# Limits on $B_s$ Mixing

Study on Setting Limits

P. Gutierrez—University of Oklahoma

### Approaches

- ☐ Two basic approaches
  - ♦ Fit mixed and unmixed time distributions
    - This can be binned or unbinned
  - $\Diamond$  Amplitude method
    - This can also be binned or unbinned to mixed and unmixed time distributions
    - Can be applied to binned asymmetry distribution
- $\Box$  The questions we wish to answer is how best to set limit on  $\Delta m_s$  given our current data set.
- □ This study concentrates on the Amplitude Method

 $D\emptyset$  Slide-2 Mixing Meeting

### Comments

- □ To reduce background, apply cuts to lifetime distributions
  - $\diamond$  Fit to lifetime plot requires unknown function f(t)
  - ♦ This is important for likelihood fits



# Amplitude Method

 $\square$  Amplitude of asymmetry distribution decreases as a function of  $\sigma_t$  and D



# Amplitude Method

- $\square$  Fit to the oscillation amplitude for different values of  $\Delta m_s$ 
  - $\diamond$  For asymmetry distribution:  $A\cos(\Delta m_s t)$
  - $\diamond$  For mixed and unmixed lifetime distributions:  $\frac{\Gamma}{2}e^{-\Gamma t}\left[1 \pm A\cos(\Delta m_s t)\right]$
- Then compare to expected amplitude for given dilution and proper time resolution:  $De^{-(\Delta m_s \sigma_t)^2/2}$
- $\square$   $\Delta m_s$  found when A=1
  - $\diamond$  Sensitivity assume A=0 what is probability to fluctuate to A=1:  $S=1.65\sigma$  for 95% exclusion
  - $\diamond$  Limit given A what is probability to fluctuate to A=1  $A<1-1.65\sigma$  95% exclusion

 $D\emptyset$  Slide-5 Mixing Meeting

# Examples







### $\Delta m_s = 1000 \text{ ps}^{-1}$





### Side Note

 $\square$  Amplitudes on previous page calculated using from  $\chi^2$  fit to asymmetry distribution.

- $\diamondsuit$  The fit is to the integral of  $A\cos(\Delta m_s t)$  over each bin
  - Important for large bin size

#### Bin Width 0.2



Dots correspond to integral over bin width

Bin Width 0.4



# **Expected Sensitivity**

Using Toy Monte Carlo and the amplitude method, calculate sensitivity from asymmetry distribution for different bin width, resolution, and dilution.

#### Nominal Values

Range 0 to 0.8 ps Events in range  $\approx 2000$ 

Resolution

0.1 ps

Dilution

0.16

#### Vary Resolution $\pm 20\%$



#### Vary Dilution $\pm 20\%$



# Expected Sensitivity—cont.

To compare with the unbinned method, we increased the number of events to 4000

Vary Resolution  $\pm 20\%$ 



Vary Dilution  $\pm 20\%$ 



- □ For the nominal values, the sensitivity is
  - $\diamond$  2000 Events 13.5 ps<sup>-1</sup>
  - $\diamond$  4000 Events 15.75 ps<sup>-1</sup> (16.0 ps<sup>-1</sup> if range extended to 3 ps)

### Unbinned Amplitude Fit

Again we use a toy MC, this time we determine the Amplitude from an unbinned fit.

$$\mathcal{P}_{\text{mixed}}^{\text{unmixed}}(t) = \frac{(1 - \alpha)}{2\sqrt{2\pi}\sigma\tau} \int_{0}^{\infty} e^{-(t - t')^{2}/2\sigma} e^{-t'/\tau} \left[ 1 \pm \cos(\Delta m_{s}t') \right] + \frac{\alpha}{2\sqrt{2\pi}\sigma\tau} \int_{0}^{\infty} e^{-(t - t')^{2}/2\sigma} e^{-t'/\tau} \left[ 1 \mp \cos(\Delta m_{s}t') \right]$$

- $\square$  Fit for  $\alpha$ (mistag rate) for different values of  $\Delta m_s$ ,  $\sigma$  and  $\tau$  assumed to be known
- $\square$  Limits and sensitivity determined as before.



$$\Delta m_s = 10 \text{ ps}^{-1}$$





$$\Delta m_s = 1000 \text{ ps}^{-1}$$





# Expected Sensitivity—Likelihood

Using toy MC, we generate data with different  $\sigma_t$  and D and fit for the amplitude assuming values of  $\sigma_t$  and D (not necessarily the same as generated) in the fit.

Sensitivity for fixed D = 0.16 vary  $\sigma_t$ 

Sensitivity for fixed  $\sigma_t = 0.1$  ps vary D

| $\mathrm{MC}/\mathrm{Fit}$ | $0.08~\mathrm{ps}$  | $0.10~\mathrm{ps}$  | $0.12~\mathrm{ps}$  | $\mathrm{MC}/\mathrm{Fit}$ | .128                | 0.160               | 0.192               |
|----------------------------|---------------------|---------------------|---------------------|----------------------------|---------------------|---------------------|---------------------|
| $0.08/\mathrm{ps}$         | $22.07/\mathrm{ps}$ | $23.56/\mathrm{ps}$ |                     | 0.128                      | $16.35/\mathrm{ps}$ | $16.35/\mathrm{ps}$ |                     |
| $0.10/\mathrm{ps}$         | $17.66/\mathrm{ps}$ | $17.74/\mathrm{ps}$ | $17.88/\mathrm{ps}$ | 0.160                      | $17.75/\mathrm{ps}$ | $17.74/\mathrm{ps}$ | $17.75/\mathrm{ps}$ |
| $0.12/\mathrm{ps}$         |                     | $15.74/\mathrm{ps}$ | $15.00/\mathrm{ps}$ | 0.192                      |                     | $18.90/\mathrm{ps}$ | $18.91/\mathrm{ps}$ |

□ Significance is given by

$$S(\Delta m, \sigma_t) = \sqrt{\frac{\epsilon N}{2}} \sqrt{\frac{S}{S+B}} De^{-(\Delta m \sigma_t)^2/2}$$

 $\square$  For the nominal parameters this gives a sensitivity of 17.13 ps<sup>-1</sup> which is consistent with the results given above

### $B_s$ Mixing Limit

- $\square$  Taking  $B_s \to D_s(\phi\pi)\mu X$  data (From Vivek 200-220 pb<sup>-1</sup>)
  - ♦ Calculate number of mixed and unmixed events from mass fits
  - $\diamond$  Calculate asymmetry in bins of 0.1 ps
  - $\diamond$  To keep resolution reasonably small, limit proper time  $< 0.8~\mathrm{ps}$ 
    - $\sigma_t = 0.11 \text{ ps } t_p < 0.4 \text{ ps}, \ \sigma_t = 0.138 \ 0.4 < t_p \le 0.8 \text{ ps}$ (According to Wendy)
  - $\diamond$  For amplitude fit use D = 0.16 and  $\sigma_t = 0.122$  ps (weighted average)

### The Limit

#### **Asymmetry Distribution**



#### Results

The dilution is taken to be D = 0.16

| $\sigma_t$ (ps) | Sensitivity/ps | Limit/ps |
|-----------------|----------------|----------|
| 0.110           | 8.63           | _        |
| 0.122           | 7.62           | _        |
| 0.138           | 6.67           |          |

Using correct  $\sigma_t$  for each bin gives a sensitivity of 6.67 ps<sup>-1</sup>





### Summary

□ Likelihood amplitude method gives a better result

- ♦ For same statistics & same fit range  $(0 \to \infty) \approx 2 \text{ ps}^{-1}$  better sensitivity  $(17.7 \text{ vs. } 16.0 \text{ ps}^{-1})$
- $\diamond$  For same statistics  $t = 0 \to \infty$ , fit range limited for asymmetry fit,  $\approx 4 \text{ ps}^{-1}$  better sensitivity (17.7 vs. 13.5 ps<sup>-1</sup>)
- $\diamondsuit$  Likelihood gives slightly better than analytic calculation (17.7 vs. 17.1 ps<sup>-1</sup>)
- □ Likelihood method requires additional work in finding unknown function since we want to reduce backgrounds
- □ MC needs to be made more realistic
  - ♦ Resolution function must depend on proper time
  - ♦ Add backgrounds
  - $\Diamond$  ...