Ciclos Termodinámicos y su Aplicación Automotriz

Profesor [Tu Nombre]

Universidad Tecnológica de Puebla

August 6, 2025

¿Qué es un Ciclo Termodinámico?

Un ciclo termodinámico es una secuencia de procesos termodinámicos que comienzan y terminan en el mismo estado. En un ciclo, la energía neta en forma de calor (Q) se convierte en trabajo mecánico neto (W), o viceversa.

- Propósito Principal: Convertir energía térmica en trabajo útil.
- Componentes Clave:
 - Procesos (isobárico, isocórico, isotérmico, adiabático).
 - Sustancia de trabajo (ej. aire, vapor).
 - Fuentes de calor (alta y baja temperatura).
- Relevancia Automotriz: Son el fundamento teórico para entender el funcionamiento de los motores de combustión interna.

El Ciclo Ideal: Ciclo de Carnot

El Límite Teórico de la Eficiencia

El ciclo de Carnot es un ciclo ideal reversible que establece la máxima eficiencia posible para cualquier motor que opere entre dos temperaturas.

Procesos del Ciclo de Carnot:

- **1** Expansión isotérmica $(A \rightarrow B)$
- $oldsymbol{arphi}$ Expansión adiabática (B o C)
- **3** Compresión isotérmica $(C \rightarrow D)$
- lacksquare Compresión adiabática (D o A)

Ciclo Otto: Motores de Gasolina

Modelo para Motores de Encendido por Chispa (MEP)

El ciclo Otto es el modelo ideal para los motores de combustión interna de encendido por chispa.

Procesos del Ciclo Otto Ideal:

- **1** Compresión adiabática $(1 \rightarrow 2)$
- ② Adición de calor a volumen constante $(2 \rightarrow 3)$
- **3** Expansión adiabática (carrera de potencia) $(3 \rightarrow 4)$
- lacktriangle Rechazo de calor a volumen constante (4 o 1)

Ciclo Diesel: Motores de Compresión

Modelo para Motores de Encendido por Compresión (MEC)

El ciclo Diesel modela los motores que encienden el combustible por la alta temperatura del aire comprimido.

Procesos del Ciclo Diesel Ideal:

- **1** Compresión adiabática $(1 \rightarrow 2)$
- Adición de calor a presión constante $(2 \rightarrow 3)$
- **3** Expansión adiabática $(3 \rightarrow 4)$
- Rechazo de calor a volumen constante (4 o 1)

Comparación y Aplicaciones

Puntos Clave

- Carnot: Es el más eficiente teóricamente, pero no es práctico de construir por sus procesos lentos (isotérmicos) y requerimientos de materiales. Sirve como un benchmark.
- Otto: Menor relación de compresión para evitar la detonación (golpeteo). Característico de vehículos ligeros y de pasajeros por su alta potencia y RPM.
- Diesel: Mayor relación de compresión, lo que lleva a una mayor eficiencia. Usado en vehículos de carga, transporte pesado y maquinaria por su alto torque y economía de combustible.

Para una misma relación de compresión, el ciclo Otto es más eficiente. Sin embargo, en la práctica, los motores Diesel operan a relaciones de compresión mucho mayores, resultando en una eficiencia superior.

Conclusiones

- Los ciclos termodinámicos son herramientas esenciales para analizar y diseñar motores de combustión interna.
- El ciclo de Carnot nos da el límite superior de la eficiencia.
- El ciclo de Otto modela los motores de gasolina, donde el calor se añade a volumen constante.
- El ciclo de Diesel modela los motores diésel, donde el calor se añade a presión constante.
- La eficiencia y el rendimiento de un motor real están directamente relacionados con qué tan bien se aproxima a su ciclo ideal correspondiente.

Siguiente paso: Analizar las pérdidas y desviaciones de los ciclos reales respecto a los modelos ideales.

Preguntas y Discusión

¿Preguntas?