Nearest-Neighbor Classifiers and the Curse of Dimensionality

Machine Learning Course - CS-433 15 Oct 2025 Robert West (Slide credits: Nicolas Flammarion)

Supervised machine learning

We observe some data $S_{\text{train}} = \{x_n, y_n\}_{n=1}^N \in \mathcal{X} \times \mathcal{Y}$

Goal: given a new observation x, we want to predict its label y

How:

 $\mathsf{nbh}_{S_{train},k} \colon \mathcal{X} \to \mathcal{X}^k$ $x \mapsto \{\mathsf{the}\ k \ \mathsf{elements} \ \mathsf{of}\ S_{\mathsf{train}} \ \mathsf{closest} \ \mathsf{to}\ x\}$

 \bullet S_{train}

 $\mathsf{nbh}_{S_{train},k} \colon \mathcal{X} \to \mathcal{X}^k$ $x \mapsto \{\mathsf{the}\ k \ \mathsf{elements} \ \mathsf{of}\ S_{\mathsf{train}} \ \mathsf{closest} \ \mathsf{to}\ x\}$

Strain
Testing point

$$nbh_{S_{train},3}(x) = ?$$

 $\mathsf{nbh}_{S_{train},k} \colon \mathcal{X} \to \mathcal{X}^k$ $x \mapsto \{\mathsf{the}\ k \ \mathsf{elements} \ \mathsf{of}\ S_{\mathsf{train}} \ \mathsf{closest} \ \mathsf{to}\ x\}$

$$nbh_{S_{train},3}(x) = \{x_3, x_4, x_7\}$$

 $\mathsf{nbh}_{S_{train},k} \colon \mathcal{X} \to \mathcal{X}^k$ $x \mapsto \{\mathsf{the}\ k \ \mathsf{elements} \ \mathsf{of}\ S_{\mathsf{train}} \ \mathsf{closest} \ \mathsf{to}\ x\}$

Strain
Testing point

$$nbh_{S_{train},2}(x) = ?$$

 $\mathsf{nbh}_{S_{train},k} \colon \mathcal{X} \to \mathcal{X}^k$ $x \mapsto \{\mathsf{the}\ k \ \mathsf{elements} \ \mathsf{of}\ S_{\mathsf{train}} \ \mathsf{closest} \ \mathsf{to}\ x\}$

S_{train}
Testing point

$$nbh_{S_{train},2}(x) = ?$$

 $\mathsf{nbh}_{S_{train},k} \colon \mathscr{X} \to \mathscr{X}^k$

 $x \mapsto \{\text{the } k \text{ elements of } S_{\text{train}} \text{ closest to } x\}$

Strain
Testing point

$$nbh_{S_{train},2}(x) = \{x_5, x_8\}$$

Not uniquely defined!

The result depends on the implementation

Ties are often broken randomly

 $\mathsf{nbh}_{S_{train},k} \colon \mathcal{X} \to \mathcal{X}^k$ $x \mapsto \{\mathsf{the}\ k \ \mathsf{elements} \ \mathsf{of}\ S_{\mathsf{train}} \ \mathsf{closest} \ \mathsf{to}\ x\}$

Remarks:

- Different metrics can be employed
- High computational complexity for large N (but efficient data structure may exist)

$$f_{S_{train},k}(x) = \frac{1}{k} \sum_{n:x_n \in nbh_{S_{train},k}(x)} y_n$$

 \bullet S_{train}

$$f_{S_{train},k}(x) = \frac{1}{k} \sum_{n:x_n \in nbh_{S_{train},k}(x)} y_n$$

$$f_{S_{train},3}(x) = ?$$

$$f_{S_{train},k}(x) = \frac{1}{k} \sum_{n:x_n \in nbh_{S_{train},k}(x)} y_n$$

$$f_{S_{train},k}(x) = \frac{1}{k} \sum_{n:x_n \in nbh_{S_{train},k}(x)} y_n$$

$$f_{S_{train},k}(x) = \text{majority}\{y_n : x_n \in \text{nbh}_{S_{train},k}(x)\}$$

$$f_{S_{train},k}(x) = \text{majority}\{y_n : x_n \in \text{nbh}_{S_{train},k}(x)\}$$

$$f_{S_{train},1}(x) = ?$$

$$f_{S_{train},k}(x) = \text{majority}\{y_n : x_n \in \text{nbh}_{S_{train},k}(x)\}$$

$$f_{S_{train},1}(x)=1$$

$$f_{S_{train},k}(x) = \text{majority}\{y_n : x_n \in \text{nbh}_{S_{train},k}(x)\}$$

$$f_{S_{train},3}(x) = ?$$

$$f_{S_{train},k}(x) = \text{majority}\{y_n : x_n \in \text{nbh}_{S_{train},k}(x)\}$$

$$f_{S_{train},3}(x) = 0$$

$$f_{S_{train},k}(x) = \text{majority}\{y_n : x_n \in \text{nbh}_{S_{train},k}(x)\}$$

$$f_{S_{train},4}(x) = ?$$
 Ties

$$f_{S_{train},k}(x) = \text{majority}\{y_n : x_n \in \text{nbh}_{S_{train},k}(x)\}$$

Remarks:

- Choose an odd value for k to prevent ties
- Generalization: smoothing kernels; weighted linear combination of elements

Why does it make sense?

- Relevant in the presence of spatial correlation
- Implicitly models intricate decision boundaries in low-dimensional spaces

Bias-variance tradeoff in k-NN

For small k:

- Low bias complex decision boundary
- High variance overfitting

For large k:

(When k = N, prediction is constant)

- High bias
- Low variance

1-nearest neighbor classification

U-shaped curve for k-NN bias-variance tradeoff

Complexity increases as k decreases

Find a k that balances bias and variance

Characteristics of an optimal k:

- Low bias: Ensures a sufficiently complex decision boundary
- Low variance: Prevents overfitting

15-nearest neighbor classification

Summary: k-Nearest Neighbor

Pros:

- No optimization or training
- Easy to implement
- Works well in low dimensions, allowing for very complex decision boundaries

Cons:

- Slow at query time
- Not suitable for high-dimensional data
- Choosing the right local distance is crucial

Claim 1: As the dimensionality grows, fixed-size training sets cover a diminishing fraction of the input space

Assume the data $x \sim \mathcal{U}([0,1]^d)$

Consider a blue box around the center x_0 of size r

$$\mathbb{P}(x \in \mathbb{T}) = r^d := \alpha$$

Claim 1: As the dimensionality grows, fixed-size training sets cover a diminishing fraction of the input space

Assume the data $x \sim \mathcal{U}([0,1]^d)$

Consider a blue box around the center x_0 of size r

$$\mathbb{P}(x \in \mathbb{T}) = r^d := \alpha$$

If $\alpha = 0.01$, to have:

$$d = 10$$
, we need $r = 0.63$

Claim 1: As the dimensionality grows, fixed-size training sets cover a diminishing fraction of the input space

Assume the data $x \sim \mathcal{U}([0,1]^d)$

Consider a blue box around the center x_0 of size r

$$\mathbb{P}(x \in \mathbb{T}) = r^d := \alpha$$

If $\alpha = 0.01$, to have:

d = 10, we need r = 0.63

d = 100, we need r = 0.95

We need to explore almost the whole box

Claim 2: In high-dimension, data-points are far from each other.

Consider N i.i.d. points uniform in the $[0,1]^d$

$$\mathbb{P}(\exists x_i \in \mathcal{I}) \ge 1/2 \implies r \ge \left(1 - \frac{1}{2^{1/N}}\right)^{1/d}$$

Proof:
$$\mathbb{P}(x \notin \mathbb{I}) = 1 - r^d$$

$$\mathbb{P}(x_i \notin \mathbb{I}, \forall i \leq N) = (1 - r^d)^N$$

$$\mathbb{P}(\exists x_i \in \mathbb{I}) = 1 - (1 - r^d)^N$$

Claim 2: In high-dimension, data-points are far from each other.

Consider N i.i.d. points uniform in the $[0,1]^d$

$$\mathbb{P}(\exists x_i \in \mathcal{I}) \ge 1/2 \implies r \ge \left(1 - \frac{1}{2^{1/N}}\right)^{1/d}$$

Proof:
$$\mathbb{P}(x \notin \mathbb{I}) = 1 - r^d$$

$$\mathbb{P}(x_i \notin \mathbb{I}, \forall i \leq N) = (1 - r^d)^N$$

$$\mathbb{P}(\exists x_i \in \mathbb{I}) = 1 - (1 - r^d)^N$$

For d = 10, N = 500, we have $r \ge 0.52$

Setup: $(X, Y) \sim \mathcal{D}$ over $\mathcal{X} \times \mathcal{Y} = [0,1]^d \times \{0,1\}$

Goal: Bound the classification error:

$$L(f) = \mathbb{P}_{(X,Y)\sim \mathcal{D}}(Y \neq f(X))$$

Baseline:

ullet Bayes classifier: minimizes L over all classifiers

$$f_*(x) = 1_{\eta(x) \ge 1/2}$$
 where $\eta(x) = \mathbb{P}(Y = 1 | X = x)$

Bayes risk: represents the minimum probability of misclassification

$$L(f_*) = \mathbb{P}(f_*(X) \neq Y) = \mathbb{E}_{X \sim \mathcal{D}_X}[\min\{\eta(X), 1 - \eta(X)\}]$$

Setup: $(X, Y) \sim \mathcal{D}$ ov

Goal: Bound the classit

Proof 1:

$$\eta(x) \ge 1/2 \iff \mathbb{P}(Y = 1 \mid X = x) \ge 1/2$$

$$\iff \mathbb{P}(Y = 1 \mid X = x) \ge \mathbb{P}(Y = 0 \mid X = x)$$

$$\iff 1 \in \arg\max_{y \in \{0,1\}} \mathbb{P}(Y = y \mid X = x)$$

Thus $1_{\eta(x) \ge 1/2} = \arg \max_{y \in \{0,1\}} \mathbb{P}(Y = y \mid X = x) = f_*(x)$

Baseline:

ullet Bayes classifier: minimizes L over all classifiers

$$f_*(x) = 1_{\eta(x) \ge 1/2}$$
 where $\eta(x) = \mathbb{P}(Y = 1 | X = x)$

Bayes risk: represents the minimum probability of misclassification

$$L(f_*) = \mathbb{P}(f_*(X) \neq Y) = \mathbb{E}_{X \sim \mathcal{D}_X}[\min\{\eta(X), 1 - \eta(X)\}]$$

Proof 2:

$$\begin{split} L(f_*) &= \mathbb{E}_{(X,Y) \sim \mathcal{D}}[1_{f_*(X) \neq Y}] \\ &= \mathbb{E}_{X \sim \mathcal{D}_X}[\mathbb{E}_{Y \sim \mathcal{D}_{Y|X}}[1_{f_*(X) \neq Y}|X]] \\ &= \mathbb{E}_{X \sim \mathcal{D}_X}[\mathbb{E}_{Y \sim \mathcal{D}_{Y|X}}[1_{f_*(X) \neq Y}|X]1_{\eta(X) \geq 1/2} + E_{Y \sim \mathcal{D}_{Y|X}}[1_{f_*(X) \neq Y}|X]1_{\eta(X) < 1/2}] \\ &= \mathbb{E}_{X \sim \mathcal{D}_X}[\mathbb{E}_{Y \sim \mathcal{D}_{Y|X}}[1_{1 \neq Y}|X]1_{\eta(X) \geq 1/2} + E_{Y \sim \mathcal{D}_{Y|X}}[1_{0 \neq Y}|X]1_{\eta(X) < 1/2}] \\ &= \mathbb{E}_{X \sim \mathcal{D}_X}[\mathbb{P}(Y = 0 \mid X)1_{\eta(X) \geq 1/2} + \mathbb{P}(Y = 1 \mid X)1_{\eta(X) < 1/2}] \\ &= \mathbb{E}_{X \sim \mathcal{D}_X}[\min\{\eta(X), 1 - \eta(X)\}] \end{split}$$

Bayes risk: represents the minimum probability of misclassification

$$L(f_*) = \mathbb{P}(f_*(X) \neq Y) = \mathbb{E}_{X \sim \mathcal{D}_X}[\min\{\eta(X), 1 - \eta(X)\}]$$

Assumption: $\exists c \geq 0, \ \forall x, x' \in \mathcal{X}$:

$$|\eta(x) - \eta(x')| \le c||x - x'||_2$$

→ Nearby points are likely to share the same label

Assumption: $\exists c \geq 0, \ \forall x, x' \in \mathcal{X}$:

$$|\eta(x) - \eta(x')| \le c||x - x'||_2$$

→ Nearby points are likely to share the same label

Claim:

$$\mathbb{E}_{S_{train}}[L(f_{S_{train}})] \leq 2L(f_*) + c\mathbb{E}_{S_{train},X \sim \mathcal{D}_X}[\|X - \mathsf{nbh}_{S_{train},1}(X)\|]$$

geometric term: average distance between a random point and its closest neighbor

Assumption: $\exists c \geq 0, \ \forall x, x' \in \mathcal{X}$:

$$|\eta(x) - \eta(x')| \le c||x - x'||_2$$

→ Nearby points are likely to share the same label

Claim:

$$\mathbb{E}_{S_{train}}[L(f_{S_{train}})] \le 2L(f_*) + c\mathbb{E}_{S_{train}, X \sim \mathcal{D}_X}[\|X - \mathsf{nbh}_{S_{train}, 1}(X)\|]$$

$$\le 2L(f_*) + 4c\sqrt{d}N^{-\frac{1}{d+1}}$$

Interpretation:

For constant d and $N \to \infty$: $\mathbb{E}_{S_{train}}[L(f_{S_{train}})] \le 2L(f_*)$

To achieve a constant error, we need $N \propto d^{(d+1)/2}$ - curse of dimensionality Despite common belief: Interpolation method can generalize well

We want to bound

$$\mathbb{E}_{S_{train}}[L(f_{S_{train}})] = \mathbb{E}_{S_{train}}[\mathbb{P}_{(X,Y)\sim \mathcal{D}}[f_{S_{train}}(X) \neq Y]]$$

We first sample N unlabeled examples $S_{train,X}=(X_1,\cdots X_N)\sim \mathcal{D}_X$, an unlabeled example $X\sim \mathcal{D}_X$ and define $X'=\operatorname{nbh}_{S_{train},1}(X)$

Finally we sample $Y \sim \eta(X)$ and $Y' \sim \eta(X')$

We have:

$$\mathbb{E}_{S_{train}}[L(f_{S_{train}})] = \mathbb{E}_{S_{train},X,X\sim \mathcal{D}_{X},Y\sim \eta(X),Y'\sim \eta(X')}[1_{Y\neq f_{S_{train}(X)}}]$$

$$= \mathbb{E}_{S_{train},X,X\sim \mathcal{D}_{X},Y\sim \eta(X),Y'\sim \eta(X')}[1_{Y\neq Y'}]$$

$$= \mathbb{E}_{S_{train},X,X\sim \mathcal{D}_{X}}[\mathbb{P}_{Y\sim \eta(X),Y'\sim \eta(X')}(Y\neq Y')]$$

Consider two points $x, x' \in [0,1]^d$.

Sample their labels $Y \sim \eta(x)$ and $Y' \sim \eta(x')$

Claim:

$$\mathbb{P}(Y' \neq Y) \le 2\min\{\eta(x), 1 - \eta(x)\} + c\|x - x'\|$$

• Simple case: x = x'

$$\mathbb{P}(Y' \neq Y) = \mathbb{E}[1_{Y' \neq Y} 1_{Y'=1} + 1_{Y' \neq Y} 1_{Y'=0}]$$

$$= \mathbb{P}(Y' = 1) \mathbb{P}(Y = 0) + \mathbb{P}(Y' = 0) \mathbb{P}(Y = 1)$$

$$= 2\eta(x)(1 - \eta(x))$$

$$\leq 2 \min\{\eta(x), 1 - \eta(x)\}$$

Case 1:

Y=0
$$(1 - \eta(x))$$

Y'=1
$$\eta(x)$$

Case 2:

$$Y=1 \quad \eta(x)$$

Y'=0
$$(1 - \eta(x))$$

General case:

$$\mathbb{P}(Y \neq Y') = \eta(x)(1 - \eta(x')) + \eta(x')(1 - \eta(x))$$

$$= \eta(x)(1 - \eta(x)) + \eta(x)(\eta(x) - \eta(x'))$$

$$+ \eta(x)(1 - \eta(x)) + (\eta(x') - \eta(x))(1 - \eta(x))$$

$$= 2\eta(x)(1 - \eta(x)) + (2\eta(x) - 1)(\eta(x) - \eta(x'))$$

$$\leq 2\eta(x)(1 - \eta(x)) + |(2\eta(x) - 1)| |\eta(x) - \eta(x')|$$

$$\leq 2\eta(x)(1 - \eta(x)) + |\eta(x) - \eta(x')|$$

$$\leq 2\eta(x)(1 - \eta(x)) + c||x - x'||$$

$$\leq 2\min\{\eta(x), 1 - \eta(x)\} + c||x - x'||$$

$$\begin{split} \mathbb{E}_{S_{train}}[L(f_{S_{train}})] &= \mathbb{E}_{S_{train},X,X\sim \mathcal{D}_X,Y\sim \eta(X),Y'\sim \eta(X')}[1_{Y\neq f_{S_{train}(X)}}] \\ &= \mathbb{E}_{S_{train},X,X\sim \mathcal{D}_X,Y\sim \eta(X),Y'\sim \eta(X')}[1_{Y\neq Y'}] \\ &= \mathbb{E}_{S_{train},X,X\sim \mathcal{D}_X}[\mathbb{P}_{Y\sim \eta(X),Y'\sim \eta(X')}(Y\neq Y')] \\ &\leq \mathbb{E}_{S_{train},X,X\sim \mathcal{D}_X}[2\min\{\eta(X),1-\eta(X)\}+c\|X-X'\|] \\ &\leq 2L(f_*) + c\mathbb{E}_{S_{train},X\sim \mathcal{D}_X}[\|X-\operatorname{nbh}_{S_{train},1}(X)\|] \end{split}$$

Consider a fresh sample $X \sim \mathcal{D}_X$ and denote by $p_k = \mathbb{P}(X \in \text{Box}_k)$

Consider the box which contains X. Two options:

 ε - cover of the Hypercube

Consider a fresh sample $X \sim \mathcal{D}_X$ and denote by $p_k = \mathbb{P}(X \in \text{Box}_k)$

Consider the box which contains X. Two options:

• The box contains an element of $S_{\rm train}$. X has a neighbor in $S_{\rm train}$ at distance at most $\sqrt{d}\varepsilon$ It happens with probability $1-(1-p_{\it k})^N$

 ε - cover of the Hypercube

Consider a fresh sample $X \sim \mathcal{D}_X$ and denote by $p_k = \mathbb{P}(X \in \text{Box}_k)$

Consider the box which contains X. Two options:

• The box contains an element of $S_{\rm train}$. X has a neighbor in $S_{\rm train}$ at distance at most $\sqrt{d}\varepsilon$ It happens with probability $1-(1-p_k)^N$

Proof: Consider the worst case:

$$||X - x_i|| = \sqrt{\sum_{i=1}^d \varepsilon^2} = \sqrt{d}\varepsilon$$

 ε - cover of the Hypercube

Consider a fresh sample $X \sim \mathcal{D}_X$ and denote by $p_k = \mathbb{P}(X \in \text{Box}_k)$

Consider the box which contains X. Two options:

• The box contains an element of $S_{\rm train}.$ X has a neighbor in $S_{\rm train}$ at distance at most $\sqrt{d}\varepsilon$

It happens with probability $1 - (1 - p_k)^N$

• There is no element of $S_{\rm train}$. The nearest neighbor of X can be at worst at a distance \sqrt{d} It happens with probability $(1-p_k)^N$

Consider a fresh sample $X \sim \mathcal{D}_X$ and denote by

$$p_k = \mathbb{P}(X \in \text{Box}_k)$$

Proof: Consider the worst case:

$$||X - x_i|| = \sqrt{\sum_{i=1}^d 1} = \sqrt{d}$$

X can be at worst at a distance \sqrt{d} It happens with probability $(1-p_k)^N$

 ε - cover of the Hypercube

$$\mathbb{E}[\|X-\mathsf{nbh}(X)\|] \leq \sum_k p_k [(1-p_k)^N \sqrt{d} + (1-(1-p_k)^N) \sqrt{d}\varepsilon]$$

Claim: The bound is derived by optimizing over p_k and ε

Intuition:

- If p_k is large: it is likely that we pick that box but it is also likely that we find a training point in that box
- If p_k is small, we are generally safe, as by its definition, this scenario occurs infrequently

 ε - cover of the Hypercube

Nearest Neighbors is a local averaging method

Local averaging methods aim to approximate the Bayes predictor directly - without the need for optimization

This is achieved by approximating the conditional distribution p(y|x) by some $\hat{p}(y|x)$ These "plug-in" estimators are:

- $f(x) \in \arg\max_{y \in \mathcal{Y}} \hat{\mathbb{P}}(Y = y \mid x)$ for classification with the 0-1 loss
- $f(x) = \hat{\mathbb{E}}[Y|x] = \int_{\mathcal{Y}} y \hat{p}(y|x) dy$ for regression with the square loss

In the case of nearest neighbors:

$$\hat{p}(y|x) = \sum_{n=1}^{N} \hat{w}_n(x) 1_{y=y_n}$$

where $\hat{w}(x) = 1/k$ for the k nearest neighbors (0 otherwise)

Recap

- k-NN: a local averaging method for regression and classification
 - use a notion of distance to define *neighborhoods* (= k nearest neighbors)
 - the prediction is a function of these neighborhoods e.g., majority selection for classification, weighted sum for regression
- ullet Bias-variance: small/large k leads to low/high bias and high/low variance
- Curse of dimensionality: as $d\nearrow\infty$, it is harder to define local neighborhoods
- For $N \to \infty$, 1-NN is competitive with Bayes classifier
- ullet N needs to scale exponentially in d to achieve the same error