```
In [5]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
In [6]:
         df = pd.read csv("Downloads/Tour prático de Machine Learning com Scikit-Learn/he
         df.head()
Out[6]:
                      cp trestbps chol fbs restecg thalach exang
                                                                        oldpeak slope
            age sex
                                                                                        ca
                                                                                            tha
         0
             63
                    1
                        3
                               145
                                     233
                                            1
                                                     0
                                                           150
                                                                     0
                                                                             2.3
                                                                                     0
                                                                                         0
                                                                                               1
         1
             37
                    1
                        2
                               130
                                     250
                                            0
                                                           187
                                                                     0
                                                                             3.5
                                                                                     0
                                                                                         0
                                                                                               2
         2
             41
                   0
                        1
                               130
                                     204
                                            0
                                                     0
                                                           172
                                                                     0
                                                                             1.4
                                                                                     2
                                                                                         0
                                                                                               2
         3
             56
                               120
                                     236
                                            0
                                                           178
                                                                     0
                                                                             8.0
                                                                                     2
                                                                                         0
                                                                                               2
             57
                   0
                       0
                               120
                                     354
                                            0
                                                     1
                                                           163
                                                                     1
                                                                             0.6
                                                                                     2
                                                                                         0
                                                                                               2
```

EVALUATION

Se conseguimos atingir 95% de precisão em prever se um paciente tem ou não uma doença cardiarca durante o desenvolvimento.

Atributos do Conjunto de Dados (13 variáveis + rótulo)

- 1. age: idade (em anos)
- 2. **sex**: sexo (1 = masculino; 0 = feminino)
- 3. cp: tipo de dor no peito
 - Valor 0: angina típica
 - Valor 1: angina atípica
 - Valor 2: dor não anginosa
 - Valor 3: assintomático
- 4. **trestbps**: pressão arterial em repouso (em mm Hg na admissão hospitalar)
- 5. **chol**: colesterol sérico (em mg/dl)
- 6. **fbs**: glicemia em jejum > 120 mg/dl (1 = verdadeiro; 0 = falso)
- 7. **restecg**: resultados do eletrocardiograma em repouso
 - Valor 0: normal
 - Valor 1: anormalidade da onda ST-T (inversões da onda T e/ou elevação ou depressão do segmento ST > 0,05 mV)
 - Valor 2: hipertrofia ventricular esquerda provável ou definitiva (critérios de Estes)
- 8. thalach: frequência cardíaca máxima atingida

- 9. **exang**: angina induzida por exercício (1 = sim; 0 = não)
- 10. oldpeak: depressão do segmento ST induzida por exercício em relação ao repouso
- 11. slope: inclinação do segmento ST no pico do exercício
 - Valor 0: ascendente
 - Valor 1: plano
 - Valor 2: descendente
- 12. **ca**: número de vasos principais (0-3) visualizados por fluoroscopia
- 13. thal: condição da talassemia
 - Valor 0: normal
 - Valor 1: defeito fixo
 - Valor 2: defeito reversível

o Rótulo (variável-alvo):

- condition: presença de doença cardíaca
 - 0 = não tem doença
 - 1 = tem doença

Se quiser que eu gere um dicionário, dataframe, gráfico, ou explicações mais detalhadas, é só avisar!

EDA (Análise exploratória)

```
In [14]: df["target"].value_counts().plot(kind="bar", color=["lightblue","salmon"]);
   plt.title("Risco de doença cardiaca por frequência máxiama")
   plt.ylabel("Frequência Cardiaca")
```

Out[14]: Text(0, 0.5, 'Frequência Cardiaca')

Risco de doença cardiaca por frequência máxiama

In [12]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 303 entries, 0 to 302 Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	age	303 non-null	int64
1	sex	303 non-null	int64
2	ср	303 non-null	int64
3	trestbps	303 non-null	int64
4	chol	303 non-null	int64
5	fbs	303 non-null	int64
6	restecg	303 non-null	int64
7	thalach	303 non-null	int64
8	exang	303 non-null	int64
9	oldpeak	303 non-null	float64
10	slope	303 non-null	int64
11	ca	303 non-null	int64
12	thal	303 non-null	int64
13	target	303 non-null	int64
dtypes: float64(1), int64(13)			
memory usage: 33 3 KB			

memory usage: 33.3 KB

```
In [9]: pd.crosstab(df["target"],df["sex"])
```

```
Out[9]: sex 0 1
```

target

0 24 114

1 72 93

```
In [10]: 
    pd.crosstab(df["target"], df["sex"]).plot(
          kind="bar",
          figsize=(10, 6),
          color=["salmon", "lightblue"]
)

    plt.title("Frequência de doenças cardíacas por sexo")
    plt.xlabel("0=Não tem doença, 1=Tem doença")
    plt.ylabel("Amostragem")
    plt.legend(["Feminino", "Masculino"])
    plt.show()
```



```
plt.legend(["Doença","Saudável"])
plt.ylabel("Frequência cardíaca máxima")
```

Out[16]: Text(0, 0.5, 'Frequência cardíaca máxima')

Out[20]: <matplotlib.legend.Legend at 0x2bfb9ad1090>

In []: cp: tipo de dor no peito

Valor 0: angina típica
Valor 1: angina atípica
Valor 2: dor não anginosa
Valor 3: assintomático

MODELAGEM DOS DADOS

In []: