

A4/250

След като Иванчо изхарчи за най-различни забавления парите, спечелени от продажбата на революционния софтуерен продукт, който той беше разработил през изминалото лято, той отново се захвана за работа.

В момента той изследва необходимостта от добавяне на нови видове скоби в математиката. Той стигна до момента в който иска да разбере колко са всички възможни правилни изрази създадени от точно k различни вида скоби, като от първия вид трябва да се използват a_1 двойки скоби, от втория - a_2 и т.н.

Иванчо ви моли да напишете програма **brackets**, която по зададени Q заявки от типа – число k – броят на двойките скоби и a_1, a_2, \dots, a_k – количеството скоби от всеки вид, извежда броя на правилните изрази съставени само от зададените скоби.

Правилен израз съставен само от скоби ще наричаме израз съставен от К вида скоби в който между всяка двойка отваряща и затваряща скоба от един и същ вид има или правилен израз от скоби или нищо. Изразът може да е съставен от множество "долепени" правилни изрази.

Вход

На първия ред на входния файл *brackets.in* се въвежда числото Q следват 2*Q реда в които се задава съответно k и $a_1, a_2, ..., a_k$ за всяка заявка.

Изход

На Q реда в изходния файл *brackets.out* трябва да изведете едно число – броят възможни скобувания за всяка заявка.

Важно: Тъй като броят на правилните скобувания може да бъде много голям, изведете отговора под модул $1,000,000,007 = 10^9 + 7$.

Ограничения

0<Q<=100 000

0<k<=10

 $0 < a_i < = 1000000$

Важно! В тази задача ограничението по памет е 16 МВ.

Примерен тест

Вход (brackets.in)	Изход (brackets.out)	•
5	1	
1	5	
1	15	
1	336	
3	168	
2		
1 2		
4		
1111		
3		
121		

Обяснение на изхода

1: ()

3: ()()(), ((())), ()(()), (())(), (()()),

 $1\ 2:\ ()\ [\]\]\ ,\ [\]\ ()\ [\]\ ,\ [\]\ ([\]\]\ ,\ ([\]\]\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\)\ ,\ ([\]\)\)\ ,\ ([\]\$

1 1 1 1: ()[]{}<>, ()[]<{}>, ...

1 2 1: ()[][{}, ()[[{}], ()[[{}]], ()[[[{}]], ()[[{}]], ...