3

program;

CLAIMS

What is claimed is:

1	1.	An integrated circuit (IC) comprising:	
2		interface circuitry to interface the IC to a burn-in system, the interface circuitry to	
3	receive	e at least one temperature value from the burn-in system and to send at least one	
4	temper	rature indication to the burn-in system;	
5		a storage circuit coupled to the interface circuitry to store the at least one	
6	temper	rature value; and	
7		a thermal sense circuit coupled to the interface circuitry to provide the at least one	
8	temperature indication.		
1	2.	The IC recited in claim 1, wherein the at least one temperature value is a set-	
2	point.		
1	3.	The IC recited in claim 1, wherein the at least one temperature indication is	
2	propor	tional to the junction temperature of the IC.	
1	4.	An integrated circuit (IC) burn-in system comprising:	
2		a computer system comprising a processor operating under the control of a	
3	compu	ter program; and	
4		at least one IC comprising:	
5		interface circuitry to interface the IC to the computer system; and	
6		a thermal sense circuit, coupled to the interface circuitry, to provide a	
7		temperature indication that is proportional to the junction temperature of the IC.	
1	5.	The IC burn-in system recited in claim 4, wherein the computer system compares	
2	the ten	perature indication with a temperature value determined by the computer	

4	wherein if the temperature indication substantially matches the temperature value,		
5	the computer system bins the IC at that temperature value; and		
6	wherein if the temperature indication is less than the temperature value, the		
7	computer system decrements the temperature value and compares the temperature		
8	indication with the decremented temperature value.		
1	6. The IC burn-in system recited in claim 4, wherein the IC further comprises:		
2	logic circuitry coupled to the interface circuitry; and		
3	wherein the logic circuitry is responsive to the temperature indication generated		
4	by the thermal sense circuit;		
5	wherein the logic circuit is also responsive to a temperature value generated by		
6	the computer system as determined by the computer program;		
7	wherein the logic circuitry compares the temperature indication with the		
8	temperature value;		
9	wherein if the temperature indication substantially matches the temperature value,		
10	the logic circuitry generates a first indication to the computer system, and the computer		
11	system bins the IC at that temperature value; and		
12	wherein if the temperature indication is less than the temperature value, the logic		
13	circuitry generates a second indication to the computer system, and the computer system		
14	decrements the temperature value and compares the temperature indication with the		
15	decremented temperature value.		
1	7. A burn-in system for an IC comprising a thermal sense circuit, the burn-in system		
2	comprising:		
3	a fixture to electrically couple to the IC;		
4	a temperature-altering mechanism to alter the ambient temperature of the IC; and		
5	a data processing system coupled to the fixture, the data processing system		
6	executing a computer program, the computer program operating the burn-in system to		
7	characterize the IC and comprising the operations of:		
8	storing a temperature value for the IC;		

9	controlling the temperature-altering mechanism to thermally stress the IC;		
10	determining whether a temperature indication from the thermal sense circuit		
11	substantially matches the temperature value;		
12	if so, recording the temperature value; and		
13	if not, changing the temperature value to a new temperature value and		
14	determining whether the temperature indication matches the new temperature value.		
1	8. The burn-in system recited in claim 7, wherein the computer program operating		
2	the burn-in system further comprises the operations of:		
3	determining whether the temperature indication matches the new temperature		
4	value;		
5	if so, recording the new temperature value;		
6	otherwise, repeatedly changing the temperature value and comparing the		
7	temperature indication with the changed temperature value, until the temperature		
8	indication matches the changed temperature value; and		
9	recording the changed temperature value.		
1	9. The burn-in system recited in claim 7, wherein the temperature value is stored in		
2	a storage circuit in the IC.		
1	10. The burn-in system recited in claim 7, wherein the temperature value is stored in		
2	a storage element in the data processing system.		
1	11. A method of testing an integrated circuit (IC) comprising a plurality of electronic		
2	devices, one of which is to provide a temperature indication, the method comprising:		
3	storing a temperature value for the IC;		
4	thermally stressing the IC;		
5	the one electronic device providing a temperature indication;		
6	determining whether the temperature indication matches the temperature value;		
7	if so, recording the temperature value; and		

- 8 if not, changing the temperature value to a new temperature value and
- 9 determining whether the temperature indication matches the new temperature value.
- 1 12. The method recited in claim 11 and further comprising;
- 2 if the temperature indication matches the new temperature value, recording the
- 3 temperature value;
- 4 otherwise, repeatedly changing the temperature value and comparing the
- 5 temperature indication with the changed temperature value, until the temperature
- 6 indication matches the changed temperature value; and
- 7 recording the changed temperature value.
- 1 13. The method recited in claim 11, wherein storing is performed by another one of
- 2 the plurality of electronic devices in the IC.
- 1 14. The method recited in claim 11, wherein storing is performed by a burn-in system
- 2 coupled to the IC and comprising a stored-program digital computer.
- 1 15. The method recited in claim 11, wherein the plurality of electronic devices
- 2 includes a logic circuit, and wherein determining is performed by the logic circuit.
- 1 16. The method recited in claim 11, wherein determining is performed by a burn-in
- 2 system coupled to the IC and comprising a stored-program digital computer.
- 1 17. A method of testing a plurality of integrated circuits (ICs), each comprising a
- 2 thermal sense circuit, the method comprising:
- 3 storing a temperature value for each IC;
- 4 thermally stressing the ICs;
- 5 each thermal sense circuit providing a temperature indication for its respective
- 6 IC;
- 7 determining whether the temperature indication matches the temperature value;

- 8 if so, recording the temperature value for the corresponding IC; and
- 9 if not, changing the temperature value to a new temperature value and
- determining whether the temperature indication matches the new temperature value.
- 1 18. The method recited in claim 17 and further comprising;
- 2 if the temperature indication matches the new temperature value, recording the
- 3 temperature value for the corresponding IC;
- 4 otherwise, repeatedly changing the temperature value and comparing the
- 5 temperature indication with the changed temperature value, until the temperature
- 6 indication matches the changed temperature value; and
- 7 recording the changed temperature value for the respective IC.
- 1 19. The method recited in claim 17, wherein each IC comprises a storage circuit, and
- 2 wherein storing is performed by the storage circuit.
- 1 20. The method recited in claim 17, wherein storing is performed by a burn-in system
- 2 coupled to the IC and comprising a stored-program digital computer.
- 1 21. The method recited in claim 17, wherein each IC comprises a logic circuit, and
- 2 wherein determining is performed by the logic circuit.
- 1 22. The method recited in claim 17, wherein determining is performed by a burn-in
- 2 system coupled to the IC and comprising a stored-program digital computer.
- 1 23. A method of testing a plurality of electronic components, each comprising a
- 2 thermal sense circuit, the method comprising:
- 3 storing a temperature value for each electronic component;
- 4 thermally stressing the electronic components;
- 5 each thermal sense circuit providing a temperature indication for its respective
- 6 electronic component;

- determining whether the temperature indication matches the temperature value;
- 8 if so, recording the temperature value for the corresponding electronic
- 9 component; and
- if not, changing the temperature value to a new temperature value and
- determining whether the temperature indication matches the new temperature value.
- 1 24. The method recited in claim 23 and further comprising;
- 2 if the temperature indication matches the new temperature value, recording the
- 3 temperature value for the corresponding electronic component;
- 4 otherwise, repeatedly changing the temperature value and comparing the
- 5 temperature indication with the changed temperature value, until the temperature
- 6 indication matches the changed temperature value; and
- 7 recording the changed temperature value for the respective electronic component.
- 1 25. The method recited in claim 23, wherein each electronic component comprises a
- 2 storage circuit, and wherein storing is performed by the storage circuit.
- 1 26. The method recited in claim 23, wherein storing is performed by a burn-in system
- 2 coupled to the electronic component and comprising a stored-program digital computer.
- 1 27. The method recited in claim 23, wherein each electronic component comprises a
- 2 logic circuit, and wherein determining is performed by the logic circuit.
- 1 28. The method recited in claim 23, wherein determining is performed by a burn-in
- 2 system coupled to the electronic component and comprising a stored-program digital
- 3 computer.
- 1 29. The method recited in claim 23, wherein the electronic components are integrated
- 2 circuits.

1	30. A computer-readable medium containing computer instructions for instructing a		
2	processor to perform a method of binning a plurality of ICs each having a thermal sense		
3			
	circuit, the processor forming an element in a system comprising a temperature-altering		
4	mechanism to thermally stress the ICs and a comparison mechanism, wherein the		
5	instructions comprise:		
6	storing a temperature value for each IC;		
7	obtaining a temperature indication from the thermal sense circuit of each IC;		
8	for each IC not yet binned, comparing the stored temperature value with the		
9	temperature indication; and		
10	if the temperature indication substantially matches the stored temperature value,		
11	recording the temperature value;		
12	otherwise, changing the temperature value to a new temperature value and		
13	comparing the new temperature value with the temperature indication.		
1	31. The computer-readable medium recited in claim 30, wherein the instructions		
2	further comprise:		
3	if the temperature indication substantially matches the new temperature value,		
4	recording the new temperature value;		
5	otherwise, repeatedly changing the temperature value and comparing the		
6	temperature indication with the changed temperature value, until the temperature		
7	indication substantially matches the changed temperature value, and recording the		
8	changed temperature value.		
1	32. The computer-readable medium recited in claim 30, wherein the instructions		
2	further comprise:		
3	determining an estimate of the burn-in time for each IC, using the particular		
4	temperature value recorded for each IC.		