Semana 7.- Dígrafos valorados y caminos mínimos

Grafos con aristas orientadas que tienen asociado un valor (peso, coste).

Listas de adyacentes

Los almacenamos en un vector de tamaño N (siendo N el número de nodos). Para cada nodo guardamos el origen, el destino y el coste de la siguiente manera:

Construcción de un digrafo valorado

La complejidad para la inversa está en O(V+A)

Recorrido en profundidad de un digrafo

La complejidad está en O(V+A).

Caminos mínimos

Dado un dígrafo valorado, queremos encontrar un camino de coste mínimo entre un vertice s y v.

Caminos mínimos desde un origen único

Los caminos mínimos forman un árbol de caminos mínimos.

Se pueden representar todos los caminos con dos vectores:

- dist[v]. Es la longitud del camino más corto desde el origen a v.
- ulti[v]. Es la última arista del camino más corto desde el origen a v.

Relajación de aristas

- dist[v] es la longitud del camino más corto conocido de s a v.
- dist[w] es la longitud del camino más corto conocido se s a w.
- ulti[w] es la última arista del camino más corto conocido de s a w.

Si la arista $v \rightarrow w$ proporciona un camino más corto hasta w a través de v, se actualizan tanto dist[] como ulti[w].

Condiciones de optimalidad.

Sea G un digrafo valorado. dist[] contiene la distancia de los caminos mas cortos si.

- dist[s] =0
- Para todo v, dist[v] es la longitud de algún camino de s a v.
- Para toda artista v → w, dist[w] ≤ dist[v] + a.valor().

Algoritmo de Dijkstra

Considera los vértices en orden creciente de distancia desde el origen.

Añade el vértice al árbol y relaja todas las aristas que salen de él.

V	dist[]	ulti[]
0	0	7.1
1	5	$0 \rightarrow 1$
2		
3		
4	9	$0 \rightarrow 4$
5		
6		
7	8	$0 \rightarrow 7$

	٧	dist[]	ulti[]	
	0	0	7.1	
\rightarrow	1	5	$0 \rightarrow 1$	
	2			
	3			
	4	9	$0 \rightarrow 4$	
	5			
	6			
	7	8	$0 \rightarrow 7$	

V	uls	t[] u	TCT[]
0) ()	//
1		5	$0 \rightarrow 1$
2	2 1	5	$7 \rightarrow 2$
3	3 2	0	$1 \rightarrow 3$
4		9	$0 \rightarrow 4$
5	5 1	4	$7 \rightarrow 5$
6	j		
→ 7	,	3	$0 \rightarrow 7$

Tras todos los pasos queda de la siguiente manera:

Análisis del coste

El coste en tiempo es de O(AlogV) con un espacio adicional de O(V).

a hacia arriba para Operación s precisas	Frecuencia	Coste por operación
inicializar los vectores	1	V)
construir cola prioridad	1	v }
рор	V	log V
5:09 update	A	log V