Definition 12 (Validity of one-state assertions). Given an oracle $\mathcal{O} \subseteq Module \times ClassId$, the validity of an assertion A, is defined through the partial judgments: $\models \subseteq Module \times state \times Oracle \times Assertion$ $\not\models \subseteq Module \times state \times Oracle \times Assertion$ using the notations $M, \sigma \models A$ and $M, \sigma \not\models A$: • $M, \sigma \models_{\mathcal{O}} e$, $if \lfloor e \rfloor_{M,\sigma} = \mathbf{true}$, $M, \sigma \not\models_{\mathcal{O}} e$, $if \lfloor e \rfloor_{M,\sigma} = \mathbf{false}$, undefined, otherwise. • $M, \sigma \models_{\sigma} e_1 \geq e_2$, if $\lfloor e_1 \rfloor_{M,\sigma} \geq \lfloor e_2 \rfloor_{M,\sigma}$, $M, \sigma \not\models e, |e_1|_{M,\sigma} < |e_2|_{M,\sigma},$ undefined, if $|e_1|_{M,\sigma}$ or $|e_1|_{M,\sigma}$ is undefined, or not a number. • $M, \sigma \models_{\mathcal{Q}} Q(e_0, e_1, \dots e_n)$, if

*
$$M, \sigma \models_{\sigma} e$$
, $if \lfloor e \rfloor_{M,\sigma} = \mathbf{true}$, $M, \sigma \models_{\sigma} e$, $if \lfloor e \rfloor_{M,\sigma} = \mathbf{false}$, $M, \sigma \models_{\sigma} e$, $if \lfloor e \rfloor_{M,\sigma} = \mathbf{false}$, $f \vdash_{\sigma} e$

 $M, \sigma \models_{\sigma} A[e_0/this, e_1/p_1, ...e_n/p_n]$

 $M, \sigma \not\models A[e_0/this, e_1/p_1, ...e_n/p_n]$ if $\mathcal{P}(M, |e_0|_{\sigma}\downarrow_1, Q) = \mathbf{predicate} \ Q(p_1...p_n) \{A\},$

 $M, \sigma \not\models_{\mathcal{Q}} Q(e_0, e_1, \dots e_n), \quad if$