WSI 4

Adam Sokołowski 324892

 $May\ 2024$

1 Cel ćwiczenia

Zaimplementować algorytm ID3 z ograniczeniami maksymalnej głębokości drzewa, oraz przetestować jego działanie przy użyciu zbioru danych Cardio Vascular Disease Detection. Należało również znaleźć najlepszą głębkość.

2 Realizacja, przeprowadzone eksperymenty oraz wnioski

Najpierw atrybuty które nie były dyskretne zdyskretyzowano. Dyskretne dane podzielono na części i zapisano w oddzielnych plikach. Skorzystano z gotowej metody train test split z biblioteki sklearn.

Aby przetestować działanie porównano działanie mojego algorytmu z gotowym od sklearn. Do porównania skorzystano z gotowej metody classification report z sklearn.metrics. Wykorzystano te same dane.

ID3 Decision Tree (My Implementation) Report:					
	precision	recall	f1-score	support	
0	0.62	0.80	0.70	6935	
1	0.72	0.51	0.60	6926	
accuracy			0.66	13861	
macro avg	0.67	0.66	0.65	13861	
weighted avg	0.67	0.66	0.65	13861	

Rysunek 1: Raport z mojego algorytmu dla maksymalnej głęboości 5

Sklearn Decision Tree Report:						
recision	recall	f1-score	support			
0.69	0.81	0.75	6935			
0.77	0.64	0.70	6926			
		0.73	13861			
0.73	0.73	0.72	13861			
0.73	0.73	0.72	13861			
	0.69 0.77 0.73	0.69 0.81 0.77 0.64 0.73 0.73	necision recall f1-score 0.69 0.81 0.75 0.77 0.64 0.70 0.73 0.73 0.73 0.72			

Rysunek 2: Raport z algorytmu od sklearn

Jak widać na powyższych rysunkach wyniki są bardzo podobne i na tej podstawie można stwierdzić, że mój algorytm działa poprawnie, jednak troche gorzej od tego gotowego.

Następnie przeprowadzono badania najlepszegj głębokości. Sprawdzono głębokości od 1 do 10 i zapisano liczbę zgadzających się przewidywań tego czy osoba jest chora czy nie w danej próbie (liczba rzędów danych w zbiorze testowym równa 11089). Z wykresu wynika, że najlepsza głębokość to 3.

Rysunek 3: Wykres zależności poprawności przewidywań od głębkości maksymalnej