

AMENDMENTS TO THE CLAIMS

1 1. (Original) A system for managing data in multiple data processing
2 devices using common data paths, comprising:

3 a first data processing system comprising a memory, wherein said memory
4 comprises a cacheable coherent memory space; and
5 a second data processing system communicatively coupled to said first data
6 processing system, said second data processing system comprising at least one bridge,
7 wherein said bridge is operable to perform an uncacheable remote access to said
8 cacheable coherent memory space of said first data processing system.

1 2. (Currently Amended) The system of claim 1, wherein ~~the said~~
2 ~~uncacheable remote access~~ performed by said bridge comprises ~~a data write writing data~~
3 to said memory of said first data processing system for incorporation into said cacheable
4 coherent memory space of said first data processing system.

1 3. (Currently Amended) The system of claim 1, wherein ~~the said~~
2 ~~uncacheable remote access~~ performed by said bridge comprises ~~a data read reading data~~
3 from said cacheable coherent memory space of said first data processing system.

1 4. (Currently Amended) The system of claim 2, wherein ~~the said~~ data written
2 by said bridge during said uncacheable remote access participates in a cacheable coherent
3 memory protocol in said cacheable coherent memory space.

1 5. (Currently Amended) The system of claim 4, wherein data written by the
2 bridge during an uncacheable remote access is processed by said first data processing
3 system to convert the data to conform to a cacheable coherent memory protocol in the
4 cacheable memory space and wherein the converted data in said cacheable coherent
5 memory space is accessed by an agent subsequent to said conversion.

1 6. (Original) The system of claim 5, wherein said remote access by said
2 bridge and said subsequent access by said agent conform to a producer-consumer
3 protocol, wherein said bridge corresponds to the producer and said agent corresponds to
4 the consumer of said producer-consumer protocol.

1 7. (Previously Presented) The system of claim 6, wherein said data
2 written by said bridge comprises a payload and a flag, with said flag and said payload
3 both residing in a node defined by said first data processing system.

1 8. (Original) The system of claim 7, wherein the remote access by said
2 bridge to perform said data write is performed in accordance with a set of predetermined
3 ordering rules.

1 9. (Canceled)

1 10. (Currently Amended) A method for managing data in multiple data
2 processing devices using common data paths, comprising:
3 establishing a cacheable coherent memory space in a first data processing system;
4 and
5 accessing said cacheable coherent memory space with a second data processing
6 system communicatively coupled to said first data processing system, said second data
7 processing system comprising at least one bridge, wherein said bridge performs an
8 uncachable remote access to said cacheable coherent memory space of said first data
9 processing system.

1 11. (Currently Amended) The method of claim 10, wherein the said
2 uncacheable remote access performed by said bridge comprises a data write writing data
3 to said memory of said first data processing system for incorporation into said cacheable
4 coherent memory space of said first data processing system.

1 12. (Currently Amended) The method of claim 10, wherein ~~the~~ access
2 performed by said bridge comprises ~~a data read reading data~~ from said cacheable
3 coherent memory space of said first data processing system.

1 13. (Currently Amended) The method of claim 11, wherein ~~the~~ data written
2 by said bridge during said uncacheable remote access participates in a cacheable coherent
3 memory protocol in said cacheable coherent memory space.

1 14. (Currently Amended) The method of claim 13, wherein data written by
2 the bridge during an uncacheable remote access is processed by said first data processing
3 system to convert the data to conform to a cacheable coherent memory protocol in the
4 cacheable memory space and wherein the converted data in said cacheable coherent
5 memory space is accessed by an agent subsequent to said conversion.

1 15. (Original) The method of claim 14, wherein said remote access by
2 said bridge and said subsequent access by said agent conform to a producer-consumer
3 protocol, wherein said bridge corresponds to the producer and said agent corresponds to
4 the consumer of said producer-consumer protocol.

1 16. (Previously Presented) The method of claim 15, wherein said data
2 written by said bridge comprises a payload and a flag, with said flag and said payload
3 both residing in a node defined by said first data processing system.

1 17. (Original) The method of claim 16, wherein the remote access by said
2 bridge to perform said data write is performed in accordance with a set of predetermined
3 ordering rules.

1 18. (Canceled)