Fundamentele limbajelor de programare

Traian Florin Şerbănuță și Andrei Sipoș

Facultatea de Matematică și Informatică, DL Info, Anul II Semestrul II, 2024/2025

Clauze și scopuri

Reamintim că o clauză (definită) era o formulă de forma

$$\forall (A_0 \vee \neg A_1 \vee \ldots \vee \neg A_m),$$

unde A_0, \ldots, A_m erau formule atomice relaționale, un **program** era o mulțime finită de clauze, iar un **scop** era o formulă de forma

$$\forall (\neg A_1 \vee \ldots \vee \neg A_m).$$

Formula de mai sus este echivalentă semantic cu

$$\neg \exists (A_1 \land \ldots \land A_m),$$

care corespunde intuitiv ideii de a căuta o soluție.

Pentru orice formulă fără cuantificatori φ și orice substituție θ , notăm cu $\varphi\theta$ formula care se obține din φ aplicând pe θ pe toate variabilele sale libere.

Regula rezoluției

Fie G, G' scopuri și C clauză cu $Var(G) \cap Var(C) = \emptyset$. Fie m, $k \in \mathbb{N}$ astfel încât $G = \forall (\neg A_1 \lor \ldots \lor \neg A_m)$ și $C = \forall (B_0 \lor \neg B_1 \lor \ldots \lor \neg B_k)$. Considerăm B_0 ca fiind de forma $p(t_1,\ldots,t_n)$. Fie $i \leq m$ astfel încât A_i este de forma $p(s_1,\ldots,s_n)$. Fie θ un cgu al lui A_i și B_0 , adică al mulțimii $\{s_1 = t_1,\ldots,s_n = t_n\}$. Spunem că G' este **derivat prin rezoluție** din G, C și θ , și notăm $(G,C,\theta) \rhd G'$, dacă

 $G' = \forall (\neg A_1 \lor \ldots \lor \neg A_{i-1} \lor \neg B_1 \lor \ldots \lor \neg B_k \lor \neg A_{i+1} \lor \ldots \lor \neg A_m)\theta.$

De acum încolo, vom fixa P un program.

Derivări

Fie $a \in \mathbb{N}^* \cup \{\mathbb{N}\}$. Numim o P-derivare (prin rezoluție) un triplet $((G_i)_{i < a}, (C_i)_{i+1 < a}, (\theta_i)_{i+1 < a})$, astfel încât, pentru orice i cu i+1 < a, C_i este o clauză obținută dintr-o clauză din P prin redenumirea variabilelor sale și $(G_i, C_i, \theta_i) \triangleright G_{i+1}$.

Fie $n \in \mathbb{N}^*$ și $((G_i)_{i < n}, (C_i)_{i+1 < n}, (\theta_i)_{i+1 < n})$ o P-derivare. Spunem că **substituția calculată** a sa este $\widetilde{\theta}_{n-2} \circ \ldots \circ \widetilde{\theta}_1 \circ \theta_0$.

Fie G un scop, $n \in \mathbb{N}^*$ și $((G_i)_{i < n}, (C_i)_{i+1 < n}, (\theta_i)_{i+1 < n})$ o P-derivare cu $G_0 = G$ și $G_{n-1} = \bot$. Atunci spunem că derivarea este o P-respingere a lui G, iar substituția sa calculată spunem că este o P-soluție a lui G.

Fie G un scop, $n \in \mathbb{N}^*$ și $((G_i)_{i < n}, (C_i)_{i+1 < n}, (\theta_i)_{i+1 < n})$ o P-derivare cu $G_0 = G$ și $G_{n-1} \neq \bot$ care nu admite o prelungire la una de lungime n+1. Atunci spunem că derivarea este o P-derivare eșuată a lui G.

Teorema de corectitudine

Teorema de corectitudine

Fie $m \in \mathbb{N}^*$, A_1, \ldots, A_m formule atomice relaționale și θ o P-soluție a lui $\forall (\neg A_1 \lor \ldots \lor \neg A_m)$. Atunci $P \models \forall (A_1 \land \ldots \land A_m)\theta$.

Demonstrație

Demonstrăm după lungimea P-respingerii. Pasul de bază are loc atunci când avem o singură aplicare a rezoluției, așadar trebuie să avem m=1, iar clauza folosită are tot lungime 1, fie ea $\forall B_0$. Atunci θ este cgu pentru A_1 și B_0 , deci $A_1\theta=B_0\theta$. Cum $\forall B_0$ este o redenumire a unei clauze din P, avem $P\models \forall B_0$, deci $P\models \forall B_0\theta$, așadar $P\models \forall A_1\theta$, ceea ce trebuia demonstrat.

Teorema de corectitudine

Demonstrație (cont.)

Pentru pasul de inducție, notăm cu $((G_i)_{i < n}, (C_i)_{i+1 < n}, (\theta_i)_{i+1 < n})$ P-respingerea. Luăm C_0 de forma $\forall (B_0 \lor \neg B_1 \lor \ldots \lor \neg B_k)$ și fie i astfel încât θ_0 este cgu al lui A_i și B_0 . Așadar, G_1 este

$$\forall (\neg A_1 \lor \ldots \lor \neg A_{i-1} \lor \neg B_1 \lor \ldots \lor \neg B_k \lor \neg A_{i+1} \lor \ldots \lor \neg A_m)\theta_0.$$

Din ipoteza de inducție, avem

$$P \models \forall (A_1 \wedge \ldots \wedge A_{i-1} \wedge B_1 \wedge \ldots \wedge B_k \wedge A_{i+1} \wedge \ldots \wedge A_m)\theta.$$

Cum C_0 este o redenumire a unei clauze din P, avem

$$P \models \forall (B_0 \vee \neg B_1 \vee \ldots \vee \neg B_k)\theta,$$

deci $P \models \forall (A_1 \land \ldots \land A_{i-1} \land B_0 \land A_{i+1} \land \ldots \land A_m)\theta$. Cum $B_0\theta_0 = A_i\theta_0$, $B_0\theta = A_i\theta$, deci $P \models \forall (A_1 \land \ldots \land A_m)\theta$.

O propoziție

Propoziție

Fie G un scop astfel încât există o P-respingere a lui G. Atunci $P \cup \{G\}$ este nesatisfiabilă.

Demonstrație

Scriem $G = \forall (\neg A_1 \lor \ldots \lor \neg A_m)$. Din teorema de corectitudine, rezultă $P \models \exists (A_1 \land \ldots \land A_m)$, deci

$$P \models \neg \forall (\neg A_1 \vee \ldots \vee \neg A_m) = \neg G,$$

de unde obținem concluzia.

Operatorul T_P

Putem defini operatorul $T_P: \mathcal{P}(B_\sigma) \to \mathcal{P}(B_\sigma)$ în felul următor: pentru orice $J, T_P(J)$ este mulțimea acelor $\varphi \in B_\sigma$ cu proprietatea că există $A_1, \ldots, A_m \in J$ astfel încât $\varphi \vee \neg A_1 \vee \ldots \vee \neg A_m$ este instanță a unei clauze din P.

Propoziție

Pentru orice J, $J \models_H P$ dacă și numai dacă $T_P(J) \subseteq J$.

Corolar

Pentru orice φ , $\varphi \in M_P$ dacă și numai dacă, pentru orice J cu $T_P(J) \subseteq J$, $\varphi \in J$.

Se observă și că T_P este monoton și, deci, din cele de mai sus, $M_P = \mu T_P$.

Mulțimea S_P

Definim mulțimea S_P ca fiind submulțimea lui B_σ a acelor φ cu proprietatea că există o P-respingere a lui $\neg \varphi$.

Propoziție

 $S_P \subseteq M_P$.

Demonstrație

Fie $\varphi \in S_P$, adică există o P-respingere a lui $\neg \varphi$. Din Teorema de corectitudine, rezultă $P \models \varphi$, adică $\varphi \in M_P$.

Spre completitudine

Propoziție

 $M_P \subseteq S_P$.

Demonstrație

Din cele spuse mai devreme, este suficient să arătăm că $T_P(S_P) \subseteq S_P$. Fie $\varphi \in T_P(S_P)$. Atunci $\varphi \in B_\sigma$ și există $A_1, \ldots, A_m \in S_P$ astfel încât $\varphi \vee \neg A_1 \vee \ldots \vee \neg A_m$ este instanță a unei clauze din P. Avem că există P-respingeri pentru $\neg A_1, \ldots, \neg A_m$, iar, punându-le cap la cap (nu detaliem cum, dar este important că sunt toate din B_σ), obținem o P-respingere pentru $\neg \varphi$, deci $\varphi \in S_P$.

Corolar

Pentru orice $\varphi \in B_P$ cu $P \models \varphi$, $\varphi \in S_P$.

Spre completitudine

Lemă

Fie φ o formulă atomică relațională cu $P \models \forall \varphi$. Atunci există o P-respingere a lui $\neg \varphi$ cu substituția calculată fiind identitatea.

Demonstrație

Scriem $Var(\varphi)=\{z_1,\ldots,z_n\}$. Introducem constante noi a_1,\ldots,a_n și considerăm substituția θ care duce, pentru orice i,z_i în a_i . Atunci $\varphi\theta\in B_\sigma$, deci, din corolarul anterior, există o P-respingere a lui $\neg\varphi\theta$. Clar, dat fiind că nu apar variabile, substituția calculată trebuie să fie identitatea. Schimbăm în substituție din nou a_i -urile cu x_i -uri (de ce putem face asta?) și obținem P-respingerea cerută.

Teorema de completitudine

Teorema de completitudine

Fie $m \in \mathbb{N}^*$, A_1, \ldots, A_m formule atomice relaționale și σ o substituție astfel încât $P \models \forall (A_1 \land \ldots \land A_m)\sigma$. Atunci există o P-soluție θ pentru $\forall (\neg A_1 \lor \ldots \lor \neg A_m)$ astfel încât $\forall (A_1 \land \ldots \land A_m)\sigma$ este o instanță a lui $\forall (A_1 \land \ldots \land A_m)\theta$.

Demonstrație (schiță)

Pentru orice i, avem $P \models \forall A_i \sigma$, deci, din lemă, există o P-respingere a lui $\neg A_i \sigma$ cu substituția calculată fiind identitatea. Din nou, putem pune cap la cap și obțin o P-respingere a lui $\forall (\neg A_1 \lor \ldots \lor \neg A_m) \sigma$ cu substituția calculată fiind identitatea. Aplicând un rezultat tehnic (Lema de ridicare), putem obține o P-respingere a lui $\forall (\neg A_1 \lor \ldots \lor \neg A_m)$, din ale cărei informații obținem substituția cerută.