Supplementary Materials of

Self-Attention Based Visual-Tactile Fusion Learning for Predicting Grasp Outcomes

Shaowei Cui, Rui Wang, Junhang Wei, Jingyi Hu, Shuo Wang IEEE Robotics and Automation Letters (IROS Option)

1. Dataset D0

Since the visual and tactile data provided by dataset $\bf D0$ are both RGB images, we set both visual and tactile encoding functions as the CNN architectures for the proposed model. In this paper, the first four layers of ResNet18 [1] are used as the feature extract network for both the two CNNs, and output two $7\times7\times512$ feature maps.

The detailed parameters of the VTFSA model on dataset **D0** is shown in Table 1. Subsequently, we constructed some baselines using the direct-fusion (DF) method, the model parameters with different inputs (**I0**, **I1**, **I2**, and **I3**) are shown in Table 2. Note that the DF model with input **I0** is the original model of [2].

Table 1: Detailed network parameters of the VTFSA model on Dataset **D0**.

Functions	Operations (I0, I1, I2, I3)	Output Shape
E_v	Resnet18 (The first 4 layers)	$7 \times 7 \times 512$
E_t	Resnet18 (The first 4 layers)	$7 \times 7 \times 512$
$F_{v,t,p}$	⊕	$49 \times 49 \times 1024$
$\mathbb{F}_{v,t}$	VTFSA module	$49 \times 49 \times 1024$
$\hat{\mathbb{F}}_{v,t}$	AdaptiveAvgPool2d ((1, 1))	$1 \times 1 \times 1024$
\mathbb{F}_c	FC(1024, 128), FC(128, 2)	$1 \times 1 \times 2$

2. Dataset D1

The detailed parameters of the DF model and VTFSA model on D1 dataset are shown in Table. 3.

Table 2: Detailed network parameters of DF model on Dataset **D0**.

Layers	Operations (I0)	Output Shape	
Visual CNN	Resnet18 (avg-pool)	$2048 (V_{pre}, V_{dur})$	
Left Tactile CNN	Resnet18 (avg-pool)	$2048 (TL_{diff}, TL_{dur})$	
Right Tactile CNN	Resnet18 (avg-pool)	$2048 (TR_{diff}, TR_{dur})$	
Concatenation	$V_{pre} \oplus \oplus TR_{dur}$	2048×6	
FC_1	Linear (2048 \times 6, 128)	128	
FC_2	Linear (128, 2)	2	
Layers	Operations (I1, I2, I3)	Output Shape	
Visual CNN	Resnet18 (avg-pool)	2048 (V)	
Tactile CNN	Resnet18 (avg-pool)	2048 (T)	
Concatenation	$V\oplus T$	2048×2	
FC ₁	Linear (2048 \times 2, 128)	128	
FC_2	Linear (128, 2)	2	

Table 3: Detailed network parameters of models on Dataset **D1**.

Functions	Operations (VTFSA)	Output Shape
E_v	Resnet18 (The first 4 layers)	$7 \times 7 \times 512$
E_t	LSTM (layers 1, hidden 256)	$1 \times 1 \times 64$
$F_{v,t,p}$	\oplus	$7 \times 7 \times 576$
$\mathbb{F}_{v,t}$	VTFSA module	$7 \times 7 \times 576$
$\hat{\mathbb{F}}_{v,t}$	AdaptiveAvgPool2d ((1, 1))	$1 \times 1 \times 576$
\mathbb{F}_c	FC(576, 72), FC(72, 2)	$1 \times 1 \times 2$
Layers	Operations (DF)	Output Shape
Visual CNN	Resnet18 (avg-pool)	2048 (V)
Tactile LSTM	LSTM (layers 1, hidden 256)	64 (T)
Concatenation	$V\oplus T$	2112
FC ₁	Linear (2112,128)	128
FC_2	Linear (128, 2)	2

3. Some examples of datasets

Some examples of the two grasping datasets are shown in Fig. 2. Since they are public datasets developed by other scholars, we do not add them to our manuscript, but add them in our supplementary materials.

Figure 2: Some examples of the two grasping datasets. Please note that these images are from dataset **D0** [3] and **D1** [4].

References

- [1] K. M. He, X. Y. Zhang, S. Q. Ren, and J. Sun, "Deep residual learning for image recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), NV, USA, Jun. 2016, pp. 770-778.
- [2] R. Calandra, A. Owens, M. Upadhyaya, W. Yuan, J. Lin, E. H. Adelson, and S. Levine, "The feeling of success: Does touch sensing help predict grasp outcomes?," *arXiv preprint arXiv:1710.05512*, 2017.
- [3] R. Calandra, A. Owens, M. Upadhyaya, W. Yuan, J. Lin, E. H. Adelson, and S. Levine, "The feeling of success: Does touch sensing help predict grasp outcomes?," *arXiv preprint arXiv:1710.05512*, 2017.
- [4] C. Yang, P. Du, F. Sun, B. Fang, and J. Zhou, "Predict Robot Grasp Outcomes based on Multi-Modal Information," in *IEEE International Conference on Robotics and Biomimetics (ROBIO)*, Kuala Lumpur, Malaysia, Dec. 2018, pp. 1563–1568.