

CIS*4720 Image Processing and Vision

Winter 2023, Assignment 3 Part 2/2

Your submission must include the statement below, followed by your signature: "I have read and understood the Academic Misconduct section in the course outline. I assert this work is my own."

The sets considered here are subsets of \mathbb{Z}^2 .

Using pseudocode and the library in appendix, write the following functions:

2. a) boolean are 4Connected (element p, element q, set A)

Returns **true** iff (if and only if) p and q are 4-connected in A. The number of 4-connected components of A must be finite.

b) boolean is4Connected (set A)

Returns **true** iff A is 4-connected. Note that the empty set is 4-connected.

c) boolean are4Adjacent (element p, element q, set A)

Returns **true** iff p and q are 4-adjacent in A.

d) boolean are4Adjacent (set A, set B)

Returns **true** iff A and B are 4-adjacent.

The number of 4-connected components of A (resp. B) must be finite.

3. a) integer numberHoles8 (set A)

Returns the number of holes of A, where A is considered with 8-connectedness. See example below. The number of elements of A must be finite.

b) void fillHoles8 (set A)

See example below. The number of elements of A must be finite.

c) set boundary8 (set A)

See example below. The number of elements of A must be finite.

numberHoles8(U) returns 1.
fillHoles8(U) changes U to V.
boundary8(V) returns U.

Appendix

set complement (set A) Returns \mathbb{Z}^2 –A. set union (set A, set B) Returns $A \cup B$. set intersection (set A, set B) Returns $A \cap B$. set emptySet () Returns Ø. set universe () Returns \mathbb{Z}^2 . integer numberElements (set A) Returns the number of elements of A (returns -1 for infinity). element elementNumber (integer i, set A) Returns the ith element of A (with $i \ge 1$). boolean belongsTo (element p, set A) Returns **true** iff $p \in A$. void addToSet (element p, set A) Changes A to $A \cup \{p\}$. void subtractFromSet (element p, set A) Changes A to $A-\{p\}$. set 4neighbours (element p) Returns the set of all 4-neighbours of p. set 8neighbours (element p) Returns the set of all 8-neighbours of p. boolean are4Neighbours (element p, element q) Returns **true** iff p and q are 4-neighbours. boolean are8Neighbours (element p, element q) Returns **true** iff p and q are 8-neighbours. integer number4Components (set A) Returns the number of 4-connected components of A (returns -1 for infinity). integer number8Components (set A) Returns the number of 8-connected components of A (returns -1 for infinity). set 4componentNumber (integer i, set A) Returns the ith 4-connected component of A (with $i \ge 1$). set 8componentNumber (integer i, set A) Returns the ith 8-connected component of A (with $i \ge 1$).