CS215: Discrete Math (H)

2024 Fall Semester Written Assignment # 3

Due: Nov. 13th, 2024, please submit at the beginning of class

- Q.1 What are the prime factorizations of
 - (a) 8085
 - (b) 10!

Solution:

- (a) $8085 = 3 \cdot 5 \cdot 7^2 \cdot 11$.
- (b) $10! = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7$.

Q.2

- (a) Use Euclidean algorithm to find gcd(267, 79).
- (b) Find integers s and t such that gcd(267, 79) = 79s + 267t.

Solution:

(a) By Euclidean algorithm, we have

$$267 = 3 \cdot 79 + 30$$

$$79 = 2 \cdot 30 + 19$$

$$30 = 1 \cdot 19 + 11$$

$$19 = 1 \cdot 11 + 8$$

$$11 = 1 \cdot 8 + 3$$

$$8 = 2 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1.$$

Thus, gcd(267, 79) = 1.

(b) By (a), we have

$$1 = 3-2$$

$$= 3-(8-2\cdot3)$$

$$= 3\cdot3-8$$

$$= 3\cdot(11-8)-8$$

$$= 3\cdot11-4\cdot8$$

$$= 3\cdot11-4\cdot(19-11)$$

$$= 7\cdot11-4\cdot19$$

$$= 7\cdot(30-19)-4\cdot19$$

$$= 7\cdot30-11\cdot19$$

$$= 7\cdot30-11\cdot79$$

$$= 29\cdot30-11\cdot79$$

$$= 29\cdot(267-3\cdot79)-11\cdot79$$

$$= 29\cdot267-98\cdot79.$$

Q.3 For three integers a, b, y, suppose that $gcd(a, y) = d_1$ and $gcd(b, y) = d_2$. Prove that

$$\gcd(\gcd(a,b),y)=\gcd(d_1,d_2).$$

Solution: To begin, we show $\gcd(\gcd(a,b),y) \leq \gcd(d_1,d_2)$. Suppose that $d|\gcd(a,b)$ and d|y. As $d|\gcd(a,b)$ we know d|a and d|b. Thus, d|a and d|y so $d|\gcd(a,y)=d_1$. Similarly, d|b and d|y so $d|\gcd(b,y)=d_2$. Because $d|d_1$ and $d|d_2$ we know $d|\gcd(d_1,d_2)$. Hence we have $d\leq\gcd(d_1,d_2)$.

Next we show $\gcd(d_1, d_2) \leq \gcd(\gcd(a, b), y)$. Suppose that $d|d_1$ and $d|d_2$. As $d|\gcd(a, y) = d_1$ we know d|a and d|y. Similarly, as $d|\gcd(b, y) = d_2$, we know d|b and d|y. Thus, d|a, d|b, and d|y. Because d|a and d|b, we show $d|\gcd(a, b)$. Then $d|\gcd(a, b)$ and d|y. We know $d|\gcd(\gcd(a, b), y)$. The theorem follows.

[Alternate solution.] We can also prove this via unique prime factorizations. Let p_1, p_2, \ldots, p_k be the first k primes for some large k, then for a, b and y, we can define sequences of integers (possibly zero) $a_1, \ldots, a_k, b_1, \ldots, b_k$

and y_1, \ldots, y_k such that

$$a = \prod_{i=1}^k p_i^{a_i} = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}, \quad b = \prod_{i=1}^k p_i^{b_i} \quad \text{ and } y = \prod_{i=1}^k p_i^{y_i}.$$

Now we have

$$\gcd(a,b) = \prod_{i=1}^{k} p_i^{\min\{a_i,b_i\}} \quad \text{ and } \gcd(a,b) = \prod_{i=1}^{k} p_i^{\min\{\min\{a_i,b_i\},y\}}.$$

Similarly,

$$d_1 = \gcd(a, y) = \prod_{i=1}^k p_i^{\min\{a_i, y_i\}}$$
 and $d_2 = \gcd(b, y) = \prod_{i=1}^k p_i^{\min\{b_i, y_i\}}$

so

$$\gcd(d_1, d_2) = \prod_{i=1}^k p_i^{\min\{\min\{a_i, y_i\}, \min\{b_i, y_i\}\}}.$$

But, since min $\{\min\{a_i, b_i\}, y_i\} = \min\{\min\{a_i, y_i\}, \min\{b_i, y_i\}\}\$, these values are equal.

Q.4 Prove the following statement. If $c|(a \cdot b)$, then $c|(a \cdot \gcd(b, c))$.

Solution: Since $c|(a \cdot b)$, we know that kc = ab for some integer k. By Euclidean algorithm, we also know that gcd(b, c) = sb + tc for some integers s and t. Thus, we have

$$a \cdot \gcd(b, c) = a \cdot (sb + tc)$$

= $asb + atc$
= $skc + atc$
= $(sk + at) \cdot c$.

Therefore, we have $c|(a \cdot \gcd(b, c))$.

Q.5 Solve the following modular equation.

$$312x \equiv 3 \pmod{97}$$
.

Solution: Applying Euclidean algorithm, we have

$$312 = 3 \cdot 97 + 21$$

$$97 = 4 \cdot 21 + 13$$

$$21 = 1 \cdot 13 + 8$$

$$13 = 1 \cdot 8 + 5$$

$$8 = 1 \cdot 5 + 3$$

$$5 = 1 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1.$$

Reading Euclidean algorithm backwards we have $1 = 37 \cdot 312 - 119 \cdot 97$. So, $312 \cdot 37 \equiv 1 \pmod{97}$. Thus, $x \equiv 37 \cdot 3 \equiv 111 \equiv 14 \pmod{97}$.

Q.6 Find counterexamples to each of these statements about congruences.

- (a) If $ac \equiv bc \pmod{m}$, where a, b, c, and m are integers with $m \geq 2$, then $a \equiv b \pmod{m}$.
- (b) If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, where a, b, c, d, and m are integers with c and d positive and $m \geq 2$, then $a^c \equiv b^d \pmod{m}$.

Solution:

- (a) Let m = c = 2, a = 0 and b = 1. Then $0 = ac \equiv bc = 2 \pmod{2}$, but $0 = a \not\equiv b = 1 \pmod{2}$.
- (b) Let m = 5, a = b = 3, c = 1, and d = 6. Then $3 \equiv 3 \pmod{5}$ and $1 \equiv 6 \pmod{5}$, but $3^1 = 3 \not\equiv 4 \equiv 729 = 3^6 \pmod{5}$.

Q.7 Prove that if a and m are positive integer such that gcd(a, m) = 1 then the function

$$f: \{0, \dots, m-1\} \to \{0, \dots, m-1\}$$

defined by

$$f(x) = (a \cdot x) \bmod m$$

is a bijection.

Solution:

Since gcd(a, m) = 1 we know that a has an inverse modulo m. Let b be such an inverse, i.e.,

$$ab \equiv 1 \pmod{m}$$
.

To show that f is a bijection, we need to show that it is one-to-one and onto. Let $S = \{0, ..., m-1\}$ denote the domain and codomain. We first show that f is one-to-one. Assume that $x, y \in S$ and f(x) = f(y), i.e.,

$$ax \mod m = ay \mod m$$
.

This is equivalent to saying that

$$ax \equiv ay \pmod{m}$$
.

Multiplying both sides by b, we have

$$bax \equiv bay \pmod{m}$$
,

which is just

$$x \equiv y \pmod{m}$$
.

Thus, m|x-y. Note that since $0 \le x, y < m$, we have |x-y| < m. Thus, this is only possible if x = y = 0 or x = y as desired.

To show that f is onto, let $z \in S$ be some element in the codomain. Let

$$x = bz \mod m$$
,

and note that $x \in S$ and

$$ax \equiv abz \equiv z \pmod{m}$$
.

Since $z \in \{0, ..., m-1\}$, this means that $ax \mod m = z$. Thus, f(x) = z, as desired.

Q.8 Convert the decimal expansion of each of these integers to a binary expansion.

(a) 231 (b) 4532 **Solution:** (a) 11100111

(b) 1000110110100

Q.9 Let the coefficients of the polynomial $f(n) = a_0 + a_1 n + a_2 n^2 + \cdots + a_{t-1} n^{t-1} + n^t$ be integers. We now show that **no** non-constant polynomial can generate only prime numbers for integers n. In particular, let $c = f(0) = a_0$ be the constant term of f.

- (1) Show that f(cm) is a multiple of c for all $m \in \mathbb{Z}$.
- (2) Show that if f is non-constant and c > 1, then as n ranges over the nonnegative integers \mathbb{N} , there are infinitely many $f(n) \in \mathbb{Z}$ that are not primes. [Hint: You may assume the fact that the magnitude of any non-constant polynomial f(n) grows unboundedly as n grows.]
- (3) Conclude that for every non-constant polynomial f there must be an $n \in \mathbb{N}$ such that f(n) is not prime. [Hint: Only one case remains.]

Solution:

- (1) Let f(n) = g(n) + c, where g(n) has no constant term. Then we have f(cm) = g(cm) + c. Since g(n) has no constant term, g(cm) must have a divisor cm. Thus, c must be a divisor of f(cm).
- (2) Since as n = cm grows, the magnitude of f(n) grows unboundedly, and f(n) is composite with a divisor c > 1. Thus, there are infinitely many f(n) that are not primes.
- (3) The only one remaining case is c = 1. Since the degree of f(n) is t, by replacing n by n+a for t+1 different values of a, we must have at least one of them such that the constant term of g(n+a) is nonzero. Suppose this value of a is n_0 . Let $h(n) = f(n+n_0)$, and let d = h(0). Then d > 1. By (1), we have h(dm) is always a multiple of d. Therefore, with $n = dm n_0$, f(n) is not prime.

Q.10 Show that if a and m are relatively prime positive integers, then the inverse of a modulo m is unique modulo m.

Solution:

Suppose that b and c are both the inversed of a modulo m. Then $ba \equiv 1 \pmod{m}$ and $ca \equiv 1 \pmod{m}$. Hence, $ba \equiv ca \pmod{m}$. Because $\gcd(a,m)=1$ it follows by Theorem 7 in Section 4.3 that $b\equiv c \pmod{m}$.

Q.11 Prove that there are infinitely many primes of the form 4k + 3, where k is a nonnegative integer. [Hint: Suppose that there are only finitely many such primes q_1, q_2, \ldots, q_n , and consider the number $4q_1q_2 \cdots q_n - 1$.]

Solution: Suppose that there are only finitely many primes of the form 4k + 3, namely q_1, q_2, \ldots, q_n , where $q_1 = 3$, $q_2 = 7$, and so on.

Let $Q = 4q_1q_2\cdots q_n - 1$. Note that Q is of the form 4k + 3 (where $k = q_1q_2\cdots q_n - 1$). If Q is prime, then we have found a prime of the desired form different from all those listed.

If Q is not prime, then Q has at least one prime factor not in the list q_1, q_2, \ldots, q_n , because the remainder when Q is divided by q_j is $q_j - 1$, and $q_j - 1 \neq 0$. Because all odd primes are either of the form 4k + 1 or of the form 4k + 3, and the product of primes of the form 4k + 1 is also of this form (because (4k + 1)(4m + 1) = 4(4km + k + m) + 1), there must be a factor of Q of the form 4k + 3 different from the primes we listed.

Q.12

- (1) Show that if n is an integer then $n^2 \equiv 0$ or 1 (mod 4).
- (2) Show that if m is a positive integer of the form 4k+3 for some nonnegative integer k, then m is not the sum of the squares of two integers.

Solution:

- (1) There are two cases. If n is even, then n=2k for some integer k, so $n^2=4k^2$, which means that $n^2\equiv 0\pmod 4$. If n is odd, then n=2k+1 for some integer k, so $n^2=4k^2+4k+1=4(k^2+k)+1$, which means that $n^2\equiv 1\pmod 4$.
- (2) By (1), the sum of two squares must be either 0 + 0 = 0, 0 + 1 = 1, or 1 + 1 = 2, modulo 4, never 3, and therefore not of the form 4k + 3.

Q.13

- (a) State Fermat's little theorem.
- (b) Show that Fermat's little theorem does not hold if p is not prime.
- (c) Compute $302^{302} \pmod{11}$, $4762^{5367} \pmod{13}$, $2^{39674} \pmod{523}$.

Solution:

- (a) If p is prime and a is an integer not divisible by p, then $a^{p-1} \equiv 1 \pmod{p}$.
- (b) Take p = 4 and a = 6. Note that 6 is not divisible by 4 and that

$$6^{4-1} \bmod 4 \equiv (3 \cdot 2)^3 \pmod 4$$
$$\equiv 2^3 \cdot 3^3 \pmod 4$$
$$\equiv 8 \cdot 3^3 \pmod 4$$
$$\equiv 0.$$

(c) By Fermat's little theorem, we have

$$302^{302} \pmod{11} \equiv (27 \cdot 11 + 5)^{302} \pmod{11}$$

$$\equiv 5^{302} \pmod{11}$$

$$\equiv 5^{30 \cdot 10 + 2} \pmod{11}$$

$$\equiv 5^2 \cdot (5^{10})^{30} \pmod{11}$$

$$\equiv 5^2 \pmod{11}$$

$$\equiv 3.$$

Note that 13 is a prime. Then by Fermat's little theorem, we have

$$4762^{5367} \pmod{13} \equiv (366 \cdot 13 + 4)^{5367} \pmod{13}$$

 $\equiv 4^{5367} \pmod{13}$
 $\equiv 4^{447 \cdot 12 + 3} \pmod{13}$
 $\equiv 4^3 \pmod{13}$
 $\equiv 64 \pmod{13}$
 $\equiv 12.$

Note that 523 is a prime. Then by Fermat's little theorem, we have

$$2^{39674} \pmod{523} \equiv 2^{76 \cdot 522 + 2} \pmod{523}$$

 $\equiv 2^2 \pmod{523}$
 $\equiv 4.$

Q.14 Let m_1, m_2, \ldots, m_n be pairwise relatively prime integers greater than or equal to 2. Show that if $a \equiv b \pmod{m_i}$ for $i = 1, 2, \ldots, n$, then $a \equiv b \pmod{m}$, where $m = m_1 m_2 \cdots m_n$.

Solution:

Suppose that p is a prime appearing in the prime factorization of $m_1m_2\cdots m_n$. Because the m_i 's are relatively prime, p is a factor of exactly one of the m_i 's, say m_j . Because m_j divides a-b, it follows that a-b has the factor p in its prime factorization to a power at least as large as the power to which it appears in the prime factorization of m_j . It follows that $m_1m_2\cdots m_n$ divides a-b, so $a \equiv b \pmod{m_1m_2\cdots m_n}$.

Q.15 Solve the system of congruence $x \equiv 3 \pmod{6}$ and $x \equiv 4 \pmod{7}$ using the methods of Chinese Remainder Theorem or back substitution.

Solution:

By definition, the first congruence can be written as x = 6t + 3 where t is an integer. Substituting this expression for x into the second congruence tells us that $6t + 3 \equiv 4 \pmod{7}$, which can be easily be solved to show that

 $t \equiv 6 \pmod{7}$. From this we can write t = 7u + 6 for some integer u. Thus, $x = 6t + 3 = 6 \cdot (7u + 6) + 3 = 42u + 39$. Thus, our answer is all numbers congruent to 39 modulo 42.

Q.16 For a collection of balls, the number is not known. If we count them by 2's, we have 1 left over; by 3's, we have nothing left; by 4, we have 1 left over; by 5, we have 4 left over; by 6, we have 3 left over; by 7, we have nothing left; by 8, we have 1 left over; by 9, nothing is left. How many balls are there? Give the details of your calculation.

Solution: This is equivalent to solve the following system of congruences:

$$x \equiv 1 \pmod{2}$$

$$x \equiv 0 \pmod{3}$$

$$x \equiv 1 \pmod{4}$$

$$x \equiv 4 \pmod{5}$$

$$x \equiv 3 \pmod{6}$$

$$x \equiv 0 \pmod{7}$$

$$x \equiv 1 \pmod{8}$$

$$x \equiv 0 \pmod{9}.$$

Since $x \equiv 3 \pmod 6$, we have x = 6k + 3 and further have $x \equiv 1 \pmod 2$ and $x \equiv 0 \pmod 3$. Thus, $x \equiv 3 \pmod 6$ is redundant in the system and can be ignored. Note that $x \equiv 1 \pmod 8$ implies both $x \equiv 1 \pmod 2$ and $x \equiv 1 \pmod 4$, and $x \equiv 0 \pmod 9$ implies $x \equiv 0 \pmod 3$. We thus have an equivalent but refreshed system of congruences as:

$$x \equiv 4 \pmod{5}$$

 $x \equiv 0 \pmod{7}$
 $x \equiv 1 \pmod{8}$
 $x \equiv 0 \pmod{9}$.

All the m_i 's are pairwise relatively prime, and we are able to use Chinese Remainder Theorem or back substitution to solve this system of congruences. Note that $m = 5 \cdot 7 \cdot 8 \cdot 9 = 2520$, $M_1 = 7 \cdot 8 \cdot 9 = 504$, $M_2 = 5 \cdot 8 \cdot 9 = 360$,

 $M_3 = 5 \cdot 7 \cdot 9 = 315$, and $M_4 = 5 \cdot 7 \cdot 8 = 280$. By extended Euclidean algorithm, we have $y_1 = 4$, $y_2 = 5$, $y_3 = 3$ and $y_4 = 1$. Then by Chinese Remainder Theorem, we have the solution is

$$x \equiv 4 * 504 * 4 + 0 + 1 * 315 * 3 + 0 \pmod{2520} \equiv 1449 \pmod{2520}$$
.

Q.17 Recall how the *linear congruential method* works in generating pseudorandom numbers: Initially, four parameters are chosen, i.e., the modulus m, the multiplier a, the increment c, and the seed x_0 . Then a sequence of numbers $x_1, x_2, \ldots, x_n, \ldots$ are generated by the following congruence

$$x_{n+1} = (ax_n + c) \pmod{m}.$$

Suppose that we know the generated numbers are in the range 0, 1, ..., 10, which means the modulus m = 11. By observing three consecutive numbers 7, 4, 6, can you predict the next number? Explain your answer.

Solution: By the linear congruential method, we know that

$$x_{n+2} = (ax_{n+1} + c) \pmod{m}$$

 $x_{n+1} = (ax_n + c) \pmod{m}$.

Then we have

$$x_{n+2} - x_{n+1} \equiv a(x_{n+1} - x_n) \pmod{m}$$
.

By the three consecutive numbers 7, 4, 6, we then have

(1)
$$6-4 \equiv a(4-7) \pmod{11}$$
,

(2)
$$x - 6 \equiv a(6 - 4) \pmod{11}$$
,

where x denotes the next number. Eq. (1) gives $8a \equiv 2 \pmod{11}$, and we further have $a \equiv 3 \pmod{11}$. Then by Eq. (2), we have $x \equiv 6+3\cdot 2 \equiv 1 \pmod{11}$. This means the next number is 1.

Q.18 Recall that Euler's totient function $\phi(n)$ counts the number of positive integers up to a given integer n that are coprime to n. Prove that for all integers $n \geq 3$, $\phi(n)$ is even.

Solution: If n is odd, for every integer a with gcd(a, n) = 1, we also have gcd(n - a, n) = gcd(a, n) = 1 and $n - a \neq a$ for n odd. Thus, $\phi(n)$ must be even for n odd.

For n even, we discuss two cases. If n = 4k + 2 for an integer k, then we have

$$\phi(n) = \phi(4k+2) = \phi(2)\phi(2k+1) = \phi(2k+1),$$

which is again odd, and thus is even. If n = 4k for an integer k, then we have

$$\phi(n) = \phi(4k) = \phi(4 \cdot 2^r k') = \phi(2^{r+2}k') = \phi(2^{r+2})\phi(k') = 2^{r+1}\phi(k'),$$

where k' is odd. Thus, $\phi(n)$ is also even for n = 4k.

Q.19 Recall the RSA public key cryptosystem: Bob posts a public key (n, e) and keeps a secret key d. When Alice wants to send a message 0 < M < n to Bob, she calculates $C = M^e \pmod{n}$ and sends C to Bob. Bob then decrypts this by calculating $C^d \pmod{n}$. In class we learnt that in order to make this scheme work, n, e, d must have special properties.

For each of the three public/secret key pairs listed below, answer whether it is a **valid** set of RSA public/secret key pairs (whether the pair satisfies the required properties), and explain your answer.

(a)
$$(n, e) = (91, 25), d = 51$$

(b)
$$(n, e) = (91, 25), d = 49$$

(c)
$$(n, e) = (84, 25), d = 37$$

Solution:

Recall that the conditions for a pair to be correct is

(i) n = pq where p and q are prime numbers

- (ii) $ed \equiv 1 \pmod{\phi(n)}$, where $\phi(n) = (p-1)(q-1)$.
- (a) (n, e) = (91, 25), d = 51

This is not a valid key pair. It is true that $n = 7 \cdot 13$, so p, q are prime. But $\phi(n) = 72$, and $25 \cdot 51 \not\equiv 1 \pmod{72}$.

- (b) (n, e) = (91, 25), d = 49This is a valid key pair since $n = 7 \cdot 13$, and $25 \cdot 49 \equiv 1 \pmod{72}$.
- (c) This is not a valid key pair since $n = 7 \cdot 12$ and 12 is not a prime.

Q.20 Consider the RSA system. Let (e, d) be a key pair for the RSA. Define

$$\lambda(n) = \operatorname{lcm}(p-1, q-1)$$

and compute $d' = e^{-1} \mod \lambda(n)$. Will decryption using d' instead of d still work? (prove $C^{d'} \mod n = M$)

Solution: Case I: gcd(M, n) = 1.

$$C^{d'} \bmod n = M^{ed'} \bmod n = M^{k\lambda(n)+1} \bmod n$$

$$= (M^{k\lambda(n)} \bmod n)M \bmod n$$

$$= (M^{(p-1)(q-1)/\gcd(p-1,q-1)} \bmod n)^k M \bmod n$$

By Fermat's theorem, $M^{(p-1)(q-1)/\gcd(p-1,q-1)} \mod p = \left(M^{(q-1)/\gcd(p-1,q-1)}\right)^{p-1} \mod p = 1$ and $M^{(p-1)(q-1)/\gcd(p-1,q-1)} \mod q = 1$. Then by Chinese Remainder Theorem, we have $C^{d'} \mod n = M$.

<u>Case II:</u> gcd(M, n) = p. M = tp for some integer 0 < t < q. We have gcd(M, q) = 1 and $ed' = k\lambda(n) + 1$ for some integer k. By Fermat's theorem, we have

$$(M^{k\lambda(n)} - 1) \bmod q = (M^{k(p-1)(q-1)/\gcd(p-1,q-1)} - 1) \bmod q = 0.$$

Then

$$(M^{ed'}-M) \mod n = M(M^{ed'-1}-1) \mod n$$

= $tp(M^{k\lambda(n)}-1) \mod pq$
= 0

<u>Case III:</u> gcd(M, n) = q. Similar to Case II.

Case IV: gcd(M, n) = pq. Trivial.