Seguimiento de Tempo

Procesamiento digital de senales de audio Curso 2012

Gonzalo Gutiérrez, Matas Tailanián

19 de Octubre de 2012

Figura: Diagrama de bloques

■ Feature Selection

Figura: Diagrama de bloques

- Feature Selection
- Pre Tracking

Figura: Diagrama de bloques

- Feature Selection
- Pre Tracking
 - Período
 - Fase
 - Agente

Figura: Diagrama de bloques

- **■** Feature Selection
- Pre Tracking
 - Período
 - Fase
 - Agente
- Beat tracking

Pre Tracking

Período

$$A(\tau) = \sum_{n=0}^{m} SF(n)SF(n+\tau)$$

SF es el flujo espectral suavizado para el $\it frame \ n$

$$\begin{cases} P_i = \arg \max_i \left\{ A(\tau) \right\}, & i = 1, \dots, N \\ A(\tau) > \delta \frac{rms(A(\tau))}{M} \end{cases}$$

 δ es un umbral determinado empíricamente y M es un rango de tiempos definido entre [50,250] BPM.

Pre Tracking

Período

$$A(\tau) = \sum_{n=0}^{m} SF(n)SF(n+\tau)$$

SF es el flujo espectral suavizado para el $\it frame \ n$

$$\begin{cases} P_i = \arg \max_i \left\{ A(\tau) \right\}, & i = 1, \dots, N \\ A(\tau) > \delta \frac{rms(A(\tau))}{M} \end{cases}$$

 δ es un umbral determinado empíricamente y M es un rango de tiempos definido entre [50,250] BPM.

■ Fase

Para cada P_i estimado se generan varias hipótesis para la fase: ϕ_i^j . Se supone fase y períodos constantes en cada ventana de análisis.

Se utiliza un *template* de tren de pulsos para ver cuál ajusta mejor.

Pre Tracking

■ Período

$$A(\tau) = \sum_{n=0}^{m} SF(n)SF(n+\tau)$$

SF es el flujo espectral suavizado para el $\ensuremath{\mathit{frame}}\ n$

$$\begin{cases} P_i = \arg \max_i \left\{ A(\tau) \right\}, & i = 1, \dots, N \\ A(\tau) > \delta \frac{r m s(A(\tau))}{M} \end{cases}$$

 δ es un umbral determinado ${\rm emp\'iricamente}\ {\rm y}\ M\ {\rm es}\ {\rm un}\ {\rm rango}\ {\rm de}$ ${\rm tiempos}\ {\rm definido}\ {\rm entre}\ [50,250]\ {\rm BPM}.$

■ Fase

Para cada P_i estimado se generan varias hipótesis para la fase: ϕ_i^j . Se supone fase y períodos constantes en cada ventana de análisis.

Se utiliza un *template* de tren de pulsos para ver cuál ajusta mejor.

Agentes

Para cada pareja (P_i,ϕ_i) se computa la suma de errores entre el template de tren de pulsos y los máximos del flujo espectral

Idea

Supervisar flujo de entrada y mantener balance entre inercia y rapidez de la respuesta

Idea

Supervisar flujo de entrada y mantener balance entre inercia y rapidez de la respuesta

Niveles de toleracia: $T_{in} \in [T_{in}^l, T_{in}^r]$ y $T_{out} \in [T_{out}^l, T_{in}^l] \bigcup [T_{in}^r, T_{out}^r]$

Figura: Niveles de tolerancia

Idea

Supervisar flujo de entrada y mantener balance entre inercia y rapidez de la respuesta

Niveles de toleracia: $T_{in} \in [T_{in}^l, T_{in}^r]$ y $T_{out} \in [T_{out}^l, T_{in}^l] \bigcup [T_{in}^r, T_{out}^r]$

Figura: Niveles de tolerancia

$$T_{in} \in [T_{in}^l, T_{in}^r]$$

$$\begin{cases} P_i = P_i + 0.25 * error \\ \phi_i = \phi_i + 0.25 * error \end{cases}$$

 $\blacksquare \quad T_{out} \in [T_{out}^l, T_{in}^l] \bigcup [T_{in}^r, T_{out}^r]$

El agente mantiene su período y fase y además crea 3 "hijos" variando dichos parámetros

Idea

Supervisar flujo de entrada y mantener balance entre inercia y rapidez de la respuesta

Niveles de toleracia: $T_{in} \in [T_{in}^l, T_{in}^r]$ y $T_{out} \in [T_{out}^l, T_{in}^l] \bigcup [T_{in}^r, T_{out}^r]$

Figura: Niveles de tolerancia

 $\blacksquare T_{in} \in [T_{in}^l, T_{in}^r]$

$$\begin{cases} P_i = P_i + 0.25 * error \\ \phi_i = \phi_i + 0.25 * error \end{cases}$$

El agente mantiene su período y fase y además crea 3 "hijos" variando dichos parámetros

Agent Referee

Evalúa la distancia entre la predicción del beat (b_p) y el máximo local (m) de SF. P_m es el máximo período permitido

$$\begin{cases} \Delta s = \left(1 - \frac{|error|}{T_{out}^r}\right) \frac{P_i}{P_m} SF(m), & \exists m \in T_{in} \\ \Delta s = -\left(\frac{|error|}{T_{out}}\right) \frac{P_i}{P_m} SF(m), & \exists m \in T_{out} \end{cases}$$

■ Semana 12

 Profundización en la bibliografía seleccionada

■ Semana 12

 Profundización en la bibliografía seleccionada

■ Semana 13

- Determinar los programas e interfaces necesarias
- Empezar a "meter mano" en el código

■ Semana 12

 Profundización en la bibliografía seleccionada

■ Semana 13

- Determinar los programas e interfaces necesarias
- Empezar a "meter mano" en el código

■ Semana 14

- Implementar las técnicas seleccionadas
- Ajustar detalles

■ Semana 12

 Profundización en la bibliografía seleccionada

■ Semana 13

- Determinar los programas e interfaces necesarias
- Empezar a "meter mano" en el código

■ Semana 14

- Implementar las técnicas seleccionadas
- · Ajustar detalles

■ Semana 15

- Ver la posibilidad y/o necesidad de implementar algún algoritmo para mejorar la performance (Filtro de Kalman)
- Documentación y presentación

Referencias:

- S. Dixon. Onset detection revisited. In *in Proceedings of the 9th International Conference on Digital Audio Effects*, pages 133–13, Montreal, Canada, 2006.
- F. Gouyon, P. Herrera, and P. Cano. Pulse-dependent analyses of percussive music. In *AES 22nd International Conference on Virtual*, Synthetic and Entertainment Audio, 2002.