- 1. (1 point) Express the function $n^3/1000 100n^2 100n + 3$ in terms of Θ -notation.
- 2. (1 point) Express the function $25n^2 + 100nlgn + 20n 5$ in terms of Θ -notation.
- 3. (5 points) Some functions are listed in the following table. Assume an algorithm to solve a problem takes f(n) microseconds. Time t is a parameter of time interval. For each function f(n) and time t, determine the largest size n of a problem that can be solved in time t. Fill the values in the table.

For example, an algorithm to solve a problem takes $f(n)=n^2$ microseconds, then the largest size n_{max} of the problem that can be solved in 1 minute will have:

 $n^2 \le 60 \times 1000000$ (60 seconds per minute, 10^6 microseconds per second)

$$→ n ≤ 7745.97 $→ nmax = 7745$$$

	time t	1 second	1 minute	1 hour
f(n)				
lgn				
n				
n^2			7745	
n^3				
2^n				
n!				

What pattern can you observe from above table?					

4. (3 points) Given a sorted array of integers *A* and another integer *x*, describe an efficient algorithm to determine whether or not there exist two elements in *A* whose sum is exactly *x*. Analyze your algorithm regarding the best case and worst case. (Hint: an algorithm you have learned so far is useful in this exercise.)