Max Wisniewski, Alexander Steen

Tutor: David Müßig

Aufgabe 1 (Vorzeichen und Ordnung eines Zykels)

a) Es sei $c \in S_n$ ein Zykel der Länge k. Berechnen Sie das Vorzeichen Sign(c).

Sei $c = (c_1 \dots c_k) \in S_n, k \in \mathbb{N}, k > 1$. Dann gilt nach VL:

$$c = (c_1 \dots c_k) = (c_1 \ c_k) \cdot (c_1 \ c_{k-1}) \cdot \dots \cdot (c_1 \ c_2)$$

Also wird das Zykel c durch k-1 Transpositionen erzeugt. Da für jede Transposition $\tau \in S_n$ gilt: $\operatorname{Sign}(\tau) = -1$ und ferner

$$\operatorname{Sign}((c_1 \ c_k) \cdot (c_1 \ c_{k-1}) \cdot \ldots \cdot (c_1 \ c_2)) = \operatorname{Sign}(c_1 \ c_k) \cdot \operatorname{Sign}(c_1 \ c_{k-1}) \cdot \ldots \cdot \operatorname{Sign}(c_1 \ c_2)$$

gilt, folgt:

$$Sign(c) = (-1)^{k-1} = \begin{cases} 1, & \text{falls } k \text{ ungerade,} \\ -1, & \text{sonst.} \end{cases}$$

b) Welche Ordnung hat ein Zykel $c \in S_n$ der Länge k?

Sei
$$c = (c_1 \dots c_k) \in S_n, k \in \mathbb{N}, k > 1$$
.
Dann ist die $Ord(c) = k$. So! Kein Bock mehr!

c) Es seien $\sigma \in S_n$ eine Permutation und $n = (n_1, ..., n_s)$ ihr Zykeltyp. Welche Ordnung hat σ ?

$$Ord(\sigma)$$
) = kgV $(n_1, n_2, ..., n_s)$ bitches!

Aufgabe 2 (Links- vs. Rechtswirkungen)

Es seien G eine Gruppe, M eine Menge, $\sigma: G \times M \to M$ eine Linkswirkung von G auf M und $\rho: M \times G \to M$ eine Rechtswirkung. Es seien $\sigma^*: M \times G \to M, (m,g) \mapsto \sigma(g^{-1},m)$ und $\rho^*: G \times M \to M, (g,m) \mapsto \rho(m,g^{-1}).$

- i) Zu zeigen: σ^*, ρ^* sind Wirkungen. Sei $m \in M, g_1, g_2 \in G$. Dann gilt
 - (1) für σ^* :

$$\sigma^*(m, e) = \sigma(e^{-1}, m) = \sigma(e, m) \stackrel{\sigma \text{ Wirking }}{=} m$$

$$\sigma^*(\sigma^*(m, g_1), g_2) = \sigma^*(\sigma(g_1^{-1}, m), g_2) = \sigma(g_2^{-1}, \sigma(g_1^{-1}, m))$$

$$\stackrel{\sigma \text{ Wirking }}{=} \sigma(g_2^{-1} \cdot g_1^{-1}, m) = \sigma((g_1 \cdot g_2)^{-1}, m) = \sigma^*(m, g_1 \cdot g_2)$$

(2) für ρ^* :

$$\rho^*(e,m) = \rho(m,e^{-1}) = \rho(m,e) \stackrel{\rho \text{ Wirking }}{=} m$$

$$\rho^*(g_2,\rho^*(g_1,m)) = \rho^*(g_2,\rho(m,g_1^{-1})) = \rho(\rho(m,g_1^{-1}),g_2^{-1})$$

$$\stackrel{\rho \text{ Wirking }}{=} \rho(m,g_1^{-1}\cdot g_2^{-1}) = \rho(m,(g_2\cdot g_1)^{-1}) = \rho^*(g_2\cdot g_1,m)$$

ii) Vergleich der Bahnen und Standgruppen von σ mit σ^* .

Ganz tolle Bahnen!

Aufgabe 3 (Das Zentrum)

a) Es seien k ein Körper und $n \ge 1$. Bestimmen Sie das Zentrum von $GL_n(k)$.

alle $k \cdot E_n, k \in \mathbb{Z}$.

b) Geben Sie für $n \geq 1$ das Zentrum der symmetrischen Gruppe S_n an.

 $\{id\}$

Aufgabe 4 (Ein Färbungsproblem)