

# Graphs





#### Lecture Flow

- 1) Pre-requisites
- 2) Definition of Graphs
- 3) Types of Graphs
- 4) Graph terminologies
- 5) Checkpoint

- 6) Graph representations
- 7) Graphs & Trees
- 8) Receiving Inputs on Graph

**Problems** 

- 9) Practice questions
- 10) Quote of the day





### Pre-requisites

- Arrays / Linked list
- Matrices
- Dictionaries
- Time and space complexity analysis





# What is a Graph?





#### Definition

- A way to represent relationships between objects.
- A collection of nodes that have data and are connected to other nodes.





#### **Example: Friendship Graph**

- Nodes or vertices: The objects in graph
  - These people our case
- Edges: the relation between nodes.
  - The friendship between them (the lines)







## What are the types of graphs?





#### **Undirected Graph**

- Facebook friendship
- If Alice is friends with Bob,
   Bob is also friends with alice







#### **Directed Graph**

- Twitter's "following" relation
- If person A follows person B, that does not mean that person B follows person A.







# Let's say we want to add a weight parameter which represents the strength of the friendship.

How can we do that?





### **Unweighted Graph**

All edges have the same value.







### Weighted Graph

Weighted graphs assign numerical values to edges.







# **Graph Terminologies**





#### Terminology: Node / Vertex

- Represent entities (e.g., people, devices).
- Connected to other nodes by edges.







#### Terminology: Edge

- Connection between two nodes.
- Represented by lines or arrows.
- model relationships in various systems.







#### Terminology: Neighbors

 Two nodes are neighbors or adjacent if there is an edge between them

Graph Neighborhood







#### Terminology: Degree

- Node degree = number of neighbors.
- In directed graphs:
  - Indegree = edges ending at node.
  - Outdegree = edges starting at node.







#### Terminology: Path

- A path leads from one node to another.
- The length of a path is the number of edges in it.
- Let's consider the path between node A and node F







#### Terminology: Cycle

A path is a cycle if the first and the last node of the path is the same.







#### **Terminology: Connectivity**

A graph is **connected** if there is a path between any two nodes







#### **Terminology: Components**

The connected parts of a graph are called its components.



The counts of connected components are - 2, 3 and 2





#### **Terminology: Complete Graph**

A complete graph is a graph in which each pair of node is connected by an edge.





## Summary









| Node:?         |
|----------------|
| Edge:?         |
| Path:?         |
| Cycle:?        |
| Connectivity:? |
| Components:?   |





**Node**: represents elements

Edge: is like a line connecting two points or nodes

Path: list of edges that connects nodes

Cycle: if start and end of a path is the same

Connectivity: if there is a path between any two nodes of the graph

Components: connected part of a graph





| Tree:?                 |
|------------------------|
| Neighbours(adjacent):? |
| Degree:?               |
| Indegree:?             |
| Outdegree:?            |
| Complete Graph:?       |





**Tree**: is undirected, connected graph consists of n nodes and n-1 edges

Neighbours(adjacent): two nodes are neighbors if there is an edge between them

**Degree**: is number of neighbours a node has

**Indegree**: number of edges that end at the node

Outdegree: number of edges that start at the node

Complete Graph: every node has n-1 degree (an edge from every node to every other node)





## **Graph Representations**





#### **Graph Representations**

- Adjacency Matrix
- Adjacency List
- Edge List
- Grids as Graphs





## **Graph Representation: Adjacency matrix**



Adjacency Matrix

|   | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 | 1 |
| 2 | 0 | 0 | 0 | 1 | 0 |
| 3 | 0 | 0 | 0 | 0 | 1 |
| 4 | 0 | 0 | 0 | 0 | 0 |





# Advantages and disadvantages of Adjacency Matrix





#### **Graph Representation: Adjacency matrix**

#### **Advantages:**

- To represent dense graphs.
- Edge lookup is fast

#### **Disadvantages:**

 It takes more time to build and consume more memory
 (O(N\*\*2) for both cases)

Finding neighbors of a node is costly





#### Graph Representation: Adjacency List using List







#### Graph Representation: Adjacency List using Linked List







# Advantages and Disadvantages of Adjacency List





#### Graph Representation: Adjacency list

#### **Advantages:**

- It uses less memory
- Neighbours of a node can be found pretty fast
- Best for sparse graphs

#### **Disadvantages:**

Edge look up is slow





#### Graph Representation: Edge list







## Advantages and Disadvantages of Edge List





### Graph Representation: Edge list

#### **Advantages:**

- It uses less memory.
- Easy to represent

#### **Disadvantages:**

- Edge look up is slow
- Hard to traverse





### Graph Representation: Grids as Graph

- Matrix cells = nodes
- Edges between adjacent cells:
  - 4 perpendicular
  - 2 diagonal/antidiagonal.







### Graph Representation: Grids

#### - Direction vectors







# **Graph and Tree**



#### Tree



- A tree is a connected and acyclic graph.
- A tree has a unique path between any two vertices.
- How many edges does a tree have?







## Receiving Inputs on Graph Problems





## **Adjacency List Inputs**





#### Receiving Inputs: Directed Unweighted Graphs - AL

```
Input:
[[1, 2], [0], [], [2, 0]]
```





#### Receiving Inputs: Directed Unweighted Graphs - AL





## Think of ways to implement this





#### Receiving Inputs: Directed Weighted Graphs - AL

```
Input:
3 2,3 1,2 0,5
1 2,5
2 3,1
```





#### Receiving Inputs: Directed Weighted Graphs - AL







#### Receiving Inputs: DWG Complexity Analysis - AL

- Time Complexity: O(n + m)
- Space Complexity: O(2m)

```
n = number of nodesm = number of edges
```





# **Adjacency Matrix Inputs**





#### Receiving Inputs: Directed Weighted Graphs - AM

```
Input:
```





#### Receiving Inputs: DWG Illustration - AM









#### Receiving Inputs: DWG Complexity Analysis - AM

- Time Complexity: O(n^2)
- Space Complexity: O(n^2)

n = number of nodes(matrix length)





#### Receiving Inputs: Undirected Weighted Graphs - AM

```
Input:
0 1 2
```





#### Receiving Inputs: UDWG Illustration - AM









#### Receiving Inputs: UDWG Complexity Analysis - AM

- Time Complexity: O(n<sup>2</sup>)
- Space Complexity: O(n^2)

**n** = number of nodes (matrix length)





# **Edge List Inputs**





#### Receiving Inputs: Directed Weighted Graphs - EL

```
Input:
1 2 2
```





## Receiving Inputs: DWG Illustration - EL







#### Receiving Inputs: DWG Complexity Analysis - EL

- Time Complexity: O(n)
- Space Complexity: O(n)

**n** = number of edges





# For Multiple Graph Problems (Generic Templates)





#### Generic template - I

```
t = int(input()) # number of test cases
for in range(t):
   # number of nodes and edges
   n, m = map(int, input().split())
   graph = [[] for in range(n)]
   for j in range(m):
        u, v = map(int, input().split())
        graph[u - 1].append(v - 1)
        graph[v - 1].append(u - 1)
```

Which kind of input is the graph?



# do something with the graph



## OR





#### Generic template - II

```
from collections import defaultdict
t = int(input()) # number of test cases
for _ in range(t):
    # number of nodes and edges
    n, m = map(int, input().split())
    graph = defaultdict(list)
    for j in range(m):
        u, v = map(int, input().split())
        graph[u].append(v)
        graph[v].append(u)
```





#### Tip - To make your inputs faster...

```
import sys
input = sys.stdin.readline
```

 This replaces the input() function with sys.stdin.readline() which is faster.





## Common Pitfalls





#### Common Pitfalls

- Not considering cycles in the graph.
- Not checking whether the graph is directed or undirected
- Not understanding input format well
- Falling in to infinite loop (because of cycles)





### Types of Graph Questions

- Graph questions can be classified into different categories based on the problem requirements.
- Some common types of graph questions include:
  - Shortest path: find the shortest path between two vertices.
  - Connectivity: determine if there is a path between two vertices.
  - Cycle detection: detect cycles in the graph.
  - Topological sorting: order the vertices in a directed acyclic graph.





## Approaches to Solving Graph Problems

There are several approaches to solving graph problems, including:

- Breadth-first search (BFS)
- Depth-first search (DFS)
- Dijkstra's algorithm
- Bellman-Ford algorithm
- Kruskal's algorithm
- Floyd-Warshall algorithm

The choice of algorithm depends on the problem's requirements.



## What is next?





#### Graph Traversal: DFS and BFS







## Shortest path: Dijkstra







#### Shortest path: Bellman Ford







## **Topological Sort**



RESULT:





#### Exercise problems...

- 1. Operations on graph
- 2. Cities and roads
- 3. From adjacency matrix to adjacency list
- 4. From adjacency list to adjacency matrix
- 5. Regular graph
- 6. Sources and sinks

For more graph representation Problems: Link





Quote of The Day

# "You can always recognize truth by its beauty and simplicity."

- Richard P. Feynman

