Preface

\mathbf{p}_{1}	ചരച	hα	lder	text
ГΙ	ace	ш	пег	ьехі

Erlend Hestvik, 20.12.2021

	Abstract
placeholder text	

Contents

P :	refac	e	i
A	bstra	act	iii
Li	st of	Figures	vii
1	Intr	$\operatorname{roduction}$	1
	1.1	Motivation	1
	1.2	Previous Work	1
	1.3	Problem Description	1
	1.4	Contributions	1
	1.5	Outline	1
	1.6	Abbreviations	1
2	Bac	ekground	2
	2.1	Target Ship prediction	2
	2.2	ASV modelling	2
	2.3	Trajectory Planning	2
	2.4	Collision Avoidance	3
	2.5	'The complete system'	3
3	Alg	orithm Development	4
	3.1	Dataflow	4
	3.2	Setup	5
		3.2.1 COLREGs assessment	5
		3.2.2 Simplify Prediction	5
		3.2.3 Dynamic Horizon	5
		3.2.4 CasADi setup	5
		3.2.5 Feasibility check	5
		3.2.6 Reference from LOS	5
	3.3	NLP: construction and solver	5
		3.3.1 NLP initialization	6
		3.3.2 Integration step	6
		3.3.3 Dynamic Obstacles constraints	6
		3.3.4 Static Obstacles constraints	6
		3.3.5 Solver	6

	3.4	Alternative ideas and lessons	6
4	Sim	nulation and Results	7
	4.1	Situation overview	7
	4.2	Simulation Results	8
	4.3	Discussion	8
5	Cor	nclusion and Future Work	9
\mathbf{R}	efere	nces	10

List of Figures						

1 Introduction

Placeholder text. this is a placeholder citation to remove an error: Eriksen and Breivik 2017.

• hvorfor er det så vanskelig å skrive introduksjon.

1.1 Motivation

 $\bullet\,$ Mye samme som på fordypningsoppgaven.

1.2 Previous Work

• skulle jo helst skrevet masse her.

1.3 Problem Description

- COLREGs-awareness.
- Trajecory planning.
- Target Ship prediction.
- NLP runtime optimization

1.4 Contributions

• Analyse av fordeler med å ha bedre / avansert prediksjon av TS.

•

1.5 Outline

• Samma stil som på fordypningsoppgaven.

1.6 Abbreviations

- Tenkte det kunne vært lurt å ha en handy liste over alle forkortelser
- Selv med denne listen vil jeg fortsatt skrive forkortelser fullstendig ut første gang de brukes.

2 Background

- Husk rød tråd.
- Vær generisk.
- Bare inkluder konsept som blir relevante senere, eller som er brukt i nødvendige antagelser.

2.1 Target Ship prediction

- Gjenfortelling fra fordypningsprosjekt, da kalt traffic pattern
- Fant en annen artikkel fra Kina som skrev om nogenlunde det samme, AIS data -¿ prediksjon
- Skiller seg fra fordypningsprosjekt fordi det er egentlig ikke traffic pattern som er den viktige antagelsen, Det er heller viktig at vi antar det finnes en måte å gjette/vite hvor andre båter vil være fremover i tid.
- Andre metoder for target ship prediction kan være f.eks utvidelse av AIS som inkluderer autonav data for de neste 5 minuttene eller noe lignende.

2.2 ASV modelling

Jeg tenker det er best å skrive om modellering i sammenheng med hvordan trajectory planning problemet blir satt opp i MATLAB med CasADi.

- Kinematics & Kinetics -; Begge brukes i CasADi setup
- Her kan det også skrives om de spesifike tallverdiene som blir brukt i Masse, coriolis og dempnings -matrisene. de er spesifike til Milliampere, funnet gjennom en rekke forsøk utfort av Anders Pedersen.

2.3 Trajectory Planning

- How to get from A to B.
- Multiple methods, all with pros and cons, skriv liten oversikt.

LOS, OCP, Machine Learning, osv.

Kanskje ikke så veldig viktig å snakke om andre metoder enn OCP.

• Important factors to consider:

Time horizon / length of planning period.

Trajectory safety with respect to ship capabilities.

COLREGs compliance with respect to expected behaviour.

osv.

• Litt dypere inn i numerisk optimalisering og MPC, og LOS ettersom det kommer til å bli brukt igjen senere.

2.4 Collision Avoidance

• COLREGS

Expected behaviour, situation classification, etc etc.

- dCPA / tCPA
- Other risk assessment? Situation complexity? Det er mer som inngår i "collisions avoidance" som jeg kanskje ikke dekker så veldig bra med min algoritme.

2.5 'The complete system'

- Vet ikke helt om dette kapittelet er nødvendig, men jeg lurer på om det er en god ide å skrive litt om nøyaktig hvor i ett fult funksjonelt system jeg forventer at min algoritme passer inn. Hva de andre delene jeg ikke kommer til å skrive om har ansvar for, og hva som forventes av systemene rundt mitt eget.
- Hvis systemet mitt var en sort boks, hvilke inputs og outputs ville det hatt.

3 Algorithm Development

- Tidligere kjent som 'Method'.
- Har lyst å skrive litt om tankegangen bak utviklingen, ikke bare om hvordan ting endte opp med å bli.
- Ingen 'Preliminaries', alt av forkunnskaper og antagelser burde vært gjort rede for i 'Background'.
- Spesifikt mitt arbeid.
- Tar det fra start til slutt.

Persistent variables & settings.

 ${\it COLREGs}$ assessment.

Dynamic Horizon.

Casadi setup (generer F)

Feasibility check.

Initial conditions and Reference LOS guidance.

NLP init.

Main loop, med alt som skjer der.

Solve NLP, give output.

- Bit for bit, forklar hva, hvorfor, hvordan, eventuellt andre versjoner eller ideer som ble prøvd.
- forklar informasjonsflyt, kanskje som eget delkapittel.

3.1 Dataflow

- Begin by explaining the idea behind how the algorithm should work.
- This chapter will need diagrams.

```
input \rightarrow ??? \rightarrow output
```

show how the internal functions parse data

• Serves as a good overview of the whole algorithm.

3.2 Setup

- $\bullet\,$ All the stuff before main loop
- subsubsection for each 'block' as outlined by the dataflow
- 3.2.1 COLREGs assessment
- 3.2.2 Simplify Prediction
- 3.2.3 Dynamic Horizon
- 3.2.4 CasADi setup
- 3.2.5 Feasibility check
- 3.2.6 Reference from LOS

3.3 NLP: construction and solver

- inputs vessel, ref_trajectory, static_obs, dynamic_obs, F, settings, h, N, previous_w_opt.
- \bullet sub funksjoner

Dynamic Obs.

Static Obs.

step.

 $\bullet \ output \ w_opt$

- 3.3.1 NLP initialization
- 3.3.2 Integration step
- 3.3.3 Dynamic Obstacles constraints
- 3.3.4 Static Obstacles constraints
- **3.3.5** Solver

3.4 Alternative ideas and lessons

Burde kanskje heller gå under discussion, og igjen i future work.

- Change w0 based on previous solution runtime.
- Gamle versioner av Static_obs.
- eksperimenter med feasibility check.
- $\bullet\,$ Masse styr med COLREGs assessment, tcpa og dcpa.
- ipopt innstillinger.

4 Simulation and Results

- noen større scenarioer, noen enkle situasjoner. For å vise hvordan algoritmen oppfører seg i forskjellige situasjoner med varierende kompleksitet.
- Delkapittel for hver "stor" scenario, et delkapittel for alle 'enkle' situasjoner.
- Viktig å analysere både bra, dårlig, og uvented oppførsel.
- annen viktig sak som må diskuteres er hvor 'inconsistent' oppførselen er, små endringer i scenario innstillinger gir store utslag på oppførselen vår.
- Se på forskjell i oppførsel mellom når vi har 'prediksjon' av target ships og når vi bare antar fast kurs og hastighet.

4.1 Situation overview

• Havn

crossings, head-on, trangt med statiske hindringer, full blockade av veien vi skal ta. kan variere stat posisjoner for å se endra flere forskjellige COLREGs situasjoner.

• 'Trondheimsfjord'

Større åpent hav, mange båter på kryss og tvers.

viser at båter som vi vet vi ikke kommer i nærheten av ikke påvirker oppførselen vår.

viser at vi kan tracke en referanse veldig godt.

• 'Skjærgård'

Litt i samme stil som 'Trondheimsfjord', men flere små statiske hindringer. viser fint hvordan små statiske hindringer fortsatt blir 'oppdaget'. stor distanse \rightarrow lang tidshorisont og hvordan det påvirker oppførselen vår.

• 'usynlig sving'

Traffikert område hvor 'all' trafikken følger en spesifikk sving.

• enkle situasjoner:

Head-on, Give way, Stand on i 'åpent' hav med bare et target ship. med og uten sving inkludert, for prediksjons sammenligning.

4.2 Simulation Results

• 'Dårlig' resultat er fortsatt resultat

4.3 Discussion

- Hvorfor er viktigere en hva
- $\bullet\,$ ikke overanalyser resultat, ikke dra ville konklusjoner.
- Hvis et resultat er mye værre enn forventet kan det godt være det er bugs.
- $\bullet\,$ i tillegg til det resultatene viser kan jeg også skrive om det jeg kan se med debugging.

5 Conclusion and Future Work

• conclusion:

oppsummering, forklaring, avsluttende ord.

• future work:

Cost funksjon

'grenseverdier', altså verdier som constraint størrelse, distanse fra statiske hindringer, verdier som egentlig burde tunes basert på situasjonen slik den er i øyeblikket.

plassering av dynamiske constraints.

bedre måte å gjøre COLREGs assessment (ikke bare skjekk waypoints slik jeg gjør).

generelt andre metoder jeg ville foreslått å prøve isteden for spaghettien jeg har kokt sammen.

References

Eriksen, H. Bjørn-Olav and Morten Breivik (2017). 'MPC-based mid-level collision avoidance for ASVs using nonlinear programming'. In: 2017 IEEE Conference on Control Technology and Applications (CCTA) (Mauna Lani Bay Hotel). IEEE. Hawaii, USA, pp. 766–772.