Problem 3, p100:

Let A be closed in X and B be closed in Y.

Then $X \setminus A$ is open in X and $Y \setminus B$ is open in Y.

So $(X \setminus A) \times Y$ and $X \times (Y \setminus B)$ are open in $X \times Y$; these are products of open sets.

So , $X \times Y \setminus (X \setminus A) \times Y$ and $X \times Y \setminus X \times (Y \setminus B)$ are closed in $X \times Y$ by definition.

Now, $X \times Y \setminus (X \setminus A) \times Y = A \times Y$, and $X \times Y \setminus X \times (Y \setminus B) = X \times B$; $X \times Y \setminus (X \setminus A) \times Y = \{(x, y) \in X \times Y : (x, y) \notin (X \setminus A) \times Y\} = \{(x, y) \in X \times Y : x \notin (X \setminus A)\} = \{(x, y) \in X \times Y : x \in A\} = A \times Y$. Similarly, $X \times Y \setminus X \times (Y \setminus B) = \{(x, y) \in X \times Y : (x, y) \notin X \times (Y \setminus B)\} = \{(x, y) \in X \times Y : y \notin (Y \setminus B)\} = \{(x, y) \in X \times Y : y \in B\} = X \times B$.

So, $A \times Y \cap X \times B$ is closed. But $A \times Y \cap X \times B = A \times B$. So $A \times B$ is closed, as desired.

Problem 6b, p100:

Let A, B be subsets of a space, X.

First: if $A \subset B$, then $\overline{A} \subset \overline{B}$, because if $x \in \overline{A}$, then every neighborhood of x intersects A, so every neighborhood of x intersects B, so $x \in \overline{B}$.

Next, note that $\overline{A} \cup \overline{B}$ is closed; it's a union of closed sets. Moreover, $A \cup B \subset \overline{A} \cup \overline{B}$, because $A \subset \overline{A}$ and $B \subset \overline{B}$. Now, $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$, because $\overline{A} \cup \overline{B}$ is a closed set containing $A \cup B$, and $\overline{A \cup B}$ is the intersection of all closed sets containing $A \cup B$.

Next, let $x \in \overline{A \cup B}$. Then $x \in \overline{A}$. So $x \in \overline{A \cup B}$, because $A \subset A \cup B$. That is, $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$.

So, $\overline{A} \cup \overline{B} = \overline{A \cup B}$.

Problem 6c, p100:

Let A_{α} be a collection of subsets of a space, X.

Let $x \in \bigcup \overline{A_{\alpha}}$. Then $x \in \overline{A_{\alpha}}$ for some α . So every neighborhood of x intersects A_{α} for some α , by theorem 17.5. So every neighborhood of x intersects $\bigcup A_{\alpha}$. So $x \in \overline{\bigcup A_{\alpha}}$.

That is, $\bigcup \overline{A_{\alpha}} \subset \overline{\bigcup A_{\alpha}}$.

Equality fails; consider \mathbb{R} with the standard topology. Then (1/n, 1] has closure [1/n, 1] for each $n \in \mathbb{N}$ (as in Example 6 on p96). Now, $0 \notin$

 $\bigcup_{n=2}^{\infty} \overline{(1/n,1]} = \bigcup_{n=2}^{\infty} [1/n,1], \text{ else } 0 \in [1/n,1] \text{ for some } n \in \mathbb{N}, \text{ which is obvious nonsense. But } 0 \in \overline{\bigcup_{n=2}^{\infty} (1/n,1]}; \text{ every neighborhood of zero contains } 2/n \text{ for some } n \in \mathbb{N} \text{ larger than 2 (this is a basic fact about the real numbers). So every neighborhood of zero intersects } (1/n,1] \text{ for some } n \in \mathbb{N}. \text{ So every neighborhood of zero intersects } \bigcup_{n=2}^{\infty} (1/n,1], \text{ so by theorem } 17.5, 0 \in \overline{\bigcup_{n=2}^{\infty} (1/n,1]}.$

Problem 7, p100:

It fails here: "...U must intersect some A_{α} , so that x must belong to the closure of some A_{α} ." We need a little more power than we're given: We have that every neighborhood intersects some A_{α} , which may depend on U. However, we need the A_{α} to be fixed with respect to U to apply theorem 17.5.

This is the line where I would make a joke about the looseness of the word "criticize" in the problem statement, but I am too unfunny to pull this off.

Problem 9, p100:

Let $A \subset X$ and $B \subset Y$.

First, note that \overline{A} and \overline{B} are closed, as they are the closures of some set. Now, $\overline{A} \times \overline{B}$ is closed, by exercise 3 (done above, in this homework set). Moreover, note that $\overline{A} \times \overline{B}$ contains $A \times B$, as $A \subset \overline{A}$ and $B \subset \overline{B}$. So, $\overline{A} \times \overline{B}$ is a closed set containing $A \times B$; $\overline{A} \times \overline{B} \subset \overline{A} \times \overline{B}$, because $\overline{A} \times \overline{B}$ is the intersection of all closed sets containing $A \times B$.

Let $(x,y) \in \overline{A} \times \overline{B}$. Then $x \in \overline{A}$ and $y \in \overline{B}$. So every neighborhood of x intersects A and every neighborhood of y intersects B, by theorem 17.5. So every neighborhood of (x,y) intersects $A \times Y$ and $X \times B$. So every neighborhood of (x,y) intersects $A \times B$, because $A \times Y \cap X \times B = A \times B$. So $(x,y) \in \overline{A \times B}$, by theorem 17.5.

Problem 10, p100:

Let X be an ordered set, and give X the order topology.

Let $a, b \in X$, with $a \neq b$. Without loss of generality, say that a < b.

Either a is the smallest element of X or not.

Either b is the largest element of X or not.

Either there is a $c \in X$ with a < c < b or not.

If a is not the smallest element of X, b is not the largest element of X, and there is not $c \in X$ with a < c < b, then there are A and B with A < a and b < B. The sets (A, b) and (a, B) have $a \in (A, b)$ (as A < a < b) and $b \in (a, B)$ (as a < b < B). Also, $(A, b) \cap (a, B) = (a, b) = \emptyset$; that is, the points a and b are separated by open sets in the order topology.

If a is the smallest element of X, b is not the largest element of X, and there is not $c \in X$ with a < c < b, then there is B with b < B. The sets [a,b) and (a,B) have $a \in [a,b)$ and $b \in (a,B)$ (as a < b < B). Also, $[a,b) \cap (a,B) = (a,b) = \emptyset$; that is, the points a and b are separated by open sets in the order topology.

If a is not the smallest element of X, b is the largest element of X, and there is not $c \in X$ with a < c < b, then there is A with A < a. The sets (A,b) and (a,b] have $a \in (A,b)$ (as A < a < b) and $b \in (a,b]$. Also, $(A,b) \cap (a,b] = (a,b) = \emptyset$; that is, the points a and b are separated by open sets in the order topology.

If a is the smallest element of X, b is the largest element of X, and there is not $c \in X$ with a < c < b, then the sets [a,b) and (a,b] have $a \in [a,b)$ and $b \in (a,b]$. Also, $[a,b) \cap (a,b] = (a,b) = \emptyset$; that is, the points a and b are separated by open sets in the order topology.

If a is not the smallest element of X, b is not the largest element of X, and there is $c \in X$ with a < c < b, then pick some such c. Now, there are A and B with A < a and b < B. The sets (A, c) and (c, B) have $a \in (A, c)$ (as A < a < c) and $b \in (c, B)$ (as c < b < B). Also, $(A, c) \cap (c, B) = \emptyset$; that is, the points a and b are separated by open sets in the order topology.

If a is the smallest element of X, b is not the largest element of X, and there is $c \in X$ with a < c < b, then pick some such c. Now, there is B with b < B. The sets [a, c) and (c, B) have $a \in [a, c)$ and $b \in (c, B)$ (as c < b < B). Also, $[a, c) \cap (c, B) = \emptyset$; that is, the points a and b are separated by open sets in the order topology.

If a is not the smallest element of X, b is the largest element of X, and there is $c \in X$ with a < c < b, then pick some such c. Now, there is A with A < a. The sets (A, c) and (c, b] have $a \in (A, c)$ (as A < a < c) and $b \in (c, b]$. Also, $(A, c) \cap (c, b] = \emptyset$; that is, the points a and b are separated by open sets in the order topology.

If a is the smallest element of X, b is the largest element of X, and there

is $c \in X$ with a < c < b, then pick some such c. Now, the sets [a, c) and (c, b] have $a \in [a, c)$ and $b \in (c, b]$. Also, $[a, c) \cap (c, b] = \emptyset$; that is, the points a and b are separated by open sets in the order topology.

So in all cases, the points a and b are separated by open sets in the order topology; the order topology is Hausdorff.

(Question: Would appealing to Theorem 17.11 have gotten me points for this?)

Problem 13, p100:

Let X be a Hausdorff space. Let $(a,b) \in X \times X \setminus \Delta$, with $\Delta = \{(x,x) : x \in X\}$. Then there are U,V open in X with $a \in U$, $b \notin U$, $a \notin V$, $b \in V$, and $U \cap V = \emptyset$. Note that $U \times V \cap \Delta = \emptyset$; else, there is $(x,x) \in U \times V$ for some $x \in X$, so that there is an $x \in U \cap V$, which contradicts the fact that $U \cap V$ is empty. So, for each $(a,b) \in X \times X \setminus \Delta$, there's a neighborhood of (a,b) contained in $X \times X \setminus \Delta$. That is $X \times X \setminus \Delta$ is open in $X \times X$; so Δ is closed in $X \times X$.

So if X is a Hausdorff space, then Δ is closed in $X \times X$.

Let $\Delta = \{(x,x) : x \in X\}$ be closed in $X \times X$. Pick $a,b \in X$ with $a \neq b$. Then consider $(a,b) \in X \times X$; because $(a,b) \notin \Delta$, $(a,b) \in X \times X \setminus \Delta$. Now, $X \times X \setminus \Delta$ is open, because Δ is closed. So there are U and V each open in X such that $(x,y) \in U \times V$ and $U \times V \cap \Delta = \emptyset$, because products of open sets are a basis for the product topology. Because $U \times V \cap \Delta = \emptyset$, the points (a,a) and (b,b) are not in $U \times V$. Now, U contains a and b contains b, because $(a,b) \in U \times V$. Also, $b \notin U$, else $(b,b) \in U \times V$. Also, $a \notin V$, else $(a,a) \in U \times V$. So U is an open set in X containing a and not b, and b is an open set in b containing b and not a.

So if Δ is closed in $X \times X$, then any two points can be separated by open sets in X; that is, X is Hausdorff.

Problem 4, p111:

Fix $x_0 \in X$, $y_0 \in Y$, with X and Y topological spaces. Consider $f: X \to X \times Y$ and $g: Y \to X \times Y$ given by $f(x) = (x, y_0)$ and $g(y) = (x_0, y)$.

First, f and g are injective: let f(a) = f(b). Then $f(a) = (a, y_0) = f(b) = (b, y_0)$, so that a = b. Similarly, if g(a) = g(b), then $g(a) = (x_0, a) = g(b) = (x_0, b)$, so that a = b

Next, f and g are continuous: let W be an open set in $X \times Y$. Then $f^{-1}(W) = \{x \in X : (x, y_0) \in W\}$. Now, for each $x \in f^{-1}(W)$, there is a pair of open sets $U \subset X$ and $V \subset Y$ with $(x, y_0) \in U \times V$ and $U \times V \subset W$. So, there is a $U \subset X$ with $x \in U$ and $U \subset f^{-1}(W)$. So $f^{-1}(W)$ is open in X. So $f^{-1}(W)$ is open in X for all W open in $X \times Y$; f is continuous. Similarly, let W be an open set in $X \times Y$. Then $g^{-1}(W) = \{y \in Y : (x_0, y) \in W\}$. Now, for each $y \in g^{-1}(W)$, there is a pair of open sets $U \subset X$ and $V \subset Y$ with $(x_0, y) \in U \times V$ and $U \times V \subset W$. So, there is a $V \subset Y$ with $V \in Y$ and $V \subset Y$ with $V \subset Y$ is open in $V \subset Y$ is open in $V \subset Y$ and $V \subset Y$ is open in $V \subset Y$ open in $V \subset Y$ is open in $V \subset Y$ open in $V \subset Y$ is open in $V \subset Y$ is open in $V \subset Y$ open in $V \subset Y$ is open in $V \subset Y$ open in $V \subset Y$ is open in $V \subset Y$ open in $V \subset Y$ is open in $V \subset Y$ is open in $V \subset Y$ open in

Next, f and g map onto $X \times \{y_0\}$ and $\{x_0\} \times Y$, respectively; this is clear. We can readily construct an inverse to f and g; the maps $f^{-1}: X \times \{y_0\} \to X$ and $g^{-1}: \{x_0\} \times Y \to Y$ given by $f^{-1}(x, y_0) = x$ and $g^{-1}(x_0, y) = y$ work, and this is clear.

These inverses are continuous; let W be open in X. Then consider $f^{-1}(W) = W \times \{y_0\}$; this is open in $X \times \{y_0\}$, as $W \times \{y_0\} = W \times Y \cap X \times \{y_0\}$, which is the intersection of an open set in the space $X \times Y$ and the subspace $X \times \{y_0\}$. That is, $f^{-1}(W)$ is open if W is; f is continuous. Similarly, let W be open in Y. Then consider $g^{-1}(W) = \{x_0\} \times W$; this is open in $\{x_0\} \times Y$, as $\{x_0\} \times W = X \times W \cap \{x_0\} \times Y$, which is the intersection of an open set in the space $X \times Y$ and the subspace $\{x_0\} \times Y$. That is, $g^{-1}(W)$ is open if W is; g is continuous.

So, f and g are injective, continuous, and have continuous inverses on their image sets; f and g are imbeddings.

Problem 8a, p111:

Let Y be an ordered set, given the order topology. Let f, g be continuous maps from X to Y.

Consider $A = \{x : f(x) \le g(x)\}.$

Let $x \in \overline{A}$. Then every neighborhood, U, of x intersects A. Let U be a basic neighborhood (read: "interval") of f(x) and V be a basic neighborhood of g(x) with the property that $U \cap V = \emptyset$ (we can do this, as Y is Hausdorff; this is problem 10 on page 100. So we can choose open sets with these properties, and so we can choose a basis element with these properties by simply choosing any basis element contained in U (or V) that contains f(x) (or g(x)).)

Now, $f^{-1}(U)$ and $g^{-1}(V)$ are both open, because f and g are continuous. Moreover, they are both neighborhoods of x, as U contained f(x) and V contained g(x). Now, consider $B = f^{-1}(U) \cap g^{-1}(V)$. Then $x \in B$, and B is open, as it's an intersection of two open sets; that is, B is a neighborhood of x. So, $B \cap A$ is nonempty. So there is some $a \in B$ with $f(a) \leq g(a)$. So there is some $a \in f^{-1}(U) \cap g^{-1}(V)$ with $f(a) \leq g(a)$.

This means that for all $u \in U$, $v \in V$, $u \le v$ (else, there is $u \in U$, $v \in V$ with u > v and $f(a) \in U$ and $g(a) \in V$ with $f(a) \le g(a)$. So, as U = (p, q) and V = (r, s) were intervals, we have that $U \cap V$ is nonempty (for $U \cap V$ to be empty, it is necessary that r > q or s > p, and thus all elements in U are greater than all elements in V or all elements in V are greater than all elements in U) (I'll give a more detailed proof of this in the next homework, I promise. (i, j))

So, $f(x) \leq g(x)$, because $f(x) \in U$ and $g(x) \in V$. So, $x \in A$.

So, $\overline{A} \subset A$. So because $\overline{A} \supset A$ (this is clear from Theorem 17.6), we have that $\overline{A} = A$. This means that A is closed; this is mentioned on page 95 of Munkres, right in the middle.

Problem 8b, p111:

Let Y be an ordered set, given the order topology. Let f, g be continuous maps from X to Y.

Let $h: X \to Y$ be the function $h(x) = \min f(x), g(x)$.

Then consider $A = \{x : f(x) \le g(x) \text{ and } B = \{x : g(x) \le f(x)\}$. From problem 8a, both A and B are closed. Moreover, $X = A \cup B$, (as for all $x \in X$, $f(x) \le g(x)$ or $g(x) \le f(x)$).

Now, consider $f_A: A \to Y$ given by $f_A(x) = f(x)$ and $g_B: B \to Y$ given by $g_B(x) = g(x)$. Then note that $f_A(x) = g_B(x)$ on $A \cap B$, because on $A \cap B$, we have $f(x) \leq g(x)$ and $g(x) \leq f(x)$ so that $f(x) = g(x) = f_A(x) = g_B(x)$.

So, $h: X \to Y$ given by $h(x) = f_A(x)$ on A and $h(x) = g_B(x)$ on B is continuous. That is, $h(x) = \min f(x), g(x)$ is continuous.

Problem A:

Let X be a topological space with open sets U_i for i=1,2,3...n, with $\overline{U_i}=X$ for all i.

Then consider $A = \bigcap_{i=1}^{n} U_i$.

First, $A \subset X$, and this is clear.

Next: let $x \in X$. Then for any open neighborhood of x, say, U, the intersection $U \cap U_i$ is nonempty for all $i \leq n$; this is because $\overline{U_i} = X$. The intersection $\bigcap_{i=1}^n U \cap U_i$ is open, as it is a finite intersection of open sets. This set equals $U \cap \bigcap_{i=1}^n U_i$, by known set theory. It is also nonempty, and we prove this by induction: we know that U_1 intersects every open set in X (else, there is some neighborhood of some point that U_1 fails to intersect, so that $\overline{U_1} \neq X$, which is a contradiction of our original assumptions on U_i). If $\bigcap_{i=1}^m U_i$ intersects every open set for m < n, then consider $\bigcap_{i=1}^{m+1} U_i = U_{m+1} \cap \bigcap_{i=1}^m U_i$. Now, let U be an open set. Then $U \cap \bigcap_{i=1}^m U_i$ is nonempty and open. So because U_{m+1} intersects every open set (as above), then $U \cap U_{m+1} \cap \bigcap_{i=1}^m U_i$ is nonempty; that is, $\bigcap_{i=1}^{m+1} U_i$ intersects every open set. By induction, $\bigcap_{i=1}^n U_i$ intersects every open set, so that $U \cap \bigcap_{i=1}^n U_i$ is nonempty when U is open.

To summarize, for any open neighborhood of any $x \in X$, $\bigcap_{i=1}^{m+1} U_i$ intersects said neighborhood. That is, $x \in \bigcap_{i=1}^n U_i$, for all $x \in X$. So $X \subset A$. So X = A.