§1. Основные определения

G=(V,E) — неориентированный граф (без петель и кратных ребер)

V — множество вершин графа

E — множество ребер графа

Пример 1.

$$V = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

$$E = \{(1,9), (2,4), (3,4), (4,7), (4,10), (5,7), (5,8), (6,8), (7,10)\}$$

Множество вершин графа G называется *независимым*, если никакие две вершины из этого множества не соединены ребром.

Пример 2.

 $Q_1 = \{1,2,3\}$ — независимое множество вершин

Независимое множество называется *максимальным независимым*, если к этому множеству нельзя добавить никакую другую вершину с сохранением независимости.

Пример 3.

 $Q_1 = \{1,2,3\}$ — независимое множество вершин

 $Q_2 = \{1,2,3,6,7\}$ — максимальное независимое множество

Максимальное независимое множество (МНМ) наибольшей мощности называется *наибольшим независимым* множеством.

Пример 4.

 $Q_1 = \{1,2,3\}$ — независимое множество вершин

 $Q_2 = \{1,2,3,6,7\}$ — максимальное независимое множество

 $Q_3 = \{1,2,3,5,6,10\}$ — наибольшее независимое множество

Клика графа – подмножество его вершин, попарно соединенных ребром

Пример 5.

$$K_1 = \{4,7,10\} -$$
клика графа

Клика графа представляет собой независимое множество в дополнительном графе.

Замечание:

Кликой называют любой полный подграфа исходного графа. И тогда, по аналогии с независимыми множествами, различают понятия *«клика»*, *«максимальная клика»* и *«наибольшая клика»*.

Мощность наибольшей клики называется *кликовым* числом графа (*плотностью* $\varphi(G)$).

Мощность наибольшего независимого множества называется числом (вершинной) независимости графа (числом внутренней устойчивости графа, неплотностью $\varepsilon(G)$).

В англоязычной литературе:

independent set — независимое множество

maximal independent set — максимальное (по включению) независимое

множество

maximum independent set — наибольшее независимое множество,

clique — клика

maximal clique — максимальная (по включению) клика

maximum clique — наибольшая клика

Задача о независимом множестве тесно связана не только с задачей о клике, но и с рядом других задач:

Рис. 10.7. Связь различных задач

Граф Турана

Граф Турана T(n,r) — это граф, образованный разложением n вершин на r подмножеств, с как можно близким размером, и вершины в этом графе соединены ребром, если они принадлежат разным подмножествам. Граф будет иметь $(n \mod r)$ подмножеств размером $\lceil n/r \rceil$ и $r - (n \mod r)$ подмножеств размером $\lceil n/r \rceil$ и $r - (n \mod r)$ подмножеств размером $\lceil n/r \rceil$. Таким образом, это полный r-дольный граф

$$K_{\lceil n/r \rceil, \lceil n/r \rceil, \ldots, \lfloor n/r \rfloor, \lfloor n/r \rfloor}$$
.

Каждая вершина имеет степень либо $n-\lceil n/r \rceil$, либо $n-\lceil n/r \rceil$. Число рёбер равно

$$\left\lfloor rac{(r-1)n^2}{2r}
ight
floor$$

Примечание:

 $\lfloor x \rfloor = \max\{n \in \mathbb{Z} \mid n \leq x\} -$ "пол" x - наибольшее целое, меньшее или равное x.

 $[x] = \min\{n \in \mathbb{Z} \mid n \ge x\}$ — "потолок" x — наименьшее целое, большее или равное x.

Примеры: графы Турана

(1,1)-Turán graph singleton graph				
•				
(2,1)-Turán graph 2-empty graph	(2,2)-Turán graph 2-path graph			
• •	•••			
(3,1)-Turán graph 3-empty graph	(3,2)-Turán graph 3-path graph	(3,3)-Turán graph triangle graph		
	•••			
(4,1)-Turán graph 4-empty graph	(4,2)-Turán graph square graph	(4,3)-Turán graph diamond graph	(4,4)-Turán graph tetrahedral graph	
• •		\rightarrow		

Особые случаи графа Турана.

Граф Турана T(n,2) — это полный двудольный граф

Граф Турана $T(n, \lceil n/3 \rceil)$ имеет $3^a 2^b$ наибольших клик, где 3a+2b=n и $b \le 2$. Каждая наибольшая клика образуется выбором одной вершины из каждой доли. Это число наибольших клик является наибольшим возможным среди всех графов с n вершинами, независимо от числа рёбер в графе (Мун и Мозер, 1965).

Число клик в графе может расти экспоненциально относительно числа вершин. Рассмотрим граф M_n Муна–Мозера с 3n вершинами $\{1, 2, ..., 3n\}$, в котором вершины разбиты на триады $\{1, 2, 3\}$, $\{4, 5, 6\}$, ..., $\{3n - 2, 3n - 1, 3n\}$; M_n не имеет ребер внутри любой триады, но вне них каждая вершина связана с каждой из остальных. Графы M_1 , M_2 , M_3 показаны на рис. 1.

Легко доказать, что M_n имеет 3^n клик, каждая из которых содержит n вершин. Это верно для M_1 , в котором кликами являются сами вершины. Если M_{n-1} имеет 3^{n-1} клик, каждый из которых состоит из (n-1) вершин, то каждая из трех вершин, добавленных для построения M_n , формирует клику с каждой из 3^{n-1} клик M_{n-1} . Поскольку только они являются новыми кликами, M_n имеет $3 \cdot 3^{n-1} = 3^n$ клик, каждая из которых состоит из n вершин. Таким образом, число клик в M_n растет экспоненциально относительно числа вершин.