ROBOTRONIK – CONCEPTION ÉLECTRONIQUE

DES SPÉCIFICATIONS AU CIRCUIT IMPRIMÉ

XAVIER LESAGE

16/10/2019

SOMMAIRE

- Cahier des Charges
- Capteur optique à réflexion
 - capteur Infrarouge (CNY 70)
- Datasheet / Applications notes
 - DS : Capteur Infrarouge
 - AN: Capteur optique
 - DS: oscillateur

- Simulation du circuit
 - Tran
 - AC

SOMMAIRE

- Dimensionnement / Simulation
 - Émetteur
 - Filtre
 - Détecteur de crête
 - Récepteur
- Vérification

- Conception du circuit imprimé
 - Schéma
 - Empreintes
 - Règles de routage
 - Routage

CAHIER DES CHARGES

- Détection d'une ligne noire de 3-4 mm de large sur une surface de papier blanche
- Déplacement sur le plan
- Distance entre le capteur et la surface faible

CAPTEUR OPTIQUE À RÉFLEXION (ORS)

- Assemblage d'un émetteur et d'un récepteur
- Émetteur :
 - Photodiode
 - Émission d'une onde infrarouge (\sim 950nm)
- Récepteur :
 - Phototransistor
 - Courant de sortie proportionnel à la lumière incidente

CAPTEUR INFRAROUGE - CNY 70

- Capteur optique à réflexion
- Courte distance <5mm
- Filtre la lumière ambiante
- Peu cher
 - https://fr.farnell.com/vishay/cny70/capteur-optique-sortie-transistor/dp/1470063

DATASHEET / APPLICATIONS NOTES

- CNY 70 : http://www.farnell.com/datasheets/1866525.pdf
- Vishay ORS: https://www.vishay.com/docs/80107/80107.pdf
- NE555: http://www.ti.com/lit/ds/symlink/se555.pdf

DATASHEET - CNY 70

- Capteur optique à réflexion
- A chercher:
 - Pin map
 - Forward current
 - Fig. 5 courant collecteur / entrée
 - Fig. 9 courant collecteur / distance

APPLICATIONS NOTES – ORS

- Document de Vishay sur les ORS
- A chercher:
 - P. 2, 3 Informations générales
 - P. 9, 10 Lumière ambiante
 - P. 11-13 Applications (circuits)
 - Fig. 18-22 Circuits

DATASHEET - NE555

- Oscillateur bi/mono/a-stable
- A chercher:
 - Pin map
 - S. 7.3 Conditions d'utilisation
 - S. 8.3.2 Montage astable

Figure 13. Typical Astable Waveforms

SIMULATION - LTSPICE

- Définition: « LTspice® is a high performance SPICE simulation software, schematic capture and waveform viewer with enhancements and models for easing the simulation of analog circuits. Included in the download of LTspice are macromodels for a majority of Analog Devices switching regulators, amplifiers, as well as a library of devices for general circuit simulation. » [https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html]
- Dessin de schéma et simulation de comportement
- Commandes de simulation éditables

SIMULATION - TRAN

- Analyse du circuit dans le temps
- Vérification d'un comportement pour des conditions données
- Syntaxe: .TRAN <Tstep> <Tstop> [Tstart [dTmax]] [modifiers]
- Cf. edit sim. com.

SIMULATION - AC

- Balayage en fréquence.
- P. ex. : Réponse d'un filtre en fréquence.
 - Diagramme de Bode
- Dynamique AC des sources
- Syntaxe: .AC DEC ND FSTART FSTOP
- Cf. edit sim. com.

DIMENSIONNEMENT

- Valeur standard de composant :
 - Résistances: E12
 - Capacité
- Composant disponible ou simple à trouver
- Composant en boitier multiple (p. ex. Boitier 4 AOP)

DIMENSIONNEMENT — EMETTEUR : NE555

- Préférez la datasheet constructeur (fig 21 vs 8.3.2)
- Vcc = 5V
- Fig. 12,14
- Calcul au tableau

SIMULATION - EMETTEUR

- Cf Emetteur_v1.asc
- Variation Ra/Rb

DIMENSIONNEMENT – RÉCEPTEUR : FILTRE

- Fig. 21 active filter
- Calcul au tableau

SIMULATION - FILTRE

- Ajout d'un dynamique AC pour analyse AC
- Pour TRAN simulation du créneau par PULSE
- Syntaxe: PULSE(V1 V2 TD TR TF PW PER)
- Variation R2/R3, Cf/Cq
- Cf. filtre_biz.asc

DIMENSIONNEMENT — RÉCEPTEUR : DÉTECTEUR CRÊTE

- Montage détecteur de crête
- Calcul au tableau
- Valeurs empiriques

SIMULATION – DÉTECTEUR DE CRÊTE

- Ajustement empirique des valeurs de composant
- Fonction sinusoïdale en entrée
- Syntaxe : SIN({voffset} {vpeak} {freq} {tdelay} {damp_factor} {phase})
- Cf. Detecteur de crete.asc

SIMULATION - RÉCEPTEUR

- Isolation d'étage ?
- Adaptation pour l'utilisation
- Cf. Recepteur_v1.asc

VÉRIFICATION • Fonctions ?

EDA - KICAD

- Définition : « KiCad is an open source software suite for Electronic Design Automation (EDA). The programs handle Schematic Capture, and PCB Layout with Gerber output. The suite runs on Windows, Linux and macOS and is licensed under GNU GPL v3. » [http://www.kicad-pcb.org/about/kicad/]
- Routage de circuit à partir d'un schéma et gestion des empreintes

KICAD - SCHÉMA

- Reproduction du schéma LTSpice dans le logiciel KiCAD
- Labélisation des connections importantes (ajout de Flag)
- Séparations des modules en schéma séparé
- L'ajout des valeurs de composants est souhaité mais pas obligatoire
- Annotation des composants (automatique)

KICAD - EMPREINTES

- Gestion des empreintes par librairie
- Adaptation de l'empreinte au composant
 - Fonctions
 - Formes (SMD, THT)
- Éditeur / Visualisateur d'empreinte

KICAD – RÈGLE DE ROUTAGE

- Adaptation des règles pour le fondeur
- Pour Phelma (cf. Tutoriel KiCad 2):
 - Isolation: 0.2 mm
 - Largeur Piste : 0.5mm
 - Diamètre via : 2mm
 - Perçage via: 0.8 mm
 - Perçage Accrochage: 3mm

KICAD - ROUTAGE

- Placement des invariables
 - Accrochage
 - Connecteurs
- Répartition en Bloc fonctionnel
- Croisement dans le plan à éviter si possible
- Rotation des blocs pour des connexions sans croisement
- Limiter les Vias

REMERCIMENTS

- Alexis REY (Circuit Recepteur)
- Felix Piedallu (Correction)
- Relecteurs du Club Robotronik

SOURCES

- http://www.kicad-pcb.org
- https://www.analog.com/en/design-center/design-tools-and-calculators/ltspice-simulator.html
- http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/UserGuide/analyses fr.html
- http://www.brunel.ac.uk/~eestmba/usergS.html
- http://www.ecircuitcenter.com/SPICEsummary.htm
- https://fr.farnell.com
- https://chamilo.grenoble-inp.fr/courses/PHELMA3PMKPEL6/index.php
- https://www.vishay.com
- http://www.ti.com

