F

LCCDE + suitable mathematical description for many physical systems.

EE679 L 4 / Slide 4

$$\Rightarrow$$
 $+1(s) = \frac{1}{ms^2 + cs + k}$

Vocal-tract model for a vowel:

Consider a 2nd order under-damped system

Equivalent digital resonator model

5-> 2 transform" using Impube-invariance

h[n] = T. he(nT) EE679 L 4 / Slide 6

transforms so that the following is the mapping of poles of s plane to poles of z-plane $H(s) \rightarrow H(2)$

CDEEP IIT Bombay

Sp = - Sp ± jer T = samp, interval

 $\neq i^{m}$ resonance $\longrightarrow ri = e^{-Bi\pi \tau}$, $Oi = 2\pi fi T$

Pri : formant freq (Hz)

H(z) =

$$(1-re^{j0}e^{-1})(1-e^{j0}e^{-1})$$
 $(1-re^{j0}e^{-1})(1-e^{j0}e^{-1})$
 $(1-re^{j0}e^{-1})(1-e^{j0}e^{-1})$