Review of K-means algorithm

Algorithm: *k*-means. The *k*-means algorithm for partitioning, where each cluster's center is represented by the mean value of the objects in the cluster.

Input:

- \blacksquare k: the number of clusters,
- \blacksquare D: a data set containing n objects.

Output: A set of *k* clusters.

Method:

- (1) arbitrarily choose k objects from D as the initial cluster centers;
- (2) repeat
- (3) (re)assign each object to the cluster to which the object is the most similar, based on the mean value of the objects in the cluster;
- (4) update the cluster means, that is, calculate the mean value of the objects for each cluster;
- (5) **until** no change;

An example implementation of k-means algorithm

Initialization

d(i,j) =	$\sqrt{(x_{i1}-x_{j1})^2+(x_{i2}-x_{j2})^2+\cdots+(x_{ip}-x_{jp})^2}$) ²
	Fuclidean distance	

	x1	x2
0	2.072345	-3.241693
1	17.936710	15.784810
2	1.083576	7.319176
3	11.120670	14.406780
4	23.711550	2.557729
5	24.169930	32.024780
6	21.665780	4.892855
7	4.693684	12.342170
8	19.211910	-1.121366
9	4.230391	-4.441536
Example data set		

An example implementation of k-means algorithm

0 2.072345 -3.241693 **1** 17.936710 15.784810

x1

(17.936710.15.784810) Cluster

Why the data item with index '9' is assigned to cluster 2 ???

d(object_9, centroid_1) =
$$((4.230391-17.936710)^{**2} + (-4.441536-15.784810)^{**2})^{**0.5} = 24.43293378$$
 d(object_9, centroid_2) = $((4.230391-4.693684)^{**2} + (-4.441536-12.342170)^{**2})^{**0.5} = 16.79009909$ d(object_9, centroid_2) < d(item_9, centroid_1) => item with index 9 is assigned to cluster 2

(4.693684, 12.342170) ← Cluster 2
Centroid 2

9.211910 -1.121366

4.230391 -4.441536 Example data set

$$d(i,j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

Euclidean distance

- Exercise 1: cluster data objects from data set 1 manually
- Conditions
 - K = 2 :- cluster 1 and cluster 2
 - Data object with index '4' as initial centroid for cluster 1
 - Data object with index '8' as initial centroid for cluster 2
 - Use Euclidean distance
- You should calculate and output
 - Centroids of the found clusters
 - Data objects for each of the two final clusters

$$d(i,j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

Euclidean distance

	x1	x2
0	0.407503	15.297050
1	7.314846	3.309312
2	-3.438403	-12.025270
3	17.639350	-3.212345
4	4.415292	22.815550
5	11.941220	8.122487
6	0.725853	1.806819
7	8.185273	28.132600
8	-5.773587	1.024800

Data set 1

18.769430

24.169460

х1 **x2** Solution 1: cluster data items from data set 1 manually 0.407503 15.297050 7.314846 3.309312 Cluster 1 -3.438403 -12.025270 Centroid: (8.74374362, 17.639350 -3.212345 19.7074294) 4.415292 22.815550 11.941220 8.122487 0.725853 1.806819 8.185273 28.132600 -5.773587 1.024800 18.769430 24.169460 Data set 1

- Some weaknesses of k-means algorithm
 - Number of clusters needs to be decided beforehand
 - Can only discover spherical clusters (compare to density-based methods)
 - Sensitive to outliers (show this to you later)

TID	Set of items
0	bread, meat, wine
1	bread, meat
2	pizza, wine
3	bread, meat, pizza, wine
	Set of transactions D

Item set	Support
{bread}	3
{meat}	3
{pizza}	2
{wine}	3
{bread, meat}	3
{bread, wine}	2
{meat, wine}	2
{pizza, wine}	2
{bread, meat, wine}	2

Frequent itemsets

- Basic ideas of Apriori algorithm
 - Apriori rule: all the non-empty sub-itemsets of frequent itemsets must be frequent.

Itemset {bread, meat, wine} is frequent

{bread}	3	frequent
{meat}	3	frequent
{wine}	3	frequent
{bread, meat}	3	frequent
{bread, wine}	2	frequent
{meat, wine}	2	frequent

- Basic ideas of Apriori algorithm
 - Apriori rule: all the non-empty sub-itemsets of frequent itemsets should be frequent.
 - Use the set L_k of frequent itemsets with length k to search for both candidate set C_{k+1} of itemsets and set L_{k+1} of frequent itemsets with length k+1

Frequent itemsets

Frequent itemsets

- Exercise 2: manually generate L₁ from set S
 - Set minimum support_{count} to 2

TID	Data items
1	A, B, E
2	C, A, D
3	C, B, D
4	C, A, B, E
Exar	nple data set S

Solution 2:

Item set	Support
{bread}	3
{meat}	3
{pizza}	2
{wine}	3
{bread, meat}	3
{bread, wine}	L _{2 2}
{meat, wine}	2
{pizza, wine}	2
{bread, meat, wine}	L ₃ 2
Frequent iten	nsets

How to generate C_k from L_{k-1} , when $k \ge 2$?

How to generate C_k from L_{k-1} , when $k \ge 2$?

1. Keep items in itemsets in L_{k-1} in an ascending order according to their dictionary order

How to generate C_k from L_{k-1} , when $k \ge 2$?

1. Keep items in itemsets in L_{k-1} in an ascending order according to their dictionary order

How to generate C_k from L_{k-1} , when $k \ge 2$?

2. Merge each possible pair of itemsets from L_{k-1}

Let $(\{p_1, p_2, ..., p_{k-2}, p_{k-1}\}, \{q_1, q_2, ..., q_{k-2}, q_{k-1}\})$ be a pair of two itemsets from L_{k-1} .

- -- if: $\{p_1, p_2, ..., p_{k-2}\} = \{q_1, q_2, ..., q_{k-2}\}$ and $p_{k-1} < q_{k-1}$
 - -- then merge them into: $\{p_1, p_2, ..., p_{k-2}, p_{k-1}, q_{k-1}\}$
- -- else: not merge them

How to generate C_k from L_{k-1} , where $k \ge 2$?

2. Merge each possible pair of items from L_{k-1}

Support	Set of items
3	{bread, meat}
2	{bread, wine}
2	{meat, wine}
2	{pizza, wine}

({bread, meat}, {bread, wine}) => {bread, meat, wine}

Because {bread} = {bread} and meat < wine

	Item set	Support
	{bread}	3
	{meat}	3
	{pizza}	2
	{wine}	3
	{bread, meat}	3
	{bread, wine}	L _{2 2}
	{meat, wine}	2
	{pizza, wine}	2
{brea	d, meat, wine}	L ₃ 2
Frequent itemsets		

How to generate C_k from L_{k-1} , where $k \ge 2$?

2. Merge each possible pair of items from L_{k-1}

	Support	Set of items
({bread, wine}, {bread, mea	3	{bread, meat}
<pre> #> {bread, meat, wine}</pre>	2	{bread, wine}
Because wine > meat	2	{meat, wine}
	2	{pizza, wine}

How to generate C_k from L_{k-1} , where $k \ge 2$?

2. Merge each possible pair of items from L_{k-1}

Because {bread} # {meat}

How to generate C_k from L_{k-1} , where $k \ge 2$?

2. Merge each possible pair of items from L_{k-1}

		Support	Set of items
Item set	merge itemsets	3	{bread, meat}
{bread, meat, wine}	in L ₂	2	{bread, wine}
(* * * * * * * * * * * * * * * * * * *		2	{meat, wine}
C ₃		2	{pizza, wine}
		L ₂	

Item set	Support	
{bread}	3	
{meat}	3	
{pizza}	2	
{wine}	3	
{bread, meat}	3	
{bread, wine}	L _{2 2}	
{meat, wine}	2	
{pizza, wine}	2	
{bread, meat, wine}	L ₃ 2	
Frequent itemsets		

Pre-pruning for C_k when $k \ge 2$ before scanning D

Item set	Support	
{bread}	3	
{meat}	3	
{pizza}	2	
{wine}	3	
{bread, meat}	3	
{bread, wine}	L _{2 2}	
{meat, wine}	2	
{pizza, wine}	2	
{bread, meat, wine}	L ₃ 2	
Frequent itemsets		

Pre-pruning for C_k when $k \ge 2$ before scanning D

Pruning rule: given an itemset $i_k \subseteq C_k$, if not all sub-itemsets of length k-1 of i_k are contained in L_{k-1} , then remove i_k from C_k

Item set Su	pport	
{bread}	3	
{meat}	3	
{pizza}	2	
{wine}	3	
{bread, meat}	3	
{bread, wine}	L _{2 2}	
{meat, wine}	2	
{pizza, wine}	2	
{bread, meat, wine}	L ₃ 2	
Frequent itemsets		

 $\begin{array}{c} \textbf{Item set} \\ \textbf{\{bread, meat, wine\}} \\ \textbf{C}_3 \end{array}$

The sub-itemsets of length 2 for {bread, meat, wine} include: {bread, meat}, {bread, wine}, {meat, wine}, which are all Included in L₂. So keep {bread, meat, wine}.

Pre-pruning for C_k when $k \ge 2$ before scanning D

Scan D to add supports for itemsets in C_k

Remove infrequent itemsets and generate L_k

- Exercise 3: given L₂ for set S, show the three C₃ and L₃
 - Set minimum support_{count} to 2

remove infrequent

ones

{A, B, E}

Solution 3:

2

- T is a set of transactions
- I is the set of all possible itemsets composed by items in T
- A ⊆ I and B ⊆ I are two itemsets/sub-itemsets from T
- A => B is an association rule

Usually, we would like to discover the association rule A => B
of which the support and confidence are above certain levels.

- $support(A \Rightarrow B) = support(A \cup B) = \frac{support_{count}(A \cup B)}{|T|}$
- $confidence(A \Rightarrow B) = \frac{support(A \cup B)}{support(A)} = \frac{support_{count}(A \cup B)}{support_{count}(A)}$
- min_sup represents minimum support and min_conf represents minimum confidence
- A => B is a desired association rule if:
- $support(A \Rightarrow B) \ge min_sup and confidence(A \Rightarrow B) \ge min_conf$

Set min_sup to 0.5, min_conf to 0.7, is {bread} => {meat} from D a
desired association rule?

TID	Set of items
0	bread, meat, wine
1	bread, meat
2	pizza, wine

3 bread, meat, pizza, wine

Set of transactions D

Set min_sup to 0.5, min_conf to 0.7, is {bread} => {meat} from D a
desired association rule?

TID	Set of items
0	bread, meat, wine
1	bread, meat
2	pizza, wine

3 bread, meat, pizza, wine

Set of transactions D

$$\begin{array}{l} support(\{bread\} \Rightarrow \{meat\}) = \\ \frac{support_{count}(\{bread,meat\})}{|D|} = \frac{3}{4} = 0.75 > min_sup \\ \\ confidence(\{bread\} \Rightarrow \{meat\}) = \\ \frac{support_{count}(\{bread,meat\})}{support_{count}(\{bread\})} = \frac{3}{3} = 1 > min_conf \end{array}$$

{bread} => {meat} is a desired
association rule

 Usually, we use lift to evaluate the quality of the discovered association rule A => B

$$lift(A \Rightarrow B) = \frac{support(A \cup B)}{support(A) \cdot support(B)} = \frac{P(A \cup B)}{P(A) \cdot P(B)}$$

If $lift(A \Rightarrow B) \approx 1$ then A and B are independent

If $lift(A \Rightarrow B) \ll 1$ then A and B are negatively correlated

If $lift(A \Rightarrow B) \gg 1$ then A and B are positively correlated

Evaluate the quality of the association rule {bread} => {meat} by using lift

Set of items
bread, meat, wine
bread, meat
pizza, wine

3 bread, meat, pizza, wine

Set of transactions D

$$\frac{lift(\{bread\} \Rightarrow \{meat\}) =}{\frac{support(\{bread,meat\})}{support(\{bread\}) \cdot support(\{meat\})}} = \frac{(3/4)}{(3/4) \cdot (3/4)} = 1.33$$

Exercise 3: judge if {A, B} => {E}, {A} => {B} and {A} => {C} are the desired association rules under minimum support 0.5 and minimum confidence 0.75? Also evaluate the quality of the desired rules.

TID	Data items
1	A, B, E
2	C, A, D
3	C, B, D
4	C, A, B, E

Example data set S

- Solution 3: judge if {A, B} => {E}, {A} => {B} and {A} => {C}
- support({A, B} => {E}) = 0.5, confidence({A, B} => {E}) = 1, lift({A, B} => {E}) = 2, it is desired association rule, and lift is larger than 1
- support({A} => {B}) = 0.5, confidence({A} => {B}) = 0.67, lift({A} => {B}) = 0.89, it is not a
 desired association rule
- support({A} => {C}) = 0.5, confidence({A} => {C}) = 0.67, lift({A} => {C}) = 0.89, it is not a desired association rule

