1 Нестационарное уравнение диффузии-конвекцииреакции для трехмерной расчетной области

1.1 Постановка задачи

Уравнение диффузии-конвекции-реакции:

$$c'_t + uc'_x + vc'_y + wc'_z = (\mu c'_x)'_x + (\mu c'_y)'_y + (\nu c'_z)'_z + f, \tag{1}$$

с граничными условиями:

$$c'_n(x, y, z, t) = \alpha_n c + \beta_n, \tag{2}$$

где $u,\ v,\ w$ - составляющие вектора скорости, f - функция, описывающая интенсивность и распределение источников, μ - горизонтальная проекция коэффициента диффузионного (турбулентного) обмена, ν - вертикальная проекция коэффициента диффузионного (турбулентного) обмена.

1.2 Построение дискретной модели

Расчетная область вписана в прямоугольный параллелепипед. Для программной реализации математической модели транспорта веществ вводим равномерную расчетную сетку:

$$w_h = \{t^n = n\tau, x_i = ih_x, y_j = jh_y, z_k = kh_z, n = \overline{0..N_x}, i = \overline{0..N_x}, i = \overline{0..N_x}, k = \overline{0..N_z}, N_t\tau = l_x, N_yh_y = l_y, N_zh_z = l_z\},$$

где τ - шаг по временному направлению, h_x,h_y,h_z - шаги по координатным осям пространства, N_t,N_x,N_y,N_z - границы по времени и пространству.

Аппроксимация уравнения (1) по временной переменной выполняется на основе схем с весами.

$$\frac{\hat{c} - c}{\tau} + u\bar{c}'_x + v\bar{c}'_y + w\bar{c}'_z = (\mu\bar{c}'_x)'_x + (\mu\bar{c}'_y)'_y + (\mu\bar{c}'_z)'_z + f, \tag{3}$$

где

$$\bar{c} = \sigma \hat{c} + (1 - \sigma), \sigma \in [0, 1]$$
 - вес схемы $(\sigma = 0, 5; 0.75; 1)$ $c = c(x, y, z, t); \ \hat{c} = (x, y, z, t + \tau)$

Рисунок 1 Разностный шаблон

Рисунок 2 Параллилепипед с центром i, j, k

Ячейки представлены прямоугольными параллелипипедами, которые могут быть заполненными, пустыми или частично заполненными.

Заполненность ячеек: Центры ячеек и расчетные узлы сетки разнесены на $\frac{h_x}{2}, \frac{h_y}{2}, \frac{h_z}{2},$ по координатным направлениям x,y,z соответственно. Обозначим $O_{i,j,k}$ - степень заполненности объемной ячейки.

Рисунок 3 Вершины объемной ячейки

Получается, что окрестными ячейками узла i,j,k являются 8 ячеек (см. рисунок 2).

Обозначим эти ячейки через координаты главных диагоналей (т. к. ячейки - это прямоугольные параллелепипеды).

Внизу:

- 1) (i-1, j+1, k-1) (i, j, k)
- 2) (i-1, j, k-1) (i, j-1, k)
- 3) (i, j, k-1) (i+1, j-1, k)
- 4) (i, j + 1, k 1) (i + 1, j, k)

Вверху:

- 1) (i-1, j+1, k) (i, j, k+1)
- 2) (i-1, j, k) (i, j-1, k+1)
- 3) (i, j, k) (i + 1, j 1, k + 1)
- 4) (i, j + 1, k) (i + 1, j, k + 1)

Читай метод конечных объемов (Рояк)

Для описания геометрии расчетного объема введем коэффициенты $q_0, q_1, q_2, q_3, q_4, q_5, q_6$ заполненности контрольных "объемов" ячейки (i, j, k). Значение q_0 характеризует степень заполненности объема V_0 .

$$\begin{array}{l} q_0 - V_0: x \in (x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}), y \in (y_{j-\frac{1}{2}}, y_{j+\frac{1}{2}}), z \in (z_{k-\frac{1}{2}}, z_{k+\frac{1}{2}}) \\ q_6 - V_1: x \in (x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}), y \in (y_{j-\frac{1}{2}}, y_{j+\frac{1}{2}}), z \in (z_{k-\frac{1}{2}}, z_k) \\ q_5 - V_2: x \in (x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}), y \in (y_{j-\frac{1}{2}}, y_{j+\frac{1}{2}}), z \in (z_k, z_{k+\frac{1}{2}}) \\ q_2 - V_3: x \in (x_{i-\frac{1}{2}}, x_i), y \in (y_{j-\frac{1}{2}}, y_{j+\frac{1}{2}}), z \in (z_{k-\frac{1}{2}}, z_{k+\frac{1}{2}}) \end{array}$$

$$\begin{array}{l} q_4-V_5: x\in (x_{i-\frac{1}{2}},x_{i+\frac{1}{2}}), y\in (y_{j-\frac{1}{2}},y_j), z\in (z_{k-\frac{1}{2}},z_{k+\frac{1}{2}})\\ q_3-V_6: x\in (x_{i-\frac{1}{2}},x_{i+\frac{1}{2}}), y\in (y_j,y_{j+\frac{1}{2}}), z\in (z_{k-\frac{1}{2}},z_{k+\frac{1}{2}}) \end{array}$$

Будем называть Ω заполненные части объемов V_m , где $m=\overline{0...6}$.

Будем называть
$$\Omega$$
 заполненные части ооъемов V_m , где $m=0...6$. Таким образом, коэффициенты g_m вычисляются по формулам:
$$(q_0)_{i,j,k} = \frac{O_{i,j,k} + O_{i+1,j,k} + O_{i,j+1,k} + O_{i+1,j+1,k} + O_{i,j,k+1} + O_{i+1,j,k+1} + O_{i+1,j+1,k+1}}{8};$$

$$(q_6)_{i,j,k} = \frac{O_{i,j,k+1} + O_{i+1,j,k} + O_{i,j+1,k+1} + O_{i+1,j+1,k+1}}{4};$$

$$(q_5)_{i,j,k} = \frac{O_{i,j,k} + O_{i+1,j,k} + O_{i,j+1,k} + O_{i+1,j+1,k+1}}{4};$$

$$(q_1)_{i,j,k} = \frac{O_{i,j,k+1} + O_{i,j,k+1} + O_{i,j,k+1} + O_{i+1,j+1,k+1}}{4};$$

$$(q_4)_{i,j,k} = \frac{O_{i,j,k} + O_{i+1,j,k} + O_{i+1,j,k+1} + O_{i+1,j,k+1}}{4};$$

$$(q_3)_{i,j,k} = \frac{O_{i,j+1,k} + O_{i+1,j,k} + O_{i,j,k+1} + O_{i+1,j,k+1}}{4};$$

$$(q_3)_{i,j,k} = \frac{O_{i,j+1,k} + O_{i+1,j+1,k} + O_{i,j+1,k+1} + O_{i+1,j+1,k+1}}{4};$$

$$(q_3)_{i,j,k} = \frac{O_{i,j+1,k} + O_{i+1,j+1,k} + O_{i,j+1,k+1} + O_{i+1,j+1,k+1}}{4};$$

$$(q_3)_{i,j,k} = \frac{O_{i,j+1,k} + O_{i+1,j+1,k} + O_{i,j+1,k+1} + O_{i+1,j+1,k+1}}{4};$$

$$(q_3)_{i,j,k} = \frac{O_{i,j+1,k} + O_{i+1,j+1,k} + O_{i,j+1,k+1} + O_{i+1,j+1,k+1}}{4};$$

$$(q_3)_{i,j,k} = \frac{O_{i,j+1,k} + O_{i+1,j+1,k} + O_{i,j+1,k+1} + O_{i+1,j+1,k+1}}{4};$$

$$(q_3)_{i,j,k} = \frac{O_{i,j+1,k} + O_{i+1,j+1,k} + O_{i,j+1,k+1} + O_{i+1,j+1,k+1}}{4};$$

$$(q_3)_{i,j,k} = \frac{O_{i,j+1,k} + O_{i+1,j+1,k} + O_{i,j+1,k+1} + O_{i+1,j+1,k+1}}{4};$$

$$(q_3)_{i,j,k} = \frac{O_{i,j+1,k} + O_{i+1,j+1,k} + O_{i,j+1,k+1} + O_{i+1,j+1,k+1}}{4};$$

$$(q_3)_{i,j,k} = \frac{O_{i,j+1,k} + O_{i+1,j+1,k} + O_{i,j+1,k+1} + O_{i+1,j+1,k+1}}{4};$$

$$(q_3)_{i,j,k} = \frac{O_{i,j+1,k} + O_{i+1,j+1,k} + O_{i,j+1,k+1} + O_{i+1,j+1,k+1}}{4};$$

$$(q_3)_{i,j,k} = \frac{O_{i,j+1,k} + O_{i+1,j+1,k+1} + O_{i+1,j+1,k+1}}{4};$$

$$(q_3)_{i,j,k} = \frac{O_{i,j+1,k} + O_{i+1,j+1,k+1} + O_{i+1,j+1,k+1}}{4};$$

$$(q_3)_{i,j,k} = \frac{O_{i,j+1,k} + O_{i+1,j+1,k+1} + O_{i+1,j+1,k+1}}{4};$$

$$(q_3)_{i,j,k} = \frac{O_{i,j+1,k} + O_{i,j+1,k+1}}{4};$$

$$(q_3)_{i,j,k} = \frac{O_{i,j+$$

ством линейности интеграла, в результате чего получим:

$$\iiint_{\Omega_{0}} \frac{\hat{c} - c}{\tau} dx dy dz + \iiint_{\Omega_{0}} u \bar{c}'_{x} \tau dx dy dz + \iiint_{\Omega_{0}} v \bar{c}'_{y} \tau dx dy dz + \iiint_{\Omega_{0}} w \bar{c}'_{z} \tau dx dy dz =$$

$$\iiint_{\Omega_{0}} (\mu \bar{c}'_{x})'_{x} dx dy dz + \iiint_{\Omega_{0}} (\mu \bar{c}'_{y})'_{y} dx dy dz + \iiint_{\Omega_{0}} (\mu \bar{c}'_{z})'_{z} dx dy dz + \iiint_{\Omega_{0}} f dx dy dz$$

$$(4)$$

Вычислим отдельно каждый из полученных интегралов.

$$\iiint_{\Omega_0} \frac{\hat{c} - c}{\tau} dx dy dz \simeq (q_0)_{i,j,k} \iiint_{V_0} \frac{\hat{c} - c}{\tau} dx dy dz = (q_0)_{i,j,k} \frac{\hat{c} - c}{\tau} h_x h_y h_z$$
 (5)

Второй интеграл в формуле (4) принимает вид:

$$\iiint_{\Omega_0} u \bar{c}'_x \tau \, dx dy dz \simeq \iiint_{\Omega_1} u \bar{c}'_x \tau \, dx dy dz + \iiint_{\Omega_2} u \bar{c}'_x \tau \, dx dy dz$$

$$= (q_1)_{i,j,k} \iiint_{V_1} u \bar{c}'_x \tau \, dx dy dz + (q_2)_{i,j,k} \iiint_{V_2} u \bar{c}'_x \tau \, dx dy dz \quad (6)$$