- The universe is a large collection of billions of galaxies
- A galaxy is a large collection of billions of stars
- Our solar system is in the Milky Way galaxy.
- Gravitational Field Strength varies per planet due to the mass of the planet. The higher the mass, the more gravitation field strength. Vice Versa.

gravitational force:

- causes moons to orbit planets
- causes the planets to orbit the Sun
- causes artificial satellites to orbit the Earth
- causes comets to orbit the Sun orbit in an oval shape around sun.

Evidence of big bang

- Light from other galaxies are red-shifted, and therefore galaxies are moving away.
- The further the galaxy, the more red-shifted, and the faster they are moving away.
- Galaxies are emitting Cosmic Microwave Background Radiation (CMBR short wavelengths of gamma radiation) which is heat left over as a result of the original explosion.

Waves:

- Amplitude

- Wavelength

- Frequency = number of waves/sec

Starts :

Starts from a small point.

Doppler effect:

- Frequency change of a wave caused by relative motion between wave and observer. Compression and stretching of waves as a result of moving object.

Object is moving towards the observer.	Object is moving away from the observer.
Waves get shorter	Waves get longer/stretch
Frequency increases	Frequency decreases
Sound: Higher pitch	Sound: Lower pitch
Light: More blue, blue-shift	Light: More red, red-shift

Doppler Equation:

Orbital Speed Equation:

$$\frac{\lambda - \lambda_0}{\lambda} = \frac{v}{c}$$

$$v = \frac{2 \times \pi \times r}{T}$$

Hertzsprung-Russel Diagram:

Variables:

Luminosity Temperature (from hot to cold)

Star like our Sun:	Massive Star:
Nebula - A cloud of dust and gas is pulled together by gravity.	Nebula - A cloud of dust and gas is pulled together by gravity.
Protostar - As cloud gets smaller, it begins to heat up. Nuclear reaction begin to occur. (Very high pressure and temp.) - Fusion, small nuclei (hydrogen) join together.	Protostar - As cloud gets smaller, it begins to heat up. Nuclear reaction begin to occur. (Very high pressure and temp.) - Fusion, small nuclei (hydrogen) join together.
Main Sequence Star - Nuclear reactions heat the star and outward pressure balances compression due to gravity.	Main Sequence Star Nuclear reactions heat the star and outward pressure balances compression due to gravity.
Red Giant - Most of the hydrogen is used up and core collapses but outer layer expand.	Red Supergiant - Most of the hydrogen is used up and core collapses but outer layer expand.
Shell of gas - Outer layers of the star thrown off and rest is pulled together by gravity to form a white dwarf.	Supernova - The whole star rapidly collapses and then explodes.
 White Dwarf No fusion reaction happening anymore. Will gradually cool down to become a black dwarf. 	Blackhole - If what is left is more than 4 times the mass of the sun, material is pulled together to form a black hole.
	Neutron Star - If what is left is less than 4 times the mass of the sun, material is pulled together by gravity to form a neutron star.

White Dwarfs:

- Size of around Earth
- Almost entirely carbon and glowing with residual heat of fusion process. Continuously cooling down.

planetary nebul

Supergiants:

- Large masses, resultant gravity allows them to fuse hydrogen quickly.
- Life is much shorter than main sequence star.
- Rapidly collapse under gravitational force.

Neutron Star:

- Atom has collapsed.
- Electrons are pushed into the nucleus, and electrons become neutrons.
- Are very, very dense.

Absolute Magnitude of Stars:

- Absolute magnitude, M is magnitude of the star if placed at distance of 10 parsecs from Earth (size of star looked from same distance).
- By consider stars at fixed distances, astronomers can compare real brightness of stars.