Seguências de números reais

uma lista ordenada e infinita de números reais

$$\chi_1, \chi_2, \chi_3, \chi_4, \ldots, \chi_n, \ldots$$

Notacións:
$$(x_n)_n$$
, $(x_n)_n$, $(x_n)_{n=1}^\infty$, $\{x_n\}_n$, $\{x_n\}_n$, $\{x_n\}_n$

Exemplos: 1)
$$1,2,3,4,5,6,...,n,... = (n)_{n=1}^{\infty}$$

 $n\to\infty$ a seq. é divergente

2)
$$\left(\frac{n}{n+1}\right) = \left(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\right) = \left(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\right)$$

$$\frac{n}{n+1} \cdot \frac{\frac{1}{n}}{\frac{1}{n}} = \frac{1}{1+\frac{1}{n}} \xrightarrow{n\to\infty} 1, \quad n < n+1 \Rightarrow \frac{n}{n+1} < 1$$

a seq. é convergent.

3)
$$\left\{\frac{(-1)^{n}(n+1)}{3^{n}}\right\} = \left\{-\frac{2}{3}, \frac{3}{9}, -\frac{4}{27}, \frac{5}{81}, \dots\right\}$$

$$\frac{2}{3} > \frac{3}{9} > \frac{4}{27} > \frac{5}{81} > \cdots$$

4)
$$\left\{\frac{2}{3}, \frac{4}{9}, \frac{8}{27}, \frac{16}{81}, \frac{32}{243}, \dots\right\} = \left\{\frac{2^{n}}{3^{n}}\right\}$$

$$\chi_{n} = \left(\frac{2}{3}\right)^{n} \xrightarrow{n \to \infty} ?$$

5)
$$\left\{\frac{3}{5}, -\frac{4}{25}, \frac{5}{125}, -\frac{6}{625}, \frac{7}{3125}, \dots\right\} = \left\{\frac{(-1) \cdot (n+2)}{5^n}\right\}$$

$$\left\{\frac{(-1)^{n+1}(n+2)}{5^n}\right\} \notin \text{convergute plu mes mo motivo que 3}.$$

6)
$$\pi = 3,14159265359...$$

xn = n-ésimo digito decimal de T.

$$x_1 = 1$$
, $x_2 = 1$, $x_n = x_{n-1} + x_{n-2}$, $\forall n \ge 3$. divergente.

Uma seq. xn tem limite L se sus termos se aproximem de L quando n fice arbitrariamente grande.

$$\lim_{n\to\infty} x_n = L \quad \text{ou} \quad x_n \xrightarrow{n\to\infty} L$$

Quando o limite existe, dizemos que a seq. é convervente. Dizemos que a seq. é divergente caso contrário.

Teoremo: Se lim
$$f(x) = L$$
 e $f(n) = xn$, $\forall n \in \mathbb{N}$, entaw

$$\lim_{n\to\infty} x_n = L$$
.

Teorema: Se lim
$$x_n = L$$
 e f continuo, entar $h + \infty$ lim $f(x_n) = f(L)$.

Exemple: 1)
$$x_n = \frac{1}{n} \xrightarrow{n \to \infty} 0$$
, $f(x) = sin(x)$
 $\therefore sin(\frac{1}{n}) \xrightarrow{n \to \infty} sin(0) = 0$

2)
$$\lim_{n\to\infty} \frac{\ln n}{n}$$

$$f(x) = \frac{\ln x}{x}$$
 é continue en sur dominio.

$$f(n) = \frac{\ln n}{n} = x_n$$
, $\forall n \in \mathbb{N}$.

$$\lim_{\chi \to \infty} f(x) = \lim_{\chi \to \infty} \frac{\ln \chi}{\chi} = \lim_{\chi \to \infty} \frac{\frac{1}{\chi}}{1} = \lim_{\chi \to \infty} \frac{1}{\chi} = 0 \implies \lim_{\chi \to \infty} \frac{\ln \chi}{\chi} = 0.$$

Exercício: Para quois valores de r a seq. $\{r^n\}$ é convergente?