Théorie des Ordres

1. Premières Définitions

Cette section introduit du vocabulaire sur les ordres en s'appuyant sur un parallèle avec les graphes, notamment certaines notions introduites dans le DM d'Avril (sujet Mines MP 2014).

Contexte

Dans tout le chapitre, X désigne un ensemble et R une relation sur X.

Rappel

Une relation est tout simplement un sous-ensemble $R \subset X \times X$. Pour $(x,y) \in X^2$, on note xRy au lieu de $(x,y) \in R$.

Parallèle

Un graphe est la donnée d'un ensemble fini de sommets V et d'un ensemble d'arcs $E\subseteq V\times V$. Mis à part que V est fini, il s'agit exactement du même contexte. Nous allons donc introduire les définitions propres aux relations avec un parallèle dans le vocabulaire des graphes. Le fait que V soit infini ne pose aucun problème, on se restreint aux graphes finis en MP2I pour faire de l'algorithmique, mais les graphes infinis sont largement étudiés en mathématiques.

Définitions

- R est **réflexive** ssi : $\forall x \in X : xRy$.
 - ▶ Vision graphe : il y a une boucle sur chaque sommet (comme dans le sujet Mines MP 2014).
- R est **irréflexive** ssi : $\forall x \in X, \neg(xRy)$.
 - ► Vision graphe : il n'y a aucune boucle dans le graphe.
- R est transitive ssi : $\forall (x, y, z) \in X^3 : (xRy \land yRz) \Longrightarrow xRz$.
- On appelle clôture réflexive transitive R la relation notée R^* définie par : $xR^*y \iff \exists n \in \mathbb{N}: \exists z_0,...,z_n \in X: x=z_0Rz_1R...Rz_{n-1}Rz_n=y$
 - Vision graphe : la clôture transitive transforme les chemins en arêtes : il y a une arête (x, y) dans le graphe (X, R^*) si et seulement s'il y a un chemin de $x \ge y$ dans le graphe (X, R).
- R est antisymétrique ssi : $\forall x, y \in X, xRy \land yRx \Longrightarrow x = y$.
 - ➤ Vision graphe : il n'y a pas de cycle simple de longueur exactement 2 ; ou encore tout cycle de longueur 2 est en fait une boucle prise 2 fois. Si la relation est également transitive, l'antisymétrie est équivalente à l'acyclicité du graphe (si on ignore les boucles !).
- R est **totale** ssi : $\forall x, y \in X, xRy \vee yRx$.
 - Vision graphe : celle-ci ne se visualise pas bien, on peut dire que le graphe non orienté sousjacent est complet, mais ce n'est pas très parlant. On aura une meilleure vision graphe pour les ordres totaux.

Vocabulaire de la théorie des ordres

- **Pré-ordre** = réflexif + transitif.
- **Ordre strict** = irréflexif + transitif.
- Ordre (aka ordre partiel) = réflexif, transitif, antisymétrique.
- **Ordre total** = ordre partiel + total.
 - ► AKA ordre linéaire. Pourquoi linéaire ? Nous y venons.

Exemples: on dessine,

- N muni de l'ordre naturel
- \mathbb{Z} muni de l'ordre naturel
- $P(\{0,1,2\})$ muni de \subseteq
- N muni de l'ordre de divisibilité
- \mathbb{Z} muni de l'ordre de divisibilité est un pré-ordre : à cause de n et -n. Autre exemple du même genre ?

Culture générale : ces dessins s'appellent **diagrammes de Hasse**. Lorsque l'on dessine un ordre (X, \leq) , on dessine en réalité le graphe (X, R) où $\leq = R^*$ pour une relation R aussi "petite" que possible. Y a-t-il un minimum ? Considérez l'ensemble des réels, ou encore $\mathbb{N} \cup \{+\infty\}$.

1.1. Les Ordres Linéaires

Quelle forme a le diagramme de Hasse d'un ordre total ? D'où le nom linéaire.

- Soit \leq un ordre partiel et \preccurlyeq un ordre total tel que : $\forall x, y \in X, x \leq y \Longrightarrow x \preccurlyeq$. En théorie des ensembles, cela s'écrit plus simplement : $\leq \subseteq \preccurlyeq$.. On dit que \preccurlyeq est une **linéarisation** de \leq . Exemple : une linéarisation de $P(\{0,1,2\})$.
- Rappel: on appelle tri par comparaison un algorithme de tri qui trie un tableau en basant uniquement ses décisions sur des questions de if x ≤ y then ... else Tous les algorithmes de tri par comparaison que vous connaissez supposent implicitement que si la branche else correspond à x > y. Autrement dit, ces algorithmes supposent que l'ordre est total. Que produit l'algorithme si on l'utilise sur un ordre partiel ? Il produit un tableau trié selon une certaine linéarisation. La linéarisation choisie va essentiellement dépendre de si l'algorithme teste x ≤ y ou y ≤ x en premier. Il se peut même que deux occurrences d'un même élément ne se trouve pas à côté dans le tableau trié, on peut intercaler des éléments incomparables, ou équivalents (deux éléments x, y sont incomparables si x ≰ et y ≰ x ; équivalents si au contraire x ≤ y et y ≤ x).
 Ce n'est pas surprenant : la spécification d'un algorithme de tri sur un ordre partiel est incomplète : il n'y a pas unicité du tableau trié qui est une permutation du tableau initial.
- Nous avons vu cette année un algorithme qui permet de calculer une linéarisation d'un ordre partiel (dans le cas où l'ordre est fini). Nommez cet algorithme : **tri topologique**

1.2. Passage d'un pré-ordre à un ordre partiel (hors programme)

- Comme vu plus haut, tout graphe acyclique peut être vu comme un ordre partiel (quitte à en prendre la clôture réflexive transitive) et réciproquement, le diagramme de Hasse d'un ordre partiel est un graphe acyclique (que l'on dessine les arêtes transitives ou non).
- Pour un pré-ordre c'est encore plus simple : n'importe quel graphe peut être vu comme un pré-ordre, quitte à en prendre la clôture réflexive transitive. Prenons donc un graphe quelconque (G = (V, E)) et considérons deux éléments (x, y) qui mettent en défaut l'anti-symétrie : on a (x y) et (y x). Ce sont donc deux éléments tels qu'il y a un chemin dans (G) de x à y ET un chemin de y à x. Autrement dit, x et y sont dans la même composante fortement connexe. Ce sont donc les composantes fortement connexes qui posent problème, il suffit de les réduire à un point : on considère le graphe de composantes fortement connexe défini dans le cours de graphe, et justement nous avons vu qu'il est acyclique ! Il correspond donc bien à un ordre partiel et si la définition de pré-ordre de départ s'il est acyclique, on peut dire que le quotient en pré-ordre est justement parfait de "quotient par une relation d'équivalence".
- Dans le sujet Mines MP 2014, c'est là fin du sujet avec la notion "d'axiomatique". Une axiomatique consiste à choisir exactement un élément par composante fortement connexe, c'est à dire un représentant par classe d'équivalence, car vous l'aviez bien remarqué : les composantes fortement

connexes sont les classes d'équivalence pour la relation (E) définie par (xREy) s'il existe un chemin de x à y et de y à x. Choisir un représentant par classe ou interpréter la classe comme un seul élément c'est la même chose, ce sont deux définitions équivalente du quotient par une relation d'équivalence.

1.3 Ordre Strict associé à un Ordre

Soit \leq un ordre partiel, alors on définit l'ordre strict associé noté < par :

$$x < y \iff x \le y \land x \ne y$$

Cette définition ne convient plus si on travaille avec un pré-ordre (hors programme) : si x et y sont dans la même composante fortement connexe, on va avoir x < y et y < x puis par transitivité x < x ce qui est impossible par irréflexivité. Il faut donc définir < ainsi :

$$x < y \iff x \le y \lor x \ngeq y$$

1.4. Majorant, Maximum et Éléments Maximaux

Définitions

Soit S une partie de X:

- $A \in X$ est un majorant de S si : $\forall x \in S, x \leq A$.
- $A \in X$ est un maximum de S ssi A est un majorant de $A \in S$. On dit alors que S admet un maximum.
- A est un élément maximal de S si : $\forall x \in S, x \not > A$.

On a bien évidemment les définitions duales : minorant, minimum et élément minimal.

Remarques et Mises en garde

- Les ensembles ordonnés que vous pratiquez ont la mauvaise manie d'être totaux $(\mathbb{N}, \mathbb{Z}, \mathbb{R}, ...)$ et vous êtes donc tentés de confondre un ordre maximal et maximum. Avec des ordres partiels, cela ne reflète pas notre intuition : quels sont les éléments maximaux de $P(E)\{E\}$ pour $E = \{0, 1, 2\}$?
- En remplaçant x < y par sa définition :

$$x$$
 élément maxiaml de $X \iff \forall y \in X, y \geq x \Longrightarrow x = y$

et avec la définition plus générale de x < y valable dans les pré-ordres :

$$x$$
 élément maxiaml de $X \Longleftrightarrow \forall y \in X, y \geq x \Longrightarrow x \geq y$

Vous retrouverez ainsi la définition des "axiomes" du sujet Mines MP 2014.

Petits exercices d'entraînement

- Montrer qu'un ordre qui admet un maximum a un unique élément maximal.
- Montrer que la réciproque est fausse.
- Donner les éléments maximaux et minimaux de $\mathbb N$ muni de l'ordre "divisibilité". Et de $\mathbb N\{0,1\}$?
 - Majorant de S:0
 - ightharpoonup Maximum de S: il n'y en a pas
 - ▶ Elément max : non plus
 - ► Minorant : 1
 - ► Minimum : Il n'y en a pas
 - ► Elément min : non plus
- Donner une condition suffisante sur l'ordre pour avoir "il existe un maximum ssi il existe un élément maximal".

1.5. Vocabulaire de la théorie des ordres qui provient de la vision graphe

- Si x < y on dit que y est un successeur de x et x un prédécesseur de y.
- Si x < y et il n'existe aucun z ∈ X tel que x < z < y, alors y est un successeur immédiat de x, et x est un prédécesseur immédiat de y.
- Un élément maximal est donc exactement un élément sans successeur, et un élément minimal est exactement un élément sans prédécesseur.
- Un maximum n'a pas de successeur, mais la réciproque est fausse : il existe des éléments sans successeur qui ne sont pas des maximums.
- Un majorant de S est un élément accessible depuis tous les éléments de S (accessible au sens **il existe un chemin**).

Exemple : $\mathbb{N} \cup \{\infty\}$, l'infini n'a ni prédécesseur immédiat ni successeur.

2. Construction sur les Ordres

Soit $\left(X, \leq \atop x\right)$ et $\left(X, \leq \atop y\right)$ deux ordres (partiels).

• Somme disjointe : $\left(X \sqcup Y, \leq \atop \sqcup \right)$. L'ensemble $X \sqcup Y$ désigne la somme disjointe de X et Y, et l'ordre est défini par :

$$a \underset{\sqcup}{\leq} b \Longleftrightarrow \left(a, b \in X \land a \underset{\overline{X}}{\leq} b\right) \lor \left(a, b \in Y \land a \underset{\overline{Y}}{\leq} b\right)$$

• La somme lexicographique : $\left(X \sqcup Y, \leq \atop_{+}\right)$ où l'ordre est défini par :

$$a \underset{+}{\leq} b \Longleftrightarrow \left(a, b \in X \land a \underset{\sqcup}{\leq} b\right) \lor (a \in X \land b \in Y)$$

• Le produit cartésien : $\left(X \times Y, \leq \atop X \right)$ où l'ordre est défini par :

$$(x_1,y_1) \underset{X}{\leq} (x_2,y_2) \Longleftrightarrow x_1 \underset{X}{\leq} x_2 \land y_1 \underset{Y}{\leq} y_2$$

• Le produit lexicographique : $\left(X \times Y, \leq \atop_{\text{lex}}\right)$ où l'ordre est défini par :

$$(x_1,y_1) \underset{\text{lex}}{\leq} (x_2,y_2) \Longleftrightarrow x_1 \underset{X}{<} x_2 \vee \left(x_1 = x_2 \wedge y_1 \underset{Y}{\leq} y_2\right)$$

3. Relation Bien Fondée

Définition : Soit (X, \leq) i, espace ordonné. Il est bien fondé ssi il n'existe pas de suite infinie strictement décroissante : $x_0 > x_1 > x_2 > ... > x_n > ...$

Théorème: Soit (X, \leq) un espace ordonné, les propositions suivantes sont équivalentes :

- 1. (X, \leq) est bien fondé
- 2. Toute suite strictement décroissante est finie
- 3. Toute suite décroissante est stationnaire
- 4. Toute partie $S\subseteq X$ non vide a un élément minimal
- 5. Le principe de récurrence est valide sur (X, \leq)

Principe de récurrence : Soit P une propritété sur X.

$$[\forall x \in X, (\forall y \in X, y < x \Longrightarrow P(y)) \Longrightarrow (x)] \Longrightarrow \forall x \in X, P(x)$$

Exemple : $X = \mathbb{N}$ et \triangleleft la relation telle que $n \triangleleft m \iff m = n + 1$

Montrons $\forall n \in \mathbb{N}, P(n)$ par récurrence.

Pour cela il suffit de montrer $[\forall n \in \mathbb{N}, (\forall y \in \mathbb{N}, y \lhd x \Longrightarrow P(y)) \Longrightarrow (n)]$

Soit $n \in \mathbb{N}$, on suppose que $\forall y \in \mathbb{N}, y \triangleleft n \Longrightarrow P(y)$.

Hypothèse : $\forall y \in \mathbb{N}, y \lhd n \Longrightarrow P(y)$

Disjonction de cas:

- 1. Soit n=0, auquel cas $\nexists y:y \triangleleft n$ donc l'hypothèse est une tautologie et je dois montrer P(n)sans aide, c'est le cas de base, je montre P(0).
- 2. Sinon n > 0, et mon hypothèse se reformule en P(n-1). Je dois donc montrer P(n) en supposant P(n-1), c'est l'hérédité.

 $\textbf{Sur les arbres:} \lhd \text{tel que } \begin{cases} G \lhd T(G,D) \\ D \lhd T(G,D) \end{cases}$

Sur les formules logiques : (ensemble inductif) sous-formule *⊲* formule $E_0 = \{\top, \bot, \text{var}\}.$

Démonstrations:

- $1 \Longrightarrow 2$: pas de suite infini \iff les suites sont finies
- 1 \Longrightarrow 3 : Prenons v_n suite strictement décroiss sante
 - Si elle est finie alors elle stationne
 - ► Si elle est infinie alors elle ne peut pas être strictement décroissante, donc elle stationne
- $3 \Longrightarrow 1$: idem
- $1 \Longrightarrow 4$: Par l'absurde, soit $S \subseteq X$ n'ayant pas d'élément minimal
 - On choisit $x_0 \in S$ quelconque
 - Comme Sn'a pas d'élément minimal, $\exists x_1 \in S: x_1 < x_0$
 - On réitère ce raisonnement pour construire une suite ∞ strictement décroissante

$$x_0 > x_1 > x_2 > x_3 > \dots$$

- C'est impossible car X est bien fondé, donc $\forall S \subseteq X, S$ admet un élément minimal. $4 \Longrightarrow 5$: On veut montrer $A \Longrightarrow B$ avec $\begin{cases} B = \forall x \in X : P(x) \\ A = [\forall x \in X : C \Longrightarrow P(x)] \end{cases}$

On suppose A et on montre B

- Soit $S = \{x \in X \mid P(x) \text{ est faux}\}$
- Par l'absurde, supposons $S \neq \emptyset$.
- Alors par 4, S admet un élément minimal $x \in S$
- Cest-à-dire $\forall y \in X, y < x \Longrightarrow y \notin S$
- Par définition de $S: \forall y \in X, y < x \Longrightarrow P(y)$
- Or $C = \forall y \in X, y < x \Longrightarrow P(y)$
- ▶ Donc comme on a supposé A, on obtient que P(x) est vrai, or $s \in S$ donc P(x) est faux.
- C'est absurde, donc $S = \emptyset$. Autrement dit, $\forall x \in X, x \notin S$, soit exactement B.
- 5 \Longrightarrow 1 : Par l'absurde supposons qu'il existe $x_0>x_1>\ldots>x_n>\ldots$ une suite ∞ strictement décroissante.
 - On considère la propriété P(x) : " $\forall i \in \mathbb{N}, x \neq x_i$ ".

Montrons P par récurrence :

- ► Il suffit de montrer $A = \forall x \in X, (\forall y \in X, y < x \Longrightarrow P(y)) \Longrightarrow P(x)$
- Soit $x \in X$, supposons que $\forall y \in X, y < x \Longrightarrow P(y)$ et montrons que P(x)
- ► Il y a deux cas:

- Si $\forall i \in \mathbb{N}, x \neq x_i$, alors P(x)
- Sinon $\exists i_0 \in \mathbb{N} : x = x_{i_0}$. Or $x_{i_0+1} > x_{i_0}$ et on a supposé $\forall y \in X, y < x \Longrightarrow P(y)$. En prenant $y = x_{i_0+1}$ on obtient $P\left(x_{i_0+1}\right)$ ce qui est faux, donc l'implication est vraie.

Clarification : Avec $F = (\forall y \in X, y < x \Longrightarrow P(y))$ on voulait montrer $F \Longrightarrow P(x)$ et on a montré que F est faux, donc l'implication est vraie.

Donc on a montré A, par principe de récurrence on en déduit $B=\forall x\in X, P(x)$ ce qui est absurde.

4. Application à la Terminaison

4.1. Programme Récursifs