Video Processing Lesson 1 – Introduction & Harris Corner Detection Daniel Kigli – Video Processing 2020

Administration

- Labs would cover the syllabus that is relevant for homework.
- Submission instructions would be published with each exercise.
- Submission should be in pairs (only one should submit), use the forum to find a partner (not needed to be from the same group).
- Late submission penalty is 3pts/day. No need to notify.
- Reception Hours: send an email to schedule a meeting (Email/Skype/Phone).
- For personal issues, please send an e-mail to: danielkigli@mail.tau.ac.il .

More About HW

- Questions about HW should be asked in the forum on the course site.
- We will hold ~5 lessons, each of the first three will cover a HW assignment, and the others will be devoted to your final project.
- Lessons will include code, we won't cover the entire code/slides, but it is recommended that you will cover the material (will help with the HW).
- Lessons dates:
 - 25/3 Harris Corner detector
 - 1/4 Optical Flow + Video Stabilization
 - Later dates will be given after Passover break

Git

- Optional if you want.
- Git is a version control system.
- Why? Useful for version control, not only when working in pairs.
- You can use GitHub (use your student account).
- There are plenty of guides online, use either one you want (for example : https://rogerdudler.github.io/git-guide/).

Python

- Lab exercises and HW would be implemented using Python 3.6X.
 - Don't use Python 2.X
- Main libraries that we will use: numpy, cv2, matplotlib, pillow...
- You may not use a library that wasn't approved in the HW or taught in class (if such additional library is needed please ask for my approval to use it).
- Assuming you have working knowledge in Python (plenty of guides online).
- Recommend to work in PyCharm (Python IDE).
 - Recommend to create a new virtual env for the course (and install the required packages).
 - A document will be uploaded to the Moodle.

Lab 1 – Python examples

- Numpy and cv2 examples.
- Debugging.
 - Breakpoints (use conditions to find the bug faster).
 - Search for the error, someone has already fixed it..
- Documentation usage.
 - https://docs.scipy.org/doc/numpy/user/quickstart.html
 - https://opencv-pythontutroals.readthedocs.io/en/latest/py tutorials/py gui/py image display/py image display.html
 - https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_gui/py_video_display/py_video_display.html
- Find the best question and ask Google, your best friend.

Lab 1 - Harris Corner Detection - Motivation

What is a corner?

Easily recognized by looking through a small window

Shifting the window should give large change in intensity

Taken from http://www.cs.cmu.edu/~16385/s17/Slides/6.2 Harris Corner Detector.pdf

Lab 1 - Harris Corner Detection - Motivation

• What is a corner?

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions

Harris corner detector gives a mathematical approach for determining which case holds.

Taken from http://www.cse.psu.edu/~rtc12/CSE486/lecture06.pdf

Lab 1 - Harris Corner Detection - Motivation

• What is a corner?

$$\sum [I(x+u,y+v) - I(x,y)]^{2}$$

$$\approx \sum [I(x,y) + uI_{x} + vI_{y} - I(x,y)]^{2} \quad \text{First order approx}$$

$$= \sum u^{2}I_{x}^{2} + 2uvI_{x}I_{y} + v^{2}I_{y}^{2}$$

$$= \sum \left[u \ v \right] \begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \quad \text{Rewrite as matrix equation}$$

$$= \left[u \ v \right] \left(\sum \begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix} \right) \begin{bmatrix} u \\ v \end{bmatrix}$$

• We define: $E(u, v) = \sum_{(x,y) \in W} [I(x + u, y + v) - I(x, y)]^2 \approx [u \ v] M \begin{bmatrix} u \\ v \end{bmatrix}$

• Paper: http://www.bmva.org/bmvc/1988/avc-88-023.pdf

As we saw in class:

$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x * I_y \\ I_x * I_y & I_y^2 \end{bmatrix} = A^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} A$$

 Let's compute the eigenvectors of M. What would be their value in each of those cases? What does it mean?

Interpreting the eigenvalues

Classification of image points using eigenvalues

As we saw in class:

$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x * I_y \\ I_x * I_y & I_y^2 \end{bmatrix} = A^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} A$$

Lab 1 - Harris Corner Detection - Transformations

Affine intensity change

 $I \rightarrow a I + b$

Only derivatives => invariance to intensity shift $I \rightarrow I + b$

Harris: image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Harris: image translation

Are derivatives and window function shift invariants?

Taken from:

Lab 1 - Harris Corner Detection- Algorithm

- $[I_x, I_y] = gradient(I)$
 - I_x^2 pixel-wise multiplication of I_x
- Define filter g usually box filter (5X5 ones), or gaussian.

- R(R < heta) = 0 , where heta is a user defined threshold, R Response image
- Optional: Non-maximum suppression of R in each tile

All arrays have the same size as the input image (w,h)

$$Det(M) = \lambda_{-} \cdot \lambda_{+}$$

$$Trace(M) = \lambda_{-} + \lambda_{+}$$

$$0.04 < k < 0.06$$

Lab 1 – Dividing image into a grid

- You may draw an inspiration from the web (for example https://stackoverflow.com/questions/16873441/form-a-big-2d-array-from-multiple-smaller-2d-arrays).
- The idea is to divide the response image (2d image) into a grid, and in each tile of the grid, return only the maximal value in the tile.
- Afterwards, we'll check if this maximal value is above the threshold (if so, we consider it to be a corner).
- Why? To spread the corners across the image.
- Known as Non-Maximum Suppression.

