

título

nome

Projeto de Graduação apresentado ao Curso de Engenharia Eletrônica e de Computação da Escola Politécnica, Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Engenheiro.

Orientadores:

Rio de Janeiro

Maio de 2017

1/1 1	
t1t11	\cap
uluul	\mathbf{U}

nome

PROJETO DE GRADUAÇÃO SUBMETIDO AO CORPO DOCENTE DO CURSO DE ENGENHARIA ELETRÔNICA E DE COMPUTAÇÃO DA ESCOLA POLITÉCNICA DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE ENGENHEIRO ELETRÔNICO E DE COMPUTAÇÃO

Autor:	
	nome
Orientador:	
	orientador
Examinador:	
Examinador:	
	Prof –, D. Sc.
Examinador:	
	Prof. –, D. E.

Rio de Janeiro

Novembro de 2017

Declaração de Autoria e de Direitos

Eu, *NOME* CPF *xxx.xxx.xxx-xx*, autor da monografia *TÍTULO*, subscrevo para os devidos fins, as seguintes informações:

- O autor declara que o trabalho apresentado na disciplina de Projeto de Graduação da Escola Politécnica da UFRJ é de sua autoria, sendo original em forma e conteúdo.
- 2. Excetuam-se do item 1. eventuais transcrições de texto, figuras, tabelas, conceitos e ideias, que identifiquem claramente a fonte original, explicitando as autorizações obtidas dos respectivos proprietários, quando necessárias.
- 3. O autor permite que a UFRJ, por um prazo indeterminado, efetue em qualquer mídia de divulgação, a publicação do trabalho acadêmico em sua totalidade, ou em parte. Essa autorização não envolve ônus de qualquer natureza à UFRJ, ou aos seus representantes.
- 4. O autor pode, excepcionalmente, encaminhar à Comissão de Projeto de Graduação, a não divulgação do material, por um prazo máximo de 01 (um) ano, improrrogável, a contar da data de defesa, desde que o pedido seja justificado, e solicitado antecipadamente, por escrito, à Congregação da Escola Politécnica.
- 5. O autor declara, ainda, ter a capacidade jurídica para a prática do presente ato, assim como ter conhecimento do teor da presente Declaração, estando ciente das sanções e punições legais, no que tange a cópia parcial, ou total, de obra intelectual, o que se configura como violação do direito autoral previsto no Código Penal Brasileiro no art.184 e art.299, bem como na Lei 9.610.
- 6. O autor é o único responsável pelo conteúdo apresentado nos trabalhos acadêmicos publicados, não cabendo à UFRJ, aos seus representantes, ou ao(s) orientador(es), qualquer responsabilização/ indenização nesse sentido.
- 7. Por ser verdade, firmo a presente declaração.

NOME	

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Escola Politécnica - Departamento de Eletrônica e de Computação Centro de Tecnologia, bloco H, sala H-217, Cidade Universitária Rio de Janeiro - RJ CEP 21949-900

Este exemplar é de propriedade da Universidade Federal do Rio de Janeiro, que poderá incluí-lo em base de dados, armazenar em computador, microfilmar ou adotar qualquer forma de arquivamento.

É permitida a menção, reprodução parcial ou integral e a transmissão entre bibliotecas deste trabalho, sem modificação de seu texto, em qualquer meio que esteja ou venha a ser fixado, para pesquisa acadêmica, comentários e citações, desde que sem finalidade comercial e que seja feita a referência bibliográfica completa.

Os conceitos expressos neste trabalho são de responsabilidade do(s) autor(es).

DEDICATÓRIA

Dedicatória

AGRADECIMENTOS

AGRADECIMENTOS

RESUMO

TÍTULO NOME Maio/2018

Orientador: ORIENTADOR

Curso: Engenharia Eletrônica e de Computação

Palavras-Chave:

ABSTRACT

Insert your	abstract	here.	Insert your	abstract h	ere. Insert	your	abstract	here.
Insert your al	ostract he	re. Ins	sert your abs	stract here.				

Keywords:

Contents

Li	st of Figures	ix
Li	st of Tables	x
1	Introduction	1
	1.1 Notation	1
2	Cap2	3
\mathbf{B}	ibliography	4

List of Figures

List of Tables

List of Abbreviations

AWGN additive white Gaussian noise.

List of Symbols

 $\alpha_{\mathbf{ac}}$ Absorption coefficient.

Chapter 1

Introduction

1.1 Notation

Given the matrix $\mathbf{A} \in \mathbb{C}^{M \times K}$, the notations \mathbf{A}^{T} , \mathbf{A}^{*} , \mathbf{A}^{H} , \mathbf{A}^{-1} , and $\mathsf{Tr}\{\mathbf{A}\}$ stand for transpose, conjugate, Hermitian transpose, inverse and trace operations on \mathbf{A} , respectively. Matrix \mathbf{A} can be represented as follows:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1K} \\ a_{21} & a_{22} & \dots & a_{2K} \\ \vdots & \vdots & \ddots & \vdots \\ a_{M1} & a_{M2} & \dots & a_{MK} \end{bmatrix},$$

$$= \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_K \end{bmatrix},$$

where $\mathbf{a}_k \in \mathbb{C}^{M \times 1}$ is the kth column of \mathbf{A} .

The scalar $X \in \mathbb{C}$ stands for a random variable, the vector $\boldsymbol{x} \in \mathbb{C}^{M \times 1}$ stands for a random vector, the scalar $x \in \mathbb{C}$ stands for a realization of X, and the vector $\mathbf{x} \in \mathbb{C}^{M \times 1}$ stands for a realization of \boldsymbol{x} . The notation $\mathsf{E}\left[\boldsymbol{x}\right]$ stands for the expected value of \mathbf{x} . The notation $\mathsf{Diag}\left(\mathbf{x}\right)$ stands for the diagonal matrix composed by the elements of \mathbf{x} , i.e.,

$$\mathbf{X} = \operatorname{Diag}(\mathbf{x}),$$

$$= \begin{bmatrix} x_1 & & \\ & x_2 & \\ & & \ddots & \\ & & & x_M \end{bmatrix}.$$

Chapter 2

Cap2

Bibliography