Using the PIC Ports

Dr. Edward Nava ejnava@unm.edu

PIC Architecture

I/O Ports

- The general purpose I/O pins can be considered the simplest of peripherals. They allow the PIC32MX microcontroller to monitor and control other devices.
- To add flexibility and functionality to a device, some pins are multiplexed with alternate function(s).
 - These functions depend on which peripheral features are on the device.
 - In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin.

I/O Port Features

- Following are some of the key features of this module:
 - Individual output pin open-drain enable/disable
 - Individual input pin pull-up enable/disable
 - Monitor select inputs and generate interrupt on mismatch condition
 - Operate during CPU SLEEP and IDLE modes
 - Fast bit manipulation using CLR, SET and INV registers

Before reading and writing any I/O port, the desired pin or pins should be properly configured for the application

I/O Ports

I/O Port Configuration

- Each I/O port has multiple registers directly associated with the operation of the port and one control register
- Each I/O port pin has a corresponding bit in these registers.
- Throughout this description, the letter 'x', denotes any or all Port module instances. For example, TRISx would represent TRISA, TRISB, TRISC, and so on.
- Any bit and its associated data and control registers that is not valid for a particular device will be disabled and will read as zeros.

I/O Port Configuration

- The I/O Ports module consists of the following Special Function Registers (SFRs):
 - TRISx: Data Direction register for the module 'x'
 - PORTx: PORT register for the module 'x'
 - LATx: Latch register for the module 'x'
 - ODCx: Open-Drain Control register for the module 'x'
 - CNCON: Interrupt-on-Change Control register
 - CNEN: Input Change Notification Interrupt Enable register
 - CNPUE: Input Change Notification Pull-up Enable register

Registers for Configuring Tri-state Functions (TRISx)

- The TRISx registers configure the data direction flow through port I/O pins. The TRISx register bits determine whether a PORTx I/O pin is an input or an output:
 - If a data direction bit is '1', the corresponding I/O port pin is an input
 - If a data direction bit is '0', the corresponding I/O port pin is an output
 - A read from a TRISx register reads the last value written to that register
 - All I/O port pins are defined as inputs after a Power-on Reset (POR)

Registers for Configuring PORT Functions (PORTx)

The PORTx registers allow I/O pins to be accessed:

- A write to a PORTx register writes to the corresponding LATx register (PORTx data latch). Those I/O port pin(s) configured as outputs are updated.
- A write to a PORTx register is the effectively the same as a write to a LATx register
- A read from a PORTx register reads the synchronized signal applied to the port I/O pins

Registers for Configuring Latch Functions (LATx)

- The LATx registers (PORTx data latch) hold data written to port I/O pins:
 - A write to a LATx register latches data to corresponding port I/O pins. Those I/O port pins configured as outputs are updated.
 - A read from LATx register reads the data held in the PORTx data latch, not from the port I/O pins

Registers for Open-Drain Configuration (ODCx)

- Each I/O pin can be individually configured for either normal digital output or open-drain output.
- This is controlled by the Open-Drain Control register, ODCx, associated with each I/O pin.
 - If the ODCx bit for an I/O pin is a '1', the pin acts as an opendrain output.
 - If the ODCx bit for an I/O pin is a '0', the pin is configured for a normal digital output (the ODCx bit is valid only for output pins).
 - After a Reset, the status of all the bits of the ODCx register is set to '0'.

Port A and B SFRs

TABLE 4-21: PORTA REGISTERS MAP FOR PIC32MX320F128L, PIC32MX340F128L, PIC32MX360F256L, PIC32MX360F512L, PIC32MX440F128L, PIC32MX460F256L AND PIC32MX460F512L DEVICES ONLY⁽¹⁾

			10021117		,														_
Virtual Address (BF88_#)	Register Name		Bits																
		Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	TRICA	31:16	_	_	_	_	_	_	-	_	_	_	_	1	-	-	_	_	0000
0000	TRISA	15:0	TRISA15	TRISA14	_	_	_	TRISA10	TRISA9	_	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISAD	C6FF
6010	PORTA	31:16	_	ı	-	-	_	-	ı	ı	-	_	-	ı	ı	ı	-	_	0000
0010	POINIA	15:0	RA15	RA14	_	-	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXX
6020	LATA	31:16	-	ı	-	-	-	-	ı	ı	-	_	-	ı	ı	ı	-	_	0000
0020	DAIA	15:0	LATA15	LATA14	-	-	-	LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
6030	ODCA	31:16	_	ı	ı	ı	-	1	ı	ı	1	-	ı	ı	ı	ı	ı	-	0000
	ODCA	15:0	ODCA15	ODCA14	ı	ı	ı	ODCA10	ODCA9	ı	ODCA7	ODCA6	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCAD	0000

Legend:

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

TABLE 4-22: PORTB REGISTERS MAP(1)

			01110	OKTO REGISTERS MALES															
Virtual Address (BF88_#) Register		,	Bits																
	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6040	TRISB	31:16	-	_	_	_	-	_	_	_	_	_	_	-	-		_	_	0000
4	11/130	15:0	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
6050	PORTB	31:16	-	_	_	_	_	_	_	_	_	_	_	-	-	1	_	_	0000
3	5	15:0	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX
6060	LATB	31:16	-	_	_	_	-	_	_	_	_	_	_	-	-	-	-	_	0000
6	5	15:0	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX
6070	ODCB	31:16	_	_	_	_	_	_	_	_	_	_	_	-	1	-	-	_	0000
60/0	ODCB	15:0	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000

Legend:

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.1.1 "CLR, SET and INV Registers" for more information.

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

x = unknown value on Reset, — = unimplemented, read as 'o'. Reset values are shown in hexadecimal.

chipKIT MX4 Board

I/O Port Pins – Example – Port D

PIC32MX3XX/4XX

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

	ı	Number ^{(*}		Pin	Duffer	Description			
Pin Name	64-pin QFN/TQFP	100-pin TQFP	121-pin XBGA	Туре	Buffer Type				
RD0	46	72	D9	I/O	ST	PORTD is a bidirectional I/O port.			
RD1	49	76	A11	I/O	ST				
RD2	50	77	A10	I/O	ST				
RD3	51	78	B9	I/O	ST				
RD4	52	81	C8	I/O	ST				
RD5	53	82	B8	I/O	ST				
RD6	54	83	D7	I/O	ST				
RD7	55	84	C7	I/O	ST				
RD8	42	68	E9	I/O	ST				
RD9	43	69	E10	I/O	ST				
RD10	44	70	D11	I/O	ST				
RD11	45	71	C11	I/O	ST				
RD12	_	79	A9	I/O	ST				
RD13	_	80	D8	I/O	ST				
RD14	_	47	L9	I/O	ST				
RD15	_	48	K9	I/O	ST				

Cerebot MX4cK Digital I/O Devices

 For our experiments, we will use on-board devices connected to digital I/O lines:

Inputs	Port/Pin					
BTN1	RA6	Port A Bit 6				
BTN2	RA7	Port A Bit 7				
Outputs	Port/Pin					
LD1	RB10	Port B Bit 10				
LD2	RB11	Port B Bit 11				
LD3	RB12	Port B Bit 12				
LD4	RB13	Port B Bit 13				

