

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék

iContrALL Intelligens Épületelektronika Kft.

Modell prediktív fűtésszabályozás alkalmazási lehetőségei

ÖNÁLLÓ LABORATÓRIUM

Készítette Gyulai László Belső konzulens dr. Kiss Bálint

Külső konzulens Kurbucz Máté

Tartalomjegyzék

1.	Öná	Önálló labor munka			
	1.1.	MPC áttekintés	2		
		1.1.1. Az MPC költségfüggvénye	3		
	1.2.	OptiControl projekt	3		
	1.3.	Peak demand csökkentése	4		
	1.4.	Költségek figyelembe vétele	7		
	1.5.	Komfort figyelembe vétele	7		
		1.5.1. Kritérium a szabályozásra	7		
		1.5.2. Hőérzetbeli különbségek	8		
	1.6.	Zavarelnyomás	8		
	1.7.	Preview nélküli eset	8		
		1.7.1. Komfort – Hibajel minimalizálása	8		
		1.7.2. Költség – Beavatkozó jelek és a teljesítmény, peak demand	8		
	1.8.	Reference preview slope nélkül	8		
		1.8.1. Összehasonlítás	11		
	1.9.	Reference preview slopepal	12		
		1 9 1 Összehasonlítás	14		

1. fejezet

Önálló labor munka

<u>Motiváció</u> [1]A szakdolgozatban elkezdett munkát folytatva a cél az ottani MPC szabályozás finomhangolása, továbbfejlesztése volt. A felállított Simulink modellen a szabályozást kvantitatíven vizsgáltam meg, koncentrálva a költségek és a komfort közötti egyensúlyra.

<u>A modell</u> A korábbiakban használt *fűtési rendszer modelljét* nem változtattam meg, viszont a modellből kivezetve mértem a pillanatnyi hőleadást. Így megkaptam a hőmennyiségeket, amik a beavatkozás forintosított költségével arányosak.

1.1. ábra. Fűtési rendszer modellje - fűtőtest és helyiség

Adott környezeti hőmérséklet és belső hőmérséklet (alapjel) mellett ez az energiamennyiég azonos volt, mivel a helyiség hőveszteségei csak ennek különbségétől függnek. Az energiamegtakarítást tehát nem itt kell keresni, hanem a primer energia felhasználásánál. Ennek okai a következők:

Az alacsony hőmérsékletű (sugárzó) fűtések, pl. a padlófűtés használata gazdaságosabb lehet a hagyományos radiátoros fűtéseknél a megújulók használatával. Ugyan-

annyi leadott energia így olcsóbb ilyen rendszerekkel¹, emellett pedig jobb hőérzetet biztosítanak.

A modellben a kétféle fűtőtesthez két külön beavatkozó jel tartozik, mely a két szelep kinyitásának mértéke. A beavatkozók dinamikája is eltér, a prediktív irányítás ezt figyelembe véve tud egy egyensúlyt találni.

A csúcsterhelés csökkentése számos előnnyel jár. Szakaszos üzem helyett folyamatos teljesítményigény esetén a megújuló források előnyösebben hasznosíthatók.

MPC áttekintés

A modell-prediktív szabályozást alapjaiban a szakdolgozatomban mutattam be. A szabályozó, illetve a zárt szabályozási kör blokkvázlata és a rövidítések magyarázata szerepel az alábbiakban. [2] alapján

1.2. ábra. Az MPC be- és kimenetei

emző)
tható
eti

1.1. táblázat. A fejezetben ismertetett rövidítések és angol szakkifejezések

A kiindulási MPC-t már létrehoztam az alábbi lépésekkel:

1. a 2 bemenetű, 1 kimenetű szakaszt identifikáltam átviteli függvényével

 $^{^{1}\}mathrm{Sug\acute{a}rz\acute{o}}\text{ }\mathrm{f\~{u}\acute{t}\acute{e}sekkel}\text{ }\mathrm{kevesebb}\text{ }\mathrm{primer}\text{ }\mathrm{energia}\text{ }\mathrm{sz\"{u}\acute{k}s\acute{e}ges}\text{ }\mathrm{a}\text{ }\mathrm{jobb}\text{ }\mathrm{hat\acute{a}sfok},\text{ }\mathrm{kisebb}\text{ }\mathrm{vesztes\acute{e}gek}\text{ }\mathrm{miatt}.$

- 2. létrehoztam az MPC-t a megfelelő mintavételi idővel, beállítottam a jelek fizikai korlátait, illetve a skálázást. Az MPC két beavatkozó jele a modell 2 szelepének nyitásához tartozik.
- 3. Simulinkben futtatam a szimulációt, Scope használatával mentve az adatokat az analízishez

Az MPC költségfüggvénye

A szabályzó a predikciós horizonton belül minden lehetséges beavatkozójel-sorozatra kiszámolja annak (várható, modell szerinti) költségét. Azt a beavatkozójel-sorozatot választja, ami a legkisebb költséggel jár. Ez után a szabályozási horizontnak megfelelő számú beavatkozást végez, nem adja ki a teljes sorozatot.

Agachi [3] szerint:

$$J = \sum_{i}^{p} \left(w_u \Delta u^2 + w_e (r_i - y_i)^2 \right)$$
 (1.1)

ahol N a predikciós horizont, w_u a beavatkozó jel változásának súlya, w_e a hibajel súlya. A referenciajel jövőbeli változásait figyelembe lehet venni a predikciós horizonton belül.

A költségfüggvényben a hibajelhez és beavatkozó jelekhez, illetve azok változásaihoz különböző súlyok tartozhatnak. Nagyobb súlyok nagyobb költséget eredményeznek, így a szabályozó a nagyobb költségű beavatkozójel-sorozatot kisebb valószínűséggel választja.

OptiControl projekt

Az ETH Zürich kutatássorozata, az OptiControl [1] (2007 és 2013 között) a prediktív irányítások használatát vizsgálta és tesztelte irodaépületeken. Az egyetem mellett a Siemens mérnökeit és más partnereket is bevontak. A projektből számos ötletet merítettem, és szimuláltam ezeket a Simulink környezetben.

A projektben MPC szabályozás és RBC (Rule Based Control) performanciáját vetették össze.

Az általuk használt MPC modell meglehetősen részletes: figyelembe veszi a napsütés, illetve az irodában használt elektromos fogyasztók hatását is.

A projekt összefoglalója egy szabályzóval hasonlítja össze a hagyományos megoldásokat, én viszont arra voltam kíváncsi, hogy az általuk használt stratégiák mennyiben befolyásolják az MPC viselkedését.

Peak demand csökkentése

1) <u>SIGNAL PREVIEW</u> – A prediktív szabályozókban lehetőség van arra, hogy a predikciós horizonton belül a szabályozó figyelembe vegye a referenciajel jövőbeli változását, illetve a mérhető zavarások várható értékét. (Erre previewing vagy lookahead néven szokás hivatkozni.)

ANTICIPATIVE ACTION (A.K.A. "PREVIEW")

$$\min_{\Delta U} \sum_{k=0}^{N-1} \|W^{y}(y_{k+1} - r_{k+1})\|^{2} + \|W^{\Delta u}\Delta u(k)\|^{2}$$

• Reference not known in advance (causal):

• Future reference samples (partially) known in advance (anticipative action):

Same idea also applies to reject measured disturbances entering the process

1.3. ábra. Signal previewing hatása (forrás: [4])

Erre abban az esetben van lehetőség, ha például elő van írva a napi hőmérséklet alapjel, ahogyan ez megtehető egyszerű programozható termosztátoknál is, amelyek egyszerű RBC (Rule Based Control) elven kapcsolnak be vagy ki.

Időjárás-előrejelzést figyelembe véve pedig a külső hőmérséklet értékére adható becslés, ami tovább csökkentheti az energiafelhasználást.

2) <u>SÚLYOZÁS MÓDOSÍTÁSA</u> – A költségfüggvényben a beavatkozóknak különböző súlyokat rendelhetünk, ezzel szintén korlátozhatók a beavatkozó jelek.

Még jobb eredményt lehet elérni időben változó súlyokat használva, ami például csúcsidőben magasabb energiaárakat elkerülve kiegyenlítheti a fogyasztást.

T_s	30 perc			
p	48 óra			
\mathbf{c}	1			
szabályozó	С	C2	C4	
w_u	0			
$w_{\Delta u}$	50			
w_y	20			
SF	30			

1.2. táblázat. MPC szabályozó paraméterei

1.4. ábra. MPC viselkedése – previewing, kül. súlyokkal

A fentiekkel a szabályozók beavatkozóinak hőleadása:

Peak demandja:

(a) Leadott homennyiseg megoszlasa

(b) C2 szabályozó

A munka során célul tűztem ki, hogy gyakorlatban használható, a felmerülő igényeket jobban kielégítő szabályozást állítsak fel.

Számos szempont merülhet fel,

A korábban identifikált lineáris modellt használtam fel

```
T_s 1800 s
p 50 minta (25 óra)
c 1
w_u 0.005
w_{\Delta u} 50
w_y 20
SF 30
```

1.3. táblázat. MPC szabályozó paraméterei

Költségek figyelembe vétele

A fűtés energiaköltségét legkönnyebben az összes felhasznált energia mennyiségéből kaphatjuk meg. Ezen kívül célszerű még megvizsgálni a maximális teljesítményigényt is (peak demand), illetve az energiaátalakítás teljesítményszintektől függő hatásfokát.

A csúcsidőszakban lecsökkent teljesítményigény különösen előnyös lehet akkor, ha a tarifák ebben az időszakban magasabbak.

A helyiség Simscape modelljéből ki lehetett vezetni a ténylegesen leadott hőmennyiséget, amiből már meg lehet állapítani a forintosított költségeket.

Komfort figyelembe vétele

A szabályozás ezen minőségi jellemzője a hibajellel arányos. Ennek átlaga egy referenciától mért átlagos eltérést ad, abszolút integrálva a hibát pedig kiválaszthatjuk a zavarokra minimális hibával működő szabályozást.

A szabványok igen széles tartományban adják meg a komfortos

Kritérium a szabályozásra

Előírt tartományban kell a hőmérsékletnek maradnia (lásd szabvány ill. ETH Zürich).

Hőérzetbeli különbségek

Az időjárás-előrejelzések is megadnak hőérzetet a napsütés, szél függvényében. Napos időben és szélcsendben melegebbnek tőnik az idő: hasonlóan kijelenthető, hogy sugárzó fűtések használatával a levegő hőmérséklete alacsonyabban is tartható ugyanakkora komfort eléréséhez.

Ezért célszerű T_{AUST} -t is megvizsgálni.

Zavarelnyomás

Preview nélküli eset

Komfort – Hibajel minimalizálása

Költség – Beavatkozó jelek és a teljesítmény, peak demand

Ha a szabályozó csak a pillanatnyi zavarás értékét ismeri, akkor ennek megváltozásakor a referenciajel is hirtelen megváltozhat. Amennyiben a szabályozó a zavarás becsült értékét előre ismeri, optimalizálni tudja az energiafelhasználást. Ha például a külső hőmérséklet hirtelen emelkedik, akkor könnyen túlmelegedhet a helyiség, felesleges energiafogyasztást eredményezve.

A következőkben a preview nélküli szabályozók viselkedése látható.

Reference preview slope nélkül

Az alább látható szabályzók már ismerték a zavarjel értékát 2.5 órával előre. A referenciajelet konstansnak állítottam be.

Állandósult állapotban 10 napos mintákat ábrázoltam, és ezeket feldolgozva numerikusan is összehasonlítottam a szabályozókat. A külső hőmérséklet értéket egy négyszögjel felfutási idejének korlátozásával kaptam.

Különböző költségfüggvényű MPC-k más-más arányban használták a beavatkozókat és más-más mértékben tértek el az alapjeltől. Az összesítésben leolvashatók ezek az arányok.

Összehasonlítás

 ${\bf 1.11.~\acute{a}bra.}~\textit{compare Controller Just Preview}$

Reference preview slopepal

Összehasonlítás

 ${\bf 1.17.~\acute{a}bra.}~compare Controller Preview Slope$

Irodalomjegyzék

- [1] Dimitrios Gyalistras et al. Markus Gwerder. Final Report: Use of Weather And Occupancy Forecasts For Optimal Building Climate Control Part II: Demonstration. https://opticontrol.ee.ethz.ch/Lit/Gwer_13_Rep-OptiCtrl2FinalRep.pdf, 2013. [Online].
- [2] Alberto Bemporad, N. Lawrence Ricker, Manfred Morar (MathWorks). Model Predictive Control ToolboxTM Reference. https://www.mathworks.com/help/pdf_doc/mpc/mpc_ug.pdf, 2019. [Online].
- [3] Paul Agachi, Zoltan Kalman Nagy, Vasile Cristea, and Arpad Imre-Lucaci. *Model Based Control Case Studies in Process Engineering*. 11 2006.
- [4] Alberto Bemporad). Course on Model Predictive Control (IMT Lucca). http://cse.lab.imtlucca.it/~bemporad/teaching/mpc/imt/1-linear_mpc.pdf, 2019. [Online].