Exercice III – Effet piezoélectrique (5 points) CHAQUE EXERCICE DOIT ETRE REDIGE SUR UNE COPIE DIFFERENTE

La déformation, sous l'effet d'une action mécanique, de certains cristaux ou céramiques dits anisotropes, induit l'apparition d'une tension électrique U; c'est l'effet piézoélectrique direct, découvert en 1880 par Pierre et Jacques Curie.

Document 1 : Modélisation simplifiée de l'effet piézoélectrique au niveau microscopique

Un cristal entier est constitué d'un empilement régulier de petits arrangements qui se répètent dans les trois directions de l'espace.

Considérons au niveau microscopique, un arrangement d'anions et de cations schématisé sur la figure 1, tel qu'il peut en exister dans un cristal.

Figure 1 : exemple d'arrangement d'anions et de cations dans un cristal

Quand aucune contrainte mécanique n'agit sur le cristal, pour chaque arrangement élémentaire, le « centre » des charges électriques positives coïncide avec celui des charges électriques négatives (point G sur la figure 1). En revanche, dès que le cristal est comprimé, cette coïncidence disparaît, comme le montre le schéma de la figure 2 (points G+ pour les charges positives et G- pour les charges négatives). Cette compression est modélisée par deux forces opposées de même module F; la séparation est d'autant plus importante que la compression est grande.

Figure 2 : soumis à une compression, le cristal se déforme et une tension électrique *U* apparaît : c'est l'effet piézoélectrique direct.

Cette dissymétrie des « centres » de charges électriques pour chaque arrangement élémentaire conduit à l'apparition de charges électriques sur les faces extérieures du cristal, générant ainsi un champ électrique. Une tension électrique *U*, mesurable, apparaît alors entre les deux surfaces extérieures du cristal. En pratique, ces surfaces sont métallisées pour permettre les connexions nécessaires à l'utilisation du cristal dans un circuit électronique.

<u>Document 2</u> : Caractéristiques du fonctionnement d'un capteur piézoélectrique au niveau macroscopique.

Le capteur photographié sur la figure 3 possède un comportement un peu différent du cristal décrit en introduction.

Figure 3 : exemple de capteur de force piézoélectrique prêt à être incorporé dans un circuit électrique.

D'après http://www.hbm.com

En effet, les charges électriques apparaissent **sur** les faces soumises à l'action mécanique modélisée par les deux forces opposées de module F; une charge électrique +Q(Q>0) apparaît sur la face supérieure tandis qu'une charge -Q apparaît sur l'autre face. Le module F de la force et la charge Q sont proportionnels ; le coefficient de proportionnalité B est appelé constante piézoélectrique.

 $\beta = 5 \times 10^{-5} \,\text{C}$. N⁻¹ pour le capteur de la figure 3.

La charge Q est également proportionnelle à la tension électrique U qui apparaît entre les deux faces : Q = C.U où la charge Q est exprimée en coulomb et la tension électrique U en volt.

 $C = 125 \times 10^{-12} \text{ F (farad) pour le capteur de la figure 3.}$

Document 3 : Exemples de matériaux piézoélectriques et d'utilisations de ces matériaux

Les cristaux naturels ne sont pas les seuls à présenter des propriétés piézoélectriques. Les céramiques dites techniques, qu'il ne faut pas confondre avec celles dédiées à la céramique d'art ou à la porcelaine, du type zircotitanate de plomb (PZT) en particulier ou des polymères, tel le polyvinylidène difluoré (PVDF), présentent aussi d'excellentes propriétés piézoélectriques.

Toutefois, pour que ces propriétés apparaissent, ces matériaux nécessitent au préalable un traitement particulier. Les utilisations des céramiques techniques et des polymères sont tellement nombreuses qu'il n'est pas possible ici d'en dresser la liste, d'autant que leurs propriétés ne se résument pas à la seule piézoélectricité. On peut néanmoins, de ce dernier point de vue, citer quelques exemples d'applications rassemblées dans le tableau suivant :

Utilisations des matériaux piézoélectriques	Fonction			Où les trouve-t-on ?	
Transducteurs électro-				Microphone;	
acoustiques	acoustique		signal		aphe ; radar de
	électrique et inversement.			recul	
Capteurs de force ou de	Conversion d'une action			Dynamomètre ; balance ;	
pression	mécanique en signal			accéléromètre ; manomètre,	
	électrique.			baromètre ; air	bag ; manette
				de jeu vidéo	

Résolution de problème

On souhaite utiliser le capteur piézoélectrique de la figure 3, connecté aux bornes d'un voltmètre, pour mesurer des niveaux d'intensité sonore.

Données:

• Relation entre l'intensité sonore *I*, en un point M du milieu de propagation, et l'amplitude de la pression acoustique *p* en ce point :

$$I = \frac{p^2}{2\rho.c}$$

Où ρ désigne la masse volumique du milieu de propagation et c la célérité de l'onde sonore dans ce milieu.

• Valeurs de l'intensité sonore de référence I_0 et de p_0 l'amplitude de la pression acoustique de référence liée à I_0 .

$$I_0 = 1.0 \times 10^{-12} \text{ W.m}^{-2}$$
; $p_0 = 2 \times 10^{-5} \text{ Pa}$.

Niveaux d'intensité sonore :

	
130 dB	Seuil intolérable
120 dB	Réacteur d'avion à 10 m
110 dB	Atelier de chaudronnerie
100 dB	Marteau-piqueur à 2 m
90 dB	Atelier de tissage
80 dB	Rue bruyante
60 dB	Conversation vive
50 dB	Musique douce
40 dB	Conversation normale
30 dB	Résidence tranquille

D'après http://www.developpement-durable.gouv.fr

Questions préalables

- 1. Représenter le champ électrique macroscopique généré par l'apparition des charges électriques sur les faces extérieures du cristal schématisées sur la figure 2.
 - **2.** Montrer que le niveau d'intensité sonore *L* et la pression *p* sont reliés par la relation :

$$L = 20 \log \frac{p}{p_0}$$

Problème.

3. On connecte le capteur piézoélectrique de la figure 3 aux bornes d'un voltmètre.

Évaluer l'ordre de grandeur de la tension électrique U affichée par le voltmètre quand le capteur piézoélectrique est soumis à un son d'intensité sonore L = 50 dB, placé à 50 cm d'une source sonore ?

Peut-on prévoir d'utiliser ce capteur pour réaliser un sonomètre ?

<u>Remarque</u> : Le candidat doit faire preuve d'initiatives. L'analyse des données, la démarche suivie et l'analyse critique seront évaluées. Elles nécessitent d'être correctement présentées.	se

