The Hamilton-Waterloo Problem for C_3 -factors and C_n -factors

Li Wang, Fen Chen and Haitao Cao *
Institute of Mathematics,
Nanjing Normal University, Nanjing 210023, China

Abstract

The Hamilton-Waterloo problem asks for a 2-factorization of K_v (for v odd) or K_v minus a 1-factor (for v even) into C_m -factors and C_n -factors. We completely solve the Hamilton-Waterloo problem in the case of C_3 -factors and C_n -factors for n=4,5,7.

Key words: Hamilton-Waterloo Problem; cycle decomposition; 2-factorization

1 Introduction

In this paper, the vertex set and the edge set of a graph H will be denoted by V(H) and E(H), respectively. We denote the cycle of length k by C_k , the complete graph on v vertices by K_v , and the complete u-partite graph with u parts of size g by $K_u[g]$. A factor of a graph H is a spanning subgraph of H. Suppose G is a subgraph of a graph H, a G-factor of H is a set of edge-disjoint subgraphs of H, each isomorphic to G. And a G-factorization of H is a set of edge-disjoint G-factors of H. Many authors [2, 4, 15, 16, 18, 19, 25, 26] have contributed to prove the following result.

Theorem 1.1. There exists a C_k -factorization of $K_u[g]$ if and only if $g(u-1) \equiv 0 \pmod{2}$, $gu \equiv 0 \pmod{k}$, k is even when u = 2, and $(k, u, g) \notin \{(3, 3, 2), (3, 6, 2), (3, 3, 6), (6, 2, 6)\}$.

An r-factor is a factor which is r-regular. It's obvious that a 2-factor consists of a collection of disjoint cycles. A 2-factorization of a graph H is a partition of E(H) into 2-factors. The well-known Hamilton-Waterloo problem is the problem of determining whether K_v (for v odd) or K_v minus a 1-factor (for v even) has a 2-factorization in which there are exactly α C_m -factors and β C_n -factors. For brevity, we generalize this problem to a general graph H, and use $HW(H; m, n, \alpha, \beta)$ to denote a 2-factorization of H in which there are exactly α C_m -factors and β C_n -factors. So when $H = K_v$ (for v odd) or K_v minus a 1-factor (for v even),

^{*}Research supported by the National Natural Science Foundation of China under Grant 11571179, the Natural Science Foundation of Jiangsu Province under Grant No. BK20131393, and the Priority Academic Program Development of Jiangsu Higher Education Institutions. E-mail: caohaitao@njnu.edu.cn.

an $\mathrm{HW}(H; m, n, \alpha, \beta)$ is a solution to the original Hamilton-Waterloo problem, denoted by $\mathrm{HW}(v; m, n, \alpha, \beta)$. For convenience, we denote by $\mathrm{HWP}(v; m, n)$ the set of (α, β) for which a solution $\mathrm{HW}(v; m, n, \alpha, \beta)$ exists.

It is easy to see that the necessary conditions for the existence of an $\mathrm{HW}(v;m,n,\alpha,\beta)$ are m|v when $\alpha>0$, n|v when $\beta>0$ and $\alpha+\beta=\lfloor\frac{v-1}{2}\rfloor$. When $\alpha\beta=0$, the existence of an $\mathrm{HW}(v;m,n,\alpha,\beta)$ has been solved completely, see Theorem 1.1. From now on, we suppose that $\alpha\beta\neq0$. A lot of work has been done for small values of m and n, especially for m=3. Adams et al. [1] solved the case (m,n)=(3,5) when v is odd with an exception and some possible exceptions. Danziger [10] and Odabaşı et al. [24] solved the case (m,n)=(3,4) with three possible exceptions. Lei et al. [22] solved the case (m,n)=(3,7) when v is odd with three possible exceptions. Asplund et al. [3] focused on (m,n)=(3,3x), and many infinite classes of $\mathrm{HW}(v;m,n,\alpha,\beta)$ s were constructed. There are also some known results on $\mathrm{HW}(v;3,v,\alpha,\beta)$, see [11, 12, 14, 21]. For more results on Hamilton-Waterloo problem, the reader is refer to [5, 6, 7, 8, 9, 13, 17, 20, 23].

Theorem 1.2. ([10, 24]) $(\alpha, \beta) \in HWP(v; 3, 4)$ if and only if $v \equiv 0 \pmod{12}$, $\alpha + \beta = \lfloor \frac{v-1}{2} \rfloor$, except possibly for $(v, \alpha, \beta) = (24, 5, 6), (24, 9, 2), (48, 17, 6)$.

Theorem 1.3. ([1]) Suppose $v \equiv 15 \pmod{30}$ and $\alpha + \beta = \frac{v-1}{2}$. Then $(\alpha, \beta) \in \text{HWP}(v; 3, 5)$ except for $(v, \alpha, \beta) = (15, 6, 1)$, and except possibly for $(\alpha, \beta) = (\frac{v-3}{2}, 1)$ when v > 15.

Theorem 1.4. ([22]) Suppose $v \equiv 21 \pmod{42}$ and $\alpha + \beta = \frac{v-1}{2}$. Then $(\alpha, \beta) \in \text{HWP}(v; 3, 7)$, except possibly for $(v, \alpha, \beta) = (21, 2, 8), (21, 4, 6), (21, 6, 4)$.

Combining the known results in Theorems 1.2-1.4, we will prove the following main result.

Theorem 1.5. For $n \in \{4, 5, 7\}$, $(\alpha, \beta) \in \text{HWP}(v; 3, n)$ if and only if $v \equiv 0 \pmod{3n}$, $\alpha + \beta = \lfloor \frac{v-1}{2} \rfloor$ and $(v, \alpha, \beta) \neq (15, 6, 1)$.

2 Constructions

Let Γ be a finite additive group and let S be a subset of $\Gamma \setminus \{0\}$ such that the opposite of every element of S also belongs to S. The Cayley graph over Γ with connection set S, denoted by $Cay(\Gamma, S)$, is the graph with vertex set Γ and edge set $E(Cay(\Gamma, S)) = \{(a, b) | a, b \in \Gamma, a - b \in S\}$. It is quite obvious that $Cay(\Gamma, S) = Cay(\Gamma, \pm S)$.

Lemma 2.1. Let $n \geq 3$. If $a \in Z_n$, the order of a is greater than 3 and (i, m) = 1, then there is a C_m -factorization of $Cay(Z_n \times Z_m, \pm \{0, a, 2a\} \times \{\pm i\})$.

Proof: Since the order of a is greater than 3, we have $|\{0, a, -a, 2a, -2a\}| = 5$. Let $C_j = ((a_{j0}, b_{j0}) = (0, 0), (a_{j1}, b_{j1}), \cdots, (a_{j,m-1}, b_{j,m-1})), 1 \le j \le 5$, where

$$a_{11}=a, \quad a_{21}=0, \quad a_{31}=2a, \quad a_{41}=-a, \quad a_{51}=-2a, \\ a_{12}=2a, \quad a_{22}=-2a, \quad a_{32}=a, \quad a_{42}=-a, \quad a_{52}=0,$$

$$a_{jt} = a_{j,(t-2)}, t \ge 3,$$

 $b_{jt} = ti \pmod{m}, 1 \le t \le m - 1.$

Since (i, m) = 1, we know that b_{jt} , $0 \le t \le m - 1$, are all different modulo m. Then each C_j will generate a C_m -factor by $(+1 \pmod n), -)$. Thus we can obtain the required 5 C_m -factors which form a C_m -factorization of $Cay(Z_n \times Z_m, \pm \{0, a, 2a\} \times \{\pm i\})$.

Lemma 2.2. Let $n \geq 3$. If $a \in Z_n$, the order of a is greater than 2 and (i, m) = 1, then there is a C_m -factorization of $Cay(Z_n \times Z_m, \pm \{0, a\} \times \{\pm i\})$.

Proof: Because the order of a is greater than 2, we have $|\{0, a, -a\}| = 3$. Let $C_j = ((a_{j0}, b_{j0}) = (0, 0), (a_{j1}, b_{j1}), \dots, (a_{j,m-1}, b_{j,m-1}), 1 \le j \le 3$, where

$$\begin{aligned} a_{11} &= a, a_{21} = 0, a_{31} = -a, \\ a_{12} &= a, a_{22} = -a, a_{32} = 0, \\ a_{jt} &= a_{j,(t-2)}, t \geq 3, \\ b_{jt} &= ti \pmod{m}, 1 \leq t \leq m-1. \end{aligned}$$

Since (i, m) = 1, we know that b_{jt} , $0 \le t \le m - 1$, are all different modulo m. Then each C_j will generate a C_m -factor by $(+1 \pmod n), -)$. Thus we can obtain the required $3 C_m$ -factors which form a C_m -factorization of $Cay(Z_n \times Z_m, \pm \{0, a\} \times \{\pm i\})$.

For our recursive constructions, we need the definition of an incomplete Hamilton-Waterloo problem design. Suppose G is a subgraph of a graph H. A holey 2-factor of H-G is a 2-regular subgraph of H covering all vertices except those belonging to G. We will also frequently speak of a holey C_k -factor to mean a holey 2-factor whose cycles all have length k. Let $v-h\equiv 0\pmod 2$. An incomplete Hamilton-Waterloo problem design on v vertices with a hole of size k, denoted by IHW $(v, k; m, n, \alpha, \beta, \alpha', \beta')$, is a cycle decomposition of $K_v - E(K_h)$ if v is odd, or $K_v - E(K_h)$ minus a 1-factor I if v is even, such that (1) $\alpha + \beta = \frac{v-h}{2}$, $\alpha' + \beta' = \lfloor \frac{h-1}{2} \rfloor$; (2) there are α C_m -factors and β C_n -factors of K_v ; (3) there are α' holey C_m -factors and β' holey C_n -factors of $K_v - K_h$. We denote by IHWP(v, h; m, n) the set of $(\alpha, \beta, \alpha', \beta')$ for which an IHW $(v, h; m, n, \alpha, \beta, \alpha', \beta')$ exists.

Lemma 2.3. $(15,0,6,1) \in IHWP(45,15;3,5)$.

Proof: Let the vertex set be $(Z_6 \times Z_5) \cup \{\infty_{i=0}^{14}\}$. A holey C_5 -factor is $Cay(Z_6 \times Z_5, \{0\} \times \{\pm 2\})$. The required 15 C_3 -factors will be generated from three initial C_3 -factors P_i (i = 1, 2, 3) by $(-, +1 \pmod{5})$. For the required six holey C_3 -factors, five of which can be generated from an initial holey C_3 -factor Q by $(-, +1 \pmod{5})$. The last holey C_3 -factor can be generated from two base cycles $(0_0, 3_4, 2_0)$ and $(1_1, 5_1, 4_2)$ by $(-, +1 \pmod{5})$. The cycles of P_i and Q are listed below.

```
P_1
         (\infty_0, 4_4, 5_0)
                                    (\infty_1, 1_1, 3_3)
                                                              (\infty_2, 0_0, 2_2)
                                                                                         (\infty_3, 4_0, 5_2)
                                                                                                                  (\infty_4, 2_3, 3_0)
                                                                                                                                            (\infty_5, 5_1, 4_1)
                                    (\infty_7, 0_2, 1_0)
                                                                                                                  (\infty_{10}, 4_2, 3_2)
         (\infty_6, 3_4, 2_4)
                                                              (\infty_8, 1_2, 5_3)
                                                                                         (\infty_9, 1_4, 0_4)
                                                                                                                                            (\infty_{11}, 0_3, 4_3)
                                    (\infty_{13}, 2_0, 5_4)
         (\infty_{12},0_1,3_1)
                                                              (\infty_{14}, 1_3, 2_1)
P_2
                                    (\infty_1, 2_2, 4_4)
                                                              (\infty_2, 3_3, 5_0)
                                                                                         (\infty_3, 0_1, 3_4)
                                                                                                                  (\infty_4, 1_2, 5_1)
                                                                                                                                            (\infty_5, 2_3, 0_2)
         (\infty_0, 0_0, 1_1)
         (\infty_6, 4_0, 1_3)
                                    (\infty_7, 2_4, 5_2)
                                                              (\infty_8, 3_0, 4_2)
                                                                                         (\infty_9, 4_1, 5_4)
                                                                                                                  (\infty_{10}, 0_3, 1_0)
                                                                                                                                            (\infty_{11}, 1_4, 2_1)
                                    (\infty_{13}, 3_1, 0_4)
         (\infty_{12}, 2_0, 4_3)
                                                              (\infty_{14}, 5_3, 3_2)
         (\infty_0, 2_2, 3_3)
                                    (\infty_1, 0_0, 5_0)
                                                              (\infty_2, 1_1, 4_4)
                                                                                         (\infty_3, 1_2, 2_3)
                                                                                                                  (\infty_4, 0_1, 4_0)
                                                                                                                                            (\infty_5, 3_4, 1_3)
         (\infty_6, 5_1, 0_2)
                                    (\infty_7, 3_0, 4_1)
                                                               (\infty_8, 0_3, 2_1)
                                                                                         (\infty_9, 2_4, 3_2)
                                                                                                                  (\infty_{10}, 5_2, 2_0)
                                                                                                                                            (\infty_{11}, 3_1, 5_4)
         (\infty_{12}, 5_3, 1_0)
                                    (\infty_{13}, 1_4, 4_3)
                                                              (\infty_{14}, 4_2, 0_4)
                                                                                         (3_3,0_2,5_3)
                                                                                                                  (4_4, 2_4, 4_3)
                                                                                                                                            (5_0, 5_1, 0_3)
         (0_0, 0_1, 4_2)
                                    (1_1,4_1,2_0)
                                                              (2_2, 5_2, 2_1)
                                    (2_3,1_3,0_4)
                                                              (3_4, 1_4, 1_0)
                                                                                         (4_0, 3_1, 3_2)
         (1_2, 3_0, 5_4)
```

For next recursive construction, we still need the definition of a cycle frame. Let H be a graph $K_u[g]$ with u parts G_1, G_2, \ldots, G_u . A partition of E(H) into holey 2-factors of $H - G_i (1 \le i \le u)$ is said to be a cycle frame of type g^u . Further, if all holey 2-factors of a cycle frame of type g^u are C_k -factors, then we denote the cycle frame by k-CF (g^u) .

Theorem 2.4. ([27]) There exists a 3-CF(g^u) if and only if $g \equiv 0 \pmod{2}$, $g(u-1) \equiv 0 \pmod{3}$ and $u \geq 4$.

It's obvious that there are exactly $\frac{g}{2}$ holey 2-factors with respect to each part. We use $CF(g^u; m, n, \alpha, \beta)$ with $\alpha + \beta = \frac{g}{2}$ to denote a cycle frame of type g^u in which there are exactly α holey C_m -factors and β holey C_n -factors with respect to each part. Now we use cycle frames and incomplete Hamilton-Waterloo problem designs to give the "Filling in Holes" construction.

Construction 2.5. Let $\alpha + \beta = \frac{g}{2}$, $\alpha' + \beta' = \lfloor \frac{h-1}{2} \rfloor$. If there exist a CF(g^u ; m, n, α, β), an IHW($g + h, h; m, n, \alpha, \beta, \alpha', \beta'$) and an HW($g + h; m, n, \alpha + \alpha', \beta + \beta'$), then an HW($gu + h; m, n, \alpha + \alpha', \beta + \beta'$) exists.

Proof: We start with a $CF(g^u; m, n, \alpha, \beta)$, for each part G_i , $1 \le i \le u$, denote its α holey C_m -factors by $P_{ij}(1 \le j \le \alpha)$, and denote its β holey C_n -factors by $Q_{ij}(1 \le j \le \beta)$.

For each $i(1 \le i \le u-1)$, place a copy of an IHW $(g+h,h;m,n,\alpha,\beta,\alpha',\beta')$ on the vertices of the part G_i and h new common vertices(take the subgraph on these h vertices as the hole), whose α C_m -factors and β C_n -factors are denoted by $P'_{ij}(1 \le j \le \alpha)$ and $Q'_{ij}(1 \le j \le \beta)$ respectively, α' holey C_m -factors and β' holey C_n -factors are denoted by $P''_{ij}(1 \le j \le \alpha')$ and $Q''_{ij}(1 \le j \le \beta')$ respectively. Further, if $h \equiv 0 \pmod{2}$, then $g + h \equiv 0 \pmod{2}$ (note that the existence of a CF (g^u) requires $g \equiv 0 \pmod{2}$). Then according to the definition of an IHW, there is a 1-factor I_i of the subgraph on the vertices from G_i .

Place on the vertices of the part G_u and these h common vertices a copy of an $\mathrm{HW}(g+h;m,n,\alpha+\alpha',\beta+\beta')$ with $\alpha+\alpha'$ C_m -factors $P'_{uj}(1\leq j\leq \alpha+\alpha')$ and $\beta+\beta'$ C_n -factors $Q'_{uj}(1\leq j\leq \beta+\beta')$. If $h\equiv 0\pmod 2$, there is a 1-factor I_u .

Let

$$S_{ij} = P_{ij} \cup P'_{ij}, 1 \le i \le u, 1 \le j \le \alpha,$$

$$F_{ij} = Q_{ij} \cup Q'_{ij}, 1 \le i \le u, 1 \le j \le \beta,$$

$$S_{u,j+\alpha} = (\bigcup_{i=1}^{u-1} P''_{ij}) \cup P'_{u,j+\alpha}, 1 \le j \le \alpha',$$

$$F_{u,j+\beta} = (\bigcup_{i=1}^{u-1} Q''_{ij}) \cup Q'_{u,j+\beta}, 1 \le j \le \beta'.$$

Then both S_{ij} and $S_{u,j+\alpha}$ are C_m -factors, F_{ij} and $F_{u,j+\beta}$ are C_n -factors on the whole vertex set, and they form an $\mathrm{HW}(gu+h;m,n,\alpha u+\alpha',\beta u+\beta')$. Note that if $h\equiv 0\pmod 2$, $I=\cup_{i=1}^u I_i$ is a 1-factor on the whole vertex set.

For the next recursive construction, we need more notations. When $g(u-1) \equiv 1 \pmod 2$, by Theorem 1.1 it is easy to see that an $\mathrm{HW}(K_u[g]; m, n, \alpha, \beta)$ can not exist. In this case, by simple computation, we know that it is possible to partition $E(K_u[g])$ into a 1-factor, α C_m -factors and β C_n -factors, where $\alpha + \beta = \lfloor \frac{g(u-1)}{2} \rfloor$. For brevity, we still use $\mathrm{HW}(K_u[g]; m, n, \alpha, \beta)$ to denote such a decomposition.

Construction 2.6. Suppose there exist an $HW(K_u[g]; m, n, \alpha, \beta)$ and an $HW(g; m, n, \alpha', \beta')$, then an $HW(gu; m, n, \alpha + \alpha', \beta + \beta')$ exists.

Proof: We start with an $\mathrm{HW}(K_u[g]; m, n, \alpha, \beta)$ whose α C_m -factors are denoted by $P_j(1 \leq j \leq \alpha)$, β C_n -factors are denoted by $Q_j(1 \leq j \leq \beta)$, and a 1-factor (when $g(u-1) \equiv 1 \pmod{2}$) is denoted by I.

For each $i(1 \leq i \leq u)$, place a copy of an $\mathrm{HW}(g;m,n,\alpha',\beta')$ on the vertices of the part G_i whose α' C_m -factors and β' C_n -factors are denoted by $P'_{ij}(1 \leq j \leq \alpha')$ and $Q'_{ij}(1 \leq j \leq \beta')$ respectively, and a 1-factor is denoted by I_i if $g \equiv 0 \pmod 2$. Let $S_j = \bigcup_{i=1}^u P'_{ij} \ (1 \leq j \leq \alpha')$ and $F_j = \bigcup_{i=1}^u Q'_{ij} \ (1 \leq j \leq \beta')$. Then S_j is a C_m -factor and F_j is a C_n -factor of the required $\mathrm{HW}(gu;m,n,\alpha+\alpha',\beta+\beta')$. So we have obtained $\alpha+\alpha'$ C_m -factors and $\beta+\beta'$ C_n -factors. At last, $\bigcup_{i=1}^u I_i$ is a 1-factor if $g \equiv 0 \pmod 2$ and I is a 1-factor if $g \equiv 1 \pmod 2$ and $U \equiv 0 \pmod 2$.

For the next construction, we need the definition of lexicographic product of two graphs. Given a graph G, G[n] is the lexicographic product of G with the empty graph on n points. Specifically, the vertex set is $\{x_i: x \in V(G), i \in Z_n\}$ and $x_iy_j \in E(G[n])$ if and only if $xy \in E(G), i, j \in Z_n$. In the following we will denote by $C_m[n]$ the lexicographic product of C_m with the empty graph on n points.

Construction 2.7. If $(\alpha, \beta) \in \text{HWP}(K_u[g]; m, n)$, $(t_i, s - t_i) \in \text{HWP}(C_m[s]; m', n')$, $1 \le i \le \alpha$, and $(r_j, s - r_j) \in \text{HWP}(C_n[s]; m', n')$, $1 \le j \le \beta$, then $(\alpha', \beta') \in \text{HWP}(K_u[gs]; m', n')$, where $\alpha' = \sum_{i=1}^{\alpha} t_i + \sum_{j=1}^{\beta} r_j$ and $\beta' = (\alpha + \beta)s - \alpha'$.

Proof: We start with an $\mathrm{HW}(K_u[g]; m, n, \alpha, \beta)$ with α C_m -factors and β C_n -factors. Give each vertex weight s, then we obtain α $C_m[s]$ -factors and β $C_n[s]$ -factors. Now we replace each $C_m[s]$ and each $C_n[s]$ in the i-th $C_m[s]$ -factor and the j-th $C_n[s]$ -factor with an $\mathrm{HW}(C_m[s]; m', n', t_i, s - t_i)$ and an $\mathrm{HW}(C_m[s]; m', n', r_j, s - r_j)$ respectively. Further, take one of the t_i $C_{m'}$ -factors from each $\mathrm{HW}(C_m[s]; m', n', t_i, s - t_i)$ in the i-th $C_m[s]$ -factor, and put them together to get a $C_{m'}$ -factor of $K_u[gs]$. Thus, we have obtained $\sum_{i=1}^{\alpha} t_i$ $C_{m'}$ -factor of $K_u[gs]$. Similarly, we can get $\sum_{j=1}^{\beta} r_j$ $C_{m'}$ -factor of $K_u[gs]$ from the known $\mathrm{HW}(C_n[s]; m', n', r_j, s - r_j)$, and $\sum_{i=1}^{\alpha} (s - t_i) + \sum_{j=1}^{\beta} (s - r_j) = (\alpha + \beta)s - \alpha'$ $C_{n'}$ -factors of $K_u[gs]$.

3 **HWP**(v; 3, 4)

In this section, we will give three direct constructions and complete the spectrum for an $\mathrm{HW}(v;3,4,\alpha,\beta)$.

Lemma 3.1. $(9,2) \in HWP(24;3,4)$.

Proof: Let the vertex set be $\Gamma = Z_8 \times Z_3$, and the 1-factor be $Cay(\Gamma, \{4\} \times \{0\})$. For the 9 C_3 -factors, let $F = \{Q, Q + 4_0\}$, where $Q = \{(0_0, 6_0, 0_1), (1_1, 1_0, 3_1), (2_2, 2_1, 7_0), (5_2, 3_2, 4_2)\}$. It's easy to see that F is a C_3 -factor since all these 4 elements having the same subscript in Q are different modulo 4. Then $F, F + 4_1, F + 0_2$ are 3 C_3 -factors. The other 6 C_3 -factors can be generated from an initial C_3 -factor $P = \{(0_0, 1_1, 2_2), (3_0, 4_1, 7_1), (5_2, 0_2, 4_0), (6_0, 1_0, 5_1), (2_1, 3_2, 3_1), (6_2, 2_0, 4_2), (7_0, 1_2, 6_1), (0_1, 5_0, 7_2)\}$ by $(+4 \pmod{8}, +1 \pmod{3})$.

The required two C_4 -factors can be generated from two base 4-cycles $(0_0, 2_1, 5_0, 3_2)$ and $(0_0, 5_1, 6_1, 3_1)$ by $(+4 \pmod 8), +1 \pmod 3)$ since the first coordinate of the four elements in each cycle are different modulo 4.

Lemma 3.2. $(5,6) \in HWP(24;3,4)$.

Proof: Let $\Gamma = Z_8 \times Z_3$. Firstly, we construct an $HW(K_3[8]; 3, 4, 5, 3)$ with three parts $Z_8 \times \{i\}$, $i \in Z_3$. The required 5 C_3 -factors come from a C_3 -factorization of $Cay(\Gamma, \pm \{0, 1, 2\} \times \{\pm 1\})$ by Lemma 2.1. The required three C_4 -factors will be generated from an initial C_4 -factor $P = \{(0_0, 4_1, 0_2, 5_1), (1_1, 4_0, 7_1, 4_2), (2_2, 6_0, 1_2, 5_0), (3_0, 0_1, 3_2, 6_1), (5_2, 1_0, 6_2, 2_0), (2_1, 7_0, 3_1, 7_2)\}$ by $(-, +1 \pmod{3})$. Then we use Construction 2.6 with an HW(8; 3, 4, 0, 3) from Theorem 1.1 and an $HW(K_3[8]; 3, 4, 5, 3)$ constructed above to get an HW(24; 3, 4, 5, 6).

Lemma 3.3. $(17,6) \in HWP(48;3,4)$.

Proof: Let the vertex set be $\Gamma = Z_{16} \times Z_3$, and the 1-factor be $Cay(\Gamma, \{8\} \times \{0\})$. The required 5 of 17 C_3 -factors come from a C_3 -factorization of $Cay(\Gamma, \pm \{0, 1, 2\} \times \{\pm 1\})$ by

Lemma 2.1. The other 12 C_3 -factors can be generated from an initial C_3 -factor P by (+4 (mod 16), +1 (mod 3)). For the required 6 C_4 -factors, start with a cycle set Q in which all these 8 elements having the same subscript are different modulo 8. Let $F = \{Q, Q + 8_0\}$. Then $F, F + 4_1, F + 8_2, F + 12_0, F + 0_1, F + 4_2$ are 6 C_4 -factors. The cycles of P and Q are listed below.

```
(0_0, 3_0, 6_0)
                                                    (2_2, 5_2, 9_0)
                                                                                (7_1, 11_2, 0_1)
                                                                                                      (10_1, 14_2, 3_1)
                                                                                                                             (12_0, 1_2, 6_1)
                          (1_1,4_1,8_2)
(13_1, 5_0, 15_1)
                           (15_0, 7_2, 1_0)
                                                    (2_0, 14_0, 8_1)
                                                                                (4_2, 0_2, 9_2)
                                                                                                      (8_0, 5_1, 11_1)
                                                                                                                             (9_1, 4_0, 15_2)
(10_2, 7_0, 13_0)
                           (11_0, 2_1, 10_0)
                                                    (12_1, 3_2, 14_1)
                                                                                (13_2, 6_2, 12_2)
(0_0, 8_2, 3_2, 15_0)
                           (1_1, 14_2, 8_1, 4_2)
                                                    (2_2, 1_2, 11_1, 15_1)
(3_0, 12_1, 5_2, 14_0)
                          (9_0, 5_0, 10_1, 5_1)
                                                    (12_0, 10_0, 6_1, 15_2)
```

Combining Theorem 1.2, Lemmas 3.1, 3.2 and 3.3, we have the following theorem.

Theorem 3.4. $(\alpha, \beta) \in HWP(v; 3, 4)$ if and only if $v \equiv 0 \pmod{12}$ and $\alpha + \beta = \lfloor \frac{v-1}{2} \rfloor$.

4 **HWP**(v; 3, 5)

In this section, we shall solve the left infinite class in [1] for the existence of an $\mathrm{HW}(v;3,5,\alpha,\beta)$ when $v\equiv 15\pmod{30}$. Then we continue to consider the existence of an $\mathrm{HW}(v;3,5,\alpha,\beta)$ when $v\equiv 0\pmod{30}$.

Lemma 4.1. $(21,1) \in HWP(45;3,5)$.

Proof: Let the vertex set be $\Gamma = Z_9 \times Z_5$. The required C_5 -factor is $Cay(\Gamma, \{0\} \times \{\pm 1\})$. For the required 21 C_3 -factors, 15 of which will be generated from an initial C_3 -factor P by $(+3 \pmod 9), +1 \pmod 5)$. Each cycle in Q will generate a C_3 -factor by $(+3 \pmod 9), +1 \pmod 5)$ since the 3 elements in the first coordinate are different modulo 3. Thus we have obtained the last 6 C_3 -factors. The cycles of P and Q are listed below.

```
(3_2, 7_1, 5_1)
(1_1,4_1,7_4)
                  (4_2,0_1,3_4)
                                     (7_2, 8_2, 7_0)
                                                        (8_3,0_2,4_0)
                                                                           (6_1, 6_3, 7_3)
                                                                                             (2_2, 5_2, 8_4)
                                                                                                                                   (3_3, 1_0, 5_4)
                                                        (4_3,1_4,2_0)
                                                                                              (5_0, 2_1, 2_4)
(0_4,3_1,8_1)
                   (6_4,3_0,2_3)
                                     (4_4, 5_3, 1_3)
                                                                           (0_0, 6_0, 8_0)
                                                                                                                (0_3, 1_2, 6_2)
                   (0_0, 2_2, 7_0)
                                     (0_0, 7_1, 8_4)
                                                        (0_0,4_2,2_3)
                                                                           (0_0, 5_3, 7_4)
                                                                                             (0_0, 5_1, 7_3)
(0_0, 1_1, 5_2)
```

Lemma 4.2. $(\frac{v-3}{2}, 1) \in HWP(v; 3, 5)$ for v = 75, 105.

Proof: Let v = 3u and the vertex set be $\Gamma = Z_u \times Z_3$. The required C_5 -factor is $Cay(\Gamma, \{\pm 10\} \times \{0\})$ when v = 75 or $Cay(\Gamma, \{\pm 7\} \times \{0\})$ when v = 105.

For the required $\frac{3(u-1)}{2}$ C_3 -factors, u of which will be generated from an initial C_3 -factor P by $(+1 \pmod u), -)$. The other $\frac{u-3}{2}$ C_3 -factors will be obtained form $\frac{u-3}{2}$ 3-cycles in Q. Each cycle of Q will generate a C_3 -factor by $(+1 \pmod u), -)$ since the first coordinate of those 3 elements of the cycle are different modulo 3. The cycles of P and Q for each v are listed below.

```
v = 75:
        (9_0, 18_0, 5_0)
                                                      (4_1, 17_0, 18_1)
                                                                                                                          (0_0, 10_1, 19_0)
                                (6_1, 13_2, 0_2)
                                                                             (22_1, 5_1, 7_0)
                                                                                                     (5_2, 23_0, 3_2)
        (17_2, 12_2, 18_2)
                                (1_1, 8_0, 13_0)
                                                      (2_2, 19_2, 24_1)
                                                                                                     (13_1, 19_1, 4_2)
                                                                                                                          (0_1, 9_1, 21_1)
                                                                             (6_0, 8_2, 4_0)
                                (7_1, 20_2, 1_0)
        (2_0, 2_1, 24_2)
                                                      (3_1, 11_0, 21_2)
                                                                             (11_2, 14_2, 16_0)
                                                                                                     (1_2, 22_2, 15_2)
                                                                                                                          (21_0, 14_0, 22_0)
        (23_2, 12_1, 11_1)
                                                      (12_0, 15_0, 14_1)
                                (16_1, 6_2, 23_1)
                                                                             (7_2, 16_2, 20_0)
                                                                                                     (3_0, 8_1, 9_2)
                                                                                                                          (24_0, 10_2, 10_0)
        (15_1, 17_1, 20_1)
                                                                                                     (0_0, 19_1, 15_2)
                                                                                                                          (0_0, 22_1, 24_2)
        (0_0,4_1,8_2)
                                (0_0, 7_1, 16_2)
                                                      (0_0, 14_2, 8_1)
                                                                             (0_0, 17_2, 3_1)
         (0_0, 1_2, 21_1)
                                (0_0, 9_1, 9_2)
                                                      (0_0, 13_2, 14_1)
                                                                             (0_0, 3_2, 11_1)
                                                                                                     (0_0, 18_2, 20_1)
v = 105:
        (3_1, 29_1, 28_2)
                                (9_0, 10_0, 26_0)
                                                      (1_0, 24_0, 28_1)
                                                                             (5_1, 24_1, 26_1)
                                                                                                     (0_2, 2_2, 29_2)
                                                                                                                            (21_0, 31_0, 9_1)
         (30_0, 32_0, 32_1)
                                (2_1, 19_1, 17_2)
                                                      (27_0, 25_2, 34_2)
                                                                             (10_1, 30_1, 14_2)
                                                                                                     (0_1, 6_1, 16_2)
                                                                                                                            (6_0, 11_2, 12_2)
         (7_1, 18_1, 3_2)
                                (4_1, 34_1, 1_2)
                                                      (15_0, 29_0, 14_1)
                                                                                                                            (8_0, 19_0, 23_0)
                                                                             (4_2, 23_2, 27_2)
                                                                                                     (0_0, 10_2, 15_2)
        (14_0, 5_2, 22_2)
                                (3_0, 25_0, 15_1)
                                                                                                     (2_0, 20_2, 30_2)
                                                      (4_0, 7_0, 13_0)
                                                                             (18_2, 21_2, 32_2)
                                                                                                                            (1_1, 23_1, 33_1)
        (12_0, 20_0, 13_1)
                                (8_1, 12_1, 20_1)
                                                      (28_0, 33_0, 17_1)
                                                                             (21_1, 22_1, 8_2)
                                                                                                     (16_0, 13_2, 33_2)
                                                                                                                            (22_0, 9_2, 31_2)
                                                                             (18_0, 27_1, 6_2)
        (5_0, 11_1, 24_2)
                                (11_0, 16_1, 7_2)
                                                      (17_0, 25_1, 19_2)
                                                                                                     (34_0, 31_1, 26_2)
        (0_0,3_1,3_2)
                                (0_0, 7_1, 0_2)
                                                      (0_0, 10_1, 11_2)
                                                                             (0_0, 11_1, 16_2)
                                                                                                     (0_0, 14_1, 21_2)
                                                                                                                            (0_0, 15_1, 4_2)
                                                                                                     (0_0, 22_1, 34_2)
                                                                                                                            (0_0, 26_1, 14_2)
        (0_0, 16_1, 24_2)
                                (0_0, 17_1, 20_2)
                                                      (0_0, 18_1, 29_2)
                                                                             (0_0, 21_1, 30_2)
        (0_0, 29_1, 12_2)
                                (0_0, 30_1, 1_2)
                                                      (0_0, 31_1, 13_2)
                                                                             (0_0, 33_1, 25_2)
```

Lemma 4.3. If $v \equiv 15 \pmod{30}$ and v > 15, then $(\frac{v-3}{2}, 1) \in HWP(v; 3, 5)$.

Proof: Let v=30u+15, u>0. For $u\leq 3$, the conclusion comes from Lemmas 4.1 and 4.2. Applying Construction 2.5 with an IHW(45,15;3,5,15,0,6,1) from Lemma 2.3, a CF(30^u ; 3,5,15,0) from Theorem 2.4 and an HW(45; 3,5,21,1) from Lemma 4.1, we get an HW(v; 3,5, $\frac{v-3}{2}$,1) for any $u\geq 4$.

Lemma 4.4. $(\alpha, \beta) \in HWP(30; 3, 5)$ if and only if $\alpha + \beta = 14$.

Proof: Let the vertex set be $\Gamma = Z_{10} \times Z_3$ and the 1-factor be $Cay(\Gamma, \{5\} \times \{0\})$. For $(\alpha, \beta) = (10, 4)$, we get the conclusion by using Construction 2.6 with an HW(10; 3, 5, 0, 4) and an HW($K_3[10]; 3, 5, 10, 0$) from Theorem 1.1. For all the other cases, the methods of generating the required α C_3 -factors and β C_5 -factors are listed in Table 1. For C_3 -factors, here are three methods. (1) From a C_3 -factorization of certain Cayley graphs; (2) From several initial C_3 -factors P_i s by $(-, +1 \pmod 3)$ or $(+2 \pmod {10}, -)$; (3) From several cycle sets Q_i s by $(+2 \pmod {10}, -)$, note that each Q_i will generate a C_3 -factor by $(+2 \pmod {10}, -)$, since the two elements having the same subscript in Q_i have different parity. For C_5 -factors, only the first two methods are applied, and the initial C_5 -factors are denoted by P_i' in Table 1. For the sake of brevity, we list the cycles of P_i , P_i' and Q_i in Appendix A.

Lemma 4.5. For each
$$(\alpha, \beta) \in \{(0, 22), (6, 16), (12, 10)\}, (\alpha, \beta) \in HWP(K_4[15]; 3, 5).$$

Proof: Let the vertex set be $Z_{15} \times Z_4$, and the four parts of $K_4[15]$ be $Z_{15} \times \{i\}$, $i \in Z_4$. The α C_3 -factors will be obtained from α 3-cycles from a cycle set T by $(+3 \pmod{15}, +1 \pmod{4})$. Note that the first coordinate of the 3 elements in each cycle from T are different modulo 3, so each cycle of T will generate a C_3 -factor by $(+3 \pmod{15}, +1 \pmod{4})$.

Table 1 HWP(30; 3, 5)

(α, β)	C_3 -factor	C_5 -factor
(1, 13)	1: $Cay(\Gamma, \{0\} \times \{\pm 1\})$	12: $P'_1, P'_2, P'_3, P'_4 (-, +1 \pmod{3})$
		1: $Cay(\Gamma, \{\pm 2\} \times \{0\})$
		10: $P'_1, P'_2 \ (+2 \ (\text{mod } 10), -)$
(2, 12)	$2: Q_1, Q_2$	1: $Cay(\Gamma, \{\pm 2\} \times \{0\})$
		1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$
(3, 11)	$2: Q_1, Q_2$	10: $P_1', P_2' \ (+2 \ (\text{mod } 10), -)$
	1: $Cay(\Gamma, \{0\} \times \{\pm 1\})$	1: $Cay(\Gamma, \{\pm 2\} \times \{0\})$
(4, 10)	$4: Q_1, Q_2, Q_3, Q_4$	10: $P_1', P_2' \ (+2 \ (\text{mod } 10), -)$
(5, 9)	5: Lemma 2.1 with $a = i = 1$	9: P_1', P_2', P_3' $(-, +1 \pmod{3})$
		6: $P_1', P_2' (-, +1 \pmod{3})$
(6, 8)	6: $P_1, P_2 (-, +1 \pmod{3})$	1: $Cay(\Gamma, \{\pm 2\} \times \{0\})$
		1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$
(7,7)	6: $P_1, P_2 (-, +1 \pmod{3})$	6: $P_1', P_2' (-, +1 \pmod{3})$
	1: $Cay(\Gamma, \{0\} \times \{\pm 1\})$	1: $Cay(\Gamma, \{\pm 2\} \times \{0\})$
(8, 6)	5: $P_1 \ (+2 \ (\text{mod } 10), -)$	5: P_1' (+2 (mod 10), -)
	$3: Q_1, Q_2, Q_3$	1: $Cay(\Gamma, \{\pm 2\} \times \{0\})$
	5: $P_1 \ (+2 \ (\text{mod } 10), -)$	
(9, 5)	$3: Q_1, Q_2, Q_3$	5: P_1' (+2 (mod 10), -)
	1: $Cay(\Gamma, \{0\} \times \{\pm 1\})$	
(11, 3)	6: $P_1, P_2 (-, +1 \pmod{3})$	3: P_1' (-, +1 (mod 3))
	5: Lemma 2.1 with $a = i = 1$	
(12, 2)	10: $P_1, P_2 \ (+2 \ (\text{mod } 10), -)$	1: $Cay(\Gamma, \{\pm 2\} \times \{0\})$
	$2: Q_1, Q_2$	1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$
(13, 1)	10: $P_1, P_2 \ (+2 \ (\text{mod } 10), -)$	1: $Cay(\Gamma, \{\pm 2\} \times \{0\})$
	$3: Q_1, Q_2, Q_3$	

For β C_5 -factors, ten of them will be obtained from two cycle sets Q_1' and Q_2' . Here $\{Q_i' + (5j + k)_0 \mid j = 0, 1, 2\}$ is a C_5 -factor for any i = 1, 2 and $k = 0, 1, \dots, 4$ since these 5 elements having the same subscript in Q_i' are different modulo 5. The other $\beta - 10$ C_5 -factors will be obtained from $\beta - 10$ 5-cycles in a cycle set T' by $(+5 \pmod{15}, +1 \pmod{4})$, since the first coordinate of the 5 elements in each cycle from T' are different modulo 5. We list the 1-factor I and the cycles in T, Q_1' , Q_2' and T' in Appendix B.

Lemma 4.6. $(\alpha, \beta) \in HWP(60; 3, 5)$ if and only if $\alpha + \beta = 29$.

Proof: By Theorem 1.3, there is an HWP(15; 3, 5, α_1 , 7 - α_1) for any $0 \le \alpha_1 \le 7$ and $\alpha_1 \ne 6$. Apply Construction 2.6 with an HW(K_4 [15]; 3, 5, α_2 , 22 - α_2) for $\alpha_2 = 0$, 6, 12 from Lemma 4.5 to get an HW(60; 3, 5, $\alpha_1 + \alpha_2$, 29 - $\alpha_1 - \alpha_2$). Thus we have $(\alpha, \beta) \in \text{HWP}(60; 3, 5)$ for $0 \le \alpha \le 19$ and $\alpha \ne 18$.

Similarly, for $(\alpha, \beta) = (20, 9), (25, 4)$, an $HW(60; 3, 5, \alpha, \beta)$ can be obtained from the existence of an $HW(K_3[20]; 3, 5, 20, 0)$, an HW(20; 3, 5, 0, 9), an $HW(K_6[10]; 3, 5, 25, 0)$ and an HW(10; 3, 5, 0, 4) from Theorem 1.1.

For all the other cases, let the vertex set be $\Gamma = Z_{15} \times Z_4$ and the 1-factor be $Cay(\Gamma, \{0\} \times \{2\})$, the methods of generating the required α C_3 -factors and β C_5 -factors are given in Table 2. For generating C_3 -factors, here are five methods. (1) From a C_3 -factorization of certain Cayley graphs; (2) From an initial C_3 -factor P by (+1 (mod 15), -); (3) From several cycle sets Q_i s, note that $\{Q_i + (3j + k)_0 \mid j = 0, 1, \dots, 4\}$ is a C_3 -factor for k = 0, 1, 2 since

these 3 elements having the same subscript in Q_i are different modulo 3; (4) From a cycle in T by $(+1 \pmod{15}, +1 \pmod{4})$. A C_3 -factor F can be obtained from the cycle in T by $(+3 \pmod{15}, +1 \pmod{4})$. Then three C_3 -factors can be generated from F by $(+i \pmod{15}, -)$, i = 0, 1, 2; (5) From a cycle set S by $(+3 \pmod{15}, +1 \pmod{4})$. Note that the first coordinate of the 3 elements in each cycle from S are different modulo 3, so each cycle of S will generate a C_3 -factor by $(+3 \pmod{15}, +1 \pmod{4})$.

For C_5 -factors, three methods are applied. (1) From a C_5 -factorization of certain Cayley graphs; (2) From a cycle set Q', where $\{Q' + (5j + k)_0 \mid j = 0, 1, 2\}$ is a C_5 -factor for $k = 0, 1, \dots, 4$ since these 5 elements having the same subscript in Q' are different modulo 5; (3) From a cycle set T' by $(+5 \pmod{15}, +1 \pmod{4})$. The cycles of P, Q_i, Q', S, T and T' are given in Appendix C.

Table 2 HWP(60; 3, 5)

(α, β)	C_3 -factor	C_5 -factor
,	15: P	5: Q'
(18, 11)	3: Q_1	5: T'
		1: $Cay(\Gamma, \{\pm 6\} \times \{0\})$
	15: P	5: Q'
(21, 8)	3: Q_1	3: T'
	3: T	
	15: P	5: Q'
(22,7)	3: Q_1	1: $Cay(\Gamma, \{\pm 3\} \times \{0\})$
	3: T	1: $Cay(\Gamma, \{\pm 6\} \times \{0\})$
	1: $Cay(\Gamma, \{\pm 5\} \times \{0\})$	
	15: P	5: Q'
(23, 6)	3: Q_1	1: $Cay(\Gamma, \{\pm 6\} \times \{0\})$
	5: S	
	15: P	3: T'
(24, 5)	9: $Q_i, 1 \le i \le 3$	1: $Cay(\Gamma, \{\pm 3\} \times \{0\})$
		1: $Cay(\Gamma, \{\pm 6\} \times \{0\})$
	15: P	
(26, 3)	6: Q_1, Q_2	3: T'
	5: S	
(27, 2)	15: P	1: $Cay(\Gamma, \{\pm 3\} \times \{0\})$
	12: $Q_i, 1 \le i \le 4$	1: $Cay(\Gamma, \{\pm 6\} \times \{0\})$
	15: P	
(28, 1)	12: $Q_i, 1 \le i \le 4$	1: $Cay(\Gamma, \{\pm 6\} \times \{0\})$
	1: $Cay(\Gamma, \{\pm 5\} \times \{0\})$	

Lemma 4.7. If $v \equiv 0 \pmod{30}$, then $(\alpha, \beta) \in HWP(v; 3, 5)$ for any $\alpha + \beta = \frac{v-2}{2}$.

Proof: Let $v = 30u, u \ge 1$. For $u \le 2$, the conclusion comes from Lemmas 4.4 and 4.6. For u = 3, start with an $\mathrm{HW}(K_3[3]; 3, 5, 3, 0)$, an $\mathrm{HW}(C_3[10]; 3, 5, 10, 0)$ and an $\mathrm{HW}(C_3[10]; 3, 5, 0, 10)$ from Theorem 1.1, apply Construction 2.7 with s = 10 and $t_i \in \{0, 10\}$ to get an $\mathrm{HW}(K_3[30]; 3, 5, \sum_{i=1}^3 t_i, 30 - \sum_{i=1}^3 t_i)$. Then we apply Construction 2.6 with an $\mathrm{HW}(30; 3, 5, \alpha', 14 - \alpha'), \ 0 \le \alpha' \le 14$, from Lemma 4.4 to obtain an $\mathrm{HW}(90; 3, 5, \sum_{i=1}^3 t_i + \alpha', 30 - \sum_{i=1}^3 t_i + (14 - \alpha'))$. Thus we have obtained an $\mathrm{HW}(90; 3, 5, \alpha, \beta)$ for any $\alpha + \beta = 44$ since $\sum_{i=1}^3 t_i + \alpha'$ can cover the integers from 0 to 44.

For $u \geq 4$, similarly, we start with an $\mathrm{HW}(K_u[6]; 3, 5, 3u - 3, 0)$, an $\mathrm{HW}(C_3[5]; 3, 5, 5, 0)$ and an $\mathrm{HW}(C_3[5]; 3, 5, 0, 5)$ from Theorem 1.1, and apply Construction 2.7 with s = 5 and $t_i \in \{0, 5\}$ to get an $\mathrm{HW}(K_u[30]; 3, 5, \sum_{i=1}^{3u-3} t_i, 15u - 15 - \sum_{i=1}^{3u-3} t_i)$. Further, applying Construction 2.6 with an $\mathrm{HW}(30; 3, 5, \alpha', 14 - \alpha')$, $0 \leq \alpha' \leq 14$, from Lemma 4.4, we can obtain an $\mathrm{HW}(30u; 3, 5, \alpha' + \sum_{i=1}^{3u-3} t_i, 14 - \alpha' + 15u - 15 - \sum_{i=1}^{3u-3} t_i)$. It's easy to prove that $\alpha' + \sum_{i=1}^{3u-3} t_i$ can cover the integers from 0 to 15u - 1. The proof is complete.

Combining Theorem 1.3, Lemmas 4.3 and 4.7, we have the following theorem.

Theorem 4.8. $(\alpha, \beta) \in \text{HWP}(v; 3, 5)$ if and only if $v \equiv 0 \pmod{15}$, $\alpha + \beta = \lfloor \frac{v-1}{2} \rfloor$ and $(\alpha, \beta, v) \neq (6, 1, 15)$.

5 **HWP**(v; 3, 7)

In this section, we shall solve the three left cases in [22] for the existence of an $HW(v; 3, 7, \alpha, \beta)$ when $v \equiv 21 \pmod{42}$. Then we continue to consider the case $v \equiv 0 \pmod{42}$.

```
Lemma 5.1. For each (\alpha, \beta) \in \{(2, 8), (4, 6), (6, 4)\}, (\alpha, \beta) \in HWP(21; 3, 7).
```

Proof: Let the vertex set be $\Gamma = Z_7 \times Z_3$. For $\alpha = 2$, the required two C_3 -factors can be generated from two base cycles $(0_0, 1_1, 2_2)$ and $(0_0, 4_1, 1_2)$ by $(+1 \pmod{7}, -)$. Seven of the required C_7 -factors can be obtained from an initial C_7 -factor $P = \{(0_0, 5_2, 6_0, 1_1, 3_0, 3_1, 3_2), (2_2, 5_0, 4_1, 6_2, 4_2, 5_1, 6_1), (0_1, 2_1, 0_2, 1_2, 1_0, 2_0, 4_0)\}$ by $(+1 \pmod{7}, -)$. The last C_7 -factor is $Cay(\Gamma, \{\pm 3\} \times \{0\})$.

For $\alpha = 4$, a C_3 -factor is $Cay(\Gamma, \{0\} \times \{\pm 1\})$, and the other 3 C_3 -factors can be generated from an initial C_3 -factor P by $(-, +1 \pmod 3)$. All C_7 -factors can be generated from two initial C_7 -factors Q_1 and Q_2 by $(-, +1 \pmod 3)$. P, Q_1 and Q_2 are listed below.

For $\alpha = 6$, All C_3 -factors can be generated from two initial C_3 -factors P_1 and P_2 by $(-, +1 \pmod 3)$. Three C_7 -factors can be generated from an initial C_7 -factor Q by $(-, +1 \pmod 3)$. The last C_7 -factor is $Cay(\Gamma, \{\pm 3\} \times \{0\})$. P_1, P_2 and Q are listed below.

Lemma 5.2. $(\alpha, \beta) \in HWP(42; 3, 7)$ if and only if $\alpha + \beta = 20$.

Proof: For $(\alpha, \beta) = (14, 6)$, we get the conclusion by using Construction 2.6 with an HW(14; 3, 7, 0, 6) and an HW($K_3[14]$; 3, 7, 14, 0) from Theorem 1.1.

For all the other cases, let the vertex set be $\Gamma = Z_{14} \times Z_3$ and the 1-factor be $Cay(\Gamma, \{7\} \times \{0\})$. The methods of generating the required α C_3 -factors and β C_7 -factors are listed in the following table.

Table 3 $\mathbf{HWP}(42; 3, 7)$

(α, β)	C_3 -factor	C_7 -factor
(1, 19)	1: $Cay(\Gamma, \{0\} \times \{\pm 1\})$	18: P'_1, P'_2, P'_3 (+7 (mod 14), +1 (mod 3)) 1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$
(2, 18)	$2: Q_1, Q_2$	1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$ 14: $P'_1, P'_2 \ (+2 \ (\text{mod } 14), -)$ 4: T'
(3, 17)	3: $Q_i, 1 \le i \le 3$	14: $P'_1, P'_2 \ (+2 \ (\text{mod } 14), -)$ 1: $Cay(\Gamma, \{\pm 2\} \times \{0\})$ 1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$ 1: $Cay(\Gamma, \{\pm 6\} \times \{0\})$
(4, 16)	$4: Q_i, 1 \le i \le 4$	14: P'_1, P'_2 (+2 (mod 14), -) 1: $Cay(\Gamma, \{\pm 2\} \times \{0\})$ 1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$
(5, 15)	5: Lemma 2.1 with $a = 2$ and $i = 1$	12: $P'_1, P'_2 \ (+7 \pmod{14}, +1 \pmod{3})$ 1: $Cay(\Gamma, \{\pm 2\} \times \{0\})$ 1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$ 1: $Cay(\Gamma, \{\pm 6\} \times \{0\})$
(6, 14)	6: P_1 (+7 (mod 14), +1 (mod 3))	12: $P'_1, P'_2 \ (+7 \pmod{14}, +1 \pmod{3})$ 1: $Cay(\Gamma, \{\pm 2\} \times \{0\})$
(7, 13)	6: P_1 (+7 (mod 14), +1 (mod 3)) 1: $Cay(\Gamma, \{0\} \times \{\pm 1\})$	1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$ 12: $P'_1, P'_2 \ (+7 \pmod{14}, +1 \pmod{3})$ 1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$
(8, 12)	5: Lemma 2.1 with $a = 11$ and $i = 1$ 3: T	12: $P'_1, P'_2 \ (+7 \pmod{14}, +1 \pmod{3})$
(9,11)	9: T	6: P'_1 (+7 (mod 14), +1 (mod 3)) 3: Q' 1: $Cay(\Gamma, \{\pm 2\} \times \{0\})$ 1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$
(10, 10)	5: Lemma 2.1 with $a=11$ and $i=1$ 5: $Q_i,\ 1\leq i\leq 5$	1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$ 7: P'_1 (+2 (mod 14), -) 1: $Cay(\Gamma, \{\pm 2\} \times \{0\})$ 1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$ 1: $Cay(\Gamma, \{\pm 6\} \times \{0\})$
(11, 9)	5: Lemma 2.1 with $a = 11$ and $i = 1$ 6: P_1 (+7 (mod 14), +1 (mod 3))	6: P'_1 (+7 (mod 14), +1 (mod 3)) 1: $Cay(\Gamma, \{\pm 2\} \times \{0\})$ 1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$ 1: $Cay(\Gamma, \{\pm 6\} \times \{0\})$
(12, 8)	12: $P_1, P_2 \ (+7 \ (\text{mod } 14), +1 \ (\text{mod } 3))$	6: P'_1 (+7 (mod 14), +1 (mod 3)) 1: $Cay(\Gamma, \{\pm 2\} \times \{0\})$
(13,7)	12: P_1, P_2 (+7 (mod 14), +1 (mod 3)) 1: $Cay(\Gamma, \{0\} \times \{\pm 1\})$	1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$ 6: P'_1 (+7 (mod 14), +1 (mod 3)) 1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$
(15, 5)	6: P ₁ (+7 (mod 14), +1 (mod 3)) 9: T	3: Q' 1: $Cay(\Gamma, \{\pm 2\} \times \{0\})$ 1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$
(16, 4)	6: P_1 (+7 (mod 14), +1 (mod 3)) 9: T 1: $Cay(\Gamma, \{0\} \times \{\pm 1\})$	1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$
(17, 3)	1: $Cay(\Gamma, \{0\} \times \{\pm 1\})$ 14: P_1 (+1 (mod 14), -) 2: S 1: $Cay(\Gamma, \{0\} \times \{\pm 1\})$ 14: P_1 (+1 (mod 14), -)	1: $Cay(\Gamma, \{\pm 2\} \times \{0\})$ 1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$ 1: $Cay(\Gamma, \{\pm 6\} \times \{0\})$
(18, 2)	14: P_1 (+1 (mod 14), -) 3: S 1: $Cay(\Gamma, \{0\} \times \{\pm 1\})$	1: $Cay(\Gamma, \{\pm 2\} \times \{0\})$ 1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$
(19, 1)	14: P_1 (+1 (mod 14), -) 5: Lemma 2.1 with $a = 1$ and $i = 1$	1: $Cay(\Gamma, \{\pm 4\} \times \{0\})$

Here are five methods to get C_3 -factors. (1) From C_3 -factorization of certain Cayley graphs; (2) From several initial C_3 -factors P_i s by (+7 (mod 14), +1 (mod 3)) or (+1 (mod 14), -); (3) From several cycle sets Q_i s each of which can generate a C_3 -factor by (+2 (mod 14), -) since the two elements having the same subscript in Q_i have different parity; (4) From a cycle set T, each cycle of which can generate a C_3 -factor F by (+1 (mod 14), -), then 3 C_3 -factors can be generated from F by (-, +1 (mod 3)); (5) From a partial C_3 -factor S, each cycle of S will generate a C_3 -factor by (+1 (mod 14), -).

For C_7 -factors, we have the following four methods. (1) From C_7 -factorization of certain Cayley graphs; (2) From several initial C_7 -factors P'_i s by (+7 (mod 14), +1 (mod 3)) or (+2 (mod 14), -); (3) From a cycle set Q', since these 7 elements having the same subscript in Q' are different modulo 7, so Q' can generate a C_7 -factor F by (+7 (mod 14), -), then 3 C_7 -factors can be generated from F by (-, +1 (mod 3)); (4) From a cycle set T', each cycle of which will generate a C_7 -factor by (+7 (mod 14), +1 (mod 3)).

The cycles of P_i , P'_i , Q_i , Q', T, T' and S are given in Appendix D.

Lemma 5.3. For any $(\alpha, \beta) \in \{(0, 31), (9, 22), (18, 13), (24, 7)\}, (\alpha, \beta) \in HWP(K_4[21]; 3, 7).$

Proof: Let the vertex set be $Z_{21} \times Z_4$, and the four parts of $K_4[21]$ be $Z_{21} \times \{i\}$, $i \in Z_4$. For any $\alpha > 0$, the required α C_3 -factors are

$$F_i^k = \{Q_i + (3j+k)_0 \mid j=0,1,\cdots,6\}, \ 1 \le i \le \alpha/3, \ k=0,1,2.$$

For C_7 -factors, some of them will be obtained from several cycle sets Q_i' . Here $\{Q_i' + (7j + k)_0 | j = 0, 1, 2\}$ is a C_7 -factor for any $k = 0, 1, \cdots, 6$ since these 7 elements having the same subscript in Q_i' are different modulo 7. The other C_7 -factors will be obtained from a cycle set T' by $(+7 \pmod{21}, +1 \pmod{4})$, since the first coordinate of the 7 elements in each cycle from T' are different modulo 7. For the sake of brevity, we list the 1-factor I and the cycles of Q_i , Q_i' and T' in Appendix E.

Lemma 5.4. $(\alpha, \beta) \in HWP(84; 3, 7)$ if and only if $\alpha + \beta = 41$.

Proof: Applying Construction 2.6 with an $HW(K_4[21]; 3, 7, \alpha_1, 31 - \alpha_1)$, $\alpha_1 = 0, 9, 18, 24$, from Lemma 5.3 and an $HW(21; 3, 7, \alpha_2, 10 - \alpha_2)$, $0 \le \alpha_2 \le 10$, from Theorem 1.4 and Lemma 5.1, we can get an $HW(84; 3, 7, \alpha_1 + \alpha_2, 41 - \alpha_1 - \alpha_2)$. Thus, $(\alpha, \beta) \in HWP(84; 3, 7)$ for $0 \le \alpha \le 34$. Similarly, for $(\alpha, \beta) = (35, 6)$, we can obtain the conclusion with an HW(14; 3, 7, 0, 6) and an $HW(K_6[14]; 3, 7, 35, 0)$ from Theorem 1.1. For all the other cases, let the vertex set be $Z_{21} \times Z_4$. The methods of generating the required α C_3 -factors and β C_7 -factors are listed in Table 4.

For generating C_3 -factors, here are four methods. (1) From a C_3 -factorization of certain Cayley graphs; (2) From an initial C_3 -factor P by $(+1 \pmod{21}, -)$; (3) From several cycle

sets Q_i s, note that $\{Q_i + (3j+k)_0 | j = 0, 1, \dots, 6\}$ is a C_3 -factor for any k = 0, 1, 2 since these 3 elements having the same subscript in Q_i are different modulo 3; (4) From a cycle set T by $(+3 \pmod{21}, +1 \pmod{4})$, where the first coordinate of the 3 elements in each cycle from T are different modulo 3, so each cycle of T will generate a C_3 -factor by $(+3 \pmod{21}, +1 \pmod{4})$. The required C_7 -factors are given from a C_7 -factorization of certain Cayley graphs or from a cycle set T' by $(+7 \pmod{21}, +1 \pmod{4})$. The cycles of P, Q_i , T and T' are given in Appendix F.

(α, β)	C_3 -factor	C_7 -factor	1-factor
(36, 5)	21: P	4: T'	$\{(i_0, (i+17)_1), (i_2, (i+4)_3) i \in Z_{21}\}$
, , ,	15: $Q_i, 1 \le i \le 5$	1: $Cay(\Gamma, \{\pm 9\} \times \{0\})$	
	21: P		
(37, 4)	15: $Q_i, 1 \le i \le 5$	4: T'	$\{(i_0, (i+16)_1), (i_2, (i+12)_3) i \in \mathbb{Z}_{21}\}$
	1: $Cay(\Gamma, \{\pm 7\} \times \{0\})$		
()	21: P	1: $Cay(\Gamma, \{\pm 3\} \times \{0\})$	
(38, 3)	12: Q_i , $1 \le i \le 4$	1: $Cay(\Gamma, \{\pm 6\} \times \{0\})$	$\{(i_0, (i+1)_1), (i_2, (i+13)_3) i \in \mathbb{Z}_{21}\}$
(====)	5: T	1: $Cay(\Gamma, \{\pm 9\} \times \{0\})$	
(39, 2)	21: P	1: $Cay(\Gamma, \{\pm 6\} \times \{0\})$	$\{(i_0, (i+20)_1), (i_2, i_3) i \in Z_{21}\}$
	18: Q_i , $1 \le i \le 6$	1: $Cay(\Gamma, \{\pm 9\} \times \{0\})$	
	21: P		
(40, 1)	18: Q_i , $1 \le i \le 6$	1: $Cay(\Gamma, \{\pm 9\} \times \{0\})$	$\{(i_0,(i+5)_1),(i_2,(i+11)_3) i\in Z_{21}\}$
	1: $Cay(\Gamma, \{\pm 7\} \times \{0\})$		

Table 4 HWP(84; 3, 7)

Lemma 5.5. If $v \equiv 0 \pmod{42}$, then $(\alpha, \beta) \in HWP(v; 3, 7)$ with $\alpha + \beta = \frac{v-2}{2}$.

Proof: Let v = 42u, $u \ge 1$. For $u \le 2$, the conclusion comes from Lemmas 5.2 and 5.4.

For u=3, start with an $\mathrm{HW}(K_3[3];3,7,3,0)$, an $\mathrm{HW}(C_3[14];3,7,14,0)$ and an $\mathrm{HW}(C_3[14];3,7,0,14)$ from Theorem 1.1, apply Construction 2.7 with s=14 and $t_i\in\{0,14\}$ to get an $\mathrm{HW}(K_3[42];\,3,7,\sum_{i=1}^3t_i,42-\sum_{i=1}^3t_i)$. Further, applying Construction 2.6 with an $\mathrm{HW}(42;3,7,\alpha',20-\alpha'),\,0\leq\alpha'\leq20$, from Lemma 5.2 to obtain an $\mathrm{HW}(126;3,7,\sum_{i=1}^3t_i+\alpha',42-\sum_{i=1}^3t_i+(20-\alpha'))$. Thus we have obtained an $\mathrm{HW}(126;3,7,\alpha,\beta)$ for any $\alpha+\beta=62$ since $\sum_{i=1}^3t_i+\alpha'$ can cover the integers from 0 to 62.

For $u \geq 4$, similarly, start with an $\mathrm{HW}(K_u[6]; 3, 7, 3u - 3, 0)$, an $\mathrm{HW}(C_3[7]; 3, 7, 7, 0)$ and an $\mathrm{HW}(C_3[7]; 3, 7, 0, 7)$ from Theorem 1.1, and apply Construction 2.7 with s = 7 and $t_i \in \{0, 7\}$ to get an $\mathrm{HW}(K_u[42]; 3, 7, \sum_{i=1}^{3u-3} t_i, 21u - 21 - \sum_{i=1}^{3u-3} t_i)$. Further, applying Construction 2.6 with an $\mathrm{HW}(42; 3, 7, \alpha', 20 - \alpha')$, $0 \leq \alpha' \leq 20$, from Lemma 5.2, we can obtain an $\mathrm{HW}(42u; 3, 7, \alpha' + \sum_{i=1}^{3u-3} t_i, 20 - \alpha' + 21u - 21 - \sum_{i=1}^{3u-3} t_i)$. It's easy to prove that $\alpha' + \sum_{i=1}^{3u-3} t_i$ can cover the integers from 0 to 21u - 1. The proof is complete.

Combining Theorem 1.4, Lemmas 5.1 and 5.5, we have the following theorem.

Theorem 5.6. $(\alpha, \beta) \in \mathrm{HWP}(v; 3, 7)$ if and only if $v \equiv 0 \pmod{21}$ and $\alpha + \beta = \lfloor \frac{v-1}{2} \rfloor$.

Combining Theorems 3.4, 4.8 and 5.6, we have proved Theorem 1.5.

References

- [1] P. Adams, E. J. Billington, D. E. Bryant, S.I. El-Zanati, On the Hamilton-Waterloo problem, *Graphs Combin.* **18** (2002), 31-51.
- [2] A. Assaf, A. Hartman, Resolvable group divisible designs with block size 3, *Discrete Math.* **77** (1989), 5-20.
- [3] J. Asplund, D. Kamin, M. Keranen, A. Pastine, S. Ozkan, On the Hamilton-Waterloo problem with triangle factors and C_{3x} -factors, Australasian J. Combin. **64** (2016), 458-474.
- [4] B. Alspach, P. J. Schellenberg, D. R. Stinson, D. Wagner, The Oberwolfach problem and factors of uniform odd length cycles, *J. Combin. Theory Ser. A* **52**(1989), 20-43.
- [5] M. Buratti, P. Danziger, A cyclic solution for an infinite class of Hamilton-Waterloo problems, *Graphs Combin.*, DOI 10.1007/s00373-015-1582-x.
- [6] D. E. Bryant, P. Danziger, On bipartite 2-factorizations of $K_n I$ and the Oberwolfach problem, J. Graph Theory 68 (2011), 22-37.
- [7] D. E. Bryant, P. Danziger, M. Dean, On the Hamilton-Waterloo problem for bipartite 2-factors, *J. Combin. Des.* **21** (2013), 60-80.
- [8] A. Burgess, P. Danziger, T. Traetta, On the Hamilton-Waterloo problem with odd orders, (2015), arXiv:1510.07079 [math.CO].
- [9] I. J. Dejter, D. A. Pike, C. A. Rodger, The directed almost resolvable Hamilton-Waterloo problem, *Australas. J. Combin.* **18**(1998), 201-208.
- [10] P. Danziger, G. Quattrocchi, B. Stevens, The Hamilton-Waterloo problem for cycle sizes 3 and 4, J. Combin. Des. 17 (2009), 342-352.
- [11] J. H. Dinitz, A. C. H. Ling, The Hamilton-Waterloo problem with triangle-factors and Hamilton cycles: The case $n \equiv 3 \pmod{18}$, J. Combin. Math. Combin. Comput. **70** (2009), 143-147.
- [12] J. H. Dinitz, A. C. H. Ling, The Hamilton-Waterloo problem: The case of triangle-factors and one Hamilton cycle, *J. Combin. Des.* 17 (2009), 160-176.
- [13] H. L. Fu, K. C. Huang, The Hamilton-Waterloo problem for two even cycle factors, *Taiwan. J. of Math.* **12** (2008), 933-940.
- [14] P. Horak, R. Nedela, A. Rosa, The Hamilton-Waterloo problem: The case of Hamilton cycles and triangle-factors, *Discrete Math.* **284** (2004), 181-188.
- [15] D. G. Hoffman, P. J. Schellenberg, The existence of C_k -factorizations of $K_{2n}-F$, Discrete Math. 97 (1991), 243-250.
- [16] J. Liu, A generalization of the Oberwolfach problem and C_t -factorizations of complete equipartite graphs, J. Combin. Des. 8(2000), 42-49.
- [17] M. S. Keranen, S. Özkan, The Hamilton-Waterloo problem with 4-cycles and a single factor of n-cycles, *Graphs Combin.* **29** (2013), 1827-1837.
- [18] J. Liu, The equipartite Oberwolfach problem with uniform tables, J. Combin. Theory Ser. A 101 (2003), 20-34.

- [19] J. Liu, D. R. Lick, On λ -fold equipartite Oberwolfach problem with uniform table sizes, Ann. Comb. 7(2003), 315-323.
- [20] H. C. Lei, H. L. Fu, H. Shen, The Hamilton-Waterloo problem for Hamilton cycles and C_{4k} -factors, $Ars\ Combin.\ 100\ (2011),\ 341-348.$
- [21] H. C. Lei, H. Shen, The Hamilton-Waterloo problem for Hamilton cycles and triangle-factors, J. Combin. Des. 20 (2012), 305-316.
- [22] H. C. Lei, H. L. Fu, The Hamilton-Waterloo problem for triangle-factors and heptagon-factors, *Graphs Combin.* **32** (2016), 271-278.
- [23] F. Merola, T. Traetta, Infinitely many cyclic solutions to the Hamilton-Waterloo problem with odd length cycles, (2015), arXiv:1501.06999 [math.CO].
- [24] U. Odabaşı, S. Özkan, The Hamilton-Waterloo problem with C_4 and C_m factors, Discrete Math. **339** (2016), 263-269.
- [25] W. L. Piotrowski, The solution of the bipartite analogue of the Oberwolfach problem, *Discrete Math.* **97**(1991), 339-356.
- [26] R. Rees, Two new direct product-type constructions for resolvable group-divisible designs, J. Combin. Des. 1(1993), 15-26.
- [27] D. R. Stinson, Frames for Kirkman triple systems, Discrete Math. 65(1987), 289-300.

Appendix A for Lemma 4.4

```
(\alpha, \beta) = (1, 13):
          (0_1, 2_0, 4_2, 1_2, 3_1)
                                        (5_2, 6_0, 7_1, 8_2, 9_0)
                                                                     (5_0, 7_2, 9_1, 6_1, 8_0)
          (0_0, 1_1, 2_2, 3_0, 5_1)
                                        (4_1, 0_2, 6_2, 1_0, 7_0)
                                                                     (2_1, 8_1, 3_2, 4_0, 9_2)
          (0_0,4_1,5_2,1_1,8_2)
                                        (2_2, 6_0, 3_0, 7_1, 0_1)
                                                                     (9_0, 1_2, 9_1, 3_1, 0_2)
          (2_0, 5_0, 1_0, 4_2, 8_1)
                                       (6_1, 3_2, 5_1, 8_0, 9_2)
                                                                     (7_2, 2_1, 7_0, 4_0, 6_2)
  P_3'
                                       (2_2, 1_2, 3_0, 4_2, 3_2)
                                                                     (4_1, 5_0, 9_2, 8_2, 5_1)
          (0_0, 5_2, 2_0, 1_1, 7_2)
          (6_0, 2_1, 9_1, 4_0, 8_1)
                                       (7_1, 8_0, 1_0, 0_1, 6_2)
                                                                     (9_0, 3_1, 7_0, 0_2, 6_1)
          (0_0, 5_2, 2_0, 1_1, 7_2)
                                       (2_2, 1_2, 3_0, 4_2, 3_2)
                                                                     (4_1, 5_0, 9_2, 8_2, 5_1)
          (6_0, 2_1, 9_1, 4_0, 8_1)
                                       (7_1, 8_0, 1_0, 0_1, 6_2)
                                                                     (9_0, 3_1, 7_0, 0_2, 6_1)
(\alpha,\beta)=(2,12):
                              (3_0, 4_1, 5_2)
                                                          (0_0, 3_0, 7_1)
          (0_0, 1_1, 2_2)
                                                  Q_2
                                                                              (2_2,4_1,1_2)
          (0_0, 4_1, 1_1, 3_0, 8_2)
                                       (2_2, 5_2, 6_0, 1_2, 7_1)
                                                                     (9_0, 2_0, 0_1, 3_1, 8_0)
          (4_2, 5_0, 8_1, 0_2, 4_0)
                                       (6_1, 1_0, 9_2, 9_1, 7_0)
                                                                     (7_2, 2_1, 6_2, 3_2, 5_1)
                                                                     (2_2, 5_0, 2_1, 6_0, 9_1)
          (0_0, 9_0, 5_2, 4_0, 7_2)
                                       (1_1, 8_2, 7_0, 1_2, 0_2)
          (3_0, 3_1, 9_2, 0_1, 3_2)
                                       (4_1, 2_0, 6_2, 6_1, 5_1)
                                                                     (7_1, 8_0, 8_1, 4_2, 1_0)
(\alpha, \beta) = (3, 11):
 Q_1
          (0_0, 1_1, 2_2) (3_0, 4_1, 5_2)
                                                  Q_2
                                                        (0_0, 3_0, 7_1)
                                                                              (2_2,4_1,1_2)
                                       (2_2, 5_2, 7_1, 1_2, 5_0)
                                                                     (8_2, 9_0, 4_2, 0_1, 2_0)
          (0_0, 4_1, 1_1, 3_0, 6_0)
          (3_1, 8_0, 6_2, 7_2, 0_2)
                                        (6_1, 2_1, 5_1, 9_1, 7_0)
                                                                     (1_0, 8_1, 3_2, 4_0, 9_2)
 P_2'
          (0_0, 9_0, 2_2, 8_2, 2_1)
                                        (1_1, 5_0, 4_0, 1_2, 8_0)
                                                                     (3_0, 4_2, 9_1, 0_1, 7_0)
          (4_1, 3_2, 7_2, 6_0, 5_1)
                                       (5_2, 3_1, 9_2, 6_1, 1_0)
                                                                     (7_1, 0_2, 8_1, 2_0, 6_2)
(\alpha, \beta) = (4, 10):
          (0_0, 1_1, 2_2)
                                                           (0_0, 3_0, 7_1)
 Q_1
                              (3_0,4_1,5_2)
                                                  Q_2
                                                                               (2_2,4_1,1_2)
                              (1_1, 3_0, 1_2)
          (0_0, 4_1, 8_2)
                                                           (0_0, 5_2, 9_0)
                                                                               (1_1,4_1,4_2)
 Q_3
                                                  Q_4
          (0_0, 6_0, 1_1, 5_2, 0_1)
                                       (2_2, 3_0, 8_2, 1_2, 2_0)
                                                                     (4_1,7_1,3_1,0_2,9_0)
          (4_2, 8_0, 9_2, 3_2, 6_2)
                                       (5_0, 1_0, 4_0, 2_1, 8_1)
                                                                     (6_1, 5_1, 7_2, 9_1, 7_0)
  P_2'
                                       (2_2, 5_0, 7_0, 6_0, 3_2)
                                                                     (3_0, 0_1, 8_0, 4_1, 6_2)
          (0_0, 2_0, 1_1, 0_2, 4_2)
          (5_2, 7_2, 4_0, 7_1, 1_0)
                                       (8_2, 3_1, 5_1, 1_2, 2_1)
                                                                     (9_0, 9_1, 8_1, 6_1, 9_2)
(\alpha, \beta) = (5, 9):
          (0_0, 3_0, 6_0, 1_1, 4_1)
                                       (2_2, 5_2, 8_2, 1_2, 7_1)
                                                                     (9_0, 2_0, 6_1, 0_1, 5_0)
                                                                     (1_0, 5_1, 9_2, 4_0, 7_0)
          (3_1, 7_2, 0_2, 4_2, 6_2)
                                        (8_0, 2_1, 8_1, 9_1, 3_2)
          (0_0, 7_1, 2_0, 3_0, 9_0)
                                       (1_1, 8_2, 5_0, 0_2, 3_1)
                                                                     (2_2, 9_1, 4_0, 7_2, 6_2)
          (4_1, 1_2, 5_1, 6_1, 1_0)
                                       (5_2, 2_1, 9_2, 6_0, 8_0)
                                                                     (0_1, 3_2, 8_1, 4_2, 7_0)
                                       (1_1, 0_1, 6_2, 3_0, 9_1)
          (0_0, 2_0, 5_2, 3_2, 4_2)
                                                                     (2_2,1_2,8_1,4_0,8_0)
          (4_1, 2_1, 6_0, 9_0, 5_1)
                                       (7_1, 3_1, 7_0, 5_0, 1_0)
                                                                     (8_2, 7_2, 9_2, 6_1, 0_2)
(\alpha, \beta) = (6, 8):
          (0_2,4_0,7_0)
                              (3_0,4_1,5_2)
                                                  (6_0,7_1,8_2)
                                                                      (9_0, 0_1, 3_1)
                                                                                          (1_2,4_2,6_1)
          (2_0, 5_0, 7_2)
                              (8_0, 9_1, 1_0)
                                                  (2_1, 6_2, 9_2)
                                                                      (0_0, 1_1, 3_2)
                                                                                         (2_2, 5_1, 8_1)
                                                                                         (7_1, 1_2, 0_2)
          (0_0, 2_2, 0_1)
                              (1_1, 3_0, 8_2)
                                                  (4_1, 9_0, 2_0)
                                                                      (5_2, 6_0, 3_1)
                              (5_0, 9_1, 8_1)
                                                  (6_1,7_0,9_2)
                                                                      (7_2, 2_1, 4_0)
                                                                                         (8_0, 3_2, 6_2)
          (4_2,1_0,5_1)
                                       (1_1, 2_2, 3_0, 7_1, 5_0)
          (0_0, 5_2, 0_1, 6_0, 1_2)
                                                                     (4_1, 7_2, 7_0, 8_0, 5_1)
          (8_2, 9_1, 6_2, 6_1, 4_0)
                                       (9_0, 4_2, 3_2, 3_1, 2_1)
                                                                     (2_0, 1_0, 9_2, 0_2, 8_1)
          (0_0, 3_1, 6_2, 7_2, 8_1)
                                       (1_1, 4_2, 8_0, 8_2, 1_0)
                                                                     (2_2, 2_0, 5_1, 5_2, 6_1)
          (3_0, 9_1, 7_0, 1_2, 2_1)
                                       (4_1, 3_2, 7_1, 0_1, 4_0)
                                                                     (6_0, 5_0, 9_2, 9_0, 0_2)
```

```
(\alpha,\beta)=(7,7):
          (0_2, 4_0, 7_0)
                                                 (6_0, 7_1, 8_2)
                                                                     (9_0, 0_1, 3_1)
                                                                                        (1_2, 4_2, 6_1)
                             (3_0,4_1,5_2)
          (2_0, 5_0, 7_2)
                              (8_0, 9_1, 1_0)
                                                 (0_0, 1_1, 2_2)
                                                                     (2_1, 3_2, 8_1)
                                                                                        (5_1, 6_2, 9_2)
                                                 (2_2,4_1,9_0)
          (0_0, 5_2, 8_2)
                              (1_1, 3_0, 7_1)
                                                                     (6_0, 0_1, 9_1)
                                                                                        (1_2, 8_0, 0_2)
          (2_0, 3_2, 9_2)
                             (3_1,6_1,7_0)
                                                (4_2, 1_0, 5_1)
                                                                    (5_0, 2_1, 6_2)
                                                                                       (7_2, 4_0, 8_1)
                                                                    (4_1, 0_1, 4_0, 8_0, 3_2)
          (0_0, 6_0, 1_2, 2_2, 6_1)
                                       (1_1, 9_0, 2_0, 3_0, 5_1)
          (5_2, 6_2, 9_1, 7_0, 9_2)
                                       (7_1, 3_1, 0_2, 7_2, 1_0)
                                                                    (8_2, 5_0, 8_1, 4_2, 2_1)
                                                                    (2_2, 7_0, 4_2, 6_0, 8_1)
          (0_0, 1_2, 4_0, 3_0, 9_1)
                                       (1_1, 2_0, 0_2, 7_1, 5_0)
          (4_1, 5_1, 9_0, 8_0, 9_2)
                                                                    (8_2, 7_2, 6_2, 3_1, 1_0)
                                      (5_2, 0_1, 3_2, 6_1, 2_1)
(\alpha, \beta) = (8, 6):
 Q_1
          (0_0, 1_1, 2_2)
                              (3_0, 4_1, 5_2)
                                                 Q_2 \quad (0_0, 3_0, 7_1) \quad (2_2, 4_1, 1_2) \quad Q_3
                                                                                                         (0_0, 4_1, 8_2)
                                                                                                                            (1_1, 3_0, 1_2)
                                                                    (9_0, 2_0, 2_1)
          (0_0, 5_2, 6_0)
                             (1_1,4_1,7_1)
                                                 (2_2,3_0,8_2)
                                                                                       (0_1, 5_0, 1_0)
                             (4_2, 8_0, 7_0)
                                                                    (7_2, 0_2, 5_1)
          (1_2, 3_1, 4_0)
                                                (6_1, 6_2, 9_2)
                                                                                       (9_1, 3_2, 8_1)
                                                                    (2_2, 1_0, 7_2, 3_0, 3_2)
         (0_0, 1_2, 5_2, 2_0, 5_1)
                                      (1_1, 5_0, 7_1, 7_0, 0_2)
                                      (8_2, 8_0, 9_0, 6_1, 4_0)
          (4_1, 6_0, 2_1, 4_2, 8_1)
                                                                    (0_1, 9_1, 6_2, 3_1, 9_2)
(\alpha, \beta) = (9, 5):
          (0_0, 1_1, 2_2)
                              (3_0,4_1,5_2)
                                                 Q_2 \quad (0_0, 3_0, 7_1)
                                                                            (2_2,4_1,1_2)
                                                                                                         (0_0, 4_1, 8_2)
                                                                                                                             (1_1, 3_0, 7_2)
                                                                                                Q_3
                                                 (2_2, 3_0, 8_2)
                                                                    (9_0, 2_0, 1_0)
          (0_0, 5_2, 6_0)
                             (1_1,4_1,7_1)
                                                                                       (0_1, 5_0, 4_0)
                             (4_2, 9_1, 6_2)
                                                (6_1, 5_1, 9_2)
                                                                    (7_2, 2_1, 8_1)
                                                                                       (0_2, 3_2, 7_0)
          (1_2, 3_1, 8_0)
                                                                    (4_1, 5_0, 7_1, 1_0, 7_0)
         (0_0, 1_2, 3_0, 6_1, 8_1)
                                      (1_1, 8_0, 0_1, 2_2, 9_1)
          (5_2, 4_2, 5_1, 7_2, 9_2)
                                     (6_0, 0_2, 9_0, 6_2, 3_2)
                                                                   (8_2, 2_0, 4_0, 3_1, 2_1)
(\alpha, \beta) = (11, 3):
  P_1
          (0_0, 3_0, 6_0)
                             (1_1,4_1,7_1)
                                                 (2_2, 5_2, 8_2)
                                                                     (9_0, 2_0, 6_1)
                                                                                       (0_1,4_2,9_1)
          (1_2, 0_2, 5_1)
                             (3_1, 2_1, 9_2)
                                                 (5_0, 4_0, 8_1)
                                                                     (7_2, 1_0, 6_2)
                                                                                       (8_0, 3_2, 7_0)
          (0_0, 7_1, 3_1)
                             (1_1, 8_0, 5_1)
                                                 (2_2, 5_0, 7_0)
                                                                     (3_0, 6_1, 1_0)
                                                                                       (4_1, 1_2, 9_2)
  P_2
          (5_2, 9_0, 6_2)
                             (6_0,0_1,2_1)
                                                (8_2,4_2,0_2)
                                                                    (2_0,7_2,4_0)
                                                                                       (9_1, 3_2, 8_1)
          (0_0, 4_2, 6_2, 2_2, 5_1)
                                      (1_1, 5_2, 9_1, 6_1, 8_1)
                                                                    (3_0, 0_1, 7_0, 9_0, 5_0)
          (4_1, 3_1, 6_0, 0_2, 7_2)
                                      (7_1, 1_0, 2_0, 9_2, 3_2)
                                                                    (8_2, 2_1, 8_0, 1_2, 4_0)
(\alpha, \beta) = (12, 2):
                                                 (6_0, 9_0, 3_1)
  P_1
          (0_0,1_1,2_2)
                             (3_0,4_1,5_2)
                                                                    (7_1,0_1,2_0)
                                                                                        (8_2, 1_2, 5_0)
                                                 (8_0, 2_1, 9_2)
                                                                    (9_1, 3_2, 6_2)
                             (7_2, 5_1, 7_0)
                                                                                        (0_2, 1_0, 8_1)
          (4_2, 6_1, 4_0)
         (0_0, 5_2, 0_1)
                             (1_1, 7_2, 8_0)
                                                 (2_2, 5_0, 4_0)
                                                                    (3_0, 1_2, 3_1)
                                                                                       (4_1,4_2,3_2)
                                                                    (9_0, 2_0, 8_1)
          (6_0,0_2,5_1)
                             (7_1, 1_0, 6_2)
                                                 (8_2, 2_1, 7_0)
                                                                                       (6_1, 9_1, 9_2)
                                                        (0_0, 7_2, 6_2) (1_1, 9_0, 2_1)
          (0_0, 9_0, 3_2)
                              (1_1,0_1,4_2)
  Q_1
                                                 Q_2
(\alpha,\beta) = (13,1):
  Q_1
          (0_0, 8_2, 1_0)
                              (1_1,0_1,3_2)
                                                       (0_0, 0_1, 0_2)
                                                                            (1_1, 7_2, 1_0) Q_3
                                                                                                         (0_0, 1_2, 3_1)
                                                                                                                             (2_2,0_1,1_0)
          (0_0, 1_1, 2_2)
                             (3_0, 4_1, 5_2)
                                                 (6_0, 9_0, 2_0)
                                                                    (7_1, 0_1, 3_1)
                                                                                        (8_2, 1_2, 4_2)
          (5_0, 9_1, 1_0)
                              (6_1, 8_0, 3_2)
                                                 (7_2, 4_0, 8_1)
                                                                     (0_2, 5_1, 9_2)
                                                                                        (2_1, 6_2, 7_0)
          (0_0, 7_1, 4_2)
                             (1_1,0_2,2_1)
                                                 (2_2, 9_0, 6_1)
                                                                    (3_0, 9_1, 4_0)
                                                                                        (4_1,0_1,8_0)
          (5_2, 6_0, 5_1)
                             (8_2, 2_0, 9_2)
                                                 (1_2,7_2,7_0)
                                                                    (3_1, 1_0, 6_2)
                                                                                       (5_0,3_2,8_1)
```

Appendix B for Lemma 4.5

```
\begin{array}{lll} (\alpha,\beta) = (0,22): & I = \{(i_0,(i+13)_3),(i_1,(i+2)_2)|i\in Z_{15}\}.\\ Q_1' & (0_0,1_1,2_2,3_3,5_1) & (4_0,6_2,8_0,7_3,14_1) & (10_2,0_3,6_0,6_3,2_0) & (13_1,3_2,7_1,14_3,4_2)\\ Q_2' & (0_0,10_2,12_3,10_1,10_3) & (1_1,14_0,6_2,1_0,6_3) & (2_2,8_3,13_1,7_0,7_1) & (8_0,8_2,4_3,4_2,4_1) \end{array}
```

```
(0_0, 9_1, 6_0, 13_1, 12_2)
         (0_0, 12_3, 9_1, 8_2, 6_3)
                                         (0_0, 8_3, 11_1, 9_2, 2_3)
                                                                         (0_0, 6_2, 3_1, 7_3, 9_2)
                                                                         (0_0, 11_2, 12_1, 8_0, 4_2)
         (0_0, 14_2, 7_1, 13_3, 1_2)
                                         (0_0, 7_3, 1_0, 9_3, 8_1)
                                                                                                         (0_0, 3_2, 9_0, 12_1, 1_3)
                                                                                                         (0_0, 3_3, 2_1, 14_2, 11_3)
         (0_0, 3_1, 14_0, 11_2, 7_1)
                                         (0_0, 13_1, 7_2, 6_0, 14_1)
                                                                         (0_0, 4_1, 13_2, 6_3, 12_1)
(\alpha, \beta) = (6, 16) : I = \{(i_0, (i+4)_2), (i_1, (i+4)_3) | i \in Z_{15}\}.
                             (0_0, 10_2, 2_3) (0_0, 5_3, 4_1)
        (0_0, 14_2, 10_1)
                                                                       (0_0, 11_3, 1_2) (0_0, 13_1, 8_3)
                                                                                                                 (0_0, 7_1, 5_2)
  Q_1'
          (0_0, 5_1, 10_2, 3_3, 3_2)
                                          (1_1, 8_0, 0_3, 2_0, 12_3)
                                                                             (2_2, 9_1, 9_0, 6_2, 3_1)
                                                                                                             (11_3, 9_2, 14_3, 2_1, 11_0)
  Q_2'
          (0_0, 2_1, 4_2, 11_0, 11_2)
                                          (1_1, 7_2, 13_3, 5_1, 2_0)
                                                                             (4_0, 1_3, 13_2, 13_1, 5_3)
                                                                                                             (7_3, 13_0, 5_2, 4_3, 4_1)
          (0_0, 6_2, 12_1, 8_2, 4_3)
                                          (0_0, 12_1, 11_0, 14_3, 13_2)
                                                                             (0_0, 6_3, 8_1, 2_2, 14_3)
                                                                                                             (0_0, 11_1, 2_3, 3_0, 9_2)
          (0_0, 2_2, 6_1, 3_2, 9_1)
                                          (0_0, 1_1, 14_3, 12_1, 3_3)
(\alpha, \beta) = (12, 10) : I = \{(i_0, (i+14)_1), (i_2, (i+3)_3) | i \in Z_{15}\}.
        (0_0,1_1,2_2)
                             (0_0, 2_3, 13_2)
                                                  (0_0, 7_1, 5_2)
                                                                         (0_0, 8_2, 13_3)
                                                                                              (0_0, 11_3, 4_1)
                                                                                                                   (0_0, 5_1, 1_2)
        (0_0, 7_3, 14_2)
                             (0_0, 7_2, 14_3)
                                                  (0_0, 11_1, 10_3)
                                                                         (0_0, 2_1, 4_3)
                                                                                              (0_0, 13_1, 8_3)
                                                                                                                   (0_0, 10_2, 8_1)
  Q_1'
          (0_0, 3_3, 6_2, 9_1, 0_3)
                                            (1_1, 4_0, 10_2, 1_0, 4_2)
                                                                           (2_2, 11_3, 2_1, 8_0, 2_3)
                                                                                                         (5_1, 2_0, 8_1, 3_2, 9_3)
  Q_2'
          (0_0, 10_1, 4_2, 13_1, 12_2)
                                           (1_1, 12_3, 12_1, 0_3, 1_2)
                                                                           (3_3, 12_0, 9_3, 8_0, 8_2)
                                                                                                         (4_0, 0_2, 11_0, 1_3, 4_1)
```

Appendix C for Lemma 4.6

```
(\alpha, \beta) = (18, 11):
          (14_2, 13_3, 7_0)
                                  (0_0, 14_0, 10_3)
                                                         (2_2, 4_3, 11_1)
                                                                              (8_0, 10_1, 12_1)
                                                                                                    (3_3, 14_1, 3_0)
          (6_2, 8_2, 8_1)
                                   (10_2, 2_0, 13_2)
                                                         (9_1, 3_2, 4_2)
                                                                              (5_0, 6_1, 9_3)
                                                                                                     (5_1, 12_3, 10_0)
          (13_0, 12_2, 11_0)
                                   (7_3, 0_3, 5_3)
                                                         (12_0, 1_2, 6_3)
                                                                              (4_0,1_3,2_3)
                                                                                                    (11_3, 7_2, 0_2)
          (13_1, 8_3, 3_1)
                                   (2_1, 5_2, 14_3)
                                                         (1_1, 9_0, 0_1)
                                                                              (1_0, 11_2, 6_0)
                                                                                                    (7_1,4_1,9_2)
 Q_1
          (0_0, 8_0, 1_3)
                                  (1_1, 12_3, 7_0)
                                                         (2_2,6_1,5_3)
                                                                              (5_1,4_2,9_2)
          (0_0, 5_1, 6_2, 4_3, 3_1)
                                        (1_1, 2_0, 1_3, 0_2, 3_0)
                                                                      (2_2, 8_3, 8_2, 0_3, 12_3)
                                                                                                        (4_0, 1_0, 4_2, 12_1, 4_1)
          (0_0, 2_2, 8_0, 11_3, 4_0)
                                        (0_0, 6_2, 9_1, 2_2, 13_2)
                                                                      (0_0, 11_0, 3_3, 14_3, 12_1)
                                                                                                       (0_0, 7_3, 1_1, 14_3, 8_1)
          (0_0, 3_3, 1_1, 12_1, 9_2)
(\alpha, \beta) = (21, 8):
          (10_2, 3_1, 5_2)
                                                                                                (10_1, 10_0, 6_3)
                               (13_1, 7_2, 9_0)
                                                    (1_0, 2_0, 12_1)
                                                                           (2_2, 12_3, 1_2)
          (12_0, 3_2, 1_3)
                               (1_1, 5_3, 13_3)
                                                    (11_2, 6_0, 13_2)
                                                                           (5_0, 4_2, 11_0)
                                                                                                (2_1, 4_3, 12_2)
          (0_3, 2_3, 8_1)
                               (5_1, 11_1, 9_2)
                                                    (4_0, 11_3, 10_3)
                                                                           (7_3, 9_1, 7_0)
                                                                                                (6_1, 7_1, 14_0)
          (6_2, 14_2, 3_0)
                               (0_0, 8_0, 14_1)
                                                    (13_0, 8_2, 14_3)
                                                                           (3_3, 8_3, 0_1)
                                                                                                (0_2, 9_3, 4_1)
 Q_1
          (0_0, 2_2, 5_0)
                               (1_1, 11_1, 2_3)
                                                    (3_3, 4_2, 10_0)
                                                                           (6_2,0_1,10_3)
          (0_0, 4_0, 5_1)
  Q'
          (0_0, 9_1, 8_2, 8_3, 2_3)
                                        (1_1, 3_1, 10_1, 12_0, 1_2)
                                                                        (2_2, 4_3, 14_0, 1_0, 10_3)
                                                                                                       (8_0, 6_3, 7_1, 0_2, 9_2)
 T'
          (0_0, 3_3, 6_3, 9_3, 12_3)
                                        (0_0, 12_0, 9_1, 6_2, 3_1)
                                                                        (0_0, 3_0, 6_3, 9_0, 12_1)
(\alpha, \beta) = (22, 7):
          (2_1, 8_2, 10_0)
                                 (2_2, 9_0, 0_1)
                                                        (13_1, 7_2, 14_3)
                                                                              (14_2, 5_0, 1_2)
                                                                                                   (5_1, 1_3, 12_1)
          (0_0, 13_0, 12_2)
                                 (11_3, 9_3, 11_0)
                                                        (12_3, 0_2, 4_1)
                                                                              (6_1,7_1,5_2)
                                                                                                   (8_3,3_1,7_0)
          (3_3, 1_0, 11_1)
                                 (14_1, 6_0, 13_3)
                                                        (8_0, 4_3, 13_2)
                                                                              (7_3, 3_2, 11_2)
                                                                                                   (4_0, 8_1, 10_3)
          (12_0, 4_2, 6_3)
                                 (1_1, 2_0, 3_0)
                                                        (10_2, 10_1, 5_3)
                                                                              (6_2, 9_1, 0_3)
                                                                                                   (14_0, 2_3, 9_2)
 Q_1
          (0_0, 2_2, 9_1)
                                                                              (5_1, 8_0, 12_2)
                                 (1_1, 1_0, 13_3)
                                                        (3_3,4_2,2_3)
 T
          (0_0,4_0,5_1)
          (0_0, 6_2, 3_1, 1_1, 4_3)
                                     (2_2, 3_2, 2_0, 7_3, 14_0) (3_3, 11_3, 2_1, 0_3, 0_2)
                                                                                                   (5_1, 3_0, 11_0, 14_1, 9_2)
(\alpha, \beta) = (23, 6):
  Q_1
          (0_0, 5_1, 9_1)
                             (1_1, 8_0, 11_2)
                                                   (3_3, 10_2, 10_3)
                                                                         (4_0, 0_2, 2_3)
                                                  (0_0, 5_0, 7_2)
          (0_0, 1_1, 2_2)
                             (0_0, 4_3, 11_1)
                                                                         (0_0, 8_2, 13_2)
                                                                                              (0_0, 10_0, 14_3)
          (0_0, 8_0, 3_2, 0_1, 14_2) (1_1, 6_2, 0_3, 11_3, 13_3)
                                                                        (2_2, 7_3, 7_0, 7_1, 0_2)
                                                                                                  (4_0, 8_1, 6_0, 9_1, 14_3)
```

```
(3_1, 13_3, 9_2)
                                 (8_3,7_1,5_2)
                                                       (9_1, 5_3, 3_0)
                                                                                (11_2, 6_0, 7_0)
                                                                                                      (2_2,1_0,5_0)
        (13_0, 11_1, 12_1)
                                                       (5_1, 2_1, 10_0)
                                                                                                      (0_3, 8_2, 14_0)
                                 (0_0, 3_3, 6_2)
                                                                                (1_1, 3_2, 14_1)
                                                                                (7_2, 0_2, 0_1)
                                                                                                      (11_3, 12_2, 10_3)
                                 (12_0, 9_0, 6_3)
                                                       (4_0, 2_0, 9_3)
         (8_0,4_3,1_3)
        (7_3, 1_2, 4_1)
                                 (10_1, 4_2, 14_3)
                                                       (10_2, 14_2, 13_2)
                                                                               (13_1, 6_1, 12_3)
                                                                                                      (2_3, 8_1, 11_0)
(\alpha, \beta) = (24, 5):
          (3_2, 10_1, 14_3)
                                 (2_1, 6_0, 0_1)
                                                       (8_0, 13_1, 3_1)
                                                                              (6_2, 12_3, 11_1)
                                                                                                    (0_0, 14_0, 10_3)
          (1_1, 12_2, 5_2)
                                 (4_0, 8_1, 12_1)
                                                       (2_2,4_2,9_3)
                                                                              (10_2, 0_2, 3_0)
                                                                                                    (1_0, 8_3, 11_2)
                                                                              (14_2, 1_3, 10_0)
                                                                                                    (5_1, 4_3, 5_0)
          (6_1,7_2,7_1)
                                 (9_1, 5_3, 6_3)
                                                       (13_0, 1_2, 11_0)
          (3_3, 8_2, 9_2)
                                 (0_3, 2_0, 7_0)
                                                       (11_3, 9_0, 13_3)
                                                                              (12_0, 4_1, 13_2)
                                                                                                    (7_3, 14_1, 2_3)
          (0_0, 1_1, 8_2)
                                 (3_3, 13_0, 11_1)
                                                       (6_2, 9_1, 4_3)
                                                                              (8_0, 8_3, 4_2)
 Q_1
          (0_0, 3_3, 12_1)
                                                       (2_2, 11_1, 13_2)
                                 (1_1, 10_0, 14_0)
  Q_2
                                                                              (6_2,7_3,14_3)
                                 (1_1, 6_3, 10_3)
  Q_3
          (0_0, 6_2, 7_0)
                                                       (2_2, 8_0, 2_3)
                                                                              (5_1, 10_2, 12_1)
         (0_0, 2_2, 1_3, 13_2, 14_1)
                                        (0_0, 12_3, 9_2, 11_0, 13_2)
                                                                           (0_0, 1_3, 4_0, 2_2, 3_1)
(\alpha, \beta) = (26, 3):
          (3_3, 10_2, 11_0)
                                 (5_1, 0_2, 9_3)
                                                      (2_2, 7_3, 12_0)
                                                                            (0_0, 9_0, 7_0)
                                                                                                   (0_3, 14_0, 14_3)
                                 (6_2, 8_3, 10_3)
          (9_1, 2_0, 11_1)
                                                     (1_1, 10_1, 6_0)
                                                                            (4_0, 12_3, 13_2)
                                                                                                   (8_0, 2_3, 6_3)
                                                                            (14_2, 7_1, 5_2)
          (13_1, 7_2, 14_1)
                                 (6_1, 13_0, 8_2)
                                                     (1_0, 4_2, 12_2)
                                                                                                   (5_0, 11_2, 9_2)
                                                                                                   (10_0, 0_1, 8_1)
          (2_1, 5_3, 3_0)
                                 (3_2, 1_3, 4_1)
                                                     (11_3, 1_2, 12_1)
                                                                            (4_3, 3_1, 13_3)
          (0_0, 4_0, 6_1)
                                 (1_1, 6_2, 7_2)
                                                      (2_2, 9_3, 2_3)
                                                                            (5_1, 5_0, 1_3)
  Q_1
          (0_0, 1_0, 6_3)
                                 (1_1, 7_3, 1_2)
                                                      (2_2, 6_2, 5_0)
                                                                            (5_1, 9_1, 14_3)
  Q_2
  S
          (0_0,1_1,2_2)
                                 (0_0, 4_3, 11_1)
                                                     (0_0, 5_0, 7_2)
                                                                            (0_0, 8_2, 13_2)
                                                                                                   (0_0, 10_0, 14_3)
 T'
                                      (0_0, 12_0, 9_1, 6_2, 3_1)
                                                                     (0_0, 3_0, 6_3, 9_0, 12_1)
         (0_0, 3_3, 6_3, 9_3, 12_3)
(\alpha, \beta) = (27, 2):
                                                                            (10_1, 9_2, 11_0)
        (5_1, 8_0, 12_0)
                               (0_2, 1_3, 14_3)
                                                    (8_3, 13_0, 6_0)
                                                                                                   (4_3, 6_1, 12_3)
         (2_0,1_2,7_0)
                               (3_3, 4_0, 13_3)
                                                    (9_1, 9_0, 4_2)
                                                                            (0_0,1_1,2_2)
                                                                                                   (14_1, 9_3, 3_0)
         (13_1, 7_2, 11_1)
                               (7_3, 3_1, 5_2)
                                                    (11_3, 2_1, 12_1)
                                                                            (7_1, 0_1, 13_2)
                                                                                                   (0_3, 3_2, 10_0)
         (5_0, 11_2, 2_3)
                               (6_2, 1_0, 14_0)
                                                    (10_2, 14_2, 10_3)
                                                                            (5_3, 12_2, 6_3)
                                                                                                   (8_2,4_1,8_1)
          (0_0, 3_3, 7_3)
                               (1_1, 2_1, 7_0)
                                                    (2_2, 5_0, 1_2)
                                                                         (6_2, 9_1, 11_3)
  Q_1
          (0_0, 5_1, 14_0)
                               (1_1, 13_0, 2_3)
                                                    (2_2, 9_3, 12_1)
                                                                         (6_2, 1_3, 13_2)
  Q_2
  Q_3
          (0_0, 11_3, 4_1)
                               (2_2, 1_0, 4_2)
                                                    (3_3, 2_0, 0_1)
                                                                         (5_1, 12_2, 10_3)
  Q_4
          (0_0, 0_3, 7_1)
                               (2_2,7_2,14_1)
                                                    (4_0, 6_1, 2_3)
                                                                         (6_2, 2_0, 10_3)
(\alpha, \beta) = (28, 1):
                                                                                                   (2_1, 7_2, 11_0)
                               (3_1, 14_0, 13_2)
        (0_3, 12_3, 14_1)
                                                       (0_0, 1_1, 8_1)
                                                                              (2_0, 5_2, 6_3)
        (0_2, 12_2, 4_1)
                               (11_3, 6_1, 13_3)
                                                       (12_0, 1_0, 11_1)
                                                                              (2_2, 10_1, 9_2)
                                                                                                   (5_1, 8_0, 9_3)
                               (10_2, 14_2, 14_3)
                                                                              (4_2, 6_0, 0_1)
                                                                                                   (13_1, 4_3, 8_3)
         (9_0,1_3,7_1)
                                                       (5_0, 11_2, 3_0)
         (7_3, 13_0, 10_0)
                                                       (9_1, 3_2, 12_1)
                                                                              (3_3,4_0,2_3)
                                                                                                   (1_2, 7_0, 10_3)
                               (6_2, 5_3, 8_2)
          (0_0, 2_2, 5_1)
                               (1_1, 13_0, 14_0)
                                                     (3_3, 7_2, 10_3)
                                                                           (6_2, 6_1, 14_3)
  Q_1
          (0_0, 8_0, 10_3)
                               (1_1, 1_0, 12_3)
                                                     (2_2,3_2,8_3)
                                                                           (5_1, 9_1, 7_2)
  Q_2
          (0_0, 10_2, 7_1)
                               (2_2, 0_3, 10_0)
                                                     (5_1, 6_1, 8_3)
                                                                           (6_2, 5_0, 13_3)
  Q_3
          (0_0, 0_3, 5_2)
                               (1_1, 14_1, 13_3)
                                                     (4_0,0_1,1_2)
                                                                           (6_2, 8_3, 2_0)
```

Appendix D for Lemma 5.2

```
\begin{array}{lll} (\alpha,\beta) = (1,19): \\ P_1' & (0_0,1_1,2_2,3_0,4_1,5_2,6_0) & (7_1,9_0,11_2,8_2,10_1,12_0,0_2) & (13_1,1_0,5_1,2_1,6_2,3_2,7_0) \\ & (4_0,8_1,13_0,11_1,0_1,9_2,1_2) & (10_0,2_0,9_1,12_2,8_0,3_1,11_0) & (4_2,10_2,5_0,12_1,7_2,6_1,13_2) \\ P_2' & (0_0,3_0,10_1,1_1,7_1,11_2,2_1) & (2_2,12_0,4_1,0_2,5_2,8_2,1_0) & (6_0,9_0,3_2,13_1,4_0,11_1,5_1) \\ & (6_2,1_2,11_0,12_2,6_1,7_0,4_2) & (8_1,2_0,13_2,3_1,12_1,9_2,7_2) & (10_0,8_0,0_1,10_2,13_0,5_0,9_1) \end{array}
```

```
P_3'
          (0_0, 9_0, 4_0, 1_1, 12_0, 13_0, 1_0)
                                                     (2_2, 3_2, 6_1, 7_1, 5_0, 13_1, 1_2)
                                                                                                (3_0, 12_2, 4_1, 5_1, 3_1, 8_2, 0_1)
          (5_2, 8_1, 13_2, 7_0, 12_1, 10_0, 7_2)
                                                    (6_0, 11_1, 10_2, 2_1, 8_0, 10_1, 4_2)
                                                                                                (11_2, 9_2, 11_0, 0_2, 9_1, 6_2, 2_0)
(\alpha, \beta) = (2, 18):
          (0_0, 3_0, 7_1) (2_2, 5_2, 10_1)
  Q_1
                                                            (0_0, 4_1, 8_2) (1_1, 5_2, 9_0)
          (0_0, 5_2, 8_2, 1_1, 4_1, 7_1, 12_0)
                                                   (2_2, 6_0, 3_0, 10_1, 1_0, 6_2, 11_2)
                                                                                                (9_0, 3_2, 10_0, 0_2, 5_1, 0_1, 7_2)
          (13_1, 9_2, 3_1, 2_1, 6_1, 7_0, 5_0)
                                                   (4_0, 4_2, 11_0, 1_2, 13_2, 12_2, 10_2)
                                                                                                (8_1, 2_0, 12_1, 11_1, 9_1, 13_0, 8_0)
  P_2'
          (0_0, 9_0, 9_2, 1_1, 0_2, 4_1, 13_1)
                                                   (2_2, 1_0, 2_0, 3_2, 6_1, 11_2, 1_2)
                                                                                                 (3_0, 5_1, 9_1, 12_0, 3_1, 5_2, 13_0)
          (6_0, 10_0, 13_2, 4_0, 5_0, 2_1, 0_1)
                                                   (7_1, 12_2, 12_1, 7_0, 10_2, 8_1, 7_2)
                                                                                                (8_2, 11_1, 11_0, 6_2, 8_0, 10_1, 4_2)
          (0_0, 1_1, 2_2, 3_0, 4_1, 5_2, 6_0)
                                                   (0_0, 2_2, 4_1, 10_1, 12_0, 1_1, 13_2)
                                                                                                (0_0, 11_2, 5_2, 2_1, 13_0, 10_2, 8_0)
          (0_0, 3_1, 9_1, 1_1, 4_2, 6_1, 12_1)
(\alpha, \beta) = (3, 17):
 Q_1
          (0_0, 1_1, 2_2)
                              (3_0,4_1,5_2)
                                                                              (2_2,4_1,11_2)
                                                           (0_0, 3_0, 7_1)
          (0_0,4_1,8_2)
                              (1_1, 3_0, 11_2)
 Q_3
  P_1'
          (0_0, 5_2, 1_1, 4_1, 6_0, 2_2, 9_0)
                                                     (3_0, 8_2, 11_2, 12_0, 7_1, 0_2, 5_1)
                                                                                                 (10_1, 13_1, 7_0, 2_1, 10_0, 1_0, 11_1)
          (3_2, 6_2, 0_1, 4_0, 4_2, 5_0, 8_0)
                                                     (8_1, 3_1, 12_1, 12_2, 9_1, 7_2, 11_0)
                                                                                                (9_2, 2_0, 13_2, 13_0, 6_1, 1_2, 10_2)
  P_2'
          (0_0, 13_1, 5_2, 1_0, 1_1, 12_0, 13_0)
                                                     (2_2, 3_2, 4_1, 0_2, 5_0, 8_2, 0_1)
                                                                                                (3_0, 11_1, 10_2, 4_0, 7_2, 5_1, 6_1)
          (6_0, 3_1, 11_2, 10_0, 12_1, 7_0, 4_2)
                                                                                                (9_0, 8_1, 8_0, 2_1, 13_2, 10_1, 1_2)
                                                    (7_1, 12_2, 11_0, 9_2, 9_1, 6_2, 2_0)
(\alpha, \beta) = (4, 16):
          (0_0, 1_1, 2_2)
                                                            (0_0, 3_0, 7_1)
                                                                               (2_2,4_1,11_2)
 Q_1
                              (3_0,4_1,5_2)
                                                   Q_2
          (0_0,4_1,8_2)
                              (1_1, 3_0, 11_2)
                                                            (0_0, 5_2, 9_0)
                                                                               (1_1,4_1,0_2)
 Q_3
                                                   Q_4
  P_1'
          (0_0, 6_0, 1_1, 5_2, 2_2, 3_0, 10_1)
                                                     (4_1, 7_1, 13_1, 8_2, 12_0, 9_0, 1_0)
                                                                                                  (11_2, 0_2, 6_2, 13_0, 3_2, 4_0, 2_1)
                                                     (8_1, 7_2, 13_2, 11_1, 12_1, 3_1, 11_0)
          (5_1, 12_2, 6_1, 9_2, 4_2, 7_0, 2_0)
                                                                                                  (10_0, 9_1, 1_2, 8_0, 0_1, 5_0, 10_2)
  P_2'
          (0_0, 11_2, 13_1, 2_2, 12_0, 0_1, 1_0)
                                                     (1_1, 4_0, 4_1, 10_0, 5_2, 5_1, 5_0)
                                                                                                  (3_0, 8_1, 3_1, 9_0, 11_1, 10_1, 1_2)
          (6_0, 9_2, 10_2, 7_0, 8_0, 6_2, 7_2)
                                                     (7_1, 2_0, 8_2, 13_0, 13_2, 2_1, 4_2)
                                                                                                  (0_2, 6_1, 12_1, 12_2, 11_0, 3_2, 9_1)
(\alpha, \beta) = (5, 15):
          (0_0, 1_1, 2_2, 3_0, 4_1, 5_2, 8_2)
                                                     (6_0, 7_1, 10_1, 13_1, 12_0, 9_0, 0_2)
                                                                                                (11_2, 2_1, 9_2, 1_0, 4_0, 7_0, 12_2)
          (3_2, 8_1, 13_0, 5_1, 10_0, 5_0, 12_1)
                                                     (6_2, 3_1, 11_0, 6_1, 9_1, 0_1, 7_2)
                                                                                                (11_1, 4_2, 13_2, 2_0, 10_2, 1_2, 8_0)
          (0_0, 11_2, 2_2, 1_0, 6_0, 13_1, 5_0)
                                                     (1_1, 12_0, 11_1, 8_2, 9_2, 3_0, 0_1)
                                                                                                (4_1, 10_0, 7_2, 8_1, 13_2, 4_0, 12_2)
          (5_2, 6_2, 9_1, 0_2, 8_0, 5_1, 2_0)
                                                     (7_1, 13_0, 12_1, 7_0, 6_1, 3_2, 4_2)
                                                                                                (9_0, 1_2, 10_1, 11_0, 2_1, 3_1, 10_2)
(\alpha, \beta) = (6, 14):
         (0_0, 1_1, 2_2)
                                 (3_0,4_1,5_2)
                                                      (6_0, 7_1, 10_1)
                                                                           (8_2, 11_2, 13_1)
                                                                                                  (9_0, 12_0, 0_2)
          (1_0, 3_2, 7_0)
                                 (2_1,4_0,8_1)
                                                      (5_1, 6_2, 9_2)
                                                                           (10_0, 13_0, 1_2)
                                                                                                  (11_1, 0_1, 4_2)
          (12_2, 7_2, 13_2)
                                (2_0, 6_1, 11_0)
                                                      (3_1, 9_1, 10_2)
                                                                           (5_0, 8_0, 12_1)
          (0_0, 5_2, 10_1, 1_1, 8_2, 2_1, 7_1)
                                                     (2_2, 9_0, 4_1, 12_0, 3_0, 11_2, 3_2)
                                                                                                 (6_0, 13_1, 5_1, 11_1, 0_2, 10_0, 6_1)
          (1_0, 0_1, 8_0, 7_0, 7_2, 4_0, 3_1)
                                                     (6_2, 1_2, 12_1, 12_2, 11_0, 9_2, 5_0)
                                                                                                (8_1, 4_2, 13_2, 2_0, 10_2, 13_0, 9_1)
          (0_0, 13_1, 5_2, 1_0, 1_1, 4_0, 4_2)
                                                     (2_2, 2_1, 1_2, 9_0, 0_1, 8_2, 5_0)
                                                                                                 (3_0, 11_1, 8_0, 3_2, 2_0, 10_1, 12_2)
          (4_1, 5_1, 11_0, 10_0, 10_2, 7_1, 9_2)
                                                     (6_0, 8_1, 13_2, 7_0, 12_1, 0_2, 3_1)
                                                                                                (11_2, 13_0, 7_2, 6_2, 9_1, 12_0, 6_1)
(\alpha, \beta) = (7, 13):
          (0_0,1_1,2_2)
                                 (3_0,4_1,5_2)
                                                      (6_0, 7_1, 10_1)
                                                                           (8_2, 11_2, 13_1)
                                                                                                  (9_0, 12_0, 0_2)
                                 (2_1,4_0,8_1)
                                                                           (10_0, 13_0, 1_2)
          (1_0, 3_2, 7_0)
                                                      (5_1, 6_2, 9_2)
                                                                                                  (11_1, 0_1, 4_2)
                                (2_0, 6_1, 11_0)
                                                      (3_1, 9_1, 10_2)
                                                                           (5_0, 8_0, 12_1)
          (12_2, 7_2, 13_2)
                                                   (2_2, 9_0, 4_1, 12_0, 3_0, 11_2, 3_2)
          (0_0, 5_2, 10_1, 1_1, 8_2, 2_1, 7_1)
                                                                                               (6_0, 13_1, 5_1, 11_1, 0_2, 8_1, 7_2)
          (1_0, 13_0, 8_0, 7_0, 3_1, 13_2, 4_2)
                                                   (4_0, 0_1, 12_1, 1_2, 11_0, 10_0, 9_1)
                                                                                               (6_2, 2_0, 10_2, 12_2, 6_1, 9_2, 5_0)
          (0_0, 2_1, 1_1, 3_2, 4_1, 1_0, 6_1)
                                                     (2_2, 0_2, 5_0, 7_1, 13_0, 10_2, 7_0)
                                                                                                (3_0, 6_2, 9_1, 12_0, 3_1, 5_2, 8_1)
  P_2'
          (6_0, 12_2, 11_0, 5_1, 2_0, 10_1, 4_2)
                                                     (8_2, 0_1, 13_1, 1_2, 9_0, 11_1, 12_1)
                                                                                                (11_2, 9_2, 8_0, 10_0, 7_2, 4_0, 13_2)
(\alpha, \beta) = (8, 12):
       (0_0, 1_1, 5_2)
```

```
(0_0, 2_2, 4_1, 1_1, 3_0, 5_2, 7_1)
                                                   (6_0, 8_2, 0_2, 11_2, 13_1, 10_1, 2_1)
                                                                                              (9_0, 12_0, 1_0, 8_1, 3_1, 4_0, 10_0)
          (3_2, 12_2, 5_1, 11_1, 4_2, 6_2, 5_0)
                                                   (7_0, 13_0, 8_0, 2_0, 9_1, 6_1, 12_1)
                                                                                              (9_2, 7_2, 10_2, 0_1, 13_2, 1_2, 11_0)
  P_2'
          (0_0, 9_0, 4_0, 3_0, 10_1, 6_2, 13_0)
                                                   (1_1, 0_2, 4_1, 5_1, 0_1, 12_0, 11_1)
                                                                                              (2_2, 7_0, 5_0, 6_0, 11_0, 13_1, 4_2)
          (5_2, 10_0, 9_1, 8_1, 13_2, 3_2, 1_2)
                                                   (7_1, 9_2, 8_0, 12_2, 10_2, 1_0, 3_1)
                                                                                              (8_2, 6_1, 2_1, 12_1, 2_0, 11_2, 7_2)
(\alpha, \beta) = (9, 11):
        (0_0, 2_2, 13_1)
                             (0_0,7_1,3_2)
                                                 (0_0, 8_2, 8_1)
          (0_0, 1_1, 2_2, 3_0, 4_1, 5_2, 6_0)
                                                     (7_1, 10_1, 13_1, 8_2, 11_2, 0_2, 9_2)
                                                                                                (9_0, 12_0, 1_0, 5_1, 10_0, 6_2, 11_1)
          (2_1, 3_1, 9_1, 4_2, 0_1, 5_0, 11_0)
                                                     (3_2, 7_0, 8_0, 13_0, 2_0, 6_1, 12_1)
                                                                                                (4_0, 8_1, 10_2, 1_2, 7_2, 12_2, 13_2)
          (0_0, 9_2, 0_1, 5_2, 10_2, 11_2, 13_0)
                                                     (1_1, 6_2, 8_0, 9_0, 4_0, 5_0, 9_1)
                                                                                                (3_0, 8_2, 3_1, 11_1, 6_1, 7_2, 5_1)
(\alpha, \beta) = (10, 10):
          (0_0, 1_1, 2_2)
 Q_1
                               (3_0,4_1,5_2)
                                                   Q_2
                                                           (0_0, 3_0, 7_1)
                                                                                (2_2,4_1,11_2)
                                                                                (1_1, 3_0, 10_2)
          (0_0, 4_1, 9_0)
                               (1_1, 5_2, 8_2)
                                                           (0_0, 5_2, 10_1)
  Q_3
                                                   Q_4
  Q_5
          (0_0, 13_1, 2_1)
                               (2_2,3_0,1_2)
          (0_0, 1_0, 2_2, 5_2, 6_0, 1_1, 13_0)
                                                   (3_0, 8_2, 4_1, 7_1, 6_2, 11_0, 7_2)
                                                                                              (9_0, 4_0, 9_1, 0_2, 10_0, 3_2, 5_1)
          (10_1, 1_2, 13_1, 9_2, 4_2, 8_0, 5_0)
                                                   (11_2, 2_0, 0_1, 7_0, 6_1, 11_1, 12_1)
                                                                                              (12_0, 10_2, 8_1, 3_1, 2_1, 12_2, 13_2)
(\alpha, \beta) = (11, 9):
         (0_0, 1_1, 2_2)
                                  (3_0,4_1,5_2)
                                                       (6_0, 7_1, 10_1)
                                                                            (8_2, 11_2, 13_1)
                                                                                                   (9_0, 12_0, 0_2)
                                  (2_1, 4_0, 9_2)
                                                                            (7_0, 12_2, 3_1)
                                                                                                   (10_0, 0_1, 9_1)
          (1_0, 3_2, 8_1)
                                                       (5_1, 6_2, 1_2)
          (11_1, 10_2, 13_2)
                                  (13_0, 2_0, 6_1)
                                                       (4_2, 7_2, 11_0)
                                                                            (5_0, 8_0, 12_1)
                                                                                              (4_1, 2_0, 12_2, 11_0, 1_2, 2_1, 3_1)
         (0_0, 7_1, 6_2, 1_1, 10_1, 3_0, 5_1)
                                                   (2_2, 11_2, 6_0, 8_2, 7_2, 11_1, 6_1)
          (5_2, 10_0, 9_2, 5_0, 4_0, 8_1, 10_2)
                                                   (9_0, 4_2, 13_1, 12_1, 13_0, 3_2, 8_0)
                                                                                              (12_0, 7_0, 9_1, 0_2, 13_2, 1_0, 0_1)
(\alpha, \beta) = (12, 8):
                                                     (6_0, 7_1, 10_1)
                                                                            (8_2, 11_2, 13_1)
                                                                                                   (9_0, 12_0, 0_2)
  P_1
         (0_0, 1_1, 2_2)
                                (3_0,4_1,5_2)
          (1_0, 3_2, 7_0)
                                (2_1,4_0,8_1)
                                                      (5_1, 6_2, 9_2)
                                                                            (10_0, 13_0, 1_2)
                                                                                                   (11_1, 0_1, 4_2)
          (12_2, 7_2, 13_2)
                                (2_0, 6_1, 11_0)
                                                     (3_1, 9_1, 10_2)
                                                                            (5_0, 8_0, 12_1)
  P_2
          (0_0, 5_2, 10_1)
                                (1_1, 8_2, 2_1)
                                                      (2_2, 9_0, 3_2)
                                                                            (3_0, 11_2, 5_1)
                                                                                                   (4_1, 13_1, 6_2)
          (6_0, 1_0, 1_2)
                                (7_1, 13_0, 7_2)
                                                     (12_0, 9_2, 9_1)
                                                                            (0_2, 11_1, 2_0)
                                                                                                   (4_0, 3_1, 13_2)
          (7_0, 0_1, 8_0)
                                (8_1, 4_2, 10_2)
                                                     (10_0, 5_0, 11_0)
                                                                            (12_2, 6_1, 12_1)
          (0_0, 9_0, 5_1, 4_1, 0_2, 1_1, 9_2)
                                                     (2_2, 13_1, 13_0, 5_2, 7_0, 12_1, 1_0)
                                                                                                (3_0, 2_1, 4_2, 7_1, 6_1, 8_2, 0_1)
          (6_0, 3_2, 3_1, 12_0, 13_2, 10_0, 7_2)
                                                     (10_1, 1_2, 10_2, 4_0, 9_1, 6_2, 2_0)
                                                                                                (11_2, 11_1, 8_0, 12_2, 11_0, 8_1, 5_0)
(\alpha,\beta)=(13,7):
         (0_0, 1_1, 2_2)
                                (3_0,4_1,5_2)
                                                     (6_0, 7_1, 10_1)
                                                                           (8_2, 11_2, 13_1)
                                                                                                 (9_0, 12_0, 0_2)
                                (2_1,4_0,8_1)
                                                                           (10_0, 13_0, 1_2)
          (1_0, 3_2, 7_0)
                                                     (5_1, 6_2, 9_2)
                                                                                                 (11_1, 0_1, 4_2)
                                (2_0, 6_1, 11_0)
                                                     (3_1, 9_1, 10_2)
          (12_2, 7_2, 13_2)
                                                                           (5_0, 8_0, 12_1)
          (0_0, 5_2, 10_1)
                                                                                                 (4_1, 13_1, 6_2)
                               (1_1, 8_2, 2_1)
                                                    (2_2, 9_0, 3_2)
                                                                           (3_0, 11_2, 5_1)
          (6_0, 12_0, 1_2)
                               (7_1, 9_2, 6_1)
                                                    (0_2, 12_2, 9_1)
                                                                           (1_0, 13_0, 7_2)
                                                                                                 (4_0, 3_1, 13_2)
                               (8_1, 4_2, 10_2)
          (7_0, 0_1, 8_0)
                                                    (10_0, 5_0, 11_0)
                                                                          (11_1, 2_0, 12_1)
          (0_0, 9_0, 7_0, 4_1, 0_2, 1_1, 3_1)
                                                     (2_2, 1_0, 5_2, 4_0, 1_2, 10_2, 5_1)
                                                                                                   (3_0, 9_2, 6_0, 7_2, 13_1, 8_1, 5_0)
          (7_1, 10_0, 9_1, 11_1, 8_2, 6_1, 12_2)
                                                    (10_1, 13_0, 12_1, 6_2, 2_0, 11_2, 13_2)
                                                                                                   (12_0, 0_1, 11_0, 3_2, 8_0, 2_1, 4_2)
(\alpha,\beta)=(15,5):
  P_1
          (0_0,1_1,4_1)
                               (2_2,3_0,6_0)
                                                                            (7_1, 10_1, 12_2)
                                                                                                   (11_2, 1_0, 6_2)
                                                       (5_2, 8_2, 9_0)
                               (13_1, 0_2, 5_1)
                                                                            (3_2, 9_2, 4_2)
                                                                                                   (8_1, 0_1, 9_1)
          (12_0,4_0,7_0)
                                                       (2_1,3_1,7_2)
                               (11_1, 12_1, 13_2)
                                                       (13_0, 2_0, 8_0)
                                                                            (6_1, 10_2, 11_0)
          (10_0, 1_2, 5_0)
          (0_0, 2_2, 13_1)
                               (0_0, 7_1, 3_2)
                                                       (0_0, 8_2, 8_1)
                                                     (1_1, 10_0, 5_1, 2_1, 11_0, 2_2, 0_1)
  Q'
          (0_0, 6_0, 11_1, 9_0, 0_2, 13_2, 12_2)
                                                                                              (8_2, 3_2, 11_2, 12_0, 3_1, 1_0, 6_1)
(\alpha, \beta) = (16, 4):
          (0_0, 9_0, 7_2, 1_0, 6_0, 0_1, 12_0) (1_1, 10_1, 5_1, 11_1, 13_2, 4_0, 9_1)
                                                                                            (2_2, 10_0, 5_2, 13_1, 1_2, 3_2, 4_2)
```

```
P_1
          (0_0, 3_0, 6_0)
                                (1_1,4_1,7_1)
                                                      (2_2, 5_2, 0_2)
                                                                             (8_2, 6_2, 7_2)
                                                                                                   (9_0, 0_1, 8_0)
                                                      (12_0, 10_0, 4_2)
          (10_1, 12_2, 1_2)
                                (11_2, 5_1, 13_2)
                                                                             (13_1, 7_0, 12_1)
                                                                                                   (1_0, 6_1, 9_1)
                                                      (4_0, 13_0, 5_0)
          (2_1, 11_1, 3_1)
                                (3_2, 9_2, 11_0)
                                                                             (8_1, 2_0, 10_2)
          (0_0, 2_2, 13_1)
                                (0_0,7_1,3_2)
                                                      (0_0,1_1,5_2)
(\alpha, \beta) = (17, 3):
          (0_0, 1_1, 2_2)
                                (3_0, 6_0, 10_1)
                                                     (4_1,7_1,9_0)
                                                                        (5_2, 8_2, 12_0)
                                                                                              (11_2, 13_1, 0_1)
          (0_2, 11_1, 13_2)
                                (1_0,4_2,9_1)
                                                     (2_1,6_2,5_0)
                                                                        (3_2, 13_0, 8_0)
                                                                                              (4_0, 12_2, 6_1)
                                (7_0, 3_1, 12_1)
                                                                        (9_2, 10_0, 11_0)
          (5_1, 1_2, 10_2)
                                                     (8_1, 2_0, 7_2)
                                (0_0, 13_1, 6_2)
          (0_0, 11_2, 3_1)
(\alpha, \beta) = (18, 2):
          (0_0, 1_1, 2_2)
                              (3_0, 6_0, 10_1)
                                                   (4_1,7_1,9_0)
                                                                          (5_2, 8_2, 12_0)
                                                                                                (11_2, 13_1, 6_2)
                              (1_0, 7_0, 6_1)
                                                   (2_1, 5_0, 13_2)
                                                                          (3_2,0_1,8_0)
                                                                                                (4_0, 13_0, 10_2)
          (0_2, 1_2, 9_1)
                              (8_1, 12_2, 4_2)
                                                   (9_2, 10_0, 11_0)
                                                                          (11_1, 3_1, 12_1)
          (5_1, 2_0, 7_2)
          (0_0, 10_1, 4_2)
                              (0_0, 2_1, 1_2)
                                                   (0_0, 3_2, 8_1)
(\alpha, \beta) = (19, 1):
          (0_0, 3_0, 7_1)
                                (1_1,4_1,8_2)
                                                     (2_2, 5_2, 9_0)
                                                                          (6_0, 11_2, 9_2)
                                                                                              (10_1, 7_2, 13_2)
                                                     (0_2, 10_0, 8_0)
                                                                          (1_0, 12_2, 6_1)
                                                                                              (2_1, 11_1, 3_1)
          (12_0, 6_2, 11_0)
                                (13_1,7_0,2_0)
                                                     (5_1, 1_2, 10_2)
          (3_2,4_2,9_1)
                                (4_0,0_1,12_1)
                                                                          (8_1, 13_0, 5_0)
```

Appendix E for Lemma 5.3

```
(\alpha, \beta) = (0, 31): I = \{(i_0, (i+17)_2), (i_1, (i+17)_3) | i \in \mathbb{Z}_{21}\}.
          (0_0, 2_2, 4_0, 1_1, 3_3, 5_1, 10_2)
                                                     (6_2, 9_1, 15_3, 8_0, 11_3, 14_2, 19_3)
                                                                                                  (7_3, 12_0, 17_1, 3_0, 13_1, 1_2, 16_0)
          (18_2, 4_1, 6_0, 2_3, 7_1, 5_2, 13_3)
 Q_2'
          (0_0, 9_1, 3_3, 10_2, 16_0, 1_1, 11_3)
                                                     (2_2, 12_0, 4_1, 4_0, 18_2, 5_1, 19_3)
                                                                                                  (6_2, 15_3, 5_2, 7_3, 17_1, 15_0, 9_3)
          (13_1, 0_2, 20_0, 7_1, 3_0, 8_2, 20_3)
          (0_0, 17_1, 2_2, 13_1, 10_3, 1_1, 18_2)
 Q_3'
                                                        (4_0, 2_3, 15_0, 5_1, 5_2, 11_3, 13_2)
                                                                                                   (7_3, 3_0, 10_2, 19_0, 19_3, 16_1, 7_2)
          (15_3, 2_0, 1_2, 11_1, 20_0, 13_3, 14_1)
 Q_4'
          (0_0, 2_3, 11_1, 4_0, 14_3, 9_1, 4_2)
                                                        (1_1, 5_2, 10_0, 13_1, 13_3, 8_0, 5_3)
                                                                                                   (2_2, 1_3, 15_2, 12_0, 7_1, 10_2, 3_1)
          (3_3, 2_0, 11_3, 0_2, 19_1, 20_0, 20_2)
          (0_0, 1_1, 2_2, 3_3, 4_0, 19_1, 13_2)
                                                        (0_0, 6_3, 19_1, 18_0, 3_3, 9_2, 15_1)
                                                                                                   (0_0, 8_2, 16_0, 3_2, 11_0, 19_2, 20_3)
(\alpha, \beta) = (9, 22): I = \{(i_0, (i+8)_2), (i_1, (i+4)_3) | i \in \mathbb{Z}_{21}\}.
          (0_0, 6_2, 13_1)
                               (2_2, 8_0, 15_3)
                                                                           (5_1, 11_3, 1_2)
                                                    (4_0, 19_3, 3_1)
          (0_0, 9_1, 18_2)
                               (1_1, 8_0, 19_3)
                                                                           (3_3, 10_2, 19_0)
 Q_2
                                                    (2_2, 11_3, 17_1)
 Q_3
          (0_0, 10_2, 0_1)
                               (1_1, 11_3, 7_0)
                                                    (2_2, 19_3, 8_1)
                                                                           (3_3, 18_2, 2_0)
 Q_1'
          (0_0,14_2,1_1,12_0,2_2,16_0,12_1)\\
                                                       (3_3, 17_1, 11_0, 9_1, 2_3, 15_0, 3_2)
                                                                                                   (6_2, 3_0, 15_3, 4_2, 7_3, 4_1, 4_3)
          (13_1, 5_3, 0_1, 12_2, 20_0, 20_3, 8_2)
          (0_0, 2_3, 8_2, 1_1, 10_3, 4_0, 14_3)
                                                      (2_2, 12_1, 5_0, 0_1, 10_0, 10_2, 6_0)
                                                                                                   (6_2, 1_3, 10_1, 18_3, 9_0, 14_2, 13_3)
          (8_0, 5_3, 9_1, 12_2, 13_1, 11_2, 11_1)
 T'
          (0_0, 1_1, 19_2, 6_3, 10_0, 11_2, 16_3)
                                                       (0_0, 2_2, 4_3, 6_1, 3_2, 5_3, 1_2)
                                                                                                   (0_0, 17_3, 18_0, 15_1, 16_3, 20_0, 19_2)
          (0_0, 13_3, 15_0, 11_3, 3_2, 5_0, 2_1)
                                                       (0_0, 4_1, 5_2, 10_3, 15_0, 2_1, 20_2)
                                                                                                   (0_0, 5_1, 4_3, 2_1, 3_2, 1_1, 20_3)
          (0_0, 3_3, 2_1, 1_0, 6_1, 11_2, 19_3)
                                                       (0_0, 8_1, 10_3, 2_2, 19_1, 20_2, 18_1)
(\alpha, \beta) = (18, 13) : I = \{(i_0, (i+3)_1), (i_2, (i+12)_3) | i \in \mathbb{Z}_{21}\}.
                                 (1_1, 3_3, 6_2)
          (0_0, 2_2, 5_1)
                                                       (4_0, 7_3, 0_1)
                                                                              (8_0, 1_2, 5_3)
  Q_1
                                 (1_1, 4_0, 1_2)
          (0_0, 7_3, 9_1)
                                                        (2_2, 11_3, 20_0)
                                                                              (3_3, 18_2, 8_1)
  Q_2
  Q_3
          (0_0, 10_2, 15_3)
                                 (1_1, 8_0, 19_3)
                                                        (2_2, 4_0, 12_1)
                                                                              (5_1, 9_2, 5_3)
          (0_0, 19_3, 5_2)
  Q_4
                                 (1_1, 10_2, 20_0)
                                                       (3_3, 0_1, 10_0)
                                                                              (5_1, 14_3, 12_2)
                                 (1_1, 15_3, 17_2)
          (0_0, 0_1, 10_3)
                                                                              (6_2, 14_3, 5_0)
 Q_5
                                                       (4_0, 8_1, 4_2)
```

```
(0_0, 2_3, 12_1)
                              (1_1, 16_0, 4_2)
                                                   (2_2, 17_1, 18_3)
                                                                          (6_2, 20_0, 16_3)
  Q_6
          (0_0, 16_1, 7_3, 12_0, 1_1, 3_0, 20_2)
                                                      (2_2, 0_1, 14_2, 2_0, 6_3, 10_1, 9_3)
                                                                                                  (3_3, 20_1, 11_2, 1_3, 1_0, 17_2, 19_1)
 Q_1'
          (4_0, 8_2, 11_3, 6_0, 19_3, 19_2, 11_1)
 T'
          (0_0, 13_2, 12_3, 11_0, 3_2, 9_1, 8_2)
                                                      (0_0, 1_1, 9_0, 17_2, 11_3, 19_2, 20_3)
                                                                                                  (0_0, 20_1, 5_0, 11_3, 3_0, 16_1, 8_3)
          (0_0, 6_3, 19_0, 18_3, 17_2, 16_1, 1_3)
                                                      (0_0, 6_2, 12_0, 18_2, 3_0, 9_2, 15_1)
                                                                                                  (0_0, 13_1, 5_3, 18_1, 17_2, 16_3, 15_2)
(\alpha, \beta) = (24, 7): I = \{(i_0, (i+1)_3), (i_1, (i+20)_2) | i \in \mathbb{Z}_{21}\}.
          (0_0, 1_1, 2_2)
                                (3_3, 4_0, 9_1)
                                                       (5_1, 7_3, 10_2)
                                                                             (6_2, 8_0, 11_3)
  Q_1
  Q_2
          (0_0, 6_2, 7_3)
                                (1_1, 4_0, 14_2)
                                                       (3_3, 5_1, 20_0)
                                                                             (9_1, 2_3, 13_2)
  Q_3
          (0_0, 9_1, 15_3)
                                (1_1, 8_0, 1_2)
                                                       (2_2, 5_1, 2_3)
                                                                             (4_0, 9_2, 1_3)
  Q_4
          (0_0, 11_3, 18_2)
                                (1_1, 10_2, 20_0)
                                                       (2_2, 9_1, 19_3)
                                                                             (3_3, 16_0, 8_1)
                                                                             (6_2,0_1,13_3)
  Q_5
          (0_0, 17_1, 13_2)
                                (1_1, 2_3, 7_0)
                                                       (2_2, 8_0, 6_3)
          (0_0, 0_1, 5_3)
                                                       (2_2, 16_0, 20_1)
                                                                             (7_3, 1_2, 14_0)
  Q_6
                                (1_1, 9_2, 18_3)
                                                       (2_2, 20_0, 5_3)
                                                                             (3_3, 17_1, 12_2)
  Q_7
          (0_0, 1_2, 12_1)
                                (1_1, 10_3, 19_0)
          (0_0, 2_3, 20_1)
                                                       (3_3, 7_0, 16_2)
                                (1_1, 1_3, 20_2)
                                                                             (6_2, 12_1, 2_0)
 Q_8
 Q_1'
          (0_0, 8_1, 7_3, 17_1, 19_0, 5_1, 17_2)
                                                     (2_2, 11_0, 20_3, 1_2, 20_1, 3_3, 16_1)
          (6_2, 5_3, 11_2, 0_1, 10_0, 5_2, 6_0)
                                                    (8_0, 18_3, 7_2, 2_3, 11_1, 16_0, 8_3)
```

Appendix F for Lemma 5.4

```
(\alpha, \beta) = (36, 5):
                                                                             (4_0, 16_1, 10_2)
         (0_0, 16_2, 6_3)
                                 (3_0, 10_0, 2_2)
                                                       (19_1, 8_2, 12_2)
                                                                                                     (12_1, 5_3, 16_3)
                                                                                                                           (9_2, 17_2, 12_3)
         (7_0, 11_0, 15_1)
                                (20_0, 18_1, 0_3)
                                                       (2_1, 10_1, 18_3)
                                                                             (0_2, 2_3, 15_3)
                                                                                                     (5_1, 7_1, 18_2)
                                                                                                                           (5_0, 15_0, 3_3)
         (13_0, 13_2, 15_2)
                                (17_0, 7_3, 9_3)
                                                       (16_0, 13_1, 4_2)
                                                                             (1_0,3_1,4_3)
                                                                                                     (11_1, 1_3, 8_3)
                                                                                                                           (18_0, 1_2, 11_2)
         (12_0, 19_2, 19_3)
                                (6_0, 14_0, 20_1)
                                                       (2_0,9_1,5_2)
                                                                             (0_1,4_1,14_1)
                                                                                                     (8_0, 17_1, 20_2)
                                                                                                                           (7_2, 14_2, 13_3)
         (6_1, 3_2, 11_3)
                                (1_1, 6_2, 20_3)
                                                       (9_0, 8_1, 17_3)
                                                                             (19_0, 10_3, 14_3)
          (1_1, 7_2, 16_3)
                                (1_0, 2_1, 6_2)
                                                       (0_1, 8_2, 0_3)
                                                                           (0_0, 2_0, 2_3)
          (0_0, 16_1, 18_2)
                                (1_0, 16_2, 5_3)
                                                       (2_0, 2_1, 19_3)
                                                                           (0_1, 20_2, 6_3)
  Q_2
                                (0_0, 10_2, 15_3)
  Q_3
          (2_0, 15_1, 1_3)
                                                       (1_0, 16_1, 2_2)
                                                                           (2_1, 18_2, 14_3)
                                (0_0, 3_1, 5_3)
          (2_0, 19_2, 16_3)
  Q_4
                                                       (1_0, 11_1, 9_2)
                                                                           (1_1, 2_2, 0_3)
          (0_0, 11_1, 11_2)
                                (1_0, 6_1, 19_3)
                                                       (2_0, 0_2, 12_3)
                                                                           (1_1, 10_2, 11_3)
  Q_5
         (0_0, 1_1, 2_2, 3_3, 4_0, 5_1, 6_2)
                                                     (0_0, 3_3, 6_2, 1_1, 4_0, 19_3, 16_0)
                                                                                             (0_0, 5_1, 8_0, 3_3, 18_2, 2_2, 20_0)
         (0_0, 15_3, 9_1, 3_3, 19_3, 13_1, 18_2)
(\alpha, \beta) = (37, 4):
                                                                                                   (6_0, 14_0, 19_1)
        (0_0, 19_2, 0_3)
                               (5_1, 15_1, 9_3)
                                                       (3_0, 14_1, 12_3)
                                                                             (0_1, 8_1, 17_1)
                                                                                                                           (13_2, 10_3, 20_3)
                                                       (2_2, 11_2, 11_3)
                                                                                                                           (20_0, 6_1, 13_3) \\
         (5_0, 9_1, 5_2)
                               (15_0, 8_2, 12_2)
                                                                             (3_2, 16_2, 1_3)
                                                                                                   (7_0, 17_0, 4_1)
         (16_1, 1_2, 15_3)
                               (12_0, 13_1, 16_3)
                                                       (16_0, 6_3, 19_3)
                                                                             (2_0, 18_2, 7_3)
                                                                                                   (18_1, 14_3, 18_3)
                                                                                                                           (1_1, 20_1, 20_2)
         (3_1,0_2,8_3)
                               (11_1, 2_3, 4_3)
                                                       (13_0, 2_1, 15_2)
                                                                             (4_0, 8_0, 3_3)
                                                                                                   (9_0, 18_0, 10_2)
                                                                                                                           (7_1, 6_2, 17_2)
         (1_0, 10_1, 4_2)
                               (10_0, 12_1, 14_2)
                                                       (19_0, 7_2, 9_2)
                                                                             (11_0, 5_3, 17_3)
          (0_1, 7_2, 6_3)
                                (1_0, 20_0, 11_3)
                                                       (0_0, 19_1, 6_2)
                                                                             (2_1, 14_2, 10_3)
  Q_1
          (0_1, 16_2, 11_3)
                                (0_0, 5_2, 18_3)
                                                       (1_0, 7_1, 18_2)
                                                                             (2_0, 17_1, 19_3)
  Q_2
  Q_3
          (1_0, 0_2, 3_3)
                                (2_0, 1_1, 10_3)
                                                       (2_1, 5_2, 20_3)
                                                                             (0_0, 3_1, 7_2)
                                (0_1, 9_2, 13_3)
                                                       (0_0, 17_1, 10_2)
  Q_4
          (1_0, 1_1, 2_3)
                                                                             (2_0, 14_2, 15_3)
          (0_0, 14_1, 15_2)
                                (1_0, 13_1, 8_3)
  Q_5
                                                       (2_0, 10_2, 0_3)
                                                                             (0_1, 5_2, 10_3)
         (0_0, 1_1, 2_2, 3_3, 4_0, 5_1, 6_2)
                                                     (0_0, 3_3, 6_2, 1_1, 4_0, 19_3, 16_0)
                                                                                             (0_0, 5_1, 8_0, 3_3, 18_2, 2_2, 20_0)
         (0_0, 15_3, 9_1, 3_3, 19_3, 13_1, 18_2)
```

```
(\alpha, \beta) = (38, 3):
         (3_1, 5_2, 19_3)
                                 (17_0, 5_1, 12_3)
                                                       (6_0, 13_1, 10_3)
                                                                              (7_1, 6_2, 19_2)
                                                                                                    (18_0, 9_1, 12_2)
                                                                                                                            (1_1, 2_1, 15_2)
         (16_0, 12_1, 13_3)
                                 (3_0, 9_2, 10_2)
                                                       (18_1, 7_2, 18_3)
                                                                              (5_0, 13_2, 17_3)
                                                                                                    (14_0, 20_1, 18_2)
                                                                                                                            (12_0, 13_0, 10_1)
         (10_0, 0_1, 8_3)
                                 (6_1, 14_1, 5_3)
                                                       (15_0, 20_2, 0_3)
                                                                              (1_0, 9_0, 0_2)
                                                                                                    (7_0, 17_1, 3_2)
                                                                                                                            (11_0, 15_1, 11_3)
         (8_1, 2_2, 14_3)
                                 (16_1, 1_2, 4_3)
                                                       (0_0, 11_2, 20_3)
                                                                              (17_2, 2_3, 3_3)
                                                                                                    (4_1, 4_2, 6_3)
                                                                                                                            (20_0, 8_2, 7_3)
         (2_0, 16_2, 16_3)
                                 (8_0, 11_1, 15_3)
                                                       (4_0, 19_1, 14_2)
                                                                              (19_0, 1_3, 9_3)
          (0_0, 0_1, 1_2)
                                 (1_0, 17_1, 10_3)
                                                       (2_0, 5_2, 3_3)
                                                                              (1_1, 18_2, 14_3)
  Q_1
                                                       (2_0, 18_2, 15_3)
                                 (1_0, 6_1, 16_3)
          (0_0, 8_1, 19_2)
                                                                             (1_1, 5_2, 20_3)
  Q_2
          (0_0, 13_1, 18_2)
                                 (1_0, 3_1, 18_3)
                                                       (2_0, 2_2, 7_3)
                                                                             (2_1, 10_2, 5_3)
  Q_3
          (0_0, 14_1, 2_2)
                                 (1_0, 0_1, 11_3)
                                                       (2_0, 15_2, 4_3)
                                                                             (1_1, 19_2, 6_3)
  Q_4
  T
          (0_0, 7_3, 11_3)
                                 (0_0, 14_2, 19_3)
                                                       (0_0, 5_1, 16_0)
                                                                             (0_0, 2_2, 4_0)
                                                                                                    (0_0, 10_2, 17_1)
(\alpha, \beta) = (39, 2):
                                 (4_0, 7_1, 20_1)
         (13_1, 10_2, 17_2)
                                                         (0_0, 7_2, 0_3)
                                                                               (10_1, 14_1, 5_3)
                                                                                                       (20_0, 4_3, 18_3)
                                                                                                                             (13_0, 2_1, 1_3)
                                 (19_0, 11_1, 16_2)
                                                                                                                              (3_1, 7_3, 20_3)
                                                                               (12_1, 17_1, 15_3)
         (6_2, 3_3, 14_3)
                                                         (1_0, 17_0, 0_2)
                                                                                                       (3_0, 1_2, 3_2)
         (11_2, 15_2, 10_3)
                                 (16_0, 2_3, 19_3)
                                                         (2_0, 15_0, 9_1)
                                                                               (14_0, 5_2, 8_2)
                                                                                                       (18_0, 8_1, 15_1)
                                                                                                                             (6_3, 8_3, 11_3)
         (11_0, 20_2, 12_3)
                                 (5_0, 19_2, 9_3)
                                                         (12_0, 0_1, 18_1)
                                                                               (8_0, 9_2, 14_2)
                                                                                                       (7_0, 9_0, 10_0)
                                                                                                                             (5_1, 16_1, 4_2)
         (6_0, 2_2, 17_3)
                                 (4_1, 6_1, 13_3)
                                                         (1_1, 18_2, 16_3)
                                                                               (19_1, 12_2, 13_2)
          (1_1, 2_1, 8_2)
                                 (1_0, 8_0, 7_3)
                                                       (0_0, 0_1, 2_3)
  Q_1
                                                                              (0_2, 10_2, 6_3)
          (1_1, 11_3, 12_3)
                                 (0_0, 14_1, 3_2)
                                                       (0_1, 11_2, 19_2)
                                                                             (1_0, 5_0, 13_3)
  Q_2
          (0_1, 2_2, 6_3)
                                 (0_0, 16_2, 17_3)
                                                       (1_1, 9_2, 19_3)
                                                                              (1_0, 11_0, 2_1)
  Q_3
  Q_4
          (2_0, 10_1, 10_2)
                                 (1_0, 3_1, 16_3)
                                                       (0_0, 11_2, 18_3)
                                                                             (2_1, 18_2, 2_3)
  Q_5
          (0_0, 17_1, 10_3)
                                 (1_0, 14_2, 17_3)
                                                       (2_0,0_1,12_2)
                                                                              (1_1, 4_2, 6_3)
                                 (1_0, 6_1, 14_3)
  Q_6
          (0_0,4_1,5_2)
                                                       (2_0,4_2,16_3)
                                                                             (2_1, 15_2, 3_3)
(\alpha, \beta) = (40, 1):
                                 (10_0, 3_2, 7_3)
         (13_1, 0_2, 16_2)
                                                       (15_1, 20_1, 10_2)
                                                                               (5_0, 8_0, 14_2)
                                                                                                      (13_0, 2_2, 17_3)
                                                                                                                            (1_0, 3_3, 16_3)
         (13_2, 15_2, 12_3)
                                 (4_2, 4_3, 14_3)
                                                       (3_0, 5_2, 20_2)
                                                                               (0_1, 3_1, 15_3)
                                                                                                      (1_1,7_1,6_3)
                                                                                                                            (19_0, 17_1, 10_3)
         (9_0, 1_2, 9_2)
                                 (19_1, 8_2, 11_2)
                                                       (14_1, 16_1, 18_3)
                                                                               (0_3, 1_3, 19_3)
                                                                                                      (18_0, 5_1, 9_1)
                                                                                                                            (6_0, 14_0, 16_0)
         (2_0, 17_0, 11_1)
                                 (4_0, 8_1, 18_1)
                                                       (7_0, 6_2, 20_3)
                                                                               (12_0, 8_3, 13_3)
                                                                                                     (0_0, 18_2, 19_2)
                                                                                                                            (11_0, 6_1, 12_2)
         (2_1, 5_3, 11_3)
                                 (20_0,7_2,9_3)
                                                       (15_0, 4_1, 12_1)
                                                                               (10_1, 17_2, 2_3)
  Q_1
          (1_0, 17_0, 12_3)
                                 (1_1, 2_1, 6_2)
                                                       (0_0, 6_1, 7_3)
                                                                             (1_2, 5_2, 17_3)
  Q_2
          (0_1, 6_3, 10_3)
                                 (0_0, 17_0, 5_3)
                                                       (1_0, 8_1, 5_2)
                                                                             (1_1, 0_2, 10_2)
                                                       (1_1, 2_2, 9_3)
  Q_3
          (1_0, 12_2, 4_3)
                                 (0_0, 20_0, 20_1)
                                                                             (0_1, 19_2, 17_3)
                                 (2_0, 18_2, 0_3)
                                                       (0_0, 17_1, 14_3)
                                                                             (1_1, 13_2, 1_3)
          (1_0, 12_1, 8_2)
  Q_4
                                 (0_1, 15_2, 11_3)
                                                                             (0_0, 2_1, 0_3)
  Q_5
          (2_0, 14_2, 1_3)
                                                       (1_0,4_1,4_2)
          (0_0, 1_1, 15_2)
                                 (1_0, 14_1, 9_3)
                                                       (2_0,7_2,8_3)
                                                                             (0_1, 2_2, 7_3)
  Q_6
```