

THEME n°1 Un premier voyage au cœur de la matière

Fiche de réussite chapitre 1 Constituants de la matière : des atomes aux ions

Je suis capable de :	Je m'évalue
connaître la structure des atomes (protons, électrons, neutrons), sa neutralité.	
utiliser le tableau périodique pour connaître le symbole d'un atome et sa structure.	
utiliser le tableau périodique pour connaître la structure des ions (protons, électrons).	
écrire des formules et des noms de solutions ioniques.	
mettre en œuvre des tests caractéristiques d'ions par réaction de précipitation.	
identifier le caractère acide ou basique d'une solution par mesure de pH.	
associer le caractère acide et basique à la présence d'ions H+ et HO-	
connaître les réactions acidobasiques et les réactions entre acides et métaux.	
équilibrer une équation chimique Connaître les éléments principaux, leurs symboles, leurs modèles. Même chose pour les principales molécules.	

Activités documentaires

Les atomes, les ions et les solutions ioniques

1. Constitution des atomes (revoir vidéo sur le site)

Nous voyons en classe de 4ème que la matière est constituée d'atomes souvent liés entre eux pour former des molécules.

Les atomes sont constitués de particules élémentaires positives (les protons), de particules neutres (les neutrons) et de particules négatives (les électrons).

Le nombre de protons est donné par le numéro atomique Z.

Le nombre de nucléons est donné par le nombre de masse A.

Le nombre de neutrons est donné par le calcul A - Z.

Le nombre d'électrons est le même que le nombre de protons dans un atome.

1																	18
1 H hydrogène	2											13	14	15	16	17	4 He hélium
7 3 Li lithium	9 Be béryllium	Nombre de masse Numéro atomique A X Symbole de l'élément nom					5 B bore	¹² C carbone	7 N azote	16 8 O oxygène	9 F fluor	10 Ne néon					
11 Na sodium	12 Mg magnésium	3	4	5	6	7	8	9	10	11	12	13 AL aluminium	28 14 Silicium	³¹ ₁₅ P phosphore	32 S 16 S soufre	17 CL chlore	18 Ar argon
19 K potassium	40 Ca	21 Sc scandium	48 Ti titane	51 V vanadium		55 25 Mn manganèse	⁵⁶ Fe	⁵⁹ Co cobalt	58 Ni 28 Ni nickel	⁶³ Cu cuivre	⁶⁴ Zn zinc	69 31 Ga gallium	74 32 Ge germanium	75 33 As arsenic	Selénium	79 35 Br brome	36 Kr krypton
85 37 Rb rubidium	88 38 Sr strontium	89 39 Yttrium	90 Zr zirconium	93 41 Nb niobium	98 42 Mo molybděne	98 Tc 43 Tc technétium	102 44 Ru ruthénium	103 45 Rh rhodium	106 46 Pd palladium	¹⁰⁷ Ag argent	114 Cd cadmium	115 49 In Indium	50 Sn étain	51 Sb antimoine	130 Te tellure	127 53 lode	129 54 Xe xénon
133 55 Cs césium	138 56 Ba baryum		180 72 Hf hafnium	¹⁸¹ ₇₃ Ta	184 W 74 tungstène	187 75 Re rhénium	76 Os osmium	193 77 Ir	78 Pt	¹⁹⁷ ₇₉ Au	80 Hg	205 81 TL thallium	208 82 Plomb	209 83 Bi bismuth	210 Po 84 Po polonium	85 At astate	86 Rn radon
223 87 Fr francium	226 88 Ra radium		261 104 Rf rutherfordium	105 Db dubnium	- 106 Sg seaborgium	107 Bh	108 Hs	109 Mt meitnerium	110 Ds damstadtium				114 FL flerovium	115 Mc moscovium		117 Ts tennessine	118 Og oganesson

Trouve les particules élémentaires constituant les atomes de plomb, cadmium, potassium et azote. Précise pour chaque type de particule si elle fait partie du noyau de l'atome ou de sa périphérie.

Plomb: 82 protons (dans le noyau) et 126 neutrons (dans le noyau); 82 électrons (en périphérie).

Cadmium: 48 protons et 66 neutrons (dans le noyau);48 électrons (en périphérie).

Potassium: 19 protons et 20 neutrons (dans le noyau); 19 électrons (en périphérie).

Azote: 7 protons et 7 neutrons (dans le noyau); 7 électrons (en périphérie).

2. Constitution des ions

Le physicien anglais Michael Faraday introduit la notion d'ions qui signifie « qui va » en grec, du fait qu'ils sont responsables de la conduction électrique dans les solutions. Les ions sont des atomes (ou groupement d'atomes) dont les cortèges électroniques ont perdu ou gagné des électrons.

• L'ion chlorure possède le même nombre de charges positives que l'atome de chlore mais son cortège électronique possède un électron en plus. L'ion chlorure n'est pas électriquement neutre : il a une charge électrique négative.

• L'ion sodium possède le même nombres de charges positives que l'atome de sodium mais son cortège électronique possède un électron en moins. L'ion sodium n'est pas électriquement neutre : il a une charge électrique positive.

lons polyatomiques: Dans le cas d'ions plus complexes, c'est l'ensemble du groupement qui a gagné ou perdu un ou plusieurs électrons.

Exemple: l'ion sulfate.

L'atome de soufre et les quatre atomes d'oxygène ont gagné deux électrons.

CATIONS ANIONS

Noms chimiques	Formules	Noms chimiques	Formules	
Ion hydrogène	H ⁺	Ion fluorure	F-	
Ion sodium	Na ⁺	lon chlorure	CI-	
Ion calcium	Ca ²⁺	Ion bromure	Br-	
Ion potassium	K ⁺	Ion hydroxyde	HO-	
Ion fer II	Fe ²⁺	Ion nitrate	NO ₃	
Ion fer III	Fe ³⁺	Ion sulfate	SO ₄ ²⁻	
lon cuivre	Cu ²⁺	Ion permanganate	MnO ₄	
lon zinc	Zn ²⁺	Ion hydrogénocarbonate	HCO ₃	
Ion aluminium	Al ³⁺	Ion carbonate	CO ₃ ²⁻	
Ion argent	Ag ⁺	Ion iodure	I-	
Ion chrome	Cr3+	Ion oxygène	O ²⁻	

Trouve les particules élémentaires constituant les ions encadrés en rouge dans le tableau.

Na⁺: 11 protons; 10 électrons; 12 neutrons. *C*'est un cation. Cl^- : 17 protons; 18 électrons; 18 neutrons. *C*'est un anion. Fe²⁺: 26 protons; 24 électrons; 30 neutrons. *C*'est un cation. Fe³⁺: 26 protons; 23 électrons; 30 neutrons. *C*'est un cation. Cu^{2+} : 29 protons; 27 électrons; 34 neutrons. *C*'est un cation.

4. Tests ioniques

Pour savoir s'il y a présence en solution aqueuse de certains ions, on peut procéder à <u>des tests de reconnaissance</u>. Si en versant quelques gouttes d'un réactif révélateur, un précipité coloré apparaît (solide obtenu par réaction entre deux liquides), alors sa couleur indique la présence d'un type d'ion particulier dans la solution.

Nom de l'ion et formule	Ion fer II ou ion ferreux Fe ²⁺	lon fer III ou ion ferrique Fe ³⁺	lon zinc Zn ²⁺	lon cuivre Cu ²⁺	lon chlorure Cl -
Réactif versé	Solution de soude	Solution de soude	Solution de soude	Solution de soude	Solution de nitrate d'argent
Couleur du précipité	Vert	Rouille	Blanc	Bleu	Blanc qui noircit avec la lumière

......Zn²⁺...... Fe²⁺...... Cu²⁺...... Cl -..... Fe³⁺......