1 Simple model

Definitions

We find the best model for y over function class \mathcal{G} . Presume $q^* \in \mathcal{G}$ is the true model and

$$y = g^*(X) + \epsilon$$

where ϵ are sub-Gaussian errors for constants K and σ_0^2

$$\max_{i=1:n} K^2 \left(E \left[\exp(|\epsilon_i|^2 K^2) - 1 \right] \right) \le \sigma_0^2$$

Given a training set T, We define the fitted models

$$\hat{g}_{\lambda} = \|y - g\|_T^2 + \lambda^2 I^v(g)$$

Given a validation set V , let the CV-fitted model be

$$\hat{g}_{\hat{\lambda}} = \arg\min_{\lambda} \|y - \hat{g}_{\lambda}\|_{V}^{2}$$

We will suppose $I(g^*) > 0$.

Assumptions

Suppose the entropy of the class \mathcal{G}' is

$$H\left(\delta, \mathcal{G}' = \left\{\frac{g - g^*}{I(g) + I(g^*)} : g \in \mathcal{G}, I(g) + I(g^*) > 0\right\}, P_T\right) \leq \tilde{A}\delta^{-\alpha}$$
(1)

Suppose $v > 2\alpha/(2+\alpha)$.

Suppose for all $\lambda \in \Lambda$, $I^v(\hat{g}_{\lambda})$ is upper bounded by $\|\hat{g}_{\lambda}\|_n^2 = \frac{1}{n} \sum_{i=1}^n \hat{g}_{\lambda}(x_i)$. See Lemma 1 below for the specific assumption. This assumption includes Ridge, Lasso, Generalized Lasso, and the Group Lasso

Result 1: Single λ , Single Penalty, cross-validation over general X_T, X_V

Suppose that the training and validation set are independently sampled, so the values X_i are not necessarily the same. Suppose the training and validation sets are both of size n. Suppose X is bounded s.t. $|X| \leq R_X$ and the domain of $g \in \mathcal{G}$ is over $(-R_X, R_X)$.

Suppose the same entropy bound (2) for both the training set P_T and validation set P_V .

Suppose for all $\lambda \in \Lambda$, there exists a compatibility constant M s.t. $I^{v}(\hat{g}_{\lambda})$ is upper bounded by its L_{2} -norm with some constant M (and M_{0}) such that

$$I^{v}(\hat{g}_{\lambda}) \leq M \|\hat{g}_{\lambda}\|_{n}^{2} + M_{0}$$

Suppose the entropy bound for both training set P_T and validation set P_V . Suppose that

$$\sup_{g \in \mathcal{G}} \frac{\|g - g^*\|_{\infty}}{I(g) + I(g^*)} \le K < \infty$$

Let $\tilde{\lambda}$ be the optimal λ by Vandegeer. Then

$$\left\|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\right\|_{V} = O_{p}\left(n^{-1/(2+\alpha)}\right) \left(I^{\alpha/(2+\alpha)}(g^{*}) + I(g^{*})\right)$$

and $\|\hat{g}_{\hat{\lambda}} - g^*\|_V$ is of the same order (differs by some constant).

Proof:

By the triangle inequality,

$$\|\hat{g}_{\hat{\lambda}} - g^*\|_V \le \|\hat{g}_{\hat{\lambda}} - \hat{g}_{\tilde{\lambda}}\|_V + \|\hat{g}_{\tilde{\lambda}} - g^*\|_V$$

We bound each component on the RHS separately.

First bound $\|\hat{g}_{\tilde{\lambda}} - g^*\|_V$. By Vandegeer Thrm 10.2 and Lemma 2,

$$\begin{aligned} \|\hat{g}_{\tilde{\lambda}} - g^*\|_{V} & \leq \|\hat{g}_{\tilde{\lambda}} - g^*\|_{T} + \left| \|\hat{g}_{\tilde{\lambda}} - g^*\|_{V} - \|\hat{g}_{\tilde{\lambda}} - g^*\|_{T} \right| \\ & \leq O_{p} \left(n^{-1/(2+\alpha)} \right) I^{\alpha/(2+\alpha)}(g^*) + O_{p} \left(n^{-1/(2+\alpha)} \right) \left(I(g^*) + I(\hat{g}_{\tilde{\lambda}}) \right) \\ & \leq O_{p} \left(n^{-1/(2+\alpha)} \right) \left(I^{\alpha/(2+\alpha)}(g^*) + I(g^*) \right) \end{aligned}$$

Next bound $\|\hat{g}_{\hat{\lambda}} - \hat{g}_{\tilde{\lambda}}\|_{V}$. The basic inequality gives us

$$\left\|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\right\|_{V}^{2} \leq 2\left|\left(\epsilon, \hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\right)_{V}\right| + 2\left|\left(g^{*} - \hat{g}_{\tilde{\lambda}}, \hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\right)_{V}\right|$$

Case a: $\left|\left(\epsilon,\hat{g}_{\tilde{\lambda}}-\hat{g}_{\hat{\lambda}}\right)_{T}\right|$ is the bigger term on the RHS By Vandegeer (10.6),

$$\|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\|_{V}^{2} \leq O_{P}(n^{-1/2}) \|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\|^{1-\alpha/2} \left(I(\hat{g}_{\tilde{\lambda}}) + I(\hat{g}_{\hat{\lambda}})\right)^{\alpha/2}$$

If $I(\hat{g}_{\tilde{\lambda}}) > I(\hat{g}_{\hat{\lambda}})$, then

$$\|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\|_{V} \le O_P(n^{-1/(2+\alpha)})I(g^*)^{\alpha/(2+\alpha)}$$

Otherwise, suppose $I(\hat{g}_{\tilde{\lambda}}) < I(\hat{g}_{\hat{\lambda}})$. Since I is a pseudo-norm,

$$\begin{aligned} \left\| \hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}} \right\|_{V} & \leq O_{P}(n^{-1/(2+\alpha)}) I(\hat{g}_{\hat{\lambda}})^{\alpha/(2+\alpha)} \\ & \leq O_{P}(n^{-1/(2+\alpha)}) \left(I(\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}) + I(\hat{g}_{\tilde{\lambda}}) \right)^{\alpha/(2+\alpha)} \end{aligned}$$

If $I(\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}) \leq I(\hat{g}_{\tilde{\lambda}})$, then we're done. Otherwise if $I(\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}) \geq I(\hat{g}_{\tilde{\lambda}})$, by the assumption that $I^{V}(\cdot)$ is bounded by the L2 norm,

$$\|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\|_{V} \le O_{P}(n^{-1/(2+\alpha)}) \left(M\|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\|_{V}^{2} + M_{0}\right)^{\alpha/\nu(2+\alpha)}$$

If M_0 is bigger, we're done. Otherwise,

$$\|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\|_{V} \le O_{P}(n^{-v/(2v-2\alpha+\alpha v)}) < O_{P}(n^{-1/(2+\alpha)})$$

Case b: $|(g^* - \hat{g}_{\tilde{\lambda}}, \hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}})_V|$ is the bigger term on the RHS By Cauchy Schwarz,

$$\left\|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\right\|_{V} \le O_{P}(1) \left\|g^{*} - \hat{g}_{\tilde{\lambda}}\right\|_{V}$$

2 General Additive Model

Definitions

We find the best model for y over function classes $\mathcal{G} = \left\{ \sum_{j=1}^{J} g_j : g_j \in \mathcal{G}_j \right\}$. Suppose we observe:

$$y = \sum_{j=1}^{J} g_j^* + \epsilon$$

where $\sum_{j=1}^{J} g_j^* \in \mathcal{G}$. Suppose ϵ are sub-Gaussian errors for constants K and σ_0^2 :

$$\max_{i=1:n} K^2 \left(E \left[\exp(|\epsilon_i|^2 K^2) - 1 \right] \right) \le \sigma_0^2$$

Given a training set T , we fit models by least squares with multiple penalties

$$\{\hat{g}_{\lambda,j}\}_{j=1}^{J} = \arg\min_{\sum g_j \in \mathcal{G}} \|y - \sum_{j=1}^{J} g_j\|_T^2 + \lambda^2 \sum_{j=1}^{J} I_j^{v_j}(g_j)$$

Given a validation set V, let the CV-fitted model be

$$\{\hat{g}_{\hat{\lambda},j}\}_{j=1}^{J} = \arg\min_{\lambda} \|y - \sum_{j=1}^{J} \hat{g}_{\lambda,j}\|_{V}^{2}$$

Reasonable assumption:

• The entropy bound (2) in result 2 comes from the assumptions in Lemma 3. The α below is $\alpha = \max_{j=1:J} {\alpha_j}$, so convergence is only as fast as fitting the highest-entropy function class. The constant A must be appropriately inflated such that the entropy bound holds for all $\delta \in (0, R]$.

"Special" assumptions:

- We assume exponents $v_j = 1$, whereas Vandegeer Thrm 10.2 only assumes $v > 2\alpha/(2 + \alpha)$. Without this assumption, I wasn't able to form inequalities between $\sum_{j=1}^{J} I_j(g_j) \leq something + \sum_{j=1}^{J} I_j^{v_j}(g_j)$. Indeed, Remark 1 in "High-dimensional Additive Modeling" (Vandegeer 2009) notes the importance of using the semi-norm instead of the square of the semi-norm.
- We suppose the following incoherence condition, in the spirit of Vandegeer 2014 "The additive model with different smoothness for the components": Let $p_V(\vec{x})$ be the empirical density over the validation set. Let p_{Vj} be the marginal density of x_j for the empirical distribution of the validation set. Let

$$r_V(\vec{x}) = \frac{p_V(\vec{x})}{\prod_{j=1}^J p_{V_j}(x_j)}, \ \gamma_V^2 = \int r_V(\vec{x}) \prod_{j=1}^J p_{V_j}(x_j) d\mu$$

Suppose that $\gamma_V < 1/(J-1)$. Furthermore, we will suppose that $\int g_j p_{Vj} d\mu = 0$ for j = 2, ..., J.

Result 2: Additive Model with multiple penalties, Single oracle λ over X_T Suppose there is some $0 < \alpha < 2$ s.t. for all $\delta \in (0, R]$,

$$H\left(\delta, \left\{\frac{\sum_{j=1}^{J} g_j - g_j^*}{\sum_{j=1}^{J} I_j(g_j) + I_j(g_j^*)} : g_j \in \mathcal{G}_j, \sum_{j=1}^{J} I_j(g_j) + I_j(g_j^*) > 0\right\}, \|\cdot\|_T\right) \le A\delta^{-\alpha}$$
 (2)

If λ is chosen s.t.

$$\tilde{\lambda}_{T}^{-1} = O_{p}\left(n^{1/(2+\alpha)}\right) \left(\sum_{j=1}^{J} I_{j}(g_{j}^{*})\right)^{(2-\alpha)/2(2+\alpha)}$$

then

$$\|\sum_{j=1}^{J} \hat{g}_j - g_j^*\|_T = O_p\left(\tilde{\lambda}_T\right) \left(\sum_{j=1}^{J} I_j(g_j^*)\right)^{1/2}$$

and

$$\sum_{j=1}^{J} I_j(\hat{g}_j) = O_p(1) \sum_{j=1}^{J} I_j(g_j^*)$$

Proof:

The basic inequality gives us:

$$\left\| \sum_{j=1}^{J} \hat{g}_{j} - g_{j}^{*} \right\|_{T}^{2} + \lambda^{2} \sum_{j=1}^{J} I_{j}(\hat{g}_{j}) \leq 2 \left| \left(\epsilon_{T}, \sum_{j=1}^{J} \hat{g}_{j} - g_{j}^{*} \right) \right| + \lambda^{2} \sum_{j=1}^{J} I_{j}(g_{j}^{*})$$

Case 1: $\left| \left(\epsilon_T, \sum_{j=1}^J \hat{g}_j - g_j^* \right) \right| \le \lambda^2 \sum_{j=1}^J I_j(g_j^*)$

$$\|\sum_{j=1}^{J} \hat{g}_j - g_j^*\|_T \le O_p(\lambda) \left(\sum_{j=1}^{J} I_j(g_j^*)\right)^{1/2}$$

Case 2: $\left| \left(\epsilon_T, \sum_{j=1}^J \hat{g}_j - g_j^* \right) \right| \ge \lambda^2 \sum_{j=1}^J I_j(g_j^*)$ By Vandegeer (10.6), the basic inequality becomes

$$\|\sum_{j=1}^{J} \hat{g}_j - g_j^*\|_T^2 + \lambda^2 \sum_{j=1}^{J} I_j(\hat{g}_j) \le O_p\left(n^{-1/2}\right) \|\sum_{j=1}^{J} \hat{g}_j - g_j^*\|_T^{1-\alpha/2} \left(\sum_{j=1}^{J} I_j(\hat{g}_j) + I_j(g_j^*)\right)^{\alpha/2}$$

Case 2a: $\sum_{j=1}^{J} I_j(\hat{g}_j) \leq \sum_{j=1}^{J} I_j(g_j^*)$

$$\|\sum_{j=1}^{J} \hat{g}_{j} - g_{j}^{*}\|_{T} \leq O_{p}\left(n^{-1/(2+\alpha)}\right) \left(\sum_{j=1}^{J} I_{j}(g_{j}^{*})\right)^{\alpha/(2+\alpha)}$$

Case 2b: $\sum_{j=1}^{J} I_{j}(\hat{g}_{j}) \geq \sum_{j=1}^{J} I_{j}(g_{j}^{*})$ Then

$$\sum_{j=1}^{J} I_j(\hat{g}_j) \leq O_p\left(n^{-1/(2-\alpha)}\right) \lambda^{-4/(2-\alpha)} \|\sum_{j=1}^{J} \hat{g}_j - g_j^*\|_T$$

Hence

$$\| \sum_{j=1}^{J} \hat{g}_{j} - g_{j}^{*} \|_{T} \leq O_{p} \left(n^{-1/(2-\alpha)} \right) \lambda^{-2\alpha/(2-\alpha)}$$

Result 3: Additive Model with multiple penalties, Single cross-validation λ over general X_T, X_V

Suppose that the training and validation set are independently sampled, so the values X_i are not necessarily the same. Suppose the training and validation sets are both of size n. Suppose X is bounded s.t. $|X| \leq R_X$ and the domain of $g \in \mathcal{G}$ is over $(-R_X, R_X)$.

Suppose the same entropy bound (2) for both the training set P_T and validation set P_V . In addition to the assumptions in Result 4, suppose the infinity norm is also bounded

$$\sup_{g_j \in \mathcal{G}_j} \frac{\|\sum_{j=1}^J g_j - g_j^*\|_{\infty}}{\sum_{j=1}^J I_j(g_j) + I_j(g_j^*)} \le K < \infty$$

Suppose there exist constants M, M_0 s.t. for all j and all $\lambda \in \Lambda$

$$I_j\left(\hat{g}_{\lambda,j}\right) \le M \|\hat{g}_{\lambda,j}\|_V^2 + M_0$$

Special assumption: Suppose the incoherence condition $\gamma_V < 1/(J-1)$. We will also suppose $\int g_j p_{Vj} d\mu = 0$ for j = 2, ..., J.

Let $\tilde{\lambda}$ be the optimal λ as specified in Result 2. Then

$$\|\sum_{j=1}^{J} \hat{g}_{\hat{\lambda},j} - \hat{g}_{\tilde{\lambda},j}\|_{V} = O_{p}\left(n^{-1/(2+\alpha)}\right) \left(1 - \gamma(J-1)\right)^{\alpha/(2+\alpha)} \left(\left(\sum_{j=1}^{J} I_{j}(g_{j}^{*})\right)^{\alpha/(2+\alpha)} + \sum_{j=1}^{J} I_{j}(g_{j}^{*}) + \left\|\sum_{j=1}^{J} g_{j}^{*}\right\|_{V}^{\alpha/2(2+\alpha)}\right) dt + C_{p}\left(n^{-1/(2+\alpha)}\right) \left(1 - \gamma(J-1)\right)^{\alpha/(2+\alpha)} \left(\left(\sum_{j=1}^{J} I_{j}(g_{j}^{*})\right)^{\alpha/(2+\alpha)} + \sum_{j=1}^{J} I_{j}(g_{j}^{*}) + \left\|\sum_{j=1}^{J} g_{j}^{*}\right\|_{V}^{\alpha/2(2+\alpha)}\right) dt + C_{p}\left(n^{-1/(2+\alpha)}\right) \left(1 - \gamma(J-1)\right)^{\alpha/(2+\alpha)} \left(\left(\sum_{j=1}^{J} I_{j}(g_{j}^{*})\right)^{\alpha/(2+\alpha)} + \left\|\sum_{j=1}^{J} I_{j}(g_{j}^{*})\right\|_{V}^{\alpha/2(2+\alpha)}\right) dt + C_{p}\left(n^{-1/(2+\alpha)}\right) \left(1 - \gamma(J-1)\right)^{\alpha/(2+\alpha)} \left(\left(\sum_{j=1}^{J} I_{j}(g_{j}^{*})\right)^{\alpha/(2+\alpha)} + \left(\sum_{j=1}^{J} I_{j}(g_{j}^{*})\right)^{\alpha/(2+\alpha)}\right) dt + C_{p}\left(n^{-1/(2+\alpha)}\right) dt + C_{p}$$

and $\left\|\sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\hat{\lambda},j}\right\|_{V}$ is on the same order (differs by a constant).

Proof:

By the triangle inequality,

$$\left\| \sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\hat{\lambda}, j} \right\|_{V} \leq \left\| \sum_{j=1}^{J} \hat{g}_{\hat{\lambda}, j} - \hat{g}_{\tilde{\lambda}, j} \right\|_{V} + \left\| \sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda}, j} \right\|_{V}$$

By Lemma 2 and Result 2, we can easily bound $\left\|\sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda},j}\right\|_{V}$.

$$\left\| \sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda}, j} \right\|_{V} \leq \left\| \sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda}, j} \right\|_{T} + \left\| \sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda}, j} \right\|_{T} - \left\| \sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda}, j} \right\|_{V}$$

$$\leq O_{p} \left(n^{-1/(2+\alpha)} \right) \left(\left(\sum_{j=1}^{J} I_{j}(g_{j}^{*}) \right)^{\alpha/(2+\alpha)} + \sum_{j=1}^{J} I_{j}(g_{j}^{*}) \right)$$

Next bound $\left\|\sum_{j=1}^{J} \hat{g}_{\hat{\lambda},j} - \hat{g}_{\tilde{\lambda},j}\right\|_{V}$. By definition of $\hat{\lambda}$, we have the basic inequality

$$\left\| \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right\|_{V}^{2} \leq 2 \left| \left(\epsilon, \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right)_{V} \right| + 2 \left| \left(\sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda},j}, \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right)_{V} \right|$$

Case 1:
$$\left| \left(\epsilon, \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right)_{V} \right|$$
 is bigger

By Vandegeer (10.6),

$$\left\| \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right\|_{V}^{1+\alpha/2} \leq O_{p}(n^{-1/2}) \left(\sum_{j=1}^{J} I_{j}(\hat{g}_{\tilde{\lambda},j}) + I_{j}(\hat{g}_{\hat{\lambda},j}) \right)^{\alpha/2}$$

If $\sum_{j=1}^{J} I_j(\hat{g}_{\tilde{\lambda},j}) \ge \sum_{j=1}^{J} I_j(\hat{g}_{\hat{\lambda},j})$, we're done. Otherwise, suppose $\sum_{j=1}^{J} I_j(\hat{g}_{\tilde{\lambda},j}) < \sum_{j=1}^{J} I_j(\hat{g}_{\hat{\lambda},j})$. Since all the penalties are bounded by the L2 norm

$$\sum_{j=1}^{J} I_{j}(\hat{g}_{\hat{\lambda},j}) \leq M \sum_{j=1}^{J} \|\hat{g}_{\lambda j}\|_{V}^{2} + M_{0}J$$

$$\leq M (1 - \gamma(J - 1)) \|\sum_{j=1}^{J} \hat{g}_{\hat{\lambda},j}\|_{V}^{2} + M_{0}J$$

where the latter inequality is due to the incoherence assumption and Lemma 4. Then

$$\left\| \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right\|_{V}^{1+\alpha/2} \leq O_{p}(n^{-1/2}) \left(M \left(1 - \gamma(J-1) \right) \left\| \sum_{j=1}^{J} \hat{g}_{\hat{\lambda},j} \right\|_{V}^{2} + M_{0}J \right)^{\alpha/2}$$

If M_0J is the biggest, we're done. Otherwise,

$$\begin{split} \left\| \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right\|_{V}^{1+\alpha/2} & \leq & O_{p}(n^{-1/2}) \left(1 - \gamma(J-1)\right)^{\alpha/2} \| \sum_{j=1}^{J} \hat{g}_{\hat{\lambda},j} \|_{V}^{\alpha} \\ & \leq & O_{p}(n^{-1/2}) \left(1 - \gamma(J-1)\right)^{\alpha/2} \left(\left\| \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right\|_{V} + \left\| \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - g_{j}^{*} \right\|_{V} + \left\| \sum_{j=1}^{J} g_{j}^{*} \right\|_{V} \right)^{\alpha} \end{split}$$

If $\left\|\sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j}\right\|_{V}$ or $\left\|\sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - g_{j}^{*}\right\|_{V}$ is the biggest on the RHS, then the rate is faster than $O_{p}(n^{-1/(2+\alpha)})$. If $\left\|\sum_{j=1}^{J} g_{j}^{*}\right\|_{V}$ is the biggest, then

$$\left\| \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right\|_{V} \leq O_{p}(n^{-1/(2+\alpha)}) \left\| \sum_{j=1}^{J} g_{j}^{*} \right\|_{V}^{\alpha/2(2+\alpha)}$$

Case 2: $\left| \left(\sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\hat{\lambda},j}, \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right)_{V} \right|$ is bigger By Cauchy Schwarz,

$$\left\| \sum_{j=1}^{J} \hat{g}_{\tilde{\lambda},j} - \hat{g}_{\hat{\lambda},j} \right\|_{V} \leq O_{p}(1) \left\| \sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda},j} \right\|_{V}$$

3 General Additive Model: Multiple Lambdas

Definitions

We find the best model for y over function classes $\mathcal{G} = \left\{ \sum_{j=1}^{J} g_j : g_j \in \mathcal{G}_j \right\}$. Suppose we observe:

$$y = \sum_{j=1}^{J} g_j^* + \epsilon$$

where $\sum_{j=1}^{J} g_j^* \in \mathcal{G}$. Suppose ϵ are sub-Gaussian errors for constants K and σ_0^2 :

$$\max_{i=1:n} K^2 \left(E \left[\exp(|\epsilon_i|^2 K^2) - 1 \right] \right) \le \sigma_0^2$$

Given a training set T, we fit models by least squares with multiple penalties and tuning parameters

$$\{\hat{g}_{\lambda,j}\}_{j=1}^{J} = \arg\min_{\sum g_j \in \mathcal{G}} \|y - \sum_{j=1}^{J} g_j\|_T^2 + \sum_{j=1}^{J} \lambda_j^2 I_j^{v_j}(g_j)$$

Suppose $1 \le v_j \le 2$.

Given a validation set V, let the CV-fitted model be

$$\{\hat{g}_{\hat{\lambda},j}\}_{j=1}^{J} = \arg\min_{\lambda} \|y - \sum_{j=1}^{J} \hat{g}_{\lambda,j}\|_{V}^{2}$$

Result 4: Additive Model, Oracle $\{\lambda_i\}$ given X_T

These results are implied by Vandegeer's paper "The additive model with different smoothness for the components."

Suppose for all j = 1 : J

$$\mathcal{H}\left(\delta, \left\{\frac{g_j - g_j^*}{I(g_j) + I(g_j^*)}\right\}, \|\cdot\|_n\right) \le A_j \delta^{-\alpha_j} \forall \delta > 0$$

Let

$$\lambda_i = O_p(n^{-1/(2+\alpha_j)})$$

and

$$\left(\sum_{j=1}^{J} I_{j}^{q_{j}}(g_{j}^{*})\right)^{1/2} \lambda_{\max} = O_{P}(1)R$$

There are some constants c_1, c_2 s.t. for $\lambda_j = O_p(n^{-1/(2+\alpha_j)})$, we have

$$\|\sum g_j^* - \sum \hat{g}_{\tilde{\lambda},j}\| \le c_2 \lambda_{(j)}$$

where $(j) = \arg \max \alpha_j$. That is, the convergence rate depends on the highest-entropy function class (with respect to the penalty)

$$\|\sum_{j=1}^{J} g_j^* - \sum_{j=1}^{J} \hat{g_j}\|_T = O_p(n^{-1/(2+\alpha_{(j)})})$$

Jean's version of the Proof for Vandegeer Thrm 3.1:

Suppose for some constant R, we define the function class

$$\mathcal{M}(R) = \left\{ \{g_j\} : (\lambda_j/R)^{(1-q_j)/q_j} \lambda_j I_j (g_j - g_j^*) \le R, \ \| \sum_{j=1}^J g_j - g_j^* \|_T \le R \right\}$$

Recall that

$$\sup_{g_j \in \mathcal{G}_j} \frac{\left| (\epsilon^T, g_j - g_j^*) \right|}{\left(I_j(g_j) + I_j(g_j^*) \right)^{\alpha_j/2} \|g_j - g_j^*\|^{1 - \alpha_j/2}} = O_p(n^{-1/2})$$

By our choice of λ , we have that for function sets $\{g_j - g_j^*\} \in \mathcal{M}(R)$, the empirical process term decreases with n:

$$\begin{aligned} \left| (\epsilon^{T}, g_{j} - g_{j}^{*}) \right| &\leq O_{P}(n^{-1/2}) \left(I_{j}(g_{j}) + I_{j}(g_{j}^{*}) \right)^{\alpha_{j}/2} \|g_{j} - g_{j}^{*}\|^{1 - \alpha_{j}/2} \\ &\leq O_{P}(n^{-1/2}) \left(\lambda_{j}^{-1/q_{j}} R^{1/q_{j}} \right)^{\alpha_{j}/2} R^{1 - \alpha_{j}/2} \\ &\leq O_{P}(n^{-1/(2 + \alpha_{j})}) R^{2} \end{aligned}$$

Hence for sufficiently large n, Vandegeer Lemma's 5.4 (Jean's version below) states that the fitted functions \hat{g}_i are also within R of the truth:

$$\{\hat{g}_j - g_j^*\} \in \mathcal{M}(R) \implies \|\sum_{j=1}^J g_j^* - \hat{g}_j\|_T \le R$$

Now we just need to determine the right value for R. Choose n sufficiently large s.t. the penalty term for function (j) is the highest (for the truth)

$$\lambda_j^2 I_j^{q_j}(g_j^*) \le \lambda_{(j)}^2 I_{(j)}^{q_{(j)}}(g_{(j)}^*) \ \forall j$$

Then choose R s.t.

$$\left(\lambda_{(j)}^2 I_{(j)}^{q_{(j)}}(g_{(j)}^*)\right)^{1/2} J^{1/2} = O_P(1) R$$

Hence

$$\|\sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{j}\|_{T} \leq n^{-1/(2+\alpha_{(j)})} J^{1/2} I_{(j)}^{q_{(j)}/2}(g_{(j)}^{*})$$

Result 5: Additive Model, Cross-validated $\{\lambda_i\}$ over general X_T, X_V

Assume the same conditions as result 4, but also for the validation set.

Condition 2.4: Incoherence condition on the validation set. Let $p_V(\vec{x})$ be the empirical density over the validation set. Let p_{Vj} be the marginal density of x_j for the empirical distribution of the validation set. Let

$$r_V(\vec{x}) = \frac{p_V(\vec{x})}{\prod_{j=1}^J p_{V_j}(x_j)}, \ \gamma_V^2 = \int r_V(\vec{x}) \prod_{j=1}^J p_{V_j}(x_j) d\mu$$

Suppose that $\gamma_V < 1/(J-1)$. Furthermore, we will suppose that $\int g_j p_{Vj} d\mu = 0$ for j = 2, ..., J. Additionally, suppose there exist constants M, M_0 s.t. for all j and all $\lambda \in \Lambda$

$$I_j\left(\hat{g}_{\lambda,j}\right) \le M \|\hat{g}_{\lambda,j}\|_V^2 + M_0$$

Let λ be the optimal $\{\lambda_i\}$ as specified in Result 4. Then

$$\begin{split} \| \sum_{j=1}^{J} \hat{g}_{\hat{\lambda},j} - \hat{g}_{\tilde{\lambda},j} \|_{V} &= O_{p} \left(n^{-1/(2+\alpha_{(j)})} \right) (1 - \gamma(J-1))^{\alpha_{(j)}/(2+\alpha_{(j)})} \left(\left(\sum_{j=1}^{J} I_{j}(g_{j}^{*}) \right)^{\alpha_{(j)}/(2+\alpha_{(j)})} + \sum_{j=1}^{J} I_{j}(g_{j}^{*}) + \left\| \sum_{j=1}^{J} g_{j}^{*} \right\|_{V}^{\alpha_{(j)}/2(2+\alpha_{(j)})} \right. \\ &\text{and} \left\| \left\| \sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\hat{\lambda},j} \right\|_{V} = O_{p}(1) \left\| \sum_{j=1}^{J} g_{j}^{*} - \hat{g}_{\tilde{\lambda},j} \right\|_{T}. \end{split}$$

Proof:

Exactly the same as Result 3

Lemmas

Lemma 1:

Suppose for all $\lambda \in \Lambda$, the penalty function $I^v(g_\lambda)$ is upper-bounded by $\|g_\lambda\|_n^2 = \frac{1}{n} \sum_{i=1}^n g_\lambda^2(x_i)$ with constants M_0 and M:

$$I^{v}(g_{\lambda}) \leq M \|g_{\lambda}\|_{n}^{2} + M_{0}$$

Suppose there is some function $g \in \mathcal{G}$ such that

$$||g - g_{\lambda}||_{n}^{1+\alpha/2} \le O_{p}(n^{-1/2})I^{\alpha/2}(g_{\lambda})$$

Then

$$||g - g_{\lambda}||_n \le O_p(n^{-1/(2+\alpha)})M^{\alpha v/(2+\alpha)}||g||_n^{2\alpha/v(2+\alpha)}$$

Proof:

From the assumptions, we have

$$\|g - g_{\lambda}\|_{n}^{1+\alpha/2} \le O_{p}(n^{-1/2}) \left(M\|g_{\lambda}\|_{n}^{2} + M_{0}\right)^{\alpha/2v}$$

If $M_0 > ||g_{\lambda}||_n^2$, we're done. Otherwise,

$$||g - g_{\lambda}||_{n}^{1+\alpha/2} \leq O_{p}(n^{-1/2})M^{\alpha/2v}||g_{\lambda}||_{n}^{\alpha/v}$$

$$\leq O_{p}(n^{-1/2})M^{\alpha/2v}(||g_{\lambda} - g||_{n} + ||g||_{n})^{\alpha/v}$$

Case 1: $||g_{\lambda} - g||_n \ge ||g||_n$

Then

$$||g - g_{\lambda}||_n \le O_p(n^{-v/(2v + \alpha v - 2\alpha)})M^{\alpha v^2/(2v + \alpha v - 2\alpha)}$$

Note that $\sup_v -\frac{v}{2v+\alpha v-2\alpha} = -\frac{1}{2+\alpha}$, so this rate is faster than $O_p(n^{-\frac{1}{2+\alpha}})$. Case 2: $||g_{\lambda} - g||_n \le ||g||_n$

Then

$$||g - g_{\lambda}||_n \le O_n(n^{-1/(2+\alpha)})M^{\alpha v/(2+\alpha)}||g||_n^{2\alpha/v(2+\alpha)}$$

I believe we can often provide a good estimate of M for the entire class \mathcal{G} , which means that we can always estimate the sample size needed to ensure this case never occurs. That is, I believe we can often estimate M s.t.

$$I^{v}(g) \le M \|g\|_{n}^{2} + M_{0} \forall g \in \mathcal{G}$$

Lemma 2:

Let $P_{n'}$ and $P_{n''}$ be empirical distributions over $\{X_i'\}_{i=1}^n$, $\{X_i''\}_{i=1}^n$. Let $P_{2n} = \frac{1}{2}(P_{n'} + P_{n''})$. Suppose X is bounded s.t. $|X| < R_X$.

Let $\mathcal{G}' = \left\{ \frac{g - g^*}{I(g) + I(g^*)} : g \in \mathcal{G}, I(g) + I(g^*) > 0 \right\}$. Suppose g is defined over the domain over X (and zero otherwise). Suppose

$$\sup_{f \in \mathcal{G}'} \|f\|_{P_{2n}} \le R < \infty, \quad \sup_{f \in \mathcal{G}'} \|f\|_{\infty} \le K < \infty$$

and

$$H\left(\delta, \mathcal{G}', P_{n'}\right) \leq \tilde{A}\delta^{-\alpha}, \ H\left(\delta, \mathcal{G}', P_{n''}\right) \leq \tilde{A}\delta^{-\alpha}$$

Then

$$Pr\left(\sup_{g \in \mathcal{G}} \frac{\left| \|g^* - g\|_{P_{n'}} - \|g^* - g\|_{P_{n''}} \right|}{I(g^*) + I(g)} \ge 6\delta\right) \le 2\exp\left(2\tilde{A}\delta^{-\alpha} - \frac{4\delta^2 n}{K^2}\right)$$

Proof: The proof is very similar to that in Pollard 1984 (page 32), so some details below are omitted. First note that for any function f and h, we have

$$||f||_{P_{n'}} - ||h||_{P_{n'}} \le ||f - h||_{P_{n'}} \le \sqrt{2}||f - h||_{P_{2n}}$$

Similarly for $P_{n''}$.

Let $\{h_j\}_{j=1}^N$ be the $\sqrt{2}\delta$ -cover for \mathcal{G}' (where $N=N(\sqrt{2}\delta,\mathcal{G}',P_{2n})$). Let h_j be the closest function (in terms of $\|\cdot\|_{P_{2n}}$) to some $f\in\mathcal{G}'$. Then

$$\begin{split} \|f\|_{P_{n'}} - \|f\|_{P_{n''}} & \leq \|f - h_j\|_{P_{n'}} + \left| \|h_j\|_{P_{n'}} - \|h_j\|_{P_{n''}} \right| + \|f - h_j\|_{P_{n''}} \\ & \leq 4\delta + \left| \|h_j\|_{P_{n'}} - \|h_j\|_{P_{n''}} \right| \end{split}$$

Therefore for $f = \frac{g^* - g}{I(g^*) + I(g)}$, we have

$$Pr\left(\sup_{g \in \mathcal{G}} \frac{\left| \|g^* - g\|_{P_n} - \|g^* - g\|_{P_{n''}} \right|}{I(g^*) + I(g)} \ge 6\delta\right) \le Pr\left(\sup_{j \in 1:N} \left| \|h_j\|_{P_{n'}} - \|h_j\|_{P_{n''}} \right| \ge 2\delta\right)$$

$$\le N \max_{j \in 1:N} Pr\left(\left| \|h_j\|_{P_{n'}} - \|h_j\|_{P_{n''}} \right| \ge 2\delta\right)$$

Now note that

$$\begin{split} \left| \|h_j\|_{P_{n'}} - \|h_j\|_{P_{n''}} \right| &= \frac{\left| \|h_j\|_{P_{n'}}^2 - \|h_j\|_{P_{n''}}^2 \right|}{\|h_j\|_{P_{n'}} + \|h_j\|_{P_{n''}}} \\ &\leq \frac{\left| \|h_j\|_{P_{n'}}^2 - \|h_j\|_{P_{n''}}^2 \right|}{\sqrt{2} \|h_j\|_{P_{2n}}} \end{split}$$

By Hoeffding's inequality,

$$\begin{split} Pr\left(\left|\|h_{j}\|_{P_{n'}} - \|h_{j}\|_{P_{n''}}\right| &\geq 2\delta\right) &\leq Pr\left(\left|\|h_{j}\|_{P_{n'}}^{2} - \|h_{j}\|_{P_{n''}}^{2}\right| \geq 2\sqrt{2}\delta\|h_{j}\|_{P_{2n}}\right) \\ &= Pr\left(\left|\sum_{i=1}^{n} W_{i}\left(h_{j}^{2}(x_{i}') - h_{j}^{2}(x_{i}'')\right)\right| \geq 2\sqrt{2}n\delta\|h_{j}\|_{P_{2n}}\right) \\ &\leq 2\exp\left(-\frac{16\delta^{2}n^{2}\|h_{j}\|_{P_{2n}}^{2}}{4\sum_{i=1}^{n}\left(h_{j}^{2}(x_{i}') - h_{j}^{2}(x_{i}'')\right)^{2}}\right) \end{split}$$

Since $||h_j||_{\infty} < K$, then

$$\sum_{i=1}^{n} \left(h_j^2(x_i') - h_j^2(x_i'') \right)^2 \leq \sum_{i=1}^{n} h_j^4(x_i') + h_j^4(x_i'')$$

$$\leq nK^2 ||h_j||_{P_2}^2$$

Hence

$$Pr\left(\left|\|h_{j}\|_{P_{n'}} - \|h_{j}\|_{P_{n''}}\right| \ge 2\delta\right) \le 2\exp\left(-\frac{4\delta^{2}n}{K^{2}}\right)$$

Since (Pollard and Vandegeer say that)

$$N(\sqrt{2}\delta, \mathcal{G}', P_{2n}) \leq N(\delta, \mathcal{G}', P_{n''}) + N(\delta, \mathcal{G}', P_{n''})$$

then

$$Pr\left(\sup_{g\in\mathcal{G}}\frac{\left|\|g^*-g\|_{P_n}-\|g^*-g\|_{P_{n''}}\right|}{I(g^*)+I(g)}\geq 6\delta\right)\leq 2\exp\left(2\tilde{A}\delta^{-\alpha}-\frac{4\delta^2n}{K^2}\right)$$

Using shorthand, we can write

$$\sup_{g \in \mathcal{G}} \frac{\left| \|g^* - g\|_{P_n} - \|g^* - g\|_{P_{n''}} \right|}{I(g^*) + I(g)} = O_p(n^{-1/(2+\alpha)})$$

Lemma 3:

Suppose the function classes \mathcal{F}_j is a cone and $I_j: \mathcal{F}_j \mapsto [0, \infty)$ is a psuedonorm. Furthermore, suppose

$$H\left(\delta, \{f_j \in \mathcal{F}_j : I_j(f_j) \le 1\}, \|\cdot\|_n\right) \le A_j \delta^{-\alpha_j}$$

Then if $f_i^* \in \mathcal{F}_j$, then

$$H\left(\delta, \left\{\frac{\sum_{j=1}^{J} f_{j} - f_{j}^{*}}{\sum_{j=1}^{J} I_{j}(f_{j}) + I_{j}(f_{j}^{*})} : f_{j} \in \mathcal{F}_{j}, I_{j}(f_{j}) + I_{j}(f_{j}^{*}) > 0\right\}, \|\cdot\|_{n}\right) \leq 2\sum_{j=1}^{J} A_{j} \left(\frac{\delta}{2J}\right)^{-\alpha_{j}}$$

Proof: Let $\tilde{f}_j = \frac{f_j}{\sum_{j=1}^J I_j(f_j) + I_j(f_j^*)}$. Then $\tilde{f}_j \in \mathcal{F}_j$ and $I_j(\tilde{f}_j) \leq 1$. Let $h_{(j)}$ be the closest function to \tilde{f}_j in the δ cover of \mathcal{F}_j . Similarly, let $h_{(j)}^*$ be the closest function to \tilde{f}_j^* in the δ cover of \mathcal{F}_j . Then

$$\left\| \frac{\sum_{j=1}^{J} f_{j} - f_{j}^{*}}{\sum_{j=1}^{J} I_{j}(f_{j}) + I_{j}(f_{j}^{*})} - \left(\sum_{j=1}^{J} h_{(j)} - h_{(j)}^{*}\right) \right\| \leq \sum_{j=1}^{J} \left\| \frac{f_{j} - f_{j}^{*}}{\sum_{j=1}^{J} I_{j}(f_{j}) + I_{j}(f_{j}^{*})} - \left(h_{(j)} - h_{(j)}^{*}\right) \right\| \\
\leq \sum_{j=1}^{J} \left\| \frac{f_{j}}{\sum_{j=1}^{J} I_{j}(f_{j}) + I_{j}(f_{j}^{*})} - h_{(j)} \right\| + \left\| \frac{f_{j}^{*}}{\sum_{j=1}^{J} I_{j}(f_{j}) + I_{j}(f_{j}^{*})} - h_{(j)}^{*} \right\| \\
\leq 2J\delta$$

Hence

$$H\left(2J\delta, \left\{\frac{\sum_{j=1}^{J} f_j - f_j^*}{\sum_{j=1}^{J} I_j(f_j) + I_j(f_j^*)} : f_j \in \mathcal{F}_j, I_j(f_j) + I_j(f_j^*) > 0\right\}, \|\cdot\|_n\right) \le 2\sum_{j=1}^{J} A_j \delta^{-\alpha_j}$$

Lemma 4:

Let $p_n(\vec{x})$ be some empirical density and let p_{nj} be the corresponding empirical marginal density of x_j . Let

$$r(\vec{x}) = \frac{p_n(\vec{x})}{\prod_{i=1}^J p_{ni}(x_i)}, \ \gamma^2 = \int (r(\vec{x}) - 1)^2 \prod_{j=1}^J p_{nj}(x_j) d\mu$$

Suppose $\gamma < 1/(J-1)$. Furthermore, suppose $\int g_j p_{nj} d\mu = 0$ for j = 2, ..., J. Then

$$\left\| \sum_{j=1}^{J} g_j \right\|_{n}^{2} \ge (1 - \gamma(J - 1)) \left(\sum_{j=1}^{J} \|g_j\|_{n}^{2} \right)$$

Proof: The proof is very similar to Lemma 5.1 in Vandegeer 2014 "The additive model with different smoothness for the components."

$$\left\| \sum_{j=1}^{J} g_j \right\|_{-1}^{2} = \sum_{j=1}^{J} \left\| g_j \right\|_{n}^{2} + \sum_{j \neq k} \int g_j g_k p_n(\vec{x}) d\mu$$

We bound the latter term:

$$\left| \int g_j g_k p_n(\vec{x}) d\mu \right| = \left| \int g_j g_k \left(r(\vec{x}) - 1 \right) \Pi_{j=1}^J p_{nj}(x_j) d\mu \right|$$

$$\leq \gamma \left| \int g_j^2 g_k^2 \Pi_{j=1}^J p_{nj}(x_j) d\mu \right|^{1/2}$$

$$= \gamma \|g_j\|_n \|g_k\|_n$$

Hence

$$\left\| \sum_{j=1}^{J} g_{j} \right\|_{n}^{2} \geq \sum_{j=1}^{J} \|g_{j}\|_{n}^{2} - \gamma \sum_{j \neq k} \|g_{j}\|_{n} \|g_{k}\|_{n}$$

$$\geq (1 - \gamma(J - 1)) \sum_{j=1}^{J} \|g_{j}\|_{n}^{2} + \gamma \sum_{j < k} (\|g_{j}\|_{n} - \|g_{k}\|_{n})^{2}$$

$$\geq (1 - \gamma(J - 1)) \sum_{j=1}^{J} \|g_{j}\|_{n}^{2}$$

Vandegeer's Lemma 5.4 (Jean's version)

Let

$$\tau_R(\{f_j\}) = \|\sum f_j\|_T + \sum_{j=1}^J (\lambda_j/R)^{(1-q_j)/q_j} \lambda_j I_j(f_j)$$

Suppose

$$\sum_{j=1}^{J} \lambda_{j}^{2} I_{j}^{q_{j}}(f_{j}^{*}) \leq \delta_{0}^{2} R^{2}$$

and for all function sets $\{f_j\}$ s.t. $\tau_R(\{f_j\}) \leq R$, suppose

$$\sup_{f_i} |(\epsilon_T, f_j)| \le \delta_0^2 R^2$$

Let

$$\hat{f}_j = \arg\min \|y - \sum_{j=1}^J f_j\|_T^2 + \sum_{j=1}^J \lambda_j^2 I_j^{q_j}(f_j)$$

Then
$$\tau_R\left(\left\{\hat{f}_{\lambda,j} - f_j^*\right\}\right) \le R$$
.

Proof We use the convexity of the penalties and the least squares function. Consider $\tilde{f}_j = t\hat{f}_j + (1 - t)f_j^*$ where

$$t = \frac{R}{R + \tau_R(\{\hat{f}_j - f_j^*\})}$$

First note that by convexity,

$$\tau_R(\{\tilde{f}_j - f_j^*\}) = \frac{R}{R + \tau_R(\{\hat{f}_j - f_j^*\})} \tau_R(\{\hat{f}_j - f_j^*\}) \le R$$

Hence

$$\sup_{f_j} \left| \left(\epsilon_T, f_j^* - \tilde{f}_j \right) \right| \le \delta_0^2 R^2$$

So by the basic inequality,

$$\|\sum_{j=1}^{J} f_{j}^{*} - \sum_{j=1}^{J} \tilde{f}_{j}\|_{T}^{2} + \sum_{j=1}^{J} \lambda_{j}^{2} I_{j}^{q_{j}}(\tilde{f}_{j}) \leq \sum_{j=1}^{J} \left| \left(\epsilon_{T}, f_{j}^{*} - \tilde{f}_{j} \right) \right| + \sum_{j=1}^{J} \lambda_{j}^{2} I_{j}^{q_{j}}(f_{j}^{*})$$

and with gross algebra, we can show that

$$(\lambda_j/R)^{(1-q_j)/q_j}\lambda_j I_j(\tilde{f}_j - f_i^*) \le 4\delta_0 R$$

Then

$$\frac{R}{R + \tau_R(\{\hat{f}_j - f_j^*\})} \tau_R(\{\hat{f}_j - f_j^*\}) = \tau_R(\{\tilde{f}_j - f_j^*\})$$

$$= \|\sum_j \tilde{f}_j - f_j^*\|_T + \sum_{j=1}^J (\lambda_j / R)^{(1 - q_j) / q_j} \lambda_j I_j (\tilde{f}_j - f_j^*)$$

$$\leq O_P(1) J \delta_0 R$$

So for small enough δ_0 , we have

$$\tau_R(\{\hat{f}_j - f_j^*\}) \le R$$

4 What if we can't bound the penalty?

Now suppose the problem does not satisfy the assumption that

$$I(g_{\lambda}) \le M \|g_{\lambda}\|^2 + M_0$$

Then let's consider a modified way of choosing λ . Select lambda s.t.

$$\hat{\lambda} = \arg\min_{\lambda \in \Lambda} \|y - g_{\lambda}\|_{V}^{2} \text{ where } \Lambda = \left\{\lambda : n^{-\tau} I(\hat{g}_{\lambda}) \leq \|y - \hat{g}_{\lambda}\|_{V}\right\}$$

To get the optimal convergence rate for $\|g^* - \hat{g}_{\lambda}\|_V$, choose $\tau = \frac{1}{2(1+\alpha)}$. Then we get the rate

$$||g^* - \hat{g}_{\lambda}||_V = O_P(n^{-1/2(1+\alpha)})$$

Proof:

For sufficiently large n, $\tilde{\lambda}$ will be in the set Λ with high probability. To see this, note that

$$\begin{array}{rcl} n^{-\tau} I(\hat{g}_{\tilde{\lambda}}) & = & O_p(n^{-\tau}) I(g^*) \\ & \leq & \left| \|y - g^*\|_V - \|g^* - \hat{g}_{\tilde{\lambda}}\|_V \right| \\ & \leq & \|y - \hat{g}_{\tilde{\lambda}}\|_V \end{array}$$

where the first inequality comes from the fact that $||y - g^*||_V = O_P(\sigma)$ with high probability and $||g^* - \hat{g}_{\bar{\lambda}}||_V = O_P(n^{-1/(2+\alpha)})$.

Now proceed with the basic inequality. We know that

$$\left\|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\right\|_{V}^{2} \leq 2\left|\left(\epsilon, \hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\right)_{V}\right| + 2\left|\left(g^{*} - \hat{g}_{\tilde{\lambda}}, \hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\right)_{V}\right|$$

The problematic case is when $|(\epsilon, \hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}})_T|$ is the bigger term on the RHS. By Vandegeer (10.6),

$$\|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\|_{V}^{2} \leq O_{P}(n^{-1/2}) \|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\|^{1-\alpha/2} \left(I(\hat{g}_{\tilde{\lambda}}) + I(\hat{g}_{\hat{\lambda}})\right)^{\alpha/2}$$

We're done if $I(\hat{g}_{\tilde{\lambda}}) > I(\hat{g}_{\hat{\lambda}})$. Otherwise, suppose $I(\hat{g}_{\tilde{\lambda}}) < I(\hat{g}_{\hat{\lambda}})$. By definition of Λ , we have

$$\begin{split} \left\| \hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}} \right\|_{V}^{1+\alpha/2} & \leq O_{P}(n^{-1/2}) I(\hat{g}_{\hat{\lambda}})^{\alpha/2} \\ & \leq O_{P}(n^{(-1+\tau\alpha)/2}) \|y - \hat{g}_{\hat{\lambda}}\|_{V}^{\alpha/2} \\ & \leq O_{P}(n^{(-1+\tau\alpha)/2}) \left(\|y - g^{*}\|_{V} + \|\hat{g}_{\tilde{\lambda}} - g^{*}\|_{V} + \|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\|_{V} \right)^{\alpha/2} \end{split}$$

The slowest case is when $||y-g^*||_V$ is the largest among the three terms. We have the rate

$$\|\hat{g}_{\tilde{\lambda}} - \hat{g}_{\hat{\lambda}}\|_{V} \le O_{P}(n^{(-1+\tau\alpha)/(2+\alpha)})$$

The optimal convergence rate is attained if we choose

$$-\tau = \frac{-1 + \tau\alpha}{2 + \alpha}$$

That is, we get

$$\tau = \frac{1}{2(1+\alpha)}$$

5 Examples

Our goal here is to show that the assumptions hold for various examples.

5.1 Penalties that are compatible with the L2 norm

Lasso, Fused Lasso, Generalized Lasso, Ridge, Elastic Net

To see this works for the Generalized lasso:

Let D be the fixed penalty matrix. Let D_{max} be its maximum eigenvalue. Suppose the smallest eigenvalue of X^TX stays away from zero. Then for some constants M_0 and M,

$$||D\beta||_1 \leq D_{max}||\beta||_1$$

$$\leq D_{max}M||X^T\beta||_2^2 + M_0$$

5.2 Sobolev Norm

Suppose \mathcal{G} is the class of smooth functions $g:[0,1]\mapsto\mathbb{R}$ s.t. $I_{(k)}(g)=\sqrt{\int_0^1g(t)^2dt}+\sqrt{\int_0^1g^{(k)}(t)^2dt}<\infty$.

$$\arg\min_{g \in \mathcal{G}} \|y - g(x_1)\|_T^2 + \lambda_g^2 I_{(k)}^2(g)$$

If we reformulate this using the Reproducing Kernel Hilbert space \mathcal{H} , the criterion becomes

$$\arg \min_{g_H \in \mathcal{H}, g_{\perp} \in \mathcal{H}^{\perp}} \|y - g_H(x_1) + g_{\perp}(x_1)\|_T^2 + \lambda_g^2 I_{(k)}^2(g_H)$$

If Ω is the kernel for \mathcal{H} (with respect to this dataset), then

$$g_H = \Omega_n \alpha, \ I_{(k)}^2(g_H) = \alpha^T \Omega_n \alpha$$

and for some other matrix Σ , we have

$$g_{\perp} = \Sigma \beta$$

Assumption 1: Show for some constant K,

$$\frac{\|g\|_{\infty}}{I_{(k)}(g)} \le K$$

Proof:

Let c be some value s.t. $||g||_2 = g(c)$. This must exist since g is continuous.

$$g(x) \leq g(c) + \int_{c}^{x} g'(u) du$$

$$\leq \|g\|_{2} + \int_{0}^{1} g^{(m)}(u) du$$

$$\leq \|g\|_{2} + \int_{0}^{1} |g^{(m)}(u)| du$$

$$\leq \|g\|_{2} + C\sqrt{\int_{0}^{1} |g^{(m)}(u)|^{2} du}$$

$$\leq CI_{(k)}(g)$$

Assumption 2: Show that there exist constants M, M_0 s.t. the penalty is bounded by the squared L2 norm:

$$I_{(k)}^2(g_{\lambda}) \le M \|g_{\lambda}\|^2 + M_0$$

Proof:

I don't think this can be done unless you have assumptions on the minimum eigenvalue of Ω .