2024年度春夏学期 大阪大学 全学共通教育科目 解析学入門 経(161~)

岩井雅崇 (大阪大学)

March 28, 2024 ver 1.00

Contents

0	ガイダンス	2
1	が 数列と極限 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
	1.1 記法	4
	1.2 数列の極限・ネイピア数	4
	1.3 関数と極限	6
	1.4 関数の連続性	7
	1.5 指数関数・対数関数・無理関数	8
2	1 変数の微分 -1 階微分-	9
	2.1 微分の定義・図形的な意味	9
	2.2 初等関数の微分	10
	2.3 合成関数の微分法	11
	2.4 極値と平均値の定理	11
	2.5 微分を使ったグラフの書き方	12
3	1 変数の微分 -2 階以上の微分-	14
	3.1 高次導関数	14
	3.2 テイラーの定理とその応用	14
	3.3 初等関数の冪級数展開	16
4	1変数の積分	17
5	2 変数の微分	20
	5.1 偏微分	20
	5.2 連鎖律	21
	5.3 2 階偏導関数	22
	5.4 <mark>極値問題</mark>	23
	5.5 ラグランジュ未定乗数法	25

0 ガイダンス

2024年度春夏学期 大阪大学 全学共通教育科目 解析学入門 経(161~)

木曜 3 限 (13:30-15:00) 共 B218

岩井雅崇(いわいまさたか)

基本的事項

- この授業は対面授業です. 木曜 3 限 (13:30-15:00) に共 B218にて授業を行います.
- 授業ホームページ (https://masataka123.github.io/2024_summer_calculus/) にて「授業の資料・授業の板書」などをアップロードしていきます. QR コードは下にあります.

成績に関して

演習 (後述) と期末試験 (後述) で成績をつける予定です. 内訳は未定です. 単位が欲しい方はこの二つに必ず出席するようにしてください.

なお通常時の授業 (演習や期末試験以外の授業) に出席点はございません. そのため授業への出席は任意となります.

1. 演習に関して

次の日時に演習の授業を行います.

- 日時: 2024年6月6日と2024年7月18日木曜3限(13:30-15:00)
- 場所: 共B218
- 演習内容: 配布したプリントの問題を解いて提出してください. なお協力して解いても構いません.

以上は予定であるため、変更の可能性があります. もし変更する場合はホームページや CLE で連絡します. なお代理出席などの行為は不正行為とみなし、加担した人全員の単位を不可にします. 欠席する場合はあらかじめ masataka@math.sci.osaka-u.ac.jp にご連絡いただければ幸いです. 1

 $^{^1}$ その場合は欠席理由をきちんとお伝えください.ただし正当な理由以外での欠席は認められません.(成績に関わるからです.)よくわからない場合はとりあえずメールしてください.

2. 期末試験に関して

現時点での期末試験の予定は次のとおりです.

- 日時: 2024年7月25日木曜3限(13:30-15:00)(予定)
- 場所: 共B218
- 持ち込みに関して: A4 用紙 4 枚 (裏表使用可) まで持ち込み可. 工夫を凝らして A4 用紙 4 枚 に今までの内容をまとめてください.
- 試験内容:授業・演習でやった範囲

以上は予定であるため、変更の可能性があります. もし変更する場合はホームページや CLE で連絡します.

まとめ

- 1. 単位が欲しい方は演習に必ず出席し、期末試験で成績が取れるくらいの点を取ってください.
- 2. 単位を認定するくらいの成績が取れていない場合、容赦無く不可を出します.
- 3. 講義への出席は自由です. 授業資料・授業の板書をホームページにアップロードするので, 自分の好きな方法で線形代数への理解を進めてください.²

その他

- 休講情報は授業ホームページ・KOAN でお知らせいたします.
- 休講情報や資料の修正などをするので、こまめにホームページを確認してください、
- 教科書は用いない. 参考書は「三宅敏恒著 入門線形代数」(培風館)を用いる.
- オフィスアワーを月曜 16:00-17:00 に設けています.この時間に私の研究室に来ても構いません (ただし来る場合は前もって連絡してくれると助かります.)

 $^{^2}$ 理由としては「私は講義をするのが上手くない」のと「もっと効率的な理解の方法があると思う」からです。この 授業内容を理解するのに $1.5 \times 14 = 21$ 時間も本当にかかるのかと思います。(というか今の私は 90 分じっと講義を受けるのが好きではないです。14 週に分けて講義を聞くのも好きではないです。) そして世の中には私よりもわかりやすい授業する人もいるので、そちらで理解を進めても良いと思います。学び方は自由であり、その方法を制限するのは好きではありません。(つまり出席を取るのも好きではないです)。

1 数列と極限

1.1 記法

自然数などの記号

- $\mathbb{N} = \{$ **自然数全体** $\} = \{1, 2, 3, 4, 5, \cdots \}$
- $\mathbb{Z} = \{$ **整数全体** $\} = \{0, \pm 1, \pm 2, \cdots \}$
- $\mathbb{Q} = \{$ 有理数全体 $\} = \{ \frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0 \}$
- ℝ = { 実数全体 }
- $\mathbb{R} \setminus \mathbb{Q} = \{x \in \mathbb{R} \mid x \notin \mathbb{Q}\} = \{$ 無理数全体 $\}$

区間の表記

- $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\} \ (a,b \ 共に実数)$
- $[a,b) = \{x \in \mathbb{R} \mid a \le x < b\} \ (a \ \text{は実数}, b \ \text{は実数または} + \infty)^3$
- $(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$ $(a は実数または -\infty, b は実数または +\infty)$

特に(a,b) を開区間といい, [a,b] を閉区間という. この記法により, $\mathbb{R}=(-\infty,+\infty)$ である.

1.2 数列の極限・ネイピア数

定義 1 (数列の極限の感覚的な定義). 数列が $\{a_n\}_{n=1}^\infty$ が極限 $\alpha \in \mathbb{R}$ を持つとは, n を大きくしていくと a_n が α に限りなく近づくこと. このとき

$$\lim_{n\to\infty}a_n=\alpha\ \text{\sharpth}\ a_n\xrightarrow[n\to\infty]{}\alpha$$

とかき、 $\underline{a_n}$ は $\underline{\alpha}$ に収束する という。 $\underline{a_n}$ が収束しないとき、 $\underline{a_n}$ は発散する という。n を大きくしていくと、 $\underline{a_n}$ が限りなく大きくなるとき、 $\underline{\lim_{n\to\infty}a_n=+\infty}$ と書く.限りなく小さくなるとき、 $\lim_{n\to\infty}a_n=-\infty$ と書く.

- 例 2. $a_n=\frac{1}{n}$ からなる数列は n を大きくしていくと 0 に収束する. よって $\lim_{n\to\infty}a_n=0$ である. 4
 - $a_n=n$ からなる数列は, n を大きくしていくと, a_n が限りなく大きくなる. よって a_n は発散する. $\lim_{n\to\infty}a_n=+\infty$ である.
 - $a_n = (-1)^n$ からなる数列は発散する.
- 例 3. A を正の実数とし, $a_n = A^n$ とする. このとき収束発散は次の通りになる.
 - A < 1 のとき a_n は n を大きくしていくと 0 に収束する.
 - A = 1 のとき a_n は n を大きくしていくと 1 に収束する.
 - A > 1 のとき a_n は n を大きくしていくと $+\infty$ に発散する.

 $^{^3+\}infty$ は実数ではないが限りなく大きなものとして扱います.一種の記法です. $-\infty$ も同様に限りなく小さいものとして扱います.

 $^{^4}$ 今回極限の定義を感覚的なものにしているため、この事柄は証明することはできない. 極限はもっと厳密に ϵ -N 論法というものを用いて定義される (が非常にわかりづらい...)

定理 4. 数列 $\{a_n\}$ と $\alpha \in \mathbb{R}$ について, $\lim_{n \to \infty} |a_n - \alpha| = 0$ ならば $\lim_{n \to \infty} a_n = \alpha$ である.

定理 $\mathbf{5}$ (はさみうちの原理.). $\alpha \in \mathbb{R}$ と $a_n \leq b_n \leq c_n$ となる数列 $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ に関して次が成り立つ.

- 1. $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = \alpha$ $\text{ solid } \lim_{n\to\infty} b_n = \alpha$ rad.
- 2. $\lim_{n\to\infty} a_n = +\infty$ $a_n = +\infty$ $a_n = +\infty$ $a_n = +\infty$ $a_n = +\infty$
- 3. $\lim_{n\to\infty} c_n = -\infty$ $\text{ as } \lim_{n\to\infty} b_n = -\infty$ cas.

命題 6 (極限の性質). $\alpha, \beta, c \in \mathbb{R}$ とする. $\lim_{n\to\infty} a_n = \alpha$, $\lim_{n\to\infty} b_n = \beta$ であるとき, 以下が成り立つ.

- $\lim_{n\to\infty} (a_n \pm b_n) = \alpha \pm \beta$.
- $\lim_{n\to\infty}(ca_n)=c\alpha$.
- $\lim_{n\to\infty} (a_n b_n) = \alpha \beta$.
- $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\alpha}{\beta}$. $(\beta \neq 0$ のとき.)

例 7. $a_n=\sum_{k=1}^n\frac{1}{k(k+1)}$ からなる数列は n を大きくしていくと 1 に収束する. よって $\lim_{n\to\infty}a_n=1$ である.

例 8. 命題 6 は発散する場合 (つまり α , β が ∞ や $-\infty$ となる場合) には成り立たない. 実際 $a_n=n$, $b_n=-n$ とすると $\lim_{n\to\infty}a_n=+\infty$, $\lim_{n\to\infty}b_n=-\infty$ だが $\lim_{n\to\infty}(a_n+b_n)=0$ である. $\frac{5}{2}$

例 9. a を正の実数とするとき, $\lim_{n\to+\infty} \frac{a^n}{n!}=0$.

定理 10 (実数の連続性). \mathbb{R} の数列 $\{a_n\}$ が次の 2 つを満たすとする.

- ある実数 M があって任意の n について $a_n \leq M$ (上に有界).
- 任意の n について $a_n \leq a_{n+1}$ (単調増加).

このとき数列 $\{a_n\}$ はある値 $\alpha \in \mathbb{R}$ に収束する.

定理 11 (ネイピア数).

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

は収束する. その値をeとかきネイピア数と呼ぶ.

ネイピア数は無理数であることが知られている.

 $^{^5}a_n=n^2,\,b_n=-n$ のときは $\lim_{n o\infty}\left(a_n+b_n
ight)=+\infty$ となる. つまり $\underline{\infty}$ を数と同様に扱ってはいけない!

1.3 関数と極限

定義 12. A を $\mathbb R$ の部分集合とする. 任意の $x\in A$ について, 実数 f(x) がただ一つ定まるとき, f(x) を A 上の関数といい

$$f: A \rightarrow \mathbb{R}$$
 と書く $x \longmapsto f(x)$

また

$$\{(x,y) \in \mathbb{R}^2 \,|\, y = f(x)\}$$

を関数 y = f(x) のグラフという.

例 13.

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \longmapsto x^2$$

は \mathbb{R} 上の関数. 関数 y = f(x) のグラフは 2 次関数のグラフである.

例 14.

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \longmapsto \begin{cases} 1 & (x > 0) \\ 0 & (x \le 0) \end{cases}$$

は ℝ上の関数である.

定義 **15** (関数の極限). $a\in\mathbb{R}$ とし f(x) を a の周りで定義された関数とする. $x\to a$ のとき, $\underline{f(x)}$ が $\alpha\in\mathbb{R}$ に収束するとは $x\neq\alpha$ を満たしながら x を a に近づけるとき, f(x) が限りなく α に近づくこと. このとき

$$\lim_{x \to a} f(x) = \alpha$$
 または $f(x) \xrightarrow[x \to a]{} \alpha$ と書く.

また数列のときと同様に $\lim_{x\to a} f(x) = \pm \infty$ や $\lim_{x\to \pm \infty} f(x) = \alpha$ などを定める.

例 16.

$$f: [-1,1] \to \mathbb{R}$$
$$x \longmapsto x^2$$

について, $\lim_{x\to 0} f(x) = 0$.

例 17.

$$f: (0, +\infty) \to \mathbb{R}$$
$$x \longmapsto \frac{1}{x}$$

について, $\lim_{x\to+\infty} f(x) = 0$ である.

数列のときと同様に次が成り立つ.

定理 18. $a \in \mathbb{R}$ とし f(x) を a の周りで定義された関数と $\alpha \in \mathbb{R}$ について, $\lim_{x \to a} |f(x) - \alpha| = 0$ ならば $\lim_{x \to a} f(x) = \alpha$ である.

定理 **19.** $a \in \mathbb{R}$ とし f(x), g(x), h(x) を a の周りで定義された関数で $f(x) \leq g(x) \leq h(x)$ となるものに関して, $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = \alpha$ ならば $\lim_{x \to a} g(x) = \alpha$ である.

命題 20 (極限の性質). a を実数または $\pm \infty$ とし、 $\alpha,\beta,c\in\mathbb{R}$ とする. $\lim_{x\to a}f(x)=\alpha$, $\lim_{x\to a}g(x)=\beta$ であるとき、以下が成り立つ.

- $\lim_{x\to a} (f(x) \pm g(x)) = \alpha \pm \beta$.
- $\lim_{x\to a} (cf(x)) = c\alpha$.
- $\lim_{x\to a} (f(x)g(x)) = \alpha\beta$.
- $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\alpha}{\beta}$. $(\beta \neq 0$ のとき.)

数列のときと同様、上の命題は α , β が ∞ や $-\infty$ となる場合には成り立つとは限らない.

命題 21.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

1.4 関数の連続性

定義 22 (連続の定義). $a\in\mathbb{R}$ とし f(x) を a の周りで定義された関数とする. f(x) が x=a で連続とは,

$$\lim_{x \to a} f(x) = f(a) \text{ } \texttt{LTSZ}.$$

f(x) を区間 I 上の関数とする. $\underline{f(x)}$ が I 上で連続とは、任意の $a \in I$ に関して f(x) が a で連続となること.

例 23. $\sin x$ や $\cos x$ は \mathbb{R} 上の連続関数

例 24. 例 14 での f(x) は x = 0 で連続ではない.

命題 **25.** f(x), g(x) 共に x=a で連続ならば, $f(x)\pm g(x), cf(x), f(x)g(x), <math>\frac{f(x)}{g(x)}$ (ただし $g(a)\neq 0$) などは x=a で連続.

命題 **26.** y=f(x) が x=a で連続であり, z=g(y) が y=f(a) で連続ならば, z=g(f(x)) は x=a で連続.

よって上の命題から、 みんながよく知っている関数は (だいたい) 連続関数. つまり $x^2, \tan x, \frac{1}{x^2+1}$ などは連続関数である.

定理 27 (最大最小の存在定理). f(x) が閉区間 [a,b] 上で連続ならば, f(x) は [a,b] 上で最大値, 最小値を持つ.

定理 **28** (中間値の定理). f(x) を閉区間 [a,b] 上の連続関数とする. f(a) < f(b) ならば、任意の $\alpha \in [f(a), f(b)]$ について、ある $c \in [a,b]$ があって $f(c) = \alpha$ となる.

1.5 指数関数・対数関数・無理関数

定義 29 (指数関数・対数関数).

• a > 0 かつ $a \ne 1$ なる実数 a について, 関数

$$a^x: \mathbb{R} \to (0, +\infty)$$
 $x \longmapsto a^x$

を指数関数と呼ぶ. a = e のとき, e^x を $\exp x$ ともかく.

• a>0 かつ $a\neq 1$ なる実数 a について, $\log_a x$ を $a^y=x$ となるただ一つの y として定める. $(a_x$ の逆関数ともいう.) この関数

$$\log_a x: (0, +\infty) \to \mathbb{R}
x \longmapsto \log_a x$$

を対数関数と呼ぶ. a = e のとき, $\log x$ と書く.

 a^x , $\log_a x$ ともに連続関数であることが知られている.

補題 30.

- (底の変換公式) $\log_a x = \frac{\log x}{\log a}, a^x = e^{(\log a)x}.$
- $\lim_{x \to +\infty} \frac{\log x}{x} = 0$, $\lim_{x \to +\infty} \frac{x}{e^x} = 0$.
- $\lim_{x \to 0} \frac{\log(1+x)}{x} = 1, \lim_{x \to 0} \frac{e^x 1}{x} = 1.$

よって指数関数・対数関数はネイピア数 e のみ考えれば良い.

定義 31 (無理関数). 実数 α について x^{α} を

$$x^{\alpha}: (0, +\infty) \rightarrow \mathbb{R}$$

$$x \longmapsto x^{\alpha}:=e^{\alpha(\log x)}$$

として定義し, 無理関数と呼ぶ. これは連続関数になる.

補題 32. nを1以上の自然数とする.

- x^n は x の n 乗であり, $x^{-n} = \frac{1}{x^n}$ である.
- $(x^{\frac{1}{n}})^n = x$. 特に $x^{\frac{1}{2}} = \sqrt{x}$ である.

つまり無理関数は多項式や平方根を拡張した概念である.

2 1変数の微分 -1 階微分-

2.1 微分の定義・図形的な意味

定義 33. f(x) を点 a を含む開区間上の関数とする. f(x) が x=a で微分可能とは

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$
 が存在すること.

この値を f'(a) と書く. f'(a) は $\frac{df}{dx}|_{x=a}$ や $\frac{df(a)}{dx}$ とも書く. $\underline{f(x)}$ が I 上で微分可能とは,任意の $a\in I$ に関して f(x) が x=a で微分可能であること. このとき

$$f': I \to \mathbb{R}$$
$$x \longmapsto f'(x)$$

を $\underline{f}(x)$ の導関数という. f'(x) は $\frac{df}{dx}$ とも書く.

例 34. n を 1以上の自然数とし, $f(x) = x^n$ とする. $f'(x) = nx^{n-1}$ である.

例 35. みんながよく知っている関数は (だいたい) 微分可能関数. つまり $x^2,\sin x,\cos x,e^x$ などは 微分可能な関数である. また f(x) が x=a で微分可能ならば x=a で連続である.

定理 **36.** 微分可能な関数 f(x) について, 点 (a, f(a)) での接線の方程式は y-f(a)=f'(a)(x-a) である.

例 37. $f(x) = x^2 - 1$ の点 (1,0) での接線の方程式は, f'(x) = 2x であるので y = f'(1)(x-1) = 2x - 2 となる. 図としては下図のようになる.

命題 38 (微分の性質). f,g を区間 I 上の微分可能な関数とするとき, 以下が成り立つ. (cは定数.)

- $\bullet (f \pm g)' = f' \pm g'.$
- (cf)' = cf'.
- (fg)' = f'g + fg'. $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$. $(g'(x) \neq 0$ なる点において.)

例 39. $f(x) = (x^2 + 3)(x^2 + 1)$ とすると $f'(x) = 2x(x^2 + 1) + (x^2 + 3)2x = 4x(x^2 + 2)$.

例 40. $f(x) = \frac{1}{x^2+1}$ とすると $f'(x) = -\frac{2x}{(x^2+1)^2}$.

2.2初等関数の微分

命題 41 (三角関数の微分).

- $\bullet \ (\sin x)' = \cos x$
- $\bullet \ (\cos x)' = -\sin x$
- $(\tan x)' = \frac{1}{(\cos x)^2}$

命題 42 (指数関数・対数関数の微分).

- $(a^x)' = (\log a)a^x$. 特に $(e^x)' = e^x$.
- $(\log_a x)' = \frac{1}{(\log a)x}$. 特に $(\log x)' = \frac{1}{x}$.

命題 43 (無理関数の微分). $(x^{\alpha})' = \alpha x^{\alpha-1}$.

2.3 合成関数の微分法

定理 44 (合成関数の微分法). y=f(x) が x=a で微分可能であり, z=g(y) が y=f(a) で微分可能であるとき, z=g(f(x)) は x=a で微分可能であり,

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$$
 である.

より詳しく書くと,

$$\left. rac{dz}{dx}
ight|_{x=a} = rac{dz}{dy}
ight|_{y=f(a)} rac{dy}{dx}
ight|_{x=a}$$
 である.

例 45. $z=(x^2+1)^3$ の微分を合成関数の微分法で求める. $y=x^2+1, z=y^3$ とすると $\frac{dy}{dx}=2x, \frac{dz}{dy}=3y^2$ より,

$$rac{dz}{dy}rac{dy}{dx} = 3(x^2+1)^2 \cdot 2x = -6x(x^2+1)^2$$
 ౌశంద్రి.

例 **46.** $z=\cos\left(x^2\right)$ の微分を合成関数の微分法で求める. $y=x^2, z=\cos y$ とすると $\frac{dy}{dx}=2x, \frac{dz}{dy}=-\sin(y)$ より、

$$\frac{dz}{dy}\frac{dy}{dx} = (-\sin(x^2))2x = -2x\sin(x^2)$$
 である.

例 47. $z=x^{\alpha}=e^{\alpha\log x}$ の微分を合成関数の微分法で求める. $y=\alpha\log x, z=e^y$ とすると $\frac{dy}{dx}=\frac{\alpha}{x},\frac{dz}{dy}=e^y$ より,

$$rac{dz}{dy}rac{dy}{dx}=e^{lpha\log x}\cdotrac{lpha}{x}=lpha e^{lpha\log x}\cdot e^{-\log x}=lpha e^{(lpha-1)\log x}=lpha x^{lpha-1}$$
 ాన్న.

2.4 極値と平均値の定理.

定義 48 (極値). f(x) を区間 I 上の関数とする.

- $\underline{f(x)}$ が $c \in I$ で極大であるとは、c を含む開区間 J があって、 $x \in J$ かつ $x \neq c$ ならば $\underline{f(x)} < \underline{f(c)}$ となること.このとき、 $\underline{f(x)}$ は \underline{c} で極大であるといい、 $\underline{f(c)}$ の値を極大値という.
- $\underline{f(x)}$ が $c \in I$ で極小であるとは、c を含む開区間 J があって、 $x \in J$ かつ $x \neq c$ ならば $\underline{f(x)} > f(c)$ となること.このとき、 $\underline{f(x)}$ は c で極小であるといい、 $\underline{f(c)}$ の値を極小値という.
- 極大値,極小値の二つ合わせて極値という.

定理 **49.** f(x) を [a,b] 上で連続, (a,b) 上で微分可能な関数とする. f(x) が $c \in (a,b)$ で極値を持てば, f'(c) = 0 である.

定理 50. f(x), g(x) を [a,b] 上で連続, (a,b) 上で微分可能な関数とする.

- (ロルの定理) f(a) = f(b) ならば, f'(c) = 0 となる $c \in (a,b)$ がある.
- (平均値の定理)

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

となる $c \in (a,b)$ が存在する.

定理 51. f(x) を [a,b] 上で連続, (a,b) 上で微分可能な関数とする.

- 任意の $x \in (a,b)$ について f'(x) = 0 ならば f は [a,b] 上で定数関数.
- 任意の $x \in (a,b)$ について f'(x) > 0 ならば f は [a,b] 上で単調増加関数.
- 任意の $x \in (a,b)$ について f'(x) < 0 ならば f は [a,b] 上で単調減少関数.

例 52. $(\sin x)' = \cos x$ より, $\sin x$ は $[-\frac{\pi}{2}, \frac{\pi}{2}]$ 上単調増加.

2.5 微分を使ったグラフの書き方

複雑な関数でも以下の手順でグラフの概形を書くことができる.

手順 1. f'(x)=0 なる x の値を全て求める. 具体例としてここでは f'(-1)=f'(3)=0 とする.

手順2. 右の図(増減表)をかく.

x	 -1	 3	
f'(x)	0	0	
f(x)	f(-1)	f(3)	

手順 3. $(-\infty,-1)$ 上で f'(x) が正か負かを調べる. これには $(-\infty,-1)$ にある具体的な値 (例えば -2 など) を入れれば良い. 例えば f'(x) が $(-\infty,-1)$ で正ならば次のように増減表に書く.

	x		-1	 3	
	f'(x)	+	0	0	
ĺ	f(x)	7	f(-1)	f(3)	

(-1,3) 上でも同様に f'(x) が正か負かを調べる. 例えば f'(x) が (-1,3) 上で負ならば次のように増減表に書く.

x		-1		3	
f'(x)	+	0	_	0	
f(x)	7	f(-1)	\searrow	f(3)	

手順4. 手順3を全てやることで増減表を完成させる. 例えば次のようになったとする.

x		-1		3	
f'(x)	+	0	_	0	+
f(x)	7	f(-1)	×	f(3)	7

手順 5. 増減表を元にグラフを作る. \nearrow となっている部分は右上がりに書き, \searrow となっている部分は右下がりにペンを走らせると良い. また (-1,f(-1)) や (3,f(3)) を通るところは少し平坦になるように書く. (この部分は下の例や板書を参考してください.)

例 53. $y = x^3 - x$ のグラフを書く. 以下 $f(x) = x^3 - 3x$ とおく.

[手順 1.] f'(x) = 0 なる x を求める. $f'(x) = 3x^2 - 3$ より, x = -1, 1 となる.

[手順 2.] 増減表をかく.

\boldsymbol{x}	 -1	• • •	1	• • •
f'(x)	0		0	
f(x)	2		-2	

[手順 3.] $(-\infty,-1)$ 上で同様に f'(x) が正か負かを調べる. ここで $f'(-2)=3(-2)^2-3=9>0$ より f'(x) は $(-\infty,-1)$ 上で正である. よって増減表は次のように記入する.

x		-1	 1	
f'(x)	+	0	0	
f(x)	7	2	-2	

[手順 4.] 増減表を完成させる.

x		-1		1	
f'(x)	+	0	_	0	+
f(x)	7	2	\searrow	-2	7

[手順 5.] 増減表を元にグラフを完成させる. コツとしては極値 (-1,2) や (1,-2) のところに黒点を次のように書いておくと良い.

特にグラフを書くことで, $[-\frac{3}{2},\frac{3}{2}]$ 上での最大値は 2 で最小値は-2 であることがわかる.

3 1変数の微分 -2階以上の微分-

3.1 高次導関数

定義 54 (高次導関数の定義). f(x) を区間 I 上の微分可能な関数とする. f'(x) が I 上で微分可能であるとき, f は 2 回微分可能であるといい,

$$f''(x) = (f'(x))'$$

としてこれを2次の導関数と呼ぶ. f''(x) は $f^{(2)}(x)$ とも書く.

同様に $f^{(n-1)}(x)$ が微分可能であるとき, \underline{f} は n 回微分可能であるといい, \underline{n} 次導関数 $f^{(n)}(x)$ を $(f^{(n-1)}(x))'$ として定める. $f^{(n)}(x)$ は $\frac{d^n f}{dx^n}$ とも書く.

例 55. • $f(x) = e^x$ とすると, $f^{(n)}(x) = e^x$ である.

• $f(x) = \sin x$ とすると,

$$f^{(n)}(x) = \begin{cases} (-1)^m \sin x & (n=2m) \\ (-1)^m \cos x & (n=2m+1) \end{cases}$$
 である.

定義 56 (C^n 級関数). f(x) を区間 I 上の関数とする.

- f(x) が n 回微分可能であり, $f^{(n)}(x)$ が連続であるとき, f は C^n 級関数であるという.
- 任意の $n \in \mathbb{N}$ について f が C^n 級であるとき, f を C^∞ 級関数であるという.

例 57. みんながよく知っている関数は (だいたい $)C^{\infty}$ 級関数. つまり $x^2,\sin x,\cos x,e^x$ などは C^{∞} 級関数である.

3.2 テイラーの定理とその応用

定理 58 (テイラーの定理 1). f(x) が開区間 I 上の C^2 級関数とする. a < b なる $a,b \in I$ について

$$f(b) = f(a) + f'(a)(b - a) + \frac{f''(c)}{2}(b - a)^2$$

となる $c \in (a,b)$ が存在する.

例 **59.** $f(x) = e^x$ とし a = 0 かつ b を正の実数とする. このときある $c \in (0,b)$ があって

$$e^{b} = f(0) + f'(0)b + \frac{f''(c)}{2}b^{2} = 1 + b + \frac{e^{c}}{2}b^{2}$$

となる. $e^c \ge 1$ であるため,

$$e^b \geqq 1 + b + \frac{1}{2}b^2$$
 となる.

定理 60 (極値判定法). f(x) が点 a の周りで定義された C^2 級関数とする.

- f'(a) = 0 かつ f''(a) > 0 なら f(x) は x = a で極小.
- f'(a) = 0 かつ f''(a) < 0 なら f(x) は x = a で極大.

定理 ${f 61}$ (テイラーの定理 2). f(x) が開区間 I 上の C^n 級関数とする. a < b なる $a,b \in I$ について

$$f(b) = f(a) + f'(a)(b-a) + \frac{f''(a)}{2!}(b-a)^2 + \dots + \frac{f^{(n-1)}(a)}{(n-1)!}(b-a)^{n-1} + \frac{f^{(n)}(c)}{n!}(b-a)^n$$

となる $c \in (a,b)$ が存在する.

例 62. $f(x) = e^x$ とし a = 0 かつ b を正の実数とする. このときある $c \in (0,b)$ があって

$$e^{b} = f(0) + f'(0)b + \frac{f''(0)}{2!}b^{2} + \dots + \frac{f^{(n-1)}(0)}{(n-1)!}b^{n-1} + \frac{f^{(n)}(c)}{n!}b^{n}$$
$$= 1 + b + \frac{1}{2!}b^{2} + \frac{1}{3!}b^{3} + \dots + \frac{1}{(n-1)!}b^{n-1} + \frac{e^{c}}{n!}b^{n}$$

となる. $e^c \ge 1$ であるため,

$$e^b \ge 1 + b + \frac{1}{2!}b^2 + \frac{1}{3!}b^3 + \dots + \frac{1}{(n-1)!}b^{n-1} + \frac{1}{n!}b^n$$
 となる.

定理 ${f 63}$ (有限テイラー展開). f(x) が開区間 I 上の C^n 級関数とする. $a\in I$ を固定する. 任意の $x\in I$ について, ある $\theta\in (0,1)$ があって

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots$$

$$\cdots + \frac{f^{(n-1)}(a)}{(n-1)!}(x - a)^{n-1} + \frac{f^{(n)}(a + \theta(x - a))}{n!}(x - a)^n$$

$$= \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!}(x - a)^k + \frac{f^{(n)}(a + \theta(x - a))}{n!}(x - a)^n$$

となる. 右辺を x=a における 有限テーラー展開 と呼び, $R_n=\frac{f^{(n)}(a+\theta(x-a))}{n!}(x-a)^n$ を 剰余項と呼ぶ. 特に a=0 のとき, 有限マクローリン展開と呼ぶ.

例 64. 任意の $x \in \mathbb{R}$ についてある $\theta \in (0,1)$ があって

$$\sin x = 1 - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^{n-1}x^{2n-1}}{(2n-1)!} + \frac{(-1)^n x^{2n} \sin(\theta x)}{2n!}$$

となる.

定理 $\mathbf{65}$ (べき級数展開). f(x) を a を含む開区間上の C^{∞} 級関数とする. テイラーの定理

$$f(x) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n)}(a+\theta(x-a))}{n!} (x-a)^n$$

において、剰余項 $R_n(x)=rac{f^{(n)}(a+\theta(x-a))}{n!}(x-a)^n$ とする.ある区間 I とし $x\in I$ において $\lim_{n\to\infty}|R_n(x)|=0$ となるならば,

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$$
 となる.

例 66. $f(x) = e^x$ とし, a = 0 とする. このとき剰余項は

$$R_n(x) = \frac{e^{\theta x} x^n}{n!}$$

である. 例 9 より $\lim_{n\to\infty} |R_n(x)| = 0$ であるので、べき級数展開ができ、

$$e^x = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} x^k = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$

例 67. $f(x) = \sin x$ とし, a = 0 とする. このとき剰余項は

$$R_{2n}(x) = \frac{(-1)^n x^{2n} \sin(\theta x)}{(2n)!}$$

である. $\lim_{n\to\infty} |R_n(x)| = 0$ であるので、べき級数展開ができ、

$$\sin x = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} x^k = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

3.3 初等関数の冪級数展開

初等関数の x=0 における冪級数展開は次のとおりとなる.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \dots + \frac{(-1)^{n-1}x^{2n-1}}{(2n-1)!} + \dots$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \dots + \frac{(-1)^{n}x^{2n}}{(2n)!} + \dots$$

$$\log(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \dots + \frac{(-1)^{n-1}x^{n}}{n!} + \dots$$

初等関数であっても綺麗に漸近展開できるとは限らない。例えば $\tan x$ などの漸近展開の一般項は非常に難しい。

次の定理はこの授業の範囲外の内容だが、面白いので書いておく.

定理 **68** (オイラーの公式). i を虚数 ($i^2 = 1$ となる数) とするとき,

$$e^{ix} = \cos x + i \sin x$$
.

特に次が成り立つ.

$$e^{i\pi} = -1$$

4 1変数の積分

定義 **69.** 関数 F(x) が微分可能であり $\frac{dF}{dx}=f(x)$ となるとき, F(x) を $\underline{f(x)}$ の不定積分 あるいは原始関数といい

$$F(x) = \int f(x)dx$$

とあらわす.

f(x) の不定積分は定数を除いてただ一つに定まるため、2 つの不定積分の差となる定数を積分定数という

例 70. n を -1 でない整数とする. このとき x^n の不定積分は $\int x^n dx = \frac{x^{n+1}}{n+1} + C$ となる. ただし C は積分定数とする.

例 71. 簡単な不定積分に関してまとめておく. 積分定数に関しては省略する.

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} \quad (\alpha \neq -1 \text{ のとき})$$

$$\int \frac{1}{x} dx = \log|x|$$

$$\int e^x dx = e^x$$

$$\int a^x dx = \frac{1}{\log a} a^x \quad (a > 0 \text{ かつ } a \neq 1 \text{ のとき})$$

$$\int \log x dx = x \log x - x$$

$$\int \sin x dx = -\cos x$$

$$\int \cos x dx = \sin x$$

$$\int \frac{1}{(\cos x)^2} dx = \tan x$$

定義 **72** (積分の感覚的な定義). f(x) を [a,b] 上の連続関数とする. 曲線 y=f(x) と直線 x=a,x=b それに x 軸で囲まれた部分の面積を, x 軸より上の部分は正, x 軸より下の部分

は負として加えたものを

$$\int_{a}^{b} f(x)dx$$

とかき $\underline{f(x)}$ の区間 [a,b] における定積分, あるいは f(x) を x で a から b まで積分するという. また a < b のとき

$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$

と定義する.

「x 軸より上の部分は正, x 軸より下の部分は負として加えたもの」のイメージとしては下図のような感じである。

定理 73 (微分積分学の基本定理). f(x) を区間 I 上の連続関数とする. $F(x)=\int_a^x f(x)dx$ とおくと F(x) は f(x) の不定積分である. つまり

$$\frac{d}{dx}F(x) = f(x)$$
 である.

特に

$$\int_a^b f(x) dx = \Big[F(x)\Big]_a^b = F(b) - F(a) \mbox{ となる}.$$

特に積分して微分したら元に戻る. つまり接線を求める微分と面積を求める積分は互いに逆の 演算をしていることがわかる.

例 74.

$$\int_0^1 x^2 dx = \left[\frac{x^3}{3} \right]_0^1 = \frac{1}{3}.$$

図形的な意味としては $y=x^2$ と直線 x=0, x=1 それに x 軸で囲まれた部分の面積が上の量であるということである.

例 75. M を 1以上の定数とすると、

$$\int_{1}^{M} \frac{1}{x^{2}} dx = \left[-\frac{1}{x} \right]_{1}^{M} = 1 - \frac{1}{M}.$$

図形的な意味としては $y=\frac{1}{x^2}$ と直線 x=1, x=M それに x 軸で囲まれた部分の面積が上の量であるということである.

例 76. M を 1 以上の定数とすると,

$$\int_{1}^{M} \frac{1}{x} dx = [\log |x|]_{1}^{M} = \log M.$$

図形的な意味としては $y=\frac{1}{x}$ と直線 x=1, x=M それに x 軸で囲まれた部分の面積が上の量であるということである.

例 77. $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots$ は $+\infty$ に発散するが, $1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\cdots$ は収束する. ちなみに

$$\frac{\pi^2}{6} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \cdots$$

であることが知られている。

命題 78 (積分の性質). f(x),g(x) 共に [a,b] 上の連続関数とし, $G(x)=\int g(x)dx$ とする.

- 1. $\int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$
- 2. k を定数とするとき, $\int_a^b kf(x)dx = k \int_a^b f(x)dx$
- 3. (置換積分法)

$$x(t): [\alpha, \beta] \rightarrow [a, b]$$
 $t \longmapsto x(t)$

を C^{∞} 級関数とし, $a = x(\alpha), b = x(\beta)$ とするとき

$$\int_{a}^{b} f(x)dx = \int_{a}^{\beta} f(x(t)) \frac{dx(t)}{dt} dt$$
 となる.

4. (部分積分法) f(x) が C^{∞} 級であるとき,

$$\int_a^b f(x)g(x)dx = \left[f(x)G(x)\right]_a^b - \int_a^b f'(x)G(x)dx$$
 となる.

例 79. $\int (\sin x)^2 \cos x dx$ は $t = \sin x$ という置換積分を用いると次のように求められる.(積分定数 は省略する).

$$\int (\sin x)^2 \cos x dx = \int t^2 \frac{dt}{dx} dx = \int t^2 dt = \frac{t^3}{3} = \frac{(\sin x)^3}{3}$$

例 80. $\int \log x dx$ は部分積分法を用いて次のように求められる. (積分定数は省略する).

$$\int \log x dx = \int x' \log x dx = x \log x - \int x(\log x)' dx = x \log x - \int 1 dx = x \log x - x$$

5 2変数の微分

5.1 偏微分

以下この授業・資料においては、領域Dといえば

$$D = (a, b) \times (c, d) = \{(x, y) \in \mathbb{R}^2 | a < x < b, c < y < d\}$$

を指すことにする.

定義 81. D を \mathbb{R}^2 の領域とする. 任意の $(x,y) \in D$ について, 実数 f(x) がただ一つ定まるとき, f(x) を D 上の関数といい

$$f: \quad D \quad \to \quad \mathbb{R} \ (x,y) \quad \longmapsto \quad f(x,y)$$
 と書く.

注意 82. この授業において f(x,y) の連続性や全微分可能性など難しいことはやらないことにする. 授業の内容を簡単にするため以後は以下を仮定する.

[仮定.] 任意の $(a,b)\in D$ について, f(x,b) は x の関数と見て C^∞ 級, つまり何回でも微分可能であるものとする. 同様に f(a,y) は y の関数と見て C^∞ 級であるものとする. このような関数 f は C^∞ 級関数と呼ばれる.

定義 83. 任意の $(a,b) \in D$ について,

$$A = \lim_{x \to a} \frac{f(x,b) - f(a,b)}{x - a}, \quad B = \lim_{y \to b} \frac{f(a,y) - f(a,b)}{y - b}$$

とする. A, B をf(x, y) の (a, b) での偏微分係数と呼び、

$$A = \frac{\partial f}{\partial x}(a,b), \quad B = \frac{\partial f}{\partial y}(a,b)$$
 とかく.

 $rac{\partial f}{\partial x}(a,b)$ は $rac{\partial f}{\partial x}|_{(x,y)=(a,b)}$ とかくこともある.

定義 84. D上で C^{∞} 級関数 f について

をf(x,y) の偏導関数という.

例 85. • $f(x,y)=x^2y^3$ は \mathbb{R}^2 の偏導関数は $\frac{\partial f}{\partial x}=2xy^3, \frac{\partial f}{\partial y}=3x^2y^2$ である.

• $f(x,y) = \sqrt{1-x^2-y^2}$ は $\{(x,y) \in \mathbb{R}^2 : \sqrt{x^2+y^2} < 1\}$ の偏導関数は

$$\frac{\partial f}{\partial x} = \frac{-x}{\sqrt{1-x^2-y^2}}, \ \frac{\partial f}{\partial y} = \frac{-y}{\sqrt{1-x^2-y^2}}$$
 である.

定理 86 (接平面の方程式). f(x,y) を領域 D 上の C^∞ 関数とする. 曲面 z=f(x,y) の点 (a,b) での接平面の方程式は次で与えられる.

$$z - f(a, b) = \frac{\partial f}{\partial x}(a, b)(x - a) + \frac{\partial f}{\partial y}(a, b)(y - b)$$

例 87. $f(x,y)=-(x^2+y^2)$ の点 (0,0) での偏微分係数は $A=\frac{\partial f}{\partial x}(0,0)=0,\ B=\frac{\partial f}{\partial y}(0,0)=0.$ 接平面の方程式は z=0+A(x-0)+B(y-0)=0.

5.2 連鎖律

定理 88. f(x,y) を領域 D 上の C^∞ 級関数とする. $x=x(t),\,y=y(t)$ を t に関する C^∞ 級関数とし, z(t)=f(x(t),y(t)) とするとき,

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}.$$

例 89. $f(x,y)=2x^3y, \ x(t)=\cos t, \ y(t)=\sin t, \ z(t)=f(x(t),y(t))$ とする. このとき

$$\frac{\partial f}{\partial x} = 6x^2y, \frac{\partial f}{\partial y} = 2x^3, \frac{dx}{dt} = -\sin t, \frac{dy}{dt} = \cos t, \quad \sharp \mathfrak{D}$$

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} = 6\cos^2 t \sin t(-\sin t) + 2\cos^3 t \cos t = -6\cos^2 t \sin^2 t + 2\cos^4 t.$$

定義 90. 領域 D 上の C^{∞} 級関数を x(u,v), y(u,v) とする.

$$\Phi: \quad D \quad \to \quad \mathbb{R}^2$$
$$(u,v) \quad \longmapsto \quad (x(u,v),y(u,v))$$

を C^{∞} 級変数変換という.

- 例 91. a,b,c,d を定数とする. $\Phi(u,v)=(au+bv,cu+dv)$ は C^{∞} 級変数変換である. これを 1 次変換という.
 - $\Phi(u,v)=(u\cos v,u\sin v)$ も C^∞ 級変数変換である. これを極座標変換という.

定理 92. 領域 D 上の C^{∞} 級変数変換を

$$\Phi: D \to \mathbb{R}^2$$

$$(u,v) \longmapsto (x(u,v),y(u,v))$$

とし、領域 $E(\subset \Phi(D))$ 上の C^{∞} 級関数を f(x,y) とする. 領域 D 上の C^{∞} 級 g(u,v) を

$$g = f \circ \Phi: \quad D \quad \to \quad \mathbb{R}$$
$$(u, v) \quad \longmapsto \quad f(x(u, v), y(u, v))$$

で定めるとき、各偏導関数は以下の通りになる.

$$\frac{\partial g}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}, \qquad \frac{\partial g}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}$$

行列の記法を用いると以下のようにかける. (行列に関しては後期の授業を参考にすること.)

$$\left(\frac{\partial g}{\partial u}, \frac{\partial g}{\partial v}\right) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \left(\begin{array}{cc} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{array}\right).$$

例 93. f(x,y) を C^{∞} 級関数とし、 C^{∞} 級変数変換を $(x(u,v),y(u,v))=(u\cos v,u\sin v)$ とする. g(u,v)=f(x(u,v),y(u,v)) とするとき、 $\frac{\partial g}{\partial u}$ 、 $\frac{\partial g}{\partial v}$ を $\frac{\partial f}{\partial x}$ 、 $\frac{\partial f}{\partial y}$ を用いてあらわせ. (解.)

$$\begin{split} \frac{\partial x}{\partial u} &= \cos v, \ \frac{\partial x}{\partial v} = -u \sin v, \ \frac{\partial y}{\partial u} = \sin v, \ \frac{\partial y}{\partial v} = u \cos v, \ \ \sharp \ \mathfrak{D} \\ \frac{\partial g}{\partial u} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} = \cos v \frac{\partial f}{\partial x} + \sin v \frac{\partial f}{\partial y}. \\ \frac{\partial g}{\partial v} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v} = -u \sin v \frac{\partial f}{\partial x} + u \cos v \frac{\partial f}{\partial y}. \end{split}$$

5.3 2 階偏導関数

定義 94. f(x,y) を C^{∞} 級関数とする.

- $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ を f の 1 階偏導関数 という.
- ullet $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ の導関数

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right), \frac{\partial f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right), \frac{\partial f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right), \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)$$

ef の 2 階偏導関数という.

例 95. $f(x,y) = x^2y^3$ の偏導関数は以下の通り.

$$\frac{\partial f}{\partial x} = 2xy^3, \frac{\partial f}{\partial y} = 3x^2y^2.$$

$$\frac{\partial^2 f}{\partial x^2} = 2y^3, \frac{\partial f}{\partial x \partial y} = 6xy^2, \frac{\partial f}{\partial y \partial x} = 6xy^2, \frac{\partial^2 f}{\partial y^2} = 6x^2y.$$

定理 96. f(x,y) が C^{∞} 級関数ならば

$$\frac{\partial f}{\partial x \partial y} = \frac{\partial f}{\partial y \partial x}.$$

つまり自由に偏微分の順序交換ができる.

定理 97. f を領域 D 上の C^2 級関数とし, $(a,b) \in D$ とする. 点 (a,b) 中心の半径 r>0 の円板 $B \subset D$ を一つとる.

任意の $(x,y) \in B$ について (a,b) と (x,y) を結ぶ線分上の点 (a',b') があって,

$$f(x,y) = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b)$$

+
$$\frac{1}{2} \left\{ \frac{\partial^2 f}{\partial x^2}(a',b')(x-a)^2 + 2\frac{\partial^2 f}{\partial x \partial y}(a',b')(x-a)(y-b) + \frac{\partial^2 f}{\partial y^2}(a',b')(y-b)^2 \right\}.$$

5.4 極値問題

定義 98. f(x,y) を領域 D 上の関数とする.

- $\underline{f(x,y)}$ が点 $(a,b) \in D$ で極大であるとは、(a,b) 中心の十分小さな半径の円板上で $(x,y) \neq (a,b)$ ならば f(x,y) < f(a,b) となること.このときの f(a,b) の値を極大値という.
- $\underline{f(x,y)}$ が点 $(a,b) \in D$ で極小であるとは、(a,b) 中心の十分小さな半径の円板上で $(x,y) \neq (a,b)$ ならば f(x,y) > f(a,b) となること.このときの f(a,b) の値を極小値という.
- 極大値,極小値の二つ合わせて極値という.極値をとる点(a,b)を極値点という.
- $\underline{h}(a,b) \in D$ が $\underline{f}(x,y)$ の鞍点 (あんてん, saddle point) であるとは、 ある方向で点 $\underline{(a,b)}$ が極大となり、違うある方向で点 $\underline{(a,b)}$ が極小となること.
- 例 **99.** 1. $f(x,y) = x^2 + y^2$. 極値点 (0,0), 極値 0, 極小値.
 - 2. $f(x,y) = -x^2 y^2$. 極値点 (0,0), 極値 0, 極大値.
 - 3. $f(x,y)=x^2-y^2$. $f(t,0)=t^2$ より, (t,0) の方向で見れば (0,0) は極小. $f(0,t)=-t^2$ より, (0,t) の方向で見れば (0,0) は極大. よって (0,0) は鞍点.
 - 4. $f(x,y) = -x^2$. f(0,t) = 0 であるから (0,0) は極大ではない.

定理 **100.** f(x,y) を C^{∞} 級関数とする. f が (a,b) で極値を取るならば,

$$\frac{\partial f}{\partial x}(a,b) = \frac{\partial f}{\partial y}(a,b) = 0.$$

定義 **101.** f(x,y) を C^{∞} 級関数とする.

$$D_f = \left(\frac{\partial^2 f}{\partial x^2}\right) \left(\frac{\partial^2 f}{\partial y^2}\right) - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2$$

を f のヘッシアン (Hessian)と呼ぶ.

注意 102. 後期でやる行列の言葉を用いると次のようになる. C^{∞} 級関数 f(x,y) について

$$H(f) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix}$$

と定義する. これはf のヘッセ行列と呼ばれる. このときヘッシアン (Hessian) は

$$D_f = \det H(f) = \left(\frac{\partial^2 f}{\partial x^2}\right) \left(\frac{\partial^2 f}{\partial y^2}\right) - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2$$

となる. つまりヘッセ行列 H(f) の行列式がヘッシャンとなる.

定理 103. C^∞ 級関数 f(x,y) が点 (a,b) で $\frac{\partial f}{\partial x}(a,b)=\frac{\partial f}{\partial y}(a,b)=0$ であるとする.

- 1. $D_f(a,b)>0$ かつ $\frac{\partial^2 f}{\partial x^2}(a,b)>0$ のとき, f は点 (a,b) で極小. 2. $D_f(a,b)>0$ かつ $\frac{\partial^2 f}{\partial x^2}(a,b)<0$ のとき, f は点 (a,b) で極大.
- 3. $D_f(a,b) < 0$ の時, 点 (a,b) は f の鞍点.

例 104. 1.
$$f(x,y)=x^2+y^2$$
. $H(f)=\begin{pmatrix}2&0\\0&2\end{pmatrix}$. $D_f=4$. f は $(0,0)$ で極小.

2.
$$f(x,y) = -x^2 - y^2$$
. $H(f) = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$. $D_f = 4$. f は $(0,0)$ で極大.

3.
$$f(x,y) = x^2 - y^2$$
. $H(f) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$. $D_f = -4$. $(0,0)$ は f の鞍点.

 C^2 級関数 f に関して極値を求める方法は以下の通りである.

[手順 1.] $\frac{\partial f}{\partial x}(a,b) = \frac{\partial f}{\partial y}(a,b) = 0$ となる点 (a,b) を求める.

[手順 2.] 手順 1 で求めた (a,b) について $D_f(a,b)$ と $\frac{\partial^2 f}{\partial x^2}(a,b)$ を求める. そして定理 103 を 適応する.

例 105. $f(x,y) = x^3 - y^3 - 3x + 12y$ について極大点・極小点を持つ点があれば、その座標と極 値を求めよ. またその極値が極小値か極大値のどちらであるか示せ.

(解.) 上の手順に基づいて極値を求める.

[手順 1.]

$$\frac{\partial f}{\partial x} = 3x^2 - 3, \frac{\partial f}{\partial y} = -3y^2 + 12$$

より, $\frac{\partial f}{\partial x}(a,b)=\frac{\partial f}{\partial y}(a,b)=0$ となる点 (a,b) は (1,2),(1,-2),(-1,2),(-1,-2). [手順 2.]

$$H(f) = \begin{pmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{pmatrix} = \begin{pmatrix} 6x & 0 \\ 0 & -6y \end{pmatrix}, D_f = -36xy.$$

よって上の 4 点に対し $D_f(a,b)$ と $\frac{\partial^2 f}{\partial x^2}(a,b)$ を計算する.

- 1. $D_f(1,2) = -72 < 0$ より定理 103 から (1,2) は f の鞍点.
- 2. $D_f(1,-2)=72>0, rac{\partial^2 f}{\partial x^2}(1,-2)=6>0$ より定理 $rac{103}{2}$ から (1,-2) は f の極小点. f(1,-2)=0
- $3. \ D_f(-1,2) \ = \ 72 \ > \ 0, rac{\partial^2 f}{\partial x^2}(-1,2) \ = \ -6 \ < \ 0$ より定理 103 から (-1,2) は f の極大点. f(-1,2) = 18.
- 4. $D_f(-1,-2) = -72$ より定理 103 から (-1,-2) は f の鞍点.

以上より、f は (1,-2) で極小値 -18 をもち、f は (-1,2) で極大値 18 をもつ.

ラグランジュ未定乗数法 5.5

定理 106 (陰関数定理). f(x,y) を C^{∞} 級関数とし、点 (a,b) で f(a,b)=0 かつ $\frac{\partial f}{\partial u}(a,b)\neq 0$ とする.

この時 a を含む開区間 I と I 上の C^{∞} 級関数 $\phi: I \to \mathbb{R}$ があって次の 3 つを満たす.

- 2. 任意の $x \in I$ について, $f(x,\phi(x)) = 0$. 3. $\frac{d\phi}{dx} = \frac{-\frac{\partial f}{\partial x}(x,\phi(x))}{\frac{\partial f}{\partial x}(x,\phi(x))}$. 特に $\frac{d\phi}{dx}(a) = \frac{-\frac{\partial f}{\partial x}(a,b)}{\frac{\partial f}{\partial x}(a,b)}$. $f(x,\phi(x)) = 0$ となる関数 $y = \phi(x)$ を f(x,y) = 0 の陰関数という.

定理 107. f(x,y), g(x,y) を領域 D 上の C^{∞} 級関数とする. g(x,y)=0 のもとで f(x,y) が 点 (a,b) で極値を持つとし, $\left(\frac{\partial g}{\partial x}(a,b),\frac{\partial g}{\partial y}(a,b)\right) \neq (0,0)$ とする.

このとき、ある定数 λ があって

$$\frac{\partial f}{\partial x}(a,b) = \lambda \frac{\partial g}{\partial x}(a,b), \frac{\partial f}{\partial y}(a,b) = \lambda \frac{\partial g}{\partial y}(a,b)$$
 となる.

上の定理 107 から F(x,y,t)=f(x,y)-tg(x,y) とするとき, g(x,y)=0 のもとでの f(x,y) の 極値の候補は以下の2つである.

1.
$$g(a,b) = \frac{\partial g}{\partial x}(a,b) = \frac{\partial g}{\partial y}(a,b) = 0$$
 となる点 (a,b) .

2. ある λ があって $\frac{\partial F}{\partial x}(a,b,\lambda) = \frac{\partial F}{\partial y}(a,b,\lambda) = \frac{\partial F}{\partial t}(a,b,\lambda) = 0$ となる点 (a,b).

g(x,y)=0 のもとで f(x,y) の極値を求める手順は以下の通りである.

[手順 1.] $g(a,b)=rac{\partial g}{\partial x}(a,b)=rac{\partial g}{\partial y}(a,b)=0$ となる点 (a,b) を求める.

[手順2.] F(x,y,t)=f(x,y)-tg(x,y) とおいて, $\frac{\partial F}{\partial x}(a,b,\lambda)=\frac{\partial F}{\partial y}(a,b,\lambda)=\frac{\partial F}{\partial t}(a,b,\lambda)=0$ となる点 (a, b, λ) を求める.

[手順 3.] 手順 1, 手順 2 で求めた点 (a,b) について、その値が極値であるかどうか調べる. 一般的な方法はないが、例 108 のように「最大値の存在」と「最大値、最小値であれば 極値である」ことを用いる方法もある.

例 108. $f(x,y) = xy, g(x,y) = x^2 + y^2 - 1$ とする. g(x,y) = 0 のもとでの f(x,y) の最大値と 最大値をとる点の座標,最小値と最小値をとる点の座標を全て求めよ. つまり $S=\{(x,y)\in\mathbb{R}^2:$ g(x,y)=0} とするとき, f の S 上での最大値と最大値及び最小値と最小値をとる点の座標を全て 求めよ. ただし, S上で f(x,y) が最大値・最小値をとることは認めて良い.

(解.) 上の手順通りに求める.

[手順 1.] $\frac{\partial g}{\partial x}=2x, \frac{\partial g}{\partial y}=2y$ より, $g(a,b)=\frac{\partial g}{\partial x}(a,b)=\frac{\partial g}{\partial y}(a,b)=0$ となる点は存在しない. [手順 2.] $F(x,y,t)=f(x,y)-tg(x,y)=xy-t(x^2+y^2-1)$ とおく. 以下の方程式を解く.

$$\frac{\partial F}{\partial x} = y - 2xt = 0, \frac{\partial F}{\partial y} = x - 2yt = 0, \frac{\partial F}{\partial t} = -(x^2 + y^2 - 1) = 0.$$

すると $(x,y)=\pm\left(rac{1}{\sqrt{2}},rac{1}{\sqrt{2}}
ight),\pm\left(rac{1}{\sqrt{2}},-rac{1}{\sqrt{2}}
ight)$ の 4 点が極値の候補となる.

[手順 3.] 最大値・最小値は極値なので、 $\pm\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$ 、 $\pm\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ の中に最大値をとる点や最 小値をとる点がある.

実際計算すると,

$$f\left(\pm\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)\right) = \frac{1}{2}, f\left(\pm\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)\right) = -\frac{1}{2},$$

であるため, $\pm\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$ で f は最大値 (極大値) $\frac{1}{2}$ をとり, $\pm\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ で f は最小値 (極小値) $-\frac{1}{2}$