

Critique du rapport signal à bruit en théorie de l'information

A critical appraisal of the signal to noise ratio in information theory

Michel FLIESS

Projet ALIEN, INRIA Futurs

& Équipe MAX, LIX (CNRS, UMR 7161)

École polytechnique, 91128 Palaiseau, France

E-mail : Michel.Fliess@polytechnique.edu

Résumé. On démontre que le rapport signal à bruit, si important en théorie de l'information, devient sans objet pour des communications numériques où

- les symboles modulent des porteuses, solutions d'équations différentielles linéaires à coefficients polynomiaux ;
 - de nouvelles techniques algébriques d'estimation permettent la démodulation.
- Calcul opérationnel, algèbre différentielle et analyse non standard sont les principaux outils mathématiques.

Abstract. The signal to noise ratio, which plays such an important role in information theory, is shown to become pointless in digital communications where

- symbols are modulating carriers, which are solutions of linear differential equations with polynomial coefficients,
- demodulations is achieved thanks to new algebraic estimation techniques.

Operational calculus, differential algebra and nonstandard analysis are the main mathematical tools.

Key words. Signal to noise ratio, information theory, digital communications, operational calculus, differential algebra, nonstandard analysis.

1 Introduction

Le rapport *signal/bruit*, que l'on retrouve dans les formules de la théorie de l'information, telle qu'elle s'est imposée depuis Shannon (voir [29, 30] et, par exemple, dans la vaste littérature sur le sujet, [2, 3, 5, 7, 26]), est un ingrédient fondamental pour définir la qualité des communications. Le but de cette Note est de démontrer qu'une nouvelle approche de l'estimation rapide et du bruit (voir [11] et sa bibliographie) rend ce rapport sans objet dans un certain cadre numérique. Revoyons, donc, le « paradigme de Shannon ». Le symbole à transmettre (voir, par exemple, [17, 26]) module une porteuse $z(t)$, solution d'une équation différentielle linéaire à coefficients polynomiaux $\sum_{\text{finie}} a_\nu(t)z^{(\nu)}(t) = 0$, $a_\nu \in \mathbb{C}[t]$. La plupart des signaux utilisés en pratique, comme une somme trigonométrique finie $\sum_{\text{finie}} A_\nu \sin(\omega_\nu t + \varphi_\nu)$, un sinus cardinal $\frac{\sin(\omega t)}{t}$ ou un cosinus surélevé $\frac{\cos(\omega t)}{1+t^2}$, $A_\nu, \omega_\nu, \varphi_\nu, \omega \in \mathbb{R}$, vérifient une telle équation, qui se traduit dans le domaine opérationnel (cf. [33]), pour $t \geq 0$, par

$$\sum_{\text{finie}} a_\nu \left(-\frac{d}{ds} \right)^{\nu} \hat{z} = I(s) \quad (1)$$

où $I \in \mathbb{C}[s]$ est un polynôme dont les coefficients dépendent des conditions initiales en $t = 0$. La démodulation revient, alors, à estimer certains des coefficients de (1). On y parvient, ici, grâce à des techniques algébriques récentes (cf. [14, 15]).

Un bruit, selon [11], est une fluctuation rapide, définie dans le langage de l'analyse non standard, que nous ne rappellerons pas ici (voir aussi [19] et sa bibliographie). Les calculs du § 4 sont effectués avec une somme finie de sinusoïdes à très hautes fréquences et un bruit blanc, dont la définition non standard, à comparer avec celle de [1], clarifie l'approche usuelle des manuels de traitement du signal. Ils démontrent la possibilité d'obtenir de « bonnes » estimations avec des bruits « très forts », c'est-à-dire de « grandes » puissances, fait confirmé par des simulations numériques et des expériences de laboratoire (voir, par exemple, [4, 20, 24, 31, 32] et certaines références de [11]). Les imperfections, inévitables en pratique, proviennent de l'implantation numérique des calculs, notamment de celui des intégrales (cf. [20, 21]), des interférences entre symboles (voir [2, 17, 25, 26] et leur bibliographie), et du fait que les bruits ne sont pas nécessairement centrés (voir à ce propos le § 3.2.2 de [11]).

Calcul opérationnel et algèbre différentielle aux § 2 et 3, analyse non standard au § 4 sont les principaux outils mathématiques.

Remarque 1 Avec des signaux analytiques par morceaux (le sens du mot analytique est celui de la théorie des fonctions et non pas, ici, celui usuel en traitement du signal (cf. [2, 25, 26])), qui ne satisfont pas d'équations différentielles connues à l'avance, on utilise, selon les mêmes principes algébriques, des déivateurs numériques à fenêtres glissantes pour obtenir les estimations (voir [21], [13], leurs exemples et bibliographies). On ne peut, alors, espérer les mêmes résultats que précédemment.

Remarque 2 La possibilité de liens entre théorie de l'information et mécanique quantique a été examinée par divers auteurs (voir, par exemple, [5, 6, 16]). Rappelons à ce propos que l'approche du bruit en [11] a déjà conduit à une tentative nouvelle de formalisation du quantique [12].

2 Identifiabilité

2.1 Équations différentielles

Renvoyons à [8] pour des rappels sur les corps, différentiels ou non. Soit k_0 le corps de base de caractéristique nulle, \mathbb{Q} par exemple. Soit $k_0(\Theta)$ le corps engendré par un ensemble fini $\Theta = \{\theta_1, \dots, \theta_\varrho\}$ de paramètres inconnus. Soit \bar{k} la clôture algébrique de $k_0(\Theta)$. Introduisons le corps $\bar{k}(s)$ des fractions rationnelles en l'indéterminée s , que l'on munit d'une structure de corps différentiel grâce à la dérivation $\frac{d}{ds}$ (les éléments de k_0 , de Θ et, donc, de \bar{k} , sont des constantes). Tout signal x , $x \not\equiv 0$, est supposé satisfaire une équation différentielle linéaire homogène, à coefficients dans $\bar{k}(s)$, et donc appartenir à une extension de Picard-Vessiot de $\bar{k}(s)$.

Remarque 3 Il suffit pour se convaincre de l'existence d'une telle équation homogène de dériver les deux membres de (1) suffisamment de fois par rapport à s .

L'anneau non commutatif $\bar{k}(s)[\frac{d}{ds}]$ des opérateurs différentiels linéaires à coefficients dans $\bar{k}(s)$ est principal à droite et à gauche. Le $\bar{k}(s)[\frac{d}{ds}]$ -module à gauche engendré par x et 1 est un module de torsion (cf. [22]), et, donc, un $\bar{k}(s)$ -espace vectoriel de dimension finie, $n+1$, $n \geq 0$. D'où le résultat suivant qui semble nouveau (cf. [8, 27]) :

Proposition 2.1 Il existe un entier minimal $n \geq 0$, tel que x satisfait l'équation différentielle linéaire, d'ordre n , non nécessairement homogène,

$$\left(\sum_{\iota=0}^n q_\iota \frac{d^\iota}{ds^\iota} \right) x - p = 0 \quad (2)$$

où les polynômes $p, q_0, \dots, q_n \in \bar{k}[s]$ sont premiers entre eux. Cette équation, dite minimale, est unique à un coefficient multiplicatif constant non nul près.

2.2 Identifiabilité linéaire projective

Rappelons que l'ensemble $\Theta = \{\theta_1, \dots, \theta_\varrho\}$ de paramètres est dit (cf. [14, 15])

- linéairement identifiable si, et seulement si,

$$\mathfrak{A} \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_\varrho \end{pmatrix} = \mathfrak{B} \quad (3)$$

où

- les entrées des matrices \mathfrak{A} , carrée $\varrho \times \varrho$, et \mathfrak{B} , colonne $\varrho \times 1$, appartiennent à $\text{span}_{k_0(s)[\frac{d}{ds}]}(1, x)$;
- $\det(\mathfrak{A}) \neq 0$.
- projectivement linéairement identifiable si, et seulement si,
 - il existe un paramètre, θ_1 par exemple, non nul,
 - l'ensemble $\{\frac{\theta_2}{\theta_1}, \dots, \frac{\theta_\varrho}{\theta_1}\}$ est linéairement identifiable.

Réécrivons (2) sous la forme suivante :

$$\left(\sum_{\text{finie}} a_{\mu\nu} s^\mu \frac{d^\nu}{ds^\nu} \right) x - \sum_{\text{finie}} b_\kappa s^\kappa = 0 \quad (4)$$

où les $N + 1$ coefficients $a_{\mu\nu}$ et les M coefficients b_κ appartiennent à \bar{k} . La matrice carrée \mathfrak{M} d'ordre $N + M + 1$, dont la $\xi^{\text{ème}}$ ligne, $0 \leq \xi \leq N + M$, est

$$\dots, \frac{d^\xi}{ds^\xi} \left(s^\mu \frac{d^\nu x}{ds^\nu} \right), \dots, \frac{d^\xi s^\kappa}{ds^\xi}, \dots$$

est singulière d'après (2) et (4). La minimalité de (2) permet de démontrer selon des techniques bien connues sur le rang du wronskien (cf. [8, 27]) que le rang de \mathfrak{M} est $N + M$. Il en découle :

Théorème 2.2 *Les coefficients $a_{\mu\nu}$ et b_κ de (4) sont projectivement linéairement identifiables.*

Corollaire 2.3 *Posons $x = \frac{p(s)}{q(s)}$, où les polynômes $p, q \in \bar{k}[s]$ sont premiers entre eux. Alors, les coefficients de p et q sont projectivement linéairement identifiables.*

Il est loisible de supposer l'ensemble des paramètres inconnus $\Theta = \{\theta_1, \dots, \theta_\varrho\}$ strictement inclus dans celui des coefficients $a_{\mu\nu}$ et b_κ de (4), et donc linéairement identifiable.

3 Perturbations et estimateurs

Avec une perturbation additive w le capteur fournit non pas x mais $x + w$. Soient $R = k_0(\Theta)[s](k_0[s])^{-1}$ l'anneau *localisé* (cf. [18]) des fractions rationnelles à numérateurs dans $k_0(\Theta)[s]$ et dénominateurs dans $k_0[s]$, et $R[\frac{d}{ds}]$ l'anneau non commutatif des opérateurs différentiels linéaires à coefficients dans R . On obtient, à partir de (3), la

Proposition 3.1 *Les paramètres inconnus vérifient*

$$\mathfrak{A} \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_\varrho \end{pmatrix} = \mathfrak{B} + \mathfrak{C} \quad (5)$$

où les entrées de \mathfrak{C} , matrice colonne $\varrho \times 1$, appartiennent à $\text{span}_{R[\frac{d}{ds}]}(w)$.

On appelle (5) un *estimateur*. Il est dit *strictement polynomial en $\frac{1}{s}$* si, et seulement si, toutes les fractions rationnelles en s , rencontrées dans les coefficients des matrices $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ de (5), sont des polynômes en $\frac{1}{s}$ sans termes constants. On peut toujours s'y ramener en multipliant les deux membres de (5) par une fraction rationnelle de $k_0(s)$ convenable. On aboutit, alors, dans le domaine temporel, aux estimateurs considérés en [11], si l'on suppose l'analyticité du signal :

$$\delta(t) ([\theta_\iota]_e(t) - \theta_\iota) = \sum_{\text{finie}} c \int_0^t \dots \int_0^{\tau_2} \int_0^{\tau_1} \tau_1^\nu w(\tau_1) d\tau_1 d\tau_2 \dots d\tau_k \quad \iota = 1, \dots, \varrho \quad (6)$$

où

- c est une constante,
- $[0, t]$ est la *fenêtre d'estimation*, de *largeur* t ,
- $\delta(t)$ est une fonction analytique, appelée *diviseur*, nulle en 0,
- $[\theta]_e(t)$ est l'estimée de θ en t .

4 Bruits

Renvoyons à [28] et [9] pour la terminologie de l'analyse non standard, déjà utilisée en [11]. On trouvera une excellente introduction à cette analyse en [19]. Les propositions 4.1 et 4.3 ci-dessous affinent la proposition 3.2 de [11], où les estimations sont obtenues en temps fini, court en pratique.

4.1 Sinusoïdes hautes fréquences

La perturbation du § 3 est une somme finie $\sum_{\text{finie}} A_\iota \sin(\Omega_\iota t + \varphi_\iota)$ de sinusoïdes, dont les fréquences $\Omega_\iota > 0$ sont illimitées : c'est un bruit centré au sens de [11]. Des manipulations élémentaires des intégrales itérées (6) conduisent à la

Proposition 4.1 *Si*

- les quotients $\frac{A_\iota}{\Omega_\iota}$ sont infinitésimaux,
- la largeur de la fenêtre d'estimation est limitée et n'appartient pas au halo d'un zéro du diviseur,

les estimées des paramètres inconnus, obtenues grâce à (6), appartiennent aux halos de leurs vraies valeurs. Il n'en va plus de même si l'un des quotients $\frac{A_\iota}{\Omega_\iota}$ est appréciable.

Corollaire 4.2 *Il existe des valeurs illimitées des amplitudes A_ι , $\sqrt{\Omega_\iota}$ par exemple, telles que les estimées précédentes appartiennent aux halos des vraies valeurs.*

4.2 Bruits blancs

Désignons par ${}^*\mathbb{N}$, ${}^*\mathbb{R}$ les extensions non standard de \mathbb{N} , \mathbb{R} . Remplaçons l'intervalle $[0, 1] \subset \mathbb{R}$ par l'ensemble hyperfini $I = \{0, \frac{1}{N}, \dots, \frac{N-1}{N}, 1\}$, où $N \in {}^*\mathbb{N}$ est illimité. Un *bruit blanc centré* est une fonction $w : I \rightarrow {}^*\mathbb{R}$, $\iota \mapsto w(\iota) = An(\iota)$, où

- $A \in {}^*\mathbb{R}$, $A > 0$, est constant,
- les $n(\iota)$ sont des variables aléatoires réelles, supposées centrées, de même écart-type 1 normalisé, et deux à deux indépendantes.

Remarque 4 Cette définition, qui précise [11], est inspirée de publications d'ingénieurs sur le bruit blanc en temps discret (voir, par exemple, [25]). Elle simplifie, à la manière de [23], l'approche en temps continu usuelle dans les manuels de traitement du signal (voir, à ce sujet, [2, 7, 25, 26] et leurs bibliographies). Rappelons que cette approche continue est basée, en général, sur l'analyse de Fourier et renvoyons, à ce sujet, à [10].

Comme au § 4.1, il vient :

Proposition 4.3 *Si*

- le quotient $\frac{A}{N}$ est infinitésimal,
- la largeur t , $t \in I$, de la fenêtre d'estimation n'appartient pas au halo d'un zéro du diviseur,

les estimées des paramètres inconnus, obtenues grâce à (6), appartiennent presque sûrement aux halos de leurs vraies valeurs. Il n'en va plus de même si le quotient $\frac{A}{N}$ est appréciable.

Corollaire 4.4 *Il existe des valeurs illimitées de A , \sqrt{N} par exemple, telles que les estimées précédentes appartiennent presque sûrement aux halos des vraies valeurs.*

Remarque 5 Il est loisible de remplacer l'indépendance de $n(\iota)$ et $n(\iota')$, $\iota \neq \iota'$, par le fait que l'espérance du produit $n(\iota)n(\iota')$ est infinitésimale.

Remerciements. L'auteur exprime sa reconnaissance à O. Gibaru (Lille), M. Mboup (Paris) et à tous les membres du projet ALIEN, de l'INRIA Futurs, pour des échanges fructueux.

Références

- [1] S. Albeverio, J.E. Fenstad, R. Hoegh-Krohn, T. Lindstrøm, Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Academic Press, Orlando, FL, 1986.
- [2] G. Battail, Théorie de l'information - Application aux techniques de communication, Masson, Paris, 1997.
- [3] R.E. Blahut, Principles and Practice of Information Theory, Addison-Wesley, Reading, MA, 1987.
- [4] J.-M. Bourgeot, E. Delaleau, Fast algebraic impact times estimation for a linear system subject to unilateral constraint, Proc. 46th IEEE Conf. Decision Control - CDC 2007, New Orleans, 2007.
- [5] L. Brillouin, Science and Information Theory, 2nd ed., Academic Press, New York, 1962. Traduction française de la 1^{re} éd. : La science et la théorie de l'information, Masson, Paris, 1959.
- [6] C. Brukner, A. Zeilinger, Conceptual inadequacy of the Shannon information in quantum measurements, Phys. Rev. A, 63 (2001) 022113.
- [7] T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley, New York, 1991.
- [8] A. Chambert-Loir, Algèbre corporelle, Éditions École Polytechnique, Palaiseau, 2005. English translation: A Field Guide to Algebra, Springer, Berlin, 2005.
- [9] F. Diener, G. Reeb, Analyse non standard, Hermann, Paris, 1989.
- [10] M. Fliess, Réflexions sur la question fréquentielle en traitement du signal, Manuscrit, 2005. Accessible sur <http://hal.inria.fr/inria-00000461>.
- [11] M. Fliess, Analyse non standard du bruit, C.R. Acad. Sci. Paris Ser. I, 342 (2006) 797-802.
- [12] M. Fliess, Probabilités et fluctuations quantiques, C.R. Acad. Sci. Paris Ser. I, 344 (2007) 663-668.
- [13] M. Fliess, C. Join, H. Sira-Ramírez, Non-linear estimation is easy, Int. J. Modelling Identification Control, 3 (2008). Accessible sur <http://hal.inria.fr/inria-00158855>.
- [14] M. Fliess, H. Sira-Ramírez, An algebraic framework for linear identification, ESAIM Control Optim. Calc. Variat., 9 (2003) 151-168.
- [15] M. Fliess, H. Sira-Ramírez, Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques, in H. Garnier & L. Wang (Eds): Continuous-Time Model Identification from Sampled Data, Springer, Berlin, 2008. Accessible sur <http://hal.inria.fr/inria-00114958>.
- [16] H.S. Green, Information Theory and Quantum Physics, Springer, Berlin, 2000.

- [17] M. Joindot, A. Glavieux, *Introduction aux communications numériques*, Masson, Paris, 1996.
- [18] S. Lang, *Algebra*, 3rd rev. ed., Springer, Berlin, 2002. Traduction française : Algèbre, Dunod, Paris, 2004.
- [19] C. Lobry, T. Sari, *Nonstandard analysis and representation of reality*, Internat. J. Control, à paraître. Version française : Analyse non standard et représentation du réel : deux exemples en automatique, accessible sur <http://hal.inria.fr/inria-00163365>.
- [20] M. Mboup, Parameter estimation via differential algebra and operational calculus, Manuscrit, 2006. Accessible sur <http://hal.inria.fr/inria-00138294>.
- [21] M. Mboup, C. Join, M. Fliess, A revised look at numerical differentiation with an application to nonlinear feedback control, Proc. 15th Mediterranean Conf. Control Automation - MED'2007, Athènes, 2007. Accessible sur <http://hal.inria.fr/inria-00142588>.
- [22] J. McConnell, J. Robson, *Noncommutative Noetherian Rings*, American Mathematical Society, Providence, RI, 2000.
- [23] E. Nelson, *Radically Elementary Probability Theory*, Princeton University Press, Princeton, NJ, 1987. Accessible sur <http://www.math.princeton.edu/%7Enelson/books/rept.pdf>.
- [24] A. Neves, M.D. Miranda, M. Mboup, Algebraic parameter estimation of damped exponentials, Proc. 15th Europ. Signal Processing Conf. - EUSIPCO 2007, Poznań, 2007. Accessible sur <http://hal.inria.fr/inria-00179732>.
- [25] J.G. Proakis, *Digital Communications*, 4th ed., McGraw-Hill, New York, 2001.
- [26] J.G. Proakis, M. Salehi, *Communication Systems Engineering*, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 2002.
- [27] M. van der Put, M.F. Singer, *Galois Theory of Linear Differential Equations*, Springer, Berlin, 2003.
- [28] A. Robinson, *Non-Standard Analysis*, 2nd ed., North-Holland, Amsterdam, 1974.
- [29] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948) 379-457 & 623-656.
- [30] C.E. Shannon, Communication in the presence of noise, Proc. IRE, 37 (1949) 10-21.
- [31] J.R. Trapero, H. Sira-Ramírez, V.F. Battle, An algebraic frequency estimator for a biased and noisy sinusoidal signal, *Signal Processing*, 87 (2007) 1188-1201.
- [32] J.R. Trapero, H. Sira-Ramírez, V.F. Battle, A fast on-line frequency estimator of lightly damped vibrations in flexible structures, *J. Sound Vibration*, 307 (2007) 365-378.
- [33] K. Yosida, *Operational Calculus: A Theory of Hyperfunctions*, Springer, New York, 1984 (translated from the Japanese).