К лабораторной работе №2 Решение систем дифференциальных уравнений

В среде MATLAB можно решать системы диффуров с начальными условиями, краевые задачи, а также решать дифференциальные уравнения в частных производных с помощью инструмента PDE toolbox.

В данном обзоре речь пойдет лишь о системах дифференциальных уравнений с начальными условиями, то есть о задаче Коши.

Рассмотрим:

- каким образом записывать системы диффуров;
- как задать начальные условия;
- временной интервал;
- какой получать результат решения для дальнего использования.

Рассмотрим синтаксис решателей matlab. В качестве аргументов следует подать правую часть системы в виде MATLAB-функции.

На рисунке 1 показан требуемый вид системы, когда выражены старшие производные.

Синтаксис функций odeXY

Рисунок 1 - Вид системы уравнений для решения в среде MATLAB

Системы, чей вид отличается от требуемого, следует преобразовать к таковому.

Если функция простая, то её можно записать прямо в поле аргумента, однако, когда речь идёт о системах уравнений, имеет смысл записывать систему уравнений в виде отдельной функции, в том числе и в виде отдельного м-файла.

Также подается интервал времени, на котором будет найдено решение. Интервал задаётся строкой из двух чисел: начальной величины независимого аргумента t и его конечного значения.

Далее задаются начальные условия. Значения всех неизвестных искомых переменных в начале расчёта задаются в виде столбца соответствующей размерности.

Далее, при необходимости, задаются опции. Вот тут и раскрываются широкие возможности MATLAB по настройке решателя. Помимо управления точностью и величиной шага, имеется возможность обрабатывать данные в процессе вычисления, а также выполнять скрипты по завершению вычисления. Но ещё более полезным является

опция отслеживания событий по условию. Также есть другие специальные опции, которые могут быть использованы при решении определённых типов систем.

2. Практическая часть

Цель лабораторной работы — решение системы, состоящей из двух дифференциальных уравнений второго порядка, описывающих движение груза подвешенного на пружине. Также необходимо учитывать сопротивление воздуха. На рисунке 2 показана схема этой задачи.

Рисунок 2 - Схема

Уравнения показаны на рисунке 3.

$$\begin{cases} m\ddot{x} = -\frac{kx\left(\sqrt{x^2 + y^2} - l_0\right)}{\sqrt{x^2 + y^2}} - \lambda \dot{x}\sqrt{\dot{x}^2 + \dot{y}^2} \\ m\ddot{y} = -\frac{ky\left(\sqrt{x^2 + y^2} - l_0\right)}{\sqrt{x^2 + y^2}} - \lambda \dot{y}\sqrt{\dot{x}^2 + \dot{y}^2} - mg \end{cases}$$

Рисунок 3 - Уравнения движения груза.

Где g - ускорение свободного падения, m - масса груза, l_0 - начальная длина пружины, λ - коэффициент сопротивления воздуха движению груза

Вид системы отличается от требуемого, в том числе потому, что в нём присутствуют вторые производные.

Для приведения системы в требуемый вид выполним 2 простых шага:

- 1. Следует заменить переменные соответствующим образом. Теперь у нас 4 неизвестных.
 - 2. Далее следует преобразовать уравнение с учетом замены.

Таким образом, мы имеем систему из четырёх дифференциальных уравнений первого порядка.

Временной интервал и начальные условия:

$$\mathbf{X}(0) = \begin{pmatrix} x_1(0) \\ x_2(0) \\ x_3(0) \\ x_4(0) \end{pmatrix} = \begin{pmatrix} x(0) \\ y(0) \\ \dot{x}(0) \\ \dot{y}(0) \end{pmatrix} = \begin{pmatrix} 1 \\ -1.2 \\ 0 \\ 0 \end{pmatrix}$$

Параметры и система уравнений

$$m=8$$
 кг, $k=200$ Н/м, $l_0=1$ м, $\lambda=0.5$ кг/м

$$\begin{cases} \dot{x}_1 = x_3 \\ \dot{x}_2 = x_4 \\ \\ \dot{x}_3 = -\frac{kx_1\left(\sqrt{x_1^2 + x_2^2} - l_0\right)}{m\sqrt{x_1^2 + x_2^2}} - \frac{\lambda x_3\sqrt{x_3^2 + x_4^2}}{m} \\ \\ \dot{x}_4 = -\frac{kx_2\left(\sqrt{x_1^2 + x_2^2} - l_0\right)}{m\sqrt{x_1^2 + x_2^2}} - \frac{\lambda x_4\sqrt{x_3^2 + x_4^2}}{m} - g \end{cases}$$

Итак, мы имеем систему, параметры, интервал времени и начальные условия.