Функция XOR

x_1	<i>x</i> ₂	$x_1 \oplus x_2$
0	0	0
0	1	1
1	0	1
1	1	0

$$\begin{cases}
w_0 & > 0 \\
w_0 + w_1 & < 0 \\
w_0 + w_2 & < 0 \\
w_0 + w_1 + w_2 & > 0
\end{cases}$$

Функция XOR

$$x_1 \oplus x_2 = (x_1 \wedge \neg x_2) \vee (x_2 \wedge \neg x_1)$$

Многослойный персептрон

Постановка задачи

Дано:
$$\mathcal{I}=(I_1,\ldots,I_k)$$
 входные вектора размерности n $\mathcal{A}=(A_1,\ldots,A_k)$ правильные выходные вектора размерности m (\mathcal{I},\mathcal{A}) обучающая выборка $N(W,I)$ функция, соответствующая нейронной сети $O_i=N(W,I_i)$ ответ нейронной сети, вектор размерности m $E(O_i,A_i)=\sum_{i=1}^m(O_i[j]-A_i[j])^2$ функция ошибки

Найти: вектор W такой, что $\sum_{i=1}^k E(N(W,I_i)-A_i) o \min$

Обучение онлайн

Решим задачу для одной пары (I,A)

В этом случае $E(N(W_i,I)-A)$ является функцией от вектора весов E=E(W).

Алгоритм градиентного спуска

- 1. Инициализировать x_1 случайным значением из $\mathbb R$
- 2. i := 1
- 3. $x_{i+1} = x_i + \varepsilon f'(x_i)$
- 4. i + +
- 5. if $|x_{i+1} x_i| > c$ goto 3

Алгоритм градиентного спуска

- 1. Инициализировать W_1 случайным значением из \mathbb{R}^n
- 2. i := 1
- 3. $W_{i+1} = W_i + \varepsilon \nabla f(W_i)$
- 4. i + +
- 5. if $||W_{i+1} W_i|| > c$ goto 3