

Physical Adversarial Attacks Against End-to-End Autoencoder Communication Systems

Mauro A. A. Da Cruz¹ and Sheila C. S. Janota¹

maurocruzter@gmail.com and sheilajanota@hotmail.com

¹ Instituto Nacional de Telecomunicações (INATEL), Santa Rita do Sapucaí-MG, Brazil

Original Authors: Meysam Sadeghi and Erik G. Larsson

In IEEE Communications Letters, vol. 23, No. 5, May 2019 doi: 10.1109/LCOMM.2019.2901469.

Presentation for TP 555 – Inteligência Artificial e Machine Learning

Santa Rita do Sapucaí, 23 de Junho de 2020

Outline

- Introduction
 - ➤ Artificial Intelligence
 - > Problem definition
 - ➤ Proposal overview
- Deep Neural Networks (DNNs)
- End-to-end learning of communication systems using autoencoders
- The adversarial attack vulnerability
- Experimentation scenario
- Conclusions and future work

Introduction

28.1 Billion USD marketshare in 2018

- Nowadays it is hard to talk about technology without AI in the conversation
- Various business are trying to integrate it into their core
- The reason is because the end product results are more tailored to the user

Problem definition

- An increasing popular way of doing AI is through Neural Networks (NNs)
- They are popular because their applications are very flexible
- One of these applications is on Wireless Communications such as end-toend learning communication systems using autoencoders
- Using autoencoders brings many benefits
- However, one of the main vulnerabilities in NN are adversarial attacks
- Since autoencoders use NN, they inherit this vulnerability

Proposal overview

- Physical adversarial attacks against end-to-end autoencoder communication systems
- White-box adversarial attacks
- Black-Box adversarial attacks
- Jamming attacks
- Analyze black-box and Jamming in traditional and autoencoder systems

Deep Neural Networks (DNNs)

- DNNs are basically Neural Networks with more layers
- DNNs are very flexible and can be used in various industries
- We will focus on End-to-end learning of communication systems using autoencoders

End-to-end learning of communication systems using autoencoders

- The goal is to learn full transmitter and receiver implementations which are optimized for a specific performance metric and channel model
- This can be achieved by representing transmitter and receiver as NNs and by interpreting the whole system as an autoencoder
- Autoencoder is an unsupervised artificial neural network that learns how to efficiently compress and encode data then learns how to reconstruct the data back from the reduced encoded representation to a representation that is as close to the original input as possible
- The advantage is that no math model of the cannel is required and therefore can be applied to any type of channel without prior analysis

The adversarial attack vulnerability

- Inputs to ML models designed to cause the model to make a mistake
- Similar to optical illusions for machines
- Are one of the main vulnerabilities of Deep Neural Networks

The adversarial attack vulnerability

- DNNs are always vulnerable to these attacks
- Mitigating them is an important research topic
- Since the autoencoders are based on DNNs they are also vulnerable
- Adversarial attacks can be classified into digital and physical attacks
- The focus will be on Physical Attacks

Adversarial attack against autoencoder system

- s Input signal
- x Output of the encoder
- p Atacker perturbation
- n Noise

Experimentation scenario

- The classic Hamming(7,4)
- AWGN (Additive White Gaussian Noise) Channel considered
- PSR (Perturbation-to-Signal Ratio): -2, -6, -10 dB

- Three scenarios
 - White-box attack (Full knowledge of the system)
 - Black-box attack (limited or no knowledge of the system)
 - Autoencoders VS Classical Approaches (PSR = -6dB)

Scenario 1 – White-box

Scenario 2 – Black-box

Scenario 3 – Autoencoders vs Classical Approaches (PSR -6dB)

Conclusions

• Adversary transmitters can increase the BLER of a communication system by orders of magnitude by transmitting a well-designed perturbation signal

 The adversarial attacks are more destructive than the jamming attacks in Autoencoders

• Classical coding schemes are more robust than the autoencoders against both adversarial and jamming attacks

Future Work

Mitigate the effects of Adversarial Attacks

Investigate other channel models such as Rayleigh

Use other hyperparameters other than the classic Hamming(7,4)

Use more advanced Jamming strategies

Physical Adversarial Attacks Against End-to-End Autoencoder Communication Systems

Mauro A. A. Da Cruz¹ and Sheila C. S. Janota¹ maurocruzter@gmail.com and sheilajanota@hotmail.com

¹ Instituto Nacional de Telecomunicações (INATEL), Santa Rita do Sapucaí-MG, Brazil

Original Authors: Meysam Sadeghi and Erik G. Larsson

In IEEE Communications Letters, Vol. 23, No. 5, May 2019 doi: 10.1109/LCOMM.2019.2901469.

Presentation for TP 555 – Inteligência Artificial e Machine Learning

Santa Rita do Sapucaí, 23 de Junho de 2020