Chapter 1

Session 5

1.1 Video 4: Graph Theory

Draw the graph G, which has the vertices $v_1, v_2, v_3, \ldots, v_7$, and the adjacency list:

 $v_1:v_2,v_4$

 $v_2: v_1, v_3$

 $v_3: v_2, v_4$

 $v_4: v_1, v_3, v_5$

 $v_5 : v_4, v_6$

 $v_6: v_5, v_7$

 $v_7: v_5, v_6$

1.2 graph theory

Given the following definitions for simple, connected graphs:

- K_n is a graph on n vertices where each pair of vertices is connected by an edge;
- C_n is the graph with vertices $v_1, v_2, v_3, \ldots, v_n$ and edges $\{v_1, v_2\}, \{v_2, v_3\}, \ldots \{v_n, v_1\};$
- W_n is the graph obtained from C_n by adding an extra vertex, v_{n+1} , and edges from this to each of the original vertices in C_n .
- (a) Draw K_4 , C_4 , and W_4 .

Session 05:Graphs

- 5A.1 What is a Graph?
- 5A.2 Paths Cycles and Connectivity
- 5A.3 Isomorphisms of a graph
- 5A.4 Adjacency Matrices and Adjacency Lists

Isomorphism

- They have a different number of connected components
- They have a different number of vertices
- They have different degrees sequences
- They have a different number of paths of any given length
- They have a different number of cycles of any length.

Adjacency Lists

- $\mathbf{u} : \{v\}$
- $v : \{w, x\}$
- $\mathbf{w} : \{v, x\}$
- $z:\{v,w\}$
- Spanning Subgraphs of G.
- a vertex is said to be an **emph isolated vertex** if it has a degree of zero.
- a vertex is said to be an **emph end-vertex** if it has a degree of one.
- a vertex is said to be an **emph even vertex** if it has a degree of an even number.
- a vertex is said to be an **emph odd vertex** if it has a degree of an odd number.
- A graph is said to be **emphk-regular** if the degree of each vertex is k.
- Every Graph has an even number of odd vertices.
- A cubic graph is a graph where every vertex has degree three.

1.3 Graph Theory - Isomorphic Graphs

- If the graphs are not simple, we need more sophisticated methods to check for when two graphs are isomorphic.
- However, it is often straightforward to show that two graphs are not isomorphic.
- You can do this by showing any of the following seven conditions are true.

1.4 Isomorphic Graphs

- 1. The two graphs have different numbers of vertices.
- 2. The two graphs have different numbers of edges.
- 3. One graph has parallel edges and the other does not.
- 4. One graph has a loop and the other does not.
- 5. One graph has a vertice of degree k (for example) and the other does not.
- 6. One graph is connected and the other is not.
- 7. One graph has a cycle and the other has not.

Section 5. Graph Theory

Adjacency Lists

1.

2.

3.

4.

Question 5

1. Draw two non-isomorphic graphs with the following degree sequence.

- 2. Write out the degree sequence of the following graph.
- 3. State the vertices that comprise a cycle of length 5 in both of the following graphs.

Session 05 Graph Theory

- Eulerian Path
- Isomorphism
- Adjacency matrices

Adjacency Matrices

$$\begin{pmatrix} o & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{pmatrix}$$

Session 05 Graph Theory

- Eulerian Path
- Isomorphism
- Adjacency matrices

Adjacency Matrices

$$\begin{pmatrix} o & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 \end{pmatrix}$$

1.5 graph theory

Given the following definitions for simple, connected graphs:

- K_n is a graph on n vertices where each pair of vertices is connected by an edge;
- C_n is the graph with vertices $v_1, v_2, v_3, \ldots, v_n$ and edges $\{v_1, v_2\}, \{v_2, v_3\}, \ldots \{v_n, v_1\};$
- W_n is the graph obtained from C_n by adding an extra vertex, v_{n+1} , and edges from this to each of the original vertices in C_n .
- (a) Draw K_4 , C_4 , and W_4 .

Condtions for Isomorphism

- •
- •
- •

Question 5

Given the following definitions for simple, connected graphs:

- K_n is a graph on n vertices where each pair of vertices is connected by an edge;
- C_n is the graph with vertices $v_1, v_2, v_3, \ldots, v_n$ and edges $\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_n, v_1\};$
- W_n is the graph obtained from C_n by adding an extra vertex, v_{n+1} , and edges from this to each of the original vertices in C_n .
- (a) Draw K_4 , C_4 , and W_4 .
- a) (i) A simple, connected graph has 7 vertices, all having the same degree d. State the possible values of d and for each value also give the number of edges in the corresponding graph. (ii) Another simple, connected graph has 6 vertices, all having the same degree, n. Draw such a graph when n=3 and state the other possible values of n. [4]