П

# 0.1 主理想整环与唯一分解整环

### 定义 0.1 (主理想整环)

设  $(R,+,\cdot)$  是一个交换环,则我们称 R 是个**主理想整环**, 若 R 是一个整环, 而且每一个理想  $I \triangleleft R$  都是主理想,即存在  $a \in \mathbb{R}$ , 使得

$$I = (a) = Ra$$

的形式.

注 由命题??即可得到上述 I = (a) = Ra.

#### 引理 0.1

 $(\mathbb{Z},+,\cdot)$  的每个加法子群都具有  $n\mathbb{Z}$  的形式.

证明 不妨令  $I < \mathbb{Z}$  是加法子群. 假如 I 只包含了 0 一个元素, 那么  $I = \{0\} = 0\mathbb{Z}$ . 假设 I 包含了 0 以外的元素, 那么根据逆元的封闭性, I 一定包含了一个正整数, 因此  $I \cap \mathbb{N}_1 \neq \emptyset$ . 根据自然数集的良序公理, 我们可以取到最小的那个正整数, 称其为 n, 即  $n = \min\{I \cap \mathbb{N}_1\}$ . 下面, 我们只须证明

$$I = n\mathbb{Z}$$

一方面, 任取  $n \in I$ , 则 n 生成的 (加法) 子群为

$$\langle n \rangle = \left\{ \underbrace{n + n + \dots + n}_{k \uparrow} : k \in \mathbb{Z} \right\} = \{ nk : k \in \mathbb{Z} \} = n\mathbb{Z}.$$

于是由子群 / 对加法的封闭性可知

$$n\mathbb{Z} = \left\{ \underbrace{n+n+\cdots+n}_{k \uparrow 1} : k \in \mathbb{Z} \right\} \subset I.$$

另一方面, 假设存在  $I \setminus n\mathbb{Z}$  的元素, 我们任取  $m \in I \setminus n\mathbb{Z}$ . 则根据带余除法, 我们有

$$m=nq+r$$

其中  $1 \le r \le n-1$ . 而  $n(-q) \in n\mathbb{Z} \subset I$ . 则根据子群的性质,

$$r = m - qn = m + n(-q) \in I$$

而这与n是I最小的正整数的事实相矛盾. 这就证明了这个引理.

## 命题 0.1 (整数环是主理想整环)

 $(\mathbb{Z},+,\cdot)$  是个主理想整环.

证明 利用引理 0.1即得结论.

#### 引理 0.2

若  $(R,+,\cdot)$  是一个环,则 R 是一个域当且仅当  $\{0\}$  和 R 是 R 中唯二的理想  $(R \neq \{0\})$ .

🔮 笔记 这个引理表明: 域只有两个理想, 即零和自身.

证明 必要性: 假设 R 是一个域, 而 I 是一个理想. 假设  $I \neq \{0\}$ , 任取  $a \neq 0$ . 则存在  $b \in R$ , 使得

$$ab = 1$$

因此

 $1 \in Ra \subset RI \subset I$ 

所以由引理??(2) 可知 I = R.

**充分性**: 假设 R 唯二的理想是零和整个环. 令  $a \neq 0$ , 则  $\{0\}$  就是 R 的极大理想. 于是由命题**??**可知, $R/\{0\}$  就是一个域. 又因为  $R/\{0\} = R + 0 = R$ , 所以 R 是一个域.

#### 命题 0.2 (域是主理想整环)

若  $(R, +, \cdot)$  是一个域,则 R 是一个主理想整环.

证明 由引理 0.2可知 R 只有两个理想 0 和 R. 又由命题??可知

$$0 = 0 \cdot R = (0), \quad R = 1 \cdot R = (1),$$

故 R 是一个主理想整环.

#### 命题 0.3 (主理想整环中的素理想与极大理想等价)

设  $(R,+,\cdot)$  是一个主理想整环, $p \neq \{0\}$ , 则  $p \triangleleft R$  是一个素理想等价于 p 是一个极大理想.

证明 ⇐: 由命题??立得.

⇒: 用反证法. 假设  $\mathfrak{p}$  是素理想, 而不是极大理想, 则存在  $I \triangleleft R$ , 使得  $\mathfrak{p} \subseteq I \neq R$ .

因为 R 是主理想整环, 我们记  $\mathfrak{p}=(p), I=(a)$ . 则由于  $\mathfrak{p}\subset I$ , 我们有

$$p \in I = (a) = aR$$
.

故存在b ∈ R, 使得

$$p = ab$$

显然,b 不能是单位(即存在乘法逆元的元素),因为不然的话我们就可以写  $a = pb^{-1} \in (p) = \mathfrak{p}$ ,从而由  $\mathfrak{p} \triangleleft R$  可知  $I = (a) = aR \in \mathfrak{p}$ ,进而  $\mathfrak{p} = I$ ,导致矛盾.因此,b 没有乘法逆元.

另外, 由于 I 是真理想, 故 a 也不是单位——否则  $1 = aa^{-1} \in (a) = I$ , 进而由引理**??**(2) 可知 I = (a) = R 矛盾! 现在  $ab = p \in \mathfrak{p}$ , 则  $a \in \mathfrak{p}$  或  $b \in \mathfrak{p}$ . 假如  $a \in \mathfrak{p} = (p)$ , 则存在  $c \in R$ , 使得 a = pc = cp. 从而

$$p=ab=pcb \Rightarrow p(1-cb)=0.$$

又因为 R 是整环, 且由  $p \neq \{0\}$  可知  $p \neq 0$ , 所以

$$1 - cb = 0 \Rightarrow 1 = cb = bc$$
.

故 b 就是一个单位, 而这是不可能的. 假如  $b \in \mathfrak{p}$ , 则同理,a 就是一个单位, 而这也是不可能的. 无论如何, 我们都会得到矛盾.

因此,我们就证明了,在主理想整环中,每一个素理想都是极大理想,因此两个概念在主理想整环中是等价的.□



图 1: 环的层级关系以及素理想和极大理想之间的关系

## 命题 0.4

若p是一个素数,则 $\mathbb{Z}_p$ 是一个域.

证明 由命题??可知  $p\mathbb{Z}$  就是  $\mathbb{Z}$  的素理想. 再由命题 0.3 可知  $p\mathbb{Z}$  也是  $\mathbb{Z}$  的极大理想. 于是由命题??可知  $\mathbb{Z}/p\mathbb{Z} = \mathbb{Z}_p$  是一个域.

#### 定义 0.2

若 p 是一个素数,则我们把  $\mathbb{Z}_p$  记作  $\mathbb{F}_p$ . 特别地,又由  $\mathbb{Z}_p = \{k + p\mathbb{Z}, k = 1, 2, \cdots, p-1\}$  可知, $\mathbb{Z}_p$  是一个只有 p 个元素的有限域,即只有有限多个元素 (p 个元素)的域.

### 引理 0.3

若n是一个合数,则 $\mathbb{Z}_n$ 既不是一个域,也不是整环.

证明 先证  $\mathbb{Z}_n$  不是一个域. 由 n 是合数可知 n 不是素数, 从而由命题??可知 n 不是素理想. 又因为  $\mathbb{Z}$  是主理想整环, 所以由命题 0.3 可知 n 不是极大理想. 故由命题??可知  $\mathbb{Z}_n = \mathbb{Z}/n$  不是域.

再证  $\mathbb{Z}_n$  不是整环. 由 n 是合数可知, 存在  $a,b\in\mathbb{Z}$  且  $a,b\neq\pm1$ , 使得 n=ab. 从而 |a|,|b|< n, 于是  $\overline{a}\overline{b}=\overline{0}$ , 且  $\overline{a}\neq\overline{0},\overline{b}\neq\overline{0}$ .

故  $\mathbb{Z}_n$  不是整环.