

Semiconductor Physics and Devices 半导体物理与器件

Jiandong Ye 叶建东

School of Electronics Science and Engineering,
Nanjing University, Nanjing 210023, China
南京大学电子科学与工程学院

Email: yejd@nju.edu.cn

Chapter 4 PN and Metal-Semiconductor Junctions

4.1 Building Blocks of the PN Junction Theory

PN junction is present in perhaps every semiconductor device.

4.1.1 Energy Band Diagram of a PN Junction

4.1.2 Built-in Potential

Can the built-in potential be measured with a voltmeter?

4.1.2 Built-in Potential

N-region
$$n = N_d = N_c e^{-qA/kT} \Rightarrow A = \frac{kT}{q} \ln \frac{N_c}{N_d}$$

P-region
$$n = \frac{n_i^2}{N_a} = N_c e^{-qB/kT} \Rightarrow B = \frac{kT}{q} \ln \frac{N_c N_a}{n_i^2}$$

$$\phi_{bi} = B - A = \frac{kT}{q} \left(\ln \frac{N_c N_a}{n_i^2} - \ln \frac{N_c}{N_d} \right)$$

$$\phi_{bi} = \frac{kT}{q} \ln \frac{N_d N_a}{n_i^2}$$

4.1.3 Poisson's Equation

Gauss's Law:

$$\varepsilon_{s} \mathcal{E}(x + \Delta x) A - \varepsilon_{s} \mathcal{E}(x) A = \rho \Delta x A$$

 ε_s : permittivity (~12 ε_o for Si)

 ρ : charge density (C/cm³)

$$\frac{\mathcal{E}(x + \Delta x) - \mathcal{E}(x)}{\Delta x} = \frac{\rho}{\varepsilon_s}$$
$$\frac{d\mathcal{E}}{dx} = \frac{\rho}{\varepsilon_s}$$

$$\frac{d^2V}{dx^2} = -\frac{d\mathcal{E}}{dx} = -\frac{\rho}{\varepsilon_s}$$

Poisson's equation

4.2 Depletion-Layer Model

4.2.1 Field and Potential in the Depletion Layer

On the *P***-side** of the depletion layer, $\rho = -qN_a$

$$\frac{dE}{dx} = -\frac{qN_a}{\varepsilon_s}$$

$$E(x) = -\frac{qN_a}{\varepsilon_s} x + C_1 = \frac{qN_a}{\varepsilon_s} (x_P - x)$$

On the *N*-side, $\rho = qN_d$

$$E(x) = \frac{qN_d}{\varepsilon_s} (x - x_N)$$

4.2.1 Field and Potential in the Depletion Layer

The electric field is continuous at x = 0.

$$N_a/x_{\rm P}/=N_d/x_{\rm P}/$$

Which side of the junction is depleted more?

A one-sided junction is called a N^+P junction or P^+N junction

4.2.1 Field and Potential in the Depletion Layer

On the P-side,

$$V(x) = \frac{qN_a}{2\varepsilon_s}(x_P - x)^2$$

Arbitrarily choose the voltage at $x = x_P$ as V = 0.

On the N-side,

$$V(x) = D - \frac{qN_d}{2\varepsilon_s} (x - x_N)^2$$
$$= \phi_{bi} - \frac{qN_d}{2\varepsilon_s} (x - x_N)^2$$

4.2.2 Depletion-Layer Width

V is continuous at x = 0

$$x_P - x_N = W_{dep} = \sqrt{\frac{2\varepsilon_s \phi_{bi}}{q} \left(\frac{1}{N_a} + \frac{1}{N_d}\right)}$$

If $N_a >> N_d$, as in a P+N junction,

$$W_{dep} = \sqrt{\frac{2\varepsilon_s \phi_{bi}}{qN_d}} \approx |x_N| \qquad |x_P| = |x_N|N_d/N_a \approx 0$$

$$/x_P/=/x_N/N_a/N_a\cong 0$$

What about a N+P junction?

$$W_{dep} = \sqrt{2\varepsilon_s \, \phi_{bi}/qN}$$
 where $\frac{1}{N} = \frac{1}{N_d} + \frac{1}{N_a} \approx \frac{1}{lighter\ dopant\ density}$

EXAMPLE: A P+N junction has N_a =10²⁰ cm⁻³ and N_d =10¹⁷cm⁻³. What is a) its built in potential, b) W_{dep} , c) x_N , and d) x_P ?

Solution:

a)
$$\phi_{bi} = \frac{kT}{q} \ln \frac{N_d N_a}{n_i^2} = 0.026 \text{V ln} \frac{10^{20} \times 10^{17} \text{ cm}^{-6}}{10^{20} \text{ cm}^{-6}} \approx 1 \text{ V}$$

b)
$$W_{dep} \approx \sqrt{\frac{2\varepsilon_s \phi_{bi}}{qN_d}} = \left(\frac{2 \times 12 \times 8.85 \times 10^{-14} \times 1}{1.6 \times 10^{-19} \times 10^{17}}\right)^{1/2} = 0.12 \,\mu\text{m}$$

c)
$$|x_N| \approx W_{dep} = 0.12 \,\mu\text{m}$$

$$|d|x_p| = |x_N|N_d/N_a = 1.2 \times 10^{-4} \mu \text{m} = 1.2 \text{ Å} \approx 0$$

4.3 Reverse-Biased PN Junction

$$W_{dep} = \sqrt{\frac{2\varepsilon_{s}(\phi_{bi} + |V_{r}|)}{qN}} = \sqrt{\frac{2\varepsilon_{s} \cdot potential\ barrier}{qN}}$$

$$\frac{1}{N} = \frac{1}{N_d} + \frac{1}{N_a} \approx \frac{1}{lighter\ dopant\ density}$$

• Does the depletion layer widen or shrink with increasing reverse bias?

4.4 Capacitance-Voltage Characteristics

Reverse biased PN junction is a capacitor.

$$C_{dep} = A rac{\mathcal{E}_s}{W_{dep}}$$

- Is C_{dep} a good thing?
- How to minimize junction capacitance?

4.4 Capacitance-Voltage Characteristics

$$\frac{1}{C_{dep}^{\ 2}} = \frac{W_{dep}^{\ 2}}{A^2 \varepsilon_s^{\ 2}} = \frac{2(\phi_{bi} + V)}{qN \varepsilon_s A^2}$$

$$\frac{1}{Q_{dep}^{\ 2}} = \frac{2(\phi_{bi} + V)}{qN \varepsilon_s A^2}$$
Slope = $2/qN \varepsilon_s A^2$

$$\frac{1}{Q_{dep}^{\ 2}} = \frac{V_r}{Q_{bi}^{\ 2}}$$
Increasing reverse bias

• From this C-V data can N_a and N_d be determined?

EXAMPLE: If the slope of the line in the previous slide is $2x10^{23} F^{-2} V^{-1}$, the intercept is 0.84V, and A is 1 μ m², find the lighter and heavier doping concentrations N_l and N_h .

Solution:

$$N_l = 2/(slope \times q\varepsilon_s A^2)$$

$$= 2/(2\times10^{23}\times1.6\times10^{-19}\times12\times8.85\times10^{-14}\times10^{-8}\text{cm}^2)$$

$$= 6\times10^{15}\text{ cm}^{-3}$$

$$\phi_{bi} = \frac{kT}{q} \ln \frac{N_h N_l}{n_i^2} \implies N_h = \frac{n_i^2}{N_l} e^{\frac{q\phi_{bi}}{kT}} = \frac{10^{20}}{6 \times 10^{15}} e^{\frac{0.84}{0.026}} = 1.8 \times 10^{18} \text{ cm}^{-3}$$

• Is this an accurate way to determine N_1 ? N_h ?

4.5 Junction Breakdown

A **Zener diode** is designed to operate in the breakdown mode.

4.5.1 Peak Electric Field

$$\mathbf{E}_{p} = \mathbf{E}(0) = \left[\frac{2qN}{\varepsilon_{s}} (\phi_{bi} + |V_{r}|) \right]^{1/2}$$

$$V_{B} = \frac{\varepsilon_{s} \mathbf{E}_{crit}^{2}}{2qN} - \phi_{bi}$$

4.5.2 Tunneling Breakdown

Dominant if both sides of a junction are very heavily doped.

$$J = G e^{-H/\mathcal{E}_p}$$

$$E_p = E_{crit} \approx 10^6 \text{ V/cm}$$

4.5.3 Avalanche Breakdown

4.6 Forward Bias – Carrier Injection

Drift and diffusion cancel out

Forward biased

Minority carrier injection

4.6 Forward Bias – Quasi-equilibrium Boundary Condition

$$n(x_{\rm P}) = N_c e^{-(E_c - E_{fn})/kT} = N_c e^{-(E_c - E_{fp})/kT} e^{(E_{fn} - E_{fp})/kT}$$

$$= n_{P0} e^{(E_{fn} - E_{fp})/kT} = n_{P0} e^{qV/kT}$$

- The minority carrier densities are raised by $e^{qV/kT}$
- Which side gets more carrier injection?

4.6 Carrier Injection Under Forward Bias— Quasi-equilibrium Boundary Condition

$$n(x_P) = n_{P0}e^{qV/kT} = \frac{n_i^2}{N_a}e^{qV/kT}$$

$$p(x_P) = p_{N0}e^{qV/kT} = \frac{n_i^2}{N_d}e^{qV/kT}$$

$$n'(x_P) \equiv n(x_P) - n_{P0} = n_{P0}(e^{qV/kT} - 1)$$
$$p'(x_N) \equiv p(x_N) - p_{N0} = p_{N0}(e^{qV/kT} - 1)$$

EXAMPLE: Carrier Injection

A PN junction has $N_a=10^{19} cm^{-3}$ and $N_d=10^{16} cm^{-3}$. The applied voltage is 0.6 V.

Question: What are the minority carrier concentrations at the depletion-region edges?

Solution:
$$n(x_P) = n_{P0}e^{qV/kT} = 10 \times e^{0.6/0.026} = 10^{11} \text{ cm}^{-3}$$

 $p(x_N) = p_{N0}e^{qV/kT} = 10^4 \times e^{0.6/0.026} = 10^{14} \text{ cm}^{-3}$

Question: What are the excess minority carrier concentrations?

Solution:
$$n'(x_P) = n(x_P) - n_{P0} = 10^{11} - 10 = 10^{11} \text{ cm}^{-3}$$

 $p'(x_N) = p(x_N) - p_{N0} = 10^{14} - 10^4 = 10^{14} \text{ cm}^{-3}$

4.7 Current Continuity Equation

4.7 Current Continuity Equation

$$-\frac{dJ_p}{dx} = q \frac{p'}{\tau}$$

$$qD_p \frac{d^2p}{dx^2} = q \frac{p'}{\tau_p}$$

$$\frac{d^2p'}{dx^2} = \frac{p'}{D_p\tau_p} = \frac{p'}{L_p^2}$$

Minority drift current is negligible;

$$\therefore J_p = -qD_p dp/dx$$

$$\frac{d^2n'}{dx^2} = \frac{n'}{L_n^2}$$

 L_p and L_n are the diffusion lengths

$$L_p \equiv \sqrt{D_p \tau_p}$$

$$L_n \equiv \sqrt{D_n \tau_n}$$

4.8 Forward Biased Junction-- Excess Carriers

4.8 Excess Carrier Distributions

EXAMPLE: Carrier Distribution in Forward-biased PN Diode

N-type
$$N_d = 5 \times 10^{17} \text{ cm}^{-3}$$
 $N_d = 10^{17} \text{ cm}^{-3}$ $N_d = 10^{17} \text{$

• Sketch n'(x) on the P-side.

$$n'(x_P) = n_{P0}(e^{qV/kT} - 1) = \frac{n_i^2}{N_a}(e^{qV/kT} - 1) = \frac{10^{20}}{10^{17}}e^{0.6/0.026} = 10^{13} \text{ cm}^{-3}$$

EXAMPLE: Carrier Distribution in Forward-biased PN Diode

• How does L_n compare with a typical device size?

$$L_n = \sqrt{D_n \tau_n} = \sqrt{36 \times 2 \times 10^{-6}} = 85 \text{ } \mu\text{m}$$

• What is p'(x) on the P- side?

4.9 PN Diode I-V Characteristics

The PN Junction as a Temperature Sensor

What causes the IV curves to shift to lower V at higher T?

4.9.1 Contributions from the Depletion Region

$$I_{leakage} = I_0 + A \frac{q n_i W_{dep}}{\tau_{dep}}$$

$$n \approx p \approx n_i e^{qV/2kT}$$

Net recombinat ion (generatio n) rate:

$$\frac{n_i}{\tau_{dep}}(e^{qV/2kT}-1)$$

$$I = I_0(e^{qV/kT} - 1) + A \frac{qn_iW_{dep}}{\tau_{dep}}(e^{qV/2kT} - 1)$$

Space-Charge Region (SCR) current

Under forward bias, SCR current is an extra current with a slope 120mV/decade

4.10 Charge Storage

What is the relationship between τ_s (charge-storage time) and τ (carrier lifetime)?

4.11 Small-signal Model of the Diode

What is G at 300K and $I_{DC} = 1 \text{ mA}$?

Diffusion Capacitance:

$$C = \frac{dQ}{dV} = \tau_s \frac{dI}{dV} = \tau_s G = \tau_s I_{DC} / \frac{kT}{q}$$

Which is larger, diffusion or depletion capacitance?

Part II: Application to Optoelectronic Devices

4.12 Solar Cells

- •Solar Cells is also known as photovoltaic cells.
- •Converts sunlight to electricity with 10-30% conversion efficiency.
- •1 m² solar cell generate about 150 W peak or 25 W continuous power.
- •Low cost and high efficiency are needed for wide deployment.

4.12.1 Solar Cell Basics

Direct-Gap and Indirect-Gap Semiconductors

- •Electrons have both particle and wave properties.
- •An electron has energy E and wave vector k.

direct-gap semiconductor

indirect-gap semiconductor

4.12.2 Light Absorption

Light intensity $(x) \propto e^{-\alpha x}$

 $\alpha(1/cm)$: absorption coefficient

 $1/\alpha$: light penetration depth

Photon Energy (eV) =
$$\frac{hc}{\lambda}$$

= $\frac{1.24}{\lambda}$ (μm)

A thinner layer of direct-gap semiconductor can absorb most of solar radiation than indirect-gap semiconductor. But Si...

4.12.3 Short-Circuit Current and Open-Circuit Voltage

If light shines on the N-type semiconductor and generates holes (and electrons) at the rate of G s⁻¹cm⁻³,

$$\frac{d^2p'}{dx^2} = \frac{p'}{L_p^2} - \frac{G}{D_p}$$

If the sample is uniform (no PN junction), $d^2p'/dx^2 = 0 \implies p' = GL_p^2/D_p = G\tau_p$

Solar Cell Short-Circuit Current, I_{sc}

Assume very thin P+ layer and carrier generation in N region only.

$$p'(\infty) = L_p^2 \frac{G}{D_p} = \tau_p G$$
$$p'(0) = 0$$

$$p'(x) = \tau_p G(1 - e^{-x/L_p})$$

$$P'$$
 τ_pG
 \downarrow
 0
 L_p

$$J_{p} = -qD_{p} \frac{dp'(x)}{dx} = q \frac{D_{p}}{L_{p}} \tau_{p} G e^{-x/L_{p}}$$

$$I_{sc} = AJ_{p}(0) = AqL_{p}G$$

G is really not uniform. L_p needs be larger than the light penetration depth to collect most of the generated carriers.

Open-Circuit Voltage

•Total current is I_{SC} plus the PV diode (dark) current:

$$I = Aq \frac{n_i^2}{N_d} \frac{D_p}{L_p} (e^{qV/kT} - 1) - AqL_p G$$

•Solve for the open-circuit voltage (V_{oc}) by setting I=0

(assuming $e^{qV_{oc}/kT} >> 1$)

$$0 = \frac{n_i^2}{N_d} \frac{D_p}{L_p} e^{qV_{oc}/kT} - L_p G$$

$$V_{oc} = \frac{kT}{q} \ln(\tau_p G N_d / n_i^2)$$

How to raise V_{oc} ?

4.12.4 Output Power

A particular operating point on the solar cell I-V curve maximizes the output power (I ×V).

Output Power =
$$I_{sc} \times V_{oc} \times FF$$

•Si solar cell with 15-20% efficiency dominates the market now

- •Theoretically, the highest efficiency (~24%) can be obtained with 1.9eV >Eg>1.2eV. Larger Eg lead to too low Isc (low light absorption); smaller Eg leads to too low Voc.
- Tandem solar cells gets 35% efficiency using large and small Eg materials tailored to the short and long wavelength solar light.

4.13 Light Emitting Diodes and Solid-State Lighting

Light emitting diodes (LEDs)

- LEDs are made of compound semiconductors such as InP and GaN.
- Light is emitted when electron and hole undergo *radiative recombination*.

Direct and Indirect Band Gap

Direct band gap Example: GaAs

Direct recombination is efficient as k conservation is satisfied.

Indirect band gap Example: Si

Direct recombination is rare as k conservation is not satisfied

4.13.1 LED Materials and Structure

LED wavelengt h (
$$\mu$$
 m) = $\frac{1.24}{\text{photon energy}} \approx \frac{1.24}{E_g(eV)}$

4.13.1 LED Materials and Structure

	$E_g(eV)$	Wavelength (μm)	Color	Lattice constant (Å)	
InAs	0.36	3.44		6.05	
InN	0.65	1.91	infrared	3.45	
InP	1.36	0.92		5.87	
GaAs	1.42	0.87	Red Yellow	5.66	
GaP	2.26	0.55	Green Blue	5.46	
AlP	3.39	0.51		5.45	
GaN	2.45	0.37] ↓	3.19	
AlN	6.20	0.20	UV	3.11	

Light-emitting diode materials

compound semiconductors

binary semiconductors:

- Ex: GaAs, efficient emitter

ternary semiconductor:

- Ex: $GaAs_{1-x}P_x$, tunable E_g (to vary the color)

quaternary semiconductors:

- Ex: AlInGaP, tunable E_g and lattice constant (for growing high quality epitaxial films on inexpensive substrates)

Common LEDs

Spectral range	Material System	Substrate	Example Applications	
Infrared	InGaAsP	InP	Optical communication	
Infrared -Red	GaAsP	GaAs	Indicator lamps. Remote control	
Red- Yellow	AlInGaP	GaA or GaP	Optical communication. High-brightness traffic signal lights	
Green- Blue	InGaN	GaN or sapphire	High brightness signal lights. Video billboards	
Blue-UV	AlInGaN	GaN or sapphire	Solid-state lighting	
Red- Blue	Organic semicon- ductors	glass	Displays	

4.13.2 Solid-State Lighting

luminosity (lumen, lm): a measure of visible light energy normalized to the sensitivity of the human eye at different wavelengths

Incandescent lamp	Compact fluorescent lamp	Tube fluorescent lamp	White LED	Theoretical limit at peak of eye sensitivity (λ=555nm)	Theoretical limit (white light)	
17	60	50-100	90-?	683	~340	

Luminous efficacy of lamps in lumen/watt

Organic Light Emitting Diodes (OLED):

has lower efficacy than nitride or aluminide based compound semiconductor LEDs.

Terms: luminosity measured in lumens. luminous efficacy,

4.14 Diode Lasers4.14.1 Light Amplification

Stimulated emission: emitted photon has identical frequency and directionality as the stimulating photon; light wave is amplified.

4.14.1 Light Amplification in PN Diode

Population inversion is achieved when

$$qV = E_{fn} - E_{fp} > E_g$$

4.14.2 Optical Feedback and Laser

Laser threshold is reached (light intensity grows by feedback) when

$$R_1 \times R_2 \times G \ge 1$$

•R1, R2: reflectivities of the two ends

•G: light amplification factor (gain) for a round-trip travel of the light through the diode

Light intensity grows until $R_1 \times R_2 \times G = 1$, when the light intensity is just large enough to stimulate carrier recombinations at the same rate the carriers are injected by the diode current.

4.14.2 Optical Feedback and Laser Diode

- Distributed Bragg reflector (DBR) reflects light with multi-layers of semiconductors.
- •Vertical-cavity surfaceemitting laser (VCSEL) is shown on the left.
- •Quantum-well laser has smaller threshold current because fewer carriers are needed to achieve population inversion in the small volume of the thin small-*Eg* well.

4.14.3 Laser Applications

Red diode lasers: CD, DVD reader/writer

Blue diode lasers: Blu-ray DVD (higher storage density)

1.55 µm infrared diode lasers: Fiber-optic communication

4.15 Photodiodes

Photodiodes: Reverse biased PN diode. Detects photogenerated current (similar to Isc of solar cell) for optical communication, DVD reader, etc.

Avalanche photodiodes: Photodiodes operating near avalanche breakdown amplifies photocurrent by impact ionization.

Part III: Metal-Semiconductor Junction

Two kinds of metal-semiconductor contacts:

- Rectifying Schottky diodes: metal on lightly doped silicon
- •Low-resistance ohmic contacts: metal on heavily doped silicon

ϕ_{Bn} Increases with Increasing Metal Work Function

 Ψ_M : Work Function of metal

 χ_{Si} : Electron Affinity of Si

Theoretically,

$$\phi_{Bn} = \psi_M - \chi_{Si}$$

4.16 Schottky Barriers

Energy Band Diagram of Schottky Contact

- Schottky barrier height, ϕ_B , is a function of the metal material.
- ϕ_B is the most important parameter. The sum of $q\phi_{Bn}$ and $q\phi_{Bp}$ is equal to E_g .

(b)

Schottky barrier heights for electrons and holes

Metal	Mg	Ti	Cr	W	Mo	Pd	Au	Pt
ϕ_{Bn} (V)	0.4	0.5	0.61	0.67	0.68	0.77	0.8	0.9
ϕ_{Bp} (V)		0.61	0.5		0.42		0.3	
Work								
Function	3.7	4.3	4.5	4.6	4.6	5.1	5.1	5.7
$\psi_m(V)$								

$$\phi_{Bn} + \phi_{Bp} \approx E_{g}$$

 ϕ_{Bn} increases with increasing metal work function

Fermi Level Pinning

- A high density of energy states in the bandgap at the metalsemiconductor interface pins E_f to a narrow range and ϕ_{Bn} is typically 0.4 to 0.9 V
- *Question*: What is the typical range of ϕ_{Bp} ?

Schottky Contacts of Metal Silicide on Si

Silicide: A silicon and metal compound. It is conductive similar to a metal.

Silicide-Si interfaces are more stable than metal-silicon interfaces. After metal is deposited on Si, an annealing step is applied to form a silicide-Si contact. The term *metal-silicon contact* includes and almost always means silicide-Si contacts.

Silicide	ErSi _{1.7}	HfSi	MoSi ₂	ZrSi ₂	TiSi ₂	CoSi ₂	WSi ₂	NiSi ₂	Pd ₂ Si	PtSi
$\phi_{Bn}(V)$	0.28	0.45	0.55	0.55	0.61	0.65	0.67	0.67	0.75	0.87
$\phi_{Bp}(V)$			0.55	0.49	0.45	0.45	0.43	0.43	0.35	0.23

Using C-V Data to Determine ϕ_B

$$q\phi_{bi} = q\phi_{Bn} - (E_c - E_f)$$

$$= q\phi_{Bn} - kT \ln \frac{N_c}{N_d}$$

$$W_{dep} = \sqrt{\frac{2\varepsilon_s(\phi_{bi} + V)}{qN_d}}$$

$$C = \frac{\varepsilon_s}{W_{dep}} A$$

Question:

How should we plot the CV data to extract ϕ_{bi} ?

Using CV Data to Determine ϕ_B

 $q\phi_{\mathrm{B}n}$ $q\phi_{\mathrm{bi}}$ E_{c} E_{F}

Once ϕ_{bi} is known, ϕ_B can be determined using

$$q\phi_{bi} = q\phi_{Bn} - (E_c - E_f) = q\phi_{Bn} - kT \ln \frac{N_c}{N_d}$$

4.17 Thermionic Emission Theory

4.18 Schottky Diodes

(a)
$$V = 0$$
. $I_{S \to M} = |I_{M \to S}| = I_0$

(c) Reverse bias. Metal is negative wrt Si. $I_{S \to M} << |I_{M \to S}| = I_0$

(b) Forward bias. Metal is positive wrt Si. $I_{S \to M} >> |I_{M \to S}| = I_0$

(d) Schottky diode IV.

4.18 Schottky Diodes

$$I_{M \to S} = -I_0$$
 $I_{S \to M} = I_0 e^{qV/kT}$

(b) Forward bias. Metal is positive wrt Si. $I_{S \to M} \gg |I_{M \to S}| = I_0$

$$I_0 = AKT^2 e^{-q\phi_B/kT}$$

$$K = \frac{4\pi q m_n k^2}{h^3} \approx 100 \text{ A/(cm}^2 \cdot \text{K}^2)$$

$$I = I_{S o M} + I_{M o S} = I_0 e^{qV/kT} - I_0 = I_0 (e^{qV/kT} - 1)$$
 Slide 4-60

4.19 Applications of Schottly Diodes

- I_0 of a Schottky diode is 10^3 to 10^8 times larger than a PN junction diode, depending on ϕ_B . A larger I_0 means a smaller forward drop V.
- A Schottky diode is the preferred rectifier in low voltage, high current applications.

Slide 4-67

Switching Power Supply

FIGURE 4-41 Block diagram of a switching power supply for electronic equipment such as PCs.

4.19 Applications of Schottky diodes

Question: What sets the lower limit in a Schottky diode's forward drop?

- *Synchronous Rectifier*: For an even lower forward drop, replace the diode with a wide-W MOSFET which is not bound by the tradeoff between diode *V* and leakage current.
- There is no minority carrier injection at the Schottky junction. Therefore, Schottky diodes can operate at higher frequencies than PN junction diodes.

4.20 Quantum Mechanical Tunneling

FIGURE 4–42 Illustration of quantum mechanical tunneling.

Tunneling probability:

$$P \approx \exp\left(-2T\sqrt{\frac{8\pi^2 m}{h^2}(V_H - E)}\right)$$

4.21 Ohmic Contacts

4.21 Ohmic Contacts

$$W_{dep} = \sqrt{\frac{2\varepsilon_{s}\phi_{Bn}}{qN_{d}}}$$

Tunneling probability:

$$P \approx e^{-H\phi_{Bn}/\sqrt{N_d}}$$

$$T \approx W_{dep} / 2 = \sqrt{\varepsilon_s \phi_{Bn} / 2qN_d}$$

$$H = \frac{4\pi}{h} \sqrt{\varepsilon_s m_n / q}$$

$$J_{S\to M} \approx \frac{1}{2} q N_d v_{thx} P = q N_d \sqrt{kT/2\pi m_n} e^{-H(\phi_{Bn}-V)/\sqrt{N_d}}$$

4.21 Ohmic Contacts

$$R_c \equiv \left(\frac{dJ_{S \to M}}{dV}\right)^{-1} = \frac{2e^{H\phi_{Bn}/\sqrt{N_d}}}{qv_{thx}H\sqrt{N_d}} \propto e^{H\phi_{Bn}/\sqrt{N_d}} \Omega \cdot \text{cm}^2$$

Part I: PN Junction

$$\phi_{bi} = \frac{kT}{q} \ln \frac{N_d N_a}{n_i^2}$$

 $\phi_{bi} = \frac{kT}{q} \ln \frac{N_d N_a}{n_i^2}$ | Ine potential barrier increases by 1 V if a 1 V reverse bias is applied

depletion width

$$W_{dep} = \sqrt{\frac{2\varepsilon_s \cdot potential \ barrier}{qN}}$$

junction capacitance

$$C_{dep} = A \frac{\mathcal{E}_{s}}{W_{dep}}$$

- Under forward bias, minority carriers are injected across the jucntion.
- The quasi-equilibrium boundary condition of minority carrier densities is:

$$n(x_p) = n_{P0}e^{qV/kT}$$
$$p(x_N) = p_{N0}e^{qV/kT}$$

• Most of the minority carriers are injected into the more lightly doped side.

• Steady-state continuity equation:

$$\frac{d^2p'}{dx^2} = \frac{p'}{D_p\tau_p} = \frac{p'}{L_p^2}$$

$$L_p \equiv \sqrt{D_p \tau_p}$$

- Minority carriers diffuse outward $\propto e^{-|x|/L_p}$ and $e^{-|x|/L_n}$
- L_p and L_n are the diffusion lengths

$$I = I_0 (e^{qV/kT} - 1)$$

$$I_0 = Aqn_i^2 \left(\frac{D_p}{L_p N_d} + \frac{D_n}{L_n N_a} \right)$$

Charge storage:

$$Q = I\tau_s$$

Diffusion capacitance:

$$C = \tau_s G$$

Diode conductance:

$$G = I_{DC} / \frac{kT}{q}$$

Part II: Optoelectronic Applications

Solar cell power = $I_{sc} \times V_{oc} \times FF$

- •~100um Si or <1um direct—gap semiconductor can absorb most of solar photons with energy larger than E_g .
- •Carriers generated within diffusion length from the junction can be collected and contribute to the Short Circuit Current I_{sc} .
- •Theoretically, the highest efficiency (\sim 24%) can be obtained with 1.9eV >E_g>1.2eV. Larger E_g lead to too low I_{sc} (low light absorption); smaller E_g leads to too low Open Circuit VoltageVoc.
- •Si cells with ~15% efficiency dominate the market. >2x cost reduction (including package and installation) is required to achieve cost parity with base-load non-renewable electricity.

LED and Solid-State Lighting

- •Electron-hole recombination in direct-gap semiconductors such as GaAs produce light.
- •Tenary semiconductors such as GaAsP provide tunable E_g and LED color.
- •Quaterary semiconductors such as AlInGaP provide tunable E_g and lattice constants for high quality epitaxial growth on inexpensive substrates.
- •Beyond displays, communication, and traffic lights, a new application is space lighting with luminous efficacy >5x higher than incandescent lamps. White light can be obtained with UV LED and phosphors. Cost still an issue.
- •Organic semiconductor is an important low-cost LED material class.

Laser Diodes

- •Light is amplified under the condition of population inversion states at higher E have higher probability of occupation than states at lower E.
- •Population inversion occurs when diode forward bias $qV > E_{\rm g}$.
- •Optical feedback is provided with cleaved surfaces or distributed Bragg reflectors.
- •When the round-trip gain (including loss at reflector) exceeds unity, laser threshold is reached.
- •Quantum-well structures significantly reduce the threshold currents.
- •Purity of laser light frequency enables long-distance fiber-optic communication. Purity of light direction allows focusing to tiny spots and enables DVD writer/reader and other application.

Part III: Metal-Semiconductor Junction

$$I_0 = AKT^2 e^{-q\phi_B/kT}$$

- •Schottky diodes have large reverse saturation current, determined by the Schottky barrier height ϕ_B , and therefore lower forward voltage at a given current density.
- •Ohmic contacts relies on tunneling. Low resistance contact requires low ϕ_B and higher doping concentration.

$$R_c \propto e^{-(\frac{4\pi}{h}\phi_B\sqrt{\varepsilon_s m_n/qN_d})} \Omega \cdot \text{cm}^2$$

ϕ_{Bn} Increases with Increasing Metal Work Function

Homework:

- *4.18*
- 4.19
- 4.21
- *4.22*
- *4.23*
- *4.24*
- *4.26*