CS3120 Introduction of Integrated Circuit Design Chapter 6 Exercise

- [6.1] A CMOS process produces gate oxides with a thickness of $t_{ox} = 100$ Å. The FET carrier mobility values are given as $\mu_n = 550 \text{ cm}^2/\text{V-sec}$ and μ_p $= 210 \text{ cm}^2/\text{V-sec}$.
 - (a) Calculate the oxide capacitance per unit area in units of fF/µm².
- (b) Find the process transconductance values for nFETs and pFETs. Place your answer in units of $\mu A/V^2$.
- [6.2] An nFET with $W = 10 \mu m$ and $L = 0.35 \mu m$ is built in a process where $K_n = 110 \,\mu\text{A/V}^2$ and $V_{Tn} = 0.70 \,\text{V}$. Assume $V_{SBn} = 0 \,\text{V}$.
 - (a) Find the current if the voltages are set to $V_{GSn} = 2 \text{ V}$, $V_{DSn} = 1.0 \text{ V}$.
 - (b) Find the current if the voltages are set to V_{GSn} = 2 V, V_{DSn} = 2 V.
- [6.3] An nFET has a device transconductance of $\beta_n = 2.3 \text{ mA/V}^2$ and a threshold voltage of 0.76 V. Assume $V_{SBn} = 0$ V.
 - (a) Find the current if the voltages are set to V_{GSn} = 1 V, V_{DSn} = 2.5 V.

 - (b) Find the current if the voltages are set to V_{GSn} = 2 V, V_{DSn} = 2.5 V. (c) Find the current if the voltages are set to $V_{GSn} = 3 \text{ V}$, $V_{DSn} = 2.5 \text{ V}$.
- [6.4] Consider a pFET that has a gate oxide thickness of $t_{ox} = 60$ Å. The hole mobility is measured to be 220 cm²/V-sec, and the aspect ratio is (W/L) = (12/1). Assume that $V_{DD} = 3.3 \text{ V}$ and $|V_{Tp}| = 0.7 \text{ V}$.
 - (a) Calculate the process transconductance k_p in units of mA/ \sqrt{N}
 - (b) Find the device transconductance β_p and the resistance R_p

p-type **[6.5]** An nFET has a gate oxide with a thickness of $t_{ox} = 120 \,\text{Å}$. The bulk region is doped with boron at a density of $N_a = 8 \times 10^{14}$ cm⁻¹ given that $V_{T0n} = 0.55 \text{ V}$ and (W/L) = 10. $N_a = 8 \times 10^{-14} cm^{-3}$

(a) Calculate the body bias coefficient γ.

 $V_{SBn} =$

(b) What is the device threshold voltage if a body bias voltage of Vo. 2 V is applied? drain

(c) The electron mobility is $\mu_n = 540 \text{ cm}^2/\text{V-sec}$. Calculate the dra current with bias voltages of $V_{GSn} = 3 \text{ V}$, $V_{DSn} = 3 \text{ V}$, and $V_{SBn} = 3 \text{ V}$ applied to the device.

[6.6] Construct the RC switch model for the FET layout in Figure H. Assume a power supply voltage of 3 V and that the dimensions are units of microns.

Figure P6.1 Transistor layout geometry for Problem 6.6

- [6.7] Write a SPICE description of the nFET in Figure P6.1. Use your ing to obtain the family of I_D versus V_{DS} curves.
- [6.8] Consider the FET geometry shown in Figure P6.1 where the resistance of the n+ regions is 30 Ω , and the poly gate has a sheet resistance of the n+ regions is 30 Ω , and the poly gate has a sheet resistance of the n+ regions is 30 Ω , and the poly gate has a sheet resistance of the n+ regions is 30 Ω . tance of 26 Ω . Compute the parasitic resistances R_{n+} and R_{poly} associated the standard st with these parameters by determining the appropriate geometry applies for each. How would these parasitics affect the device operation

Andy, Yu-Guang Chen 2024/10/26

[6.9] An nFET with $W = 20 \,\mu\text{m}$ and $L = 0.5 \,\mu\text{m}$ is built in a process $\kappa_n = 120 \,\mu\text{A/V}^2$ and $V_{Tn} = 0.65 \,\text{V}$. The voltages are set to a value of $V_{DSn} = V_{DD} = 5 \,\text{V}$.

- (a) Is the transistor saturated or non-saturated?
- (b) Calculate the drain-source resistance using the proper equation the transistor.
- (c) Compare your value in (b) with that found using equation (iii) with a value of $\eta = 1$.
- **[6.10]** An nFET with $L=0.5~\mu m$ is built in a process where $K_n=100^{\circ}$ V and $V_{Tn}=0.70~V$. The gate-source voltage is set to a value of $V_{OD}=0.3.3~V$. Calculate the required channel width to obtain a resistant $R_n=950~\Omega$ using equation (6.71) with for a value of $\eta=1$.