DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

METIS: CORE & EDGE COUPLING

Metis : Fa	Metis : Fast tokamak simulator (filename =\metis\ITER_rampup_ECCD)												
Metis													
Parameters	⊚ L	oad S	ave Expo	ort 0	Create reference	Compare	PDF ouput		Expert mode				
Waveforms & data edition													
⊚ lp	Nbar	⊚ Zeff	Xecrh	B0	⊚ nT/nD	○ Flux	Create flux						
○ ECRH	○ ICRH	⊚ LH	NBI	H factor	FT_NBI	Time edition	Clear external						
© R0	⊚ z0	a			Separatrix	de-noising	External data						
Command													
Run METIS	⊜ Rı	un METIS in f	ast mode	Operation	n point (Fit of LH efficience	cy & Wdia	Evolution	○ Restart				
Visualisation													
Overview simulation summary Profiles 2D equi. Data browser													
o power	energy		confinement	t tempe	rature	nsity 🔘 L	.H wave Sav	vtooth	QlkANNk				
current	equilibriu	m	LH efficience	y @ geome	etry 🔘 nu	* & rho*	NBI JET © con	vergence	OP + QlkANNk				
Neutrons	ns © Er		Radiation	Ne & ¹	Te exp.	s balance	Breakdown © CPC	S	Coherence				
© L->H	Flux Con	sumption	Shine throu	gh 🔘 HH & I	HL Div	vertor © 2	2 points 🔘 ram	p 2pts	o cost				
Quit Initialisation User's guide													

JEAN-FRANCOIS ARTAUD TUESDAY, 22 JUNE 2021

METIS CORE EDGE COUPLING OVERVIEW

- Main goal of this model is modelling back reaction of divertor condition on core plasma through radiative power:
 - Core W profile model
 - 2-point (extended) model
 - Simplified W source from divertor
- Mainly an "heuristic" model:
 - Many free parameters
 - Scaling laws
- Dedicated to:
 - Plasma control studies
 - Experiment analysis

OVERVIEW CORE/EDGE COUPLING IN METIS

TUNGSTEN PROFILE IN METIS

$$n_{W}(t,x) = (C_{W}G(t) + C_{W,offset} + C_{W,LH}P_{LH} + C_{W,IC}P_{IC} + C_{W,EC}P_{EC} + C_{W,NBI}P_{NBI})$$

$$n_{e,a}(t) \left(\frac{n_e(t,x)}{n_{e,a}(t)}\right)^{\gamma_n} e^{\sigma \overline{Z_W}I(t,x)}$$

Back reaction from divertor

normalized to LCFS density (METIS)

 C_W , γ_n , σ , $C_{W,offset}$, ... are user defined constants

Contamination/ decontamination factor (neoclassical like + rotation + heat):

$$\frac{dI}{dx} = C_{\Omega,W} u_{\Omega} + \frac{\frac{dn_i}{dx}}{n_i} + \left(1 - \frac{1}{\overline{Z_W}} - k_{neo} - C_{H,W} h_{e,i}\right) \frac{\frac{dT_i}{dx}}{T_i}$$

 $C_{\Omega,W}$ and $C_{H,W}$ user defined constants

$$u_{\Omega} = -\frac{\frac{d\Omega}{dx}}{R_{axe} v_{th,W}} \qquad h_{e,i} = \frac{q_{e,i}}{q_e + q_i}$$

$$h_{e,i} = \frac{q_{e,i}}{q_e + q_i}$$

2-POINT MODEL IN METIS (1/5): OVERVIEW

Stangeby formulation:

"The Plasma Boundary of Magnetic Fusion Devices, Institute of Physics Publishing, Bristol 2000"

- Inputs (control parameters) :
 - LCFS electron density
 - power crossing the LCFS
- Outputs:
 - Electron temperature and density at target
 - Electron temperature at LCFS
 - Various flux
- Extended formulation:
 - Additional effects can be taken into account
 - Can be switched on or off

2-POINT MODEL IN METIS (2/5): EXTENDED FORMULATION (MAIN EFFECT)

- Neutral friction / momentum losses:
 - User defined
 - Analytical model (Self S A and Ewald H N 1966 Phys. Fluids 9 2486 cited in C S Pitchery and P C Stangeby, Plasma Phys. Control. Fusion 39 (1997) 779–930)
 - Recycling fraction at the target / neutral density
 (P.C. Stangeby NF 51,2011, 063001)
 - Wisitsorasak / Pegourié additional term
 (Plasma and Fusion Research: Volume 14, 3403150, 2019)
- Radiative losses
 - (R. Clark et al, Journal of Nuclear Materials, vol 220-222,1995,p 1028-1032):
 - ADAS cooling rate
 - Non-coronal Equilibrium State (A. A. Mavrin , J Fusion Energ, DOI 10.1007/s10894-017-0136-z)
 - Carbon blow effect (M. Warrier, R. Schneider and X. Bonnin, Computer Physics Communications 160 ,2004, 46-48)

 Jean-François Artaud | CEA/DRF/IRFM | 22/06/2021 | PAGE 6

2-POINT MODEL IN METIS (3/5): EXTENDED FORMULATION (ADDITIONAL)

- supersonic flow / detachment(JET-P(64) 05 , P. H. Harbour and A. Loarte)
- kinetic correction / flux limitation(W. Fundamenski, PPCF 47 2005 p R163-R208)
- Radial position of the target / flux expansion(T.W. Petrie et al, Nuclear Fusion 53,2013, 113024)
- Impurities concentration in divertor (radiation & sputtering):
 - User defined concentration enrichment in divertor for light impurities (N,Ar, ...) as defined in METIS composition

2-POINT MODEL IN METIS (4/5): PARAMETERS DEFINITION

- The key parameter: radial decay length
 - User defined
 - Scaling law:
 - H-mode: Goldston model for lambda_q Nucl. Fusion 52 (2012) 013009
 - L-mode: F.D. Halpern et al, Nuclear Fusion 53 (2013) 122001
- Connection length:
 - Depend on configuration defined in METIS
 - Can be increased to take into account X-point.
- sheath transmission factor (γ): formula 25.46 in Stangeby book.
- Power fraction
 - only one side (LFS or HFS)
 - User defined fraction

2-POINT MODEL IN METIS (5/5): PARAMETERS DEFINITION

$$T_{i,u} \neq T_{e,u}$$

$$4n_{\rm t}T_{\rm t} = f_{\rm mom}f_{\rm i/e}n_{\rm u}T_{\rm eu}$$
 & $f_{\rm i/e} \equiv 1 + T_{\rm iu}/T_{\rm eu}$

 f_{mom} is a user defined parameter (≤ 1)

(P.C. Stangeby and A.W. Leonard 2011 Nucl. Fusion 51 063001)

- Fraction of power going to electron (P.C. Stangeby and A.W. Leonard 2011 Nucl. Fusion 51 063001)
 - $f_{pe} = 0.5$ (standard 2-point model)

Turbulence heat flux spreading (D Nille et al, Plasma Phys. Control. Fusion 61 (2019) 085016; A. Scarabosio et al, Journal of Nuclear Materials 463 (2015) 49–54)

TUNGSTEN SOURCE FROM DIVERTOR (1/4): OVERVIEW

Each term can be switched on or off in METIS

TUNGSTEN SOURCE FROM DIVERTOR (2/4): SPUTTERING

$$Y_p(t) = \sum_{j \in \{species\}} \frac{n_j(t,1)}{n_{e,a}(t)} y_{j \to W}(E_j(t))$$
 + enrichment effect of low Z in divertor

$$E_{j}(t) = T_{e,t}(t) + (2 + \Gamma_{H}) * T_{i,t}(t) - 0.5 Z_{j} T_{e,t}(t) ln \left(\frac{2\pi m_{e}}{m_{j}} \left(1 + \frac{T_{i,t}(t)}{T_{e,t}(t)} \right) \right)$$

$$T_{i,t}(t) = \eta_t T_{e,t}(t)$$
 Γ_H is 1 for the isothermal case and $\frac{5}{3}$ for the adiabatic case

- Model for the sputtering yield :
 - Janev R.K. et al Journal of Nuclear Materials 290-293 (2001) 104-106
 - Warrier M. et al., Computer Physics Communications 160 (2004) 46-68

TUNGSTEN SOURCE FROM DIVERTOR (3/4): SCREENING

$$S_r(t) = e^{-\left(\frac{T_{leak}(t)}{T_{e,t}(t)}\right)^2}$$
 $T_{leak}(t) = 3.8 \cdot 10^{-9} \ \overline{Z_W} \left(T_{SOL,eff}(t)\right) \sqrt{n_{e,t}(t)\Delta s(t)}$

$$\Delta s(t) = \frac{\sqrt{\frac{2 e T_{e,t}(t)}{m_{eff}(t)}}}{n_{e,t}(t) \left(\langle \sigma v \rangle_{i,e}(t) + \langle \sigma v \rangle_{i,i}(t) + \langle \sigma v \rangle_{cx}(t)\right) \mu_t(t)}$$

$$T_{SOL,eff}(t) = f_{SOL,eff} T_{e,a} + (1 - f_{SOL,eff}) T_{e,t}$$

 $\mu_t(t)$ is the angle of magnetic field line (2-point model)

- Simplified version of model described in (including only temperature dependence):
 - Stangeby P.C.: "The Plasma Boundary of Magnetic Fusion Devices" (Institute of Physics Publishing, Bristol 2000)

TUNGSTEN SOURCE FROM DIVERTOR (4/4): PROMPT-REDEPOSITION

$$F_r = f_{ERO}\left(\frac{l_{W,ion}}{\rho_{W^+}}\right) \qquad l_{W,ion} = \frac{\sqrt{\frac{2 e T_{e,t}}{m_W}}}{\langle \sigma v \rangle_{W,ionised}(T_{e,t}) n_{e,t}}$$

 ρ_{W} + is the tungsten ionised one time Larmor radius

x	0	0.2	0.6	2.2	3.2	6	1000
$f_{ERO(x)}$	1	0.85	0.65	0.3	0.25	0.15	0.1

Fit of ERO code data:

- Stangeby P.C. NF 51 (2011) 063001
- Naujoks D. et al NF 36 (1996) 671

HOW TO TUNE THE MODEL (1/2)

- Tungsten profile model can be tune in "Composition" section of METIS parameters:
 - W_effect switch on/off model for tungsten with profile effect in METIS
 - faccu, heat_acc and rot_acc tune the neoclassical like model for accumulation
 - fne_acc is the exponent of the dependence on density profile
 - acc_col switch from fixed k_neo factor (-3/2) to analytical expression.

HOW TO TUNE THE MODEL (2/2)

- 2-point model and tungsten source model can be tune in "SOL" section of METIS parameters:
 - sol_rad parameter must be set to "decoupled" to use 2-point model
 - sol_model must be set to "2 point" to switch on 2-point model use

EXAMPLE: 2-POINT MODEL RESULTS

EXAMPLE: TUNGSTEN SOURCE

EXAMPLE: CHANGE OF REGIME

EXAMPLE: DETACHMENT LIKE BEHAVIOR USER DEFINED VALUE FOR FMOM

EXAMPLE: DETACHMENT LIKE BEHAVIOR ANALYTICAL MODEL FOR FMOM

CONCLUSIONS

- METIS is coupled to a "heuristic" model for the SOL:
 - Extended 2-point model
 - W source from the divertor to the core plasma
 - W profile model in the core plasma with ability to mimic W accumulation
- The model is versatile thank to parametrization
 - Plasma control
 - Experiment analysis
 - Low predictive capabilities (if you don't trust scaling laws)
- The use of this model increase computational time
- Can reproduce plasma detachment:
 - But some physics is missing (especially with neutral, drift, ...)
 - OD cumulative mechanisms instead of 3D effects
- Possibility to make some scan using METIS working point mode
 - Only one time slice for steady state

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Cadarache | 13108 Saint Paul Lez Durance Cedex T. +33 (0)4 42 25 46 59 | F. +33 (0)4 42 25 64 21

DRF IRFM SPPF