LAB # 2

DATASET PREPARATION WITH EXCEL SPREADSHEET AND DATASET WITH PREPROCESSING AND SCALING TECHNIQUES

LAB TASKS:

1. Write a python code to load an excel spreadsheet containing two different sheets and print both of them

```
[18]: import pandas as pd
import numpy as np

sheet1 = pd.read_excel("DATASHEETLAB2_C.xlsx", sheet_name='Sheet1')
sheet2 = pd.read_excel("DATASHEETLAB2_C.xlsx", sheet_name="Sheet2")

print("Contents of Sheet 1: \n")
print(sheet1)
print("Contents of Sheet 2: \n")
print(sheet2)
```

```
Contents of Sheet 1:
                  STREAM PERCENTAGE
     NAME AGE
0
      ALI
           30
                    MATH
                                  65
1 FAIZAN
                                  90
           39
                SCIENCE
2
   ABRAR
           44 COMMERCE
                                  75
3 HAREEM
            23
                    MATH
                                  85
4 KASHIF
           21
                 SCIENCE
                                  70
Contents of Sheet 2:
  Math
        English Urdu Itc Total result
0
     85
              80
                    78
                         79
                               322
                                     PASS
1
     90
              50
                    70
                         65
                               275
                                     PASS
2
     80
              60
                    40
                         50
                               230
                                     FAIL
3
     25
              60
                    30
                         80
                               195
                                     FAIL
4
     55
              35
                         50
                               230
                                     FAIL
                    90
5
     85
              40
                    70
                         60
                               255
                                     PASS
```

2. Write a Python code to generate a pandas data frame having 4 columns and 5 rows. Column 1 must contain the index values like Ali, Amir, Kamran, etc., and Row 1 must include the subject names.

```
[21]: import pandas as pd
       data - {
          "Math" : [80, 20, 45, 50, 85],
           "Ristory": [50, 40, 37, 37, 54],
"Science": [80, 98, 95, 92, 90],
            "Computer" : [32, 89, 91, 93, 93],
       index_values = ["Ali", "Amin", "Kamman", "Zaid", "Samah"]
       df - pd.DataFrame(data, index-index_values)
       print(df)
                Math History Science Computer
       All
                  80
                            50
                                      80
                                                 12
                                                 89
       Anir
                  20
                            40
                                      98
                  45
                            37
                                      95
                                                 91
                            37
                                                 93
       Zaid
                  50
                                      92
       Sarah
                  85
                            54
                                      90
                                                 93
```

3. Write a Python code to read an Excel spreadsheet and only print the first two columns using pandas data frame.

```
[24]: import pandas as pd
      excel_file = "C:\\Users\\ABC\\Desktop\\DATASHEETLAB2_C.xlsx"
      df = pd.read_excel(excel_file)
      print(df.iloc[:, :2])
           NAME
                 AGE
      0
            ALI
                  30
      1 FAIZAN
                  39
          ABRAR
                  44
      2
      3 HAREEM
                  23
      4 KASHIF
                  21
```

4. Write a Python code to skip the first two rows of an Excel spreadsheet and print the output using a pandas data frame.

```
[40]: import pandas as pd

excel_file = "C:\\Users\\ABC\\Desktop\\DATASHEETLAB2_C.xlsx"

df = pd.read_excel(excel_file)

print(df.iloc[2:,:])

NAME AGE STREAM PERCENTAGE
2 ABRAR 44 COMMERCE 75
3 HAREEM 23 MATH 85
4 KASHIF 21 SCIENCE 70
[]:
```

5. Write a Python code to fill all the null values in the Gender column of employees.csv with "No Gender". Print the first 10 to 30 rows of the data frame for visualization.

```
Al_lab2.py X

Users > Shaikh > Desktop > LEARNING PYTHON > ♣ Al_lab2.py > ...

import pandas as pd

# Read the CSV file

df = pd.read_csv("C:\\Users\\Shaikh\\Desktop\\employees.csv.txt")

# Fill null values in 'Gender' column with 'No Gender'

df['Gender'].fillna('No Gender', inplace=True)

# Print the first 10 rows of the DataFrame

print(df.head(10))
```

```
df['Gender'].fillna('No Gender', inplace=True)
                        LastName Age
    EmployeeID FirstName
                                          Gender
                                                   Salary
 0
            1
                   John
                              Doe
                                    30 No Gender
                                                  50000.0
 1
            2
                   Jane
                            Smith
                                   25
                                          Female 45000.0
            3
 2
                Michael
                          Johnson
                                   35
                                            Male 60000.0
 3
            4
                  Emily
                            Brown
                                    28
                                          Female 55000.0
            5
 4
                  David
                            Davis
                                   32 No Gender
                                                      NaN
 5
            6
                  Sarah
                           Miller
                                   27 No Gender
                                                      NaN
 6
                 Robert
                           Wilson
                                   38
                                            Male 65000.0
 7
                  Maria Anderson
            8
                                    31
                                          Female 52000.0
                  James
 8
            9
                           Thomas
                                    33 No Gender
                                                      NaN
 9
           10 Jennifer
                              Lee
                                    29
                                          Female 48000.0
PS C:\Users\Shaikh>
```

6. Write a Python code to scale the values of features (Age and Salary) using the Min-Max Normalization technique. Verify your answers by applying the formula mentioned above.

```
C:\Users\Shaikh\AppDat
       Age Salary
0 0.000000
            0.00
1 0.647059
             0.40
2 0.294118
            0.15
3 0.117647
            0.05
4 0.764706
            0.45
5 1.000000
            1.00
6 0.529412
             0.30
```

```
# Calculating the scaled values manually using the formula

for i in range(len(df)):

scaled_age = (df['Age'][i] - df['Age'].min()) / (df['Age'].max() - df['Age'].min())

scaled_salary = (df['Salary'][i] - df['Salary'].min()) / (df['Salary'].max() - df['Salary'].min())

print(f"Age: {scaled_age: .4f}, Salary: {scaled_salary: .4f}")
```

```
Age: 0.0000, Salary: 0.0000
Age: 0.6471, Salary: 0.4000
Age: 0.2941, Salary: 0.1500
Age: 0.1176, Salary: 0.0500
Age: 0.7647, Salary: 0.4500
Age: 1.0000, Salary: 1.0000
Age: 0.5294, Salary: 0.3000
```

7. Write a Python code to scale the values of features (Age and Salary) using the Standardization technique. Verify your answers by applying the formula mentioned above.

Age	Salary
25	42000
36	50000
30	45000
27	43000
38	51000
42	62000
34	48000

```
# Calculating the scaled values manually using the formula

for i in range(len(df)):
    scaled_age = (df['Age'][i] - df['Age'].mean()) / df['Age'].std()
    scaled_salary = (df['Salary'][i] - df['Salary'].mean()) / df['Salary'].std()
    print(f"Age: {scaled_age: .4f}, Salary: {scaled_salary: .4f}")
```

```
Age: -1.3301, Salary: -0.9910
Age: 0.4667, Salary: 0.1898
Age: -0.5134, Salary: -0.5482
Age: -1.0034, Salary: -0.8434
Age: 0.7934, Salary: 0.3374
Age: 1.4468, Salary: 1.9609
Age: 0.1400, Salary: -0.1054
```

8. Given this dictionary, create a dataframe from dictionary and interpolate the missing values using backward interpolation. Hint: use interpolate().

```
C: > Users > Shaikh > Desktop > LEARNING PYTHON > ♠ Al_lab2.py > ...
      import numpy as np
      import pandas as pd
      # Given dictionary
      data dict = {
           'First Score': [100, 90, np.nan, 95],
           'Second Score': [30, 45, 56, np.nan],
           'Third Score': [np.nan, 40, 80, 98]
      # Create a DataFrame from the dictionary
      df = pd.DataFrame(data dict)
      print("\nOriginal DataFrame:")
      print(df)
      # Interpolate missing values using backward interpolation
      df_interpolated = df.interpolate().bfill()
      print("\nDataFrame after backward interpolation:")
      print(df_interpolated)
 22
```

```
Original DataFrame:
    First Score Second Score Third Score
 0
          100.0
                         30.0
                                       NaN
           90.0
                         45.0
                                      40.0
 2
                         56.0
            NaN
                                      80.0
 3
           95.0
                          NaN
                                       98.0
 DataFrame after backward interpolation:
    First Score Second Score Third Score
          100.0
                         30.0
                                       40.0
 0
 1
           90.0
                         45.0
                                      40.0
 2
                         56.0
                                       80.0
           92.5
 3
           95.0
                         56.0
                                       98.0
OPS C:\Users\Shaikh>
```