Circuits RC

Càrrega	Descàrrega
$q(t) = q(0) \left(1 - e^{-\frac{t}{\tau_C}}\right)$	$q(t) = q(0)e^{-\frac{t}{\tau_C}}$
$I(t) = \frac{\epsilon}{R} e^{-\frac{t}{\tau_C}}$	$I(t) = -\frac{V}{R}e^{-\frac{t}{\tau_C}}$

$$\tau_C = RC, q(0) = VC$$

Solenoides

$$\begin{array}{l} \underline{\text{Flux}} \colon \Phi = NBS = \frac{\mu_0 N^2 SI}{l} \\ \underline{\text{Coeficient d'autoinducci\'o}} \colon \frac{\Phi}{I} = \frac{\mu_0 N^2 S}{l} \\ \epsilon_L = -\frac{\text{d}\Phi}{\text{d}t} = -L\frac{\text{d}I}{\text{d}t} \end{array}$$

Circuits RL

Càrrega	Descàrrega
$I(t) = \frac{\epsilon}{R} \left(1 - e^{-\frac{t}{\tau_L}} \right)$	$I(t) = \frac{V}{R}e^{-\frac{t}{\tau_L}}$
$ au_r = \frac{L}{}$	

$$\tau_L = \frac{L}{R}$$

Corrent alterna

f.e.m. alterna:
$$V(t) = V_0 \cos(\omega t + \varphi)$$
, $T = \frac{2\pi}{\omega}$, $I(t) = \frac{V(t)}{R} = \frac{V_0}{R} \cos(\omega t + \varphi) = I_0 \cos(\omega t + \varphi)$
Flux: $\Phi = BSN\cos(\omega t + \theta)$, B camp magnètic Llei Faraday: $\epsilon(t) = V_0 \sin(\omega t + \theta_0)$

Circuit amb condensador

Circuit amb inducció

Sigui $V(t)=V_0e^{i\omega t}$, llavors, $I=\frac{V_0}{i\omega L}e^{i\omega t}$. Podem reproduir la llei d'Ohm $V=IR_L,\,R_L=i\omega L$. Reactancia inductiva: $X_L=|R_L|=\omega L,\,R_L=iX_L$

Impedància. Llei d'Ohm

Circuit LCR

Angle de fase:
$$tg(\varphi) = \frac{X_L - X_C}{R}$$

Corrent máxim: $I_0 = \frac{\varepsilon_0}{Z}$

Potència

Potència instantània:
$$P(t) = V(t)I(t) = V_0I_0\cos(\omega t)\cos(\omega t - \varphi)$$
Potència mitja: $\frac{V_0I_0}{2\cos(\varphi)} = V_{ef}I_{ef}\cos(\varphi)$

Potència en una resistència

$$\begin{array}{ll} \underline{\text{No desfase}} \colon \ \varphi = 0, V(t) = V_0 \text{cos}(\omega t), I(t) = \\ I_0 \text{cos}(\omega t) \\ \underline{\text{Potència instanània}} \colon P(t) = V_0 \text{cos}(\omega t) I_0 \text{cos}(\omega t) = \\ \underline{V_0^2 \over R} \text{cos}^2(\omega t) \\ \underline{\text{Potència mitja:}} \ P = \frac{V_0^2}{2R} \\ \underline{\text{Valors eficaços:}} \ V_{ef} = \frac{V_0}{\sqrt{2}}, \ I_{ef} = \frac{I_0}{\sqrt{2}} \\ \underline{\text{Potència dissipada:}} \ P = \frac{V_{ef}^2}{R} = RI_{ef}^2 \\ \end{array}$$

Potència en un condensador

Potència en una inducció

Factor de potència

$$\frac{\text{Desfase:}}{I_0 \cos(\omega t - \frac{\pi}{2}) = I_0 \sin(\omega t)} = \frac{V_0 \cos(\omega t), I(t)}{I_0 \cos(\omega t - \frac{\pi}{2}) = I_0 \sin(\omega t)} = \frac{\text{Factor de potència: } \cos(\varphi) = \frac{P}{S}}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència instantània: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència instantània: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència mitja: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència instantània: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència mitja: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència instantània: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència mitja: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència instantània: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència mitja: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència instantània: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència mitja: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència instantània: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència instantània: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència instantània: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència instantània: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència instantània: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència instantània: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència instantània: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència instantània: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència instantània: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència instantània: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie: }}{\text{Notència instantània: }}} = \frac{P_0 \cos(\omega t), I(t)}{\frac{\text{Millora del f.d.p. en sèrie$$

Potència complexa

$$ar{V} = V_0 e^{i\omega t}, ar{I} = I_0 e^{i\omega t - arphi}, ar{Z} = Z e^{iarphi}$$
Potència complexa: $ar{S} = \frac{ar{V}ar{I}^*}{2} = \mathbf{Superposici\acute{o}n}$ de señales. $\frac{V_0 e^{i\omega t} I_0 e^{-i(\omega t - arphi)}}{2} = \frac{V_0 I_0}{2} e^{iarphi} = V_{ef} I_{ef}(\cos(arphi) + \mathbf{de} \mathbf{banda}$
 $i \sin(arphi)$
Potència activa: $P = Re[ar{S}] = V_{ef} I_{ef} \cos(arphi)$ [W] Senyal sinusoidal: $F(t) = A \sin(\Omega t)$
Potència reactiva: $Q = Im[ar{S}] = V_{ef} I_{ef} \sin(arphi)$ [Espectre: Rang de freqüències del se Amplada de banda: Mida del espectre approximation of the property of the pro

Senyal sinusoidal: $F(t) = A\sin(2\pi ft + \varphi)$ Espectre: Rang de frequències del senyal. Amplada de banda: Mida del espectre. Freqüència n-èssima harmònica: $f_n = \frac{n\omega_0}{2\pi} = \frac{n}{T}$