Review of Linear Discrimination

Mengting Chen

October 27, 2022

1 Three Approaches to Decision Problems

(a) First solve the inference problem of determining the class-conditional densities $p(\mathbf{x}|\mathcal{C}_k)$ for each class \mathcal{C}_k individually. Also separately infer the prior class probabilities $p(\mathcal{C}_k)$. Then use Bayes' theorem in the form

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})}$$
(1.82)

to find the posterior class probabilities $p(C_k|\mathbf{x})$. As usual, the denominator in Bayes' theorem can be found in terms of the quantities appearing in the numerator, because

$$p(\mathbf{x}) = \sum_{k} p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k). \tag{1.83}$$

Equivalently, we can model the joint distribution $p(\mathbf{x}, C_k)$ directly and then normalize to obtain the posterior probabilities. Having found the posterior probabilities, we use decision theory to determine class membership for each new input \mathbf{x} . Approaches that explicitly or implicitly model the distribution of inputs as well as outputs are known as *generative models*, because by sampling from them it is possible to generate synthetic data points in the input space.

- (b) First solve the inference problem of determining the posterior class probabilities $p(C_k|\mathbf{x})$, and then subsequently use decision theory to assign each new \mathbf{x} to one of the classes. Approaches that model the posterior probabilities directly are called *discriminative models*.
- (c) Find a function $f(\mathbf{x})$, called a discriminant function, which maps each input \mathbf{x} directly onto a class label. For instance, in the case of two-class problems, $f(\cdot)$ might be binary valued and such that f=0 represents class \mathcal{C}_1 and f=1 represents class \mathcal{C}_2 . In this case, probabilities play no role.

$\mathbf{2}$ Approach (c)

2.1 Two classes

Two classes: $\{C_1, C_2\}$.

Linear discriminant function: $y(\mathbf{x}) = \mathbf{w}^\mathsf{T} \mathbf{x} + w_0$.

Decision rules: $\begin{cases} y(\mathbf{x}) \geq 0 & \mathbf{x} \in C_1 \\ y(\mathbf{x}) < 0 & \mathbf{x} \in C_2 \end{cases}$. Decision boundary: $y(\mathbf{x}) = 0$.

2.2 Multiple classes

Multiple classes: $\{C_1, \ldots, C_K\}$.

Linear discriminant function: $y_k(\mathbf{x}) = \mathbf{w}_k^\mathsf{T} \mathbf{x} + w_{k,0}$.

Decision rules: $\begin{cases} y_k(\mathbf{x}) \ge y_j(\mathbf{x}) & \mathbf{x} \in C_k \\ y_k(\mathbf{x}) < y_j(\mathbf{x}) & \mathbf{x} \in C_j \end{cases}$

Decision boundary: $y_k(\mathbf{x}) = y_j(\mathbf{x})$ or $y_k(\mathbf{x}) - y_j(\mathbf{x}) = (\mathbf{w}_k - \mathbf{w}_j)^\mathsf{T} \mathbf{x} + (w_{k,0} - \mathbf{w}_j)^\mathsf{T} \mathbf{x}$ $w_{j,0}) = 0.$

Probabilistic Generative Models 3

By Bayes' theorem: $P(C_k|\mathbf{x}) \propto P(\mathbf{x}|C_k)P(C_k)$.

Decision rules: Choose the class with largest posterior.

3.1 Two classes

The posterior probability for class C_1 can be written as

$$P(C_{1}|\mathbf{x}) = \frac{P(C_{1}|\mathbf{x})}{P(C_{1}|\mathbf{x}) + P(C_{2}|\mathbf{x})}$$

$$= \frac{P(\mathbf{x}|C_{1})P(C_{1})}{P(\mathbf{x}|C_{1})P(C_{1}) + P(\mathbf{x}|C_{2})P(C_{2})}$$

$$= \frac{1}{1 + \frac{P(\mathbf{x}|C_{2})P(C_{2})}{P(\mathbf{x}|C_{1})P(C_{1})}}$$

$$\sigma(a) := \frac{1}{1 + e^{-a}},$$
(1)

where

$$a(P(C_1|\mathbf{x})) := \ln \frac{P(\mathbf{x}|C_1)P(C_1)}{P(\mathbf{x}|C_2)P(C_2)}.$$
(2)

We call $\sigma(\cdot)$ as the **sigmoid** function, and $a(\cdot)$ as the **logit** function.

Figure 1: Sigmoid

Decision rules via posterior: Choose C_1 , if $P(C_1|\mathbf{x}) \geq 0.5$.

In order to classify an input \mathbf{x} , we need to compute posterior for each class, which is uniquely identified by the logit function a. So a is defined as **discriminant** here.

Decision rules via discriminant: Choose C_1 , if $a(P(C_1|\mathbf{x})) \ge 0$. $(\Leftrightarrow P(C_1|\mathbf{x}) \ge 0.5)$

3.1.1 Gaussian $p(\mathbf{x}|C_k)$ with the same Σ

$$p(\mathbf{x}|C_k) = \frac{1}{(2\pi)^{N/2} |\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^\mathsf{T} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\right\}, k = 1, 2.$$
 (3)

Plug (3) into (1), we have

$$\begin{split} a(P(C_1|\mathbf{x})) &= \ln \frac{P(\mathbf{x}|C_1)P(C_1)}{P(\mathbf{x}|C_2)P(C_2)} \\ &= \ln \frac{P(\mathbf{x}|C_1)}{P(\mathbf{x}|C_2)} + \ln \frac{P(C_1)}{P(C_2)} \\ &= \ln \frac{\exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_1)^\mathsf{T}\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_1)\right\}}{\exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_2)^\mathsf{T}\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_2)\right\}} + \ln \frac{P(C_1)}{P(C_2)} \\ &= \boldsymbol{\Sigma}^{-1} \left[(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)^\mathsf{T}\mathbf{x} + (-\frac{1}{2}\|\boldsymbol{\mu}_1\|^2 + \frac{1}{2}\|\boldsymbol{\mu}_2\|^2) \right] + \ln \frac{P(C_1)}{P(C_2)} \\ &= \mathbf{w}^\mathsf{T}\mathbf{x} + w_0. \end{split}$$

So if class-conditional densities are Gaussian with the same covariance matrix, the discriminant is ${\bf linear}$ over ${\bf x}$.

Decision rules via discriminant: Choose C_1 , if $a(P(C_1|\mathbf{x})) = \mathbf{w}^\mathsf{T}\mathbf{x} + w_0 \ge 0$.

3.2 Multiple classes

The posterior probability for class C_k can be written as

$$P(C_k|\mathbf{x}) = \frac{P(C_k|\mathbf{x})}{\sum_{j=1}^K P(C_j|\mathbf{x})}$$

$$= \frac{P(\mathbf{x}|C_k)P(C_k)}{\sum_{j=1}^K P(\mathbf{x}|C_j)P(C_j)}$$
softmax $(a_k) := \frac{e^{a_k}}{\sum_{j=1}^K e^{a_j}}$ (4)

where

$$a_k(\mathbf{x}) := \ln P(\mathbf{x}|C_k)P(C_k).$$

As posterior is identified by all a_k 's, they are defined as discriminants.

Decision rules via posterior: Choose C_k , if $P(C_k|\mathbf{x})$ is the largest.

Decision rules via discriminant: Choose C_k , if $a_k(\mathbf{x})$ is the largest.

Similarly, if class-conditional densities are Gaussian with the same covariance matrix, the discriminant is linear over \mathbf{x} .

Decision rules via discriminant: Choose C_k , if $a_k(\mathbf{x}) = \mathbf{w}_k^\mathsf{T} \mathbf{x} + w_{k,0} \ge a_j(\mathbf{x}) = \mathbf{w}_i^\mathsf{T} \mathbf{x} + w_{j,0}$ for all $j \ne k$.

Figure 2: Three Gaussian models, the first two share the same covariance matrix

4 Probabilistic Discriminative Models

Directly maximize a likelihood function defined through the conditional distribution $p(C_k|\mathbf{x})$. Or equivalently, minimize negative log-likelihood (cross-entropy error).

4.1 Two classes

As in (1), posterior of class C_1 is in the form of sigmoid.

- 1) Build error function
- 2) Use gradient descent method to estimate parameters (the chain rule)
- 3) Compute $P(C_1|x) = \sigma(a)$, choose C_1 if $P(C_1|x) > 0.5$.

4.2 Multiple classes

As in (4), posterior of class C_k is in the form of softmax.

- 1) Build error function
- 2) Use gradient descent method to estimate parameters
- 3) Compute $P(C_k|x) = \text{sigmoid}(a_k)$, choose C_k if $P(C_k|x)$ is the largest.

Two-class Classification

Perceptron

Input vector $\mathbf{x} = [x_1, \dots, x_n]^T$, want to find

$$f(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{j=1}^{n} w_j x_j\right) + w_0\right)$$

The "bias weight" w_0 corresponds to the threshold when the neuron is triggered.

We have defined a Hypothesis set \mathcal{H} (dummy variable $x_0 \equiv 1$)

$$\mathcal{H} = \{ f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x}) \}$$

called the perceptron or linear separator

A perceptron fits the data by using a line to separate the +1 from -1 data

A simple learning model

- Input vector $\mathbf{x} = [x_1, \dots, x_d]^T$
- Given importance weights to the different inputs and compute a "Credit Score"

"Credit Score"
$$=\sum_{i=1}^d w_i x_i$$
.

- Approve credit if the "Credit Score" is acceptable "Approve Score" $=\sum_{i=1}^d w_i x_i >$ threshold. ("credit" is good) "Deny Score" $=\sum_{i=1}^d w_i x_i <$ threshold. ("credit" is bad)
- lacksquare How to choose the importance weights w_i

```
\begin{array}{lll} \text{input } x_i \text{ is important} & \to & \text{large weight } |w_i| \\ \text{input } x_i \text{ beneficial for credit} & \to & \text{positive weight } w_i > 0 \\ \text{input } x_i \text{ detrimental for credit} & \to & \text{negative weight } w_i < 0 \end{array}
```

"Approve Score"
$$=\sum_{i=1}^d w_i x_i >$$
 threshold. ("credit" is good) "Deny Score" $=\sum_{i=1}^d w_i x_i <$ threshold. ("credit" is bad)

can be written formally as

$$f(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^{d} w_i x_i\right) + w_0\right)$$

The "bias weight" w_0 corresponds to the threshold when the neuron is triggered

$$\mathbf{x} = [x_1, \dots, x_d], \mathbf{w}' = [w_1, \dots, w_d]$$

- (1) $\mathbf{w}^{\prime T}\mathbf{x} > \text{threshold}, Y;$
- (2) $\mathbf{w}^{\prime T}\mathbf{x} \leq \text{threshold}, N;$
- (1) can be rewritten as $\mathbf{w}^{\prime T}\mathbf{x} \text{threshold} = \mathbf{w}^{\prime T}\mathbf{x} + w_0 = \mathbf{w}^T\mathbf{x} > 0$, where $w_0 = -\text{threshold}, \quad \mathbf{w} = [w_1, \dots, w_d, w_0].$

The perceptron learning algorithm (PLA)

The perceptron implements

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Given the training set:

$$(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\cdots,(\mathbf{x}_N,y_N)$$

pick a misclassified point:

$$sign(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n) \neq y_n$$

and update the weight vector:

$$\mathbf{w} \leftarrow \mathbf{w} + y_n \mathbf{x}_n$$

Why adding $\pm \mathbf{x}_i$ to \mathbf{w} ?

PLA implements our idea: start at some weights and try to improve it

"Incremental learning" on a single example at a time

$$\mathbf{a} \cdot \mathbf{b} = \cos \langle \mathbf{a}, \mathbf{b} \rangle ||\mathbf{a}|| ||\mathbf{b}||$$

Logistic Regression

Finding loss functions

A third linear prediction model

$$\mathbf{s} = \sum_{i=0}^{d} w_i x_i = \mathbf{w}^T \mathbf{x}$$

linear classification

$$h(\mathbf{x}) = \operatorname{sign}(s)$$

linear regression

$$h(\mathbf{x}) = s$$

logistic regression

$$h(\mathbf{x}) = \theta(s)$$

The logistic function

$$\theta(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$

Properties about θ :

$$\theta(-s) = 1 - \theta(s), \quad \theta'(s) = \frac{e^s}{(1 + e^s)^2} = \theta(s)(1 - \theta(s))$$

Error Measure: likelihood

$$P(y \mid \mathbf{x}) = \begin{cases} h(\mathbf{x}) & \text{for } y = +1; \\ 1 - h(\mathbf{x}) & \text{for } y = -1. \end{cases}$$

$$P(y \mid \mathbf{x}) = \theta(y \ \mathbf{w}^{\mathsf{T}} \mathbf{x})$$

Properties about θ :

For an input \mathbf{x} , it has two possibilities: being labelled as +1, or -1. Compute $score = \mathbf{w}^T \mathbf{x}$,

- 1. if score > 0,
 - a. then it is more likely to be classified into y = +1,

$$P(y = +1|\mathbf{x}) = h(\mathbf{x}) = \theta(score) \in (0.5, 1).$$

b. and is less likely to be classified into y = -1,

$$P(y = -1|\mathbf{x}) = 1 - h(\mathbf{x}) = \theta(-score) \in (0, 0.5).$$

2. if score < 0,

a. then it is more likely to be classified into y = -1,

$$P(y = -1|\mathbf{x}) = h(\mathbf{x}) = \theta(score) \in (0, 0.5).$$

b. and is less likely to be classified into y = +1,

$$P(y=+1|\mathbf{x})=1-h(\mathbf{x})= heta(-score)\in (0.5,1).$$

So $P(y|\mathbf{x}) = \theta(y \cdot score)$.

Likelihood of
$$\mathcal{D}=(\mathbf{x}_1,y_1),\ldots,(\mathbf{x}_N,y_N)$$
 is
$$\prod_{n=1}^N P(y_n\mid \mathbf{x}_n)=\prod_{n=1}^N \theta(y_n\mathbf{w}^{\mathsf{T}}\mathbf{x}_n)$$

MLE

Maximize the likelihood, is to minimize:

$$-\frac{1}{N} \ln \left(\prod_{n=1}^{N} \theta(y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n) \right)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \ln \left(\frac{1}{\theta(y_n \mathbf{w}^{\mathsf{T}} \mathbf{x}_n)} \right) \qquad \left[\theta(s) = \frac{1}{1 + e^{-s}} \right]$$

$$E_{\mathrm{in}}(\mathbf{w}) \ = \frac{1}{N} \ \sum_{n=1}^{N} \ \underbrace{\ln \left(1 + e^{-y_n \mathbf{w}^\mathsf{T}} \mathbf{x}_n \right)}_{\mathrm{e}\left(h(\mathbf{x}_n), y_n\right)} \qquad \text{``cross-entropy'' error'}$$

Summary:

- $score = \mathbf{w}^T \mathbf{x}_i$, where $\mathbf{w} = [\mathbf{w}', w_0]$
- Perceptron: sign(score) for classification: $y_{pred} = \{+1, -1\}$
 - o treat data locally, require the dataset to be linearly separable
 - \circ if \mathbf{x}_i is misclassified, then update weights: $\mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i$
- sigmoid(score) for probability: $P(y|\mathbf{x}) \in (0,1)$
 - o treat data globally, be tolerable to noise
 - Loss: negative log-likelihood