Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εργασία Επιχειρησιακή Έρευνα

Μπαρμπαγιάννος Βασίλειος

AEM: 10685

Εξάμηνο: Εαρινό 2024 – 2025

Υπεύθυνος Καθηγητής: Παπαλάμπρου Κωνσταντίνος

Σχεδιασμός Εβδομαδιαίου Προγράμματος Μαθημάτων

Ο κ. Προγραμματούλης πρέπει να καθορίσει το εβδομαδιαίο πρόγραμμα βάσει χρονικών περιορισμών στα μαθήματα και τις απουσίες των καθηγητών.

Ξεκινάμε τη μαθηματική μοντελοποίηση του προβλήματος.

Τα δεδομένα μας είναι:

• Ημέρες: 5 (Δευτέρα έως Παρασκευή)

• Τμήματα: 2

• Ζώνες: 4

Z1: 08:00-10:00

Z2: 10:15-12:15

Z3: 14:00-16:00

Z4: 16:15-18:15

Για ευκολία, αυτά τα δεδομένα θα τα μετατρέψουμε σε σύνολα:

 $T = \{1, 2\}$: σύνολο των τμημάτων,

Μ: σύνολο των διαφορετικών μαθημάτων,

 $D = \{1, 2, 3, 4, 5\}$: σύνολο των ημερών (Δευτέρα έως Πέμπτη),

 $Z = \{1, 2, 3, 4\}$: σύνολο των ζωνών ανά ημέρα.

Κάθε μάθημα $m \in M$ σχετίζεται με ένα ή περισσότερα τμήματα, και έχει συγκεκριμένο πλήθος εμφανίσεων στο πρόγραμμα.

Σημαντικό είναι να ορίσουμε τη δυαδική μεταβλητή απόφασης:

Φυσικά, το πρόβλημα περιέχει ορισμένους περιορισμούς:

1. Καμία σύγκρουση μαθημάτων ανά ζώνη: απαγορεύεται να διδάσκεται πάνω από ένα μάθημα σε κάθε ζώνη και για κάθε τμήμα. Αυτό το εκφράζουμε μαθηματικά ως:

$$\sum_{m \in M} x_{t,m,d,z} \le 1, \forall t \in T, d \in D, z \in Z$$

2. Αριθμός απαιτούμενων ωρών ανά μάθημα: αν ένα μάθημα πρέπει να εμφανίζεται $h_{t,m}$ φορές για το τμήμα t, τότε:

$$\sum_{d \in D} \sum_{z \in Z} x_{t,m,d,z} = h_{t,m}, \forall t \in T, m \in M$$

3. Δυαδικότητα μεταβλητών: όλες οι μεταβλητές πρέπει να είναι δυαδικές (binary), δηλαδή να παίρνουν μόνο 0 ή 1:

$$x_{t,m,d,z} \in \{0,1\}, \forall t \in T, m \in M, d \in D, z \in Z$$

Αυτοί είναι οι γενικοί περιορισμοί. Πάμε τώρα να τους εφαρμόσουμε στην εκφώνηση της εργασίας.

Μόνο ένα δίωρο ανά μάθημα σε μία ημέρα:

$$\sum_{z=1}^{4} x_{t,m,d,z} \le 1, \forall t \in T, m \in M, d \in D$$

Φυσική αγωγή μόνο Πέμπτη απόγευμα 14:00 – 16:00:

$$x_{t,\varphi v \sigma \iota \kappa \acute{\eta}}$$
 αγωγ $\acute{\eta}$, $d,z=0$, $\forall t$ εκτός από $d=4$, $z=3$

Δευτέρα πρωί στην πρώτη ζώνη δεν γίνεται μάθημα:

$$x_{t,m,1,1}=0, \forall m, t$$

 Απουσία κ. Λαθοπράξη Δευτέρα πρωί, πρώτη ζώνη, μαθηματικά, τμήμα 2:

$$x_{t,\mu\alpha\theta\eta\mu\alpha\tau\iota\kappa\dot{\alpha},1,1}=0$$

και η κ. Ινσουλίνα δεν εργάζεται Τετάρτη, βιολογία:

$$x_{t,\beta\iota o\lambda o\gamma(\alpha,3,z)} = 0 \ \forall t,z$$

Οπότε με αυτές τις προδιαγραφές τρέχουμε τον κώδικα Python και παίρνουμε το κάτωθι πρόγραμμα.

Για το τμήμα 1.

Τμή	Δευτέρα	Τρίτη	Τετάρτη	Πέμπτη	Παρασκευ
μα 1					ή
Ζώνη		Χαρτούλα		Ινσουλίνα	Αντιπαράγ
1					ωγος
Ζώνη	Κιρκοφίδο	Κιρκοφίδο	Πλατιάζων	Χαρτούλα	
2	υ	υ			
Ζώνη	Αντιπαράγ		Αντιπαράγ	Κιρκοφίδ	Γεσμανίδης
3	ωγος		ωγος	ου	
Ζώνη	Ινσουλίνα	Αντιπαράγ		Μπρατσά	Ινσουλίνα
4		ωγος		κης	

Για το τμήμα 2.

Τμήμ	Δευτέρα	Τρίτη	Τετάρτη	Πέμπτη	Παρασκε
α 2					υή
Ζώνη		Γεσμανίδη	Λαθοπράξ		Ινσουλίνα
1		S	ης		
Ζώνη	Χαρτούλα	Λαθοπράξ		Λαθοπράξης	
2	-	ης			

Ζώνη	Ινσουλίνα	Πλατιάζων	Κιρκοφίδο	Ινσουλίνα	Κιρκοφίδ
3			υ		ου
Ζώνη	Λαθοπράξ	Κιρκοφίδο		Τρεχαλητού	Χαρτούλα
4	ης	υ		λα	

Βέλτιστη Χωροθέτηση Αποθηκών

Η εταιρεία θέλει να αποφασίσει σε ποιες από τις 12 διαθέσιμες τοποθεσίες θα κατασκευάσει αποθήκες. Υπάρχουν 12 κέντρα πωλήσεων που εξυπηρετούνται από τις αποθήκες.

Κάθε παράδοση έχει δύο κόστη: το πάγιο κόστος εγκατάστασης της αποθήκης και το κόστος μεταφοράς.

Κάθε αποθήκη έχει: ένα πάγιο κόστος εγκατάστασης και ένα άνω όριο χωρητικότητας.

Η ζήτηση σε κάθε κέντρο πώλησης πρέπει να καλύπτεται, ενώ το κάθε κέντρο μπορεί να εξυπηρετείται από πολλές αποθήκες.

Η μαθηματική μοντελοποίηση του προβλήματος έχει ως εξής:

Έχουμε τα σύνολα:

 $I = \{1, ..., 12\}$: οι 12 αποθήκες

 $J = \{1, ..., 12\}$: τα 12 κέντρα πώλησης

Και τις παραμέτρους:

 f_i : κόστος εγκατάστασης αποθήκης i (σε χιλ. ευρώ)

 c_{ij} : κόστος εξυπηρέτησης ολικής ζήτησης του κέντρου j από την αποθήκη i (σε χιλ. ευρώ)

 d_i : ζήτηση του κέντρου πώλησης j (σε τόνους)

 C_i : χωρητικότητα της αποθήκης j (σε τόνους)

Χρειαζόμαστε και τις δυαδικές μεταβλητές απόφασης:

 $y_i \in \{0,1\}$: 1 αν λειτουργήσει η αποθήκη, 0 αλλιώς $x_{ij} \in [0,d_j]$: ποσότητα (σε τόνους) που παραδίδει η αποθήκη i στο κέντρο j

Φτάνουμε λοιπόν στην αντικειμενική συνάρτηση, στην οποία ενσωματώνουμε το πάγιο κόστος εγκατάστασης αποθήκης f_i :

$$\min \sum_{i \in I} f_i y_i + \sum_{i \in I} \sum_{j \in J} \frac{c_{ij}}{d_j} x_{ij}$$

όπου $\frac{c_{ij}}{d_i}$ είναι το μοναδιαίο κόστος μεταφοράς ανά τόνο.

Λαμβάνοντας υπόψη τους περιορισμούς της εκφώνησης:

1. Η ζήτηση κάθε κέντρου πρέπει να καλυφθεί πλήρως:

$$\sum_{i\in I} x_{ij} = d_j \,, \forall j \in J$$

2. Η χωρητικότητα της αποθήκης δεν πρέπει να υπερβληθεί:

$$\sum_{i \in I} x_{ij} \le C_i y_i, \forall i \in I$$

3. Αποκλειστικά θετικές ποσότητες:

$$x_{ij} \ge 0, \forall i \in I, j \in J$$

Οπότε ταΐζουμε τα παραπάνω στον αλγόριθμο Python και παίρνουμε τα εξής αποτελέσματα:

Άνοιξαν οι αποθήκες 1, 5, 8, 9, 12.

Όλα τα κέντρα πώλησης εξυπηρετούνται πλήρως, δηλαδή καλύπτεται η ζήτησή τους.

Σαφώς, κάποια κέντρα εξυπηρετούνται από πάνω από μία αποθήκες.

Ακολουθεί σχετικό πινακάκι με τις μεταφορές (σε τόνους) από κάθε αποθήκη στο κάθε κέντρο.

Αποθήκη	1	5	8	9	12	Σύνολο
Κέντρο						
Πώλησης						
1	120					120
2	5		75			80
3	75					75
4	100					100
5			45	65		110
6			100			100
7					90	90
8					60	60
9		30				30
10		150				150
11				90	5	95
12		95			25	120
Σύνολο	300	275	220	155	180	

Παρατηρώ ότι καλύπτεται η ζήτηση σε όλα τα κέντρα πώλησης. Επίσης, εκτός από την αποθήκη 9, οι υπόλοιπες παραδίδουν το σύνολο της χωρητικότητάς τους. Το συνολικό κόστος είναι 17929.23 χιλ. ευρώ.