Philippe Langlais, Alexandre Patry and Fabrizio Gotti

Dept. I.R.O.
Université de Montréal, Québec, Canada
{felipe,patryale,gottif}@iro.umontreal.ca

TMI, Skövde, September 7-9, 2007

Motivations

Greedy Search

Algorithm

Seed Function

Scoring Function

Neighborhood Function

Experiments

Protocol

Results

Further Experiments

Discussion

A bit of context: WMT'06 1/3

SRC	les avantages sont déjà présents , il sont visibles et ils profitent à tous .
REF	the advantages are already there; they are visible and everyone stands to gain .
cmu	the advantages are already present , it is visible and they benefit to all .
lcc	the benefits are already there , it is visible and they should benefit everyone .
nrc	the benefits are already present , there are already visible and they should benefit
	everyone .
nrc	the benefits are already present , there are already visible and they should benefit
	everyone .
nrc	the benefits are already present , there are visible and they benefit to all .
ntt	the advantages are already present , there are clear and they should benefit
	everyone .
ntt	the advantages are already present , there are visible and they benefit to all .
rali	the advantages are already there , it is visible and they will benefit at all .
systra	n the advantages are already present , it are visible and they benefit all .
uedin	the advantages are already there , they are visible and they benefit all .
upc	the advantages are already present, are visible and they benefit everyone.
upc	the advantages are already present , it is visible and they benefit everyone .
upv	the benefits , there are clear and make use of all .
utd	the advantages are present , there are already visible and they should benefit
	everyone .

A bit of context : WMT'06 1/3

CDC

SRC REF	les avantages sont déjà présents , il sont visibles et ils profitent à tous . the advantages are already there; they are visible and everyone stands to gain .
cmu	the advantages are already present, it is visible and they benefit to all.
lcc	the benefits are already there , it is visible and they should benefit everyone .
nrc	the benefits are already present , there are already visible and they should benefit
	everyone .
nrc	the benefits are already present , there are already visible and they should benefit
	everyone .
nrc	the benefits are already present , there are visible and they benefit to all .
ntt	the advantages are already present , there are clear and they should benefit
	everyone .
ntt	the advantages are already present , there are visible and they benefit to all .
rali	the advantages are already there , it is visible and they will benefit at all .
systran	the advantages are already present , it are visible and they benefit all .
uedin	the advantages are already there , they are visible and they benefit all .
upc	the advantages are already present , are visible and they benefit everyone .
upc	the advantages are already present , it is visible and they benefit everyone .
upv	the benefits , there are clear and make use of all .
utd	the advantages are present , there are already visible and they should benefit
	everyone .

A bit of context: WMT'06 2/3

SRC ce n ' est pas seulement une question de précaution : c ' est du simple bon sens . REF that is not just a precaution , it is common sense . cmu it is not just a precautionary issue : it is of simple common sense . lcc it is not just a question precautionary: it is simply the right direction. it is not just a question of caution: that of simple common sense. nrc it is not just a question of caution: this is the simple good sense. nrc it is not just a question of caution: this is the simple good sense. nrc this is not just a question of precautionary: it is simple common sense. ntt this is not just a question of precautionary: it is simply common sense. ntt rali this is not just a question of precaution is the simple good sense. systran it is not only one question of precaution: it is simple good direction. uedin this is not only a question of caution: that is the simple good sense. this is not only a question of caution: it is a simple common sense. upc this is not just a question of precaution is the simple common sense. upc this is not just a question of caution: it is, of simple common sense. upv this is not just a question precautionary: it is, of simple common sense. utd

A bit of context: WMT'06 2/3

```
SRC
       ce n ' est pas seulement une question de précaution : c ' est du simple bon sens .
REF
       that is not just a precaution , it is common sense .
cmu
       it is not just a precautionary issue : it is of simple common sense .
lcc
       it is not just a question precautionary: it is simply the right direction.
       it is not just a question of caution: that of simple common sense.
nrc
       it is not just a question of caution: this is the simple good sense.
nrc
       it is not just a question of caution: this is the simple good sense.
nrc
       this is not just a question of precautionary: it is simple common sense.
ntt
       this is not just a question of precautionary: it is simply common sense.
ntt
       this is not just a question of precaution is the simple good sense.
rali
systran it is not only one question of precaution: it is simple good direction.
uedin
       this is not only a question of caution: that is the simple good sense.
       this is not only a question of caution: it is a simple common sense.
upc
       this is not just a question of precaution is the simple common sense.
upc
       this is not just a question of caution: it is, of simple common sense.
upv
       this is not just a question precautionary: it is, of simple common sense.
utd
```

A bit of context: WMT'06 3/3

- SRC il est certain que la déclaration complète implique à nouveau des coûts . c ' est l ' agriculteur qui doit , en fin de compte , supporter les coûts .
- REF the full declaration certainly costs money , and the farmer ultimately has to foot the bill .
- cmu there is no doubt that the full statement involves costs again . that is the farmer which must , at the end of the day bear the costs .
- ntt it is true that the statement that is the farmer who must , in the end , bear the **costs** . full means to new **costs** .
- rali it is true that the full statement implies again this is the farmer who must, ultimately, bear the **costs**. **costs**.

Several solutions

better models

```
(of course...)
```

monotone decoding

```
(faster, sometimes improves)
```

enlarging the search space

```
(we do not care about speed, do we?)
```

The solution we considered

greedy search

Hill-climbing a given translation

Pros:

- easy, memory efficient, and often successful in search problems
- operations can be customized (post-processing)
- greedy search has never been evaluated within a phrase-based paradigm [Germann et al., 2001]

Con: search space visited usually small

Experiments

Greedy Search

Algorithm Seed Function Scoring Function Neighborhood Function

Algorithm

```
Require: source a sentence to translate
  current \leftarrow SEED(source)
  loop
     s\_current \leftarrow SCORE(current)
     s \leftarrow s current
     for all h \in NEIGHBORHOOD(current) do
        c \leftarrow \text{SCORE}(h)
        if c > s then
           s \leftarrow c
           best \leftarrow h
     if s = s current then
        return current
     else
        current \leftarrow best
```

The Seed function

Seed the engine with either the output of :

 a DP-algorithm which selects the minimum number of phrases covering the source sentence (G-GLOSS)

2. another phrase-based engine (G-PHARAOH)

Seeding with DP-segmentation (1/3)

Seeding with DP-segmentation (2/3)

```
je les remercie \rightarrow i thank them (-1.03) , i thank them (-1.5) i wish to thank them (-2.0) i would like to thank them (-2.2) i congratulate them (-2.4) i should also like to thank them (-2.6) i wish to thank (-2.7) i offer them my thanks (-2.7) i would like to thank parliament (-3.2) tous deux \rightarrow both (-1.4) both of (-1.9) , both (-2.2) both will
```

tous deux \rightarrow both (-1.4) both of (-1.9) , both (-2.2) both will (-2.2) , both of (-2.2) both to (-2.3) both to be (-2.3) which both (-2.3) both of which (-2.4) they both (-2.4)

pour leur formidable \rightarrow for their tremendous (-1.33) on their comprehensive (-2.6) them on their comprehensive (-2.9)

engagement . \rightarrow commitment . (-0.3) engagement . (-1.1) undertaking . (-1.2) involvement . (-1.4) pledge . (-1.5) dedication . (-1.5) commitments . (-1.5) committed . (-1.7) promise . (-1.8) obligation . (-2.0)

Seeding with DP-segmentation (2/3)

```
je les remercie \rightarrow i thank them (-1.03), i thank them (-1.5)
i wish to thank them (-2.0) i would like to thank them (-2.2) i
congratulate them (-2.4) i should also like to thank them (-2.6)
i wish to thank (-2.7) i offer them my thanks (-2.7) i would like
to thank parliament (-3.2)
```

tous deux \rightarrow both (-1.4) both of (-1.9), both (-2.2) both will (-2.2), both of (-2.2) both to (-2.3) both to be (-2.3) which both (-2.3) both of which (-2.4) they both (-2.4)

pour leur formidable \rightarrow for their tremendous (-1.33) on their comprehensive (-2.6) them on their comprehensive (-2.9)

engagement. \rightarrow commitment. (-0.3) engagement. (-1.1) undertaking \cdot (-1.2) involvement \cdot (-1.4) pledge \cdot (-1.5) dedication (-1.5) commitments (-1.5) committed (-1.7) promise (-1.8)obligation . (-2.0)

Seeding with DP-segmentation (3/3)

Seeding with Pharaoh

By using option -t:

SRC les libéraux pourraient donc être un peu plus pratiques et rapides .

TRA the liberals |0.104264|0|1| could therefore be |0.0398264|2|4| a little |0.19357|5|6| more practical |0.143042|7|8| and quick . |0.0447256|9|11|

The Scoring function

The very same function embedded in Pharaoh:

$$Score(e, f) = \lambda_{lm} \log p_{lm}(f) + \sum_{i} \lambda_{tm}^{(i)} \log p_{tm}^{(i)}(f|e) - \lambda_{w} |f| - \lambda_{d} p_{d}(e, f)$$

The neighborhood function

only 5 operations encoded (+ variants)(first try...)

 many more possible (including inserting/deleting words)

Illustrated on 3 excerpts of translations sessions.

SRC : **elle contribuera ainsi à** la promotion du progrès économique et social grâce à un niveau d'emploi élevé .


```
SWAP [elle contribuera \leftrightarrow it will contribute] with [ainsi \leftrightarrow and] STEP-3 -15.1609 \rightarrow -14.6041
```

SRC : elle contribuera ainsi à la promotion du progrès économique et social grâce à un niveau d'emploi élevé.

 ${
m SRC}$: nous devrions nous concentrer **sur le passage à** la non-production d'armements et non sur la manière dont nous allons assurer notre compétitivité par rapport aux autres pays du monde qui produisent des armements .

SPLIT into STEP-4

[sur le passage à \leftrightarrow on the passage to] [sur \leftrightarrow on] [le passage à \leftrightarrow the transition to] -35.7871 \rightarrow -35.5256

 ${\rm SRC}$: nous devrions nous concentrer sur le passage à la non-production d 'armements et non sur la manière dont nous allons assurer notre compétitivité par rapport aux autres pays du monde qui produisent des armements .

MERGE into STEP-5

[nous devrions nous concentrer] [sur] [we should concentrate on] $-35.5256 \rightarrow -35.3209$

 ${\rm SRC}$: nous devrions nous concentrer sur le passage à la non-production d'armements et non sur la manière dont nous allons assurer notre compétitivité par rapport aux autres pays du monde qui produisent des armements .

 ${\rm SRC}$: le groupe csu au parlement européen se réjouit que le présent projet de charte des droits fondamentaux rassemble et rende visibles les droits fondamentaux dont disposent les citoyens vis-à-vis des organes et institutions de l ' ue .

SEED the csu group in the european parliament welcomes the draft charter of fundamental rights lumps together and make visible the fundamental rights enjoyed by the citizens towards the eu institutions and bodies that . (-43.8823)

```
MOVE [se réjouit \leftrightarrow welcomes] [que \leftrightarrow that] STEP-1 -43.8823 \rightarrow -39.7283
```

SRC : le groupe csu au parlement européen se réjouit que **le présent projet de** charte des droits fondamentaux rassemble et rende visibles les droits fondamentaux dont disposent les citoyens vis-à-vis des organes et institutions de l ' ue .

STEP-1 the csu group in the european parliament welcomes that the draft charter of fundamental rights lumps together and make visible the fundamental rights enjoyed by the citizens towards the eu institutions and bodies . (-39.7283)

```
REPLACE [le présent projet de \leftrightarrow the draft] by [le présent projet de \leftrightarrow the present draft] STEP-2 -39.7283 \rightarrow -39.3657
```

 ${\rm SRC}$: le groupe csu au parlement européen se réjouit que le présent projet de charte des droits fondamentaux rassemble et rende visibles les droits fondamentaux dont disposent les citoyens vis-à-vis des organes et institutions de l $\dot{}$ ue .

STEP-2 the csu group in the european parliament welcomes that the present draft charter of fundamental rights lumps together and make visible the fundamental rights enjoyed by the citizens towards the eu institutions and bodies . (-39.3657)

```
REPLACE [rassemble \leftrightarrow lumps together] by [rassemble \leftrightarrow brings together] STEP-3 -39.3657 \rightarrow -39.06
```

 $\rm REF$: the csu 's europe group welcomes the tabling of the final draft of the charter of fundamental rights because it summarises and makes visible the fundamental rights which the public are entitled to in respect of the institutions and bodies of the eu .

SEED : the csu group in the european parliament welcomes the draft charter of fundamental rights lumps together and make visible the fundamental rights enjoyed by the citizens towards the eu institutions and bodies that . (-43.8823)

STEP-3 the csu group in the european parliament welcomes that the present draft charter of fundamental rights brings together and make visible the fundamental rights enjoyed by the citizens towards the eu institutions and bodies . (-39.06)

Cascading translation engines

not a new idea

- [Berger & al. (1994)] word-based greedy search seeded with a word-based engine (Candide) no evaluation
- [Marcu (2001)] **word-based** greedy search seeded with a phrase-based translation memory 500,000 Hansard sentences for training, 505 for testing
- [Watanabe & Sumita (2003)] word-based greedy search seeded with a sentence-based translation memory
 150,000 BTEC sentences for training, 5,000 for testing

Main difference here : phrase-based greedy search, evaluation on the WMT'06 shared-task

Experiments

Greedy Search

Seed Function Scoring Function Neighborhood Function

Experiments

Protocol

Results

Further Experiments

- - ullet \sim 700,000 pairs of sentences for training
 - 500 pairs for tuning
 - 2,000 for monitoring (dry-run)
 - 3,034 for testing (in- and out-domain data)
- Phrase-based engine made out of the scripts provided by the organizers
 - phrases up to 7 words long
 - trigram language model with SRILM
 - tuning with MERT
 - decoding with Pharaoh (built-in default search options)
- BLEU and WER + bootstrap resampling
 - 1,000 samples of 700 sentences each, 99% conf. level

Results

dry-run

		en→L		n→L L→en		
Systems	L	WER	BLEU	WER	BLEU	
Pharaoh	fr	55.12	30.16	51.47	29.23	
		54.10		51.01		
		53.62	30.64	50.37	29.62	
Рнакаон	es	55.04	28.17	50.97	29.94	
		53.87		50.69		
		53.14	28.72	50.04		
Рнакаон	de	62.38	17.32	60.12	24.54	-
		62.85		57.55		
		61.85	17.51	58.33		

Results

dry-run

		en→L		L→en		
Systems	L	WER	BLEU	WER	BLEU	
Pharaoh	fr	55.12	30.16	51.47	29.23	
G- $GLOSS$		54.10	29.30	51.01	28.41	\frown
		53.62	30.64	50.37	29.62	
Pharaoh	es	55.04	28.17	50.97	29.94	
G- $GLOSS$		53.87	27.38	50.69	28.99	\frown
		53.14	28.72	50.04		
Рнакаон	de	62.38	17.32	60.12	24.54	
G- $GLOSS$		62.85	16.37	57.55	23.44	\frown
		61.85	17.51	58.33		

Results

dry-run

	en→L		L→en		
L	WER	BLEU	WER	BLEU	
fr	55.12	30.16	51.47	29.23	•
	54.10	29.30	51.01	28.41	
	53.62	30.64	50.37	29.62	\smile
es	55.04	28.17	50.97	29.94	•
	53.87	27.38	50.69	28.99	
	53.14	28.72	50.04	30.30	\smile
de	62.38	17.32	60.12	24.54	-
	62.85	16.37	57.55	23.44	
	61.85	17.51	58.33	24.97	$\overline{}$
	es	L WER fr 55.12 54.10 53.62 es 55.04 53.87 53.14 de 62.38 62.85	L WER BLEU fr 55.12 30.16 54.10 29.30 53.62 30.64 es 55.04 28.17 53.87 27.38 53.14 28.72 de 62.38 17.32 62.85 16.37	L WER BLEU WER fr 55.12 30.16 51.47 54.10 29.30 51.01 53.62 30.64 50.37 es 55.04 28.17 50.97 53.87 27.38 50.69 53.14 28.72 50.04 de 62.38 17.32 60.12 62.85 16.37 57.55	L WER BLEU WER BLEU fr 55.12 30.16 51.47 29.23 54.10 29.30 51.01 28.41 53.62 30.64 50.37 29.62 es 55.04 28.17 50.97 29.94 53.87 27.38 50.69 28.99 53.14 28.72 50.04 30.30 de 62.38 17.32 60.12 24.54 62.85 16.37 57.55 23.44

Dry-run, fr→ en

Time¹ for translating 1 000 sentences

PHARAOH 78 min. min. G-GLOSS* G-PHARAOH* ~ 4

* **VERY** crude implementation!!!

Adding a Reversed Language Model

- $p(t_1^T) \approx \prod_{i=1}^T p(t_i|t_{i+1}\dots t_{i+n-1})$
- difficult to plug in a standard beam-search decoder

		en→L		L→en	
Systems	L	WER	BLEU	WER	BLEU
Рнакаон		55.12	30.16	51.47	29.23
G-PHARAOH	fr	53.62	30.64	50.37	29.62
		53.65		50.30	
Рнакаон		55.04	28.17	50.97	29.94
G-PHARAOH	es	53.14	28.72	50.04	30.30
		52.37		50.05	
Рнакаон		62.38	17.32	60.12	24.54
G-PHARAOH	de	61.85	17.51	58.33	24.97
		61.85		57.99	

Adding a Reversed Language Model

- $p(t_1^T) \approx \prod_{i=1}^T p(t_i|t_{i+1}\dots t_{i+n-1})$
- · difficult to plug in a standard beam-search decoder

		en→L		L→en	
Systems	L	WER	BLEU	WER	BLEU
Рнакаон		55.12	30.16	51.47	29.23
G-PHARAOH	fr	53.62	30.64	50.37	29.62
G-LMREV		53.65	30.85	50.30	29.70
Pharaoh		55.04	28.17	50.97	29.94
G-PHARAOH	es	53.14	28.72	50.04	30.30
G-LMREV		52.37	29.31	50.05	30.33
Pharaoh		62.38	17.32	60.12	24.54
G-PHARAOH	de	61.85	17.51	58.33	24.97
G-LMREV		61.85	17.57	57.99	25.20

In-domain test data (2,000 sentences)

		en→L		L→en	
Systems	L	WER	BLEU	WER	BLEU
Рнакаон		54.85	30.90	51.69	29.96
G-GLOSS		54.27	29.83	50.93	29.13
G-PHARAOH		53.38	31.42	50.46	30.27
G-BEAM5	fr	53.46	31.26	50.40	30.13
G+BEAM5		53.43	31.28	50.36	30.17
G-LMREV		53.49	31.52	50.48	30.25
Рнакаон		54.23	29.64	51.04	30.54
G-GLOSS		53.22	28.99	50.77	29.67
G-PHARAOH		52.77	30.14	50.02	30.87
G-BEAM5	es	52.61	30.24	50.12	30.89
G+BEAM5		52.61	30.25	50.11	30.93
G-LMREV		52.67	29.79	50.07	30.84

Experiments

Greedy Search

Seed Function

Scoring Function

Neighborhood Function

Discussion

Recap

• greedy alone ;-(

• cascading greedy after Pharaoh :-)

 even if BLEU is not improved, better scores are found by greedy search...

search errors help sometimes...

- analyzing why DP beam-search misses some targets
- coding more operations
 - at the very least, word insertion
 - global operations (modality, negation, etc.)
- comparing different ways to trade speed/quality :
 - lattice-based monotone decoding
 - local search
 - smartness in beam-search decoding [Moore and Quirk, 2007]

Conclusion

"Can the dynamic programming be adjusted – what happens when the Pharaoh default beam parameters are widened?"

Our answer: Why not use local-search anyway!?

- it is cheap (one day of coding)
- it does not hurt (might even improve)
- it is fast and memory efficient
- it is a standard practice in search problems [Russell & Norvig, 1995]


```
ASSERT(
```

```
REPLACE(
   SWAP(
        SPLIT(
             GLOSS(avez vous des questions?),
             avez vous, have, you),
        avez, vous),
   you, do you)
```

Do you have questions?

Increasing the search space

Dry-run, 1,000 sentences, fr→en

	Pharaoh			G-PHARAOH		
stack	WER	BLEU	time	WER	BLEU	time
50	51.82	29.24	40min.	50.26	29.65	<5 min.
100	51.46	29.23	1h. 20min.	50.32	29.62	<5 min.
200	51.15	29.44	2h. 40min.	50.18	29.69	<5 min.
300	51.10	29.50	3h. 45min.	50.15	29.73	<5 min.
500	50.86	29.51	6h. 15min.	50.11	29.74	<5 min.
1000	50.64	29.54	12h. 15min.	50.04	29.74	<5 min.

Dry-run, **fr**→ **en**

Reducing distortion

Dry-run, 1,000 sentences, fr→en

		en→L		L→en	
systems	L	WER	BLEU	WER	BLEU
mono	fr	-0.34	+0.15	-0.39	+0.40
dl1	fr	-1.05	+0.75	-1.55	+0.86
dl2	fr	-0.35	+0.18	-0.57	+0.44
dl3	fr	-0.06	+0.17	-0.59	+0.33
dl5	fr	-0.13	+0.07	-0.61	+0.45
Рнагаон	fr	-1.33	+2.15	-1.59	+2.71
mono	es	-0.46	+0.17	-0.10	+0.12
dl1	es	-1.18	+0.70	-1.37	+0.78
dl2	es	-0.27	+0.17	-0.35	+0.41
dl3	es	-0.09	+0.10	-0.27	+0.13
dl5	es	-0.36	+0.10	-0.41	+0.29
Рнагаон	es	-1.20	+1.81	-1.95	+3.45

A beam-search version of feGreedy

- Keeping k-best hypotheses instead of one
- \hookrightarrow no improvement in BLEU or WER, but :
 - 20% of the translations produced by G-BEAM are different from those produced by G-PHARAOH
 - 87% of those \neq translations have a higher score
 - If we increase the beam width, we decrease the number of downgraded translations