

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Student's Name: Nikhil Mobile No: 8949463760

Roll Number: B20219 Branch: CSE

1 a.

	Prediction Outcome	
Label	93	25
True	19	200

Figure 1 KNN Confusion Matrix for K = 1

	Prediction Outcome	
Label	92	26
True	9	210

Figure 2 KNN Confusion Matrix for K = 3

	Prediction	Outcome
True	92	26

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

10	209
----	-----

Figure 3 KNN Confusion Matrix for K = 5

b.

Table 1 KNN Classification Accuracy for K = 1, 3 and 5

К	Classification Accuracy (in %)
1	86.9
3	89.6
5	89.3

Inferences:

- 1. The highest classification accuracy is obtained with K = 3.
- 2. Increasing the value of K increases the prediction accuracy (however, in the above case accuracy for k=5 is less than k=3 but the difference is very slight and can be ignored. On a long-term basis, we will see more accuracy for higher k greater number of times.)
- 3. Increasing the value of K increases the prediction accuracy because considering larger number of neighbors will result in a higher chance of greater number of neighbors being closer to the mean of the distribution of each class, hence reducing the possibility of the neighbors being less probable to lie in their respective class, or in simple words, it reduces the possibility of the neighbors being outliers.
- 4. As the accuracy increases with increase in k, the number of diagonal elements increase.
- 5. Greater accuracy means greater number of predictions to be right. Since the diagonal elements in a confusion matrix indicate the number of correct predictions, greater accuracy follows from increase in diagonal elements.
- 6. As the accuracy increases with increase in k, the number of off diagonal elements decrease.
- 7. Greater accuracy means greater number of predictions to be right. Since the diagonal elements in a confusion matrix indicate the number of correct predictions, greater accuracy follows from increase in diagonal elements, which leads to a decrease in off-diagonal elements.

_	
7	~

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Label	111	7
True	6	213

Figure 4 KNN Confusion Matrix for K = 1 post data normalization

	Prediction Outcome	
Label	112	6
True	4	215

Figure 5 KNN Confusion Matrix for K = 3 post data normalization

	Prediction Outcome	
Label	112	6
True	3	216

Figure 6 KNN Confusion Matrix for K = 5 post data normalization

b.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Table 2 KNN Classification Accuracy for K = 1, 3 and 5 post data normalization

К	Classification Accuracy (in %)
1	96.1
3	97.0
5	97.3

Inferences:

- 1. Data normalization increases the classification accuracy.
- 2. Since we are classifying based on Euclidean distance, greater accuracy will be there if distances with respect to all the attributes are considered equally significant. Equal significance can only be achieved if the spread of data in all attributes is same. Same spread can be achieved by scaling the spread in all the attributes to a common spread, and min-max normalization does this job. That's why we see a greater accuracy.
- 3. The highest classification accuracy is obtained with K = 5.
- 4. Increasing the value of K increases the prediction accuracy.
- 5. Increasing the value of K increases the prediction accuracy because considering larger number of neighbors will result in a higher chance of greater number of neighbors being closer to the mean of the distribution of each class, hence reducing the possibility of the neighbors being less probable to lie in their respective class, or in simple words, it reduces the possibility of the neighbors being outliers.
- 6. As the accuracy increases with increase in k, the number of diagonal elements increase.
- 7. Greater accuracy means greater number of predictions to be right. Since the diagonal elements in a confusion matrix indicate the number of correct predictions, greater accuracy follows from increase in diagonal elements.
- 8. As the accuracy increases with increase in k, the number of off diagonal elements decrease.
- Greater accuracy means greater number of predictions to be right. Since the diagonal elements in a confusion matrix indicate the number of correct predictions, greater accuracy follows from increase in diagonal elements, which leads to a decrease in off-diagonal elements.

3

	Prediction Outcome	
Label	102	16
True	3	216

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Figure 7 Confusion Matrix obtained from Bayes Classifier

• The classification accuracy obtained from Bayes Classifier is **96.5%**.

Table 3 Mean for class 0 and class 1

S. No.	Attribute Name	Mean	
		Class 0	Class 1
1.	X_Maximum	273.418	723.656
2.	Y_Maximum	1583169.659	1431588.69
3.	Pixels_Areas	7779.663	585.967
4.	X_Perimeter	393.835	54.491
5.	Y_Perimeter	273.183	45.658
6.	Sum_of_Luminosity	843350.275	62191.126
7.	Minimum_of_Luminosity	53.326	96.236
8.	Maximum_of_Luminosity	135.762	130.452
9.	Length_of_Conveyer	1382.762	1480.018
10.	Steel_Plate_Thickness	40.073	104.214
11.	Edges_Index	0.123	0.385
12.	Empty_Index	0.459	0.427
13.	Square_Index	0.592	0.513
14.	Outside_X_Index	0.108	0.02
15.	Edges_X_Index	0.55	0.608
16.	Edges_Y_Index	0.523	0.831
17.	Outside_Global_Index	0.288	0.608
18.	LogOfAreas	3.623	2.287
19.	Log_X_Index	2.057	1.227
20.	Log_Y_Index	1.848	1.318
21.	Orientation_Index	-0.314	0.136
22.	Luminosity_Index	-0.115	-0.116
23.	SigmoidOfAreas	0.925	0.543

In Fig. 8 and 9 representing covariance matrices for class 0 and class 1 respectively the column numbers and row numbers correspond to attribute with serial number as in Table 3:

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
_ 1	46733.77	-60848696.5	-320672.329	-15750.5	-12943.8	-32609924.8	3686.073	2040.905	1237.644	16.734	25.36	-6.929	4.696	-1.516	16.654	22.505	30.839	-76.32	-47.782	-31.147	27.679	18.083	-30.093
2	-6.1E+07	1.82181E+12	1027980976	83317353	1.6E+08	48997689854	-5669890	-6007837	-7505510	-114611	-47711.4	21948.27	-59251.3	4294.736	-19165.6	-35306.4	-86404.1	168069.8	111447.7	73014.36	-82046.9	-50711.2	73811.61
3	-320672	1027980976	104771842.6	6692649	10371695	9008476632	-154934	6294.464	10070.21	547.01	-492.113	585.231	200.195	223.056	-1121.19	-354.573	556.075	3456.879	1427.026	2840.741	980.333	-300.211	575.04
4	-15750.5	83317353.38	6692648.9	442770.6	706256.5	557116030.4	-7764.05	769.586	771.604	31.924	-24.093	38.161	10.596	10.994	-67.824	-13.284	45.342	183.057	68.412	169.129	72.436	-15.703	28.521
_ 5	-12943.8	160209448.9	10371695.26	706256.5	1206391	807551258.1	-6894.47	1492.073	-1364.2	10.207	-17.571	44.182	-16.55	6.496	-65.417	13.411	63.25	176.64	44.055	207.792	105.12	-21.062	19.506
6	-3.3E+07	48997689854	9008476632	5.57E+08	8.08E+08	8.19346E+11	-1.6E+07	777671.3	2214134	49759.91	-53267.3	58474.64	44601.85	25470.52	-123181	-50984.9	60033.13	361544.8	157340.8	278177.3	96509.49	-22290.5	62063.26
_ 7	3686.073	-5669890.14	-154934.007	-7764.05	-6894.47	-16498427.9	1458.213	439.236	-153.834	-1.973	3.932	-1.75	1.078	-1.455	3.739	4.623	4.759	-22.187	-12.861	-10.747	3.817	4.448	-6.557
8	2040.905	-6007837.24	6294.464	769.586	1492.073	777671.294	439.236	333.381	2.285	-0.791	1.769	-0.222	2.058	-0.353	-0.142	1.575	4.207	-5.859	-4.358	-1.529	4.136	2.716	-2.737
9	1237.644	-7505510.38	10070.206	771.604	-1364.2	2214134.327	-153.834	2.285	2521.557	-1.821	1.322	0.806	3.926	-0.192	-2.697	-0.534	4.536	2.03	-0.002	2.645	4.37	-0.485	0.211
10	16.734	-114611.188	547.01	31.924	10.207	49759.906	-1.973	-0.791	-1.821	0.73	-0.009	0.015	-0.015	0.019	0.003	-0.015	-0.021	0.041	0.041	0.019	-0.022	-0.008	0.005
11	25.36	-47711.367	-492.113	-24.093	-17.571	-53267.33	3.932	1.769	1.322	-0.009	0.029	-0.009	0.007	-0.006	0.015	0.022	0.026	-0.084	-0.054	-0.038	0.024	0.016	-0.028
12	-6.929	21948.268	585.231	38.161	44.182	58474.643	-1.75	-0.222	0.806	0.015	-0.009	0.015	0.005	0.005	-0.018	-0.012	0.003	0.052	0.03	0.036	0.005	-0.003	0.015
13	4.696	-59251.278	200.195	10.596	-16.55	44601.845	1.078	2.058	3.926	-0.015	0.007	0.005	0.064	-0.004	-0.036	-0.001	0.07	0.001	-0.02	0.023	0.069	0.016	-0.01
14	-1.516	4294.736	223.056	10.994	6.496	25470.52	-1.455	-0.353	-0.192	0.019	-0.006	0.005	-0.004	0.005	-0.002	-0.007	-0.01	0.029	0.021	0.014	-0.01	-0.004	0.007
15	16.654	-19165.628	-1121.193	-67.824	-65.417	-123180.77	3.739	-0.142	-2.697	0.003	0.015	-0.018	-0.036	-0.002	0.057	0.023	-0.039	-0.098	-0.039	-0.073	-0.045	0.003	-0.026
16	22.505	-35306.426	-354.573	-13.284	13.411	-50984.933	4.623	1.575	-0.534	-0.015	0.022	-0.012	-0.001	-0.007	0.023	0.031	0.025	-0.099	-0.063	-0.045	0.023	0.014	-0.031
17	30.839	-86404.069	556.075	45.342	63.25	60033.134	4.759	4.207	4.536	-0.021	0.026	0.003	0.07	-0.01	-0.039	0.025	0.203	-0.058	-0.073	0.019	0.138	0.033	-0.033
18	-76.32	168069.821	3456.879	183.057	176.64	361544.755	-22.187	-5.859	2.03	0.041	-0.084	0.052	0.001	0.029	-0.098	-0.099	-0.058	0.471	0.267	0.247	-0.044	-0.067	0.135
19	-47.782	111447.699	1427.026	68.412	44.055	157340.839	-12.861	-4.358	-0.002	0.041	-0.054	0.03	-0.02	0.021	-0.039	-0.063	-0.073	0.267	0.168	0.124	-0.066	-0.044	0.082
20	-31.147	73014.357	2840.741	169.129	207.792	278177.342	-10.747	-1.529	2.645	0.019	-0.038	0.036	0.023	0.014	-0.073	-0.045	0.019	0.247	0.124	0.157	0.029	-0.025	0.065
21	27.679	-82046.88	980.333	72.436	105.12	96509.492	3.817	4.136	4.37	-0.022	0.024	0.005	0.069	-0.01	-0.045	0.023	0.138	-0.044	-0.066	0.029	0.133	0.031	-0.028
22	18.083	-50711.211	-300.211	-15.703	-21.062	-22290.543	4.448	2.716	-0.485	-0.008	0.016	-0.003	0.016	-0.004	0.003	0.014	0.033	-0.067	-0.044	-0.025	0.031	0.027	-0.026
23	-30.093	73811.605	575.04	28.521	19.506	62063.263	-6.557	-2.737	0.211	0.005	-0.028	0.015	-0.01	0.007	-0.026	-0.031	-0.033	0.135	0.082	0.065	-0.028	-0.026	0.049

Figure 8: Covariance matrix for class 0

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	256526.3	111783525.1	-22254.6	1101.079	-1973.57	-2334975.58	-1224.81	-744.043	13220.08	-1932.62	8.914	-3.806	10.893	1.504	6.695	-5.018	-16.564	-13.781	5.306	-21.204	-25.896	-8.452	-14.221
2	1.12E+08	3.11583E+12	3.23E+08	20351188	4659662	32954294851	-3631825	-43295.9	3999506	-3.6E+07	23556.3	-19251	-38009.7	13457.3	64532.97	-22198.8	-74705.2	15298.09	64300.31	-63426.8	-119870	-14717.9	-37674.9
3	-22254.6	322720784.2	4714217	178492.1	129451.1	488874179.5	-15632	-300.304	-23834.7	4262.208	-47.646	35.619	-90.634	52.909	-101.643	-96.057	55.178	653.051	330.779	355.115	65.419	-32.384	218.948
4	1101.079	20351188.01	178492.1	9807.203	5546.899	18662200.1	-570.116	30.15	-1446.88	282.113	-1.332	4.156	-7.318	3.972	-4.85	-9.176	-2.152	36.62	23.557	16.864	-3.758	-1.119	15.508
5	-1973.57	4659661.772	129451.1	5546.899	5000.647	13453352.78	-557.423	-79.146	-1139.31	438.56	-2.244	2.952	-6.496	1.204	-8.612	-2.367	7.11	29.028	10.681	21.025	11.045	-1.556	13.014
6	-2334976	32954294851	4.89E+08	18662200	13453353	50945346301	-1463161	84723.03	-2735155	343512.4	-4688.9	3985.075	-9652.58	5577.969	-10534.6	-10271.9	5462.295	67782.66	34740.29	36734.78	6364.119	-2282.38	22864.85
7	-1224.81	-3631824.68	-15632	-570.116	-557.423	-1463160.74	733.909	348.045	-993.311	-204.836	1.066	0.591	0.775	-0.151	0.427	-0.833	-2.224	-5.043	-1.299	-3.287	-2.503	3.684	-1.984
8	-744.043	-43295.897	-300.304	30.15	-79.146	84723.028	348.045	406.461	-381.093	-205.394	0.429	-0.025	-0.267	0.044	0.878	-1.09	-2.018	-1.504	0.678	-2.165	-2.874	2.786	-0.96
9	13220.08	3999505.635	-23834.7	-1446.88	-1139.31	-2735155.12	-993.311	-381.093	23100.77	1243.443	-0.09	-5.16	2.468	-0.698	6.591	1.971	-3.138	-7.953	-1.44	-10.567	-7.431	-4.547	-5.967
10	-1932.62	-36154262.6	4262.208	282.113	438.56	343512.396	-204.836	-205.394	1243.443	5645.306	-1.331	0.699	-1.134	-0.165	-3.443	2.058	6.623	3.627	-1.376	5.403	7.846	-1.662	2.39
11	8.914	23556.302	-47.646	-1.332	-2.244	-4688.897	1.066	0.429	-0.09	-1.331	0.09	-0.001	0.011	0	0.008	-0.003	-0.017	-0.012	0.005	-0.017	-0.024	0.005	-0.004
12	-3.806	-19250.999	35.619	4.156	2.952	3985.075	0.591	-0.025	-5.16	0.699	-0.001	0.02	-0.002	0.001	-0.012	-0.011	-0.008	0.026	0.022	0.022	-0.004	0.002	0.024
13	10.893	-38009.673	-90.634	-7.318	-6.496	-9652.577	0.775	-0.267	2.468	-1.134	0.011	-0.002	0.082	-0.003	0.02	0.015	-0.016	-0.053	-0.021	-0.033	-0.021	0.001	-0.028
14	1.504	13457.3	52.909	3.972	1.204	5577.969	-0.151	0.044	-0.698	-0.165	0	0.001	-0.003	0.002	0.002	-0.005	-0.005	0.012	0.012	0.001	-0.008	0	0.005
15	6.695	64532.972	-101.643	-4.85	-8.612	-10534.585	0.427	0.878	6.591	-3.443	0.008	-0.012	0.02	0.002	0.065	-0.014	-0.068	-0.066	0.011	-0.086	-0.103	0.004	-0.045
16	-5.018	-22198.76	-96.057	-9.176	-2.367	-10271.865	-0.833	-1.09	1.971	2.058	-0.003	-0.011	0.015	-0.005	-0.014	0.049	0.064	-0.025	-0.058	0.024	0.086	-0.007	-0.017
17	-16.564	-74705.16	55.178	-2.152	7.11	5462.295	-2.224	-2.018	-3.138	6.623	-0.017	-0.008	-0.016	-0.005	-0.068	0.064	0.227	0.048	-0.073	0.113	0.229	-0.015	0.022
18	-13.781	15298.09	653.051	36.62	29.028	67782.655	-5.043	-1.504	-7.953	3.627	-0.012	0.026	-0.053	0.012	-0.066	-0.025	0.048	0.271	0.116	0.177	0.073	-0.019	0.147
19	5.306	64300.311	330.779	23.557	10.681	34740.286	-1.299	0.678	-1.44	-1.376	0.005	0.022	-0.021	0.012	0.011	-0.058	-0.073	0.116	0.119	0.017	-0.101	0	0.065
20	-21.204	-63426.815	355.115	16.864	21.025	36734.778	-3.287	-2.165	-10.567	5.403	-0.017	0.022	-0.033	0.001	-0.086	0.024	0.113	0.177	0.017	0.178	0.169	-0.017	0.103
21	-25.896	-119869.735	65.419	-3.758	11.045	6364.119	-2.503	-2.874	-7.431	7.846	-0.024	-0.004	-0.021	-0.008	-0.103	0.086	0.229	0.073	-0.101	0.169	0.302	-0.019	0.041
22	-8.452	-14717.928	-32.384	-1.119	-1.556	-2282.381	3.684	2.786	-4.547	-1.662	0.005	0.002	0.001	0	0.004	-0.007	-0.015	-0.019	0	-0.017	-0.019	0.025	-0.009
23	-14.221	-37674.924	218.948	15.508	13.014	22864.848	-1.984	-0.96	-5.967	2.39	-0.004	0.024	-0.028	0.005	-0.045	-0.017	0.022	0.147	0.065	0.103	0.041	-0.009	0.102

Figure 9: Covariance matrix for class 1

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Inferences:

- 1. The accuracy of Bayes Classifier is 94.362% which is less than the normalized K-NN model accuracy. This is because bayes classifier assumes the attributes to be independent of each other. But they might not be that independent, and this is indeed the case here as we are getting lower accuracy.
- From the covariance matrix we see that diagonal entries tend to become smaller as we increase the dimension. The reason for this is the data is not normalized and the attributes towards the end are such that they have lesser absolute value of spread.
- 3. The off diagonal values represent covariance between the attributes. 2 pairs of attributes with maximum value of covariance are i) Y_maximum & Sum_of_Luminosity; ii) Sum_of_Luminosity & Pixel_Areas for both the classes. 2 pairs of attributes with minimum covariance are i) Square_Index & Edges_Y_Index; ii) Square_Index & LogOfAreas for class 0, and i) Luminosity_Index & LogXIndex; ii) Luminosity_Index & Outside_X_Index for class 1,

4

Table 4 Comparison between classifiers based upon classification accuracy

S. No.	Classifier	Accuracy (in %)
1.	KNN	89.614
2.	KNN on normalized data	97.329
3.	Bayes	94.362

Inferences:

- 1. The K-NN model on normalized data shows the highest accuracy while K-NN model on actual data shows the lowest accuracy.
- 2. Accuracy of KNN on normalized data > Bayes > KNN model on actual data
- 3. For KNN, since we are classifying based on Euclidean distance, greater accuracy will be there if distances with respect to all the attributes are considered equally significant. Equal significance can only be achieved if the spread of data in all attributes is same. Same spread can be achieved by scaling the spread in all the attributes to a common spread, and min-max normalization does this job. That's why we see a greater accuracy for normalized KNN than KNN on actual data.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

- 4. The accuracy of Bayes Classifier is 94.362% which is less than the normalized K-NN model accuracy. This is because bayes classifier assumes the attributes to be independent of each other. But they might not be that independent, and this is indeed the case here as we are getting lower accuracy.
- 5. Accuracy of KNN model on actual data is less than Bayes Classifier because it finds Euclidian distance without normalizing. Greater accuracy will be there if distances with respect to all the attributes are considered equally significant. But this is not the case in the given dataset. Some attributes lie between 0 and 1 while others range to values in millions. This leads to huge fall in accuracy for KNN model on actual data.