Генерация гармоник высокого порядка (ГГВП)

Карибджанов Матвей

27 ноября 2023 г.

Обнаружение

Параметры системы

Параметры системы:

•	\mathfrak{J}	~	10^{15}	W	/cm
---	----------------	---	-----------	---	-----

• $n \sim 10^{18} \, cm^{-3}$

• $p \approx 3.1 \cdot 10^4 Torr$

• T > 350 fs

λ248 nm

Material	Maximum Harmonic Order Observed	Maximum Charge State Observed	Energy Coupling Associated with Charge State (eV)
He	13 (19.1 nm)	2	79
Ne	17 (14.6 nm)	4	224
Ar	7 (35.5 nm)	8	627
Kr	7 (35.5 nm)	8	544
Xe	9 (27.6 nm)	9	630

Результаты

25	Harmonic Scattering Cross Sections σ_N (cm ²)					
Material	σ_5	σ9	σ_{13}	σ_{17}		
He	$\sim 1 \times 10^{-25}$	$\sim 1 \times 10^{-27}$	$\sim 1 \times 10^{-29}$	-		
Ne	$\sim 2 \times 10^{-25}$	$\sim 6 \times 10^{-28}$	$\sim 6 \times 10^{-29}$	$\sim 3 \times 10^{-29}$		
Ar	$\sim 5 \times 10^{-27}$	-	-	-		
Kr	$\sim 3 \times 10^{-26}$	_	-	-		
Xe	$\sim 8 \times 10^{-26}$	$\sim 6 \times 10^{-29}$	-	-		

$$\varepsilon = \varepsilon_i + 3U(\mathfrak{J}) \tag{1}$$

Модель 1

Подгоночная модель

$$\varepsilon = \varepsilon_i + U_e \tag{2}$$

$$\ddot{x} = -\frac{e}{m}E\cos(\omega t)$$

$$x = \frac{eE}{m\omega\tau}[(t_r - t)\cos t_r\omega + (t - t_i)\cos t_i\omega + \tau\cos t\omega]$$

Где

$$\tau = t_r - t_i$$

$$\varepsilon = \frac{m\dot{x}(t_r)}{2} = 3.17 U \tag{3}$$

Рис.3. К полуклассической модели ГГВП: кинетическая энергия электрона $t(t_i)$ в момент рекомбинации t_i (I), промежутов времени между моментом ноизации и моментом рекомбинации $\tau = t_i - t_i$ (2), момент t_i ноизации электрона, рекомбинирующего в момент t_i (3), напряженность внешнего электрического поля E (выделен интеравл времени 0-0.25, на котором ноизируются электроны, рекомбинирующие в интервале 0.25-1 (4); $t_i^{\rm pre}$ и $t_i^{\rm post}$ — моменты генерации пре- и посттармоник; время измеряется в периодах возбужданощего поля.

Модель 2

Квантовомеханическая модель

$$ih\frac{\partial \varphi}{\partial t} = \left(\frac{p^2}{2m} + U + H^{int}\right)\varphi$$

$$\varphi = \varphi_0 + \varphi_1$$

 $arphi_0$ - связанный, $arphi_1$ - свободный (4) электрон.

В простейшем случае

$$U = \alpha \delta r, \ H^{int} = erE$$

(5)
$$\frac{1}{ih} \int_{\infty}^{t} d\tau \int d^{3}p \exp\left(-\frac{i}{h} \int_{\tau}^{t} E_{p} dt\right) \times |\varphi_{p}\rangle \langle \varphi_{p}| V |\varphi_{0}(\tau)\rangle$$

Бывают модели

$$U = \frac{e^2 Z}{r}, \ H^{int} = pmA + \frac{e^2 A^2}{2mc^2} \quad (6) \qquad \varphi_p = (2\pi h)^{3/2} \exp(i/hpr)$$

$$\varphi_p = (2\pi h)^{3/2} \exp(i/hpr)$$

Критерий приближения $WT\ll 1$

 $|\varphi_0 + \varphi_1\rangle =$

Современные методы

- $n \sim 3 \cdot 10^{16} 3 \cdot 10^{18} \, \text{cm}^{-3}$
- $\lambda = 1.05 0.388 \mu m$
- T = 25 800 fs
- $\Im \sim 10^{14} 10^{18} W/cm^2$

Результаты предсказания модели

Список литературы

- В. Т. Платоненко, В. В. Стрелков, Генерация гармоник высокого порядка в поле интенсивного лазерного излучения, Квантовая электроника, 1998, том 25, номер 7, 582–600 (Теория)
- Б. В. Румянцев, А. В. Пушкин, Ф. В. Потёмкин, Генерация гармоник высокого порядка вблизи низкочастотного края плато при нелинейном распространении фемтосекундного лазерного излучения ближнего ИК диапазона с длиной волны 1.24 мкм в плотной струе аргона
- Thomas Brabec and Ferenc Krausz, Intense few-cycle laser fields: Frontiers of nonlinear optics, 545-585
- McPherson A., Gibson G., Jara H., Johann U., Luk T.S., McIntyre I.A., Boyer K., Rhodes C.K. J.Opt.Soc.Amer. B, 4, 595 (1987).
 (Первый эксперимнет с хорошим описнием)