Übungen zur Linearen Algebra und Analytischen Geometrie Sommersemester 2025 Esentepe-Gharbi

Blatt 11

Seien V ein euklid. oder unit. Vektorraum mit dim $V < \infty$ und $f,g \colon V \to V$ lineare Abbildungen.

- (1) (a) Zeigen Sie, dass $(f \circ g)^* = g^* \circ f^*$.
 - (b) Zeigen Sie, dass $f^2 = f \circ f$ ist normal wenn f normal ist.
- (2) (a) Zeigen Sie, dass $(f^{-1})^* = (f^*)^{-1}$ wenn f invertierbar ist.
 - (b) Zeigen Sie, dass f^{-1} ist normal wenn f normal und invertierbar ist.
- (3) (a) Wahr oder Falsch. Wenn f und g normal sind, dann $f \circ g$ ist auch normal.
 - (b) Wahr oder Falsch. Wenn f und g selbstadjungiert sind, dann $f \circ g$ ist auch selbstadjungiert.
 - (c) Wahr oder Falsch. Wenn f und g unitär sind, dann $f \circ g$ ist auch unitär.
- (4) Zeigen Sie, dass g ist unitär wenn ||f(v)|| = ||g(v)|| für alle $v \in V$ und f ist unitär.

Sei $P_n(\mathbb{R})$ der Vektorraum der Polynome mit Koeffizienten in \mathbb{R} vom Grad $\leq n$ mit

$$\langle p, q \rangle = a_0 b_0 + a_1 b_1 + \ldots + a_n b_n$$

wobei $p = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$ und $q = b_0 + b_1 x + b_2 x^2 + \ldots + b_n x^n$.

- (5) (a) Zeigen Sie, dass $\{1, x, x^2, \dots, x^n\}$ ist ein orthonormalbasis für $P_n(\mathbb{R})$.
 - (b) Gegeben ist $f: P_n(\mathbb{R}) \to P_{n+1}(\mathbb{R})$ mit f(p) = xp. Finden Sie f^* .
- (6) Es sei

$$f: P_1(\mathbb{R}) \to P_1(\mathbb{R})$$

 $f(a+bx) = b-ax.$

- (a) Berechnen Sie f^* .
- (b) Ist f normal?
- (c) Ist f selbstadjungiert?
- (d) Ist f unitär?
- (7) Ès sei

$$f: P_3(\mathbb{R}) \to P_3(\mathbb{R})$$
$$f(a+bx+cx^2+dx^3) = b + 2cx + 3dx^2.$$

- (a) Berechnen Sie f^* .
- (b) Ist f normal?
- (c) Ist f selbstadjungiert?
- (d) Ist f unitär?