Список литературы

- 1. A next-generation dynamic programming language Julia: Its features and applications in biological science / S. Pal [et al.] // Journal of Advanced Research. 2023. Nov. 21. P. 1–12. DOI: 10.1016/j.jare.2023.11.015.
- 2. Catalyst: Fast and flexible modeling of reaction networks / T. E. Loman [et al.] // PLOS Computational Biology / ed. by C. A. Ouzounis. 2023. Oct. Vol. 19, no. 10. e1011530.1–19. DOI: 10.1371/journal.pcbi.1011530.
- 3. Catalyst: Fast Biochemical Modeling with Julia / T. E. Loman [et al.]. 08/2022. DOI: 10.1101/2022.07.30.502135. bioRxiv: 2022.07.30.502135.
- 4. Doi M. Stochastic theory of diffusion-controlled reaction // Journal of Physics A: Mathematical and General. 1976. Vol. 9, no. 9. P. 1479–1495. DOI: 10.1088/0305-4470/9/9/009.
- 5. Implementation of an analytical-numerical approach to stochastization of one-step processes in the Julia programming language / A. V. Fedorov [et al.] // Workshop on information technology and scientific computing in the framework of the XI International Conference Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems (ITTMM-2021). Vol. 2946 / ed. by D. S. Kulyabov, K. E. Samouylov, L. A. Sevastianov. Moscow, 04/2021. P. 92–104. (CEUR Workshop Proceedings).
- 6. Julia for Biologists / E. Roesch [et al.]. 2021. DOI: 10.48550/ARXIV.2109.09973. arXiv: 2109.09973.
- 7. Julia: A Fast Dynamic Language for Technical Computing / J. Bezanson [et al.]. 2012. arXiv: 1209.5145.
- 8. Julia: A fresh approach to numerical computing / J. Bezanson [et al.] // SIAM Review. 2017. Jan. Vol. 59, no. 1. P. 65–98. DOI: 10.1137/141000671. arXiv: 1411.1607.
- 9. Korolkova A. V., Kulyabov D. S. One-step Stochastization Methods for Open Systems // EPJ Web of Conferences / ed. by G. Adam, J. Buša, M. Hnatič. 2020. Jan. Vol. 226. P. 02014.1–4. DOI: 10.1051/epjconf/202022602014.
- 10. Laidler K. J. Chemical Kinetics. 3rd ed. Prentice Hall, Inc., 01/17/1987. 531 p.
- 11. Lotka A. J. Elements of Physical Biology. Baltimore : Williams, Wilkins Company, 1925. 435 p.
- 12. Operator Approach to the Master Equation for the One-Step Process / M. Hnatič [et al.] // EPJ Web of Conferences / ed. by G. Adam, J. Buša, M. Hnatič. Stará Lesná, 2016. Vol. 108. P. 58–59. DOI: 10.1051/epjconf/201610802027. arXiv: 1603.02205.
- 13. Rackauckas C., Nie Q. Differential Equations.jl - A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia // Journal of Open Research Software. — 2017. — Vol. 5, May. — DOI: 10.5334/jors.151.
- 14. Schlögl F. Chemical reaction models for non-equilibrium phase transitions // Zeitschrift für Physik. 1972. Vol. 253, no. 2. P. 147–161. DOI: 10.1007/BF01379769.
- 15. Stochastization Of One-Step Processes In The Occupations Number Representation / A. V. Korolkova [et al.] // Proceedings 30th European Conference on Modelling and Simulation. Regensburg, Germany: ECMS, 06/2016. P. 698–704. DOI: 10.7148/2016-0698.
- 16. Базыкин A. Д. Нелинейная динамика взаимодействующих популяций. Москва-Ижевск : Институт компьютерных исследований, 2003. 368 с.
- 17. *Братусъ А. С.*, *Новожилов А. С.*, *Платонов А. П.* Динамические системы и модели биологии / под ред. Ю. А. Тюрина. Москва : Физматлит, 2010. 400 с.
- 18. Ван-Кампен Н. Г. Стохастические процессы в физике и химии : пер. с англ. Москва : Высшая школа, 1990. 376 с. Пер. по изд.: Kampen N. G. van. Stochastic Processes in Physics and Chemistry. Elsevier Science, 2011. (North-Holland Personal Library).
- 19. Вольтерра В. Математическая теория борьбы за существование : пер. с фр. Москва : Наука, 1976. 288 с. Пер. по изд.: Volterra V. Leçons sur la Théorie mathématique de la lutte pour la vie. Paris : Gauthiers-Villars, 1931.

- 20. Гардинер К. В. Стохастические методы в естественных науках : пер. с англ. Москва : Мир, 1986. 528 с. Пер. по изд.: Gardiner C. W. Handbook of Stochastic Methods: for Physics, Chemistry and the Natural Sciences. Springer Series in Synergetics, 1985.
- 21. Демидова А. В. Метод построения стохастических моделей одношаговых процессов : дис. ... канд. / Демидова А. В. РУДН, 2014.
- 22. Кулябов Д. С., Демидова А. В. Введение согласованного стохастического члена в уравнение модели роста популяций // Вестник РУДН. 2012. Т. 3. С. 69—78. (Серия «Математика. Информатика. Физика»).
- 23. *Кулябов Д. С.*, *Королькова А. В.* Компьютерная алгебра на Julia // Программирование. М., 2021. № 2. С. 44—50. DOI: 10.31857/S0132347421020084. arXiv: 2108.12301.

Литература

- Королькова А. В. Определение области возникновения автоколебаний в системах типа red // Вестник РУДН. Серия «Математика. Информатика. Физика». 2010. № 1. С. 110–112.
- 2. Королькова А. В., Кулябов Д. С. Математическая модель динамики поведения параметров систем типа red // Вестник РУДН. Серия «Математика. Информатика. Физика». 2010. 10.
- 3. Королькова А. В., Черноиванов А. И. Моделирование при помощи стохастических дифференциальных уравнений поведения ТСР-трафика при взаимодействии с узлом, работающим по алгоритму RED. М. : МФТИ, 2009. Т. 1. С. 130–133.
- 4. Ланжевен П. Избранные труды. О теории броуновского движения. М. : Изд. АН СССР, 1960.-729 с.
- 5. Перцев Н. В., Логинов К. К. Стохастическая модель динамики биологического сообщества в условиях потребления особями вредных пищевых ресурсов // Математическая биология и биоинформатика. 2011. Т. 6, № 1. С. 1–13. URL: http://www.matbio.org/2011/Pertsev2011(6_1).pdf.
- 6. Павловский И. П., Суслин В. М. Стохастическая модель эволюции популяции в пространстве // Математическое моделирование. 1994. Т. 6, № 3. С. 9–24.

- 7. Ширяев А. Н. Основы стохастической финансовой метематики. Москва : Фазис, 1998. 512 с.
- 8. Оксендаль Б. Стохастические дифференциальные уравнения. Введение в теорию и приложения. Москва: Мир, 2003. 408 с.
- 9. Еферина Е. Г. Согласованное введение стохастики в эпидемиологическую модель // Материалы Всероссийской конференции с международным участием «Информационно-телекоммуникационные технологии и математическое моделирование высокотехнологичных систем»: Тезисы докладов. М.: РУДН, 2014. С. 233–235.
- Велиева Т. Р., Королькова А. В., Кулябов Д. С., Сантуш Б. А. Модель управления очередями на маршрутизаторах // Вестник РУДН. Серия «Математика. Информатика. Физика». 2014. № 2. С. 81–92.
- 11. Мальтус Т. Р. Опыт закона о народонаселении. Москва, 1895.
- 12. Lotka A. J. Elements of Physical Biology. BiblioBazaar, 2011. 492 p. ISBN: 9781178508116. URL: http://books.google.ru/books?id=tFN9pwAACAAJ.
- 13. Вольтерра В. Математическая теория борьбы за существование // Успехи физических наук. 1928. Т. 8, № 1. С. 13–34.
- 14. Гардинер К. В. Стохастические методы в естественных науках. Москва : Мир, 1986.-528 с.
- 15. Рёпке Г. Неравновесная стохастическая механика. Москва : Мир, $1990. 320 \ {\rm c}.$
- Risken H. The Fokker-Planck Equation. Methods of Solution and Applications. Springer Series in Synergetics, 1984. 425 p.

- 17. Ризниченко Г. Ю. Лекции по математическим моделям в биологии. Часть 1. Ижевск : НИЦ «Регулярная и хаотическая динамика», 2002. 232 с.
- 18. Одум Ю. Основы экологии. Москва : Мир, 1975. 740 с.
- 19. Базыкин А. Д. Нелинейная динамика взаимодействующих популяций.— Москва-Ижевск: Институт компьютерных исследований, 2003.— 368 с.
- 20. Рубин А. Б., Пытьева Н. Ф., Ризниченко Г. Ю. Кинетика биологических процессов. Изд-во Моск. ун-та, 1977. 330 с.
- 21. Lotka A. J. Elements of Physical Biology. Baltimore : Williams & Wilkins Company, 1925.-460 p.
- 22. Ризниченко Г. Ю., Рубин А. Б. Математические модели биологических продукционных процессов. Изд-во МГУ, 1993.
- Колмогоров А. Н. Качественное изучение математических моделей популяций // Проблемы кибернетики. 1972. № 25. С. 101–106.
- 24. Базыкин А. Д. Математическая биофизика взаимодействующих популяций. Москва : Наука, 1985. 182 с.
- 25. Марри Д. Нелинейные дифференциальные уравнения в биологии. Лекции о моделях. М. : Мир, 1983. 397 с.
- 26. Ризниченко Г. Ю. Математические модели в биофизике и экологии. Москва-Ижевск : Институт компьютерных исследований, 2003.-183 с.
- 27. Разжевайкин В. Н. Модели динамики популяций. М. : ВЦ РАН им. ${\rm A.A.Дород Huцы ha,\ 2006.-87\ c.}$
- 28. Зарипов Ш. X. Дискретные модели популяций. Часть 1. Разностные уравнения. Казань : Изд-во Казанского государственного университе-

- та, 2008. 36 с.
- 29. Братусь А. С., Новожилов А. С., Платонов А. П. Динамические системы и модели биологии. М. : Физматлит, 2010. 400 с.
- 30. Свирежев Ю. М., Логофет Д. О. Устойчивость биологических сообществ. М. : Наука, 1978. 352 с.
- 31. Бейли Н. Т. Д. Математика в биологии и медицине. Москва : Мир, $1970. 326 \ {\rm c}.$
- 32. Недорезов Л. В., Утюпин Ю. В., Утюпина С. П. Эффект насыщения в модели системы «хищник-жертва» // Сибирский журнал индустриальной математики. 2001. Т. $4, \, N_{2} \, 1(7).$ С. $150{\text -}164.$
- 33. Эрроусмит Д., Плейс К. Обыкновенные дифференциальные уравнения. Качественная теория с приложениями. — М. : Мир, 1986. - 243 с.
- 34. Горяченко В. Д. Элементы теории колебаний. М. : Высшая школа, $2001. 395~\mathrm{c}.$
- 35. Масина О. Н., Дружинина О. В. Существование устойчивых состояний равновесия и предельные свойства решений обобщенных систем лотки—вольтерра // Вестник Воронежского государственного университетата. Серия «Физика. Математика». 2007. № 1. С. 55–57.
- 36. Дружинина О. В., Масина О. Н. Методы исследования устойчивости и управляемости нечетких и стохастических динамических систем. Москва: ВЦ РАН, 2009. 180 с.
- 37. Дружинина О. В. Индекс, дивергенция и функции Ляпунова в качественной теории динамических систем. Москва : ЛЕНАНД, 2013. 280 с.

- 38. Калиткин Н. Н., Карпенко Н. В., Михайлов А. П. и др. Математические модели природы и общества. Москва : Физматлит, 2005. 360 с.
- 39. Калиткин Н. Н. Марковские ветвящиеся процессы с взаимодействием // Успехи математических наук. 2002. Т. $57, \, \mathbb{N}_{2}(344).$ С. 23–84.
- 40. Перцев Н. В., Пичугин Б. Ю., Логинов К. К. Статистическое моделирование динамики популяций, развивающихся в условиях воздействия токсичных веществ // Сиб. журн. индустр. матем. 2011. № 14:2. С. 84–94.
- 41. Кампен Н. Г. В. Стохастические процессы в физике и химии. Москва : Высшая школа, 1990. 376 с.
- 42. Doi M. Second quantization representation for classical many-particle system // Journal of Physics A: Mathematical and General. 1976. Vol. 9, no. 9. P. 1465–1477. URL: http://iopscience.iop.org/0305-4470/9/9/008.
- 43. Doi M. Stochastic theory of diffusion-controlled reaction // Journal of Physics A: Mathematical and General. 1976. Vol. 9, no. 9. P. 1479—1495. URL: http://iopscience.iop.org/0305-4470/9/9/009.
- 44. Moreau M., Oshanin G., Bénichou O., Coppey M. Stochastic theory of diffusion-controlled reactions // Physica A: Statistical Mechanics and its Applications.— 2003.— Vol. 327, no. 1-2.— P. 99–104.— URL: http://linkinghub.elsevier.com/retrieve/pii/S0378437103004588.
- 45. Dodd P. J., Ferguson N. M. A many-body field theory approach to stochastic models in population biology. // PloS one. 2009. Vol. 4, no. 9. P. e6855. URL: http://www.pubmedcentral.nih.gov/articlerender.

- fcgi?artid=2734401&tool=pmcentrez&rendertype=abstract.
- 46. Hnatich M., Honkonen J. Velocity-fluctuation-induced anomalous kinetics of the A+A-> reaction // Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. 2000. Vol. 61, no. 4 Pt A. P. 3904–3911. URL: http://www.ncbi.nlm.nih.gov/pubmed/11088171.
- 47. Hnatich M., Honkonen J., Lučivjanský T. Field Theory Approach In Kinetic Reaction: Role Of Random Sources And Sinks. 2011. P. 1–14. arXiv: 1109.6435.
- 48. Hnatič M., Honkonen J., Lučivjanský T. Field-theoretic technique for irreversible reaction processes // Physics of Particles and Nuclei. 2013. Vol. 44, no. 2. P. 316–348. URL: http://link.springer.com/10.1134/S1063779613020160.
- 49. Афанасьев В. Н., Колмановский В. Б., Носов В. Р. Математическая теория конструирования систем управления. Москва : Высшая школа, $1989.-448~{\rm c}.$
- 50. Афанасьев В. Н. Динамические системы управления с неполной информацией: алгоритмическое конструирование. Москва : УРСС, 2007. 216 с.
- 51. Кушнер Г. Д. Стохастическая устойчивость и управление. Москва : $\mathrm{Mup},\ 1969. 198\ \mathrm{c}.$
- 52. Einstein A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen // Annalen der Physik. 1905. no. 322 (8). P. 549–560.

- 53. Эйнштейн А., Смолуховский М. Броуновское движение. Сборник статей. М.-Л. : Главн. ред. общетехн. лит., 1936. 608 с.
- 54. Понтрягин Л. С., Андронов А. А., Витт Д. А. О статистическом рассмотрении динамических систем // ЖЭТФ. 1933. Т. 3, № 3. С. 165–180.
- 55. Бернштейн С. Н. Собрание сочинений. Теория вероятностей. Математическая статистика. Том 4. М. : Наука, 1964.
- 56. Bernstein S. Principes de la théorie des équations différentielles stochastiques. і // Тр. Физ.-матем. ин-та им. В. А. Стеклова. — 1934. — Т. 5. — С. 95— 124.
- 57. Ito K. Stochastic Integral. Tokyo: Proc. Imperial Acad., 1944.
- 58. Ито К., Маккин Г. Диффузионные процессы и их траектории. Москва : Мир, 1986. 329 c.
- Гихман И. И. Дифференциальные уравнения со случайными функциями. Киев : Ин-т математики АН УССР, 1964.
- 60. Гихман И. И. О некоторых дифференциальных уравнениях со случайными функциями // Укр.мат.журн. 1950. Т. 2, № 3. С. 45–69.
- 61. Гихман И. И., Скороход А. В. Стохастические дифференциальные уравнения. — Киев : Наукова думка, 1982. — 612 с.
- 62. Гихман И. И., Скороход А. В. Стохастические дифференциальные уравнения и их приложения. Киев: Наукова думка, 1968. 356 с.
- 63. Стратонович Р. Л. Избранные вопросы теории флюктуаций в радиотехнике. Москва : Сов. радио, 1961.-560 с.
- 64. Кузнецов Д. Ф. Численное моделирование стохастических дифференци-

- альных уравнений и стохастических интегралов. С. Петербург : Наука,
 $1999.-463~{\rm c}.$
- 65. Лукшин А. В., Смирнов С. Н. Численные методы решения стохастических дифференциальных уравнений // Математическое моделирование. 1990. Т. $2, \, N 11.$ С. 108-121.
- 66. Кузнецов Д. Ф. Стохастические дифференциальные уравнения: теория и практика численного решения. — С.Петербург : Изд. Политех. Университета, 2009. — 800 с.
- 67. Debrabant K., Röbler A. Classification of stochastic runge–kutta methods for the weak approximation of stochastic differential equations // Mathematics and Computers in Simulation. 2008. Vol. 77, no. 4. P. 408–420.
- 68. Napoli A. Economical runge–kutta methods with weak second order for stochastic differential equations // Int. J. Contemp. Math. Sciences. 2010. Vol. 5, no. 24. P. 1151-1160.
- 69. Logmani G. B. High strong order implicit runge-kutta methods for stochastic ordinary differential equations // System Dynamics Society. Proceedings of the 22nd International Conference. Oxford, England, UK, 2004. Jule 25—29. URL: http://www.systemdynamics.org/conferences/2004/SDS_2004/PAPERS/109LOGHM.pdf.
- 70. Tocino A., Ardanuy R. Runge-kutta methods for numerical solution of stochastic differential equations // Journal of Computational and Applied Mathematics. 2002. Vol. 138, no. 2. P. 219-241. URL: http://www.sciencedirect.com/science/article/pii/S0377042701003806.
- 71. Гнеденко Б. В. Курс теории вероятностей. Москва : Едиториал УРСС,

- 2005. 488 c.
- 72. Волков И. К., Зуев С. М., Цветкова Т. М. Случайные процессы.— Москва: Изд-во МГТУ им. Н.Э. Баумана, 1999.— 448 с.
- 73. Булинский А. В., Ширяев А. Н. Теория случайных процессов. Москва : Физматлит, 2005. 408 с.
- 74. Бартлетт М. С. Введение в теорию случайных процессов. Москва : Иностранная литература, 1958. 384 с.
- 75. Дуб Д. Вероятностные процессы. Москва : Физматгиз, 1963. 608 с.
- 76. Вентцель А. Д. Курс теории случайных процессов. Москва : Наука, $1996.-400~\mathrm{c}.$
- 77. Тихонов В. И., Миронов М. А. Марковские процессы. Москва : Сов. радио, 1977.-488 с.
- 78. Степанов С. С. Стохастический мир. Электронный ресурс. 2009. 376 с. URL: http://synset.com/pdf/ito.pdf.
- 79. Леваков А. Стохастические дифференциальные уравнения. Минск : БГУ, $2009.-231~{\rm c}.$
- 80. Ватанабе С., Икеда Н. Стохастические дифференциальные уравнения и диффузионные процессы. Москва: Наука, 1986. 448 с.
- 81. Чжун К., Уильямс Р. Введение в стохастическое интегрирование.— Москва : Мир, 1987.— 150 с.
- 82. Зубарев Н. Д., Морозов Г. В., Репке Г. Статистическая механика неравновесных процессов. Москва : Физматлит, 2002.-432 с.
- 83. Пугачев В. С., Синицын И. Н. Стохастические дифференциальные системы. Москва : Наука, 1985. 560 с.

- 84. Øksendal B. K. Stochastic Differential Equations: An Introduction with Applications. Berlin: Springer, 2003. 360 p.
- 85. Артемьев С. С., Якунин М. А. Математическое и статистическое моделирование в финансах. Новосибирск : Изд. ИВМиМГ СО РАН, $2008.-174~{\rm c}.$
- 86. Рытов С. М. Введение в статистическую радиофизику. Часть 1. Случайные процессы. Москва : Наука, 1976. 494 с.
- 87. Баруча-Рид А. Т. Элементы теории марковских процессов и их приложения. Москва : Наука, 1969.-512 с.
- 88. Кнорре Д. Г., Эмануэль Н. М. Курс химической кинетики. М. : Высшая школа, 1984.-463 с.
- 89. Калинкин А. В. Схемы взаимодействий: детерминированные и стохастические модели: Метод. указания к выполнению типового расчета по курсу «Дополнительные главы теории случайных процессо». Москва: Изд-во МГТУ им. Н.Э. Баумана, 2008. 44 с.
- 90. Геворкян М. Н. Конкретные реализации симплектических численных методов // Вестник РУДН. Серия «Математика. Информатика. Физика». 2013. N 1. С. 77–89.
- 91. Soheili A. R., Namjoo M. Strong approximation of stochastic differential equations with runge-kutta methods // World Journal of Modelling and Simulation. 2008. Vol. 4, no. 2. P. 83–93.
- 92. Lu F., Wang Z. Two implicit runge–kutta methods for stochastic differential equation // Applied Mathematics. 2012. no. 3. P. 1103–1108.
- 93. Kinderman A. J., Monahan J. F. Computer generation of random

- variables using the ratio of uniform deviates // ACM Transactions on Mathematical Software. 1977. Vol. 3, no. 3. P. 257—260. URL: http://stevereads.com/papers_to_read/computer_generation_of_random_variables_using_the_ratio_of_uniform_deviates.pdf.
- 94. Кулябов Д. С., Демидова А. В. Введение согласованного стохастического члена в уравнение модели роста популяций // Вестник РУДН. Серия «Математика. Информатика. Физика». 2012. № 3. С. 69–78.
- 95. Демидова А. В. Уравнения динамики популяций в форме стохастических дифференциальных уравнений // Вестник РУДН. Серия «Математика. Информатика. Физика». 2013. № 1. С. 67–76.
- 96. Геворкян М. Н., Демидова А. В., Егоров А. Д. и др. Влияние стохасти- зации на одношаговые модели // Вестник РУДН. Серия «Математика. Информатика. Физика». 2014. N 1. С. 71—85.
- 97. Захарченко А. Черводинамика причины и следствия. 2004. URL: http://citforum.ru/security/virus/ch_dinamic/.
- 98. Liang J., Kumar R., Ross K. W. The FastTrack overlay: a measurement study // Computer Networks. 2006. no. 50(6). P. 842–858.
- 99. Ding C. H., Nutanong S., Buyya R. Peer-to-peer networks for content sharing // Journal of Systems Architecture. 2006. no. 52. P. 737–772.