

Unveiling Flight Disruptions Insights

Team BA7

Jinke Han, Sneha Sunil Ekka, Tanvi Sheth, Mingze Wu, YuChun Su

BOARDING PASS

FLIGHT BA843

GATE 07

SEAT 1A

Table of Contents

Introduction

- Motivation Business Description
- Data Overview

Descriptive Analysis

- Location/AirportsAirlines
- Time

03

Machine Learning

- Model comparison Feature Importance Hyperparameter tuning

Implications & Challenges

- RecommendationsLimitations

 - Future Scope

O1 INTRODUCTION **FLIGHT**

BA843

GATE

07

SEAT

1A

Motivation

PROBLEM

Flight delays and cancellations are inconvenient, disruptive, stressful, and costly.

GOAL

Identify unique patterns among airlines and airports to enhance operational efficiency, improve travel experiences, and mitigate economic losses.

Business Description

01

Analyze delays to discern seasonal trends and variations

•••••••

Offer valuable insights into the factors affecting flight schedules

02

Develop predictive models to estimate delay durations

Empower stakeholders with proactive strategies to mitigate risks

03

Provide passengers with travel time recommendations

Facilitate informed decisions to minimize disruptions' impact on plans

Dataset

Time Range

5 years of flight data from 2018 to 2022 for US commercial airlines

Columns

Total 61 columns including flight dates, airline information, aircraft information, departure and arrival times

Target Column

Detailed information about the flight status with respect to the cancellations and delays

Exploratory Data Analysis

FLIGHT

BA843

GATE

07

SEAT

2A

EDA
Analysis by "Location"

FLIGHT BA843

GATE 07

SEAT 2A

Which cities experienced the highest percentage of delayed flights?

Top 10 Cities with the Most Delayed Flights

OriginCityName +	 Count 	Delayed Count	Delay Proportion +
Youngstown/Warren, OH	2	2	100.00%
Cold Bay, AK	262	158	60.31%
Ogden, UT	460	273	59.35%
Pago Pago, TT	299	163	54.52%
l Adak Island. AKI	452	241	53.32%
Dallas, TX	292,538	149,560	51.12%
Stockton, CA	3,521	1,741	49.45%
Unalaska, AK	1,392	[681	48.92%
Hyannis, MA	379	184	48.55%
Wilmington, DE	165	79	47.88%

Origin Airline +	Total_delay +	/ Flight_co -+	unt Average_d	delay +
DAL SkyWest Airlines Inc.	100,061.0	2,286	43.77	
DAL Delta Air Lines Inc.	72,566.0	1,830	39.65	
DAL Alaska Airlines Inc.	32,668.0	850	38.43	
DAL Endeavor Air Inc.	787.0	21	37.48	
DAL Virgin America	5,877.0	196	29.98	
DFW GoJet Airlines, LLC	7,456.0	80	93.20	
DFW Compass Airlines	27,630.0	305	90.59	
DFW Endeavor Air Inc.	72,875.0	1,074	67.85	
DFW Republic Airlines	103,899.0	1,591	65.30	
DFW ExpressJet Airlines LLC	99,216.0	1,556	63.76	

Airports most prone to cancellations ······

Top 3 Airports with the Most Cancelled Flights

+		+
	Origin	CancelledFlights
 +	ORD DFW DEN	44342 36698 29676

• Flight cancellations across the USA are unevenly distributed, with a higher concentration in the eastern regions

EDA
Analysis by "Airline"

FLIGHT BA843

GATE 07

SEAT 2A

Proportion of Airlines at the busiest airports

- The top airlines that fly the most are mainly international.
- United Airlines is more common in northern cities while American Airlines are more popular in the south.

Proportion of major airlines at 3 Popular International Airports 💸

 For JFK, JetBlue Airways and Delta Airlines handle more than half of all flights, making them the biggest players there.

 For LAX, this airport has a mix of many airlines, with no single airline having more than 20% of the flights.

 For SFO, Similar to JFK, two airlines at San Francisco airport control nearly 60% of the flights.

EDA
Analysis by "Time"

FLIGHT BA843

GATE 07

SEAT 2A

Delay Time by Hour of Day

- Rising trend throughout a day
- Evening and night periods experience the longest delays
- Peak at about 19 minutes on average at around 7 PM

+	-+-	+
DayType		delay_proportion
+	-+-	+
Weekday		31.20
Weekend		31.63
+	-+-	+

- No obvious patterns based on weekdays or weekends.
- Peak on Friday
- The rise in travel toward weekends intensify delays

Delay & Cancellation Rate by Month

Delays

- Flight delays have a seasonal pattern
- Higher delay rates during the summer months

Cancellation

- Higher cancellation rates in the winter and early spring months
- Cancellation rates shoot up in the months of March and April

Average Daily Cancellation Rates over 5 Years

The most cancellations in March and April

Average Daily Cancellation Rates for each year

MACHINE LEARNING
Classification

FLIGHT

BA843

GATE

07

SEAT

3A

Machine Learning · ·

Prediction Problem

TARGET: Flight Delay

Upto 15 minutes | 15 - 30 minutes | 30 - 60 minutes | More than 1 hour

FEATURES

Origin Airport | Destination Airport | Airtime | Time of Day | Day of Week

Machine Learning •

Distribution of Delay Categories

Insights

- Imbalanced groups
- Focusing on delays
- Predicting delay groups

MODELS	ACCURACY	PRECISION	RECALL	F1 SCORE
LOGISTIC REGRESSION	0.50	0.53	0.50	0.38
DECISION TREE	0.49	0.32	0.49	0.36
RANDOM FOREST	048	0.23	0.48	0.31

Logistic Regression emerges as the best base model with an accuracy of 50% in predicting each delay category.

Important features: Youngstown-Warren Regional Airport, Ohio | Rota International Airport, Rota Island | Devils Lake Regional Airport, North Dakota

Important features: Youngstown-Warren Regional Airport, Ohio | Rota International Airport, Rota Island | Elko Regional Airport, Nevada

Important features: Youngstown-Warren Regional Airport, Ohio | Rota International Airport, Rota Island | Wilmington Airport (Delaware)

More than I hour flight delay

Important features: Youngstown-Warren Regional Airport, Ohio | Rota International Airport, Rota Island | Lanai Airport, Hawaii | Sitka Rocky Gutierrez Airport, Japonski Island | Time of Day (Morning)

Logistic Regression: Hyperparameter Tuning

MODELS	ACCURACY	PRECISION	RECALL	F1 SCORE
INITIAL MODEL	0.50	0.53	0.50	0.38
TUNED MODEL	0.49	0.36	0.49	0.37

04 CONCLUSION **FLIGHT**

BA843

GATE

07

SEAT

4A

Conclusion

Regional Airlines and Airports

Cancellation ; ():
Hotspots

External Factors

Timing & Seasonality

Airlines Performance

Challenges

01

Computational limitations

02

Missing Data

03

Skewed Data

FLIGHT

BA843

GATE

07

SEAT BYE!!!

Thank You for flying with us today!

