Aufgabe 1

Bei einer Klassenarbeit erhielten die 25 Schülerinnen und Schüler einer Klasse in alphabetischer Reihenfolge die Zensuren

- a) Erstellen Sie eine Tabelle mit Strichliste sowie absoluter und relativer Häufigkeit jeder Zensur. Zeichnen Sie ein Stabdiagramm der empirischen Häufigkeitsverteilung.
- b) Ergänzen Sie die Tabelle um die Werte für die empirische Verteilungsfunktion und zeichnen Sie diese.
- c) Berechnen Sie
 - i. das arithmetische Mittel
 - ii. den Median
 - iii. den Modalwert
 - iv. das 10%-Quantil
 - v. das obere Quartil
 - vi. die empirische Varianz und die empirische Standardabweichung
- d) Geben Sie den Variationskoeffizienten an.

Lösung 1

Zensur A_j	Striche	Ereignisse h_j	relative H. r_j	kumulierte H. H_j
1		3	0,12	0,12
2		5	0,2	0,32
3	₩	8	0,32	0,64
4		6	0,24	0,88
5		2	0,08	0,96
6		1	0,04	1,0
\sum	######	25	1	

- i. Das arithmetische Mittel der Noten beträgt $\overline{x} = \frac{77}{25} = 3,08$
- ii. Der Median (der mittlere Wert in einer geordneten Liste von Daten) der Noten ist 3,0
- iii. Der Modalwert, also die am häufigsten vorkommende Note, ist 3.
- iv. Das 10%-Quantil der Noten liegt bei $x_{(\lfloor 25\cdot 0,1+1\rfloor)}=x_{(3)}=1$. Das bedeutet, dass 10% der Noten unter diesem Wert liegen.

Ausgabe: 28.11.2023

Abgabe: 04.12.2023

2

1

0

Ausgabe: 28.11.2023

Abgabe: 04.12.2023

Abbildung 1: Lösung der Aufgabe 1a

Zensuren Aj

4

3

2

5

Abbildung 2: Lösung der Aufgabe 1b

- v. Das obere Quartilliegt bei $x_{(\lfloor 25\cdot 0.75+1\rfloor)}=x_{(19)}=4$. Das bedeutet, dass 75% der Noten unter oder gleich diesem Wert sind.
- vi. Die empirische Varianz beträgt $s^2 = 1,66$ und die empirische Standardabweichung

$$s \approx 1,288$$
.

Der Variationskoeffizienten V, drückt das Verhältnis der Standardabweichung zum Mittelwert aus und ist ein Maß für die relative Streuung der Daten.

$$V = \frac{s}{\overline{x}} = 0.41831$$

Aufgabe 2

Bei einer Population von 30 Versuchstieren wird an einem bestimmten Tag das Gewicht (in kg) gemessen. Dabei ergaben sich die folgenden Messungen:

12,16	11,53	14,02	11,85	10,94	11,83	12,94	11,46	13,15	12,70
10,88	13,24	14,04	10,95	14,78	12,39	13,69	11,82	14,28	12,96
13,24	13,42	12,23	15,04	11,34	12,28	13,42	13,93	14,73	11,28

- a) Erstellen Sie zur Übersicht der Verteilung eine Tabelle mit der Klasseneinteilung [10,0; 11,5), [11,5; 13,0), [13,0; 14,0), [14,0; 16,0). Geben Sie die absolute und relative Klassenhäufigkeit sowie die Werte für die empirische Verteilungsfunktion an.
- b) Zeichnen Sie
 - i. das zugehörige Histogramm und
 - ii. die empirische Verteilungsfunktion.
- c) Berechnen Sie aus den klassierten Daten
 - i. das arithmetische Mittel
 - ii. den Median
 - iii. die Modalklasse
 - iv. das 90% -Quantil
 - v. das untere Quartil
 - vi. die empirische Varianz sowie die empirische Standardabweichung
- d) Geben Sie den Variationskoeffizienten an.

Lösung 2

Klasse	Absolute Häufigkeit	relative H.	emp. Verteilungsf.	Dichte
A_j	n_j	h_j	H_j	$\frac{n_j}{ A_j }$
[10,0; 11,5)	6	0,200	0,200	4
[11,5; 13,0)	11	0,367	0,567	7,3
[13,0; 14,0)	7	0,233	0,800	7
[14,0; 16,0)	6	0,200	1,000	3

Ausgabe: 28.11.2023

Abgabe: 04.12.2023

Abbildung 3: Lösung der Aufgabe 2b) i.

- i. Das arithmetische Mittel der Gewichte beträgt $\overline{x} = \frac{77}{25} = 12,79$ kg.
- ii. Der empirische Median der Gewichte ist $\tilde{x} \approx 12,72$ kg.
- iii. Die Modalklasse ist die Klasse mit der größten Häufigkeitsdichte, also die Klasse mit der höchsten Anzahl an Datenpunkten im Verhältnis zur Klassengröße. Hier ist das $A_2 = [11,5; 13,0)$.
- iv. Das 90%-Quantil der Gewichte liegt bei $x_{0,9} = 15$ kg. Das bedeutet, dass 90% der Gewichte unter diesem Wert liegen.
- v. Das untere Quartil liegt bei $x_{0,25} \approx 11.7$ kg. Das bedeutet, dass 25% der Gewichte unter oder gleich diesem Wert sind.
- vi. Die empirische Varianz beträgt $s^2=$ 2,1 kg 2 und die empirische Standardabweichung $s\approx$ 1,45.

Der Variationskoeffizienten V, drückt das Verhältnis der Standardabweichung zum Mittelwert aus und ist ein Maß für die relative Streuung der Daten.

$$V = \frac{s}{\overline{x}} = 0.1134$$

Abbildung 4: Lösung der Aufgabe 2b) ii.