Constraint Satisfaction Problems

8			4		6			7
						4		
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2					9	
		1						
3			9		2			5

Constraint satisfaction problems (CSPs)

- Standard search problem:
 - State is a "black box" any data structure that supports successor function, heuristic function, and goal test
- Constraint satisfaction problem:
 - State is defined by variables X_i with values from domain D_i
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- A simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms

Example: Map Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domains: {red, green, blue}
- Constraints: adjacent regions must have different colors e.g., WA ≠ NT, or (WA, NT) in {(red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)}

Example: Map Coloring

Solutions are complete and consistent assignments,
 e.g., WA = red, NT = green, Q = red, NSW = green,
 V = red, SA = blue, T = green

Example: N-Queens

- Variables: X_{ij}
- **Domains:** {0, 1}
- Constraints:

$$\Sigma_{i,j} X_{ij} = N$$

$$(X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$(X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$(X_{ij}, X_{i+k, j+k}) \in \{(0, 0), (0, 1), (1, 0)\}$$

$$(X_{ij}, X_{i+k, j+k}) \in \{(0, 0), (0, 1), (1, 0)\}$$

N-Queens: Alternative formulation

- Variables: Q_i
- **Domains:** {1, ..., N}
- Constraints:

 $\forall i, j \text{ non-threatening } (Q_i, Q_j)$

Example: Cryptarithmetic

• Variables: T, W, O, F, U, R

$$X_1, X_2$$

- **Domains**: {0, 1, 2, ..., 9}
- Constraints:

Alldiff(T, W, O, F, U, R)
$$O + O = R + 10 * X_{1}$$

$$W + W + X_{1} = U + 10 * X_{2}$$

$$T + T + X_{2} = O + 10 * F$$

$$T \neq 0, F \neq 0$$

Example: Sudoku

- Variables: X_{ij}
- **Domains:** {1, 2, ..., 9}
- Constraints:

Alldiff(X_{ii} in the same unit)

					8			4
	8	4		1	6			
			5	2 B		1	v	
1		3	8			9		
6		8		X _{ij}		4		3
		2			9	5		1
		7			2			
			7	8		2	6	
2			3					

Real-world CSPs

- Assignment problems
 - e.g., who teaches what class
- Timetable problems
 - e.g., which class is offered when and where?
- Transportation scheduling
- Factory scheduling
- More examples of CSPs: http://www.csplib.org/

Standard search formulation (incremental)

States:

Values assigned so far

• Initial state:

– The empty assignment { }

Successor function:

- Choose any unassigned variable and assign to it a value that does not violate any constraints
 - Fail if no legal assignments

Goal test:

The current assignment is complete and satisfies all constraints

Standard search formulation (incremental)

- What is the depth of any solution?
 - n (with n variables assigned)
 - This is the good news (why?)
- Given that there are m possible values for any variable, how many paths are there in the search tree?
 - $-n! \cdot m^n$
 - This is the bad news
- How can we reduce the branching factor?

Backtracking search

- In CSP's, variable assignments are commutative
 - For example, [WA = red then NT = green] is the same as [NT = green then WA = red]
- We only need to consider assignments to a single variable at each level (i.e., we fix the order of assignments)
 - Then there are only m^n leaves
- Depth-first search for CSPs with single-variable assignments is called backtracking search

Backtracking search algorithm

```
function Recursive-Backtracking (assignment, csp)

if assignment is complete then return assignment

var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)

for each value in Order-Domain-Values (var, assignment, csp)

if value is consistent with assignment given Constraints [csp]

add \{var = value\} to assignment

result \leftarrow \text{Recursive-Backtracking}(assignment, csp)

if result \neq failure then return result

remove \{var = value\} from assignment

return failure
```

- Improving backtracking efficiency:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?