Theory of Formal Languages and Automata

Dr.Meybodi

Fall 2018

A Substitution Rule

$$S \rightarrow aB$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc$$

$$B \rightarrow aA$$

$$B \rightarrow b$$

Substitute

$$B \rightarrow b$$

Equivalent grammar

$$S \rightarrow aB \mid ab$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc$$

$$B \rightarrow aA$$

A Substitution Rule

$$S \rightarrow aB \mid ab$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc$$

$$B \rightarrow aA$$

Substitute

$$B \rightarrow aA$$

$$S \rightarrow aB \mid ab \mid aaA$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc \mid abaAc$$

Equivalent grammar

In general:

$$A \rightarrow xBz$$

$$B \rightarrow y_1$$

Substitute

$$B \rightarrow y_1$$

$$A \rightarrow xBz \mid xy_1z$$

equivalent grammar

Nullable Variables

$$\lambda$$
 – production :

$$A \rightarrow \lambda$$

$$A \Rightarrow \ldots \Rightarrow \lambda$$

Removing Nullable Variables

Example Grammar:

$$S \to aMb$$

$$M \to aMb$$

$$M \to \lambda$$

Nullable variable

Final Grammar

$$S \rightarrow aMb$$

 $M \rightarrow aMb$

 $M \rightarrow \lambda$

Substitute

 $M \to \lambda$

$$S \rightarrow aMb$$

$$S \rightarrow ab$$

$$M \rightarrow aMb$$

$$M \rightarrow ab$$

Unit-Productions

Unit Production: $A \rightarrow B$

(a single variable in both sides)

Removing Unit Productions

Observation:

$$A \rightarrow A$$

Is removed immediately

Example Grammar:

$$S \rightarrow aA$$
 $A \rightarrow a$
 $A \rightarrow B$
 $B \rightarrow A$
 $B \rightarrow bb$

$$S \rightarrow aA$$

$$A \rightarrow a$$

$$A \rightarrow B$$

$$B \to A$$

$$B \rightarrow bb$$

Substitute

$$A \rightarrow B$$

$$S \rightarrow aA \mid aB$$

$$A \rightarrow a$$

$$B \to A \mid B$$

$$B \rightarrow bb$$

$$S \rightarrow aA \mid aB$$

$$A \rightarrow a$$

$$B \rightarrow A \mid B$$

$$B \rightarrow bb$$

Remove

$$B \rightarrow B$$

$$S \rightarrow aA \mid aB$$

$$A \rightarrow a$$

$$B \to A$$

$$B \rightarrow bb$$

$$S \rightarrow aA \mid aB$$
 $A \rightarrow a$
 $B \rightarrow A$
Substitute
 $B \rightarrow A$

 $B \rightarrow bb$

$$S \rightarrow aA \mid aB \mid aA$$

 $A \rightarrow a$
 $B \rightarrow bb$

Remove repeated productions

$$S \rightarrow aA \mid aB \mid aA$$
 $S \rightarrow aA \mid aB$
 $A \rightarrow a$ $A \rightarrow a$
 $B \rightarrow bb$ $B \rightarrow bb$

Final grammar

Useless Productions

$$S oup aSb$$
 $S oup \lambda$
 $S oup A$
 $A oup aA$ Useless Production

Some derivations never terminate...

$$S \Rightarrow A \Rightarrow aA \Rightarrow aaA \Rightarrow ... \Rightarrow aa...aA \Rightarrow ...$$

Another grammar:

$$S o A$$
 $A o aA$
 $A o \lambda$
 $B o bA$ Useless Production

Not reachable from S

In general:

contains only terminals

if
$$S \Rightarrow ... \Rightarrow xAy \Rightarrow ... \Rightarrow w$$

$$w \in L(G)$$

then variable A is useful

otherwise, variable A is useless

A production $A \rightarrow x$ is useless if any of its variables is useless

$$S o aSb$$

$$S o \lambda \qquad \text{Productions}$$
Variables $S o A \qquad \text{useless}$

$$\text{useless} \qquad A o aA \qquad \text{useless}$$

$$\text{useless} \qquad B o C \qquad \text{useless}$$

$$\text{useless} \qquad C o D \qquad \text{useless}$$

Removing Useless Productions

Example Grammar:

$$S \rightarrow aS \mid A \mid C$$
 $A \rightarrow a$
 $B \rightarrow aa$
 $C \rightarrow aCb$

First: find all variables that can produce strings with only terminals

$$S \rightarrow aS \mid A \mid C$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

$$C \rightarrow aCb$$

Round 1:
$$\{A,B\}$$

$$S \rightarrow A$$

Round 2:
$$\{A,B,S\}$$

Keep only the variables that produce terminal symbols: $\{A,B,S\}$

(the rest variables are useless)

$$S \to aS \mid A \mid C$$

$$A \to a$$

$$B \to aa$$

$$C \to aCb$$

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

Remove useless productions

Second: Find all variables reachable from S

Use a Dependency Graph

$$S \rightarrow aS \mid A$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

(B)

not reachable

Keep only the variables reachable from S

(the rest variables are useless)

Final Grammar

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

$$S \to aS \mid A$$

$$A \to a$$

Remove useless productions

Removing All

Step 1: Remove λ -productions

Step 2: Remove Unit-productions

Step 3: Remove Useless productions