MATHEMATICAL OLYMPIAD SUMMER PROGRAM 1999-

ROTATIONS AND VECTORS

ZVEZDELINA STANKOVA-FRENKEL UC BERKELEY

- 1. (G260) A point M and a circle k are given in the plane. If ABCD is an arbitrary square inscribed in k, prove that the sum $MA^4 + MB^4 + MC^4 + MD^4$ is independent of the positioning of the square. Replace now the square by a regular n-gon $A_1A_2...A_n$. Let $S_m = \sum_i MA_i^m$. For what natural m is S_m independent of the position of the n-gon (still inscribed in k)?
- 2. (G262) $\triangle ABC$ is rotated to $\triangle A'B'C'$ around its circumcenter O by angle α . Let A_1, B_1 and C_1 be the intersection points of lines BC and B'C', CA and C'A', and AB and A'B', respectively. Prove that $\triangle A_1B_1C_1$ and $\triangle ABC$ are similar, and find the ratio of their sides.
- 3. (G263) The quadrilateral ABCD is inscribed in a circle k with center O, and the quadrilateral A'B'C'D' is obtained by rotating ABCD around O by some angle. Let A_1, B_1, C_1, D_1 be the intersection points of the lines A'B' and AB. B'C' and BC, C'D' and CD, and D'A' and DA. Prove that $A_1B_1C_1D_1$ is a parallelogram.
- 4. (G264) In quadrilateral ABCD, the diagonals intersect in point O. Quadrilateral A'B'C'D' is obtained by rotating ABCD around O by some angle. Let A_1, B_1, C_1, D_1 be the intersection points of the lines A'B' and AB, B'C' and BC, C'D' and CD, and D'A' and DA. Prove that $A_1B_1C_1D_1$ is cyclic if and only $AC \perp BD$.
- 5. The composition of two rotations $\rho_1(O_1, \alpha_1)$ and $\rho_2(O_2, \alpha_2)$ about different centers O_1 and O_2 is:
 - (a) rotation if $\alpha_1 + \alpha_2 \neq k\pi$ $(k \in \mathbb{Z})$;
 - (b) translation if $\alpha_1 + \alpha_2 = 2k\pi \ (k \in \mathbb{Z})$:
 - (c) central symmetry if $\alpha_1 + \alpha_2 = (2k+1)\pi$ $(k \in \mathbb{Z})$.
- 6. (G265) On the sides of a convex quadrilateral draw externally squares. Prove that the quadrilateral with vertices the centers of the squares has equal perpendicular diagonals.
- 7. (G266) Given two equally oriented equilateral triangles AB_1C_1 and AB_2C_2 with centers O_1 and O_2 , respectively, let M be the midpoint of B_1C_2 . Prove that $\triangle O_1MB_2 \sim \triangle O_2MC_1$.
- 8. (G269) A hexagon ABCDEF is inscribed in a circle of radius r so that AB = CD = EF = r. Let the midpoints of BC, DE, FA be L, M, N respectively. Prove that $\triangle LMN$ is equilateral.

- 9. (Napoleon) If three equilateral triangles ABC_1 , BCA_1 and CAB_1 are constructed off the sides of $\triangle ABC$, show that the centers of these equilateral triangle form another equilateral triangle. Prove also that AA_1 , BB_1 and CC_1 are concurrent and have same lengths. Can you identify the medicenter of $\triangle O_1O_2O_3$ with some distinguished point of $\triangle ABC$?
- 10. (G270) Points $A_1, A_2, ..., A_n$ $(n \ge 3)$ lie on a circle with center O. Drop a perpendicular through the centroid of every n-2 of these points towards the line determined by the remaining two points. Prove that the $\binom{n}{2}$ thus drawn lines are all concurrent.
- 11. (G271) Points $A_1, A_2, ..., A_n$ ($n \ge 2$) lie on a sphere. Drop a perpendicular through the centroid of every n-1 of these points towards the plane, tangent to the sphere at the remaining n-th point. Prove that the n drawn lines are all concurrent.
- 12. (Kazanluk'95 X) Given $\triangle ABC$ with sides AB = 22. BC = 19. CA = 13.
 - (a) If M is the medicenter of $\triangle ABC$, prove that $AM^2 + CM^2 = BM^2$.
 - (b) Find the locus of points P in the plane such that $AP^2 + CP^2 = BP^2$.
 - (c) Find the minimum and maximum of BP if $AP^2 + CP^2 = BP^2$.
- 13. (G272) Given $\triangle ABC$, find the locus of points M in the plane such that $MA^2 + MB^2 = MC^2$.
- 14. (G273) Given tetrahedron ABCD, find the locus of points M in such that $MA^2 + MB^2 + MC^2 = MD^2$. How about $MA^2 + MB^2 = MC^2 + MD^2$?
- 15. (a) (Leibnitz) Let M be the medicenter of $\triangle ABC$, Q be an arbtrary point in the plane. Prove that

$$QA^{2} + QB^{2} + QC^{2} = 3QM^{2} + MA^{2} + MB^{2} + MC^{2}$$

- (b) (Stuard) Prove that if point D lies on the side BC of $\triangle ABC$, and BC = a. CA = b, AB = c, BD = m, CD = n, AD = d, then $d^2a = b^2m + c^2n amn$.
- 16. (Kazanluk'97 X) Point F on the base AB of trapezoid ABCD is such that DF = CF. Let E be the intersection point of the diagonals AC and BD, and O_1 and O_2 be the circumcenters of $\triangle ADF$ and $\triangle BCF$, respectively. Prove that the lines FE and O_1O_2 are perpendicular.
- 17. (UNESCO'95) Given a fixed segment AB and a constant k > 0, find the locus of points C in the plane such that in $\triangle ABC$ the ratio of some side to the altitude dropped to this side equals k.
- 18. (UNESCO'95) We are given $\triangle ABC$ in the plane. A rectangle MNPQ is called circumscribed around $\triangle ABC$ if on each side of the reactangle there is at least one vertex of the triangle. Find the locus of all centers O of the rectangles MNPQ circumscribed around $\triangle ABC$.

- 18. (Sylvester's theorem) A finite set of points in the plane has the property that the line through any two of them passes through a third one. Prove that all of the points are collinear. (Note: this fails in the *complex* projective plane, e.g. for the 3-torsion points of an elliptic curve.)
- 19. (IMO 1969/5) Given n points in the plane, no three collinear, prove that the number of convex quadrilaterals with vertices among the n points is at least $\binom{n-3}{2}$. (In fact, it is easy to prove the much better lower bound $\frac{1}{n-4}\binom{n}{5}$. Can you improve this?)
- 20. (Erdös-Szekeres) Prove that for any n, there exists N such that among any N points in the plane, no three collinear, there exist n which are the vertices of a convex n-gon. (There are two different reductions of this statement to Ramsey's theorem.)
- 21. (IMO 1973/1) Let P_1, \ldots, P_{2n+1} be points on a semicircle centered at O. Prove that the sum of the vectors OP_1, \ldots, OP_{2n+1} has length not less than 1.
- 22. Given 111 unit vectors in the plane whose sum is 0, prove that there exist 55 of them whose sum has length at most 1.
- 23. Given n unit vectors in the plane whose sum is 0, prove that there exists a permutation of the vectors such that the sum of the first k vectors has length at most \mathbb{Z} for $k = 1, \ldots, n$. Can you improve this constant?
- 24. (Austrian-Polish, 1995) Consider the cube consisting of points (x, y, z) with $|x|, |y|, |z| \le 1$. Let V_1, \ldots, V_{95} be points in the cube, and let v_i denote the vector from (0, 0, 0) to V_i . Prove that there exist $s_i \in \{+1, -1\}$ such that $s_1v_1 + \cdots + s_{95}v_{95}$ has length not greater than $\sqrt{48}$. Can you improve this constant? (In the 1995-1996 packet, I got it down to $\sqrt{12}$.)
- 25. Given three points chosen uniformly at random on a circle, what is the probability that the triangle they form is acute?
- 26. (St. Petersburg, 1997) Given 2n + 1 lines in the plane, prove that there are at most n(n+1)(2n+1)/6 acute triangles with sides on the lines.
- 27. (IMO 1970/6) Given 100 points in the plane, no three collinear, prove that at most 70% of the triangles with vertices among the given points are acute. (Can you improve this?)
- 28. (Putnam, 1992) Four points are chosen uniformly at random on the surface of a sphere. What is the probability that the center of the sphere lies inside the tetrahedron whose vertices are at the four points?
- 29. (Asian Pacific, 1999) Given 2n + 1 points in the plane, no four concyclic, prove that the number of circles through 3 of the points containing exactly n 1 of the other points has the same parity as n.

- 30. (Poland, 1997) Given $n \ge 2$ points on a unit circle, show that at most $n^2/3$ of the segments with endpoints among the given points have length greater than $\sqrt{2}$. (This should have been included as a "You call this graph theory?!" problem on Tuesday's handout.)
- 31. Find the smallest real number r such that a unit square can be covered by three disks of radius r.
- 32. (Putnam. 1994) Prove that the points of an isosceles triangle of side length 1 cannot be colored in four colors such that no two points at distance at least $2-\sqrt{2}$ from each other receive the same color.
- 33. (Putnam, 1997) Find the least diameter of a dissection of a 3-4-5 triangle into four parts. (The diameter of a dissection is the least upper bound of the distances between pairs of points belonging to the same part.)
- 34. Prove that a collection of squares of total area at most 1 can be fit into a square of area 4. (The optimal result in this direction is a theorem of Richard Stong. I think the minimum area of the square is 2, so as to accommodate two squares of area 1/2, but I'm not certain.)