

دانشکدهی علوم ریاضی

مدرس: دكتر شهرام خزايي

آناليز الگوريتم ها

تمرین سری دو

شماره دانشجویی: ۴۰۱۱۰۰۰۷۱

نام و نامخانوادگی: کژال باغستانی

فرض ۱: الگوریتمی داریم که در زمان خطی مولفه های قویا همبند را در گراف جهت دار پیدا میکند. فرض ۲: الگوریتمی داریم که در زمان خطی sort topological را برای یک dag پیدا میکند. در ادامه این الگوریتم هارا ارائه میدهم.

پرسش ۱

پرسش ۲

پرسش ۳

ابتدا از روی لیست f_i ها گرافی جهت دار که راس های آن کارمندان و یال های آن به صورت جهت دار از هر کارمند به کارمندی است که باید به آن خبر رسانی کند تشکیل میدهیم. سپس با الگوریتم 1 مولفه های قویا همبند را O(|V|+|E|) پیدا میکنیم که در اینجا تعداد یال ها دقیقا با تعداد راس ها برابر است (زیرا هر کارمندی دقیقا به یک کارمند یال جهت دار دارد.) پس O(n).

دعا:

هر شخصی خبری که میشنود به همه افراد منتقل میشود اگر و تنها اگر تمام افراد در یک مولفه قویا همبند قرار گیرند. اثبات :

اگر تمام افراد در یک مولفه قویا همبند قرار گیرند به وضوح از هر راس (کارمند) به راس های دیگر مسیری جهت دار هست پس خبر به خوبی پخش میشود.

حال میخواهم نشان دهم اگر تمام افراد در یک مولفه قویا همبند نباشند فردی وجود دارد که اگر خبر به او برسد همه مطلع نمیشوند. می دانیم هر dag حداقل یک sink دارد پس اگر خبر به یکی از افراد در مولفه ای که sink است برسد خبر فقط در همان مولفه میماند و افراد در مولفه های دیگر از آن خبر مطلع نمیشوند پس ادعا ثابت میشود. ادعا:

اگر در sort topological هر راسی به راس بعد از خود یال جهت دار داشته باشد و راس اخر را به راس اول به یالی جهت دار وصل کنیم dag ما با کمترین تعداد ممکن دور دار میشود و همه مولفه ها در یک مولفه قرار میگیرند. اثبات:

اگر در sort topological بخواهیم بتوانیم از راس i به راس i+1 برویم حتما باید یال جهت دار از i به i+1 وجود داشته باشد زیرا از هیچ یالی که

پرسش ۴

اشتباهه ممکنه چنتا سینک داشته باشبم. طبق الگوریتم ۱ ابتدا مولفه های قویا همبند را برای شهر ها و مسیر هایی که از قبل بین آنهاست پیدا میکنیم. سپس آنها را sort topological میکنیم ممکن است در sort topological مولفه ها مولفه های همبندی ای وجود داشته باشند که به هیچ وجه به هم راه ندارند و اصلا به هم وابسته نیستند این مولفه ها را در دسته های جداگانه ای قرار میدهیم سپس برای هر u_i $\sin u_i$ آن را در بخشی که هست پیدا میکنیم و برای هر ourse v_i وصل آن را. حالا اگر u_i و u_i به هم مسیر جهت دار نداشتند یال جهت داری از سینک u_i به سورس u_i وصل میکنیم. این کار باعث میشود مسیر های جهت داری بین u_i هایی که از u_i به آنها راه هست به u_i هایی که در مسیر رسیدن به u_i قرار دارند ایجاد شود. این کار ممکن است کار مارا برای ساخت مسیر کم کند. حالا کافیست درستی الگوریتم را اثبات و زمان آن را تحلیل کنیم.

ادعا:

این الگوریتم به ازای هر v_i این الگوریتم به ازای این ال

ثبات:

در هر مرحله با اجرای DFS مشخص میشود که آیا مسیری بین این دو راس هست یا خیر و اگر نباشد به سادگی با وصل کردن سینک u_i به سورس v_i این مسیر ساخته میشود.

ادعا:

اين الگوريتم كمترين تعداد مسير مورد نياز را به ما ميدهد.

اثبات:

برای اثبات این ادعا باید دو چیز را نشان دهیم یکی اینکه اگر در مرحله i ام بین دو شهر u_i و u_i مسیری جهت دار نباشد حداقل یک مسیر جدید باید ایجاد شود برای اتصال این دو به هم و مورد بعد این است که نشان دهیم با هر جایگشتی از u_i ها تعداد مسیر های به دست آمده یکسان است. مورد اول بدیهی است پس کافیست نشان دهیم که با هر ترتیبی u_i ها را انتخاب و با الگوریتم داده شده مسیری از آن به v_i ایجاد کنیم تفاوتی در تعداد مسیر ها ایجاد نمیشود. برای اینکار کافیست نشان دهیم در یک جایگشت داده شده با عوض کردن جای دو عنصر دلخواه u_i تفاوتی ایجاد نمیشود. چون میدانیم از هر جاگشتی با عوض کردن دو تا دوتا عناصر میتوان به هر جایگشت دلخواه رسید.

. عناصر را به سه دسته قبل از u_i و بین u_i و بین u_i و بعد از عناصر را به سه دسته قبل از u_i

جایگشت اول به صورت $u_1,...,u_j,...,u_j,...,u_j,...,u_j,...,u_j$ است. $u_1,...,u_j,...,u_j,...,u_j,...,u_j,...,u_j$ است. میتوان جایگشت ها را به صورت زیر نگاه کرد $u_1,...,u_j,...,u_j,...,u_j,...,u_j$ زیرا قبل از آن دقیقا تغییرات یکسانی را در گراف ایجاد کرده چهار حالت را بررسی میکنم:

ا: u_j و به ترتیب در جایگشت های اول و دوم مسیری اضافه نکنند: در این حالت وقتی u_i در جایگشت اول مسیر ایجاد نکرده یعنی تا قبل از آن مرحله به v_i متناظر خود وصل شده پس در جایگشت دوم نیز لزومی به اتصال ندارد و همچنین برای u_i . پس این دو عنصر از جایگشت بی اثر میشوند و هر دو جایگشت یکی است.

 u_i : ۲ در جایگشت اول مسیر آیجاد کند و u_j در جایگشت دوم مسیر ایجاد نکند: در این حالت در جایگشت اول مسیر ایجاد شده توسط u_i باعث بی اثر شدن عناصری در جایگشت شده که سینک آنها با سینک u_i و سورس آنها با سورس u_i با سورس u_i یکی بوده است. درنتیجه در جایگشت دوم اگر یکی از این عناصر زودتر از u_i ظاهر شود u_i و همه آن عناصر را بی اثر کرده و تعداد مسیر ها ثابت میماند. برای u_i چون در جایگشت دوم بی اثر است در جایگشت اول نیز (مانند استدلال قسمت قبل) بی اثر است. در نتیجه دو حالت دیگر که به صورت زیر هستند نیز با همین استدلال ثابت میشوند.

در جایگشت اول مسیر ایجاد کند و u_i در جایگشت دوم مسیر ایجاد نکند. u_j :۳

و سیری اضافه کنند. په ترتیب در جایگشت های اول و دوم مسیری اضافه کنند. u_j و u_i :۴

پس ادعا ثابت میشود.

تحليل زماني:

در هر مرحله برای پیدا کردن مولفه های قویا همبند و sort topological به O(n) زمان نیاز داریم (که n مجموع راس و یال های گراف است.)

و اما در نهایت برای m راس باید این کار را انجام دهیم پس O(nm) زمان مورد نیاز برای اجرای این الگوریتم میاشد.

پرسش ۵

پرسش ۶

برای اثبات این الگوریتم کافیست دو چیز را ثابت کنیم که به صورت دو ادعا در زیر ارائه میکنم.

در ابتدا به این نکته توجه میکنیم که در درخت هر گاه مسیری بین دو رأس داریم آن مسیر تنها مسیر بین آن دو رأس است. (زیرا در غیر این صورت دور تشکیل میشود) درنتیجه مسیری که بین دو رأس i و i در درخت BFS رأس است. (زیرا در غیر این صورت دور تشکیل میشود) درنتیجه مسیری که بین دو رأس i و اولین جایی که به مسیر وجود دارد ابتدا از i به ریشه میرویم و اگر i در این مسیر i بوریم. پس هر مسیری یک بخش بالا رونده به سمت ریشه و یک بخش پایین رونده به سمت رأس مورد نظر دارد. و نکته دوم قابل توجه این است که قطر درخت هرگز نمیتواند بین i و i یا باشد که یکی در مسیر دیگری به ریشه است. زیرا فاصله آن رأس تا ریشه بیشتر از فاصله آن تا رأس دیگر میشود.

ادعا ١:

اگر قطر گراف طول D داشته باشد هر رأس را به عنوان ریشه درخت BFS انتخاب کنیم حتما یک سر قطر در سطح آخر می افتد.

اثبات:

رأس v را به عنوان ریشه درخت BFS در نظر میگیریم. سر اول قطر از آن فاصله H و سر دوم قطر از آن فاصله v را را به عنوان ریشه درخت BFS برابر با v دارد. در این صورت ارتفاع درخت BFS برابر با v به فاصله بیشتر از این دو، از ریشه درخت وجود دارد که این یعنی آن رأس به عنوان سر دیگر قطر شناخته میشود.

ادعا ۲:

اگر در درخت BFS یک راس از سطح آخر انتخاب کنیم و BFS را روی آن اجرا کنیم مستقل از اینکه آن کدام رأس است عدد یکسانی به عنوان قطر به ما میدهد.

فرض کنیم $a_1, a_2, ..., a_n$ رأس های سطح آخر ما هستند. اگر a_i راس i را به عنوان سر دیگر قطر خروجی دهد اگر و رأس کنیم $a_1, a_2, ..., a_n$ رأس های سطح آخر ما هستند. اگر a_i را است که در این صورت همان فاصله را با a_i دارد. و یا جد مشترک آن با i متفاوت از جد مشترک a_i و a_i است که در این صورت اگر در نظر بگیریم جد مشترک a_i و a_i است. اگر a_i در سطح آخر نباشد آنگاه از جد مشترک a_i و a_i بجای رفتن به a_i و a_i بیشتر میشد. پس اگر جد مشترک متفاوت داشتیم نیز فاصله a_i و a_i میرویم. که این یعنی طول قطر برای a_i بیشتر میشد. پس اگر جد مشترک متفاوت داشتیم نیز فاصله و a_i با هم را به عنوان خروجی برای a_i در نظر میگیریم. (زیرا برابر با فاصله a_i و a_i بود.) حالا کافیست نشان دهیم که هیج کدام از a_i ها نمیتوانند عدد بزرگ تری از دیگری به قطر نسبت بدهند. این بخش نیز به وضوح معلوم است

چون نشان دادیم هر عددی که از هر کدام از a_i ها بگیریم به سادگی میتوان به a_j دیگر نیز راسی نسبت داد که همان عدد را بدهد. پس همگی مساوی و ماکسیمم نداریم.

و اثبات كامل ميشود.