Prática: Visão Computacional

Com o curso "The Ultimate Computer Vision And Deep Learning Course" foi possível revisar a maioria dos conceitos aprendidos sobre Deep Learning até o momento. Além de seções teóricas rápidas para relembrar os conceitos mais importantes, as aulas apresentaram mini projetos práticos para fixar o conteúdo. Entretanto, diferente do que tem sido feito até o momento, os códigos foram desenvolvidos utilizando o framework PyTorch. A seguir, listo os principais conceitos abordados durante o desenvolvimento da tarefa:

Fundamentos do Aprendizado Profundo

O aprendizado profundo, ou deep learning, é uma abordagem de machine learning que utiliza redes neurais profundas para aprender padrões complexos. Em contraste com Keras, o curso trouxe o PyTorch, uma biblioteca popular para deep learning em Python. Tensors, a base de dados em PyTorch, são estruturas fundamentais para operações numéricas eficientes dentro do framework.

Desenvolvimento de Redes Neurais com PyTorch

Redes neurais são modelos computacionais inspirados no cérebro humano. No PyTorch, também foi possível trabalhar com o conceito Sequential para construir redes de forma mais intuitiva. Exploramos o workflow de treinamento, a arquitetura da rede, funções de ativação e perda, otimizadores, e realizamos treinamento de modelos.

Redes Neurais para Imagens

Seção dedicada aos conhecimentos necessários para classificação de imagens, compreendendo os fundamentos do processamento de imagens e ajuste de hiperparâmetros. Assim como no Keras, exploramos a normalização de dados no PyTorch para melhorar o desempenho dos modelos.

Redes Neurais Convolucionais

Introduzimos as Redes Neurais Convolucionais (CNN), destacando sua eficácia na análise de imagens. Compreendi a utilização de CNNs no PyTorch e a importância do Data Augmentation para melhorar a generalização do modelo.

Auto Encoders

Os Autoencoders são um tópico crucial no campo das redes neurais. O curso apresenta o conceito de Autoencoders como uma classe especial de redes neurais projetada para a compressão eficiente de dados. Destacou-se a exploração da variante VAE (Variational Autoencoder), que se destaca ao possibilitar a geração de dados extremamente diversificados, ampliando significativamente as capacidades tradicionais dos autoencoders.