Mục lục

1	Cnu	Curan pi				
	1.1	Kiến thức giải tích	1			
	1.2	Sai số làm tròn và số học máy tính	3			
	1.3	Thuật toán và sự hội tụ	3			
	1.4	MATLAB: ngôn ngữ tính toán và lập trình	3			
	1.5	MATLAB: giải tích và đại số	5			
2	Giải	phương trình một biến	19			
	2.1	Phương pháp chia đôi	19			
	2.2	Phương pháp Newton và mở rộng	22			
	2.3	Lặp điểm bất động	27			
	2.4	Phân tích sai số của các phương pháp lặp	31			
	2.5	Tăng tốc độ hội tụ	31			
	2.6	Nghiệm của đa thức và phương pháp Müller	32			
3	Nội	suy và xấp xỉ bằng đa thức	33			
	3.1	Nội suy tổng quát	33			
	3.2	Đa thức nội suy	34			
	3.3	Xấp xỉ số liệu và phương pháp Neville	38			
	3.4	Sai phân chia	39			
	3.5	Nội suy Hermite	42			
	3.6	Nội suy spline bậc ba	42			
	3.7	Đường cong tham số	42			
4	Đạo	hàm và tích phân bằng số	43			
	4.1	Đạo hàm bằng số	44			
	4.2	Ngoại suy Richardson	48			
	4.3	Tích phân bằng số	48			
	4.4	Tích phân Romberg	54			
	4.5	Phương pháp cầu phương thích ứng	54			

ii Mục lục

	4.6	Câu phương Gauss	54
	4.7	Tích phân bội	54
	4.8	Tích phân suy rộng	54
5	Bài	toán giá trị ban đầu của phương trình vi phân thường	55
	5.1	Lý thuyết cơ bản về bài toán giá trị ban đầu	56
	5.2	Phương pháp Picard	57
	5.3	Phương pháp chuỗi Taylor	60
	5.4	Phương pháp Euler	63
	5.5	Phương pháp Taylor bậc cao	66
	5.6	Phương pháp Runge-Kutta	66
	5.7	Điều khiển sai số và phương pháp Runge-Kutta-Fehlberg	70
	5.8	Phương pháp đa bước	70
	5.9	Phương pháp đa bước với bước nhảy biến thiên	70
	5.10	Phương pháp ngoại suy	70
	5.11	Phương trình cấp cao và hệ phương trình vi phân	70
	5.12	Sự ổn định	70
	5.13	Phương trình vi phân cứng	70
6	Kỹ t	huật lặp trong đại số tuyến tính	71
	6.1	Chuẩn của véctơ và ma trận	71
	6.2	Giá trị riêng và véctơ riêng	73
	6.3	Lặp điểm bất động	73
	6.4	Kỹ thuật lặp Jacobi và Gauss–Seidel	77
	6.5	Ma trận nghịch đảo	79
	6.6	Kỹ thuật giảm dư giải hệ tuyến tính	80
	6.7	Giới hạn sai số và tinh chỉnh phép lặp	80
	6.8	Phương pháp gradient liên hợp	80
4	Ngh	iệm số của hệ phương trình phi tuyến	37
	4.1	Điểm bất động của hàm nhiều biến	37
	4.2	Phương pháp Newton	38
	4.3	Phương pháp tựa Newton	38
	4.4	Phương pháp độ dốc nhất	38
	4.5	Đồng luân và các phương pháp mở rộng	38

Chương 6

Kỹ thuật lặp trong đại số tuyến tính

6.1 Chuẩn của véctơ và ma trân

Cho vécto $x \in (x_1, x_2, ..., x_n) \in \mathbb{R}^n$. Chuẩn $p \ (p \ge 1)$ của x là

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}.$$

Một số trường hợp đặc biệt:

a)
$$p = 2 \Rightarrow ||x||_2 = ||x|| = \sqrt{\sum_{i=1}^n |x_i|^2}$$
.

b)
$$p = 1 \Rightarrow ||x||_1 = \sum_{i=1}^n |x_i|.$$

c)
$$p = \infty \Rightarrow ||x||_{\infty} = \max_{1 \le i \le n} |x_i|$$
.

Ví dụ 6.1. Tính các chuẩn p của x = (6, -2, 3) với $p = 1, 2, \infty$.

Giải.

$$||x|| = \sqrt{|6|^2 + |-2|^2 + |3|^2} = 7$$

 $||x||_1 = 6 + 2 + 3 = 11$
 $||x||_{\infty} = \max\{6, 2, 3\} = 6.$

Cho ma trận thực $A = (a_{ij})_{m \times p}$, chuẩn $p \ (p \ge 1)$ của A là

$$||A||_{p} = \sup_{x \neq \theta} \frac{||Ax||_{p}}{||x||_{p}}$$

trong đó $x \in \mathbb{R}^n$.

Các trường hợp đặc biệt

a)
$$p = 2 \Rightarrow ||A||_2 = ||A|| = \max_{1 \le i \le n} \sqrt{\lambda_i}$$
, trong đó λ_i là các giá trị riêng của $A^T A$.

b)
$$p = 1 \Rightarrow ||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.$$

c)
$$p = \infty \Rightarrow ||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|.$$

Ví dụ 6.2. Tính các chuẩn
$$p$$
 của $A = \begin{bmatrix} 5 & 0 & 2 \\ 3 & -2 & -4 \end{bmatrix}$ với $p = 1, 2, \infty$.

$$Gi \ddot{a} i. \qquad a) \ \left\| A \right\|_1 = \max \left\{ \left| 5 \right| + \left| 3 \right|, \ \left| 0 \right| + \left| -2 \right|, \ \left| 2 \right| + \left| -4 \right| \right\} = \max \left\{ 8, 2, 6 \right\} = 8.$$

b)
$$||A||_{\infty} = \max\{5 + 0 + 2, 3 + 2 + 4\} = 9.$$

c)
$$A^{T}A = \begin{bmatrix} 34 & -6 & -2 \\ -6 & 4 & 8 \\ -2 & 8 & 20 \end{bmatrix}$$
. Giải đa thức đặc trưng của $A^{T}A$: $P(\lambda) = -\lambda^{3} + 58\lambda^{2} - 4\lambda^{2}$

$$792\lambda = 0 \Leftrightarrow \begin{bmatrix} \lambda = 0 \\ \lambda = 22 \text{ , ta dirợc } \|A\| = \max\{\sqrt{0}, \sqrt{22}, \sqrt{36}\} = 6. \\ \lambda = 36 \end{bmatrix}$$

Ở đây lệnh np.linalg.norm(A) cho chuẩn Frobenius của A

$$||A||_F = ||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}.$$

Nguyễn Đức Thịnh

[Drafting \Rightarrow Do not Print]

thinhnd@huce.edu.vn

6.2 Giá trị riêng và véctơ riêng

6.3 Lặp điểm bất động

Xét hệ

$$x = Bx + g \tag{*}$$

trong đó $x=(x_1,x_2,\ldots,x_n)^T\in\mathbb{R}^n$, $B=\left(b_{ij}\right)_n$, $g=(g_1,g_2,\ldots,g_n)^T$. Phương trình này có dạng khai triển

$$\begin{cases} x_1 &= b_{11}x_1 + b_{12}x_2 + \cdots + b_{1n}x_n + g_1 \\ x_2 &= b_{21}x_1 + b_{22}x_2 + \cdots + b_{2n}x_n + g_2 \\ & & & & \\ x_n &= b_{n1}x_1 + b_{n2}x_2 + \cdots + b_{nn}x_n + g_n \end{cases}$$

hoặc tổng quát

$$\begin{cases} x_i = \left(\sum_{j=1}^n b_{ij} x_j\right) + g_i \\ i = \overline{1, n}. \end{cases}$$

Giả sử

$$q = \|B\|_{\infty} < 1. \tag{6.1}$$

Khi đó

- a) (*) có nghiệm duy nhất $x^* = (x_1^*, x_2^*, \dots, x_n^*)$.
- b) Xét dãy véctơ nghiệm xấp xỉ $x^{(k)} = \left(x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}\right)$:
 - i) $x^{(0)} \in \mathbb{R}^n$ bất kỳ, thường chọn $x^{(0)} = \theta$.
 - ii) Công thức lặp

$$x^{(k+1)} = Bx^{(k)} + g, \ k = 0, 1, ...$$
 (6.2)

thì

- i) $\lim_{k \to \infty} x^{(k)} = x^*$
- ii) Công thức đánh giá sai số: $\forall k \geq 1$ ta có

$$||x^{(k)} - x^*||_{\infty} \le \frac{q^k}{1 - q} ||x^{(1)} - x^{(0)}||_{\infty} ||x^{(k)} - x^*||_{\infty} \le \frac{q}{1 - q} ||x^{(k)} - x^{(k-1)}||_{\infty}.$$
(6.3)

thinhnd@huce.edu.vn

[Drafting \Rightarrow Do not Print]

Nguyễn Đức Thinh

Giả sử trong công thức lặp đơn, tại mỗi bước, các thành phần vừa tính được dùng luôn để tính thành phần kế tiếp. Khi đó ta có công thức Seidel với tốc đô hôi tu nhanh hơn:

$$\begin{cases} x_i^{(k+1)} = \left(\sum_{j < i} b_{ij} x_j^{(k+1)} \right) + \left(\sum_{j \ge i} b_{ij} x_j^{(k)} \right) + g_i \\ i = \overline{1, n} \end{cases}$$
 (6.4)

hay dạng khai triển

$$\begin{cases} x_1^{(k+1)} = b_{11}x_1^{(k)} + b_{12}x_2^{(k)} + \cdots + b_{1n}x_n^{(k)} + g_1 \\ x_2^{(k+1)} = b_{21}x_1^{(k+1)} + b_{22}x_2^{(k)} + \cdots + b_{2n}x_n^{(k)} + g_2 \\ x_3^{(k+1)} = b_{31}x_1^{(k+1)} + b_{32}x_2^{(k+1)} + b_{33}x_3^{(k)} + \cdots + b_{n-1}x_{n-1}^{(k+1)} + b_{nn}x_n^{(k)} + g_3 \\ \vdots \\ x_n^{(k+1)} = b_{n1}x_1^{(k+1)} + b_{n2}x_2^{(k+1)} + \cdots + b_{n,n-1}x_{n-1}^{(k+1)} + b_{nn}x_n^{(k)} + g_n \end{cases}$$

Ví dụ 6.3. Cho hệ phương trình
$$\begin{cases} x_1 = -0.21x_1 - 0.28x_2 + 0.05x_3 - 0.9 \\ x_2 = 0.19x_1 + 0.01x_2 - 0.26x_3 + 3.8 \\ x_3 = 0.39x_1 - 0.12x_2 - 0.06x_3 - 2.9 \end{cases}$$

- a) Kiểm tra điều kiện thực hiện phương pháp.
- b) Cho xấp xỉ ban đầu $x^{(0)} = (0, 2, -1)$, tìm nghiệm gần đúng sau 3 bước lặp.
- c) Tìm sai số của các nghiệm gần đúng ở trên.
- d) Tìm nghiệm gần đúng với sai số 10^{-3} .
- e) Để đạt được nghiệm với sai số 10⁻⁸, cần thực hiện bao nhiêu bước lặp.
- f) Áp dụng công thức Seidel, tìm nghiệm gần đúng sau 4 bước.

Giải. a) Đặt
$$B = \begin{bmatrix} -0.21 & -0.28 & 0.05 \\ 0.19 & 0.01 & -0.26 \\ 0.39 & -0.12 & -0.06 \end{bmatrix}, \begin{bmatrix} -0.9 \\ 3.8 \\ -2.9 \end{bmatrix}$$
. Ta có $q = ||B||_{\infty} = 0.57 < 1$.

b) Công thức lặp

$$\begin{cases} x_1^{(k+1)} &= -0.21x_1^{(k)} &- 0.28x_2^{(k)} &+ 0.05x_3^{(k)} &- 0.9\\ x_2^{(k+1)} &= 0.19x_1^{(k)} &+ 0.01x_2^{(k)} &- 0.26x_3^{(k)} &+ 3.8\\ x_3^{(k+1)} &= 0.39x_1^{(k)} &- 0.12x_2^{(k)} &- 0.06x_3^{(k)} &- 2.9 \end{cases}$$

[DRAFTING ⇒ DO NOT PRINT] thinhnd@huce.edu.vn Nguyễn Đức Thinh

k

$$x_1^{(k)}$$
 $x_2^{(k)}$
 $x_3^{(k)}$

 0
 0
 2
 -1

 1
 -1.51
 4.08
 -3.08

 2
 -1.8793
 4.3547
 -3.7937

 3
 -1.91435
 4.47284
 -3.92787

```
1 x = [0; 2; -1]
2 for n = 1:3
x = B*x + g
```

c) Công thức sai số $\|x^{(k)} - x^*\|_{\infty} \le \varepsilon_k = \frac{q}{1-q} \|x^{(k)} - x^{(k-1)}\|_{\infty}$. Hoàn thiện bảng ở ý (b):

k

$$x_1^{(k)}$$
 $x_2^{(k)}$
 $x_3^{(k)}$
 ε_k

 0
 0
 2
 -1

 1
 -1.51
 4.08
 -3.08
 2.75721

 2
 -1.8793
 4.3547
 -3.7937
 0.946067

 3
 -1.91435
 4.47284
 -3.92787
 0.177852

```
x0 = [0; 2; -1] % luu x^{(k-1)}
x = B*x0 + g % x^{(k)}
    ss = q / (1-q) * norm(x-x0, inf)
     x0 = x; % tiến thêm 1 bước
6 end
```

d) Ta thực hiện các bước lặp đến khi sai số nhỏ hơn 10^{-3} .

k	$X_1^{(k)}$	$X_2^{(k)}$	$x_3^{(k)}$	$\varepsilon_{\pmb{k}}$
4	-1.94678	4.50225	-3.94766	0.0429861
5	-1.94919	4.50153	-3.96265	0.0198678
8	-1.95001	4.50491	-3.96338	0.000459243

Nghiệm gần đúng với sai số 10^{-3} là $x^{(8)} = (-1.95001, 4.50491, -3.96338)$.

```
1 \times 0 = [0; 2; -1]
2 n = 0
3 while true
      n = n + 1
```

e) Xét sai số theo công thức tiên nghiệm

$$\frac{q^{k}}{1-q} \|x^{(1)} - x^{(0)}\|_{\infty} < 10^{-8} \Rightarrow q^{k} < \frac{10^{-8} (1-q)}{\|x^{(1)} - x^{(0)}\|_{\infty}}$$

$$\Rightarrow k > \log_{q} \frac{10^{-8} (1-q)}{\|x^{(1)} - x^{(0)}\|_{\infty}} = 35.5744 \Rightarrow \text{ chọn } k = 36.$$

f) Công thức Seidel

$$\begin{cases} x_1^{(k+1)} &= & -0.21x_1^{(k)} & - & 0.28x_2^{(k)} & + & 0.05x_3^{(k)} & - & 0.9 \\ x_2^{(k+1)} &= & 0.19x_1^{(k+1)} & + & 0.01x_2^{(k)} & - & 0.26x_3^{(k)} & + & 3.8 \\ x_3^{(k+1)} &= & 0.39x_1^{(k+1)} & - & 0.12x_2^{(k+1)} & - & 0.06x_3^{(k)} & - & 2.9 \end{cases}$$

Kỹ thuật viết mã ở ý (b-e) của ví dụ này rất giống Ví dụ 2.5.

Nguyễn Đức Thịnh

[$\mathsf{DRAFTING} \Rightarrow \mathsf{DO} \ \mathsf{NOT} \ \mathsf{PRINT}$]

thinhnd@huce.edu.vn

6.4 Kỹ thuật lặp Jacobi và Gauss-Seidel

Xét hê

$$Ax = b \tag{*}$$

trong đó $x = (x_1, x_2, ..., x_n), A = (a_{ij})_n, b = (b_1, b_2, ..., b_n).$

Giả sử *A chéo trội theo hàng*, tức là trên mỗi hàng, phần tử trên đường chéo chính có trị tuyệt đối lớn hơn tổng trị tuyệt đối các phần tử còn lại:

$$\begin{cases} |a_{ii}| > \sum_{j \neq i} |a_{ij}| \\ i = \overline{1, n} \end{cases}$$

Khi đó

$$(*) \Leftrightarrow \sum_{j=1}^{n} a_{ij} x_{j} = b_{i}, \ i = \overline{1, n}$$

$$\Leftrightarrow a_{ii} x_{i} = \left(-\sum_{j \neq i} a_{ij} x_{j} \right) + b_{i}, \ i = \overline{1, n}$$

$$\Leftrightarrow x_{i} = \left(-\sum_{j \neq i} \frac{a_{ij}}{a_{ii}} x_{j} \right) + \frac{b_{i}}{a_{ii}}, \ i = \overline{1, n}$$

Đăt

$$b_{ij} = \begin{cases} -\frac{a_{ij}}{a_{ii}} & \text{n\'eu } i \neq j \\ 0 & \text{n\'eu } i = j \end{cases}, i, j = \overline{1, n}; \quad \text{v\`a}$$

$$g_i = \frac{b_i}{a_{ii}}, i = \overline{1, n}$$

$$(6.5)$$

thì

$$(*) \Leftrightarrow x_i = \left(\sum_{j=1}^n b_{ij} x_j\right) + g_i, \ i = \overline{1, n}$$
$$\Leftrightarrow x = Bx + g$$

trong đó

$$q = ||B||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |b_{ij}| = \max_{1 \le i \le n} \sum_{j \ne i} \left| -\frac{a_{ij}}{a_{ii}} \right| = \max_{1 \le i \le n} \frac{1}{|a_{ii}|} \sum_{j \ne i} |a_{ij}| < 1,$$

nên (*) giải được theo phương pháp lặp đơn.

```
Ví dụ 6.4. Giải hệ \begin{cases} -15.4x + y + 6.3z = 30 \\ -4.2x + 10.8y + 3.3z = 25 (*) với các yêu cầu như \\ -2.4x + 5.3y + 15.9z = -10 \end{cases}
Ví dụ 6.3 và xấp xỉ ban đầu x_0 = y
```

```
a) (*) \Leftrightarrow \begin{cases} x = 0.0649351y + 0.409091z - 1.94805 \\ y = 0.388889x - 0.305556z + 2.31481 \\ z = 0.150943x - 0.333333y - 0.628931 \end{cases}
B = \begin{bmatrix} 0 & 0.0649351 & 0.409091 \\ 0.388889 & 0 & -0.305556 \\ 0.150943 & -0.333333 & 0 \end{bmatrix} \Rightarrow q = ||B||_{\infty} = 0.694444 < 1.
 A = [-15.4, 1, 6.3; -4.2, 10.8, 3.3; -2.4, 5.3, 15.9]
 b = [30; 25; -10]
B = zeros(3, 3)
       for j = 1:3
6
    if i ~= j
7
    B(i, j) = - A(i, j) / A(i, i);
8
          end
    g(i) = b(i) / A(i, i);
14 % Các lệnh tiếp theo giống Ví dụ 6.3, lưu ý xấp xỉ ban đầu
           x_0 = y_0 = z_0 = 0
```

b-d) Công thức lặp

$$\begin{cases} x_{k+1} &= 0.0649351 y_k &+ 0.409091 z_k &- 1.94805 \\ y_{k+1} &= 0.388889 x_k &- 0.305556 z_k &+ 2.31481 \\ z_{k+1} &= 0.150943 x_k &- 0.3333333 y_k &- 0.628931 \end{cases}$$

và sai số $\|X_k - X^*\|_{\infty} \le \frac{q}{1-q} \|X_k - X_{k-1}\|_{\infty}$, trong đó $X_k = (x_k, y_k, z_k), X^* = (x_k, y_k, z_k)$

k	x_k	y _k	Z_k	$arepsilon_{m{k}}$
0	0	0	0	
1	-1.94805	2.31481	-0.628931	5.26094
2	-2.05503	1.74941	-1.69458	2.42193
3	-2.52769	2.03343	-1.52226	1.07423
4	-2.43875	1.79696	-1.68828	0.537424
5	-2.52203	1.88227	-1.59603	0.209651
14	-2.49051	1.84063	-1.61858	0.000927176

Nghiệm gần đúng với sai số 10^{-3} là

$$x_{14} = -2.49051, y_{14} = 1.84063, z_{14} = -1.61858.$$

e) Ta có

$$\frac{q^{k}}{1-q} \|X_{1} - X_{0}\|_{\infty} < 10^{-8} \Rightarrow q^{k} < \frac{10^{-8} (1-q)}{\|X_{1} - X_{0}\|_{\infty}}$$

$$\Rightarrow k > \log_{q} \frac{10^{-8} (1-q)}{\|X_{1} - X_{0}\|_{\infty}} = 56.0703 \Rightarrow \text{ chọn } k = 57.$$

f) Công thức Seidel

$$\begin{cases} x_{k+1} &= 0.0649351 y_k + 0.409091 z_k - 1.94805 \\ y_{k+1} &= 0.388889 x_{k+1} - 0.305556 z_k + 2.31481 \\ z_{k+1} &= 0.150943 x_{k+1} - 0.3333333 y_{k+1} - 0.628931 \end{cases}$$

k

$$x_k$$
 y_k
 z_k

 0
 0
 0
 0

 1
 -1.94805
 1.55724
 -1.44206

 2
 -2.43686
 1.80777
 -1.59935

 3
 -2.48494
 1.83714
 -1.6164

 4
 -2.49001
 1.84038
 -1.61824

Ma trân nghịch đảo 6.5

Cho ma trận khả nghịch A. Để tìm $X = A^{-1}$, ta áp dụng công thức tương tự công thức lặp khi tìm nghịch đảo của số thực

$$X_{n+1} = X_n (2I - AX_n)$$

trong đó chọn X_0 thỏa mãn $\|I - AX_0\| < 1$, thường là nghiệm gần đúng thu được khi tính A^{-1} theo phương pháp Gauss. Ta cũng có

$$I - AX_{n+1} = I - A \cdot X_n (2I - AX_n) = (I - AX_n)^2$$

$$\Rightarrow I - AX_n = (I - AX_0)^{2^n} \Rightarrow A^{-1} - X_n = A^{-1}(I - AX_0)^{2^n}$$

$$\Rightarrow ||A^{-1} - X_n|| \le ||A^{-1}|| \cdot ||I - AX_0||^{2^n} \xrightarrow[n \to \infty]{} 0 \Rightarrow X_n \xrightarrow[n \to \infty]{} A^{-1}.$$

Ví dụ 6.5. Tính gần đúng
$$A^{-1}$$
 với $A = \begin{bmatrix} -2.9 & -4.5 & 3.5 \\ 1.1 & 0.3 & 3.3 \\ -1.4 & -4.8 & 3.6 \end{bmatrix}$, lặp tới khi hai ma trận xấp xỉ

liên tiếp của A^{-1} giống nhau tới năm chữ số thập phân tại mọi vị trí.

$$\text{\it Gi\'{a}i.} \ \, \text{\it Chọn} \ \, X_0 = \begin{bmatrix} -0.6 & 0 & 0.6 \\ 0.3 & 0.2 & -0.5 \\ 0.2 & 0.3 & -0.1 \end{bmatrix}, \, \text{\it ta c\'o} \ \, X_1 = \begin{bmatrix} -0.618 & 0.018 & 0.576 \\ 0.315 & 0.205 & -0.484 \\ 0.167 & 0.267 & -0.166 \end{bmatrix}.$$

Sau 5 bước, hai ma trận đã giống nhau tới năm chữ số thập phân tại mọi vị trí

$$A^{-1} \simeq X_5 = \begin{bmatrix} -0.61599 & 0.0218436 & 0.578855 \\ 0.312363 & 0.201689 & -0.488569 \\ 0.176933 & 0.277414 & -0.148536 \end{bmatrix}.$$

- 6.6 Kỹ thuật giảm dư giải hệ tuyến tính
- 6.7 Giới hạn sai số và tinh chỉnh phép lặp
- 6.8 Phương pháp gradient liên hợp

Nguyễn Đức Thinh

[Drafting \Rightarrow Do not Print]

thinhnd@huce.edu.vn

Tài liệu tham khảo

- [1] Phạm Kỳ Anh. Giải tích số. Đại học Quốc gia Hà Nội, 2002. 284 trang.
- [2] Richard L. Burden, Douglas J. Faires **and** Annette M. Burden. *Numerical Analysis*. phiên bản 10. Cengage Learning, 2016. 918 trang.
- [3] Phan Văn Hạp **and** Lê Đình Thịnh. *Phương pháp tính và các thuật toán*. Nhà xuất bản Giáo dục, 2000. 400 trang.
- [4] Doãn Tam Hòe. Toán học tính toán. Đại học Quốc gia Hà Nội, 2009. 240 trang.

40 Tài liệu tham khảo