IF2130 – Organisasi dan Arsitektur Komputer

sumber: Greg Kesden, CMU 15-213, 2012

Cache

Achmad Imam Kistijantoro (imam@staff.stei.itb.ac.id)

Rahmat Mulyawan

Infall Syafalni

Today

- Cache memory organization and operation
- Performance impact of caches
 - ▶ The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Cache Memories

- Cache memories are small, fast SRAM-based memories managed automatically in hardware.
 - Hold frequently accessed blocks of main memory
- CPU looks first for data in caches (e.g., L1, L2, and L3), then in main memory.
- Typical system structure:

General Cache Organization (S, E, B)

Locate set Cache Read • Check if any line in set has matching tag $E = 2^e$ lines per set • Yes + line valid: hit Locate data starting at offset Address of word: t bits s bits b bits $S = 2^s$ sets tag block set index offset data begins at this offset B-1 tag valid bit $B = 2^b$ bytes per cache block (the data)

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set Assume: cache block size 8 bytes

No match: old line is evicted and replaced

Direct-Mapped Cache Simulation

t=1	s=2	b=1
Х	XX	Х

M=16 byte addresses, B=2 bytes/block, S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0	$[0000_{2}],$	miss
1	$[0001_{2}],$	hit
7	$[0\overline{11}1_{2}],$	miss
8	$[1000_{2}],$	miss
0	$[0000_{2}]$	miss

	V	Tag	Block
Set 0	1	0	M[0-1]
Set 1			
Set 2			
Set 3	1	0	M[6-7]

A Higher Level Example

```
int sum_array_rows(double a[16][16])
{
   int i, j;
   double sum = 0;

   for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
   return sum;
}</pre>
```

```
int sum_array_cols(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (j = 0; j < 16; j++)
        for (i = 0; i < 16; i++)
            sum += a[i][j];
    return sum;
}</pre>
```

Ignore the variables sum, i, j

assume: cold (empty) cache, a[0][0] goes here

32 D - 4 GOUDIES

blackboard

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

No match:

- One line in set is selected for eviction and replacement
- Replacement policies: random, least recently used (LRU), ...

2-Way Set Associative Cache Simulation

t=2	s=1	b=1
XX	Х	Х

M=16 byte addresses, B=2 bytes/block, S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

	•	•
0	$[00\underline{0}0_{2}],$	miss
1	$[0001_{2}^{-}],$	hit
7	$[01\overline{\underline{1}}1_{2}],$	miss
8	$[10\underline{0}0_{2}],$	miss
0	[0000 ₂]	hit

	V	Tag	Block
Set 0	1	00	M[0-1]
	1	10	M[8-9]

Set 1	1	01	M[6-7]
3611	0		

A Higher Level Example

Ignore the variables sum, i, j

```
int sum_array_rows(double a[16][16])
{
    int i, j;
    double sum = 0;

    for (i = 0; i < 16; i++)
        for (j = 0; j < 16; j++)
            sum += a[i][j];
    return sum;
}</pre>
```

```
int sum_array_cols(double a[16][16])
{
   int i, j;
   double sum = 0;

   for (j = 0; j < 16; j++)
        for (i = 0; i < 16; i++)
            sum += a[i][j];
   return sum;
}</pre>
```


blackboard

What about writes?

- Multiple copies of data exist:
 - LI, L2, Main Memory, Disk
- What to do on a write-hit?
 - Write-through (write immediately to memory)
 - Write-back (defer write to memory until replacement of line)
 - Need a dirty bit (line different from memory or not)
- What to do on a write-miss?
 - Write-allocate (load into cache, update line in cache)
 - Good if more writes to the location follow
 - No-write-allocate (writes immediately to memory)
- Typical
 - Write-through + No-write-allocate
 - Write-back + Write-allocate

Intel Core i7 Cache Hierarchy

Processor package

L1 i-cache and d-cache: 32 KB, 8-way, Access: 4 cycles

L2 unified cache: 256 KB, 8-way, Access: 11 cycles

L3 unified cache: 8 MB, 16-way, Access: 30-40 cycles

Block size: 64 bytes for all caches.

Cache Performance Metrics

Miss Rate

- Fraction of memory references not found in cache (misses / accesses)= I hit rate
- Typical numbers (in percentages):
 - ▶ 3-10% for L1
 - can be quite small (e.g., < 1%) for L2, depending on size, etc.</p>

Hit Time

- Time to deliver a line in the cache to the processor
 - includes time to determine whether the line is in the cache
- Typical numbers:
 - ▶ I-2 clock cycle for LI
 - ▶ 5-20 clock cycles for L2

Miss Penalty

- Additional time required because of a miss
 - typically 50-200 cycles for main memory (Trend: increasing!)

Lets think about those numbers

- Huge difference between a hit and a miss
 - Could be 100x, if just L1 and main memory
- Would you believe 99% hits is twice as good as 97%?
 - Consider:
 cache hit time of I cycle
 miss penalty of I00 cycles
 - Average access time:

```
97% hits: I cycle + 0.03 * 100 cycles = 4 cycles
```

99% hits: I cycle + 0.01 * 100 cycles = 2 cycles

▶ This is why "miss rate" is used instead of "hit rate"

Writing Cache Friendly Code

- Make the common case go fast
 - Focus on the inner loops of the core functions
- Minimize the misses in the inner loops
 - Repeated references to variables are good (temporal locality)
 - Stride-I reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified through our understanding of cache memories.

Today

- ▶ Cache organization and operation
- Performance impact of caches
 - ▶ The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

The Memory Mountain

- Read throughput (read bandwidth)
 - Number of bytes read from memory per second (MB/s)
- Memory mountain: Measured read throughput as a function of spatial and temporal locality.
 - Compact way to characterize memory system performance.

Memory Mountain Test Function

```
long data[MAXELEMS]; /* Global array to traverse */
/* test - Iterate over first "elems" elements of
      array "data" with stride of "stride", using
      using 4x4 loop unrolling.
int test(int elems, int stride) {
  long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
  long acc0 = 0, acc1 = 0, acc2 = 0, acc3 = 0;
  long length = elems, limit = length - sx4;
  /* Combine 4 elements at a time */
  for (i = 0; i < limit; i += sx4) {
    acc0 = acc0 + data[i];
    acc1 = acc1 + data[i+stride];
    acc2 = acc2 + data[i+sx2];
    acc3 = acc3 + data[i+sx3];
  /* Finish any remaining elements */
  for (; i < length; i++) {
    acc0 = acc0 + data[i];
  return ((acc0 + acc1) + (acc2 + acc3));
                                              mountain/mountain.c
```

Call test() with many
combinations of elems
and stride.

For each elems and stride:

- 1. Call test() once to warm up the caches.
- 2. Call test()
 again and measure
 the read
 throughput(MB/s)

The Memory Mountain

Core i7 Haswell

2.1 GHz

Today

- Cache organization and operation
- Performance impact of caches
 - ▶ The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Miss Rate Analysis for Matrix Multiply

Assume:

- Line size = 32B (big enough for four 64-bit words)
- Matrix dimension (N) is very large
 - ▶ Approximate I/N as 0.0
- Cache is not even big enough to hold multiple rows

Analysis Method:

Look at access pattern of inner loop

Matrix Multiplication Example

Description:

- Multiply N x N matrices
- \triangleright O(N³) total operations
- N reads per source element
- N values summed per destination
 - but may be able to hold in register

```
/* ijk */
for (i=0; i<n; i++)
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
        sum += a[i][k] * b[k][j];
    c[i][j] = sum;
}
</pre>
```

Layout of C Arrays in Memory (review)

- ▶ C arrays allocated in row-major order
 - each row in contiguous memory locations
- Stepping through columns in one row:

```
for (i = 0; i < N; i++)
sum += a[0][i];</pre>
```

- accesses successive elements
- if block size (B) > 4 bytes, exploit spatial locality
 - compulsory miss rate = 4 bytes / B
- Stepping through rows in one column:

```
for (i = 0; i < n; i++)
sum += a[i][0];</pre>
```

- accesses distant elements
- no spatial locality!
 - compulsory miss rate = I (i.e. 100%)

Matrix Multiplication (ijk)

```
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
       sum += a[i][k] * b[k][j];
    c[i][j] = sum;
}
</pre>
```


Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.25 1.0 0.0

Matrix Multiplication (jik)

```
/* jik */
for (j=0; j<n; j++) {
  for (i=0; i<n; i++) {
    sum = 0.0;
    for (k=0; k<n; k++)
       sum += a[i][k] * b[k][j];
    c[i][j] = sum
  }
}</pre>
```

Inner loop:

Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
0.25	1.0	0.0

Matrix Multiplication (kij)

```
/* kij */
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
        c[i][j] += r * b[k][j];
  }
}</pre>
```

Inner loop:

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25 0.25

Matrix Multiplication (ikj)

```
/* ikj */
for (i=0; i<n; i++) {
  for (k=0; k<n; k++) {
    r = a[i][k];
    for (j=0; j<n; j++)
        c[i][j] += r * b[k][j];
  }
}</pre>
```

Inner loop:

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 0.0 0.25 0.25

Matrix Multiplication (jki)

```
/* jki */
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
        c[i][j] += a[i][k] * r;
}</pre>
```


Misses per inner loop iteration:

<u>A</u>	<u>B</u>	<u>C</u>
1.0	0.0	1.0

Matrix Multiplication (kji)

```
/* kji */
for (k=0; k<n; k++) {
  for (j=0; j<n; j++) {
    r = b[k][j];
    for (i=0; i<n; i++)
        c[i][j] += a[i][k] * r;
  }
}</pre>
```

Inner loop:

Misses per inner loop iteration:

<u>A</u> <u>B</u> <u>C</u> 1.0 0.0 1.0

Summary of Matrix Multiplication

```
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
  for (k=0; k<n; k++)
    sum += a[i][k] * b[k][j];
  c[i][j] = sum;
}
</pre>
```

```
for (k=0; k<n; k++) {
  for (i=0; i<n; i++) {
    r = a[i][k];
    for (j=0; j<n; j++)
    c[i][j] += r * b[k][j];
}</pre>
```

```
for (j=0; j<n; j++) {
  for (k=0; k<n; k++) {
    r = b[k][j];
    for (i=0; i<n; i++)
      c[i][j] += a[i][k] * r;
}</pre>
```

ijk (& jik):

- 2 loads, 0 stores
- misses/iter = 1.25

kij (& ikj):

- 2 loads, 1 store
- misses/iter = 0.5

jki (& kji):

- 2 loads, 1 store
- misses/iter = 2.0

Core i7 Matrix Multiply Performance

Today

- ▶ Cache organization and operation
- Performance impact of caches
 - ▶ The memory mountain
 - Rearranging loops to improve spatial locality
 - Using blocking to improve temporal locality

Example: Matrix Multiplication

```
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
   int i, j, k;
   for (i = 0; i < n; i++)
        for (j = 0; j < n; j++)
        for (k = 0; k < n; k++)
        c[i*n+j] += a[i*n + k]*b[k*n + j];
}</pre>
```


Cache Miss Analysis

Assume:

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)</p>

First iteration:

n/8 + n = 9n/8 misses

Afterwards in cache: (schematic)

Cache Miss Analysis

Assume:

- Matrix elements are doubles
- Cache block = 8 doubles
- Cache size C << n (much smaller than n)</p>

Second iteration:

Again: n/8 + n = 9n/8 misses

▶ Total misses:

 \rightarrow 9n/8 * n² = (9/8) * n³

Blocked Matrix Multiplication

Cache Miss Analysis

Assume:

- Cache block = 8 doubles
- Cache size C << n (much smaller than n)</p>
- ▶ Three blocks \blacksquare fit into cache: $3B^2 < C$

First (block) iteration:

- ▶ B²/8 misses for each block
- 2n/B * B²/8 = nB/4 (omitting matrix c)

Afterwards in cache (schematic)

n/B blocks

Cache Miss Analysis

Assume:

- Cache block = 8 doubles
- Cache size C << n (much smaller than n)</p>
- ▶ Three blocks \blacksquare fit into cache: $3B^2 < C$
- Second (block) iteration:
 - Same as first iteration
 - \rightarrow 2n/B * B²/8 = nB/4

Total misses:

 $nB/4 * (n/B)^2 = n^3/(4B)$

Summary

- No blocking: (9/8) * n³
- ▶ Blocking: $I/(4B) * n^3$
- ▶ Suggest largest possible block size B, but limit $3B^2 < C!$
- Reason for dramatic difference:
 - Matrix multiplication has inherent temporal locality:
 - ▶ Input data: 3n², computation 2n³
 - Every array elements used O(n) times!
 - But program has to be written properly

Concluding Observations

- Programmer can optimize for cache performance
 - How data structures are organized
 - How data are accessed
 - Nested loop structure
 - Blocking is a general technique
- All systems favor "cache friendly code"
 - Getting absolute optimum performance is very platform specific
 - ▶ Cache sizes, line sizes, associativities, etc.
 - Can get most of the advantage with generic code
 - Keep working set reasonably small (temporal locality)
 - Use small strides (spatial locality)

