Álgebra Linear - Lista de Exercícios 10

Yuri F. Saporito

1. Seja
$$A = \begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix}$$
.

- (a) Ache b tal que A tenha um autovalor negativo.
- (b) Como podemos concluir que A precisa ter um pivô negativo?
- (c) Como podemos concluir que A não pode ter dois autovalores negativos?
- 2. Em quais das seguintes classes as matrizes A e B abaixo pertencem: invertível, ortogonal, projeção, permutação, diagonalizável, Markov?

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \text{ e } B = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.$$

Quais das seguintes fatorações são possíveis para A e B? LU, QR, $S\Lambda S^{-1}$ ou $Q\Lambda Q^T$?

3. Complete a matriz A abaixo para que seja de Markov e ache o autovetor estacionário. Sua conclusão é válida para qualquer matriz simétrica de Markov A? Por quê?

$$A = \begin{bmatrix} 0.7 & 0.1 & 0.2 \\ 0.1 & 0.6 & 0.3 \\ * & * & * \end{bmatrix}$$

- 4. Dizemos que \mathcal{M} é um grupo de matrizes invertíveis se $A, B \in \mathcal{M}$ implica $AB \in \mathcal{M}$ e $A^{-1} \in \mathcal{M}$. Quais dos conjuntos abaixo é um grupo?
 - (a) O conjunto das matrizes positivas definidas;
 - (b) o conjunto das matrizes ortogonais;
 - (c) o conjunto $\{e^{tC} ; t \in \mathbb{R}\}$, para uma matriz C fixa;
 - (d) o conjunto das matrizes com determinante igual a 1.
- 5. Sejam A e B matrizes simétricas e positivas definidas. Prove que os autovalores de AB são positivos. Podemos dizer que AB é simétrica e positiva definida?
- 6. Ache a forma quadrática associada à matriz $A = \begin{bmatrix} 1 & 5 \\ 7 & 9 \end{bmatrix}$. Qual o sinal dessa forma quadrática? Positivo, negativo ou ambos?
- 7. Prove os seguintes fatos:
 - (a) Se A e B são similares, então A^2 e B^2 também o são.
 - (b) A^2 e B^2 podem ser similares sem A e B serem similares.
 - (c) $\begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$ é similar à $\begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix}$.
 - (d) $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ não é similar à $\begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$.
- 8. Ache os valores singulares (como na decomposição SVD) da matriz $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.
- 9. Suponha que as colunas de A sejam $\mathbf{w}_1, \dots, \mathbf{w}_n$ que são vetores ortogonais com comprimentos $\sigma_1, \dots, \sigma_n$. Calcule $A^T A$. Ache a decomposição SVD de A.

1