

What is claimed is:

- 1 1. A method, comprising the steps of:
 - 2 a) having a cellular module respond to a cellular
3 communication signal by providing a trigger pulse derived
4 from the data component of the cellular communication signal;
5 and
 - 6 b) directing the trigger pulse along a special hardware path
7 leading from the cellular module to a user module;
8 wherein the special hardware path conducts the trigger pulse in
9 such a way that the trigger pulse is provided to the user module
10 substantially free of any significant random delays.
- 1 2. The method of claim 1, wherein the user module includes a
2 frequency generation module that provides a stable frequency
3 reference based on the trigger pulse.
- 1 3. The method of claim 1, further comprising the step of
2 identifying each new frame in the cellular communication signal,
3 and wherein the trigger pulse is provided each time a new frame
4 is identified.
- 1 4. The method of claim 1, further comprising the step of
2 identifying each new time slot in the cellular communication
3 signal, and wherein the trigger pulse is provided each time a new
4 time slot is identified.
- 1 5. The method of claim 1, further comprising the step of
2 identifying each new data bit in the cellular communication
3 signal, and wherein the trigger pulse is provided each time a new
4 data bit is identified.

1 6. The method of claim 1, further comprising the step of having
2 the user module respond to a global positioning system (GPS)
3 satellite navigation signal and also having the user module
4 respond to the stable frequency reference by using the stable
5 frequency reference to stabilize the operation of a local clock.

1 7. An apparatus comprising:

- 2 a) a cellular module, responsive to a cellular communication
3 signal, for providing a trigger pulse derived from the data
4 component of the cellular communication signal;
- 5 b) a user module; and
- c) a special hardware path, for conducting the trigger pulse
 from the cellular module to the user module in such a way
 that the trigger pulse is provided free of any significant
 random delays.

8. The apparatus of claim 7, wherein the user module includes a frequency generation module that provides a stable frequency reference based on the trigger pulse.

1 9. The apparatus of claim 7, further comprising a frame counter,
2 and wherein the trigger pulse is provided each time the frame
3 counter indicates a new frame.

1 10. The apparatus of claim 7, further comprising a time slot
2 counter, and wherein the trigger pulse is provided each time the
3 time slot counter indicates a new time slot.

1 11. The apparatus of claim 7, further comprising a data bit
2 counter, and wherein the trigger pulse is provided each time the
3 data bit counter indicates a new data bit.

1 12. The apparatus of claim 7, wherein the apparatus is a global
2 positioning system (GPS) receiver further comprising a GPS module
3 including the frequency generation module, the GPS module also
4 including a local oscillator, the GPS module responsive to the
5 stable frequency reference and further responsive to a GPS
6 satellite navigation signal.

1 13. A system comprising:

- 2 a) a cellular base station, for providing a cellular
3 communication signal;
- 4 b) a cellular module, responsive to the cellular
5 communication signal, for providing a trigger pulse derived
6 from the data component of the cellular communication signal;
- 7 c) a user module; and
- 8 d) a special hardware path, for conducting the trigger pulse
9 from the cellular module to the user module in such a way
10 that the trigger pulse is provided free of any significant
11 random delays.

1 14. The system of claim 13, wherein the user module includes a
2 frequency generation module that provides a stable frequency
3 reference based on the trigger pulse.

1 15. The system of claim 13, further comprising a frame counter,
2 and wherein the trigger pulse is provided each time the frame
3 counter indicates a new frame.

1 16. The system of claim 13, further comprising a time slot
2 counter, and wherein the trigger pulse is provided each time the
3 time slot counter indicates a new time slot.

1 17. The system of claim 13, further comprising a data bit
2 counter, and wherein the trigger pulse is provided each time the
3 data bit counter indicates a new data bit.

1 18. The system of claim 13, wherein the system is a global
2 positioning system (GPS) receiver further comprising a GPS module
3 including the frequency generation module, the GPS module also
4 including a local oscillator, the GPS module responsive to the
5 stable frequency reference and further responsive to a GPS
6 satellite navigation signal.