Importing Important Libraries

```
In [6]: import pandas as pd
    import numpy as np
    from sklearn.preprocessing import StandardScaler, OneHotEncoder
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score, classification_report
    from sklearn.decomposition import PCA
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn.model_selection import GridSearchCV
    from sklearn.linear_model import LogisticRegression
    from sklearn.svm import SVC
    from sklearn.naive_bayes import GaussianNB
    from sklearn.pipeline import Pipeline
    import warnings
```

Load data

In [7]: warnings.filterwarnings('ignore')

0 chol fbs 0 0 restecg thalach 0 exang 0 oldpeak 0 slope ca thal target dtype: int64

```
In [10]: df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 303 entries, 0 to 302 Data columns (total 14 columns): Non-Null Count Dtype Column # -----0 int64 303 non-null age 1 303 non-null int64 sex 2 303 non-null int64 ср 3 303 non-null int64 trestbps 4 chol 303 non-null int64 5 fbs 303 non-null int64 6 restecg 303 non-null int64 7 thalach 303 non-null int64 8 exang 303 non-null int64 9 oldpeak 303 non-null float64 303 non-null int64 10 slope 303 non-null int64 11 ca 12 thal 303 non-null int64 13 target 303 non-null int64

dtypes: float64(1), int64(13)

memory usage: 33.3 KB

In [11]: df.describe()

Out[11]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	o
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.0
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.528053	149.646865	0.326733	1.0
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.525860	22.905161	0.469794	1.1
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000000	0.0
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500000	0.000000	0.0
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.000000	153.000000	0.000000	3.0
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.000000	166.000000	1.000000	1.6
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1.000000	6.2
4										•

In [14]: df.duplicated().sum()

Out[14]: 1

In [15]: df.corr()

Out[15]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	s
age	1.000000	-0.098447	-0.068653	0.279351	0.213678	0.121308	-0.116211	-0.398522	0.096801	0.210013	-0.168
sex	-0.098447	1.000000	-0.049353	-0.056769	-0.197912	0.045032	-0.058196	-0.044020	0.141664	0.096093	-0.030
ср	-0.068653	-0.049353	1.000000	0.047608	-0.076904	0.094444	0.044421	0.295762	-0.394280	-0.149230	0.119
trestbps	0.279351	-0.056769	0.047608	1.000000	0.123174	0.177531	-0.114103	-0.046698	0.067616	0.193216	-0.12′
chol	0.213678	-0.197912	-0.076904	0.123174	1.000000	0.013294	-0.151040	-0.009940	0.067023	0.053952	-0.004
fbs	0.121308	0.045032	0.094444	0.177531	0.013294	1.000000	-0.084189	-0.008567	0.025665	0.005747	-0.059
restecg	-0.116211	-0.058196	0.044421	-0.114103	-0.151040	-0.084189	1.000000	0.044123	-0.070733	-0.058770	0.090
thalach	-0.398522	-0.044020	0.295762	-0.046698	-0.009940	-0.008567	0.044123	1.000000	-0.378812	-0.344187	0.386
exang	0.096801	0.141664	-0.394280	0.067616	0.067023	0.025665	-0.070733	-0.378812	1.000000	0.288223	-0.257
oldpeak	0.210013	0.096093	-0.149230	0.193216	0.053952	0.005747	-0.058770	-0.344187	0.288223	1.000000	-0.577
slope	-0.168814	-0.030711	0.119717	-0.121475	-0.004038	-0.059894	0.093045	0.386784	-0.257748	-0.577537	1.000
са	0.276326	0.118261	-0.181053	0.101389	0.070511	0.137979	-0.072042	-0.213177	0.115739	0.222682	-0.080
thal	0.068001	0.210041	-0.161736	0.062210	0.098803	-0.032019	-0.011981	-0.096439	0.206754	0.210244	-0.104
target	-0.225439	-0.280937	0.433798	-0.144931	-0.085239	-0.028046	0.137230	0.421741	-0.436757	-0.430696	0.34
4											

In [16]: df.shape

Out[16]: (303, 14)

Pair plot of all features

```
In [17]: sns.pairplot(df, diag_kind='kde', hue='target')
plt.suptitle('Pair Plot of Heart Disease Features', y=1.02)
plt.show()
```


In [18]: correlation_matrix = df.corr()

Plotting the heatmap of correlations

Feature engineering based on correlation

trestbps chol

age

sex

```
In [21]: corr_threshold = 0.3
    target_corr = correlation_matrix['target'].abs()
    strong_features = target_corr[target_corr > corr_threshold].index.tolist()

df = df[strong_features]
```

restecg thalach exang oldpeak slope

thal

target

ca

Check for multicollinearity among the strong features

fbs

```
In [22]: high_corr_pairs = set()
for i in range(len(correlation_matrix.columns)):
    for j in range(i):
        if abs(correlation_matrix.iloc[i, j]) > 0.5:
            high_corr_pairs.add(correlation_matrix.columns[i])

features_to_drop = list(high_corr_pairs - {'target'})
    df = df.drop(columns=features_to_drop)
```

Convert categorical variables to dummy/indicator variables

```
In [23]: categorical_features = ['cp']
    df = pd.get_dummies(df, columns=categorical_features, drop_first=True)

X = df.drop(columns=['target'])
    y = df['target']
```

Scale the features

```
In [24]: scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

Split into training and test sets

```
In [25]: X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
```

Define the models and their parameter grids

```
In [26]: classifiers = {
              'LogisticRegression': (LogisticRegression(), {
                  'classifier__penalty': ['l1', 'l2'],
                  'classifier__C': [0.01, 0.1, 1, 10, 100],
                  'classifier_solver': ['liblinear', 'saga'],
                  'classifier__max_iter': [100, 200, 300]
              }),
              'SVM': (SVC(), {
                  'classifier__C': [1, 10, 100],
'classifier__kernel': ['linear', 'rbf'],
                  'classifier__gamma': ['scale', 'auto'],
                  'classifier__degree': [2, 3, 4]
              }),
              'GradientBoosting': (GradientBoostingClassifier(), {
                  'classifier__n_estimators': [50, 100, 200],
                  'classifier_learning_rate': [0.01, 0.1, 0.2],
                  'classifier__max_depth': [3, 4, 5]
              }),
              'NaiveBayes': (GaussianNB(), {
                  'classifier var smoothing': [1e-9, 1e-8, 1e-7]
              })
         }
```

```
In [27]: best estimators = {}
         for clf name, (clf, params) in classifiers.items():
             print(f"Running Grid Search for {clf_name}...")
             # Define pipeline with StandardScaler and the classifier
             pipeline = Pipeline([
                 ('scaler', StandardScaler()),
                 ('classifier', clf)
             1)
             # Use GridSearchCV to find the best model
             grid_search = GridSearchCV(pipeline, params, cv=5, scoring='accuracy', n_jobs=-1)
             # Fit the model
             grid_search.fit(X_train, y_train)
             # Store the best estimator
             best_estimators[clf_name] = grid_search.best_estimator_
             # Print the best parameters and score for each model
             print(f"Best parameters for {clf_name}: {grid_search.best_params_}")
             print(f"Best cross-validated accuracy for {clf_name}: {grid_search.best_score_:.2f}")
         Running Grid Search for LogisticRegression...
         Best parameters for LogisticRegression: {'classifier__C': 0.01, 'classifier__max_iter': 100, 'cla
         ssifier__penalty': '12', 'classifier__solver': 'liblinear'}
         Best cross-validated accuracy for LogisticRegression: 0.81
         Running Grid Search for SVM...
         Best parameters for SVM: {'classifier C': 1, 'classifier degree': 2, 'classifier gamma': 'scal
         e', 'classifier__kernel': 'linear'}
         Best cross-validated accuracy for SVM: 0.79
         Running Grid Search for GradientBoosting...
         Best parameters for GradientBoosting: {'classifier__learning_rate': 0.1, 'classifier__max_depth':
         3, 'classifier__n_estimators': 100}
         Best cross-validated accuracy for GradientBoosting: 0.81
         Running Grid Search for NaiveBayes...
         Best parameters for NaiveBayes: {'classifier_var_smoothing': 1e-09}
         Best cross-validated accuracy for NaiveBayes: 0.78
```

Evaluate all best models on the test set

```
In [28]: for clf name, best model in best estimators.items():
             y_pred = best_model.predict(X_test)
             accuracy = accuracy_score(y_test, y_pred)
             print(f"\nTest Accuracy for {clf_name}: {accuracy:.2f}")
             print(classification_report(y_test, y_pred))
         Test Accuracy for LogisticRegression: 0.85
                        precision
                                     recall f1-score
                                                        support
                                       0.86
                     0
                             0.83
                                                 0.85
                                                              29
                     1
                             0.87
                                       0.84
                                                 0.86
                                                              32
                                                 0.85
                                                              61
             accuracy
                                                 0.85
                             0.85
                                       0.85
                                                              61
            macro avg
                                       0.85
                                                 0.85
                                                              61
         weighted avg
                             0.85
         Test Accuracy for SVM: 0.89
                        precision
                                     recall f1-score
                                                        support
                     0
                             0.89
                                       0.86
                                                 0.88
                                                              29
                     1
                             0.88
                                       0.91
                                                 0.89
                                                              32
             accuracy
                                                 0.89
                                                              61
                             0.89
                                       0.88
                                                 0.88
                                                              61
            macro avg
         weighted avg
                             0.89
                                       0.89
                                                 0.89
                                                              61
         Test Accuracy for GradientBoosting: 0.75
                        precision
                                     recall f1-score
                                                        support
                     0
                             0.72
                                       0.79
                                                 0.75
                                                              29
                    1
                             0.79
                                       0.72
                                                 0.75
                                                              32
                                                 0.75
                                                              61
             accuracy
                             0.76
                                       0.76
                                                 0.75
                                                              61
            macro avg
         weighted avg
                             0.76
                                       0.75
                                                 0.75
                                                              61
         Test Accuracy for NaiveBayes: 0.85
                        precision
                                     recall f1-score
                                                        support
                     0
                                       0.90
                                                 0.85
                                                              29
                             0.81
                                                              32
                     1
                             0.90
                                       0.81
                                                 0.85
                                                 0.85
                                                              61
             accuracy
                             0.85
                                       0.85
                                                 0.85
                                                              61
            macro avg
         weighted avg
                             0.86
                                       0.85
                                                 0.85
                                                              61
In [30]: import plotly.graph_objs as go
         import plotly.express as px
```

```
In [31]:
         # Data for the plot
         classifiers = list(test_accuracies.keys())
         accuracies = list(test_accuracies.values())
         # Creating a bar plot with hover functionality
         fig = go.Figure(data=[go.Bar(
             x=classifiers,
             y=accuracies,
             text=[f'{acc:.2f}' for acc in accuracies], # Display accuracy on hover
             hoverinfo='text',
             marker=dict(color='skyblue')
         )])
         # Updating layout for better readability
         fig.update_layout(
             title='Comparison of Test Accuracies Across Different Models',
             xaxis=dict(title='Classifier'),
             yaxis=dict(title='Test Accuracy', range=[0, 1]),
             template='plotly_white'
         )
         # Show the plot
         fig.show()
```

Comparison of Test Accuracies Across Different Models

In []: