(19) Japanese Patent Office (12) Publication of Unexamined Patent Applications (A)

(11) Unexamined Patent **Publication Number**

Unexamined Japanese Patent No. H07-155286

(43) Publication Date: June 20, Heisei 7 (1995)

000000376

(51)	Int.	Cl.	6
------	------	-----	---

Identification Symbol

A61B

1/00

D

300 1/06 В

Request for Examination: Examination not requested Number of Claims: 1 OL (7 pages total)

(71) Applicant

FΙ

(21) Application Number H05-304430

(22) Date of Filing

December 3, Heisei 5 (1993)

(/I) Applicant	000000370
	Olympus Optical Co. Ltd.
	2-43-2 Hatagaya, Shibuya-ku, Tokyo
(72) Inventor	Masaya YOSHIHARA
	at Olympus Optical Co. Ltd.
	2-43-2 Hatagaya, Shibuya-ku, Tokyo
(72) Inventor	Sakae TAKAHANA
	at Olympus Optical Co. Ltd.
	2-43-2 Hatagaya, Shibuya-ku, Tokyo
(72) Inventor	Mamoru KANEKO
	at Olympus Optical Co. Ltd.
	2-43-2 Hatagaya, Shibuya-ku, Tokyo
(72) Inventor	Masahiko IIDA
	at Olympus Optical Co. Ltd.
	2-43-2 Hatagaya, Shibuya-ku, Tokyo
(72) Inventor	Katsuya SUZUKI
	at Olympus Optical Co. Ltd.
	2-43-2 Hatagaya, Shibuya-ku, Tokyo
(72) Inventor	Yasuhiro UEDA
	at Olympus Optical Co. Ltd.

2-43-2 Hatagaya, Shibuya-ku, Tokyo

(54) [Title of Invention] FLUORESCENCE OBSERVATION APPARATUS

(57) [Abstract] [Purpose]

To provide a small fluorescence observation apparatus at low cost.

[Constitution]

The wavelength of a laser beam emitted from a laser diode 21 can be set variably by temperature control via electronic cooling and heating means and fluorescence light having different wavelength can be excited as well as the fluorescence emitted from the tissue to be observed is introduced to a fluorescence imaging system in a TV (video) camera 3 via an image guide 32 of an endoscope 2, and a filter to be arranged on an optical path is selected by a filter switching means 9. Therefore, the fluorescence image with a different wavelength can be observed.

[Claims]

(74) Agent

[Claim 1]

A fluorescence observation apparatus, which uses a semiconductor laser for a light source for excitation for fluorescence observation, which is characterized

Susumu ITO, Attorney

a wavelength control means which changes the wavelength of a laser light emitted from said semiconductor laser by controlling the temperature of the semiconductor laser:

a filter means which selectively changes the wavelength band entered to a fluorescence detecting apparatus for detecting fluorescence in accordance with the change of wavelength by the aforesaid wavelength control means.

[Detailed Description of the Invention] [0001] [Field of the Invention]

1

This invention relates to a fluorescence observation apparatus which capable of changing the wavelength of a light for excitation by controlling the temperature of a laser diode.

[0002]

[Prior Art]

In recent years, there are techniques such as autofluorescence generated from living tissue and druginduced fluorescence generated by injecting a fluorescent drug into the organism beforehand and produce two-dimensional images which are used to diagnose the degeneration of tissues of the organism or a state of the disease (for example, the type of the disease or the extent of infiltration), such as cancer.

[0003]

If light is irradiated to living tissue, the fluorescence of a wavelength longer than that of the excitation light will be emitted.

Fluorescence substances in the organism are, for example, collagen, NADH (nicotinamide adenine dinucleotide), FMN (flavin mononucleotide), pyridine nucleotide, etc. Recently, the interrelation between these substances in the organism emitting fluorescence light and diseases is becoming clear, and the diagnosis of cancer, etc. is possible from this fluorescence.

Alternatively, a fluorescence substance such as HpD (hematoporphyrin), Photofrin, ALA(δ -amino levulinic acid), etc., may be injected into an organism. These substances have a tendency to accumulate in cancerous tissue, and a diseased area can be diagnosed by observing the fluorescence after injecting any of these substances into an organism.

[0004]

By the way, when the above-mentioned fluorescence observation is performed, generally a laser light for excitation is irradiated to an area to be diagnosed. In this case, the laser light requires to have a suitable wavelength for excitation depending on the area to be diagnosed.

[0005]

[Problem to be Solved by this Invention]
As the result, several lasers, a dye laser which can generate several wavelengths or an alexandrite laser, etc. are required for a laser apparatus for excitation. Therefore, there are problems with the apparatus being large size or expensive.

[0006]

This invention is formed in consideration of the above-mentioned matters and aimed to provide a

fluorescence observation apparatus which can be miniaturized and inexpensive.

[0007]

[Means to Solve Problems and Effect] The fluorescence observation apparatus of this invention, which uses a semiconductor laser as an excitation light source, controls the temperature of the semiconductor laser and provided with: a wavelength control means which changes the wavelength of a laser light emitted from the semiconductor laser; and a filter means which selectively changes the wavelength range which entered to a fluorescence light detecting apparatus depending on the change of the wavelength made by the aforesaid wavelength control means. Thus, by this invention, a wavelength region used by one semiconductor laser can be broaden and the apparatus can be miniaturized more than the one with other laser generator and it is possible to implement the apparatus at low price.

[0008]

[Embodiment]

Hereafter, embodiments of this invention will be explained referring to the drawings. Fig. 1 is a fluorescence observation apparatus of a first embodiment of this invention. Fig 1 is a diagram showing the structure of the fluorescence observation endoscope of a first embodiment of this invention. The fluorescence observation endoscope 1 of the first embodiment shown in Fig. 1 comprises: an endoscope 2;

- a TV (video) camera 3 which is detachably mounted to the endoscope 2 and equipped with an imaging means for normal observation and fluorescence observation:
- a light source device 4 for the endoscope which supplies illumination light to the endoscope 2 for normal observation;
- a light source device 5 for excitation light which generates excitation light for fluorescence observation;
- a CCU 6 which is connected to the TV (video) camera 3 and process a normal video image; an endoscope monitor 7 which displays an endoscope image by a output signal of this CCU 6; a fluorescence diagnosing apparatus 8 which is connected to the TV (video) camera 3 and processes the signal for generating a fluorescence image and displays the fluorescence image;
- a filter switching control means 9 which is connected to the light source 5 for excitation light and switches a filter used in a fluorescence imaging system inside the TV (video) camera 3 depending on the excitation light; and

an observation switching means 10 which indicates switching between a normal observation and a fluorescence observation.

[0009]

The aforesaid endoscope 2 consists of an elongated insertion part 11, an operating part 12 provided at the rear end of the insertion part 11, an eyepiece 13 provided at the rear end of the operating part 12 and a light guide cable 14 extended from the operation part 12, and a light guide 15 for transmitting the illumination light and the excitation light is inserted through the insertion part 11 and the light guide cable 14

[0010]

This light guide 15 branches into two parts in the light guide cable 14 and one terminal of the light guide cable 14a is connected to the light source device 4. The white light of the lamp 17 which is emitted by the power from the power supply circuit 16 within the light source device 4 is supplied to the end face of the light guide 15 via a condenser lens 18. In addition, for a normal observation, a light-shielding plate 19 is kept at the condition of being retracted (from the optical path) as shown in Fig. 1.

[0011]

The other part of the light guide cable 15 is turned into a laser guide cable 14b and that terminal is connected to the excitation light source device 5. Then, the laser light from the laser diode 21 within the excitation light source device 5 is irradiated after gathered by a condenser lens 22. This laser diode 21 is activated by the power supply from a laser diode power supply circuit 23.

[0012]

Moreover, this laser diode 21 is attached to an electronic cooling and heating means 24 which is operated by the power supply from the power supply circuit for the electronic cooling and heating means 25. The laser diode power supply circuit 23 and the power supply circuit for the electronic cooling and heating means 25 are connected to a control means 26 so as to be controlled.

[0013]

This control means 26 is connected to a wavelength selection indicating means which is not illustrated. When the selection of the excitation wavelength is indicated by operating this wavelength selection indicating means, the control means 26 controls the temperature of the laser diode 21 via the electronic cooling and heating means 24 so as to emit light at the selected wavelength.

[0014]

The control means 26 reads a target temperature corresponding to the wavelength information based on the information of relationship between the light-emission wavelength and the temperature of the laser diode 21 recorded by ROM, etc. (not illustrated), as an address signal.

On the other hand, when a target temperature is set based on the output from a temperature sensor (not illustrated) which detects the actual temperature of the laser diode 21, the control means 26 first decides whether the laser diode should be heated or cooled in order to set to the target temperature. Then, it controls the electronic cooling and heating means 24 to perform cooling or heating operation based on the judgement and controls the laser diode 21 to be set and maintained at the target temperature by a feed back control loop.

[0015]

The control means 26 is also connected to a filter switching control means 9.

According to the selection of the wavelength of the excitation light by the wavelength selection indicating means, as well as the selection of the wavelength of the fluorescence light in case where the wavelength of the fluorescence light emitted by the excitation light having this wavelength changes, a filter that selectively transmits said fluorescence wavelength is set on the optical path of the fluorescence imaging system via the filter switching control means 9. (By rotating a filter turret 38 by a motor 42 which will be described later, the filter that selectively transmits the above fluorescence wavelength is set on the optical path.)

0016

In addition, a means to select or indicate the type of a fluorescence observation can be employed instead of the wavelength selection indicating means. By selecting a fluorescer with this means, the control means 26 reads out the wavelength of the laser light from ROM, etc. based on the wavelength of the excitation light which effectively excites this fluorescer and which is commonly used this type of a fluorescence observation, and it also calculates the target temperature corresponding to the wavelength (from ROM, etc.) and controls the temperature of the laser diode 21 to be set to that temperature. It may also be structured that the control means 26 controls the filter switching means 9 to arrange a filter which selectively transmits the wavelength of fluorescence observation on the optical path of the fluorescence imaging system.

[0017]

Thus, the apparatus according to the first embodiment is characterized by the fact that the wavelength of laser light, serving as excitation light, emitted from the laser diode can be changed by providing a wavelength control mechanism that controls the temperature of the laser diode and a filter means for observing fluorescence in the imaging means can be selectively set depending on the selected wavelength of the excitation light.

[0018]

The illumination light or the excitation light transmitted by the light guide 15 in the light guide cable 14 and the insertion part 11 is emitted from the end surface of the distal part of the insertion part 11 so as to irradiate an area to be diagnosed. The reflected light or the excitation light from the area is formed into an image on the distal surface of an image guide 32, arranged on the focus surface of an objective lens 31, by the objective lens 31 attached to the observation window of the distal part of the insertion part.

[0019]

Then, the image is transmitted to the end surface of the eyepiece 13 by the image guide. 32. In the case of white illumination light, it can be viewed with naked eyes via the ocular lens 33. When the TV (video) camera 13 is mounted on this eyepiece 13, the image transmitted by the image guide 32 is projected on an imaging element such as a CCD 36 via an image forming lens 34 and a mirror 35 on the optical path.

[0020]

In addition, the imaging element is not limited to a CCD and a SIT (static induction transistor), a CMD (Charge Modulation Device), and a MOS type imaging element may be used.

[0021]

When the above-mentioned mirror 35 is retracted from the optical path, shown as the dotted line, by a device like a plunger 37, an image is formed on a CCD 41 via the image forming lens 34, a filter of the filter turret 38 arranged on the optical path of the image forming lens 34, and an image intensifier 39 for amplifying weak light. The optical path shown by the dotted line in Fig. 1 is the optical path for the fluorescence imaging system. Meanwhile, the optical path shown by the solid line is the path for the normal imaging system which consists of the image formation lens 34, the mirror 35 and the CCD 36 arranged on the optical path.

[0022]

Several filters whose transmission range respectively differs are attached in the direction of a disc circumference of the filter turret 38 so that the filter to be arranged on the optical path can be selectively set by a motor 42 that is a means to drive the filter turret.

[0023]

The mirror 35 in the TV camera 3 and the lightshielding plate 19 in the light source apparatus for endoscope 4 are driven in association with the operation of the observation switching means 10. In other words, when a normal observation switch in the observation switching means 10 is operated, the mirror 35 and the light-shielding plate 19 are set to the condition designated by the solid line in Fig. 1. The image of the area being illuminated with the white illumination light is formed on the CCD 36 by which it is photoelectrically converted to a normal endoscope image. Then the image is processed by the CCU 6 so that it is converted into a video signal by which a monitor can display the image, thus, the image is displayed on an endoscope image monitor 7. That is, a normal endoscope image can be observed by the endoscope image monitor 7.

[0024]

On the other hand, when a fluorescence observation switch in the observation switching means 10 is operated, the mirror 35 and the light shielding plate 19 are set in the condition shown as a dotted line in Fig. 1. The fluorescence image irradiated by the excitation light is formed on the CCD 41 via the filter of the filter turret 38 and the image intensifier 39. Then the fluorescence image which is photoelectrically converted by this CCD 41 is signal-processed by the signal processing circuit in the fluorescence diagnosing apparatus 8 so as to be displayed on the monitor in the fluorescence diagnosing apparatus 8.

[0025]

According to this first embodiment, the wavelength of laser light emitted from the laser diode 21 is variably set by controlling the temperature of the laser diode 21. Thus, a wide wavelength range can be covered by one laser diode 21.

[0026]

In this case, the laser diode 21 can be build very small and the electronic cooling and heating means 24 can also be build small. In addition, since the heat capacity of the laser diode 21 can be made small, an arbitrary temperature can be set in a very broad range by the small electronic cooling and heating means 24.

This means that the emitted wavelengths can also be varied in a broad range. Therefore, a large side laser apparatus such as a dye laser is not needed and a small laser apparatus for generating excitation light which can be applied widely can be realized.

[0027]

Furthermore, the filter turret 38 which plural filters are attached is provided in the TV (video) camera 3 with a function of fluorescence imaging system so that a filter to be arranged in an optical path can be selectively set via a filter switching indication means 9. Thus, a fluorescence observation can be performed by setting the filter which selectively transmits the wavelength of fluorescence being emitted. Also by this embodiment, a normal and a fluorescence observation can be performed by a simple switching operation.

[0028]

In Fig. 1, the laser guide cable 14b which transmits laser light is merged with the light guide cable 14a on the way. However, the guide cable which transmits laser light may be set apart from the light guide 15 which transmits illumination light. It may be structured to insert the laser guide in the channel of the endoscope.

[0029]

Fig. 2 illustrates a fluorescence observation apparatus 51 of a second embodiment of this invention. In the second embodiment, a second harmonic generator device (abbreviated to a SHG hereon) 52 is arranged in front of a laser diode 21' in an excitation light source 5' so that the laser light of the laser diode 21' outputs a second harmonic wave which is a half wavelength of the laser light. This laser diode 21' is to emit a laser light in long wavelengths such as infrared-ray region and the half wavelength of the laser light becomes the wavelength for excitation light.

[0030]

The aforesaid laser diode 21' emits flickering light by pulse (a pulse cycle P is 1/several 100 seconds for example) from a laser diode drive circuit 54 which outputs a pulse driving current based on the control pulse by a timing controller 53.

[0031]

Moreover, a fluorescence image is formed on a CCD 41 without passing through the image intensifier 39 in the TV (video) camera 3 of the first embodiment. The CCDs 36 and 41 in the TV (video) camera 3 are operated by drivers 55 and 56 respectively. In this case, the readout cycle of one frame of the CCD 36 is

operated by 1/30 second. On the other hand, the readout cycle of the CCD 41 is operated by the double (speed) of pulse cycle P so that imaging signal of the CCD 41 is output when the excitation-light pulse is output and when it is not output. Furthermore, the fluorescence diagnosing apparatus 57 in this embodiment consists of a two-dimensional lock-in amplifier 58 and a CCU 59 and a monitor 60.

[0032]

The two-dimensional lock-in amplifier 57 comprises: an A/D converter 61 for converting the image signal into digital data;

a multiplexor 63 for distributing image data to a first frame memory 62a and a second frame memory 62b for each frame to correspond to turning on and off of excitation light that passes through the laser diode 52 in synchronization with the timing controller 53; a differential circuit 64 for difference-calculating the first frame memory 62a and the second frame memory 62b so as to cancel noise components; and an integration circuit 65 that integrates (in such a manner that the same image portions are respectively accumulated) images from which noise components have been cancelled so as to improve the S/N ratio and amplify the image.

[0033]

In this two-dimensional lock-in amplifier 57, the image data respectively detected by the blinking (turning on and off) of light of the laser diode 52 is processed by the differential circuit 64. Thus, the influence of noise that is not related to turning on and off and that of 1/f noise which becomes critical by low frequency waves can significantly be eliminated. Therefore, weak image signals of a fluorescence image can be formed into fluorescence image signals exhibiting excellent S/N ratio.

[0034]

Moreover, after the image data is converted to the image data of 1/30 seconds by the integration process by this integration circuit 6 and converted into an analog image signal by D/A converter not illustrated, it is entered to a CCU 59 so as to be converted into a standard video signal and than a fluorescence image is displayed on a monitor 60.

[0035]

The other components, such as a component for controlling the temperature of the laser diode 21' to produce a double wavelength of the wavelength actually required for the excitation light and a component for setting a filter of the imaging system selectively depending on the wavelength of the

fluorescence to be observed, are the same as that of the first embodiment.

[0036]

According to the second embodiment, since an inexpensive laser diode 21' which produces laser light in a long wavelength which is a double wavelength of the excitation light can be used instead of the laser diode 21 which emits the wavelength of the excitation light directly, an apparatus can be realized by a further cost reduction.

By using the two-dimensional lock-in amplifier 57, a fluorescence image with an excellent S/N ratio can be obtained.

Fig. 3 illustrates an endoscope apparatus 71 of a third embodiment of this invention. In the second embodiment, the laser diode 21' was provided in the excitation light source 5 that was located outside of the endoscope 2. However, in this embodiment, a laser diode 21', etc. are provided inside the endoscope 72 and the necessary power to the power supply circuit 73 is supplied by a laser diode power supply circuit 73 located outside (of the endoscope).

[0037]

As shown in Fig. 4, the insertion part 74 of the endoscope 72, the light guide 15 and the image guide 32 are inserted like the first embodiment and an illumination lens 75 and an objective lens 31 are respectively arranged on the distal portion. In the endoscope 72, a laser diode 21' which is attached to the electronic cooling and heating means 24 and a SHG 52 and an illumination lens 76 are arranged on the distal portion of the insertion part 74.

[0038]

The laser diode 21' and the cooing and heating means 24 are connected to a signal line 77. This signal line 77 are inserted to a signal cable 78, which is branched off from the light guide cable 14, and respectively connected to a laser diode drive circuit 54 and the power supply circuit 25 for the electronic cooling and heating means in the laser diode power supply circuit 73. Other structures are similar to that of the second embodiment and operation and effects are almost the same as that of the second embodiment.

[0039]

In addition, an apparatus can be structured to simply irradiate the excitation light having the wavelength that is half of the wavelength of the laser diode 21' by providing a laser diode 21' and a SHG 52 in the endoscope 72 and by supplying a drive signal from the outside laser diode 21' via signal line. In this case, there are following advantages.

[0040]

If the 442nm-excitation light is required, He-Cd laser is usually used; however, it is large and expensive. Thus, if this excitation light is required, because it is inexpensive to buy the laser diode that emits a 882nm-laser light, the same function can be obtained at low cost by using a laser diode instead of a He-Cd laser. In addition, a laser diode can be provided in the distal portion of the endoscope since it can be made very small.

[0041]

Fig. 5 illustrates an endoscope apparatus 81 of a fourth embodiment of this invention.

This apparatus comprises:

a rigid endoscope 82;

a light source device for endoscope 4 to supply illumination light for normal observation to the light guide of the rigid endoscope 82;

an excitation light source device 5' to supply laser light for excitation;

a scope holder 84 which is connected to the eyepiece 83 of the rigid endoscope 82;

a TV (video) camera 85 provided at the proximal end of the scope holder 84; and

a display unit 86 for displaying endoscope images and fluorescence images.

[0042]

The light guide cable 14 is connected to the mouth piece of the light guide of the holding part 90 formed on the rear end of the insertion part 89 of the rigid endoscope 82. The light guide cable 14a which is branched off from the light guide cable 14 is connected to the light source 4 from which white illumination light is supplied.

[0043]

The laser guide cable 14a which is branched off from the laser guide cable 14 is connected to the excitation light source 5' from which excitation laser light is supplied.

The white illumination light and the excitation laser light are transmitted by the light guide in the rigid endoscope 82 and then irradiated from the end face of the distal portion.

[0044]

The reflected light from the illuminated area to be diagnosed or fluorescence emitted by excitation light is formed an image via the objective lens on the distal part and transmitted to the rear image guide such as relay optical system. The image transmitted can be observed by the eyepiece 83 if it is a visible image.

[0045]

The scope holder 84 which is connected to the eyepiece 83 has an arm part 84a which contains a rod lens and a rotatable joint part 84b for example, and it transmits the image transmitted to the eyepiece 83 to the TV (video) camera 85 that is connected to the proximal part of the scope holder 84.

[0046]

The mirror 35 retractable from an optical path by a plunger 37 is arranged on the incident optical path of this TV (video) camera 85. The light reflected by the mirror 35 is reflected by a second mirror 92 and a third mirror 93, and then projected to a CCD 96 via the fourth mirror 95 retractable by a plunger 94 from the optical path.

[0047]

In addition, when the above-mentioned mirrors 35 and 95 are in the position of being retracted from the optical path, an image is formed on a CCD 96 via a filter of the filter turret 98 rotated by a motor 97 and an image intensifier 39.

[0048]

In addition, it can be structured to arrange a filter of the filter turret 98 in the optical path of a fluorescence imaging system via the motor 97 by operating a switch, etc. In this embodiment, a normal endoscope image and a fluorescence image can be obtained by a common CCD 96. Other structures have the similar effects as that of the first embodiment.

[0049]

It may also be structured to use plural laser diodes which have different emitting wavelengths to broaden the wavelength region of excitation light and to select the laser diode according to the wavelength actually required for the excitation light.

[0050]

In this case, a SHG may be used as required. In order to increase the output of light emission, it can use plural laser diodes, each of which emits light with one wavelength. Note that the foregoing embodiments may partially be combined with each other to constitute another embodiment.

[0051]

[Effect of the Invention]

According to this invention described above, the wavelength of light irradiated can be changed by controlling the temperature of the semiconductor laser to be used for excitation light and also a filter means which guides fluorescence light from the

tissue to be examined to a fluorescence imaging system is provided so that a small fluorescence observation apparatus can be realized at low cost.

[Brief Explanation of Drawings]

[Fig. 1]

a structural diagram of a fluorescence observation apparatus of a first embodiment of this invention.

[Fig. 2]

A structural diagram of a fluorescence observation apparatus of a second embodiment of this invention.

(Fig. 31

a structural diagram of a fluorescence observation apparatus of a third embodiment of this invention.

[Fig. 4]

a diagram showing the structure of an optical system of the endoscope used in the example of the third embodiment.

[Fig. 5]

a structural diagram of a fluorescence observation apparatus of a fourth embodiment of this invention.

[Explanation of Symbols]

- 1...fluorescence observation apparatus
- 2...endoscope
- 3...TV (video) camera
- 4...light source for endoscope
- 5...excitation light source
- 6...CCU
- 7...a monitor for an endoscope image
- 8...fluorescence diagnostic apparatus
- 9...filter switching control means
- 10...observation switching means
- 11...insertion part
- 13...eyepiece
- 14...light guide cable
- 14b...laser guide cable
- 15...light guide
- 17...lamp
- 19...a light-shielding plate
- 21...laser diode
- 23...laser diode power source circuit
- 24...electronic cooling and heating means
- 25...power source circuit for electronic cooling and heating means
- 26...control means
- 35...mirror
- 36, 41...CCD
- 38...filter turret
- 39...image intensifier

- 1. Fluorescence observation apparatus
- 3. TV camera
- 8. Fluorescence diagnostic apparatus
- 9. Filter switching control means
- 10. Observation switching means
- 16. Lamp light source
- 23. LD light source
- 24. Electronic cooling/heating means
- 25. Light source for electronic cooling/heating means
- 26. Control means
- 37. Plunger
- 53. Timing controller
- 54. LD drive
- 55. Driver
- 62a. First frame memory
- 62b. Second frame memory
- 63. Multiplexer
- 64. Differential circuit
- 65. Integration circuit

TV camera

- 4. Light source apparatus for endoscope
- 7. Monitor
- 9. Filter switching control means
- 10. Observation switching means
- 25. Light source for electronic cooling/heating means
- 27. Control means
- 53. Timing controller
- 54. LD drive
- 56. Fluorescence diagnostic apparatus

- 4. Light source apparatus for endoscope
- 5'. Excitation light source apparatus
- 86. Display unit for endoscope and fluorescence images

[Fig. 4]

			*				
	• • •				i de Maria de la composición del composición de la composición de		
					ic .		(·
>	· · · · · · · · · · · · · · · · · · ·	· · · · ;		** <u>*</u>			,
	•	X.					
				*			•
				#1.25 25 (1888)		· 李章章	
			*.	* * 	•		
		Ç.	*				.(
			w 0		. *		
				₹** ±			
					* *	•	
				· · · · · · · · · · · · · · · · · · ·		41	
					•	*	
			•	÷			
				•	·		
				ý.	**		

MACHINE-ASSISTED TRANSLATION (MAT):

(19)【発行国】

(19)[ISSUING COUNTRY]

日本国特許庁(JP)

Japanese Patent Office (JP)

(12)【公報種別】

公開特許公報 (A)

Laid-open (kokai) patent application number (A)

(11)【公開番号】

(11)[UNEXAMINED PATENT NUMBER]

特開平7-155286

Provisional Publication No. 7-155286

(43)【公開日】

(43)[DATE OF FIRST PUBLICATION]

平成7年(1995)6月20 June 20, Heisei 7 (1995)

日

(54)【発明の名称】

(54)[TITLE]

蛍光観察装置

A fluorescent observing apparatus

(51)【国際特許分類第6版】

(51)[IPC]

A61B 1/00

300 D

A61B 1/00 300 D

1/06

В

1/06 B

【審査請求】

[EXAMINATION REQUEST]

未請求 UNREQUESTED

【請求項の数】 1

[NUMBER OF CLAIMS] One

【出願形態】 OL

[Application form] OL

【全頁数】 7

[NUMBER OF PAGES] Seven

(21)【出願番号】

(21)[APPLICATION NUMBER]

特願平5-304430

Unexamined Japanese patent 5-304430

(22)【出願日】

(22)[DATE OF FILING]

平成 5 年(1 9 9 3) 1 2 月 3 December 3, Heisei 5 (1993) 日

(71)【出願人】

(71)[PATENTEE/ASSIGNEE]

【識別番号】

[PATENTEE/ASSIGNEE CODE]

000000376

000000376

【氏名又は名称】

オリンパス光学工業株式会社

Olympus Optical Co., Ltd. K.K.

【住所又は居所】

[ADDRESS]

東京都渋谷区幡ヶ谷2丁目43 番2号

_ _ _

(72)【発明者】

(72)[INVENTOR]

【氏名】 吉原 雅也

Masaya Yoshimura

【住所又は居所】

[ADDRESS]

東京都渋谷区幡ヶ谷2丁目43 番2号 オリンパス光学工業株 式会社内

(72)【発明者】

(72)[INVENTOR]

【氏名】 竹端 榮

Sakae Takehashi

【住所又は居所】

[ADDRESS]

東京都渋谷区幡ヶ谷2丁目43 番2号 オリンパス光学工業株 式会社内

(72)【発明者】

(72)[INVENTOR]

【氏名】 金子 守

Mamoru Kaneko

【住所又は居所】

[ADDRESS]

東京都渋谷区幡ヶ谷2丁目43 番2号 オリンパス光学工業株 式会社内

(72)【発明者】

(72)[INVENTOR]

【氏名】 飯田 雅彦

Masahiko lida

【住所又は居所】

[ADDRESS]

東京都渋谷区幡ヶ谷2丁目43 番2号 オリンパス光学工業株 式会社内

(72)【発明者】

(72)[INVENTOR]

【氏名】 鈴木 克哉

Katsuya Suzuki

【住所又は居所】

[ADDRESS]

東京都渋谷区幡ヶ谷2丁目43 番2号 オリンパス光学工業株 式会社内

(72)【発明者】

(72)[INVENTOR]

【氏名】 植田 康弘

Yasuhiro Ueda

【住所又は居所】

[ADDRESS]

東京都渋谷区幡ヶ谷2丁目43 番2号 オリンパス光学工業株 式会社内

(74)【代理人】

(74)[PATENT ATTORNEY]

【弁理士】

【氏名又は名称】 伊藤 進

Susumu Ito

(57)【要約】

(57)[SUMMARY]

【目的】

観察装置を提供すること。

[OBJECT]

小型化及び低価格化できる蛍光 Provide the fluorescent observation apparatus which can be done a size-reduction and a lowering of cost.

【構成】

制御を行うことにより可変設定 でき、波長が異なる蛍光を励起 heating means 24. できるようにすると共に、対象 While enabling it to excite the fluorescence 組織側からの蛍光は内視鏡2の イメージガイド32を介してT Vカメラ3内の蛍光撮像系に導 かれ、光路上に配置されるフィ ルタをフィルタ切換手段9によ of an endoscope 2. り選択して、異なる波長の場合 る。

[SUMMARY OF THE INVENTION]

レーザダイオード21で発光さ The variable setup of the wavelength of the れるレーザ光の波長を電子冷 laser radiation which emits light by the laser 却・加温手段24を介して温度 diode 21 can be carried out by controlling a temperature through an electronic cooling and

> from which a wavelength differs, fluorescence from an objective structure side is guided to the fluorescent image-pick-up system in the TV camera 3 through the image guide 32

The filter arranged on the optical path is の蛍光像を観察可能にしてい chosen by filter switching means 9, and the fluorescent image in the case of a different wavelength is carried out observably.

99/11/18

4/33

(C) DERWENT

1 : Fluorescent observing apparatus, 3 : TV camera, 8 : Fluorescent-diagnosis apparatus, 9: Filter switching control means, 10: Observation switching means, 16: Lamp Power supply, 23: Laser-diode power supply circuit, 24: Electronic cooling and heating means, 25: Power supply circuit for Electronic cooling and heating means, 26: Control means, 37: Plunger

【特許請求の範囲】

[CLAIMS]

【請求項1】

装置において、

[CLAIM 1]

半導体レーザを蛍光観察のため In the fluorescent observing apparatus which の励起用光源に用いる蛍光観察 uses a semiconductor laser for the light source for excitation for a fluorescent observation, 半導体レーザの温度を制御する wavelength control means to change the ことにより、該半導体レーザか wavelength of the laser radiation by which a ら出射されるレーザ光の波長を radiation is carried out from this semiconductor

変える波長制御手段と、

化に応じて蛍光を検出するため の蛍光検出装置に入射される波 長域を選択的に変えるフィルタ 手段とを設けたことを特徴とす る蛍光観察装置。

controlling temperature laser by 前記波長制御手段による波長変 semiconductor laser, filter means to change selectively the wavelength range by which incidence is carried out to the fluorescent detector for detecting a fluorescence depending on the wavelength variation by abovementioned wavelength control means were provided.

> The fluorescent observation apparatus characterized by the above-mentioned.

【発明の詳細な説明】

[DETAILED DESCRIPTION OF INVENTION]

[0001]

[0001]

【産業上の利用分野】

度を制御して励起用光の波長を 可変設定する蛍光観察装置に関 する。

[INDUSTRIAL APPLICATION]

本発明はレーザダイオードの温 This invention relates to the fluorescent observing apparatus which controls temperature of a laser diode and carries out the variable setup of the wavelength of the light for excitation.

[0002]

[0002]

【従来の技術】

近年、生体からの自家蛍光や、 生体へ薬物を注入し、その薬物 の蛍光を2次元画像として検出 し、その蛍光像から、生体組織 の変性や癌等の疾患状態(例え ば、疾患の種類や浸潤範囲)を 診断する技術がある。

[PRIOR ART]

In recent years, a medicine is injected to the private fluorescence from the organism, and the organism, and it is detected, using the fluorescence of the medicine as a twodimensional image.

From the fluorescent image, there is a technique that illness condition (for example, the kind and permeation range of the illness),

such as the denaturation of a living tissue and cancer, is diagnosed.

[0003]

生体組織に光を照射するとその 励起光より長い波長の蛍光が発 として、例えばNADH(ニコ チンアミドアデニンヌクレオチ ド), FMN (フラビンモノヌ クレオチド),ピリジンヌクレ オチド等がある。最近では、こ のような、生体内因物質と、疾 患との相互関係が明確になって きた。また、HpD (ヘマトポ ルフィリン), Photofr in, ALA (δ-amino levulinic a c i d) は、癌への集積性があり、 質の蛍光を観察することで疾患 部位を診断できる。

[0004]

ところで、上記蛍光観察を行う 場合、励起用レーザ光を対象と 一般的に行われる。この場合、 励起用レーザ光は診断部位に応 じて、その励起に適した波長が 必要になる。

[0005]

99/11/18

[0003]

If a light is irradiated to a living tissue, the fluorescence of a wavelength longer than the 生する。生体における蛍光物質 excitation light will carry out generation.

> As the fluorescent material in the organism, for example, there are NADH (nicotinamide adenine nucleotide), FMN mononucleotide), pyridine nucleotide, etc.

> Recently. such interactive relationship between endogenous substance in the living body and the illness becomes clear.

> Moreover, HpD (hematoporphyrin), Photofrin, and ALA (delta) (-amino levulinic acid) have the integrated property to cancer.

The illness site can be diagnosed by injecting this to the living body and observing the これを生体内に注入し、前記物 fluorescence of an above-mentioned material.

[0004]

When performing an above fluorescence observation by the way, in general, irradiating なる診断部位に照射することが the laser radiation for excitation to the diagnostic site which becomes objective is performed.

> In this case, as for the laser radiation for excitation, the wavelength suitable for the excitation is needed depending on the diagnostic site.

[0005]

7/33

【発明が解決しようとする課 [PROBLEM ADDRESSED] 題】

このため、励起用レーザ装置と しては複数のレーザ、又は複数 can の波長を発振できる色素レー ザ、アレキサンドライトレーザ 等が必要になり、装置が大型化 or became expensive. したり、高価になってしまう欠 点があった。

[0006]

本発明は上述した点にかんがみ てなされたもので、小型化及び 低価格化できる蛍光観察装置を 提供することを目的とする。

[0007]

よび作用】

体レーザの温度を制御すること 射されるレーザ光の波長を変え る波長制御手段と、前記波長制 御手段による波長変化に応じて けることにより、1つの半導体 レーザで使用できる波長領域を 広げ、他のレーザ発生装置を用

For this reason, as laser apparatus for excitation, some lasers or the dye laser which oscillate some wavelengthes, alexandrite laser, etc. are needed.

There were faults that the apparatus enlarged

[0006]

This invention was made in view of the abovementioned point carried out, and aims at providing the fluorescent observing apparatus made a size-reduction and a lowering of cost.

[0007]

【課題を解決するための手段お [A SOLUTION OF THE INVENTION and an effectl

本発明では半導体レーザを蛍光 In the fluorescent observing apparatus which 観察のための励起用光源に用い uses a semiconductor laser for the light source る蛍光観察装置において、半導 for excitation for a fluorescent observation in this invention, wavelength control means to により、該半導体レーザから出 change the wavelength of the laser radiation by which a radiation is carried out from this semiconductor laser by controlling temperature of a semiconductor laser, and filter means to 蛍光を検出するための蛍光検出 change selectively the wavelength range by 装置に入射される波長域を選択 which incidence is carried out to the fluorescent 的に変えるフィルタ手段とを設 detector for detecting a fluorescence depending on the wavelength variation by abovementioned wavelength control means are provided. BY this, the wavelength area which

る。

いる場合よりも小型化でき、し can be used by one semiconductor laser is かも低価格で実現可能にしてい extended, and it can reduce in size more than the case where the other laser generator is used.

> And implementation is made possible at a low cost.

[0008]

[8000]

【実施例】

以下、図面を参照して本発明の 実施例を説明する。図1は本発 明の第1実施例の蛍光観察装置 の構成を示す。図1に示す第1 実施例の蛍光観察装置1は、内 視鏡2と、この内視鏡2に着脱 自在で装着され、通常観察及び 蛍光観察の撮像手段を備えたT Vカメラ3と、内視鏡2に通常 の観察のための照明光を供給す る内視鏡用光源装置4と、蛍光 観察のための励起光を発生する 励起用光源装置 5 と、TVカメ ラ3と接続され、通常の映像処 理を行うCCU6と、このCC U6の出力信号により内視鏡像 を表示する内視鏡像モニタ7 と、TVカメラ3と接続され、 蛍光像を生成する信号処理及び 蛍光像を表示する蛍光診断装置 8と、励起用光源装置5と接続 され、励起光に応じてTVカメ ラ3内の蛍光撮像系で使用する フィルタを切換えるフィルタ切 換え制御手段9と、通常観察及

[Example]

Hereafter, the Example of this invention is demonstrated with reference to a drawing.

Diagram 1 shows the constitution of the fluorescent observing apparatus of the 1st Example of this invention.

The fluorescent observing apparatus 1 of the 1st Example shown in Diagram 1, is composed of an endoscope 2, a TV camera 3 which is detachable to this endoscope 2, is installed, and was equipped with photographing means of a usual observation and a fluorescent observation, a light source device endoscopes 4 which supplies the illumination light for a usual observation to an endoscope 2, a light source device for excitation 5 which carries out generation of the excitation light for a fluorescent observation, and CCU6 which is connected with the TV camera 3 and performs a usual video process, an endoscope image monitor 7 which displays an endoscope image by this output signal of CCU6, a fluorescentdiagnosis apparatus 8 which displays the signal processing which is connected with the TV camera 3 and forms a fluorescent image, and a fluorescent image, a filter change control

成される。

び蛍光観察とを切換える指示を means 9 which switches the filter which 行う観察切換手段10とから構 connects with the light source device for excitation 5, and is used by the fluorescent photographing system in the TV camera 3 depending on excitation light, and observation switching means 10 to perform the indication which switches a usual observation and a usual fluorescent observation.

[0009]

上記内視鏡2は細長の挿入部1 1と、この挿入部11の後端に 設けられた操作部12と、この 操作部12の後端に設けられた 接眼部13と、この操作部12 から延出されたライトガイドケ ーブル14とからなり、挿入部 11及びライトガイドケーブル 14内には照明光及び励起光を 伝送するライトガイド15が挿 通されている。

[0010]

このライトガイド15はライト ガイドケーブル14部分で2本 に分岐され、一方のライトガイ ドケーブル14aの端部は内視 鏡用光源装置4と接続される。 そして、内視鏡用光源装置4内 のランプ電源回路16からの電 源で発光するランプ17の白色 光がコンデンサレンズ18を介 してライトガイド15の端面に 供給される。なお、通常観察の 場合には遮光板19は図1のよ

[0009]

The above endoscope 2 consists of the long and slender insertion part 11, the operating part 12 provided to the rear end of this insertion part 11, the eye-piece part 13 provided to the rear end of this operating part 12, and the light-guide cable 14 extended from this operating part 12. The light guide 15 which transmits an illumination light and excitation light in the insertion part 11 and the light-guide cable 14 is passed through.

[0010]

This light guide 15 is branched to two in lightguide cable 14 part.

The edge part of one light-guide cable 14a is connected with the light source device for endoscopes 4.

And, the white light of the lamp 17 which emits light with the power supply from the lamp power supply circuit 16 in the light source device for an endoscope 4 is supplied to the end face of a light guide 15 through a condenser lens 18.

In addition, in a usual observation, the うに退避した状態に保持され shading board 19 is kept at the condition of

る。

[0011]

ライトガイドケーブル14にお ける分岐された他方はレーザガ イドケーブル14bとなり、そ の端部は励起用光源装置 5 に接 device for excitation 5. 続される、そして、励起用光源 装置5内のレーザダイオード2 1からのレーザ光がコンデンサ レンズ22で集光されて照射さ れる。このレーザダイオード2 23からの電源で駆動される。

[0012]

また、このレーザダイオード2 1には電子冷却・加温手段24 が接合等して取り付けてあり、 この電子冷却・加温手段24は 25からの電源で駆動される。 レーザダイオード電源回路23 と電子冷却・加温手段用電源回 路25は制御手段26と接続さ れ、この制御手段26によって 制御される。

[0013]

波長選択指示手段と接続され、

having evacuated as shown in Diagram 1.

[0011]

The other branched side in the light-guide cable 14 serves as laser guide cable 14b.

The edge part is connected to the light source

And, the laser radiation from the laser diode 21 in the light source device for excitation 5 is condensed and irradiated by the condenser lens 22.

The driving of this laser diode 21 is carried 1はレーザダイオード電源回路 out with the power supply from the laser-diode power supply circuit 23.

[0012]

Moreover, electronic cooling and heating means 24 makes the synizesis etc. to this laser diode 21, and it has attached to it.

The driving of this electronic cooling and 電子冷却·加温手段用電源回路 heating means 24 is carried out with the power supply from the power supply circuit for electronic cooling and heating means 25.

> The laser-diode power supply circuit 23 and the power supply circuit for electronic cooling and heating means 25 are connected with control means 26.

It controls by this control means 26.

[0013]

この制御手段26は図示しない This control means 26 is connected with wavelength-selection indication means not to この波長選択指示手段を操作し illustrate. If this wavelength-selection indication て励起光の波長の選択指示を行 means is operated and the choice indication of うと、制御手段は選択指示され the wavelength of excitation light is performed, た波長でレーザダイオード21 control means will control temperature of a

を発光させるように電子冷却・ 加温手段24を介してレーザダ イオード21の温度を制御す る。

[0014]

制御手段26は例えば図示しな いROM等に記録されたレーザ ダイオード21の発光波長と温 度との関係情報から波長情報を アドレス信号として対応する目 標温度を読み出し、一方実際の レーザダイオード21の温度を 検出する図示しない温度センサ の出力を基準にして、目標温度 に設定する場合に加熱すべきか 冷却すべきかをまず判断し、そ の判断の後、電子冷却・加温手 わせて目標温度と一致するよう にフィードバック制御ループで レーザダイオード21を目標温 度に設定維持する制御を行う。

[0015]

また、制御手段26はフィルタ 切換え制御手段9とも接続さ の波長選択指示と共に、その波 のフィルタ切換え制御手段9を wavelength

laser diode 21 at the wavelength that it chose and indicated, through electronic cooling and heating means 24 so that a laser diode 21 may emits light.

[0014]

Control means 26 reads the target temperature which corresponds wavelength information as an address signal for example, from information on relationship between the light-emission wavelength of the laser diode 21 and the temperature which were recorded by ROM which is not illustrated.

On the one hand, it is based on the output of the temperature sensor which is not illustrated but detects temperature of the actual laser diode 21.

First, it decides whether it should heat or cool 段24の冷却又は加温動作を行 when setting it as target temperature. The control which sets and keeps the laser diode 21 at target temperature by the feedback control loop so that cooling or heating operation of electronic cooling and heating means 24 may be performed and it may be in agreement with target temperature is performed after the judgment.

[0015]

Moreover, as for control means 26, filter change control means 9 is connected. When the れ、波長選択指示手段の励起光 fluorescent wavelength which emits light by the excitation light of the wavelength with the 長の励起光により発光する蛍光 wavelength-selection indication of the excitation の波長が変化する場合には蛍光 light of wavelength-selection indication means の波長の選択指示を行うと、こ varies, it is set as that which permeates the of an above fluorescence

上記蛍光の波長を選択的に透過 するものに設定されるようにし ている(後述するモータ42に よりフィルタターレット38を 回転し、光路上に配置されるフ ィルタが上記蛍光の波長を選択 的に透過するものに設定され る)。

[0016]

また、この波長選択指示手段の 選択或は指示する手段を設け、 この手段から蛍光剤の選択を行 うことにより、制御手段26は その蛍光剤で一般的に使用され る蛍光観察の波長の励起光を効 率的に励起させるレーザ光の波 長をROM等から読み出し、か 度も求め、その目標温度となる ようにレーザダイオード21の 温度制御を行うと共に、蛍光観 察の波長を選択的に透過するフ ィルタを蛍光撮像系の光路上に い。

[0017]

介して蛍光撮像系の光路上には selectively on the optical path of a fluorescent photographing system, through this filter change control means 9, when the choice indication of a fluorescent wavelength is performed. (Rotating the filter turret 38 by the motor 42 mentioned later. The filter arranged on the optical path is set as that which permeates the wavelength of an above fluorescence selectively.)

[0016]

Moreover, means to choose or indicate the kind 代わりに、蛍光観察の種類等を of fluorescent observation etc. is provided instead of this wavelength-selection indication means.

By choosing a fluorescence agent from this means, control means 26 reads out the wavelength of the laser radiation which excites efficiently the excitation light of the wavelength of the fluorescent observation used in general つその読み出した波長から(R by the fluorescence agent from ROM etc.

OM等により)対応する目標温 And it also obtains the target temperature which corresponds (by ROM etc.), from wavelength of readout.

While performing the temperature control of a laser diode 21 so that it may become the target temperature, it may control filter switching 配置するようにフィルタ切換手 means 9 so that the filter which permeates the 段9を制御するようにしても良 wavelength of a fluorescent observation selectively, may be arranged on the optical path of a fluorescent photographing system.

[0017]

このように第1実施例では、レ In this way, in the 1st Example, by providing ーザダイオード21から励起光 the wavelength control system which controls として発光するレーザ光の波長 the wavelength of the laser radiation which

をその温度を制御する波長制御機構を設けることにより、励起 光の波長を可変設定できるよう にすると共に、励起光として設 定される波長に応じて撮像手段 側での蛍光観察のためのフィル タ手段のフィルタを選択的に可 変設定できるようにしているこ とが特徴となっている。

[0018]

上記ライトガイドケーブル14 内及び挿入部11内のライトガイド15で伝送された照明光又は励起光は挿入部11の先端部側の端面から出射され、診断部位側がらの反射光又は励起光は先端部の観察窓に取り付けられた対物レンズ31によってその焦点面に配置されたイメージガイド32の先端面に像を結ぶ。

[0019]

そして、イメージガイド32によって接眼部13側の端面に伝送され、白色照明光の場合には接眼レンズ33を介して肉眼で観察できる。この接眼部13にTVカメラ3が装着された場合には、結像レンズ34、光路上のミラー35を介してイメージガイド32で伝送された像が損像素子としての例えばCCD36に結像される。

emits light as excitation light from a laser diode 21 the temperature, the variable setup of the filter of filter means for the fluorescent observation in the side of photographing means selectively depending on the wavelength set up as excitation light, while it makes the variable setup of the wavelength of excitation light possible. The above-mentioned has been the feature.

[0018]

The radiation of the illumination light or the excitation light transmitted by the light guide 15 in the above light-guide cable 14 and the insertion part 11 is carried out from the end face by the side of the point of an insertion part 11.

The diagnostic site etc. is illuminated.

The reflected light or the excitation light from a diagnostic site side is an image the bind to the end surface of the image guide 32 arranged on the focal plane with the objective lens 31 attached to the observation port of a point.

[0019]

And, the image guide 32 transmits to the end face by the side of the eye-piece part 13, and, in the case of a white illumination light, it can observe through an eyepiece 33 with the naked eye.

When the TV camera 3 is installed in this eye-piece part 13, the image transmitted by the image guide 32 through the image-formation lens 34 and the mirror 35 on an optical path is formed on for example, CCD36 as photographing element.

[0020]

なお、撮像素子としてはCCDに限定されるものでなく、SIT(静電誘導トランジスタ)、CMD(Charge Modulation Device)、MOSタイプの撮像素子等を用いてもよい。

[0021]

上記ミラー35が例えばプランジャ37で点線で示すようにはプランに 路上から退避された場合にはレンズ34、この 活像レンズ34、この置された場合を な34の光路上に配置されて の光路上に配置の インタターンット38の インテンシファイを がして C C D 41にす光 の光路となり の光路とないまする ないる。とないまする とないないまする 大変に の光路とないまする を形成する。

[0022]

上記フィルタターレット38は、円板の周方向に、それぞれ透過域が異なる複数のフィルタが取り付けられており、フィルタターレット駆動手段としてのモータ42により、光路上に配置される1つのフィルタを選択設定できる。

[0020]

In addition, as an photographing element, it is not limited to CCD, but photographing elements such as SIT (static induction transistor), CMD (Charge Modulation Device), and MOS type etc. may be used.

[0021]

When the above mirror 35 is evacuated, for example, from an optical path with a plunger 37 as shown by a dotted line, It image-forms on CCD41 through the image-formation lens 34, the filter of the filter turret 38 which is arranged on the optical path of this image-formation lens 34, and the image * intensifier 39 which amplifies a feeble light.

介してCCD41に結像され The optical path shown by the dotted line of a る。図1の点線で示す光路は蛍 diagram 1 turns into the optical path of a 光撮像系の光路となり、一方、 fluorescent photographing system.

実線で示す光路上に配置された On the one hand, the image-formation lens 結像レンズ34、ミラー35、 34 which is shown by a continuous line and CCD36が通常観察の撮像系 which was arranged on the optical path, the を形成する。 mirror 35, and CCD36 usually form photographing system of the observation.

[0022]

As for the above filter turret 38, some filters whose permeation region respectively differs is attached in the circumferential direction of a disc.

タターレット駆動手段としての By the motor 42 as filter turret driving means, モータ 4 2 により、光路上に配 the choice setup of the one filter arranged on 置される 1 つのフィルタを選択 the optical path can be carried out.

[0023]

TVカメラ3内のミラー35と 内視鏡用光源装置4内の遮光板 19は観察切換手段10の操作 によって連動して駆動される。 ける通常観察スイッチを操作す ると、ミラー35と遮光板19 は図1の実線で示す状態に設定 され、白色照明光で照明された 状態での被写体像がCCD36 に結像され、このCCD36で 光電変換された通常の内視鏡像 がCCU6で信号処理されてモ ニタに表示可能な映像信号に変 換され、内視鏡像モニタ7で表 示される。つまり、通常の内視 鏡像が内視鏡像モニタ7で観察 できる。

[0024]

一方、観察切換手段10におけ る蛍光観察スイッチを操作する と、ミラー35と遮光板19は 図1の点線で示す状態に設定さ れ、励起光で照明された状態で の蛍光による像がフィルタター レット38のフィルタ、イメー ジ・インテンシファイア39を 介してCCD41に結像され、 このCCD41で光電変換され た蛍光像が蛍光診断装置8内の

[0023]

A mirror 35 in the TV camera 3 and a shading board 19 in the light source device for endoscopes 4 interlock by operation of observation switching means 10 and are driven. つまり、観察切換手段10にお In other words, operation of the usual observation switch in observation switching means 10 sets a mirror 35 and the shading board 19 to the condition which shows as the continuous line of Diagram 1. The photographed-object image in the condition of having illuminated with the white illumination light is image-formed on CCD36. The signal processing of the usual endoscope image by which the photoelectric conversion was carried out on this CCD36 is carried out on CCU6. The conversion is carried out to a video signal displayable to a monitor.

> It displays on the endoscope image monitor 7.

> In other words, a usual endoscope image can observe with the endoscope image monitor 7.

[0024]

On the one hand, operation of the fluorescent observation switch in observation switching means 10 sets a mirror 35 and the shading board 19 into the condition which shows by the dotted line of Diagram 1. The image by the fluorescence in the condition of having illuminated by excitation light is formed on CCD41 through the filter of the filter turret 38, and the image * intensifier 39.

The signal processing of the fluorescent image by which the photoelectric conversion was

99/11/18

16/33

(C) DERWENT

信号処理回路で信号処理され、 この蛍光診断装置8内のモニタ に表示される。

carried out on this CCD41 is carried out in the signal-processing circuit in the fluorescentdiagnosis apparatus 8.

The monitor in this fluorescent-diagnosis apparatus 8 displays.

[0025]

この第1実施例によれば、レー According ザダイオード21の温度を制御 ているので、1つのレーザダイ オード21により、広い波長範 the one laser diode 21. 囲をカバーできる。

[0026]

この場合、レーザダイオード2 1は非常に小型にできるし、電 子冷却・加温手段24も小型に でき、しかもレーザダイオード can also be made small. 21の熱容量は小さくできるの で小型の電子冷却・加温手段2 4により非常に広い範囲で任意 の温度に設定できることにな り、発光する波長も広範囲に可 means 24. 変できることになる。従って、 色素レーザ等の大型のレーザ装 varied broadly. 置を必要とすることなく、適用 範囲の広い、かつ小型の励起光 such as a dye laser, are not needed. 発生用レーザ装置を実現でき る。

[0027]

[0025]

to this Example, 1st since temperature of a laser diode 21 is controlled して、その発光するレーザ光の and it can carry out the variable setup of the 波長を可変設定できるようにし wavelength of the laser radiation which emits light, the large wavelength range can cover by

[0026]

In this case, a laser diode 21 is made very small.

And, electronic cooling and heating means 24

And since the thermal capacity of a laser diode 21 is made small, it can set an arbitrary temperature in an extremely wide range, by a small-sized electronic cooling and heating

The wavelength which emits light can also be

Therefore, large-sized laser apparatuses,

A widely applicable and small laser apparatus for excitation-light generation is realizable.

[0027]

さらに、蛍光撮像系の機能を備 Furthermore, the filter turret 38 to which some えたTVカメラ3には、複数の filters were attached is provided for the TV フィルタが取り付けられたフィ camera 3 equipped with function of a

ルタターレット38が設けてあ fluorescent photographing system. り、フィルタ切換選択手段9を ルタを選択設定できるようにし てあるので、実際に発光する蛍 光の波長を選択的に透過するフ ィルタを光路上に設定して蛍光 観察を行うことができる。また、 この実施例では通常観察と蛍光 観察とを簡単な切換え操作で行 usual うことができる。

[0028]

するレーザガイドケーブル14 bはライトガイドケーブル14 aと途中で合流しているが、レ ーザ光を伝送するガイドケーブ ルを照明光を伝送するライトガ イド15と分離して設けるよう にしても良い。また、内視鏡の チャンネルを利用してそのチャ ンネル内にレーザガイドを挿通 しても良い。

[0029]

図2は本発明の第2実施例の蛍 光観察装置51を示す。この第 2 実施例では励起用光源装置 5′内のレーザダイオード2 1′の前に2次高調波発生素子 (セカンド・ハーモニック・ジ ェネレータ・デバイス;以下S HGと略記する) 52が配置さ れ、レーザダイオード21′の レーザ光の2次高調波、つまり

Since the choice setup of the filter arranged 介して光路上に配置されるフィ on the optical path through filter switching choice means 9 is carried out, the filter which permeates selectively the fluorescent wavelength at which light actually is emitted can be set up on the optical path, and a fluorescent observation can be performed.

> Moreover, this Example can perform the observation and fluorescent а observation by simple change operation.

[0028]

なお、図1ではレーザ光を伝送 In addition, laser guide cable 14b which transmits a laser radiation in Diagram 1 is converged in the middle of light-guide cable 14a.

> However, the guide cable which transmits a laser radiation may be separated from the light guide 15 which transmits an illumination light, and may be provided.

> Moreover, a laser guide may be passed through into the channel using the channel of an endoscope.

[0029]

Diagram 2 shows the fluorescent observing apparatus 51 of the second Example of this invention.

In this second Example, secondary higherharmonics generation element (it is almost described as below second * harmonic * generator * device; SHG) 52 is arranged in front of laser-diode 21' in light-source-device for excitation 5'.

It is made to output the laser radiation of the

(C) DERWENT

ザ光を出力するようにしてい る。このレーザダイオード2 1′は赤外域等の長波長のレー ザ光を発光するレーザダイオー ドであり、その波長を1/2に したレーザ光が励起用光の波長 になる。

[0030]

期Pは1/数100S)に明滅 発光するようにしている。

[0031]

また、第1実施例におけるTV カメラ3内のイメージ・インテ ンシファイア39を介すること なく、蛍光像がCCD41に結 像される。このTVカメラ3内 のCCD36、41はそれぞれ ドライバ55、56により駆動 される。この場合、CCD36 は例えば1フレームの読み出し 周期が1/30Sで駆動され、 一方CCD41はパルス周期P の2倍で駆動され、励起光パル スが出力された時と、されない

その波長の1/2の波長のレー wavelength of secondary higher harmonicss of the laser radiation of laser-diode 21', i.e., 1/2 of the wavelength.

> This laser-diode 21' is a laser diode which emits light in the laser radiation of long wavelengths, such as an infrared region.

> The laser radiation which made wavelength 1/2 becomes the wavelength of the light for excitation.

[0030]

上記レーザダイオード21′は It is made to carry out the blinking light emission タイミングコントローラ53か of above laser-diode 21' by the laser-diode らの制御パルスによって、パル driving circuit 54 which outputs a pulse driving ス的な駆動電流を出力するレー current according to the control pulse from the ザダイオード駆動回路54によ timing controller 53 at a pulse target (for ってパルス的(例えばパルス周 example, pulse cycle P 1/number 100 S).

[0031]

Moreover, a fluorescent image is image-formed by CCD41, without via the image * intensifier 39 in the TV camera 3 in the 1st Example.

The CCD 36 and 41 in this TV camera 3 is respectively driven by drivers 55 and 56. In this case, as for CCD36, the reading cycle of

1 frame is driven, for example, by 1/30S.

On the one hand, the driving of CCD41 is carried out by the double of pulse cycle P. The photographing signal of CCD41 when an excitation-light pulse is output and when it not be output.

Furthermore the fluorescent-diagnosis 時のCCD41の撮像信号が出 apparatus 57 in this Example consists of a two-力されることになる。さらにこ dimensional lock-in amp 58, CCU59, and a

の実施例における蛍光診断装置 monitor 60. 57は、2次元ロックインアン プ58と、CCU59と、モニ タ60とから構成される。

[0032]

1フレームメモリ62aと第2 フレームメモリ62bに分ける マルチプレクサ63と、第1フ レームメモリ62aと第2フレ ームメモリ62bの画像データ の差分を求め、ノイズ分をキャ ンセルする差分回路64と、ノ イズ分がキャンセルされた画像 データを累算的に積分(対応す る同じ画素部分を繰り返し加算 する) することにより増幅する 積分回路65とから成る。

[0033]

この2次元ロックインアンプ5 7において、レーザダイオード 52の明と滅でそれぞれ撮像さ れた画像データを差分回路64 で差分処理することにより、こ を大幅に低減でき、また低い周 64. 波数で顕著になる1/fノイズ

[0032]

2次元ロックインアンプ57は The two-dimensional lock-in amp 57 consists of 前記CCD41の出力信号をデ A/D converter 61 which carries out conversion ジタルデータに変換するA/D of the above-mentioned output signal of CCD41 変換器 6 1 と、前記タイミング to digital data, the multiplexer 63 which コントローラ53と同期し、レ synchronizes with the above-mentioned timing ーザダイオード52の明と滅 controller 53 and divides each image data into (点滅) に合わせ、それぞれの 1st frame-memory 62a and second frame-画像データをフレームごとに第 memory 62b for every frameaccording to blink and non-blink of a laser diode 52, the differential circuit 64 which asks for the difference of the image data of 1st framememory 62a and second frame-memory 62b, and cancels a part for a noise, and the integration circuit 65 which amplifies in terms of an accumulation by integrating the image data which the noise was cancelled, (corresponding pixel part repeated and added).

[0033]

In this two-dimensional lock-in amp 57, the noise component irrelevant to this blink and non-blink can be sharply reduced. differential-processing of the image data respectively photographed by blink and non-の明と滅に無関係なノイズ成分 blink of a laser diode 52 in the differential circuit

Moreover influence of 1/f noise which

99/11/18

20/33

(C) DERWENT

回路 6 5 で積分処理することに be reduced. より、非常にS/Nの高い蛍光 画像データを生成できる。

の影響を低減でき、さらに積分 becomes remarkable on a low frequency can

Furthermore by integral processing by the integration circuit 65, the fluorescent image data with very high S/N are generable.

[0034]

なお、この積分回路65による 積分処理により、1/30Sの 画像データにされ、図示しない 号に変換された後、CCU59 に入力され、このCCU59で it is input into CCU59. 標準的な映像信号に変換され、 モニタ60で蛍光画像が表示さ CCU59. れる。

[0034]

In addition, it makes the image data of 1/30S by the integral process by this integration circuit

D/A変換器でアナログ画像信 After carrying out conversion to an analog image signal with D / A converter not illustrated,

It is converted to a standard video signal by his

A fluorescent image is displayed with a monitor 60.

[0035]

その他、レーザダイオード2 したり、撮像系のフィルタを観 diode 21'. 察する蛍光の波長に応じて選択 同様である。

[0035]

In addition, it controls to become 1′の温度を実際に望む励起光 wavelength of the double of the excitation light の 2 倍の波長になるように制御 which actually desire the temperature of laser-

Moreover, the constitution which carries out a 設定する構成等は第1実施例と choice setup depending on the fluorescent wavelength which observes the filter of photographing system is the same as that of the 1st Example.

[0036]

励起光の波長で発光するレーザ ダイオード21の代わりに、2 倍の波長となる長い波長のレー

[0036]

この第2実施例によれば、直接 According to this second Example, instead of the laser diode 21 which emits light on the wavelength of direct excitation light, reasonable laser-diode 21' which produces the ザ光を発生する低価格のレーザ laser radiation of a long wavelength which ダイオード21′を用いること becomes the wavelength of a double can be

ができるので、さらに低コスト で実現できる。また、2次元ロ ックインアンプ57を用いるこ とにより、非常にS/Nの良い 蛍光画像が得られる。図3は本 発明の第3実施例の内視鏡装置 視鏡2の外部の励起用光源装置 5内にレーザダイオード21' 等を設けたが、この実施例では 内視鏡72内部にレーザダイオ ーザダオード電源回路73から ている。

[0037]

図4にも示すようにこの内視鏡 72の挿入部74内には第1実 施例と同様にライトガイド15 とイメージガイド32とが挿通 され、先端部には照明レンズ7 5と対物レンズ31とがそれぞ れ配置されている。この内視鏡 72ではさらに、挿入部74の 先端部に、電子冷却・加温手段 24に取り付けられたレーザダ イオード21'と、SHG52 と照明レンズ76とが配置され ている。

[0038]

冷却・加温手段24は信号線7 7と接続され、この信号線77 used. Therefore, it is furthermore realizable by being inexpensive.

Moreover, the fluorescent image with very sufficient S/N is obtained by using the twodimensional lock-in amp 57.

Diagram 3 shows the endoscope apparatus 71を示す。第2実施例では内 71 of the 3rd Example of this invention.

> In the second Example, laser-diode 21' etc. was provided in the light source device for excitation 5 of the outside of an endoscope 2.

However, in this Example, laser-diode 21' etc. ード21′等を設け、外部のレ is provided to endoscope 72 inside.

It is made to supply a required power supply 必要な電源を供給するようにし from the external laser-diode power supply circuit 73.

[0037]

As shown also in Diagram 4, in the insertion part 74 of this endoscope 72, a light guide 15 and the image guide 32 are passed through like the 1st Example. The illumination lens 75 and the objective lens 31 are respectively arranged by the point.

In this endoscope 72, laser-diode 21' attached in the electronic cooling and heating means 24, and SHG52 and the illumination lens 76 are further arranged at the point of an insertion part 74.

[0038]

レーザダイオード21' と電子 Laser-diode 21' and the electronic cooling and heating means 24 are connected with a signal line 77.

はライトガイドケーブル14か This signal line 77 is passed through in the

ら分岐された信号ケーブル78 内を挿通され、レーザダオード 電源回路73のレーザダオード 手段用電源回路25にそれぞれ 接続される。その他は第2実施 例と同様の構成であり、その作 用効果も第2実施例とほぼ同様 second Example. である。

[0039]

イオード21′及びSHG52 を収納し、信号線を介してレー ザダイオード21'に対し、外 部のレーザダイオード21'か line. ら駆動信号を供給するようにし 1′の1/2の波長の励起光を laser-diode 21′. 出射できるようにしても良い。 この場合にも以下の利点があ advantages. る。

[0040]

必要になる場合、通常はHeー が、大型であるし、高価でもあ expensive. る。この励起光が必要な場合、 882nmの波長のレーザ光を 出すレーザダイオードは低価格 で求めることができるので、H e-Cdレーザの代わりに用い ると低コストで同じ機能を実現 inexpensive. できる。また、レーザダイード

inside of the signal cable 78 branched from the light-guide cable 14.

It respectively connects with the laser-diode 駆動回路54と電子冷却・加温 driving circuit 54 of the laser-diode power supply circuit 73 and the power supply circuit for the electronic cooling and heating means 25.

The others are the similar constitution as the

The effect is the same as that of the second Example almost.

[0039]

なお、内視鏡72内にレーザダ In addition, laser-diode 21' and SHG52 are accommodated in an endoscope 72. It is made to supply a driving signal from external laserdiode 21' to laser-diode 21' through a signal

It is only made to carry out the radiation of the て、単にレーザダイオード2 excitation light of the wavelength of 1/2 of

Also in this case there are the following

[0040]

例えば、442nmの励起光が For example, although when 442 nm excitation light are needed, a He-Cd laser is usually used C d レーザを用いる場合が多い in many cases, it is large-sized and also

> When these excitation light are required, since it can obtain the laser diode which emits the laser radiation whose wavelength is 882 nm at a low cost, if it uses instead of a He-Cd laser, it can materialize the same function by being

Moreover, since a laser diode is made very

視鏡の先端部内に収納すること of an endoscope. もできる。

は非常に小型にできるので、内 small, it can also be accommodated in the end

[0041]

図5は本発明の第4実施例の内 視鏡装置81を示す。この実施 例は硬性内視鏡82と、この硬 性内視鏡82のライトガイドに 通常観察のための照明光を供給 する内視鏡用光源装置4と、励 起用レーザ光を供給する励起用 光源装置5′と、硬性内視鏡8 2の接眼部83に接続されるス コープホルダ84と、このスコ ープホルダ84の基端に設けら れたTVカメラ85と、このT Vカメラ85に対する信号処理 を行うと共に、内視鏡像と蛍光 像とを表示する内視鏡像&蛍光 像表示装置86とから構成され る。

[0042]

硬性内視鏡82の挿入部89の 後端に形成された把持部90の ライトガイドロ金にはライトガ イドケーブル14が接続され、 途中で分岐された一方のライト 用光源装置4に接続され、この 光源装置4から白色照明光が供 light source device 4. 給される。

[0043]

[0041]

Diagram 5 shows the endoscope apparatus 81 of the 4th Example of this invention.

This Example is constituted of the hard endoscope 82, the light source device for endoscopes 4 which supplies the illumination light for a usual observation to the light guide of this hard endoscope 82, the light-source-device 5' for excitation which supplies the laser radiation for excitation, the scope holder 84 connected to the eye-piece part 83 of the hard endoscope 82, the TV camera 85 provided to the base end of this scope holder 84, and the endoscope image & fluorescence image display device 86 which displays an endoscope image and a fluorescent image while performing the signal processing opposing to this TV camera 85.

[0042]

The light-guide cable 14 is connected to the light-guide mouthpiece of the holding part 90 formed on the rear end of the insertion part 89 of the hard endoscope 82. One light-guide cable 14a branched on the way is connected to ガイドケーブル 1 4 a は内視鏡 the light source device for endoscopes 4.

A white illumination light is supplied from this

[0043]

このライトガイドケーブル14 Branched laser guide cable 14b in this light-

99/11/18 24/33 (C) DERWENT

における分岐されたレーザガイ ドケーブル14bは励起用光源 device 5' for excitation. 装置5′に接続され、この光源 給する。白色照明光又は励起用 レーザ光は硬性内視鏡82内の ライトガイドにより伝送され、 先端部側の端面から出射され る。

[0044]

た光或は励起光により発光する 蛍光は先端部の対物レンズを介 のイメージガイドで後方に伝送 ることができる。

[0045]

この接眼部83に接続されるス コープホルダ84は例えばロッ ドレンズが内蔵されたアーム部 と84aと、回動自在の関節部 84bとを有し、接眼部83に 伝送された像をその基端に接続 したTVカメラ85に伝送す connected to the base end. る。

[0046]

このTVカメラ85の入射光路 上にはプランジャ37により退 避可能なミラー35が配置さ た光は第2のミラー92、第3

guide cable 14 is connected to light-source-

This light-source-device 5' supplies the laser

A white illumination light or the laser radiation for excitation is transmitted by the light guide in the hard endoscope 82.

A radiation is carried out from the end face of the end side.

[0044]

照明された診断部位で反射され The fluorescence which emits light by the light or the excitation light reflected by the illuminated diagnostic site is image-formed して結像され、リレー光学系等 through the objective lens of a point.

It transmits back by image guides, such as a され、伝送された像は可視像の relay optical system. In the case of a visual 場合には接眼部83から観察す image, the transmitted image can be observed from the eye-piece part 83.

[0045]

The scope holder 84 connected to this eyepiece part 83 has for example, the arm part and 84as by which the rod lens was incorporated, and rotatable joint part 84b.

It transmits the image transmitted to the eyepiece part 83 to the TV camera 85 which

[0046]

The mirror 35 which can be evacuated by a plunger 37 is arranged on the incident-light path of this TV camera 85.

れ、このミラー35で反射され The light reflected by this mirror 35 is reflected by the 2nd mirror 92 and the third mirror 93.

のミラー93で反射され、プラ 避可能な第4ミラー95を経て CCD96に結像される。

It image-forms on CCD96 through the 4th ンジャ94により光路上から退 mirror 95 which can be evacuated from on an optical path with a plunger 94.

[0047]

また、上記ミラー35及び95 が退避された場合にはモータ9 7で回転されるフィルタターレ ジ・インテンシファイヤ39を 介してCCD96に結像され る。

[0048]

なお、フィルタターレット98 のフィルタをスイッチ操作等 で、モータ97を介して蛍光撮 像系の光路上に配置できるよう にしても良い。この実施例は共 通のCCD96を用いて通常の 内視鏡像と蛍光像とを得られ image using common CCD96. る。その他は第1実施例とほぼ 同様の効果を有する。

[0049]

なお、励起光の波長領域を広げ るために、発光波長が異なる複 数のレーザダイオードを用いる ようにして、実際に必要となる 励起光の波長に応じて使用する うにしても良い。

[0050]

[0047]

Moreover, when the above mirrors 35 and 95 are evacuated, it image-forms on CCD96 through the filter of the filter turret 98 rotated by ット98のフィルタ、イメー the motor 97, and the image * intensifier 39.

[0048]

In addition, it may arrange the filter of the filter turret 98 on the optical path of a fluorescent photographing system through a motor 97 by switch operation etc.

This Example is obtained in a usual endoscope image and a usual fluorescent

The others have the almost similar effect as the 1st Example.

[0049]

In addition, in order to extend the wavelength area of excitation light, some laser diodes whose light-emission wavelength differs is used.

It may be made to choose the laser diode レーザダイオードを選択するよ used depending on the wavelength of excitation light which is actually needed.

[0050]

この場合、SHGも必要に応じ In this case, it may be made to use SHG

Moreover, it may be made to use the laser

diode which emits light on an identical

wavelength, in order to raise a light-emission

In addition, it may combine the above-

て使用するようにしても良い。 また、発光出力を上げるために、 同一の波長で発光するレーザダ イオードを複数用いるようにし ても良い。なお、上述した実施 output multiply. 例等を部分的等で組み合わせて も良い。

[0051]

mentioned Example in partial etc.

[0051]

【発明の効果】

する波長を可変できるようにす 光を蛍光撮像系に選択的に導く フィルタ手段とを設けているの 置を実現できる。

【図面の簡単な説明】

【図1】

装置の構成を示す構成図。

【図2】

装置の構成を示す構成図。

【図3】

[EFFECT OF THE INVENTION]

depending on the need.

以上説明したように本発明によ As explained above, according to this invention, れば、励起光に使用される半導 While enabling it to control temperature of the 体レーザの温度を制御して発光 semiconductor laser used for excitation light, and to vary the wavelength which emits light, ると共に、対象組織側からの蛍 filter means to guide the fluorescence from an objective structure side to a fluorescent photographing system selectively is provided. で、小型で低価格の蛍光観察装 Therefore, a small and reasonable fluorescent observing apparatus is realizable.

[BRIEF EXPLANATION OF DRAWINGS]

[FIGURE 1]

本発明の第1実施例の蛍光観察 The block diagram showing the constitution of the fluorescent observing apparatus of the 1st Example of this invention.

[FIGURE 2]

本発明の第2実施例の蛍光観察 The block diagram showing the constitution of the fluorescent observing apparatus of the second Example of this invention.

[FIGURE 3]

装置の構成を示す構成図。

本発明の第3実施例の蛍光観察 The block diagram showing the constitution of the fluorescent observing apparatus of the 3rd Example of this invention.

【図4】

第3実施例に用いられる内視鏡 の光学系の構造を示す説明図。

[FIGURE 4]

Explanatory drawing showing the structure of the optical system of an endoscope used for a 3rd Example.

【図5】

本発明の第4実施例の蛍光観察 装置の構成を示す構成図。

[FIGURE 5]

The block diagram showing the constitution of the fluorescent observing apparatus of the 4th Example of this invention.

【符号の説明】

- 1…蛍光観察装置
- 2…内視鏡
- 3…TVカメラ
- .4…内視鏡用光源装置
- 5…励起用光源装置
- 6 ··· C C U
- 7…内視鏡像モニタ
- 8…蛍光診断装置
- 9…フィルタ切換え制御手段
- 10…観察切換手段
- 11…挿入部
- 13…接眼部
- 14…ライトガイドケーブル
- 14b…レーザガイドケーブル
- 15…ライトガイド
- 17…ランプ
- 19…遮光板
- 21…レーザダイオード
- 23…レーザダイオード電源回 23... laser-diode power supply circuit

24…電子冷却・加温手段

[EXPLANATION OF DRAWING]

- 1... fluorescent observing apparatus
- 2... endoscope
- 3... TV camera
- 4... light source device for endoscopes
- 5... Light source device for excitation
- 6...CCU
- 7... endoscope image monitor
- 8... fluorescent-diagnosis apparatus
- 9... filter switching control means
- 10... observation switching means
- 11... insertion part
- 13... eye-piece part
- 14... light-guide cable
- 14b... laser guide cable
- 15... light guide
- 17... lamp
- 19... shading board
- 21... laser diode
- 24... electronic cooling and heating means
- 25... Power supply circuit for electronic cooling

25…電子冷却・加温手段用電 and heating means

源回路

26... control means

26…制御手段

35... mirror

35…ミラー

36, 41...CCD

36, 41 ··· CCD

38... filter turret

38…フィルタターレット

39... image * intensifier

39…イメージ・インテンシフ

39…1メーシ・1ンデンシ

アイア

【図1】

[FIGURE 1]

1 : Fluorescent observing apparatus, 3 : TV camera, 8 : Fluorescent-diagnosis apparatus, 9 : Filter switching control means, 10 : Observation switching means, 16 : Lamp Power supply, 23 : Laser-diode power supply circuit, 24 : Electronic cooling and heating means, 25 : Power supply circuit for Electronic cooling and heating means, 26 : Control means, 37 : Plunger

【図2】

[FIGURE 2]

9: Filter switching control means, 10: Observation switching means, 25: Power supply circuit for Electronic cooling and heating means, 26: Control means, 37: Plunger, 53: Timing controller, 54: LD driving, 55: Driver, 56: Driver, 62a: The first frame memory, 62b: The second frame memory, 63: Multiplexer, 64: Differential circuit, 65: Integral curcuit

【図4】

[FIGURE 4]

【図3】

[FIGURE 3]

3 : TV camera, 4 : Light source device for endoscopes, 7 : monitor 9 : Filter switching control means, 10 : Observation switching means, 25 : Power supply circuit for Electronic cooling and heating means, 26 : Control means, 53 : Timing controller, 54 : LD driving, 55 : Driver, 56 : Driver, 57 : Fluorescence observing endoscope apparatus,

【図5】

[FIGURE 5]

4 : Light source device for endoscopes, 5' : Light source device for excitation, 86 : endoscope image & fluorescence image display device

DERWENT TERMS AND CONDITIONS

Derwent shall not in any circumstances be liable or responsible for the completeness or accuracy of any Derwent translation and will not be liable for any direct, indirect, consequential or economic loss or loss of profit resulting directly or indirectly from the use of any translation by any customer.

Derwent Information Ltd. is part of The Thomson Corporation

Please visit our home page:

"WWW.DERWENT.CO.UK" (English)

"WWW.DERWENT.CO.JP" (Japanese)

THIS PAGE BLANK (USPTO)