# CS:314 Fall 2024

Section **04**Recitation **11** 



Office hours: 2-3pm @ Thursday CoRE 335









## **Topics Covered**



#### Lambda Calculus

- β-Reduction
- $\circ$   $\alpha$ -Reduction
- Programming in Lambda Calculus



#### **Overview**

• A unified language to manipulate and reason about functions.

multiple aspects in a single system

Function definition using  $\lambda$ -terms.

Variable binding and substitution to evaluate expressions.

Function application

to arguments.

#### What are λ-terms?

• The fundamental building blocks of lambda calculus. Used to make expressions.

#### $\lambda$ -terms are:

- **Variables**: x,y,z
- **Function Abstractions:**  $\lambda x.M$ , where M is another lambda term
  - defines a function with parameter x
- **Function Applications: M N**, where M and N are lambda terms
  - applies the function M to the argument N
    - M is a **function** expressed as a lambda term (e.g.,  $\lambda x.x+1$ ).
    - N is the **input** or argument to that function (e.g., 3).
    - Applying M to N means substituting N into M's body for every free occurrence of the variable

 $(\lambda x.x+1)3$ 

#### **Precedence**

"Need to eat **Apples** before you get **Abs**."

- Function Application has the highest precedence and is left-associative.
  - Left associative: (f g z) is ((f g) z)
    - apply f to g, then apply that to z and onward
  - Precedence:
    - $\lambda x.yz$  is grouped as  $\lambda x.(yz)$ 
      - $\lambda x.yz$  represents a single lambda abstraction with a body (y z)
      - everything after an abstraction is considered the "body" unless explicitly grouped with parentheses.
      - to remain syntactically correct, we are applying y to z
    - $\lambda x.\lambda y.xy$  is grouped as  $\lambda x.(\lambda y.(xy))$ . Multiple args:  $(\lambda xy.z)$  is  $(\lambda x.(\lambda y.z))$ .

### **Functions to Lambda Calculus Example**

- Consider the function f(x) = x + 4.
- This can be expressed in lambda as  $\lambda x.(+ x 4)$
- By applying a value to the function, we can evaluate the function.
- Suppose we want to apply the value 2 to each expression of this function:
  - $\circ$  f(2) = 2 + 4 = 6
  - $\circ$   $((\lambda x.(+ x 4)) 2) = (+ 2 4) = 6$ 
    - $\blacksquare$  apply function to 2, meaning substitute 2 for every free occurrence of x.

#### **Free and Bound Variables**

• If we have an expression as follows:

 $(\lambda x.M)$ 

- Then we say that x is **bound** in expression M.
- All other variable occurrences in M for this particular function are **free**.

#### Free and Bound Variables Trivia

• Consider the following expression:

$$(\lambda xy.((x y) (x w)))$$

- What variables are bound in this expression?
- What variables are free in this expression?

#### Free and Bound Variables Answer

Consider the following expression:

```
(\lambda xy.((x y) (x w)))
```

- What variables are bound in this expression?
   Variables x and y are bound in this expression.
- What variables are free in this expression?
   Variable w is free in this expression.

### Computation is based on Simplification

### Reduce until you can't anymore.

Alpha-Reduction and Beta-Reduction





#### **Beta-Reduction**

- $\beta$  -Reduction is the technique of applying functions to their arguments.  $((\lambda x.M) v) = [v / x]M$
- The notation "[v / x]M" means replacing all free occurrences of x in M with v.
- Examples:
  - $\circ$   $((\lambda x.(+x1)) 2) = [2/x] (+x1) = (+21) = 3$
  - $((\lambda x.(+ x x)) 2) = [2 / x] (+ x x) = (+ 2 2) = 4$
  - $\circ$   $((\lambda x.3) 2) = [2/x] 3 = 3$

### More Beta Reduction Examples

•  $((\lambda x.\lambda y.(+ x y)) 2) = [2 / x](\lambda y.(+ x y))$ 

•  $((\lambda x.(x y)) (\lambda z.z)) = ?$ 

•  $((\lambda x.\lambda y.xy) (\lambda z.(z z)) x) = ?$ 

### More Beta Reduction Examples

- $((\lambda x.\lambda y.(+ x y)) 2) = [2 / x](\lambda y.(+ x y))$ =  $(\lambda y.(+ 2 y))$ = 2 + y
- $((\lambda x.(x y)) (\lambda z.z)) = ?$

•  $((\lambda x.\lambda y.xy) (\lambda z.(z z)) x) = ?$ 

We apply outermost  $\lambda$  first!

### More Beta Reduction Examples

```
• ((\lambda x.\lambda y.(+ x y)) 2) = [2 / x](\lambda y.(+ x y))
= (\lambda y.(+ 2 y))
= 2 + y
• ((\lambda x.(x y)) (\lambda z.z)) = ((\lambda z.z) y)
= y
```

•  $((\lambda x.\lambda y.xy) (\lambda z.(z z)) x) = ?$ 

### More Beta Reduction Examples (answer)

```
• ((\lambda x.\lambda y.(+ x y)) 2) = [2 / x](\lambda y.(+ x y))
= (\lambda y.(+ 2 y))
= 2 + y
• ((\lambda x.(x y)) (\lambda z.z)) = ((\lambda z.z) y)
= y
```

$$((\lambda x.\lambda y.xy) (\lambda z.(z z)) x) = ((\lambda y.((\lambda z.(z z)) y) x)$$
$$= ((\lambda z.(z z)) x)$$
$$= (x x)$$

### **Alpha-Reduction**

- Consider the following expression:
  - $\circ$   $((\lambda x.\lambda y.(x y)) y w)$
- Applying Beta-Reduction here gives us:
  - $\circ ((\lambda y.(y y)) w) = (w w)$
- That's wrong: the y marked in red was free, but accidentally became bound to the inner abstraction  $\lambda y$ .
- $\alpha$ -Reduction is the act of renaming a bound variable to avoid this problem.
  - $((\lambda x.\lambda z.(x z)) \mathbf{y} \mathbf{w}) = ((\lambda z.(\mathbf{y} z)) \mathbf{w}) = (\mathbf{y} \mathbf{w})$

### Example of Alpha-Reduction

$$((\lambda x.\lambda y.(x y)) (\lambda y.y) w) = ((\lambda x.\lambda z.(x z)) (\lambda y.y) w)$$
 via  $\alpha$ -Reduction = ?

### Example of Alpha-Reduction

$$((\lambda x.\lambda y.(x y)) (\lambda y.y) w) = ((\lambda x.\lambda z.(x z)) (\lambda y.y) w)$$
 via  $\alpha$ -Reduction =  $((\lambda z.((\lambda y. y) z)) w)$  via  $\beta$ -Reduction = ?

### Example of Alpha-Reduction

```
((\lambda x.\lambda y.(x\ y))\ (\lambda y.y)\ w) = ((\lambda x.\lambda z.(x\ z))\ (\lambda y.y)\ w) \qquad \text{via $\alpha$-Reduction} = ((\lambda z.((\lambda y.\ y)\ z))\ w) \qquad \text{via $\beta$-Reduction} = ((\lambda y.\ y)\ w) \qquad \text{via $\beta$-Reduction} = ?
```

## Example of Alpha-Reduction (answer)

$$((\lambda x.\lambda y.(x\ y))\ (\lambda y.y)\ w) = ((\lambda x.\lambda z.(x\ z))\ (\lambda y.y)\ w) \qquad \text{via $\alpha$-Reduction}$$
 
$$= ((\lambda z.((\lambda y.\ y)\ z))\ w) \qquad \text{via $\beta$-Reduction}$$
 
$$= ((\lambda y.\ y)\ w) \qquad \text{via $\beta$-Reduction}$$
 
$$= w \qquad \text{via $\beta$-Reduction}$$

### **Programming in Lambda Calculus**

- We define **True** =  $(\lambda xy.x)$ 
  - o a.k.a. select-first, since it selects the first of two arguments.
- We define **False** =  $(\lambda xy.y)$ 
  - o a.k.a. select-second, since it selects the second of two arguments
- We can then define **not** =  $(\lambda x.((x \text{ False}) \text{ True}))$
- If we apply not to True, it will select the first argument: False.
- If we apply not to False, it will select the second argument: True.
- Let's show more formally why (not False) = True.

### **Programming in Lambda Calculus**

We want to show that (not False) = True.

```
Recall that not = (\lambda x.((x \text{ False}) \text{ True})) and False = (\lambda xy.y) = (\lambda x.\lambda y.y)
```

Therefore (not False) =  $((\lambda x.((x \text{ False}) \text{ True})) \text{ False})$  by definition

- = ((False False) True) by Beta-Reduction
- =  $((\lambda x.\lambda y.y))$  False) True) by definition  $(\lambda x)$  got "eaten up")
- =  $((\lambda y.y)$  True) by Beta Reduction
- = True by Beta Reduction