dmv5

November 3, 2024

Data Visualization using matplotlib Problem Statement: Analyzing Air Quality Index (AQI) Trends in a City. The goal is to use the matplotlib library to create visualizations that effectively represent the AQI trends and patterns for different pollutants in the city.

```
[2]: import numpy as np
     import pandas as pd
     import matplotlib.pyplot as plt
     import seaborn as sns
[3]: df= pd.read_csv(r"C:\Users\dell\Desktop\DMV and ML\DMV Datasets\AQI Data Set.
      ⇔csv")
[4]: df.head()
[4]:
        Id Mounths
                    PM10 in æg/m3
                                    SO2 in æg/m3
                                                   NOx
                                                        in æg/m3
                                                                   PM2.5 in ag/m3
     0
            Jan-17
                             174.0
                                            26.4
                                                            35.0
                                                                                 79
     1
         2 Feb-17
                                            35.1
                                                            40.3
                                                                                 75
                             143.0
     2
         3 Mar-17
                                            32.1
                                                                                 59
                             142.0
                                                            30.9
     3
            Apr-17
                             117.0
                                            50.9
                                                            36.3
                                                                                 75
         5 May-17
                               NaN
                                            41.6
                                                            25.2
                                                                                 53
                                       in æg/m3 CO
        Ammonia - NH3 in æg/m3
                                  03
                                                      in mg/m3
                                                                 Benzene
                                                                          in æg/m3
     0
                            25.0
                                          107.6
                                                           0.9
                                                                                0.7
                            31.0
                                          103.0
                                                           0.9
                                                                                0.9
     1
     2
                            26.0
                                           80.7
                                                           0.8
                                                                                0.5
     3
                                           79.5
                                                           0.9
                                                                                0.7
                            36.0
                            28.0
                                           70.0
                                                           0.5
                                                                                0.5
          AQI
     0
       149.0
     1 129.0
     2 128.0
      111.0
     3
          NaN
```

```
[5]: df.columns
[5]: Index(['Id', 'Mounths', 'PM10 in æg/m3', 'S02 in æg/m3', 'NOx in æg/m3',
            ' PM2.5 in æg/m3', 'Ammonia - NH3 in æg/m3', 'O3
                                                                in æg/m3',
            'CO in mg/m3', 'Benzene in æg/m3', 'AQI'],
           dtype='object')
[6]: column_names= ['Id', 'Months', 'PM10', 'S02', 'N0x', 'PM25', 'NH3', '03', 'C0', __
     ⇔' Benzene', 'AQI']
    df.columns=column_names
    df.head()
[6]:
       Id Months
                    PM10
                           S02
                                                          CO
                                                               Benzene
                                 NOx PM25
                                             NH3
                                                     03
                                                                          AQI
        1 Jan-17 174.0 26.4 35.0
                                         79
                                            25.0
                                                  107.6 0.9
                                                                   0.7 149.0
    1
        2 Feb-17
                   143.0 35.1 40.3
                                         75
                                            31.0
                                                  103.0 0.9
                                                                   0.9 129.0
    2
        3 Mar-17 142.0 32.1 30.9
                                         59 26.0
                                                   80.7
                                                         0.8
                                                                   0.5 128.0
                   117.0 50.9 36.3
                                                                   0.7
    3
        4 Apr-17
                                         75
                                            36.0
                                                   79.5
                                                         0.9
                                                                        111.0
    4
        5 May-17
                     NaN 41.6 25.2
                                         53
                                            28.0
                                                   70.0 0.5
                                                                   0.5
                                                                          NaN
[7]: df.isna().sum()
[7]: Id
                0
    Months
                 0
    PM10
                6
    S02
                 1
    NOx
                 2
    PM25
                0
    NH3
                 0
    03
                 0
    CO
                 0
     Benzene
                 0
    AQI
                 5
    dtype: int64
[8]: df.dropna(inplace=True)
    df.isna().sum()
[8]: Id
                0
    Months
                 0
    PM10
                 0
    S02
                0
    NOx
                 0
    PM25
                0
                 0
    NH3
    03
                 0
    CO
                 0
     Benzene
```

AQI 0 dtype: int64

[9]: df.describe()

[9]:		Id	PM10	S02	NOx	PM25	NH3	\
	count	66.000000	66.000000	66.000000	66.000000	66.000000	66.000000	
	mean	38.500000	109.393939	16.093939	30.263636	46.393939	24.072727	
	std	20.417376	25.271376	9.265218	3.947838	20.261277	5.960474	
	min	1.000000	76.000000	4.000000	18.400000	12.000000	11.000000	
	25%	22.250000	90.000000	9.850000	28.125000	27.500000	20.250000	
	50%	38.500000	104.000000	13.700000	29.750000	46.500000	23.000000	
	75%	55.750000	128.000000	17.150000	32.550000	62.750000	28.000000	
	max	72.000000	178.000000	50.900000	40.300000	87.000000	37.000000	
		03	CO	Benzene	AQI			
	count	66.000000	66.000000	66.000000	66.000000			
	mean	25.350000	0.551212	0.213636	104.807576			
	std	21.426413	0.241550	0.190922	22.054250			
	min	2.400000	0.200000	0.000000	58.000000			
	25%	12.025000	0.400000	0.100000	90.950000			
	50%	18.750000	0.500000	0.150000	103.250000			
	75%	31.575000	0.640000	0.300000	119.000000			
	max	107.600000	1.520000	0.900000	166.000000			

[10]: df.info()

<class 'pandas.core.frame.DataFrame'>

Index: 66 entries, 0 to 71

Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype			
0	Id	66 non-null	int64			
1	Months	66 non-null	object			
2	PM10	66 non-null	float64			
3	S02	66 non-null	float64			
4	NOx	66 non-null	float64			
5	PM25	66 non-null	int64			
6	NH3	66 non-null	float64			
7	03	66 non-null	float64			
8	CO	66 non-null	float64			
9	Benzene	66 non-null	float64			
10	AQI	66 non-null	float64			
<pre>dtypes: float64(8), int64(2), object(1)</pre>						

memory usage: 6.2+ KB

```
[11]: plt.figure(figsize=(12,6))
   plt.plot(df["Months"],df["AQI"])
   plt.xlabel("Months")
   plt.ylabel("AQI Levels")
   plt.title("AQI Levels over time")
   plt.xticks(rotation=90)
   plt.show()
```



```
plt.figure(figsize=(12, 6))
plt.plot(df['Months'], df['NOx'], color='orange')
plt.xlabel('Date')
plt.xticks(rotation=75)
plt.ylabel('NOx')
plt.figure(figsize=(12, 6))
plt.plot(df['Months'], df['PM25'], color='skyblue')
plt.xlabel('Date')
plt.xticks(rotation=75)
plt.ylabel('PM25')
plt.figure(figsize=(12, 6))
plt.plot(df['Months'], df['NH3'], color='purple')
plt.xlabel('Date')
plt.xticks(rotation=75)
plt.ylabel('NH3')
plt.figure(figsize=(12, 6))
plt.plot(df['Months'], df['03'], color='green')
plt.xlabel('Date')
plt.xticks(rotation=75)
plt.ylabel('03')
plt.figure(figsize=(12, 6))
plt.plot(df['Months'], df['CO'], color='crimson')
plt.xlabel('Date')
plt.xticks(rotation=75)
plt.ylabel('CO')
```

[13]: Text(0, 0.5, 'CO')


```
[14]: plt.figure(figsize=(12, 6))
   plt.bar(df["Months"], df["AQI"], label="AQI")
   plt.title("AQI Comparison Across Months")
   plt.xlabel("Months")
   plt.ylabel("AQI Value")
   plt.legend()
   plt.xticks(rotation=75)
   plt.show()
```



```
[15]: plt.figure(figsize=(12, 6))
    df.boxplot(color='blue')
    plt.title("Distribution of AQI Values for Pollutants")
    plt.show()
```



```
[18]: pollutants=['PM10', 'S02', 'N0x', 'PM25', 'NH3', '03', 'C0']
    plt.figure(figsize=(10, 6))
    plt.violinplot(df[pollutants])
    plt.xlabel("Pollutants")
    plt.xticks(range(1, len(pollutants) + 1),pollutants)
    plt.ylabel("Values")
    plt.title("Violin Plot of Numeric Data in DataFrame")
    plt.show()
```


[]: