Chapitre 26

Intégration sur un segment

26	Intégration sur un segment	1
	26.12Image d'une fonction en escalier	2
	26.14Subdivision commune	
	26.15Structure de l'ensemble des fonctions en escalier	2
	26.17Théorème	
	26.23Intégrale de deux fonctions en escalier égales presque partout	
	26.24Positivité ou croissance de l'intégrale	
	26.26Inéglité triangulaire intégrale	
	26.36Théorème	
	$26.42 Int\'egrabilit\'e \ des \ fonctions \ monotones \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	
	26.43Intégrabilité des fonctions continues	
	26.46Relation de Chasles	
	26.49 Croissance et positivité de l'intégrale	
	26.51 Inégalité triangulaire intégrale	
	26.56Bornitude des fonctions continues par morceaux	
	26.58Intégrabilité des fonctions continues par morceaux	
	26.61Norme	
	26.63Densité	
	26.64Théorème fondamental du calcul intégral	
	26.66Limite	
	26.69Intégrale nulle d'une fonction positive et continue	
	26.70Somme de Riemann	- 11.

26.12 Image d'une fonction en escalier

Propostion 26.12

L'image d'une fonction en escalier est un ensemble fini. En particulier, une fonction en escalier est bornée.

Si $v = {\sigma_0, \dots, \sigma_n}$ est une subdivision associée à f, alors :

$$|Im(f)| \le \underbrace{n}_{\text{valeurs sur chaque intervalle ouvert}} + \underbrace{n+1}_{\text{valeurs de } f(v_i)} = 2n+1$$

26.14 Subdivision commune

Lemme 26.14

Soit f et g deux fonctions en escalier. Il existe une subdivision commune associée à f et g.

Si σ est une subdivision associée à f et τ est une subdivision associée à g :

$$\sigma \cup \tau \leq \sigma$$

$$\leq \tau$$

Donc $\sigma \cup \tau$ est une subdivision commune associée à f et g.

26.15 Structure de l'ensemble des fonctions en escalier

${ m Th\'eor\`eme}~26.15$

L'ensemble Esc([a,b]) des fonctions en escalier sur [a,b] est un sous-espace vectoriel de $\mathbb{R}^[a,b]$ (c'est même une sous-algèbre).

PRAS (26.14)

26.17 Théorème

Théorème 26.17

Pour toutes subdivisions σ et τ associées à f, on a :

$$I(f,\sigma) = I(f,\tau)$$

Autrement dit, la quantité $I(f,\sigma)$ est indépendante du choix de la subdivision associée.

Dans un premier temps, on suppose $\tau \subset \sigma$. Notons :

$$\tau = \{\tau_0, \dots, \tau_n\}$$
$$= \{v_{i_0}, \dots, v_{i_n}\}$$

On note f_k la valeur constante de f sur $]\tau_k, \tau_{k+1}[$ et ainsi :

$$I(f,\tau) = \sum_{k=0}^{n-1} (\sigma_{i_{k+1}} - \sigma_{i_k}) f_k$$

$$= \sum_{k=0}^{n-1} \left[\sum_{p=i_k}^{i_{k+1}-1} (\sigma_{p+1} - \sigma_p) \right] f_k$$

$$= \sum_{k=0}^{n-1} \sum_{p=i_k}^{i_{k+1}-1} (\sigma_{p+1} - \sigma_p) f_p$$

$$= \sum_{p=0}^{i_n-1} (\sigma_{p+1} - \sigma_p) f_p$$

$$= I(f,\sigma)$$

Dans le cas général:

$$I(f,\tau) = I(f,\tau \cup \sigma) = I(f,\sigma)$$

Propostion 26.21

Soit f une fonction en escalier sur [a,b] et soit $c \in]a,b[$, alors f est en escalier sur [a,c] et [c,b] et :

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

Soit σ associée à f, $\sigma \cup \{c\}$ est toujours associée à f, alors $\sigma \cup \{c\} \cap [a,c]$ est associée à $f_{[a,c]}$. RAS pour la suite.

26.23 Intégrale de deux fonctions en escalier égales presque partout

Propostion 26.23

Si deux fonctions en escalier ne différent qu'en un nombre fini de points, alors leurs intégrales sont égales.

Dans ce cas, f - g est nulle presque partout et on utilise la linéarité et (26.20).

26.24 Positivité ou croissance de l'intégrale

Propostion 26.24

Soit f et g deux fonctions en escalier sur [a,b] (avec $a \le b$) telles que pour tout $x \in [a,b], f(x) \le g(x)$, alors :

$$\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} g(x) \, dx$$

En particulier, si f est en escalier sur [a, b] et positive, alors :

$$\int_{a}^{b} f(x) \, dx \ge 0$$

En reprenant la notation du (20.18), pour tout $i, f_i \ge 0$. Donc :

$$\int_{a}^{b} f(x) \, dx \ge 0$$

On obtient la croissance par linéarité.

26.26 Inéglité triangulaire intégrale

Propostion 26.26

Soit f une fonction en escalier sur [a,b] (avec toujours $a \leq b$) à valeurs réelles. Alors |f| est aussi en escalier sur [a,b] et :

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx$$

Si σ est associée à f, elle reste associée à |f| et ensuite on utilise l'inégalité triangulaire classique avec (26.20).

26.36 Théorème

Théorème 26.36

f est intégrable si et seulement si $I_{-}(f)$ et $I_{+}(f)$ existent et si $I_{-}(f) = I_{+}(f)$.

 \Rightarrow

On suppose f intégrable. Donc $Esc_+(f)$ et $Esc_-(f)$ ne sont pas vides.

En particulier $A_{+}(f) \neq \emptyset$ est minoré et $A_{-}(f) \neq \emptyset$ est majoré.

D'après la propriété fondamentale de \mathbb{R} , $I_{-}(f)$ et $I_{+}(f)$ sont bien définis.

Soit $\epsilon > 0$, on choisit $(h, g) \in Esc_{-}(f) \times Esc_{+}(f)$ tel que :

$$\int_{a}^{b} (g - h)(x) \, dx < \epsilon$$

Donc:

$$I_{+} \leq \int_{a}^{b} g(x) dx < \int_{a}^{b} h(x) dx + \epsilon \leq I_{-} + \epsilon$$

Donc:

$$I_{+} \leq I_{-} + \epsilon$$

Donc:

$$I_{+} \leq I_{-}$$

Donc:

$$I_{+} = I_{-}$$

 \leftarrow

On suppose $I_{+} = I_{-}$.

Soit $\epsilon > 0$.

 $I_+ + \frac{\epsilon}{2}$ ne minore pas A_+ .

 $I_{-}-\frac{\overline{\epsilon}}{2}$ ne majore pas A_{-} .

On choisit donc $h \in Esc_{-}$ et $g \in Esc_{+}$ telles que :

$$\int_{a}^{b} g(x) dx < I_{+} + \frac{\epsilon}{2}$$

$$\int_{a}^{b} h(x) dx > I_{-} - \frac{\epsilon}{2}$$

Donc:

$$\int_a^b (g(x) - h(x)) dx < I_+ - I_- + \epsilon = \epsilon$$

26.42 Intégrabilité des fonctions monotones

Théorème 26.42

Soit f une fonction monotone sur [a, b]. Alors f est intégrable sur [a, b].

On suppose f croissante. Alors f est bornée (minorée par f(a), majorée par f(b)). Pour tout $n \in \mathbb{N}^*$, on note σ_n la subdivision régulière de [a,b] à n pas.

$$\forall k \in [0, n], \sigma_k^{(n)} = a + \frac{(b-a)}{n}k$$

On définit $h_n \in Esc_-(f)$ et $g_n \in Esc_+(f)$ par :

$$\begin{cases} \forall x \in]\sigma_k^{(n)}, \sigma_{k+1}^{(n)}], g_n(x) &= f(\sigma_{k+1}^{(n)}) \\ g_n(a) = f(a) & \\ \forall x \in [\sigma_k^{(n)}, \sigma_{k+1}^{(n)}], h_n(x) &= f(\sigma_k^{(n)}) \\ h_n(b) = f(b) & \end{cases}$$

$$\int_{a}^{b} (g_n - h_n) = \sum_{k=0}^{n-1} \frac{b-a}{n} \times (f(\sigma_{k+1}^{(n)}) - f(\sigma_{k}^{(n)}))$$
$$= \frac{b-a}{n} (f(b) - f(a))$$
$$\xrightarrow[n \to +\infty]{} 0$$

D'après (26.41), f est intégrable.

26.43 Intégrabilité des fonctions continues

Théorème 26 43

Soit f une fonction continue sur [a, b]. Alors f est intégrable sur [a, b].

Soit $f \in \mathcal{C}^0([a,b],\mathbb{R})$.

Comme [a, b] est un segment, f est uniformément continue sur [a, b] d'après le theorème de Heine. Soit $\epsilon > 0$. On choisit $\eta > 0$ tel que :

$$\forall (x,y) \in [a,b]^2, |x-y| < \eta \Rightarrow |f(x) - f(y)| < \epsilon$$

Soit $\sigma^{(n)}$ la subsdivision régulière de [a, b] à n pas $(n \ge 1)$.

On choisit n tel que $\frac{b-a}{n} < \eta$.

Pour $k \in [0, n-1]$, f est continue sur $[\sigma_k^{(n)}, \sigma_{k+1}^{(n)}]$ donc y atteint ses bornes $([\sigma_k^{(n)}, \sigma_{k+1}^{(n)}]$ est compact/théorème des bornes atteintes).

On note alors m_k et M_k respesctivement les minimum et maximum sur $[\sigma_k^{(n)}, \sigma_{k+1}^{(n)}]$. On pose alors h_n et g_n .

— Pour
$$x \in [\sigma_k^{(n)}, \sigma_{k+1}^{(n)}], h_n(x) = m_k$$
 et $g_n(x) = M_k$.

$$--h_n(b) = g_n(b) = f(b)$$

Par construction, $h_n \in Esc_{-}(f)$ et $g_n \in Esc_{+}(f)$, et :

$$\int_{a}^{b} (g_{n} - h_{n}) = \sum_{k=0}^{n-1} (\sigma_{k+1}^{(n)} - \sigma_{k}^{(n)})(M_{k} - m_{k}) < \sum_{k=0}^{n-1} (\sigma_{k+1}^{(n)} - \sigma_{k}^{(n)}) \times \epsilon = \epsilon \times (b - a)$$

Par définition:

$$\int_{a}^{b} (g_n - h_n) \underset{n \to +\infty}{\longrightarrow} 0$$

26.46 Relation de Chasles

Propostion 26.46

Soit une fonction f définie sur [a,b] et $c \in]a,b[$. Alors f est intégrable sur [a,b] si et suelement si f est intégrable sur [a,c] et [c,b] et dans ce cas :

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$$

cf. annexe

26.49 Croissance et positivité de l'intégrale

Propostion 20.49

Soit f et g deux fonction intégrables sur [a,b] (avec $a \le b$) telles que pour tout $x \in [a,b], f(x) \le g(x)$. Alors :

$$\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} g(x) \, dx$$

En particulier, si f est intégrable sur [a,b] et positive, alors :

$$\int_{a}^{b} f(x) \, dx \ge 0$$

Si $f \geq 0$, alors $0 \in Esc_{-}(f)$.

$$\int_a^b 0 = 0 \in A_-(f)$$

Donc:

$$I_{-}(f) = \int_{a}^{b} f \ge 0$$

26.51 Inégalité triangulaire intégrale

Propostion 26.53

Soit f une fonction intégrable sur [a,b], alors |f| est intégrable sur [a,b] et :

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx$$

On suppose f intégrable sur [a, b].

On choisit (φ_n, θ_n) associé à f (26.39).

Comme:

$$\forall x \in [a, b], ||f(x)| - |\varphi_n(x)|| \le |f(x) - \varphi_n(x)| \le \theta_n(x)$$

Alors $(|\varphi_n|, \theta_n)$ est associée à |f|. Par conséquent, |f| est intégrable sur [a, b]. On a :

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \int_{a}^{b} |\varphi_{n}(x)| dx$$

Or, d'après (26.26):

$$\left| \int_{a}^{b} \varphi_{n}(x) \, dx \right| \leq \int_{a}^{b} |\varphi_{n}(x)| \, dx$$

Donc, d'arpès le TCILPPL :

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx$$

26.56 Bornitude des fonctions continues par morceaux

Propostion 26.56

Les fonctions continues par morceaux sur un segment [a, b] sont bornées.

Soit f continue par morceaux sur [a, b].

Soit σ une subdivision associée.

Comme f est continue sur $]\sigma_i, \sigma_{i+1}[$ et que f possède des limites finies en σ_i^+ et σ_{i+1}^- , f se prolonge par continuité en f_i sur $[\sigma_i, \sigma_{i+1}]$.

D'après le théorème des bornes atteintes, f_i est bornée.

Donc $f|_{]\sigma_i,\sigma_{i+1}[}$ est également bornée.

Donc $f|_{[a,b]\setminus\{\sigma_0,\ldots,\sigma_n\}}$ est bornée.

Donc f est bornée sur [a,b] car f est définie sur chaque σ_i .

26.58 Intégrabilité des fonctions continues par morceaux

Théorème 26.58

Toute fonction continue par morceaux sur le segment [a, b] est intégrable.

Soit $f \in \mathcal{CM}([a,b],\mathbb{R})$.

Soit σ une subdivision associée à f.

Sur chaque intervalle $]\sigma_i, \sigma_{i+1}[, f \text{ se prolonge par continuité en } f_i \text{ sur } [\sigma_i, \sigma_{i+1}].$

Donc f_i est intégrable sur $[\sigma_i, \sigma_{i+1}]$ et f_i et $f|_{[\sigma_i, \sigma_{i+1}]}$ sont égales presque partout, donc $f|_{[\sigma_i, \sigma_{i+1}]}$ est intégrable sur $[\sigma_i, \sigma_{i+1}]$.

D'après la relation de Chasles, f est intégrable sur [a, b].

26.61 Norme

Propostion 26.61

Pour toute fonction f et g bornées sur un même segment [a, b], on a :

$$||f+g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$$

et si $\lambda \in \mathbb{R}$, alors :

$$||\lambda f||_{\infty} = |\lambda| \times ||f||_{\infty}$$

Enfin:

$$||f||_{\infty} = 0 \Leftrightarrow f = 0$$

— D'après l'inégalité triangulaire :

$$\forall x[a, b], |f(x) + g(x)| \le |f(x)| + |g(x)|$$

 $\le ||f||_{\infty} + ||g||_{\infty}$

Par définition:

$$||f+g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$$

— RAF

-- Si
$$f = 0$$
, $||f||_{\infty} = 0$.
Si $||f||_{\infty} = 0$, alors $\forall x \in [a, b], |f(x)| = 0$.

Donc f = 0.

26.63 Densité

Théorème 26.63

— Soit f une fonction continue sur [a, b]. Alors il existe une suite de fonctions en escalier $(\varphi_n)_{n\in\mathbb{N}}$ telle que:

$$||f - \varphi_n||_{\infty} \xrightarrow[n \to +\infty]{} 0$$

— Soit f une fonction continue par morceaux sur [a, b] alors il existe une suite de fonctions en escalier $(\varphi_n)_{n\in\mathbb{N}}$ telle que :

$$||f - \varphi_n||_{\infty} \xrightarrow[n \to +\infty]{} 0$$

— Soit $f \in \mathcal{C}^0([a,b],\mathbb{R})$, donc f est uniformément continue sur [a,b].

Soit $\epsilon > 0$, on choisit $\eta > 0$ module de continuité uniforme associé à ϵ .

Soit $n \in \mathbb{N}^*$, on introduit la subdivision régulière $\sigma^{(n)}$ de [a, b].

On choisit n tel que $\frac{b-a}{n} < \eta$.

Pour tout $k \in [0, n-1]$, f est continue sur $[\sigma_k^{(n)}, \sigma_{k+1}^{(n)}]$ donc y atteint ses bornes (max) M_k . On définit $\varphi_n \in Esc([a,b],\mathbb{R})$ par :

 $-\varphi_n(b) = f(b)$

Par construction, pour tout $x \in [a, b]$:

$$|f(x) - \varphi_n(x)| \le \epsilon$$

Donc:

$$||f - \varphi_n||_{\infty} \le \epsilon$$

Par définition:

$$||f - \varphi_n||_{\infty} \underset{n \to +\infty}{\longrightarrow} 0$$

— Si $f \in \mathcal{CM}([a,b],\mathbb{R})$, et σ une subdivision associée à f, on applique le résultat précédent sur chaque intervalle $[\sigma_i, \sigma_{i+1}]$.

26.64 Théorème fondamental du calcul intégral

Théorème 26.64

Soit f une fonction continue sur un intervalle I. Soit $x_0 \in I$. Alors l'application :

$$x \mapsto \int_{x_0}^x f(t) dt$$

est l'unique primitive de f sur I qui s'annule en x_0 .

Notons $F: x \mapsto \int_{x_0}^x f(t) dt$, bien définie car f est continue sur I.

 $F(x_0) = 0.$

Montrons que F est une primitive de f sur I.

Soit $a \in I$ et soit $x \neq a$.

$$\frac{F(x) - F(a)}{x - a} = \frac{1}{x - a} \int_a^x f(t) dt$$

Donc:

$$\frac{F(x) - F(a)}{x - a} - f(a) = \frac{1}{x - a} \int_{a}^{x} f(t) dt - \frac{1}{x - a} \int_{a}^{x} f(a) dt$$
$$= \frac{1}{x - a} \int_{a}^{x} (f(t) - f(a)) dt$$

Soit $\epsilon > 0$, par continuité de f en a, on choisit $\eta > 0$ tel que :

$$\forall x \in I, |x - a| < \eta \Rightarrow |f(x) - f(a)| < \epsilon$$

On suppose x > a et $x - a < \eta$, d'après l'inégalité triangulaire, on a :

$$\left| \frac{F(x) - F(a)}{x - a} - f(a) \right| \le \frac{1}{x - a} \int_{a}^{x} |f(t) - f(a)| dt$$

$$\le \frac{1}{x - a} \int_{a}^{x} \epsilon dt$$

$$= \epsilon$$

Cela reste valable si x < a et $|x - a| < \eta$. Donc:

$$\frac{F(x) - F(a)}{x - a} \xrightarrow[x \to a]{} f(a)$$

26.66Limite

Pour toute function $f \in \mathcal{C}^0([a,b],\mathbb{R})$:

$$\int_a^b f(t) dt = \lim_{x \to b^-} \int_a^x f(t) dt \quad \text{ et } \quad \int_a^b f(t) dt = \lim_{x \to a^+} \int_x^b f(t) dt$$

On fixe a et on pose $F: x \mapsto \int_a^x f(t) dt$.

Donc $F \in \mathcal{C}^0([a,b],\mathbb{R})$.

Donc $F(b) = \lim_{x \to b} F(x)$.

Intégrale nulle d'une fonction positive et continue 26.69

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue et positive, avec a < b. Alors:

$$\int_{a}^{b} f(t) dt = 0 \Leftrightarrow f = 0$$

f est continue et positive, donc d'après le TFCI :

 $F: x \mapsto \int_a^x f(t) dt$ est dérivable sur [a, b] avec $F' = f \ge 0$ donc F est croissante sur [a, b]. Or F(a) = 0 = F(b).

Donc F = 0, puis f = F' = 0.

26.70Somme de Riemann

Soit f une fonction continue sur [a, b]. Alors:

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a + k \frac{(b-a)}{n}\right) = \lim_{n \to +\infty} \sum_{k=1}^{n} \frac{b-a}{n} f\left(a + k \frac{(b-a)}{n}\right)$$

Plus généralement, soit pour tout $n \in \mathbb{N}$, $\sigma^{(n)} = (\sigma_k^{(n)})_{k \in [0,n]}$ une subdivision et supposons que la suite des pas vérifie :

$$p(\sigma^{(n)}) \xrightarrow[n \to +\infty]{} 0$$

et soit pour tout $n \in \mathbb{N}$ et tout $k \in [0, \ell_n - 1]$, $x_{n,k}$ un élément de $[\sigma_k^{(n)}, \sigma_{k+1}^{(n)}]$. Alors :

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \sum_{k=0}^{n-1} (\sigma_{k+1}^{(n)} - \sigma_{k}^{(n)}) f(x_{n,k})$$

Soit $\epsilon>0$, on choisit η un module de continuité uniforme pour f d'après le théorème de Heine. On définit, pour tout $n \in \mathbb{N}^*, \varphi_n \in Esc([a, b], \mathbb{R})$ par :

— pour
$$x \in [\sigma_k^{(n)}, \sigma_{k+1}^{(n)}], \varphi_n(x) = f(x_{n,k})$$

$$\forall n \ge N, p(\sigma^{(n)}) < \eta$$

Pour $n \geq N$:

$$|f(x) - \varphi_n(x)| \le \epsilon$$

Par définition:

$$||f - \varphi_n||_{\infty} \longrightarrow 0$$

Donc:

$$\int_{a}^{b} f(x) dx = \lim_{n \to +\infty} \int_{a}^{b} \varphi_n(x) dx$$

Puis (26.18).

26.72Exemple

On montre que:

$$\sum_{k=1}^{n} \frac{1}{n+k} \xrightarrow[n \to +\infty]{} \ln 2$$

$$\sum_{k=1}^{n} \frac{1}{n+k} = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + \frac{4}{n}} = \frac{1}{n} \sum_{k=1}^{n} f(\frac{k}{n})$$

avec $f: x \mapsto \frac{1}{1+x} \in \mathcal{C}^0([0,1],\mathbb{R})$. Donc TSR :

$$\sum_{k=1}^{n} \frac{1}{n+k} \xrightarrow[n \to +\infty]{} \int_{0}^{1} f(x) dx = \int_{0}^{1} \frac{1}{1+x} dx = \ln(2) - \ln(1) = \ln(2)$$