Analysis Comprehensive Examination

Examiners: Robert T.W. Martin, Richard M. Slevinsky, and Yong Zhang Department of Mathematics, University of Manitoba

> April 29, 2020 17h30 – 23h30 (CDT)

Instructions:

This examination consists of 3 parts, A,B and C:

- Part A covers the Core Material, it consists of 8 questions worth 10 marks each for a total of 80 marks. All questions must be answered for full marks.
- Part B covers the Advanced Material on Basic Functional Analysis. This section consists of 3 questions of which you must attempt 2. Each question is worth 15 marks for a total of 30 marks.
- Part C covers the Advanced Material on Abstract Measure and Integration Theory. This section consists of 3 questions of which you must attempt 2. Each question is worth 15 marks for a total of 30 marks.

Please take note of the following:

- 1. In Parts B and C, if you attempt more than 2 questions, you must clearly indicate which two questions you would like marked. Otherwise only the first 2 answers in the order they appear in your solutions will be graded.
- 2. The examination is worth a total of 140 marks. A total grade of 75% or 105 marks is minimally required to pass the exam.
- 3. The examination length is 6 hours. No texts, reference books, calculators, cell phones, or other aids are permitted in the examination.

A. Core material

- 1. Let f(x) be a real-valued function defined on a set D of real numbers.
 - (a) State what it means by saying that f is uniformly continuous on D. [2]
 - (b) Is the function $f(x) = \frac{1}{x}$ uniformly continuous on (0,1]? Justify your answer. [8]
- 2. Let $f: [a, b] \to \mathbb{R}$ be Lebesgue integrable. Define $F(x) = \int_{[a, x]} f$.
 - (a) Show that the function F(x) is of bounded variation on [a, b]. [5]
 - (b) Suppose that $f(x) \ge 0$ a.e. on [a, b]. Find the total variation of F on [a, b]. Justify your answer. [5]
- 3. Let C be the curve formed by the intersection of the cone $z = \sqrt{x^2 + y^2}$ and the cylinder $x^2 + (y-1)^2 = 1$ oriented in the counterclockwise direction looking down from the positive z-axis high above the xy-plane. If

$$\mathbf{F} = e^{x^2} \mathbf{i} + [x + \sin(y^2)] \mathbf{j} + z\mathbf{k},$$

evaluate

$$\int_C \mathbf{F} \cdot d\mathbf{r}.$$

[10]

[10]

4. Prove or disprove the following statement.

Let $\{z_0, \ldots, z_m\}$ be distinct points in the complex plane. There exists a unique analytic function $r: \mathbb{C} \setminus \{z_1, \ldots, z_m\} \to \mathbb{C}$ that satisfies:

- (a) $\lim_{z \to \zeta} |(z \zeta)r(z)| < \infty$ for all $\zeta \in \mathbb{C}$;
- (b) r is bounded at ∞ ;
- (c) $r(z_0) = c_0 \in \mathbb{C}$; and,
- (d) $\underset{z=z_k}{\text{Res }} r(z) = A_k \text{ for } k = 1, \dots, m.$
- 5. Evaluate the integral $\int_{\mathbb{R}} \frac{\cos x}{x^2 + 1} dx$. [10]
- 6. Determine the number of solution(s) in $D = \{z \in \mathbb{C} : |z| < 1\}$ to the equation

$$\exp\left(\frac{z^4 + z^{-1}}{2}\right) = 2021.$$

Justify your answer. [10]

- 7. Consider the function f(x) = |x| on $[-\pi, \pi]$.
 - (a) Find the Fourier series of f(x) on $[-\pi, \pi]$. [6]
 - (b) At what points in $[-\pi, \pi]$ does the Fourier series of f(x) converge to f(x)? Justify your answer.
 - (c) Show that

$$\frac{\pi^2}{16} = -\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} \cos\left(\frac{(2n-1)3\pi}{4}\right).$$
 [2]

Hint: Evaluate the Fourier series of f(x) at a certain point.

- 8. Let $(x_n)_{n=1}^{\infty}$ be a bounded, non-decreasing real sequence, $x_n \in \mathbb{R}$.
 - (a) Prove that x_n converges. [4]
 - (b) Define a sequence (x_n) by $x_1 = \frac{1}{2}$ and $x_{n+1} := -(x_n 1)^2 + 1$ for $n \in \mathbb{N}$.
 - i. Show that $\frac{1}{2} \leq x_n \leq 1$ for all $n \in \mathbb{N}$ and that (x_n) is a non-decreasing sequence.
 - ii. What is $\sup x_n$? [2]

B. Functional Analysis

- 1. (a) State the Closed Graph Theorem for linear operators.
 - (b) Let \mathcal{H} be a Hilbert space of complex-valued functions on a set X. Suppose that the point evaluation functional $\ell_x \colon \mathcal{H} \to \mathcal{H}$ defined by $\ell_x(h) = h(x)$ is bounded for each $x \in X$. Let $\mathrm{Mult}(\mathcal{H})$ be the set of all complex-valued functions on X which 'multiply' \mathcal{H} into itself. That is, if $F \in \mathrm{Mult}(\mathcal{H})$ and $h \in \mathcal{H}$, then the pointwise product $F \cdot h$ belongs to \mathcal{H} . Prove that the multiplication operator $M_F \colon h \mapsto F \cdot h$ is a bounded linear operator on \mathcal{H} for each $F \in \mathrm{Mult}(\mathcal{H})$. [13]

[2]

2. Let AC[0,1] be the set of all absolutely continuous complex-valued functions on [0,1]. Consider the linear subspace

$$\mathrm{Dom}(D) := \left\{ h \in AC[0,1] \; \middle| \; h' \in L^2[0,1] \text{ and } h(0) = 0 \right\}$$

of $L^2[0,1]$, and define the linear map $D: \mathrm{Dom}(D) \to L^2[0,1]$ by Dh = h' for $h \in \mathrm{Dom}(D)$, where h' denotes the derivative of h.

- (a) Prove that D is a closed operator, *i.e.* prove that its graph, G(D), is a closed subspace of $L^2[0,1] \times L^2[0,1]$. [13]
- (b) Does the closed graph theorem imply that D is bounded? Why or why not? [2]
- 3. Let \mathcal{H} be a complex Hilbert space with inner product denoted by $\langle \cdot, \cdot \rangle$. A sequence $(x_n)_{n=1}^{\infty} \subset \mathcal{H}$ is said to *converge weakly* to $x \in \mathcal{H}$ if for each $y \in \mathcal{H}$,

$$\langle x_n - x, y \rangle \to 0.$$

Similarly, (x_n) is weakly Cauchy if for each $y \in \mathcal{H}$ and each $\epsilon > 0$ there is an $N \in \mathbb{N}$ so that n, m > N implies that

$$|\langle x_n - x_m, y \rangle| < \epsilon.$$

Prove that \mathcal{H} is weakly complete, i.e. that every weakly Cauchy sequence in \mathcal{H} converges weakly to an element of \mathcal{H} . Show further that every weakly Cauchy sequence is uniformly bounded in the Hilbert space norm. [15]

C. Measure and Integration Theory

- 1. (a) State the Monotone Convergence Theorem for integrals. [2]
 - (b) Use the Monotone Convergence Theorem to show the following Fatou's Lemma: Let (X, \mathcal{A}, μ) be a measure space, and let $f_n: X \to [0, \infty], n = 1, 2, \ldots$, be a sequence of measurable functions. Define $f(x) = \liminf_{n \to \infty} f_n(x)$ $(x \in X)$. Then

$$\int f d\mu \le \liminf_{n \to \infty} \int f_n d\mu.$$
 [13]

2. Let μ and ν be measures on the measurable space (X, \mathcal{A}) . Suppose that $\mu \geq \nu$, i.e. $\mu(E) \geq \nu(E)$ for all $E \in \mathcal{A}$. Consider the set function λ defined by

$$\lambda(E) = \sup \{ \mu(A) - \nu(A) : A \in \mathcal{A}, A \subset E \text{ and } \nu(A) < \infty \}.$$

Show that λ is a measure on (X, \mathcal{A}) . [15]

3. Let μ and ν be two finite signed measures on (X, \mathcal{A}) . Define $\mu \wedge \nu = \frac{1}{2}(\mu + \nu - |\mu - \nu|)$. Show that $\mu \wedge \nu \leq \mu$, $\mu \wedge \nu \leq \nu$, and $\mu \wedge \nu \geq \eta$ for any signed measure η such that $\eta \leq \mu$ and $\eta \leq \nu$.