Лабораторная работа №5.1.2 Эффект Комптона

Нехаев Александр 654 гр.

9 декабря 2018 г.

Содержание

1. Введение

Цель работы: С помощью сцинтилляционного спектрометра исследуется энергетический спектр γ -квантов, рассеянных на графите. Определяется энергия рассеяных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние.

Рассеяние γ -лучей в веществе относится к числу явления, в которых особенно ясно проявляется двойственная природа излучения. Волновая теория, хорошо объясняющая рассеяние длинноволонового излучения, испытывается трудности при описании рассеяния рентгеновских и γ -лучей. Эта теория, в частности, не может объяснить, почему в составе рассеянного излучения, измеренного Комптоном, кроме исходной волны с частотой ω_0 появляется дополнительная длинноволновая компонента, отсутствующая в спектре первичного излучения.

Появление этой компоненты легко объяснимо, если считать, что γ -излучение представляет собой поток квантов (фотонов), имеющих энергию $\hbar\omega$ и импульс $p=\hbar\omega/c$. Эффект Комптона — увеличение длинны волны рассеянного излучения по сравнению с падающим — интерпретируется как результат упругого соударения двух частиц: γ -кванта (фотона) и свободного электрона.

Рис. 1: Векторная диаграмма рассеяния γ -кванта на электроне

Рассмотрим элементарную теорию эффекта Комптона. Пусть электрон до соударения (его энергия равна энергии покоя mc^2), а γ -квант имел начальную энергию $\hbar\omega_0$ и импульс $\hbar\omega_0/c$. После соударения электрон приобретает энергию γmc^2 и импульс γmv , где $\gamma = (1-\beta^2)^{-1/2}$, $\beta = v/c$, а γ -квант рассеивается на некоторый угол θ по отношению к первоначальному направлению движения. Энергия и импульс γ -кванта становятся соответственно равными $\hbar\omega_1$ и $\hbar\omega_1/c$ (рис. ??).

Запишем для рассматриваемого процесса законы сохранения энергии и импульса:

$$mc^2 + \hbar\omega_0 = \gamma mc^2 + \hbar\omega_1,$$

$$\frac{\hbar\omega_0}{c} = \gamma mv\cos\varphi + \frac{\hbar\omega_1}{c}\cos\theta,$$

$$\gamma mv\sin\varphi = \frac{\hbar\omega_1}{c}\sin\theta.$$

Решая совместно эти уравнения и переходя от частот ω_0 и ω_1 к длинам волн λ_0 и λ_1 , нетрудно получить, что изменение длины волны рассеянного излучения равно

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_k (1 - \cos \theta), \qquad (1)$$

где λ_0 и λ_1 – длины волн γ -кванта до и посл рассеяния, а величина

$$\Lambda_k = \frac{h}{mc} = 2.42 \cdot 10^{-10} \text{ cm}$$

называется комптоновской длиной волны электрона. Из формулы $(\ref{eq:constraint})$ следует, что комптоновское смещение не зависит ни от длины волны первичного излучения, ни от рода вещества, в котором наблюдается рассеяние. В приведенном выводе электрон в атоме считается свободным. Для γ -квантов с энергией в несколько десятков, а тем более сотен килоэлектрон-вольт, связь электронов в атоме, действительно, мало существенна, так как энергия их связи в легких атомах не превосходит нескольких килоэлектрон-вольт, а для большинства электронов еще меньше.

При рассеянии на связанных электронах изменение импульса кванта воспринимается атомом в целом. Поскольку масса атома очень велика, передача импульса не сопровождается сколько-нибудь заметной передачей энергии, и наблюдается несмещенная (по энергии) компонента в спектре рассеянного излучения. Таким образом, рассеяние γ -квантов на связанных электронах можно рассматривать как упругое столкновение квантов с атомами. В классике такое рассеяние называется рэлеевским и рассматривается как процесс, при котором связанные электроны атома приходят в резонансное колебание под действием падающего излучения, а затем сами излучают фотоны той же частоты. При рассеянии квантов не очень высокой энергии $(1 \div 10 \text{ кэВ})$ часть электронов ведет себя, как свободные, а часть — как связанные. Оба типа рассеяния при этом наблюдаются одновременно.

При увеличении атомного номера Z рассеивателя сечение рэлеевского рассеяния растет как Z^2 , тогда как сечение комптоновского рассеяния на атоме пропорционально Z. Это происходит по следующей причине. При комптоновском рассеянии каждый электрон атома ведет себя независимо от других, поскольку рассеяние в этом случае происходит на каком-либо одном из атомных электронов. При рэлеевском рассеянии фотоны излучаются всеми (или почти всеми) электронами атомной оболочки, колеблющимися синфазно. Их излучение когерентно, так что складываются амплитуды, а не интенсивности излученных волн электронов.

Сечение комптоновского и рэлеевского рассеяний по-разному зависят и от энергии фотонов. С увеличением энергии сечение рэлеевского рассеяния уменьшается очень быстро, а сечение комптоновского рассеяния — незначительно.

Это различие в энергетической зависимости комптоновского $\sigma_{\rm k}$ и рэлеевского $\sigma_{\rm p}$ сечений рассеяний показано на рис. ??. Обратите внимание на то, что при рассеянии на углероде рентгеновских квантов с энергией $\simeq 20$ кэВ (как это было в эксперименте Комптона) $\sigma_{\rm k}$ порядка $\sigma_{\rm p}$, и поэтому наблюдаются две линии – смещенная и несмещенная. В то же время при рассеянии на углероде фотонов с энергией $\simeq 600$ кэВ (которые используются в данной работе) $\sigma_{\rm k} \gg \sigma_{\rm p}$, и поэтому наблюдается только смещенная компонента. Сечение рэлеевского рассеяния на атоме, при уменьшении длины волны уменьшается пропорционально λ^2 вследствие интерференции излучения, рассеянного от различных участков распределения.

Рис. 2: Сечение взаимодействия фотонов с углеродом (Z=6) при энергиях фотона от 10 эВ до 1 МэВ; σ_{Φ} — сечение фотоэффектра, $\sigma_{\rm p}$ — сечение рэлеевского рассеяния, $\sigma_{\rm k}$ — сечение комптоновского рассеяния; $\sigma_{\rm tot}$ — полное сечение взаимодействия фотнов с ядром углерода

В заключение укажем, что кроме рассеяния γ -кванты испытывают в среде поглощение, вызываемое фотоэффектом и рождение электронпозитронных пар. Процесс рождения пар пороговых, он возможен лишь при энергии γ -квантов больше $2mc^2 = 1.02 \text{ M} \rightarrow \text{B}$ и в рассматриваемом энергетическом диапазоне не происходит. При фотоэффекте из атома выбивается электрон, а квант поглощается. Импульс кванта делится между вылетевшим электроном и атомом, а его энергия частично передается электрону, а частично тратится на возбуждение атома. Атом практически мгновенно (за время порядка 10^{-8} с) возвращается в нормальное состояние. Его энергия возбуждения либо излучается в виде мягкого фотона, либо передается какому-нибудь другому электрону, который покидает атом (Оже-эффект). И в том, и в другом случае энергия возбуждения обычно поглощается соседними атомами рассеивателя.

Основной целью данной работы является проверка соотношения (??). Применительно к условиям нашего опыта формулу (??) следует преобразовать от длин волн к энергии γ -квантов. Как нетрудно показать, соответствующее выражение имеет вид

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta. \tag{2}$$

Здесь $\varepsilon_0 = E_0/(mc^2)$ – выраженная в единицах mc^2 энергия γ -квантов, падающих на рассеиватель, $\varepsilon(\theta)$ – выраженная в тех же единицах энергии квантов, испытавших комптоновское рассеяние на угол θ , m – масса электрона.

2. Экспериментальная установка

Блок-схема установки изображена на рис. ??. Источником излучения 1 служит 137 Cs, испускающий γ -лучи с энергией 662 кэВ. Он помещен в толстостенный свинцовый контейнер с коллиматором. Сформированный коллиматором узкий пучок γ -квантов попадает на графитовую мишень 2 (цилиндр диаметром 40 мм и высотой 100 мм).

Рис. 3: Блок-схема установки по изучению рассеяния γ -квантов

Кванты, испытавшие комптоновское рассеяние в мишени, регистрируются сцинтилляционным счетчиком. Счетчик состоит из фотоэлектронного умножителя 3 (далее ФЭУ)

и сцинтиллятора 4. Сцинтиллятором служит кристалл NaI(Tl) цилиндрической формы диаметром 40 мм и высотой 40 мм, его выходное окно находится в оптическом контакте с фотокатодом ФЭУ. Сигналы, возникающие на аноде ФЭУ, подаются на ЭВМ для амлитудного анализа. Кристалл и ФЭУ расположены в светонепроницаемом блоке, укрепленном на горизонтальной штанге. Штанга вместе с этим блоком может вращаться относительно мишени, угол поворота отситывается по лимбу 6.

Головная часть сцинтилляционного блока закрыта свинцовым коллиматором 5, который формирует входной пучок и защищает детектор от постороннего излучения. Основной вклад в это излучение вносят γ -кванты, проходящие из источника 1 через 6-сантиметровые стенки защитного контейнера. Этот фон особенно заметен при исследовании комптоновского рассеяния на большие углы ($\simeq 120^{\circ}$), когда расстояние между детектором и источником уменьшается.

3. Ход работы

- 1) Включим все измерительные устройства и компьютер.
- 2) Запустим программу и войдем в режим измерения спектра.
- 3) Проверим функционировании установки в этом режиме при малом времени экспозиции (порядка 1 минуты):
 - а) снимем спектр при $\theta = 0^{\circ}$;
 - б) установим угол $\theta \simeq 30^\circ$ и снова снимем спектр, убедимся в том, что фотопик смещается влево, в сторону меньших энергий;
 - в) определим положения фотопиков (номера канала) на экране дисплея.
- 4) Устанавливая сцинтилляционный счетчик под разными углами θ к первоначальному направлению полета γ -квантов и вводя значения этих углов в ЭВМ, снимем амплитудные спектры и определим положение фотопиков для каждого значения угла θ . Измерения проводим с шагом 10° в диапазоне от 0° до 120° . Результаты измерений занесем в таблицу ??.
- 5) Используя экспериментальные результаты, построим график (рис. ??), откладывая по оси абсцисс величину $1-\cos\theta$, а по оси ординат величину $1/N(\theta)$. Проведем через полученные точки наилучшую прямую.
- 6) Заменим в формуле ?? энергию квантов испытавших комптоновское рассеяние на угол θ , номером канала $N(\theta)$, соответствующего вершине фотопика при указанном угле θ . Обозначая буквой A неизвестный коэффициент пропорциональности между $\varepsilon(\theta)$ и $N(\theta)$, найдем:

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = A(1 - \cos \theta). \tag{3}$$

Согласно формуле (??) экспериментальные точки должны лежать на одной прямой. Пересечение этой прямой с осью ординат определяет наилучшее значение $N_{\text{наил}}(0)$. Это значение учитывает не только непосредственно измеренную величину N(0), но и измерения сделанные под другими углами, а пересечение линии с прямой $\cos \theta = 0$ позволяет найти наилучшее значение $N_{\text{наил}}(90)$. Таким образом можно найти энергию покоя частиц, на которых происходит комптоновское рассеяние. Снова обратимся к формуле (??). Возвращаясь от переменной ε к энергии E, мы получаем, что при

Таблица 1: Измерения

$N_{\overline{0}}$	Угол	Канал	Счет	Время	Частиц	I, [1/c]
1	0	965	72185	190	2454826	12920.1
2	0	941	76192	203	2616307	12888.2
3	10	971	68089	178	2952234	16585.6
4	20	888	73827	362	824413	2277.4
5	30	735	51589	326	291273	893.5
6	40	679	52698	322	208925	648.8
7	50	604	42443	307	160762	523.7
8	60	522	41123	305	137531	450.9
9	70	459	49867	401	160465	400.2
10	80	411	41004	358	131360	366.9
11	90	365	39560	375	129516	345.4
12	100	332	31455	306	101375	331.3
13	110	307	29843	309	100563	325.4
14	120	302	33041	337	106722	316.7
15	121	664	25445	197	99787	506.5
16	122	835	47502	378	196851	520.8

Рис. 4: График зависимости $\frac{1}{N} = f \left(1 - \cos \theta \right)$

 $\theta=90^\circ$ формула (??) принимает вид

$$mc^2\left(\frac{1}{E(90)} - \frac{1}{E(0)}\right) = 1,$$

или

$$mc^2 = E(0)\frac{E(90)}{E(0) - E(90)} = E_\gamma \frac{N(90)}{N(0) - N(90)}.$$
 (4)

где $E(0) = E_{\gamma}$ – энергия электронов, рассеянных вперед – равна энергии γ -лучей, испускаемых источником ($^{137}\mathrm{Cs}$).

7) С помощью графика и формулы (??) определим энергию покоя частицы, на которой происходит комптоновское рассеяние первичных γ -квантов.

$$E_r = \frac{N(90)}{N(0) - N(90)} = 0.662 \cdot \frac{373.23}{926.48 - 373.23} = 0.447 \text{M} \cdot \text{B}.$$

4. Вывод

В ходе работы мы наблюдали рассеяние свободных гамма-квантов на свободных электронах графита. В ходе эксперимента выяснен интересный характер диаграммы направленности излучения источника γ -квантов: при больших углах обнаруживаются фоновые γ -кванты, проходящие через боковую стенку источника. По результатам опыта была получена масса покоя электрона: 447 кэВ. Табличное значение 511 кэВ, а значит наш эксперимент находится в хорошем согласии с теорией.