Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model (SLAC)

백승언

10 Apr, 2023

Contents

- Introduction
 - Challenge of Representation Learning in Reinforcement Learning
- Stochastic Latent Actor-Critic(SLAC)
 - SLAC
- Experiment results

Introduction

Challenge of Representation Learning in Reinforcement Learning

- In visual control problems, unifying the observation representation and task-specific information into single end-to-end training is difficult
 - Previous model-based methods are computationally expensive
 - Because they learn the model and policy separately(PlaNet, Dreamer, ...)
 - Conventional model-free methods are confused
 - Because they learn the model and policy using reward solely(TD3, SAC, D4PG, ...)
 - A number of prior works have explored the use of various approaches in RL to learn such representations
 - Learning auxiliary tasks
 - Data augmentation: DrQ
 - Latent dynamics: Flare, DeepMDP
 - Self-supervised learning: Plan2Explore, CURL

Stochastic Latent Actor-Critic (SLAC)

SLAC (I)

Overview of the SLAC

- Unlike the existing end-to-end RL to learn directly from image observation, SLAC use of explicit representation learning with RL for sample efficiency and potential capability to increase the complexity of tasks
- They simultaneously learned the observation representation and task-specific policy with joint objective modeling(substituted with lower bound)
 - $\log p(\mathbf{x}_{1:\tau+1}, \mathcal{O}_{\tau+1:T}|\mathbf{a}_{1:\tau})$
- They proposed a novel approach that integrates learning stochastic sequential models and RL into a single method, performing RL in the model's learned latent space
 - $\mathbf{z}_{1}^{1} \sim p(\mathbf{z}_{1}^{1}), \mathbf{z}_{1}^{2} \sim p_{\psi}(\mathbf{z}_{1}^{2} | \mathbf{z}_{1}^{1}), \ \mathbf{z}_{t+1}^{1} \sim p_{\psi}(\mathbf{z}_{t+1}^{1} | \mathbf{z}_{t}^{2}, \mathbf{a}_{t}), \mathbf{z}_{t+1}^{2} \sim p_{\psi}(\mathbf{z}_{t+1}^{2} | \mathbf{z}_{t+1}^{1}, \mathbf{z}_{t}^{2}, \mathbf{a}_{t}), \ \mathbf{x}_{t} \sim p_{\psi}(\mathbf{x}_{t} | \mathbf{z}_{t}^{1}, \mathbf{z}_{t}^{2})$
 - $Q(\mathbf{z}_t, \mathbf{a}_t) = r(\mathbf{z}_t, \mathbf{a}_t) + \mathbb{E}_{\mathbf{z}_{t+1}}[V(\mathbf{z}_{t+1})], \ V(\mathbf{z}_t) = \log \int \exp(Q(\mathbf{z}_t, \mathbf{a}_t)) d\mathbf{a}_t$
- Evaluation demonstrates that SLAC outperforms both model-free and model-based alternatives in terms of final performance and sample efficiency

SLAC (II)

Latent variable model

- To learn representations for RL, the authors used latent variable models trained with amortized variational inference.
- To learn such a model, they utilized the evidence lower bound for the log-likelihood of entire generative process($p(x) = \int p(\mathbf{x}|\mathbf{z})p(\mathbf{z})dz$)
 - $\log p(\mathbf{x}) \ge \mathbb{E}_{\mathbf{z} \sim q} \left[\log p(\mathbf{x}|\mathbf{z}) \right] D_{\mathrm{KL}}(q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}))$

Sequential latent variable model

- They proposed a fully stochastic sequential latent variable model to consider a POMDP
 - They note that \mathbf{x}_t does not provide all necessary information to infer \mathbf{z}_t , and prior observations must be taken into account during inference
 - $\log p(\mathbf{x}_{1:\tau+1}|\mathbf{a}_{1:\tau}) \ge \mathbb{E}_{\mathbf{z}_{1:\tau+1} \sim q} \left[\sum_{t=0}^{\tau} \log p(\mathbf{x}_{t+1}|\mathbf{z}_{t+1}) D_{\mathrm{KL}} \left(q(\mathbf{z}_{t+1}|\mathbf{x}_{t+1},\mathbf{z}_{t},\mathbf{a}_{t}) \mid | p(\mathbf{z}_{t+1}|\mathbf{z}_{t},\mathbf{a}_{t}) \right) \right]$
- They used the generative model given by $p_{\psi}(\mathbf{z_1})$, $p_{\psi}(\mathbf{z_{t+1}}|\mathbf{z}_t,\mathbf{a}_t)$ and $p_{\psi}(\mathbf{x}_t|\mathbf{z}_t)$, and inference model given by $q_{\psi}(\mathbf{z_1}|\mathbf{x_1})$ and $q_{\psi}(\mathbf{z}_{t+1}|\mathbf{x}_{t+1},\mathbf{z}_t,\mathbf{a}_t)$.
 - These distributions are diagonal Gaussian, where the mean and variance are given by outputs of NN.
 - Objectives: $J_M(\psi) = \mathbb{E}_{\mathbf{z}_{1:\tau+1} \sim q_{\psi}} \left[\Sigma_{t=0}^{\tau} \log p_{\psi}(\mathbf{x}_{t+1}|\mathbf{z}_{t+1}) + \mathrm{D}_{\mathrm{KL}} \left(q_{\psi}(\mathbf{z}_{t+1}|\mathbf{x}_{t+1},\mathbf{z}_t,\mathbf{a}_t) \mid\mid p_{\psi}(\mathbf{z}_{t+1}|\mathbf{z}_t,\mathbf{a}_t) \right) \right]$

SLAC (III)

Overall objective

- They jointly model the observation and learn maximum entropy polices by maximizing the marginal likelihood $p(\mathbf{x}_{1:\tau+1}, \mathcal{O}_{\tau+1:T}|\mathbf{a}_{1:\tau})$
 - $\log p(\mathbf{x}_{1:\tau+1}, \mathcal{O}_{\tau+1:T}|\mathbf{a}_{1:\tau})$
- Instead of optimizing above objective, which is intractable, they optimized a tractable lower bound

•
$$\log p(\mathbf{x}_{1:\tau+1}, \mathcal{O}_{\tau+1:T}|\mathbf{a}_{1:\tau}) \ge \mathbb{E}_{(\mathbf{z}_{1:T}, \mathbf{a}_{\tau+1:T}) \sim q} [\log p(\mathbf{x}_{1:\tau+1}, \mathcal{O}_{\tau+1:T}, \mathbf{z}_{1:T}, \mathbf{a}_{\tau+1:T}|\mathbf{a}_{1:\tau}) - \log q(\mathbf{z}_{1:T}, \mathbf{a}_{\tau+1:T}|\mathbf{x}_{1:\tau+1}, \mathbf{a}_{1:\tau})]$$

$$= \mathbb{E}_{(\mathbf{z}_{1:T}, \mathbf{a}_{\tau+1:T}) \sim q} [\Sigma_{t=0}^{\tau} (\log p(\mathbf{x}_{t+1}|\mathbf{z}_{t+1}) - D_{\mathrm{KL}} (q(\mathbf{z}_{t+1}|\mathbf{x}_{t+1}, \mathbf{z}_{t}, \mathbf{a}_{t}) || p(\mathbf{z}_{t+1}|\mathbf{z}_{t}, \mathbf{a}_{t})))$$

$$+ \Sigma_{t=\tau+1}^{T} (r(\mathbf{z}_{t}, \mathbf{a}_{t}) + \log p(\mathbf{a}_{t}) - \log \pi(\mathbf{a}_{t}|\mathbf{x}_{1:t}, \mathbf{a}_{1:t-1}))], p(\mathcal{O}_{t} = 1|\mathbf{z}_{t}, \mathbf{a}_{t}) = \exp(r(\mathbf{z}_{t}, \mathbf{a}_{t}))$$

Actor-Critic model

- The value and policy of RL are parameterized with θ , ϕ
 - To learn value and policy for RL, the authors used maximum entropy RL objectives

•
$$J_Q(\theta) = \mathbb{E}_{\mathbf{z}_{1:\tau+1} \sim q_{\psi}} \left[\frac{1}{2} \left(Q_{\theta}(\mathbf{z}_{\tau}, \mathbf{a}_{\tau}) - \left(r_{\tau} + \gamma V_{\overline{\theta}}(\mathbf{z}_{\tau+1}) \right) \right)^2 \right], V_{\theta}(\mathbf{z}_{\tau+1}) = \mathbb{E}_{\mathbf{a}_{\tau+1} \sim \pi_{\phi}} \left[Q_{\theta}(\mathbf{z}_{\tau+1}, \mathbf{a}_{\tau+1}) - \alpha \log \pi_{\phi}(\mathbf{a}_{\tau+1} | \mathbf{x}_{1:\tau+1}, \mathbf{a}_{1:\tau}) \right]$$

•
$$J_{\pi}(\phi) = \mathbb{E}_{\mathbf{z}_{1:\tau+1} \sim q_{\psi}} \left[\mathbb{E}_{\mathbf{a}_{\tau+1} \sim \pi_{\phi}} \left[\alpha \log \pi_{\phi}(\mathbf{a}_{\tau+1} | \mathbf{x}_{1:\tau+1}, \mathbf{a}_{1:\tau}) - Q_{\theta}(\mathbf{z}_{\tau+1}, \mathbf{a}_{\tau+1}) \right] \right]$$

SLAC (IV)

Pseudo code

- Environment and initial parameter initialization corresponds with the main and target networks
- In the control step, action is inferred from the policy(not conditioned on the latent state)
 - Next, the environment proceeds one step using action
 - Also, a transition is placed in the replay buffer \mathcal{D}
- In the update step, transitions are sampled from the replay buffer \mathcal{D}
 - Next, latent variable z is sampled from the encoder
 - And then, Critic loss and ELBO objectives of parameters(ψ , θ , ϕ) are computed and backpropagated with SGD
 - Finally, the Target network update with temperature param ν

```
Algorithm 1 Stochastic Latent Actor-Critic (SLAC)
Require: Environment E and initial parameters
    \psi, \phi, \theta_1, \theta_2 for the model, actor, and critics.
    \mathbf{x}_1 \sim E_{\text{reset}}()
    \mathcal{D} \leftarrow (\mathbf{x}_1)
    for each iteration do
          for each environment step do
                 \mathbf{a}_t \sim \pi_{\phi}(\mathbf{a}_t|\mathbf{x}_{1:t},\mathbf{a}_{1:t-1})
                r_t, \mathbf{x}_{t+1} \sim E_{\text{step}}(\mathbf{a}_t)
                \mathcal{D} \leftarrow \mathcal{D} \cup (\mathbf{a}_t, r_t, \mathbf{x}_{t+1})
          for each gradient step do
                 \mathbf{x}_{1:\tau+1}, \mathbf{a}_{1:\tau}, r_{\tau} \sim \mathcal{D}
                 \mathbf{z}_{1:\tau+1} \sim q_{\psi}(\mathbf{z}_{1:\tau+1}|\mathbf{x}_{1:\tau+1},\mathbf{a}_{1:\tau})
                 \psi \leftarrow \psi - \lambda_M \nabla_{\psi} J_M(\psi)
                 \theta_i \leftarrow \theta_i - \lambda_Q \nabla_{\theta_i} J_Q(\theta_i) \text{ for } i \in \{1, 2\}
                 \phi \leftarrow \phi - \lambda_{\pi} \nabla_{\phi} J_{\pi}(\phi)
```

Pseudo code of SLAC

 $\bar{\theta}_i \leftarrow \nu \theta_i + (1 - \nu) \bar{\theta}_i$ for $i \in \{1, 2\}$

Experiment Results

Experiment results (I)

Comparison with previous methods

- Experiments show similar or better final performance compared to previous methods in DeepMind Control Suite(four tasks) and OpenAl Gym benchmark(four tasks)
 - SAC(state)

PlaNet

SAC

- MPO(10⁷ steps)
- MPO
- SLAC

- D4PG(10⁸ steps)
 - DVRL
 - DrQ

- Experiments show that SLAC successfully learns complex continuous control benchmark tasks from raw image inputs.

Average return in DeepMind Control Suit

Average return in Open Al Gym

Experiment results (II)

Ablation experiments

- Four sets of ablation experiments were performed to investigate how SLAC is affected by design choice
 - (a) Latent variable model
 - (b) The inputs, given to the actor and critic
 - (c) Number of model pretraining steps
 - (d) Number of training updates relative to the number of agent interactions

Comparisons of different design choices for (a), (b), (c), (d).

Thank you!

Q&A