OpenMM, tools, and more

Setting up and running your own system

Gert Kiss
OpenMM Workshop
Stanford University
March 2014

Things to consider

Format of your files:

Force field

Solvent: implicit v explicit? => which model?

Non-bonded interactions

- Integrators
- Constraints vs. restraints

Overview of the logic behind OpenMM

Essential components that we will encounter

- molecular topology
 (residue names, atom types, unique numbering)
- coordinates
- force field (functional description of interactions)
- water model (implicit continuum vs. explicit discrete)
- combines topology, force field and water model
- specifies the treatment of non-bonded interactions
- defines constraints
- advances the equations of motion
- specifies temperature, step size, and friction (Langevin)

- combines system, integrator, and coordinates
- coordinates all processes involved in running a simulation

Force fields available in OpenMM

Set with: forcefield = ForceField('amber99sb.xml', 'tip3p.xml')

File	Force Field	
amber96.xml	AMBER96 ¹	
amber99sb.xml	AMBER99 ² with modified backbone torsions ³	
amber99sbildn.xml	AMBER99SB plus improved side chain torsions4	
amber99sbnmr.xml	AMBER99SB with modifications to fit NMR data ⁵	
amber03.xml	AMBER03 ⁶	
amber10.xml	AMBER10	
amoeba2009.xml	AMOEBA ⁷ (AMOEBA includes its own water model)	

New, currently unavailable and custom force fields can be added. (check out the docs on how)

Solvent models

Set with:

forcefield = ForceField('amber99sb.xml', 'tip3p.xml')

Implicit water model

Explicit water model

- Fast (fewer atoms to track and less friction)
- Gets bulk properties 'right'

- Slower (water atoms make up most of the system)
- Gets atomistic properties 'right'

Explicit solvent models ...

... parameterized to compensate for their simplified description of reality.

Most models have incomplete physics:

- Fixed point charges (no electronic polarization)
- Classical mechanics (no isotope effects)
- Fixed bond topology (no chemistry)

However, much can be recovered through parameterization:

- Increase the partial charges, tune vdW parameters, etc.
- In many cases, force fields exceed the accuracy of quantum methods!

Explicit and implicit water models in OpenMM

File	Water Model	
tip3p.xml	TIP3P water model ⁸	
tip4pew.xml	TIP4P-Ew water model9	
tip5p.xml	TIP5P water model ¹⁰	
spce.xml	SPC/E water model ¹¹	
swm4ndp.xml	SWM4-NDP water model ¹²	

File	Implicit Solvation Model	
amber96_obc.xml	GBSA-OBC solvation model ¹³ for use with AMBER96 force field	
amber99_obc.xml	GBSA-OBC solvation model for use with AMBER99 force fields	
amber03_obc.xml	GBSA-OBC solvation model for use with AMBER03 force field	
amber10_obc.xml	GBSA-OBC solvation model for use with AMBER10 force field	
amoeba2009_gk.xml	Generalized Kirkwood solvation model ¹⁴ for use with AMOEBA force field	

Next up: Creating the 'system' object

- molecular topology (residue names, atom types, unique numbering)
- coordinates
- force field (functional description of interactions)
- water model (implicit continuum vs. explicit discrete)
- combines topology, force field and water model
- specifies the treatment of non-bonded interactions
- defines constraints
- advances the equations of motion
- specifies temperature, step size, and friction (Langevin)

- combines system, integrator, and coordinates
- coordinates all processes involved in running a simulation

But first: what are non-bonded interactions?

Coulomb's Law

for the treatment of point charges

Lennard Jones Potential

for short range (Pauli) repulsion and long range (VdW) attraction

Treatment of non-bonded interactions

system = forcefield.createSystem(pdb.topology, nonbondedMethod=NoCutoff,

constraints=HBonds)

Value	Meaning
NoCutoff	No cutoff is applied.
CutoffNonPeriodic	The reaction field method is used to eliminate all interactions beyond a cutoff distance. Not valid for AMOEBA.
CutoffPeriodic	The reaction field method is used to eliminate all interactions beyond a cutoff distance. Periodic boundary conditions are applied, so each atom interacts only with the nearest periodic copy of every other atom. Not valid for AMOEBA.
Ewald	Periodic boundary conditions are applied. Ewald summation is used to compute long range interactions. (This option is rarely used, since PME is much faster for all but the smallest systems.) Not valid for AMOEBA.
PME	Periodic boundary conditions are applied. The Particle Mesh Ewald method is used to compute long range interactions.

Next up: Creating the integrator

- molecular topology (residue names, atom types, unique numbering)
- coordinates
- force field (functional description of interactions)
- water model (implicit continuum vs. explicit discrete)
- combines topology, force field and water model
- specifies the treatment of non-bonded interactions
- defines constraints
- advances the equations of motion
- specifies temperature, step size, and friction (Langevin)

- combines system, integrator, and coordinates
- coordinates all processes involved in running a simulation

Statistical mechanical ensembles ...

... allow our simulation to exchange energy with an external environment.

Ensemble menu:			
Choose one from each row			
Particle number <i>N</i>	Chemical potential <i>m</i>		
Volume V	Pressure <i>P</i>		
Energy <i>E</i>	Temperature <i>T</i>		

$$P_{NVT}(\mathbf{r}) \propto e^{-\frac{E(\mathbf{r})}{k_b T}}$$

Probability of a microstate in the *canonical (NVT) ensemble*.

- An *ensemble* represents all of the microstates (i.e. geometries) that are accessible to the simulation, and provides the probability of each microstate.
- An ideal MD simulation conserves the total energy and entropy, and samples the *microcanonical (NVE) ensemble*.
- More realistic systems may exchange energy, volume or particles with external reservoirs
- However, this could make the algorithms more difficult

Integrators available in OpenMM

```
Constant temperature

integrator = LangevinIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds)

Constant energy

integrator = VerletIntegrator(0.002*picoseconds)

Brownian dynamics

integrator = BrownianIntegrator(300*kelvin, 1/picosecond, 0.002*picoseconds)
```

```
Variable time step (continuous adjustment of step size to stay within error tolerance)
    integrator = VariableLangevinIntegrator(300*kelvin, 1/picosecond, 0.001)
    integrator = VariableVerletIntegrator(0.001)
```

```
Temperature coupling (as an alternative to the Langevin integrator)

system.addForce(AndersenThermostat(300*kelvin, 1/picosecond))

Pressure coupling (for NPT simulations; use with Langevin or Andersen thermostat)

system.addForce(MonteCarloBarostat(1*bar, 300*kelvin))
```

Constraining certain types of bonds and angles

system = forcefield.createSystem(pdb.topology, nonbondedMethod=NoCutoff, constraints=HBonds)

Value	Meaning	Time step
None	No constraints are applied. This is the default value.	<= 1 fs
HBonds	The lengths of all bonds that involve a hydrogen atom are constrained.	2 fs
AllBonds	The lengths of all bonds are constrained.	
HAngles	The lengths of all bonds are constrained. In addition, all angles of the form H-X-H or H-O-X (where X is an arbitrary atom) are constrained.	Up to 4 fs

Constraints? => Larger integration time steps => Greater speedup.

(Note: Be aware of the added level of approximation and apply constraints with care.)

Hint: It's good practice to choose 'None' while heating a system. Once equilibrated, one can safely choose 'Hbonds' for production runs.

By default, bonds and angles of water molecules are constrained (accessible through rigidWater parameter):

Summing up the dry stuff

- molecular topology (residue names, atom types, unique numbering)
- coordinates
- force field (functional description of interactions)
- water model (implicit continuum vs. explicit discrete)
- combines topology, force field and water model
- specifies the treatment of non-bonded interactions
- defines constraints
- advances the equations of motion
- specifies temperature, step size, and friction (Langevin)

- combines system, integrator, and coordinates
- coordinates all processes involved in running a simulation

General considerations in the setup of MD sims

Let's begin with [1xd3] from the RCSB (rcsb.org)

Pull one of the chains from the crystal structure

Inspect the header info of [1xd3]...

... for common problems with pdb files

REMARK 465 MISSING RESIDUES REMARK 465 THE FOLLOWING RESIDUES WERE NOT LOCATED IN THE REMARK 465 EXPERIMENT. (M=MODEL NUMBER; RES=RESIDUE NAME; C=CHAIN REMARK 465 IDENTIFIER; SSSEQ=SEQUENCE NUMBER; I=INSERTION CODE.) REMARK 465 REMARK 465 M RES C SSSEQI REMARK 465 MET A 1 REMARK 465 MET C 1 REMARK 465 GLU C 2 REMARK 465 GLY C 3 REMARK 470 **REMARK 470 MISSING ATOM** REMARK 470 THE FOLLOWING RESIDUES HAVE MISSING ATOMS(M=MODEL NUMBER; REMARK 470 RES=RESIDUE NAME; C=CHAIN IDENTIFIER; SSEQ=SEQUENCE NUMBER; REMARK 470 I=INSERTION CODE): REMARK 470 M RES CSSEQI ATOMS REMARK 470 GLU A 158 CG CD OE1 OE2 REMARK 470 ARG C 136 CG CD NE CZ NH1 NH2 REMARK 470 GLU D 24 CG CD OE1 OE2

Good solution: Clean up the structure with PDBFixer

Get it at:

https://github.com/peastman/pdbfixer/releases

PDBFixer: Select chains

PDBFixer: Add missing atoms

PDBFixer: heterogens, hydrogens, water molecules

Hands on: OpenMM implicit solvent exercise

PDBFixer steps:

- Start PDBFixer: [cd /Path-to-pdbfixer]; then type [python pdbfixer.py]
- Load 1xd3 from the PDB with PDBFixer
- Select the 4th chain
- Add missing heavy atoms
- Delete all heterogens (any molecules that are not standard amino acids)
- Add hydrogen atoms for pH=7
- Save the .pdb file **without** adding a water box (look in your home directory for the file 'output.pdb')

OpenMM steps:

- Copy 'output.pdb' from your home directory to the directory of the exercise. Rename to your liking.
- Start iPyNotebook: [cd /Path-to-exercise]; then type [ipython notebook]
- Select the implicit solvent exercise from the list.
- In the code section **'Load the protein coordinates'**, enter the name of your input .pdb file.
- Choose a name for the output file in the section 'Create a reporter ...'.
- Click on the first panel and execute each section by pressing: < shift > + < return >
- The calculations will take a couple of minutes.
- Open the output file in the visualization program of your choice (i.e. VMD, PyMol, etc.).

Next, let's use PDBFixer to place 1xd3 in a water box

Hands on: OpenMM explicit solvent exercise

PDBFixer steps:

- Start PDBFixer: [<u>cd /Path-to-pdbfixer</u>]; then type [<u>python_pdbfixer.py</u>]
- If PDBFixer is already running, click on 'New File'
- Load 1xd3 from the PDB with PDBFixer.
- Select the 4th chain.
- Add missing heavy atoms.
- Delete all heterogens (any molecules that are not standard amino acids).
- Add hydrogen atoms for pH=7.
- Select 'Add water' and specify the size of your water box (~1nm larger than the box containing all atoms)
- Save the .pdb file **after** adding a water box (look in your home directory for the file 'output.pdb').

OpenMM steps:

- Copy 'output.pdb' from your home directory to the directory of the exercise. Rename to your liking.
- Start iPyNotebook: [cd /Path-to-exercise]; then type [ipython notebook]
- Select the explicit solvent exercise from the list.
- In the code section **'Load the protein coordinates'**, enter the name of your input .pdb file.
- Choose a name for the output file in the section 'Create a reporter ...'.
- Click on the first panel and execute each section by pressing: < shift > + < return >
- The calculations will take a couple of minutes.
- Open the output file in the visualization program of your choice (i.e. VMD, PyMol, etc.).

Now to some more advanced exercises

• Use AMBER (or GROMACS) files as an input

Simulate a hydrogen-bonded system and keep track of the interactions

Heating your system

Constraints and restraints

AMBER or GROMACS input vs. PDB files

Let's quickly revisit the components

- molecular topology (residue names, atom types, unique numbering)
- coordinates
- force field (functional description of interactions)
- water model (implicit continuum vs. explicit discrete)
- combines topology, force field and water model
- specifies the treatment of non-bonded interactions
- defines constraints
- advances the equations of motion
- specifies temperature, step size, and friction (Langevin)

- combines system, integrator, and coordinates
- coordinates all processes involved in running a simulation

Let's quickly revisit the components

- molecular topology
 (residue names, atom types, unique numbering)
- coordinates
- force field (functional description of interactions)
- water model (implicit continuum vs. explicit discrete)
- combines topology, force field and water model
- specifies the treatment of non-bonded interactions
- defines constraints
- advances the equations of motion
- specifies temperature, step size, and friction (Langevin)

- combines system, integrator, and coordinates
- coordinates all processes involved in running a simulation

Begin by setting up a new system with ScriptBuilder

- Replace input.pdb with the name of your AMBER .inpcrd file
- Notice that the **code changes** on the right: forcefield disappears, system is updated to

Simulate a hydrogen-bonded system

iPyNotebook exercise

Heating

iPyNotebook exercise

Constraints and Restraints

iPyNotebook exercise

