Práctico 5: Funciones Generatrices.

Ref. Notas teórica / Grimaldi 9.1 y 9.2

Ejercicio 1 Probar que las series $\sum_{n=0}^{\infty} 2^{2^n} x^n$ y $\sum_{n=0}^{\infty} 2^{3^n} x^n$ convergen solo para x=0 y que para ese valor ambas series coinciden (sug. usar que si $\sum_{n=0}^{\infty} a_n$ es convergente entonces lím $|a_n|=0$). ¿Podemos afirmar que las funciones generatrices $f(x)=\sum_{n=0}^{\infty} 2^{2^n} x^n$ y $g(x)=\sum_{n=0}^{\infty} 2^{3^n} x^n$ son iguales?

Ejercicio 2 Para cada parte del Ejercicio 14 del Práctico 4 obtenga una función generatriz cuyo coeficiente de x^{19} resuelva el problema (no es necesario hallar este coeficiente explícitamente).

Ejercicio 3 Exprese las funciones generatrices de las siguientes sucesiones como cociente de polinomios.

a.
$$C_0^6, C_1^6, C_2^6, \ldots, C_6^6, \ldots$$

b.
$$C_1^6, 2C_2^6, \ldots, 6C_6^6, \ldots$$

$$\mathbf{c}. 1, -1, 1, -1, \dots$$

e.
$$0, 0, 0, 3, -3, 3, -3, 3, \dots$$

f.
$$1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, \dots$$

$$\mathbf{g}. \ 1, 2, 4, 8, 16, 32, 64, \dots$$

h.
$$0, 0, 1, a, a^2, a^3, a^4, a^5, a^6, \dots$$

j.
$$0, 0, 1, b, a, b^2, a^2, b^3, a^3, b^4, a^4, b^5, a^5, b^6, a^6, b^7, \dots$$

Ejercicio 4 (Examen febrero 2010) Pruebe que la función generatriz asociada a la sucesión

$$(0,0,a,1,0,a^2,2,0,a^3,3,0,a^4,4,0,a^5,...)$$
 viene dada por $f(x) = \frac{ax^2}{1-ax^3} + \frac{x^3}{(1-x^3)^2}$.

Ejercicio 5 Determine la sucesión generada por cada una de las siguientes funciones generatrices.

a.
$$f(x) = (2x - 3)^3$$

c.
$$f(x) = x^3/(1-x^2)$$

e.
$$f(x) = 1/(2-x)$$

b.
$$f(x) = x^3/(1-x)$$

d.
$$f(x) = 1/(1+3x)$$

f.
$$f(x) = 3x^6 - 9 + 1/(1-x)$$

Ejercicio 6 Encuentre el coeficiente de x^{15} en las funciones

a.
$$x^3(1-2x)^{10}$$
.

b.
$$(x^3 - 5x)/(1-x)^3$$
.

c.
$$(1+x)^4/(1-x)^4$$
.

Ejercicio 7 Calcule el número de soluciones en los naturales de la ecuación $x_1+x_2+x_3+x_4=19$ con las siguientes restricciones: $x_1\geq 3, x_2\leq 10, x_3$ par y x_4 impar, asumiendo la siguiente descomposición en fracciones simples: $\frac{x^4}{(1-x)^4(1+x)^2}=\frac{a}{1+x}+\frac{b}{(1+x)^2}+\frac{c}{(1-x)}+\frac{d}{(1-x)^2}+\frac{e}{(1-x)^3}+\frac{f}{(1-x)^4},$ con $a=-\frac{1}{8},$ $b=\frac{1}{16},$ $c=-\frac{1}{8},$ $d=\frac{11}{16},$ $e=-\frac{3}{4},$ $f=\frac{1}{4}.$

Ejercicio 8 La sucesión de Lucas (ℓ_n) es la sucesión que verifica $\ell_0 = 2, \ell_1 = 1$ y $\ell_n = \ell_{n-1} + \ell_{n-2}$ para $n \geq 2$ (es decir, cada término es la suma de los dos anteriores). Los primeros términos son: 2, 1, 3, 4, 7, 11, 18, 29, etc. Sea $L(x) = \sum_{n=0}^{\infty} \ell_n x^n$ la función generatriz asociada a la secuencia de Lucas. Calcule el producto $L(x) \cdot (1 - x - x^2)$ y obtenga una expresión para L(x) como cociente de polinomios.

Ejercicio 9 Considere la sucesión (a_n) que verifica $a_0 = 1$, $a_1 = 2$ y $a_n = 5a_{n-1} + 6a_{n-2}$. Sea A(x) la función generatriz de esta sucesión. Calcule el producto $A(x) \cdot (1 - 5x - 6x^2)$ y obtenga una expresión para A(x) como cociente de polinomios.

Ejercicio 10 Decidir para cuales de los siguientes casos la función generatriz A(x) es invertible y en el caso que lo sea hallar los primeros 4 términos de $\frac{1}{A(x)}$:

a.
$$A(x) = \sum_{n=0}^{\infty} nx^n$$
,

b.
$$A(x) = 1 - x^2$$
,

c.
$$A(x) = \sum_{n=0}^{\infty} (n+2^n)x^n$$

Ejercicio 11 Encuentre una fórmula para la convolución c_n de los siguientes pares de sucesiones:

a.
$$a_n = 1$$
, si $0 \le n \le 4$; $a_n = 0$, $\forall n \ge 5$; $b_n = 1$, $\forall n \in \mathbb{N}$.

b.
$$a_n = (-1)^n, b_n = (-1)^n, \forall n \in \mathbb{N}.$$

c.
$$a_n = 1$$
, si $0 \le n \le 3$; $a_n = 0$, $\forall n \ge 4$; $b_n = n$, si $0 \le n \le 3$; $b_n = 0$, $\forall n \ge 4$.

Ejercicio 12 (Parcial julio 2020) Consideremos las funciones generatrices $f(x) = \sum_{n=0}^{\infty} a_n x^n$ y $g(x) = \sum_{n=0}^{\infty} b_n x^n$. Se sabe que $a_{n+1} = \sum_{i=0}^{n} a_i b_{n-i}$ para todo $n \ge 0$ y que $a_0 = 1$. Probar que la función generatriz f(x) es invertible y su inversa viene dada por 1 - xg(x).

Ejercicio 13 Dé una demostración de la igualdad del Ej. 27 del práctico 2 a partir de la igualdad polinómica $(1+x)^k(1+x)^{N-k} = (1+x)^N$.

Ejercicio 14 Usando la identidad $(1+x)^n(1+x)^{-n}=1$ y la fórmula de potencia de binomio con coeficientes negativos demuestre que $\sum_{k=0}^m \binom{n}{k} \binom{n+m-k-1}{n-1} (-1)^{m-k}=0 \quad \forall m \geq 1.$

Ejercicio 15 Halle las funciones generatrices de $0^3, 1^3, 2^3, 3^3, \dots$ y de $s_n = \sum_{i=0}^n i^3$, y deduzca la fórmula una fórmula cerrada para la suma de los primeros n cubos.

Ejercicio 16 Obtenga una fórmula cerrada para la sumatoria $\sum_{k=0}^{n} k(k-1)$.