

Diplôme Universitaire en Bioinformatique Intégrative (DU-Bii) Teaching Module 6 : Integrative Bioinformatics

Teachers:

- Anaïs Baudot
- Costas Boulyakis
- Laura Cantini
- Sébastien Déjean
- Jérôme Mariette
- Olivier Sand
- Jacques van Helden

Short link: http://tinyurl.com/dubii19-m6-intro

What is this thing called "Integrative bioinformatics"?

- First occurrence in 2003
 - "Elucidation of ataxin-3 and ataxin-7 function by integrative bioinformatics"
 - profile-based sequence analysis + genome-wide functional data (model organisms) => detailed predictions of function of 2 SCA gene products
- Increasing number of citations/year since 2014
- Different connotations
 - Networks
 - NGS-based multi-omics
 - Sometimes used as buzzword to sell a single-molecule-focused study!
 - Frequently associated to medical applications (prognostics, precision medicine, ...)
 - Fashion effect ?
 - **.**..

What do we mean by Integrative Bioinformatics?

- Data integration
 - Heterogeneous data
 - Multi-omics
- Integration of knowledge
 - Annotations from different sources
 - Different levels of the cell (genome, transcriptome, proteome)
 - Requires standardization of the vocabulary (controlled vocabularies) and organisation of the concepts (ontologies)
- Requires specific analysis methods (see next slides)

Be FAIR

- Findable : identifiers, metadata, search (DOI, URI, BIOSCHEMA)
- Accessible : open access protocols (RDF, LOD, JSON; REST API, web services)
- nteroperable : vocabularies, formal languages (ontologies, semantic web; containers, workflows)
- Reusable (MIAME, MIAPPE; Creative Commons licence, EDAM)
- References
 - The **FAIR** Guiding Principles for scientific data management and stewardship. Wilkinson, Dumontier et al., *Nature Scientific Data* **volume 3**, Article number: 160018 (2016).
 - Developing a Framework for Digital Objects in the Big Data To Knowledge (**BD2K**) Commons: report from the Commons Framework Pilots Workshop. Jagodnik KM et al., J. Biomed Inform. 71:49-57 (2017)
 - □ A design framework and exemplar metrics for FAIRness. Wilkinson et al. *Scientific Data* **volume 5**, Article number: 180118 (2018)
- FAIR principles (in french): https://www6.inra.fr/datapartage/Produire-des-donnees-FAIR

Biological ontologies - The Gene Ontology (GO)

Papier fondateur

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). **Gene Ontology: tool for the unification of biology.** Nature Genetics 25, 25–29.

Utilisations

- Homogénéisation de l'annotation de bases de données
- Analyse d'enrichissement (TP)
- Échanges d'annotations entre bases de données et outils (*interopérabilité*)
- "Biologists would rather share their toothbrush than share a gene name."
 - Michael Ashburner, cited in Helen Pearson (2001) Biology's Name Game Nature 411, 631 − 632 (2001) doi:10.1038/35079694, PMID 11395736.

Ontology of biological processes (example)

Source: Ashburner, et al. (2000). **Gene Ontology: tool for the unification of biology.** Nature Genetics 25, 25–29.

The Gene Ontology (GO)

Ontology of molecular functions (example)

Ontology of cellular components (example)

Source: Ashburner, et al. (2000). **Gene Ontology: tool for the unification of biology.** Nature Genetics 25, 25–29.

Ontologies today

- AmiGO
 - Base de données + outils d'analyse de la Gene Ontology
 - http://amigo.geneontology.org/

Gene set comparison and enrichment analysis

Two main approaches

- Gene set comparisons
 - Input: a set of functionally related genes
 - Reference: a database of annotated gene functions (GO, pathways, TF targets, ...)
 - Approach: evaluate the significance of the intersection (over-represented ?)
 - Stat: hypergeometric test
- Gene Set Enrichment analysis
 - Input: a sorted list of genes
 - Reference: a database of annotated gene functions (GO, pathways, TF targets, ...)
 - Approach: evaluate the significance of the rank of the genes belonging to a reference class in the ordered list.
 - Stat: enrichment scores (alternative)

Gene set comparisons (over-representation of the intersection

- A given organism has 6,000 genes,
 40 of which are involved in methionine metabolism.
- A set of 10 genes were reported as co-regulated in a microarray experiment. Among them, 6 are related to methionine metabolism.
- How significant is this observation? More precisely, what would be the probability to observe such a correspondence by chance alone?

The hypergeometric test

- Let us define
 - g = 6000 number of genes
 - m = 40 genes involved in methionine metabolism
 - n = 5960 genes not involved in methionine metabolism
 - Arr k = 10 number of genes in the cluster
 - $\mathbf{x} = 6$ number of methionine genes in the cluster
- We calculate the number of possibilities for the following selections
 - **C1**: 10 distinct genes among 6,000
 - **C2**: 6 distinct genes among the 40 involved in methionine
 - **C3**: 4 genes among the 5960 which are not involved in methionine
 - **C4**: 6 methionine and 4 non-methionine genes
- P(X = 6): probability to have exactly 6 methionine genes within a selection of 10
- P(X >= 6): probability to have at least 6 methionine genes within a selection of 10

$$C1 = C_{m+n}^{k} = \frac{6000!}{10!5990!} = 1.65e^{3}$$

$$C2 = C_m^x = \frac{40!}{6!34!} = 3.8e^6$$

$$C3 = C_n^{k-x} = \frac{5960!}{4!5956!} = 5.2e^{13}$$

$$C4 = C_m^x C_n^{k-x} = 2.0e^{20}$$

$$P(X=6) = \frac{C_m^x C_n^{k-x}}{C_{m+n}^k} = 1.219e^{-1}$$

$$P(X \ge 6) = \sum_{i=x}^{k} \frac{C_m^i C_n^{k-i}}{C_{m+n}^k} = 1.222e^{-11}$$

Practical - Annotating a group of DEG

- Differentially expressed genes
 - https://github.com/DU-Bii/module-3-Stat-R/tree/master/seance_5/results
- gProfiler
 - https://biit.cs.ut.ee/gprofiler/
- But:
 - Détecter les fonctions (processus biologiques, pathways, régulation, ...)
 associées au groupe de gènes différentiellement exprimés.
 - Interpréter les réesultats
- Contrôle négatif
- A vous de jouer!

Over-representation analysis : précautions à prendre

- Définissez votre univers (background)
 - Ensemble de tous les gènes susceptibles d'entrer dans votre analyse.
- Pas si simple
 - Tous gènes présents dans les annotations génomiques ?
 - Tous les gènes ayant au moins 1 annotation dans l'ontologie concernée ?
 - Tous les gènes codants ?
 - Gènes représentés sur une biopuce ?
 - □ Gènes/protéines détectés dans les données expérimentales (RNA-seq, protéomique) ?
 - Les gènes "atteignables" par votre approche (ex: gènes-cibles des miRNA, Godard et al. 2015)
- Corrections de tests multiples
 - Choisir sa correction (P-valeur ajustée: Bonferroni, Benjamini-Hochberg, FDR)
 - Corrections pour les dépendances entre tests ? Généralement pas pris en compte dans les outils.

GSEA

- Gene Set Enrichment Analysis
- Since 2006
- determines whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states
- http://software.broadinstitute.org/gsea/index.jsp
- MSigDB (The Molecular Signatures Database): collection of annotated gene sets
- Package R: https://bioconductor.org/packages/release/bioc/html/GSEABase.html

GSEA principle

- All genes are sorted according to some criterion (e.g. differential expression p-value, correlation of expression with other variables, ...).
- Each graph compares the ranked gene list with one reference class (e.g. one biological process).
- Black bars denote genes belonging to the reference class.
- The green curve estimates, at each level i, the degree of over-representation of the reference genes in the i top-ranking genes.

Table: Snapshot of enrichment results

Source:

https://steemit.com/steemstem/@scienceangel/lab-diaries-5-gene-set-enrichment-analysis-gsea-of-a-large-scale-biological-data-part-i

Dedicated journal

Journal of Integrative Bioinformatics

- https://www.degruyter.com/view/j/jib
- Launched in 2004
- CiteScore 2017: 0.77
- SCImago Journal Rank (SJR) 2017: 0.336
- Topics: tools and databases covering
 - Molecular Databases, Information Systems and Data Warehouses
 - Integration of Data, Methods and Tools
 - Network Analysis, Modeling and Simulation
 - Medical Informatics, Biomedicine and Biotechnology
 - Visualization and animation
 - ...

Approaches and tools

Two mainstream approaches

- Multi-level factorization approaches (multivariate statistical analysis)
- Multi-layer (multiplex) networks
- Combining both approaches

Software environments

- Statistical approaches: R package Mixomics (http://mixomics.org/)
- Network approaches: Cytoscape (<u>https://cytoscape.org/</u>)

Panorama of approaches and resources for integrative bioinformatics

Unsupervised data integration

https://www.frontiersin.org/articles/10.3389/fgene.2017.00084/full

DIDEROT

- draw an inference from input datasets without labeled response variables
- Matrix factorization methods
 - projection of variations among data sets onto dimension-reduced space
 - examples
 - Joint Non-negative Matrix Factorization (NMF)
 - iCluster, iCluster+
 - Joint and Individual Variation Explained (JIVE)
 - Joint Bayes Factor
- Correlation-based analysis
 - adaptation of <u>Canonical Correlation analysis</u> (multivariate analysis of correlation)
 - penalization and regularization terms added

Bayesian methods

- assumptions on different types of data sets w/ various distributions
- assumptions on correlations among data sets
- examples
 - Multiple Dataset Integration (MDI)
 - Patient-Specific Data Fusion (PSDF)
 - Bayesian Consensus Clustering (BCC)
 - COpy Number and EXpression In Cancer (CONEXIC)

Network-based methods

- mostly applied for detecting significant genes within pathways, discovering sub-clusters, or finding co-expression network modules
- examples
 - PAthway Representation and Analysis by Direct Reference on Graphical Models (PARADIGM)
 - Similarity Network Fusion (SNF)
 - Lemon-Tree
 - Multiplex networks

Multi-Step Analysis

- Commonly used to find relationships between the different data types first, and then between the data types and the trait or phenotypes
- Examples
 - CNAmet
 - In-Trans Process Associated and Cis-Correlated (iPAC)

Multiple Kernel Learning

- Multi-step
- Machine learning methods
- Optimal combination of predefined kernels (weighing factors)
- Example
 - Regularized Multiple Kernel Learning Locality Preserving Projections (rMKL-LPP)

Supervised data integration

https://www.frontiersin.org/articles/10.3389/fgene.2017.00084/full

- Built via information of available known labels from the training omics data
- Network-based methods
 - jActiveModules
- Multiple Kernel Learning
 - Semidefinite Programming/Support Vector Machine (SDP/SVM)
- Multi-Step Analysis
 - Multiple Concerted Disruption (MCD)
 - ¬ Anduril

Semi-supervised data integration

- Lies between supervised and unsupervised methods
- Takes both labeled and unlabeled samples to develop learning algorithm
- most of the semi-supervised data integration methods are graph-based
- GeneticInterPred

Other approaches

Semantic web approaches

- metadata (machine-readable code) defines the data
- keywords
- ontologies

Data warehousing approaches

- data from different sources integrated in a single database
- needs standardization of formats

Data warehouses

- Atlas a data warehouse for integrative bioinformatics (2005)
 - locally stores and integrates biological sequences, molecular interactions, homology information, functional annotations of genes, and biological ontologies
 - Application Programming Interfaces (C++, Java, Perl)
 - https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-6-34
 - Availability: http://bioinformatics.ubc.ca/atlas/ (not found on the server :-)

Annotation

- DAS : Distributed Annotation System
 - Integration of biological data (2001)
 - https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-2-7

Blast2GO

- basic version free
- Blast2GO Pro
- platform for high-quality functional annotation and analysis of genomic datasets

Tools

■ First software in 2005

- BIAS (Bioinformatics Integrated Application Software)
- Environment for carrying out integrative Bioinformatics research requiring multiple datasets and analysis tools
- Follows an object-relational mapping for providing persistent objects
- Allows third-party tools to be easily incorporated within the system.
- Supports standards and data-exchange protocols common to Bioinformatics
- Availability: http://www.mcb.mcgill.ca/~bias/ (server not found :-))

KEGG mapper

- First release in 2010
- Collection of tools
 - Pathway mapping
 - Basic search : mapped objects marked in red
 - Coloring options
 - Coloring without search : selected map, color gradation
 - Network mapping
 - Disease mapping

MetExplore

- since 2010
- free all-in-one online solution composed of interactive tools for metabolic network curation, network exploration and omics data analysis
- https://metexplore.toulouse.inra.fr/index.html/
- collaborative environment
- interactive tables connected to a powerful network visualisation module
- contextualisation of metabolic elements in the network
- calculation of over-representation statistics

ProteORE

- Proteomics Research Environment
- http://www.proteore.org
- galaxy framework (no programming required)
- 15 tools to manipulate, annotate, analyse and visualize human data
- share data and workflows

g:profiler

- public web server for characterising and manipulating gene lists
- 400+ species, including mammals, plants, fungi, insects (Ensembl)
- Several tools
 - g:GOSt = statistical enrichment analysis
 - g:Convert = gene identifier conversion tool
 - g:Orth = mapping homologous genes across related organisms
 - g:SNPense = mapping human SNPs to gene names, chromosomal locations and variant consequence terms from Sequence Ontology
- R package

Workflows

- BioPipe (2003)
- BioWBI (2004)
- Taverna (2004)
- Wildfire (2005)
- KDE Bioscience (2006): Knowledge Discovery Environment of Bioscience
 - Platform for bioinformatics analysis workflows
 - Integrate data, algorithms, computing resources, and human intelligence
 - More than 60 included programs
 - https://www.sciencedirect.com/science/article/pii/S1532046405000821?via%3Dihub
 - Availability: ?:-)))
- Galaxy
- Nextflow
- SnakeMake

Actions IFB en bioinformatique intégrative

Innovation – Towards integrative bioinformatics

- Bottleneck: segmentation of the competences and tools for the diverse omics methodologies
- Challenge: *multi-level integration* (beyond multi-omics): molecular (genomics, proteomics, metabolomics, ...) + structural + cellular / tissular (imaging) + organisms (phenotypes) + health (cohorts, precision medicine) + environment (metagenomics)
- IFB actions for integrative bioinformatics
- Innovation
 - A2.1 Pilot projects: collaboration with other national infrastructures
 - 8 projects regrouping 11 PIA partners
 - A2.2 call to challenges (2019-2021): solving technological bottlenecks
 - A2.3 Interopérabilité and integration of bioinfo ressources (data and tools)

Training

 Diplôme Universitaire en Bioinformatique intégrative (1 month course + 1 month personal project on IFB platform)

Inserm collaborations

- Workshop "Challenges et perspectives en bioinformatique intégrative" (2018-10)
- o Transversal call **HuDeCa** (2019-02)

France Médecine Génomique 2025

IFB innovation axis: integrative bioinformatics

- 2018-01 A2.1. Pilot-projects in Integrative Bioinformatics
 - https://www.france-bioinformatique.fr/en/projets-pilotes
 - Call to collaborations with other national research infrastructures
 - 8 projects supported (18 24 months FTE) regrouping 17 infrastructures
- 2018-10 Aviesan 1-day workshop
 - Challenges and Perspectives in Integrative Bioinformatics
- 2019-01 Diplôme Universitaire en Bioinformatique Intégrative
 - Paris-Diderot / IFB collaboration
 - https://formation-continue.univ-paris-diderot.fr/dubii
- 2019-01 Participation to Inserm transversal calls (Human development cell atlas, Human data)
- 2019-09 Call to challenges in Integrative Bioinformatics
 - Starting from unsatisfied needs of research teams