CSE3081 Design and Analysis of Algorithms

Dept. of Computer Engineering,
Sogang University

This material contains text and figures from other lecture slides. Do not post it on the Internet.

Chapter 14. Dynamic Programming

Introduction

- Dynamic programming solves problems by combining the solutions to subproblems.
 - similar to the divide-and-conquer method
 - "programming" refers to a tabular method, not to writing computer code
- Difference with divide-and-conquer
 - dynamic programming applies when the subproblems overlap
 - subproblems share subsubproblems
- When the subproblems overlap, a divide-and-conquer algorithm does more work than necessary
 - repeatedly solves common subsubproblems
- A dynamic programming algorithm solves each subsubproblem just once and then saves its answer in a table, avoiding recomputing.

Applications

- Dynamic programming typically applies to optimization problems.
 - Such problems can have many possible solutions.
 - Each solution has a value, and you want to find a solution with the optimal (minimum or maximum) value.
 - There may be multiple "optimal" solutions that achieve the optimal value.

Steps

- 1. Characterize the structure of an optimal solution.
- 2. Recursively define the value of an optimal solution.
- 3. Compute the value of an optimal solution, typically in a bottom-up fashion.
- 4. Construct an optimal solution from computed information
 - this step can be omitted if we are only interested in the value of the optimal solution, and not the solution itself.

14.1 Rod Cutting

Introduction

- Serling Enterprises buys long steel rods and cuts them into shorter rods, which it then sells.
- Each cut is free.
- The company has a table giving, for i=1,2,..., the price p_i in dollars that they charge for a rod of length i inches.
- The length of each rod in inches is always an integer.
- The management of Serling Enterprises wants to know the best way to cut up the rods.

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30

Example

• 8 possible ways of cutting up a rod of length 4.

The Rod-Cutting Problem

- Given a rod of length n inches and a table of prices p_i for $i=1,2,\ldots,n$, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces.
- We can cut up a rod of length n in 2^{n-1} different ways.
 - We have an independent option of cutting or not cutting at distance i inches from the left end, for i=1,2,...,n-1.
- We will denote a decomposition into pieces using ordinary additive notation, such as 7 = 2 + 2 + 3.
- If an optimal solution cuts the rod into k pieces, for some $1 \le k \le n$, then optimal decomposition $n = i_1 + i_2 + \dots + i_k$ of the rod into pieces of lengths i_1, i_2, \dots, i_k provides the maximum corresponding revenue $r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$.

The Rod-Cutting Problem: Example

Suppose this is the price table.

• Then,

- $r_1 = 1$ from solution 1 = 1 (no cuts),
- $r_2 = 5$ from solution 2 = 2 (no cuts),
- $r_3 = 8$ from solution 3 = 3 (no cuts),
- $r_4 = 10$ from solution 4 = 2 + 2,
- $r_5 = 13$ from solution 5 = 2 + 3,
- $r_6 = 17$ from solution 6 = 6 (no cuts),
- $-r_7 = 18$ from solution 7 = 1 + 6 or 7 = 2 + 2 + 3,
- $r_8 = 22$ from solution 8 = 2 + 6,
- $r_9 = 25$ from solution 9 = 3 + 6,
- $r_{10} = 30$ from solution 10 = 10 (no cuts)

The Rod-Cutting Problem: Insights

- Generally, we can express the values r_n for $n \ge 1$ in terms of optimal revenues from shorter rods.
- $r_n = \max\{p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1\}$
- The first argument p_n corresponds to making no cuts at all.
- In other cases, we make an initial cut of the rod into two pieces of size i and n-i for each i=1,2,3,...,n-1.
- Then, we can obtain optimal revenues r_i and r_{n-i} from those two pieces.

The Rod-Cutting Problem: Insights

- For each *i*, you make the first cut at place *i*.
- The overall optimal solution for this case incorporates optimal solutions to the two resulting subproblems.
 - maximizing revenue from each of those two pieces.

Optimal substructure

 optimal solutions to a problem incorporate optimal solutions to related subproblems, which you may solve independently.

The Rod-Cutting Problem: Insights

- We can view the decomposition as follows:
 - The left piece of length i
 - The right piece of length n-1
- The left piece can no longer be cut.
- We can only cut the right piece.
- This view does not limit the ways of cutting the rods.
- Then, we can make a simpler version of the equation for calculating r_n .
- $r_n = \max\{p_i + r_{n-i}: 1 \le i \le n\}$
 - When i=n, it means that we are not cutting the rod at all. We assume $r_0=0$.
- Now, an optimal solution embodies the solution to only one related subproblem rather than two.

The Rod-Cutting Problem: Divide-and-Conquer?

CUT-ROD: top-down and recursive

```
CUT-ROD(p, n)

1 if n == 0

2 return 0

3 q = -\infty

4 for i = 1 to n

5 q = \max\{q, p[i] + \text{CUT-ROD}(p, n - i)\}

6 return q
```

Is this efficient?

The Rod-Cutting Problem: Divide-and-Conquer?

- CUT-ROD is inefficient because it is recursively called over and over again with the same parameter values. It solves the same problem repeatedly.
- Recursion tree

The Rod-Cutting Problem: Running Time of CUT-ROD

- T(n) denotes the total number of calls made to CUT-ROD(p, n) for a particular value of n.
- It is equal to the number of nodes in a subtree whose root is labeled n in the recursion tree.
- T(0) = 1, $T(n) = 1 + \sum_{j=0}^{n-1} T(j)$
- The initial 1 is for the call at the root.
- The term T(j) counts the number of calls (including recursive calls) due to call CUT-ROD(p, n-i), where j=n-i.
- Solving this recurrence relation, $T(n) = 2^n = \Theta(2^n)$.

The Rod-Cutting Problem: Running Time of CUT-ROD

- Conceptual explanation of why $T(n) = \Theta(2^n)$
 - A rod of length n has n-1 potential locations to cut.
 - Each possible way to cut up the rod makes a cut at some subset of these n-1 locations (including the empty set which corresponds to no cut.)
 - There are 2^{n-1} subsets.
 - Each leaf in the recursion tree corresponds to one possible way to cut up the rods. There are 2^{n-1} leaves.
 - Each node in the tree corresponds to a recursion call to CUT-ROD.
 - Thus, at least 2^{n-1} recursion calls should be made.

- Instead of solving the same problems repeatedly, arrange for each subproblem to be solved only once.
- The first time we solve a subproblem, we save its solution in a table.
- If we need to refer to this subproblem's solution again later, just look it up. Don't recompute it.
- We need memory to store solutions, so dynamic programming can be viewed as a time-memory trade-off.

- Top-down approach
 - We write the procedure recursively in a natural manner, but modify to save the result of each subproblem.
 - When solving a subproblem, the procedure first checks whether the solution has been previously saved.
 - If the solution is saved, the procedure simply returns the value.
 - If the solution is not saved, the procedure computes the value and saves it.

Top-down approach

```
MEMOIZED-CUT-ROD(p, n)
1 let r[0:n] be a new array // will remember solution values in r
2 for i = 0 to n
3 	 r[i] = -\infty
4 return MEMOIZED-CUT-ROD-AUX(p, n, r)
MEMOIZED-CUT-ROD-AUX(p, n, r)
1 if r[n] \ge 0 // already have a solution for length n?
 return r[n]
3 if n == 0
q = 0
5 else q = -\infty
      for i = 1 to n // i is the position of the first cut
          q = \max\{q, p[i] + \text{MEMOIZED-CUT-ROD-AUX}(p, n - i, r)\}
           // remember the solution value for length n
 r[n] = q
  return q
```


- Bottom-up approach
 - We solve the subproblems in size order, smallest first, storing the solution to each subproblem when it is first solved.
 - In this way, when solving a particular problem, there are already saved solutions for all of the smaller subproblems its solution depends upon.
 - You need to solve each subproblem only once, and when you first see it, you
 have already solved all of its prerequisite subproblems.
- In most cases, top-down and bottom-up approach of dynamic programming have the same asymptotic running time.
- However, the bottom-up approach often has much better constant factors, since it has lower overhead for procedure calls.

Bottom-up approach

```
BOTTOM-UP-CUT-ROD(p, n)

1 let r[0:n] be a new array // will remember solution values in r

2 r[0] = 0

3 for j = 1 to n // for increasing rod length j

4 q = -\infty

5 for i = 1 to j // i is the position of the first cut

6 q = \max\{q, p[i] + r[j-i]\}

7 r[j] = q // remember the solution value for length j

8 return r[n]
```


Running Time of Dynamic Programming Approaches

- Running time of BOTTOM-UP-CUT-ROD
 - We have a nested for loop.
 - Line 3-7 forms the outer for loop, where j is incremented from 1 to n.
 - Line 5-7 forms the inner for loop, which iterates j times.
 - Thus, the running time of BOTTOM-UP-CUT-ROD is $\Theta(n^2)$.
- Running time of MEMOIZED-CUT-ROD
 - Note that a recursive call to solve a previously solved problem returns immediately.
 - MEMOIZED-CUT-ROD-AUX solves each problem for sizes 0, 1, ..., n just once.
 - To solve a problem of size n, the for loop of lines 6-7 iterates n times.
 - The total number of iterations for this for loop, over all recursive calls of MEMOIZED-CUT-ROD, forms an arithmetic series $(1+2+\cdots+n)$, giving a total of $\Theta(n^2)$ iterations.

Subproblem Graph

- The subproblem graph shows how subproblems depend on one another.
- The subproblem graph for the rod-cutting problem.

• For example, to solve a rod-cutting problem for length 4, we need the solutions to rod-cutting problem for lengths 0, 1, 2, 3.

Subproblem Graph

- Typically, the time to compute the solution to a subproblem is proportional to the degree (number of outgoing edges) of the corresponding vertex in the subproblem graph.
- The number of subproblems is equal to the number of vertices in the subproblem graph.
- In this common case, the running time of dynamic programming is linear in the number of vertices and edges.

Reconstructing a Solution

- The procedures MEMOIZED-CUT-ROD and BOTTOM-UP-CUT-ROD return the value of an optimal solution to the rod-cutting problem, but they do not return the solution itself: a list of piece sizes.
- In order to obtain the solution, the dynamic programming approach should record not only the optimal value but also the choice for each subproblem.

Reconstructing a Solution

- A procedure that records the optimal solution as well as the optimal value.
 - When p[i] + r[j i] is the maximum, we record s[j] = i.

i	0	1	2	3	4	5	6	7	8	9	10
r[i]	0	1	5	8	10	13	17	18	22	25	30
s[i]		1	2	3	2	2	6	1	2	3	10

Reconstructing a Solution

Now that we have the solution, we can print the cut locations.

```
PRINT-CUT-ROD-SOLUTION(p, n)

1 (r, s) = \text{EXTENDED-BOTTOM-UP-CUT-ROD}(p, n)

2 while n > 0

3 print s[n] // cut location for length n

4 n = n - s[n] // length of the remainder of the rod
```

i	0	1	2	3	4	5	6	7	8	9	10
r[i]	0	1	5	8	10	13	17	18	22	25	30
s[i]		1	2	3	2	2	6	1	2	3	10

- When n = 10, the procedure just prints 10.
- When n = 7, the procedure prints 1 6.

14.2 Matrix-Chain Multiplication

Matrix-Chain Multiplication Problem: Introduction

• Given a sequence (chain) $< A_1, A_2, ..., A_n >$ of n matrices to be multiplied, where the matrices aren't necessarily square, the goal is to compute the product

- $A_1A_2A_3...A_n$,
- while minimizing the number of scalar multiplications.

Matrix-Chain Multiplication: Example

• If the chain of matrices is $\langle A_1, A_2, A_3, A_4 \rangle$, then you can parenthesize the product $A_1A_2A_3A_4$ in five distinct ways:

```
(A_1(A_2(A_3A_4))),

(A_1((A_2A_3)A_4)),

((A_1A_2)(A_3A_4)),

((A_1(A_2A_3))A_4),

(((A_1A_2)A_3)A_4).
```

• How we parenthesize a chain of matrices can have a significant impact on the cost of evaluating the product.

Cost of Multiplying Two Rectangular Matrices

• The procedure RECTANGULAR-MATRIX-MULTIPLY computes $C = C + A \cdot B$ for three matrices $A = (a_{ij})$, $B = (b_{ij})$, and $C = (C_{ij})$, where A is $p \times q$, B is $q \times r$, and C is $p \times r$.

```
RECTANGULAR-MATRIX-MULTIPLY (A, B, C, p, q, r)

1 for i = 1 to p

2 for j = 1 to r

3 for k = 1 to q

4 c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}
```

• The running time of RECTANGULAR-MATRIX-MULTIPLY is dominated by the number of scalar multiplications in line 4, which is pqr.

Example: Order of Multiplication Affects Cost

- We have a chain of three matrices $\langle A_1, A_2, A_3 \rangle$.
- Suppose their dimensions are 10×100 , 100×5 , and 5×50 , respectively.
- Case 1: $((A_1A_2)A_3)$
 - $10 \cdot 100 \cdot 5 = 5000$ scalar multiplications to compute $A_1 A_2$, plus
 - $10 \cdot 5 \cdot 50 = 2500$ scalar multiplications to multiply this matrix by A_3 .
 - Total: 7500 scalar multiplications
- Case 2: $(A_1(A_2A_3))$
 - $100 \cdot 5 \cdot 50 = 25000$ scalar multiplications to compute A_2A_3 , plus
 - $10 \cdot 100 \cdot 50 = 50000$ scalar multiplications to multiply A_1 by this matrix
 - Total: 75000 scalar multiplications

Problem Definition

- Matrix-chain multiplication problem
- Given a chain $\langle A_1, A_2, ..., A_n \rangle$ of n matrices, where for i=1,2,...,n, matrix A_i has dimension $p_{i-1} \times p_i$, fully parenthesize the product $A_1A_2 ... A_n$ in a way that minimizes the number of scalar multiplications. The input is the sequence of dimensions $\langle p_0, p_1, ..., p_n \rangle$.
- This problem does not entail actually multiplying matrices. The goal is only to determine an order for multiplying matrices that has the lowest cost.
- Typically, the time invested in determining this optimal order is more than paid for by the time saved later on when actually performing the matrix multiplications.
 - 7,500 vs. 75,000 scalar multiplications

Counting the Number of Parenthesizations

- Can't we just exhaustively check all possible parenthesizations?
- To find out, let us denote the number of alternative parenthesizations of sequence of n matrices by P(n).
- When n=1, there is just one matrix, so there is only one way to fully parenthesize the matrix product.
- When $n \ge 2$, a fully parenthesized matrix product is the product of two fully parenthesized matrix subproducts, and the split between the two subproducts may occur between kth and (k+1)st matrices for any $k=1,2,\ldots,n-1$.

Counting the Number of Parenthesizations

We obtain the recurrence

$$P(n) = \begin{cases} 1 & \text{if } n = 1, \\ \sum_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2. \end{cases}$$

- When we solve the recurrence, $P(n) = \Omega(2^n)$.
- Thus, exhaustively searching all possible parenthesizations is not efficient.

Applying Dynamic Programming

- The four steps
 - Characterize the structure of an optimal solution
 - Recursively define the value of an optimal solution
 - Compute the value of an optimal solution
 - Construct an optimal solution from computed information

Step 1: Structure of an Optimal Parenthesization

- Let $A_{i:j}$, where $i \leq j$, denote the matrix that results from evaluating the product $A_i A_{i+1} \dots A_j$.
- If i < j, to parenthesize the product $A_i A_{i+1} \dots A_j$, the product must split between A_k and A_{k+1} for some integer k in the range $i \le k < j$.
- That is, we first compute the matrices $A_{i:k}$ and $A_{k+1:j}$, and then multiply them together to produce the final product $A_{i:j}$.
- The cost
 - The cost of computing the matrix $A_{i:k}$, plus
 - the cost of computing the matrix $A_{k+1:j}$, plus
 - the cost of multiplying them together.

Step 1: Structure of an Optimal Parenthesization

- When computing $A_{i:j}$, suppose the optimal split is to split the product between A_k and A_{k+1} . In this solution, the parenthesization of each subchain must be optimal parenthesization.
- The subchain $A_{i:k}$ should have the optimal parenthesization.
- The subchain $A_{k+1:j}$ should have the optimal parenthesization.
- To build an optimal solution, we split the problem into two subproblems (optimally parenthesizing $A_iA_{i+1}\dots A_k$ and $A_{k+1}A_{k+2}\dots A_j$), find optimal solutions to the two subproblem instances, and then combine these optimal subproblem solutions.
- To ensure that we've examined the optimal split, we must consider all possible splits.

Step 2: A Recursive Solution

- Given the input dimensions $\langle p_0, p_1, p_2, \dots, p_n \rangle$, an index pair i, j specifies a subproblem.
- Let m[i,j] be the minimum number of scalar multiplications needed to compute $A_{1:n}$ is thus m[1,n].
- We can define m[i, j] recursively as follows:
- $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$
- Since we do not know the optimal k, we need to try all possible values of k, k = i, i + 1, ..., j 1.

Step 2: A Recursive Solution

• Recursive definition for the minimum cost of parenthesizing the product $A_iA_{i+1}\dots A_j$ becomes

$$m[i,j] = \begin{cases} 0 & \text{if } i = j, \\ \min\{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j : i \le k < j\} & \text{if } i < j. \end{cases}$$

- To construct the optimal solution, we define s[i,j] to be a value k at which you split the product $A_iA_{i+1} \dots A_j$ in an optimal parenthesization.
- That is, s[i,j] equals a value k such that $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$.

- There is one subproblem for each choice of i and j satisfying $1 \le i \le j \le n$.
- Thus, the number of subproblems is $\Theta(n^2)$.
- A recursive algorithm may encounter each subproblem many times in different branches of its recursion tree.
- This property of overlapping subproblems is the second hallmark of when dynamic programming applies.
 - The first hallmark is the optimal substructure.
- We will use a tabular, bottom-up approach to solve the problem.

Procedure MATRIX-CHAIN-ORDER

```
MATRIX-CHAIN-ORDER (p, n)
  let m[1:n, 1:n] and s[1:n-1, 2:n] be new tables
                                 // chain length 1
2 for i = 1 to n
3 	 m[i,i] = 0
4 for l=2 to n
                    // l is the chain length
for i = 1 to n - l + 1 // chain begins at A_i
j = i + l - 1 // chain ends at A_i
          m[i,j] = \infty
          for k = i to j - 1 // try A_{i:k}A_{k+1:j}
8
              q = m[i,k] + m[k+1,j] + p_{i-1}p_kp_i
9
              if q < m[i, j]
10
                  m[i, j] = q // remember this cost
11
                  s[i, j] = k // remember this index
12
   return m and s
```


- Tables for *m* and *s*
 - The optimal number of scalar multiplications: 15,125

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimension	30×35	35×15	15 × 5	5×10	10×20	20×25

- Procedure MATRIX-CHAIN-ORDER has three nested for loops.
- Each loop index (l, i, and k) takes on at most n-1 values.
- Running time of the procedure: $\Theta(n^3)$
- The algorithm requires $\Theta(n^2)$ of memory space to store m and s tables.

Step 4: Constructing an Optimal Solution

Procedure for printing the optimal solution.

```
PRINT-OPTIMAL-PARENS (s, i, j)

1 if i == j

2 print "A"<sub>i</sub>

3 else print "("

4 PRINT-OPTIMAL-PARENS (s, i, s[i, j])

5 PRINT-OPTIMAL-PARENS (s, s[i, j] + 1, j)

6 print ")"
```

- Example
 - If we have the s table as in the right:
 - the optimal solution is $((A_1(A_2A_3))((A_4A_5)A_6))$.

14.4 Longest Common Subsequence

Introduction

- Biological applications often need to compare the DNA of two (or more) different organisms.
- A strand of DNA consists of a string of molecules called bases, where the possible bases are adenine, cytosine, guanine, and thymine.
- Representing each of these bases by its initial letter, we can express a strand of DNA as a string over the 4-element set {A, C, G, T}.
- For example, the DNA of one organism may be
 - $S_1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA$
- and the DNA of another organism may be
 - $S_2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA$

Introduction: DNA Strands

X = TCCCCGCTCTGCTCTGTCCGGTCACAGGACTTTTTGCCCTCTGTTCCCGGGTCCCTCAGGCGGCCACCCA GTGGGCACACTCCCAGGCGCCCCGGCCCCGCGCTCCCTCTGCCTTTCATTCCCAGCTGTCAAC ATCCTGGAAGCTTTGAAGCTCAGGAAAGAAGAAGAAATCCACTGAGAACAGTCTGTAAAGGTCCGTAGTGC CCCTCTATAAAAGCTCTGTGCATCCTGCCACTGAGGACTCCGAAGAGGTAGCAGTCTTCTGAAAGACTTC AACTGTGAGGACATGTCGTTCAGATTTGGCCAACATCTCATCAAGCCCTCTGTAGTGTTTCTCAAAACAG AACTGTCCTTCGCTCTTGTGAATAGGAAACCTGTGGTACCAGGACATGTCCTTGTGTGCCCGCTGCGGCC AGTGGAGCGCTTCCATGACCTGCGTCCTGATGAAGTGGCCGATTTGTTTCAGACGACCCAGAGAGTCGGG ACAGTGGTGGAAAAACATTTCCATGGGACCTCTCTCACCTTTTCCATGCAGGATGGCCCCGAAGCCGGAC AGACTGTGAAGCACGTTCACGTCCATGTTCTTCCCAGGAAGGCTGGAGACTTTCACAGGAATGACAGCAT CTATGAGGAGCTCCAGAAACATGACAAGGAGGACTTTCCTGCCTCTTGGAGATCAGAGGAGGAAATGGCA GCAGAAGCCGCAGCTCTGCGGGTCTACTTTCAGTGACACAGATGTTTTTCAGATCCTGAATTCCAGCAAA ATGCAGTTTCTTCATCTCACCATCCTGTATTCTTCAACCAGTGATCCCCCACCTCGGTCACTCCAACTCC CTTAAAATACCTAGACCTAAACGGCTCAGACAGGCAGATTTGAGGTTTCCCCCTGTCTCCTTATTCGGCA

Y = ATGTTAACCAAGGAATGGATCTGTGTCGTTCCACGTTCGAAGGCCTTTTCTGATGAAATGAAGATAGGTT TCAACTCCACAGGTTATTGTGGTATGATCTTAACCAAAAATGATGAAGTTTTCTCCAAGATTACTGAAAA ACCTGAATTGATTAACGATATCTTATTGGAATGTGGTTTCCCAAACACTTCTGGTCAAAAACCAAACGAA TGATAGAAGTAATTTCTATATGTATATGTCTATTCAATTTTTATTTCTAATGACTTTGAAATTTTATATT TACTTATTATTAATATTGTTGTATTACTTCCTTGAAAAAATATGTCTAAAGAGTCCTAATTTGGATTTTC TTTTCCTCCTAACTTCACTGTCCTGCGCCTGCTTTCCTAACGCACCATCGCTAATACACCAGCTTTCATT GCTTGTTGCTGCGCTATTGCTCGCATGGAACGTTTTCAGTGCGTCATCATCCTGGGATAAACTAAAGACT AAGTCACCAGTTTCATTTGAGGCTTTTCTCTGCGTGTTGACAAAAGAGGACAGATCAACCATATCACCTG GTTCACCATGAGAATGTCCTTACTTAGTTGCGAATTTGGTTCTGATCTGCCTTCAGACTTGGAATCATTC ATTACTGTCATTACTTTTAGCCTATTCATTTCTTCCTTGCCATCAGGTACAGGGATTTGACCACAGAGT GTTGAAGGGGTGCATCGTCCGCTCTCGTAATAACCCTCCGATACTATTTTCATTGTTGGCACGTTGCACT GAAAAGGGCACTTGGCACTGTGCACTTTTAATGTTTTCATTTTTCATCATCATCATCATCATATGGCATTTCAT AATGTTGACTCTTGTAGTTGAAGATTGAGTTTATCGTGTTACTGTTTCGTCTACCTTTCATATTATCAAT CAGGTTGCGGTGTTGCATGTGGGAGATAGGACTGCCCGATCTTCTTCTTCTCCACTACACATCC TGTCTTTTATCGCTATCCAGCACACGATTGAGCTGTGAATTGCCGCACTTTTTAGGATAACCATCCTTGG

Introduction

- We compare two strands of DNA to determine how "similar" the two strands are, as some measure of how closely related the two organisms are.
- We can define similarity in many different ways.
- For example, we can say that the two DNA strands are similar if one is a substring of the other.
- Alternatively, we could say that two strands are similar if the number of changes needed to turn one into the other is small. (Edit Distance Problem)

Introduction

- Yet another way to measure similarity of strands S_1 and S_2 is by finding a third strand S_3 in which the bases in S_3 appear in each of S_1 and S_2 .
- These bases must appear in the same order, but not necessarily consecutively.
- The longer the strand S_3 we can find, the more similar S_1 and S_2 are.
- In our example, the longest strand S_3 is:
- $S_3 = GTCGTCGGAAGCCGGCCGAA$
- We call this notion of similarity the longest common subsequence (LCS).

Subsequence

- A subsequence of given sequence is just the given sequence with 0 or more elements left out.
- Formally, given a sequence $X = \langle x_1, x_2, ..., x_m \rangle$, another sequence $Z = \langle z_1, z_2, ..., z_k \rangle$ is a subsequence of X if there exists a strictly increasing sequence $\langle i_1, i_2, ..., i_k \rangle$ of indices of X such that for all j = 1, 2, ..., k, we have $x_{i_j} = z_j$.
- For example, $Z = \langle B, C, D, B \rangle$ is a subsequence of $X = \langle A, B, C, B, D, A, B \rangle$ with corresponding index sequence $\langle 2, 3, 5, 7 \rangle$.

Common Subsequence

- Given two sequences X and Y, we say that a sequence Z is a common subsequence of X and Y if Z is a subsequence of both X and Y.
- For example, if $X = \langle A, B, C, B, D, A, B \rangle$ and $Y = \langle B, D, C, A, B, A \rangle$, the sequence $\langle B, C, A \rangle$ is a common subsequence of both X and Y.
- There is a longer common subsequence: $\langle B, C, B, A \rangle$. This is the longest common subsequence of X and Y. Its length is 4.
 - X and Y have no common subsequence of length 5 or higher.

Longest Common Subsequence Problem

- The input is two sequences $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$, and the goal is to find a maximum-length common subsequence of X and Y.
- We solve this problem using dynamic programming.

LCS: brute-force approach?

- We can solve the LCS problem with a brute-force approach: enumerate all subsequences of X and check each subsequence to see whether it is a also a subsequence of Y, keeping track of the longest subsequence we find.
- Since each subsequence of X corresponds to a subset of the indices $\{1, 2, ..., m\}$ of X.
- Because X has 2^m subsequences, this approach requires exponential time \rightarrow inefficient.

Step 1: Characterizing a Longest Common Subsequence

- The LCS problem has an optimal-substructure property.
- We define the *i*th prefix of X, for i = 0, 1, ..., m, as $X_i = \langle x_1, x_2, ..., x_i \rangle$.
- For example, if $X = \langle A, B, C, B, D, A, B \rangle$, then $X_4 = \langle A, B, C, B \rangle$.
 - X_0 is the empty sequence.

Step 1: Characterizing a Longest Common Subsequence

- Theorem 14.1 (Optimal substructure of an LCS)
- Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y.
- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$ and $z_k \neq x_m$, then Z is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$ and $z_k \neq y_n$, then Z is an LCS of X and Y_{n-1} .

Proof of Theorem 14.1

Case 1

- If $z_k \neq x_m$, then we could append $x_m = y_n$ to Z to obtain a common subsequence of X and Y of length k+1, contradicting the supposition that Z is a longest common subsequence of X and Y. Thus, we must have $z_k = x_m = y_n$.
- Suppose for the purpose of contradiction that there exists a common subsequence W of X_{m-1} and Y_{n-1} with length greater than k-1. Then, appending $x_m=y_n$ to W produces a common subsequence of X and Y whose length is greater than k, which is a contradiction.

Case 2

- If $z_k \neq x_m$, then Z is a common subsequence of X_{m-1} and Y. If there were a common subsequence W of X_{m-1} and Y with length greater than k, then W would also be a common subsequence of X_m and Y, contradicting the assumption that Z is an LCS of X and Y.
- Case 3: the proof is symmetric to case 2.

Step 2: A Recursive Solution

- If $x_m = y_n$, we first find an LCS of X_{m-1} and Y_{n-1} . Then, we append $x_m = y_n$ to this LCS to obtain an LCS of X and Y.
- If $x_m \neq y_n$, we need to solve two subproblems:
 - finding an LCS of X_{m-1} and Y
 - finding an LCS of X and Y_{n-1}
- whichever of these two LCSs is longer is an LCS of X and Y.
- Let us define c[i,j] to be the length of an LCS of the sequences X_i and Y_j .
- Then, the recursive formula is:

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max\{c[i,j-1],c[i-1,j]\} & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

Step 3: Computing the Length of an LCS

- The LCS problem has $\Theta(mn)$ distinct subproblems.
- Dynamic programming can compute the solutions bottom-up.

```
LCS-LENGTH(X, Y, m, n)
 1 let b[1:m, 1:n] and c[0:m, 0:n] be new tables
 2 for i = 1 to m
        c[i,0] = 0
 4 for j = 0 to n
 5 	 c[0, j] = 0
 6 for i = 1 to m // compute table entries in row-major order
        for j = 1 to n
            if x_i == y_i
                c[i, j] = c[i - 1, j - 1] + 1
                b[i, j] = "\\\"
10
         elseif c[i - 1, j] \ge c[i, j - 1]
11
             c[i,j] = c[i-1,j]
12
                b[i, j] = "\uparrow"
13
            else c[i, j] = c[i, j - 1]
14
                b[i, j] = "\leftarrow"
15
   return c and b
```


Step 3: Computing the Length of an LCS

• The c table and the b table

	j	0	1	2	3	4	5	6
i		y_j	B	D	C	A	B	A
0	x_i	0	0	0	0	0	0	0
1	A	0	1	↑	↑	\1	← 1	\1
2	B	0	1	←1	← 1	↑ 1	\	←2
3	C	0	1 1	1 1	× 2	←2	1 2	1 2
4	B	0	\1	1	1 2	↑ 2	3	-3
5	D	0	1 1	\		1 2	↑ 3	1 3
6	A	0	1	1 2	1 2	<u></u>	1 3	4
7	В	0	\1	1 1 2	2 ↑ 2 ↑ 2	1 3	4	1 4

Step 3: Computing the Length of an LCS

• The running time of procedure LCS-LENGTH is $\Theta(mn)$, since each table entry takes $\Theta(1)$ time to compute.

Step 4: Constructing and LCS

Using the b table, we can construct the longest common subsequence.

```
PRINT-LCS(b, X, i, j)

1 if i == 0 or j == 0

2 return // the LCS has length 0

3 if b[i, j] == \text{``\cdot'}

4 PRINT-LCS(b, X, i - 1, j - 1)

5 print x_i // same as y_j

6 elseif b[i, j] == \text{``\cdot'}

7 PRINT-LCS(b, X, i - 1, j)

8 else PRINT-LCS(b, X, i, j - 1)
```


Improving the Code

- In the LCS algorithm, we can eliminate the b table altogether.
- Each c[i,j] entry depends on only three other table entries: c[i-1,j-1], c[i-1,j], and c[i,j-1].
- Given the value of c[i,j], we can determine in O(1) time which of these three values was used to compute c[i,j], without inspecting table b.
- If we need only the length of an LCS, we can reduce the c table as well.
- We need to use only two rows of table c at a time: the row being computed and the previous row.

Extra: Other Problems

Problem: World Series Odds

- Dodgers and Yankees are playing the World Series in which either team needs to win n games first.
- Suppose that each team has a 50% chance of winning any particular game.
- Let p(i, j) be the probability that if Dodgers needs i games to win, and Yankees needs j games, Dodgers will eventually win the series.
- Ex: if n = 4, p(2, 3) = 11/16
- Compute p(i, j) for an arbitrary n. $(0 \le i, j \le n)$

World Series Odds – Divide-and-Conquer

Recursive formulation

$$P(i,j) = \begin{cases} 1, & \text{if } i = 0 \text{ and } j > 0 \\ 0, & \text{if } i > 0 \text{ and } j = 0 \end{cases}$$
$$\frac{P(i-1,j) + P(i,j-1)}{2}, & \text{if } i > 0 \text{ and } j > 0 \end{cases}$$

- Worst-case time complexity
 - T(n): maximum time taken by a call to p(i, j)
 - T(n) is exponential!
- What is the problem of this approach?

World Series Odds – Dynamic Programming

• Instead of computing the same problem repeatedly, fill in a table as suggested below.

4	1	15/16	13/16	21/32	1/2	
3	1	7/8	11/16	1/2	11/32	
2	1	3/4	1/2	5/16	3/16	
1	1	1/2	1/4	1/8	1/16	
0		0	0	0	0	
\int_{i}	0	1	2	3	4	

- Time Complexity: O(n²)
 - Much better than divide-and-conquer!

The Manhattan Tourist Problem

Problem

- Given two street corners in the borough of Manhattan in New York City, find the path between them with the maximum number of attractions, that is, a path of maximum overall weight.
- Assume that a tourist may move either EAST or SOUTH only.

The Manhattan Tourist Problem

- Formal description
 - Given a weighted grid G of size (n, m) with two distinguished vertices, a source (0, 0) and a sink (n, m), find a <u>longest</u> path between them in its weighted graph

An example grid of size (4, 4)

A possible selection determined by a greedy approach

Dynamic Programming: A pictorial description

Dynamic Programming: A pictorial description (cont.)

Found longest path from source to every vertex in the grid

Dynamic Programming: Algorithm

Recursive relation

$$s_{i,j} \equiv$$
 the length of the longest path from $(0, 0)$ to (i, j)

$$s_{i,j} = \max \begin{cases} s_{i-1,j} + \text{weight between } (i-1,j) \text{ and } (i,j) \\ s_{i,j-1} + \text{weight between } (i,j-1) \text{ and } (i,j) \end{cases}$$

- Algorithm
- Time Complexity?

MANHATTANTOURIST(
$$\dot{\mathbf{w}}, \dot{\mathbf{w}}, n, m$$
)

$$1 \quad s_{0,0} \leftarrow 0$$

2 for
$$i \leftarrow 1$$
 to n

3
$$s_{i,0} \leftarrow s_{i-1,0} + \overset{\downarrow}{w}_{i,0}$$

4 for
$$j \leftarrow 1$$
 to m

5
$$s_{0,j} \leftarrow s_{0,j-1} + \overrightarrow{w}_{0,j}$$

6 for
$$i \leftarrow 1$$
 to n

7 for
$$j \leftarrow 1$$
 to m

8
$$s_{i,j} \leftarrow \max \begin{cases} s_{i-1,j} + \overset{\downarrow}{w}_{i,j} \\ s_{i,j-1} + \overset{\downarrow}{w}_{i,j} \end{cases}$$

9 return $s_{n,m}$

Edit Distance

• **Problem:** Given two strings $A = a_1 a_2 \cdots a_n$ and $B = b_1 b_2 \cdots b_m (n, m \ge 0)$, consider the problem of transforming A into B by either inserting a character into A, deleting a character from A, or replacing a character in A by another. Suppose that the costs per insertion, deletion, and replacement are c_{ins} , c_{del} , and c_{repl} , respectively. Then, find the minimum cost of transforming A into B.

$$A = S - N O W Y$$

 $B = S U N N - Y$

Let $\overline{C[i,j]}$ be the minimum cost to transform $A_i = a_1 a_2 \cdots a_i$ into $B_i =$ $b_1 b_2 \cdots b_j$ for $i \in [0, n]$ and $j \in [0, m]$.

$$C[0,0] = 0$$

 $C[i,0] = i * c_{del}, i \in [1,n]$
 $C[0,j] = j * c_{ins}, j \in [1,m]$

O(mn)

$$C[i,j] = \left\{ \begin{array}{l} C[i-1,j-1] & \text{if } a_i = b_j \\ C[i,j-1] + c_{ins} \\ C[i-1,j] + c_{del} \\ C[i-1,j-1] + c_{repl} \end{array} \right\} & \text{if } a_i \neq b_j \\ \end{array}, i \in [1,n], j \in [1,m]$$

Edit Distance

• Example

$$A = E X P O N E N - T I A L B = - - P O L Y N O M I A L$$

		P	O	L	Y	N	O	M	I	A	L
	0	1	2	3	4	5	6	7	8	9	10
\mathbf{E}	1	1	2	3	4	5	6	7	8	9	10
X	2	2	2	3	4	5	6	7	8	9	10
P	3	2	3	3	4	5	6	7	8	9	10
O	4	3	2	3	4	5	5	6	7	8	9
N	5	4	3	3	4	4	5	6	7	8	9
\mathbf{E}	6	5	4	4	4	5	5	6	7	8	9
N	7	6	5	5	5	4	5	6	7	8	9
\mathbf{T}	8	7	6	6	6	5	5	6	7	8	9
I	9	8	7	7	7	6	6	6	6	7	8
A	10	9	8	8	8	7	7	7	7	6	7
L	11	10	9	8	9	8	8	8	8	7	6

End of Class

Questions?

Instructor office: AS-1013

Email: jso1@sogang.ac.kr

