实验10 双臂电桥测量低电阻实验

一、实验背景知识

直流双臂电桥又称开尔文电桥,是一种测量低值电阻(10^{-5} - 1Ω)的常用仪器。例如 测量金属材料电阻率、分流器电阻、电机及变压器绕丝电阻等。测量低值电阻时,测量导线 本身和连接处接触电阻引起的附加电阻(约 10^{-4} -- 10^{-2} Ω)将给测量结果带来巨大误差,因此,必须设法消除或减小附加电阻对测量结果的影响。

双臂电桥就是为此而设计的。

- (1) 交流电阻, 直流电阻, 有感电阻, 无感电阻
- (2) 电阻式传感器, 压敏电阻, 光敏, 磁阻, 温敏
- (3) 碳膜电阻, 金属膜电阻, 金属氧化膜电阻
- (4) 负载电阻,采样电阻,分流电阻,保护电阻
- (5) \circ \circ \circ

二、实验内容

主要内容: 测量铜棒和铝棒的电阻和电导率

某些金属导体的电阻率及温度系数

名称	银	铜	金	铝	끪	铅	铁	铅	黄铜
电阻率ρ	1.47	1.55	2.01	2.50	4.89	5.65	8.70	19.2	8.00
(10 ⁻⁶ Ω-cm)	(0°C)	(18~20°C)							
温度系数α (10 ⁻⁵ /°C)	430	433	402	460	510	417	651	428	100

- (1) 电流电桥和交流电桥; 平衡电桥和非平衡电桥; 单臂和双臂直流电桥
- (2) 两端接入法, 四端接入法
- (3) 测量低电阻的原理和方法
- (4)

三、实验原理

1、四端接线法

测量电阻等效电路

$$R_x + R_{i1} + R_{i2} = \frac{V}{I} \qquad R_x 测不准$$

四端接线电路

四端接线等效电路

$$R_x = \frac{V}{I}$$
 接触电阻 R_i 不影响低电阻 R_x 的测量

许多低电阻的标准电阻都做成四端钮方式 A/D端为电流端,B/C端为电压端。

2、电桥

(1) 惠斯登电桥属于单臂直流平衡电桥 主要用于测量中等数值的电阻(10¹--10⁶Ω)

$$R_{x} = \frac{R_{1}}{R_{2}} \cdot R_{s}$$

$$\begin{cases} I_1 R = I_3 R_x + I_2 R_3 \\ I_1 R_1 = I_3 R_n + I_2 R_2 \\ (I_3 - I_2) R_i = I_2 (R_3 + R_2) \end{cases}$$

解方程组得
$$R_x = \frac{R}{R_1}R_n + \frac{R \cdot R_i}{R_3 + R_2 + R_i} (\frac{R_2}{R_1} - \frac{R_3}{R})$$

若
$$R_1 = R_2$$
 $R = R_3$ 和 R_i 很小时,则有: $R_x = \frac{R}{R_1}R_n$

实验中,选用双十进制电阻箱, 选取 $R_1 = R_2 = 10^3 \Omega$

四、实验设备

检流计不能在短路情况调零; 在直接时灵敏度最高。

图 1 QJ36 型单双臂两用直流电桥简化线路图

五、实验操作和注意事项

1、接线原理图

$$R_{x} = \frac{R}{R_{1}} R_{n}$$

$$\rho = R_{x} \cdot \frac{\pi d^{2}}{4l} = \frac{\pi d^{2}}{4l} \cdot \frac{R_{n}}{R_{1}} R \qquad \qquad R = (\frac{4\rho}{\pi d^{2}} \cdot \frac{R_{1}}{R_{n}}) l$$

已知标准电阻 R_n =0.001 Ω 改为 $\rightarrow R_n$ =1.00×10⁻³ Ω

数据记录,有效位数和仪器不确定度

合理选择处理方法:公式?作图?最小二乘法拟合?

最后结果要有不确定度。

【注意事项】

- 1.、注意测量电阻和标准电阻的电流端和电压端, 电压端1、2、
- 3、4的连接顺序相对应。
- 2、电源电压大检流计灵敏度高,同时要注意电源和低电阻的负载能力。
- 3、检流计不能在短路情况调零;在直接时灵敏度最高。

【思考题】

- 1. 讨论本实验误差因素。
- 2、如果四端电阻的电流端和电压端接反了,对测量结果有什么影响?
- 3. 在双臂电桥测量低电阻时,四端标准电阻的两个电压端是否有极性? 是否可以交换接入?