

Arquitetura de Computadores

Licenciatura em Engenharia de Sistemas Informáticos (pós-laboral)

Escola Superior de Tecnologia IPCA

Professor: Sandro Carvalho

Alunos:

Hélder Costa nº29576

Hugo Lopes n°30516

Índice

Introdução3
O Desempenho do Computador4
Definição4
Métricas Técnicas4
Benchmarks4
Teste de Desempenho5
Fatores Importantes no Desempenho do Processador5
Funcionamento do Processador5
Frequência de Operação5
Número de Núcleos e Threads5
Memória e Arquitetura de Cache6
Largura do Barramento de Dados6
Memória Cache6
Velocidade do Relógio6
Otimizar o Desempenho do Computador7
Razões para Lentidão e Soluções7
Características dos computadores
Testes feitos com o programa "PerformanceTest"9
Conclusão11
Referências

O desempenho do computador é um componente vital na computação moderna, influenciando diretamente a eficiência e a produtividade em diversos contextos, sejam eles pessoais ou profissionais. Este conceito abrange a capacidade de um sistema computacional executar tarefas, que varia desde o tempo de resposta ágil até a alta capacidade de processamento e a utilização eficiente dos recursos disponíveis. Avaliar e otimizar o desempenho de um computador é uma tarefa multifacetada, que requer uma análise detalhada de vários fatores, desde a seleção criteriosa do hardware até a manutenção contínua do sistema.

Neste relatório abordamos com profundidade os diferentes aspetos que impactam o desempenho de um computador. Primeiramente, exploraremos as principais métricas de avaliação de performance, que incluem benchmarks de processamento, latência e throughput. Em seguida, analisaremos as características dos processadores, com destaque para as inovações e melhorias tecnológicas que aumentam a eficiência computacional. Por fim, apresentaremos práticas recomendadas para a otimização da performance do sistema, abordando desde a atualização de componentes até a implementação de técnicas de manutenção preventiva.

Além disso, discutiremos estratégias para maximizar o potencial do computador, garantindo que os recursos sejam utilizados da forma mais eficazmente. Este conhecimento não apenas ajudará a melhorar o desempenho imediato, mas também prolongará a vida útil do equipamento, resultando em um investimento mais inteligente e sustentável em tecnologia.

O Desempenho do Computador

Definição

O desempenho do computador refere-se à capacidade de um sistema realizar tarefas de forma eficiente. Isso inclui um tempo de resposta rápido, alta capacidade de processamento, baixa utilização de recursos, alta disponibilidade do sistema, e eficiência na transmissão e compressão de dados. A engenharia de desempenho foca-se em garantir que uma solução seja projetada, implementada e suportada operacionalmente para atender aos requisitos definidos, lidando com compensações entre diferentes tipos de desempenho.

Métricas Técnicas

Existem várias métricas técnicas que afetam o desempenho de um computador:

- Instruções por segundo (IPS): Mede o número de instruções que a CPU pode executar por segundo.
- FLOPS: Número de operações de ponto flutuante por segundo, crucial para cálculos científicos.
- Desempenho por watt: Importante para sistemas paralelos, onde o consumo de energia é uma preocupação.
- Latência de interrupção e resposta determinística: Essenciais para sistemas de computação em tempo real.
- Baixo consumo de energia e pequeno tamanho ou baixo peso:
 Cruciais para sistemas embarcados e portáteis.
- Impacto ambiental: Reduzir o impacto ambiental dos computadores durante sua fabricação e uso.

Benchmarks

Os benchmarks são ferramentas desenvolvidas para avaliar o desempenho de uma CPU. Os mais famosos incluem SPECint e SPECfp da Standard Performance Evaluation Corporation e o ConsumerMark do Embedded Microprocessor Benchmark Consortium (EEMBC).

Teste de Desempenho

O teste de desempenho na engenharia de software avalia a responsividade e estabilidade do sistema sob diferentes cargas de trabalho. Inclui a medição de escalabilidade, confiabilidade, e uso de recursos, ajudando na otimização do software. Ferramentas de profiling são usadas para análise dinâmica, medindo o uso de memória e complexidade temporal, auxiliando na otimização do código.

Fatores Importantes no Desempenho do Processador

Funcionamento do Processador

O processador, ou CPU, é o componente central de um computador, responsável pelo processamento das instruções. A performance de um CPU é determinada por vários fatores, incluindo a frequência de operação, número de núcleos e threads, memória cache, e arquitetura.

Frequência de Operação

A frequência de operação, ou clock speed, refere-se ao número de operações que o CPU pode executar por segundo, medido em Hertz (Hz). Afeta diretamente o desempenho em aplicações single-threaded.

Número de Núcleos e Threads

Os processadores modernos possuem múltiplos núcleos e threads, permitindo o processamento simultâneo de várias tarefas. Isso é crucial para a eficiência em ambientes multitarefa e para a execução de aplicações.

Memória e Arquitetura de Cache

A memória cache é uma memória de alta velocidade que armazena dados frequentemente utilizados pelo processador, melhorando significativamente a performance ao reduzir a necessidade de aceder à RAM. A arquitetura moderna e uma menor litografia aumentam a eficiência e precisão do processamento.

Largura do Barramento de Dados

O barramento de dados transporta informações entre o processador e a memória. Um barramento de 64 bits, por exemplo, pode transferir o dobro de informações em comparação com um de 32 bits, melhorando o desempenho do sistema.

Memória Cache

A memória cache é dividida em diferentes níveis (L1, L2, L3), cada um com diferentes tamanhos e velocidades. Maior cache permite armazenamento de mais dados próximos à CPU, acelerando o processamento.

Velocidade do Relógio

A velocidade do relógio determina quantos ciclos de instrução a CPU pode executar por segundo. Overclocking pode aumentar a velocidade do relógio, mas deve ser feito com cuidado para evitar sobreaquecimento e danos ao hardware.

Otimizar o Desempenho do Computador

Razões para Lentidão e Soluções

- Necessidade de Reiniciar: Reiniciar o computador fecha processos em segundo plano, libertando recursos.
- Demasiados Programas Ativos ou Abas do Navegador: Fechar programas e abas desnecessárias, liberta memória.
- Programas Suspeitos: Identificar e encerrar processos que consomem excessivamente os recursos.
- Disco Rígido/Memória Cheios: Limpar ficheiro desnecessários e considerar armazenamento na cloud.
- Atualizações de Software Desnecessárias: Gerir atualizações automáticas para evitar sobrecarga.
- Programas de Arranque Automático: Desativar programas desnecessários que iniciam com o sistema operativo.
- Vírus ou Antivírus Ineficiente: Usar um antivírus eficaz.
- Modo de Poupança de Energia: Ajustar as configurações de energia para equilibrar desempenho e consumo.
- Excesso de Extensões no Navegador: Desativar extensões desnecessárias para melhorar a performance.
- Mineração de Criptomoedas: Identificar e encerrar processos de mineração não autorizada.
- Efeitos Visuais do SO: Reduzir efeitos visuais para melhorar a velocidade.
- Pó Interno do PC: Limpar periodicamente o interior do computador para evitar sobreaquecimento.
- Controladores Destualizados: Manter os controladores atualizados para garantir compatibilidade e eficiência.
- PC Muito Antigo ou Desatualizado: Considerar atualização do hardware ou aquisição de um novo sistema.
- Falha de Hardware: Diagnosticar e substituir componentes defeituosos.

Características dos computadores

Características dos PCs			
PC	LENOVO - IdeaPad 3 15ALC6	HP 840 G4	
Processor (CPU)			
CPU Name	AMD Ryzen 7 5700U with Radeon Graphics	Intel Core i7-8565U @ 1.80GHz	
Threads	1 CPU, 8 Core, 16 Threads	1 CPU, 4 Core, 8 Threads	
Frequency (Clocks)	1593.0 MHz (16.0 x 99.6 MHz)	1195.6 MHz	
L1 Data cache	8 x 32 KB (8-way, 64-byte line)	4 x 32KB	
L1 Instruction cache	8 x 32 KB (8-way, 64-byte line)	4 x 32 KB	
Cache L2	8 x 512 KB (8-way, 64-byte line)	4 x 1256 KB	
Cache L3	2 x 4 MB (16-way, 64-byte line)	8 MB	
Motherboard			
Model	LENOVO LNVNB161216 - SDK0T76463WIN	HP 8549 kbc Version 52.6F.00	
Memory (RAM)			
Total Size	16 Gbytes	24 Gbytes	
Туре	DDR4	DDR4	
Frequency	1593.6 MHz (1:16)	1600 MHz	
Graphic Card (GPU)			
GPU Name	AMD Radeon(TM) Graphics	Intel ® UHD Graphics 620	
Core clock	400.0 MHz	???	
Memory size	2 GB	1024MB	
Storage (HDD/SSD)			
Name	INTEL_SSDPEKNW512GLZ	KXG6AZNV512G TOSHIBA	
Capacity	512 Gb	476gb	
Туре	SSD NVME	SSD NVME	

A análise da tabela comparativa revela que o Lenovo possui recursos superiores, o que contribui significativamente para um melhor desempenho nos testes seguintes. O Lenovo está equipado com um processador de maior capacidade e uma gráfica (GPU) mais avançada, proporcionando uma vantagem clara em operações que exijam alta performance de CPU e GPU.

Especificamente, o processador do Lenovo apresenta uma maior quantidade de núcleos e threads, além de uma frequência de clock mais alta, resultando numa maior eficiência de processamento e capacidade de executar múltiplas tarefas simultaneamente. A GPU do Lenovo, com maior quantidade de shaders e maior largura de banda de memória, também assegura um desempenho gráfico superior, essencial para aplicações intensivas em gráficos e cálculos paralelos.

Embora o HP apresente uma vantagem em termos de memória RAM, essa diferença não é suficiente para superar as vantagens substanciais oferecidas pelo Lenovo. A maior quantidade de RAM no HP pode proporcionar uma ligeira melhora na capacidade de multitarefa e no manuseio de aplicações que exigem grande quantidade de memória, mas não compensa as deficiências em poder de processamento e desempenho gráfico.

Testes feitos com o programa "PerformanceTest"

Os testes realizados demonstram que o Lenovo supera o HP em todas os pontos avaliados. Em termos de desempenho gráfico (GPU) e capacidade de processamento (CPU), a diferença de performance é particularmente acentuada em diversos cenários, destacando a superioridade do Lenovo nesses aspetos.

Especificamente, os testes de GPU e CPU indicam que o Lenovo oferece uma maior taxa de frames por segundo (FPS) em aplicações gráficas intensivas e um tempo de processamento mais rápido em operações computacionais pesadas. Isso sugere uma arquitetura de hardware mais eficiente e uma melhor gestão de recursos no Lenovo, permitindo um desempenho superior em tarefas que exigem alta capacidade gráfica e de processamento.

Por outro lado, o HP mostrou um aumento de desempenho notável nos testes realizados imediatamente após o reinício do sistema. Este pico de performance inicial pode ser atribuído a uma redução temporária na carga de processos em segundo plano e a uma otimização de inicialização que permite uma alocação de recursos mais eficiente, mas apenas o início do sistema operativo. No entanto, é importante ressaltar que, mesmo nessas condições ideais, o HP não conseguiu superar o desempenho do Lenovo em nenhum dos testes comparativos.

Conclusão

Neste relatório, exploramos os diversos aspetos que influenciam o desempenho do computador, desde as especificações do hardware até as práticas de manutenção do sistema. Os resultados das análises detalhadas destacam a importância crucial de uma abordagem abrangente para otimizar a eficácia e a velocidade do sistema.

Por um lado, a escolha cuidadosa do hardware desempenha um papel fundamental. Os dados revelam que dispositivos como o Lenovo (no nosso caso), com recursos superiores de CPU e GPU, podem oferecer uma vantagem significativa em termos de poder computacional. No entanto, também é evidente que o desempenho não é apenas determinado pelas especificações técnicas, mas também pela forma como o sistema é gerido e mantido ao longo do tempo.

Da mesma forma, a manutenção regular emerge como uma peça central na busca por um desempenho ótimo. Práticas como a atualização do software, o controlo dos processos em segundo plano e a limpeza física do hardware não apenas previnem problemas comuns, mas também prolongam a vida útil do sistema, garantindo uma experiência de utilizador satisfatória e produtiva.

Portanto, a mensagem final é clara: maximizar o desempenho do computador é um esforço contínuo que requer uma compreensão abrangente dos elementos técnicos e práticas de manutenção adequadas. Ao adotar uma abordagem proativa para gerir tanto o hardware quanto o software, os utilizadores podem desfrutar de um sistema que atende às suas necessidades com eficiência e confiabilidade.

Referências

https://computingstudy.wordpress.com/computer-performance-analysis/

- <u>^ Measuring Program Similarity: Experiments with SPEC CPU Benchmark Suites, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.123.501&rep=rep1&type=pdf</u>
- ^ Computer Performance Analysis with Mathematica by Arnold O. Allen, Academic Press, 1994. *\$1.1 Introduction, pg 1.*
- <u>^ "Brainiacs, Speed Demons, and Farewell"</u> by Linley Gwennap 1999 Categories:
 - Computer performance

https://techvera.com/factors-that-affect-the-performance-of-your-computer/

https://www.bbc.co.uk/bitesize/guides/zr8kt39/revision/5