Computerstøttet beregning

Lektion 2. Repetition

Martin Qvist

qvist@math.aau.dk

Det Ingeniør-, Natur-, og Sundhedsvidenskabelige Basisår Aalborg Universitet

10. februar 2009

people.math.aau.dk/~qvist/teaching/csb-09

Flydende tal

Normaliseret flydende tal $x = \pm f \times \beta^E = \sum_{k=0}^N d_k \beta^{E-k}$, hvor

±: Fortegn

f: Mantissa

$$f = d_0, d_1 d_2 \cdots d_N; \ 1 \leq d_0 < \beta, \ 0 \leq d_k < \beta$$

 β : Grundtal/base

E: Eksponent.

Bemærk:

- \blacksquare Typisk er $\beta = 2$ eller $\beta = 10$.
- Antal betydende cifre er N+1.
- ▶ Væsentligt for flydende tals aritmetik er afrundingsmetoden. Enten symmetrisk, afskæring (chopping), op mod ∞ eller ned mod $-\infty$.

Mål for fejl

Hvis tallet x approximeres med tallet \hat{x} :

Absolut fejl: $|x - \hat{x}|$

Relativ fejl: $\frac{|x-\hat{x}|}{|x|}$ eller $\frac{|x-\hat{x}|}{|\hat{x}|}$

Mål for fejl

Hvis tallet x approximeres med tallet \hat{x} :

Absolut fejl: $|x - \hat{x}|$

Relativ fejl: $\frac{|x-\hat{x}|}{|x|}$ eller $\frac{|x-\hat{x}|}{|\hat{x}|}$

Fortolkning:

- Absolut fejl angiver på hvilken decimalplads \hat{x} afviger fra
- Relativ fejl angiver (omtrent) på hvormange cifre \hat{x} og x stemmer overens

Mål for fejl

Hvis tallet x approximeres med tallet \hat{x} :

Absolut fejl: $|x - \hat{x}|$

Relativ fejl: $\frac{|x-\hat{x}|}{|x|}$ eller $\frac{|x-\hat{x}|}{|\hat{x}|}$

Fortolkning:

- Absolut fejl angiver på hvilken decimalplads \hat{x} afviger fra
- Relativ fejl angiver (omtrent) på hvormange cifre \hat{x} og x stemmer overens

Eksempel:

$$x = 1000$$
 $\hat{x} = 1000.1$

Afrundingsfejl

Vurdering af fejl ved repræsentation af reelt tal x som binært tal (fremkommet ved afskæring):

Eksakt:
$$x = +f \times 2^E = \sum_{k=0}^{\infty} d_k 2^{E-k}, \ f = 1, d_1 d_2 d_3 \dots$$
 Approksimation: $\hat{x} = +\hat{f} \times 2^E = \sum_{k=0}^{N} d_k 2^{E-k}, \ \hat{f} = 1, d_1 d_2 d_3 \dots d_N.$

Afrundingsfejl

Vurdering af fejl ved repræsentation af reelt tal x som binært tal (fremkommet ved afskæring):

Eksakt:
$$x = +f \times 2^E = \sum_{k=0}^{\infty} d_k 2^{E-k}, \ f = 1, d_1 d_2 d_3 \dots$$

Approximation:
$$\hat{x} = +\hat{f} \times 2^E = \sum_{k=0}^{N} d_k 2^{E-k}, \ \hat{f} = 1, d_1 d_2 d_3 \dots d_N.$$

Absolut fejl:
$$|x - \hat{x}| = \sum_{k=N+1}^{\infty} d_k 2^{E-k} \le 2^{E-N}$$
,

Relativ fejl:
$$\frac{|x - \hat{x}|}{|x|} \le 2^{-N}$$
.

Afrundingsfejl

Vurdering af fejl ved repræsentation af reelt tal x som binært tal (fremkommet ved afskæring):

Eksakt:
$$x = +f \times 2^E = \sum_{k=0}^{\infty} d_k 2^{E-k}, \ f = 1, d_1 d_2 d_3 \dots$$
 Approksimation: $\hat{x} = +\hat{f} \times 2^E = \sum_{k=0}^{N} d_k 2^{E-k}, \ \hat{f} = 1, d_1 d_2 d_3 \dots d_N.$

Absolut fejl:
$$|x - \hat{x}| = \sum_{k=N+1}^{\infty} d_k 2^{E-k} \le 2^{E-N}$$
,

Relativ fejl:
$$\frac{|x - \hat{x}|}{|x|} \le 2^{-N}$$
.

Tilsvarende beregning kan laves med ethvert andet grundtal

Fixed point

- I modsætning til flydende tal (floating point), hvor kommaet flyttes ved at gange med grundtal opløftet i eksponent opererer nogle arkitekturer med fixed point.
- Fixed point svarer til floating point, hvor eksponenten er fastsat på forhånd. Antal cifre før og efter kommaet ligger således fast.
- Fixed point er mindre fleksibel end floating point; til gengæld er fixed point mere effektiv.

Flydende tal i Maple

Maple regner som udgangspunkt eksakt (heltal, heltalsbrøker) Software floats fås med kommandoen evalf

• Antal betydende cifre (svarende til N+1) styres med systemvariablen Digits (default er 10)

Afrunding styres med Rounding, som kan antage værdierne 0, infinity, -infinity, nearest.

Hardware floats fås med kommandoen evalhf

- Basen er typisk 2 (afhængig af platformen) og N=52
- Antal betydende cifre er fast. Et estimat kan fås med kommandoen evalhf(Digits)