EIVD + alnua

Pós Tech - Data Analisys
Turma 7DTAT

Tech Challenge #2 - Machine Learning and Time Series

Daniela Meneghello - RM: 356004

Maurício José de Lima - RM:358817

Pedro Vitor da Silva Pinto - RM: 358876

1. Descrição do Problema

- Imagine que você foi escalado para um time de investimentos e precisará realizar um modelo preditivo com dados da IBOVESPA (Bolsa de valores) para criar uma série temporal e prever diariamente o fechamento da base. Para isso, utilize a base de dados contida no site da Investing (historical-data) e selecione o período "diário", com o intervalo de tempo que achar adequado.
- Você precisará demonstrar para o time de investimentos:
 - 1. O modelo com o storytelling, desde a captura do dado até a entrega do modelo;
 - 2. Justificar a técnica utilizada;
 - 3. Atingir uma acuracidade adequada (acima de 70%).

 Realizamos o download do arquivo .csv do site Investing, conforme informado, contendo os dados de fechamento da Ibovespa ente 2005 e 2024.

```
# Leitura do arquivo ** mostrar de onde veio o dado - 2005 até final de 2024

df = pd.read_csv('https://raw.githubusercontent.com/jdlmauricio/techalleg_fase_2/refs/heads/main/Dados%20Hist%C3%B3ricos%20-%20Ibovespa.csv')
```

	Data	Último	Abertura	Máxima	Mínima	Vol.	Var%
0	30.12.2024	120.283	120.267	121.050	120.158	8,90M	0,01%
1	27.12.2024	120.269	121.078	121.609	120.252	8,94M	-0,67%
2	26.12.2024	121.078	120.767	121.612	120.428	8,34M	0,26%
3	23.12.2024	120.767	122.105	122.105	120.617	9,95M	-1,09%
4	20.12.2024	122.102	121.183	122.209	120.700	18,13M	0,75%

- Realizamos então a transformação dos dados, como exclusão de colunas desnecessárias, renomeação de colunas, e conversões de tipos de dados, para os padrões que utilizaremos em nossas análises:
- Criamos a série completa de dados e preenchemos valores ausentes com o valor do dia anterior:

```
# Remove colunas desnecessárias ***

df = df.drop(columns=['Abertura', 'Máxima', 'Mínima', 'Vol.', 'Var%'])
# Renomeia colunas

df = df.rename(columns={'Data': 'ds', 'Último': 'y'})
# Converte coluna de data

df['ds'] = pd.to_datetime(df['ds'], format='%d.%m.%Y')
# Colocando a data como index

df = df.set_index('ds')
```

```
# Criando uma série completa com finais de semana e feriados ***
datas_completas = pd.date_range(start=df.index.min(), end=df.index.max(), freq='D')
df = df.reindex(datas_completas)
```

```
## Preenchendo valores ausentes com o último valor conhecido (forward-fill) *** df['y'] = df['y'].fillna(method='ffill')
```


Linha temporal com fatos relevantes

Crise do Subprime

Colapso do mercado imobiliário dos EUA, levando à falência de grandes instituições financeiras.

O Ibovespa caiu mais de 40% no ano devido à fuga de investidores e recessão global.

2010

Queda no Preço do Petróleo

O excesso de oferta global levou à queda acentuada nos preços do petróleo.

Empresas do setor de energia no Ibovespa tiveram perdas significativas.

2015/16

Eleição Presidencial no Brasil

Expectativas de reformas econômicas após a eleição de Jair Bolsonaro.

Alta no Ibovespa, com a confiança em reformas fiscais e previdenciárias

2020

Guerra na Ucrânia

A invasão da Ucrânia pela Rússia elevou os preços de commodities energéticas e agrícolas.

O Ibovespa teve alta em setores ligados a exportações, como energia e mineração.

2024

2008

Crescimento da Economia Chinesa

Demanda por commodities da China elevou as exportações brasileiras.

Alta no Ibovespa, impulsionado por empresas de mineração e energia.

2018

Crise Econômica e Política no Brasil

Recessão econômica e escândalos de corrupção que culminaram no impeachment da então presidente Dilma Roussef abalaram o mercado.

Em 2015, o Ibovespa sofreu quedas devido à deterioração do cenário doméstico, porém apresentou recuperação significativa após a posse de Michel Temer. Pandemia de COVID-19

A pandemia causou recessão global, lockdowns e quedas abruptas na atividade econômica. O Ibovespa caiu 45% em março, mas recuperou-se no final do ano com estímulos monetários.

2022

Crescimento Sustentável Global

A adoção de práticas ESG por empresas e fundos de investimento elevou a confiança no mercado.

O Ibovespa cresceu,

O Ibovespa cresceu especialmente em setores que se alinharam a essas práticas

3. Decomposição da Série Temporal

Decomposição aditiva

- Inicialmente, realizamos a separação da base de treino e validação;
- Definimos para 15 dias o período de previsão.

```
# Definição de período de Treino e validação ***

treino = df.loc[(df['ds'] >= '2021-01-01') & (df['ds'] < '2024-01-01')]

valid = df.loc[(df['ds'] >= '2024-01-01') & (df['ds'] < '2024-01-16')]

h = valid['ds'].nunique() # Quantidade de dias a serem previstos</pre>
```

```
h
15
```

Naive

 Realizamos a previsão dos 15 primeiros dias de 2024, utilizando o período de treino para o modelo:

MAE Naive Baseline: 2.394331217447918 rmse Naive Baseline: 2.567096227697468 MAPE Naive Baseline: 0.018217591255696986

WMAPE Naive Baseline: 1.82%

MSE Naive Baseline: 6.589983042258569

MAE (Mean Absolute Error: Fornece o erro médio absoluto.

RMSE (Root Mean Squared Error): Destaca grandes erros; útil para entender discrepâncias maiores.

MAPE (Mean Absolute Percentage Error): Erro relativo em porcentagem, ajuda na comparação de escalas diferentes.

WMAPE (Weighted Mean Absolute Percentage Error): Corrige distorções do MAPE para séries heterogêneas.

MSE(Mean Squared Error): Ideal para análises que priorizam grandes desvios, mas pode ser difícil de interpretar devido à unidade ao quadrado.

Seasonal Window Average

 Realizamos a previsão dos 15 primeiros dias de 2024, utilizando o período de treino para o modelo:

MAE swa : 1.5125644287109385

rmse swa : 1.7312619708939774

MAPE swa : 0.011496800549552691

WMAPE swa : 1.15%

MSE swa : 2.997268011863699

MAE (Mean Absolute Error: Indica o erro absoluto médio do modelo sazonal.

RMSE (Root Mean Squared Error): Destaca grandes erros entre as previsões e os valores reais.

MAPE (Mean Absolute Percentage Error): Mede a precisão relativa, sendo sensível a valores pequenos.

WMAPE (Weighted Mean Absolute Percentage Error): Avalia o erro proporcional com peso, corrigindo distorções do MAPE.

MSE(Mean Squared Error): Útil para analisar a variabilidade dos erros, mas é sensível a outliers.

Sarima

 Para aplicação do modelo Sarima, realizamos inicialmente a aplicação da derivação na série temporal e o teste de Dickey – Fuller Aumentado (ADF)

Estatística ADF: -1.8202703522041512

Valor-p: 3.704454724514131e-01

Valor Crítico 1%: -3.436341508283391 Valor Crítico 5%: -2.864185524365606

Valor Crítico 10%: -2.5681785627437677

A série não é estacionária.

Sarima

 Aplicamos o método da Diferenciação de Primeira Ordem e novamente o teste ADF obtendo o resultado de que a série é estacionária:

Estatística ADF: -34.056002586118545 Valor-p: 0.000000000000000e+00

Valor Crítico 1%: -3.4363470029475525 Valor Crítico 5%: -2.864187948086107 Valor Crítico 10%: -2.568179853605536

A série é estacionária.

Sarima

- Realizamos a identificação dos Parâmetros para o Modelo ACF e PACF
- ACF (Autocorrelation Function): Mede a correlação entre a série e suas defasagens, considerando efeitos diretos e indiretos. Ajuda a identificar o parâmetro MA (q) em modelos SARIMA.
- PACF (Partial Autocorrelation Function): Mede a correlação direta entre a série e uma defasagem específica, eliminando influências intermediárias. Ajuda a definir o parâmetro AR (p) no modelo.

4. Modelos Sarima

• ACF e PACF


```
p = 1 # compentente AR ***
d = 1 # Componente I
q = 1 # Componente MA
```

Sarima

• Para a aplicação do modelo Sarima, assumimos uma sazonalidade de 21 dias:

SARIMAX Results								
Dep. Variabl Model: Date: Time:			ın, 19 Jan	, 21) I	 No. Observation Log Likelihood AIC BIC	s:	1094 -1725.821 3461.643 3486.529	
Sample:				-2021 H	4QIC		3471.069	
Covariance Type: opg								
	coef	std err	Z	P> :	z [0.025	0.975]		
ar.L1	-0.0330		-1.041		98 -0.095			
ar.S.L21	-0.9999 -0.0355	0.025	-3.474 -1.438	0.1	91 -1.564 50 -0.084	0.013		
ma.S.L21 sigma2	-0.9999 1.3386	6.675 8.939	-0.150 0.150	0.88 0.88	31 -14.082 31 -16.181	12.082 18.859		
Ljung-Box (L1) (Q):			0.00	Jarque-Bera (JB):			223.50	
Prob(Q):			0.96	Prob(JB):			0.00	
<pre>Heteroskedasticity (H): Prob(H) (two-sided):</pre>			0.63 0.00	Skew: Kurtosis:			-0.13 5.22	
				======			-==	

4. Modelos Sarima

• Realizamos a previsão dos 15 primeiros dias de 2024 :

MAE sarima : 131.71240284684617 rmse sarima : 131.71552256967968 MAPE sarima : 0.999407811846199 MSE sarima : 17348.978885803794 R² sarima : -20239.00864716429

Prophet

• Realizamos a previsão dos 15 primeiros dias de 2024, utilizando o período de treino entre 17 e 31 de dezembro de 2024 para o modelo:

MAE: 2.159287331731115 RMSE: 2.319523116710507

MAPE: 0.02%

WMAPE para os últimos 15 dias: 0.01778661970472524

MSE: 5.380187488954423

8. Conclusão

- Durante a execução do Tech Challenge, realizamos treinos e testes com os modelos Naive, Seasonal Window Average, Sarima e Prophet;
- Realizando uma comparação entre os modelos, observamos os seguintes resultados:

Métrica	Naive	SWA	SARIMA	Prophet
MAE	23.943	15.126	1.317.124	21.593
RMSE	25.671	17.313	1.315.155	23.195
MAPE	1.82%	1.15%	99.94%	0.02%
WMAPE	1.82%	1.15%		1.78%
MSE	65.899	29.973	173.489.789	53.802
R ²	-66.881	-24.967	-202.390.086	-23.836

8. Conclusão

- Observações sobre os resultados:
 - O modelo Seasonal Window Average se destacou como o melhor entre os analisados. Ele teve os menores valores de erro absoluto (MAE: 1.5126) e quadrático médio (RMSE: 1.7313), além de um WMAPE de 1.15%, o que demonstra consistência nos resultados.
 Apesar de o R² ser negativo (-2.4967), esse modelo ainda apresenta um desempenho superior ao dos outros.
 - O **Modelo Prophet** chamou a atenção pelo menor MAPE (0.02%), mas seu desempenho geral em outras métricas, como MAE, RMSE e R², ficou atrás, tornando-o menos confiável como uma escolha principal, tornando –o uma escolha secundária.
 - Por outro lado, o **Modelo Sarima** teve resultados ruins em todas as métricas avaliadas, sugerindo que ele não foi bem ajustado aos dados.

8. Conclusão

 Conclusão final: o Modelo Seasonal Window Average é o mais equilibrado e confiável no geral, sendo a melhor opção para a maioria dos cenários, uma vez que combina baixos erros e maior consistência dos resultados.
 O modelo Prophet pode ser considerado em situações mais específicas, como por exemplo, para análises mais voltadas ao WMAPE recente.

