

TD 1 – Fonctions mesurables, mesures, tribus

- ightharpoonup **Exercice 1.** Soient f_1 et f_2 deux applications mesurables de (E, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Montrer que:
 - a) $\{x \in E \mid f_1(x) = f_2(x)\} \in \mathcal{A},$
 - b) $\{x \in E \mid f_1(x) \le f_2(x)\} \in \mathcal{A} \text{ et } \{x \in E \mid f_1(x) \ge f_2(x)\} \in \mathcal{A},$
 - c) $\{x \in E \mid f_1(x) < f_2(x)\} \in \mathcal{A} \text{ et } \{x \in E \mid f_1(x) > f_2(x)\} \in \mathcal{A}.$
- ightharpoonup Exercice 2. Soient (E_1, \mathcal{A}_1) et (E_2, \mathcal{A}_2) deux espaces mesurables. Soient $\mu \colon \mathcal{A}_1 \to \overline{\mathbb{R}}_+$ une mesure sur (E_1, \mathcal{A}_1) et f une application mesurable de (E_1, \mathcal{A}_1) dans (E_2, \mathcal{A}_2) . On pose

$$\mu_f \colon A_2 \longrightarrow \overline{\mathbb{R}}_+
B \longmapsto \mu_f(B) := \mu(f^{-1}(B)).$$

Montrer que μ_f est une mesure sur (E_2, \mathcal{A}_2) , appelée mesure image de μ par f.

 \triangleright Exercice 3. Soit p une mesure de probabilité sur $\mathcal{B}(\mathbb{R})$. On pose

$$\begin{array}{ccc} F \colon & \mathbb{R} & \longrightarrow & [0\,,1] \\ & t & \longmapsto & F(t) \coloneqq p(]{-}\infty\,,t]). \end{array}$$

- **3.1.** Montrer que F est croissante et continue à droite.
- **3.2.** Calculer (si existence) $\lim_{t\to\pm\infty} F(t)$.
- \triangleright **Exercice 4.** On considère l'espace mesuré $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ avec λ la mesure de Lebesgue. Les propositions suivantes sont-elles vraies?
 - **4.1.** λ est σ -finie.
 - **4.2.** $\forall K \subset \mathbb{R}$ compact, $\lambda(K) < +\infty$.
 - **4.3.** Soit O un ouvert de \mathbb{R} . $\lambda(O) < +\infty \Rightarrow O$ borné.

Exercices supplémentaires.

- \triangleright **Exercice 5** (Formules de Hausdorff). Soient E et F deux ensembles. Soit $f \colon E \to F$ une application. Montrer les propositions suivantes :
 - 1. $\forall B \subset F$, $[f^{-1}(B)]^c = f^{-1}(B^c)$.
 - 2. Soit I un ensemble d'indices non vide et soit $(B_i)_{i\in I}$ une famille de parties de F. Alors :

$$f^{-1}(\bigcup_{i \in I} B_i) = \bigcup_{i \in I} f^{-1}(B_i),$$

$$f^{-1}(\bigcap_{i \in I} B_i) = \bigcap_{i \in I} f^{-1}(B_i).$$

- \triangleright **Exercice 6** (Tribu image). Soient E_1 et E_2 deux ensembles. Soit $f: E_1 \to E_2$ une application. Soit \mathcal{A}_1 une tribu sur E_1 . On pose $\mathcal{A}_2 := \{B \subset E_2 \mid f^{-1}(B) \in \mathcal{A}_1\}$. Montrer que \mathcal{A}_2 est une tribu sur E_2 . Elle est appelée la tribu image de \mathcal{A}_1 par f.
- \triangleright Exercice 7. Montrer que la tribu $\mathcal{B}(\mathbb{R})$ est engendrée par les classes de parties suivantes :

1)
$$C_1 := \{ [x, +\infty[\mid x \in \mathbb{R} \}]$$
 2) $C_2 := \{ [a, +\infty[\mid a \in \mathbb{Q} \}]$.