Варіанти прикладів до ЛР №4

«Методи розв'язання задачі Коші для звичайних диференціальних рівнянь» ΠA -19-2

$$x \in [0; 1]$$

No. 1.
$$y' = 1 + 0.2y \sin x - y^2$$
, $y(0) = 0$.

No 2.
$$y' = \cos(x+y) + 0.5(x-y)$$
, $y(0) = 0$.

No 3.
$$y' = \frac{\cos x}{x+1} - 0.5y^2$$
, $y(0) = 0$.

No. 4.
$$v' = (1 - v^2)\cos x + 0.6v$$
, $v(0) = 0$.

No. 5.
$$y' = 1 + 0.4y \sin x - 1.5y^2$$
, $y(0) = 0$.

No. 6.
$$y' = \frac{\cos y}{x+2} + 0.3y^2$$
, $y(0) = 0$.

No. 7.
$$y' = \cos(1.5x + y) + (x - y)$$
, $y(0) = 0$.

No 8.
$$y' = 1 - \sin(x + y) + \frac{0.5y}{x + 2}$$
, $y(0) = 0$.

No 9.
$$y' = \frac{\cos y}{1.5 + x} + 0.1y^2$$
, $y(0) = 0$.

No. 10.
$$y' = 0.6\sin x - 1.25y^2 + 1$$
, $y(0) = 0$.

N2 11.
$$y' = \cos(2x + y) + 1.5(x - y)$$
, $y(0) = 0$.

No. 12.
$$y' = 1 - \frac{0.1y}{x+2} - \sin(2x+y)$$
, $y(0) = 0$.

No 13.
$$y' = \frac{\cos y}{1.25 + x} - 0.1y^2$$
, $y(0) = 0$.

No. 14.
$$y' = 1 + 0.8y \sin x - 2y^2$$
, $y(0) = 0$.

No. 15.
$$y' = \cos(1.5x + y) + 1.5(x - y)$$
, $y(0) = 0$.

No 16.
$$y' = 1 - \sin(2x + y) + \frac{0.3y}{x + 2}$$
, $y(0) = 0$.

No. 17.
$$y' = \frac{\cos y}{1.75 + x} - 0.5y^2$$
, $y(0) = 0$.

No. 18.
$$y' = 1 + (1 - x) \sin y - (2 + x) y$$
, $y(0) = 0$.

No 19.
$$y' = (0.8 - y^2)\cos x + 0.3y$$
, $y(0) = 0$.

No 20.
$$y' = 1 + 2.2 \sin x + 1.5y^2$$
, $y(0) = 0$.

No 21.
$$y' = \cos(x+y) + 0.75(x-y)$$
, $y(0) = 0$.

No 22.
$$y' = 1 - \sin(1.25x + y) + \frac{0.5y}{x+2}$$
, $y(0) = 0$.

No. 23.
$$y' = \frac{\cos y}{x+2} - 0.3y^2$$
, $y(0) = 0$.

No. 24.
$$y' = 1 - \sin(1.75x + y) + \frac{0.1y}{x+2}$$
, $y(0) = 0$.

No 25.
$$y' = \frac{\cos y}{1.25 + x} - 0.5y^2$$
, $y(0) = 0$.

No 26.
$$y' = \cos(1.5x + y) - 2.25(x + y)$$
, $y(0) = 0$.

No 27.
$$y' = \frac{\cos y}{1.5 + x} - 1.25y^2$$
, $y(0) = 0$.

No 28.
$$y' = 1 - (x - 1) \sin y + 2(x + y)$$
, $y(0) = 0$.

No 29.
$$y' = 1 - \sin(0.75x - y) + \frac{1.75y}{x+1}$$
, $y(0) = 0$.

No 30.
$$y' = \cos(x-y) + \frac{1,25y}{1,5+x}$$
, $y(0) = 0$.