Correction du Partiel

Logique

9 novembre 2022

Exercice 1. Soient $f: \mathcal{M}_1 \to \mathcal{M}_2$ et $g: \mathcal{M}_2 \to \mathcal{M}_3$ des plongements entre \mathcal{L} -structures.

1. Montrer que si f et g sont élémentaires, alors $g \circ f$ l'est aussi.

```
Soient \varphi(x_1,\ldots,x_n) une formule et a_1,\ldots a_n \in M_1 tels que \mathcal{M}_1 \vDash \varphi(a_1,\ldots,a_n). Comme f est élémentaire, on a \mathcal{M}_2 \vDash \varphi(f(a_1),\ldots,f(a_n)), et comme g est élémentaire, on a \mathcal{M}_3 \vDash \varphi(g(f(a_1)),\ldots,g(f(a_n))). La réciproque suit de même, ou en considérant \neg \varphi.
```

2. Montrer que si $g \circ f$ et g sont élémentaires, alors f l'est aussi.

```
Soient \varphi(x_1, \ldots, x_n) une formule et a_1, \ldots a_n \in M_1 tels que \mathcal{M}_1 \models \varphi(a_1, \ldots, a_n). Comme g \circ f est élémentaire, on a \mathcal{M}_3 \models \varphi(g(f(a_1)), \ldots, g(f(a_n))), et comme g est élémentaire, \mathcal{M}_2 \models \varphi(f(a_1)), \ldots, f(a_n)). La réciproque suit de même, ou en considérant \neg \varphi.
```

Exercice 2. Soit (A, \leq) une algèbre de Boole. Une mesure (finiment additive) sur A est une fonction $\mu: A \to [0,1]$ telle que:

- $\mu(\top) = 1$
- Si a et $b \in A$ sont tels que $a \wedge b = \bot$, alors $\mu(a \vee b) = \mu(a) + \mu(b)$.

La notion de mesure finiment additive est également définie pour les anneaux de Boole, via la corrrespondance habituelle¹. On pourra, au choix, faire l'exercice avec le formalisme des anneaux de Boole ou celui des algèbres de Boole.

Soit μ une mesure sur A.

1. Montrer que $\mu^{-1}(\{1\})$ est un filtre.

```
Pour tout a, b \in A, montrons que \mu(a \vee b) + \mu(a \wedge b) = \mu(a) + \mu(b). En effet, a \vee b = a \vee (b \wedge \neg a) et a \wedge (b \wedge \neg a) = b \wedge \bot = \bot. On a donc \mu(a \vee b) = \mu(a) + \mu(b \wedge \neg a). De plus b = (b \wedge a) \vee (b \wedge \neg a) et (b \wedge a) \wedge (b \wedge \neg a) = b \wedge \bot = \bot et donc \mu(b) = \mu(a \wedge b) + \mu(b \wedge \neg a). Il s'ensuit que \mu(a \vee b) = \mu(a) + \mu(b) - \mu(a \wedge b).
```

Montrons maintenant que $X = \mu^{-1}(\{1\})$ est un filtre. Par définition $T \in X$. On a aussi $\mu(\bot) = \mu(\bot \lor \bot) = 2\mu(\bot)$ puisque $\bot \land \bot = \bot$ et donc $\mu(\bot) = 0$; d'où $\bot \notin X$. De plus, si $a \le b$ et $\mu(a) = 1$, on a $\mu(b) = \mu(a \lor (b \land \neg a)) \ge \mu(a) = 1$ et donc $\mu(b) = 1$. Enfin, si $\mu(a) = \mu(b) = 1$, on a $\mu(a \lor b) = 1 = \mu(a) + \mu(b) - \mu(a \land b) = 2 - \mu(a \land b)$ et donc $\mu(a \land b) = 1$.

Montrer que μ⁻¹({1}) est un ultrafiltre si et seulement si μ(A) = {0,1}.
Pour tout a ∈ A, on a 1 = μ(⊥) = μ(a) + μ(¬a) et donc μ(¬a) = 1 − μ(a).
Supposons que F = μ⁻¹({1}) est un ultrafiltre. Pour tout a ∈ A, on a donc μ(a) = 1 ou μ(¬a) = 1. Mais dans ce dernier cas, on a alors μ(a) = 1 − μ(¬a) = 0. Réciproquement, si μ(A) = {0,1}, si ¬a ∉ F, μ(¬a) = 0 et donc μ(a) = 1 − μ(¬a) = 1; d'où a ∈ F qui est donc bien un ultrafiltre.

Exercice 3. Soient I un ensemble non vide et $(a_i)_{i\in I}$ et $(b_i)_{i\in I}$ des familles de réels. Dans cet exercice, on considère \mathbb{R} comme une structure dans le langage avec un unique symbole binaire < interprété comme l'ordre usuel.

1. On suppose que $[0,1] \subseteq \bigcup_{i \in I} a_i, b_i[$. Montrer que cela reste vrai dans toute extension élémentaire de \mathbb{R} , i.e. que, pour toute extension élémentaire \mathcal{R} de \mathbb{R} , pour tout $a \in \mathcal{R}$, si on a $\mathcal{R} \models (0 \le a) \land (a \le 1)$, alors il existe $i \in I$ tel que $\mathcal{R} \models (a_i < a) \land (a < b_i)$.

[On pourra commencer par considérer le cas où I est fini.]

Par compacité de [0,1] pour la topologie usuelle sur \mathbb{R} , on peut extraire un recouvrement fini du recouvrement $\bigcup_i]a_i, b_i[$. Il existe donc I_0 fini tel que $[0,1] \subseteq \bigcup_{i \in I_0}]a_i, b_i[$. En d'autres termes, $\mathbb{R} \models \forall x \ (0 \le x \land x \le 1) \to \bigvee_{i \in I_0} a_i < x \land x < b_i$. Cet énoncé reste vrai dans toute extension élémentaire \mathbb{R} et donc, pour tout $x \in \mathbb{R}$, il existe un $i \in I_0$ tel que $\mathbb{R} \models a_i < x \land x < b_i$.

2. (*) On suppose maintenant $]0,1[\subseteq\bigcup_{i\in I}]a_i,b_i[$. Donner une condition nécessaire et suffisante, sur les familles $(a_i)_{i\in I}$ et $(b_i)_{i\in I}$, pour que cette inclusion reste vraie dans toute extension élémentaire de \mathbb{R} .

S'il existe un sous-recouvrement fini, c'est-à-dire $I_0 \subseteq I$ fini tel que $]0,1[\subseteq \bigcup_{i\in I_0}]a_i,b_i[$, on a alors $\mathbb{R} \models \forall x \, (0 < x \land x < 1) \rightarrow \bigvee_{i\in I_0} a_i < x \land x < b_i$ et donc cet énoncé reste vrai dans toute extension élémentaire \mathcal{R} de \mathbb{R} . Comme précédemment, il s'ensuit que, dans \mathcal{R} , $]0,1[\subseteq \bigcup_{i\in I_0}]a_i,b_i[\subseteq \bigcup_i]a_i,b_i[$.

Réciproquement, s'il n'existe pas de sous-recouvrement fini, alors pour tout $I_0 \subseteq I$ fini, dans \mathbb{R} , $]0,1[\setminus \bigcup_{i \in I_0}]a_i,b_i[\neq \varnothing .$ L'ensemble de formules $\mathcal{D}(\mathbb{R}) \cup \{0 < x \land x < 1\} \land \{x \le a_i \lor b_i \le x\}$ est donc finiment consistant (dans \mathbb{R}). Par compacité, il est consistant et il existe $a \in \mathcal{R} \geqslant \mathbb{R}$ tel que $\mathcal{R} \models 0 < a < 1$ et pour tout $i \in I$, $\mathcal{R} \models a \le a_i \lor b_i \le a$.

Une condition équivalente est : il existe $i, j \in I$ tels que $a_i \leq 0 < b_i$ et $a_j < 1 \leq b_j$. En effet, supposons que cette condition est vérifiée. Alors, on a $[b_i, a_j] \subseteq]0, 1[\subseteq \bigcup_{k \in I}]a_k, b_k[$. Donc, par compacité, on peut extraire un sous-recouvrement fini de $[b_i, a_j]$. Alors, en ajoutant $]a_i, b_i[$ et $]a_j, b_j[$ à ce recouvrement, on a un recouvrement fini de]0, 1[.

Réciproquement, supposons que, pour tout $i \in I$, on ait $a_i > 0$ ou $b_i \leq 0$, l'autre cas (pour tout $j \in I$, $a_j \geq 1$ ou $b_j < 1$) étant similaire. On constate que, si $b_i \leq 0$, alors $]a_i, b_i[\cap]0, 1[=\emptyset,$ donc on peut supposer que, pour tout $i \in I$, on a $a_i > 0$. Alors, on ne peut pas extraire de sous-recouvrement fini.

¹On rappelle que, dans un anneau de Boole, on a $\top = 1, \bot = 0, a \land b = a \cdot b$ et $a \lor b = a + b + a \cdot b$.

Exercice 4. Soit \mathcal{L} le langage avec un unique symbole f de fonction unaire.

1. Écrire une théorie T dans le langage \mathcal{L} dont les modèles sont exactement les structures (non vides) dans lesquelles f est une bijection telle qu'aucune composée f^n n'a de point fixe, pour $n \ge 1$.

La théorie *T* contient:

- $\forall x \forall y f(x) = f(y) \rightarrow x = y;$
- $\forall x \exists y f(y) = x$;
- pour tout n, $\forall x \neg f \dots fx = x$ où il y a n symboles f à gauche de l'égalité.
- 2. Montrer que deux modèles de T non-dénombrables de même cardinal sont isomorphes.

Soit $M \models T$. On dit que $x,y \in M$ sont dans la même f-orbite, s'il existe un entier n tel que $f^n(x) = y$. C'est une relation d'équivalence dont les classes sont dénombrables (elles sont naturellement en bijection avec \mathbb{Z}) — en particulier, M est infini. Pour toute f-orbite X, on choisit $x_X \in X$ (par l'axiome du choix). Soit Z un ensemble de même cardinal que l'ensemble Y des f-orbites de M, et $h: Z \to Y$ une bijection. On définit alors $g: Z \times \mathbb{Z} \to M$ par $g(z,n) = f^n(x_{h(z)})$. Cette fonction est injective. En effet, si $f^n(x_{h(z)}) = f^m(x_{h(y)})$, alors $x_{h(z)}$ et $x_{h(y)}$ sont dans la même orbite et donc z = y. On a alors $f^n(x_{h(x)}) = f^m(x_{h(x)})$ et donc n = m puisque sinon f^{m-n} n'a pas de point fixe. Elle est aussi surjective puisque, par définition, tout élément de M est de la forme $f^n(x_X)$ où X est sa f-orbite.

Si on interprète f sur $Y \times \mathbb{Z}$ par f(X,n) = (X,n+1), la fonction g est un isomorphisme. De plus, si M est non-dénombrable, alors Y est de même cardinal que M. En effet, on vient de voir que M est de même cardinal que $Y \times \mathbb{Z}$. Si Y ne peut pas être fini puisque $Y \times \mathbb{Z}$ serait alors dénombrable. Il s'ensuit que Y est de même cardinal que Y.

Soit $\mathcal{N} \models T$ de même cardinal que \mathcal{M} et Z l'ensemble de ses f-orbites. On a vu que Z est de même cardinal que N et donc que Y. On a alors que \mathcal{M} et \mathcal{N} sont tous deux isomorphes à $Y \times \mathbb{Z}$ par la construction ci-dessus.

3. (*) Soit $f: \mathcal{M} \to \mathcal{N}$ un plongement entre modèles de T. Montrer qu'il est élémentaire. [On pourra commencer par considérer le cas où le cardinal de N est strictement plus grand que celui de M.]

Par Lowenheim-Skolem, soient $h: \mathcal{M} \to \mathcal{M}^*$ et $l: \mathcal{N} \to \mathcal{N}^*$, avec \mathcal{M}^* et \mathcal{N}^* de même cardinal strictement plus grand que celui de \mathcal{M} . On remarque que $\mathcal{M}^* \setminus h(\mathcal{M})$ est encore une \mathcal{L} -structure et que c'est un modèle de T de même cardinal que \mathcal{M}^* — en particulier non dénombrable. De même pour $\mathcal{N}^* \setminus l(g(\mathcal{M}))$. Ils sont donc isomorphes par la questions précédente. Quitte à l'étendre par $l \circ g$, on trouve un isomorphisme $i: \mathcal{M}^* \to \mathcal{N}^*$ tel que $l \circ g = i \circ h$. Par la question 1.1, $i \circ h$ est élémentaire. C'est donc aussi le cas de g par la question 1.2.