Моделирование визуализации городской среды и погодных условий

Студент: Нгуен Ань Тхы

Группа: ИУ7-56Б

Руководитель: Силантьева.А.В

Цель работы:

Разработка программу создания трехмерной графической сцены для визуализации городской среды и погодных условий:

- ▶ Описание структуры трехмерной сцены
- Провести анализ существующих алгоритмов удаления невидимых линий и поверхностей, закраски, текстурирования, а также моделей освещения и выбрать из них подходяшие для наиболее эффективного выполнения проекта
- Разработка программного обеспечения, которое позволяет отобразить трехмерной сцены для визуализации погодных эффектах на городнском сцене.

Выбор алгоритмов

Алгоритмы трехмерных преобразований:

- ▶ Способы хранения и обработки декартовых координат
- Матрицы аффинных преобразований декартовых координат

Выбор алгоритмов

- ✓ Алгоритм Z-буфера
- ✓ Однотонная закраска
- ✓ Построение теней с использованием алгоритма z-буфера

Формализация сцены

Сцена состоит из:

- ▶ Плоскость земли
- > Здания
- ▶ Источник цвета
- ▶ Дождь, туман, солнце

Общий алгоритм визуализации сцены

- 1) Задать входные данные (Информация о сцене)
- 2) Выполнение преобразований и расчетов
- 3) Алгоритм z-буфер для получения изображения сцены с тени
- 4) Отобразить результат (с эфектами погоды)

Алгоритм z-буфера

- Заполнить z-буфер элементами с фоновым значением цвета и минимальным значением z
- Для каждого пикселя (x, y):
 - Вычислить его значение глубины z(x, y)
 - Сравнить глубину пикселя со значением, хранимыми в z-буфере.

Если $z(x, y) > z_buff(x, y)$, то $z_buff(x, y) = z(x, y)$ и цвет(x, y) = yцвет пикселя.

> Отобразить результат

Визализация условий погоды

Для визализации дождя:

Система частиц

- 1) Инициализация начальных данных (направления, интенсивность)
- 2) Пока не получена команда прекращения осадков:
- Обновление положения частиц по заданному закону
- Инициализация новых частиц
- Отображение частиц на дисплее
- 1) Пока система частиц не пуста:
- Обновление положения частиц по заданному закону
- Отображение частиц на дисплее

Визализация условий погоды

• Для визализации тумана:

Зависит от значения глубины (расстояние от наблюдателя до объекта)

Если $z >= z_{\text{дальнее}}$, то интенсивность тумана будет равна 1, иначе

вычислить интенсивность по формуле: $k = 1 - \frac{(z_{\text{пикс}} - z_{\text{дальнее}})}{(z_{\text{наблюдателя}} - z_{\text{дальнеe}})}$,

Интерфейс программы

- > Правая часть: Результат программы.
- Левая часть: Панель управления программой,
 позволяющий изменять параметры:
 - Scene (Сцена): возможность добавить и удалить объекты в сцене, поворот сцены в различных направлениях.
 - Weather (Дождь, туман): позволяется визуализации дожди, тумана или обе на текущую сцену.
 - Light (Источник света): возможность изменять направление источника света.

Пример выполнения программы

Рис.1. Сцены объекта

Рис.2. Сцены с тенью при направлении света в центре

Рис.3. Сцены с тенью при направлении света в права

Рис.4. Сцены с тенью при направлении света в лева

Изменение источника света

Пример выполнения программы

Эффект погода

Эксперимент

Время выполнения алгоритм z-буфер и алгоритм z-буфер с построением теней для сцены имеет 2 и 3 объекта

Спасибо за внимание

Москва 2020г