Semester 1

Tutorial Solutions Week 11

2012

1. (This question is a preparatory question and should be attempted before the tutorial. Answers are provided at the end of the sheet – please check your work.)

Compute the partial derivatives $f_x(x,y)$, $f_y(x,y)$ of the following functions f(x,y).

(a)
$$xy^3$$

(b)
$$\sin(2x + 3y)$$

(c)
$$\ln(x + \sqrt{x^2 + y^2})$$

Questions for the tutorial

2. Find the limit, if it exists, or show that the limit does not exist

(a)
$$\lim_{(x,y)\to(2,3)} (x^2y^2 - 2xy^5 + 3y)$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^3 + x^3y^2 - 5}{2 - xy}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{x-y}{x^2+y^2}$$

(d)
$$\lim_{(x,y)\to(0,0)} \frac{x^3 + xy^2}{x^2 + y^2}$$

Solution

- (a) The function is a polynomial, so the limit equals $(2^2)(3^2) 2(2)(3^5) + 3(3) = -927$.
- (b) Since this is a rational function defined at (0,0), the limit equals $(0+0-5)/(2-0)=-\frac{5}{2}$.
- (c) Let $f(x,y) = (x-y)/(x^2+y^2)$. Approach (0,0) along the x-axis. Let x = t, y = 0. As $(x,y) \to (0,0)$, we have $t \to 0$. Then $f(t,0) = t/t^2 = 1/t$, $\lim_{t \to 0^+} f(t,0) = \infty$ and $\lim_{t \to 0^-} f(t,0) = -\infty$. Thus $\lim_{(x,y)\to(0,0)} f(x,y)$ doesn't exist.

(d)
$$\lim_{(x,y)\to(0,0)} (x^3 + xy^2)/(x^2 + y^2) = \lim_{(x,y)\to(0,0)} x(x^2 + y^2)/(x^2 + y^2) = \lim_{(x,y)\to(0,0)} x = 0.$$

3. Consider the function

$$f(x,y) = \frac{\sin(x^2 + y^2)}{x^2 + y^2}$$
, defined for $(x,y) \neq (0,0)$.

Is it possible to define f(0,0) so that f is continuous at (0,0)?

Solution

Using polar coordinates for x and y, (that is, $x = r \cos \theta$, $y = r \sin \theta$), we have

$$\frac{\sin(x^2 + y^2)}{x^2 + y^2} = \frac{\sin r^2}{r^2}.$$

Since $(x,y) \to (0,0)$ if and only if $r^2 \to 0$, we see that

$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = \lim_{r^2\to 0} \frac{\sin r^2}{r^2} = 1.$$

Thus we can define f(0,0) = 1 to make f continuous at (0,0).

4. Decide whether the limits exist.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2} \sin \frac{1}{x^2+y^4}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$

(d)
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{\sqrt{x^2+y^2}}$$

Solution

(a) Let $u=y^2$. Then $(x,y)\to (0,0)$ if and only if $(x,u)\to (0,0)$. We now use polar coordinates $x=r\cos\theta$, $u=r\sin\theta$ to show that the limit does not exist. We have

$$\frac{xy^2}{x^2 + y^4} = \frac{xu}{x^2 + u^2} = \frac{r^2 \cos \theta \sin \theta}{r^2} = \frac{\sin 2\theta}{2}.$$

If $(x, u) \to (0, 0)$ along the positive x axis (where $\theta = 0$), the limit is 0; if $(x, u) \to (0, 0)$ along the line u = x in the first quadrant (where $\theta = \pi/4$), the limit is 1/2. Hence

 $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$ does not exist. Here is an image of the surface drawn using the original variables x,y, in which one particular path to the origin has been highlighted. It's a path along the parabola $x=y^2$, where the limit is $\frac{1}{2}$.

- (b) The sine function is bounded between -1 and 1. It is easy to show, using polar coordinates, that $\lim \frac{xy^2}{x^2+y^2}=0$. Hence the limit exists and equals 0.
- (c) let $f(x,y) = \frac{x^2 y^2}{x^2 + y^2}$. Suppose that (x,y) approaches (0,0) along the x axis. Then (x,y) = (t,0) and

$$\lim_{t \to 0} f(t, 0) = \lim_{t \to 0} \frac{t^2}{t^2} = 1.$$

However, if (x, y) approaches (0, 0) along the y axis, then (x, y) = (0, t) and

$$\lim_{t \to 0} f(0, t) = \lim_{t \to 0} \frac{-t^2}{t^2} = -1.$$

Hence no limit exists.

(d) Using polar coordinates, we see that

$$\frac{x^2 - y^2}{\sqrt{x^2 + y^2}} = \frac{r^2(\cos^2 \theta - \sin^2 \theta)}{r} = r\cos 2\theta.$$

As $-r \le r \cos 2\theta \le r$, we see that $\lim_{r\to 0} r \cos 2\theta = 0$, by the Squeeze Law. Hence $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{\sqrt{x^2+y^2}} = 0$.

5. Define $f: \mathbb{R}^2 \to \mathbb{R}$ as follows:

$$f(x,y) = \begin{cases} 1 & \text{if } x = y \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Show that f is not continuous at (0,0) but both f_x and f_y exist at (0,0).

Solution

If (x,y) approaches (0,0) along the line y=x, then $\lim_{(x,y)\to(0,0)} f(x,y)=1\neq f(0,0)$. Therefore f is not continuous at (0,0). However both partial derivatives exist at the origin:

$$f_x(0,0) = \lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} = \frac{0-0}{h} = 0,$$

and

$$f_y(0,0) = \lim_{k \to 0} \frac{f(0,0+k) - f(0,0)}{k} = \frac{0-0}{k} = 0.$$

6. Verify that the functions given by the following formulas are solutions of the *Laplace* equation $f_{xx} + f_{yy} = 0$.

(a)
$$x^2 - y^2$$

(b)
$$2xy$$

(c)
$$e^x \cos y$$

(d)
$$e^x \sin y$$

Solution

- (a) $f_{xx}(x,y) = 2$, $f_{yy}(x,y) = -2$, so their sum is zero, as required.
- (b) Both $f_{xx}(x,y)$ and $f_{yy}(x,y)$ are zero.
- (c) $f_{xx}(x,y) = e^x \cos y$, $f_{yy}(x,y) = -e^x \cos y$, so their sum is zero.
- (d) $f_{xx}(x,y) = e^x \sin y$, $f_{yy}(x,y) = -e^x \sin y$, so their sum is zero.
- **7.** Suppose that f is a differtiable function of one variable. Show that if $z = f\left(\frac{x}{y}\right)$, then

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 0.$$

Solution

Differentiating z with respect to x (holding y constant) gives

$$\frac{\partial z}{\partial x} = \frac{1}{y} f'\left(\frac{x}{y}\right)$$

and differentiating z with respect to y (holding x constant) gives

$$\frac{\partial z}{\partial y} = -\frac{x}{y^2} f'\left(\frac{x}{y}\right).$$

We then obtain

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = \frac{x}{y}f'\left(\frac{x}{y}\right) - \frac{xy}{y^2}f'\left(\frac{x}{y}\right) = \frac{x}{y}f'\left(\frac{x}{y}\right) - \frac{x}{y}f'\left(\frac{x}{y}\right) = 0.$$

8. Find the equation of the tangent plane to the surface $z = e^x \ln y$ at (3, 1, 0).

Solution

Put $f(x,y) = e^x \ln y$. Then $f_x(x,y) = e^x \ln y$ and $f_y(x,y) = \frac{e^x}{y}$. So $f_x(3,1) = 0$ and $f_y(3,1) = e^3$. Thus the equation of the tangent plane is

$$z - 0 = 0(x - 3) + e^{3}(y - 1),$$

that is, $z = e^3 y - e^3$.

9. Find the single point at which the tangent plane to the surface $z = x^2 + 2xy + 2y^2 - 6x + 8y$ is horizontal.

Solution

At the point corresponding to x = a, y = b, the tangent plane has equation

$$z - f(a, b) = f_x(a, b)(x - a) + f_y(a, b)(y - b).$$

This is horizontal (that is, it's of the form z = constant) when $f_x(a, b) = f_y(a, b) = 0$. Now $f_x(a, b) = 2a + 2b - 6$ and $f_y(a, b) = 2a + 4b + 8$. Setting each expression equal to 0 and solving simultaneously gives a = 10, b = -7. The required point on the surface is then (10, -7, -58).

Extra Question

10. Use the ϵ, δ definition of the limit of a function of two variables to show that

$$\lim_{(x,y)\to(1,2)} x^2 + y = 3.$$

Solution

We want to show that given any $\epsilon > 0$, there exists a $\delta > 0$ such that

$$0 < |(x,y) - (1,2)| < \delta \implies |x^2 + y - 3| < \epsilon.$$

Note that the set of points (x, y) satisfying the inequality $0 < |(x, y) - (1, 2)| < \delta$ can be interpreted geometrically as the set of points in the interior of a circle with centre (1, 2) and radius δ , without the centre itself.

We examine the difference between $x^2 + y$ and 3 and try to write this in such a way as to incorporate terms in x - 1 and y - 2.

$$|x^{2} + y - 3| = |(x - 1)^{2} + 2x - 1 + (y - 2) + 2 - 3|$$

$$= |(x - 1)^{2} + 2(x - 1) + (y - 2)|$$

$$\leq (x - 1)^{2} + 2|x - 1| + |y - 2|$$

To guarantee that $|x^2+y-3| < \epsilon$, we need only be sure that each of the three expressions $(x-1)^2$, 2|x-1|, |y-2| is less than $\epsilon/3$. Now as $\lim_{x\to 1} (x-1)^2 = 0$, $\lim_{x\to 1} 2|x-1| = 0$ and $\lim_{y\to 2} |y-2| = 0$, there exists $\delta_1 > 0$ such that

$$0 < |x - 1| < \delta_1 \implies (x - 1)^2 < \epsilon/3$$

(for example, $\delta_1 = \sqrt{\epsilon/3}$), there exists $\delta_2 > 0$ such that

$$0 < |x - 1| < \delta_2 \implies 2|x - 1| < \epsilon/3$$

 $(\delta_2 = \epsilon/6)$, and there exists $\delta_3 > 0$ such that

$$0 < |y - 2| < \delta_3 \implies |y - 2| < \epsilon/3$$

 $(\delta_3 = \epsilon/3)$. Now choose δ to be the minimum of δ_1 , δ_2 , δ_3 . Then whenever (x,y) is a point inside a circle with centre at (1,2) and radius δ (but not the centre itself), we can be sure that $|x^2 + y - 3| < \epsilon$. That is, given any $\epsilon > 0$, there exists a $\delta > 0$ such that

$$0 < |(x,y) - (1,2)| < \delta \implies |x^2 + y - 3| < \epsilon.$$

This proves the result.

Solution to Question 1

(a)
$$f_x = y^3$$
, $f_y = 3xy^2$

(b)
$$f_x = 2\cos(2x+3y)$$
, $f_y = 3\cos(2x+3y)$

(c)
$$f_x = \frac{1 + x(x^2 + y^2)^{-1/2}}{x + \sqrt{x^2 + y^2}} = \frac{1}{\sqrt{x^2 + y^2}}, f_y = \frac{y}{(x + \sqrt{x^2 + y^2})\sqrt{x^2 + y^2}}$$