Rank-76323 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_2 + X_1^2 X_3 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1503222105

General information

Number of lines	2
Number of points	25
Number of singular points	0
Number of Eckardt points	0
Number of double points	0
Number of single points	10
Number of points off lines	15
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{2}
Type of lines on points	$1^{10}, 0^{15}$

Singular Points

The surface has 0 singular points:

The 2 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1,0,0,0,0,0)_0$$

$$\ell_1 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{Pl}(0,1,0,0,0,0)_1$$

Rank of lines: (0, 356)

Rank of points on Klein quadric: (0, 1)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 10 single points:

The single points on the surface are:

 $0: P_0 = (1, 0, 0, 0)$ lies on line ℓ_0

1: $P_1 = (0, 1, 0, 0)$ lies on line ℓ_0

2: $P_2 = (0,0,1,0)$ lies on line ℓ_1

 $3: P_3 = (0,0,0,1)$ lies on line ℓ_1

4: $P_5 = (1, 1, 0, 0)$ lies on line ℓ_0

5: $P_6 = (2, 1, 0, 0)$ lies on line ℓ_0

The single points on the surface are:

6: $P_7 = (3, 1, 0, 0)$ lies on line ℓ_0

7: $P_{38} = (0, 0, 1, 1)$ lies on line ℓ_1

8: $P_{53} = (0, 0, 2, 1)$ lies on line ℓ_1

9: $P_{69} = (0,0,3,1)$ lies on line ℓ_1

Points on surface but on no line

The surface has 15 points not on any line:

The points on the surface but not on lines are:

 $0: P_{13} = (2, 1, 1, 0)$

 $1: P_{14} = (3, 1, 1, 0)$

 $2: P_{27} = (1, 1, 0, 1)$

 $3: P_{33} = (3, 2, 0, 1)$

 $4: P_{36} = (2, 3, 0, 1)$

 $5: P_{39} = (1, 0, 1, 1)$

7: $P_{56} = (3, 0, 2, 1)$

 $6: P_{42} = (0, 1, 1, 1)$

 $8: P_{63} = (2, 2, 2, 1)$

9: $P_{64} = (3, 2, 2, 1)$

 $10: P_{65} = (0, 3, 2, 1)$

11: $P_{71} = (2, 0, 3, 1)$

12: $P_{77} = (0, 2, 3, 1)$

13: $P_{83} = (2, 3, 3, 1)$

 $14: P_{84} = (3, 3, 3, 1)$

Line Intersection Graph

0.1000 $1 \mid 0 \mid 0$

Neighbor sets in the line intersection graph: Line 0 intersects

Line in point

Line 1 intersects

Line in point

The surface has 25 points: The points on the surface are:

$0: P_0 = (1, 0, 0, 0) 1: P_1 = (0, 1, 0, 0)$	9: $P_{27} = (1, 1, 0, 1)$ 10: $P_{33} = (3, 2, 0, 1)$	18: $P_{64} = (3, 2, 2, 1)$ 19: $P_{65} = (0, 3, 2, 1)$
$2: P_2 = (0, 0, 1, 0)$ $3: P_3 = (0, 0, 0, 1)$	11: $P_{36} = (2, 3, 0, 1)$ 12: $P_{38} = (0, 0, 1, 1)$	$20: P_{69} = (0,0,3,1)$ $21: P_{71} = (2,0,3,1)$
$4: P_5 = (1, 1, 0, 0)$ $5: P_6 = (2, 1, 0, 0)$	13: $P_{39} = (1,0,1,1)$ 14: $P_{42} = (0,1,1,1)$	22: $P_{77} = (0, 2, 3, 1)$ 23: $P_{83} = (2, 3, 3, 1)$
6: $P_7 = (3, 1, 0, 0)$ 7: $P_{13} = (2, 1, 1, 0)$ 8: $P_{14} = (3, 1, 1, 0)$	15: $P_{53} = (0,0,2,1)$ 16: $P_{56} = (3,0,2,1)$ 17: $P_{63} = (2,2,2,1)$	$24: P_{84} = (3, 3, 3, 1)$