

- 1. A method for determining optimal values of design parameters of a subsystem to meet design constraints, the subsystem comprising a plurality of circuits, the method comprising:
- 4 (a) creating parameter functions for the corresponding circuits, the
 5 parameter functions representing a relationship among the design
 6 parameters; and
- 7 (b) optimizing the design parameters based on the parameter functions 8 to satisfy the design constraints.
- 1 2. The method of claim 1 wherein the creating the parameter 2 functions comprises:
- 3 (a1) configuring each circuit of the plurality of circuits; and
- 4 (a2) generating values of design parameters for each circuit according to 5 the configured circuit, the values providing the parameter functions.
- 1 3. The method of claim 2 wherein the design parameters include
- 2 constraint and optimizing sets, the constraint set including constraint
- 3 parameters having values selectable to meet the design constraints, the
- 4 optimizing set including optimizing parameters having values to be
- 5 optimized.

1	4. The method of claim 3 wherein optimizing comprises:
2	(b1) selecting values of the constraint parameters to meet the design
3	constraints;
4	(b2) determining values of the optimizing parameters corresponding to
5	the selected values of the constraint parameters based on the parameter
6	functions; and
7	(b3) iterating (b1) and (b2) until values of the optimizing parameters are
8	within a predetermined optimal range.
1	5. The method of claim 3 wherein the constraint parameters
2	include a delay parameter and the optimizing parameters include a power
3	parameter.
1	6. The method of claim 5 wherein the design constraints include a
2	delay constraint.
	\

7.

1

The method of claim 6 wherein (a1) comprises:

1	8. The method of claim 6 wherein (a1) comprises:
2	selecting a design technology for each circuit, the design technology
3	being one of static and dynamic technologies.
1	9. The method of daim 7 wherein (a2) comprises:
2	(a21) generating a circuit netlist representing the configured circuit;
3	(a22) generating a timing file based on the circuit netlist using a circuit
4	critical path;
5	(a23) determining power of the configured circuit based on the circuit
6	netlist;
7	(a24) calculating timing values by using a timing simulator; and
8	(a25) calculating power values by using a power estimator.
1	10. The method of claim 9 wherein optimizing comprises:
2	(b1) selecting values of the delay parameter within the delay constraint
3	(b2) determining values of the power parameter corresponding to the
4	selected values of the delay parameter based on the parameter function; and

within a predetermined optimal range.

5

6

(b3) iterating (b1) and (b2) until values of the power parameter are

9

10

1

2

3

4

11. A machine readable medium having embodied thereon a computer program for processing by a machine, the computer program determining optimal values of design parameters of a subsystem to meet design constraints, the subsystem comprising a plurality of circuits, the computer program comprising:

- (a) a first code segment for creating parameter functions for the corresponding circuits, the parameter functions representing a relationship among the design parameters; and
- (b) a second code segment for optimizing the design parameters based on the parameter functions to satisfy the design constraints.
- 12. The machine readable medium of claim 11 wherein the first code segment comprises:
- (a1) a code segment for configuring each circuit of the plurality of circuits; and
- 5 (a2) a code segment for generating values of design parameters for each 6 circuit according to the configured circuit, the values providing the parameter 7 functions.
- 1 13. The machine readable medium of claim 12 wherein the design 2 parameters include constraint and optimizing sets, the constraint set

- 3 including constraint parameters having values selectable to meet the design
- 4 constraints, the optimizing set including optimizing parameters having
- 5 values to be optimized.
- 1 14. The machine readable medium of claim 13 wherein the second 2 code segment comprises:
- 3 (b1) a code segment for selecting values of the constraint parameters to 4 meet the design constraints;
- (b2) a code segment for determining values of the optimizing
 parameters corresponding to the selected values of the constraint parameters
 based on the parameter functions; and
- 8 (b3) a code segment for iterating (b1) and (b2) until values of the 9 optimizing parameters are within a predetermined optimal range.
- 1 15. The machine readable medium of claim 13 wherein the constraint parameters include a delay parameter and the optimizing parameters include a power parameter.
- 1 16. The machine readable medium of claim 15 wherein the design 2 constraints include a delay constraint.

1 17. The machine readable medium of claim 16 wherein (a1) 2 comprises: a code segment for sizing components in each circuit. 3 The machine readable medium of claim 16 wherein (a1) 1 18. 2 comprises: a code segment for selecting a design technology for each circuit, the 3 design technology being one of static and dynamic technologies. 4 The machine readable medium of claim 18 wherein (a2) 19. 1 2 comprises: 3 (a21) a code segment for generating a circuit netlist representing the configured circuit; 4 (a22) a code segment for generating a liming file based on the circuit 5 6 netlist using a circuit critical path; (a23) a code segment for determining power vectors of the configured 7 circuit based on the circuit netlist; 8 (a24) a code segment for calculating timing values; and 9

10

(a25) a code segment for calculating power values.

1	20. The machine readable medium of claim 19 wherein the second
2	code segment comprises:
3	(b1) a code segment for selecting values of the delay parameter within
4	the delay constraints;
5	(b2) a code segment for determining values of the power parameter
6	corresponding to the selected values of the delay parameter based on the
7	parameter function; and
8	(b3) a code segment for iterating (b1) and (b2) until values of the power
9	parameter are within a predetermined optimal range.
	21. A system comprising: a computer for determining optimal values of design parameters of a
3	subsystem to meet design constraints, the subsystem comprising a plurality of
4	circuits; and
5	a design environment incorporated in the computer for providing
6	tools to facilitate determining the optimal values of the design parameters.
1	22 The system of claim 21 wherein the computer system comprises:

a memory for storing program instructions;

3	a processor coupled to the memory for executing the program
4	instructions, the program instructions when executed by the processor
5	interacting with the tools provided by the design environment to at least
6	(a) create parameter functions for the corresponding circuits, the
7	parameter functions representing a relationship among the design
8	parameters, and
9	(b) optimize the design parameters based on the parameter
10	functions to satisfy the design constraints.
1	23. The system of claim 22 wherein the parameter functions are
2	created by:
3	(a1) configuring each circuit of the plurality of circuits; and
4	(a2) generating values of design parameters for each circuit according to
5	the configured circuit, the values providing the parameter functions.
1	24. The system of claim 22 wherein the design parameters include
2	constraint and optimizing sets, the constraint set including constraint
3	parameters having values selectable to meet the design constraints, the
4	optimizing set including optimizing parameters having values to be

optimized.

5

1 25. The system of claim 24 wherein the design parameters are 2 optimized by: (b1) selecting values of the constraint parameters to meet the design 3 constraints; 4 (b2) determining values of the optimizing parameters corresponding to 5 the selected values of the constraint parameters based on the parameter 6 7 functions; and (b3) iterating (b1) and (b2) until values of the optimizing parameters are 8 9 within a predetermined optimal range. 26. The system of claim 24 wherein the constraint parameters 1 include a delay parameter and the optimizing parameters include a power 2 3 parameter. The system of claim 26 wherein the design constraints include a 1 27.

delay constraint.

add C8