

Report No. : EED32I00271802 Page 1 of 68

TEST REPORT

Product Name : Toucan Surveillance Kit 2.0

Trade mark : Toucan

Model/Type reference : TC200KU

Serial Number : N/A

Report Number : EED32I00271802 FCC ID : 2ABT4TC200KU

Date of Issue : Dec. 27, 2016

Test Standards : 47 CFR Part 15 Subpart C (2015)

Test result : PASS

Prepared for:

Sky Light Imaging Limited Rm. 1009 Kwong Sang Hong Centre, 151-153 Hoi Bun Road, Kwun Tong, Kowloon, Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:
Reviewed by Policy Policy

Tom – Chen
Tom chen (Test Project)

Kevin lan (Reviewer)

Compiled by:

Kevin yang (Project Engineer)

Leven lan Approved by:

Sheek Luo (Lab supervisor)

Dec. 27, 2016 Check No.: 2457551382

2 Version

Version No.	Date	Description
00	Dec. 27, 2016	Original
(

3 Test Summary

Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013/ KDB 558074 D01v03r05	PASS	
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample and the sample information are provided by the client.

4 Content

1 COVER I	PAGE			•••••		1
2 VERSIO	V					2
	IMMARY					
	IT					
	QUIREMENT					
	SETUP For Conducted test s					
	For Radiated Emission	•				
	For Conducted Emiss					
5.2 TEST	ENVIRONMENT	·				6
5.3 TEST	CONDITION					6
6 GENERA	L INFORMATION		•••••	•••••	••••••	8
6.1 CLIE	NT INFORMATION					8
6.2 GENI	ERAL DESCRIPTION OF	EUT				8
	DUCT SPECIFICATION S					
	CRIPTION OF SUPPORT					
	LOCATION					
	· FACILITY ATION FROM STANDAR					
	ORMALITIES FROM STAI					
	ER INFORMATION REQU					
	ASUREMENT UNCERTA					
7 EQUIPM	ENT LIST				•••••	11
B RADIO T	ECHNICAL REQUIR	EMENTS SPECIFIC	ATION	•••••		13
Appe	ndix A): Conducted P	eak Output Power				14
Appe	ndix B): 6dB Occupie	d Bandwidth				19
	ndix C): Band-edge fo					
	ndix D): RF Conducte					
	ndix E): Power Spect					
	ndix F): Antenna Req ndix G): AC Power Li					
	ndix H): Restricted ba					
	ndix I): Radiated Spu					
PHOTOGR	APHS OF TEST SET	ΓUΡ		•••••		66
PHOTOGR	APHS OF EUT CON	STRUCTIONAL DE	TAILS		••••••	68

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Test Receiver Ground Reference Plane

Test Receiver Ground Reference Plane

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

5.2 Test Environment

Operating Environment:	(0,)	(0)	.)
Temperature:	22°C		
Humidity:	53% RH		
Atmospheric Pressure:	1010 mbar	(:5)	(3)

5.3 Test Condition

Test channel:

Test Mode	Tv	RF Channel			
	Tx	Low(L)	Middle(M)	High(H)	
000 44h/a/a/LIT20\	2442041- 2462041-	Channel 1	Channel 6	Channel11	
802.11b/g/n(HT20)	2412MHz ~2462 MHz	2412MHz	2437MHz	2462MHz	
000 44×/UT40)	04000411- 0450 0411-	Channel 1	Channel 4	Channel7	
802.11n(HT40)	2422MHz ~2452 MHz	2422MHz	2437MHz	2452MHz	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				

Report No. : EED32I00271802 Page 7 of 68

Test mode:

Pre-scan under all rate at lowest channel 1

Mode			10,8	802.11b				(0)	
Data Rate		1Mbp	s 2Mbp	s 5.5Mbp	s 11Mbp	os		\sim	
Power(dBm)		16.55	16.7	1 16.74	16.80				
Mode		22			80	02.11g	/3		
Data Rate	(6	6Mbp	s 9Mbp	s 12Mbp	s 18Mbp	s 24Mb	ps 36Mbp	s 48Mbps	54Mbps
Power(dBm)	15.18	3 15.1	4 15.13	15.10	15.0	9 15.07	15.03	15.00
Mode			•		802.11	n (HT20)			
Data Rate	6.5	Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	s 52Mbps	58.5Mbps	65Mbps
Power(dBm)	1	5.82	15.81	15.76	15.72	15.71	15.67	15.61	15.44
Mode		802.11n (HT40)							
Data Rate	13.	5Mbps	27Mbps	40.5Mbps	54Mbps	81Mbps	s 108Mbps	121.5Mbps	135Mbps
Power(dBm)	1	5.12	15.11	15.09	15.05	15.03	15.02	15.00	14.98

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).

Report No. : EED32I00271802 Page 8 of 68

6 General Information

6.1 Client Information

Applicant:	Sky Light Imaging Limited
Address of Applicant:	Rm. 1009 Kwong Sang Hong Centre, 151-153 Hoi Bun Road, Kwun Tong, Kowloon, Hong Kong
Manufacturer:	Sky Light Imaging Limited
Address of Manufacturer:	Rm. 1009 Kwong Sang Hong Centre, 151-153 Hoi Bun Road, Kwun Tong, Kowloon, Hong Kong
Factory:	Sky Light Electronic (ShenZhen) Limited
Address of Factory:	No.1,5 and 6 Building, JinBi Industrial Area, Huang Tian, Bao An, Shenzhen, China.

6.2 General Description of EUT

Product Name:	Toucan Surveillance Kit 2.0	
Model No.:	TC200KU	
Test Model No.:	TC200KU	
Trade Mark:	Toucan	
EUT Supports Radios application:	Bluetooth V4.0: 2402-2480MHz, Wlan 2.4GHz 802.11b/g/n(HT20): 2412MHz ~2462 MHz 5G: U-NII-1: 5.15-5.25GHz; U-NII-2A: 5.250-5.350GHz; U-NII-2C: 5.470-5.725GHz; U-NII-3: 5.725-5.850GHz; 802.11a; 802.11n(20MHz/40MHz); 802.11ac(20MHz/40MHz/80MHz)	<u> </u>
Power Supply:	DC 5V, 1A	
Sample Received Date:	Oct. 23, 2016	
Sample tested Date:	Oct. 23, 2016 to Dec. 27, 2016	

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz					
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels IEEE 802.11n HT40: 7 Channels					
Channel Separation:	5MHz					
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20 and HT40) : OFDM (64QAM, 16QAM, QPSK,BPSK)					
Test Power Grade:	N/A (manufacturer declare)					
Test Software of EUT:	Secure GRT (manufacturer declare)					
Antenna Type and Gain:	PIFA Antenna					
Antenna Gain:	3dBi					
Test Voltage:	AC 120V/60Hz					

Operation Frequency each of channel(802.11b/g/n HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Report No. : EED32I00271802 Page 9 of 68

Operation Frequency each of channel(802.11n HT40)							
Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2422MHz	4	2437MHz	7	2452MHz		
2	2427MHz	5	2442MHz				
3	2432MHz	6	2447MHz				

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
Toucan smart socket	Sky Light Imaging	TS100WU	FCC ID	Client

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted.

6.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

Report No.: EED32I00271802 Page 10 of 68

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard Conditions None.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.31dB (30MHz-1GHz)
2	RF power, conducted	0.57dB (1GHz-18GHz)
	Dedicted Courieus emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Equipment List

		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Communication test set	Agilent	N4010A	MY51400230	04-01-2016	03-31-2017
Spectrum Analyzer	Keysight	N9010A	MY54510339	04-01-2016	03-31-2017
Signal Generator	Keysight	N5182B	MY53051549	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	(4)	01-12-2016	01-11-2017
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017
DC Power	Keysight	E3642A	MY54436035	04-01-2016	03-31-2017
PC-1	Lenovo	R4960d		04-01-2016	03-31-2017
BT&WI-FI Automatic control	R&S	OSPB157	101374	04-01-2015	03-31-2016
RF control unit	JS Tonscend	JS0806-2	2015860006	04-01-2015	03-31-2016
BT&WI-FI Automatic test software	JS Tonscend	JSTS1120-2		04-01-2015	03-31-2016

	Conducted disturbance Test						
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100009	06-16-2016	06-15-2017		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017		
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017		
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017		
LISN	R&S	ENV216	100098	06-16-2016	06-15-2017		
LISN	schwarzbeck	NNLK8121	8121-529	06-16-2016	06-15-2017		
Voltage Probe	R&S	ESH2-Z3		07-09-2014	07-07-2017		
Current Probe	R&S	EZ17	100106	06-16-2016	06-15-2017		
ISN	TESEQ GmbH	ISN T800	30297	01-29-2015	01-27-2017		

Page 12 of 68

		Semi/full-anech ∣		Col doto	Cal Dua data
Equipment	Manufacturer	Mode No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-05-2016	06-05-2019
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-484	05-23-2016	05-22-2017
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017
Horn Antenna	ETS-LINDGREN	3117	00057410	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017
Microwave Preamplifier	A.H.SYSTEMS	PAP-1840-60	6041.6042	06-30-2015	06-28-2018
Horn Antenna	A.H.SYSTEMS	SAS-574	374	06-30-2015	06-28-2018
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017
Multi device Controller	maturo	NCD/070/1071 1112		01-12-2016	01-11-2017
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-12-2016	01-11-2017
High-pass filter	MICRO-TRONICS	SPA-F-63029- 4		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA09 CL12-0395- 001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX01CA08 CL12-0393- 001		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA04 CL12-0396- 002		01-12-2016	01-11-2017
band rejection filter	Sinoscite	FL5CX02CA03 CL12-0394- 001		01-12-2016	01-11-2017

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C (2015)	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
3	KDB 558074 D01 v03r05	DTS Meas Guidance

Test Results List:

#		7.75.71	/ //// /		A 50, 50
	Test Requirement	Test method	Test item	Verdict	Note
	Part15C Section 15.247 (b)(3)	ANSI C63.10/ KDB 558074	Conducted Peak Output Power	PASS	Appendix A)
	Part15C Section 15.247 (a)(2)	ANSI C63.10/ KDB 558074	6dB Occupied Bandwidth	PASS	Appendix B)
	Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	Band-edge for RF Conducted Emissions	PASS	Appendix C)
	Part15C Section 15.247(d)	ANSI C63.10/ KDB 558074	RF Conducted Spurious Emissions	PASS	Appendix D)
	Part15C Section 15.247 (e)	ANSI C63.10/ KDB 558074	Power Spectral Density	PASS	Appendix E)
	Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
	Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
	Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
	Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)
_					

Report No. : EED32I00271802 Page 14 of 68

Appendix A): Conducted Peak Output Power

Result Table

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict	Remark
11B	LCH	16.80	PASS	
11B	MCH	16.93	PASS	
11B	HCH	16.76	PASS	
11G	LCH	15.18	PASS	
11G	MCH	15.32	PASS	
11G	НСН	15.08	PASS	RMS
11N20SISO	LCH	15.82	PASS	detector
11N20SISO	MCH	15.81	PASS	
11N20SISO	НСН	15.57	PASS	
11N40SISO	LCH	15.12	PASS	
11N40SISO	MCH	15.03	PASS	
11N40SISO	HCH	15.11	PASS	

Test Graph

Report No.: EED32l00271802 Page 19 of 68

Appendix B): 6dB Occupied Bandwidth

Result Table

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
11B	LCH	8.208	11.178	PASS	(1)
11B	мсн	8.318	11.090	PASS	6.
11B	HCH	8.437	11.055	PASS	
11G	LCH	16.45	16.437	PASS	
11G	MCH	16.45	16.437	PASS	
11G	HCH	16.44	16.432	PASS	Peak
11N20SISO	LCH	17.73	17.680	PASS	detector
11N20SISO	MCH	17.74	17.690	PASS	
11N20SISO	НСН	17.71	17.672	PASS	(17)
11N40SISO	LCH	36.42	36.196	PASS	
11N40SISO	MCH	36.42	36.213	PASS	
11N40SISO	НСН	36.44	36.190	PASS	

Test Graph

11G/HCH

16.432 MHz 8.384 kHz

mit Freq Error

99.00 % -6.00 dB

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	-0.410	-50.000	-30.41	PASS
11B	НСН	-1.292	-50.366	-31.29	PASS
11G	LCH	-3.813	-50.369	-33.81	PASS
11G	HCH	-3.840	-49.589	-33.84	PASS
11N20SISO	LCH	-3.812	-49.628	-33.81	PASS
11N20SISO	HCH	-3.796	-49.398	-33.8	PASS
11N40SISO	LCH	-7.350	-45.256	-37.35	PASS
11N40SISO	нсн	-7.046	-46.647	-37.05	PASS

Test Graph

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	-0.583	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	-0.748	<limit< td=""><td>PASS</td></limit<>	PASS
11B	HCH	-0.87	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-3.78	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-3.608	<limit< td=""><td>PASS</td></limit<>	PASS
11G	HCH	-3.734	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-3.681	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-3.7	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	HCH	-3.712	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	LCH	-7.156	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	MCH	-7.074	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	HCH	-6.951	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graph

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
11B	LCH	-14.899	8	PASS
11B	MCH	-15.217	8	PASS
11B	HCH	-15.401	8	PASS
11G	LCH	-20.317	8	PASS
11G	MCH	-20.200	8	PASS
11G	HCH	-20.240	8	PASS
11N20SISO	LCH	-19.558	8	PASS
11N20SISO	MCH	-17.997	8	PASS
11N20SISO	НСН	-17.563	8	PASS
11N40SISO	LCH	-21.690	8	PASS
11N40SISO	MCH	-22.640	8	PASS
11N40SISO	нсн	-23.077	8	PASS

Test Graph

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the WIFI antenna is 3Bi.

Report No.: EED32I00271802 Page 42 of 68

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz-	Test frequency range :150KHz-30MHz						
	1)The mains terminal disturbance voltage test was conducted in a shielded room.							
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.							
	3)The tabletop EUT was place reference plane. And for floorizontal ground reference	oor-standing arrange		•				
	4) The test was performed with shall be 0.4 m from the reference plane was bonde was placed 0.8 m from the reference plane for LISNs distance was between the cof the EUT and associated expressions.	vertical ground refund to the horizontal groundary of the unit mounted on top or closest points of the	erence plane. The viround reference plane under test and bonder the ground reference LISN 1 and the EUT.	ertical ground e. The LISN 1 ed to a ground ee plane. This All other units				
	5) In order to find the maximum the interface cables must measurement.	n emission, the relati	ve positions of equipr	nent and all of				
Limit:								
		Limit (dBµV)					
	I Frequency range (MHz) ⊢							
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	Quasi-peak 66 to 56*	Average 56 to 46*					
		· · · · · · · · · · · · · · · · · · ·						
	0.15-0.5	66 to 56*	56 to 46*	(FI)				

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Page 43 of 68

Live line:

			Read	ling_Le	evel	Correct	M	leasurem	ent	Lin	nit	Ma	rgin		
	No.	Freq.	(0	dBuV)		Factor		(dBuV)		(dB	uV)	(0	dB)		
Ī		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
Ī	1	0.2100	28.82		18.22	9.80	38.62		28.02	63.20	53.20	-24.58	-25.18	Р	
	2	0.4460	37.17		29.72	9.90	47.07		39.62	56.95	46.95	-9.88	-7.33	Р	
	3	0.7220	29.85		20.89	9.90	39.75		30.79	56.00	46.00	-16.25	-15.21	Р	
3	4	1.5339	34.38		17.77	9.86	44.24		27.63	56.00	46.00	-11.76	-18.37	Р	
_	5	3.8980	28.48		16.70	10.00	38.48		26.70	56.00	46.00	-17.52	-19.30	Р	
	6	6.9220	28.69		15.15	10.00	38.69		25.15	60.00	50.00	-21.31	-24.85	Р	

Page 44 of 68

Neutral line:

ı	No	Freq.		ling_L∈ dBuV)	evel	Correct Factor	N	leasurem (dBuV)		Lir (dB	nit u∀)		rgin dB)		
			(0	abuv,		i actor		(GDGV)		(GD	uv,	(10)		
		MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
	1	0.2020	27.55		18.64	9.80	37.35		28.44	63.52	53.52	-26.17	-25.08	Р	
	2	0.4460	37.13		31.00	9.90	47.03		40.90	56.95	46.95	-9.92	-6.05	Р	
9	3	1.3580	33.15		21.83	9.81	42.96		31.64	56.00	46.00	-13.04	-14.36	Р	
	4	1.7900	28.22		8.68	9.94	38.16		18.62	56.00	46.00	-17.84	-27.38	Р	
	5	3.9260	25.40		14.08	10.00	35.40		24.08	56.00	46.00	-20.60	-21.92	Р	
	6	6.6820	29.50		15.13	10.00	39.50		25.13	60.00	50.00	-20.50	-24.87	Р	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32I00271802 Page 45 of 68

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:		Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Al 4011-	Peak	1MHz	3MHz	Peak	
		Above 1GHz	Peak	1MHz	10Hz	Average	
est Procedure:	Re	Now 1GHz tost proced	ure as below:	(6)			C)
	a. b. c. d. e. f.	The EUT was placed of at a 3 meter semi-ane determine the position. The EUT was set 3 me was mounted on the to the antenna height is determine the maximular polarizations of the antenna was turned from 0 deg. The test-receiver system and with the maximular polarizations of the antenna was turned from 0 deg. The test-receiver system and with the maximular place a marker at the frequency to show corbands. Save the spector lowest and highest proced Different between about of fully Anechoic Charant 18GHz the distance is	on the top of a rochoic camber. The of the highest rate eters away from op of a variable-rate from one um value of the firstenna are set to mission, the EUT of to heights from grees to 360 degreem was set to Perum Hold Mode. end of the restrict enpliance. Also mature and strum analyzer place channel for the test site of the tes	the table was adiation. the interfer neight ante meter to four eld strength make the role was arrand 1 meter to rees to find eak Detect eld band of the easure any eld. Repeat the eld, change firm table 0.8	ence-receinna tower. our meters n. Both horneasuremenged to its was the maximum function a selosest to the meters of the meter to 1	ving antenna, above the group izontal and versent. worst case and and the rotatal num reading, and Specified the transmit is in the restrict ower and mode. Anechoic Cha	which which which which which which which which which will be to the window with the window wi
	h. i.	Test the EUT in the lo The radiation measure Transmitting mode, ar	owest channel , the ements are perfo and found the X ax	he Highest rmed in X, kis position	Y, Z axis p ing which i	t is worse case	<u>©</u> e.
imit		Test the EUT in the lot The radiation measure Transmitting mode, ar Repeat above procedu	owest channel , the ements are perfo nd found the X av ures until all freq	he Highest rmed in X, kis position uencies me	Y, Z axis p ing which i easured wa	t is worse case as complete.	<u>©</u> e.
imit:		Test the EUT in the lot The radiation measure Transmitting mode, ar Repeat above procedure.	owest channel , to ements are perfo nd found the X ax ures until all frequency Limit (dBµV	he Highest rmed in X, kis position uencies me /m @3m)	Y, Z axis ping which it easured wa	t is worse case as complete. mark	<u>(i)</u> e.
imit:		Test the EUT in the lot The radiation measure Transmitting mode, ar Repeat above procedure Frequency 30MHz-88MHz	bwest channel , the sements are perfound found the X as ures until all frequency Limit (dBµV).	he Highest rmed in X, kis position uencies me /m @3m)	Y, Z axis ping which iteasured water Rer	t is worse case as complete. mark eak Value	Э.
imit:		Test the EUT in the lot The radiation measure Transmitting mode, ar Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz	bwest channel , the ments are perfound found the X average until all frequency Limit (dBµV) 40.0	he Highest rmed in X, kis position uencies me /m @3m)	Y, Z axis pring which it easured water Rer Quasi-pe	t is worse case as complete. mark eak Value eak Value	<u>()</u>
imit:		Test the EUT in the lot The radiation measure Transmitting mode, ar Repeat above procedure Frequency 30MHz-88MHz	bwest channel , the sements are perfound found the X as ures until all frequency Limit (dBµV).	he Highest rmed in X, kis position uencies me /m @3m)	Y, Z axis pring which it easured water Rer Quasi-pe	t is worse case as complete. mark eak Value	е.
imit:		Test the EUT in the lot The radiation measure Transmitting mode, ar Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz	bwest channel , the ments are perfound found the X average until all frequency Limit (dBµV) 40.0	he Highest rmed in X, kis position uencies med/m @3m)	Y, Z axis pring which it easured water Rer Quasi-per Quasi-per Quasi-per	t is worse case as complete. mark eak Value eak Value	э.
imit:		Test the EUT in the lot The radiation measure Transmitting mode, ar Repeat above procedure Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	bwest channel , the ments are performed found the X axions ures until all frequency 40.0 43.5 46.0	he Highest rmed in X, kis position uencies me /m @3m) 0	Y, Z axis ping which iteasured water Rer Quasi-pe Quasi-pe Quasi-pe Quasi-pe	t is worse case as complete. mark eak Value eak Value eak Value	e.

Page 46 of 68

Test plot as follows:

Worse case mode:	802.11b (11Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

14/	000 441 (4414)	- W	
Worse case mode:	802.11b (11Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest F	Polarization: Vertical	Remark: Peak

Report No.: EED32I00271802 Page 47 of 68

Worse case mode:	802.11b (11Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11b (11Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Report No.: EED32I00271802 Page 48 of 68

Worse case mode:	802.11g (6Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode: 802.11g (6Mbps)

Frequency: 2390.0MHz Test channel: Lowest Polarization: Horizontal Remark: Average

Report No. : EED32I00271802 Page 49 of 68

Worse case mode:	802.11g (6Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11g (6Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

Report No.: EED32I00271802 Page 50 of 68

Worse case mode:	802.11g (6Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Worse case mode: 802.11n(HT20) (6.5Mbps)

Frequency: 2390.0MHz Test channel: Lowest Polarization: Horizontal Remark: Peak

Report No.: EED32I00271802 Page 51 of 68

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Report No. : EED32I00271802 Page 52 of 68

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11n(HT20) (6.5Mb	ps)	
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

Report No.: EED32I00271802 Page 53 of 68

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2483.5MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11n(HT40) (135Mbps	3)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Report No.: EED32I00271802 Page 54 of 68

Worse case mode:	802.11n(HT40) (135Mbps	802.11n(HT40) (135Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average	

Worse case mode:	802.11n(HT40) (13.5Mbps)	
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Report No. : EED32I00271802 Page 55 of 68

Worse case mode:	802.11n(HT40) (13.5Mbps)		
Frequency: 2390.0MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average

Worse case mode:	802.11n(HT40) (135Mbps	5)	
Frequency: 2483.5MHz	Test channel:Highest	Polarization: Horizontal	Remark: Peak

Report No.: EED32I00271802 Page 56 of 68

Worse case mode: 802.11n(HT40) (13.5Mbps)

Frequency: 2483.5MHz Test channel:Highest Polarization: Horizontal Remark: Average

Worse case mode: 802.11n(HT40) (13.5Mbps)

Frequency: 2483.5MHz Test channel:Highest Polarization: Vertical Remark: Peak

Note:

- 1) Through Pre-scan transmitting mode with all kind of modulation and data rate, and the 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32I00271802 Page 57 of 68

Appendix I): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1CUz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)...
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

ь	ir		
		 и	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(3)	30
1.705MHz-30MHz	30	-		30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: EED32I00271802 Page 58 of 68

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting	Horizontal

		Ant	Cable	Read		Limit	0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
	_								
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
					u. u. v /				
1	39 576	14.14	0 55	10 88	25 57	10 00	-1/ //3	Horizontal	
_	39.370	14.14	0.55	10.00	25.57	40.00	-14.43	HOPIZOHCAI	
2	109.796	12.39	1.57	8.47	22.43	43.50	-21.07	Horizontal	
3	338.400	14.52	2.64	17.47	34.63	46.00	-11.37	Horizontal	
4	377.259	15.64	2.76	16.78	35.18	46.00	-10.82	Horizontal	
5 pp	480.528	17.91	3.08	18.85	39.84	46.00	-6.16	Horizontal	
6	649.660	19.59	3.57	14.42	37.58	46.00	-8.42	Horizontal	

Report No. : EED32I00271802 Page 59 of 68

Test mode: Transmitting Vertical

			Cable				0ver		
	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark
-	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	39.576	14.14	0.55	19.53	34.22	40.00	-5.78	Vertical	
2	110.957	12.30	1.57	15.35	29.22	43.50	-14.28	Vertical	
3	159.784	10.12	1.72	11.81	23.65	43.50	-19.85	Vertical	
4	338.400	14.52	2.64	12.28	29.44	46.00	-16.56	Vertical	
5	545.183	18.58	3.20	15.13	36.91	46.00	-9.09	Vertical	
6 рр	649.660	19.59	3.57	19.13	42.29	46.00	-3.71	Vertical	

Remark: for 30MHz~1GHz test, low middle highest channel are tested, only show worst data in the report.

Report No. : EED32l00271802 **Transmitter Emission above 1GHz**

Test mode:	802.11b(11	Mbps)	Test F	requency	2412MHz	Remark: Po	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1087.632	29.94	2.38	35.09	44.43	41.66	74.00	-32.34	Pass	Horizontal	
1439.090	30.75	2.77	34.73	43.74	42.53	74.00	-31.47	Pass	Horizontal	
1768.619	31.35	3.06	34.46	43.06	43.01	74.00	-30.99	Pass	Horizontal	
4824.000	34.73	5.11	34.35	45.11	56.60	74.00	-23.40	Pass	Horizontal	
7236.000	36.42	6.68	34.90	41.31	49.51	74.00	-24.49	Pass	Horizontal	
9648.000	37.91	7.71	35.07	39.97	54.52	74.00	-23.48	Pass	Horizontal	
1165.013	30.14	2.47	35.00	44.53	42.14	74.00	-31.86	Pass	Vertical	
1495.101	30.86	2.82	34.68	43.35	42.35	74.00	-31.65	Pass	Vertical	
1958.189	31.64	3.20	34.33	43.68	44.19	74.00	-29.81	Pass	Vertical	
4824.000	34.73	5.11	34.35	40.76	46.25	74.00	-27.75	Pass	Vertical	
7236.000	36.42	6.68	34.90	40.89	49.09	74.00	-24.91	Pass	Vertical	
9648.000	37.91	7.71	35.07	40.16	51.71	74.00	-23.29	Pass	Vertical	

Test mode:	ode: 802.11b(11Mbps) Test Frequency: 2437MHz						eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1204.210	30.24	2.52	34.96	45.15	42.95	74.00	-31.05	Pass	Horizontal
1439.090	30.75	2.77	34.73	44.02	42.81	74.00	-31.19	Pass	Horizontal
1786.719	31.37	3.07	34.45	42.64	42.63	74.00	-31.37	Pass	Horizontal
4874.000	34.86	5.08	34.33	44.64	51.25	74.00	-23.75	Pass	Horizontal
7311.000	36.43	6.77	34.90	41.20	49.50	74.00	-24.50	Pass	Horizontal
9748.000	38.02	7.62	35.05	40.15	50.74	74.00	-23.26	Pass	Horizontal
1244.726	30.33	2.57	34.92	44.54	42.52	74.00	-31.48	Pass	Vertical
1453.818	30.78	2.78	34.71	44.43	43.28	74.00	-30.72	Pass	Vertical
1880.038	31.52	3.14	34.38	43.05	43.33	74.00	-30.67	Pass	Vertical
4874.000	34.83	5.09	34.34	42.54	48.12	74.00	-25.88	Pass	Vertical
7311.000	36.43	6.77	34.90	41.34	49.64	74.00	-24.36	Pass	Vertical
9748.000	38.05	7.60	35.05	39.51	51.11	74.00	-23.89	Pass	Vertical

Page	61	Ωf	68
rauc	υı	OI.	UO.

Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	62MHz	Remark: P	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1195.049	30.21	2.51	34.97	43.82	41.57	74.00	-32.43	Pass	Horizontal	
1521.981	30.91	2.85	34.65	44.42	43.53	74.00	-30.47	Pass	Horizontal	
1908.972	31.57	3.16	34.36	42.52	42.89	74.00	-31.11	Pass	Horizontal	
4924.000	34.94	5.07	34.32	44.65	50.34	74.00	-23.66	Pass	Horizontal	
7386.000	36.44	6.82	34.90	40.75	49.11	74.00	-24.89	Pass	Horizontal	
9848.000	38.15	7.52	35.03	40.17	51.81	74.00	-23.19	Pass	Horizontal	
1147.354	30.10	2.45	35.02	44.52	42.05	74.00	-31.95	Pass	Vertical	
1402.920	30.68	2.73	34.76	44.14	42.79	74.00	-31.21	Pass	Vertical	
1884.829	31.53	3.15	34.38	42.46	42.76	74.00	-31.24	Pass	Vertical	
4924.000	34.96	5.06	34.32	40.39	46.09	74.00	-27.91	Pass	Vertical	
7386.000	36.44	6.84	34.90	40.24	48.62	74.00	-25.38	Pass	Vertical	
9848.000	38.13	7.54	35.03	40.36	51.00	74.00	-23.00	Pass	Vertical	

Test mode:	802.11g(6N	lbps)	Test Freq	uency: 24	12MHz	Remark: Po	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1216.534	30.27	2.53	34.95	44.07	41.92	74.00	-32.08	Pass	Horizontal	
1577.198	31.01	2.90	34.61	44.20	43.50	74.00	-30.50	Pass	Horizontal	
1958.189	31.64	3.20	34.33	43.06	43.57	74.00	-30.43	Pass	Horizontal	
4824.000	34.73	5.11	34.35	44.46	49.95	74.00	-24.05	Pass	Horizontal	
7236.000	36.42	6.68	34.90	39.76	47.96	74.00	-26.04	Pass	Horizontal	
9648.000	37.91	7.71	35.07	39.66	51.21	74.00	-23.79	Pass	Horizontal	
1185.958	30.19	2.50	34.98	44.74	42.45	74.00	-31.55	Pass	Vertical	
1439.090	30.75	2.77	34.73	44.28	43.07	74.00	-30.93	Pass	Vertical	
1764.123	31.34	3.05	34.46	42.81	42.74	74.00	-31.26	Pass	Vertical	
4824.000	34.73	5.11	34.35	40.14	45.63	74.00	-28.37	Pass	Vertical	
7236.000	36.42	6.68	34.90	39.45	47.65	74.00	-26.35	Pass	Vertical	
9648.000	37.91	7.71	35.07	40.09	50.64	74.00	-23.36	Pass	Vertical	

Page 62 of 68

Test mode:	802.11g(6N	1bps)	Test Fred	quency: 24	37MHz	Remark: P	Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis		
1144.437	30.09	2.45	35.02	45.32	42.84	74.00	-31.16	Pass	Horizontal		
1428.142	30.73	2.76	34.74	43.50	42.25	74.00	-31.75	Pass	Horizontal		
1913.838	31.57	3.17	34.36	44.40	44.78	74.00	-29.22	Pass	Horizontal		
4874.000	34.83	5.09	34.34	45.33	52.91	74.00	-23.09	Pass	Horizontal		
7311.000	36.43	6.77	34.90	41.11	49.41	74.00	-24.59	Pass	Horizontal		
9748.000	38.05	7.60	35.05	39.38	49.98	74.00	-24.02	Pass	Horizontal		
1198.095	30.22	2.51	34.97	44.55	42.31	74.00	-31.69	Pass	Vertical		
1495.101	30.86	2.82	34.68	44.46	43.46	74.00	-30.54	Pass	Vertical		
1786.719	31.37	3.07	34.45	43.81	43.80	74.00	-30.20	Pass	Vertical		
4874.000	34.83	5.09	34.34	42.25	47.83	74.00	-26.17	Pass	Vertical		
7311.000	36.43	6.77	34.90	41.07	49.37	74.00	-24.63	Pass	Vertical		
9748.000	38.05	7.60	35.05	39.45	50.05	74.00	-23.95	Pass	Vertical		

Test mode:	802.11g(6N	1bps)	Test Freq	uency: 24	62MHz	Remark: P	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1144.437	30.09	2.45	35.02	44.49	42.01	74.00	-31.99	Pass	Horizontal
1364.182	30.60	2.69	34.80	45.29	43.78	74.00	-30.22	Pass	Horizontal
1724.166	31.27	3.02	34.49	43.81	43.61	74.00	-30.39	Pass	Horizontal
4924.000	34.96	5.06	34.32	41.91	47.61	74.00	-26.39	Pass	Horizontal
7386.000	36.44	6.82	34.90	39.74	48.10	74.00	-25.90	Pass	Horizontal
9848.000	38.13	7.54	35.03	39.55	51.19	74.00	-23.81	Pass	Horizontal
1165.013	30.14	2.47	35.00	44.65	42.26	74.00	-31.74	Pass	Vertical
1461.238	30.79	2.79	34.71	43.78	42.65	74.00	-31.35	Pass	Vertical
1860.992	31.49	3.13	34.39	42.72	42.95	74.00	-31.05	Pass	Vertical
4924.000	34.94	5.07	34.32	41.18	46.87	74.00	-27.13	Pass	Vertical
7386.000	36.44	6.82	34.90	40.56	48.92	74.00	-25.08	Pass	Vertical
9848.000	38.13	7.54	35.03	40.36	51.00	74.00	-23.00	Pass	Vertical

Page 63 of 68

Test mode:	802.11n(HT	20)(6.5N	1bps)	Test Freque	ency: 2412M	Hz R	emark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/ı	Limit	Result	Antenna Polaxis
1153.210	30.11	2.46	35.01	44.99	42.55	74.00	-31.45	Pass	Horizontal
1353.804	30.57	2.68	34.81	44.95	43.39	74.00	-30.61	Pass	Horizontal
1828.125	31.44	3.10	34.42	43.41	43.53	74.00	-30.47	Pass	Horizontal
4824.000	34.75	5.10	34.35	43.24	48.74	74.00	-25.26	Pass	Horizontal
7236.000	36.42	6.68	34.90	40.04	48.24	74.00	-25.76	Pass	Horizontal
9648.000	37.91	7.71	35.07	40.23	51.78	74.00	-23.22	Pass	Horizontal
1201.149	30.23	2.52	34.96	45.16	42.95	74.00	-31.05	Pass	Vertical
1533.648	30.93	2.86	34.64	43.61	42.76	74.00	-31.24	Pass	Vertical
1856.261	31.48	3.13	34.40	43.35	43.56	74.00	-30.44	Pass	Vertical
4824.000	34.75	5.10	34.35	41.15	46.65	74.00	-27.35	Pass	Vertical
7236.000	36.42	6.67	34.90	38.67	46.86	74.00	-27.14	Pass	Vertical
9648.000	37.91	7.71	35.07	39.54	50.09	74.00	-23.91	Pass	Vertical

Test mode:	802.11n(HT	20)(6.5N	1bps)	Test Frequency: 2437MHz Remark: Peak						
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1222.743	30.28	2.54	34.94	44.93	42.81	74.	.00	-31.19	Pass	Horizontal
1435.431	30.74	2.77	34.73	44.46	43.24	74.00		-30.76	Pass	Horizontal
1759.638	31.33	3.05	34.47	43.76	43.67	74.00		-30.33	Pass	Horizontal
4874.000	34.83	5.09	34.34	46.61	50.19	74.00		-23.81	Pass	Horizontal
7311.000	36.43	6.77	34.90	41.06	49.36	74.00		-24.64	Pass	Horizontal
9748.000	38.02	7.62	35.05	38.09	48.68	74.	.00	-25.32	Pass	Horizontal
1247.899	30.34	2.57	34.91	42.76	40.76	74	.00	-33.24	Pass	Vertical
1561.221	30.99	2.88	34.62	44.35	43.60	74	.00	-30.40	Pass	Vertical
1894.450	31.54	3.15	34.37	43.03	43.35	74	.00	-30.65	Pass	Vertical
4874.000	34.80	5.09	34.34	40.51	46.06	74.00		-27.94	Pass	Vertical
7311.000	36.43	6.77	34.90	39.77	48.07	74.00		-25.93	Pass	Vertical
9748.000	38.02	7.62	35.05	38.76	49.35	74	.00	-24.65	Pass	Vertical

Report No. : EED32I00271802 Page 64 of 68

Test mode:	802.11n(HT	20)(6.5N	1bps) 7	Test Frequency: 2462MHz Re				ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1132.844	30.06	2.43	35.04	45.08	42.53	74.00		-31.47	Pass	Horizontal
1336.682	30.54	2.67	34.82	42.63	41.02	74.00		-32.98	Pass	Horizontal
1737.384	31.29	3.03	34.48	43.23	43.07	74.00		-30.93	Pass	Horizontal
4924.000	34.94	5.07	34.32	42.92	48.61	74.00		-25.39	Pass	Horizontal
7386.000	36.44	6.82	34.90	40.21	48.57	74.0	00	-25.43	Pass	Horizontal
9848.000	38.13	7.54	35.03	40.29	50.93	74.0	00	-23.07	Pass	Horizontal
1195.049	30.21	2.51	34.97	44.75	42.50	74.	00	-31.50	Pass	Vertical
1442.758	30.76	2.77	34.72	43.01	41.82	74.0	00	-32.18	Pass	Vertical
1894.450	31.54	3.15	34.37	42.34	42.66	74.0	00	-31.34	Pass	Vertical
4924.000	34.96	5.06	34.32	41.13	46.83	74.00		-27.17	Pass	Vertical
7386.000	36.44	6.84	34.90	40.45	48.83	74.00		-25.17	Pass	Vertical
9848.000	38.13	7.54	35.03	39.81	50.45	74.0	00	-23.55	Pass	Vertical

Test mode:	802.11n(HT	40)(13.5	Mbps)	Test Frequency: 2422MHz R				Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis	
1173.943	30.16	2.48	34.99	44.93	42.58	74.00		-31.42	Pass	Horizontal	
1395.796	30.66	2.73	34.77	45.20	43.82	74.00		-30.18	Pass	Horizontal	
1809.605	31.41	3.09	34.43	42.98	43.05	74.00		-30.95	Pass	Horizontal	
4844.000	34.78	5.10	34.34	42.34	47.88	74.00		-26.12	Pass	Horizontal	
7266.000	36.43	6.72	34.90	41.43	49.68	74.00		-24.32	Pass	Horizontal	
9688.000	37.97	7.66	35.06	39.39	49.96	74	1.00	-24.04	Pass	Horizontal	
1176.935	30.17	2.49	34.99	43.37	41.04	74	1.00	-32.96	Pass	Vertical	
1367.659	30.60	2.70	34.79	44.25	42.76	74	1.00	-31.24	Pass	Vertical	
1786.719	31.37	3.07	34.45	42.76	42.75	74	1.00	-31.25	Pass	Vertical	
4844.000	34.80	5.09	34.34	42.23	47.78	74	1.00	-26.22	Pass	Vertical	
7266.000	36.43	6.72	34.90	40.16	48.41	74.00		-25.59	Pass	Vertical	
9688.000	37.97	7.66	35.06	38.67	49.24	74	1.00	-24.76	Pass	Vertical	

Report No. : EED32I00271802 Page 65 of 68

Test mode:	Test Fr	Test Frequency: 2437MHz				Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1167.982	30.15	2.48	35.00	45.42	43.05	74.00	-	-30.95	Pass	Horizontal
1381.656	30.63	2.71	34.78	45.07	43.63	74.00		-30.37	Pass	Horizontal
1719.783	31.26	3.02	34.50	43.85	43.63	74.00	U)	-30.37	Pass	Horizontal
4874.000	34.83	5.09	34.34	44.10	49.68	74.00		-24.32	Pass	Horizontal
7311.000	36.43	6.77	34.90	41.05	49.35	74.00		-24.65	Pass	Horizontal
9748.000	38.02	7.62	35.05	39.30	49.89	74.00	-	-24.11	Pass	Horizontal
1118.517	30.02	2.42	35.05	45.07	42.46	74.00	-	31.54	Pass	Vertical
1263.883	30.38	2.59	34.90	43.54	41.61	74.00	-	32.39	Pass	Vertical
1646.948	31.14	2.96	34.55	42.92	42.47	74.00	-	31.53	Pass	Vertical
4874.000	34.83	5.09	34.34	40.18	45.76	74.00	-°.	-28.24	Pass	Vertical
7311.000	36.43	6.77	34.90	41.05	49.35	74.00	3	-24.65	Pass	Vertical
9748.000	38.02	7.62	35.05	38.88	49.47	74.00	<u> </u>	24.53	Pass	Vertical

Test mode:	802.11n(HT	40)(13.5	Mbps) 7	Test Frequency: 2452MHz				Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis		
1159.096	30.13	2.47	35.01	44.84	42.43	74	.00	-31.57	Pass	Horizontal		
1385.177	30.64	2.72	34.78	44.18	42.76	74.00		-31.24	Pass	Horizontal		
1719.783	31.26	3.02	34.50	42.83	42.61	74.00		-31.39	Pass	Horizontal		
4904.000	34.91	5.07	34.32	41.68	47.34	74.00		-26.66	Pass	Horizontal		
7356.000	36.44	6.80	34.90	39.91	48.25	74.00		-25.75	Pass	Horizontal		
9808.000	38.10	7.56	35.04	40.06	51.68	74	.00	-23.32	Pass	Horizontal		
1127.091	30.05	2.43	35.04	44.91	42.35	74	.00	-31.65	Pass	Vertical		
1428.142	30.73	2.76	34.74	43.05	41.80	74	.00	-32.20	Pass	Vertical		
1908.972	31.57	3.16	34.36	42.63	43.00	74	.00	-31.00	Pass	Vertical		
4904.000	34.91	5.07	34.32	40.08	45.74	74.00		-28.26	Pass	Vertical		
7356.000	36.44	6.80	34.90	40.46	48.80	74.00		-25.20	Pass	Vertical		
9808.000	38.10	7.56	35.04	40.51	50.13	74	.00	-23.87	Pass	Vertical		

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test Model No.: TC200KU

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Cil

Report No.: EED32I00271802

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Report No.: EED32I00271802 Page 68 of 68

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32I00271801 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

