Exercise 1 (page 69)

Exercise 2

Let Q be the group of rational numbers under addition and let Q^* be the group of nonzero rational numbers under multiplication.

In Q, list the elements in in $\langle \frac{1}{2} \rangle$. $\langle \frac{1}{2} \rangle = \{ \frac{n}{2} \mid n \in \mathbb{Z} \} = \{ \dots \frac{-3}{2}, \frac{-2}{2}, \frac{-1}{2}, \frac{-0}{2}, \frac{1}{2}, \frac{2}{2}, \frac{3}{2}, \dots \}$ In Q*, list the elements in $\langle \frac{1}{2} \rangle$. $\langle \frac{1}{2} \rangle = \{ (\frac{1}{2})^n \mid n \in \mathbb{Z} \} = \{ \dots (\frac{1}{2})^{-3}, (\frac{1}{2})^{-2}, (\frac{1}{2})^{-1}, (\frac{1}{2})^0, (\frac{1}{2})^1, (\frac{1}{2})^2, (\frac{1}{2})^3, \dots \}$

Exercise 4

Prove that in any group, an element and its inverse have the same order.

Proof.

Let $g \in G$. By definition, $g^{-1} \in G$ exists. Let n = |g| and $m = |g^{-1}|$ Want to show: n = mSuppose not. Suppose that either n > m or m > n. By definition, $g^n = e$ $(g^{-1})^m = e$ So, $g^n * (g^{-1})^m = e * e = e$ g * g * g ... (n times) * $g^{-1} * g^{-1} * g^{-1}$... (m times) = eWithout loss of generality, let's assume m is bigger. Then $g^{-1} * g^{-1}$... (m - n times) = e. However, since n is a positive integer, m - n < m(a contradiction, since m is the smallest possible positive integer such that $(g^{-1})^m = e$)

Exercise 13

For any group elements $a, x \in G$, prove that $|xax^{-1}| = |a|$. This exercise is referred to in Chapter 13.

Proof.

Let m be the order of xax^{-1} , and n be the order of a. Want to show: m = nBy definition, $(xax^{-1})^m = e$ $(xax^{-1}) * (xax^{-1}) * ... (xax^{-1})$ (m times) = e $xa^mx^{-1} = e$ $x^{-1} xa^mx^{-1} = x^{-1}$ e $a^mx^{-1} = x^{-1}$ $a^mx^{-1}x = x^{-1}$ $a^m = e$ Since both $a^m = e$ and $a^n = e$, and both are defined to be the minimum positive integer that makes the equation true, they both have to be the same minimum positive integer.