Progettazione di Reti Informatiche

14/01/2014

1. Determinare la dimensione minima del blocco di indirizzi necessari per l'indirizzamento di host e dispositivi in Figura in accordo ai requisiti specificati in Tabella.

Numero di host per Lan

Subnet	#Hosts
SwitchA	10
SwitchB	100
SwitchCD	50

- 2. Sia X la lunghezza della subnet mask determinata al punto
 - 1. Assumendo che il blocco di indirizzi **172.16.0.0/X** sia disponibile per l'allocazione nella rete, progettare e documentare uno schema di indirizzamento per la rete.
- 3. Utilizzando Packet Tracer, riprodurre la topologia della rete in figura ed eseguire la configurazione di base degli apparati *router* e *switch* secondo lo schema di indirizzamento progettato al punto 2.

Subnet Name	Needed Size	Allocated Size	Address	Mask	Dec Mask	Assignable Range	Broadcast
SwB	102	126	172.16.0.0	/25	255.255.255.128	172.16.0.1 - 172.16.0.126	172.16.0.127
SwC	52	62	172.16.0.128	/26	255.255.255.192	172.16.0.129 - 172.16.0.190	172.16.0.191
SwA	12	14	172.16.0.192	/28	255.255.255.240	172.16.0.193 - 172.16.0.206	172.16.0.207
RA-RB	2	2	172.16.0.208	/30	255.255.255.252	172.16.0.209 - 172.16.0.210	172.16.0.211
RA-RC	2	2	172.16.0.212	/30	255.255.255.252	172.16.0.213 - 172.16.0.214	172.16.0.215
RB-RC	2	2	172.16.0.216	/30	255.255.255.252	172.16.0.217 - 172.16.0.218	172.16.0.219

Progettazione di Reti Informatiche

14/01/2014

Device	Interface	IP Address	Subnet Mask	Default Ga- teway
SwitchA	Vlan 1	172.16.0.194	255.255.255.240	172.16.0.193
SwitchB	Vlan 1	172.16.0.2	255.255.255.128	172.16.0.1
SwitchC	Vlan 1	172.16.0.130	255.255.255.192	172.16.0.129
RA	Fa0/0	172.16.0.193	255.255.255.240	N/A
	Se0/0/0	172.16.0.209	255.255.255.252	N/A
	Se0/0/1	172.16.0.213	255.255.255.252	N/A
	Se0/1/0	209.165.201.29	255.255.255.252	N/A
RB	Fa0/0	172.16.0.1	255.255.255.128	N/A
	Se0/0/0	172.16.0.210	255.255.255.252	N/A
	Se0/0/1	172.16.0.217	255.255.255.252	N/A
RC	Fa0/0	172.16.0.129	255.255.255.192	N/A
	Se0/0/0	172.16.0.214	255.255.255.252	N/A
	Se0/0/1	172.16.0.218	255.255.255.252	N/A
ISP	Se0/0/0	209.165.201.30	255.255.255.252	N/A

CONFIGURAZIONE GENERALE DA APPLICARE A TUTTI I ROUTER (Global Configuration Mode)

Di default, per ogni parola che viene inserita a riga di commando, se non corrisponde a nessun comando conosciuto, il router cerca di risolvere la parola, cercando l'indirizzo IP associato. Questa operazione può richiedere diversi minuti. Per evitare lunghe attese a cause di typo, è buona norma disabilitare questa funzione su ogni router:

```
no ip domain-lookup
```

Password (Global Configuration Mode)

```
Impostare la password all'apertura della console
```

```
line console 0
    password cisco
    login → Abilita il controllo della password al login
evit
```

Impostare la password per auxiliary port

```
line aux 0
password cisco
login
exit
```

Impostare la password per telnet

```
line vty 0 15
password cisco
login
exit
```

Progettazione di Reti Informatiche

14/01/2014

```
Impostare la password per entrare in Privileged EXEC Mode, criptata enable secret cisco
```

```
Cifrare(in modo blando) tutte le password
service password-encryption
```

CONFIGURAZIONE DEI SINGOLI RUTER

```
Impostare nome del router e indirizzi IP delle sue interfacce
```

RouterA

RouterB

exit

hostname RouterB

no sh exit

ip address 172.16.0.210 255.255.255.252

Progettazione di Reti Informatiche

14/01/2014

```
RouterC
hostname RouterC
interface fastEthernet 0/0
     ip address 172.16.0.129 255.255.255.192
     no sh
     exit
interface serial 0/0/0
     ip address 172.16.0.218 255.255.255.252
     no sh
     exit
interface serial 0/0/1
     ip address 172.16.0.214 255.255.255.252
     no sh
     exit
CONFIGURAZIONE DEI SINGOLI SWITCH (Anche se non riportato è buona
norma impostare anche le password per console e vty)
SwitchA
hostname SwitchA
interface vlan 1
     ip address 172.16.0.194 255.255.255.240
     no sh
     exit
ip default-gateway 172.16.0.193
SwitchB
hostname SwitchB
interface vlan 1
     ip address 172.16.0.2 255.255.255.192
     exit
ip default-gateway 172.16.0.1
SwitchC
hostname SwitchC
interface vlan 1
     ip address 172.16.0.130 255.255.255.192
     no sh
     exit
```

ip default-gateway 172.16.0.129

Progettazione di Reti Informatiche

14/01/2014

CONFIGURAZIONE DELL'INDIRIZZO IP E DELL'INDIRIZZO IP DEL GATEWAY DI Server1

- Tramite interfaccia grafica impostare l'indirizzo IP su Serverl. Interfaccia fa0/0: 172.16.0.195 255.255.255.240
- Tramite interfaccia grafica impostare l'indirizzo IP del Gateway: 172.16.0.193

CONFIGURAZIONE DELL'INDIRIZZO IP E DELL'INDIRIZZO IP DEL GATEWAY DI Server2

- Tramite interfaccia grafica impostare l'indirizzo IP su Server2. Interfaccia fa0/0: 172.16.0.196 255.255.255.240
- Tramite interfaccia grafica impostare l'indirizzo IP del Gateway: 172.16.0.193
- 4. Configurare il routing come segue:
 - a. configurare OSPF con area singola come protocollo di routing interno;
 - b. configurare il collegamento verso il router ISP come *default route* utilizzando il blocco di indirizzi pubblici **209.165.201.28/30**.

CONFIGURAZIONE OSPF

Definire le aree di appartenenza delle interfacce e impostare rotta di default sul RouterA.

RouterA

```
router ospf 1

passive-interface FastEthernet0/0

network 172.16.0.192 0.0.0.15 area 0

network 172.16.0.208 0.0.0.3 area 0

network 172.16.0.212 0.0.0.3 area 0

default-information originate → avvia la propagazione della

rotta di default a tutti i

router OSPF

ip route 0.0.0.0 0.0.0.0 209.165.201.30
```

RouterB

```
router ospf 1
    passive-interface FastEthernet0/0
    network 172.16.0.208 0.0.0.3 area 0
    network 172.16.0.216 0.0.0.3 area 0
    network 172.16.0.0 0.0.0.127 area 0
```

RouterC

```
router ospf 1
   passive-interface FastEthernet0/0
   network 172.16.0.216 0.0.0.3 area 0
   network 172.16.0.212 0.0.0.3 area 0
   network 172.16.0.128 0.0.0.63 area 0
```

Progettazione di Reti Informatiche

14/01/2014

ISP

```
interface Serial0/0/0
      ip address 209.165.201.30 255.255.255.252
      exit
Impostare la rotta di default per far si che ISP possa rispondere ai messaggi che gli arrivano.
ip route 209.165.201.0 255.255.255.224 Serial0/0/0
```

5. Configurare i *router* RouterB e RouterC come server DHCP per le rispettive LAN ad essi direttamente connesse.

CONFIGURAZIONE DHCP

Impostare gli indirizzi IP da escludere dal pool, in quanto già in uso. Definire il pool DHCP e il Default-Gateway.

RouterB

```
ip dhcp excluded-address 172.16.0.1 172.16.0.2
ip dhcp pool LAN_POOL_B
    network 172.16.0.0 255.255.255.128
    default-router 172.16.0.1
    exit
```

RouterC

```
ip dhcp excluded-address 172.16.0.129 172.16.0.130
ip dhcp pool LAN_POOL_C
    network 172.16.0.128 255.255.255.192
    default-router 172.16.0.129
    exit
```

- 6. Configurare il NAT come segue:
 - a. configurare il NAT statico assegnando ai server interni S1 e S2 gli indirizzi pubblici **209.165.201.1** e **209.65.201.2**, rispettivamente.
 - b. configurare il NAT dinamico per tutti gli altri host interni utilizzando il pool di indirizzi pubblici **209.165.201.9-209.165.201.14**.

Progettazione di Reti Informatiche

14/01/2014

CONFIGURAZIONE NAT

- Sul RouterA creare il pool di indirizzi IP pubblici disponibili per la traduzione.
- Associare al pool la lista che definisce quali indirizzi IP privati dovranno essere tradotti (NAT_ACL). In questo caso, il numero di indirizzi pubblici è minore di quelli privati. È necessario quindi specificare la parola chiave "overload", ad indicare che più indirizzi privati verranno tradotti con un unico indirizzo pubblico.

RouterA

```
ip nat pool NAT POOL 209.165.201.9 209.165.201.14 netmask
255.255.255.248
ip nat inside source list NAT ACL pool NAT POOL overload
Traduzione statica per Server1 e Server2
ip nat inside source static 172.16.0.195 209.165.201.1
ip nat inside source static 172.16.0.196 209.165.201.2
ip access-list standard NAT ACL
     permit 172.16.0.0 0.0.0.127
     permit 172.16.0.128 0.0.0.63
Definire le reti per le quali gli indirizzi vengono tradotti
interface FastEthernet0/0
     ip nat inside
     exit
interface Serial0/0/0
     ip nat inside
     exit
interface Serial0/0/1
     ip nat inside
     exit
Definire le reti collegate a quelle in cui avviene la traduzione
interface Serial0/1/0
     ip nat outside
     exit
```