OPERATION AND CONCEPT OF MAINTENANCE **OPERATIONS** SYSTEM REQUIREMENTS 6 VERIFICATION & ARCHITECTURE AND VALIDATION **IMPLEMENTATION DETAILED** TEST & **DESIGN** VERIFICATION **IMPLEMENTATION**

A Tale of Two Telescopes

By Miranda Eiben

Our Case Studies

CONCEPT OF OPERATIONS

REQUIREMENTS & ARCHITECTURE

3 DETAILED DESIGN

4. IMPLEMENTATION

Concept

- Goal:
 - General science survey instrument for the Large Millimeter Telescope (LMT)
 - Fills mm-wave niche between smaller single dish telescopes and interferometers
 - Replace the previous camera (AzTEC) on the LMT with more detectors

- Goal:
 - Constrain the tensor to scalar ratio (r) of primordial gravitational waves, which would provide direct evidence of inflation
 - Observe the power spectrum of Bmode polarization in the CMB at degree scales
 - Replace previous array of receivers (Keck Array) with more detectors

Observations: TolTEC

Far Away

Ultra Deep Galaxy Survey (0.8 sq deg.)

LIRG limit ($L_{\rm IR}$ >10 $^{11}L_{-\rm sun}$, S_{11} ~0.025mJy rms).

Large Scale Structure Survey (40-60 sq deg.)

ULIRG limit (L_{IR}>10¹²L_{-sun}, S_{1,1}~0.2mJy rms).

Fields in Filaments Survey (0.4 sq deg.)

obtain a total of ~70,000 polarization vectors

Close to Home

Clouds to Cores Legacy Survey

(44-88 sq deg.)

achieve core mass limits (M>0.11M_{Solar}, S_{1,1}~0.27 mJy rms.)

Observations: BICEP Array

Observations: BICEP Array

Why the Millimeter? 44 GHz

30 GHz

Observe Galactic dust emission and redshifted UV and

IR extragalactic emission to moderate

resolution

70 GHz

143 GHz

Observe CMB (2.725K blackbody) emission to high sensitivity

CMB Dominant

Dust **Dominant**

Telescope Location

Ground vs. Space

 Atmosphere is (reasonably) transmissive in the millimeter

Wants moderately high resolution (arcsec scale)

O Difficult to make a many meter dish in space

Wants high sensitivity, low resolution (arcmin scale)

O Difficult to observe sky to high sensitivity for decades in space

Where in the World?

- Need a high desert
 - Deserts tend to be at lats +/- 15 to 30deg around equator
 - Mexico, Chile, Australia
 - O Other geographical conditions (like distance from the ocean)
 - South Pole

Bands

Ground-based millimeter wavelength observational bands are limited by atmospheric windows

CONCEPT OF OPERATIONS

REQUIREMENTS & ARCHITECTURE

3 DETAILED DESIGN

4 IMPLEMENTATION

Architecture of a System

Architecture of a Millimeter Telescope

Example Requirements: Cryostat Window

Problem: Everything Emits Millimeter Radiation

Solution: Make Everything Cold

Problem: Heat Transfer

Solution: Eliminate
Convection with a
Vacuum

Problem: The Atmosphere is Heavy

Problem: Strong
Materials Are
Reflective/Absorptive

Solution: A transmissive window!

REQUIREMENT:

The window must be strong enough to hold out the atmosphere.

REQUIREMENT:

The window should not absorb more than X% radiation.

1 CONCEPT OF OPERATIONS

REQUIREMENTS & ARCHITECTURE

DETAILED DESIGN

4 IMPLEMENTATION

Optical Design

15,030 feet (4,580 m) on Volcán Sierra Negra, Puebla, Mexico

x4 (slightly modified for different freq)

- Both ToITEC and BICEP Array changed the window design for their upgrades.
- Why change a design that worked for the previous iterations?

Problem: The Atmosphere is Heavy

Force = $P_{ATM}\pi r^2$ P_{ATM} = atmospheric pressure r = radius of window **Problem:** Strong
Materials Are
Reflective/Absorptive

Absorption $\approx e^{-\alpha t}$ $\alpha = \text{material constant}$ t = material thickness

Both increased their aperture by
 ~2 times

Force = 1.6e3 lbs = 7.1e3 N

Problem: The Atmosphere is Heavy

Force = $P_{ATM}\pi r^2$ P_{ATM} = atmospheric pressure r = radius of window **Problem:** Strong
Materials Are
Reflective/Absorptive

Absorption $\approx e^{-\alpha t}$ $\alpha = \text{material constant}$ t = material thickness

Force = 9.5e3 lbs = 4.2e4 N

Problem: The Atmosphere is Heavy

Problem: Strong
Materials Are
Reflective/Absorptive

Optical Tests:

- o FTS Transmission
- Instrument Loading
- Mechanical Tests:
 - Failure modeling
 - O Tool drop tests

Optical Tests:

- > FTS Transmission
- o FTS Polarization differences
- VNA Reflection (anti-reflection optimization)
- VNA Scatterometer
- Instrument Loading
 - PLC and elnod forebaffle on/off (loading and scattered power)
 - Load curve sky dip
- Mechanical Tests:
 - Failure modeling
 - Strength (stress vs strain)
 - O Gas permeation
 - Tool drop tests
 - Creep measurement and modeling
 - Extreme temperature test (dry ice)

Problem: The Atmosphere is Heavy

Problem: Strong
Materials Are
Reflective/Absorptive

Goal: Get Really Good Sensitivity

Solution: Wider Aperture

Problem: Makes these two problems REALLY BAD

Solution: New window technology

Riskier

Goal: Get Wide Range of Interesting Science

Solution: Wider Aperture

Solution: Use windows proven on other instruments

Already Well-Characterized

General
Microwave
Survey Science

Specific Experimental Physics

REQUIREMENTS & ARCHITECTURE

Wider Aperture on a Single Camera for More Detectors

Wider Apertures
on Four
Receivers for
More Detectors

3 DETAILED DESIGN

Using Well-Characterized Window Using New Window Technology

4

IMPLEMENTATION

