Neural Network Basics

9/10 points (90%)

Quiz, 10 questions

1. What doe A ac A W This sho No. It is an activ	0 / 1 points s a neuron compute? neuron computes the mean of all features before a ctivation function neuron computes a function g that scales the input neuron computes an activation function followed by (x + b) suld not be selected the other way round. A neuron computes a linearity vation g (sigmoid, tanh, ReLU,).	x linearly (Wx + b) y a linear function (z =
What doe A A A A W This sho No. It is an active A	neuron computes the mean of all features before a ctivation function neuron computes a function g that scales the input neuron computes an activation function followed by (x + b) suld not be selected at the other way round. A neuron computes a linearity vation g (sigmoid, tanh, ReLU,).	x linearly (Wx + b) y a linear function (z =
A ad A W This sho No. It is an activ	neuron computes the mean of all features before a ctivation function neuron computes a function g that scales the input neuron computes an activation function followed by (x + b) suld not be selected at the other way round. A neuron computes a linearity vation g (sigmoid, tanh, ReLU,).	x linearly (Wx + b) y a linear function (z =
This sho No. It is an activ	neuron computes an activation function followed by (x + b) Fuld not be selected I the other way round. A neuron computes a linearity (ation g (sigmoid, tanh, ReLU,).	y a linear function (z :
This sho No. It is an activ	(x + b) Fuld not be selected If the other way round. A neuron computes a linearity vation g (sigmoid, tanh, ReLU,).	ry (Wx + b) and then
No. It is an activ	the other way round. A neuron computes a linearit vation g (sigmoid, tanh, ReLU,).	
•	neuron computes a linear function (z = Wx + b) follo	
	1/1 points	
2. Which of t	these is the "Logistic Loss"?	
O)		
Correct Correct	, this is the logistic loss you've seen in lecture!	

Neural Network Basics

9/10 points (90%)

Quiz, 10 questions Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector?

	x = img.reshape((32*32,3))
0	x = img.reshape((32*32*3,1))
Corr	ect
	x = img.reshape((3,32*32))
	x = img.reshape((1,32*32,*3))

1/1 points

4.

Consider the two following random arrays "a" and "b":

```
1 a = np.random.randn(2, 3) # a.shape = (2, 3)
2 b = np.random.randn(2, 1) # b.shape = (2, 1)
3 c = a + b
```

What will be the shape of "c"?

Correct

Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of a.

The computation cannot happen because the sizes don't match. It's going to be "Error"!
c.shape = (3, 2)
c.shape = (2, 1)

1/1 points

5.

Consider the two following random arrays "a" and "b": $Neural\ Network\ Basics$

9/10 points (90%)

Quiz, 10 questions

1 a = np.random.randn(4, 3) # a.shape = (4, 3) 2 b = np.random.randn(3, 2) # b.shape = (3, 2) 3 c = a*b

What will be the shape of "c"?

c.shape =	1121
 c.snabe –	(4,2)

The computation cannot happen because the sizes don't match. It's going to be "Error"!

Correct

Indeed! In numpy the "*" operator indicates element-wise multiplication. It is different from "np.dot()". If you would try "c = np.dot(a,b)" you would get c.shape = (4, 2).

- c.shape = (3, 3)
- c.shape = (4, 3)

1/1 points

6.

Suppose you have $$n_x$ \$ input features per example. Recall that $$X = [x^{(1)} x^{(2)} ... x^{(m)}]$ \$. What is the dimension of X?

- \$\$(m,1)\$\$
- \$\$(1,m)\$\$
- \$\$(m,n_x)\$\$
- \$\$(n_x, m)\$\$

Correct

1/1 points

7.

Recall that "np.dot(a,b)" performs a matrix multiplication on a and b, whereas "a*b" performs an element-wise multiplication.

Neural Network Basics

9/10 points (90%)

Quiz, 10 questions Consider the two following random arrays "a" and "b":

```
a = np.random.randn(12288, 150) # a.shape = (12288, 150)
b = np.random.randn(150, 45) # b.shape = (150, 45)
c = np.dot(a,b)
```

What is the shape of c?

c.shape = (12288, 45)

Correct

Correct, remember that a np.dot(a, b) has shape (number of rows of a, number of columns of b). The sizes match because:

"number of columns of a = 150 = number of rows of b"

- c.shape = (12288, 150)
- c.shape = (150,150)
- The computation cannot happen because the sizes don't match. It's going to be "Error"!

1/1 points

Consider the following code snippet:

```
\# a.shape = (3,4)
   # b.shape = (4,1)
3
   for i in range(3):
     for j in range(4):
       c[i][j] = a[i][j] + b[j]
```

How do you vectorize this?

c = a + b.T

Correct

- c = a.T + b
- c = a.T + b.T
- c = a + b

9. Quiz, 10 questions Consider the following code:

9/10 points (90%)

What will be c? (If you're not sure, feel free to run this in python to find out).

This will invoke broadcasting, so b is copied three times to become (3,3), and \$\$*\$\$ is an element-wise product so c.shape will be (3, 3)

Correct

- This will invoke broadcasting, so b is copied three times to become (3, 3), and \$\$*\$\$ invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)
- This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1).
- It will lead to an error since you cannot use "*" to operate on these two matrices. You need to instead use np.dot(a,b)

1/1 points

10.

Consider the following computation graph.

What is the output J?

J = (c - 1)*(b + a)

J = (a - 1) * (b + c)