

## **Parallel Programming (COMP 403)**

## Sheet No.: 1 Title: Multi-threading using Pthreads

## Q1:

Given two vectors  $X=(x_1,\ x_2,\ \cdots,\ x_n)$  and  $Y=(y_1,\ y_2,\ \cdots,\ y_n)$ , both of size n. The vector-vector dot product is defined as follows:

$$X \cdot Y = \sum_{i=1}^{n} x_i \cdot y_i$$

- a) Implement a sequential C++ program to perform the vector-vector dot product.
- b) Try to speed up the program in (a) using C++ pthread multi-threading.

## **Q2**:

In Mathematics, we have the following formula for *Pi*:

$$\int_0^1 \frac{4}{1+x^2} dx = \pi$$

Which can be approximated to the following summation:



Where: the interval [0, 1] is divided into N sub-intervals  $[x_i, x_{i+1}]$ 

$$x_0 = 0, x_N = 1, and x_i = x_{i-1} + \Delta x,$$
  
where:  $\Delta x = \frac{1}{N}$  (each sub-interval size).

increasing N gives a closer approximation of  $\pi$ 

Write a <u>Serial</u> and <u>Multi-threaded</u> (*Using Pthread library*) C++ program to calculate an approximation (the closer the better) of  $\pi$ .

