

Práctica 0

Incertidumbre, unidades y vectores

Preguntas

Responda las siguientes preguntas, explicando con claridad sus razonamientos.

- 1) ¿Qué fenómenos físicos podrían servir para definir un estándar de tiempo?.
- 2) ¿Cuáles son las unidades de volumen?
- 3) Explique las diferencias entre exactitud y precisión.
- 4) ¿Puede encontrar dos vectores de distinta longitud y que su suma sea nula? ¿Qué restricciones de longitud son necesarias para que tres vectores tengan resultante cero?
- 5) Sean **A** y **B** dos vectores distintos de cero. Explique cuándo se anula el producto escalar y el producto vectorial entre ellos.
- 6) Sea **A** un vector cualquiera distinto de cero ¿Por qué **A**/A es un vector unitario y qué dirección tiene?
- De al menos tres ejemplos de magnitudes vectoriales y otros tres de magnitudes escalares.

Problemas

- 1) Conversiones de unidades: Realice las siguientes conversiones de unidades según se indique.
 - a) 0.473 L a pulgadas cúbicas sabiendo que 1 L = 1000 cm³ y 1 in = 2.54 cm.
 - b) La densidad del plomo es 11.3 g/cm³, exprese en kg/m³.
 - c) $327 \text{ in}^3 \text{ a L y m}^3$.
 - d) La velocidad de la luz en el vacío es $c = 300 \times 10^3$ km/s, expresar esta cantidad en m/s, km/h y millas por minutos (mi/min).
- Calcule el tiempo en nanosegundos (ns) que tarda en viajar la luz 1 km en el vacío.
- 3) Calcular las siguientes operaciones expresando el resultado en notación científica y redondeando al número correcto de cifras significativas.
 - a) $(2.00 \times 10^1) \times (6.10 \times 10^1)$;
 - b) $3.141592 \times (4 \times 10^5)$;
 - c) $(2.32 \times 10^3) / (1.16 \times 10^8);$
 - d) $(5.14 \times 10^3) + (2.78 \times 10^2)$;
 - e) 27.153 + 138.2 11.74.
- 4) Un trozo rectangular de aluminio mide (5.10 ± 0.01) cm de longitud y (1.90 ± 0.01) cm de ancho.
 - a) Calcule el área y la incertidumbre del área.
 - b) Verifique que la incertidumbre fraccionaria del área sea igual a la suma de las incertidumbres fraccionarias de la longitud y el ancho.

- 5) Para atravesar un descampado hay que caminar 120 m hacia el este y 60 m hacia el sur. Realice un diagrama del recorrido. Si se pudiera atravesar el descampado en línea recta, encuentre cuál es la distancia recorrida y la orientación.
- 6) Para un conjunto de vectores del plano: $\mathbf{A} = (1 \text{ cm } \mathbf{i}, 2 \text{ cm } \mathbf{j}), \mathbf{B} = (-2 \text{ cm } \mathbf{i}, 0 \text{ cm } \mathbf{j}), \mathbf{C} = (3.5 \text{ cm } \mathbf{i}, -1 \text{ cm } \mathbf{j}), \mathbf{D} = (-1 \text{ cm } \mathbf{i}, -1.5 \text{ cm } \mathbf{j})$:
 - a) Representarlos gráficamente.
 - b) Mediante métodos gráficos encontrar el vector suma. Representarlo gráficamente.
 - c) Encontrar la magnitud, dirección y sentido para cada uno de ellos, como así también para el vector suma.

- 7) Sean los vectores como se esquematizan en la figura. Las magnitudes de cada uno son: A = 10 cm, B = 0.25 cm, C = 8 cm y D = 9 cm. Los ángulos: α = 60°, β = 45°y γ = 20°.
 - a) Encontrar las componentes en las direcciones 'x' e 'y' de cada uno de ellos.
 - b) Encontrar las componentes, la magnitud y la dirección respecto del eje x para el vector suma.
- 8) Para los vectores $\mathbf{A} = (1 \text{ cm}, 2 \text{ cm}, -2 \text{ cm}), \mathbf{B} = (-2 \text{ cm}, 0 \text{ cm}, 1 \text{ cm}), \mathbf{C} = (3.5 \text{ cm}, -1 \text{ cm}, 1.5 \text{ cm})$ realizar el producto escalar de cada uno de ellos con los versores $\mathbf{i}, \mathbf{j}, \mathbf{k}$. Explique el significado de realizar estas operaciones.
- 9) Encuentre el producto vectorial $\mathbf{A} \times \mathbf{B} = \mathbf{C}$, con $\mathbf{A} = (-1 \text{ cm}, 2 \text{ cm}, -2 \text{ cm})$ y $\mathbf{B} = (-2 \text{ cm}, -0.5 \text{ cm}, 1 \text{ cm})$. Verifique que $\mathbf{B} \times \mathbf{A} = -\mathbf{C}$

- 10) Para la suma **A**+ **B** = **C**, el vector **A** tiene una magnitud de 12 m y forma un ángulo de 40° respecto del semieje 'x' positivo en sentido antihorario, y el vector **C** tiene una magnitud de 15 m y forma un ángulo de 20° respecto del semieje 'x' negativo, también medido en sentido antihorario.
 - a) ¿cuál es la magnitud y el ángulo, relativo al semieje 'x' positivo del vector ${\bf B}$?
- 11) Los vectores **A** y **B** tienen por coordenadas (en unidades arbitrarias), $A_x = 3.2$, $A_y = 1.6$, $B_x = 0.5$ y $B_y = 4.5$.
 - a) Encuentre el ángulo entre las direcciones de ambos vectores.
 - b) Encuentre las coordenadas de un vector \mathbf{C} que sea perpendicular a \mathbf{A} , esté en el plano 'xy' y tenga una magnitud de 5.