Двудольный граф. Паросочетание. Алгоритм построения наибольшего паросочетания.

Руслан Назирович Мокаев

Математико-механический факультет, Санкт-Петербургский государственный университет

Санкт-Петербург, 30.04.2024

Содержание лекции

- Двудольный граф. Паросочетание. Цепи.
- Теорема о максимальном паросочетании и дополняющих цепях.
- ▶ Контролирующее множество.
- Теорема Кёнига о наибольшем паросочетании.
- Алгоритм Куна построения наибольшего паросочетания и его обоснование. Следствия.

Двудольный граф

Определение: Граф G называется двудольным, если $V(G) = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$, $V_1, V_2 \neq \emptyset$, $\forall e = uv \in E(G), u \in V_1, v \in V_2$.

 V_1 – множество начал, V_2 – множеством концов двудольного графа.

Определение: Полный двудольный граф – двудольный граф, в котором $\forall u \in V_1, v \in V_2 : uv \in E(G).$

Определение: Паросочетание – множество $M \subseteq E(G)$ такое, что $\forall e_1 \neq e_2 \in M : e_1 \cap e_2 = \emptyset.$

Будем называть $I\subseteq V_1$ множеством начал, $J\subseteq V_2$ множеством концов ребер паросочетания M на двудольном графе. Тогда M можно задать биекцией $\psi:\ I\to J$ такой, что $\psi(i)=j\Leftrightarrow ij\in M.$

Определение: Максимальным паросочетанием называется максимальное по включению паросочетание.

Наибольшим паросочетанием называется наибольшее по мощности максимальное паросочетание.

Рис.: Максимальные паросочетания

Рис.: Наибольшие паросочетания Двудольный граф

Теорема о максимальном паросочетании и дополняющих цепях

Определение: Чередующаяся цепь — путь в двудольном графе, для любых двух соседних ребер которого верно, что одно из них принадлежит паросочетанию M, а другое нет.

Определение: **Дополняющая (увеличивающая) цепь** — чередующаяся цепь, у которой оба конца свободны.

Определение: Уменьшающая цепь — чередующаяся цепь, у которой обаконца покрыты. $_$

Определение: **Сбалансированная цепь** – чередующаяся цепь, у которой один конец свободен, а другой покрыт.

Теорема (а.k.а лемма Бержа): Паросочетание M в двудольном графе G является наибольшим \Leftrightarrow в G нет дополняющей цепи.

Док-во: \Rightarrow) пусть в G с тах паросочетанием M существует дополняющая цепь. Проходим по ней и заменяем вдоль неё все рёбра, входящие в паросочетание, на невходящие и наоборот \Rightarrow большее паросочетание (?!) \Leftarrow)M — не наиб. паросочетание в G. Покажем, что есть увеличивающая цепь отн-но M. Пусть M': |M'| > |M|. $H \le G: \forall e \in H: e \in M$ или $e \in M'$. В H у вершин степени ≤ 2 . Компоненты связности — пути или циклы. В них чередуются ребра из M и M'. Т.к. |M'| > |M| существует компонента, где ребер из M' больше. Это — путь, у которого концевые ребра $\in M'$. Относительно M это дополняющая цепь.

Лемма о размере паросочетания

Определение: **Совершенным паросочетанием** называется паросочетание, в котором каждая вершина инцидента какому-то ребру паросочетания.

Задача: построить наибольшее паросочетание на произвольном двудольном графе G.

Определение: $C\subseteq V(G)$ называют контролирующим множеством (или вершинным покрытием), если $\forall\ e\in E(G):\ C\cap e\neq\emptyset.$

Лемма: Размер любого паросочетания не больше размера любого контролирующего множества.

Док-во: Пусть M — паросочетание и существует контролирующее множество C такое, что $|M|>|C|\Rightarrow \exists u\in C:\ \exists e_1\neq e_2\in M:\ e_1\cap e_2=u\Rightarrow e_1\cap e_2\neq\emptyset\Rightarrow$ противоречие с определением паросочетания $\Rightarrow |M|\leq |C|$.

Теорема Кёнига

Теорема (Кёниг, 1931): Размер наибольшего паросочетания равен размеру наименьшего контролирующего множества.

Док-во: M — наибольшее паросочетание в G; U_1 — множество всех непокрытых этим паросочетанием вершин из $V_1(G)$, U_2 — множество непокрытых M вершин из $V_2(G)$. Разобьём все покрытые паросочетанием M вершины $V_1(G)$ на два множества: Y_1 — те вершины, до которых можно дойти от U_1 по M-чередующимся путям, а Z_1 — вершины, до которых дойти таким образом нельзя. Разобьем все покрытые паросочетанием M вершины $V_2(G)$ на два множества: V_2 — те вершины, до которых можно дойти от U_1 по M-чередующимся путям, а Z_2 — вершины, до которых дойти таким образом нельзя.

M-пути приходят в вершины из Y_1 по ребрам из $M \Rightarrow$ предыдущая вершина пути лежит в Y_2 . Ребра из M не соединяют Y_2 с $Z_1 \Rightarrow M$ соединяет друг с другом вершины множеств Y_1 и Y_2 , а также Z_1 и Z_2 , откуда $|Z_1|=|Z_2|,|Y_1|=|Y_2|.$

Докажем, что $B=Z_1\cup Y_2$ – контролирующее множество. Ребра не из M не могут соединять вершины из $U_1\cup Y_1$ с вершинами из Z_2 (иначе был бы M-чередующийся путь от U_1 до Z_2). Также не существует ребер из U_2 до $U_1\cup Y_1$. Если бы такое ребро существовало, то существовала бы M-дополняющая цепь, что по лемме Бержа невозможно. Заметим, что |M|=|B|. Т.к. в любом контролирующем множестве не меньше вершин, чем в любом паросочетании, то ч.т.д. \square

Обозначение: $v \in V(G)$, N(v) – окрестность вершины v – множество всех вершин графа G, смежных с v.

Обозначение: $U \subset V(G), \ N'(U)$ — множество всех вершин графа G, смежных с U. Окрестность множества U обозначим $N(U) \coloneqq N'(U) \setminus U$. Теорема (Холл, 1935): В двудольном графе G есть паросочетание, покрывающее все вершины $V_1 \Leftrightarrow$ для любого множества $U \subset V_1$

выполняется $|U| \leq |N(U)|$. **Схема док-ва**: \Rightarrow) очевидно, а \Leftarrow) делается индукцией по количеству вершин в графе. В переходе надо разобрать два случая:

вершин в графе. В переходе надо разобрать два случая: $\exists A \subsetneq V_1: |A| = |N(A)|$ и $\forall A \subsetneq V_1: |A| < |N(A)|$

Следствие (Кёниг): В регулярном (степени всех его вершин одинаковы) двудольном графе существует совершенное паросочетание.

Замечание: Теоремы Холла и Кёнига выводятся друг из друга и могут быть доказаны одним и тем же методом. И вообще следуют из теоремы Форда-Фалкерсона.

Алгоритм Куна

Алгоритм Куна нахождения наибольшего паросочетания в двудольном графе – это по сути применение леммы Бержа.

Дан двудольный граф $G = (V_1, V_2, E), |V_1| = n, |V_2| = m.$

- 1. Берем пустое паросочетание;
- 2. Проходим по вершинам одной из долей и ищем увеличивающую цепь. Если удалось найти, то выполняем "чередование" паросочетания вдоль этой цепи: ребра из цепи и не из паросочетания добавляем в текущий ответ, ребра из цепи и из паросочетания удаляем из текущего ответа;
- 3. Повторяем шаг 2 пока не просмотрим все вершины одной из долей.

Как искать увеличивающую цепь? Обход в глубину (можно и в ширину):

Алгоритм Куна: пример

