1. Eksploracja danych

Rozkład wartości

Powtarzające się wiersze

Macierz korelacji

Uwagi dotyczące zbioru danych

- Dane są poprawne
 - o brak niezupełnych rekordów
 - o brak niepoprawnie wprowadzonych nazw (wartości)
 - wiersz nagłówkowy
- Rozkład danych jest różnorodny
- Wiele wierszy się powtarza
- Wyłącznie dane kategoryczne (2 kolumny porządkowe, 2 nominalne)
- Kolumna etykiet (demand low, medium, high)
- Rozkład etykiet nie jest zbalansowany znacznie mniej demand=low
- Cechy nie są skorelowane niewymagana selekcja cech

2. Przygotowanie danych

Podgląd danych

Dane kategoryczne -> numeryczne

https://www.kdnuggets.com/2021/05/deal-with-categorical-data-machine-learning.html

Dane porządkowe:

size	sleeves
0 – XS	0 – short
1-S	1 – long
•••	
6 – 3XL	

Kacper Gaudyn 266873

Dane nominalne (material, color):

One Hot Encoding

Ostatecznie 18 kolumn:

- size
- sleeves
- material x 5
- color x 10
- demand

Podział na zbiór treningowy/testowy

```
X = df.drop(['demand'], axis=1)
y = df['demand']
Executed at 2024.05.28 12:23:36 in 3ms

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
Executed at 2024.05.28 12:23:40 in 206ms
```

Normalizacja

PCA

3. Klasyfikacja + ocena

Naiwny Bayes

Avg()	Brak normalizacji / PCA	Normalizacja	PCA
Accuracy	0,63	0,59	0,58
Recall	0,56	0,54	0,54
Precision	0,76	0,66	0,53
F1-score	0,57	0,51	0,53

- Najlepsze metryki bez dodatkowego preprocessingu
- Najwyższa metryka precyzja zaledwie 76% prawidłowych pozytywnie sprognozowanych

Drzewo decyzyjne

Avg()	Brak normalizacji / PCA	Normalizacja	PCA
Accuracy	0,97	0,97	0,54
Recall	0,96	0,96	0,47
Precision	0,96	0,96	0,48
F1-score	0,96	0,96	0,4t

- Najlepsze metryki bez dodatkowego preprocessingu
- Wszystkie metryki blisko 100%
- Znaczna przewaga nad Bayesem

Krzywa uczenia

- Naiwny Bayes lepiej generalizuje, natomiast Drzewo Decyzyjne stosuje overfitting
- Drzewo Decyzyjne uczy się bardziej stabilnie

4. Hiperparametry

Wybrane parametry w Drzewie Decyzyjnym:

- max_depth maksymalna głębokość drzewa min_samples_leaf – minimalna liczba rekordów znajdujących się w węźle drzewa
- max_leaf_nodes maksymalna liczba liści

Domyślny zestaw hiperparametrów

- max_depth = None
- min samples leaf = 1
- max_leaf_nodes = None

max depth

Brak zmian dla max_depth

min_samples_leaf

min_samples_leaf = 3

max_leaf_nodes

max_leaf_nodes = None

Końcowy zestaw hiperparametrów

- max_depth = None
- min_samples_leaf = 3
- max_leaf_nodes = None