Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, Nando de Freitas

Albert-Ludwigs-Universität Freiburg

Aaron Klein

Automated Parameter Tuning and Algorithm Configuration June 28 2013

Introduction

Bayesian Optimization

REMBO

Effective Dimensionality
Algorithm
Bounded Regions
Kernels

Experiments

Bayesian Optimization in a Billion Dimensions Mixed Integer Optimization

Introduction

Bayesian Optimization

REMBO

Effective Dimensionality

Algorithm Bounded Regions Kernels

Experiments

Bayesian Optimization in a Billion Dimensions Mixed Integer Optimization

A function $f: \mathbb{R}^D \to \mathbb{R}$ has **effective dimensionality** d_e if:

- \exists a linear subspace \mathscr{T} of dimension d_e s.t. for all $x_{\top} \in \mathscr{T} \subset \mathbb{R}^D$ and $x_{\bot} \in \mathscr{T}^{\bot} \subset \mathbb{R}^D$ (orthogonal complement)
- $\Rightarrow f(x) = f(x_{\top} + x_{\perp}) = f(x_{\top})$
- ${\mathscr T}$ is called the **effective subspace** of f and ${\mathscr T}^\perp$ the **constant subspace**

Theorem

If f has effective dimensionality d_e and a random Gaussian matrix $\mathbf{A} \in \mathbb{R}^{D \times d}$ with $d \geqslant d_e$:

 \Rightarrow with probability 1, for any $x \in \mathbb{R}^D$, \exists a $y \in \mathbb{R}^d$ s.t. $f(x) = f(\mathbf{A}y)$.

Random Embeddings for Bayesian Optimization

Proof Sketch.

Hence,
$$f(x) = f(x_{\top} + x_{\perp}) = f(x_{\top})$$

FREB

Proof Sketch.

Hence,
$$f(x) = f(x_{\top} + x_{\perp}) = f(x_{\top})$$

■ it suffices to show that $\exists y \in \mathbb{R}^d$ s.t $f(x_\top) = f(\mathbf{A}y)$.

Proof Sketch.

Hence, $f(x) = f(x_{\top} + x_{\perp}) = f(x_{\top})$

- it suffices to show that $\exists y \in \mathbb{R}^d$ s.t $f(x_\top) = f(\mathbf{A}y)$.
- $\Phi \in \mathbb{R}^{D \times d_e}$ whose columns form an orthonormal basis for \mathscr{T} . For each $x_{\top} \in \mathscr{T}$ it exists a $c \in \mathbb{R}^{d_e}$ s.t. $x_{\top} = \Phi c$.

UNI FREIBL

Proof Sketch.

Hence, $f(x) = f(x_{\top} + x_{\perp}) = f(x_{\top})$

- it suffices to show that $\exists y \in \mathbb{R}^d$ s.t $f(x_\top) = f(\mathbf{A}y)$.
- $\Phi \in \mathbb{R}^{D \times d_e}$ whose columns form an orthonormal basis for \mathscr{T} . For each $x_{\top} \in \mathscr{T}$ it exists a $c \in \mathbb{R}^{d_e}$ s.t. $x_{\top} = \Phi c$.
- $rank(\Phi^{\top}A) = d_e$ and therefore we have $(\Phi^{\top}A)y = c$ for some y

Proof Sketch.

Hence,
$$f(x) = f(x_{\top} + x_{\perp}) = f(x_{\top})$$

- it suffices to show that $\exists y \in \mathbb{R}^d$ s.t $f(x_\top) = f(\mathbf{A}y)$.
- $\Phi \in \mathbb{R}^{D \times d_e}$ whose columns form an orthonormal basis for \mathscr{T} . For each $x_{\top} \in \mathscr{T}$ it exists a $c \in \mathbb{R}^{d_e}$ s.t. $x_{\top} = \Phi c$.
- $rank(\Phi^{\top}A) = d_e$ and therefore we have $(\Phi^{\top}A)y = c$ for some y
- orthogonal projection Ay onto \mathscr{T} is given by $\Phi\Phi^T Ay = \Phi c = x_{\top}$.

REMBO

Proof Sketch.

Hence,
$$f(x) = f(x_{\top} + x_{\perp}) = f(x_{\top})$$

- it suffices to show that $\exists y \in \mathbb{R}^d$ s.t $f(x_\top) = f(\mathbf{A}y)$.
- $\Phi \in \mathbb{R}^{D \times d_e}$ whose columns form an orthonormal basis for \mathscr{T} . For each $x_{\top} \in \mathscr{T}$ it exists a $c \in \mathbb{R}^{d_e}$ s.t. $x_{\top} = \Phi c$.
- $rank(\Phi^{\top}A) = d_e$ and therefore we have $(\Phi^{\top}A)y = c$ for some y
- orthogonal projection Ay onto \mathscr{T} is given by $\Phi\Phi^TAy = \Phi c = x_{\top}$.
- $ag{Ay} = x_{\top} + x' \text{ with } x' \in \mathscr{T}^{\perp} \text{ and } f(Ay) = f(x_{\top} + x') = f(x_{\top})$

Introduction

Bayesian Optimization

REMBO

Effective Dimensionality

Algorithm

Bounded Regions

Kernels

Experiments

Bayesian Optimization in a Billion Dimensions Mixed Integer Optimization

The basic idea of REMBO:

- For any $x \in \mathbb{R}^D$ and a random matrix $A \in \mathbb{R}^{D \times d}$, there is a point $y \in \mathbb{R}^d$ such that f(x) = f(Ay)
- Thus, for any optimizer $x^* \in \mathbb{R}^D$ it exists a $y^* \in \mathbb{R}^d$ such that $f(x^*) = f(\mathbf{A}y^*)$
- Instead of optimizing in the high dimensional space, we optimize $g(\mathbf{y}) = f(\mathbf{A}\mathbf{y})$

```
for t = 1, 2, ... do
     Find x_{t+1} \in \mathbb{R}^D by optimizing the acquisition function
     u: x_{t+1} = \operatorname{arg\,max}_{x \in \mathscr{X}} u(\mathbf{x}|D_t)
     Augment the data D_{t+1} = \{D_t, (x_{t+1}, f(\mathbf{x_{t+1}}))\}
end
```

Algorithmus 1: Bayesian Optimization

for t = 1, 2, ... do

Find $\boldsymbol{y_{t+1}} \in \mathbb{R}^d$ by optimizing the acquisition function

 $u: \mathbf{y_{t+1}} = \operatorname{arg\,max}_{\mathbf{y} \in \mathscr{Y}} u(\mathbf{y}|D_t)$

Augment the data $D_{t+1} = \{D_t, (\mathbf{y_{t+1}}, f(\mathbf{Ay_{t+1}}))\}$

end

Algorithmus 2: REMBO

Introduction

Bayesian Optimization

REMBO

Effective Dimensionality Algorithm

Bounded Regions

Kernels

Experiments

Bayesian Optimization in a Billion Dimensions Mixed Integer Optimization

How do we choose the bounded region $\mathscr{Y} \subset \mathbb{R}^d$ where REMBO performs the Bayesian Optimization?

- Is \(\mathscr{Y}\) too small, it is more likely that it does not include the global optimizer
- \blacksquare Is $\mathscr Y$ too big, it is more time consuming

Theorem

If **A** is a $D \times d$ random Gaussian matrix, there exists an optimizer $y^* \in \mathbb{R}^d$ such that $f(\mathbf{A}\mathbf{y}^*) = f(x_\top^*)$ and $\|y^*\|_2 \leqslant \frac{\sqrt{d_e}}{\varepsilon} \|x_\top^*\|_2$ with probability at least $1 - \varepsilon$.

- To increase the success rate:
 - Run REMBO k times with different independently drawn random embeddings. This decreases δ to δ^k
 - Increase the dimensionality d. If $d > d_e$ there are $\begin{pmatrix} d \\ d_e \end{pmatrix}$ different embeddings and it is more likely that the optimizer is included.

Introduction

Bayesian Optimization

REMBO

Effective Dimensionality Algorithm Bounded Regions

Kernels

Experiments

Bayesian Optimization in a Billion Dimensions Mixed Integer Optimization

Kernels

Low dimensional kernel:

$$k_l^d(y^{(1)}, y^{(2)}) = \exp\left(-\frac{\|y^{(1)} - y^{(2)}\|^2}{2l^2}\right)$$

- Squared exponential kernel in low dimensions
- It constructs a GP in the d-dimensional space
- Effective in continuous space

High dimensional Kernel:

- $k_I^D(y^{(1)}, y^{(2)}) =$ $\exp\left(-\frac{\|p_X(Ay^{(1)}) - p_X(Ay^{(2)})\|^2}{2I^2}\right)$ with $p_X : \mathbb{R}^D \to \mathbb{R}^D$ as the standard projection operator
- It constructs a GP in the D-dimensional space
- Search space is not \mathscr{X} any more, it is now the smaller subspace $\{p_x(Ay): y \in \mathscr{Y}\}$

Kernels

Categorical Kernel:

Categorical Kernel:

- $k_{\lambda}^{D}(y^{(1)},y^{(1)}) = \exp\left(-\frac{\lambda}{2}g(s(Ay^{(1)}),s(Ay^{(2)}))^{2}\right)$ with $g(x^{(1)},x^{(2)}) = |\{i:x_{i}^{(1)} \neq x_{i}^{(2)}\}|$ as the Hamming distance and the function s that maps continuous vectors to discrete vectors
- Measures the distance between two low dimensional points as the distance between their high dimensional mappings

Introduction

Bayesian Optimization

REMBC

Effective Dimensionality Algorithm Bounded Regions Kernels

Experiments

Bayesian Optimization in a Billion Dimensions

Mixed Integer Optimization

- Bayesian Optimization of the $d_e = 2$ -dimensional Branin function embedded in a D-dimensional space with $D d_e$ unimportant dimensions.
- The optimality gap as the performance measurement, i.e. the difference of the best function value and the optimal function value
- 500 function evaluations and $\frac{500}{k}$ for each run
- Tested with D = 25 and $D = 10^9$ and different internal dimensions d

k	d = 2	d = 4	<i>d</i> = 6
10	0.0022 ± 0.0035	0.1553 ± 0.1601	0.4865 ± 0.4796
5	0.0004 ± 0.0011	0.0908 ± 0.1252	0.2586 ± 0.3702
4	0.0001 ± 0.0003	0.0654 ± 0.0877	0.3379 ± 0.3170
2	0.1514 ± 0.9154	0.0309 ± 0.0687	0.1643 ± 0.1877
1	0.7406 ± 1.8996	0.0143 ± 0.0406	0.1137 ± 0.1202

BO of the Branin function embedded in D = 25 dimensions

Introduction

Bayesian Optimization

REMBC

Effective Dimensionality Algorithm Bounded Regions Kernels

Experiments

Bayesian Optimization in a Billion Dimensions Mixed Integer Optimization

LPSOLVE

Popular mixed integer linear programming solver

Problem instance

- Deterministic blackbox optimization problem
- The configuration problem includes 40 binary and 7 categorical parameters of LPSOLVE

Experiment

- Comparison of BO, REMBO, ParamILS, SMAC and Random Search
- Due to the categorical parameters, the high-dimensional kernel is used for REMBO

- REMBO performs Bayesian Optimization in a random embedded subspace in the high dimensional space of the objective function. The assumption is that the objective function has a low effective dimensionality.
- Normally no parameters are totally unimportant
- How do we choose the internal dimension d?
- It is not quite clear yet, how many practical problems fall into this class