

Архитектура компьютера и операционные системы

Лекция 5. Вспомогательная память и подсистема ввода-вывода

Андреева Евгения Михайловна доцент кафедры информатики и вычислительного эксперимента

План лекции

- Вспомогательная память
- Классификации и иерархия памяти
- НЖМД
 - устройство, геометрия, интерфейсы
- RAID
- Подсистема ввода-вывода

Вспомогательная память

Синонимы – Центральный процессор вторичная память (secondary storage), внешняя память Блок управления Арифметико-Устройства ввода-вывода логическое устройство Регистры Кэш-Основная Диск Принтер память память

Классификации памяти

- В зависимости от возможности записи и перезаписи данных (ОЗУ RAM, ПЗУ ROM, ППЗУ и др.)
- По признаку зависимости сохранения записи при снятии электропитания
- По признаку вида физического носителя и способа записи данных (полупроводниковая, лазерная, магнитная, молекулярная)
- По назначению, организации памяти и/или доступа (автономная, адресуемая, ассоциативная)

Иерархия памяти

Магнитные диски

НЖМД, жёсткий диск, hard (magnetic) disk drive (HMDD), HDD,

"винчестер", "винт"

Стоимость ёмкости

снизилась с

\$ 9200

в 1956 до

\$ 0,000 035

в 2015

за 1Мб

в 263 млн. раз

НЖМД (винчестер)

Основные характеристики

- объем памяти (Гб-16Тб);
- физический размер;
- время доступа(2,5–16 мс);
- скорость чт./зап.(44-600 Mб/с);

- скорость вращения (4200 до 15000 об./мин, стабильная 7200);
- объем буфера (2–256 Мбайт);
- интерфейс (ATA (он же IDE), SATA, USB и др.).

Геометрия диска

- Цилиндр (Cylinder)
- Головка (Head)
- Сектор (Sector)

Посчитать максимальный объем диска (в байтах), если при адресации отведено для:

- номера цилиндра 3 бита
- номера головки 2 бита
- номера сектора 5 битов

V=8*4*32*512=524288 байтов

(Пользователю доступно 85%, 15% - служебная информация)

CHS

НЖМД "вид сверху"

Сектор – подобие байта – единица доступа, 4096 битов

Дорожка

ECC

- ECC (error-correcting/controlling code, код коррекции/контроля ошибок)
 - Сообщения длины N и кодовые слова длины K, N>K
 - Метрика Хэмминга
 - Простейший код контроля ошибок
 - код проверки четности
 - Простейший код исправления ошибки
 - код троекратного повторения.

Продольная или перпендикулярная?

Скорость и интерфейс

IDE 3.5" Hard Disk

SATA 3.5" Hard Disk

- IDE, EIDE или ATA (40- или 80-жильный)
- Serial ATA или SATA (7жильный, последовательный)
- SCSI (чаще для серверов, параллельный).
 B новых SCSI SAS (Serial Attached SCSI).

Контроллер жесткого диска

- Обеспечение простого интерфейса
 - поддержка команд READ, WRITE, FORMAT
 - LBA (Logical Block Addressing, линейный адрес) переводится в CHS
- Преобразование последовательности битов в байты и наоборот
- Буферизация
- Кэширование
- Учёт поврежденных секторов.

Схема контроллера

RAID

- RAID (англ. Redundant Array of Inexpensive/Independent Disks — избыточный массив недорогих/независимых дисков)
- не SLED (Single Large Expensive Disk)
- шесть уровней (Паттерсон, 1988)
- параллелизм
- серверные решения, SCSI.

RAID 0, 1, 10

Твердотельные диски

- SSD (solid-state drive) немеханическое запоминающее устройство на основе микросхем памяти
- Недостатки
 - ограниченное число циклов перезаписи
 - высокая цена
 - невозможность восстановления
 - не имеет смысла при старой шине

- Преимущества
 - скорость
 - низкоеэнергопотребление
 - прочность
 - малый вес
 - уровень шума

Подсистема ввода-вывода

Центральный процессор

Логическая организация

• Роль контроллера

- для устройства: тайминг, контроль;
- для процессора: декодирование команд, пересылка данных, отчет о статусе, распознавание адреса, буферизация, контроль ошибок.

Стили взаимодействия с подсистемой ввода-вывода

	Без прерываний	С прерываниями
С участием процессора	Программируемый І/О	I/O на основе П.
Без участия процессора		Прямой доступ в память

Эволюция шин

- Advanced Technology Attachment или ATA (синонимы PATA, IDE, EIDE, ATAPI) — для дисковой и ленточной периферии.
- SATA Serial ATA
- USB Universal Serial Bus
- HIPPI, HIgh Performance Parallel Interface
- PC card, часто используется в ноутбуках и других портативных компьютерах, но теряет своё значение с появлением USB и встраиванием сетевых карт и модемов
- SCSI Small Computer System Interface, шина для подключения дисковых и ленточных накопителей
- Serial Attached SCSI, SAS современный вариант SCSI

Шины (основные понятия)

- ISA-bus (Industry Standard Architecture) 8- или 16разрядная шина ввода-вывода IBM PC-совместимых компьютеров. Служит для подключения плат расширения стандарта ISA — 62- или 98-контактный разъём на материнской плате.
- PCI-bus (Peripheral component interconnect) шина для подключения периферийных устройств к материнской плате компьютера.

Устройство ПК (1990-х)

Звёздная топология PCle (PCl Express)

Каждое устройство связано с коммутатором отдельной

Слоты PCle и PCl

PCle ×4,
 PCle ×16,
 PCle ×1,
 PCle ×16,
 PCl (32-bit)

Материнская плата Intel

4 Series (до 2008 г.)

5+ Series (после 2008 г.)

Домашнее задание

- Подготовка к тестированию по материалам лекции
- Для закрепления лекций читать [Таненбаум Э]
 - стр. 94-106 Основная память
 - стр.106-130 Вспомогательная память
- Подготовка к лабораторному занятию 4.
- Приложение В из [Таненбаум Э]
 - стр. 737-743 повторить типы адресации и
 - стр. 751-755 подпрограммы и системные вызовы.