✓ STEP 1: Load & Explore the Data

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Load data
df = pd.read_csv("/content/ola_driver_scaler.csv")
```

STEP 2: Data Structure and Types

```
# Initial Inspection
print(df.shape)
print(df.info())
print(df.head())
→ (19104, 14)
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 19104 entries, 0 to 19103
    Data columns (total 14 columns):
     # Column
                           Non-Null Count Dtype
        Unnamed: 0
                           19104 non-null int64
                           19104 non-null object
19104 non-null int64
         MMM-YY
         Driver_ID
                            19043 non-null float64
                             19052 non-null float64
         Gender
                            19104 non-null object
         City
         Education_Level 19104 non-null int64
         Income
                             19104 non-null int64
        Dateofjoining 19104 non-null object LastWorkingDate 1616 non-null object
         Joining Designation 19104 non-null
                             19104 non-null int64
     11 Grade
     12 Total Business Value 19104 non-null int64
     13 Quarterly Rating
                             19104 non-null
    dtypes: float64(2), int64(8), object(4)
    memory usage: 2.0+ MB
    None
       Unnamed: 0
                  MMM-YY Driver_ID Age Gender City Education_Level \
               0 01/01/19 1 28.0
                                             0.0 C23
    0
    1
               1 02/01/19
                                   1 28.0
                                               0.0 C23
               2 03/01/19
                                 1 28.0
               3 11/01/20
                                   2 31.0
                                               0.0 C7
                                               0.0 C7
    4
               4 12/01/20
                                   2 31.0
       Income Dateofjoining LastWorkingDate Joining Designation Grade
               24/12/18
       57387
                                      NaN
       57387
                  24/12/18
                                      NaN
        57387
                  24/12/18
                                 03/11/19
        67016
                  11/06/20
                                  NaN
                 11/06/20
       67016
       Total Business Value Quarterly Rating
                   2381060
    0
    1
                   -665480
                         0
                         0
```

✓ STEP 3: Convert Date Columns

```
# Convert dates
df['MMM-YY'] = pd.to_datetime(df['MMM-YY'], format='%d/%m/%y')
df['Dateofjoining'] = pd.to_datetime(df['Dateofjoining'], format='%d/%m/%y')
df['LastWorkingDate'] = pd.to_datetime(df['LastWorkingDate'], format='%d/%m/%y', errors='coerce')
# Data Types & Summary
print(df.describe(include='all'))
```

6/8/25, 10:07 AM

print(df.isnull().sum()) 50% 34.000000 0.000000 NaN 1.000000 60087.000000 75% 39.000000 1,000000 NaN 2,000000 83969,000000 max 58.000000 1.000000 NaN 2.000000 188418.000000 std 6.257912 0.493367 0.800167 30914.515344 Dateofjoining LastWorkingDate \ count 19104 NaN NaN uniaue NaN NaN top freq NaN NaN 2018-04-20 21:49:17.788944896 2019-12-26 23:22:34.455445760 mean 2018-12-31 00:00:00 2013-01-04 00:00:00 min 25% 2016-11-28 00:00:00 2019-06-10 00:00:00 2018-09-19 00:00:00 2019-12-20 12:00:00 75% 2019-10-25 00:00:00 2020-07-14 00:00:00 max 2020-12-28 00:00:00 2020-12-28 00:00:00 std Joining Designation Grade Total Business Value count 19104.000000 19104.000000 1.910400e+04 unique NaN NaN NaN NaN top NaN freq NaN NaN NaN 1.690536 2.252670 5.716621e+05 mean min 1.000000 1.000000 -6.000000e+06 0.000000e+00 25% 1.000000 1.000000 50% 1.000000 2.000000 2.500000e+05 2.000000 3.000000 6.997000e+05 75% 5.000000 5.000000 3.374772e+07 max std 0.836984 1.026512 1.128312e+06 Quarterly Rating 19104.000000 count unique NaN top NaN freq NaN mean 2.008899 1.000000 min 25% 1.000000 2.000000 50% 75% 3.000000 4.000000 max 1.009832 std Unnamed: 0 MMM-YY0 Driver_ID Age 61 Gender 0 City Education_Level 0 Income 0 Dateofjoining LastWorkingDate 17488 Joining Designation 0 0 Total Business Value 0

2. Initial Data Observations

📊 Data Shape & Structure

Quarterly Rating

dtype: int64

Rows: 19,104, Columns: 14

Mixed data types:

Numerical: float64, int64Categorical/Text: object

Missing Values

Column	Missing Count	% Missing
Age	61	~0.32%
Gender	52	~0.27%
LastWorkingDate	17,488	~91.5%

3. Statistical Summary of Numerical Columns

0

Variable	Mean	Min	Max	Std Dev	Notes
Age	34.7	21	58	6.26	Normal working-age range
Income	65,652.02	10,747	188,418	30,914.5	Wide range; check for skew
Total Business Value	571,662.14	-6,000,000	33,747,720	1,128,312	Large outliers present
Quarterly Rating	2.01	1	4	1.01	Discrete rating (1 to 4)

✓ STEP 4: KNN Imputation

```
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from sklearn.impute import KNNImputer
# Make a copy before imputation
df_pre = df.copy()
# Only numerical columns for KNN
num_cols = ['Age', 'Income', 'Total Business Value']
df_num = df[num_cols]
# Save mask of missing values
missing_mask = df_num['Age'].isna()
# Apply KNN Imputer
imputer = KNNImputer(n_neighbors=5)
df imputed = pd.DataFrame(imputer.fit transform(df num), columns=num cols)
# Create new column to track imputation
df_imputed['Age_Imputed'] = df_num['Age'].isna()
# Plot Income vs Age before and after
plt.figure(figsize=(14, 6))
# Before Imputation
plt.subplot(1, 2, 1)
sns.scatterplot(x=df_num['Income'], \ y=df_num['Age'], \ hue=missing\_mask, \ palette=\{True: \ 'red', \ False: \ 'blue'\})
plt.title('Before Imputation (Red = Missing Age)')
plt.xlabel('Income')
plt.ylabel('Age')
# After Imputation
plt.subplot(1, 2, 2)
sns.scatterplot(x=df_imputed['Income'], y=df_imputed['Age'], hue=df_imputed['Age_Imputed'], palette=\{True: 'green', False: 'blue'\})
plt.title('After KNN Imputation (Green = Imputed Age)')
plt.xlabel('Income')
plt.ylabel('Age')
plt.tight_layout()
plt.show()
```



```
from sklearn.impute import KNNImputer
# Select only numerical columns
num_cols = df.select_dtypes(include=[np.number]).columns
df_num = df[num_cols]
# Check missing values
print(df_num.isnull().sum())
# Apply KNN Imputer
imputer = KNNImputer(n_neighbors=5)
df_num_imputed = pd.DataFrame(imputer.fit_transform(df_num), columns=num_cols)
# Replace original numerical columns with imputed ones
df[num_cols] = df_num_imputed
# Confirm imputation
print(df.isnull().sum())
    Unnamed: 0
                              0
     Driver_ID
                              0
     Age
                             61
     Gender
                             52
     Education_Level
     Income
     Joining Designation
     Total Business Value
     Quarterly Rating
     dtype: int64
     Unnamed: 0
     MMM-YY
     Driver_ID
                                 0
     Age
                                 0
     Gender
     City
                                 0
     Education_Level
                                 0
     Income
     Dateofjoining
                                 0
     LastWorkingDate
                             17488
     Joining Designation
     Grade
                                 0
     Total Business Value
                                 a
     Quarterly Rating
                                 0
     dtype: int64
```

STEP 5: Aggregate Driver Data (Groupby)

```
# Group by Driver_ID
agg_df = df.groupby('Driver_ID').agg({
    'Age': 'mean',
    'Income': 'mean'
    'Total Business Value': 'mean',
    'Quarterly Rating': lambda x: x.mode()[0] if not x.mode().empty else None,
    'Gender': 'first',
    'City': 'first',
    'Education_Level': 'first',
    'Joining Designation': 'first',
    'Grade': 'first',
    'Dateofjoining': 'first',
    'LastWorkingDate': 'last'
}).reset_index()
agg_df.shape

→ (2381, 12)
```

STEP 6: Feature Engineering

```
# Target variable: 1 if driver has left (has a LastWorkingDate)
agg_df['Attrition'] = agg_df['LastWorkingDate'].notnull().astype(int)
agg_df['Quarterly Rating Change'] = (df.groupby('Driver_ID')['Quarterly Rating'].apply(lambda x: int(x.iloc[-1] > x.iloc[0]))).values
agg_df['Income Change'] = (df.groupby('Driver_ID')['Income'].apply(lambda x: int(x.iloc[-1] > x.iloc[0]))).values
```

STEP 7: Statistical Summary of Final Dataset

agg df.describe(include='all').T

	count	unique	top	freq	mean	min	25%	50%	75%	max	std
Driver_ID	2381.0	NaN	NaN	NaN	1397.559009	1.0	695.0	1400.0	2100.0	2788.0	806.161628
Age	2381.0	NaN	NaN	NaN	33.369298	21.0	29.0	33.0	37.0	58.0	5.890567
Income	2381.0	NaN	NaN	NaN	59232.460484	10747.0	39104.0	55285.0	75835.0	188418.0	28298.214012
Total Business Value	2381.0	NaN	NaN	NaN	312085.359327	-197932.857143	0.0	150624.444444	429498.75	3972127.5	449570.506711
Quarterly Rating	2381.0	NaN	NaN	NaN	1.52037	1.0	1.0	1.0	2.0	4.0	0.810711
Gender	2381.0	NaN	NaN	NaN	0.410332	0.0	0.0	0.0	1.0	1.0	0.491997
City	2381	29	C20	152	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Education_Level	2381.0	NaN	NaN	NaN	1.00756	0.0	0.0	1.0	2.0	2.0	0.81629
Joining Designation	2381.0	NaN	NaN	NaN	1.820244	1.0	1.0	2.0	2.0	5.0	0.841433
Grade	2381.0	NaN	NaN	NaN	2.078538	1.0	1.0	2.0	3.0	5.0	0.931321
Dateofjoining	2381	NaN	NaN	NaN	2019-01-27 12:58:58.009239808	2013-01-04 00:00:00	2018- 06-26 00:00:00	2019-06-23 00:00:00	2020-04- 14 00:00:00	2020-12- 28 00:00:00	NaN
LastWorkingDate	1616	NaN	NaN	NaN	2019-12-26 23:22:34.455445760	2018-12-31 00:00:00	2019-	2019-12-20 12:00:00	2020-07-	2020-12-	NaN

```
# Optional: Increase plot resolution
sns.set(style="whitegrid")
plt.rcParams["figure.figsize"] = (10, 6)
```

Univariate Analysis

```
# Continuous Variables
continuous_vars = ['Age', 'Income', 'Total Business Value']

for col in continuous_vars:
    plt.figure()
    sns.histplot(agg_df[col].dropna(), kde=True, bins=30)
    plt.title(f'Distribution of {col}')
    plt.xlabel(col)
    plt.ylabel('Frequency')
    plt.show()
```


1. Distribution of Age

- · The age distribution appears right-skewed.
- · Most employees are younger, likely in their 20s to early 30s.
- · A few outliers exist at the higher age range.

2. Distribution of Income

- Right-skewed distribution.
- Most employees earn lower to mid-range salaries.
- High-income outliers may represent senior or high-performing roles.

3. Distribution of Total Business Value

- Shows a long right tail, indicating a few employees generate very high business value.
- Majority generate moderate business value, suggesting a Pareto distribution pattern.

```
# Categorical Variables
categorical_vars = ['Gender', 'City', 'Education_Level', 'Joining Designation', 'Grade', 'Quarterly Rating']

for col in categorical_vars:
    plt.figure()
    sns.countplot(x=col, data=agg_df)
    plt.title(f'Count plot of {col}')
    plt.xticks(rotation=45)
    plt.ylabel('Count')
    plt.show()
```


4. Count Plot of Gender

- · Imbalanced gender representation.
- · More male employees than female.

5. Count Plot of Education Level

- · Most employees have Bachelor's or Master's degrees.
- Very few employees have education levels below Bachelor's or above Master's (e.g., PhD).

6. Count Plot of City

- · Uneven distribution across cities.
- Some cities have a significantly higher employee count, possibly regional headquarters or operational hubs.

7. Count Plot of Joining Designation

- · Wide variety of designations.
- · Entry-level or mid-level roles dominate.

8. Count Plot of Grade

- · Certain grades are more common, indicating a pyramidal hierarchy.
- · Lower grades have the highest employee count.

9. Count Plot of Quarterly Rating

- · Most employees received mid-range ratings (3-4).
- Few extreme high or low ratings suggest a moderate performance bias.

Univariate Analysis Summary with Recommendations

1. Distribution of Age

- · Insight: The age distribution appears right-skewed. Most employees are younger, likely in their 20s to early 30s.
- · Recommendation:
 - Consider age-based mentorship programs to leverage the experience of older employees.
 - · Align employee benefits and career development programs with the needs of a younger workforce.

2. Distribution of Total Business Value

- Insight: Shows a long right tail—few employees generate very high business value.
- Recommendation:
 - Recognize and reward high performers to maintain motivation.
 - · Analyze what drives high business value and apply best practices across the organization.

3. Distribution of Income

- Insight: Most employees earn lower to mid-range salaries; income distribution is right-skewed.
- · Recommendation:
 - Conduct a compensation benchmarking study to ensure fairness and competitiveness.
 - Introduce performance-linked bonuses to motivate mid-range earners.

4. Count Plot of Gender

- Insight: More male employees than female.
- Recommendation:
 - · Promote gender diversity in hiring practices.
 - Ensure equal growth opportunities and workplace support for all genders.

5. Count Plot of Education Level

- Insight: Majority have Bachelor's or Master's degrees.
- Recommendation:
 - Offer advanced learning programs (e.g., certification, executive courses).
 - Utilize the existing educational background for specialized projects and innovation.

6. Count Plot of City

- Insight: Uneven employee distribution across cities.
- Recommendation:
 - · Investigate if the geographic concentration aligns with business needs.
 - o Optimize office resources and infrastructure based on employee distribution.

7. Count Plot of Joining Designation

- · Insight: Entry-level and mid-level roles dominate.
- Recommendation:
 - Strengthen onboarding and early career development programs.
 - Develop leadership training to build a pipeline for senior roles.

8. Count Plot of Grade

- Insight: Certain grades are more common, indicating a pyramidal structure.
- Recommendation:
 - · Review promotion criteria and employee progression timelines.
 - Ensure clear role expectations and career pathways at each grade level.

9. Count Plot of Quarterly Rating

- Insight: Most employees received mid-range ratings (3-4).
- Recommendation:
 - Re-evaluate the performance appraisal process to reduce rating bias.
 - o Provide regular feedback and development goals to improve low performers and further boost high performers.

Bivariate Analysis

```
# Continuous vs Continuous
# Scatter plot between Age and Income
sns.scatterplot(x='Age', y='Income', data=df)
plt.title('Age vs Income')
plt.show()

# Scatter plot between Age and Total Business Value
sns.scatterplot(x='Age', y='Total Business Value', data=agg_df)
plt.title('Age vs Total Business Value')
plt.show()
```

→

Bivariate Analysis: Continuous vs Continuous

25

1. Scatter Plot: Age vs Income

Age vs Income

0

20

Insights:

• Income tends to increase with age, peaking between the age group of 30 to 40.

30

- After the age of 40, income levels show a decline or stagnation for many individuals.
- There's a high density of individuals earning between 50,000 and 150,000 in the 30-40 age range.

35

40 Age

45

50

55

Recommendations:

· Consider targeting training and development programs at employees aged 25-30 to accelerate income growth potential.

- Explore options for mid-career transitions or promotions around the 35-40 age bracket to maintain upward income trajectory.
- Address potential decline in productivity or role stagnation beyond age 45 with flexible roles or lateral mobility opportunities.

2. Scatter Plot: Age vs Total Business Value

Age vs Total Business Value

Insights:

- Total Business Value is more dispersed compared to income and shows high variance across all age groups.
- Some individuals in the 30-40 age group achieve exceptionally high business value contributions.
- Outliers exist in both younger (under 30) and older (over 50) age groups, but they are rare.

Recommendations:

- Focus on grooming entrepreneurial talent between 30-40, where peak value contribution is observed.
- Encourage mentorship programs pairing older employees (who show occasional high business value) with younger ones to share strategies.
- · Implement initiatives to capture and replicate high-value behaviors seen in outlier performers regardless of age.

```
# Continuous vs Categorical
# Boxplots
for cat in ['Gender', 'Education_Level', 'Grade']:
    plt.figure()
    sns.boxplot(x=cat, y='Income', data=agg_df)
    plt.title(f'Income Distribution by {cat}')
    plt.show()
```


Income Distribution by Grade

