Jutorcial sheet 2 - Solutions

(1) Freom notes:

Bottom soil layer:
$$C'=5$$
, $C'=20^{\circ}$
=) $6xa' = 0.4903 6g' - 7.002$
 $6xp' = 2.0396 6g' + 14.281$

a) zoto pore mator pressure:

Top layer:

Bottom layer:

$$Gxa = 8.82542 - 7.002$$

6) a static ground water table 2.0m below ground surface

$$4>2.0 \text{ m}$$
 => $6 \text{ m}' = 2.0 \times 18 + (20-9.81)(2-2)$
= $36 + 10.2(2-2)$
 $6 \text{ m}' = 2.764.7 + 4.2276$
 $6 \text{ m}' = 37.64.7 + 57.567$

3ottom layer: $6_7 = 36 + 10.2(2-2)$ 6xa' = 5.02 + 0.6476xp = 20.82 + 46.099

2) tetire and passive Rankine states in a semi-infinite cohosionless soil mass with inclined surface

Consider a shaded element of soil at depth & Since, at any constant depth below the surface, all such elements are similar, the forces on the vertical surfaces AB and CD are equal and parallel to the ground surface. The resulting stress Pv on the inclined surface of the element is then vertical and equal to the weight of soil above, i.e. \$\mathbb{F}_1\cos\beta\$.

Active case	Passive case
GXA Pacos/3 OPA	
$\frac{G_{XA}}{f_{1} + g_{1} \cos \frac{1}{2}s} = \frac{P_{A} \cos \frac{1}{2}s}{f_{1} + g_{1} \cos \frac{1}{2}s} = \frac{OP_{A}}{OC} =$	$\frac{G_{XP}}{F_{Z_1}\cos\beta} = \frac{P_P\cos\beta}{F_{Z_1}\cos\beta} = \frac{OP_P}{OC}$
$= \frac{OD - DP_A}{OD + DC}$	OF+EPP
- OD+DC	OE-EC
OD = OA.005/5	0E = 0B · Cos/3
$OD = OA \cdot \cos/3$ $DP_A = DC = (AC^2 - AD^2)^{\frac{1}{2}}$	$OE = OB \cdot Cosps$ $EP_P = EC = \left(BC^2 - EB^2\right)^{\frac{1}{2}}$
AC=Aa = OA.Sine'	$BC = Bb = OB \cdot Siu e^{l}$
AD= OA·Sings	IB = OB. S)'n/3
DC = OA (Sik 2 - Jik 3) =	EC = OB (Sin 28' - Sin 25) =
Noting: $\cos^2(6' + 5ik^2(6' = 1))$ $\cos^2(5 + 5ik^2(5 = 1))$	
$DC = 0A \left(\cos^2 \beta - \cos^2 \theta' \right)^{\frac{1}{2}}$	$EC = OB \left(\cos^2 \beta - \cos^2 \varphi' \right)^{\frac{1}{2}}$
$Pa = \int_{1}^{2} \frac{1}{1} \cos \beta \frac{\cos \beta - (\cos \beta - \cos \beta)^{\frac{1}{2}}}{\cos \beta + (\cos \beta - \cos \beta)^{\frac{1}{2}}}$	$P_{p} = \int_{-\infty}^{\infty} \frac{\cos^{2} b + (\cos^{2} b - \cos^{2} b^{2})^{\frac{1}{2}}}{\cos^{2} b - (\cos^{2} b - \cos^{2} b^{2})^{\frac{1}{2}}}$
GXA = Pa cos/3; Tx= Pasih/3	Gxp=PpCas/3; Tx= Pp·sin/3
The planes of max stress	The planes of max stress
The planes of max stress obliquity are inclined at:	The planes of max stress deliquity are inclined at:
$\pm \alpha = \frac{1}{2} \alpha \widehat{A} F = \frac{1}{2} (\overline{A} - \overline{A} + e')$	$\pm \alpha = \frac{1}{2} \left(\frac{\sqrt{1}}{2} - \frac{\sqrt{2}}{2} \right) = \pm \left(\frac{\sqrt{1}}{4} - \frac{\sqrt{2}}{2} \right)$
= $\pm \left(\frac{1}{4} + \frac{e}{z}\right)$ to the plane	to the plane on which 63 acts.
on which by acts.	
· · · · · · · · · · · · · · · · · · ·	

	A.
	-4-