Logique et Théorie des Ensembles Série 05-B

Automne 2024 Série 05-B Buff Mathias

Exercice 1. Nier la proposition : "Tous les étudiants de la faculté des Sciences qui ont les yeux marron auront 6 à tous leurs examens et prendront leur retraite avant 50 ans."

"Il existe un étudiant de la faculté des Sciences qui a les yeux marron et qui n'aura pas 6 à un de ses examens ou qui prendra sa retraite après 50 ans."

(C'est sûrement Philippe)

Exercice 2. Les assertions suivantes sont-elles vraies ou fausses? Donner leur négation.

- 1. $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y > 0$
- 2. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y > 0$
- 3. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y > 0$
- 4. $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y > 0$
 - 1. FAUSSE.

Négation : $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y \leq 0$

2. VRAIE.

Négation : $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y \leq 0$

3. FAUSSE.

Négation : $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y \leq 0$

4. VRAIE.

Négation : $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y \leq 0$

Exercice 3. Écrire la négation des assertions suivantes :

- 1. $\forall x, y \in E, xy = yx$
- 2. $\exists x \in E, \forall y \in E, xy = yx$
- 3. $\forall a, b \in A, [ab = 0 \implies (a = 0 \text{ ou } b = 0)]$
- 4. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, [x < y \implies f(x) < f(y)]$
- 5. $\forall \varepsilon > 0, \exists N \in \mathbb{N}, [n \ge N \implies |u_n \ell| < \varepsilon]$
- 6. $\exists \ell \in \mathbb{R}, \forall \varepsilon > 0, \exists N \in \mathbb{N}, [n \geq N \implies |u_n \ell| < \varepsilon]$
 - 1. $\exists x, y \in E, xy \neq yx$
 - 2. $\forall x \in E, \exists y \in E, xy \neq yx$
 - 3. $\exists a, b \in A, [ab = 0 \text{ et } (a \neq 0 \text{ et } b \neq 0)]$
 - 4. $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, [x < y \text{ et } f(x) \ge f(y)]$
 - 5. $\exists \varepsilon > 0, \forall N \in \mathbb{N}, [n \geq N \text{ et } |u_n \ell| \geq \varepsilon]$
 - 6. $\forall \ell \in \mathbb{R}, \exists \varepsilon > 0, \forall N \in \mathbb{N}, [n \geq N \text{ et } |u_n \ell| \geq \varepsilon]$

Exercice 4. Expliquer verbalement ce que signifient les assertions suivantes et écrire leur négation.

- 1. $\forall n \geq 0, u_n < u_{n+1}$ (où (u_n) est une suite réelle)
- 2. Soit $f: E \to \mathbb{R}$ une fonction :
 - (a) $\exists C \in \mathbb{R}, \forall x \in E, f(x) = C$
 - (b) $\forall x \in E, [f(x) = 0 \implies x = 0]$
 - (c) $\forall y \in \mathbb{R}, \exists x \in E, f(x) = y$
 - (d) $\forall x \in E, \forall y \in E, [f(x) = f(y) \implies x = y]$
 - (e) $\exists A \in \mathbb{R}, \forall x \in E, f(x) \leq A$
 - 1. " (u_n) es strictement croissante" Négation : $\exists n \geq 0, u_n \geq u_{n+1}$
 - 2. (a) "f est constante (en C)"

Négation : $\forall C \in \mathbb{R}, \exists x \in E, f(x) \neq C$

- (b) "f(x) = 0 uniquement pour x = 0" Négation : $\exists x \in E, [f(x) = 0 \text{ et } x \neq 0]$
- (c) "f est surjective" Négation : $\exists y \in \mathbb{R}, \forall x \in E, f(x) \neq y$
- (d) "f est injective"

Négation : $\exists x \in E, \exists y \in E, [f(x) = f(y) \text{ et } x \neq y]$

(e) "f est majorée (par A)" Négation : $\forall A \in \mathbb{R}, \exists x \in E, f(x) > A$

Exercice 5. Soit E un ensemble et P(x) des prédicats indexés par $x \in E$. Écrire l'assertion $\exists ! x \in E, P(x)$ à l'aide des quantificateurs \exists et \forall . Puis écrire la négation de cette assertion.

 $\exists ! x \in E, P(x) : Il \ existe \ un \ x \ pour \ lequel \ P(x) \ sont \ vrais, \ et \ ce \ x \ est \ unique \\ \iff \exists x \in E, P(x) \ \text{et} \ [\forall y \in E, P(y) \ \Longrightarrow \ x = y]$

Négation : Soit il n'existe aucun x pour lequel P(x) sont vrais, soit x n'est pas unique $\iff \forall x \in E, \neg P(x) \text{ ou } [\exists y \in E, P(y) \text{ et } x = y]$