Statistik – Methoden zum Vergleich von zwei Gruppen

Kontingenzanalysen

Einleitung

- Kontingenztabelle als Werkzeug der Deskriptiven Statistik
- Darstellung der Häufigkeiten von Kombinationen bestimmter Merkmalsausprägungen
- Gemeinsames Auftreten von zwei Merkmalen
- Auf Basis der Kontingenztabelle wird in der Kontingenzanalyse der Zusammenhang von Merkmalen überprüft
- Geeignet für nominal oder ordinal skalierte Merkmale

- Der χ2-Test wird eingesetzt um:
 - zu überprüfen, ob ein gegebener Datensatz der angenommenen Verteilung entspricht (Anpassungstest)
 - zu pr
 üfen, ob ein bestimmter Faktor Einfluss auf die Ergebnisse eines Prozesses hat (Unabh
 ängigkeitstest)
- Der Test kann für beliebige Anzahlen von Faktoren und Ergebnissen durchgeführt werden

Voraussetzungen

- Nominal oder ordinal skalierte Daten
- Mindestens 50 Datenpunkte
- Daten liegen in Absolutwerten vor

Anpassungstest

Für einen Würfel ist die Wahrscheinlichkeit eine bestimmte Zahl zu würfeln gleich 1/6. Bei einem Wurf sind alle Zahlen gleich wahrscheinlich. Bei einer großen Anzahl von Würfen sollten die Ergebnisse für die jeweiligen Augenzahlen also annähernd gleich sein. Ein Versuch mit 600 Würfen führt zu folgenden Ergebnissen:

Augen	1	2	3	4	5	6
Würfe	112	97	123	103	104	61

Anpassungstest

- *H*₀ Der Datensatz entspricht der angenommenen Verteilung
- H₁ Der Datensatz entspricht **nicht** der angenommenen Verteilung

$$\chi^2 \ge \chi^2_{kritisch}$$
 Verwerfen der Nullhypothese

Durchführung des Anpassungstests am Beispiel Münze

Wir werfen 100 mal eine Münze und erhalten 66 mal Zahl und 34 mal Adler. Kann diese Verteilung von Zahl und Adler zufällig sein oder stimmt etwas mit der Münze nicht?

Aufstellen der Kontingenztabelle

	Beobachtet $oldsymbol{h_b}$	Erwartet $oldsymbol{h_e}$
Zahl	66	50
Adler	34	50

Durchführung des Anpassungstests am Beispiel Münze

Teststatistik

$$\chi^2 = \sum_{i=1}^g rac{\left(h_{b,i} - h_{e,i}
ight)^2}{h_{e,i}}$$
mit g Anzahl der Kategorien

h_{b,i} Beobachtete Häufigkeit i

Erwartete Häufigkeit i

$$\chi^2 = \frac{(66-50)^2}{50} + \frac{(34-50)^2}{50} = 5, 12 + 5, 12 = 10, 24$$

								χ²-Vert	teilung						
	Γ								χ						
	dof	0,001	0,005	0,010	0,025	0,050	0,100	0,250	0,500	0,750	0,900	0,950	0,975	0,990	0,995
	1	10,828	7,879	6,635	5,024	3,841	2,706	1,323	0,455	0,105	0,0158	0,00393	0,00098	0,00016	0,000039
	2	13,816	10,597	9,210	7,378	5,991	4,605	2,773	1,386	0,575	0,211	0,103	0,051	0,020	0,010
	3	16,266	12,838	11,345	9,348	7,815	6,251	4,108	2,366	1,213	0,584	0,352	0,216	0,115	0,072
	4	18,467	14,860	13,277	11,143	9,488	7,779	5,385	3,357	1,923	1,064	0,711	0,484	0,297	0,207
	5	20,515	16,750	15,086	12,832	11,070	9,236	6,626	4,351	2,675	1,610	1,145	0,831	0,554	0,412
	6	22,458	18,548	16,812	14,449	12,592	10,645	7,841	5,348	3,455	2,204	1,635	1,237	0,872	0,676
	7	24,322	20,278	18,475	16,013	14,067	12,017	9,037	6,346	4,255	2,833	2,167	1,690	1,239	0,989
	8	26,125	21,955	20,090	17,535	15,507	13,362	10,219	7,344	5,071	3,490	2,733	2,180	1,646	1,344
	9	27,877	23,589	21,666	19,023	16,919	14,684	11,389	8,343	5,899	4,168	3,325	2,700	2,088	1,735
	10	29,588	25,188	23,209	20,483	18,307	15,987	12,549	9,342	6,737	4,865	3,940	3,247	2,558	2,156
	11	31,264	26,757	24,725	21,920	19,675	17,275	13,701	10,341	7,584	5,578	4,575	3,816	3,053	2,603
	12	32,909	28,300	26,217	23,337	21,026	18,549	14,845	11,340	8,438	6,304	5,226	4,404	3,571	3,074
(df)	13	34,528	29,819	27,688	24,736	22,362	19,812	15,984	12,340	9,299	7,042	5,892	5,009	4,107	3,565
	14	36,123	31,319	29,141	26,119	23,685	21,064	17,117	13,339	10,165	7,790	6,571	5,629	4,660	4,075
ad	15	37,697	32,801	30,578	27,488	24,996	22,307	18,245	14,339	11,036	8,547	7,261	6,262	5,229	4,601
Freiheitsgrade	16	39,252	34,267	32,000	28,845	26,296	23,542	19,369	15,338	11,912	9,312	7,962	6,908	5,812	5,142
its	17	40,790	35,718	33,409	30,191	27,587	24,769	20,489	16,338	12,792	10,085	8,672	7,564	6,408	5,697
ihe	18	43,312	37,156	34,805	31,526	28,869	25,989	21,605	17,338	13,675	10,865	9,390	8,231	7,015	6,265
-r	19	43,820	38,582	36, 191	32,852	30,144	27,204	22,178	18,338	14,562	11,651	10,117	8,907	7,633	6,844
٦Ł	20	45,315	39,997	37,566	34,170	31,410	28,412	23,828	19,337	15,452	12,443	10,851	9,591	8,260	7,434
der	21	46,797	41,401	38,932	35,479	32,671	29,615	24,935	20,337	16,344	13,240	11,591	10,283	8,897	8,034
Anzahl	22	48,268	42,796	40,289	36,781	33,924	30,813	26,039	21,337	17,240	14,041	12,338	10,982	9,542	8,643
nzi	23	49,728	44,181	41,638	38,076	35,172	32,007	27,141	22,337	18,137	14,848	13,091	11,688	10, 196	9,260
A	24	51,179	45,558	42,980	39,364	36,415	33,196	28,241	23,337	19,037	15,659	13,848	12,401	10,856	9,886
	25	52,620	46,928	44,314	40,646	37,652	34,382	29,339	24,337	19,939	16,473	14,611	13,120	11,524	10,520
	26	54,052	48,290	45,642	41,923	38,885	35,563	30,434	25,336	20,843	17,292	15,379	13,844	12,198	11,160
	27	55,476	49,645	46,963	43,194	40,113	36,741	31,528	26,336	21,749	18,114	16,151	14,573	12,879	11,808
	28	56,892	50,993	48,278	44,461	41,337	37,916	32,620	27,336	22,657	18,939	16,928	15,308	13,565	12,461
	29	58,302	52,336	49,588	45,722	42,557	39,087	33,711	28,336	23,567	19,768	17,708	16,047	14,256	13,121
	30	59,703	53,672	50,892	46,979	43,773	40,256	34,800	29,336	24,478	20,599	18,493	16,791	14,953	13,787
	40	73,402	66,766	63,691	59,342	55,758	51,805	45,616	39,335	33,660	29,051	26,509	24,433	22,164	20,707
	50	86,661	79,490	76, 154	71,420	67,505	63,167	56,334	49,335	42,942	37,689	34,764	32,357	29,707	27,991
	60	99,607	91,952	88,379	83,298	79,082	74,397	66,981	59,335	52,294	46,459	43,188	40,482	37,485	35,535
	70	112,317	104,215	100,425	95,023	90,531	85,527	77,577	69,334	61,698	55,329	51,739	48,758	45,442	43,275
	80	124,839	116,321	112,329	106,629	101,879	96,578	88,130	79,334	71,145	64,278	60,391	57,153	53,540	51,172
	90	137,208	128,299	124,116	118,136	113,145	107,565	98,650	89,334	80,625	73,291	69,126	65,647	61,754	59,196
	100	149,449	140,169	135,561	129,561	124,342	118,498	109,141	99,334	90,133	82,358	77,929	74,222	70,065	67,328

Durchführung des Anpassungstests am Beispiel Münze

Anzahl der Freiheitsgrade

Parameter der χ^2 -Verteilung sind die Freiheitsgrade des Systems und die zulässige Irrtumswahrscheinlichkeit α

$$dof = k - 1$$

k : Anzahl der möglichen Ergebnisse

Zahl oder Adler

$$k = 2$$

$$k = 2$$
 $dof = 2 - 1 = 1$

1, 2, 3, 4, 5 oder 6

$$k = 6$$

$$k = 6$$
 $dof = 6 - 1 = 5$

Durchführung des Anpassungstests am Beispiel Münze

Hier: 2 mögliche Ausgänge dof = 1

Für 1- α =95% ergibt sich:

$$\chi^2 = 10,24 > \chi^2_{kritisch} = 3,841$$

> pchisq(c(10.24), df=1, lower.tail=FALSE)
[1] 0.001374276

Wir verwerfen die Nullhypothese, die erwarteten Werte folgen nicht der vorgegebenen Verteilung

Berechnung in R

Wir müssen unsere Berechnung direkt in RStudio durchführen, der RCommander hilft hier nicht

Daten eingeben

```
> obs<-c(66,34) ## Die beobachteten Werte
> erw<-c(0.5,0.5) ## Die Erwartung
```

Berechnung

```
> chisq.test(x=obs,p=erw)
```

Berechnung in R

Alternativ können wir die Dateneingabe auch über den RCommander ausführen

Beobachtung und Erwartung kann aus einer bestehenden Datenmatrix eingelesen werden

Beispiel: Die Zahlenwerte befinden sich in den Spalten Obsund erw der Datenmatrix Dataset

Berechnung

> with (Dataset, chisq.test(x=obs, p=erw))

Berechnung in R

Ergebnisse für beide Eingabearten

Chi-squared test for given probabilities

data: obs

X-squared = 10.24, df = 1, p-value = 0.001374

- Liegen die beobachteten Werte nah bei den erwarteten Werten, so wird $\chi 2$ klein
- Für kleine χ2-Werte weisen wir also die Alternativhypothese zurück
- Übersteigt $\chi 2$ einen bestimmten kritischen Wert, so nehmen wir die Alternativhypothese an
- Die kritischen Werte der $\chi 2$ -Verteilung sind für bestimmte Freiheitsgrade und Signifikanzniveaus tabelliert
- Die Werte für die erwartete Häufigkeit müssen größer 5 sein, ansonsten kommt es zu einer Verfälschung der Ergebnisse

Durchführung des Unabhängigkeitstest am Beispiel Maschinenvergleich

Ein Teil kann auf drei verschiedenen Maschinen gefertigt werden.

Y: Qualität

	Maschine A	Maschine B	Maschine C
i.O Teile	4385	2112	548
Nacharbeit	66	17	5
Ausschuss	92	6	1

x: Maschine

Hat die Wahl der Maschine Einfluss auf die Qualität meiner Ergebnisse?

Unabhängigkeitstest

- H₀ Es besteht kein Zusammenhang zwischen
 Maschine und Fehler (Unabhängigkeit)
- H₁ Es besteht ein Zusammenhang zwischen Maschine und Fehler (Abhängigkeit)

$$\chi^2 \ge \chi^2_{kritisch}$$
 Verwerfen der Nullhypothese

Durchführung des Unabhängigkeitstest am Beispiel Maschinenvergleich

Zuerst müssen Erwartungswerte bestimmt werden

Formel h_e = Zeilensumme * Spaltensumme / Anzahl der Fälle

Beispiel: Erwartungswert für Maschine B (2135) – Nacharbeit (88)

$$h_e = \frac{2135 * 88}{7232} = 25,98$$

Durchführung des Unabhängigkeitstest am Beispiel Maschinenvergleich

		Maschine A	Maschine B	Maschine C	Alle
i.	O. Teile	4425,53	2079,79	539,68	7045
N	lacharbeit	55,28	25,98	6,74	88
A	usschuss	62,19	29,23	7,58	99
Α	lle	4543	2135	554	7232

Durchführung des Unabhängigkeitstest am Beispiel Maschinenvergleich

Teststatistik

$$\chi^2 = \sum_{i=1}^{s} \sum_{j=1}^{z} \frac{\left(h_{b,ij} - h_{e,ij}\right)^2}{h_{e,ij}}$$
 Summation über Spalten(s) und Zeilen (z)

	Maschine A	Maschine B	Maschine C
i.O. Teile	0,371	0,499	0,128
Nacharbeit	2,079	3,103	0,450
Ausschuss	14,289	18,458	5,716

Die einzelnen Beiträge zum χ^2 -Wert

Aufsummiert
$$\chi^2 = 45,093$$

Durchführung des Unabhängigkeitstest an Beispiel Maschinenvergleich

Anzahl der Freiheitsgrade

$$dof = (Anzahl der Zeilen - 1) * (Anzahl der Spalten - 1)$$

$$dof = 4$$

Für 1- α =95% ergibt sich:

$$\chi^2 = 45,093 > \chi^2_{kritisch} = 9,488$$

> pchisq(c(45.093), df=4, lower.tail=FALSE)
[1] 0.0000000380282

Wir wechseln zur Alternativhypothese, es gibt einen signifikanten Zusammenhang zwischen Maschine und Fehler

Berechnung in R

Wir müssen unsere Berechnung direkt in RStudio durchführen, der RCommander hilft hier nicht

Daten eingeben und darstellen

Berechnung in R

Berechnung

> chisq.test(data)

Ergebnisse

Pearson's Chi-squared test

data: data X-squared = 45.093, df = 4, p-value = 3.802e-09

- Andere Bezeichnungen: Fisher-Yates-Test, exakter Chi-Quadrat-Test
- Test auf Unabhängigkeit in Kontingenztafeln
- Falls Anforderungen des Chi-Quadrat-Unabhängigkeitstest hinsichtlich Datenmenge nicht erfüllt werden können
- Keine expliziten Anforderungen an den Test
- Ursprünglich für 2x2-Kontingenztafeln entwickelt, der Test ist aber auf größere Systeme übertragbar

Hypothesen

- H₀ Spalten- und Zeilenvariablen sind von einander unabhängig
- H₁ Es besteht ein Zusammenhang Spalten und Zeilen, Spalten- und Zeilenvariablen sind <u>nicht</u> von einander unabhängig

Durchführung im RCommander

Beispieldaten

	Männlich	Weiblich
Raucher	13	10
Nichtraucher	37	40

Fisher's Exact Test for Count Data

data: .Table

p-value = 0.6353

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.4980849 4.0439597

sample estimates:

odds ratio

1.400613

(Odds Ratio: Chancenverhältnis)

Beide Tests verbleiben in der Nullhypothese, es gibt keine Spalten-/Zeilenabhängigkeit

Angepasste Durchführung im RCommander bzw. RStudio

Für das Beispiel Maschinen / Fehler erhält man folgende Ausgabe:

```
FEHLER: FEXACT Fehler 6 (f5xact). LDKEY=577 ist für dieses Problem zu klein
```

- Berechnungsabbruch, Datenmenge reicht für einen Chi-Quadrat-Test aus
- Will man trotzdem den Exakten Test nach Fischer anwenden: Funktionsaufruf in RStudio oder im RCommander abändern
- Hintergrund: Hoher Speicher-/Rechenzeitbedarf für Fishers exakten Test
- Abhilfe: Monte Carlo-Simulation des p-Wertes

Angepasste Durchführung im RCommander bzw. RStudio

- *Ursprünglicher Aufruf:* fisher.test(.Table)
- Geänderter Aufruf: fisher.test(.Table,simulate.p.value=TRUE)

```
Fisher's Exact Test for Count Data with simulated p-value (based on 2000 replicates)
```

```
data: .Table
p-value = 0.0004998
alternative hypothesis: two.sided
```

 Verwerfen der Nullhypothese, Wechsel in die Alternativhypothese, es gibt einen signifikanten Spalten-/Zeilenzusammenhang

- Assoziationsmaße: Maß für die Abhängigkeit bzw. Unabhängigkeit von Variablen
- Bekannte Beispiele: Korrelationskoeffizient r
- Sollten im allgemeinen im Intervall [0;1] bzw. [-1;+1] liegen
- 0 Völlige Unabhängigkeit
- -1 bzw. +1 maximale Abhängigkeit

Beispiele Phi und Jules Q

	X = 1	X = 2	Σ
Y = 1	а	b	a + b
Y = 2	С	d	c + d
Σ	a + c	b + d	a+b+c+d

Vierfelder-Tabelle

$$\varphi = \frac{ad - bc}{\sqrt{(a+b)(c+d)(a+c)(b+d)}}$$

$$Q = \frac{ad - bc}{ad + bc}$$

Beispiele Phi und Jules Q

	Männlich	Weiblich
Raucher	13	10
Nichtraucher	37	40

$$\varphi = \frac{13 * 40 - 37 * 10}{\sqrt{(13 + 10)(37 + 40)(13 + 37)(10 + 40)}} = 0,071$$

$$Q = \frac{13 * 40 - 10 * 37}{13 * 40 + 10 * 37} = 0,169$$

Beide Werte liegen nahe 0, ein Zusammenhang zwischen Geschlecht und Rauchverhalten ist nicht belegbar

```
M F Total
R 13 10 23
NR 37 40 77
Total 50 50 100
```

Pearson's Chi-squared test

```
data: .Table
X-squared = 0.50819, df = 1, p-value = 0.4759
```

 $p > \alpha$ Es gilt die Nullhypothese, das Rauchverhalten ist unabhängig vom Geschlecht