Diskrete Strukturen (WS 2023-24) - Halbserie 11

11.1

Sei $\phi: A \to B$ ein Homomorphismus zwischen kommutativen Gruppen. Sei $\ker(\phi) \subset A$ wie folgt definiert: $\ker(\phi) := \{x \in A : \phi(x) = 0_B\}$. Zeigen Sie dass $\ker(\phi)$ ist eine Untergruppe von A. (D.h. Sie müssen zeigen dass a) $0_A \in \ker(\phi)$, b) wenn $x \in \ker(\phi)$ dann auch $-x \in \ker(\phi)$, und c) wenn $x, y \in \ker(\phi)$ dann auch $x + y \in \ker(\phi)$.

 $(\ker(\phi) \text{ heißt auch "kern von } \phi")$

Solution. a) Seien $x, y \in \ker(\phi)$. Dann $\phi(x + y) = \phi(x) + \phi(y) = 0_B + 0_B = 0_B$, also $x + y \in \ker(\phi)$

- b) Sei $x \in \ker(\phi)$. dann $\phi(-x) = -\phi(x) = -0_B = 0_B$. Das zeigt dass $-x \in \ker(\phi)$
- c) $\phi(0_A) = 0_B$, also $0_A \in \ker(\phi)$.

$$11.2 ag{4}$$

Zeigen Sie dass ein Homomorphismus $\phi: A \to B$ injektiv ist gdw. $\ker(\phi) = \{0_A\}$

Solution. Wenn ϕ injektiv dann einzelnes Element von A das auf 0_B abgebildet ist ist 0_A , also $\ker(\phi) = \{0_A\}$.

Wenn $\ker(\phi) = \{0_A\}$ dann einzelnes Element von A das auf 0_B abgebildet ist ist 0_A . Seien $x, y \in A, x \neq y$, dann $x - y \neq 0_A$, also $\phi(x) - \phi(y) = \phi(x - y) \neq 0_B$, d.h. $\phi(x) \neq \phi(y)$. D.h. dass ϕ injektiv ist.

$$11.3$$

Seien (M, +) and (N, +) zwei kommutative Gruppen. Sei $\phi \colon M \to N$ eine Abbildung mit der Eigenschaft dass $\forall x, y \in M$ haben wir $\phi(x + y) = \phi(x) + \phi(y)$. Zeigen Sie dass $\phi(0_M) = 0_N$ und $\forall x \in M$ $\phi(-x) = -\phi(x)$.

Solution. Erst zeigen wir $\phi(0_M) = 0_N$. In der Tat, wir haben $\phi(0_M) = \phi(0_M + 0_M) = \phi(0_M) + \phi(0_M)$. Jetzt zu den beiden Seiten addieren wir $-\phi(0_M)$ und bekommen wir $0_N = \phi(0_M)$. Jetzt zeigen wir $\phi(-x) = -\phi(x)$. In der Tat, wir haben $\phi(x) + \phi(-x) = \phi(x + (-x)) = \phi(0_M) = 0_N$.

11.4 Seien A, B, C kommutative Gruppen und seien $\alpha \colon A \to B, \beta \colon B \to C$ homomorphismen. Zeigen Sie dass $\alpha; \beta \colon A \to C$ auch ein homomorphismus ist.

Solution. a)
$$\alpha$$
; $\beta(x+y) = \beta(\alpha(x+y)) = \beta(\alpha(x) + \alpha(y)) = \beta(\alpha(x)) + \beta(\alpha(y)) = \alpha$; $\beta(x) + \alpha$; $\beta(y)$.

b)
$$\alpha; \beta(0_A) = \beta(\alpha(0_A)) = \beta(0_B) = 0_C$$

11.5 Beweisen oder widerlegen Sie folgende Aussage:

Jeder distributive Verband ist komplementiert.

Solution. Die Aussage gilt nicht. Zum Beispiel ist $(\{1,2,3\},\leq)$ ein distributiver Verband, aber 2 hat kein Komplement.

11.6 Wir sagen, dass eine Boolesche Algebra (M, \leq) dicht ist, wenn für alle $x, y \in M$ mit x < y ein Element z mit x < z < y existiert. Zeigen Sie, dass eine Boolesche Algebra, die dicht ist, keine Atome hat.

Solution. Nehmen wir an, M ist dicht. Dann hat es keine Atome, denn wenn a ein Atom ist, dann $\bot < a$ und es gibt kein z mit $\bot < z < a$, was der Dichtheit widerspricht. [3]

11.7 Zeigen Sie, dass eine Boolesche Algebra dann und nur dann dicht ist, wenn sie keine Atome hat.

(Tipp: eine Implikation ist die vorherige Übung, für die andere denken Sie an ein Beispiel mit zwei Mengen A und B mit $A \subseteq B$, und versuchen Sie, eine Menge zu konstruieren, die zwischen A und B liegt, indem Sie nur die Standardoperationen der Mengenlehre verwenden).

Solution. (Skizze) Die eine Implikation ist durch die vorherige Übung abgedeckt. Für die andere nehmen wir an, dass M keine Atome hat. Sei $a,b \in M$ mit a < b. Dann ist $b \wedge a^c$ kein Atom, so dass wir d mit $\bot < d < b \wedge a^c$ finden können. Dann kann man zeigen $a < a \vee d < a \vee (b \wedge a^c)$.

11.8 Zeigen Sie ein Beispiel von einer dichten Booleschen Algebra (M, \leq) .

(Die schwerste Aufgabe im Modul - bitte in der Übungseinheiten nicht besprechen, evtl. nach dem dass die Lösung ercheint können Interessante persönlich mit Übungsleitern die Lösung besprechen)

Solution. (Skizze) Wir betrachten sogenannte Clopen-Mengen von $\mathcal{P}(\mathbb{N})$. Ein Clopen ist durch endlich viele Bedingungen definiert. Formal betrachten wir für $k \in \mathbb{N}$ die Funktion $\pi_k \colon \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\{\prime, \infty, \dots, \|\})$ gegeben durch $\pi_k(U) := \{S \cap \{0, 1, \dots, k\} \colon S \in U\}$. Wir sagen, dass $C \subset \mathcal{P}(\mathbb{N})$ ein Clopen ist, wenn für einige k und $U \subset \mathcal{P}\{\prime, \infty, \dots, \|\}$ gilt: $C = \pi_k^{-1}(U)$

Clopens sind die Teilmengen von $\mathcal{P}(\mathbb{N})$, die durch endlich viele Bedingungen gegeben sind. Ein Beispiel für ein Clopen C wäre "alle Teilmengen S von \mathbb{N} , die die Eigenschaft haben, dass genau zwei der Zahlen 1,5,7 Elemente von S sind" (in diesem Fall müssten wir $k \geq 7$ in der Definition nehmen, um zu prüfen, ob C tatsächlich ein Clopen ist.

Mit dieser Interpretation im Hinterkopf ist es einfach zu prüfen (und dem Leser zu überlassen), dass Clopens eine Boolesche Algebra bilden (sie ist eine Unteralgebra von $\mathcal{P}(\mathcal{P}(\mathbb{N}))$). Die Tatsache, dass sie dicht ist, kann wie folgt bewiesen werden. Nehmen wir an, wir haben zwei Clopens C, D. Wenn wir k groß genug nehmen, können wir $C = \pi_k^{-1}(U)$ und $D = \pi_k^{-1}(V)$ annehmen, mit $U \subsetneq V$. Dann haben wir auch $C = \pi_{k+1}^{-1}(U')$ und $D = \pi_{k+1}^{-1}(V')$, wobei U' das Vorbild von U unter der Abbildung $\mathcal{P}(\{l, \infty, \in, \dots, l] + \infty\}) \to \mathcal{P}\{l, \infty, \in, \dots, l] + \infty\}$ ist. Ähnliches gilt für V'.

Da V mindestens ein Element mehr hat als U und die Kardinalität von U' bzw. V' genau doppelt so groß ist wie die Kardinalität von U bzw. V, folgern wir, dass V' mindestens zwei Elemente mehr hat als U'. Daraus folgt, dass wir W mit $U' \subsetneq W \subsetneq V'$ finden können, und dann ist $E := \pi_{k+1}^{-1}(W)$ ein Clopen echt zwischen C und D.

11.9 Seien (A, \leq) und (A', \leq') zwei Boolesche Algebren. Definieren Sie in Analogie zur disjunkten Vereinigung von Mengen eine Ordnung auf $A \times A'$, die diese Menge zu einer booleschen Algebra macht. (es ist einfach, aber mühsam, alle Voraussetzungen zu prüfen - daher bitte nicht in den Übungseinheiten nicht besprechen)

Solution. Wir definieren $(x, x') \leq (y, y')$ gdw $x \leq y$ und $(x' \leq y')$. Man kann jetzt checken dass diese Ordnung macht $A \times A'$ zu einer Boolschen Algebra.