Manipal School of Information Sciences (MSIS)

Manipal Academy of Higher Education, Manipal

Master of Engineering - ME (Big Data Analytics)

Course File

Course Name : Algorithm and Data Structures for Big Data Lab

Course Code : BDA 5151

Academic Year : 2024 – 2025

Semester : I

Name of the Course Coordinator : Mr. DEEPAK RAO B

Name of the Program Coordinator : Dr. PRATHVIRAJ N

Signature of Program Coordinator	Signature of Course Coordinator
with Date	with Date

1. (Course Plan5
1.1	
1.2	Course Outcomes (COs)
1.3	Course Content (Syllabus) Error! Bookmark not defined
1.4	References Error! Bookmark not defined
1.5	Other Resources (Online, Text, Multimedia, etc.)
1.6	Topic Learning Outcomes (TLOs) Error! Bookmark not defined
1.7	Course Timetable9
1.8	
1.9	
1.1	0 Mapping of COs with POs Error! Bookmark not defined
2.	Assessment Details Error! Bookmark not defined.
2.1	Student Details: Error! Bookmark not defined
2.2	
2.3	Analysis of Assessment outcomes Error! Bookmark not defined
2.4	Attainment of Course Outcomes (Direct) Error! Bookmark not defined

- 2.5 Attainment of Course Outcomes (Indirect): Course End Survey (CES) Questionnaire...... Error! Bookmark not defined.
- 3. CO-PO Assessment......Error! Bookmark not defined.
- **4. Observations and Comments....** Error! Bookmark not defined.
 - 4.1 Observations from Course Coordinator based on the direct assessment Error! Bookmark not defined.
 - 4.2 Comments/Suggestions by the Course Coordinator Error! Bookmark not defined.

Program Education Objectives (PEOs)

The overall objectives of the Learning Outcomes-based Curriculum Framework (LOCF) for ME (Big Data Analytics), program are as follows.

PEO No.	Education Objective
PEO 1	Develop in depth understanding of the key technologies in data engineering, data science and business analytics.
PEO 2	Practice problem analysis and decision-making using machine learning techniques.
PEO 3	Gain practical, hands-on experience with statistics, programming languages and big data tools through coursework and applied research experiences.

Program Outcomes (POs)

By the end of the postgraduate program in Big Data Analytics, graduates will be able to:

PO1	Independently carry out research /investigation and development work to solve practical problems.
PO2	Write and present a substantial technical report/document.
PO3	Demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.

PO4	Develop and implement big data analysis strategies based on theoretical principles, ethical considerations, and detailed knowledge of the underlying data.
PO5	Demonstrate knowledge of the underlying principles and evaluation methods for analyzing data for decision-making.

1. Course Plan

1.1 Primary Information

Course Name	:	Algorithms and Data Structures for Big Data Lab	
L-T-P-C	:	0-0-3-1	
Contact Hours	:	36 Hours	
Pre-requisite	:	Programming with Python or C	

1.2 Course Outcomes (COs)

СО	At the end of this course, the student should be able to:	No. of Contact Hours	Program Outcomes (PO's)	BL
CO1	Design programs for implementation of linked lists, stack and queues.	15	PO4	5

CO2	Design programs for implementation of binary search tree, sorting and searching, dictionary and Hash Table	12	PO4	5
CO3	Design programs for graphs and shortest path techniques.	9	PO4	5

1.3 Assessment Plan

Components	Lab Test	Flexible Assessments (5- 6 in number)	End semester/ Makeup examination	
Duration	90 minutes	To be decided by the faculty.	180 minutes	
Weightage	0.3	0.2	0.5	
Typology of questions	Applying; Analyzing.	Applying; Analyzing. Evaluating.	Applying; Analyzing; Evaluating.	

Pattern	Answer all the questions. Maximum marks 30.	Assignment: develop applications using various data structures and different design techniques	Answer all the questions. Maximum marks 50.
Schedule	As per academic calendar.	Assignment submission: November 2024	As per academic calendar.
Topics covered	Linked List, Stack, Queue, Trees, Searching & Sorting, Hash tables, Graphs		Comprehensive examination covering the full syllabus.

1.4 Lesson Plan

L. No.	TOPICS	Course Outcome Addressed
L0	Course delivery plan, Course assessment plan, Course outcomes, Program outcomes, CO-PO	
	mapping, reference books	
Lab1	Linked List: Implementing Single Linked List	CO1
Lab2	Linked List: Implementing Double Linked List	CO1
Lab3	Linked List: Application development using linked lists	CO1

Lab4	Stack: Implementation and applications of Stack	CO1
Lab5	Queue: Implementation and applications of Queue	CO1
Lab6	Tree: Implementation and applications of Tree	CO2
IT1	Internal lab test	CO1, CO2
Lab7	Applications using different search and sorting techniques.	CO2
Lab8	Applications using different search and sorting techniques.	CO2
Lab9	Application using Hash Table	CO2
Lab10	Graph representation using list and matrix method	CO3
Lab11	Graph traversal	CO3
Lab12	Graph: Shortest path technique	CO3

1.5 References

- 1. Introduction to Algorithms Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. MIT Press.
- 2. Data Structures and Algorithms Aho, Hopcroft and Ulmann. Pearson Publishers.
- 3. Data Structures and Algorithms in Python Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser. John Wiley & Sons.
- 4. Data Streams: Algorithms and Applications S. Muthukrishnan. Foundations and Trends in Theoretical Computer Science archive, Volume 1 Issue 2, August 2005, Pages 117 236

1.6 Other Resources (Online, Text, Multimedia, etc.)

- 1. Web Resources: Blog, Online tools and cloud resources.
- 2. Journal Articles.

1.7 Course Timetable

1 st Semester Big Data Analytics			Room: L	n: LG1 LH 3 Lab: Data Scie		: Data Science	Lab	
	9-10	10-11	11-12	12-1	1-2	2-3	3-4	4-5
MON								
TUE								
WED								
THU								
FRI							ADS LAB	
SAT								

1.8 Assessment Plan

	COs	Marks & weightage			
CO No.	CO Name	Lab Test	Assignment	End Semester	CO wise
		(Max. 30)	(Max. 20)	(Max. 50)	Weightage
CO1	Design programs for implementation of linked lists, stack and queues.	15	10	25	0.5
CO2	Design programs for implementation of binary search tree, sorting and searching, dictionary and Hash Table	10	6	15	0.31
CO3	Design programs for graphs and shortest path techniques.	5	4	10	0.19
	Marks (weightage)	0.3	0.2	0.5	1.0

- In-semester Assessment is considered as the Internal Assessment (IA) in each subject for 50 marks, which includes the performances in class / tutorial participation, assignment work, lab work, class tests, mid-term tests, quizzes etc.
- End-semester examination (ESE) for each lab subject is conducted for a maximum of 50.
- End-semester mark for a maximum of 50 and IA marks for a maximum of 50 are added for a maximum of 100 marks to decide upon the grade in a subject.

1.9 Assessment Details

The assessment tools to be used for the Current Academic Year (CAY) are as follows:

SI. No.	Tools (TLP)	Weightage	Frequency	Details of Measurement (Weightage/Rubrics/Duration, etc.)
1	Sessional	0.3	2	 Performance is measured using sessional attainment level. Reference: question paper and answer scheme. Each sessional is assessed for a maximum of 30 marks.
2	Assignments	0.2	-	 Performance is measured using assignments/quiz attainment level. Assignments/quiz are evaluated for a maximum of 20 marks.
3	ESE	0.5	1	 Performance is measured using ESE attainment level. Reference: question paper and answer scheme. ESE is assessed for a maximum of 50 mark.

1.10 Course Articulation Matrix

СО	PO1	PO2	PO3	PO4	PO5
CO1				Y	
CO2				Y	

CO3			Y	
Average Articulation Level		*	*	*