Ch-15 代数系统

15.1 二元运算及其性质

定义 **15.1** 设 A 为集合,函数 $f: A \times A \to A$ 称为 A 上的一个二元代数运算,简称为二元运算。对 $\forall x, y \in A$,如果 $f(\langle x, y \rangle) = c$,则称 x 和 y 是运算数,c 是 x 和 y 的运算结果。

定义 **15.2** 设 A 为集合,n 为正整数, $A^n = \overbrace{A \times A \times \cdots \times A}$ 表示 A 的 n 阶 笛卡尔积。函数 $f: A^n \to A$ 称为 A 上的一个 n 元代数运算,简称为 n 元运算。若 f 是 A 上的运算,也可以称 A 在运算 f 下是封闭的。

当 A 为有穷集时,A 上的一元和二元运算可以用运算表来给出。设 $A = \{a_1, a_2, \dots, a_n\}$, \circ 和 Δ 分别是 A 上的二元和一元运算,给出运算表:

定义 15.3 设 A 为集合, \circ 为 A 上的二元运算

- 1. 若 $\forall x, y \in A$, $x \circ y = y \circ x$, 则称 \circ 运算在 A 上是可交换的,也称 \circ 运算在 A 上满足交换律。
- 2. 若 $\forall x, y, z \in A$, $(x \circ y) \circ z = x \circ (y \circ z)$, 则称 \circ 运算在 A 上是可结合的,也称 \circ 运算在 A 上满足结合律。
- 3. 若 $\forall x \in A$, $x \circ x = x$, 则称 \circ 运算在 A 上是幂等的,也称 \circ 运算在 A 上满足幂等律。满足 $x \circ x = x$ 的元素被称为幂等元。

定义 **15.4** 设。是 A 上的二元运算,如果对于 A 中任取的 n 个元素 $a_1, a_2, \cdots, a_n, n \geq 3$,在 $a_1 \circ a_2 \circ \cdots \circ a_n$ 中任意加括号所得的运算结果都相等,则称。运算在 A 上是广义可结合的,或称。运算在 A 上适合广义结合律。

定理 15.1 设。为 A 上的二元运算,若。满足结合律,则。满足广义结合律。

定义 15.5 设 \circ 和 * 是集合 A 上的二元运算。

- 1. 若 $\forall x, y, z \in A$, $x \circ (y * z) = (x \circ y) * (x \circ z)$ 和 $(y * z) \circ x = (y \circ x)$ * $(z \circ x)$ 成立,则称。运算对*运算是可分配的,或称。运算对*运算满足分配律。
- 2. 若 \circ 和 * 满足交换律且 $\forall x, y \in A$, $x \circ (x * y) = x$ 和 $x * (x \circ y) = x$ 成立,则称 \circ 和 * 运算是可吸收的,或称 \circ 和 * 运算满足吸收律。

定义 15.6 设。为集合 A 上的二元运算

减法没有单位元!

- 1. 若 $\exists e_l \in A$ (或 $e_r \in A$) 使得 $\forall x \in A$, $e_l \circ x = x$ (或 $x \circ e_r = x$),则 称 e_l (或 e_r) 是 A 中关于。运算的左(或右)单位元。若 $\exists e \in A$ 关于。运算既为左单位元又为右单位元,则称 e 为 A 中关于。运算的单位元。
- 2. 若 $\exists \theta_l \in A(\vec{u}, \theta_r \in A)$ 使得 $\forall x \in A$ 都有 $\theta_l \circ x = \theta_l(\vec{u}, x \circ \theta_r = \theta_r)$, 则称 $\theta_l(\vec{u}, \theta_r)$ 是 A 中关于 \circ 运算的左(或右)零元。若 $\exists \theta \in A$ 关于 \circ 运算既为左零元又为右零元,则称 θ 为 A 中关于 \circ 运算的零元。

定理 **15.2** 设。是集合 A 上的二元运算,若 $\exists e_l, e_r \in A$ 满足 $\forall x \in A$, $e_l \circ x = x$ 和 $x \circ e_r = x$,则 $e_l = e_r = e$,且 e 为 A 中关于 \circ 运算的唯一单位元。

定理 **15.3** 设。是集合 A 上的二元运算,若 $\exists \theta_l, \theta_r \in A$ 满足 $\forall x \in A$, $\theta_l \circ x = \theta_l$ 和 $x \circ \theta_r = \theta_r$,则 $\theta_l = \theta_r = \theta$,且 θ 为 A 中关于。运算的唯一零元。

定理 **15.4** 设集合 A 至少含有两个元素,e 和 θ 分别为 A 中关于 \circ 运算的单位元和零元,则 $e \neq \theta$.

定义 **15.7** 设。是集合 A 上的二元运算, $e \in A$ 是关于。运算的单位元。对于 $x \in A$ 若 ∃ $y_l \in A$ (或 $y_r \in A$) 使得 $y_l \circ x = e$ (或 $x \circ y_r = e$),则称 y_l (或 y_r) 是 x 关于。运算的左(或右)逆元。若 $y \in A$ 既是 x 关于。运算的左逆元又是 x 关于。运算的右逆元,则称 y 是 x 关于。运算的逆元。

定理 15.5 设。是集合 A 上可结合的二元运算且单位元为 e,对 $\forall x \in A$ 若 $\exists y_l, y_r \in A$ 满足 $y_l \circ x = e$ 和 $x \circ y_r = e$,则 $y_l = y_r = y$,且 y 为 A 中关于 \circ 运算的唯一逆元,记作 $y = x^{-1}$ 。

定义 **15.8** 设。为集合 A 上的二元运算,若对于 $\forall a,b,c \in A$ (a 不是。运算的零元)都有

 $a \circ b = a \circ c \Rightarrow b = c,$ $b \circ a = c \circ a \Rightarrow b = c$

则称。运算在 A 中适合消去律。

15.2 代数系统、子代数和积代数

定义 **15.9** 一个代数系统是一个三元组 $V=\langle A,\Omega,K\rangle$,其中 A 是一个非空的对象集合,称为 V 的载体; Ω 是一个非空的运算集合,即 $\Omega=\bigcup_{i=1}^{\infty}\Omega_{j}$,

 $\Omega_j = \{ o \mid o \in A \perp \text{的 } j \cap \mathbb{Z} \}; K \subseteq A \in \mathcal{M}$ 数常数的集合。 对于任何代数常数 $k \in K$,可以把 $k \in A$,可以把 $k \in A$,即 $k : \rightarrow A$,

可将代数系统 V 写作 $\langle A,\Omega \rangle$,其中 $\Omega = \bigcup_{j=0}^{\infty} \Omega_j$, $\Omega_0 = K$.

当 Ω 中含有r个代数运算时,r是正整数,常常将V记作 $\langle A,o_1,o_2,\cdots,o_r \rangle$,其中 o_1,o_2,\cdots,o_r 是代数运算,通常从高元运算到低元运算排列。

定义 **15. 10** 设 $V_1 = \langle A, o_1, o_2, \cdots, o_r \rangle$, $V_2 = \langle B, \overline{o_1}, \overline{o_2}, \cdots, \overline{o_r} \rangle$ 是具有 r 个运算的代数系统, $r \geq 1$. 若对 $\forall i = 1, 2, \cdots, r$, o_i 和 $\overline{o_i}$ 运算具有同样的元数,则称 V_1 和 V_2 是同类型的代数系统。若对 $\forall i = 1, 2, \cdots, r$, o_i 和 $\overline{o_i}$ 运算都有相同的运算性质,则称 V_1 和 V_2 是同种的代数系统。

定义 **15.11** 设 $V = \langle A, o_1, o_2, \cdots, o_r \rangle$ 是代数系统, $B \in A$ 的非空子集,若 B 对 V 中所有的运算封闭,则称 $V' = \langle B, o_1, o_2, \cdots, o_r \rangle$ 是 V 的子代数系统,简称子代数。当 $B \in A$ 的真子集时,称 $V' \in V$ 的真子代数。

定义 **15.12** 设 $V=\langle A,o_1,o_2,\cdots,o_r\rangle$ 是代数系统,其中零元运算的集合是 $K\subseteq A$,若 K 对 V 中所有的运算封闭,则 $\langle K,o_1,o_2,\cdots,o_r\rangle$ 是 V 的子代数,称这个子代数和 V 自身是 V 的平凡子代数。

定义 **15.13** 设 $V_1 = \langle A, o_{11}, o_{12}, \cdots, o_{1r} \rangle$, $V_2 = \langle B, o_{21}, o_{22}, \cdots, o_{2r} \rangle$ 是同类型的代数系统,且对于 $i = 1, 2, \cdots, r$, o_{1i} 和 o_{2i} 是 k_i 元运算。 V_1 和 V_2 的积代数记作 $V_1 \times V_2 = \langle A \times B, o_1, o_2, \cdots, o_r \rangle$,其中 o_i $(i = 1, 2, \cdots, r)$ 是 k_i 元运算。对 $\forall \langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle, \cdots, \langle x_k, y_k \rangle \in A \times B$ 有

 $o_i(\langle x_1,y_1
angle,\langle x_2,y_2
angle,\cdots,\langle x_k,y_k
angle)=\langle o_{1i}(x_1,x_2,\cdots,x_k),o_{2i}(y_1,y_2,\cdots,y_k)
angle$

称 $V \neq V_1$ 与 V_2 的积代数,也称 V_1 和 V_2 是 V 的因子代数。

定理 **15.6** 设代数系统 $V_1 = \langle A, o_{11}, o_{12}, \cdots, o_{1r} \rangle$, $V_2 = \langle B, o_{21}, o_{22}, \cdots, o_{2r} \rangle$ 同类型, $V = V_1 \times V_2 = \langle A \times B, o_1, o_2, \cdots, o_r \rangle$, 对任意二元运算 $o_{1i}, o_{1j}, o_{2i}, o_{2j}$,

- 1. 若 o_{1i} , o_{2i} 在 V_1 和 V_2 中是可交换的(或可结合的,幂等的),则 o_i 在 V 中也是可交换的(或可结合的,幂等的)。
- 2. 若 o_{1i} 对 o_{1j} 在 V_1 上是可分配的, o_{2i} 对 o_{2j} 在 V_2 上是可分配的,则 o_i 对 o_j 在 V 上也是可分配的。
- 3. 若 o_{1i} , o_{1j} 在 V_1 上是可吸收的, o_{2i} , o_{2j} 在 V_2 上是可吸收的,则 o_i , o_j 在 V 上也是可吸收的。
- 4. 若 e_{1i} (或 θ_{1i}) 为 V_1 中关于 o_{1i} 运算的单位元(或零元), e_{2i} (或 θ_{2i}) 为 V_2 中关于 o_{2i} 运算的单位元(或零元),则 $\langle e_{1i}, e_{2i} \rangle$ (或 $\langle \theta_{1i}, \theta_{2i} \rangle$) V 中关于 o_i 运算的单位元(或零元)。
- 5. 若 o_{1i} , o_{2i} 为含有单位元的二元运算,且 $a \in A$, $b \in B$ 关于 o_{1i} 和 o_{2i} 运算的逆元分别为 a^{-1} , b^{-1} , 则 $\langle a^{-1}, b^{-1} \rangle$ 是 $\langle a, b \rangle$ 在 V 中关于 o_i 运算的逆元。

定义 **15.14** 设 V_1, V_2, \dots, V_n 是同类型的代数系统,对于 $i=1,2,\dots,n$, $V_i=\langle Ai,o_{i1},o_{i2},\dots,o_{ir}\rangle$. 设 o_{it} 为 k_t 元运算, $t=1,2,\dots,r$. 则

$$V_1 \times V_2 \times \cdots \times V_n = \langle A_1 \times A_2 \times \cdots \times A_n, o_1, o_2, \cdots, o_r \rangle.$$

其中 o_t 是 k_t 元运算, $t=1,2,\cdots,r$. 对于任意的 $\langle x_{1j},x_{2j},\cdots,x_{nj}\rangle\in A_1\times A_2\times\cdots\times A_n$, $j=1,2,\cdots,k_t$ 有

$$o_t(\langle x_{11}, x_{21}, \cdots, x_{n1} \rangle, \langle x_{12}, x_{22}, \cdots, x_{n2} \rangle, \cdots, \langle x_{1k_t}, x_{2k_t}, \cdots, x_{nk_t} \rangle) \ = \langle o_{1t}(x_{11}, x_{12}, \cdots, x_{1k_t}), o_{2t}(x_{21}, x_{22}, \cdots, x_{2k_t}), \cdots, o_{nt}(x_{n1}, x_{n2}, \cdots, x_{nk_t}) \rangle$$

15.3 代数结构的同态与同构

定义 **15.15** 设 $V_1 = \langle A, o_1, o_2, \cdots, o_r \rangle$, $V_2 = \langle B, \overline{o_1}, \overline{o_2}, \cdots, \overline{o_r} \rangle$ 是同类型的代数系统。对 $\forall i = 1, 2, \cdots, r$, o_i 和 $\overline{o_i}$ 是 k_i 元运算。函数 $\phi: A \to B$,如果对所有的运算 o_i , $\overline{o_i}$ 都有

 $\phi(o_i(x1,x2,\cdots,x_{k_i}))=\overline{o_i}(\phi(x_1),\phi(x_2),\cdots,\phi(x_{k_t})), \qquad orall x_1,x_2,\cdots,x_{k_i}\in A$ 则称 ϕ 是代数系统 V_1 到 V_2 的同态映射,简称同态。

- 若 ϕ 为满射,则称 ϕ 为满同态,记为 $V_1 \stackrel{\phi}{\sim} V_2$.
- 若 φ 为单射,则称 φ 为单同态。
- $\ddot{a} \phi$ 为双射,则称 ϕ 为同构,记为 $V_1 \stackrel{\phi}{\cong} V_2$,称 V_1 同构于 V_2 .
- $\Xi V_1 = V_2$, 则称 ϕ 是自同态, $\Xi \phi$ 是双射则称 ϕ 为自同构。

定理 **15.7** 设 $V_1 = \langle A, o_1, o_2, \cdots, o_r \rangle$, $V_2 = \langle B, \overline{o_1}, \overline{o_2}, \cdots, \overline{o_r} \rangle$ 是同类型的代数系统。对 $\forall i = 1, 2, \cdots, r$, o_i 和 $\overline{o_i}$ 是 k_i 元运算。 $\phi: A \to B$ 是 V_1 到 V_2 的同态,则 $\phi(A)$ 关于 V_2 中的运算构成代数系统,且是 V_2 的子代数,称为 V_1 在 ϕ 下的同态像。

定理 **15.8** 设 $V_1 = \langle A, o_1, o_2, \dots, o_r \rangle$, $V_2 = \langle B, \overline{o_1}, \overline{o_2}, \dots, \overline{o_r} \rangle$ 是同类型的代数系统。 $\phi: A \to B \not\in V_1$ 到 V_2 的满同态, $o_i, o_i \not\in V_1$ 中的两个二元运算。

- 1. 若 o_i 是可交换的(或可结合的,幂等的),则 $\overline{o_i}$ 也是可交换的(或可结合的,幂等的)。
- 2. 若 o_i 对 o_i 是可分配的,则 $\overline{o_i}$ 对 $\overline{o_i}$ 也是可分配的。
- 3. 若 o_i , o_i 是可吸收的,则 $\overline{o_i}$, $\overline{o_i}$ 也是可吸收的。
- 4. 若 e(或 θ)是 V_1 中关于 o_i 运算的单位元(或零元),则 $\phi(e)$ (或 $\phi(\theta)$)是 V_2 中关于 $\overline{o_i}$ 运算的单位元(或零元)。
- 5. 若 o_i 是含有单位元的运算, $x^{-1} \in A$ 是 x 关于 o_i 运算的逆元,则 $\phi(x^{-1})$ 是 $\phi(x)$ 关于 $\overline{o_i}$ 运算的逆元。

补充 习题 23 对任意代数系统 V_1, V_2, V_3 有

 $(1)V_1\cong V_1 \quad (2)V_1\cong V_2\Leftrightarrow V_2\cong V_1 \quad (3)V_1\cong V_2 \ \wedge \ V_2\cong V_3 \Rightarrow V_1\cong V_3$

定义 **15.17** 设代数系统 $V = \langle A, o_1, o_2, \dots, o_r \rangle$, 其中 o_i 是 k_i 元运算。关系 \sim 是 A 上的等价关系。任取 A 上 $2k_i$ 个元素 $a_1, a_2, \dots, a_{k_i}, b_1, b_2, \dots, b_{k_i}$, 如 果对 $\forall i = 1, 2, \dots, k_i$, $a_i \sim b_i$ 就有

$$o_i(a_1,a_2,\cdots,a_{k_i})\sim o_i(b_1,b_2,\cdots,b_{k_i})$$

成立。则称等价关系 \sim 对元素 o_i 具有**置换性**质。如果等价关系 \sim 对 V 上所有的运算都具有置换性质,则称关系 \sim 是 V 上的同余关系,称 A 中关于 \sim 的等价类为 V 上的同余类。

定义 **15.18** 设代数系统 $V = \langle A, o_1, o_2, \cdots, o_r \rangle$,其中 o_i 是 k_i 元运算。~是 V 上的同余关系,V 关于同余关系 ~ 的商代数记作 $V/\sim=\langle A/\sim, \overline{o_1}, \overline{o_2}, \cdots, \overline{o_r} \rangle$,其中 A/\sim 是 A 关于同余关系 ~ 的商集。对 $\forall i=1,2,\cdots,r$,运算 $\overline{o_i}$ 规定为: $\forall [a_1], [a_2], \cdots, [a_{k_i}] \in A/\sim$,有

$$\overline{o_i}([a_1], [a_2], \cdots, [a_{k_i}]) = [o_i(a_1, a_2, \cdots, a_{k_i})]$$

为说明商代数 V/\sim 是有意义的,必须证明 V/\sim 中的所有运算都是**良定义的**,即证明运算结果与代表元的选取无关。对 $\forall i=1,2,\cdots,r$,考虑 V/\sim 中的运算 $\overline{o_i}$,任取 k_i 个同余类 $[a_1],[a_2],\cdots,[a_{k_i}]$. 假设 A 中存在 b_1,b_2,\cdots,b_{k_i} ,使得 $b_i\in[a_i],j=1,2,\cdots,k_i$,则

$$\overline{o_i}([a_1],[a_2],\cdots,[a_{k_i}])=\overline{o_i}([b_1],[b_2],\cdots,[b_{k_i}])$$

定理 **15.9** 设代数系统 $V = \langle A, o_1, o_2, \cdots, o_r \rangle$,其中 o_i 是 k_i 元运算。~是 V 上的同余关系,V 关于 ~ 的商代数 V/ ~= $\langle A/$ ~, $\overline{o_1}$, $\overline{o_2}$, \cdots , $\overline{o_r}$ 〉, 令 o_i , o_j 是 V 中任意的二元运算。

- 1. 若 o_i 是可交换的(或可结合的,幂等的),则 $\overline{o_i}$ 在 V/\sim 中也是可交换的(或可结合的,幂等的)。
- 2. $\overline{a} o_i$ 对 o_i 是可分配的,则 $\overline{o_i}$ 对 $\overline{o_i}$ 在 V/\sim 中也是可分配的。
- 3. 若 o_i , o_i 是可吸收的,则 $\overline{o_i}$, $\overline{o_i}$ 在 V/\sim 中也是可吸收的。
- 4. 若 e(或 θ)是 V 中关于 o_i 运算的单位元(或零元),则 [e](或 $[\theta]$)是 V/\sim 中关于 $\overline{o_i}$ 运算的单位元(或零元)。
- 5. 若 o_i 是含有单位元的运算, $x^{-1} \in A$ 是 x 关于 o_i 运算的逆元,则 [x] 在 V/\sim 中关于 $\overline{o_i}$ 运算的逆元是 $[x^{-1}]$ 。

定理 **15.10** 设 $V_1 = \langle A, o_1, o_2, \dots, o_r \rangle$, $V_2 = \langle B, \overline{o_1}, \overline{o_2}, \dots, \overline{o_r} \rangle$ 是同类型的代数系统。对 $\forall i = 1, 2, \dots, r$, o_i 和 $\overline{o_i}$ 是 k_i 元运算。 $\phi: A \to B$ 是 V_1 到 V_2 的同态,则由 ϕ 导出的 A 上的等价关系 \sim 是 V_1 上的同余关系。

定理 **15.11** 设代数系统 $V = \langle A, o_1, o_2, \cdots, o_r \rangle$, 其中 o_i 是 k_i 元运算。~是 V 上的同余关系,则自然映射 $g: A \to A/\sim$, g(A) = [a], $\forall a \in A$ 是从 V 到 V/\sim 上的同态映射。

定理 **15.12** 同态基本定理 设 $V_1 = \langle A, o_1, o_2, \dots, o_r \rangle$,

 $V_2 = \langle B, \overline{o_1}, \overline{o_2}, \cdots, \overline{o_r} \rangle$ 是同类型的代数系统。对 $\forall i = 1, 2, \cdots, r$, o_i 和 $\overline{o_i}$ 是 k_i 元运算。 $\phi: A \to B$ 是 V_1 到 V_2 的同态,关系 \sim 是 ϕ 导出的 V_1 上的同余关系,则 V_1 关于同余关系 \sim 的商代数同构于 V_1 在 ϕ 下的同态像,即 $V_1/\sim \cong \langle \phi(A), \overline{o_1}, \overline{o_2}, \cdots, \overline{o_r} \rangle$.

- 任何代数系统 V 的商代数是它的一个同态像
- 如果 V' 是 V 的同态像,则 V' 必与 V 的一个商代数同构, V' 就是 V 的商代数。

15.5 ∑代数

定义 15. 19 一个 \sum 代数 V 是一个二元组 $\langle F, \Omega \rangle$,其中 F 是一个非空集合构成的集合族, $\forall A \in F$,称 A 是 V 的基集。 Ω 是一个非空的运算集, $\forall o \in \Omega, o: A_{t_1} \times A_{t_2} \times \cdots \times A_{t_n} \to A_t, A_{t_1}, A_{t_2}, \cdots, A_{t_n}, A_t \in F, n \in \mathbb{N}.$