

Fourth Industrial Summer School

Module 4: ML

Supervised Learning: Regression

Outlines

- ✓ How good our model is?
- ✓ Evaluation Metrics

Coefficient of Determination

- We need to know the total variability present in the data!
- The measure of total variation in the Y is (SST)

$$SST = \sum (y_i - \bar{y})^2$$

where \bar{y} is the sample mean of Y variable

Coefficient of Determination

■ Since SSE is the optimal sum of squared error of any linear model! Hence SSE is always smaller than SST

$$SSE = \sum (y_i - \hat{y}_i)^2$$
where \hat{y}

$$= (\beta_0 + \beta_1 x_1)$$

- SSE is the total variation that is not described by the model line!
- How much of the variation in y described or explained by the variation by the model line?
- The answer to this question is the called the **r-squared score** or **coefficient of determination**

Evaluation: How well our model is?

- Does the red line fit the data better than the mean (green line)?

 If so, how much better
- R-squared is the **proportion of** variation explained by the model.
- R-squared can be used to understand the power of the predictions

$$R^2 = 1 - \frac{\text{SSE}}{\text{SST}}$$

where $\frac{SSE}{SST}$ is the proportion of the variation that is not described by the model!

Evaluation: How well our model is?

Let's suppose that SST = 50, and SSE = 30

$$R^2 = 1 - \frac{30}{50} = 0.4 = 40\%$$

- The model explained 40% variation of the total variation in y
- ✓ In what case R^2 will approach 1.0 (or 100%)?
- ✓ In what case R^2 will approach 0.0 (0%)?
- What is a good value for \mathbb{R}^2 ?

Is that a "good" R-squared value?

- It's tough to answer this question
- A good R-squared value depends widely on the problem domain

■ It is useful as a tool for comparing different models

Different datasets r-squared

$$R^2 = 85\%$$

☐ Usually, the larger the better, but not always it depends on the problem data

What is a good value for \mathbb{R}^2

- The higher R-squared, the better the model
- The threshold for a good R-squared value depends on the domain!
- In other words, the nature of the spread in the dependent variable may vary according to the data.
- R-squared is a fraction by which the variation of the errors is less than the variation of the dependent variable.
- But it is useful as a tool for **comparing different models**

Sklearn: r2_score

■ We can access the r-squared metric library in Sklearn as follows:

from sklearn.metrics import r2_score

- It ranges (negative, 1]
 - R-squared with a value of 1 means the model explains all the variation of the dependent variable.
 - A value of 0 means a bad model.
 - negative values means the model is arbitrary worse than the simple mean
 model!

R-bar-squared (adjusted)

- As we said, the greater the value of R-squared the btter!
- R-squared could be misleading! Why?
- Because it tends to increase by adding more independent variables (features)
- For multi-feature regression, adding more features and noticing an increase in R-squared is not always a better model than the fewer feature one.
- This take us to compute and look at the adjusted R-squared

R-bar-squared (adjusted)

Adjusted R-Squared has the form of:

$$\bar{R}^2 = 1 - \frac{(1 - R^2) \times (n - 1)}{n - K - 1}$$

- where K is number of independent variables, n is the number of samples
- \bar{R}^2 deals with additional indpendent variables
- It penalize the value of the R-squared if we add junk new independent variables!

Note: Adjusted R-squared is not implemented in sklearn. But you can develop a function to compute it (if you need to)

12

Performance Evaluation metrics

- There are well known metrics to evaluate the modeling predictions.
 - Mean Square Error(MSE)/Root Mean Square Error(RMSE)

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Mean Absolute Error(MAE)

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

Root Mean Squared Error

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

Robustness of MAE, MSE and RMSE

No Noise			
ID 🔻	Error 🔻	ABS ERROR 🔽	SQ Error 🔻
1	2	2	4
2	2	2	4
3	2	2	4
4	2	2	4
5	2	2	4
6	2	2	4
7	2	2	4
8	2	2	4
9	2	2	4
10	2	2	4

1/2 samples with Noise			
ID 🔻	Error -	ABS ER ▼	SQ Erro ▼
1	3	3	9
2	3	3	9
3	3	3	9
4	3	3	9
5	3	3	9
6	1	1	1
7	1	1	1
8	1	1	1
9	1	1	1
10	1	1	1

skewed data			
ID 🔻	Error 🔻	ABS ER	SQ Erro
1	0	0	0
2	0	0	0
3	0	0	0
4	0	0	0
5	0	0	0
6	0	0	0
7	0	0	0
8	0	0	0
9	0	0	0
10	20	20	400

MAE	RMSE	MSE
2.00	2.00	4.00

MAE	RMSE	MSE
2.00	2.24	5.00

MAE	RMSE	MSE
2.00	6.32	40.00

Same error magnitude, MAE is stable

RMSE increases by increasing error magnitude

MSE is affected much with outliers, still MAE stable, while RMSE shows an increase

Sklearn: Error score

■ We can compute the **MSE**, **MAE** using sklearn library as:

```
1 # other evaluation metrics
2 from sklearn.metrics import mean_squared_error, mean_absolute_error
3 print(mean_absolute_error(Y_test, Y_predicted))
4 print(mean_squared_error(Y_test, Y_predicted))
```

■ The **RMSE** can be simply computed by taking the sqrt of the MSE!

Evaluation: Residual Plots

- A residual plot is typically used to find problems with the regression data.
- As some datasets could not be good for regression, including Heteroscedastic data (see figure).
- In heteroscedastic data, our error assumption is violated, the error increases by increasing the value of the independent variable

Residual Plots

■ Even though **R-squared** is high, we may need to plot the residual plot to figure out if we have a problem

Example

• We generated 4 features with one informative, as shown in the plots below

Results

- trained model achieved $R^2 \approx 1$,
- The model parameters showed 3 features are insignificant
- model parameter: [**6.36487032e+01**, -2.08506557e-15 1.51179609e-14, -5.13041457e-15]
- The residual plot shows good results

Residual plot analysis

The analysis could help us identify outliers, and maybe it is time to remove them to improve the model

- Also, it could indicate a need to perform transformation to the data to address skewness
 - Several transformations can be tried out such as log-transform, square root, or cube root etc.

Summary

- R- Squared tells how well the developed model explains the variations in the response variable. In other words, whether it captures the trend of the data.
- The error-based performance metrics can tell how well a regression model can predict the value of a response variable. Or, what is the expected cost of our predictions using the developed model.
- The residual plots analysis can help us understand issues within our model and data that are showing if we have non-constant variance, or outliers that might not be reflected in a single number.

Exercises (6-7)

- How good our regression model is? (Result analysis)
- Build and evaluate regression results using Boston Housing dataset