Pb Free Plating Product

N-CHANNEL ENHANCEMENT MODE
POWER MOSFET

- **▼** Capable of 2.5V gate drive
- **▼** Lower on-resistance
- **▼** Surface mount package

BV _{DSS}	30V
$R_{DS(ON)}$	$\mathbf{35m}\Omega$
I_D	5A

Description

Advanced Power MOSFETs utilized advanced processing techniques to achieve the lowest possible on-resistance, extremely efficient and cost-effectiveness device.

The SOT-23 package is universally used for all commercial-industrial applications.

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	30	V
V_{GS}	Gate-Source Voltage	± 12	V
I _D @T _A =25°C	Continuous Drain Current ³ , V _{GS} @ 4.5V	5	А
I _D @T _A =70°C	Continuous Drain Current ³ , V _{GS} @ 4.5V	4	А
I _{DM}	Pulsed Drain Current ¹	20	А
P _D @T _A =25°C	Total Power Dissipation	1.38	W
	Linear Derating Factor	0.01	W/°C
T _{STG}	Storage Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$
T_J	Operating Junction Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$

Thermal Data

Symbol	Parameter		Value	Unit	
Rthj-a	Thermal Resistance Junction-ambient ³	Max.	90	°C/W	

Electrical Characteristics@T_i=25°C(unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	30	-	-	V
$\Delta \text{BV}_{\text{DSS}} / \Delta T_j$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D =1mA	-	0.1	-	V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =5A	-	-	30	$\mathbf{m}\Omega$
		V_{GS} =4.5V, I_{D} =5A	-	-	35	$m\Omega$
		V_{GS} =2.5V, I_{D} =2.6A	-	-	50	$m\Omega$
		V _{GS} =1.8V, I _D =1.0A	-	-	90	$m\Omega$
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250uA$	0.5	-	1.2	V
g _{fs}	Forward Transconductance	V_{DS} =5V, I_{D} =5A	-	13	-	S
I _{DSS}	Drain-Source Leakage Current (T _j =25°C)	V_{DS} =30V, V_{GS} =0V	-	-	1	uA
	Drain-Source Leakage Current (T _j =70°C)	$V_{DS}=24V$, $V_{GS}=0V$	-	-	25	uA
I _{GSS}	Gate-Source Leakage	V _{GS} = ± 12V	-	-	±100	nA
Q_g	Total Gate Charge ²	I _D =5A	-	8.5	15	nC
Q_{gs}	Gate-Source Charge	V _{DS} =16V	-	1.5	-	nC
Q_{gd}	Gate-Drain ("Miller") Charge	V _{GS} =4.5V	-	3.2	-	nC
t _{d(on)}	Turn-on Delay Time ²	V _{DS} =15V	-	6	-	ns
t _r	Rise Time	I _D =5A	-	20	-	ns
t _{d(off)}	Turn-off Delay Time	$R_G=3.3\Omega, V_{GS}=10V$	-	20	-	ns
t _f	Fall Time	$R_D=3\Omega$	-	3	-	ns
C _{iss}	Input Capacitance	V _{GS} =0V	-	660	1050	pF
C _{oss}	Output Capacitance	V _{DS} =25V	-	90	-	pF
C_{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	70	-	pF

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V_{SD}	Forward On Voltage ²	I _S =1.2A, V _{GS} =0V		1	1.2	V
t _{rr}	Reverse Recovery Time ²	$I_S=5A$, $V_{GS}=0V$,	-	14	-	ns
Q_{rr}	Reverse Recovery Charge	dl/dt=100A/µs	-	7	-	nC

Notes:

- 1. Pulse width limited by Max. junction temperature.
- 2.Pulse width \leq 300us , duty cycle \leq 2%.

Fig 1. Typical Output Characteristics

Fig 3. On-Resistance v.s. Gate Voltage

Fig 5. Forward Characteristic of Reverse Diode

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance v.s. Junction Temperature

Fig 6. Gate Threshold Voltage v.s.
Junction Temperature

Crss

Fig 7. Gate Charge Characteristics

Fig 9. Maximum Safe Operating Area

Fig 10. Effective Transient Thermal Impedance

Fig 11. Switching Time Waveform

Fig 12. Gate Charge Waveform