# Give Me Some Credit CSCI 7350 Final project

Ning Zhang

Xi Chen

# Outline

- O Introduction
- O Background
- Methodology
- O Experiments
- Analysis & Discussion
- O Conclusion

#### Introduction: Problem

• The goal of this project is to build a credit scoring model by predicting the probability of credit default in the future.

#### Data

- The training data contains 15,000 instances.
  - > 10 attributes
  - > Class: Default or not

#### Ten attributes

- O Total balance on credit cards and personal lines of credit except real estate an no installment debt like car loans dived by the sum of credit limits
- O Age
- Number of times borrower has been 30-59 days past due but no worse in the last 2 years
- Monthly debt payments, alimony, living costs divided by monthly gross income

#### Ten attributes

- Monthly income
- Number of Open loans (installment like car loan or mortgage) and Lines of credit
- Number of times borrower has been 90 days or more past due.
- Number of mortgage and real estate loans including home equity lines of credit

#### Ten attributes

- Number of times borrower has been 60 89 days past due but no worse in the last
  2 years
- Number of dependents in family excluding themselves

#### Goals of our research

- Most significant features
- O Most effective model(s)

## Background - First Place

- O 2 Key Features:
  - o total number of late days
  - o difference between income and expense
- O 5 Algorithms:
  - O one random forest of classification trees
  - one random forest of regression trees
  - one classification tree boosting
  - O one regression tree boosting
  - one neural network
- O Result: 0.8695558 (AUC)

# Methodology

- O Xgboost(boosting)
- Random forest
- O Logistic regression
- O KNN
- O Neural Network

#### Random forest



#### The ensemble model

Forest output probability 
$$p(c|\mathbf{v}) = rac{1}{T} \sum_{t}^{T} p_t(c|\mathbf{v})$$



#### Steps

- O Read data
- O Preprocessing
  - O Check the data distribution
  - Remove the outliers
  - O Replace the NA value by the mean
- O Use models
- O Evaluate results

#### Data distribution



#### Remove outliers: monthly income



#### Remove outliers: balance/limit



# Remove outliers: number of open credit lines and loans





### Results

| Methods                  | Results             |
|--------------------------|---------------------|
| Xgboost (200)            | 0.86451 +/~ 0.00564 |
| Random forest tree (200) | 0.84354 +/~ 0.00739 |
| Logistic regression      | 0.83315 +/~ 0.03572 |
| KNN (30)                 | 0.62553 +/~ 0.01060 |
| Neural Network           | 0.50000 +/~ 0.00001 |

#### The Importance of each attribute



# Analysis & Discussion

- The most important features:
  - Debit divided by monthly income
  - O Balance divided by credit limit
  - Monthly income
- The good performance of non-linear models (xgboost & random forest) are reasonable
- The good performance of linear model (logistic regression ) is not expected

# Analysis & Discussion

Our result is pretty close to the first place winner.

#### Conclusion

- O We applied several methods, and found boosting and bagging based methods are the most effective ones.
- O Logistic regression can also achieve good results.
- The performance of neural network is highly relied on parameter tuning.
- Feature engineering is important.