Semester project January 2025

Knowledge graph generation

Steve Taka Benjamin Latrie Abderahim Lagraoui

Supervised by : Ms. Olha Nahorna

Table of contents

U1Introduction

What is a knowledge graph? Why this project?

02

Previous Work

Overview of last year's work

03

New Pipeline

Overview of the structured workflow

Q4AI Methods

Model fine-tuning

O5Evaluation

Performance and quality measurement, comparison

06 Environmental

studyAnalysis of eco

Analysis of ecological impact

07

Conclusion

Summary and perspectives

O1 Introduction

Introduction

- Network of interconnected entities and relationships
- Represents and organizes knowledge

- Extracts, structures and organizes relevant information
- ☐ Easy to read and very visual

Triplet = (h, r, t)

h, t are nodes r is an edge

02 Previous Work

5 articles

- "An Updated Assessment of the Economic Impact of COVID-19" (16 pages)
- "COVID-19: Fiscal Implications and Financial Stability in Developing Countries" (13 pages)
- "Understanding structural effects of COVID-19 ON THE GLOBAL ECONOMY" (36 pages)
- "COVID-19 outbreak: Impact on global economy" (13 pages)
- "The Economic Impact of COVID-19 around the World" (15 pages)

"The COVID-19 pandemic and associated policy responses are likely to alter the global economy in a way that affects its ability to adjust to future shocks and changes."

Pipeline

Fig 1: Pipeline from previous work

Good Points

- Quite fast
- Good basis for improvements
- Good web interface
- Use of models that combine speed and efficiency (MRebel, All-Mini)
- Use of Memgraph

<u>Weaknesses</u>

- Problem if articles are in different languages
- No way of assessing the quality of a generated graph
- Some of the triplets generated don't seem relevant
- Lack of important information in the generated graph
- Merge module a bit laborious
- > Presence of a **major error** in the code

O3 New Pipeline

New Pipeline

Fig 2: Proposed approach

Fig 3: Extracted triplets format

Triplet n

Fig 4: Merge with clustering process

Alternative for triplets generation

Fig 5: Llama 3.1 and MRebel runtimes and graph sizes

- The output format of Llama is challenging to **standardize**.
- Connections. And it is limited with a max_input per minute parameter.
- Extracted triplets from Llama often feature lengthy sentences as entities.

O4 AI Methods

Fine-Tuning of MRebel

To specialize it in economic data

optimization technique : **LoRA**

Fig 6: LoRA method

Fine-Tuning of MRebel

- Obtaining reference triplets for the training dataset using Llama3.1 (not optimal)
- Fast training thanks to LoRA
- Loss gradually decreases:

Fig 7: Training loss evolution

Fine-Tuning of All-Mini

To classify whether two triplets represent the same idea or not

Use of a dataset of 3383 pairs of triplets, with 0 or 1 as the label (0 if merge of the 2 triplets required)

Add of a classifier part (basic All-Mini used to extract semantic information from triplets)

Fig 8: Fine-Tuned All-Mini architecture

Performance

Fig 9: Accuracy for **All-Mini** and **bge-small** Fine-tuning

_____ The fine-tuning of **bge-small** seems more effective, but a longer training period is observed.

O5Evaluation

Evaluation metrics

PyKEEN
Python library for
KG evaluation

$$h + r \approx t$$

Mean Rank:

$$|MR = \frac{1}{|T|} \sum_{(h,r,t)\in T} rank(h,r,t)$$

Mean

Reciprocal Rank:

$$\boxed{ \text{MRR} = \frac{1}{|T|} \sum_{(h,r,t) \in T} \frac{1}{\text{rank}(h,r,t)} }$$

Hits@10:

Hits@10 =
$$\frac{1}{|T|} \sum_{(h,r,t)\in T} 1(\text{rank}(h,r,t) \le 10)$$

No labeled data

→ Proposition of adapted TF - IDF (Term Frequency - Inverse Document Frequency)

TF-IDF

 $tf_{x,y}$ = frequency of x in y

 $df_x = number of documents containing x$

Term x within document y N = total number of documents

- Get n keywords
- Check the percentage of keywords in the KG

Quantitative Results

Fig 10: Metrics comparison

<u>Model A</u>: MRebel & All-Mini (**Both** fine-tuned) <u>Model B</u>: MRebel & All-Mini (**Only** All-Mini fine-tuned) Model C:
MRebel & bge-small
(Only bge-small fine-tuned)

- MRebel fine-tuning not efficient (data quality)
- Models with All-Mini and bge-small:
 → nearly identical performance
- Previous work better with the error fixed is bad? →
 - Too many nodes

Quantitative Results

Fig 11: Generation time comparison

- Previous work with error is obviously the fastest
- Model B slightly faster than model C
- By correcting the bug, the previous work takes much more time

Qualitative Results

our pandemic on/labour pandemic on labour pandemic on labour pandemic on labour pandemic op, The Impact for 2020 COVID 19 shock globbi economy has obuse has cause has-cause COVID 19 pandemic country has dause

Previous work

- Redundancies
- ☐ Too general
 - Very long nodes

Qualitative Results

O6 Environmental study

Carbon footprint

Fig 12: Carbon footprint and energy consumption

- Not too high
- More with all the model trainings
- Depends on the using rate

Model	Carbon	Energy	% of a flight
	footprint	needed	Paris-Londo
	(CO ₂ eq)	(Wh)	n
Normal MRebel + fine-tuned bge-small	2,6 kg	51.10 ³	5%

07 Conclusion

Conclusion

The proposed approach outperforms the existing version.

The training datasets can be better to obtain improved results

© Ontology schemas are a good possible approach to generate knowledge graphs.

Thank you for your attention!

Our team

Steve

Benjamin

Abderahim

Scalability of graph generation

- 9 articles (5 in english and 4 in french)
- **♦ Nodes**: 349 **Relations**: 229
- **♦ Time**: 535 s
- **MR**: 110.68 **MRR**: 0.026 **Hits@10**: 0.054
- **♦ TF-IDF** (30) : 0.43
- **♦ TF-IDF** (60) : 0.45
- *** TF-IDF** (100) : 0.42

Ontology

Ontology schema example

Semantic Segmentation Module

Semantic text Segmentation to English premerge Clustering Visualization

Error of previous work

- Batch size: 15000 chars
- Max length (for tokenizer): 256 tokens ~ 1000 chars

Figure from last year's presentation

Variations in TF-IDF score

Example of keywords

Good: 2020, covid 19, pandemic, government, economic, china, policy, containment, ...

Bad: 19, country, total, world, table, tnum, wb, ...

Variation of graph dimensions

Nodes | Relations | Ratio

	1 article	2 articles	3 articles	4 articles	5 articles
Previous work	29 35 1.2	40 47 1.18	69 74 1.07	88 91 1.03	100 106 1.06
Previous work with corrected bug	276 360 1.3	351 507 1.44	698 940 1.35	923 1215 1.32	1067 1395 1.31
Fine-tuned MRebel + fine-tuned All-Mini	11 7 0.64	24 15 0.63	43 25 0.58	46 27 0.59	47 28 0.6
Basic MRebel + fine-tuned All-Mini	59 36 0.61	81 53 <mark>0.65</mark>	146 90 0.62	182 111 0.61	198 121 0.61
Basic MRebel + fine-tuned bge-small	77 50 <mark>0.65</mark>	108 74 0.69	180 115 0.64	227 142 0.63	247 156 0.63

Previous work graph (with corrected error)

Fine-Tuned MRebel graph

MRebel

Figure from last year's presentation

What is Fine-Tuning?

Objectives

Improve the quality of the model for a specific task / domain

Modify the role of a model (VGG + classifier for example)