22

23

aluminum;

1	I CLAIM:
2	
3	1. In the method of consolidating a body in
4	any of initially powdered, sintered, fibrous, sponge,
5	or other form capable of compaction, that includes the
6	steps:
7	a) providing flowable pressure transmission
8	particles having carbonaceous and ceramic composition
9	or compositions,
10	b) heating said particles to elevated
11	temperature,
12	c) locating said heated particles in a bed
13	d) positioning said body at said bed, to
14	receive pressure transmission,
15	e) effecting pressurization of said bed to
16	cause pressure transmission via said particles to said
17	body, thereby to compact and consolidate the body into
18	desired shape, increasing its density;
19	f) the body consisting essentially of one
20	or more metals selected from the following group:
21	tungsten, rhenium, uranium, tantalum, platinum, copper

g) said consolidated body having, along a body dimension, one of the following characteristics:

gold, hafnium, molybdenum, titanium, zirconium and

1	i) decreasing strength
2	ii) increasing duct lity
3	iii) decreasing strength, and increasing
4	ductility
5	
-6	
7	2. The method of claim 1 wherein the body
8	has varying metallic composition along said dimension.
9	
10	
11	3. The method of claim 1 wherein said
12	varying metallic composition is characterized by a
13	series of zones, the metal of each zone having a
14	characteristic composition which differs from that of
15	an adjacent zone or zones.
16	
17	
18	4. The method of claim 3 wherein the metals
19	in at least two successive zones consist substantially
20	of tantalum, and tantalum consolidated with a metal or
21	metals selected from the group tungsten, rhenium,
22	uranium, tantalum, platinum, copper, gold, hafnium,
23	molybdenum, titanium, zirconium and aluminum.
24	
25	
26	
	·

1	5. The method of clasm 1 wherein said body
2	consists of powders of metals that have been initially
3	combined and compressed into body form, at pressure
4	exceeding 20,000 pounds per square inch, prior to said
5	step e) pressurization.
6	
7	
8	6. The method $\oint f$ claim 5 wherein at least
9	part of said body has one of the following forms:
10	i) cone
11	ii) lens
12	iii) cylinder
13	iv) cylinder and cone combination
14	v) cylinder and lens combination.
15	
16	\oint
17	7. The method of claim 5 including pre-
18	heating said body to temperature in excess of 900°C,
19	subsequent to said initial combining and compressing
20	and prior to said pressurization.
21	
22	
23	8. The method of claim 5 including
24	effecting said initial combining and compressing at
25	ambient temperature.

1	9. The method of claim 5 including
2	providing an elastomeric container, positioning said
3	powders in said container, and effecting said initial
4	compressing by compressing said dontainer.
5	
6	
7	10. The method of claim 9 including
8	evacuating gases from said container, prior to said
9	initial compressing thereof.
10	
11	
12	11. The method of claim 10 including sealing
13	of said container after evacuating gases therefrom.
14	
15	
16	12. The method of claim 11 wherein said
17	initial compressing is effected to compress the body to
18	about 60% of body theoretical density.
19	
20	
21	13. The method of claim 1 wherein said
22	pressurization is effected to form the body into
23	generally conical shape.
24	
.25	

1	14. The method of claim 1 including
2	effecting said initial compressing to form the body
3	into generally cylindrical shape, with taper at one
4	end.
5	
6	
7	15. The method of claim 14 wherein said
8	pressurization is carried out to reduce the body size
9	while maintaining body generally cylindrical shape with
10	taper at one end.
11	
12	
13	16. The method of claim 5 wherein the
14	powders at one zone of the body consist essentially of
15	tantalum particles coated with substance or substances
16	selected from the group that include tungsten, rhenium,
17	uranium, platinum, copper, gold, hafnium, molybdenum,
18	titanium, zirconium and aluminum.
19	
20	
21	17. The method of claim 16 wherein the
22	weight percent of said substance or substances is about
23	16% of the overall weight of the total powder.
24	
25	1

	. /
1	18. The consolidated body produced by the
2	method of claim 1.
3	
4	
5	19. The method of claim 1 wherein said
6	particles are generally spheroidal and consist of
7	graphite, and/or graphite and/ceramic composite.
8	
9	
10	20. The method of claim 1 wherein said body
11	in said bed, prior to said step e) is at a temperature
12	between about 200°C. and 1,800°C.
13	
14	
15	21. The method of claim 1 wherein said body
16	is positioned in said bed to be surrounded by said
17	particulate, the bed consisting substantially entirely
18	of particles in the form of graphite and/or
19	graphite/ceramic beads.
20	
21	
22	22. The method of claim 15 wherein said bed
23	contains sufficient of said flowable particles as to
24	remain essentially free of agglomeration during said
25	(e) step.

1	23. The method of claim 1 wherein said bed
2	consists essentially of one of the following
3	particulates:
4	i) graphite
5	ii) ceramic
6	iii) graphite and ceramic.
7	
8	
9	24. The method of claim 23 wherein the
10	particle mesh size is between 50 and 240.
11	
12	•
13	25. The method of consolidating metal powder
14	to form an object, that includes:
15	a) pressing said powder into a preform, and
16	preheating the preform to elevated temperature,
17	b) providing flowable pressure transmitting
18	particles and heating said particles, and providing a
19	bed of said flowable and heated pressure transmitting
20	particles,
21	c) / positioning the preform in such relation
22	to the bed that the particles substantially encompass
23	the preform,
24	d) and pressurizing said bed to compress
25	said particles and cause pressure transmission via the
	1

	/ /
1	particles to the preform, thereby to consolidate the
2	preform into a desired object shape,
3	e) the preform consisting of one or more
4	metals selected from the following group: tungsten,
5	rhenium, uranium, tantalum, platinum, copper, gold,
6	hafnium, molybdenum, titanium, zirconium and aluminum.
7	
8	
9	26. The method of claim 25 wherein the
0 1	powder at one zone of the body consists of tantalum
11	particles coated with substances selected from the
12	group that includes tungsten, rhenium, uranium,
13	platinum, copper, gold, hafnium, molybdenum, titanium,
l 4	zirconium and aluminum.
15	
16	
17	27. The method of claim 26 wherein the
18	weight percent of said substances is about 16% of the
19	overall weight of the total powder.
20	
21	
22	28. The method of claim 25 wherein said
23	pressurization is effected at levels greater than about
24	20,000 psi for a time interval of less than about 30
25	seconds.
26	

1	29. The method that includes
2	a) providing particles to be used in
3	pressure consolidation of a powdered preform;
4	b) heating said particles,
5	c) and pressurizing the heated particles to
6	effect said consolidation,
7	d) said preform consisting essentially of
8	metallic particles selected from the following group:
9	tungsten, rhenium, uranium, tantalum, platinum, copper
10	gold, hafnium, molybdenum, titanium, zirconium and
11	aluminum.
12	
13	
14	30. The method of claim 29 wherein the
15	particles include tantalym which constitutes more than
16	50% of the overall weight of the preform.
17	
18	
19	31. The method of claim 29 wherein the
20	preform initial powder consists of tantalum particles
21	on which the metallic particles are coated.
22	
23	
24	
25	
26	

1	32. A metallic body which has been
2	compressed and consolidated from an initial powder
3	metal form to a highly densified form, the body
4	consisting of at least two metals, the proportions of
5	which vary along a body dimension, one of said metals
6	being tantalum.
7	
8	
9	33. The body of claim 32 wherein the body
10	consists of at least four metals.
11	
12	
13	34. The body of claim 33 wherein said metals
14	are selected from the group that includes tungsten,
15,	rhenium, uranium, tantalum, platinum, copper, gold,
16	hafniym, molybdenum, titanium, zirconium and aluminum.
17	
18	
19	/ 35. The body of claim 32 wherein the body is
20	elongated and has a tapered nose portion, there being a
21/	second body portion along said dimension, the body
2/2	consisting of at least two metals, M_1 and M_2 , the
23	proportions of M_1 and M_2 in said body nose portion and
24	second body portion being different.
25	
26	
	/

	1
1	36. The body of claim 35 wherein the metal
2	M_1 is tantalum, the proportion of tantalum in said nose
3	portion being greater than the proportion of tantalum
4	in said second body portion.
5	
6	
7	37. The body of claim 36 wherein the body
8	has third and fourth body portions along said
9	dimension, the proportion of tantalum in said second
10	body portion exceeding the proportion of tantalum in
11	said third body portion, and the proportion of tantalum
12	in said third body portion exceeding the proportion of
13	tartalum in said fourth body portion.
14	
15	
16	38. The body of claim 32 wherein the body
17	has first and second ends, the consolidated metal at
18/	the first end having higher density than the metal at
1/9	the second end.
20	
2 1	
22	$/\!\!/$ 39. The body of claim 38 wherein the metal
23	at the first end consists primarily of tantalum, and
24	the metal at the second end consists primarily of M_1 ,
25	M_2 , or M_x .
26	

		/
	1	40. A pressure consolidated powdered metal
	2	product wherein the powdered metal is distributed in
<u>ک</u>	3	successive layers, each layer having a different weight
6	24	percentage of consolidated powdered metals, at least
	(7 /5 /	one of the powdered metals being tantalum.
•	6	
	7	$\int \int $
4 =	8	41. The body of claim 32 which has
	٩	decreasing strength or ductility in each of two body
	10	dimensions.
Ð(141	
	12	
	J 13	\ 42. The body of claim 41 wherein said two
7	14	dimensions are length and thickness.
	15 (
1	₩ 16	
	17	43. The body of claim 41 wherein said two
	18	dimensions are longitudinal and lateral.
	19	
•	20	
	21	44. The body of claim 41 wherein said body
	22	tapers toward a top zone, the body ductility and/or
	23	strength being greatest at said top zone.
	24	
	2,5	
	/,	

24

(

						Λ						
1		45.	The	body	of/	cla:	im 41	l whe	rein	sai	ld boo	dy
2	comprises	a cor	nical	l she	1/.							
3_				/	/							
4				/								
5		46.	The	body	of	cla	im 4:	l whi	ch h	as a	a	
6	cylindrica	al se	ction	and	a 1	tape:	red :	secti	on a	t or	ne en	d of
5	the cylind	drica	l sed	tion	•							
\mathcal{A}										*		
9		/										
10		47/.	The	meth	od (of c	laim	32 w	here	in t	he	
11	consolidat	ted to	anta:	lum h	as ·	<111:	> tex	kture	of	less	tha:	n
12	about 2.8	x ran	dom.									
13												
14												
15												
16												
17												
18							١	_				
19						0				•		
20					n	19	//	/				
21				0	ممسو	13						
22							•					