Baye's Problem

Example 1

- a) Fill in the table using the information below
- Suppose that a known disease occurs in 4% of the population
- The medical test produces a positive reading on 99.1% of those infected with the disease
- Suppose that this test gives a positive result in healthy patients 2% of the time
- Assume we have 100,000 random individuals who follow the above information perfectly

	Has Disease	Does Not Have	Total
		Disease	
Test Positive			
Test Negative			
Total			100,000

- b) Determine P (Have the Disease | Tested Positive)
- c) Determine P (Have the Disease | Tested Negative)

Circuit Problems

Determine the probability that the circuit works given that the component works probability is bellowed.

- 1. P(A) = 0.91, P(B) = 0.98
- 2. P(A) = 0.99, P(B) = 0.84

Back to Risk...with some Basic Probability

	Sick	Healthy	Total
Low Vitamin D Consumption	420	1,123	
Normal Vitamin D consumption	4,567	58,590	
Total	4,987	59,713	

1. Calculate the RR:

STA 119 1

2.	Calculate the AR:
3.	Calculate the AR%:
4.	Calculate the NNC:
5.	P (Low Vitamin D Consumption u Healthy)
6.	P (Normal Vitamin D Consumption ∩ Sick)
1.	Expected Value and Negative Test Suppose that the current positivity rate is 3.5%. That is, 3.5% of those that get tested actually test positive. If we decide to do batches of size 12, what is the probability that a batch of 12 independent individuals will produce a negative test.
2.	Suppose that we are doing batch testing with batches of size 16. Suppose that the probability that a batch of size 16 tests negative is 0.835. Determine the expected number (expected value) of tests needed for a group of size 16.

STA 119 2