Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа ядерных технологий Направление — Ядерные физика и технологии Отделение ядерно-топливного цикла

КУРСОВОЙ ПРОЕКТ

по дисциплине «Междисциплинарный проект» на тему «Расчет основных параметров изотопного обмена в разделительном каскаде при стационарном режиме его работы» Вариант 6

Исполнитель:			
Проверил:			

СОДЕРЖАНИЕ

1.	Теоретическая часть		
	1.1.	Основные определения и соотношения	3
	1.2. I	Принципиальная схема работы колонны или каскада колонн	4
2.	Метод	дика проведения расчетов	5
3.	Практическая часть		
	3.1. I	Исходные данные для расчета	6
	3.2. I	Расчет изменения изотопной концентрации по каскаду в	
	C	стационарном режиме	6
Ст			Q

ЦЕЛЬ РАБОТЫ: провести расчет изменения концентрации ⁷Li по колоннам каскада в режимах без отбора и с отбором при заданных параметрах его работы.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1. Основные определения и соотношения

Одним из наиболее эффективных промышленных методов разделения изотопов лёгких элементов (водорода, лития, бора, углерода и др.) является физико-химический метод изотопного обмена. Важной особенностью физико-химических методов является обратимость элементарного акта разделения и двухфазность рабочей системы.

Наиболее удобной рабочей двухфазной системой считается система жидкость - газ. Процесс разделения изотопов при этом проводят в разделительных колоннах, при непрерывном противоточном движении потоков жидкой (L) и газовой (G) фаз. Поскольку значения констант равновесия, летучестей и т. д. для различных изотопнозамещенных форм различно, то возникает изотопный эффект, приводящий к изменению содержания данного изотопа в разных фазах. Вследствие этого эффекта, характеризуемого величиной коэффициента разделения α , содержание изотопа в фазе L, покидающей некоторое сечение колонны II будет отличаться от содержания этого же изотопа в фазе G, покидающей сечение I:

$$\alpha = \frac{c_2(1 - c_1)}{c_1(1 - c_2)} \tag{1}$$

где c_1, c_2 — мольные доли целевого изотопа в равновесных фазах. Уравнение, описывающее обогащение в каскаде из элементов второго рода, при условии, что α для всех элементов одинаково, а коэффициент обогащения $\varepsilon = (\alpha - 1) << 1$ и поток отбора P << L имеет вид:

$$\frac{dc}{dn} = \varepsilon c(1-c) - \frac{P}{L}(c_P - c) \tag{2}$$

где c_P – концентрация отбора.

1.2. Принципиальная схема работы колонны или каскада колонн

Разделительные колонны различаются по виду, особенностям строения и работы. На рисунке 1 приведена схема работы колонны.

Рисунок 1 — Схема процесса разделения изотопов Обозначения: c_P , c_F , c_W – концентрации отбора, питания, отвала; P, F, W – потоки отбора, питания, отвала

Разделяемая бинарная смесь изотопов подаётся в среднюю часть колонны (рисунок 1), в которой осуществляется противоточное движение фаз. Проходя последовательно ряд разделительных элементов, одна из фаз обогащается лёгким изотопом, а другая – тяжёлым. На концах колонны имеются специальные аппараты, которые предназначены для создания противоточного движения фаз путём перевода смеси изотопов из одной фазы в другую. В стационарном режиме работы колонны справедливы следующие

соотношения материального баланса:

$$Fc_F = Pc_P + Wc_W (3)$$

$$F = P + W \tag{4}$$

В ряде случаев при большой высоте колонны и, исходя из различных практических особенностей организации разделительного процесса, колонну разбивают на несколько, образующие каскад колонн.

2. МЕТОДИКА ПРОВЕДЕНИЯ РАСЧЕТОВ

ПРАКТИЧЕСКАЯ ЧАСТЬ 3.

3.1. Исходные данные для расчета

Концентрация отбора $c_P = 0.995$; Концентрация питания $c_F = 0.925$; Концентрация отвала $c_W = 0.9$; Температура $T=15~^{o}C;$ Поток отбора $P=150~\frac{\mathrm{K}\Gamma}{\Gamma\mathrm{O}\Pi};$ Доля сокращения потока на одной TT r = 0.5 %; Количество ТТ в одной колонне N=20.

3.2. Расчет изменения изотопной концентрации по каскаду в стационарном режиме

Поток отбора переведен из кг/год в моль/ч:

Поток отбора переведен из кг/год в моль/ч:
$$P = 150 \frac{\text{кг}}{\text{год}} = \frac{150 \frac{\text{кг}}{\text{год}}}{M} = \frac{150 \cdot \frac{1}{365 \cdot 24} \frac{\text{кг}}{\text{ч}}}{(7c_P + 6(1 - c_P)) \cdot 10^{-3} \frac{\text{кг}}{\text{моль}}} \approx UndefinedValue \frac{\text{моль}}{\text{ч}}$$

Рассчитано значение коэффициента разделения по формуле (5):

$$\alpha = 1 + \frac{4755}{T^2} - \frac{0,803}{T} \tag{5}$$

$$\alpha = 1 + \frac{4755}{(273 + 15)^2} - \frac{0,803}{273 + 15} \approx UndefinedValue$$

Рассчитано значение коэффициента обогащения по формуле (6):

$$\varepsilon = \alpha - 1 \tag{6}$$

 $\varepsilon = UndefinedValue - 1 = UndefinedValue$

По формуле (18) определено число теоретических тарелок:

выводы

- 1. Проведен расчет изменения концентрации ⁷Li по колоннам каскада в режимах без отбора и с отбором при заданных параметрах его работы для амальгамно-обменного способа. Построены график изменения концентрации ⁷Li в обоих режимах работы каскада и принципиальная схема полученного каскада.
- 2. Рассчитано, что для обеспечения целевой концентрации на выходе из каскада колонн в безотборном режиме необходимо минимально три колонны.
- 3. Показано, что в режиме без отбора концентрация по 7 Li на выходе из каскада колонн, состоящей из 6 обменных колонн, 0,99984.
- 4. Определено, что необходимо увеличить минимальный начальный поток в 1,576 раз для сшивки каскада по концентрации отвала.
- 5. Установлено, что скорость изменения концентрации по колоннам каскада для режима без отбора больше, чем для режима с отбором.
- 6. Определены потоки питания F=9,30749 моль/ч и отвала W=6,85956 моль/ч.

СПИСОК ЛИТЕРАТУРЫ

- 1. Мухин К.Н. Экспериментальная ядерная физика. В двух томах. Т. 1. Физика атомного ядра. Учебник для вузов. Изд. 3-е М., Атомиздат, 1974 г., 584 с.
- 2. РД-07-15-2002. Федеральный надзор России по ядерной и радиационной безопасности [Текст]. Введ. 2003-05-10. М.:Гостатомнадзор России.
- 3. Кондратьев В.Н. Кинетика химических газовых реакций, М.: АН СССР, 1958. 693 с.
- 4. Источники Гамма излучения: [Электронный ресурс] // Изотоп Ростатом. URL: http://www.isotop.ru/files/treecontent/nodes/attaches/0/95/noname..pdf. (Дата обращения 15.04.2022).
- 5. Сталь марки 12X18H10T: [Электронный ресурс] // Центральный металлический портал. URL: https://metallicheckiy-portal.ru/marki_metallov/stk/12X18H10T (Дата обращения 15.04.2022).
- 6. Сталь марки AISI316: [Электронный ресурс] // Центральный металлический портал. URL: https://metallicheckiy-portal.ru/marki_metallov/stn/AISI316 (Дата обращения 15.04.2022).
- 7. Geant4 A simulation toolkit: [Электронный ресурс]. URL: https://geant4.web.cern.ch/. (Дата обращения 15.02.2022).
- 8. Стивен Прата. Язык программирования C++ (C++11). Лекции и упражнения, 6-е издание М.: Вильямс, 2012. 1248 с.