MUBD Màster Universitari en Enginyeria de Dades Massives (Big Data) Estadística

Índice – Clusterización jerárquica

- 1. Introducción
- 2. Clusterización jerárquica
 - 1. Distancia
 - 2. Inercia
 - Criterio de Ward
 - 4. Algoritmo aglomerativo
 - 5. Partición

3. K-means

- 1. Algoritmo
- 2. Parámetros
- 3. Convergencia
- 4. Métodos/variantes
- 5. Medidas de rendimiento
- 4. Sistemas mixtos

Introducción

Objetivo

- Se desea formar grupos de observaciones similares entre sí y distintas entre grupos según unas características determinadas.
- Es un problema de clasificación de instancias.
- Hay distintas metodologías (algoritmos) de alcanzar este objetivo
 - Clusterización jerárquica
 - K-means
 - ...

Introducción

Aplicabilidad

- Biología
 - Agrupar organismos en especies
 - Agrupar en familias genéticas
- Medicina
 - Análisis de imágenes
- Marketing
 - Crear segmentos de consumidores
 - Clasificación de productos
- Sociología
 - Organizar comunidades a través de relaciones en las redes sociales
 - Identificar grupos de estudiantes dentro de una comunidad educativa
- Otros...

Introducción

Tipos de problemas

- No supervisado (Clustering analysis)
 - Sin variable respuesta
 - Evaluación de la calidad del algoritmo complicada
 - Ej: clusterización jerárquica, K-means
- Supervisado (Discriminant analysis)
 - Se dispone de una variable respuesta
 - Fácil evaluación de la capacidad predictiva
 - Ej: conditional trees, random forest, KNN, Naive-Bayes, SVM

5 5 2 2

Dendograma

Introducción

Ventajas

- No es imprescindible tener variables cuantitativas (aunque es más usual)
 ya que se pueden definir distancias para variables categóricas
- No requiere definir el número de agrupaciones a priori. Se calcula un árbol jerárquico independientemente de los grupos
- El árbol permite visualizar de forma intuitiva distancias entre individuos para tamaños muestrales no muy grandes

Inconvenientes

- Requiere definir un tipo de distancia
- Requiere el cálculo de todos los pares de distancias. Mayor tiempo de computación para muestras grandes (>500)

Proceso

Al realizar una clusterización jerarárquica, se deben realizar los siguientes pasos (en azul, decisiones a tomar):

- 1. Decidir el tipo de distancia a emplear (euclídea, manhattan...)
- Construir la matriz de disimilitudes
- 3. Decidir el método de agrupación (aglomerativo o divisivo)
- 4. Decidir el sub-método de agrupación (Ward, completo...)
- 5. Aplicar el algoritmo de clusterización
- 6. Decidir el criterio para realizar la partición de los clústeres
- Particionar la muestra

NOTA: Con los pasos 1 a 5 construimos el dendograma

Distancias entre observaciones

Tipos

Minkowski

Manhattan
$$(p = 1)$$

■ Máxima
$$(p = \infty)$$

$$d(i, l) = \left(\sum_{k=1}^{K} |x_{ik} - x_{lk}|^p\right)^{\frac{1}{p}}$$

$$d(i, l) = \sum_{k=1}^{K} |x_{ik} - x_{lk}|$$

$$d^{2}(i,l) = \sum_{k=1}^{K} (x_{ik} - x_{lk})^{2}$$

$$d(i,l) = \max_{k} ||x_{ik} - x_{lk}||$$

$$(x_{i+1}|x_{ik}-x_{ik}|^p)^{\frac{1}{p}}$$

$$d^{2}(i,l) = (x_{i} - x_{l})^{T} \Sigma^{-1}(x_{i} - x_{l}) \rightarrow \Sigma$$
 es la matriz de var-covar

$$d(i, l) = \sum_{k=1}^{K} \frac{|x_{ik} - x_{lk}|}{|x_{ik} + x_{lk}|}$$

$$d_k(i,l) = \sum_{k=1}^n d_k(i,l) \to d_k(i,l) = \begin{cases} 1 \text{ si } i_k \neq j_k \\ 0 \text{ si } i_k = j_k \end{cases} \text{ (variables categóricas)}$$

$$d(i, l) = \frac{n_{++}}{n_{++} + n_{+-} + n_{-+}}$$

(variables categóricas)

p=1

p = 1.414

Distancias entre grupos de observaciones Tipos

- Simple. Mínima distancia entre dos puntos pertenecientes uno a cada grupo
- Completa. Máxima distancia entre dos puntos pertenecientes uno a cada grupo
- Entre centros de gravedad. Distancia entre los centros de gravedad
- Criterio de Ward. No es una distancia en sí, sino un criterio para hacer la agrupación que consiste en minimizar la inercia.

Inercia

Definición

- La inercia es una medida de la heterogeneidad existente en un conjunto de datos.
- Dada una partición en Q grupos formados por I_q elementos en un espacio K-dimensional (K variables) se define:

Inercia Total
$$\sum_{k=1}^{K} \sum_{q=1}^{Q} \sum_{i=1}^{I_q} (y_{iqk} - \bar{y}_k)^2$$
 [Distancia de cada punto al centro de gravedad]

Inercia Entre-grupo
$$\sum_{k=1}^{K} \sum_{q=1}^{Q} I_q (\bar{y}_{qk} - \bar{y}_k)^2$$
 [Distancia del centro de los grupos al centro global]

Inercia Intra-grupo
$$\sum_{k=1}^{K} \sum_{q=1}^{Q} \sum_{i=1}^{I_q} (y_{iqk} - \bar{y}_{qk})^2$$
 [Distancia de cada punto al centro de su grupo]

Se cumple que:

Inercia Total = Inercia Entre-grupo + Inercia Intra-grupo

Inercia

Propiedades

■ La calidad de una partición puede medirse como el % de variabilidad explicada por los grupos (similar al R² del modelo lineal), es decir:

$$Variabilidad\ explicada = \frac{Inercia\ entre-grupos}{Inercia\ total}$$

El porcentaje de variabilidad explicada siempre crece a medida que se incrementan el número de grupos:

Mayor número de grupos → Más variabilidad explicada → Más inercia entre-grupos

Menor número de grupos → Menos variabilidad explicada → Menos inercia entre-grupos

Método de agrupación

Aglomerativo vs. Divisivo

- El agrupamiento aglomerativo es el más común: AGNES (AGglomerative NESting).
 - Funciona de una manera ascendente
 - El algoritmo comienza tratando cada objeto como un único clúster.
 - En cada iteración, los 2 clústeres más similares se combinan en un nuevo clúster (nodo). Este proceso se repite hasta que todos los puntos pertenezcan a un único gran grupo (raíz)
- El proceso inverso de la agrupación aglomerativa es la agrupación divisiva, también conocida como DIANA (Divisve ANAlysis)
 - Funciona de manera descendente
 - Comienza con la raíz, en la cual todos los objetos están incluidos en un solo grupo.
 - En cada iteración, el clúster más heterogéneo se divide en dos. El proceso se itera hasta que todos los objetos sean un único clúster.
- La agrupación aglomerativa es buena para identificar pequeños grupos y la divisiva sirve para identificar grandes agrupaciones.

Criterio de Ward

Agrupación

- Se parte de Q clústeres
- Se desea una agrupación ideal que pase a Q-1 clústeres
- Sea el clúster p (con centro de gravedad g_p y tamaño I_p) y el clúster q (con centro de gravedad g_q y tamaño I_q). El incremento en la inercia intra-grupo se cuantifica por:

$$\Delta(p,q) = \frac{I_p I_q}{I_p + I_q} d^2(g_p, g_q)$$

- El <u>criterio de Ward</u> consiste en juntar aquellos clústeres tales que minimicen el incremento en la inercia intra-grupo al pasar de *Q* a (*Q-1*) clústeres.
- Este criterio favorece juntar:
 - Los clústeres cercanos
 - Los clústeres pequeños

Algoritmo aglomerativo

- Construir la matriz de distancias
- 2. Se escogen los dos puntos (o agrupaciones de puntos) más próximos o según algún criterio (p.ej, Ward)
- 3. Se representa la agrupación uniendo ambos puntos (o agrupaciones) a una altura equivalente a la distancia (o al cambio en la inercia).
- 4. Se actualiza la matriz de distancias agrupando las filas y las columnas correspondientes a los puntos agrupados y recalculando las distancias de todos los puntos al nuevo conglomerado.
- 5. Se vuelve al punto 2 mientras queden agrupaciones posibles

Calidad del árbol jerárquico

Distancia y correlación cofenética

- Para evaluar la calidad del árbol (dendograma) construido se deben comparar cuán similares son las distancias (alturas) producidas por el dendograma respecto a las distancias originales.
- Las distancias obtenidas del dendograma se denominan distancias cofenéticas.
- Para evaluar la calidad, se calcula la correlación cofenética entre estas distancias y las distancias originales.
- Si la agrupación es válida, debe existir una fuerte correlación entre estas distancias. Se considera que los valores superiores a 0.75 son aceptables.
- Escoger distancias "medias" para la agrupación produce valores altos de esta correlación.

Número de clústeres

- Una vez se tiene el dendograma, se debe definir una partición en K clústeres.
- Criterios para escoger una partición:
 - Visual. A partir del dendograma
 - Cambio de inercia
 - Regla del codo.
 - Minimizar el cociente $\Delta(q)$ / $\Delta(q+1)$ donde $\Delta(q)$ es el cambio en la inercia intra al pasar de q a q-1 clústeres
 - Parsimonia. No es conveniente escoger un gran número de clústeres
 - Interpretabilidad. Los grupos deben tener algún sentido

Tendencia a la agrupación

Estadístico de Hopkins

- Escoger n puntos aleatorios D'= $(p_1,...,p_n)$ de nuestro conjunto de datos (D)
- Para cada punto $p_i \in D'$, buscar su vecino más próximo $p_i \in D$ y calcular su distancia (w_i)
- Generar un conjunto de datos simulado (R) con distribución uniforme con n puntos ($q_1, ..., q_n$) y la misma variabilidad que el conjunto de datos D.
- Para cada punto $q_i \in D$, buscar su vecino más próximo dentro del conjunto real de puntos y calcular su distancia (u_i)
- El estadístico de Hopkins será:

MUBD

$$H = \frac{\sum u_i}{\sum w_i + \sum u_i}$$

- Un valor de 0.5 indicará que los clústeres son parecidos y que por tanto, no existen clústeres. Un valor próximo a 1 indicará presencia de clústeres.
- Nota: la función hopkins{clustertend} de R proporciona el estadístico 1-H

Ejemplo con R (iris)

```
d <- dist(iris2, method = "euclidean") # matriz de distancias
View(as.matrix(d)) # ver matriz
hc <- hclust(d, method = "complete") # jerarquización
windows(14,7) # representar jerarquía
plot(hc,cex=0.5)</pre>
```


Ejemplo R (iris)

- Se ha establecido una jerarquía sin fijar el número de grupos
- La instrucción cutree permite fijar un número de clusters determinando haciendo un corte transversal del árbol a la altura que proporcione dicho número de clusters

Ejemplo R (iris)

Correspondencia entre clústeres y especies da un 84% de acierto

	Clúster			
	1	2	3	
setosa	50	0	0	
versicolor	0	27	23	
virginica	0	1	49	

Introducción

 <u>Tipos de variables</u>: idealmente se precisan variables cuantitativas o ordinales con un gran número de categorías (aunque pueden implementarse distancias para otro tipo de variables)

Ventajas

- No requiere del cálculo de todos los pares de distancias
- Requiere menos tiempo de computación que la clusterización jerárquica

Inconvenientes

- Resultados inaceptables para según qué tipo de clústeres (sobre todo NO convexos). Sol: usar versiones de K-means que minimicen este problema.
- Distintos resultados dependiendo de los parámetros iniciales (sobre todo para conjuntos de datos pequeños). Sol: fijar distintos puntos iniciales.
- Requiere fijar el número de clústeres a priori. Sol: si el coste computacional no es muy alto, probar diversos números de clústeres.
- Al basarse en distancias medias, los *outliers* pueden afectar drásticamente al resultado. Sol: probar algoritmos más robustos (K-medians, K-mediods).

Ejemplo

En cada iteración los puntos se van agrupando según sus similitudes

Proceso

- Objetivo: definir los clústeres de tal manera que se minimice la variabilidad intra-cluster.
- Determinar los parámetros iniciales
 - Número de clústeres
 - Número máximo de iteraciones
 - Número de ejecuciones con distintos puntos iniciales
- Ejecución del algoritmo

Algoritmo

Inicialización:

- 1. Especificar el número de clústeres (k)
- Seleccionar aleatoriamente k elementos del conjunto de datos como centro de los clústeres

Repetir iterativamente:

- 3. Asignar cada elemento al clúster cuyo centro este más cercano
- 4. Recalcular el centro de gravedad para cada clúster

Se <u>deja de iterar</u> si se cumple algún criterio:

- Se alcanza el máximo número de iteraciones
- El cambio en la variabilidad-intra entre 2 iteraciones consecutivas es menor que un determinado umbral (o incluso nulo)

Parámetros iniciales

- Número máximo de iteraciones. K-means suele converger con pocas iteraciones. Ajustar según capacidad computacional, pero no debería ser un problema.
- Número de ejecuciones con distintos puntos iniciales. K-means tiene una componente aleatoria en la elección de los centroides iniciales. Conviene:
 - Realizar más de una ejecución del algoritmo (nstart) y quedarnos con la mejor
 - Poner una semilla para hacer los resultados reproducibles

Número de grupos

Regla del codo. Comparar el porcentaje de variabilidad explicada (o variabilidad intra) para cada número de clúster. El punto en que se encuentre un codo (variación constante a partir de él) indicará el número idóneo de clústeres

■ Coger un número de clústeres k en función del número de observaciones

$$k = \sqrt{n/2}$$
 P.ej. para 800 observaciones, se obtendrían 20 clústeres

■ Usar otra indicador. Hay múltiples indicadores aparte de la inercia para evaluar el rendimiento del algoritmo.

R

- kmeans(x, centers, iter.max = 10, nstart = 1, algorithm =c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"), trace=FALSE)
 - x: datos
 - centers: número de clústeres
 - iter.max: número máximo de iteraciones
 - nstart: número de puntos iniciales distintos
 - algorithm: método refinado del algoritmo
 - trace: printar proceso

Convergencia

- La convergencia hacia una solución está garantizada dado que la inercia-intra disminuye en cada iteración. Sin embargo, no está garantizado que converja hacía el óptimo.
- La convergencia es rápida (generalmente menos de 5 iteraciones, incluso, para grandes cantidades de datos).
- En general, se ejecuta el algoritmo con diferentes particiones iniciales y se retiene la solución más satisfactoria.
- Debido a la componente aleatoria, conviene poner una semilla antes de ejecutar el algoritmo.

MUBD

Métodos

R implementa 4 métodos para hacer la partición:

- Hartigan-Wong (método por defecto). Optimiza el cálculo de distancias dividiendo los puntos pertenecientes a clústeres actualizados y no actualizados en cada iteración.
- Lloyd. Explicado en diapositivas previas. Método más simple.
- Forgy (o Forgy-Lloyd). Igual que el de Lloyd pero para los centroides iniciales se eligen puntos aleatorios dispersos (más eficiente con el algoritmo común)
- MacQueen. Actualiza los centros en cada punto que se mueve. Usa probabilidades y convergencias asintóticas.

Variantes. Paquetes de R

Diversos paquetes implementan métodos alternativos del k-means:

- clustMixType. Variables categóricas y numéricas
- **kml**. Datos longitudinales
- skmeans. Sperichal K-means
- trimcluster. Métodos robustos ante la presencia de outliers
- Biganalytics. Contiene la función bigkmeans para grandes conjuntos de datos

Variantes

- K-medians. Usa medianas en vez de medias (más robusto)
- K-mediods. Usa la instancia más representativa dentro del clúster. Puede usarse cualquier distancia (se pueden usar variables categóricas)
- Fuzzy C-Means. Cada punto tiene un grado difuso de pertenecía a cada grupo.
- *Esperanza-maximización*. Modelos de mezclas gaussianas. Emplean una asignación probabilística a cada grupo, en vez de asignaciones deterministas.
- **K-means++.** Cambia el método de elección de los centroides iniciales.
- KD-trees. Filtrado para mejorar la eficiencia en cada paso del algoritmo.
- Spherical k-means. Para datos direccionales (ángulos en vez de distancias).
- *Minkowski metric weighted k-means*. Soluciona el problema del ruido asignando pesos a las componentes de los vectores por grupos

Variantes

K-mediods

- La diferencia básica con el K-means es que en vez de escoger el centro de gravedad como centro del clúster, se escoge el elemento (mediod) más representativo
- No confundir con el algoritmo K-medians que se basa en las medianas univariantes.
- El mediod es aquel punto cuya distancia media al resto de puntos del clúster es mínima
- Es un algoritmo más robusto que el K-means ya que no es tan sensible a la presencia de outliers
- Una variante del algoritmo de K-mediods es CLARA (CLustering LARge Applications) que mejora el rendimiento para grandes volúmenes de datos
- En R existen funciones para K-mediods [pam (cluster)] y para su variante [clara (cluster)]

Medidas de rendimiento

Tipos

Internas. Evalúa la calidad de la agrupación sin ninguna referencia externa. Hay distintas propiedades deseables:

100

500

:W1

....

Compacidad. Baja variabilidad-intra

Separación. Alta variabilidad-entre

 Externas. Comparan la agrupación con un resultado externo (otra agrupación o un conjunto que ya haya sido etiquetado)

Clustering

Medidas de rendimiento internas (1 agrupación)

Inercia intra (suma de las distancias euclídeas al cuadrado de cada punto a su respectivo centroide). Valores entre 0 y ∞. Decrece monótonamente al aumentar el número de clústeres:

$$I = \sum_{i=1}^{k} \sum_{j=1}^{n_k} (x_{ij} - c_j)^2$$

Dunn index (cociente entre distancia mínima entre puntos de distintos clústeres y la distancia máxima entre puntos del mismo clúster). Valores entre 0 y ∞. Se debe maximizar. *R: dunn(clValid)*

$$D = \frac{d_{min}}{d_{máx}}$$

Silhouette coefficient. Valores entre -1 y 1. Se debe maximizar. Para un punto concreto i, a(i) es la media de las distancias a los puntos del mismo clúster y b(i), la mínima distancia a puntos de otro clúster. Este coeficiente es la media de todos los s(i). R: silhouette (cluster)

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

MUBD

Clustering

Medidas de rendimiento externas (similitud de 2 agrupaciones)

■ Para cada pareja de puntos en 2 agrupaciones (C1 y C2), se define:

A: parejas en mismo clúster en ambas agrupaciones C1 y C2

B: parejas en distintos clústeres en ambas agrupaciones C1 y C2

C: parejas en mismo clúster en C1 y distinto clúster en C2

D: parejas en distinto clúster en C1 y mismo clúster en C2

Rand index (Proporción de parejas igual de agrupadas en ambas agrupaciones).
Toma valores entre 0 y 1. Cuánto mayor, más similitud. R: randIndex (flexclust)

$$R = \frac{\# \ coincidencias \ por \ parejas}{\# \ parejas} = \frac{A+B}{A+B+C+D}$$

Jaccard index (Proporción de parejas en el mismo clúster). Toma valores entre 0 y 1. Cuánto mayor, más similitud. R: jaccard_indep (clusteval)

$$J = \frac{\text{\# parejas en el mismo cl\'uster}}{\text{\# parejas } - \text{\# parejas en distintos cl\'usteres en ambas}} = \frac{A}{A + C + D}$$

Sistemas mixtos

K-means + Clusterización jerárquica

- Opción 1: Útil con un gran número de observaciones
 - <u>Etapa 1</u>. Se realiza un *k-means* con un elevado número de grupos (p.ej, 100)
 - <u>Etapa 2</u>. Se realiza una clusterización jerárquica de los grupos usando sus centros de gravedad.
- Opción 2: Útil con pocas observaciones. En ciertos casos, mejora el rendimiento
 - <u>Etapa 1</u>. Se realiza una clusterización jerárquica
 - Etapa 2. Partiendo de una partición inicial de esta clusterización se pueden reasignar los puntos según el algoritmo de k-means

Sistemas mixtos

(ACP o ACM) + (K-means o clusterización jerárquica)

- Útil para eliminar ruido (variables irrelevantes) o para tratar con todo tipo de variables (categóricas inclusive).
 - Se realiza un ACP y/o ACM y se retiene las componentes principales con varianza no nula
 - Se aplica una clusterización jerárquica/k-means con dichas componentes usando la distancia euclídea
- Inconveniente: En algunos casos, el ACP puede ser contraproducente

Modelos de Clustering

Ejemplo R

Datos de longitud y anchura de sépalos y pétalos de 3 tipos de especie de plantas

```
iris2 <- scale(iris[,1:4])  # Se elimina especie
pairs(iris2,col=iris$Species,pch=19)  # Descriptiva bivariante</pre>
```


MUBD

Ejemplo R – 2 grupos

En un principio, se desconoce el número de grupos. Se prueba 2, 3 y 4

```
km2 <- kmeans (iris2,2,nstart=10) # Algoritmo de k-means para 2 grupos
km2
K-means clustering with 2 clusters of sizes 97, 53
Cluster means:
 Sepal.Length Sepal.Width Petal.Length Petal.Width
    6.301031 2.886598 4.958763
                                     1.695876
    5.005660 3.369811 1.560377 0.290566
Clustering vector:
Within cluster sum of squares by cluster:
[1] 123.79588 28.55208
(between SS / total SS = 77.6 %)
```


MUBD

Ejemplo R – 3 grupos

```
km3 \leftarrow kmeans (iris2,3,nstart=10) # k-means para 3 grupos
km3
K-means clustering with 3 clusters of sizes 62, 50, 38
Cluster means:
  Sepal.Length Sepal.Width Petal.Length Petal.Width
  5.901613 2.748387
                             4.393548 1.433871
  5.006000 3.428000
                             1.462000
                                         0.246000
     6.850000 3.073684
                             5.742105
                                         2.071053
Clustering vector:
           3
Within cluster sum of squares by cluster:
[1] 39.82097 15.15100 23.87947
(between SS / total SS = 88.4)
```


Ejemplo R – 4 grupos

```
km4 <- kmeans (iris2,4, nstart=10) # k-means para 4 grupos
km4
K-means clustering with 4 clusters of sizes 32, 28, 40, 50
Cluster means:
  Sepal.Length Sepal.Width Petal.Length Petal.Width
     6.912500 3.100000
                         5.846875 2.131250
     5.532143 2.635714 3.960714 1.228571
   6.252500 2.855000 4.815000 1.625000
     5.006000 3.428000
                         1,462000 0,246000
Clustering vector: 4 4 4 4 4 4 4 4 4
                                  4 4 4 4 4
                      3
Within cluster sum of squares by cluster:
[1] 18.703437 9.749286 13.624750 15.151000
(between SS / total SS = 91.6 \%)
```


Ejemplo R

Variabilidad explicada:

2 grupos: 77.6%

3 grupos: 88.4%

4 grupos: 91.6%

■ La ganancia de variabilidad explicada por los grupos respecto al total al pasar de 2 a 3 personas es suficientemente importante como para considerarla. No ocurre lo mismo con el paso de 3 a 4. Por tanto, parece que la mejor opción es quedarse con 3 grupos.

Ejemplo R

■ El algoritmo de k-means es no supervisado. No obstante, en este caso, podemos chequear si concuerdan los grupos con las especies (acierto: 89%)

	Cluster			
	1	2	3	
setosa	50	0	0	
versicolor	0	48	2	
virginica	0	14	36	

 Podría ser que una 3ª dimensión no visible en el plano aportase más información

MUBD Màster Universitari en Enginyeria de Dades Massives (Big Data) Estadística