Digital Watermarking and Steganography

by Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, Ton Kalker

Chapter 4. Basic Message Coding

Lecturer: Jin HUANG

4.1 Mapping Messages into Message Vectors

Overview

One bit only to more complicated message.

- Source coding: maps messages into sequences of symbols.
 - Direct message coding
 - Code separation
- Modulation: maps sequences of symbols into physical signals.
 - Time-division multiplexing
 - Space-division multiplexing
 - Frequency-division multiplexing
 - Code-division multiplexing

Direct Message Coding

A unique, predefined message mark $w \in \mathcal{W}$ to represent each message $m \in \mathcal{M}$.

• One-one mapping: $|\mathcal{W}| = |\mathcal{M}|$.

Detector: maximum likelihood detection

• w(m) with the highest detection value.

Design of ${\mathcal W}$

- False positive rate
- Fidelity
- Robustness
- ...

Code separation: far away from each other.

To avoid confusion

Correlation in \mathcal{W}

- Low correlations with one another: good.
- Negative correlation with one another: better.
 - Embedding one decreases the other.
 - E.g. $m = \{0, 1\} \Rightarrow (2m 1) = \{1, -1\}.$

More Messages

Placing $|\mathcal{M}|$ points on the surface of an N-dimensional sphere.

Three message mark vectors in a two-dimensional plane of marking space.

Low Dimension

 $N \leq |\mathcal{M}|$: randomly generated codes are good.

Three-message vectors in three-dimensional space.

High Dimension

 $N \gg |\mathcal{M}|$: close to be orthogonal.

Three-message vectors in 256-dimensional space.

The Use of "Orthogonal"

Multiple messages in a work for

Linear correlation.

Multisymbol Message Coding

Direct message coding is not efficient

- Detect for all marks.
- For a 16 bit information: 65536.
- Detector: compare with 65536 marks.

Multisymbol Message Coding!

Sequence of Symbols

Giving an alphabet A, a length L sequence:

- $|\mathcal{A}|^L$ different messages.
- Sequence: the order is important!
- Direct message coding: L = 1.

16 bit information

- $|\mathcal{A}|^1 = 65536$ for direct message coding.
- $|\mathcal{A}|^8 = 65536$ for 4-symbol 8-length coding.
 - For each index/order: compare with 4 marks.

The Index/Order

- Time-division multiplexing
- Space-division multiplexing
- Frequency-division multiplexing
- Code-division multiplexing

Time- and Space-Division Multiplexing

Divide the work into disjoint regions

- In space or time
- One symbol in each part.

Samples: A length 4 sequence.

- Audio: 4 clips in 1/4 length.
- Image: 4 blocks in 2×2 layout.

Frequency-Division Multiplexing

Disjoint bands in the frequency domain

- One symbol in each band.
- Frequency domain
 - Basis $\Phi[i]$: $\mathbf{f} = \sum_i \mathbf{x}[i]\Phi[i] = \Phi\mathbf{x}$.
 - Decomposition: $\mathbf{x} = \Phi^{-1}\mathbf{f}$.
 - Marking space
 - ullet via a linear transformation ${\mathcal T}$ from media space.

Samples:

- Audio: Fourier Transform
- Image: Discrete Cosine Transform

Code-Division Multiplexing

A table W_{AL} in index and alphabet.

• $L \times |\mathcal{A}|$ reference marks.

Requirements on $\mathcal{W}_{\mathcal{AL}}$

Marks in \mathbf{w}_m :

- m[i] and m[j] have little correlation.
 - Close to orthogonal: concurrent presence.

$$\mathcal{W}_{\mathcal{AL}}[i,a]\cdot\mathcal{W}_{\mathcal{AL}}[j,b]\to 0, \text{if } i\neq j.$$

- Only one symbol in a index.
 - Negative correlation: distinguishable.

$$\mathcal{W}_{\mathcal{AL}}[i,a] \cdot \mathcal{W}_{\mathcal{AL}}[i,b] \to -1, \text{if } a \neq b.$$
 (1)

Distortion via shifting Δ

Low cross-correlations

$$\mathcal{W}_{\mathcal{AL}}[i,a] \cdot \mathcal{W}_{\mathcal{AL}}[j+\Delta,b] \to 0, \text{ if } i \neq j.$$

Equivalence to Time-Division

Pad the marks with zeros

Equivalence to Space-Division

Pad the marks with zeros

Equivalence to Frequency-Division

Convert symbols in each band back to the temporal or spatial domains.

If the transform is linear:

- Overlap in time or space.
- But zero correlation.

E_SIMPLE_8/D_SIMPLE_8 1

8-bit integer: length 8 binary string,

$$L = 8, |A| = 2.$$

- At each position
 - Distinguishable: negative correlation.
 - $\mathcal{W}_{\mathcal{AL}}[i,1] = \mathbf{w}_{ri} = -\mathcal{W}_{\mathcal{AL}}[i,0].$
- Among positions
 - Gaussian distributions with zero mean.
- Normalize \mathbf{w}_m to unit length.

Project: System 4

E_SIMPLE_8/D_SIMPLE_8

Embedder

$$c_w = \mathbf{c}_o + \alpha \mathbf{w}_m$$

Detector

- For each i: check \mathbf{w}_{ri} .
- If is not watermarked
 - The output message is random. read 4.3

Performance

- 6 8-bit integers in each of 2000 images.
 - Larger embedding strength $\alpha = 2$.
 - The message pattern is scaled to have unit standard deviation, thus $\alpha/\sqrt{8}$.
 - 26 out of 12000 are wrong: confused by $m_a, m_b, a \neq b$.
 - Reason:
 - Maximum correlation between two different message vectors is high.

Presentation: Hamming

- Hamming distance.
- Hamming code.
- Strategy of using Hamming code in watermark

4.2 Error Correction Coding

Motivation

In the set of all multisymbol sequences S.

• $\mathbf{w}_{m_a}, \mathbf{w}_{m_b}, m_a, m_b \in \mathcal{S}, a \neq b$ may be similar.

Sample

•
$$L = 3, |\mathcal{A}| = 4, \mathcal{W}_{\mathcal{AL}}[i, j] \cdot \mathcal{W}_{\mathcal{AL}}[i, j] = N$$

•
$$\mathbf{w}_{312} = \mathcal{W}_{\mathcal{AL}}[1,3] + \mathcal{W}_{\mathcal{AL}}[2,1] + \mathcal{W}_{\mathcal{AL}}[3,2].$$

$$\bullet \mathbf{w}_{314} = \mathcal{W}_{\mathcal{AL}}[1,3] + \mathcal{W}_{\mathcal{AL}}[2,1] + \mathcal{W}_{\mathcal{AL}}[3,4].$$

Inner product:

$$\mathcal{W}_{\mathcal{A}\mathcal{L}}[i,a] \cdot \mathcal{W}_{\mathcal{A}\mathcal{L}}[j,b] = 0, \quad i \neq j$$

$$\implies \mathbf{w}_{312} \cdot \mathbf{w}_{314} = \mathcal{W}_{\mathcal{A}\mathcal{L}}[1,3] \cdot \mathcal{W}_{\mathcal{A}\mathcal{L}}[1,3]$$

$$+ \mathcal{W}_{\mathcal{A}\mathcal{L}}[2,1] \cdot \mathcal{W}_{\mathcal{A}\mathcal{L}}[2,1]$$

$$+ \mathcal{W}_{\mathcal{A}\mathcal{L}}[3,2] \cdot \mathcal{W}_{\mathcal{A}\mathcal{L}}[3,4]$$

$$\geq N + N - N = N$$

h different symbols in a length L sequence

$$(L-2h)N$$
.

The Idea of Error Correction Codes

Decompose all possible sequences \mathcal{S} into $\mathcal{S}_c \cup \bar{\mathcal{S}}_c$.

- \circ \mathcal{S}_c : Code words
 - Messages to encode.
 - Well separate to each other.
- \bar{S}_c : Corrupted code words
 - Polluted messages.
 - Associated with the closest code word.

 $\mathcal{S}_c \cup \bar{\mathcal{S}}_c$

Error Correction Code (ECC)

To preserve the capacity

- Increase the length of sequence.
- Expand the alphabet.

Increase the Length of Sequence

Sample

- ullet 4-bits message set ${\cal M}$
 - Length 4 binary sequence, 16 messages.
- ullet 7-bits word space ${\cal S}$
 - Length 7 binary sequence, 128 words.
 - $|S_c| = |\mathcal{M}| = 16$.
 - $a, b \in \mathcal{S}_c, a \neq b$ have at less 3 different bits.
 - Why 3? Flip one bit for each of the two.
 - Decode $s \in \mathcal{S}$: find $c \in \mathcal{S}_c$ has at most one different bit.

Question: ECC

What is the minimal length of a sequence that can be used as ECC for a length L binary sequence with h bit error tolerance.

Performance

Without ECC

- Length 4, 1 bit difference for different message.
- Min inner product: $N(4-2\times 1)=2N$.

With ECC

- Length 7, at least 3 bit differences for different message.
- Min inner product: $N(7-2\times 3)=N$.

Expand the Alphabet

From
$$|\mathcal{A}| = 2$$
 to $|\mathcal{A}'| = 4$.

- Less typical.
- Equivalent to increase length in capacity.
- But different in modulation.

Trellis Codes

Modulation

- Increase length to 4L.
- Expand the alphabet to contain $2^4 = 16$ symbols.

Viterbi Decoding

- A greedy method to find most closest code.
- Based on Trellis diagram.

Performance of E_TRELLIS_8/D_TRELLIS_8

The same to E_SIMPLE_8/D_SIMPLE_8:

- 8-bit message instead of 4-bit.
 - Pad two more zero at the end: 10-bit indeed.
 - More redundancy: a priory for accuracy.
- 6 integers in each of 2000 images.

Much better accuracy

• 1 out of 12000 is wrong.

4.3 Detecting Multisymbol **Watermarks**

False Positive

If there is no watermark

- Direct message encoding
 - The most likely one is still poor in correction.
- Multisymbol system:
 - The corrections for all the symbols are not good enough.
 - How to define "good".

Valid Messages

An intelligible message or a garbage.

- Checksum for verification
 - 16-bits message: m.
 - 9-bits checksum: c = m[1:8] + m[9:16].
 - 25-bits watermarking: (m, c).
- Detector
 - Extractor 25-bits watermarking (m, c).
 - Compare c and m[1:8] + m[9:16].
- False positive probability: $P_{fp} = \frac{1}{2^9}$.

Individual Symbols 1

All symbols are reliable (high correlated).

Watermark presence.

2-bit system in linear correlation.

Individual Symbols 2

False positive probability

- Single reference mark: P_{fp0} .
- In each index/position/order
 - If one mark in A

$$P_{fp1} \approx |\mathcal{A}| P_{fp0}.$$

- For the whole length L sequence.
 - All of them is high

$$P_{fp} = (P_{fp1})^L \approx (|\mathcal{A}|P_{fp0})^L.$$

Normalized Correlation 1

- Multiple-symbol embedding
 - \mathbf{w}_{ri} orthogonal to each other and unit.

$$\mathbf{v}_L = \mathbf{v}_o + \sum_{i=1}^L \mathbf{w}_{ri}, \quad \|\mathbf{v}_L\| \approx \sqrt{L}.$$

Linear correlation: independent of L

$$z_{lc}(\mathbf{v}_L, \mathbf{w}_{r1}) = \mathbf{v}_o \cdot \mathbf{w}_{r1} + \mathbf{w}_{r1} \cdot \mathbf{w}_{r1} = \varepsilon + 1.$$

Normalized correlation: difficult for larger L

$$z_{nc}(\mathbf{v}_L, \mathbf{w}_{r1}) = \frac{\mathbf{v}_L}{\|\mathbf{v}_L\|} \cdot \mathbf{w}_{r1} = \frac{\varepsilon + 1}{\sqrt{L}}.$$

Normalized Correlation 2

Less distinguishable.

- Large threshold: none is correlated enough, no symbol found.
- Small threshold: High false positive probability.

Geometric Interpretation

Large threshold: no overlap for the cones.

No detectable 2-bit message.

Reencode

- \bullet Extract message m.
- 2 Reencode m into mark \mathbf{v}_m .
- Test the presence of \mathbf{v}_m

False Positive Probability

When the detection regions for the different messages do not overlap,

$$P_{fp} = |\mathcal{M}| P_{fp0}.$$

E_BLK_8/D_BLK_8

8-bit message:

- Trellis code with two padding 0 at the end.
 - A sequence of 10 symbols drawn from a 16-symbol alphabet.
- Reference marks:
 - 8×8 (block): low dimensional mark space.
 - So choose seed to reduce max correlation (0.73).
- Embedding strength $\alpha = 2$.
- $\tau_{cc} = 0.65$: false positive probability 10^{-6} .

Performance

- 2000 unwatermarked images (dashed line).
 - No false positive found.
- 12000 unwatermarked images (solid line).
 - ullet 6 messages imes 2000 images.
 - 109 fail: effectiveness 99%.

Project: System 6

E_BLK_8/D_BLK_8

- marking space: 8 x 8 block
- 8-bit message.
- ECC: hamming or optional.
- Reencode check.

Presentation: 7.6 Analysis of Normalized Correlation

Approximate Gaussian Method

- False Positive Analysis
- False Negative Analysis