PROJECT REPORT

TERRO'S REAL ESTATE AGENCY

By ~SUNILKUMAR A
DATA ANALYTICS JULY '22

Problem Statement (Situation):

"Find out the most relevant features for pricing of a house"

Terro's real-estate is an agency that estimates the pricing of houses in a certain locality. The pricing is concluded based on different features / factors of a property. This also helps them in identifying the business value of a property. To do this activity the company employs an "Auditor", who studies various geographic features of a property like pollution level (NOX), crime rate, education facilities (pupil to teacher ratio), connectivity (distance from highway), etc. This helps in determining the price of a property. DATA SET GIVEN.

TASK TO REPORT

1) Generate the summary statistics for each variable in the table. (Use Data analysis tool pack). Write down your observation

CRIME RATE						
Mean	4.871976					
Standard Er	0.12986					
Median	4.82					
Mode	3.43					
Standard De	2.921132					
Sample Vari	8.533012					
Kurtosis	-1.18912					
Skewness	0.021728					
Range	9.95					
Minimum	0.04					
Maximum	9.99					
Sum	2465.22					
Count	506					

68.5749
1.25137
77.5
100
28.14886
792.3584
-0.96772
-0.59896
97.1
2.9
100
34698.9
506

INDUSTRY						
Mean	11.13678					
Standard Erro	0.30498					
Median	9.69					
Mode	18.1					
Standard Dev	6.860353					
Sample Varia	47.06444					
Kurtosis	-1.23354					
Skewness	0.295022					
Range	27.28					
Minimum	0.46					
Maximum	27.74					
Sum	5635.21					
Count	506					

NO	Y
Mean	0.554695
Standard Err	0.005151
Median	0.538
Mode	0.538
Standard De	0.115878
Sample Varia	0.013428
Kurtosis	-0.06467
Skewness	0.729308
Range	0.486
Minimum	0.385
Maximum	0.871
Sum	280.6757
Count	506

DISTANCE							
Mean	9.549407						
Standard Err	0.387085						
Median	5						
Mode	24						
Standard De	8.707259						
Sample Varia	75.81637						
Kurtosis	-0.86723						
Skewness	1.004815						
Range	23						
Minimum	1						
Maximum	24						
Sum	4832						
Count	506						

TAX	(
Mean	408.2372
Standard Err	7.492389
Median	330
Mode	666
Standard De	168.5371
Sample Varia	28404.76
Kurtosis	-1.14241
Skewness	0.669956
Range	524
Minimum	187
Maximum	711
Sum	206568
Count	506

PTRATIO					
Mean	18.45553				
Standard Err	0.096244				
Median	19.05				
Mode	20.2				
Standard De	2.164946				
Sample Varia	4.686989				
Kurtosis	-0.28509				
Skewness	-0.80232				
Range	9.4				
Minimum	12.6				
Maximum	22				
Sum	9338.5				
Count	506				

AVERAGE ROOT							
Mean	6.284634						
Standard Eri	0.031235						
Median	6.2085						
Mode	5.713						
Standard De	0.702617						
Sample Vari	0.493671						
Kurtosis	1.8915						
Skewness	0.403612						
Range	5.219						
Minimum	3.561						
Maximum	8.78						
Sum	3180.025						
Count	506						

LSTA	1/
Mean	12.65306
Standard Err	0.317459
Median	11.36
Mode	8.05
Standard De	7.141062
Sample Varia	50.99476
Kurtosis	0.49324
Skewness	0.90646
Range	36.24
Minimum	1.73
Maximum	37.97
Sum	6402.45
Count	506

AVG F	PRICE
Mean	22.53281
Standard I	0.408861
Median	21.2
Mode	50
Standard I	9.197104
Sample Va	84.58672
Kurtosis	1.495197
Skewness	1.108098
Range	45
Minimum	5
Maximum	50
Sum	11401.6
Count	506

IMPRESSION:

- As per the data set for task number 1, By comparing the all variable we can say that Mean(Average) of TAX is higher then all other variables and NOX shows lesser Mean.
- ➤ Also we can say standard deviation of TAX is higher then all other variables.

2) Plot a histogram of the Avg_Price variable. What do you infer?

- ➤ Here as per point of view in Histogram, The range of 21-25 shows highest peak range and 37-49 shows lowest peak range in Avg_price. The Avg price represented in ascending order.
- ➤ And the concept as Measure Of Peakedness(Kurtosis),
 Hence the Highest peak mentions as Leptokurtic.

3. Compute the covariance matrix. Share your observations.

	CRIME_RA	AGE	INDUS	NOX	DISTANCE	TAX	PTRATIO	AVG_ROO	LSTAT	AVG_PRIC
CRIME_RA	8.516148									
AGE	0.562915	790.7925								
INDUS	-0.11022	124.2678	46.97143							
NOX	0.000625	2.381212	0.605874	0.013401						
DISTANCE	-0.22986	111.55	35.47971	0.61571	75.66653					
TAX	-8.22932	2397.942	831.7133	13.0205	1333.117	28348.62				
PTRATIO	0.068169	15.90543	5.680855	0.047304	8.743402	167.8208	4.677726			
AVG_ROO	0.056118	-4.74254	-1.88423	-0.02455	-1.28128	-34.5151	-0.53969	0.492695		
LSTAT	-0.88268	120.8384	29.52181	0.48798	30.32539	653.4206	5.7713	-3.07365	50.89398	
AVG_PRIC	1.162012	-97.3962	-30.4605	-0.45451	-30.5008	-724.82	-10.0907	4.484566	-48.3518	84.41956

- According to the table we can see some positive covariance here, they are... (DISTANCE,TAX) (TAX,TAX)
- ➤ Negative covariance are (DISTANCE, CRIME RATE)

4) Create a correlation matrix of all the variables (Use Data analysis tool pack).

	CRIME_RA	AGE	INDUS	NOX	DISTANCE	TAX	PTRATIO	AVG_ROO	LSTAT	AVG_PRIC
CRIME_RA	1									
AGE	0.006859	1								
INDUS	-0.00551	0.644779	1							
NOX	0.001851	0.73147	0.763651	1						
DISTANCE	-0.00906	0.456022	0.595129	0.611441	1					
TAX	-0.01675	0.506456	0.72076	0.668023	0.910228	1				
PTRATIO	0.010801	0.261515	0.383248	0.188933	0.464741	0.460853	1			
AVG_ROO	0.027396	-0.24026	-0.39168	-0.30219	-0.20985	-0.29205	-0.3555	1		
LSTAT	-0.0424	0.602339	0.6038	0.590879	0.488676	0.543993	0.374044	-0.61381	1	
AVG_PRIC	0.043338	-0.37695	-0.48373	-0.42732	-0.38163	-0.46854	-0.50779	0.69536	-0.73766	1

IMPRESSION:

A)Top 3 positively correlated pairs					
0.910228	TAX AND [DISTANCE	91%		
0.763651	NOX AND	INDUS	77%		
0.73147	NOX AND	AGE	73%		

B)Top 3 negat	B)Top 3 negatively correlated pairs				
-0.73766273	AVG PRICE AND LSTA	(-74%)			
-0.61380827	LSTAT AND AVG ROO	T(-61%)			
-0.50778669	AVG PRICE AND PTRA	(-50%)			

- 5) Build an initial regression model with AVG_PRICE as 'y' (Dependent variable) and LSTAT variable as Independent Variable. Generate the residual plot.
- a) What do you infer from the Regression Summary output in terms of variance explained, coefficient value, Intercept, and Residual plot?
- b) Is LSTAT variable significant for the analysis based on your model?

Regression Statistics				
Multiple R	0.737663			
R Square	0.544146			
Adjusted F	0.543242			
Standard I	6.21576			
Observation	506			

(Coefficients	andard Erro	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	lpper 95.0%
Intercept	34.55384	0.562627	61.41515	3.7E-236	33.448457	35.65922	33.44846	35.65922
X Variable	-0.95005	0.038733	-24.5279	5.08E-88	-1.0261482	-0.87395	-1.02615	-0.87395

A)

- ➤ intercept 34.55384088
- ➤ Coefficient -0.950049354
- > The graph looks as scattered in plot of residual.
- B) LSTAT value is insignificant, cause the adjusted R-value is seems low.

6) Build a new Regression model including LSTAT and AVG_ROOM together as Independent variables and AVG_PRICE as dependent variable.

Regression Statistics				
Multiple R	0.7991			
R Square	0.638562			
Adjusted R	0.637124			
Standard Er	5.540257			
Observation	506			

(Coefficients	andard Erre	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-1.35827	3.172828	-0.4281	0.668765	-7.5919	4.875355	-7.5919003	4.875354658
AVG ROOM	5.094788	0.444466	11.46273	3.47E-27	4.22155	5.968026	4.22155044	5.968025533
LSTAT	-0.64236	0.043731	-14.6887	6.67E-41	-0.72828	-0.55644	-0.7282772	-0.5564395

a) Write the Regression equation. If a new house in this locality has 7 rooms (on an average) and has a value of 20 for L-STAT, then what will be the value of AVG PRICE?

> FORMULA:

Y= (AVG ROOM*7+(LSTAT*20)=INTERCEPT

=(5.0947*7)+(-0.64236*20)+(-1.3582)

=21.45808 OF PREDICTED AVG PRICE

How does it compare to the company quoting a value of 30000 USD for this locality? Is the company Overcharging/ Undercharging?

➤ The company is charging an exorbitant amount of \$30,000 for services in this locality, which is clearly an overcharge. The predicted average price (AVG_PRICE) stands at a reasonable \$21.45k, significantly lower than the company's asking price. By this company is Overchanging.

B) Is the performance of this model better than the previous model you built in Question 5? Compare in terms of adjusted R-square and explain

➤ Adjusted R 0.637124 > Adjusted R 0.543242

Adjusted R value is giving better results then previous question.

7) Build another Regression model with all variables where AVG_PRICE alone be the Dependent Variable and all the other variables are independent. Interpret the output in terms of adjusted R square, coefficient and Intercept values. Explain the significance of each independent variable with respect to AVG_PRICE.

Regression Statistics				
Multiple R	0.832979			
R Square	0.693854			
Adjusted R Square	0.688299			
Standard Error	5.134764			
Observations	506			

(Coefficients	andard Erri	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%
Intercept	29.24132	4.817126	6.070283	2.54E-09	19.77682784	38.7058	19.77683	38.7058
CRIME_RATE	0.048725	0.078419	0.621346	0.534657	-0.10534854	0.202799	-0.10535	0.202799
AGE	0.032771	0.013098	2.501997	0.01267	0.00703665	0.058505	0.007037	0.058505
INDUS	0.130551	0.063117	2.068392	0.039121	0.006541094	0.254562	0.006541	0.254562
NOX	-10.3212	3.894036	-2.65051	0.008294	-17.9720228	-2.67034	-17.972	-2.67034
DISTANCE	0.261094	0.067947	3.842603	0.000138	0.127594012	0.394593	0.127594	0.394593
TAX	-0.0144	0.003905	-3.68774	0.000251	-0.02207388	-0.00673	-0.02207	-0.00673
PTRATIO	-1.07431	0.133602	-8.0411	6.59E-15	-1.33680044	-0.81181	-1.3368	-0.81181
AVG_ROOM	4.125409	0.442759	9.317505	3.89E-19	3.255494742	4.995324	3.255495	4.995324
LSTAT	-0.60349	0.053081	-11.3691	8.91E-27	-0.70777824	-0.49919	-0.70778	-0.49919

- Adjusted R Square 0.688298647, The impressive adjusted R-square value validates the suitability of this model for prediction tasks. Its ability to effectively account for the variance in the data indicates that it can be relied upon to make accurate predictions. As a result, this model is a strong candidate for practical use in various prediction scenarios.
- ➤ Significant variables: AGE, INDUS, NOX, DISTANCE, LSTAT, PTRATIO, AVGROOM, TAX
- ➤ Insignificant variables: CRIME RATE
- ➤ Coefficient of AVG ROOM is higher then all other variables.

8) Pick out only the significant variables from the previous question. Make another instance of the Regression model using only the significant variables you just picked and answer the questions below:

Regression Statistics				
Multiple R	0.832836			
R Square	0.693615			
Adjusted F	0.688684			
Standard I	5.131591			
Observation	506			

(Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95.0%	pper 95.0%
Intercept	29.42847	4.804729	6.124898	1.85E-09	19.98839	38.86856	19.98839	38.86856
AGE	0.032935	0.013087	2.516606	0.012163	0.007222	0.058648	0.007222	0.058648
INDUS	0.13071	0.063078	2.072202	0.038762	0.006778	0.254642	0.006778	0.254642
NOX	-10.2727	3.890849	-2.64022	0.008546	-17.9172	-2.62816	-17.9172	-2.62816
DISTANCE	0.261506	0.067902	3.851242	0.000133	0.128096	0.394916	0.128096	0.394916
TAX	-0.01445	0.003902	-3.70395	0.000236	-0.02212	-0.00679	-0.02212	-0.00679
PTRATIO	-1.0717	0.133454	-8.03053	7.08E-15	-1.33391	-0.8095	-1.33391	-0.8095
AVG_ROO	4.125469	0.442485	9.3234	3.69E-19	3.256096	4.994842	3.256096	4.994842
LSTAT	-0.60516	0.05298	-11.4224	5.42E-27	-0.70925	-0.50107	-0.70925	-0.50107

a) Interpret the output of this model

The R-value is 68% so we can use to predictions.

b) Compare the adjusted R-square value of this model with the model in the previous question, which model performs better according to the value of adjusted R-square?

The Adjusted r value is better then previous model.

Adjusted R Sql 0.688684 > Adjusted R Square 0.688299

c) Sort the values of the Coefficients in ascending order. What will happen to the average price if the value of NOX is more in a locality in this town?

Coefficients in Ascending order,

NOX
PTRATIO
LSTAT
TAX
AGE
INDUS
DISTANCE
AVG_ROO

Intercept 29.42847349

The correlation between NOX and AVG_PRICE is -0.42732, indicating an inverse relationship between the two variables. When NOX levels increase, AVG_PRICE tends to decrease. In other words, higher NOX values are associated with lower average prices.

d) Write the regression equation from this model.

```
avg_price=(coeffecient(age)*age)+
(coefficient(indus)*indus)+(coeffecient(nox)*nox)+
(coeffcient(distance)*distance)+ (coeffecient(tax)*tax)+
(coeffecient(ptratio)*ptratio)+ (coeffecient(avg room)*avg_room)+
(coeffecient(lstat)*lstat)+ intercept
```