Regression

TOTAL POINTS 15

1.	Multiple Linear Regression is appropriate for:	3 points
	Predicting the sales amount based on month	
	Predicting whether a drug is effective for a patient based on her characterestics	
	Predicting tomorrow's rainfall amount based on the wind speed and temperature	
2.	Which of the following is the meaning of " Out of Sample Accuracy " in the context of evaluation of models?	3 points
	Out of Sample Accuracy" is the percentage of correct predictions that the model makes on data that the model has NOT been trained on.	
	Out of Sample Accuracy" is the accuracy of an overly trained model (which may captured noise and produced a non-generalized model)	
3.	When should we use Multiple Linear Regression ?	3 points
3.	When should we use Multiple Linear Regression ? When there are multiple dependent variables	3 points
3.	When there are multiple dependent variables✓ When	3 points
3.	When there are multiple dependent variables	3 points
3.	When there are multiple dependent variables✓ When we would	3 points
3.	 When there are multiple dependent variables ✓ When we would like to identify the strength of the 	3 points
 4. 	 When there are multiple dependent variables ✓ When we would like to identify the strength of the effect that the independent variables have on a dependent variable. ✓ When we would like to predict impacts of changes in independent variables on a dependent variable. 	
	 When there are multiple dependent variables ✓ When we would like to identify the strength of the effect that the independent variables have on a dependent variable. ✓ When we would like to predict impacts of changes in independent variables on a 	3 points

		/	Polynomia	l regression	models o	can fit usino	the Least	Squares method
--	--	----------	-----------	--------------	----------	---------------	-----------	----------------

~	Polynomial regression can use the same mechanism as Multiple Linear Regression to
	find the parameters.

5.	Which	sentence	is NOT	TRUE abo	out Non-lir	near Regre	ssion?
----	-------	----------	---------------	----------	--------------------	------------	--------

3 points

- Nonlinear regression is a method to model non linear relationship between the dependent variable and a set of independent variables.
- For a model to be considered non-linear, y must be a non-linear function of the parameters.
- Non-linear regression must have more than one dependent variable.