CENG 280

Course outline

- Preliminaries: Alphabets and languages
- Regular languages
 - Regular expressions
 - Finite automata: DFA and NFA
 - Finite automata regular expressions
 - Pumping lemma
 - State minimization for DFA
- Context-free languages
- Turing-machines

- NFA
- NFA semantics
- Subset construction algorithm

- the successor state "partially" depends on the current state and the input symbol
- several possible combinations of "next states"

- the successor state "partially" depends on the current state and the input symbol
- several possible combinations of "next states"

Example

Consider $(ab \cup aba)^*$

Definition (Nondeterministic finite state automaton)

Nondeterministic finite state automaton is a quintuple $M = (K, \Sigma, \Delta, s, F)$, where

- K is a finite set of states.
- Σ is an alphabet,
- $s \in K$ is the initial state.
- $F \subseteq K$ is the set of final states, and
- $\Delta \subseteq K \times (\Sigma \cup \{e\}) \times K$ is the transition relation.

 $(q, a, p) \in \Delta$ is called a transition of M. (q, e, p) indicates that the machine can pass to state p from state q without reading an input symbol.

• The **configuration** of the machine is the current state and the unread part of the input string, i.e., a configuration is an element of $K \times \Sigma^*$.

- The **configuration** of the machine is the current state and the unread part of the input string, i.e., a configuration is an element of $K \times \Sigma^*$.
- $(q, w) \vdash_M (q', w')$ if and only if w = aw' for some $a \in \Sigma \cup \{e\}$ and $(q, a, q') \in \Delta$.

- The **configuration** of the machine is the current state and the unread part of the input string, i.e., a configuration is an element of $K \times \Sigma^*$.
- $(q, w) \vdash_M (q', w')$ if and only if w = aw' for some $a \in \Sigma \cup \{e\}$ and $(q, a, q') \in \Delta$.
- $(q, w) \vdash_M (q', w')$ reads (q, w) yields (q', w') in one step. Note that \vdash_M might not be a function, i.e., there might be several pairs (q', w') (or none at all) such that $(q, w) \vdash_M (q', w')$.

- The **configuration** of the machine is the current state and the unread part of the input string, i.e., a configuration is an element of $K \times \Sigma^*$.
- $(q, w) \vdash_M (q', w')$ if and only if w = aw' for some $a \in \Sigma \cup \{e\}$ and $(q, a, q') \in \Delta$.
- $(q, w) \vdash_M (q', w')$ reads (q, w) yields (q', w') in one step. Note that \vdash_M might not be a function, i.e., there might be several pairs (q', w') (or none at all) such that $(q, w) \vdash_M (q', w')$.
- \vdash_{M}^{\star} is the **reflexive transitive closure** of \vdash_{M} . $(q, w) \vdash_{M}^{\star} (q', w')$ reads (q, w) **yields** (q', w').

- The **configuration** of the machine is the current state and the unread part of the input string, i.e., a configuration is an element of $K \times \Sigma^*$.
- $(q, w) \vdash_M (q', w')$ if and only if w = aw' for some $a \in \Sigma \cup \{e\}$ and $(q, a, q') \in \Delta$.
- $(q, w) \vdash_M (q', w')$ reads (q, w) yields (q', w') in one step. Note that \vdash_M might not be a function, i.e., there might be several pairs (q', w') (or none at all) such that $(q, w) \vdash_M (q', w')$.
- \vdash_{M}^{\star} is the **reflexive transitive closure** of \vdash_{M} . $(q, w) \vdash_{M}^{\star} (q', w')$ reads (q, w) **yields** (q', w').
- A string $w \in \Sigma^*$ is **accepted** by M if and only if there is a state $f \in F$ such that $(s, w) \vdash_M^* (f, e)$.

- The **configuration** of the machine is the current state and the unread part of the input string, i.e., a configuration is an element of $K \times \Sigma^*$.
- $(q, w) \vdash_M (q', w')$ if and only if w = aw' for some $a \in \Sigma \cup \{e\}$ and $(q, a, q') \in \Delta$.
- $(q, w) \vdash_M (q', w')$ reads (q, w) yields (q', w') in one step. Note that \vdash_M might not be a function, i.e., there might be several pairs (q', w') (or none at all) such that $(q, w) \vdash_M (q', w')$.
- \vdash_{M}^{\star} is the **reflexive transitive closure** of \vdash_{M} . $(q, w) \vdash_{M}^{\star} (q', w')$ reads (q, w) **yields** (q', w').
- A string $w \in \Sigma^*$ is **accepted** by M if and only if there is a state $f \in F$ such that $(s, w) \vdash_M^* (f, e)$.
- The **language** of M, L(M), is the set of strings accepted by M.

- The **configuration** of the machine is the current state and the unread part of the input string, i.e., a configuration is an element of $K \times \Sigma^*$.
- $(q, w) \vdash_M (q', w')$ if and only if w = aw' for some $a \in \Sigma \cup \{e\}$ and $(q, a, q') \in \Delta$.
- $(q, w) \vdash_M (q', w')$ reads (q, w) yields (q', w') in one step. Note that \vdash_M might not be a function, i.e., there might be several pairs (q', w') (or none at all) such that $(q, w) \vdash_M (q', w')$.
- \vdash_{M}^{\star} is the **reflexive transitive closure** of \vdash_{M} . $(q, w) \vdash_{M}^{\star} (q', w')$ reads (q, w) **yields** (q', w').
- A string $w \in \Sigma^*$ is **accepted** by M if and only if there is a state $f \in F$ such that $(s, w) \vdash_M^* (f, e)$.
- The **language** of M, L(M), is the set of strings accepted by M.

Example

Construct an NFA M that recognize

 $L = \{w \in \{a, b\}^* \mid w \text{ contains } ba \text{ or } bba\}$. Show all executions over babba. Decide whether $babba \in L(M)$.

Example

Let $\Sigma = \{a_1, \ldots, a_n\}$. Consider

 $L = \{ w \in \Sigma^* \mid \text{there is a symbol } a_i \in \Sigma \text{ that does not appear in } w \}$. DFA for n=1,2, NFA for n=3.

- A deterministic finite state automaton is just a special type of nondeterministic finite state automaton.
- We obtain a DFA when Δ defines a function from $K \times \Sigma$ to K.
- In other words, an NFA $M=(K,\Sigma,\Delta,s,F)$ is deterministic if there are no transitions of the form (q,e,p) and for each $q\in K$ and $a\in \Sigma$, there exists exactly one $p\in K$ such that $(q,a,p)\in \Delta$.

- A deterministic finite state automaton is just a special type of nondeterministic finite state automaton.
- We obtain a DFA when Δ defines a function from $K \times \Sigma$ to K.
- In other words, an NFA $M=(K,\Sigma,\Delta,s,F)$ is deterministic if there are no transitions of the form (q,e,p) and for each $q\in K$ and $a\in \Sigma$, there exists exactly one $p\in K$ such that $(q,a,p)\in \Delta$.
- The class of languages recognized by deterministic finite state automaton is a subset of the class of languages recognized by nondeterministic finite state automaton.

- A deterministic finite state automaton is just a special type of nondeterministic finite state automaton.
- We obtain a DFA when Δ defines a function from $K \times \Sigma$ to K.
- In other words, an NFA $M=(K,\Sigma,\Delta,s,F)$ is deterministic if there are no transitions of the form (q,e,p) and for each $q\in K$ and $a\in \Sigma$, there exists exactly one $p\in K$ such that $(q,a,p)\in \Delta$.
- The class of languages recognized by deterministic finite state automaton is a subset of the class of languages recognized by nondeterministic finite state automaton.
- A nondeterministic finite automaton can always be converted to an equivalent deterministic finite state automaton.

Definition

Two automaton M_1 and M_2 are said to be **equivalent** when $L(M_1) = L(M_2)$.

Theorem

For each nondeterministic finite automaton, there exists an equivalent deterministic finite automaton.

Theorem

For each nondeterministic finite automaton, there exists an equivalent deterministic finite automaton.

Constructive proof: subset construction algorithm

Theorem

For each nondeterministic finite automaton, there exists an equivalent deterministic finite automaton.

Constructive proof: **subset construction algorithm** Given an NFA $M = (K, \Sigma, s, \Delta, F)$, construct an equivalent DFA $M' = (K', \Sigma, s', \delta, F')$ as follows.

$$E(q) = \{ p \in K \mid (q, e) \vdash_{M}^{\star} (p, e) \}$$

The reflexive transitive closure of $\{q\}$ under the relation $\{(p,r)\mid (p,e,r)\in\Delta\}$

Theorem

For each nondeterministic finite automaton, there exists an equivalent deterministic finite automaton.

Constructive proof: subset construction algorithm

Given an NFA $M=(K,\Sigma,s,\Delta,F)$, construct an equivalent DFA $M'=(K',\Sigma,s',\delta,F')$ as follows.

$$E(q) = \{ p \in K \mid (q, e) \vdash_{M}^{\star} (p, e) \}$$

The reflexive transitive closure of $\{q\}$ under the relation

$$\{(p,r)\mid (p,e,r)\in\Delta\}$$

The DFA is defined as:

$$K' = 2^K, s = E(s)$$
 $F' = \{Q \subseteq K \mid Q \cap F \neq \emptyset\}$
for each $Q \in K'$ and $a \in \Sigma$

$$\delta(Q, a) = \{E(p) : p \in K, (q, a, p) \in \Delta \text{ for some } q \in Q\}$$

Prove that M and M' are equivalent, show that for any string $w \in \Sigma^*$

Prove that M and M' are equivalent, show that for any string $w \in \Sigma^\star$

$$(s, w) \vdash_{M}^{\star} (f, e)$$
 for some $f \in F$ iff $(E(s), w) \vdash_{M'}^{\star} (P, e)$ for some P containing f

Thus they recognize the same language.

Prove that M and M' are equivalent, show that for any string $w \in \Sigma^\star$

$$(s, w) \vdash_{M}^{\star} (f, e)$$
 for some $f \in F$ iff $(E(s), w) \vdash_{M'}^{\star} (P, e)$ for some P containing f

Thus they recognize the same language.

Proof by induction on |w| for

$$(q, w) \vdash_{M}^{\star} (p, e) \text{ iff } (E(q), w) \vdash_{M'}^{\star} (P, e) \text{ for some } P \text{ with } p \in P$$

Nondeterministic Finite Automaton - Examples

Example

Construct a DFA that is equivalent to the given NFA .