CSC165H1: Problem Set 1 Sample Solutions

Due January 24, 2018 before 10pm

Note: solutions are incomplete, and meant to be used as guidelines only. We encourage you to ask follow-up questions on the course forum or during office hours.

- 1. **[6 marks] Propositional formulas.** For each of the following propositional formulas, find the following two items:
 - (i) The truth table for the formula. (You don't need to show your work for calculating the rows of the table.)
 - (ii) A logically equivalent formula that only uses the \neg , \wedge , and \vee operators; $no \Rightarrow \text{or} \Leftrightarrow$. (You should show your work in arriving at your final result. Make sure you're reviewed the "extra instructions" for this problem set carefully.)
 - (a) [3 marks] $(p \Rightarrow q) \Rightarrow \neg q$.

Solution

Truth table:

p	q	$(p \Rightarrow q) \Rightarrow \neg q$
False	False	True
False	True	False
True	False	True
True	True	False

Equivalent formula:

$$(p \Rightarrow q) \Rightarrow \neg q$$

$$\neg(p \Rightarrow q) \vee \neg q \qquad \text{(implication rule)}$$

$$(p \wedge \neg q) \vee \neg q \qquad \text{(implication negation rule)}$$

$$(\text{okay to stop here and not simplify further})$$

$$((p \vee \neg q) \wedge (\neg q \vee \neg q)) \qquad \text{(distributivity rule)}$$

$$((p \vee \neg q) \wedge \neg q) \qquad \text{(idempotency rule)}$$

$$\neg q$$

(b) [3 marks] $(p \Rightarrow \neg r) \land (\neg p \Rightarrow q)$.

Solution

Truth table:

p	q	r	$(p \Rightarrow \neg r) \land (\neg p \Rightarrow q)$
False	False	False	False
False	False	True	False
False	True	False	True
False	True	True	True
True	False	False	True
True	False	True	False
True	True	False	True
True	True	True	False

Equivalent formula:

$$\begin{split} (p \Rightarrow \neg r) \wedge (\neg p \Rightarrow q) \\ (\neg p \vee \neg r) \wedge (\neg p \Rightarrow q) & \text{(implication rule)} \\ (\neg p \vee \neg r) \wedge (\neg \neg p \vee q) & \text{(implication rule)} \\ (\neg p \vee \neg r) \wedge (p \vee q) & \text{(double negation rule)} \end{split}$$

(okay to stop here and not simplify further)

(distributivity rules for AND over OR and OR over AND may be used to simplify)

2. [8 marks] Fixed Points.

Let f be a function from \mathbb{N} to \mathbb{N} . A fixed point of f is an element $x \in \mathbb{N}$ such that f(x) = x. A least fixed point of f is the smallest number $x \in \mathbb{N}$ such that f(x) = x. A greatest fixed point of f is the largest number $x \in \mathbb{N}$ such that f(x) = x.

(a) [1 mark] Express using the language of predicate logic the English statement:

"f has a fixed point."

You may use an expression like "f(x) = [something]" in your solution.

Solution

$$\exists x \in \mathbb{N}, f(x) = x$$

(b) [2 marks] Express using the language of predicate logic the English statement:

"f has a least fixed point."

You may use the predefined function f as well as the predefined predicates = and <. You may not use any other predefined predicates.

Solution

$$\exists x \in \mathbb{N}, \ \forall y \in \mathbb{N}, \ f(x) = x \land (f(y) = y \Rightarrow \neg (y < x))$$

Other correct answers follow from using contrapositive, simplifying \Rightarrow or moving quantifier in:

$$\exists x \in \mathbb{N}, \ \forall y \in \mathbb{N}, \ f(x) = x \ \land \ (f(y) = y \Rightarrow (x < y \lor x = y))$$

$$\exists x \in \mathbb{N}, \ \forall y \in \mathbb{N}, \ f(x) = x \ \land \ (y < x \Rightarrow \neg(f(y) = y))$$

$$\exists x \in \mathbb{N}, \ \forall y \in \mathbb{N}, \ f(x) = x \ \land \ (\neg(f(y) = y) \lor \neg(y < x))$$

$$\exists x \in \mathbb{N}, \ (f(x) = x \ \land \ (\forall y \in \mathbb{N}, \ (y < x \Rightarrow \neg(f(y) = y))))$$

$$\exists x \in \mathbb{N}, \ (f(x) = x \ \land \ (\forall y \in \mathbb{N}, \ f(y) = y \Rightarrow \neg(y < x)))$$

$$\exists x \in \mathbb{N}, \ (f(x) = x \ \land \ (\forall y \in \mathbb{N}, \ (\neg(y < x) \lor \neg(f(y) = y))))$$

(c) [2 marks] Express using the language of predicate logic the English statement:

"f has a greatest fixed point."

You may use the predefined function f as well as the predefined predicates = and <. You may not use any other predefined predicates.

Solution

$$\exists x \in \mathbb{N}, \ \forall y \in \mathbb{N}, \ f(x) = x \land (f(y) = y \Rightarrow \neg (x < y))$$

Other possible answers that are also correct:

$$\exists x \in \mathbb{N}, \ \forall y \in \mathbb{N}, \ f(x) = x \ \land \ (x < y \Rightarrow \neg (f(y) = y))$$

$$\exists x \in \mathbb{N}, \ \forall y \in \mathbb{N}, \ f(x) = x \ \land \ (\neg(f(y) = y) \ \lor \ \neg(x < y))$$

$$\exists x \in \mathbb{N}, \big(f(x) = x \land (\forall y \in \mathbb{N}, (f(y) = y \Rightarrow \neg(x < y))) \big)$$

$$\exists x \in \mathbb{N}, \big(f(x) = x \land (\forall y \in \mathbb{N}, (x < y \Rightarrow \neg(f(y) = y))) \big)$$

$$\exists x \in \mathbb{N}, \big(f(x) = x \land (\forall y \in \mathbb{N}, \neg(f(y) = y) \lor \neg(x < y)) \big)$$

(d) [3 marks] Consider the function f from \mathbb{N} to \mathbb{N} defined as $f(x) = x \mod 7$. Answer the following questions by filling in the blanks.

The fixed points of f are: _____

The least fixed point of f is: ______

The greatest fixed point of f is: ______

Solution

The fixed points of f are: 0, 1, 2, 3, 4, 5, 6.

The least fixed point of f is: 0

The greatest fixed point of f is: 6

¹ Here we are using the modulus operator. Given a natural number a and a positive integer b, $a \mod b$ is the natural number less than b that is the remainder when a is divided by b. In Python, the expression a % b may be used to compute the value of $a \mod b$.

- 3. [6 marks] Partial Orders. A binary predicate R on a set D is called a partial order if the following three properties hold:
 - (1) (reflexive) $\forall d \in D, R(d, d)$
 - (2) (transitive) $\forall d, d', d'' \in D$, $(R(d, d') \land R(d', d'')) \Rightarrow R(d, d'')$
 - (3) (anti-symmetric) $\forall d, d' \in D, (R(d, d') \land R(d', d)) \Rightarrow d = d'$

A binary predicate R on a set D is called a *total order* if it is a partial order and in addition the following property holds: $\forall d, d' \in D$, $R(d, d') \vee R(d', d)$.

For example, here is a binary predicate R on the set $\{a, b, c, d\}$ that is a total order:

$$R(a,b) = R(a,c) = R(a,d) = R(b,c) = R(b,d) = R(c,d) = R(a,a) = R(b,b) = R(c,c) = R(d,d) =$$
True and all other values are False.

(a) [2 marks] Give an example of a binary predicate R on the set \mathbb{N} that is a partial order but that is not a total order.

Solution

 $R(i,i) = \text{True for all } i \in \mathbb{N}, \text{ and all other values are False.}$

(b) [2 marks] Let R be a partial order predicate on a set D. R specifies an ordering between elements in D. Whenever R(d, d') is True, we will say that d is less than or equal to d', or that d' is greater than or equal to d. The following formula in predicate logic expresses that there exists a greatest element in D; that is, an element in D that is greater than or equal to every other element in D:

$$\exists d \in D, \ \forall d' \in D, \ R(d', d)$$

An element in D is said to be maximal if no other element in D is larger than this element. The following formula in predicate logic expresses that there exists a maximal element in D:

$$\exists d \in D, \ \forall d' \in D, \ d = d' \lor \neg R(d, d')$$

Give an example of a partial order order R over $\{a, b, c, d\}$ such that every element is maximal.

Solution

R(a,a) = R(b,b) = R(c,c) = R(d,d) = True and all other values are False.

(c) [2 marks] Give an example of a partial order R over $\{a, b, c, d\}$ such that $a \in D$ is maximal but a is not a greatest element. Justify your answer briefly.

Solution

Note that there are two accepted interpretations of the question:

- i. That it is the element a that is maximal, but a is not a greatest element.
 - That is: $(\forall d' \in D, \ a = d' \lor \neg R(a, d')) \land (\exists d' \in D, \ \neg R(d', a))$
- ii. There there is some element $a \in D$ that is maximal, but is not a greatest element. That is: $\exists a \in D, \left(\left(\forall d' \in D, \ a = d' \lor \neg R(a, d') \right) \land \left(\exists d' \in D, \ \neg R(d', a) \right) \right)$

The solution below uses the first interpretation, but is also correct for the second, by using a is the example.

Using our example from above, where R(a, a) = R(b, b) = R(c, c) = R(d, d) = True and all other

values are False, we see that a is maximal but a is not a greatest element.

Element a is maximal since R(a, d') is never True when $d' \neq a$. Furthermore, a is not greatest because, for example, R(b, a) is False, and so $\neg R(b, a)$ is True.

4. [13 marks] One-to-one functions. So far, most of our predicates have had sets of numbers as their domains. But this is not always the case: we can define properties of any kind of object we want to study, including functions themselves!

Let S and T be sets. We say that a function $f: S \to T$ is **one-to-one** if no two distinct inputs are mapped to the same output by f. For example, if $S = T = \mathbb{Z}$, the function $f_1(x) = x + 1$ is one-to-one, since every input x gets mapped to a distinct output. However, the function $f_2(x) = x^2$ is not one-to-one, since $f_2(1) = f_2(-1) = 1$. Formally we express " $f: S \to T$ is one-to-one" as: $\forall x_1 \in S, \ \forall x_2 \in S, \ f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.

We say that $f: S \to T$ is **onto** if every element in T gets mapped to by at least one element in S. The above function f(x) = x + 1 is onto over $\mathbb Z$ but is not onto over $\mathbb N$. Formally we express " $f: S \to T$ is onto" as:

$$\forall y \in T, \ \exists x \in S, \ f(x) = y$$

Let $t \in T$. We say that f outputs t if there exists $s \in S$ such that f(s) = t.

(a) [1 mark] How many functions are there from $\{1, 2, 3\}$ to $\{a, b, c, d\}$?

Solution

There are $4^3 = 64$ possible functions from $\{1, 2, 3\}$ to $\{a, b, c, d\}$.

This is because we have 4 possible outputs (a, b, c or d) for f(1), and similarly for f(2) and f(3).

(b) [1 mark] How many one-to-one functions are there from $\{1, 2, 3\}$ to $\{a, b, c, d\}$?

Solution

There are $4 \cdot 3 \cdot 2 = 24$ one-to-one functions from $\{1, 2, 3\}$ to $\{a, b, c, d\}$.

This follows since once we pick one of the 4 possible outputs for f(1), there are only 3 possible outputs left for f(2), and only 2 possible outputs left for f(3).

(c) [1 mark] How many onto functions are there from $\{1, 2, 3, 4\}$ to $\{a, b, c\}$?

Solution

There are 36 onto functions from $\{1, 2, 3, 4\}$ to $\{a, b, c\}$.

Suppose we were considering onto functions from $\{A,B,C\}$ to $\{a,b,c\}$. (Note this domain has 3 elements.) There are $3 \cdot 2 = 6$ such onto functions, since there are 3 choices for the element that maps to a, then 2 choices for the element that maps to b and 1 choice for the element that maps to c. Now there are 4 possible ways to get a three element domain $\{A,B,C\}$ from the four element domain $\{1,2,3,4\}$. (There are 4 possible values that could be left out.) For each value that is left out of $\{1,2,3,4\}$, there are 3 possible elements in $\{a,b,c\}$ that could be mapped onto. However this includes some double counting, as leaving out 4 and taking f(4) = f(1) would give the same function as generated by leaving out 1 and taking f(1) = f(4). Altogether then, the number of onto functions is $(3 \cdot 2) \cdot (4 \cdot 3)/2 = 36$.

Alternatively, we could count indirectly. There are $3^4 = 81$ total functions from $\{1, 2, 3, 4\}$ to $\{a, b, c\}$. Let's think about the number of these that are not onto. There are $3 \cdot (2^4) = 48$ functions have a range that contains at most 2 elements. (We have 3 choices for the element to drop from the range, and then 2 choices to map to for each of $\{1, 2, 3, 4\}$.) But arriving at the 48 functions double-counts the functions that have a range that contains only 1 element. So we will need to add that number back in once. There are $3 \cdot (1^4) = 3$ funtions that have a range

containing 1 element. In total then there are 81 - 48 + 3 = 36 onto functions from $\{1, 2, 3, 4\}$ to $\{a, b, c\}$!

(d) [2 marks] Now let R be a binary predicate with domain $\mathbb{N} \times \mathbb{N}$. We say that R represents a function if, for every $x \in \mathbb{N}$, there exists a unique $y \in \mathbb{N}$, such that R(x,y) (is True). In this case, we write expressions like y = f(x).

Define a predicate Function(R), where R is a binary predicate with domain $\mathbb{N} \times \mathbb{N}$, that expresses the English statement:

"R represents a function."

You may use the predicates $<, \leq, =, R$, but may not use any other predicate or function symbols.

In parts (e)-(h) below, you may use the predicate Function(R) (in addition to the predicates $<, \le, =, R$) in your solution, but may not use any other predicate or function symbols.

Solution

$$Function(R): \forall x \in \mathbb{N}, \exists y \in \mathbb{N}, (R(x,y)) \land (\forall z \in \mathbb{N}, R(x,z) \Rightarrow z = y))$$

(e) [2 marks] Define a predicate that expresses the following English statement.

"R represents an onto function."

Solution

$$Onto(R): Function(R) \land (\forall y \in \mathbb{N}, \exists x \in \mathbb{N}, R(x,y))$$

(f) [2 marks] Define a predicate that expresses the following English statement.

"R represents a one-to-one function."

Solution

$$OneToOne(R): Function(R) \land (\forall x_1, x_2, y \in \mathbb{N}, (R(x_1, y) \land R(x_2, y)) \Rightarrow x_1 = x_2)$$

(g) [2 marks] Define a predicate that expresses the following English statement.

"R represents a function that outputs infinitely many elements of \mathbb{N} ."

Solution

Infinitely
$$Many(R)$$
: Function $(R) \land (\forall y_1 \in \mathbb{N}, \exists x, y_2 \in \mathbb{N}, (y_2 > y_1 \land R(x, y_2)))$

(h) [2 marks] Now define a predicate that expresses the following English statement.

"R represents a function that outputs all but finitely many elements of \mathbb{N} ."

Solution

 $AllButFinitelyMany(R): Function(R) \land (\exists y_1 \in \mathbb{N}, \ \forall y_2 \in \mathbb{N}, \ y_1 \leq y_2 \ \Rightarrow \ (\exists x \in \mathbb{N}, R(x, y_2)))$

Page 9/9