NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion

Chenfei Wu, Jian Liang, Lei Ji, Fan Yang, Yuejian Fang, Daxin Jiang, Nan Duan

Microsoft Research Asia, and Peking University

Arxiv

Presenter: Minho Park

Examples

• Fine-tune with the presented pre-trained model NUWA.

Figure 1. Examples of 8 typical visual generation and manipulation tasks supported by the NUWA model.

Auto-regressive Models

- Generative model (GAN, VAE, and AR)
- PixelCNN / PixelRNN
- Image / Video Transformer, iGPT (Image GPT)
- Problem: high computational cost on high dimensional visual data

$$p(x) = \prod_{i=1}^{n} p(x_i|x_1, ..., x_{i-1})$$

VQ-VAE-based Tokenization

- VQ-VAE
- DALL-E and CogView: images
- GODIVA: videos

Figure 1: Left: A figure describing the VQ-VAE. Right: Visualisation of the embedding space. The output of the encoder z(x) is mapped to the nearest point e_2 . The gradient $\nabla_z L$ (in red) will push the encoder to change its output, which could alter the configuration in the next forward pass.

3D(4D) Data Representation

- A unified 3D notation $X \in \mathbb{R}^{h \times w \times s \times d}$.
 - *h*, *w*: spatial axis
 - s: temporal axis
 - *d*: dimension of tokens
- Video: $\mathbb{R}^{H \times W \times s \times d}$
- Image: $\mathbb{R}^{H \times W \times 1 \times C}$
- Text: $\mathbb{R}^{1 \times 1 \times s \times d}$
- 1 is placeholder.

Method

A unified multimodal pre-trained model called NUWA

Figure 2. Overview structure of NUWA.

Train VQ-VAE

- $z_i = \underset{j}{\operatorname{argmin}} ||E(I)_i B_j||$
- $\hat{I} = G(B[z])$
 - $E(I) \in \mathbb{R}^{h \times w \times d_B}$
 - $B \in \mathbb{R}^{N \times d_B}$: learnable codebook
- Training loss of VQ-VAE

$$L^{V} = \|I - \hat{I}\|_{2}^{2} + \|sg[E(I)] - B[z]\|_{2}^{2} + \beta \|E(I) - \underline{sg}[B[z]]\|_{2}^{2}$$

Stop gradient: standard technique for stability

Adding a perceptual loss and a GAN loss (VQ-GAN)

$$L^{P} = \|CNN(I) - CNN(\hat{I})\|_{2}^{2}$$
$$L^{G} = \log D(I) + \log(1 - D(\hat{I}))$$

Focus on high-level semantic

3D Nearby Self-Attention

- Y = 3DNA(X, C; W)
 - $X \in \mathbb{R}^{h \times w \times s \times d^{in}}$, $C \in \mathbb{R}^{h' \times w' \times s' \times d^{in}}$: 3D representations
 - W: learnable weights
- $C = X, C \neq X$: self- and cross-attention on target X conditioned on C.
- Local neighborhood around $(i',j',k')=(\left\lfloor i\frac{h'}{h}\right\rfloor,\left\lfloor j\frac{w'}{w}\right\rfloor,\left\lfloor k\frac{s'}{s}\right\rfloor)$ with extents $e^w,e^h,e^s\in\mathbb{R}^+$ is $N^{(i,j,k)}=\{C_{abc}\big||a-i'|\leq e^h,|b-j'|\leq e^w,|c-k'|\leq e^s\}\in\mathbb{R}^{e^h\times e^w\times e^s\times d^{in}}$
- $W^Q, W^K, W^V \in \mathbb{R}^{d^{in} \times d^{in}}$

3D Nearby Self-Attention

$$Q^{(i,j,k)} = XW^{Q}$$

$$K^{(i,j,k)} = N^{(i,j,k)}W^{K}$$

$$V^{(i,j,k)} = N^{(i,j,k)}W^{V}$$

$$y_{ijk} = softmax \left(\frac{Q^{(i,j,k)}(K^{(i,j,k)})^{T}}{\sqrt{d^{in}}}\right)V^{(i,j,k)}$$

- Reduce the complexity: $O((hws)^2) \rightarrow O((hws)(e^h e^w e^s))$
- Shows superior performance.

3D Encoder-Decoder

- 3D encoder-decoder built based on 3DNA
- To generate a target $Y \in \mathbb{R}^{h \times w \times s \times d^{out}}$ under the condition of $C \in \mathbb{R}^{h' \times w' \times s' \times d^{in}}$

1. Positional encoding

$$Y_{ijk} \coloneqq Y_{ijk} + P_i^h + P_j^w + P_k^s$$
$$C_{ijk} \coloneqq C_{ijk} + P_i^{h'} + P_j^{w'} + P_k^{s'}$$

2. Self-attention with a stack of *L* 3DNA layers

$$C^{(l)} = 3DNA(C^{(l-1)}, C^{(l-1)})$$

3. Self- and cross-attention with a stack of *L* 3DNA layers

$$Y_{ijk}^{(l)} = 3DNA\left(Y_{\leq i,j,k}^{(l-1)}, Y_{\leq i,j,k}^{(l-1)}\right) + 3DNA\left(Y_{\leq i,j,k}^{(l-1)}, C^{(L)}\right)$$
masked

Training Objective

Train on three tasks, Text-to-Image (T2I), Video Prediction (V2V), and Text-to-Video (T2V).

$$\mathcal{L} = -\sum_{t=1}^{h \times w} \log p_{\theta}(y_t | y_{< t}, C^{text}; \theta) - \sum_{t=1}^{h \times w \times s} \log p_{\theta}(y_t | y_{< t}, "None"; \theta) - \sum_{t=1}^{h \times w \times s} \log p_{\theta}(y_t | y_{< t}, C^{text}; \theta)$$

Text-to-Image (T2I)

Video Prediction (V2V)

Text-to-Video (T2V)

Implementation Details

A unified multimodal pre-trained model called NUWA

Figure 2. Overview structure of NUWA.

Experiments (T2I)

Qualitative results

Figure 3. Qualitative comparison with state-of-the-art models for Text-to-Image (T2I) task on MSCOCO dataset.

Experiments (T2V)

Qualitative results

Figure 4. Quantitative comparison with state-of-the-art models for Text-to-Video (T2V) task on Kinetics dataset.

Experiments (T2I, T2V)

Quantitative results

Table 1. Qualitative comparison with the state-of-the-art models for Text-to-Image (T2I) task on the MSCOCO (256×256) dataset.

Model	FID-0↓	FID-1	FID-2	FID-4	FID-8	IS↑	CLIPSIM↑
AttnGAN [47]	35.2	44.0	72.0	108.0	100.0	23.3	0.2772
DM-GAN [52]	26.0	39.0	73.0	119.0	112.3	32.2	0.2838
DF-GAN [36]	26.0	33.8	55.9	91.0	97.0	18.7	0.2928
DALL-E [33]	27.5	28.0	45.5	83.5	85.0	17.9	-
CogView [9]	27.1	19.4	13.9	19.4	23.6	18.2	0.3325
XMC-GAN [50]	9.3	-	-	-	-	30.5	-
NÜWA	12.9	13.8	15.7	19.3	24	27.2	0.3429

Table 2. Quantitative comparison with state-of-the-art models for Text-to-Video (T2V) task on Kinetics dataset.

Model	Acc↑	FID-img↓	FID-vid↓	CLIPSIM↑
T2V (64×64) [21] SC (128×128) [2]	42.6 74.7	82.13 33.51	14.65 7.34	0.2853 0.2915
TFGAN (128×128) [2]	76.2	31.76	7.19	0.2961
NÜWA (128×128)	77.9	28.46	7.05	0.3012

Experiments (S2I, I2I)

· Qualitative results

Figure 5. Quantitative comparison with state-of-the-art models for Sketch-to-Image (S2I) task on MSCOCO stuff dataset.

Figure 6. Qualitative comparison with the state-of-the-art model for Image Completion (I2I) task in a zero-shot manner.

Experiments (TI2I: Image Manipulate)

Qualitative results

Figure 7. Quantitative comparison with state-of-the-art models for text-guided image manipulation (TI2I) in a zero-shot manner.

Experiments (TI2I: Image Manipulate)

· Qualitative results

Figure 9. Samples of different manipulations on the same video.

Ablation Study

VQ-GAN

Figure 8. Reconstruction samples of VQ-GAN and VQ-GAN-Seg.

Table 4. Effectiveness of different VQ-VAE (VQ-GAN) settings.

Model	Dataset	$R \to D$	Rate	SSIM	FID
VQ-VAE	ImageNet	$\begin{array}{c} 256^2 \to 16^2 \\ 256^2 \to 16^2 \\ 256^2 \to 32^2 \\ 336^2 \to 21^2 \\ 336^2 \to 21^2 \end{array}$	F16	0.7026	13.3
VQ-GAN	ImageNet		F16	0.7105	6.04
VQ-GAN	ImageNet		F8	0.8285	2.03
VQ-GAN	ImageNet		F16	0.7213	4.79
VQ-GAN	OpenImages		F16	0.7527	4.31
Model	Dataset	$R \to D$	Rate	PA	FWIoU
VQ-GAN-Seg	MSCOCO	$336^2 \rightarrow 21^2$	F16	96.82	93.91
VQ-GAN-Seg	VSPW	$336^2 \rightarrow 21^2$	F16	95.36	91.82

Ablation Study

Effectiveness of multi-task pre-training

Table 5. Effectiveness of multi-task pre-training for Text-to-Video (T2V) generation task on MSRVTT dataset.

Model	Pre-trained Tasks	FID-vid↓	CLIPSIM↑
NÜWA-TV NÜWA-TV-TI NÜWA-TV-VV	T2V T2V+T2I T2V+V2V	52.98 53.92 51.81	0.2314 0.2379 0.2335
NÜWA	T2V+T2I+V2V	47.68	0.2439

Effectiveness of 3DNA

Table 6. Effectiveness of 3D nearby attention for Sketch-to-Video (S2V) task on VSPW dataset.

Model	Encoder	Decoder	FID-vid↓	Detected PA↑
NÜWA-FF	Full	Full	35.21	0.5220
NÜWA-NF	Nearby	Full	33.63	0.5357
NÜWA-FN	Full	Nearby	32.06	0.5438
NÜWA-AA	Axis	Axis	29.18	0.5957
NÜWA	Nearby	Nearby	27.79	0.6085

Comparisons between 3D Sparse Attention

Figure 10. Comparisons between different 3D sparse attentions. All samples assume that the size of the input 3D data is $4 \times 4 \times 2 = 32$. The illustrations in the upper part show which tokens (blue) need to be attended to generate the target token (orange). The matrices of the size 32×32 in the lower part show the attention masks in sparse attention (black denotes masked tokens).

Table 7. Complexity of different 3D sparse attention.

Module	Complexity
3D full	$O\left((hws)^2\right)$
3D block-sparse [31,44]	$O\left((hws)^2\right) \ O\left(\left(\frac{hws}{b}\right)^2\right)$
3D axial-sparse [15, 33, 45]	O((hws)(h+w+s)) $O((hws)(e^he^we^s))$
3D nearby-sparse (ours)	$O\left((hws)\left(e^he^we^s\right)\right)$

References

- Wu, Chenfei, et al. "N\" UWA: Visual Synthesis Pre-training for Neural visUal World creAtion." *arXiv* preprint arXiv:2111.12417 (2021).
- Deep Foundations, Vector Quantized VAEs, https://www.youtube.com/watch?v=52G6WhBDQ3c
- Microsoft Research, Research talk: NUWA: Neural visual world creation with multimodal pretraining, https://youtu.be/jhmJ5qb-JAU