

A few words about BERT (or what's up with NLP field)

based on the original article https://arxiv.org/abs/1810.04805

Outline

- BERT Model
- Benchmarks for BERT
- Details of BERT Model
- Training framework
- BERT vs XLNet
- RoBERTa by FAIR

BERT Model

Source: http://jalammar.github.io/illustrated-bert/

BERT Model

Source: http://jalammar.github.io/illustrated-bert/

Benchmarks for BERT

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

- QQP Quora Question Pairs
- MRPC Microsoft Research Paraphrase Corpus

•

Details of BERT Model

Source: http://jalammar.github.io/illustrated-bert/

Details of BERT Model

With total parameters of ~340M

With total parameters of ~110M

Source: http://jalammar.github.io/illustrated-bert/

Details of BERT Model

Source: http://jalammar.github.io/illustrated-bert/

- **Pre-training.** Model is trained on unlabelled data over different pre-training tasks.
- **Fine-tuning.** Firstly, model is initialised with the pre-trained parameters. After that all the parameters are fine-tuned using labelled data from the downstream tasks.

Pre-training

BERT vs XLNet

- BERT Bidirectional Encoder Representations from Transformers (looses connection between words)
- XLNet AutoRegressive Language Modelling (word order does count)

BERT vs XLNet

Model	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B	WNLI
Single-task single	models on de	ev							
BERT [2]	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	_
XLNet	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	1-
Single-task single	models on te	st							
BERT [10]	86.7/85.9	91.1	89.3	70.1	94.9	89.3	60.5	87.6	65.1
Multi-task ensem	bles on test (fi	rom leade	rboard as	s of June	19, 2019)			
Snorkel* [29]	87.6/87.2	93.9	89.9	80.9	96.2	91.5	63.8	90.1	65.1
ALICE*	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8
MT-DNN* [18]	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0
XLNet*	$\mathbf{90.2/89.7}^{\dagger}$	98.6^{\dagger}	90.3^{\dagger}	86.3	96.8^{\dagger}	93.0	67.8	91.6	90.4

Source: https://arxiv.org/abs/1906.08237

SQUAD2.0

The Stanford Question Answering Dataset

What is SQuAD?

Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or *span*, from the corresponding reading passage, or the question might be unanswerable.

SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 new, unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering. SQuAD2.0 is a challenging natural language understanding task for existing models, and we release SQuAD2.0 to the community as the successor to SQuAD1.1. We are optimistic that this new dataset will encourage the development of reading comprehension systems that know what they don't know.

Explore SQuAD2.0 and model predictions

Leaderboard

SQuAD2.0 tests the ability of a system to not only answer reading comprehension questions, but also abstain when presented with a question that cannot be answered based on the provided paragraph. How will your system compare to humans on this task?

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar & Jia et al. '18)	86.831	89.452
1 Mar 20, 2019	BERT + DAE + AoA (ensemble) Joint Laboratory of HIT and iFLYTEK Research	87.147	89.474
2 Mar 15, 2019	BERT + ConvLSTM + MTL + Verifier (ensemble) Layer 6 Al	86.730	89.286
3 Mar 05, 2019	BERT + N-Gram Masking + Synthetic Self- Training (ensemble) Google Al Language https://github.com/google-research/bert	86.673	89.147
4 May 21, 2019	XLNet (single model) Google Brain & CMU	86.346	89.133

Source: https://rajpurkar.github.io/SQuAD-explorer/

RoBERTa by FAIR

Summary

- BERT Model
- Benchmarks for BERT
- Details of BERT Model
- Training framework
- BERT vs XLNet
- RoBERTa by FAIR

References

- The Illustrated BERT, ELMo, and co.: http://salammar.github.io/illustrated-bert/
- About BERT in Google Al Blog: https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
- SQuAD 2.0: https://rajpurkar.github.io/SQuAD-explorer/
- GLUE Benchmark: https://gluebenchmark.com/
 leaderboard