数字电路知识点汇总 (东南大学)

第1章 数字逻辑概论

- 一、讲位计数制
 - 1.十讲制与二讲制数的转换
 - 2.二进制数与十进制数的转换
 - 3.二进制数与16进制数的转换
- 二、基本逻辑门电路
- 第2章 逻辑代数

表示逻辑函数的方法,归纳起来有:真值表,函数表达式,卡诺图,逻辑图及波形图等几种。

- 一、逻辑代数的基本公式和常用公式
- 1) 常量与变量的关系 A+0= A与 A·1= A

$$A+1=1 = 1 = A \cdot 0 = 0$$

$$A + \overline{A} = 1 = A \cdot \overline{A} = 0$$

- 2)与普通代数相运算规律
- a.交换律: A+B=B+A

$$A \cdot B = B \cdot A$$

b.结合律: (A+B)+C=A+(B+C)

$$(A\cdot B)\cdot C=A\cdot (B\cdot C)$$

c.分配律: $A \cdot (B \cdot C) = A \cdot B + A \cdot C$

$$A+B\cdot C=(A+B)()A+C)$$

- 3)逻辑函数的特殊规律
 - a.同一律: A+A+A

b. 摩根定律: $\overline{A+B} = \overline{A} \cdot \overline{B}$, $\overline{A \cdot B} = \overline{A} + \overline{B}$

b.关于否定的性质 $A = \overline{A}$

二、逻辑函数的基本规则

代入规则

在任何一个逻辑等式中,如果将等式两边同时出现某一变量 A 的地方,都用一个函数 L 表示,则等式仍然成立,这个规则称为代入规则例如: $A \cdot \overline{B \oplus C} + \overline{A} \cdot B \oplus C$

可令 $L = B \oplus C$

则上式变成 $A \cdot \overline{L} + \overline{A} \cdot L = A \oplus L = A \oplus B \oplus C$

三、逻辑函数的: ——公式化简法

公式化简法就是利用逻辑函数的基本公式和常用公式化简逻辑 函数,通常,我们将逻辑函数化简为最简的与一或表达式

1) 合并项法:

利用 $A+A+\overline{A}=1$ 或 $A\cdot B=A\cdot \overline{B}=A$,将二项合并为一项,合并时可消去一个变量

例如:
$$L = \overline{ABC} + \overline{ABC} = \overline{AB}(C + \overline{C}) = \overline{AB}$$

2) 吸收法

利用公式 $A+A\cdot B=A$,消去多余的积项,根据代入规则 $A\cdot B$ 可以是任何一个复杂的逻辑式

例如 化简函数 $L = \overline{AB} + \overline{AD} + \overline{BE}$

解: 先用摩根定理展开: $\overline{AB} = \overline{A} + \overline{B}$ 再用吸收法

$$L = \overline{AB} + \overline{AD} + \overline{BE}$$

$$= \overline{A} + \overline{B} + \overline{A}D + \overline{B}\overline{E}$$

$$= (\overline{A} + \overline{A}D) + (\overline{B} + \overline{B}\overline{E})$$

$$= \overline{A}(1 + \overline{A}D) + \overline{B}(1 + \overline{B}\overline{E})$$

$$= \overline{A} + \overline{B}$$

利用 $A + \overline{AB} = A + B$ 消去多余的因子

3) 消去法

例如,化简函数
$$L = \overline{A}B + A\overline{B} + \overline{A}\overline{B}E + ABC$$

解: $L = \overline{A}B + A\overline{B} + \overline{A}\overline{B}E + ABC$
 $= (\overline{A}B + \overline{A}\overline{B}E) + (A\overline{B} + ABC)$
 $= \overline{A}(B + \overline{B}E) + A(\overline{B} + BC)$
 $= \overline{A}(B + C)(B + \overline{B}) + A(B + \overline{B})(\overline{B} + C)$
 $= \overline{A}(B + C) + A(\overline{B} + C)$
 $= \overline{A}B + \overline{A}C + A\overline{B} + AC$

 $=\overline{A}B + A\overline{B} + C$

4)配项法

利用公式 $A \cdot B + \overline{A} \cdot C + BC = A \cdot B + \overline{A} \cdot C$ 将某一项乘以 ($\overline{A} + A$),即乘以 1,然后将其折成几项,再与其它项合并。

例如: 化简函数
$$L = A\overline{B} + B\overline{C} + \overline{B}C + \overline{A}B$$

解: L =
$$A\overline{B} + B\overline{C} + \overline{B}C + \overline{A}B$$

= $A \cdot \overline{B} + B \cdot \overline{C} + (A + \overline{A})\overline{B}C + \overline{A}B(C + \overline{C})$
= $A \cdot \overline{B} + B \cdot \overline{C} + A\overline{B}C + \overline{A}BC + \overline{A}BC + \overline{A}BC$
= $(A \cdot \overline{B} + A\overline{B}C) + (B \cdot \overline{C} + \overline{A}B\overline{C}) + (\overline{A}BC + \overline{A}BC)$

$$= A \cdot \overline{B}(1+C) + B\overline{C}(1+\overline{A}) + \overline{A}C(\overline{B}+B)$$
$$= A \cdot \overline{B} + B\overline{C} + \overline{A}C$$

2.应用举例

将下列函数化简成最简的与一或表达式

1)
$$L = A\overline{B} + BD + DCE + D\overline{A}$$

2)
$$L = A\overline{B} + \overline{BC} + AC$$

3)
$$L = AB + \overline{AC} + B\overline{C} + ABCD$$

解: 1)
$$L = A\overline{B} + BD + DCE + D\overline{A}$$

 $= A\overline{B} + D(B + \overline{A}) + DCE$
 $= A\overline{B} + D\overline{B}\overline{A} + DCE$
 $= A\overline{B} + D\overline{A}\overline{B} + DCE$
 $= (A\overline{B} + D)(A\overline{B} + \overline{A}\overline{B}) + DCE$
 $= A\overline{B} + D + DCE$
 $= A\overline{B} + D$

2)
$$L = A\overline{B} + \overline{BC} + AC$$

$$= A\overline{B}(C + \overline{C}) + \overline{BC} + AC$$

$$= A\overline{BC} + A\overline{BC} + \overline{BC} + AC$$

$$= AC(1 + \overline{B}) + \overline{BC}(1 + A)$$

$$= AC + \overline{BC}$$

3) L=
$$AB + \overline{AC} + B\overline{C} + ABCD$$

= $AB + \overline{AC} + B\overline{C}(A + \overline{A}) + ABCD$
= $AB + \overline{AC} + AB\overline{C} + \overline{ABC} + \overline{ABC}$

$$= (AB + AB\overline{C} + ABCD) + (\overline{AC} + \overline{ABC})$$

$$=AB(1+\overline{C}+CD)+\overline{AC}(1+B)$$

$$=AB+\overline{AC}$$

四、逻辑函数的化简一卡诺图化简法:

卡诺图是由真值表转换而来的,在变量卡诺图中,变量的取值顺 序是按循环码进行排列的,在与一或表达式的基础上,画卡诺图的步 骤是:

- 1.画出给定逻辑函数的卡诺图, 若给定函数有 n 个变量, 表示卡 诺图矩形小方块有2°个。
- 2.在图中标出给定逻辑函数所包含的全部最小项,并在最小项内 填 1,剩余小方块填 0.

用卡诺图化简逻辑函数的基本步骤:

- 1.画出给定逻辑函数的卡诺图
- 2.合并逻辑函数的最小项
- 3.选择乘积项,写出最简与一或表达式

选择乘积项的原则:

- ①它们在卡诺图的位置必须包括函数的所有最小项
- ②选择的乘积项总数应该最少
- 例 1.用卡诺图化简函数 $L = \overline{ABC} + ABC + \overline{ABC} + \overline{ABC}$

③每个乘积项所包含的因子也应该是最少的

- 解: 1.画出给定的卡诺图
 - 2.选择乘积项: $L = AC + BC + \overline{ABC}$

例 2.用卡诺图化简 $L = F(ABCD) = \overline{BCD} + \overline{BCD} + \overline{ACD} + \overline{ABCD}$

解: 1.画出给定4变量函数的卡诺图

2.选择乘积项

AB\	00	01	11	10
00		1	1	
01	1	1		
11	1	1		
10			1	1

设到最简与一或表达式 $L = B\overline{C} + \overline{ABD} + A\overline{BC}$

例 3.用卡诺图化简逻辑函数

 $L = \sum m(1,3,4,5,7,10,12,14)$

解: 1.画出 4 变量卡诺图

2.选择乘积项,设到最简与一或表达式

AB\	00	01	11	10
00		m1/1	m ₃ 1	m ₂
01	m41	m ₅	m⁄1	m ₆
11	m 12	m13	m 15	m/14
10	m ₈	m ₉	M11	m\d

$$L = \overline{A}D + B\overline{C}D + AC\overline{D}$$

第3章 逻辑门电路

门电路是构成各种复杂集成电路的基础,本章着重理解 TTL 和 CMOS 两类集成电路的外部特性:输出与输入的逻辑关系,电压传输 特性。

1. TTL 与 CMOS 的电压传输特性

开门电平Von一保证输出为额定低电平

时所允许的最小输入高电平值

在标准输入逻辑时, $V_{oN}=1.8\,\mathrm{V}$

关门 V_{off} 一保证输出额定高电平90%的情况下,允许的最大输入低电平值,在标准输入逻辑时, $V_{off}=0.8\,\mathrm{V}$

 V_{ll} 一为逻辑 0 的输入电压 典型值 V_{ll} =0.3 V

 V_{IH} 一为逻辑 1 的输入电压 典型值 V_{IH} = 3.0 V

 V_{OH} 一为逻辑 1 的输出电压 典型值 V_{OH} = 3.5 V

 V_{oL} 一为逻辑 0 的输出电压 典型值 V_{oL} =0.3 V

对于 TTL: 这些临界值为 $V_{OH\, min} = 2.4V$, $V_{OL\, max} = 0.4V$

$$V_{IH \min} = 2.0V$$
, $V_{IL \max} = 0.8V$

低电平噪声容限: $V_{NL} = V_{OFF} - V_{IL}$

高电平噪声容限: $V_{NH} = V_{IH} - V_{ON}$

例: 74 L S 00 的 $V_{OH \text{ (min)}} = 2.5V$ $V_{OI \text{ (出版小)}} = 0.4V$

$$V_{IH~(\mathrm{min})} = 2.0V$$
 $V_{IL~(\mathrm{max})} = 0.7V$

它的高电平噪声容限 $V_{NH} = V_{HH} - V_{ON} = 3 - 1.8 = 1.2 \text{ V}$

它的低电平噪声容限 $V_{NL} = V_{OFF} - V_{IL} = 0.8 - 0.3 = 0.5 \text{ V}$

2.TTL 与 COMS 关于逻辑 0 和逻辑 1 的接法

74 H C 00 为 CMOS 与非门采用+5 V 电源供电,输入端在下面四种接法下都属于逻辑 0

- ①输入端接地
- ②输入端低于 1.5 V 的电源
- ③输入端接同类与非门的输出电压低于 0.1 V
- ④输入端接 10 KΩ 电阻到地

74LS00 为 TTL 与非门,采用+5 V 电源供电,采用下列 4 种接法都属于逻辑 1

- ①输入端悬空
- ②输入端接高于 2V 电压
- ③输入端接同类与非门的输出高电平 3.6 V
- ④输入端接 10 KΩ 电阻到地

第4章 组合逻辑电路

一、组合逻辑电路的设计方法

根据实际需要,设计组合逻辑电路基本步骤如下:

1.逻辑抽象

- ①分析设计要求,确定输入、输出信号及其因果关系
- ②设定变量,即用英文字母表示输入、输出信号
- ③状态赋值,即用0和1表示信号的相关状态
- ④列真值表,根据因果关系,将变量的各种取值和相应的函数值用 一张表格一一列举,变量的取值顺序按二进制数递增排列。

2.化简

- ①输入变量少时,用卡诺图
- ②输入变量多时,用公式法
- 3.写出逻辑表达式,画出逻辑图
 - ①变换最简与或表达式,得到所需的最简式
 - ②根据最简式,画出逻辑图
- 例,设计一个8421BCD 检码电路,要求当输入量 ABCD<3 或>7 时,电路输出为高电平,试用最少的与非门实现该电路。

解: 1.逻辑抽象

- ①分由题意,输入信号是四位 8421 B C D 码为十进制,输出为高、低电平;
 - ②设输入变量为 DCBA,输出变量为L;
 - ③状态赋值及列真值表

由题意,输入变量的状态赋值及真值表如下表所示。

Α	В	O	D	L
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	×
1	0	1	1	×
1	1	0	0	X
1	1	0	1	X
A 0 0 0 0 0 0 0 0 1 1 1 1 1 1	B 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	C 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1	D 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 1 0 0 0 0 0 1 1 1 × × ×
1	1	1	1	×

AB\C	D ₀₀	01	11	10
00	1	1	0	1
00 01	0	0	0	0
11	X	X	X	\times
	1	1	X	X

2.化简

由于变量个数较少,帮用卡诺图化简

3.写出表达式

经化简,得到 $L = A + \overline{BD} + \overline{ABC}$

- 4.画出逻辑图
- 二、用组合逻辑集成电路构成函数

$$Y = D_0 \overline{S_2} \overline{S_1} \overline{S_0} + D_1 \overline{S_2} \overline{S_1} S_0 + D_2 \overline{S_2} S_1 \overline{S_0} + \dots + D_7 S_2 S_1 S_0$$

$$Y_i = \sum_{i=0}^{i=7} \sum_{i=0}^{i=7} \sum_{j=0}^{i=7} \sum_{i=0}^{j=7} \sum_{i=0}^{i=7} \sum_{j=0}^{i=7} \sum_{j=$$

其中 m_i 为 $S_2S_1S_0$ 的最小项

D_i 为数据输入

当 $D_i = 1$ 时,与其对应的最小项在表达式中出现

当 $D_i = 0$ 时,与其对应的最小项则不会出现

利用这一性质,将函数变量接入地址选择端,就可实现组合逻辑函数。

②利用入选一数据选择器 74LS151 产生逻辑函数 $L = \overline{ABC} + A\overline{BC} + ABC + ABC$ 解: 1) 将已知函数变换成最小项表达式

$$L = \overline{A}BC + A\overline{B}C + AB$$

$$= \overline{ABC} + A\overline{BC} + AB(C + \overline{C})$$

$$=\overline{A}BC + A\overline{B}C + ABC + AB\overline{C}$$

2)将 $L = \overline{ABC} + A\overline{BC} + ABC + AB\overline{C}$ 转换成 74LS151 对应的输出形式 $Y_i = \sum_{i=0}^{7} \sum m_i D_i$

在表达式的第 1 项 \overline{ABC} 中 \overline{A} 为反变量, B、 C 为原变量,故 \overline{ABC} = $011 \Rightarrow m_3$

在表达式的第 2 项 \overline{ABC} ,中 A、C 为反变量,为 \overline{B} 原变量,故 \overline{ABC}

$$=101 \Rightarrow m_5$$

同理
$$ABC=111 \Rightarrow m_7$$

$$AB\overline{C} = 110 \Longrightarrow m_6$$

这样
$$L = m_3 D_3 + m_5 D_5 + m_6 D_6 + m_7 D_7$$

将 74LS151 中 m D_3 、 D_5 、 D_6 、 D_7 取 1

$$D_0$$
, D_1 , D_2 , D_4 \mathbb{R} 0 , \mathbb{R} $D_0 = D_1 = D_2 = D_4 = 0$

由此画出实现函数 $L = \overline{ABC} + A\overline{BC} + AB\overline{C}$ 的逻辑图如下图示。

第5章 锁存器和触发器

- 一、触发器分类:基本 R-S 触发器、同步 RS 触发器、同步 D 触发器、 主从 R-S 触发器、主从 JK 触发器、边沿触发器 {上升沿触发器 (D 触 发器、JK 触发器)、下降沿触发器 (D 触发器、JK 触发器)
- 二、触发器逻辑功能的表示方法

触发器逻辑功能的表示方法,常用的有特性表、卡诺图、特性方程、状态图及时序图。

对于第 5 章 表示逻辑功能常用方法有特性表,特性方程及时序图 对于第 6 章 上述 5 种方法其本用到。

三、各种触发器的逻辑符号、功能及特性方程

1.基本 R-S 触发器

逻辑符号

逻辑功能

特性方程:

 $Q^{n+1} = S + \overline{R}Q^n$

若 R=1, S=0,则 $Q^{n+1}=0$

若R=0,S=0,则 $Q^{n+1}=1$

 $R \cdot S = 0$ (约束条件)

若R=1,S=0,则 $Q^{n+1}=Q^n$

若R=1,S=1,则 $Q=\overline{Q}=1$ (不

允许出现)

2.同步 RS 触发器

 $Q^{n+1} = S + \overline{R}Q^n$ (CP=1 期间有效)

 $R \cdot S = 0$ (约束条件)

若R=1,S=0,则 $O^{n+1}=0$

若R=0,S=0,则 $Q^{n+1}=1$

若R=1,S=0,则 $Q^{n+1}=Q^n$

若R=1,S=1,则 $Q=\overline{Q}=1$

处于不稳

3.同步 D 触发器

特性方程
$$Q^{n+1} = D$$
 (CP=1 期间有效)

4.主从 R-S 触发器

特性方程
$$Q^{n+1} = S + \overline{R}Q^n$$
(作用后)

 $R \cdot S = 0$ 约束条件

逻辑功能

若
$$R=1,S=0$$
, CP 作用后, $Q^{n+1}=0$

若
$$R=0,S=1$$
, CP作用后, $Q^{n+1}=1$

若
$$R=0,S=0$$
,CP作用后, $Q^{n+1}=Q^n$

若
$$R=1,S=1$$
, CP作用后,处于不稳定状态

Note: CP作用后指CP由0变为1,再由1变为0时

5.主从 JK 触发器

特性方程为:
$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$
 (CP 作用后)

逻辑功能

若J=1,K=0,CP作用后, $Q^{n+1}=1$

若
$$J=0,K=1$$
, CP作用后, $Q^{n+1}=0$

若
$$J=1,K=0$$
,CP作用后, $Q^{n+1}=Q^n$ (保持)

若
$$J=1, K=1$$
, CP 作用后, $Q^{n+1}=\overline{Q^n}$ (翻转)

7. 边沿触发器

边沿触发器指触发器状态发生翻转在 CP 产生跳变时刻发生,

边沿触发器分为:上升沿触发和下降沿触发

1)边沿D触发器

①上升沿 D 触发器

其特性方程 $Q^{n+1} = D$ (CP 上升沿到来时有效)

②下降沿 D 触发器

其特性方程
$$Q^{n+1} = D$$
 (CP 下降沿到来时有效) $\stackrel{\mathsf{D} \longrightarrow \mathsf{D}}{\Leftrightarrow} \stackrel{\mathsf{D}}{\Leftrightarrow} \stackrel$

2) 边沿 JK 触发器

其特性方程 $Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$ (CP 上升沿到来时有效)

②下降沿 JK 触发器

其特性方程 $Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$ (CP 下降沿到来时有效)

- 3) T触发器
- ①上升沿 T 触发器

其特性方程 $Q^{r+1} = T \oplus Q^r$ (CP 上升沿到来时有效)

②下降沿 T 触发器

其特性方程: $Q^{n+1} = T \oplus Q^n$ (CP 下降沿到来时有效)

例:设图A所示电路中,已知A端的波形如图B所示,试画出Q及B 端波形,设触发器初始状态为0.

由于所用触发器为下降沿触发的 D 触发器,

其特性方程为 $Q^{n+1} = D = \overline{Q^n}$ (CP 下降沿到来时) $B = CP = A \oplus \overline{Q^n}$

$$B = CP = A \oplus \overline{Q^n}$$

 t_1 时刻之前 $Q^n=1$, $\overline{Q^n}=0$, A=0

 $CP=B=0 \oplus 0=0$

 t_1 时刻到来时 $Q^n = 0$, A = 1

$$CP=B=1 \oplus 0=1$$
 $Q^n=0$ 不变

 t_2 时刻到来时 A=0, $Q^n=0$, 故 B=CP=0, 当 CP 由 1 变为 0

时,
$$Q^{n+1} = \overline{Q^n} = \overline{0} = 1$$

$$\stackrel{\text{def}}{=} O^{n+1} = 1$$
, $\overrightarrow{\text{m}} A = 0 \Rightarrow \text{CP} = 1$

 t_3 时刻到来时,A=1, $Q^n = 1 \Rightarrow CP = A \oplus Q^n = 0$

$$\stackrel{\text{"}}{=}$$
 CP=0 时, $Q^{n+1} = \overline{Q^n} = 0$

当 $Q^{n+1} = 0$ 时,由于A=1,故CP=A $\oplus Q^n = 1$

若电路如图 C 所示,设触发器初始状态为 0, C 的波形如图 D 所示,试画出 Q 及 B 端的波形

当特性方程 $Q^{n+1} = D = \overline{Q^n}$ (CP 下降沿有效)

 t_1 时刻之前,A=0, Q=0, CP=B= $A \otimes Q^n = 1$

 t_1 时刻到来时 A=1, $Q^n=0$ 故 $CP=B=A\otimes Q^n=1\otimes 0=0$

当 CP 由 1 变为 0 时, $Q^{n+1} = \overline{Q^n} = 1$

当 $Q^n = 1$ 时,由于A=1,故CP= $1 \otimes 1$, Q^n 不变

 t_2 时刻到来时, Θ A = 0, Q^n = 1,故 CP=B= $A \otimes 1 = 0$

此时,CP由1变为0时, $Q^{n+1} = \overline{Q^n} = 0$

当 $Q^n = 0$ 时,由于A=0故CP=0 \otimes 0=1

 t_3 时刻到来时,由于 A=1,而 $Q^n = 0$,故 CP= $A \otimes Q^n = 0$

当 CP 由 1 变为 0 时, $Q^{n+1} = \overline{Q^n} = 1$

当Q=1时,由于A=1,故CP=B=1⊗1=1

例: 试写出如图示电路的特性方程,并画出如图示给定信号 CP、A、B作用下Q端的波形,设触发器的初始状态为 0.

解: 由题意该触发器为下降沿触发器 JK 触发器其特性方程

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$
 (CP 下降沿到来时有效)

其中
$$J = A \cdot B$$
 $K = \overline{A + B}$

由 JK 触发器功能:

J=0, K=0 CP 作用后
$$Q^{n+1} = 0$$

J=0, K=0 CP 作用后
$$Q^{n+1} = Q^n$$

J=1, K=1 CP 作用后
$$Q^{n+1} = \overline{Q^n}$$

第6章 时序逻辑电路分类

一、时序逻辑电路分类

时序逻辑电路分为同步时序逻辑电路和异步时序逻辑电路,时序逻辑电路通常由组合逻辑电路和存贮电路两部分组成。

二、同步时序电路分析

分析步骤: ①确定电路的组成部分

- ②确定存贮电路的即刻输入和时序电路的即刻输出逻辑式
- ③确定电路的次态方程
- ④列出电路的特性表和驱动表
- ⑤由特性表和驱动表画出状态转换图
- ⑥电路特性描述。

例:分析如下图示同步时序电路的逻辑功能

解: ①确定电路的组成部分

该电路由2个上升沿触发的T触发器和两个与门电路组成的时序电路

②确定存贮电路的即刻输入和时序电路的即刻输出

存贮电路的即刻输入:对于 FF_0 : $T_o = A$

对于 FF_1 : $T_o = AQ_0^n$

时序电路的即刻输出: $I = AQ^nQ_0^n$

③确定电路的状态方程

对于 FF_0 : $Q_0^{n+1} = A \oplus Q_0^n$

对于 FF_1 : $Q_1^{n+1} = (AQ_0^n) \oplus Q_1^n$

④列出状态表和真值表

由于电路有2个触发器,故可能出现状态分别为00、01、10、11

设
$$S_0 = Q_0^n Q_0^n = 00$$

$$S_1 = Q_0^n Q_0^n = 01$$

$$S_2 = Q_1^n Q_0^n = 10$$

$$S_3 = Q_1^n Q_0^n = 11$$

n Q1	n Qo	Q ₁ Q A=0	n+1 0 / Z A=1		n Q1	Q ₀	Q ₁ Q ₁ A=0	n+1 0 / Z A=1
0	0	00/0	01/0	\	S ₀		S ₀ /0	S ₁ /0
0	1	01/0	10/0	—	S ₁		S ₁ /0	S ₂ /0
1	0	10/0	11/0		S ₂		S2/0	S ₃ /0
1	1	11/0	00/1		S ₃		S ₃ /0	S ₉ /1

⑤电路状态图为

⑥电路的特性描述

由状态图,该电路是一个可控模 4 加法计数器,当 A=1 时,在 CP 上 升沿到来后电路状态值加 1,一旦计数到 11 状态,Y=1,电路状态在下一个 CP 上升沿加到 00,输出信号 Y 下降沿可用于触发器进位操

作,当 A=0 时停止计数。

例: 试分析下图示电路的逻辑功能

解: ①确定电路的组成部分

该电路由3个上升沿触发的D触发器组成

②确定电路的太方程

对于 FF_0 : $Q_0^{n+1} = D_0 = \overline{Q_2^n}$ (CP 上升沿到来有效)

对于 FF_1 : $Q_1^{n+1} = D_1 = Q_0^n$ (CP 上升沿到来有效)

对于 FF_2 : $Q_2^{n+1} = D_2 = Q_1^n$ (CP 上升沿到来有效)

③列出状态转换真值表

④由状态表转换真值表画出如下图示状态图

 S_0 、 S_1 、 S_3 、 S_7 、 S_6 、 S_4 这 6 个状态,形成了主循环电路, S_2 、 S_5 为无效循环

⑤ 逻辑功能分析

由状态图可以看出,此电路正常工作时,每经过6个时钟脉冲作用后, 电路的状态循环一次,因此该电路为六进制计数器,电路中有2个无 效状态,构成无效循环,它们不能自动回到主循环,故电路没有自启 动能力。

三、同步时序电路设计

同步时序设计一般按如下步骤进行:

- 1)根据设计要求画出状态逻辑图;
- 2) 状态化简;
- 3) 状态分配;
- 4) 选定触发器的类型,求输出方程、状态方程和驱动方程;
- 5) 根据方程式画出逻辑图;
- 6) 检查电路能否自启动,如不能自启动,则应采取措施加以解决。例:用 JK 触发器设计一同步时序电路,其状态如下表所示,分析如图示同步时序电路。

Q ⁿ ₂	Q ₁	Q2 Q1	+1/Y
		A=0	A=1
0	0	01/0	11/0
0	1	10/0	00/0
1	0	11/0	01/0
1	1	00/1	10/1

解:

由题意,状态图已知,状态表已知。故进行状态分配及求状态方程, 输出方程。

由于有效循环数 N=4,设触发器个数为 K,则 $2^k \ge 4$ 得到 K=2. 故选用 $2 \land JK$ 触发器,将状态表列为真值表,求状态方程及输出方程。

Α	Q ₁	Q_0^n	Q2	Q1 n+1	Υ	
0	0	0	0	1	0	
0	0	1	1	0	0	
0	1	0	1	1	0	
0	1	1	0	0	1	
1	0	0	1	1	0	
1	0	1	0	0	0	
1	1	0	0	1	0	
1	1	1	1	0	1	

$$Q_1^{n+1} = A\overline{Q_1^n}\overline{Q_0^n} + AQ_1^nQ_0^n + \overline{A}\overline{Q_1^n}Q_0^n + \overline{A}Q_1^n\overline{Q_0^n}$$

$$= (A\overline{Q_0^n} + \overline{A}Q_0^n)\overline{Q_1^n} + (AQ_0^n + \overline{A}\overline{Q_0^n})Q_1^n$$

$$= (A \oplus Q_0^n)\overline{Q_1^n} + (\overline{A \oplus Q_0^n})Q_1^n$$

将
$$Q_1^{n+1} = \overline{Q_0^n}$$

 $Q_1^{n+1} = (A \oplus Q_0^n) \overline{Q_1^n} + (\overline{A \oplus Q_0^n}) Q_1^n$ 分别写成 JK 触发器的标准形式:

$$Q_1^{n+1} = \mathbf{J} \quad \overline{Q}^n + \overline{K}Q^n$$

对于
$$FF_0: Q_0^{n+1} = 1 \cdot \overline{Q_0^n} + \overline{1} \cdot Q_0^n$$

得到 $J_0=1$, $K_0=1$

对于方程 $Q_1^{n+1} = (A \oplus Q_0^n) \overline{Q_1^n} + (\overline{A \oplus Q_0^n}) Q_1^n$

得到 $J_1 = A \oplus Q_0^n$

$$K_1 = A \oplus Q_0^n$$

画出逻辑图,选用上升沿触发的JK 触发器

第八章 脉冲波形的变换与产生

- 555 定时器及其应用
- 1.电路结构及工作原理
- 555 定时器内部由分压器、 电压比较器、RS 锁存器(触发器)和 集电极开路的三极管 T 等三部分组成, 其内部结构及示意图如图 22a)、22b)

在图 22b)中,555 定时器是8 引脚芯卡,放电三极管为外接电路提供放电通路,在使用定时器时,该三极管集电极

(第7脚)一般要接上拉电阻,

 C_1 为反相比较器, C_2 为同相

比较器, 比较器的基准电压由

电源电压 V_{cc} 及内部电阻分压

比决定,在控制 V_{co} (第 5 脚)

悬空时,
$$V_{R_1} = \frac{2}{3}V_{CC}$$
、 $V_{R_2} = \frac{1}{3}V_{CC}$;

如果第5脚外接控制电压,

则 $V_{R_1} = V_{CO}$ 、 $V_{R_2} = \frac{1}{2} V_{CO}$, $\overline{R_d}$ 端(第4脚)是复位端,只要 $\overline{R_d}$ 端加上低电平,输出端(第3脚)立即被置成低电平,不受其它输入状态的影响,因此正常工作时必须使 $\overline{R_d}$ 端接高电平。

由图 22a), G_1 和 G_2 组成的 RS 触发器具有复位控制功能,可控制三极管 T 的导通和截止。

由图 22a)可知,

当
$$V_{i1}>V_{R_1}$$
 (即 $V_{i1}>\frac{2}{3}V_{CC}$) 时,比较器 C_1 输出 $V_R=0$

当
$$V_{i2} > V_{R_2}$$
 (即 $V_{i2} > \frac{1}{3}V_{CC}$) 时,比较器 C_2 输出 $V_S = 1$

RS 触发器 O=0

 G_3 输出为高电平,三极管 T 导通,输出为低电平($V_o=0$)

当
$$V_{i1} < V_{R_1}$$
 (即 $V_{i1} < \frac{2}{3}V_{CC}$), $V_{i2} < \frac{1}{3}V_{CC}$ 时,比较器 C_1 输出高电平, $V_R = 1$, C_2

输出为低电平 $V_s=0$

当 $V_{i1} > V_{R_1}$ (即 $V_{i1} > \frac{2}{3}V_{CC}$) 时,比较器 C_1 输出 $V_R = 0$ 当 $V_{i2} < V_{R_2}$ (即 $V_{i2} < \frac{1}{3}V_{CC}$) 时,比较器 C_2 输出 $V_S = 0$ ⇒ C_1 、 C_2 输出 Q=1, $\overline{Q} = 1$

同进T截止, G_4 输出为高电平

这样,就得到了表2所示555功能表。

Rd	VI1	VI2	Vo	T的状态
0	×	×	0	导通
1	$>\frac{2}{3}$ Vcc	$>\frac{1}{3}$ Vcc	0	导通
1	< 2/3 Vcc	< 1/3 Vcc	1	截止
1	> 2/3 Vcc	$\langle \frac{1}{3} V_{cc}$	1	截止
1	< 2/3 Vcc	$>\frac{1}{3}$ Vcc	不变	不变

2.应用

1) 用 555 构成单稳态触发器 其连接图如图 23 所示。

若将其第 2 脚(V_{i2})作为触发器信号的输入端,第 8 脚外接电阻 R 是第 7 脚;第 7 脚与第 1 脚之间再接一个电容 C,则构成了单稳态触发器。

其工作原理如下:

电源接通瞬间,电路有一个稳定的过程,即电源通过 \mathbf{R} 向 \mathbf{C} 充电,当 V_c 上

升到 $\frac{2}{3}V_{cc}$ 时, V_o 为低电平,放电三极管和T导通,电容C放电,电路进入稳定

若触发输入端施加触发信号($V_i < \frac{1}{3}V_{cc}$),触发器翻转,电路进入暂稳态, V_o 输出为高电平,且放电三极管 T 截止,此后电容 C 充电至 $V_c = \frac{2}{3}V_{cc}$ 时,电路又发生翻转, V_o 为低电平,放电三极管导通,电容 C 放电,电路恢复至稳定状态。

其工作波形如图 24 所示。

$$t_{w} = RC \ln 3 = 1.1RC$$

2) 用 555 构成施密特触发器

将 555 定时器的 V_{i1} 和 V_{i2} 两个输入端连在一起作为信号输入端,即可得到施密特触发器,如图 25 所示,施密特触发器能方便地将三角波、

正弦波变成方波。

由于 555 内部比较器 C_1 和 C_2 的参考电压不同,因而基本 RS 触发器的置 0 信号

因此,输出电压V。由高电平变为低电平和由

和置1信号必然发生在输入信号的不同电平,

低电平变为高电平所对应的 V_i 值也不同,这样,就形成了施密特触发器。

为提高比较器参考电压 V_{R_1} 和 V_{R_2} 的稳定性,

通常在 V_{co} 端接有 $0.01 \, \mu F$ 左右的滤波电容。

根据 555 定时器的结构和功能可知:

当输入电压 $V_i=0$ 时, $V_o=1$,当 V_i 由 0 逐渐升高到 $\frac{2}{3}V_{cc}$ 时, V_o 由 1 变为 0; 当输入电压 V_i 从高于 $\frac{2}{3}V_{cc}$ 开始下降直到 $\frac{1}{3}V_{cc}$, V_o 由 0 变为 1; 由此得到 555 构成的施密特触发器的正向阀值电压 $V_{T+}=\frac{2}{3}V_{cc}$

负向阀值电压
$$V_{T-}=\frac{1}{3}V_{cc}$$
,回差电压 $\Delta V_{T}=V_{T+}-V_{T-}=\frac{1}{3}V_{cc}$ 如果参考电压由外接的电压 V_{co} 供给,则这时 $V_{T+}=V_{co}$, $V_{T-}=\frac{1}{2}V_{co}$

 $\Delta V_{\scriptscriptstyle T} = \frac{1}{2} V_{co}$, 通过改变 V_{co} 值可以调节回差电压的大小

3) 用 555 构成多谐振荡器

由 555 构成的多谐振荡器及其工作波形如图 27 所示

- a. 接通电源后,电容 C 被充电, V_c 上升,当 V_c 上升到 $\frac{2}{3}V_{cc}$ 时,触发器被复位,同时放电三极管 T 导通,此时 V_o 为低电平,电容 C 通过 R_2 和 T 放电,使 V_c 下降;
- b. 当 V_c 下降到 $\frac{1}{3}V_{cc}$ 时,触发器又被置位, V_o 翻转为高电平,电容器 C 放电所 需的时间为 $t_{pL}=R_2C\ln 2=0.7RC$
- c. 当 C 放电结束时,T 截止, V_{cc} 通过 R_1 、 R_2 向电容器 C 充电, V_c 由 $\frac{1}{3}V_{cc}$ 上 升到 $\frac{2}{3}V_{cc}$ 所需的时间为 $t_{pH}=(R_1+R_2)C\ln 2=0.7(R_1+R_2)C$
- d. 当 V_c 上升到 $\frac{2}{3}V_{cc}$ 时,触发器又发生翻转,如此周而复始,在输出端就得到

一个周期性的方波,其频率为
$$f = \frac{1}{t_{pL} + t_{pH}} = \frac{1.43}{(R_1 + R_2)C}$$

在图 16 所示电路中, $t_{pL} \neq t_{pH}$,而且占空比固定不变,若将图 16 改成 17 所示电路,电路利用 D_1 、 D_2 单向导电性将电容器 C 放电回路分开,再加上电

位器调节,使构成了占空比可调 的多谐振荡器。

图中, V_{cc} 通过 R_A 、 D_1 向电容 C 充电,充电时间为 $t_{pH}=0.7R_A$ C

电容 C 通过 D_2 、 R_B 及 555 中的放电三极管 T 放电, 放电时间为 $t_{pL}=0.7\,R_B$ C

因而振荡频率为
$$f = \frac{1}{t_{pL} + t_{pH}} = \frac{1.43}{(R_A + R_B)C}$$

可见,这种振荡器输出波形占空比为 $q(\%) = \frac{R_A}{R_A + R_B} \times 100\%$

