

SCHOOL OF INFORMATION TECHNOLOGY AND ENGINEERING

CONTINUOUS ASSESSMENT TEST-1-WINTER SEMESTER 2019-2020

Programme Name & Branch: B. Tech.IT

Course Name Code: TTE1006

Course Name: Theory of Computation

Faculty Name(s): Dr. Swarps Priys RM, Dr. Viswanathan P. Dr. Harshitha Patel

Exam Duration: 90 mins Maximum Marks: 50

General instruction(s):

Answer ALL Questions

Section A (4*5=20)

Give the state diagram and transmon table of DFA recognizing the language L = [w/w is divisible by 3 or ends with 00].

2 (i) Prove by mathematical induction: Fir nel, 2+2+2+2++2+ +2* = 2*1-2 (3 Marks)

For the language L- (aa, b) over the ut [- (a,b). Find L2 and L3 (2 Marks)

Design a NFA Machine over an alphabet \(\Sigma = \{0, 1\} \) which accepts the language \(\widetilde{w} \) E 5 " | w contains at least two 0's, or exactly two 1's). Draw transition table and transition diagram.

Convert the given Mealy machine into Moore machine.

SCAN ME

Present State	Next State				
	2-0		201		
	State	Output	State	Output	
q1 -	43	0	92	0	
42	ql	1	q4	0	
43	92	1	ql	1	
4	94	1	93	0	

Section B (3*10=30)

For a NFA with ϵ moves shown below determine the strings accepted by it. Construct an equivalent NFA without ϵ moves.

-	Input symbols				
States	0	1	2	E	
→ s0	{s0}			{s1, s2}	
sl	-	{s2}		{s3}	
s2	- 10	{s3}	-	-	
*s3	-		{s3}		

Construct minimized DFA for the following transition diagram using Equivalence Partitioning.

Design a NFA for the language: L = (ab)* (ba)* U aa*. Convert this into equivalent DFA.

