MAT 4003 Assignment 1

1

Let $S=\{s_1,s_2,\ldots s_{n+1}\}$ be an (n+1)-element subset of $\{1,2,\ldots,2n+1\}$, where $1\leq s_1< s_2<\ldots< s_{n+1}\leq 2n+1$. If S contains two consecutive integers s,s+1, then (s,s+1)=(s,1)=1. If S does not contain two consecutive integers, then $1\leq s_1\leq s_2-2\leq\ldots\leq s_{n+1}-2n\leq 1$. So $s_1=1$. $(s_1,s_k)=(1,s_k)=1$. In either case, S contains a pair of relatively prime integers. \square

2

Using EEA:

i	r_i	q_i	x_i	y_i
-1	43	-	1	0
0	5	-	0	1
1	3	8	1	-8
2	2	1	-1	9
3	1	1	2	<mark>–17</mark>
4	0	-	-	-

$$43(2) + 5(-17) = (43, 5) = 1.$$
 (1)

Hence a particular solution to the original equation is

$$x_0 = 500, y_0 = -4250. (2)$$

And the complete solution is given by

$$\{(x,y)\} = \{(500 + 1250k, -4250 - 10750k) : k \in \mathbb{Z}\}. \tag{3}$$

3

Set $p:=(a^m-1,a^n-1), d:=(m,n), m=sd, n=td$. Then $(a^d-1)|((a^d)^s-1)=a^m-1$. Similarly $(a^d-1)|(a^n-1)$. Hence $(a^d-1)|p$. Now by Bézout's lemma we may write d=mx+ny. WLOG assume $y\leq 0\leq x$. Then $p|(a^{mx}-1),(a^{-ny}-1)$. It follows that $p|(a^{mx}-1-a^d(a^{-ny}-1))=a^d-1$. Therefore $p=2^d-1$, or

$$(a^m - 1, a^n - 1) = a^{(m,n)} - 1. (4)$$

This in turn shows the equivalence:

$$(a^m - 1)|(a^n - 1) \iff (a^m - 1, a^n - 1) = a^m - 1 = a^{(m,n)} - 1 \iff m|n.$$
 (5)

Proceed by strong induction on n.

Clearly $F_3=2>\phi$. Now suppose $\forall n$ with $3\leq n\leq k$ we have $F_n>\phi^{n-2}$. Then $F_{k+1}=F_k+F_{k-1}>\phi^{k-1}(\phi^{-2}+\phi^{-1})=\phi^{k-1}$. Therefore,

$$F_n > \phi^{n-2} \quad orall n \geq 3. \ \Box$$
 (6)

5

Consider the Diophantine equation

$$ax + by = ab - a - b. (7)$$

Note that $(x_0, y_0) = (b - 1, -1)$ is a particular solution. Then by Theorem (1.12) the complete solution set of the equation is given by

$$\{(x,y)\} = \{((1-k)b-1, ka-1) : k \in \mathbb{Z}\}. \tag{8}$$

Now, for x,y to both be nonnegative integers, one must have (1-k)b>0 and ka>0. Equivalently 0< k<1. Therefore x,y cannot both be nonnegative. That is, ab-a-b is never a nonnegative integer linear combination of a and b. \square