# Fysische en thermische transportverschijnselen

Birger.Hauchecorne@ua.ac.be

### Fundamentals of Thermal-Fluid Sciences

Yunus A. Cengel, Robert H. Turner, John M. Cimbala, McGraw Hill, 3rd edition, 2008, ISBN: 987-007-126631-4

# Inhoud van de cursus

Stromingsmechanica

Warmteoverdracht

# Stromingsmechanica

- Inleiding stromingsmechanica
- Fluïdumstatica
- Fluïdumkinematica
- Bernoulli- en energievergelijking
- Impulsanalyse van stromingssystemen
- Interne stroming
- Externe stroming

# Warmteoverdracht

- Warmteoverdrachtsmechanismen
- Stationaire warmtegeleiding
- Transiënte warmtegeleiding
- Gedwongen convectie
- Natuurlijke convectie
- Warmtewisselaars

# **Hfdst 1: Inleiding stromingsleer**

- 1. Definities stromingsleer, fluïdum
- 2. "Geen-slip"-conditie
- 3. Viscositeit
- 4. Classificatie van stromingsproblemen
- 5. Oppervlaktespanning en capillair effect

# 1. Definities

- Mechanica: gedrag van stationaire of bewegende lichamen onder invloed van krachten
- Stromingsmechanica (stromingsleer): fluïda in rust (stromingsstatica) of in beweging (stromingsdynamica)
- Hydrodynamica: stroming van fluïda die praktisch onsamendrukbaar zijn
- Gasdynamica: stroming van fluïda die significante densiteitsveranderingen (samendrukbaar) ondergaan

- Aerodynamica: stroming van gassen (lucht) over lichamen
- Deelgebieden die betrekking hebben op natuurlijk stroming
  - Oceanografie, meteorologie, hydrologie

- Fluïdum (vloeibaar medium) = gas of vloeistof
- Vervormt continu onder invloed van schuifspanning



Normaalspanning 
$$\sigma = \frac{F_n}{dA}$$
  
Schuifspanning  $\tau = \frac{F_t}{dA}$ 



Vaste stof: kan bepaalde opgelegde schuifspanning weerstaan door te vervormen

# 2. De "geen-slip"-conditie



Een vloeistof die over een stilstaande plaat stroomt, komt volledig tot stilstand aan de oppervlakte als gevolg van de "geen-slip" conditie.

# 3. Viscositeit

 Viscositeit: interne weerstand van een fluïdum voor beweging

Schuifspanning: absolute (dynamische)

viscositeit





$$\tau \propto \frac{d(d\beta)}{dt}$$
 or  $\tau \propto \frac{du}{dy}$ 

Fluïda waarvoor de vervormingsnelheid evenredig is met de schuifspanning zijn Newtoniaanse fluïda.

Het gedrag van een vloeistof in laminaire stroming tussen twee parallelle platen wanneer de bovenste plaat beweegt met een constante snelheid

#### **Schuifspanning**

$$\tau = \mu \frac{du}{dy} \qquad (N/m^2)$$

#### Schuifspanningkracht

$$F = \tau A = \mu A \frac{du}{dy} \qquad (N)$$

#### $\mu$ dynamische viscositeit

$$kg/m \cdot s$$
 or  $N \cdot s/m^2$  or  $Pa \cdot s$   
1 poise = 0.1  $Pa \cdot s$ 

### Niet-Newtoniaanse fluïda

- Pseudoplastisch ("afschuifverdunnend"): ketchup, rubberoplossing, verf, sommige zepen en detergenten, …
- Dilatant ("afschuif-verdikkend"): druifzand, natte cement, poeders in suspensie, sommige maïsmeel- en suikeroplossingen, ...
- Bingham plastisch (kunnen weerstaan aan beperkte schuifspanning): boter, margarine, tandpasta, sommige vetten, ...



Rate of deformation, du/dy



Kinematische viscositeit, 
$$\nu = \mu/\rho$$
 m²/s or stoke (1 stoke = 1 cm²/s)

- Invloed van de temperatuur
  - Vloeistoffen: cohesiekrachten
  - Gassen: meer botsingen
    - → meer weerstand voor stroming

$$\mu_{\text{gas}} \propto \sqrt{T}$$



Dynamic viscosities of some fluids at 1 atm and 20°C (unless otherwise stated)

| Dynamic Viscosity $\mu$ , kg/m $\cdot$ s |
|------------------------------------------|
|                                          |
| 134.0                                    |
| 10.5                                     |
| 1.52                                     |
| 0.31                                     |
|                                          |
| 0.10                                     |
| 0.17                                     |
| 0.29                                     |
| 0.86                                     |
| 0.0015                                   |
| 0.0012                                   |
|                                          |
| 0.0018                                   |
| 0.0010                                   |
| 0.00028                                  |
| 0.000012                                 |
| 0.00040                                  |
| 0.00029                                  |
| 0.00015                                  |
| 0.000018                                 |
| 0.0000088                                |
|                                          |



# Roterende viscosimeter (Vb. 9-4)



Krachtmoment T=FR
Tangentiële snelheid V=ωR

- L lengte van de cilinder
- *n* # omwentelingen per tijdseenheid

$$\tau = \mu \frac{du}{dr} = \mu \frac{R\omega}{l}$$

$$T = FR = \mu \frac{2\pi R^3 \omega L}{\ell} = \mu \frac{4\pi^2 R^3 \dot{n} L}{\ell}$$

# 4. Classificatie van stromingsproblemen

Viskeuze versus niet-viskeuze gebieden



Niet-viskeuze stromen: In veel stromen van praktisch belang zijn er regio's (meestal regio's niet te dicht bij vaste oppervlakken), waar de viskeuze krachten verwaarloosbaar klein zijn in vergelijking met traagheid of druk krachten.

**Viskeuze stromen:** Stromen waar wrijving significant is

## Interne versus externe stroming

**Interne stromen:** De stroom in een pijp of kanaal is volledig begrensd door vaste oppervlakken.

**Externe stromen:** De stroom van een onbegrensde vloeistof over een oppervlak, zoals een plaat, een draad of een pijp.



# Samendrukbare versus onsamendrukbare stroming

**Samendrukbare stromen:** Als de dichtheid varieert tijdens de stroming (vb: hoge snelheidsstromen)

Onsamendrukbare stromen: Als de dichtheid min of meer constant blijft (vb: vloeistoffen)

#### Mach getal

$$Ma = \frac{V}{c}$$

Met c= geluidssnelheid = 346 m/s (in lucht, kamertemperatuur, zeeniveau)

- •Ma < 0.3: gas is onsamendrukbaar => luchtsnelheid < 100 m/s
- •Ma < 1 : Subsonisch
- •Ma = 1 : Sonisch
- •Ma > 1 : Supersonisch
- •Ma >> 1 : Hypersonisch

## Laminaire versus turbulente stroming

Laminair: Hoog viskeuze fluïda, zoals olie, bij lage snelheden. Zeer geordende beweging, gekenmerkt door gladde lagen

**Transitioneel:** Stroom wisselend tussen laminair en turbulent

**Turbulent**: Laag viskeuze fluïda, zoals lucht, bij hoge snelheden. Zeer wanordelijke vloeiende beweging, gekenmerkt door snelheidsschommelingen

## Getal van Reynolds

$$\mathrm{Re} = \frac{\mathrm{Inertial\ forces}}{\mathrm{Viscous\ forces}} = \frac{V_{\mathrm{avg}}D}{\nu} = \frac{\rho V_{\mathrm{avg}}D}{\mu}$$

 $Re \lesssim 2300$  laminar flow  $2300 \lesssim Re \lesssim 10,000$  transitional flow  $Re \gtrsim 10,000$  turbulent flow



Laminar



Transitional



Turbulent

## Natuurlijke versus gedwongen stroming

**Natuurlijke stromen:** Stroming heeft een natuurlijke oorsprong, zoals drijfkracht (verschil in densiteit door temperatuursverschil)

**Gedwongen stromen:** Stroming wordt gedwongen over een oppervlak of in een

buis d.m.v. een pomp of ventilator



## Stationaire versus transiënte stroming

**Stationair:** geen verandering met de tijd op een bepaalde plaats

#### Transiënt:

- niet-stationair: ontwikkelende stroming
- periodisch: fluctuatie rond stationair gemiddelde

**Uniform**: geen verandering op een bepaalde locatie

Veel apparaten, zoals turbines, compressoren, boilers, ... werken lange tijd onder dezelfde condities en kunnen als stationair beschouwd worden



Oscillerend zog van een airfoil bij Ma=0.6



Gemiddelde over de tijd

# • 1D-, 2D- en 3D- stroming







# 5. Oppervlaktespanning en capillair effect

Oppervlaktespanning





## Oppervlaktespanning

Vloeistofdruppels gedragen zich als kleine sferische ballonnetjes gevuld met vloeistof, oppervlakte is als elastisch membraan onder spanning. De trekkracht die dit veroorzaakt is te wijten aan de aantrekkingskrachten tussen de moleculen en wordt de oppervlaktespanning  $\sigma_s$  genoemd [N/m].

# Oppervlaktespanning

Aan de oppervlakte zijn de aantrekkingskrachten niet symmetrisch

- Resulteert in spanning aan de oppervlakte
- De kracht die spanning veroorzaakt is parallel gericht met de oppervlakte
- Oppervlaktespanning = kracht per eenheidslengte



## Vloeistoffilm in een raam



$$\sigma_s = \frac{F}{2b}$$



Arbeid (oppervlakte-energie) nodig om oppervlakte te vergroten

$$W = \text{Force} \times \text{Distance} = F \Delta x = 2b\sigma_s \Delta x = \sigma_s \Delta A$$

Surface tension of some fluids in air at 1 atm and 20°C (unless otherwise stated)

| Fluid         | Surface Tension   |
|---------------|-------------------|
| Fluid         | $\sigma_s$ , N/m* |
| †Water:       |                   |
| O°C           | 0.076             |
| 20°C          | 0.073             |
| 100°C         | 0.059             |
| 300°C         | 0.014             |
| Glycerin      | 0.063             |
| SAE 30 oil    | 0.035             |
| Mercury       | 0.440             |
| Ethyl alcohol | 0.023             |
| Blood, 37°C   | 0.058             |
| Gasoline      | 0.022             |
| Ammonia       | 0.021             |
| Soap solution | 0.025             |
| Kerosene      | 0.028             |

## Druppel —Bel



(a) Half a droplet or air bubble



(b) Half a soap bubble

## **Druppel:**

$$(2\pi R)\sigma_s = (\pi R^2)\Delta P_{\text{droplet}} \rightarrow \Delta P_{\text{droplet}} = P_i - P_o = \frac{2\sigma_s}{R}$$

$$2(2\pi R)\sigma_s = (\pi R^2)\Delta P_{\rm bubble} \ \rightarrow \ \Delta P_{\rm bubble} = P_i - P_o = \frac{4\sigma_s}{R}$$

## **Capillair Effect**

Capillair effect: Het stijgen of dalen van een vloeistof in een smalle buis die zich in de vloeistof bevindt.

Het capillair effect is deels verantwoordelijk voor de stijging van water in grote bomen

Meniscus: Het gekromde vrije oppervlak van de vloeistof in een capillair

De sterkte van het capillair effect wordt gekwantificeerd door de **contacthoek**  $\phi$ , gedefinieerd als de hoek die de raaklijn aan het vloeistofoppervlak maakt met de vaste ondergrond op het contactpunt





# • Capillaire stijging (of daling) (Vb. 9-5)



$$P_{onder}A = P_{boven}A + W - 2\pi R\sigma_s \cos\phi$$

$$W = mg = \rho Vg = \rho g(\pi R^2 h)$$

Capillaire stijging (daling): 
$$h = \frac{2\sigma_s}{\rho gR} \cos \phi$$
 ( $R = \text{constant}$ )