Криптосистема Айтаи-Дворка

Шокуров

12 марта 2025 г.

Сводимость

Теорема

Для любой функции $\gamma: \mathbb{N} \to \{\mathbb{R} | r \geq 1\}$ задача SVP $_{\gamma}$ (соотв. $G_{AP}SVP_{\gamma}$) сводится по Куку к задаче CVP $_{\gamma}$ (соотв. $G_{AP}CVP_{\gamma}$).

Описанная в предыдущей лекции процедура Сводимость выполняет это сведение по Куку.

Докажем теорему в случае задачи распознавания: $(\mathbf{B},r)\in G_{AP}SVP_{\gamma}\Leftrightarrow \exists j: (\mathbf{B}^{(j)},\mathbf{b}_{j},r)\in G_{AP}CVP_{\gamma}.$ Другие случаи разбираются аналогично.

Пусть (\mathbf{B},r) — вход задачи $G_{AP}SVP_{\gamma}$. Ему соответствуют m задач $G_{AP}CVP_{\gamma}$ для входов $(\mathbf{B}^{(j)},\mathbf{b}_{j},r)$. Докажем, что если на входе (\mathbf{B},r) задачи $G_{AP}SVP_{\gamma}$ получен ответ YES, то хотя бы один ответ YES получен в последовательности результатов решения задачи $G_{AP}CVP_{\gamma}$ для входов $(\mathbf{B}^{(j)},\mathbf{b}_{j},r)$, а если на входе (\mathbf{B},r) задачи $G_{AP}SVP_{\gamma}$ получен ответ NO, то ответ NO получен для всех входов $(\mathbf{B}^{(j)},\mathbf{b}_{j},r)$ для задачи $G_{AP}CVP_{\gamma}$.

Пусть на входе (\mathbf{B},r) задачи $G_{AP}SVP_{\gamma}$ получаем YES и $\mathbf{v}=\sum\limits_{i=1}^{\cdots}c_{i}\mathbf{b}_{i}$ — кратчайший вектор в решетке $L(\mathbf{B})$. Тогда $|\mathbf{v}|\leq r$ и, следовательно, при некотором j коэффициент c_{j} нечетный. Поэтому вектор

 $\mathbf{u} = \frac{c_j + 1}{2}(2\mathbf{b}_j) + \sum_{i \neq j} c_i \mathbf{b}_i$ принадлежит решетке $L(\mathbf{B}^{(j)})$ и выполняется $\|\mathbf{u} - \mathbf{b}_j\| = \|\mathbf{v}\| \le r$, что означает исход YES для запроса оракула на входе $(\mathbf{B}^{(j)}, \mathbf{b}_i, r)$.

Предположим теперь, что на входе $(\mathbf{B}^{(j)}, \mathbf{b}_j, r)$ задачи $G_{AP}CVP_{\gamma}$ получаем YES, т.е. при некотором $\mathbf{u} \in L(\mathbf{B}^{(j)})$ выполняется соотншение $\|\mathbf{u} - \mathbf{b}_j\| \leq r$. Поэтому для ненулевого вектора $\mathbf{v} = (2c_j' - 1)\mathbf{b}_j + \sum\limits_{i \neq j}^n c_i\mathbf{b}_i$

 $\|\mathbf{u} - \mathbf{b}_j\| \le r$. Поэтому для ненулевого вектора $\mathbf{v} = (2c_j' - 1)\mathbf{b}_j + \sum_{i \ne j} c_i \mathbf{b}_i$ решетки $L(\mathbf{B})$ выполняются соотношения $\|\mathbf{v}\| = \|\mathbf{u} - \mathbf{b}_j\| \le r$, что означает исход YES для запроса на входе (\mathbf{B}, r) задачи $G_{AP}SVP_{\gamma}$.

Пусть имеется задача о рюкзаке, заданная вектором $(a_1, \ldots, a_n, s) = (\mathbf{a}, s).$ Рассмотрим решетку **L**, порожденную матрицей

$$\mathbf{L} = \left(\begin{array}{cc} c \cdot \mathbf{a} & c \cdot \mathbf{s} \\ 2\mathbf{I} & \mathbf{1} \end{array} \right) = \left(\begin{array}{cc} \mathbf{B}, \mathbf{t} \end{array} \right),$$

где c достаточно большая константа, например, большая \sqrt{n} , **I** — единичная матрица, а **1** — вектор-столбец из единиц. Заметим, что если $\mathbf{x} = (x_1, \dots, x_n)$ — решение задачи о рюкзаке, тогда решетка с базисом **L** содержит вектор длины \sqrt{n} , который получается как сумма первых n столбцов, умноженных на компонеты вектора х, и последнего столбца, умноженного на -1. Если кратчайший (или некоторый короткий) вектор выражается через представленный базис как **Lx**, где $x_i = 0$ или $x_i = 1$ при $i = 1, \dots, n$ и $x_{n+1} = -1$ и имеет длину не более \sqrt{n} , то х определяет решение задачи о рюкзаке.

Алгоритм решения задачи о кратчайшем векторе, предложенный Lagarias-Odlyzko:

- **①** Домножим коэффициенты задачи на достаточно большую константу $(c \cdot a_1, \ldots, c \cdot a_n, s)$.
- Сводим задачу о рюкзаке к задаче CVP с входом (B, t).
- Будем решать CVP задачу $(\mathbf{B}, \mathbf{t}, \sqrt{n})$, используя следующий эвристический алгоритм (в задачах криптоанализа этот алгорим назывется методом встраивания): чтобы найти ближайший к \mathbf{t} вектор решетки, будем искать короткий вектор в решетке \mathbf{L} . Если это будет вектор вида $\mathbf{B}\mathbf{x} \mathbf{t}$, то $\mathbf{B}\mathbf{x}$ будет коротким вектором, близким к \mathbf{t} .

Причина, по которой первая строка домножается на достаточно большой сомножитель с связана с тем, что не известно как точно решить задачу о кратчайшем векторе решетки. В этом случае предлагается использовать, например LLL-алгоритм. При домножении первой строки на достаточно большой коэффициент с, достаточно короткий вектор должен иметь нулевую первую координату. А также для координат короткого вектора должно выполняться соотношение $\sum a_i x_i = (-x_{n+1})s$. Нет никакой гарантии, что $x_{n+1} = -1$ и $x_i = 0$ или $x_i = -1$ при $i = 1, \dots, n$. Однако, при случайном выборе коэффициентов a_i этот алгоритм решает задачу о рюкзаке с высокой вероятностью.

Теорема

Задача $G_{AP}SVP_1$ (задача распознавания, ассоциированная с точной задачей SVP) в I_{∞} норме является NP-полной.

Доказательство.

Задача лежит в классе NP, поскольку на входе (\mathbf{B},r) легко выполнить прверку, что некоторый вектор y принадлежит решетке и имеет длину меньше r. Трудность следует из того, что задача о рюкзаке сводится к задаче CVP, а описанный выше алгоритм в случае метрики I_{∞} дает кратчайший вектор с координатами 0 или 1.

Рандомизированные сводимости

Рандомизированная сводимость — это полиномиально вычислимая вероятностная функция (машина Тьюринга)

$$f: G_{AP}SVP_{\gamma} \rightarrow G_{AP}CVP_{\gamma}.$$

- Ненадежная рандомизированная сводимость (UR-редукция). При этой редукции все входы YES преобразует во входы YES, а входы NO во входы NO с вероятностью p. Ненадежной называется по той причине, что при ответе NO вероятность исхода YES составляет 1-p (ошибка в надежности). При этом требуется, чтобы на входе длины n выполнялось соотношение $1-p \geq 1/n^c$, где константа c не зависит от n.
- Обратная ненадежная рандомизированная сводимость (RUR-редукция). В этом случае все входы YES преобразует во входы YES с вероятностью p, а входы NO во входы NO. Величина 1-p называется ошибкой полноты (сводимости). При этом требуется, чтобы на входе длины n выполнялось соотношение $1-p \geq 1/n^c$, где константа c не зависит от n.

Рандомизированные сводимости

Теорема

Для любой функции $\gamma: \mathbb{N} \to \{r \in \mathbb{R} | r \geq 1\}$ существует RUR-редукция SVP_{γ} (соответственно, $\mathrm{G}_{\mathsf{AP}}\mathrm{SVP}_{\gamma}$) к CVP_{γ} (соответственно, $\mathrm{G}_{\mathsf{AP}}\mathrm{CVP}_{\gamma}$) с с ошибкой полноты 1/2. Более того, при такой сводимости сохраняются размерности и ранги исходных SVP задач.

Доказательство.

Сопоставим входу (\mathbf{B},r) , где $\mathbf{B}=(\mathbf{b}_1,\ \dots,\mathbf{b}_n)$ задачи SVP выход $(\mathbf{B}',\mathbf{b}_1,r)$, где \mathbf{B}' определим так. Положим $c_1=1$ и выберем $c_i\in\{0,1\}$ $(i=2,\ \dots,n)$ как равномерно распрелеленную независимую последовательность. Для всех $i=1,\ \dots,n$ положим $\mathbf{b}_i'=\mathbf{b}_i+c_i\mathbf{b}_1$. Докажем, что при ответе YES на входе (\mathbf{B},r) получим ответ YES с вероятностью 1/2, а при ответе NO на втом же входе, на выходе получим NO всегда.

Продолжение доказательства.

Начнем с ответа NO. Пусть получили, что $(\mathbf{B}', \mathbf{b}_1, r)$ не является входом со значением NO. Тогда при некотором $\mathbf{u} \in L(\mathbf{B}')$ выполняется $\|{f u} - {f b}_1\| \leq \gamma(n)r$. Поскольку ${f B}'$ подрешетка решетки ${f B}$ и ${f b}_1
otin L({f B}')$,

вектор **u** – **b**₁ \neq **0** лежит в $L(\mathbf{B})$ и его длина не более $\gamma(n)r$, т.е. (\mathbf{B},r)

не дает на выходе *NO*.

Продолжение доказательства.

Пусть теперь на входе (\mathbf{B},r) получаем ответ YES и пусть $\mathbf{v} = \sum x_i \mathbf{b}_i$ — кратчайший вектор. Тогда при некотором j коэфициент x_i нечетный. Положим $\alpha = x_1 + 1 - \sum_{i>1} c_i x_i$. Если x_i четно при i>1, то то x_1 нечетно и, следовательно, α четно. Если же x_i нечетно при некотором i>1, то α четно с вероятностью 1/2. В обоих случаях с вероятностью не менее 1/2 α четно и вектор $\mathbf{u} = \frac{1}{2}\mathbf{b}_1' + \sum_{i>1} x_i \mathbf{b}_i'$ принадлежит решетке $L(\mathbf{B}')$, причем

$$\mathbf{u} - \mathbf{b}_1 = \left(\alpha \mathbf{b}_1 + \sum_{i>1} x_i (\mathbf{b}_i + c_1 \mathbf{b}_1) - \mathbf{b}_1\right)$$
$$= \left(x_1 - \sum_{i>1} c_i x_i\right) \mathbf{b}_1 + \sum_{i>1} x_i \mathbf{b}_i + \sum_{i>1} x_i c_i \mathbf{b}_1 = \mathbf{v}.$$

Поэтому $\|\mathbf{u} - \mathbf{b}_1\| \le r$, и, следовательно, на входе $(\mathbf{B}', \mathbf{b}_1, r)$ будет получен ответ YES.

Двойственная решетка.

Определение

Двойственной к решетке L называется решетка вида

$$L^* = \{ x \in \mathbb{R}^n \mid (x, y) \in \mathbb{Z} \ \forall y \in L \}.$$

Определение

Пусть P_1 и P_2 — два вероятностных распределения на σ -алгебре Ω . Расстояние между ними определяется формулой

$$\sup_{\substack{A,B\in\Omega\A\cap B=\emptyset}}\{| extsf{ extsf{P}}_1(extsf{ extsf{A}})- extsf{ extsf{P}}_2(extsf{ extsf{A}})|+| extsf{ extsf{P}}_1(extsf{ extsf{B}})- extsf{ extsf{P}}_2(extsf{ extsf{B}})|\}.$$

(d, M)-решетки.

Определение

Пусть заданы натуральное n и вещественные M>0 и d>0. Полная решетка $\mathbf{L}\subset\mathbb{Z}^n$, содержащая (n-1)-мерную подрешетку \mathbf{L}' , для которой выполняются свойства

- L' имеет базис из векторов длины которых не более М;
- ullet если (n-1)-мерное подпространство $\mathrm{Span}(\mathrm{L}')=\mathrm{H}\subset\mathbb{R}^n$ и $\mathrm{H}'\neq\mathrm{H}$ сдвиг H , имеет непустое пересечение с L , то расстояние между H и H' не менее d ,

называется (d, M)-решеткой.

Криптосистема Айтаи-Дворка

Генерация ключей.

- ullet Порождаем (n-1)-мерную решетку L' с базисом $(\mathbf{b}_1, \ldots, \mathbf{b}_{n-1})$ с условием $\|\mathbf{b}_i\| \leq M$. Пусть H линейная оболочка L'.
- **2** Выбираем $d > n^c M$.
- **®** Выбираем из большого куба случайный вектор \mathbf{b}_n с расстоянием $d \leq d_L \leq 2d$ от H.
- **©** Секретный ключ вектор \mathbf{b}_{n}^{*} .
- **⑤** Открытый ключ случайный базис B' в $L = L(\mathbf{b}_1, \dots, \mathbf{b}_n)$.

Алгоритм шифрования 1

 $|y_i^i - \bar{y}_i^i| < \frac{1}{n}$.

Вход: Сообщение \bar{x} , i-й бит которого x_i .

Выход: Набор Y векторов, *i*-й вектор которого $\bar{y}_i = (\bar{y}_1^1, \dots, \bar{y}_1^n)$

такой, что $ar{y}^i_j=rac{ar{z}^i_j}{n}$, где $ar{z}^i_j$ — целое. Выполнение: 1. Для каждого бита $x_i=1$ сообщения $ar{x}$

выбираем случайный вектор $y_i = (y_1^i, \ldots, y_n^i)$ в соответствии с равномерным распределением в параллелепипеде $\mathcal{P}(\mathbf{b}_1^*, \ldots, \mathbf{b}_n^*)$. Для каждой координаты y_i^i вектора y_i вычисляем

ее рациональное приближение $\bar{y}_j^i = \frac{\bar{z}_j^i}{n}$, такое что $|y_j^i - \bar{y}_j^i| < \frac{1}{n}$. 2. Биту $x_i = 0$ сообщения \bar{x} ставим в соответствие сумму случайного вектора $z_i \in \mathbb{R}^n$, выбранного в соответствии с нормальным распределением с функцией плотности

нормальным распределением с функцией плотности $ho(w)=e^{-\pi\|w\|^2}, w\in\mathbb{R}^n$, и случайного вектора решетки $L(\mathbf{B})$. Вектор z_i определяет единственный элемент $y_i\in\mathcal{P}(\mathbf{b}_1^*,\ldots,\mathbf{b}_n^*)$, такой что $y_i-z_i\in L$. Для каждой координаты y_i^i вектора y_i вычисляется его рациональное приближение $\bar{y}_i^i=\frac{\bar{z}_i^i}{n}$, такое что

16/28

Алгоритм дешифрования 1

Через [[x]] обозначим расстояние до ближайшего целого к x.

Вход Набор Y, векторов \bar{y}_i .

Выход: Последовательность \bar{x}' битов x'_i .

Выполнение: Для всех i находим скалярное произведение $\alpha_i=(\bar{y}_i,\mathbf{b}_n^*).$ Если $[[\alpha_i]]\geq \tilde{c}(\log n)^{\frac{1}{2}}$, то получаем бит $x_i'=1$, иначе — бит $x_i'=0.$

Теорема

Пусть
$$2n^{-\frac{\varepsilon}{3}} < \delta_1 < \tilde{c}(\log n)^{\frac{1}{2}} < \frac{1}{3}\delta_2$$
, где $\delta_1 > 0, \delta_2 > 0$. Тогда алгоритм дешифрования 1 расшифровывает каждый бит сообщения, зашифрованного алгоритмом шифрования 1 с вероятностью ошибки $p = p_1 + p_2$, где $p_1 < \delta_2 n^{-\frac{\varepsilon}{3}}, p_2 < c_1 e^{-c_2 n^{\frac{2\varepsilon}{3}}}$, где $c_1 = \frac{2}{\pi \delta_1}, c_2 = \frac{\pi \delta_1^2}{4}$.

Алгоритм шифрования 2

Вход: Сообщение \bar{x} , *i*-й бит которого x_i .

Выход: Набор *Y* векторов, *i*-й вектор которого $\bar{y}_i = (\bar{y}_1^1, \dots, \bar{y}_1^n)$ такой, что $\bar{y}_i^i = \frac{\bar{z}_i^i}{n}$, где \bar{z}_i^i — целое.

Выполнение: Если $x_i=0$, то положим $s_i=0\in\mathbb{R}^n$, если же $x_i=1$, то положим $s_i=fj_A\in\mathbb{R}^n$. Пусть $z_i\in\mathbb{R}^n$ — случайный вектор с нормальным распределением, функция плотности которого $\rho(w)=e^{-\pi\|w\|^2}, w\in\mathbb{R}^n$. Возьмем вектор $y_i=(y_1, \cdots, y_n^i)$ из параллелепипида $\mathcal{P}(2f_1, \ldots, 2f_n)$, такой что $y_i-(z_i+s_i)\in 2L^*$. Такой вектор y_i будет один и только один: $y_i=s_i+z_i+\sum_{j=1}^n 2a_jf_j$ для

некоторого набора $a_j \in \mathbb{Z}, j \in 1$, n, поэтому его координатами в базисе $D' = (2f_1, \ldots, 2f_n)$ будут дробные части соответствующих координат вектора $s_i + z_i$ в этом базисе. Для каждой координаты y_j^i вектора y_i вычисляется его рациональное приближение $\bar{y}_i^i = \frac{\bar{z}_j^i}{n}$, такое

что $|y_j^i - \bar{y}_j^i| < \frac{1}{n}$.

Алгоритм дешифрования 2

Обозначим через k_w ближайшее целое к w.

Вход: Набор Y, векторов \bar{y}_i .

Выход: Последовательность \bar{x}' битов x_i' .

Выполнение: Для всех i находится скалярное произведение $\alpha_i = (\bar{y}_i, u)$. Если $k_{\alpha_i} \equiv 0 \mod 2$, то получаем бит $x_i' = 0$, иначе — бит $x_i' = 1$.

Теорема

Алгоритм дешифрования 2 расшифровывает каждый бит сообщения, зашифрованного алгоритмом шифрования 2 с вероятностью ошибки $p < c_1 n^{-\frac{\varepsilon}{3}} e^{-c_2 n^{\frac{2\varepsilon}{3}}}$, где $c_1 = \frac{2}{\pi c'}, c_2 = \pi c'^2, c' = \frac{1}{2} - n^{-\frac{\varepsilon}{3}}$.

Диофантова аппроксимация

Определение

Пусть $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ и пусть $\varepsilon > 0$. Пусть $\mathbf{Q} \in \mathbb{N}$ удовлетворяет условию $\mathbf{Q} \geq \varepsilon^{-n}$. Задача одновременной диофантовой аппроксимации заключается в нахождении таких $\mathbf{q}, \mathbf{p}_1, \ldots, \mathbf{p}_n \in \mathbb{Z}$, что $0 < \mathbf{q} < \mathbf{Q}$ и

$$|\alpha_i - p_i/q| \le \varepsilon/q$$

для всех $1 \le i \le n$.

Теорема

Пусть $\alpha_1, \dots, \alpha_n \in \mathbb{R}$ — рациональные числа, числители и знаменатели которых ограничены по абсолютной величине значением X. Пусть $0 < \varepsilon < 1$. Тогда можно найти за полиномиальное время такие целые числа (q, p_1, \dots, p_n) , что $0 < q < 2^{n(n+1)/4} \varepsilon^{-(n+1)}$ и $|\alpha_i - p_i/q| \le \varepsilon/q$ для для всех $1 \le i \le n$.

Доказательство теоремы об аппроксимации

Положим $\mathbf{Q}=2^{n(n+1)/4} \varepsilon^{-(n+1)}$ и рассмотрим решетку $\mathbf{L}\subset \mathbb{Q}^{n+1}$, базис которой задан матрицей

$$\begin{pmatrix} 1/\mathbf{Q} & \alpha_1 & \alpha_2 & \dots & \alpha_n \\ 0 & -1 & 0 & \dots & 0 \\ 0 & 0 & -1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & -1 \end{pmatrix}.$$

Размерность решетки n+1 и ее детерминант равен $1/\mathbf{Q}$. Произвольный вектор решетки представляется в виде

$$(q/Q, q\alpha_1-p_1, q\alpha_2-p_2, \ldots, q\alpha_n-p_n).$$

Элементы базиса решетки ограничены рациональными числами, числители и знаменатели которых не превосходят по модулю величины $\max\{X,2^{n(n+1)/4}/\varepsilon^{n+1}\}$.

Доказательство теоремы об аппроксимации

Отметим, что решетка L имеет не целочисленный, а рациональный базис. Применим LLL-алгоритм к решетке L получим ненулевой вектор

$$\mathbf{v} = (\mathbf{q}/\mathbf{Q}, \mathbf{q}\alpha_1 - \mathbf{p}_1, \ldots, \mathbf{q}\alpha_n - \mathbf{p}_n)$$

такой, что

$$\|\mathbf{v}\| \le 2^{n/4} \det(L)^{1/(n+1)} = 2^{n/4} \cdot 2^{-n/4} \varepsilon = \varepsilon < 1.$$

Если q=0, то $\mathbf{v}=(0,-p_1,\ \dots,-p_n)$, причем $p_i\neq 0$ при некотором i и, следовательно, $\|\mathbf{v}\|\geq 1$. Поэтому $q\neq 0$. Без ограничения общности, можно предполагать, что q>0. Поскольку $\|\mathbf{v}\|_{\infty}\leq \|\mathbf{v}\|$, выполняются неравенства $q/Q\leq \varepsilon<1$. Поэтому $0< q< Q\varepsilon\leq 2^{n(n+1)/4}\varepsilon^{-(n+1)}$. Аналогично, получаем неравенства $|q\alpha_i-p_i|<\varepsilon$ для всех $1\leq i\leq n$.

Случайный класс решеток. Пусть набор векторов $\nu = [u_1, \ldots, u_m]$, где $u_i \in \mathbb{Z}^n$.

Тогда $\Lambda(\nu,q)$ — определяется как решетка всех последовательностей целых h_1, \ldots, h_m таких, что

$$\sum_{i=1} h_i u_i \equiv 0 \pmod q$$

Упражнение. Векторы $(h_1, \ \dots, h_m)$ образуют

решетку.

. При заданном n положим $m = \lfloor c_1 n \log n \rfloor$, $q = \lfloor n^{c_2} \rfloor$. Выберем случайные независимые векторы

 v_1, \ldots, v_{m-1} равномерно на множестве всех векторов $(x_1, \ldots, x_n) \in \mathbb{Z}^n$, с $0 \le x_i < q$.

векторов $(x_1, \ldots, x_n) \in \mathbb{Z}^n$, с $0 \le x_i < q$. Выберем $\delta_1, \ldots, \delta_{m-1}$ случайно и равномерно из множества $\{0, 1\}$.

Определим

$$\mathbf{v}_m \equiv -\sum_{i=1}^{m-1} \delta_i \mathbf{v}_i \pmod{q}$$

где каждая компонента v_m принадлежит [0, q-1].

Для
$$\lambda=(\mathsf{v}_1,\ \ldots,\mathsf{v}_{\mathsf{m}})$$
 будем писать $\lambda_{\mathsf{n},\mathsf{c}_1,\mathsf{c}_2}.$

По теореме Дирихле для достаточно больших $c_1 \exists$ вектор короче, чем n.

Теорема

 $\exists c_1, c_2, c_3$: если есть вероятностный полиномиальный алгоритм А, который получая на вход случайную переменную λ_{n,c_1,c_2} с вероятностью не менее 1/2 выдает ненулевой вектор решетки $\Lambda(\lambda_{n.c_1.c_2}, \lfloor n^{c_2} \rfloor)$ длины не более n, то есть вероятностный алгоритм В, который принимая на вход линейно независимые векторы $a_1, \ldots, a_n \in \mathbb{Z}^n$, за время полиномиальное от $\sigma = \sum_{i=1}^n \mathsf{size}(a_i)$, выдает $\mathsf{z}, (d_1, \ldots, d_n)$ такие, что с вероятностью более $1-2^{-\sigma}$ выполнено: 1) если v — кратчайший ненулевой вектор в решетке $L(a_1, \ldots, a_n)$, mo

$$z \leq ||v|| \leq n^{c_3}z;$$

2) d_1, \ldots, d_n является базисом, причем $\max_{i=1}^n ||d_i|| \le n^{c_3} bl(L)$.

Односторонние функции. Пусть $m = \lfloor c_1 n \log n \rfloor$, $q = \lfloor n^{c_2} \rfloor$, c_1 , c_2 — даны в теореме.

Областью определения f будет множество $v_1, \ldots, v_{m-1}, \delta_1, \ldots, \delta_{m-1}$, где каждое v_i , является n-мерным вектором $(x_1, \ldots, x_n) \in \mathbb{Z}^n$, причем $0 < x_i < q$, и каждое δ_i есть 0 или 1.

Пусть $\mathbf{\textit{x}}=(\mathbf{\textit{v}}_1,\ \dots,\mathbf{\textit{v}}_{\textit{m}-1},\delta_1,\ \dots,\delta_{\textit{m}-1})\in \operatorname{domain}(\textit{\textit{f}})$ и

$$\mathbf{v}_m \equiv -\sum_{i=1}^{m-1} \delta_i \mathbf{v}_i \pmod{q}$$

где все компоненты
$$v_m$$
 — целые числа из интервала $[0,q-1].$

Положим

$$f(\mathbf{x})=(\mathbf{v}_1,\ldots,\mathbf{v}_{m-1},\mathbf{v}_m).$$

f — односторонняя функция. Пусть $y = (v_1, \ldots, v_m) = f(x)$, где x — случайный элемент domain(f).

Поскольку y является случайной переменной λ_{n,c_1,c_2} , то если есть алгоритм инвертирования f на y, который находит x': f(x') = y, то этот алгоритм находит также короткий ненулевой вектор в $\Lambda(\lambda_{n,c_1,c_2}, \lfloor n^{c_2} \rfloor)$.

Из теоремы вытекает, что если хотя бы одна из двух проблем трудна в худшем случае (не имеет полиномиального вероятностного алгоритма), то f — односторонняя функция.