1179: Probability Lecture 2 — Sets, Probability Axioms, and Continuity of Probability Function

Ping-Chun Hsieh (謝秉均)

September 17, 2021

This Lecture

1. Set Operations

2. Probability Axioms

3. Continuity of Probability Functions

Reading material: Chapter 1.3-1.5

Review: Countable Union/Intersection

Let $S_1, S_2, S_3 \cdots$ be a sequence of sets

3.
$$\bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} S_n = \{x : x \in S_k, \text{ for infinitely many } k\}$$

4.
$$\bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} S_n = \{x : x \in S_k, \text{ for all except for finitely many } k\}$$

▶ Show: $\bigcup_{n=1}^{\infty} S_n = \{x : x \in S_k, \text{ for all except for finitely many } k\}$

(1)
$$\bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} S_n \subseteq A$$
Pick any $\chi \in \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} S_n$

k=1 n=k

There must be some k such that

$$(2) \quad A \subseteq \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} S_n$$

Then, y appears in almost all S_k except for finitely many k

De Morgan's Laws

Let S_1 , S_2 be two sets

1.
$$(S_1 \cup S_2)^c = S_1^c \cap S_2^c$$

$$2. \left(S_1 \cap S_2 \right)^c = S_1^c \cup S_2^c$$

Prove this by Venn diagram

De Morgan's Laws (General Case)

Let $S_1, S_2, S_3 \cdots$ be a sequence of sets

$$1. \left(\bigcup_{n} S_{n}\right)^{c} = \bigcap_{n} S_{n}^{c}$$

$$2. \left(\bigcap_{n} S_{n}\right)^{c} = \bigcup_{n} S_{n}^{c}$$

Axioms of Probability

1公理

Probability Axioms Simple fundamentals (definition)

- In a probabilistic model, we assign probability to events (How?)
- Axioms: rules to verify a probabilistic model
- Example: 8 axioms of vector space in linear algebra

Axiom	Meaning
Associativity of addition	$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
Commutativity of addition	$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
Identity element of addition	There exists an element $0 \in V$, called the <i>zero vector</i> , such that $\mathbf{v} + 0 = \mathbf{v}$ for all $\mathbf{v} \in V$.
Inverse elements of addition	For every $v \in V$, there exists an element $-v \in V$, called the <i>additive inverse</i> of v , such that $v + (-v) = 0$.
Compatibility of scalar multiplication with field multiplication	$a(b\mathbf{v}) = (ab)\mathbf{v}$ [nb 2]
Identity element of scalar multiplication	$1\mathbf{v} = \mathbf{v}$, where 1 denotes the multiplicative identity in F .
Distributivity of scalar multiplication with respect to vector addition	$a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
Distributivity of scalar multiplication with respect to field addition	$(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$

- Why are axioms useful?
- Can we prove axioms?

3 Axioms of Probability

A probability assignment is valid if:

- 1. $P(A) \ge 0$, for any event A(non-negativity)
- $2. P(\Omega) = 1$
- 3. A_1, A_2, \cdots is an infinite sequence of <u>mutually exclusive</u> events, then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

• Can we find
$$P(\emptyset) = ? \bigcirc (B_{3} 3)$$

- A_1, \dots, A_n are disjoint events, then $P(\bigcup_{i=1}^n A_i) = ? \sum_{i=1}^n P(A_i)$ (By

Examples: Probability Assignment

- Example: $\Omega = \{1,2,3,4\}$
 - $P(\{1,2\}) = 3/4$
 - $P(\{1,3,4\}) = 7/8$
 - $P(\{1,3\}) = 1/2$

$$P(\{4\}) = \frac{7}{8} - \frac{1}{2} = \frac{3}{8}$$

$$P(\{1,2,4\}) = \frac{3}{4} + \frac{3}{8} = \frac{9}{8} > 1$$
 (contradict to

► Can this be made a <u>valid</u> probability assignment? (axiom ≥)

• Example: $\Omega = \{0, 1, 2, 3 \dots \}$

$$P(\{k\}) = 2^{-k} \cdot |\cos(k\pi + \frac{\pi}{3})|, \text{ for all } k \implies \frac{\pi}{k} = 2$$

Can this be made a <u>valid</u> probability assignment? Yes

Useful Properties

Prove the following properties by the axioms of probability:

$$P(A^c) = 1 - P(A)$$

$$P(A) = P(A - B) + P(A \cap B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

• If $A \subseteq B$, then $P(A) \le P(B)$

Union Bound

For any events A_1, A_2, \dots, A_n , we have

$$P(\bigcup_{n=1}^{N} A_n) \le \sum_{n=1}^{N} P(A_n)$$

Intuition:

Proof: HW1 problem

Discrete Uniform Probability Law

Theorem: Let Ω be the sample space of an experiment. If Ω has N elements that are <u>equally likely</u> to occur, then for any event A of Ω , we have

$$P(A) = \frac{\text{Number of elements in A}}{N}$$

How to verify this by using the axioms?

Example: Probability of Rain

Experiment for probability of rain forecast:

例	降水量
1	0.1mm
2	0.0mm
3	4.8mm
4	0.3mm
5	0.0mm
6	1.2mm
7	0.0mm
8	2.4mm
9	0.9mm
10	0.5mm

- Procedure: Collect all historical data points of <u>similar</u> weather condition
- Model: All data points are equally likely to occur
- ► The rainy event = $\{rainfall \ge 1mm\}$
- P(rainy event) = ?

Example: The Lottery of Birth

- Sample space = ?
- Probability assignment?
- ► P(born in Taiwan) = ?

Veil of ignorance

John Rawls

Continuity of Probability Functions

Probability Assignment is a Function of Events

Events $P(\cdot)$ Real Numbers

▶ The function $P(\cdot)$ needs to satisfy the 3 axioms

Review: Continuity of Functions

- What is a continuous function?
- Example: $f(x) = \sin(x)$ Example: $f(x) = \lfloor x \rfloor$

Definition: A function $f: \mathbb{R} \to \mathbb{R}$ is **continuous** on \mathbb{R} if and only if, for every convergent sequence $\{x_n\}_{n=1}^{\infty}$ with limit $\lim_{n\to\infty} x_n = x$, we have: $\lim_{n\to\infty} f(x_n) = f(x)$

Continuity of Probability Function

- A sequence of events E_1, E_2, \cdots is **increasing** if

$$E_1 \subseteq E_2 \subseteq \cdots \subseteq E_n \subseteq E_{n+1} \subseteq \cdots$$

Theorem: For any increasing sequence of events

$$E_1, E_2, \cdots$$
, we have

$$\lim_{n\to\infty} P(E_n) = P(\lim_{n\to\infty} E_n)$$

Is this trivial? Do we need a proof?

Issue: Interchange of limiting operations

Interchange of Limiting Operations

Example:
$$f_n(x) = (\sin nx)/\sqrt{n}, \ n = 1,2,3,\cdots$$
Do we have $\lim_{n \to \infty} \frac{d}{dx} f_n(x) = \frac{d}{dx} \Big(\lim_{n \to \infty} f_n(x)\Big)$?

Interchange of Limiting Operations (Cont.)

Example:
$$f_n(x) = \begin{cases} n, & \text{if } x \in (0, \frac{1}{n}) \\ 0, & \text{otherwise} \end{cases}$$
Do we have $\lim_{n \to \infty} \int_0^1 f_n(x) dx = \int_0^1 \Big(\lim_{n \to \infty} f_n(x)\Big) dx$?

Proof: Continuity of Probability Function

Theorem: For any increasing sequence of events

$$E_1, E_2, \cdots$$
, we have
$$\lim_{n \to \infty} P(E_n) = P(\lim_{n \to \infty} E_n)$$

Proof:

1-Minute Summary

1. Set operations

Countable union / intersection and De Morgan's laws

2. Probability Axioms

- 3 axioms
- Valid probability assignments

3. Continuity of Probability Functions

- Increasing sequence of events
- Interchange of limiting operations