

Department of Computer Science

THEORY OF COMPUTATION 23MT2014

Topic:

COMPLEXITY CLASSES: P & NP

Session - 24

AIM OF THE SESSION

To make students explain the fundamental concepts of complexity classes P and NP, their significance in computational theory, and the implications of problems classified within these classes.

INSTRUCTIONAL OBJECTIVES

By the end of this course, students will be able to:

- Explain the definitions of the complexity classes P and NP.
- 2. Illustrate examples of problems in P and NP, highlighting the differences between them.
- 3. Discuss the importance of the P vs NP question and its implications for computer science and other fields.

LEARNING OUTCOMES

At the end of this session, you should be able to:

- 1. Define and distinguish between the complexity classes P and NP.
- 2. Identify and categorize problems as belonging to P, NP, or NP-complete.
- Evaluate the significance of the P vs NP problem and its potential impact on computational theory and practical applications.

CLASSIFYING PROBLEMS BY TIME COMPLEXITY

Efficiency Analysis:

How does complexity change with input size?

Resource Management:

What resources are needed?

Comparative Benchmarking:

Which algorithm performs best?

Scalability Prediction :

How does performance change with size?

Theoretical Foundation:

What is the problem's complexity class?

Optimization guidance:

Where are the bottlenecks?

CLASS OF LANGUAGES

• Let $t: \mathbb{N} \to \mathbb{R}^+$ be a function. Define the time complexity class, TIME(t(n)), to be the collection of all languages that are decided by an O(t(n)) time Turing Machine.

POLYNOMIAL TIME

- The time taken by an algorithm (t) increases proportionally to the input size (n) raised to a power, k.
- Ex: n^2 , n^3 , n^4 etc.
- The time complexity is a polynomial function of the input size.

Ex: Quicksort, Merge sort

EXPONENTIAL TIME

- The time taken by the algorithm (t) increases exponentially with the input size (n).
- Ex: 2ⁿ, 3ⁿ, 5ⁿ etc.
- The time complexity is an exponential function of the input size.
- Example:
 - Brute-force algorithm for solving Travelling salesperson problem
 - Solving the knapsack problem using dynamic programming has a time complexity of $O(2^n)$.

POLYNOMIAL VS. EXPONENTIAL TIME

k-TAPE 2*O(n) + O(n) + 2*O(n)**=O(n)** R

CLASS OF LANGUAGES

• Let $t: \mathbb{N} \to \mathbb{R}^+$ be a function. Define the time complexity class, TIME(t(n)), to be the collection of all languages that are decided by an O(t(n)) time Turing Machine.

CHALLENGES FACED

- Classifying problems by time complexity is challenging when grouping those requiring quadratic (n²) or cubic (n³) time into one set.
- This challenge stems from the dependency of classification on the underlying execution architecture.
- A classification system is needed to accommodate such problems within a polynomial time complexity class, regardless of execution architecture.

 P is the class of languages decidable in polynomial time on a deterministic single-tape Turing Machine

$$P = \bigcup_{k=1}^{\infty} TIME(n^k)$$

P is class of problems realistically solvable on a computer.

Properties

- Robust i.e. independent of exact model of computation.
- Efficient i.e. It constitutes all efficient algorithms

- To show an algorithm belongs to P, we need to:
 - Provide polynomial upper bound on number of stages
 - Examine each stage to ensure it can run in polynomial time

Examples

Path problem

- Is there a path from s to t in a given graph G?
- PATH={<G, s, t> | G is directed graph with directed path from s to t}

Example: Path problem

- Brute force approach
- If G has m nodes, path cannot be more than m
- Upper bound on possible paths m^m
- Try each "path" one by one for legality and for linking s-to-t

Example: Path problem

- Breadth first search
- Place mark on node s
- Repeat until no new nodes marked
 - Scan all edges; If edge (a, b) found from marked node a to unmarked b, mark b
- If t is marked, accept; Otherwise, reject

Breadth First Search Time Complexity

- Measure complexity based on number of nodes n
- Place mark on node s ← n steps (find node s in list of m nodes)
- Repeat until no new nodes marked
 — n steps (if mark 1 new node/ loop)
- For each edge (a, b) with 'a' already marked, mark 'b' also $\leftarrow O(n^3)$
- (n² max total edges, for each edge, search for 'a' to see if marked (n steps), then mark b in list if needed (n steps)
- In total: $n^2 \times (n + n) = 2n^3$
- If t marked, accept; else, reject \leftarrow n steps (find node t in list of n nodes)
- In total $f(n) = n + 2n^3 + n = 2m^4 + 2n = O(n^4)$ It's POLYNOMEAN IN THE POLYNOME AND IN THE POLYNOME

CLASS 'P'

Example: RELPRIME

- Two numbers are relatively prime if 1 is the largest number that evenly divides them both
- 10 and 21 are relatively prime
- 10 and 22 are not relatively prime
- Solution: search all divisors from 2 until min(x, y) / 2
- min(x, y) / 2 numbers tried, min(x, y) /2 steps
- size of input n = length of binary encoding = log₂(max(x, y))
- 2ⁿ steps exponential complexity!

CLASS 'P'

RELPRIME: Faster Solution

Euclidean algorithm

- E = On input <x,y>
- Repeat until y = 0
 - Assign x = x mod y
 - Exchange x and y
- Output x
- R = On input < x, y>, Run E on < x, y>
- If result is 1, accept: Otherwise, reject

CLASS 'P'

RELPRIME: Simulating the Euclidean algorithm

x=10 y=21 Perform x % y

x=10 y = 21 x=y and y = (x MOD y)

x=21 y=10 Perform x % y

x=10 y=1 x=y, and y=(x MOD y)

x=0 y=1

y=1 when x=0, so original numbers relatively prime

RELPRIME: Euclidean Algorithm – complexity

 $x = x \mod y \leftarrow \text{new } x \text{ always less than } y$

- If old x is twice y or more, new x will be cut at least in half
- If old x between y and 2y, new x will be cut at least in half
 - new x = x y

Number of loops: 2*log₂(max(x, y))

Length of input (in binary): $log_2(x) + log_2(y) = O(log_2(max(x, y)))$

Number of loops: O(n)

A Decider for the language $L = \{a^n b^n c^n : n > 0\}$

A Decider for the language $L = \{a^nb^nc^n : n > 0\}$

A Decider for the language $L = \{a^nb^nc^n : n > 0\}$

A Decider for the language $L = \{a^nb^nc^n : n > 0\}$

A Decider for the language $L = \{a^nb^nc^n : n > 0\}$

There is a Single Computing Path

TM halts on every input with either q_{accept} or q_{reject} Configuration.

The TM we discussed is a **DETERMINISTIC** Turing Machine.

A Non-Deterministic TM

A Non-Deterministic TM

Multiple Computational Paths

Each path may lead to either q_{accept} or q_{reject} Configuration

Many of the computing paths may not be terminating

A Non-Deterministic TM

A string is accepted by a NDTM if any of the computing path reaches a q_{accept} configuration

we move from a uniquely determined sequence of computation steps to several possible sequences.

A Non-Deterministic TM

An NDTM has a magical parallelism

We can traverse the tree structure either using BFS or DFS method.

A Non-Deterministic TM

Given a language $L \subseteq \Sigma^*$, we determine the time t(x) needed by a non-deterministic machine to process input $x \in \Sigma^*$ in the following way.

- 1. If $x \in L$ then t(x) is defined as the length of the shortest path in the computation tree accepting x.
- 2. If $x \notin L$, the value of t(x) is defined as the length of the shortest path in the computation tree.

A Non-Deterministic TM

Time t(n) needed by T for processing input $x \in \sum^*$ with the length $|x| = n \in N$ is defined as the maximum of all finite t(x) for $x \in \sum^*$ with |x| = n.

CLASS 'NP'

Non-Deterministic Polynomial Time

 $NTIME(t(n)) = \{L: L \text{ is a decided by a NDTM in } O(t(n))\}$

$$NP = \bigcup_{k=1}^{\infty} NTIME(n^k)$$

It is also known as given and verify model

CLASS'NP'

Example: SUBSET-SUM

$$SUBSET - SUM =$$

$$\{ \langle s, t \rangle : s = \{x_1, x_2, ..., x_n\} \exists t \subseteq \{1, 2, 3, ..., k\} \text{ such that } \sum_{i \in t} x_i = t \}$$

CLASS'NP'

Example: SUBSET-SUM

$$SUBSET - SUM =$$

$$\{ \langle s, t \rangle : s = \{x_1, x_2, ..., x_n\} \exists t \subseteq \{1, 2, 3, ..., k\} \text{ such that } \sum_{i \in t} x_i = t \}$$

