

A Final Year Project Work Proposal Defense

On

MNIST based Handwritten Digit Recognition from Scratch

Presented By:

Biswas Poudyal(10526/073)

Krishna Khanal(10691/073)

Sameer Kattel(10713/073)

Subina Lama(10720/073)

Presentation Outline

- About Project Topic
- Literature Review
- Methodology
- System Analysis
- Project Scheduling Plan
- Conclusion
- References
- Appendix

About Project Topic

Statement of Problem

- Handwritten Digit Recognition, a challenge for computer
- Lots of astonishing works have been done but many are based on high-level framework and libraries
- This project aims to design a efficient model from scratch that can classify a handwritten digit as accurately as possible.

About Project

• The project intends to implement a Feedforward Neural Network model from scratch, that will be able to recognize the handwritten digits.

About Project Topic

Objectives

- To design a Multi-Layer FFNN Model that recognizes Handwritten digits (one at a time) with high accuracy.
- To properly analyze and optimize the designed model using different model improvement techniques and optimization algorithms.
- To implement the components of the project from scratch.

Literature Review

Classifier	Error Rate(%)	Reference						
Linear classifier (1-layer NN)	12	LeCun et al. 1998 [1]						
K-NN with non-linear deformation (P2DHMDM)	0.52	Keysers et al. 2007 [5]						
Virtual SVM, deg-9 poly, 2-pixel jittered	0.56	DeCoste and Scholkopf, 2002 [6]						
2-layer NN, 800 HU, cross-entropy [elastic distortions]	0.7	Simard et al. 2003 [2]						
6-layer NN 784-2500-2000-1500-1000- 500-10 (on GPU) [elastic distortions]	0.35	Ciresan et al. 2010 [4]						
Convolutional net Boosted LeNet-4, [distortions]	0.7	LeCun et al. 1998 [1]						
Committee of 35 conv. net, 1-20-P-40-P-150-10 [elastic distortions]	0.23	Ciresan et al. CVPR 2012 [7]						
Convolutional net With DropConnect	0.21	LeCun et al. ICML 2013 [8]						

Methodology

Resource Requirements

- **1. Hardware**: PC with Multi core CPU
- 2. Software: Python Programming Language with Numpy, Matplotlib and Scipy as its core packages, Anaconda Navigator

Tools and Techniques

- **1. Design Tools:** MS Visio ,MS Word 365
- **2. Implementation Tools:** Jupyter Platform

CPMAI Based Process Model

System Analysis

Functional Requirements

- The model should be able to classify any new image of a handwritten digit with maximum accuracy.
- The model should not classify any alphabets and characters as a digit.

System Analysis

Data Description

- > MNIST Database used.
- The database was consists of four files in binary(idx) file format
- ➤ Data after processing is split into Train/ Dev and test set

Dataset	Processed Array size	Original Array Size
Training Set Image	(784, 60000)	(60000, 28, 28)
Training Set Label	(11, 60000)	(1, 60000)
Dev Set Image	(784, 5000)	(5000, 28, 28)
Dev Set Label	(11, 5000)	(1, 10000)
Test Set Image	(784, 5000)	(5000, 28, 28)
Test Set Label	(11, 5000)	(1, 10000)

System Analysis

Process Modeling

Fig: Context Diagram

Project Scheduling Plan

ID	Task Name	Start	Finish	Duration	Feb 2020 Mar 2020			\perp	Apr 2020				May 2020					
					16/2 23/2	1/3	8/3	15/3	22/3	29/3	5/4	12/4	19/4	26/4	3/5	10/5	17/5	24/5
1	Project Selection	2/17/2020	2/23/2020	7d														
2	Domain Study and Collection of Literature	2/24/2020	3/4/2020	10d														
3	Proposal Preparation	3/5/2020	3/11/2020	7d														
4	Data Collection and Processing	3/14/2020	3/20/2020	7d														
5	Base Model Preparation	3/21/2020	4/4/2020	15d				ı										
6	Mid-term Report Preparation	4/5/2020	4/11/2020	7d]						
7	Model Analysis and Optimization	4/12/2020	5/12/2020	31d														
8	Docum entation .	2/17/2020	5/10/2020	84d														
9	Final Report Preparation	5/13/2020	5/22/2020	10d														

Fig: Gantt Chart

Conclusion

The final model should be able to classify any new image of a handwritten digit with maximum accuracy.

Actual Label: 3, Predicted Label: 3

References

- Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition," in *Proceedings of the IEEE*, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
- P. Y. Simard, D. Steinkraus and J. C. Platt, "Best practices for convolutional neural networks applied to visual document analysis," *Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.*, Edinburgh, UK, 2003, pp. 958-963
- G. E. Hinton, S. Osindero and Y. Teh, "A Fast Learning Algorithm for Deep Belief Nets," in *Neural Computation*, vol. 18, no. 7, pp. 1527-1554, July 2006.
- D. C. Ciresan, U. Meier, L. M. Gambardella, J. Schmidhuber, "Deep Big Simple Neural Nets Excel on Handwritten Digit Recognition." in *Neural Computation*, vol. 22, no. 12, pp. 3207–3220, Dec 2010.
- D. Keysers, T. Deselaers, C. Gollan and H. Ney, "Deformation Models for Image Recognition," in *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 29, no. 8, pp. 1422-1435, Aug. 2007.
- D. Decoste, B. Schölkopf, "Training Invariant Support Vector Machines," Machine Learning, **46**, 161–190, 2002.
- D. Ciresan, U. Meier and J. Schmidhuber, "Multi-column deep neural networks for image classification," 2012 *IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI*, 2012, pp. 3642-3649.
- L. Wan, M. D. Zeiler, S. Zhang, Y. LeCun, R. Fergus, "Regularization of Neural Networks using DropConnect," *ICML*, 2013.

Appendix

