NANYANG TECHNOLOGICAL UNIVERSITY

School of Electrical and Electronic Engineering

E6101 DIGITAL COMMUNICATIONS

Tutorial 2

1. Draw the state diagram, tree diagram, and trellis diagram for the convolutional encoder characterized by the block diagram in Figure 1.

Figure 1

- 2. Find the free distance of the encoder of Problem 1 by the transfer function method.
- 3. Consider that the K = 3, rate ½ encoder with state diagram shown in Figure 2 is used over a binary symmetric channel (BSC). Assume that the initial encoder state is the 00 state. At the output of the BSC, the sequence $\mathbf{Z} = (1\ 1\ 0\ 0\ 0\ 1\ 0\ 1\ 1\ rest all "0")$ is received.
 - (a) Find the maximum likelihood path through the trellis diagram, and determine the first 5 decoded information bits. If a tie occurs between any two merged paths, choose the upper branch entering the particular state.
 - (b) Identify any channel bits in \mathbf{Z} that were inverted by the channel during transmission.

Figure 2