MASA 70504

MARINER 9 INFRARED INTERFEROMETER SPECTROMETER (IRIS) REDUCED DATA RECORDS DOCUMENTATION

(NASA-TM-X-70504) MARINER 9 INFRARED INTERFEROMETER SPECTROMETER (IRIS) REDUCED DATA RECORDS DOCUMENTATION (NASA) 48 p HC \$4.50 CSCL 148

N74-10430

Unclas 3/14 21642

OCTOBER 1973

GODDARD SPACE FLIGHT CENTER
GREENBELT, MARYLAND

MARINER 9 INFRARED INTERFEROMETER SPECTROMETER (IRIS) REDUCED DATA RECORDS DOCUMENTATION

October 1973

GODDARD SPACE FLIGHT CENTER Greenbelt, Maryland

1

PRICEDING PAGE BLANK NOT FILMED

FOREWORD

This document has been assembled by the Mariner 9 IRIS staff, code 622, Goddard Space Flight Center, Greenbelt, Maryland, 20771. Further questions concerning the IRIS data or instrumentation should be addressed to one of the following:

- R. A. Hanel, PI
- V. G. Kunde, Co-I
- B. J. Conrath, Co-I
- J. C. Pearl, Co-I

PRECEDING PAGE BLANK NOT FILMED CONTENTS

		Page
FOREW	ORD	iii
INTROD	OUCTION	1
CALIBR	ATION	1
ORBITA	L INFORMATION	3
RDR DA	TA FORMAT	4
REFERE	ENCES	6
APPENI	DICES	
A	Revolution Summary	A-1
В	Reduced Data Record (RDR) Format	B -1
C	Supplementary Experimenter Data Record (SEDR) Format	C-1
	ILLUSTRATIONS	
Figure		Page
1	Emissivity of the Warm Calibration Source	7
2	Average Spectral Amplitude of 1766 Warm Calibration Spectra	8
3	Average Spectral Amplitude of 1766 Cold Calibration Spectra	9
4	Average Instrument Spectral Responsitivity Based on 1766 Calibration Pairs	10
5	Instrumental NER determined from standard deviation of responsitivity. The sharp numbered spikes are due to interference from the spacecraft or other experiments	11

ILLUSTRATIONS (Continued)

<u>Figure</u>		$\underline{\text{Page}}$
6	Instrument Temperature as Derived From Calibration Equations	. 12
7	Wave Number Transfer Function to Correct Observed Wave Number for Finite Field-of-View Effects	13
8	Average Radiance Spectrum	14
9	Average Brightness Temperature Spectrum	15
	TABLE	
<u>Table</u>		Page
1	Spectral Emissivity of the Warm Calibration Source	16

MARINER 9 INFRARED INTERFEROMETER SPECTROMETER (IRIS) REDUCED DATA RECORDS DOCUMENTATION

INTRODUCTION

On 14 November 1971, the Mariner 9 spacecraft was successfully inserted into orbit around Mars. One of the five instruments on board, an infrared interferometer spectrometer (IRIS) is used to record the thermal emission spectrum of Mars between 200 and $2000\,\mathrm{cm^{-1}}$ ($50-5\,\mu\mathrm{m}$) with a spectral resolution of 2.4 cm⁻¹ in the apodized mode. The spatial resolution for vertical viewing, corresponding to a field of view of $\sim 4.5^{\circ}$, is a circular area of approximately 110 km diameter for a periapsis height of 1400 km. The total number of calibrated spectra included in the final data set is 21167.

The purpose of this report is to document the final calibrated thermal emission spectra contained in the reduced data records (RDR). Magnetic tapes with these data records are available to the scientific community through the National Space Science Data Center, Goddard Space Flight Center, Greenbelt, Maryland 20771. The design and performance of the instrument has been published by Hanel, et al., (1972a), and science results are discussed in Hanel, et al., (1972b), Hanel, et al., (1972c), Conrath, et al., (1973), and Curran, et al., (1973).

CALIBRATION

Calibration spectra were periodically recorded while observing either deep space or an on-board warm blackbody ($T \approx 296 \, \mathrm{K}$). One pair of calibration spectra is generated for every 14 spectra of Mars. Scaling of the raw Martian spectra to the calibration spectra specifies the Martian spectra in absolute radiometric units. The calibration procedure for the Mariner 9 spectra is similar to that previously described for Nimbus 4 (Hanel, et al., 1972d). The equation for the calibration of the Martian spectra is

$$I_{\nu} = \frac{C_{t_{\nu}} - C_{c_{\nu}}}{\alpha_{\nu} C_{w_{\nu}} - C_{c_{\nu}}} B_{\nu} (T_{w})$$
 (1)

where $C_{t_{\nu}}$, $C_{c_{\nu}}$ and $C_{w_{\nu}}$ are the instantaneous spectral amplitudes for the target (Mars), the cold calibration source (deep space), and the warm calibration source (on-board reference blackbody), respectively. B_{ν} is the Planck function, T_{w} is the temperature of the warm reference blackbody, and α_{ν} is discussed below.

The excellent thermal stability of the Mariner 9 IRIS has permitted the entire ensemble of 1766 calibration pairs acquired during the Mariner mission to be averaged to provide a single set of calibration parameters. The final calibration equation is

$$I_{\nu} = \frac{C_{t_{\nu}} - \langle C_{c_{\nu}} \rangle}{\alpha_{\nu} \langle C_{w_{\nu}} \rangle - \langle C_{c_{\nu}} \rangle} B_{\nu} (\overline{T}_{w})$$
 (2)

Consequently, the random error introduced into the individual target spectra from the calibration spectra is extremely small. The temperature \overline{T}_w of the warm blackbody is an average of eight transducer measurements made immediately before and after each interferogram.

The factor α_{ν} is the reciprocal value of the emissivity ϵ_{ν} of the black paint used in the warm calibration source, an aluminum plate with 30° V-shaped grooves painted with 3M 401-C10 Black Velvet paint. While this paint is relatively black over most of the instrument spectral range, small glass beads contained in it give rise to emittance variations of a few percent near 480 cm⁻¹ and 1100 cm⁻¹ which are characteristic wave numbers of SiO₂. The correction factor was derived from laboratory reflectance measurements on a duplicate blackbody, from similar measurements on the same type of paint, kindly made available by James Aronson (private communication), and finally from comparisons of the warm and cold calibrations on the interferometer while in orbit around Mars. All three methods were in agreement and, consequently, the emissivity correction of the warm calibration source has been applied to all spectra. The emissivity of the reference "blackbody" is shown in Figure 1 and is listed in Table 1.

The responsivity of the instrument and a spectral instrument temperature may also be derived from each calibration pair. The noise equivalent radiance (NER), a measure of the random errors in the measurements, is calculated from the standard deviation of the individual instantaneous responsivities. The derivation and description of all the instrumental parameters are discussed in detail in Hanel, et al., 1972d.

The average instrumental parameters are illustrated in Figures 2-6. Several spikes are observable in the instrument NER (Figure 5). The locations of these spikes are:

Number	$v(\mathrm{cm}^{-1})$	$\underline{\mathbf{f}(\mathbf{Hz})}$	Probable Source
1	356.	8, 36	8-1/3 bps - telemetry rate
2	713.	16.76	2 (8-1/3)

Number	$v(\mathrm{cm}^{-1})$	f(Hz)	Probable Source
3	1069.	25.12	3 (8-1/3)
4	1203.	28.27	?
5	1426.	33.52	4 (8-1/3) & 33-1/3
6	1782.	41.88	5 (8-1/3)

The most probable source of these spikes are transients caused by the engineering telemetry channels which have characteristic frequencies of 8-1/3 and 33-1/3 bps. The source of the interference at 28.27 Hz is unknown.

In addition to the radiometric calibration, a wave number correction has been applied to the data. The finite solid angles of the primary and reference interferometers cause a small wave number shift and a distortion of the true wave number scale. This well known effect, caused by the interference of on-axis and off-axis rays, has been corrected for empirically. A numerical fit of a Lorentzian function was made to determine the center wave number position $\nu_{\rm m}$ and $\nu_{\rm t}$ of the strongest CO₂ features in a measured and in a theoretical spectrum respectively. The difference, $\nu_{\rm t}$ - $\nu_{\rm m}$, is shown as a function of $\nu_{\rm t}$ in Figure 7. The adopted correction is a linear least squares fit

$$\nu_{\rm t} = \frac{(0.016187 + \nu_{\rm m})}{1.0010602} \ . \tag{3}$$

The above constants are contained in the RDR type 1 records (words 96 and 97). The $\nu_{\rm t}$ wave number mesh for the calibrated radiances is also contained in the type 1 records (words 101 through 1600).

The general characteristics of a spectrum are exhibited in terms of radiance and brightness temperature in Figures 8 and 9, respectively. This spectrum is an average of 1842 spectra from the RDR records with surface temperature in the 260–280 K range, viewing angle in the 0–90° range, and for revolutions later than 100. Absorption by water vapor occurs in the 200–500 and 1400–1800 cm⁻¹ regions with $\rm CO_2$ absorption most evident in the 600–750 cm⁻¹ region. Weak $\rm CO_2$ bands occur at 961, 1064, 1260, 1366, and 1932 cm⁻¹. The broad feature in the 900–1200 cm⁻¹ region is attributed to Martian silicate dust.

ORBITAL INFORMATION

Each IRIS spectrum was obtained in a 21 second frame which is equivalent to 18 DAS counts of the spacecraft clock. Orbital data for the spectra were obtained from the Supplementary Experimenter Data Records (SEDR) produced by the Jet

Propulsion Laboratory (JPL). The content of these records is described in Appendix C. Three SEDR records were generated for each IRIS frame, keyed to the IRIS frame starting DAS time. They are spaced to represent the IRIS orbital parameters at the starting DAS time plus 3, 9 and 15 counts. The orbital information contained in the IRIS Reduced Data Record (RDR) was extracted from the SEDR record which most closely corresponded to the center of the IRIS frame (count 9). In some instances, a matching SEDR record could not be found. In these cases, some of the orbital data were estimated according to the following procedure:

- a. If the IRIS record was located between two records for which orbital data were available, the data points were interpolated based upon DAS time, or
- b. If the IRIS record was located at the start or end of an orbit, the data were extrapolated by DAS time, using the best available orbital information. Word 93 of each IRIS RDR was set to 1.0 when the orbital data were estimated and to zero otherwise. Only the following types of data were estimated; all other orbital data were zeroed out:

Orbit number

Latitude and longitude of the center of the viewed area

Solar lighting angle

Viewing angle

Ten latitude and longitude points defining the field-of-view (each pair is set equal to the center latitude and longitude)

Mars local time

All latitude and longitude values have been corrected to conform to the new Mars pole and prime meridian. The correction was done using the algorithm developed by JPL and described in TM-33-585, "MM 71 TV Picture Catalog". The original (uncorrected) "center of the field-of-view latitude and longitude" were retained in Words 89 and 90 of RDR.

Appendix A contains a summary of event day, calendar date and GMT time of periapsis and DAS time at periapsis for each revolution during the orbital mission when data were obtained.

RDR DATA FORMAT

Magnetic Tape Format:

9 track, 1 file, no label

Density: 1600 BPI (DEN=3)

Record Format: Variable Length, Scanned (RECFM=VS)

Longest Record Length: 6404 Bytes (LRECL=6404)

Blocksize: 6408 Bytes (BLKSIZE=6408)

I/O Method: All records were written to tape using a FORTRAN unformatted WRITE statement, i.e.

WRITE (unit) (RDR(I), I=1, 1600)

Record Format: Each tape contains seven types of RDR's (one each of types 1 through 6, followed by a string of type 7):

Record Type	<u>Name</u>			
1	Tape Summary			
2	Cold Reference Calibration			
3	Warm Reference Calibration			
4	Average Normalized Responsivity			
5	Noise Equivalent Radiance			
6	Average Instrument Temperature			
7	Calibrated Martian Spectrum			

Appendix B describes the content of each type RDR. Each RDR consists of 100 words of header information followed by 1500 words of data. All words are full-word floating point binary values. The following table lists the content of each tape by revolution number and DAS time.

Tape	No. Records	Revolution Range	DAS Time Range
IRIS-1	4946	1-42	1672865—3109687
IRIS-2	5198	43-100	3139524—5169569
IRIS-3	3675	101—13 8	5236507—6536827
IRIS-4	4441	139—17 8	6571914—7976867
IRIS-5	2907	179—676	8043122-13507967
TOTAL	21167	1-676	1672865—13507967

ACKNOWLEDGEMENT

The following people contributed substantially to the development of the Mariner 9 IRIS reduced data records: F. Rockwell, R. Long, R. Bevacqua, J. Frost and P. Corbin of Consultants and Designers, Inc.; L. Herath of Goddard Space Flight Center; T. Burke of Jet Propulsion Laboratory.

REFERENCES

- Conrath, B., R. Curran, R. Hanel, V. Kunde, W. Maguire, J. Pearl, J. Pirraglia, J. Welker, and T. Burke, Atmospheric and Surface Properties of Mars Obtained by Infrared Spectroscopy on Mariner 9, JGR, 78, 4267, 1973.
- Curran, R. J., B. J. Conrath, R. A. Hanel, V. G. Kunde, and J. C. Pearl, Mars: Mariner 9 Spectroscopic Evidence for H₂O Ice Clouds, to be published in Science, 1973.
- Hanel, R., B. Schlachman, E. Breihan, R. Bywaters, F. Chapman, M. Rhodes, D. Rodgers, and D. Vanous, Mariner 9 Michelson Interferometer, Appl. Opt., 11, 2625, 1972a.
- Hanel, R. A., B. J. Conrath, W. A. Hovis, V. G. Kunde, P. D. Lowman, J. C. Pearl, C. Prabhakara, B. Schlachman, and G. V. Levin, Infrared Spectroscopy Experiment on the Mariner 9 Mission: Preliminary Results, Science, 175, 305, 1972b.
- Hanel, R., B. Conrath, W. Hovis, V. Kunde, P. Lowman, W. Maguire, J. Pearl, J. Pirraglia, C. Prabhakara, B. Schlachman, G. Levin, P. Straat, and T. Burke, Investigation of the Martian Environment by Infrared Spectroscopy on Mariner 9, <u>Icarus</u>, <u>17</u>, 422. 1972c.
- Hanel, R. A., B. J. Conrath, V. G. Kunde, C. Prabhakara, I. Revah, V. V. Salomonson, and G. Wolford, The Nimbus 4 Infrared Spectroscopy Experiment 1. Calibrated Thermal Emission Spectra, JGR, 77, 2629, 1972d.

Figure 1. Emissivity of the Warm Calibration Source

Figure 2. Average Spectral Amplitude of 1766 Warm Calibration Spectra

Figure 3. Average Spectral Amplitude of 1766 Cold Calibration Spectra

Figure 4. Average Instrument Spectral Responsivity Based on 1766 Calibration Pairs

Figure 5. Instrumental NER determined from standard deviation of responsivity. The sharp numbered spikes are due to interference from the spacecraft or other experiments.

Figure 6. Instrument Temperature as Derived From Calibration Equations

Figure 7. Wave Number Transfer Function to Correct Observed Wave Number for Finite Field-of-View Effects

Figure 8. Average Radiance Spectrum

Figure 9. Average Brightness Temperature Spectrum

Table 1
Spectral Emissivity of the Warm Calibration Source

Wave Number (cm ⁻¹)	Emissivity	Wave Number (cm ⁻¹)	Emissivity
370	, 1.00	•	
375	1.00	920	1.00
380	1.00	925	1.00
385	1.00	930	1.00
390	1.00	935	1.00
395	0.99	940	1.00
400	0.99	945	1.00
405	0.99	950	1.00
410	0.99	955	1.00
415	0.99	960	0.99
420	0,98	965	0.99
425	0.98	970	0.99
430	0.98	975	0.99
435	0.97	980	0.99
440	0.97	985	0.99
445	0.96	990	0.98
450	0.96	995	0.98
455	0.95	1000	0.98
460	0.95	1005	0.98
465	0.95	1010	0.97
470	0.95	1015	0.97
475	0.95	1020	0.96
480	0.96	1025	0.96
485	0.97	1030	0.96
490	0.98	1035	0.95
495	0.99	1040	0.95
500	0.99	1045	0.94
505	0.99	1050	0.94
510	1.00	1055	0.94
515	1.00	1060	0.94
520	1.00	1065	0.93
525	1.00	1070	0.93
530	1.00	1075	0.93
•		1080	0.92
q	o	1085	0.92
•	•	1090	0.92

Table 1 (Continued)

Wave Number (cm ⁻¹)	Emissivity	Wave Number (cm ⁻¹)	Emissivity
1095	0.92	1160	0.98
1100	0.91	1165	0.98
1105	0.91	1170	0.98
1110	0.91	1175	0.99
1115	0.92	1180	0.99
1120	0.92	1185	0.99
1125	0.92	1190	0.99
1130	0.93	1195	0.99
1135	0.94	1200	0.99
1140	0.95	1205	1.00
1145	0.96	1210	1.00
1150	0.96	1215	1.00
1155	0.97	1220	1.00

APPENDIX A REVOLUTION SUMMARY

\triangleright
Ļ
)
Đ

	REVOLUTION	EVENT DAY	DATE	HOUR	MINUTE	SECOND	DAS TIME
	2	31.9	15 NOV 71	1	49	49	1711903
	3	319	15 NOV 71	14	23	41	1749596
	5	320	16 NOV 71	14	56	38	1780490
	6 '	321	17 NOV 71	2	5 5	23	1816428
	7	321	17 NOV 71	14	54	5	1852363
	ð	322	18 NOV 71	2	52	43	1888295
	9	322	18 NOV 71	14	51	12	1924219
	10	323	19 NOV 71	2	49	38	1960141
	11	323	19 NOV 71	14	47	56	1996056
	12	324	20 NOV 71	2	46	9	2031 967
	13	324	20 NOV 71	14	44	12	2067870
	14	325	21 NOV 71	2	42	13	2103770
	15	325	21 NOV 71	14	40	4	21 39663
	16	326	22 NOV 71	2	37	53	2175554
	17	326	22 NOV 71	14	35	36	2211440
	18	327	23 NOV 71	2	33	15	2247323
	19	327	23 NOV 71	14	30	52	2283204
₽	20	328	24 NOV 71	2	28	26	2319082
A-1-10	21	328	24 NOV 71	14	26	2	2354962
3	22	329	25 NOV 71	2	23	35	2390840
V.	23	329	25 NOV 71	14	21	13	2426721
	24	330	26 NOV 71	2	18	49	2462602
	25	330	26 NOV 71	14	16	29	2498485
	26	331	27 NOV 71	2	14	12	2534371
	27	331	27 NOV 71	14	12	2	2570263
	28	332	28 NOV 71	2	9	56	2606158
	29	332	28 NOV 71	14	7	56	2642058
	30	333	29 NOV 71	2	6	3	2677964
	31	333	29 NOV 71	14	4	15	2713874
	32	334	30 NOV 71	2	2	34	2749790
	33	334	30 NOV 71	14	0	59	2785711
	34	335	1 DEC 71	1	59	32	2821639
	35	335	1 DEC 71	13	5 8	8	2857569
	36	336	2 DEC 71	1	56	51	2893505
	37	336	2 DEC 71	13	55	36	2929442
	38	337	3 DEC 71	1	54	25	2965384
	39	337	3 CEC 71	13	53	15	3001325
	40	338	4 DEC 71	1	52	7	3037269

.

REVOLUTION	EVENT DAY	DATE	HOUR	MINUTE	SECOND	DAS TIME
41	338	4 DEC 71	13	50	58	3073211
42	339	5 DEC 71	1	49	46	31 091 51
43	339	5 DEC 71	13	48	32	3145090
4.4	340	6 DEC 71	1	47	11	3181022
45	340	6 DEC 71	13	45	47	3216953
46	341	7 DEC 71	3	44	15	3252876
47	341	7 DEC 71	13	42	39	3288796
48	342	8 DEC 71	1	40	54	3324709
49	342	8 DEC 71	13	39	5	3360618
50	343	9 DEC 71	1	37	7	3396520
51	343	9 DEC 71	13	35	5	3432418
52	344	10 DEC 71	1	32	54	3468310
53	344	10 DEC 71	13	30	40	3504198
54	345	11 DEC 71	1	28	22	3540083
55	345	11 DEC 71	13	26	0	3575965
56	346	12 DEC 71	1	23	37	3611845
57	346	12 DEC 71	13	21	10	3647723
58	347	13 DEC 71	1	18	46	3683603
59	347	13 DEC 71	13	16	18	3719460
60	348	14 DEC 71	1	13	55	3755361
61	348	14 DEC 71	13	11	32	3791242
62	349	15 DEC 71	1	9	15	3827128
63	349	15 DEC 71	13	7	0	3863016
64	350	16 DEC 71	1	4	52	3898909
65	350	16 DEC 71	13	2	47	3934805
66	351	17 DEC 71	1	0	49	3970707
67	35%	17 DEC 71	12	58	58	4006614
68	352	18 DEC 71	O	57	12	4042526
69	352	16 DEC 71	12	55	35	4078446
70	353	19 DEC 71	0	54	2	4114368
71	353	19 DEC 71	12	52	36	4150297
72	354	20 DEC 71	0	51	14	4186228
73	354	20 DEC 71	12	49	59	4222166
74	355	21 DEC 71	0	48	45	42581 05
75	355	21 DEC 71	12	47	36	4294047
76	356	22 DEC 71	0	46	26	4329989
77	356	22 DEC 71	12	45	18	4365933
78	357	23 DEC 71	0	44	8	4401874

REVOLUTION	EVENT DAY	DATE	HOUR	MINUTE	SECOND	DAS TIME
79	357	23 DEC 71	12	42	55	4477047
80	358	24 DEC 71	0	41	38	4437013
81	358	24 DEC 71	12	40	17	4473750
82	359	25 DEC 71		38	51	4509682
83	359	25 DEC 71	12	37	16	4545610
84	360	26 DEC 71	0	35	39	4581532
85	360	26 DEC 71	12	33	50 50	4617450
86	361	27 DEC 71	0	32	0	4653360
87	361	27 DEC 71	12	29	5 9	4689268
88	362	28 DEC 71	ō	27	5 4	4725168
89	362	28 DEC 71	12	25	43	4761064
90	363	29 DEC 71	0	23	27	4796954
91	363	29 DEC 71	12	21		4832841
92	364	30 DEC 71	0	18	7	4868725
93	364	30 DEC 71	12	16	45	4904606
95	365	31 DEC 71	12		20	4940485
96	1	1 JAN 71	0	16	16	4987981
97	1	1 JAN 72	12	15	5	5023921
98	2	2 JAN 72	0	13	59	5059866
99	ž	2 JAN 72	12	12	53	5095811
100	3	3 JAN 72	1<	11	52	5131761
101	3	3 JAN 72	12	10	52	5167711
102	4	4 JAN 72	0	9	59	5203667
103	4	4 JAN 72	=	9	10	5239626
104	5	5 JAN 72	12 0	8_	27	5275591
105	5	5 JAN 72	12	7	50	5311559
106	6	6 JAN 72	0	7	17	5347533
107	6	6 JAN 72	12	6	52	5383512
108	7	7 JAN 72	0	6	32	5419495
109	7	7 JAN 72	12	6	18	5455483
110	8	B JAN 72	0	6	8	5491 475
111	8	8 JAN 72	_	6	5	5527473
112	9	9 JAN 72	12 0	6	<u>3</u>	5563471
113	ý	9 JAN 72		6	7	5599474
114	10	10 JAN 72	12	6	11	5635478
115	10	10 JAN 72	0	6	17	5671483
116	11	10 JAN 72 11 JAN 72	12	6	22	5707488
117	11		0	6	28	5743493
•••	* *	11 JAN 72	12	6	31	5779495

116	12	12 JAN 72	0	6	31	5815495
119	12	12 JAN 72	12	6	27	5851492
120	13	13 JAN 72	0	6	16	5887483
121	13	13 JAN 72	12	6	3	5923473
122	14	14 JAN 72	0	5	41	5959454
123	1.4	14 JAN 72	12	5	15	5995433
124	15	15 JAN 72	0	•	41	6031404
125	15	15 JAN 72	12	4	4	6067373
126	16	16 JAN 72	0	3	18	6103335
127	16	15 JAN 72	12	2	26	61 392 94
128	17	17 JAN 72	0	1	32	6175248
129	17	17 JAN 72	12	G	32	6211198
130	17	17 JAN 72	23	59	29	6247145
131	18	18 JAN 72	11	5 8	22	6283089
132	18	18 JAN 72	23	57	15	6319033
133	19	19 JAN 72	11	56	4	6354974
134	19	19 JAN 72	23	54	55	6390918
135	20	20 JAN 72	11	53	44	5426858
136	20	27 MAL 05	23	52	38	6462893
137	21	21 JAN 72	11	51	31	6498748
138	21	21 JAN 72	23	50	31	6534698
139	22	22 JAN 72	11	49	31	6570648
140	22	22 JAN 72	23	48	38	6606603
141	23	23 JAN 72	11	47	47	6642562
142	23	23 JAN 72	23	47	4	6678526
143	24	24 JAN 72	11	46	27	6714495
144	24	24 JAN 72	23	45	54	6750468
145	25	25 JAN 72	11	45	28	6786446
146	25	25 JAN 72	23	45	8	6822429
147	26	26 JAN 72	11	44	54	6858418
148	26	26 JAN 72	23	44	44	6894410
149	27	27 JAN 72	11	44	40	6930407
150	27	27 JAN 72	23	44	36	6 9664 05
151	28	28 JAN 72	11	44	42	7002409
152	28	28 JAN 72	23	44	46	7038412
153	29	29 JAN 72	11	44	53	7074418
154	29	29 JAN 72	23	44	59	7110423
155	30	30 JAN 72	11	45	4	7146427

HOUR

MINUTE SECOND

DAS TIME

REVOLUTION EVENT DAY DATE

➣	
'n	
Ćπ	

	REVOLUTION	EVENT DAY	DATE	HOUR	MINUTE	SECOND	DAS TIME
	156	30	30 JAN 72	23	45	7	7182430
	157	31	31 JAN 72	11	45	7	7218430
	158	31	31 JAN 72	23	45	3	7254427
	159	32	1 FEB 72	11	44	53	7290419
	160	32	1 FEB 72	23	44	41	7326408
	161	33	2 FEB 72	11	44	20	7362391
	162	33	2 FEB 72	23	43	54	7398370
	163	34	3 FEB 72	11	43	21	7434342
	164	34	3 FEB 72	23	42	43	7470311
	165	35	4 FE8 72	11	41	57	7506273
	166	35	4 FEB 72	23	41	9	7542233
	167	36	5 FEB 72	11	40	13	7578186
	168	36	5 FEB 72	23	39	14	7614137
	169	37	6 FEB 72	11	38	11	7650085
	170	37	6 FEB 72	23	37	4	7686029
	171	38	7 FEB 72	11	3 5	56	7721972
	172	36	7 FEB 72	23	34	45	7757913
⊳	173	39	8 FEB 72	11	33	36	7793856
A-5	174	39	8 FEB 72	23	32	26	7829798
	175	40	9 FEB 72	11	31	20	7865743
	176	40	9 FEB 72	23	30	12	7901687
	177	41	10 FEB 72	11	29	12	7937636
	178	41	10 FEB 72	23	28	11	7973586
	179	42	11 FEB 72	11	27	18	B009542
	180	42	11 FEB 72	23	26	28	8045500
	181	43	12 FEB 72	11	25	44	8081463
	182	43	12 FEB 72	23	25	5	8117431
	183	44	13 FEB 72	11	24	32	8153404
	184	44	13 FEB 72	23	24	6	8189383
	185	45	14 FFB 72	11	23	45	8225365
	186	45	14 FEB 72	23	23	31	8261354
	187	46	15 FEB 72	11	23	20	8297344
	188	46	15 FEB 72	23	23	17	8333342
	189	47	16 FEB 72	11	23	15	8369340
	190	47	16 FEB 72	23	23	19	8405344
	191	48	17 FEB 72	11	23	22	8441347
	192	48	17 FEB 72	23	23	28	8477352
	193	49	18 FEB 72	11	23	35	8513358

٩	

REVOLUTION	EVENT DAY	DATE	HOUR	MINUTE	SECOND	DAS TIME
194	49	18 FEB 72	23	23	41	8549363
195	50	19 FEB 72	11	23	45	8585366
196	50	19 FE8 72	23	23	45	8621366
197	51	20 FEB 72	11	23	42	8657364
198	51	20 FE8 72	23	23	33	8693356
199	52	21 FEB 72	11	23	20	8729346
200	52	21 FEB 72	23	22	59	8765329
201	53	22 FEB 72	11	22	35	8801309
202	53	22 FEB 72	23	22	2	8837261
20 3	54	23 FEB 72	11	21	25	8873250
204	54	23 FEB 72	23	20	40	8909213
205	55	24 FEB 72	11	19	50	8945172
206	55	24 FEB 72	23	18	55	8981126
207	56	25 FEB 72	11	17	57	9017078
208	56	25 FE8 72	23	16	54	9053025
209	57	26 FEB 72	11	15	48	9088970
21 0	57	26 FEB 72	23	14	40	9124914
21 1	58	27 FEB 72	11	13	29	9160854
212	58	27 FEB 72	23	12	21	9196798
21 3	59	28 FEB 72	11	11	9	9232739
21 4	59	28 FEB 72	23	10	2	9268683
21 5	60	29 FEB 72	11	8	55	9304627
216	60	29 FEB 72	23	7	54	9340576
21 7	61	1 MAR 72	11	6	54	9376526
21 8	61	1 MAR 72	23	6	0	9412481
21 9	62	2 MAR 72	11	5	9	9448439
220	62	2 MAR 72	23	4	25	9484403
221	63	3 MAR 72	11	3	47	9520371
222	63	3 MAR 72	23	3	13	9556343
223	64	4 MAR 72	11	2	47	9592321
224	64	4 MAR 72	23	2	25	9628303
225	65	5 MAR 72	11	2	2.1	9664292
226	65	5 MAR 72	23	2	0	9700282
227	66	6 MAR 72	11	1	56	9736279
228	66	6 MAR 72	23	1	53	9772277
229	67	7 MAR 72	11	1	57	9808280
230	67	7 MAR 72	23	2	1	9844284
231	68	8 MAR 72	11	2	8	9880289

➣
ı
~3

	RETU_OVER	EVENT DAY	DATE	HOUR	MINUTE	SECOND	DAS TIME
	232	68	8 MAR 72	23	2	14	9916295
	233	69	9 MAR 72	11		20	9952300
	234	69	9 MAR 72	23	2 2	23	9988303
	235	70	10 MAR 72	11	2	25	10024304
	236	70	10 MAR 72	23	2	21	10060302
	237	71	11 MAR 72	11	2	13	10096295
	238	71	11 MAR 72	23	2	1	10132285
	239	72	12 MAR 72	11	1	41	10168268
	240	72	12 MAR 72	23	1	17	10204248
	241	73	13 MAR 72	11	Ö	44	10240221
	242	73	13 MAR 72	23	Ō	7	10276190
	243	74	14 MAR 72	10	59	23	10312153
	244	74	14 MAR 72	22	58	34	10348113
	246	75	15 MAR 72	22	56	41	10420019
A-7	247	76	16 MAR 72	10	55	38	10455967
4	248	76	16 MAR 72	22	54	32	10491912
	259	82	22 MAR 72	10	43	7	10613827
	260	82	22 MAR 72	22	42	28	10649794
	261	83	23 MAR 72	10	41	55	10685767
	262	83	23 MAR 72	22	41	27	10721744
	270	87	27 MAR 72	22	40	48	11 009712
	276	157	5 JUN 72	21	23	26	11227610
	41 6	160	8 JUN 72	21	18	10	11443347
	423	164	12 JUN 72	9	16	9	11656145
	437	171	19 JUN 72	9	14	51	12010179
	44 5	175	23 JUN 72	9	7	14	12186047
	451	178	26 JUN 72	9	0	36	12361565
	459	182	30 JUN 72	8	55	37	12535415
	479	192	10 JUL 72	8	51	44	12901273
	668	286	12 OCT 72	19	11	20	13348239
	676	290	16 OCT 72	19	6	7	13494477

APPENDIX B REDUCED DATA RECORD (RDR) FORMAT

TYPE 1 - Summary Record

Word No.	$\underline{\mathbf{Content}}$
1	Record Type Identification (1.0 = Summary)
2	Spacecraft Identification (always = 2.0)
3	Receiving Station Identification
4	Number of Calibrated Martian Spectra on this Tape
5	Apodization (0.0 = Unapodized, 1.0 = Apodized)
6	Phase Angle Correction Type (always = 1.0)
7	IFM Spike Peak Rejection Value (always = 0.02)
8-29	Spare (always = 0.0)
30	DAS Time of First Calibrated Martian Spectrum on this Tape
31	DAS Time of Last Calibrated Martian Spectrum on this Tape
32	Number of Warm-Cold Calibration Pairs Used to Calibrate the Martian Spectra
33-51	Spare (always 0.0)
52	Warm Blackbody Temperature ($\approx 296\mathrm{K}$)
53	Cold Blackbody Temperature ($\approx 0.0 \mathrm{K}$)
54-95	Spare (always = 0.0)
96 (Note 1)	"A" Value of Wave Number Table Correction (always = 0.016087)
97 (Note 1)	"B" Value of Wave Number Table Correction (always = 0.0010602)
98	Observed Wave Number at First Mesh Point (ν_1^{obs} always = 199.92 cm ⁻¹)
99	Wave Number Mesh Increment (always = 1.176 cm ⁻¹)
100	Number of Words in Wave Number Table (always = 1500.0)
101-1600	Wave Number Table Corrected for Finite Field-of-View $(\nu_i^{\text{corr}} \pmod{1})$
Note 1: ν_i^{obs}	= $199.92 + (i - 1) * 1.176$, $i = 1,, 1500$
v_{i}^{corr}	$= (A + \nu_i^{obs})/(1.0 + B)$

TYPE 2 — Cold Reference Calibration Spectrum (Blackbody)

Word No.	Content
1	Record Type Identification (2.0 = Cold Blackbody)
2	Number of Cold Blackbody Spectra Used in Average Calculation
3-100	Spares (always = 0.0)
101-1600	Average Cold Reference Calibration Power Spectrum

TYPE 3 — Warm Reference Calibration Spectrum (Blackbody)

Word No.	Contents
1	Record Type Identification (3.0 = Warm Blackbody)
2	Number of Warm Blackbody Spectra Used in Average Calculation
3-100	Spares (always = 0.0)
101-1600	Average Warm Reference Calibration Power Spectrum

TYPE 4 — Average Normalized Responsivity

Word No.	Contents
1	Record Type Identification $(4.0 = Responsivity)$
. 2	Number of Calibration Warm-Cold Blackbody Pair Used in Responsivity Calculation
3-100	Spares (always = 0.0)
101-1600	Average Spectral Responsivity

TYPE 5 — Noise Equivalent Radiance

Word No.	Contents
1	Record Type Identification (5.0 = NER)
2-100	Spares (always = 0.0)
101-1600	Noise Equivalent Radiance Spectrum (Wcm ⁻² sr ⁻¹ /cm ⁻¹)

IRIS REDUCED DATA RECORD

TYPE 6 — Average Instrument Temperatures

Word No.	Contents				
1	Record Type Identification (6.0 = Instrument Temperature)				
2-100	Spares (always = 0.0)				
101-1600	Average Instrument Temperatures Spectrum (K)				

IRIS REDUCED DATA RECORD

TYPE 7 — Calibrated Martian Spectrum

Word No.	POGASIS Variable*	Contents					
1		Record Type Identification (7.0 = Calibrated Martian Spectrum)					
2	ON	Orbit Number (Range from 1.0 to 676.0)					
3		Spectrum Number; the Sequence Number of the Spectrum on this Tape					
4		Day					
5		Hour					
6		Minute Earth Receipt Time (GMT)					
7		Second					
8	LATP5	Latitude of the Center of the Viewed Area (+ = North Latitude, - = South Latitude)					
9	LONP5	Longitude of the Center of the Viewed Area (0.0 to 360.0)					
10		Spare (always = 0.0)					
11		Bolometer Temperature (K); Average of the Readings Before and After Interferogram (IFM)					
12		Bolometer Temperature Redundant Sensor (K)					
13		Blackbody Temperature (K); Average of the Readings Before and After IFM					
14		Blackbody Temperature Redundant Sensor (K)					
15		Beamsplitter Temperature (K); Average of the Readings Before and After IFM					
16		Michelson Mirror Drive Motor Temperature (K); Average of the Readings Before and After IFM					
17		Temperature (K) of 45° Calibration Mirror: Average of the Readings Before and After IFM					
18		Radiating Surface Temperature (K); Average of the Readings Before and After IFM					

Word No.	POGASIS Variable*	Contents				
19		Year				
20		Day				
21		Hour Measurement Time (GMT)				
22		Minute				
23		Second				
24	TFP	Time Before/After Periapsis (minutes; - = Before, + = After)				
25-29		Spare (always = 0.0)				
30		DAS Time				
31	HSC	Spacecraft Altitude (kilometers)				
32		Clock				
33		Cone Scan Platform Angles (degrees)				
34		Twist				
35		Scan Platform In-Motion Flag (1.0 = yes, 0.0 = no)				
36	TA	Spacecraft True Anomaly (degrees)				
37	VT	Spacecraft Tangential Velocity (km/sec)				
38	RT	Spacecraft Radial Velocity (km/sec)				
39		Telemetry Received Flag (always = 1.0yes)				
40	LA5	Solar Lighting				
41	PHA5	Phase Angles at Center of the Field-of-View (degrees)				
42	VA5	Viewing Viewing				
43	SRP5	Slant Range to the Center of the Field-of- View (kilometers)				
44-53	LATQ	Ten Latitude Points Defining the Field-of- View				
54-63	LONQ	Ten Corresponding Longitude Points Defining the Field-of-View				
64	PST5	Angle at Spacecraft Between LOS and Center of Mars (degrees)				

Word No.	POGASIS Variable*	Contents				
65	ASDT	Angular Semi-Diameter of Mars (degrees)				
66	TPCA	Cone Angle of Center of Mars (degrees)				
67	TPKA	Clock Angle of Center of Mars (degrees)				
68	RMAG	Range to Center of Mars (kilometers)				
69	MCA1	Cone Phobos Angles (degrees)				
70	MKA1	Clock Clock				
71	SMN1	Distance to Phobos (kilometers)				
7 2	MCA2	Cone Deimos Angles (degrees)				
73	MKA2	Clock				
74	SMN2	Distance to Deimos (kilometers)				
7 5	ZLAT	Sub-Solar Point Latitude (degrees)				
76	ZLON	Sub-Solar Point Longitude (degrees)				
77	MHA	Mars Local Time (hours)				
7 8		Scan Enabled Flag				
79-81		Spare (always = 0.0)				
82	PIVILT	Percent of Target Illumination				
83		Subspacecraft Latitude (degrees)				
84		Subspacecraft Longitude (degrees)				
85	LTO	Evening Terminator Longitude at Equator (degrees)				
86	LTP45	Evening Terminator Longitude at 45N (degrees)				
87	LTM45	Evening Terminator Longitude at 45S (degrees)				
88	PSL5	Angle Between LOS and Nearest Limb of Mars (degrees)				
89-90		Latitude and longitude, respectively, of the center of the viewed area with respect to pre-Mariner 9 Mars pole direction and prime meridian (Icarus, 3, 236, (1964))				
91		Proportion of Field-of-View Filled by Mars				

Word No.	POGASIS Variable*	Contents
92		Paint Emissivity Correction Applied to Data (always = 1.0yes)
93		Navigation Data Estimated (1.0 = yes, 0.0 = no)
94-95		Spare (always = 0.0)
96		"A" Part of Wave Number Correction (See Type 1 Summary Record)
97		"B" Part of Wave Number Correction (See Type 1 Summary Record)
98		Observed Wave Number at First Mesh Point (See Type 1 Summary Record)
99		Wave Number Mesh Increment (See Type 1 Summary Record)
100		Number of Data Points (always = 1500.0)
101-1600		Specific Intensity (Wcm ⁻² sr ⁻¹ /cm ⁻¹)

^{*}The POGASIS variable is the name of the program variable used to calculate the data by the Jet Propulsion Laboratory (JPL). Questions concerning the methods of their calculation should be addressed to JPL.

APPENDIX C

SUPPLEMENTARY EXPERIMENTER DATA RECORD (SEDR) FORMAT

APPENDIX C

This Appendix describes the content of the SEDR information provided by JPL. An asterisk (*) preceding the field number indicates that the field was merged into the header of the IRIS RDR.

RECORD LENGTH = 424 BYTES

TAPE CHARACTER CODE EXTENDED BINARY CODED DECIMAL INTER-CHANGE CODE (EBCDIC)

C = CHARACTER STRING

F = BINARY (FIXED POINT)

FIELD NO.		CONTENT		DECI- MALS	NOTES
1	6	MEASUREMENT ID	C	-	SCISIM VARIABLE, ALPHA NUMERIC
2	2	INSTRUMENT NO.	F	0	SCISIM VARIABLE
*3	2	MEASUREMENT TIME, YEAR	\mathbf{F}	0	
*4	2	MEASUREMENT TIME, DAY OF YEAR	F	0	
*5	2	MEASUREMENT TIME, HOUR OF DAY	F	0	
*6	2	MEASUREMENT TIME, MINUTE OF HOUR	F	0	
*7	2	MEASUREMENT TIME, SECOND OF MINUTE	F	0	
8	2	MEASUREMENT TIME, MILLISECONDS	F	0	
9	4	DAS TIME	F	0	
*10	2	EARTH RECEIVED TIME, YEAR	F	0	ERT FROM TELEMETRY, GMT
*11	2	ERT, DAY	F	0	•
*12	2	ERT, HOUR	F	0	
*13	2	ERT, MINUTE	\mathbf{F}	0	
*14	2	ERT, SECOND	\mathbf{F}	0	
15	2	ERT, MILLISECOND	${f F}$	0	

FIELD NO.	FIELD LENGTH	CONTENT	DATA TYPE	DECI- MALS	NOTES
*16	4	TIME BEFORE PERI- APSIS, SECONDS	F	0	POGASIS VARIABLE TFP
17	4	SPACECRAFT ID,	C		ALPHA NUMERIC
18	2	SAS SERIAL NO.	\mathbf{F}	0	
*19	2	ORBIT NO.	F	0	POGASIS VARIABLE ON
20	6	ORBIT SOLUTION NO.	C	-	POGASIS VARIABLE ODSN, ALPHA NUMERIC
21	2	DATE OF SOLUTION, YEAR	F	0	DATE OF ORBIT SOLUTION
22	2	DATE OF SOLUTION, MONTH OF YEAR	F	0	
23	2	DATE OF SOLUTION, DAY OF MONTH	F	0	
24	2	DATE OF SOLUTION, HOUR OF DAY	F	0	
25	2	DATE OF SOLUTION, MINUTE OF HOUR	F	0	
26	4	DATE OF SOLUTION, SECOND OF MINUTE	F	0	
27	12	MDR REEL NO.	C	-	ALPHA NUMERIC
28	12	EDR REEL NO.	C	-	ALPHA NUMERIC
*29	4	SPACECRAFT ALTI- TUDE, KM	F	0	POGASIS VARIABLE HSC
*30	4	SCAN PLATFORM CLOCK ANGLE	F	2	
*31	4	SCAN PLATFORM CONE ANGLE	F	2	
*32	4	SCAN PLATFORM TWIST ANGLE	F	2	
*33		SCAN PLATFORM IN MOTION FLAG	F	0	

FIELD NO.	FIELD LENGTH	CONTENT	DATA TYPE	DECI- MALS	NOTES
*34	4	SPACECRAFT TRUE ANOMALLY, DEG	F	2	POGASIS VARIABLE TA
*35	2	SPACECRAFT TAN- GENTIAL VELOCITY, KM/SEC	F	1	POGASIS VARIABLE VT
*36	2	SPACECRAFT RADIAL VELOCITY, KM/SEC	F	1	POGASIS VARIABLE VR
*37	4	TELEMETRY RE- CEIVED FLAG	F	0	
*38	4	SOLAR LIGHTING ANGLE FOR RETICLE 5	F	2	POGASIS VARIABLE LA5
*39	4	PHASE ANGLE FOR RETICLE 5	\mathbf{F}	2	POGASIS VARIABLE PHA5
*40	4	VIEWING ANGLE FOR RETICLE 5	F	2	POGASIS VARIABLE VA5
*41	4	LATITUDE OF RETICLE 5	F	2	POGASIS VARIABLE LATP5
*42	4	LONGITUDE OF RETICLE 5	F	2	POGASIS VARIABLE LONP5
*43	4	SLANT RANGE TO RETICLE 5, KM	F	0	POGASIS VARIABLE SRP5
*44	4	LATITUDE OF POINT Q(1)	F	2	POGASIS VARIABLE LATQ(1)
45	4	LATQ(2)	\mathbf{F}	2	
*46	4	LATQ(3)	F	2	
47	4	LATQ(4)	F	2	
*48	4	LATQ(5)	F	2	
49	4	LATQ(6)	\mathbf{F}	2	
*50	4	LATQ(7)	F	2	
51	4	LATQ(8)	F	2	
*52	4	LATQ(9)	\mathbf{F}	2	

FIELD NO.	FIELD LENGTH	CONTENT	DATA TYPE	DECI- MALS	NOTES
53	4	LATQ(10)	F	2	
*54	4	LATQ(11)	F	2	
55	4	LATQ(12)	F	2	
*56	4	LATQ(13)	F	2	
5 7	4	LATQ(14)	F	2	
*58	4	LATQ(15)	F	2	
59	4	LATQ(16)	\mathbf{F}	2	
*60	4	LATQ(17)	F	2	
61	4	LATQ(18)	\mathbf{F}	2	
*62	4	LATQ(19)	F	2	
63	4	LATQ(20)	F	2	
*64	4	LONGITUDE OF POINT Q(1)	F	2	POGASIS VARIABLE LONQ(1)
65	4	LONQ(2)	F	2	
*66	4	LONQ(3)	\mathbf{F}	2	
6 7	4	LONQ(4)	${f F}$	2	
*68	4	LONQ(5)	\mathbf{F}	2	
69	4	LONQ(6)	F	2	
*70	4	LONQ(7)	F	2	
71	4	LONQ(8)	${f F}$	2	
*72	4	LONQ(9)	\mathbf{F}	2	
73	4	LONQ(10)	F	2	
*74	4	LONQ(11)	\mathbf{F}	2	
75	4	LONQ(12)	\mathbf{F}	2	
*76	4	LONQ(13)	${f F}$	2	,
77	4	LONQ(14)	\mathbf{F}	2	
*7 8	4	LONQ(15)	\mathbf{F}	2	
79	4	LONQ(16)	F	2	

FIELD NO.	FIELD LENGTH	CONTENT	DATA TYPE	DECI- MALS	NOTES
*80	4	LONQ(17)	F	2	
81	4	LONQ(18)	\mathbf{F}	2	
*82	4	LONQ(19)	F	2	
83	4	LONQ(20)	F	2	
*84	4	ANGLE AT SPACE- CRAFT BETWEEN LOS AND CENTER OF MAR		2	POGASIS VARIABLE PST 5
*85	4	ANGULAR SEMIDIA- METER OF MARS	F	2	POGASIS VARIABLE ASDT
*86	4	CONE ANGLE OF CENTER OF MARS	F	2	POGASIS VARIABLE TPCA
*87	4	CLOCK ANGLE OF CENTER OF MARS	F	2	POGASIS VARIABLE TPKA
*88	4	RANGE TO CENTER OF MARS, KM	F	0	POGASIS VARIABLE RMAG
*89	4	CONE ANGLE OF PHOBOS	F	2	POGASIS VARIABLE MCA1
*90	4	CLOCK ANGLE OF PHOBOS	F	2	POGASIS VARIABLE MKA1
*91	4	RANGE TO PHOBOS, KM	F	2	POGASIS VARIABLE SMN1
*92	4	CONE ANGLE OF DEIMOS	F	2	POGASIS VARIABLE MCA2
*93	4	CLOCK ANGLE OF DEIMOS	F	2	POGASIS VARIABLE MKA2
*94	4	RANGE TO DEIMOS, KM	F	2	POGASIS VARIABLE SMN2
*95	4	LATITUDE OF SUB- SOLAR POINT	F	2	POGASIS VARIABLE ZLAT
*96	4	LONGITUDE OF SUB- SOLAR POINT	F	2	POGASIS VARIABLE ZLON
*97	4	MARS LOCAL TIME (HOUR ANGLE FROM SUBSOLAR POINT), HE	F RS	2	POGASIS VARIABLE MHA

FIELD NO.	FIELD LENGTH	CONTENT	DATA TYPE	DECI- MALS	አለርጥድሮ
9 8	2	IMCC POSITION	F	0	FROM TELEMETRY
*99	2	SCAN ENABLED FLAG	F	0	FROM TELEMETRY
100	2	BLACKBODY TEMPER-ATURE, DN	F	0	FROM TELEMETRY
101	2	DETECTOR TEMPER-ATURE, DN	F	0	FROM TELEMETRY
102	2	RADIATING SURFACE TEMPERATURE, DN	F	0	FROM TELEMETRY
*103	2	PERCENT OF TARGET PLANET IN VIEW WHICH IS ILLUMINATE	F D	0	POGASIS VARIABLE PIVILT
*104	4	LATITUDE OF SUB- SPACECRAFT POINT	F	2	POGASIS VARIABLE
*105	4	LONGITUDE OF SUB- SPACECRAFT POINT	F	2	POGASIS VARIABLE
*106	4	LONGITUDE OF TER- MINATOR AT 0 DEG LATITUDE	F	2	POGASIS VARIABLE LTO
*107	4	LONGITUDE OF TER- MINATOR AT +45 DEG LATITUDE	F		POGASIS VARIABLE LTP45
*108	4	LONGITUDE OF TER- MINATOR AT -45 DEG LATITUDE	F	2	POGASIS VARIABLE LTM45
*109	4	ANGLE BETWEEN LOS AND PLANETS NEAR- EST LIMB, NEGATIVE FOR INTERCEPTING PATHS	F	2	POGASIS VARIABLE PSL5
110	2	MARTIAN DATE (EQUI- VALENT EARTH DATE) MONTH		0	POGASIS VARIABLE
111	2	MARTIAN DATE, DAY	F	0	POGASIS VARIABLE
112		RESERVED AREA FOR ANNOTATION	С	-	