

SCHOOL OF ENGINEERING AND TECHNOLOGY

COURSEWORK FOR

BSC (HONS) IN COMPUTER SCIENCE

BSC (HONS) INFORMATION TECHNOLOGY

BACHELOR OF SOFTWARE ENGINEERING (HONS)

BSC (HONS) INFORMATION SYSTEMS (DATA ANALYTICS)

BSC (HONS) INFORMATION TECHNOLOGY (COMPUTER NETWORKING AND

SECURITY)

YEAR 1: ACADEMIC SESSION APRIL 2025

SEG1201: DATABASE FUNDAMENTALS

Answer Template and SQL Script and Video Presentation Submission:

Due date: Week 14 TUESDAY (5 AUGUST 2025), 11.59 pm

SEG1201: DATABASE FUNDAMENTALS

GROUP NAME:

MEMBER:

NO	STUDENT NAME	STUDENT	STUDENT EMAIL
		ID	
1	Tiffany Fam Kar Ying	23052301	23052301@imail.sunway.edu.my
2	Tan Wei Ting	23094709	23094709@imail.sunway.edu.my
3	Tan Wen Xi	23093495	23093495@imail.sunway.edu.my
4	Angelyn Yek Yin Yin	23021355	23021355@imail.sunway.edu.my
5	Tang Jia Hui	23094378	23094378@imail.sunway.edu.my
6	Rachel Tan En Thong	23056674	23056674@imail.sunway.edu.my

INSTRUCTIONS

- This final assessment contributes 50% to your final grade.
- This assignment is primarily for Course Learning Outcome 2 Implement a database design group project using appropriate tools such as Oracle SQL.

IMPORTANT

The University requires students to adhere to submission deadlines for any form of assessment. Penalties are applied in relation to unauthorized late submission of work.

Academic Honesty Acknowledgement

"We **Tiffany Fam Kar Ying, Tan Wei Ting, Angelyn Yek Yin Yin, Tang Jia Hui, Rachel Tan En Thong,** verify that this paper contains entirely our own work. We have not consulted with any outside person or materials other than what was specified (an interviewee, for example) in the assignment or the syllabus requirements. Further, we have not copied or inadvertently copied ideas, sentences, or paragraphs from another student. We realize the penalties (refer to page 16, 5.5, Appendix 2, page 44 of the student handbook diploma and undergraduate programme) for any kind of copying or collaboration on any assignment."

PART 1: GENERATE A CASE SCENARIO AND DESIGN A RELATIONAL DATA MODEL (35 MARKS)

1.0 Case Scenario

Rainforest Sabah Haven Wildlife Sanctuary is a wildlife rehabilitation and rescue sanctuary located deep within the outskirts of Kota Kinabalu in Sabah. Rainforest Sabah Haven Wildlife Sanctuary is dedicated to the long-term care, rescue, and rehabilitation of the injured and endangered wild animals that are native to Borneo. For example, there are endangered wild animals such as clouded leopards, proboscis monkeys, orangutans, pangolins, sun bears and hornbills.

In addition, the injured and endangered animals arrive at the Rainforest Sabah Haven Wildlife sanctuary via different channels. For instance, some animals were transferred from wildlife enforcement, referrals from local villages and even from rescue operations. When they arrive at the Rainforest Sabah Haven Wildlife sanctuary, they will be registered with a unique ID, age estimation, species name, their origin, which is either captive-born or wild, their gender and their current condition. Moreover, the status of the arrived animals was also recorded to emulate their stage in care. For example, the arrived animals may in rehabilitation, permanent residents, under observation and ready for release.

Furthermore, all the arrivals of the animals will undergo a general medical check within 24 hours of their arrival. After the medical check, they will then schedule a routine of health assessments. The assessments include the animal's weight, temperature, standardised health score that has a range from 1, which is critical to 5, which represents excellent and behaviour analysis. The records of the assessments will then help to monitor the animal's progress. This will then help the Rainforest Sabah Haven Wildlife Sanctuary to make decisions about the readiness of the animals to be released.

Based on the habitat type, the sanctuary will be divided into zones such as Wetland Habitat, Forest Canopy, Quarantine Units and Grassland Enclosure. Therefore, each zone will be assigned to the trained volunteers and specific staff members who are responsible for carrying out tasks like cleaning, medical observation, and feeding. Each staff member and trained volunteer will work within their scheduled role and shifts. The feeding schedules are highly varied and regulated by different species. During the feeding sessions, the quantity of food, the food type, the person responsible for the feeding and the time for feeding are all recorded. Besides, there are some additional enrichment activities, which are natural foraging and climbing training. The activities are recorded or conducted to promote the natural behaviours for eventual release.

Some animals are released and tagged in the monitored areas. The data that was released involves release date, species tracking category and GPS coordinates. As a result, tracking events such as the re-rescue events is then organised when the follow-up reports are made.

Lastly, the relational database is required by the sanctuary to handle the complexity of daily operations. The sanctuary system must involve in tracking the habitat assignment, animal health, feeding schedules, enrichment activities, staff tasks and consequently in releasing the details in a secure and consistent manner. The journey for each animal from rescue to rehabilitation and possible release must be easily accessible and fully documented. This database will then help the staff to maintain accurate health and care histories. It will also support the research efforts by providing real-time and reliable data. With this system, the Rainforest Sabah Haven Wildlife sanctuary can be more efficient in fulfilling its mission to protect endangered wildlife animals while maintaining high standards of accountability and care.

2.0 Business Rules

- 1. Every animal rescued will be seen to have a health check in less than 24 hours.
- 2. Animals whose health score is less than 3 cannot be considered to be released.
- 3. Each staff member can only be allocated a maximum of 2 habitat zones at a given time.
- 4. All the activities associated with enrichment of all the animals in the rehabilitation should be documented not less than once every 7 days.
- 5. Each feeding log has to be registered after the feeding period with no more than 1 hour.
- 6. Each of the volunteers will belong to just a single habitat zone.
- 7. Released animals has to be recorded GPS coordinates and responsible staff ID.
- 8. The animals that are classified as 'Released' should be accompanied by a release record.
- 9. Bodies recorded temperature while health checks must be between 36 degrees Celsius and 39 degrees Celsius.
- 10. Wildlife animals has to remain inside a medical zone for minimum 48 hours.

3.0 Entity Relationship Diagram.

3.1 ERD Design Table (Crow's Foot with 9 Entities)

Entity Name	Attributes	Relationships
Animal	Animal_ID (PK),	One Animal → Zero or Many
	Species, Gender, Origin,	Health_Check
	Status, Arrival_Date,	One Animal → Zero or Many Feeding_Log
	Habitat_Zone_ID (FK)	One Animal → Zero or Many
		Enrichment_Log
		One Animal → Zero or One
		Release_Record
		One or Many Animals → Only One
		Habitat_Zone
Health_Check	Check_ID (PK), Animal_ID	Zero or Many Health_Check → Only One
	(FK), Check_Date, Score,	Animal
	Weight, Temperature,	
	Notes	
Staff	Staff_ID (PK), Name,	One Staff → Zero or Many Feeding_Log
	Role, Contact, Shift	One Staff → Zero or Many
		Enrichment_Log
		One Staff → Zero or Many Staff_Habitat
Volunteer	Volunteer_ID (PK), Name,	Zero or Many Volunteer → Only One
	Contact, Institution,	Habitat_Zone
	Assigned_Zone (FK)	
Feeding_Log	Feed_ID (PK), Animal_ID	Zero or Many Feeding_Log → Only One
	(FK), Staff_ID (FK),	Animal

	Feed_Date, Food_Type,	Zero or Many Feeding_Log → Only One
	Quantity	Staff
Enrichment_Log	Activity_ID (PK),	Zero or Many Enrichment_Log → Only
	Animal_ID (FK), Date,	One Animal
	Activity_Type, Notes,	Zero or Many Enrichment_Log → Only
	Staff_ID (FK)	One Staff
Release_Record	Release_ID (PK),	Zero or One Release_Record → Only One
	Animal_ID (FK),	Animal
	Release_Date,	
	GPS_Coordinates,	
	Released_By	
Habitat_Zone	Zone_ID (PK),	One Habitat_Zone → One or Many
	Zone_Name, Zone_Type	Animals
		One Habitat_Zone → Zero or Many
		Volunteers
		One Habitat_Zone → Zero or Many
		Staff_Habitat
Staff_Habitat	Staff_ID (PK, FK), Zone_ID	Zero or Many Staff_Habitat → Only One
	(PK, FK),	Staff
	Assignment_Date	Zero or Many Staff_Habitat → Only One
		Habitat_Zone

3.2 Keys and Attributes Table (10 Entities)

Primary Key = PK Foreign Key(s) = FK Composite Key = CK

Entity Name	PK	FK	СК	Attributes
Animal	Animal_ID	Habitat_Zone_ID →	No	Animal_ID,
		Habitat_Zone(Zone_ID)		Species, Gender,
				Origin, Status,
				Arrival_Date,
				Habitat_Zone_ID
Health_Check	Check_ID	Animal_ID →	No	Check_ID,
		Animal(Animal_ID)		Animal_ID,
				Check_Date,
				Score, Weight,
				Temperature,
				Notes

Staff	Staff_ID	_	No	Staff_ID, Name,
Stan	otan_ib		110	Role, Contact,
				Shift
Valuataan	Maliumta au ID	Assistant Tons	NI-	
Volunteer	Volunteer_ID	Assigned_Zone →	No	Volunteer_ID,
		Habitat_Zone(Zone_ID)		Name, Contact,
				Institution,
				Assigned_Zone
Feeding_Log	Feed_ID	Animal_ID →	No	Feed_ID,
		Animal(Animal_ID),		Animal_ID,
		Staff_ID →		Staff_ID,
		Staff(Staff_ID)		Feed_Date,
				Food_Type,
				Quantity
Enrichment_Log	Activity_ID	Animal_ID →	No	Activity_ID,
		Animal(Animal_ID),		Animal_ID, Date,
		Staff_ID →		Activity_Type,
		Staff(Staff_ID)		Notes, Staff_ID
Release_Record	Release_ID	Animal_ID →	No	Release_ID,
		Animal(Animal_ID)		Animal_ID,
				Release_Date,
				GPS_Coordinates,
				Released_By
Habitat_Zone	Zone_ID	_	No	Zone_ID,
				Zone_Name,
				Zone_Type
Staff_Habitat	Staff_ID +	Staff_ID →	Yes	Staff_ID, Zone_ID,
	Zone_ID	Staff(Staff_ID), Zone_ID		Assignment_Date
	_	→ · · · · · · · · · · · · · · · · · · ·		
		Habitat_Zone(Zone_ID)		

NOTE: Staff_Habitat (CK) = Yes (Staff_ID, Zone_ID)

4.0 Constraints

NOTE: Below table no constraints related to NULL values and primary key/foreign key constraints considered as user check constraints in our database.

Constraints	Type	SQL Snippet	Justification

1	Gender must be	CHECK	CHECK (Gender IN ('Male',	Ensures gender
	either 'Male' or 'Female'		'Female'))	consistency for breeding, medical, and reporting purposes.
2	Health score must be between 1 and 5	CHECK	CHECK (Score BETWEEN 1 AND 5)	Enforces valid health scores, ensuring consistent and standardized health data.
3	Temperature must be between 36.0°C and 39.0°C	CHECK	CHECK (Temperature BETWEEN 36 AND 39)	Validates that recorded temperatures are within biologically significant ranges for animals.
4	Feedback log quantity must be numeric and in proper units (kg, g, ml, L)	CHECK	`CHECK (REGEXP_LIKE(Quantity, '^[0-9]+(.[0-9]+)?\s?(kg	"g" represents grams, a common unit for measuring small quantities.
5	Volunteer contact must follow specific phone number format	CHECK	CHECK (REGEXP_LIKE(Contact, '^\d{3}-\d{7,8}\$'))	Maintains consistency in staff scheduling, preventing invalid shift entries.
6	Staff shift must be one of the predefined options	CHECK	CHECK (Shift IN ('Morning', 'Afternoon', 'Evening', 'Night', 'Day'))	Maintains consistency in staff scheduling, preventing invalid shift entries.
7	Each animal can only have one release record	UNIQUE	UNIQUE (Animal_ID)	Prevents duplicate release entries for the same animal, ensuring data integrity for animal release tracking.
8	Staff can only be assigned to a maximum of 2 zones	CHECK	SELECT COUNT(*) INTO v_count FROM Staff_Habitat WHERE Staff_ID =:NEW.Staff_ID; IF v_count >= 2 THEN	Avoids over- assignment of staff, ensuring manageable workloads and

			RAISE_APPLICATION_ERRO	effective staffing in
			R(-20002, 'Staff cannot be	zones.
			assigned to more than 2	
			zones.'); END IF;	
9	Enrichment logs	CHECK	SELECT MAX(Activity_Date)	Ensures regular and
	must be		INTO v_last_activity FROM	timely enrichment
	recorded every 7		Enrichment_Log WHERE	activities for
	days for		Animal_ID	animals under
	rehabilitation		= :NEW.Animal_ID; IF	rehabilitation,
	animals		v_last_activity IS NOT NULL	supporting their
			AND :NEW.Activity_Date -	behavioral health.
			v_last_activity > 7 THEN	
			RAISE_APPLICATION_ERRO	
			R(-20003, 'Enrichment log	
			overdue for rehabilitation	
			animal.'); END IF;	
10	Feedback log	CHECK	IF ABS(SYSDATE	Ensures feed logs
	must be		- :NEW.Feed_Date) * 24 > 1	are timely and
	recorded within 1		THEN	accurate,
	hour after		RAISE_APPLICATION_ERRO	supporting reliable
	feeding time		R(-20004, 'Feed log must be	diet monitoring and
			recorded within 1 hour after	proper animal
			feeding time.'); END IF;	nutrition.

PART 2: IMPLEMENT AND QUERY A DATABASE USING SQL (30 MARKS)

(We optional put all the SQL code and Outputs picture in below)

a. A query that requires an outer join.

Results Explain Describe Sa	Results Explain Describe Saved SQL History				
ZONE_ID	ZONE_NAME	VOLUNTEER_ID	VOLUNTEER_NAME		
	Wetland Habitat				
	Forest Canopy	201	Lim Jia Hui		
	Forest Canopy		Norhayati		
	Quarantine Unit A	206	James Robert		
	Quarantine Unit B	208	Tanaka Hiroshi		
	Grassland Enclosure	202	Amirul Hakim		
	Nocturnal House		Siti Aishah		
	Primate Sanctuary	203	Priya Devi		
	Aviary	204	Wong Ken Min		

Justification:

This SQL statement retrieves all the habitat zones in the Habitat_Zone table together with the volunteers assigned to them in the Volunteer table. It incorporates a LEFT JOIN such that the zones that do not have volunteers will not be eliminated when retrieving various results. This will assist the tracking of covered and uncovered areas to plan and manage these areas.

b. A minimum 4 tables join with a group by function query.

Justification:

This query will be able to summarize the amount of feedback logs per staff member per habitat zone. It assists in evaluating employee participation and feedback activity across different zones.

c. A string pattern matching and date function query.

Justification:

This query gets permanent sanctuary animals with "monkey" in their species name and determines how many months they have been in care by calculating using the `MONTHS_BETWEEN`. It assists staff in monitoring long term primates such as proboscis monkeys for welfare, medical and enrichment planning.

d. A query having both OR and AND.

Justification:

This query responds to all the records about feeding, in which the food can be either fruit OR vegetable AND the quantity is higher than 1 kilogram. It aids in overseeing mass plant-based meals, evaluating nutrition needs, eliminating overfeeding as well as promoting the health of the animals in general by staff in sanctuaries and nutritionists.

e. A query that consists of at least 2 subqueries.

Justification:

This SQL statement shows the animals where the most recent weight known is more than the mean weight among all the Health_Check records. It employs a subquery (hc_latest) that has the latest weight of each animal, by locating the most recent (Check_Date per AnimalID) in the Health_Check table. Then it combines with the Animal table to have species data and sieves on animals where the latest weight of an animal is greater than the mean. Only one species in the output, Pygmy Elephant (15000kg) exceed the average of the database.

f. Answer the following question based on your chosen scenario

Scenario: Animals > 1 year with highest number of positive (score ≥ 4) health checks.

Why useful: Pinpoints long-term success stories for health studies & release planning.

```
Language SQL V Rows 10 V Clear Command Find Tables

Save Run

WITH positive counts AS (

SELECT ...Animal_ID,

Species,

SWICASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1 ELSE 0 END) AS Pos_Scores

MIRCASE WHEN h. Score >= 4 THEN 1
```


Justification:

This question singles out those animals that have the greatest levels of positive health scores (score \geq 4) on any given animal within a 1 year record. It makes a temporary outcome (positive_counts) containing the count of each animal, selects the highest value, and chooses those which satisfy it. Proboscis monkey and Clouded leopard are the only ones with 1 positive score on the output (most in the previous year).

PART 4: DEMONSTRATION (10 MARKS)

Each member of the group (showing their faces) must show and explain his/her work in the video.

Note: A submission without any presentation will be capped at 30 marks or a fail grade.

During the 15-minute video presentation, team members must be ready to:

- 1. Run the SQL codes from Part 2
- 2. Effectively communicate your project's goals, design choices, and how it addresses the chosen scenario.
- 3. Show that your database system works as intended and fulfills the requirements of the scenario.
- 4. Deliver a clear, organized, and engaging presentation that highlights the key aspects of your project.

List each student's presentation here. Please update the following table accordingly.

No	ID	Name	Questions to present
i)	23052301	Tiffany Fam	Demonstrate full batch SQL script execution
		Kar Ying	(table creation + insert).
			Execute and explain SQL queries (d-f):

			- String pattern + date function
			• .
			- Query using OR and AND
			- Subqueries with statistical analysis
			Briefly explain how these queries help staff
			decision-making (e.g., release planning, nutrition).
ii)	23021355	Angelyn Yek	Run and explain SQL queries (a-c) :
		Yin Yin	- Outer Join with Habitat & Volunteers
			- GROUP BY (staff–zone feeding summary)
			- Monkey care duration with MONTHS_BETWEEN
			Emphasize why these queries are useful for
			management, e.g. staff allocation, habitat planning.
iii)	23094709	Tan Wei Ting	Present the Case Scenario clearly:
			- What is the sanctuary?
			- What's the system's purpose?
			Explain the Business Rules (with logic behind
			each).
			Emphasize real-world relevance of rules.
iv)	23093495	Tan Wen Xi	Explain the ERD Diagram in detail:
,			- 9 Entities and their relationships
			Clarify primary, foreign, and composite keys
			Identify any possible alternate/candidate keys.
v)	23094378	Tang Jia Hui	Present Constraints 6–10 from Section 4.0:
' '	2000 1070	rang ola mar	- Gender validation
			- Temperature range
			- Volunteer zone FK
			- One-time release enforcement
			- Feed quantity as numeric string
			Make summary in these constraints.
			•
			Mention why these constraints matter in our
vi)	23056674	Rachel Tan	database. Present Constraints 1–5 from Section 4.0:
vi)	23030074	En Thong	
		Lit friorig	- Health check within 24h
			- Min health score for release
			- Max 2 habitat zones per staff
			- Weekly enrichment
			- Feed log time ≤ 1 hour
			Intro constraints and why.
			Mention why these constraints matter in our
			database.