Indukcyjne metody analizy danych Ćwiczenie 1

Klasyfikator oparty na twierdzeniu Bayesa przy naiwnym założeniu o wzajemnej niezależności atrybutów

Prowadzący: dr inż. Paweł Myszkowski

Student: Piotr Bielak, 218137

WT 17:05

Wrocław, 13 marca 2018r.

Spis treści

1	Wpr	owadzenie	3
	1.1	Cel éwiczenia	3
	1.2	Klasyfikator Bayesowski	3
	1.3		4
	1.4	Kroswalidacja	4
	1.5	Metryki	5
2	Eksp	eryment	6
	2.1	Założenia	6
	2.2	Wyniki dyskretyzacji	6
		2.2.1 Zbiór danych - "Diabetes"	6
		2.2.2 Zbiór danych - "Glass"	8
		2.2.3 Zbiór danych - "Wine"	10
	2.3	Wyniki kroswalidacji	$\overline{2}$
		2.3.1 Zbiór danych – "Diabetes"	
		2.3.2 Zbiór danych – "Glass"	15
		2.3.3 Zbiór danych – "Wine"	
3	Wni	oski 2	21
4	Bibl	ografia 2	21

1 Wprowadzenie

1.1 Cel ćwiczenia

Celem ćwiczenia było poznanie tzw. naiwnego klasyfikatora Bayesa oraz zbadanie i ocena jego działania na 3 określonych zbiorach danych. W trakcie badań należało uwzględnić różne metody dyskretyzacji danych i kroswalidacji oraz zaobserwować wpływ tych parametrów na wartości zadanych metryk.

1.2 Klasyfikator Bayesowski

Typowym zagadnieniem w uczeniu maszynowym jest zadanie klasyfikacji. Należy ono do grupy tzw. zadań uczenia nadzorowanego, czyli zakłada istnienie zbioru danych, w którym każda instancja (wektor cech) jest oznaczona odpowiednią etykietą (klasa). Narzędzie, które jest uczone na takim zbiorze, a następnie używane do przyporządkowywania etykiet do nowych instancji, nazywa się klasyfikatorem. W tym ćwiczeniu użyty zostanie naiwny klasyfikator Bayesowski (ang. Naive Bayes Classifier). Jest on oparty o twierdzenie Bayesa:

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

gdzie:

X - wektor cech danej instancji,

 \mathbf{Y} - klasa.

Powyższy zapis odczytujemy jako prawdopodobieństwo przynależności instancji X do klasy Y. Ważne jest, że ten klasyfikator zakłada niezależność wszystkich atrybutów (cech), co w większości przypadków się nie sprawdza (stąd nazwa naiwny). Stąd w powyższym wzorze, człon P(X|Y) można zastąpić iloczynem prawdopodobieństw:

$$P(X|Y) = \prod_{i=1}^{n} P(X_i|Y)$$

Problem jaki się tutaj pojawia, to sytuacja w której jedno z prawdopodobieństw $P(X_i|Y)=0$, wtedy cały iloczyn się również wyzeruje. W celu przecidziałania temu, stosuje się tzw. wygładzanie danych – dla metody Laplace'a zwiększa się częstość występowania danego atrybutu. Klasa przypisywana przez klasyfikator dla danej instancji jest dobierana w taki sposób, aby prawdopodobieństwo P(Y|X) przyjęło największą sposród możliwych wartości.

Można wyróżnić 2 główne typy klasyfikatorów Bayesowskich:

- Gaussowski naiwny Bayes atrybuty przyjmują wartości ciągłe oraz zakłada się, że każdy atrybut posiada rozkład normalny;
- wielomianowy naiwny Bayes atrybuty przyjmują wartości dyskretne; parametrami przyjętego tutaj rozkładu wielomianowego (prawdopodobieństwami) są wektory postaci $(P(X_1|Y_i), P(X_2|Y_i), ..., P(X_n|Y_i))$ dla każdej klasy Y_i .

1.3 Dyskretyzacja

Często w różnych zbiorach danych atrybuty są zdefiniowane jako wartości ciągłe, co utrudnia pracę z nimi. Stosuje się zbieg dyskretyzacji, który jest określona jako funkcja: $f:R\to N$ (ew. w dziedzinę liczb całkowitych), która dla poszczególnych wartości atrybutów przypisuje im odpowiednie, dyskretne wartości.

Algortym ten działa najczęściej w oparciu o tzw. kubełkowanie. Tworzona jest odpowiednia liczba kubełków (przedziałów wartości $[x_i, x_{i+1}), [x_{i+1}, x_{i+2}), ...$). Następnie każda wartość danego atrybutu jest przypisywana do odpowiedniego przedziału. Po zakończeniu tej procedury, zamiast posługiwać się konkretną wartością atrybuty, zostają one zastąpione za pomocą np. numerów/etykiet kubełków.

W ćwiczeniu zostały wykorzystane następujące metody dyskretyzacji:

• Equal-width binning – zakłada się tutaj, że szerokość kubełka/przedziału jest stała, a parametrem który się ustawia jest liczba tych kubełków;

$$binwidth = \frac{x_{max} - x_{min}}{\#bins}$$

- Equal-frequency binning szerokości kubełków mogą być różne, ale powinny być tak dobrane, aby w każdym z nich mieściło się mniej więcej po równo wartości atrybutów; parametrem tutaj również jest liczba kubełków;
- CAIM (Class-Attribute Interdependence Maximization) w przeciwieństwie do poprzednich metod dyskretyzacji, które należą do grupy metod bez nadzoru, ta metoda pochodzi z grupy metod nazdorowanych (z naczycielem); korzysta ona z całego zbioru danych (atrybuty wraz z klasami) i próbuje zmaksymalizować zależność między atrybutami danej klasy, przy jednoczesnej minimalizacji liczby etykiet ("kubełków"); dokładny opis działania tej metody został podany w [1].

1.4 Kroswalidacja

W celu lepszej oceny jakości działania (uczenia) klasyfikatora stostuje się kroswalidację (sprawdzian krzyżowy). Zakłada ona, że zbiór danych dzielimy na podzbiory: zbiór danych uczących i zbiór danych testowych/walidacyjnych. W ćwiczeniu zostały wykorzystane dwie metody:

- K-Fold zbiór danych jest dzielony na K pozbiorów, z których każdy kolejno jest przyjmowany jako zbiór testowy, natomiast pozostałe służą do nauki modelu; metoda może być dość czasochłonna przy dużej wartości parametru K, jako że przeprowadzanych jest kolejno K przebiegów metody;
- Stratified K-Fold metoda ta jest bardzo podobna do poprzedniej, jednak w przeciwieństwie do niej gwarantuje, że podczas podziałów podzbiorów, w każdym z nich zostanie zachowana proporcja instancji różnych klas, zgodnie z proporcją istniejącą w całkowitym zbiorze danych.

1.5 Metryki

Jako miary (metryki) oceny jakości klasyfikatora zostały zastosowane następujące miary:

• Accuracy (dokładność) – stosunek liczby prawidłowo zaklasyfikowanych instancji do liczby wszystkich instancji,

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

• **Precision** (precyzja) – stosunek liczby prawidłowo zaklasyfikowanych pozytywnych instancji do liczby wszystkich instancji zaklasyfikowanych jako pozytywne,

$$Precision = \frac{TP}{TP + FP}$$

• Recall – stosunek liczby prawidłowo zaklasyfikowanych pozytywnych instancji do liczby wszystkich poprawnie zaklasyfikowanych,

$$Recall = \frac{TP}{TP + FN}$$

• **F1-Score** – ważona średnia wartości Precision oraz Recall; uwzględnia zarówno błędne pozytywy jak i błędne negatywy, dzięki czemu wnosi więcej informacji niż Accuracy,

$$F1 = \frac{Precision * Recall}{Precision + Recall} = \frac{2 * TP}{2 * TP + FP + FN}$$

• Confusion Matrix (macierz konfuzji) – jest to macierz, która prezentuje dla wszystkich dostępnych klas w danych zbiorze danych, jak często instancje zostały klasyfikowane jako poczególne klasy; komórka i, j oznacza zatem, że instancja z klasy i została zaklasyfikowana jako j, stąd idealna macierz konfuzji powinna zawierać niezerowe wartości tylko na przekątnej (prawidłowa klasyfikacja); w kolejnym rozdziale, zaprezentowane macierze, zostały znormalizowane.

Rysunek 1: Przykładowa (znormalizowana) macierz konfuzji.

2 Eksperyment

2.1 Założenia

Podczas przeprowadzania eksperymentu należało pamiętać o następujących założeniach:

- sprawdzenie 3 zbiorów danych: Diabetes, Glass oraz Wine,
- zbadanie 3 metod dyskretyzacji (tutaj: equal-width, equal-frequency oraz CAIM) lub założenie, że dane mają rozkład normalny,
- zbadanie wpływu paramteru kroswalidacji dla zwykłej oraz stratyfikowanej,
- zbadanie i wyciągnięcie wniosków z dostępnych miar oceny jakości klasyfikatora (accuracy, precision, recall, f1 oraz confusion matrix

Szczegółowe wyniki (wykresy, tabelki) tego eksperymentu są przedstawione w kolejnych podrozdziałach.

2.2 Wyniki dyskretyzacji

Dla każdego zbioru danych zostały przedstawione rozkłady wartości atrybutów. Pierwszy zawsze przedstawia dane nieprzetworzone, natomiast 3 kolejne – dane po zastosowaniu wyżej wymienionych metod dyskretyzacji.

W celu wyznaczenia parametru określającego liczbę kubełków w metodach *equal-width* oraz *equal-frequency*, została zastosowana reguła **Freedmana-Diaconisa**:

$$nb_bins = \frac{2*IQR(data)}{\#data^{1/3}}$$

Stąd otrzymano następujące wartości (algorytm CAIM samodzielnie wyznacza liczbę kubel-ków):

- Zbiór **Diabetes** 14 kubełków (CAIM 2 kubełki),
- Zbiór Glass 2 kubełków (CAIM 6 kubełki),
- Zbiór Wine 4 kubełków (CAIM 3 kubełki),

2.2.1 Zbiór danych - "Diabetes"

Zbiór składa się z 8 atrybutów: zarówno dyskretnych (np. wiek), jak i ciągłych. Rozkład wartości 4 z nich przypomina rozkład normalny (glukoza, ciśnienie, BMI oraz pedigree). Gaussowski naiwny klasyfikator powinien sobie w miarę dobrze poradzić z tymi danymi.

Rysunek 2: Rozkłady atrybutów zbioru "Diabetes" – brak dyskretyzacji.

Ze względu na dość dużą liczbę wyznaczonych kubełków rozkłady z dyskretyzacją **equal-width** mocno przypominają rozkłady danych nieprzetworzonych (mała utrata informacji).

Rysunek 3: Rozkłady atrybutów zbioru "Diabetes" – dyskretyzacja "equal-width".

W przypadku metody **equal-frequency** widać, że nie wszystkie kubełki są idealnie równoliczne, jednak większość zachowuje się w sposób oczekiwany (wyjątek: liczba ciąż).

Rysunek 4: Rozkłady atrybutów zbioru "Diabetes" – dyskretyzacja "equal-frequency".

Metoda CAIM dobierając tylko 2 kubełki utraciła sporo informacji, jednak nie oznacza to, że będzie otrzymywała gorsze wyniki. Zarówno dla ciśnienia krwi, jak i pedigree można zauważyć, że rozkład jest bardzo niepropocjonalny i większość wartości atrybutów znalazła się w pierwszym kubełku.

Rysunek 5: Rozkłady atrybutów zbioru "Diabetes" – dyskretyzacja "CAIM".

2.2.2 Zbiór danych - "Glass"

Zbiór ten zawiera 9 atrybutów określających skład chemiczny szkła (pierwiastki). Niemalże wszystkie, za wyjątkiem K (potasu), Ba (baru) oraz Fe (żelaza), posiadają rozkłady wartości zbliżone do rozkładu normalnego. Gaussowski klasyfikator powinien tutaj sprawdzić się najlepiej.

Rysunek 6: Rozkłady atrybutów zbioru "Glass" – brak dyskretyzacji.

Podobnie jak w przypadku CAIM w poprzednim zbiorze danych, tak tutaj również nastąpiła spora utrata informacji, po przyjęciu 2 kubełków. Dla niektórych atrybutów dyspropocja w zapełnieniu kubełków jest skrajna (K, Ba, Fe) i są to te same, których rozkład nie przypominał rozkładu normalnego.

Rysunek 7: Rozkłady atrybutów zbioru "Glass" – dyskretyzacja "equal-width".

Metoda **equal-frequency** prawie idealnie rozłożyła wartości do dostępnych kubełków, jednak dla dwóch atrybutów (Ba, Fe) pojawiły się anomalie i wartości trafiły tylko do jednego kubełka.

Rysunek 8: Rozkłady atrybutów zbioru "Glass" – dyskretyzacja "equal-frequency".

Algorytm CAIM poradził sobie tutaj znacznie lepiej. Dzieląc przedział wartości atrybutów na 6 kubełków, udało się zachować charakterystyki danych atrybutów (rozkładów atrybutów).

Rysunek 9: Rozkłady atrybutów zbioru "Glass" – dyskretyzacja "CAIM".

2.2.3 Zbiór danych - "Wine"

Zbiór ten składa się 13 atrybutów, które określają pewne parametry charakterystyczne dla win. Tylko kilka spośród nich posiada rozkład normalny, zatem ten zestaw idealnie nadaje się do dyskretyzacji i użycia wielomianowego klasyfikatora. Rozkłady większości atrybutów wydają się być zaszumione lub podążać za kilkoma rozkładami normalnymi.

Rysunek 10: Rozkłady atrybutów zbioru "Wine" – brak dyskretyzacji.

Dyskretyzacja **equal-width** przy parametrze liczby kubełków równej 4, bardzo dobrze odzwierciedlają nieprzetworzone rozkłady, jednocześnie eliminując "szumy". Zatem ta metoda dobrze zgeneralizowała i wyodrębniła istotę poszczególnych rozkładów.

Rysunek 11: Rozkłady atrybutów zbioru "Wine" – dyskretyzacja "equal-width".

Metoda **equal-frequency** w tym wypadku dla każdego atrybutu równomiernie rozłożyła wartości. Nie było tak dużych rozbieżności jak w przypadku poprzednich zbiorów danych.

Rysunek 12: Rozkłady atrybutów zbioru "Wine" – dyskretyzacja "equal-frequency".

Dyskretyzacja **CAIM** używa w tym zbiorze danych tylko 3 kubełków. W części przypadków odbiegają od początkowych, nieprzetworzonych rozkładów – np. atrybut *Proline* więcej wartości ma przy mniejszych wartościach (skupione głównie wokół 500), natomiast CAIM dla pierwszego kubełka posiada najmniej wartości.

Rysunek 13: Rozkłady atrybutów zbioru "Wine" – dyskretyzacja "CAIM".

2.3 Wyniki kroswalidacji

2.3.1 Zbiór danych – "Diabetes"

Rysunek 14: Wykresy wartości metryk dla zbioru "Diabetes" – krowalidacja zwykła.

Tabela 1: Wartości metryk dla zbioru "Diabetes" – krowalidacja zwykła.

Metoda dyskr.	Metryka	CV								
Wietoda dyski.	Wicoryna	2	3	4	5	6	7	8	9	
	Accuracy	0.754	0.745	0.757	0.753	0.754	0.753	0.754	0.757	
Brak	Precision	0.663	0.648	0.668	0.662	0.663	0.661	0.665	0.667	
Dian	Recall	0.601	0.59	0.601	0.593	0.601	0.597	0.593	0.604	
	F1	0.63	0.617	0.633	0.626	0.63	0.627	0.627	0.634	
	Accuracy	0.658	0.661	0.66	0.658	0.659	0.658	0.661	0.663	
Equal-width	Precision	0.514	0.521	0.519	0.514	0.516	0.514	0.521	0.524	
Equal-wiain	Recall	0.351	0.366	0.362	0.351	0.362	0.354	0.369	0.369	
	F1	0.417	0.43	0.426	0.417	0.425	0.419	0.432	0.433	
	Accuracy	0.727	0.728	0.734	0.734	0.736	0.734	0.733	0.725	
Equal-freq	Precision	0.638	0.637	0.652	0.651	0.654	0.655	0.647	0.633	
Equal-freq	Recall	0.5	0.511	0.511	0.515	0.515	0.504	0.519	0.507	
	F1	0.561	0.567	0.573	0.575	0.576	0.57	0.576	0.563	
	Accuracy	0.664	0.668	0.667	0.668	0.66	0.661	0.66	0.659	
CAIM	Precision	0.581	0.614	0.615	0.61	0.566	0.574	0.561	0.556	
OAIM	Recall	0.134	0.131	0.119	0.134	0.112	0.116	0.119	0.112	
	F1	0.218	0.215	0.2	0.22	0.187	0.193	0.197	0.186	

Rysunek 15: Macierz konfuzji dla najlepszej wartości F1 – kroswalidacja zwykła.

Rysunek 16: Wykresy wartości metryk dla zbioru "Diabetes" – krowalidacja stratyfikowana.

Tabela 2: Wartości metryk dla zbioru "Diabetes" – krowalidacja stratyfikowana.

Metoda dyskr.	Metryka	CV								
Metoda dyski.	Wietryka	2	3	4	5	6	7	8	9	
	Accuracy	0.754	0.743	0.751	0.751	0.753	0.755	0.753	0.751	
Brak	Precision	0.663	0.645	0.66	0.662	0.659	0.668	0.662	0.658	
Dian	Recall	0.601	0.59	0.593	0.586	0.604	0.593	0.593	0.597	
	F1	0.63	0.616	0.625	0.622	0.63	0.628	0.626	0.626	
	Accuracy	0.66	0.656	0.665	0.663	0.663	0.664	0.665	0.663	
Equal-width	Precision	0.518	0.511	0.529	0.524	0.524	0.527	0.529	0.523	
Equal-wiain	Recall	0.369	0.343	0.369	0.366	0.366	0.369	0.373	0.377	
	F1	0.431	0.411	0.435	0.431	0.431	0.434	0.438	0.438	
	Accuracy	0.727	0.736	0.733	0.728	0.732	0.73	0.734	0.734	
Equal-freq	Precision	0.638	0.653	0.648	0.638	0.645	0.642	0.654	0.648	
Equal-freq	Recall	0.5	0.519	0.515	0.507	0.515	0.515	0.507	0.522	
	F1	0.561	0.578	0.574	0.565	0.573	0.571	0.571	0.579	
	Accuracy	0.677	0.677	0.668	0.658	0.66	0.66	0.66	0.665	
CAIM	Precision	0.643	0.647	0.597	0.545	0.561	0.564	0.556	0.596	
OAIM	Recall	0.168	0.164	0.149	0.112	0.119	0.116	0.131	0.127	
	F1	0.266	0.262	0.239	0.186	0.197	0.192	0.211	0.209	

Rysunek 17: Macierz konfuzji dla najlepszej wartości F1 – kroswalidacja stratyfikowana.

2.3.2 Zbiór danych – "Glass"

Rysunek 18: Wykresy wartości metryk dla zbioru "Glass" – krowalidacja zwykła.

Tabela 3: Wartości metryk dla zbioru "Glass" – krowalidacja zwykła.

Metoda dyskr.	Metryka	CV									
Metoda dyski.	Wietryka	2	3	4	5	6	7	8	9		
	Accuracy	0.093	0.234	0.136	0.201	0.121	0.28	0.173	0.257		
Brak	Precision	0.039	0.076	0.062	0.137	0.153	0.208	0.098	0.263		
Dian	Recall	0.044	0.11	0.067	0.139	0.124	0.208	0.086	0.207		
	F1	0.041	0.09	0.064	0.125	0.133	0.188	0.086	0.214		
	Accuracy	0.173	0.014	0.089	0.084	0.019	0.037	0.056	0.023		
Equal-width	Precision	0.058	0.004	0.03	0.022	0.005	0.014	0.015	0.006		
Equal-wiain	Recall	0.081	0.007	0.045	0.039	0.009	0.019	0.026	0.011		
	F1	0.067	0.005	0.036	0.028	0.006	0.016	0.019	0.008		
	Accuracy	0.159	0.014	0.075	0.103	0.009	0.079	0.103	0.042		
Equal-freq	Precision	0.054	0.004	0.023	0.026	0.003	0.027	0.027	0.011		
Equal-freq	Recall	0.075	0.007	0.038	0.048	0.004	0.039	0.048	0.02		
	F1	0.063	0.005	0.029	0.034	0.003	0.032	0.034	0.014		
	Accuracy	0.215	0.047	0.257	0.285	0.248	0.383	0.439	0.449		
CAIM	Precision	0.054	0.014	0.091	0.125	0.137	0.166	0.208	0.342		
OAIM	Recall	0.101	0.022	0.126	0.17	0.218	0.206	0.223	0.316		
	F1	0.071	0.017	0.106	0.142	0.162	0.179	0.207	0.308		

Rysunek 19: Macierz konfuzji dla najlepszej wartości F1 – kroswalidacja zwykła.

Rysunek 20: Wykresy wartości metryk dla zbioru "Glass" – krowalidacja stratyfikowana.

Tabela 4: Wartości metryk dla zbioru "Glass" – krowalidacja stratyfikowana.

Metoda dyskr.	Metryka	CV								
Metoda dyski.	Wictryka	2	3	4	5	6	7	8	9	
	Accuracy	0.364	0.374	0.397	0.332	0.416	0.393	0.421	0.444	
Brak	Precision	0.461	0.464	0.443	0.4	0.427	0.407	0.384	0.45	
Dian	Recall	0.379	0.474	0.465	0.418	0.438	0.452	0.437	0.499	
	F1	0.386	0.439	0.426	0.388	0.415	0.416	0.392	0.454	
	Accuracy	0.36	0.36	0.364	0.35	0.364	0.364	0.374	0.369	
Equal-width	Precision	0.226	0.295	0.226	0.059	0.226	0.226	0.227	0.227	
Equal-wiain	Recall	0.172	0.176	0.178	0.164	0.178	0.178	0.19	0.184	
	F1	0.099	0.143	0.109	0.087	0.109	0.109	0.129	0.12	
	Accuracy	0.341	0.421	0.411	0.397	0.416	0.374	0.397	0.407	
Equal-freq	Precision	0.12	0.146	0.145	0.139	0.146	0.131	0.139	0.142	
Equal-jreq	Recall	0.163	0.205	0.2	0.193	0.203	0.181	0.193	0.198	
	F1	0.124	0.168	0.165	0.159	0.167	0.148	0.159	0.163	
	Accuracy	0.664	0.673	0.673	0.673	0.664	0.654	0.664	0.668	
CAIM	Precision	0.58	0.598	0.602	0.596	0.591	0.579	0.596	0.59	
OAIM	Recall	0.593	0.619	0.608	0.629	0.625	0.599	0.607	0.614	
	F1	0.581	0.604	0.599	0.607	0.602	0.584	0.597	0.598	

Rysunek 21: Macierz konfuzji dla najlepszej wartości F1 – kroswalidacja stratyfikowana.

2.3.3 Zbiór danych – "Wine"

Rysunek 22: Wykresy wartości metryk dla zbioru "Wine" – krowalidacja zwykła.

Tabela 5: Wartości metryk dla zbioru "Wine" – krowalidacja zwykła.

Metoda dyskr.	Metryka	CV								
Metoda dyski.	Wictryka	2	3	4	5	6	7	8	9	
	Accuracy	0.376	0.303	0.669	0.933	0.938	0.933	0.961	0.955	
Brak	Precision	0.13	0.114	0.657	0.934	0.938	0.934	0.959	0.954	
Dian	Recall	0.315	0.254	0.616	0.931	0.941	0.934	0.965	0.96	
	F1	0.184	0.157	0.574	0.932	0.939	0.934	0.962	0.957	
	Accuracy	0.303	0.124	0.489	0.792	0.77	0.798	0.843	0.837	
Equal-width	Precision	0.129	0.061	0.55	0.803	0.778	0.808	0.848	0.842	
Equal-wiain	Recall	0.254	0.103	0.467	0.801	0.783	0.809	0.853	0.85	
	F1	0.171	0.077	0.473	0.802	0.78	0.808	0.85	0.846	
	Accuracy	0.348	0.197	0.663	0.848	0.837	0.837	0.871	0.865	
Equal-freq	Precision	0.147	0.091	0.707	0.855	0.849	0.847	0.875	0.872	
Equal-freq	Recall	0.291	0.164	0.656	0.86	0.853	0.852	0.882	0.878	
	F1	0.195	0.117	0.669	0.857	0.846	0.846	0.878	0.873	
	Accuracy	0.343	0.208	0.764	0.854	0.865	0.871	0.882	0.882	
CAIM	Precision	0.138	0.102	0.788	0.866	0.875	0.883	0.888	0.891	
OAIM	Recall	0.286	0.174	0.766	0.863	0.875	0.884	0.895	0.893	
	F1	0.187	0.128	0.771	0.862	0.871	0.878	0.888	0.889	

Rysunek 23: Macierz konfuzji dla najlepszej wartości F1 – kroswalidacja zwykła.

Rysunek 24: Wykresy wartości metryk dla zbioru "Wine" – krowalidacja stratyfikowana.

Tabela 6:

Metoda dyskr.	Metryka	CV									
Metoda dyski.	Wieti y Ka	2	3	4	5	6	7	8	9		
	Accuracy	0.972	0.961	0.961	0.955	0.961	0.961	0.961	0.955		
Brak	Precision	0.973	0.961	0.959	0.954	0.96	0.959	0.959	0.954		
Diak	Recall	0.972	0.964	0.965	0.96	0.964	0.965	0.965	0.96		
	F1	0.972	0.962	0.962	0.957	0.962	0.962	0.962	0.957		
	Accuracy	0.899	0.899	0.904	0.904	0.893	0.899	0.904	0.899		
Equal-width	Precision	0.902	0.903	0.908	0.908	0.897	0.902	0.907	0.902		
Equal-wiain	Recall	0.91	0.909	0.914	0.914	0.904	0.908	0.913	0.908		
	F1	0.903	0.904	0.909	0.909	0.899	0.904	0.909	0.904		
	Accuracy	0.893	0.888	0.91	0.899	0.904	0.91	0.916	0.916		
Equal-freq	Precision	0.901	0.896	0.917	0.906	0.911	0.916	0.92	0.92		
Equal-freq	Recall	0.905	0.898	0.921	0.908	0.915	0.92	0.924	0.924		
	F1	0.9	0.894	0.915	0.904	0.91	0.915	0.92	0.92		
	Accuracy	0.916	0.899	0.904	0.916	0.899	0.91	0.904	0.904		
CAIM	Precision	0.924	0.908	0.911	0.922	0.906	0.915	0.91	0.91		
OAIM	Recall	0.926	0.911	0.917	0.928	0.91	0.92	0.915	0.915		
	F1	0.92	0.905	0.911	0.921	0.905	0.915	0.91	0.91		

Rysunek 25: Macierz konfuzji dla najlepszej wartości F1 – kroswalidacja stratyfikowana.

- 3 Wnioski
 - •
- 4 Bibliografia