Data Science and Deep Learning (2024)

Lecture 5

Manifold Learning

Stan Z. Li

Unrolling 2D Swiss-roll to 2D Plane

The Best Representation:

Swiss Roll:

 $x=\phi\cos(\phi)$, $y=\phi\sin(\phi)$, $z=\psi$

 $1.5\pi \le \phi \le 4.5\pi$, $0 \le \psi \le 10$

Manifold: 2D rectangle generated by two latent variables φ, ψ

Flattening Curved Surfaces

Manifold: Definition

An *n*-manifold is a topological space that is globally curved, but locally homeomorphic (同胚) to an *n*-dimensional Euclidean space

Local Curvature on a Curve

Principal Directions and Curvatures of Surfaces

Ref: A Quick and Dirty Introduction to the Curvature of Surfaces

Manifold with Mixed Curvatures

Local Surface Types in 3D

Gaussian Curvature

$$K = \kappa_1 \kappa_2$$

Mean Curvature

$$H = \frac{1}{2} \left(\kappa_1 + \kappa_2 \right)$$

Importance of Relational Structures

Examples:

- A and B are friends
- Distance between A & B
- Similarity between A & B

These provide information about structures of data

Mapping from Data Space to Embedding Space

Similarity $p_{ii} \in (0,1)$

Dissimilarity $\widetilde{p}_{ij} = 1 - p_{ij}$

Embedding Y

Similarity

$$q_{ij} \in (0,1)$$

Dissimilarity

$$\widetilde{q}_{ij} = 1 - q_{ij}$$

Local Relation-Preserving Loss for transforming $p_{ij}(X) \rightarrow q_{ij}(Y)$

KL Divergence Loss (t-SNE): $KL(P\|Q) = \sum_i \sum_j p_{ij} \log \frac{p_{ij}}{q_{ij}}$

 $\text{Cross Entropy Loss (UMAP): } CE(X,Y) = \sum_{i} \sum_{j} \left[p_{ij}(X) \log \left(\frac{p_{ij}(X)}{q_{ij}(Y)} \right) + (1-p_{ij}(X)) \log \left(\frac{1-p_{ij}(X)}{1-q_{ij}(Y)} \right) \right]$

Thank You