Data Mining Project 1 Report

資工碩一 P76074240 蔡文傑

一、摘要

本篇報告分別實作 Apriori 和 FP-growth 兩種分析關聯法則的演算法,將這兩種方法分別應用於 IBM Quest Synthetic Data Generator[1]產生出的交易資料與 Kaggle 網站提供的商店交易資料[2],目的是從大量交易資料(Transaction)找出 Frequent Item Set 與 Rule。接著本篇報告會分析兩著演算法效能差異,找出演算法中最小支持度門檻(Minima Support Threshold)參數對結果與執行時間的影響。此外,本篇報告更進一步地透過調整 IBM Quest Synthetic Data Generator 中產生交易資料(Transaction)的參數,如:Transaction 個數、平均每個 Transaction 之中的 Item 個數與總共的 Item 個數來觀察演算法表現結果。最後本篇報告會將結果與現成的 Python FP-growth 套件[3]進行比較與分析。

- [1] IBM Quest Synthetic Data Generator, https://sourceforge.net/projects/ibmquestdatagen/
- [2] Retailrocket recommender system dataset, https://www.kaggle.com/retailrocket/ecommerce-dataset#events.csv
- [3] Pyfpgrowth, https://pypi.org/project/pyfpgrowth/

二、資料集說明

1. IBM Quest Synthetic Data Generator[1]

此為 IBM 設計的資料產生器,執行結果如下:

 $C:\ >$ "IBM Quest Data Generator.exe" lit -help

Command Line Options:

- -ntrans number_of_transactions_in_000s (default: 1000)
- -tlen avg_items_per_transaction (default: 10)
- -nitems number_of_different_items_in_000s) (default: 100)
- -npats number_of_patterns (default: 10000)

```
-patlen avg_length_of_maximal_pattern (default: 4)

-corr correlation_between_patterns (default: 0.25)

-conf avg_confidence_in_a_rule (default: 0.75)

-fname <filename> (write to filename.data and filename.pat)

-ascii (default: True)

-randseed # (reset seed used generate to x-acts; must be negative)

-version (to print out version info)

C:\\ >
```

在本篇報告中會試著調整其-ntrans、-tlen 與-nitems 以產生不同特性的資料集做 後續分析。

2. Retailrocket recommender system dataset[2]

此為 Retail Rocket (retailrocket.io)網站上顧客行為紀錄的資料集,在本篇報告中只使用了其中的(events.csv)檔案。

此檔案紀錄了 2015-05-03 至 2015-09-18 期間 1407580 位顧客(viewid)瀏覽 (view)與購買(addcard)某個物品的行為,本篇報告中透過顧客(viewid)與日期對此資料集及做分群,整理出每一天顧客瀏覽與購買的 Transaction 紀錄,共 235061 筆 Transaction 資料。

我們的轉換過程可見 parse_kaggle_dataset.html

三、實驗設計

- 1. 實作 Apriori 演算法。
- 2. 實作 FP-growth 演算法。
- 3. 將 Apriori 演算法、FP-growth 演算法與並且與 Pyfpgrowth 套件應用於 IBM Quest Synthetic Data Generator 產生的資料集。
- 4. 將 Apriori 演算法、FP-growth 演算法與並且與 Pyfpgrowth 套件應用於 Retailrocket recommender system dataset。

四、實驗結果

1. 程式碼請見 apriori.py

item: (8, 9, 5), 9.000

item: (8, 9, 6), 9.000

item: (5, 6, 8, 9), 9.000

item: (5, 6, 7, 9), 9.000

item: (5,), 10.000

item: (6,), 10.000

item: (9,), 10.000

item: (5, 6), 10.000

item: (9, 6), 10.000

item: (9, 5), 10.000

item: (9, 5, 6), 10.000

----- Rules:

Rule: (5,) ==> (7,), 0.900

Rule: (6,) ==> (7,), 0.900

Rule: (9,) ==> (8,), 0.900

Rule: (5,) ==> (8,), 0.900

Rule: (6,) ==> (8,), 0.900

Rule: (9,) ==> (7,), 0.900

Rule: (5,) ==> (8, 6), 0.900

Rule: (6,) ==> (8, 5), 0.900

Rule: (5, 6) ==> (8,), 0.900

Rule: (9,) ==> (5, 7), 0.900

Rule: (5,) ==> (9, 7), 0.900

Rule: (9, 5) ==> (7,), 0.900

Rule: (9,) ==> (6, 7), 0.900

- 1 (0) (0 -) 0.000

Rule: (6,) ==> (9, 7), 0.900

Rule: (9, 6) ==> (7,), 0.900

Rule: (5,) ==> (6, 7), 0.900

Rule: (6,) ==> (5, 7), 0.900

Rule: (5, 6) ==> (7,), 0.900

Rule: (9,) ==> (8, 5), 0.900

Rule: (5,) ==> (8, 9), 0.900

Rule: (9, 5) ==> (8,), 0.900

Rule: (9,) ==> (8, 6), 0.900

Rule: (6,) ==> (8, 9), 0.900

Rule: (9, 6) ==> (8,), 0.900

Rule: (5,) ==> (8, 9, 6), 0.900

```
Rule: (6,) ==> (8, 9, 5), 0.900
```

Rule:
$$(5, 6) ==> (8, 9), 0.900$$

Rule:
$$(9, 5, 6) ==> (8,), 0.900$$

Rule: (8,) ==> (6,), 1.000

Rule:
$$(7,) ==> (9,), 1.000$$

Rule:
$$(9, 5) ==> (6,), 1.000$$

Rule:
$$(9, 6) ==> (5,), 1.000$$

Rule:
$$(8, 5) ==> (6,), 1.000$$

```
Rule: (9, 7) ==> (6,), 1.000
Rule: (6, 7) ==> (9,), 1.000
Rule: (7,) ==> (5, 6), 1.000
Rule: (5, 7) ==> (6,), 1.000
Rule: (6, 7) ==> (5,), 1.000
Rule: (8,) ==> (9, 5), 1.000
Rule: (8, 9) ==> (5,), 1.000
Rule: (8, 5) ==> (9,), 1.000
Rule: (8,) ==> (9, 6), 1.000
Rule: (8, 9) ==> (6,), 1.000
Rule: (8, 6) ==> (9,), 1.000
Rule: (8,) ==> (9, 5, 6), 1.000
Rule: (8, 5) ==> (9, 6), 1.000
Rule: (8, 6) ==> (9, 5), 1.000
Rule: (8, 9) ==> (5, 6), 1.000
Rule: (8, 5, 6) ==> (9,), 1.000
Rule: (8, 9, 5) ==> (6,), 1.000
Rule: (8, 9, 6) ==> (5,), 1.000
Rule: (7,) ==> (9, 5, 6), 1.000
Rule: (5, 7) ==> (9, 6), 1.000
Rule: (6, 7) ==> (9, 5), 1.000
Rule: (9, 7) ==> (5, 6), 1.000
Rule: (5, 6, 7) ==> (9,), 1.000
Rule: (9, 5, 7) ==> (6,), 1.000
Rule: (9, 6, 7) ==> (5,), 1.000
(base) C:\Dropbox\NCKU\2 資料探勘\hw1\hw1_release>
```

2. 程式碼請見 fpgrowph.py

------ Frequent Item Set: item: (7,), 9.000 item: (7, 9), 9.000 item: (6, 7), 9.000 item: (5, 7), 9.000 item: (6, 7, 9), 9.000 item: (5, 7, 9), 9.000 item: (5, 6, 7), 9.000 item: (5, 6, 7, 9), 9.000 item: (8,), 9.000 item: (8, 9), 9.000 item: (6, 8), 9.000 item: (5, 8), 9.000 item: (6, 8, 9), 9.000 item: (5, 8, 9), 9.000 item: (5, 6, 8), 9.000 item: (5, 6, 8, 9), 9.000 item: (5,), 10.000 item: (6,), 10.000 item: (5, 6), 10.000 item: (9,), 10.000

(base) C:\Dropbox\NCKU\2 資料探勘\hw1\hw1_release>

item: (6, 9), 10.000 item: (5, 9), 10.000 item: (5, 6, 9), 10.000

- 3. 將 Apriori 演算法、FP-growth 演算法與 Pyfpgrowth 套件應用於 IBM Quest Synthetic Data Generator 產生的資料集。
- 3.1 固定 trasation 數目(trasations = 10000),觀察 minima support 大小與實行時間關係,執行時間比較(單位:秒):

	Apriori	FP-growth	Pyfpgrowth
Mim.sup=900	0.8226443487219	0.0521948430687	0.0365846180357
	512	1891	039
Mim.sup=300	1.7990779876708	0.1366775101050	0.1289132465608
	984	7345	418
Mim.sup=100	58.273828399833	2.8506733020767	1.0344123682007
	29	57	194

3.2 固定 minima support 大小(minima support=300),觀察 trasation 數目與實行時間關係,執行時間比較(單位:秒):

	Apriori	FP-growth	Pyfpgrowth
Transaction=10000	1.8170774690806	0.1229699412360	0.1549981869757
	866	7874	1754
Transaction=5000	0.6400609510019	0.0194544303230	0.0194741920568
	422	9413	04895
Transaction=1000	0.1573318778537	0.0036582970060	0.0036506578326
	2138	408115	22528

詳細程式執行過程請見 experiment_3.html。

4. 將 Apriori 演算法、FP-growth 演算法與 Pyfpgrowth 套件應用於 Retailrocket recommender system dataset。

執行時間比較(單位:秒):

	Apriori	FP-growth	Pyfpgrowth
	5.1547880987636	0.0187188540585	0.0176751841790
Mim.sup=900	745	33907	97414
	5.4803146109916	0.0170785491354	0.0252280761487
Mim.sup=300	27	7635	782
	5.4434740901924	0.0218872400000	0.0246482538059
Mim.sup=100	67	6914	35383

五、討論與結論

- 1. 在本篇報告中,我們實作分別實作出 Apriori 演算法與 FP-growth 演算法, 從程式執行時間比較可以看出,無論是調整 minima support 還是 Transaction 個數, FP-growth 演算法總是會有比較好的效率,可以在比較 短的時間內執行完成。
- 2. 當使用本篇報告實作的 FP-growth 演算法與 Pyfpgrowth 套件進行比較可以發現執行時間相當接近,尤其是在測量改變 Transaction 個數運行時間的時候。但是在測量改變 minima support 時會發現比 Pyfpgrowth 套件稍微慢一點。
- 3. 不論從 IBM Quest Synthetic Data Generator 產生的資料集還是 Retailrocket recommender system dataset 資料集中,都可以觀察到當 minima support 設定的越高時,程式執行時間也就會越快。
- 4. 執行時間會隨著 Transaction 數量增加而需要更多的運算時間。