Module 2

Matrices and Linear Maps Solutions

Problem 1: 20 points total

(1) (5 points) Prove that the column vectors of the matrix A_2 given by

$$A_2 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 3 \\ 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 3 \end{pmatrix}$$

are linearly independent.

(2) (5 points) Prove that the column vectors of the matrix B_2 given by

$$B_2 = \begin{pmatrix} 1 & -2 & 2 & -2 \\ 0 & -3 & 2 & -3 \\ 3 & -5 & 5 & -4 \\ 3 & -4 & 4 & -4 \end{pmatrix}$$

are linearly independent.

(3) (10 points) Prove that the coordinates of the column vectors of the matrix B_2 over the basis consisting of the column vectors of A_2 are the columns of the matrix P_2 given by

$$P_2 = \begin{pmatrix} 2 & 0 & 1 & -1 \\ -3 & 1 & -2 & 1 \\ 1 & -2 & 2 & -1 \\ 1 & -1 & 1 & -1 \end{pmatrix}.$$

Check that $A_2P_2 = B_2$. Prove that

$$P_2^{-1} = \begin{pmatrix} -1 & -1 & -1 & 1\\ 2 & 1 & 1 & -2\\ 2 & 1 & 2 & -3\\ -1 & -1 & 0 & -1 \end{pmatrix}.$$

What are the coordinates over the basis consisting of the column vectors of B_2 of the vector whose coordinates over the basis consisting of the column vectors of A_2 are (2, -3, 0, 0)?

1

Solution. (1) We begin by describing a general method to prove that the columns A^1, \ldots, A^n of an $n \times n$ matrix A (with coefficients in any field K; you may assume that $K = \mathbb{R}$ or $K = \mathbb{C}$) are linearly independent. Recall that A^1, \ldots, A^n are linearly independent iff for any scalars $x_1, \ldots, x_n \in K$,

if
$$x_1 A^1 + \dots + x_n A^n = 0$$
, then $x_1 = \dots = x_n = 0$. $(*_1)$

If we form the column vector x whose coordinates are $x_1, \ldots, x_n \in K$, then by definition of Ax,

$$x_1 A^1 + \dots + x_n A^n = Ax,$$

so $(*_1)$ is equivalent to

if
$$Ax = 0$$
, then $x = 0$. $(*2)$

In other words, the columns A^1, \ldots, A^n of the matrix A are linearly independent iff the linear system Ax = 0 has the unique solution x = 0 (the trivial solution).

The above can typically be demonstrated by solving the system Ax = 0 by variable elimination, and verifying that the only solution obtained is x = 0.

Another way to prove that the linear system Ax = 0 only has the trivial solution x = 0 is to show that A is invertible by by finding explicity the inverse A^{-1} of A. Indeed, if A has an inverse A^{-1} , we have $A^{-1}A = AA^{-1} = I$, so multiplying both sides of the equation Ax = 0 on the left by A^{-1} , we obtain

$$A^{-1}Ax = A^{-1}0 = 0,$$

and since $A^{-1}Ax = Ix = x$, we get x = 0.

In many practical situations, the inverse of A can be found using the Matlab command inv. You may use this method, but make sure that if A consists of integer entries, since in this case it can be shown that A^{-1} has rational entries (fractions), you express A^{-1} using rational numbers and you check by hand that indeed $A^{-1}A = I$.

Using the second method, to prove that the columbs of A_2 are linearly independent it suffices to show that A_2 is invertible. Running the command inv of Matlab on the matrix A_2 suggests that

$$A_2^{-1} = \begin{pmatrix} 2 & -1 & -1 & 1\\ 0 & 1 & 0 & -1\\ -1/2 & 0 & 1 & -1/2\\ -1/2 & 0 & 0 & 1/2 \end{pmatrix}.$$

It is easily checked by direct multiplication that $A_2A_2^{-1} = I_4$.

(2) We explained in (1) that the columns of a square matrix A are linearly independent if A is invertible. Thus it suffices to show that B_2 is invertible. Running the command inv of Matlab on the matrix B_2 suggests that

$$B_2^{-1} = \begin{pmatrix} -2 & 0 & 0 & 1\\ 9/2 & -1 & -1 & -1/2\\ 9/2 & -1 & 0 & -3/2\\ -3/2 & 0 & 1 & -1/2 \end{pmatrix}.$$

It is easily checked by direct multiplication that $B_2B_2^{-1} = I_4$.

(3) If we denote the column vectors of the matrix A_2 by $A_2^1, A_2^2, A_2^3, A_2^4$ and similarly the column vectors of the matrix B_2 by $B_2^1, B_2^2, B_2^3, B_2^4$, the coordinates $z^i = (z_1^i, z_2^i, z_3^i, z_4^i)$ of B_2^i over the basis $(A_2^1, A_2^2, A_2^3, A_2^4)$ $(1 \le i \le 4)$ are given by the equation

$$z_1^i A_2^1 + z_2^i A_2^2 + z_3^i A_2^3 + z_4^i A_2^4 = B_2^i,$$

and this is equivalent to solving the linear system

$$A_2 z^i = B_2^i, \quad i = 1, \dots, 4.$$

Putting z^1, z^2, z^3, z^4 into the 4×4 matrix P_2 (as columns), solving the above four linear systems is equivalent to solving the matrix equation

$$A_2P_2 = B_2,$$

thus we get

$$P_2 = A_2^{-1} B_2.$$

Carrying out the matrix multiplication we get

$$P_2 = A_2^{-1} B_2 = \begin{pmatrix} 2 & -1 & -1 & 1 \\ 0 & 1 & 0 & -1 \\ -1/2 & 0 & 1 & -1/2 \\ -1/2 & 0 & 0 & 1/2 \end{pmatrix} \begin{pmatrix} 1 & -2 & 2 & -2 \\ 0 & -3 & 2 & -3 \\ 3 & -5 & 5 & -4 \\ 3 & -4 & 4 & -4 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 1 & -1 \\ -3 & 1 & -2 & 1 \\ 1 & -2 & 2 & -1 \\ 1 & -1 & 1 & -1 \end{pmatrix}.$$

Since $P_2 = A_2^{-1}B_2$, we have

$$P_2^{-1} = (A_2^{-1}B_2)^{-1} = B_2^{-1}(A_2^{-1})^{-1} = B_2^{-1}A_2,$$

so we get

$$P_2^{-1} = B_2^{-1} A_2 = \begin{pmatrix} -2 & 0 & 0 & 1 \\ 9/2 & -1 & -1 & -1/2 \\ 9/2 & -1 & 0 & -3/2 \\ -3/2 & 0 & 1 & -1/2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 3 \\ 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 3 \end{pmatrix} = \begin{pmatrix} -1 & -1 & -1 & 1 \\ 2 & 1 & 1 & -2 \\ 2 & 1 & 2 & -3 \\ -1 & -1 & 0 & -1 \end{pmatrix}.$$

By construction the matrix P_2 is the change of basis matrix from the basis $(A_2^1, A_2^2, A_2^3, A_2^4)$ (the old basis) to the basis $(B_2^1, B_2^2, B_2^3, B_2^4)$ (the new basis). If x = (2, -3, 0, 0) are the coordinates of a vector over the old basis $(A_2^1, A_2^2, A_2^3, A_2^4)$, we know from a result of the course that the coordinates x' of this vector over the new basis $(B_2^1, B_2^2, B_2^3, B_2^4)$ are given by

$$x' = P_2^{-1}x,$$

and we find that

$$x' = P_2^{-1}x = \begin{pmatrix} -1 & -1 & -1 & 1 \\ 2 & 1 & 1 & -2 \\ 2 & 1 & 2 & -3 \\ -1 & -1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

Problem 2: 30 points total

Consider the polynomials

$$B_0^2(t) = (1-t)^2$$
 $B_1^2(t) = 2(1-t)t$ $B_2^2(t) = t^2$
 $B_0^3(t) = (1-t)^3$ $B_1^3(t) = 3(1-t)^2t$ $B_2^3(t) = 3(1-t)t^2$ $B_3^3(t) = t^3$,

known as the Bernstein polynomials of degree 2 and 3.

(1) (10 points) Show that the Bernstein polynomials $B_0^2(t)$, $B_1^2(t)$, $B_2^2(t)$ are expressed as linear combinations of the basis $(1, t, t^2)$ of the vector space of polynomials of degree at most 2 as follows:

$$\begin{pmatrix} B_0^2(t) \\ B_1^2(t) \\ B_2^2(t) \end{pmatrix} = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \end{pmatrix}.$$

Prove that

$$B_0^2(t) + B_1^2(t) + B_2^2(t) = 1.$$

(2) (10 points) Show that the Bernstein polynomials $B_0^3(t)$, $B_1^3(t)$, $B_2^3(t)$, $B_3^3(t)$ are expressed as linear combinations of the basis $(1, t, t^2, t^3)$ of the vector space of polynomials of degree at most 3 as follows:

$$\begin{pmatrix} B_0^3(t) \\ B_1^3(t) \\ B_2^3(t) \\ B_3^3(t) \end{pmatrix} = \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \\ t^3 \end{pmatrix}.$$

Prove that

$$B_0^3(t) + B_1^3(t) + B_2^3(t) + B_3^3(t) = 1.$$

(3) (10 points) Prove that the Bernstein polynomials of degree 2 are linearly independent and that the Bernstein polynomials of degree 3 are linearly independent.

Solution. (1) By expanding the polynomials

$$B_0^2(t) = (1-t)^2$$
 $B_1^2(t) = 2(1-t)t$ $B_2^2(t) = t^2$

we get

$$B_0^2(t) = 1 - 2t + t^2$$

$$B_1^2(t) = 2(1 - t)t = 2t - 2t^2$$

$$B_2^2(t) = t^2,$$

which yields

$$\begin{pmatrix}
B_0^2(t) \\
B_1^2(t) \\
B_2^2(t)
\end{pmatrix} = \begin{pmatrix}
1 & -2 & 1 \\
0 & 2 & -2 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
1 \\
t \\
t^2
\end{pmatrix}.$$
(eq1)

It should be noted that the change of basis matrix from the basis $(1, t, t^2)$ to the basis $(B_0^2(t), B_1^2(t), B_2^2(t))$ is actually the *transpose* of the above matrix, namely

$$\begin{pmatrix} 1 & 0 & 0 \\ -2 & 2 & 0 \\ 1 & -2 & 1 \end{pmatrix},$$

since the columns of the above matrix are the coordinates of $(B_0^2(t), B_1^2(t), B_2^2(t))$ over the basis $(1, t, t^2)$. Indeed we can write

$$(B_0^2(t) \quad B_1^2(t) \quad B_2^2(t)) = (1 \quad t \quad t^2) \begin{pmatrix} 1 & 0 & 0 \\ -2 & 2 & 0 \\ 1 & -2 & 1 \end{pmatrix}.$$

We have

$$B_0^2(t) + B_1^2(t) + B_2^2(t) = 1 - 2t + t^2 + 2t - 2t^2 + t^2 = 1.$$

(2) By expanding the polynomials

$$B_0^3(t) = (1-t)^3$$
 $B_1^3(t) = 3(1-t)^2t$ $B_2^3(t) = 3(1-t)t^2$ $B_3^3(t) = t^3$

we get

$$\begin{split} B_0^3(t) &= 1 - 3t + 3t^2 - t^3 \\ B_1^3(t) &= 3(1 - 2t + t^2)t = 3t - 6t^2 + 3t^3 \\ B_2^3(t) &= 3(1 - t)t^2 = 3t^2 - 3t^3 \\ B_3^3(t) &= t^3, \end{split}$$

which yields

$$\begin{pmatrix}
B_0^3(t) \\
B_1^3(t) \\
B_2^3(t) \\
B_3^3(t)
\end{pmatrix} = \begin{pmatrix}
1 & -3 & 3 & -1 \\
0 & 3 & -6 & 3 \\
0 & 0 & 3 & -3 \\
0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
1 \\
t \\
t^2 \\
t^3
\end{pmatrix}.$$
(eq2)

As in the previous case it should be noted that the change of basis matrix from the basis $(1, t, t^2, t^3)$ to the basis $(B_0^3(t), B_1^3(t), B_2^3(t)), B_3^3(t)$ is actually the *transpose* of the above matrix, namely

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{pmatrix},$$

since the columns of the above matrix are the coordinates of $(B_0^3(t), B_1^3(t), B_2^3(t), B_3^3(t))$ over the basis $(1, t, t^2, t^3)$. Indeed we can write

$$(B_0^3(t) \quad B_1^3(t) \quad B_2^3(t) \quad B_3^3(t)) = (1 \quad t \quad t^2 \quad t^3) \begin{pmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{pmatrix}.$$

We have

$$B_0^3(t) + B_1^3(t) + B_2^3(t) + B_3^3(t) = 1 - 3t + 3t^2 - t^3 + 3t - 6t^2 + 3t^3 + 3t^2 - 3t^3 + t^3 = 1.$$

(3) Equation (eq1) shows that $B_0^2(t), B_1^2(t), B_2^2(t)$ are expressed in terms of the basis $1, t, t^2$ by the upper-triangular matrix with nonzero diagonal entries

$$Be_2 = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{pmatrix}.$$

We check easily that the inverse of Be_2 is

$$Be_2^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1/2 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Since $(1, t, t^2)$ is a basis and since the matrix Be_2^{-1} shows that the vectors in the basis $(1, t, t^2)$ are expressed in terms of the vectors $(B_0^2(t), B_1^2(t), B_2^2(t))$, by the replacement lemma, $(B_0^2(t), B_1^2(t), B_2^2(t))$ must be linearly independent (otherwise $(B_0^2(t), B_1^2(t), B_2^2(t))$ would not span a space of dimension 3).

Another proof consists in observing that the matrix Be_2 defines a linear map that sends the basis $(1, t, t^2)$ to the basis $(B_0^2(t), B_1^2(t), B_2^2(t))$. Since the matrix Be_2 is invertible, it defines an invertible linear map, but an invertible linear maps sends a basis to a basis.

Similarly, by Equation (eq2), $B_0^3(t)$, $B_1^3(t)$, $B_2^3(t)$, $B_3^3(t)$ are expressed in terms of the basis $1, t, t^2, t^3$ by the upper-triangular matrix with nonzero diagonal entries

$$Be_3 = \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

We check easily that the inverse of Be_3 is

$$Be_3^{-1} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1/3 & 2/3 & 1 \\ 0 & 0 & 1/3 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Since $(1, t, t^2, t^3)$ is a basis and since the matrix Be_3^{-1} shows that the vectors in the basis $(1, t, t^2, t^3)$ are expressed in terms of the vectors $(B_0^3(t), B_1^3(t), B_2^3(t), B_3^3(t))$, by the replacement lemma, $(B_0^3(t), B_1^3(t), B_2^3(t), B_3^3(t))$ must be linearly independent (otherwise $(B_0^3(t), B_1^3(t), B_2^3(t), B_3^3(t))$ would not span a space of dimension 4).

Another proof consists in observing that the matrix Be_3 defines a linear map that sends the basis $(1, t, t^2, t^3)$ to the basis $(B_0^3(t), B_1^3(t), B_2^3(t), B_3^3(t))$. Since the matrix Be_3 is invertible, it defines an invertible linear map, but an invertible linear maps sends a basis to a basis.

Problem 3: 10 points

Prove that for every vector space E, if $f: E \to E$ is an idempotent linear map, i.e., $f \circ f = f$, then we have a direct sum

$$E = \operatorname{Ker} f \oplus \operatorname{Im} f$$
,

so that f is the projection onto its image Im f.

Solution. Since $f \circ f = f$, we have

$$f(u - f(u)) = f(u) - f(f(u)) = f(u) - f(u) = 0$$

for all $u \in E$. Therefore, $u - f(u) \in \text{Ker } f$, and since

$$u = u - f(u) + f(u)$$

with $u - f(u) \in \operatorname{Ker} f$ and $f(u) \in \operatorname{Im} f$, we have

$$E = \operatorname{Ker} f + \operatorname{Im} f$$
.

If $u \in \text{Ker } f \cap \text{Im } f$, then there is some $v \in E$ such that u = f(v) and f(u) = 0. But then, since $f \circ f = f$, we get

$$0 = f(u) = f(f(v)) = f(v),$$

so f(v) = 0 and since u = f(v), we also have u = 0, which means that $\operatorname{Ker} f \cap \operatorname{Im} f = 0$. Therefore, we have a direct sum

$$E = \operatorname{Ker} f \oplus \operatorname{Im} f$$
,

and since $f \circ f = f$, for every $u \in \text{Im } f$, since u = f(v) for some $v \in E$, we have

$$f(u) = f(f(v)) = f(v) = u,$$

so the restriction of f to Im f is the identity I and f is indeed the projection onto Im f.

Problem 4: 20 points plus 15 points Extra Credit

Given any vector space E, a linear map $f: E \to E$ is an involution if $f \circ f = id$.

- (1) (10 points) Prove that an involution f is invertible. What is its inverse?
- (2) (10 points) Let E_1 and E_{-1} be the subspaces of E defined as follows:

$$E_1 = \{ u \in E \mid f(u) = u \}$$

$$E_{-1} = \{ u \in E \mid f(u) = -u \}.$$

Prove that we have a direct sum

$$E = E_1 \oplus E_{-1}$$
.

Hint. For every $u \in E$, write

$$u = \frac{u + f(u)}{2} + \frac{u - f(u)}{2}.$$

(3) Extra credit (15 points) If E is finite-dimensional and f is an involution, prove that there is some basis of E with respect to which the matrix of f is of the form

$$I_{k,n-k} = \begin{pmatrix} I_k & 0\\ 0 & -I_{n-k} \end{pmatrix},$$

where I_k is the $k \times k$ identity matrix (similarly for I_{n-k}) and $k = \dim(E_1)$. Can you give a geometric interpretation of the action of f (especially when k = n - 1)?

Solution. (1) Since $f \circ f = id$, the map f is both a left and a right inverse for itself, so f is invertible and $f^{-1} = f$.

(2) As suggested, pick any $u \in E$ and write $u = u_1 + u_{-1}$, with

$$u_1 = \frac{u + f(u)}{2}, \quad u_{-1} = \frac{u - f(u)}{2}.$$

Since $f^2 = id$, we have

$$f(u_1) = f\left(\frac{u+f(u)}{2}\right) = \frac{f(u)+f^2(u)}{2} = \frac{f(u)+u}{2} = u_1,$$

and

$$f(u_{-1}) = f\left(\frac{u - f(u)}{2}\right) = \frac{f(u) - f^2(u)}{2} = \frac{f(u) - u}{2} = -u_{-1}.$$

Therefore, $u_1 \in E_1$ and $u_{-1} \in E_{-1}$, and since $u = u_1 + u_{-1}$, we have

$$E = E_1 + E_{-1}$$
.

If $u \in E_1 \cap E_{-1}$, then f(u) = u and f(u) = -u, so u = -u, which means that u = 0. Therefore, $E_1 \cap E_{-1} = (0)$, and we have the direct sum

$$E=E_1\oplus E_{-1}.$$

(3) Since $E = E_1 \oplus E_{-1}$ is a direct sum, we can pick a basis consisting of $k = \dim(E_1)$ vectors (u_1, \ldots, u_k) from E_1 and n - k vectors (u_{k+1}, \ldots, u_n) from E_{-1} (with $n = \dim(E)$), and with respect to this basis (u_1, \ldots, u_n) , the matrix of f is indeed of the form

$$I_{k,n-k} = \begin{pmatrix} I_k & 0\\ 0 & -I_{n-k} \end{pmatrix}.$$

The linear map f is a reflection about the subspace E_1 . When k = n - 1, the subspace E_1 is a hyperplane, and f is a hyperplane reflection.

Total: 70 points Extra Credit: 15 points