Ensemble Complex — CM: 3

Par Lorenzo

20 septembre 2024

1 Logique avec quantificateurs

Quand on utilise des quantificateurs il y a des règles à suivre:

Règle numéro 1: Toute lettre dans un énoncé doit être introduite par un quantificateur.

Règle numéro 2: Cette introduction doit se faire avant la première occurence de la variable.

Règle numéro 3: On doit toujours préciser à quel ensemble appartient la variable.

Méthode 1.1.

Quand on veut montrer un énoncé universel $(\forall x \in X, P(x))$

- 1) "Soit $x \in X$, montrons P(x)."
- 2) raisonnement profond.
- 3) On montre P(x).

Example 1.1.
$$\forall x \in \mathbb{R}, \frac{x}{x^2+1} \ge \frac{-1}{2}$$

Soit $x \in \mathbb{R}$

$$\frac{x}{x^2+1} \ge -\frac{1}{2} \implies 2x \ge -(x^2+1)$$
$$\implies (x^2+2x+1) \ge 0$$
$$\implies (x+1)^2 \ge 0$$

Pour donner un nom à une quantité/un objet mathématique, on écrit:

Posons A := ..., Notons A = ... ou Soit A := ...

Méthode 1.2.

Quand on veut montrer qu'il existe x appartenant à A vérifiant P(x), Soit on a en tête un exemple d'élément x dans A vérifiant P(x)

 $Posons \ x = \dots$

Vérifions $x \in A$

 $V\'{e}rifions P(x)$

Soit on essaye d'utiliser des théorèmes d'existence pour montrer qu'un tel x existe.

Remarques 1.1. Les mêmes quantificateurs peuvent être intervertis mais pas quand ils sont différent (un \forall avec un \exists).

2 Méthodes de démonstration 2

2.1 Unicité d'un objet

Nous croiserons régulièrement des énoncés du type: "Il y a au plus un élément $x \in X$ vérifiant P(x)".

Méthode 2.1.

Pour montrer qu'un ensemble X contient au plus un élément vérifiant une propriété P, on peut procédé ainsi.

- 1) Soient x et x' deux élément de X vérifiant P, montrons x = x'
- 2) Raisonnement profond.
- 3) On en conclut l'unicité d'un élément vérifiant P.

Remarques 2.1. L'unicité ne veut pas dire qu'on a montré l'existence.

Example 2.1. Soit $n \in \mathbb{N}$ Montrer qu'il existe au plus un multiple de 10 dans $X = \{n, n+1, ..., n+5\}$

Démonstration 2.1.

Soient $k, k' \in [0, 5]$ tel que $10 \mid n + k$ et $10 \mid n + k' \implies \exists p \in \mathbb{Z}, n + k = 10p$ et $\exists p' \in \mathbb{Z}, n + k' = 10p'$

Par soustraction $(n+k) - (n+k') = 10m - 10m' \implies (k-k') = 10(m-m')$ Or $-5 \le (k-k') \le 5$ et le seul multiple de 10 dans cette intervalle est 0.

Donc k = k' et n + k = n + k'.

2.2 Analyse synthèse

Méthode 2.2.

Pour déterminer l'ensemble des éléments d'un ensemble E vérifiant une propriété P, on peut raisonner par analyse/synthèse.

Analyse: soit $x \in E$. on suppose que x vérifie P.

... on regarde les forme possible de x.

 $Synth\`ese: Posons x = ... les différente formes possibles trouvées.$

Vérifions que x vérifie P (et appartient bien à E).

Example 2.2. Trouvons les couples de nombres réels non-nuls (x, y), solutions du système

$$(S) \begin{cases} xy = 2\\ \frac{y}{x} = 2 \end{cases}$$

Démonstration.

Analyse: Soit $(x,y) \in \mathbb{R}^2$

$$xy \times \frac{y}{x} = 2 \times 2 \implies y^2 = 4 \implies y = 2 \lor y = -2$$

La ligne 1 (de S) donne $x = \frac{2}{y}$

Donc les seuls couples possibles pour (x, y) sont (1, 2) et (-1, -2)

Synthèse: On vérifie les deux couples trouvés.

$$1 = 2$$
 et $\frac{2}{1} = 2$ puis $-1 \times (-2) = 2$ et $\frac{-2}{-1} = 2$

Donc (1, 2) et (-1, -2) sont l'ensemble des couples qui sont solutions de S.

2.3 Définition de \mathbb{N} par récurence

Définition 2.1. N est l'ensemble construit par

N contient un élément noté 0.

Chaque élément $n \in \mathbb{N}$ admet un unique successeur noté succ(n) = n + 1.

 $\forall x \in \mathbb{N}, [succ(x) \neq 0].$

 $\forall x, y \in \mathbb{N}, [succ(x) = succ(y) \implies x = y].$

 $\forall A \subset \mathbb{N}, [(0 \in A \land (n \in A \implies succ(n) \in A)) \implies A = \mathbb{N}]$ (important pour la récurence).

Remarques 2.2. Avec cette notation par récurence on peut définir \sum par

$$\sum_{i=1}^{n} a_i = \begin{cases} 0 & \text{si } n = 0\\ (\sum_{i=1}^{n-1} a_i) + a_n & \text{si } n \ge 1 \end{cases}$$

Méthode 2.3.

Pour montrer une propriété P_n est vrai pour tout entier $n \geq n_0$.

Donner explicitement la propriété P_n .

Initialisation: On montre P_{n_0} .

Hérédité: Soit $n \in \mathbb{N}$, $n \geq n_0$, tel que P_n est vraie.

Montrons que P_{n+1} .

Remarques 2.3. Il peut arrivé qu'on ne puisse pas déduire P_{n+1} de P_n mais seulement P_{n+2} à partir de P_{n+1} et P_n , on fait alors une récurence double.

Méthode 2.4.

Si P_{n_0} et P_{n_0+1} sont vraies et si $\forall n \in \mathbb{N}, n \geq n_0, (P_n \wedge P_{n+1} \implies P_{n+2})$ Alors $\forall n \in \mathbb{N}, n \geq n_0, P_n$ est vrai.

Il existe aussi une récurence forte.

Méthode 2.5.

Si P_{n_0} est vraie et si $\forall n \in \mathbb{N}, n \geq n_0, (\forall k \in \mathbb{N}, n_0 \leq k \leq n, P_k \implies P_{n+1})$ Alors $\forall n \in \mathbb{N}, n \geq n_0, P_n$ est vrai.