VE320 – Summer 2024

Introduction to Semiconductor Devices

Instructor: Yaping Dan (但亚平)
yaping.dan@sjtu.edu.cn

Chapter 11 Metal-Oxide-Semiconductor Field Effect Transistors: More Concepts

$$\phi_{ms}^2 = \frac{W_m - W_s}{g} = \frac{4.28 - 4.97}{g} = \frac{4.28 - 4.97}{g} = \frac{4.28 - 4.97}{g} = \frac{60}{1.12} = 0.16$$

Consider an aluminum gate–silicon dioxide–p-type silicon MOS structure with $t_{\rm ox} = 450$ Å. The silicon doping is $N_a = 2 \times 10^{16}$ cm⁻³ and the flat-band voltage is $V_{FB} = -1.0$ V. Determine the fixed oxide charge Q'_{ss} .

$$V_{\overline{1}} = 2 \phi_{fp} + \frac{1}{G_{0x}} + \frac{1}{G_{0x}}$$

$$E_{F}-E_{V}=kT\ln\frac{N_{V}}{P_{6}}=0.0259\times\ln\frac{1.04\times10^{19}}{2\times10^{16}}=0.160$$

$$V_{FB} = -1V = \phi_{ms} - \frac{Q_{SS}}{Cox} = -6.69 - \frac{Q_{SS}}{Cox}$$

$$\frac{20x}{60x^{2}} = \frac{3.9 \times 8.85 \times 10^{-14}}{450 \times 10^{-3}} = 7.67 \times 10^{-8}$$

$$V_{T} = 0.74 + 0.3 - 0.69 - 6.05 = 0.3 V$$

Consider a MOS device with a p-type silicon substrate with $N_a = 2 \times 10^{16}$ cm⁻³.

The oxide thickness is $t_{ox} = 15 \text{ nm} = 150 \text{ Å}$ and the equivalent oxide charge is

 $Q'_{ss} = 7 \times 10^{10} \text{ cm}^{-2}$. Calculate the threshold voltage for (a) an n⁺ polysilicon gate,

(b) a p^+ polysilicon gate, and (c) an aluminum gate.

(c)
$$\phi_{vag} = -0.69 \text{ V}$$
 $V_7 = 2\phi_{fp} + \frac{Q_{SD}}{C_{ox}} + \frac{Q_{SS} \cdot \delta}{C_{ox}}$

$$\frac{4}{4} = \frac{1}{4} - \frac{1}{4} - \frac{1}{4} = \frac{1}{4} - \frac{1}{4} - \frac{1}{4} = \frac{1}{4} - \frac{1$$

$$\frac{|Q_{SD}|}{C_{ox}} = \frac{t_{ox}}{S_{ox}} \sqrt{28N_{e} \cdot d_{gp}}$$

$$\frac{|Q_{SD}|}{S_{ox}} = \frac{t_{ox}}{S_{ox}} \sqrt{28N_{e} \cdot d_{gp}}$$

$$\frac{|Q_{SD}|}{S_{ox}} = \sqrt{48.85}$$

$$\frac{|Q_{SD}|}{|Q_{SD}|} = \sqrt{48.85}$$

VE320 Yaping Dan

$$\frac{|Q_{Sp}|}{\mathcal{C}_{0x}} = \frac{t_{0x}}{\mathcal{E}_{0x}} \sqrt{48N_4 \cdot \phi_{pp} \mathcal{E}_{s}},$$

$$= \frac{15 \times 10^{-7}}{39 \times 9.95 \times 10^{-14}} \times \sqrt{4 \times 1.6 \times 10^{-19} \times 2 \times 10^{-14} \times 0.37 \times 11.7 \times 8.85 \times 16^{-14}}$$

$$= \frac{3.0 \times 10^{-14}}{200} = \frac{2 \times 10^{10} \times 1.6 \times 10^{-19}}{200} = 0.05 \text{ V}$$

$$\frac{Q_{SS}}{C_{0x}} = \frac{7 \times 10^{10} \times 10^{-19}}{200} = \frac{7 \times 10^{10} \times 1.6 \times 10^{-19}}{3.9 \times 8.85 \times 10^{-14} / 1.5 \times 10^{-7}} = 0.05 \text{ V}$$

4.01 1 5.11-453 Wm = 401eV Ws = 4,97eV A: VT = 0.3V $n^{+}-3i$: $V_{T}=0.3+0.69-0.96$ Pt-Si: V7=0-3+0.69+0.18 ·.3 - 0.03V VE320 Yaping Dan 87

The substrate doping and body-effect coefficient of an n-channel MOSFET are $N_a = 10^{16} \,\mathrm{cm}^{-3}$ and $\gamma = 0.12 \,\mathrm{V}^{1/2}$, respectively. The threshold voltage is found to be $V_T = 0.5 \text{ V}$ when biased at $V_{SB} = 2.5 \text{ V}$. What is the threshold voltage at $\sqrt{10}$ $V_{SB} = 0$? V7 = V70+8 (V/-24) $P_o = R_i \exp\left(\frac{E_i - E_F}{I}\right)$ (1-0.35x2+25) = VZo + 0.12 (VI.8 - VO.7 -0.0259X1 = V70+0-12 X0.5 VTO + 0.06 VT0-1.44V

$$P_{fp} = \frac{k_{T}}{q} / n \frac{N_{a}}{n_{i}} = 0.347 V$$

$$= V_{T} - V_{T_{0}} = V [N_{Z} q_{fp} + V_{SB} - N_{Z} q_{fp}]$$

$$= 0.5 - V_{T_{0}} = 0.12 \times [N_{U,347} \times 2 + 2.5] - N_{U,347} \times 2 + 2.5$$

$$= 0.386 V$$

Given the data in Table 1 for a short channel transistor with

Orven the data in Table 1 101	a short charmer transistor with
V = 1V	velocity saturation
$\mathbf{v}_{\mathrm{DSAT}} = 1 \mathbf{v}$	Velecion 2
	T

								1.0	
, -, \/	psot	$ m V_{GS}$	$V_{ m DS}$	V_{SB}	$I_{D}(\mu A)$	Region		Ip= 2 Mach	
VG5-47 V	1	2.5	2.5	0	84.375	velocity	g Saturation		
	2	-1	-1	0	0.0	cut-of	- ff /	Vose ,	•
√_ ≈ e.(3	0.7	0.8	0	1.04	pinch-o	ffesporturation	n > Vps >	> VGs-
	4	2.0	2.5	0	56.25	الالهدند	g saturation	امر ا	
162-1-65)	1) Is t	this a NM	IOS or P	MOS?			ID = WACOK 1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	168-V7>
	2) Ide	entify the	working	region a	s one of the	following f	our: cutoff, linear,	- \ 191. Pose	* - = 1/2

2) Identify the working region as one of the following four: cutoff, linear,

"pinch-off" saturation or velocity saturation.

3) Calculate i) V_{T0} , ii) λ

$$\sqrt{D} = |t_n G_X + \frac{w}{L} (|G_T| |V_{DSat} - \frac{1}{2} |V_{DSat}|)$$

(3)
$$I_{D} = \frac{1}{2} \mu_{\Lambda} C_{OX} \frac{W}{L} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$$

$$1.64 \mu_{A} = \frac{1}{2} \mu_{\Lambda} C_{OX} \frac{W}{L} (0.7 - V_{T})^{2} (1 + \lambda \cdot 0.8) \Rightarrow l_{10} 4 \times l_{0} 6 = \frac{1}{2} k_{\Lambda} (0.7 V_{T})^{2}$$

$$(1 + \lambda o_{S})$$

$$\sqrt{4} \quad 56.25\mu A = \mu_{0} C_{0} \times \frac{V}{L} \left[(2.0 - V_{7}) \times 1 - \frac{1}{2} \times 1^{2} \right] \qquad 56.25 \times 10^{-6} = k_{0} (15 - V_{1}) \times$$

V7 20 5V = (34.375) = 2-V7 56.25) = (5-V7-12