

Semestre 5. Grupo 31. "TDTA III"

Docente: Adriana Rojas Molina

Acta proyecto

Realizado por:

 Sebastián Emiliano Alonso López No. Expediente: 326318 (Director)

Índice

Acta proyecto	1
Índice	2
Nombre del proyecto:	2
Fecha de inicio:	2
Integrantes y roles principales:	2
Descripción del problema:	2
Identificación del proyecto	3
Patrocinador y director	3
Propósito/Justificación	3
Objetivos	4
Alcance	4
Entregables	5
Criterios de éxito	5
Interesados	5
Restricciones y supuestos	6
Riesgos iniciales	6
Económicos	6
Recursos clave	6

Nombre del proyecto:

Smart Optimized Binaural Audio Suppression(SOBAS)

Fecha de inicio:

17 de Septiembre de 2025

Integrantes y roles principales:

Sebastian Emiliano Alonso Lopez (Director)

Descripción del problema:

En espacios académicos, aulas virtuales y entornos multimedia, el ruido de fondo afecta la calidad de la comunicación, dificultando la comprensión del mensaje y disminuyendo la productividad. Las soluciones comerciales actuales suelen ser costosas, poco adaptables o dependen de infraestructura adicional.

Problema u oportunidad que busca resolver:

Diseñar un sistema accesible, eficiente y adaptable para la cancelación inteligente de ruido ambiental en tiempo real, aprovechando el procesamiento paralelo de una FPGA para mejorar el rendimiento frente a microcontroladores convencionales.

Identificación del proyecto

El proyecto busca integrar hardware de captura (micrófonos), procesamiento digital en FPGA y algoritmos de supresión binaural para reducir el ruido de fondo en entornos controlados como aulas, salas de conferencias o transmisiones multimedia.

Patrocinador y director

- Patrocinador: Institución académica (universidad / facultad de ingeniería).
- Director: Sebastián Emiliano Alonso López.

Propósito/Justificación

Brindar una solución práctica y escalable para la supresión de ruido en espacios académicos y de trabajo, aprovechando el aprendizaje en diseño con FPGA y la implementación de algoritmos digitales de audio.

Objetivos

General:

Desarrollar un sistema de cancelación de ruido en FPGA para mejorar la calidad del audio en espacios educativos y multimedia.

• Específicos:

- 1. Implementar algoritmos de supresión de ruido en hardware programable (FPGA).
- 2. Integrar sensores de audio binaurales para captar señal de referencia y ambiente.
- 3. Diseñar la arquitectura de hardware/firmware para el procesamiento en tiempo real.
- 4. Validar el desempeño mediante pruebas en aulas y entornos multimedia simulados.
- 5. Documentar el desarrollo y resultados del sistema.

Alcance

Qué incluye (In Scope)

Hardware:

- FPGA como núcleo de procesamiento.
- Módulo de micrófonos (binaural / array).
- Salida de audio (DAC / codec de audio).

Firmware:

- Implementación de filtros digitales y algoritmos de supresión de ruido.
- Programación en VHDL/Verilog y uso de herramientas de síntesis.

Servicios y datos:

- Captura y procesamiento en tiempo real de señales de audio.
- Análisis de métricas de calidad de audio (SNR, inteligibilidad).

Pruebas:

- Evaluación en laboratorio (ruido controlado).
- Pruebas en entornos académicos reales.

Documentación y entrega:

- Acta de proyecto.
- Reporte técnico.
- Presentación de resultados.

Gobernanza:

- Revisión semanal del progreso.
- Control de versiones del código y documentación.

2) Qué NO incluye (Out of Scope)

- Integración con aplicaciones comerciales de videoconferencia.
- Producción a gran escala del hardware.
- Implementación en dispositivos móviles.

Entregables

Prototipo funcional en FPGA.

- Código fuente (VHDL/Verilog).
- Manual de usuario.
- Documentación técnica.
- Informe de pruebas.

Criterios de éxito

- Cancelación de al menos un 60–70% del ruido ambiental en pruebas reales.
- Procesamiento en tiempo real (sin retardos perceptibles >50 ms).
- Estabilidad del sistema durante pruebas prolongadas.
- Documentación completa y validación académica.

Interesados

- 1. Interesados Internos
 - Estudiantes del curso de FPGA / Ingeniería Electrónica.
 - Profesor guía / asesores académicos.
- 2. Interesados Externos
 - Institución educativa (facultad / universidad).
 - Potenciales empresas interesadas en tecnología de audio.

Usuarios finales:

- Docentes y estudiantes en aulas.
- Profesionales en videoconferencias y multimedia.

Restricciones y supuestos

- Restricción de tiempo: desarrollo en el semestre académico.
- Presupuesto limitado (uso de kits FPGA disponibles en la universidad).
- Supuesto: disponibilidad de micrófonos y FPGA para pruebas.

Riesgos iniciales

Económicos

- Costo de módulos adicionales (micrófonos, DACs).
- Dependencia de hardware especializado.

Técnicos / Electrónicos

- Curva de aprendizaje en FPGA.
- Complejidad de algoritmos DSP en hardware.
- Posible latencia en el sistema.

Legales y Éticos

- Uso de software y librerías bajo licencia libre.
- Cumplimiento de normativas de audio en espacios educativos.

Recursos clave

Software:

- Vivado / Quartus (dependiendo del FPGA).
- MATLAB / Octave para simulación de audio.
- Git para control de versiones.

Hardware:

- Kit FPGA (ej. Xilinx Artix-7 / Intel Cyclone V).
- Módulo de micrófonos estéreo o array.
- Conversores DAC/ADC de audio.
- Sistema de amplificación y salida (audífonos o bocinas).

Firma

Sebastian Emiliano Alonso Lopez