TRANSFORMER & ATTENTIONが よく分かる資料

岡田 隆之

TRANSFORMERとは

- **Transformer**とは、2017年に発表された"Attention Is All You Need"という自然言語処理の論文で登場したDeap Learningモデル。
- それまでは単語一つ一つを順番に取り扱うRNNモデルが主流だったが、 文章全体をいっぺんに取り扱うTransformerモデルに主流が移り変わり、 主に自然言語処理において中心的な役割を持つようになった。並列処理 もできるため、処理も早い。
- 自然言語処理の文章のように、データが順番に流れていくような処理に強く、音声解析や**時系列解析**、最近では画像処理においても広く使用が広まっている。大変人気。

TRANSFORMERの成果

- 自然言語だと100%の正解がないため、正解率が示しにくい。例えば画像処理においては次のような成果が出ている。AI画像分類でも有名なデータセットTransformerを使ったものがTop!!
 - * ViT=Vision Transformer
- 以下、論文での報告: https://openreview.net/pdf?id=YicbFdNTTy

Ours (ViT-H/14)	Ours (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
88.36	87.61 ± 0.03	87.54 ± 0.02	88.4/88.5*
90.77	90.24 ± 0.03	90.54	90.55
99.50 ± 0.06	99.42 ± 0.03	99.37 ± 0.06	_
94.55 ± 0.04	93.90 ± 0.05	93.51 ± 0.08	_
97.56 ± 0.03	97.32 ± 0.11	96.62 ± 0.23	_
99.68 ± 0.02	99.74 ± 0.00	99.63 ± 0.03	_
77.16 ± 0.29	75.91 ± 0.18	76.29 ± 1.70	
2.5k	0.68k	9.9k	12.3k
	$(ViT-H/14)$ 88.36 90.77 99.50 ± 0.06 94.55 ± 0.04 97.56 ± 0.03 99.68 ± 0.02 77.16 ± 0.29	$ \begin{array}{ccc} \text{(ViT-H/14)} & \text{(ViT-L/16)} \\ 88.36 & 87.61 \pm 0.03 \\ \textbf{90.77} & 90.24 \pm 0.03 \\ \textbf{99.50} \pm 0.06 & 99.42 \pm 0.03 \\ \textbf{94.55} \pm 0.04 & 93.90 \pm 0.05 \\ \textbf{97.56} \pm 0.03 & 97.32 \pm 0.11 \\ 99.68 \pm 0.02 & \textbf{99.74} \pm 0.00 \\ \textbf{77.16} \pm 0.29 & 75.91 \pm 0.18 \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TRANSFORMERの時系 列データへの適用

• 時系列データに対してもさまざまなところから Transformerによる制度改善が報告されてい る。例)上図

また、右下図のように、分析にどこが重要にに なったのか教えてくれるようにすることもできる。

Model	Pearson Correlation	RMSE
ARIMA	0.769	1.020
	(+0 %)	(-0 %)
LSTM	0.924	0.807
	(+19.9 %)	(-20.9 %)
Seq2Seq+attn	0.920	0.642
	(+19.5 %)	(-37.1 %)
Transformer	0.928	0.588
	(+20.7 %)	(-42.4 %)

可視化の問題-時系列の1点1点に 印付けすることは可能なのか??

[high, low, close](t番目)などの組が単語ひとつ(t番目)に相当。
⇒単語ひとつ≒組の重要度はわかるが、値一つ一つはどう出す??⇒技術的に難し

う。

点ごとには

重要度の割り出しは時間ごと &全体としての列になる。 (例:2021年8月15日の変動が重 要。また、全体としてはhighの情 報がよく予測に使われた)

TRANSFORMERの構成図

- 右がDeap LearningモデルのTransformerの構成図。
- Transformerの構成はおおよそ①、②、③の3つの部分に分類されるが、3つとも全部Attentionを使っているところが重要。RNNなどの活用はない。それぞれの処理は以下:
- ①⇒入力分の単語間の関係性を理解
- ②⇒出力したところまでの単語間の関係性の理解
- ③入力と出力の関係性を理解
- そして、利用されているAttentionの詳しい技術は以下:
- Self-Attention
- Multi-Head Attention
- Scaled Dot-Product Attention

3つのATTENTIONの関係性

• 前ページでAttentionが3種類あるように書いたが、実は、

Scaled Dot-Product AttentionはSelf-Attentionの中で使用するAttention活用に向けた内積化技術。

Multi-Head AttentionはSelf-Attentionの入り口(入力の部分)を増やしたもの。なので、内容的にはSelf-Attentionの部分しかなく、実装的にはより強化されたversionのMulti-Head Attentionを使えばよい。

Multi-Head Attention(初回論文では8組)

Self-Attention

Scaled Dot Product Attention これは、Self-Attentionの中 で利用される計 算の一部。

SELF-ATTENTIONの計算解説

内積をとっている。この部 分がScaled-Dot Product Attention

 前ページでみたように、Multi-Head Attentionは入力部分を増やしただけなので、Self-Attentionさえ理解できれば良いだろう。次のようになる。

