UNIVERSIDADE DE SÃO PAULO – USP ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO

SME0300 - CÁLCULO NUMÉRICO

ANÁLISE COMPUTACIONAL DE MÉTODOS NUMÉRICOS

Ana Beatriz Popazoglo - 9806892 Lucas Viana Vilela - 10748409 Murilo Ramos Botto - 9288561

Lista de ilustrações

Figura 1	_	Gráfico da Equação 2.1 [MATLAB 2015]	4
Figura 2	_	Interpretação Geométrica do Método Newton [VALLE 2017]	7
Figura 3	_	Gráfico da Equação 2.6 [MATLAB 2015]	7
Figura 4	_	Visualização gráfica do método das secantes [Diagrams.net 2020]	9
		Lista de tabelas	
Tabela 1	_	Resultados do Método da Bissecção no intervalo [-1,0]	11
Tabela 2	_	Resultados do Método da Bissecção no itervalo [0,1]	12
Tabela 3	_	Resultados do Método de Newton no intervalo [-1,0]	12
Tabela 4	_	Resultados do Método de Newton no intervalo [0,1]	13
Tabela 5	_	Resultados do Método das Secantes no intervalo [-1,0]	13
Tabela 6	_	Resultados do Método das Secantes no intervalo [0,1]	14
Tabela 7	_	Tabela de comparação entre os métodos da Bissecção (B), de Newton (N) e	
		das Secantes (S) no intervalo [-1,0]	14
Tabela 8	_	Tabela de comparação entre os métodos da Bissecção (B), de Newton (N) e	
		das Secantes (S) no intervalo [0,1]	14

Sumário

	Sumario
1	INTRODUÇÃO
2	PROCEDIMENTOS
2.1	Comportamento da função-exemplo
2.1.1	Apresentação da função-exemplo
2.1.2	Existência das raízes
2.1.3	Valores exatos das raízes
2.2	Método da Bissecção
2.2.1	Desenvolvimento teórico do método
2.2.2	Convergência da função-exemplo
2.3	Método de Newton
2.3.1	Desenvolvimento teórico do método
2.3.2	Convergência da função-exemplo
2.4	Método das Secantes
2.4.1	Desenvolvimento teórico do método
2.4.2	Convergência da função-exemplo
2.5	Critérios de parada
3	RESULTADOS
3.1	Método da Bissecção
3.1.1	Intervalo [-1,0]
3.1.2	Intervalo [0,1]
3.2	Método de Newton
3.2.1	Intervalo [-1,0]
3.2.2	Intervalo [0,1]
3.3	Método das Secantes
3.3.1	Intervalo [-1,0]
3.3.2	Intervalo [0,1]
3.4	Comparação entre os métodos
4	CONCLUSÃO
	Referências Bibliográficas

1 Introdução

O objetivo do trabalho é comparar três diferentes métodos numéricos, o Método da Bisseção, o Método de Newton e o Método das Secantes.

Para isso, foi apresentada a teoria de cada método e realizada a implementação de cada método na linguagem Phyton, utilizando uma função de exemplo para o cálculo de suas raízes.

Verificou-se, também, que existe pelo menos uma raíz real da função de análise em cada intervalo, de maneira gráfica, e, em seguida, as raízes exatas foram determinadas a fim de comparação com as raízes encontradas através de cada método numérico.

2 Procedimentos

2.1 Comportamento da função-exemplo

2.1.1 Apresentação da função-exemplo

A função-exemplo que serviu como objeto de estudo, denominada f(x), foi a seguinte:

$$f(x) = 21x^4 - 11x^3 + 19x^2 - 11x - 2 (2.1)$$

E os intervalores de interesse são: [-1,0] e [0,1].

2.1.2 Existência das raízes

Com auxílio do software [MATLAB 2015], o gráfico da função f(x) foi plotado no intervalo [-1,1] e está na Figura 1.

Figura 1 – Gráfico da Equação 2.1 [MATLAB 2015]

Contata-se que a função cruza o eixo x duas vezes, uma no intervalo [-1,0] e outra no [0,1] - pontos destacados no gráfico da Figura 1. Dessa forma, entende-se que há exatamente uma raiz real em cada um desses intervalos.

2.1.3 Valores exatos das raízes

A partir da análise simbólica da função f(x), desenvolvida no *software* [Wolfram Alpha 2020], obteve-se que suas raizes exatas são: $x_1 = -\frac{1}{7}$, $x_2 = \frac{2}{3}$, $x_3 = i$ e $x_4 = -i$.

Destas, tem-se que $x_1=-\frac{1}{7}\approx -0, \overline{142857}\in [-1,0]$ e $x_2=\frac{2}{3}\approx 0, \overline{6}\in [0,1]$, que são os intervalos de interesse.

2.2 Método da Bissecção

2.2.1 Desenvolvimento teórico do método

O método da bisseção, de acordo com [FRANCO 2015], é um método iterativo, que busca as raízes de uma função em um intervalo [a,b], em que se sabe que há uma raiz, através de consecutivas bisseções do intervalo, e seus subintervalos, até chegar a uma aproximação com precisão desejada do valor da raiz.

Considere uma função $f:[a,b] \longrightarrow \mathbb{R}, y=f(x)$, em que, $f(a)\cdot f(b)<0$, que garante que no intervalo há uma raiz \bar{x} tal que $f(\bar{x})=0$ - como a apresentada na Equação 2.1. Para k=1,2,... processo iterativo é definido por:

$$x_k = \frac{a+b}{2} \tag{2.2}$$

Além disso, para a aplicação do método, deve-se seguir os passos:

- 1. Certifica-se de que os valores extremos do intervalo [a,b] não são raízes da função. Caso um dos dois valores seja uma raiz, o método se encerra e a raiz foi encontrada.
- 2. Caso nenhum dos extremos do intervalo seja a raiz, calcula-se, para k=1 (primeira iteração), x_k a partir da Equação 2.2 e $f(x_k)$ e, então, existem três possibilidades:
 - $f(x_k) = 0$, ou seja, x_k é raiz da função e, portanto, o método de encerra;
 - $f(a) \cdot f(x_k) < 0$, o que significa que a raiz está no intervalo $[a, x_k]$.
 - $f(x_k) \cdot f(b) < 0$, o que significa que a raiz está no intervalo $[x_k, b]$.

3. Se
$$f(a) \cdot f(x_k)$$
 $\begin{cases} < 0, b = x_k \\ > 0, a = x_k \end{cases}$

4. Calcular x_{k+1} e repetir o processo.

2.2.2 Convergência da função-exemplo

Para que o método seja aplicável e haja convergência para a raiz no intervalo [a,b], basta verificar se $f(a) \cdot f(b) < 0$.

A verificação será feita para os intervalos [-1,0] e [0,1] da função f(x) (Equação 2.1).

Para o primeiro intervalo, [-1,0]:

$$f(-1) = 60; f(0) = -2$$

$$f(-1) \cdot f(0) = -120 < 0$$
(2.3)

E, para o segundo intervalo, [0,1]:

$$f(0) = -2; f(1) = 16$$

$$f(0) \cdot f(1) = -32 < 0$$
(2.4)

Como os resultados das multiplicações dos dois intervalos são negativos, ambos contêm raízes (em concordância com o constatado na subseção 2.1.2) e o método converge para elas.

2.3 Método de Newton

2.3.1 Desenvolvimento teórico do método

O método de Newton, de acordo com [FRANCO 2015], é uma técnica utilizada para se determinar raízes de equações não lineares através do método de iteração linear. Primeiro, escolhe-se uma aproximação inicial x_o da raiz \bar{x} de f(x), ambos contidos no intervalo [a,b]. Depois, espera-se que a sequência x_k convirja para a raiz.

O processo iterativo, para cada passo k, é definido por:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \tag{2.5}$$

Temos que as condições suficientes para garantir a convergência desse preocesso iterativo para a raiz são:

- 1. $\bar{x} \in [a, b]$
- 2. $x_0 \in [a, b]$
- 3. $f'(x) \neq 0, \forall x \in [a, b]$

Pode-se observar visualização gráfica do método na Figura 2, a seguir:

Figura 2 – Interpretação Geométrica do Método Newton [VALLE 2017]

2.3.2 Convergência da função-exemplo

Ao plotar a derivada da Equação 2.1, explicitada na Equação 2.6, chegou-se ao gráfico da Figura 3:

$$f'(x) = 84x^3 - 33x^2 + 38x - 11 (2.6)$$

Figura 3 – Gráfico da Equação 2.6 [MATLAB 2015]

Observando a Equação 2.6, percebe-se que a função f'(x) cruza o eixo x=0 nenhuma vez no intervalo [-1,0] e uma vez no intervalo [0,1] - mais especificamente, no intervalo [0,2, 0,4]. Assim, e tendo em vista as condições suficientes para convergência apresentadas na subseção 2.3.1, não é possível garantir a convergência deste método para a raiz de f(x) neste

intervalo. No intervalo [-1,0], entretanto, todas as condições foram satisfeitas e, portanto, a convergência é garantida.

2.4 Método das Secantes

2.4.1 Desenvolvimento teórico do método

O Método das Secantes, de acordo com [FRANCO 2015], é um aprimoramento do Método de Newton, apresentado no seção 2.3, pois existe a eliminação da dependência da derivada, que é trocada por uma aproximação pelo quociente das diferenças (Equação 2.7).

$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$
(2.7)

Onde x_k e x_{k-1} são aproximações para \bar{x} .

Com isso, as iterações do método são calculadas da maneira apresentada nas equações 2.8 e 2.9:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \approx x_k - f(x) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$$
(2.8)

$$x_{k+1} = \frac{f(x_k)x_{k-1} - f(x_{k-1})x_k}{f(x_k) - f(x_{k-1})}$$
(2.9)

É importante ressaltar que são necessárias duas aproximações iniciais da raiz $\bar{x} \in [a, b]$, x_0 e x_1 , antes de utilizar o processo iterativo da Equação 2.9.

Por fim, as condições suficientes para garantir a convergência do método são as mesmas do Método de Newton, que foram explicitadas na subseção 2.3.1.

A visualização gráfica do método é apresentada na Figura 4.

Figura 4 – Visualização gráfica do método das secantes [Diagrams.net 2020]

2.4.2 Convergência da função-exemplo

Analogamente às condições suficientes, a análise de convergência da função f(x) nos intervalos de interesse é idêntica à elaborada para o Método de Newton, na subseção 2.3.2.

Dessa forma, há garantia de convergência no intervalo [-1,0], porém não no intervalo [0,1].

2.5 Critérios de parada

Para chegar a uma aproximação da raiz \bar{x} com precisão (margem de erro) ε , adota-se em todos os métodos numéricos (apresentados na seções 2.2, 2.3 e 2.4) o critério de parada a seguir:

 $|x_k - x_{k-1}| < \varepsilon \cdot max\{1, |x_k|\} \Longrightarrow x_k$ é uma aproximação satisfatória para $\bar{x_k}$

3 Resultados

Os métodos foram aplicados, através de algoritmos implementados em Python, na função f(x) da Equação 2.1, nos dois intervalos [a,b] de interesse ([-1,0] e [0,1], respectivamente).

Para as primeiras aproximações x_0 e x_1 , quando necessárias, foram utilizados os valores de a e b, respectivamente - exceto na subseção 3.3.2, com justificativa adjacente.

Os resultados de cada um dos métodos e intervalos estão expostos a seguir.

3.1 Método da Bissecção

3.1.1 Intervalo [-1,0]

O resultado encontado foi $x_{20} = -0,14285755$, após 20 iterações, com um erro $e_k = |x_{20} - \bar{x}| = 4,08717564 \cdot 10^{-7}$.

Os resultados das demais iterações estão apresentados na Tabela 1.

3.1.2 Intervalo [0,1]

O resultado encontado foi $x_{20} = 0,66666698$, após 20 iterações, com um erro $e_k = 3,17891439 \cdot 10^{-7}$.

Os resultados das demais iterações estão apresentados na Tabela 2.

3.2 Método de Newton

3.2.1 Intervalo [-1,0]

Como esperado, o método convergiu neste intervalo. O resultado encontado foi $x_5 = -0.14285714$, após 5 iterações, com um erro $e_k = 2.77555756 \cdot 10^{-17}$.

Os resultados das demais iterações estão apresentados na Tabela 3.

k	$ a_k $	$ $ b_k	x_k	$f(x_k)$	$ $ e_k
00	-1,00000000	0,00000000	-1,00000000	6,00000000e+1	8,57142857e-01
01	-1,00000000	0,00000000	-0,50000000	1,09375000e+1	3,57142857e-01
02	-0,50000000	0,00000000	-0,25000000	2,19140625e+0	1,07142857e-01
03	-0,25000000	0,00000000	-0,12500000	-3,01513672e-1	1,78571429e-02
04	-0,25000000	-0,12500000	-0,18750000	8,28933716e-1	4,46428571e-02
05	-0,18750000	-0,12500000	-0,15625000	2,37095833e-1	1,33928571e-02
06	-0,15625000	-0,12500000	-0,14062500	-3,85901332e-2	2,23214286e-03
07	-0,15625000	-0,14062500	-0,14843750	9,76246782e-2	5,58035714e-03
08	-0,14843750	-0,14062500	-0,14453125	2,91144114e-2	1,67410714e-03
09	-0,14453125	-0,14062500	-0,14257812	-4,83805982e-3	2,79017857e-04
10	-0,14453125	-0,14257812	-0,14355469	1,21130618e-2	6,97544643e-04
11	-0,14355469	-0,14257812	-0,14306641	3,63123056e-3	2,09263393e-04
12	-0,14306641	-0,14257812	-0,14282227	-6,04981237e-4	3,48772321e-05
13	-0,14306641	-0,14282227	-0,14294434	1,51273288e-3	8,71930804e-05
14	-0,14294434	-0,14282227	-0,14288330	4,53777894e-4	2,61579241e-05
15	-0,14288330	-0,14282227	-0,14285278	-7,56261517e-5	4,35965402e-06
16	-0,14288330	-0,14285278	-0,14286804	1,89069751e-4	1,08991350e-05
17	-0,14286804	-0,14285278	-0,14286041	5,67202695e-5	3,26974051e-06
18	-0,14286041	-0,14285278	-0,14285660	-9,45332361e-6	5,44956752e-07
19	-0,14286041	-0,14285660	-0,14285851	2,36333773e-5	1,36239188e-06
20	-0,14285851	-0,14285660	-0,14285755	7,09000295e-6	4,08717564e-07

Tabela 1 – Resultados do Método da Bissecção no intervalo [-1,0]

3.2.2 *Intervalo* [0,1]

Apesar de, na subseção 2.3.2, não ter sido possível garantir a convergência deste método iterativo neste intervalo, o método funcionou de forma coerente.

Os resultados das demais iterações estão apresentados na Tabela 4.

3.3 Método das Secantes

3.3.1 Intervalo [-1,0]

Como esperado, o método convergiu neste intervalo. O resultado encontado foi $x_7=-0,14285714$, após 7 iterações, com um erro $e_k=6,99659775\cdot 10^{-12}$.

k	\mathbf{a}_k	b_k	x_k	$f(x_k)$	$ e_k $
00	0,00000000	1,00000000	0,00000000	-2,00000000e+0	6,66666667e-01
01	0,00000000	1,00000000	0,50000000	-2,81250000e+0	1,66666667e-01
02	0,50000000	1,00000000	0,75000000	2,44140625e+0	8,33333333e-02
03	0,50000000	0,75000000	0,62500000	-9,34326172e-1	4,16666667e-02
04	0,62500000	0,75000000	0,68750000	5,34988403e-1	2,08333333e-02
05	0,62500000	0,68750000	0,65625000	-2,50086784e-1	1,04166667e-02
06	0,65625000	0,68750000	0,67187500	1,29337609e-1	5,20833333e-03
07	0,65625000	0,67187500	0,66406250	-6,35881238e-2	2,60416667e-03
08	0,66406250	0,67187500	0,66796875	3,20633363e-2	1,30208333e-03
09	0,66406250	0,66796875	0,66601562	-1,59642379e-2	6,51041667e-04
10	0,66601562	0,66796875	0,66699219	7,99896254e-3	3,25520833e-04
11	0,66601562	0,66699219	0,66650391	-3,99526863e-3	1,62760417e-04
12	0,66650391	0,66699219	0,66674805	1,99868726e-3	8,13802083e-05
13	0,66650391	0,66674805	0,66662598	-9,99080365e-4	4,06901042e-05
14	0,66662598	0,66674805	0,66668701	4,99605995e-4	2,03450521e-05
15	0,66662598	0,66668701	0,66665649	-2,49786544e-4	1,01725260e-05
16	0,66665649	0,66668701	0,66667175	1,24897385e-4	5,08626302e-06
17	0,66665649	0,66667175	0,66666412	-6,24476643e-5	2,54313151e-06
18	0,66666412	0,66667175	0,66666794	3,12240892e-5	1,27156576e-06
19	0,66666412	0,66666794	0,66666603	-1,56119803e-5	6,35782878e-07
20	0,66666603	0,66666794	0,66666698	7,80600624e-6	3,17891439e-07

Tabela 2 – Resultados do Método da Bissecção no itervalo [0,1]

k	\mathbf{x}_k	$f(x_k)$	$f'(x_k)$	e_k
0	0,00000000	-2,00000000e+00	-1,10000000e+01	1,42857143e-01
1	-0,18181818	7,17164128e-01	-1,95048835e+01	3,89610390e-02
2	-0,14504974	3,81615021e-02	-1,74625395e+01	2,19259959e-03
3	-0,14286441	1,26016342e-04	-1,73473207e+01	7,26439154e-06
4	-0,14285714	1,38712039e-09	-1,73469388e+01	7,99634248e-11
5	-0,14285714	3,20923843e-16	-1,73469388e+01	2,77555756e-17

Tabela 3 – Resultados do Método de Newton no intervalo [-1,0]

Os resultados das demais iterações estão apresentados na Tabela 5.

3.3.2 Intervalo [0,1]

Apesar de, na subseção 2.4.2, não ter sido possível garantir a convergência deste método iterativo neste intervalo, o método funcionou de forma coerente. Entretanto, não foi possível utilizar $x_0=a$ - quando isso foi feito, o método operou e chegou na mesma raiz da subseção 3.3.1, que não está no intervalo [0,1]. Assim, utilizou-se $x_0=a+0.5$, chengado-se, então, a um resultado satisfatório.

k	\mathbf{x}_k	$f(\mathbf{x}_k)$	$f'(x_k)$	e_k
0	1,00000000	1,60000000e+01	7,80000000e+01	3,33333333e-01
1	0,79487179	4,11978520e+00	4,05412431e+01	1,28205128e-01
2	0,69325219	6,91138160e-01	2,74706158e+01	2,65855209e-02
3	0,66809301	3,51325576e-02	2,47070226e+01	1,42634122e-03
4	0,66667104	1,07425619e-04	2,45560193e+01	4,37475767e-06
5	0,66666667	1,01432818e-09	2,45555556e+01	4,13075130e-11
6	0,66666667	0,00000000e+00	2,45555556e+01	0,00000000e+00

Tabela 4 – Resultados do Método de Newton no intervalo [0,1]

k	x_k	$f(\mathbf{x}_k)$	e_k
0	-0,50000000	1,09375000e+01	3,57142857e-01
0	0,00000000	-2,00000000e+00	1,42857143e-01
2	-0,07729469	-1,03041423e+00	6,55624569e-02
3	-0,15943857	2,94970605e-01	1,65814309e-02
4	-0,14115707	-2,94152582e-02	1,70007621e-03
5	-0,14281483	-7,33937836e-04	4,23120704e-05
6	-0,14285725	1,89294227e-06	1,09122537e-07
7	-0,14285714	-1,21369702e-10	6,99659775e-12

Tabela 5 – Resultados do Método das Secantes no intervalo [-1,0]

Essa incerteza do resultado mesmo com um x_0 no intervalo [a,b] é devido à dependência deste método de que x_k esteja próximo de $\bar{x_k}$ (pois não há uma checagem de em qual intervalo a raiz está contida) e, neste caso, x_0 estava no ponto médio entre duas raízes. Esse problema é a motivação para o Método da Falsa Posição, que representa uma melhoria em relação ao das Secantes.

O resultado encontado foi $x_8=0,66666667$, após 8 iterações, com um erro $e_k=5,84698956 \cdot 10^{-12}$.

Os resultados das demais iterações estão apresentados na Tabela 5.

3.4 Comparação entre os métodos

Nas Tabelas 7 e 8 estão explicitados os resultados obtidos em cada um dos métodos nos intervalos [-1,0] e [0,1], respectivamente.

Observando-as, é fácil perceber que, dos três, o Método da Bissecção é o mais rudimentar. Ele é o mais lento (enquanto os outro precisaram de no máximo 8 iterações para concluir, ele precisou de 20) e, ainda assim, o que possui menor precisão (o erro atrelado chega a ser mais de um bilhão de vezes maior do que o do Método de Newton).

k	x_k	$f(x_k)$	e_k
0	0,50000000	-2,81250000e+00	1,66666667e-01
0	1,00000000	1,60000000e+01	3,33333333e-01
2	0,57475083	-1,84271876e+00	9,19158361e-02
3	0,61866872	-1,06137916e+00	4,79979426e-02
4	0,67832721	2,93609135e-01	1,16605419e-02
5	0,66539996	-3,10198370e-02	1,26671079e-03
6	0,66663522	-7,72232505e-04	3,14505174e-05
7	0,66666675	2,11504592e-06	8,61330757e-08
8	0,66666667	-1,43575818e-10	5,84698956e-12

Tabela 6 – Resultados do Método das Secantes no intervalo [0,1]

A comparação entre os dois métodos restantes já é menos evidente, pois os resultados são mais próximos. O Método de Newton é um pouco mais rápido (apenas entre 1 e 2 iterações a menos) e mais preciso (seu erro atrelado e_k chega a ser cem mil vezes menor no primeiro intervalo). Esse resultado é bastante condizente, considerando o fato de que o Método de Newton utiliza a expressão exata da derivada de f(x) (como descrito na Equação 2.5) e o das Secantes, uma aproximação dessa (como descrito nas equações 2.7, 2.8 e 2.9).

Não é interessante dizer que um método é necessariamente melhor que o outro, pois, embora o de Newton seja mais rápido e preciso, o das Secantes exige um cálculo muito mais simples ao eliminar a dependência da derivada. Dessa forma, a utilidade de cada um dos dois métodos depende da situação-problema.

Método	k	\mathbf{x}_k	$f(x_k)$	e_k
В	20	-0,14285755	7,09000295e-6	4,08717564e-07
N	5	-0,14285714	3,20923843e-16	2,77555756e-17
S	7	-0,14285714	-1,21369702e-10	6,99659775e-12

Tabela 7 – Tabela de comparação entre os métodos da Bissecção (B), de Newton (N) e das Secantes (S) no intervalo [-1,0]

Método	k	\mathbf{x}_k	$f(x_k)$	$ e_k $
В	20	0,66666698	7,80600624e-6	3,17891439e-07
N	6	0,66666667	0,00000000e+00	0,00000000e+00
S	8	0,66666667	-1,43575818e-10	5,84698956e-12

Tabela 8 – Tabela de comparação entre os métodos da Bissecção (B), de Newton (N) e das Secantes (S) no intervalo [0,1]

4 Conclusão

Após a análise dos resultados teóricos e práticos apresentados, conclui-se que os resultados obtidos na prática foram coerentes com os resultados teóricos esperados. Os métodos utilizados garantiram a resolução aproximada da equação utilizada através do script feito em *Python*, utilizando seus algoritmos. Não houve nenhum problema encontrado na realização e nas respostas obtidas através do programa.

Conclui-se, enfim, que o objetivo apresentado na Introdução (Capítulo 1) foi atingido com sucesso. Da comparação entre os três métodos, tem-se que o da Bissecção é o pior dos três, se mostrando mais lento e menos preciso, enquanto os outros dois são equiparáveis, cada um melhor para uma situação diferente - de Newton, mais rápido e preciso e, das Secantes, mais fácil de ser calculado.

Referências Bibliográficas

DIAGRAMS.NET. [S.l.]: Seibert Media, 2020.

FRANCO, N. M. B. Cálculo Numérico. [S.l.]: Editora Pearson, 2015.

MATLAB: Matrix laboratory. [S.l.]: MathWorks, 2015.

VALLE, M. E. MS211 - Cálculo Numérico. [S.l.: s.n.], 2017.

WOLFRAM Alpha. [S.l.]: Wolfram, 2020.