Faculty of Engineering & Technology

Third Semester B.E. (Computer Technology)/C.S.E. (C.B.S.) Examination

APPLIED MATHEMATICS—III

Time: Three Hours]

[Maximum Marks: 80

INSTRUCTIONS TO CANDIDATES

- (1) All questions are compulsory.
- (2) Assume suitable data wherever necessary.
- (3) Solve SIX questions as follows:
 - . Question No. 1 OR Question No. 2
 - Question No. 3 OR Question No. 4
 - Question No. 5 OR Question No. 6
 - Question No. 7 OR Question No. 8
 - Question No. 9 OR Question No. 10
 - Question No. 11 OR Question No. 12.
- (4) Use of non-programmable Calculator is permitted.

1. (a) If
$$L[f(t)] = F(s)$$
, then show that

$$L\left[\frac{1}{t}f(t)\right] = \int_{s}^{\infty} F(s) ds. \text{ Hence find } L\left[\frac{1-\cos t}{t}\right].$$

(b) Find
$$L^{-1} \left[\frac{s^2}{(s^2 + a^2)^2} \right]$$

OR

2. (a) Find the Laplace transform of the function f(t) given by

$$f(t) = \begin{cases} \sin wt & 0 < t < \pi/w \\ 0 & \frac{\pi}{w} < t < 2\pi/w \end{cases}$$

where
$$f\left(t + \frac{2\pi}{w}\right) = f(t)$$
.

(b) A particle moves in a line so that its displacement x from a fixed point O at any time t, is given by:

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 5x = 80 \sin 5t.$$

Using Laplace transform, find its displacement at any time t if x and x' vanish at t = 0.

3. (a) Find a Fourier series to represent $(x - x^2)$ from $x = -\pi$ to π and hence show that :

$$\frac{\pi^2}{1^2} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$

(b) Find Fourier transform of e^{-ax} , where a > 0.

4. (a) Obtain half range cosine series for f(x), f(x) = 2x - 1; 0 < x < 1. Hence show that :

OR

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

(b) Find Fourier transform of f(x), where

$$f(x) = \begin{cases} 1 - |x| & \text{if } |x| < 1 \\ 0 & \text{if } |x| > 1 \end{cases} \text{ and }$$

hence find the value of $\int_{0}^{\infty} \frac{\sin t}{t} dt$.

5. (a) If Z[f(n)] = F(z), then show that Z[n.f(n)] = $-z \frac{d}{dz} F(z)$. Hence show that $Z\{n^2\} = \frac{z(z+1)}{(z-1)^3}$.

6

6

(b) Solve by using Z-transform:

$$y_{n+2} + 5y_{n+1} + 6y_n = 6^n, y_0 = 0, y_1 = 1.$$
 6

OR

- 6. (a) Find $Z^{-1} \left[\frac{a \ z(z+a)}{(z-a)^3} \right]$.
 - (b) Find $Z[9^n \cdot \cos n \theta]$.
- 7. (a) Prove that $u = e^{-x} (x \sin y y \cos y)$ is a harmonic function. Hence construct analytic function f(z).
 - (b) Evaluate $\oint_C \frac{z+4}{z^2+2z+5} dz$, where C is the circle |z+1| = 1.

OR

- 8. (a) Expand the function $f(z) = \frac{z^2 1}{(z+2)(z+3)}$ in the regions (i) |z| < 2 (ii) 2 < |z| < 3 by Laurent's series.
 - (b) Evaluate $\int_{0}^{\pi} \frac{1}{3+2\cos\theta} d\theta$, by contour integration.

8

9. (a) State and prove Cayley-Hamilton theorem for matrix A. Hence find A⁻¹, where:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 5 \\ 1 & 4 & 12 \end{bmatrix}$$
 6

(b) Are the following vectors linearly dependent? If so, find the relationship between them:

$$X_1 = [1, 2, 4], X_2 = [2, -1, 3], X_3 = [0, 1, 2],$$

 $X_4 = [-3, 7, 2].$

(c) Use Sylvester's theorem to show that $\sin^2 A - \cos^2 A$

$$A = I$$
, where $A = \begin{bmatrix} 2 & 4 \\ 3 & 1 \end{bmatrix}$.

OR

10. (a) Diagonalise the matrix
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$$
.

(b) Find largest eigen value by iteration method of the matrix:

$$A = \begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix}$$
 6

(c) Solve
$$\frac{d^2y}{dt^2} - 3\frac{dy}{dt} - 10y = 0 \quad \text{given } y(0) = 3,$$
$$y'(0) = 15 \text{ by matrix method.}$$

11. (a) A random variable X has the following probability distribution:

X	f(x)
0	a
1	3a
2	5a
3	7a
4	9a
5	11a
6	13a
7	15a
8	17a

- (i) Determine the value of a
- (ii) $P(x \le 4)$
- (iii) P(x > 5)

(iv) Distribution function.

6

MVM-47064

(b) In a bolt factory, machines Λ. B and C manufacture respectively 25%, 35% and 40% of the total. Of their output 5%, 4% and 2% are defective bolts. A bolt is drawn at random from the product and is found to be defective, what is the probability that it was manufactured by machine B?

OR

12. (a) Find moment generating function and first four moment about origin of random variable x, whose density function is given by:

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$
 6

(b) The mean grade on a final examination was 72 and the standard deviation was 9. The top 10% of the students are to receive 'A' grade. What is the minimum grade a student must get in order to receive an A?