Development of real time supervisor emotional state tracking system

Boris Shishov — AC-10-4

Scientific adviser: B. Izyumov

RSU of Oil and Gas. 2015

Supervisory control systems

- Quality of decision making in SCS depends on professional and psychological factors like:
 - Competence
 - Speed of thought
 - Memory
 - Involvement
 - Stress
 - ...

Problem

- The impact of the psycho-emotional state in the decision making process is poorly understood
- Psychological factors are not well described in any SCS standard

Goal

 Development of real time supervisor emotion state tracking system

Objectives

Man-machine model A. Siegel and J. Wolf

Stress level factors:

- Individual operator reaction stress level increase as result of time lag during tasks execution
- Failure to successfully complete all elements of the job on the first try
- The need to wait for a response from machine

Model features

 Sub-task time dependent on the stress level

 Success or failure dependent on the stress level

Platform: Microsoft Kinect

Kinect output

Color stream

Depth stream

Tracked skeletons

Positioned audio

Kinect face tracking Toolkit

- CANDIDE-3 Face Model
- 87 Feature Points
- 6 Action Units:
 - Lip Raiser
 - Jaw Lowerer
 - Lip Stretcher
 - Brow Lowerer
 - Lip Corner Depressor
 - Brow Raiser

Development of the tracking tool

- Uses Microsoft Kinect for capturing color and depth stream, skeleton joint position, face position and face parameters
- Recording and playback capability
- Stress emulation game
- Data analysis, preview and export
- Real time stress state identification
- Notifications

The source code available at https://github.com/bshishov/Emotions

Experiment development

- Sub-tasks
- Succeeds and failures
- Linearly increasing stress level

Stress emulator development

- Task: Click on the objects of one specific type
- Fixed experiment time (3 minutes)
- Tasks appear faster over time
 - Easy mode. Operator performs 100% of tasks.
 - Concentrated mode. Operator can make mistakes but he increases his concentration on performing tasks.
 - Hard mode. Operator can't perform tasks before new tasks appears which causes increase of a stress level.
- Same experiment conditions for all
- Extract 2 points from result:
 - Transition between relaxed (normal) state to concentrated state
 - Transition between concentrated state to stressed state

Stress emulator

- Reaction time time between a circle created and being clicked
- Succeeds clicks on blue circles
- Fails
 - Misclicks
 - Clicks on red
 - Missed
- Video (color stream) and depth stream
- Skeleton joint positions
- Face position
- 6 face AU parameters

Experiment results

- 21 people recorded
- Some people in the course of the experiment showed a clear change of the emotional state

Time, ms

Action Units

Action Units

Data analysis

- Split each experiment data manually into 3 phases (Low, Medium and High) based on reaction time and failures series.
- Define parameters for each experiment
 - T_{cr1} time when low phase ends and mid phase starts
 - T_{cr2} time when mid phase ends and end phase starts
 - τ_1 average reaction time in 1st phase
 - τ_2 average reaction time in 2nd phase
 - τ_3 average reaction time in 3rd phase
 - F_1 average failures in 1st phase
 - F_2 average failures in 2^{nd} phase
 - F_3 average failures in 3^{rd} phase

Experiments parameters

#	tcrit1	tcrit2	Tau1	Tau2	Tau3	F1	F2	F3
1	87000	120000	934,07	897,11	998,65	1,15	2,00	46,53
2	90000	120000	932,11	929,28	984,00	0,11	6,28	33,83
3	60000	140000	1012,50	994,21	1039,32	4,00	27,60	77,18
4	60000	110000	1024,94	994,50	1038,46	11,29	24,73	83,84
5	85000	115000	772,10	752,89	877,80	3,10	7,04	24,19
6	95000	117000	869,31	849,20	957,22	4,36	16,13	50,99
7	80000	115000	969,69	964,45	1026,61	3,52	15,06	68,79
8	92000	110000	904,84	888,46	987,15	1,19	3,85	35,93
9	90000	120000	879,32	865,92	948,44	1,83	8,92	40,41
10	96000	120000	897,81	882,32	966,17	3,67	8,68	47,49
11	90000	110000	957,97	831,60	1064,35	7,47	17,80	73,95
12	90000	125000	877,16	821,59	990,00	1,35	8,00	32,94
13	70000	110000	913,22	958,94	944,09	4,45	13,91	49,49
14	90000	110000	955,48	907,50	956,37	7,43	16,88	62,94
15	90000	136000	907,08	898,50	986,59	13,59	26,80	67,92
16	66000	120000	815,69	787,29	941,34	0,00	0,50	28,07
17	60000	118000	924,00	854,26	1028,43	8,88	19,57	80,27
18	90000	130000	862,00	852,65	862,79	5,92	11,22	43,32
19	90000	110000	813,29	781,85	854,23	2,42	5,00	23,84
20	94000	138000	706,52	706,20	958,08	0,82	1,00	27,97
21	96000	120000	882,75	826,94	1031,56	1,89	2,00	31,27
	83857,14	119714,3	895,8026	868,8407	973,4116	4,211494	11,56918	49,10262

- $au_1 > au_2$ higher stress level provides better reaction
- $\tau_3 > \tau_2$ stress raised up higher than the operators stress threshold which provides bad reaction time
- $F_3 > F_2 > F_1$ higher stress level affects failures count

Parameters analysis

 Correlation matrix (highly correlated parameters are highlighted)

	tcrit1	tcrit2	Tau1	Tau2	Tau3	F1	F2	F3
tcrit1	1	0,014935	-0,41319	-0,43323	-0,28848	-0,28562	-0,46783	-0,52776
tcrit2	0,014935	1	-0,21124	-0,11515	0,031264	-0,00432	0,126288	-0,01402
Tau1	-0,41319	-0,21124	1	0,903666	0,665289	0,448887	0,661632	0,791381
Tau2	-0,43323	-0,11515	0,903666	1	0,471502	0,35814	0,616088	0,666953
Tau3	-0,28848	0,031264	0,665289	0,471502	1	0,248801	0,401751	0,644767
F1	-0,28562	-0,00432	0,448887	0,35814	0,248801	1	0,831869	0,767033
F2	-0,46783	0,126288	0,661632	0,616088	0,401751	0,831869	1	0,885304
F3	-0,52776	-0,01402	0,791381	0,666953	0,644767	0,767033	0,885304	1

• τ_1 is the most significant parameter

Parameters classification using k-means

#	tcrit1	tcrit2	Tau1	Tau2	Tau3	F1	F2	F3
1	87000	120000	934,07	897,11	998,65	1,15	2,00	46,53
2	90000	120000	932,11	929,28	984,00	0,11	6,28	33,83
3	60000	140000	1012,50	994,21	1039,32	4,00	27,60	77,18
4	60000	110000	1024,94	994,50	1038,46	11,29	24,73	83,84
5	85000	115000	772,10	752,89	877,80	3,10	7,04	24,19
6	95000	117000	869,31	849,20	957,22	4,36	16,13	50,99
7	80000	115000	969,69	964,45	1026,61	3,52	15,06	68,79
8	92000	110000	904,84	888,46	987,15	1,19	3,85	35,93
9	90000	120000	879,32	865,92	948,44	1,83	8,92	40,41
10	96000	120000	897,81	882,32	966,17	3,67	8,68	47,49
11	90000	110000	957,97	831,60	1064,35	7,47	17,80	73,95
12	90000	125000	877,16	821,59	990,00	1,35	8,00	32,94
13	70000	110000	913,22	958,94	944,09	4,45	13,91	49,49
14	90000	110000	955,48	907,50	956,37	7,43	16,88	62,94
15	90000	136000	907,08	898,50	986,59	13,59	26,80	67,92
16	66000	120000	815,69	787,29	941,34	0,00	0,50	28,07
17	60000	118000	924,00	854,26	1028,43	8,88	19,57	80,27
18	90000	130000	862,00	852,65	862,79	5,92	11,22	43,32
19	90000	110000	813,29	781,85	854,23	2,42	5,00	23,84
20	94000	138000	706,52	706,20	958,08	0,82	1,00	27,97
21	96000	120000	882.75	826.94	1031.56	1.89	2.00	31.27
	83857,14	119714,3	895,8026	868,8407	973,4116	4,211494	11,56918	49,10262

Factor analysis using PCA

- For better classification we need to decrease the number of variables
- Our variables:
 - 6 face AU (Brow lowerer, lip stretcher...)
 - Head position
 - Shoulders position
 - Face position
 - Face rotation
- Using PCA we obtain 2 main factors that covers 60% variance of our variables.

Individual differences

Classification problem

Summary and main conclusions **@**

- Run about 20 experiments to measure different stress levels of different individuals
- Developed a tool to capture and record emotional state based on A. Siegel and J. Wolf model
- Multiple steps were taken to "cleanse" the data
 - Analyzed correlation between key parameters
 - Extracted the core class of average-grade players
- Analyzed emotional state changes during experiment
 - Unable to establish universal correlation under assumptions
 - However, individual emotional traits can be clearly seen

Thank you for attention