Math 120 - Problem Set - Chapter 1

Sunny Dhindsa (sd3692)

1. The midpoint of a line segment is the point, C, halfway between endpoints A and B on line segment \overline{AB} s.t. the length of \overline{AC} is equivalent to the length of \overline{CB} .

- 2.
- a. If t > 3, then $t^2 > 9$.
- b. If x is positive, then x + 1 is also positive.

3.

A	В	$A \rightarrow B$	$\mathrm{B} \to A$	$\neg A \rightarrow \neg B$	$\neg B \to \neg A$
Т	Т	Т	Т	T	T
Т	F	F	Τ	T	F
F	Т	Τ	F	F	Τ
F	F	T	Τ	T	T

- 4. Let a, b, d, x, and y be integers. If d|a and d|b, then d|(ax+by). If b is divisible by d, and a is divisible by d by definition this means that there exists $h, i \in \mathbb{Z}$ s.t. dh = b and di = a. Thus, for any $x, y \in \mathbb{Z}$ we have ax+by=(dh)x+(di)y=d(hx+iy) which can be simplified to d|(ax + by).
- 5. Suppose we have consecutive integers x and x+1. Adding x and x+1 together yields x+(x+1) which simplifies to 2x+1 which, by definition, is odd.

6.

- b. Let p=2 and q=3. Adding these two integers together =p+q which can be simplified to 5, which by definition is prime.
- c. If n = 41, then $n^2 + n + 41 = 1763$, which by definition is not prime.
- 7.
- a.

X	У	Z	$\mathbf{x} \leftrightarrow y$	$y \leftrightarrow z$	$\mathbf{z} \leftrightarrow x$	$x \leftrightarrow y \land y \leftrightarrow z \land z \leftrightarrow x$
T	Τ	Τ	Τ	Τ	Τ	T
Т	F	Т	F	F	Т	F
Т	Τ	F	Τ	F	F	F
Т	F	F	F	Т	F	F
F	Τ	Т	F	Τ	F	F
F	F	Т	Τ	F	F	F
F	Т	F	F	F	Т	F
F	F	F	Τ	Т	Т	T

X	у	Z	$\mathbf{x}{\rightarrow}\ y$	$y \to z$	$z \to x$	$(x \to y) \land (y \to z \land (z \to x))$
Т	Т	Т	Т	Т	Т	T
Т	F	Τ	F	Τ	Τ	F
Т	Т	F	Т	F	Τ	F
Т	F	F	F	Τ	Τ	F
F	Т	Т	Т	Τ	F	F
F	F	Т	Т	Τ	F	F
F	Т	F	Т	F	Τ	Т
F	F	F	Т	Т	Т	T

b.

X	у	$\neg x$	$\neg y$	$\neg x \lor \neg y$	$x \wedge y$	$(\neg x \vee \neg y) \to (x \wedge y)$
Т	Τ	F	F	F	Τ	T
Т	F	F	Τ	Τ	F	F
F	Т	Т	F	Τ	F	F
F	F	Т	Т	Τ	F	F

X	У	$\mathbf{x} \wedge y$
Т	Т	Τ
Т	F	\mathbf{F}
F	Τ	\mathbf{F}
F	F	F