

CONTENTS

- 1. 의약품 동등성 시험 개요
- 2. Bootstrap의 활용
- 3. 동등성 평가(비교용출시험)
- 4. 자문 컨설팅 소개

의약품 동등성 시험 개요

용어의 정의

□ 의약품 동등성 시험

- 원칙적으로 주성분, 함량 및 제형(Dosage form)이 동일한 두 제제(Formulation)에 대한 의약품 동등성 (Equivalence)을 입증하기 위해 실시하는 시험
- 1) 생물학적 동등성 시험(Bioequivalence test)
- 생물학적 동등성(이하, 생동성) 입증을 위하여 실시하는 생체 내 시험의 하나로 주성분(Active Ingredient)이 전신 순환혈(Systemic blood circulation)에 흡수되어 약효를 나타내는 의약품에 대하여 동일 주성분을 함유한 동일 투여경로의 두 제제가 생체 이용률(Bioavailability)에 있어서 통계학적으로 동등하다는 것을 입증

2) 비교 용출 시험

동일 주성분을 가진 동일 투여경로의 두 제제에 대하여 시험관 내 용출양상의 유사성을 입증하기 위하여 동일한 조건에
 서 실시하는 시험

비교 용출 시험

- □ 비교 용출 시험이 필요한 경우
 - 1) 주성분의 종류, 함량 및 제형이 동일한 의약품을 신규로 품목허가(신고) 하는 경우
 - 2) 품목허가(신고) 후 변경 사항이 있는 경우
- □ 비교 용출 시험 동등성 평가 방법(기존)
 - 시험군(Test group)과 대조군(Control group)의 평균 용출률(Average dissolution rates) 비교
 - 특정 시점에서만 용출률을 비교하여 유사성 인자(Similarity factor, f_2)로 동등성 평가

■■ 비교 용출 시험 동등성 판정 예시(개정 전)

- 시험군과 대조군의 각 용출 시점에서 <u>12개의 시료를</u> <u>수집</u>
- 평균 용출률을 이용하여 동등성을 평가하기 위해서는 대조약과 시험약의 평균 용출률의 변이계수(Coefficient of Variation, CV)가 첫 번째 비교시점에서 20% 이내이며, 그 외 비교 시점에서는 10%를 초과해서는 안됨
- 오른쪽 예시에서 처음 시점의 변이계수는 20.86,
 20.91%로 20%를 초과함
- 이러한 경우, **유사성 인자(f₂)**로 동등성 평가

시험약	 용출	5시간(분)	
시험조	10	15	30
1	42.9	68.2	80.7
2	53.5	78.1	87.4
3	80.9	89.6	93.1
4	45.4	75.1	85.3
5	52.1	77.3	86.5
6	56.6	79.8	87.4
7	52.5	82.0	89.9
8	45.9	75.0	87.5
9	56.1	79.7	87.3
10	60.0	81.8	88.2
11	36.4	66.1	78.0
12	60.8	82.1	
평균	53.71	77.9	86.7
표준편차	11.20	6.361	3.99
변이계수	20.86	8.15	4.50

대조약 시험조	10	:시간(분) 15	
		101	30
1	42.9	68.2	80.7
2	53.5	78.1	87.4
2 3	80.9	89.6	93.1
4	45.4	75.1	85.3
5	52.1	77.3	86.5
6	56.6	79.0	87.4
7	52.5	82.0	89.9
8	45.9	75.0	87.5
9	56.1	79.7	87.3
10	60.0	81.8	88.2
11	36.4	66.1	78.0
12	60.8	82.1	89.2
평균	53.71	77.91	86.7
표준편차 변이계수	11.20	6.351	3.99
변이계수	20.86	8.15	4.50

〈시험군〉 〈대조군〉

유사성 인자(Similarity Factor, f₂)

- 평균 용출률(%)을 이용해 산출한 시험군과 대조군의 용출 곡선 간의 차이 값
- 두 집단의 용출률 차이가 없을 경우의 f₂는 100으로 산출되도록 공식 개발
- 산출된 f_2 의 값이 50 이상일 경우 통계적으로 동등한 것으로 간주 (일반제제와 장용성 및 서방성 제제의 기준은 다소 상이)
- f_2 가 50이라는 것은 시험군과 대조군의 평균 용출률의 차이가 10%인 것을 의미함 → 10% 이하는 동등한 것으로 판정.

$$f_2 = 100 - 25\,\log\!\left(1 + rac{1}{P}\!\sum_{i=1}^P\!\left(ar{X}_{T,i} - ar{X}_{R,i}
ight)^2
ight)$$
 $ar{X}_{T,i}$: 시험군에서의 평균 용출률 $ar{X}_{R,i}$: 대조군에서의 평균 용출률

기존 유사성 인자 활용 방법의 한계

- 제약 회사에서 측정한 12개의 시료에 대한 산포(편차)가 큰 경우 동등성 평가 결과가 부정확할 수 있음
- 실제로는 동등하지만 동등하지 않은 것으로 평가할 수 있음(제 1종 오류, Type 1 Error)
- 실제로는 동등하지 않지만 동등한 것으로 평가할 수 있음(제 2종 오류, Type 2 Error)
- 이러한 문제를 해결하기 위해서 더 많은 시료를 수집하여 분석을 수행하면 표준 오차를 줄일 수 있음
- But, 대부분에 기업에서는 시간과 비용 등의 문제로 많은 시료를 수집하기에는 사실상 불가능함
- 정밀한 동등성 평가를 위한 통계적 방법이 필요함

■■ 개정된 비교 용출 시험 동등성 평가

- <u>2022년 11월 12일</u> 의약품동등성시험 기준 개정(2021년 평균용출률로 동등성 판정 기준 삭제)
- 2023년 5월 18일 평가 고려사항을 상세하게 안내하기 위한 추가 개정
- 특정 시점이 아닌 측정한 모든 시점에서 유사성 인자 (f_2) 를 이용하여 비교용출시험 결과 평가
- 통계적 방법인 Bootstrap 방법을 이용하여 산출된 유사성 인자(f₂)의 신뢰구간(CI)으로 동등성 평가

■■ 2022년 하반기 의약품 허가, 심사 설명회 자료

유사성 인자 (1/1)

Q9. 유사성 인자(f₂)로 비교용출시험 결과를 판정하는 과정에서 평균용출률을 사용하기 위한 조건인 **변이계수**가 **기준**치를 **초과**하는 경우에는 어떻게 하나요

A9. 변이계수의 기준 초과로 유사성 인자의 적용이 어려운 경우, **통계적**으로 타당성 있는 다른 방법을 사용하여 동등성 판정을 할 수 있음

선택한 통계적 방법¹⁾과 판정기준의 타당성을 입증한 ① Confidence interval derivation for f2 based on bootstrap,

1) 예 ① Confidence interval derivation for f2 based on bootstrap, ② CI derivation f

③ Mahalanobis distance, ④ Model-dependent approach, maximum deviation method 등 있으며, 여기에 국한되지는 않음

²⁾ 예) 변이계수 커진 원인 고찰, 통계적 기법 선택 사유, 판정기준 타당성 등

Bootstrap의 활용

02 Bootstrap의 활용

Bootstrap(부트스트랩)이란?

- 복원 추출(Sampling with Replacement)을 이용하여 원데이터로부터 재표본을 추출(Resampling)하는 방법
- 추출된 재표본의 개수는 원데이터와 동일
- 각 시점별 원데이터의 수만큼 표본을 재추출
- 우연하게 특정값이 반복되어 추출될 수 있음 목원 추출로 표본이 추출되기 때문에 5.5의 값이 반복하여 추출될 수 있음

			용출시	간(분)						용출시간(분)				용출 시간(분)				용출 시간(분)										
No.	10	15	30	45	60	90		No.	10	15	30	45	60	90	No.	10	15	30	45	60	90	No.	10	15	30	45	60	90
1	5.5	13.5	37.0	51.7	61.4	77.7		1	5.5	13.5	37.0	51.7	61.4	77.7	3	5.3	12.3	36.5	51.9	62.2	79.4	5	5.5	13.5	37.0	51.7	61.4	77.7
2	10.8	19.8	39.5	56.2	68.3	80.6		1	5.5	13.5	37.0	51.7	61.4	77.7	6	9.5	22.3	41.4	59.6	70.6	84.3	5	5.5	13.5	37.0	51.7	61.4	77.7
3	5.3	12.3	36.5	51.9	62.2	79.4	•	2	10.8	19.8	39.5	56.2	68.3	80.6	5	10.8	19.8	39.5	56.2	68.3	80.6	4	11.9	21.6	40.8	55.8	65.6	79.7
4	11.9	21.6	40.8	55.8	65.6	79.7		3	5.3	12.3	36.5	51.9	62.2	79.4	6	9.5	22.3	41.4	59.6	70.6	84.3	2	10.8	19.8	39.5	56.2	68.3	80.6
5	11.3	21.4	42.6	59.7	72.0	86.0		1	5.5	13.5	37.0	51.7	61.4	77.7	4	11.9	21.6	40.8	55.8	65.6	79.7	3	5.3	12.3	36.5	51.9	62.2	79.4
6	9.5	22.3	41.4	59.6	70.6	84.3		4	11.9	21.6	40.8	55.8	65.6	79.7	2	10.8	19.8	39.5	56.2	68.3	80.6	2	10.8	19.8	39.5	56.2	68.3	80.6

원 데이터 재표본 데이터 (1) 재표본 데이터 (2) 재표본 데이터 (3)

02 Bootstrap의 활용

■ Bootstrap(부트스트랩)의 필요성

- Bootstrap을 이용하여 원데이터를 재추출하면 표본 데이터 수가 증가함
- 증가된 데이터를 이용하여 Bootstrap한 횟수만큼 유사성 인자 (f_2) 를 산출할 수 있음
- Bootstrap된 f₂의 분포 및 신뢰구간을 추정하여 동등성 평가의 정밀도를 높일 수 있음
- 국내 허가기관인 식약처의 질의응답에 의거 5,000회의 Bootstrap을 통한 f_2 의 활용
- Minitab을 이용하여 Bootstrap된 f_2 를 산출하고 90% 신뢰구간의 하한값을 계산하여 동등성 평가

동등성 평가(비교용출시험)

▮▮ 계산 절차

1) 시험군과 대조군에서 각각 12개의 재표본 추출

- 2) 1)에서 추출된 재표본을 이용하여 시험군과 대조군으로부터 각 시점에 대한 평균 용출률 계산
- 3) 2)에서 계산된 평균 용출률을 이용하여 f_2 계산
- 4) 1)~3) 5,000회 반복
- 5) 5,000개의 f_2 를 이용하여 f_2 의 90% 신뢰하한 도출
- 6) f₂의 90% 신뢰하한이 50보다 크면 시험군과 대조군 간 유사성을 만족하는 것으로 판정

	용출 시간(분)								
No.	10	15	30	45	60	90			
1	5.5	13.5	37.0	51.7	61.4	77.7			
2	10.8	19.8	39.5	56.2	68.3	80.6			
3	5.3	12.3	36.5	51.9	62.2	79.4			
4	11.9	21.6	40.8	55.8	65.6	79.7			
5	11.3	21.4	42.6	59.7	72.0	86.0			
6	9.5	22.3	41.4	59.6	70.6	84.3			
7	9.7	18.1	38.9	57.3	71.3	84.9			
8	5.9	15.3	38.5	52.6	62.0	78.3			
9	10.5	18.9	45.9	62.4	72.5	84.6			
10	8.7	21.7	35.8	47.0	59.3	76.6			
11	9.9	20.8	43.9	56.3	63.8	78.2			
12	9.4	19.9	40.3	54.3	65.6	80.1			

용출인 없으로 세요한 무물을 구 있음
용출시간(분)

	용출 시간(분)								
No.	10	15	30	45	60	90			
1	5.5	13.5	37.0	51.7	61.4	77.7			
5	11.3	21.4	42.6	59.7	72.0	86.0			
9	10.5	18.9	45.9	62.4	72.5	84.6			
9	10.5	18.9	45.9	62.4	72.5	84.6			
1	5.5	13.5	37.0	51.7	61.4	77.7			
8	5.9	15.3	38.5	52.6	62.0	78.3			
4	11.9	21.6	40.8	55.8	65.6	79.7			
12	9.4	19.9	40.3	54.3	65.6	80.1			
1	5.5	13.5	37.0	51.7	61.4	77.7			
12	9.4	19.9	40.3	54.3	65.6	80.1			
10	8.7	21.7	35.8	47.0	59.3	76.6			
2	10.8	19.8	39.5	56.2	68.3	80.6			

원 데이터

재표본 데이터

15 / 21 pages

■ 계산 절차

- 1) 시험군과 대조군에서 각각 12개의 재표본 추출
- 2) 1)에서 추출된 재표본을 이용하여 시험군과 대조군으로부터 각 시점에 대한 평균 용출률 계산
- 3) 2)에서 계산된 평균 용출률을 이용하여 f_2 계산
- 4) 1)~3) 5,000회 반복
- 5) 5,000개의 f₂를 이용하여 f₂의 90% 신뢰하한 도출
- 6) f₂의 90% 신뢰하한이 50보다 크면 시험군과 대조군 간 유사성을 만족하는 것으로 판정

평균 용출 률 (시험군)									
10	15	30	45	60	90				
9.0	18.8	40.1	55.4	66.2	80.9				

평균 용출률 (대조군)									
10	15	30	45	60	90				
10.1	16.0	33.6	47.7	59.7	74.3				

$$f_2 = 100 - 25 \log \left(1 + \frac{1}{P} \sum_{i=1}^{P} (\bar{X}_{T,i} - \bar{X}_{R,i})^2 \right)$$

P: 시점의 수

 $ar{X}_{T,i}$: 시험군에서의 평균 용출률

 $ar{X}_{R,i}$: 대조군에서의 평균 용출률

*공식 출처: Shah, V. P.; Tsong, Y.; Sathe, P.; Liu, J.-P. In Vitro Dissolution Profile Comparison—Statistics and Analysis of the Similarity Factor, F2. Pharmaceutical Research 1998, 15 (6), 889 - 896.

▮▮ 계산 절차

- 1) 시험군과 대조군에서 각각 12개의 재표본 추출
- 2) 1)에서 추출된 재표본을 이용하여 시험군과 대조군으로부터 각 시점에 대한 평균 용출률 계산
- 3) 2)에서 계산된 평균 용출률을 이용하여 f₂ 계산
- 4) 1)~3) 5,000회 반복
- 5) 5,000개의 f_2 를 이용하여 f_2 의 90% 신뢰하한 도출
- 6) f₂의 90% 신뢰하한이 50보다 크면 시험군과 대조군 간 유사성을 만족하는 것으로 판정

Minitab 분위수 공식 출처: https://support.minitab.com/ko-kr/minitab/21/help-and-how-to/statistics/basic-statistics/how-to/display-descriptive-statistics/methods-and-formulas/methods-and-formulas/#1st-quartile-q1

f₂의 신뢰구간 공식

- 부트스트랩 재표본을 이용하여 신뢰구간 추정 시 수학적인 계산 과정이 간단한 분위수(Quantile) 방법이 많이 쓰이고 있음
- 부트스트랩 재표본으로 계산된 f_2 의 0.05 분위수를 90% 신뢰하한으로 제시함
- Minitab에서 제공되는 분위수 공식은 아래와 같으며, 90% 신뢰하한 계산시 p는 0.05로 지정해야 함

$$Q(p) = (1-z)x_{(j)} + zx_{(j+1)}$$

$$0 \le p \le 1$$

$$W = (n+1)p$$

$$j = [(n+1)p] \rightarrow (n+1)p$$
보다 작거나 같은 정수
$$z = W - j$$

 $x_{(j)}$: 오름차순으로 정렬된 표본 데이터의 j 번째 관측치n: 데이터 개수

▮▮ 계산 절차

- 1) 시험군과 대조군에서 각각 12개의 재표본 추출
- 2) 1)에서 추출된 재표본을 이용하여 시험군과 대조군으로부터 각 시점에 대한 평균 용출률 계산
- 3) 2)에서 계산된 평균 용출률을 이용하여 f_2 계산
- 4) 1)~3) 5,000회 반복
- 5) 5,000개의 f_2 를 이용하여 f_2 의 90% 신뢰하한 도출
- 6) f₂의 90% 신뢰하한이 50보다 크면 시험군과 대조군 간 유사성을 만족하는 것으로 판정

18 / 21 pages

© 2023 Eretec Inc.

Minitab 분석

- 5,000회의 Bootstrapping이 필요하기 때문에
 Minitab의 매크로(Macro)를 활용하여 재표본 추출
 (Resampling) → 5,000개의 f₂ 산출
- 히스토그램(Histogram)을 이용하여 f_2 의 분포를 시각 화하고 90% 신뢰 하한의 값을 확인
- F₂의 값이 50보다 크기 때문에(53.41) 동등한 것으로 결론 내릴 수 있음

5,000개의 f₂ 산출

자문 컨설팅 소개

THANK YOU

