2	(a)	State the two conditions for a system to be in equilibrium.
---	-----	---

1	 	 	 	
2				
	 	 	 	121

(b) A paraglider P of mass 95 kg is pulled by a wire attached to a boat, as shown in Fig. 2.1.

Fig. 2.1

The wire makes an angle of 25° with the horizontal water surface. P moves in a straight line parallel to the surface of the water.

The variation with time t of the velocity v of P is shown in Fig. 2.2.

Fig. 2.2

(i)	Show that the acceleration of P is $1.4 \mathrm{ms^{-2}}$ at time $t = 5.0 \mathrm{s}$.
(ii)	Calculate the total distance moved by P from time $t=0$ to $t=7.0\mathrm{s}$.
(iii)	$\mbox{distance} = \mbox{m} \ [2]$ Calculate the change in kinetic energy of P from time $t = 0$ to $t = 7.0 \mbox{s}.$
(iv)	change in kinetic energy =
	1. the vertical lift force F supporting P , $F = \dots N [3]$ 2. the force R due to air resistance acting on P in the horizontal direction.
	R =N [3]

[Total: 14]