Санкт-Петербургский политехнический университет Высшая школа прикладной математики и вычислительной физики, ИПММ

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Отчет по лабораторным работам №5-6 по дисциплине «Математическая статистика»

Выполнил студент гр. 3630102/80201

Кирпиченко С. Р.

Руководитель

Баженов А. Н.

Санкт-Петербург 2021

Содержание

			Стран	ица
1	Пос	станов	ка задачи	6
2	Teo	рия		6
	2.1	Двум	ерное нормальное распределение	6
	2.2	Корре	еляционный момент и коэффициент корреляции	7
	2.3	Выбој	рочные коэффициенты корреляции	7
		2.3.1	Выборочный коэффициент корреляции Пирсона	7
		2.3.2	Выборочный квадрантный коэффициент корреляции	ı 7
		2.3.3	Выборочный коэффициент ранговой корреляции Спир-	_
			мена	8
	2.4	Эллиг	псы рассеивания	8
	2.5	Прост	гая линейная регрессия	8
		2.5.1	Модель простой линейной регрессии	8
		2.5.2	Метод наименьших квадратов	9
		2.5.3	Расчётные формулы для МНК-оценок	9
	2.6	Робас	тные оценки коэффициентов линейной регрессии	9
	2.7	Метод	д максимального правдоподобия	10
3	Pea	лизац	RN	10
4	Рез	зультат	гы	11
	4.1	Выбој	рочные коэффициенты корреляции	11
	4.2	Эллиг	псы рассеивания	13
	4.3	Оцени	ки коэффициентов линейной регрессии	13
		4.3.1	Выборка без возмущений	13
		4.3.2	Выборка с возмущениями	14
5	Обо	сужде	ние	15
	5.1	Выбој	рочные коэффициенты корреляции и эллипсы рассеи-	
		раниа		15

5.2	Оценки коэффициентов линейной регрессии	 16
~· _	e denim need during the beating	

Список иллюстраций

			(\mathbf{C}	тĮ	ра	ни	ща
1	Двумерное нормальное распределение, $n=20$.							13
2	Двумерное нормальное распределение, $n=60$.							13
3	Двумерное нормальное распределение, $n=100$.						•	13
4	Выборка без возмущений							14
5	Выборка с возмущениями							15

Список таблиц

			($C\mathbf{T}$	pa	ни	ца
1	Двумерное нормальное распределение, $n=20$				•		11
2	Двумерное нормальное распределение, $n=60$				•		11
3	Двумерное нормальное распределение, $n=100$				•		12
4	Смесь нормальных распределений						12

1 Постановка задачи

1. Сгенерировать двумерные выборки размерами 20, 60, 100 для нормального двумерного распределения $N(x, y, 0, 0, 1, 1, \rho)$.

Коэффициент корреляции ρ взять равным 0, 0.5, 0.9.

Каждая выборка генерируется 1000 раз и для неё вычисляются: среднее значение, среднее значение квадрата и дисперсия коэффициентов корреляции Пирсона, Спирмена и квадрантного коэффициента корреляции.

Повторить все вычисления для смеси нормальных распределений:

$$f(x,y) = 0.9N(x,y,0,0,1,1,0.9) + 0.1N(x,y,0,0,10,10,-0.9).$$

Изобразить сгенерированные точки на плоскости и нарисовать эллипс равновероятности.

2 Теория

2.1 Двумерное нормальное распределение

Двумерная случайная величина (X,Y) называется распределенной нормально, если её плотность вероятности определяется формулой

$$N(x, y, \overline{x}, \overline{y}, \sigma_x, \sigma_y, \rho_{XY}) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1 - \rho_{XY}^2}} \times \left\{ -\frac{1}{2(1 - \rho_{XY}^2)} \left[\frac{(x - \overline{x})^2}{\sigma_x^2} - 2\rho_{XY} \frac{(x - \overline{x})(y - \overline{y})}{\sigma_x\sigma_y} + \frac{(y - \overline{y})^2}{\sigma_y^2} \right] \right\},$$

$$(1)$$

где $\overline{x}, \overline{y}, \sigma_x, \sigma_y$ - математические ожидания и средние квадратические отклонения компонент X, Y соответственно, а ρ_{XY} — коэффициент корреляции.

2.2 Корреляционный момент и коэффициент корреляции

K oppeляционный момент (ковариация) двух случайных величин X,Y:

$$K_{XY} = \operatorname{cov}(X, Y) = \mathbf{M} \left[(X - \overline{x})(Y - \overline{y}) \right]. \tag{2}$$

 $Ko extit{-} \phi \phi uuuehm корреляции <math>
ho_{XY}$ случайных величин X,Y:

$$\rho_{XY} = \frac{K_{XY}}{\sigma_x \sigma_y}. (3)$$

Koвариационной матрицей случайного вектора (X,Y) называется симметричная матрица вида

$$K = \begin{pmatrix} D_X & K_{XY} \\ K_{YX} & D_Y \end{pmatrix}. \tag{4}$$

K open suu oh ho й матрицей случайного вектора <math>(X,Y) называется нормированная ковариационная матрица вида

$$R = \begin{pmatrix} 1 & \rho_{XY} \\ \rho_{YX} & 1 \end{pmatrix}. \tag{5}$$

2.3 Выборочные коэффициенты корреляции

2.3.1 Выборочный коэффициент корреляции Пирсона

Выборочный коэффициент корреляции Пирсона:

$$r = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 \frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2}} = \frac{K_{XY}}{s_X s_Y},$$
 (6)

где K, s_X^2, s_Y^2 — выборочные ковариация и дисперсии случайных величин X, Y.

2.3.2 Выборочный квадрантный коэффициент корреляции

$$r_Q = \frac{(n_1 + n_3) - (n_2 + n_4)}{n},\tag{7}$$

где n_1, n_2, n_3, n_4 — количества точек с координатами (x_i, y_i) , попавшими соответственно в I, II, III и IV квадранты декартовой системы с осями x' = x - med x, y' = y - med y и с центром в точке с координатами (med x, med y).

2.3.3 Выборочный коэффициент ранговой корреляции Спирмена

Обозначим ранги, соотвествующие значениям переменной X, через u, а ранги, соответствующие значениям переменной Y, — через v.

Выборочный коэффициент ранговой корреляции Спирмена:

$$r_S = \frac{\frac{1}{n} \sum_{i=1}^{n} (u_i - \overline{u}) (v_i - \overline{v})}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (u_i - \overline{u})^2 \frac{1}{n} \sum_{i=1}^{n} (v_i - \overline{v})^2}},$$
 (8)

где $\overline{u} = \overline{v} = \frac{1+2+\ldots+n}{n} = \frac{n+1}{2}$ — среднее значение рангов.

2.4 Эллипсы рассеивания

Уравнение проекции эллипса рассеивания на плоскость xOy:

$$\frac{(x-\overline{x})^2}{\sigma_x^2} - 2\rho_{XY} \frac{(x-\overline{x})(y-\overline{y})}{\sigma_x \sigma_y} + \frac{(y-\overline{y})^2}{\sigma_y^2} = C, \quad C - \text{const.}$$
 (9)

Центр эллипса (9) находится в точке с координатами $(\overline{x}, \overline{y})$, оси симметрии эллипса составляют с осью Ox углы, определяемые уравнением

$$\tan 2\alpha = \frac{2\rho_{XY}\sigma_x\sigma_y}{\sigma_x^2 - \sigma_y^2}. (10)$$

2.5 Простая линейная регрессия

2.5.1 Модель простой линейной регрессии

Регрессионую модель описания данных называют *простой линейной регрессией*, если

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, ..., n, \tag{11}$$

где $x_1, ..., x_n$ — заданные числа (значения фактора); $y_1, ..., y_n$ — наблюдаемые значения отклика; $\varepsilon_1, ..., \varepsilon_n$ — независимые, нормально распределенные $N(0, \sigma)$ с нулевым математическим ожиданием и одинаковой (неизвестной) дисперсией случайные величины (ненаблюдаемые); β_0, β_1 — неизвестные параметры, подлежащие оцениванию.

2.5.2 Метод наименьших квадратов

Метод наименьших квадратов (МНК):

$$Q(\beta_0, \beta_1) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 \to \min_{\beta_0, \beta_1}.$$
 (12)

2.5.3 Расчётные формулы для МНК-оценок

МНК-оценки параметров β_0 и β_1 :

$$\widehat{\beta}_1 = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^2} - (\overline{x})^2},\tag{13}$$

$$\widehat{\beta}_0 = \overline{y} - \overline{x}\widehat{\beta}_1. \tag{14}$$

2.6 Робастные оценки коэффициентов линейной регрессии

Метод наименьших модулей:

$$\sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i| \to \min_{\beta_0, \beta_1}.$$
 (15)

$$\widehat{\beta}_{1R} = r_Q \frac{q_y^*}{q_x^*},\tag{16}$$

$$\widehat{\beta}_{0R} = \operatorname{med} y - \widehat{\beta}_{1R} \operatorname{med} x, \tag{17}$$

$$r_Q = \frac{1}{n} \sum_{i=1}^n \operatorname{sign}(x_i - \operatorname{med} x) \operatorname{sign}(y_i - \operatorname{med} y),$$
 (18)

$$q_y^* = \frac{y_{(j)} - y_{(l)}}{k_q(n)}, \quad q_x^* = \frac{x_{(j)} - x_{(l)}}{k_q(n)}$$
(19)

$$l = \left\{ \begin{array}{ll} [n/4] + 1 & \text{при } n/4 \text{ дробном,} \\ n/4 & \text{при } n/4 \text{ целом.} \end{array} \right.$$

$$j = n - l + 1.$$

$$\text{sign } z = \left\{ \begin{array}{ll} 1 & \text{при } z > 0, \\ 0 & \text{при } z = 0, \\ -1 & \text{при } z < 0. \end{array} \right.$$

Уравнение регрессии здесь имеет вид

$$y = \widehat{\beta}_{0R} + \widehat{\beta}_{1R} \cdot x. \tag{20}$$
$$k_q(20) = 1.491.$$

2.7 Метод максимального правдоподобия

 $L(x_1,...,x_n,\theta)$ — функция правдоподобия($\Phi\Pi$), рассматриваемая как функция неизвестного параметра θ :

$$L(x_1, ..., x_n, \theta) = f(x_1, \theta) f(x_2, \theta) ... f(x_n, \theta).$$
(21)

3 Реализация

Лабораторная работа выполнена на языке Python 3.9 с использованием библиотек numpy, scipy, matplotlib, seaborn.

4 Результаты

4.1 Выборочные коэффициенты корреляции

$\rho = 0$								
	r	r_S	r_Q					
E(z)	0.0026	0.003	0.0029					
$E(z^2)$	0.0537	0.055	0.0555					
D(z)	0.0537	0.055	0.0554					
	$\rho =$	0.5						
	r	r_S	r_Q					
$\mathrm{E}(z)$	0.4865	0.46	0.338					
$E(z^2)$	0.2679	0.246	0.1576					
D(z)	0.0313	0.034	0.0433					
	$\rho =$	0.9						
	r	r_S	r_Q					
E(z)	0.8948	0.866	0.7068					
$E(z^2)$	0.803	0.755	0.5259					
D(z)	0.0024	0.004	0.0263					

Таблица 1: Двумерное нормальное распределение, ${\bf n}=20$

$\rho = 0$								
	r	r_S	r_Q					
E(z)	0.0029	0.002	0.0018					
$E(z^2)$	0.0167	0.017	0.0172					
D(z)	0.0167	0.017	0.0172					
	$\rho =$	0.5						
	r	r_S	r_Q					
E(z)	0.5004	0.479	0.3371					
$E(z^2)$	0.2601	0.24	0.1277					
D(z)	0.0097	0.01	0.0141					
	$\rho =$	0.9						
	r	r_S	r_Q					
E(z)	0.8974	0.882	0.7121					
$E(z^2)$	0.8059	0.779	0.5151					
D(z)	0.0006	0.001	0.008					

Таблица 2: Двумерное нормальное распределение, ${\bf n}=60$

$\rho = 0$								
$egin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\mathrm{E}(z)$	0.002	0.002	-0.0015					
$\mathrm{E}(z^2)$	0.0098	0.01	0.0106					
D(z)	0.0098	0.01	0.0106					
	$\rho =$	0.5						
	r	r_S	r_Q					
$\mathrm{E}(z)$	0.4989	0.478	0.3317					
$E(z^2)$	0.2547	0.235	0.1188					
D(z)	0.0059	0.006	0.0088					
	$\rho =$	0.9						
	r	r_S	r_Q					
E(z)	0.8989	0.886	0.7107					
$E(z^2)$	(z^2) 0.8084 0.785 0.5098							
D(z)	0.0004	0.001	0.0048					

Таблица 3: Двумерное нормальное распределение, n=100

n=20								
	r	r_S	r_Q					
$\mathrm{E}(z)$	-0.1029	-0.095	-0.0678					
$E(z^2)$	0.0588	0.057	0.0526					
D(z)	0.0482	0.048	0.048					
	n =	= 60						
	r	r_S	r_Q					
$\mathrm{E}(z)$	-0.087	-0.083	-0.0567					
$E(z^2)$	0.0234	0.023	0.0204					
D(z)	0.0158	0.016	0.0172					
	n =	100						
	r	r_S	r_Q					
E(z)	-0.0935	-0.089	-0.0589					
$E(z^2)$	0.0192	0.018	0.0134					
D(z)	0.0104	0.01	0.0099					

Таблица 4: Смесь нормальных распределений

4.2 Эллипсы рассеивания

Рис. 1: Двумерное нормальное распределение, ${\bf n}=20$

Рис. 2: Двумерное нормальное распределение, n = 60

Рис. 3: Двумерное нормальное распределение, ${\rm n}=100$

4.3 Оценки коэффициентов линейной регрессии

4.3.1 Выборка без возмущений

Коэффициенты прямых:

- 1. Метод наименьших квадратов: $\hat{\beta}_1 = 2.1838, \ \hat{\beta}_0 = 2.3362;$
- 2. Метод наименьших модулей: $\hat{\beta}_1 = 2.0006, \; \hat{\beta}_0 = 2.4235.$

Рис. 4: Выборка без возмущений

4.3.2 Выборка с возмущениями

Коэффициенты прямых:

- 1. Метод наименьших квадратов: $\hat{\beta}_1 = 0.5469, \; \hat{\beta}_0 = 1.8807;$
- 2. Метод наименьших модулей: $\hat{\beta_1} = 0.8314, \; \hat{\beta_0} = 1.8622.$

Рис. 5: Выборка с возмущениями

5 Обсуждение

- 5.1 Выборочные коэффициенты корреляции и эллипсы рассеивания
 Для дисперсий выборочных коэффициентов корреляции можно сделать следующие выводы:
 - 1. Для двумерного нормального распределения справедлив следующий порядок: $D(r) \leq D(r_S) \leq D(r_Q)$. Коэффициент Пирсона является оптимальным для анализа подобных выборок.
 - 2. Для смеси нормальных распределений дисперсии всех трех коэффициентов примерно равны.

Процент попадания элементов выборки в эллипс рассеивания примерно равен теоретическому значению (95%).

5.2 Оценки коэффициентов линейной регрессии

Для выборки без возмущений методы наименьших квадратов и модулей дают схожие хорошие результаты, однако МНМ дает более параллельную к исходной прямую.

Для выборки с возмущениями МНК и МНМ также дают схожие прямые, ввиду рода возмущений коэффициент наклона сильно отличается от эталона, однако метод наименьших модулей показал большую устойчивость.

Примечание

Список литературы

[1] Максимов Ю.Д. Математика. Теория и практика по математической статистике. Конспект-справочник по теории вероятностей: учеб. пособие / Ю.Д. Максимов; под ред. В.И. Антонова. — СПб.: Изд-во Политехн. ун-та, 2009. — 395 с. (Математика в политехническом университете).