Preguntas de Conceptos

Jeremy Barbay

17 October 2011

Contents

PRI	EGUNTAS
1.1	Cota superior de (la complejidad de) Max ord
1.2	Definicion de la mediana
1.3	Dificultad de problemas en arreglos
1.4	Cota Inferior para Max
1.5	Definicion del problema de MinMax
1.6	Cotas de (la complejidad de) problemas combinados
1.7	Cota superior de (la complejidad de) Min Max
1.8	Cota inferior de (la complejidad de) Min Max
1.9	Juego de las preguntas, $n = 4$
1.10	Juego de las preguntas, $n = 1024$
	Codificacion de un simbolo
1.12	Definicion de un arbol de decision
1.13	Codificacion de n simbolos
1.14	Definicion de "InsertionRank"
1.15	Dos tipos de busqueda ordenada
1.16	Cota inferior por busqueda ordenada $n = 1024.$
1.17	Cota inferior por busqueda ordenada general n
	Definicion del modelo de comparacion
	Relacion entre codificacion y busqueda
	Busqueda Doblada
	Compression de enteros
	Cota inferior ordenamiento (en el modelo de comparacion)
	Tecnicas de cotas inferiores

1 PREGUNTAS

1.1 Cota superior de (la complejidad de) Max ord

Dado un arreglo ordenado de n enteros, en cuanto accessos al arreglo pueden calcular su valor maximal?

- $1. \; \Box \; 0$
- $2. \square 1$
- $3. \square n-1$
- $4. \square n$
- 5. □ otra

1.2 Definicion de la mediana

Dado un arreglo de n enteros, cual es la definicion correcta de la mediana?

- 1. \square El promedio de las valores minima y maxima del arreglo.
- 2. \square La valor en el centro del arreglo.
- 3. \square La valor en el centro del arreglo ordenado.
- 4. \square La valor superior a $\lceil (n-1)/2 \rceil$ valores y inferior a $\lfloor (n-1)/2 \rfloor$ valores.
- 5. \square otra respuesta.

1.3 Dificultad de problemas en arreglos

Dado un arreglo de n enteros, cual problema requiere mas accessos al arreglo? Mas computacion?

- 1. \square Calcular la valor minima
- 2. \square Calcular la valor maxima
- 3. \square Calcular la valor mediana
- 4. □ Calcular la valor promedia
- 5. \square Son todos iguales

1.4 Cota Inferior para Max

Dado un arreglo de n enteros, cuanto comparaciones entre los elementos del arreglo se necessitan para calcular su valor maximal?

- $1. \square 0$
- $2. \square 1$
- $3. \square n-1$
- $4. \square n$
- 5. □ otra respuesta

1.5 Definicion del problema de MinMax

Dado un arreglo A de n enteros, cual es la definición del problema de "minmax"?

- 1. \square calcular $\min_{i \in [1..n], j \in [i..n]} A[i]$
- 2. \square calcular $\min_{i \in [1..n]} \max j \in [i..n]A[i]$
- 3. \square calcular $(\min_{i \in [1..n]} A[i], \max_{i \in [1..n]} A[i])$
- 4. \square calcular $(\min_{i \in [1..n]} A[i], \max_{j \in [1..n]} A[j])$
- 5. \square otra respuesta

1.6 Cotas de (la complejidad de) problemas combinados

Dado dos problemas A y B (e.g. min y max), cada uno con un algoritmo que le resuelve optimalemente con complejidad $f_A(n)$ y $f_B(n)$, cual es la complejidad del problema AB (e.g. min max)?

- 1. $\square \min\{f_A(n), f_B(n)\}$ \$
- 2. $\Box f_A(n) + f_B(n)$ \$
- 3. $\Box (f_A(n) + f_B(n))/2$ \$
- 4. $\square \max\{f_A(n), f_B(n)\}$ \$
- 5. \square otra respuesta

1.7 Cota superior de (la complejidad de) Min Max

Dado un arreglo de n enteros, en cuanto comparaciones (cantidad exacta, no asimptotica) entre los elementos del arreglo pueden calcular su valor maximal y minimal?

- 1. $\square n-1$
- 2. $\square 3n/2 2 \operatorname{si} n \operatorname{es} \operatorname{par}, 3n/2 + 1/2 \operatorname{si} n \operatorname{es} \operatorname{impar}.$
- 3. \Box (n-1) + (n-2)
- 4. $\Box \ 2(n-1)$
- 5. \square otra respuesta

1.8 Cota inferior de (la complejidad de) Min Max

Dado un arreglo de n enteros, cuanto comparaciones (cantidad exacta, no asimptotica) entre los elementos del arreglo se necessitan para calcular su valor maximal y minimal?

- 1. $\square n-1$
- 2. $\Box [3n/2] 2$
- 3. \Box (n-1) + (n-2)
- 4. $\Box \ 2(n-1)$
- 5. □ otra respuesta

1.9 Juego de las preguntas, n = 4

Cuanta preguntas (e.g. "x < 4?", "x=2"?) se necesitan para adivinar un entero entre 1 y \$4 (i.e. $x \in [1..4]$)?

- 1. □ 1
- $2. \square 2$
- 3. □ 3
- 4. □ 4
- 5. □ otra

1.10 Juego de las preguntas, n = 1024

Cuanta preguntas (e.g. "x < 10?", "x=10"?) se necesitan para adivinar un entero entre 1 y 1024?

- 1. □ 8
- 2. □ 9
- 3. □ 10
- 4. □ 11
- 5. □ otra

1.11 Codificación de un simbolo

Dado 1 simbolo elegido a dentro de $[1..\sigma]$

- 1. \square no se puede codificar **nunca** en $o(\lg \sigma)$ bits
- 2. \square no se puede codificar **siempre** en $o(\lg \sigma)$ bits
- 3. \square no se sabe **como codificar siempre** en $o(\lg \sigma)$ bits
- 4. \square no se sabe si nunca se puede codificar en $o(\lg \sigma)$ bits
- 5. □ otra

1.12 Definicion de un arbol de decision

Un arbol de decision es definido como un arbol

- 1. \square modelisando algoritmos en el modelo de comparacion.
- 2. \square binario donde cada hoja identifica una instancia.
- $3.\ \ \Box$ binario donde cada nodo prueba una caracteristica de la instancia.
- □ un arbol de grado finito donde cada hoja indica una decision sobre la instancia.
- 5. \square otra.

1.13 Codificación de n simbolos

Dado nsimbolos elegido a dentro de un alfabeto de tamaño σ

- 1. \square no se puede codificar **nunca** en $o(n \lg \sigma)$ bits
- 2. \square no se puede codificar **siempre** en $o(n \lg \sigma)$ bits
- 3. \square no se sabe **como codificar siempre** en $o(n \lg \sigma)$ bits
- 4. \square no se sabe si nunca se puede codificar en $o(n \lg \sigma)$ bits
- 5. □ otra

1.14 Definicion de "InsertionRank"

Dado un arreglo ordenado A[1..n] de n valores y una valor x, cual(es) de estas definiciones del Posicion de Insercion ("Insertion Rank") de x en A son incorectas? $(A[1] = -\infty$ y $A[n+1] = +\infty$)

- 1. \square la posicion en cual x deberia ser insertado por dejar A ordenado
- 2. \square el entero $p \in [1..n+1]$ tal que $A[p-1] < x \le A[p]$
- 3. \square el entero $p \in [0..n]$ tal que $A[p] \le x < A[p+1]$
- 4. \square el entero $p \in [1..n]$ tal que x = A[p]
- 5. \square ningunos o mas que dos

1.15 Dos tipos de busqueda ordenada

Dado el codigo siguente, cual es la mejor manera de completarlo para minimizar la complejidad (non asymptotica) en el peor caso? El el caso promedio? insertionRank(x,A,l,r) { if(r-l<2) return l else { $m=(l+r)/2; \ldots$ } }

- 1. \Box if (x < A[m]) return insertion Rank(x,A,l,m) else if (x > A[m]) return insertion Rank(x,A,m,r) else if (x = A[m]) return m end if
- 2. \Box if(x = A[m]) return m else if(x < A[m]) return insertion-Rank(x,A,l,m) else if(x > A[m]) return insertionRank(x,A,m,r) endif
- 3. \Box if (x=A[m]) return m else if (x<A[m]) return insertion-Rank(x,A,l,m) else return insertion Rank(x,A,m,r) endif
- 4. \Box if (x < A[m]) return insertion Rank(x,A,l,m) else return insertion Rank(x,A,m,r) end if
- 5. \square performan iguales todos en el peor caso.

1.16 Cota inferior por busqueda ordenada n = 1024.

Dado un arreglo ordenado A de 1024 enteros y un entero x, cuanto comparaciones con elementos del arreglo son necesarias para decidir si x pertenece a A (en el peor caso)?

- 1. 🗆 9
- 2. \Box 10
- $3. \;\; \Box \;\, 11$
- 4. □ 1024
- 5. □ otra

1.17 Cota inferior por busqueda ordenada general n.

Dado un arreglo ordenado A de n enteros y un entero x, cuanto comparaciones con elementos del arreglo son necesarias para decidir si x pertenece a A (en el peor caso)?

- 1. $\Box \lceil \lg n \rceil$
- 2. $\Box 1 + \lceil \lg n \rceil$
- $3. \square n-1$
- $4. \square n$
- 5. □ otra

1.18 Definicion del modelo de comparacion

Cuales de estos algoritmos simples son en el modelo de comparacion?

- 1. \Box c=0; for(int i=1; i<n; i++) { if(A[i]>A[i+1]) c++;}
- 2. \Box for(int i=1; i<n; i++) { if(A[i]>A[i+1]) print i;}
- ; 3. [] for (int i=1; i<n; i++) { if (A[i]>A[i+1]) print i;} ; 4. [] for (int i=1; i<n; i++) { if (A[i]>A[i+1]) print i;}
 - 1. □ ningunos

1.19 Relacion entre codificacion y busqueda

Cual de estas aserciones es falsa en el modelo de comparacion?

- $1. \square A$ cada algoritmo de busqueda corresponde una codificación de enteros.
- 2. \square A cada codificacion de enteros corresponde un algoritmo de busqueda.
- 3. \square A algunos algoritmos de busqueda corresponde una codificacion de enteros
- 4. \square A algunas codificaciones de enteros corresponde un algoritmo de busqueda.
- 5. □ otra

1.20 Busqueda Doblada

:PROOF:

- 1. $\Box \lg(1+n)$ comparaciones -> Busqueda binaria
- 2. \square p+1 comparaciones -> Busqueda secuencial
- 3. \square 2 lg p comparaciones -> Busqueda dublada
- 4. $\Box 2 \lg(n-p)$ comparaciones -> Busqueda dublada, iniciando a la derecha

END: Cual de las asercions siguentes son falsas? Dado una valor x y un arreglo ordenado A de n valores, existe un algoritmo calculando la posicion de inserción p de x en A en

- 1. $\Box \lg(1+n)$ comparaciones
- 2. $\Box p + 1$ comparaciones
- 3. \square 2 lg p comparaciones
- 4. $\square 2 \lg(n-p)$ comparaciones
- 5. \square ningunas o mas que dos.

1.21 Compression de enteros

Dado un entero $x \in [1..n]$, existe un esquema de codificación representando x con

- 1. $\Box \lg n$ bits,
- 2. \square 2 lg p bits,
- 3. \square p bits,
- 4. $\square 2 \lg(n-p)$ bits,
- 5. \square ningunas o mas que dos.

1.22 Cota inferior ordenamiento (en el modelo de comparacion)

Decir que "Ordenar es en $\Omega(n \lg n)$ (en el modelo de comparacion) significa que

- 1. \square no se puede ordenar en $o(n \lg n)$ comparaciones
- 2. \square ninguno algoritmo conocido (del modelo de comparacion) ordena en $o(n \lg n)$ comparaciones
- 3. \square no se puede ordenar en tiempo $o(n \lg n)$
- 4. \Box ninguno algoritmo conocido (del modelo de comparacion) ordena en tiempo $o(n\lg n)$
- 5. \square otra respuesta

1.23 Tecnicas de cotas inferiores

Cual(es) de las tecnicas siguentes permitten de mostrar cotas inferiores para la complejidad en promedio?

- 1. \square lemma del ave
- 2. \square Estrategia de Adversario
- 3. \square Arbol Binario de Decision
- 4. \square lemma del minimax
- 5. \square ningunas o mas de dos.

 $^{^{\}rm 1}$ FOOTNOTE DEFINITION NOT FOUND: 0