Tilastotieteen harjoitustyö 2021

TILM3558

Marko Järvinen 518467 mabeja@utu.fi

1. Numeeristen vastemuuttujien mallitus

Satunnaisotos (700 otosta) valittu käyttämällä opiskelijanumeroa siemenlukuna

elinolo.sav (Tilastokeskuksen elinolotutkimuksen aineisto, N=2199)

```
library(foreign)
ht1.dat <- read.spss("elinolo2020.sav", to.data.frame = TRUE)
attach(ht1.dat)

set.seed(518467)
oma.otos1 <- ht1.dat[sample(nrow(ht1.dat), 700),]
attach(oma.otos1)</pre>
```

1.1. Varianssianalyysi

Tutki, onko sukupuolella ja asumisahtaudella yhteyttä asunnon pinta-alaan.

Käytetään kaksisuuntaista varianssianalyysiä, koska kyseessä on yksi numeerinen selitettävä muuttuja ja kaksi kategorista selittävää muuttujaa.

Normaalijakaumaoletus

Jaetaan aineisto sukupuolen mukaan kahteen osaan:

```
library(dplyr)
miehet.dat <- select(filter(oma.otos1, supu=="mies" ), c(supu, ahtas, pala))
naiset.dat <- select(filter(oma.otos1, supu=="nainen" ), c(supu, ahtas, pala))</pre>
```

Tehdään Shapiro-Wilk -testit:

```
with(miehet.dat, tapply(pala, list(ahtas), shapiro.test))
with(naiset.dat, tapply(pala, list(ahtas), shapiro.test))
```

Testien tulosteiden perusteella kaikkien luokkien p-arvot eivät ylitä rajaa 0,5, joten normaalijakaumaoletus ei ole voimassa. Parametrista testiä voidaan kuitenkin käyttää

127.0.0.1:5500/docs/index.html

havaintojen suuresta määrästä johtuen. Myöskin havainnoista luotujen laatikko-janakuvioiden perusteella ne ovat normaalisti jakautuneita.

Tehdään kaksisuuntainen varianssianalyysi:

```
attach(oma.otos1)
library(car)
anova(lm(pala~supu*ahtas))
```

Kaksisuuntaisen varianssianalyysin perusteella sekä sukupuoli, että asumisahtaus ovat tilastollisesti merkitseviä selittäjiä, sillä niiden F-testin p-arvot ovat alle 0,001. Sen sijaan niiden yhdysvaikutuksen F-testin p-arvo on yli 0,001 eikä siksi ole tilastollisesti merkitsevä selittäjä.

1.2. Regressiomalli

Tutki, onko kotitalouden kuluttajayksiköiden lukumäärällä, asumismenoilla yhteensä ja alueella asumisajalla yhteyttä asunnon pinta-alaan.

Tehdään regressioanalyysi, jossa selittäjinä ovat kotitalouden kuluttajayksiköiden lukumäärä, asumismenot ja alueella asumisaika sekä selitettävänä asunnon pinta-ala.

Tehdään sirontakuviot:

```
# sirontakuvio, kotitalouden kuluttajayksiköiden lukumäärä
plot(rkyks, pala)
abline(lm(pala~rkyks))

# sirontakuvio, asumismenot
plot(asmenot, pala)
abline(lm(pala~asmenot))

# sirontakuvio, alueella asumisaika
plot(alaika, pala)
abline(lm(pala~alaika))
```

Sirontakuvioista päätellen kotitalouden kuluttajayksiköiden lukumäärän, asumismenojen ja alueella asumisajan kasvaessa asunnon pinta-alakin kasvaa.

Lasketaan Pearsonin ja Spearmanin korrelaatiokertoimet:

```
cor.test(rkyks, pala, method="pearson")
cor.test(rkyks, pala, method="spearman", exact=FALSE)
cor.test(asmenot, pala, method="pearson")
cor.test(asmenot, pala, method="spearman", exact=FALSE)
cor.test(alaika, pala, method="pearson")
cor.test(alaika, pala, method="spearman", exact=FALSE)
```

127.0.0.1:5500/docs/index.html 2/11

Pearsonin korrelaatiokerroin kotitalouden kuluttajayksiköiden lukumäärän ja asunnon pinta-alalle on n. 0,534, joka osoittaa merkittävää suoraviivaista riippuvaisuutta. Spearmanin kerroin on vastaavasti n. 0,588, joka myös osoittaa merkittävää suoraviivaista riippuvuutta.

Pearsonin korrelaatiokerroin asumismenojen ja asunnon pinta-alalle on n. 0,118 ja Spearmanin kerroin on vastaavasti n. 0,072. Yhteyksiä näiden muuttujien välillä ei voida pitää suoraviivaisina.

Pearsonin korrelaatiokerroin alueella asumisajan ja asunnon pinta-alalle on n. 0,125 ja Spearmanin kerroin on vastaavasti n. 0,203. Yhteydet näiden muuttujien välillä ovat suoraviivaisia.

Kolmen selittäjän regressiomalli:

```
lm.pala <- lm(pala~rkyks+asmenot+alaika)
summary(lm.pala)</pre>
```

Mallin regressioyhtälöksi saadaan 15,06 + 26,97 · kotitalouden kuluttajayksiköiden lukumäärä + 0,00052 · asumismenot + 0,37 · alueella asumisaika = asunnon pinta-ala.

1.3. Toistomittausmalli

Satunnaisotos (600 otosta) valittu käyttämällä opiskelijanumeroa siemenlukuna

Toistomittausaineisto 2020. sav (7 maasta kerätty aineisto potilaan ohjauksesta, N=1299)

```
library(foreign)
ht2.dat<-read.spss("Toistomittausaineisto2020.sav", to.data.frame=TRUE)
attach(ht2.dat)

set.seed(518467)
oma.otos2<-ht2.dat[sample(nrow(ht2.dat), 600), ]
attach(oma.otos2)</pre>
```

Tutkijalla on hypoteesi, että potilaan mielestä saatu ohjaus leikkauksen jälkeen toiminnallista seikoista (Functional_M2) on ollut vähäisempää kuin odotettu ennen leikkausta (Functional_M1). Eli keskiarvo toisessa mittauksessa on matalampi. Lisäksi kiinnostaa se, onko tuo ero mittausten välillä erilainen sukupuolittain.

Tutki saavatko nämä tutkimushypoteesit tukea mallittamalla aineisto toistettujen mittausten varianssianalyysillä.

Molemmat sukupuolet

Suoritetaan toistettujen mittausten varianssianalyysi. Tarkistetaan ensin onko normaalijakaumaoletus voimassa Shapiro-Wilk -testeillä:

```
shapiro.test(Functional_M2)
shapiro.test(Functional_M1)
```

127.0.0.1:5500/docs/index.html 3/11

Sekä Functional_M2:n ja Functional_M1:n p-arvot ovat alle 0,001. Tästä voidaan todeta, että normaalijakaumaoletus ei ole voimassa.

Koska normaalijakaumaoletus ei ole voimassa, käytetään epäparametrista testiä.

Järjestetään havainnot Friedmanin testiä varten:

```
library(dplyr)
\verb|filtered_data| <- \verb|na.omit(select(oma.otos2), patient, Functional_M1, Functional_M2, D2)|| \\
filtered_data <- with(filtered_data, filtered_data[order(patient), ])</pre>
filtered_data <- filtered_data[!duplicated(filtered_data$patient), ]</pre>
M1 patient <- list(select(filtered data, patient))</pre>
M1_value <- list(select(filtered_data, Functional_M1))</pre>
M1_Sex <- list(select(filtered_data, D2))
M1 <- do.call(rbind.data.frame, Map('c', M1_patient, M1_value, M1_Sex))
M1['Functional'] = 'M1'
names(M1)[names(M1) == 'Functional_M1'] <- 'Functional_Value'</pre>
M2_patient <- list(select(filtered_data, patient))</pre>
M2 value <- list(select(filtered_data, Functional_M2))</pre>
M2_Sex <- list(select(filtered_data, D2))</pre>
M2 <- do.call(rbind.data.frame, Map('c', M2_patient, M2_value, M2_Sex))
M2['Functional'] = 'M2'
names(M2)[names(M2) == 'Functional_M2'] <- 'Functional_Value'</pre>
data <- rbind(M1, M2)</pre>
```

Tehdään Friedmanin testi:

```
attach(data)
friedman.test(Functional_Value ~ Functional | patient, data=data)
detach(data)
```

Friedmanin testin p-arvo on alle 0,001, joten muuttujien välillä on tilastollisesti merkitseviä eroja. Tehdään muuttujien välinen vertailu Wilcoxonin testillä:

```
attach(oma.otos2)
wilcox.test(Functional_M1, Functional_M2, paired = TRUE)
```

Testin tuloksen mukaan mittausten välinen ero on tilastollisesti merkitsevä, sillä testin p-arvo on alle 0,001.

Sukupuolet erikseen

Tehdään toistettujen mittausten varianssianalyysi, jossa luokitteleva tekijä on sukupuoli (D2).

127.0.0.1:5500/docs/index.html 4/11

```
attach(data)
summary(aov(Functional_Value ~ D2 * Functional + Error(patient / Functional), data=data))
detach(data)
```

Tulosteesta huomataan, että sukupuolien välillä ei ole tilastollisesti merkitseviä eroja (p=0,628). Sen sijaan mittausten väliset erot ovat tilastollisesti merkitseviä (p<0,001). Myöskään näiden välinen yhdysvaikutus ei ole tilastollisesti merkitsevää (p=0,642).

2. Kategoristen vastemuuttujien mallitus

Satunnaisotos (900 otosta) valittu käyttämällä opiskelijanumeroa siemenlukuna

EK2011. sav (eduskuntavaaliaineisto vuodelta 2011, N=1318)

```
library(foreign)
ht3.dat<-read.spss("EK2011.sav", to.data.frame=TRUE)
attach(ht3.dat)

set.seed(518467)
oma.otos3<-ht3.dat[sample(nrow(ht3.dat), 900), ]
attach(oma.otos3)</pre>
```

2.1. Muuttujien riippuvuusrakenne

1. Tarkastellaan muuttujia sukupuoli (d2), työttömyys viimeisen 12 kuukauden aikana (d32) ja oman sukupuolen 2011 eduskuntavaaleissa äänestäminen (k23). Tee ensin yksiulotteiset frekvenssijakaumat ja kolmen muuttujan ristiintaulu.

```
Onko 3-ulotteisessa ristiintaulussa nollasoluja?
```

Tehdään frekvenssitaulukot:

```
table(d2)
table(d32)
table(k23)
```

Huomataan, että puuttuvia arvoja ovat:

- sukupuoli (d2): 15 arvoa
- o työttömyys viimeisen 12 kuukauden aikana (d32): 5 arvoa arvoa
- oman sukupuolen 2011 eduskuntavaaleissa äänestäminen (k23): 141 arvoa

Kolmen muuttujan ristiintaulu:

```
ftable(table(d2, d32, k23))
```

127.0.0.1:5500/docs/index.html 5/11

Ristiintaulussa ei ole nollasoluja. Pienin solufrekvenssi on 17.

2. Tarkastele kolmen muuttujan välisiä riippuvuuksia loglineaaristen mallien avulla. Ota mukaan muuttujista vain ne luokat, joissa havaintoja on yli 10.

Loglineaarinen mallitus:

```
library(MASS)
mytable <- xtabs(~ d2 + d32 + k23, data=oma.otos3)
malli <- loglm(~ d2 + k23 + d32 + d2*k23+d32, mytable)
malli</pre>
```

Millaiset riippuvuudet muuttujien välillä askeltavan menetelmän avulla valittuun malliin jäivät?

Sukupuoli ja oman sukupuolen äänestäminen (d2 ja k23) jäivät riippuvaisiksi.

```
Mikä on mallin generoiva luokka?
```

Mallin generoiva luokka on { d2 * k23 + d32 }.

```
Mikä on mallin yhteensopivuustestin p-arvo?
```

Mallin yhteensopivuustestin p-arvo on n. 0,067.

Mikä on standardoitujen jäännösten vaihteluväli?

```
stdres = residuals(malli, "pearson")
summary(stdres)
```

Standardoitujen jäännösten vaihteluvälin alaraja on -1,871 ja yläraja 1,493.

3. Tee mallin mukainen yhteyksien jatkotarkastelu ristiintauluin ja tulkitse malli riviprosenttien avulla.

Tehdään jatkotarkastelu ristiintauluin:

```
taulu1 <- table(d2, k23)
prop.table(taulu1, 1)
taulu2 <- table(d32, k23)
prop.table(taulu2, 1)</pre>
```

Huomataan, että miehet äänestävät omaa sukupuoltaan useammin kuin naiset. Huomataan myöskin, että viimeisen 12 kk:n aikana työttömänä olleet äänestävät

127.0.0.1:5500/docs/index.html 6/11

omaa sukupuoltaan harvemmin kuin ne jotka eivät ole olleet työttömänä viimeisen 12 kk:n aikana.

2.2. Kaksiluokkainen selitettävä muuttuja

1. Tutki muuttujien sukupuoli (d2) ja ikä yhteyttä työttömyyteen viimeisen 12 kuukauden aikana (k32) käyttämällä logistista regressiomallia.

Logistinen binäärinen regressio:

```
tyottomyys <- glm(d32 \sim d1 + d2, data=oma.otos3, family=binomial) summary(tyottomyys)
```

2. Mitkä muuttujat selittävät työttömyyttä?

Huomataan, että ikä on tilastollisesti merkitsevä tekijä (p < 0,001). Sen sijaan sukupuoli ei ole tilastollisesti merkitsevä tekijä (p = 0,276).

Tulkitse yhteydet OR:ien avulla. Raportoi myös luottamusvälit OR:ille

Selitetään "työtön viimeisen 12 kk:n aikana" kyllä/ei -suhdetta:

```
exp(cbind(OR=coef(tyottomyys), confint(tyottomyys)))
```

Muuttujan d1 (ikä) OR on n. 1,04. Muuttuja d2 (sukupuoli) ei ollut tilastollisesti merkitsevä tekijä, minkä vuoksi sitä ei tarkastella.

OR:n 95% luottamusvälin alaraja on n. 1,03 ja yläraja puolestaan n. 3,41.

Mikä on mallin Nagelkerke selitysaste?

```
install.packages("fmsb")
library(fmsb)
data.nagel <- NagelkerkeR2(tyottomyys)
data.nagel</pre>
```

Mallin Nagelkerke selitysaste on n. 0,092.

3. Monimuuttujamenetelmät

Satunnaisotos (1500 otosta) valittu käyttämällä opiskelijanumeroa siemenlukuna

pankkiotos2020.sav (todellinen asiakasaineisto, N=2453)

127.0.0.1:5500/docs/index.html 7/11

```
library(foreign)
ht4.dat<-read.spss("pankkiotos2020.sav", to.data.frame=TRUE)
attach(ht4.dat)

set.seed(518467)
oma.otos4<-ht4.dat[sample(nrow(ht4.dat), 1500), ]
attach(oma.otos4)</pre>
```

3.1. Muuttujien ryhmittely

1. Muodosta pääkomponenttianalyysilla luokitelluista muuttujista (41 kpl: autom_lainan_perinta_luok - kulutusluotot1_luok) pääkomponentteja ominaisarvokriteerin mukaan. (Promax-rotaatio)

Poistetaan muuttuja toimeksianto_a_kpl_luok, sillä sen kaikki arvot ovat 0, mikä johtaa koodia ajaessa virheeseen:

```
drops <- c("toimeksianto_a_kpl_luok")
oma.otos5 <- oma.otos4[ , !(names(oma.otos4) %in% drops)]</pre>
```

Tehdään pääkomponenttianalyysi:

```
# korrelaatiokertoimet
data.kor <- cor(oma.otos5, method="pearson", use="complete.obs")

# pääkomponenttianalyysi
pca <- prcomp(data.kor, center=TRUE, scale=TRUE)
summary(pca)</pre>
```

Nähdään että pääkomponentteja muodostui 10 kappaletta kun ominaisarvokriteeri on se että ominaisarvo on suurempi kuin 1.

Promax-rotaatio:

```
pca.chosen <- pca$rotation [, 1:10]
pca.promax <- promax(pca.chosen)
pca.promax</pre>
```

2. Talleta havaintomatriisiin uusiksi muuttujiksi pääkomponenttipistemäärät.

Pääkompontit tallennettiin yllä olevalla koodikatkelmalla.

- 3. Nimeä uudet muuttujat (pääkomponentteihin latautuneiden muuttujien mukaisesti).
 - PC1: **Tilin aktiivisuus** panot ja otot jokseenkin latautuneita
 - PC2: Maksupalvelu-/tiski-maksuaktiivisuus maksupalvelu- ja tiskimaksut latautuneita

127.0.0.1:5500/docs/index.html 8/11

- PC3: Rahastoaktiivisuus rahastoihin liittyvät muuttujat latautuneita
- PC4: Laina-aktiivisuus lainoihin liittyvät muuttujat latautuneita
- PC5: Luottokorttien lkm. / vakuutusaktiivisuus sekä vakuutus–, että luottokorttien lkm. –muuttujat latautuneita
- PC6: Osakeaktiivisuus osakkeisiin liittyvät muuttujat latautuneita
- PC7: Kouluttautuneisuus korkeakoulutus-muuttuja latautunut
- PC8: Käyttötilin velkaisuus käyttötilin velka -muuttuja latautunut
- PC9: Asuntolaina-/rahastoaktiivisuus sekä asuntolaina- (b), että rahasto
 (a1) -muuttujat latautuneita
- PC10: Toimeksianto/kansainväliset maksukortit sekä toimeksianto (b), että kv. maksukortit – muuttujat latautuneita

3.2. Havaintojen ryhmittely

4. Käytä näitä uusia muuttujia klusterianalyysissä, jossa muodostat asiakasryhmiä K-means menetelmällä lähtien kahdesta klusterista viiteen tai kuuteen klusteriin saakka. Kuvaile muodostamiasi ryhmiä.

Tehdään klusterianalyysi:

```
km = pca.chosen[,c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)]
```

Kuvaillaan muodostuneita ryhmiä:

k = 2

```
set.seed(518467)
km2 = kmeans(km, 2, nstart=100)
km2
```

Klusteri	Havaintoja	Profiloivat pääkomponentit
1	14	 PC2 (Maksupalvelu-/tiski-maksuaktiivisuus) PC3 (Rahastoaktiivisuus) PC4 (Laina-aktiivisuus) PC5 (Luottokorttien lkm. / vakuutusaktiivisuus) PC7 (Kouluttautuneisuus) PC8 (Käyttötilin velkaisuus) PC9 (Asuntolaina-/rahastoaktiivisuus) PC10 (Toimeksianto/kansainväliset maksukortit)

127.0.0.1:5500/docs/index.html 9/11

Klusteri	Havaintoja	Profiloivat pääkomponentit	
2	26	PC1 (Tilin aktiivisuus)PC6 (Osakeaktiivisuus)	

k = 3

```
set.seed(518467)
km3 = kmeans(km, 3, nstart=100)
km3
```

Klusteri	Havaintoja	Profiloivat pääkomponentit	
1	5	Matalat arvot	
2	8	Matalat arvot	
3	27	PC1 (Tilin aktiivisuus)PC5 (Luottokorttien lkm. / vakuutusaktiivisuus)	

k = 4

```
set.seed(518467)
km4 = kmeans(km, 4, nstart=100)
km4
```

Klusteri	Havaintoja	Profiloivat pääkomponentit
1	22	PC2 (Rahastoaktiivisuus)
2	10	Matalat arvot
3	3	Matalat arvot
4	5	Matalat arvot

k = 5

```
set.seed(518467)
km5 = kmeans(km, 5, nstart=100)
km5
```

127.0.0.1:5500/docs/index.html

Klusteri	Havaintoja	Profiloivat pääkomponentit
1	8	Matalat arvot
2	19	 PC1 (Tilin aktiivisuus)
3	5	Matalat arvot
4	5	Matalat arvot
5	3	Matalat arvot

127.0.0.1:5500/docs/index.html