

🧷 Capacité 1 Modéliser une situation par une suite

Une balle en caoutchouc est lâchée sans vitesse initiale d'une hauteur de 2 mètres au-dessus du sol. Le choc n'étant pas parfaitement élastique, la balle rebondit jusqu'à une hauteur de 1,60 mètre et continue à rebondir, en atteignant après chaque rebond une hauteur égale au $\frac{4}{5}$ de la hauteur du rebond précédent.

On modélise les hauteurs atteintes par la balle par une suite (h_n) où pour tout entier naturel n, h_n est la hauteur, exprimée en mètres, atteinte par la balle au n-ième rebond. On a alors $h_0 = 2$.

- a. Calculer h₁ et h₂.
 - **b.** Pour tout entier naturel n, exprimer h_{n+1} en fonction de h_n .
 - **c.** En déduire la nature de la suite (h_n) . Préciser ses caractéristiques.
 - **d.** Déterminer le sens de variation de la suite (h_n) .
- 2. Déterminer le nombre minimal N de rebonds à partir duquel la hauteur atteinte par la balle est inférieure à 20 cm. Expliquer la démarche employée.

1) a) ho=2 hr=1,6 h2=1,28

X 1/5

b) etc) Pour tout entier m E IN, ona:

hm+1 = 1/2 × hm

Par définition, le suite (hm) est géomètri
- que de rousin 1/5.

d) la suite (hn) est géomètrique de raisin 4 >0 danc elle est monotone.
4 so donc elle est manatine
5
De plus Ro > hr, danc (Rm)ed- décraissante.
decraissinto
2) Pour déleuminer le plus petit-entrèr N'tel que hn < 0,2 on utilise:
NI I-O
is the due NV < 0, 5 as metities ;
- sort le tubleau de vuleurs de la
calculatrico et en travara ano NI-11
- soit le tubleau de vuleurs de la calculatrice et en trouve que N-11
deg SEQUENCES I■)
Sequences Graph Table
Set the interval
5 0.65536
6 0.524288
7 0.4194304 8 0.3355443
9 0.2684355
9 0.2004333

		0.1111901	11	
		0.137439	12	
		0.1099512	13	
_				
mergay Sies st	`(-()	-0	. :[
margade must so	- ma		sort an	
, 0	· .	\2 (\1)	200 0 0 N	

https://workshop.numworks.com/python/frederic-junier/chapitre1_capacite1

En manipule des encadrements:

Bur tout entier n > 0:

- 1. Soit (u_n) la suite définie pour tout entier $n \ge 0$ par $u_0 = 99$ et $u_{n+1} = u_n n^2 + 2n + 8$. Étudier le signe de $u_{n+1} - u_n$ et en déduire l'étude des variations de la suite (u_n) .
- **2.** Soit la suite (u_n) définie pour tout entier naturel n par $u_n = \sqrt{n}$.
 - **a.** Démontrer que pour tout entier naturel n, on a $u_{n+1} u_n = \frac{1}{\sqrt{n+1} + \sqrt{n}}$. En déduire le sens de variation de la suite (u_n) .
 - **b.** En déduire que pour tout entier naturel $n \ge 4$, on a $0 \le u_{n+1} u_n \le \frac{1}{2}$.

1) Pour tout entire
$$m \ge 0$$
:

 $2 + 2m + 8$
 $3 = -m^2 + 2m + 8$
 $3 = 2m + 2m + 8$
 $3 = 2m + 2m + 8$
 $4 =$

🦪 Capacité 5 Comparer membre à membre

- **1.** Démontrer que pour tout entier $k \ge 1$, on a $\frac{1}{(k+1)^2} \le \frac{1}{k(k+1)}$.
- **2.** Justifier que pour tout entier $k \geqslant 1$, on a : $\frac{1}{k(k+1)} = \frac{1}{k} \frac{1}{k+1}$.
- **3.** À l'aide d'un argument de *somme télescopique*, en déduire que pour tout entier $n \ge 1$, on a :

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = 1 - \frac{1}{n+1}$$

4. En déduire que pour tout entier $n \ge 1$, on a $0 < \sum_{k=1}^{n} \frac{1}{(k+1)^2} < 1$.

1) Pour tout entier k > 1, on a:

de plus lets > 5 dence le(k+1) \le (k+1)

Si en ajoute membre à membre ces nécesalités en obtient des simplifications en coscade dans le membre de droite: It rede. $\frac{1}{1(1+1)} + \frac{1}{2(2+1)} + \dots + \frac{1}{m(m+1)} = \frac{1}{m(m+1)}$ sonne des membres mem de dus On peut conduct over le symbole de sonnation . $\sum_{k=1}^{1} \frac{1}{k(k+1)} = 1 - \frac{1}{m+1}$

D'inspart en a: $\sum_{k=1}^{N} \frac{1}{k(k+1)} \leq 1 - \frac{1}{m+1}$ n D'autre part-on a: $\frac{1}{(k+1)^2} \le \frac{1}{k=1} \frac{1}{k(k+1)} = \frac{1}{n+1} < 1$ k=1Par transitivité de l'inégalité en en déduil-que: De plus une somme de nombres positifset positive, donc: 0< \(\frac{1}{2} < 1

Capacité 6 Choisir une méthode adaptée pour étudier le sens de variation d'une suite

- **1. Méthode 1** : Etudier le signe de $u_{n+1} u_n$
 - **a.** Soit la suite (u_n) définie par $u_0 = 5$ et pour tout entier $n \in \mathbb{N}$, par $u_{n+1} = u_n(1 2u_n)$.
 - Example 1 Example 1 Example 1 Example 2 Examp
 - Conclure sur le sens de variation de la suite (u_n) .
 - **b.** Reprendre le même plan d'étude pour étudier le sens de variation de la suite (w_n) définie pour tout entier $n \in \mathbb{N}^*$ par $w_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$.
- **2.** Méthode 2: $Si(u_n)$ à termes strictement positifs, comparer $\frac{u_{n+1}}{u_n}$ et 1

Soit la suite (u_n) définie par $u_0 > 0$ et pour tout entier $n \ge 0$, $u_{n+1} = u_n e^{-n}$. On admet que pour tout entier $n \ge 0$, on a $u_n > 0$.

- Soit un entier $n \ge 0$, démontrer que $\frac{u_{n+1}}{u_n} \le 1$.
- En déduire le sens de variation de la suite (u_n) .
- **3. Méthode 3** : $Si u_n = f(n)$, étudier les variations de f sur $[0; +\infty[$

Soit la suite (u_n) définie pour tout entier $n \ge 0$, par $u_n = \frac{e^n}{e^n + 1}$.

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^x}{e^x + 1}$. On a pour tout entier $n \ge 0$, $u_n = f(n)$.

- Justifier que f est dérivable sur \mathbb{R} et déterminer l'expression de f'(x).

 ATTENTION, on peut dériver la fonction f mais pas la suite (u_n) car celle-ci n'est pas définie sur un intervalle!!!
- En déduire le sens de variation de la fonction f sur \mathbb{R} , puis le signe de $u_{n+1} u_n$ pour tout entier $n \ge 0$ et le sens de variation de (u_n) .

1) Methode 1:

a) Pour tout entier n E [M, on a:

 $M_{M+1}-M_{M}=M_{M}(1-2M_{M})-M_{M}=-2n_{M}^{M}$

Bra a 2 >0 denc until un <0

Il suite (un) et donc décoissant

	b) lan tout entier n \ 1 j on a:
	<u> </u>
	W~= 1+ 1/2 + + 1/m
ı	donc M - M - 1+ 1 + 1
	$-(1+\frac{1}{2}++\frac{1}{m})$
Jan($N_{m+1} - N_{m-1} + \frac{1}{2} + \dots + \frac{1}{2} $
	+ 1
	m+1
	danc W - M - M+1
	$m+\lambda$ $M+\lambda$
	our tout entier n > 1 on a dong
	$W_{n+\Lambda} - W_n > 0$
6	
	rouseante, ce qui est logique puis qu'on oscute à chaque rare un nouveau terme posité
_	qu'on ossule à chaque rara un
	novedu termo posity.
	V

	2) Soit (un) la suite définir par: Mo=0
	$\mathcal{M}_{0} = 0$
	_~
	JUNE ITI, MMIN = MM C
	(A_{2}, C_{1}, A_{2})
	P
	Pour tout n E IN, on a:
	\sim \sim \sim
	MH1 _ E-
	\sim
(on n > 0 dans of E < 1
	el dans of muts
	√ \ √
	De plus un > 0 (admis se)
	Nouse Var
	récurrence
_	Mu THUM > MM X O soul
	danc o< untx < un
	la suite (un) est donc décraissante

3) Soit (un) la suite définie paur tout n E [] par: $M^{-\frac{b_{W}+\gamma}{\epsilon_{W}}} = \beta(w)$ avec l'allinie sur $(x) = \frac{e^{x}}{e^{x}}$ 6-1 avec u et v derivulles don f derivable sur (R Pour tout red x: $u(x) = e^{x}$ $v(x) = e^{x}$ $v(x) = e^{x}$ $v(x) = e^{x}$ Dapués une formulo du cours.

(M) - MN - MN

N2 donc: $\int_{-\infty}^{\infty} \left(e^{x} + 1\right) - e^{x} e^{x}$

denc ((x) = Pour tout red se, on e >0 et-(241)>0 den f(x) >0 La fonction fest donc strictement craissante sur R. La suite (un) definie pour tout entier n > 0 per un= {(n) est donc craissante ar l'ensem - Re desentiers naturels Hex-Inclus dans R.

A Capacité 7 Démontrer qu'une suite est bornée

Soit (u_n) la suite définie pour tout entier $n \ge 0$ par $u_n = 3n + 2$

 $\overline{n+2}$

 On donne ci-contre la représentation graphique des premiers termes de la suite (u_n) dans un repère orthonormal.

Émettre une conjecture sur un minorant et un majorant possibles de la suite (u_n) .

1) Graphiquement, en peut consecturer que pour tout entier n>0, con a:

1< ll 23

et donc que l'est minarant el un majorant de la suite (un

2) Demontrons alte ansectus en appliquant deux fair la mélhod du signe de la défférence:

Pour bout entier nso:

3 - 4m = 3 - 3m+2 - 3(m+2) - (3m+2)

3-4 = 4

Gn a don (3 - 4m > c E > nu sab te 3 est donc un majorant de (un) Doutre part: $u_{1} - 1 = \frac{3m+2}{m+2} - \frac{m+2}{m+2}$ Com a dong um-1>0 et donc 1 \le um 1 est donc un minorant de (up Remarque: On rent dementier que (un) est voissante et donc mi-norée pou son quemies termo vo.

de Capacité 8 Étudier une suite arithmétique

On considère la suite $(u_n)_{n\geqslant 1}$ des entiers impairs successifs :

$$u_1 = 1$$
, $u_2 = 3$, $u_3 = 5$,...

- 1. Justifier que $(u_n)_{n\geqslant 1}$ est une suite arithmétique.
- 2. Soit n un entier naturel positif, exprimer u_n en fonction de n.
- **3.** Démontrer que pour tout entier $n \ge 1$, on a $\sum_{k=1}^{n} u_k = n^2$.

1) Pour tout entier naturel m, on a'

la suite des entiers impairs successifs est donc orithmètique de reison. 2.

2) D'après une propriété du cours, pour tout entier naturel n, on a:

Un=U,+(m-1)×2=1+2m-2=2m-1

3) D'après une propriété du ours, pour tout entier nobrel n, on a

5 y = y + - .. + M = w × M + M m

🥒 Capacité 9 Étudier une suite géométrique

Soit $(u_n)_{n \ge 1}$ la suite arithmétique des entiers impairs définie dans l'exemple 9. On définit la suite $(v_n)_{n\geq 1}$ pour tout entier $n\geq 1$ par $v_n=e^{u_n}$.

- Justifier que la suite (v_n)_{n≥1} est géométrique.
- **2.** Calculer la somme $\sum_{k=1}^{30} v_k$.
- **3.** Soit un entier $n \ge 1$, exprimer en fonction de n le produit de termes consécutifs :

$$\prod_{k=1}^n v_k = v_1 \times v_2 \times \ldots \times v_{n-1} \times v_n$$

1) Pour tout entier naturel m>1: = e = e = e x e vite (vm) est donc géomètrique de D'après une propriété du cours-

four tout entier n>1:
The - Ne XN - EX 11 XE
TIND = NXX XNM = EX XE
n 4.+.+11. 5.40
The a of the
&=1 &= 1
On la suite (un) est arithmétique de ravon 2 dans d'après une propriété du
of a such can be advoised in the
rought 2 source or apress with a proprocess con
encos.
5 11 2 My+ Mm 2 1+2m-1
5 Mg = mx Mx + Mm - mx 1+2m-1 6=1 k= 2
2
Elle - n (déjé démentre) le-1 en capacité 8
la l
le 1
On en déduit que:
TI - m
10 6 - 6