2.6 Start looking for XER medithat

(I+ un*)(I+ xun*)=I. This is the

name as I+ un* + 2 un* + 2 un* un*

=I (=) un* + 2 un* + 2 un* un* =0

Because n* u is a scalar we get

un* + 2 un* + 2 un* un = 0 (=)

[I+ 2 + 2 (n* u)] un = 0.

So a good guess is 2 = - 1

In the case n* u = -1 then A is

migular nince Au = u + un* u = u-u=0

So A = I - 1

How un if A = I + un*

is nouringular ((=) v* u + -1).

If A x = 0 then x + un* x = 0. Since

-v*x = k is a scalar we get x = keu

Thus mull (A) = \(\xi \) u?

3.2. We know that IIAll mp IIAxII.

Choose an eigenvalue of A and let $n_{1} \neq 0$ and that $A \times_{1} = \lambda \times_{1}$. Then $\frac{11A \times_{2} 11}{11 \times_{2} 11} = \frac{1\lambda 1}{11 \times_{2} 11} = \frac{1\lambda 1}{1$

4.4 Folse in general. Here is a counterexample. Take $A \ge I_z \cdot I_z \cdot \begin{bmatrix} 0-1 \\ 40 \end{bmatrix}$ and $B = I_z \cdot I_z \cdot I_z$. Clearly A and B have the same migular values. If $A = QBQ^*$ for some unitary Q them $\begin{bmatrix} 0-1 \\ 1 \end{bmatrix} = QI_zQ^* = QQ^* = I_z$ mice Q is unitary, hence a contraduction.

52let $A = U \sum V^*$ where $\sum = \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_k \\ 0 & \sigma_k \end{pmatrix}$ Define for $\sum \sigma_k = \int \sigma_k \int \sigma_$