第二节 单正态总体参数的假设检验

设总体 $X \sim N(\mu, \sigma^2)$, (X_1, X_2, \dots, X_n) 为来自总体X的样本,

显著性水平为 α . 此时分

- 1. 在 σ^2 已知情形下, μ 的假设检验;
- 2. 在 σ^2 未知情形下, μ 的假设检验;
- 3. 在 μ 已知情形下, σ^2 的假设检验;
- 4. 在 μ 未知情形下, σ^2 的假设检验

四种情况讨论, 每种情况又有一个双侧检验和两个单侧检验.

其统计量和 H_0 的拒绝域参见表 2. 1 和表 2. 2.

表 2.1 单正态总体中均值的假设检验

编号	H_0	H_0 为真时, 检验统计量及其分布	H_1	H_0 的拒绝域 W
1	$\mu=\mu_0$ $(\sigma^2$ 已知)	$U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0, 1)$	$\mu > \mu_0$ $\mu < \mu_0$ $\mu \neq \mu_0$	$U \ge U_{\alpha}$ $U \le -U_{\alpha}$ $ U \ge U_{\frac{\alpha}{2}}$
2	$\mu = \mu_0$ $(\sigma^2 未知)$	$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$	$\mu > \mu_0$ $\mu < \mu_0$ $\mu \neq \mu_0$	$T \ge t_{\alpha}(n-1)$ $T \le -t_{\alpha}(n-1)$ $ T \ge t_{\alpha}(n-1)$ $ T \ge t_{\alpha}(n-1)$

表 2. 2 单正态总体中方差的假设检验

	T					
编号	H_0	H_0 为真时, 检验统计量及其分布	H_{1}	H_0 拒绝域 W		
	$\sigma^2 = \sigma_0^2$	$\chi^2 = \frac{\sum_{i=1}^n (X_i - \mu)^2}{\sigma^2}$	$\sigma^2 > \sigma_0^2$ $\sigma^2 < \sigma_0^2$	$\chi^{2} \ge \chi_{\alpha}^{2}(n)$ $\chi^{2} \le \chi_{1-\alpha}^{2}(n)$		
3	<i>0</i> – 0 ₀ (<i>μ</i> 已知)	$\chi^{-} = \frac{1}{\sigma_0^2}$ $\sim \chi^2(n)$	$\sigma^2 eq \sigma_0^2$	$\chi^{2} \ge \chi_{\frac{\alpha}{2}}^{2}(n)$ 或 $\chi^{2} \le \chi_{1-\frac{\alpha}{2}}^{2}(n)$		
			$\sigma^2 > \sigma_0^2$	$\chi^2 \ge \chi_\alpha^2(n-1)$		
4	$\sigma^2 = \sigma_0^2$	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\sigma^2 < \sigma_0^2$	$\chi^2 \leq \chi^2_{1-\alpha}(n-1)$		
	(µ未知)	$\sim \chi^2(n-1)$	$\sigma^2 eq \sigma_0^2$	$\chi^{2} \ge \chi_{\frac{\alpha}{2}}^{2}(n-1)$ $\chi^{2} \le \chi_{1-\frac{\alpha}{2}}^{2}(n-1)$		
				$1-\frac{\alpha}{2}$		

例 1 某洗衣粉厂用自动包装机进行包装,正常情况下包装量 $X \sim N(\mu, \sigma^2)$ (单位:克),现随机抽取 25 袋洗衣粉,测得平均重量x = 501.5克,样本标准差 s = 2.5 克,问

(1) 可否认为
$$\mu = 500 (\alpha = 0.05)$$
?

(2) 可否认为
$$\sigma^2 > 6$$
 ($\alpha = 0.1$)?

M (1) $H_0: \mu = 500; H_1: \mu \neq 500;$

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \stackrel{\text{\'e}_{H_0} \text{\'e} \stackrel{\text{\'e}}{\longrightarrow} \overline{X} - 500}{= S/\sqrt{n}} \sim t(n-1);$$

由 $\alpha = 0.05$, n = 25 得拒绝域为

W:
$$|T| \ge t_{\frac{\alpha}{2}}(n-1) = t_{0.025}(24) = 2.0639$$
.

(续解)
$$\overline{\chi} = 501.5, s = 2.5$$
,得 $T_0 = \frac{501.5 - 500}{2.5/\sqrt{25}} = 3 \in W$,

故拒绝 H_0 ,即不可认为 $\mu = 500$.

(2)
$$H'_0: \sigma^2 \le 6$$
; $H'_1: \sigma^2 > 6$,转化为

$$H_0': \sigma^2 = 6; \quad H_1': \sigma^2 > 6;$$

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \stackrel{\text{\overline{EH_0'} \pi \overline{\pi}}}{=} \frac{(n-1)S^2}{6} \sim \chi^2(n-1)$$
;

由 $\alpha = 0.1$, n = 25 得拒绝域为

$$W': \chi^2 \ge \chi_\alpha^2(n-1) = \chi_{0.1}^2(24) = 33.019$$
.

又
$$s = 2.5$$
,得 $\chi_0^2 = \frac{(25-1)\times 2.5^2}{6} = 25 \notin W'$,所以接受 H_0' ,

即不可认为 $\sigma^2 > 6$.