Principles of Database Systems (CS307)

Lecture 8: Normalization - A Deeper Look (Part 1)

Yuxin Ma

Department of Computer Science and Engineering Southern University of Science and Technology

- Most contents are from slides made by Stéphane Faroult and the authors of Database System Concepts (7th Edition).
- Their original slides have been modified to adapt to the schedule of CS307 at SUSTech.

(Recall) Prerequisites

Relation Schema and Instance

- $A_1, A_2, ..., A_n$ are attributes
- $R = (A_1, A_2, ..., A_n)$ is a relation schema
 - Example on the right side:instructor = (ID, name, dept_name, salary)
- r(R) denotes a <u>relation instance</u> r defined over schema R
 - Or to say, the entire table on the right side
- An element t of relation r is called a tuple
 - ... and is represented by a <u>row</u> in a table

t			THETE		
	A_1	A_2	A_3	A_4	
	ID	name	dept_name	salary	
	10101	Srinivasan	Comp. Sci.	65000	
	12121	Wu	Finance	90000	
	15151	Mozart	Music	40000	
	22222	Einstein	Physics	95000	
	32343	El Said	History	60000	
	33456	Gold	Physics	87000	(D)
	45565	Katz	Comp. Sci.	75000	r (R)
	58583	Califieri	History	62000	.1_
	76543	Singh	Finance	80000	A tuple
	76766	Crick	Biology	72000	1-
	83821	Brandt	Comp. Sci.	92000	
	98345	Kim	Elec. Eng.	80000	J

The relation schema ("R")

Relation Schema and Instance

- An analogy to programming languages:
 - Relation Variables
 - Relation schema Variable types
 - Relation instance Value(s) stored in the variable

Database Schema

- Database schema is the logical structure of the database
 - It contains <u>a set of relation schemas</u>
 - ... and <u>a set of integrity constraints</u>
- Database instance is a snapshot of the data in the database <u>at a given</u> <u>instant in time</u>

Keys

- Let $K \subseteq R$
 - K is a **superkey** of R if values for K are <u>sufficient to identify</u> a unique tuple of each possible relation r(R)
 - E.g., {ID} and {ID, name} are both superkeys of instructor
 - If K is a superkey, any <u>superset</u> K' of K where K' ⊆ R is a superkey as well
 - Superkey K is a candidate key if K is minimal, i.e., no proper subset of K is a superkey
 - E.g., {ID} is a candidate key for *instructor*

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

instructor

- One of the candidate keys is <u>selected</u> to be the <u>primary key</u>
 - We mark the primary key with an underline:
 instructor = (<u>ID</u>, name, dept_name, salary)

Decomposition & Functional Dependency

Features of Good Relational Designs

- Suppose we combine *instructor* and *department* into *in_dep*, which represents the <u>natural join</u> on the relations *instructor* and *department*
 - There is <u>repetition</u> of information
 - Need to use <u>nulls</u> (if we add a new department with no instructors)

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

dept_name	building	budget
Physics	Watson	70000
Finance	Painter	120000
History	Painter	50000
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000
Biology	Watson	90000
Comp. Sci.	Taylor	100000
History	Painter	50000
Comp. Sci.	Taylor	100000
Music	Packard	80000
Physics	Watson	70000
Finance	Painter	120000

	ID	name	salary	dept_name	building	budget
	22222	Einstein	95000	Physics	Watson	70000
	12121	Wu	90000	Finance	Painter	120000
	32343	El Said	60000	History	Painter	50000
	45565	Katz	75000	Comp. Sci.	Taylor	100000
>	98345	Kim	80000	Elec. Eng.	Taylor	85000
	76766	Crick	72000	Biology	Watson	90000
	10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
	58583	Califieri	62000	History	Painter	50000
	83821	Brandt	92000	Comp. Sci.	Taylor	100000
	15151	Mozart	40000	Music	Packard	80000
	33456	Gold	87000	Physics	Watson	70000
ā	76543	Singh	80000	Finance	Painter	120000

Decomposition

- Avoid the repetition-of-information problem
 - Decompose in_dep into two schemas: instructor and department
- However, not all decompositions are good
 - E.g., decompose employee(ID, name, street, city, salary) into:
 - employee1(ID, name)
 - employee2(name, street, city, salary)

The problem arises when we have two employees with the same name

A Lossy Decomposition

- (Continue) we cannot reconstruct the original employee relation with the join operation
 - We call it a lossy decomposition

Two "ghost" records that do NOT exist in the original table

	ID	name	street	city	salary	
	: 57766	Kim	Main	Perryridge	75000	
	57766	Kim	North	Hampton	67000	
	98776	Kim	Main	Perryridge	75000	
1	98776	Kim	North	Hampton	67000	Г
	÷					

- Let R be a relation schema and let R_1 and R_2 form a decomposition of R
 - That is, $R = R_1 \cup R_2$
 - The <u>decomposition</u> is a **lossless decomposition** if there is <u>no loss of information</u> by replacing R with the two relation schemas $R = R_1 \cup R_2$
- Formally, $\prod_{R_1} (\mathbf{r}) \bowtie \prod_{R_2} (\mathbf{r}) = r$
 - ... and a decomposition is lossy if $\mathbf{r} \subset \prod_{R_1} (\mathbf{r}) \bowtie \prod_{R_2} (\mathbf{r})$ (!) proper subset
- Or to say, the two SQL queries on the right side generate identical results:

```
select * -- 1
from (select R1 from r)
    natural join
    (select R2 from r);
select * from R; -- 2
```

Normalization Theory

- Decide whether a particular relation R is in "good" form
- In the case that a relation R is <u>not in</u> "good" form, <u>decompose it</u> into a set of relations $\{R_1, R_2, ..., R_n\}$ such that
 - Each relation is in good form
 - The <u>decomposition</u> is a lossless decomposition
- Our theory is based on:
 - Functional dependencies
 - * Multivalued dependencies (self study)

Functional Dependencies

- There are usually a variety of constraints (rules) on the data in the real world
- For example, some of the constraints that are expected to hold in a university database are:
 - Students and instructors are uniquely identified by their <u>ID</u>
 - Each student and instructor has only <u>one name</u>
 - Each instructor and student is (primarily) associated with only one department
 - Each department has only one value for its <u>budget</u>, and only <u>one associated building</u>

Functional Dependencies

- An instance of a relation that satisfies all such <u>real-world constraints</u> is called a <u>legal instance</u> of the <u>relation</u>
 - A legal instance of a database is one where all the relation instances are legal instances
- Constraints on the set of legal relations
 - Require that the value for a certain set of attributes determines uniquely the value for another set of attributes
- A functional dependency is a generalization of the notion of a key

Definition of Functional Dependencies

• Let R be a relation schema, and $\alpha \subseteq R$ and $\beta \subseteq R$, the functional dependency

$$\alpha \rightarrow \beta$$

holds on R if and only if for any legal relations r(R), whenever any two tuples t_1 and t_2 of r agree on the attributes α , they also agree on the attributes β .

That is,

$$t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$$

- Example: Consider r(A, B) with the following instance of r,
 - On this instance, $A \rightarrow B$ does **NOT** hold, but $B \rightarrow A$ does hold

Α	В
1	4
1	5
3	7

Closure of a Set of Functional Dependencies

- Given a set F set of functional dependencies, there are certain other functional dependencies that are <u>logically implied</u> by F:
 - If $A \rightarrow B$ and $B \rightarrow C$, then we can infer that $A \rightarrow C$
- The set of all functional dependencies logically implied by F is the closure of F
 - We denote the closure of F by F⁺
 - F⁺ is a superset of F

Keys and Functional Dependencies

• Let's see how can we <u>(re)define</u> the concept of "keys" under the language of functional dependencies

Keys and Functional Dependencies

- K is a superkey for relation schema R if and only if $K \rightarrow R$
- K is a candidate key for R if and only if
 - $K \rightarrow R$, and
 - for **no** $\alpha \subset K$, $\alpha \to R$ (!) proper subset, again

Keys and Functional Dependencies

• Functional dependencies allow us to <u>express constraints</u> that cannot be expressed using superkeys

- E.g. Consider the schema: inst_dept(ID, name, salary, dept_name, building, budget)
 - We expect these functional dependencies to hold:

 $dept_name \rightarrow building, ID \rightarrow building$

... but would not expect the following to hold:

 $dept_name \rightarrow salary$

- We use functional dependencies to
 - To test relations to see <u>if they are legal</u> under <u>a given set of functional</u> dependencies
 - If a relation *r* is legal under <u>a set *F* of functional dependencies</u>, we say that <u>r satisfies *F*</u>
 - To specify constraints on the set of legal relations
 - We say that F holds on R if all legal relations on R satisfy the set of functional dependencies F

• Example: List some functional dependencies that the table satisfies

Α	В	С	D
a1	b1	c1	d1
a1	b2	c1	d2
a2	b2	c2	d2
a2	b3	c2	d3
a3	b3	c2	d4

- Example: List some functional dependencies that the table satisfies
 - $A \rightarrow C$
 - $D \rightarrow B$

Can you find more?

Α	В	С	D
a1	b1	c1	d1
a1	b2	c1	d2
a2	b2	c2	d2
a2	b3	c2	d3
a3	b3	c2	d4

 Note: A specific instance of a relation schema may satisfy a functional dependency even if the functional dependency does not hold on all legal instances.

• Example: we see that $room_number \rightarrow capacity$ is satisfied.

 However, in real world, two classrooms in different buildings can have the same room number but with different room capacity

• We prefer $\{building, room_number\} \rightarrow capacity$

building	room_number	capacity
Packard	101	500
Painter	514	10
Taylor	3128	70
Watson	100	30
Watson	120	50

Trivial Functional Dependencies

- A functional dependency is trivial if it is satisfied by all relations
- Example:
 - ID, name $\rightarrow ID$
 - $name \rightarrow name$
- In general,
 - $\alpha \rightarrow \beta$ is trivial if $\beta \subseteq \alpha$

- We can use <u>functional dependencies</u> to show when <u>certain decomposition</u> <u>are lossless</u>
 - For the case of $R = (R_1, R_2)$, we require that for all possible relations r on schema R $r = \prod_{R_1} (r) \bowtie \prod_{R_2} (r)$
 - A decomposition of R into R_1 and R_2 is a lossless decomposition if at least one of the following dependencies is in F^+ :
 - $R_1 \cap R_2 \rightarrow R_1$
 - $R_1 \cap R_2 \rightarrow R_2$

In other words, if $R_1 \cap R_2$ forms a superkey for either R_1 or R_2 , the decomposition of R is a lossless decomposition

- Example:
 - in_dep (<u>ID</u>, name, salary, <u>dept_name</u>, building, budget)
 - ... and the decomposed schemas, instructor and department:
 - instructor(<u>ID</u>, name, dept_name, salary)
 - department(<u>dept_name</u>, building, budget)

instructor \cap department = dept_name dept_name \rightarrow dept_name, building, budget

(... which means the decomposition is lossless)

- Note: the above functional dependencies are a <u>sufficient condition</u> for lossless join decomposition
 - The dependencies are a <u>necessary condition</u> only if <u>all constraints are functional</u> <u>dependencies</u>

(There are other types of constraints, e.g., multivalued dependencies, that can ensure that a decomposition is lossless even if no functional dependencies are present)

- Testing functional dependency constraints each time the database is updated can be costly
 - It is useful to design the database in a way that constraints can be tested efficiently.
- If <u>a functional dependency</u> in the original relation *R* <u>does not exist</u> in <u>any of</u> <u>the decomposed relations</u>, we say it is not dependency-preserving
 - In the dependency preservation, at least one decomposed table must satisfy every dependency

- Consider a new E-R design for relationships between students, instructors, and departments
 - An instructor can only be associated with one department
 - A student can have multiple advisors but not more than one from a given department
 - Think about double-major students

- Consider a schema
 - dept_advisor(<u>s ID</u>, <u>i ID</u>, <u>dept name</u>)
 - ... with function dependencies: (1) i_ID \rightarrow dept_name (2) s_ID, dept_name \rightarrow i_ID

In the above design, we are forced to <u>repeat the department name</u> once for each time an instructor participates in a *dept_advisor* relationship.

- Consider a schema
 - dept_advisor(<u>s ID</u>, <u>i ID</u>, <u>dept name</u>)
 - ... with function dependencies: (1) i_ID \rightarrow dept_name (2) s_ID, dept_name \rightarrow i_ID

In the above design, we are forced to <u>repeat the department name</u> once for each time an instructor participates in a *dept_advisor* relationship.

- To fix this problem, we need to decompose dept_advisor
 - However, any decomposition will not include all the attributes in s ID, dept name \rightarrow i ID
 - Thus, the decomposition will NOT be dependency-preserving

- Problem when not meeting dependency preservation
 - Every time the database wants to check the integrity of the functional dependency s_ID , $dept_name \rightarrow i_ID$, the decomposed tables <u>must be joined</u>
 - ... where the computational cost could be very high with join operations

BCNF and 3NF

Normal Forms: Revisited

- Boyce-Codd Normal Form (BCNF)
- 3NF
- Higher-order normal forms

Boyce-Codd Normal Form

 A relation schema R is in BCNF with respect to a set F of functional dependencies if for all functional dependencies in F⁺ of the form

$$\alpha \rightarrow \beta$$

where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for R

 * A database design is in BCNF if each member of the set of relation schemas that constitutes the design is in BCNF

Boyce-Codd Normal Form

- Example schema that is not in BCNF:
 - in_dep (<u>ID</u>, name, salary, <u>dept_name</u>, building, budget) Because,

dept_name→ building, budget

- holds in in_dep, however, <u>dept_name</u> is not a <u>superkey</u>
 - ... where {ID, dept_name} is
- When decompose in_dept into instructor and department
 - instructor is in BCNF
 - department is in BCNF

Decomposing a Schema into BCNF

- Let R be a schema R that is not in BCNF
- Let $\alpha \to \beta$ be the functional dependency that causes a violation of BCNF
 - We decompose *R* into:
 - (α U β)
 - $(R (\beta \alpha))$
- Example: in_dep (<u>ID</u>, name, salary, <u>dept_name</u>, building, budget)
 - α = dept_name, β = building, budget
 - Thus, in_dep is replaced by:
 - $(\alpha \cup \beta) = (dept_name, building, budget)$
 - $(R (\beta \alpha)) = (ID, name, dept_name, salary)$

BCNF and Dependency Preservation

- It is not always possible to achieve both <u>BCNF</u> and <u>dependency preservation</u>
- Consider the schema (that we have visited before)
 - dept_advisor(<u>s ID</u>, <u>i ID</u>, <u>dept name</u>)
 - ... with function dependencies: (1) i_ID \rightarrow dept_name (2) s_ID, dept_name \rightarrow i_ID
 - $dept_advisor$ is not in BCNF since for $i_ID \rightarrow dept_name$, i_ID is not a superkey
 - (where {s_ID, i_ID, dept_name} is)
- To fix this problem, we need to decompose dept_advisor
 - However, any decomposition will not include all the attributes in s_ID , $dept_name \rightarrow i_ID$
 - Thus, the decomposition will NOT be dependency-preserving

Third Normal Form (3NF)

• A relation schema R is in third normal form (3NF) if for all

$$\alpha \rightarrow \beta$$
 in F^+

at least one of the following holds:

- $\alpha \rightarrow \beta$ is trivial (i.e., $\beta \subseteq \alpha$)
- α is a superkey for R
- Each attribute A in β α is contained in a candidate key for R

Notes

- Each attribute A may be in a different candidate key
- If a relation is in BCNF, it is in 3NF (... since in BCNF, one of the first two conditions above must hold)
- The third condition above is a <u>minimal relaxation of BCNF</u> to ensure dependency preservation

3NF Example

- Consider the schema (that we have visited before)
 - dept_advisor(s_ID, i_ID, department_name)
 - ... with function dependencies: (1) i_ID \rightarrow dept_name (2) s_ID, dept_name \rightarrow i_ID
 - We have two candidate keys: {s_ID, dept_name} and {s_ID, i_ID}
- dept_advisor is not in BCNF, but it can be in 3NF
 - {s_ID, dept_name} is a superkey
 - $i_ID \rightarrow dept_name$ and i_ID is NOT a superkey (which violates BCNF), but:
 - α is i_ID, β is dept_name
 - {dept_name} {i_ID} = {dept_name}
 - dept_name is contained in a candidate key (-> {s_ID, dept_name})

Redundancy in 3NF

- Consider the schema R below, which is in 3NF
 - $R = (J, K, L), F = \{JK \rightarrow L, L \rightarrow K\}$, and an instance table:
- Problems in this table:
 - Repetition of information
 - Row 1-3: L and K
 - Need to use nulls
 - Row 4: Represent the relationship l_2 , k_2 with no corresponding value for J

J	L	K
j ₁	I ₁	k ₁
\mathbf{j}_2	I ₁	k_1
j ₃	I ₁	k ₁
null	l ₂	k_2

Comparison of BCNF and 3NF

- Advantages to 3NF over BCNF
 - It is always possible to obtain a 3NF design without sacrificing losslessness or dependency preservation
- Disadvantages to 3NF
 - We may have to use nulls to represent some of the possible meaningful relationships among data items
 - There is a problem of potential <u>repetition of information</u>

Goals of Normalization

- Let R be a relation scheme with a set F of functional dependencies
 - Decide whether a relation scheme R is in "good" form.
 - In the case that a relation scheme R is not in "good" form, need to decompose it into a set of relation scheme $\{R_1, R_2, ..., R_n\}$ such that:
 - Each relation scheme is in good form
 - The decomposition is a lossless decomposition
 - <u>Preferably</u>, the decomposition should be dependency preserving