

Shenzhen Centre Quality Accreditation Technology Co., Ltd.

Address:1 F., Block B of Complex Building, Baisha Logistics Park, No.3011 Shahe West Road, Nanshan District, Shenzhen, China

Telephone: +86-755-26648640 Report I Fax: +86-755-26648637 Report V

Website: www.cqa-cert.com

Report No.: CO

CQASZ160301374E-01

Report Version: V01

MEASUREMENT REPORT Test Report

Applicant: Shenzhen ESYB Technology Limited.

Address of Applicant: F 9th, Bldg 2, Guole Science Park, No.1 Lirong Rd., Longhua Dis., Shenzhen,

CN.

Manufacturer: Shenzhen ESYB Technology Limited.

Address of F 9th, Bldg 2, Guole Science Park, No.1 Lirong Rd., Longhua Dis., Shenzhen,

Manufacturer: CN

Equipment Under Test (EUT):

Product: BATTERY CHARGER

 Model No.:
 E4

 Brand Name:
 E⋅SYB

 FCC ID:
 2AHIQ-E4

 Standards:
 47 CFR Part 15, Subpart C

 Date of Test:
 2016-03-30 to 2016-04-12

Date of Issue: 2016-04-13

Test Result : PASS*

Reviewed By:

(Aaron Ma

Approved By:

(Owen Zhou)

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ160301374E-01	Rev.01	Initial report	2016-04-13

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS

4 Contents

			Page
1	C	OVER PAGE	1
2	VI	ERSION	
3	TF	EST SUMMARY	3
		ONTENTS	
4			
5	G	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	5
	5.3	TEST ENVIRONMENT	7
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	TEST LOCATION	7
	5.6	TEST FACILITY	8
	5.7	DEVIATION FROM STANDARDS	8
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	8
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	8
	5.10	EQUIPMENT LIST	9
6	TE	EST RESULTS AND MEASUREMENT DATA	10
	6.1	Antenna Requirement	10
	6.2	CONDUCTED EMISSIONS	11
	6.3	CONDUCTED PEAK OUTPUT POWER	14
	6.4	6DB OCCUPY BANDWIDTH	17
	6.5	POWER SPECTRAL DENSITY	20
	6.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	23
	6.7	Spurious RF Conducted Emissions	25
	6.8	RADIATED SPURIOUS EMISSION	34
	6.	8.1 Spurious Emissions	34
	6.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	41
7	Pl	HOTOGRAPHS - EUT TEST SETUP	44
	7.1	CONDUCTED EMISSION	44
	7.2	RADIATED EMISSION	44
	7.3	RADIATED SPURIOUS EMISSION	46
8	Pł	HOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	46

5 General Information

5.1 Client Information

Applicant:	Shenzhen ESYB Technology Limited.
Address of Applicant:	F 9th, Bldg 2, Guole Science Park, No.1 Lirong Rd., Longhua Dis., Shenzhen, CN.
Manufacturer:	Shenzhen ESYB Technology Limited.
Address of Manufacturer:	F 9th, Bldg 2, Guole Science Park, No.1 Lirong Rd., Longhua Dis., Shenzhen, CN.

5.2 General Description of EUT

Product Name:	BATTERY CHARGER		
Model No.:	E4		
Trade Mark:	E · SYB		
Hardware Version:	V1		
Software Version:	V1		
Operation Frequency:	2402MHz~2480MHz		
Bluetooth Version:	V4.0 BLE		
Modulation Type:	GFSK		
Number of Channel:	40		
Sample Type:	Portable production		
Test Software of EUT:	RF Test (manufacturer declare)		
Antenna Type:	PCB Antenna		
Antenna Gain:	1.01dBi		
Power Supply:	Adapter: Input: AC100-240V 50/60Hz Output: DC9V 2.5A		
	EUT Power Supply: DC9V		
	Bluetooth Module: DC3.3V		

Report No.: CQASZ160301374E-01

On a matical [Operation Frequency each of channel						
Operation i	requency each	of channel					
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency	
The lowest channel (CH0)	2402MHz	
The middle channel (CH19)	2440MHz	
The highest channel (CH39)	2480MHz	

5.3 Test Environment

Operating Environment:	Operating Environment:		
Temperature:	25.0 °C		
Humidity:	53 % RH		
Atmospheric Pressure:	1010mbar		
Test Mode:	Use test software (RF test) to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT. Note: In the process of transmitting of EUT, the duty cycle >98%.		

5.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.
AC/DC Adapter	E • SYB	K25V090250U
Battey	Defei	AA 1500mAh 1.2V

5.5 Test Location

All tests were performed at:

Shenzhen CTL Testing Technology Co., Ltd., Shenzhen EMC Laboratory,

1/F.-A, Baisha Technology Park, No.3011, Shahexi Road, Nanshan District, Shenzhen, Guangdong, China

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Equipment List

					Calibration
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Due Date
		Sunol Sciences			
1	Bilog Antenna	Corp.	JB1	A061713	2016/06/01
		ROHDE &			
2	EMI Test Receiver	SCHWARZ	ESCI3	103710	2016/06/01
3	Spectrum Analyzer	Agilent	E4407B	MY45108355	2016/05/20
			Controller		
4	Controller	EM Electronics	EM 1000	N/A	2016/05/20
		Sunol Sciences			
5	Horn Antenna	Corp.	DRH-118	A062013	2016/05/18
6	Ultra-Broadband Antenna	ShwarzBeck	BBHA9170	25841	2016/05/18
7	Active Loop Antenna	Daze	ZN30900A	N/A	2016/05/18
8	Spectrum Analyzer	R&S	FSU	MY41440676	2016/05/18
9	LISN	R&S	ENV216	101316	2016/06/01
10	LISN	SCHWARZBECK	NSLK8127	8127687	2016/06/01
	Microwave				
11	Preamplifier	HP	8349B	3155A00882	2016/05/18
12	Preamplifier	HP	8447D	3113A07663	2016/05/18
13	Transient Limiter	Com-Power	LIT-153	532226	2016/06/01
	Temperature/Humidity				
14	Meter	Gangxing	CTH-608	02	2016/05/19
15	Climate Chamber	ESPEC	EL-10KA	A20120523	2016/05/19
			9SH10-		
			2700/X12750-		
16	High-Pass Filter	K&L	0/0	N/A	2016/05/19
			41SH10-		
			1375/U12750-		
17	High-Pass Filter	K&L	0/0	N/A	2016/05/19
18	RF Cable(0-1GHz)	HUBER+SUHNER	RG174	N/A	2016/05/19
19	RF Cable(1-25GHz)	HUBER+SUHNER	RG214	N/A	2016/05/19
20	The temporary antenna Connector	MMCX-SMA	1547	23657478	2016/05/19

Note:

The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.01dBi.

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207		
Test Method:	ANSI C63.10: 2013		
Test Frequency Range:	150kHz to 30MHz		
Limit:	Limit (dBuV)		
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm	n of the frequency.	
Test Procedure:	 The mains terminal disturbance voltage test was conducted in a shielded room. The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 		
Test Mode:	Shielding Room AC Mains LISN1 Transmitting with GFSK modu	AE LISN2 AC Ma Ground Reference Plane	Test Receiver
	Charge +Transmitting mode.		
Final Test Mode:	Found the Charge + Transmit	ting mode (The highes	st channel:2480MHz)
	which it is worse case.	11. 4	
	Only the worst case is recorded	ed in the report.	

Report No.: CQASZ160301374E-01

Instruments Used:	Refer to section 5.10 for details.
Test Voltage:	AC 120V/60Hz
Test Results:	Pass

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
53.80 53.80 53.30 48.70 35.30 17.90	10.2 10.2 10.2 10.2 10.2 11.2	66 65 63 57 60	11.7 11.5 11.8 14.4 21.5 42.1	QP QP QP QP QP QP	L1 L1 L1 L1 L1	GND GND GND GND GND GND
Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
34.40 34.10 33.80 30.30 29.10	10.2 10.2 10.2 10.2 10.2	56 55 54 53 53	21.1 21.0 20.2 22.6 23.6	AV AV AV AV	L1 L1 L1 L1 L1	GND GND GND GND GND GND
	dBμV 53.80 53.80 53.30 48.70 35.30 17.90 Level dBμV 34.40 34.10 33.80 30.30 29.10	dBμV dB 53.80 10.2 53.80 10.2 53.30 10.2 48.70 10.2 35.30 10.2 17.90 11.2 Level Transd dBμV dB 34.40 10.2 34.10 10.2 33.80 10.2 30.30 10.2	dBμV dB dBμV 53.80 10.2 66 53.80 10.2 65 53.30 10.2 65 48.70 10.2 63 35.30 10.2 57 17.90 11.2 60 Level Transd dBμV Limit dBμV 34.40 10.2 56 34.10 10.2 55 33.80 10.2 54 30.30 10.2 53 29.10 10.2 53	dBμV dB dBμV dB 53.80 10.2 66 11.7 53.80 10.2 65 11.5 53.30 10.2 65 11.8 48.70 10.2 63 14.4 35.30 10.2 57 21.5 17.90 11.2 60 42.1 Level Transd Limit Margin dBμV dB dBμV dB 34.40 10.2 56 21.1 34.10 10.2 55 21.0 33.80 10.2 54 20.2 30.30 10.2 53 22.6 29.10 10.2 53 23.6	dBμV dB dBμV dB 53.80 10.2 66 11.7 QP 53.80 10.2 65 11.5 QP 53.30 10.2 65 11.8 QP 48.70 10.2 63 14.4 QP 35.30 10.2 57 21.5 QP 17.90 11.2 60 42.1 QP Level Transd Limit Margin Detector dBμV dB dBμV dB 34.40 10.2 56 21.1 AV 34.10 10.2 55 21.0 AV 33.80 10.2 54 20.2 AV 30.30 10.2 53 22.6 AV 29.10 10.2 53 23.6 AV	dBμV dB dBμV dB 53.80 10.2 66 11.7 QP L1 53.80 10.2 65 11.5 QP L1 53.30 10.2 65 11.8 QP L1 48.70 10.2 63 14.4 QP L1 35.30 10.2 57 21.5 QP L1 17.90 11.2 60 42.1 QP L1 Level Transd dB dBμV dB Detector Line 34.40 10.2 56 21.1 AV L1 34.10 10.2 55 21.0 AV L1 33.80 10.2 54 20.2 AV L1 30.30 10.2 53 22.6 AV L1 29.10 10.2 53 23.6 AV L1

Neutral line:

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.163501 0.168001 0.424501 0.460501	53.30 52.70 37.30 38.40	10.2 10.2 10.2 10.2	65 65 57 57	12.0 12.4 20.1 18.3	QP QP QP QP	N N N	GND GND GND GND
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.159001 0.190501 0.217501 0.424501	31.30 34.20 31.30 26.80	10.2 10.2 10.2 10.2	56 54 53 47	24.2 19.8 21.6 20.6	AV AV AV AV	N N N N	GND GND GND GND
0.451501	25.80	10.2	47	21.0	AV	N	GND

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

6.3 Conducted Peak Output Power

Measurement Data

modelar ormerit Data						
	GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	0.83	30.00	Pass			
Middle	0.85	30.00	Pass			
Highest	0.85	30.00	Pass			

Test plot as follows:

Center 2.402 GHz

2.5 MHz/

6.4 6dB Occupy Bandwidth

Measurement Data

	GFSK mode		
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result
Lowest	0.706	≥500	Pass
Middle	0.706	≥500	Pass
Highest	0.706	≥500	Pass

Span 3 MHz

Test plot as follows:

300 kHz/

Center 2.402 GHz

6.5 Power Spectral Density

Measurement Data

	GFSK mode					
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result			
Lowest	-15.43	≤8.00	Pass			
Middle	-15.28	≤8.00	Pass			
Highest	-15.21	≤8.00	Pass			

Span 1.1 MHz

Test plot as follows:

6.6 Band-edge for RF Conducted Emissions

Test plot as follows:

6.7 Spurious RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)	
Test Method:	ANSI C63.10 2013	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table	
	Ground Reference Plane	
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test Mode:	Transmitting with GFSK modulation.	
Instruments Used:	Refer to section 5.10 for details.	
Test Results:	Pass	

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Stop 25 GHz

Start 30 MHz

Test mode:

GFSK

Test channel:

**RBW 100 kHz **VBW 300 kHz **O.66 dBm **Att 15 dB **SWT 2.5 s **2.479557000 GHz

**Test mode:

**RBW 100 kHz **O.66 dBm **Att 15 dB **SWT 2.5 s **2.479557000 GHz

**Test mode:

**RBW 100 kHz **O.66 dBm **O.66

2.497 GHz/

Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

6.8 Radiated Spurious Emission

6.8.1 Spurious Emissions						
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205					
Test Method:	ANSI C63.10 2013					
Test Site:	Measurement Distance	: 3m	n (Semi-Anecl	noic Cham	ber)	
Receiver Setup:	Frequency Detector RBW VBW Remark			Remark		
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MH	Z	Peak	10kHz	z 30kHz	Peak
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz	30MHz-1GHz Quasi-peak 10		100 kH	lz 300kHz	Quasi-peak
	Above 1GHz Peak		1MHz	3MHz	Peak	
			Peak	1MHz	10Hz	Average
Limit:	Frequency Field strength (microvolt/meter)		Limit (dBuV/m)	Remark	Measuremen distance (m)	
	0.009MHz-0.490MHz 2400/F(kHz)		-	-	300	
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30
	1.705MHz-30MHz		30	-	-	30
	30MHz-88MHz	30MHz-88MHz 100		40.0	Quasi-peak	3
	88MHz-216MHz 150		43.5	Quasi-peak	3	
	216MHz-960MHz 200		46.0	Quasi-peak	3	
	960MHz-1GHz 500		54.0	Quasi-peak	3	
	Above 1GHz		500	54.0	Average	3
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level rad	20c quip	IB above the oment under t	maximum est. This p	permitted ave	erage emission

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case

	Report No.: OQA02100301374E-01	
	and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.	
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.	
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.	
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)	
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.	
	i. Repeat above procedures until all frequencies measured was complete.	
Exploratory Test	Transmitting with GFSK modulation.	
Mode:	Transmitting mode, Charge + Transmitting mode.	
Final Test Mode:	Transmitting with GFSK modulation. Pretest the EUT at Transmitting mode and Charge + Transmitting mode, found the Charge + Transmitting mode which it is worse case.	
	For below 1GHz part, through pre-scan, the worst case is the lowest channel.	
	Only the worst case is recorded in the report.	
Instruments Used:	Refer to section 5.10 for details.	
Test Results:	Pass	

Radiated Emission below 1GHz				
30MHz~1GHz (QP)				
Test mode:	Charge + Transmitting mode	Vertical		

Frequency	Level	Transd	Limit	Margin
MHz	dBµV/m	dB	dBµV/m	dB
30.000000	34.00	20.8	40.0	6.0
95.960000	27.90	10.2	43.5	15.6
109.540000	33.20	13.3	43.5	10.3
173.560000	21.20	13.0	43.5	22.3
553.800000	25.40	21.0	46.0	20.6
903.000000	32.20	26.0	46.0	13.8

Test mode: Charge + Transmitting mode Horizontal

Frequency	Level	Transd	Limit	Margin
MHz	dBµV/m	dB	dBµV/m	dB
30.000000	24.80	20.8	40.0	15.2
57.160000	15.20	8.0	40.0	24.8
132.820000	21.90	14.4	43.5	21.6
206.540000	18.90	14.1	43.5	24.6
555.740000	25.80	21.1	46.0	20.2
959.260000	32.60	26.6	46.0	13.4

Transmitter Emission above 1GHz

Worse case mode:	GFSK	Test channel:	Lowest
------------------	------	---------------	--------

Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol. H/V
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	1 1/ V
4804	48.91	-5.18	43.73	74	-30.27	peak	Н
4804	36.08	-5.18	30.90	54	-23.10	AVG	Н
7206	49.16	-6.45	42.71	74	-31.29	peak	Н
7206	35.10	-6.45	28.65	54	-25.35	AVG	Н
4804	48.54	-5.18	43.36	74	-30.64	peak	V
4804	36.75	-5.18	31.57	54	-22.43	AVG	V
7206	48.48	-6.45	42.03	74	-31.97	peak	V
7206	35.20	-6.45	28.75	54	-25.25	AVG	V

Worse case mode:	GFSK	Test channel:	Middle
------------------	------	---------------	--------

Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	1 1/ V
4880	48.67	-5.19	43.48	74	-30.52	peak	Н
4880	36.75	-5.19	31.56	54	-22.44	AVG	Н
7320	49.25	-6.47	42.78	74	-31.22	peak	Н
7320	35.54	-6.47	29.07	54	-24.93	AVG	Н
4880	48.40	-5.19	43.21	74	-30.79	peak	V
4880	36.31	-5.19	31.12	54	-22.88	AVG	V
7320	49.27	-6.47	42.80	74	-31.20	peak	V
7320	35.03	-6.47	28.56	54	-25.44	AVG	V

Worse case mode:	GFSK	Test channel:	Highest
------------------	------	---------------	---------

Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
4960	49.82	-5.2	44.62	74	-29.38	peak	Н
4960	37.43	-5.2	32.23	54	-21.77	AVG	Н
7440	50.09	-6.47	43.62	74	-30.38	peak	Н
7440	36.63	-6.47	30.16	54	-23.84	AVG	Н
4960	49.50	-5.2	44.30	74	-29.70	peak	V
4960	37.42	-5.2	32.22	54	-21.78	AVG	V
7440	49.71	-6.47	43.24	74	-30.76	peak	V
7440	36.32	-6.47	29.85	54	-24.15	AVG	V

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

6.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205				
Test Method:	ANSI C63.10 2013	ANSI C63.10 2013			
Test Site:	Measurement Distance: 3m	(Semi-Anechoic Chambe	r)		
Limit:	Frequency	Limit (dBuV/m @3m)	Remark		
	30MHz-88MHz	40.0	Quasi-peak Value		
	88MHz-216MHz	43.5	Quasi-peak Value		
	216MHz-960MHz	46.0	Quasi-peak Value		
	960MHz-1GHz	54.0	Quasi-peak Value		
	Above 1GHz	54.0	Average Value		
	Above IGHZ	74.0	Peak Value		
Test Setup:					

Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 2) Above
 - 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

- b. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. For each suspected emission, the EUT was arranged to its worst case

	 and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. d. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. e. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel f. Test the EUT in the lowest channel, the Highest channel g. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. h. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with GFSK modulation. Transmitting mode, Charge + Transmitting mode.
Final Test Mode:	Transmitting with GFSK modulation. Pretest the EUT at Transmitting mode and Charge + Transmitting mode, found the Charge + Transmitting mode which it is worse case. Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass

Worse case mode:	GFSK	Test channel:	Lowest	Remark:	Vertical	
------------------	------	---------------	--------	---------	----------	--

Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	46.38	-4.36	42.02	74	-31.98	peak
2390	37.63	-4.36	33.27	54	-20.73	AVG
2401.96	93.41	-4.37	89.04	74	15.04	peak
2401.96	76.54	-4.37	72.17	54	18.17	AVG

Worse case mode:	GFSK	Test channel:	Lowest	Remark:	Horizontal
------------------	------	---------------	--------	---------	------------

Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2390	46.10	-4.36	41.74	74	-32.26	peak
2390	34.69	-4.36	30.33	54	-23.67	AVG
2401.96	90.56	-4.37	86.19	74	12.19	peak
2401.96	72.51	-4.37	68.14	54	14.14	AVG

Report No.: CQASZ160301374E-01

Worse case mode:	GFSK	Test channel:	Highest	Remark:	Vertical
------------------	------	---------------	---------	---------	----------

Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2479.96	91.61	-4.22	87.39	74	13.39	peak
2479.96	73.80	-4.22	69.58	54	15.58	AVG
2483.5	54.02	-4.22	49.80	74	-24.20	peak
2483.5	45.17	-4.22	40.95	54	-13.05	AVG

Worse case mode:	GFSK	Test channel:	Highest	Remark:	Horizontal	
------------------	------	---------------	---------	---------	------------	--

Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2479.96	88.95	-4.22	84.73	74	10.73	peak
2479.96	71.49	-4.22	67.27	54	13.27	AVG
2483.5	53.60	-4.22	49.38	74	-24.62	peak
2483.5	44.89	-4.22	40.67	54	-13.33	AVG

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

7 Photographs - EUT Test Setup

Test model No.: E4

7.1 Conducted Emission

7.2 Radiated Emission

7.3 Radiated Spurious Emission

Photographs - EUT Constructional Details 8

END OF THE REPORT