Winter School on Secure Computation and Efficiency Bar-llan University, Israel 30/1/2011-1/2/2011

Session 6: Oblivious Transfer

Benny Pinkas Bar-Ilan University

Most of this talk is based on Ch. 7, "Efficient Secure Two-Party Protocols", Hazay and Lindell, 2010.

1-out-of-2 Oblivious Transfer

- Two players: sender and receiver.
 - \triangleright Sender has two inputs, x_0 , x_1 .
 - Receiver has an input $j \in \{0,1\}$.
- Output:
 - Receiver learns x_i and nothing else.
 - Sender learns nothing about j.
- Depending on the OT variant, the inputs x_0, x_1 could be strings or bits.

- We examine the malicious setting.
- We consider the standard model and aim to get fully simulatable protocols
- More efficient protocols are possible if these requirements are relaxed
 - Random oracle model
 - Protocols which are not proved to be secure in the sense of full simulatability.

Why study OT?

- Oblivious transfer is one of the basic primitives of secure computation
 - "Founding cryptography on oblivious transfer", J. Kilian, 1988.
 - OT alone, without any complexity-theoretic assumptions, can be used to construct noninteractive zero-knowledge proofs of statements in NP.
- The overhead of OT is often the bottleneck of the entire secure protocol.

Feasibility of constructing OT

- There is no OT protocol which provides unconditional security for both parties.
 - Namely, with information theoretic security which does not depend on any computation assumption.
- We show this by showing that there is no AND protocol which provides unconditional security for both parties.

Computing "AND" privately

- \triangleright P₁ and P₂, have binary inputs a and b.
- They wish to securely compute a AND b.
 - Suppose that P_1 's input is a=0, and he learns that (a AND b) = 0. Then he must not learn whether P_2 's input is 0 or 1.
- Applications?
 - dating

Computing "AND" Privately using OT

- \triangleright P₁ is the sender, with inputs $x_0=0$, $x_1=a$.
- \triangleright P₂ is the receiver, with input j=b.
 - They run an OT protocol, and output its output.
 - The output is $(1-j) \cdot x_0 + j \cdot x_1 = (1-b) \cdot 0 + b \cdot a = a \cdot b$.
- Privacy (semi-honest, hand-waving):
 - If b=0 then P₂ always learns 0, and therefore can be easily simulated.
 - If b=1 then the result obtained in the OT is equal to P₁'s input a, but it is also equal to a b which is the legitimate output of P₂.
 - Simulation is therefore easy.

Impossibility of achieving OT with unconditional security

- Suppose that there is an AND protocol (between P₁ and P₂, with inputs a and b) with unconditional security.
 - Such a protocol could be constructed from an OT which has unconditional security.
- Let T be a transcript of all messages sent in the protocol.
- The parties use random inputs R₁ and R₂.
 - Given these inputs the transcript T is a deterministic function.

Impossibility of achieving OT with unconditional security

- In a certain execution with P_1 's input a=0, the protocol has transcript T and output "0".
 - If b=0, then P_2 must not learn P_1 's input.
 - Therefore ∃ an R'₁ s.t. if P₁ has inputs a=1 and R'₁, the protocol would have produced the same transcript T.
 - If b=1, then output is 0. Therefore there is no R''_1 s.t. the protocol has transcript T for a P_1 input of a=1.
- ▶ P₁ can therefore
 - search over all possible values for R₁ and check if running them with input a=1 results in transcript T. If there is such an R₁ then it concludes that b=0.

Oblivious transfer Privacy definition

- We prefer to use protocols which are fully secure
 - Can be easily compostable in higher level protocols
 - Especially important for oblivious transfer
- Defining privacy only is difficult
 - No correctness and independence of inputs.
 - E.g., do not ensure that the protocol implements the OT functionality.
 - Composition is not guaranteed.
- For oblivious transfer, we know how to define privacy only, for two-round protocols.

Privacy definition

Why do 2 rounds help?

- Receiver sends one message commits to its choice
- Sender replies with one message
- Privacy definition for a malicious sender
 - Just need to prove indistinguishability of receiver's first message when b=0 and when b=1
 - Namely, for any values of the sender's inputs x_0, x_1 , the sender cannot distinguish between the case that the receiver's input is 0 and the case that it is 1.
 - This can be extended to many messages

Privacy definition

- Privacy definition for a malicious receiver
 - More intricate, since the receiver obtains an output.
 - First message is generated before seeing anything.
 We would like that this message essentially commits the receiver to learning a specific message.
 - The definition requires that for every first message sent by the receiver, there exists a bit b' such that receiver learns nothing about $x_{b'}$.

Preliminaries - The Decisional Diffie Hellman (DDH) assumption

- The Decisional Diffie-Hellman assumption (DDH), is that the following problem is hard:
 - The input to the problem contains
 - a group G of order q, and a generator g of G
 - a pair of tuples in random order,
 - (g^a, g^b, g^c) where $a, b, c \in [1, q]$
 - (g^a, g^b, g^{ab}) where $a, b \in R[1,q]$
 - The task is to decide which of the two tuples is (g^a,g^b,g^{ab}).

OT satisfying the privacy only definition [NP]

- ▶ Input: sender x_0,x_1 . receiver $j \in \{0,1\}$.
- Setting: Group G of prime order q. Generator g.
- Receiver
 - chooses random $a,b,c_{1-i} \in [1,q]$, and defines $c_i = ab$ (mod q).
 - Sends to the sender the message (ga, gb, gc0, gc1).

The sender

- Checks that $g^{c0} \neq g^{c1}$. Chooses random $u_0, v_0, u_1, v_1 \in [1, q]$.
- Defines $w_0 = (g^a)^{u_0} g^{v_0}$. Encrypts x_0 with the key $k_0 = (g^{c_0})^{u_0} (g^b)^{v_0}$.
- Defines $w_1 = (g^a)^{u_1} g^{v_1}$. Encrypts x_1 with the key $k_1 = (g^{c_1})^{u_1} (g^b)^{v_1}$.
- Sends w_0 , w_1 and encs with k_0 , k_1 to receiver.
- Receiver computes $(w_j)^b$ which is the key k_i with which x_i can be decrypted.

Properties

Correctness

- Suppose j=0. R sends (g^a, g^b, g^{ab}, g^c).
- S defines $w_0 = (g^a)^{u_0}g^{v_0}$.
- S encrypts x_0 with $k_0 = (g^{ab})^{u0}(g^b)^{v0}$.
 - Note that encryption key is equal to $(w_0)^b$.
- R computes $k_0 = (w_0)^b$ and uses it for decryption.

Overhead:

- R computes 5 exponentiations.
- S computes 8 exponentiations.

Privacy - malicious sender

Receiver's security

- Based on the DDH assumption
- Must show that sender's view is indistinguishable regardless of receiver's input.
 - Sender receives either (ga, gb, gab, gc) or (ga, gb, gc, gab).
 - Suppose that it can distinguish between the two cases.
 - We can construct a distinguisher for the DDH problem, which distinguishes between (ga,gb,gab) and (ga,gb,gc):
 - The distinguisher receives (g^a,g^b,X)
 and (g^a,g^b,Y), and sends (g^a,g^b,X,Y)
 to S.

Privacy - malicious receiver

- The security of the server is unconditional.
 - Does not depend on any cryptographic assumption.
- \rightarrow Suppose that j=0.
- \triangleright Regarding x_1 , server sees
 - $\circ w_1 = (g^a)^{u_1} g^{v_1}$.
 - x_1 encrypted with the key $k_1 = (g^c)^{u_1}(g^b)^{v_1}$.
 - The values u_1, v_1 were chosen at random, and $ab \neq c_1$.
 - Claim: (w₁,k₁) are uniformly distributed.
 - Therefore message (w_1,k_1) sent by S about x_1 can be easily simulated.

Privacy - malicious receiver

Proof of claim:

- $w_1 = (g^a)^{u_1} g^{v_1} = g^{a \cdot u_1 + v_1}$
- $k_1 = (g^c)^{u_1}(g^b)^{v_1} = g^{c \cdot u_1 + b \cdot v_1} = (g^{(c/b) \cdot u_1 + v_1})^b.$
- Define $F(x) = u_1 \cdot x + v_1$. F(x) is pair-wise independent:
 - $\forall x,y,s,t \text{ Prob}(F(x)=s \& F(y)=t) = 1/|G|^2$
- $\circ W_1 = g^{F(a)}$
- $\cdot k_1 = (g^{F(c/b)})^b$
- c≠ab and therefore F(a) and F(c/b) are uniformly distributed.
- $\circ \Rightarrow (w_1, k_1)$ are uniformly distributed.

One-sided simulation

- The sender receives no output
 - Therefore we keep the previous requirement that it cannot distinguish between different inputs of the receiver
- We require in addition the existence of a simulator that can fully simulate the receiver's view.
- Does not solve all problems:
 e.g., sender's input can depend
 on the first message it receives.

OT with one-sided simulation

- A simple modification to the previous protocol:
 - When the receiver sends its message (ga,gb,gc0,gc1), it adds a zero-knowledge proof of knowledge of a.
 - Namely, proves the relation
 R_{DL}={ ((G,q,g,h,),a) | h=g^a}
 - Intuitively, this shows that the receiver "knows" which of x_0, x_1 it wishes to learn in the protocol.

OT with one-sided simulation

- Add a ZK POK of discrete log.
 - 6 rounds of communication.
 - Additional 9 exponentiations.
- The idea behind the security proof:
 - Extract a from the ZK POK.
 - Find which of g^{c0},g^{c1} is equal to (g^b)^a.
 - Define the input j of the receiver accordingly.
 - Send j to the TTP.
 - Learn x_i, and simulate.

OT with one-sided simulation Security proof

- The case of a malicious sender is as before.
- Simulator for a malicious receiver R*:
 - Receive from R* its first message (ga,gb,gc0,gc1), and the ZK POK of discrete log of ga.
 - Run the POK's simulator and extract R*'s input a.
 - If $g^{c0}=(g^a)^b$ then set j=0. Otherwise set j=1.
 - Send j to the TTP and receive x_i .
 - Operate as S does on the message (g^a,g^b,g^{c0},g^{c1}) . Return encryptions of the x_j received from the TTP, and of $x_{1-j}=1$.

OT with one-sided simulation Security proof

- Must show that R*'s view is indistinguishable from its view in the real execution.
 - Until the last message, R* sees exactly the same messages as in a real execution.
 - In the last message, the only difference is that the simulator encrypted the value $x_{1-j}=1$ instead of the actual value of x_{1-j} .
 - But we proved before that for the receiver, the keys with which \mathbf{x}_{1-j} is encrypted are uniformly distributed.
 - Therefore it cannot distinguish...

OT with full simulatability

- Why doesn't the previous protocol suffice?
 - For full simulatability, need to be able to extract the input of a malicious sender and send it to the TTP.
 - The sender receives a message $(g^a, g^b, g^{c0}, g^{c1})$.
 - It checks that $g^{c0} \neq g^{c1}$, and therefore only one of c_0, c_1 is equal to ab. For the other c value, the message the sender sends is uniformly distributed, and the corresponding input cannot be extracted.
 - We can rewind S and send it another message (g^a,g^b,g^{c0},g^{c1}). But its answer might be different than before, so we might extract now a different message.

OT with full simulatability [HL]

- An idea overcoming the previous problem:
 - Receiver sends a longer message (g^a,g^b,g^{c0},g^{c1}) , $(g^{a'},g^{b'},g^{c'0},g^{c'1})$, and proves that either $c_0=ab$ or $c'_1=a'b'$, but not both.
 - Therefore receiver can only learn one message,
 - But in the simulation we can cheat in the proof and send a message which enables to learn both inputs of sender.
 - Since this is a single message for both inputs, we do not care if sender's behavior depends on the message it sees.

OT with full simulatability Basic ideas

- R sends a single message (h_0,h_1,d,b_0,b_1)
- $h_0=g^{a0}, h_1=g^{a1}, d=g^r, b_0=g^{a0\cdot r+j}, b_1=g^{a1\cdot r+j}$
 - Recall, j∈{0,1}.
 - If j=0 then (h_0, d, b_0) is a DDH tuple.
 - If j=1 then $(h_1, d, b_1/g)$ is a DDH tuple.
 - R also needs to prove that it can't be that both
 (h₀, d, b₀) and (h₁, d, b₁/g) are DDH tuples.

OT with full simulatability Basic ideas

- R sends a single message (h₀,h₁,d,b₀,b₁)
- $h_0=g^{a0}, h_1=g^{a1}, d=g^r, b_0=g^{a0\cdot r+j}, b_1=g^{a1\cdot r+j}$
- R proves that $(h_0/h_1,d,b_0/b_1)$ is a DDH tuple.
- Therefore cannot be that $b_0 = g^{a0 \cdot r}$ and $b_1 = g^{a1 \cdot r+1}$,
- Namely cannot be that both (h_0,d,b_0) and $(h_1,d,b_1/g)$ are DDH tuples.

OT with full simulatability Basic ideas

- R sends a single message (h_0,h_1,d,b_0,b_1)
- $h_0=g^{a0}, h_1=g^{a1}, d=g^r, b_0=g^{a0\cdot r+j}, b_1=g^{a1\cdot r+j}$
 - When j=0 then (h_0,d,b_0) is a DDH tuple, but $(h_1,d,b_1/g)$ isn't.
 - When j=1 then $(h_1,d,b_1/g)$ is a DDH tuple, but (h_0,d,b_0) isn't.
- Use (h_0,d,b_0) to encrypt x_0 , and $(h_1,d,b_1/g)$ to encrypt x_1 .
- In the simulation, cheat in the POK s.t. (h_0,d,b_0) and $(h_1,d,b_1/g)$ are both DDH tuples.

The protocol

- ▶ R chooses random $a_0,a_1,r \in [1,q]$ and sends the message (h_0,h_1,d,b_0,b_1)
 - $h_0 = g^{a0}, h_1 = g^{a1}, d = g^r, b_0 = g^{a0 \cdot r + j}, b_1 = g^{a1 \cdot r + j}$
- R proves, using a ZK POK, that $(h_0/h_1,d,b_0/b_1)$ is a DDH tuple.
- ▶ S chooses random $u_0, v_0, u_1, v_1 \in [1,q]$, and sends
 - $\mathbf{w}_0 = d^{u0}g^{v0}$, and encrypts \mathbf{x}_0 with $\mathbf{k}_0 = (\mathbf{b}_0)^{u0}(\mathbf{h}_0)^{v0}$.
 - $w_1 = d^{u_1}g^{v_1}$, and encrypts x_1 with $k_1 = (b_1/g)^{u_1}(h_1)^{v_1}$.
- R decrypts with (w_i)^{aj}

Correctness

- R sends the message (h_0,h_1,d,b_0,b_1)
- $b_0 = g^{a0}, h_1 = g^{a1}, d = g^r, b_0 = g^{a0 \cdot r + j}, b_1 = g^{a1 \cdot r + j}$
- ▶ S chooses random $u_0, v_0, u_1, v_1 \in [1,q]$, and sends
 - $w_0 = d^{u0}g^{v0}$, and encrypts x_0 with $k_0 = (b_0)^{u0}(h_0)^{v0}$.
 - $w_1 = d^{u_1}g^{v_1}$, and encrypts x_1 with $k_1 = (b_1/g)^{u_1}(h_1)^{v_1}$.
- R decrypts with (w_i)^{aj}
- When j=0, $(w_0)^{a0} = (d^{u0}g^{v0})^{a0} = (g^{r \cdot u0 + v0})^{a0} = (g^{r \cdot a0})^{u0} (g^{a0})^{v0} = (b_0)^{u0} (h_0)^{v0} = k_0$
- When j=1, $(w_1)^{a1} = (d^{u1}g^{v1})^{a1} = (g^{r \cdot a1})^{u1} (g^{a1})^{v1} = (b_1/g)^{u1} (h_1)^{v1} = k_1$

Overhead

- 6 rounds of communication, including ZK POK
- Sender computes 15 exponentiations
- Receiver computes 11 exponentiations

Security - malicious sender

Simulator

- Computes $h_0 = g^{a0}$, $h_1 = g^{a1}$, $d = g^r$, $b_0 = g^{a0 \cdot r}$, $b_1 = g^{a1 \cdot r+1}$
 - Compared to $b_0 = g^{a0 \cdot r+j}$, $b_1 = g^{a1 \cdot r+j}$ in real execution
- Sends to sender
- Cheats in ZK POK to simulate a proof that the first message is well formed
- Receives w₀,w₁ and two encryptions from sender
- Computes $k_0 = (w_0)^{a0}$ and $k_1 = (w_1)^{a1}$
- Decrypts encryptions using k₀,k₁
- Sends results to TTP

Security - malicious sender

- The only difference in the messages that sender sees, between real and simulated executions, is the first message
 - Real, j=0: $h_0=g^{a0}$, $h_1=g^{a1}$, $d=g^r$, $b_0=g^{a0\cdot r}$, $b_1=g^{a1\cdot r}$
 - (h_0,d,b_0) and (h_1,d,b_1) are DDH tuples
 - Real, j=1: $h_0=g^{a0}$, $h_1=g^{a1}$, $d=g^r$, $b_0=g^{a0\cdot r+1}$, $b_1=g^{a1\cdot r+1}$
 - $(h_0,d,b_0/g)$ and $(h_1,d,b_1/g)$ are DDH tuples
 - Simulated: $h_0 = g^{a0}$, $h_1 = g^{a1}$, $d = g^r$, $b_0 = g^{a0 \cdot r}$, $b_1 = g^{a1 \cdot r+1}$
 - (h_0,d,b_0) and $(h_1,d,b_1/g)$ are DDH tuples
- Can show that if server can distinguish, it can break DDH

Security - malicious receiver

Simulator

- Receives from receiver (h₀,h₁,d,b₀,b₁)
- Extracts from ZK POK the input r s.t. d=g^r
- If $b_0 = (h_0)^r$ then sets j = 0. Otherwise sets j = 1.
- Sends j to TTP and receives x_i.
- Computes w_0, k_0, w_1, k_1 as the sender would do.
- Uses these values to encrypt the x_j received from TTP, and $x_{i-1}=1$.
- Sends encryptions to receiver.

Security - malicious receiver

Proof:

- Until the last message, the receiver's view is as in the real protocol. In the last message, the encryption of \mathbf{x}_{1-i} is replaced with an encryption of 1.
- If $b_0 = (h_0)^r$ then j = 0 and x_1 is replaced with 1.
- From the ZK POK is follows that $b_1 = (h_1)^r$, therefore
- $\mathbf{w_1} = d^{u_1}g^{v_1} = g^{r \cdot u_1 + v_1}, \quad \mathbf{k_1} = (b_1/g)^{u_1}(h_1)^{v_1} = (h_1)^{r \cdot u_1 + v_1}/g^{u_1}$
- Need to show that these values are uniformly distributed (and therefore receiver cannot decrypt)

Security - malicious receiver

- $w_1 = d^{u_1} g^{v_1} = g^{r \cdot u_1 + v_1}$, $k_1 = (b_1/g)^{u_1} (h_1)^{v_1} = (h_1)^{r \cdot u_1 + v_1}/g^{u_1}$
- ▶ Define $F(x)=u1 \cdot x+v1$.
- F(X) is pair-wise independent, since u_1,v_1 are uniformly distributed.
- $\rightarrow w_1 = g^{F(r)}$
- $k_1 = (g^{a1})^{F(r)}/g^{u1} = (g^{a1})^{F(r)-u1/a1} = (g^{a1})^{F(r-1/a1)}$
- Therefore (w₁,k₁) are uniformly distributed

Conclusions

- Fully simulatable OT (against malicious parties) can be efficiently implemented
- Batch OT performing many Ots
 - Can perform a single ZK POK
 - Overhead is reduced to 14 exponentiations per OT
 - + 23 for the initialization
- Peikert-Vaikuntanathan-Waters
 - Similar ideas to the OT protocol we presented
 - Batch OT overhead: 11 exponentiations per OT + 15 for the initialization

Conclusions

- We considered the standard model, and protocols which can be proved to be secure in the sense of full simulatability
 - More efficient protocols are known if these requirements are relaxed

Extending OT

- [Beaver], [Ishai,kilian,Nissim,Petrank]
- Precompute k (e.g. 128) OTs which can then be used to perform an arbitrary # of OTs
- No proof if the sense we want here