Юнит 1. Доверительные интервалы

Пусть $\overrightarrow{X} = (X_1, X_2, ..., X_n)$ — выборка объёма n из распределения F_{θ} с параметром $\theta \in \Theta \subseteq R$. Определение. Пусть $0 < \varepsilon < 1$. Интервал со случайными концами

$$(\underline{\theta}, \overline{\theta}) = (\underline{\theta}(\overrightarrow{X}, \varepsilon), \overline{\theta}(\overrightarrow{X}, \varepsilon))$$

Называется доверительным интервалом для параметра θ уровня доверия $1-\epsilon$, если для любого $\theta \in \Theta$ $P\{\underline{\theta} < \theta < \overline{\theta}\} \geqslant 1-\epsilon$.

П р и м е р. Пусть X_1 , X_2 , ..., X_n — выборка объёма n из нормального распределения $N(a, \sigma^2)$, где $a \in R$ —неизвестный параметр, а значение $\sigma > 0$ известно. Требуется при произвольном n построить точный доверительный интервал для параметра a уровня доверия $1 - \varepsilon$.

Знаем, что нормальное распределение устойчиво по суммированию. Поэтому распределение суммы элементов выборки при любом её объёме n нормально:

$$n\overline{x} = X_1 + X_2 + \dots + X_n \in N(na, n\sigma^2),$$

$$\eta = \frac{n\overline{x} - na}{\sigma\sqrt{n}} \in N(0, 1)$$

По заданному $\varepsilon \in (0, 1)$ найдём число c > 0 такое, что $P\{-c < \eta < c\} = 1 - \varepsilon$.

Число c является квантилью уровня 1 $-\frac{\varepsilon}{2}$ стандартного нормального распределения.

$$P\{-c < \eta < c\} = 2\Phi(c) = 1 - \varepsilon$$

Определение. Пусть распределение \mathcal{F} с функцией распределения F абсолютно непрерывно. Число $\tau_{_{\mathcal{S}}}$ называется квантилью уровня δ распределения F, если $F(\tau_{_{\mathcal{S}}}) = \delta$.

Если функция F строго монотонна, квантиль определяется единственным образом.

По заданному ε в таблице значений функции Лапласа найдём квантили $c=u_{1-\frac{\varepsilon}{2}}$.

Разрешив затем неравенство $-c < \eta < c$ относительно а, получим точный доверительный интервал:

$$1 - \varepsilon = P\{-c < \eta < c\} = P\left\{-u_{1 - \frac{\varepsilon}{2}} < \frac{\bar{nx} - na}{\sigma \sqrt{n}} < u_{1 - \frac{\varepsilon}{2}}\right\} = P\left\{\bar{x} - u_{1 - \frac{\varepsilon}{2}} \frac{\sigma}{\sqrt{n}} < a < \bar{x} + u_{1 - \frac{\varepsilon}{2}} \frac{\sigma}{\sqrt{n}}\right\}$$

Итак, получен точный доверительный интервал уровня доверия $1 - \epsilon$.

Общий принцип построения точных доверительных интервалов.

Чтобы построить точный доверительный интервал, необходимо реализовать следующие шаги.

- 1. Найти функцию $G(\vec{X}, \theta)$, распределение которой не зависит от параметра θ . Необходимо, чтобы $G(\vec{X}, \theta)$, была обратима по θ при любом фиксированном \vec{X} .
- 2. Найти числа \boldsymbol{g}_1 и \boldsymbol{g}_2 —квантили распределения G, для которых

$$1 - \varepsilon = P \Big\{ g_1 < G(\vec{X}, \theta) < g_2 \Big\}$$

3. Разрешив неравенство $g_1 < G(\vec{X}, \theta) < g_2$ относительно θ , получить точный доверительный интервал.

Юнит 2. РАСПРЕДЕЛЕНИЯ, СВЯЗАННЫЕ С НОРМАЛЬНЫМ

Распределение χ^2 Пирсона.

Определение. Распределение суммы k квадратов независимых случайных величин со стандартным нормальным распределением называется распределением χ^2 (хи-квадрат) с k степенями свободы и обозначается H_{ν} .

$$\xi_{_{1}}$$
, ..., $\xi_{_{L}}$ независимы и $\xi_{_{i}} \in N(0,1)$

$$\chi^2 = \sum\limits_{i=1}^k \xi_i^{\ 2} \in H_k \qquad p_{\chi^2}(y) = \{ rac{1}{2^{rac{k}{2}} \Gamma\left(rac{k}{2}
ight)} y^{rac{k}{2}-1} e^{rac{-y}{2}} \ , \ \text{если} \ y > 0 \ 0, \qquad \qquad \text{если} \ y \leq 0$$

Рис. 8. Плотности χ^2 -распределений с различным числом степеней свободы

Свойство 1. Если случайные величины $\chi^2 \in H_k$ и $\psi^2 \in H_m$ независимы, то их сумма $\chi^2 + \psi^2$ имеет распределение $H_{_{k+m}}$.

Доказательство. Пусть случайные величины $\xi_1,...,\xi_{k+m}$ независимы и $\xi_i \in N(0,1)$. Тогда случайная величина χ^2 распределена так же, как $\xi_1^2 + ... + \xi_k^2$, величина ψ^2 распределена так же, как $\xi_{k+1}^2 + ... + \xi_{k+m}^2$, а их сумма — как $\xi_1^2 + ... + \xi_{k+m}^2$, т.е. имеет распределение H_{k+m} .

Cвойство 2. Если величина $\chi^2 \in H_{_{k'}}$ то $M\chi^2 = k$ и $D\chi^2 = 2k$.

Доказательство. Пусть ξ_1, ξ_2, \dots независимы и имеют стандартное нормальное распределение. Тогда

$$\begin{split} M\xi_i &= 0 \qquad M\xi_i^2 = D\xi_i = 1 \quad D\xi_i^2 = M\xi_i^4 - \left(M\xi_i^2\right)^2 = 3 - 1 = 2 \\ M\xi_i^4 &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t^4 e^{-\frac{t^2}{2}} dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t^3 e^{-\frac{t^2}{2}} dt = \frac{-t^3 e^{-\frac{t^2}{2}}}{\sqrt{2\pi}} \Big|_{-\infty}^{\infty} + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} 3t^2 e^{-\frac{t^2}{2}} dt = 3M\xi_i^2 = 3 \end{split}$$

Поэтому

$$M\chi^{2} = M\sum_{i=1}^{k} \xi_{i}^{2} = \sum_{i=1}^{k} M\xi_{i}^{2} = k$$

$$D\chi^{2} = D\sum_{i=1}^{k} \xi_{i}^{2} = \sum_{i=1}^{k} D\xi_{i}^{2} = 2k$$

 ${\it Ceoйcmeo}$ 3. Пусть $\chi_n^{-2} \in H_n$. Тогда при $n o \infty$

$$\frac{\chi_n^2}{n} p \to 1 \frac{\chi_n^2 - n}{\sqrt{2n}} \Rightarrow N(0, 1).$$

Доказательство. При любом n случайная величина $\chi_n^2 = \sum_{i=1}^n \xi_i^2$ где все случайные величины ξ_i независимы и имеют стандартное нормальное распределение. Применяя 3БЧ и ЦПТ, получаем сходимости

$$\frac{\chi_n^2}{n} = \frac{1}{n} \sum_{i=1}^{n} \xi_i^2 \, p \to M \xi_i^2 = 1$$

$$\frac{\chi_{n}^{2}-n}{\sqrt{2n}} = \frac{\sum_{i=1}^{n} \xi_{i}^{2} - nM \xi_{i}^{2}}{\sqrt{nD \xi_{i}^{2}}} \Rightarrow N(0,1)$$

Свойство 4. Если случайные величины ξ_1 , ..., ξ_k независимы и $\xi_i \in N(a, \sigma^2)$, то

$$\chi_k^2 = \sum_{i=1}^k \left(\frac{\xi_i - a}{\sigma}\right)^2 \in H_k$$

Распределение Стьюдента.

Определение . Пусть $\ \xi_0,\ \xi_1,\ ...,\ \xi_k$ независимы и $\ \xi_i \in N(0,1)$. Распределение случайной величины

$$t_k = \frac{\xi_0}{\sqrt{\frac{1}{k} \sum_{i=1}^k \xi_i^2}}$$

называется распределением Стьюдента с k степенями свободы и обозначается T_k .

Распределение Стьюдента совпадает с распределением случайной величины

$$t_k = \frac{\xi_0}{\sqrt{\frac{1}{k}\chi_k^2}}$$

где $\boldsymbol{\xi}_0 {\in} N(0,1)$ и $\boldsymbol{\chi}_k^{\ 2} \in \boldsymbol{H}_k$ независимы.

$$p_{t_k}(y) = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\sqrt{\pi k} \cdot \Gamma\left(\frac{k}{2}\right)} \left(1 + \frac{y^2}{k}\right)^{-\frac{k+1}{2}}$$

Свойство1. Распределение Стьюдента симметрично: если случайная величина t_k имеет распределение Стьюдента T_k с k степенями свободы, то и $-t_k$ имеет такое же распределение.

Cвойство 2. Распределение Стьюдента T_n слабо сходится к стандартному нормальному распределению при $n \to \infty$.

Доказательство. По свойству распределения $\chi^2 \in H_n$, $\frac{\chi_n^2}{n} p \to 1$ при $n \to \infty$.

По свойствам слабой сходимости получаем

$$t_k = \frac{\xi_0}{\sqrt{\frac{1}{k}\chi_k^2}} \Rightarrow \xi_0 \in N(0, 1)$$

Рис. 9. Плотности распределений T_k и $N_{0,1}$

Распределение Фишера

Следующее распределение тоже тесно связано с нормальным распределением, но понадобится не при построении доверительных интервалов, а в задачах проверки гипотез Там же мы поймём, почему его называют распределением дисперсионного отношения.

Определение Пусть χ_k^2 имеет распределение H_k , а ψ_n^2 —распределение H_n , причём эти случайные величины независимы. Распределение случайной величины

$$f_{k,n} = \frac{\frac{\chi_k^2}{k}}{\frac{\psi_n^2}{n}} = \frac{n}{k} \cdot \frac{\chi_k^2}{\psi_n^2}$$

называется распределением Фишера с k и n степенями свободы и обозначается $F_{k,n}$

Свойства распределения Фишера (или Фишера—Снедекора)

Свойство1 Если случайная величина $f_{k,n}$ имеет распределение Фишера $F_{k,n}$ то $\frac{1}{f_{k,n}}$ имеет распределение Фишера $F_{n,k}$

Заметим, что функции распределения $\boldsymbol{F}_{k,n}$ и $\boldsymbol{F}_{n,k}$ различаются, но связаны соотношением:

$$\forall x > 0, \ F_{n,k}(x) = P\{f_{n,k} < x\} = P\{\frac{1}{f_{n,k}} > \frac{1}{x}\} = 1 - F_{k,n}(\frac{1}{x})$$

Распределение Фишера табулировано при многих k и n, причём свойство 1 позволяет приводить таблицы распределений только например при $k \ge n$.

Свойство2. Распределение Фишера $F_{k,n}$ слабо сходится к вырожденному в точке c=1 распределению при любом стремлении k и n к бесконечности.

Доказательство

Пусть ξ_0 , ξ_1 , ... и η_0 , η_1 , ... —две независимые последовательности, составленные из независимых случайных величин со стандартным нормальным распределением.

Тогда по ЗБЧ при $k \rightarrow \infty$, $n \rightarrow \infty$

$$\frac{1}{k} \sum_{i=1}^{k} \xi_{i}^{2} p \to M \xi_{i}^{2} = 1$$

$$\frac{1}{n}\sum_{i=1}^{n}\eta_{i}^{2}p\rightarrow M\eta_{i}^{2}=1$$

$$f_{k,n} = \frac{\frac{x_k^2}{\frac{k}{k}}}{\frac{\psi_n^2}{n}} = \frac{\frac{\frac{1}{k}\sum_{i=1}^k \xi_i^2}{\frac{1}{n}\sum_{i=1}^n \eta_i^2}}{\frac{1}{n}\sum_{i=1}^n \eta_i^2} p \to 1,$$

 $\mathit{Cвойство}3.$ Пусть $t_{_k} \in T_{_k}$ - случайная величина, имеющая распределение Стьюдента.

Тогда $t_k^2 \in F_{1,k}$.

Юнит 3. Преобразования нормальных выборок

Пусть $\overrightarrow{X} = (X_1, X_2, ..., X_n)$ — выборка объёма n из стандартного нормального распределения.

Там, где нам понадобятся операции матричного умножения, будем считать \vec{X} вектором-столбцом. Пусть С —ортогональная матрица $(n \times n)$, т.е.

 $C \cdot C^T = E = (1 \cdots 0 \vdots \cdot \vdots 0 \cdots 1)$, и $\vec{Y} = C\vec{X}$ — вектор с координатами $Y_i = C_{i1}X_1 + \dots + C_{in}X_n$. Координаты вектора \vec{Y} имеют нормальные распределения как линейные комбинации независимых нормальных величин.

Утверждение. (без доказательства)

Пусть вектор \vec{X} состоит из независимых случайных величин со стандартным нормальным распределением, С —ортогональная матрица, $\vec{Y} = \vec{C} \vec{X}$. Тогда и координаты вектора \vec{Y} независимы и имеют стандартное нормальное распределение.

Лемма Фишера. Пусть вектор \vec{X} состоит из независимых случайных величин со стандартным нормальным распределением, С —ортогональная матрица, $\vec{Y} = \vec{C} \vec{X}$. Тогда при любом k=1,...,n-1 случайная величина

$$T(\vec{X}) = \sum_{i=1}^{n} X_i^2 - Y_1^2 - \dots - Y_k^2$$

не зависит от \boldsymbol{Y}_1 , ..., \boldsymbol{Y}_k и имеет распределение \boldsymbol{H}_{n-k} .

Доказательство. Нормы векторов \vec{X} и $\vec{Y} = C\vec{X}$ совпадают:

$$Y_{1}^{2} + \dots + Y_{n}^{2} = \| \vec{C} \vec{X} \|^{2} = (\vec{C} \vec{X})^{T} (\vec{C} \vec{X}) = (\vec{X}^{T} \vec{C}^{T}) (\vec{C} \vec{X}) = (\vec{X}^{T} \vec{X}) = \| \vec{X} \|^{2} = X_{1}^{2} + \dots + X_{n}^{2}.$$

Поэтом

$$T(\vec{X}) = \sum_{i=1}^{n} X_i^2 - Y_1^2 - \dots - Y_k^2 = \sum_{i=1}^{n} Y_i^2 - Y_1^2 - \dots - Y_k^2 = \sum_{i=k+1}^{n} Y_i^2$$

Случайные величины Y_1 , ..., Y_n независимы и имеют стандартное нормальное распределение, поэтому

$$T(\overrightarrow{X}) = \sum_{i=k+1}^{n} Y_i^2 \in H_{n-k}$$

и не зависит от Y_1 , ..., Y_k .

Теорема (основное следствие леммы Фишера).

Пусть X_1 , ..., X_n независимы и $X_i \in N(a, \sigma^2)$. Тогда:

$$\frac{(n-1)S_0^2}{\sigma^2} = \sum_{i=1}^n \frac{\left(X_i - \bar{X}\right)^2}{\sigma^2} \in H_{n-1}$$

и случайные величины \bar{x} и S_0^2 независимы.

Доказательство. Убедимся сначала, что можно рассматривать выборку из стандартного нормального распределения вместо $N(a, \sigma^2)$:

$$z_{i} = \frac{X_{i} - a}{\sigma} \in N(0, 1) \qquad \overline{z} = \frac{1}{n} \sum_{i=1}^{n} z_{i} = \frac{1}{n} \sum_{i=1}^{n} \frac{X_{i} - a}{\sigma} = \frac{\overline{x} - a}{\sigma}$$

$$\frac{(n-1)S_{0}^{2}}{\sigma^{2}} = \sum_{i=1}^{n} \frac{\left(X_{i} - \overline{x}\right)^{2}}{\sigma^{2}} = \sum_{i=1}^{n} \left(\frac{X_{i} - a - (\overline{x} - a)}{\sigma}\right)^{2} = \sum_{i=1}^{n} \left(z_{i} - \overline{z}\right)^{2}$$

Итак, можно с самого начала считать, что X_i имеют стандартное нормальное распределение, $a=0,\ \sigma=1$. Применим лемму Фишера.

$$T(\vec{X}) = (n-1)S_0^2 = \sum_{i=1}^n \left(X_i - \overline{X}\right)^2 = \sum_{i=1}^n X_i^2 - n(\overline{X})^2 = \sum_{i=1}^n X_i^2 - Y_1^2$$
$$Y_1 = \sqrt{n} = \frac{\sqrt{n}}{n} \sum_{i=1}^n X_i = \frac{X_1}{\sqrt{n}} + \dots + \frac{X_n}{\sqrt{n}}$$

Чтобы применить лемму Фишера, нужно найти ортогональную матрицу C такую, что Y_1 будет первой координатой вектора $\overrightarrow{Y} = C\overrightarrow{X}$. Возьмём матрицу C с первой строкой $(1/\sqrt{n}, ..., 1/\sqrt{n})$. Так как длина (норма) этого вектора равна единице, его можно дополнить до ортонормального базиса в R^n , и C можно дополнить до ортогональной матрицы. Тогда величина $Y_1 = \sqrt{nx}$ и будет первой координатой вектора $\overrightarrow{Y} = C\overrightarrow{X}$.

$$T(\vec{X}) = \sum_{i=1}^{n} X_i^2 - Y_1^2 \in H_{n-1}$$

и не зависит от $\boldsymbol{Y}_1 = \sqrt{n x}$, т.е. $\overline{\boldsymbol{x}}$ и \boldsymbol{S}_0^2 независимы.

Юнит 4. Доверительные интервалы для параметров нормального распределения

Очередное утверждение позволит нам строить доверительные интервалы для параметров нормального распределения.

Teopema Пусть X_1 , ..., X_n независимы и $X_i \in N(a, \sigma^2)$. Тогда:

$$\frac{\overline{x}-a}{\sqrt{\frac{\sigma^2}{n}}} \in N(0,1)$$
 (для a при σ известном),

$$\sum_{i=1}^{n} rac{\left(X_{i}-a
ight)^{2}}{\sigma^{2}} \; = \; H_{n}$$
 (для σ^{2} при a известном),

3)
$$\frac{(n-1)S_0^2}{\sigma^2} \in H_{n-1} \quad \text{(для σ2 при a неизвестном),}$$

4)
$$\frac{\bar{x}-a}{\sqrt{\frac{s_0^2}{n}}} \in T_{n-1} \ (\text{для } a \text{ при } \sigma \text{ неизвестном}).$$

Доказательство.

1) $X_{i} \in N(a, \sigma^{2}) \qquad \overline{x} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \in N(a, \frac{\sigma^{2}}{n}) \qquad \frac{\overline{x} - a}{\sqrt{\frac{\sigma^{2}}{n}}} \in N(0, 1) \quad \blacksquare$

2)
$$\frac{X_i - a}{\sigma} \in N(0, 1) \qquad \sum_{i=1}^n \frac{\left(X_i - a\right)^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - a}{\sigma}\right)^2 \in H_n \quad \blacksquare$$

$$\frac{(n-1)S_0^2}{\sigma^2} \, \in H_{n-1}$$
 следует из леммы Фишера $\ lacksquare$

$$\xi_0 = \frac{\bar{x} - a}{\sqrt{\frac{\sigma^2}{n}}} \in N(0,1) \qquad \chi_{n-1}^2 = \frac{(n-1)S_0^2}{\sigma^2} \in H_{n-1} \text{ независимы по лемме Фишера}$$

$$t_{n-1} = \frac{\xi_0}{\sqrt{\frac{1}{n-1}\chi_{n-1}^2}} = \frac{\bar{x} - a}{\sqrt{\frac{\sigma^2}{n}}} \frac{1}{\sqrt{\frac{1}{(n-1)S_0^2}}} = \frac{\bar{x} - a}{\sqrt{\frac{S_0^2}{n}}} \in T_{n-1} \qquad \blacksquare$$

Точные доверительные интервалы для параметров нормального распределения

Пусть X_1 , …, X_n - выборка объёма n из распределения $N(a, \sigma^2)$. Построим точные доверительные интервалы (ДИ) с уровнем доверия $1-\epsilon$ для параметров нормального распределения.

 Π р и м е р (ДИ для α при известном σ^2). Этот интервал мы построили

$$1-\varepsilon = Pigg\{ -u_{1-rac{arepsilon}{2}} < rac{rac{ar{arkappa}-a}}{\sqrt{rac{\sigma^2}{n}}} < u_{1-rac{arepsilon}{2}} igg\} = Pigg\{ \overline{x} - u_{1-rac{arepsilon}{2}} rac{\sigma}{\sqrt{n}} < a < \overline{x} + u_{1-rac{arepsilon}{2}} rac{\sigma}{\sqrt{n}} igg\}$$
 где $\Phi(u_{1-rac{arepsilon}{2}}) = rac{1-arepsilon}{2}$

 Π р и м е р (ДИ для σ^2 при известном a).

$$\sum_{i=1}^{n} \frac{\left(X_{i} - a\right)^{2}}{\sigma^{2}} = H_{n}$$

Пусть $h_{n,\epsilon/2}$ и $h_{n,1-\epsilon/2}$ —квантили распределения H_n уровней $\epsilon/2$ и $1-\epsilon/2$ соответственно.

$$1 - \varepsilon = P\left(h_{n,\varepsilon/2} < \frac{1}{\sigma^2} \sum_{i=1}^{n} (X_i - a)^2 < h_{n,1-\varepsilon/2}\right) = P\left(\frac{\sum_{i=1}^{n} (X_i - a)^2}{h_{n,1-\varepsilon/2}} < \sigma^2 < \frac{\sum_{i=1}^{n} (X_i - a)^2}{h_{n,\varepsilon/2}}\right)$$

 Π р и м е р (ДИ для σ^2 при неизвестном a)

$$\frac{(n-1)S_0^2}{\sigma^2} \in H_{n-1}$$

Пусть $h_{n-1,\varepsilon/2}$ и $h_{n-1,1-\varepsilon/2}$ —квантили распределения H_{n-1} уровней $\varepsilon/2$ и $1-\varepsilon/2$ соответственно.

$$1 - \varepsilon = P \left(h_{n-1, \varepsilon/2} < \frac{(n-1)S_0^2}{\sigma^2} < h_{n-1, 1-\varepsilon/2} \right) = P \left(\frac{(n-1)S_0^2}{h_{n-1, 1-\varepsilon/2}} < \sigma^2 < \frac{(n-1)S_0^2}{h_{n-1, \varepsilon/2}} \right)$$

Пример (ДИ для a при неизвестном σ^2).

$$\frac{\overline{x} - a}{\sqrt{\frac{S_0^2}{n}}} \in T_{n-1}$$

Пусть $t_{n-1,1-\epsilon/2}$ —квантиль распределения T_{n-1} уровня $1-\epsilon/2$. Распределение Стьюдента симметрично.

$$1 - \varepsilon = P \left\{ -t_{n-1,1-\varepsilon/2} < \frac{\bar{x} - a}{\sqrt{\frac{S_0^2}{n}}} < t_{n-1,1-\varepsilon/2} \right\} = P \left\{ \bar{x} - t_{n-1,1-\varepsilon/2} \sqrt{\frac{S_0^2}{n}} < a < \bar{x} + t_{n-1,1-\varepsilon/2} \sqrt{\frac{S_0^2}{n}} \right\}$$

Юнит 5. Асимптотический (асимптотически точный) доверительный интервал

Пример 1

Пусть $\overrightarrow{X} = (X_1, X_2, ..., X_n)$ выборка объёма n из показательного распределения, $(\lambda > 0)$

Требуется построить асимптотический (асимптотически точный) доверительный интервал для параметра λ уровня доверия $1-\epsilon$

Вспомним ЦПТ

$$\frac{\sum\limits_{i=1}^{n}X_{i}-nMX_{i}}{\sqrt{nDX_{i}}}=\sqrt{n}\bullet\frac{\overline{x}-\frac{1}{\lambda}}{\sqrt{\frac{1}{\lambda^{2}}}}=\sqrt{n}\bullet(\lambda\overline{x}-1)\Rightarrow\eta\in N(0,1)$$

Возьмём $c=u_{1-\frac{\varepsilon}{2}}$ —квантиль стандартного нормального распределения. По определению слабой сходимости при $n{ o}\infty$

$$P\left\{-u_{1-\frac{\varepsilon}{2}} < \sqrt{n} \cdot (\lambda \overline{x} - 1) < u_{1-\frac{\varepsilon}{2}}\right\} \rightarrow P\left\{-c < \eta < c\right\} = 1 - \varepsilon$$

Разрешив относительно λ неравенство получим асимптотический доверительный интервал.

$$P\left\{\frac{1}{\sqrt{nx}}\left(\sqrt{n}-u_{1-\frac{\varepsilon}{2}}\right)<\lambda<\frac{1}{\sqrt{nx}}\left(\sqrt{n}+u_{1-\frac{\varepsilon}{2}}\right)\
ight\}
ightarrow 1-arepsilon$$
 при $n
ightarrow \infty$

Пример 2

Пусть $\vec{X} = (X_1, X_2, ..., X_n)$ выборка объёма n из распределения *Пуассона*, $(\lambda > 0)$

Требуется построить асимптотический доверительный интервал для параметра λ уровня доверия $1-\epsilon$

Согласно ЦПТ

$$\frac{\sum\limits_{i=1}^{n}X_{i}-nMX_{i}}{\sqrt{nDX_{i}}}=\sqrt{n}\bullet\frac{\bar{x}-\lambda}{\sqrt{\lambda}}\Rightarrow\eta\in N(0,1)$$

Пусть $c=u_{1-\frac{\varepsilon}{2}}$ —квантиль уровня $1-\frac{\varepsilon}{2}$ стандартного нормального распределения.

По определению слабой сходимости при $n{ o}\infty$

$$P\left\{-u_{1-\frac{\varepsilon}{2}} < \sqrt{n} \cdot \frac{\bar{x}-\lambda}{\sqrt{\lambda}} < u_{1-\frac{\varepsilon}{2}}\right\} \rightarrow P\left\{-c < \eta < c\right\} = 1 - \varepsilon$$

Но разрешить неравенство под знаком вероятности относительно λ непросто, мешает корень в знаменателе. Попробуем от него избавиться. Состоятельной оценкой $\hat{\lambda} = \overline{x}$. Тогда при $n \to \infty$

$$\sqrt{\frac{\lambda}{\bar{x}}} p \to 1$$

$$\sqrt{n} \bullet \frac{\bar{x} - \lambda}{\sqrt{\lambda}} \bullet \sqrt{\frac{\lambda}{\bar{x}}} = \sqrt{n} \bullet \frac{\bar{x} - \lambda}{\sqrt{\bar{x}}} \Rightarrow \eta \in N(0, 1)$$

Поэтому при $n \rightarrow \infty$

$$P\left\{-u_{1-\frac{\varepsilon}{2}} < \sqrt{n} \cdot \frac{\overline{x}-\lambda}{\sqrt{\overline{x}}} < u_{1-\frac{\varepsilon}{2}}\right\} \rightarrow P\left\{-c < \eta < c\right\} = 1 - \varepsilon$$

Разрешив неравенство под знаком вероятности относительно λ

получим искомый асимптотический доверительный интервал

$$P\left\{\overline{x} - u_{1 - \frac{\varepsilon}{2}} \frac{\sqrt{\overline{x}}}{\sqrt{n}} < a < \overline{x} + u_{1 - \frac{\varepsilon}{2}} \frac{\sigma\sqrt{\overline{x}}}{\sqrt{n}}\right\} = 1 - \varepsilon$$

Юнит 6. ПРОВЕРКА ГИПОТЕЗ

Пусть дана выборка $\vec{X} = (X_1, X_2, ..., X_n)$ из распределения F.

Определение. Гипотезой (H) называется любое предположение относительно вида распределения, параметров распределения или свойств закона распределения наблюдаемой в эксперименте случайной величины: $H = \{F = F_1\}$ или $H = \{F \in F\}$, где \mathbb{F} —некоторое подмножество в множестве всех распределений.

Проверяемая гипотеза называется основной (или нулевой) и обозначается H_0 . Гипотеза, конкурирующая с H_0 , называется альтернативной и обозначается H_1 .

Гипотеза H называется простой, если она указывает на единственное распределение: $F = F_1$. Иначе H называется сложной: $F \in F$.

Определение. **Критерием** $\delta = \delta(X_1, ..., X_n)$ называется измеримое отображение

$$\delta: R^n \rightarrow \{H_0, ..., H_k\}$$

из множества всех возможных значений выборки в множество гипотез. Измеримость понимается в обычном смысле: $\{\omega | \delta(X_1, ..., X_n) = H_i \}$ есть событие при любом i=1,...,k.

Определение. Говорят, что произошла ошибка і-го рода критерия δ , если критерий отверг верную гипотезу H_i . Вероятностью ошибки і-го рода критерия δ называется число

$$\alpha_i(\delta) = P\left\{ (\delta(\vec{X}) \neq H_i)/H_i \right\}$$

 Π р u м e p. Пусть любое изделие некоторого производства оказывается браком с вероятностью p. Контроль продукции допускает ошибки: годное изделие бракует с вероятностью q, а бракованное пропускает (признаёт годным) с вероятностью p. Если ввести для проверяемого изделия гипотезы $H_1 = \{$ изделие годное $\}$ и

 $H_2 = \{$ изделие бракованное $\}$, а критерием выбора одной из них считать контроль продукции, то γ —вероятность ошибки первого рода этого критерия, а ϵ —второго рода:

$$\gamma = P\{(\delta = H_2)/H_1\} = P($$
контроль забраковал годное изделие $) = \alpha_1(\delta);$

$$\varepsilon = P\{(\delta = H_1)/H_2\} = P(контроль пропустил бракованное изделие) = $\alpha_2(\delta)$$$

 Π р и м е р. Имеется выборка объёма n=1 из нормального распределения N(a,1) и две простые гипотезы $H_1=\{a=0\}$ и $H_2=\{a=1\}$. Рассмотрим при некотором $b\in R$ следующий критерий: $\delta(\vec{X})=\{H_1$ если $X_1{\le}b$ H_2 если $X_1>b$.

Изобразим на графике соответствующие гипотезам плотности распределений и вероятности ошибок первого и второго рода критерия δ

$$\alpha_1(\delta) = P\{(X_1 > b)/H_1\}, \alpha_2(\delta) = P\{(X_1 \le b)/H_2\}.$$

Видим, что с ростом числа b вероятность ошибки первого рода α_1 уменьшается, но вероятность ошибки второго рода α_2 растёт

Определение. Статистикой критерия называют некоторую числовую функцию $T=\phi(\vec{x})=\phi(x_1,...,x_n)$ выборки \vec{x} , обладающую тем свойством, что её закон распределения $F_T(z)$ полностью известен в том случае, когда проверяемая гипотеза H_0 верна.

Определение **Критической областью** G статистического критерия называется область реализаций t статистики $T = \phi(\vec{x})$, при которых гипотеза H_0 отвергается.

Определение. **Уровнем значимости** статистического критерия называется вероятность отвергнуть основную гипотезу H_0 , если она верна(вероятность ошибки 0-го рода $\alpha = P\{T \in G|H_0 \text{ верна}\}$).

Проверка статистической гипотезы может быть подразделена на следующие этапы:

- 1) сформулировать проверяемую гипотезу \boldsymbol{H}_{0} и альтернативную к ней гипотезу \boldsymbol{H}_{1} ;
- 2) выбрать уровень значимости α;
- 3) выбрать статистику Т для проверки гипотезы H_0 ;
- 4) найти распределение $\boldsymbol{F}_{T}(z)$ статистики Т, при условии что гипотеза \boldsymbol{H}_{0} верна;
- 5) построить, в зависимости от формулировки гипотезы H1 и уровня значимости α , критическую область G, выписать критерий $\delta(\vec{X})$;
- 6) получить реализацию выборки $(x_1, ..., x_n)$ и вычислить реализацию $T = \phi(x_1, ..., x_n)$ статистики T критерия;
- 7) принять статистическое решение на уровне значимости α : если $t \in G$ (критической области), то отклонить гипотезу H_0 как не согласующуюся с результатами наблюдений, а если $t \notin G$, то принять гипотезу H0 как не противоречащую результатам наблюдений.

Юнит 7. Проверка гипотез о параметрах в одновыборочной гауссовской модели и биномиальных моделях

Рассмотрим процедуру проверки параметрической гипотезы на примере одной из "старинных" статистических задач.

Пример. Рассмотрим следующую статистическую модель. Проводится серия из п испытаний Бернулли. Пусть случайная величина ξ - число «успехов» в п испытаниях, тогда ξ имеет биномиальное распределение $\mathrm{Bi}(\mathsf{n},\mathsf{p})$. Как мы уже знаем, неизвестную вероятность р можно оценить частотой «успехов» $\hat{p} = \frac{X}{n}$, и оценка \hat{p} обладает следующими свойствами: несмещенная, т.е. $M[\hat{p}] = p$; состоятельная;

$$X = \sum_{i=1}^n I(\text{"успех"})$$
, поэтому $X{\Rightarrow}N(np,\;np(1-p)\;\;\;$ при $n o\infty$

$$\hat{p} = \frac{X}{n} \Rightarrow N(p, \frac{p(1-p)}{n})$$

В практических задачах бывает важно не только оценить вероятность «успеха» p, но и проверить гипотезу о том, что p равна некоторой заданной величине p_0 .

Построим критерий, называемый биномиальным критерием, для проверки гипотезы $H_0:\left\{p=p_0\right\}$ против альтернатив следующего вида: $H_1:\left\{p< p_0\right\}$ $H_2:\left\{p>p_0\right\}$ $H_3:\left\{p\neq p_0\right\}$. Рассмотрим статистику $\frac{X}{n}$, где X – количество «успехов» в п испытаниях. Если наблюдений достаточно много, то согласно теореме Муавра-Лапласа, статистика $T=\frac{X}{n}$ будет иметь асимптотически нормальное распределение. То есть при n>30 можно в качестве статистики биномиального критерия выбрать статистику

$$T = \frac{\frac{X}{n} - p}{\sqrt{\frac{p(1-p)}{n}}} \Rightarrow N(0, 1)$$

Тогда в случае $H_{_{1}}:\left\{ p\ <\ p_{_{0}}\right\}$

 $\delta(\stackrel{
ightharpoonup}{X})=\{H_0^-$ если $T>u^-H_1^-$ если $T{\le}u^-$, где u квантиль нормального распределения уровня a.

$$\Phi(-u) = 0, 5 - \alpha$$

В случае $H_{_2}\colon \left\{p\ >\ p_{_0}\right\}$

 $\delta(\stackrel{
ightharpoonup}{X}) = \{H_0 \,\,$ если $T < u \,\, H_2 \,\,$ если $T {\geq} u \,\,$, где u квантиль нормального распределения уровня 1- α .

$$\Phi(u) = 0, 5 - \alpha$$

В случае $\boldsymbol{H}_{_{3}}$: $\left\{ \boldsymbol{p}\neq\boldsymbol{p}_{_{0}}\right\}$

 $\delta(\overrightarrow{X})=\{H_0$ если |T|< u H_2 если $|T|{\ge}u$, где u квантиль нормального распределения уровня $\frac{\alpha}{2}$.

$$\Phi(u) = \frac{1-\alpha}{2}$$

Задача 6.1. (о леди, дегустирующей чай) Согласно принятой в Англии традиции чаепития, в чашку следует сначала наливать молоко, а потом – чай. Считается, что настоящая английская леди умеет отличить «правильный» чай от «неправильного». Чтобы выяснить дегустаторские качества дамы, был проведен следующий эксперимент: в течение 30 дней даме каждый день подавали пару чашек чая, в одну из которых сначала был налит чай, а в другую – молоко. Дама 21 раз верно указала «правильный» чай. Можно ли (на уровне доверия 0.95) считать ее хорошим дегустатором?

Р е ш е н и е. Пусть р – вероятность выбора «правильной» чашки чая. Тогда утверждение о том, что p = 0.5 соответствует ситуации, при которой выбор «правильной» чашки осуществляется случайным образом. Если же p > 0.5 то это означает, что выбор чашки основан на каких-то предпочтениях, т.е. неслучаен. Теперь можем провести процедуру проверки гипотезы.

- 1. В качестве основной гипотезы следует выбрать простую гипотезу $H_0: \{p=0,5\}$, а в качестве альтернативной сложную гипотезу $H_1: \{p>0,5\}$ 2. Пусть уровень значимости $\alpha=0.05$.
- 3. Выберем статистику

$$T = \frac{\frac{X}{n} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \Rightarrow N(0, 1)$$

, где
$$p_{_0}=~0.5$$

4. Альтернативной гипотезе должны соответствовать большие значения статистики T , т.е. критическая область расположена справа. Критическая точка $u_{0.95} = 1.65$.

$$\delta(\vec{X}) = \{H_0 \text{ если } T_{\text{набл}} < u = 1.65 H_1 \text{ если } T_{\text{набл}} {\ge} u = 1.65$$

5. Вычислим реализацию статистики

$$T_{\text{набл}} = \frac{\frac{X}{n} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{X - np_0}{\sqrt{np_0(1 - p_0)}} = \frac{21 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5(1 - 0.5)}} = 2,91$$

7. Реализация статистики попала в критическую область, следовательно, гипотеза \boldsymbol{H}_0 отвергается. Следовательно, на уровне доверия 0.95 можно считать, что леди – хороший
дегустатор.

Юнит 8. Критерии согласия: критерий Пирсона Х²

Имеется выборка $\overrightarrow{X} = (X_1, ..., X_n)$ из распределения F.

Проверяется простая гипотеза $H_1 = \left\{F = F_1\right\}$ против сложной альтернативы $H_2 = \left\{F \neq F_1\right\}$. Критерий χ^2 основывается на группированных данных. Область значений предполагаемого распределения F_1 делят на некоторое число интервалов. После чего строят функцию отклонения ρ по разностям теоретических вероятностей попадания в интервалы группировки и эмпирических частот.

Пусть A_1 , …, A_k — интервалы группировки в области значений случайной величины с распределением F_1 .

Обозначим для j=1,...,k через v_i число элементов выборки, попавших в интервал $A_i=[a_i,a_{i+1}[$

$$v_i = \sum_{k=1}^n I\{x_k \in [a_i, a_{i+1}]\}$$

, и через $p_{_i} > 0$ — теоретическую вероятность попадания в интервал $A_{_i} = [a_{_i}, a_{_{i+1}}[$

случайной величины ξ с распределением F_1 . $p_i = P \Big\{ \xi \in A_i \Big\}$ $\sum\limits_{i=1}^k p_i = 1$

Как правило, длины интервалов выбирают так, чтобы $p_1 pprox p_2 pprox ... pprox p_k pprox rac{1}{k}$

$$\rho(\vec{X}) = \sum_{i=1}^{k} \frac{\left(v_i - np_i\right)^2}{np_i}$$

Теорема Пирсона. Если верна гипотеза $H_1 = \left\{ F = F_1 \right\}$, то при фиксированном k и при

$$n \to \infty$$
 $\rho(\vec{X}) = \sum_{i=1}^{k} \frac{(v_i - np_i)^2}{np_i} \Rightarrow H_{k-1}$

Доказательство (для k=2)

Область значений предполагаемого распределения $F_{_1}$ делим на два интервала.

$$v_2 = n - v_1$$
 $p_2 = 1 - p_1$

$$\rho(\overrightarrow{X}) = \frac{\left(v_1 - np_1\right)^2}{np_1} + \frac{\left(v_2 - np_2\right)^2}{np_2} = \frac{\left(v_1 - np_1\right)^2}{np_1} + \frac{\left(n - v_1 - n(1 - p_1)\right)^2}{n(1 - p_1)} = \frac{\left(v_1 - np_1\right)^2}{np_1} + \frac{\left(v_1 - np_1\right)^2}{n(1 - p_1)} = \frac{\left(v_1 - np_1\right)^2}{n} = \frac{\left(v_1 - np_1\right)^2}$$

$$v_1 = \sum_{k=1}^n I\{x_k \in A_1\}$$

$$p = p_1 \quad q = p_2 = 1 - p_1$$

$$\begin{split} M \nu_1 &= n p_1 \\ D \nu_1 &= n p_1 \Big(1 - p_1 \Big) \end{split}$$
 По ЦПТ $\frac{\nu_1 - n p_1}{\sqrt{n p_1 \Big(1 - p_1 \Big)}} \Rightarrow \xi \in N(0, 1)$
$$\rho \Big(\overrightarrow{X} \Big) = \frac{\left(\nu_1 - n p_1\right)^2}{n p_1 \Big(1 - p_1 \Big)} \Rightarrow \xi^2 \in H_1 \quad \blacksquare \end{split}$$

- а) Если H_1 верна, то X_i имеют распределение F_1 . По теореме Пирсона $\rho(\overrightarrow{X}) \Rightarrow \eta$, где η имеет распределение χ^2 с k-1 степенями свободы.
- б) Если гипотеза \boldsymbol{H}_1 неверна, то \boldsymbol{X}_i имеют какое-то распределение \boldsymbol{F}_2 , отличное от \boldsymbol{F}_1 .

$$q_i = P\{\xi \in A_i\}$$
 если $\xi \in F_2$

По ЗБЧ

$$\begin{aligned} \mathbf{v}_i &= \sum_{k=1}^n I \big\{ x_k \in A_i \big\} & \frac{\mathbf{v}_i}{n} \ p \rightarrow q_i \neq p_i \\ \\ & \Pi pu \ n \rightarrow \infty & \frac{\left(\mathbf{v}_i - n p_i \right)^2}{n p_i} = \frac{n}{p_i} \left(\frac{\mathbf{v}_i}{n} - p_i \right)^2 \ p \rightarrow \ \infty \end{aligned}$$

Можем построить критерий согласия.

Пусть случайная величина $\chi^2 \in H_{k-1}$. По таблице распределения χ^2 с k-1 степенями свободы найдем C равное квантили уровня $1-\varepsilon$ этого распределения. Тогда $\varepsilon = P \Big\{ \chi^2 > C \Big\}$ и критерий согласия χ^2 выглядит как все критерии согласия:

$$\delta(\vec{X}) = \{H_1 \text{ если } \rho(\vec{X}) < C H_2 \text{ если } \rho(\vec{X}) \ge C$$

Замечание. На самом деле критерий, который мы построим по функции $\rho(\vec{X})$, решает совсем иную задачу. А именно, пусть задан набор вероятностей $p_1,...,p_k$ такой, что $\sum\limits_{i=1}^{k}p_i=1$.

Критерий χ^2 предназначен для проверки сложной гипотезы

$$H_1 = \{F_1 \text{ обладает свойством: } p_i = P\Big\{\xi \in A_i\Big\}$$
 для всех $i=1,...,k\}$

против сложной альтернативы $\boldsymbol{H}_2 = \left\{\boldsymbol{H}_1 \text{ неверна}\right\}$, т.е.

 $H_2 = \{$ хотя бы для одного из интервалов вероятность $P \Big\{ \xi \in A_i \Big\}$ отличается от $p_i \}$.

На самом деле критерий χ^2 применяют и для решения первоначальной задачи о проверке гипотезы $H1=\{F=F1\}$. Необходимо только помнить, что этот критерий не состоятелен для альтернатив с теми же вероятностями попадания в интервалы разбиения, что и у F_1 . Поэтому берут большое число интервалов разбиения — чем больше, тем лучше, чтобы «уменьшить» число альтернатив, неразличимых с предполагаемым распределением.

Но сходимость по распределению $\rho(\overrightarrow{X}) \Rightarrow H_{k-1}$ обеспечивается ЦПТ Нельзя, чтобы np_i было маленьким!!!

Маленькие значения np_i в знаменателе приведут к тому, что распределение $\rho(\overrightarrow{X})$ будет существенно отличаться от H_{k-1} . Тогда и реальная вероятность $P\{\rho(\overrightarrow{X})>C\}$ — точный размер полученного критерия — будет сильно отличаться от ε . Поэтому для выборки объема n число интервалов разбиения выбирают так, чтобы обеспечить нужную точность при замене распределения $\rho(\overrightarrow{X})$ на H_{k-1} .

Обычно требуют, чтобы $np_1 = ... = np_k$ были не менее 5-6.

Юнит 9. Критерий χ^2 Пирсона для проверки параметрической гипотезы

Критерий χ^2 часто применяют для проверки гипотезы о виде распределения, т.е. о принадлежности распределения выборки некоторому параметрическому семейству.

Имеется выборка $\vec{X} = (X_1, ..., X_n)$ из неизвестного распределения F.

Проверяется сложная гипотеза $H_1 = \{F \in F(\theta)\}$,где $\theta \in \Theta \subseteq \mathbb{R}^l$ — неизвестный параметр (скалярный или векторный), l — его размерность.

Пусть $\mathbb R$ разбито на k > 1 интервалов группировки A_1 , ..., A_k , и $v_i = \sum_{k=1}^n I\{x_k \in A_i\}$.

Но вероятность
$$p_i = P\left\{\frac{\xi \in A_i}{H_1}\right\} = p_i(\theta)$$

теперь зависит от неизвестного параметра θ . Функция отклонения $\rho(\overrightarrow{X})$ также зависит от неизвестного параметра θ , и использовать ее в критерии Пирсона нельзя — мы не

можем вычислить ее значение:
$$\rho(\vec{X}, \theta) = \sum_{i=1}^{k} \frac{\left(v_i - np_i(\theta)\right)^2}{np_i(\theta)}$$

Пусть $\hat{\theta} = \hat{\theta(X)}$ — значение параметра θ , доставляющее минимум функции $\rho(X, \theta)$ при данной выборке X. Подставив вместо истинных вероятностей p_i их оценки $p_i(\hat{\theta})$, получим функцию отклонения

$$\rho(\vec{X}, \hat{\theta}) = \sum_{i=1}^{k} \frac{\left(v_i - np_i(\hat{\theta})\right)^2}{np_i(\hat{\theta})}$$

Теорема Фишера . (Без доказательства)

Если верна гипотеза $H_1 = \{F \in F(\theta)\}$, и $dim(\theta) = l$ — размерность параметра (вектора) θ ,

то при фиксированном
$$k$$
 и при $n \to \infty$ $\rho(\vec{X}, \hat{\theta}) = \sum_{i=1}^k \frac{\left(v_i - np_i(\hat{\theta})\right)^2}{np_i(\hat{\theta})} \Rightarrow H_{k-l-1}$

, где H_{k-l-1} есть χ^2 -распределение с k-l-l степенями свободы.

Построим критерий χ^2 .

Пусть случайная величина $\chi^2 \in H_{k-1-l}$. По заданному ε найдем C такое, что $\varepsilon = P\{\chi^2 > C\}$ и критерий согласия χ^2 выглядит как все критерии согласия:

$$\delta(\vec{X}) = \{H_1 \text{ если } \rho(\vec{X}, \hat{\theta}) < C H_2 \text{ если } \rho(\vec{X}, \hat{\theta}) \ge C \}$$

Замечание. Оценку $\hat{\theta}$, минимизирующую функцию $\rho(\vec{X}, \theta)$, нельзя заменить на оценку максимального правдоподобия для θ , построенную по выборке $\vec{X} = (X_1, ..., X_n)$. При такой замене Теорема Фишера не верна!

Пусть θ оценка, построенная по выборке (ММ илиММП). $\rho(\vec{X}, \theta) \geq \rho(\vec{X}, \hat{\theta})$

Тогда если $\rho(\vec{X}, \theta) < C$, то и $\rho(\vec{X}, \hat{\theta}) < C$ и гипотеза H_1 принимается.

Если $\rho(\vec{X}, \hat{\theta}) \ge C$, стоит вычислить $\rho(\vec{X}, \hat{\hat{\theta}})$

Пример

По данной выборке принять или отвергнуть гипотезу о нормальном распределении выборки с уровнем значимости $\alpha_{_1}=0,05$

$$H_1 = \left\{ \xi \in N(a, \sigma^2) \right\}$$

$$0.4 \quad -1.9 \quad -1.6 \quad 5.47 \quad 0.72 \quad 2.2 \quad -0.5 \quad -0.4 \quad 0.93 \quad -1.1 \quad 3$$

$$0.09 \quad 0.83 \quad 3.46 \quad 6.64 \quad -1.3 \quad 2.9 \quad 2.89 \quad 1.04 \quad -1.4 \quad -3.4 \quad 4$$

$$-1.9 \quad 3.14 \quad 5.38 \quad 0.41 \quad 0.25 \quad 1.0 \quad -1.4 \quad -0.1 \quad -5.2 \quad 1.43 \quad 4$$

$$2 \quad 9 \quad 7$$

$$-1.6 \quad 1.67 \quad -0.2 \quad 3.64 \quad -1.8 \quad 1.7 \quad 1.44 \quad 4.23 \quad 1.57 \quad 2.06 \quad 4$$

$$2.1 \quad 5.56 \quad 2.84 \quad -0.5 \quad 2.3 \quad 1.7 \quad 0.11 \quad -0.4 \quad -1.1 \quad 2.87 \quad 4$$

Проверяется сложная гипотеза $H_1 = \{F \in N(\theta)\}$,где $\theta = \{a, \sigma^2\} \in \mathbb{R}^2$ — неизвестный параметр размерности 2.

$$X_{min} = -5,27 X_{max} = 6.64$$

$$\hat{a} = \overline{x} = 0.932$$
 $\overline{x^2} = 6.49$ $\hat{\sigma} = \sqrt{S_0^2} = 2.4$

$$\Delta a = \frac{X_{max} - X_{min}}{k} = \frac{6,64 + 5,27}{6} = 1,985 \approx 2$$

$$\begin{split} \nu_i &= \sum_{k=1}^n I \Big\{ x_k \in \, [a_i, a_{i+1}[\big\} \\ \rho(\vec{X}, \hat{\theta}) &= \sum_{i=1}^k \frac{\left(\nu_i - n p_i(\hat{\theta}) \right)^2}{n p_i(\hat{\theta})} \text{ где } \quad p_i = P \Big\{ \frac{\xi \in A_i}{\xi \in N(\hat{\theta})} \Big\} = \, \Phi \left(\frac{a_{i+1} - \bar{x}}{\sqrt{S_0^2}} \right) - \, \Phi \left(\frac{a_i - \bar{x}}{\sqrt{S_0^2}} \right) = \Delta \Phi \end{split}$$

a_i	a_{i+1}	v_{i}	$\frac{a_i - \overline{x}}{\sqrt{S_0^2}}$	$\Phi\left(\frac{a_i - \overline{x}}{\sqrt{S_0^2}}\right)$	$p_i = \Delta \Phi$	$np_{_{i}}$	$\frac{\left(v_i - np_i\right)^2}{np_i}$
- ∞	-3,2	2	- ∞	-0,5	0,0427	2,135	0,0085
-3,2	-1,2	8	-1,7 2	-0,4573	0,1440	7,2	0,0889
-1,2	0,8	14	-0,8 9	-0,3133	0,2894	14,47	0,0153
0,8	2,8	14	-0,0 6	-0,0239	0,3062	15,31	0,1121
2,8	4,8	8	0,78	0,2823	0,1640	8,2	0,0049
4,8	∞	4	1,61	0,4463	0,0537	2,685	0,6440
∞		50	8	0,5	Σ= 1	Σ= 50	∑= 0,8937

$$\rho_{\text{Ha6л.}}(\vec{X}, \hat{\theta}) = \sum_{i=1}^{k} \frac{\left(\nu_{i} - np_{i}(\hat{\theta})\right)^{2}}{np_{i}(\hat{\theta})} = 0,8937$$

Пусть случайная величина $\chi^2 \in H_{k-1-l} = H_{6-1-2} = H_3$. По заданному $\alpha_1 = 0$, 05 найдем C такое, что $\alpha_1 = 0$, 05 $= P\{\chi^2 > C\}$ C – квантиль распределения χ^2 с тремя степенями свободы уровня 0,05. C=7,8

$$\delta(\vec{X}) = \{H_1 \text{ если } \rho(\vec{X}, \hat{\theta}) < C H_2 \text{ если } \rho(\vec{X}, \hat{\theta}) \ge C$$

$$\rho_{_{\mathrm{Ha6n}}}(\vec{X}, \hat{\theta}) = 0,8937 < C = 7,8$$

$$\delta(\vec{X}) = \{H_1 \text{ если } \rho(\vec{X}) < C = 7,8 H_2 \text{ если } \rho(\vec{X}) \ge C = 7,8$$

Вывод: Выборка не противоречит гипотезе $H_1 = \left\{ \xi \in N(a, \sigma^2 \right\}$ с уровнем значимости $\alpha_1 = 0, 05$.

Юнит 10. Однородность нормальных выборок

10.1 Совпадение дисперсий двух нормальных выборок

Критерий Фишера используют в качестве первого шага в задаче проверки однородности двух независимых нормальных выборок.

Есть две независимые выборки из нормальных распределений:

$$\vec{X} = (X_1, ..., X_n)$$
 $X_i \in N(a_1, \sigma_1^2)$ $M \quad \vec{Y} = (Y_1, ..., Y_m), \quad Y_i \in N(a_2, \sigma_2^2)$

средние которых, вообще говоря, неизвестны. Критерий Фишера предназначен для проверки гипотезы $H_1=\{\sigma_1^2=\sigma_2^2\}$. Используем несмещенные выборочные дисперсии:

$$S_0^2(\vec{X}) = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{x} \right)^2$$

$$S_0^2(\vec{Y}) = \frac{1}{m-1} \sum_{i=1}^m \left(Y_i - \overline{y}\right)^2$$

и зададим функцию отклонения $\rho(\vec{X},\vec{Y})$ как их отношение

$$\rho(\vec{X}, \vec{Y}) = \frac{S_0^2(\vec{X})}{S_0^2(\vec{Y})}$$

Удобно, если $\rho > 1$. С этой целью выборкой \vec{X} называют ту из двух выборок, несмещённая дисперсия которой больше. Поэтому предположим, что $S_0^2(\vec{X}) > S_0^2(\vec{Y})$

Теорема. Если гипотеза $H_1=\{\sigma_1^2=\sigma_2^2\}$ верна, то случайная величина $\rho(\vec{X},\vec{Y})$ имеет распределение Фишера $F_{n-1,m-1}$ с n-1, m-1 степенями свободы.

Доказательство.

По лемме Фишера, независимые случайные величины

$$\chi_{n-1}^2 = \frac{(n-1)S_0^2(\vec{X})}{\sigma_1^2} \in H_{n-1}$$

$$\chi_{m-1}^2 = \frac{(m-1)S_0^2(\vec{Y})}{\sigma_2^2} \in H_{m-1}$$

При $\sigma_1^2 = \sigma_2^2$ отношение

$$\frac{\frac{x_{n-1}^2}{(n-1)}}{\frac{x_{m-1}^2}{(m-1)}} = \frac{S_0^2(\vec{X})}{\sigma_1^2} \bullet \frac{\sigma_2^2}{S_0^2(\vec{Y})} = \rho(\vec{X}, \vec{Y}) \in F_{n-1, m-1}$$

Если $\sigma_1^2 > \sigma_2^2$, при $n, m \rightarrow \infty$.

$$S_0^2(\vec{X}) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \vec{x})^2 p \to M(S_0^2(\vec{X})) = \sigma_1^2$$
 (364)

$$S_0^2(\vec{Y}) = \frac{1}{m-1} \sum_{i=1}^m (Y_i - \overline{y})^2 p \to M(S_0^2(\vec{Y})) = \sigma_2^2$$
 (364)

$$\rho(\vec{X}, \vec{Y}) = \frac{S_0^2(\vec{X})}{S_0^2(\vec{Y})} p \rightarrow \frac{\sigma_1^2}{\sigma_2^2} > 1$$

Построим критерий Фишера и убедимся, что он состоятелен.

Возьмём квантиль $f_{1-\varepsilon}$ распределения Фишера $F_{n-1,m-1}$.

Критерием Фишера называют критерий

$$\delta(X,Y) = \{H_{_{1}}, \text{ если } \rho(\overrightarrow{X},\overrightarrow{Y}) < f_{_{1-\epsilon}}H_{_{2}}, \text{ если } \rho(\overrightarrow{X},\overrightarrow{Y}) \geq f_{_{1-\epsilon}},$$

Доказательство состоятельности критерия Фишера.

Покажем, что последовательность квантилей $f_{\delta}=f_{\delta}\left(n,m\right)$ любого уровня $0<\delta<1$ распределения $F_{n,m}$. сходится к 1 при $n,m\to\infty$. Возьмем величину $\psi_{n,m}\in F_{n,m}$

По определению, $P(\psi_{nm} < f_{\delta}) = \delta$, $P(\psi_{nm} > f_{\delta}) = 1 - \delta$ при всех n, m.

По свойству распределения Фишера, $\psi_{n,m} p \rightarrow 1$.

Поэтому для любого $\epsilon>0$ обе вероятности $P(\psi_{n,m}<1-\epsilon)$ и $P(\psi_{n,m}>1+\epsilon)$ стремятся к нулю при $n,m\to\infty$, становясь рано или поздно меньше как δ , так и $1-\delta$. Следовательно, при достаточно больших n,m выполнено $1-\epsilon< f_{\delta}<1+\epsilon$.

Пусть гипотеза $H_1=\{\sigma_1^2=\sigma_2^2\}$ не верна. Достаточно в качестве альтернативы рассмотреть $H_2=\left\{\sigma_1^2>\sigma_2^2\right\}$

$$\begin{split} \rho\Big(\overrightarrow{X},\overrightarrow{Y}\Big) &= \frac{S_0^2(\overrightarrow{X})}{S_0^2(\overrightarrow{Y})} \ p \to \frac{\sigma_1^2}{\sigma_2^2} > \ 1 \\ \alpha_2(\delta) &= \ P\bigg\{\frac{\rho(\overrightarrow{X},\overrightarrow{Y}) < f_{1-\varepsilon}}{H_2}\bigg\} \ = \ P\bigg\{\frac{\rho(\overrightarrow{X},\overrightarrow{Y}) - f_{1-\varepsilon} < 0}{H_2}\bigg\} \to P\bigg\{\frac{\sigma_1^2}{\sigma_2^2} - \ 1 \ < \ 0\bigg\} = \ 0. \quad \blacksquare \end{split}$$

Сформулировать критерий Фишера в случае, когда средние известны. Какой статистикой стоит воспользоваться теперь?

Пример: По двум независимым выборкам \vec{X} и \vec{Y} , объёмы которых n=11, m=14 извлечённым из нормальных генеральных совокупностей, найдены исправленные выборочные дисперсии $S_0^2(\vec{X})=0$, 76 $S_0^2(\vec{Y})=0$, 38 При уровне значимости $\epsilon=0$, 05 проверить гипотезу $H_1=\{\sigma_x^2=\sigma_y^2\}$ при альтернативе $H_2=\{\sigma_x^2>\sigma_y^2\}$

$$\rho(\vec{X}, \vec{Y}) = \frac{S_0^2(\vec{X})}{S_0^2(\vec{Y})} = \frac{0.76}{0.38} = 2 = \rho_{\text{набл.}}$$

$$\delta(\textit{X},\textit{Y}) \ = \{\textit{H}_{1}, \text{ если } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \ < \ \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ если } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ если } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ если } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ если } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ если } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ если } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eсли } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_{2}, \text{ eczu } \rho(\overrightarrow{\textit{X}},\overrightarrow{\textit{Y}}) \geq \textit{f}_{0,05;11-1;14-1} = 2,67 \ \textit{H}_$$

Вывод: поскольку $\rho_{_{{\rm Ha67.}}} < 2,76$, нет оснований отвергнуть гипотезу $H_{_1}$. Считаем, что выборочные дисперсии отличаются незначимо.

10.2 Равенство средних двух нормальных выборок

Особенно часто возникает необходимость проверить равенство средних двух нормальных совокупностей: например, в медицине или биологии для выяснения наличия или отсутствия действия препарата. Эта задача решается с помощью критерия Стьюдента, но только в случае, когда неизвестные дисперсии равны. Для проверки же равенства дисперсий пользуются сначала критерием Фишера.

Критерий Стьюдента.

Есть две независимые выборки из нормальных распределений:

$$\vec{X} = \left(X_1, \dots, X_n\right) \qquad X_i \in N\left(a_1, \sigma^2\right) \text{ if } \vec{Y} = \left(Y_1, \dots, Y_m\right), \quad Y_i \in N\left(a_2, \sigma^2\right)$$

с неизвестными средними и одной и той же неизвестной дисперсией σ^2 . Проверяется сложная гипотеза $H_1=\{a_1=a_2\}$.. Построим критерий Стьюдента точного размера ε .

Теорема. Случайная величина

$$t_{n+m-2} = \sqrt{\frac{nm}{n+m}} \bullet \frac{\left(\overline{x} - a_1\right) - \left(\overline{y} - a_2\right)}{\sqrt{\frac{(n-1)S_0^2(\vec{x}) + (m-1)S_0^2(\vec{y})}{n+m-2}}} \in T_{n+m-2}$$

имеет распределение Стьюдента T_{n+m-2}

Доказательство.

Поскольку

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \qquad M(\overline{x}) = a_{1} \qquad D(\overline{x}) = \frac{\sigma^{2}}{n},$$

случайная величина $\left(\overline{x}-a_1\right) \in N\left(0,\frac{\sigma^2}{n}\right)$, а случайная величина $\left(\overline{y}-a_2\right) \in N\left(0,\frac{\sigma^2}{m}\right)$. Тогда их разность распределена тоже нормально с нулевым средним и дисперсией

$$D((\overline{x} - a_1) - (\overline{y} - a_2)) = \frac{\sigma^2}{n} + \frac{\sigma^2}{m} = \frac{\sigma^2(n+m)}{nm}$$

Нормируем эту разность:

$$\xi_0 = \sqrt{\frac{nm}{(n+m)}} \frac{\left(\bar{x} - a_1\right) - \left(\bar{y} - a_2\right)}{\sigma} \in N(0, 1)$$

Из леммы Фишера следует, что независимые случайные величины

$$\chi_{n-1}^2 = \frac{(n-1)S_0^2(\vec{X})}{\sigma^2} \in H_{n-1}$$

$$\chi_{m-1}^{2} = \frac{(m-1)S_{0}^{2}(\vec{Y})}{\sigma^{2}} \in H_{m-1}$$

а их сумма

$$\chi_{n-1}^{2} + \chi_{m-1}^{2} = \frac{(n-1)S_{0}^{2}(\vec{X})}{\sigma^{2}} + \frac{(m-1)S_{0}^{2}(\vec{Y})}{\sigma^{2}} \in H_{n-1+m-1}$$

и не зависит от x и от y .

По определению $\frac{\xi_0}{\sqrt{\frac{\chi_n^2}{n}}} \in T_n$ имеет распределение Стьюдента

$$\frac{\xi_0}{\sqrt{\frac{\chi_{n-1}^2 + \chi_{m-1}^2}{n+m-2}}} \in T_{n+m-2}$$

$$\frac{\xi_0}{\sqrt{\frac{\chi_{n-1}^2 + \chi_{m-1}^2}{n+m-2}}} = \sqrt{\frac{nm}{(n+m)}} \frac{\left(\overline{x} - a_1\right) - \left(\overline{y} - a_2\right)}{\sigma \cdot \sqrt{\frac{(n-1)S_0^2(\vec{X}) + (m-1)S_0^2(\vec{Y})}{\sigma^2(n+m-2)}}} = \sqrt{\frac{nm}{n+m}} \cdot \frac{\left(\overline{x} - a_1\right) - \left(\overline{y} - a_2\right)}{\sqrt{\frac{(n-1)S_0^2(\vec{X}) + (m-1)S_0^2(\vec{Y})}{n+m-2}}} \in T_{n+m-2}$$

Введём функцию

$$\rho(\overrightarrow{X}, \overrightarrow{Y}) = \sqrt{\frac{nm}{n+m}} \bullet \frac{(\overline{X} - \overline{Y})}{\sqrt{\frac{(n-1)S_0^2(\overline{X}) + (m-1)S_0^2(\overline{Y})}{n+m-2}}}$$

1):если H_1 верна, т.е. если $a_1 = a_2$, то величина $\rho(\vec{X}, \vec{Y}) \in T_{n+m-2}$ имеет распределение Стьюдента.

2): если $a_1 \neq a_2$, величина $|\rho|$ неограниченно возрастает по вероятности с ростом n и m.

$$(\overline{x} - \overline{y}) p \rightarrow (a_1 - a_2) \neq 0$$
 (364)

$$\frac{(n-1)S_{0}^{2}(\vec{X}) + (m-1)S_{0}^{2}(\vec{Y})}{n+m-2} p \to \sigma^{2}$$
(364)
$$\left| \rho(\vec{X}, \vec{Y}) \right| = \sqrt{\frac{nm}{n+m}} \bullet \frac{|\vec{x} - \vec{y}|}{\sqrt{\frac{(n-1)S_{0}^{2}(\vec{X}) + (m-1)S_{0}^{2}(\vec{Y})}{n+m-2}}} p \to \sqrt{\frac{nm}{n+m}} \frac{|a_{1} - a_{2}|}{\sqrt{\sigma^{2}}} \to \infty$$

Поэтому остаётся по ε найти $C= au_{1-\varepsilon/2}$ —квантиль распределения T_{n+m-2} .

Критерий Стьюдента выглядит как все критерии согласия:

$$\delta(X,Y) = \{H_1, \; \text{если} \left| \rho(\vec{X},\vec{Y}) \right| \; < \; \tau_{1-\varepsilon/2} \, H_2, \, \text{если} \left| \rho(\vec{X},\vec{Y}) \right| \geq \tau_{1-\varepsilon/2} \, ,$$

Пример: По двум независимым выборкам \vec{X} и \vec{Y} , объёмы которых $n=12, \quad m=18$ извлечённым из нормальных генеральных совокупностей, найдены выборочные средние $\vec{x}=31, 2$ $\vec{y}=29, 2$ и исправленные выборочные дисперсии $S_0^2(\vec{X})=0, 84$ $S_0^2(\vec{Y})=0, 40$ При уровне значимости $\varepsilon=0, 05$ проверить гипотезу $H_1=\{a_x=a_y\}$ при альтернативе $H_2=\{a_x\neq a_y\}$

Сначала проверим гипотезу о равенстве дисперсий с помощью критерия Фишера.

$$\rho_1(\vec{X}, \vec{Y}) = \frac{S_0^2(\vec{X})}{S_0^2(\vec{Y})} = \frac{0.84}{0.40} = 2, 1 = \rho_{1\text{набл.}}$$

$$\delta(X,Y) = \{H_1, \text{ если } \rho_1(\overrightarrow{X},\overrightarrow{Y}) < f_{0,05;12-1;18-1} = 2,41 H_2, \text{ если } \rho_1(\overrightarrow{X},\overrightarrow{Y}) \geq f_{0,05;11-1;14-1} = 2,41 H_2$$

Поскольку ρ_{1 набл. < 2, 41 ,можем считать, что дисперсии нормальных генеральных совокупностей равны.

Теперь можем воспользоваться критерием Стьюдента для проверки равенства математических ожиданий.

$$\rho(\overrightarrow{X}, \overrightarrow{Y}) = \sqrt{\frac{nm}{n+m}} \bullet \frac{(\overrightarrow{x} - \overrightarrow{y})}{\sqrt{\frac{(n-1)S_0^2(\overrightarrow{X}) + (m-1)S_0^2(\overrightarrow{Y})}{n+m-2}}} = \sqrt{\frac{12 \cdot 18}{12 + 18}} \bullet \frac{(31,2-29,2)}{\sqrt{\frac{11 \cdot 0.84 + 17 \cdot 0.40}{12 + 18 - 2}}} = 7,09$$

$$\delta(\textit{X},\textit{Y}) = \left. \{\textit{H}_{_{1}}\text{, если } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \right. < \left. \tau_{_{0,025,18+12-2}} = 2,05 \right. \\ \left. H_{_{2}}\text{, если } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \ge \tau_{_{0,025,18+12-2}} = 2,05 \right. \\ \left. H_{_{2}}\text{, если } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \ge \tau_{_{0,025,18+12-2}} = 2,05 \right. \\ \left. H_{_{2}}\text{, eсли } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \ge \tau_{_{0,025,18+12-2}} = 2,05 \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \ge \tau_{_{0,025,18+12-2}} = 2,05 \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \ge \tau_{_{0,025,18+12-2}} = 2,05 \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \ge \tau_{_{0,025,18+12-2}} = 2,05 \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \ge \tau_{_{0,025,18+12-2}} = 2,05 \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \ge \tau_{_{0,025,18+12-2}} = 2,05 \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \ge \tau_{_{0,025,18+12-2}} = 2,05 \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \ge \tau_{_{0,025,18+12-2}} = 2,05 \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \ge \tau_{_{0,025,18+12-2}} = 2,05 \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \ge \tau_{_{0,025,18+12-2}} = 2,05 \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \ge \tau_{_{2}}\text{, eczu } \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \ge \tau_{_{2}}\text{, eczu } \left. H_{_{2}}\text{, eczu } \right| \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \ge \tau_{_{2}}\text{, eczu } \left. H_{_{2}}\text{, eczu } \right| \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \ge \tau_{_{2}}\text{, eczu } \left. H_{_{2}}\text{, eczu } \right| \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \ge \tau_{_{2}}\text{, eczu } \left. H_{_{2}}\text{, eczu } \right| \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}}, \vec{\textit{Y}} \right) \right| \right. \\ \left. H_{_{2}}\text{, eczu } \left| \rho \left(\vec{\textit{X}$$

Вывод: поскольку $\rho_{_{{\rm Ha6}\Pi}}=7,09>2,05$, отвергаем гипотезу $H_{_1}$ о равенстве математических ожиданий. Считаем, что выборочные средние различаются значимо.

Юнит 11. Критерии, основанные на доверительных интервалах

Имеется выборка $\vec{X} = \left(X_1, ..., X_n\right)$ из семейства распределений F_{θ} , где $\theta \in \Theta$.

Проверяется простая гипотеза $H_1=\{\theta=\theta_0\}$ против сложной альтернативы $H_2=\{\theta\neq\theta_0\}$. Пусть имеется доверительный интервал

$$P\{\underline{\theta} < \theta < \overline{\theta}\} = 1 - \varepsilon$$

Взяв произвольное θ' , для выборки из распределения $F_{\theta'}$ имеем $P\{\underline{\theta}<\theta'<\overline{\theta}\}=1-\epsilon$ Тогда критерий

$$\delta(X,Y) = \{H_{_{1}}, \; \text{если} \; \underline{\theta} < \theta_{_{0}} < \overline{\theta} \; H_{_{2}}, \; \text{если} \; \theta_{_{0}} \notin \left(\underline{\theta} \; , \overline{\theta}\right),$$

имеет точный размер ε:

$$\alpha_1(\delta) \ = \ P\left\{\frac{\delta = H_2}{H_1}\right\} \ = \ P\left\{\frac{\theta_0 \notin \left(\underline{\theta}, \overline{\theta}\right)}{H_1}\right\} \ = \ 1 \ - \ P\left\{\frac{\underline{\theta} < \theta_0 < \overline{\theta}}{H_1}\right\} \ = \ \epsilon.$$

Если доверительный интервал строится с помощью функции $G(\vec{X}; \theta)$, то эта же функция годится и в качестве «функции отклонения» $\rho(\vec{X})$ для построения критерия согласия.

Проверка гипотезы о среднем нормального распределения с известной дисперсией.

Имеется выборка $\vec{X}=\left(X_{1},...,X_{n}\right)$ из нормального распределения $X_{i}\in N\left(a,\sigma^{2}\right)$ с известной дисперсией σ^{2} . Проверяется простая гипотеза $H_{1}=\left\{a=a_{0}\right\}$ против сложной альтернативы $H_{2}=\left\{a\neq a_{0}\right\}$. Построим критерий размера ε с помощью функции

$$\rho(\vec{X}) = \frac{\bar{x} - a_0}{\frac{\sigma}{\sqrt{n}}}$$

1): если H_1 верна, то $\rho(\vec{X}) \in N(0,1)$. По ϵ выберем $C=u_{\epsilon/2}$ —квантиль стандартного нормального распределения уровня $\left(1-\frac{\epsilon}{2}\right)$

$$\Phi\left(u_{\varepsilon/2}\right) = \frac{1-\varepsilon}{2}$$

Критерий выглядит как все критерии согласия:

$$\delta(\vec{X}) = \{H_1, \text{ если } \left| \rho(\vec{X}) \right| < u_{\epsilon/2} H_2, \text{ если } \left| \rho(\vec{X}) \right| \ge u_{\epsilon/2}$$

2): если $a \neq a_0$, то

$$\left| \rho(\vec{X}) \right| = \frac{\left| \bar{x} - a_0 \right|}{\frac{\sigma}{\sqrt{n}}} p \to \infty$$

Критерий имеет точный размер є и является состоятельным.

Проверка гипотезы о среднем нормального распределения с неизвестной дисперсией.

Имеется выборка $\overrightarrow{X}=\left(X_{1},...,X_{n}\right)$ из нормального распределения $X_{i}{\in}N\left(a,\sigma^{2}\right)$ с неизвестной дисперсией σ^{2} . Проверяется простая гипотеза $H_{1}=\{a=a_{0}\}$ против сложной альтернативы $H_{2}=\{a\neq a_{0}\}$.

Критерий, который мы построим, называют одновыборочным критерием Стьюдента. Введём функцию отклонения

$$\rho(\vec{X}) = \frac{\bar{x} - a_0}{\sqrt{\frac{S_0^2}{n}}}$$

По следствию леммы Фишера выполнено условие:

- 1) если $a = a_0$, то $\rho(\overrightarrow{X})$ имеет распределение Стьюдента T_{n-1} .
- 2): если $a \neq a_0$, то

$$\left| \rho(\vec{X}) \right| = \frac{\left| \vec{x} - a_0 \right|}{\sqrt{\frac{S_0^2}{n}}} \ p \to \infty$$

Критерий строится так же, но в качестве С следует брать квантиль распределения Стьюдента, а не стандартного нормального распределения. Поэтому остаётся по ϵ найти $\mathcal{C} = \tau_{1-\epsilon/2}$ —квантиль распределения T_{n-1} .

Критерий Стьюдента выглядит как все критерии согласия:

$$\delta(X,Y) = \{H_1, \text{ если } \left| \rho(\overrightarrow{X},\overrightarrow{Y}) \right| < \tau_{1-\epsilon/2} H_2, \text{ если } \left| \rho(\overrightarrow{X},\overrightarrow{Y}) \right| \ge \tau_{1-\epsilon/2},$$