

Bauman Moscow State University Th. Computer Science Dept.

Pushdown Machines: Visible and Not

Antonina Nepeivoda a nevod@mail.ru

Lecture Outline

Finite Automata is Enough?

Real-world machines are finite. Do finite models suffice?

Recall "elevator automaton" with a unique final state on the "ground floor", breaking if asked to reach an non-existing floor:

"up" and "dwn" instructions can be interpreted wrt a parentheses structure. That is, parsing string "((" we move to Lv2, and "(()())" returns us to Lv1.

Real-world nesting depth is limited (even in Lisp-like languages), and linear blow-up in state size seems satisfactory.

Until we decide to use several sorts of brackets...

Myhill-Nerode Congruence for Many-Sorted Brackets

Congruence Table

ructice rubte							
	ε)	\rangle))	$\rangle)$	\rangle	$\rangle \rangle$
ε	+	_	-	_	_	_	-
(-	+	_	-	_	_	_
<	-	_	+	-	-	- - - -	-
((-	_	-	+	-	-	-
((-	_	-	-	+	-	-
((–	_	_	_	_	+	_
$\langle \langle$	-	-	-	-	-	_	+

- *N*-depth balanced sequences of 2 sorts of brackets $\Rightarrow 2^{N+1} 1$ states in a min NFA.
- *N*-depth balanced sequences of *K* sorts of brackets $\Rightarrow \frac{K^{N+1}-1}{K-1}$ states in a min <u>NFA</u>.

Finite automata cannot track nested structures efficiently.

Memoising Counters via Additional Memory

 Queue as a memory — can be considered as an additional tape with the write access, since it can be "re-rolled" to any wanted position with no memory loss.

• Stack as a memory — information given in Q_1 cannot be stored except in states when α is read. More restrictive, natural for tracking nested structures.

Natural Idea: Call-Return Counters

Input alphabet Σ is split into disjoint union $\Sigma_I \cup \Sigma_C \cup \Sigma_R$, where:

 Σ_I is internal alphabet (symbols not affecting the stack),

 Σ_C is call alphabet (symbols that push on the stack),

 Σ_R is return alphabet (symbols that pop from stack).

Balanced parentheses language:

- Σ_I all non-brackets;
- Σ_C all opening brackets;
- Σ_R all closing brackets.

With several sorts of brackets:

- state space does not increase;
- transitions set grows linearly.

(, PUSH Bp (, PUSH FP (, PUSH BA (, PUSH FA), POP F_P \rangle , POP F_A), POP B_P

 \rangle , POP B_A

For simplicity, henceforth we usually use an unique sort of brackets.

Handling Imbalance

Language of valid prefixes of balanced parentheses?

The final configuration can admit non-empty stack.

Language of valid suffixes of balanced parentheses?

Return symbols can be safely popped from the empty stack (\bot) .

