1. Solution

The sample size, *n*, is 24. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 24 \rceil$	6	38.83
Q2	$\lceil 0.5 \times 24 \rceil$	12	39.58
Q3	$\lceil 0.75 \times 24 \rceil$	18	40.87

We determine the IQR.

$$IQR = Q3 - Q1$$

= $40.87 - 38.83$
= 2.04

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $38.83 - 1.5 \times 2.04$
= 35.77
upper boundary = Q3 + $1.5 \times IQR$
= $40.87 + 1.5 \times 2.04$
= 43.93

We determine the outliers.

outliers =
$$\{44.45\}$$

We identify the ends of the whiskers: 37.84 and 43.61. We plot the boxplot.

2. Solution

The sample size, *n*, is 18. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	[0.25 × 18]	5	116.73
Q2	$\lceil 0.5 \times 18 \rceil$	9	123.27
Q3	$\lceil 0.75 \times 18 \rceil$	14	126.1

We determine the IQR.

$$IQR = Q3 - Q1$$

= 126.1 - 116.73
= 9.37

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= 116.73 $- 1.5 \times 9.37$
= 102.675
upper boundary = Q3 + 1.5 $\times IQR$
= 126.1 + 1.5 \times 9.37
= 140.155

We determine the outliers.

outliers =
$$\{140.66\}$$

We identify the ends of the whiskers: 107.83 and 132.64. We plot the boxplot.

