Задача А. Максимумы

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 6 секунд Ограничение по памяти: 256 мегабайт

К сожалению, у Дани не хватило времени, чтобы написать нескучное условие к этой задаче.

Вам дан массив a_0, \ldots, a_{n-1} , который задаётся числами n, a_0, b_0, c, d следующим образом:

$$b_i = (b_{i-1} \cdot c + d) \bmod 2^{31}$$
 для $i \geqslant 1$

$$a_i = (a_{i-1} + 1 - 2 \cdot ((b_i \mod 239179) \mod 2))$$
 для $i \geqslant 1$

Обратите внимание, что два соседних числа отличаются либо на +1, либо на -1.

Ответьте на n запросов, i-й запрос — максимум на отрезке $[\min(l_i, r_i), \max(l_i, r_i)]$ для $i = 0 \dots n-1$. Пусть ans_i — ответ на i-й запрос. Будем считать, что $ans_{-1} = 0$. Вам задаётся число x_0 . Далее, l_i и r_i , x_i вычисляются так:

$$l_i = (x_i + ans_{i-1}) \bmod n$$
 для $i \geqslant 0$

$$r_i = (l+i) \mod n$$
 для $i \geqslant 0$

$$x_i = (x_{i-1} \cdot 1103515245 + 12345) \mod 2^{31}$$
 для $i \geqslant 1$

При взятии по модулю обратите внимание на то, что ans_i бывают отрицательными.

Формат входных данных

Единственная строка ввода содержит шесть целых чисел n, a_0 , b, c, d, x_0 .

- $1 \le n \le 2 \cdot 10^7$
- $-10^9 \le a_0 \le 10^9$
- $0 \le b, c, d, x_0 \le 2^{31} 1$

Формат выходных данных

Выведите сумму ответов на все запросы.

Примеры

стандартный ввод	стандартный вывод
4 1 2 3 4 0	11
100500 -1 23 45 67 89	-8614564

Задача В. Максимумы возвращаются

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 6 секунд Ограничение по памяти: 512 мегабайт

Вам дан массив a_0, \ldots, a_{n-1} , который задаётся числами n, a_0, b_0, c, d следующим образом:

$$b_i = (b_{i-1} \cdot c + d) \mod 2^{31}$$
 для $i \geqslant 1$

$$a_i = (a_{i-1} + 1 - 2 \cdot ((b_i \mod 239179) \mod 2))$$
 для $i \geqslant 1$

Обратите внимание, что два соседних числа отличаются либо на +1, либо на -1.

Ответьте на n запросов, i-й запрос — поиск количества максимумов на отрезке $[\min(l_i,r_i),\max(l_i,r_i)]$ для $i=0\dots n-1$. Пусть ans_i — ответ на i-й запрос. Будем считать, что $ans_{-1}=0$. Вам задаётся число x_0 . Далее, l_i и r_i , x_i вычисляются так:

$$l_i = (x_i + ans_{i-1}) \bmod n$$
 для $i \geqslant 0$

$$r_i = (l+i) \mod n$$
 для $i \geqslant 0$

$$x_i = (x_{i-1} \cdot 1103515245 + 12345) \bmod 2^{31}$$
 для $i \geqslant 1$

Формат входных данных

Единственная строка ввода содержит шесть целых чисел n, a_0 , b, c, d, x_0 .

- $1 \le n \le 2 \cdot 10^7$
- $-10^9 \le a_0 \le 10^9$
- $0 \le b, c, d, x_0 \le 2^{31} 1$

Формат выходных данных

Выведите сумму ответов на все запросы.

Примеры

стандартный ввод	стандартный вывод
4 1 2 3 4 0	4
100500 -1 23 45 67 89	173287

Задача С. В бухгалтерии опять всё перепутали

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Лупа и Пупа пошли получать зарплату. Но в бухгалтерии опять всё перепутали. Лупа получил зарплату за Пупу, а Пупа . . .

Пупа не хочет получать заЛупу и хочет доказать бухгалтерии, что она не права.

Пупа работает в крупной компании «MST Inc.», занимающейся информационным сопровождением «Всеберляндской олимпиады школьников по информатике». В компании «MST Inc.» работает n сотрудников, причём у каждого из них, кроме самой «MST», есть ровно один непосредственный начальник и несколько (возможно ноль) непосредственных подчинённых.

Всеми начальниками сотрудника компании «MST Inc.» называется множество, состоящее из его непосредственного начальника и множества начальников его непосредственного начальника. Известно, что у каждого сотрудника кроме самой «MST», «MST» входит в множество начальников этого сотрудника.

Множеством подчинённых у сотрудника называется множество, состоящее из него самого и множеств подчинённых у всех непосредственных подчинённых данного сотрудника. В частности, все сотрудники входят в множество подчинённых у «MST».

Каждый месяц каждому сотруднику начисляется зарплата, причём немаленькая, ведь иначе ни один сотрудник не согласился бы работать с «МЅТ». Известно, что в нулевой месяц работы организации, каждому сотруднику заплатили по c_i бурлей. В качестве поощрения сотрудников «МЅТ» придумала следующее правило: В каждый из следующих m месяцев берётся сотрудник с номером a_i и берётся число s_i — сумма зарплат всех сотрудников во множестве его начальников и подчинённых (включая его самого). Если это число оказывалось слишком большим, s_i берётся по модулю $10^9 + 7$. После этого берётся сотрудник с номером b_i , и к зарплате всех сотрудников, входящих во множество его начальников и подчинённых (включая его самого) прибавляется число s_i . С учётом этого изменения платится зарплата в i-й месяц и пересчитывается зарплата в следующие месяцы.

Вернёмся к Пупе. Пупа хочет показать бухгалтерии компании «MST Inc.» что она всё перепутала, а для этого ему надо узнать, сколько же ему должны были заплатить в каждый из месяцев с нулевого по m-й. К сожалению, в гениальной системе поощрения, разработанной «MST», не может разобраться никто. Поэтому эту задачу поручили вам.

Формат входных данных

В первой строке входных данных даны 2 числа n и m ($1 \le n, m \le 10^5$) — число сотрудников компании «MST Inc.» и последний день, когда выплачивалась зарплата Пупе.

Во второй строке записано n-1 число. i-е из них — номер непосредственного начальника сотрудника номер i (i принимает значения от 1 до n-1). При этом «MST» имеет номер 0 и не имеет непосредственного начальника. Пупа имеет номер n-1.

В третьей строке записано n чисел c_i ($1 \le c_i \le 10^9$) — зарплата i-го сотрудника в нулевой день.

В каждой из следующих m строк записано по 2 числа a_i и b_i ($0 \le a_i, b_i \le n-1$) — номер человека, на основе которого происходит поощрение и номер человека, к подчинённым и начальникам которого поощрение применяется (более подробно описано в условии).

Формат выходных данных

В единственной строке выведите m+1 число — зарплату Пупы в каждый из дней с 0-го по m-й. Напоминаем, что Пупа имеет номер n-1. Обратите внимание, что зарплата **не считается** по модулю 10^9+7 .

Примеры

стандартный ввод	стандартный вывод
3 3	1 4 4 28
0 0	
1 1 1	
0 0	
2 1	
1 2	
4 3	0 1 6 20
0 1 1	
0 1 0 0	
0 1	
1 3	
2 3	

Замечание

Пояснение к первому примеру:

В первый день к зарплате каждого сотрудника прибавилось 3 бурля и зарплаты стали соответственно 4,4,4.

Во второй день к зарплате сотрудников с номерами 0,1 прибавилось по 8 бурлей и зарплаты стали соответственно 12,12,4.

Во третий день к зарплате сотрудников с номерами 0,2 прибавилось по 24 бурля и зарплаты стали соответственно 36,12,28.

Задача D. Древландия

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.5 секунд Ограничение по памяти: 512 мегабайт

В древландии есть города, и первый город — cmonuqa. Города соединены автобусными маршрутами так, что для города $i \neq 1$ есть автобус, который идёт оттуда в город p_i ($p_i < i$), именно в таком направлении.

В стране есть национальные блюда. Каждый город имеет своё специальное блюдо, оно и только оно может быть куплено там. Тип специального блюда для каждого города — один из типов национальных блюд.

Несколько друзей из нескольких городов хотят встретиться в одном городе для вечеринки. Они выбирают город такой, что, если они одновременно начнут туда идти, они встретятся там быстро, как только возможно. Путешествие на автобусе требует 1 единицу времени.

Они хотят купить некоторые блюда для вечеринки, соблюдая следующие требования:

- 1. Каждый друг должен купить одно и то же количество блюд.
- 2. Не должно быть двух блюд одного типа на вечеринке.
- 3. Каждый друг может купить только блюда, соответствующие городам, которые он посетил.

Для заданных запросов, найдите максимальное количество блюд, которое может быть на вечеринке.

Формат входных данных

Первая строка содержит три числа n, m, q.

- n количество городов
- т количество типов национальных групп
- q количество запросов

Вторая строка содержит n-1 чисел p_2, \ldots, p_n , описывающие автобусные маршруты.

Третья строка содержит n чисел a_1, \ldots, a_n , описывающие типы блюд, продающиеся в соответсвующих городах.

Следующие строки содержат описания запросов. Каждый запрос описывается в следующем формате: число c, обозначающее количество друзей, а затем c чисел $v_1, \ldots v_c$. Пусть ответ на предыдущий ответ равен X (для первого запроса X=0). Тогда друзья находятся в вершинах $(v_1-1+X) \bmod n+1,\ldots,(v_c-1+X) \bmod n+1$.

Не гарантируется, что для конкретного запроса все v_i различны.

- $2 \le n \le 3 \cdot 10^5$
- $1 \le m \le 1000$
- $1 \le q \le 5 \cdot 10^4$
- $1 \leqslant p_i < i$
- $1 \leqslant a_i \leqslant m$
- $2 \leqslant c \leqslant 5$
- $1 \leqslant v_i \leqslant n$

Формат выходных данных

Выведите q строк, i-я из которых — ответ на i-й запрос.

Примеры

стандартный ввод	стандартный вывод
5 3 4	2
1 2 2 1	0
2 3 1 3 1	0
2 3 4	0
3 5 2 2	
4 3 4 2 5	
2 2 2	
11 6 3	6
1 2 2 4 5 4 5 8 9 4	4
5 6 1 1 2 3 2 3 4 5 2	2
3 3 10 8	
4 6 5 10 10	
2 9 6	