

人工神經網絡及語言科技

蕭世昌

翻譯文學碩士(電腦輔助翻譯)課程主任 深度學習研究與應用中心主任

大綱

- 1. 自我介紹:關於講者
- 2. 重要概念:深度學習與類神經網路
- 3. 類神經網路在語言科技的應用: 以機器翻譯為 例
- 4. 實作:用Python寫一個簡單的類神經網路機器 翻譯系統

重要概念

深度學習的應用

AlphaGo

Speech recognition

Prediction

Image classification

Object detection

Self-driving cars and many more

深度學習

類神經網路

生物神經元

人工神經元

類神經網路:神經元連在一起

深度學習:Many 隱藏層!

類神經網路

示例:分類

類神經網路怎麼懂得分類?

訓練

Training data

INPUT	OUTPUT
	CAT
	DOG
	CAT
	CAT
	DOG

示例:分類

深度學習的三大重點

數據

機器

算法

圖形處理器

類神經網路在語言科技的應用

以機器翻譯為例

先看例子,再講理論

Neural machine translation often adopts the encoder-decoder architecture with recurrent neural networks (RNN) to model the translation process. The bidirectional RNN encoder which consists of a forward RNN and a backward RNN reads a source sentence $\mathbf{x}=x_1,x_2,...,x_{T_x}$ and transforms it into word annotations of the entire source sentence $\mathbf{h}=h_1,h_2,...,h_{T_x}$. The decoder uses the annotations to emit a target sentence $\mathbf{y}=y_1,y_2,...,y_{T_y}$ in a word-by-word manner.

In the training phase, given a parallel sentence (x, y), NMT models the conditional probability as follows.

$$P(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{T_y} P(y_i|\mathbf{y}_{<\mathbf{i}}, \mathbf{x})$$
(1)

where y_i is the target word emitted by the decoder at step i and $\mathbf{y}_{<\mathbf{i}} = y_1, y_2, ..., y_{i-1}$. The conditional probability $P(y_i|\mathbf{y}_{<\mathbf{i}},\mathbf{x})$ is computed as

$$P(y_i|\mathbf{y}_{<\mathbf{i}},\mathbf{x}) = softmax(f(s_i,y_{i-1},c_i)) \quad (2)$$

where $f(\cdot)$ is a non-linear function and s_i is the hidden state of the decoder at step i:

$$s_i = g(s_{i-1}, y_{i-1}, c_i)$$
 (3)

where $g(\cdot)$ is a non-linear function. Here we adopt Gated Recurrent Unit (Cho et al., 2014) as the recurrent unit for the encoder and decoder. c_i is the context vector, computed as a weighted sum of the annotations h:

$$c_i = \sum_{j=1}^{T_x} \alpha_{t,j} h_j \tag{4}$$

where h_j is the annotation of source word x_j and its weight $\alpha_{t,j}$ is computed by the attention model.

We train the attention-based NMT model by maximizing the log-likelihood:

$$C(\theta) = \sum_{n=1}^{N} \sum_{i=1}^{T_y} \log P(y_i^n | \mathbf{y}_{< i}^n, \mathbf{x}^n)$$
 (5)

given the training data with N bilingual sentences (Cho, 2015).

In the testing phase, given a source sentence \mathbf{x} , we use beam search strategy to search a target sentence $\hat{\mathbf{y}}$ that approximately maximizes the conditional probability $P(\mathbf{y}|\mathbf{x})$

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y}} P(\mathbf{y}|\mathbf{x}) \tag{6}$$

(http://aclweb.org/anthology/D17-1149)

兩個財經翻譯工具

機器翻譯原理

機器翻譯的三大傳統方法

Automatic Translation as a Prediction Problem: Given X, what is the next word?

Given the following:

```
ST: I / go / to / school / by / bus / . /
TT: 我 / 乘
```

Which of the following is most likely to be the next word?

公車

火車

學校

咖啡

電腦

翻譯

Neural Machine Translation as Multi-class Classification

如何訓練?

Training data

INPUT	OUTPUT
I go to school by bus.	我乘公車上學去。
This is a cup.	這是一個杯子。
How old are you?	你幾歲?
Good morning.	早上好。
Where is he?	他在哪裡?

預測結果

標準答案

0.02	你	0	
0.95	我	1	
0.03	他	0	
0	乘	0	
0	走	0	
0	跑	0	
0	公車	0	
0	計程車	0	
0	火車	0	
0	去	0	
0	來	0	
0	學校	0	
0	公司	0	
0	公園	0	
			ر

接下來的問題是

How?

除了機器翻譯之外, 還有其他NLP應用嗎?

情感分析

自動摘要

聊天機器人

寫作批改

實作

工具

• 程式語言: Python

• 編程平台: Google Colab

• 支援工具:Tensorflow,還有一個預先寫好的模 組

寫程式不過是翻譯而已。

自然語言 電腦語言

要點

- 1. 設置 Google Colab Notebook
- 2. 寫幾行Python代碼試試看
- 3. 了解流程:建置一個簡單的類神經網路翻譯系統
- 4. 試試看!

個人Twitter: ainow6

謝謝!