

Vorlesung Forschungsmethoden

13.12.2018

Urte Scholz

Evaluation der Veranstaltung

Ich freue mich über Ihre Rückmeldung zur Veranstaltung.

https://qmsl.uzh.ch/de/A7PXR

Die Evaluation läuft bis zum 17.12.

Vielen Dank für Ihre Teilnahme.

Lernziele der heutigen Veranstaltung

Am Ende der Veranstaltung ...

- ... können Sie die zentralen Unterschiede sowie die jeweiligen Vor- und Nachteile von within- und between-subjects designs einem Laien erklären.
- ... sind Sie in der Lage, mögliche Störeffekte bei within-subjects designs zu definieren und entsprechende Kontroll- bzw. Umgangsmöglichkeiten zu erklären.
- ... können Sie non-experimentelle, quasiexperimentelle und experimentelle Designs voneinander unterscheiden und Beispiele für verschiedene Arten dieser Designs herleiten.
- ... haben Sie einen umfassenden Überblick über die verschiedenen Forschungsdesigns und können entscheiden, welches Design Sie bei welcher Fragestellung anwenden.

Versuchsplan

= logischer Aufbau einer empirischen Untersuchung im Hinblick auf Hypothesenprüfung. (Huber, 2013)

vier Entscheidungen (Hussy et al., 2013):

- 1. vollständige oder unvollständige Pläne
- 2. Bestimmung der Anzahl der Beobachtungen pro Zelle
- 3. interindividuelle oder intraindividuelle Bedingungsvariation
- 4. randomisierte oder nichtrandomisierte Zuordnung der Vpn zu den Zellen

Interindividuell = Zwischensubjekt- /between-subjects designs

→ Intraindividuell = Innersubjekt- / within-subjects / Messwiederholungs- / repeated measures designs

Psycholo Vor- und Nachteile von within- und between-subject designs angelehnt an Martin, 2008

	Within-Subjects	Between-Subjects
Vorteile		
Nachteile		Immer potentielle Konfundierung von Personvariablen mit experimenteller Bedingung

Within-Subjects Designs

Psychologisches Institut

In einem withinsubjects design werden zwei oder mehrere experimentelle Treatments innerhalb der gleichen Individuen verglichen (nach Gravetter & Forzano, 2018)

FIGURE 9.1

Two Possible Structures for a Within-Subjects Design

The same group of individuals participates in all of the treatment conditions. Because each participant is measured in each treatment, this design is sometimes called a repeated-measures design. The different treatments can be administered sequentially, with participants receiving one treatment condition followed, at a later time, by the next treatment (a). It also is possible that the different treatment conditions are administered all together in one experimental session (b). Note: All participants go through the entire series of treatments but not necessarily in the same order.

Beispiel within-subjects Design

https://www.youtube.com/watch?v=I589B5dIPn4

TABLE 9.3

Hypothetical Data Showing the Results from a Between-Subjects Experiment and a Within-Subjects Experiment

The two sets of data use exactly the same numerical scores.

(a) Between-Subjects Experiment—Three Separate Groups

Treatment I		Treatmen	Treatment III		
(John)	20	(Sue)	25	(Beth)	30
(Mary)	31	(Tom)	36	(Bob)	38
(Bill)	51	(Dave)	55	(Don)	59
(Kate)	62	(Ann)	64	(Zoe)	69
Mean =	41	Mean =	45	Mean =	49

(b) Within-Subjects Experiment—One Group in All Three Treatments

Treatme	nt I	Treatme	nt II	Treatme	nt III
(John)	20	(John)	25	(John)	30
(Mary)	31	(Mary)	36	(Mary)	38
(Bill)	51	(Bill)	55	(Bill)	59
(Kate)	62	(Kate)	64	(Kate)	69
Mean =	41	Mean =	45	Mean =	49

TABLE 9.4 Removing Individual Differences from Within-Subjects Data

This table shows the same data from Table 9.3b, except that we have eliminated the individual differences from the data. For example, we subtracted 20 points from each of Kate's scores to make her more "average," and we added 20 points to each of John's scores to make him more "average." This process of eliminating individual differences makes the treatment effects much easier to see.

Treatment I		Treatme	nt II	Treatment III		
(John)	40	(John)	45	(John)	50	
(Mary)	41	(Mary)	46	(Mary)	48	
(Bill)	41	(Bill)	45	(Bill)	49	
(Kate)	42	(Kate)	44	(Kate)	49	
Mean =	41	Mean =	45	Mean =	49	

Gravetter & Forzano, 2018, S. 227, 228

Psy

Removing Individual Differences from Within-Subjects Data

- (a) The original data, which include the individual differences among the four participants.
- (b) The individual differences have been removed by adjusting each participant's scores. When the individual differences are removed, it is much easier to see the differences between treatments.

Gravetter & Forzano, 2018, S. 229

Vor- und Nachteile von between- und within-subjects Designs

Stellen Sie sich vor, Sie möchten prüfen, ob eine bestimmte Strategie zur Emotionsregulation (Perspektivenübernahme) effektiv ist, um negative Gefühle zu reduzieren. In der Experimentalbedingung 1 trainieren Sie diese Emotionsregulationsstrategie. In der Experimentalbedingung 2 lassen Sie die Teilnehmenden Zeitung lesen (Kontrollbedingung). Ihre AV sind die berichteten emotionalen Reaktionen auf Bilder, die neutrale, positive und negative Gefühle hervorrufen.

Sie wählen ein within-subjects design zur Überprüfung dieser Fragestellung. Stellen Sie die Vorund Nachteile dieser Wahl dar.

Psycholo Vor- und Nachteile von within- und between-subject designs angelehnt an Martin, 2008

	Within-Subjects	Between-Subjects
Vorteile	 kein Problem mit personenspezifischer Konfundierung von Störvariablen Weniger Teilnehmende notwendig Effekte der UV werden eher entdeckt als in between-subjects designs (grössere «Power») 	 die Teilnahme an einer experimentellen Bedingung hat keinen Einfluss auf die Teilnahme an einer anderen experimentellen Bedingung Innerhalb einer Bedingung können mehr Daten gesammelt werden, als wenn jemand an mehreren Bedingungen teilnimmt
Nachteile	 Dropout bei mehreren Messzeitpunkten Gefährdung der internen Validität durch zeitliche Veränderung Positionseffekte Übertragungseffekte (carry over effects) 	Immer potentielle Konfundierung von Personvariablen mit experimenteller Bedingung

Spezielle Störeffekte bei wiederholter Messung

(Huber, 2013)

Begriffsklärung Messwiederholung:

- → generell: mehrere Messungen pro Person zu unterschiedlichen Zeitpunkten
- → bezogen auf within-subjects Experimente: Personen nehmen mehrfach innerhalb des gleichen Experiments in verschiedenen Bedingungen teil (Hussy et al., 2013)

Spezielle Störeffekte

- Zeitliche Veränderung ausserhalb der Untersuchungssituation (s. auch Gefährdungen der internen Validität)
- Positionseffekte (Position der experimentellen Bedingung)
- Übertragungseffekte (»carry over effects«)

Kontrolle der Störeffekte in within-subjects designs

Positionseffekt:

"Ein Positionseffekt (Stellungseffekt) ist eine Störvariable, die von der Position einer experimentellen Bedingung in der Reihenfolge her bestimmt ist." (Huber, 2013, S. 171)

Kontrolle von Positionseffekten:

- Ausbalancieren (vollständiges / unvollständiges)

Martin, 2008, S. 157

Vollständiges Ausbalancieren (Huber, 2013, S. 175)

	Pos	Position		Reaktionszeit	Reaktionszeit für Bedingung				
	1	2	3	В	L	Т			
Reihenfolge 1	В	L	Т	RZ + PE(1)	RZ + PE(2)	RZ + PE(3)			
Reihenfolge 2	В	Т	L	RZ + PE(1)	RZ + PE(3)	RZ + PE(2)			
Reihenfolge 3	L	В	Т	RZ + PE(2	RZ + PE(1)	RZ + PE(3)			
Reihenfolge 4	L	Т	В	RZ + PE(3)	RZ + PE(1)	RZ + PE(2)			
Reihenfolge 5	Т	В	L	RZ + PE(2)	RZ + PE(3)	RZ + PE(1)			
Reihenfolge 6	Т	L	В	RZ + PE(3)	RZ + PE(2)	RZ + PE(1)			
umma dar Pocitie	on coffel	to.		2 DE(1)	2 DE(1)	2 DE(1)			

Summe der Positionseffekte:

2 PE(1)	2 PE(1)	2 PE(1)
2 PE(2)	2 PE(2)	2 PE(2)
2 PE(3)	2 PE(3)	2 PE(3)

Abbildung 10: Summe der Positionseffekte für jede von drei experimentellen Bedingungen bei der Methode des vollständigen Ausbalancierens.

RZ = Reaktionszeit; PE(i) = Positionseffekt; L = Lichtsignal, T = Tonsignal, B = Berührungssignal
Gemessene Reaktionszeit = RZ + PE(i)

Problem des vollständigen Ausbalancierens

Zahl der möglichen Reihenfolgen bei *n* experimentellen Bedingungen = n! ■ TABLE 8-4

Completely Counterbalanced Design for Two-, Three-, and Four-Level Independent Variables

Two levels of	independent variable	Three levels of independent variable			
Number	Order of levels	Number	Order of levels		
1	AB*	1	ABC		
2	BA	2	ACB		
		3	BCA		
		4	BAC		
		5	CAB		
		6	CBA		

Number	Order of levels	Number	Order of levels
1	ABCD	13	CABD
2	ABDC	14	CADB
3	ACBD	15	CBAD
4	ACDB	16	CBDA
5	ADCB	17	CDAB
6	ADBC	18	CDBA
7	BACD	19	DABC
8	BADC	20	DACB
9	BCAD	21	DBAC
10	BCDA	22	DBCA
11	BDAC	23	DCAB
12	BDCA	24	DCBA

*The letters A, B, C, and D represent the levels.

Martin, 2008, S. 163

Unvollständiges Ausbalancieren (Huber, 2013)

- Zufallsauswahl
- Spiegelbildmethode
- · Lateinisches Quadrat

Zufallsauswahl:

- randomisierte Auswahl aus allen möglichen Reihenfolgen
- jede VP erhält andere Reihenfolge
- bei grossen Stichproben
- Kontrolle über alle VPn hinweg

Unvollständiges Ausbalancieren (Huber, 2013)

Spiegelbildmethode (ABBA counterbalancing):

- Wahl einer Reihenfolge, die gespiegelt wird
- AB BA , ABC CBA , etc.
- alle VPn bekommen gleiche Sequenz
- dadurch Kontrolle des Positionseffekts pro Person

Zwei Voraussetzungen:

- a) jede experimentelle Bedingung muss pro Person zweimal durchführbar sein
- b) der Positionseffekt muss linear sein
 - (→ muss vorher bekannt sein, bzw. geprüft werden)
 - (→ sehr gute Herleitung dieser Problemstellung bei Martin, 2008, S. 156 ff)

Huber, 2013, S. 176

Unvollständiges Ausbalancieren (Huber, 2013)

Lateinisches Quadrat

- Genauso viele Reihenfolgen wie experimentelle Bedingungen
- Gleichmässiges Verteilen der VPn auf Reihenfolgen
- Kontrolle über alle VPn hinweg

Beispiel Lateinisches Quadrat

(Martin, 2008, S. 163)

		Order of Pr	resentation	
	1st	2nd	3rd	4th
Participant 1	Chicago	Courier	Geneva	Times
Participant 2	Courier	Times	Chicago	Geneva
Participant 3	Times	Geneva	Courier	Chicago
Participant 4	Geneva	Chicago	Times	Courier

FIGURE 8-6 A balanced Latin Square for ordering the presentation of four print fonts to at least four readers

Unvollständiges Ausbalancieren (Huber, 2013)

Lateinisches Quadrat - Vorteil:

kann in faktoriellen Versuchsplan integriert werden:

- Position der einzelnen experimentellen Bedingungen wird als UV eingeführt
- VPn werden in Gruppen zugeteilt
- → Überprüfung (nicht nur Kontrolle) möglich

Beispiel lateinisches Quadrat als faktorieller Versuchsplan

	Pos	Position 1			Position 2			Position 3			Position 4					
	ex	o. Be	d.		ex	exp. Bed.			exp. Bed.			exp. Bed.				
	а	b	c	d	a	b	c	d	a	b	c	d	a	b	c	d
Gruppe 1	х					х					Х					х
Gruppe 2		х						х	х						х	
Gruppe 3				х			х			Х			х			
Gruppe 4			х		x							х		х		

Abbildung 11: Beispiel für ein Lateinisches Quadrat als faktorieller Versuchsplan In diesem Versuchsplan werden nur die mit einem x gekennzeichneten Kombinationen realisiert. Dreiviertel der Zellen des Versuchsplanes sind also leer.

Huber, 2013

Kontrolle von Carry-Over-Effekten (Huber, 2013)

Carry-over Effekt:

«Ein carry-over Effekt (Übertragungseffekt) ist eine Störvariable, die davon herrührt, dass eine frühere experimentelle Bedingung eine spätere inhaltlich beeinflusst.» (Huber, 2013, S. 171)

Kontrolle von Positionseffekten ≠ Kontrolle von Carry-over-Effekten

Alternativen:

- Ursachen des carry-over-Effekts bekannt → Versuch der Beseitigung der Ursache
- Between-subjects Design wählen
- Notfalls Zeit zwischen den Bedingungen einsetzen («wash-out period»)

Fazit experimentelle Within-Subjects Designs

- Etliche Vorteile gegenüber between-subjects designs
- Aber: Problem der spezifischen Störvariablen (v.a. Positions- / Carry-over-Effekte)
- → Kontrolle dieser Störvariablen oder, wenn nicht möglich, doch between-subjects design

Gravetter & Forzano, 2018, S. 213

Forschungsdesign wählen (Gravetter & Forzano, 2018)

Forschungsdesigns - Arten:

- **⊘** Deskriptiv → reine Beschreibung einzelner Merkmale
- **⊗** Korrelativ → Zusammenhang / Zusammenhänge zwischen Variablen, keine Erklärung
- - Quasi-experimentell → Versuch einer Annäherung an Ursache-Wirkungs-Zusammenhänge (Versuch der Erklärung); Problem der natürlichen Gruppen und Konfundierung von Alternativerklärungen mit dem Design
 - Experimentell → Ursache-Wirkungs-Zusammenhänge (Erklärung) zwischen Variablen

Non-experimentelle, quasiexperimentelle und experimentelle Designs (Gravetter & Forzano, 2018)

Nonexperimentell	Quasiexperimentell	Experimentell
Natürliche Gruppen / ı	Randomisierte Zuteilung zu Bedingungen	
Keine Kontrolle von Störvariablen	Versuch der Kontrolle von Störvariablen	Kontrolle von Störvariablen

Natürliche Gruppen?

- a) definiert über Charakteristika der Teilnehmenden
- → between-subjects designs
- b) definiert über Zeit (prä-post)
- → within-subjects designs

Querschnitts-Design: Differential research design / Ex-post-facto design

- Vergleich zweier Gruppen zu einem Zeitpunkt
- Keinerlei Kontrolle möglicher Störvariablen
- → nonexperimentell

Non-experimentelle Designs

Längsschnitt-Design: One group pretest-posttest design

- Vorher-Nachher Vergleich nach Massnahme innerhalb einer Gruppe (within-subjects design)
- Keinerlei Kontrolle möglicher Störvariablen
- → nonexperimentell

Längsschnitt-Design: Posttest-only nonequivalent control group design

- Vergleich der Gruppen nach Massnahme
- Keinerlei Kontrolle möglicher Störvariablen
- → nonexperimentell

Quasi-experimentelles Design: Pretest-posttest nonequivalent control group design (Gravetter & Forzano, 2018)

- Durch Vortest → Vergleich der Gruppen vor der Massnahme möglich
- aktive Manipulation mind. 1 UV
- Einfluss zeitlicher Veränderungen als Bedrohung der internen Validität minimiert, aber nicht ganz ausgeschaltet
- → quasiexperimentell

Zum Vergleich: Beispiel für experimentelles between-subjects Design

Zum Vergleich: Beispiel für experimentelles between-subjects Design

- randomisierte Zuteilung zu den Bedingungen
- aktive Manipulation mind. 1 UV
- Kontrolle von weiteren Störvariablen
- → experimentell

KG = Kontrollgruppe

M = Massnahme

VT = Vortest (Vorher-Messung)

NT = Nachtest (Nachher-Messung)

Non-experimentelle, quasiexperimentelle und experimentelle Designs

(Gravetter & Forzano, 2018)

Nonexperimentell	Quasiexperimentell	Experimentell
Natürliche Gruppen / ı	Randomisierte Zuteilung zu Bedingungen	
Keine Kontrolle von Störvariablen	Versuch der Kontrolle von Störvariablen	Kontrolle von Störvariablen

Natürliche Gruppen?

- a) definiert über Charakteristika der Teilnehmenden
- → between-subjects designs
- b) definiert über Zeit (prä-post)
- → within-subjects designs

Zusammenfassende Abgrenzung zwischen den verschiedenen Forschungsdesigns

(Gravetter & Forzano, 2018)

Was	ja	nein
Deskriptiv	reine Beschreibung einzelner Merkmale (z.B. Häufigkeiten)	keine Zusammenhänge, keine Gruppenunterschiede, keine experimentelle Manipulation, keine Kausalitätsüberprüfung
Korrelativ	Zusammenhang / Zusammenhänge zwischen Variablen	keine Gruppenunterschiede, keine experimentelle Manipulation, keine Kausalitätsüberprüfung
Nicht- experimentell	Unterschiede natürlicher Gruppen auf AV; im within-subjects-Kontext: Unterschiede einer Gruppe über die Zeit	keine Randomisierung (sondern natürliche Gruppen); keinerlei Kontrolle von Störvariablen;
Quasi- experimentell	Versuch einer Annäherung an Kausalitätsüberprüfung durch experimentelle Manipulation mind. 1 UV und Versuch der Kontrolle von Störvariablen → mehr als reine Beschreibung von Mittelwertsunterschieden	keine Randomisierung (sondern natürliche Gruppen); keine <i>vollständige</i> Kontrolle von Störvariablen; deshalb Kausalaussagen nie abschliessend möglich
Experimentell	Kausalitätsüberprüfung (= Ursache-Wirkungs- Zusammenhänge) zwischen UVs und AVs durch randomisierte Zuteilung zu den Bedingungen (between oder within) und aktive Manipulation mind. 1 UV	Achtung, auch hier gewisse Gefährdungen der internen Validität durch entsprechende Störvariablen möglich

mind. 1 UV

Zusammenfassende Abgrenzung zwischen den verschiedenen Forschungsdesigns

(Gravetter & Forzano, 2018)

		(Gravetter & Forz		
Was		ja	nein	
Deskripti	v reine Beschreibung einzelner Merkmale (z.B. Häufigkeiten)		keine Zusammenhänge, keine Gruppenunterschiede, keine experimentelle Manipulation, keine	
Korrelati Nicht-	Im Lehrbuch von Hussy et al. (2013) werden unter dem Begriff nicht-experimentelle Forschung deskriptive und korrelative Ansätze zusammengefasst.		telle uppen);	
experime Quasi- experime	Ansätzen. → Die Differenzierung bei Gravetter & Forzano (2018) ist für das Lernen der Unterschiede zwischen den Forschungsstrategien und –designs m. E. günstiger.			
		von wittelwertsunterschieden		
Experime	entell	Kausalitätsüberprüfung (= Ursache-Wirkungs- Zusammenhänge) zwischen UVs und AVs durch randomisierte Zuteilung zu den Bedingungen (between oder within) und aktive Manipulation	Achtung, auch hier gewisse Gefährdungen d Validität durch entsprechende Störvariablen i	

Forschungsdesign wählen (Gravetter & Forzano, 2018)

Forschungsdesigns - Arten:

- **⊘** Deskriptiv → reine Beschreibung einzelner Merkmale
- Nicht-experimentell → Gruppenunterschiede, keine Erklärung
- Quasi-experimentell → Versuch einer Annäherung an Ursache-Wirkungs-Zusammenhänge (Versuch der Erklärung); Problem der natürlichen Gruppen und Konfundierung von Alternativerklärungen mit dem Design

Kurze abschliessende Übung: Welches Forschungsdesign für welche Forschungsfrage? (bei mehreren Möglichkeiten, wählen Sie das Design mit der höchsten internen Validität)

- 1. Gibt es Unterschiede in der Rechtschreibfähigkeit zwischen Jungen und Mädchen der 3. Klasse?
- 2. Wie hoch ist der Anteil an Schülerinnen und Schülern mit Migrationshintergrund im Kanton Zürich?
- 3. Fördert die Einnahme von Nikotinersatzpräparaten den Erfolg im Rauchstopp?
- 4. Ist die Teilnahme an einem Programm zur Förderung sozialer Kompetenzen effektiver für Nicht-Muttersprachlerinnen / Nicht-Muttersprachler als für Muttersprachlerinnen / Muttersprachler?
- 5. Wie stark ist der Zusammenhang zwischen sozialer Unterstützung und Wohlbefinden?

Lernziele erreicht?

Am Ende der Veranstaltung ...

- ... können Sie die zentralen Unterschiede sowie die jeweiligen Vor- und Nachteile von within- und between-subjects designs einem Laien erklären.
- ... sind Sie in der Lage, mögliche Störeffekte bei within-subjects designs zu definieren und entsprechende Kontroll- bzw. Umgangsmöglichkeiten zu erklären.
- ... können Sie non-experimentelle, quasiexperimentelle und experimentelle Designs voneinander unterscheiden und Beispiele für verschiedene Arten dieser Designs herleiten.
- ... haben Sie einen umfassenden Überblick über die verschiedenen Forschungsdesigns und können entscheiden, welches Design Sie bei welcher Fragestellung anwenden.