

مبانی رمزنگاری و امنیت شبکه

امنيت رايانامه

Email Security

مهتاب ميرمحسني

نیمسال دوم (بهار) ۹۹-۹۹

امنيت رايانامه

- پراستفاده ترین برنامه کاربردی تحت وب
- پروتکلهای معمول که هیچ امنیتی را فراهم نمیکنند:
 - SMTP (Simple Mail Transfer Protocol) \circ
- MIME (Multipurpose Internet Mail Extensions) o

محرمانگی و احراز اصالت (پیام و فرستنده)

- Pretty Good Privacy (PGP)
 - محرمانگی: رمز متقارن قالبی
 - احراز اصالت: امضای دیجیتال
 - فشردهسازی: ZIP
 - o سازگاري: radix-64
- Secure/Multipurpose Internet Mail Extension (S/MIME)
 - استاندارد امنیتی برای امنیت رایانامه (با استفاده از روشی مشابه PGP)

Pretty Good Privacy (PGP)

- Phil Zimmermann •
- انتخاب بهترین الگوریتمهای رمزنگاری و یکپارچه کردن آنها در یک برنامه کاربردی همه منظوره (ارسال رایانامه یا ذخیره داده مستقل از نوع سیستم و پردازنده)
- انتشار بسته نرم افزاری (شامل کد) به صورت مجانی در اینترنت (عدم انحصار)
 نسخه تجاری ارزان نیز تولید شده است
 - به طور گسترده مورد استفاده قرار گرفته است
 - (Windows, UNIX, Macintosh) سیستم عاملهای متفاوت ⊙
 - $^{\circ}$ بهترین الگوریتمهای رمزنگاری ($^{\circ}$ RSA) و DH برای رمز کلید همگانی، - $^{\circ}$ بهترین الگوریتمهای مرزنگاری ($^{\circ}$ SHA-1 و $^{\circ}$ 3DES برای رمز متقارن و $^{\circ}$ SHA-1 برای چکیدهساز)
 - (RFC 3156; MIME Security with OpenPGP) استاندارد اینترنتی

خدمات PGP

• فشردهسازی: ZIP

• سازگاری: radix-64

• محرمانگی: رمز متقارن قالبی

• احراز اصالت: امضای دیجیتال

Function	Algorithms Used	Description		
Digital signature	DSS/SHA or RSA/SHA	A hash code of a message is created using SHA-1. This message digest is encrypted using DSS or RSA with the sender's private key and included with the message.		
Message encryption	CAST or IDEA or Three-key Triple DES with Diffie-Hellman or RSA	A message is encrypted using CAST-128 or IDEA or 3DES with a one-time session key generated by the sender. The session key is encrypted using Diffie-Hellman or RSA with the recipient's public key and included with the message.		
Compression	ZIP	A message may be compressed for storage or transmission using ZIP.		
E-mail compatibility	Radix-64 conversion	To provide transparency for e-mail applica- tions, an encrypted message may be converted to an ASCII string using radix-64 conversion.		

احراز اصالت در PGP امضای دیجیتال

- تولید چکیده ۱۶۰ بیتی از پیام با استفاده از SHA-1
 - رمزگذاری چکیده با RSA یا DSS

محرمانگی در PGP

- رمزگذاری پیام با رمز متقارن IDEA ،CAST-128 و یا 3DES (با کلید نشست)
 - cipher feedback mode در سبک o
- کلید مخفی (رمز متقارن) برای هر پیام به صورت یک عدد تصادفی (۱۲۸ یا ۱۶۸ بیتی) تولید می شود و کلید نشست نام دارد (در اصل کلید یکبار مصرف)
 - کلید نشست با رمز کلید همگانی (RSA یا ElGamal) رمز شده و همراه پیام ارسال میشود
 - ترکیب رمز متقارن و نامتقارن جهت کاهش زمان رمزنگاری
 - نیاز به توزیع کلید نشست (مشابه پروتکلهای مدیریت کلید) نداریم

کلیدهای PGP

- 1. کلید مخفی نشست برای رمز متقارن (یکبار مصرف)
- \circ تولید تصادفی با همان الگوریتم رمز متقارن در سبک \circ (کاربرد رمز متقارن در تولید اعداد تصادفی)
 - 2. کلیدهای همگانی/ خصوصی
 - نیاز به داشتن چند جفت کلید نامتقارن (همگانی-خصوصی) برای هر کاربر
 - ➤ استفاده از شناسه کلید (Key Identifier): ارسال شناسه همراه با پیام یا امضا

 $ID = PU_a \mod 2^{64}$

- هر هستار PGP، باید پروندهای از کلیدهای نامتقارن خود و هستارهای دیگر را ذخیره \circ
 - 3. کلید متقارن حاصل از عبارت گذر (passphrase)

(Key Rings) دسته کلیدها

- کلید خصوصی (در دسته کلید خصوصی): به صورت رمز شده با کلید متقارن حاصل از SHA-1 به عبارت گذر کاربر)
 - ⊙ زمان و تاریخ تولید کلیدها (Timestamp)
 - شناسه کلید (Key ID)
 - شناسه کاربر مالک کلید (User ID)

Private-Key Ring

Timestamp	Key ID*	Public Key	Encrypted Private Key	User ID*
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•
T_{i}	$PU_i \mod 2^{64}$	PU_i	$E(H(P_i), PR_i)$	User i
•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

○ دسته کلید خصوصی

دسته کلید همگانی

Public-Key Ring

Timestamp	Key ID*	Public Key	Owner Trust	User ID*	Key Legitimacy	Signature(s)	Signature Trust(s)
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
T_{i}	$PU_i \mod 2^{64}$	PU_i	trust_flag _i	User i	trust_flag _i		
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•

تولید پیام در PGP (بدون فشرده سازی و سازگاری)

مدیریت کلیدهای همگانی در PGP

- نیاز به اطمینان به مالک کلیدهای همگانی
- ارسال کلید همگانی همراه با احراز اصالت فرستنده
 - ارسال فیزیکی
- دریافت کلید توسط شخصی که مورد اعتماد دو طرف است (امضای گواهی)
 - CA : گواهی امضا شده توسط مرجع مجازشناس (مرجع صدور گواهی) \circ
- PGP، روشی را برای اخذ گواهی تحمیل نمی کند و بر اساس توزیع اعتماد عمل می کند
- به جای تکیه بر CAها، هر کاربری CA است و میتواند گواهی کاربرهایی که مستقیماً میشناسد، را امضا کند
 - همگی کاربرها تشکیل مدلی از اعتماد توزیع شده (Web of Trust) را میدهند
 - کلیدی قانونی (legal) است که توسط شخص مورد اعتماد امضا شود
 - میزان اعتماد ممکن است متفاوت باشد

مثالی از مدل اعتماد (Trust) در PGP

= key is deemed legitimate by you

S/MIME

(Secure/Multipurpose Internet Mail Extension)

- پروتکل مبادله ایمیل MIME
- ارائه شده (RFC822) جهت رفع مشكلات نسخه اوليه پروتكل مبادله ايميل $MIME \circ$
 - RFC822 تنها از دادههای متنی پشتیبانی می کرد (عدم ارسال دادههای باینری)
- MIME از انواع متفاوت محتوا و پیامهای چند بخشی (همراه با کدگذاریهای متفاوت)
 پشتیبانی می کند
 - S/MIME نسخه امن شده پروتکل مبادله رایانامه S/MIME است
 - بسیاری از سرورهای ایمیل از S/MIME (نسخه امن شده) پشتیبانی می کنند
 - ... ₉ Mac Mail Mozilla MS Outlook o

قابلیتهای S/MIME

- مشابه PGP: محرمانگی + امضا
 - enveloped data o
- ◄ محتوای رمز شده + کلیدهای همراه
 - signed data o
- (base 64) پیام + امضا (چکیده رمزشده) \longleftrightarrow هر دو کدگذاری میشوند (مثلا با
 - ▼ تنها کاربر با قابلیت S/MIME قادر به مشاهده پیام است
 - clear-signed data o
 - ◄ پيام + امضا (چکيده رمزشده) کدگذاری شده
- ▼ تنها بدون قابلیت S/MIME قادر به مشاهده پیام است ولی نمی تواند امضا را تایید کند
 - signed and enveloped data o
 - ◄ ترکیبی از داده رمز شده (محرمانگی) و امضا

الگوریتمهای رمزنگاری در S/MIME

- RSA و OSS امضای دیجیتال:
- RSA و (گاهی با نام دیفی-هلمن) و ElGamal
- تابع چکیده ساز: SHA-1 و MD5 و MD5 (برای حفظ سازگاری با نسخه قبلی)
- رمزنگاری متقارن پیام: <u>AES ،3-DES</u> و RC2/40 (برای حفظ سازگاری)
 - كد احراز اصالت (MAC): HMAC با بكارگيري SHA-1
 - MUST: پیادهسازی الزامی است
 - SHOULD: پیادهسازی توصیه شده است
 - قوانینی جهت انتخاب الگوریتمها وجود دارد

الگوریتمهای رمزنگاری در S/MIME

Function	Requirement		
Create a message digest to be used in	MUST support SHA-1.		
forming a digital signature.	Receiver SHOULD support MD5 for backward compatibility.		
Encrypt message digest to form a digital	Sending and receiving agents MUST support DSS.		
signature.	Sending agents SHOULD support RSA encryption.		
	Receiving agents SHOULD support verification of RSA signatures with key sizes 512 bits to 1024 bits.		
Encrypt session key for transmission with	Sending and receiving agents SHOULD support Diffie-Hellman.		
a message.	Sending and receiving agents MUST support RSA encryption with key sizes 512 bits to 1024 bits.		
Encrypt message for transmission with a one-time session key.	Sending and receiving agents MUST support encryption with tripleDES.		
	Sending agents SHOULD support encryption with AES.		
	Sending agents SHOULD support encryption with RC2/40.		
Create a message authentication code.	Receiving agents MUST support HMAC with SHA-1.		
	Sending agents SHOULD support HMAC with SHA-1.		

(a) Sender signs, then encrypts message

گواهیهای کلید همگانی در S/MIME

- از گواهی 23 X.509 استفاده می کند
- ترکیبی از PKIX (برای روابط CAها و ...) و مفهوم web of trust در PGP
 - گواهیها توسط CAها امضا میشوند
 - ولی مدیریت گواهیها در هر کاربر صورت میگیرد
 - تولید کلید
 - ۰ ثبت گواهی
 - ذخیره و بازیابی گواهی