Chapter 2

Vector Spaces, Bases, Linear Maps

2.1 Motivations: Linear Combinations, Linear Independence and Rank

In linear optimization problems, we often encounter systems of linear equations. For example, consider the problem of solving the following system of three linear equations in the three variables $x_1, x_2, x_3 \in \mathbb{R}$:

$$x_1 + 2x_2 - x_3 = 1$$
$$2x_1 + x_2 + x_3 = 2$$
$$x_1 - 2x_2 - 2x_3 = 3.$$

One way to approach this problem is introduce the "vectors" u, v, w, and b, given by

$$u = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \qquad v = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \qquad w = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix} \qquad b = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

and to write our linear system as

$$x_1u + x_2v + x_3w = b.$$

In the above equation, we used implicitly the fact that a vector z can be multiplied by a scalar $\lambda \in \mathbb{R}$, where

$$\lambda z = \lambda \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} \lambda z_1 \\ \lambda z_2 \\ \lambda z_3 \end{pmatrix},$$

and two vectors y and and z can be added, where

$$y + z = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} + \begin{pmatrix} z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} y_1 + z_1 \\ y_2 + z_2 \\ y_3 + z_3 \end{pmatrix}.$$

Also, given a vector

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix},$$

we define the additive inverse -x of x (pronounced minus x) as

$$-x = \begin{pmatrix} -x_1 \\ -x_2 \\ -x_3 \end{pmatrix}.$$

Observe that -x = (-1)x, the scalar multiplication of x by -1.

The set of all vectors with three components is denoted by $\mathbb{R}^{3\times 1}$. The reason for using the notation $\mathbb{R}^{3\times 1}$ rather than the more conventional notation \mathbb{R}^3 is that the elements of $\mathbb{R}^{3\times 1}$ are *column vectors*; they consist of three rows and a single column, which explains the superscript 3×1 . On the other hand, $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ consists of all triples of the form (x_1, x_2, x_3) , with $x_1, x_2, x_3 \in \mathbb{R}$, and these are *row vectors*. However, there is an obvious bijection between $\mathbb{R}^{3\times 1}$ and \mathbb{R}^3 and they are usually identified. For the sake of clarity, in this introduction, we will denote the set of column vectors with n components by $\mathbb{R}^{n\times 1}$.

An expression such as

$$x_1u + x_2v + x_3w$$

where u, v, w are vectors and the x_i s are scalars (in \mathbb{R}) is called a *linear combination*. Using this notion, the problem of solving our linear system

$$x_1u + x_2v + x_3w = b.$$

is equivalent to determining whether b can be expressed as a linear combination of u, v, w.

Now if the vectors u, v, w are linearly independent, which means that there is no triple $(x_1, x_2, x_3) \neq (0, 0, 0)$ such that

$$x_1u + x_2v + x_3w = 0_3$$

it can be shown that every vector in $\mathbb{R}^{3\times 1}$ can be written as a linear combination of u, v, w. Here, 0_3 is the zero vector

$$0_3 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

It is customary to abuse notation and to write 0 instead of 0_3 . This rarely causes a problem because in most cases, whether 0 denotes the scalar zero or the zero vector can be inferred from the context.

In fact, every vector $z \in \mathbb{R}^{3\times 1}$ can be written in a unique way as a linear combination

$$z = x_1 u + x_2 v + x_3 w$$
.

2.1. MOTIVATIONS: LINEAR COMBINATIONS, LINEAR INDEPENDENCE, RANK17

This is because if

$$z = x_1u + x_2v + x_3w = y_1u + y_2v + y_3w$$
,

then by using our (linear!) operations on vectors, we get

$$(y_1 - x_1)u + (y_2 - x_2)v + (y_3 - x_3)w = 0,$$

which implies that

$$y_1 - x_1 = y_2 - x_2 = y_3 - x_3 = 0,$$

by linear independence. Thus,

$$y_1 = x_1, \quad y_2 = x_2, \quad y_3 = x_3,$$

which shows that z has a unique expression as a linear combination, as claimed. Then our equation

$$x_1u + x_2v + x_3w = b$$

has a unique solution, and indeed, we can check that

$$x_1 = 1.4$$

$$x_2 = -0.4$$

$$x_3 = -0.4$$

is the solution.

But then, how do we determine that some vectors are linearly independent?

One answer is to compute a numerical quantity det(u, v, w), called the *determinant* of (u, v, w), and to check that it is nonzero. In our case, it turns out that

$$\det(u, v, w) = \begin{vmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \\ 1 & -2 & -2 \end{vmatrix} = 15,$$

which confirms that u, v, w are linearly independent.

Other methods, which are much better for systems with a large number of variables, consist of computing an LU-decomposition or a QR-decomposition, or an SVD of the matrix consisting of the three columns u, v, w,

$$A = \begin{pmatrix} u & v & w \end{pmatrix} = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \\ 1 & -2 & -2 \end{pmatrix}.$$

If we form the vector of unknowns

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix},$$

then our linear combination $x_1u + x_2v + x_3w$ can be written in matrix form as

$$x_1u + x_2v + x_3w = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \\ 1 & -2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix},$$

so our linear system is expressed by

$$\begin{pmatrix} 1 & 2 & -1 \\ 2 & 1 & 1 \\ 1 & -2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix},$$

or more concisely as

$$Ax = b$$
.

Now what if the vectors u, v, w are linearly dependent? For example, if we consider the vectors

$$u = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \qquad v = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \qquad w = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix},$$

we see that

$$u - v = w$$
,

a nontrivial linear dependence. It can be verified that u and v are still linearly independent. Now for our problem

$$x_1u + x_2v + x_3w = b$$

it must be the case that b can be expressed as linear combination of u and v. However, it turns out that u, v, b are linearly independent (one way to see this is to compute the determinant $\det(u, v, b) = -6$), so b cannot be expressed as a linear combination of u and v and thus, our system has no solution.

If we change the vector b to

$$b = \begin{pmatrix} 3 \\ 3 \\ 0 \end{pmatrix},$$

then

$$b = u + v$$

and so the system

$$x_1u + x_2v + x_3w = b$$

has the solution

$$x_1 = 1, \quad x_2 = 1, \quad x_3 = 0.$$

Actually, since w = u - v, the above system is equivalent to

$$(x_1 + x_3)u + (x_2 - x_3)v = b,$$

2.1. MOTIVATIONS: LINEAR COMBINATIONS, LINEAR INDEPENDENCE, RANK19

and because u and v are linearly independent, the unique solution in $x_1 + x_3$ and $x_2 - x_3$ is

$$x_1 + x_3 = 1$$

 $x_2 - x_3 = 1$

which yields an infinite number of solutions parameterized by x_3 , namely

$$x_1 = 1 - x_3 x_2 = 1 + x_3.$$

In summary, a 3×3 linear system may have a unique solution, no solution, or an infinite number of solutions, depending on the linear independence (and dependence) or the vectors u, v, w, b. This situation can be generalized to any $n \times n$ system, and even to any $n \times m$ system (n equations in m variables), as we will see later.

The point of view where our linear system is expressed in matrix form as Ax = b stresses the fact that the map $x \mapsto Ax$ is a linear transformation. This means that

$$A(\lambda x) = \lambda(Ax)$$

for all $x \in \mathbb{R}^{3 \times 1}$ and all $\lambda \in \mathbb{R}$ and that

$$A(u+v) = Au + Av,$$

for all $u, v \in \mathbb{R}^{3\times 1}$. We can view the matrix A as a way of expressing a linear map from $\mathbb{R}^{3\times 1}$ to $\mathbb{R}^{3\times 1}$ and solving the system Ax = b amounts to determining whether b belongs to the image of this linear map.

Given a 3×3 matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix},$$

whose columns are three vectors denoted A^1, A^2, A^3 , and given any vector $x = (x_1, x_2, x_3)$, we defined the product Ax as the linear combination

$$Ax = x_1 A^1 + x_2 A^2 + x_3 A^3 = \begin{pmatrix} a_{11} x_1 + a_{12} x_2 + a_{13} x_3 \\ a_{21} x_1 + a_{22} x_2 + a_{23} x_3 \\ a_{31} x_1 + a_{32} x_2 + a_{33} x_3 \end{pmatrix}.$$

The common pattern is that the *i*th coordinate of Ax is given by a certain kind of product called an *inner product*, of a row vector, the *i*th row of A, times the column vector x:

$$(a_{i1} \quad a_{i2} \quad a_{i3}) \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = a_{i1}x_1 + a_{i2}x_2 + a_{i3}x_3.$$

More generally, given any two vectors $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n) \in \mathbb{R}^n$, their inner product denoted $x \cdot y$, or $\langle x, y \rangle$, is the number

$$x \cdot y = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \sum_{i=1}^n x_i y_i.$$

Inner products play a very important role. First, we quantity

$$||x||_2 = \sqrt{x \cdot x} = (x_1^2 + \dots + x_n^2)^{1/2}$$

is a generalization of the length of a vector, called the *Euclidean norm*, or ℓ^2 -norm. Second, it can be shown that we have the inequality

$$|x \cdot y| \le ||x|| \, ||y|| \,,$$

so if $x, y \neq 0$, the ratio $(x \cdot y)/(\|x\| \|y\|)$ can be viewed as the cosine of an angle, the angle between x and y. In particular, if $x \cdot y = 0$ then the vectors x and y make the angle $\pi/2$, that is, they are orthogonal. The (square) matrices Q that preserve the inner product, in the sense that $\langle Qx, Qy \rangle = \langle x, y \rangle$ for all $x, y \in \mathbb{R}^n$, also play a very important role. They can be thought of as generalized rotations.

Returning to matrices, if A is an $m \times n$ matrix consisting of n columns A^1, \ldots, A^n (in \mathbb{R}^m), and B is a $n \times p$ matrix consisting of p columns B^1, \ldots, B^p (in \mathbb{R}^n) we can form the p vectors (in \mathbb{R}^m)

$$AB^1, \ldots, AB^p$$
.

These p vectors constitute the $m \times p$ matrix denoted AB, whose jth column is AB^{j} . But we know that the ith coordinate of AB^{j} is the inner product of the ith row of A by the jth column of B,

$$\begin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{pmatrix} \cdot \begin{pmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{pmatrix} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Thus we have defined a multiplication operation on matrices, namely if $A = (a_{ik})$ is a $m \times n$ matrix and if $B = (b_{jk})$ if $n \times p$ matrix, then their product AB is the $m \times n$ matrix whose entry on the *i*th row and the *j*th column is given by the inner product of the *i*th row of A by the *j*th column of B,

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Beware that unlike the multiplication of real (or complex) numbers, if A and B are two $n \times n$ matrices, in general, $AB \neq BA$.

2.1. MOTIVATIONS: LINEAR COMBINATIONS, LINEAR INDEPENDENCE, RANK21

Suppose that A is an $n \times n$ matrix and that we are trying to solve the linear system

$$Ax = b$$
,

with $b \in \mathbb{R}^n$. Suppose we can find an $n \times n$ matrix B such that

$$BA^i = e_i, \quad i = 1, \dots, n,$$

with $e_i = (0, \dots, 0, 1, 0, \dots, 0)$, where the only nonzero entry is 1 in the *i*th slot. If we form the $n \times n$ matrix

$$I_n = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix},$$

called the *identity matrix*, whose ith column is e_i , then the above is equivalent to

$$BA = I_n$$
.

If Ax = b, then multiplying both sides on the left by B, we get

$$B(Ax) = Bb.$$

But is easy to see that $B(Ax) = (BA)x = I_n x = x$, so we must have

$$x = Bb$$
.

We can verify that x = Bb is indeed a solution, because it can be shown that

$$A(Bb) = (AB)b = I_n b = b.$$

What is not obvious is that $BA = I_n$ implies $AB = I_n$, but this is indeed provable. The matrix B is usually denoted A^{-1} and called the *inverse* of A. It can be shown that it is the unique matrix such that

$$AA^{-1} = A^{-1}A = I_n.$$

If a square matrix A has an inverse, then we say that it is *invertible* or *nonsingular*, otherwise we say that it is singular. We will show later that a square matrix is invertible iff its columns are linearly independent iff its determinant is nonzero.

In summary, if A is a square invertible matrix, then the linear system Ax = b has the unique solution $x = A^{-1}b$. In practice, this is not a good way to solve a linear system because computing A^{-1} is too expensive. A practical method for solving a linear system is Gaussian elimination, discussed in Chapter 7. Other practical methods for solving a linear system

Ax = b make use of a factorization of A (QR decomposition, SVD decomposition), using orthogonal matrices defined next.

Given an $m \times n$ matrix $A = (a_{kl})$, the $n \times m$ matrix $A^{\top} = (a_{ij}^{\top})$ whose *i*th row is the *i*th column of A, which means that $a_{ij}^{\top} = a_{ji}$ for $i = 1, \ldots, n$ and $j = 1, \ldots, m$, is called the transpose of A. An $n \times n$ matrix Q such that

$$QQ^{\top} = Q^{\top}Q = I_n$$

is called an *orthogonal matrix*. Equivalently, the inverse Q^{-1} of an orthogonal matrix Q is equal to its transpose Q^{\top} . Orthogonal matrices play an important role. Geometrically, they correspond to linear transformation that preserve length. A major result of linear algebra states that every $m \times n$ matrix A can be written as

$$A = V \Sigma U^{\top}$$

where V is an $m \times m$ orthogonal matrix, U is an $n \times n$ orthogonal matrix, and Σ is an $m \times n$ matrix whose only nonzero entries are nonnegative diagonal entries $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p$, where $p = \min(m, n)$, called the *singular values* of A. The factorization $A = V \Sigma U^{\top}$ is called a *singular decomposition* of A, or SVD.

The SVD can be used to "solve" a linear system Ax = b where A is an $m \times n$ matrix, even when this system has no solution. This may happen when there are more equations that variables (m > n), in which case the system is overdetermined.

Of course, there is no miracle, an unsolvable system has no solution. But we can look for a good approximate solution, namely a vector x that minimizes some measure of the error Ax - b. Legendre and Gauss used $||Ax - b||_2^2$, which is the squared Euclidean norm of the error. This quantity is differentiable, and it turns out that there is a unique vector x^+ of minimum Euclidean norm that minimizes $||Ax - b||_2^2$. Furthermore, x^+ is given by the expression $x^+ = A^+b$, where A^+ is the pseudo-inverse of A, and A^+ can be computed from an SVD $A = V\Sigma U^{\top}$ of A. Indeed, $A^+ = U\Sigma^+V^{\top}$, where Σ^+ is the matrix obtained from Σ by replacing every positive singular value σ_i by its inverse σ_i^{-1} , leaving all zero entries intact, and transposing.

Instead of searching for the vector of least Euclidean norm minimizing $||Ax - b||_2^2$, we can add the penalty term $K ||x||_2^2$ (for some positive K > 0) to $||Ax - b||_2^2$ and minimize the quantity $||Ax - b||_2^2 + K ||x||_2^2$. This approach is called *ridge regression*. It turns out that there is a unique minimizer x^+ given by $x^+ = (A^{\top}A + KI_n)^{-1}A^{\top}b$, as shown in the second volume.

Another approach is to replace the penalty term $K \|x\|_2^2$ by $K \|x\|_1$, where $\|x\|_1 = |x_1| + \cdots + |x_n|$ (the ℓ^1 -norm of x). The remarkable fact is that the minimizers x of $\|Ax - b\|_2^2 + K \|x\|_1$ tend to be *sparse*, which means that many components of x are equal to zero. This approach known as *lasso* is popular in machine learning and will be discussed in the second volume.

Another important application of the SVD is *principal component analysis* (or *PCA*), an important tool in data analysis.

2.1. MOTIVATIONS: LINEAR COMBINATIONS, LINEAR INDEPENDENCE, RANK23

Yet another fruitful way of interpreting the resolution of the system Ax = b is to view this problem as an intersection problem. Indeed, each of the equations

$$x_1 + 2x_2 - x_3 = 1$$
$$2x_1 + x_2 + x_3 = 2$$
$$x_1 - 2x_2 - 2x_3 = 3$$

defines a subset of \mathbb{R}^3 which is actually a *plane*. The first equation

$$x_1 + 2x_2 - x_3 = 1$$

defines the plane H_1 passing through the three points (1,0,0), (0,1/2,0), (0,0,-1), on the coordinate axes, the second equation

$$2x_1 + x_2 + x_3 = 2$$

defines the plane H_2 passing through the three points (1,0,0), (0,2,0), (0,0,2), on the coordinate axes, and the third equation

$$x_1 - 2x_2 - 2x_3 = 3$$

defines the plane H_3 passing through the three points (3,0,0), (0,-3/2,0), (0,0,-3/2), on the coordinate axes. See Figure 2.1.

Figure 2.1: The planes defined by the preceding linear equations.

The intersection $H_i \cap H_j$ of any two distinct planes H_i and H_j is a line, and the intersection $H_1 \cap H_2 \cap H_3$ of the three planes consists of the single point (1.4, -0.4, -0.4), as illustrated in Figure 2.2.

Figure 2.2: The solution of the system is the point in common with each of the three planes.

The planes corresponding to the system

$$x_1 + 2x_2 - x_3 = 1$$
$$2x_1 + x_2 + x_3 = 2$$
$$x_1 - x_2 + 2x_3 = 3,$$

are illustrated in Figure 2.3. This system has no solution since there is no point simultane-

Figure 2.3: The planes defined by the equations $x_1 + 2x_2 - x_3 = 1$, $2x_1 + x_2 + x_3 = 2$, and $x_1 - x_2 + 2x_3 = 3$.

ously contained in all three planes; see Figure 2.4.

2.1. MOTIVATIONS: LINEAR COMBINATIONS, LINEAR INDEPENDENCE, RANK25

Figure 2.4: The linear system $x_1 + 2x_2 - x_3 = 1$, $2x_1 + x_2 + x_3 = 2$, $x_1 - x_2 + 2x_3 = 3$ has no solution.

Finally, the planes corresponding to the system

$$x_1 + 2x_2 - x_3 = 3$$
$$2x_1 + x_2 + x_3 = 3$$
$$x_1 - x_2 + 2x_3 = 0,$$

are illustrated in Figure 2.5.

Figure 2.5: The planes defined by the equations $x_1 + 2x_2 - x_3 = 3$, $2x_1 + x_2 + x_3 = 3$, and $x_1 - x_2 + 2x_3 = 0$.

This system has infinitely many solutions, given parametrically by $(1 - x_3, 1 + x_3, x_3)$. Geometrically, this is a line common to all three planes; see Figure 2.6.

Under the above interpretation, observe that we are focusing on the rows of the matrix A, rather than on its columns, as in the previous interpretations.

Figure 2.6: The linear system $x_1 + 2x_2 - x_3 = 3$, $2x_1 + x_2 + x_3 = 3$, $x_1 - x_2 + 2x_3 = 0$ has the red line common to all three planes.

Another great example of a real-world problem where linear algebra proves to be very effective is the problem of *data compression*, that is, of representing a very large data set using a much smaller amount of storage.

Typically the data set is represented as an $m \times n$ matrix A where each row corresponds to an n-dimensional data point and typically, $m \ge n$. In most applications, the data are not independent so the rank of A is a lot smaller than $\min\{m, n\}$, and the the goal of low-rank decomposition is to factor A as the product of two matrices B and C, where B is a $m \times k$ matrix and C is a $k \times n$ matrix, with $k \ll \min\{m, n\}$ (here, \ll means "much smaller than"):

$$\begin{pmatrix} A & \\ m \times n \end{pmatrix} = \begin{pmatrix} B \\ m \times k \end{pmatrix} \begin{pmatrix} C \\ k \times n \end{pmatrix}$$

Now it is generally too costly to find an exact factorization as above, so we look for a low-rank matrix A' which is a "good" approximation of A. In order to make this statement precise, we need to define a mechanism to determine how close two matrices are. This can be done using matrix norms, a notion discussed in Chapter 8. The norm of a matrix A is a nonnegative real number ||A|| which behaves a lot like the absolute value |x| of a real number x. Then our goal is to find some low-rank matrix A' that minimizes the norm

$$\left\|A - A'\right\|^2,$$

over all matrices A' of rank at most k, for some given $k \ll \min\{m, n\}$. Some advantages of a low-rank approximation are:

- 1. Fewer elements are required to represent A; namely, k(m+n) instead of mn. Thus less storage and fewer operations are needed to reconstruct A.
- 2. Often, the process for obtaining the decomposition exposes the underlying structure of the data. Thus, it may turn out that "most" of the significant data are concentrated along some directions called *principal directions*.

Low-rank decompositions of a set of data have a multitude of applications in engineering, including computer science (especially computer vision), statistics, and machine learning. As we will see later in Chapter 21, the *singular value decomposition* (SVD) provides a very satisfactory solution to the low-rank approximation problem. Still, in many cases, the data sets are so large that another ingredient is needed: *randomization*. However, as a first step, linear algebra often yields a good initial solution.

We will now be more precise as to what kinds of operations are allowed on vectors. In the early 1900, the notion of a *vector space* emerged as a convenient and unifying framework for working with "linear" objects and we will discuss this notion in the next few sections.

2.2 Vector Spaces

A (real) vector space is a set E together with two operations, $+: E \times E \to E$ and $\cdot: \mathbb{R} \times E \to E$, called *addition* and *scalar multiplication*, that satisfy some simple properties. First of all, E under addition has to be a commutative (or abelian) group, a notion that we review next.

However, keep in mind that vector spaces are not just algebraic objects; they are also geometric objects.

Definition 2.1. A group is a set G equipped with a binary operation $\cdot: G \times G \to G$ that associates an element $a \cdot b \in G$ to every pair of elements $a, b \in G$, and having the following properties: \cdot is associative, has an identity element $e \in G$, and every element in G is invertible (w.r.t. \cdot). More explicitly, this means that the following equations hold for all $a, b, c \in G$:

(G1)
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c.$$
 (associativity);

(G2)
$$a \cdot e = e \cdot a = a$$
. (identity);

(G3) For every
$$a \in G$$
, there is some $a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$. (inverse).

A group G is abelian (or commutative) if

$$a \cdot b = b \cdot a$$
 for all $a, b \in G$.

A set M together with an operation $\cdot: M \times M \to M$ and an element e satisfying only Conditions (G1) and (G2) is called a *monoid*. For example, the set $\mathbb{N} = \{0, 1, \dots, n, \dots\}$ of natural numbers is a (commutative) monoid under addition with identity element 0. However, it is not a group.

Some examples of groups are given below.

Example 2.1.

- 1. The set $\mathbb{Z} = \{\dots, -n, \dots, -1, 0, 1, \dots, n, \dots\}$ of integers is an abelian group under addition, with identity element 0. However, $\mathbb{Z}^* = \mathbb{Z} \{0\}$ is not a group under multiplication; it is a commutative monoid with identity element 1.
- 2. The set \mathbb{Q} of rational numbers (fractions p/q with $p, q \in \mathbb{Z}$ and $q \neq 0$) is an abelian group under addition, with identity element 0. The set $\mathbb{Q}^* = \mathbb{Q} \{0\}$ is also an abelian group under multiplication, with identity element 1.
- 3. Similarly, the sets \mathbb{R} of real numbers and \mathbb{C} of complex numbers are abelian groups under addition (with identity element 0), and $\mathbb{R}^* = \mathbb{R} \{0\}$ and $\mathbb{C}^* = \mathbb{C} \{0\}$ are abelian groups under multiplication (with identity element 1).
- 4. The sets \mathbb{R}^n and \mathbb{C}^n of *n*-tuples of real or complex numbers are abelian groups under componentwise addition:

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n),$$

with identity element $(0, \ldots, 0)$.

- 5. Given any nonempty set S, the set of bijections $f: S \to S$, also called *permutations* of S, is a group under function composition (i.e., the multiplication of f and g is the composition $g \circ f$), with identity element the identity function id_S . This group is not abelian as soon as S has more than two elements.
- 6. The set of $n \times n$ matrices with real (or complex) coefficients is an abelian group under addition of matrices, with identity element the null matrix. It is denoted by $M_n(\mathbb{R})$ (or $M_n(\mathbb{C})$).
- 7. The set $\mathbb{R}[X]$ of all polynomials in one variable X with real coefficients,

$$P(X) = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0,$$

(with $a_i \in \mathbb{R}$), is an abelian group under addition of polynomials. The identity element is the zero polynomial.

8. The set of $n \times n$ invertible matrices with real (or complex) coefficients is a group under matrix multiplication, with identity element the identity matrix I_n . This group is called the *general linear group* and is usually denoted by $\mathbf{GL}(n, \mathbb{R})$ (or $\mathbf{GL}(n, \mathbb{C})$).

- 9. The set of $n \times n$ invertible matrices with real (or complex) coefficients and determinant +1 is a group under matrix multiplication, with identity element the identity matrix I_n . This group is called the *special linear group* and is usually denoted by $\mathbf{SL}(n,\mathbb{R})$ (or $\mathbf{SL}(n,\mathbb{C})$).
- 10. The set of $n \times n$ invertible matrices with real coefficients such that $RR^{\top} = R^{\top}R = I_n$ and of determinant +1 is a group (under matrix multiplication) called the *special* orthogonal group and is usually denoted by $\mathbf{SO}(n)$ (where R^{\top} is the transpose of the matrix R, i.e., the rows of R^{\top} are the columns of R). It corresponds to the rotations in \mathbb{R}^n .
- 11. Given an open interval (a, b), the set $\mathcal{C}(a, b)$ of continuous functions $f:(a, b) \to \mathbb{R}$ is an abelian group under the operation f + g defined such that

$$(f+g)(x) = f(x) + g(x)$$

for all $x \in (a, b)$.

It is customary to denote the operation of an abelian group G by +, in which case the inverse a^{-1} of an element $a \in G$ is denoted by -a.

The identity element of a group is *unique*. In fact, we can prove a more general fact:

Proposition 2.1. If a binary operation \cdot : $M \times M \to M$ is associative and if $e' \in M$ is a left identity and $e'' \in M$ is a right identity, which means that

$$e' \cdot a = a \quad \text{for all} \quad a \in M$$
 (G21)

and

$$a \cdot e'' = a$$
 for all $a \in M$, (G2r)

then e' = e''.

Proof. If we let a = e'' in equation (G21), we get

$$e' \cdot e'' = e'',$$

and if we let a = e' in equation (G2r), we get

$$e' \cdot e'' = e',$$

and thus

$$e' = e' \cdot e'' = e'',$$

as claimed. \Box

Proposition 2.1 implies that the identity element of a monoid is unique, and since every group is a monoid, the identity element of a group is unique. Furthermore, every element in a group has a *unique inverse*. This is a consequence of a slightly more general fact:

Proposition 2.2. In a monoid M with identity element e, if some element $a \in M$ has some left inverse $a' \in M$ and some right inverse $a'' \in M$, which means that

$$a' \cdot a = e \tag{G3l}$$

and

$$a \cdot a'' = e, \tag{G3r}$$

then a' = a''.

Proof. Using (G31) and the fact that e is an identity element, we have

$$(a' \cdot a) \cdot a'' = e \cdot a'' = a''.$$

Similarly, Using (G3r) and the fact that e is an identity element, we have

$$a' \cdot (a \cdot a'') = a' \cdot e = a'.$$

However, since M is monoid, the operation \cdot is associative, so

$$a' = a' \cdot (a \cdot a'') = (a' \cdot a) \cdot a'' = a'',$$

as claimed. \Box

Remark: Axioms (G2) and (G3) can be weakened a bit by requiring only (G2r) (the existence of a right identity) and (G3r) (the existence of a right inverse for every element) (or (G2l) and (G3l)). It is a good exercise to prove that the group axioms (G2) and (G3) follow from (G2r) and (G3r).

A vector space is an abelian group E with an additional operation $\cdot : K \times E \to E$ called scalar multiplication that allows rescaling a vector in E by an element in K. The set K itself is an algebraic structure called a *field*. A field is a special kind of stucture called a *ring*. These notions are defined below. We begin with rings.

Definition 2.2. A ring is a set A equipped with two operations $+: A \times A \to A$ (called addition) and $*: A \times A \to A$ (called multiplication) having the following properties:

- (R1) A is an abelian group w.r.t. +;
- (R2) * is associative and has an identity element $1 \in A$;
- (R3) * is distributive w.r.t. +.

The identity element for addition is denoted 0, and the additive inverse of $a \in A$ is denoted by -a. More explicitly, the axioms of a ring are the following equations which hold for all $a, b, c \in A$:

$$a + (b+c) = (a+b) + c$$
 (associativity of +) (2.1)

$$a + b = b + a$$
 (commutativity of +) (2.2)

$$a + 0 = 0 + a = a$$
 (zero)

$$a + (-a) = (-a) + a = 0 (additive inverse) (2.4)$$

$$a * (b * c) = (a * b) * c \qquad (associativity of *)$$
(2.5)

$$a * 1 = 1 * a = a \qquad \text{(identity for *)}$$

$$(a+b)*c = (a*c) + (b*c)$$
 (distributivity) (2.7)

$$a * (b + c) = (a * b) + (a * c)$$
 (distributivity) (2.8)

The ring A is commutative if

$$a * b = b * a$$
 for all $a, b \in A$.

From (2.7) and (2.8), we easily obtain

$$a * 0 = 0 * a = 0 \tag{2.9}$$

$$a * (-b) = (-a) * b = -(a * b).$$
 (2.10)

Note that (2.9) implies that if 1 = 0, then a = 0 for all $a \in A$, and thus, $A = \{0\}$. The ring $A = \{0\}$ is called the *trivial ring*. A ring for which $1 \neq 0$ is called *nontrivial*. The multiplication a * b of two elements $a, b \in A$ is often denoted by ab.

The abelian group \mathbb{Z} is a commutative ring (with unit 1), and for any field K, the abelian group K[X] of polynomials is also a commutative ring (also with unit 1). The set $\mathbb{Z}/m\mathbb{Z}$ of residues modulo m where m is a positive integer is a commutative ring.

A field is a commutative ring K for which $K - \{0\}$ is a group under multiplication.

Definition 2.3. A set K is a *field* if it is a ring and the following properties hold:

- (F1) $0 \neq 1$;
- (F2) $K^* = K \{0\}$ is a group w.r.t. * (i.e., every $a \neq 0$ has an inverse w.r.t. *);
- (F3) * is commutative.

If * is not commutative but (F1) and (F2) hold, we say that we have a *skew field* (or *noncommutative field*).

Note that we are assuming that the operation * of a field is commutative. This convention is not universally adopted, but since * will be commutative for most fields we will encounter, we may as well include this condition in the definition.

Example 2.2.

- 1. The rings \mathbb{Q} , \mathbb{R} , and \mathbb{C} are fields.
- 2. The set $\mathbb{Z}/p\mathbb{Z}$ of residues modulo p where p is a prime number is field.
- 3. The set of (formal) fractions f(X)/g(X) of polynomials $f(X), g(X) \in \mathbb{R}[X]$, where g(X) is not the zero polynomial, is a field.

Vector spaces are defined as follows.

Definition 2.4. A real vector space is a set E (of vectors) together with two operations $+: E \times E \to E$ (called vector addition)¹ and $:: \mathbb{R} \times E \to E$ (called scalar multiplication) satisfying the following conditions for all $\alpha, \beta \in \mathbb{R}$ and all $u, v \in E$;

(V0) E is an abelian group w.r.t. +, with identity element 0;²

(V1)
$$\alpha \cdot (u+v) = (\alpha \cdot u) + (\alpha \cdot v);$$

(V2)
$$(\alpha + \beta) \cdot u = (\alpha \cdot u) + (\beta \cdot u);$$

(V3)
$$(\alpha * \beta) \cdot u = \alpha \cdot (\beta \cdot u);$$

(V4)
$$1 \cdot u = u$$
.

In (V3), * denotes multiplication in \mathbb{R} .

Given $\alpha \in \mathbb{R}$ and $v \in E$, the element $\alpha \cdot v$ is also denoted by αv . The field \mathbb{R} is often called the *field of scalars*.

In Definition 2.4, the field \mathbb{R} may be replaced by the field of complex numbers \mathbb{C} , in which case we have a *complex* vector space. It is even possible to replace \mathbb{R} by the field of rational numbers \mathbb{Q} or by any arbitrary field K (for example $\mathbb{Z}/p\mathbb{Z}$, where p is a prime number), in which case we have a K-vector space (in (V3), * denotes multiplication in the field K). In most cases, the field K will be the field \mathbb{R} of reals, but all results in this chapter hold for vector spaces over an arbitrary field.

From (V0), a vector space always contains the null vector 0, and thus is nonempty. From (V1), we get $\alpha \cdot 0 = 0$, and $\alpha \cdot (-v) = -(\alpha \cdot v)$. From (V2), we get $0 \cdot v = 0$, and $(-\alpha) \cdot v = -(\alpha \cdot v)$.

Another important consequence of the axioms is the following fact:

Proposition 2.3. For any $u \in E$ and any $\lambda \in \mathbb{R}$, if $\lambda \neq 0$ and $\lambda \cdot u = 0$, then u = 0.

¹The symbol + is overloaded, since it denotes both addition in the field \mathbb{R} and addition of vectors in E. It is usually clear from the context which + is intended.

²The symbol 0 is also overloaded, since it represents both the zero in \mathbb{R} (a scalar) and the identity element of E (the zero vector). Confusion rarely arises, but one may prefer using **0** for the zero vector.

Proof. Indeed, since $\lambda \neq 0$, it has a multiplicative inverse λ^{-1} , so from $\lambda \cdot u = 0$, we get

$$\lambda^{-1} \cdot (\lambda \cdot u) = \lambda^{-1} \cdot 0.$$

However, we just observed that $\lambda^{-1} \cdot 0 = 0$, and from (V3) and (V4), we have

$$\lambda^{-1} \cdot (\lambda \cdot u) = (\lambda^{-1}\lambda) \cdot u = 1 \cdot u = u,$$

and we deduce that u = 0.

Remark: One may wonder whether axiom (V4) is really needed. Could it be derived from the other axioms? The answer is **no**. For example, one can take $E = \mathbb{R}^n$ and define $\cdot: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ by

$$\lambda \cdot (x_1, \dots, x_n) = (0, \dots, 0)$$

for all $(x_1, \ldots, x_n) \in \mathbb{R}^n$ and all $\lambda \in \mathbb{R}$. Axioms (V0)–(V3) are all satisfied, but (V4) fails. Less trivial examples can be given using the notion of a basis, which has not been defined yet.

The field \mathbb{R} itself can be viewed as a vector space over itself, addition of vectors being addition in the field, and multiplication by a scalar being multiplication in the field.

Example 2.3.

- 1. The fields \mathbb{R} and \mathbb{C} are vector spaces over \mathbb{R} .
- 2. The groups \mathbb{R}^n and \mathbb{C}^n are vector spaces over \mathbb{R} , with scalar multiplication given by

$$\lambda(x_1,\ldots,x_n)=(\lambda x_1,\ldots,\lambda x_n),$$

for any $\lambda \in \mathbb{R}$ and with $(x_1, \dots, x_n) \in \mathbb{R}^n$ or $(x_1, \dots, x_n) \in \mathbb{C}^n$, and \mathbb{C}^n is a vector space over \mathbb{C} with scalar multiplication as above, but with $\lambda \in \mathbb{C}$.

3. The ring $\mathbb{R}[X]_n$ of polynomials of degree at most n with real coefficients is a vector space over \mathbb{R} , and the ring $\mathbb{C}[X]_n$ of polynomials of degree at most n with complex coefficients is a vector space over \mathbb{C} , with scalar multiplication $\lambda \cdot P(X)$ of a polynomial

$$P(X) = a_m X^m + a_{m-1} X^{m-1} + \dots + a_1 X + a_0$$

(with $a_i \in \mathbb{R}$ or $a_i \in \mathbb{C}$) by the scalar λ (in \mathbb{R} or \mathbb{C}), with $m \leq n$, given by

$$\lambda \cdot P(X) = \lambda a_m X^m + \lambda a_{m-1} X^{m-1} + \dots + \lambda a_1 X + \lambda a_0.$$

4. The ring $\mathbb{R}[X]$ of all polynomials with real coefficients is a vector space over \mathbb{R} , and the ring $\mathbb{C}[X]$ of all polynomials with complex coefficients is a vector space over \mathbb{C} , with the same scalar multiplication as above.

- 5. The ring of $n \times n$ matrices $M_n(\mathbb{R})$ is a vector space over \mathbb{R} .
- 6. The ring of $m \times n$ matrices $M_{m,n}(\mathbb{R})$ is a vector space over \mathbb{R} .
- 7. The ring C(a, b) of continuous functions $f: (a, b) \to \mathbb{R}$ is a vector space over \mathbb{R} , with the scalar multiplication λf of a function $f: (a, b) \to \mathbb{R}$ by a scalar $\lambda \in \mathbb{R}$ given by

$$(\lambda f)(x) = \lambda f(x),$$
 for all $x \in (a, b).$

8. A very important example of vector space is the set of linear maps between two vector spaces to be defined in Section 2.7. Here is an example that will prepare us for the vector space of linear maps. Let X be any nonempty set and let E be a vector space. The set of all functions $f: X \to E$ can be made into a vector space as follows: Given any two functions $f: X \to E$ and $g: X \to E$, let $(f+g): X \to E$ be defined such that

$$(f+g)(x) = f(x) + g(x)$$

for all $x \in X$, and for every $\lambda \in \mathbb{R}$, let $\lambda f : X \to E$ be defined such that

$$(\lambda f)(x) = \lambda f(x)$$

for all $x \in X$. The axioms of a vector space are easily verified.

Let E be a vector space. We would like to define the important notions of linear combination and linear independence.

Before defining these notions, we need to discuss a strategic choice which, depending how it is settled, may reduce or increase headaches in dealing with notions such as linear combinations and linear dependence (or independence). The issue has to do with using sets of vectors versus sequences of vectors.

2.3 Indexed Families; the Sum Notation $\sum_{i \in I} a_i$

Our experience tells us that it is preferable to use sequences of vectors; even better, indexed families of vectors. (We are not alone in having opted for sequences over sets, and we are in good company; for example, Artin [3], Axler [4], and Lang [41] use sequences. Nevertheless, some prominent authors such as Lax [44] use sets. We leave it to the reader to conduct a survey on this issue.)

Given a set A, recall that a *sequence* is an ordered n-tuple $(a_1, \ldots, a_n) \in A^n$ of elements from A, for some natural number n. The elements of a sequence need not be distinct and the order is important. For example, (a_1, a_2, a_1) and (a_2, a_1, a_1) are two distinct sequences in A^3 . Their underlying set is $\{a_1, a_2\}$.

What we just defined are *finite* sequences, which can also be viewed as functions from $\{1, 2, ..., n\}$ to the set A; the *i*th element of the sequence $(a_1, ..., a_n)$ is the image of *i* under the function. This viewpoint is fruitful, because it allows us to define (countably) infinite

sequences as functions $s: \mathbb{N} \to A$. But then, why limit ourselves to ordered sets such as $\{1, \ldots, n\}$ or \mathbb{N} as index sets?

The main role of the index set is to tag each element uniquely, and the order of the tags is not crucial, although convenient. Thus, it is natural to define the notion of indexed family.

Definition 2.5. Given a set A, an I-indexed family of elements of A, for short a family, is a function $a: I \to A$ where I is any set viewed as an index set. Since the function a is determined by its graph

$$\{(i, a(i)) \mid i \in I\},\$$

the family a can be viewed as the set of pairs $a = \{(i, a(i)) \mid i \in I\}$. For notational simplicity, we write a_i instead of a(i), and denote the family $a = \{(i, a(i)) \mid i \in I\}$ by $(a_i)_{i \in I}$.

For example, if $I = \{r, g, b, y\}$ and $A = \mathbb{N}$, the set of pairs

$$a = \{(r, 2), (g, 3), (b, 2), (y, 11)\}$$

is an indexed family. The element 2 appears twice in the family with the two distinct tags r and b.

When the indexed set I is totally ordered, a family $(a_i)_{i \in I}$ is often called an I-sequence. Interestingly, sets can be viewed as special cases of families. Indeed, a set A can be viewed as the A-indexed family $\{(a, a) \mid a \in I\}$ corresponding to the identity function.

Remark: An indexed family should not be confused with a multiset. Given any set A, a multiset is a similar to a set, except that elements of A may occur more than once. For example, if $A = \{a, b, c, d\}$, then $\{a, a, a, b, c, c, d, d\}$ is a multiset. Each element appears with a certain multiplicity, but the order of the elements does not matter. For example, a has multiplicity 3. Formally, a multiset is a function $s: A \to \mathbb{N}$, or equivalently a set of pairs $\{(a,i) \mid a \in A\}$. Thus, a multiset is an A-indexed family of elements from \mathbb{N} , but not a \mathbb{N} -indexed family, since distinct elements may have the same multiplicity (such as c an d in the example above). An indexed family is a generalization of a sequence, but a multiset is a generalization of a set.

We also need to take care of an annoying technicality, which is to define sums of the form $\sum_{i \in I} a_i$, where I is any *finite* index set and $(a_i)_{i \in I}$ is a family of elements in some set A equiped with a binary operation $+: A \times A \to A$ which is associative (Axiom (G1)) and commutative. This will come up when we define linear combinations.

The issue is that the binary operation + only tells us how to compute $a_1 + a_2$ for two elements of A, but it does not tell us what is the sum of three of more elements. For example, how should $a_1 + a_2 + a_3$ be defined?

What we have to do is to define $a_1+a_2+a_3$ by using a sequence of steps each involving two elements, and there are two possible ways to do this: $a_1 + (a_2 + a_3)$ and $(a_1 + a_2) + a_3$. If our operation + is not associative, these are different values. If it associative, then $a_1+(a_2+a_3) = (a_1 + a_2) + a_3$, but then there are still six possible permutations of the indices 1, 2, 3, and if + is not commutative, these values are generally different. If our operation is commutative,

then all six permutations have the same value. Thus, if + is associative and commutative, it seems intuitively clear that a sum of the form $\sum_{i \in I} a_i$ does not depend on the order of the operations used to compute it.

This is indeed the case, but a rigorous proof requires induction, and such a proof is surprisingly involved. Readers may accept without proof the fact that sums of the form $\sum_{i \in I} a_i$ are indeed well defined, and jump directly to Definition 2.6. For those who want to see the gory details, here we go.

First, we define sums $\sum_{i \in I} a_i$, where I is a finite sequence of distinct natural numbers, say $I = (i_1, \ldots, i_m)$. If $I = (i_1, \ldots, i_m)$ with $m \geq 2$, we denote the sequence (i_2, \ldots, i_m) by $I - \{i_1\}$. We proceed by induction on the size m of I. Let

$$\sum_{i \in I} a_i = a_{i_1}, \quad \text{if } m = 1,$$

$$\sum_{i \in I} a_i = a_{i_1} + \left(\sum_{i \in I - \{i_1\}} a_i\right), \quad \text{if } m > 1.$$

For example, if I = (1, 2, 3, 4), we have

$$\sum_{i \in I} a_i = a_1 + (a_2 + (a_3 + a_4)).$$

If the operation + is not associative, the grouping of the terms matters. For instance, in general

$$a_1 + (a_2 + (a_3 + a_4)) \neq (a_1 + a_2) + (a_3 + a_4).$$

However, if the operation + is associative, the sum $\sum_{i \in I} a_i$ should not depend on the grouping of the elements in I, as long as their order is preserved. For example, if I = (1, 2, 3, 4, 5), $J_1 = (1, 2)$, and $J_2 = (3, 4, 5)$, we expect that

$$\sum_{i \in I} a_i = \left(\sum_{j \in J_1} a_j\right) + \left(\sum_{j \in J_2} a_j\right).$$

This indeed the case, as we have the following proposition.

Proposition 2.4. Given any nonempty set A equipped with an associative binary operation $+: A \times A \to A$, for any nonempty finite sequence I of distinct natural numbers and for any partition of I into p nonempty sequences I_{k_1}, \ldots, I_{k_p} , for some nonempty sequence $K = (k_1, \ldots, k_p)$ of distinct natural numbers such that $k_i < k_j$ implies that $\alpha < \beta$ for all $\alpha \in I_{k_i}$ and all $\beta \in I_{k_j}$, for every sequence $(a_i)_{i \in I}$ of elements in A, we have

$$\sum_{\alpha \in I} a_{\alpha} = \sum_{k \in K} \left(\sum_{\alpha \in I_k} a_{\alpha} \right).$$

Proof. We proceed by induction on the size n of I.

If n = 1, then we must have p = 1 and $I_{k_1} = I$, so the proposition holds trivially.

Next, assume n > 1. If p = 1, then $I_{k_1} = I$ and the formula is trivial, so assume that $p \ge 2$ and write $J = (k_2, \ldots, k_p)$. There are two cases.

Case 1. The sequence I_{k_1} has a single element, say β , which is the first element of I. In this case, write C for the sequence obtained from I by deleting its first element β . By definition,

$$\sum_{\alpha \in I} a_{\alpha} = a_{\beta} + \left(\sum_{\alpha \in C} a_{\alpha}\right),\,$$

and

$$\sum_{k \in K} \left(\sum_{\alpha \in I_k} a_{\alpha} \right) = a_{\beta} + \left(\sum_{j \in J} \left(\sum_{\alpha \in I_j} a_{\alpha} \right) \right).$$

Since |C| = n - 1, by the induction hypothesis, we have

$$\left(\sum_{\alpha \in C} a_{\alpha}\right) = \sum_{j \in J} \left(\sum_{\alpha \in I_{j}} a_{\alpha}\right),\,$$

which yields our identity.

Case 2. The sequence I_{k_1} has at least two elements. In this case, let β be the first element of I (and thus of I_{k_1}), let I' be the sequence obtained from I by deleting its first element β , let I'_{k_1} be the sequence obtained from I_{k_1} by deleting its first element β , and let $I'_{k_i} = I_{k_i}$ for $i = 2, \ldots, p$. Recall that $J = (k_2, \ldots, k_p)$ and $K = (k_1, \ldots, k_p)$. The sequence I' has n - 1 elements, so by the induction hypothesis applied to I' and the I'_{k_i} , we get

$$\sum_{\alpha \in I'} a_{\alpha} = \sum_{k \in K} \left(\sum_{\alpha \in I'_k} a_{\alpha} \right) = \left(\sum_{\alpha \in I'_{k_1}} a_{\alpha} \right) + \left(\sum_{j \in J} \left(\sum_{\alpha \in I_j} a_{\alpha} \right) \right).$$

If we add the lefthand side to a_{β} , by definition we get

$$\sum_{\alpha \in I} a_{\alpha}.$$

If we add the righthand side to a_{β} , using associativity and the definition of an indexed sum, we get

$$a_{\beta} + \left(\left(\sum_{\alpha \in I'_{k_1}} a_{\alpha} \right) + \left(\sum_{j \in J} \left(\sum_{\alpha \in I_j} a_{\alpha} \right) \right) \right)$$

$$= \left(a_{\beta} + \left(\sum_{\alpha \in I'_{k_1}} a_{\alpha} \right) \right) + \left(\sum_{j \in J} \left(\sum_{\alpha \in I_j} a_{\alpha} \right) \right)$$

$$= \left(\sum_{\alpha \in I_{k_1}} a_{\alpha} \right) + \left(\sum_{j \in J} \left(\sum_{\alpha \in I_j} a_{\alpha} \right) \right) = \sum_{k \in K} \left(\sum_{\alpha \in I_k} a_{\alpha} \right),$$

as claimed.

If I = (1, ..., n), we also write $\sum_{i=1}^{n} a_i$ instead of $\sum_{i \in I} a_i$. Since + is associative, Proposition 2.4 shows that the sum $\sum_{i=1}^{n} a_i$ is independent of the grouping of its elements, which justifies the use the notation $a_1 + \cdots + a_n$ (without any parentheses).

If we also assume that our associative binary operation on A is commutative, then we can show that the sum $\sum_{i \in I} a_i$ does not depend on the ordering of the index set I.

Proposition 2.5. Given any nonempty set A equipped with an associative and commutative binary operation $+: A \times A \to A$, for any two nonempty finite sequences I and J of distinct natural numbers such that J is a permutation of I (in other words, the underlying sets of I and J are identical), for every sequence $(a_i)_{i \in I}$ of elements in A, we have

$$\sum_{\alpha \in I} a_{\alpha} = \sum_{\alpha \in J} a_{\alpha}.$$

Proof. We proceed by induction on the number p of elements in I. If p = 1, we have I = J and the proposition holds trivially.

If p > 1, to simplify notation, assume that I = (1, ..., p) and that J is a permutation $(i_1, ..., i_p)$ of I. First, assume that $2 \le i_1 \le p-1$, let J' be the sequence obtained from J by deleting i_1, I' be the sequence obtained from I by deleting i_1 , and let $P = (1, 2, ..., i_1-1)$ and $Q = (i_1+1, ..., p-1, p)$. Observe that the sequence I' is the concatenation of the sequences P and Q. By the induction hypothesis applied to J' and I', and then by Proposition 2.4 applied to I' and its partition (P, Q), we have

$$\sum_{\alpha \in J'} a_{\alpha} = \sum_{\alpha \in I'} a_{\alpha} = \left(\sum_{i=1}^{i_1-1} a_i\right) + \left(\sum_{i=i_1+1}^{p} a_i\right).$$

If we add the lefthand side to a_{i_1} , by definition we get

$$\sum_{\alpha \in J} a_{\alpha}.$$

If we add the righthand side to a_{i_1} , we get

$$a_{i_1} + \left(\left(\sum_{i=1}^{i_1-1} a_i \right) + \left(\sum_{i=i_1+1}^{p} a_i \right) \right).$$

Using associativity, we get

$$a_{i_1} + \left(\left(\sum_{i=1}^{i_1-1} a_i \right) + \left(\sum_{i=i_1+1}^{p} a_i \right) \right) = \left(a_{i_1} + \left(\sum_{i=1}^{i_1-1} a_i \right) \right) + \left(\sum_{i=i_1+1}^{p} a_i \right),$$

then using associativity and commutativity several times (more rigorously, using induction

on $i_1 - 1$), we get

$$\left(a_{i_1} + \left(\sum_{i=1}^{i_1-1} a_i\right)\right) + \left(\sum_{i=i_1+1}^{p} a_i\right) = \left(\sum_{i=1}^{i_1-1} a_i\right) + a_{i_1} + \left(\sum_{i=i_1+1}^{p} a_i\right)$$
$$= \sum_{i=1}^{p} a_i,$$

as claimed.

The cases where $i_1 = 1$ or $i_1 = p$ are treated similarly, but in a simpler manner since either P = () or Q = () (where () denotes the empty sequence).

Having done all this, we can now make sense of sums of the form $\sum_{i\in I} a_i$, for any finite indexed set I and any family $a=(a_i)_{i\in I}$ of elements in A, where A is a set equipped with a binary operation + which is associative and commutative.

Indeed, since I is finite, it is in bijection with the set $\{1, \ldots, n\}$ for some $n \in \mathbb{N}$, and any total ordering \leq on I corresponds to a permutation I_{\leq} of $\{1, \ldots, n\}$ (where we identify a permutation with its image). For any total ordering \leq on I, we define $\sum_{i \in I, \prec} a_i$ as

$$\sum_{i \in I, \preceq} a_i = \sum_{j \in I_{\prec}} a_j.$$

Then for any other total ordering \leq' on I, we have

$$\sum_{i \in I, \preceq'} a_i = \sum_{j \in I_{\prec'}} a_j,$$

and since I_{\leq} and $I_{\leq'}$ are different permutations of $\{1,\ldots,n\}$, by Proposition 2.5, we have

$$\sum_{j \in I_{\prec}} a_j = \sum_{j \in I_{\prec'}} a_j.$$

Therefore, the sum $\sum_{i \in I, \preceq} a_i$ does not depend on the total ordering on I. We define the sum $\sum_{i \in I} a_i$ as the common value $\sum_{i \in I, \preceq} a_i$ for all total orderings \preceq of I.

Here are some examples with $A = \mathbb{R}$:

1. If
$$I = \{1, 2, 3\}$$
, $a = \{(1, 2), (2, -3), (3, \sqrt{2})\}$, then $\sum_{i \in I} a_i = 2 - 3 + \sqrt{2} = -1 + \sqrt{2}$.

2. If
$$I = \{2, 5, 7\}$$
, $a = \{(2, 2), (5, -3), (7, \sqrt{2})\}$, then $\sum_{i \in I} a_i = 2 - 3 + \sqrt{2} = -1 + \sqrt{2}$.

3. If
$$I = \{r, g, b\}$$
, $a = \{(r, 2), (g, -3), (b, 1)\}$, then $\sum_{i \in I} a_i = 2 - 3 + 1 = 0$.

2.4 Linear Independence, Subspaces

One of the most useful properties of vector spaces is that they possess bases. What this means is that in every vector space E, there is some set of vectors, $\{e_1, \ldots, e_n\}$, such that every vector $v \in E$ can be written as a linear combination,

$$v = \lambda_1 e_1 + \cdots + \lambda_n e_n$$

of the e_i , for some scalars, $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Furthermore, the *n*-tuple, $(\lambda_1, \ldots, \lambda_n)$, as above is unique.

This description is fine when E has a finite basis, $\{e_1, \ldots, e_n\}$, but this is not always the case! For example, the vector space of real polynomials, $\mathbb{R}[X]$, does not have a finite basis but instead it has an infinite basis, namely

$$1, X, X^2, \ldots, X^n, \ldots$$

Given a set A, recall that an I-indexed family $(a_i)_{i\in I}$ of elements of A (for short, a family) is a function $a: I \to A$, or equivalently a set of pairs $\{(i, a_i) \mid i \in I\}$. We agree that when $I = \emptyset$, $(a_i)_{i\in I} = \emptyset$. A family $(a_i)_{i\in I}$ is finite if I is finite.

Remark: When considering a family $(a_i)_{i\in I}$, there is no reason to assume that I is ordered. The crucial point is that every element of the family is uniquely indexed by an element of I. Thus, unless specified otherwise, we do not assume that the elements of an index set are ordered.

Given two disjoint sets I and J, the union of two families $(u_i)_{i\in I}$ and $(v_j)_{j\in J}$, denoted as $(u_i)_{i\in I} \cup (v_j)_{j\in J}$, is the family $(w_k)_{k\in (I\cup J)}$ defined such that $w_k = u_k$ if $k\in I$, and $w_k = v_k$ if $k\in J$. Given a family $(u_i)_{i\in I}$ and any element v, we denote by $(u_i)_{i\in I}\cup_k (v)$ the family $(w_i)_{i\in I\cup\{k\}}$ defined such that, $w_i = u_i$ if $i\in I$, and $w_k = v$, where k is any index such that $k\notin I$. Given a family $(u_i)_{i\in I}$, a subfamily of $(u_i)_{i\in I}$ is a family $(u_j)_{j\in J}$ where J is any subset of I.

In this chapter, unless specified otherwise, it is assumed that all families of scalars are finite (i.e., their index set is finite).

Definition 2.6. Let E be a vector space. A vector $v \in E$ is a linear combination of a family $(u_i)_{i \in I}$ of elements of E iff there is a family $(\lambda_i)_{i \in I}$ of scalars in \mathbb{R} such that

$$v = \sum_{i \in I} \lambda_i u_i.$$

When $I = \emptyset$, we stipulate that v = 0. (By Proposition 2.5, sums of the form $\sum_{i \in I} \lambda_i u_i$ are well defined.) We say that a family $(u_i)_{i \in I}$ is linearly independent iff for every family $(\lambda_i)_{i \in I}$ of scalars in \mathbb{R} ,

$$\sum_{i \in I} \lambda_i u_i = 0 \quad \text{implies that} \quad \lambda_i = 0 \text{ for all } i \in I.$$

Equivalently, a family $(u_i)_{i\in I}$ is linearly dependent iff there is some family $(\lambda_i)_{i\in I}$ of scalars in \mathbb{R} such that

$$\sum_{i \in I} \lambda_i u_i = 0 \quad \text{and} \quad \lambda_j \neq 0 \text{ for some } j \in I.$$

We agree that when $I = \emptyset$, the family \emptyset is linearly independent.

Observe that defining linear combinations for families of vectors rather than for sets of vectors has the advantage that the vectors being combined need not be distinct. For example, for $I = \{1, 2, 3\}$ and the families (u, v, u) and $(\lambda_1, \lambda_2, \lambda_1)$, the linear combination

$$\sum_{i \in I} \lambda_i u_i = \lambda_1 u + \lambda_2 v + \lambda_1 u$$

makes sense. Using sets of vectors in the definition of a linear combination does not allow such linear combinations; this is too restrictive.

Unravelling Definition 2.6, a family $(u_i)_{i\in I}$ is linearly dependent iff either I consists of a single element, say i, and $u_i = 0$, or $|I| \geq 2$ and some u_j in the family can be expressed as a linear combination of the other vectors in the family. Indeed, in the second case, there is some family $(\lambda_i)_{i\in I}$ of scalars in \mathbb{R} such that

$$\sum_{i \in I} \lambda_i u_i = 0 \quad \text{and} \quad \lambda_j \neq 0 \text{ for some } j \in I,$$

and since $|I| \ge 2$, the set $I - \{j\}$ is nonempty and we get

$$u_j = \sum_{i \in (I - \{j\})} -\lambda_j^{-1} \lambda_i u_i.$$

Observe that one of the reasons for defining linear dependence for families of vectors rather than for sets of vectors is that our definition allows multiple occurrences of a vector. This is important because a matrix may contain identical columns, and we would like to say that these columns are linearly dependent. The definition of linear dependence for sets does not allow us to do that.

The above also shows that a family $(u_i)_{i\in I}$ is linearly independent iff either $I=\emptyset$, or I consists of a single element i and $u_i\neq 0$, or $|I|\geq 2$ and no vector u_j in the family can be expressed as a linear combination of the other vectors in the family.

When I is nonempty, if the family $(u_i)_{i\in I}$ is linearly independent, note that $u_i \neq 0$ for all $i \in I$. Otherwise, if $u_i = 0$ for some $i \in I$, then we get a nontrivial linear dependence $\sum_{i\in I} \lambda_i u_i = 0$ by picking any nonzero λ_i and letting $\lambda_k = 0$ for all $k \in I$ with $k \neq i$, since $\lambda_i 0 = 0$. If $|I| \geq 2$, we must also have $u_i \neq u_j$ for all $i, j \in I$ with $i \neq j$, since otherwise we get a nontrivial linear dependence by picking $\lambda_i = \lambda$ and $\lambda_j = -\lambda$ for any nonzero λ , and letting $\lambda_k = 0$ for all $k \in I$ with $k \neq i, j$.

Thus, the definition of linear independence implies that a nontrivial linearly independent family is actually a set. This explains why certain authors choose to define linear independence for sets of vectors. The problem with this approach is that linear dependence, which

is the logical negation of linear independence, is then only defined for sets of vectors. However, as we pointed out earlier, it is really desirable to define linear dependence for families allowing multiple occurrences of the same vector.

Example 2.4.

- 1. Any two distinct scalars $\lambda, \mu \neq 0$ in \mathbb{R} are linearly dependent.
- 2. In \mathbb{R}^3 , the vectors (1,0,0), (0,1,0), and (0,0,1) are linearly independent. See Figure 2.7.

Figure 2.7: A visual (arrow) depiction of the red vector (1,0,0), the green vector (0,1,0), and the blue vector (0,0,1) in \mathbb{R}^3 .

- 3. In \mathbb{R}^4 , the vectors (1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), and (0, 0, 0, 1) are linearly independent.
- 4. In \mathbb{R}^2 , the vectors $u=(1,1),\,v=(0,1)$ and w=(2,3) are linearly dependent, since w=2u+v.

See Figure 2.8.

When I is finite, we often assume that it is the set $I = \{1, 2, ..., n\}$. In this case, we denote the family $(u_i)_{i \in I}$ as $(u_1, ..., u_n)$.

The notion of a subspace of a vector space is defined as follows.

Definition 2.7. Given a vector space E, a subset F of E is a linear subspace (or subspace) of E iff F is nonempty and $\lambda u + \mu v \in F$ for all $u, v \in F$, and all $\lambda, \mu \in \mathbb{R}$.

It is easy to see that a subspace F of E is indeed a vector space, since the restriction of $+: E \times E \to E$ to $F \times F$ is indeed a function $+: F \times F \to F$, and the restriction of $\cdot: \mathbb{R} \times E \to E$ to $\mathbb{R} \times F$ is indeed a function $\cdot: \mathbb{R} \times F \to F$.

Since a subspace F is nonempty, if we pick any vector $u \in F$ and if we let $\lambda = \mu = 0$, then $\lambda u + \mu u = 0u + 0u = 0$, so every subspace contains the vector 0.

The following facts also hold. The proof is left as an exercise.

Figure 2.8: A visual (arrow) depiction of the pink vector u = (1, 1), the dark purple vector v = (0, 1), and the vector sum w = 2u + v.

Proposition 2.6.

- (1) The intersection of any family (even infinite) of subspaces of a vector space E is a subspace.
- (2) Let F be any subspace of a vector space E. For any nonempty finite index set I, if $(u_i)_{i\in I}$ is any family of vectors $u_i \in F$ and $(\lambda_i)_{i\in I}$ is any family of scalars, then $\sum_{i\in I} \lambda_i u_i \in F$.

The subspace $\{0\}$ will be denoted by (0), or even 0 (with a mild abuse of notation).

Example 2.5.

1. In \mathbb{R}^2 , the set of vectors u = (x, y) such that

$$x + y = 0$$

is the subspace illustrated by Figure 2.9.

2. In \mathbb{R}^3 , the set of vectors u = (x, y, z) such that

$$x + y + z = 0$$

is the subspace illustrated by Figure 2.10.

3. For any $n \geq 0$, the set of polynomials $f(X) \in \mathbb{R}[X]$ of degree at most n is a subspace of $\mathbb{R}[X]$.

Figure 2.9: The subspace x + y = 0 is the line through the origin with slope -1. It consists of all vectors of the form $\lambda(-1,1)$.

Figure 2.10: The subspace x + y + z = 0 is the plane through the origin with normal (1, 1, 1).

4. The set of upper triangular $n \times n$ matrices is a subspace of the space of $n \times n$ matrices.

Proposition 2.7. Given any vector space E, if S is any nonempty subset of E, then the smallest subspace $\langle S \rangle$ (or Span(S)) of E containing S is the set of all (finite) linear combinations of elements from S.

Proof. We prove that the set Span(S) of all linear combinations of elements of S is a subspace of E, leaving as an exercise the verification that every subspace containing S also contains Span(S).

First, Span(S) is nonempty since it contains S (which is nonempty). If $u = \sum_{i \in I} \lambda_i u_i$

and $v = \sum_{j \in J} \mu_j v_j$ are any two linear combinations in Span(S), for any two scalars $\lambda, \mu \in \mathbb{R}$,

$$\begin{split} \lambda u + \mu v &= \lambda \sum_{i \in I} \lambda_i u_i + \mu \sum_{j \in J} \mu_j v_j \\ &= \sum_{i \in I} \lambda \lambda_i u_i + \sum_{j \in J} \mu \mu_j v_j \\ &= \sum_{i \in I - J} \lambda \lambda_i u_i + \sum_{i \in I \cap J} (\lambda \lambda_i + \mu \mu_i) u_i + \sum_{j \in J - I} \mu \mu_j v_j, \end{split}$$

which is a linear combination with index set $I \cup J$, and thus $\lambda u + \mu v \in \operatorname{Span}(S)$, which proves that $\operatorname{Span}(S)$ is a subspace.

One might wonder what happens if we add extra conditions to the coefficients involved in forming linear combinations. Here are three natural restrictions which turn out to be important (as usual, we assume that our index sets are finite):

(1) Consider combinations $\sum_{i \in I} \lambda_i u_i$ for which

$$\sum_{i \in I} \lambda_i = 1.$$

These are called *affine combinations*. One should realize that every linear combination $\sum_{i \in I} \lambda_i u_i$ can be viewed as an affine combination. For example, if k is an index not in I, if we let $J = I \cup \{k\}$, $u_k = 0$, and $\lambda_k = 1 - \sum_{i \in I} \lambda_i$, then $\sum_{j \in J} \lambda_j u_j$ is an affine combination and

$$\sum_{i \in I} \lambda_i u_i = \sum_{j \in J} \lambda_j u_j.$$

However, we get new spaces. For example, in \mathbb{R}^3 , the set of all affine combinations of the three vectors $e_1 = (1,0,0), e_2 = (0,1,0),$ and $e_3 = (0,0,1),$ is the plane passing through these three points. Since it does not contain 0 = (0,0,0), it is not a linear subspace.

(2) Consider combinations $\sum_{i \in I} \lambda_i u_i$ for which

$$\lambda_i > 0$$
, for all $i \in I$.

These are called *positive* (or *conic*) *combinations*. It turns out that positive combinations of families of vectors are *cones*. They show up naturally in convex optimization.

(3) Consider combinations $\sum_{i \in I} \lambda_i u_i$ for which we require (1) and (2), that is

$$\sum_{i \in I} \lambda_i = 1, \text{ and } \lambda_i \ge 0 \text{ for all } i \in I.$$

These are called *convex combinations*. Given any finite family of vectors, the set of all convex combinations of these vectors is a *convex polyhedron*. Convex polyhedra play a very important role in convex optimization.

Remark: The notion of linear combination can also be defined for infinite index sets I. To ensure that a sum $\sum_{i \in I} \lambda_i u_i$ makes sense, we restrict our attention to families of finite support.

Definition 2.8. Given any field K, a family of scalars $(\lambda_i)_{i\in I}$ has finite support if $\lambda_i = 0$ for all $i \in I - J$, for some finite subset J of I.

If $(\lambda_i)_{i\in I}$ is a family of scalars of finite support, for any vector space E over K, for any (possibly infinite) family $(u_i)_{i\in I}$ of vectors $u_i \in E$, we define the linear combination $\sum_{i\in I} \lambda_i u_i$ as the finite linear combination $\sum_{j\in J} \lambda_j u_j$, where J is any finite subset of I such that $\lambda_i = 0$ for all $i \in I - J$. In general, results stated for finite families also hold for families of finite support.

2.5 Bases of a Vector Space

Given a vector space E, given a family $(v_i)_{i\in I}$, the subset V of E consisting of the null vector 0 and of all linear combinations of $(v_i)_{i\in I}$ is easily seen to be a subspace of E. The family $(v_i)_{i\in I}$ is an economical way of representing the entire subspace V, but such a family would be even nicer if it was not redundant. Subspaces having such an "efficient" generating family (called a basis) play an important role and motivate the following definition.

Definition 2.9. Given a vector space E and a subspace V of E, a family $(v_i)_{i\in I}$ of vectors $v_i \in V$ spans V or generates V iff for every $v \in V$, there is some family $(\lambda_i)_{i\in I}$ of scalars in \mathbb{R} such that

$$v = \sum_{i \in I} \lambda_i v_i.$$

We also say that the elements of $(v_i)_{i\in I}$ are generators of V and that V is spanned by $(v_i)_{i\in I}$, or generated by $(v_i)_{i\in I}$. If a subspace V of E is generated by a finite family $(v_i)_{i\in I}$, we say that V is finitely generated. A family $(u_i)_{i\in I}$ that spans V and is linearly independent is called a basis of V.

Example 2.6.

- 1. In \mathbb{R}^3 , the vectors (1,0,0), (0,1,0), and (0,0,1), illustrated in Figure 2.9, form a basis.
- 2. The vectors (1, 1, 1, 1), (1, 1, -1, -1), (1, -1, 0, 0), (0, 0, 1, -1) form a basis of \mathbb{R}^4 known as the *Haar basis*. This basis and its generalization to dimension 2^n are crucial in wavelet theory.
- 3. In the subspace of polynomials in $\mathbb{R}[X]$ of degree at most n, the polynomials $1, X, X^2, \ldots, X^n$ form a basis.
- 4. The Bernstein polynomials $\binom{n}{k}(1-X)^{n-k}X^k$ for $k=0,\ldots,n$, also form a basis of that space. These polynomials play a major role in the theory of spline curves.

The first key result of linear algebra is that every vector space E has a basis. We begin with a crucial lemma which formalizes the mechanism for building a basis incrementally.

Lemma 2.8. Given a linearly independent family $(u_i)_{i\in I}$ of elements of a vector space E, if $v \in E$ is not a linear combination of $(u_i)_{i\in I}$, then the family $(u_i)_{i\in I} \cup_k (v)$ obtained by adding v to the family $(u_i)_{i\in I}$ is linearly independent (where $k \notin I$).

Proof. Assume that $\mu v + \sum_{i \in I} \lambda_i u_i = 0$, for any family $(\lambda_i)_{i \in I}$ of scalars in \mathbb{R} . If $\mu \neq 0$, then μ has an inverse (because \mathbb{R} is a field), and thus we have $v = -\sum_{i \in I} (\mu^{-1}\lambda_i)u_i$, showing that v is a linear combination of $(u_i)_{i \in I}$ and contradicting the hypothesis. Thus, $\mu = 0$. But then, we have $\sum_{i \in I} \lambda_i u_i = 0$, and since the family $(u_i)_{i \in I}$ is linearly independent, we have $\lambda_i = 0$ for all $i \in I$.

The next theorem holds in general, but the proof is more sophisticated for vector spaces that do not have a finite set of generators. Thus, in this chapter, we only prove the theorem for finitely generated vector spaces.

Theorem 2.9. Given any finite family $S = (u_i)_{i \in I}$ generating a vector space E and any linearly independent subfamily $L = (u_j)_{j \in J}$ of S (where $J \subseteq I$), there is a basis B of E such that $L \subseteq B \subseteq S$.

Proof. Consider the set of linearly independent families B such that $L \subseteq B \subseteq S$. Since this set is nonempty and finite, it has some maximal element (that is, a subfamily $B = (u_h)_{h \in H}$ of S with $H \subseteq I$ of maximum cardinality), say $B = (u_h)_{h \in H}$. We claim that B generates E. Indeed, if B does not generate E, then there is some $u_p \in S$ that is not a linear combination of vectors in B (since S generates E), with $p \notin H$. Then by Lemma 2.8, the family $B' = (u_h)_{h \in H \cup \{p\}}$ is linearly independent, and since $L \subseteq B \subset B' \subseteq S$, this contradicts the maximality of B. Thus, B is a basis of E such that $L \subseteq B \subseteq S$.

Remark: Theorem 2.9 also holds for vector spaces that are not finitely generated. In this case, the problem is to guarantee the existence of a maximal linearly independent family B such that $L \subseteq B \subseteq S$. The existence of such a maximal family can be shown using Zorn's lemma; see Lang [41] (Theorem 5.1).

A situation where the full generality of Theorem 2.9 is needed is the case of the vector space \mathbb{R} over the field of coefficients \mathbb{Q} . The numbers 1 and $\sqrt{2}$ are linearly independent over \mathbb{Q} , so according to Theorem 2.9, the linearly independent family $L=(1,\sqrt{2})$ can be extended to a basis B of \mathbb{R} . Since \mathbb{R} is uncountable and \mathbb{Q} is countable, such a basis must be uncountable!

The notion of a basis can also be defined in terms of the notion of maximal linearly independent family and minimal generating family.

Definition 2.10. Let $(v_i)_{i\in I}$ be a family of vectors in a vector space E. We say that $(v_i)_{i\in I}$ a maximal linearly independent family of E if it is linearly independent, and if for any vector $w \in E$, the family $(v_i)_{i\in I} \cup_k \{w\}$ obtained by adding w to the family $(v_i)_{i\in I}$ is linearly

dependent. We say that $(v_i)_{i\in I}$ a minimal generating family of E if it spans E, and if for any index $p \in I$, the family $(v_i)_{i\in I-\{p\}}$ obtained by removing v_p from the family $(v_i)_{i\in I}$ does not span E.

The following proposition giving useful properties characterizing a basis is an immediate consequence of Lemma 2.8.

Proposition 2.10. Given a vector space E, for any family $B = (v_i)_{i \in I}$ of vectors of E, the following properties are equivalent:

- (1) B is a basis of E.
- (2) B is a maximal linearly independent family of E.
- (3) B is a minimal generating family of E.

Proof. We will first prove the equivalence of (1) and (2). Assume (1). Since B is a basis, it is a linearly independent family. We claim that B is a maximal linearly independent family. If B is not a maximal linearly independent family, then there is some vector $w \in E$ such that the family B' obtained by adding w to B is linearly independent. However, since B is a basis of E, the vector w can be expressed as a linear combination of vectors in B, contradicting the fact that B' is linearly independent.

Conversely, assume (2). We claim that B spans E. If B does not span E, then there is some vector $w \in E$ which is not a linear combination of vectors in B. By Lemma 2.8, the family B' obtained by adding w to B is linearly independent. Since B is a proper subfamily of B', this contradicts the assumption that B is a maximal linearly independent family. Therefore, B must span E, and since B is also linearly independent, it is a basis of E.

Now we will prove the equivalence of (1) and (3). Again, assume (1). Since B is a basis, it is a generating family of E. We claim that B is a minimal generating family. If B is not a minimal generating family, then there is a proper subfamily B' of B that spans E. Then, every $w \in B - B'$ can be expressed as a linear combination of vectors from B', contradicting the fact that B is linearly independent.

Conversely, assume (3). We claim that B is linearly independent. If B is not linearly independent, then some vector $w \in B$ can be expressed as a linear combination of vectors in $B' = B - \{w\}$. Since B generates E, the family B' also generates E, but B' is a proper subfamily of B, contradicting the minimality of B. Since B spans E and is linearly independent, it is a basis of E.

The second key result of linear algebra is that for any two bases $(u_i)_{i\in I}$ and $(v_j)_{j\in J}$ of a vector space E, the index sets I and J have the same cardinality. In particular, if E has a finite basis of n elements, every basis of E has n elements, and the integer n is called the dimension of the vector space E.

To prove the second key result, we can use the following *replacement lemma* due to Steinitz. This result shows the relationship between finite linearly independent families and finite families of generators of a vector space. We begin with a version of the lemma which is

a bit informal, but easier to understand than the precise and more formal formulation given in Proposition 2.12. The technical difficulty has to do with the fact that some of the indices need to be renamed.

Proposition 2.11. (Replacement lemma, version 1) Given a vector space E, let (u_1, \ldots, u_m) be any finite linearly independent family in E, and let (v_1, \ldots, v_n) be any finite family such that every u_i is a linear combination of (v_1, \ldots, v_n) . Then we must have $m \leq n$, and there is a replacement of m of the vectors v_j by (u_1, \ldots, u_m) , such that after renaming some of the indices of the v_j s, the families $(u_1, \ldots, u_m, v_{m+1}, \ldots, v_n)$ and (v_1, \ldots, v_n) generate the same subspace of E.

Proof. We proceed by induction on m. When m=0, the family (u_1,\ldots,u_m) is empty, and the proposition holds trivially. For the induction step, we have a linearly independent family (u_1,\ldots,u_m,u_{m+1}) . Consider the linearly independent family (u_1,\ldots,u_m) . By the induction hypothesis, $m \leq n$, and there is a replacement of m of the vectors v_j by (u_1,\ldots,u_m) , such that after renaming some of the indices of the vs, the families $(u_1,\ldots,u_m,v_{m+1},\ldots,v_n)$ and (v_1,\ldots,v_n) generate the same subspace of E. The vector u_{m+1} can also be expressed as a linear combination of (v_1,\ldots,v_n) , and since $(u_1,\ldots,u_m,v_{m+1},\ldots,v_n)$ and (v_1,\ldots,v_n) generate the same subspace, u_{m+1} can be expressed as a linear combination of $(u_1,\ldots,u_m,v_{m+1},\ldots,v_n)$, say

$$u_{m+1} = \sum_{i=1}^{m} \lambda_i u_i + \sum_{j=m+1}^{n} \lambda_j v_j.$$

We claim that $\lambda_j \neq 0$ for some j with $m+1 \leq j \leq n$, which implies that $m+1 \leq n$. Otherwise, we would have

$$u_{m+1} = \sum_{i=1}^{m} \lambda_i u_i,$$

a nontrivial linear dependence of the u_i , which is impossible since (u_1, \ldots, u_{m+1}) are linearly independent.

Therefore, $m+1 \leq n$, and after renaming indices if necessary, we may assume that $\lambda_{m+1} \neq 0$, so we get

$$v_{m+1} = -\sum_{i=1}^{m} (\lambda_{m+1}^{-1} \lambda_i) u_i - \lambda_{m+1}^{-1} u_{m+1} - \sum_{i=m+2}^{n} (\lambda_{m+1}^{-1} \lambda_i) v_j.$$

Observe that the families $(u_1, \ldots, u_m, v_{m+1}, \ldots, v_n)$ and $(u_1, \ldots, u_{m+1}, v_{m+2}, \ldots, v_n)$ generate the same subspace, since u_{m+1} is a linear combination of $(u_1, \ldots, u_m, v_{m+1}, \ldots, v_n)$ and v_{m+1} is a linear combination of $(u_1, \ldots, u_{m+1}, v_{m+2}, \ldots, v_n)$. Since $(u_1, \ldots, u_m, v_{m+1}, \ldots, v_n)$ and (v_1, \ldots, v_n) generate the same subspace, we conclude that $(u_1, \ldots, u_{m+1}, v_{m+2}, \ldots, v_n)$ and and (v_1, \ldots, v_n) generate the same subspace, which concludes the induction hypothesis. \square

Here is an example illustrating the replacement lemma. Consider sequences (u_1, u_2, u_3) and $(v_1, v_2, v_3, v_4, v_5)$, where (u_1, u_2, u_3) is a linearly independent family and with the u_i s

expressed in terms of the v_i s as follows:

$$u_1 = v_4 + v_5$$

 $u_2 = v_3 + v_4 - v_5$
 $u_3 = v_1 + v_2 + v_3$.

From the first equation we get

$$v_4 = u_1 - v_5,$$

and by substituting in the second equation we have

$$u_2 = v_3 + v_4 - v_5 = v_3 + u_1 - v_5 - v_5 = u_1 + v_3 - 2v_5.$$

From the above equation we get

$$v_3 = -u_1 + u_2 + 2v_5,$$

and so

$$u_3 = v_1 + v_2 + v_3 = v_1 + v_2 - u_1 + u_2 + 2v_5.$$

Finally, we get

$$v_1 = u_1 - u_2 + u_3 - v_2 - 2v_5$$

Therefore we have

$$v_1 = u_1 - u_2 + u_3 - v_2 - 2v_5$$

$$v_3 = -u_1 + u_2 + 2v_5$$

$$v_4 = u_1 - v_5,$$

which shows that $(u_1, u_2, u_3, v_2, v_5)$ spans the same subspace as $(v_1, v_2, v_3, v_4, v_5)$. The vectors (v_1, v_3, v_4) have been replaced by (u_1, u_2, u_3) , and the vectors left over are (v_2, v_5) . We can rename them (v_4, v_5) .

For the sake of completeness, here is a more formal statement of the replacement lemma (and its proof).

Proposition 2.12. (Replacement lemma, version 2) Given a vector space E, let $(u_i)_{i\in I}$ be any finite linearly independent family in E, where |I| = m, and let $(v_j)_{j\in J}$ be any finite family such that every u_i is a linear combination of $(v_j)_{j\in J}$, where |J| = n. Then there exists a set L and an injection $\rho: L \to J$ (a relabeling function) such that $L \cap I = \emptyset$, |L| = n - m, and the families $(u_i)_{i\in I} \cup (v_{\rho(l)})_{l\in L}$ and $(v_j)_{j\in J}$ generate the same subspace of E. In particular, $m \le n$.

Proof. We proceed by induction on |I| = m. When m = 0, the family $(u_i)_{i \in I}$ is empty, and the proposition holds trivially with L = J (ρ is the identity). Assume |I| = m + 1. Consider the linearly independent family $(u_i)_{i \in (I - \{p\})}$, where p is any member of I. By the induction hypothesis, there exists a set L and an injection $\rho: L \to J$ such that $L \cap (I - \{p\}) = \emptyset$,

|L| = n - m, and the families $(u_i)_{i \in (I - \{p\})} \cup (v_{\rho(l)})_{l \in L}$ and $(v_j)_{j \in J}$ generate the same subspace of E. If $p \in L$, we can replace L by $(L - \{p\}) \cup \{p'\}$ where p' does not belong to $I \cup L$, and replace ρ by the injection ρ' which agrees with ρ on $L - \{p\}$ and such that $\rho'(p') = \rho(p)$. Thus, we can always assume that $L \cap I = \emptyset$. Since u_p is a linear combination of $(v_j)_{j \in J}$ and the families $(u_i)_{i \in (I - \{p\})} \cup (v_{\rho(l)})_{l \in L}$ and $(v_j)_{j \in J}$ generate the same subspace of E, u_p is a linear combination of $(u_i)_{i \in (I - \{p\})} \cup (v_{\rho(l)})_{l \in L}$. Let

$$u_p = \sum_{i \in (I - \{p\})} \lambda_i u_i + \sum_{l \in L} \lambda_l v_{\rho(l)}. \tag{1}$$

If $\lambda_l = 0$ for all $l \in L$, we have

$$\sum_{i \in (I - \{p\})} \lambda_i u_i - u_p = 0,$$

contradicting the fact that $(u_i)_{i\in I}$ is linearly independent. Thus, $\lambda_l \neq 0$ for some $l \in L$, say l = q. Since $\lambda_q \neq 0$, we have

$$v_{\rho(q)} = \sum_{i \in (I - \{p\})} (-\lambda_q^{-1} \lambda_i) u_i + \lambda_q^{-1} u_p + \sum_{l \in (L - \{q\})} (-\lambda_q^{-1} \lambda_l) v_{\rho(l)}.$$
 (2)

We claim that the families $(u_i)_{i\in (I-\{p\})} \cup (v_{\rho(l)})_{l\in L}$ and $(u_i)_{i\in I} \cup (v_{\rho(l)})_{l\in (L-\{q\})}$ generate the same subset of E. Indeed, the second family is obtained from the first by replacing $v_{\rho(q)}$ by u_p , and vice-versa, and u_p is a linear combination of $(u_i)_{i\in (I-\{p\})} \cup (v_{\rho(l)})_{l\in L}$, by (1), and $v_{\rho(q)}$ is a linear combination of $(u_i)_{i\in I} \cup (v_{\rho(l)})_{l\in (L-\{q\})}$, by (2). Thus, the families $(u_i)_{i\in I} \cup (v_{\rho(l)})_{l\in (L-\{q\})}$ and $(v_j)_{j\in J}$ generate the same subspace of E, and the proposition holds for $L-\{q\}$ and the restriction of the injection $\rho\colon L\to J$ to $L-\{q\}$, since $L\cap I=\emptyset$ and |L|=n-m imply that $(L-\{q\})\cap I=\emptyset$ and $|L-\{q\}|=n-(m+1)$.

The idea is that m of the vectors v_j can be replaced by the linearly independent u_i s in such a way that the same subspace is still generated. The purpose of the function $\rho \colon L \to J$ is to pick n-m elements j_1, \ldots, j_{n-m} of J and to relabel them l_1, \ldots, l_{n-m} in such a way that these new indices do not clash with the indices in I; this way, the vectors $v_{j_1}, \ldots, v_{j_{n-m}}$ who "survive" (i.e. are not replaced) are relabeled $v_{l_1}, \ldots, v_{l_{n-m}}$, and the other m vectors v_j with $j \in J - \{j_1, \ldots, j_{n-m}\}$ are replaced by the u_i . The index set of this new family is $I \cup L$.

Actually, one can prove that Proposition 2.12 implies Theorem 2.9 when the vector space is finitely generated. Putting Theorem 2.9 and Proposition 2.12 together, we obtain the following fundamental theorem.

Theorem 2.13. Let E be a finitely generated vector space. Any family $(u_i)_{i\in I}$ generating E contains a subfamily $(u_j)_{j\in J}$ which is a basis of E. Any linearly independent family $(u_i)_{i\in I}$ can be extended to a family $(u_j)_{j\in J}$ which is a basis of E (with $I\subseteq J$). Furthermore, for every two bases $(u_i)_{i\in I}$ and $(v_j)_{j\in J}$ of E, we have |I|=|J|=n for some fixed integer $n\geq 0$.

Proof. The first part follows immediately by applying Theorem 2.9 with $L = \emptyset$ and $S = (u_i)_{i \in I}$. For the second part, consider the family $S' = (u_i)_{i \in I} \cup (v_h)_{h \in H}$, where $(v_h)_{h \in H}$ is any finitely generated family generating E, and with $I \cap H = \emptyset$. Then apply Theorem 2.9 to $L = (u_i)_{i \in I}$ and to S'. For the last statement, assume that $(u_i)_{i \in I}$ and $(v_j)_{j \in J}$ are bases of E. Since $(u_i)_{i \in I}$ is linearly independent and $(v_j)_{j \in J}$ spans E, Proposition 2.12 implies that $|I| \leq |J|$. A symmetric argument yields $|J| \leq |I|$.

Remark: Theorem 2.13 also holds for vector spaces that are not finitely generated.

Definition 2.11. When a vector space E is not finitely generated, we say that E is of infinite dimension. The *dimension* of a finitely generated vector space E is the common dimension n of all of its bases and is denoted by $\dim(E)$.

Clearly, if the field \mathbb{R} itself is viewed as a vector space, then every family (a) where $a \in \mathbb{R}$ and $a \neq 0$ is a basis. Thus $\dim(\mathbb{R}) = 1$. Note that $\dim(\{0\}) = 0$.

Definition 2.12. If E is a vector space of dimension $n \geq 1$, for any subspace U of E, if $\dim(U) = 1$, then U is called a line; if $\dim(U) = 2$, then U is called a plane; if $\dim(U) = n-1$, then U is called a hyperplane. If $\dim(U) = k$, then U is sometimes called a k-plane.

Let $(u_i)_{i\in I}$ be a basis of a vector space E. For any vector $v \in E$, since the family $(u_i)_{i\in I}$ generates E, there is a family $(\lambda_i)_{i\in I}$ of scalars in \mathbb{R} , such that

$$v = \sum_{i \in I} \lambda_i u_i.$$

A very important fact is that the family $(\lambda_i)_{i\in I}$ is **unique**.

Proposition 2.14. Given a vector space E, let $(u_i)_{i\in I}$ be a family of vectors in E. Let $v \in E$, and assume that $v = \sum_{i \in I} \lambda_i u_i$. Then the family $(\lambda_i)_{i \in I}$ of scalars such that $v = \sum_{i \in I} \lambda_i u_i$ is unique iff $(u_i)_{i \in I}$ is linearly independent.

Proof. First, assume that $(u_i)_{i\in I}$ is linearly independent. If $(\mu_i)_{i\in I}$ is another family of scalars in \mathbb{R} such that $v = \sum_{i\in I} \mu_i u_i$, then we have

$$\sum_{i \in I} (\lambda_i - \mu_i) u_i = 0,$$

and since $(u_i)_{i\in I}$ is linearly independent, we must have $\lambda_i - \mu_i = 0$ for all $i \in I$, that is, $\lambda_i = \mu_i$ for all $i \in I$. The converse is shown by contradiction. If $(u_i)_{i\in I}$ was linearly dependent, there would be a family $(\mu_i)_{i\in I}$ of scalars not all null such that

$$\sum_{i \in I} \mu_i u_i = 0$$

2.6. MATRICES 53

and $\mu_j \neq 0$ for some $j \in I$. But then,

$$v = \sum_{i \in I} \lambda_i u_i + 0 = \sum_{i \in I} \lambda_i u_i + \sum_{i \in I} \mu_i u_i = \sum_{i \in I} (\lambda_i + \mu_i) u_i,$$

with $\lambda_j \neq \lambda_j + \mu_j$ since $\mu_j \neq 0$, contradicting the assumption that $(\lambda_i)_{i \in I}$ is the unique family such that $v = \sum_{i \in I} \lambda_i u_i$.

Definition 2.13. If $(u_i)_{i\in I}$ is a basis of a vector space E, for any vector $v \in E$, if $(x_i)_{i\in I}$ is the unique family of scalars in \mathbb{R} such that

$$v = \sum_{i \in I} x_i u_i,$$

each x_i is called the component (or coordinate) of index i of v with respect to the basis $(u_i)_{i \in I}$.

2.6 Matrices

In Section 2.1 we introduced informally the notion of a matrix. In this section we define matrices precisely, and also introduce some operations on matrices. It turns out that matrices form a vector space equipped with a multiplication operation which is associative, but noncommutative. We will explain in Section 3.1 how matrices can be used to represent linear maps, defined in the next section.

Definition 2.14. If $K = \mathbb{R}$ or $K = \mathbb{C}$, an $m \times n$ -matrix over K is a family $(a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}$ of scalars in K, represented by an array

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

In the special case where m=1, we have a row vector, represented by

$$(a_{1\,1}\,\cdots\,a_{1\,n})$$

and in the special case where n=1, we have a *column vector*, represented by

$$\begin{pmatrix} a_{1\,1} \\ \vdots \\ a_{m\,1} \end{pmatrix}.$$

In these last two cases, we usually omit the constant index 1 (first index in case of a row, second index in case of a column). The set of all $m \times n$ -matrices is denoted by $M_{m,n}(K)$ or $M_{m,n}$. An $n \times n$ -matrix is called a square matrix of dimension n. The set of all square matrices of dimension n is denoted by $M_n(K)$, or M_n .

Remark: As defined, a matrix $A = (a_{ij})_{1 \le i \le m, 1 \le j \le n}$ is a family, that is, a function from $\{1, 2, ..., m\} \times \{1, 2, ..., n\}$ to K. As such, there is no reason to assume an ordering on the indices. Thus, the matrix A can be represented in many different ways as an array, by adopting different orders for the rows or the columns. However, it is customary (and usually convenient) to assume the natural ordering on the sets $\{1, 2, ..., m\}$ and $\{1, 2, ..., n\}$, and to represent A as an array according to this ordering of the rows and columns.

We define some operations on matrices as follows.

Definition 2.15. Given two $m \times n$ matrices $A = (a_{ij})$ and $B = (b_{ij})$, we define their sum A + B as the matrix $C = (c_{ij})$ such that $c_{ij} = a_{ij} + b_{ij}$; that is,

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{pmatrix}.$$

For any matrix $A = (a_{ij})$, we let -A be the matrix $(-a_{ij})$. Given a scalar $\lambda \in K$, we define the matrix λA as the matrix $C = (c_{ij})$ such that $c_{ij} = \lambda a_{ij}$; that is

$$\lambda \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = \begin{pmatrix} \lambda a_{11} & \lambda a_{12} & \dots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \dots & \lambda a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \dots & \lambda a_{mn} \end{pmatrix}.$$

Given an $m \times n$ matrices $A = (a_{ik})$ and an $n \times p$ matrices $B = (b_{kj})$, we define their product AB as the $m \times p$ matrix $C = (c_{ij})$ such that

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj},$$

for $1 \le i \le m$, and $1 \le j \le p$. In the product AB = C shown below

$$\begin{pmatrix} a_{1\,1} & a_{1\,2} & \dots & a_{1\,n} \\ a_{2\,1} & a_{2\,2} & \dots & a_{2\,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m\,1} & a_{m\,2} & \dots & a_{m\,n} \end{pmatrix} \begin{pmatrix} b_{1\,1} & b_{1\,2} & \dots & b_{1\,p} \\ b_{2\,1} & b_{2\,2} & \dots & b_{2\,p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n\,1} & b_{n\,2} & \dots & b_{n\,p} \end{pmatrix} = \begin{pmatrix} c_{1\,1} & c_{1\,2} & \dots & c_{1\,p} \\ c_{2\,1} & c_{2\,2} & \dots & c_{2\,p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m\,1} & c_{m\,2} & \dots & c_{m\,p} \end{pmatrix},$$

note that the entry of index i and j of the matrix AB obtained by multiplying the matrices A and B can be identified with the product of the row matrix corresponding to the i-th row

2.6. MATRICES 55

of A with the column matrix corresponding to the j-column of B:

$$(a_{i1} \cdots a_{in}) \begin{pmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{pmatrix} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Definition 2.16. The square matrix I_n of dimension n containing 1 on the diagonal and 0 everywhere else is called the *identity matrix*. It is denoted by

$$I_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Definition 2.17. Given an $m \times n$ matrix $A = (a_{ij})$, its transpose $A^{\top} = (a_{ji}^{\top})$, is the $n \times m$ -matrix such that $a_{ji}^{\top} = a_{ij}$, for all $i, 1 \leq i \leq m$, and all $j, 1 \leq j \leq n$.

The transpose of a matrix A is sometimes denoted by A^t , or even by tA . Note that the transpose A^{\top} of a matrix A has the property that the j-th row of A^{\top} is the j-th column of A. In other words, transposition exchanges the rows and the columns of a matrix. Here is an example. If A is the 5×6 matrix

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 7 & 1 & 2 & 3 & 4 & 5 \\ 8 & 7 & 1 & 2 & 3 & 4 \\ 9 & 8 & 7 & 1 & 2 & 3 \\ 10 & 9 & 8 & 7 & 1 & 2 \end{pmatrix},$$

then A^{\top} is the 6×5 matrix

$$A^{\top} = \begin{pmatrix} 1 & 7 & 8 & 9 & 10 \\ 2 & 1 & 7 & 8 & 9 \\ 3 & 2 & 1 & 7 & 8 \\ 4 & 3 & 2 & 1 & 7 \\ 5 & 4 & 3 & 2 & 1 \\ 6 & 5 & 4 & 3 & 2 \end{pmatrix}.$$

The following observation will be useful later on when we discuss the SVD. Given any $m \times n$ matrix A and any $n \times p$ matrix B, if we denote the columns of A by A^1, \ldots, A^n and the rows of B by B_1, \ldots, B_n , then we have

$$AB = A^1 B_1 + \dots + A^n B_n.$$

For every square matrix A of dimension n, it is immediately verified that $AI_n = I_n A = A$.

Definition 2.18. For any square matrix A of dimension n, if a matrix B such that $AB = BA = I_n$ exists, then it is unique, and it is called the *inverse* of A. The matrix B is also denoted by A^{-1} . An invertible matrix is also called a *nonsingular* matrix, and a matrix that is not invertible is called a *singular* matrix.

Using Proposition 2.19 and the fact that matrices represent linear maps, it can be shown that if a square matrix A has a left inverse, that is a matrix B such that BA = I, or a right inverse, that is a matrix C such that AC = I, then A is actually invertible; so $B = A^{-1}$ and $C = A^{-1}$. These facts also follow from Proposition 5.11.

It is immediately verified that the set $M_{m,n}(K)$ of $m \times n$ matrices is a vector space under addition of matrices and multiplication of a matrix by a scalar.

Definition 2.19. The $m \times n$ -matrices $E_{ij} = (e_{hk})$, are defined such that $e_{ij} = 1$, and $e_{hk} = 0$, if $h \neq i$ or $k \neq j$; in other words, the (i, j)-entry is equal to 1 and all other entries are 0.

Here are the E_{ij} matrices for m=2 and n=3:

$$E_{11} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad E_{12} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad E_{13} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$E_{21} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \qquad E_{22} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \qquad E_{23} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

It is clear that every matrix $A = (a_{ij}) \in M_{m,n}(K)$ can be written in a unique way as

$$A = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} E_{ij}.$$

Thus, the family $(E_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}$ is a basis of the vector space $M_{m,n}(K)$, which has dimension mn.

Remark: Definition 2.14 and Definition 2.15 also make perfect sense when K is a (commutative) ring rather than a field. In this more general setting, the framework of vector spaces is too narrow, but we can consider structures over a commutative ring A satisfying all the axioms of Definition 2.4. Such structures are called *modules*. The theory of modules is (much) more complicated than that of vector spaces. For example, modules do not always have a basis, and other properties holding for vector spaces usually fail for modules. When a module has a basis, it is called a *free module*. For example, when A is a commutative ring, the structure A^n is a module such that the vectors e_i , with $(e_i)_i = 1$ and $(e_i)_j = 0$ for $j \neq i$, form a basis of A^n . Many properties of vector spaces still hold for A^n . Thus, A^n is a free module. As another example, when A is a commutative ring, $M_{m,n}(A)$ is a free module with basis $(E_{i,j})_{1 \leq i \leq m, 1 \leq j \leq n}$. Polynomials over a commutative ring also form a free module of infinite dimension.

The properties listed in Proposition 2.15 are easily verified, although some of the computations are a bit tedious. A more conceptual proof is given in Proposition 3.1.

2.7. LINEAR MAPS 57

Proposition 2.15. (1) Given any matrices $A \in M_{m,n}(K)$, $B \in M_{n,p}(K)$, and $C \in M_{p,q}(K)$, we have

$$(AB)C = A(BC);$$

that is, matrix multiplication is associative.

(2) Given any matrices $A, B \in \mathcal{M}_{m,n}(K)$, and $C, D \in \mathcal{M}_{n,p}(K)$, for all $\lambda \in K$, we have

$$(A+B)C = AC + BC$$
$$A(C+D) = AC + AD$$
$$(\lambda A)C = \lambda (AC)$$
$$A(\lambda C) = \lambda (AC),$$

so that matrix multiplication $: M_{m,n}(K) \times M_{n,p}(K) \to M_{m,p}(K)$ is bilinear.

The properties of Proposition 2.15 together with the fact that $AI_n = I_n A = A$ for all square $n \times n$ matrices show that $M_n(K)$ is a ring with unit I_n (in fact, an associative algebra). This is a noncommutative ring with zero divisors, as shown by the following example.

Example 2.7. For example, letting A, B be the 2×2 -matrices

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

then

$$AB = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix},$$

and

$$BA = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Thus $AB \neq BA$, and AB = 0, even though both $A, B \neq 0$.

2.7 Linear Maps

Now that we understand vector spaces and how to generate them, we would like to be able to transform one vector space E into another vector space F. A function between two vector spaces that preserves the vector space structure is called a homomorphism of vector spaces, or *linear map*. Linear maps formalize the concept of linearity of a function.

Keep in mind that linear maps, which are transformations of space, are usually far more important than the spaces themselves.

In the rest of this section, we assume that all vector spaces are real vector spaces, but all results hold for vector spaces over an arbitrary field.

Definition 2.20. Given two vector spaces E and F, a linear map between E and F is a function $f: E \to F$ satisfying the following two conditions:

$$f(x+y) = f(x) + f(y)$$
 for all $x, y \in E$;
 $f(\lambda x) = \lambda f(x)$ for all $\lambda \in \mathbb{R}, x \in E$.

Setting x = y = 0 in the first identity, we get f(0) = 0. The basic property of linear maps is that they transform linear combinations into linear combinations. Given any finite family $(u_i)_{i \in I}$ of vectors in E, given any family $(\lambda_i)_{i \in I}$ of scalars in \mathbb{R} , we have

$$f(\sum_{i \in I} \lambda_i u_i) = \sum_{i \in I} \lambda_i f(u_i).$$

The above identity is shown by induction on |I| using the properties of Definition 2.20.

Example 2.8.

1. The map $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined such that

$$x' = x - y$$
$$y' = x + y$$

is a linear map. The reader should check that it is the composition of a rotation by $\pi/4$ with a magnification of ratio $\sqrt{2}$.

2. For any vector space E, the identity map id: $E \to E$ given by

$$id(u) = u$$
 for all $u \in E$

is a linear map. When we want to be more precise, we write id_E instead of id.

3. The map $D: \mathbb{R}[X] \to \mathbb{R}[X]$ defined such that

$$D(f(X)) = f'(X),$$

where f'(X) is the derivative of the polynomial f(X), is a linear map.

4. The map $\Phi \colon \mathcal{C}([a,b]) \to \mathbb{R}$ given by

$$\Phi(f) = \int_{a}^{b} f(t)dt,$$

where C([a, b]) is the set of continuous functions defined on the interval [a, b], is a linear map.

2.7. LINEAR MAPS 59

5. The function $\langle -, - \rangle : \mathcal{C}([a, b]) \times \mathcal{C}([a, b]) \to \mathbb{R}$ given by

$$\langle f, g \rangle = \int_{a}^{b} f(t)g(t)dt,$$

is linear in each of the variable f, g. It also satisfies the properties $\langle f, g \rangle = \langle g, f \rangle$ and $\langle f, f \rangle = 0$ iff f = 0. It is an example of an *inner product*.

Definition 2.21. Given a linear map $f: E \to F$, we define its *image (or range)* Im f = f(E), as the set

Im
$$f = \{ y \in F \mid (\exists x \in E)(y = f(x)) \},\$$

and its Kernel (or nullspace) Ker $f = f^{-1}(0)$, as the set

$$Ker f = \{x \in E \mid f(x) = 0\}.$$

The derivative map $D: \mathbb{R}[X] \to \mathbb{R}[X]$ from Example 2.8(3) has kernel the constant polynomials, so Ker $D = \mathbb{R}$. If we consider the second derivative $D \circ D: \mathbb{R}[X] \to \mathbb{R}[X]$, then the kernel of $D \circ D$ consists of all polynomials of degree ≤ 1 . The image of $D: \mathbb{R}[X] \to \mathbb{R}[X]$ is actually $\mathbb{R}[X]$ itself, because every polynomial $P(X) = a_0 X^n + \cdots + a_{n-1} X + a_n$ of degree n is the derivative of the polynomial Q(X) of degree n+1 given by

$$Q(X) = a_0 \frac{X^{n+1}}{n+1} + \dots + a_{n-1} \frac{X^2}{2} + a_n X.$$

On the other hand, if we consider the restriction of D to the vector space $\mathbb{R}[X]_n$ of polynomials of degree $\leq n$, then the kernel of D is still \mathbb{R} , but the image of D is the $\mathbb{R}[X]_{n-1}$, the vector space of polynomials of degree $\leq n-1$.

Proposition 2.16. Given a linear map $f: E \to F$, the set Im f is a subspace of F and the set Ker f is a subspace of E. The linear map $f: E \to F$ is injective iff Ker f = (0) (where (0) is the trivial subspace $\{0\}$).

Proof. Given any $x, y \in \text{Im } f$, there are some $u, v \in E$ such that x = f(u) and y = f(v), and for all $\lambda, \mu \in \mathbb{R}$, we have

$$f(\lambda u + \mu v) = \lambda f(u) + \mu f(v) = \lambda x + \mu y,$$

and thus, $\lambda x + \mu y \in \text{Im } f$, showing that Im f is a subspace of F.

Given any $x, y \in \text{Ker } f$, we have f(x) = 0 and f(y) = 0, and thus,

$$f(\lambda x + \mu y) = \lambda f(x) + \mu f(y) = 0,$$

that is, $\lambda x + \mu y \in \text{Ker } f$, showing that Ker f is a subspace of E.

First, assume that $\operatorname{Ker} f = (0)$. We need to prove that f(x) = f(y) implies that x = y. However, if f(x) = f(y), then f(x) - f(y) = 0, and by linearity of f we get f(x - y) = 0. Because $\operatorname{Ker} f = (0)$, we must have x - y = 0, that is x = y, so f is injective. Conversely, assume that f is injective. If $x \in \operatorname{Ker} f$, that is f(x) = 0, since f(0) = 0 we have f(x) = f(0), and by injectivity, x = 0, which proves that $\operatorname{Ker} f = (0)$. Therefore, f is injective iff $\operatorname{Ker} f = (0)$.

Since by Proposition 2.16, the image $\operatorname{Im} f$ of a linear map f is a subspace of F, we can define the $\operatorname{rank} \operatorname{rk}(f)$ of f as the dimension of $\operatorname{Im} f$.

Definition 2.22. Given a linear map $f: E \to F$, the $rank \operatorname{rk}(f)$ of f is the dimension of the image $\operatorname{Im} f$ of f.

A fundamental property of bases in a vector space is that they allow the definition of linear maps as unique homomorphic extensions, as shown in the following proposition.

Proposition 2.17. Given any two vector spaces E and F, given any basis $(u_i)_{i\in I}$ of E, given any other family of vectors $(v_i)_{i\in I}$ in F, there is a unique linear map $f: E \to F$ such that $f(u_i) = v_i$ for all $i \in I$. Furthermore, f is injective iff $(v_i)_{i\in I}$ is linearly independent, and f is surjective iff $(v_i)_{i\in I}$ generates F.

Proof. If such a linear map $f: E \to F$ exists, since $(u_i)_{i \in I}$ is a basis of E, every vector $x \in E$ can written uniquely as a linear combination

$$x = \sum_{i \in I} x_i u_i,$$

and by linearity, we must have

$$f(x) = \sum_{i \in I} x_i f(u_i) = \sum_{i \in I} x_i v_i.$$

Define the function $f: E \to F$, by letting

$$f(x) = \sum_{i \in I} x_i v_i$$

for every $x = \sum_{i \in I} x_i u_i$. It is easy to verify that f is indeed linear, it is unique by the previous reasoning, and obviously, $f(u_i) = v_i$.

Now assume that f is injective. Let $(\lambda_i)_{i\in I}$ be any family of scalars, and assume that

$$\sum_{i \in I} \lambda_i v_i = 0.$$

Since $v_i = f(u_i)$ for every $i \in I$, we have

$$f(\sum_{i \in I} \lambda_i u_i) = \sum_{i \in I} \lambda_i f(u_i) = \sum_{i \in I} \lambda_i v_i = 0.$$

Since f is injective iff $\operatorname{Ker} f = (0)$, we have

$$\sum_{i \in I} \lambda_i u_i = 0,$$

2.7. LINEAR MAPS 61

and since $(u_i)_{i\in I}$ is a basis, we have $\lambda_i = 0$ for all $i \in I$, which shows that $(v_i)_{i\in I}$ is linearly independent. Conversely, assume that $(v_i)_{i\in I}$ is linearly independent. Since $(u_i)_{i\in I}$ is a basis of E, every vector $x \in E$ is a linear combination $x = \sum_{i\in I} \lambda_i u_i$ of $(u_i)_{i\in I}$. If

$$f(x) = f(\sum_{i \in I} \lambda_i u_i) = 0,$$

then

$$\sum_{i \in I} \lambda_i v_i = \sum_{i \in I} \lambda_i f(u_i) = f(\sum_{i \in I} \lambda_i u_i) = 0,$$

and $\lambda_i = 0$ for all $i \in I$ because $(v_i)_{i \in I}$ is linearly independent, which means that x = 0. Therefore, Ker f = (0), which implies that f is injective. The part where f is surjective is left as a simple exercise.

Figure 2.11 provides an illustration of Proposition 2.17 when $E = \mathbb{R}^3$ and $V = \mathbb{R}^2$

Figure 2.11: Given $u_1 = (1,0,0)$, $u_2 = (0,1,0)$, $u_3 = (0,0,1)$ and $v_1 = (1,1)$, $v_2 = (-1,1)$, $v_3 = (1,0)$, define the unique linear map $f: \mathbb{R}^3 \to \mathbb{R}^2$ by $f(u_1) = v_1$, $f(u_2) = v_2$, and $f(u_3) = v_3$. This map is surjective but not injective since $f(u_1 - u_2) = f(u_1) - f(u_2) = (1,1) - (-1,1) = (2,0) = 2f(u_3) = f(2u_3)$.

By the second part of Proposition 2.17, an injective linear map $f: E \to F$ sends a basis $(u_i)_{i \in I}$ to a linearly independent family $(f(u_i))_{i \in I}$ of F, which is also a basis when f is bijective. Also, when E and F have the same finite dimension n, $(u_i)_{i \in I}$ is a basis of E, and $f: E \to F$ is injective, then $(f(u_i))_{i \in I}$ is a basis of F (by Proposition 2.10).

The following simple proposition is also useful.

Proposition 2.18. Given any two vector spaces E and F, with F nontrivial, given any family $(u_i)_{i\in I}$ of vectors in E, the following properties hold:

- (1) The family $(u_i)_{i\in I}$ generates E iff for every family of vectors $(v_i)_{i\in I}$ in F, there is at most one linear map $f: E \to F$ such that $f(u_i) = v_i$ for all $i \in I$.
- (2) The family $(u_i)_{i\in I}$ is linearly independent iff for every family of vectors $(v_i)_{i\in I}$ in F, there is some linear map $f: E \to F$ such that $f(u_i) = v_i$ for all $i \in I$.

Proof. (1) If there is any linear map $f: E \to F$ such that $f(u_i) = v_i$ for all $i \in I$, since $(u_i)_{i \in I}$ generates E, every vector $x \in E$ can be written as some linear combination

$$x = \sum_{i \in I} x_i u_i,$$

and by linearity, we must have

$$f(x) = \sum_{i \in I} x_i f(u_i) = \sum_{i \in I} x_i v_i.$$

This shows that f is unique if it exists. Conversely, assume that $(u_i)_{i\in I}$ does not generate E. Since F is nontrivial, there is some some vector $y \in F$ such that $y \neq 0$. Since $(u_i)_{i\in I}$ does not generate E, there is some vector $w \in E$ that is not in the subspace generated by $(u_i)_{i\in I}$. By Theorem 2.13, there is a linearly independent subfamily $(u_i)_{i\in I_0}$ of $(u_i)_{i\in I}$ generating the same subspace. Since by hypothesis, $w \in E$ is not in the subspace generated by $(u_i)_{i\in I_0}$, by Lemma 2.8 and by Theorem 2.13 again, there is a basis $(e_j)_{j\in I_0\cup J}$ of E, such that $e_i=u_i$ for all $i\in I_0$, and $w=e_{j_0}$ for some $j_0\in J$. Letting $(v_i)_{i\in I}$ be the family in F such that $v_i=0$ for all $i\in I$, defining $f\colon E\to F$ to be the constant linear map with value 0, we have a linear map such that $f(u_i)=0$ for all $i\in I$. By Proposition 2.17, there is a unique linear map $g\colon E\to F$ such that g(w)=y, and $g(e_j)=0$ for all $j\in (I_0\cup J)-\{j_0\}$. By definition of the basis $(e_j)_{j\in I_0\cup J}$ of E, we have $g(u_i)=0$ for all $i\in I$, and since $f\neq g$, this contradicts the fact that there is at most one such map. See Figure 2.12.

(2) If the family $(u_i)_{i\in I}$ is linearly independent, then by Theorem 2.13, $(u_i)_{i\in I}$ can be extended to a basis of E, and the conclusion follows by Proposition 2.17. Conversely, assume that $(u_i)_{i\in I}$ is linearly dependent. Then there is some family $(\lambda_i)_{i\in I}$ of scalars (not all zero) such that

$$\sum_{i \in I} \lambda_i u_i = 0.$$

By the assumption, for any nonzero vector $y \in F$, for every $i \in I$, there is some linear map $f_i \colon E \to F$, such that $f_i(u_i) = y$, and $f_i(u_i) = 0$, for $j \in I - \{i\}$. Then we would get

$$0 = f_i(\sum_{i \in I} \lambda_i u_i) = \sum_{i \in I} \lambda_i f_i(u_i) = \lambda_i y,$$

and since $y \neq 0$, this implies $\lambda_i = 0$ for every $i \in I$. Thus, $(u_i)_{i \in I}$ is linearly independent. \square

Given vector spaces E, F, and G, and linear maps $f: E \to F$ and $g: F \to G$, it is easily verified that the composition $g \circ f: E \to G$ of f and g is a linear map.

2.7. LINEAR MAPS 63

Figure 2.12: Let $E = \mathbb{R}^3$ and $F = \mathbb{R}^2$. The vectors $u_1 = (1,0,0)$, $u_2 = (0,1,0)$ do not generate \mathbb{R}^3 since both the zero map and the map g, where g(0,0,1) = (1,0), send the peach xy-plane to the origin.

Definition 2.23. A linear map $f: E \to F$ is an *isomorphism* iff there is a linear map $g: F \to E$, such that

$$g \circ f = \mathrm{id}_E$$
 and $f \circ g = \mathrm{id}_F$. (*)

The map g in Definition 2.23 is unique. This is because if g and h both satisfy $g \circ f = \mathrm{id}_E$, $f \circ g = \mathrm{id}_F$, $h \circ f = \mathrm{id}_E$, and $f \circ h = \mathrm{id}_F$, then

$$g = g \circ \mathrm{id}_F = g \circ (f \circ h) = (g \circ f) \circ h = \mathrm{id}_E \circ h = h.$$

The map g satisfying (*) above is called the *inverse* of f and it is also denoted by f^{-1} .

Observe that Proposition 2.17 shows that if $F = \mathbb{R}^n$, then we get an isomorphism between any vector space E of dimension |J| = n and \mathbb{R}^n . Proposition 2.17 also implies that if E and F are two vector spaces, $(u_i)_{i \in I}$ is a basis of E, and $f: E \to F$ is a linear map which is an isomorphism, then the family $(f(u_i))_{i \in I}$ is a basis of F.

One can verify that if $f: E \to F$ is a bijective linear map, then its inverse $f^{-1}: F \to E$, as a function, is also a linear map, and thus f is an isomorphism.

Another useful corollary of Proposition 2.17 is this:

Proposition 2.19. Let E be a vector space of finite dimension $n \ge 1$ and let $f: E \to E$ be any linear map. The following properties hold:

- (1) If f has a left inverse g, that is, if g is a linear map such that $g \circ f = id$, then f is an isomorphism and $f^{-1} = g$.
- (2) If f has a right inverse h, that is, if h is a linear map such that $f \circ h = id$, then f is an isomorphism and $f^{-1} = h$.

Proof. (1) The equation $g \circ f = \text{id}$ implies that f is injective; this is a standard result about functions (if f(x) = f(y), then g(f(x)) = g(f(y)), which implies that x = y since $g \circ f = \text{id}$). Let (u_1, \ldots, u_n) be any basis of E. By Proposition 2.17, since f is injective, $(f(u_1), \ldots, f(u_n))$ is linearly independent, and since E has dimension n, it is a basis of E (if $(f(u_1), \ldots, f(u_n))$ doesn't span E, then it can be extended to a basis of dimension strictly greater than n, contradicting Theorem 2.13). Then f is bijective, and by a previous observation its inverse is a linear map. We also have

$$g = g \circ id = g \circ (f \circ f^{-1}) = (g \circ f) \circ f^{-1} = id \circ f^{-1} = f^{-1}.$$

(2) The equation $f \circ h = \text{id}$ implies that f is surjective; this is a standard result about functions (for any $y \in E$, we have f(h(y)) = y). Let (u_1, \ldots, u_n) be any basis of E. By Proposition 2.17, since f is surjective, $(f(u_1), \ldots, f(u_n))$ spans E, and since E has dimension n, it is a basis of E (if $(f(u_1), \ldots, f(u_n))$) is not linearly independent, then because it spans E, it contains a basis of dimension strictly smaller than n, contradicting Theorem 2.13). Then f is bijective, and by a previous observation its inverse is a linear map. We also have

$$h = id \circ h = (f^{-1} \circ f) \circ h = f^{-1} \circ (f \circ h) = f^{-1} \circ id = f^{-1}.$$

This completes the proof.

Definition 2.24. The set of all linear maps between two vector spaces E and F is denoted by Hom(E, F) or by $\mathcal{L}(E; F)$ (the notation $\mathcal{L}(E; F)$ is usually reserved to the set of continuous linear maps, where E and F are normed vector spaces). When we wish to be more precise and specify the field E over which the vector spaces E and E are defined we write $Hom_K(E, F)$.

The set Hom(E, F) is a vector space under the operations defined in Example 2.3, namely

$$(f+g)(x) = f(x) + g(x)$$

for all $x \in E$, and

$$(\lambda f)(x) = \lambda f(x)$$

for all $x \in E$. The point worth checking carefully is that λf is indeed a linear map, which uses the commutativity of * in the field K (typically, $K = \mathbb{R}$ or $K = \mathbb{C}$). Indeed, we have

$$(\lambda f)(\mu x) = \lambda f(\mu x) = \lambda \mu f(x) = \mu \lambda f(x) = \mu(\lambda f)(x).$$

When E and F have finite dimensions, the vector space Hom(E, F) also has finite dimension, as we shall see shortly.

Definition 2.25. When E = F, a linear map $f: E \to E$ is also called an *endomorphism*. The space Hom(E, E) is also denoted by End(E).

It is also important to note that composition confers to $\operatorname{Hom}(E,E)$ a ring structure. Indeed, composition is an operation $\circ: \operatorname{Hom}(E,E) \times \operatorname{Hom}(E,E) \to \operatorname{Hom}(E,E)$, which is associative and has an identity id_E , and the distributivity properties hold:

$$(g_1 + g_2) \circ f = g_1 \circ f + g_2 \circ f;$$

 $g \circ (f_1 + f_2) = g \circ f_1 + g \circ f_2.$

The ring Hom(E, E) is an example of a noncommutative ring.

It is easily seen that the set of bijective linear maps $f: E \to E$ is a group under composition.

Definition 2.26. Bijective linear maps $f: E \to E$ are also called *automorphisms*. The group of automorphisms of E is called the *general linear group* (of E), and it is denoted by $\mathbf{GL}(E)$, or by $\mathbf{Aut}(E)$, or when $E = \mathbb{R}^n$, by $\mathbf{GL}(n,\mathbb{R})$, or even by $\mathbf{GL}(n)$.

2.8 Linear Forms and the Dual Space

We already observed that the field K itself ($K = \mathbb{R}$ or $K = \mathbb{C}$) is a vector space (over itself). The vector space Hom(E,K) of linear maps from E to the field K, the linear forms, plays a particular role. In this section, we only define linear forms and show that every finite-dimensional vector space has a dual basis. A more advanced presentation of dual spaces and duality is given in Chapter 10.

Definition 2.27. Given a vector space E, the vector space Hom(E, K) of linear maps from E to the field K is called the *dual space* (or *dual*) of E. The space Hom(E, K) is also denoted by E^* , and the linear maps in E^* are called the *linear forms*, or *covectors*. The dual space E^{**} of the space E^* is called the *bidual* of E.

As a matter of notation, linear forms $f: E \to K$ will also be denoted by starred symbol, such as u^* , x^* , etc.

If E is a vector space of finite dimension n and (u_1, \ldots, u_n) is a basis of E, for any linear form $f^* \in E^*$, for every $x = x_1u_1 + \cdots + x_nu_n \in E$, by linearity we have

$$f^*(x) = f^*(u_1)x_1 + \dots + f^*(u_n)x_n$$

= $\lambda_1 x_1 + \dots + \lambda_n x_n$,

with $\lambda_i = f^*(u_i) \in K$ for every $i, 1 \leq i \leq n$. Thus, with respect to the basis (u_1, \ldots, u_n) , the linear form f^* is represented by the row vector

$$(\lambda_1 \cdots \lambda_n),$$

we have

$$f^*(x) = \begin{pmatrix} \lambda_1 & \cdots & \lambda_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix},$$

a linear combination of the coordinates of x, and we can view the linear form f^* as a linear equation. If we decide to use a column vector of coefficients

$$c = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$$

instead of a row vector, then the linear form f^* is defined by

$$f^*(x) = c^{\top} x.$$

The above notation is often used in machine learning.

Example 2.9. Given any differentiable function $f: \mathbb{R}^n \to \mathbb{R}$, by definition, for any $x \in \mathbb{R}^n$, the *total derivative* df_x of f at x is the linear form $df_x: \mathbb{R}^n \to \mathbb{R}$ defined so that for all $u = (u_1, \ldots, u_n) \in \mathbb{R}^n$,

$$df_x(u) = \left(\frac{\partial f}{\partial x_1}(x) \quad \cdots \quad \frac{\partial f}{\partial x_n}(x)\right) \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x) u_i.$$

Example 2.10. Let $\mathcal{C}([0,1])$ be the vector space of continuous functions $f:[0,1] \to \mathbb{R}$. The map $\mathcal{I}: \mathcal{C}([0,1]) \to \mathbb{R}$ given by

$$\mathcal{I}(f) = \int_0^1 f(x)dx \quad \text{for any } f \in \mathcal{C}([0,1])$$

is a linear form (integration).

Example 2.11. Consider the vector space $M_n(\mathbb{R})$ of real $n \times n$ matrices. Let $\operatorname{tr}: M_n(\mathbb{R}) \to \mathbb{R}$ be the function given by

$$tr(A) = a_{11} + a_{22} + \dots + a_{nn},$$

called the trace of A. It is a linear form. Let $s: M_n(\mathbb{R}) \to \mathbb{R}$ be the function given by

$$s(A) = \sum_{i,j=1}^{n} a_{ij},$$

where $A = (a_{ij})$. It is immediately verified that s is a linear form.

Given a vector space E and any basis $(u_i)_{i\in I}$ for E, we can associate to each u_i a linear form $u_i^* \in E^*$, and the u_i^* have some remarkable properties.

Definition 2.28. Given a vector space E and any basis $(u_i)_{i\in I}$ for E, by Proposition 2.17, for every $i\in I$, there is a unique linear form u_i^* such that

$$u_i^*(u_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j, \end{cases}$$

for every $j \in I$. The linear form u_i^* is called the *coordinate form* of index i w.r.t. the basis $(u_i)_{i \in I}$.

Remark: Given an index set I, authors often define the so called "Kronecker symbol" δ_{ij} such that

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j, \end{cases}$$

for all $i, j \in I$. Then, $u_i^*(u_i) = \delta_{ij}$.

The reason for the terminology *coordinate form* is as follows: If E has finite dimension and if (u_1, \ldots, u_n) is a basis of E, for any vector

$$v = \lambda_1 u_1 + \cdots + \lambda_n u_n$$

we have

$$u_{i}^{*}(v) = u_{i}^{*}(\lambda_{1}u_{1} + \dots + \lambda_{n}u_{n})$$

= $\lambda_{1}u_{i}^{*}(u_{1}) + \dots + \lambda_{i}u_{i}^{*}(u_{i}) + \dots + \lambda_{n}u_{i}^{*}(u_{n})$
= λ_{i} ,

since $u_i^*(u_j) = \delta_{ij}$. Therefore, u_i^* is the linear function that returns the *i*th coordinate of a vector expressed over the basis (u_1, \ldots, u_n) .

The following theorem shows that in finite-dimension, every basis (u_1, \ldots, u_n) of a vector space E yields a basis (u_1^*, \ldots, u_n^*) of the dual space E^* , called a *dual basis*.

Theorem 2.20. (Existence of dual bases) Let E be a vector space of dimension n. The following properties hold: For every basis (u_1, \ldots, u_n) of E, the family of coordinate forms (u_1^*, \ldots, u_n^*) is a basis of E^* (called the dual basis of (u_1, \ldots, u_n)).

Proof. (a) If $v^* \in E^*$ is any linear form, consider the linear form

$$f^* = v^*(u_1)u_1^* + \dots + v^*(u_n)u_n^*.$$

Observe that because $u_i^*(u_j) = \delta_{ij}$,

$$f^*(u_i) = (v^*(u_1)u_1^* + \dots + v^*(u_n)u_n^*)(u_i)$$

= $v^*(u_1)u_1^*(u_i) + \dots + v^*(u_i)u_i^*(u_i) + \dots + v^*(u_n)u_n^*(u_i)$
= $v^*(u_i)$,

and so f^* and v^* agree on the basis (u_1, \ldots, u_n) , which implies that

$$v^* = f^* = v^*(u_1)u_1^* + \dots + v^*(u_n)u_n^*.$$

Therefore, (u_1^*, \ldots, u_n^*) spans E^* . We claim that the covectors u_1^*, \ldots, u_n^* are linearly independent. If not, we have a nontrivial linear dependence

$$\lambda_1 u_1^* + \dots + \lambda_n u_n^* = 0,$$

and if we apply the above linear form to each u_i , using a familiar computation, we get

$$0 = \lambda_i u_i^*(u_i) = \lambda_i,$$

proving that u_1^*, \ldots, u_n^* are indeed linearly independent. Therefore, (u_1^*, \ldots, u_n^*) is a basis of E^* .

In particular, Theorem 2.20 shows a finite-dimensional vector space and its dual E^* have the same dimension.

2.9 Summary

The main concepts and results of this chapter are listed below:

- The notion of a vector space.
- Families of vectors.
- Linear combinations of vectors; linear dependence and linear independence of a family of vectors.
- Linear subspaces.
- Spanning (or generating) family; generators, finitely generated subspace; basis of a subspace.
- Every linearly independent family can be extended to a basis (Theorem 2.9).
- A family B of vectors is a basis iff it is a maximal linearly independent family iff it is a minimal generating family (Proposition 2.10).
- The replacement lemma (Proposition 2.12).
- Any two bases in a finitely generated vector space E have the same number of elements; this is the dimension of E (Theorem 2.13).
- Hyperplanes.

2.10. PROBLEMS 69

• Every vector has a *unique representation* over a basis (in terms of its coordinates).

- Matrices
- Column vectors, row vectors.
- Matrix operations: addition, scalar multiplication, multiplication.
- The vector space $M_{m,n}(K)$ of $m \times n$ matrices over the field K; The ring $M_n(K)$ of $n \times n$ matrices over the field K.
- The notion of a linear map.
- The *image* Im f (or *range*) of a linear map f.
- The kernel Ker f (or nullspace) of a linear map f.
- The $rank \operatorname{rk}(f)$ of a linear map f.
- The image and the kernel of a linear map are subspaces. A linear map is injective iff its kernel is the trivial space (0) (Proposition 2.16).
- The unique homomorphic extension property of linear maps with respect to bases (Proposition 2.17).
- The vector space of linear maps $\operatorname{Hom}_K(E, F)$.
- Linear forms (covectors) and the dual space E^* .
- Coordinate forms.
- The existence of dual bases (in finite dimension).

2.10 Problems

Problem 2.1. Let H be the set of 3×3 upper triangular matrices given by

$$H = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}.$$

- (1) Prove that H with the binary operation of matrix multiplication is a group; find explicitly the inverse of every matrix in H. Is H abelian (commutative)?
- (2) Given two groups G_1 and G_2 , recall that a homomorphism if a function $\varphi \colon G_1 \to G_2$ such that

$$\varphi(ab) = \varphi(a)\varphi(b), \quad a, b \in G_1.$$

Prove that $\varphi(e_1) = e_2$ (where e_i is the identity element of G_i) and that

$$\varphi(a^{-1}) = (\varphi(a))^{-1}, \quad a \in G_1.$$

(3) Let S^1 be the unit circle, that is

$$S^1 = \{ e^{i\theta} = \cos\theta + i\sin\theta \mid 0 \le \theta < 2\pi \},\$$

and let φ be the function given by

$$\varphi \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} = (a, c, e^{ib}).$$

Prove that φ is a surjective function onto $G = \mathbb{R} \times \mathbb{R} \times S^1$, and that if we define multiplication on this set by

$$(x_1, y_1, u_1) \cdot (x_2, y_2, u_2) = (x_1 + x_2, y_1 + y_2, e^{ix_1y_2}u_1u_2),$$

then G is a group and φ is a group homomorphism from H onto G.

(4) The kernel of a homomorphism $\varphi \colon G_1 \to G_2$ is defined as

$$\operatorname{Ker}(\varphi) = \{ a \in G_1 \mid \varphi(a) = e_2 \}.$$

Find explicitly the kernel of φ and show that it is a subgroup of H.

Problem 2.2. For any $m \in \mathbb{Z}$ with m > 0, the subset $m\mathbb{Z} = \{mk \mid k \in \mathbb{Z}\}$ is an abelian subgroup of \mathbb{Z} . Check this.

- (1) Give a group isomorphism (an invertible homomorphism) from $m\mathbb{Z}$ to \mathbb{Z} .
- (2) Check that the inclusion map $i \colon m\mathbb{Z} \to \mathbb{Z}$ given by i(mk) = mk is a group homomorphism. Prove that if $m \geq 2$ then there is no group homomorphism $p \colon \mathbb{Z} \to m\mathbb{Z}$ such that $p \circ i = \mathrm{id}$.

Remark: The above shows that abelian groups fail to have some of the properties of vector spaces. We will show later that a linear map satisfying the condition $p \circ i = \text{id}$ always exists.

Problem 2.3. Let $E = \mathbb{R} \times \mathbb{R}$, and define the addition operation

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1, +y_2), \quad x_1, x_2, y_1, y_2 \in \mathbb{R},$$

and the multiplication operation $\cdot: \mathbb{R} \times E \to E$ by

$$\lambda \cdot (x, y) = (\lambda x, y), \quad \lambda, x, y \in \mathbb{R}.$$

Show that E with the above operations + and \cdot is not a vector space. Which of the axioms is violated?

2.10. PROBLEMS 71

Problem 2.4. (1) Prove that the axioms of vector spaces imply that

$$\alpha \cdot 0 = 0$$

$$0 \cdot v = 0$$

$$\alpha \cdot (-v) = -(\alpha \cdot v)$$

$$(-\alpha) \cdot v = -(\alpha \cdot v)$$

for all $v \in E$ and all $\alpha \in K$, where E is a vector space over K.

(2) For every $\lambda \in \mathbb{R}$ and every $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, define λx by

$$\lambda x = \lambda(x_1, \dots, x_n) = (\lambda x_1, \dots, \lambda x_n).$$

Recall that every vector $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ can be written uniquely as

$$x = x_1 e_1 + \dots + x_n e_n,$$

where $e_i = (0, ..., 0, 1, 0, ..., 0)$, with a single 1 in position i. For any operation $\cdot : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, if \cdot satisfies the Axiom (V1) of a vector space, then prove that for any $\alpha \in \mathbb{R}$, we have

$$\alpha \cdot x = \alpha \cdot (x_1 e_1 + \dots + x_n e_n) = \alpha \cdot (x_1 e_1) + \dots + \alpha \cdot (x_n e_n).$$

Conclude that \cdot is completely determined by its action on the one-dimensional subspaces of \mathbb{R}^n spanned by e_1, \ldots, e_n .

- (3) Use (2) to define operations $: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ that satisfy the Axioms (V1–V3), but for which Axiom V4 fails.
- (4) For any operation $\cdot : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, prove that if \cdot satisfies the Axioms (V2–V3), then for every rational number $r \in \mathbb{Q}$ and every vector $x \in \mathbb{R}^n$, we have

$$r \cdot x = r(1 \cdot x)$$
.

In the above equation, $1 \cdot x$ is some vector $(y_1, \ldots, y_n) \in \mathbb{R}^n$ not necessarily equal to $x = (x_1, \ldots, x_n)$, and

$$r(1 \cdot x) = (ry_1, \dots, ry_n),$$

as in Part (2).

Use (4) to conclude that any operation $\cdot: \mathbb{Q} \times \mathbb{R}^n \to \mathbb{R}^n$ that satisfies the Axioms (V1–V3) is completely determined by the action of 1 on the one-dimensional subspaces of \mathbb{R}^n spanned by e_1, \ldots, e_n .

Problem 2.5. Let A_1 be the following matrix:

$$A_1 = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 2 & -1 \\ -3 & -5 & 1 \end{pmatrix}.$$

Prove that the columns of A_1 are linearly independent. Find the coordinates of the vector x = (6, 2, -7) over the basis consisting of the column vectors of A_1 .

Problem 2.6. Let A_2 be the following matrix:

$$A_2 = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & 2 & 3 \\ -1 & 0 & 1 & -1 \\ -2 & -1 & 3 & 0 \end{pmatrix}.$$

Express the fourth column of A_2 as a linear combination of the first three columns of A_2 . Is the vector x = (7, 14, -1, 2) a linear combination of the columns of A_2 ?

Problem 2.7. Let A_3 be the following matrix:

$$A_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}.$$

Prove that the columns of A_1 are linearly independent. Find the coordinates of the vector x = (6, 9, 14) over the basis consisting of the column vectors of A_3 .

Problem 2.8. Let A_4 be the following matrix:

$$A_4 = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & 2 & 3 \\ -1 & 0 & 1 & -1 \\ -2 & -1 & 4 & 0 \end{pmatrix}.$$

Prove that the columns of A_4 are linearly independent. Find the coordinates of the vector x = (7, 14, -1, 2) over the basis consisting of the column vectors of A_4 .

Problem 2.9. Consider the following Haar matrix

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{pmatrix}.$$

Prove that the columns of H are linearly independent. Hint. Compute the product $H^{\top}H.$

Problem 2.10. Consider the following Hadamard matrix

Prove that the columns of H_4 are linearly independent. Hint. Compute the product $H_4^{\top}H_4$. 2.10. PROBLEMS 73

Problem 2.11. In solving this problem, do not use determinants.

(1) Let (u_1, \ldots, u_m) and (v_1, \ldots, v_m) be two families of vectors in some vector space E. Assume that each v_i is a linear combination of the u_i s, so that

$$v_i = a_{i1}u_1 + \dots + a_{im}u_m, \quad 1 \le i \le m,$$

and that the matrix $A = (a_{ij})$ is an upper-triangular matrix, which means that if $1 \leq j < i \leq m$, then $a_{ij} = 0$. Prove that if (u_1, \ldots, u_m) are linearly independent and if all the diagonal entries of A are nonzero, then (v_1, \ldots, v_m) are also linearly independent. *Hint*. Use induction on m.

(2) Let $A = (a_{ij})$ be an upper-triangular matrix. Prove that if all the diagonal entries of A are nonzero, then A is invertible and the inverse A^{-1} of A is also upper-triangular. *Hint*. Use induction on m.

Prove that if A is invertible, then all the diagonal entries of A are nonzero.

(3) Prove that if the families (u_1, \ldots, u_m) and (v_1, \ldots, v_m) are related as in (1), then (u_1, \ldots, u_m) are linearly independent iff (v_1, \ldots, v_m) are linearly independent.

Problem 2.12. In solving this problem, do not use determinants. Consider the $n \times n$ matrix

$$A = \begin{pmatrix} 1 & 2 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 2 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 1 & 2 & 0 \\ 0 & 0 & \dots & 0 & 0 & 1 & 2 \\ 0 & 0 & \dots & 0 & 0 & 0 & 1 \end{pmatrix}.$$

(1) Find the solution $x = (x_1, \ldots, x_n)$ of the linear system

$$Ax = b$$
.

for

$$b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}.$$

- (2) Prove that the matrix A is invertible and find its inverse A^{-1} . Given that the number of atoms in the universe is estimated to be $\leq 10^{82}$, compare the size of the coefficients the inverse of A to 10^{82} , if n > 300.
- (3) Assume b is perturbed by a small amount Δb (note that Δb is a vector). Find the new solution of the system

$$A(x + \Delta x) = b + \Delta b,$$

where Δx is also a vector. In the case where $b = (0, \dots, 0, 1)$, and $\Delta b = (0, \dots, 0, \epsilon)$, show that

$$|(\Delta x)_1| = 2^{n-1}|\epsilon|.$$

(where $(\Delta x)_1$ is the first component of Δx).

(4) Prove that $(A-I)^n=0$.

Problem 2.13. An $n \times n$ matrix N is *nilpotent* if there is some integer $r \geq 1$ such that $N^r = 0$.

(1) Prove that if N is a nilpotent matrix, then the matrix I - N is invertible and

$$(I-N)^{-1} = I + N + N^2 + \dots + N^{r-1}.$$

(2) Compute the inverse of the following matrix A using (1):

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Problem 2.14. (1) Let A be an $n \times n$ matrix. If A is invertible, prove that for any $x \in \mathbb{R}^n$, if Ax = 0, then x = 0.

(2) Let A be an $m \times n$ matrix and let B be an $n \times m$ matrix. Prove that $I_m - AB$ is invertible iff $I_n - BA$ is invertible.

Hint. If for all $x \in \mathbb{R}^n$, Mx = 0 implies that x = 0, then M is invertible.

Problem 2.15. Consider the following $n \times n$ matrix, for $n \geq 3$:

$$B = \begin{pmatrix} 1 & -1 & -1 & -1 & \cdots & -1 & -1 \\ 1 & -1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & -1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & -1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 & \cdots & -1 & 1 \\ 1 & 1 & 1 & 1 & \cdots & 1 & -1 \end{pmatrix}$$

(1) If we denote the columns of B by b_1, \ldots, b_n , prove that

$$(n-3)b_1 - (b_2 + \dots + b_n) = 2(n-2)e_1$$

$$b_1 - b_2 = 2(e_1 + e_2)$$

$$b_1 - b_3 = 2(e_1 + e_3)$$

$$\vdots$$

$$b_1 - b_n = 2(e_1 + e_n),$$

2.10. PROBLEMS 75

where e_1, \ldots, e_n are the canonical basis vectors of \mathbb{R}^n .

(2) Prove that B is invertible and that its inverse $A = (a_{ij})$ is given by

$$a_{11} = \frac{(n-3)}{2(n-2)}, \quad a_{i1} = -\frac{1}{2(n-2)} \quad 2 \le i \le n$$

and

$$a_{ii} = -\frac{(n-3)}{2(n-2)}, \quad 2 \le i \le n$$
 $a_{ji} = \frac{1}{2(n-2)}, \quad 2 \le i \le n, j \ne i.$

(3) Show that the n diagonal $n \times n$ matrices D_i defined such that the diagonal entries of D_i are equal the entries (from top down) of the ith column of B form a basis of the space of $n \times n$ diagonal matrices (matrices with zeros everywhere except possibly on the diagonal). For example, when n = 4, we have

$$D_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$$D_{2} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$$D_{3} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$$D_{4} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

Problem 2.16. Given any $m \times n$ matrix A and any $n \times p$ matrix B, if we denote the columns of A by A^1, \ldots, A^n and the rows of B by B_1, \ldots, B_n , prove that

$$AB = A^1 B_1 + \dots + A^n B_n.$$

Problem 2.17. Let $f: E \to F$ be a linear map which is also a bijection (it is injective and surjective). Prove that the inverse function $f^{-1}: F \to E$ is linear.

Problem 2.18. Given two vectors spaces E and F, let $(u_i)_{i\in I}$ be any basis of E and let $(v_i)_{i\in I}$ be any family of vectors in F. Prove that the unique linear map $f: E \to F$ such that $f(u_i) = v_i$ for all $i \in I$ is surjective iff $(v_i)_{i\in I}$ spans F.

Problem 2.19. Let $f: E \to F$ be a linear map with $\dim(E) = n$ and $\dim(F) = m$. Prove that f has rank 1 iff f is represented by an $m \times n$ matrix of the form

$$A = uv^{\top}$$

with u a nonzero column vector of dimension m and v a nonzero column vector of dimension n.

Problem 2.20. Find a nontrivial linear dependence among the linear forms

$$\varphi_1(x, y, z) = 2x - y + 3z, \quad \varphi_2(x, y, z) = 3x - 5y + z, \quad \varphi_3(x, y, z) = 4x - 7y + z.$$

Problem 2.21. Prove that the linear forms

$$\varphi_1(x, y, z) = x + 2y + z, \quad \varphi_2(x, y, z) = 2x + 3y + 3z, \quad \varphi_3(x, y, z) = 3x + 7y + z$$

are linearly independent. Express the linear form $\varphi(x,y,z)=x+y+z$ as a linear combination of $\varphi_1,\varphi_2,\varphi_3$.