# CPEN 400Q / EECE 571Q Lecture 10 The quantum Fourier transform

Thursday 10 February 2022

#### Announcements

- Assignment 2 due Monday 14 Feb 23:59
- Project group / topic selection due Tuesday
- PennyLane v0.21 released this week: we will switch Tuesday, *after* Assignment 2 is due

#### Last time

We saw an overview of the quantum compilation process.



#### Last time

We wrote and applied quantum transforms in PennyLane to manipulate circuits.

```
@qml.qfunc_transform
def x_to_hzh(tape):
    for op in tape.operations:
        if op.name == ''PauliX''
            qml.Hadamard(wires=op.wires)
            qml.PauliZ(wires=op.wires)
            qml.Hadamard(wires=op.wires)
        else:
            qml.apply(op)
    for m im tape.measurements:
        qml.apply(op)
```

# Quiz 4 sample solution

Synthesize U, then fuse all single-qubit gates.



```
@qml.qnode(dev)
@qml.transforms.single_qubit_fusion()
@qml.transforms.unitary_to_rot
def qnode():
    qml.Hadamard(wires=0)
    qml.Hadamard(wires=1)
    qml.QubitUnitary(two_qubit_unitary, wires=[0, 1])
    qml.Hadamard(wires=0)
    qml.Hadamard(wires=1)
    return qml.state()
```

# Learning outcomes

- Express floating-point values in fractional binary representation
- Describe the behaviour of the quantum Fourier transform
- Implement the quantum Fourier transform in PennyLane

Today there will be lots of MATH.

#### Motivation

Over the next few lectures, we are going to build up to an implementation of **Shor's algorithm**, which can factor numbers efficiently on a quantum computer.

Shor's algorithm performs a period finding step which requries a subroutine called **quantum phase estimation** (QPE).

QPE requires a subroutine called the quantum Fourier transform.

Often, we express functions in a *polynomial basis* using different powers of *x*:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots$$

If our function has some special properties, this is not the only choice of basis.

If a function is  $2\pi$ -periodic<sup>1</sup>, we can represent it as a **Fourier series** using sin and cos as basis functions:

$$f(x) = \frac{1}{2} a_0 + a_1 \cos(x) + a_2 \cos(2x) + \cdots + b_1 \sin(x) + b_2 \sin(2x) + \cdots - \frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$

How are sin and cos basis functions??

<sup>&</sup>lt;sup>1</sup>More formally, it must satisfy *Dirichlet conditions*: single-valued, finite number of optima, finite number of discontinuities,  $\int_{-\pi}^{\pi} |f(x)| dx < \infty$ .

sin and cos are orthogonal w.r.t. an "inner product" computed by integration over a period.

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \sin(mx) \cos(nx) = 0$$

There are similar relationships between two sin or two cos:

|                                                       | $m \neq n$ | $m=n\neq 0$ | m=n=0 |
|-------------------------------------------------------|------------|-------------|-------|
| $\frac{1}{2\pi} \int_{-\pi}^{\pi} \sin mx \sin nx dx$ | 0          | 0.5         | 0     |
| $\frac{1}{2\pi} \int_{-\pi}^{\pi} \cos mx \cos nx dx$ | 0          | 0.5         | 1     |

This fact can be used to compute the values of individual coefficients...

Example: compute a<sub>3</sub>

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))$$
+ ...  $a_3 \cos 3x + b_3 \sin 3x$ .

Multiply both sides by the relevant basis function:

$$f(x) \cos(3x) = \frac{1}{2} \cos(3x) + \sum_{n=1}^{\infty} (a_n \cos hx \cos 3x + b_n \sin (nx) \cos(3x))$$
A3
Then integrate...

11 / 45

$$\frac{1}{\pi} \int_{\pi}^{\pi} \left( x \right) \cos \left( 3x \right) dx$$

$$= \frac{1}{2\pi} \int_{\pi}^{\pi} \frac{1}{2} a_0 \cos \left( 3x \right) dx$$

$$= \frac{1}{2\pi} \int_{\pi}^{\pi} \frac{1}{2} a_1 \cos \left( 3x \right) dx$$

$$= \frac{1}{2\pi} \int_{\pi}^{\pi} a_3 \cos^2 3x dx$$

$$= \frac{1}{2} a_3$$

$$\frac{1}{\pi} \int_{\pi}^{\pi} \left( x \right) \cos 3x dx$$

$$= \frac{1}{2} a_3$$

#### Discrete Fourier series

We can also represent sin and cos as complex exponentials:

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i} \cos x = \frac{e^{ix} + e^{-ix}}{2}$$

Then, we can re-write our function as a Fourier series in an even more compact way.

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

$$= \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(a_n \left(e^{\frac{ix^n}{2}} + e^{-\frac{ix^n}{2}}\right) + b_n \left(e^{\frac{ix^n}{2}} - e^{\frac{ix^n}{2}}\right)\right)$$

$$= \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(\frac{a_n}{2} + \frac{b_n}{2i}\right)e^{\frac{ix^n}{2}} + \left(\frac{a_n}{2} - \frac{b_n}{2i}\right)e^{-\frac{ix^n}{2}}$$

$$= \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(\frac{a_n}{2} + \frac{b_n}{2i}\right)e^{\frac{ix^n}{2}}$$

$$= \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(a_n \left(\frac{ix^n}{2} + \frac{-ix^n}{2}\right) + b_n \left(\frac{e^{ix^n}}{2} + \frac{-ix^n}{2}\right)\right)$$

$$= -i$$

$$= \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(\frac{a_n}{2} + \frac{b_n}{2i}\right)e^{ix_n} + \left(\frac{a_n}{2} - \frac{b_n}{2i}\right)e^{-ix_n}$$

$$= -i$$

= Co + Si Cne + Cne ~ Siche

$$= -i = \frac{1}{2} a_0 + \sum_{n=1}^{\infty} \left( \frac{a_n}{2} + \frac{b_n}{2i} \right) e^{ix_n} + \left( \frac{a_n}{2} - \frac{b_n}{2i} \right) e^{-ix_n}$$

$$= \frac{1}{2} a_0 + \frac{1}{2} \sum_{n=1}^{\infty} \left( a_n - b_n i \right) e^{ix_n} + \left( a_n + b_n i \right) e^{-ix_n}$$

Writing

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$$

expresses f(x) in the basis of complex exponential functions.

Clearer to see how these are orthogonal... check value of

$$\frac{1}{2\pi}\int_{-\pi}^{\pi} e^{ihx} e^{-imx} dx$$

Case 1: 
$$m = n$$

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{inx} e^{-inx} dx = 1$$

Case 2: 
$$m \neq n$$

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-m)x} dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\cos(n-m)x}{\cos(n-m)x} dx + \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\sin(n-m)x}{dx} dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-m)x} dx + \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\cos(n-m)x}{dx} dx$$

# Converting to the Fourier basis

We can write functions in two different bases...

In our study of quantum computing so far:

- we are working in finite-sized spaces
- we've talked about how we can perform basis rotations to convert between orthonormal bases

Can we do the same here?

#### The discrete Fourier transform

The discrete Fourier transform (DFT) does the job:

$$DFT = \frac{1}{\sqrt{N}} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \bar{\omega} & \bar{\omega}^2 & \cdots & \bar{\omega}^{N-1}\\ 1 & \bar{\omega}^2 & \bar{\omega}^4 & \cdots & \bar{\omega}^{2(N-1)}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \bar{\omega}^{N-1} & \bar{\omega}^{2(N-1)} & \cdots & \bar{\omega}^{(N-1)(N-1)} \end{pmatrix}$$

where  $\bar{\omega} = e^{-2\pi i/N}$ 

Note: sometimes there is no prefactor, or a prefactor of 1/N; depends how inverse is defined.

#### The discrete Fourier transform

The DFT (and the fast Fourier transform which implements it efficiently) are standard tools in digital signal processing to convert between time and frequency domain.

Given a signal x[n] in the time domain, the DFT computes

$$X[k] = \sum_{n=0}^{N-1} e^{-\frac{2\pi i k n}{N}} \times [n] = \sum_{n=0}^{N-1} \overline{w}^{nk} \times [n]$$

#### The discrete Fourier transform

The inverse DFT computes

$$x[n] = \sum_{k=0}^{n-1} e^{nk} x[k] = \sum_{k=0}^{n-1} w^{nk} x[k]$$

where  $\omega = e^{2\pi i/N} = \bar{\omega}^{-1}$ 

The DFT matrix is invertible; its matrix is also unitary (possibly up to a prefactor). Seems like a good candidate for a quantum computer...

The quantum Fourier transform (QFT) is the quantum analog of the **inverse DFT**.

Let  $|x\rangle$  be an *n*-qubit computational basis state,  $N=2^n$ .

The QFT sends 
$$(x) \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} W^{\times k} (k)$$

We are sending individual computational basis states to another basis, which is made up of linear combinations of computational basis states with complex exponential coefficients.

The QFT is a unitary operation with the following action on the basis states:

Check that this works...

As a matrix, it looks a lot like the DFT:

$$QFT = \frac{1}{\sqrt{N}} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega & \omega^2 & \cdots & \omega^{N-1}\\ 1 & \omega^2 & \omega^4 & \cdots & \omega^{2(N-1)}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)(N-1)} \end{pmatrix}$$

But... can we implement this unitary efficiently? How do we *synthesize* a circuit for it? It looks like it would be very messy.

Let's start with some special cases... suppose n = 1 (N = 2).

Here, 
$$e^{2\pi i/2} = e^{i\pi} = -1$$
, so 
$$QFT = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & \omega \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

Look familiar? 
$$\sqrt{QF7} = -[H]$$

Suppose  $n = 2 \ (N = 4)$ .

Here  $\omega = i$ , and  $\omega^2 = -1$ ,  $\omega^4 = 1$ . So

$$QFT = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -i & -1 & i \end{pmatrix}$$
 SWAP

Not so familiar.

But, if we apply a SWAP operation, familiar things show up...

$$QFT = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & i \\ 1 & -i \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -1 & i \end{bmatrix}$$

$$HS - HS$$

The top blocks are H, and the bottom are HS. Can show that the following circuit implements this QFT:



We can do the same for n=3 (N=8) but now things are getting nasty... but you can show that the structure of the circuit that implements it is



Here,  $R_2 = S$  and  $R_3 = T$ .

Image credit: Xanadu Quantum Codebook node F.3

This is what the circuit looks like in general:



Let's understand why this works.

Image credit: Xanadu Quantum Codebook node F.3

Consider the expression  $|x\rangle \to \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega^{xk} |k\rangle$ 

Here x and k are represented as integers.

They are *n*-qubit computational basis states so they also have binary equivalents  $|x\rangle = |x_1 \cdots x_n\rangle$ ,  $|k\rangle = |k_1 \cdots k_n\rangle$ :

$$x = 2^{n-1}x_1 + 2^{n-2}x_2 + \dots + 2x_{n-1} + x_n$$

and similarly for k.

Recall that  $\omega = e^{2\pi i/N}$ .

We are working with

$$\omega^{xk} = e^{2\pi i x(k/N)}$$

with  $N = 2^n$ .

We can write a fraction  $k/2^n$  in a 'decimal version' of binary:

$$\frac{k}{N} = \frac{k}{2^{n}} = 0 \cdot k_{1} k_{2} \cdot k_{n}$$

$$= \frac{k_{1}}{2} + \frac{k_{2}}{2^{2}} + \dots + \frac{k_{n}}{2^{n}}$$

$$= 2^{-1} k_{1} + 2^{-2} k_{2} + \dots + 2^{-n} k_{n}$$

# Binary notation for decimal numbers

Example: let k = 0.11010.

The numerical value of this is:

$$0.11010 = \frac{1}{2!} + \frac{1}{2^2!} + \frac{0}{2^3} + \frac{1}{2^4!} + \frac{0}{2^5}$$

$$= \frac{1}{2} + \frac{1}{4} + \frac{1}{16}$$

$$= 0.5 + 0.25 + 0.0625$$

$$= 0.8125$$

This seems like a very convoluted way to write decimal numbers; this is going to become **very** hideous but I promise it is going somewhere.

Using the fractional decimal expression for k/N, we will work through the specification of the Fourier transform and see how we can reshuffle and *factor* the output state to get something that will make clear a circuit. Brace yourselves.

$$|x\rangle \rightarrow \frac{1}{N} \sum_{k=0}^{N-1} \omega^{xk} |k\rangle$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} 2\pi i x |k\rangle$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} 2\pi i x \sum_{k=1}^{n} k_{k} \cdot 2^{-k} |k\rangle$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} 2\pi i x \sum_{k=1}^{n} k_{k} \cdot 2^{-k} |k\rangle$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} \sum_{k=0}^{n} k_{n} \cdot 2^{-k} |k\rangle$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} \sum_{k=0}^{n} k_{n} \cdot 2^{-k} |k\rangle$$

(keeping the last equation from the previous slide)

$$\frac{1}{\sqrt{N}} \sum_{k_1=0}^{1} \frac{1}{k_2=0} \sum_{k_n=0}^{1} \frac{2\pi i x}{k_1} \sum_{k_1=0}^{1} \frac{1}{k_2} \sum_{k_2=0}^{1} \frac{1}{k_1} \sum_{k_1=0}^{1} \frac{2\pi i x}{k_2} \sum_{k_2=0}^{1} \frac{2\pi i x}{k_2} \sum_{k_2=0}^{1} \frac{2\pi i x}{k_2} \sum_{k_2=0}^{1} \frac{2\pi i x}{k_2} \sum_{k_2=0}^{1} \frac{2\pi i x}{k_2} \sum_{k_1=0}^{1} \frac{2\pi i x}{k_2} \sum_{k_2=0}^{1} \frac$$

(keeping the last equation from the previous slide)

$$= \frac{1}{\sqrt{N}} \sum_{k_1 = 0}^{n} \sum_{k_n = 0}^{n} \sum_{\ell=1}^{n} \sum_{k_n = 0}^{n} e^{2\pi i \frac{k_\ell}{2^n} x} |k_\ell\rangle$$

$$= \frac{1}{\sqrt{N}} \sum_{\ell=1}^{n} \sum_{\ell=1}^{n} \sum_{\ell=1}^{n} e^{2\pi i \frac{k_\ell}{2^n}} |k_\ell\rangle$$

$$= (10) + e^{2\pi i x}$$

We stopped here due to technical difficulties and will pick up here next time.

34 / 45

So...

$$|x\rangle \rightarrow \frac{\left(|0\rangle + e^{2\pi i 0.x_n}|1\rangle\right)\left(|0\rangle + e^{2\pi i 0.x_{n-1}x_n}|1\rangle\right)\cdots\left(|0\rangle + e^{2\pi i 0.x_1\cdots x_n}|1\rangle\right)}{\sqrt{N}}$$

Believe it or not, this form reveals to us how we can design a circuit that creates this state!

#### Starting with the state

$$|x\rangle = |x_1 \cdots x_n\rangle,$$

apply a Hadamard to qubit 1:

$$\frac{1}{\sqrt{2}}\left(|0\rangle+e^{2\pi i0.x_1}|1\rangle\right)|x_2\cdots x_n\rangle$$

$$|x_1\rangle$$
 — $H$ —

$$x_3\rangle$$
 ———

$$|x_{n-1}\rangle$$
 ———

$$|x_n\rangle$$
 ———

$$\frac{1}{\sqrt{2}}\left(|0\rangle + e^{2\pi i 0.x_1}|1\rangle\right)|x_2\cdots x_n\rangle$$

If  $x_1 = 0$ ,  $e^0 = 1$  and we get the  $|+\rangle$  state.

If 
$$x_1 = 1$$
,  $e^{2\pi i(1/2)} = e^{\pi i} = -1$  and we get the  $|-\rangle$  state.

$$|x_{1}\rangle - H - |x_{2}\rangle - |x_{3}\rangle - |x_{3}\rangle - |x_{n-1}\rangle - |x_{n}\rangle - |x_{n}\rangle$$

We are trying to make a state that looks like this:

$$|x\rangle \rightarrow \frac{\left(|0\rangle + e^{2\pi i 0.x_n}|1\rangle\right)\left(|0\rangle + e^{2\pi i 0.x_{n-1}x_n}|1\rangle\right)\cdots\left(|0\rangle + e^{2\pi i 0.x_1\cdots x_n}|1\rangle\right)}{\sqrt{N}}$$

Every qubit has a different *phase* on the  $|1\rangle$  state. We are going to need some way of creating this.

We define the gate:

$$R_k = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^k} \end{pmatrix}$$

Now let's apply a controlled  $R_2$  gate from qubit 2 to qubit 1

$$R_2 = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^2} \end{pmatrix}$$

$$\begin{array}{c|c} |x_1\rangle & -H & R_2 \\ |x_2\rangle & - & \\ |x_3\rangle & \\ \vdots & \\ |x_{n-1}\rangle & - & \\ |x_n\rangle & - & \end{array}$$

The first qubit picks up a phase:

$$\frac{1}{\sqrt{2}}\left(|0\rangle + e^{2\pi i 0.x_1}|1\rangle\right)|x_2\cdots x_n\rangle \rightarrow \frac{1}{\sqrt{2}}\left(|0\rangle + e^{2\pi i 0.x_1x_2}|1\rangle\right)|x_2\cdots x_n\rangle$$

Now let's apply a controlled  $R_3$  gate from qubit 3 to qubit 1

$$R_3 = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^3} \end{pmatrix}$$



The first qubit picks up another phase:

$$\frac{1}{\sqrt{2}}\left(|0\rangle + e^{2\pi i 0.x_1 x_2}|1\rangle\right)|x_2 \cdots x_n\rangle \rightarrow \frac{1}{\sqrt{2}}\left(|0\rangle + e^{2\pi i 0.x_1 x_2 x_3}|1\rangle\right)|x_2 \cdots x_n\rangle$$

We can apply a controlled  $R_4$  from the fourth qubit, etc. up to the n-th qubit to get

$$\frac{1}{\sqrt{2}}\left(|0\rangle + e^{2\pi i 0.x_1 x_2 \cdots x_n}|1\rangle\right)|x_2 \cdots x_n\rangle$$



Next, ignore the first qubit and do the same thing with the second qubit: apply H, and then controlled rotations from every qubit from 3 to n to get

$$\frac{1}{\sqrt{2}^2} \left( |0\rangle + e^{2\pi i 0.x_1 x_2 \cdots x_n} |1\rangle \right) \left( |0\rangle + e^{2\pi i 0.x_2 \cdots x_n} |1\rangle \right) |x_3 \cdots x_n\rangle$$



If we do this for all qubits, we eventually get that big ugly state from earlier:

$$|x\rangle \rightarrow \frac{\left(|0\rangle + e^{2\pi i 0.x_n}|1\rangle\right) \left(|0\rangle + e^{2\pi i 0.x_{n-1}x_n}|1\rangle\right) \cdots \left(|0\rangle + e^{2\pi i 0.x_1 \cdots x_n}|1\rangle\right)}{\sqrt{N}}$$



(though note that the order of the qubits is backwards - this is easily fixed with some SWAP gates)

So the QFT can be implemented using:

- n Hadamard gates
- n(n-1)/2 controlled rotations
- | n/2 | SWAP gates if you care about the order



The number of gates is *polynomial in n*, so this can be implemented efficiently on a quantum computer! Let's try it...

#### Next time

#### Content:

Quantum phase estimation

#### Action items:

- 1. Finish Assignment 2 (due Monday 23:59)
- 2. E-mail me your project team and paper selection by Tuesday

#### Recommended reading:

- Codebook nodes F.1-F.3
- Nielsen & Chuang 5.1