

Ejresueltost15

Estructuras de datos y algoritmos (Universitat Politecnica de Valencia)

La EDA Grafo y su jerarquía Java

Problemas de optimización sobre un Grafo ponderado

EJERCICIOS RESUELTOS

Ejercicio 1.- Siguiendo el método ordenacion Topologica, mostrar la ordenación topológica resultante para el siguiente grafo dirigido acíclico. ¿La ordenación obtenida es única? En caso negativo mostrar otra ordenación válida.

Solución:

Ordenación obtenida:

$$7 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 1 \rightarrow 4$$

No es la única ordenación posible. Ejemplo:

$$7 \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 4$$

Ejercicio 2.- Implementa un método en la clase *Grafo* que compruebe si un vértice es alcanzable desde otro vértice dado.

Solución:

```
public boolean esAlcanzable(int vOrigen, int vDestino) {
  visitados = new int[numVertices() + 1];
  return esAlcanzableRec(vOrigen, vDestino);
private boolean esAlcanzableRec(int vActual, int vDestino) {
  if (vActual == vDestino) return true;
  visitados[vActual] = 1;
  ListaConPI<Adyacente> ady = adyacentesDe(vActual);
  for (ady.inicio(); !ady.esFin(); ady.siguiente()) {
    int vSiguiente = ady.recuperar().destino;
    if (visitados[vSiguiente] == 0 && esAlcanzableRec(vSiguiente, vDestino))
       return true;
  }
  return false;
}
```

Ejercicio 4.- Utilizar el algoritmo de *Dijkstra* para encontrar los caminos más cortos que van desde el vértice *a* hasta los restantes vértices, en el siguiente grafo dirigido:

Solución:

Asumimos que los códigos de los vértices son: a = 1, b = 2, c = 3, d = 4, e = 5, f = 6.

$\underline{\mathbf{V}}$	<u>qPrior</u>	<u>visitados</u>	<u>distanciaMin</u>	<u>caminoMin</u>
	(1,0)	0 0 0 0 0 0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-1 -1 -1 -1 -1 -1
1	(2,3) ,(4,6),(6,5)	1 0 0 0 0 0	0 3 ∞ 6 ∞ 5	-1 1 -1 1 -1 1
2	(4,6),(6,5),(3,4),(6,4)	1 1 0 0 0 0	0 3 4 6 ∞ 4	-1 1 2 1 -1 2
3	(4,6),(6,5),(6,4)	1 1 1 0 0 0	0 3 4 6 ∞ 4	-1 1 2 1 -1 2
6	(4,6),(6,5),(4,5)	1 1 1 0 0 1	0 3 4 5 ∞ 4	-1 1 2 6 -1 2
4	(4,6),(6,5)	1 1 1 1 0 1	0 3 4 5 ∞ 4	-1 1 2 6 -1 2
6	(4,6)			
4	Ø			

Caminos mínimos desde a:

 $a \rightarrow b$

 $a \rightarrow b \rightarrow c$

 $a \rightarrow b \rightarrow f \rightarrow d$

e no es alcanzable

 $a \rightarrow b \rightarrow f$