Diabetes Dataset

<모델 개요>

- "Diavetes Dataset"은 442명의 당뇨병 환자에 대한 진단 측정치로 구성되어 있으며, regression models를 위한 dataset이다.
- 9개의 features를 통해 당뇨병의 진행 정도를 예측하는 모델을 만들자.

<Dataset 특징>

샘플 수: 442 / feature 수: 10 / target: 1년 후 질병(당뇨병) 진행의 정량적 측정치

- <Features>
- 1. age:나이
- 2. sex:성별
- 3. bmi:체질량 지수(Body Mass Index)
- 4. bp:평균 혈압(Average Blood Pressure)
- 5. s1:혈청(Serum) 측정치 1
- 6. s2:혈청 측정치 2
- 7. s3:혈청 측정치 3
- 8. s4:혈청 측정치 4
- 9. s5:혈청 측정치 5
- 10. s6:혈청 측정치 6

<데이터 형태>

모든 feature는 standardization(표준화)되어 있음(mean=0, std=1)

<scikit-learn으로 데이터 로드>

```
[1] 1 import numpy as np
     2 import pandas as pd
     3 import matplotlib.pyplot as plt
     4 import seaborn as sns
     5 # seaborn 패키지 = matplotlib에 기반을 둠. 그래프 스타일을 간편하게 커스터마이즈
     6 # 데이터의 관계, 분포, 범주형 표현에서 강력함
     7 # matplotlib에서 구현하기 복잡한 시각화 작업을 더 쉽게 작성 가능함.
     9 from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
    10 from sklearn.linear_model import LinearRegression, Ridge, Lasso
    11 from sklearn.metrics import mean_squared_error, r2_score
    1#데이터 로드
     2 from sklearn.datasets import load_diabetes
     3 diabetes = load_diabetes()
     4 X, y = diabetes.data, diabetes.target
     5 columns = diabetes.feature_names
     6 data = pd.DataFrame(X, columns=columns)
     7 data['target'] = y
```

당뇨병 진행 정도를 예측하는 회귀 모델을 만드는 절차

1. 데이터 분석 및 탐색(EDA)

- 데이터의 분포, 상관관계 등을 살펴보며 각 feature가 target에 어떤 영향을 미치는지 파악.
- pandas, matplotlib, seaborn을 활용해 EDA(Exploratory Data Analysis)를 진행하고,
 주요한 feature와 target 간의 관계를 시각하여 data set에 대한 이해 마련.

<주어진 dataset의 결측치 여부, 데이터 타입, 기초 통계 요약 확인>

```
1 # 데이터 기본 정보 확인 - 결측치 여부, 데
                                                     count 4.420000e+02
                                                                         4.420000e+02 4.420000e+02 4.420000e+02 4.420000e+02
      2 # 데이터 구조 확인
                                                     mean -2.511817e-19
                                                                         1.230790e-17 -2.245564e-16 -4.797570e-17 -1.381499e-17
      3 print(data.info())
                                                            4.761905e-02
                                                                          4.761905e-02 4.761905e-02 4.761905e-02 4.761905e-02
                                                     std
                                                           -1.072256e-01 -4.464164e-02 -9.027530e-02 -1.123988e-01 -1.267807e-01
                                                     min
      5 # 통계 요약
                                                           -3.729927e-02 -4.464164e-02 -3.422907e-02 -3.665608e-02 -3.424784e-02
      6 print(data.describe())
                                                     50%
                                                            5.383060e-03 -4.464164e-02 -7.283766e-03 -5.670422e-03 -4.320866e-03
                                                     75%
                                                            3.807591e-02 5.068012e-02 3.124802e-02 3.564379e-02 2.835801e-02
                                                            1.107267e-01
                                                                         5.068012e-02
                                                                                       1.705552e-01
                                                                                                     1.320436e-01
<class 'pandas.core.frame.DataFrame'>
                                                     max
                                                                                                                   1.539137e-01
     RangeIndex: 442 entries, 0 to 441
     Data columns (total 11 columns):
                                                     count 4.420000e+02
                                                                         4.420000e+02 4.420000e+02
                                                                                                     4.420000e+02
                                                                                                                   4.420000e+02
     # Column Non-Null Count Dtype
                                                     mean
                                                            3.918434e-17 -5.777179e-18 -9.042540e-18 9.293722e-17
                                                                                                                   1.130318e-17
                                                            4.761905e-02 4.761905e-02 4.761905e-02
                                                     std
                                                                                                     4.761905e-02
                                                                                                                   4.761905e-02
     Λ
          age
                  442 non-null
                                    float64
                                                           -1.156131e-01 -1.023071e-01 -7
                                                                                         .639450e-02
                                                                                                    -1.260971e-01 -1.377672e-01
                                                     min
                  442 non-null
                                    float64
                                                           -3.035840e-02 -3.511716e-02 -3
                                                                                         .949338e-02 -3.324559e-02 -3.317903e-02
      2
                  442 non-null
                                    float64
                                                     50%
                                                           -3.819065e-03 -6.584468e-03 -2
                                                                                         .592262e-03 -1.947171e-03 -1.077698e-03
         bmi
      3
                  442 non-null
                                    float64
                                                     75%
                                                            2.984439e-02
                                                                         2.931150e-02 3.430886e-02 3.243232e-02 2.791705e-02 1.811791e-01 1.852344e-01 1.335973e-01 1.356118e-01
                  442 non-null
                                    float64
                                                     max
                                                            1.987880e-01
                  442 non-null
                                    float64
         s3
                  442 non-null
                                    float64
                                                     count 442.000000
                  442 non-null
                                    float64
         s4
                                                     mean
                                                           152 . 133484
     8
                  442 non-null
                                    float64
         s5
                                                             77.093005
                                                     std
                                    float64
         sĥ
                  442 non-null
                                                             25.000000
                                                     min
     10 target 442 non-null
                                   float64
                                                             87.000000
     dtypes: float64(11)
                                                            140.500000
                                                     50%
     memory usage: 38.1 KB
                                                     75%
                                                            211.500000
                                                            346 000000
     None
```

<seaborn 패키지로 구현한 시각화를 통해 target 분포 확인>

<각 feature의 분포를 히스토그램으로 표현 및 파악>

<target과 feature 관계 파악을 위한 scatter plot 시각화>

2. 데이터 분할

- 전체 데이터를 학습용(Train)과 검증용(Test)으로 나눔. 보통 80:20 또는 70:30 비율로 나누며, train_test_split을 사용.
- 데이터셋을 분할하여 모델 성능을 검증할 때 편향되지 않도록 함. => **랜덤 분할** 과 **층화 분할**(Stratified Sampling) 두 가지 접근법을 주로 사용

1. 랜덤 분할 (Random Split)

- train_test_split 함수를 사용해 데이터를 무작위로 분할.
- 데이터를 학습/테스트 세트로 분할할 때 고르게 분배 -> 특정 패턴이 한쪽에 쏠리는 것을 방지.

여기서 random_state는 결과 재현성을 위해 설정, 동일한 숫자를 설정하면 이후에도 같은 방식으로 데이터를 분할. 랜덤 분할은 전체 데이터에 균일하게 분포된 경우에 적합. 하지만 **데이터가 비대칭적으로 분포된 경우에는 층화 분할을 고려**해야 함.

2. 계층화 분할 (Stratified Sampling)

- 데이터의 비율 유지한 채 데이터를 분할. <u>일반적으로 classfication 문제에서 사용</u>, 회귀 문제에서도 데이터의 범주를 나누어 층화할 수 있음.
- 예를 들어, 타겟 변수가 몇몇 구간에 집중된 경우, 구간을 나누고 비율을 유지하면서 데이터를 분할 -> 학습/테스트 세트에 동일한 패턴을 포함시킬 수 있음.
- train_test_split 함수에서 "stratify 매개변수"를 사용하여 층화 분할

주어진 Diabetes Dataset의 분포를 확인해보았을 때, right tail skewness(오른쪽으로 치우 쳐진 비대칭적) 분포를 가진다는 것을 확인. 이때 right tail skewness란 data 값이 평균값보다 큰 경우가 많은 상황. 따라서 각 feature는 비대칭적 분포를 가진다고 판단함.

이에 따라 위 논리대로라면 Diabetes Dataset은 층화분할을 고려할수도 있으나, Diabetes Dataset은 classification이 아닌 regression 형태의 데이터 셋을 가지기 때문에 계층화 분

할이 적절한 분할방법이 아니라고 판단(target이 연속적이기 때문에 계층 분할보다 랜덤 분할이 더 적절하다고 판단함). 따라서 주어진 비대칭적 분포 데이터 셋을 최대한 대칭적 분포로 변환하여 랜덤 분할하는 방법으로 학습을 진행함.

=> Right tail Skewness를 가지는 Diabetes Dataset

=> Skewness가 0.5 이상인 feature를 찾아 로그변환(log1p) 방식으로 대칭적 분포 유도

```
1 # 데이터 분할하기
2 from sklearn.model_selection import train_test_split
3 from sklearn.datasets import load_diabetes
4
5 # Diabetes Dataset 로드
6 diabetes_data = load_diabetes()
7 X = diabetes_data.data
8 y = diabetes_data.target
9
10 # 랜덤 분할
11 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
12
13 # 분할 결과 출력
14 print("Train set size:", X_train.shape)
15 print("Test set size:", X_test.shape)
```

Train set size: (353, 10)
Test set size: (89, 10)

3. 모델 선택 및 학습

[1]회귀 모델 중에서 **선형 회귀(Linear Regression)**, **라쏘 회귀(Lasso Regression)**, **릿지 회귀(Ridge Regression)** 중 적절한 모델을 탐색함.

1. 선형 회귀 (Linear Regression)

- 적합한 경우: 데이터가 다중공선성 문제가 적고, 모든 feature가 예측에 있어 유의 미한 영향을 줄 때.
- 장점: 해석이 쉬워서 각 feature가 결과에 미치는 영향을 명확하게 파악 가능.
- 단점: feature 간 강한 상관관계(다중공선성)가 있거나, 데이터에 노이즈가 많을 경우 성능 낮음. 과적합이 발생할 가능성 존재.
- => 데이터가 작고 feature의 상관관계가 낮다면 기본 선형 회귀를 시도.

2. 릿지 회귀 (Ridge Regression-L2 norm)

- 적합한 경우: 다중공선성 문제가 존재할 때. 선형 회귀와 달리 L2 정규화(제곱 페널티)를 통해 특정 feature의 가중치를 줄이므로, 모델이 전체 feature를 사용하면 서도 과적합을 줄이는 효과가 있음.
- 장점: 과적합 방지에 효과적, feature 간 상관관계가 있어도 안정적인 예측 가능.
- **단점**: 모든 feature를 사용, 예측에 불필요한 feature도 영향을 줌.
- => 다중공선성 문제를 줄이면서도 feature의 정보를 모두 활용하고자 할 때 추천.

 Diabetes Dataset의 경우 feature들이 표준화되어 있고

 다중공선성이 있을 가능성이 있으므로 적합한 선택일 수 있음.

3. 라쏘 회귀 (Lasso Regression-L1 norm)

- 적합한 경우: 예측에 영향을 미치지 않는 feature들을 제거하고, 중요한 feature만 선택하고자 할 때. L1 정규화(절대값 페널티)를 통해 특정 feature의 계수를 0으로 만들어 자동으로 feature 선택을 수행.
- **장점**: 불필요한 feature를 제거해 모델을 단순화. 과적합 방지와 feature 선택을 동시에!
- 단점: 중요한 feature의 가중치도 과하게 축소할 수 있어 성능이 떨어질 수 있음.
- => feature가 많아 차원 축소가 필요하거나, 가장 중요한 feature에 집중하려 할 때.
 Diabetes Dataset의 경우 feature 수가 많지 않음,

성능 향상을 위해 시도해볼 수는 있겠다 정도.

.

[2]다중공선성(Multicollinearity) 문제 고려

: feature들 간의 상관관계가 매우 높아 독립 변수들이 서로 종속적인 관계를 가지게 되는 상황. 이는 회귀 모델의 해석을 어렵게 하고, 예측 성능에 부정적인 영향을 줌.

다중공선성 존재 판단 지표

1. 상관행렬 (Correlation Matrix) 확인

- 각 feature 간의 상관 계수를 계산하여 나타낸 행렬. 다중공선성 문제는 feature들 간의 상관 계수가 매우 클 때 나타나기 때문.
- 상관 계수가 0.8 이상이거나 -0.8 이하인 feature 쌍이 있다면, 그 두 feature는 강한 상관관계를 가지고 있음을 의미 -> 다중공선성의 잠재적 원인.

2. 분산 팽창 계수 (Variance Inflation Factor, VIF)

- VIF: 각 feature가 다른 feature들과 얼마나 상관되어 있는지를 수치로 나타낸 것.
- VIF 값이 높을수록 다중공선성이 높다. 일반적으로 특정 feature의 VIF가 10을 초과 -> 해당 feature는 다른 feature들과 강한 상관관계가 있으며 다중공선성 문제가 존재할 가능성이 높음.

=>상관행렬

: feature s1과 s2는 0.9의 높은 상관계수를 가짐 -> 다중공선성 문제가 존재할 가능성이 큼.

\rightarrow		feature	VIF	=>분산 팽창 계수
	0 1 2 3	age sex bmi bp	1.217307 1.278071 1.509437 1.459428	: feature s1, s2, s3, s5는 다중공선성 문제를 가지고 있을 확률이 높음.
	4	s1	59.202510	
	5	s2	39.193370	
	6	s3	15.402156	
	7	s4	8.890986	
	8 9	s5 s6	10.075967 1.484623	

=>다중공선성 문제를 가지고 있을 확률이 높은 Diabete dateset

사용이 적합하다고 판단한 모델

- **릿지 회귀**. 주어진 Diabetes Dataset은 다중공선성 문제가 있을 수 있어 모든 feature의 영향을 유지하면서 과적합을 줄이는 릿지 회귀가 적합한 선택.
- 선형 회귀와 달리 릿지 회귀는 L2 정규화(제곱 페널티-L2 norm)를 통해 특정 feature 의 가중치를 줄이므로, 모델이 전체 feature 를 사용하면서도 과적합을 줄이는 효과가 있기 때문임.

4. 하이퍼파라미터 튜닝

- 1) Validation Curve를 활용해 여러 α값에 따른 학습 및 검증 오류 변화를 시각화
- -> 특정 α 범위에서 검증 오류(Train, validation)가 최소화되는 부분 관찰가능

Train, Validation error(검증 오 류) 모두 α값이 작을수록 낮음. 검증 오류가 낮을수록 over-fit 발생도 낮아짐.

a>=10일 때, 오류 급격히 증가(=underfit). 지나치게 큰 α값은 모델이 데이터를 충분히 학습하지 못하도록 함. 10^-4~10^-1에서 비교적 안정적인 학습이 가능함.

- **알파(**규제 강도(regularization strength) 파라미터) **값의 역할**
 - (릿지, 랏소 모두) α=0에 가까울수록 linear regression model과 유사한 결과값 도출.
- 릿지 회귀 (Ridge Regression)
 - ο α값이 커질수록 모든 가중치에 대한 제약이 강해짐=가중치가 더 작아짐.
 - 가중치에 대한 제약이 강해져 모델이 단순해지고 over-fit 가능성 줄어듦.
 지나치게 큰 알파는 under-fit을 유도함.
- 라쏘 회귀 (Lasso Regression)
 - 。 α값이 커질수록 가중치의 절대값 감소=일부 feature 가중치를 0으로 설정.
 - 많은 특성이 0이 되어 모델이 단순해짐(불필요한 특성 제거). 지나치게 큰 **알파**는 중요한 특성도 함께 제거하여 under-fit을 유도함.
- 2) GridSearchCV 또는 RandomizedSearchCV로 하이퍼파라미터를 최적화. 릿지 회귀의 경우 규제 강도(regularization strength) 파라미터를 조정.

```
1 # GridSearchCV로 최적의 Rldge 모델 알파 값을 greedy하게 탐색
 2 from sklearn.model_selection import GridSearchCV
 4 # Ridge 모델에 대한 알파 값 범위 설정
 5 ridge_alphas = {'alpha': [0.1, 0.3, 0.5, 0.7, 0.9]}
 6 ridge_search = GridSearchCV(
       Ridge()
      ridge_alphas,
      cv=5
      scoring=['neg_mean_squared_error', 'r2'],
       refit='neg_mean_squared_error', # 'neg_mean_squared_error'를 기준으로 최적 모델 선택
       return_train_score=True
14 ridge search.fit(X, v)
16 print("Best alpha for Ridge based on MSE:", ridge_search.best_params_)
17 print("Best Ridge model MSE:", -ridge_search.best_score_)
18 print("Corresponding Ridge model R^2:", ridge_search.cv_results_['mean_test_r2'] [ridge_search.best_index_])
Best alpha for Ridge based on MSE: {'alpha': 0.1}
Best Ridge model MSE: 3006.7057011496754
Corresponding Ridge model R^2: 0.47988210231953665
```

=> 최적의 알파 값을 찾기 위해 GridSearchCV로 greed하게 모델 학습을 실행하여 가장 낮은 MSE 값을 기준으로 최적의 알파 값 탐색 과정을 거침.

5. 모델 성능 평가

- 1) 회귀 모델의 성능을 평가하기 위해, MSE(Mean Squared Error), RMSE(Root Mean Squared Error), R^2 Score 지표 사용.
 - 그러나, MSE가 낮으면 모델이 예측과 실제 값 간 오차가 적다는 것을 의미하지

만, 반드시 일반화 성능이 우수하다는 보장을 갖는 것은 아님

○ 과적합 문제

MSE를 지나치게 낮추면 훈련 데이터에 대해 과적합 발생 가능함. 과적합 된 모델은 새로운 데이터에 대한 성능이 떨어질 수 있음. 과적합 방지를 위해 교차 검증을 통해 평가하거나 **릿지 회귀**와 **라쏘 회귀**와 같은 정규화기법을 사용함.

- 따라서 다른 지표도 함께 확인.

R² 점수(결정 계수, Coefficient of Determination): 회귀 모델이 **타겟 변수의** 변동성을 얼마나 잘 설명하는지를 나타내는 지표. MSE가 낮아도 모델의 예측성능을 명확히 표현함.

R² = 1: 모델이 모든 데이터를 완벽하게 설명하는 경우

0 < R² < 1: 모델이 타겟 변수의 변동성 일부를 설명. 1에 가까울수록 예측력이 높은 모델.

 $R^2 = 0$: 모델이 타겟 변수의 변동성을 전혀 설명하지 못하는 경우. 즉, 모델이 예측하는 값이 단순히 평균을 예측하는 것과 동일한 상태.

R² < 0: 모델이 평균보다도 설명력이 낮은 경우. 실제 데이터와 예측 데이터 간의 차이가 너무 크거나, 모델이 타겟과의 관계를 잘못 학습한 경우.

- MSE는 데이터의 스케일(단위)에 영향을 크게 받음. 값이 즉, 큰 타겟 변수를 사용할 경우 MSE가 커짐.
 - ➡ **따라서 RMSE**(Root Mean Squared Error)-'스케일에 덜 민감', **MAE**(Mean Absolute Error)-'아웃라이어에 덜 민감'을 고려함.

→ Linear Regression

MSE: 3403.8877929322553 MAE: 47.62636803032458

R2 Score: 0.3908118647948903

Ridge Regression (Best alpha: 0.1)

MSE: 3356.280253757379 MAE: 47.214176271755726

R2 Score: 0.39933210687568577

Lasso Regression (Best alpha: 0.1)

MSE: 3361.8191859700573 MAE: 47.535983985729175

R2 Score: 0.39834081339278204

=> 최적 alpha 값에 대한 선형, 릿지, 랏소 모델의 MSE, MAE, R^2 점수 출 력하기. 2) Cross-Validation(교차 검증)을 통해 모델의 일반화 성능을 검토

K-Fold 교차 검증과 Stratified K-Fold

- 데이터 편향을 최소화하고 모델의 일반화 성능을 평가하기 위해 K-Fold Cross-Validation을 사용.
- 데이터를 K개의 폴드(데이터셋)로 나누어 K번 반복해서 모델을 평가하는 방법으로, 데이터의 편향을 줄이면서 성능을 검증.
- 회귀 문제에서도 Stratified K-Fold를 사용, 이를 통해 각 폴드에 타겟의 분포를 고르게 유지할 수 있음.

```
1 # Ridge Regression 모델을 사용하여 K-Fold 교차 검증
2 # 데이터를 여러 번(폴드 수만큼) 나누어 각각의 폴드에서 모델을 학습 및 평가
3 # 최종적으로 각 폴드에서 평가된 정수를 평균 내어 모델의 성능을 확인.
6 from sklearn.model selection import KFold
 7 from sklearn.linear_model import LinearRegression
 8 from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
9 from sklearn.datasets import load_diabetes
11 # 데이터 로드
12 diabetes = load_diabetes()
13 X, y = diabetes.data, diabetes.target
15 # K-Fold 설정
16 kf = KFold(n_splits=5, shuffle=True, random_state=42) # 데이터를 5개의 폴드로 분할
17 # shuffle=True: 데이터를 무작위로 섞어 분할. 편항을 줄이는 데 도움
18 # random_state=42: 재현성을 위해 설정. 고정된 시드 -> 같은 결과
19 # 모델 초기화
20 model = Bidge(alpha=0.1)
22 # 각 폴드의 MSE와 R^2 점수를 저장할 리스트
23 mse_scores = []
24 mae_scores = []
```

```
16 kf = KFold(n_splits=5, shuffle=True, random_state=42) # 데이터를 5개의 폴드로 분할
17 # shuffle=True: 데이터를 무작위로 섞어 분할. 편향을 줄이는 데 도움
18 # random_state=42: 재현성을 위해 설정. 고정된 시드 -> 같은 결과
19 # 모델 초기화
20 model = Ridge(alpha=0.1)
22 # 각 폴드의 MSE와 R^2 점수를 저장할 리스트
23 mse_scores = []
24 mae_scores = []
25 r2_scores = []
27 # K-Fold 교차 검증
28 for train_index, test_index in kf.split(X):
29 # kf.split(X)를 통해 각 폴드의 train dataset, test dataset의 index를 구함
30
       X_train, X_test = X[train_index], X[test_index]
        y_train, y_test = y[train_index], y[test_index]
        # 모델 학습
34
        model.fit(X train, v train)
36
37
        # 예측 with test dataset
        v pred = model.predict(X test)
38
39
40
        mse_scores.append(mean_squared_error(y_test, y_pred))
41
        mae_scores.append(mean_absolute_error(y_test, y_pred))
        r2_scores.append(r2_score(y_test, y_pred))
45 # 평균 MSE와 R^2 점수 출력
46 print("Average MSE from K-Fold Cross-Validation:", np.mean(mse_scores))
47 print("Average MAE from K-Fold Cross-Validation:", np.mean(mae_scores))
48 print("Average R^2 Score from K-Fold Cross-Validation:", np.mean(r2_scores))
```

Average MSE from K-Fold Cross-Validation: 3013.810607770459 Average MAE from K-Fold Cross-Validation: 44.49645464858337 Average R^2 Score from K-Fold Cross-Validation: 0.4790759615259203