

ĐẠI HỌC ĐÀ NẰNG

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN

VIETNAM - KOREA UNIVERSITY OF INFORMATION AND COMMUNICATION TECHNOLOGY

한-베정보통신기술대학교

Nhân bản – Phụng sự – Khai phóng

Heaps

CONTENT

- Introduction
- Basic Operations
- Heap Sort

CONTENT

- Introduction
- Basic Operations
- Heap Sort

Heap

- is a specialized tree-based data structure
- is an application of complete binary tree (also called priority queue)

Definition

- max/min tree
 - a tree in which the key value in each node is no smaller/greater than the key values in its children (if any)
- max/min heap
 - a max/min complete binary tree

Complete binary tree

- A complete binary tree is a binary tree that satisfies two properties:
- First, in a complete binary tree, every level, except possibly the last, is completely filled.
- Second, all nodes appear as far left as possible.

• In a complete binary tree T, there are exactly n nodes and level r of T can have at most 2^{r-1} nodes.

Complete binary tree

- Example:
- In trees T_1 and T_2 : level 1: $2^{1-1}=1$ node, level 2: $2^{2-1}=2$ nodes, level 3: $2^{3-1}=4$ nodes
- In tree T_1 : level 4: 2^{4-1} =8 nodes
- In tree T_2 : level 4: 5 nodes (have at most 2^{4-1} =8 nodes)

Examples

A complete binary tree

Array implementation of the tree

- Binary heap is a complete binary tree
- Every node satisfies the heap property:

If B is a child of A, then $key(A) \ge key(B)$ or $key(B) \ge key(A)$

- Alternatively, elements at every node will be either less than or equal to the element at its left and right child.
- ⇒Thus, the root node has the highest key value in the heap. Such a heap is commonly known as a max heap (key(A) ≥ key(B))
- ⇒Thus, the root node has the lowest key value in the heap. Such a heap is

called a min heap (key(B) ≥ key(A))

- Based on this criteria, a heap can be of two types
 - Max Heap: Where the value of the root node is greater than or equal to either of its children.
 - Min Heap: Where the value of the root node is less than or equal to either of its children.

Data structure of Binary heap

- Using array (the same rules as that of a complete binary tree)
- Element is at position i in the array (i=1,2,3,...):
 - Left child is stored at position 2i
 - Right child is stored at position 2i+1.
 - Parent is stored at position i/2.
- Parent A[i] (for array A[1..n], A[1] is the root)
 - Left child: A[2i]
 - Right child: A[2i + 1]

1	54
2	45
3	36
4	27
5	29
6	18
7	21
8	11
9	
10	
11	
12	
13	
14	
15	

Data structure of Binary heap

- All the levels of the tree except the last level are completely filled.
- The height of a binary tree is given as $log_2 n$, (n: number of elements)
- ⇒ Heaps are a very popular data structure for implementing priority queues.
- → A binary heap is a useful data structure in which elements can be added randomly.
- ⇒ But only the element with the highest value is removed in case of max heap and lowest value in case of min heap.

Heap Representation

Since heaps are complete trees, we may use an array representation

```
#define MAX_ELEMENTS 100
typedef struct {
  int key;
  /* other fields */
} element;
element heap[MAX_ELEMENTS];
int n = 0;
```


	14	12	7	10	8	6
0	1	2	3	4	5	6

CONTENT

- Introduction
- Basic Operations
- Heap Sort

- Consider a max heap H with n elements
- Find a proper place for the new element in the array implementation
- The parent of node i is located at i/2
 - Step 1: Put the new element at the last entry of the array
 - Step 2: Exchange the new element with its parent, if the new element is greater
 - Step 3: Repeat Step 2 until no more exchange is necessary

Insertion - Example

(a) heap before insertion

(b) initial location of new node

(c) insert 5 into heap (a)

(d) insert 21 into heap (a)

- Example: insert 99 in the max heap
 - Step 1: Put the new element at the last entry of the array

• Step 2, 3:

• Example: Build a max heap H from the given set of numbers 45, 36, 54, 27, 63, 72, 61, 18.

• Example: Build a max heap H from the given set of numbers 45, 36, 54, 27, 63, 72, 61, 18

72

• Example: Build a max heap H from the given set of numbers 45, 36, 54, 27, 63, 72, 61, 18.

Memory representation of binary heap H

Max Heap Construction Algorithm

25	33	42	10	14	19	27	44	26	31

Min Heap Construction Algorithm

25	33	42	10	14	19	27	44	26	31

Max Heap Construction Algorithm

55	43	40	65	84	20	37	4	22	35	31	25	42

Max Heap Construction Algorithm

55	43	40	65	84	20	37	4	22	35	31	25	42

Min Heap Construction Algorithm

55	43	40	65	84	20	37	4	22	35	31	25	42

Min Heap Construction Algorithm

55	43	40	65	84	20	37	4	22	35	31	25	42
						_						


```
void insertMaxHeap(element item, int *n){
       int i;
       if (HEAP FULL(*n))
               fprintf(stderr, "the heap is full.\n); exit(1);
       i = ++(*n);
       while ((i!=1) \&\& (item.key>heap[i/2].key))
              \{ heap[i] = heap[i/2]; \}
                i /= 2;
       heap[i] = item;
          The height of n node heap = log_2(n+1)
          Time complexity = O(height) = O(log_2n)
```


- Delete Delete the max (root) from a max heap
- Consider a max heap H with n elements (an element is always deleted from the root of heap H)
 - Step 1: Remove the root
 - Step 2: Replace the last element to the root (and delete the last element)
 - Step 3: Reestablish the heap (go down from root to leaf, exchange 2 elements as necessary)

Delete

Example: delete the root node's value from the max heap H

- the value of root node = 54
- the value of last node = 11
- ⇒ replace 54 with 11, delete the last node

• Example: Max Heap

• Example: Max Heap

Example: Min Heap

Example: Min Heap

• Example: Max Heap

• Example: Max Heap

• Example: Min Heap

• Example: Min Heap

• **Delete** - Delete the max (root) from a max heap

```
element deleteMaxHeap(int *n){
 int parent, child; element item, temp;
 if (HEAP EMPTY(*n)) {
               fprintf(stderr, "The heap is empty\n");
                                                     exit(1);
                              /* save value of the element with the highest key */
 item = heap[1];
 temp = heap[(*n)--];
                              /* use last element in heap to adjust heap */
  parent = 1; child = 2;
 while (child <= *n) { /* find the larger child of the current parent */
       if ((child < *n) && (heap[child].key<heap[child+1].key))
                                                            child++;
       if (temp.key >= heap[child].key) break;
       parent= child; child *= 2;
  heap[parent] = temp;
  return item;
```

CONTENT

- Introduction
- Basic Operations
- Heap Sort

Heap Sort

- Given n elements (in an array A[1..n]) to be sorted
- Recall: max heap
 - An array is represented by a complete binary tree, in which the key value in each node is no smaller than the key values in its children (if any)
 - A[1] is the root (suppose the first element of the array is A[1])
 - A[i] is parent, so A[2i] is the left child and A[2i+1] is the right child (if A[0] is the root, so A[2i+1] and A[2i+2]) respectively
- O(*n* log *n*) time

(1). Build a max heap

- Use function adjust(A, i, n)
 - both the left and the right sub-trees of A[i] are already max heaps
 - the element A[i] will be moved to one of its descendant so that the subtree rooted at A[i] becomes a max heap
- Function adjust() is invoked for the sub-trees rooted at A[n/2],A[n/2-1], ...,
 A[1] in that order (i.e. all the non-leaf nodes)

(2). Sort by using the heap

- (a). A[1..n] is a heap, exchange A[1] & A[n] -> A[n] is rightly position
- (b). Rebuild a max heap for A[1..n-1]. Repeat steps (a) & (b) until array has only one element

6 5 3 1 8 7 2 4

- (1).Build a max heap Use function adjust(A, i, n)
 - both the left and the right sub-trees of A[i] are already max heaps
 - the element A[i] will be moved to one of its descendant so that the sub-tree rooted at A[i] becomes a max heap

```
void adjust(int list[], int root, int n) {
        int child, rootkey; int temp;
        temp = list[root]; rootkey = list[root].key; child = 2*root;
        while (child <= n) {
                if ((child<n) && (list[child].key<list[child+1].key))
                                                                        child++;
                if (rootkey > list[child].key) break;
                else { list[child/2] = list[child]; child *= 2; }
        list[child/2] = temp;
```


• (2).Sort by using heap

```
void heap sort(int list[], int n) {
    /* Initially data is in list[1.. n] */
    int i, j;
    /* build a max heap */
    for (i = n/2; i > 0; i--) adjust(list, i, n);
   /* at this point we have a max heap */
    for (i = n-1; i > 0; i--)
            SWAP(list[1], list[i+1]); /* swap the root & element at pos. i+1*/
            adjust(list, 1, i); /* rebuild list from element 1 to i */
```


25	33	42	10	14	19	27	44	26	31

• Example 55 43 40 65 84 20 37 4 22 35 31 25 42

How to sort the list in descending order?

25	33	42	10	14	19	27	44	26	31

55 43 40 65 84 20 37 4 22 35 31 25 42

SUMMARY

- Introduction
- Basic Operations
- Heap Sort

ĐẠI HỌC ĐÀ NẰNG

ĐẠI HỌC ĐÀ NANG TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG VIỆT - HÀN

Nhân bản - Phụng sự - Khai phóng

Enjoy the Course...!