LGN5830 - Biometria de Marcadores Genéticos Tópico 1: Noções Básicas de Cálculo

Antonio Augusto Franco Garcia

http://about.me/augusto.garcia augusto.garcia@usp.br

> Departamento de Genética ESALQ/USP 2015

- Funções
 - Definições
 - Funções Básicas
- - Definições
 - Integral Definida

- Funções
 - Definições
 - Funções Básicas
- Derivadas
 - Introdução
 - Regras
 - Pontos de Máximo
- - Definições
 - Integral Definida

- Funções
 - Definições
 - Funções Básicas
- Derivadas
 - Introdução
 - Regras
 - Pontos de Máximo
- Integrais
 - Definições
 - Integral Definida

- Funções
 - Definições
 - Funções Básicas
- Derivadas
 - Introdução
 - Regras
 - Pontos de Máximo
- Integrais
 - Definições
 - Integral Definida
- 4 Referências

- Funções
 - Definições
 - Funções Básicas
- 2 Derivadas
 - Introdução
 - Regras
 - Pontos de Máximo
- Integrais
 - Definições
 - Integral Definida
- 4 Referências

Funções

Definição

Sejam A e B dois conjuntos. Uma função f definida em A com valores em B é uma lei que associa a todo elemento de A um único elemento de B. Notação: y=f(x)

Funções

Exemplo:

- Distância nos cromossomos é função da fração de recombinação
- Fenótipo é função do genótipo e do ambiento
- (Modelos, de forma geral)

Funções

Exemplos (círculo?)

- Distância nos cromossomos é função da fração de recombinação
- Fenótipo é função do genótipo e do ambiente
- (Modelos, de forma geral)

Definicões

Funções

Exemplos (círculo?)

- Distância nos cromossomos é função da fração de recombinação
- Fenótipo é função do genótipo e do ambiente
- (Modelos, de forma geral)

Definicões

Funções

Exemplos (círculo?)

- Distância nos cromossomos é função da fração de recombinação
- Fenótipo é função do genótipo e do ambiente
- (Modelos, de forma geral)

Funções

Definição

O conjunto A é chamado domínio da função f, o conjunto B é o contra-domínio de f.

Funções

Definição

O conjunto A é chamado domínio da função f, o conjunto B é o contra-domínio de f.

- Qual o domínio de $f(x) = \frac{1}{x-2}$?
- Qual o domínio de $m=-\frac{1}{2}\log(1-2r)$?

Funções

Definição

O conjunto A é chamado domínio da função f, o conjunto B é o contra-domínio de f.

- Qual o domínio de $f(x) = \frac{1}{x-2}$?
- Qual o domínio de $m=-\frac{1}{2}\log(1-2r)$?

Funcões

Conteúdo

- Funções
 - Definições
 - Funções Básicas
- - Pontos de Máximo
- - Definições
 - Integral Definida

Funções Básicas

ullet Função Constante: f(x)=c

Funções Básicas

ullet Função afim: f(x) = ax + b

Funções Básicas

• Função Quadrática: $f(x) = ax^2 + bx + c$

Funções Básicas

• Função Exponencial

1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

- Função Exponencial: $f(x) = a^x$
- Quais as bases (a) dos exemplos acima? E os expoentes (x)

Funções Básicas

• Função Exponencial

	0.1	1	10	100	1000	10000	100000	1000000	10000000
--	-----	---	----	-----	------	-------	--------	---------	----------

```
1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
```

- Função Exponencial: $f(x) = a^x$
- Quais as bases (a) dos exemplos acima? E os expoentes (x)?

Funções Básicas

• Função Exponencial

0.1	1	10	100	1000	10000	100000	1000000	10000000

```
1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
```

- Função Exponencial: $f(x) = a^x$
- Quais as bases (a) dos exemplos acima? E os expoentes (x)

Funções Básicas

• Função Exponencial

0.1 1 10 100 1000 10000 100000 1000000 1000000
--

```
1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512
```

- Função Exponencial: $f(x) = a^x$
- Quais as bases (a) dos exemplos acima? E os expoentes (x)?

Funções Básicas

Função Exponencial

1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

- Função Exponencial: $f(x) = a^x$
- Quais as bases (a) dos exemplos acima? E os expoentes (x)?

Funções Básicas

• Função Exponencial: $f(x) = a^x$

Crescimento exponencial

- "Um grão de arroz (ou trigo) para a casa 1, 2 para a casa 2, 4 para a próxima, e assim por diante"
- Quantos grãos são necessários?

Crescimento exponencial

- "Um grão de arroz (ou trigo) para a casa 1, 2 para a casa 2, 4 para a próxima, e assim por diante"
- Quantos grãos são necessários?
 - Resp:
 - $1 + 2 + 4 + \ldots + 2^{63} = \sum_{i=0}^{63} 2^i = 18,446,744,073,709,551,615$
 - 461, 168, 602, 000 toneladas
 - Uma montanha de arroz maior que o Everest, mil vezes a produção mundial em 2010

Crescimento exponencial

- "Um grão de arroz (ou trigo) para a casa 1, 2 para a casa 2, 4 para a próxima, e assim por diante"
- Quantos grãos são necessários?
 - Resp:

$$1+2+4+\ldots+2^{63} = \sum_{i=0}^{63} 2^i = 18,446,744,073,709,551,615$$

- 461, 168, 602, 000 toneladas
- Uma montanha de arroz maior que o Everest, mil vezes a produção mundial em 2010

Crescimento exponencial

- "Um grão de arroz (ou trigo) para a casa 1, 2 para a casa 2, 4 para a próxima, e assim por diante"
- Quantos grãos são necessários?
 - Resp:

$$1+2+4+\ldots+2^{63} = \sum_{i=0}^{63} 2^i = 18,446,744,073,709,551,615$$

- 461, 168, 602, 000 toneladas
- Uma montanha de arroz maior que o Everest, mil vezes a produção mundial em 2010

Crescimento exponencial

- "Um grão de arroz (ou trigo) para a casa 1, 2 para a casa 2, 4 para a próxima, e assim por diante"
- Quantos grãos são necessários?
 - Resp:

$$1 + 2 + 4 + \ldots + 2^{63} = \sum_{i=0}^{63} 2^i = 18,446,744,073,709,551,615$$

- 461, 168, 602, 000 toneladas
- Uma montanha de arroz maior que o Everest, mil vezes a produção mundial em 2010

Crescimento exponencial

Variabilidade Genética

- Estima-se que os humanos tenham cerca de 23 mil genes
- Assumindo 2 alelos para cada um deles, quantos genótipos diferentes são possíveis?

Crescimento exponencial

Variabilidade Genética

- Estima-se que os humanos tenham cerca de 23 mil genes
- Assumindo 2 alelos para cada um deles, quantos genótipos diferentes são possíveis?

Funcões

Funções Básicas

Função Logarítmica

-1	0	1	2	3	4	5	6	7
0.1	1	10	100	1000	10000	100000	1000000	10000000

1	2	3	4	5	6	7	8	9
1/2	1/4	1/8	1/16	1/32	1/64	1/128	1/256	1/512

• Função Logarítmica: $f(x) = \log_a x$

Funcões

Funções Básicas

Função Logarítmica

-1	0	1	2	3	4	5	6	7
0.1	1	10	100	1000	10000	100000	1000000	10000000

1	2	3	4	5	6	7	8	9
1/2	1/4	1/8	1/16	1/32	1/64	1/128	1/256	1/512

• Função Logarítmica: $f(x) = \log_a x$

Função Logarítmica

n	1	2	3	4	5	6	7	8	9
2^n	2	4	8	16	32	64	128	256	512

x	2	4	8	16	32	64	128	256	512
$log_2(x)$	1	2	3	4	5	6	7	8	9

Exemplo: Interprete os valore.

LOD 1 2 3 4 5 6 7

Função Logarítmica

n	1	2	3	4	5	6	7	8	9
2^n	2	4	8	16	32	64	128	256	512

x	2	4	8	16	32	64	128	256	512
$log_2(x)$	1	2	3	4	5	6	7	8	9

Exemplo: Interprete os valores

LOD 1 2 3 4 5 6 7

Funcões

- Calcule: 8×32
 - $2^3 \times 2^5 = 2^{3+5} = 256$ (ou seja, $log_2 256 = 8$)
- Michael Stifel (1487-1567): Arithmetica Integra
- John Napier (1614): Mirifici logarithmorum canonis
 - Que base poderia ser usada para facilitar os cálculos?

- Calcule: 8×32
 - $2^3 \times 2^5 = 2^{3+5} = 256$ (ou seja, $log_2 256 = 8$)
- Michael Stifel (1487-1567): Arithmetica Integra
- John Napier (1614): Mirifici logarithmorum canonis
 - Que base poderia ser usada para facilitar os cálculos?

- Calcule: 8 × 32
 - $2^3 \times 2^5 = 2^{3+5} = 256$ (ou seja, $log_2 256 = 8$)
- Michael Stifel (1487-1567): Arithmetica Integra
- John Napier (1614): Mirifici logarithmorum canonis
 - Que base poderia ser usada para facilitar os cálculos?

- Calcule: 8×32
 - $2^3 \times 2^5 = 2^{3+5} = 256$ (ou seja, $log_2 256 = 8$)
- Michael Stifel (1487-1567): Arithmetica Integra
- John Napier (1614): Mirifici logarithmorum canonis
 - Que base poderia ser usada para facilitar os cálculos?

Funcões

Função Logarítmica

 0.9999999 0.9999998 0.9999997 0.9999996 0.9999995 0.9999994 0.9999993 0.9999992 	n	$(1-10^{-7})^n$
3 0.9999997 4 0.9999996 5 0.9999995 6 0.9999994 7 0.9999993	1	0.9999999
4 0.9999996 5 0.9999995 6 0.9999994 7 0.9999993	2	0.9999998
5 0.99999956 0.99999947 0.9999993	3	0.9999997
6 0.9999994 7 0.9999993	4	0.9999996
7 0.9999993	5	0.9999995
	6	0.9999994
8 0.9999992	7	0.9999993
	8	0.9999992
9 0.9999991	9	0.9999991

- Durante 20 anos, Napier elaborou uma tabela com 101 valores
- Um século depois, esse número foi reconhecido como a base universal dos logaritmos, ou e

Logaritmos

Funções Básicas

 $\bullet \;$ Função Logarítmica: $f(x) = \log_a x$

- $\log_a b = \frac{\log_c b}{\log_c a}$

- $\log_a b = \frac{\log_c b}{\log_c a}$

Conteúdo

- Funções
 - Definições
 - Funções Básicas
- Derivadas
 - Introdução
 - Regras
 - Pontos de Máximo
- Integrais
 - Definições
 - Integral Definida
- 4 Referências

Ideias

Definição

O coeficiente angular da reta tangente ao gráfico de y=f(x) num ponto P qualquer é a derivada de f calculada no ponto P. Notação: $f'(x)=rac{d}{d}rac{y}{d}x$

Ideias

Definição

O coeficiente angular da reta tangente ao gráfico de y=f(x) num ponto P qualquer é a derivada de f calculada no ponto P. Notação: $f'(x)=\frac{d\,y}{d\,x}$

Ideias

Aplicação

• Neste contexto: obtenção de pontos de máximo de funções $(\tan 0^o = 0)$

Conteúdo

- Funções
 - Definições
 - Funções Básicas
- Derivadas
 - Introdução
 - Regras
 - Pontos de Máximo
- Integrais
 - Definições
 - Integral Definida
- 4 Referências

- $f(x) = c \Rightarrow f'(x) = 0$ (c =constante)
- $f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$

Exemplo

- $\bullet \ f(x) = x$
 - f'(x) = 1
- $f(x) = x^2$
 - $\bullet \ f'(x) = 2x$
- $g(x) = cf(x) \Rightarrow g'(x) = cf'(x)$

- $f(x) = 5x^8$
 - $f'(x) = 40x^7$

- $f(x) = c \Rightarrow f'(x) = 0$ (c =constante)
- $f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$

Exemplo

- f(x) = x
 - f(u) =
- $f(x) = x^2$ • f'(x) = 2x
- $g(x) = cf(x) \Rightarrow g'(x) = cf'(x)$

- $f(x) = 5x^8$
 - $f'(x) = 40x^7$

- $f(x) = c \Rightarrow f'(x) = 0$ (c =constante)
- $f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$

Exemplo

- f(x) = x
 - f'(x) = 1
- $f(x) = x^2$ • f'(x) = 2x
- $g(x) = cf(x) \Rightarrow g'(x) = cf'(x)$

- $f(x) = 5x^8$
 - $f'(x) = 40x^7$

Regras básicas

- $f(x) = c \Rightarrow f'(x) = 0$ (c =constante)
- $f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$

Exemplo

- f(x) = x
 - f'(x) = 1
- $f(x) = x^2$

f'(x) = 2x

• $g(x) = cf(x) \Rightarrow g'(x) = cf'(x)$

- $f(x) = 5x^8$
 - $f'(x) = 40x^7$

- $f(x) = c \Rightarrow f'(x) = 0$ (c =constante)
- $f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$

Exemplo

- f(x) = x
 - f'(x) = 1
- $f(x) = x^2$
 - f'(x) = 2x
- $g(x) = cf(x) \Rightarrow g'(x) = cf'(x)$

- $f(x) = 5x^8$
 - $f'(x) = 40x^7$

- $f(x) = c \Rightarrow f'(x) = 0$ (c =constante)
- $f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$

Exemplo

- f(x) = x
 - f'(x) = 1
- $f(x) = x^2$
 - f'(x) = 2x
- $g(x) = cf(x) \Rightarrow g'(x) = cf'(x)$

- $f(x) = 5x^8$
 - $f'(x) = 40x^7$

Regras básicas

- $f(x) = c \Rightarrow f'(x) = 0$ (c =constante)
- $f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$

Exemplo

- f(x) = x
 - f'(x) = 1
- $f(x) = x^2$
 - f'(x) = 2x
- $g(x) = cf(x) \Rightarrow g'(x) = cf'(x)$

- $f(x) = 5x^8$
 - $f'(x) = 40x^7$

Regras básicas

- $f(x) = c \Rightarrow f'(x) = 0$ (c =constante)
- $f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$

Exemplo

- \bullet f(x) = x
 - f'(x) = 1
- $f(x) = x^2$
 - f'(x) = 2x
- $g(x) = cf(x) \Rightarrow g'(x) = cf'(x)$

- $f(x) = 5x^8$
 - $f'(x) = 40x^7$

Regras Básicas

$$f(x) = u(x) + v(x) \Rightarrow f'(x) = u'(x) + v'(x)$$

- $f(x) = 4x^4 + 7x^2 + 3$
 - $f'(x) = 16x^3 + 14x^3$

Regras Básicas

$$f(x) = u(x) + v(x) \Rightarrow f'(x) = u'(x) + v'(x)$$

- $f(x) = 4x^4 + 7x^2 + 3$
 - $f'(x) = 16x^3 + 14x$

Regras Básicas

$$f(x) = u(x) + v(x) \Rightarrow f'(x) = u'(x) + v'(x)$$

- $f(x) = 4x^4 + 7x^2 + 3$
 - $f'(x) = 16x^3 + 14x$

•
$$f(x) = u(x)v(x) \Rightarrow f'(x) = u'(x)v(x) + u(x)v'(x)$$

•
$$f(x) = (x^2 + x)(3x^4 + 5)$$

•
$$f'(x) = (2x+1)(3x^4+5) + (x^2+x)(12x^3)$$

- (uvx)' = u'vx + uv'x + uvx'
- Note que para calcular a derivada de produtos de funções o processo pode ser tedioso

•
$$f(x) = u(x)v(x) \Rightarrow f'(x) = u'(x)v(x) + u(x)v'(x)$$

- $f(x) = (x^2 + x)(3x^4 + 5)$
 - $f'(x) = (2x+1)(3x^4+5) + (x^2+x)(12x^3)$

- (uvx)' = u'vx + uv'x + uvx'
- Note que para calcular a derivada de produtos de funções o processo pode ser tedioso

- $f(x) = (x^2 + x)(3x^4 + 5)$
 - $f'(x) = (2x+1)(3x^4+5) + (x^2+x)(12x^3)$

- (uvx)' = u'vx + uv'x + uvx'
- Note que para calcular a derivada de produtos de funções o processo pode ser tedioso

- $f(x) = (x^2 + x)(3x^4 + 5)$
 - $f'(x) = (2x+1)(3x^4+5) + (x^2+x)(12x^3)$

- (uvx)' = u'vx + uv'x + uvx'
- Note que para calcular a derivada de produtos de funções o processo pode ser tedioso

•
$$f(x) = \frac{u(x)}{v(x)} \Rightarrow f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}$$

Regra da cadeia:

$$\bullet \ \operatorname{Se} y = f(u), u = g(x), y = f\left(g(x)\right),$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

•
$$y = (x^2 + 7)^3$$

$$y' = 3(x^2 + 7)^2 (2x)^2$$

•
$$y = \sqrt{(x^2 + 1)}$$

•
$$y' = \frac{x}{\sqrt{x^2 + 1}}$$

•
$$f(x) = \frac{u(x)}{v(x)} \Rightarrow f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}$$

Regra da cadeia:

$$\bullet \ \operatorname{Se} y = f(u) \text{, } u = g(x) \text{, } y = f\left(g(x)\right) \text{,}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

Exemple

•
$$y = (x^2 + 7)^3$$

$$y' = 3(x^2 + 7)^2 (2x)$$

•
$$y = \sqrt{(x^2 + 1)}$$

•
$$y' = \frac{x}{\sqrt{x^2 + 1}}$$

Regras básicas

•
$$f(x) = \frac{u(x)}{v(x)} \Rightarrow f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}$$

- Regra da cadeia:
 - $\bullet \ \operatorname{Se} y = f(u) \text{, } u = g(x) \text{, } y = f\left(g(x)\right) \text{,}$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

•
$$y = (x^2 + 7)^3$$

•
$$y' = 3(x^2 + 7)^2(2x)$$

•
$$y = \sqrt{(x^2 + 1)}$$

•
$$y' = \frac{x}{\sqrt{x^2 + 1}}$$

•
$$f(x) = \frac{u(x)}{v(x)} \Rightarrow f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}$$

- Regra da cadeia:
 - $\bullet \ \operatorname{Se} y = f(u) \text{, } u = g(x) \text{, } y = f\left(g(x)\right) \text{,}$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

•
$$y = (x^2 + 7)^3$$

•
$$y' = 3(x^2 + 7)^2(2x)$$

•
$$y = \sqrt{(x^2 + 1)}$$

•
$$f(x) = \frac{u(x)}{v(x)} \Rightarrow f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}$$

- Regra da cadeia:
 - $\bullet \ \operatorname{Se} y = f(u) \text{, } u = g(x) \text{, } y = f\left(g(x)\right) \text{,}$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

- $y = (x^2 + 7)^3$
 - $y' = 3(x^2 + 7)^2(2x)$
- $y = \sqrt{(x^2 + 1)}$

Regras básicas

•
$$f(x) = \frac{u(x)}{v(x)} \Rightarrow f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}$$

- Regra da cadeia:
 - $\bullet \ \operatorname{Se} y = f(u) \text{, } u = g(x) \text{, } y = f\left(g(x)\right) \text{,}$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

•
$$y = (x^2 + 7)^3$$

•
$$y' = 3(x^2 + 7)^2(2x)$$

•
$$y = \sqrt{(x^2 + 1)}$$

•
$$y' = \frac{x}{\sqrt{x^2+1}}$$

$$\bullet \ f(x) = \log_a x \text{, } f'(x) = \tfrac{1}{x} \tfrac{1}{\log_e a}$$

Atenção Note a conveniência com uso da base \emph{e}

Exemple

- $y = \log_{10} x$
 - $y' = \frac{1}{x} \frac{1}{\log_e 10} = \frac{1}{x} \frac{1}{2.302585}$
 - $y = \log_e x$
 - $y' = \frac{1}{x}$
 - - $y' = \frac{2x}{x^2+7}$

$$\bullet \ f(x) = \log_a x \text{, } f'(x) = \tfrac{1}{x} \tfrac{1}{\log_e a}$$

Atenção Note a conveniência com uso da base \boldsymbol{e}

- $y = \log_{10} x$
 - $y' = \frac{1}{x} \frac{1}{\log_e 10} = \frac{1}{x} \frac{1}{2.302585}$
- $y = \log_e x$
 - $y' = \frac{1}{x}$
- $y = \log_e(x^2 + 7)$
 - $y' = \frac{2x}{r^2 \pm 7}$

$$\bullet \ f(x) = \log_a x \text{, } f'(x) = \tfrac{1}{x} \tfrac{1}{\log_e a}$$

Atenção Note a conveniência com uso da base \emph{e}

- $y = \log_{10} x$
 - $y' = \frac{1}{x} \frac{1}{\log_e 10} = \frac{1}{x} \frac{1}{2.302585}$
 - $y = \log_e x$
 - $y' = \frac{1}{x}$
- $y = \log_e(x^2 + 7)$
 - $y' = \frac{2x}{x^2+7}$

$$\bullet \ f(x) = \log_a x \text{, } f'(x) = \tfrac{1}{x} \tfrac{1}{\log_e a}$$

Atenção Note a conveniência com uso da base \emph{e}

- $y = \log_{10} x$
 - $y' = \frac{1}{x} \frac{1}{\log_e 10} = \frac{1}{x} \frac{1}{2.302585}$
- $\quad \bullet \ y = \log_e x$
 - $y = \frac{1}{x}$
- $y = \log_e(x^2 + 7)$
 - $y' = \frac{2x}{r^2 \pm 7}$

$$\bullet \ f(x) = \log_a x \text{, } f'(x) = \tfrac{1}{x} \tfrac{1}{\log_e a}$$

Atenção Note a conveniência com uso da base \emph{e}

- $y = \log_{10} x$
 - $y' = \frac{1}{x} \frac{1}{\log_e 10} = \frac{1}{x} \frac{1}{2.302585}$
- $y = \log_e x$
 - $\bullet \ y' = \frac{1}{x}$
- - $y' = \frac{2x}{x^2 + 7}$

$$\bullet \ f(x) = \log_a x \text{, } f'(x) = \tfrac{1}{x} \tfrac{1}{\log_e a}$$

Atenção Note a conveniência com uso da base \emph{e}

- $y = \log_{10} x$
 - $y' = \frac{1}{x} \frac{1}{\log_e 10} = \frac{1}{x} \frac{1}{2.302585}$
- $y = \log_e x$
 - $\bullet \ y' = \frac{1}{x}$
- $\bullet \ y = \log_e(x^2 + 7)$

$$\bullet \ f(x) = \log_a x \text{, } f'(x) = \tfrac{1}{x} \tfrac{1}{\log_e a}$$

Atenção Note a conveniência com uso da base \emph{e}

$$y = \log_{10} x$$

•
$$y' = \frac{1}{x} \frac{1}{\log_e 10} = \frac{1}{x} \frac{1}{2.302585}$$

$$y = \log_e x$$

$$y' = \frac{1}{x}$$

•
$$y' = \frac{2x}{x^2 + 7}$$

Conteúdo

- Funções
 - Definições
 - Funções Básicas
- Derivadas
 - Introdução
 - Regras
 - Pontos de Máximo
- Integrais
 - Definições
 - Integral Definida
- 4 Referências

Máximos e mínimos

Exemplo

- O que tem em comum os pontos P_1 e P_2 (extremos relativos)?
- Resposta: $f'(P_1) = 0$ e $f'(P_2) = 0$

Cuidado Formalmente, há várias condições que devem ser verificadas Regra Máximo: f''(x) < 0

Máximos e mínimos

Exemplo

- O que tem em comum os pontos P_1 e P_2 (extremos relativos)?
- Resposta: $f'(P_1) = 0$ e $f'(P_2) = 0$

Cuidado Formalmente, há várias condições que devem ser verificadas Regra Máximo: f''(x) < 0

Máximos e mínimos

Exemplo

- O que tem em comum os pontos P_1 e P_2 (extremos relativos)?
- Resposta: $f'(P_1) = 0$ e $f'(P_2) = 0$

Cuidado Formalmente, há várias condições que devem ser verificadas Regra Máximo: f''(x) < 0

Ponto de máximo

Exercício

Quais os pontos de máximo de $f(x) = x^3 + x^2 - 5x - 5$?

• Sistema Algébrico Computacional:

http://maxima.sourceforge.net/

Ponto de máximo

Exercício

Quais os pontos de máximo de $f(x) = x^3 + x^2 - 5x - 5$?

• Sistema Algébrico Computacional:

http://maxima.sourceforge.net/

Definições

Conteúdo

- Funções
 - Definições
 - Funções Básicas
- Derivadas
 - Introdução
 - Regras
 - Pontos de Máximo
- Integrais
 - Definições
 - Integral Definida
- 4 Referências

- Dada f'(x), qual é f(x)?
- Em outras palavras, qual é a antiderivada (ou antidiferencial) de f'(x)?
- Em muitos casos este cálculo é bastante simples mas, em muitas situações, técnicas complexas são requeridas

- $f'(x) = x^2$
 - $f(x) = \frac{x^3}{3}$
 - $f(x) = \frac{x^3}{3} + 5$
 - $f(x) = \frac{x^3}{3} + C$

- Dada f'(x), qual é f(x)?
- Em outras palavras, qual é a antiderivada (ou antidiferencial) de f'(x)?
- Em muitos casos este cálculo é bastante simples mas, em muitas situações, técnicas complexas são requeridas

- $f'(x) = x^2$
 - $f(x) = \frac{x^3}{3}$
 - $f(x) = \frac{x^3}{3} + 5$
 - $f(x) = \frac{x^3}{3} + C$

- Dada f'(x), qual é f(x)?
- Em outras palavras, qual é a antiderivada (ou antidiferencial) de f'(x)?
- Em muitos casos este cálculo é bastante simples mas, em muitas situações, técnicas complexas são requeridas

Exemple

•
$$f'(x) = x^2$$

•
$$f(x) = \frac{x}{3}$$

•
$$f(x) = \frac{x^3}{3} + 5$$

•
$$f(x) = \frac{x^2}{3} + C$$

- Dada f'(x), qual é f(x)?
- Em outras palavras, qual é a antiderivada (ou antidiferencial) de f'(x)?
- Em muitos casos este cálculo é bastante simples mas, em muitas situações, técnicas complexas são requeridas

$$f'(x) = x^2$$

•
$$f(x) = \frac{x^3}{3}$$

•
$$f(x) = \frac{x^3}{3} + 5$$

•
$$f(x) = \frac{x^3}{3} + C$$

- Dada f'(x), qual é f(x)?
- Em outras palavras, qual é a antiderivada (ou antidiferencial) de f'(x)?
- Em muitos casos este cálculo é bastante simples mas, em muitas situações, técnicas complexas são requeridas

- $f'(x) = x^2$
 - $f(x) = \frac{x^3}{3}$
 - $f(x) = \frac{x^3}{3} + 5$
 - $f(x) = \frac{x^3}{3} + C$

- Dada f'(x), qual é f(x)?
- Em outras palavras, qual é a antiderivada (ou antidiferencial) de f'(x)?
- Em muitos casos este cálculo é bastante simples mas, em muitas situações, técnicas complexas são requeridas

- $f'(x) = x^2$
 - $f(x) = \frac{x^3}{3}$
 - $f(x) = \frac{x^3}{3} + 5$
 - $f(x) = \frac{x^3}{3} + C$

- Dada f'(x), qual é f(x)?
- Em outras palavras, qual é a antiderivada (ou antidiferencial) de f'(x)?
- Em muitos casos este cálculo é bastante simples mas, em muitas situações, técnicas complexas são requeridas

- $f'(x) = x^2$

 - $f(x) = \frac{x^3}{3}$ $f(x) = \frac{x^3}{3} + 5$ $f(x) = \frac{x^3}{3} + C$

Definições

Notação e Propriedades

Definição

A antiderivada de f(x), denotada por F(x)+C, é definida como integral indefinida de f(x), representada por

$$\int f(x) \, dx = F(x) + C$$

- $\int x^n dx = \frac{x^{n+1}}{n+1}, n \neq -1$
 - É fácil calcular integrais de polinômios

Notação e Propriedades

Definição

A antiderivada de f(x), denotada por F(x)+C, é definida como integral indefinida de f(x), representada por

$$\int f(x) \, dx = F(x) + C$$

- - É fácil calcular integrais de polinômios

Notação e Propriedades

Definição

A antiderivada de f(x), denotada por F(x)+C, é definida como integral indefinida de f(x), representada por

$$\int f(x) \, dx = F(x) + C$$

- $\int x^n dx = \frac{x^{n+1}}{n+1}, n \neq -1$
 - É fácil calcular integrais de polinômios

Definições

Notação e Propriedades

Definição

A antiderivada de f(x), denotada por F(x)+C, é definida como integral indefinida de f(x), representada por

$$\int f(x) \, dx = F(x) + C$$

- $\int x^n dx = \frac{x^{n+1}}{n+1}, n \neq -1$
 - É fácil calcular integrais de polinômios

Notação e Propriedades

Definicão

A antiderivada de f(x), denotada por F(x)+C, é definida como integral indefinida de f(x), representada por

$$\int f(x) \, dx = F(x) + C$$

- $\int x^n dx = \frac{x^{n+1}}{n+1}, n \neq -1$
 - É fácil calcular integrais de polinômios

Definições

Polinômios

Calcule

- Resp.: $2\frac{x^4}{4} \frac{x^3}{3} + C$

Definições

Polinômios

Calcule

- Resp.: $2\frac{x^4}{4} \frac{x^3}{3} + C$

Conteúdo

- Funções
 - Definições
 - Funções Básicas
- 2 Derivadas
 - Introdução
 - Regras
 - Pontos de Máximo
- Integrais
 - Definições
 - Integral Definida
- 4 Referências

Integral de Riemann

• Qual a área sob a curva no intervalo entre a e b?

Integral de Riemann

Circunscritos

Integral de Riemann

Sobrescritos

Integral de Riemann

Metade

Integral de Riemann

• Soma de Riemann

Integral

Integral definida

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Área

Exemplo: calcule a área indicada

Área

Resposta

$$\int_{-1}^{1} (-4x^2 + x + 15) \, dx = \left[-4\frac{x^3}{3} + \frac{x^2}{2} + 15x \right]_{-1}^{1} = \frac{82}{3}$$

Integral definida

Aplicações

- Se f(x) é uma função de densidade de probabilidades, $P(a \leq x \leq b) = \int_a^b f(x) \, dx$
- Conceito de Esperança Matemática para variáveis contínuas

Integral definida

Aplicações

- Se f(x) é uma função de densidade de probabilidades, $P(a \leq x \leq b) = \int_a^b f(x) \, dx$
- Conceito de Esperança Matemática para variáveis contínuas

Referências

Howard, A. Cálculo: um novo horizonte Editora Bookman, 2000 Volume 1

Leithold, L. O cálculo com geometria analítica Editora Harbra, 1994 Volume 1