2011---2012 学年第二学期

《大学物理 I》(课内)考试(A)卷

授课	班号	年级专	业	学号		姓名	
题号		=	1	<u>=</u> 2	3	总分	审核
得分							
		题 3 分,共 周运动,已		程为		阅卷	得分
$s = 3t^2$	+ 2 <i>t</i> 米, 圆]半径 $R=8$	**, 则 t =	1 秒时加速	度为:		(
2.	质量为 m 印		ξ为 <i>l</i> ,在绕		, -	D、14 米/5	
A	$\frac{1}{12}ml^2$	В、	$\frac{1}{4}ml^2$	$C \cdot \frac{1}{3}n$	nl^2	$D \cdot \frac{1}{2}ml^2$	
3,	关于质点系	内各质点之	间相互作用	目的内力,以	人下说法中错	昔误的是 : (
E	3、一对内力 C、一对滑る	フ所作功之和 フ矩之和不一 カ摩擦力作巧 フ之和一定グ	一定为零; 力之和一定为				

则通过图中一半径为 R 的半球面的电通量为(

A,
$$\pi R^2 E$$
 B, $\frac{1}{2} \pi R^2 E$
C, $2 \pi R^2 E$ D, 0

5、在点电荷+q 的电场中,若取距离+q 为 2a 处的 P 点为电势零点,则与+q相距为 a 处的点的电势值为

A,
$$\frac{q}{4\pi\varepsilon_0 a}$$
 B, $\frac{q}{8\pi\varepsilon_0 a}$ C, $\frac{-q}{4\pi\varepsilon_0 a}$ D, $\frac{-q}{8\pi\varepsilon_0 a}$

B,
$$\frac{q}{8\pi\varepsilon_0 a}$$

$$C, \frac{-q}{4\pi\varepsilon_0 a}$$

$$D, \frac{-q}{8\pi\varepsilon_0 a}$$

6、由一半径为 R_1 = R 的金属球和一内外半径分别为 R_2 = 2R 和 R_3 = 3R 的同心 金属球壳组成的球形电容器的电容为:

A,
$$4\pi\varepsilon_0 R$$

B
$$\cdot 6\pi\varepsilon_0 R$$

C.
$$8\pi\varepsilon_0 R$$

A,
$$4\pi\varepsilon_0 R$$
 B, $6\pi\varepsilon_0 R$ C, $8\pi\varepsilon_0 R$ D, $10\pi\varepsilon_0 R$

- 7、矩形载流线圈通有电流为 I,长度为 2a、宽度为 2b。要使得该线圈中心的 磁感强度增加到原来的 2 倍。通过下列哪一种变化才可能实现? (
-) C
 - A、矩形面积不变、对角线变小
 - B、矩形对角线不变、面积变大
 - C、电流变大
 - D、电流变小
- 8、二个电流强度分别为 $I_I = I_0$ 和 $I_2 = 2I_0$ 的闭合电流,均穿过闭合环路 I_1 所 包围的面,而电流强度为 $I_3 = I_0$ 的闭合电流不穿过闭合环路 L 所包围的面。其中 电流 I_1 和电流 I_3 流向相同,电流 I_1 和电流 I_2 流向相反。则通过闭合环路 I_2 的磁 感应强度的环量 $\oint_{\vec{D}} \vec{B} \cdot d\vec{l}$ 大小为: (

B)

A, 0 B, $\mu_0 I_0$ C, $2\mu_0 I_0$ D, $3\mu_0 I_0$

二、填空题 (每空2分,共32分)

阅卷	得分

1、一质量为m船关闭引擎后的速度为 v_0 ,在

运动中受到水的阻力,阻力大小为 $f = -kv^2$,则船速减为其初速的一半所需的时 $\frac{2m}{kv_0}$,这段时间内船前进的距离为 $\frac{m \ln 2}{k}$ 。

- 2、质量为 m=1 千克的质点,已知其运动学方程为: $\vec{r} = \frac{8}{5} t^{\frac{5}{2}} + 3t \vec{j}$ 米。则在 4.8m/s²; 在最初 1 秒内所受到的冲量大小为 4 牛顿•秒, 合外力所作 的功为 8 焦耳。
- 3、由一半径为 R、均匀带有电量 Q 的圆环产生的电场空间中,在圆心的电场 强度大小为 E=______,电势大小为 V=____ $\frac{Q}{4\pi\epsilon_0R}$; 若该圆环绕其中心 垂直轴以 ω 的角速度转动,则在圆心处的磁感应强度大小为 $\mathbf{B}^{\frac{\mu_0 \omega Q}{4\pi R}}$
- 4、如图所示,两块面积同为S,板间距为d的平行金属板 $(d << \sqrt{s})$ 组成电容器的电容为 $\frac{\epsilon_0 S}{d}$; 若让两极板分别带上 电量 Q_A 和 Q_B,则 A 极板的左右两个侧面分别带有电量 为 $\frac{Q_A+Q_B}{2}$ 、 $\frac{Q_A-Q_B}{2}$;此时,两极板间的电势差为 $\frac{d(Q_A-Q_B)}{2\epsilon_0 S}$
- 5、一内外半径分别为 $R_1 = 2 R$ 和 $R_2 = 4 R$ 的空心无限长圆柱形导体,其 中通有电流I,且在导体的横截面上均匀分布,设场点P到载流圆柱中心轴线的距 离为 r 。则 r = R 处的磁感应强度大小为 0 $_{-}$; r=3R 处的磁感应 $\frac{\mu_0 I}{10\pi R}$

В

强度大小为_____; r = 5 R 处的磁感应强度大小为____。

三、计算题 (说明:①、仅给出答案而无具体计算过程则不得分。②、第一小题 15 分,第二小题 15 分,第三小题 14 分,共 44 分。)

1、将质量为M、长为L的匀质细棒水平悬挂于天花板上,细棒可绕悬挂点O在竖直平面内自由转动。细棒在重力矩作用下自由下落。

阅卷	得分

- (1) 求细棒落到与水平方向成 β 角时的角加速度
- (2) 求细棒落到竖直位置时角速度
- (3) 若细棒落到竖直位置时恰好与一质量为m、静止于光滑桌面上的另一细棒发生弹性相碰,若撞击点与O点距离为l,求碰后m的运动速度。

$$(1) \ \alpha = \frac{3g\cos\beta}{2L}$$

(2) 机械能守恒:

$$\frac{J\omega^2}{2} = \frac{MgL}{2}$$

$$\omega = \sqrt{\frac{3g}{L}}$$

(3) 角动量及能量守恒:

$$\frac{1}{3}ML^2\omega = mvl + \frac{1}{3}ML^2\omega'$$

$$\frac{1}{6} M L^2 \omega^2 = \frac{1}{2} m v^2 + \frac{1}{6} M L^2 \omega'^2$$

解得:
$$v = \frac{2ML^2\sqrt{3gL}}{3ml^2 + ML^2}$$

2、导体球壳的球心处放置一个点电荷。已知点电荷 所带电量 $q_{\rm o}$,导体球壳所带总电量为 Q=2 $q_{\rm o}$,内 半径为 $R_{\rm l}=R$ 、外半径为 $R_{\rm 2}=3R$ 。

阅卷	得分

- (1) 求空间各处的电场强度;
- (2) 求空间各处的电势;
- (3) 若将导体球壳接地,则距离球心 r = 4R 处的电势。

(1)
$$r < R, \qquad E = \frac{q_0}{4\pi\epsilon_0 r^2}$$

$$R < r < 3R, \qquad E = 0$$

$$r > 3R$$
, $E = \frac{3q_0}{4\pi\epsilon_0 r^2}$

$$r < R, \qquad \varphi = \frac{q_0}{4\pi\epsilon_0 r}$$

$$R < r < 3R, \qquad \varphi = \frac{q_0}{4\pi\epsilon_0 r}$$

$$(r > 3R, \qquad \varphi = \frac{3q_0}{4\pi\epsilon_0 r}$$

(3)

$$\varphi = 0$$

3、如图所示,放置在 oz 轴上的长直载流导线 CD,长度为 8a,载有电流 I 。在该导线的垂直平分面 oxy 上,有一个以导线为中心、以 3a 为半径的圆形环路 L 。问:

阅卷	得分

(1) 直导线延长线上 z = 9a 处的磁感应强度 B 的大小;

(3) 整个圆形环路 L 的磁感应强度的环量 $\oint_L \vec{B} \cdot d\vec{l}$ 的值。

- (1) B = 0
- (2) $B = \frac{\sqrt{2}\mu_0 I}{16\pi a}$
- (3) $\oint_L \vec{B} \cdot d\vec{l} = 2\pi \times 3a \times \frac{8\mu_0 I}{60\pi a} = \frac{4\mu_0 I}{5}$