Prof^a Mariana Villapouca

ampo vetoria

Integral de linh de um campo vetorial em \mathbb{R}^2

Integral de linh de um campo vetorial em \mathbb{R}^3

Cálculo III Integral de linha de campo vetorial

Prof^a Mariana Villapouca

24 de outubro de 2024

ampo vetoria

Integral de linha de um campo vetorial em \mathbb{R}^2

Integral de linha de um campo vetorial em \mathbb{R}^3 1 Campo vetorial

2 Integral de linha de um campo vetorial em \mathbb{R}^2

 $oldsymbol{3}$ Integral de linha de um campo vetorial em \mathbb{R}^3

Integral de linh de um campo vetorial em \mathbb{R}^3

1 Campo vetorial

2 Integral de linha de um campo vetorial em \mathbb{R}^2

 $oxed{3}$ Integral de linha de um campo vetorial em \mathbb{R}^3

V i l l a p o u

Integral de linha de um campo vetorial em \mathbb{R}^3

Campo vetorial em \mathbb{R}^2

Um campo vetorial em \mathbb{R}^2 é uma função

$$F: D \subseteq \mathbb{R}^2 \to \mathbb{R}^2$$
$$(x,y) \mapsto F(x,y) = (F_1(x,y), F_2(x,y))$$

Exemplo

https://www.geogebra.org/m/httsweat

Prof^a Mariana Villapouca

Campo vetorial

Integral de linh de um campo vetorial em \mathbb{R}^2

Integral de linha de um campo vetorial em \mathbb{R}^3

Campo vetorial em \mathbb{R}^3

Um campo vetorial em \mathbb{R}^3 é uma função

$$F: D \subseteq \mathbb{R}^3 \to \mathbb{R}^3$$

$$(x, y, z) \mapsto F(x, y, z) = (F_1(x, y, z), F_2(x, y, z), F_3(x, y, z))$$

Exemplo

https://www.geogebra.org/3d/shvuvan4

Cálculo III
2.2024
IME/UERJ
6
Prof^a Mariana

Villapouca

Integral de linha de um campo vetorial em \mathbb{R}^2

Integral de linh de um campo vetorial em R³ Campo vetorial

2 Integral de linha de um campo vetorial em \mathbb{R}^2

 $oldsymbol{3}$ Integral de linha de um campo vetorial em \mathbb{R}^3

Prof^a Mariana Villapouca

amno vetor

Integral de linha de um campo vetorial em \mathbb{R}^2

Integral de linha de um campo vetorial em \mathbb{R}^3

Integral de linha de um campo vetorial em \mathbb{R}^2

Consideremos uma curva C em \mathbb{R}^2 parametrizada por $\sigma(t)=(x(t),y(t)),$ $t\in [a,b]$, onde σ é de classe C^1 , e $F(x,y)=(F_1(x,y),F_2(x,y))$ um campo vetorial contínuo em C (isto é, F_1,F_2 são contínuas em C). Definimos a **integral de linha de** F **ao longo de** C por

$$\int_{C} F \cdot dr = \int_{a}^{b} F(\sigma(t)) \cdot \sigma'(t) dt$$

$$\downarrow$$
produto escalar

Assim,

$$\int_C F \cdot dr = \int_a^b F(\sigma(t)) \cdot \sigma'(t) dt = \int_a^b F_1(\sigma(t)) x'(t) + F_2(\sigma(t)) y'(t) dt$$

com isso podemos usar a seguinte notação

$$\int_C F \cdot dr = \int_C F_1 dx + F_2 dy$$

Campo vetorial

2 Integral de linha de um campo vetorial em \mathbb{R}^2

 $oldsymbol{3}$ Integral de linha de um campo vetorial em \mathbb{R}^3

V
i
l
l
a
p
o

Integral de linha de um campo vetorial em \mathbb{R}^3

Integral de linha de um campo vetorial em \mathbb{R}^3

Consideremos uma curva C em \mathbb{R}^3 parametrizada por $\sigma(t)=(x(t),y(t),z(t)), t\in [a,b]$, onde σ é de classe C^1 , e $F(x,y,z)=(F_1(x,y,z),F_2(x,y,z),F_3(x,y,z))$ um campo vetorial contínuo em C (isto é, F_1,F_2,F_3 são contínuas em C). Definimos a **integral de linha** de F ao longo de C por

$$\int_{C} F \cdot dr = \int_{a}^{b} F(\sigma(t)) \cdot \sigma'(t) dt$$

$$\downarrow$$
produto escalar

Assim,

$$\int_{C} F \cdot dr = \int_{a}^{b} F_{1}(\sigma(t))x'(t) + F_{2}(\sigma(t))y'(t) + F_{3}(\sigma(t))z'(t) dt$$

com isso podemos usar a seguinte notação

$$\int_C F \cdot dr = \int_C F_1 dx + F_2 dy + F_3 dz$$

Prof^a Mariana Villapouca

ampo vetoria

Integral de lin de um campo vetorial em R

Integral de linha de um campo vetorial em \mathbb{R}^3

Observações

Se a curva C é fechada, isto é, $\sigma(a)=\sigma(b)$, então a integral de linha é denotada por $\oint_C F\cdot dr.$

Obs: A fórmula ainda é válida se $F(\sigma(t)) \cdot \sigma'(t)$ é contínua por partes em [a,b].

Prof^a Mariana Villapouca

Campo vetorial

de um campo vetorial em \mathbb{R}^2 Integral de linha de um campo vetorial em \mathbb{R}^3

Exemplo 1

Calcule $\int_C F\cdot dr$, onde F(x,y,z)=(x,y,z) e C é a curva parametrizada por $\sigma(t)=(sent,cost,t),0\leqslant t\leqslant 2\pi$

Resolução

- F(x,y,z) = (x,y,z)
- $F(\sigma(t)) =$
- $\sigma'(t) =$

•
$$\int_C F \cdot dr = \int_0^{2\pi} F(\sigma(t)) \cdot \sigma'(t) dt =$$

Exemplo 2

Calcule a integral de linha do campo vetorial

$$F(x,y) = (x^2 - 2xy, x^3 + y)$$

de (0,0) a (1,1) ao longo do segmento de reta C_1 de equações paramétricas $x=t,y=t,0\leqslant t\leqslant 1$.

- $F(x,y) = (x^2 2xy, x^3 + y)$
- $F(\sigma(t)) =$
- $\sigma'(t) =$
- $\int_{C_1} F \cdot dr = \int_0^1 F(\sigma(t)) \cdot \sigma'(t) dt =$

Exemplo 3

Calcule a integral de linha do campo vetorial

$$F(x,y) = (x^2 - 2xy, x^3 + y)$$

de (0,0) a (1,1) ao longo da curva C_2 de equações paramétricas x= $t^2, y = t^3, 0 \le t \le 1.$

- $F(x, y) = (x^2 2xy, x^3 + y)$
- $F(\sigma(t)) =$
- $\sigma'(t) =$
- $\int_C F \cdot dr = \int_0^1 F(\sigma(t)) \cdot \sigma'(t) dt =$

vetorial em \mathbb{R}^2 Integral de linha de um campo vetorial em \mathbb{R}^3

Observação 1

Note que nos exemplos 2 e 3 calculamos a integral de linha do mesmo campo vetorial mas por dois caminhos diferentes que ligam os pontos (0,0) e (1,1).

Logo, notamos que a integral de linha de um campo vetorial de um ponto A a um ponto B depende, em geral, da curva que liga esses dois pontos.

Prof^a Mariana Villapouca

ampo vetoria

Integral de linh de um campo

Integral de linha de um campo vetorial em \mathbb{R}^3

No entanto, para alguns campos vetoriais, a integral depende apenas dos pontos A e B e não da curva que os liga. Neste caso, dizemos que a integral de linha independe do caminho que liga A e B. Veremos quais condições o campo deve satisfazer para que isto ocorra no próximo Teorema.

Teorema

Seja F um campo vetorial contínuo definido num subconjunto aberto $U\subset\mathbb{R}^3$ (\mathbb{R}^2) para o qual existe uma função real f tal que $\nabla f=F$ em U. Se C é uma curva em U com pontos inicial e final A e B, respectivamente, parametrizada por uma função $\sigma(t)$, C^1 por partes então

$$\int_{C} F \cdot dr = \int_{C} \nabla f \cdot dr = f(B) - f(A)$$

tal campo vetorial F é dito campo gradiente ou campos conservativo e a função f é dita uma função potencial.

Integral de linha de um campo vetorial em \mathbb{R}^3

Exemplo 4

Considere o campo gradiente $F(x,y)=(e^{-y}-2x,-xe^{-y}-seny).$ Calcule $\int_C F\cdot dr$, onde C é qualquer curva C^1 por partes de $A=(\pi,0)$ até $B=(0,\pi).$

Resolução: Pelo Teorema anterior,

$$\int_C F \cdot dr = f(0, \pi) - f(\pi, 0)$$

onde f é uma função potencial de F em \mathbb{R}^2 . Vamos determinar f:

$$\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = \left(e^{-y} - 2x, -xe^{-y} - seny\right)$$

 $\nabla f = F$

:

Propriedades

Linearidade

$$\int_C (aF + bG) \cdot dr = a \int_C F \cdot dr + b \int_C G \cdot dr$$

onde a e b são constantes reais.

• Aditividade Se $C = C_1 \cup C_2 \cup \cdots \cup C_n$ então

$$\int_{C} F \cdot dr = \int_{C_1} F \cdot dr + \int_{C_2} F \cdot dr + \dots + \int_{C_n} F \cdot dr$$

Prof^a Mariana Villapouca

Campo vetoria

Integral de linh de um campo vetorial em \mathbb{R}^2

Integral de linha de um campo vetorial em \mathbb{R}^3

Exemplo 5

Considere a curva C a fronteira do quadrado no plano xy de vértices (0,0),(1,0),(1,1) e (0,1), orientada no sentido anti-horário. Calcule a integral de linha $\int_C x^2 \ dx + xy \ dy$.

Integral de linha de um campo vetorial em \mathbb{R}^3

Parametrizações equivalentes

Dizemos que duas parametrizações $\sigma(t)(a\leqslant t\leqslant b)$ e $\beta(t)(c\leqslant t\leqslant d)$ são **parametrizações equivalentes** da curva C, se existe uma função $h:[c,d]\to [a,b]$ bijetora e de classe C^1 tal que

$$\beta(t) = \sigma(h(t))$$

Se h é crescente, dizemos que h **preserva a orientação**, isto é, uma partícula que percorre C com a parametrização beta(t) se move no mesmo sentido que a partícula que percorre C segundo a parametrização $\sigma(t)$. Se h é decrescente, dizemos que h **inverte a orientação**.

Teorema

Sejam $\sigma(t)(a\leqslant t\leqslant b)$ e $\beta(t)(c\leqslant t\leqslant d)$ parametrizações C^1 por partes e equivalentes (como definida anteriormente). Se h preserva a orientação, então

$$\int_{C_{\beta}} F \cdot dr = \int_{C_{\sigma}} F \cdot dr$$

Se h inverte a orientação, então

$$\int_{C_{\beta}} F \cdot dr = -\int_{C_{\sigma}} F \cdot dr$$

onde C_{β} e C_{σ} denotam a curva C parametrizada por $\beta(t)$ e $\sigma(t)$, respectivamente.

Prof^a Mariana Villapouca

Campo vetorial

Integral de linh de um campo vetorial em R²

Integral de linha de um campo vetorial em \mathbb{R}^3

Assim, se C^- é a curva C com orientação oposta, isto é, h(t)=-t então

$$\int_{C^{-}} F \cdot dr = -\int_{C} F \cdot dr$$