OUTILS MATHÉMATIQUES 7 Nombres complexes

1 Écritures d'un nombre complexe

1.1 Forme cartésienne

$$\underline{Z} = a + jb \quad \text{avec} \quad j^2 = -1$$

 $a = \operatorname{Re}(\underline{Z})$: partie réelle de \underline{Z} et $b = \operatorname{Im}(\underline{Z})$: partie imaginaire de \underline{Z}

1.2 Forme exponentielle

$$\boxed{\underline{Z} = |\underline{Z}|e^{j\arg(\underline{Z})} = |\underline{Z}|e^{j\varphi_Z} = |\underline{Z}|\cos(\varphi_Z) + j|\underline{Z}|\sin(\varphi_Z)}$$

 $\left|\underline{Z}\right|$: module de \underline{Z} et φ_Z : argument de \underline{Z}

1.3 Passage d'une écriture à l'autre

Forme cartésienne →
Forme exponentielle

2 Nombres complexes particuliers

<u>Z</u>	Nature	Module	Argument
<u>Z</u> = a			
$\underline{Z} = jb$			

3 Opérations sur les nombres complexes

3.1 Addition - Soustraction

- ightharpoonup Soient $\underline{Z}_1 = a_1 + jb_1 = |\underline{Z}_1|e^{j\varphi_1}$ et $\underline{Z}_2 = a_2 + jb_2 = |\underline{Z}_2|e^{j\varphi_2}$
- > Addition:

$$\boxed{ \underline{Z}_1 + \underline{Z}_2 = a_1 + a_2 + j(b_1 + b_2)}$$

$$\boxed{ \operatorname{Re}(\underline{Z}_1 + \underline{Z}_2) = a_1 + a_2 \quad \text{et} \quad \operatorname{Im}(\underline{Z}_1 + \underline{Z}_2) = b_1 + b_2}$$

> Soustraction:

$$\boxed{ \underline{Z}_1 - \underline{Z}_2 = a_1 - a_2 + j(b_1 - b_2) }$$

$$\boxed{ \operatorname{Re}(\underline{Z}_1 - \underline{Z}_2) = a_1 - a_2 \quad \text{et} \quad \operatorname{Im}(\underline{Z}_1 - \underline{Z}_2) = b_1 - b_2 }$$

3.2 Multiplication - Division

- ightharpoonup Soient $\underline{Z}_1 = a_1 + jb_1 = |\underline{Z}_1|e^{j\varphi_1}$ et $\underline{Z}_2 = a_2 + jb_2 = |\underline{Z}_2|e^{j\varphi_2}$
- > Multiplication:

 \triangleright <u>Division</u>:

$$\begin{split} \boxed{ \frac{\underline{Z}_1}{\underline{Z}_2} = \frac{\left|\underline{Z}_1\right| e^{j\varphi_1}}{\left|\underline{Z}_2\right| e^{j\varphi_2}} = \frac{\left|\underline{Z}_1\right|}{\left|\underline{Z}_2\right|} e^{j(\varphi_1 - \varphi_2)} } \\ \boxed{ \frac{\underline{Z}_1}{\left|\underline{Z}_2\right|} = \frac{\left|\underline{Z}_1\right|}{\left|\underline{Z}_2\right|} \quad \text{et} \quad \arg{\left(\frac{\underline{Z}_1}{\underline{Z}_2}\right)} = \varphi_1 - \varphi_2 = \arg{\left(\underline{Z}_1\right)} - \arg{\left(\underline{Z}_2\right)} } \end{split}$$

3.3 Dérivation - Intégration

- ightharpoonup Soit $\underline{s}(t) = S_M e^{j\varphi} e^{j\omega t}$
- Dérivation
- Intégration

Opération	Nombre complexe	Module	Argument
Dérivation			
Intégration			