

Calculus 1

By: Ferdian Bangkit Wijaya, S.Stat, M.Si

#2 Meeting

Function:

Domain & Range, Graph, Trigonometric, Operations

Domain & Range

Definition

A function f is a rule of correspondence that associates with each object x in one set, called the **domain**, a single value f(x) from a second set. The set of all values so obtained is called the **range** of the function.

Domain & Range

Function Notation A single letter like f (or g or F) is used to name a function. Then f(x), read "f of x" or "f at x," denotes the value that f assigns to x.

Domain and Range To specify a function completely, we must state, in addition to the rule of correspondence, the domain of the function. For example, if F is the function defined by $F(x) = x^2 + 1$ with domain $\{-1, 0, 1, 2, 3\}$ (Figure), then the range is $\{1, 2, 5, 10\}$. The rule of correspondence, together with the domain, determines the range.

When no domain is specified for a function, we assume that it is the largest set of real numbers for which the rule for the function makes sense. This is called the **natural domain.** Numbers that you should remember to exclude from the natural domain are those values that would cause division by zero or the square root of a negative number.

Domain & Range

EXAMPLE 1 For $f(x) = x^2 - 2x$, find and simplify

(a)
$$f(4)$$

(b)
$$f(4 + h)$$

(c)
$$f(4+h)-f(4)$$

(c)
$$f(4+h) - f(4)$$
 (d) $[f(4+h) - f(4)]/h$

SOLUTION

(a)
$$f(4) = 4^2 - 2 \cdot 4 = 8$$

(b)
$$f(4+h) = (4+h)^2 - 2(4+h) = 16 + 8h + h^2 - 8 - 2h$$

= $8 + 6h + h^2$

(c)
$$f(4+h) - f(4) = 8 + 6h + h^2 - 8 = 6h + h^2$$

(d)
$$\frac{f(4+h)-f(4)}{h} = \frac{6h+h^2}{h} = \frac{h(6+h)}{h} = 6+h$$

EXAMPLE 2 Find the natural domains for

(a)
$$f(x) = 1/(x-3)$$

(b)
$$g(t) = \sqrt{9 - t^2}$$

(c)
$$h(w) = 1/\sqrt{9 - w^2}$$

SOLUTION

- (a) We must exclude 3 from the domain because it would require division by zero. Thus, the natural domain is $\{x: x \neq 3\}$. This may be read "the set of x's such that x is not equal to 3."
- (b) To avoid the square root of a negative number, we must choose t so that $9 - t^2 \ge 0$. Thus, t must satisfy $|t| \le 3$. The natural domain is therefore $\{t: |t| \le 3\}$, which we can write using interval notation as [-3, 3].
- (c) Now we must avoid division by zero and square roots of negative numbers, so we must exclude -3 and 3 from the natural domain. The natural domain is therefore the interval (-3, 3).

Graph of function

Graphs of Functions When both the domain and range of a function are sets of real numbers, we can picture the function by drawing its graph on a coordinate plane. The graph of a function f is simply the graph of the equation y = f(x).

EXAMPLE 3 Sketch the graphs of

(a)
$$f(x) = x^2 - 2$$

(b)
$$g(x) = 2/(x-1)$$

Function	Domain	Range
----------	--------	-------

$$f(x) = x^2 - 2$$
 all real numbers $\{y: y \ge -2\}$

$$g(x) = \frac{2}{x-1}$$
 $\{x: x \neq 1\}$ $\{y: y \neq 0\}$

Graph of function

EXAMPLE 4

SOLUTION

- (a) f(1) = 3 $f(5) \approx -0.7$
- (b) $\{y \mid -2 \le y \le 4\} = [-2, 4]$

EXAMPLE 5

SOLUTION

The domain is [-3, 2]the range is $[-3, -2) \cup [-1, 3]$

state the domain and range of the function

(a) Find the values of
$$f(1)$$
 and $f(5)$.

(b) What are the domain and range of f?

Graph of function

BASIC QUADRATIC AND CUBIC GRAPHS

 $y = x^3$

 $y = -x^{3}$

a > 0

 $x = y^2$

EXAMPLE 6 Find the points of intersection of the line y = -2x + 2 and the parabola $y = 2x^2 - 4x - 2$, and sketch both graphs on the same coordinate plane. $y = 2x^2 - 4x - 2$

$$-2x + 2 = 2x^{2} - 4x - 2$$

$$0 = 2x^{2} - 2x - 4$$

$$0 = 2(x + 1)(x - 2)$$

$$x = -1, \quad x = 2$$

EXAMPLE 7

Let
$$f(x) = \begin{cases} 1 - x^2 & \text{if } x \le 0\\ 2x + 1 & \text{if } x > 0 \end{cases}$$

- (a) Evaluate f(-2) and f(1).
- (b) Sketch the graph of f.

Trigonometric Functions

(a)
$$f(x) = \sin x$$

Degrees	Radians
0	0
30	π/6
45	π/4
60	π/3
90	π/2
120	$2\pi/3$
135	$3\pi/4$
150	5π/6
180	π
360	2π

$$180^{\circ} = \pi \text{ radians} \approx 3.1415927 \text{ radians}$$

1 radian
$$\approx 57.29578^{\circ}$$
 1° ≈ 0.0174533 radian

$$\tan t = \frac{\sin t}{\cos t} \qquad \cot t = \frac{\cos t}{\sin t}$$

$$\sec t = \frac{1}{\cos t} \qquad \csc t = \frac{1}{\sin t}$$

$$1 + \tan^2 t = \sec^2 t$$
 $1 + \cot^2 t = \csc^2 t$

Sum identities

$$\sin x + \sin y = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$
$$\cos x + \cos y = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

Product identities

$$\sin x \sin y = -\frac{1}{2} [\cos(x+y) - \cos(x-y)] \quad \sin\left(\frac{\pi}{2} - x\right) = \cos x$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)] \quad \cos\left(\frac{\pi}{2} - x\right) = \sin x$$

Odd-even identities

$$\sin(-x) = -\sin x$$

$$\cos(-x) = \cos x$$

$$\tan(-x) = -\tan x$$

Cofunction identities

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x \qquad \sin 2x = 2\sin x \cos x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x \qquad \cos 2x = \cos^2 x - \sin^2 x$$

$$\tan\left(\frac{\pi}{2} - x\right) = \cot x \qquad = 2\cos^2 x - 1$$

$$= 1 - 2\sin^2 x$$

(b) $g(x) = \cos x$

$\sin^2 x + \cos^2 x = 1$ $1 + \tan^2 x = \sec^2 x$ $1 + \cot^2 x = \csc^2 x$

Double-angle identities

$$\sin 2x = 2 \sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$= 2 \cos^2 x - 1$$

Pythagorean identities Addition identities

$$\sin(x + y) = \sin x \cos y + \cos x \sin y$$

$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$

$$\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

Half-angle identities

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x \qquad \sin 2x = 2\sin x \cos x \qquad \sin\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1 - \cos x}{2}}$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x \qquad \cos 2x = \cos^2 x - \sin^2 x \qquad \cos\left(\frac{x}{2}\right) = \pm\sqrt{\frac{1 + \cos x}{2}}$$

$$= 2\cos^2 x - 1$$

Trigonometric Functions

Trigonometry Ratio Table								
Angles (In Degrees)	0°	30°	45°	60°	90°	180°	270°	360°
Angles (In Radians)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
\sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not Defined	0	Not Defined	1
cot	Not Defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0	Not Defined	0	Not Defined
csc	Not Defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1	Not Defined	-1	Not Defined
sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not Defined	-1	Not Defined	1

Trigonometric Functions

EXAMPLE 1 Sketch the graphs of

(a)
$$y = \sin(2\pi t)$$

t	$\sin(2\pi t)$	t	$\sin(2\pi t)$
0	$\sin(2\pi \cdot 0) = 0$	$\frac{5}{8}$	$\sin\!\left(2\pi\cdot\frac{5}{8}\right) = -\frac{\sqrt{2}}{2}$
$\frac{1}{8}$	$\sin\left(2\pi\cdot\frac{1}{8}\right) = \frac{\sqrt{2}}{2}$	$\frac{3}{4}$	$\sin\left(2\pi\cdot\frac{3}{4}\right) = -1$
$\frac{1}{4}$	$\sin\left(2\pi\cdot\frac{1}{4}\right)=1$	$\frac{7}{8}$	$\sin\left(2\pi\cdot\frac{7}{8}\right) = -\frac{\sqrt{2}}{2}$
$\frac{3}{8}$	$\sin\left(2\pi\cdot\frac{3}{8}\right) = \frac{\sqrt{2}}{2}$	1	$\sin(2\pi\cdot 1)=0$
$\frac{1}{2}$	$\sin\!\left(2\pi\cdot\frac{1}{2}\right)=0$	$\frac{9}{8}$	$\sin\!\left(2\pi\cdot\frac{9}{8}\right) = \frac{\sqrt{2}}{2}$

(b) $y = \cos(2t)$

l	$\cos(2t)$	t	$\cos(2t)$
0	$\cos(2\cdot 0)=1$	$\frac{5\pi}{8}$	$\cos\left(2\cdot\frac{5\pi}{8}\right) = -\frac{\sqrt{2}}{2}$
$\frac{\pi}{8}$	$\cos\left(2\cdot\frac{\pi}{8}\right) = \frac{\sqrt{2}}{2}$	$\frac{3\pi}{4}$	$\cos\left(2\cdot\frac{3\pi}{4}\right)=0$
$\frac{\pi}{4}$	$\cos\left(2\cdot\frac{\pi}{4}\right)=0$	$\frac{7\pi}{8}$	$\cos\left(2\cdot\frac{7\pi}{8}\right) = \frac{\sqrt{2}}{2}$
$\frac{3\pi}{8}$	$\cos\left(2\cdot\frac{3\pi}{8}\right) = -\frac{\sqrt{2}}{2}$	π	$\cos(2\cdot\pi)=1$
$\frac{\pi}{2}$	$\cos\left(2\cdot\frac{\pi}{2}\right) = -1$	$\frac{9\pi}{8}$	$\cos\left(2\cdot\frac{9\pi}{8}\right) = \frac{\sqrt{2}}{2}$

Operations on Functions

Just as two numbers a and b can be added to produce a new number a + b, so two functions f and g can be added to produce a new function f + g.

Domain of f

Domain of g

Sums, Differences, Products, Quotients, and Powers

$$f(x) = \frac{x-3}{2}, \qquad g(x) = \sqrt{x}$$

We can make a new function f + g $f(x) + g(x) = (x - 3)/2 + \sqrt{x}$; that is,

$$(f+g)(x) = f(x) + g(x) = \frac{x-3}{2} + \sqrt{x}$$

Formula	Domain
$(f+g)(x) = f(x) + g(x) = \frac{x-3}{2} + \sqrt{x}$	$[0,\infty)$
$(f-g)(x) = f(x) - g(x) = \frac{x-3}{2} - \sqrt{x}$	$[0,\infty)$
$(f \cdot g)(x) = f(x) \cdot g(x) = \frac{x-3}{2} \sqrt{x}$	$[0,\infty)$
$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{x-3}{2\sqrt{x}}$	$(0,\infty)$

raise a function to a power.

$$g^{3}(x) = [g(x)]^{3} = (\sqrt{x})^{3} = x^{3/2}$$

 f^{-1} does not mean $1/f$.

Operations on Functions

Composition of Functions

$$(g \circ f)(x) = g(f(x))$$

$$f(x) = \frac{x-3}{2}, \qquad g(x) = \sqrt{x}$$

$$(g \circ f)(x) = g(f(x)) = g\left(\frac{x-3}{2}\right) = \sqrt{\frac{x-3}{2}}$$

$$(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = \frac{\sqrt{x} - 3}{2}$$

The domain for $g \circ f$ is the interval $[3, \infty)$ The domain for $f \circ g$ is the interval $[0, \infty)$

the domains of $g \circ f$ and $f \circ g$ can be different.

Operations on Functions

EXAMPLE 1 Let $F(x) = \sqrt[4]{x+1}$ and $G(x) = \sqrt{9-x^2}$, with respective natural domains $[-1, \infty)$ and [-3, 3]. Find formulas for F + G, F - G, $F \cdot G$, F/G, and F^5 and give their natural domains.

EXAMPLE 2 Let $f(x) = 6x/(x^2 - 9)$ and $g(x) = \sqrt{3x}$, with their natural domains. First, find $(f \circ g)(12)$; then find $(f \circ g)(x)$ and give its domain.

SOLUTION

Formula	Domain	
$(F+G)(x) = F(x) + G(x) = \sqrt[4]{x+1} + \sqrt{9-x^2}$	[-1, 3]	
$(F-G)(x) = F(x) - G(x) = \sqrt[4]{x+1} - \sqrt{9-x^2}$	[-1, 3]	
$(F \cdot G)(x) = F(x) \cdot G(x) = \sqrt[4]{x+1}\sqrt{9-x^2}$	[-1, 3]	
$\left(\frac{F}{G}\right)(x) = \frac{F(x)}{G(x)} = \frac{\sqrt[4]{x+1}}{\sqrt{9-x^2}}$	[-1, 3)	
$F^{5}(x) = [F(x)]^{5} = (\sqrt[4]{x+1})^{5} = (x+1)^{5/4}$	$[-1,\infty)$	_

SOLUTION

$$(f \circ g)(12) = f(g(12)) = f(\sqrt{36}) = f(6) = \frac{6 \cdot 6}{6^2 - 9} = \frac{4}{3}$$

$$(f \circ g)(x) = f(g(x)) = f(\sqrt{3x}) = \frac{6\sqrt{3x}}{(\sqrt{3x})^2 - 9}$$

$$(f \circ g)(x) = \frac{6\sqrt{3x}}{3x - 9} = \frac{2\sqrt{3x}}{x - 3}$$

We must also exclude x=3 from the domain of $f \circ g$ because g(3) is not in the domain of f. (It would cause division by 0.) Thus, the domain of $f \circ g$ is $[0,3) \cup (3,\infty)$.

Domain and Range, Graph, and Trigonometric (Time to participation)

Find the natural domain

$$f(x) = \frac{4 - x^2}{x^2 - x - 6}$$

Find the natural domain

$$G(y) = \sqrt{(y+1)^{-1}}$$

sketch its graph

$$G(y) = \sqrt{(y+1)^{-1}}$$

$$g(t) = \begin{cases} 1 & \text{if } t \le 0 \\ t+1 & \text{if } 0 < t < 2 \\ t^2 - 1 & \text{if } t \ge 2 \end{cases}$$

sketch its graph

$$h(x) = \begin{cases} -x^2 + 4 & \text{if } x \le 1\\ 3x & \text{if } x > 1 \end{cases}$$

sketch its graph

$$y = 2 \sin t$$

following on $[-\pi, 2\pi]$.

Operations on Functions (Time to participation)

If $f(x) = \sqrt{x^2 - 1}$ and g(x) = 2/x, find formulas for the following and state their domains.

 $(f \cdot g)(x)$

 $f^{4}(x) + g^{4}(x)$ (f \circ g)(x)

 $(g \circ f)(x)$

Find f and gso that $p = f \circ g$.

SEE YOU NEXT WEEK!