Bilgisayar Destekli Lineer Cebir

Fırat İsmailoğlu, PhD.

Hafta - 6:

Matrisler I

MATRISLER

 $m \times n$ boyutunda bir matris, m satir ve n sütün dan oluşan diktörtgen bir vektördür.

ör. $A = \begin{bmatrix} 4 & 2 & -1 \\ 0 & 6 & 5 \end{bmatrix}_{2\times 2}$ matrisi 2 satırdan ve 3 sütündən oluşur. O halde bu matris 2 × 3 boyutunda bir matristir.

ör.
$$B = \begin{bmatrix} 0.2 & 1 \\ 1 & -0.4 \\ 0 & 77 \end{bmatrix}_{3 \times 2}$$
 matrisi 3 satırdan ve 2 sütündən oluşur. O halde bu matris 3 × 2 boyutunda bir matristir.

boyutunda bir matristir.

Not: Küçük harfle göstrilen vektörlerin aksine matrisler büyük harfle gösterilir.

Matrisin Bileşenlerini Göstermek

 $A, m \times n$ boyutunda bir matris olsun. A matrisinin i. satırının $(i \in \{1, ..., m\}), j$. sütunundaki $(j \in \{1, ..., n\})$ elemanını A_{ii} ile göstereceğiz.

Not: A_{ij} bazı kaynaklarda A(i,j) olarak da gosterilir, ama biz bunu tercih etmeyeceğiz.

ör.
$$A = \begin{bmatrix} 4 & 2 & -1 \\ 0 & 6 & 5 \end{bmatrix}_{2\times 3}$$
 matrisi için A_{13} yani 1. satır, 3. sütündaki bileşen -1 dir.

$$A = i \left[\begin{array}{c} j \\ j \end{array} \right]_{m \times n}$$
 is satirlar; tariyor for i = 1:m for j=1:n A(i,j) end end

Matrislerin MATLAB Gösterimi

$$A = \begin{bmatrix} 4 & 2 & -1 \\ 0 & 6 & 5 \end{bmatrix}_{2 \times 3}$$
 matrisi MATLAB da **A**= [4,2,-1;0,6,5] komutuyla yazılır

(dikkat edilirse alt satıra noktalı virgul ile geciliyor.

A matrisinin i. satırın j. elemanı $\mathbf{A}(\mathbf{i},\mathbf{j})$ komutuyla çağırılır.

A matrisinin i. satırının tamamı : $\mathbf{A}(\mathbf{i}, :)$ ile çağırılır.

A matrisinin j. sütunun tamamı: A(:,j) ile çağırılır.

MATRIS ÖRNEKLERI

ör. Ali 3kg elma, 4.5 kg muz ve I kg domates alsın. Bülent I kg elma, 0 kg muz ve 6 kg domates alsın. Ceyda 2.5 kg elma, 4 kg muz ve I kg domates alsın. Bu durumda herbir kişinin aldıkları bir satıra yazılarak oluşturulan matris aşağıdaki gibi olur:

 $M = egin{array}{c|cccc} Elma & Muz & Domates \\ Ali & 3 & 4.5 & 1 \\ Bülent & 1 & 0 & 6 \\ Ceyda & 2.5 & 4 & 1 \\ \hline \end{array}$

satırlar kişilere,sütunlar ürünlere karşılık geliyor

ör.

	Adana	Mersin	Sivas	Kayseri	Ankara
Adana	0	69	423	325	492
Mersin	69	0	491	328	485
Sivas	423	491	0	194	439
Kayseri	325	328	194	0	318
Ankara	492	485	439	318	0

Şehirler arası uzaklığı gösteren tablo da bir matris örneğidir.

ör. Görüntü işleme. Siyah beyaz resimler bilgisayar ortaminda işlendiginde $m \times n$ boyutunda bir matris elde edilir. Bu matrisin her bir bileşeni bir pikseldir ve 0-255 arası bir değer alır. Burada 0'dan 255'e dogru gidildikce pikselin koyuluk değeri azalır (0: en siyah

piksel, 255 en beyaz piksel).

de	ogGrey 🗶													⊙
	x236 uint8													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	87	88	88	89	90	91	91	92	93	93	94	95	96	96
2	88	88	89	90	90	91	92	92	93	94	94	95	96	97
3	89	89	89	90	91	92	92	93	94	94	95	96	97	97
4	89	90	90	91	92	93	93	94	95	95	96	97	98	98
5	90	91	91	92	93	94	94	95	96	96	97	98	99	99
5	91	92	92	93	94	95	95	95	97	97	98	99	99	100
7	92	92	93	94	94	95	96	96	98	98	99	99	100	101
3	92	93	93	94	95	96	96	97	98	98	99	100	100	101
9	94	94	95	95	95	96	96	96	99	99	99	100	100	100
0	95	95	95	95	96	96	96	97	99	99	99	100	100	100
1	95	95	96	96	96	97	97	97	99	99	99	100	100	100
2	96	96	97	97	97	98	98	98	99	99	99	100	100	100
3	97	97	98	98	98	99	99	99	99	99	99	100	100	100
4	98	98	98	99	99	100	100	100	99	99	99	100	100	100
5	99	99	99	99	100	100	101	101	99	99	99	100	100	100
6	99	99	99	100	100	101	101	101	99	99	99	100	100	100
7	99	99	99	100	100	100	101	101	100	100	100	101	101	10
8	99	99	99	100	100	100	101	101	100	100	101	101	101	102
^ <	.00	00	00	100	100	100	101	101	100	101	101	101	102	107

Matrisin herbir bileşeni karşılık geldiği pikselin beyaz yoğunluğunu sayısal olarak gösteriyor.

MATRIS SKALER ÇARPIMI

Bir matris bir sklarle carpilirken, matrisin bütün bileşenleri skalerle çarpılır.

ör.
$$A = \begin{bmatrix} 4 & 2 & -1 \\ 0 & 6 & 5 \end{bmatrix}$$
 matrisini 2 skaleriyle çarparsak:

$$2 \cdot A = \begin{bmatrix} 2 \cdot 4 & 2 \cdot 2 & 2 \cdot -1 \\ 2 \cdot 0 & 2 \cdot 6 & 2 \cdot 5 \end{bmatrix} = \begin{bmatrix} 8 & 4 & -2 \\ 0 & 12 & 10 \end{bmatrix}$$

MATLAB'ta Matris Skaler Çarpımı

 $m \times n$ boyutundaki A matrisini k skaleriyle çarparken k*A komutunu girmemiz yeterlidir. Alternatif olarak bu çarpımı içiçe iki for loop kullanarak yapabiliriz.

```
for i=1:m % bu for satırları tarıyor
  for j=1:n % bu for sutunlari tariyor
     A(i,j)= k*A(i,j);
  end
```

end

MATRISLERIN TOPLANMASI

Aynı boyutlu iki matris toplanırken karşılıklı bileşenler toplanır.

ör.
$$A = \begin{bmatrix} 4 & 2 & -1 \\ 0 & 6 & 5 \end{bmatrix}_{2\times 3}$$
 matrisi ile $B = \begin{bmatrix} -1 & 3 & 0 \\ 3 & 5 & 1 \end{bmatrix}_{2\times 3}$ matrislerini toplayalım.

$$A + B = \begin{bmatrix} 4 - 1 & 2 + 3 & -1 + 0 \\ 0 + 3 & 6 + 5 & 5 + 1 \end{bmatrix} = \begin{bmatrix} 3 & 5 & -1 \\ 3 & 11 & 6 \end{bmatrix}$$

MATLAB'ta Matrislerin Toplanması

 $m \times n$ boyutundaki A ve B matrislerini MATLAB'ta toplarken **A+B** komutunu girmemiz yeterlidir Alternatif olarak bu çarpımı içiçe iki for loop kullanarak yapabiliriz.

```
Z=zeros(m,n);% bu toplamin matrisi olacak
for i=1:m % bu for satırları tarıyor
    for j=1:n % bu for sutunlari tariyor
        Z(i,j)= A(i,j)+B(i,j);
    end
```


ÖZEL MATRISLER

I. Kare Matris

Satır sayısı sütün sayısına eşit olan matrise kare matris denir.

Formal olarak $A \in \mathbb{R}^{n \times n}$ n satıra ve n sütuna sahip bir kare matristir.

ör. Kare matrisler:

$$4 \times 4 \text{ kare} \qquad M = \begin{bmatrix} 3 & 4.5 & 1 \\ 1 & 0 & 6 \\ 2.5 & 4 & 1 \end{bmatrix}_{3 \times 3}$$
 matris

2. Üst Üçgen Matris

Bir $A \in \mathbb{R}^{m \times n}$ matrisinde eğer i > j için $A_{ij} = 0$ oluyorsa bu matrise üst üçgen matris diyeceğiz.

2. Üst Üçgen Matris

Başka bir deyişle üst üçgen matriste satır indisi, sütun indisinden büyük olan bütün bileşenler 0 dır.

$$B = \begin{bmatrix} 3 & 4.5 & 1 & -6 \\ 0 & 1 & -4 & 6 \end{bmatrix}$$

3. Alt Üçgen Matris

Bir $A \in \mathbb{R}^{m \times n}$ matrisinde eğer j > i için $A_{ij} = 0$ oluyorsa bu matrise alt üçgen matris diyeçeğiz.

$$A = \begin{bmatrix} 3 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 4 & 6 & 7 & 9 \end{bmatrix}$$

$$B = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 2 & 1 & 2 & 6 \end{bmatrix}$$

Matrislerin Ust Uçgen Matris Olup Olmadığını Kontrol Eden MATLAB Fonksiyonu I

```
function bool = ustUcgenMi(A)
%eger matris ust ucgen ise satir indisi sutun indisinden %buyuk
%iken bilesenlerin tamami 0 olmalidir.
[m,n]=size(A);% A'nin satir sayisi m, sutun sayisi n
bool=true; %default olarak ust ucgen oldugunu varsaydik
for i = 1:m
    for j = 1:n
        if i>j
           if A(i,j)~=0 %i, j'den buyuk iken A(i,j) ler 0 olmalı
              bool = false;
           end
        end
    end
end
```


Matrislerin Ust Uçgen Matris Olup Olmadığını Kontrol Eden MATLAB Fonksiyonu 2

```
function bool = ustUcgenMi2(A)
%bu fonksiyonda yalnizca i>j olan indisleri kontrol ediyoruz.
m=size(A,1);% A'nin satir sayisi m
bool=true; %default olarak ust ucgen oldugunu varsaydik
for i = 2:m
    for j = 1:i-1% hangi sutuna gidecegimiz hangi satirda oldugumuza bagli
        if A(i,j)~=0 %i, j'den buyuk iken A(i,j) ler 0 olmalı
              bool = false;
        end
    end
end
```


Matrislerin Alt Uçgen Matris Olup Olmadığını Kontrol Eden MATLAB Fonksiyonu

```
function bool = altUcgenMi(A)
%bu fonksiyonda yalnizca j>i olan indisleri kontrol ediyoruz.
m=size(A,1);% A'nin satir sayisi m
bool=true; %default olarak ust ucgen oldugunu varsaydik
for i = 1:m-1
    for j = i+1:n% hangi sutuna gidecegimiz hangi satirda oldugumuza bagli
        if A(i,j)~=0 %j, i'den buyuk iken A(i,j) ler 0 olmalı
              bool = false;
        end
    end
end
```


4. Diagonal (Köşegen) Matris

 $A \in \mathbb{R}^{m \times n}$ bir matris olsun. Eger $i \neq j$ için $A_{ij} = 0$ oluyorsa A matrisine diagonal matris denir.

$$\ddot{\text{or.}} A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{bmatrix} 3 \times 3 \text{ diagonal matris.} B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \end{bmatrix}$$

Not: Diagonal matrisler hem üst üçgen hem de alt üçgen matristir.

5. Birim Matris (Identity Matris)

Tüm diagonal elemanları 1 olan diagonal matrise birim matris denir.

Birim matrisler I_n ile gösterilirler. n burada matriste kac satır yada kac sutun olduğunu gösterir.

ör.
$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Matrisin Transpozunu Almak

Bir matrisin transpozu matrisin satırları sütun yapılarak elde edilir. Bu, aslinda sütunlarin satir yapılmasına denktir.

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix}_{3 \times 4} \quad A^{T} = \begin{bmatrix} 1 & 5 & 9 \\ 2 & 6 & 10 \\ 3 & 7 & 11 \\ 4 & 8 & 12 \end{bmatrix}_{4 \times 3}$$

Formal olarak $A \in \mathbb{R}^{m \times n}$ bir matris olsun. Bu matrisin transpozu $A^T \in \mathbb{R}^{n \times m}$ olur.

Ayrıca
$$\forall i \in \{1, ..., m\}$$
 ve $\forall j \in \{1, ..., n\}$ için $A_{ij} = A_{ji}^T$

or.>>dogMatrix = imread('dog.jpg');

>>imshow(dogMatrix');

5. Simetrik Matris

Transpozu kendine eşit olan matrise simetrik matris denir.

 $A \in \mathbb{R}^{m \times n}$ bir simetrik matris olsun. A'nın transpozu $A^T \in \mathbb{R}^{n \times m}$ A'ya eşit olur.

Bu durumda m=n olmak zorundadır. Bu ise simetrik matrisin aynı zamanda kare matris olmasını gerektirir. Yani satır sayisi sutün sayisina eşit olmak zorundadir.

Formal olarak $A \in \mathbb{R}^{n \times n}$ bir kare matris olsun. Bu matris simetrik ise $A_{ij} = A_{ji}$ olur. $(i, j \in \{1, ..., n\})$.

ör.

	Adana	Mersin	Sivas	Kayseri	Ankara
Adana	0	69	423	325	492
Mersin	69	0	491	328	485
Sivas	423	491	0	194	439
Kayseri	325	328	194	0	318
Ankara	492	485	439	318	0

 $A \in \mathbb{R}^{m \times n}$, $m \times n$ boyutunda bir matris ve $v \in \mathbb{R}^n$ n boyutunda bir vektör olsun.

Bu durumda A matrisi ile v vektörunun carpimiyla oluşan Av vektörü m boyutlu bir vektör olur, ve aşağıdaki şekillerde hesaplanır.

I. Satırlar ile Vektörü Çarpmak

Diyelimki A matrisi 3 tane satırdan oluşşsun ve v vektörü A'nin satirlariyla <u>ayni boyutta</u> bir vektör olsun.

$$\ddot{\text{or.}} A = \begin{bmatrix} 1 & 3 \\ -1 & 4 \\ 2 & 2 \\ 0 & 0 \\ 6 & 1 \end{bmatrix}_{5 \times 2} \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix}_{2 \times 1} = \begin{bmatrix} [1 & 3] \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} \\ [-1 & 4] \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} \\ [2 & 2] \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} \end{bmatrix}_{5 \times 1} = \begin{bmatrix} 1 \cdot 2 + 3 \cdot 1 \\ -1 \cdot 2 + 4 \cdot 1 \\ 2 \cdot 2 + 2 \cdot 1 \\ 0 \cdot 2 + 0 \cdot 1 \\ 6 \cdot 2 + 1 \cdot 1 \end{bmatrix}_{5 \times 1} = \begin{bmatrix} 5 \\ 2 \\ 6 \\ 0 \\ 13 \end{bmatrix}_{5 \times 1}$$

$$A = \begin{bmatrix} 1 & 3 \\ -1 & 4 \\ 2 & 2 \\ 0 & 0 \\ 6 & 1 \end{bmatrix}_{5 \times 2} \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix}_{2 \times 1} = \begin{bmatrix} < (1,3), (2,1) > \\ < (-1,4), (2,1) > \\ < (2,2), (2,1) > \\ < (0,0), (2,1) > \\ < (6,1), (2,1) > \end{bmatrix}_{5 \times 1} = \begin{bmatrix} 5 \\ 2 \\ 6 \\ 0 \\ 13 \end{bmatrix}_{5 \times 1}$$

Genel Formül:

$$A = \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix}_{m \times n} \cdot \begin{bmatrix} v_1 \\ \cdots \\ v_n \end{bmatrix}_{n \times 1} = \begin{bmatrix} A_{11}v_1 + \cdots + A_{1n}v_n \\ \cdots \\ A_{m1}v_1 + \cdots + A_{mn}v_n \end{bmatrix}_{m \times 1} = \begin{bmatrix} \sum_{i=1}^n A_{1i}v_i \\ \cdots \\ \sum_{i=1}^n A_{mi}v_i \end{bmatrix}_{m \times 1}$$

MATLAB Kodu:

```
z=zeros(m,1); % matrix-vektor carpimi olusacak yeni vektor
for i = 1:m %her satır için
    for j = 1:n %her sutun icin
        z(i) = z(i) + A(i,j) * v(j); bloğu
    end
end
```


Direkt iç çarpım yaparak içerideki for loop'tan kurtulabiliriz:

```
z=zeros(m,1); % matrix-vektor carpimi olusacak yeni vektor
for i = 1:m %her satır için
  z(i) = A(i,:)*v;
end
```

2. Sütunlar ile Vektörü Çarpmak

Matris – vektör çarpımında ikinci bir yol olarak matrisin sutunlarını vektörün bileşenleri ile çarpıp toplayabiliriz.

Diyelimki A matrisi 3 tane satırdan sütundan olussun ve v vektörünun boyutu 3 olsun. A'nin sütunlarını 1,2 ve 3 ile numaralandıralım.

$$\begin{bmatrix} \begin{vmatrix} & & \\ & & \\ & & \\ & & \\ 1 & 2 & 3 \end{vmatrix} = v_1 \cdot \begin{vmatrix} & \\ & & \\ & & \\ & & \\ 1 & 2 & 3 \end{vmatrix} + v_2 \cdot \begin{vmatrix} & \\ &$$

Direkt iç çarpım yaparak içerideki for loop'tan kurtulabiliriz:

```
z=zeros(m,1); % matrix-vektor carpimi olusacak yeni vektor
for i = 1:m %her satır için
  z(i)= A(i,:)*v;
end
```

2. Sütunlar ile Vektörü Çarpmak

Matris – vektör çarpımında ikinci bir yol olarak matrisin sutunlarını vektörün bileşenleri ile çarpıp toplayabiliriz.

Diyelimki A matrisi 3 tane satırdan sütundan olussun ve v vektörünun boyutu 3 olsun. A'nin sütunlarını 1,2 ve 3 ile numaralandıralım.

$$\ddot{\text{or.}} A = \begin{bmatrix} 1 & 3 \\ -1 & 4 \\ 2 & 2 \\ 0 & 0 \\ 6 & 1 \end{bmatrix}_{5 \times 2} \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix}_{2 \times 1} = 2 \cdot \begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \\ 6 \end{bmatrix}_{5 \times 1} + 1 \cdot \begin{bmatrix} 3 \\ 4 \\ 2 \\ 0 \\ 1 \end{bmatrix}_{5 \times 1} = \begin{bmatrix} 2 \cdot 1 \\ 2 \cdot -1 \\ 2 \cdot 2 \\ 2 \cdot 0 \\ 2 \cdot 6 \end{bmatrix}_{5 \times 1} + \begin{bmatrix} 1 \cdot 3 \\ 1 \cdot 4 \\ 1 \cdot 2 \\ 2 \cdot 0 \\ 2 \cdot 6 \end{bmatrix}_{5 \times 1} = \begin{bmatrix} 1 \cdot 2 + 3 \cdot 1 \\ -1 \cdot 2 + 4 \cdot 1 \\ 2 \cdot 2 + 2 \cdot 1 \\ 0 \cdot 2 + 0 \cdot 1 \\ 6 \cdot 2 + 1 \cdot 1 \end{bmatrix}_{5 \times 1} = \begin{bmatrix} 5 \\ 2 \\ 6 \\ 0 \\ 13 \end{bmatrix}_{5 \times 1}$$

MATLAB Kodu

```
z=zeros(m,1); % matrix-vektor carpimi olusacak yeni vektor
for i = 1:n %her sutun için
    for j = 1:m %her satur icin
        z(j) = z(j) + A(j,i) *v(i);
    end
end
```

Vektör-skaler çarpımıyla içteki for loop'tan kurtulabiliriz.

```
z=zeros(m,1); % matrix-vektor carpimi olusacak yeni vektor
for i = 1:n %her sutun için
   z= z+A(:,i)*v(i);
end
```

ör. Sağlıklı bir kisinin bir gun sonunda Korona virusune sahip olma olasiliği 0.2; sağlıklı kalma olasiligi 0.8 olsun. Koronali birinin bir gun icerisinde viruslu kalma olasiliği 0.9, sağılığına dönme olasılğı 0.1 olsun. Buna göre

- i. Başlangıçta 95 sağlıklı insan 5 koronali varsa, bir gun sonra sağlıklı insan ve koronali insan sayıları ne olur?
- ii. İki gün sonra bu sayılar ne olur?

Çözüm.

Bir gün sonraki sağlıklı insan sayısı sağlıklı olup sağlıklı kalanlar ile koronolaı olup iyileşenlerden oluşur.

- 95 sağlıklı insandan bir gün sonra sağlıklı kalanların sayısı $0.8 \times 95 = 76$ olur.
- 5 koronali insandan bir gün sonra iylieşenlerin sayısı $0.1 \times 5 = 0.5$ olur.

Toplam $0.8 \times 95 + 0.1 \times 5 = 76.5$ sağlıklı insan bulunur. Bu toplam $[0.8 \ 0.1]$ ile $\begin{bmatrix} 95 \\ 5 \end{bmatrix}$ vektörlerinin iç çarpımı ile de elde edilebilir.

$$\begin{bmatrix} 0.8 & 0.1 \end{bmatrix} \cdot \begin{bmatrix} 95 \\ 5 \end{bmatrix}$$

Koronali kişiler ise sağlıklı olup hastalananlar ile koronali olup iyileşmeyenlerden oluşur.

95 sağlıklı insandan bir gün sonra koronaya yakalanların sayısı $0.2 \times 95 = 19$ olur.

5 koronali insandan bir gün sonra iyileşmeyenlerin sayısı $0.9 \times 5 = 4.5$ olur.

Toplam $0.2 \times 95 + 0.9 \times 5 = 23.5$ koronalı bulunur. Bu toplam $[0.2 \ 0.9]$ ile ${95 \brack 5}$ vektörlerinin iç çarpımı ile de elde edilebilir.

$$[0.2 \ 0.9] \cdot {95 \brack 5}$$

Bu iki iç çarpım aşağıdaki gibi bir matris – vektör çarıpımı şeklinde yazılabilir:

$$\begin{bmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{bmatrix} \cdot \begin{bmatrix} 95 \\ 5 \end{bmatrix} = \begin{bmatrix} 0.8 \times 95 + 0.1 \times 5 \\ 0.2 \times 95 + 0.9 \times 5 \end{bmatrix}$$

Sağlıklı kalma
$$\begin{bmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{bmatrix} \cdot \begin{bmatrix} 95 \\ 5 \end{bmatrix} = \begin{bmatrix} 0.8 \times 95 + 0.1 \times 5 \\ 0.2 \times 95 + 0.9 \times 5 \end{bmatrix} = \begin{bmatrix} 76.5 \\ 23.5 \end{bmatrix}$$
 Sağıklı Koronalı insan insan

İkinci gunun sonunda kaç sağılıklı kaç koronalı olacağı birinci günün sonuna bağlıdır. Hastalanma ve iyileşme oranlarının değişmediğini varsayarsak:

$$\begin{bmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{bmatrix} \cdot \begin{bmatrix} 76.5 \\ 23.5 \end{bmatrix} = \begin{bmatrix} 0.8 \times 76.5 + 0.1 \times 23.5 \\ 0.2 \times 76.5 + 0.9 \times 23.5 \end{bmatrix} = \begin{bmatrix} 63.55 \\ 36.45 \end{bmatrix}$$

Ucuncu günün sonunda:
$$\begin{bmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{bmatrix} \cdot \begin{bmatrix} 63.55 \\ 36.45 \end{bmatrix} = \begin{bmatrix} 54.485 \\ 45.515 \end{bmatrix}$$

Dördüncü günün sonunda:
$$\begin{bmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{bmatrix} \cdot \begin{bmatrix} 54.485 \\ 45.515 \end{bmatrix} = \begin{bmatrix} 48.14 \\ 51.86 \end{bmatrix}$$

