Data Mining Project

Clustering Marketing Data

Dimensional

Attribute	Type	Description		
BasketID	Numerical	Unique alphanumeric ID assigned to a basket, defined as a set of transactions.		
BasketDate	Numerical	The date on which the transaction was made.		
Sale	Numerical	Cost of one unit of product.		
CustomerID	Numerical	The ID of the customer.		
CustomerCountry	Categorical	The Customer's country of origin.		
ProdID	Numerical	The ID of the product.		
ProdDescr	Categorical	A description of the product.		
Qta	Numerical	The number of units bought in the transaction.		

Data Understanding

- Data Semantics
 - 1. Count Null values
 - o 65080 CustomerID, 753 ProdDescr
 - 2. Delete some transaction
 - Null Sale (1279) & Negative Qta (8095)
 - Null values
- Data distributions and statistics

\mathcal{A}	Α	В	С	D	Е	F	G	Н	- 1
1	Index 💌	BasketID 💌	BasketDate 💌	Sale 💌	CustomerID ▼	CustomerCountry -	ProdID 💌	ProdDescr	Qta 🔽
2	0	536365	01/12/2010 08:26	2,55	178500	United Kingdom	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6
3	1	536365	01/12/2010 08:26	3,39	178500	United Kingdom	71053	WHITE METAL LANTERN	6
4	2	536365	01/12/2010 08:26	2,75	178500	United Kingdom	84406B	CREAM CUPID HEARTS COAT HANGER	8
5	3	536365	01/12/2010 08:26	3,39	178500	United Kingdom	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6
6	4	536365	01/12/2010 08:26	3,39	178500	United Kingdom	84029E	RED WOOLLY HOTTIE WHITE HEART.	6
7	5	536365	01/12/2010 08:26	7,65	178500	United Kingdom	22752	SET 7 BABUSHKA NESTING BOXES	2
8	6	536365	01/12/2010 08:26	4,25	178500	United Kingdom	21730	GLASS STAR FROSTED T-LIGHT HOLDER	6

Extra attributes

Total Sale

Numerical

The amount of the transaction, calculated by multiplying the Sale by the Qta.

New features

[]	dataset_frame_customer.describe()									
		ObservationItems	ObservationDistinctItems	ObservationMaxItem	BasketNum	SumExp	AvgExp			
	count	4372.000000	4372.000000	4372.000000	4372.000000	4372.000000	4372.000000			
	mean	93.053522	61.211116	31.867795	5.075480	1898.463818	315.884437			
	std	232.471568	85.425119	31.225805	9.338754	8219.344627	361.237024			
	min	1.000000	1.000000	1.000000	1.000000	-4287.630000	-4287.630000			
	25%	17.000000	15.000000	12.000000	1.000000	293.362500	151.991250			
	50%	42.000000	35.000000	23.000000	3.000000	648.075000	236.987500			
	75%	102.000000	77.000000	41.000000	5.000000	1611.725000	370.816071			
	max	7983.000000	1794.000000	542.000000	248.000000	279489.020000	6207.670000			

Outliers

Z Score > 3 -> Empirical Rule

Correlation

Pairwise Correlation

Clustering Analysis

o DBSCAN

- min_points: 2 * dataset dimensionality
- Epsilon: Elbow Method

Hierarchical

- Average
- Single
- Complete
- Ward

DBSCAN Test Result

Hierarchical Test Result

Single

Complete

Hierarchical Test Result

Average

o Ward

Conclusion

- DBSCAN, no matter what the values of the initial parameters, I couldn't obtain a good clustering because it always produced a huge cluster with the majority of the points and another negligible one.
- The Hierarchical approach produced very unbalanced clusters with some linking methods (eg Single, Ward). Instead, when using other combinations (like the Euclidean Distance Exact Method), it produced a better distribution for my data.

Thanks for listening:)