PSA - Assignment 3

Benchmark

Name: Vedantini Dilip Gaikwad

NUID: 002998254

Part 1

repeat method

```
| Insertion | Inse
```

getClock method

toMillisecs method

```
© Immerjava × © BenchmarkTestjava × ⊙ InsertionSortTestjava × ⊙ Benchmarksjava × ⊙ InsertionSortJava × ○ Inse
```

Benchmark Test

Timer Test

Part 2

InsertionSort implementation

InsertionSort Test cases

Part 3

Random array:

```
nRepo | src | test | java | edu | neu | coe | info6205 | sort | elementary | finertionSortTest | finertion
```

Ordered array:

Partially ordered array:

Reverse ordered array:

Main program to run benchmarks:

Running test cases:

n	Ordered	Partially Ordered	Reverse Ordered	Random
20	115	537	511	309
40	488	1281	2073	1039
80	524	4182	8092	4572
160	812	14955	31087	17092
320	1571	50815	120846	61566

Observations:

- The Ordered array input provides the lowest running time as the size of the array (n) increases, close to a constant time graph.
- The Partial-Ordered input takes longer than the Ordered and increases exponentially as n grows, with a slightly steeper slope than $n(\log n)$.
- The Reverse-Ordered input takes the most time and increases exponentially with n at the highest rate, with a graph similar to $2n(\log n)^2$
- The Random array input takes even more time than the Partial-Ordered and increases similarly with a higher slope, closer to $n(\log n)$ but at a faster rate.