SASTRA DEEMED UNIVERSITY

(A University under section 3 of the UGC Act, 1956)

End Semester Examinations

May 2023

Course Code: MAT301R01

Course: ENGINEERING MATHEMATICS - IV

QP No.: U157-4

Duration: 3 hours

Max. Marks:100

PART-A

Answer all the questions

 $10 \times 2 = 20 \text{ Marks}$

- 1. Find the PDE of all planes cutting equal intercepts from the x and y axis.
- 2. Solve the equation $py = 2yx + \log q$.
- 3. Find the particular integral of the one-dimensional wave equation for the vibration of string model $\frac{\partial^2 y}{\partial t^2} a^2 \frac{\partial^2 y}{\partial x^2} = E \sin pt$.
- 4. State and prove the modulation theorem on Fourier transform.
- 5. Find the signal f(t) if its sine transform is e^{-as} .
- 6. If the approximate value of the root of equation $x^x = 1000$ is 4.5, find a better approximation of the root by the Newton-Raphson method.
- 7. Find the second-degree polynomial fitting the following data:

X	1	2	4		
у	4	5	13		

8. The velocity of a particle that starts from rest is given in the following table.

t(sec.)	0	2	4	6	8	10	12	14	16	18	20	
v (ft/sec.)	0	16	29	40	46	51	32	18	8	3	0	

Estimate the total distance traveled in 20 seconds using Trapezoidal rule.

9. For the following mesh in solving $\nabla^2 u = 0$ find one set of rough values of u at interior mesh points.

10. Express $a^2 u_{xx} = u_{tt}$ in terms of difference quotients.

PART-B

Answer all the questions

 $4 \times 15 = 60 \text{ Marks}$

11. a) Solve
$$z^2(p^2 + q^2) = x^2 + y^2$$
. (7)

b) Find the equation of the curve satisfying the quasi-linear equation px + qy = z and passing through the circle $x^2 + y^2 + z^2 = 4$, x + y + z = 2. (8)

(OR)

12. a) Form the PDE by eliminating the arbitrary functions f and \emptyset from $z = xf\left(\frac{y}{x}\right) + y\emptyset(x)$. (7)

b) Solve
$$(D^2 - 2DD' + D'^2)z = e^x(x + 2y)$$
. (8)

13. a) Find the Fourier transform of
$$\frac{\sin ax}{x}$$
 and hence prove that

$$\int_{-\infty}^{\infty} \frac{\sin^2 ax}{x^2} dx = a\pi. \tag{7}$$

b) Find Fourier cosine transform of
$$e^{-a^2x^2}$$
 and hence find $F_s(x e^{-a^2x^2})$. (8)

(OR)

- 14. Solve the diffusion equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, 0 < x < 10, given u(0,t) = u(10,t) = 0 for t > 0 and $u(x,0) = 10x x^2$, for 0 < x < 10 by the finite Fourier transform method.
- Solve the following system of equations by the Gauss-Seidel method: 28x + 4y z = 32; x + 3y + 10z = 24; 2x + 17y + 4z = 35. (7)
 - b) The following data gives the melting point of an alloy of zinc and lead, θ is the temperature and x is the percentage load. Using Newton's interpolation formula, find (i) θ when x = 48
 (ii) θ when x = 84.

x	40	50	60	70	80	90
θ	184	204	226	250	276	304

(OR)

- 16. a) Find the root of the equation $\sin x = 1 + x^3$ between (-2, -1) to 3 decimal places by Newton-Raphson method. (7)
 - b) A curve passes through the points as given in the table. Find
 - (i) the area bounded by the curve, the x-axis, x = 1 and x = 9.
 - (ii) the volume of the solid generated by revolving this area about the x-axis. (8)

Y	1	2	3	4	5	6	7	8	9
y	0.2	0.7	1.0	1.3	1.5	1.7	1.9	2.1	2.3

17. a) Solve the damping equation $\frac{d^2y}{dx^2} - x\left(\frac{dy}{dx}\right)^2 + y^2 = 0$, y(0) = 1 and y'(0) = 0 by using Runge-Kutta method of 4th order for x = 0.2 correct to 4 decimal places.

b) Solve $16u_{xx} = u_{tt}$ given that u(0, t) = u(5, t) = 0 and $u(x, 0) = x^2(x - 5)$ and $u_t(x, 0) = 0$ by taking h = 1 and up to 5 times steps. (8)

(OR)

18. Solve $u_{xx} + u_{yy} = 0$ in $0 \le x \le 4$, $0 \le y \le 4$, given that u(0,y) = 0, u(4,y) = 8 + 2y, $u(x,0) = \frac{x^2}{2}$ and $u(x,4) = x^2$. Take h = k = 1 and obtain the results correct to one decimal.

PART-C

Answer the following

 $1 \times 20 = 20 \text{ Marks}$

19. a) Find the Fourier cosine transform of
$$e^{-4x}$$
. Deduce that
$$\int_0^\infty \frac{\cos 2x}{x^2 + 16} dx = \frac{\pi}{8} e^{-8} \text{ and } \int_0^\infty \frac{x \sin 2x}{x^2 + 16} dx = \frac{\pi}{2} e^{-8}. \tag{10}$$

b) A rod is rotating in a plane. The following table gives the angle θ (radians) through which the rod has turned for various values of time t (seconds). (10)

t	0	0.2	0.4	0.6	0.8	10
θ	0	0.12	0.49	1.12	2.02	3.20

Calculate the angular velocity and the angular acceleration of the rod when t = 0.6 seconds.