

Description

The VSM25N10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 100V, I_D = 25A$ $R_{DS(ON)} < 36m\Omega @ V_{GS} = 10V$ (Typ:31 m Ω)
- Special process technology for high ESD capability
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-252

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM25N10-T2	VSM25N10	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Symbol	Parameter	Limit	Unit	
V _D s	Drain-Source Voltage	100	V	
V _G s	Gate-Source Voltage	±20	V	
I _D	Drain Current-Continuous	25	А	
I _D (100℃)	Drain Current-Continuous(TC=100°C)	17.6	Α	
I _{DM}	Pulsed Drain Current	70	Α	
P _D	Maximum Power Dissipation	70	W	
	Derating factor	0.5	W/℃	
E _{AS}	Single pulse avalanche energy (Note 5)	110	mJ	
T_{J}, T_{STG}	Operating Junction and Storage Temperature Range	-55 To 175	$^{\circ}\mathbb{C}$	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

R _{0JC} Thermal Resistance, Junction-to-Case (Note 2)	2	°C/W	
--	---	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

	Symbol Parameter	Condition	Min	Тур	Max	Unit
Off Characteris	stics		•	•		
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V I _D =250μA	100	110	-	V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =100V,V _{GS} =0V	-	-	1	μΑ
I _{GSS}	Gate-Body Leakage Current	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteris	stics (Note 3)		•	•		
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0	1.6	2.2	V
R _{DS(ON)}	Drain-Source On-State Resistance	V _{GS} =10V, I _D =15A	-	31	36	mΩ
g FS	Forward Transconductance	V _{DS} =5V,I _D =15A	-	12	-	S
Dynamic Char	acteristics (Note4)		•	•		•
C _{lss}	Input Capacitance	., 50,(), 0),	-	3000	-	PF
C _{oss}	Output Capacitance	$V_{DS}=50V,V_{GS}=0V,$	-	92	-	PF
C _{rss}	Reverse Transfer Capacitance	- F=1.0MHz	-	18.3	-	PF
Switching Cha	rracteristics (Note 4)		•	•		•
t _{d(on)}	Turn-on Delay Time		-	9	-	nS
t _r	Turn-on Rise Time	V_{DD} =50V, R_L =5 Ω	-	9	-	nS
t _{d(off)}	Turn-Off Delay Time	V_{GS} =10 V , R_{GEN} =3 Ω	-	31	-	nS
t _f	Turn-Off Fall Time		-	9	-	nS
Qg	Total Gate Charge	\/ F0\/ L OF A	-	70.4	-	nC
Q _{gs}	Gate-Source Charge	$V_{DS}=50V,I_{D}=25A,$	-	9.0	-	nC
Q _{gd}	Gate-Drain Charge	- V _{GS} =10V	-	15.3	-	nC
Drain-Source I	Diode Characteristics	•	•	•		•
V _{SD}	Diode Forward Voltage (Note 3)	V _{GS} =0V,I _S =25A	-	-	1.2	V
Is	Diode Forward Current (Note 2)	-	-	-	25	Α
t _{rr}	Reverse Recovery Time	TJ = 25°C, IF = 25A	-	34	-	nS
Qrr	Reverse Recovery Charge	$di/dt = 100A/\mu s^{(Note3)}$	-	56	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS Condition : Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10ID Current- Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance