1st /2nd SEMESTER EXAMINATION, 2022 – 23 First Year, B. Tech. – Common to All Branch FUNDAMENTAL OF ELECTRONICS ENGINEERING

Duration: 3:00 hrs Max Marks: 100

Note: - Attempt all questions. All Questions carry equal marks. In case of any ambiguity or missing data, the same may be assumed and state the assumption made in the answer.

Q 1. Answer any four parts of the following.

- 5x4=20
- a) Describe the difference between n -type and p -type semiconductor materials. Define an intrinsic material, a negative temperature coefficient, and covalent bonding.
- b) Compare P-N junction diode and zener diode on the basis of:
- (i) Symbol (ii) Direction of conduction (iii) Reverse breakdown (iv) Application
- (v) Resistance in reverse biased condition
- c) What is an LED? Explain its working principle. Write the advantages, and application of LED.
- d) Draw VI characteristics of PN junction diode and explain it.
- e) Determine the dc resistance levels for the diode of Fig. 1 at
- (i) $I_D = 2 \text{ mA (low level)}$
- (ii) $I_D = 20 \text{ mA}$ (high level)
- (iii) $V_D = -10 \text{ V}$ (reverse-biased)

f) For the series diode configuration of Fig. 2, determine V_D , V_R , and I_D .

Fig. 2

Fig. 6

	b) Define α and β with respect to BJT and derive the relationship between them.	
	A transistor having $\beta = 100$ and reverse saturation current $I_{CEO} = 150 \mu A$ is operated in CE mode. If the base current is 0.2 mA. Calculate I_E , I_C and α .	
	c) Compare CB, CE and CC configuration on the basis of: (i) Input impedance (ii)	
	Output impedance (iii) Current gain (iv) Voltage gain (v) Phase angle (vi) Power gain (vii) Application	
Q 4.	Answer any two parts of the following.	10x2 = 20
	a) Sketch and explain the construction of n-channel JFET and also explain its working.	
	b) Explain working principle of N-channel depletion type MOSFET with construction diagram. Also draw its transfer and drain characteristics.	
	c) Determine the following for the network of Fig. 7	
	(i) V_{GS_Q}	
	(iii) V _{DS}	
	$\begin{cases} \text{(iv) } V_D \\ \text{(v) } V_G \end{cases}$	
	$(vi) V_S$	
	Q D	
	$I_{DSS} = 10 \text{ mA}$ $V_{\rho} = -8 \text{ V}$	
	+ 1	
	$\sum 1 M\Omega$ $V_{GS} - \Diamond S$	
	= 2 V	
	+	
	±	
	Fig. 7	
Q 5.	Answer any two parts of the following.	10x2= 20
	a) Minimize using K-map and realize using NOR gates only. $F(A, B, C, D) = \prod (3, 4, 5, 7, 9, 13, 14, 15) . d(0, 2, 8)$	
	b) Draw and explain the working of inverting, non-inverting, and summing amplifier using OP-AMP.	
	c) Perform following operation as indicated:	
	(i) Convert (25.125) ₁₀ into Haxadecimal number.	
	(ii) Determine the base of following: $(312)_B = (54)_{10}$	
	(iii) Write the truth table of two input X-OR gate and two input X-NOR gate.	
	(iv) Simplified the boolean equation $X = [(A + \overline{B})(B + C)]B$	
	(v) Draw the circuit diagram to implement the following equation:	
	$X = [(A+B)(\bar{B}+C)]$	
		·
