班 级

学号

姓 名

东北大学考试试卷B

2012 —2013 学年第 1 学期

课程名称: 数值分析 B 答案评分

一、解答下列各题:(每题5分,共50分

- 1. $\sqrt{111}$ 的近似值x具有 5 位有效数字,求x 的绝对误差限。由于 $\sqrt{111}$ = 10.5... = 0.105... $\times 10^2$. 所以 $|\sqrt{111} x| \le 0.5 \times 10^{-3}$
- O 2. 设 $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, 求 $\rho(A)$ 和 Cond(A),

$$\rho(A) = \frac{5 + \sqrt{33}}{2}$$
, $Cond(A)_1 = 21$.

3. x为何值时,矩阵 $A = \begin{pmatrix} 9 & x & 3 \\ x & 8 & 4 \\ 3 & 4 & 3 \end{pmatrix}$ 可分解为 GG^{7} ,并求x = 6时的分解式,其中

0 为下三角矩阵。

由 A 正定可得, 0 < x < 8, x = 6 时有:

$$A = \begin{pmatrix} 9 & 6 & 3 \\ 6 & 8 & 4 \\ 3 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

4. 对线性方程组 $\begin{cases} 2x_1 + 3x_2 = 1 \\ 4x_1 - 3x_2 = 2 \end{cases}$ 建立一个收敛的迭代格式,并说明收敛性。

$$\begin{cases} x_1^{(k+1)} = \frac{3}{4}x_2^{(k)} + \frac{1}{2} \\ x_2^{(k+1)} = -\frac{2}{3}x_1^{(k)} + \frac{1}{3}, k = 0,1,2,\dots \end{cases}$$
 由于迭代矩阵行范数小于 1,所以收敛。

总分	- (1-8)	- (9-10)	 =	四	五
1					·

5. 已知满足条件 f(0) = 0, f(1) = 1, f(2) = -1, f(3) = 2, f'(0) = 0, f'(3) = 1 的三次样条插值函数 S(x) 在区间 [1, 2] 的表达式为 $S(x) = \frac{1}{7}(31x^3 - 130x^2 + 159x - 53)$, 试求 S(x) 在区间 [0, 1] 的表达式。

由己知可得S(0) = 0, S'(0) = 0, S(1) = 1, $S'(1) = -\frac{8}{7}$, 所以在[0, 1]上有: $S(x) = -\frac{1}{7}x^2(2(x-29))$

6. 求区间[0, 1]上权函数为p(x)=1的二次正交多项式 $P_{n}(x)$

$$P_0(x) = 1$$
, $P_1(x) = x - \frac{(x, P_0)}{(P_0, P_0)} P_0 = x - \frac{1}{2}$

$$P_2(x) = x^2 \left(\frac{(x^2, P_1)}{(P_0, P_0)} P_1 - \frac{(x^2, P_1)}{(P_1, P_1)} P_1 = x^2 - x + \frac{1}{6} \right)$$

7. 给定离散数据

1	1. 1. A. 1			
, Xi	1	0	1.,	. 4
1 1 1		1	2	100

试求形如 $y = a + bx^2$ 的拟合曲线。

由于 $\phi_0(x) = 1, \phi_1(x) = x^2$,所以 $\phi_0 = (1.1,1.1)^T, \phi_1 = (1.0,1.4)^T, f = (-2.1,3,2)^T$

正则方程组为
$$\begin{cases} 4a+6b=4\\ 6a+18b=9 \end{cases}$$
 解得: $a=\frac{1}{2},b=\frac{1}{3}$

所以、拟合曲线为、 $y = \frac{1}{2} + \frac{1}{3} x^2$

8. 设 $f(x) = 3x^3 - 5x^2 + 1$, 求差商f[0,1], f[0,1,2,3], f[0,1,2,3,4].

f[0,1] = -2, f[0,1,2,3] = 3, f[0,1,2,3,4] = 0.

9. 求 Gauss 积分公式 $\int_{-1}^{1} f(x)dx \approx f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$ 的報断误差 R[f].

由于 Gauss 积分公式具有 3 次代数精度, 所以

$$R[f] = \int_{-1}^{1} f(x)dx - [f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})]$$

$$= \int_{-1}^{1} f(x)dx - \int_{-1}^{1} H_3(x)dx + \int_{-1}^{1} H_3(x)dx - [f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})]$$

$$= \int_{-1}^{1} \frac{f^{(4)}(\xi_x)}{4!} (x + \frac{1}{\sqrt{3}})^2 (x - \frac{1}{\sqrt{3}})^2 dx = \frac{f^{(4)}(\eta)}{4!} \int_{-1}^{1} (x + \frac{1}{\sqrt{3}})^2 (x - \frac{1}{\sqrt{3}})^2 dx$$

$$= \frac{f^{(4)}(\eta)}{135}, \quad \eta \in (-1,1)$$

-10. 求解初值问题 $\begin{cases} y'=ye^x & 1 \le x \le 2 \\ y(1)=2 \end{cases}$ 的改进 Euler 方法是否收敛? 为

什么?

由于 $f(x,y)=ye^x$,所以 $|f(x,y)-f(x,y)|=e^x(y-y)|\le e^x(y-y)|$ 于是,改进 Euler 方法是收敛的。

二、(10 分) 讨论求解线性方程组 $\begin{cases} x_1 + 2x_2 - 2x_3 = 1 \\ x_1 + x_2 + x_3 = 2 \end{cases}$ 的 Gauss-Seidel 迭代 $2x_1 + 2x_2 + x_3 = 3$

法的收敛性。

令
$$\begin{vmatrix} \lambda & 2 & -2 \\ \lambda & \lambda & 1 \\ 2\lambda & 2\lambda & \lambda \end{vmatrix} = \lambda(\lambda - 2)^2 = 0$$
 得: $\rho(G) = 2 > 1$

所以, Gauss-Seidel 迭代法不收敛。

三、(12分) 已知方程x=lnx+2,

1. 证明此方程在区间(1,+∞)内有唯一根α:

2. 建立一个收敛的迭代格式,使对任意初值 $x_0 \in [e,2e]$ 都收敛,说明收敛理由和收敛阶。

3. 若取初值 $x_0 = e$,用此迭代法求精度为 $s = 10^{-3}$ 的近似根,需要迭代多少步?

1. ii
$$f(x) = x - \ln x - 2$$
, $\lim_{x \to 0} f'(x) = 1 - \frac{1}{x} > 0$, $(x > 1)$

又由于 $f(e) = 6-3 < 0, f(2e) = 2e - \ln 2 - 3 > 0$

所以,方程在区间 $(1,+\infty)$ 內有唯一根 α ,而且 $\alpha \in (e,2e)$ 。

2. 建立迭代格式: $x_{k+1} = \ln x_k + 2$, k = 0,1,2,...、迭代函数为 $\varphi(x) = \ln x + 2$ 由于对任何 $x \in [e,2e]$ 有: $e < 3 \le \varphi(x) \le \ln 2 + 3 < 2e$,而且 $|\varphi'(x)| = \frac{1}{x} \le \frac{1}{e} < 1$ 所以,对任意初值 $x_0 \in [e,2e]$ 都收敛。

又由于 $\varphi'(\alpha) = \frac{1}{\alpha}$,所以收敛阶等于 1。

3. 由于 $x_i = 3$, $L = \frac{1}{e}$, 所以

$$k \ge \ln \frac{(1-L)\varepsilon}{x_1 - x_0} \div \ln L \approx 10.704$$

即, 需要迭代11步。

四、(16分)

I. 确定参数 A_0, A_1, A_2, x_1 ,使求积公式 $\int_{-1}^{1} x^2 f(x) dx \approx A_0 f(-1) + A_1 f(x_1) + A_2 f(1)$ 具有尽可能高的代数精度,并问代数精度是多少?

2. 利用复化 Simpson 公式 S_n 计算计算定积分 $I=\int_0^1 e^z dx$, 若使 $|I-S_n| < s=10^{-4}$, 何应取 n 为多少? 并求此近似值。

1. 由
$$A_0 + A_1 + A_2 = \frac{2}{3}$$
, $-A_0 + A_1 x_1 + A_2 = 0$, $A_0 + A_1 x_1^2 + A_2 = \frac{2}{5}$, $-A_0 + A_1 x_1^3 + A_2 = 0$, 可得: $A_0 = A_2 = \frac{1}{5}$, $A_1 = \frac{4}{15}$, $x_1 = 0$, 具有 3 次代数精度。

2.
$$n \ge \sqrt{\frac{e}{2880 \times 10^{-4}}} \approx 1.75$$
,所以取 $n = 2$ 。

$$I \approx S_2 = \frac{1}{12} (e^0 + e + 2e^{0.5} + 4e^{0.25} + 4e^{0.78}) = 1.7183188$$

五、(12分)已知求解常微分方程初值问题。

$$\begin{cases} y' = f(x, y), & x \in [a, b] \\ y(a) = \alpha \end{cases}$$

的差分公式

$$\begin{cases} y_{n+1} = y_n + \frac{h}{3}(k_1 + \lambda k_2) \\ k_1 = f(x_n, y_n) \\ k_2 = f(x_n + \alpha h, y_n + \beta h k_1) \\ y_0 = \alpha \end{cases}$$

1. 确定参数 λ, α, β ,使差分公式的阶尽可能高,并指出差分公式的阶。

2. 用此差分公式求解初值问题 $\begin{cases} y' = -5y, & 0 \le x \le 2 \\ y(0) = 0 \end{cases}$ 时,取步长 h=0.1, 所得数值

解是否稳定,为什么?

1. 由于

$$k_2 = f_n + h(\alpha \frac{\partial f_n}{\partial x} + \beta \frac{\partial f_n}{\partial y} f_n) + \frac{h^2}{2} (\alpha^2 \frac{\partial^2 f_n}{\partial x^2} + 2\alpha \beta \frac{\partial^2 f_n}{\partial x \partial y} f_n + \beta^2 \frac{\partial^2 f_n}{\partial y^2} f_n^2) + O(h^3)$$

$$y_{n+1} = y_n + \frac{1+\lambda}{3} h f_n + \frac{\lambda h^2}{3} (\alpha \frac{\partial f_n}{\partial x} + \beta \frac{\partial f_n}{\partial y} f_n)$$

$$+\frac{\lambda h^3}{6} \left(\alpha^2 \frac{\partial^2 f_n}{\partial x^2} + 2\alpha \beta \frac{\partial^2 f_n}{\partial x \partial y} f_n + \beta^2 \frac{\partial^2 f_n}{\partial y^2} f_n^2\right) + O(h^4)$$

$$y(x_{n+1}) = y(x_n) + y'(x_n)h + \frac{h^2}{2}y''(x_n) + \frac{h^3}{6}y'''(x_n) + O(h^4)$$

$$=y_n+hf_n+\frac{h^2}{2}(\frac{\partial f_n}{\partial x}+\frac{\partial f_n}{\partial y}f_n)$$

$$+\frac{h^3}{6}\left[\frac{\partial^2 f_n}{\partial x^2} + 2\frac{\partial^2 f_n}{\partial x \partial y}f_n + \frac{\partial^2 f_n}{\partial y^2}f_n^2 + \frac{\partial f_n}{\partial x}\frac{\partial f_n}{\partial y} + (\frac{\partial f_n}{\partial y})^2 f_n\right] + O(h^4)$$

于是,当 $\lambda=2$. $\alpha=\frac{3}{4}$ $\beta=\frac{3}{4}$ 时,差分公式的阶最高,是 2 阶方法。

2. 带入试验方程有:

$$y_{n+1} = y_n + \frac{h}{3} [-5y_n - 10(y_n + \frac{3h}{4}(-5y_n))]$$
$$= (1 - 5h + \frac{25}{3}h^2)y_n$$

i=0.1时,由于 $y_{n+1}=0.625y_n$,所以,所得数值解是稳定的。

学 院

班 级

学 号

姓 名

东北大学期末考试试卷 2012—2013 学年第 1 学期 课程名称: 数值分析 A 答案评分

总分	decisions.	maniferent descriptions	Manadine Manadi Contragent	四	元	六
心雅	*					

、 解答下列各题: (每题 6 分, 共 48 分)

1. 设
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
, 求 $\rho(A)$ 和 $Cond_1(A)$

$$\rho(A) = \frac{5 + \sqrt{33}}{2}$$
 Cond(A)₁ = 21

2. x为何值时,矩阵 $A = \begin{pmatrix} 9 & x & 3 \\ x & 8 & 4 \\ 3 & 4 & 3 \end{pmatrix}$ 可分解为 GG^T

并求 x = 6 时的分解式, 其中 G 为下三角矩阵

由 A 正定可得, 0 < x < 8, x = 6 时有;

$$A = \begin{pmatrix} 9 & 6 & 3 \\ 6 & 8 & 4 \\ 3 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

3. 对线性方程组 $\begin{cases} 2x_1 + 3x_2 = 1 \\ 4x_1 - 3x_2 = 2 \end{cases}$ 建立一个收敛的迭代格式,并说明收敛性。

$$\begin{cases} x_1^{(k+1)} = \frac{3}{4}x_2^{(k)} + \frac{1}{2} \\ x_2^{(k+1)} = -\frac{2}{3}x_1^{(k)} + \frac{1}{3}, k = 0,1,2,... \\ \text{由于迭代矩阵行范数小于 1. 所以收敛} \end{cases}$$

4. 已知满足边值条件 S(0)=0 的三次样条函数 S(x) 在区间 [1,2] 上的表达式为 $S(x)=3x^3-x^2+6x-5$, 试求 S(x) 在区间 [0,1] 上的表达式。

由已知可得 S(0) = 0, S(1) = 3, S'(1) = 13, S'(1) = 16, 所以在[0,1]上有:

$$S(x) = -2x^2 + 14x - 9x$$

5. 给定离散数据

×;	<u>~1</u>	0	1	2
у, .	-2	1	3	2

试求形如 $y=a+bx^2$ 的拟合曲线拟合这组数据。

解 由于
$$\varphi_0(x) = 1, \varphi_1(x) = x^2$$
,所以 $\varphi_0 = (1,1,1,1)^T, \varphi_1 = (1,0,1,4)^T, f = (-2,1,3,2)^T$

正则方程组为
$$\begin{cases} 4a+6b=4\\ 6a+18b=9 \end{cases}$$
 解得: $a=\frac{1}{2},b=\frac{1}{3}$

所以,拟合曲线为:
$$y = \frac{1}{2} + \frac{1}{3}x^2$$

7. 判定求积分公式 $\int_{-1}^{1} f(x)dx \approx f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$ 是否是 Guass 型求积公式

解 是 Gauss 积分公式具有 3 次代数精度

8. 试建立求解 \sqrt{a} , a > 0, 的 Newton 迭代格式 $5x^4 - a = 0$, 用牛顿迭代法建立。

6. 设 $f(x) = 3x^3 - 5x^2 + 1$, 求差商 f[0,1], f[0,1,2,3], f[0,1,2,3,4] f[0,1] = -2, f[0,1,2,3] = 3, f[0,1,2,3,4] = 0.

二、(12 分) 写出求解线性方程组
$$\begin{cases} x_1 + 2x_2 - 2x_3 = 1 \\ x_1 + x_2 + x_3 = 2 \\ 2x_1 + 2x_2 + x_3 = 3 \end{cases}$$

的 Gauss-Seidel 迭代格式,并讨论是否收敛

所以, Gauss-Seidel 迭代法不收敛。

三、(12分) 给定方程 x-lnx-2=0,

- 1. 证明此方程在区间 (ί,+∞) 内有唯一根α;
- 2. 建立一个迭代格式,使对任意初值 $x_0 \in [e, 2e]$ 都收敛,说明收敛理由和收敛阶
- 3. 若取初值 $x_0=e$,用此迭代法求精度为 $\varepsilon=10^{-3}$ 的近似根,需要迭代多少步

1.i2
$$f(x) = x - \ln x - 2$$
, $\mathfrak{M} f'(x) = 1 - \frac{1}{x} > 0$, $(x > 1)$

又由于
$$f(e) = e-3 < 0$$
, $f(2e) = 2e-\ln 2-3 > 0$

所以,方程在区间 $(1,+\infty)$ 内有唯一根 α ,而且 $\alpha \in (e,2e)$ 。

2. 建立迭代格式: $x_{k+1} = \ln x_k + 2$, k = 0,1,2,..., 迭代函数为 $\varphi(x) = \ln x + 2$ 由于对任何 $x \in [e,2e]$ 有: $e < 3 \le \varphi(x) \le \ln 2 + 3 < 2e$, 而且 $|\varphi'(x)| = \frac{1}{x} \le \frac{1}{e} < 1$ 所以,对任意初值 $x_0 \in [e,2e]$ 都收敛。

又由于
$$\varrho'(\alpha) = \frac{1}{\alpha} \neq 0$$
. 所以收敛阶等于 1.

3. 由于
$$x_1 = 3$$
, $L = \frac{1}{e}$, 所以

$$k \ge \ln \frac{(1-L)\varepsilon}{x_1 - x_0} + \ln L \ge 10.704$$

即, 需要迭代11步。

四、(16分) 1. 确定参数 40, 41, 42, 41, 使求积公式

$$\int_{-1}^{1} x^{2} f(x) dx \approx A_{0} f(-1) + A_{1} f(x_{1}) + A_{2} f(1)$$

具有尽可能高的代数精度, 并问代数精度是多少?

2. 利用复化 Simpson 公式 S_n 计算计算定积分 $I = \int_0^1 e^x dx$, 若使

 $|I-S_n|<\varepsilon=10^{-1}$,问应取n为多少?并求此积分近似值。

1. 由
$$A_0 + A_1 + A_2 = \frac{2}{3}$$
, $-A_0 + A_1 x_1 + A_2 = 0$, $A_0 + A_1 x_1^2 + A_2 = \frac{2}{5}$, $-A_0 + A_1 x_1^3 + A_2 = 0$, 可得: $A_0 = A_2 = \frac{1}{5}$, $A_1 = \frac{4}{15}$, $x_1 = 0$. 具有 3 次代数精度.

2.
$$n \ge \sqrt[4]{\frac{e}{2880 \times 10^{-4}}} \approx 1.75$$
, 所以取 $n = 2$.

$$I \approx S_2 = \frac{1}{12}(e^0 + e + 2e^{0.5} + 4e^{0.25} + 4e^{0.75}) = 1.7183188$$

五、(12分) 给定求解常微分方程初值问题。 $\begin{cases} y' = f(x, y) & x \in [a, b] \\ y(a) = \alpha \end{cases}$ 差分公式:

$$\begin{cases} y_{n+1} = y_n + \frac{h}{3}(k_1 + \lambda k_2) \\ k_1 = f(x_n, y_n) \\ k_2 = f(x_n + \alpha h, y_n + \beta h k_1) \\ y_0 = \alpha \end{cases}$$

- 1 确定参数 λ, α, β , 使差分公式的截断误差阶尽可能高,并指出差分公式的阶
- 2. 用此差分公式求解初值问题 $\begin{cases} y' = -5y, & 0 \le x \le 2 \\ y(0) = 0 \end{cases}$ 时,取步长 h=0.1, 所得数值解是否稳定, 为什么?
- 1. 由于

$$k_2 = f_n + h(\alpha \frac{\partial f_n}{\partial x} + \beta \frac{\partial f_n}{\partial y} f_n) + \frac{h^2}{2} (\alpha^2 \frac{\partial^2 f_n}{\partial x^2} + 2\alpha \beta \frac{\partial^2 f_n}{\partial x \partial y} f_n + \beta^2 \frac{\partial^2 f_n}{\partial y^2} f_n^2) + O(h^3)$$

$$y_{n+1} = y_n + \frac{1+\lambda}{3}hf_n + \frac{\lambda h^2}{3}(\alpha \frac{\partial f_n}{\partial x} + \beta \frac{\partial f_n}{\partial y}f_n)$$

$$+\frac{\lambda h^3}{6} (\alpha^2 \frac{\partial^2 f_n}{\partial x^2} + 2\alpha\beta \frac{\partial^2 f_n}{\partial x \partial y} f_n + \beta^2 \frac{\partial^2 f_n}{\partial y^2} f_n^2) + O(h^4)$$

$$y(x_{n,n}) = y(x_n) + y'(x_n)h + \frac{h^2}{2}y''(x_n) + \frac{h^3}{6}y'''(x_n) + O(h^4)$$

$$= y_n^n + hf_n + \frac{k^2}{2} \left(\frac{\partial f_n}{\partial x} + \frac{\partial f_n}{\partial y} f_n \right)^n$$

$$+\frac{\hbar^3}{6}\left[\frac{\partial^2 f_n}{\partial x^2} + 2\frac{\partial^2 f_n}{\partial x \partial y}f_n + \frac{\partial^2 f_n}{\partial y^2}f_n^2 + \frac{\partial f_n}{\partial x}\frac{\partial f_n}{\partial y} + (\frac{\partial f_n}{\partial y})^2 f_k\right] + O(h^4)$$

于是,当 $\lambda=2$, $\alpha=\frac{3}{4}$, $\beta=\frac{3}{4}$ 时,差分公式的阶最高,是 2 阶方法。2. 带入试验方程有:

$$y_{n+1} = y_n + \frac{h}{3} [-5y_n - 10(y_n + \frac{3h}{4}(-5y_n)]$$
$$= (1 - 5h + \frac{25}{2}h^2)y_n$$

h=0.1时,由于 $y_{n+1}=0.625y_n$,所以,所得数值解是稳定的。

2006 -2007 学年第...

总分	and its		 四	五	六	t	八	九		
		- 1			C-					-

课程名称: 数值分析

- 2. 设 f(x) = x³-2,则差离,f[1,2]
- f(x)dx 的 Simpson 求积公式为 一个 1944
- 判断题。正确划" 」",不正确划" X"(12分,每题 2分)
 - 1. 若被插值函数 f(x) 为 n 次多项式,则由 n+1 个互异插值节点确定的插值 多项式 p(x) 必为 f(x)。(X)
 - 2. 当线性方程组的系数矩阵对称正定时, GS 方法收敛。
 - 3. 解非线性方程的 Newton 选代法对任意的迭代初值均平方收敛。
 - 4. 分段 Hermite 插值具有一阶连续导函数。()
 - 5. 当线性方程组系数矩阵的谱半径小于1时迭代法一定收敛。
 - 6. 对方程y'=-10y,取步长h=0.15采用改进的 Euler 方法求解是稳定的。 (χ)

$$\begin{cases} x_1 - x_2 + x_3 = -4 \\ 5x_1 - 4x_2 + 3x_3 = -12 \\ 2x_1 + x_2 + x_3 = 11 \end{cases}$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{dx}{dx} = 3 + 2 \frac{1}{2} \frac{1}{2} - 2 \frac{1}{2} \frac{1}{2}$$

$$\int_{0}^{\infty} \frac{dx}{dx} + \frac{1}{2} \frac{1}{2} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \frac{1}{2}$$

$$\int_{0}^{\infty} \frac{dx}{dx} + \frac{1}{2} \frac{1} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2$$

8 / 10

3 7,	-1	-0.5	0	0.25	0.75	1.0
y_{j}	0.22	0.8	2.0	2.5	3.8	4.2

利用最小二乘法求y(x)的拟合曲线p(x)=a+bx,并求其最佳均方误差

(10分) 求满足插值条件

x_f	0	1	2	4	
y,	1 .	9	23.	3	*

七(10 分)试确定求积公式 $\int_{2h}^{2h} f(x)dx \approx Af(-h) \div Bf(0) \div Cf(h)$ 的待定参数 A. B. C. 使公式具有尽可能高的代数精度,并指明代数精度。

九. (5 分) 用迭代法的思想,给出求 $\sqrt{2+\sqrt{2+\sqrt{2+\cdots+\sqrt{2+\sqrt{2}}}}}$ 的迭代格式 说明其收敛性并证明

 $\lim_{n \to \infty} \sqrt{2 + \sqrt{2 + \dots + \sqrt{2 + \sqrt{2}}}} = 2$

八、(12分) 对于常徽分方程初值问题, $\begin{cases} y'=f(x,y) \\ y(a)=\alpha \end{cases}$, $a \le x \le b$.

求多步方法 $y_{n+1} = y_n + \frac{h}{2} [3f(x_n, y_n) - f(x_{n-1}, y_{n-1})]$ 的局部截断误差,并指出是几阶方法。