eXplainable Artificial Intelligence

Cours 6 - mardi 24 octobre 2023

Marie-Jeanne Lesot Christophe Marsala Jean-Noël Vittaut Gauvain Bourgne

LIP6 - Sorbonne Université

XAI - 2023-2024

Plan du cours

Interprétabilité

Quelques rappels notations représentation symbolique ou numérique

Approches interprétables

Arbres de décision

Forêts d'arbres de décision

Plan du cours

Interprétabilité

Quelques rappel

Approches interprétables

Arbres de décision

Forêts d'arbres de décision

Explicabilité et interprétabilité

- Soit un modèle de prédiction f
- Différents niveaux d'interprétabilité
 - méthode de construction de f
 - modèle f
 - construction d'une prédiction faite par f
- Explications fournies pour comprendre une prédiction faite par f
- Construction d'un modèle
 - approches "boîtes noires"
 - réseaux de neurones, DL,...
 - approches interprétables "by design"
 - k plus proches voisins
 - raisonnement à partir de cas
 - système à base de règles
 - arbre de décision

Plan du cours

Interprétabilité

Quelques rappels notations représentation symbolique ou numérique

Approches interprétables

Arbres de décision

Forêts d'arbres de décision

Rappels: notations (1)

- ▶ Ensemble de n exemples (ou cas, ou individus) : $\mathbf{x}_1, \dots, \mathbf{x}_n$
 - chaque individu x_i est décrit par d variables.
 x_{i,j} ∈ U_j (ou x_{ij}) est la valeur de la variable j pour l'exemple x_i
- Base d'apprentissage (cas numérique)
 - ensemble d'exemples $\mathbf{X} \in \mathcal{U}_1 \times \ldots \times \mathcal{U}_d$

$$\mathbf{X} = \begin{pmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,d} \\ x_{2,1} & x_{2,2} & \dots & x_{2,d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \dots & x_{n,d} \end{pmatrix}$$

- apprentissage supervisé : les \mathbf{x}_i sont associés à un label $y_i \in \mathcal{U}_\mathbf{Y}$
 - ensemble de labels associés à X

$$\mathbf{Y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Rappels: notations (2)

- Pour un seul exemple : $\mathbf{x} = (x_1, x_2, \dots, x_d)$
- ▶ Terminologie : un label y_i = une classe
- ▶ Classifieur $f: f(\mathbf{x})$ est la classe donnée par f à l'exemple \mathbf{x}
 - cas binaire :
 - $f: \mathcal{U}_1 \times ... \times \mathcal{U}_d \longrightarrow \{-1, +1\}$ $\mathbf{x} \longmapsto f(\mathbf{x})$
 - ou aussi : $f: \mathcal{U}_1 \times \ldots \times \mathcal{U}_d \longrightarrow \{l_1, l_2\}$ avec l_1 et l_2 deux labels
 - cas multiclasses :
 - $f: U_1 \times ... \times U_d \longrightarrow \{l_1, l_2, ..., l_k\}$

Types d'attributs

- Attributs catégoriels (aussi dits symboliques)
 - valeur binaire: {vrai, faux}, {féminin, masculin}, {+1, -1}, {0, 1}
 - nationalité : {français, chinois, marocain, kenyan, brésilien...}
 - tranche d'impôts : {1, 2, 3, 4, 5}
 - ...
- Attributs numériques
 - âge (d'une personne) : valeur (an) dans [0, 120]
 - longueur d'onde de la lumière visible : valeur (nm) dans [380, 780]
 - prix d'achat d'un livre de poche : valeur (euros) dans [1.5, 15]
 - ..

Ex.	âge	cheveux		groupe	Classe	
	100	couleur	longueur			
\mathbf{x}_1	25	noir	18.7	2	+1	
\mathbf{x}_2	37	roux	5.42	1	+1	
\mathbf{x}_3	29	châtain	32.23	1	-1	

Du catégoriel au numérique

- Comment utiliser des données catégorielles avec des classifieurs numériques?
 - · par exemple : perceptron, knn,...
- ► Transformer le catégoriel en numérique ⇒ encodage one hot
 - chaque attribut catégoriel est transformé
 - on remplace les catégories par autant de variables binaires $\{0,1\}$
- Par exemple :
 - Pays = {France, Allemagne, Maroc, Japon}
 - création de 4 variables binaires : une pour France, etc...

Ex.	Pop.(m)	p_France	p_Allemagne	p_Maroc	p_Japon	Classe
\mathbf{x}_1	66.99	1	0	0	0	Europe
\mathbf{x}_2	83.02	0	1	0	0	Europe
\mathbf{x}_3	36.03	0	0	1	0	Afrique
\mathbf{x}_4	126.5	0	0	0	1	Asie

Plan du cours

Interprétabilité

Quelques rappels

Approches interprétables k plus proches voisins raisonnement à partir de cas système à base de règles

Arbres de décision

Forêts d'arbres de décision

Le plus simple des classifieurs interprétables

- L'algorithme des k plus proches voisins
 - pas de construction : on mémorise la base d'apprentissage X
 - prédiction de la classe de x
 - 1. trouver les k exemples de X les "plus proches" de x
 - 2. agréger les classes des k exemples pour en déduire celle de x
 - · approche : proximité des exemples
 - utilisation d'une distance
- Interprétabilité : construction, compréhension et prédiction
 - classe de x : donnée par les exemples qui lui sont le plus proche

Version générale des k-ppv

- Raisonnement à partir de cas (case-based reasoning)
- Attributs mixtes (numériques et/ou catégoriels)
 - comment calculer une distance?
 - remplacer la distance par une mesure de similarité

$$s: \mathbb{X} \times \mathbb{X} \to [0,1]$$

)
$$s(\mathbf{x}, \mathbf{x}') = 1 \iff \mathbf{x} = \mathbf{x}'$$
 identité

2)
$$s(\mathbf{x}, \mathbf{x}') = s(\mathbf{x}', \mathbf{x})$$
 symétrie

avec X: ensemble des exemples possibles (pas seulement ceux de X)

- Apprentissage : mémoriser les exemples (base de cas)
 - plus général : exemple associé à une décision ou une "solution"
- Utilisation: solution pour x (prédiction, classification,...)
 - 1. trouver les cas les plus similaires
 - 2. adapter leurs solutions pour fournir un résultat pour x
- Interprétabilité : construction, compréhension et prédiction
 - la solution pour x est une adaptation des solutions des éléments qui lui ressemblent

Systèmes à base de règles

- Règle d'inférence classique pour faire de la déduction
 - à partir de règles et d'observations, on déduit des conclusions

 $\mbox{règle} \qquad : \quad \mbox{V est } A \quad \longrightarrow \quad \mbox{U est } C$

observation : V est A

- Mécanisme du Modus Ponens
 - lien d'implication
 - l'observation implique l'inférence de la conclusion
- Énoncé : "si V est A alors U est C"
 - observer "V est A": la proposition "V est A" est vraie
 - conclure "U est C": la proposition "U est C" est vraie
- Vision classification :
 - V est A : x est A
 - prémisse composée $(k \leq d): x_1$ est A_1 et . . . et x_k est A_k
- U est C : Y est y

Construction de bases de règles

- Connaissances expertes
- ► Apprendre à partir d'une base d'apprentissage (X, Y)
 - cadre symbolique (IA historique)
 - · cadre numérique surtout pour des modèles flous
- Quelques approches
 - règles d'association
 - tables de décision
 - arbres de décision
- Interprétabilité : construction, compréhension et prédiction
 - construction : approches par regroupements ou divisions
 - compréhension : une base de règles est interprétable
 - · prédiction : lecture des règles qui se déclenchent
- Mais cela peut dépendre aussi de la taille de la base et de la complexité des règles...

Plan du cours

Interprétabilité

Quelques rappels

Approches interprétables

Arbres de décision introduction classification construction conclusion

Forêts d'arbres de décision

Arbres de décision

- Une forme de représentation des connaissances
- ▶ Représentation graphique et hiérarchique d'une base de règles
 - · prémisses : nœuds internes d'une branche
 - conclusion : feuilles de l'arbre (décision/classe)
- Machine learning: méthodes inductives de construction d'arbres de décision
 - algorithme CART de Breiman's, Friedman's et al.'s

- Caractéristiques de ces algorithmes
 - simplicité, rapidité
 - approche formelle

Exemple d'arbre de décision (général)

Exemple d'arbre de décision (numérique)

Frontières fournies par un arbre de décision (1)

- Un arbre de décision définit un découpage par des frontières parallèles aux axes
 - chaque frontière est définie par un test d'un nœud de l'arbre

Frontières fournies par un arbre de décision (2)

- Les frontières définissent des régions de décision
 - · découpage précis des classes

Frontières fournies par un arbre de décision (3)

Les régions servent à classer de nouveaux exemples

Classification avec un arbre de décision

Apprentissage d'un arbre de décision ; algorithme générique

Sélection d'attributs : mesure de discrimination

- Paramètre clé des algorithmes top down
 - · ordonnancement optimal des questions pour déterminer la classe
- Choix d'une bonne mesure de discrimination
 - pour obtenir des nœuds cohérents
 - pour minimiser la taille de l'arbre (heuristique)
 - pour obtenir de bons résultats en classification
- Arbres de décision
 - mesure d'impureté (CART) : index de Gini, entropie de Shannon
 - théorie de l'information (ID3) : entropie de Shannon
- ► Entropie de Shannon : mesure un taux de désordre

$$H_S(X) = -\sum_{x \in X} p(x) \log(p(x))$$

- mesure issue de la théorie de l'information
- initiée par C.E. Shannon en 1948

Mesure d'entropie conditionnelle

- Avec la base d'apprentissage (X, Y)
 - $X = \{v_1, \dots, v_m\}$: ensemble des valeurs prises dans ${\bf X}$ par un attribut (= une colonne de ${\bf X}$)
 - $Y = \{c_1, \dots, c_K\}$: ensemble des valeurs différentes de Y
- ▶ Utilisation de l'entropie de Shannon : forme conditionnelle

$$H_S(Y|X) = -\sum_i p(v_i) \sum_k p(c_k|v_i) \log(p(c_k|v_i))$$

- H_S(Y|X) mesure du pouvoir de discrimination de l'attribut A envers la classe Y
 - X est discriminant pour Y si pour tout i, la connaissance de la valeur v_i de X permet d'en déduire une valeur unique c_k de Y

Relation entre probabilité et désordre

- Cas binaire: 2 classes (blanc ou noir)
 - $p(\mathsf{noir}) = 1 p(\mathsf{blanc})$

▶ Entropie de Shannon : $H_S(X) = -\sum_{x \in Y} p(x) \log(p(x))$

$$H_S(\text{urne}) = -p(\text{blanc}) \log(p(\text{blanc})) - p(\text{noir}) \log(p(\text{noir}))$$

- $H_S(\text{urne}) = 0$ quand p(blanc) = 1 ou quand p(blanc) = 0
- $H_S(\text{urne}) = 1 \text{ quand } p(\text{blanc}) = p(\text{noir}) = 0.5$

Désordre moyen et choix d'un attribut

- Objectif : prédire la couleur de la boule / cube tiré
- Quelle stratégie pour mieux prédire?
 - tirer "quelque chose" est prédire sa couleur
 - tirer une boule est prédire sa couleur
 - tirer un cube est prédire sa couleur
- Entropie de l'urne :

$$\begin{split} H(\mathsf{urne}) &= -p(\mathsf{blanc}) \log(p(\mathsf{blanc})) - p(\mathsf{noir}) \log(p(\mathsf{noir})) \\ \mathsf{soit} \ H(\mathsf{urne}) &= -\frac{22}{34} \log \frac{22}{34} - \frac{12}{34} \log \frac{12}{34} = \underbrace{0.649} \end{split}$$

Désordre moyen et choix d'un attribut

Désordre moyen et choix d'un attribut : bilan

- Entropie de l'urne : 0.649
- ► Entropie de l'urne connaissant la forme : 0.555
- ► Gain d'information apporté par la connaissance de la forme 0.649 0.555 = 0.094
- Il est intéressant d'utiliser la forme pour prédire!

Gain d'information (1)

- Choix du meilleur attribut pour partitionner la base
 - la partition se fait sur ses valeurs
 - · chaque valeur de l'attribut définit un sous-ensemble des exemples
- À l'aide d'une mesure de discrimination.
 - choisir l'attribut qui apporte le plus d'information pour améliorer la connaissance de la classe
 - c'est-à-dire celui qui maximise le gain d'information

$$I_S(X,Y) = H_S(Y) - H_S(Y|X)$$

- H_S(Y): entropie de la base selon les valeurs de la classe
 - vaut 0 si tous les exemples de la base ont la même classe
 - vaut 1 si équi-répartition des différentes valeurs de la classe
- $H_S(Y|X)$: pouvoir de discrimination de X relativement à Y
- $I_S(X,Y)$: gain apporté par un découpage de la base selon les valeurs de X

Gain d'information (2)

$$I_S(X,Y) = H_S(Y) - H_S(Y|X)$$

- ▶ On cherche l'attribut X qui maximise $I_S(X,Y)$
- En pratique : H_S(Y) est le même pour tous les attributs
- lacktriangle On cherche donc l'attribut X qui minimise $H_S(Y|X)$

Exemples de mesures de discrimination (1)

- ► Étant donné une base d'apprentissage (X, Y)
 - $X = \{v_1, \dots, v_m\}$: attribut de description (colonne de \mathbf{X})
 - $Y = \{c_1, \dots, c_K\}$: ensemble des valeurs possibles pour la classe/le label dans \mathbf{Y} (par exemple, $C = \{-1, +1\}$)
- ► Entropie de Shannon

[Shannon, 1948]

$$H_{S}(Y|X) = -\sum_{j=1}^{m} p(v_{j}) \cdot \sum_{k=1}^{K} p(c_{k}|v_{j}) \log p(c_{k}|v_{j})$$

► Mesure d'information

Exemples de mesures de discrimination (2)

Rapport de gain (Gain Ratio)

[Quinlan, 1986]

$$H_R(Y|X) = \frac{H_S(Y|X)}{H_S(X)}$$

- Mesure d'information
 - utilisée en présence d'attributs symboliques
 - ullet pénalise un grand nombre de valeurs pour X

Exemples de mesures de discrimination (3)

► Indice de diversité de Gini

[Gini, début 19e]

$$H_G(Y|X) = \sum_{j=1}^{m} p(v_j) \cdot (1 - \sum_{k=1}^{K} p(c_k|v_j)^2)$$

Mesure du niveau d'adéquation entre les 2 répartitions X et Y

Exemples de mesures de discrimination (4)

Mesure d'ambiguïté

[Yuan & Shaw, 1995]

$$H_Y(Y|X) = \sum_{j=1}^m p(v_j) \cdot g(\Pi(Y|v_j))$$

avec g une mesure de non-spécificité

$$g(\Pi(C|v_j)) = \sum_{i=2}^K \pi_i \cdot (\log(i) - \log(i-1))$$

- ightharpoonup où π est obtenue de la façon suivante :
 - 1. on ordonne les $p(c_k|v_j)$ dans l'ordre décroissant : on note p_1 la plus grande probabilité, puis p_2 la suivante, etc. jusqu'à p_K la plus petite des probabilités
 - 2. on définit $\pi_i = \frac{p_i}{p_1}$ pour tout $i = 1, \dots, K$

Validation d'une mesure de discrimination

- Comment caractériser une bonne mesure de discrimination?
- ► Cadre classique : théorie de l'information
 - mesure de l'information apportée par un événement, etc.
 - mesure de basée sur l'impureté des sous-ensembles

Construction de l'arbre : algorithme classique (symbolique)

- ▶ Mettre la base d'apprentissage dans la pile à traiter
- Tant qu'il y a des ensembles dans la pile à traiter : prendre un ensemble
 - si le critère d'arrêt est atteint alors créer une feuille
 - sinon
 - 1. calculer $H(Y|X_i)$ pour tous les attributs X_i
 - 2. choisir l'attribut X_j qui minimise $H(Y|X_j)$
 - 3. créer un nœud dans l'arbre de décision avec X_j
 - partitionner la base avec les valeurs de X_j
 - 5. mettre les ensembles dans la pile à traiter

Critère d'arrêt de la construction de l'arbre

- Quelques exemples de critères d'arrêt
 - tous les exemples de la base ont la même classe
 - utilisation d'une tolérance : la plupart des exemples ont la même classe
 - utilisation d'un seuil $\varepsilon \in [0,1]$
 - on calcule $H(Y) = -\sum_{k=1}^K p(c_k) \log p(c_k)$ et on s'arrête si $H(Y) \leq \varepsilon$
 - tous les attributs ont été utilisés une fois dans le cas symbolique
 - trop peu d'exemples dans l'ensemble traité
- Création d'une feuille de l'arbre de décision

Traitement des attributs numériques

- X_i, attribut numérique
 - utilisation d'une valeur de coupure v_i
 - construction de 2 intervalles : $]-\infty, v_i[$ et $[v_i, +\infty[$
 - on note : {X_i, v_i} cette décomposition
- lackbox On détermine la valeur v_j qui minimise $H(Y|\{X_j,v_j\})$
 - phase de discrétisation : recherche exhaustive
 - on ensuite traite l'attribut comme un attribut catégoriel

Un même attribut numérique peut intervenir plusieurs fois dans l'arbre final avec des seuils de coupure différents

Conclusion sur les arbres de décision

- Ce dont on n'a pas parlé
 - élagage post-construction (pruning)
 - très performant pour les arbres "classiques"
 - négligeable pour les arbres flous
 - approches de discrétisation des attributs numériques
 - arbres de régression
 - · la sortie est une variable continue
- Modèle très pratique et très utilisé
 - modèle interprétable (selon sa taille...)
 - construction de l'arbre et utilisation de l'arbre
 - représentation des connaissances
 - modèle proche des modèles humain
 - bon compromis efficacité / utilisabilité
- Quelques critiques...
 - taux de reconnaissance
 - frontières parallèles aux axes
 - difficultés avec les classes déséquilibrées

Le problème des classes déséquilibrées

- Difficulté à gérer des distributions déséquilibrées entre les classes
 - par exemple, application médicale : 10% de malades, 90% de non malades
 - prédire "non malade" : taux de bonne classification de 90%
 - · mais... c'est très peu informatif en fait...
 - si on construit un arbre de décision : selon le critère d'arrêt choisi, un seul nœud peut être suffisant!
- Il faut donc généralement
 - soit avoir un modèle d'apprentissage qui en tienne compte
 - soit équilibrer les classes avant l'apprentissage

Adapter les arbres aux classes déséquilibrées

- Extraire des échantillons équilibrés de la base d'apprentissage
 - ullet sélection aléatoire de N exemples pour chaque valeur de la classe
 - · construire un arbre avec cet échantillon
- Ce processus peut être répété plusieurs fois
 - ensembles d'arbres de décision (forêts)

Plan du cours

Interprétabilité

Quelques rappels

Approches interprétables

Arbres de décision

Forêts d'arbres de décision différentes approches résumer des forêts

Multiplier pour améliorer

- ldée : améliorer les performances en multipliant les modèles
 - ensemble learning
- Constituer un ensemble d'apprenants
 - plusieurs apprenants spécialistes localement
- Inciter la diversité des apprenants de l'ensemble
 - · obtenir une couverture de l'espace de représentation efficace
- ► Contrainte : maintenir l'interprétabilité
- Dans ce qui suit :
 - un apprenant : arbre de décision ou classifieur
 - construction d'ensemble d'apprenants
 - utilisation de l'ensemble construit

Ensembles d'arbres de décision (1)

- Boostrap
 - approche utilisée pour quantifier l'incertitude d'une prédiction
 - sélection aléatoire d'échantillon d'exemples pour évaluer le modèle
 - · l'échantillonnage est réalisé un grand nombre de fois
- ► Bagging : boostrap aggregating
 - apprentissage : tirage aléatoire de sous-bases d'apprentissage
 - construction d'un arbre
 - · combinaison des résultats de tous les arbres
 - · classification d'un exemple par l'ensemble
- Boosting
 - combinaison de classifieurs "faibles"
 - construction itérative en tenant compte des exemples mal classés

Ensembles d'arbres de décision (2)

- Random forest
 - but : diversifier le plus possible les arbres construits
 - sélection aléatoire dans des sous-espaces de l'espace de description des exemples
 - sélection aléatoire des dimensions utilisables à chaque niveau de la construction de l'arbre
 - parmi les dimensions choisies : choix classique
- Variante "extrême" : extremely random ensemble
 - · tous les choix sont faits aléatoirement

Approche bagging d'arbres

- Construction de la forêt : approche bootstrap
 - sélection aléatoire de N exemples
 - classique : tirage avec remise
 - variante : tirage sans remise
 - construction d'un arbre avec cet échantillon
 - on réitère ce processus pour multiplier les arbres de la forêt
- Utilisation de la forêt pour classer x
 - chaque arbre fournit une classe pour x
 - agrégation de ces degrés pour obtenir la classe de x
- Interprétabilité
 - construction : intuitive mais peut être vu comme complexe
 - compréhension : dépend de la taille de la forêt
 - prédiction : complexe au vu de la taille

Résumer des forêts

- ► Efficacité des approches d'ensembles [Breiman 1996, Geurts et al. 2006, ...]
 - mais... stockage coûteux, classification complexe,
 - perte d'interprétabilité?
 - pourtant "plusieurs peuvent être meilleurs que tous"..;
- Solution : résumer un ensemble mais en préservant la diversité
 - mesurer la qualité d'un classifieur en prenant en compte la précision et la diversité
 - précision : taux de bonne classification
 - diversité : couverture de l'espace de recherche

Mesure de la diversité de classifieurs : mesures "pairwise"

(pour en savoir plus et réfs : [Zhou, 2012])

- On considère une base de n exemples donnée
- ▶ Soit un ensemble de classifieurs f_1, \ldots, f_m
 - pour un exemple x donné : $f_i(x)$ classe de x trouvée par i
- ► Mesures "pairwise" :
 - utiliser une comparaison des classifieurs 2 à 2
 - table de contingence :

- mesure de désaccord entre f_i et f_j : $rac{n_{10}+n_{01}}{n_i}$
- Q-statistique : $\frac{n_{00}n_{11} n_{10}n_{01}}{n_{00}n_{11} + n_{10}n_{01}}$
- test du Kappa, etc.

Exemple : test du κ

[Cohen, 1960]

- Accord de 2 classifieurs (par rapport au hasard)
- ► Table de contingence :

$$\begin{array}{c|cccc} & f_j(x)=0 & f_j(x)=1 \\ \hline f_i(x)=0 & n_{00} & n_{01} \\ f_i(x)=1 & n_{10} & n_{11} \\ \text{on note } n=n_{00}+n_{01}+n_{10}+n_{11} \\ \end{array}$$

- Mesure de l'accord entre f_i et f_j : $\frac{\mathsf{Accord}(f_i, f_j)}{n} = \frac{n_{00} + n_{11}}{n}$
- ▶ Probabilités de classer $c \in \{0,1\}$ pour f_i et f_j :

$$p_i(c) = \frac{1}{n}(n_{c0} + n_{c1}) \text{ et } p_j(c) = \frac{1}{n}(n_{0c} + n_{1c})$$

Probabilités que les 2 classifieurs soient d'accord pour $c \in \{0,1\}: p_{ij}(c) = p_i(c)p_j(c)$

Exemple : test du κ

[Cohen, 1960]

ightharpoonup Concordance entre f_i et f_j :

$$\kappa = \frac{\mathsf{Accord}(f_i, f_j) - (p_{ij}(0) + p_{ij}(1))}{1 - (p_{ij}(0) + p_{ij}(1))}$$

Interprétation du résultat

[Landis& Koch, 1977]

Mesure de la diversité de classifieurs : mesures globales

(pour en savoir plus et réfs : [Zhou, 2012])

- ▶ Soit un ensemble de classifieurs f_1, \ldots, f_m
 - pour un exemple x donné : $f_i(x)$ classe de x trouvée par i
- Mesures globales :
 - mesure directe de la diversité globale de l'ensemble
 - exemple : mesure d'entropie
 - on ne tient pas compte de la correction de la classification
 - $P(c_l|x_k)$: proportion de classifieurs qui prédisent c_l pour x_k

•
$$-\frac{1}{n}\sum_{k=1}^{n}\sum_{l=1}^{q}P(c_{l}|x_{k})\log P(c_{l}|x_{k})$$

exemple :

[Kuncheva and Whitaker, 2003]

- $N_C(x)$: nombre de classifiers qui trouvent la bonne classe de x
- mesure $\frac{1}{nm^2}\sum_{k=1}^n N_C(x_k)(m-N_C(x_k))$
- plus la valeur est élevée, plus l'ensemble est diversifié

Résumé un ensemble : optimiser le nombre de classifieurs

(pour en savoir plus et réfs : [Zhou, 2012])

- Éliminer les classifieurs superflus
 - comment les trouver?
- Différentes approches
 - par ordonnancement selon une mesure donnée
 - réduction de l'erreur, Kappa....
 - par clustering
 - · représentation vectorielle et distance
 - clustering hiérarchique, k-moyennes
 - prototypes issus des clusters
 - par optimisation
 - algorithmes génétiques,...

