Familles libres, liées, génératrices et bases

EXERCICE 1.

Soient E un K-espace vectoriel et a, b, c trois vecteurs de l'espace E.

1. Soient $\lambda, \lambda', \mu, \mu'$ quatre scalaires. Critiquer l'implication suivante,

$$\lambda a + \mu b = \lambda' a + \mu' b \implies \lambda = \lambda' \text{ et } \mu = \mu'.$$

2. Critiquer l'implication suivante,

$$(a,b)$$
 liée \implies $b \in vect(a)$.

3. Critiquer l'implication suivante,

$$(a,b,c)$$
 liée $\implies c \in \text{vect}(a,b)$.

EXERCICE 2.

Soient $m \in \mathbb{R}$. Donner une condition nécessaire et suffisante sur m pour que la famille

$$(m, 1, 1), (2m, -1, m), (1, 5, 2)$$

soit libre dans \mathbb{R}^3 .

EXERCICE 3.

Montrer de deux manières que la famille

$$x \mapsto e^x \quad x \mapsto x^2 \quad x \mapsto \ln(x)$$

est libre dans l'espace vectoriel des applications de]0, $+\infty$ [dans $\mathbb R$.

EXERCICE 4.

Soient $a \in \mathbb{R}$ et u = (a, 1, 1), v = (1, a, 1) et w = (1, 1, a). Déterminer une CNS pour que (u, v, w) soit libre dans $E = \mathbb{R}^3$.

EXERCICE 5.

Parmi les familles suivantes, déterminer les familles génératrices de \mathbb{R}^3 :

1.
$$(u_1, u_2) = ((1, 2, 3), (2, 1, 0));$$

2.
$$(u_1, u_2, u_3)$$
 vaut

$$((1,1,1),(0,1,2),(3,2,-1));$$

3.
$$(u_1, u_2, u_3)$$
 vaut

4.
$$(u_1, u_2, u_3)$$
 vaut

$$((1,-1,1),(-1,1,-1),(2,3,-1));$$

5.
$$(u_1, u_2, u_3)$$
 vaut

$$((1,2,-1),(1,-3,4),(3,1,2));$$

6.
$$(u_1, u_2, u_3, u_4)$$
 vaut

$$((1,0,3),(0,2,1),(3,1,1),(2,1,-1)).$$

EXERCICE 6.

Soient dans \mathbb{R}^4 les vecteurs

$$e_1 = (1, 2, 3, 4)$$
 et $e_2 = (1, -2, 3, -4)$.

1. Peut-on déterminer x et y pour que

$$(x, 1, y, 1) \in \text{vect}(e_1, e_2)$$
 ?

2. Même question pour $(x, 1, 1, y) \in \text{vect}(e_1, e_2)$?

Exercice 7.

Pour $\alpha \in \mathbb{R}$, on pose $f_{\alpha} : x \mapsto e^{\alpha x}$. Montrer que la famille $(f_{\alpha})_{\alpha \in \mathbb{R}}$ est une famille libre de $\mathbb{R}^{\mathbb{R}}$.

EXERCICE 8.

Pour $\lambda \in \mathbb{R}$, on pose $f_{\alpha} : x \mapsto |x - \alpha|$. Montrer que $(f_{\alpha})_{\alpha \in \mathbb{R}}$ est une famille libre de $\mathbb{R}^{\mathbb{R}}$.

Exercice 9.

Pour $n \in \mathbb{N}^*$, on pose $f_n : x \mapsto \sin(nx)$.

1. Pour
$$(m, n) \in (\mathbb{N}^*)^2$$
, calculer $\int_0^{2\pi} f_m(t) f_n(t) dt$.

2. En déduire que $(f_n)_{n\in\mathbb{N}^*}$ est une famille libre de $\mathbb{R}^{\mathbb{R}}$.

EXERCICE 10.

Montrer que $(1, \sqrt{2}, \sqrt{3})$ est une famille libre du \mathbb{Q} -espace vectoriel \mathbb{R} .

Exercice 11.

Soit $(a, b, c) \in \mathbb{R}^3$. On pose $f : x \mapsto \sin(x + a)$, $g : x \mapsto \sin(x + b)$ et $h : x \mapsto \sin(x + c)$. Déterminer le rang de la famille (f, g, h).

EXERCICE 12.

Soit (v_1, \dots, v_n) une famille libre de vecteurs d'un \mathbb{K} -espace vectoriel \mathbb{E} .

1. La famille
$$(v_1 - v_2, v_2 - v_3, ..., v_{n-1} - v_n, v_n - v_1)$$
 est -elle libre?

2. La famille
$$(v_1 + v_2, v_2 + v_3 \dots, v_{n-1} + v_n, v_n + v_1)$$
 est -elle libre?

3. On pose
$$w_k = \sum_{j=1}^k v_j$$
. La famille (w_1, \dots, w_n) est-elle libre?

Exercice 13.★★

Soient $(x_i)_{1\leqslant i\leqslant n}$ une famille libre d'un espace vectoriel E et $(\alpha_1,\ldots,\alpha_n)\in \mathbb{R}^n$. On pose $y=\sum_{k=1}^n\alpha_kx_k$. Donner une condition nécessaire et suffisante sur les α_i pour que $(y+x_i)_{1\leqslant i\leqslant n}$ soit une famille libre.

Dimension d'un espace vectoriel

Exercice 14.

Soient F le sous-ensemble de \mathbb{R}^4 défini par l'équation

$$x + z = t + y$$

et G défini par y + t = x - y - z = 0.

- 1. Déterminer la dimension ainsi qu'une base de F. Soit $\alpha=(3,1,2,4)$. Déterminer les coordonnées de α dans cette base.
- **2.** Déterminer la dimension ainsi qu'une base de G. Soit $\mathfrak{b}=(4,1,3,-1)$. Déterminer les coordonnées de \mathfrak{b} dans cette base.
- **3.** Déterminer la dimension et une base de $F \cap G$.

Exercice 15.★

Revenons un instant aux équations différentielles ...

1. Soit

$$\mathbb{S} = \left\{ \mathbf{y} \ : \ \mathbb{R} \to \mathbb{C}, \ \ \mathbb{C}^2 \ \mid \ \mathbf{y}'' + \mathbf{y}' + \mathbf{y} = \mathbf{0}
ight\}.$$

Déterminer une base de $\mathcal S$ en tant que $\mathbb C$ -espace vectoriel. Quelle est sa dimension ?

- **2.** Déterminer une base de S en tant que \mathbb{R} -espace vectoriel. Quelle est sa dimension?
- 3. Donner une base du sous-espace vectoriel S' de $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$ défini par la condition suivante,

$$f'' + 4f = 0$$
, $f(\pi) = 0$.

Exercice 16.

Soit E le sous-ensemble de \mathbb{R}^4 défini par les équations suivantes,

$$x = 2y - z$$
, $t = x + y + z$.

Prouver que E est un sous-espace vectoriel de \mathbb{R}^4 . Quelle est sa dimension ? En donner une base.

Exercice 17.

Courage!...

1. Quelle est la dimension du sous-espace vectoriel de \mathbb{R}^3 engendré par les vecteurs

$$a = (1, 2, 0)$$
 et $b = (-1, 1, 1)$?

2. Quelle est la dimension du sous-espace vectoriel de \mathbb{R}^3 engendré par les vecteurs

$$a = (3,0,-2)$$
, $b = (0,3,1)$ et $c = (-1,4,2)$?

3. Quelle est la dimension du sous-espace vectoriel de \mathbb{R}^3 engendré par les vecteurs

$$a=(1,1,-2)\ ,\ b=(1,3,1)\ ,\ c=(-2,1,2),$$

$$d=(1,-1,1), e=(0,1,2), f=(-3,1,0), g=(4,5,1)?$$

Exercice 18.★

Le corps $\mathbb C$ peut-être considéré comme un $\mathbb R$ ou un $\mathbb C$ -espace vectoriel...

- **1.** Déterminer la dimension et une base de $\mathbb C$ considéré comme espace vectoriel sur luimême. Quels sont alors les sous-espaces vectoriels de $\mathbb C$?
- **2.** Déterminer la dimension et une base de $\mathbb C$ considéré comme espace vectoriel sur $\mathbb R$. Décrire alors les sous-espaces vectoriels de $\mathbb C$.

Exercice 19.★

Quelle est la dimension du sous-espace vectoriel du \mathbb{R} -espace vectoriel $E=\mathbb{R}^{\mathbb{N}}$ constitué des suites arithmétiques ? En déterminer une base.

Exercice 20.

Soit

$$F = \{(\lambda + \mu, 2\lambda - \mu, 3\lambda + 4\mu, 2\mu) \mid (\lambda, \mu) \in \mathbb{K}^2\}.$$

- **1.** Montrez que F est un sous-espace vectoriel de \mathbb{K}^4 .
- 2. Déterminez la dimension de F.

EXERCICE 21.

Expliquez pour quoi les ensembles suivants sont des sous-espaces vectoriels de \mathbb{R}^3 et déterminez leurs dimensions.

- 1. E = vect((1,2,3),(3,2,1),(1,1,1));
- **2.** $F = \{(x, y, z) \mid x = y\};$
- 3. $G = \{(x, y, z) \mid x + 3y = y + z = 2x z = 0\};$
- 4. $H = \{(x, y, z) | x + 3y = y + z = x + 2y z = 0\};$
- 5. $L = \{(x, y, z) \mid x + 3y = y + z = 2x z\}.$

EXERCICE 22.

Dans \mathbb{R}^4 , on considère la famille de vecteurs suivante :

$$u_1 = (1, 2, -1, 3), u_2 = (2, 3, -3, 2,), u_3 = (0, 1, 1, 4)$$

et $u_4 = (1, 0, -3, -5)$. Déterminer le rang de cette famille, préciser les relations de liaison entre ces vecteurs et donner une base de $\text{vect}(u_1, u_2, u_3, u_4)$.

Exercice 23.★

Soient E un espace vectoriel de dimension finie, F et G deux sous-espaces vectoriels de E. Montrer que F et G admettent un supplémentaire commun dans E si et seulement si dim(F) = dim(G).

Exercice 24.

On pose

$$u_1 = (\alpha, 1, \beta, 1), u_2 = (1, \alpha, \beta, \alpha),$$

 $u_3 = (\alpha, \beta, \alpha, 1), u_4 = (\alpha, \beta, \alpha, \beta),$

et $u_5 = (1, \alpha, 1, \beta)$, pour α et β réels. Discuter le rang du système $(u_1, u_2, u_3, u_4, u_5)$.

Exercice 25.★

Soient H_1 et H_2 deux hyperplans distincts d'un espace vectoriel E de dimension finie n.

- **1.** Prouver que $n \ge 2$.
- **2.** Montrer que dim $(H_1 \cap H_2) = n 2$.

EXERCICE 26.

Soit $0=x_0< x_1< \cdots < x_n=1$ une subdivision de [0;1] et F l'ensemble des fonctions de [0;1] dans $\mathbb R$ dont la restriction à chaque intervalle $[x_i;x_{i+1}]$ est affine. Donner la dimension de F ainsi qu'une base.

Exercice 27.

- **1.** Pour $i \in \mathbb{N}$, on pose $u_i = (\delta_{in})_{n \in \mathbb{N}}$. Montrer que pour tout $k \in \mathbb{N}$, la famille (u_0, u_1, \ldots, u_k) est libre dans $\mathbb{R}^\mathbb{N}$. Que peut-on en déduire quant à la dimension du \mathbb{R} -espace vectoriel $\mathbb{R}^\mathbb{N}$.
- **2.** Pour $i \in \mathbb{N}$, on pose $f_i : x \in \mathbb{R} \mapsto x^i$. Montrer que pour tout $k \in \mathbb{N}$, la famille (f_0, f_1, \ldots, f_k) est libre dans $\mathcal{C}^{\infty}(\mathbb{R})$. Que peut-on en déduire quant à la dimension de $\mathcal{C}^{\infty}(\mathbb{R})$, $\mathcal{C}^{n}(\mathbb{R})$ pour $n \in \mathbb{N}$, de $\mathbb{R}^{\mathbb{R}}$?

EXERCICE 28.

Pour $p \in \mathbb{N}^*$, on note E_p l'ensemble des suites réelles p-périodiques.

- **1.** Montrer que E_p est un sous-espace vectoriel du \mathbb{R} -espace vectoriel $\mathbb{R}^{\mathbb{N}}$.
- **2.** Pour $0 \le k \le p-1$, on définit la suite u^k par

$$\forall n \in \mathbb{N}, \ u_n^k = \begin{cases} 1 & \text{si } n \equiv k[p] \\ 0 & \text{sinon} \end{cases}$$

Montrer que $(\mathfrak{u}^0,\mathfrak{u}^1,\ldots,\mathfrak{u}^{p-1})$ est une base de $E_\mathfrak{p}$.

- 3. Que peut-on en déduire quant à la dimension de E_p ?
- **4.** Justifier que E_2 est un sous-espace vectoriel de E_4 .
- **5.** On note F l'ensemble des suites $u \in \mathbb{R}^{\mathbb{N}}$ telles que pour tout $n \in \mathbb{N}$, $u_{n+2} + u_n = 0$. Montrer que F est un sous-espace vectoriel de E_4 .
- **6.** Montrer que F est un supplémentaire de E₂ dans E₄.
- 7. Que peut-on en déduire quant à la dimension de F?
- **8.** On définit deux suites x, y de $\mathbb{R}^{\mathbb{N}}$ par $x_n = \cos\left(n\frac{\pi}{2}\right)$ et $y_n = \sin\left(n\frac{\pi}{2}\right)$ pour tout $n \in \mathbb{N}$. Montrer que (x, y) est une base de F.

Exercice 29.

Soient $a,b\in\mathbb{C}$. Montrer que l'ensemble des solutions à valeurs complexes de l'équation différentielle y''+ay'+by=0 est un \mathbb{C} -espace vectoriel dont on précisera la dimension.

EXERCICE 30.

Soient F et G deux plans vectoriels de \mathbb{R}^3 . On suppose F et G distincts. Montrer que $\mathbb{R}^3 = F + G$. La somme est-elle directe?

Sommes et dimension

Exercice 31.

Soient E le \mathbb{R} -espace vectoriel des fonctions continues sur [0,1] à valeurs réelles et $F = \left\{ f \in E \mid \forall k \in [\![1,10]\!], \ f\left(\frac{1}{k}\right) = 0 \right\}.$

- 1. Montrer que F est un sous-espace vectoriel de E.
- 2. Déterminer un supplémentaire de F dans E.

Exercice 32.

- **1.** Dans cette question, $E = \mathbb{R}^3$, $F = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$ et G = vect((1, 1, 1)).
 - a. Donner la dimension de G.
 - **b.** Montrer que F est un sous-espace vectoriel de E et déterminer une base de F. En déduire sa dimension.
 - c. Montrer que F et G sont supplémentaires dans E.
 - **d.** On pose $\alpha=(1,2,3)$. Déterminer la projection de α sur F parallélement à G et la projection de α sur G parallélement à F.
- **2.** On se donne maintenant $n \in \mathbb{N}^*$. On pose $E = \mathbb{R}^n$, $F = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 + \dots + x_n = 0\}$ et $G = \text{vect}((1, \dots, 1))$.
 - a. Donner la dimension de G.
 - **b.** Montrer que F est un sous-espace vectoriel de E et déterminer une base de F. En déduire sa dimension.
 - $\mathbf{c}.\$ Montrer que F et G sont supplémentaires dans E.
- **3.** On suppose maintenant que E est un \mathbb{K} -espace vectoriel de dimension $\mathfrak{n} \in \mathbb{N}^*$. On se donne F un hyperplan de E et $G = \mathrm{vect}(\mathfrak{u})$ où $\mathfrak{u} \in E \setminus F$. Montrer que F et G sont supplémentaires dans E.

Exercice 33.

On note $E = \mathbb{R}^4$,

$$G = \left\{ (x, y, z, t) \in E \mid z = t = 0 \right\}$$

et on pose $F = A \cap B$ où

$$A = \{(x, y, z, t) \in E \mid x - y + z - t = 0 \}$$

et

$$B = \Big\{ (x,y,z,t) \in E \ | \ 2x - y + 3z - 4t = 0 \ \Big\}.$$

- **1.** Prouver que F et G sont des sous-espaces vectoriels de l'espace E.
- **2.** Montrer que F et G sont supplémentaires dans E. Trouver une base de E adaptée à cette décomposition en somme directe.
- **3.** Calculer la projection sur F parallèlement à G d'un vecteur (x, y, z, t) de E. Même question en permutant F et G.

Exercice 34.

On note $E = \mathbb{R}^3$ et

$$F = \{(x, y, z) \in E \mid x + z = 0\}$$

et

$$G = \{(x, y, z) \mid x = 2y = z\}.$$

- 1. Etablir que F et G sont des sous-espaces vectoriels supplémentaires dans E.
- **2.** Calculer la projection du vecteur X = (x, y, z) de E sur F parallèlement à G.

Exercice 35.★

Soient $n\geqslant 2,$ H le sous-ensemble de $E=\mathbb{R}^n$ défini par l'équation

$$x_1+\ldots+x_n=0,$$

et
$$u = (1, ..., 1) \in E$$
.

- **1.** H et $\mathbb{R}u$ sont-ils supplémentaires dans E ?
- **2.** Soit $v \notin H$. Que dire de $\mathbb{R}v$?