Guía de Trabajos Prácticos. TP1

Andrés F. Brumovsky 7/2020

Índice

1.	Obj	etivos	2
2.	Ejer	ccicios	:
	2.1.	Descripción de la tarea	
	2.2.	Crear la estación de trabajo	
		2.2.1. Mesa con agujero	
		2.2.2. Perno	
	2.3.	Crear la herramienta	
	2.4.	Simular interacción entre pinza y perno	
		2.4.1. Configurar E/S	
		2.4.2. Configurar acción de la E/S	
	2.5.	Crear conjunto de colisión	

1. Objetivos

- Aprender a definir una celda de trabajo simple.
- Descubrir las ventajas que brinda la programación estructurada de robots.
- Aprender a utilizar las ternas en forma conveniente, y adquirir práctica con las transformaciones entre ellas.

2. Ejercicios

Realizar una tarea de inserción de un perno en un agujero. Primeramente deberán crearse en la celda de trabajo los elementos para interactuar: La mesa con el agujero y el perno. Luego deberá configurarse una salida digital para simular la acción de una pinza que tome el perno.

2.1. Descripción de la tarea

La tarea deberá realizarse tomando al perno de dos maneras distintas, vertical (fig. 1) y lateralmente (fig. 2) en relación al eje del mismo.

Figura 1: Toma vertical

2.2. Crear la estación de trabajo

2.2.1. Mesa con agujero

Para crear la mesa con un agujero hacemos uso de geometrías básicas y de operaciones simples de Unión y Resta.

Figura 2: Toma lateral

 \blacksquare Pieza_1: Modelado \to Sólido \to Tetraedro

Punto de esquina: [300, -400, -80]

Longitud: 365 Anchura: 405 Altura: 340

 \blacksquare Pieza_2: Modelado \to Sólido \to Cilindro

Punto central de la base: [600, -60, 160]

Diámetro: 7 Altura: 100

■ Pieza_3: Modelado \rightarrow Sólido \rightarrow Cono

 $Punto \, central \, de \, la \, base: [600, -60, 260]$

Orientación: [180,0,0]

Diámetro: 10 Altura: 10

• Acciones:

Pieza_4: Unión \rightarrow (Pieza_2 - Body) ...y (Pieza_3 - Body)

NOTA: Destildar "Conservar Original"

Pieza_5: $\mathbf{Restar} \to (\text{Pieza_1} - \text{Body}) \dots y \text{ (Pieza_4} - \text{Body})$

NOTA: Destildar "Conservar Original"

Renombrar Pieza_5 \rightarrow Mesa

2.2.2. Perno

Para el perno hacemos también uso de geometrías y funciones básicas.

■ **Pieza_1:** Modelado \rightarrow Sólido \rightarrow Cilindro

Punto central de la base: [400, 80, 130]

Orientación: [-90,0,0]

Diámetro: 6 Altura: 100

■ Pieza_2: Modelado \rightarrow Sólido \rightarrow Cilindro

Punto central de la base: [400, 100, 130]

Orientación: [-90,0,0]

Diámetro: 20 Altura: 35

• Acciones:

Pieza_4: Unión \rightarrow (Pieza_1 - Body) ...y (Pieza_2 - Body)

NOTA: Destildar "Conservar Original"

2.3. Crear la herramienta

Para la herramienta (pinza) utilizaremos la representación por defecto de RS

lacktriangle Modelado ightarrow Crear Herramienta

Nombre: Pinza

Tildar: "Usar Pieza simulada"

Masa: 0.5 Kg. COG: [0, 0, 100] MOI: [0, 0, 0]

• Click en "Siguiente"

Posici**ó**n: [0, 0, 137]

Orientación: [0, 0, -22.5]

- Click en " -> "
- Click en "Terminado"

Hasta este punto la herramienta está creada pero aparece en la base del robot. Para asociarla a la brida del robot ir al panel izquierdo y bajo la pestaña de diseño buscar la herramienta creada ("Pinza") y hacer:

 $Click\ derecho \rightarrow Conectar\ a \rightarrow IRB140_6_....$

NOTA: Dar "Sí" al mensaje de actualizar la posición de la herramienta.

2.4. Simular interacción entre pinza y perno

Por el momento tenemos una estación de trabajo simulada y una herramienta. Pero necesitamos generar la posibilidad de interacción entre el robot y el entorno creado. Para eso hacemos uso de las Entradas/Salidas del robot, que deberán ser configuradas. Esto deberá realizarse a través del Flex Pendant.

2.4.1. Configurar E/S

$\mathbf{Controlador} \to \mathbf{Virtual} \ \mathbf{Flex} \ \mathbf{Pendant}$

Pasar el robot a Modo Manual.

Sobre las tres líneas horizontales de la esquina superior izquierda hacer "Click":

lacksquare Control Panel o Configuration o Signal (doble click)

Add

Name: DO_Pinza

Type Of Signal: Digital Output

Access Level: All

$\mathbf{Controlador} \to \mathbf{Reiniciar}$

2.4.2. Configurar acción de la E/S

Ahora, hay que configurar la acción que tendrá la Salida Digital recién definida:

Acción: Tomar

Simulación $\rightarrow Configurar \rightarrow Gestor de Eventos (flechita a la derecha)$

■ Añadir

Activación: Activado

Tipo de disparo de Eventos: Señales de E/S cambiadas

• Click en "Siguiente"

Nombre de señal: DO_Pinza

Origen de señal: Controlador Activo

Condición de disparador: Señal con TRUE ("1")

• Click en "Siguiente"

Seleccionar tipo de acción: Conectar Objeto

• Click en "Siguiente"

Conectar objeto: Perno

Conectar a: Pinza

Conservar posición

Finalizar

Acción: Soltar

Simulación → Configurar → Gestor de Eventos (flechita a la derecha)

■ Añadir

Activación: Activado

Tipo de disparo de Eventos: Señales de E/S cambiadas

• Click en "Siguiente"

Nombre de señal: DO_Pinza

Origen de señal: Controlador Activo

Condición de disparador: Señal con FALSE ("0")

■ Click en "Siguiente"

Seleccionar tipo de acción: Conectar Objeto

• Click en "Siguiente"

Desconectar objeto: Perno

Desconectar de: Pinza

Conservar posición

• Finalizar

Para probar que efectivamente hace lo que corresponde ir a:

Simulación → Simulador de E/S

Y en el panel que aparece a la derecha configurar:

$\mathbf{Filtro} \to \mathbf{Salidas} \ \mathbf{digitales}$

Ahí puede verse la señal creada DO_Pinza y clickeando sobre la misma cambiarle su estado. Esto, en correspondencia, deberá conectar y desconectar el perno de la pinza.

2.5. Crear conjunto de colisión

Para verificar si existe alguna colisión al insertar el perno debemos explicitar los objetos que deben ser supervisados. Para esto hacemos:

Simulación \rightarrow Crear Conjunto de Colisión

Luego, sobre el panel izquierdo, arrastrar el objeto "Perno" a "Objetos A" y el objeto "Mesa" a "Objetos B".

Haciendo "click derecho" sobre el "Conjunto de colisión_1" entramos a "Modificar Conjunto de Colisión..." y ahí podemos modificar el valor, en mm, de "casi colisión".