Rank-76099 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_3 + X_1^2 X_2 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1503028569

General information

Number of lines	9
Number of points	33
Number of singular points	0
Number of Eckardt points	4
Number of double points	6
Number of single points	21
Number of points off lines	2
Number of Hesse planes	0
Number of axes	0
Type of points on lines	59
Type of lines on points	$3^4, 2^6, 1^{21}, 0^2$

Singular Points

The surface has 0 singular points:

The 9 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{16} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_2$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \mathbf{Pl}(1,0,1,0,0,1)_{109}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \mathbf{Pl}(0,0,0,1,0,0)_{9}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{84} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{84} = \mathbf{Pl}(1,0,0,1,0,0)_{10}$$

$$\ell_{5} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{Pl}(0,1,0,0,0,0)_{1}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{100} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{100} = \mathbf{Pl}(0,1,1,0,0,0)_{6}$$

$$\ell_{7} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{345} = \mathbf{Pl}(0,1,0,1,0,0)_{13}$$

$$\ell_{8} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{106} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{106} = \mathbf{Pl}(1,1,1,1,0,1)_{150}$$

Rank of lines: (0, 16, 22, 340, 84, 356, 100, 345, 106) Rank of points on Klein quadric: (0, 2, 109, 9, 10, 1, 6, 13, 150)

Eckardt Points

The surface has 4 Eckardt points:

$$0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0),$$

$$1: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0),$$

$$2: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1),$$

$$3: P_{11} = \mathbf{P}(0, 1, 1, 0) = \mathbf{P}(0, 1, 1, 0).$$

Double Points

The surface has 6 Double points: The double points on the surface are:

$$P_0 = (1,0,0,0) = \ell_0 \cap \ell_1$$

$$P_5 = (1,1,0,0) = \ell_0 \cap \ell_2$$

$$P_8 = (1,0,1,0) = \ell_1 \cap \ell_2$$

$$P_{23} = (1,0,0,1) = \ell_4 \cap \ell_6$$

$$P_{27} = (1, 1, 0, 1) = \ell_4 \cap \ell_8$$

 $P_{39} = (1, 0, 1, 1) = \ell_6 \cap \ell_8$

Single Points

The surface has 21 single points: The single points on the surface are:

$$\begin{array}{lll} 0: \ P_6 = (2,1,0,0) \ \text{lies on line} \ \ell_0 \\ 1: \ P_7 = (3,1,0,0) \ \text{lies on line} \ \ell_0 \\ 2: \ P_9 = (2,0,1,0) \ \text{lies on line} \ \ell_1 \\ 3: \ P_{10} = (3,0,1,0) \ \text{lies on line} \ \ell_1 \\ 4: \ P_{18} = (3,2,1,0) \ \text{lies on line} \ \ell_2 \\ 5: \ P_{21} = (2,3,1,0) \ \text{lies on line} \ \ell_2 \\ 6: \ P_{26} = (0,1,0,1) \ \text{lies on line} \ \ell_3 \\ 10: \ P_{35} = (1,3,0,1) \ \text{lies on line} \ \ell_5 \\ 11: \ P_{38} = (0,0,1,1) \ \text{lies on line} \ \ell_5 \\ 12: \ P_{42} = (0,1,1,1) \ \text{lies on line} \ \ell_7 \\ 13: \ P_{53} = (0,0,2,1) \ \text{lies on line} \ \ell_5 \\ 13: \ P_{53} = (0,0,2,1) \ \text{lies on line} \ \ell_5 \\ \end{array}$$

 $\begin{array}{lll} 14: \ P_{54} = (1,0,2,1) \ \text{lies on line} \ \ell_6 \\ 15: \ P_{61} = (0,2,2,1) \ \text{lies on line} \ \ell_7 \\ 16: \ P_{66} = (1,3,2,1) \ \text{lies on line} \ \ell_8 \\ 17: \ P_{69} = (0,0,3,1) \ \text{lies on line} \ \ell_5 \\ \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 2 points not on any line: The points on the surface but not on lines are:

 $0: P_{63} = (2, 2, 2, 1)$ $1: P_{84} = (3, 3, 3, 1)$

Line Intersection Graph

	012345678
0	011110000
1	101001100
2	110000011
3	$\begin{array}{c} 0.12010000\\ 0.11110000\\ 101001100\\ 110000011\\ 100011010\\ 1010100110\\ 0.10011001\\ \end{array}$
4	100100101
5	010100110
6	010011001
7	001101001
8	$010011001 \\ 0011001 \\ 00110101 \\ 0$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4
in point	P_0	P_5	P_1	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_5	ℓ_6
in point	P_0	P_8	P_2	P_2

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_7	ℓ_8
in point	P_5	P_8	P_{11}	P_{11}

Line 3 intersects

Line	ℓ_0	ℓ_4	ℓ_5	ℓ_7
in point	P_1	P_1	P_3	P_3

Line 4 intersects

Line	ℓ_0	ℓ_3	ℓ_6	ℓ_8
in point	P_1	P_1	P_{23}	P_{27}

 ${\bf Line~5~intersects}$

Line	ℓ_1	ℓ_3	ℓ_6	ℓ_7
in point	P_2	P_3	P_2	P_3

Line 6 intersects

Line	ℓ_1	ℓ_4	ℓ_5	ℓ_8
in point	P_2	P_{23}	P_2	P_{39}

Line 7 intersects

Line	ℓ_2	ℓ_3	ℓ_5	ℓ_8
in point	P_{11}	P_3	P_3	P_{11}

Line 8 intersects

Line	ℓ_2	ℓ_4	ℓ_6	ℓ_7
in point	P_{11}	P_{27}	P_{39}	P_{11}

The surface has 33 points: The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$12: P_{21} = (2,3,1,0)$	24: $P_{54} = (1, 0, 2, 1)$
$1: P_1 = (0, 1, 0, 0)$	13: $P_{23} = (1,0,0,1)$	$25: P_{61} = (0, 2, 2, 1)$
$2: P_2 = (0,0,1,0)$	$14: P_{26} = (0, 1, 0, 1)$	$26: P_{63} = (2, 2, 2, 1)$
$3: P_3 = (0,0,0,1)$	15: $P_{27} = (1, 1, 0, 1)$	$27: P_{66} = (1, 3, 2, 1)$
$4: P_5 = (1, 1, 0, 0)$	16: $P_{30} = (0, 2, 0, 1)$	$28: P_{69} = (0, 0, 3, 1)$
$5: P_6 = (2, 1, 0, 0)$	17: $P_{31} = (1, 2, 0, 1)$	$29: P_{70} = (1, 0, 3, 1)$
$6: P_7 = (3, 1, 0, 0)$	$18: P_{34} = (0, 3, 0, 1)$	$30: P_{78} = (1, 2, 3, 1)$
$7: P_8 = (1,0,1,0)$	$19: P_{35} = (1, 3, 0, 1)$	$31: P_{81} = (0, 3, 3, 1)$
$8: P_9 = (2,0,1,0)$	$20: P_{38} = (0,0,1,1)$	$32: P_{84} = (3, 3, 3, 1)$
9: $P_{10} = (3, 0, 1, 0)$	$21: P_{39} = (1,0,1,1)$	
$10: P_{11} = (0, 1, 1, 0)$	$22: P_{42} = (0, 1, 1, 1)$	
$11: P_{18} = (3, 2, 1, 0)$	$23: P_{53} = (0,0,2,1)$	