$$|H-\chi_{1}| = -\chi \left(12\chi^{2}+2^{-\chi}\right) - 1 = 0 = 7 \chi^{2} - \left(12\chi^{2}+2\right)\chi - 1 = 0$$

$$\chi = \frac{12\chi^{2}+2}{\sqrt{(2\chi^{2}+2)^{2}-4\chi(-4)}} = \frac{12\chi^{2}+2}{\sqrt{(2\chi^{2}+2)^{2}+4}}$$

$$\frac{2}{\sqrt{(2\chi^{2}+2)^{2}+4}} = \frac{12\chi^{2}+2}{\sqrt{(2\chi^{2}+2)^{2}-4\chi(-4)}} = \frac{12\chi^{2}+2}{\sqrt{(2\chi^{2}+2)^{2}+4}}$$

$$\frac{2}{\sqrt{(2\chi^{2}+2)^{2}+4}} = \frac{12\chi^{2}+2}{\sqrt{(2\chi^{2}+2)^{2}-4\chi(-4)}} = \frac{12\chi^{2}+2}{\sqrt{(2\chi^{2}+2)^{2}+4}}$$

$$\frac{12\chi^{2}+2}{\sqrt{(2\chi^{2}+2)^{2}+4}} = \frac{12\chi^{2}+2}{\sqrt{(2\chi^{2}+2)^{2}-4\chi(-4)}} = \frac{12\chi^{2}+2}{\sqrt{(2\chi^{2}+2)^{2}+4}}$$

$$\frac{12\chi^{2}+2}{\sqrt{(2\chi^{2}+2)^{2}+4}} = \frac{12\chi^{2}+2}{\sqrt{(2\chi^{2}+2)^{2}-4\chi(-4)}} = \frac{12\chi^{2}+2}{\sqrt{(2\chi^{2}+2)^{2}+4}}$$

$$\frac{12\chi^{2}+2}{\sqrt{(2\chi^{2}+2)^{2}+4}} = \frac{12\chi^{2}+2}{\sqrt{(2\chi^{2}+2)^{2}+4}} = \frac{12\chi^{2$$

CONTINUED ---

 $\frac{\partial^2 f}{\partial x^2} = 12x^2 + 2 \qquad ; \qquad \frac{\partial^2 f}{\partial y^2} = 1 = \frac{\partial^2 f}{\partial y^3 x}$

 $|H^{-}| |12x^{2+2}| | |1 - \lambda I = [12x^{2} + 2 - \lambda 1]$

 $2)a)f(x,y) = x^{4} + xy + x^{2}$

2f = 4713 + 4+272; 2f = \$1200

... the matrix is not PSD

consider the point
$$(1, -8)$$
At this pt, the Hessian is $[12x1^2+2] = [14]$

Hence, the Hessian is not PSD at (1, -8)

This matrix is not PSD if
$$\frac{1}{2} V \in \mathbb{R}^2 | V^T H V \approx 0$$

consider $V = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

This matrix is not PSD if
$$\frac{1}{2}$$
 $V \in \mathbb{R}^2$ $\left[V^T + V \approx 0 \right]$
consider $V = \begin{bmatrix} 1 \\ -8 \end{bmatrix}$
 $V^T + V = \begin{bmatrix} 1 \\ -8 \end{bmatrix} \begin{bmatrix} 14 \\ 10 \end{bmatrix} \begin{bmatrix} 1 \\ -8 \end{bmatrix} = \begin{bmatrix} 1 \\ -8 \end{bmatrix} \begin{bmatrix} 6 \\ 1 \end{bmatrix} = 6 - 8 = -2 < 0$

Proof Prove Hessian
$$\left(\frac{1}{2n}\left(x^{T}w-y\right)^{T}\left(x^{T}w-y\right)\right)$$
 is PSD

From HWL $\nabla x\left(Ax+b\right)^{T}\left(Ax+b\right) = A^{T}(Ax+b)$

$$\therefore \nabla x\left(Ax+b\right)^{T}\left(Ax+b\right) = A^{T}(Ax+b)$$

$$= \frac{1}{2n}\left(x^{T}\right)^{T}\left(x^{T}w-y\right)$$

$$= \frac{1}{2n}\left(x^{T}w-y\right)$$

$$= \frac{1}{2n}\left(x^{T}w-xy\right)$$

$$= \frac{1}{2n}\left(x^{T}w-xy\right)$$
Now we must show that $1 \times x^{T}$ is PSD

We can ignore the $\frac{1}{2n}$ as it is simply a tre scalar

If $x \times x^{T}$ is PSD then

 $V^{T}(XX^{T})V \geqslant 0 \quad \forall V \in \mathbb{R}^{2n} \text{ it } XX^{T} \text{ in an } N \times n \text{ Cohr matrix}$ $= (V^{T}X)(X^{T}V) = (X^{T}V)^{T}(X^{T}V) \geqslant 0$

XTV is an nx 1 vector

:, (x TV) is 1 x n

. In K^{T} , $(X^{T}V)^{T}(X^{T}V)$ is the sum of squared of the elements of $X^{T}V$ which are always >, 0 assuming $K^{T}X^{T}V \in IR^{n}$

100 Institute Road, Worcester MA 01609-2280 USA wpi.edu/+math

Hence froved

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

(a)
$$\sigma(-\pi) = 1 - \sigma(\pi)$$

Soln:

$$\sigma(-\pi) = \frac{1}{1 + e^{\pi}} = \frac{1}{1 + e^{\pi}}$$

$$= \frac{1+e^{x}-e^{x}}{1+e^{x}} \qquad (+-e^{x} \text{ in the numerator})$$

$$= \frac{1+e^{\chi}}{1+e^{\chi}} - \frac{e^{\chi}}{1+e^{\chi}}$$

$$= 1 - \frac{1}{e^{-\varkappa(1+e^{\varkappa})}}$$

$$=$$
 $1-\frac{1}{e^{-\varkappa_{+}}e^{\varkappa_{-}\varkappa_{-}}}$

$$= 1 - \frac{1}{1 + e^{-\chi}} = \frac{1 - o(\chi)}{1 - o(\chi)}$$

$$fhus, \quad \sigma(-n) = 1 - \sigma(n)$$

Hence proved.

(b)
$$\sigma'(n) = \frac{\partial \sigma}{\partial x}(n) = \sigma(n)(1-\sigma(n))$$
.
801) $\sigma(n) = \frac{1}{1+e^{-n}}$ (let $1+e^{-n} = f(n)$) $-(D)$

$$\frac{\partial \sigma}{\partial x} = \frac{\partial}{\partial x} \left[\frac{1}{1+e^{-n}}\right]$$

$$= -\frac{1}{1+e^{-n}} \cdot \int_{-1}^{1} f(x) dx$$

$$= -\frac{1}{1+e^{-n}} \cdot (-e^{-n}) - unng(D)$$

$$= \frac{+e^{-n}+1}{(1+e^{-n})^2}$$

$$= \frac{1}{1+e^{-n}} - \frac{1}{(1+e^{-n})^2} = \frac{1}{1+e^{-n}} \left(1 - \frac{1}{1+e^{-n}}\right)$$

Fince
$$\sigma(n)$$
 has n as the only variable, $\sigma(n) = \frac{\partial \sigma(n)}{\partial n}$.

Thus, $\sigma'(n) = \frac{\partial (\sigma(n))}{\partial n} = \sigma(n)(1 - \sigma(n))$.

Hence proved.

= o(n) (1-o(n))

Question 3

Reported Fmse on test and validation set

Optimal hyperparameters after testing on the validation set: [50, 0.001, 500, 0.01]

```
Mini_batch_size = 50
Learning_rate = 0.001
Epochs = 500
Alpha = 0.01
```

Optimal weights list after training - .txt file included in the submission