Random Forest

—、Random Forest Algorithm

1. 想到tree就会想到森林,我们试图用aggregation of aggregation来提高算法的效果。

Random Forest

Random Forest Algorithm

Random Forest (RF)

random forest (RF) = bagging + fully-grown C&RT decision tree

function RandomForest(\mathcal{D}) For t = 1, 2, ..., T

- 1 request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- ② obtain tree g_t by $\mathsf{DTree}(\tilde{\mathcal{D}}_t)$ return $G = \mathsf{Uniform}(\{g_t\})$

function DTree(\mathcal{D}) if termination return base g_t else

- 1 learn $b(\mathbf{x})$ and split \mathcal{D} to \mathcal{D}_c by $b(\mathbf{x})$
- 2 build $G_c \leftarrow \mathsf{DTree}(\mathcal{D}_c)$
- 3 return $G(\mathbf{x}) = \sum_{c=1}^{C} [b(\mathbf{x}) = c] G_c(\mathbf{x})$
- highly parallel/efficient to learn
- inherit pros of C&RT
- eliminate cons of fully-grown tree

对比一下,由于数据量有限,我们使用boostrap来随机取样得到N'大小的样本然后学习出一颗decision tree然后再对每一棵树做uniform vote,bagging然后就得到了最后的G

注意我们这里用的是 **fully grown**的tree而不是通过剪枝得到的树,实际上加入剪枝操作会效果更好,这里我们就考虑randomness这一点上我们可以改善多个树的作用

2. 我们此处使用的RF算法实际上是取了样本的一个随机的子空间来形成树所以总结出RF的特点如下:

RF = bagging + random-subspace C&RT

二、Out-Of-Bag (OOB) Estimate

1. 首先回顾一下bagging算法:

Bagging Revisited

Bagging

function Bag(\mathcal{D}, \mathcal{A}) For t = 1, 2, ..., T

- 1 request size-N' data $\tilde{\mathcal{D}}_t$ by bootstrapping with \mathcal{D}
- ② obtain base g_t by $\mathcal{A}(\tilde{\mathcal{D}}_t)$ return $G = \text{Uniform}(\{g_t\})$

	<i>g</i> ₁	<i>g</i> ₂	<i>g</i> ₃	• • •	gт
(x_1, y_1)	$ ilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$		$ ilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_2, y_2)	*	*	$ ilde{\mathcal{D}}_{3}$		$ ilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_3, y_3)	*	$ ilde{\mathcal{D}}_{2}$	*		$ ilde{\mathcal{D}}_{\mathcal{T}}$
(\mathbf{x}_N, y_N)	$\tilde{\mathcal{D}}_1$	$ ilde{\mathcal{D}}_{2}$	*		*

 \star in *t*-th column: not used for obtaining g_t —called **out-of-bag (OOB) examples** of g_t

2. 我们通过随机取样的方法来获得 $\widetilde{D_t}$,现在我们考虑没有被选择中的样本,在这里我们称之为 OOB examples,我们对于N'=N情况下OOB的样本概率进行估计,

$$(1 - \frac{1}{N})^N \approx \frac{1}{e} \tag{1}$$

3. 我们对于OOB和Validation做一个比较:

OOB versus Validation

OOR							
		<i>g</i> ₁	<i>g</i> ₂	<i>g</i> ₃		9 т	
	$({\bf x}_1, y_1)$	$ ilde{\mathcal{D}}_1$	*	$ ilde{\mathcal{D}}_3$		$ ilde{\mathcal{D}}_{\mathcal{T}}$	
	(\mathbf{x}_2, y_2) (\mathbf{x}_3, y_3)	*	*	$ ilde{\mathcal{D}}_3$		$ ilde{\mathcal{D}}_{\mathcal{T}}$	
	(\mathbf{x}_3, y_3)	*	$ ilde{\mathcal{D}}_{2}$	*		$ ilde{\mathcal{D}}_{\mathcal{T}}$	
	• • • •						
	(\mathbf{x}_N, y_N)	$\mathcal{ ilde{D}}_{1}$	*	*		*	

validation					
g_1^-	g_2^-		g_{M}^{-}		
\mathcal{D}_{train}	\mathcal{D}_{train}		\mathcal{D}_{train}		
\mathcal{D}_{val}	\mathcal{D}_{val}		\mathcal{D}_{val}		
\mathcal{D}_{val}	\mathcal{D}_{val}		\mathcal{D}_{val}		
\mathcal{D}_{train}	\mathcal{D}_{train}		\mathcal{D}_{train}		

- \star like \mathcal{D}_{val} : 'enough' random examples unused during training
- use ⋆ to validate g_t? easy, but rarely needed
- use \star to validate G? $E_{\text{oob}}(G) = \frac{1}{N} \sum_{n=1}^{N} \operatorname{err}(y_n, G_n^-(\mathbf{X}_n))$, with G_n^- contains only trees that \mathbf{X}_n is OOB of,

such as $G_N^-(\mathbf{x}) = \text{average}(g_2, g_3, g_T)$

E_{oob}: self-validation of bagging/RF

4. 我们可以通过衡量 E_{oob} 来衡量RF的效果,这种可以看作是RF的一个self-validation的优势!因此我们也可以利用 E_{oob} 来选择模型,一般情况下它甚至比一般的validation效果要好

Out-Of-Bag Estimate

Model Selection by OOB Error

Previously: by Best E_{val}

$$g_{m^*} = \mathcal{A}_{m^*}(\mathcal{D})$$
 $m^* = \underset{1 \le m \le M}{\operatorname{argmin}} E_m$

$$E_m = E_{\text{val}}(A_m(\mathcal{D}_{\text{train}}))$$

RF: by Best Eoob

$$G_{m^*} = RF_{m^*}(\mathcal{D})$$
 $m^* = \underset{1 \le m \le M}{\operatorname{argmin}} E_m$

- $E_m = E_{oob}(RF_m(\mathcal{D}))$
- use E_{oob} for self-validation
 of RF parameters such as d"
- no re-training needed

Eoob often accurate in practice

三、Feature Selection

1. decision tree是一个具有内在特征选择机制的模型,这在大部分模型当中是很少出现的:

Feature Selection

for $\mathbf{x} = (x_1, x_2, \dots, x_d)$, want to remove

- redundant features: like keeping one of 'age' and 'full birthday'
- irrelevant features: like insurance type for cancer prediction

and only 'learn' **subset-transform** $\Phi(\mathbf{x}) = (x_{i_1}, x_{i_2}, x_{i_{d'}})$

with d' < d for $g(\mathbf{\Phi}(\mathbf{x}))$

advantages:

- efficiency: simpler hypothesis and shorter prediction time
- generalization: 'feature noise' removed
- interpretability

disadvantages:

- computation: 'combinatorial' optimization in training
- overfit: 'combinatorial' selection
- mis-interpretability

decision tree: a rare model with built-in feature selection

可以达到摒弃不相关和多余特征的效果,类似于一种降维的方法

- 2. 总结一下决策树的优劣:
- 优势:

。 高效: 用简单的假设构成的预测

。 泛化能力:摒弃了特征的噪声 (不相关和多余的特征)

。 可解释性: 符合人类决策

• 劣势:

计算力:训练过程时间长过拟合:特征选择过多解释性差:理论基础不坚固

3. 特征选择机制: 重要性原则,适用于线性模型,权重的大小代表着重要性

Feature Selection by Importance

idea: if possible to calculate

importance(i) for
$$i = 1, 2, ..., d$$

then can select $i_1, i_2, \dots, i_{d'}$ of top-d' importance

importance by linear model

$$score = \mathbf{w}^T \mathbf{x} = \sum_{i=1}^d w_i x_i$$

- intuitive estimate: importance(i) = $|w_i|$ with some 'good' w
- getting 'good' w: learned from data
- non-linear models? often much harder
- 4. **特征选择机制:全排列测试**,适用于**非线性模型**,去掉此特征后,表现的衰弱程度作为评判重要性的原则!

Feature Importance by Permutation Test

idea: random test

—if feature i needed, 'random' values of $x_{n,i}$ degrades performance

- which random values?
 - uniform, Gaussian, . . .: P(xi) changed
 - bootstrap, **permutation** (of $\{x_{n,i}\}_{n=1}^{N}$): $P(x_i)$ approximately remained
- permutation test:

 $importance(i) = performance(\mathcal{D}) - performance(\mathcal{D}^{(p)})$

with $\mathcal{D}^{(p)}$ is \mathcal{D} with $\{x_{n,i}\}$ replaced by permuted $\{x_{n,i}\}_{n=1}^{N}$

permutation test: a general statistical tool for arbitrary non-linear models like RF

5. 在原始的随机森林模型中我们采用的特征重要性度量方法: 我们结合permutation作为重要性度量,利用OOB-Validation作为Error度量

四、Random Forest in Action

需要足够多的树来保证稳定性!