Review Worksheet 1

1. Logic Gates

In digital design, we often use 'synchronous' circuits, i.e. circuits which evaluate when a clock signal transitions from 0 to V_{DD} . One such implementation, called domino CMOS logic, is shown in Figure 1. Initially $V_{\rm clk}=0$ ('reset phase') for a long time, so the output node is high, i.e. $V_{\rm out}=V_{DD}$ and the capacitor is fully charged, regardless of the values of V_A and V_B . We want to complete the Truth Table 1 during the 'evaluation phase'.

For cases (ii) and (iv), when V_{clk} transitions from 0 to V_{DD} and V_A and V_B are equal to the values specified in the table, what is V_{out} ? Justify your answer.

Note that if all transistors connected to the output node are switched off, then the capacitor *C* at the output node 'holds' the voltage since there is no charging / discharging path in that case.

Figure 1: Domino Logic Gate

Case	$V_{ m clk}$	V_A	V_B	V _{out}
(i)	$0 o V_{DD}$	0	0	$V_{DD} ightarrow V_{DD}$
(ii)	$0 o V_{DD}$	0	V_{DD}	$V_{DD} ightarrow $?
(iii)	$0 o V_{DD}$	V_{DD}	0	$V_{DD} \rightarrow V_{DD}$
(iv)	$0 o V_{DD}$	V_{DD}	V_{DD}	$V_{DD} ightarrow $?

Table 1: Truth Table

2. Analog Signal Processing

In this problem, we will study an example of one of the most common applications in signal processing: removing noise and amplifying the desired signal in a receiver.

In 16B we have learned about filters, so we can selectively remove specific noise frequency bands. Assume that we have a low frequency desired signal $s(t) = \cos(\omega_{\rm sig}t)$, where $\omega_{\rm sig} = 10\frac{\rm rad}{\rm s}$, and a high frequency noise $n(t) = 2\cos(\omega_{\rm noise}t)$, where $\omega_{\rm noise} = 1000\frac{\rm rad}{\rm s}$, at the receiver input. We wish to amplify the desired signal and also reject the noise.

- (a) Let's first attempt to use a low-pass filter to achieve this goal. Since we wish to amplify the desired signal, we need to use a low-pass filter with gain > 1 (i.e. use an amplifier combined with a filter). Assume that the op-amps are ideal and follow the golden rules.
 - i. Derive a transfer function for the filter configuration in Figure 2a. Show your work.
 - ii. Derive a transfer function for the filter configuration in Figure 2b. Show your work.
 - iii. Out of the two filter configurations in Figure 2, which one is the low-pass filter? Justify your answer.

Figure 2: Active filter receiver configurations

- (b) Suppose that the transfer function of the low-pass filter with gain from part (a) was $H_{\text{LPF}}(\omega) = -\frac{A}{1+j\frac{\omega}{\omega_c}}$, where the cutoff frequency frequency is $\omega_c = 100\frac{\text{rad}}{\text{s}}$ and the gain is A = 10. The Bode plots for the low-pass filter with gain are shown below. Read-off the numerical values corresponding to the appropriate points on the Bode plots.
 - i. What are the magnitude and phase of the filter output signal when the input into the filter is $s(t) = \cos(\omega_{\rm sig}t)$, where $\omega_{\rm sig} = 10\frac{\rm rad}{\rm s}$? Derive the time domain expression for the filter output signal.
 - ii. What are the magnitude and phase of the filter output signal when the input into the filter is $n(t) = 2\cos(\omega_{\mathrm{noise}}t)$, where $\omega_{\mathrm{noise}} = 1000\frac{\mathrm{rad}}{\mathrm{s}}$? Derive the time domain expression for the filter output signal.

Bode plot of phase

- (c) We wish to have the signal be more amplified with respect to the noise. One approach is to cascade two copies of the filter $H_{\rm LPF}(\omega)$ to make a second-order low-pass filter with gain. Note that it is not necessary to put a unity gain buffer between the two filters, because the $V_{\rm out}$ loading does not affect the behavior of this specific filter configuration.
 - i. Derive the transfer function $H_{\rm casc}(\omega)$ of the second-order low-pass filter by cascading 2 of the first order transfer function $H_{\rm LPF}(\omega)=-\frac{A}{1+{\rm j}\frac{\omega}{\omega_c}}$ from part (b) with $\omega_c=100\frac{\rm rad}{\rm s}$ and A=10. Show your work.
 - ii. Sketch the Bode magnitude and phase plots of $H_{\rm casc}(\omega)$ on the charts in your answer template.

(HINT: Pay attention to the direction of the slopes.)

- (d) Our implementation of the cascaded second-order filter from part (c) uses 2 op-amps. Can we get even more noise attenuation by using a single op-amp? One approach is to use a Notch filter that ideally completely rejects the noise.
 - Let's consider the cascade of an LC Notch filter with a non-inverting amplifier in Figure 3. We wish to have a notch at the noise frequency so that the noise $n(t) = 2\cos(\omega_{\text{noise}}t)$, where $\omega_{\text{noise}} = 1000\frac{\text{rad}}{\text{s}}$, is completely rejected, while the signal $s(t) = \cos(\omega_{\text{sig}}t)$, where $\omega_{\text{sig}} = 10\frac{\text{rad}}{\text{s}}$, is amplified.
 - i. Derive the transfer function $H_{\rm notch}(\omega) = \frac{\widetilde{V}_{\rm out}(\omega)}{\widetilde{V}_{\rm in}(\omega)}$ of the filter in Figure 3. Assume that the op-amp is ideal and follows the golden rules. Show your work.
 - ii. Using $C=0.5\,\mathrm{mF}$, find the inductance value L so that the notch (i.e. the frequency at which the magnitude of the transfer function is 0) is at the noise frequency $\omega_{\mathrm{noise}}=1000\frac{\mathrm{rad}}{\mathrm{s}}$. Show your work.

Figure 3: LC Notch filter and non-inverting amplifier

3. Transistor Behavior

For all NMOS devices in this problem, $V_{tn} = 0.5$ V. For all PMOS devices in this problem, $|V_{tp}| = 0.6$ V.

(a) Which is the equivalent circuit for the right-hand side of the circuit? Fill in the correct bubble.

(b) Which is the equivalent circuit for the right-hand side of the circuit? Fill in the correct bubble.

(c) Which is the equivalent circuit for the right-hand side of the circuit? Fill in the correct bubble.

