Online Quiz System

Submitted By

Student Name	Student ID
Farhan Sadik Kawsar	241-15-462
Yasin Arafat Shibloo	241-15-288
Mohima Hossain Safa	241-15-213
Md. Sazidul Zidan	241-15-268

MINI LAB PROJECT REPORT

This Report Presented in Partial Fulfillment of the course CSE222:

Object-Oriented Programming Lab in the Computer Science and

Engineering Department

DAFFODIL INTERNATIONAL UNIVERSITY Dhaka, Bangladesh

August 10, 2025

DECLARATION

We hereby declare that this lab project has been done by us under the supervision of MD. Jubayar Alam Rafi, Lecturer Department of Computer Science and Engineering, Daffodil International University. We also declare that neither this project nor any part of this project has been submitted elsewhere as lab projects.

Submitted To:
MD. Jubayar Alam Rafi
ecturer
Department of Computer Science and Engineering
Daffodil International University

Submitted by

Farhan Sadik Kawsar	Yasin Arafat Shibloo
241-15-462	241-15-288
Dept. of CSE, DIU	Dept. of CSE, DIU
Mohima Hossain Safa 241-15-213 Dept. of CSE, DIU	Md. Sazidul Zidan 241-15-268 Dept. of CSE, DIU

COURSE & PROGRAM OUTCOME

The following course have course outcomes as following:

Table 1: Course Outcome Statements

Statements
Define and Relate classes, objects, members of the class, and relationships among
them needed for solving specific problems
Formulate knowledge of object-oriented programming and Java in problem solving
Analyze Unified Modeling Language (UML) models to Present a specific problem
Develop solutions for real-world complex problems applying OOP concepts while evaluating their effectiveness based on industry standards.

Table 2: Mapping of CO, PO, Blooms, KP and CEP

CO	РО	Blooms	KP	CEP
CO1	PO1	C1, C2	KP3	EP1,EP3
CO2	PO2	C2	KP3	EP1,EP3
CO3	PO3	C4, A1	KP3	EP1,EP2
CO4	PO3	C3, C6, A3, P3	KP4	EP1,EP3

The mapping justification of this table is provided in section 4.3.1, 4.3.2 and 4.3.3.

Table of Contents

D	eclar	ation		i
Co	ourse	e & Pr	ogram Outcome	ii
1	Intr	oducti	on	1
	1.1	Introd	ductionduction	1
	1.2	Motiv	ration	1
	1.3	Object	tives	1
	1.4	Feasik	bility Study	1
	1.5	Gap A	Analysis	1
	1.6	Projec	ct Outcome	1
2	Pro	posed	Methodology/Architecture	2
	2.1	Requi	rement Analysis & Design Specification	2
		2.1.1	Overview	2
		2.1.2	Proposed Methodology/ System Design	2
		2.1.3	UI Design	2
	2.2	Overa	all Project Plan	2
3	Imp	lemen	itation and Results	3
	3.1	Impler	mentation	3
	3.2	Perfor	rmance Analysis	3
	3.3	Result	ts and Discussion	3
4	Eng	ineeri	ng Standards and Mapping	4
	4.1	Impad	ct on Society, Environment and Sustainability	4
		4.1.1	Impact on Life	4
		4.1.2	Impact on Society & Environment	4
		4.1.3	Ethical Aspects	4
		4.1.4	Sustainability Plan	4
	4.2	Projec	ct Management and Team Work	4
	4.3	4.3 Complex Engineering Problem		4
		4.3.1	Mapping of Program Outcome	4
		4.3.2	Complex Problem Solving	4
		4.3.3	Engineering Activities	5

Ta	ble of	Contents	Table of Contents
5	Con	clusion	6
	5.1	Summary	6
	5.2	Limitation	6

5.3 Future Work......6

References

6

Introduction

1.1 Introduction

This project is a **Java-based Online Quiz System** that facilitates quiz creation, participation, and evaluation through an interactive CLI interface. The system supports two user types: **Admin** and **QuizParticipant**, simulating an end-to-end quiz environment.

1.2 Motivation

In academic and training settings, evaluating learning outcomes digitally is growing. A simple, objectoriented quiz system fosters automation, reducing manual work and encouraging fair evaluations.

1.3 Objectives

- Design a CLI-based quiz system using OOP in Java
- Allow Admin to create/delete quizzes and view all results
- Let users take quizzes and view their results.
- Store and compute results using objects and basic data structures.

1.4 Feasibility Study

Unlike complex web-based apps, this system focuses on **command-line interactivity**, Java object modeling, and beginner-friendly logic – ideal for foundational software engineering practices.

1.5 Gap Analysis

Unlike complex web-based apps, this system focuses on **command-line interactivity**, Java object modeling, and beginner-friendly logic – ideal for foundational software engineering practices.

1.6 Project Outcome

A working Java-based quiz application that uses OOP principles such as abstraction, inheritance, encapsulation, and polymorphism. It enhances both Java and system design skills

Proposed Methodology/Architecture

Every chapter should start with 1-2 sentences on the outline of the chapter.

2.1 Requirement Analysis & Design Specification

2.1.1 Overview

The system consists of classes for User, Admin, QuizParticipant and

Result. Admin manages quizzes, while users participate.

2.1.2 Proposed Methodology/ System Design

Figure 2.1: This is a sample diagram

2.1.3 UML Design

2.2 Overall Project Plan

- Week 1: Requirements & design
- Week 2: Implement base classes
- Week 3: Integrate Admin/User panels
- Week 4: Finalize features and test

Implementation and Results

Every chapter should start with 1-2 sentences on the outline of the chapter.

3.1 Implementation

The system is implemented in Java using core OOP techniques:

- User is abstract and extended by Admin and QuizParticipant.
- QuizParticipant participates in quizzes.
- Quiz contains multiple Question instances.
- Admin can view all results of users.

3.2 Performance Analysis

Efficient in memory and runtime for small-scale quizzes. Suitable for low-

resource systems or learning environments.

3.3 Results and Discussion

After testing with various users and quizzes:

- Admin can successfully create quizzes and monitor results.
- Users can take guizzes and receive immediate feedback.
- System prevents crashes with basic input validation.

Engineering Standards and Mapping

Every chapter should start with 1-2 sentences on the outline of the chapter.

4.1 Impact on Society, Environment and Sustainability

4.1.1 Impact on Life

Encourages self-assessment and learning reinforcement.

4.1.2 Impact on Society & Environment

Reduces the need for printed quiz papers – paperless testing.

4.1.3 Ethical Aspects

Promotes fair, consistent quiz-taking experiences.

4.1.4 Sustainability Plan

Expandable for more features like user registration, file-based persistence.

4.2 Project Management and Team Work

The project was planned weekly. No external budget was required due to the open-source nature of . Java. Tools used: IntelliJ IDEA / VS Code.

4.3 Complex Engineering Problem

4.3.1 Mapping of Program Outcome

In this section, provide a mapping of the problem and provided solution with targeted Program Outcomes (PO's

Table 4.1: Justification of Program Outcomes

PO's	Justification
PO1	Applied class modeling and user interaction principles
PO2	Developed with Java OOP concepts like encapsulation and inheritance
PO3	Designed solution using problem decomposition and system modeling

4.3.2 Complex Problem Solving

In this section, provide a mapping with problem solving categories. For each mapping add subsections to put rationale (Use Table 4.2). For P1, you need to put another mapping with

Knowledge profile and rational thereof.

Table 4.2: Mapping with complex problem solving.

EP1	EP2	EP3	EP4	EP5	EP6	EP7
Dept of	Range of	Depth of	Familiarity	Extent of	Extent	Inter-
Knowledge	Conflicting	Analysis	of Issues	Applicable	of Stake-	dependence
	Require-			Codes	holder	
	ments				Involve-	
					ment	
V	V					

4.3.3 Engineering Activities

In this section, provide a mapping with engineering activities. For each mapping add subsections to put rationale (Use Table 4.3).

Table 4.3: Mapping with complex engineering activities.

EA1			EA2	EA3	EA4	EA5
Range	of	re-	Level of Interac-	Innovation	Consequences for	Familiarity
sources			tion		society and envi-	
					ronment	
V			V			

Conclusion

Every chapter should start with 1-2 sentences on the outline of the chapter.

5.1 Summary

The project successfully demonstrates the development of a quiz system using core Java OOP. It achieves the basic educational goals of simulation and logic-based evaluation.

5.2 Limitation

- No persistent storage (e.g., file or database)
- Limited to CLI no GUI

5.3 Future Work

- Add GUI using JavaFX or Swing
- Introduce file/database persistence
- Enable user registration and authentication

References

- [1] Jon Kleinberg and Eva Tardos. Algorithm Design. Pearson Education India, 2006.
- [2] Java SE Documentation Oracle
- [3] Effective Java by Joshua Bloch.

Source Code: github Link

