Lecture 2 11/10/21 Z = OC + iy Z* = OC - iy (Z.Z)*=Z*.Z1* $(z \cdot z)^* = (z^*)^2 (z^n)^* = (z^*)^n$ f(z*) = [f(z)]* $= \frac{12}{2}$ $= \frac{12}{2}$ 121 = Joc2 + y2 (2) = radius = r properties of 121: |Z, · Zz| = Z, · Zz · (Z, · Zz)* = Z, Zz Z, * Z, * = |Z, |2 · |Zz|2 12,0221 = 12,01221 in natural nomber inequalities are easy C4> 2C3 2C, CZ2 does this make sense for complex

	for example, which is larger:
	3-20 or 5+0
	Suggestion:
	2,>22 if 2,1> Z21
	Suggestion: Z,>Zz if Z, > Zz DOESN'T work!! apply to regalise ripiders! we do not have any way to establish
0 0	we do not have ony aby to establish which complere rembers is bigger.
	Inequalities Involving 121:
	-121 < Re(z) < 121
	-121 5 Im(2) 5 121
	Z = \(\int 2 + y^2 = \left(Re(Z) \right)^2 + \(\text{Im(Z)}\right)^2
	Triangle Inequality:
OAY	Z, + Z2 \ Z, + Z2
	Triangle Inequality: $ Z_1 + Z_2 \le Z_1 + Z_2 $ Proof: $ Z_1 + Z_2 ^2 = (Z_1 + Z_2)(Z_1^* + Z_2^*)$ $= Z_1 Z_1^* + Z_2 Z_2^* + Z_1 Z_2^* + Z_1^* Z_2$ $= Z_1 ^2 + Z_2 ^2 + 2 Z_2^* + (Z_1 Z_2^*)^*$ $= Z_1 ^2 + Z_2 ^2 + 2 Z_2^* + (Z_1 Z_2^*)^*$
	= Z, Z, + Z, Z, + Z, Z, + Z, Z, + Z, Z, Z, + Z, Z, Z, + Z,
	$= Z_1 ^2 + Z_2 ^2 + Z_1 Z_2^* + (Z_1 Z_2^*)^*$ $= Z_1 ^2 + Z_2 ^2 + 2 Re(2 Z_1 Z_2^*)$

Pe(2,2*) 5/2,22* 12,2x = 12,10 | 2x = 1 = 12,1122 how? 121= Jx2+42 12+1= DC2+(-4)2 = 121 Re(2,22*) < 12,1/22 $|Z_1+Z_2|^2 \leq (|Z_1|+|Z_2|)^2$ |Z1+Z2| < |Z1| + |Z2| where is the triangle? complex plane 1 y = Im(2) 70 Z(X14) >x=Re(2) grow complex adultion

23=21+22 22 6 this is the triangle inequality = /22+42 length of vector from (0,0) to how else on we show complex no? > Re(2) x=10000 y=rsin0 0 = tan-1(2) 0= ary(2) Cets do something we vectors, multiple them. cot do with

