Yufei Lin

Problem Set 7

Nov 14^{th} 2019

Problem Set 7

Question 1

Suppose that $f: \mathbb{R} \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$, and $F: \mathbb{R} \to \mathbb{R}$, suppose that f and g are differentiable, and suppose that

$$f' = F$$

and

$$q' = F$$
.

Then there exists a $c \in \mathbb{R}$ such that

$$\forall x \in \mathbb{R}: \quad g(x) = f(x) + c.$$

Proof:

Suppose f' = F and g' = F. Thus, we have f' - g' = (f - g)' = F - F = 0. Therefore, f - g = c. Then, we know f(x) = g(x) + c.

Question 2

Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable, and suppose that

$$\forall x \in \mathbb{R} : f'(x) = 0.$$

Then prove that there exists a $c \in \mathbb{R}$ such that

$$\forall x \in \mathbb{R} : f(x) = c.$$

Proof:

Suppose f'(x) = 0. Then by mean value theorem, given $a, b \in \mathbb{R}$, a < b such that there exists $c, f'(c) = \frac{f(b) - f(a)}{b - a}$. Therefore, if f'(x) = 0, then f(b) - f(a) = 0. Thus, f(b) = f(a). This means f(x) is constant. f(x) = c.

Question 3

Suppose that $f: \mathbb{R} \to \mathbb{R}$ is differentiable, and suppose that $a, b \in \mathbb{R}$, with a < b. Then there exists a $c \in \mathbb{R}$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Proof:

Suppose $a, b \in \mathbb{R}$, and f(x) is differentiable $\forall x, x \in \mathbb{R}$. Therefore, we could have the following graph:

Thus, we can show that if we can find a straight line function such that (a, f(a)) and (b, f(b)) is on the graph we can thus proof if the slope exist then, there must be a f'(c) exist such that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Let the straight line's function be h(x), then $h(x) = \frac{f(b)-f(a)}{b-a} \cdot x + t, t \in \mathbb{R}$. Since h(a) = f(a), h(b) = f(b) then, $h(x) = \frac{f(b)-f(a)}{b-a} \cdot x + \frac{b(f(a))-a(f(b))}{b-a}$. Then we have g(x) = f(x)-h(x). g(a) = g(b) = 0. Thus, by Rolle's theorem, if g(a) = g(b) = 0 then, $\exists c$, such that g'(c) = 0. Then, we have $g'(c) = f'(c) - h'(c) = f'(c) - \frac{f(b)-f(a)}{b-a} = 0$. Therefore, $f'(c) = \frac{f(b)-f(a)}{b-a}$.

Question 4

Suppose that $f : \mathbb{R} \to \mathbb{R}$ is differentiable, and suppose that $a, b \in \mathbb{R}$, with a < b. Suppose also that f(a) = f(b). Then there exists a $c \in \mathbb{R}$ such that

$$f'(c) = 0.$$

Proof:

(I) Maximum inside the range

Suppose a < b, and $f : \mathbb{R} \to \mathbb{R}$ is differentiable, then there must be a $c \in [a, b]$ such that $f(c) \geq f(x), \forall x, x \in [a, b]$. Thus, we have a local maximum in range [a, b]. Based on Question 5, we know that if we have a local maximum at c, then f'(c) = 0.

(II) Maximum at the end of the range

Suppose a < b, and $f: \mathbb{R} \to \mathbb{R}$ is differentiable, and we have f(a) = f(b) and both of them are the maximum within the range. Since a, b are the maximum point of the function in that range, then there must exist a c such that f(c) is the smallest within the range. Also, we know that f is differentiable everywhere. Then we have $\lim_{h\to 0} \frac{f(c+h) - f(c)}{h}$ exist and $\lim_{h\to 0+} \frac{f(c+h) - f(c)}{h} = \lim_{h\to 0-} \frac{f(c+h) - f(c)}{h}$. On the left hand side of the above equality, because we know f(c+h) > f(c), we have a positive numerator and a positive h. Then, $\lim_{h\to 0+} \frac{f(c+h) - f(c)}{h} \ge 0$. For the right hand side, we know f(c-h) > f(c), then $\lim_{h\to 0-} \frac{f(c+h) - f(c)}{h} \le 0$. Since left hand side is equal to the right hand side, we have f'(c) = 0.

Question 5

Suppose that $f: \mathbb{R} \to \mathbb{R}$ has a local maximum at $c \in \mathbb{R}$, and suppose that f is differentiable at c. Then we have

$$f'(c) = 0.$$

Proof:

Suppose f is differentiable at c and f(c) is a local maximum. Then, we know $\lim_{h\to 0} \frac{f(c+h)-f(c)}{h}$ exist and $\lim_{h\to 0+} \frac{f(c+h)-f(c)}{h} = \lim_{h\to 0-} \frac{f(c+h)-f(c)}{h}$. Therefore, we should be looking at the two sides of this local maximum. Such that we will have $\lim_{h\to 0+} \frac{f(c+h)-f(c)}{h}$. The numerator is negative because f(c) is local maximum, and h is positive. Then, we know $\lim_{h\to 0+} \frac{f(c+h)-f(c)}{h} \leq 0$. On the other hand, $\lim_{h\to 0-} \frac{f(c+h)-f(c)}{h}$. The denominator is negative because f(c) is local maximum, and h is negative. Then, we have

$$\lim_{h \to 0-} \frac{f(c+h) - f(c)}{h} \ge 0. \text{ Thus, } \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = 0.$$

Question 6

Suppose that $f: \mathbb{R} \to \mathbb{R}$, and $a \in \mathbb{R}$. Then the limit of f at a exists and equals L if, and only if, both the right- and left-handed limits of f at a exist and they both equal L.

Proof:

Suppose $\lim_{x\to a} f(x) = L$. Then, $\forall \epsilon > 0$, $\exists \delta > 0$, such that if $0 < |x-a| < \delta$, then $|f(x)-L| < \epsilon$. (I)Look at the right-handed limit first:

If $a < x < a + \delta$, then we have $0 < |x - a| < \delta$. Therefore, $|f(x) - L| < \epsilon$.

(II) Look at the left-handed limit:

If $a > x > a - \delta$, then we have $0 < |x - a| < \delta$. Therefore, $|f(x) - L| < \epsilon$.

Therefore, if $\lim_{x\to a} f(x) = L$, then both the right- and left-handed limits of f at a exist and they both equal L.

Conversely, suppose $\lim_{x\to a+} f(x) = \lim_{x\to a-} f(x) = L$. Then we know that $\forall \epsilon > 0, \exists \delta_1 > 0$, such that if $a < x < a + \delta_1$, then $|f(x) - L < \epsilon|$ and $\forall \epsilon > 0, \exists \delta_2 > 0$, such that if $a - \delta_2 < x < a$, then $|f(x) - L < \epsilon|$. Let $\delta = \min(\delta_1, \delta_2)$. Then we can have $\forall \epsilon$, if $a < x < a + \delta$, then $|f(x) - L < \epsilon|$ and if $a - \delta < x < a$, then $|f(x) - L < \epsilon|$. Therefore, if $0 < |x - a| < \delta$, then $|f(x) - L| < \epsilon$.

Thus, $\lim_{x\to a} f(x) = L$ if and only if both right-handed and left-handed limit has the same value.