

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт

по лабораторной работе № 6 по дисциплине «Теория систем и системный анализ»

Тема: «Построение сетевого графа работ и его анализ методом критического пути (СРМ)»

Вариант 10

Выполнил: Минькова А.А., студент группы ИУ8-31

Проверил: Коннова Н.С., доцент каф. ИУ8

1. Цель работы

Изучить задачи сетевого планирования в управлении проектами и приобрести навыки их решения при помощи метода критического пути.

2. Условие задачи

Вариант № 10.

Задан набор работ с множествами непосредственно предшествующих работ (по варианту).

- 1. Построить сетевой граф, произвести его топологическое упорядочение и нумерацию.
- 2. Рассчитать и занести в таблицу поздние сроки начала и ранние сроки окончания работ.
- 3. Рассчитать и занести в таблицу ранние и поздние сроки наступления событий.
- 4. Рассчитать полный и свободный резервы времени работ.
- 5. Рассчитать резерв времени событий, определить и выделить на графе критический путь.

Таблица 1. Длительность работ.

	a	b	c	d	e	f	g	h	i	j	k
t	3	5	2	4	3	1	4	3	3	2	5

Таблица 2. Множества предшествующих работ.

P_a	P_b	P_c	P_d	P_e	P_f	P_{g}	P_h	P_{i}	P_{j}	P_{k}
-	a	b, f	c	-	e	b, f	е	е	g, h	i, j

3. Таблицы

Таблица 3. Параметры событи

Number	1	2	3	4	5	6	7	8
$oldsymbol{T}_{j}^{p}$	0	3	3	4	6	6	6	10
T^n_j	0	3	3	8	10	12	14	19
$R = T^p - T$	0	0	0	4	4	6	8	9

Таблица 4. Параметры работ.

	t_{ij}	t^{po}_{ij}	$t_{ij}^{^{n\mu}}$	r_{ij}^c	r_{ij}^n
1-2	3	3	0	0	0
1-3	3	3	0	0	0
2-4	5	8	3	-4	0
3-4	1	4	7	0	4
3-6	3	6	9	0	6
3-7	3	6	11	0	8
4-5	2	6	8	-4	4
4-6	4	8	8	-6	4
5-8	4	10	15	-4	9
6-7	2	8	12	-8	6
7-8	5	11	14	-9	8

4. Результат работы программы

С помощью алгоритма Флойда была найдена длина критического пути:

Вывод программы:

```
0 3 3 2 -9 -9 -9 -9
-9 0 -9 5 -9 -9 -9 -9
-9 -9 0 1 -9 3 3 -9 -9
-9 -9 -9 0 2 4 -9 -9 -9
-9 -9 -9 -9 0 -9 -9 4 -9
-9 -9 -9 -9 -9 0 2 -9 -9
-9 -9 -9 -9 -9 0 5 -9
-9 -9 -9 -9 -9 -9 0 -9
0 13 13 14 16 12 16 19 -9
7 0 10 11 13 9 13 16 -9
3 6 0 7 9 5 9 12 -9
2 5 5 0 8 4 8 11 -9
-5 -2 -2 -1 0 -1 1 4 -9
-2 1 1 2 4 0 4 7 -9
-4 -1 -1 0 2 -1 0 5 -9
-9 -6 -6 -5 -3 -1 -3 0 -9
```

5. Выводы

В результате работы были изучены задачи сетевого планирования в управлении проектами и приобретены навыки их решения при помощи метода критического пути.

6. Ответ на контрольный вопрос

1. Какие основные данные необходимы для использования метода критического пути? Для использования метода критического пути необходимы следующие данные: список работ проекта; связи между работами; длительность выполнения работ; календарный план рабочего времени; календарный срок начала проекта.

Приложение 1. Исходный код программы

```
#include <iostream>
#include <vector>
#include <algorithm>
#include <iomanip>
void Print(const std::vector<std::vector<int>>& m){
  for (const auto& k: m){
    for (auto v: k){
      std::cout << std::setw(3) << v;
    }
    std::cout << std::endl;</pre>
  }
  std::cout << std::endl;</pre>
void FloydAlgoritm(std::vector<std::vector<int>> &m){
  for (int k = 0; k < m.size(); k++) {</pre>
    for (int i = 0; i < m.size(); i++) {</pre>
      for (int j = 0; j < m.size(); j++) {
        if (i!=j \&\& m[i][k]!=-1 \&\& m[k][j]!=-1) {
          if(m[i][j] == -1){
             m[i][j] = m[i][k] + m[k][j];
          else m[i][j] = std::max(m[i][j], m[i][k] + m[k][j]);
      }
   }
 }
int main() {
  int INF = -9:
  std::vector<std::vector<int>> adjMatrix = {
      {0, 3, 3, 2, INF, INF, INF, INF, INF},
      {INF, 0, INF, 5, INF, INF, INF, INF, INF},
      {INF, INF, 0, 1, INF, 3, 3, INF, INF},
      {INF, INF, INF, 0, 2, 4, INF, INF, INF},
      {INF, INF, INF, INF, 0, INF, INF, 4, INF},
      {INF, INF, INF, INF, INF, 0, 2, INF, INF},
      {INF, INF, INF, INF, INF, INF, 0, 5, INF},
      {INF, INF, INF, INF, INF, INF, O, INF}
  Print(adjMatrix);
  FloydAlgoritm(adjMatrix);
  Print(adjMatrix);
}
```