Practitioner's Docket No.: 789_071

PATENT

IN THE UNITED STATES DESIGNATED OFFICE (DO/US)

PCT/JP00/09133	22 December 2000	24 December 1999
INTERNATIONAL APPLICATION NO.	INTERNATIONAL FILING DATE	PRIORITY DATE CLAIMED
TITLE OF INVENTION		
HEAT SINK MATERIAL AND ME	THOD OF PRODUCING THE SA	ME
APPLICANT(S) FOR DO/US		
Shuhei ISHIKAWA, Tsutomu MITS	UI, Ken SUZUKI, Nobuaki NAKA	AYAMA,
Hiroyuki TAKEUCHI and Seiji YAS	SUI	

Box PCT

Assistant Commissioner for Patents Washington, D.C. 20231

Attention: DO/US

"EXPRESS MAIL" mailing label number EL803163968US.

I hereby certify that this paper or fee is being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 CFR 1.10 addressed to the Box PCT, Attention: DO/US, Assistant Commissioner for Patents, Washington D.C. 20231 on August 13, 2001.

Elizabeth A. VanAntwerr

SUBMISSION OF PROPOSED DRAWING AMENDMENT FOR APPROVAL BY EXAMINER

Sir:

Attached please find

(check applicable items)

- [x] a copy of the original drawings (Figs. 21 and 24) with red ink markings, showing the proposed changes to the drawings in this application, and
- [x] if drawings are approved by the Examiner, we also enclose formal drawings for Figs. 21 and 24.

Respectfally submitted,

Customer No.: 025191

Telephone: (315) 233-8300 Facsimile: (315) 233-8320

August 13, 2001

Date

Stephen P. Bu

Reg. No. 32.970

SPB/eav

BURR & BROWN P.O. Box 7068 Syracuse, NY 13261-7068

			n							21	/4	10											,	,		
RESISTANCE	EFFECT		NONE	NONE	NONE	WETTAR!! ITV	-1			GENERATION OF						COMBINED	•l	GENERALION UF	CAKBIDE	EXPANSION OF	SOLID-LIQUID	RANGE	NONE	GENERATION OF CARRIDE	EXPANSION OF	SOLID-LIQUID Pance
WATER		_	4		0 @	0	0	٥<	1 <	٥.	۷<	1 <	١٥	٥.	4	© C	0	٥	٥	0	0(00	0	∇	0) ©
	COMPRESSIVE STRENGTH (MPa)	THICK-	51.0						48.0			51.9				51.0						05. 7 60. 8	1 1	62. 7	61.7	
<u>_</u>	COMP STF (I	SUR- FACE	46.1						42.1			40.2		51.0	57.8	51. 9 48. 0	51.0	48.0	53.9	53.9	36. 8	54.9		57.8	50.0	
THERMAL CONDUCTIVITY	BENDING STRENGTH (MPa)	THICK-	51.9	- 1	39.2	.I					56.8												39. 2			
MAL CO	BEP STR ()	SUR- FACE	31.4	- 1	26.5		38.2				3. 45 2. 50 2. 50 50 50												26.5			_
	COEFFICIENT OF THERMAL EXPANSION (×10 ⁻⁶ /K)	TH I CK-	6.0	.l	4. 4. 0. 10.	4.5	4.5		4.5		4. 4 ი ი		_	2.5									4.5	6.5	6.5	
MPREGNATION PRESSURE (COEFFICIENT OF	COEFI OF 1 EXP, (×1	SUR- FACE	5.5	-1	က် တ	1 -	დ <				ာ ထ			4.0 0.0	ა.								3.8	5.0	5.0	5.0
TION F		(W/mK)	311	-		351	341									353			367			325	320	332	329	327
REGNA (156	┿	147	190	183	188	176	1 28	158	182				198				150		$\overline{}$	2	177	169	181
M /)	(MPa)	26. 7			26.7	26. 7 156. 1			130.		43.	90.	900	9.6	96	90	90			3.5	43.	26. 7	60.0	60.0	60.0
ETHOD	~		PRESS PRESS	DDECC	PRESS	PRESS	PRESS PRESS	PRESS	PRESS	PKESS	PRESS	PRESS	PRESS	PKESS	PPECC	28	PRESS	PRESS	PKESS	DDECC	PRESS	PRESS	GAS	PRESS	PRESS	PRESS
IMPREGNATING MET	AMOUNT OF ADDITION (wt%)		NONE	NONE		0.500	000			050		0.001	0.001		9 4 6 7	1. 0, 0, 23, 0, 04		2.870				300	NONE	2. 000	5.000	12.000
	ADD I T I VE ELEMENT		NONE	NONE	NONE	Te	Be Be	င်	돌	2 5	Zr	2	2 5	S 8	. N	Ni.Si.P	Ę	<u>ځ</u> د	17	 	 S	Si	NONE	Be	Si	Si
METAL	\sim		A A	H	\rightarrow	3	33	3			33				35		3	33	3 2			一十	3	A	Ā	АІ
21	SIZE (mm)		$20 \times 60 \times 60$ $20 \times 120 \times 190$	20 × 60 × 60	20×120×190	20 × 60 × 60	$20 \times 60 \times 60$ $20 \times 120 \times 190$	$20\times60\times60$	20 × 60 × 60 20 × 60 × 60	$20 \times 120 \times 190$	$20 \times 60 \times 60$	$20 \times 120 \times 190$	20 × 120 × 190	20×1	$20 \times 120 \times 190$	20×120×190		20 × 120 × 190	× ×	$20 \times 120 \times 190$	20×	× S	09 × 09 × 07	20×120×190	$20\times120\times190$	$20\times120\times190$
F1G. 21	SAMPLE		n1-1 n1-4	n1-2	n1-3	n2-1	-2-En	n3-3	120 120 121 121	3-6	n3-7	8-2	n3-10	3-1-5	n3-12	n3-13	100	73-15	73-17	n3-18	n3-19	n3-20	1-00	n7-1	n7-2	n7-3

_				•				21	/40)												
RESISTANCE	EFFECT		NONE	NONE	WETTABILITY		J	GENERATION OF				COMBINED	ADDITION	GENERATION OF	EXPANSION OF		RANGE	NONE	GENERATION	OF CARBIDE	EXPANSION OF	SOLID EIGOID RANGE
WATER	\ \ \		4 <	100	0	44	4 <	14	44	٥<	14		0	۵ ۵۰	4⊚	0	00	0	V		0	0
_	COMPRESSIVE STRENGTH (MPa)	THICK- NESS	51.0				0			51.9			51.9	54.9 51.9	63. 60.8		62. 7		7 69		61.7	68.6
	COMPR STRI (M	SUR- FACE	46.1				5	- - 7		40.2		57.8 51.9	48.0				52.9 54.9		57.8		50.0	56.8
THERMAL CONDUCTIVITY	BENDING STRENGTH (MPa)	TH1CK- NESS	51.9	39. 2	ы.	62.7	59.8	57.8	57.8 56.8									39.2				
MAL CO	BEN STR	SUR- FACE	31.4	26.5					35.3 34.3									26.5				
	COEFFICIENT OF THERMAL EXPANSION (×10 ⁻⁶ /K)	THICK- NESS	6.0			4. 4 6. 5		+ 4. o ro		_	, C)							4.5	5.		6.5	6.5
MPREGNATION PRESSURE COEFFICIENT OF	COEFF OF T EXP/ (×1	SUR- Face	ري بي بي						တ ထ		4.4	4.5						3.8	2.		5.0	5.0
TION P		(W/mK)	311		351	341	320	336	309 312	352	359	366 343	353		333	316	343 325	320	332	1	329	327
REGNAT	\sim		156	150	190	1 8 8 8	180		167 158		196		96			159			177		169	181
I MPI)	(MPa)	26. 7	36.8							98	999	90	999	60. U 26. 7	90		26.	0 09		60.0	60.0
THOD	~		PRESS PRESS	PRESS PRESS	PRESS	PRESS PRESS	PRESS	PRESS	PRESS PRESS	PRESS	PRESS	PRESS PRESS	PRESS	PRESS PRESS	PRESS	PRESS	PRESS PRESS	GAS	PRESS	11100	PRESS	PRESS
IMPREGNATING METH	AMOUNT OF ADDITION (w+%)	(0/2 11)	NONE			1.000	0.500	0.050	0.050 0.500	00.00	100	1. 900 9. 4, 6. 7	1. 0, 0. 23, 0. 04		3.65 3.65	006	5. 170 300	NONE	000 6	i	5.000	12.000
	ADD I T I VE ELEMENT		NONE	NONE	Te	Be Re	ಕಿರೆ	£ 2	ę ż	2	22	Be Ni, Sn	Ni. Si. P	Řδ	z; Si	S		NONE	R	3	Si	Si
METAL)	-	¥ ₹	+	+	 			33				3		33	_		3	4		A (AI
21	SIZE (mm)		20 × 60 × 60	20 × 60 × 60 20 × 60 × 60	20 × 60 × 60	20 × 60 × 60	20 × 60 × 60	20 × 60 × 60 20 × 60 × 60	$20 \times 120 \times 190$ $20 \times 60 \times 60$	$20 \times 120 \times 190$	20×1	20×120×190 20×120×190	$20 \times 120 \times 190$	20×120×190 20×120×190	$20 \times 120 \times 190$ $20 \times 120 \times 190$	$20 \times 120 \times 190$	20 × 120 × 190	20 × 60 × 60	20 × 120 × 190	21 23	$20\times120\times190$	$20\times120\times190$
F1G. 21	SAMPLE		n-1-1	n1-2	n1-3	n3-1	13-5-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-	n3-5	n3-6 n3-7	n3-8	고 - 10 - 10	n3-11 n3-12	n3-13	n3-14 n3-15	n3-16 n3-17	n3-18	n3-19	n5-1	n7-1	- - -	n7-2	n7-3

F1G. 24

FIG. 4

FIG. 5

FIG. 8

FIG. 10

FIG. 12

FIG. 13

FIG. 14

FIG. 16

| **.**

ıÆ

F1G. 17

႘		. 1	17/40				
WATER RESISTANCE	EFFECT	GENERA- TION OF CARBIDE					
ATER	~	٥	٥	٥	٥	٥	٥
W	COEFFICIENT OF THERMAL EXPANSION (×10 ⁻⁶ /K)	14.0	13.5	13.6	14. 0	11.5	9. 5
	COEFFICIENT OF THERMAL CONDUCTIVITY (W/mK)	321	325	305	321	311	301
	IMPREG- NATION PRESSURE (MPa)	60.0	60.0	60.0	60.0	60.0	60.0
⊥ ,	I MPREG- NATION METHOD	PRESS	PRESS	PRESS	PRESS	PRESS	PRESS
ADDED ELEMENT	AMOUNT OF ADDITION (wt%)	0. 001	0. 00Å	0. 001	0. 001	0. 001	1. 001
	~	Nb	NP	NP	P. P.	NP NP	NP
METAL		no	Cu	no	no	Cu	no
	FILLING	NO PRESSUR- I ZAT I ON	PRESSUR- IZATION, 7MPa	PRESSUR- IZATION, 25MPa			
	PARTICLE SIZE OF POWDER (µm)	AVERAGE 120	AVERAGE 50	212- 1180	AVERAGE 120	AVERAGE 120	AVERAGE 120
	TYPE OF POWDER	type -P	type -S	type -R	type -P	type -p	type -P
	S1ZE (mm)	30 × 120 × 190	30 × 120 × 191	30 × 120 × 192	30 × 120 × 193	30 × 120 × 194	30 ×120 ×195
	SAMPLE	PW-1	PW-2	PW-3	PW-4	PW-5	9-Md

FIG. 18

THE FOR CHECKEN

						19,	/4	0												
	EFFECT			NONE	NONE			WETT-	ABILITY				GENERATION	OF CARRIDE	5		COMBINED ADDITION	NONE	WETT-	ABILITY
	WATER RESISTANCE			٥	0			@)					◁			0	0	@	•
BENDING	(MPa)	THI CK-	NESS	53.9	41.2	45.1	41.2	39. 2	38. 2	39. 2	41.2	57.8	58.8	56.8	56.8	40.2	45.1	41.2	39. 2	42. 1
BENI		SUR-	FACE	33. 3	27. 4	28. 4	27.4	26.5	25.5	26.5	27. 4	34.3	37.2	34.3	34.3	24. 5	27. 4	27.4	26.5	28. 4
COEFFICIENT OF THERMAL	EXPANSION $(\times 10^{-6}/^{\circ}C)$	THI CK-	NESS	5.5	5. 1	5. 1	5.1	5.	5.0	5.0	5.0	5.0	2.0	5.0	5.0	5.0	2.0	5.0	5.1	5.0
COEFFICIEN OF THERMAL	EXPAI (× 10	SUR-	FACE	5.3	5.1	9.0	5.0	5.0	4.9	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
COEFFICIENT OF THERMAL	CONDUCTIVITY (W/mK)	THI CK-	NESS	171	170	178	186	189	178	176	185	204	192	181	190	174	177	188	196	204
COEFFICIEN OF THERMAL	/M)	SUR-	FACE	171	162	168	178	180	172	169	172	184	187	175	187	172	165	170	185	192
	NAT I NG	MEIHOD		PRESS	PRESS			DDECC	L			•		PRESS			PRESS	GAS	0 4 0	GAO
AMOUNT	ADDITION	(wt%)		NONE	NONE	2	0.5	0.5	2	0.5,0.5	0.5, 2.0	1		0.5		0.5	0. 5, 0. 5	NONE	2	2
	METAL ELEMENT			NONE	NONE	Bi	S	<u>e</u>	<u>L</u> e	Te, Bi	Te, Pb	Be	ပ်	둘	£	Zr	Te, Ni	NONE	Te	Te
	METAL			ΑI	3	3	చె	J.	3	3	చె	3	3	చె	3	చె	Ω	ng	ŋ	Cn
	SIZE (III)			20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	10x85x180	20×60×60
	SAMPLE			p1-1	p1-2	p2-1	p2-2	p2-3	p2-4	p2-5	p2-6	p3-1	p3-2	p3-3	p3-4	p3-5	p4-1	p5-1	1-90	p6-2

FIG. 20

			•	20)/4	10							
	EFFECT			NONE	NONE	WETT- ABILITY			GENERAT I ON	OF CARBIDE			NONE
# Y	RESISTANCE			٧	0	0			<	1			0
BENDING STRENGTH	(MPa)	THI CK-	NESS	56.8	42. 1	39. 2	59.8	60.8	57.8	57.8	57.8	52.9	38. 2
BENI	W)	SUR-	FACE	34.3	28. 4	26. 5	36.3	37.2	35.3	35.3	35.3	32.3	25. 5
COEFFICIENT OF THERMAL	OF THERMAL EXPANSION (×10 ⁻⁶ /°C) SUR- THICK-					5.1	5.1	5.1	5.1	5.1	5.1	5.1	5.1
COEFF OF TH	(× 10	SUR-	FACE	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
COEFFICIENT OF THERMAL	HERMAL CT I V I TY /mK) TH I CK-S				181	199	213	193	192	192	207	182	198
COEFF OF TH	/M)	SUR-	FACE	161	145	. 168	184	170	165	162	169	158	166
IMPREG-	NATING			PRESS	PRESS	PRESS			DDECC	L S			SYĐ
AMOUNT	ADDITION	(wt%)		NONE	NONE	0.50	1.00	0. 50		0.05	0.05	0.50	NONE
						Te	Be	င်	Z.	2	£	Zr	NONE
	METAL ELEMENT					no	ng	3	ე	ට	3	Cn	nე
71	SIZE MET					20×60×60	20×60×60	20×60×60	20×60×60	20×120×190	20×60×60	20×60×60	20×60×60
	SAMPLE			m1-1	m1-2	m2-1	m3-1	m3-2	m3-3	m3-4	m3-5	ш3-е	1-Gm

~						٠	2	1/4	0		:	;						_			
WATER RESISTANCE	EFFECT		NONE NONE	NONE NONE	WETTABILITY			GENERATION OF CARBIDE				COMBINED	GENERATION OF	CARBIDE	EXPANSION OF	SOLID-LIQUID	RANGE	NONE	GENERATION		SOLID-LIQUID RANGE
WATER	>		44	00	0	44	44	144	14	۵۵	4	© O	4	۵۵	00	90	00	0	٥	@) (0
	COMPRESSIVE STRENGTH (MPa)	TH I CK- NESS	51.0				48.0			51.9 58.8	64. 7			51.9 63.7		08. 62. 0			62.7	7 19	
ΤY	COMPR STRI (N	SUR- FACE	46.1				42. 1		40.2		57.8	51.9		48. 53.0					57.8	ט	
THERMAL CONDUCTIVITY	BENDING STRENGTH (MPa)	THICK- NESS	51.9	39. 2 39. 2	39. 2			57.8										39. 2			
MAL CO	BEN STR (A	SUR- FACE	31. 4	26. 5 26. 5	26.5	38. 2 37. 2		35.55 35.55 35.55 35.55 35.55										26.5			
	COEFFICIENT OF THERMAL EXPANSION $(\times 10^{-6}/K)$	TH1CK- NESS	6.0 6.5	4. 4. 5. 5	4.5	4.4 6.5		+ 4 4 0 10 10										4.5	6.5	ע	
IMPREGNATION PRESSURE (COEFFICIENT OF	COEFF OF T EXP/ (×1	SUR- FACE	5.5 5.5	3.8 3.9	3.8			o ထ ထ ဂ က က		4. 4. 0.0	4.5							3.8	5.0	С	5.0
TION F		(W/mK)	311 350	310 268	351		330			359			352				325	320	332	320	
REGNA (156 185	150	190	183	176	167			_			207		0 1 29		170	177	160	
)	(MPa)	26. 7 60. 0	26. 7 26. 7	26. 7		26. 7		43	96	90.	96	99	90.0	26.	S 25	43.	26. 7	9.09	0 09	
THOD	}		PRESS PRESS	PRESS PRESS	PRESS	PRESS PRESS	PRESS	PRESS PRESS	PRESS	PRESS	PRESS 22	PRESS	PRESS	PRESS	PRESS	PRESS	PRESS	GAS	PRESS	DRESS	PRESS
IMPREGNATING MET	AMOUNT OF ADDITION (w+%)		NONE NONE	NONE NONE	0.500	1.000	0.200	0.050	0.001	1.00	1,900	9. 4, 6. / 1. 0, 0. 23. 0. 04	4. 180	2. 8/0 4. 490	11.300	5 170	5.300	NONE	2.000	2 000	12.000
	ADD I T I VE ELEMENT		NONE NONE	NONE NONE	Te	Be Be	55	88.7 89.7	:2:	22	Be	Ni. Sn Ni. Si. P	¥.	בי לי	S	~ ::	. <u>.</u>	NONE	Be	:7	. is
METAL	}	_	A A	33	ე ე		332			33	3	33	_			36		Cu	Ā		
21	S1ZE (mm)		$20 \times 60 \times 60$ $20 \times 120 \times 190$	$20 \times 60 \times 60$ $20 \times 120 \times 190$	$20 \times 60 \times 60$	20 × 60 × 60 20 × 120 × 190	20 × 60 × 60 20 × 60 × 60	20×120×190 20×120×190 20×60×60	$20 \times 120 \times 190$	20 × 120 × 190 20 × 120 × 190	$20 \times 120 \times 190$	$20 \times 120 \times 190$ $20 \times 120 \times 190$	$20 \times 120 \times 190$	$20 \times 120 \times 190$ $20 \times 120 \times 190$	20×120×190	20 × 120 × 190 20 × 120 × 190	20 × 120 × 190	$20 \times 60 \times 60$	20×120×190	20 × 120 × 190	20×120×190
F1G. 21	SAMPLE		n1-1 n1-4	n1-2 n1-3	n2-1	n3-1 n3-2	200 1-00 1-00 1-00			n3-9 n3-10	= :	n3-12 n3-13	4	n3-15	n3-17	2 1 2 1 8 2 1 8		n5-1	n7-1	2-7-2	n7-3

ngoa paca soa ana

F16. 22

TYPE	COEFFICIENT OF THERMAL CONDUCTIVIT	COEFFICIENT OF THERMAL CONDUCTIVITY	COEFFI OF TH EXPAN	SOEFFICIENT OF THERMAL EXPANSION	BENI	BEND I NG STRENGTH
OF CARRON	/M)	(W/mK)	(×10	(×10 ⁻⁶ /°C)	(ME	(МРа)
	SURFACE DIRECTION	THICKNESS DIRECTION	SURFACE DIRECTION	THICKNESS DIRECTION	SURFACE DIRECTION	THICKNESS DIRECTION
Ъ	150	160	3. 2	3.2	34.3	49.0
W	140	168	3. 2	3.2	29. 4	44. 1
z	150	255	1.8	2.3	14.7	29. 4

F1G. 23

			23	/40					
EFFECT	·	HUON		WETT-	ABILITY	HNCN	1	HNON	
WATER		@		©	•	@	•	@	
BENDING STRENGTH (MPa)	SUR- THICK- FACE NESS	41.2	41.2	38. 2	42. 1	42. 1	38. 2	39. 2	39. 2
BENI STRE (MI		27. 4	27. 4	25. 5	28. 4	28. 4	25. 5	26.5	26. 5
OEFFICIENT DF THERMAL EXPANSION (×10 ⁻⁶ /°C)	SUR- THICK- FACE NESS	5.1	5.0	5.0	5.0	5.1	5.1	4.5	4.5
COEFFICIENT OF THERMAL EXPANSION (×10 ⁻⁶ /°C)	SUR- FACE	5.1	5.0	4.9	5.0	4.5	4.5	3.8	3.8
COEFFICIENT OF THERMAL CONDUCTIVITY (W/mK)	THICK-	170	188	178	204	181	198	310	320
COEFFICIEN OF THERMAL CONDUCTIVIT (W/mK)	SUR- FACE	162	170	172	192	145	166	150	170
	MEIHOU	PRESS	GAS	PRESS	GAS	PRESS	GAS	PRESS	GAS
AMOUNT OF ADDITION	(wt%)	LINGIA		2	2	HONE		HONE	
METAL ELEMENT		LINCIA	NON I	Te	<u>e</u>	HOME		FINONE	J NOME
METAL			3	3	3	ć	3	3	3
S1ZE (mm)		p1-2 20x60x60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60	20×60×60
SAMPLE		p1-2	p5-1	p2-4	p6-2	m1-2	m5-1	n1-2	n5-1

DENSITY AVERAGE OF EACH LOT $\left[\mathrm{g/cm}^3 \right]$

F1G. 30

																_				
IMPREG- NATION	Δ	0	0	0	V	۷	0	0	Δ	0	0	0	0	0	0	0	0	0	0	0
REACTION OF Si/Cu	∇	0	0	0	Δ	0	0	0	0	0	0	0	0	٥	0	0	0	0	0	0
COOLING SPEED [°C/min]	260	006	480	900	006	480	006	620	480	190	620	620	790	480	620	790	006	006	006	900
PRESSURIZATION TIME [sec]	09	20	10	10	09	20	10	10	20	35	100	2	20	35	5	10	3	5	5	7
PRESSURIZATION [MPa(kgf/cm²)]	0. 78 (8)	7. 84 (80)	11.8 (120)	23. 5 (240)	0. 78 (8)	3. 92 (40)	11.8 (120)	23. 5 (240)	0. 78 (8)	3. 92 (40)	7. 84 (80)	23. 5 (240)	3. 92 (40)	7. 84 (80)	7. 84 (80)	11.8(120)	156.1	156.1	69. 3	26. 7
IMPREGNATION TEMPERATURE [°C]	1130	1130	1130	1130	1180	1180	1180	1180	1230	1230	1230	1230	1280	1280	1280	1280	1150	1150	1140	1145
Si IMPREG- NATION	ABSENT	ABSENT	PRESENT	ABSENT	PRESENT	ABSENT	PRESENT	ABSENT	PRESENT	ABSENT	ABSENT	PRESENT	ABSENT	ABSENT	ABSENT	PRESENT	ABSENT	ABSENT	ABSENT	ABSENT
N i PLAT I NG	ABSENT	ABSENT	ABSENT	PRESENT	ABSENT	ABSENT	ABSENT	ABSENT	ABSENT	PRESENT	ABSENT	ABSENT	ABSENT	ABSENT	PRESENT	ABSENT	ABSENT	ABSENT	ABSENT	ABSENT
PORE DIAMETER [μm]	70	22	42	5	42	5	42	22	22	42	70	22	42	70	22	42	21	19	23	22
POROSITY [%]	35	44	59	15	59	15	29	44	44	59	35	44	59	35	44	59	20	20	20	20
No.	SAMPLE1	SAMPLE2	SAMPLE3	SAMPLE4	SAMPLE5	SAMPLE6	SAMPLE7	SAMPLE8	SAMPLE9	SAMPLE10	SAMPLE11	SAMPLE12	SAMPLE13	SAMPLE14	SAMPLE15	SAMPLE16	SAMPLE17	SAMPLE18	SAMPLE19	SAMPLE20

REACTION of Si/Cu: ©NO REACTION OSLIGHT REACTION ASTRONG REACTION IMPREGNATION OF Cu : ©GOOD IMPREGNATION OSLIGHTLY INSUFFICIENT IMPREGNATION NOTES

FIG. 33

FIG. 34

FIG. 35A

FIG. 35B

FIG. 36

FIG. 37

FIG. 38

ĻŲ ļ, Ļ, 1,17 ļЦ ij ijĢ -= ļЦ

.

FIG. 39

40/40

FIG. 40

