26. Свойства выборочных моментов.

Выборочный момент порядка к определяется формулой:

$$\overline{X^k} = rac{1}{n} \sum_{i=1}^n X_i^k.$$

Свойства выборочных моментов

- 1. $E\overline{X^k}=EX_1^k$ (если момент существует)
 - 1. Доказательство из линейности матожидания
- 2. $\overline{X^k} \stackrel{P}{\longrightarrow} EX_1^k$ (если момент существует)
 - 1. Доказательство по 3БЧ
- 3. $D\overline{X} = DX_1/n$
 - 1. Доказательство: взять дисперсию и вынести константу в квадрате

Смещенной выборочной дисперсией называется величина:

$$S^2 = rac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2.$$

Несмещенной выборочной дисперсией называется величина:

$$S_0^2=rac{n}{n-1}S^2.$$

Свойства выборочных дисперсий

1.
$$S^2 = \overline{X^2} - (\overline{X})^2$$

1. Доказательство: раскрыть скобки в определении S^2

2.
$$ES^2=rac{n-1}{n}DX_1$$

1. Доказательство:
$$ES^2=E\overline{X^2}-E(\overline{X})^2=E\overline{X^2}-((E\overline{X})^2+D(\overline{X}))=EX_1^2-EX_1^2-\frac{DX_1}{n}=DX_1-\frac{DX_1}{n}=\frac{n-1}{n}DX_1$$

3.
$$ES_0^2 = DX_1$$

4.
$$S^2 \stackrel{P}{\longrightarrow} DX_1$$

1. Доказательство: применить 3БЧ к первому свойству

5.
$$S_0^2 \xrightarrow{P} DX_1$$