

CSSE2010/CSSE7201 Lecture 22

Memory & Disks

School of Information Technology and Electrical Engineering
The University of Queensland

Outline

- Admin
- Computer Memory
 - Different types of memory
 - Memory Hierarchy
- Disks

Admin

- Quiz 9 from last week: 336 attempts, average 3.9/5 and median 4/5.
- Quiz 10 (the last one) is due this week's Friday 22/10/21 4:00PM AEST
- Łab Assignment 2
 - There have been some corrections posted to the specification. Please take note.
 - More tutoring staff has been allocated for week 12 and 13 to give you extra help.

Reminder

- SECaT Course and Teaching Evaluation now open
 - There are two surveys: one is for the course and one is for teaching.
 - Surveys can be accessed at https://eval.uq.edu.au
 - Please take some time to provide feedback on how it all went for CSSE2010/7201 this semester
 - The surveys close on 11.59PM Friday 5th November (revision week)

Computer Memory

- Computers need memory to
 Store temporary results

 - Store programs
 - Remember settings when power off
- Many different types

 Random access

 - Static vs. dynamic
 - ✓ Volatile vs. non-volatile
 - Read-only
 - Primary vs. secondary

Memory Types

- **Static** memory
- Flip-flops or latches used to store bits
- Dynamic memory
 - Each cell is a switch (transistor) plus capacitor
- These are both types of RAM = Random Access Memory
 - "RAM" originally meant could access any cell
 - (Compared with sequential_access)
 - Now means volatile read/write memory
 - Static memory = SRAM AVR LAL Mem 2 KB
 - Dynamic memory = DRAM

Volatility

- **Volatile** memory
 - Contents "forgotten" when power off
 - Both SRAM and DRAM are volatile (DRAM forgets contents within milliseconds if not refreshed, i.e. contents rewritten)
 - Non-volatile memory
- Contents remembered when power off
 - Many types
 - **✓** ROM
 - EPROM
 - ✓ EEPROM (*)
 - Flash (*)

Non-volatile memory chips

Programmed by memory manufacturer – contents hardwired in silicon

- **▶ EPROM** = Erasable Programmable ROM
 - Can erase, e.g. with ultraviolet light
- EEPROM = Electrically Erasable PROM
 - Can erase by applying a certain voltage
- Flash = New EEPROM
 - (Used to be different technology to EEPROM but converging)
 - Main difference Flash memory written/erased in blocks, EEPROM written/erased one cell at a time
 - ATMega324A supports two flash blocks Application section + Boot Loader section
 - Other AVR devices have one, others have more

ATmega324A/328P Memory

When is a Megabyte not a Megabyte?

- When it's a million bytes
- Conventionally (or at least historically) $1 \text{ MB} = 2^{10}\text{kB} = 1,024\text{kB} = 2^{20} = 1,048,576\text{B}$
 - Sometimes, $1MB = 10^{6}B = 1,000,000B$
 - Or could be in between: 1000kB = 1,024,000B
- Conventionally

$$1 \text{ GB} = 2^{10}\text{MB} = 2^{20}\text{kB} = 2^{30}\text{B}$$

= 1,073,741,824B

- Sometimes, $1GB = 10^9B = 1,000,000,000B$
- This is a 7.4% difference
- Or could be in between: e.g. $1000 \times 2^{20} = 1,048,576,000$

When do we use powers of 2? When do we use powers of 10?

- For main memory capacity, always based on powers of 2, e.g.
 - $1GB = 1024 \times 1024 \times 1024$ bytes = 2^{30} bytes
- For **hard disks**, manufacturers base sizes_on powers of 10, e.g.
 - 1GB = $1000 \times 1000 \times 1000$ bytes = (10^9) bytes
 - Makes hard disks seem bigger)
 - Operating Systems (e.g. Windows) base sizes on powers of 2
- For **data speeds (transfer rates)**, usually based on powers of 10, e.g.
 - 1Gbps (gigabit per second) = 10⁹ bits per second
- Occasionally, a mixture
 - 1.44MB floppy disk stores 1.44 x 1000 x 1024 bytes

Kibibytes, Mebibytes

- Kilo-, mega-, giga- prefixes mean powers of 10 in SI units
- To avoid confusion, standardised terms have been created for binary prefixes, e.g.
 - 1 **kibibyte** = 1KiB = 1024 bytes 2
 - 1 mebibyte = 1MiB = 1024KiB
 - 1 **gibibyte** = 1GiB = 1024MiB
- Unfortunately, very few people use them
- We'll use kilo-, mega-, giga- etc. but meaning could vary depending on context

Types of DRAM

- Bits stored as charge on capacitor, not in flip-flops
- Cells are smaller, so can pack more bits on a chip than for static memory
- Slower than static memory
- Many different types of DRAM over the ages...
 - Fast Page Mode (FPM DRAM)
 - Extended Data Out (EDO DRAM)
 - Synchronous DRAM (SDRAM)
 - Rambus DRAM (RDRAM)
 - Double Data Rate DRAM (DDR DRAM) 1, 2, 3 and 4

What is the approximate cost per Gigabyte of DRAM?

What is the approximate cost per Gigabyte of Flash memory?

What is the approximate cost per Gigabyte of Hard Disk Storage?

What is the approximate cost per Gigabyte of SRAM?

Memory Hierarchy

Cache Memory

- CPUs are faster than main memory
 - Very fast memory is expensive
 - Performance suffers if CPU always waiting for memory
 - Cache
 - Small amount of very fast memory combined with larger slow memory
 - Most commonly used memory words kept in cache
 - CPU looks in cache before main memory
 - Average access time greatly reduced if many words are in the cache

Cache Levels

- Often multiple levels of cache
- Level 1 (L1)
 - Inside CPU itself
 - e.g. 32kB to 128kB
 - Runs at same speed as CPU
- Level 2 (L2)
 - May be separate chip (possibly inside same module) or on same chip as CPU
 - e.g. 256kB to 16MB
 - May be slightly slower than CPU
- **Level 3** (L3)
 - Some machines have a third level (e.g. 2MB to 256MB)

Note:

B = byte

b = bi

"Cache" for Disks

- Increasingly common
- Small fast solid state drive (Flash memory) caches content from larger slower magnetic disk

Magnetic Disks

- Rotating platters with magnetised coating
 - Stack of platters
- Data stored magnetically in circular tracks
- Read/write heads float above platter surfaces
- Usually use both sides of platters

Magnetic Disks – Simplified view

Sectors and Tracks

Cylinders

- Set of tracks at a given radial position
- Number of tracks in cylinder =
 2 x number of platters
 (assuming both sides of all platters used)

 Heads move together, i.e., to a certain cylinder

Sectors

- 4096 57tes. Tracks divided into fixed-length sectors
 - Smallest data unit, i.e. must read/write a whole sector at a time
- Sector consists of:
 - 1010101010 -. Preamble
 - Allows head to synchronise to data
 - Data \(4096 bytes. \(851.06 the Error correction codes (ECCs) \quad quoted capacity
 - Error correction codes (ECCs)
 - Inter-sector gap
- About 85% of disk capacity usable by operating system
 - About 95% of this usable for user data
 - Remaining ~5% file system overhead

Access Time

Access time =

- ->seek time +

 rotational latency +

 transfer time neglected.
- Seek time
 - Time to move heads to right cylinder
- Rotational latency
 - Time to wait for sector to arrive under head
- Transfer time
 - Time for sector to pass under head
 - Negligible compared with above

Calculating Access Time

• Example:

What's the average access time for a hard disk which rotates at 7200rpm and has an edge-to-edge seek time of 10ms? (Assume that seek time is proportional to the number of tracks to seek.)

Aug acress time = Aug seek time + Aug rotational (atency)
$$= \frac{1}{3} \left[\text{edge to edge seek time} \right] + \frac{1}{2} \left[\text{rotation time} \right]$$

$$= \frac{1}{3} \left[10 \text{ ms} \right] + \frac{1}{120} \text{ s} = 3$$

$$= \frac{1}{3} \left[10 \text{ ms} \right] + \frac{1}{120} \text{ s} = 3$$

$$= \frac{1}{3} \left[10 \text{ ms} \right] + \frac{1}{120} \text{ s} = 3$$