

Bahan Kuliah Matematika Diskrit

Matriks

- Matriks adalah adalah susunan skalar elemen-elemen dalam bentuk baris dan kolom.
- Matriks A yang berukuran dari m baris dan n kolom $(m \times n)$ adalah:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- Matriks bujursangkar adalah matriks yang berukuran $n \times n$.
- Dalam praktek, kita lazim menuliskan matriks dengan notasi ringkas $A = [a_{ij}]$.

Contoh 1. Di bawah ini adalah matriks yang berukuran 3×4 :

$$A = \begin{bmatrix} 2 & 5 & 0 & 6 \\ 8 & 7 & 5 & 4 \\ \hline 3 & 1 & 1 & 8 \end{bmatrix}$$

• Matriks simetri adalah matriks yang $a_{ij} = a_{ji}$ untuk setiap i dan j.

Contoh 2. Di bawah ini adalah contoh matriks simetri.

$$\begin{bmatrix} 2 & 6 & 6 & -4 \\ 6 & 3 & 7 & 3 \\ 6 & 7 & 0 & 2 \\ -4 & 3 & 2 & 8 \end{bmatrix}$$

• Matriks *zero-one* (0/1) adalah matriks yang setiap elemennya hanya bernilai 0 atau 1.

Contoh 3. Di bawah ini adalah contoh matriks 0/1:

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Relasi

- Relasi biner R antara himpunan A dan B adalah himpunan bagian dari $A \times B$.
- Notasi: $R \subseteq (A \times B)$.
- $a \ R \ b$ adalah notasi untuk $(a, b) \in R$, yang artinya a dihubungankan dengan b oleh R
- $a \not\in b$ adalah notasi untuk $(a, b) \not\in R$, yang artinya a tidak dihubungkan oleh b oleh relasi R.
- Himpunan A disebut daerah asal (domain) dari R, dan himpunan B disebut daerah hasil (range) dari R.

Contoh 3. Misalkan

```
A = \{\text{Amir, Budi, Cecep}\}, B = \{\text{IF221, IF251, IF342, IF323}\}

A \times B = \{(\text{Amir, IF221}), (\text{Amir, IF251}), (\text{Amir, IF342}),

(\text{Amir, IF323}), (\text{Budi, IF221}), (\text{Budi, IF251}),

(\text{Budi, IF342}), (\text{Budi, IF323}), (\text{Cecep, IF221}),

(\text{Cecep, IF251}), (\text{Cecep, IF342}), (\text{Cecep, IF323})\}
```

Misalkan R adalah relasi yang menyatakan mata kuliah yang diambil oleh mahasiswa pada Semester Ganjil, yaitu

```
R = {(Amir, IF251), (Amir, IF323), (Budi, IF221), (Budi, IF251), (Cecep, IF323) }
```

- Dapat dilihat bahwa $R \subseteq (A \times B)$,
- A adalah daerah asal R, dan B adalah daerah hasil R.
- (Amir, IF251) $\in R$ atau Amir R IF251
- (Amir, IF342) $\notin R$ atau Amir $\underset{\text{IF2151/Relasi dan Fungsi}}{\text{Amir}}$ IF342.

Contoh 4. Misalkan $P = \{2, 3, 4\}$ dan $Q = \{2, 4, 8, 9, 15\}$. Jika kita definisikan relasi R dari P ke Q dengan

 $(p, q) \in R$ jika p habis membagi q

maka kita peroleh

$$R = \{(2, 2), (2, 4), (4, 4), (2, 8), (4, 8), (3, 9), (3, 15)\}$$

- Relasi pada sebuah himpunan adalah relasi yang khusus
- Relasi pada himpunan A adalah relasi dari $A \times A$.
- Relasi pada himpunan A adalah himpunan bagian dari $A \times A$.

Contoh 5. Misalkan R adalah relasi pada $A = \{2, 3, 4, 8, 9\}$ yang didefinisikan oleh $(x, y) \in R$ jika x adalah faktor prima dari y. Maka

$$R = \{(2, 2), (2, 4), (2, 8), (3, 3), (3, 9)\}$$

Representasi Relasi

1. Representasi Relasi dengan Diagram Panah

. Representasi Relasi dengan Tabel

• Kolom pertama tabel menyatakan daerah asal, sedangkan kolom kedua menyatakan daerah hasil.

Tabel 1

A	В
Amir	IF251
Amir	IF323
Budi	IF221
Budi	IF251
Cecep	IF323

Tabel 2

P	Q
2	2
2	4
4	4
2	8
4	8
3	9
3	15

Tabel 3

A	A
2	2
2	4
2	8
3	3
3	3

Mengkombinasikan Relasi

- Karena relasi biner merupakan himpunan pasangan terurut, maka operasi himpunan seperti irisan, gabungan, selisih, dan beda setangkup antara dua relasi atau lebih juga berlaku.
- Jika R_1 dan R_2 masing-masing adalah relasi dari himpuna A ke himpunan B, maka $R_1 \cap R_2$, $R_1 \cup R_2$, $R_1 R_2$, dan $R_1 \oplus R_2$ juga adalah relasi dari A ke B.

Contoh 18. Misalkan $A = \{a, b, c\}$ dan $B = \{a, b, c, d\}$.

Relasi
$$R_1 = \{(a, a), (b, b), (c, c)\}$$

Relasi $R_2 = \{(a, a), (a, b), (a, c), (a, d)\}$
 $R_1 \cap R_2 = \{(a, a)\}$
 $R_1 \cup R_2 = \{(a, a), (b, b), (c, c), (a, b), (a, c), (a, d)\}$
 $R_1 - R_2 = \{(b, b), (c, c)\}$
 $R_2 - R_1 = \{(a, b), (a, c), (a, d)\}$
 $R_1 \oplus R_2 = \{(b, b), (c, c), (a, b), (a, c), (a, d)\}$

• Jika relasi R_1 dan R_2 masing-masing dinyatakan dengan matriks M_{R1} dan M_{R2} , maka matriks yang menyatakan gabungan dan irisan dari kedua relasi tersebut adalah

$$M_{R1 \cup R2} = M_{R1} \vee M_{R2}$$
 dan $M_{R1 \cap R2} = M_{R1} \wedge M_{R2}$

Contoh 19. Misalkan bahwa relasi R_1 dan R_2 pada himpunan A dinyatakan oleh matriks

$$R_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \quad \text{dan} \quad R_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

maka

$$M_{R1 \cup R2} = M_{R1} \lor M_{R2} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$M_{R1 \cap R2} = M_{R1} \wedge M_{R2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Komposisi Relasi

 Misalkan R adalah relasi dari himpunan A ke himpunan B, dan S adalah relasi dari himpunan B ke himpunan C.
 Komposisi R dan S, dinotasikan dengan S o R, adalah relasi dari A ke C yang didefinisikan oleh

 $S \circ R = \{(a, c) \mid a \in A, c \in C, \text{ dan untuk beberapa } b \in B, (a, b) \in R \text{ dan } (b, c) \in S \}$

Contoh 20. Misalkan

$$R = \{(1, 2), (1, 6), (2, 4), (3, 4), (3, 6), (3, 8)\}$$

adalah relasi dari himpunan {1, 2, 3} ke himpunan {2, 4, 6, 8} dan

$$S = \{(2, u), (4, s), (4, t), (6, t), (8, u)\}$$

adalah relasi dari himpunan $\{2, 4, 6, 8\}$ ke himpunan $\{s, t, u\}$.

Maka komposisi relasi R dan S adalah

$$S \circ R = \{(1, u), (1, t), (2, s), (2, t), (3, s), (3, t), (3, u)\}$$

Komposisi relasi R dan S lebih jelas jika diperagakan dengan diagram panah:

• Jika relasi R_1 dan R_2 masing-masing dinyatakan dengan matriks M_{R1} dan M_{R2} , maka matriks yang menyatakan komposisi dari kedua relasi tersebut adalah

$$M_{R2 \text{ o } R1} = M_{R1} \cdot M_{R2}$$

yang dalam hal ini operator "." sama seperti pada perkalian matriks biasa, tetapi dengan mengganti tanda kali dengan "∧" dan tanda tambah dengan "∨".

Contoh 21. Misalkan bahwa relasi R_1 dan R_2 pada himpunan A dinyatakan oleh matriks

$$R_1 = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 dan
$$R_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

maka matriks yang menyatakan R_2 o R_1 adalah

$$M_{R2 \circ R1} = M_{R1} \cdot M_{R2}$$

$$= \begin{bmatrix} (1 \wedge 0) \vee (0 \wedge 0) \vee (1 \wedge 1) & (1 \wedge 1) \vee (0 \wedge 0) \vee (1 \wedge 0) & (1 \wedge 0) \\ (1 \wedge 0) \vee (1 \wedge 0) \vee (0 \wedge 1) & (1 \wedge 1) \vee (1 \wedge 0) \vee (0 \wedge 0) & (1 \wedge 0) \\ (0 \wedge 0) \vee (0 \wedge 0) \vee (0 \wedge 1) & (0 \wedge 1) \vee (0 \wedge 0) \vee (0 \wedge 0) & (0 \wedge 0) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Fungsi

Misalkan A dan B himpunan.
 Relasi biner f dari A ke B merupakan suatu fungsi jika setiap elemen di dalam A dihubungkan dengan tepat satu elemen di dalam B.

Jika f adalah fungsi dari A ke B kita menuliskan

$$f: A \to B$$

yang artinya f memetakan A ke B.

- A disebut daerah asal (domain) dari f dan B disebut daerah hasil (codomain) dari f.
- Nama lain untuk fungsi adalah pemetaan atau transformasi.
- Kita menuliskan f(a) = b jika elemen a di dalam A dihubungkan dengan elemen b di dalam B.

- Jika f(a) = b, maka b dinamakan **bayangan** (*image*) dari a dan a dinamakan **pra-bayangan** (*pre-image*) dari b.
- Himpunan yang berisi semua nilai pemetaan f disebut **jelajah** (range) dari f. Perhatikan bahwa jelajah dari f adalah himpunan bagian (mungkin proper subset) dari B.

- Fungsi adalah relasi yang khusus:
 - 1. Tiap elemen di dalam himpunan A harus digunakan oleh prosedur atau kaidah yang mendefinisikan f.
 - 2. Frasa "dihubungkan dengan tepat satu elemen di dalam B" berarti bahwa jika $(a, b) \in f$ dan $(a, c) \in f$, maka b = c.

- Fungsi dapat dispesifikasikan dalam berbagai bentuk, diantaranya:
 - 1. Himpunan pasangan terurut. Seperti pada relasi.
 - 2. Formula pengisian nilai (assignment). Contoh: f(x) = 2x + 10, $f(x) = x^2$, dan f(x) = 1/x.
 - 3. Kata-kata Contoh: "f adalah fungsi yang memetakan jumlah bit 1 di dalam suatu *string* biner".
 - 4. Kode program (*source code*) Contoh: Fungsi menghitung |x|

```
function abs(x:integer):integer;
begin
    if x < 0 then
        abs:=-x
    else
        abs:=x;
end;</pre>
```

Contoh 26. Relasi

$$f = \{(1, u), (2, v), (3, w)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ adalah fungsi dari A ke B. Di sini f(1) = u, f(2) = v, dan f(3) = w. Daerah asal dari f adalah A dan daerah hasil adalah B. Jelajah dari f adalah $\{u, v, w\}$, yang dalam hal ini sama dengan himpunan B.

Contoh 27. Relasi

$$f = \{(1, u), (2, u), (3, v)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ adalah fungsi dari A ke B, meskipun u merupakan bayangan dari dua elemen A. Daerah asal fungsi adalah A, daerah hasilnya adalah B, dan jelajah fungsi adalah $\{u, v\}$.

Contoh 28. Relasi

$$f = \{(1, u), (2, v), (3, w)\}$$

dari $A = \{1, 2, 3, 4\}$ ke $B = \{u, v, w\}$ bukan fungsi, karena tidak semua elemen A dipetakan ke B.

Contoh 29. Relasi

$$f = \{(1, u), (1, v), (2, v), (3, w)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ bukan fungsi, karena 1 dipetakan ke dua buah elemen B, yaitu u dan v.

Contoh 30. Misalkan $f: \mathbb{Z} \to \mathbb{Z}$ didefinisikan oleh $f(x) = x^2$. Daerah asal dan daerah hasil dari f adalah himpunan bilangan bulat, dan jelajah dari f adalah himpunan bilangan bulat tidak-negatif.

• Fungsi f dikatakan **satu-ke-satu** (one-to-one) atau **injektif** (injective) jika tidak ada dua elemen himpunan A yang memiliki bayangan sama.

Contoh 31. Relasi

$$f = \{(1, w), (2, u), (3, v)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w, x\}$ adalah fungsi satu-ke-satu,

Tetapi relasi

$$f = \{(1, u), (2, u), (3, v)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ bukan fungsi satu-ke-satu, karena f(1) = f(2) = u.

Contoh 32. Misalkan $f: \mathbb{Z} \to \mathbb{Z}$. Tentukan apakah $f(x) = x^2 + 1$ dan f(x) = x - 1 merupakan fungsi satu-ke-satu?

Penyelesaian:

- (i) $f(x) = x^2 + 1$ bukan fungsi satu-ke-satu, karena untuk dua x yang bernilai mutlak sama tetapi tandanya berbeda nilai fungsinya sama, misalnya f(2) = f(-2) = 5 padahal $-2 \neq 2$.
- (ii) f(x) = x 1 adalah fungsi satu-ke-satu karena untuk $a \neq b$, $a 1 \neq b 1$.

Misalnya untuk x = 2, f(2) = 1 dan untuk x = -2, f(-2) = -3.

- Fungsi f dikatakan dipetakan **pada** (onto) atau **surjektif** (surjective) jika setiap elemen himpunan B merupakan bayangan dari satu atau lebih elemen himpunan A.
- Dengan kata lain seluruh elemen *B* merupakan jelajah dari *f*. Fungsi *f* disebut fungsi pada himpunan *B*.

Contoh 33. Relasi

$$f = \{(1, u), (2, u), (3, v)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ bukan fungsi pada karena w tidak termasuk jelajah dari f.

Relasi

$$f = \{(1, w), (2, u), (3, v)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ merupakan fungsi pada karena semua anggota B merupakan jelajah dari f.

Contoh 34. Misalkan $f: \mathbb{Z} \to \mathbb{Z}$. Tentukan apakah $f(x) = x^2 + 1$ dan f(x) = x - 1 merupakan fungsi pada?

Penyelesaian:

- (i) $f(x) = x^2 + 1$ bukan fungsi pada, karena tidak semua nilai bilangan bulat merupakan jelajah dari f.
- (ii) f(x) = x 1 adalah fungsi pada karena untuk setiap bilangan bulat y, selalu ada nilai x yang memenuhi, yaitu y = x 1 akan dipenuhi untuk x = y + 1.

• Fungsi f dikatakan berkoresponden satu-ke-satu atau bijeksi (bijection) jika ia fungsi satu-ke-satu dan juga fungsi pada.

Contoh 35. Relasi

$$f = \{(1, u), (2, w), (3, v)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ adalah fungsi yang berkoresponden satu-ke-satu, karena f adalah fungsi satu-ke-satu maupun fungsi pada.

Contoh 36. Fungsi f(x) = x - 1 merupakan fungsi yang berkoresponden satu-ke-satu, karena f adalah fungsi satu-ke-satu maupun fungsi pada.

Fungsi pada, bukan satu-ke-satu

Buka fungsi satu-ke-satu maupun pada

Bukan fungsi

- Jika f adalah fungsi berkoresponden satu-ke-satu dari A ke B, maka kita dapat menemukan **balikan** (invers) dari f.
- Balikan fungsi dilambangkan dengan f^{-1} . Misalkan a adalah anggota himpunan A dan b adalah anggota himpunan B, maka $f^{-1}(b) = a$ jika f(a) = b.
- Fungsi yang berkoresponden satu-ke-satu sering dinamakan juga fungsi yang *invertible* (dapat dibalikkan), karena kita dapat mendefinisikan fungsi balikannya. Sebuah fungsi dikatakan *not invertible* (tidak dapat dibalikkan) jika ia bukan fungsi yang berkoresponden satu-ke-satu, karena fungsi balikannya tidak ada.

Contoh 37. Relasi

$$f = \{(1, u), (2, w), (3, v)\}$$

dari $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$ adalah fungsi yang berkoresponden satu-ke-satu. Balikan fungsi f adalah

$$f^{-1} = \{(u, 1), (w, 2), (v, 3)\}$$

Jadi, f adalah fungsi invertible.

Contoh 38. Tentukan balikan fungsi f(x) = x - 1.

Penyelesaian:

Fungsi f(x) = x - 1 adalah fungsi yang berkoresponden satu-kesatu, jadi balikan fungsi tersebut ada.

Misalkan f(x) = y, sehingga y = x - 1, maka x = y + 1. Jadi, balikan fungsi balikannya adalah $f^{1}(y) = y + 1$.

IF2151/Relasi dan Fungsi

Komposisi dari dua buah fungsi.

Misalkan g adalah fungsi dari himpunan A ke himpunan B, dan f adalah fungsi dari himpunan B ke himpunan C. Komposisi f dan g, dinotasikan dengan f o g, adalah fungsi dari A ke C yang didefinisikan oleh

$$(f \circ g)(a) = f(g(a))$$

Contoh 40. Diberikan fungsi

$$g = \{(1, u), (2, u), (3, v)\}$$

yang memetakan $A = \{1, 2, 3\}$ ke $B = \{u, v, w\}$, dan fungsi

$$f = \{(u, y), (v, x), (w, z)\}$$

yang memetakan $B = \{u, v, w\}$ ke $C = \{x, y, z\}$. Fungsi komposisi dari A ke C adalah

$$f \circ g = \{(1, y), (2, y), (3, x)\}$$

Contoh 41. Diberikan fungsi f(x) = x - 1 dan $g(x) = x^2 + 1$. Tentukan $f \circ g$ dan $g \circ f$.

Penyelesaian:

(i)
$$(f \circ g)(x) = f(g(x)) = f(x^2 + 1) = x^2 + 1 - 1 = x^2$$
.

(ii)
$$(g \circ f)(x) = g(f(x)) = g(x-1) = (x-1)^2 + 1 = x^2 - 2x + 2$$
.

Beberapa Fungsi Khusus

1. Fungsi Floor dan Ceiling

Misalkan *x* adalah bilangan riil, berarti *x* berada di antara dua bilangan bulat.

Fungsi floor dari x:

 $\lfloor x \rfloor$ menyatakan nilai bilangan bulat terbesar yang lebih kecil atau sama dengan x

Fungsi ceiling dari x:

 $\lceil x \rceil$ menyatakan bilangan bulat terkecil yang lebih besar atau sama dengan x

Dengan kata lain, fungsi *floor* membulatkan *x* ke bawah, sedangkan fungsi *ceiling* membulatkan *x* ke atas.

Contoh 42. Beberapa contoh nilai fungsi floor dan ceiling:

$$\begin{bmatrix} 3.5 \end{bmatrix} = 3$$
 $\begin{bmatrix} 3.5 \end{bmatrix} = 4$ $\begin{bmatrix} 0.5 \end{bmatrix} = 0$ $\begin{bmatrix} 0.5 \end{bmatrix} = 1$ $\begin{bmatrix} 4.8 \end{bmatrix} = 5$ $\begin{bmatrix} -0.5 \end{bmatrix} = -1$ $\begin{bmatrix} -0.5 \end{bmatrix} = 0$ $\begin{bmatrix} -3.5 \end{bmatrix} = -3$

Contoh 42. Di dalam komputer, data dikodekan dalam untaian *byte*, satu *byte* terdiri atas 8 bit. Jika panjang data 125 bit, maka jumlah *byte* yang diperlukan untuk merepresentasikan data adalah $\lceil 125/8 \rceil = 16$ *byte*. Perhatikanlah bahwa $16 \times 8 = 128$ bit, sehingga untuk *byte* yang terakhir perlu ditambahkan 3 bit ekstra agar satu *byte* tetap 8 bit (bit ekstra yang ditambahkan untuk menggenapi 8 bit disebut *padding bits*).

2. Fungsi modulo

Misalkan a adalah sembarang bilangan bulat dan m adalah bilangan bulat positif.

a mod m memberikan sisa pembagian bilangan bulat bila a dibagi dengan m

 $a \mod m = r$ sedemikian sehingga a = mq + r, dengan $0 \le r < m$.

Contoh 43. Beberapa contoh fungsi modulo

25 mod
$$7 = 4$$

15 mod $4 = 0$
3612 mod $45 = 12$
0 mod $5 = 5$
 $-25 \mod 7 = 3$ (sebab $-25 = 7 \cdot (-4) + 3$)

3. Fungsi Faktorial

$$n! = \begin{cases} 1 & , n = 0 \\ 1 \times 2 \times \dots \times (n-1) \times n & , n > 0 \end{cases}$$

4. Fungsi Eksponensial

$$a^{n} = \begin{cases} 1 & , n = 0 \\ a \times a \times \cdots \times a & , n > 0 \end{cases}$$

Untuk kasus perpangkatan negatif,

$$a^{-n} = \frac{1}{a^n}$$

5. Fungsi Logaritmik

Fungsi logaritmik berbentuk

$$y = \log x \leftrightarrow x = a^y$$

Fungsi Rekursif

• Fungsi f dikatakan fungsi rekursif jika definisi fungsinya mengacu pada dirinya sendiri.

Contoh:
$$n! = 1 \times 2 \times ... \times (n-1) \times n = (n-1)! \times n$$
.

$$n! = \begin{cases} 1 & , n = 0 \\ n \times (n-1)! & , n > 0 \end{cases}$$

Fungsi rekursif disusun oleh dua bagian:

(a) Basis

Bagian yang berisi nilai awal yang tidak mengacu pada dirinya sendiri. Bagian ini juga sekaligus menghentikan definisi rekursif.

(b) Rekurens

Bagian ini mendefinisikan argumen fungsi dalam terminologi dirinya sendiri. Setiap kali fungsi mengacu pada dirinya sendiri, argumen dari fungsi harus lebih dekat ke nilai awal (basis).

IF2151/Relasi dan Fungsi

41

- Contoh definisi rekursif dari faktorial:
 - (a) basis:

$$n! = 1$$
 , jika $n = 0$

(b) rekurens:

$$n! = n \times (n-1)!$$
 , jika $n > 0$

5! dihitung dengan langkah berikut:

$$(1) 5! = 5 \times 4! \qquad \text{(rekurens)}$$

(2)
$$4! = 4 \times 3!$$

$$(3) 3! = 3 \times 2!$$

$$(4) 2! = 2 \times 1!$$

$$(5) 1! = 1 \times 0!$$

$$0! = 1$$

$$(6') 0! = 1$$

(5')
$$1! = 1 \times 0! = 1 \times 1 = 1$$

$$(4')$$
 $2! = 2 \times 1! = 2 \times 1 = 2$

$$(3')$$
 $3! = 3 \times 2! = 3 \times 2 = 6$

$$(2')$$
 $4! = 4 \times 3! = 4 \times 6 = 24$

(1')
$$5! = 5 \times 4! = 5 \times 24 = 120$$

Contoh 44. Di bawah ini adalah contoh-contoh fungsi rekursif lainnya:

1.
$$F(x) = \begin{cases} 0, & x = 0 \\ 2F(x-1) + x^2, & x \neq 0 \end{cases}$$

2. Fungsi Chebysev

$$T(n,x) = \begin{cases} 1 & , n = 0 \\ x & , n = 1 \\ 2xT(n-1,x) - T(n-2,x) & , n > 1 \end{cases}$$

3. Fungsi fibonacci:

$$f(n) = \begin{cases} 0, n = 0 \\ 1, n = 1 \\ f(n-1) + f(n-2), n > 1 \end{cases}$$