Pregunta

Obtenidos

10 | 15 | 10 | 10 | 15 | 20 | 20

Puntos

3° de Secundaria

Total

100

Unidad 3 2022

Puntuación:

3

ducación para la vida

Preparación para el Examen de la Unidad 3

Nombre del alumno: Fecha:

Aprendizajes:

- Argumenta acerca de posibles cambios químicos en un sistema con base en evidencias experimentales.
- Reconoce y valora el uso de reacciones químicas para sintetizar nuevas sustancias útiles o eliminar sustancias indeseadas.
- Reconoce la utilidad de las reacciones químicas en el mundo actual.
- Explica, predice y representa cambios químicos con base en la separación y unión de átomos o iones, y se recombinan para formar nuevas sustancias.

Ejemplo 1

El peso molecular de la sacarosa, $C_{12}H_{22}O_{11}$, es 342.3 g/mol. ¿Cuál es la masa en gramos de 0.287 moles de sacarosa? Expresa la respuesta con 3 cifras significativas.

Solución:

Podemos encontrar los gramos de sacarosa multiplicando los moles de sacarosa por el peso molecular. Las unidades de moles se cancelan, lo que significa que la respuesta estará en gramos.

$$m = 0.287 \text{ mol} \times \frac{342.3 \text{ g}}{1 \text{ mol}} = 98.3 \text{ g}$$

Ejercicio 1 de 10 puntos

El peso molecular del agua, H₂O, es de 18 g/mol. ¿Cuántos moles de agua hay en 243 g de agua? Expresa la respuesta con 3 cifras significativas.

Solución:

Podemos encontrar los moles de agua dividiendo los gramos de agua entre el peso molecular. Las unidades de gramos se cancelan, lo que significa que la respuesta estará en moles.

$$n = 243 \text{ g} \times \frac{1 \text{ mol}}{18 \text{ g}} = 13.5 \text{ mol}$$

Ejemplo 2

Balancea la siguiente ecuación química:

$$HgO \longrightarrow Hg + O_2$$

Solución:

Hay 2 O en los productos y 1 en los reactivos, por lo que hay que multiplicar por 2 al HgO.

$$2 \, \mathrm{HgO} \longrightarrow \mathrm{Hg} + \mathrm{O}_2$$

Ahora, hay 2 Hg en los reactivos y 1 en los productos, por lo que hay que multiplicar por 2 al Hg. Y la ecuación balanceada es:

$$2 \,\mathrm{HgO} \longrightarrow 2 \,\mathrm{Hg} + \mathrm{O}_2$$

Ejercicio 2 ____ de 15 puntos

Balancea la siguiente ecuación química:

$$Fe + H_2O \longrightarrow Fe_3O_4 + H_2$$

Solución:

Hay 3 Fe en los productos y 1 en los reactivos, por lo que hay que multiplicar por 3 al Fe.

$$3 \operatorname{Fe} + \operatorname{H}_2 O \longrightarrow \operatorname{Fe}_3 O_4 + \operatorname{H}_2$$

Hay 4 O en los productos y 1 en los reactivos, por lo que hay que multiplicar por 4 al H₂O.

$$3 \operatorname{Fe} + 4 \operatorname{H}_2 \operatorname{O} \longrightarrow \operatorname{Fe}_3 \operatorname{O}_4 + \operatorname{H}_2$$

Por último, hay 8 H en los reactivos y 2 en los productos, por lo que hay que multiplicar por 4 al H_2 . Y la ecuación balanceada es:

$$3 \operatorname{Fe} + 4 \operatorname{H}_2 O \longrightarrow \operatorname{Fe}_3 O_4 + 4 \operatorname{H}_2$$

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 \text{ Na} + \text{ZnI}_2 \longrightarrow 2 \text{ NaI} + \text{Zn}$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $C_8HO_{18} + calor \uparrow \longrightarrow C_6H_{14} + C_2H_4$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento
- $\operatorname{\mathbf{C}} \operatorname{Zn}(s) + 2\operatorname{HCl}(ac) \longrightarrow \operatorname{ZnCl}_2(ac) + \operatorname{H}_2(g)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - Doble desplazamiento
- \mathbf{d} $2 \mathrm{C(s)} + \mathrm{O}_2(\mathrm{g}) \longrightarrow 2 \mathrm{CO(g)}$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento
- e 2 Na + H₂O \longrightarrow 2 NaOH + H₂
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - Doble desplazamiento

- $f 2 Al(s) + 3 S(s) \longrightarrow Al_2 S_3(s)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - Doble desplazamiento
- - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- h Al + H₂SO₄ \longrightarrow Al₂(SO₄)₃ + H₂
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- i $2 \operatorname{NaCl}(s) \longrightarrow 2 \operatorname{Na}(s) + \operatorname{Cl}_2(g)$
 - A Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- $\mathbf{j} \operatorname{SO}_2(g) + \operatorname{H}_2\operatorname{O}(l) \longrightarrow \operatorname{H}_2\operatorname{SO}_3(ac)$
 - (A) Descomposición
 - B Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento

Ejercicio 3

de 10 puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- $2 H_2 O(1) \longrightarrow 2 H_2(g) + O_2(g)$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - (D) Doble desplazamiento
- **b** $CuSO_4 + calor \uparrow \longrightarrow CuO + SO_3O$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento

- - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento
- d $4 \operatorname{Al}(s) + 3 \operatorname{O}_2(g) \longrightarrow 2 \operatorname{Al}_2 \operatorname{O}_3(s)$
 - (A) Descomposición
 - B Combinación
 - © Desplazamiento
 - (D) Doble desplazamiento

Ejercicio 4 ____ de 10 puntos

Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.

- \circ Fe + S + E \uparrow \longrightarrow FeS
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento
- **b** $2 \operatorname{NaCl}(s) \longrightarrow 2 \operatorname{Na}(s) + \operatorname{Cl}_2(g)$
 - (A) Descomposición
 - B Combinación
 - © Desplazamiento
 - Doble desplazamiento

- $\mathsf{C} \operatorname{SO}_2(\mathsf{g}) + \operatorname{H}_2 \operatorname{O}(\mathsf{l}) \longrightarrow \operatorname{H}_2 \operatorname{SO}_3(\mathsf{ac})$
 - (A) Descomposición
 - (B) Combinación
 - © Desplazamiento
 - Doble desplazamiento
- d $2P_2 + 5O_2 \longrightarrow 2P_2O_5 + \text{luz} \uparrow$
 - (A) Descomposición
 - (B) Combinación
 - (C) Desplazamiento
 - Doble desplazamiento

En un recipiente se introducen 15 g de dióxido de carbono, ${\rm CO}_2.$

Calcula:

a Los moles de sustancia introducidos.

Solución:

Calculamos la masa molecular del dióxido de carbono, CO₂:

$$m_m(CO_2) = m(C) + 2 \times m(O) = 12 + 16 + 16 = 44 \text{ UMA}$$

Entonces, la masa molar es:

$$M(CO_2) = 44 \text{ g mol}^{-1}$$

El número de moles de CO₂ se calcula con la ecuación (??), de la siguiente forma:

$$n(\text{CO}_2) = \frac{m(\text{CO}_2)}{M(\text{CO}_2)} = \frac{15 \text{ g}}{44 \text{ g mol}^{-1}} = 0.34 \text{ mol}$$

b ¿Cuántas moléculas de CO₂ y átomos de carbono y de oxígeno hay en el recipiente?

Solución:

Del inciso anterior, sabemos que hay 0.34 moles de CO₂. Entonces, el número de moléculas de CO₂ es:

$$0.34~\mathrm{mol} \times 6.023 \times 10^{23}~\mathrm{mol\'eculas} = 2.05 \times 10^{23}~\mathrm{mol\'eculas}$$

Ejercicio 5

de 15 puntos

Halla la masa de ozono O_3 , que contiene 1×10^{25} átomos de oxígeno.

Solución:

Calculamos la masa molecular del ozono, O₃:

$$m_m(O_3) = 3 \times m(O) = 3 \times 16 = 48 \text{ UMA}$$

Entonces, la masa molar es:

$$M(O_3) = 48 \text{ g mol}^{-1}$$

Por otro lado, sabemos que la cantidad de moles de O₃ es:

$$n(O_3) = \frac{1 \times 10^{25}}{6.023 \times 10^{23}} = 16.60 \text{ mol}$$

Por lo tanto, la masa de ozono es:

$$m(O_3) = n(O_3) \times M(O_3) = 16.60 \times 48 = 797 \text{ g}$$

Con base en la información de la tabla 1, ¿cuál de los siguientes compuestos contiene el menor porcentaje de potasio por masa?

- (A) KNO₃
- B KF
- C KClO
- (D) KBr

Tabla 1: Compuestos que contienen potasio

Compuesto	$\begin{array}{c} {\rm Masa\ \ molar} \\ {\rm (g/mol)} \end{array}$	Porcentaje de potasio (%)		
KNO_3	101.1	38.67%		
KF	58.1	67.3%		
KClO	90.6	43.1%		
KBr	119.0	33.1 %		

Solución:

Ya que el peso atómico del potasio es 39.1, el porcentaje de potasio en cada compuesto se puede calcular como:

$$100\,\% \times \frac{\mathrm{K}}{\mathrm{KNO_3}} = 100\,\% \times \frac{39.1}{101.1} = 38.67\,\%$$

$$100\% \times \frac{K}{KF} = 100\% \times \frac{39.1}{58.1} = 67.3\%$$

$$100\% \times \frac{K}{KClO} = 100\% \times \frac{39.1}{90.6} = 43.1\%$$

$$100\,\% \times \frac{\mathrm{K}}{\mathrm{KBr}} = 100\,\% \times \frac{39.1}{119.0} = 33.1\,\%$$

Ejercicio 6 de 20 puntos

Con base en la información de la tabla 2, ¿cuál de los siguientes compuestos contiene el menor porcentaje de carbono por masa?

Tabla 2: Compuestos que contienen carbono

Compuesto	$egin{array}{ll} { m Masa \ molar} \ { m (g/mol)} \end{array}$	Porcentaje de carbono (%)		
CH_4	16	75%		
$\mathrm{CH_{2}O}$	30	40%		
CO	28	42.9%		
CO_2	44	27.3%		

Solución:

Ya que el peso atómico del carbono es 12.01, el porcentaje de carbono en cada compuesto se puede calcular como:

$$100\,\% \times \frac{C}{CH_4} = 100\,\% \times \frac{12.01}{16} = 75\,\%$$

$$100\,\% \times \frac{C}{CH_2O} = 100\,\% \times \frac{12.01}{30} = 40\,\%$$

$$100\% \times \frac{\text{C}}{\text{CO}} = 100\% \times \frac{12.01}{28} = 42.9\%$$

$$100\% \times \frac{\text{C}}{\text{CO}_2} = 100\% \times \frac{12.01}{44} = 27.3\%$$

Una tableta de vitamina C de 2.70 g contiene 0.0109 mol de ácido ascórbico ($C_6H_8O_6$). La masa molar de $C_6H_8O_6$ es 176.12 g/mol. ¿Cuál es el porcentaje de masa de $C_6H_8O_6$ en la tableta?

Solución:

El porcentaje de masa de una sustancia en una mezcla se puede determinar por la comparación de la masa de la sustancia en la mezcla contra la masa total de la mezcla. Primero, calculemos la masa de $C_6H_8O_6$ en la tableta. Utilizando la masa molar del $C_6H_8O_6$, podemos convertir moles de $C_6H_8O_6$ a gramos de $C_6H_8O_6$:

$$0.0109 mol~ C_6 H_8 O_6 \times \frac{176.12 g~ C_6 H_8 O_6}{1 mol~ C_6 H_8 O_6} = 1.92 g~ C_6 H_8 O_6$$

Posteriormente, utilizando la masa calculada de $C_6H_8O_6$ y la masa total de la tableta, podemos calcular el porcentaje de masa de $C_6H_8O_6$ en la tableta:

$$1.92 g \ C_6 H_8 O_6 \times \frac{100 \, \%}{2.70 g \ tableta} = 71 \, \%$$

El porcentaje de masa de $C_6H_8O_6$ en la tableta es 71 %.

Ejercicio 7 ____ de 20 puntos

Se encuentra que una tableta de vitamina B3 de 1.90 g contiene 0.0122 mol de nicotinamida ($C_6H_6N_2O$). (La masa molar de $C_6H_6N_2O$ es 122.13 g/mol.)

¿Cuál es el porcentaje de masa de C₆H₆N₂O en la tableta?

Escribe tu respuesta usando tres cifras significativas.

Solución:

El porcentaje de masa de una sustancia en una mezcla se puede determinar por la comparación de la masa de la sustancia en la mezcla contra la masa total de la mezcla. Primero, calculemos la masa de $C_6H_6N_2O$ en la tableta. Utilizando la masa molar de $C_6H_6N_2O$, podemos convertir moles de $C_6H_6N_2O$ a gramos de $C_6H_6N_2O$:

$$0.0122 \text{mol } C_6 H_6 N_2 O \times \frac{122.13 \text{g } C_6 H_6 N_2 O}{1 \text{ mol } C_6 H_6 N_2 O} = 1.49 \text{ g } C_6 H_6 N_2 O$$

Posteriormente, utilizando la masa calculada de $C_6H_6N_2O$ y la masa total de la tableta de vitamina B3, podemos calcular el porcentaje de masa de $C_6H_6N_2O$ en la tableta:

$$\frac{1.49 g~C_6 H_6 N_2 O}{1.90 g~tableta} \times 100\,\% = 78.4\,\%$$

Por lo tanto, el porcentaje de masa de C₆H₆N₂O en la tableta es 78.4 %.

18 VIIIA	$\overset{\text{2}}{H}\overset{\text{4.0025}}{\text{Helio}}$	$\overset{10}{N}\overset{20.180}{\text{Neón}}$	$\mathop{\Lambda \mathbf{r}}_{Argón}^{18 39.948}$	$\frac{36}{K} \frac{83.8}{\Gamma}$ Kriptón	$\sum_{\text{Xenón}}^{54}$	$\mathop{Rad \acute{o}}_{Rad\acute{o}n}$		$\overset{71}{\text{Luterio}}$	$\frac{103}{\text{L}}$ 262	
	17 VIIA	9 18.998 Fluor	17 35.453 Cloro	$\overset{35}{\mathrm{Bromo}}$	53 126.9 T Yodo	$\overset{85}{\mathbf{At}}_{\overset{210}{Astato}}$	\prod_{Teneso}^{292}	$\sum_{\text{Yterbio}}^{70}$	102 259 Nobelio	
	16 VIA	8 15.999 Oxígeno	$\overset{16}{\mathbf{S}}\overset{32.065}{\mathbf{S}}$	${\overset{34}{\mathrm{Se}}}^{78.96}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{Po}^{209}$	$\frac{116}{L} \frac{293}{V}$ Libermonio	$\prod_{\text{Tulio}}^{69}$	$\underset{\text{Mendelevio}}{\text{101}} \overset{258}{\text{d}}$	
	15 VA	$\sum_{\text{Nitrógeno}}^{7}$	$\sum_{Fósforo}^{15\ 30.974}$	33 74.922 AS Arsénico	$\overset{51}{S}\overset{121.76}{b}$ Antimonio	$\overset{83}{\text{Bismuto}}_{\text{208.98}}$	${\overset{115}{ M }}^{288}_{C}$	$\frac{68}{\text{Erbio}}$	Fermio 257	
	14 IVA	$\overset{6}{\overset{12.011}{\text{Carbono}}}$	$\overset{14}{\mathrm{Si}}\overset{28.086}{\mathrm{Si}}$	${\overset{32}{G}}^{72.64}$	$\mathop{\mathrm{Sn}}_{\mathrm{Estaño}}^{118.71}$	$\overset{82}{P}\overset{207.2}{b}$	114 289 Flerovio	$\overset{67}{H^{olmio}}$	99 252 Einsteinio	
	13 IIIA	5 10.811 Boro	$\overset{13}{A}\overset{26.982}{\text{Aluminio}}$	$\overset{31}{G}\overset{69.723}{a}$	\prod_{Indo}^{49}	81 204.38 Talio	113 284 Nihonio	$\bigcup_{Disprosio}^{66}$	$\underset{\text{Californio}}{\overset{98}{\text{C}}}$	
			12 IIB	$\overset{30}{\mathrm{Zn}}\overset{65.39}{\mathrm{Zinc}}$	$\overset{48}{\text{Cadmio}}_{\text{Cadmio}}$	$\overset{80}{H}\overset{200.59}{S}$	—	$\prod_{\text{Terbio}}^{65-158.93}$	$\underset{Berkelio}{\mathbf{BK}}$	
			11 IB	$\overset{29}{\mathbf{Cobre}}$	47 $^{107.87}$ Ag	$\overset{79}{\mathbf{Au}}_{\mathrm{Oro}}^{196.97}$	$\underset{\text{Roentgenio}}{Rg}$	$\overset{64}{\text{Gadolinio}}$	96 247 Curio	
		Negro: Naturales Gris: Sintéticos	10 VIIIB	$\sum_{\text{Niquel}}^{28} \sum_{\text{58.693}}^{58.693}$	$\Pr_{\text{Paladio}}^{46 \ 106.42}$	$\Pr_{Platino}^{78}$	110 281 DS	$\dot{\mathbf{E}}_{\mathbf{u}}^{\mathbf{a}}$	95 243 Am	
Simbología:	9 VIIIB		$\overset{27}{\overset{58.933}{\overset{60}{\mathbf{60$	$\mathop{Rh}\limits^{45~102.91}_{\text{Rodio}}$	$\prod_{\rm lridio}^{77}$	$\underset{\text{Meitnerio}}{109}$	$\overset{62}{Sm}_{arrio}^{150.36}$	Plutonio		
	8 VIIIB		$\overset{26}{F}\overset{55.845}{e}$	$\mathop{Rut}\limits^{44}$ 101.07	$\overset{76}{\text{Osmio}}$	108 277 Hassio	$\overset{\text{61}}{P}\overset{\text{145}}{m}$	93 237 Neptunio		
	7 VIIB		$\overset{25}{\mathbf{Manganeso}}$	$\prod_{ m Tecnecio}^{43}$	$\mathop{Re}_{\text{Renio}}^{75~186.21}$	$\overset{107}{Bh}\overset{264}{b}$	$\sum_{\text{Neodimio}}^{60} 144.24$	$\bigcup_{Uranio}^{92-238.03}$		
	6 VIB		$\overset{24}{\overset{51.996}{\text{Cromo}}}$	$\overset{ ext{42}}{ ext{Molybdeno}}$	$\bigvee_{\text{Lungstenio}}^{74} 183.84$	106 266 Seaborgio	$\Pr_{\mathbf{Praseodymio}}^{59}$	$\Pr_{\text{Protactinio}}^{231.04}$		
	Sim	$\sum_{\substack{\mathbf{S} \in Ar \\ Simbolo}} Simbolo$	5 VB	$ \overset{23}{\text{Vanadio}} $	$\sum_{\text{Niobio}}^{41}$	$\overset{73}{ ext{Ta}}\overset{180.95}{ ext{Tantalo}}$	105 262 Dubnio	$\mathbf{\overset{58}{C}}_{Cerio}^{140.12}$	$\prod_{Torio}^{90-232.04}$	
			4 IVB	$\prod_{\text{Titanio}}^{22}$	$\overset{40}{Z}\overset{91.224}{r}$ Circonio	72 178.49 Hafinio	$\overset{104}{Rt}^{261}$	$\overset{57}{La}_{ ext{lantánido}}^{ ext{138.91}}$	$\overset{89}{Ac}^{227}$	
			3 IIIA	$\overset{21}{S}^{44.956}_{C}$ Escandio	39 88.906 Yellon	57-71		erreos		nidos
	2 IIA	$\overset{4}{B}\overset{9.0122}{e}$	$\overline{\mathrm{Mg}}^{24.305}$	$\overset{20}{\mathbf{C}}\overset{40.078}{\mathbf{a}}$	$\overset{38}{\mathrm{ST}}\overset{87.62}{\mathrm{F}}$ Stroncio	$\overset{56}{B}_{\mathbf{a}rio}^{137.33}$	$\mathop{Radio}\limits^{88}$	Metales Alcalinos Metales Alcalino-terreos Metal	le	Gases Nobles Lantánidos/Actínidos
1 IA	1 1.0079 Hidrógeno	3 6.941 Litio	$\overset{11}{\overset{22.990}{\text{Na}}}$	$\sum_{Potasio}^{19}$	$\mathop{Rubidio}\limits^{37\ 85.468}$	\sum_{Cesio}^{55}	$\frac{87}{Fr}$	Metales . Metales . Metal	Metaloide No metal Halógeno	Gases Nobles Lantánidos/A
	\leftarrow	7	ĸ	4	Ŋ	9	7			