P8106 Midterm Project

Leyang Rui, Jinghan Zhao

2025-03-28

Setup

```
set.seed(37)
library(tidyverse)
library(forcats)
library(corrplot)
library(caret)
library(mgcv)
library(earth)
library(rpart)
library(rpart.plot)
library(party)
library(partykit)
knitr::opts_chunk$set(fig.width = 10,
                      fig.height = 5,
                      out.width = "90%",
                      message = FALSE,
                      warning = FALSE)
theme_set(theme_bw())
```

Load Data

```
load("data/dat1.RData")
train_data = dat1 |>
  janitor::clean_names() |>
  mutate(
    gender = as.factor(gender),
    diabetes = as.factor(diabetes),
    hypertension = as.factor(hypertension),
    race = fct_recode(race,
                  White = "1",
                  Asian = "2",
                  Black = "3",
                  Hispanic = "4"),
    gender = fct_recode(gender,
                        Male = "1",
                        Female = "0"),
    smoking = fct_recode(smoking,
                         "Never smoked" = "0",
                         "Former smoker" = "1",
                         "Current smoker" = "2"))
load("data/dat2.RData")
test_data = dat2 |>
  janitor::clean_names() |>
  mutate(
    gender = as.factor(gender),
    diabetes = as.factor(diabetes),
    hypertension = as.factor(hypertension),
    race = fct_recode(race,
                  White = "1",
                  Asian = "2",
                  Black = "3",
                  Hispanic = "4"),
    gender = fct_recode(gender,
                        Male = "1",
                        Female = "0"),
    smoking = fct_recode(smoking,
                         "Never smoked" = "0",
                         "Former smoker" = "1",
                         "Current smoker" = "2")
```

Modify Data

```
train_data1 =
    train_data %>%
    select(-id, -height, -weight, -hypertension)

x_train = model.matrix(log_antibody ~ ., train_data1)[, -1]
    colnames(x_train) = make.names(colnames(x_train), unique = TRUE)
y_train = train_data1[, "log_antibody"]

test_data =
    test_data %>%
    select(-id, -height, -weight, -hypertension)

x_test = model.matrix(log_antibody ~ ., test_data)[, -1]
    colnames(x_test) = make.names(colnames(x_test), unique = TRUE)
y_test = test_data[, "log_antibody"]

ctrl1 = trainControl(method = "cv", number = 10)
```

Descriptive Analysis

Numeric Variables

Figure 1: Distribution of the Demographic Continuous Variables

Figure 2: Distribution of the Clinical Continuous Variables

```
train_data %>%
  pivot_longer(
    cols = c(age, height, weight, bmi, sbp, ldl, time, log_antibody),
    names_to = "variable_name",
    values_to = "value"
  ) %>%
  group_by(variable_name) %>%
  summarize(
    mean = mean(value),
    median = median(value),
    min = min(value),
   first_quantile = quantile(value, probs = 0.25),
    third_quantile = quantile(value, probs = 0.75),
    max = max(value)
  ) %>%
  ungroup() %>%
  arrange(desc(variable_name == "log_antibody"), variable_name) %>%
  knitr::kable(digits = 3, caption = "Descriptive Statistics for the Continuous Variables")
```

Table 1: Descriptive Statistics for the Continuous Variables

variable_name	mean	median	min	first_quantile	third_quantile	max
log_antibody	10.064	10.089	7.765	9.682	10.478	11.961
age	59.968	60.000	44.000	57.000	63.000	75.000
bmi	27.740	27.600	18.200	25.800	29.500	38.800
height	170.126	170.100	150.200	166.100	174.225	192.900
ldl	109.909	110.000	43.000	96.000	124.000	185.000
sbp	129.900	130.000	101.000	124.000	135.000	155.000
time	108.863	106.000	30.000	76.000	138.000	270.000
weight	80.109	80.100	56.700	75.400	84.900	106.000

Categorical Variables

Figure 3: Distribution of the Categorical Variables

Correlation Plot

```
x_corr = model.matrix(log_antibody ~ ., train_data[, -1])[, -1]
corrplot(cor(x_corr), method = "circle", type = "full")
```


Figure 4: Correlation Plot

Regression

Elastic Net

```
set.seed(37)
enet_fit = train(log_antibody ~ .,
                data = train_data1,
                method = "glmnet",
                tuneGrid = expand.grid(alpha = seq(0, 1, length = 21),
                                      lambda = exp(seq(-2, -8, length = 100))),
                trControl = ctrl1)
enet_fit$bestTune
       alpha
                  lambda
## 2044 1 0.004544037
coef(enet_fit$finalModel, enet_fit$bestTune$lambda)
## 13 x 1 sparse Matrix of class "dgCMatrix"
## (Intercept) 1.272351e+01
## age -1.914947e-02
## age
## genderMale
                  -2.859704e-01
## raceAsian
## raceBlack
## raceHispanic -2.469963e-02
## smokingFormer smoker 1.592525e-02
## smokingCurrent smoker -1.770936e-01
## bmi
            -4.820177e-02
## diabetes1
                       4.263422e-05
## sbp
## ldl
                   -1.850422e-04
## time
mycol = rainbow(25)
mypar = list(superpose.symbol = list(col = mycol),
superpose.line = list(col = mycol))
plot(enet_fit, par.settings = mypar, xTrans = log)
```


Figure 5: Effect of Tuning Parameters on Train Error (Elastic Net)

PCR

```
set.seed(37)
pcr_fit = train(x_train, y_train,
                method = "pcr",
                tuneGrid = data.frame(ncomp = 1:12),
                trControl = ctrl1,
                preProcess = c("center", "scale"))
summary(pcr_fit)
            X dimension: 5000 12
## Data:
  Y dimension: 5000 1
## Fit method: svdpc
## Number of components considered: 12
## TRAINING: % variance explained
##
             1 comps 2 comps 3 comps 4 comps 5 comps 6 comps
                                                            59.563
                                                                      67.70
## X
              13.522
                       23.760
                                33.489
                                          42.534
                                                    51.17
               1.296
                        1.493
                                 1.512
                                           1.512
                                                     1.54
                                                             2.032
                                                                      13.44
##
   .outcome
                                         11 comps
##
             8 comps 9 comps
                               10 comps
                                                   12 comps
               75.76
                        82.63
                                  89.32
                                             95.36
                                                       100.0
## X
## .outcome
               13.48
                        13.68
                                   13.78
                                             13.84
                                                        14.5
ggplot(pcr_fit, highlight = TRUE)
```


Figure 6: Component Selection (PCR)

PLS

ggplot(pls_fit, highlight = TRUE)

```
set.seed(37)
pls_fit = train(x_train, y_train,
                method = "pls",
                tuneGrid = data.frame(ncomp = 1:12),
                trControl = ctrl1,
                preProcess = c("center", "scale"))
summary(pls_fit)
            X dimension: 5000 12
## Data:
## Y dimension: 5000 1
## Fit method: oscorespls
## Number of components considered: 3
## TRAINING: % variance explained
##
             1 comps 2 comps 3 comps
               9.295
                        21.21
## X
                                 26.88
## .outcome
            13.885
                        14.45
                                 14.50
```


Figure 7: Component Selection (PLS)

$\mathbf{G}\mathbf{A}\mathbf{M}$

```
set.seed(37)
gam.fit = train(x_train, y_train,
                 method = "gam",
                 trControl = ctrl1)
gam.fit$bestTune
     select method
## 2
       TRUE GCV.Cp
gam.fit$finalModel
##
## Family: gaussian
## Link function: identity
##
## Formula:
## .outcome ~ genderMale + raceAsian + raceBlack + raceHispanic +
       smokingFormer.smoker + smokingCurrent.smoker + diabetes1 +
##
##
       s(age) + s(sbp) + s(ldl) + s(bmi) + s(time)
##
## Estimated degrees of freedom:
## 0.992 0.000 0.000 4.179 7.915 total = 21.09
##
## GCV score: 0.2786375
```

```
par(mfrow = c(3, 2))
plot(gam.fit$finalModel)

par(mfrow = c(1, 1))
```


Figure 8: Degree of Predictors (GAM)

MARS

Figure 9: Term and Degree Selection (MARS)

mars.fit\$bestTune

```
## nprune degree
## 8 9 1
```

coef(mars.fit\$finalModel)

##	(Intercept)	h(27.8-bmi)	h(time-57)
##	10.847446930	-0.061997354	-0.002254182
##	h(57-time)	${\tt genderMale}$	h(age-59)
##	-0.033529326	-0.296290451	-0.022957648
##	h(59-age)	smokingCurrent.smoker	h(bmi-23.7)
##	0.016138468	-0.205126851	-0.084380175

Regression Tree

Figure 10: Tuning Parameter Selection (Regression Tree)

```
rpart.plot(tree.fit$finalModel)
```


Figure 11: Final Regression Tree Model

Comparison

```
##
## Call:
   summary.resamples(object = resamp)
##
## Models: elastic_net, pcr, pls, gam, mars, tree
## Number of resamples: 10
##
## MAE
##
                     Min.
                            1st Qu.
                                       Median
                                                    Mean
                                                            3rd Qu.
## elastic_net 0.4294666 0.4333146 0.4414904 0.4404188 0.4479709 0.4502491
                                                                                  0
## pcr
               0.4283770 0.4331431 0.4418042 0.4406867 0.4484017 0.4516552
               0.4283860\ 0.4331977\ 0.4418812\ 0.4407023\ 0.4483486\ 0.4517004
                                                                                  0
## pls
## gam
               0.4038951 0.4165022 0.4250940 0.4229309 0.4317016 0.4337601
                                                                                  0
               0.4068067 0.4144508 0.4248340 0.4221903 0.4299231 0.4327355
                                                                                  0
## mars
## tree
               0.4229802 0.4279666 0.4363778 0.4353252 0.4432244 0.4468699
                                                                                  0
##
## RMSE
##
                     Min.
                            1st Qu.
                                        Median
                                                    Mean
                                                            3rd Qu.
                                                                         Max. NA's
## elastic_net 0.5346950 0.5401593 0.5540536 0.5525646 0.5599590 0.5733181
                                                                                  0
               0.5348357 \ 0.5398323 \ 0.5544163 \ 0.5528409 \ 0.5604510 \ 0.5739030
                                                                                  0
## pcr
               0.5347609 0.5398986 0.5544173 0.5528333 0.5603197 0.5740022
## pls
                                                                                  0
```

```
0.5101573 0.5227377 0.5286720 0.5286310 0.5327635 0.5511329
## gam
               0.5115426 0.5227742 0.5278403 0.5279391 0.5326822 0.5440279
## mars
                                                                                0
## tree
               0.5295247 0.5387966 0.5445051 0.5453183 0.5539628 0.5570269
                                                                                0
##
## Rsquared
##
                    Min.
                           1st Qu.
                                      Median
                                                          3rd Qu.
                                                                        Max. NA's
                                                   Mean
## elastic net 0.1039358 0.1362602 0.1422293 0.1424292 0.1471805 0.1856091
               0.1036311 0.1369615 0.1396188 0.1414866 0.1456933 0.1846009
## pcr
## pls
               0.1037262 0.1368722 0.1397305 0.1415124 0.1458437 0.1846014
                                                                                0
               0.1629446 0.2041048 0.2183934 0.2154693 0.2374062 0.2522148
## gam
                                                                                0
## mars
               0.1561416\ 0.2106884\ 0.2225692\ 0.2174307\ 0.2382161\ 0.2471323
                                                                                0
               0.1129441 0.1451478 0.1704858 0.1676913 0.1904570 0.2117980
                                                                                0
## tree
```

bwplot(resamp, metric = "RMSE")

Figure 12: Model Selection

Final Model

```
\begin{split} log(antibody) &= 10.8474 - 0.062 \times h(27.8 - bmi) - 0.0023 \times h(time - 57) \\ &- 0.0335 \times h(57 - time) - 0.2963 \times I(gender = Male) \\ &- 0.023 \times h(age - 59) + 0.0161 \times h(59 - age) \\ &- 0.2051 \times I(smoking = Currentsmoker) - 0.0844 \times h(bmi - 23.7) \end{split}
```

Equation 1: Final Model

Model Performance

```
rmse = sqrt(mean((y_test - predicted_values)^2))
rmse
```

[1] 0.5327718

Residuals vs Fitted Values (MARS)

Figure 13: Residuals vs Fitted Values (MARS) $\,$

Figure 14: Prediction vs Actual (MARS)