Last Time: Connectedness and path connectedness.

Proposition 0.1 If X is path-connected, then it is connected.

Proposition 0.2 If $f: X \to Y$ is continuous and surjective, then

If X is connected, so is Y.

If X is path connected, so is Y.

Corollary 0.3 1) If $f: X \to Y$ is a homeomorphism, then X is connected if and only if Y is connected.

2) X is path connected if and only if Y is path connected.

Proposition 0.4 If n > 1, then \mathbb{R}_{metric} and R_{metric}^n are homeomorphic.

Proof: If $f: \mathbb{R} \to \mathbb{R}^n$ were a homeomorphism, then $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}^n \{f(0)\}$ would still be a homeomorphism.

But $\mathbb{R}\setminus\{0\}$ is disconnected as $\mathbb{R}\setminus\{0\}=(-\infty,0)\cup(0,\infty)$

Since n > 1, $\mathbb{R}^n \setminus \{f(0)\}$ is connected, because it is path-connected.

0.0.1 Compactness

Look at \mathbb{R} , $\mathbb{Z} \subset \mathbb{R}$ is an infinite set of isolated points.

Open in $\mathbb{Z} \leftarrow \{5\} = \mathbb{Z} \cap (4.5, 5.5)$

Definition 0.5 An open cover of X is a set $\{U_{\alpha}\}_{{\alpha}\in I}$ of open subsets of X such that $X=\bigcup_{{\alpha}\in I_{\alpha}}$

Remark: If $Y \subseteq X$, sometimes we specify an open cover of Y by giving a set $U_{\alpha\alpha\in I}$ of open sets of X whose union contains Y.

Definition 0.6 Compactness: A space X is compact, if every open cover of X has a finite subcover. That is, a finite subset that also an open cover of X.

Ex. $\mathbb{R}_{\text{metric}}$ is not compact.

Take the open cover $\{(n, n+2) | n \in \mathbb{Z}\}.$

Similarly (0,1) is not compact in $\mathbb{R}_{\text{metric}}$. Take $\{(\frac{1}{n+2},\frac{1}{n}) \text{ for } n \geq 1\}$

Theorem 0.7 Every closed interval [a,b] is compact in the \mathbb{R}_{metric} .

Proof: Let $[a,b] \subset \mathbb{R}_m etric$.

If a = b then $[a, b] = \{a\}$, all finite sets are compact.

Suppose a < b.

Let $\{U_{\alpha}\}_{{\alpha}\in I}$ be an open cover of [a,b]. $A\in U_{\alpha}$ for $\alpha\in I$

Since U_{α} is open, $\exists c \in \mathbb{R}, c > a$, s.t. $[a, c] \subset U_{\alpha}$.

Let $C = \{x \in (a, b] | [a, x] \text{ is contained in a finite union of the Us} \}$

 $C \neq \emptyset$ b/c $c \in C.$

C is bounded above by b.

Let L = lub(C)

We'll show

- 1) $L \in C$
- 2) L = b
- 1) Suppose $L \notin C$. But $L \in [a, b]$ so $L \in U_{\beta}$ for some $\beta \in I$.

 U_{β} is open, so there is some $\varepsilon > 0$, s.t. $[L - \varepsilon, L] \subset U_{\beta}$

 $L - \varepsilon < L$, but L = lub(C).

- $\implies [a, L \varepsilon]$ is contained in a finite union of the Us.
- \implies [a, L] is contained in the above union U_{β} , still finite.

Contradiction $\implies L \in C$

- \implies [a, L] is covered by finitely many Us.
- 2) WTS L = b.

If $L \neq b$, then $\exists \varepsilon > 0$ s.t. $[a, L + \varepsilon]$ is also in a finite union of the Us. Contradiction!

Proposition 0.8 If $Y \subseteq X$ is a closed subspace and X is compact, then Y is also compact.

Proof: Let $\{U_{\alpha}\}_{{\alpha}\in I}$ be an open cover of Y. [Where U_{α} is open in X].

 $\{U_{\alpha}\}\cup (X\setminus Y)$ is an open cover of X. This has a finite subcover, so Y has a finite subcover.

Proposition 0.9 If $f: X \to Y$ is continuous and surjective and X is compact, then Y is compact.

 $\implies \circ \subset \mathbb{R}^2$ is compact.

Theorem 0.10 If X and Y are both compact then $X \times Y$ is compact.

Proof: Let $\{U_{\alpha}\}_{{\alpha}\in I}$ be an open cover of $X\times Y$.

If $(x,y) \in X \times Y$ then it's contained in U_{α} .

Then there is some $A_{xy} \times B_{x,y}$ containing (x,y), lying in U_{α} .

Fix $x \in X$, and consider $\{B_{xy}|y \in Y\}$. This is an open cover of Y.

Take a finite subcover. So $B_{xy}, B_{xy_1}, \dots B_{xy_n}$.

Exists associated $A_{xy}, A_{xy_1}, \dots A_{xy_n}$. Set $A := \cap A_{xy_o}$

Let A_{x1}, \ldots, A_{xn} be a finite subcover of X.

 $A_{x_i} \times B_{x_i y_j}$ forms a finite subcover of $X \times Y$.

Theorem 0.11 The Heine-Borel Theorem: A subspace of \mathbb{R}^n is compact if and only if is closed and bounded.