

Técnicas Digitais 157(इ) Computação

Flip-Flops

1. Flip-flop mestre-escravo tipo RS

Exemplo de sequência de eventos

Cascateando FF's mestre-escravo

2. Flip-flop mestre-escravo tipo D

3. Flip-flop mestre-escravo tipo JK

- Problema com FF RS: R=1 e S=1 não pode ser usado
- Flip-Flop JK: R=1 e S=1 é usado para complementar o Flip-Flop

LATCH JK = Latch RS + portas na entrada

Operação FF JK

Se
$$J = K = 1$$

a) Se Q = 1, então

$$\vec{Q} = 0$$
 e a entrada J fica desabilitada

b) Se Q = 0, então

$$K = 1$$
 faz $R = 1$ Q = 0 complementa a entrada K fica desabilitada

$$J = 1$$
 faz $S = 1$ \bigcirc $Q = 1$ complementa $\overline{Q} = 0$

Mestre-Escravo JK

supondo latch RS controlado, com NAND's

Se J = K = 1
a) se Q = 1,
$$\overline{Q}$$
 = 0

entrada J desabilitada

$$K = 1$$
 faz $R = 1$ \longrightarrow $Q = 0$ complementa

entrada K desabilitada

$$J = 1$$
 faz $S = 1$ \longrightarrow $Q = 1$ complementa

4. Entradas diretas (não controladas, assíncronas)

assíncronas com o relógio

Exemplo supondo mestre-escravo RS

Operação

a) Se CLEAR = 0

- C não tem efeito sobre X nem sobre $\overline{\mathbf{Q}}$
- R e S não têm efeito sobre QM

b) Se
$$\overline{PRESET} = 0$$

$$Q$$
 é forçado para 1
 Q M é forçado para 0 \Rightarrow Y = 1
 $CLEAR$ = 1

- C, R, S não têm efeito

5. Flip-flop D sensível à borda ("edge-triggered")

$$C = 0 \implies S = 1$$
, $R = 1 \implies Q$ e \overline{Q} mantêm estado atual

Supondo D = 0 e C = 0

$$D = 0 \implies \overline{Q2} = 1$$

$$C = 0 \implies \overline{Q2} = 1$$

$$\overline{Q1} = 1$$

$$Q1 = 0$$

Q2 fica "armado", esperando variação em C

C tem uma transição 0 → 1

$$C = 1$$
 $Q2 = 0$ (=R) $Q = 1$, $Q = 0$ (Q copiou D),

enquanto C = 1, qualquer alteração em D não afeta $\overline{Q2}$, pois Q2 = 0, e portanto não afeta R.

Supondo D = 1 e C = 0

$$C = 0 \implies Q2 = 1$$

$$D = 1 \implies Q1 = 1$$

$$Q2 = 0 \implies Q1 = 1$$

Q1 fica "armado", esperando variação em C

C tem uma transição 0 ➡ 1

$$C = 1$$
 $\Rightarrow \overline{Q1} = 0$ (=S)
 $\Rightarrow Q = 1$, $\overline{Q} = 0$ (Q copiou D),

enquanto C = 1, qualquer alteração em D pode afetar $\overline{Q2}$, mas não afeta Q1, e portanto não afeta $\overline{Q1}$ (=S).

Diagrama de tempos: flip-flop sensível à borda

OBS: considerando como 1,0 ns o atraso de cada NAND

6. Classificação de FF's e latches

Classificação segundo 2 critérios ortogonais

- 1. Classificação segundo resposta ao pulso de relógio
 - sensível ao nível (latch)
 - sensível à borda
 - mestre-escravo

2. Classificação segundo funções das entradas de dados

```
RS (ou SR)
```

D

JK

T (TOGGLE): JK com as 2 entradas ligadas juntas

$$T = J = K = 0$$
 menhum efeito

$$T = J = K = 1$$
 complementa estado

7. Aspectos temporais

7.1 Tempos de SETUP e HOLD

Considerar FF D sensível à borda

Para que transição C: $0 \Longrightarrow 1$ tenha efeito (Q \leftrightarrows D), valor de Q2 (no caso de D = 0) ou Q1 (no caso de D = 1) já deve estar estável em 1

$$D \Longrightarrow \overline{Q}2 = 1$$
 at raso de 1 porta

Este atraso é chamado

 $D \Longrightarrow Q1 = 1$ at raso de 2 portas

de tempo de SETUP

Após transição de C, D deve manter-se estável pelo tempo de HOLD

7.2 Ciclo de relógio

Considerando FF's mestre-escravo

Circuito sequencial

Quando CK = 0 saída recebe valor do mestre

Saídas dos diversos FF's devem se propagar através da lógica combinacional e retornar às entradas dos FF's com valores estáveis antes que CK = 1

Usa-se pulso de relógio estreito (mais tempo em 0)

tempo para a lógica combinacional estabilizar