Complex Analysis Qualifying Exam Solutions

D. Zack Garza

Wednesday 5th August, 2020

Contents

1	Topology and Functions of One Variable (8155a)	2
2	Several Variables (8155h)	2
3	Conformal Maps (8155c)	2
4	Integrals and Cauchy's Theorem (8155d) 4.1 5 <th>2 2 3</th>	2 2 3
5	Liouville's Theorem, Power Series (8155e) 5.1 1 5.2 5 5.3 6	3 4 4
6	Laurent Expansions and Singularities (8155f) 6.1 1 6.2 2 6.3 8	5 5 6
7	Residues (8155g)	6
8	Rouche's Theorem (8155h) 8.1 1	6 6 7
9	Schwarz Lemma and Reflection Principle (8155i)	7
10	Spring 2020 Homework 1	7
11	Spring 2020 Homework 2 11.1 Stein And Shakarchi	7 7

- 1 Topology and Functions of One Variable (8155a)
- 2 Several Variables (8155h)
- 3 Conformal Maps (8155c)
- 4 Integrals and Cauchy's Theorem (8155d)

4.1 5

Show that there is no sequence of polynomials converging uniformly to f(z) = 1/z on S^1 .

Solution

- By Cauchy's integral formula, $\int_{S^1} f = 2\pi i$
- If p_j is any polynomial, then p_j is holomorphic in \mathbb{D} , so $\int_{S^1} p_j = 0$.
- Contradiction: compact sets in $\mathbb C$ are bounded, so

$$\left| \int f - \int p_j \right| \le \int |p_j - f| \le \int \|p_j - f\|_{\infty} = \|p_j - f\|_{\infty} \int_{S^1} 1 \, dz = \|p_j - f\|_{\infty} \cdot 2\pi \longrightarrow 0$$
 which forces $\int f = \int p_j = 0$.

4.2 9

- Note f is continuous on \mathbb{C} since analytic implies continuous (f equals its power series, where the partials sums uniformly converge to it, and uniform limit of continuous is continuous).
- Strategy: take D a disc centered at a point $x \in \mathbb{R}$, show f is holomorphic in D by Morera's theorem.
- Let $\Delta \subset D$ be a triangle in D.
- Case 1: If $\Delta \bigcap \mathbb{R} = 0$, then f is holomorphic on Δ and $\int_{\Delta} f = 0$.
- Case 2: one side or vertex of Δ intersects \mathbb{R} , and wlog the rest of Δ is in \mathbb{H}^+ .
 - Then let Δ_{ε} be the perturbation $\Delta + i\varepsilon = \{z + i\varepsilon \mid z \in \Delta\}$; then $\Delta_{\varepsilon} \cap \mathbb{R} = 0$ and $\int f = 0$.
 - $\int_{\Delta_{\varepsilon}} f = 0.$ Now let $\varepsilon \longrightarrow 0$ and conclude by continuity of f (???)
 - * We want

$$\int_{\Delta_{\varepsilon}} f = \int_{a}^{b} f(\gamma_{\varepsilon}(t)) \gamma_{\varepsilon}'(t) dt \xrightarrow{\varepsilon \longrightarrow 0} \int_{a}^{b} f(\gamma(t)) \gamma_{\varepsilon}'(t) dt = \int_{\Delta} f$$

where γ_{ε} , γ are curves parametrizing Δ_{ε} , Δ respectively.

- * Since $\gamma, \gamma_{\varepsilon}$ are closed and bounded in \mathbb{C} , they are compact subsets. Thus it suffices to show that $f(\gamma_{\varepsilon}(t))\gamma'_{\varepsilon}(t)$ converges uniformly to $f(\gamma(t))\gamma'(t)$.
- Case 3: Δ intersects both \mathbb{H}^+ and \mathbb{H}^- .
 - Break into smaller triangles, each of which falls into one of the previous two cases.

4.3 10

Suppose $f: \mathbb{C} \longrightarrow \mathbb{C}$ is entire and bounded, and use Cauchy's theorem to prove that $f' \equiv 0$ and thus f is constant.

Solution

- Suffices to prove f' = 0 because \mathbb{C} is connected (see Stein Ch 1, 3.4)
 - Idea: Fix w_0 , show $f(w) = f(w_0)$ for any $w \neq w_0$
 - Connected = Path connected in \mathbb{C} , so take γ joining w to w_0 .
 - f is a primitive for f', and $\int_{\gamma} f' = f(w) f(w_0)$, but f' = 0.
- Fix $z_0 \in \mathbb{C}$, let B be the bound for f, so $|f(z)| \leq B$ for all z.
- Apply Cauchy inequalities: if f is holomorphic on $U \supset \overline{D}_R(z_0)$ then setting $||f||_C \coloneqq \sup_{z \in C} |f(z)|$,

$$\left| f^{(n)}(z_0) \right| \le \frac{n! \|f\|_C}{R^n}.$$

- Yields $|f'(z_0)| \leq B/R$
- Take $R \longrightarrow \infty$, QED.

5 Liouville's Theorem, Power Series (8155e)

5.1 1

Suppose f is analytic on $\Omega \supseteq \mathbb{D}$ whose power series $\sum a_n z^n$ has radius of convergence 1.

- a. Give an example of an f which converges at every point on S^1 .
- b. Give an example of an f which is analytic at z=1 but $\sum a_n$ diverges.
- c. Prove that f can not be analytic at every point of S^1 .

Solution:

- a. Take $\sum \frac{z^n}{n^2}$; then $|z| \le 1 \implies \left| \frac{z^n}{n^2} \right| \le \frac{1}{n^2}$ which is summable, so the series converges for $|z| \le 1$.
- b. Take $\sum \frac{z^n}{n}$; then z = 1 yields the harmonic series, which diverges.
 - For $z \in S^1 \setminus \{1\}$, we have $z = e^{2\pi i t}$ for $0 < t < 2\pi$.
 - So fix t.
 - Toward applying the Dirichlet test, set $a_n = 1/n, b_n = z^n$.
 - Then for all N,

$$\left| \sum_{n=1}^{N} b_n \right| = \left| \sum_{n=1}^{N} b_n \right| = \left| \sum_{n=1}^{N} z^n \right| = \left| \frac{z - z^{N+1}}{|1 - z|} \right| \le \frac{2}{1 - z} < \infty.$$

• Thus $\sum a_n b_n < \infty$ and $\sum z^n/n$ converges.

c. ?

5.2 5

Prove the Fundamental Theorem of Algebra: every non-constant polynomial $p(z) = a_n z^n + \cdots + a_0 \in \mathbb{C}[x]$ has a root in \mathbb{C} .

Solution:

- Strategy: By contradiction with Liouville's Theorem
- Suppose p is non-constant and has no roots.
- Claim: 1/p(z) is a bounded holomorphic function on \mathbb{C} .
 - Holomorphic: clear? Since p has no roots.
 - Bounded: for $z \neq 0$, write

$$\frac{P(z)}{z^n} = a_n + \left(\frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n}\right).$$

- The term in parentheses goes to 0 as $|z| \longrightarrow \infty$
- Thus there exists an R > 0 such that

$$|z| > R \implies \left| \frac{P(z)}{z^n} \right| \ge c \coloneqq \frac{|a_n|}{2}.$$

- So p is bounded below when |z| > R
- Since p is continuous and has no roots in $|z| \leq R$, it is bounded below when $|z| \leq R$.
- Thus p is bounded below on \mathbb{C} and thus 1/p is bounded above on \mathbb{C} .
- By Liouville's theorem, 1/p is constant and thus p is constant, a contradiction.

5.3 6

Find all entire functions f which satisfy the following inequality, and prove the list is complete:

$$|f(z)| \ge |z|.$$

Solution:

- Suppose f is entire and define $g(z) := \frac{z}{f(z)}$.
- By the inequality, $|g(z)| \le 1$, so g is bounded.
- g potentially has singularities at the zeros $Z_f := f^{-1}(0)$, but since f is entire, g is holomorphic on $\mathbb{C} \setminus Z_f$.
- Claim: $Z_f = \{0\}.$
 - If f(z) = 0, then $|z| \le |f(z)| = 0$ which forces z = 0.
- We can now apply Riemann's removable singularity theorem:
 - Check g is bounded on some open subset $D \setminus \{0\}$, clear since it's bounded everywhere
 - Check g is holomorphic on $D \setminus \{0\}$, clear since the only singularity of g is z = 0.
- By Riemann's removable singularity theorem, the singularity z = 0 is removable and g has an extension to an entire function \tilde{g} .
- By continuity, we have $|\tilde{g}(z)| \leq 1$ on all of \mathbb{C}
 - If not, then $|\tilde{g}(0)| = 1 + \varepsilon > 1$, but then there would be a domain $\Omega \subseteq \mathbb{C} \setminus \{0\}$ such that $1 < |\tilde{g}(z)| \le 1 + \varepsilon$ on Ω , a contradiction.
- By Liouville, \tilde{g} is constant, so $\tilde{g}(z) = c_0$ with $|c_0| \leq 1$
- Thus $f(z) = c_0^{-1}z := cz$ where $|c| \ge 1$

Thus all such functions are of the form f(z) = cz for some $c \in \mathbb{C}$ with $|c| \ge 1$.

6 Laurent Expansions and Singularities (8155f)

6.1 1

Let
$$f(z) = \frac{z+1}{z(z-1)}$$
.

About z = 0:

$$f(z) = (z+1)\left(-\frac{1}{z} + \frac{1}{z-1}\right)$$

$$= -(z+1)\left(\frac{1}{z} + \sum_{n=0}^{\infty} z^n\right)$$

$$= -(z+1)\sum_{n=-1}^{\infty} z^n$$

$$= \frac{1}{z} + 2\sum_{n=0}^{\infty} z^n$$

$$= -\frac{1}{z} - 2 - 2z - 2z^2 - \cdots$$

About z = 1:

$$f(z) = \left(\frac{(1-z)-2}{1-z}\right) \left(\frac{1}{1-(1-z)}\right)$$

$$= \left(1 - \frac{2}{1-z}\right) \sum_{n=0}^{\infty} (1-z)^n$$

$$= \sum_{n=0}^{\infty} (1-z)^n - 2 \sum_{n=-1}^{\infty} (1-z)^n$$

$$= -\frac{2}{1-z} - \sum_{n=0}^{\infty} (1-z)^n$$

$$= \frac{2}{z-1} + \sum_{n=0}^{\infty} (-1)^{n+1} (z-1)^n$$

$$= \frac{2}{z-1} - 1 + (z-1) - (z-1)^2 + \cdots$$

6.2 2

$$e^{\frac{1}{z}} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{1}{z}\right)^n = 1 + \frac{1}{z} + \frac{1}{2z^2} + \frac{1}{6z^3} + \cdots$$

$$\cos\left(\frac{1}{z}\right) = \frac{1}{2} \left(e^{\frac{i}{z}} + e^{-\frac{i}{z}}\right)$$

$$= \frac{1}{2} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\left(\frac{i}{z}\right)^n + \left(\frac{-i}{z}\right)^n\right)$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \left(\frac{1}{z}\right)^{2n}.$$

6.3 8

Idea: show their f - g is analytic by taking away all of the negative powers, and bounded by (c).

7 Residues (8155g)

8 Rouche's Theorem (8155h)

8.1 1

Note

- $f_1(z) = 1 + z$, which has the single root z = -1 which is not inside |z| < 1.
- $f_2(z) = 1 + z + \frac{1}{2}z^2 = (z (1+i))(z (1-i))$, and $|1 \pm i| = \sqrt{2} > 1$.
- Note that $p_n(z) \stackrel{n \longrightarrow \infty}{e}^z$ uniformly on any compact set.
- Let r be arbitrary and fix $N := \mathbb{D}_r(0)$, then $p_n(z) \longrightarrow e^z$ uniformly on \overline{N} .
- Set $g_n(z) := p_n(z)/e^z$, then $g_n \longrightarrow 1$ uniformly on \overline{N} .
- Choose $n \gg 0$ so that $|f(z) 1| < \varepsilon < 1$ for all $z \in \overline{N}$.
- So take h(z) = 1, then on ∂N ,?

8.2 2

Multiple versions of Rouches theorem!

- Set $h(z) = 3z^2$ and $g(z) = z^3 + bz + b^2$.
- Then on |z|=1,

$$|g(z)| \le 1 + b + b^2 < 3 = 3|z|^2 = |3z^2| = |h|,$$

so g, h have the same number of roots in $|z| \leq_? 1$.

• But h evidently has two roots in this region.

8.3 4

- Set $h(z)=-4z^3$ and $g(z)=z^7-1$, then on |z|=1, $|g(z)|=\left|z^7-1\right|\leq 1+1=2<4=\left|-4z^3\right|=|h(z)|.$
- So h and h+g have the same number of roots, but h has three roots here.
- 9 Schwarz Lemma and Reflection Principle (8155i)
- 10 Spring 2020 Homework 1
- 11 Spring 2020 Homework 2
- 11.1 Stein And Shakarchi
- 11.2 Additional Problems