EE2002 Tutorial 4

1. Plot the output, $v_{\rm out}$, of the inverting integrator in Fig. 1(a) using an ideal opamp if $v_{\rm in}$ is a ramp that levels off at the value $v_{\rm in} = 4$ V after 20 mS as in Fig 1(b). For the inverting integrator, $R_{\rm in} = 5$ k Ω and C = 1 μ F. Assume the initial output is zero and the power supply voltages for the op-amp are ± 10 V.

2. Find the closed loop Gain of the negative feedback opamp circuit, $A_{VCL} = v_o/v_i$ in Fig. 2.

Fig. 2

3. For the circuit in Fig. 3 commonly known as an absolute value circuit, given that R_1 , R_2 and R_3 are of the same value R, and R_4 and R_5 are of value 2R. Determine the peak magnitude of ν_{out} and also sketch the expected waveform of ν_{out} , given that the sinewave input voltage, ν_{in} is $2V_{pk-pk}$ at an arbitrary frequency. The OpAmps are ideal and the diodes are treated in simple diode model with $V_D = 0.7V$.

Fig. 3

Answers to Tutorial 4

1.

2.

$$\frac{v_o}{v_i} = -\frac{R_3}{R_1} \times \frac{R_5 + R_3 // R_4}{R_3 // R_4}$$

3.

$$v_{
m out} = |v_{
m in}|$$
 = rippled DC output voltage with 1 V peak

