Mod3Quiz1

Charlie Meyer

MoWeFri 1:00 - 1:50

Proof by contradiction

Problem Statement

Prove by contradiction that $(|A \cup B| = |A|) \to (B \subseteq A)$.

You must use the following definition: $|A \cup B| = |A| + |B| - |A \cap B|$.

Solution

- 1. We proceed by contradiction.
- 2. Assume that $\neg((|A \cup B| = |A|) \rightarrow (B \subseteq A))$.
- 3. We can then simplify this to $(|A \cup B| = |A|) \to (B \not\subseteq A)$, or in english, that the size of the union of sets A and B is equal to the size of set A, but set B is not a subset of set A.
- 4. With this assumption, then there exists an element $b \in B$ such that $b \notin A$.
- 5. We know that by definition $|A \cup B| = |A| + |B| |A \cap B|$. Since $b \in B$ and $b \notin A$, then we know that $|A \cup B| = |A| + |B| |A \cap B| 1$.
- 6. Therefore, we know that $|A \cup B| > |A|$.
- 7. Therein lies the contradiction, as we found that $|A \cup B| > |A|$ when we assumed that $|A \cup B| = |A|$.
- 8. Because our assumption that $\neg((|A \cup B| = |A|) \to (B \subseteq A))$ led to a contradiction, we know that $(|A \cup B| = |A|) \to (B \subseteq A)$ must be true.