More about Machine Translation

SIU Sai Cheong School of Translation, Hang Seng Management College

MT Evaluation

Automatic Evaluation

The use of Bilingual Evaluation Understudy (BLEU) metric (Papineni, Roukos, Ward, & Zhu, 2002), a measure of n-gram precision with a value between 0 and 1, comparing a machine translation output with a reference:

$$BLEU = \min(1, e^{1-\frac{r}{c}}) \cdot \exp\left(\sum_{n=1}^{N} w_n \log p_n\right)$$

More about BLEU

$$BLEU = \min(1, e^{1-\frac{r}{c}}) \cdot \exp\left(\sum_{n=1}^{N} w_n \log p_n\right)$$

Given T = MT output and $T_R = reference$ translation,

$$Precision = \frac{C(T \cap T_R)}{|T|}$$

Example

T = "Chinese officials responsibility of airport safety"

 T_R = "Chinese officials are responsible for airport security"

$$Precision = \frac{3}{6} = 0.5$$

For more information, visit

https://www.aclweb.org/anthology/P02-1040.pdf

More about SMT

Statistical Machine Translation

$$P(T|S) = \frac{P(S|T) \times P(T)}{P(S)}$$

$$T = \underset{T}{\operatorname{arg max}} P(T|S)$$

$$= \underset{T}{\operatorname{arg max}} P(S|T) \times P(T)$$

$$\xrightarrow{T}$$

$$= \underset{T \text{ anguage Model}}{\operatorname{Language Model}}$$

SMT(1): Language Model

Language Model

Do you prefer fish?

Elephants love her .

Give me fish.

Dogs love swimming.

We love dogs.

Monolingual Corpus in the Target Language

P(T)

- $\bullet = P(t_1 t_2 ... t_n)$
- = $P(t_1) \prod_{i=2}^{n} P(t_i | t_1 t_2 ... t_{i-1})$

N-gram Model

We consider n words at a time (i.e., the word w and n-1 words in the context history h).

$$P(W)$$
= $P(W_1 W_2 ... W_n W_{n+1})$
= $\prod_{i=1}^{n+1} P(W_i | W_{i-n+1} W_{i-n+2} ... W_{i-1})$
= $\prod_{i=1}^{n+1} \frac{C(W_{i-n+1} W_{i-n+2} ... W_{i-1} W_i)}{C(W_{i-n+1} W_{i-n+2} ... W_{i-1})}$

n = 1
$$P(w_i) = \frac{C(w_i)}{|\text{corpus}|}$$

 $P(w_i|h) = \frac{C(h+w_i)}{C(h)},$

where $h = w_{i-n+1}w_{i-n+2}...w_{i-1}$

where n=|W|, "<BOS>"= w_{-n+2} , w_{-n+3} ,..., w_0 and "<EOS>"= w_{n+1}

Unigram Model (n=1)

$$P(W)$$
= $P(w_1w_2...w_nw_{n+1})$
= $P(w_1) \times P(w_2) \times ... \times P(w_n) \times P(w_{n+1})$
= $\prod_{i=1}^{n+1} P(w_i)$
where $n = |W|$ and $w_{n+1} = \text{``} < \text{EOS} > \text{``}$

Unigram Model

P("How much is this book?")

```
= P("how")

× P("much")

× P("is")

× P("this")

× P("book")

× P("?")

× P("<EOS>")
```

```
<BOS> What is this ? <EOS>
<BOS> This is a ball . <EOS>
<BOS> I bought a book . <EOS>
<BOS> That sounds good . <EOS>
<BOS> How much is it ? <EOS>
```

Bigram Model (n=2)

$$P(W)$$
= $P(w_1w_2...w_nw_{n+1})$
= $P(w_1|w_0) \times P(w_2|w_1) \times P(w_3|w_2) \times ... \times P(w_n|w_{n-1}) \times P(w_{n+1}|w_n)$
= $\prod_{i=1}^{n+1} P(w_i|w_{i-1})$
where $n=|W|$, $w_0=$ "" and $w_{n+1}=$ ""

Bigram Model

P("How much is this book?")

```
= P("how"|"<BOS>")

× P("much"|"how")

× P("is"|"much")

× P("this"|"is")

× P("book"|"this")

× P("?"|"book")

× P("<EOS>"|"?")
```

```
<BOS> What is this ? <EOS>
<BOS> This is a ball . <EOS>
<BOS> I bought a book . <EOS>
<BOS> That sounds good . <EOS>
<BOS> How much is it ? <EOS>
```

Trigram Model (n=3)

```
P(W)
= P(w_1w_2...w_nw_{n+1})

= P(w_1|w_{-1}w_0) \times P(w_2|w_0w_1) \times P(w_3|w_1w_2) \times ... \times P(w_n|w_{n-2}w_{n-1}) \times P(w_{n+1}|w_{n-1}w_n)

= \prod_{i=1}^{n+1} P(w_i|w_{i-2}w_{i-1})

where n=|W|, w_{-1}=w_0="<BOS>" and w_{n+1}="<EOS>"
```

Trigram Model

P("How much is this book?")

```
= P("how"|"<BOS><BOS>")

\times P("much"|"<BOS> how")

\times P("is"|"how much")

\times P("this"|"much is")

\times P("book"|"is this")

\times P("?"|"this book")
```

SMT(2): Translation Model

Translation Model

Source Language

我喜歡貓。大象鍾意我。人們喜歡狗。他們嗜魚。 我們喜歡猴子。你喜歡豬。

Target Language

I love cats. Elephants love me. People love dogs. They prefer fish. We love monkeys. You prefer pigs.

Bilingual Corpus

Translation Model

Source Language

我喜歡貓。大象鍾意我。人們喜歡狗。 他們嗜魚。我們喜歡猴子。你喜歡豬。

Target Language

I love cats. Elephants love me. People love dogs. They prefer fish. We love monkeys. You prefer pigs.

Bilingual Corpus

Sentence Alignment

我 喜歡 貓 。 → I love cats .

大象 鍾意 我 。→ Elephants love me .

人們 喜歡 狗 。 → People love dogs .

他們 嗜 魚 。→ They prefer fish .

我們 喜歡 猴子。→ We love monkeys.

你 喜歡 豬 。 → You prefer pigs .

Word Alignment

Translation Model P(S|T)

If there are *n* word/phrase pairs

$$\{(s_1, t_1), (s_2, t_2), \ldots, (s_n, t_n)\},\$$

and they form the sentence pair

$$S = s_1 s_2 \dots s_n, T = t_1 t_2 \dots t_n,$$

we have

$$P(S|T) = P(s_1|t_1) \times P(s_2|t_2) \times ... \times P(s_n|t_n)$$

$$= \prod_{i=1}^{n} P(s_n|t_n) - \frac{C(s_n \cap t_n)}{C(t_n)}$$

Translation Model

Given the following:

```
S = "我去遠足。"

T = "I go hiking."

a set of phrase pairs

= {("我","I"),("去","go"),("遠足","hiking"),("。",".")}
```

What is P(S|T) (i.e., the Probability of "我去遠足。" as the source of "I go hiking.")?

Translation Model

Divide S and T by referring to the phrase pairs provided

```
P("我去遠足。"|"I go hiking.")
= P("我"|"I")
× P("去"|"go")
× P("遠足"|"hiking")
× P("。"|".")
```

SMT(3): Training

Training (1): Language Model

Monolingual Corpus

```
<BOS> Do you prefer fish ? <EOS>
```

<BOS> Elephants love her . <EOS>

<BOS> Give me fish . <EOS>

<BOS> They love elephants . <EOS>

<BOS> Dogs love swimming . <EOS>

<BOS> We love dogs . <EOS>

Monolingual Table

S	W _i W _{i-1}	C(s)	C(W ₁₋₁)	$P(w_i w_{i-1})$	Log P(Wi Wi-1)
. <eos></eos>	<eos> .</eos>	5	5	1.0000	0.000
? <e0s></e0s>	<eos> ?</eos>	1	1	1.0000	0.000
<bos> do</bos>	do <bos></bos>	1	6	0.1667	-0.778
<bos> dogs</bos>	dogs <bos></bos>	1	6	0.1667	-0.778
<b0s></b0s>	elephants				
elephants	<b0s></b0s>	1	6	0.1667	-0.778
<bos> give</bos>	give <bos></bos>	1	6	0.1667	-0.778
<bos> they</bos>	they <bos></bos>	1	6	0.1667	-0.778
<bos> we</bos>	we <bos></bos>	1	6	0.1667	-0.778
do you	you do	1	1	1.0000	0.000
dogs .	. dogs	1	2	0.5000	-0.301
dogs love	love dogs	1	2	0.5000	-0.301
elephants .	. elephants	1	2	0.5000	-0.301
elephants	love				
love	elephants	1	2	0.5000	-0.301
fish .	. fish	1	2	0.5000	-0.301
fish ?	? fish	1	2	0.5000	-0.301
give me	me give	1	1	1.0000	0.000
her .	. her	1	1	1.0000	0.000
love dogs	dogs love	1	4	0.2500	-0.602
love elephants	elephants love	1	4	0.2500	-0.602
love her	her love	1	4	0.2500	-0.602
love	swimming				
swimming	love	1	4	0.2500	-0.602
me fish	fish me	1	1	1.0000	0.000
prefer fish	fish prefer	1	1	1.0000	0.000
swimming .	. swimming	1	1	1.0000	0.000
they love	love they	1	1	1.0000	0.000
we love	love we	1	1	1.0000	0.000
you prefer	prefer you	1	1	1.0000	0.000
Other Expressions				0.0000	-99.000

Training (1): Language Model

S	$w_i w_{i-1}$	C(s)	C(W _{i-1})	$P(w_i w_{i-1})$	$Log \\ P(w_i w_{i-1})$
. <eos></eos>	<eos> .</eos>	5	5	1.0000	0.000
? <eos></eos>	<eos> ?</eos>	1	1	1.0000	0.000
<bos> do</bos>	do <bos></bos>	1	6	0.1667	-0.778
<bos> dogs</bos>	dogs <bos></bos>	1	6	0.1667	-0.778

Bigrams

Probability

Log Probability

$$P(w|w_{i-1}) = \frac{C(w_{i-1}w_i)}{C(w_{i-1})} = \frac{C(s)}{C(w_{i-1})}$$

Training (2): Translation Model

Bilingual Corpus

我 喜歡 貓 。 → I love cats .

大象 鍾意 我 。 → Elephants love me .

人們 喜歡 狗 。 → People love dogs .

他們 嗜 魚 。 → They prefer fish .

我們 喜歡 猴子。 → We love monkeys.

你喜歡豬。→ You prefer pigs.

Bilingual Table

					Log
t	S	C(s and t)	C(t)	P(s t)	P(s t)
		6	6	1.0000	0.000
cats	貓	1	1	1.0000	0.000
dogs	狗	1	1	1.0000	0.000
elephants	大象	1	1	1.0000	0.000
fish	魚	1	1	1.0000	0.000
I	我	1	1	1.0000	0.000
prefer	喜歡	1	2	0.5000	-0.301
prefer	嗜	1	2	0.5000	-0.301
love	喜歡	3	4	0.7500	-0.125
love	鍾意	1	4	0.2500	-0.602
me	我	1	1	1.0000	0.000
monkeys	猴子	1	1	1.0000	0.000
people	人們	1	1	1.0000	0.000
pigs	豬	1	1	1.0000	0.000
they	他們	1	1	1.0000	0.000
we	我們	1	1	1.0000	0.000
you	你	1	1	1.0000	0.000
Other word/phrase pairs				0.0000	-99.000

Training (2): Translation Model

t	S	C(s and t)	C(t)	<i>P</i> (s t)	Log P(s t)
	0	6	6	1.0000	0.000
cats	貓	1	1	1.0000	0.000
dogs	狗	1	1	1.0000	0.000
elephants	大象	1	1	1.0000	0.000

s and t

Probability

Log Probability

$$P(s|t) = \frac{C(s \text{ as the source of } t)}{C(t)} = \frac{C(s \text{ and } t)}{C(t)}$$

SMT(4): Decoding

Decoding

Noisy-channel Model Log-linear Model

Decoding (1): Extracting TL Expressions

Decoding (1): Extracting TL Expressions

```
{("狗","dogs"),
("大象
","elephants"),
("喜歡","prefer"),
("喜歡","love"),
("。",".")}
```


 T_1 = dogs elephants love.

 T_2 = dogs love elephants.

 T_3 = elephants dogs love.

 T_4 = elephants love dogs.

 T_5 = love elephant dogs.

 T_6 = love dog elephants.

 T_7 = dogs elephants prefer.

 T_8 = dogs prefer elephants.

 T_9 = elephants dogs prefer.

 T_{10} = elephants prefer dogs.

 T_{11} = prefer elephant dogs.

 T_{12} = prefer dog elephants.

Decoding (2): Selecting the Best Combination

```
{("狗","dogs"),
("大象
","elephants"),
("喜歡","prefer"),
("喜歡","love"),
("。",".")}
```



```
T_1 = dogs elephants love.
 T_2 = dogs love elephants.
T_3 = elephants dogs love.
T_4 = elephants leve degs.
T_5 = love elephant dogs.
T_6 = love dog elephants.
T_7 = dogs elephants prefer.
 T_8 = dogs prefer elephants.
T_9 = elephants dogs prefer.
T<sub>10</sub> = elephants prefer dogs.
T_{11} = profer elephant degs.
T_{12} = prefer dog elephants.
```

Decoding (2): Selecting the Best Combination

Decoding Method 1: Noisy-channel Model

Final Score for a TT Candidate

$$= P(S|T) \times P(T)$$

Details of Noisy-channel Model

= 0.0078140625

```
Consider T<sub>2</sub>
P(T_2)
= P("dogs"|"<BOS>") × P("love"|"dogs") × P("elephants"|"love") ×
  P("."|"elephants") \times P("<EOS>"|".")
= 0.1667 × 0.5000 × 0.2500 × 0.5000 × 1.0000
= 0.01041875
P(S|T_2)
= P("狗"|"dogs")×P("喜歡"|"love")×P("大象"|"elephants")×P("。"|".")
= 1.0000 × 0.7500 × 1.0000 × 1.0000
= 0.75
Final Score for T<sub>2</sub>
= P(T_2) \times P(S|T_2)
= 0.01041875 × 0.75
                                                              T_2 = dogs love elephants.
```

Details of Noisy-channel Model

```
Consider T<sub>8</sub>
P(T_8)
= P("dogs"|"<BOS>") × P("prefer"|"dogs") × P("elephants"|"prefer") ×
  P("."|"elephants") \times P("<EOS>"|".")
= 0.1667 \times 0.0000 \times 0.0000 \times 0.5000 \times 1.0000
= 0
P(S|T_8)
= P("狗"|"dogs")×P("喜歡"|"prefer")×P("大象"|"elephants")×P("。"|".")
= 1.0000 × 0.5000 × 1.0000 × 1.0000
= 0.5
Final Score for T<sub>8</sub>
= P(T_8) \times P(S|T_8)
                                                                  T_8 = dogs prefer elephants.
= 0 \times 0.5
= 0
```

Decoding (2): Selecting the Best Combination

Decoding Method 2: Log-linear Model / Maximum Entropy Model (Simplified)

Final Score for a TT Candidate

$$= log P(S|T) + log P(T)$$

Details of Log-linear Model

= -2.107

```
Consider T<sub>2</sub>
log P(T_2)
= log (P("dogs"|"<BOS>") × P("love"|"dogs") × P("elephants"|"love") ×
  P("."|"elephants") \times P("<EOS>"|"."))
= log P("dogs"|"<BOS>") + log P("love"|"dogs") + log P("elephants"|"love") +
  log P("."|"elephants") + log P("<EOS>"|".")
= -0.778 + (-0.301) + (-0.602) + (-0.301) + (0.000)
= -1.982
log P(S|T_2)
= log (P("狗"|"dogs")×P("喜歡"|"love")×P("大象"|"elephants")×P("。"|"."))
= log P("狗"|"dogs")+log P("喜歡"|"love")
  +log P("大象"|"elephants")+log P("。"|".")
= 0.000 + 0.000 + (-0.125) + 0.000
= -0.125
Final Score for T<sub>2</sub>
= log P(T_2) + log P(S|T_2)
```

 T_2 = dogs love elephants.

Details of Log-linear Model

```
Consider T<sub>8</sub>
log P(T_8)
= log (P("dogs"|"<BOS>") × P("prefer"|"dogs") × P("elephants"|"prefer") ×
  P("."|"elephants") \times P("<EOS>"|"."))
= log P("dogs"|"<BOS>") + log P("prefer"|"dogs") + log P("elephants"|"prefer")
  + log P("."|"elephants") + log P("<EOS>"|".")
= -0.778 + (-99.000) + (-99.000) + (-0.301) + (0.000)
= -199.079
log P(S|T_8)
|= log (P("狗"|"dogs")×P("喜歡"|"prefer")×P("大象"|"elephants")×P("。"|"."))
= log P("狗"|"dogs")+log P("喜歡"|"prefer")
  +log P("大象"|"elephants")+log P("。"|".")
= 0.000 + (-0.301) + 0.000 + 0.000
= -0.301
Final Score for T<sub>8</sub>
                                                                         T_8 = dogs prefer elephants.
= log P(T_8) + log P(S|T_8)
= -199.38
```

More about NMT

NMT(1): Artificial Neural Networks

More about Artificial Neural Networks

Neural networks and back-propagation explained in a simple way (https://medium.com/datathings/neural-networks-and-backpropagation-explained-in-a-simple-way-f540a3611f5e)

More about Artificial Neural Networks

Back-Propagation is very simple. Who made it Complicated?

(https://medium.com/@14prakash/back-propagation-is-very-simple-who-made-it-complicated-97b794c97e5c)

NMT(2): Word Embedding

Word Embedding (1): One-hot Vector

For more information, visit

https://medium.com/@athif.shaffy/one-hot-encoding-of-text-b69124bef0a7

Problem

$$a \cdot b = a_x \times b_x + a_y \times b_y = |a||b|\cos(\theta)$$

For more information, visit https://www.mathsisfun.com/algebra/vectors-dot-product.html

Word Embedding (2): Continuous Bag of Words and Skip-gram

For more information, visit https://mubaris.com/2017/12/14/word2vec/

NMT(3): Activation functions

Activation functions

Name	Plot	Equation	Derivative
Identity		f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

For more information, visit

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

Softmax for Multi-class Classification (1)

The softmax function is a generalization of the logistic function that "squashes" a K-dimensional vector **z** of arbitrary real values to a K-dimensional vector of real values in the range [0, 1] that add up to 1.

For more information, visit

https://www.depends-on-the-definition.com/guide-to-multi-label-classification-with-neural-networks/

Softmax for Multi-class Classification (2)

Softmax function takes an N-dimensional vector of real numbers and transforms it into a vector of real number in range (0,1) which add up to 1.

$$p_{j} = rac{e^{a_{i}}}{\sum_{k=1}^{N} e^{a_{k}}} = rac{Ce^{a_{i}}}{C\sum_{k=1}^{N} e^{a_{k}}} = rac{e^{a_{i}+\log(C)}}{\sum_{k=1}^{N} e^{a_{k}+\log(C)}}$$

For more information, visit https://deepnotes.io/softmax-crossentropy

NMT(4): Training and Backpropagation

Training and Backpropagation

For more information, visit

https://www.jeremyjordan.me/neural-networks-training/

NMT(5): RNN and LSTM

Standard RNN VS Long Short-term Memory

For more information, visit http://colah.github.io/posts/2015-08-Understanding-LSTMs/

NMT(6): Types of NMT

Attention Mechanism

```
Given [l] / [go] / [to] / [school] / [by] / [bus] / [.], what is the next word? 我

[l] / [go] / [to] / [school] / [by] / [bus] / [.] / [我] ⇒ ?
乘

[l] / [go] / [to] / [school] / [by] / [bus] / [.] / [我] / [乘] ⇒ ?
公車

[l] / [go] / [to] / [school] / [by] / [bus] / [.] / [我] / [乘] / [公車] ⇒ ?
去

[l] / [go] / [to] / [school] / [by] / [bus] / [.] / [我] / [乘] / [公車] / [去] ⇒ ?

學校

[l] / [go] / [to] / [school] / [by] / [bus] / [.] / [我] / [乘] / [公車] / [去] / [學校] / ⇒ ?
。
```

Translation: 我乘公車去學校。

Note: [] refers to internal representation

RNN Encoder-decoder with Attention

For more information, visit https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html

RNN Encoder-decoder with Attention

For more information, visit https://arxiv.org/pdf/1609.08144.pdf

Convolutional NMT

For more information, visit https://code.facebook.com/posts/1978007565818999/a-novel-approach-to-neural-machine-translation/

Convolutional NMT

For more information, visit https://arxiv.org/pdf/1611.02344.pdf

For more information, visit <a href="https://ai.googleblog.com/2017/08/transformer-novel-neural-neur

nttps://ai.googlebiog.com/2017/06/transformer-novel-neural-network.html

Self-attentional Transformer

For more information, visit https://arxiv.org/pdf/1706.03762.pdf