

Operations Research

Vorlesung 11

Technische

Heuristiken: Eröffnungsverfahren & Verbesserungsverfahren

Wiederholung

- Knotenorientierte Rundreisen: Traveling Salesman Problem (TSP)
 - Gegeben: Vollständiges Netzwerk N mit Knotenmenge V und Distanzmatrix D: N = (V, D)
 - Gesucht: Reihenfolge der Städte (als Tour), welche die Reiseentfernung minimiert
 - Es existiert kein Algorithmus mit polynomieller Laufzeit zur Bestimmung einer optimalen Lösung
- Branch and Bound f
 ür das TSP
 - Relaxation durch Lösung des Zuordnungsproblems
 - Separation über Vermeidung von Kurzzyklen

Wiederholung: Mitteldeutschland TSP

Untersuchung Mitteldeutschland: $N = 8 \Rightarrow 5040$ mögliche TSP-Touren

Optimale TSP-Tour: BS - HBS - WR - STA - KS - NDH - HAL - MD - BS

Streckenlänge: 508 [km]

Überblick

- 1. Grundlagen heuristischer Lösungsverfahren
- Heuristische Lösungsverfahren für das TSP
 - 1. Unvollständig ausgeführte exakte Verfahren:
 - Unvollständiger B&B
 - 2. Eröffnungsverfahren:
 - Verfahren des bester Nachfolgers
 - Sukzessive Einbeziehung
 - Verbesserungsverfahren:
 - 2-opt-Verfahren

Überblick

- 1. Grundlagen heuristischer Lösungsverfahren
- Heuristische Lösungsverfahren für das TSP
 - 1. Unvollständig ausgeführte exakte Verfahren:
 - Unvollständiger B&B
 - 2. Eröffnungsverfahren:
 - Verfahren des bester Nachfolgers
 - Sukzessive Einbeziehung
 - 3. Verbesserungsverfahren:
 - 2-opt-Verfahren

Heuristische Verfahren

Zielsetzung heuristischer Verfahren:

Ermittlung guter zulässiger Lösungen mit vertretbarem Aufwand, allerdings unter Aufgabe der Optimalitätsgarantie

Klassifikation heuristischer Verfahren:

- 1. Unvollständig ausgeführte exakte Verfahren
- 2. Eröffnungsverfahren zur Bestimmung einer ersten zulässigen Lösung
- 3. Verbesserungsfahren zur Verbesserung einer gegebenen zulässigen Lösung
- Kombinationen aus 1. 3.

Überblick

- 1. Grundlagen heuristischer Lösungsverfahren
- 2. Heuristische Lösungsverfahren für das TSP
 - 1. Unvollständig ausgeführte exakte Verfahren:
 - Unvollständiger B&B
 - 2. Eröffnungsverfahren:
 - Verfahren des bester Nachfolgers
 - Sukzessive Einbeziehung
 - 3. Verbesserungsverfahren:
 - 2-opt-Verfahren

Unvollständig ausgeführte exakte Verfahren

Mögliche Eingrenzungsstrategien:

- Abbruch wenn eine zulässige Lösung gefunden wurde
- Abbruch nach maximal ... Rechenoperationen
- Abbruch nach maximal ... Minuten/Stunden
- Unvollständige Untersuchung des Entscheidungsbaums ("split and prune")
 - auf jeder Ebene nur Untersuchung des Teilbaums mit der größten oberen Schranke
 - nur Untersuchung von Teilbäumen, die eine Verbesserungsmöglichkeit von mindestens ...% gegenüber der gegenwärtig besten zulässigen Lösung ermöglichen

⇒ Gefahr der Suboptimalität wird in Kauf genommen, um auch bei großen Problemen, bei denen eine exakte Lösung zu (zeit)aufwändig erscheint, (hoffentlich gute) zulässige Lösungen ermitteln zu können

B&B Verfahren am Mitteldeutschland Problem

Operations Research | Vorlesung 11 - Heuristiken: Eröffnungsverfahren & Verbesserungsverfahren | Seite 9

Überblick

- 1. Grundlagen heuristischer Lösungsverfahren
- 2. Heuristische Lösungsverfahren für das TSP
 - Unvollständig ausgeführte exakte Verfahren:
 - Unvollständiger B&B
 - 2. Eröffnungsverfahren:
 - Verfahren des bester Nachfolgers
 - Sukzessive Einbeziehung
 - 3. Verbesserungsverfahren:
 - 2-opt-Verfahren

Eröffnungsverfahren

- Myopische Verfahren ("greedy")
 - In jedem Iterationsschritt wird nach einer geringstmöglichen Verschlechterung bzw. größtmöglichen Verbesserung des Zielfunktionswertes getrachtet
 - Beispiel für das TSP: Verfahren des besten Nachfolgers (Nearest Neighbor)

Verfahren des besten Nachfolgers ("greedy")

Initialisierung:

Wähle beliebigen Knoten $V_0 \in V$ als Startknoten.

Iterationen i = 1, 2, ..., n-1:

Füge denjenigen Knoten V_i zur Rundreise hinzu, der bislang noch nicht in die Rundreise aufgenommen wurde und der vom Knoten V_{i-1} den geringsten Abstand hat. V_i wird Nachfolger von V_{i-1} .

Abbruch:

Nach Iteration i = n - 1 (alle Knoten in der Rundreise eingeplant) Kehre zum Startknoten V_0 zurück (Rundreise geschlossen)

Beispiel 1: Verfahren des besten Nachfolgers

Startknoten: Braunschweig

Beispiel 1: Initialisierung

c_{ij}	BS	HAL	HBS	KS	MD	NDH	STA	WR
BS	0	131	55	127	77	86	62	51
HAL	131	0	78	172	76	82	103	91
HBS	55	78	0	125	48	47	42	20
KS	127	172	125	0	173	92	83	106
MD	77	76	48	173	0	91	90	67
NDH	86	82	47	92	91	0	30	37
STA	62	103	42	83	90	30	0	23
WR	51	91	20	106	67	37	23	0

Beispiel 1: Iteration 1

c_{ij}	BS	HAL	HBS	KS	MD	NDH	STA	WR
BS	0	131	55	127	77	86	62	51
HAL	131	0	78	172	76	82	103	91
HBS	55	78	0	125	48	47	42	20
KS	127	172	125	0	173	92	83	106
MD	77	76	48	173	0	91	90	67
NDH	86	82	47	92	91	0	30	37
STA	62	103	42	83	90	30	0	23
WR	51	91	20	106	67	37	23	0

Beispiel 1: Braunschweig → **Wernigerode**

Startknoten: Braunschweig

Weg: BS – WR Länge: 51 [km]

Beispiel 1: Iteration 2

c_{ij}	BS	HAL	HBS	KS	MD	NDH	STA	WR
BS	0	131	55	127	77	86	62	51
HAL	131	0	78	172	76	82	103	91
HBS	55	78	0	125	48	47	42	20
KS	127	172	125	0	173	92	83	106
MD	77	76	48	173	0	91	90	67
NDH	86	82	47	92	91	0	30	37
STA	62	103	42	83	90	30	0	23
WR	51	91	20	106	67	37	23	0

Beispiel 1: Wernigerode → **Halberstadt**

Startknoten: Braunschweig

Weg: BS - WR - HBS

Länge: 51 + 20 = 71 [km]

Beispiel 1: Iteration 3

c_{ij}	BS	HAL	HBS	KS	MD	NDH	STA	WR
BS	0	131	55	127	77	86	62	51
HAL	131	0	78	172	76	82	103	91
HBS	55	78	0	125	48	47	42	20
KS	127	172	125	0	173	92	83	106
MD	77	76	48	173	0	91	90	67
NDH	86	82	47	92	91	0	30	37
STA	62	103	42	83	90	30	0	23
WR	51	91	20	106	67	37	23	0

Beispiel 1: Halberstadt → St. Andreasberg

Startknoten: Braunschweig

Weg: BS - WR - HBS - STA

Länge: 51 + 20 + 42 = 113 [km]

Beispiel 1: Iteration 4

c_{ij}	BS	HAL	HBS	KS	MD	NDH	STA	WR
BS	0	131	55	127	77	86	62	51
HAL	131	0	78	172	76	82	103	91
HBS	55	78	0	125	48	47	42	20
KS	127	172	125	0	173	92	83	106
MD	77	76	48	173	0	91	90	67
NDH	86	82	47	92	91	0	30	37
STA	62	103	42	83	90	30	0	23
WR	51	91	20	106	67	37	23	0

Beispiel 1: St. Andreasberg → Nordhausen

Startknoten: Braunschweig

Weg: BS - WR - HBS - STA - NDH

Länge: 51 + 20 + 42 + 30 = 143 [km]

Beispiel 1: Iteration 5

c_{ij}	BS	HAL	HBS	KS	MD	NDH	STA	WR
BS	0	131	55	127	77	86	62	51
HAL	131	0	78	172	76	82	103	91
HBS	55	78	0	125	48	47	42	20
KS	127	172	125	0	173	92	83	106
MD	77	76	48	173	0	91	90	67
NDH	86	82	47	92	91	0	30	37
STA	62	103	42	83	90	30	0	23
WR	51	91	20	106	67	37	23	0

Beispiel 1: Nordhausen → Halle

Startknoten: Braunschweig

Weg: BS - WR - HBS - STA - NDH - HAL

Länge: 51 + 20 + 42 + 30 = 143 [km]

Beispiel 1: Iteration 6

c_{ij}	BS	HAL	HBS	KS	MD	NDH	STA	WR
BS	0	131	55	127	77	86	62	51
HAL	131	0	78	172	76	82	103	91
HBS	55	78	0	125	48	47	42	20
KS	127	172	125	0	173	92	83	106
MD	77	76	48	173	0	91	90	67
NDH	86	82	47	92	91	0	30	37
STA	62	103	42	83	90	30	0	23
WR	51	91	20	106	67	37	23	0

Beispiel 1: Halle → **Magdeburg**

Startknoten: Braunschweig

Weg: BS - WR - HBS - STA - NDH - MD

Länge: 51 + 20 + 42 + 30 + 82 + 76 = 301 [km]

Beispiel 1: Iteration 7

c_{ij}	BS	HAL	HBS	KS	MD	NDH	STA	WR
BS	0	131	55	127	77	86	62	51
HAL	131	0	78	172	76	82	103	91
HBS	55	78	0	125	48	47	42	20
KS	127	172	125	0	173	92	83	106
MD	77	76	48	173	0	91	90	67
NDH	86	82	47	92	91	0	30	37
STA	62	103	42	83	90	30	0	23
WR	51	91	20	106	67	37	23	0

Beispiel 1: Magdeburg → **Kassel**

Startknoten: Braunschweig

Weg: BS - WR - HBS - STA - NDH - MD - KS

Länge: 51 + 20 + 42 + 30 + 82 + 76 + 173 = 474 [km]

Beispiel 1: Abbruch

c_{ij}	BS	HAL	HBS	KS	MD	NDH	STA	WR
BS	0	131	55	127	77	86	62	51
HAL	131	0	78	172	76	82	103	91
HBS	55	78	0	125	48	47	42	20
KS	127	172	125	0	173	92	83	106
MD	77	76	48	173	0	91	90	67
NDH	86	82	47	92	91	0	30	37
STA	62	103	42	83	90	30	0	23
WR	51	91	20	106	67	37	23	0

Beispiel 1: Kassel → **Braunschweig**

Startknoten: Braunschweig

Rundreise: BS - WR - HBS - STA - NDH - MD - KS - BS

Länge: 51 + 20 + 42 + 30 + 82 + 76 + 173 + 127 = 601 [km]

Beispiel 2: Verfahren des besten Nachfolgers

Startknoten: Kassel

Rundreise: KS - STA - WR - HBS - NDH - HAL - MD - BS - KS

Länge: 535 [km]

Eröffnungsverfahren

- Myopische Verfahren ("greedy")
 - In jedem Iterationsschritt wird nach einer geringstmöglichen Verschlechterung bzw. größtmöglichen Verbesserung des Zielfunktionswertes getrachtet
 - Beispiel für das TSP: Verfahren des besten Nachfolgers (Nearest Neighbor)
- Vorausschauende Verfahren
 - In jedem Iterationsschritt wird abgeschätzt, welche Auswirkungen sich auf noch folgende Iterationsschritte ergeben
 - Beispiel für das TSP: Sukzessive Einbeziehung

Verfahren der sukzessiven Einbeziehung

Initialisierung:

Wähle Kriterium für die sukzessive Einbeziehung

Iteration 1:

Bestimme zwei Knoten $V_0, V_1 \in V$ als Startknoten und bilde die Subtour $r = [V_0 - V_1 - V_0]$

Iterationen i = 2, 3, ..., n-1:

Bestimme mit dem Kriterium den nächsten Knoten V_i , der noch nicht in der Subtour enthalten ist.

Füge den Knoten V_i an der Stelle mit der geringsten Verschlechterung in die Subtour r ein.

Abbruch:

Nach Iteration i = n - 1 (alle Knoten in der Rundreise eingeplant).

Kriterium für die Auswahl der Folgeknoten V_i

Iterationen i = 2, 3, ..., n-1:

Wahl des nächsten Knoten V_i , der noch nicht in der Rundreise enthalten ist.

- Alphanumerisches Einfügen: Wahl V_i , der nach alphanumerischer Reihenfolge als nächstes kommt
- Günstigstes Einfügen (cheapest insertion): Wahl V_i , sodass die Subtour um den geringsten Betrag anwächst
- Nächstgelegenes Einfügen (nearest insertion): Wahl V_i , der zu den Knoten der bestehenden Subtour die geringste Distanz aufweist
- Entferntestes Einfügen (farthest insertion): Wahl V_i , der am weitesten von den Knoten der bestehenden Subtour entfernt ist
- Zufälliges Einfügen (random insertion) Wahl V_i , der durch eine Zufallswahl bestimmt worden ist

Kriterium für Erstellung der Starttour $[V_0, V_1, V_2]$

Entweder

• $V_0, V_1 \in V$ als Startknoten vorgegeben

oder

- Alphanumerisches Einfügen: Ersten zwei Knoten nach alphanumerischer Reihenfolge
- Günstigstes Einfügen: Die zwei Knoten mit minimaler Distanz zueinander
- Nächstgelegenes Einfügen: Die zwei Knoten mit minimaler Distanz zueinander
- Entferntestes Einfügen: Die zwei Knoten mit maximaler Distanz zueinander
- **Zufälliges Einfügen:** Wahl V_i , der durch eine Zufallswahl bestimmt worden ist

Beispiel 3: Verfahren der sukzessiven Einbeziehung

Kriterium: alphanumerisches Einfügen

Startknoten: Braunschweig und Wernigerode

Beispiel 3: Initialisierung (Iteration 1)

c_{ij}	BS	HAL	HBS	KS	MD	NDH	STA	WR
BS	0	131	55	127	77	86	62	51
HAL	131	0	78	172	76	82	103	91
HBS	55	78	0	125	48	47	42	20
KS	127	172	125	0	173	92	83	106
MD	77	76	48	173	0	91	90	67
NDH	86	82	47	92	91	0	30	37
STA	62	103	42	83	90	30	0	23
WR	51	91	20	106	67	37	23	0

Initialisierung:

Startknoten Braunschweig und Wernigerode r = [BS - WR - BS]L = 51 + 51 = 102 [km]

Beispiel 3: Nach Initialisierung (Iteration 1)

Rundreise: BS – WR – BS

Länge: 274 [km]

Beispiel 3: Iteration 2 – Halle

C_{ij}	BS	WR	HAL
BS	1	51	131
WR	51	-	91
HAL	131	91	-

Bisherige Rundreise:

BS - WR - BS

Länge: 102 [km]

2 Möglichkeiten:

■ BS – WR – HAL– BS

Länge: 51 + 91 + 131 = 273 [km]

■ BS - HAL - WR - BS

Länge: 131 + 91 + 51 = 273 [km]

Länge identisch aufgrund der Symmetrie der Entfernungsmatrix

⇒ Auswahl beliebig

Gewählt: BS - WR - HAL - BS

Beispiel 3: Nach Iteration 2

Rundreise: BS - WR - HAL - BS

Länge: 274 [km]

Beispiel 3: Iteration 3 – Halberstadt

c_{ij}	BS	WR	HAL	HBS
BS	-	51	131	55
WR	51	-	91	20
HAL	131	91	-	78
HBS	55	20	78	-

Bisherige Rundreise:

BS - WR - HAL - BS

Länge: 273 [km]

3 Möglichkeiten:

■ BS – WR – HAL – HBS – BS Länge: 51 + 91 + 78 + 55 = 275 [km]

■ BS – WR – HBS – HAL – BS Länge: 51 + 20 + 78 + 131 = 280 [km]

■ BS – HBS – WR – HAL – BS Länge: 55 + 20 + 91 + 131 = 297 [km]

Gewählt: BS - WR - HAL - HBS - BS

Beispiel 3: Nach Iteration 3

Rundreise: BS - WR - HAL - HBS - BS

Länge: 275 [km]

Beispiel 3: Iteration 4 – Kassel

c_{ij}	BS	WR	HAL	HBS	KS
BS	1	51	131	55	127
WR	51	-	91	20	106
HAL	131	91	-	78	172
HBS	55	20	78	-	125
KS	127	106	172	125	-

4 Möglichkeiten:

BS – WR – HAL – HBS – KS – BS Länge: 51 + 91 + 78 + 125 + 127 = 472 [km]

■ BS – WR – HAL – KS – HBS – BS Länge: 51 + 91 + 172 + 125 + 55 = 494 [km]

■ BS – WR – KS – HAL – HBS – BS Länge: 51 + 106 + 172 + 78 + 55 = 462 [km]

■ BS – KS – WR – HAL – HBS – BS Länge: 127 + 106 + 91 + 78 + 55 = 457 [km]

Gewählt: BS – KS – WR – HAL – HBS – BS

Beispiel 3: Nach Iteration 4

Rundreise: BS - KS - WR - HAL - HBS - BS

Länge: 457 [km]

Beispiel 3: Lösung nach Iteration 7

Rundreise: BS - KS - NDH - STA - WR - HAL - MD - HBS - BS

Länge: 542 [km]

Verfahren der sukzessiven Einbeziehung

Kriterium: Entferntestes Einfügen

Initialisierung (Iteration 1):

Wähle die beiden Knoten $V_0, V_1 \in V$, deren Abstand maximal ist, und bilde die Subtour $r = [V_0 - V_1 - V_0]$.

Iterationen i = 2, 3, ..., n - 1:

Wähle denjenigen Knoten V_i , der noch nicht in der Subtour r enthalten ist und dessen kleinste Entfernung zu einem der Knoten von r am größten ist.

Füge den Knoten V_i so in die Subtour r ein, dass sich die Länge von r möglichst wenig erhöht.

Abbruch:

Nach Iteration i = n - 1 (alle Knoten in der Rundreise eingeplant)

Beispiel 4: Verfahren der sukzessiven Einbeziehung

Kriterium: entferntestes Einfügen

Beispiel 4: Initialisierung

c_{ij}	BS	HAL	HBS	KS	MD	NDH	STA	WR
BS	0	131	55	127	77	86	62	51
HAL	131	0	78	172	76	82	103	91
HBS	55	78	0	125	48	47	42	20
KS	127	172	125	0	173	92	83	106
MD	77	76	48	173	0	91	90	67
NDH	86	82	47	92	91	0	30	37
STA	62	103	42	83	90	30	0	23
WR	51	91	20	106	67	37	23	0

Initialisierung:

Kassel und Magdeburg r = [KS - MD - KS]L = 346 [km]

Initialisierung mit maximalen Abstand

Beispiel 4: Nach Initialisierung

Rundreise: KS - MD - KS

Länge: 350 [km]

Beispiel 2: Iteration 1

c_{ij}	BS	HAL	HBS	KS	MD	NDH	STA	WR
BS	0	131	55	127	77	86	62	51
HAL	131	0	78	172	76	82	103	91
HBS	55	78	0	125	48	47	42	20
KS	127	172	125	0	173	92	83	106
MD	77	76	48	173	0	91	90	67
NDH	86	82	47	92	91	0	30	37
STA	62	103	42	83	90	30	0	23
WR	51	91	20	106	67	37	23	0

Bisher:

$$r = [KS - MD - KS]$$

L = 346 [km]

Minimale Abstände Maximum der minimalen Abstände

Beispiel 2: Iteration 2 – NDH (Nordhausen)

2 Möglichkeiten:

■ KS – NDH – MD – KS Länge: 92 + 91 + 173 = 356 [km]

■ KS – MD – NDH – KS Länge: 173 + 91 + 92 = 356 [km]

Gewählt: KS - NDH - MD - KS

Beispiel 2: Nach Iteration 2

Rundreise: KS - NDH - MD - KS

Länge: 356 [km]

Beispiel 2: Iteration 3

c_{ij}	BS	HAL	HBS	KS	MD	NDH	STA	WR
BS	0	131	55	127	77	86	62	51
HAL	131	0	78	172	76	82	103	91
HBS	55	78	0	125	48	47	42	20
KS	127	172	125	0	173	92	83	106
MD	77	76	48	173	0	91	90	67
NDH	86	82	47	92	91	0	30	37
STA	62	103	42	83	90	30	0	23
WR	51	91	20	106	67	37	23	0

Bisher:

$$r = [KS - NDH - MD - KS]$$

L = 356 [km]

Minimale Abstände Maximum der minimalen Abstände

Beispiel 2: Iteration 3 – BS (Braunschweig)

3 Möglichkeiten:

- KS BS NDH MD KS Länge: 127 + 86 + 91 + 173 = 477 [km]
- KS NDH BS MD KS Länge: 92 + 86 + 77 + 173 = 428 [km]
- KS NDH MD BS KS Länge: 92 + 91 + 77 + 127 = 387 [km]

Gewählt: KS - NDH - MD - BS - KS

Beispiel 2: Nach Iteration 3

Rundreise: KS - NDH - MD - BS - KS

Länge: 387 [km]

Beispiel 2: Iteration 4

c_{ij}	BS	HAL	HBS	KS	MD	NDH	STA	WR
BS	0	131	55	127	77	86	62	51
HAL	131	0	78	172	76	82	103	91
HBS	55	78	0	125	48	47	42	20
KS	127	172	125	0	173	92	83	106
MD	77	76	48	173	0	91	90	67
NDH	86	82	47	92	91	0	30	37
STA	62	103	42	83	90	30	0	23
WR	51	91	20	106	67	37	23	0

Bisher:

$$r = [KS-NDH-MD-BS-KS]$$

L = 387 [km]

Minimale Abstände Maximum der minimalen Abstände

Beispiel 2: Nach Iteration 4

Rundreise: KS - NDH - HAL - MD - BS - KS

Länge: 454 [km]

Beispiel 2: Iteration 5

c_{ij}	BS	HAL	HBS	KS	MD	NDH	STA	WR
BS	0	131	55	127	77	86	62	51
HAL	131	0	78	172	76	82	103	91
HBS	55	78	0	125	48	47	42	20
KS	127	172	125	0	173	92	83	106
MD	77	76	48	173	0	91	90	67
NDH	86	82	47	92	91	0	30	37
STA	62	103	42	83	90	30	0	23
WR	51	91	20	106	67	37	23	0

Bisher:

$$r = [KS - NDH - HAL - MD - BS - KS]$$

L = 454 [km]

Beispiel 2: Nach Iteration 5

Rundreise: KS - NDH - HAL - MD - HBS - BS - KS

Länge: 480 [km]

Beispiel 2: Iteration 6

c_{ij}	BS	HAL	HBS	KS	MD	NDH	STA	WR
BS	0	131	55	127	77	86	62	51
HAL	131	0	78	172	76	82	103	91
HBS	55	78	0	125	48	47	42	20
KS	127	172	125	0	173	92	83	106
MD	77	76	48	173	0	91	90	67
NDH	86	82	47	92	91	0	30	37
STA	62	103	42	83	90	30	0	23
WR	51	91	20	106	67	37	23	0

Bisher:

$$r = [KS - NDH - HAL - MD - HBS - BS - KS]$$

L = 480 [km]

Minimale Abstände Maximum der minimalen Abstände

Beispiel 2: Nach Iteration 6

Rundreise: KS - NDH - HAL - MD - HBS - BS - STA - KS

Länge: 498 [km]

Beispiel 2: Iteration 7

c_{ij}	BS	HAL	HBS	KS	MD	NDH	STA	WR
BS	0	131	55	127	77	86	62	51
HAL	131	0	78	172	76	82	103	91
HBS	55	78	0	125	48	47	42	20
KS	127	172	125	0	173	92	83	106
MD	77	76	48	173	0	91	90	67
NDH	86	82	47	92	91	0	30	37
STA	62	103	42	83	90	30	0	23
WR	51	91	20	106	67	37	23	0

Bisher:

$$r = [KS - NDH - HAL - MD - HBS - BS - STA - KS]$$

L = 498 [km]

Minimale Abstände Maximum der minimalen Abstände

Beispiel 2: Nach Iteration 7

Rundreise: KS – NDH – HAL – MD – HBS – BS – WR – STA – KS

Länge: 510 [km]

Eröffnungsverfahren für das TSP: Bewertung

Tendenziell gilt:

- Verfahren der sukzessiven Einbeziehung liefert bessere Lösungen als Verfahren des besten Nachfolgers
- Variante 2 der sukzessiven Einbeziehung liefert bessere Ergebnisse als Variante 1, da sie durch die Art der Knotenwahl die wesentliche Struktur der sich entwickelnden Rundreise schon in einem frühen Stadium festlegt

aber:

- Rechenaufwand sukzessive Einbeziehung > Rechenaufwand bester Nachfolger
- Rechenaufwand Variante 2 > Rechenaufwand Variante 1

Überblick

- 1. Grundlagen heuristischer Lösungsverfahren
- 2. Heuristische Lösungsverfahren für das TSP
 - Unvollständig ausgeführte exakte Verfahren:
 - Unvollständiger B&B
 - 2. Eröffnungsverfahren:
 - Verfahren des bester Nachfolgers
 - Sukzessive Einbeziehung
 - 3. Verbesserungsverfahren:
 - 2-opt-Verfahren

Verbesserungsverfahren

- Starten (in der Regel) mit einer zulässigen Ausgangslösung
- In jedem Iterationsschritt wird von der gerade betrachteten Lösung x zu einer Lösung aus der Nachbarschaft NB(x) fortgeschritten
- NB(x) enthält sämtliche Lösungen, die sich aus x durch einmalige Anwendung einer Transformationsvorschrift ergeben ("Zug")
- Beispiele möglicher Transformationsvorschriften (Züge)
 - Veränderung einer Lösung an genau einer Stelle
 (z.B. "Kippen eines Bits" beim Rucksack-Problem Entfernen bzw. Einpacken eines Gutes)
 - Vertauschen von Elementen
 - Verschieben von Elementen

Verbesserungsverfahren

Strategien zur Untersuchung einer Nachbarschaft

- Reihenfolge: Prüfen einer Lösung zufällig oder systematisch
- Übergang: Welche Nachbarlösung wird ausgewählt, um von ihr aus den nächsten Iterationsschritt durchzuführen?

First fit:

Erste verbessernde Nachbarlösung wird ausgewählt

Best fit:

Vollständiges Untersuchen der Nachbarschaft, Fortsetzung mit bester Nachbarlösung

Verbesserungsverfahren für das TSP

r-optimale Verfahren

- Ausgangspunkt: zulässige Ausgangslösung
- Versuch der Verbesserung durch Austausch von r in ihr befindlichen Kanten gegen r andere Kanten (r = 2, 3, ...)

Beispiel: 2-opt-Verfahren

- prüft systematisch alle Vertauschungsmöglichkeiten von jeweils 2 Kanten einer gegebenen Rundreise gegen 2 andere
- ergibt eine Vertauschung eine Verkürzung der Rundreise, so wird diese vorgenommen
- erneuter Beginn der Überprüfung
- Abbruch, sobald durch paarweises Vertauschen keine Verbesserung mehr erzielt werden kann

2-opt-Verfahren: Prinzip

2-opt: Algorithmische Beschreibung

```
Voraussetzung 1: vollständiger, ungerichteter Graph G mit Kantenbewertungen c_i
Voraussetzung 2: zulässige Rundreise [V_1, V_2, ..., V_n, V_{n+1} = V_1]
Iteration \mu (\mu = 1, 2, ...):
  for i := 1 \text{ to } n - 2 \text{ do}
  begin
    for i := i + 2 to n do
    begin berechne \Delta := c_{ij} + c_{i+1,j+1} - c_{i,i+1} - c_{j,j+1}
      falls \Delta < 0, bilde neue Rundreise [V_1, ..., V_n, V_1] := [V_1, ..., V_i, V_i, V_{i-1}, ..., V_{i+1}, V_{i+1}, ..., V_n, V_1]
      und setze \mu = \mu + 1 und beende Durchlauf
    end
end
Ergebnis: eine 2-optimale Rundreise
```


2-opt: Algorithmische Darstellung

Iteration 1

i
$$i+1 = 1$$

j $i+1 = 1$

2

j $i+1 = 2$

j $i+1 = 2$

j $i+1 = 3$

j

2-opt: Graphische Veranschaulichung

Rundreise [
$$i, i + 1, j, j + 1, i$$
] Falls $\Delta = c_{ij} + c_{i+1,j+1} - c_{i,i+1} - c_{j,j+1} < 0$, d.h. $\underbrace{c_{i,i+1} + c_{j,j+1}}_{\text{benutzt}} > \underbrace{c_{ij} + c_{i+1,j+1}}_{\text{nicht benutzt}}$

dann ersetze die Kanten [i, i+1] und [j, j+1] durch [i, j] und [i+1, j+1]

Problem: Orientierung der Kanten einer Teiltour ändert sich!

 \Rightarrow Umorientierung der Kante [i + 1, j]

2-opt: Kreis mit Tauschmöglichkeiten

Möglicher Tausch:

- Entferne Kanten
 - (HAL, NDH)
 - (HBS, KS)
- Füge Kanten hinzu
 - (HAL, HBS)
 - (NDH, KS)

Problem:

Teiltour [NDH, STA, WR, HBS] falsch orientiert

Lösung:

Verwende [HBS, WR, STA, NDH]

2-opt: Beispiel Mitteldeutschland

Ausgangslösung durch Verfahren des besten Nachfolgers, Startknoten Braunschweig

Rundreise: BS – WR – HBS – STA – NDH – HAL – MD – KS – BS

Länge: 597 [km]

Ausgangslösung:

$$\mu = 1$$
:

$$i = 1, j = 3: c_{13} + c_{24} - c_{12} - c_{34} = c_{BS,HBS} + c_{WR,STA} - c_{BS,WR} - c_{HBS,STA} = -15 < 0$$

Neue Rundreise:

Rundreise: BS - HBS - WR- STA - NDH - HAL - MD - KS - BS

Länge: 586 [km]

Ausgangslösung:

[
$$BS - HBS - WR - STA - NDH - HAL - MD - KS - BS$$
]
Länge = 586

$\mu = 2$:

$$i = 1, j = 3$$
: $c_{13} + c_{24} - c_{12} - c_{34} = c_{BS,WR} + c_{HBS,STA} - c_{BS,HBS} - c_{WR,STA} = 15$ > 0
 $i = 1, j = 4$: $c_{14} + c_{25} - c_{12} - c_{45} = c_{BS,STA} + c_{HBS,NDH} - c_{BS,HBS} - c_{STA,NDH} = 24$ > 0
 $i = 1, j = 5$: $c_{15} + c_{26} - c_{12} - c_{56} = c_{BS,NDH} + c_{HBS,HAL} - c_{BS,HBS} - c_{NDH,HAL} = 27$ > 0
 $i = 1, j = 6$: $c_{16} + c_{27} - c_{12} - c_{67} = c_{BS,HAL} + c_{HBS,MD} - c_{BS,HBS} - c_{HAL,MD} = 48$ > 0
 $i = 1, j = 7$: $c_{17} + c_{28} - c_{12} - c_{78} = c_{BS,MD} + c_{HBS,KS} - c_{BS,HBS} - c_{MD,KS} = -26$ < 0

Neue Rundreise:

[BS - MD - HAL - NDH - STA - WR - HBS - KS - BS]

$$L\ddot{a}nge = 586 - 26 = 560$$

Rundreise: BS - MD - HAL - NDH - STA - WR - HBS - KS - BS

Länge: 560 [km]

Ausgangslösung:

[BS - MD - HAL - NDH - STA - WR - HBS - KS - BS] Länge = 560

$\mu = 3$:

$$\begin{aligned} i &= 1, j = 3 \colon c_{13} + c_{24} - c_{12} - c_{34} = c_{BS,HAL} + c_{MD,NDH} - c_{BS,MD} - c_{HAL,NDH} = 63 > 0 \\ i &= 1, j = 4 \colon c_{14} + c_{25} - c_{12} - c_{45} = c_{BS,NDH} + c_{MD,STA} - c_{BS,MD} - c_{NDH,STA} = 69 > 0 \\ i &= 1, j = 5 \colon c_{15} + c_{26} - c_{12} - c_{56} = c_{BS,STA} + c_{MD,WR} - c_{BS,MD} - c_{HBS,KS} = 29 > 0 \\ i &= 1, j = 6 \colon c_{16} + c_{27} - c_{12} - c_{67} = c_{BS,WR} + c_{MD,HBS} - c_{BS,MD} - c_{WR,HBS} = 2 > 0 \\ i &= 1, j = 7 \colon c_{17} + c_{28} - c_{12} - c_{78} = c_{BS,HBS} + c_{MD,KS} - c_{BS,MD} - c_{HBS,KS} = 26 > 0 \\ i &= 1, j = 8 \colon c_{18} + c_{21} - c_{12} - c_{81} = c_{BS,KS} + c_{MD,BS} - c_{BS,MD} - c_{KS,BKS} = 0 \end{aligned}$$
 (würde die Tour nur umkehren)

Iteration $\mu = 3$ – Fortsetzung

$$i = 2, j = 4: c_{24} + c_{35} - c_{23} - c_{45} = c_{MD,NDH} + c_{HAL,STA} - c_{MD,HAL} - c_{NDH,STA} = 88 > 0$$

$$i = 2, j = 5: c_{25} + c_{36} - c_{23} - c_{56} = c_{MD,STA} + c_{HAL,WR} - c_{MD,HAL} - c_{STA,WR} = 82 > 0$$

$$i = 2, j = 6: c_{26} + c_{37} - c_{23} - c_{67} = c_{MD,WR} + c_{HAL,HBS} - c_{MD,HAL} - c_{WR,HBS} = 49 > 0$$

$$i = 2, j = 7: c_{27} + c_{31} - c_{23} - c_{71} = c_{MD,HBS} + c_{HAL,KS} - c_{MD,HAL} - c_{HBS,KS} = 19 > 0$$

$$i = 2, j = 8: c_{28} + c_{31} - c_{23} - c_{81} = c_{MD,KS} + c_{HAL,BS} - c_{MD,HAL} - c_{KS,BS} = 101 > 0$$

$$i = 3, j = 5: c_{35} + c_{46} - c_{34} - c_{56} = c_{HAL,STA} + c_{NDH,WR} - c_{HAL,NDH} - c_{STA,WR} = 35 > 0$$

$$i = 3, j = 6: c_{36} + c_{47} - c_{34} - c_{67} = c_{HAL,WR} + c_{NDH,HBS} - c_{HAL,NDH} - c_{WR,HBS} = 36 > 0$$

$$i = 3, j = 7: c_{37} + c_{41} - c_{34} - c_{71} = c_{HAL,HBS} + c_{NDH,KS} - c_{HAL,NDH} - c_{HBS,KS} = -37 < 0$$

Neue Rundreise:

[BS - MD - HAL - HBS - WR - STA - NDH - KS - BS]

$$L\ddot{a}nge = 560 - 37 = 523$$

Rundreise: BS - MD - HAL - HBS - WR - STA - NDH - KS - BS

Länge: 523 [km]

Ausgangslösung:

$\mu = 4$:

$$i = 1, j = 3: c_{13} + c_{24} - c_{12} - c_{34} = c_{BS,HAL} + c_{MD,HBS} - c_{BS,MD} - c_{HAL,HBS} = 24 > 0$$

$$i = 1, j = 4: c_{14} + c_{25} - c_{12} - c_{45} = c_{BS,HBS} + c_{MD,WR} - c_{BS,MD} - c_{HBS,WR} = 25 > 0$$

$$i = 1, j = 5: c_{15} + c_{26} - c_{12} - c_{56} = c_{BS,WR} + c_{MD,STA} - c_{BS,MD} - c_{WR,STA} = 41 > 0$$

$$i = 1, j = 6: c_{16} + c_{27} - c_{12} - c_{67} = c_{BS,STA} + c_{MD,NDH} - c_{BS,MD} - c_{STA,NDH} = 46 > 0$$

$$i = 1, j = 7: c_{17} + c_{28} - c_{12} - c_{78} = c_{BS,NDH} + c_{MD,KS} - c_{BS,MD} - c_{NDH,KS} = 90 > 0$$

$$i = 1, j = 8: c_{18} + c_{21} - c_{12} - c_{81} = c_{BS,KS} + c_{BS,MD} - c_{BS,MD} - c_{KS,BS} = 0$$

Iteration $\mu = 4$ – Fortsetzung

$$i = 2, j = 4: c_{24} + c_{35} - c_{23} - c_{45} = c_{MD,HBS} + c_{HAL,WR} - c_{HBS,WR} - c_{MD,HAL} = 43 > 0$$

$$i = 2, j = 5: c_{25} + c_{36} - c_{23} - c_{56} = c_{MD,WR} + c_{HAL,STA} - c_{MD,HAL} - c_{WR,STA} = 71 > 0$$

$$i = 2, j = 6: c_{26} + c_{37} - c_{23} - c_{67} = c_{MD,STA} + c_{HAL,NDH} - c_{MD,HAL} - c_{STA,NDH} = 66 > 0$$

$$i = 2, j = 7: c_{27} + c_{31} - c_{23} - c_{71} = c_{MD,NDH} + c_{HAL,KS} - c_{MD,HAL} - c_{NDH,KS} = 95 > 0$$

$$i = 2, j = 8: c_{28} + c_{31} - c_{23} - c_{81} = c_{MD,KS} + c_{HAL,BS} - c_{MD,HAL} - c_{KS,BS} = 101 > 0$$

$$i = 3, j = 5: c_{35} + c_{46} - c_{34} - c_{56} = c_{HAL,WR} + c_{HBS,STA} - c_{HAL,HBS} - c_{WR,STA} = 32 > 0$$

$$i = 3, j = 6: c_{36} + c_{47} - c_{34} - c_{67} = c_{HAL,STA} + c_{HBS,NDH} - c_{HAL,HBS} - c_{STA,NDH} = 42 > 0$$

$$i = 3, j = 7: c_{37} + c_{41} - c_{34} - c_{71} = c_{HAL,NDH} + c_{HBS,KS} - c_{HAL,HBS} - c_{NDH,KS} = 37 > 0$$

$$i = 3, j = 8: c_{38} + c_{41} - c_{34} - c_{81} = c_{HAL,KS} + c_{HBS,BS} - c_{HAL,HBS} - c_{KS,BS} = 22 > 0$$

Iteration $\mu = 4$ – Fortsetzung

$$i = 4, j = 6$$
: $c_{46} + c_{57} - c_{45} - c_{67} = c_{HBS,STA} + c_{WR,NDH} - c_{HBS,WR} - c_{STA,NDH} = 29 > 0$
 $i = 4, j = 7$: $c_{47} + c_{51} - c_{45} - c_{71} = c_{HBS,NDH} + c_{WR,KS} - c_{HBS,WR} - c_{NDH,KS} = 41 > 0$
 $i = 4, j = 8$: $c_{48} + c_{51} - c_{45} - c_{81} = c_{HBS,KS} + c_{WR,BS} - c_{HBS,WR} - c_{KS,BS} = 29 > 0$
 $i = 5, i = 7$: $c_{57} + c_{69} - c_{56} - c_{79} = c_{WR,NDH} + c_{STA,WS} - c_{WR,STA} - c_{NDH,WS} = 5 > 0$

$$i = 5, j = 7: c_{57} + c_{68} - c_{56} - c_{78} = c_{WR,NDH} + c_{STA,KS} - c_{WR,STA} - c_{NDH,KS} = 5 > 0$$

$$i = 5, j = 8: c_{58} + c_{61} - c_{56} - c_{81} = c_{WR,KS} + c_{STA,BS} - c_{WR,STA} - c_{KS,BS} = 18 > 0$$

$$i = 6, j = 8: c_{68} + c_{71} - c_{67} - c_{81} = c_{STA,KS} + c_{NDH,BS} - c_{STA,NDH} - c_{KS,BS} = 12 > 0$$

Lösung nach Iteration $\mu = 4$

Keine Verbesserung mehr möglich, kürzeste 2-optimale Rundreise gefunden

Allerdings eine weitere optimale Lösung, da Δ (i = 1, j = 8) = 0 (umgekehrte Tour)

Rundreise nach 2-opt:

Länge = 523

Rundreise: BS - MD - HAL - HBS - WR - STA - NDH - KS - BS

Länge: 523 [km]

Vergleich der Lösungen

Verfahren	Spezifikation	Tourlänge	Tour
Zuordnungsproblem	Keine TSP-Tour	483	BS – HBS – WR – BS, MD – HAL – MD, KS – STA – NDH – KS
Optimale Lösung	z.B. durch B&B oder Zyklenbedingungen	508	BS - HBS - WR - STA - KS - NDH - HAL - MD - BS
Bester Nachfolger	Startknoten BS	601	BS – WR – HBS – STA – NDH – HAL – MD – KS – BS
Bester Nachfolger	Startknoten KS	535	KS – STA – WR – HBS – NDH – HAL – MD – BS – KS
Sukzessive Einbeziehung	Alphanumerisch mit Start [BS-WR-BS]	542	BS - KS - NDH - STA - WR - HAL - MD - HBS - BS
Sukzessive Einbeziehung	Entferntestes Einfügen	510	KS – NDH – HAL – MD – HBS – BS – WR – STA – KS
2-opt	Mit Startlösung durch Verfahren des besten Nachfolgers mit Startknoten BS	523	BS - MD - HAL - HBS - WR - STA - NDH - KS - BS
2-opt	Mit Startlösung durch sukzessive Einbeziehung mit entferntestem Einfügen	508	BS - MD - HAL - NDH - KS - STA - WR - HBS - BS

Zusammenfassung

- Heuristische Verfahren
 - Ermittlung guter zulässiger Lösungen mit vertretbarem Aufwand, allerdings unter Aufgabe der Optimalitätsgarantie
- Heuristische Lösungsverfahren für das TSP
 - Unvollständig ausgeführte exakte Verfahren
 - Unvollständiger B&B
 - Eröffnungsverfahren
 - Verfahren des besten Nachfolgers
 - Sukzessive Einbeziehung
 - Verbesserungsverfahren
 - 2-opt

