Block Ciphers

Rohit Musti

CUNY - Hunter College

February 18, 2022

Overview

- We just introduced the concept of stream ciphers and used PRGs to create a basic construction
- We also introduced security games
- In this lecture, we will build on these ideas and introduce the block cipher a practical cryptography system

2/20

One Time Pad Security Game: Chosen Plaintext Attack

Rohit Musti

Block Ciphers

Pseudo Random Functions (PRFs)

- $F: \mathcal{K} \times \mathcal{M} \to \mathcal{C}$
- this function must be efficient
- this function is not necessarily one-to-one
- this function is not necessarily invertable

Pseudo Random Permutation (PRPs)

- $P: \mathcal{K} \times \mathcal{X} \to \mathcal{X}$
- this function must be efficient
- this function is one-to-one
- there exists an efficient algorithm for inverting this

Rohit Musti

Security of PRPs and PRFs

- A PRF $F: \mathcal{K} \times \mathcal{M} \to \mathcal{C}$ is secure if $F(k, \cdot)$ is indistinguishable from a random function $f \stackrel{R}{\leftarrow} (\mathcal{M} \to \mathcal{C})$
- a PRP $P: \mathcal{K} \times \mathcal{X} \to \mathcal{X}$ is secure if $P(k, \cdot)$ is indistinguishable from a random permutation $p \xleftarrow{R} (\mathcal{X} \to \mathcal{X})$

Rohit Musti

PRF Security Game: Chosen Plaintext Attack

PRP Security Game: Chosen Plaintext Attack

Security Lemma

• a secure PRP is equivalent to a secure PRF

Block Ciphers

- block ciphers can be thought of as PRPs
- block ciphers are deterministic ciphers $\mathcal{E} = (E, D)$
- ullet its message space and ciphertext space are the same: $\mathcal{M}=\mathcal{C}$
- Shares the correctness requirement with Shannon Ciphers D(k, E(k, m)) = m

Rohit Musti

History: Electronic Code Book

- Developed by IBM in the 1970s, became an official Federal Information Processing Standard in 1977
- Released with 4 other ciphers, all of which were more secure, but not totally secure on their own
- Name derives the code books used during the Civil War

How it Works: Electronic Code Book

Image Credit: Diana Maimut

Block Ciphers 12/20

Security Weakness: Electronic Code Book

- since the encryption function is a PRP, it is deterministic and one-to-one
- therefore, it $m_1 = m_2$, then it follows that $c_1 = c_2$
- this doesn't achieve chosen plaintext attack security

Future HW: describe an attack to break CPA given ECB

Image Encryption using ECB

Image Credit: (the NSA)

Rohit Musti Block Ciphers 14 / 20

Cipher Block Chaining: CBC (not quite cryptocurrencies)

CBC: Picking a good IV

- If you are developing a single use system, you do not even need an IV
- You can use a unique IV (i.e. counter mode) but then you have to sample a new IV each round, but you don't need to send the IV with the cipher text
- It is best to use a random IV every message and send it with the cipher text

Image Encryption using CBC vs EBC

Image Credit: (the NSA)

Data Encryption Standard (DES)

- IBM developed it with 128 bit keys and 128 blocks in 1970s
- the US National Beureau of Labor Standards requested a version of it (56 bit keys operating 64 bit blocks)
- widely criticized and speculated to have been made deliberately weak by certain US intelligence agencies
- Many fancy ways to break it, but you could brute force its 56 bit variant by 1998, now it can be brute forced in just 12 days

Advanced Encryption System (AES)

- Developed by two belgian cryptographers, Joan Daemen and Vincent Rijmen
- Adopted by US government, supersedes DES (the one that contained EBC), in 2002
- First and only publicly accessible cypher approved by NSA

AES: Algorithm

- Derive round keys using key scheduler from cipher key
- Expand the current key into the round key
- Complete encryption rounds
 - Non linear byte substitution according to look up table
 - Shift rows: last 3 rows are cyclically shifted
 - Mix Columns: combine four bytes in each column according to a linear mixing operation
 - 4 XOR with round key
- Final encryption round
 - Non linear byte substitution according to look up table
 - Shift rows: last 3 rows are cyclically shifted
 - Solution XOR with round key