13. Aufgabenblatt

(Besprechung in den Tutorien 29.01.2024–02.02.2024)

Aufgabe 1. Schnitt von NP und coNP (Schriftlicher Test WS 20/21)

Wir erinnern: Für eine Sprache $L \subseteq \Sigma^*$ ist $\bar{L} := \Sigma^* \setminus L$ das Komplement von L. Die Komplexitätsklasse coNP enthält alle Sprachen, deren Komplement in NP ist, also coNP = $\{L \subseteq \Sigma^* \mid \bar{L} \in \text{NP}\}.$

Das Problem 2-Coloring ist wie folgt definiert:

2-Coloring

Eingabe: Ein ungerichteter Graph G = (V, E).

Frage: Lassen sich die Knoten von G mit zwei Farben so färben, dass keine zwei mit einer Kante verbundenen Knoten die gleiche Farbe haben?

Zeigen Sie, dass 2-Coloring in $NP \cap coNP$ liegt.

Aufgabe 2. Verschiedenes zu P, NP und coNP

- (a) Begründen oder widerlegen Sie die folgenden Behauptungen.
 - (i) Falls NP \neq coNP, dann gilt P \neq coNP.
 - (ii) Falls $A \leq_m^p B$ für zwei Sprachen A, B, dann gilt $A \in P \Leftrightarrow B \in NP$.
 - (iii) Jedes Problem in NP \ P lässt sich auf jedes NP-vollständige Problem mittels einer Polynomzeitreduktion reduzieren.
- (b) Das Tautologieproblem ist wie folgt definiert:

TAUT

Eingabe: Aussagenlogische Formel F.

Frage: Ist F eine Tautologie, d.h. wird F für alle $\{0,1\}$ -wertigen Belegungen der in F verwendeten Booleschen Variablen zu wahr (d.h. 1) ausgewertet?

Wo liegt der Fehler im folgenden "Beweis", dass $TAUT \in NP$?

"Wir zeigen, dass es eine nichtdeterministische Turing-Maschine gibt, die für eine gegebene aussagenlogische Formel F entscheidet, ob diese eine Tautologie ist. Dazu wird zunächst die Formel $\neg F$ erstellt und anschließend auf der Eingabe $\neg F$ eine NTM simuliert, die SAT in Polynomzeit löst, d.h., die entscheidet, ob $\neg F$ erfüllbar ist (da SAT in NP liegt, gibt es eine solche NTM). Die Formel F ist genau dann eine Tautologie, wenn $\neg F$ nicht erfüllbar ist."

- (c) Welches der folgenden Probleme ist NP-schwer, welches coNP-schwer?
 - (i) **Eingabe:** Eine aussagenlogische Formel F. **Frage:** Ist $\neg F$ erfüllbar?
 - (ii) Eingabe: Ein Graph G und eine positive ganze Zahl k.
 Frage: Existiert nach dem Löschen von k beliebigen Knoten stets noch mindestens eine Kante im verbleibenden Graph?