Correction de TD n°1:

Exercice $n^{\circ}1$:

1) Classification les variables selon leur type:

variable	qualitative N	qualitative O	quantitative D	quantitative C
a) Lieu de résidence	×			
b) Taille en cm				×
c) Sexe	×			
d) Nationalité	×			
e) Poids				×
f) Niveau d'études		×		
g) Nombre d'enfants			×	
h) Nombre de langues parlées			×	
i) Nbre de psn par ménage			×	

2) Préciser les modalités ou valeurs qu'elles peuvent prendre.

variable	modalités
a) Lieu de résidence	m'sila , bousaada, magra
b) Taille en cm	170 cm; 172 cm;185 cm
c) Sexe	masculin, féminin
d) Nationalité	Algérienne, tunisienne,
e) Poids	70,1kg;72,3kg
f) Niveau d'études	primaire, moyen, secondaire, Universitaire
g) Nombre d'enfants	0;1;2;3;4;5.
h) Nombre de langues parlées	1; 2; 3;4
i)Nombre de personnes par ménage	2; 3;4

Exercice $n^{\circ}2$:

jaune; verte; rouge; jaune; orange; jaune; verte; jaune; orange; jaune;

rouge; bleue; bleue;

bleue; jaune; rouge;
 jaune; orange; jaune; orange; verte; jaune; rouge.

- 1) La population= 24 jeunes, taille=24, la variable=Couleur des voitures, le type=qualitative nominale.
- 2) Le tableau d'effectifs associé à cette série :

Modalité	jaune	verte	rouge	Orange	Bleue	Total
EFFECTIF	9	3	5	4	3	24

Diagramme en tuyaux d'orgues représentant cette série.

Figure 1 – Diagramme en tuyaux d'orgues

3) $n_{\text{max}} = 9$, donc le mode $M_o = \text{jaune}$.

Exercice n°3:

1) Le tableau d'effectifs associé à cette série :

nombfre d'enfants (x_i)	1	2	3	4	5	Total
$\text{Effectif}(n_i)$	12	8	5	2	1	28
ECC	12	20	25	27	28	/

2) La moyenne : $\bar{x} = \sum \frac{n_i x_i}{N} = \frac{12 \times 1 + 8 \times 2 + 5 \times 3 + 2 \times 4 + 1 \times 5}{28} = \frac{56}{28} = 2$. La médiane : N = 28 est pair , donc $Me = \frac{x_{14} + x_{15}}{2} = \frac{2 + 2}{2} = 2$. Le mode : $n_{\max} = 12$, donc le mode $M_o = 1$.

3) L'étendue : $e = x_{\text{max}} - x_{\text{min}} = 5 - 1 = 4$.

La variance:

$$V(X) = \sum_{i=0}^{\infty} \frac{n_i x_i^2}{N} - \bar{x}^2 = \frac{12 \times 1^2 + 8 \times 2^2 + 5 \times 3^2 + 2 \times 4^2 + 1 \times 5^2}{28} - 2^2 = \frac{146}{28} - 4 = 1,124.$$

L'écart-type;
$$\sigma_X = \sqrt{V(X)} = \sqrt{1,124} = 1,06.$$

Exercice $n^{\circ}4$:

1) Calculer l et l'écart type :

Groupe A

Note	8	9	10	11	total
effictif	6	6	3	3	18

La moyenne : $\bar{x}_A = \sum \frac{n_i x_i}{N} = 9.17$ La variance : $V(X_A) = 1.078$ L'écart type $\sigma_{X_A} = \sqrt{V(X_A)} = 1.038$ Groupe B

Note	6	8	9	13	14	total
effictif	6	6	3	3	3	21

La moyenne : $\bar{x}_B = \sum \frac{n_i x_i}{N} = 9.14$. La variance : $V(X_B) = 8.746$ L'écart type $\sigma_{X_B} = \sqrt{V(X_B)} = 2.96$

2) Comparer les deux groupes.

On remarque que les moyennes sont très proches, il faut de calculer $de C_v$

Pour le groube A,
$$C_{v_A} = \frac{\sigma_{X_A}}{\bar{x}_A} = \frac{1.038}{9.17} = 0.11323 = 11.323\%$$

Pour le groube B, $C_{v_B} = \frac{\sigma_{X_B}}{\bar{x}_B} = \frac{2.96}{9.14} = 0.3238 = 32.38\%$

Pour le groube B,
$$C_{v_B} = \frac{\sigma_{X_B}}{\bar{\tau}_B} = \frac{2.96}{9.14} = 0.3238 = 32.38\%$$

le groupe B est beaucoup plus dispersé que le groupe A car $C_{v_A} < C_{v_B}$, On peut dire donc que le groupe B est moins homogènes que le groupe A.

Exercice $n^{\circ}5$:

Classes (en Km)]10; 20]	[]20;30]]30;40]]40; 60]	[]60;90]	Total
Nombre de taxis	8	12	20	6	4	50

1) L'histogramme de cette distribution

L'amplitude de la classe $]L_{i-1}; L_i]$ est donnée par : $a_i = L_i - L_{i-1}$. Soit $a^* = P \gcd_{1 \le i \le 5}(a_i) = P \gcd(10; 10; 10; 10; 20; 30) = 10$. Hauteur $h_i = \frac{n_i}{a_i}a^*$

	Classes (en Km)]10; 20]]20; 30]]30;40]]40; 60]]60; 90]	Total
	Nombre de taxis= n_i	8	12	20	6	4	50
	ECC $n_i \nearrow$	8	20	40	46	50	/
ĺ	Centre de classe c_i	15	25	35	50	75	/

alors

Histogramme des effectifs

2) $n_{max} = 20$ donc la classe modale =]30, 40]. La médiane : on a

alors

$$\begin{cases} Me \in]30; 40] \iff \begin{cases} 30 \le Me \le 40 \\ 20 \le 25 \le 40 \end{cases}, \text{ donc,} \end{cases}$$

$$tg\alpha = \frac{40 - 20}{40 - 30} = \frac{25 - 20}{Me - 30}$$

$$\Rightarrow \frac{20}{10} = \frac{5}{Me - 30}$$

$$\Rightarrow Me - 30 = 2.5$$

$$\Rightarrow Me = 32.5$$

La moyenne : $\bar{x} = \sum \frac{n_i c_i}{N} = \frac{8 \times 15 + 12 \times 25 + 20 \times 35 + 6 \times 50 + 4 \times 75}{50} = \frac{172}{5} = 34.4$ La variance :

$$V(X) = \sum \frac{n_i c_i^2}{N} - \bar{x}^2$$

$$= \frac{8 \times 15^2 + 12 \times 25^2 + 20 \times 35^2 + 6 \times 50^2 + 4 \times 75^2}{50} - 34.4^2$$

$$= 1426 - 1183.4$$

$$= 242.6$$

L'écart-type
$$\sigma_X = \sqrt{V\left(X\right)} = \sqrt{242.6} = 15.576$$

Le responsable de la matière : Merini Abdelaziz