Abstract Algebra

Samuel Lindskog

February 15, 2025

Contents

1	Bac	ekground	1
2	Group theory		
	2.1	Binary operators, groups and subgroups	2
	2.2	Cosets, normal subgroups, cyclic groups	
	2.3	Direct product	6
	2.4	Permutations and dihedral groups	7
	2.5	Group actions and counting	7
	2.6	Finitely generated abelian groups	7
	2.7	Quotient group computations and simple groups	8
3	Ring theory		8
	3.1	Rings and fields	8
	3.2	Integral domains	
	3.3	The quotient field of an integral domain	10
	3.4	Ideals and quotient rings	

1 Background

Definition 1.1 (Injective/surjective/bijective). Suppose $f: A \to B$, $a_1, a_2 \in A$ and $f(a_1) = b_2$, $f(a_2) = b_2$. f is injective iff $a_1 \neq a_2$ implies $b_1 \neq b_2$. f is surjective iff $\forall b \in B, \exists a \in A, f(a) = b$. f is bijective iff f is surjective and injective

Definition 1.2 (Left/right inverse). Let $f: A \to B$. f has a left inverse if there is a function $g: B \to A$ such that $g \circ f: A \to A$ is the identity map on A. f has a right inverse if there is a function $h: B \to A$ such that $f \circ h: B \to B$ is the identity map on B.

Proposition 1.3. Let $f: A \to B$. The map f is injective iff it has a left inverse. The map f is surjective iff it has a right inverse.

Proof: Suppose f has a left inverse. If f is not injective, there exists $a_1, a_2 \in A$ with $a_1 \neq a_2$ such that $f(a_1) = f(a_2)$. But then $g \circ f(a_1) = g \circ f(a_2)$ a contradiction. Suppose f is injective, and $b_1 \in f(A)$ with $b_1 \neq b_2$. Then for each b_1 there exists a unique $f^{-1}(b_1) \in A$ such that $f(f^{-1}(b_1)) = b_1$. Define $g: B \to A$ by $b_1 \mapsto f^{-1}(b_1)$. Then $g \circ f: A \to A$ is the identity function on A.

Suppose f has a right inverse g, and suppose to the contrary that f is not surjective. Then f(A) is a proper subset of B. Because $g(B) \subseteq A$, then f(g(B)) is a proper subset of B, a contradiction. Suppose f is surjective. Then for all $b \in B$ there exists an $a \in A$ such that f(a = b). Define $g: B \to A$ by $b \mapsto a$. Then $f \circ g(b) = b$ for all $b \in B$.

Definition 1.4 (Permutation). A permutation of a set A is a bijection from A to A.

Definition 1.5 (Relation). Suppose A and B are sets. A subset $R \subseteq A \times B$ is a relation from A to B.

Definition 1.6. Suppose R a relation on A. Then:

- (a) R is reflexive on A if $\forall x \in A$, xRx
- (b) R is symmetric on A if $\forall a, b \in A, aRb \Rightarrow bRa$
- (c) R is antisymmetric on A if $\forall a, b \in A$, $aRb \land bRa \Rightarrow a = b$
- (d) R is transitive on A if $\forall a, b, c \in A$, $aRb \land bRc \Rightarrow aRc$

Definition 1.7 (Equivalence relation). Suppose R a relation on A. R is an equivalence relation if R is reflexive, symmetric, and transitive.

Definition 1.8 (Well ordering of \mathbb{Z}). If A is any nonempty subset of \mathbb{Z}^+ ,

$$\exists m \in A \, \forall a \in A, \, m \leq a$$

Definition 1.9 (Divisibility). If $a, b \in \mathbb{Z}$ with $a \neq 0$, we say a divides b (denoted a|b) is there is an element $c \in \mathbb{Z}$ such that b = ac.

Definition 1.10 (GCD). If $a, b \in \mathbb{Z} \setminus \{0\}$, there is a unique positive integer d, called the greatest common divisor of a and b, satisfying:

- (a) d|a and d|b
- (b) if e|a and e|b, then e|d

If the GCD of a and b is 1, then we say a and b are relatively prime.

Definition 1.11 (LCM). If $a, b \in \mathbb{Z} \setminus \{0\}$, there is a unique positive integer l called the least common multiple of a and b satisfying:

- (a) a|l and b|l
- (b) if a|m and b|m, then l|m

Remark. The relationship between the GCD d and the LCM l is dl = ab. For intuition, think of a and b separated into their prime factors, LCM by necessity is the product of the union of prime factors from a and b. The product of intersection of prime factors is the GCD.

Definition 1.12 (Division algorithm). If $a, b \in \mathbb{Z} \setminus \{0\}$, then there exist unique $q, r \in \mathbb{Z}$ such that

$$a = qb + r$$
 and $0 \le r < |b|$,

where q is the quotient and r the remainder.

Lemma 1.13. If $a, b \in \mathbb{Z} \setminus \{0\}$ and using the division algorithm

$$a = qb + r$$
,

it follows that if r > 0, the GCD of b and r is equal to the GCD of a and b. If r = 0, the GCD of a and b is b.

Proof: In the case that r > 0, suppose g_{ab} is the GCD of a and b, and that g_{br} is the GCD of b and r. $g_{ab}|b$ and $g_{ab}|qb+r$ so $g_{ab}|r$. Thus $g_{ab}|g_{br}$ and $g_{ab} \leq g_{br}$. Clearly $g_{br}|qb+r$ so $g_{br}|a$ and $g_{br}|g_{ab}$ so $g_{ab} \geq g_{br}r$. Therefore $g_{br} = g_{ab}$.

In the case that r = 0, b|qb so b|a and b|b. Clearly condition two of the definition of GCD is satisfied by b, so b is the GCD of a and b.

Definition 1.14 (Euclidean algorithm). This procedure produces a GCD of two integers a and b by iterating the division algorithm. If $a, b \in \mathbb{Z} \setminus \{0\}$, inductively define the sequence $\{r_n\}_{n=0}^k$ as follows:

$$\begin{cases} n = 0, & r_0 = b \\ n = 1, r_1 > 0 & ? & a = q_1 r_0 + r_1 & : & k = n - 1 & \# \text{ return} \\ n > 1, r_{n-1} > 0 & ? & r_{n-2} = q_n r_{n-1} + r_n & : & k = n - 1 \end{cases}$$

The last element in the sequence is the GCD of a and b.

Proof: Following lemma 1.13, the last element of r_k of $\{r_n\}$ is the GCD of its pair r_{k-1}, r_k because $r_{k+1} = 0$, and thus is the GCD of each pair in the sequence.

Definition 1.15 (Prime). An element $p \in \mathbb{Z}^+$ is called a prime if p > 1 and the only positive divisors of p are 1 and p.

Theorem 1.16 (Fundamental theorem of arithmetic). If $n \in \mathbb{Z}$ with n > 1, then n can be factored uniquely into the product of primes.

Definition 1.17 (Partition). Suppose A is a set and $\mathcal{F} \subseteq \mathcal{P}(A)$. \mathcal{F} is called a partition of A if it has the following properties:

- (a) $\bigcup \mathcal{F} = A$
- (b) \mathcal{F} is pairwise disjoint.
- (c) $\forall X \in \mathcal{F}, X \neq \emptyset$

2 Group theory

2.1 Binary operators, groups and subgroups

Definition 2.1 (Binary operation). A binary operation * on a set S is a function

$$*: (S \times S) \to S$$

Definition 2.2 (Group). A group (G,\cdot) is a set G with the operation \cdot defined

$$\cdot:G\times G\to G$$

that satisfies the following properties:

- (a) $\forall a, b, c \in G$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$. (associativity)
- (b) $\exists e \in G \, \forall a \in G, \, e \cdot a = a = a \cdot e.$ (identity element)
- (c) $\forall a \, \exists a', \, a' \cdot a = e = a \cdot a'$. (inverse element)

Commutivity of the inverse and identity elements is a consequence of

Theorem 2.3 (Identity of a group is unique).

Proof: Suppose e and \overline{e} identity elements of a group. Then

$$e \cdot \overline{e} = e = \overline{e}$$
.

Lemma 2.4. If (G,\cdot) is a group, then for all $a,b,c\in G$,

$$a \cdot b = a \cdot c \Rightarrow b = c,$$

 $b \cdot a = c \cdot a \Rightarrow b = c,$

Proof: This proof utilizes all three group axioms, and shows group elements are duck-typed. First we prove left cancellation. Suppose $a \cdot b = a \cdot c$. Then

$$a' \cdot (a \cdot b) = a' \cdot (a \cdot c)$$
$$(a' \cdot a) \cdot b = (a' \cdot a) \cdot c$$
$$e \cdot b = e \cdot c$$
$$b = c$$

Next, we prove right cancellation. Suppose $b \cdot a = c \cdot a$. Then

$$(b \cdot a) \cdot a' = (c \cdot a) \cdot a'$$

$$b \cdot (a \cdot a') = c \cdot (a \cdot a')$$

$$b \cdot e = c \cdot e$$

$$b = c$$

Corollary 2.5. For elements $a, c \in (G, \cdot)$ the element $b \in G$ such that $a \cdot b = c$, is unique.

Definition 2.6 (Abelian). An abelian group is one for which it's group operator is commutative.

Remark (Multiplicative and additive groups). The use of + or \cdot as the group operator is notational preference, however additive groups usually refer to an abelian group. By default, when we say that G is a group, we mean that (G, \cdot) is a multiplicative group, and utilize notation accordingly.

Definition 2.7 (Subgroup). We say that H is a subgroup of G, denoted $H \leq G$, if G, H are groups with the same group operation and $G \subseteq H$.

Theorem 2.8 (Subgroup test). Let G be a group. Then $H \leq G$ iff

- (a) $\emptyset \neq H \subseteq G$
- (b) $a, b \in H \Rightarrow ab^{-1} \in H$

Proof: We must prove that the \cdot operation on H is defined on $H \times H$, and that group axioms hold on H. Suppose G a group, and H meets the above criteria. If $a \in H$ then $aa^{-1} = e \in H$. It follows that $ea^{-1} = a^{-1} \in H$, and thus every element in H has an inverse in H. Therefore for any $b, c \in H$, $c^{-1} \in H$ so $bc \in H$ and H is closed under the group operation on G. The group operation on H is associative by definition, so H is a subgroup. The right implication is trivial.

Definition 2.9 (Modulo and equivalence classes). If $a, b \in \mathbb{Z}$, $a \mod b$ is the remainder of a|b. Suppose \sim is an equivalence relation on a set A, and $x \in A$. Then the equivalence class of x with respect to \sim is the set

$$[x] = \{ y \in A \mid y \sim x \}.$$

The set of all equivalence classes of elements A is called A modulo \sim and denoted A/\sim . The equivalence class mod n of a is the set of all integers which differ from a by some integer multiple of n. The integers modulo n, denoted $\mathbb{Z}/n\mathbb{Z}$, is the set of equivalence classes mod n of all integers.

Proposition 2.10. If $a = a_n 10^n + \ldots + a_1 10 + a_0$ is any positive integer then $a \equiv a_n + a_{n-1} + \ldots + a_0$.

Proof: 10 is equivalent to 1(mod 9), therefore a is equivalent to $a_n \pmod{9} + \ldots + a_0 \pmod{9}$ which is equivalent to $a_n + a_{n-1} + \ldots + a_0$.

Remark. This fact is why an integer is divisible by 9 iff the sum of its digits are divisible by 9.

Theorem 2.11. Suppose \sim is an equivalence relation on $A \neq \emptyset$. Then A/\sim is a partition of A.

Proof: $A/\sim contains$ [x] for each $x\in A$. Because \sim is reflexive, $x\in [x]$, so $A\subseteq \bigcup A/\sim$. Because \sim a relation on $A,\bigcup A/\sim\subseteq A$, and thus $\bigcup A/\sim=A$. Suppose $[a],[b]\in A/\sim with$ $[a]\neq [b]$, and suppose to the contrary there exists $c\in A$ such that $c\in [a]\cap [b]$. Because aRc and cRb we have aRb and bRa. Then if $x\in [a]$ and $y\in [b]$, by transitivity we have xRb and yRa, so [a]=[b], a contradiction. Therefore $[a]\cap [b]=\emptyset$. Each $[a]\in A$ contains $a\in A$ because $\sim reflexive$, so $[a]\neq \emptyset$.

2.2 Cosets, normal subgroups, cyclic groups

Definition 2.12. Let H < G. define the relation \sim on G by $a \sim b$ if $b^{-1}a \in H$.

Remark. For the remainder of discussion of groups within these notes, \sim represents the above relation.

Theorem 2.13. \sim is an equivalence relation on G.

- (a) For any $a \in G$, $a^{-1}a = e \in H$, so \sim is reflexive.
- (b) Suppose $a, b \in G$ and $a \sim b$. Then $b^{-1}a \in H$, so $a^{-1}b \in H$ and \sim is symmetric.
- (c) Suppose $a, b, c \in G$ and $a \sim b$ as well as $b \sim c$. Then

$$b^{-1}a \in H \wedge c^{-1}b \in H$$

$$a^{-1}b \in H \wedge b^{-1}c \in H$$

$$a^{-1}c \in H$$

$$c^{-1}a \in H$$

$$\Rightarrow aRc$$

 $so \sim is transitive.$

Lemma 2.14. If $a \notin H$, then $e \notin [a]$

Proof: If $e \in [a]$, then $a^{-1}e \in H$ and thus $a \in H$.

Lemma 2.15. $a \in H$ and $b \in [a]$ iff $b \in H$.

Proof: Following lemma 2.14, eRa. Because \sim is transitive and symmetric,

$$bRa \Rightarrow aRb \Rightarrow eRb \Rightarrow b^{-1}e \in H \Rightarrow b \in H.$$

If $a, b \in H$, $ab \in H$.

Definition 2.16 (Left coset). Let $H \leq G$ and $a \in G$. We say that

$$aH = \{ah \mid h \in H\} = [a]$$

is the left coset of H containing a.

Remark. For additive groups, we would write the left coset of H containing a as

$$a + H$$
.

Remark. Let $H \leq G$. Set

$$G//H = \{aH \mid a \in G\}$$

Theorem 2.17 (Lagrange's theorem). Let $|G| < \infty$ and $H \le G$. Then |H| divides |G|. Proof: We know from lemma 2.28 that for all a, |aH| = |H|. Following lemma 2.11, G//H is a partition of G, so |G| = |G//H| |H|.

Definition 2.18 (Index). Let $H \leq G$. define the index [G:H] of H in G by

$$[G:H] = |G//H|$$

Remark. Lagrange's theorem implies that

$$[G:H] = |G|/|H|.$$

Definition 2.19. Let $H \leq G$. We say that H is a normal subgroup of G, written $H \leq G$, if aH = Ha for all $a \in G$.

Lemma 2.20. Let $H \leq G$. Then $H \subseteq G$ iff $aHa^{-1} = H$ for all $a \in G$.

Lemma 2.21. If G is an abelian group and $H \leq G$, then $H \leq G$.

Proof: Because G is abelian,

$$aH = \{ah \mid h \in H\} = \{ha \mid h \in G\} = Ha.$$

Theorem 2.22. Let $H \leq G$. Then left coset multiplication is well defined by the equation

$$(aH)(bH) = (ab)H$$

iff $H \subseteq G$.

Proof: To prove the right implication, suppose aHbH = abH is well defined and $H \leq G$. Then for $h_1, h_2 \in H$ and $a, b \in G$, $ah_1Hbh_2H = ah_1bh_2H = abH$. We can then choose $h_3, h_4 \in H$ such that

$$ah_1bh_2 = abh_3 = ab(h_4h_2)$$

It follows from lemma 2.28 that for any h_4 there exists h_1 , and for any h_1 there exists h_4 , such that the equation above is satisfied. Therefore for arbitrary h_1 or arbitrary h_4 ,

$$ah_1b = abh_4$$
$$h_1b = bh_4$$

Thus $bH \subseteq Hb$ and $Hb \subseteq bH$, so bH = Hb and $H \subseteq G$. To prove the left implication, suppose $H \subseteq G$, $a_1, b_1, a_2, b_2 \in G$, $a_1H = a_2H$ and $b_1H = b_2H$. It follows that for some $h_1, h_2, h_3 \in H$,

$$a_{2}b_{2}H = a_{1}h_{1}b_{1}h_{2}H$$

$$= h_{3}a_{1}b_{1}h_{2}H$$

$$= h_{3}^{-1}h_{3}a_{1}b_{1}h_{2}h_{2}^{-1}H$$

$$= a_{1}b_{1}H$$

Remark. Let $H \subseteq G$. Then

$$G//H = \{aH \mid a \in G\}$$

is a group under the binary operation (aH)(bH) = (ab)H. The notation G/H will be used instead of G//H from now on.

Definition 2.23 (Homomorphism). Let $\phi: G \to G'$ be a map of groups. We say that ϕ is a group homomorphism if

$$\forall a, b \in G, \ \phi(ab) = \phi(a)\phi(b).$$

A group homomorphism ϕ is called a group isomorphism if ϕ is bijective. We then say G and G' are isomorphic, and write $G \cong G'$.

П

Definition 2.24 (Exponentials). Let G be a group, $a \in G$, and $n \in \mathbb{Z}^+$. We define

$$a^n := a \cdot a \cdot \ldots \cdot a$$
.

for n a's.

Definition 2.25 (Order). Let G be a group. define the order of G, denoted by |G|, to be the cardinality of G.

Definition 2.26 (Cyclic group). Let G be a group and $a \in G$. Then the subgroup $\langle a \rangle := \{a^n \mid n \in \mathbb{Z}\}$ of G is called the cyclic subgroup of G generated by a. In this case we say a is a generator of G.

Lemma 2.27. Let G be a group and $a \in G$. If $a^m = 1$ for some $m \in \mathbb{Z} \setminus \{0\}$, then

$$\langle a \rangle = \{ a^k \, | \, k = 0, 1, \dots, |m| - 1 \}$$

Proof: Suppose $b \in \langle a \rangle$. Then $b = a^n$ for some $n \in \mathbb{Z}$. Because n = qm + r for some $q, r \in \mathbb{Z}$ with $0 \le r < |m|$, and because $a^{qm} = e^q = e$, then $a^n = a^{qm+r} = ea^r = a^r = b$. Trivially $a^r \in \langle a \rangle$.

Lemma 2.28. Let $H \leq G$. Then for $a \in G$, |aH| = |H|.

Proof: By lemma 2.4, if $h_1, h_2 \in H$ with $ah_1 = ah_2$, then $h_1 = h_2$. Therefore the function

$$\phi: aH \to H, \quad ah \to h$$

is injective. ϕ is clearly surjective.

Remark. Let G be a group and $a \in G$. Then

$$|a| = \begin{cases} \min\{m \in \mathbb{Z}^+ \mid a^m = 1\} \\ \infty \end{cases}$$

Lemma 2.29. If G is finite and $a \in G$, then $\langle a \rangle$ is a finite group.

Proof: Suppose $a \in G$, and suppose to the contrary that $\forall n, m \in \mathbb{N}$, $n \neq m \Rightarrow a^n \neq a^m$. Then $|\langle a \rangle|$ is infinite, a contradiction. Therefore for all $a \in G$ there exists $l, r \in \mathbb{N}$ with l < r such that $a^l = a^r$. But then $a^r = a^l a^{r-l}$ so $a^{2(r-l)} = e$. Therefore $aa^{2(r-l)-1} = e$, and a has an inverse element in $\langle a \rangle$. Obviously $e \in \langle a \rangle$, and associativity is inherited from G. \square

Lemma 2.30. For $1 \le n \le |a|$, a^n is unique.

Proof: Suppose $1 \le n, m \le |a|$ and $a^n = a^m$. If $n \ne m$, then wlog n < m, and $a^n = a^{n+(m-n)} = a^n a^{m-n} \Rightarrow a^{m-n} = 1$, a contradiction.

Lemma 2.31. If $\langle a \rangle$ is finite, then $|a| = |\langle a \rangle|$.

Proof: Suppose n = |a|. If m > a then by the division algorithm m = qn + r and $a^m = a^{qn}a^r = a^r$. Because $0 \le r < n$ then by lemma 2.30, $|\langle a \rangle| = |a|$.

2.3 Direct product

Definition 2.32. Let G_1, \dots, G_n be groups. We use $\prod_{i=1}^n G_i$ to denote the cartesian product $G_1 \times \dots \times G_n$.

Theorem 2.33 (Direct product). Let G_1, \dots, G_n be groups. Then $\prod_{i=1}^n G_i$ is a group under componentwise multiplication. It is called the direct product of these groups.

Lemma 2.34. Let G_1, \dots, G_n be groups. Then

$$\left| \prod_{i=1}^{n} G_i \right| = \prod_{i=1}^{n} |G_i|.$$

Proof: This follows directly from properties of the cartesian product.

Definition 2.35. Let $n \in \mathbb{Z}^+$. Let $Z_n = \{0, 1, \dots, n-1\}$. define an operation $+_n : Z_n \times Z_n \to Z_n$ by

$$a +_n b = \begin{cases} a + b & 0 \le a + b \le n - 1 \\ a + b - n & n \le a + b \le 2(n - 1). \end{cases}$$

then Z_n is a group under the operation $+_n$. We use Z_n to denote the cyclic group of order n.

Remark. By theorem 2.17 we have $Z_n \cong \mathbb{Z}/n\mathbb{Z}$.

Theorem 2.36 (The first group isomorphism theorem). Let $\phi: G \to G'$ be a group homomorphism with

$$Ker(\phi) := \phi^{-1}(1') = \{ a \in G \mid \phi(a) = 1' \}.$$

Then we have a natural group isomorphism

$$\mu: G/Ker(\phi) \to \phi(G)$$

 $[a] \to \phi(a).$

2.4 Permutations and dihedral groups

Definition 2.37 (Permutation). A permutation of A is a bijective function $\phi: A \to A$. define the set S_A by

$$S_A := \{ \sigma \mid \sigma \text{ is a permutation of } A \}.$$

Remark. (S_A, \circ) is a group.

Definition 2.38 (Symmetric group). S_A is called the symmetric group on A. In particular, when $n \in \mathbb{Z}^+$ and $A = \{1, \ldots, n\}$, the symmetric group on A is denoted S_n , and is called the symmetric group of degree n.

Lemma 2.39. Let G be a group of |G| = p, where p is prime. Then $G \cong \mathbb{Z}_p$.

Lemma 2.40. If G is a group with $|G| \leq 5$, then G is abelian.

2.5 Group actions and counting

Definition 2.41 (Action). Let X be a set and G be a group. An action of G on X is a function $\cdot : G \times X \to X$ such that

- (a) $\forall x \in X, 1 \cdot x = x$
- (b) $\forall g_1, g_2 \in G \ \forall x \in X, \ g_1 \cdot (g_2 \cdot x) = (g_1 \cdot g_2) \cdot x$

Under these conditions, we say that X is a G-set.

Definition 2.42. Let X be a G-set. We define a relation \sim on X as follows: for $x_1, x_2 \in X$, we say $x_1 \sim x_2$ if there exists $g \in G$ such that $g \cdot x_1 = x_2$.

Remark. For the remainder of the section \sim refers to the above relation when working in Y

Theorem 2.43. Let X be a G-set. Then \sim is an equivalence relation. Proof:

- (a) Reflexivity: It follows from the properties of an action that 1x = x for all $x \in X$, so $x \sim x$.
- (b) Symmetry: Suppose $x, y \in X$ and $x \sim y$. Then there exists $g \in G$ such that gx = y. But then $g^{-1}y = x$, so $y \sim x$.
- (c) Transitivity: Suppose $x, y, z \in X$, $x \sim y$ and $y \sim z$. Then for $g_1, g_2 \in G$, $y = g_1x$ and $z = g_2y$. Therefore $z = g_2g_1x$, and because $g_2g_1 \in G$, $x \sim z$.

Definition 2.44 (Orbit). Let X be a G-set. For $x \in X$, the equivalence class [x] is called the orbit of x.

Remark. Let X be a G-set. Then for each $x \in X$,

$$[x] = G \cdot x := \{g \cdot x \mid g \in G\}.$$

2.6 Finitely generated abelian groups

Theorem 2.45. The group $Z_m \times Z_n \cong Z_{mn}$ iff gcd(m,n) = 1.

7

2.7 Quotient group computations and simple groups

Definition 2.46. pass

3 Ring theory

3.1 Rings and fields

Definition 3.1 (Ring). A ring $(R, +, \cdot)$ is a set R together with the two operations + and \cdot such that the following axioms are satisfied:

- (a) (R, +) is an abelian group.
- (b) \cdot is closed and associative.
- (c) $\forall a, b, c \in R$, the left distributive law $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ and the right distributive law $(a+b) \cdot c = (a \cdot c) + (b \cdot c)$ hold.

Definition 3.2 (Direct product). Let R_1, \ldots, R_n be rings. The direct product $R_1 \times \cdots \times T_n$ of rings R_i is a ring under addition and multiplication by components.

Theorem 3.3. If R is a ring, then for any $a, b \in R$ we have

- (a) 0a = a0 = 0.
- (b) a(-b) = -(ab) = (-a)b.
- (c) (-a)(-b)=ab

Proof: We shall prove these in order.

- (a) Wlog, because a(0+b) = a0 + ab = ab then a0 = 0 = 0a.
- (b) Because a(b-b) = ab + a(-b) = 0, we have a(-b) = -ab. Similarly, (a-a)b = ab + (-a)b = 0 so (-a)b = -ab.
- (c) Because -a(b-b) = (-a)b + (-a)(-b) = 0 we have (-a)(-b) = -((-a)b) = ab.

Definition 3.4 (Ring homomorphism). For rings R and R', a map $\phi: R \to R'$ is a ring homomorphism if the following two conditions are satisfied for all $a, b \in R$:

- (a) $\phi(a+b) = \phi(a) + \phi(b)$.
- (b) $\phi(ab) = \phi(a)\phi(b)$.

Definition 3.5 (Ring isomorphism). A ring isomorphism $\phi: R \to R'$ is a ring homomorphism that is bijective. The rings R and R' are the isomorphic.

Definition 3.6 (Commutative ring). A ring in which multiplication is commutative is a commutative ring.

Definition 3.7 (Unity). An element 1 is called the multiplicative identity or unity if 1a = a = a1 for all $a \in R$.

Lemma 3.8. If a ring R has a unity, then it is unique.

Proof: Suppose 1, 1' are both unities of ring
$$R$$
. Then $1 \cdot 1' = 1' = 1' \cdot 1 = 1$.

Remark. Let R be a ring with unity 1. Then 1 = 0 iff R is a zero ring. This follows from the fact that if 1+1=0+0=0 then $R = \{0\}$. $\{0\}$ is obviously closed under multiplication.

Definition 3.9 (Unit). Let R be a ring with unity $1 \neq 0$. An element $u \in R$ is a unit of R if there exists $v \in R$ such that vu = 1 = uv, where we call v the multiplicative inverse of u, denoted by u^{-1} . Let R^{\times} be the set of units in R, i.e.

$$R^{\times} := \{ u \in R \mid u \text{ is a unit} \}.$$

In other words, R^{\times} is the set of elements in R that have a multiplicative inverse.

Remark. Let R be a ring with unity $1 \neq 0$, then $0 \notin R^{\times}$.

Proof: By theorem 3.3, for any $a \in R$, a0 = 0a = 0.

Lemma 3.10. Let R be a ring with unity $1 \neq 0$. If $u \in R^{\times}$, then its multiplicative inverse is unique.

П

 \Box

Proof: Let $u \in R$ and $a, b \in R$ be multiplicative inverses of u. Then

$$a = a(ub) = (au)b = b.$$

Definition 3.11 (Division ring). A ring with unity $1 \neq 0$ is called a division ring if $R^{\times} = R \setminus \{0\}$. A noncommutative division ring is called a skew field. A commutative division ring is called a field.

Definition 3.12 (Subring). A subring of a ring is a subset of the ring that is a ring under induced operations from the whole ring.

3.2 Integral domains

Remark. Let R be a ring in this section.

Definition 3.13 (0-divisor). An element $a \in R \setminus \{0\}$ is called a 0-divisor if ab = 0 or ba = 0 for some $b \in R \setminus \{0\}$. Let ZD(R) be the set of 0-divisors of R. An element $a \in R \setminus \{0\}$ is called a non-0-divisior if it is not a 0-divisor. Let NZD(R) be the set of non-0-divisors of R.

Remark. $a \in NZD(R)$ iff $ab = ba = 0 \Rightarrow b = 0$.

Remark. The zero ring has no 0-divisors.

Lemma 3.14. $ZD(R) = \emptyset$ for any division ring R.

Proof: Let $a \in R$ with $a \neq 0$ and $b \in ZD(R)$ with b^{-1} the multiplicative inverse of b. Then

$$abb^{-1} = 0b^{-1} = 0 = a1 = a.$$

It follows a is not a unit of R, a contradiction.

Definition 3.15 (Cancellation laws). The cancellation laws hold in R if ab = ac with $a \neq 0$ implies b = c, and ba = ca with $a \neq 0$ implies b = c.

Theorem 3.16. The cancellation laws hold in a ring R iff $ZD(R) = \emptyset$.

Proof: To prove the left implication, suppose ab = ac with $b \neq c$ and $a \neq 0$. Then b = (c+g) for some $g \in R$ with $g \neq 0$. It follows that ac + ag = ac and thus ag = 0, so a is a zero divisor. To prove the right implication, suppose $ZD(R) \neq \emptyset$. Suppose $a, c \in R$ and $g \in ZD(R)$ with ag = 0. Then ac + ag = ac and a(c+g) = ac. But $c+g \neq c$, so cancellation laws do not hold.

Definition 3.17 (Integral domain). An integral domain D is a commutative ring with unity $1 \neq 0$ and $ZD(R) = \emptyset$.

Remark. Every field is an integral domain.

Theorem 3.18. Every finite integral domain is a field.

Proof: Cancellation laws imply the function δ_a with $a \in R$ and $a \neq 0$ defined by

$$\delta_a: R \to R$$
$$x \to ax$$

is onto. Because $|R| < \infty$, δ_a is surjective. Thus for every element of $a \neq 0$, there exists an element $b \in R$ such that ab = ba = 1.

Theorem 3.19. Let R be a ring and R^{\times} the set of units in R. Then (R^{\times}, \cdot) is a group. Proof: Every element clearly has an inverse, and 1 is the identity element. Because R is a ring we know that \cdot is associative.

Lemma 3.20. $Z_n^{\times} = \{ a \in Z_n \mid \gcd(a,n) = 1 \}.$

Proof: Suppose $a \in Z_n$ is a unit. Then under integer multiplication $ab \equiv 1 \pmod{n}$, and ab = qn + 1 for some $q \in \mathbb{Z}$. $\gcd(qn + 1, n) = 1$ so ab and n are relatively prime, thus a and b are relatively prime with n. If $a \in Z_n$ and a, n are relatively prime, then by lemma 3.24, a has a multiplicative inverse and is thus a unit.

Definition 3.21. For $n \in \mathbb{Z}^+$, define

$$G_n := Z_n^{\times} = \{ a \in Z_n \mid \gcd(a, n) = 1 \}.$$

Definition 3.22 (Euler phi-function). The Euler phi-function $\varphi: \mathbb{Z}^+ \to \mathbb{Z}^+$ is defined

$$\varphi(n) = |\{a \in \{1, \dots, n\} \mid \gcd(a,n)=1\}|.$$

Lemma 3.23. For $n \in \mathbb{Z}^+$,

$$\varphi(n) = |Z_n^{\times}|.$$

Lemma 3.24. If $a \in Z_n$, then $a^{|Z_n|} = 1$.

Proof: This follows from lemma 2.29 and theorem 2.17.

Theorem 3.25 (Euler's Theorem). Let $n \in \mathbb{Z}^+$. Then $a^{\varphi(n)} \equiv 1 \pmod{n}$ for any $a \in \mathbb{Z}$ with gcd(a,n) = 1.

Proof: Let $a, n \in \mathbb{Z}^+$, with $\gcd(a, n) = 1$. If n = 1, clearly $a^{\varphi(n)} = a^1 = a$, and $a \equiv a \pmod{n}$. If n > 1, because n and a are relatively prime we know that for $q, r \in \mathbb{N}$ with 0 < r < n that a = qn + r, and that $\gcd(r, n) = 1$. Therefore $r \in Z_n^{\times}$, and by Lagranges theorem $r^{\varphi(n)} = r^{|Z_n^{\times}|} = r^{|r| \cdot |Z_n^{\times}/\langle r \rangle|} \equiv 1 \pmod{n}$. \square

Theorem 3.26 (Fermat's little theorem). Let $a \in \mathbb{Z}$ and p be a prime. If p does not divide a, then $a^{p-1} \equiv 1 \pmod{p}$.

Definition 3.27 (Mersenne primes). Primes of the form $2^p - 1$ where p is prime are known as Mersenne primes.

Theorem 3.28. Let $n \in \mathbb{Z}^+$. Let $a, b \in Z_n$. The equation ax = b has a unique solution in Z_n iff gcd(a, n) = 1.

3.3 The quotient field of an integral domain

Remark. In this section, let D be an integral domain and

$$S := \{(a, b) \mid a, b \in D \text{ and } b \neq 0\} = D \times (D \setminus \{0\}) = D \times NZD().$$

Definition 3.29. define a relation \sim on S as follows: for $(a,b),(c,d) \in S$ we say $(a,b) \sim (c,d)$ if ad = bc.

Remark. \sim is an equivalence relation.

Definition 3.30. In this section, let F be the set of equivalence classes with respect to \sim ,

$$F := S / \sim = \{ [(a,b)] \, | \, (a,b) \in S \}.$$

Definition 3.31. For $[(a,b)], [(c,d)] \in F$, the equations

$$[(a,b)] + [(c,d)] = [(ad+bc,bd)]$$

and

$$[(a,b)][(c,d)] = [(ac,bd)]$$

Give well-defined operations of addition and multiplication on F.

Theorem 3.32. $(F, +, \cdot)$ is a field.

Lemma 3.33. We have an injective ring homomorphism

$$i: D \to Fa \to [(a,1)].$$

Thus, D can be regarded as a subring of F.

Theorem 3.34. Any integral domain D can be embedded in a field F such that every element of F can be expressed as a quotient of two elements of D. Such a field F is a quotient field of D, and denoted by Q(D).

3.4 Ideals and quotient rings

Definition 3.35 (Kernel). Let $\phi: R \to R'$ be a ring homomorphism. The subring

$$Ker(\phi) := \phi^{-1}(0') = \{ a \in R \mid \phi(a) = 0' \}$$

is the kernel of ϕ .

Theorem 3.36. Let $\phi: R \to R'$ be a ring homomorphism with $Ker(\phi) := H$. Let $a \in R$. Then

$$\phi^{-1}(\{\phi(a)\}) = a + H = H + a.$$

Definition 3.37 (Ideal). An additive subgroup N of a ring R satisfying the properties $aN \subseteq N$ and $Nb \subseteq N$ for all $a, b \in R$ is called an ideal, denoted by $N \leq R$.

Remark. If $R \neq \{0\}$, then aN is not a coset, because 0 has no multiplicative inverse.

Lemma 3.38. If R is a ring and $N \leq R$, then N is a subring of R.

Theorem 3.39. Let H be a subring of R. Multiplication of additive cosets of H is well-defined by the equation

$$(r+H)(s+H) = rs + H$$

iff $H \leq R$.

Proof: To prove the right implication, suppose that $H \leq R$. Then for $h_1, h_2 \in H$, $(r+H)(s+H) = (r+h_1+H)(s+h_2+H) = (r+h_1)(s+h_2) + H$. Because $H \leq R$, we know that $rh_2 + sh_1 + h_1h_2 \in H$, therefore $rs + rh_2 + sh_1 + h_2h_1 + H = rs + H$. To prove the left implication, suppose this operation is well-defined. The left implication will be proven later by me:

Corollary 3.40. Let N be an ideal of a ring R. Then $R/N, +, \cdot$ forms a ring. This is called the factor ring (or quotient ring) of R and N. This follows from the fact $H \subseteq R$, thus H/R is an abelian group, and that H/R is well-defined under the operation given above.

Theorem 3.41. Let $\phi: R \to R'$ be a ring homomorphism. If $H \subseteq R$ is a subring, then as subrings $\phi(H) \subseteq \phi(R) \subseteq R'$. Also, if $H' \subseteq R'$ is a subring, then $\phi^{-1}(H') \subseteq R$ is a subring.

Theorem 3.42. Let $\phi: R \to R'$ be a ring homomorphism. If $I \le R$, then $\phi(I) \le \phi(R)$. Also, if $I' \le R'$, then $\phi^{-1}(I') \le R$.

Theorem 3.43 (1st ring isomorphism theorem). Let $\phi: R \to R'$ be a ring homomorphism with $Ker(\phi) =: N$. Then $N \leq R$ and there is a ring isomorphism

$$\mu: R/N \to \phi(R)$$

$$a+N \to \phi(a).$$

Theorem 3.44 (4th ring isomorphism theorem). Let R be a ring, $I \leq R$, and $\pi : R \to R/I$ the natural projection. Then there is a bijection:

$$\{S|S\subseteq R/I \text{ is a subring}\} \leftrightarrow \{J|I\subseteq J\subseteq R \text{ are subrings}\}.$$

Proof:

Definition 3.45 (Proper ideal). A proper ideal is any ideal that is a strict subset of the ring.

Definition 3.46 (Maximal ideal). Let R be a ring. A proper ideal $m \leq R$ if for all $J \leq R$ we have

$$m \subseteq J \Rightarrow J = m \lor J = R$$
.

Theorem 3.47. Let R be a commutative ring with unity $1 \neq 0$. Then $m \leq R$ is a maximal ideal iff R/m is a field.

Definition 3.48. Let R be a commutative ring. We say that a proper ideal $p \leq R$ is a prime ideal if $ab \in p$ for $a, b \in R$ then $a \in p$ or $b \in p$, i.e. $ab \in R \setminus p$ for any $a, b \in R \setminus p$.

Definition 3.49. Let R be an integral domain.

- (a) An element $r \in R \setminus \{R^{\times} \cup \{0\}\}\$ is irriducible in R if r = ab with $a, b \in R$ implies $a \in R^{\times}$ or $b \in R^{\times}$. Otherwise, r is said to be reducible.
- (b) An element $p \in R \setminus \{R^{\times} \cup \{0\}\}\$ is prime in R if $pR \leq R$ is a prime ideal.

Remark. In an integer domain R, a prime, $p \in R$ is allways irreducible.

Lemma 3.50. Let R be a commutative ring with unity $1 \neq 0$. Then $p \leq R$ is a prime ideal iff R/p is an integral domain.

Definition 3.51. An integral domain R is a PID if every ideal I of R can be written in the form xR for some $x \in R$.

Remark. \mathbb{Z} is a PID.

Definition 3.52. Let R be a ring and $I, J \leq R$.

(a) The sum I + J of I and J is defined by

$$I + J = \{a + b \mid a \in I \text{ and } b \in J\}.$$

(b) The product IJ of I and J is defined by

$$IJ = \left\{ \sum_{i=1}^{\text{finite}} \middle| a_i \in I \text{ and } b_i \in J \right\}.$$

Remark. $I + J, IJ \leq R$.

Theorem 3.53. $\mathbb{R}[x]$ is a PID.

Lemma 3.54. Let R be a PID. $p \leq R$ is a prime idea iff it is a maximal ideal.

Lemma 3.55. In a PID $R, p \in R \setminus \{R^{\times} \cup \{0\}\}\$ is prime iff it is irreducible.