GEOMETRY TEST 4

Di	rections: Complete as ma awn to scale. Do not assu	any problems as you can			
	ited. You may assume all				
	Find the volume of a right ches.	rectangular solid if the wi	dth is twice the length and	I the height is twice the w	idth. The length is 2
	(A) $32 in^3$	(B) $48 in^3$	(C) $56 in^3$	(D) $64 in^3$	(E) $112 in^3$
2.	When constructing an insc (A) 2 altitudes	ribed circle within a triang (B) 2 ∠ bisectors	gle, need (C) 2 medians	to be constructed. (D) 2 ⊥ bisectors	(E) 2 diameters
3.	If a leg of an isosceles righ	nt triangle is 8, find the len	gth of the other leg.		
	(A) 8	(B) $8\sqrt{2}$	(C) $8\sqrt{3}$	(D) $\frac{8}{\sqrt{2}}$	$(\mathbf{E}) \ \frac{8}{\sqrt{3}}$
4.	Given $\frac{x}{w} = \frac{y}{z}$, which of the	he following does not have	e to be true? Assume all v	variables represent positive	e integers.
	$(\mathbf{A}) \frac{x}{y} = \frac{w}{z}$	(B)	$(\mathbf{C}) \ \frac{x+y}{y} = \frac{w+z}{z}$	(D)	$\mathbf{(E)} \frac{x}{z} = \frac{w}{y}$
	How many more sides doe (A) 1	es a decagon have than a he (B) 2	eptagon? (C) 3	(D) 4	(E) 5
	What is the interior angle s (A) 360°	sum of a 1002 sided conve (B) 180,000°	ex polygon ? (C) 180,360°	(D) 360,000	(E) 360,360
	What does the ratio of 7 ho			(, , , , , , , , , , , , , , , , , , ,	() = ==,===
	_	(B) $\frac{2}{21}$		(D) $\frac{1}{10}$	(E) $\frac{1}{24}$
8.	The shortest leg of a 30-60)-90 triangle is 6. Which o	of the following would be	equivalent to the length of	f the hypotenuse?
	_	(B) $6\sqrt{3}$	_	(D) $\frac{12}{\sqrt{3}}$	(E) 12
	Find the area of the follow (A) 12	ing quadrilateral that has v	vertices $(1,2),(1,-2),(-2)$ (C) 15	(2,2), and $(-2,-2)$.	(E) 20
	. Which of the following is	. 41 11 49	(6) 15	(2) 10	(2) 20
10.	. Which of the following is	X 4	5 3 Y		
	$(\mathbf{A}) \sin X$	(B) cos X	(C) tan X	(\mathbf{D}) $\tan Y$	(E) sin Y
11.	. A triangle that has sides of	of length 6, 12, and 13 is w I. Acute	what type of triangle? II. Obtuse	III. Scalene	
	(A) I	(B) II	(C) III	(D) I and III	(E) II and III
12	. For a 45-45-90 triangle, t	he leg has a length of 51/2	_ 3 . Find the length of the l	hypotenuse.	
	(A) 5	(B) 15	(C) $10\sqrt{3}$	(D) $5\sqrt{5}$	(E) $5\sqrt{6}$

13. Given $V = \frac{4}{3}\pi r^3$ as the volume of a sphere, find the volume if the diameter is 6.							
(A) 12π	(B) 24π	(C) 36π	(D) 48π	(E) 288π			
14. Find the perimeter of an (A) 36	isosceles triangle if the alt (B) 40	titude to the base is 6 and (C) 42	the base is 16. (D) 46	(E) 50			
15. If the height of a trapezo (A) 3 times	oid is tripled and each base (B) 6 times	is doubled, how many tin (C) 9 times	mes larger will the area of (D) 12 times	the new trapezoid be? (E) 18 times			
16. The diagonals of which (A) rhombus	polygon are always congru (B) quadrilateral	uent? (C) rectangle	(D) trapezoid	(E) parallelogram			
17. The base of a triangle eq (A) 10	uals four times its height. (B) 11	If the area is 18, find the (C) 12	sum of the base and the ho (D) 13	eight? (E) 15			
18. What is the ratio of the a (\mathbf{A}) 1: r	rea of a circle to its circum (B) r:2	nference? (C) 1:1	(D) 2: <i>r</i>	(E) <i>r</i> :1			
19. ABCD is a trapezoid wit	th median EF, and bases A	AB and DC . If $AB = 2x - 1$	1, DC = $5x + 2$, and EF = 3	3x + 5, find the length of			
AB. (A) 9	(B) 11	(C) 13	(D) 15	(E) 17			
20. If x is four more than tw (A) $3y-176$	ice the complement of y , f (B) $y-176$	and the value of $y - x$ in to (C) $3y - 184$	erms of <i>y</i> . (D) $-y-184$	(E) 7 <i>y</i> – 540			
•		. , .	(2) 10.	(2) // 0.0			
21. Find the value of AC if I A B C (A) $\frac{4}{\sqrt{2}}$	(B) $4\sqrt{2}$	$m \ge C - 43$. (C) $4\sqrt{3}$	(D) 8	(E) 32			
22. Which is the largest fraction?							
	$ \begin{array}{ccc} A & & \\ 6 & & & \\ & $						
(A) Sin A23. Find the equation of the	(B) Cos A circle that has a diameter of	(C) Cos B of 10 and center (-3.2).	(D) Tan A	(E) Tan B			
(A) $(x-3)^2 + (y+2)^2 =$	100 (B) $(x+3)^2$ 25 (E) $(x+3)^2$	$+\left(y-2\right)^2=100$	(C) $(x+3)^2 + (y-2)^2 =$	= 5			
24. If the radius of a cone i (A) 5	s tripled and the height is (B) 6	doubled, how many times (C) 12	larger will the volume of (D) 18	the cone be? (E) 36			
25. The measure of $\angle 1$ is g	greater than the measure of	$f \angle 3$ by $(2x)^{\circ}$. If the $m \angle 3$	$\angle 3 = 14^{\circ}$, find the measure	of $\angle 2$.			
(A) $152^{\circ} - (2x)^{\circ}$	(B) $152^{\circ} + (2x)^{\circ}$	(C) $162^{\circ} - (2x)^{\circ}$	(D) $166^{\circ} - (2x)^{\circ}$	$(\mathbf{E}) \ 166^{\circ} + (2x)^{\circ}$			

GEOMETRY TEST 4 ANSWERS

1. D	2. B	3. A	4. E	5. C
6. B	7. A	8. E	9. A	10. A
11. D	12. E	13. C	14. A	15. B
16. C	17. E	18. B	19. E	20. C
21. B	22. D	23. E	24. D	25. A

1.
$$V = lwh = 2(4)(8) = 64$$

2. 2 angle bisectors

3. 8

4.
$$\frac{x}{z} = \frac{w}{y}$$

6.
$$S = (n-2)180^{\circ} = 1000 \cdot 180^{\circ} = 180,000^{\circ}$$

7.
$$\frac{8}{7 \cdot 24} = \frac{1}{21}$$

8.
$$h = 2s = 2 \cdot 6 = 12$$

9.
$$3 \times 4 = 12$$

10. sin X

11. acute and scalene

12.
$$h = \sqrt{2}s = \sqrt{2} \cdot 5\sqrt{3} = 5\sqrt{6}$$

13.
$$V = \frac{4}{3}\pi(3)^3 = 36\pi$$

14. The congruent legs will equal $\sqrt{6^2 + 8^2} = 10$. Therefore the perimeter equals 10 + 10 + 16 = 36.

15. A=
$$\frac{1}{2}(3h)(2b_1 + 2b_2) = 6\left[\frac{1}{2}h(b_1 + b_2)\right]$$

16. The diagonals of a rectangle are congruent.

17.
$$A = \frac{1}{2}bh \rightarrow 18 = \frac{1}{2}(4h)h \rightarrow h = 3; b = 12; h + b = 15$$

18.
$$\frac{A}{C} = \frac{\pi r^2}{2\pi r} = \frac{r}{2}$$

19.
$$2x-1+5x+2=2(3x+5) \rightarrow x=9$$
 Solving for AB yields $2x-1=2(9)-1=17$

20.
$$x = 4 + 2(90 - y) = 184 - 2y \rightarrow y - x = y - (184 - 2y) = 3y - 184$$

21. For a $45^{\circ} - 45^{\circ} - 90^{\circ}$ triangle, $h = (leg)\sqrt{2} = 4\sqrt{2}$. If a student did not know this, they could still solve it by using the Pythagorean theorem.

22.
$$\tan A = \frac{8}{6}$$

23.
$$(x-h)^2 + (y-k)^2 = r^2 \rightarrow (x+3)^2 + (y-2)^2 = 25$$

23.
$$(x-h)^2 + (y-k)^2 = r^2 \rightarrow (x+3)^2 + (y-2)^2 = 25$$
 24. $V_1 = \frac{1}{3}\pi r^2 h \rightarrow V_2 = \frac{1}{3}\pi (3r)^2 (2h) = 18\left(\frac{1}{3}\pi r^2 h\right) = 18V_1$

25. Since vertical angles are congruent, $m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ}$. Therefore

$$m\angle 2 = 180^{\circ} - m\angle 3 - m\angle 1 = 180^{\circ} - 14^{\circ} - (14^{\circ} + 2x) = 152^{\circ} - 2x$$