IBM Performance Analysis

Presented By Group WDyZnLiP4

郑慧琳 5141619006 夏欣羽 515010910004

迪 5141209241 张婧文 516120910184

李玥沁 516120910175

Part 1. [Data Description]

Part 2. [Data Processing]

Part 3. [Visualization]

Part 4. [Machine learning]

Part 5. [Summary]

Part 1 Data Description

Import the dataset

data = pd.read_csv("WA_Fn-UseC_-HR-Employee-Attrition.csv")
data.head()

Describe the statistics

data.describe()

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	Employe
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865
std	9.135373	403.509100	8.106864	1.024165	0.0	602.0243
min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.2500
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000

8 rows × 26 columns

Part 2 Data Processing

Transfer the form into int

Code

```
data = pd.read csv("WA Fn-UseC -HR-Employee-Attrition.csv")
mapping attrition = {'Yes':1, 'No':2}
data.replace({'Attrition':mapping attrition},inplace=True)
mapping BusinessTravel = {'Non-Travel':1, 'Travel Rarely':2, 'Travel Frequently':3}
data.replace({'BusinessTravel':mapping BusinessTravel},inplace=True)
mapping Department = { Sales : 1, Research & Development : 2, Human Resources : 3}
data.replace({'Department':mapping Department},inplace=True)
mapping EducationField = {'Medical':1, Life Sciences':2, Human Resources':3, Technical Degree':4, Marketing':5, Other':6}
data.replace({'EducationField':mapping EducationField},inplace=True)
mapping Gender = {'Female':1, 'Male':2}
data.replace({'Gender':mapping Gender},inplace=True)
mapping JobRole = { Sales Executive : 1, Research Scientist : 2, Laboratory Technician : 3, Manufacturing Director : 4, Manager : 5, Health
data.replace({'JobRole':mapping JobRole},inplace=True)
mapping Over18 = \{'Y':1\}
data.replace({'Over18':mapping Over18},inplace=True)
mapping OverTime = {'Yes':1, 'No':2}
data.replace({'OverTime':mapping_OverTime},inplace=True)
mapping MaritalStatus = {'Single':1, 'Married':2, 'Divorced':3}
data.replace({'MaritalStatus':mapping MaritalStatus},inplace=True)
cols=['Attrition', 'BusinessTravel']
data info()
```

Outcome

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):
                            1470 non-null int64
Age
                            1470 non-null int64
Attrition
BusinessTravel
                            1470 non-null int64
DailyRate
                            1470 non-null int64
                            1470 non-null int64
Department
                            1470 non-null int64
DistanceFromHome
                            1470 non-null int64
Education
EducationField
                            1470 non-null int64
EmployeeCount
                            1470 non-null int64
                            1470 non-null int64
EmployeeNumber
EnvironmentSatisfaction
                            1470 non-null int64
Gender
                            1470 non-null int64
                            1470 non-null int64
HourlyRate
TobInvolvement
                            1470 non-null int64
JobLevel
                            1470 non-null int64
TobRole
                            1470 non-null int64
TobSatisfaction
                            1470 non-null int64
```

Part 3 Visualization

Part 3 Visualization

Pearson Map

```
fig = plt.figure(figsize=(15, 15))
ax = fig.add_subplot(1,1,1)
corr_data = data.select_dtypes(["number"]).corr()
sns.heatmap(corr_data, ax=ax)
ax.tick_params(axis='both', which='major', labelsize=20)
ax.set_title("Pearson correlation map")
plt.tight_layout()
plt.show()
```

4 most inner-related

- Job level and monthly income;
- Age and total working years;
- Job level and total working years;
- Monthly income and total working years;

Plot histogram for our target value satisfaction

To observe the distribution of the satisfaction.

```
fig = plt.figure(figsize=(10, 52))
cols = 3
target column = 'JobSatisfaction'
rows = np.ceil(float(data.shape[1] / cols))
a=[target_column, 'PerformanceRating',
'EnvironmentSatisfaction',
'RelationshipSatisfaction']
for i, column in enumerate(data.columns):
  if column in a:
    continue
  ax = fig.add_subplot(rows, cols, i+1)
  ax.set_title(column)
  if data.dtypes[column] == np.object:
    cts = data[[target_column, column]]
    cts = cts.groupby([target column, column]).size()
    cts.unstack().T.plot(kind="bar", ax=ax,
stacked=True, alpha=1)
```

```
else:
     cts = data[[target_column,
column]]
     #(xmin, xmax) =
(min(cts[column].tolist()),
max(cts[column].tolist()))
cts.groupby(target_column)[column
].plot(
       bins=16.
       kind="hist",
       stacked=True.
       alpha=1,
       legend=True,
       ax=ax,
       #range=[xmin, max]
plt.tight_layout()
```


OverTime

Unrelated factors

job satisfaction

Part 3 Visualization

Related factors

Unrelated factors

Related factors

Unrelated factors

Relationship satisfaction

Environment satisfaction

Satisfaction corelation

to find out the relationship between satisfaction and other factors

 delete the column that has only one values for all rows

```
no_inf = uniq.index[uniq==1]
print(no_inf)
data.drop(labels=no_inf, axis=1, inplace=True)
Index(['EmployeeCount', 'Over18', 'StandardHours'],
dtype='object')
```

plot histogram

```
data.drop("PerformanceRating", axis=1, inplace=True)
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(1,1,1)
ax =
data.corr().ix["JobSatisfaction"].drop("JobSatisfaction").
sort_values().plot(kind="barh", figsize=(10, 12), ax=ax)
ax.tick_params(axis='y', which='major', labelsize=18)
ax.set_title("JobSatisfaction Corelation")
plt.tight_layout()
#plt.savefig("JobSatisfactionCorelation.png")
```

• job satisfaction corelation

positve:

gender, daily rate, percenta salary hike negative:

hourly rate, num companies worked, employee number

Part 3 Visualization

Satisfaction corelation

environment satisfaction corelation

positve:

age, num corrpanies worked, job involvement negative:

employee number, over time, stock option level

• relationship satisfaction corelation

positve:

education field, monthly rate, work life balance. negative:

over time, hourly rate, percent salary hike.

IV Moderator (satisfaction)

positive	negative		
age	emplyee number		
num companies worked	over time 2		
job involvement	stock option level		
education field	percent salary hike		
monthly rate	hourly rate 2		
work life balance	percent salary hike		
gender	num companies worked		
daily rate			
percenta salary hike			

Part 4 Machine learning

4.1

Preparation of the data

Factors: attrition/ job rolegarning agey Tranethrequently time marital status

4.1

Preparation of the data

4.2

Machine learning method

Machine learning method

machine learning models (involve all factors)

Machine learning method

Models for the influence coefficient of satisfaction on performance

Machine Learning alagrithms:

- K Nearest Heighbors Regressor(KNN) Emean square errors
- Lipear Bedressignisfaction Froot mean square errors
- ✓ DREISIABHTIPP RATIFFASETION
- **✓ Random Forest Regressor**

The decision tree

Mean Square Error (TREE): 0.15151289157

Age <= 3.5 samples = 1176 value = 3.1505

Root Mean Square Error (TREE): 0.389246569118

Sample: MODEL the number of data

Value:

the value of the corresponding sample

machine learning models (involve all factors)

Mean Square Error (FOREST): 0.0
Root Mean Square Error (FOREST): 0.0
The best way is RandomForestRegressor.

Assuration fiction at his faction, factors when the factor and the factors at the factors and the factors are a factors.

Part 5

Summary of the project and future study

Augustus study may forms on fingling betten factors expectations and sob performance more accurately.

Q&A

Thank you!