Tema 1 - Baggage drop

- Responsabili: Ionut Pascal, Ana-Maria Cretan
- Deadline soft (fără penalizări): 14.11.2021, ora 23:59
- Deadline hard (cu penalizări): 21.11.2021, ora 23:59
- Data publicării: 03.11.2021
- Data ultimei actualizări: 03.11.2021, 00:00
- Istoric modificări:
 - **03.11.2021**
 - Publicare temă + checker offline
 - **•** 06.11.2021 22:03
 - Adaugare mențiune suplimentară în enunț și în barem relativ la permisiunea folosirii operatorului '
 / '

Objective

Tema are ca scop familiarizarea cu noțiunile limbajului Verilog studiate în cadrul primelor laboratoare: module, constructii de limbaj, blocul always, prin:

- divizarea problemei generale și organizarea ei în module cu o funcționalitate specifică;
- implementarea unui algoritm dat într-o manieră sintetizabilă.

Descriere și cerințe

Implementați în Verilog un **circuit combinațional** care are ca scop simularea aruncării automate a unui container cu provizii într-un câmp de luptă de către un elicopter către o echipă de pușcași marini, în momentul când acesta se află în perimetrul autorizat. Pentru a nu fi neutralizat, acesta trebuie să ajungă la sol într-un timp limită t, calculat cu ajutorul formulei t = sqrt(height) / 2

Circuitul va extrage de fiecare dată înălțimea curentă la care se află elicopterul de la cei 4 senzori prezenți pe burta aeronavei (plasați în perechi pentru a asigura redundanța măsurătorilor), va efectua media aritmetică a celor activi și va afișa informația pe un display cu 4 elemente **7Seg**, emițând o alarmă în momentul în care pachetul este desprins.

Valorile de intrare ale tuturor senzorilor sunt reprezentate pe 8 biți. Senzorul este considerat având o valoare validă în momentul în care aceasta este diferită de 0. Timpul limită este exprimat pe 16 biți, în virgulă fixă, cu virgula între bitul 8 si bitul 7. Condiția de validare a aruncării automate este reprezentată de un semnal de intrare pe 1 bit.

Ieșirea modulului este reprezentată de 4 module **7Seg**, care vor afișa următoarele tipuri de mesaje:

- COLD dacă elicopterul nu se află în aria de aruncare (semnalul de validare nu este activ)
- _HOT dacă elicopterul se află în aria de aruncare, dar timpul limită este prea mare
- DROP dacă elicopterul a aruncat pachetul.

În momentul în care semnalul DROP este activ, alarma va fi și ea activă.

Un exemplu detaliat este prezentat în anexă.

Implementare

Pentru rezolvarea temei este necesară împărțirea problemei în 3 module distincte, cu funcționalități specifice, instanțiate și conectate la nivel superior într-un modul de top. Schema bloc și conexiunile modulelor sunt prezentate în Fig1. Schemă bloc. Modulele trebuie să respecte interfețele prezentate mai jos, cu următoarele mențiuni:

iesirile pot fi declarate de tip registru;

baggage_drop

Modulul are rolul de a instanția blocurile și a realiza conexiunile necesare funcționării corespunzătoare, precum și prelucrare minimală a semnalelor intermediare ce nu necesită un modul separat.

Modulul trebuie să respecte următoarea interfață:

```
module baggage_drop (
            [6:0]
    output
                      seven_seg1,
    output
             [6:0]
                      seven_seg2,
    output
             [6:0]
                      seven_seg3,
            [6:0]
    output
                      seven_seg4,
                      drop_activated,
             [0:0]
    output
             [7:0]
    input
                      sensor1.
    input
             [7:0]
                      sensor2,
             [7:0]
    input
                      sensor3.
    input
             [7:0]
                       sensor4,
    input
             [15: 0]
                       t_lim,
    input
                      drop_en);
```

Descrierea semnalelor folosite de acest modul este următoarea:

- seven_seg* modulele 7Seg pe care va fi afișat mesajul corespunzător
- drop_activated semnalul de alarmă ce se activează când se respectă conditia de lansare a pachetului
- **sensor*** intrările ce reprezintă cele 4 înălțimi, măsurate individual
- t_lim timpul limită de coborâre a pachetului
- drop_en activează posibilitatea lansării pachetului

sensors_input

Modulul are rolul de a interoga informația primită de la senzori precum și gradul lor de disponibilitate și a furniza suma aproximată la cel mai apropiat întreg a valorilor modulului square_root spre calcularea rădăcinii pătrate.

Dacă un senzor este 0, acesta și perechea lui se exclud din calcul. Perechile de senzori sunt 1-3 și 2-4.

Se garantează faptul că nu există senzori din ambele perechi cu valoarea 0 în același timp.

Modulul trebuie să respecte următoarea interfață:

```
module sensors_input (
  output
          [7:0]
                     height,
  input
           [7:0]
                     sensor1,
  input
           [7:0]
                     sensor2,
           [7:0]
  input
                     sensor3.
  input
           [7:0]
                     sensor4):
```

Descrierea semnalelor folosite de acest modul este următoarea:

- height înălțimea, calculată folosind media senzorilor
- sensor* intrările ce reprezintă cele 4 înălțimi, măsurate individual

square_root

Modulul are rolul de a calcula rădăcina pătrată a unui număr natural, reprezentat pe 8 biți [Resurse], cu datele provenite de la modulul sensors_input și a o furniza modulului drop_and_display în format virgulă fixă, pentru determinarea validității ieșirii și afișarea informațiilor necesare.

Modulul trebuie să respecte următoarea interfață:

```
module square_root (
output [15:0] out,
input [7:0] in );
```

Descrierea semnalelor folosite de acest modul este următoarea:

- **out** rădăcina pătrată a intrării, exprimată în format virgulă fixă pe 16 biți, cu virgula fixă între bitul 8 și bitul 7.
- in numărul pentru care se calculează rădăcina pătrată

Operațiile folosind operatori / și % nu sunt permise în rezolvarea temei, cu excepția operației de împărțire (/) la puteri ale lui 2.

display_and_drop

Modulul are rolul de a determina existența condiției de aruncare a pachetului și de a afișa mesajul corespunzător.

Modulul trebuie să respecte următoarea interfață:

```
module display_and_drop (
           [6:0] seven_seg1,
   output
   output
            [6:0]
                      seven_seg2,
                      seven_seg3,
   output
            [6:0]
   output
            [6:0]
                      seven_seg4,
   output
            [0:0]
                      drop_activated,
   input
            [15: 0]
                      t_act,
   input
            [15: 0]
                      t lim,
   input
                      drop en):
```

Descrierea semnalelor folosite de acest modul este următoarea:

- seven_seg* modulele 7Seg pe care va fi afișat mesajul corespunzător
- drop_activated semnalul de alarmă ce se activează când se respectă condiția de lansare a pachetului (drop_en - activ și t_act ← t_lim)
- t_act timpul curent posibil de coborâre a pachetului
- t_lim timpul limită de coborâre a pachetului
- drop_en activează posibilitatea lansării pachetului

Bonus

Implementați modulul **square_root** folosind una dintre metodele: Newton-Raphson, Goldschmidth, CORDIC sau dezvoltarea în serie Taylor.

Pentru acordarea bonusului fișierul README trebuie să conțină o descriere detaliată a implementării uneia dintre metodele prezentate mai sus.

Notare

- +6 pct: implementarea modulului square_root; sunt testate toate combinațiile valide de operanzi pe 8 biți, numere exprimate fără semn;
- +1.5 pct: implementarea corectă a modulului sensors_input;
- +1.5 pct: implementarea corectă a modulului display_and_drop;
- +1 pct: implementarea corectă a întregului ansamblu (modulul top);
- +2 pct bonus: implementarea unui algoritm special;
- +1 pct: fiecare bug găsit în implementarea de referință (se acordă primei persoane care-l semnalează);
- 12 pct: folosirea construcțiilor nesintetizabile din Verilog (while, repeat, for cu număr variabil de iterații, etc);
- -10 pct: folosirea operatorilor / , % (excepţie împărţirea la puteri ale lui 2. ex: x / 2, x / 8, etc);
- -7 pct: folosirea tipului real din Verilog, folosirea unui Lookup Table (memorie ROM) pentru implementarea modulului square_root;
- -1 pct: lipsa fisierului README;
- -1 pct: indentare haotică (incluzând spațiere inutilă);
- -0.5 pct: pentru fiecare zi de întârziere; tema poate fi trimisă cu maxim 7 zile întârziere față de termenul specificat în enunț (față de deadline-ul soft);
- -0.5 pct: folosirea incorectă a atribuirilor continue (assign), blocante (=) și non-blocante (←);
- -0.2 pct: lipsa comentariilor utile;
- -0.1 pct: comentarii inutile
- -0.2 pct: diverse alte probleme constatate în implementare (per problemă)

Punctajul inițial al checker-ului nu reprezintă punctajul final al temei. Acesta va fi acordat de către asistent, în urma analizei individuale a fiecărei implementări.

Dacă tema primește 0 puncte pe platforma vmchecker, se pot acorda maxim 2 pct pe ideea implementării, la latitudinea asistentului. Ideea și motivele pentru care nu funcționează trebuie **documentate** temeinic în README și/sau comentarii. Temele care au **erori** de compilare vor fi notate cu 0 puncte.

Precizări

- Arhiva temei (de tip zip) trebuie să cuprindă în rădăcina sa (fără alte directoare) doar:
 - fișierele sursă (extensia .v);
 - fişierul README.
- Arhiva <u>nu</u> trebuie să conțină fișiere de test, fișiere specifice proiectelor etc.
- Fisierului README va conține minim:
 - numele şi grupa;
 - prezentarea generală a soluției alese (ex: descrierea de nivel înalt a algoritmului folosit);
 - explicarea porțiunilor complexe ale implementării (poate fi făcută și în comentarii);
 - alte detalii relevante.
- Vmchecker ne permite să revenim la orice soluție încărcată de voi; cereți revenirea la cea mai convenabilă soluție trimisă (punctaj teste automate + depunctare întârziere) printr-un mail titularului de laborator.
- Tema trebuie realizată individual; folosirea de porțiuni de cod de la alți colegi sau de pe Internet (cu excepția site-ului de curs și a resurselor puse la dispoziție în conținutul temei) poate fi considerată copiere și va fi penalizată conform regulamentului.

- Aduceți-vă aminte de recomandările prezentate în <u>Tema 0</u>.
- Există module de test pentru fiecare bloc pentru a-i verifica, separat, funcționalitatea.
- Scenariul este o ficțiune iar problema fizică este simplificată.

Resurse

- Tester
- Wikipedia Square root Algorithms [https://en.wikipedia.org/wiki/Methods_of_computing_square_roots]
- Wikipedia 7 segments display [https://en.wikipedia.org/wiki/Seven-segment_display]
- Algorithm Non-Restoring Implementation of Fixed and Floating Point Square Root Using Nonrestoring Algorithm [http://www.ijcee.org/papers/767-ET030.pdf]
- Newton-Raphson, SRT Cost/Performance Tradeoff of n-Select Square Root Implementations [https://yamin.cis.k.hosei.ac.jp/papers/ACAC2000.pdf]
- Goldschmidt Improving Goldschmidt Division, Square Root, and Square Root Reciprocal [http://perso.ens-lyon.fr/jean-michel.muller/IEEETCJul2000-2pdf.pdf]
- **CORDIC** Square-root based on CORDIC [https://www.convict.lu/Jeunes/Math/square_root_CORDIC.htm]
- Verilog 2000 Standard [https://sutherland-hdl.com/papers/2001-SNUG-presentation_Verilog-2000_standard.pdf]
- Ghidul studentului la AC [https://ocw.cs.pub.ro/courses/ac-is/studentguide]
- Utilizarea vmchecker [https://ocw.cs.pub.ro/courses/ac-is/tutoriale/6-vmchecker-utilizare]
- Debugging folosind Xilinx ISE [https://ocw.cs.pub.ro/courses/ac-is/tutoriale/3-ise-debug]

Anexă - Exemplu date

Considerăm un sistem format din 4 senzori, având valorile prezentate în tabel. Cele 3 variante prezentate analizează pe rând un caz de calcul al înălțimii, considerând perechile care se anulează datorită unei valori nule.

Sensor1	Sensor2	Sensor3	Sensor4	Height
140	138	139	140	139.25 -> 139
140	0	139	140	139.5 -> 140
140	138	0	140	139 -> 139

Astfel, în cazul exemplului 2, senzorul 2 are valoare nulă, deci acesta și perechea lui vor fi excluși de la calcularea mediei. Aceasta se va calcula doar din perechea (1,3): (140+139) / 2 = 139,5.

În urma introducerii rezultatelor în modulul square_root care calculează rădăcina pătrată, obținem:

Înainte de a introduce rezulatul în modului de afișare, trebuie calculat timpul final prin împărțirea la 2, folosind formula prezentată în temă. Vom analiza exemplul 1, al cărei înălțime aproximată este 139:

```
out = 16'b0000_1011_1100_1010 -> t_act = 16'b0000_0101_1110_0101 (5,89453125)
```

Considerând **t_act** calculat anterior, există mai multe situații pentru ultimul modul, prezentate în următorul tabel:

t_act	t_lim	drop_en	Drop_activated	Mesaj
16'b0000_0101_1110_0101	16'b0000_0111_0100_0101	0	0	COLD
16'b0000_0101_1110_0101	16'b0000_0111_0100_0101	1	1	DROP
16'b0000_0101_1110_0101	16'b0000_0100_1110_010	1	0	_HOT

- 1. t_act este sub t_lim, dar condiția de lansare nu este îndeplinită
- 2. t_act este sub t_lim și condiția de lansare este îndeplinită
- 3. t_act este mai mare decât t_lim, chiar dacă condiția de lansare este îndeplinită

Notă: Mesajul COLD afișat pe cele 4 display-uri are următoarea ordine:

C-seven_seg1 O-seven_seg2 L-seven_seg3 D-seven_seg4

Mesajele în 7Seg sunt următoarele, unde un led aprins este reprezentat de semnalul 1:

ac-is/teme/tema1.txt · Last modified: 2021/11/06 22:05 by ionut.pascal