NAME:	NCKU	id:	<u> </u>

1. Find the limit of $\lim_{x\to 0^+} \sin(x)^{\tan(x)}$.

Answer: Since $\sin(x)^{\tan(x)} \xrightarrow{x \to 0^+} 0^0$ is in indeterminate form, we will try L'Hopital's rule. Since e^x is continuous, we have

$$\lim_{x \to 0^+} e^{\ln(\sin(x))^{\tan(x)}} = \lim_{x \to 0^+} e^{\tan(x)\ln(\sin(x))} = e^{\lim_{x \to 0^+} \frac{\ln(\sin(x))}{\cot x}}.$$

To compute $\lim_{x\to 0^+} \frac{\ln(\sin(x))}{\cot x}$, we check that

- (1) Both $\ln(\sin(x))$ and $\cot(x)$ are differentiable on $(0, \epsilon)$ for some $\epsilon > 0$;
- (2) $(\cot(x))' \csc^2 x \not 0$ on $(0, \epsilon)$ if ϵ is very small;
- (3) the limit

$$\lim_{x \to 0^+} \frac{(\ln(\sin(x)))'}{(\cot x)'} = \lim_{x \to 0^+} \frac{\cos(x)/\sin(x)}{-\csc^2 x} = \lim_{x \to 0^+} -\cos(x)\sin(x) = 0.$$

Hence we can apply L'Hospital Rule and

$$\lim_{x \to 0^+} \frac{\ln(\sin(x))}{\cot x} = \lim_{x \to 0^+} \frac{\frac{\cos(x)}{\sin(x)}}{-\csc^2 x} = 0,$$

which then implies that

$$\lim_{x \to 0^+} e^{\ln(\sin(x))^{\tan(x)}} = e^{\lim_{x \to 0^+} \frac{\ln(\sin(x))}{\cot x}} = e^0 = 1.$$

Date: December 1st.

- 2. Sketch the graph of $f(x) = xe^x$ and give answers to the following items:
 - (1) Domain of $f: (-\infty, \infty)$
 - (2) The x- and y-intercepts: 0, 0
 - (3) Horizontal and vertical asymptotes: y = 0 is the only horizontal asymptote.
 - (4) Domain of increasing and decreasing: Increasing on $(-1, \infty)$ and decreasing on $(-\infty, 1)$
 - (5) Local maximum and minimum: Only one local minimum at x = -1
 - (6) Domain of concavity: CD on $(-\infty, -2)$, CU on $(-2, \infty)$
 - (7) Inflection point: $(-2, -2/e^2)$
 - (8) Absolute maximum and minimum: Only absolute minimum at x = -1, f(-1) = -1/e.

Answer: See Section 4.5 of the textbook.

$$f'(x) = (x+1)e^x$$
, $f''(x) = (x+2)e^2$