Concavity in 1 dimension

TTTHOLT IO JUOK ITHINGO

it's the same as concavity from minus the function.

OK, so a convex function-- so if this is boom, boom, and boom, just think of what would happen if you put a negative sign.

So this is convex, this is convex, and this is convex.

OK.

> 7:09 / 7:09

 End of transcript. Skip to the start.

Video

Download video file

Transcripts

<u>Download SubRip (.srt) file</u> <u>Download Text (.txt) file</u>

A function $g:I o\mathbb{R}$ is **concave** (or concave down) on an interval I, if for all pairs of real numbers $x_1< x_2\in I$

$$g\left(tx_{1}+\left(1-t
ight)x_{2}
ight) \geq tg\left(x_{1}
ight)+\left(1-t
ight)g\left(x_{2}
ight) \qquad ext{ for all } 0 < t < 1.$$

Geometrically, this means that for $x_1 < x < x_2$, the graph of g is **above** the secant line connecting the two points $(x_1, g(x_1))$ and $(x_2, g(x_2))$.

At $x=x_2-t\,(x_2-x_1)=tx_1+(1-t)\,x_2$, the y-value of the graph of g is $g\left(x\right)=g\left(tx_1+(1-t)\,x_2\right)$, while the y-value of the secant line is $tg\left(x_1\right)+(1-t)\,g\left(x_2\right)$. If the inequality is strict, i.e. if

$$g\left(tx_{1}+\left(1-t
ight)x_{2}
ight) > tg\left(x_{1}
ight)+\left(1-t
ight)g\left(x_{2}
ight) \qquad ext{ for all } 0 < t < 1.$$

then $oldsymbol{g}$ is strictly concave .

The definition for **(strictly) convex** is analogous. A function $g:I \to \mathbb{R}$ is **convex** (or concave up), where I is an interval, if for all pairs of real numbers $x_1 < x_2 \in I$

$$g\left(tx_1 + \left(1 - t\right)x_2\right) \leq tg\left(x_1\right) + \left(1 - t\right)g\left(x_2\right) \qquad ext{for all } 0 < t < 1.$$

Geometrically, this means that for $x_1 < x < x_2$, the graph of g is **below** the secant line connecting the two points $(x_1, g(x_1))$ and $(x_2, g(x_2))$.

At $x=x_2-t$ $(x_2-x_1)=tx_1+(1-t)$ x_2 , the y-value of the graph of g is $g\left(x\right)=g\left(tx_1+(1-t)\,x_2\right)$, while the y-value of the secant line is $tg\left(x_1\right)+(1-t)\,g\left(x_2\right)$.

If the inequality is strict, i.e. if

$$g(tx_1 + (1-t)x_2) < tg(x_1) + (1-t)g(x_2)$$
 for all $0 < t < 1$.

then \boldsymbol{g} is strictly convex .

If in addition g is twice differentiable in the interval I, i.e. $g''\left(x
ight)$ exists for all $x\in I$, then g is

- **concave** if and only if $g''\left(x
 ight) \leq 0$ for all $x \in I$;
- strictly concave if g''(x) < 0 for all $x \in I$;
- **convex** if and only if $g''\left(x
 ight) {\geq} 0$ for all $x \in I$;
- **strictly convex** if $g''\left(x\right) > 0$ for all $x \in I$;

Note: In the lecture video and slides, we used these inequality conditions on the second derivative to defined concave functions and strictly concave functions *analytically*. The *synthetic* definition above is slightly more general because it does not require differentiability at every point. For example, the function $x \mapsto x^4$ is strictly convex according to the definition above, but has three vanishing derivatives at the origin x = 0.

Discussion

Hide Discussion

Topic: Unit 3 Methods of Estimation:Lecture 9: Introduction to Maximum Likelihood Estimation / 6. Interlude: Minimizing and Maximizing Functions

Add a Post

