

	60004200132
→ 5>	$\frac{\partial^2 y}{\partial t^2} + 2 \frac{\partial y}{\partial t} + 5 \frac{y}{2} = e^{-\frac{1}{2}} \frac{\partial^2 n}{\partial t} + \frac{y}{2} \frac{(0)}{(0)} = 0$
	Let L(y) = y . Then taking laplace Transform on both sides,
	L(y") + 2 L(y') + 5 L(y) = L(e-t sint)
	But 1 (41) = 3 \(\bar{y} - 4(0) = 3 \bar{y}
	and L(y")= 32 - 3 y (0) - y'(6) = 32 - 1
	and $L(e^{-t}sint) = 1$
	(S+1)2+1
	: The equation becomes
	$(3^{2}\overline{5} - 1) + 25\overline{9} + 5\overline{9} = 1$ $(5+1)^{2} + 1$
	$\frac{(S^{2} + 2S + 5)\overline{y} = 1 + 1}{S^{2} + 2S + 2} = \frac{S^{2} + 2S + 3}{S^{2} + 2S + 2}$
	· y - s + 2s + 3
	$(s^2 + 2s + 5)(s^2 + 2s + 2)$
	Let 57+25+3 as+b + cs+d
	$(s^2 + 2s + 5)(s^2 + 2s + 2) = (s^2 + 2s + 5)$ $(s^2 + 2s + 2)$
	After simplification we get
	$3^{2}+2s+s=(a+c)s^{3}+(2a+b+2c+d)s^{2}+(2a+2b+5c+2d)s+$ (2b+5d)
	Equating the coefficients of like powers of s, we get
	a+c=0, $20+b+2c+d=1$, $20+2b+5c+2d=2$, $2b+5d=3$.
	-, 55, 75 -, 25, 36 - 3.
Gundaram	FOR EDUCATIONAL USE Page 3

