Inner Productt

COMP408 - Linear Algebra Dennis Wong

Dot Product

A **dot product** is the numerical product of the lengths of two vectors, multiplied by the cosine of the angle between them, that is $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$, where θ represents the angle between the two vectors.

A simply way to calculate a dot product is by multiplying the components of each vector separately and then adding these products together.

Example:
$$\vec{a} = [4, 3], \vec{b} = [1, 2]$$

 $\vec{a} \cdot \vec{b} = (4 \times 3) + (3 \times 2) = 11$

Inner product

The generalization of the dot product to an arbitrary vector space is called an *inner product*.

Let V be a vector space. An inner product on V is a rule that assigns to each pair v, $w \in V$ a real number $\langle v, w \rangle$ such that, for all u, v, $w \in V$ and $\alpha \in \mathbb{R}$,

- (1) $\langle v, v \rangle \geq 0$, with equality if and only if v = 0,
- (2) < v, w > = < w, v >,
- (3) < u + v, w > = < u, w > + < v, w >
- $(4) < \alpha v, w > = \alpha < v, w > .$

Inner product: Matrix space

We get an inner product on $M_{m\times n}$ by defining, for $A, B \in M_{m\times n}$,

$$\langle \mathbf{A}, \mathbf{B} \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ij}$$

This inner product is identical to the dot product on R_{mn} if an $m \times n$ matrix is viewed as an $mn \times 1$ matrix by stacking its columns.

Example:

$$\langle \begin{bmatrix} 2 & -1 & 3 \\ 5 & 0 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 3 & 8 \\ 0 & 1 & -2 \end{bmatrix} \rangle = (2)(1) + (-1)(3) + (3)(8) + (5)(0) + (0)(1) + (4)(-2)$$
$$= 15.$$

Inner product: Polynomial space

The idea of inner product is applicable to all vector space, such as polynomial space (What about function space?).

For example, let $x_1, x_2, ..., x_n$ be fixed numbers. We get an inner product on P_n by defining, for $p, q \in P_n$,

$$\langle p, q \rangle = \sum_{i=1}^{n} p(x_i)q(x_i)$$

= $p(x_1)q(x_1) + p(x_2)q(x_2) + \cdots + p(x_n)q(x_n)$.

Example: If $x_1 = -1$, $x_2 = 0$, and $x_3 = 1$, then for $p = x^2$ and q = x + 1, we have

$$< p, q > = p(-1)q(-1) + p(0)q(0) + p(1)q(1)$$

= 2

Norm

Let V be an inner product space and let $v \in V$. The **norm** (or **length**) of v is denoted ||v|| and is defined by

$$||v|| = \sqrt{\langle v, v \rangle}$$

The *distance* between two vectors in V is the norm of their difference

$$dist(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} - \mathbf{w}\|$$

Cauchy-Schwarz Theorem

Cauchy-Schwarz Theorem: For all $v, w \in V$, w have

$$|< V, W>| \le ||V|| ||W||.$$

The theorem implies that

$$\theta = \cos^{-1} \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \|\mathbf{w}\|}$$

and also $\langle v, w \rangle = ||v|| ||w|| \cos \theta$.

We say that v is **orthogonal** (or **perpendicular**) to w if and only if $\langle v, w \rangle = 0$:

Cauchy-Schwarz Theorem

The idea of Cauchy-Schwarz theorem can similarly be applied to polynomial space and function space.

Example: If $x_1 = -1$, $x_2 = 0$, and $x_3 = 1$, then for $p = x^2$ and q = x + 1. The angle θ between the two functions is as follows.

```
< p, q > = 2 (as shown before)

||p|| = \sqrt{< p, p > } = \sqrt{p(-1)^2 + p(0)^2 + p(1)^2 } = \sqrt{2}

||q|| = \sqrt{< q, q > } = \sqrt{q(-1)^2 + q(0)^2 + q(1)^2 } = \sqrt{5}

\theta = \cos^{-1}(< p, q > /(||p|| ||q||)) = \cos^{-1}(2/\sqrt{10})
```

Pythagorean Theorem

Pythagorean theorem: Let v, $w \in V$. If $v \perp w$, then $||v + w||^2 = ||v||^2 + ||w||^2$.

The idea of Pythagorean theorem can similarly be applied to polynomial space and function space.