Look into my

Menu

- Main Timer System for
 - >68HC11/12
 - > XMEGA Timer System
- Real-Time Interrupt/Counter (RTI/RTC)
 - >68HC11/12
 - RTI Hardware and Registers
 - RTI Programming Examples
 - * Use RTI interrupt; use RTIF & polling
 - Free-running Counter & Timer Overflow (TOF)
 - F Example using TOF

>XMEGA

- RTC specs
- RTC Hardware
- RTC Registers
- RTC example

University of Florida, EEL 3744 – File 15 © Drs. Schwartz & Arroyo

68HC11 Clock Divider Circuit

- Clock Divider
 - >Major clock divider chains

RM: Fig 10-3

not in wait mode)

T-Clock and E-clock are at same frequency (when

sity of Florida, EEL 3744 – File 15

XMEGA 16-bit Timer/Counter Type 0 and Type 1

- XMEGA has a set of eight 16-bit timer/counters (TC)
- Two TCs can be combined to create a 32-bit TC
- A TC consists of a base counter and a set of compare or capture (CC) channels
 - > Waveform generation available
- TC 0 has four CC channels; TC 1 has two CC channels
- TC 0 has the split mode feature that splits it into two 8bit Timer/Counters with four compare channels each

University of Florida, EEL 3744 – File 15 © Drs. Schwartz & Arroyo

5

XMEGA Timer/Counter type 0 and type 1

68HC12 (& ~11) RTI (Real-Time Interrupt)

Hardware

68HC12 RTI (Real-Time Interrupt) Rate Control

• RTR bits in register RTICTL

	Divide	E = 2MHz
RTR2:0	E by	Timeout Period
000	OFF	OFF
001	2^13	4.096ms
010	2^14	8.192ms
011	2^15	16.384ms
100	2^16	32.768ms
101	2^17	65.536ms
110	2^18	131.072ms
111	2^19	262.144ms

© Drs. Schwartz & Arroyo

EEL 3744 **68HC12** RTIFLG: Real-Time Interrupt Flag

Real-Time Interrupt Flag:

- **Set automatically** at the end of every RTI period
- Clear by writing 1 to RTIF, bit-7 of RTIFLG
- Writing a 1 is a strange way to clear a bit!
 - >Direct clearing flag
 - >Show FF example of clearing flag

University of Florida, EEL 3744 – File 15

University of Florida, EEL 3744 – File 15 © Drs. Schwartz & Arroyo

12

68HC12 RTI

Programming Examples

- Running a single process
 - >See examples

RTIa.asm RTIb.asm

- >Note that the time between interrupts is 32.768 ms assuming E=2MHz (and 8.196 ms if E=8MHz)
- >A polling version of first example above

University of Florida, EEL 3744 – File 15 © Drs. Schwartz & Arroyo

13

68HC12 RTI

Co-Procesing Example

- Running two processes
 - >See example

Co_Proc_RTI.asm

>We will get more on co-processing later in the semester (if time permits)

• Free-running Counter and TOI (Timer Overflow Interrupt)

S&HE: Fig 10.2

University of Florida, EEL 3744 – File 15 © Drs. Schwartz & Arroyo

EEL 3744 **68HC11/12** TCNT: Free-Running Counter

- TCNT Free-Running Counter (@ E-rate/Prescaler)
- >TCNT effects Output Compare (OC), Input Capture (IC), Timer Overflow (TOF), Pulse Accumulator (PA)
- >TCNT does **not** effect RTI

	7	6	5	4	3	2	1	0	
\$0084	Bit 15	-	-	-	-	-	-	Bit 8	TCNT High
RESET	0	0	0	0	0	0	0	0	, iligii
	7	6	5	4	3	2	1	0	
\$0085	Bit 7	-	-	-	-	-	-	Bit 0	TCNT Low
RESET	0	0	0	0	0	0	0	0	LOW

University of Florida, EEL 3744 – File 15 © Drs. Schwartz & Arroyo

19

- TSCR: Timer System Control Register
 - >TEN (Timer Enable): 1 = enable (activates the timer)
 - >TSWAI (Timer Stops While in Wait)
 - >TSBCK (Timer Stops While in Background Mode)
 - >TFFCA (Timer Fast Flag Clear All): [S&HE: Sec 10.10]

	7	6	5	4	3	2	1	0	
\$0086	TEN	TSWAI	TSBCK	TFFCA	0	0	0	0	TSCR
RESET	0	0	0	0	0	0	0	0	-

© Drs. Schwartz & Arroyo

(PAOV)

TO TIM COUNTER

21

PULSE ACC HIGH BYTE

FEL 3744 68HC12 Clock Chain for TIM (Standard Timer Module) P CLOCK REGISTER: TMSK2 TEN BITS: PR2, PR1, AND PR0 0:0:0 0

GATE

PAEN

EEL 3744

University of Florida, EEL 3744 – File 15 © Drs. Schwartz & Arroyo

68HC12 TMSK2: Timer Interrupt Mask Register 2 (Prescaler bits)

• TMSK2 - Timer Interrupt Mask Register 2

University of Florida, EEL 3744 – File 15 © Drs. Schwartz & Arroyo

EEL 3744 **68HC12** Timer Prescaler bits in TMSK2

 Prescaler and resultant count period and overflow period

RTI is **NOT** affected by the prescaler

	Prescale	
	Factor	E = 2MHz
PR2:0	(2^{PR})	Count/Overflow
000	1	500ns / 32.77ms
001	2	$1 \mu s / 65.54 ms$
010	4	$2\mu s / 131.7ms$
011	8	4μs / 262.1ms
100	16	$8\mu s / 524.3ms$
101	32	16μs / 1048.6ms
11X		

University of Florida, EEL 3744 – File 15 © Drs. Schwartz & Arroyo

68HC12 TFLG2:

Timer Interrupt Flag 2

	7	6	5	4	3	2	1	0	
\$008F	TOF	0	0	0	0	0	0	0	TFLG2
RESET	0	0	0	0	0	0	0	0	

Timer Overflow Interrupt Flag:

- Set automatically at TCNT = $\$FFFF \rightarrow \0000
- Clear by writing 1 to TOF, bit-7 of TFLG2
- Notice that the flag bit is in same position as the corresponding interrupt enable bit
 - > Bit 7 of TFLG2 has the TOF flag and bit 7 of TMSK2 has the TOI interrupt enable
 - > Bit 7 of RTIFLG has the RTIF and bit 7 of RTICTL has the RTIE

University of Florida, EEL 3744 – File 15

• Reverse all Port A bits every 32.768 ms

>See example

TimeOver.asm

>Note that the time between interrupts is 32.768 ms assuming E=2MHz (and 8.196 ms if E=8MHz)

TimeOver_debug.asm

University of Florida, EEL 3744 - File 15

26

& doc8385: Sec 20

• The 16-bit RTC typical

- The 16-bit RTC typically runs continuously, **including** in low-power sleep modes
- The reference clock is typically the 1.024kHz output from a high-accuracy crystal of 32.768kHz
 - > With a 32.768kHz clock source, the maximum resolution is 1/32.768kHz = 1s/ $2^{15} \approx 30.5 \mu$ s
 - > With a 32.768kHz clock source, time-out periods can range up to 2 seconds (at max resolution) = $2^{16} \times 30.5 \mu s = 2^{16} / 2^{15} = 2s$
- The RTC has a 10-bit programmable prescaler that can scale down the reference clock before it reaches the counter

> With maximum prescaler (1024) & 32kHz clock, range is ≈ 2000s

University of Florida, EEL 3744 – File 15

- With a resolution of 1s, the maximum time-out is 65,536s (≈18.2 hours)
- RTC can generate two types of interrupts
 - > The RTC can give a **compare interrupt** and/or event when the counter equals the compare register value
 - Occurs at first count after the counter value equals **Compare** register value
 - > The RTC has an **overflow interrupt** and/or event when it equals the period register value
 - Occurs at first count after the counter value equals the **Period** register value
 - Overflow will also reset the counter value to zero
- RTC is asynchronous with respect to the main system clock

University of Florida, EEL 3744 – File 15 © Drs. Schwartz & Arroyo

28

EEL 3744 **XMEGA** Real-Time Counter (RTC) Overview

University of Florida, EEL 3744 – File **15** © Drs. Schwartz & Arroyo

EEL 3744

RTC CTRL – Control

Register

• PRESCALER[2:0]: Clock Prescaling factor

>These bits define the prescaling factor for the RTC clock

	PRESC	CALER[2	0]	Gro	up Config	TRC clo	ek presca	ling		
		000			OFF	No clock	sours; RT	C stopped		
		001			DIV1	RTC cloc	k / 1 (no p	orescaling)		
		010			DIV2	RTC cloc	k / 2			
See doo		011			DIV8	RTC cloc	k / 8			
Table	18-1	100]	DIV16	RTC cloc	k / 16			
		101]	DIV64	RTC cloc	k / 64			
		110		Ι	DIV256	RTC cloc	k / 256			
		111		D	IV1024	RTC cloc	k / 1024			
Bit	7	6		5	4	3	2	1	0	
+0x00	-	-		-	-	-		PRESCALER[2:0)]	\Box
Read/Write	R	R		₹	R	R	R/W	R/W	R/W	
Initial Value	0	0		0	0	0	0	0	0	
© Drs. Schwartz				1	RTC_CTR	L				3

EEI, 3744

RTC STATUS –

Status Register

- SYNCBUSY: Synchronization Busy Flag
- >Flag is set when the CNT, CTRL, PER, or COMP register is busy synchronizing between the RTC clock and system clock domains after writing any of these registers or when waking up from a sleep mode where the peripheral clock is stopped
- > This flag is automatically cleared when the sync is complete

RTC INTCTRL -

Interrupt Control Register

- COMPINTLVL: Compare Match Interrupt Enable
 - >These bits enable the RTC compare match interrupt and select the interrupt level
 - >The enabled interrupt will trigger when COMPIF in the INTFLAGS register is set

	Inte	errupt Le	vel Config	Group	p Config	Desc	cription	
		00		(Off	Interruj	ot disabled	1
		01			Lo	Low-lev	el interruj	ot
		10		N	Лed	Mid-lev	el interrup	ot
		11			Hi	High-lev	el interru	pt
Bit	7	6	5	4	3	2	1	0
+0x02	-	-	-	-	COMPIN	TLVL[1:0]	OVFINT	LVL[1:0]
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W
nitial Value	0	0	0	0	0	0	0	0

University of Florida, EEL 3744 – File 15 © Drs. Schwartz & Arrovo

RTC INTCTRL -

Interrupt Control Register

- OVFINTLVL[1:0]: Overflow Interrupt Enable
 - >These bits enable the RTC overflow interrupt and select the interrupt level
 - >The enabled interrupt will trigger when OVFIF in the INTFLAGS register is set

11 / 1		100108	515001 15 0	,00					
	Inte	errupt Le	vel Config	Group	Config	Desc	cription		
		00		(Off	Interruj	ot disabled		
		01			Lo	Low-lev	el interrup	t	
		10		N	/led	Mid-lev	el interrupt		
		11			Hi	High-lev	el interrup	t	
	7	6	5	4	3	2	1	0	
k02	-	-	-	-	COMPIN	TLVL[1:0]	OVFINTL	/L[1:0]	
ad/Write	R	R	R	R	R/W	R/W	R/W	R/W	
ial Value	0	0	0	0	0	0	0	0	
rsity of Florida, EEL 37 © Drs. Schwartz & Ar			RT	C_INT	CTRL				33

+0x(Rea

INTFLAGS – Interrupt Flag Register

• COMPIF: Compare Match Interrupt Flag

- >Flag is set on the next count after a compare match condition occurs
- >Cleared automatically when the RTC compare match interrupt vector is executed
- >Flag can also be cleared by writing a one to it

Bit	7	6	5	4	3	2	1	0	
+0x03	-	-	-	-	-	-	COMPIF	OVFIF]
Read/Write	R	R	R	R	R	R	R/W	R/W	_
Initial Value	0	0	0	0	0	0	0	0	
University of Florida, © Drs. Schwar			F	RTC_INT	FLAGS				34

EEL 3744 RTC TEMP – Temporary See doc8331, Sec 18.3.5 Register

• TEMP[7:0]: Temporary bits

- >Used for 16-bit access to the counter value, compare value, and TOP value registers
- >The low byte of the 16-bit register is stored here when it is written by the CPU
- >The high byte of the 16-bit register is stored when the low byte is read by the CPU
- >See also doc8331, section 3.11

RTC CNTL – Counter Register Low

- CNTH and CNTL represent the 16-bit value, CNT
- CNT counts positive clock edges on prescaled RTC clock
- Reading and writing 16-bit values requires special attention; see also doc8331, section 3.11
- Latency of two RTC clock cycles from write to effect
- CNT[7:0]: Counter Value low byte
 - >These bits hold the LSB of the 16-bit real-time counter value

Bit	7	6	5	4	3	2	1	0	_
+0x08				CNT	[7:0]]
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Initial Value	0	0	0	0	0	0	0	0	
University of Florida, © Drs. Schwa				RTC_CN	Γ				36

RTC CNTH – Counter Register High

- CNT[15:8]: Counter Value high byte
 - >These bits hold the MSB of the 16-bit real-time counter value

RTC PERL – Period Register Low

- PERH and PERL represent the 16-bit value, PER
- PER is constantly compared with the counter value (CNT)
- A match will set OVFIF in the INTFLAGS register and clear CNT.
- Reading and writing 16-bit values requires special attention; see also doc8331, section 3.11
- Latency of two RTC clock cycles from write to effect
- PER[7:0]: Period low byte
 - >These bits hold the LSB of the 16-bit RTC TOP value

RTC PERH – Period Register High

• PER[15:8]: Period high byte

>These bits hold the MSB of the 16-bit real-time counter value

- COMPH and COMPL represent the 16-bit value, COMP. COMP is constantly compared with the
- counter value (CNT). A compare match will set COMPIF in the INTFLAGS register
- Reading and writing 16-bit values requires special attention; see also doc8331, section 3.11
- Latency of two RTC clock cycles from write to effect
- Check that the SYNCBUSY flag (in RTC_STATUS) is cleared before writing to this register

University of Florida, EEL 3744 – File 15 © Drs. Schwartz & Arroyo RTC_COMP

40

Low/High

- COMP[7:0]: Period low byte
 - >These bits hold the LSB of the 16-bit RTC compare value

• COMP[15:8]: Compare high byte

>These bits hold the MSB of the 16-bit compare value

Bit	7	6	5	4	3	2	1	0	
+0x0D				COMP	P[15:8]]
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	_
Initial Value	0	0	0	0	0	0	0	0	
	orida, EEL 3744 - File 15 chwartz & Arroyo RTC_COMP								

CLK RTCCTRL – RTC

Control Register

• RTCSRC[2:0]: RTC Clock Source

>These bits select the clock source for the real-time counter

RTCSI	RC[2:0]	Group (Config		I	Description				
00	00	UL	P	1kHz from 32kHz internal oscillator						
00	01	TOS	C	1.024kH	z from 32.76	8kHz crystal	oscillator	on TOSC		
0	10	RCO	SC	1.02	4kHz from 3	2.768kHz in	ternal osci	llator		
0	11	-								
10	00	-		CLK_RTCCTRL						
10	01	TOSC32		32.768kH	Iz from 32.7	68kHz crysta	l oscillator	on TOSC		
1	10	RCOSC32		32.70	68kHz from	32.768kHz ii	nternal osc	illator		
1	11	EXTC	LK		External	clock from	TOSC1			
Bit	7	6	5	4	3	2	1	0		
+0x03	-	-	-	- RTCSRC[2:0] RTCEN						
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W		
Initial Value	0	0	0	0	0	0	0	0		

CLK RTCCTRL – RTC Control Register

• RTCEN: RTC Clock Source Enable

>Setting the RTCEN bit enables the selected RTC clock source for the real-time counter

CLK RTCCTRL

Bit	7	6	5	4	3	2	1	0	_
+0x03	-	-	-	-		RTCEN	1		
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	-
Initial Value	0	0	0	0	0	0	0	0	

EEL 3744 RTC: Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
+0x00	CTRL	-	-	-	-	-	PRESCALER[2:0]			
+0x01	STATUS	-	-	-	-	-	-	-	SYNCBUSY	
+0x02	INTCTRL	-	-	-	-	COMPINTLVL[1:0]		OVFINTLVL[1:0]		
+0x03	INTFLAGS	-	-	-	-	-	-	COMPIF	OVFIF	
+0x04	TEMP	-	-	-	-	-	-	COMPIF	OVFIF	
+0x08	CNTL	TEMP[7:0]								
+0x09	CNTH	CNT[7:0]								
+0x0A	PERL	CNT[15:8]								
+0x0B	PERH	PER[7:0]								
+0x0C	COMPL	PER[15:8]								
+0x0D	COMPH	COMP[7:0]								

See doc8331,

RTC Registers RTC CTRL RTC TEMP RTC_STATUS RTC CNT RTC INTCTRL RTC_PER RTC COMP RTC INTFLAGS

And don't forget **CLK RTCCTRL** and PMIC_CTRL

Also OSC_CTRL and

University of Florida, EEL 3744 – File 15 © Drs. Schwartz & Arroyo

EEL 3744 RTC Example for uTinkerer (not uPAD)

- Could do a demo with emulator for uTinkerer
 - >Extra credit:
 - Change program for uPAD
 - Send me program
 - Send me video of it working on uPAD
- Change the interrupt periods

University of Florida, EEL 3744 – File 15

The End!

University of Florida, EEL 3744 – File 15 © Drs. Schwartz & Arroyo