solo se  $\neg b \in \alpha$  cioè se:

 $a \in \alpha$ 

Caso2:  $M^{\Lambda} \models_{\alpha} a$  se e solo se

Caso 21:  $M^{\Lambda} \nvDash_{\alpha} b$ Caso 22:  $M^{\Lambda} \models_{\alpha} c$ 

Caso 21:  $M^{\Lambda} \nvDash_{\alpha} b$ 

Il numero di connettivi di b e di c sommati dà n-1 quindi per ipotesi induttiva  $M^{\Lambda} \nvDash_{\alpha} b$  se e solo se  $b \notin \alpha$  se e solo se  $\neg b \in \alpha$  (per la compattezza max di  $\Lambda$ ) (\*)

D'altra parte  $\neg b \implies (b \implies c)$  è una tautologi della PL e quindi è un teorema di  $\Lambda$  (perché un logica contiene tutte le tautologie)

e quindi  $\neg b \implies (b \implies c) \in \alpha$  (\*\*)

da cui per MP con (\*) e (\*\*) si ha che  $b \implies c$  appartiene ad  $\alpha$ 

Caso 22:  $M^{\Lambda} \models_{\alpha} c$ 

Vale l'ipotesi di induzione da cui:

quindi per ipotesi induttiva  $M^{\Lambda} \models_{\alpha} c$  se e solo se  $c \in \alpha$  (\*)

D'altra parte  $c \implies (b \implies c)$  è una tautologi della PL e quindi è un teorema di  $\Lambda$  (perché un logica contiene tutte le tautologie)

e quindi  $c \implies (b \implies c) \in \alpha$  (\*\*)

MP (\*) e (\*\*) ci dà  $b \implies c$  appartiene ad  $\alpha$ 

Caso 3:  $a \in del tipo \square b$ 

 $\operatorname{Ip})M^{\Lambda} \models_{\alpha} \Box b$ 

 $Ts)\Box b \in \alpha$ 

Dall'ipotesi segue che  $\forall \beta : (\alpha, \beta) \in R^{\Lambda}$  si ha:  $M^{\Lambda} \models_{\beta} b$  (questo per la definizione di  $\Box a$ )

b ha n-1 connettivi quindi vale per lei l'ipotesi di induzione:  $b \in \beta$ 

$$(\alpha, \beta) \in R^{\Lambda} \text{ se e solo se: } \{a \mid \Box a \in \alpha\} \subseteq \beta$$
$$\alpha \in V^{\Lambda}(A) \text{ se e solo se: } A \in \alpha$$

Ognuno dei  $\beta$  con cui  $\alpha$  è in relazione è  $\Lambda$  – consistente massimale e ognuno contiene l'insieme  $\{a \mid \Box a \in \alpha\}$ 

 $\Gamma \vdash_{\Lambda} a$  se e solo se a appartiene a tutti i  $\Delta_i \Lambda - consistente massimale$  con  $\Gamma \subseteq \Delta_i$   $\beta \vdash_{\Lambda} b$  se e solo se b appartiene a tutti i  $\Delta_i \Lambda - consistente massimale$  con  $\beta \subseteq \Delta_i$ 

 $\{a \mid \Box a \in \alpha\}$  è consistente massimale (davvero??) e quindi  $\{a \mid \Box a \in \alpha\} \vdash_{\Lambda} b$ , per la 2. definizione equivalente di Logica Normale "aggiungo  $\Box$  ad entrambi i lati" da cui:

 $\{\Box a \mid \Box a \in \alpha\} \vdash_{\Lambda} b$ 

Ma  $\{\Box a \mid \Box a \in \alpha\}$  è un sottoinsieme di formule di  $\alpha$  quindi a maggior ragione ricavo b da tutto  $\alpha$  da cui:

 $\alpha \vdash_{\Lambda} b$ 

Ip)  $\Box b \in \alpha$ 

TS)  $M^{\Lambda} \models_{\alpha} \Box b$ 

Se  $\Box b \in \alpha$  per definizione di  $R^{\Lambda}$  per ogni mondo  $\beta$  con  $(\alpha, \beta) \in R^{\Lambda}$  si ha  $b \in \beta$ 

Notiamo che b ha n-1 connettivi, quindi vale l'ipotesi di induzione e quindi:

 $b \in \beta$  se e solo se  $M^{\Lambda} \models_{\beta} b$ 

Dato che questo vale per ogni  $\beta$  in relazione con  $\alpha$ , si ha:  $M^{\Lambda} \models_{\alpha} \Box b$ 

## 4.4 Correttezza e completezza della logica K

Dimostriamo che la logica K (minima logica modale normale) è corretta e completa

Ip)  $\Gamma \vdash_{\Lambda} a$ 

 $Ts)F \models a$ 

Nella logica K, dato che è una logica, valgono A1, A2, A3