Homework 2

Qianlang Chen

Section 2.1

1. Exercise 11 (p97)

Part (a)

Let a, b be the two given odd integers. By definition of odd, we have

$$a = 2m + 1, b = 2n + 1 : m, n \in \mathbb{Z}$$

By substitution,

$$ab = (2m+1)(2n+1)$$

= $4mn + 2m + 2n + 1$
= $2(2mn + m + n) + 1$
= $2k + 1$, where $k = 2mn + m + n$

By closure under addition and multiplication, $k \in \mathbb{Z}$. By definition of odd, we have that ab is an odd number.

Part (b)

Let a be the given odd integer and b be the given even integer. By definition of odd and even, we have

$$a = 2m + 1, b = 2n : m, n \in \mathbb{Z}$$

By substitution,

$$ab = (2m + 1)2n$$

$$= 4mn + 2n$$

$$= 2(2mn + n)$$

$$= 2k, \text{ where } k = 2mn + n$$

By closure under addition and multiplication, $k \in \mathbb{Z}$. By definition of even, we have that ab is an even number.

Part (c)

Let a be the given even integer and b be the given integer that is divisible by 3.

By definition of even, we have

$$a=2m:m\in\mathbb{Z}$$

By definition of being divisible by 3, we have

$$b = 3n : n \in \mathbb{Z}$$

By substitution,

$$ab = 2m \cdot 3n$$

$$= 6mn$$

$$= 6k, \text{ where } k = mn$$

By closure under addition and multiplication, $k \in \mathbb{Z}$. By definition of being divisible by 6, we have that ab is divisible by 6.

2. Exercise 12.d (p97)

This pair of statements are *not* contrapositives of one another.

- Counterexample of case (i): a person that likes computers but does not like computer science.
- Counterexample of case (ii): a person that does not like computers but likes computer science.

3. Exercise 13.a (p97)

Contrapositive: "if m = 0 and n = 0, then $m^2 + n^2 = 0$."

Proof of the contrapositive: Since m = 0 and n = 0, by substitution, we have

$$m^2 + n^2 = 0^2 + 0^2 = 0$$

Since the contrapositive is true, the original statement "if $m^2 + n^2 \neq 0$, then $m \neq 0$ or $n \neq 0$ " is true.

4. Exercise 14.c (p98)

Let n be a number preceding a perfect cube. Since any perfect cube is in the form of x^3 where x is an integer, we have that $n = x^3 - 1$.

The expression $x^3 - 1$ is equivalent to $(x - 1)(x^2 + x + 1)$:

$$(x-1)(x^2+x+1) = x(x^2+x+1) - 1(x^2+x+1)$$

$$= (x \cdot x^2 + x \cdot x + x \cdot 1) - (1 \cdot x^2 + 1 \cdot x + 1 \cdot 1)$$

$$= x^3 + x^2 + x - x^2 - x - 1$$

$$= x^3 - 1$$

Now, since $n = x^3 - 1$, n can always be factorized into (x - 1) and $(x^2 + x + 1)$.

- When x is zero or negative, n is negative, which can never be prime.
- When x is 1, $n = 1^3 1 = 0$, which is not prime.
- When x is 2, $n = 2^3 1 = 7$, which is prime.
- When x is 3 or higher, since n can always be factorized into (x-1) and (x^2+x+1) , but (x-1) is not 1 or n, n is divisible by some other integer that is not 1 or n. Therefore, n is not prime.
- When x is not an integer, n is not an integer, which is not prime.

Since the above cases cover all possibilities of x, 7 is indeed the only prime preceding a perfect cube.

5. Exercise 7.e (p108)

Let m be the given $10^{n-1} - 1$ that is divisible by 9. Since m is divisible by 9, $m = 9k : k \in \mathbb{Z}$.

Since $10^n = 10 \cdot 10^{n-1}$, we have

$$\begin{array}{l} 10^{n}-1=10\cdot 10^{n-1}-1\\ &=10\cdot (10^{n-1}-1+1)-1\\ &=10\cdot (m+1)-1\\ &=10\cdot (9k+1)-1\\ &=90k+10-1\\ &=90k+9\\ &=9\cdot (10k+1)\\ &=9c \end{array} \qquad \begin{array}{l} \text{Substituting } m=10^{n-1}-1\\ \text{Substituting } 9k=m\\ \text{Distributing } 10\\ \text{Distributing } 10\\ \text{Factoring out } 9\\ \text{Where } c=10k+1 \end{array}$$

By closure under addition and multiplication, $c \in \mathbb{Z}$. By definition of being divisible by 9, $10^n - 1$ is divisible by 9.

6. Exercise 16 (p109)

Since n is not divisible by 3, by the division theorem, $n = 3q + r : q, r \in \mathbb{Z}, 0 < r < 3$. In other words, one of the following cases about r must be true:

Case I, when r = 1, meaning that n = 3q + 1:

$$n^2 + 2 = (3q + 1)^2 + 2$$
 Substituting $3q + 1 = n$
= $9q^2 + 6q + 1 + 2$
= $9q^2 + 6q + 3$
= $3 \cdot (3q^2 + 2q + 1)$ Factoring out 3
= $3k$ Where $k = 3q^2 + 2q + 1$

By closure under addition and multiplication, $k \in \mathbb{Z}$. By definition of being divisible by 3, $n^2 + 2$ is divisible by 3.

Case II, when r = 2, meaning that n = 3q + 2:

$$n^2 + 2 = (3q + 2)^2 + 2$$
 Substituting $3q + 2 = n$
= $9q^2 + 12q + 4 + 2$
= $9q^2 + 12q + 6$
= $3 \cdot (3q^2 + 4q + 2)$ Factoring out 3
= $3k$ Where $k = 3q^2 + 4q + 2$

By closure under addition and multiplication, $k \in \mathbb{Z}$. By definition of being divisible by 3, $n^2 + 2$ is divisible by 3.

Therefore, $n^2 + 2$ is divisible by 3 in every possible case.

7. Exercise 20 (p109)

Let n be any integer. Let $s = (n-1)^3 + n^3 + (n+1)^3$, which is the sum of three consecutive perfect cubes mentioned in the problem. After simplifying the expression of s, we have

$$s = (n-1)^3 + n^3 + (n+1)^3$$

$$= (n^3 - 3n^2 + 3n - 1) + n^3 + (n^3 + 3n^2 + 3n + 1)$$

$$= 3n^3 + 6n$$

$$= 3n \cdot (n^2 + 2)$$
Factoring out $3n$

Now, one of the following cases about n must be true:

Case I, when n is divisible by 3:

Since n is divisible by 3, meaning that $n = 3k : k \in \mathbb{Z}$, we have

$$s = 3n \cdot (n^2 + 2)$$

$$= 3 \cdot 3k \cdot (n^2 + 2)$$
 Substituting $3k = n$

$$= 9k \cdot (n^2 + 2)$$

$$= 9c$$
 Where $c = k \cdot (n^2 + 2)$

By closure under addition and multiplication, $c \in \mathbb{Z}$. By definition of being divisible by 9, s is divisible by 9.

Case II, when n is not divisible by 3:

Since n is not divisible by 3, according to what is proven by *Exercise 16*, $(n^2 + 2)$ is divisible by 3. This means that $n^2 + 2 = 3k : k \in \mathbb{Z}$, and we have

$$s = 3n \cdot (n^2 + 2)$$

= $3n \cdot 3k$ Substituting $3k = n^2 + 2$
= $9nk$
= $9c$ Where $c = nk$

By closure under addition and multiplication, $c \in \mathbb{Z}$. By definition of being divisible by 9, s is divisible by 9. Therefore, s is divisible by 9 is every possible case.

8. Show that the square of an integer not divisible by 5 leaves a remainder of 1 or 4 when divided by 5.

Let n be the given integer that is not divisible by 5. By the division theorem, since n is not divisible by 5, $n = 5q + r : q, r \in \mathbb{Z}, 0 < r < 5$. In other words, one of the following cases about r must be true:

Case I, when r = 1, meaning that n = 5q + 1:

$$n^2 = (5q+1)^2$$
 Substituting $5q+1=n$
 $= (25q^2+10q)+1$
 $= 5 \cdot (5q^2+2q)+1$ Factoring out 5
 $= 5k+1$ Where $k = 5q^2+2q$

By closure under addition and multiplication, $k \in \mathbb{Z}$. By the division theorem, n^2 leaves a remainder of 1 when divided by 5.

Case II, when r = 2, meaning that n = 5q + 2:

$$n^2 = (5q + 2)^2$$
 Substituting $5q + 2 = n$
= $(25q^2 + 20q) + 4$
= $5 \cdot (5q^2 + 4q) + 4$ Factoring out 5
= $5k + 4$ Where $k = 5q^2 + 4q$

By closure under addition and multiplication, $k \in \mathbb{Z}$. By the division theorem, n^2 leaves a remainder of 4 when divided by 5.

Case III, when r = 3, meaning that n = 5q + 3:

$$n^2 = (5q + 3)^2$$
 Substituting $5q + 3 = n$
 $= 25q^2 + 30q + 9$
 $= (25q^2 + 30q + 5) + 4$
 $= 5 \cdot (5q^2 + 6q + 1) + 4$ Factoring out 5
 $= 5k + 4$ Where $k = 5q^2 + 6q + 1$

By closure under addition and multiplication, $k \in \mathbb{Z}$. By the division theorem, n^2 leaves a remainder of 4 when divided by 5.

Case IV, when r = 4, meaning that n = 5q + 4:

$$n^2 = (5q + 4)^2$$
 Substituting $5q + 4 = n$

$$= 25q^2 + 40q + 16$$

$$= (25q^2 + 40q + 15) + 1$$

$$= 5 \cdot (5q^2 + 8q + 3) + 1$$
 Factoring out 5

$$= 5k + 1$$
 Where $k = 5q^2 + 8q + 3$

By closure under addition and multiplication, $k \in \mathbb{Z}$. By the division theorem, n^2 leaves a remainder of 1 when divided by 5.

Therefore, the n^2 leaves a remainder of 1 or 4 when divided by 5 in every possible case.

9. Exercise 26.c (p109)

First, let us prove that a perfect square k^2 is divisible by 4 if and only if k is even.

Let n be a perfect square, and by definition, $n = k^2 : k \in \mathbb{Z}$. Since k must be either even or odd, one of the following cases must be true:

Case I, when k is even:

Since k is even, $k = 2c : c \in \mathbb{Z}$. By substitution, we have

$$n = k^2 = (2c)^2 = 4c^2 = 4m$$
 where $m = c^2$

By closure under addition and multiplication, $m \in \mathbb{Z}$. By definition of being divisible by 4, n is divisible by 4.

Case II, when k is odd:

Since k is odd, $k = 2c + 1 : c \in \mathbb{Z}$. By substitution, we have

$$n = k^{2} = (2c + 1)^{2}$$

$$= 4c^{2} + 4c + 1$$

$$= 4 \cdot (c^{2} + c) + 1$$

$$= 4m + 1 \text{ where } m = c^{2} + c$$

By closure under addition and multiplication, $m \in \mathbb{Z}$. By the division theorem, n leaves a remainder of 1 when divided by 4, implying that n is not divisible by 4.

Therefore, every perfect square k^2 is divisible by 4 if and only if k is even.

Now, let us prove the contrapositive of the original problem statement: "for every three integers a, b, and c where $c^2 = a^2 + b^2$, if not both a and b are even, then c is not even."

Since every integer is either even or odd, at least one of $\{a,b\}$ must be odd for the above condition to be true. Therefore, we can let j be one of $\{a,b\}$ that is odd and k be the other (which can be either even or odd). Since j is odd, $j = 2p + 1 : p \in \mathbb{Z}$, and this leads us into one of the following:

Case I, when k is even:

By definition of even, $k = 2q : q \in \mathbb{Z}$. By substitution, we have

$$c^{2} = j^{2} + k^{2}$$

$$= (2p+1)^{2} + (2q)^{2}$$
 Substituting $2p+1 = j$ and $2q = k$

$$= 4p^{2} + 4p + 1 + 4p^{2}$$

$$= 4 \cdot (p^{2} + p + q^{2}) + 1$$
 Factoring out 4

$$= 4m + 1$$
 Where $m = p^{2} + p + q^{2}$

By closure under addition and multiplication, $m \in \mathbb{Z}$. By the division theorem, c^2 is not divisible by 4, which means that c is not even, according to what we have proved earlier.

Case II, when k is odd:

By definition of odd, $k = 2q + 1 : q \in \mathbb{Z}$. By substitution, we have

$$c^{2} = j^{2} + k^{2}$$

$$= (2p+1)^{2} + (2q+1)^{2}$$
Substituting $2p+1 = j$ and $2q+1 = k$

$$= 4p^{2} + 4p + 1 + 4q^{2} + 4q + 1$$

$$= 4p^{2} + 4p + 4q^{2} + 4q + 2$$

$$= 4 \cdot (p^{2} + p + q^{2} + q) + 2$$
Factoring out 4

$$= 4m + 2$$
Where $m = p^{2} + p + q^{2} + q$

By closure under addition and multiplication, $m \in \mathbb{Z}$. By the division theorem, c^2 is not divisible by 4, which means that c is not even, according to what we have proved earlier.

Therefore, c is not even in every possible case. Also, since the contrapositive is true, the original statement is true.

- 10. Exercise 2 (p121)
- Part (a)
- Part (b)
- Part (c)
- Part (d)
- 11. Exercise 3.f (p121)
- 12. Exercise 4.e (p122)
- 13. Exercise 8.f (p122)
- 14. Exercise 13 (p122)

- 15. Exercise 1.d (p130)
- 16. Exercise 2.d (p130)
- 17. Exercise 4.b (p130)
- 18. Exercise 6 (p131)

- 19. Exercise 12 (p147)
- 20. Exercise 20 (p148)
- 21. Exercise 32.b (p149)
- 22. Exercise 34.b (p149)