Modular Arithmetic

```
 \begin{array}{l} \cdot \text{ Addition: } \mathrm{O(n)} \\ \cdot \text{ Multiplication: } \mathrm{O(n^2)} \ (\textit{naive}) \\ \cdot \text{ Multiplication: } \mathrm{O(nlogn)} \ (\textit{FFT}) \\ \cdot \text{ Euclid's Rule: } \mathrm{gcd}(\mathbf{x}, \, \mathbf{y}) = \mathrm{gcd}(\mathbf{x} \, \mathrm{mod} \, \mathbf{y}, \, \mathbf{y}) \\ \cdot \# \text{ of bits in } \mathbf{x}^y = \mathrm{ylog}_2\mathbf{x} \leq 2^n \, \times \, \mathbf{n} \\ \cdot \sum_{i=0}^{\infty} \mathbf{r}^i = \frac{1}{1-r}, \text{ if } \mathbf{r} < 1 \\ \cdot \sum_{i=0}^{n} \mathbf{i}^2 = \frac{n(n+1)(2n+1)}{6} \\ \cdot \sum_{i=0}^{n} \frac{1}{i} = \mathrm{O(log}_2\mathbf{n}) \end{array}
```

Extended Euclid's GCD(x,y)

```
\begin{split} & O(n^3); \gcd(\mathbf{x}, \mathbf{y}) = \mathbf{d} = \mathbf{x}i + \mathbf{y}b; \, \mathbf{x} \geq \mathbf{y}; \, \# \bmod \mathbf{x} \\ & \texttt{ext-gcd}(\mathbf{x}, \mathbf{y}): \\ & \text{if } \mathbf{y} == 0: \quad \texttt{return} \ (\mathbf{x}, \ 1, \ 0) \\ & \texttt{else:} \\ & (\mathbf{d}, \ \mathbf{a}, \ \mathbf{b}) = \texttt{ext-gcd}(\mathbf{y}, \ \mathbf{x} \ \texttt{mod} \ \mathbf{y}) \\ & \texttt{return} \ (\mathbf{d}, \ \mathbf{b}, \ \mathbf{a} - \frac{x}{y} \cdot b) \end{split}
```

#	1	X	Y	X/Y	X%Y	1	#	d	а	b
1.	1	26	15	1	11	1	6.	1	1	0
2.	1	15	11	1	4	1	5.	1	0	1-(3*0)
3.	1	11	4	2	3	1	4.	1	1	0-(1*1)
4.	1	4	3	1	1	1	3.	1	-1	1-(2*-1)
5.	1	3	1	3	0	1	2.	1	3	-1-(1*3)
6.	1	1	0			1	1.	1	-4	3-(1*-4)

Modular Exponentiation

 $x^y \mod N \to \text{start}$ with repeated squaring mod N x mod $N \to x^2 \mod N \to (x^2)^2 \cdots x^{\log_2 y} \mod N$ each step takes $O(\log^2 N)$ times to compute and there are $\log_2 y$ steps, $x \in O(n^3)$, where n is the # of bits in N

Formal Limit Proof

$$\begin{array}{l} \lim_{n\to\infty}\frac{f(n)}{g(n)}:\\ \geq 0\;(\infty)\Rightarrow f(n)\in\Omega(g(n))\\ <\infty\;(0)\Rightarrow f(n)\in O(g(n)) \end{array}$$

$$= c_{|0 < c < \infty} \Rightarrow f(n) \in \Theta(g(n))$$

Logarithm Tricks

$$\log_b x^p = p \log_b x
\frac{ln(x)}{ln(m)} = \log_m x
x^{log_b y} = y^{log_b x}$$

Complexity Hierarchy

Exponential Polynomial Logarithmic Constant

Master's Theorem

$$T(\mathbf{n}) = \mathbf{a}T(\frac{n}{b}) + \mathcal{O}(\mathbf{n}^d), \text{ if a } >0, b > 1, d \ge 0$$

$$T(n) = \begin{cases} O(n^d) & \text{if d } > \log_b a \\ O(n^d \log_b n) & \text{if d } = \log_b a \\ O(n^{\log_b n}) & \text{if d } < \log_b a \end{cases}$$