Amendments to the Claims

This listing of claims will replace all prior version, and listings, of claims in the specification:

Listing of Claims

1. (original) A compound of the formula I:

$$OR_2$$
 OR_4 O OR_5 $R6$ $R7$ $R8$ (I)

or a salt thereof, wherein

n is 0, 1 or 2;

- R1 is H, X_1 -(C_{1-6}) alkyl-, (C_{1-12})alkylC(O)-, X_2 -(C_{2-4}) alkenylene-, X_2 -(C_{2-4}) alkynylene-, X_1 -(C_{3-9})cycloalkyl-, X_2 -(C_{3-9})cycloalkene-, X_1 -aryl-, X_1 -(C_{3-7})cycloalkene-(C_{1-6})alkylene-, or X_1 -aryl-(C_{1-6})alkylene-;
- X_1 is H, (C_{1-14}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-14}) alkyl substituted by (C_{3-7}) cycloalkyl, $-OR_a$, $-SR_a$, $-NO_2$, halo or (C_{1-6}) alkylC(O)-; aryl, aryl- (C_{1-12}) alkyl-, $-OR_a$, $-SR_a$, $-NO_2$, halo, (C_{1-12}) alkyl-C(O)-, mono- or di- (C_{1-4}) alkylamino, amino (C_{1-16}) alkyl-, or mono- or di- (C_{1-4}) alkylamino, amino (C_{1-16}) alkyl-, or mono- or di- (C_{1-4}) alkylamino, amino (C_{1-16}) alkyl-, or mono- or di- (C_{1-4}) alkylamino, amino (C_{1-16}) alkyl-, or mono- or di- (C_{1-4}) alkyl-, or mono-
- X_2 is H, (C_{1-14}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-14}) alkyl substituted by (C_{3-7}) cycloalkyl, $-OR_a$ -SR_a, -NO₂, halo or (C_{1-6}) alkyl-C(O)-; aryl, aryl- (C_{1-12}) alkyl-, amino (C_{1-16}) alkyl- or mono- or di- (C_{1-16}) alkyl;
- R_a is H, (C_{1-18}) alkyl, aryl, or (C_{1-18}) alkyl substituted by (C_{3-7}) cycloalkyl, aryl, -OH, -O- (C_{1-6}) alkyl or halo;
- R₂, R₃, R₄ and R₅ are independently hydrogen or (C₁₋₁₈)alkyl, R₅ is also phenyl or (C₁₋₁₆)alkyl which is substituted by phenyl, wherein there is no more than a total of 18 carbon atoms in the combined R₂, R₃, R₄ and R₅ alkyl substituents, or R₂ and R₄ together or R₃ and R₅ together form an acetal group;

R6 is hydrogen or (C₁₋₆) alkyl;

R7 is H, (C_{1-18}) alkyl, phenyl, pyridyl, (C_{1-18}) alkyl substituted by (C_{3-7}) cycloalkyl, $-OR_x$, N₃, halo, $-N(R_x)_2$, R_x, $-O-(C_{1-6})$ alkyl, $-OC(O)-(C_{1-16})$ alkyl or pyridyl; $-Y-R_b$ or a substituent of formula IIa or IIIa

wherein

R9 is from 0 to 3 substituents selected from (C₁₋₆)alkyl, -OR_a, -SR_a, -NO₂, halo, -N₃, (C₁₋₁₂)alkylC(O)-, mono- or di-(C₁₋₄)alkylamino, amino(C₁₋₁₆)alkyl-, mono- or di-(C₁₋₄)alkylamino(C₁₋₁₆)alkyl, (CH₂)₀₋₂-C₅₋₇cycloalkyl, (CH₂)₀₋₂-heterocyclic, (CH₂)₀₋₂-C₅₋₇aryl, or (CH₂)₀₋₂-heteroaryl;

Y is a linking group selected from -(C_{1-10})alkyl-, -(C_{0-10})alkylene-CO-N(R_x)-(C_{0-10})alkylene-, -(C_{0-10})alkylene-, -(C_{0-10})alkylene-CO-O-(C_{0-10})alkylene-, -(C_{1-10})alkylene-CO-(C_{0-10})alkylene-, -(C_{0-10})alkylene-CO-(C_{0-10})alkylene-, -(C_{0-10})alkylene-(C_{0-10})alkylene-or-(C_{0-10})alkylene- or -(C_{0-10})alkylene-or-(C_{0-10})alkylene-arylene-(C_{0-10})alkylene-;

 R_x is H, (C_{1-4}) alkyl or phenyl;

 R_b is (C_{1-16}) alkyl or (C_{1-16}) alkyl which is substituted by (C_{3-7}) cycloalkyl, $-OR_x$, N_3 , halo, $-N(R_x)_2$, $-O-(C_{1-6})$ alkyl, $-OC(O)-(C_{1-16})$ alkyl or pyridyl;

R8 is H, halo, -N₃, (C_{1-16})alkyl, -Z-(C_{1-16})alkyl, (C_{1-16})alkyl substituted by (C_{3-7})cycloalkyl, -N₃, -N(R_x)₂, -Z-het, -OR_a or -SR_a, -Z-(C_{1-16})alkyl substituted by (C_{3-7})cycloalkyl, -N₃, -N(R_x)₂, -Z-het, -OR_a or -SR_a, -O(C_{1-16})alkylene-N₃, -O(C_{1-16})alkylene-N(R_x)₂, -(C_{0-6})alkylene-OC(O)-(C_{1-16})alkyl, -(C_{0-6})alkylene-OC(O)-(C_{1-16})alkyl, -(C_{0-6})alkylene-OC(O)-(C_{3-7})cycloalkyl, pyridyl, -OC(O)O(C_{1-12})alkyl, -O-CO-X-R_z, or -O-CO-(CH₂)_m-O-(CH₂)_m-X-R_z wherein X is a direct bond, (C_{1-12})alkylene, (C_{1-12})alkenylene or (C_{1-12})alkynylene and R_z is H, (C_{3-9})cycloalkyl, phenyl, phenyl substituted by one or more of chloro, methoxy, (C_{1-18})alkyl or (C_{1-18})alkoxy, pyrrolyl, furanyl, thiofuranyl, indolyl, benzofuranyl, benzothiofuranyl or pyridyl and each m is independently a number from 0 to 13, -Z-het, -OR_a, -SR_a, mono- or di-(C_{1-4})alkylamino, amino(C_{1-16})alkyl-, mono- or di-(C_{1-4})alkylamino(C_{1-16})alkyl, -Z-Si((C_{1-6})alkyl)₃ or a substituent selected from the following two formulae:

$$-z$$
 $R10$
 $-z$
 Rx
 Rx

```
Z is a direct bond, -(C_{1-12})alkylene-, -(C_{1-12})alkylene-O-, -O-(C_{1-12})alkylene-, -(C_{1-12})alkylene-N(R<sub>x</sub>)-, -N(R_x)-, -N(R_x)
```

- $Z_1 \text{ is a direct bond, } -(C_{1-12}) \text{alkylene-, } -O-(C_{1-12}) \text{alkylene-, } -N(R_x)-(C_{1-12}) \text{alkylene-, } -N(R_x)-C(O)-(C_{1-12}) \text{alkylene-, } -CO-N(R_x)-(C_{1-12}) \text{alkylene-, } -(C_{1-8}) \text{alkylene-, } -CO-N(R_x)-(C_{1-12}) \text{alkylene-, } -(C_{1-8}) \text{alkylene-, } -CO-(C_{1-12}) \text{alkylene-or } -(C_{1-8}) \text{alkylene-or } -(C_{1-8}) \text{alkylene-or } -(C_{1-8}) \text{alkylene-in-, } -CO-(C_{1-8}) \text{alkylene-or } -(C_{1-8}) \text{alkylene-or } -(C_{1-8}) \text{alkylene-in-, } -CO-(C_{1-8}) \text{alkylene-or } -(C_{1-8}) \text{alkylene-or } -($
- R10 is from 0 to 3 substituents selected from hydroxy, halo, -(C_{1-17})alkyl, -O-(C_{1-17})alkyl, -(CH_2)₁₋₆- C_{3-7} -cycloalkyl, -(CH_2)₀₋₁₀-aryl or -(CH_2)₀₋₁₀ -het;

het is a heterocyclic or heteroaromatic ring;

p is 1-18;

with the proviso that when n is 2 and R_1 is (C_{1-6}) alkyl-CH=CH- or (C_{3-6}) cycloalkyl-CH=CH- then R_7 is not H or (C_{1-8}) alkyl or R_8 is not -O-CO-X- R_Z or -O-CO- $(CH_2)_m$ -O- $(CH_2)_m$ -X- R_Z where X is a direct bond, (C_{1-12}) alkylene, (C_{1-12}) alkenylene or (C_{1-12}) alkynylene and R_z is H, (C_{3-9}) cycloalkyl, phenyl, phenyl substituted by one or more of chloro, methoxy, (C_{1-18}) alkyl or (C_{1-18}) alkoxy, pyrrolyl, furanyl, thiofuranyl, indolyl, benzofuranyl, benzothiofuranyl or pyridyl and each m is independently a number from 0 to 13, and with the further proviso that R_8 is not -OH when n is 2, R_7 is H or methyl and R_1 is 3-methylbut-1-enylene.

- 2. (original) A compound as claimed in claim 1, or a salt thereof, wherein: n is 2;
- R1 is X_1 -(C_{1-6}) alkyl-, X_2 -(C_{2-4}) alkenylene-, X_1 -(C_{3-7})cycloalkyl-, or X_1 -(C_{3-7})cycloalkane-(C_{1-3})alkylene-;
- X_1 is H, (C_{1-12}) alkyl, (C_{3-7}) cycloalkyl, $-(C_{1-12})$ alkyl substituted by (C_{3-7}) cycloalkyl, $-OR_a$; $-SR_a$, $-NO_2$, halo or (C_{1-12}) alkylC(O)-; aryl, aryl- (C_{1-12}) alkyl- or $-OR_a$;
- X_2 is H, (C_{1-12}) alkyl, (C_{3-7}) cycloalkyl, $-(C_{1-12})$ alkyl substituted by (C_{3-7}) cycloalkyl, $-OR_a$, $-SR_a$, $-NO_2$, halo or (C_{1-12}) alkylC(O)-, aryl, aryl- (C_{1-12}) alkyl-;

 R_a is H, (C_{1-18}) alkyl, aryl-, or (C_{1-18}) alkyl substituted by (C_{3-7}) cycloalkyl or aryl;

 R_2 , R_3 , R_4 and R_5 are independently hydrogen or (C_{1-4})alkyl, wherein there is no more than a total of 8 carbon atoms, especially no more than 4 carbon atoms, in the combined R_2 , R_3 , R_4 and R_5 alkyl substituents;

R6 is hydrogen or (C₁₋₆) alkyl;

R7 is H, (C_{1-8}) alkyl, R_x, (C_{1-18}) alkyl substituted by (C_{3-7}) cycloalkyl, $-OR_x$, N₃, halo, $-N(R_x)_2$, $-O-(C_{1-6})$ alkyl, $-OC(O)-(C_{1-16})$ alkyl or pyridyl; or a substituent of formula IIa or IIIa

R9 is from 0 to 3 substituents selected from (C_{1-6}) alkyl, $-OR_a$, $-SR_a$, $-NO_2$, halo, or $-N_3$; Y is a linking group selected from $-C(O)N(R_x)$ -, -CO-O-, $-(C_{1-12})$ alkylene- $-(C_{1-10})$ alkylene- $-(C_{1$

 R_x is H, (C_{1-4}) alkyl or phenyl;

R8 is -N₃, (C₁₋₁₆)alkyl, -Z-(C₁₋₁₆)alkyl, (C₁₋₁₆)alkyl substituted by (C₃₋₇)cycloalkyl, -N₃, or -N(R_x)₂; -Z-(C₁₋₁₆)alkyl substituted in the alkyl portion by (C₃₋₇)cycloalkyl, -N₃, or -N(R_x)₂, -(C₀₋₆)alkylene-(O)C-O-(C₁₋₁₆)alkyl, or a substituent selected from the following two formulae:

$$-z$$
 $R10$
 $-z$
 Rx
 Rx
 $-z$
 Rx

Z is a direct bond, $-(C_{1-12})$ alkylene-, $-N(R_x)-C(O)$ -, $-N(R_x)-C(O)$ -(C_{1-12})alkylene-, $-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-CO-N(R_x)-, $-CO-N(R_x)-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-N(R_x)- $-(C_{1-12})$ alkylene-N(R_x)- $-(C_{1-12})$ alkylene-N(R_x)- $-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-O-CO-N(R_x)-, $-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-O-CO-N(R_x)-, $-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-O-CO-N(R_x)-, $-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-O-CO-N(R_x)-;

 Z_1 is a direct bond, -(C_{1-12})alkylene- or -C(O)-:

R10 is from 0 to 3 substituents selected from hydroxy, halo, $-(C_{1-17})$ alkyl, $-O-(C_{1-17})$ alkyl, $-(CH_2)_1$. $_6-C_{3-7}$ -cycloalkyl, $-(CH_2)_{0-10}$ -aryl or $-(CH_2)_{0-10}$ —het; and het is pyridyl. 3. (original) A compound as claimed in claim 1, or a salt thereof, wherein:

R1 is (C₁₋₆ alkyl)-ethenylene-;

R₂, R₃ and R₄, independently are hydrogen or (C₁₋₄) alkyl, wherein there is no more than a total of 4 carbon atoms in the combined R₂, R₃, R₄ and R₅ alkyl substituents;

 R_5 is (C_{1-4}) alkyl;

R6 is hydrogen or methyl;

R7 is H or (C_{1-6}) alkyl;

R8 is H, -N₃, (C₁₋₁₆)alkyl, -Z-(C₁₋₁₆)alkyl, (C₁₋₁₆)alkyl substituted by (C₃₋₇)cycloalkyl, -N₃, or -N(R_x)₂; or -Z-(C₁₋₁₆)alkyl substituted in the alkyl portion by (C₃₋₇)cycloalkyl, -N₃, or -N(R_x)₂;

R9 is $(CH_2)_{0-2}$ - C_{5-7} cycloalkyl, $(CH_2)_{0-2}$ - C_{5-7} hetero-cyclic, $(CH_2)_{0-2}$ - C_{5-7} aryl, or $(CH_2)_{0-2}$ - C_{5-7} heteroaryl;

X is (C_{1-12}) alkylene or (C_{2-12}) alkenylene;

R10 is from 0 to 3 substituents selected from hydroxy, halo, $-(C_{1-8})$ alkyl, $-O-(C_{1-8})$ alkyl, $-(CH_2)_{1-6}$ - C_{3-7} -cycloalkyl, $-(CH_2)_{0-10}$ -aryl or $-(CH_2)_{0-10}$ —het;

het is pyridyl;

n is 2.

4. (original) A compound as claimed in claim 1, or a salt thereof, wherein:

R1 is -CH=CH-i-propyl or -CH=CH-t-butyl;

X₂ is H;

R₂, R₃, R₄, and R₅ independently are hydrogen or methyl;

R6 is hydrogen;

R7 is H or (C₁₋₃) alkyl; and

n is 2.

5. (original) A compound as claimed in claim 1, or a salt thereof, wherein:

 R_1 is X_1 -(C_{3-7})cycloalkane-(C_{1-6})alkylene- or X_2 -(C_{3-9})cycloalkene-;

X₁ is hydrogen;

X₂ is hydrogen;

R₂, R₃, R₄, and R₅ independently are hydrogen or methyl;

R₆ is hydrogen;

 R_7 is H or (C_{1-3}) alkyl;

R₈ is hydrogen; and

n is 2.

6. (currently amended) A pharmaceutical composition comprising a compound of formula I according to any one of claims 1-5 claim 1, or a pharmaceutically acceptable salt thereof.

- 7. (original) The pharmaceutical composition of claim 6 comprising a pharmaceutically acceptable carrier or diluent.
- 8. (currently amended) Use of a compound of formula I according to any on of claims 1-5 claim 1, or a pharmaceutically acceptable salt thereof, for the treatment of cancer.
- 9. (currently amended) Use of a compound of formula I according to any on of claims 1-5 claim 1, or a pharmaceutically acceptable salt thereof for the preparation of a pharmaceutical composition for the treatment of cancer.
- 10. (original) A process to prepare the compound of the formula I:

$$OR_2$$
 OR_4 O $R8$ OR_5 $R6$

or a salt thereof, wherein

n is 0, 1 or 2;

- R1 is H, X_1 -(C_{1-6}) alkyl-, (C_{1-12})alkylC(O)-, X_2 -(C_{2-4}) alkenylene-, X_2 -(C_{2-4}) alkynylene-, X_1 -(C_3 .

 9)cycloalkyl-, X_2 -(C_{3-9})cycloalkene-, X_1 -aryl-, X_1 -(C_{3-7})cycloalkene-(C_{1-6})alkylene-, X_2 -(C_3
 7)cycloalkene-(C_{1-6})alkylene-, or X_1 -aryl-(C_{1-6})alkylene-;
- X_1 is H, (C_{1-14}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-14}) alkyl substituted by (C_{3-7}) cycloalkyl, $-OR_a$, $-SR_a$, $-NO_2$, halo or (C_{1-6}) alkylC(O)-; aryl, aryl- (C_{1-12}) alkyl-, $-OR_a$, $-SR_a$, $-NO_2$, halo, (C_{1-12}) alkyl-C(O)-, mono- or di- (C_{1-4}) alkylamino, amino (C_{1-16}) alkyl-, or mono- or di- (C_{1-4}) alkylamino, amino (C_{1-16}) alkyl-, or mono- or di- (C_{1-4}) alkylamino, amino (C_{1-16}) alkyl-, or mono- or di- (C_{1-4}) alkylamino, amino (C_{1-16}) alkyl-, or mono- or di- (C_{1-4}) alkyl-, or mono-
- X_2 is H, (C_{1-14}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-14}) alkyl substituted by (C_{3-7}) cycloalkyl, $-OR_a$ -SR_a, -NO₂, halo or (C_{1-6}) alkyl-C(O)-; aryl, aryl- (C_{1-12}) alkyl-, amino (C_{1-16}) alkyl- or mono- or di- (C_{1-16}) alkyl;
- R_a is H, (C_{1-18}) alkyl, aryl, or (C_{1-18}) alkyl substituted by (C_{3-7}) cycloalkyl, aryl, -OH, -O- (C_{1-6}) alkyl or halo;
- R₂, R₃, R₄ and R₅ are independently hydrogen or (C₁₋₁₈)alkyl, R₅ is also phenyl or (C₁₋₁₆)alkyl which is substituted by phenyl, wherein there is no more than a total of 18 carbon atoms in the combined R₂, R₃, R₄ and R₅ alkyl substituents, or R₂ and R₄ together or R₃ and R₅ together form an acetal group;

R6 is hydrogen or (C₁₋₆) alkyl;

R7 is H, (C_{1-18}) alkyl, phenyl, pyridyl, (C_{1-18}) alkyl substituted by (C_{3-7}) cycloalkyl, $-OR_x$, N₃, halo, $-N(R_x)_2$, R_x, $-O-(C_{1-6})$ alkyl, $-OC(O)-(C_{1-16})$ alkyl or pyridyl; $-Y-R_b$ or a substituent of formula IIa or IIIa

wherein

R9 is from 0 to 3 substituents selected from (C₁₋₆)alkyl, -OR_a, -SR_a, -NO₂, halo, -N₃, (C₁₋₁₂)alkylC(O)-, mono- or di-(C₁₋₄)alkylamino, amino(C₁₋₁₆)alkyl-, mono- or di-(C₁₋₄)alkylamino(C₁₋₁₆)alkyl, (CH₂)₀₋₂-C₅₋₇cycloalkyl, (CH₂)₀₋₂-heterocyclic, (CH₂)₀₋₂-C₅₋₇aryl, or (CH₂)₀₋₂-heteroaryl;

Y is a linking group selected from -(C_{1-10})alkyl-, -(C_{0-10})alkylene-CO-N(R_x)-(C_{0-10})alkylene-, -(C_{0-10})alkylene-, -(C_{0-10})alkylene-CO-O-(C_{0-10})alkylene-, -(C_{1-10})alkylene-CO-O-(C_{0-10})alkylene-, -(C_{1-10})alkylene-CO-(C_{0-10})alkylene-, -(C_{0-10})alkylene-(C_{0-10})alkylene-or-(C_{0-10})alkylene- or -(C_{0-10})alkylene-arylene-(C_{0-10})alkylene-;

 R_x is H, (C_{1-4}) alkyl or phenyl;

 R_b is (C_{1-16}) alkyl or (C_{1-16}) alkyl which is substituted by (C_{3-7}) cycloalkyl, $-OR_x$, N_3 , halo, $-N(R_x)_2$, $-O-(C_{1-6})$ alkyl, $-OC(O)-(C_{1-16})$ alkyl or pyridyl;

R8 is H, halo, $-N_3$, (C_{1-16}) alkyl, -Z-($C_{1-16})$ alkyl, (C_{1-16}) alkyl substituted by (C_{3-7}) cycloalkyl, $-N_3$, $-N(R_x)_2$, -Z-het, $-OR_a$ or $-SR_a$, -Z-($C_{1-16})$ alkyl substituted by (C_{3-7}) cycloalkyl, $-N_3$, $-N(R_x)_2$, -Z-het, $-OR_a$ or $-SR_a$, $-O(C_{1-16})$ alkylene- N_3 , $-O(C_{1-16})$ alkylene- $N(R_x)_2$, $-(C_{0-6})$ alkylene-OC(O)-(C_{1-16})alkyl, $-(C_{0-6})$ alkylene-OC(O)-(C_{3-7})cycloalkyl, $-(C_{0-6})$ alkylene-OC(O)-($O(C_{3-7})$)cycloalkyl, $-O(O(O(O(C_{1-12})))$ alkylene- $O(O(O(O(C_{3-7})))$ cycloalkyl, pyridyl, $-O(O(O(O(C_{1-12})))$ alkylene, (C_{1-12}) alkenylene or (C_{1-12}) alkynylene and (C_{1-12}) alkylene, (C_{1-12}) alkynylene and (C_{1-12}) alkylene, (C_{1-12}) alkylene, (C_{1-12}) alkynylene and (C_{1-18}) alkylene, (C_{1-18}) alkoxy, pyrrolyl, furanyl, thiofuranyl, indolyl, benzofuranyl, benzothiofuranyl or pyridyl and each m is independently a number from 0 to 13, -Z-het, $-OR_a$, $-SR_a$, mono- or di- (C_{1-4}) alkylamino, amino((C_{1-16}) alkyl-, mono- or di- (C_{1-4}) alkylamino((C_{1-16}) alkyl, -Z-Si((C_{1-6}) alkyl) or a substituent selected from the following two formulae:

$$-z$$
R10
 $-z$
 $R10$
 Rx

Z is a direct bond, $-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-O-, $-O-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-N(R_x)-, $-N(R_x)$ -, $-N(R_x)$ -, $-N(R_x)$ -(C₁₋₁₂)alkylene-, $-N(R_x)$ -C(O)-, $-N(R_x)$ -C(O)-(C₁₋₁₂)alkylene-, $-(C_{1-12})$ alkylene-CO-N(R_x)-C(O)-, $-(C_{1-8})$ alkylene-N(R_x)-C(O)-, $-(C_{1-8})$ alkylene-CO-N(R_x)-, $-(C_{1-12})$ alkylene-CO-N(R_x)-, $-(C_{1-12})$ alkylene-CO-O-, $-(C_{1-12})$ alkylene-O-C(O)-, -OC(O)-(C₁₋₁₂)alkylene-, -C(O)-O-(C₁₋₁₂)alkylene-, -C(O)-O-(C₁₋₁₂)alkylene-, $-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-N(R_x)-C(O)-O-, $-(C_{1-8})$ alkylene-, $-(C_{1-12})$ alkylene-N(R_x)-C(O)-O-, $-(C_{1-8})$ alkylene-N(R_x)-C(O)-O-, $-(C_{1-8})$ alkylene-N(R_x)-C(O)-O-(C₁₋₁₂)alkylene-, $-(C_{1-12})$ alkylene-N(R_x)-, -O-CO-N(R_x)-, -O-CO-N(R_x)-, -O-CO-O-, $-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkyl

 $Z_1 \text{ is a direct bond, } -(C_{1-12}) \text{alkylene-, } -O-(C_{1-12}) \text{alkylene-, } -N(R_x)-(C_{1-12}) \text{alkylene-, } -N(R_x)-C(O)-(C_{1-12}) \text{alkylene-, } -(C_{1-8}) \text{alkylene-}, -(C_{1-8}) \text{alkylene-, } -(C_{1-8}) \text{alkylene-, } -C(O)-(C_{1-12}) \text{alkylene-, } -C(O)-O-(C_{1-12}) \text{alkylene-, } -(C_{1-8}) \text{alkylene-, } -C(O)-O-(C_{1-12}) \text{alkylene-, } -(C_{1-8}) \text{alkylene-, } -C(O)-O-(C_{1-12}) \text{alkylene-, } -C(O)-O-(C_{1-12}) \text{alkylene-, } -(C_{1-8}) \text{alkylene-} -(C_{1-8}) \text{alkylene-, } -C(O)-O-(C_{1-8}) \text{alkylene-, } -(C_{1-8}) \text{alkylene-, } -(C_{1-8}) \text{alkylene-, } -(C_{1-8}) \text{alkylene-, } -O-CO-O-(C_{1-12}) \text{alkylene- } \text{or } -(C_{1-8}) \text{alkylene-} -(C_{1-8}) \text{alkylene-, } -O-CO-O-(C_{1-12}) \text{alkylene-} -(C_{1-8}) \text{alkylene-} -(C_{1-8})$

R10 is from 0 to 3 substituents selected from hydroxy, halo, $-(C_{1-17})$ alkyl, $-O-(C_{1-17})$ alkyl, $-(CH_2)_{1-6}$ - $-C_{3-7}$ -cycloalkyl, $-(CH_2)_{0-10}$ -aryl or $-(CH_2)_{0-10}$ —het;

het is a heterocyclic or heteroaromatic ring;

p is 1-18;

with the proviso that when n is 2 and R_1 is (C_{1-6}) alkyl-CH=CH- or (C_{3-6}) cycloalkyl-CH=CH- then R_7 is not H or (C_{1-8}) alkyl or R_8 is not -O-CO-X- R_Z or -O-CO- $(CH_2)_m$ -O- $(CH_2)_m$ -X- R_Z where X is a direct bond, (C_{1-12}) alkylene, (C_{1-12}) alkenylene or (C_{1-12}) alkynylene and R_z is H, (C_{3-9}) cycloalkyl, phenyl, phenyl substituted by one or more of chloro, methoxy, (C_{1-18}) alkyl or (C_{1-18}) alkoxy, pyrrolyl, furanyl, thiofuranyl, indolyl, benzofuranyl, benzothiofuranyl or pyridyl and each m is independently a number from 0 to 13, and with the further proviso that R_8 is not -OH when n is 2, R_7 is H or methyl and R_1 is 3-methylbut-1-enylene;

comprising the following steps:

(a) reacting the compound of formula VI or an acid addition salt thereof

wherein R_7 and R_8 are defined above, with the compound of formula VII

wherein R_1 and R_5 are defined above, to form a compound of formula VIII

$$\begin{array}{c|c} & \text{OH} & \text{OR}_5 & \text{H} & \text{O} & \text{R7} \\ \hline & \text{N} & \text{N} & \text{R7} \\ \hline & \text{O} & \text{O} & \text{O} & \text{R8} \\ \end{array}$$

- (b) hydrolyzing the compound of formula VIII.
- 11. (original) The process as claimed in claim 10, wherein step (a) is conducted in a polar organic solvent or in the presence of a weak base and a polar organic solvent.
- 12. (original) The process as claimed in claim 10, wherein the compound of VIII is prepared by reacting the compound of XI

wherein R_1 , R_5 and R_7 are defined in claim 10, with an acid chloride in the presence of a base and a solvent.

- 13. (original) The process as claimed in claim 12, wherein the acid chloride is of the formula $R_{12}COCI$, wherein R_{12} is an appropriate substituent based on the definition of R_8 ; the base is triethylanime and the solvent is dichloromethane.
- 14. (original) The process as claimed in claim 10, wherein the compound of VIII is prepared by reacting the compound of XI

wherein R_1 , R_5 and R_7 are defined in claim 11, with a carboxylic acid in the presence of a carboxylic acid coupling agent and an activating agent.

- 15. (original) The process as claimed in claim 14, wherein the carboxylic acid is of the formula $R_{12}COOH$ wherein R_{12} is an appropriate substituent based on the definition of R_8 ; the carboxylic acid coupling reagent is 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and the activating agent is 4-dimethylaminopyridine.
- 16. (original) The process as claimed in claim 10 wherein the compound of formula VII is prepared by cleaving the compound of formula XXXIII

wherein R₅ is defined in claim 10, to obtain the compound XXXIV

reacting the compound of XXXIV with an organometallic compound in the presence of a solvent mixture.

17. (original) The process as claimed in claim 16, wherein cleaving the compound of formula XXXIII is carried out in the presence of a periodate salt in a solvent.

- 18. (original) The process as claimed in claim 17, wherein the periodate salt is sodium periodate and the solvent is methanol.
- 19. (original) The process as claimed in claim 16, wherein the organometallic compound is an organochromium compound, and the solvent mixture comprises of a polar organic solvent and an inert organic solvent.
- 20. (original) The process as claimed in claim 19, wherein the polar organic solvent is N,N-dimethylformamide and the inert organic solvent is tetrahydrofuran.
- 21. (original) A process to prepare the compound of the formula I:

$$OR_2$$
 OR_4 O OR_5 $R6$ $R7$ $R8$ (I)

or a salt thereof, wherein

n is 0, 1 or 2;

- R1 is H, X_1 -(C_{1-6}) alkyl-, (C_{1-12})alkylC(O)-, X_2 -(C_{2-4}) alkenylene-, X_2 -(C_{2-4}) alkynylene-, X_1 -(C_{3-9})cycloalkyl-, X_2 -(X_1 -aryl-, X_1 -(X_1 -aryl-, X_1 -(X_1 -aryl-)cycloalkene-(X_1 -aryl-)cycloalkene-, or X_1 -aryl-(X_1 -aryl-)cycloalkene-;
- $X_1 \text{ is H, } (C_{1\text{-}14}) \text{alkyl, } (C_{3\text{-}7}) \text{cycloalkyl, } (C_{1\text{-}14}) \text{alkyl substituted by } (C_{3\text{-}7}) \text{cycloalkyl, } -OR_a, -SR_a, -NO_2, \\ \text{halo or } (C_{1\text{-}6}) \text{alkylC(O)-; aryl, aryl-} (C_{1\text{-}12}) \text{alkyl-, } -OR_a, -SR_a, -NO_2, \\ \text{halo, } (C_{1\text{-}12}) \text{alkyl-C(O)-, } \\ \text{mono- or di-} (C_{1\text{-}4}) \text{alkylamino, amino} (C_{1\text{-}16}) \text{alkyl-, or mono- or di-} (C_{1\text{-}4}) \text{alkylamino} (C_{1\text{-}16}) \text{alkyl-, } \\ \text{mono-} \text{ or di-} (C_{1\text{-}4}) \text{alkylamino, amino} (C_{1\text{-}16}) \text{alkyl-, or mono- or di-} \\ \text{mono-} \text{ or di-} (C_{1\text{-}4}) \text{alkylamino, amino} (C_{1\text{-}16}) \text{alkyl-, or mono- or di-} \\ \text{mono-} \text{ or di-} (C_{1\text{-}4}) \text{alkylamino, amino} (C_{1\text{-}16}) \text{alkyl-, or mono- or di-} \\ \text{mono-} \text{ or di-} (C_{1\text{-}4}) \text{alkylamino, amino} (C_{1\text{-}16}) \text{alkyl-, or mono- or di-} \\ \text{mono-} \text{ or di-} (C_{1\text{-}4}) \text{alkylamino, amino} (C_{1\text{-}16}) \text{alkyl-, or mono- or di-} \\ \text{mono-} \text{ or di-} (C_{1\text{-}4}) \text{alkylamino, amino} (C_{1\text{-}16}) \text{alkyl-, or mono- or di-} \\ \text{mono-} \text{ or di-} (C_{1\text{-}4}) \text{alkylamino} (C_{1\text{-}16}) \text{alkyl-, or mono- or di-} \\ \text{mono-} \text{ or di-} (C_{1\text{-}4}) \text{alkylamino} (C_{1\text{-}16}) \text{alkyl-, or mono- or di-} \\ \text{mono-} \text{ or di-} (C_{1\text{-}4}) \text{alkylamino} (C_{1\text{-}16}) \text{alkyl-, or mono-} \\ \text{mono-} \text{ or di-} (C_{1\text{-}4}) \text{alkyl-, or mono-} \\ \text{mono-} \text{ or di-} (C_{1\text{-}4}) \text{alkyl-, or mono-} \\ \text{mono-} \text{ or di-} (C_{1\text{-}4}) \text{alkyl-, or mono-} \\ \text{mono-} \text{ or di-} (C_{1\text{-}4}) \text{alkyl-, or mono-} \\ \text{mono-} \text{ or di-} (C_{1\text{-}4}) \text{alkyl-, or mono-} \\ \text{mono-} \text{ or di-} (C_{1\text{-}4}) \text{alkyl-, or mono-} \\ \text{mono-} \text{ or di-} (C_{1\text{-}4}) \text{alkyl-} \\ \text{mono-} \text{ o$
- X_2 is H, (C_{1-14}) alkyl, (C_{3-7}) cycloalkyl, (C_{1-14}) alkyl substituted by (C_{3-7}) cycloalkyl, $-OR_a$ -SR_a, -NO₂, halo or (C_{1-6}) alkyl-C(O)-; aryl, aryl- (C_{1-12}) alkyl-, amino (C_{1-16}) alkyl- or mono- or di- (C_{1-16}) alkyl;
- R_a is H, (C_{1-18}) alkyl, aryl, or (C_{1-18}) alkyl substituted by (C_{3-7}) cycloalkyl, aryl, -OH, -O- (C_{1-6}) alkyl or halo;
- R_2 , R_3 , R_4 and R_5 are independently hydrogen or (C_{1-18})alkyl, R_5 is also phenyl or (C_{1-16})alkyl which is substituted by phenyl, wherein there is no more than a total of 18 carbon atoms in the combined R_2 , R_3 , R_4 and R_5 alkyl substituents, or R_2 and R_4 together or R_3 and R_5 together form an acetal group;

R6 is hydrogen or (C₁₋₆) alkyl;

R7 is H, (C_{1-18}) alkyl, phenyl, pyridyl, (C_{1-18}) alkyl substituted by (C_{3-7}) cycloalkyl, $-OR_x$, N_3 , halo, $-N(R_x)_2$, R_x , $-O-(C_{1-6})$ alkyl, $-OC(O)-(C_{1-16})$ alkyl or pyridyl; $-Y-R_b$ or a substituent of formula lla or Illa

wherein

R9 is from 0 to 3 substituents selected from (C_{1-6}) alkyl, $-OR_a$, $-SR_a$, $-NO_{2}$, halo, $-N_3$, (C_{1-12}) alkylC(O)-, mono- or di- (C_{1-4}) alkylamino, amino (C_{1-16}) alkyl-, mono- or di- (C_{1-4}) alkylamino (C_{1-16}) alkyl, $(CH_2)_{0-2}$ - C_{5-7} cycloalkyl, $(CH_2)_{0-2}$ -heterocyclic, $(CH_2)_{0-2}$ - C_{5-7} aryl, or $(CH_2)_{0-2}$ -heteroaryl;

Y is a linking group selected from -(C_{1-10})alkyl-, -(C_{0-10})alkylene-CO-N(R_x)-(C_{0-10})alkylene-, -(C_{0-10})alkylene-, -(C_{0-10})alkylene-CO-O-(C_{0-10})alkylene-, -(C_{1-10})alkylene-CO-(C_{0-10})alkylene-, -(C_{1-10})alkylene-CO-(C_{0-10})alkylene-, -(C_{0-10})alkylene-(C_{0-10})alkylene-or-(C_{0-10})alkylene- or -(C_{0-10})alkylene-arylene-(C_{0-18})alkylene-;

 R_x is H, (C_{1-4}) alkyl or phenyl;

 R_b is (C_{1-16}) alkyl or (C_{1-16}) alkyl which is substituted by (C_{3-7}) cycloalkyl, $-OR_x$, N_3 , halo, $-N(R_x)_2$, $-O-(C_{1-6})$ alkyl, $-OC(O)-(C_{1-16})$ alkyl or pyridyl;

R8 is H, halo, $-N_3$, (C_{1-16}) alkyl, -Z- (C_{1-16}) alkyl, (C_{1-16}) alkyl substituted by (C_{3-7}) cycloalkyl, $-N_3$, $-N(R_x)_2$, -Z-het, $-OR_a$ or $-SR_a$, -Z- (C_{1-16}) alkyl substituted by (C_{3-7}) cycloalkyl, $-N_3$, $-N(R_x)_2$, -Z-het, $-OR_a$ or $-SR_a$, $-O(C_{1-16})$ alkylene- N_3 , $-O(C_{1-16})$ alkylene- $N(R_x)_2$, $-(C_{0-6})$ alkylene-OC(O)- (C_{1-16}) alkyl, $-(C_{0-6})$ alkylene-OC(O)- (C_{3-7}) cycloalkyl, $-O(C_{0-16})$ alkylene-OC(O)- (C_{3-7}) cycloalkyl, pyridyl, $-OC(O)O(C_{1-12})$ alkyl, $-O-CO-X-R_z$, or $-O-CO-(CH_2)_m-V-R_z$ wherein X is a direct bond, (C_{1-12}) alkylene, (C_{1-12}) alkenylene or (C_{1-12}) alkynylene and R_z is H, (C_{3-9}) cycloalkyl, phenyl, phenyl substituted by one or more of chloro, methoxy, (C_{1-18}) alkyl or (C_{1-18}) alkoxy, pyrrolyl, furanyl, thiofuranyl, indolyl, benzofuranyl, benzothiofuranyl or pyridyl and each m is independently a number from 0 to 13, -Z-het, $-OR_a$, $-SR_a$, mono- or di- (C_{1-4}) alkylamino, amino (C_{1-16}) alkyl-, mono- or di- (C_{1-4}) alkylamino (C_{1-16}) alkyl, -Z-Si((C_{1-6}) alkyl)3 or a substituent selected from the following two formulae:

$$-z$$
R10
 $-z$
 Rx
 Rx
 Rx

Z is a direct bond, $-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-O-, $-O-(C_{1-12})$ alkylene-, $-(C_{1-12})$ alkylene-N(R_x)-, $-N(R_x)$ -, $-N(R_x)$

 $Z_1 \text{ is a direct bond, } -(C_{1-12}) \text{alkylene-, } -O-(C_{1-12}) \text{alkylene-, } -N(R_x)-(C_{1-12}) \text{alkylene-, } -N(R_x)-C(O)-(C_{1-12}) \text{alkylene-, } -(C_{1-8}) \text{alkylene-}, \\ -(C_{1-8}) \text{alkylene-} -(C_{1-8}) \text{alkylene-, } -OC(O)-(C_{1-12}) \text{alkylene-, } -C(O)-O-(C_{1-12}) \text{alkylene-, } -(C_{1-8}) \text{alkylene-}, \\ -(C_{1-8}) \text{alkylene-} -(C_{1-8}) \text{alkylene-, } -CO-(C_{1-12}) \text{alkylene-, } -C(O)-O-(C_{1-12}) \text{alkylene-, } -(C_{1-8}) \text{alkylene-}, \\ -(C_{1-8}) \text{alkylene-} -N(R_x)-C(O)-O-(C_{1-8}) \text{alkylene-, } -O-CO-N(R_x)-(C_{1-12}) \text{alkylene-, } -(C_{1-8}) \text{alkylene-}, \\ -(C_{1-8}) \text{alkylene-, } -O-CO-O-(C_{1-12}) \text{alkylene- } \text{or } -(C_{1-8}) \text{alkylene-}, \\ -(C_{1-8}) \text{alkylene-, } -O-CO-O-(C_{1-12}) \text{alkylene- } \text{or } -(C_{1-8}) \text{alkylene-}, \\ -(C_{1-8}) \text{alkylene-, } -(C_{1-8}) \text{alkylene-}, \\ -(C_{1-8}) \text{alkyle$

R10 is from 0 to 3 substituents selected from hydroxy, halo, -(C_{1-17})alkyl, -O-(C_{1-17})alkyl, -(CH_2)₁₋₆- C_{3-7} -cycloalkyl, -(CH_2)₀₋₁₀-aryl or -(CH_2)₀₋₁₀ -het; het is a heterocyclic or heteroaromatic ring;

p is 1-18;

with the proviso that when n is 2 and R_1 is (C_{1-6}) alkyl-CH=CH- or (C_{3-6}) cycloalkyl-CH=CH- then R_7 is not H or (C_{1-8}) alkyl or R_8 is not -O-CO-X- R_Z or -O-CO- $(CH_2)_m$ -O- $(CH_2)_m$ -X- R_Z where X is a direct bond, (C_{1-12}) alkylene, (C_{1-12}) alkenylene or (C_{1-12}) alkynylene and R_z is H, (C_{3-9}) cycloalkyl, phenyl, phenyl substituted by one or more of chloro, methoxy, (C_{1-18}) alkyl or (C_{1-18}) alkoxy, pyrrolyl, furanyl, thiofuranyl, indolyl, benzofuranyl, benzothiofuranyl or pyridyl and each m is independently a number from 0 to 13, and with the further proviso that R_8 is not -OH when n is 2, R_7 is H or methyl and R_1 is 3-methylbut-1-enylene;

comprising the following steps:

(a) reacting a compound of formula XLI

wherein R_1 and R_5 are defined above, P_2 and P_4 are protective groups, and $R^{\prime\prime\prime}$ is a (C_{1-6})alkyl, with the compound of formula VI

wherein R_7 and R_8 are defined above, to form the compound of formula XLII

$$P_{2}$$
 P_{4} P_{5} P_{7} P_{7} P_{7} P_{7} P_{7} P_{8} P_{8} P_{8} P_{8} P_{8}

- (b) deprotecting the compound of formula XLII.
- 22. (original) The process as claimed in claim 21, wherein R''' is ethyl, P_2 is *tert*-butyldimethylsilyl, and P_4 is selected from benzyl or naphthlmethyl ethers.
- 23. (original) The process as claimed in claim 21, wherein the compound of formula XLI is prepared by reacting the compound of formula XL

wherein R₁, P₂ and P₄ are defined in claim 21 with a compound having the following formula

wherein $R_{5}\, \text{and}\,\, R^{\prime\prime\prime}$ are defined in claim 21 and P_{3} is a protective group.

- 24. (original) The process as claimed in claim 23, wherein the reaction is conducted in the presence of a Lewis acid and a solvent.
- 25. (original) The process as claimed in claim 24, wherein the Lewis acid is $SnCl_4$ and the solvent is a mixture of CH_2Cl_2 and heptane.