A Mixture Framework for Scaling with Anchoring Items

Juraj Medzihorsky

6 April 2019

The Problem

How crunchy do you like your toast?

- Very crunchy
 Crunchy
- 3. Neither crunchy nor soft
- 4. Soft
- 5. Very soft

The Solution

Source: Wikimedia Commons

How crunchy is this toast?

- 1. Very crunchy
- 2. Crunchy
- 3. Neither crunchy nor soft
- 4. Soft
- 5. Very soft

Source: Wikimedia Commons

But did it work?

Adapted from Wikimedia Commons

How crunchy is this toast?

- 1. Very crunchy
- 2. Crunchy
- 3. Neither crunchy nor soft
- 4. Soft
- 5. Very soft

Source: Wikimedia Commons

How is this toast?

- 1. Very
- 2.
- 3. Neither nor
- 4.
- 5. Very

Source: Wikimedia Commons

Howarundhwisthistoast?

- 1. Wenyyanundhyy
- 2. Crumdhy
- 3. Weither anundhy/monsofft
- 44. Sofft
- 5. Weny/scofft

Source: Wikimedia Commons

How crunchy **hot** is this toast?

- 1. Very crunchy hot
- 2. Crunchy Hot
- 3. Neither crunchy hot nor soft cold
- 4. Soft Cold
- 5. Very soft cold

Source: telegraph.co.uk

EES VS L/R Batteries

EES VS L/R Batteries

EES VS L/R Batteries

CA: EES VS L/R Batteries

CA: EES VS L/R Batteries

Parametric Scaling

Aldrich-McKelvey Scaling

Anchoring items model

$$y_{ro} \sim \text{Normal}(\hat{y}_{ro}, \sigma)$$

 $\hat{y}_{ro} = \alpha_r + \beta_r \theta_o$

Scaling self-placements

$$\zeta_r = \frac{\varsigma_r - \alpha_r}{\beta_r}$$

CA: EES VS L/R Batteries

44% respondents have flipped scales

Bayesian AMS (Hare at al. 2015)

$$y_{ro} \sim \text{Normal}(\alpha_r + \beta_r \theta_o, \sigma_r \sigma_o)$$
 $\sigma_o^{-1/2} \sim \text{Gamma}(0.1, 0.1)$
 $\sigma_r^{-1/2} \sim \text{Gamma}(\gamma_1, \gamma_2)$
 $\gamma \sim \text{Gamma}(0.1, 0.1)$
 $\theta \sim \text{Normal}(0, 1)$
 $\alpha \sim \text{Uniform}(-100, 100)$
 $\beta \sim \text{Uniform}(-100, 100)$

HMC diagnostics: divergent transitions

 $Source: https://mc-stan.org/users/documentation/case-studies/divergences_and_bias.html$

Fitting complex latent variable models

 $Peter Fischli \ and \ David \ Weiss's \ The First \ Blush \ of Morning, 1984.$ Source: https://www.wmagazine.com/story/peter-fischli-david-weiss-merry-pranksters

A Mixture Framework

$O = \pi M + (1 - \pi)C$

O observed responsesM informative responses

C uninformative responses

 π mixing weight, $\pi \in [0, 1]$

Measurement Model

Ordinal IRT

$$y_{ro} \sim \text{Categorical}(\mathbf{p}_{ro})$$

 $\mathbf{p}_{ro} = f(\boldsymbol{\tau}_r, \boldsymbol{\theta}_o, ...)$

Heterogeneity

M by respondent

Scale flipping

C by respondent

- Straightlining
- Answering a different question

C by answer

- Midpoint as "Don't know"/"Won't say"
- Pseudoguessing

Measurement model 1.

$$y_{ro} \sim \text{Categorical}(\boldsymbol{p}_{ro})$$
 $p_{rok} = \text{OrdLogit}(\boldsymbol{\tau}_{rk} - \theta_o), \ \tau_{rk} < \tau_{r,k+1}$
 $\boldsymbol{\tau_r} \sim \text{Logistic}(0, 1)$
 $\theta_o \sim \text{Normal}(0, \sigma)$
 $\zeta_r \sim \text{Normal}(0, \sqrt{R}\sigma)$
 $\sigma \sim \text{HalfNormal}^+(0, 1)$

Measurement model 2.

$$p_{rok} = \text{OrdLogit} (\beta_o (\tau_{rk} - \theta_o))$$

 $\ln \beta_o \sim \text{Normal}(0, 1)$

Respondent scale flipping

$$p_{rok} = \text{OrdLogit} (\tau_{rk} - \gamma_r \theta_o)$$
 $\gamma_r \in \{-1, +1\}$
 $P(\gamma_r = -1) = \pi^{\gamma}$
 $\pi^{\gamma} \sim \text{Beta}(0.5, 0.5)$

The Spike: Midpoint Inflation

The Slab: Pseudoguessing

The Spikes: Straightlining

Contamination

By respondent

$$g_r \sim \text{Dirichlet} - \text{Categorical} (0.5, \dots, 0.5)$$

By answer

$$g_{ro} \sim \text{Dirichlet} - \text{Categorical} (0.5, ..., 0.5)$$

Baseline: No Flipping or Contamination

Item

Flipping

Item Ε G Н

Contamination: Midpoint Inflation

Item

Α	В	С	D	Е	F	G	Н
9	1	9	5	6	5	3	8
7	2	10	0	5	10	6	6
1	1	5	6	9	2	3	1
0	0	8	7	1	5	9	8
5	10	8	5	8	6	6	5
5	5	6	8	1	5	5	7
5	9	7	5	5	4	5	5
8	7	5	4	7	0	8	1
10	6	0	6	2	2	2	8
5	5	10	6	2	3	5	3
5	2	10	3	9	8	9	2
0	5	0	0	5	1	10	5
0	5	6	4	8	5	7	3

Flipping and Midpoint Inflation

Item

Three EES VS Left-Right Batteries: Models

	Α	В		
1	respondent cut-points	+ item slopes		
2	—"— + flipping	+ —"—		
3	—"— + midpoint inflation	+ —"—		
4	-"- rate by item	+ -"-		

Three EES VS Left-Right Batteries: Model Fit

Three EES VS Left-Right Batteries: Mid-Point Inflation

AMS vs. 4.B

4.B Item Slopes

Conclusion

No free lunch

- bias-variance trade-off
- estimating well costs

What didn't work so well deserves a paper

- GP cut-points
- respondent & item slopes
- Dirichlet-Categorical for y

Next

- missing answers
- more structured memberships
- implications for party ambiguity

Thank you!

@medzihorsky