Fonction logarithme

1. Fonction logarithme népérien

1.1 Fonction réciproque de la fonction exponentielle

Définition 1.

Définition 2.

Propriété 1. Dans un repère orthonormé, les courbes représentatives des fonctions exponentielle et logarithme népérien sont symétriques par rapport à la droite d'équation y = x.

Propriété 2.

- Pour tout b > 0 et pour tout réel $a, e^a = b \iff \dots$
- $ln(1) = \ldots$ et $ln(e) = \ldots$
- Pour tout réel a > 0, $e^{\ln(a)} = \dots$
- Pour tout réel a, $\ln(e^a) = \dots$

Mini-exercices.

- 1. Déterminer l'ensemble de définition des fonctions suivantes :
 - (a) $f(x) = \ln(5x 4)$
 - (b) $g(x) = \ln(-x^2 5x + 6)$
- 2. Résoudre dans $\mathbb R$ les équations suivantes :
 - (a) $e^x = 4$
 - (b) $e^{-3x+7} = 2$
 - (c) $\ln(x) = -2$
 - (d) $\ln(-3x+4) = -1$

1.2 Relation fonctionnelle et propriétés algébriques

Propriété 3. — Relation fonctionnelle —

Pour tous x et y réels strictement positifs,

$$\ln(x \times y) = \ln(x) + \ln(y).$$

Démonstration.

Équivalences en passant par l'exponentielle

Propriétés 1. Pour tous réels x > 0 et y > 0:

- $\ln\left(\frac{1}{x}\right) = \dots$
- $\ln\left(\frac{x}{y}\right) = \dots$
- Pour tout entier relatif n, $\ln(x^n) = \dots$
- $\ln(\sqrt{x}) = \dots$

Mini-exercices.

- 1. Démontrer que $\ln(8) \ln(2) + \ln(4) \ln(16)$.
- 2. Démontrer que $\ln(48) 3\ln(2) = \ln(6)$.
- 3. Démontrer que $\ln(\sqrt{5}-1) + \ln(\sqrt{5}+1) = 2\ln(2)$.

2. Étude de la fonction ln

2.1 Dérivée et variations

Propriétés 2.

- La fonction logarithme népérien est continue et dérivable sur]0; $+\infty$ [et pour tout réel x > 0, $\ln'(x) = \frac{1}{x}$
- Soit u une fonction $\frac{d\acute{e}rivable}{d\acute{e}rivable}$ sur un intervalle I telle que, pour tout x appartenant à I, u(x) > 0. La fonction $\ln \circ u : x \to \ln(u(x))$ est dérivable sur I et :

$$(\ln \circ u)' = \frac{u'}{u}$$

Démonstration.

À faire.

Exemple. Soit $f(x) = \ln(5x^2 + x + 3)$.

Propriété 4. La fonction logarithme népérien est strictement croissante sur $]0; +\infty[$.

Conséquences.

Propriétés 3. Pour tous réels a et b strictement positifs, on a :

- $\ln(a) = \ln(b) \iff \dots$
- $\ln(a) \leqslant \ln(b) \iff \dots$

En particulier, on a:

- $\ln(a) \leqslant 0 \iff \dots$
- $\ln(a) \geqslant 0 \iff \dots$

Mini-exercices.

- 1. Étudier le sens de variation de la fonction f définie sur]0; $+\infty[$ par $f(x) = \frac{\ln(x)}{x}$.
- 2. Résoudre dans \mathbb{R} l'inéquation $\ln(5x+4) \geqslant 9$.

2.2 Limites

Propriétés 4.

•
$$\lim_{x \to +\infty} \ln(x) = +\infty$$

•
$$\lim_{x \to 0} \ln(x) = -\infty$$

Démonstration.

À faire.

Conséquences.

Tableau de variation de la fonction ln :

4

Courbe représentative de la fonction ln :

Propriétés 5.

- $\bullet \lim_{x \to +\infty} \frac{\ln x}{x} = 0.$
- $\lim_{x \to +\infty} x \ln(x) = 0.$

Pour tout entier naturel $n \ge 2$, $\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0 \text{ et } \lim_{x \to +\infty} x^n \ln(x) = 0.$

Mini-exercices.

- 1. Soit h la fonction définie sur]0; $+\infty[$ par $h(x)=\frac{1}{x}+\ln(x)$. Calculer la limite de h en $+\infty$ et en 0.
- 2. Déterminer les limites en -1 et en $+\infty$ de la fonction f définie sur]-1; $+\infty[$ par $f(x) = \ln\left(\frac{1}{x+1}\right)$.

Propriété 5. La fonction logarithme népérien est concave sur $]0; +\infty[$: sa courbe représentative est donc toujours située en dessous de ses tangentes sur $]0; +\infty[$.

Démonstration.

À faire.

