USING IN-BUILT ANDROID SENSORS TO MAP PHYSICAL ACTIONS FOR NFC SECURITY

NIKHIL SHARMA

PROBLEM STATEMENT

- Phone-to-Phone NFC wireless file transfers for everyday users can be exploited by hackers
- Third-party devices can easily "listen" in on these transfers to:
 - Copy the files
 - Modify/Spoof the files
 - Delete the file
- The influx of cybersecurity exploits related to websites and corporations has shifted concern away from smartphones and other mobile devices

RESEARCH TOPIC

 Applications of In-Built Android Sensors to Map Physical Actions for NFC Communications

DEFINITIONS

- Phone Sensors- Accelerometer, Gyroscope, Proximity and Light
- Android phone- Samsung Galaxy S7
- Physical Actions- Mapping one's physical actions to sensor data
- NFC Communication- Apple Pay, Samsung Pay, Shopping Automation, File to File Transfer

HYPOTHESIS

- User will be prompted for physical action before NFC transfer begins
- User will conduct physical action with the phone in their hand
- A physical action baseline can be established through the sensor data.
 - 1 sensor → 1 physical action for 4 sensors
- Only once the sending phone's sensor data has been verified with the motion required will the data be allowed to transmit.

SIGNIFICANCE OF STUDY

- 8 out of every 10 phones in the world use the Android operating system (McAfee Mobile Threat Report)
- Successful completion of this study would prove physical actions can be mapped using sensor data
- Data and methods from this study can be used to further secure phone security through other sensor authentication projects.

METHOD OF INQUIRY

- Analyzing Sensors and Determining Effectiveness of Each- Qualitative
- Gathering Sensor Data and Establishing P.A Baselines- Quantitative

Steps To Be Done

- Choosing In-Built Sensors Relative to NFC's Range
- Determining Physical Actions with Device
- Extracting Sensor Data from Physical Action
- Mapping Each Physical Action to Sensor Data subset

DEVICE AND SENSORS CHOSEN

- A Samsung Galaxy S7 was chosen as the testing device from which the sensor data was extracted
- Sensors chosen that complement the relatively short range of NFC transfers
 - Light
 - Proximity
 - Accelerometer
 - Gyroscope

Accelerometer & Gyroscope sensors are in-built within the device

Light Sensor

Proximity Sensor

PHYSICAL ACTIONS WITH DEVICE

- Physical Actions fall under 3 categories:
 - Movement of Phone Relative to Body- Placing phone near/far object
 - Movement of Phone Relative to Environment- Placing phone relative to light
 - Movement of Phone Independent of External Factors Flipping, titling, rapid motion
- Each physical movement was designed to have one associated sensor that could be used to distinguish the movement from others

EXTRACTING SENSOR DATA

- An application was developed within Android Studio to extract sensor data during physical action
- Pre-compiled pieces of code called libraries and interfaces were used to convert sensor data from electrical signals to integers and values.
- During each physical action, the associated sensor value and a timestamp were logged in a text-file stored within the phone

MAPPING SENSOR DATA TO PHYSICAL ACTION

- Each action was conducted 20 times to minimalize the effect of outliers within data subset
- The values logged in the text file were converted into an Excel file to be analyzed
- The timestamps within sensor data were compared to timing of actual physical activity to determine if baseline could be established

Date: Fri Mar 17 15:26:12 EDT 2017

Value: X: -0.11250305

Y: 0.72457886 Z: 0.19358826

Date: Fri Mar 17 15:26:13 EDT 2017

Value: X: 0.19821167

Y: -1.0245056 Z: 0.177948

Date: Fri Mar 17 15:26:14 EDT 2017

Value: X: 0.18121338

Y: 0.07846069 Z: -0.21772766

Date: Fri Mar 17 15:26:15 EDT 2017

Value: X: -0.6122284

Y: 0.4560547 Z: 0.09742737

Date: Fri Mar 17 15:26:16 EDT 2017

Value: X: 1.8760376

Y: 0.0630188 Z: 0.04196167

	Action	Sensor	Sensor Data Time Total		
	Tilting phone forwards (relative to user	Gyroscope	4 seconds		
	Time	Visible Motion	Sensor Data Value	Sensor Data Trend	
	Oth second (starting)	Phone is lying face-up on stationary table	-0.11 X	Approximately 0 for each axis	
	1st second	User picks up phone and begins to tilt phone towards them slightl	0.19 X	X value increases 0.2 °/s	
	2nd second	User stops tilting and holds phone stationary	0.18 X	All axes relatively constant	
	3rd second	User accidentally tilts phone backwards (heard wrong prompt)	-0.61 X	X value decreases by 0.7 °/s	
\mathbf{c}	4th second	User corrects themselves and tilts phone forward fully	1.87 X	X value increases by 2.4 °/s	

DATA AND RESULTS OBTAINED

Name of Physical Activity	Type of Physical Activity	Average Duration of Physical Activity	Intended Sensor with Physical Activity	Trend/Baseline established with sensor data
Placing phone against chest	Relative to Body	3 seconds	Proximity	Data value was 0
Placing phone in palm (face-up)	Relative to Body	2.5 seconds	Proximity	Data value was 8.000183
Placing phone face-down or in dimly lit setting	Relative to Environment	3.5 seconds	Light	Data value was <50
Placing phone facing sky/light- source	Relative to Environment	1.5 seconds	Light	Data value was >50
Flipping phone face-up	Independent to external factors	1 second	Accelerometer	Inconclusive
Flipping phone face-down	Independent to ext.	2.5 seconds	Accelerometer	<mark>Inconclusive</mark>
Tilting phone forwards (relative to user)	Independent to ext.	3.5 seconds	Gyroscope	Positive X-axis value
Titling phone backwards (rel. to user)	Independent to ext.	2 seconds	Gyroscope	Negative X-axis value
Moving phone rapidly in linear direction	Independent to ext.	1.5 seconds	Accelerometer	Positive X, Y, and Z-axes values

CONCLUSION & IMPLICATIONS

- Baselines could be established for 7 out of the 9 physical actions
- Flipping phone face-up and face-down could not be identified with accelerometer, but could with accelerometer and gyroscope
- Using two sensors to check a physical motion won't be practical in implementation
- Results prove it is possible to map certain physical actions to an established sensor data trend which can be used in future authentication applications
- Limitations include small pool of physical actions to choose from and a delay within NFC interactions

WORKS CITED

- Ali, S., et al. "Sensors And Mobile Phones: Evolution And State-Of-The-Art." Pakistan Journal Of Science 66.4 (2014): 385-399. Academic Search Complete. Web. 16 Nov. 2016.
- Arcese, G.; Campagna, G.; Flammini, S.; Martucci, O. Near Field Communication: Technology and Market Trends. Technologies 2014, 2, 143-163.
- Coskun, Vedat, Busra Ozdenizci, and Kerem Ok. "The Survey on Near Field Communication." Sensors (Basel, Switzerland). MDPI, 5 June 2015. Web. 15 Apr. 2017.
- Brassil, Jack, Ravi Netravali, Pratyusa Manadhata, and Prasad Rao. Authenticating a Mobile Device's Location Using Voice Signatures. Piscataway, NJ: IEEE, 2012. 2012 IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). IEEE. Web. 15 Nov. 2016.
- Khalilzadeh, Jalayer, et al. "Security-Related Factors in Extended UTAUT Model for NFC Based Mobile Payment in the Restaurant Industry." Computers in Human Behavior, vol. 70, May 2017, pp. 460-474. EBSCOhost, doi:10.1016/j.chb.2017.01.001.
- Hao, Xia, et al. "Using Smart Phone Sensors To Detect Transportation Modes." Sensors (14248220) 14.11 (2014): 20843-20865. Academic Search Complete. Web. 16 Nov. 2016.
- "History of Near Field Communication." History of Near Field Communication NearFieldCommunication.org, NearFieldCommunication.org, n.d. Web. 15 Mar. 2017.
- Lee, Wei-Han, and Ruby Lee. "Multi-sensor Authentication to Improve Smartphone Security." Princeton University, 2015. Web. 2016.
- Lee, Young-Seol and Sung-Bae Cho. "Layered Hidden Markov Models to Recognize Activity with Built-In Sensors on Android Smartphone." Pattern Analysis & Applications, vol. 19, no. 4, Nov. 2016, pp. 1181-1193. EBSCOhost, doi:10.1007/s10044-016-0549-8.
- Liu, Ming. "A Study of Mobile Sensing Using Smartphones." International Journal of Distributed Sensor Networks. SAGE Publications Ltd, 01 Mar. 2013. Web. 15 Nov. 2016.
- Mesropyan, Elena. "Sound-Based Payments as an Inclusive Technology for the Developing World." Lets Talk Payments. LTP Team, 28 Oct. 2016. Web. 15 Apr. 2017.
- Mulliner, Collin. "Vulnerability Analysis and Attacks on NFC-Enabled Mobile Phones." 2009 International Conference on Availability, Reliability and Security (2009): n. pag. Mulliner.
 BETAVERSION.NET. Web. 16 Nov. 2016.
- NowSecure. "2016 NowSecure Mobile Security Report." NowSecure, 2016. Web. Winter 2016.
- "Security Risks of Near Field Communication." NEAR FIELD COMMUNICATION. NearFieldCommunication.org, n.d. Web. 16 Nov. 2016.
- "Sending Files to Another Device." Android Developers. Android Developer, n.d. Web. 16 Nov. 2016.
- "Sensor Types." Android Open Source Project. Android, n.d. Web. 16 Nov. 2016.
- Shoaib, Muhammad, et al. "Fusion Of Smart Phone Motion Sensors For Physical Activity Recognition." Sensors (14248220) 14.6 (2014): 10146-10176. Academic Search Complete. Web.