#### STATISTICAL LINEAR REGRESSION - PART IV:

### K-NN FOR REGRESSION

(Rafael Alcalá)

#### Bibliography:

**PAPER para k-NN:** Hechenbichler K. and Schliep K.P. (2004) Weighted k-Nearest-Neighbor Techniques and Ordinal Classification, Discussion Paper 399, SFB 386, Ludwig-Maximilians University Munich (<a href="http://www.stat.uni-muenchen.de/sfb386/papers/dsp/paper399.ps">http://www.stat.uni-muenchen.de/sfb386/papers/dsp/paper399.ps</a>)

**PAPER para k-NN:** Samworth, R.J. (2012) Optimal weighted nearest neighbour classifiers. Annals of Statistics, 40, 2733-2763. (<a href="http://www.statslab.cam.ac.uk/~rjs57/Research.html">http://www.statslab.cam.ac.uk/~rjs57/Research.html</a>)

### Outline

- >The Basics of k-NN
  - >k-NN for Classification (the initial idea)
  - >k-NN for Regression (continuous target variables)
- ➤ Distance Weighted k-NN
- ➤ Common Kernel Types

### Nearest Neighbor Classifiers

- Basic idea:
  - If it walks like a duck, quacks like a duck, then it's probably a duck



### Nearest-Neighbor Classifiers



- Requires three things
  - The set of stored records
  - Distance Metric to compute distance between records
  - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
  - Compute distance to other training records
  - Identify k nearest neighbors
  - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

### Definition of Nearest Neighbor







- (a) 1-nearest neighbor
- (b) 2-nearest neighbor
- (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

# Basic k-NN algorithm (Discrete and Continuous target)

Key idea: just store all training examples  $\langle x_i, f(x_i) \rangle$ Nearest neighbor:

• Given query instance  $x_q$ , first locate nearest training example  $x_n$ , then estimate  $f(x_q)=f(x_n)$ 

K-nearest neighbor:

- Given x<sub>q</sub>, take vote among its k nearest neighbors (if discrete-valued target function)
- Take mean of f values of k nearest neighbors (if real-valued)  $f(x_{\alpha}) = \sum_{i=1}^{k} f(x_i)/k$

### Nearest Neighbor (continuous)

#### 1-nearest neighbor



### Nearest Neighbor (continuous)

#### 3-nearest neighbor



### Nearest Neighbor (continuous)

#### 5-nearest neighbor



### Nearest Neighbor Characteristics

- Compute distance between two points:
  - Usually the Euclidean distance

$$d(x_i, x_j) = \left(\sum_{s=1}^{p} (x_{is} - x_{js})^2\right)^{\frac{1}{2}}$$

 Minkowski distance is used in practical, which include Euclidean as a particular case

$$d(x_i, x_j) = \left(\sum_{s=1}^{p} |x_{is} - x_{js}|^q\right)^{\frac{1}{q}}$$

q=1 (Absolute or Manhattan); q=2 (Euclidean); etc.

### Nearest Neighbor Characteristics

- Choosing the value of k:
  - If k is too small, sensitive to noise points
  - If k is too large, neighborhood may include nonrepresentative points
- Scaling issues
  - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
  - Example:
    - height of a person may vary from 1.5m to 1.8m
    - weight of a person may vary from 90lb to 300lb
    - income of a person may vary from \$10K to \$1M
      - Solution: Normalize the vectors (usually by sd)

### Discussion on the k-NN Algorithm

- Robust to noisy data by averaging k-nearest neighbors
- Curse of dimensionality: distance between neighbors could be dominated by irrelevant attributes.
  - To overcome it, axes stretch or elimination of the least relevant attributes.
- k-NN methods are lazy learners
  - It does not build models explicitly
  - Unlike eager learners such as decision tree induction and rulebased systems
  - Unknown records are relatively expensive to compute

# Distance Weighted k-NN

- Regression means approximating a realvalued target function
- Residual is the error f(x) f(x) in approximating the target function
- Kernel function is the function of distance that is used to determine the weight of each training example. In other words, the kernel function is the function K such that w<sub>i</sub>=K(d(x<sub>i</sub>,x<sub>q</sub>))

## Distance Weighted k-NN

Give more weight to neighbors closer to the query point

$$\begin{split} f^{\wedge}(x_q) &= \sum_{i=1}^k w_i \; f(x_i) \; / \; \sum_{i=1}^k w_i \\ \text{where } w_i &= K(d(x_q, x_i)) \\ \text{and } d(x_q, x_i) \; \text{is the distance between } x_q \; \text{and } x_i \end{split}$$

Instead of only k-nearest neighbors use all training examples (Shepard's method)

### **Kernel Functions**

- rectangular kernel  $\frac{1}{2} \cdot I(|d| \le 1)$
- triangular kernel  $(1 |d|) \cdot I(|d| \le 1)$
- Epanechnikov kernel  $\frac{3}{4}(1-d^2) \cdot I(|d| \le 1)$
- quartic or biweight kernel  $\frac{15}{16}(1-d^2)^2 \cdot I(|d| \le 1)$
- triweight kernel  $\frac{35}{32}(1-d^2)^3 \cdot I(|d| \le 1)$
- cosine kernel  $\frac{\pi}{4}\cos(\frac{\pi}{2}d) \cdot I(|d| \le 1)$
- Gauss kernel  $\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{d^2}{2}\right)$
- inversion kernel  $\frac{1}{|d|}$

### Distance Weighted NN Example

