

Lecture Course: Advanced Systems Theory

Chapter 4 and 5-Lecture6: Controllability subspace and conditioned invariance

Stephan Trenn, Yahao Chen

Jan C. Willems Center for Systems and Control University of Groningen, Netherlands

September 2020

Recapitulation

Recapitulation-4.2 Disturbance decoupling problem (DDP)

Theorem (4.8)

Given a system $\Sigma_{u,d,z} = (A, B, E, H)$, The DDP is solvable for $\Sigma_{u,d,z}$ iff there exists an (A, B)-invariant subspace \mathcal{V} s.t. im $E \subseteq \mathcal{V} \subseteq \ker H$.

Question 1

Consider a system $\Sigma = (A, B, E, H)$, where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $B = \begin{bmatrix} e \\ f \end{bmatrix}$, $E = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $H = \begin{bmatrix} 1 & 0 \end{bmatrix}$, for which one of the following that the DDP is not solvable? (i) b = 0, e = 1. (ii) b = 1, e = 1. (iii) b = 0, e = 0. (iv) b = 1, e = 0.

The DDP is solvable iff $\operatorname{im} E \subseteq \mathcal{V}^*(\ker H)$.

Recapitulation-4.3 The invariant subspace algorithm (ISA)

Algorithm

Recapitulation

Given $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ and $\mathcal{K} \subseteq \mathbb{R}^n$, define

$$\begin{cases} \mathcal{V}_0 := \mathcal{K}, \\ \mathcal{V}_{k+1} := \mathcal{K} \cap A^{-1}(\mathcal{V}_k + \operatorname{im} B), \quad k = 1, 2, \dots \end{cases}$$

Theorem (4.10)

Let $K \subseteq X$ and V_0, V_1, V_2, \ldots as defined in the above algorithm. Then

(i)
$$\mathcal{V}_0 \supseteq \mathcal{V}_1 \supseteq \mathcal{V}_2 \supseteq \cdots$$
, (non-increasing)

$$(ii)\exists k \leq \dim \mathcal{K} : \mathcal{V}_k = \mathcal{V}_{k+1},$$
 (stable index)

(iii)
$$\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}_k = \mathcal{V}_l, \ \forall l \geq k$$
, (stable)

$$(iv)\mathcal{V}_k = \mathcal{V}_{k+1} \Rightarrow \mathcal{V}^*(\mathcal{K}) = \mathcal{V}_k$$
. (limit)

Recapitulation-4.3 The invariant subspace algorithm (ISA)

Algorithm

Recapitulation

Given $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$ and $\mathcal{K} \subseteq \mathbb{R}^n$, define

$$\left\{ \begin{array}{l} \mathcal{V}_0 := \mathcal{K}, \\ \mathcal{V}_{k+1} := \mathcal{K} \cap A^{-1}(\mathcal{V}_k + \operatorname{im} B), \quad k = 1, 2, \cdots \end{array} \right.$$

Question 2

If $K = \mathbb{R}^n$, then which one is correct?

- (i) $V^*(K) = 0$.
- (ii) $\mathcal{V}^*(\mathcal{K}) = \mathbb{R}^n$.
- (iii) $\mathcal{V}^*(\mathcal{K}) = A^{-1} \operatorname{im} B$.

Question 3

Let $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$, then $\mathcal{V}^*(\ker C) = ?$

- (i) ker C. (ii) {0}.
- (iii) $A^{-1} \ker C$.

Question 4

In Question 3, what is the smallest interger k such that

- $V_k = V_{k+1}$? (i) k = 0.
- (ii) k=1.
- (ii) k=1
- (iii) k = 2.

4.4 Controllability subspace

Definition (4.11)

Recapitulation

Consider $\Sigma : \dot{x} = Ax + Bu$. A subspace $\mathcal{R} \subseteq \text{is called a controllability subspace of } \Sigma$ if

$$\forall x_0 \in \mathcal{R}, \exists T > 0, u \in U : x_u(t, x_0) \in \mathcal{R}, \forall 0 \le t \le T \text{ and } x_u(T, x_0) = 0.$$

- (i) \mathcal{R} is a controllability space $\Rightarrow \mathcal{R}$ is controlled invariant subspace (just choose u(t) = 0, $\forall t \geq T$).
- (ii) $\langle A|B\rangle=\mathrm{im}[B,AB,\ldots,A^{n-1}B]$ is a controllability subspace (actually the largest possible)

Theorem (4.12)

A subspace \mathcal{R} is a controllability subspace iff $\exists F : \mathcal{U} \to \mathcal{X}, L : \mathcal{U} \to \mathcal{U}$ s.t. $\mathcal{R} = \langle A + BF | \operatorname{im} BL \rangle$.

How F and L define a feedback transformation?

4.4 Controllability subspace

Theorem (4.12)

A subspace \mathcal{R} is a controllability subspace iff $\exists F: \mathcal{U} \to \mathcal{X}$, $L: \mathcal{U} \to \mathcal{U}$ s.t.

$$\mathcal{R} = \langle A + BF | \operatorname{im} BL \rangle.$$

Recapitulation

Proof.

Only if. Let $F: (A+BF)\mathcal{R} \subseteq \mathcal{R}$ (\mathcal{R} is an (A,B)-invariant subspace) and $\operatorname{im} L = B^{-1}\mathcal{R}$. $\Rightarrow u(t)$ (which renders $x_u(x_0,t) \in \mathcal{R}$) is of the form u(t) = Fx(t) + Lw(t) for some $w \in U$

(Note that $x(t) = e^{A_F t} x_0 + \int_0^t BLw(\tau) d\tau \in \mathcal{R}$).

Then consider

$$\dot{\bar{x}} = (A + BF)\bar{x} + BLw, \quad \bar{x}(0) = x_0, \quad \bar{x}(T) = 0$$
 (*)

 \mathcal{R} is controllability subspace \Rightarrow

 $\forall x_0 \in \mathcal{R}, \exists T > 0, u \in U : x_u(t, x_0) \in \mathcal{R}, \forall t \geq 0 \text{ and } x_u(T, x_0) = 0. \Rightarrow \mathcal{R} \text{ is the reachable}$ space of (*), i.e., $\mathcal{R} = \langle A + BF | \operatorname{im} BL \rangle$.

4.4 Controllability subspace

Theorem (4.12)

A subspace \mathcal{R} is a controllability subspace iff $\exists F : \mathcal{U} \to \mathcal{X}, L : \mathcal{U} \to \mathcal{U}$ s.t.

 $\mathcal{R} = \langle A + BF | \operatorname{im} BL \rangle.$

Recapitulation

Proof.

If. $\exists F: \mathcal{U} \to \mathcal{X}, L: \mathcal{U} \to \mathcal{U} \text{ s.t. } \mathcal{R} = \langle A + BF | \operatorname{im} BL \rangle$

 $\Rightarrow \dot{\bar{x}} = (A+BF)\bar{x} + BLw$ is a linear system with reachable space (or null-controllable space)

 \mathcal{R} .

 $\Rightarrow \forall x_0 \in \mathcal{R}, \ \exists \ w : \bar{x}_w(T, x_0) = 0.$

 $\Rightarrow \exists u = Fx + Lw \text{ s.t. } \dot{x} = Ax + Bu \text{ can be controlled to zero while remaining in } \mathcal{R}.$

Corollary (4.13)

 $\mathcal{R} = \langle A + BF | \operatorname{im} B \cap \mathcal{R} \rangle$. (since $\operatorname{im} L = B^{-1}\mathcal{R} \Rightarrow \operatorname{im} BL = \operatorname{im} B \cap \mathcal{R}$.)

Controllability subspace within a subspace

Definition (4.14)

Recapitulation

Let K be a subspace of X, define

$$\mathcal{R}^*(\mathcal{K}) := \{ x_0 \in \mathcal{K} \mid \exists u \in U, T > 0 : x_u(t, x_0) \in \mathcal{K}, \forall \ 0 \le t \le T \text{ and } x_u(T, x_0) = 0. \}$$

Theorem (4.15)

 $\mathcal{R}^*(\mathcal{K})$ is the largest controllability subspace contained in \mathcal{K} , i.e.,

(i) $\mathcal{R}^*(\mathcal{K})$ is a controllability subspace.

(ii) $\mathcal{R}^*(\mathcal{K}) \subseteq \mathcal{K}$.

(iii)
$$\mathcal{R} \subseteq \mathcal{K} \Rightarrow \mathcal{R} \subseteq \mathcal{R}^*(\mathcal{K})$$

Controllability subspace within a subspace

Terminology

Recapitulation

 $\mathcal{V}^*(\mathcal{K})$ is the largest controlled invariant subspace contained in \mathcal{K} .

 $\mathcal{R}^*(\mathcal{K})$ is the largest controllability subspace contained in \mathcal{K} .

Lemma 4.16

Let \mathcal{K} be any subspace of \mathcal{X} . Then $\operatorname{im} B \cap \mathcal{V}^*(\mathcal{K}) \subseteq \mathcal{R}^*(\mathcal{K})$.

Proof

Let L be a linear map s.t. $\operatorname{im} L = B^{-1} \mathcal{V}^*$. Then

$$\operatorname{im} B \cap \mathcal{V}^* = \operatorname{im} BL \subseteq \langle A + BF \mid BL \rangle \subseteq \mathcal{R}^*$$

Remark

$$\operatorname{im} B \cap \mathcal{V}^*(\mathcal{K}) \subseteq \mathcal{R}^*(\mathcal{K}) = \mathcal{R}^*(\mathcal{V}^*(\mathcal{K})) \subseteq \mathcal{V}^*(\mathcal{K}) \subseteq \mathcal{K}.$$

Controllability subspace within a subspace

Theorem (4.17)

Recapitulation

Let $\mathcal{K} \subseteq \mathcal{X}$ be a subspace. Then any $F: \mathcal{X} \to \mathcal{U}$ s.t. $(A+BF)\mathcal{V}^*(\mathcal{K}) \subseteq \mathcal{V}^*(\mathcal{K})$ satisfies $(A+BF)\mathcal{R}^*(\mathcal{K}) \subseteq \mathcal{R}^*(\mathcal{K})$ and

$$\mathcal{R}^*(\mathcal{K}) = \langle A + B\mathbf{F} \mid \text{im } B \cap \mathcal{V}^*(\mathcal{K}) \rangle.$$

Proof.

Choose an F s.t. $(A+BF)\mathcal{V}^*(\mathcal{K})\subseteq\mathcal{V}^*(\mathcal{K})$, since $\mathcal{R}^*\subseteq\mathcal{V}^*$, we have $(A+BF)\mathcal{R}^*\subseteq\mathcal{V}^*$.

 \mathcal{R}^* is controlled invariance $\Rightarrow (A+BF)\mathcal{R}^* \subseteq \mathcal{R}^* + \operatorname{im} B$

$$\Rightarrow (A+BF)\mathcal{R}^* \subseteq \mathcal{V}^* \cap (\mathcal{R}^* + \operatorname{im} B) = \mathcal{R}^* + \mathcal{V}^* \cap \operatorname{im} B \stackrel{\text{Lemma 4.16}}{=} \mathcal{R}^*.$$

Now by Thm 4.12, $\mathcal{R}^* = \langle A + BF | \operatorname{im} BL \rangle$ for $L = B^{-1}\mathcal{R}^*$ (note that $\operatorname{im} BL = \mathcal{R}^* \cap \operatorname{im} B$).

We have $\mathcal{R}^* \subseteq \mathcal{V}^*$ and $\mathcal{V}^* \cap \operatorname{im} B \subseteq \mathcal{R}^*$.

 $\Rightarrow \mathcal{R}^* \cap \operatorname{im} B \subseteq \mathcal{V}^* \cap \operatorname{im} B \subseteq \mathcal{R}^* \cap \operatorname{im} B$

 $\Rightarrow \operatorname{im} BL = \mathcal{V}^* \cap \operatorname{im} B.$

Conditioned invariant subspaces

Definition (Conditioned invariant subspaces)

Consider the system $\Sigma = (C, A)$

Recapitulation

$$\dot{x}(t) = Ax(t)$$

$$y(t) = Cx(t)$$

A subspace $\mathcal{S}\subseteq\mathbb{R}^n$ is called <u>conditioned invariant</u> if there exists $G\in\mathbb{R}^{n\times p}$ such that $(A+GC)\mathcal{S}\subseteq\mathcal{S}$

Remark

- (i) G defines an output injection transformation: Observer problem.
- (ii) S could be defined in terms of the existence of a certain observer! (Definition 5.2: Does always exist an observer for x/S?)

Theorem (5.5 Conditioned invariant subspaces)

A subspace $S \subseteq \mathbb{R}^n$ is conditioned invariant iff $A(S \cap \ker C) \subseteq S$.

Conditioned invariant subspaces

Theorem (5.5 Conditioned invariant subspaces)

A subspace $S \subseteq R^n$ is conditioned invariant iff $A(S \cap \ker C) \subseteq S$

Proof.

"If" Let q_1, \ldots, q_k be a basis of S and q_1, \ldots, q_l $(l \leq k)$ be a basis of $S \cap \ker C$.

Choose $G: \mathcal{Y} \to \mathcal{X}$ s.t. $GCq_i = -Aq_i$ for $i = l+1, \ldots, k$.

$$\Rightarrow (A+GC)q_i = Aq_i \in \mathcal{S}$$
 for $i=1,\ldots,l$ and $(A+GC)q_i = 0$ for $i=l+1,\ldots,k$.

Hence $(A + GC)S \subseteq S$.

Recapitulation

"Only if"
$$(A+GC)\mathcal{S}\subseteq\mathcal{S}\Rightarrow (A+GC)(\mathcal{S}\cap\ker C)\subseteq\mathcal{S} \Rightarrow A(\mathcal{S}\cap\ker C)\subseteq\mathcal{S}$$

Question 5

Given $A: \mathcal{X} \to \mathcal{X}$, $C: \mathcal{X} \to \mathcal{Y}$, which of the following subspaces is not necessarily conditioned invariant? (i) $\mathcal{S} = \operatorname{im} A$ (ii) $\mathcal{S} = \operatorname{ker} A$ (iii) $\mathcal{S} = \operatorname{ker} C$ (iv) $\mathcal{S} = (\operatorname{ker} C)^{\perp}$

Recapitulation

Conditioned invariant subspaces

Terminology ((A, B)-and (C, A)-invariant)

$$(A,B)$$
-invariant \Leftrightarrow controlled invariant for $\Sigma=(A,B)$ (C,A) -invariant \Leftrightarrow conditioned invariant for $\Sigma=(C,A)$

Theorem (5.6 Duality between controlled and conditioned invariant)

A subspace C is (C, A)-invariant iff S^{\perp} is (A^T, C^T) -invariant.

Proof

This follows from the fact that
$$A\mathcal{V} \subseteq \mathcal{V} \Leftrightarrow A^{-T}\mathcal{V}^{\perp} \supseteq \mathcal{V}^{\perp} \Leftrightarrow A^{T}\mathcal{V}^{\perp} \subseteq \mathcal{V}^{\perp}$$
 and \mathcal{S}^{\perp} is an (A^{T}, C^{T}) -invariant subspace $\overset{Thm4.2}{\Leftrightarrow} \exists F: (A^{T} + C^{T}F)S^{\perp} \subseteq S^{\perp}$ $(G:=F^{T})$.

Recapitulation

Conditioned invariant subspaces

Theorem (5.7 The smallest conditioned invariant subspace containing a given subspace)

Consider the system $\Sigma = (C, A)$. Let $\mathcal{E} \subseteq \mathbb{R}^n$ be a subspace. Then

$$\mathcal{S}^*(\mathcal{E}, C, A) = (\mathcal{V}^*(A^T, C^T, \mathcal{E}^\perp))^\perp$$

is the smallest conditioned invariant subspace containing \mathcal{E} , i.e., $(:) \mathcal{C}^*(\mathcal{E})$ is an additional invariant.

- (i) $S^*(\mathcal{E})$ is conditioned invariant,
- $(ii)\mathcal{E}\subseteq\mathcal{S}^*(\mathcal{E}),$
- (iii) $\mathcal S$ is a conditioned invariant subspace with $\mathcal E\subseteq\mathcal S\Rightarrow\mathcal S^*(\mathcal E)\subseteq\mathcal S.$

Terminology

 $\mathcal{V}^*(A, B, \mathcal{K})$: the largest(A, B) – invariant subspace contained in \mathcal{K} $\mathcal{S}^*(\mathcal{E}, C, A)$: the smallest(C, A) – invariant subspace containing \mathcal{E}

Theorem (5.7) The smallest conditioned invariant subspace containing a given subspace)

Consider $\Sigma = (C, A)$ and $\mathcal{E} \subseteq \mathcal{X}$. Then

Recapitulation

$$\mathcal{S}^*(\mathcal{E}, C, A) = (\mathcal{V}^*(A^T, C^T, \mathcal{E}^\perp))^\perp$$

is the smallest conditioned invariant subspace containing ${\mathcal E}.$

Proof.

- (i) $\mathcal{V}^*(A^T,C^T,\mathcal{E}^\perp)$ is an (A^T,C^T) -invar. $\overset{Thm.5.6}{\Rightarrow}\mathcal{S}^*(\mathcal{E},C,A)$ is a (C,A)-invar.
- (ii) $\mathcal{V}^* \subseteq \mathcal{E}^{\perp} \Rightarrow \mathcal{E} = (\mathcal{E}^{\perp})^{\perp} \subseteq (\mathcal{V}^*)^{\perp} = \mathcal{S}^*$.
- (iii) Assume $\mathcal S$ is a (C,A)-inv. with $\mathcal E\subseteq\mathcal S\Rightarrow\mathcal S^\perp$ is a (A^T,C^T) -inv. with $\mathcal S^\perp\subseteq\mathcal E^\perp$.

Hence

$$\mathcal{S}^{\perp} \subseteq \mathcal{V}^* \Rightarrow \mathcal{S}^* = (\mathcal{V}^*)^{\perp} \subseteq ((\mathcal{S})^{\perp})^{\perp} = \mathcal{S}.$$

J

Summary

Recapitulation

- Controllability subspace: definition (Def. 4.11), characterization (Thm 4.12).
- Controllability subspace within \mathcal{K} : definition (Def.4.14, Thm 4.16), relations of $\mathcal{V}^*(\mathcal{K})$ and $\mathcal{R}^*(\mathcal{K})$ (Thm 4.17).
- Conditioned invariance definition, characterization (Thm 5.5)
- Duality between controlled and conditioned invariant (Thm 5.6)
-) The smallest conditioned invariant subspace containing $\mathcal{E}.$ (Thm 5.7)