Classification and regression approaches

ESS 469/569

University of Washington

Unsupervised learning: Using *unlabeled* datasets. Here, we are looking for patterns or structure within the data.

Unsupervised learning: Using *unlabeled* datasets. Here, we are looking for patterns or structure within the data.

Supervised learning: Using *labeled* datasets (i.e., "training data"). **Semi-supervised** learning means that only some of the data are labelled. With supervised learning, we look to build a model from the training data.

Unsupervised learning: Using *unlabeled* datasets. Here, we are looking for patterns or structure within the data.

Supervised learning: Using *labeled* datasets (i.e., "training data"). **Semi-supervised** learning means that only some of the data are labelled. With supervised learning, we look to build a model from the training data.

Active learning: Interactively asking for labels (a form of semi-supervised learning).

Unsupervised learning: Using *unlabeled* datasets. Here, we are looking for patterns or structure within the data.

Supervised learning: Using *labeled* datasets (i.e., "training data"). **Semi-supervised** learning means that only some of the data are labelled. With supervised learning, we look to build a model from the training data.

Active learning: Interactively asking for labels (a form of semi-supervised learning).

Reinforcement learning: Developing and refining models as data arrive.

Classification: Finding a function, f, which maps inputs, X, to discrete outputs, y, or classes. When you have two target classes (e.g., Yes and No), you have a binary classification problem. When you have more than two classes, you have a multiclass classification problem.

Classification: Finding a function, f, which maps inputs, X, to discrete outputs, y, or classes. When you have two target classes (e.g., Yes and No), you have a binary classification problem. When you have more than two classes, you have a multiclass classification problem.

Regression: Finding a function, f, which maps inputs, X, to a *continuous* output, y.

Classification: Finding a function, f, which maps inputs, X, to discrete outputs, y, or classes. When you have two target classes (e.g., Yes and No), you have a binary classification problem. When you have more than two classes, you have a multiclass classification problem.

Regression: Finding a function, f, which maps inputs, X, to a *continuous* output, y.

Another way to think about it: **Classification** necessitates a *qualitative* response while **regression** necessitates a *quantitative* response.

Classification: Finding a function, f, which maps inputs, X, to discrete outputs, y, or classes. When you have two target classes (e.g., Yes and No), you have a binary classification problem. When you have more than two classes, you have a multiclass classification problem.

Regression: Finding a function, f, which maps inputs, X, to a *continuous* output, y.

Another way to think about it: **Classification** necessitates a *qualitative* response while **regression** necessitates a *quantitative* response.

Clustering: An unsupervised learning approach where data are grouped together.

Bias: The difference between the predicted and true value of some parameter.

Bias: The difference between the predicted and true value of some parameter.

Variance: Change in your model's performance as different training data are used.

The goal of regression or classification

The ultimate goal of a learning approach is to **minimize error.** That is, can you find a function, f, whose outputs are sufficiently close to actual outputs for the same input?

The goal of regression or classification

The ultimate goal of a learning approach is to **minimize error.** That is, can you find a function, f, whose outputs are sufficiently close to actual outputs for the same input?

At the same time, we want to avoid overfitting. Why?

The goal of regression or classification

The ultimate goal of a learning approach is to **minimize error.** That is, can you find a function, f, whose outputs are sufficiently close to actual outputs for the same input?

At the same time, we want to avoid overfitting. Why?

Terms that will come up repeatedly: **loss** and **cost** (e.g., "minimize your loss function"). **Loss** tells us how far one prediction is from some target value; **cost** describes loss across a dataset.

Okay, let us consider your projects — what sort of problem are you solving?

There are many regression algorithms. You are likely familiar with some of them, including:

There are many regression algorithms. You are likely familiar with some of them, including:

• Linear: Generally speaking: $y = a_1x_1 + a_2x_2 + ... + b$ where a_n are coefficients. A good fit minimizes the sum of squares of the residuals (actual value - predicted value).

There are many regression algorithms. You are likely familiar with some of them, including:

- Linear: Generally speaking: $y = a_1x_1 + a_2x_2 + ... + b$ where a_n are coefficients. A good fit minimizes the sum of squares of the residuals (actual value predicted value).
- LASSO: A linear regression but now your loss function penalizes large coefficients (to reduce complexity): least squares $+ \alpha * \sum |a_n|$.

There are many regression algorithms. You are likely familiar with some of them, including:

- Linear: Generally speaking: $y = a_1x_1 + a_2x_2 + ... + b$ where a_n are coefficients. A good fit minimizes the sum of squares of the residuals (actual value predicted value).
- LASSO: A linear regression but now your loss function penalizes large coefficients (to reduce complexity): least squares $+ \alpha * \sum |a_n|$.
- Ridge: A linear regression but now your loss function penalizes large coefficients: least squares $+ \alpha * \sum a_n^2$.

There are many regression algorithms. You are likely familiar with some of them, including:

- Linear: Generally speaking: $y = a_1x_1 + a_2x_2 + ... + b$ where a_n are coefficients. A good fit minimizes the sum of squares of the residuals (actual value predicted value).
- LASSO: A linear regression but now your loss function penalizes large coefficients (to reduce complexity): least squares $+ \alpha * \sum |a_n|$.
- Ridge: A linear regression but now your loss function penalizes large coefficients: least squares $+ \alpha * \sum a_n^2$.
- Polynomial regression: A non linear regression.

Classification algorithms

Likewise, there are many classification algorithms. You have probably heard of a few, including:

- K nearest neighbors (kNN)
- Decision trees
- Support vector machines
- Linear Discriminant Analysis (LDA)
- Naive Bayes (NB)

On to some classification examples

Chapters 3.3 and 3.4 in the notebook

Let us consider a binary classification, in which we label data either positive, P, or negative, N.

Let us consider a binary classification, in which we label data either positive, P, or negative, N.

You can think of the true number of positive entries being made up of **true positives** (TP) and **false negatives** (FN).

Let us consider a binary classification, in which we label data either positive, P, or negative, N.

You can think of the true number of positive entries being made up of **true positives** (TP) and **false negatives** (FN).

Likewise, the true number of negative entries is made up of **true negatives** (TN) and **false positives** (FP).

Let us consider a binary classification, in which we label data either positive, P, or negative, N.

You can think of the true number of positive entries being made up of **true positives** (TP) and **false negatives** (FN).

Likewise, the true number of negative entries is made up of **true negatives** (TN) and **false positives** (FP).

Your predictions of P and N are made up of TP + FP and TN + FN, respectively.

You might build a confusion matrix, defined as:

You might build a **confusion matrix**, defined as:

Other metrics you can calculate with P and N:

Other metrics you can calculate with P and N:

• Error : the fraction of the data that was misclassified

$$err = \frac{FP + FN}{N} - > 0$$

Other metrics you can calculate with P and N:

• Error : the fraction of the data that was misclassified

$$err = \frac{FP + FN}{N} \rightarrow 0$$

• Accuracy: the fraction of the data that was correctly classified:

$$acc = \frac{TP+TN}{N} = 1 - err -> 1$$

Other metrics you can calculate with P and N:

Other metrics you can calculate with P and N:

■ **TP-rate**: the ratio of samples predicted in the *positive* class that are correctly classified:

$$TPR = \frac{TP}{TP + FN} -> 1$$

This ratio is also the **recall** value or **sensitivity**.

Other metrics you can calculate with P and N:

■ **TP-rate**: the ratio of samples predicted in the *positive* class that are correctly classified:

$$TPR = \frac{TP}{TP + FN} -> 1$$

This ratio is also the **recall** value or **sensitivity**.

■ **TN-rate**: the ratio of samples predicted in the *negative* class that are correctly classified:

$$TNR = \frac{TN}{TN + FP} -> 1$$

This ratio is also the **specificity**.

Other metrics you can calculate with P and N:

Other metrics you can calculate with P and N:

 Precision: the ratio of samples predicted in the positive class that were indeed positive to the total number of samples predicted as positive.

$$pr = \frac{TP}{TP + FP} -> 1$$

Note that, as precision increases, recall decreases.

Other metrics you can calculate with P and N:

• **Precision**: the ratio of samples predicted in the *positive* class that were indeed *positive* to the total number of samples predicted as *positive*.

$$pr = \frac{TP}{TP + FP} -> 1$$

Note that, as precision increases, recall decreases.

F1 score:

$$F_1 = \frac{2}{(1/precision + 1/recall)} = \frac{TP}{TP + (FN + FP)/2} \longrightarrow 1.$$

Visualizing rates

Since the classifier uses some *threshold* value to determine which label to give a datum, we can plot the true positive rate vs. the false positive rate for different thresholds. This plot is known as the *Receiver Operating Characteristics*.

Figure 1: An ROC plot.