Maximum Inner Product

Given a matrix $A \in \mathbb{R}^{m \times n}$. It has n columns and each column is an m-dimensional vector as a_1, a_2, \ldots, a_n where $a_k \in \mathbb{R}^m$. Given a vector $x \in \mathbb{R}^m$, find which column of A that has the maximum inner product with x, and return the inner product value.

Definition: The inner product between two vectors x and y is x^Ty .

Input Format

- Matrix $A \in \mathbb{R}^{m \times n}$ as a 2d numpy array
- Vector $x \in \mathbb{R}^m$ as a 1d numpy array

Output Format

Output the maximum inner product value as a floating-point number.

Constraints

- $A \in \mathbb{R}^{m \times n}$ where $1 \leq m, n \leq 1000$
- $x \in \mathbb{R}^m$
- All input values are real numbers in the range [-100, 100]

Sample Input

```
A = [[1, 2, 3], [4, 5, 6]]

x = [1, 2]
```

Sample Output

```
15.0
```

Implementation

Goal: Fill in the following function:

```
def max_inner_product(A, x):
    ...
    return ... # Return the maximum inner product value
    exec("\n".join(iter(input, "#Exit"))) # Don't remove this line
```