

AMENDMENTS TO THE SPECIFICATION:

At page 8, please replace the third full paragraph with the following new paragraph:

There is further provided a correlator including a first sub-correlator which receives a fixed pattern having a code length N ($N = M \times K$), as an input signal comprised of signals obtained by spreading a fixed word having a length of K symbols symbol (K is a predetermined positive integer), at a rate of M chips/symbol (M is a predetermined positive integer), and detects a correlation value between a k -th ($0 \leq k < K$) symbol having a M chip length, among the fixed pattern, and pseudorandom noise code S_m (m is an integer defined as $k \times M \leq m < (k + 1) \times M$), and a second sub-correlator which receives data corresponding to K symbols, about a correlation value output from the first sub-correlator, and outputs a correlation value between the data and the fixed word.

At pages 8-9, please replace the bridging paragraph with the following new paragraph:

There is further provided a correlator including a first sub-correlator which receives a fixed pattern having a code length N ($N = M \times K$), as an input signal comprised of signals obtained by spreading a fixed word having a length of K symbols symbol (K is a predetermined positive integer), at a rate of M chips/symbol (M is a predetermined positive integer), and detects a correlation value between a k -th ($0 \leq k < K$) symbol having a M chip length, among the fixed pattern, and pseudorandom noise code S_m (m is an integer defined as $k \times M \leq m < (k + 1) \times M$), a memory which stores a predetermined number of correlation values per a symbol which correlation values are transmitted from the first sub-correlator and are different in a phase from one another with respect to the input signal, and which stores correlation values totally corresponding to K symbols symbol, and a second sub-correlator which receives data corresponding to K symbols, read out of the memory every the predetermined number,

B2
cont
and outputs a correlation value between the data and the fixed word.

At page 9, please replace the first full paragraph with the following new paragraph:

B3
There is further provided a correlator which receives a fixed pattern having a code length N ($N = M \times K$) which fixed pattern is obtained by spreading a fixed word having a length of K symbols symbol (K is a predetermined positive integer), at a rate of M chips/symbol (M is a predetermined positive integer), including a first sub-correlator which receives the fixed pattern as an input signal, and detects a correlation value between a k -th ($0 \leq k < K$) symbol having a M chip length, among the fixed pattern, and pseudorandom noise code S_m (m is an integer defined as $k \times M \leq m < (k + 1) \times M$), a memory which stores a predetermined number (L) of correlation values per a symbol which correlation values are transmitted from the first sub-correlator and are different in a phase from one another with respect to the input signal, and which stores $L \times K$ correlation values totally corresponding to K symbols symbol, a reading-address controller which outputs a reading-address used for reading data corresponding to K symbols symbol out of the memory by every L correlation values, and a second sub-correlator which receives the data corresponding to K symbols symbol, read out of the memory by every L correlation values, and outputs a correlation value between the data and the fixed word.

At pages 12-13, please replace the bridging paragraph with the following new paragraph:

B4
cont
The first sub-correlator 10 receives an input signal 11 and coefficient series S_i ($i = 1, 2, \dots, M$) having a length M , used for detecting correlation with the input signal 11, detects correlation (multiplication and addition) between them, and outputs the correlation value 12. The second sub-correlator 20 receives the correlation value 12 transmitted from the first sub-correlator 10, and coefficient series U_i ($i = 1, 2, \dots,$

*B4
Cont*
K) used for detecting correlation with K output series of the correlation value 12, detects correlation between them, and outputs a correlation value 21.

At page 13, please replace the fourth full paragraph with the following new paragraph:

B5
For instance, if the correlator illustrated in FIG. 8 were comprised of the first sub-correlator 10 and the second sub-correlator 20 both illustrated in FIG. 1(a), a time necessary for calculation of a correlation value is in proportion to not $(M \times K) (M + K)$, but $(M + K)$.

At page 14, please replace the first full paragraph with the following new paragraph:

B6
The first sub-correlator 10 receives an input signal 11 and coefficient series S_i ($i = 1, 2, \dots, M$) having a length M, used for detecting correlation with the input signal 11, detects correlation (multiplication and addition) between them, and outputs the correlation value 12. The second sub-correlator 20 receives the correlation value 12 transmitted from the first sub-correlator 10, and coefficient series U_i ($i = 1, 2, \dots, K$) used for detecting correlation with K output series of the correlation value 12, detects correlation between them, and outputs a correlation value 22. The third sub-correlator 30 receives the correlation value 22 transmitted from the second sub-correlator 20, and coefficient series V_i ($i = 1, 2, \dots, L$) used for detecting correlation with L output series of the correlation value 22, detects correlation between them, and outputs a correlation value 21.

At page 14, please replace the second full paragraph with the following new paragraph:

*B7
Cont*
In the correlator illustrated in FIG. 1(b) 4(e), a total length of the first to third sub-correlators 10, 20 and 30 is equal to $(M + K + L)$. Hence, the correlator can

significantly reduce a circuit size in comparison with a conventional correlator (length = $M \times K \times L$) corresponding to the correlator illustrated in FIG. 1(c). In addition, it is possible to increase an operation rate in calculation of a correlation value.

*B1
Concl*