Ch 11.2 Applications of Trees

- Problems can be studied using trees
- How should items in a list be stored so that an item can be easily located?
- What series of decisions should be made to find an object with a certain property in a collection of objects of a certain type?
- How should a set of characters be efficiently coded by bit strings?
- What sequence of moves does a player make in a game?

- Binary search trees
 - A simple data structure for sorted lists
- Decision trees
 - Minimum comparisons in sorting algorithms
- Prefix codes
 - Huffman coding
- Game trees
 - Determine moves a player makes

Binary Search Trees

A binary search tree:

is a binary tree

if a node has value N, all values in its left sub-tree are less than or equal to N, and all values in its right sub-tree are greater than N.

Binary Search Tree Format

- Items are stored at individual tree nodes.
- We arrange for the tree to always obey this invariant:
- For every item x,
 - Every node in x's left subtree is less than x.
 - Every node in x's right subtree is greater than x.

Is this a binary search tree?

Is this a binary search tree?

Binary Search Trees

Searching a binary search tree

```
search(t, s) {
If(s == label(t))
  return t;
If(t is leaf) return null
If(s < label(t))
search(t's left tree, s)
else
search(t's right tree, s)}
```


Decision Trees

- A decision tree represents a decision-making process
- each internal vertex corresponds to a "decision point"
- a sub-tree at these vertices corresponds to each possible outcome of the decision
- In the extended decision trees used in decision analysis also include nodes that represent random events and their outcomes

Coin-Weighing Problem

- Imagine you have 8 coins
- One of which is a lighter counterfeit
- A free-beam balance

 How many weighings are needed to guarantee that the counterfeit coin will be found?

• In each situation, we pick two disjoint and equal-size subsets of coins to put on the scale.

- Applying the Tree Height Theorem
- The decision tree must have at least 8 leaf nodes, since there are 8 possible outcomes.
 - In terms of which coin is the counterfeit one.
- Recall the tree-height theorem, $h \ge \lceil \log_m \ell \rceil$
 - Thus the decision tree must have height $h \ge \lceil \log_3 8 \rceil = \lceil 1.893... \rceil = 2$
- Let's see if we solve the problem with *only* 2 weightings...

Decision Trees

Decision Trees

- Data Compression
- Suppose we have 3GB character data file that we wish to include in an email.
- Suppose file only contains 26 letters {a,...,z}.
- Suppose each letter α in $\{a,...,z\}$ occurs with frequency f_{α} .
- Suppose we encode each letter by a binary code
- If we use a fixed length code, we need 5 bits for each character
- The resulting message length is $5(f_a + f_b + \cdots + f_z)$
- Can we do better?

Suppose the file only has 6 letters {a,b,c,d,e,f} with frequencies

- Fixed length = $3 \cdot (0.45 + 0.13 + 0.12 + 0.16 + 0.09 + 0.05) = 3G$
- Variable length =

$$(.45 \bullet 1 + .13 \bullet 3 + .12 \bullet 3 + .16 \bullet 3 + .09 \bullet 4 + .05 \bullet 4) = 2.24G$$

- Is it possible to find a coding scheme of these letters such that, when data are coded, fewer bits are used?
- Use Prefix Codes
- Save memory
- Reduce transmittal time

Prefix Codes

- Bit string for a letter never occurs as the first part of the bit string for another letter
- Cannot encode t as 01 and x as 01101
 - since 01 is a prefix of 01101

- Can encode e = 0, a = 10, t = 11
 - word can be recovered, string 10110 ate

- Binary tree representation for Prefix Codes characters are the labels of the leaves in the tree
- Label edges
 edge leading to a left child is assigned a 0
 edge leading to a right child is assigned a 1
- Encoding a character
 sequence of labels of the edges in the unique path
 from the root to the leaf that has this character as its
 label

- Binary tree with a Prefix code
- e = 0, a = 10, t = 110, n = 1110, s = 1111

- Decoding prefix codes
- Tree representing a code can be used to decode a bit string
- Follow the tree until it reaches a leaf, and then repeat
- A message can be decoded uniquely

Prefix codes allow easy decoding

Decode:

11111011100

s 1011100

sa 11100

san 0

sane

Huffman Coding

- Fundamental algorithm in data compression
- Used extensively to compress bit string representing text
- Compress image and audio files
- Input the frequencies of symbols in a string
- Output A prefix code that encodes a string using the fewest possible bits, among all possible binary prefix codes for these symbols

David Huffman's idea

- Build the tree bottom-up in a greedy fashion
- Each tree has a weight in its root and symbols are labels of the leaves
- Start forest of one vertex trees representing the input symbols
- Recursively merge two trees whose sum of weights is minimal until we have only one tree

Huffman Coding Algorithm

1. Take the two least probable symbols in the alphabet

2. Combine these two symbols into a single symbol, and repeat

• A_x={ a , b , c , d , e }

- A_x={ a , b , c , d , e }
- $P_x = \{0.25, 0.25, 0.2, 0.15, 0.15\}$

a_i	p_i	$h(p_i)$	l_i	$c(a_i)$
a	0.25	2.0	2	00
b	0.25	2.0	2	10
С	0.2	2.3	2	11
d	0.15	2.7	3	010
е	0.15	2.7	3	011

- Game Trees Analyze certain types of games
- Tic-tac-toe, checkers, nim, chess
- Vertices positions that a game can be in as it progresses
- Edges legal moves between these positions
- Root Starting position

- Game of Nim
- Piles of Stones
- Legal move
 - removing one or more stones from one or more piles
 - without removing all the stones left
- A player without a legal move loses

- Tic Tac Toe Game
- Three possible initial moves
- Subtree of the game
- Terminal positions
- Win, draw

- Game of Nim
- Inductive Hypothesis
- Minmax strategy
- First player position with largest value
- Second player position with least value

Game of Chess

Game of Chess – Minmax Strategy

