HA CLUS 1

1 Decidabilitate - Pb placifor lui Wang

2 Complexitate - Pt Substituritor de suma maxima

3 Analiza amostizata - Operatii pe stiva

4 Core Attudinea algorithmilor - Plo gasirier a 2 el em de seura X

5 determinism. Chase de problème - 76 acoparitir en moduri

6 Algorituis de aproximaire - - "-

Problema placifor lui Wang

To bet finit culori

To bet finit de placi parirate

en fiecase latura en o cerboarse din C

Output: le poste acopori peanul infinit en placi din Taï fiecare tip de place se poste folosi de Hori, dar nerodit si placife adiacente sunt colorate la fel pe latura comuna.

Complexitate

-4 1 9 -4 -1 1 -3 -10 2 3 -1

Tripart sit de mis
Cutput sema maxima formata de un subsit al situation

Smax = 2(0)

forall i in (0,4-1)

forall i in (i,4-1)

S=0

forall k in (i,1)

Zmax = max (smax 23)

[21]V = +2"

N=100 ±
209 (u) 10-45
n 209 (u) 10-65
n 209 (u) 10-45
n 20 3 min 20 10 ani
10 142 ani

Gasinea a 2 elemente de suma X

Juput: \$ six de mo

Octput: I a elem distincte în sir cu suma x? X=1

-2 3 -5 0

-6 -5 -5 0 2 3 18

Sort(V)

1 = 4f07 0

while (i< i)

[BY + [i]V = 2

if S==x. Neturn time if S<x i++ else j--

Neturn false

I: Daca I (i, i) une in y pt care v(i] + v(1) = x atunci în + iterafie Ka while ului ix < 1 1 x > 1

Determinisme si clase de problème

Nedeterminism

-> (P)= cls des care se rez matiup

polinamial

MP)= -11- pl care o solutiose peate verifica In timp polinounal

medsterminist polinoural

Itolymos - 9K

MP-oluve

trobloma acoponini ou moduri

mput graf G=(V,E)

Obspect K = us minima a? & C = V on cond(U) = K

a To the (u,v) E E are cal putin un capit In U

(nec son vec)

forall kin (0, M-1) forall S EV de dim K xetrer is 2 fi

(X) PROBLEMĂ GREA

- 1) Fac un alg cost mai efficient 2) Court cature particulare care se potrivere en problema ex: 2" in pt verdex Esver
 - 3) Euristici rapide, core un garanteaza o solutie optimie ex: alg de aproximare - garanteaté un factor de aproximare - de cate ou poate fi mai nea solutia gasità decat cea aptima

Decidabi Rislate

Fie a problema 7, juleur gasi un afgarithu care sa rezolve 7? Calculabilitate

Tie A o multime infinité. Spunem cei A este [infinit]

Numerabila Joace To bijectie f: A -> N (etichetore/numerabile

a elementalor multimini A) => A = Jao, a1, a2 -- . }

Omultime pt care un gasim f: A -> M bijectiva s.m.

Tenfruit nenematrabila

M & municipale

(*) MN) = multimea partibor lei N(neutinea & tecterior Subsateerifor lui M)

 $\mathbb{Z} = \left\{ \begin{array}{l} \mathbf{a}_{1}, 1, -1, 2, -2, 3, -3 \end{array} \right\}$

 $M \times N = \{(0,0),(0,1),(1,0) \dots \}$

auftimen programiles

R o mountarable

PM (The Courtor)

(A -> null finite (A) = M)

(1 R+) 1 = 2

A={1,2,3} => 2+elem

mutima problemsor

Simplist, multimea elementelor scate fi reprosentata cu mustimea functifier j'iN -> M => (F(N))

la consideratur, in schimb multimea programelar an a intrate si a desine: Pi, 1 (Pi, 1)

un program este definit folosind un limbaj (...) Fie 5 -> affabetul de simbolurs au care sorien programele In 16 nostiu. 2 = {0,1} ead binar 12 = Zo # Z 20 --- Zk U ---- (Cenvant) f(P: <bi-- 60>) = 2 + Bp1(<bi, bi-1, -- 60>) [Conclusie: 4 foorde multe programe pt care un gélieu un program de representaire Problema.] Vioja extra-terestra in Univers? Problede decide: P: i = 8,13 pseudoalgoritu (DA daca d'extraterestru)

1 (ciclea de la infinit)

O poblema poole à grea dans ou en instit

Tela Church-Turing

Orice functie of este (efetiv) colculabila daca si numai daca este Turing calculabila (7 un program care realoada pe o masina Turney).

A C M - IO A multime la cursiva (=> F) flotal lecursiva A e P(N) 3 care sa decida/calculeze A A multimi recursiv runnarabile (2) I parisol recursiva care sa genereze elementele lui A 7 PM = SI NEA DARtornativa: Dateur sa construin o fot generator Care Trui Intoorce un element mon din A -O A finita => A recursiva Construin programmel P(n) e H,11 core obscrie A hopsiedott f(N) for (i = 1 : |A|) ef(A(i) = = M) roturu 1Lo mospor - 2) A recevisiva => A recursiv-numerabila

Fix P & P(1,1) care decide A => P(M) = 90 M &A Q & P(4,1) (a) (tm)==1) Network I

Twing calculabila = o functie recensiva

3) Daca A RH	Si Not R => A infinita	,
Def Alternation	na(2): Portem sa construim are se termina pt + element d	un pseudo-algoro lin A (MeA)

multimes universurilor ou extraterentici multimes programelor corre le termina. RM, not R

> III (3) Amerecursiva (MR) - orice multimecar nu esse RH

Constraining Q(M) = SO NGA => A R

merana

for (, i++))

(if (PA(M) MANNE Se termina In i arritatiole timp)

(if (PA(M) MANNE Se termina In i arritatiole timp)

Cif (PBM) -"-)

-6 ARH Si MOTR => 6A) Merccur RUTSily

(EX) multimed univ fora extraterestrii

Fie [un predicat binar }=> P, i -> {0,1} M- nultimes valorilor de adevar pt P MT = > Mei an P(N) == 1} Placadabila daca My recursiva Semideoidabiles MT Recursir numarrabiles / medecidabila MT merecursiv [PCP] (Post's Correspondance Moblem) Freind date 2 liste, fiecare cu m cuvinte dinacelari alfabet 5; cu prop 15171 X= <x1, x2 -- xm> Y= (Y1 --- YM > From sin de indici de dimensiane k au K>1 (1 six < m) ail Xi1 Xiz ... Xix = Yi, Yiz ... Yik (concadenate) X= <aba, aa, acb> Y = < ab, a ab, cb> 1 aba 2 aaab 1,2 aba aa HALTIM & PROBLEM (Froblema oprinci) Fle un fragram P a a intrarex 711 Le termina De cand primiente x de la initione? $b(x) \neq T$

Fie programmel comator (consid x fixet) cif(Pa) se tormina in a unitati de timp)
return 1

i++; multimes programler care je termina e hecursin munaration >> Semidecidabila (HALT) Arratam ca HALT (P, X) mu este decidabila prin reducere la abserred Construin programl Q HALT este decidabil QQ)
(if (+ALT (Q, x))
RM
Notword L
Nectoria 1 HALT (P, x) = Si, P(x) + L Apelan Q(Q) => 2 posibilitati 1°) HALT (Q,Q) = 1 => if (Que) => PQ(Q) = L=> HALT(Q,Q), Noturn L (CONTRALIONS) 2°) HALT (Q,Q) = 0 => if (follo) => Q(Q)=1 ± 1 >> HALT (Q,Q)= return 1 => HALT mu este decidabil

6

Spaneur ca A le decluce Turing la B daça

1) J T: 14 718 program care transforma datele de intrare ale probleme A Im date de intraté B

2)
$$\exists i \in A$$
 $(A(i) = 21 < 2) B(F(i)) = = 1$
 $A(i) = 21 < 2) B(F(i)) = = 1$
 $= 0 < 2) B(F(i)) = = 0$

A < B > A Se raduce Turing la B

$$A \leq B \Rightarrow \exists (olg - A - Nol(i))$$

$$i_2 = \mp (i)$$

$$noturn olg - B(i_2)$$

pt a resolva po A

decidabil I medecidabil (semi+ me) Stine A < 13

- a) A Medecidabila (exemplu probl opririi) = 2 B Medecidabila
- b) B decidable => A elecidable
 - c) B- nedecidable => A? decidable

Teorana lui Rice

Orice proprietatel este extensionala il mebamala alupra programesor este medecidabila

ex: Trag patrode perfecte

Patrat-perfect (M)
Neturn M+M;

HALT P: P(X) + L?

May patrat-perfect: R- programe

halds (7,x)

(9(4)

(P(x)

redorn u*u;

(a)

Today - footing - si > TIAH
4097> TIAH

Complexitated algorithmiles

Orice problema decidabila are mai ban algoritme de Nejalvare a problemei date ??

Variante de rejolaire:

-> implementate algoritm Im C/bira etc.

-> revare je mai multe date de intrare

Care aggerither este mai rapid Depinde de:

-limboj de programare
- [colculator]
- (programator)
- set de date
A10 000 = 11 = 11
Roblema: Fie un redor A[1N]. Vrom sa determinant subsect
de suma ruaxima
O(n3) O(nlogn)
$Q(M^2)$ $Q(M)$
Vireu sa determinant cât de bon este un algorithe fotra a
Implementa un program
Me toubuie e modalitate de a calcula eficiente algoritmilor
cloor din pseudocod => complexitate:
Steurporola (cat do rapid)
Stemporala (cat de rapid)) Spatiala (cata memorie e necesara/memsenslimentas
1 - Commence of the many for th
Vous maseura complexitatea unos algorituri door in fit de
pseudocad si de datele de intrare (de dimensièrea lar) ->
In and a sold in the same of the comment of the com
talia problemei
T(u): M -> R + fot de complexitate (timp de resolve)
le poole extinde disculier pt probleme en date de intraze
cu mai mult de o dimensionne
Tainil > orali GVE
T(M, m) -> grafini G(F) IVI -> M
IEI -> hu
T (P1, P1, C2) -> Timunding moderici
thobdona Sortara

Se da un rector Ap. MJ. Vrem la o permeterse Sortata a elementelar din rector: ApiJ < Api+J + 1 < i < n ?

Justion - Sort (A[1...M])

for (j=2...M)

X = A[j]

i=j-1

while (i>0 and A[i]>X)

A[i+1] = A[i]

i--;

A[i+1] = X

Sordore "implace"

Câmdiesine din while?

1. 1==0

Q, $\times \geq -\Lambda[i]$

Simplificarit

Dorice instructione simpla (orignare op, arit-legice, simplificari)

dureata un timp constant

Program	Complexitate	executabila?
linia 1	21	M
	C Z	M-1
3	C3	Action to the second se
4	9	TI (M) = Z ti
5	C.J.	$T_2(M) = Z(H_i - 1)$
6	Ce	T3(N)
	C.7	M-1
2	C	

Decarece in capul general timpulale execuție Tru, mu poate fi Calculat precis, me vitam la cazuri particulare

$$\pm j = j \Rightarrow T_1(N) = \sum_{j=2}^{N} j = \frac{N(N+1)}{2} - 1$$

 $(j \neq i-1)$

$$T_2(M) = \sum_{j=2}^{M-1} (x_j - 1) = \sum_{k=1}^{M-1} K = \frac{MCM-1}{2}$$

Theolow =
$$\frac{qme}{2}n^2 + \dots$$

Chaimul de crestère O Q(g(m)) = f'f 17 e1, c2 >0, Mo € Ma.T (1.g(m) ≤ fm) ≤ c2g(m) the Diddate 1) f(m) e 0 (gm) (=>) fm, e 0 (gm))fan e -2 (gan) 16 m² e O (m²)? Adevarat 7M+ 100000 & O(N2)? Aderarat $\frac{N^2}{1000} + N^2 \in \mathcal{I}(N^2)$? Adevarat 7652+164+5e O(M2)? Adexarat A May I, a > relation ordine partiala a) reflexivitate: + J: N-R, fly e O(fly) b) Antisimetrie: 4f, g fair O(gai) <=> gair - 2 (f(41)) c) transitivitate: $\forall f,g,h f(u) \in \mathcal{O}(g(u))$ } => $f(u) \in \mathcal{O}(h(u))$

O-relatie de echivalente (clase de echivalenta)
La folosite pt a defini complexitatea algoritmillor

- 1) reflexivitate
- 2) limetrie f(m) e 0 (g(m)) <=> g(m) e 0 (f(m))
- Emortificate (E

$$\Theta(n)$$
, $\Theta(\log \log n)$, $\Theta(\log n)$, $\Theta(n)$, $\Theta(n\log n)$, $\Theta(n^2)$, $\Theta(n^3)$, $\Theta(n^4)$

4) Daca T(m) = a m2+bn+e & O(m2)

Curs 4

A,B -> 2 problème de décisie

Thobe A e mai usoara say cel mult egala cu ?

A: 14 -> {0,1}; B: 18 -> {0,1}

Problema RucSacului: (M.G.)

solimber algorituites

Alg recursivi = algeore se apelea de pe es Impiri pt a redo ra o problema de dimensione re.

Recursivitate nuntua.

olg 2 ()

alg 1()

Important este ca apelul recursiv sa fice efectuat pt problème de dimensionne moi minar na mi (sub-problème)

Morge sort (Sortare prin interclasare)

Pentru a sorta univertor Ap. 27, calcularm

mijlocul, sortaru recursiv primea junatate Ap. 27, 21

a 2 junatate Afett. AJ. Apai interclasam cer 2 subleatori

2 2+1

interclasere

Morge Sort (A, P, r) -> " divide of impera"

[if (P>=2) // HP. if -> dim o san!

Totarn

 $2 = \begin{bmatrix} P + N \\ Z \end{bmatrix} \qquad || P + \frac{N - P}{Z} = \frac{2P + N - P}{Z} = \frac{N + P}{Z}$

Mergesort (A, P, 2) Mergesort (A, 76, 2+1, 1) Mergesort (A, P, 2, 2)

Merge (A,P,2, N)

[3] 5 | 9 | Melen => Complexitate () (4+m)

[2] 4 | 6 | 4 | melen

[2] 3 | 4 | 5 | 6 | 6 | 4

Fologitar pt matoarde de caratore (IR) information retrieval analiza - 13->20->27->40->100->... · Merge (A, P, g, 2) M1=7-2+2 M22/2-(24)+2= 2-9+1 B= new array (MI) C = New array (42) COP9 (A(P-2), B(1... M-1)) copg (A(gn... R), C(1... M2-1)) 1/ Santinela Benij = Cluz = inf i=上、方=上、 K=ア while (i< M1 22 j< Mz) (if (B(i) < C(i)) A(K++) = B(i++)(else A(K++) = C(i++)

foloseste memorie serplimentarà. Complexitate spatrala D(n)

2 - P=12

(outplexitate semporala 2 T(M/2) + 0 (1) + 0 (M) T(M) = etapa eda pa divide Complexitate wigs pt etapa impora combina u mibsdorg o $T(N) = 2T(\frac{N}{2}) + \Theta(N)$ pt M > 1 Pt M < 1 (N = = 1)

(Nelatie de recuranta)

Cum radoliane o relatie de recurenta

(1) Metada iterației (mutoda algebrica)

$$T(N) = 2T(N/2) + \Theta(N)$$

$$\rightarrow includic incompleta$$

$$T(N/2) = 2T(N/2^2) + \Theta(N/2) / 2$$

$$= 2T(N/2^3) + \Theta(N/2^2) / 2^2$$

$$= 2T(N/2^3) + \Theta(N/2^2) / 2^2$$

$$T(M/2h) = T(1) - \Theta(1) \qquad 2h$$

$$\frac{\partial}{\partial h} = 1 \Rightarrow h = \log_2 M = \log_M =$$

Quichford (A, P, W)

(if (PE=M) 2 = partition (A, P, M) ChuickSort (A.D. 2-1) Quich Sort (A, g+1, N) M1 2-1 2 2+1 m2 D 4 9 e A (p. . . 9) y < x X=A[2]- Pivot partition (A, A, R) PPH JIH jtj X = A[p] i = pfor j=p+1, N A[p+1...i] < X i-p $A[p+1,...p] = \emptyset < X$ (if (A(i) < X) $\int x^{++}$ $\int x \exp \left(A(x), A(y)\right)$ L swap (A(P), *ti))

Raturm (P), *ti))

Ra Sinal: |X| < X iit $\geq x$

Complexitate: $T(M) = T(M_1) + T(M_2) + \Theta(M_1)$ $M_1, M_2 < M$ $M_1 + M_2 = M-1$

Ţ

Worst case

$$T(M) = T(M-1) + \Theta(M)$$

$$T(M-2) + \Theta(M+1)$$

$$T(1) = \Theta(1)$$

$$\overline{T}(M) = \Theta(1+2+...+M) = \Theta(\overline{M(M+1)}) = \Theta(\overline{M^2}) \Omega_{C}$$

maveriage case "

we-Be-nee-BC

$$U(m) = L(m-1) + \Theta(m) = 2U(m-1) + \Theta(m)$$

 $L(mm) = 2U(m-1) + \Theta(m)$

 $\leq 2 \left(\frac{4}{2}\right) + \theta_{(m)}$ $\theta_{(m \log m)}$

C

Cim facery sã scapam de monstrase

- 1) Alogen pipotul x Sa fie elem median din A(p. 17)
- → ② Inainte de a apela partition, aleg un pivot aleatoriu

 i = random (p. 1)

 swap (A (p), A (i))

 partition (A, p, r)

$$\frac{1}{M} + \frac{1}{M} = \frac{2}{M}$$

$$\frac{2}{M} \cdot \frac{2}{M} = -\frac{2}{2} \frac{M}{M} = \frac{2^{M}}{M} \xrightarrow{M \to \infty} 0$$

AA

Curs S

Misc

- 1) Aven un vector A (1. n.) si stim ca trib sa rasp la multe introbari de forma min (A [i-j])?
 - + solutia barnata me duce în vorstease (for (K=1; K<=j, K++))
 - -> precalcularea poste fi utila
 - -) avem o complexitate mai more o data (precalculare)

- → Precolcularin minimul pt fiecare subvector de dim ¼ (Subsecvenția) $\Theta(u)$
- > la fiecase interespe pentru subvectorii conținuți complet în interespere folosind minimele precale și mai rămân z capete pt care trb să colculam minimul. Folosind minimele precole, ma ramân încă 2 hasurate în desen

frecore < 1/2: 1/4 K-2 < 2 1/4 + JM-2 = 3JM-2

O(Jm)

Cate K optim?
$$\frac{3(k) = \frac{2m}{k} + k - 2}{6(k)} = \frac{2m}{k^2} + 1 = 0 \Rightarrow k^2 = 2m \Rightarrow k = \sqrt{2m} \Rightarrow k = \sqrt{2m}$$

2) Care este un minim de comparatió pla calc al 2 cel mai mare element dintr-un vector A[1...n]? (caral cel mai mejavorabil)

(n-1) comparaţii pentru elementul maxim

h temporatii

arbore de tip turneu (tree)

hole (log m)

(m-1) comparații pt elem max

(logm-1) comparații pt al 2 max

m+logn-2 comparati

al 2 max we took sã fix un contra candidat (5 faux 7)

3) Orice algoritm de sortare, prin comparatie de chei are complexitatea 12 (mlogn)

Presupamen un vector cu 3 elem (91, 92, 93)

In orbore avem ur minim de comparatii de chei recesare se luaim or decizie. Frunzele sent cole a permeteri sortate ce se pot obtine pl un vector cu 3 elemente correcare (3!=6)

No de comparatii de chei (In casel cel mai defararabil) e dut de Inaltimea arborelui (h)

Proprietate of arbori bimari

logoritman in bata 2 =>
log 2 m/ < h =>

entholite aft (matematic) The stinding my vizim (m) m

Rog M! IN V log JIT + log JM + log M" - loge"

Varianta 2 (inginereasca)

Complexitated algorithmiles

Arablama turnuri lar dim Hanai

Intr-un temple tibetan exista Moliseuri si' 3 stalpi. Imitial toate cele u discuri sent plasate pe salpel s, ion calugarii din temple var sa neute toate discurile pe stalpel D (destinatie).

Strind ca discurile au dim diferite si Intestoleauna un disc mai mare mu poste sta pe un disc mai maio, ajutaji calegarii sa mute discurile do pe s pe D folosind al 3 lea Stalp ca stalp auxiliar. (Cica N = 64)

Cara e ur de pa; i (nutare de disc) de pe un stalp pe altul?

Hamai
$$(S, A, A, M)$$

 $(N = -0)$
 $(N = -0)$
 $(S, A, A, M - 1)$
 $(S, A, A, M - 1)$
 $(A, A, C, M - 1)$
 $(A, A, C, M - 1)$
 $(A, A, C, M - 1)$

$$T(N) = 2T(N-1) + \Theta(1) \quad \text{(Necuranda)}$$

$$T(N-1) = 2T(N-2) + \Theta(1) \quad \text{(1)} \quad \text{(N-2)}$$

$$T(N-1) = 2T(N-1) + \Theta(1) \quad \text{(1)} \quad \text{(N-2)}$$

$$T(N) = \Theta(1) \quad \text{(N-2)}$$

$$T(N) = \Theta(1) + \Theta(2^{1}) + \dots + \Theta(2^{N}) = \frac{2^{N+1}-1}{2^{N-1}} = 2^{N+1} + \Theta(2^{N})$$

Metade de repolvare a recurenteber

1. motoda iteraliei (algebrica)

2. metoda arborilor de recurenta

$$\frac{\partial}{\partial x} = 1 \Rightarrow h = \log_2 n$$

$$\frac{\partial}{\partial x} = 0$$

Mergesont:
$$T(m) = T(\frac{4}{3}) + T(\frac{24}{3}) + \theta(m)$$

$$\theta(n^2) \leq T(m) \leq \theta(n^2)$$

$$\theta(n^2) \qquad (cleste)$$

3. metoda substituijei

Spre de osebire de met 1. si 2. care folosese o inductie imampletà (observații), 3. foloseste imaluctie completa feind astfel riguroase dev matematie.

Schema inductive complete

T(m) + mex

$$M=1$$
: $T(1) = 1 \log 1 + 1 = 1$ (A)

$$T(M) = 2T(\frac{1}{2}) + M = 2(\frac{1}{2} + \log \frac{1}{2} + \frac{1}{2}) + M =$$

$$= M \log_{10} - M \log_{10} + 2M = M \log_{10} M + M$$
 (A)

Putem folosi MS si poutera pt a dem margini a simptofice T(M) & Win log M) Fear Tim Econology + NZMo CB: M=1 T(1)=1 < e.1 log1 : M= 2 T(2) = 2 T(1) + 2 = 4 < C2 log 2 => 2 < ½ Pi Pp T(k) & C. Klogk pt + K<M The) < C. mlogn-cmlog2+m < cmlogn M(1-c) < 0 37 1-C < 6 37 CZI =>3 C= 2 T(M) ED (m log M) J

4. Metada master

Folloseste Au Th Master core resolva

T(4) = a T (4/b) + f(M) | a > 1

f(M) > 0

Not $x = log_b q$ m^{∞} ? f(m)

3 cazuri

(I)
$$f(m) \in \mathcal{O}(n^{\chi}-\epsilon)$$
; $\epsilon > 0$ const; $\overline{\mathcal{A}}(m) = \mathcal{O}(n^{\chi})$

(I) $f(m) \in \mathcal{O}(n^{\chi}\log k_{1})$, $k \geq 0$, $= 2$ $T(m) \in \mathcal{O}(m^{\chi}\log k_{1})$

(II) $f(m) \in \mathcal{O}(n^{\chi}\log k_{1})$, $\epsilon > 0$ $\epsilon \neq 0$ $\epsilon \neq$

$$\int_{\infty}^{\infty} T(u) = 2T(M/2) + M$$

$$\int_{\infty}^{\infty} f(x) = M$$

$$\int_{\infty}^{\infty} T(u) = M$$

$$\int_{\infty}^{\infty} f(x) = M \in \Theta \left(\int_{\infty}^{\infty} f(x) + \int_{\infty}^{$$

$$T(M) = 2T(M/2) + m \log M$$

$$f(M) = m \log M = \Theta(m \log M \log M) = 7TM = \Theta(M \log^2 M)$$

$$\frac{N^2}{\log M} = \frac{N^2-1}{M} = M^2 \longrightarrow N$$

$$8 = 0,0003$$

MA

Curs 6

Misc

(1) feme (A, P, N)

Jef (A/P7 > H/27)

A (P7 < A/N)

If (N-P-1 > 3)

$$t = N-P$$

femc (A, P, N-1) // princle 2 traini

func (A, P, N-t) // princle 2 traini

func (A, P, N-t) // princle 2 traini

func (A, P, N-t) // princle 2 traini

$$T(M) = 3T(2M) + O(1)$$

 $f(M) \in O(1) \in O(1)$

$$|T(M) = 3T(2M) + O(1)| = 3 | \log 1,53 = 0$$

$$|S(M) \in O(1) \in O(1)| = 3 | E = 1 > 0 = 7 | T(M) = O(N^{2+75})$$

$$T(M) = 8 T(M|2) + N^{2} + \log^{1000} N$$

$$N^{\log_{2} 2} = N^{3}$$

$$f(M) = N^{2} + \log^{1000} N$$

$$\lim_{N \to \infty} \frac{N^{2}}{\log^{1000} N} = \lim_{N \to \infty} \frac{2N}{\log^{1000} N} = \frac{2N^{2}}{\log^{1000} N$$

$$\frac{4n^2}{1000.999} \log^{959} n = \frac{2^{1000}n^2}{1000! \log_{10}^{2}} = \frac{2^{100}n}{1000!} \rightarrow \infty$$

$$f(m) = O(m_5) + O(m_5) = O(m_5) = O(m_5) = O(m_5) + 2r(m_5) = 2r(m_5) > m_5$$

$$f(m) = O(m_5) + O(m_5) = O(m_5) = O(m_5) = O(m_5) = 2r(m_5) > m_5$$

=> O(N2) & O(N3) => T(N) = D(N3)

Teorema Master Dem D Daca of (m) & O (megba-E), E>O => T(m) & O (megba) 3 C, > 0 and fly < C, who are # MZ No Vien så den prin metæla substitutie T(M) & O(neogloa) (Similar pt 2) Vous sã ariatam en d carro an Times chlogba 11 T(K) (A) pt 4 K < M ip T(K) < C. K logba si K = 14 < N (b>1) = 2 T(4) < C(4) logba T(M) = aT (1/2) + f(M) < a.c. (1/2) logba + f(M) < a.c. 1 logba + C/ Megba-E < C. Megba+ C/ Megba-E? C. Megba => 0, 20969-E <0 (contradicté) T(M) & O(nlagba) => 7 (>0, d>0 a) TM) < C. nlagba d. · mlagba-E < C. mlagba (olef a) $\prod_{i} T(\kappa_i)(A)$ $K = \frac{M}{b} < M \Rightarrow T(\frac{M}{b}) \leq C \cdot \left(\frac{M}{b}\right)^{\frac{\log ba}{b}} = d\left(\frac{M}{b}\right)^{\frac{\log ba}{b}} = e$ T(m) = a) (h) + f(m) < a: c nego a - ad nego a - E thy <

40 m2-(bed-c1) m2-8? cn2-dx-8

)

$$\left[\frac{\mathcal{E}}{b^2}, d - \mathcal{C}_1 > d\right] \implies d(b^2 - 1) \ge \mathcal{C}_1 \implies \left[\frac{\mathcal{C}_1}{b^2}\right] \longrightarrow \frac{\mathcal{C}_1}{b^2}$$

Trapiotate de adevar pt 4 MEN

2) Daca fly & O (Nx logkn) => T(N) & O (Nx logk +1)

Dem pt k = 0 $f(M) = \Theta(M^{\alpha}) \Rightarrow T(M) = \Theta(M^{\alpha} \log M)$ Mot arboralui de recurenta

$$\frac{\partial(M^{2})}{\partial(M^{2})} = \frac{\partial(M^{2})}{\partial(M^{2})} = \frac{\partial(M^{2})}{\partial(M^{2})} = \frac{\partial(M^{2})}{\partial(M^{2})} = \frac{\partial(M^{2})}{\partial(M^{2})} = \frac{\partial^{2}}{\partial(M^{2})} = \frac$$

$$\frac{M}{b^{2}} = 1 \Rightarrow \left[k = log_{bM} \right]$$

$$T(M) = \sum_{a} a^{i} \theta \left(\frac{u^{x}}{b^{eq} b^{a}} \right)^{i} + N^{eq} b^{a}$$

$$= \Theta(n^2) \left(\frac{\log 4}{\log 6} + 1 \right) + n^2 \in \Theta(n^2 \log n)$$

3

Stiva CT> (S) = dim stiva loid push (T, M) Q (x) this, Vary ++ this V [this. vary] = x T pop () if (this want >0) (1)Egrav. solt IV. sich nowber (x tri) gogishum [3 T T[] nesule = new T (nin (this, reaf, K)) O(min ISI, K) 1800 (i=1; i == (min this. vaf) (); i++) Result [i] = this pop (); Return resent;

Analiza amortizata

Studiaza complexitatea in cazul cel muni deferancióil a unei secrente de mojerații efectuate asigra unei instante a unei structuri de date mai simpla sau mai complexa.

Dandu-se es instanta a stiver de moi sus, chipà n'aprais corecore de tipul push, pop, multipop; core e comply morst case a operation?

3 metable de analita amoitizata

T Metoda	(SQ 7	<u>-</u>	شر
		4	0	
· /		- A		_

Vebrie sa luam in consid érice secretar de n operatil per Structura de date analizata si calculant timpsel media pe operadie

Compex be abaragije & (T) = O(T) = O(T) = O(T)

Complx be ob $\Theta(3n-5) = \Theta(5) = \Theta(1)$

- push, push..., puultipop, push... multipop prg: m-2

 $P + Q + 2 = M \Rightarrow \Theta(P) + \Theta(P) + \Theta(Q) + \Theta(Q) = \Theta(2P + 2Q) = \Theta(2P + 2Q)$

11 Metoda croditeloz

(N-R) peech. F multipop $\Rightarrow \Theta(2N-2R)$ peec supop, puch supop. $\Rightarrow \Theta(2N-2\frac{N}{2})$ $\Theta(M)$

compex be ob (I)

Folosind met agregaria om orates ca pt o secrenta de magazir, costul medice per op (cost omostizat) este mercu el (1)

Obs: Met agregarii nu determina un cost amortizat pt. (40 girlum xs sb) asifica (de ex multipop)

II' Met craditelor (presculitei, contabilului)

Asiguram un cost amortisat pt ficcare of (COP)
(COST real COP)

-			<u> </u>
	0	2	De=(ê-c)
push	1	2	1
POP	1	0	-\
mpap	(ISI)K)	0 E	- min (181,16)

Cop per = 2 mpop = 0

Clos): pt + secv de n aperajii efectuate asupra structurii date Z Copi Z Z Copi

Z(10) opi 20 >> Suma creditelor acumulate (pusculità)

III Metada potentialului

Asiguram SD o fet core trabule sa descrie storea interna a SD

(Di) = Stanca SD dupa execuția operației;

Fresh = crosh + O(DiH) - O(Di)
(Op) push

AA.

Curs 7

Misc

class center int i= M/2 int M

1) Fie won contor modificat en analiza amortiz 2=2 DQ1=D(1)

() tuemeroni, i+i i+i jef(i== N+1) jef(i > N+2) i-i i-i

fara ou austisata
0 (2) = 0 (M)

decrement

i-i-(i = -0)

ifor(i < 4/2)

i ++ i

2) Fie a coada impl cu 2 stive O(151)

add (x)

O(1) cadd = 4 Cremere = 0

Nemone ()

1 of (S.2. Size() = = 0)

varile (|S|. pope())

Sz. push (S1. pope)

varian Sz. pop

Heap wi binare

Un troop bin e e SA folocità como vrem sa aflare ruin some neax direts-un vect in mod rapatat Aflare / eleminimare min/ max mai rapid ca d (4) Juplementarea e un arror. In meniosié (97541323) ex de Abraz Maximal themes spoore -(2) 3 (3) (4) 4 (7) 1(6) 3(4) 2 - A[i] root - left(i) = 2+i - right(i) = 2+i +1 - Parinte [i] - i/2 - satisface propri de hoop Prop de heap Obeap maximal + i= 1: M Asiz <= A [montain] Cheap minimal Hiz I: M Ali] >= A [parentali)] A(1) = max{A[i], i=1. m} $\{u: i = i \text{ (i)} \neq \{uin = i: u\} \text{ }$ Operation heapers binare - construire heap
- inserant elem
- stergere (aflare) elem < min Inserve clam - heapel e vector All. u] - A [M+1] = x => A mai e hoap binar?

- In general nu (pt ca s-a pierdut propri de haap)

sife I heapily up Ess on Esserves Complexible (O(h) = O(log m) Stergerea (offarea) claw maxim - Aflare max: return A(1) O(1) Feah(), peah() - Hergere wear - copione A[u] in local lui A[17 - A e heap court? - Mu sã pristrea de prop de heap - refaceur heaper prin cornere in jos / heapify down A(1,4) 347 22 HEAPITY-DOWN (A, i, u) · コータ×・1+1 if (e<= ~ 88 A(e)> A(i)) / max=i if (R <= M && A[N] > A(weax)) Pf (max!=i) A[i] \rightarrow A(max] HEAPIFX DOWN (A, max, u) 0 (fr) = @(log m)

Construção heap Find dat am array A(1. NJ, cem Il transfin heap? BUILD-HEAD-INET (ALI-MJ) Hor (1 = 2:M) Complx: (N-1): HEAPIFY-UB => O(log u) = O(n log u) : stopsitions of illour ! pt 1=2 => O(log2) i-9 => 0 (log y) 0 (\$\frac{1}{122}\logi) > 0 (\frac{5}{142}\logi) \geq 0 (\frac{5}{142}\logi) = 2) BOILD-FRAP-IFF (A[I.M]) | foo(i=[4/2]: 1) | HEAPIFY-DOWN(A), M) fork wisself in it so sound thepari courte log(n+1) = h arbore compet cy [n= 2h-1] moduri to y funde --- un of smap -> 0 h-1 4/4 framte 4/21-1 0 - - M = 1

D+2 >> B [Forminare]: inverioustel va fi true invedict dupa ce s-a égit d'in bucha Algoritu (A (1... N]) I array int BUILD-HEAP (A) // MIOX freap o arrayout for (j= u: 2) A(1) (-> A(1)] HEADITY-DOWN (A(1,1-1)) Pia det true Inverianti la ciclore T(f) = {A(j+1... n) Sordat si continue ale mai multe
n-j elem din Vedoral A} 1. Pini+(j) = {A[M+1... N] Sortat si contine... o clem dinA} 2. P(j) Aven un heap A(1...j] => A[i] = max {A[i] - max {A[i] - max {A[i] - max {A[i] - max } - max } - max } - max {A[i] - max } - max {A[i] - max } Alj. NJ continue cele moi mori n-j+1 elem din A A[j+1... M] Sortat Si A[j] < A(j+1... M] (heap) => Aji... M]
Sortat 3. P(j==1) = 2 + [2. n] e sortat si contine cele mai mari n-1 elem din A j

AMI <= + x e + [2. M] => A[1. M] Souther

S

Ind matematica: (1 = M) P(0) = ien (i) 7 (M) Y WEN Year sa dem ca $P_i(\hat{\ell}) \wedge Se \text{ termina} (Alg,i) \rightarrow (N = 2 \text{ Tr} K) N = Alg(i)$ (true) CB: N==0 true 1 Setermina (Alg.o) -> (R=ZAT) K) Algor-- 1- Alg a) = 1 = 1 K Setermina (Ag,i) -> (26 = Alg(i)) = = it K Se termina (Algit) = Se term (Algi) i true 10 = Alg(i+1) = (i+1) * fact(i) = (i+1) * Alg(i) ! (i+1) | K = = The true Invorciouti la ciclare - Proprader in timpul exec unei bucle

P(imerioust)

P- inversor P = inversabil la ciclore Promod Pricond turinemi (este tot timpul ader) CB [Initialidate] - inveriantal (prop) treb sa fie true invainte de a intra pt prima cora in bucla Pi Meutinerea - da ce prop e true la inceputul exec (2) unui cichi (pas) al buchei, atumai ea tribsa fie true la finale paseuri respectiv

1

tablore dinamic \$ bi = 2 * &i) - (i) Mot [S(i) = N = 2 + N - 2 log n] Chapert = Cinfert $-(\Delta \varphi)$ insert I vaveur locuri libere in tablace (Si) < (i) > C insert = 1 + 2 + (n+1) = capacity - 2 + n + capacity = 3 I rue mai aven locuri libere în tablore (S(i) = = Gi) mainte de jusert > Cinsor = 1 + capacity + 2*(capacity+1) - 2* capacity --2 * capacity + capacity = 3 $T(m) = M + 1 + 2 + ... + 2 \frac{\log m}{\log m} = \frac{\log m}{\log m} + \frac$ $= m + 2 \cdot 2 \frac{\log m}{-1} = m + 2m \cdot 1 = 3m \cdot 1$ logn+1 (m-1+ 2 logn+1) -Sw: W(redw+1) 200 2 legn+1 = (legn+1)(2 legn 2) kesn 2 1 = legm 11

9

AA Cursis

Corectifadine

Metade de deu a corectifudiriei

- 1) Inductia mottematica (fune) care prehicreaza un naturale)
- 2 Invariation de ciclore (loop invariant)
- 3 Judiolie structurala
- (4) Inductie bine formata

Edage

Lolinitializate:
$$M = -iMF = \lambda uax (A[1.0] = \lambda uax [d])(A)$$

2[Mentimere]

 $P(i)$
 $\lambda u = \lambda uax A[1.i-i]$
 $P(i+1)$
 $\lambda u = \lambda uax A[i], \lambda u$
 $= \lambda uax A[i], \lambda uax A[1.i-i]$
 $= \lambda uax A[i], \lambda uax A[1.i-i]$
 $= \lambda uax (A[i], \lambda uax A[1.i-i])$
 $= \lambda uax (A[i], \lambda uax A[1.i-i])$

3. Terminare $\lambda u = \lambda uax A[1.i-i] = \lambda uax A[1.i-i]$

Invariantul

Heaperi au rada aina In elem 2-1+1... u +1°=1'=1: n Sant heaperi corocte

D'Imitalizare: Arbori cu radacina in elem [4]+1. M

Jent heaper corecte (contin un singur elem)

(ficrice arbore cu un singur element)

(2) Meuilineron P(j) -> P(j-1) (aratom a e A)

La Arberri dominati de la j+1... Me feint hapiro

La Arberri dominati de elem j e frago?

La Alijo A[2:j]

Z[A 2:j+1] (Coronneri mui)

Alijo A[2:j]

Apeland heapify-down (A, j, u) elem AljI Va fi cornect
pama la post corecta si antorele dominat de AljI Va fi
un heap

< +12j+1]

(3) Ferninairea : Arborie dominati de l'= {0+1 - u fent haspois

Ly Arborde dominatale elem Lya fi un heap

```
Misc

(1) func (N)

2=0

X=N

S=0.

Notable (X70)

X=S+X+1

i++

i++

Ca pasel i

(J=2(N-1) *i

AHD

(1+X=N)

Terminare: i=N=> S=N*(N-1)
```

```
2) func (#R)

clandu-se o cerna cu # bile si

# B bile albastre

while (#B+ #R>1) cat trup bilele din cerna

extragem aleator 2 bile din cerna

claca (bilele au aceea si culoare)

Le aruncam si adaugam o bila hosie

altel oruncam bila rosie si puneu mapai

bila albastra

(#b=0, #N=1) sou (#b=1, #N=0)
```

Ce culare are bila raneasa in urna Invariant:

mo de bile albastire ispastirea da paritatea

(#2, #6) -> un de bile la un pas carecare

#6 % 2 = #8 % 2

#6 -> 36 -> #6 ->

Sour -> #6

Inductie structurala

Unele tipuri de date poit fi definite prin recursivitate structurala si printre acestea puteru aplica inductia Structurala.

| Not | -> tipouri de date Echivalent of py al suterii de reprau ur naturale

Jero (): -> Mat - (20)

Mot Successor (Denoc))

For Simbolina Suc (Successor (successor (serco)))) -> 4

List&< T> constr (empty c) -> list et> [] Zo simple (a). T -> list et> ([a] Ze) cons (a,x). T x cist < T> -> List < T> (a: x Ze)

Cons(7, cons(8, cons(6, emptg(1))) [4,3,6] 7:8:6:17

Tree (T > -> arbori binari ale caror moduri interno and test timpul 2 capi

Constro | leaf (a). T -> Tree <T> Ze Mode (t, a, tz), Tree <T> x T x Tree <T> Zt

node (node (leaf (3), 5, leaf (4), 8, leaf (4))

```
. make left (t1, a)
       rushe right (9, t2)
rushe both ($1,0,$2)
      Definim operatii (funcții) pt aceste tipuri de date
    abstracte
        Not: Jem (M1, M2): Not x Not -> Not
                  MIZZ fecce (M3) => M2
MIZZ fecce (M3) => fecce (Sum (M3, M2))
            Sum ( Succ (Seece (2010())), M2) + M2 EXAT
            = Succ ( Sum ( succ (Fercol)), Mz))
= Succ ( Succ ( Sum ( Lerol)), Mz)) = fucc (fucc (Mz))
                mirror (t). Thee ET> > Thee eT>

| mg if empte retempty
| mg t = leaf(a) => leaf(a)
| mg A = mode (t, a, tz) => mode (te), a, ti
      P(+) = (nuivor (nuivor (+)) == +) ++ = Thee <+>
Adolosim ind structurala pt a dem propor legate de tipuri de date abstracte def prin recevisivitate structurala
     T= tip de date abstract
     Do neutimea constructorilos Apulei t
operatii/functii pt tipul + ( fum ( ) / mirror ( ))
```

·.

6

deparane constructorii In 3 els diferite ① Zo → constr mulary Te 5.0. T -> t (mu are domenia, das construieste) B Ze -> constr extern VEZIER J DOMV->t (I rue apartine Som [) 3 Zt -> constr interni T.E Z(t), V DomV-> t (t apartine Dom V) Ichema/tiporul ind structurale Frez. P((rc)) + reze xe Dour, R(Fx) + xet (x rune din tipul t) (Pas de industre P(x) ader -> Arat P(T(... x ...)) ader pt + Te 2+ PPP(x1), P(x2) ader P(5(... ×1... ×2...)) Tex 4 xex

6

Caz basa Zo t = empty () => M(M@) = M(empty ()) = empty () (A) Se +=leaf(a) + => M(M/leaf(a)) = M(leaf(a)) = leaf(a) (A) Pi/ii: Pp P(\$1) (A) \$1 = tree < +> P(2) (A) +26 - 1 t= mode (t,,a,ta) P(+)=? H= Mode (\$1,9,\$\frac{1}{2}) \ P(1)=? \ \frac{1}{2} \ M\(M\(\text{Mode}\(\text{M}\(\frac{1}{2}\),9,M(\frac{1}{1})\)\)= = mode (M(M(t1)), a, M(M(ta))) = mode (t, a, tz) iP= M(M(t1))) = t1 M(M(t2))) = t2

Indudie Structurala

List < T>

Constructori empty () -> Tree (T)

leaf (a) -> Tree (T)

Made (21, a, tz):: Tree (T) There (T)

Tree (T)

 $CI: \rightarrow List < T >$ $[\alpha I: T \rightarrow List < T > \rightarrow List T >$ $\alpha: X: T \times List < T > \rightarrow List T >$

operation

Member T (a,t)

TX Tree ET; -> boolean

Mit, t = = empty() =) false

 $\operatorname{Mt}_2 \ \ t = \operatorname{leaf}(b) \Rightarrow (a = = b)$

Mt3 t = node (\$1,b,t2)=>

=> (a=-b) || recurber $T(a,t_1)$ ||
Newber $T(a,t_2)$

huember (a,x)Tx List<T> >> boolean

My $X = z CJ \rightarrow false$ $M_2 \times z = z CbJ \Rightarrow z = z = b$ $M_3 \times z = b : X_S \Rightarrow (a = z b) //$ $Auguber (9, X_S)$

flathen (2): There IT > > List <T>

[] (= ptques = t) F

72 \$ == leaf(a) => [a]

73 x== Nodo (\$1,0, t2)=)

= append (frather (31),

a: flether (t)

append (91,82):

Listers x List <T> >

Lis + ET >

A1: 1, == [] => 12

A2: 1== (a) => a:12

A3: P1 = = a: X3 =>

a : append (Xs, 1

member (e, flather (\$1)) 11 (a = = e) 11 member (e, fleither (\$z)) (e==0) => Duce (e; = a) 28 MT(e, t1) => OR (e /= a) 22 (MT(e,t)) 22 MT(e,t2) => OB => P(x) adevarat Dow 71 CB $x_1 = = [] = 7 M(e, A([], X_2)) = M(e, X_2) - 7 membru stang$ MS M(e, C]) 11 M(e,x) = false 11 M(e,xz) = 2 M(e,xz) ->

ruembru dreps

MD = X = = [a]: MS = M(e, A [a], X2) = M(e, a: X2) = (e = za) || MD=M(e, [a] 11 M(e, Xz)) = (e==a)11 M(e, Xz) MS -> MD aderared Pi ii Pi(xi) adevarat + Pi(a,xi) $MS = M(e, \pi(\alpha: x_1, x_2)) \stackrel{As}{=} M(e, \alpha: \pi(x_1, x_2)) \stackrel{M3}{=} (e = = \alpha)$

 $MD = M(e, a : x_1) \prod M(e, x_2) \xrightarrow{M_3} (e = z_0) \prod M(e, x_1, x_2)$ $MD = M(e, a : x_1) \prod M(e, x_2) \xrightarrow{M_3} (e = z_0) \prod M(e, x_1) \prod M(e, x_2)$ $(e = z_0) \Rightarrow MS(T) \Rightarrow MD(T)$ $(e! = a) 22 M(e, a : x_1, x_2) \xrightarrow{ii} M(e, x_1) \prod M(e, x_2) ade,$ $\Rightarrow F_1(x_1) adev \forall x \in List < T$

Inductie bine formata

Este o generalizare a schemelos de inductie discutate pana acum (matematica, conqueta, structurala)

137 femationeara perte saturi, multimi de elemente como accepta o relatie de ordine bine formata.

A multime (de ex multimea tuturor elem obtinute pt un tip de date fologinal recursivitate structurala, R

& ("mai mic rond "< xx)

La ralagia de endine poste estaine elem din A

X: AXA > boolean

L> def pe un subset de elem din AXA

Exemple (<,A) totala

>= > K=A(1

2) {8: M - R}, x = 0 portiola

(A, x) & numerte bine formeda daca 4 x & A

I mician sir infinit (me) marginit la stanga folosinal relation de ordine < x

JXOXXI--- XXU-1XX=XU
finit

2) A=Z, &= < mu e bine formata/ 2, & 2, 121/</21/ ...(-1<0<...</m/>
M-1</m/>
/ 120<-2.

でうかっく-2くるく-4とい4

3°) A= \f: M -> R+\ &= 0 mu ebine format 4°) A=[0, 20), X= < rue & bine format (timfuit out) 2 > e...ee,4 > 8 ... ee, 4 5°) A = [0,2) N 76, x = < e bine format 6) A = 5, x - ordine lexicografica Zi = alfaketus ! multimea. Author cus formate engleze (0-=) cu alfabetul 5 La...ab... Laab Laab Lab Lb sirsingfuit XJ: AXA -> Bad SI XS2 1511 8/52/ × (S1, S2) x abcdede x abceder Steme induction bine formate Fie (A, K) bine formata Vrem sã dem ca P(x) + x e A CB P(xe) 11 P(g) + g x x P(x) ×0 « F(X) + XEA Particularitari 1) A= M x= < inoluções completa

2°)
$$A = M \times xy(=) y=x+1$$
 inductie maternatice

3°) A = I

t = tipul de date def prin recursivitate structuralà I

X x g (=>) g T (..., x,...) } T e Z + industre structuralà

Medeterminisme

Incepeur au o parauteza In practica nedeterminisme = problema, algoritur mu are un comportament univoc pe același aceeași dată de intrare

Nei discutam despre MT (masina Turing) medeterminista si de algorituri pt aceasta masina

MT) determinista: la fiecare moment de timp de executa o Singura instructione din program J. Timp > Instructione to > io tr > ir

Meditermista: la fie care moment de timp se pat executa mai multe instructioni diferire

J: Timp x Instruct -> Boolean (ti...i) (tz...iz)

It mastrile redeterministe programmel algorithmel va avea mai multe copi care se executa in paralel, independent una de coolata

Introduceur 3 mai instructions pt algorithmi medeterministi
CHOICE (A) -> copiate 141 copii de régerithmelui (san ale capii
A multime finite

-> ace ste copii se vor executa în paralel în
Continuoro

→ instructioner Intoonce elem A[i] fiecarei copi i 1 ≤ i ≤ IAI -> fiecare copie mosteneste spatial de memorie al capiei parinte Fiecare capie e seupl independenta de alelable !

proprie al spațiu de memorie

flux de executie și control proprie TAIL -> eproste copia curentà cu insucces (un a giuns la solu Succes (a ajuns la solutia programment) Un algnedeterminant se apreste: 1) Toole capûle întore FAIL => false (pt pr de decisie) 2) O copie Tondoarce SUCCES 27 true Complexitatea unei alg modeterministe e data de complexitates Secrenței de instructiuni pe calea cea mai rapidă catre un aprêl de succes (caz cel mai defevorabil) I complexitate angelier N-SORT (A [... W]) B = new owing [m] { mull, mull., mull} for (i= 1... 4) J = CHOICE J. W (Bli] (= NIL) m' copi Bli] = Ali] câte una pt fiecaire permutaire avectorului for (i=1... u-1) [if B[i] > B[i+1]

SUCCES -> permutazile sortate

74A

Curs 11

Clase de problème

P= { Probleme los core accepta o resolvare obterministasi
polinamiala}

Ste { Q. #: 1-> So, 1} / + Alg Coure resolve Q} Chur) en k-cst, m = dinn datelor de intrarept Q

MP = {Q:1->{0,1}/} Afg neolet + polinour corre resolva Q}

Def alternativa pt clasa MA

MP = } Q·1 -130,1} / J an Alg det + poline care verificat claca a solutie condidat pt analy a proble Q e corecta }

Exercitii elg medeterministi}

O Problema R-clici

Avand en graf neorientat (V, E). Daca existé un fisset de varferi V' CV, IV'I == K a T V' subset?

t d, v ∈ V', u + v (u, v) ∈ ∈ → Probl de option coresponii Nolice este clica maximala a aneu

CLICA (G(V,E))

 $V' = \emptyset$ for (i=1,K) M = Choiche(V)If $(M \in V')$ fail $V' = V' \cup SM$

que au subgrafari cu K Varfairi candidate sa Ap clica testeasa daca un subgraf candidate o clica; Cuplx foreach (u=V') foreach (v=V') Lif (el= 0 28 (e1,0) € Ø)

Loie government festarea Succes

 $\theta(\kappa+\kappa^2) \Rightarrow \theta(\kappa^2)$

D'Problema 2- sume (Subset sem)

Avand s'ist de rumere voule si g-un ur sarecare 3 s'Es subset al lui I cu Z. = 2?

N-Same (S, 2) H (2=0) 11三十二=0==2 Seccess. Sum = 0 // s' = Ø while $(s + \phi)$ x = charce(s) $s = s \mid sx$ 11 5'= 5'O gx} 1 (Sum = = 21) Success O(1s1) fail 11 5 = 20 {x} // filma = 0 for (1= 51) fram = 5

In anuemite situatii, generarea testurar solutii lor candidat mu este foarte hime oblimitate de testara corectitudinei unai Sellatin

3) Fie {Si} 1 < i < M. M - Stringuri construite followind un alfabet Z (finit). I un substring (subsequence) de dim K Care sa fie continut de 4 Si, 1 & 1 & 4 } atalegori Hm > lotm Problema Froblema de optimisare este substringel maximal pt n siruri de conactere date Seli)

N_Subsequence ({S;}, M)

SS = [] // Mens arrag[R] (K+W(K+151)) $\int_{SGiJ} = Charce(Z_{i})$ // verificate deterministass apare în toate cele u stringer u' Clase ok probleme P, MP, ? MPE, MP_hand Reducerea polinouiala & (SP) Fie 2 problè de décisie ? G. Spunement à Paraduce polinomial la 9 si notare P < 9 daca a) I am Alg obsterminist + pol F: ip > 19 P 1, 2- 59/7 9:10-> 50,1} b) P++ ip P(i)=1 <=> Q(F(i)) ==1 (Pi)=1 -> Q(F(i))=

Valg pt probl P: alg-P->p(i) return alg Q (12) Jutem folosi talgsax Nedolva probl Q

: Hotsistori!

O Reflexivitatea PSP => F(i) = 2°

Dromaitivitate PSP9, QSp2=>PSp2

- Q & MP_hand (MP_dificie, MP_gren) daca (4) g'enp Q' ≤pQ

- Q & NP_complète (NPC) daca (i) QENP-hond

, P=NP=NAC P = PTIME MP = MPTIME morrisont: P+MPC, Epeste si simetrica QEMA Q'EMP hard (H)9, Q'EMAC Q Q'E> Q QEMP and QEMP hand (<p, MPC) -> relatie de echivalente (Simetrie+reflox + transitivitate) B FI=HB SIQ € Q' a) Q E MPIP => Q' ENPIP san mai grea, san Q' & AP (Q x P) b) Q'EP => QEP Cum demonstram ca a problemi mana Q e Intr-a omernità clasa? 1) Q E P? (a) Construin unalgalet + polare resolut q 2) QEMA - construction and algorization multist + post case

nectation Q

- n- old + pot care verified Q 3) GEMAC MA GENA 12 ACIEND, QIZDQ (1)

Problema SATIASTIABILITATII (SAT)

Fie F IN e (XI. .. XII) e formula logica booleania cu in Variabile in forma normala conjunctiva (FNC). For a signare a variabile la valació boolene a 7 formula cu acele variabile sa fie true/1?

3 ×1... × ~ e &,1) a? FFHC=1?

FFNC (×1×2×3) = (×1 V \(\bar{x}_2\) V \(\bar{x}_3\) \(\bar{x}_1\) V \(\bar{x}_2\) V \(\bar{x}_3\) \(\bar{x}_1\) V \(\bar{x}_2\)

The Cook

and FAZ (D M_SAT (FFMC(X1...X4)) for (i=1...n)

Xi = chaice (8,13)

generat toute interpretarile forceach (T; e7 FMC)

for i= 11: n e7 FMC)

tormen_time= 12 (X;==1 AMD X; ETj) OR

(X; ==0 AMD X; ETj) posible FTHE (XI Xu) = ATJ(XI) med (mk) kest termen_true = true conjunctie de clispuncti; If (!termen-true)
FAIL SUCCESS Dolivoural polivoural K-SAT -> FFMe, we literarilar per termen = 2-SAT: (X, V X2) N(X, VX3) N (X2 V X3) K = = 2 - > 2-SAT & P 3-SAT | NAC AUB: ANB $= \frac{2}{4} + \frac{1}{3} \times \frac$ Fj = un factor = x3 1 x4 1 x 1 1 - -(F) XKA . - AXK I dot + pol f (m. m) variabile

AA Curs 12

Clase de probleme

K cover G (V, E) Medicutat A V' C V , |V'| = = K a? + (u, v) e E M E V' Sau/S' V'

Subset Sum

A - Set de numere (nembe) sig ER

(F) A' SA a T S X == 2?

Wester $\leq p$ Subset Sum

1) $\exists \mp (Rever \rightarrow Subset Sum + (G, R) \rightarrow (A, Z))$

Porninu de la nuatricea de incicleuta a grafului G (B)
B & fo, j ;i

	61	F 6	ŧ		į		ı		
N	7	€8	1 62	1 24	63	<u>C</u> 2	2	20	y of contract to the contract
Ą	.5	0	All and a second second	C. T.	13		Park (CO) Chair Sanatana (Markita) (Mark (Co))		Vo
-			0	ATTEN DES CONTRACTOR ATTENDED		greenes voc : « Antonocom in in a no ntro			N. I
7		4	Lacontain properties (ayan, wasan u sama i sangangsi a		State (Mahalishama kathapana) are ay tala an abasic a gg 1990a g 1990alathan (Salay ay 1984) a ay an abasic ay ay ay ay a	The second secon
· · · · · · · · · · · · · · · · · · ·			i i		A Company of the Comp			and the second s	and the same of th
į.	Continue con	100		Fa	0	Control Contro	Ð		
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	a contract of the contract of		engenega nganna, kindha 2005, ki 1250 ki	The state of the s	**************************************	* (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	A company of the comp
				,					

hundlinger A va contine III numera In B Si IEI numera

In batay Micdiferata (cifra cea mai serving peute fi micolificat cifra com cifrale de la Ce. Cm-1 Ver fi îm batan, cher Cm îm aricate

...

$$\sum_{X \in A} x = \infty$$
 $3 - 3$

$$X_{i} = 4 m + \sum_{k=0}^{m-1} \left(B(i,k) \right) 4^{k}$$

2= K 2 ... 2

As 2 Arratam ca $+(G,K) \in I_{KCOUOT} a.T K cover <math>(G,K) = -1$ (=) Subsat Sum $\mp(G,K) = -1$

> Alegen acele numere XII... XIK dim A coresp Vf din K acoperire V'

Xit. + Xin= K {1,2} {1,2} -... {1,2}

maifre (de ce? pt ca varfurile olin Raceperire acepera col putim un capat al fiecari muchii, cei moroc, le aceipera pe amendoe

1 2002 ale 13 a coperino pt

 $\{x_{i_1}, \dots, x_{i_k}\} \subseteq A'$

At fiecesse cifra en Cjobe mai sus care e egala cu 1, tob sa adaugam la A'Ufgjj => Z x == g

 $(= \text{ } \Delta \text{cover}(G, K) = 1$ According (+,2) == 1; (A,2) == 7 (G, K) => (G,K) = 1

Stim ca fubset Sum (A, 2) = = 1 => 1 cm feibset A'C A a. I

 $\sum_{X \in A'} X = = \hat{J} = (RZ...2)$

J K NO de tip x; * my

SXII, Xiz. - XIX] SAI

Zi xij = K {1,2} {1,2} -- {1,2} chearece restul ni) dim 1' sunt j=1 de

Um un de forma gi pente adanga cel muit à unitate fiecare. Cifre = mu putement aven de cât 1.9/2.

Daca alogan vary coxesp in Vik, IV'I=k, etc acopera cal putin Vik Fraktia Spetia-timp a problemelos

Moneutau stim ca d'o clasa limitata de problème

P, MP, MPG, MP dure (CO_MP...)

Vrem sa introducem un ur nelimitat de chre in felul cura

Time (f(m)) = f Q problè de decirie | Q accepta conta problè de co(f(m)) temporal f

Time (wz)
Time (wz)
MTIME (f(m)) = {-11-}

P = U TIME (NK),

ND = U ATTIME (WK)

JPACE (fm) = PP | Q accepta a proble district classicale complex special Ofm)}

MSPACE (f(u)) = {- n- nedet...}

NL = NLOGSPACE = MSPACE (ROG(U))

L = LOGSPACE = SPACE (ROG(U))

L \le ML \le P \le MF

GAP = Graph Acussability Arabl = St Conn
Find dat un graf G(V, E) orientat, Exister I m + (ocale)
Instre Varifurille Sistant si + dest?
Construin algéricients des al comple spatiale care post l'insépaires GAP EML de l'enjoires l'agricis
N-GAR (G, N, +, lung)
if (a = = ±) L succes
jej (lung < 0) L faie lista de adiacenta a moduluis (nveciniei "luis) (uf chaice (Adj [2])
N-GAP (G, u, t, lung-1) (Gyiu)
(E) Frantis (misself)
Apel imitial NGAP (G,S, t, N-1) and N=N1
Obs-Trobr-cun graf, cel ruai lung drum fatra ciclari are max M-1 muchii Intre + 2 vanfari st eV
Corre e cuplx spajiala!
- Centex sportiales massoura me de bitiseplimentari fate
de datele de intrare - Aven 2 variabile seplimentare: 11, lung => 2 logn f O(logn)
CAPCN1

ausit com (undirected s-t comm) EL GAP e SPACE (fm) fai=? BFS, DFS > O (m+m) temporala i O (m) 2 O (Régnt) spatiala O (wleg u) GAP recursiv (G, s, t, lung) I drum Intre & sit care if (lung = = 0) leturn (S= = t) Sā aibā max lungimea lung ef (lung==1) return (x e Adj[s]) Voy (a) · leg (a) O(Vagica) Job (M = 21. Du) return Gaprecersiv (G, S, e, [lung/2]) 22 Gap recensiv (G, 4, 7, [laing/2]) Cate apolluri recursive aven maximal pestiva? Depinde de apelul initial M12 M12 Pogu GAR neturn (G, S, +, ou-1) -> 4 × logn per apel recurriy -> cupl× spajiala => 0 (log²n) => GAPE SPACE (Dog2M)

4

Teorema Sevitchi

+ f(n) = 12 (fogm)

MSPACE (f(n)) = SPACE (f²m))

50

**

Cers 12

Clase de problème

P, MP, MP-hard, MPC

The Cook;

SAT EP 2=> P==MP (Set EMP completa)

SAT EMP

16) SATEMP hard (dificil, rui stime ruicice alta problemie

TP hard)
TH problema A EMP => A EP SAT

A e MP => I Alg medet + pol care re 20la A, Incercam si Rengine sã transformam (in timp pol sidet) drice Alg Medet + pol la a formula FFMC

Red pol: (B) i) & F. iA => iB det + pol A) + E F F F (AMA A) +

Hilling wedet + Jack (4) date de jutirare pt 49 Alg(D) == SUCCESS dupa P (4) pasi' (=>) Finc = F(APg, D)

este satisfrabila

B(x,i,t) xeVar daca bitul i Briss== 1 la un moment de timp (Nort. w. pa) câte variabile | Var < c. P(M) => O(P(M)) Roblema MP complete (MP hard) TAZÓ 9 = TAZ AAEND (Ciclu haw) ASP SAT => + ACAP, ASpla-SAA () SBATEMAR (Kesla) ROOVER) (K clica 2 Sung

(Ruchac

Jests: Usanan bas

W-SAT: fiecare termen FTMC are kliterali proble sopharusma trocuta: Ly 3 SAT E X/PC Co (SAT) Variables
7 & x1-... x y a i 7

F F M c (X1-... x m) = 1 & SAT Ep 3-SAT ナソハンルノモーるアー SATALASHT FMO-tautology 1) AF. ISAT > 13SHT VIELSAT e Co. 4/3 FAMO(Tj) 15/5 n - termeni) CO (FMD-SAT) = FMC touted og 16 -> Fitte {x'- set variabile x'={x,...xu} Ofgi...} Coustru Die: Variabile Variabile din FINC aditionale (Tj') vor si construiti din (Tj) dupa cum curmoaza: Zij' -> literali 1< |R| < 2M (I) K= 1 ((Giteral) => Tej The first one of the second シーナー = <ショリガル、ガシンへ くそり、りまり、リチェアへ (是1) 第7年2 #11 / #12m (#) == T1 (#) (#)

Variabile aditionale fiecore Tj cul 1 literal se adauga 2 var 4 j'i 2 K==2 => Ti = < 2i1, 2i2, 3i1> A 211(A) =7 < 2jl, 212, Ji,> T ('(A) 3 TK=23 => TJ'=TJ' A K > 3 = Tj' = < Xji, Xiz, Jji > A < Ji, Xi3, Ji2> 1 -> col Trujing con Xiz - Inue < Jj, 8-2, xil, Ji, 9-1> 1 (LEZER) 2 1, 2 = 7 < Jik-z, xik-1, xik> JV - V/k-3 225g-tous F pol + olet ii) Aratau ca pt + 1st, SAT(i) == 1 (=) 8(AT(F(i)) = 1 1 SAT = [X1 ... X M PFMC Z MATI Satisfiabila => 1×1... xu efo, i) a : 7 ++vc == 1 7'384T = 21 At ficeare Ti -) adev - the is or attack of Ti devision

2 (2=x-1)x => & 1, t ... & 1, x-3 (true)

Le e fin K-27 => 361... & sil-2 (Arme) +

4

(= " 3 x FAMC a. T FAMC(1) => 3 x1 -. X4 < FAMC(XI...XM) ==1

Stime Tj true => Tjtrue

Reducerea la 3 SAT la K cover /

3 SATS A ROQUER

K Cover: Dâmolu-se un graf mearientent G(V, E) À V'⊆ V 141 == k a ? + (u,v) E E, MEY ", SIV/sau vey"?

(x1, VX2 3 Vx3) & A (X1 Vx2 VX3) A (X1 V X2 V X3)

Graful G-XV=3m+2m 1E1 - 62 + 4 K = M + 2 m acopering ii)

(# i e /38AT a.7 8SAT (i) = 2 1 (=> Kesver (F(i)) = 2 1

=) 4

Fie FFMC (x1...xn) \(\frac{1}{2}\times x_1...\times xn \(\frac{1}{2}\

F(F38470 FMC(X1...X4)) => (G(Y,E)) K= M+2M

Formiele: 7374C m+m at (4,2) EE uev sau/si

Alegem din van fevrile de jos cele m vanferi coresp valarilar de

adevar pt variabilele x... Xm care asigura latial fibilitatea

Formiele: 7374C

Aceste van funi acopera toate muchible din parter de jos (m. + m muchii Intre modurile de sus (coresp termember) : de jos (coresp variabilehor)

At fiecare 3 cha (gadget), aleg 2 moduri in acoperire: acelea coresp literalilor core sunt false => ordang 2+m moduri in acoperirea v'. Cele 2 alese mu acopera doni muchile celor 3 falsi ci toate muchile olin 3 clica

Z="G(V, E) are or K=M+2 m acquerize => 3 x ... * * Eff.

and fixen xm) == 1

Fre V'CY, IV'I = 2 m + 4 a coperire a lui G d'in fiecare 3 clica trib se aleg cate 2 moduri => 2*m moduri 6

- => Pt fiecare mod din 3 clica meales, took sa aleg modul cores)
 - => Aleg ne moduri din Modurile aflate în partea de jos. Dacă am ales (x_i) , nu aleg (x_i) : (x_i, x_i) este acoperit de (x_i)
 - => Pt fiecare tormen, aven în partea de jos ien literal true (în V') => Tj' Satisfa euch + j'=1...nu => => F=ne Satisfa cuta

