Morse theory for group presentations

Ximena Fernández

GEOMETRY AND TOPOLOGY SEMINAR 28th October 2021

EPSRC Centre for Topological Data Analysis

Outline

- 1. The Andrews-Curtis conjecture
- 1.1 The topological story
- 1.2 The algebraic story
- 2. Discrete Morse theory
- 3. Morse theory for group presentations
- 4. Applications to the Andrews-Curtis conjecture

1. The Andrews-Curtis conjecture

Motivation

Is every compact n-dimensional manifold homotopy equivalent to S^n if and only if it is homeomorphic with S^n ?

H. Poincaré (1904)

The topological story

J.H.C. Whitehead,

- Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc. 45 (1939) 243–327.
- On incidence matrices, nuclei and homotopy types, Ann. of Math. 42 (1941) 1197–1239.
- Combinatorial Homotopy I, Bull. Amer. Math. Soc, 55, (1949), 213-245.
- Combinatorial Homotopy II, Bull. Amer. Math. Soc., 55 (1949), 453-496.
- Simple homotopy types, Amer. J. Math. 72 (1950) 1-57.

Let K, L be CW-complexes.

• Elementary collapse/expansion: $K \searrow^e L$ (or $L \not \curvearrowright K$) if $K = L \cup e^{n-1} \cup e^n$ with $e^{n-1}, e^n \notin L$ and the characteristic map $\psi : D^n \to K$ of e^n satisfies that $\psi|_{\overline{\partial D^n \setminus D^{n-1}}}$ is the characteristic map of e^{n-1} and $\psi(D^{n-1}) \subseteq L^{(n-1)}$.

- Elementary collapse/expansion: $K \leq L$ (or $L \not \sim K$) if $K = L \cup e^{n-1} \cup e^n$ with $e^{n-1}, e^n \notin L$ and the characteristic map $\psi : D^n \to K$ of e^n satisfies that $\psi|_{\overline{\partial D^n \setminus D^{n-1}}}$ is the characteristic map of e^{n-1} and $\psi(D^{n-1}) \subseteq L^{(n-1)}$.
- Collapse/expansion: $K \setminus L$ (or $L \nearrow K$) if there is a finite sequence of elementary collapses from K to L.

- Elementary collapse/expansion: $K \leq L$ (or $L \not \sim K$) if $K = L \cup e^{n-1} \cup e^n$ with $e^{n-1}, e^n \notin L$ and the characteristic map $\psi : D^n \to K$ of e^n satisfies that $\psi|_{\overline{\partial D^n \setminus D^{n-1}}}$ is the characteristic map of e^{n-1} and $\psi(D^{n-1}) \subseteq L^{(n-1)}$.
- Collapse/expansion: $K \setminus L$ (or $L \nearrow K$) if there is a finite sequence of elementary collapses from K to L.
- *n*-deformation: $K \nearrow^n L$ if there is a sequence of CW-complexes $K = K_0, K_1, \ldots K_r = L$ such that $K_i \searrow^e K_{i+1}$ or $K_i \stackrel{e}{\nearrow} K_{i+1}$ for each $0 \leqslant i \leqslant r-1$, and $\dim(K_i) \leqslant n$ for all $1 \leqslant i \leqslant r$.

- Elementary collapse/expansion: $K \leq L$ (or $L \not \sim K$) if $K = L \cup e^{n-1} \cup e^n$ with $e^{n-1}, e^n \notin L$ and the characteristic map $\psi : D^n \to K$ of e^n satisfies that $\psi|_{\overline{\partial D^n \setminus D^{n-1}}}$ is the characteristic map of e^{n-1} and $\psi(D^{n-1}) \subseteq L^{(n-1)}$.
- Collapse/expansion: $K \setminus L$ (or $L \nearrow K$) if there is a finite sequence of elementary collapses from K to L.
- *n*-deformation: $K
 ightharpoonup^n L$ if there is a sequence of CW-complexes $K = K_0, K_1, \dots K_r = L$ such that $K_i
 ightharpoonup^e K_{i+1}$ or $K_i
 ightharpoonup^e K_{i+1}$ for each 0
 leq i
 leq r 1, and $\dim(K_i)
 leq n$ for all 1
 leq i
 leq r.

•
$$K \wedge L \Rightarrow K \simeq L$$
.

- $K \wedge L \Rightarrow K \simeq L$.
- The converse is not true, the obstruction is measured by the Whitehead group.

- $K \wedge L \Rightarrow K \simeq L$.
- The converse is not true, the obstruction is measured by the Whitehead group. If the Whitehead group $\operatorname{Wh}(K)$ of the complex K is trivial, then any complex homotopy equivalent to K is also simple homotopy equivalent to K.

- $K \wedge L \Rightarrow K \simeq L$.
- The converse is not true, the obstruction is measured by the Whitehead group. If the Whitehead group $\operatorname{Wh}(K)$ of the complex K is trivial, then any complex homotopy equivalent to K is also simple homotopy equivalent to K.
- For K contractible, Wh(K) = 0 and hence $K \simeq * \Leftrightarrow K / \searrow *$.

- $K \wedge L \Rightarrow K \simeq L$.
- The converse is not true, the obstruction is measured by the Whitehead group. If the Whitehead group Wh(K) of the complex K is trivial, then any complex homotopy equivalent to K is also simple homotopy equivalent to K.
- For K contractible, Wh(K) = 0 and hence $K \simeq * \Leftrightarrow K / \searrow *$.
- (Whitehead '50) If K, L are n-complexes, then $K \wedge L \Rightarrow K \wedge^{n+1} L$ if $n \neq 2$. For n = 2, this question is **open**.

- $K \wedge L \Rightarrow K \simeq L$.
- The converse is not true, the obstruction is measured by the Whitehead group. If the Whitehead group Wh(K) of the complex K is trivial, then any complex homotopy equivalent to K is also simple homotopy equivalent to K.
- For K contractible, Wh(K) = 0 and hence $K \simeq * \Leftrightarrow K / \searrow *$.
- (Whitehead '50) If K, L are n-complexes, then $K \wedge L \Rightarrow K \wedge^{n+1} L$ if $n \neq 2$. For n = 2, this question is **open**.
- (C.T.C. Wall '66) If K, L are 2-complexes, then $K \wedge L \Rightarrow K \wedge^4 L$

• J.J. Andrews, M.L. Curtis, "Free groups and handlebodies" Proc. Amer. Math. Soc., **16** (1965) pp. 192–195.

• J.J. Andrews, M.L. Curtis, "Free groups and handlebodies" Proc. Amer. Math. Soc., **16** (1965) pp. 192–195.

Conjecture [Andrews & Curtis, 1965]

Any balanced presentation $\mathcal{P} = \langle x_1, \dots, x_n \mid r_1, \dots, r_n \rangle$ of the trivial group can be transformed into $\langle x_1, \dots, x_n \mid x_1, \dots, x_n \rangle$ by a finite sequence of the following transformations:

- replace some relator r_i by r_i^{-1} ;
- replace some relator r_i by $r_i r_j$ for some $j \neq i$;
- replace some relator r_i by a conjugate wr_iw^{-1} for some w in the free group $F(x_1, x_2, \ldots, x_n)$.

• J.J. Andrews, M.L. Curtis, "Free groups and handlebodies" Proc. Amer. Math. Soc., **16** (1965) pp. 192–195.

Consequences:

- If a homotopy 4-sphere has a 2-spine (and the AC-conjecture is true), then it is a 4-sphere.
- If the AC-conjecture is true, and the 3-dimensional Poincaré conjecture is false, then a counterexample exists in 4-space.

Theorem [Tietze, 1908]

Any finite presentation $\mathcal{P} = \langle x_1, \dots, x_n \mid r_1, \dots, r_m \rangle$ of a group G can be transformed into any other presentation of the same group by a finite sequence of the following **operations**:

- 1. replace some relator r_i by r_i^{-1} ;
- 2. replace some relator r_i by $r_i r_j$ for some $j \neq i$;
- 3. replace some relator r_i by a conjugate wr_iw^{-1} for some w in the free group $F(x_1, x_2, \ldots, x_n)$;
- 4. add a generator x_{n+1} and a relator r_{m+1} that coincides with x_{n+1} , or the inverse of this operation;
- 5. add a relator 1, or the inverse of this operation.

Theorem [Tietze, 1908]

Any finite presentation $\mathcal{P} = \langle x_1, \dots, x_n \mid r_1, \dots, r_m \rangle$ of a group G can be transformed into any other presentation of the same group by a finite sequence of the following operations:

- $Q^* \begin{cases} 1. \text{ replace some relator } r_i \text{ by } r_i^{-1}; \\ 2. \text{ replace some relator } r_i \text{ by } r_i r_j \text{ for some } j \neq i; \\ 3. \text{ replace some relator } r_i \text{ by a conjugate } w r_i w^{-1} \text{ for some } w \text{ in the free group } F(x_1, x_2, \dots, x_n); \end{cases}$
 - 4. add a generator x_{n+1} and a relator r_{m+1} that coincides with x_{n+1} , or the inverse of this operation;
 - 5. add a relator 1, or the inverse of this operation.

Theorem [Tietze, 1908]

Any finite presentation $\mathcal{P} = \langle x_1, \dots, x_n \mid r_1, \dots, r_m \rangle$ of a group G can be transformed into any other presentation of the same group by a finite sequence of the following operations:

$$Q^{**}$$

- Q**

 1. replace some relator r_i by r_i⁻¹;
 2. replace some relator r_i by r_ir_j for some j ≠ i;
 3. replace some relator r_i by a conjugate wr_iw⁻¹ for some w in the free group F(x₁, x₂,...,x_n);
 4. add a generator x_{n+1} and a relator r_{m+1} that coincides with x_{n+1}, or the inverse of this coordinate.
 - inverse of this operation;
 - 5. add a relator 1, or the inverse of this operation.

Group presentations CW-complexes of dim 2

Balanced presentations Contractible 2-complexes of the trivial group

(Geometric) Conjecture [Andrews-Curtis, 1965]

Any contractible 2-complex 3-deforms to a point.

(Algebraic) Conjecture [Andrews-Curtis, 1965]

Any balanced presentation $\mathcal{P}=\langle x_1,\ldots,x_n\mid r_1,\ldots,r_n\rangle$ of the trivial group can be transformed into $\langle\ |\ \rangle$ by a finite sequence of Q^{**} -transformations.

• The conjecture is **true** for some classes of complexes, such as the *standard spines* (Gillman–Rolfsen 1983, Perelman 2002) and *quasi-constructibles* (Barmak, 2009).

- The conjecture is **true** for some classes of complexes, such as the *standard spines* (Gillman–Rolfsen 1983, Perelman 2002) and *quasi-constructibles* (Barmak, 2009).
- Computational approaches have proven to be limited by the superexponential length of simplification sequences (Bridson 2015).

- The conjecture is **true** for some classes of complexes, such as the *standard spines* (Gillman–Rolfsen 1983, Perelman 2002) and *quasi-constructibles* (Barmak, 2009).
- Computational approaches have proven to be limited by the superexponential length of simplification sequences (Bridson 2015).
- There are some algorithms based on the exploration and exhibition of possible Q^* -transformations that work in **small** examples (Miasnikov et.al. 1999, 2002, Havas and Ramsay 2003, Bowman and McCaul 2006, Krawiec and Swan 2016).

- The conjecture is **true** for some classes of complexes, such as the *standard spines* (Gillman–Rolfsen 1983, Perelman 2002) and *quasi-constructibles* (Barmak, 2009).
- Computational approaches have proven to be limited by the superexponential length of simplification sequences (Bridson 2015).
- There are some algorithms based on the exploration and exhibition of possible Q^* -transformations that work in **small** examples (Miasnikov et.al. 1999, 2002, Havas and Ramsay 2003, Bowman and McCaul 2006, Krawiec and Swan 2016).
- There is a list of potential counterexamples.
 - $\mathcal{P} = \langle x, y \mid xyx = yxy, \ x^n = y^{n+1} \rangle, \ n \geqslant 2$ [Akbulut & Kirby, 1985]
 - $\mathcal{P} = \langle x, y \mid x^{-1}y^n x = y^{n+1}, \ x = y^{-1}xyx^{-1} \rangle, \ n \geqslant 2$ [Miller & Schupp, 1999]
 - $\mathcal{P} = \langle x, y \mid x = [x^m, y^n], y = [y^p, x^q] \rangle$ $n, m, p, q \in \mathbb{Z}$ [Gordon, 1984]

2. Discrete Morse theory

Discrete Morse theory

Let K be a **regular** CW-complex.

Discrete Morse theory

Let K be a **regular** CW-complex.

• A map $f: K \to \mathbb{R}$ is a discrete Morse function if for every cell e^n in K:

$$\#\{\boldsymbol{e^n} > e^{n-1} : f(\boldsymbol{e^n}) \leqslant f(e^{n-1})\} \leqslant 1 \ \text{ and } \ \#\{\boldsymbol{e^n} < e^{n+1} : f(\boldsymbol{e^n}) \geqslant f(e^{n+1})\} \leqslant 1.$$

Discrete Morse theory

Let K be a **regular** CW-complex.

• A map $f: K \to \mathbb{R}$ is a discrete Morse function if for every cell e^n in K:

$$\#\{{\boldsymbol e}^{\boldsymbol n}>e^{n-1}:f({\boldsymbol e}^{\boldsymbol n})\leqslant f(e^{n-1})\}\leqslant 1 \ \ \text{and} \ \ \#\{{\boldsymbol e}^{\boldsymbol n}$$

Discrete Morse theory

Let K be a **regular** CW-complex.

• A map $f: K \to \mathbb{R}$ is a discrete Morse function if for every cell e^n in K:

$$\#\{{\boldsymbol{e^n}} > {\rm e^{n-1}}: f({\boldsymbol{e^n}}) \leqslant f({\rm e^{n-1}})\} \leqslant 1 \ \ {\rm and} \ \ \#\{{\boldsymbol{e^n}} < {\rm e^{n+1}}: f({\boldsymbol{e^n}}) \geqslant f({\rm e^{n+1}})\} \leqslant 1.$$

• An n-cell $e^n \in K$ is a critical cell of index n if the values of f in every face and coface of e^n increase with dimension.

Discrete Morse theory

Let K be a **regular** CW-complex.

• A map $f: K \to \mathbb{R}$ is a discrete Morse function if for every cell e^n in K:

$$\#\{\mathbf{e^n} > \mathbf{e^{n-1}} : f(\mathbf{e^n}) \leqslant f(\mathbf{e^{n-1}})\} \leqslant 1 \text{ and } \#\{\mathbf{e^n} < \mathbf{e^{n+1}} : f(\mathbf{e^n}) \geqslant f(\mathbf{e^{n+1}})\} \leqslant 1.$$

• An n-cell $e^n \in K$ is a critical cell of index n if the values of f in every face and coface of e^n increase with dimension.

Discrete Morse theory

Let K be a **regular** CW-complex.

• A map $f: K \to \mathbb{R}$ is a discrete Morse function if for every cell e^n in K:

$$\#\{{\boldsymbol{e^n}} > {\rm e^{n-1}}: f({\boldsymbol{e^n}}) \leqslant f({\rm e^{n-1}})\} \leqslant 1 \ \ {\rm and} \ \ \#\{{\boldsymbol{e^n}} < {\rm e^{n+1}}: f({\boldsymbol{e^n}}) \geqslant f({\rm e^{n+1}})\} \leqslant 1.$$

• An n-cell $e^n \in K$ is a critical cell of index n if the values of f in every face and coface of e^n increase with dimension.

Morse theory for cell complexes

Theorem [Forman, 1995]

Let K be a regular CW-complex and let $f: K \to \mathbb{R}$ be a discrete Morse function. For every $c \in \mathbb{R}$, consider the *level subcomplex* K(c) of K, that is, the subcomplex of closed cells \bar{e} of K such that $f(e) \leq c$ in \mathbb{R} . Let a < b be real numbers.

- (a) If every cell $e \in K$ such that $f(e) \in (a, b]$ is **not critical**, then $K(b) \setminus K(a)$.
- (b) If $e^k \in K$ is the only **critical** cell with $f(e^k) \in (a, b]$, then there is a continuous map $\varphi : \partial D^k \to K(a)$ such that $K(b) \simeq K(a) \cup_{\varphi} D^k$.
- (c) K is homotopy equivalent to a CW-complex $K_{\mathcal{M}}$ with exactly one cell of dimension k for every critical cell of index k.

Morse theory for cell complexes

Morse theory and collapses

Morse theory and simple homotopy reconstruction

Goals:

Given K a regular CW-complex of dimension n and a discrete Morse function $f: K \to \mathbb{R}$, we aim to:

- (re)construct the Morse complex $K_{\mathcal{M}}$,
- recover information about the simple homotopy type of K and moreover its (n+1)-deformation class.

Morse theory and collapses

Lema [F.]

Let K be a regular CW-complex.

Then, $f: K \to \mathbb{R}$ is a discrete Morse function with critical cells C if and only if there exist a sequence of subcomplexes of K

$$K_0 \subseteq L_1 \subseteq K_1 \cdots \subseteq K_{N-1} \subseteq L_{N-1} \subseteq K_N = K$$

such that $K_j \setminus_{\mathcal{L}_j} L_j$ for all $1 \leq j \leq N$ and the set of cells of K that was not collapsed in any of the collapses $K_j \setminus_{\mathcal{L}_j} L_j$ is equal to C.

Morse theory and Whitehead deformations

Lema

Let K be a CW-complex of dimension $\leq n$. Let $\varphi : \partial D^n \to K$ be the attaching map of an n-cell e^n . If $K \searrow L$, then

$$K \cup e^n \bigwedge^{n+1} L \cup \tilde{e}^n$$

where the attaching map $\tilde{\varphi}: \partial D^n \to L$ of \tilde{e}^n is defined as $\tilde{\varphi} = r\varphi$ with $r: K \to L$ the canonical strong deformation retract induced by the collapse $K \setminus L$.

Morse theory and Whitehead deformations

Lema

Let K be a CW-complex of dimension $\leq n$. Let $\varphi : \partial D^n \to K$ be the attaching map of an n-cell e^n . If $K \searrow L$, then

$$K \cup e^n \nearrow^{n+1} L \cup \tilde{e}^n$$

where the attaching map $\tilde{\varphi}: \partial D^n \to L$ of \tilde{e}^n is defined as $\tilde{\varphi} = r\varphi$ with $r: K \to L$ the canonical strong deformation retract induced by the collapse $K \setminus L$.

Definition

We say that there is an **internal collapse** from $K \cup e^n$ to $L \cup \tilde{e}^n$.

Internal collapses

Proposition [F.]

Let K be a CW-complex on dimension n. Let

$$\varnothing = K_{-1} \subseteq L_0 \subseteq K_0 \subseteq L_1 \subseteq K_1 \cdots \subseteq L_N \subseteq K_N = K$$

be a sequence of subcomplexes of L such that $K_j \setminus L_j$ for all $j = 0, 1, \dots N$. If

$$L_j = \mathcal{K}_{j-1} \cup \bigcup_{i=1}^{d_j} e_i^j$$
, then

$$K
ightharpoonup \int_{j=0}^{n+1} \bigcup_{i=1}^{l} \widetilde{e}_i^{j}.^*$$

^{*}Here, the attaching maps of the cells \tilde{e}_i^j can be explicitly reconstructed from the internal collapses.

Morse theory and Whitehead deformations

Theorem [F.]

Let K be a regular CW-complex of dimension n and let $f: K \to \mathbb{R}$ be discrete Morse function. Then, f induces a sequence of CW-subcomplexes of K

$$\varnothing = K_{-1} \subseteq L_0 \subseteq K_0 \subseteq L_1 \subseteq K_1 \cdots \subseteq L_N \subseteq K_N = K$$

such that $K_j \setminus L_j$ for all $1 \le j \le N$ and $L_j = K_{j-1} \cup \bigcup_{i=1}^{d_j} e_i^j$ with $\{e_i^j : 0 \le j \le N, 1 \le i \le d_j\}$ the set of critical cells of f. Moreover,

$$K \nearrow^{n+1} L_0 \cup \bigcup_{j=1}^N \bigcup_{i=1}^{d_j} \tilde{e}_i^j = K_{\mathcal{M}}.$$

3. Morse theory for group presentations

Group presentations

P

We have an algorithmic description of $\mathcal{P}_{(\mathcal{K}_{\mathcal{P}}')_{\mathcal{M}}}$ from $\mathcal{P}.$

$$\mathcal{P} = \langle x, y \mid x^2, xy^{-2} \rangle$$

$$\mathcal{P} = \langle x, y \mid x^2, xy^{-2} \rangle$$

$$\mathcal{P} = \langle x, y \mid x^2, xy^{-2} \rangle$$

$$\mathcal{Q}_0 = \langle x_2, x_3, x_4, x_5, x_6, \dots, x_{15} \mid x_2, x_3, x_4, x_5, \\ x_7 x_2^{-1} x_5^{-1}, \ x_6^{-1} x_7^{-1} x_8, \ x_8^{-1} x_9 x_2^{-1}, \ x_6^{-1} x_9^{-1} x_{10}, \ x_{10}^{-1} x_{11} x_3, \ x_{12} x_{11}^{-1} x_5, \ x_{13} x_3 x_4^{-1}, \ x_{12} x_{13}^{-1} x_{14}, \ x_{14}^{-1} x_{15} x_3, \ x_4 x_{12} x_{15}^{-1} \rangle$$

$$\mathcal{Q}_{0} = \langle x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, \dots, x_{15} \mid x_{2}, x_{3}, x_{4}, x_{5}, \\ x_{7}x_{2}^{-1}x_{5}^{-1}, x_{6}^{-1}x_{7}^{-1}x_{8}, x_{8}^{-1}x_{9}x_{2}^{-1}, x_{6}^{-1}x_{9}^{-1}x_{10}, x_{10}^{-1}x_{11}x_{3}, x_{12}x_{11}^{-1}x_{5}, x_{13}x_{3}x_{4}^{-1}, x_{12}x_{13}^{-1}x_{14}, x_{14}^{-1}x_{15}x_{3}, x_{4}x_{12}x_{15}^{-1} \rangle$$

$$\mathcal{Q}_{1} = \langle x_{6}\dots, x_{15} \mid x_{7}, x_{6}^{-1}x_{7}^{-1}x_{8}, x_{8}^{-1}x_{9}, x_{6}^{-1}x_{9}^{-1}x_{10}, x_{10}^{-1}x_{11}, x_{11}x_{12}^{-1}, x_{13}, x_{12}x_{13}^{-1}x_{14}, x_{14}^{-1}x_{15}, x_{12}x_{15}^{-1} \rangle$$

$$\mathcal{Q}_{0} = \langle x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, \dots, x_{15} \mid x_{2}, x_{3}, x_{4}, x_{5}, \\ x_{7}x_{2}^{-1}x_{5}^{-1}, x_{6}^{-1}x_{7}^{-1}x_{8}, x_{8}^{-1}x_{9}x_{2}^{-1}, x_{6}^{-1}x_{9}^{-1}x_{10}, x_{10}^{-1}x_{11}x_{3}, x_{12}x_{11}^{-1}x_{5}, x_{13}x_{3}x_{4}^{-1}, x_{12}x_{13}^{-1}x_{14}, x_{14}^{-1}x_{15}x_{3}, x_{4}x_{12}x_{15}^{-1} \rangle$$

$$\mathcal{Q}_{1} = \langle x_{6}, \dots, x_{15} \mid x_{7}, x_{6}^{-1}x_{7}^{-1}x_{8}, x_{8}^{-1}x_{9}, x_{6}^{-1}x_{9}^{-1}x_{10}, x_{10}^{-1}x_{11}, x_{11}x_{12}^{-1}, x_{13}, x_{12}x_{13}^{-1}x_{14}, x_{14}^{-1}x_{15}, x_{12}x_{15}^{-1} \rangle$$

$$\mathcal{Q}_{2} = \langle x_{6}, \dots, x_{14} \mid x_{7}, x_{6}^{-1}x_{7}^{-1}x_{8}, x_{8}^{-1}x_{9}, x_{6}^{-1}x_{9}^{-1}x_{10}, x_{10}^{-1}x_{11}, x_{11}x_{12}^{-1}, x_{13}, x_{12}x_{13}^{-1}x_{14}, x_{12}x_{14}^{-1} \rangle$$

$$\begin{aligned} \mathcal{Q}_0 = & \langle x_2, x_3, x_4, x_5, x_6, \dots, x_{15} \mid x_2, x_3, x_4, x_5, \\ & x_7 x_2^{-1} x_5^{-1}, \ x_6^{-1} x_7^{-1} x_8, \ x_8^{-1} x_9 x_2^{-1}, \ x_6^{-1} x_9^{-1} x_{10}, \ x_{10}^{-1} x_{11} x_3, \ x_{12} x_{11}^{-1} x_5, \ x_{13} x_3 x_4^{-1}, \ x_{12} x_{13}^{-1} x_{14}, \ x_{14}^{-1} x_{15} x_3, \ x_4 x_{12} x_{15}^{-1} \rangle \\ \mathcal{Q}_1 = & \langle x_6 \dots, x_{15} \mid x_7, \ x_6^{-1} x_7^{-1} x_8, \ x_8^{-1} x_9, \ x_6^{-1} x_9^{-1} x_{10}, \ x_{10}^{-1} x_{11}, \ x_{11} x_{12}^{-1}, \ x_{13}, \ x_{12} x_{13}^{-1} x_{14}, \ x_{14}^{-1} x_{15}, \ x_{12} x_{15}^{-1} \rangle \\ \mathcal{Q}_2 = & \langle x_6, \dots, x_{14} \mid x_7, \ x_6^{-1} x_7^{-1} x_8, \ x_8^{-1} x_9, \ x_6^{-1} x_9^{-1} x_{10}, \ x_{10}^{-1} x_{11}, \ x_{11} x_{12}^{-1}, \ x_{13}, \ x_{12} x_{13}^{-1} x_{14}, \ x_{12} x_{14}^{-1} \rangle \\ \mathcal{Q}_3 = & \langle x_6, \dots, x_{13} \mid x_7, \ x_6^{-1} x_7^{-1} x_8, \ x_8^{-1} x_9, \ x_6^{-1} x_9^{-1} x_{10}, \ x_{10}^{-1} x_{11}, \ x_{11} x_{12}^{-1}, \ x_{13}, \ x_{12} x_{12}^{-1} \rangle \end{aligned}$$

$$\begin{array}{c} \mathcal{Q}_{0} = & \langle x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, \dots, x_{15} \mid x_{2}, x_{3}, x_{4}, x_{5}, \\ & x_{7}x_{2}^{-1}x_{5}^{-1}, \ x_{6}^{-1}x_{7}^{-1}x_{8}, \ x_{8}^{-1}x_{9}x_{2}^{-1}, \ x_{6}^{-1}x_{9}^{-1}x_{10}, \ x_{10}^{-1}x_{11}x_{3}, \ x_{12}x_{11}^{-1}x_{5}, \ x_{13}x_{3}x_{4}^{-1}, \ x_{12}x_{13}^{-1}x_{14}, \ x_{14}^{-1}x_{15}x_{3}, \ x_{4}x_{12}x_{15}^{-1} \rangle \\ & \mathcal{Q}_{1} = & \langle x_{6}, \dots, x_{15} \mid x_{7}, \ x_{6}^{-1}x_{7}^{-1}x_{8}, \ x_{8}^{-1}x_{9}, \ x_{6}^{-1}x_{9}^{-1}x_{10}, \ x_{10}^{-1}x_{11}, \ x_{11}x_{12}^{-1}, \ x_{13}, \ x_{12}x_{13}^{-1}x_{14}, \ x_{14}^{-1}x_{15}, \ x_{12}x_{15}^{-1} \rangle \\ & \mathcal{Q}_{2} = & \langle x_{6}, \dots, x_{14} \mid x_{7}, \ x_{6}^{-1}x_{7}^{-1}x_{8}, \ x_{8}^{-1}x_{9}, \ x_{6}^{-1}x_{9}^{-1}x_{10}, \ x_{10}^{-1}x_{11}, \ x_{11}x_{12}^{-1}, \ x_{13}, \ x_{12}x_{13}^{-1}x_{14}, \ x_{12}x_{14}^{-1} \rangle \\ & \mathcal{Q}_{3} = & \langle x_{6}, \dots, x_{13} \mid x_{7}, \ x_{6}^{-1}x_{7}^{-1}x_{8}, \ x_{8}^{-1}x_{9}, \ x_{6}^{-1}x_{9}^{-1}x_{10}, \ x_{10}^{-1}x_{11}, \ x_{11}x_{12}^{-1}, \ x_{13}, \ x_{12}x_{13}^{-1}x_{14}, \ x_{12}x_{14}^{-1} \rangle \\ & \mathcal{Q}_{4} = & \langle x_{6}, \dots, x_{13} \mid x_{7}, \ x_{6}^{-1}x_{7}^{-1}x_{8}, \ x_{8}^{-1}x_{9}, \ x_{6}^{-1}x_{9}^{-1}x_{10}, \ x_{10}^{-1}x_{11}, \ x_{11}x_{12}^{-1}, \ x_{13}, \ x_{12}x_{13}^{-1} \rangle \\ & \mathcal{Q}_{5} = & \langle x_{6}, \dots, x_{12} \mid x_{7}, \ x_{6}^{-1}x_{7}^{-1}x_{8}, \ x_{8}^{-1}x_{9}, \ x_{6}^{-1}x_{9}^{-1}x_{10}, \ x_{10}^{-1}x_{11}, \ x_{11}x_{12}^{-1}, \ x_{12}^{-1} \rangle \\ & \mathcal{Q}_{5} = & \langle x_{6}, \dots, x_{11} \mid x_{7}, \ x_{6}^{-1}x_{7}^{-1}x_{8}, \ x_{8}^{-1}x_{9}, \ x_{6}^{-1}x_{9}^{-1}x_{10}, \ x_{10}^{-1}x_{11}, \ x_{11}^{-1} \rangle \\ & \mathcal{Q}_{6} = & \langle x_{6}, \dots, x_{10} \mid x_{7}, \ x_{6}^{-1}x_{7}^{-1}x_{8}, \ x_{8}^{-1}x_{9}, \ (x_{9}x_{6})^{2} \rangle \\ & \mathcal{Q}_{9} = & \langle x_{6}, x_{7}, x_{8} \mid x_{7}, \ x_{6}^{-1}x_{7}^{-1}x_{8}, \ (x_{8}x_{6})^{2} \rangle \\ & \mathcal{Q}_{10} = & \langle x_{6} \mid x_{6}^{4} \rangle \sim_{Q}** \mathcal{P} \end{array}$$

X6

4. Applications to the

Andrews-Curtis conjecture

Potential counterexamples

Theorem [F.]

The following balanced presentations of the trivial group satisfies the Andrews–Curtis conjecture:

- $\mathcal{P} = \langle x, y \mid xyx = yxy, \ x^2 = y^3 \rangle^{\dagger}$ [Akbulut & Kirby, 1985]
- $\mathcal{P} = \langle x, y \mid x^{-1}y^3x = y^4, \ x = y^{-1}xyx^{-1} \rangle$ [Miller & Schupp, 1999]
- $\mathcal{P} = \langle x, y \mid x = [x^{-1}, y^{-1}], y = [y^{-1}, x^q] \rangle, \forall q \in \mathbb{N}$ [Gordon, 1984]

[†]First proved by Miasnikov in 2003 using genetic algorithms.

• The contractibility of a regular CW-complex contractible does not imply that there exist a Morse function with a single critical cell.

The contractibility of a regular CW-complex contractible does not imply that
there exist a Morse function with a single critical cell.
Indeed, K_M = * if and only if K is collapsible.

The contractibility of a regular CW-complex contractible does not imply that
there exist a Morse function with a single critical cell.
Indeed, K_M = * if and only if K is collapsible.

The contractibility of a regular CW-complex contractible does not imply that
there exist a Morse function with a single critical cell.
Indeed, K_M = * if and only if K is collapsible.

• There is standard a greedy algorithm \mathcal{A} to trivialize a presentation using Q^* -transformations (Havas, Kenne, Richardson & Roberts, 1984).

The contractibility of a regular CW-complex contractible does not imply that
there exist a Morse function with a single critical cell.
Indeed, K_M = * if and only if K is collapsible.

• There is standard a greedy algorithm \mathcal{A} to trivialize a presentation using Q^* -transformations (Havas, Kenne, Richardson & Roberts, 1984). Given a presentation \mathcal{P} , we search for Morse functions such that $\mathcal{P}_{\mathcal{K}_{\mathcal{P}}'}$ is trivializable by \mathcal{A} .

Geometric potential counterexamples

We have proved that the following contractible 2-complexes 3-deforms to a point:

ACA VAN LOS DIBUJOS DE LOS CW ASOCIADOS A LAS PRESENTACIONES (SIN SUDIVIDIR)

References

- PhD Thesis: X. F., Combinatorial methods and algorithms in low-dimensional topology and the Andrews-Curtis conjecture, University of Buenos Aires, 2017.
- Preprint: X. F., Morse theory for group presentations, arXiv:1912.00115, 2021.
- Code:
 - X. F., SageMath Module, https://github.com/ximenafernandez/Finite-Topological-Spaces
 - X. F., Kevin Piterman & Ivan Sadofschi Costa, GAP Package, https://github.com/isadofschi/posets

Work in progress: Computation of persistent fundamental group of point clouds.

ximena.l.fernandez@durham.ac.uk

THANKS FOR YOUR ATTENTION!