Solution Section 2.5 – Polynomial Functions

Exercise

Determine the end behavior of the graph of the polynomial function $f(x) = 5x^3 + 7x^2 - x + 9$

Solution

Leading term: $5x^3$ with 3^{rd} degree (*n* is *odd*)

$$x \to -\infty \implies f(x) \to -\infty$$
 $f(x)$ falls left

$$f(x)$$
 falls left

$$x \to \infty \implies f(x) \to \infty$$
 $f(x)$ rises right

$$f(x)$$
 rises righ

Exercise

Determine the end behavior of the graph of the polynomial function $f(x) = 11x^3 - 6x^2 + x + 3$

Solution

Leading term: $11x^3$ with 3^{rd} degree (*n* is *odd*)

$$x \to -\infty \implies f(x) \to -\infty$$
 $f(x)$ falls left

$$f(x)$$
 falls lef

$$x \to \infty \implies f(x) \to \infty$$
 rises right

Exercise

Determine the end behavior of the graph of the polynomial function $f(x) = -11x^3 - 6x^2 + x + 3$

Solution

Leading term: $-11x^3$ with 3^{rd} degree (*n* is **odd**)

$$x \to -\infty \implies f(x) \to \infty$$
 $f(x)$ rises left

$$f(x)$$
 rises left

$$x \to \infty \implies f(x) \to -\infty$$
 $f(x)$ falls right

Exercise

Determine the end behavior of the graph of the polynomial function $f(x) = 2x^3 + 3x^2 - 23x - 42$

Solution

Leading term: $2x^3$ with 3^{rd} degree (*n* is *odd*)

$$x \to -\infty \implies f(x) \to -\infty$$
 $f(x)$ falls left

$$f(x)$$
 falls left

$$x \to \infty \implies f(x) \to \infty$$
 $f(x)$ rises right

Determine the end behavior of the graph of the polynomial function $f(x) = 5x^4 + 7x^2 - x + 9$

Solution

Leading term: $5x^4$ with 4^{rd} degree (*n* is *even*)

$$x \to -\infty \implies f(x) \to \infty$$
 $f(x)$ rises left

$$f(x)$$
 rises left

$$x \to \infty \implies f(x) \to \infty$$
 $f(x)$ rises right

$$f(x)$$
 rises right

Exercise

Determine the end behavior of the graph of the polynomial function $f(x) = 11x^4 - 6x^2 + x + 3$

Solution

Leading term: $11x^4$ with 4^{rd} degree (*n* is *even*)

$$x \to -\infty \implies f(x) \to \infty$$
 $f(x)$ rises left

$$f(x)$$
 rises left

$$x \to \infty \implies f(x) \to \infty$$
 $f(x)$ rises right

$$f(x)$$
 rises righ

Exercise

Determine the end behavior of the graph of the polynomial function $f(x) = -5x^4 + 7x^2 - x + 9$

Solution

Leading term: $-5x^4$ with 4^{rd} degree (*n* is **even**)

$$x \to -\infty \implies f(x) \to -\infty$$
 $f(x)$ falls left

$$f(x)$$
 falls left

$$x \to \infty \implies f(x) \to -\infty$$
 $f(x)$ falls right

$$f(x)$$
 falls right

Exercise

Determine the end behavior of the graph of the polynomial function $f(x) = -11x^4 - 6x^2 + x + 3$

Solution

Leading term: $-11x^4$ with 4^{rd} degree (n is even)

$$x \to -\infty \implies f(x) \to -\infty$$
 $f(x)$ falls left

$$f(x)$$
 falls lef

$$x \to \infty \implies f(x) \to -\infty$$
 $f(x)$ falls right

$$f(x)$$
 falls right

Determine the end behavior of the graph of the polynomial function $f(x) = 5x^5 - 16x^2 - 20x + 64$

Solution

Leading term: $5x^5$ with 5^{th} degree (*n* is *odd*)

$$x \to -\infty \implies f(x) \to -\infty$$
 $f(x)$ falls left

$$x \to \infty \implies f(x) \to \infty$$
 $f(x)$ rises right

Exercise

Determine the end behavior of the graph of the polynomial function $f(x) = -5x^5 - 16x^2 - 20x + 64$

Solution

Leading term: $-5x^5$ with 5^{th} degree (*n* is *odd*)

$$x \to -\infty \implies f(x) \to \infty$$
 $f(x)$ rises left

$$x \to \infty \implies f(x) \to -\infty$$
 $f(x)$ falls right

Exercise

Determine the end behavior of the graph of the polynomial function $f(x) = -3x^6 - 16x^3 + 64$

Solution

Leading term: $-3x^6$ with 6^{th} degree (n is even)

$$x \to -\infty \implies f(x) \to -\infty$$
 $f(x)$ falls left

$$x \to \infty \implies f(x) \to -\infty$$
 $f(x)$ falls right

Exercise

Determine the end behavior of the graph of the polynomial function $f(x) = 3x^6 - 16x^3 + 4$

Solution

Leading term: $3x^6$ with 6^{th} degree (n is even)

$$x \to -\infty \implies f(x) \to \infty$$
 $f(x)$ rises left

$$x \to \infty \implies f(x) \to \infty$$
 $f(x)$ rises right

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $f(x) = x^3 - x - 1$; between 1 and 2

Solution

$$f(1) = (1)^{3} - (1) - 1$$

$$= -1 \rfloor$$

$$f(2) = (2)^{3} - (2) - 1$$

$$= 5 \rfloor$$

Since f(1) and f(2) have opposite signs.

Therefore, the polynomial *has a real zero* between 1 and 2.

Exercise

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $f(x) = x^3 - 4x^2 + 2$; between 0 and 1

Solution

$$f\left(\mathbf{0}\right) = \left(\mathbf{0}\right)^3 - 4\left(\mathbf{0}\right)^2 + 2$$

$$= 2$$

$$f(1) = (1)^3 - 4(1)^2 + 2$$

= -1 |

Since f(0) and f(1) have opposite signs.

Therefore, the polynomial *has a real zero* between 0 and 1.

Exercise

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $f(x) = 2x^4 - 4x^2 + 1$; between -1 and 0

$$f(-1) = 2(-1)^{4} - 4(-1)^{2} + 1$$

$$= -1$$

$$f(0) = 2(0)^{4} - 4(0)^{2} + 1$$

Since f(0) and f(-1) have opposite signs.

Therefore, the polynomial *has a real zero* between -1 and 0.

Exercise

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $f(x) = x^4 + 6x^3 - 18x^2$; between 2 and 3

Solution

$$f(2) = (2)^4 + 6(2)^3 - 18(2)^2$$

= -8

$$f(3) = (3)^4 + 6(3)^3 - 18(3)^2$$

= 81

Since f(2) and f(3) have opposite signs.

Therefore, the polynomial *has a real zero* between 2 and 3.

Exercise

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $f(x) = x^3 + x^2 - 2x + 1$; between -3 and -2

Solution

$$f(-3) = (-3)^3 + (-3)^2 - 2(-3) + 1$$

= -11

$$f(-2) = (-2)^3 + (-2)^2 - 2(-2) + 1$$

= 1 |

Since f(-3) and f(-2) have opposite signs.

Therefore, the polynomial *has a real zero* between -2 and -3.

Exercise

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $f(x) = x^5 - x^3 - 1$; between 1 and 2

$$f(1) = (1)^5 - (1)^3 - 1$$

= -1

$$f(2) = (2)^5 - (2)^3 - 1$$

= 23 |

Since f(1) and f(2) have opposite signs.

Therefore, the polynomial *has a real zero* between 1 and 2.

Exercise

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $f(x) = 3x^3 - 10x + 9$; between -3 and -2

Solution

$$f(-3) = 3(-3)^3 - 10(-3) + 9$$

= -42

$$f(-2) = 3(-2)^3 - 10(-2) + 9$$

= 5

Since f(-3) and f(-2) have opposite signs.

Therefore, the polynomial *has a real zero* between -3 and -2.

Exercise

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $f(x) = 3x^3 - 8x^2 + x + 2$; between 2 and 3

Solution

$$f(2) = 3(2)^3 - 8(2)^2 + (2) + 2$$

= -4

$$f(3) = 3(3)^3 - 8(3)^2 + (3) + 2$$

= 14 |

Since f(2) and f(3) have opposite signs.

Therefore, the polynomial *has a real zero* between 2 and 3.

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $f(x) = 3x^3 - 8x^2 + x + 2$; between 1 and 2

Solution

$$f(1) = 3(1)^3 - 8(1)^2 + (1) + 2$$

= -2

$$f(2) = 3(2)^3 - 8(2)^2 + (2) + 2$$

= -4

Since f(1) and f(2) have same signs.

Therefore, cannot be determined.

Exercise

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $f(x) = x^5 + 2x^4 - 6x^3 + 2x - 3$; between 0 and 1

Solution

$$f(0) = (0)^5 + 2(0)^4 - 6(0)^3 + 2(0) - 3$$

= -3

$$f(1) = (1)^5 + 2(1)^4 - 6(1)^3 + 2(1) - 3$$

= -4

Since f(0) and f(1) have same signs.

Therefore, cannot be determined.

Exercise

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $P(x) = 2x^3 + 3x^2 - 23x - 42$, a = 3, b = 4

$$P(3) = 54 + 27 - 69 - 42$$

= -30

$$P(4) = 128 + 48 - 92 - 42$$

= 90

Since P(3) and P(4) have opposite signs.

Therefore, the polynomial *has a real zero* between 3 and 4.

Exercise

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $P(x) = 4x^3 - x^2 - 6x + 1$, a = 0, b = 1

Solution

$$P(0) = 1$$

$$P(1) = 4 - 1 - 6 + 1$$
$$= -2 \mid$$

Since P(0) and P(1) have opposite signs.

Therefore, the polynomial *has a real zero* between 0 and 1.

Exercise

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $P(x) = 3x^3 + 7x^2 + 3x + 7$, a = -3, b = -2

Solution

$$P(-3) = -81 + 63 - 9 + 7$$

= -20 |

$$P(-2) = -24 + 28 - 6 + 7$$

= 5 |

Since P(-3) and P(-2) have opposite signs.

Therefore, the polynomial *has a real zero* between -3 and -2.

Exercise

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $P(x) = 2x^3 - 21x^2 - 2x + 25$, a = 1, b = 2

$$P(1) = 2 - 21 - 2 + 25$$

= 4 |

$$P(2) = 16 - 84 - 4 + 25$$

= -47 |

Since P(1) and P(2) have opposite signs.

Therefore, the polynomial *has a real zero* between 1 and 2.

Exercise

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $P(x) = 4x^4 + 7x^3 - 11x^2 + 7x - 15$, a = 1, $b = \frac{3}{2}$

Solution

$$P(1) = 4 + 7 - 11 + 7 - 15$$

$$= -8$$

$$P(\frac{3}{2}) = 81 + \frac{189}{8} - \frac{99}{4} + \frac{21}{2} - 15$$

$$= 66 + \frac{189 - 198 + 84}{8}$$

$$= 66 + \frac{75}{8}$$

$$= \frac{603}{8}$$

Since P(1) and $P(\frac{3}{2})$ have opposite signs.

Therefore, the polynomial *has a real zero* between 1 and $\frac{3}{2}$.

Exercise

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $P(x) = 5x^3 - 16x^2 - 20x + 64$, a = 3, $b = \frac{7}{2}$

$$P(3) = 135 - 144 - 60 + 64$$

$$= -5$$

$$P(\frac{7}{2}) = \frac{1715}{8} - 196 - 70 + 64$$

$$= \frac{1715}{8} - 202$$

$$= \frac{99}{8}$$

Since P(3) and $P(\frac{7}{2})$ have opposite signs.

Therefore, the polynomial *has a real zero* between 3 and $\frac{7}{2}$.

Exercise

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $P(x) = x^4 - x^2 - x - 4$, a = 1, b = 2

Solution

$$P(1) = 1 - 1 - 1 - 4$$

= -5 |
 $P(2) = 16 - 4 - 2 - 4$
= 6 |

Since P(1) and P(2) have opposite signs.

Therefore, the polynomial *has a real zero* between 1 and 2.

Exercise

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $P(x) = x^3 - x - 8$, a = 2, b = 3

Solution

$$P(2) = 8 - 2 - 8$$

= -2 | $P(3) = 27 - 3 - 8$
= 16 |

Since P(2) and P(3) have opposite signs.

Therefore, the polynomial *has a real zero* between 2 and 3.

Exercise

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $P(x) = x^3 - x - 8$, a = 0, b = 1

$$P(0) = -8$$

$$P(1) = 1 - 1 - 8$$
$$= -8$$

Since P(0) and P(1) have same sign.

Therefore, cannot be determined.

Exercise

Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. $P(x) = x^3 - x - 8$, a = 2.1, b = 2.2

Solution

$$P(2.1) = P(\frac{21}{10})$$

$$= \frac{9261}{1000} - \frac{21}{10} - 8$$

$$= \frac{9261 - 2100 - 8000}{1000}$$

$$= -\frac{839}{1,000}$$

$$P(2.2) = P(\frac{2.2}{10})$$

$$= \frac{10,648}{1000} - \frac{22}{10} - 8$$

$$= \frac{10,648 - 2,200 - 8,000}{1000}$$

$$= \frac{448}{1,000}$$

$$= 0.448$$

Since P(2.1) and P(2.2) have opposite signs.

Therefore, the polynomial *has a real zero* between 2.1 and 2.2.