2024 KHBM Winter School **OHBM Korea Chapter Program**

Statistical Parametric Mapping (SPM) for Voxel-Based Morphometry & PET analysis

Introduction to Principles

Chongwon Pae, Ph.D. paecw@chauniv.ac.kr

Department of Psychiatry CHA Bundang Medical Center CHA University School of Medicine

This presentation includes materials from various sources, especially, UCL SPM lecture materials from http://www.fil.ion.ucl.ac.uk/spm/

Table of Contents

Introduction

VBM: An Overview

Workflow of VBM

Tissue Classification

Spatial Normalization

Spatial Smoothing

Statistical Analysis

Principles of PET

- A tracer (radionuclide) emits a positron, which annihilates with an electron, emitting a pair of gamma rays in opposite directions
- The detected lines can be grouped into projection images (sinograms) and reconstructed into tomographic images
- Different tracers allow various properties to be measured
 - 150 can measure blood flow relatively quickly (<1 min) but requires a cyclotron because of its short 2 minute half-life
 - 18F Fluorodeoxyglucose (FDG)
 measures glucose metabolism, and has
 a half life of 110 minutes
 - Other tracers exist that bind to interesting receptors (e.g. dopamine, serotonin) or beta-amyloid plaques

10

Spatial Normalization

- Individual brains need to undergo spatial normalization to ensure voxel-wise comparability
- Spatial normalization includes linear and nonlinear transformations
 - Linear transformation: translation, rotation, scaling, sheering
 - Nonlinear transformation
- Despite these transformations, a perfect match between any two brains is improbable due to unique local anatomies
- Additional processes are often required for a more accurate comparison (e.g., Jacovian determinants)

Spatial Normalization

- To analyze our data, we need to accurately align identical structures voxel wise
- To do this, we calculate the transformation to a "Template space"
- Calculating these transformations (warps) also encodes regional information about the amount of compression or expansion required compared to the average – Which are used for VBM
- VBM is crucially dependent on registration performance
- The Shoot (& DARTEL) toolbox combines several methodological advances to address these limitations

13

Pipeline of spatial normalization of PET

Standardized spaces

The Talairach Atlas

The MNI/ICBM AVG152 Template

The MNI template follows the convention of T&T, but doesn't match the particular brain

Recommended reading: http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach

Registration? Transformation!

Source image

6

Transformation

- Linear transformation
 - Rigid body transformation (DOF=6)
 - Affine transformation (DOF=12)
- Non-linear transformation

17

Coregistration

- Inter-modal registration
- Match images from same subject but different modalities
 - anatomical localization of single subject activations
 - achieve more precise spatial normalization of functional image using anatomical image
- Assumes no shape change, and motion is rigid-body

T1w image

PET image

Pipeline of spatial normalization of PET

19

Spatial Normalization

Spatial Smoothing

- The smoothing of images before statistical analysis is done for three main reasons:
- 1. Smoothing makes the data more normally distributed according to the central limit theorem
- 2. It compensates for the imperfections of spatial normalization by accounting for small interindividual anatomical differences that remain
- 3. Smoothing increases the sensitivity of the analysis to effects that are about the size of the smoothing kernel

21

Performing statistical analysis

Proportional scaling for PET

- In the case of PET, the amount of signal in the scan is dictated by the amount of radioactivity that has reached the head.
- PET counts may depend on:
 - Injected amounts of tracers
 - Received amounts of tracers
- Global nuisance effects can be accounted for either by proportional scaling, or ANCOVA

22

Classical statistics

- Parametric
 - one sample t-test
 - two sample t-test
 - paired t-test
 - Analysis of Variance (ANOVA)
 - Analysis of Covariance (ANCoVA)
 - correlation
 - linear regression
 - multiple regression
- Multivariate
- Non-parametric

General Linear Model: a flexible framework for parametric analyses

Contrast

- A contrast selects a specific effect of interest
 - A contrast c is a vector of length p
 - $c \times \beta$ is a linear combination of regression coefficients β
- Null hypothesis : H_0 : $c^T \beta = 0$

$$H_0: \mathbf{c}^T \boldsymbol{\beta} = \mathbf{0}$$

①
$$c = [1\ 0\ 0\ 0\ ...]^T$$

$$c^{T}\beta = \mathbf{1} \times \beta_{1} + \mathbf{0} \times \beta_{2} + \mathbf{0} \times \beta_{3} + \mathbf{0} \times \beta_{4} + \cdots$$
$$= \mathbf{\beta}_{1}$$

②
$$c = [0 \ 1 \ -1 \ 0 \ ...]^T$$

$$c^{T}\beta = \mathbf{0} \times \beta_{1} + \mathbf{1} \times \beta_{2} + -\mathbf{1} \times \beta_{3} + \mathbf{0} \times \beta_{4} + \cdots$$

$$\mathfrak{B} \quad \boldsymbol{\beta}_{2} - \boldsymbol{\beta}_{3}$$

Assessing Statistic Images

High Threshold

Good Specificity

Poor power

(risk of false negatives)

Med Threshold

Low Threshold

Poor Specificity (risk of false positives)

Good power

Ideal Inference

- Estimates and confidence interval (CI)'s on specific location
- Magnitude
 - Cl's on % change
- Spatial extent
 - Estimates and CI's on activation volume
 - Robust to choice of cluster definition

But this requires an explicit spatial model We only have a univariate linear model at each voxel

Voxel-level Inference

- Retain voxels above α -level threshold u_{α}
- Gives best spatial specificity
 - The null hypothesis at a single voxel can be rejected

Real-life Inference

- Signal location
 - Local maximum no inference
- Signal magnitude
 - Local maximum intensity P-values (& Cl's)
- Spatial extent
 - Cluster volume P-value, no Cl's
 - sensitive to blob-defining-threshold

34

Cluster-level Inference

- Two step-process
 - Define clusters by arbitrary threshold u_{clus}
 - Retain clusters larger than α -level threshold k_{α}
- Typically better sensitivity, Worse spatial specificity
 - The null hypothesis of entire cluster is rejected
 - Only means that one or more of voxels in cluster active

36

Set-level Inference

- Count number of blobs c
 - Minimum blob size k
- Worst spatial specificity
 - Only can reject global null hypothesis

37

Confusion matrix

Actual values

Multiple Comparisons Problem

- Which of 100,000 voxels are significant?
 - α =0.05 \Rightarrow 5,000 false positive voxels

- Which of 100 cluster significant?
 - α =0.05 \Rightarrow 5 false positive clusters

MCP Solutions: Measuring False Positives

- Familywise Error Rate (FWER)
 - Familywise Error
 - Existence of one or more false positives, given the totsal number of statistical tests
 - FWER is probability of familywise error
 - Based on Random Field Theory
- False Discovery Rate (FDR)
 - FDR = E(V/R)
 - R voxels declared active, V falsely so
 - Realized false discovery rate: V/R

Summary

- Introduced VBM
- Spatial preprocessing of neuroimaging data
 - Preprocessing (coregister, normalization, smoothing)
 - Brain template (atlas)
 - Intensity (Count) normalization
- Statistics
- Inference

..

