Proprioceptive Vegetation Navigation

David Seong, Weichen Qiu, Benny Zhu

04/23/2025

[1] Motivation

Vegetated areas have lots of grass, bushes, etc.
 those look like obstacles BUT are traversable

Traditional methods:

All obstacles are <u>untraversable</u>

vs.

Our method:

- Assume all obstacles are <u>traversable</u> with initial guess on cost (i.e. cost(trees) > cost(grass))
- Update initial guess upon collision

[i] Traditional methods: X NO plan

[2] The math

- State: (x,y,θ,costmap)
- Goal state: Goal pose and updated costmap
- Cost Function: f(state) = g(state) +
 ε*h(state)
- **Heuristic:** euclidean distance
- Map Cost: desired_velocity actual_velocity
 - Where desired_velocity=1m/s
 - o If equal, 1-1 = 0 low cost
 - And 1-0 = 1 high cost

- Bayesian Updating:
- μ_post = (μ_prior · P_prior + μ_obs · P_obs) / (P_prior + P_obs)
 - Where post=posterior, obs=observation
 - $\circ P_{prior} = 1/(\sigma_{prior^2})$
 - $\circ P_{obs} = 1/(\sigma_{obs^2})$

[3] The algorithm

Prior cost knowledge

Gazebo obstacle locations

Plan to goal A*, D* Lite

[3] The algorithm

Collision with vegetation

Measure cost from velocity

Bayesian updating

Update the obstacle's cost & set stddev=0

Update database

Re-plan until goal is reached

Update costmap: re-samples for "similar" obstacles

[4] Results

- Implemented an **end-to-end simulation** in ROS2 and Gazebo with Husky robot
 - o Demonstrated successful planning and traversal through vegetation
- Developed resistance zones contact model using proprioceptive sensor
 - Applied specific velocity reductions in vegetated zones.
 - Experimented with solid obstacle collision (e.q. stl trees, friction patches)
- Integrated custom **costmap** plugin into nav2 stack
- Experimented with A* and D* Lite planning algorithms

	D* Lite	A*
Planning time	6000ms	6000ms
States expanded	23101	25462
Path Length	52	50