ECE 215 Spring 2025

Objective 3.2: Demodulation

Objective 3.2

Demodulators

I can design a demodulator given a modulated signal for envelope and synchronous detection.

REMEMBER 3 FORMS OF AN AM SIGNAL

EFFICIENCY

• Recall the definition of efficiency:

$$\eta = \frac{P_{useful}}{P_{useful} + P_{wasted}} = \frac{P_{upper \, sideband} + P_{lower \, sideband}}{P_{total}}$$

- With modulation index of α , we have: $\eta = \frac{\alpha^2}{\alpha^2 + 2}$
- For bias = $0V: \eta =$
- For fully modulated signal: $\eta =$
- As α decreases, efficiency decreases
- So why use 100% modulated or undermodulated signals?

Types of Demodulators

- Demodulators "undo" the modulation we just did
- Synchronus detection (works for all AM signals)
 - Expensive, more complicated
- Envelope detector (works for 100% or undermodulated)
 - Cheap and easy to build

DEMODULATING OVERMODULATED SIGNALS What is the modulation index of the modulated signal?

SYNCHRONOUS DETECTOR

In the frequency domain, we have the following signal:

- What is the message signal?
- What is the carrier frequency?

SYNCHRONOUS DETECTOR

Demodulators

Efficiency

Multiplying the received signal by the carrier frequency...

SYNCHRONOUS DETECTOR (CONT'D)

Now we get rid of the stuff we don't want:

The final form of the synchronus detector is:

SYNCHRONOUS DETECTOR - FINAL FORM

- LPF: f_{cut} = value slightly larger than $f_{m,max}$
- HPF: $f_{cut} = 10$ Hz

Demodulators

Efficiency

SYNCHRONOUS EXAMPLE

Design a synchronous detector to recover the message signal centered at 50kHz.

SYNCHRONOUS EXAMPLE SOLUTION

The final form of the synchronus detector is:

DEMODULATING 100%/UNDERMODULATED SIGNALS

ENVELOPE DETECTION EXAMPLE

Determine the proper filter cutoff frequencies.

$$T_{\rm m} = 5 {\rm ms} \quad \Longrightarrow f_{\rm m} = f_{{\rm cut, LPF}} = f_{{\rm cut, HPF}} =$$

DEMODULATION EXAMPLE

For $A_c = 2V$:

Efficiency

- What is the modulation index for each signal?
- What is the efficiency?
- Is the signal over-, under-, or fully-modulated?
- What demodulator(s) can you sue for each signal?
- Design a demodulator for each signal

DEMODULATION EXAMPLE

For $A_c = 2V$: (Signal centered at 200kHz)

- What is the modulation index for each signal? $\alpha_1 = \frac{2+2}{6} = 0.667$
- What is the efficiency? $\eta_1 = \frac{0.667^2}{0.667^2 + 2} = 18.2\%$
- Is the signal over-, under-, or fully-modulated?
- What demodulator(s) can you sue for each signal? Synchronous or Envelope
- Design a demodulator for each signal Envelope, LPF @ ~11kHz, HPF @ 10Hz

DEMODULATION EXAMPLE

For $A_c = 2V$: (Signal centered at 300kHz)

- What is the modulation index for each signal? $\alpha = \frac{2+2}{3} = 1.333$
- What is the efficiency? $\eta_1 = \frac{1.333^2}{1.333^2 + 2} = 47\%$
- Is the signal over-, under-, or fully-modulated?
- What demodulator(s) can you sue for each signal? Synchronous
- Design a demodulator for each signal Synchronous, multiplier @ 300kHz, LPF @ \sim 16kHz, HPF @ 10Hz

TRADEOFFS

Demodulators

Detector Type	Applicability	Receiver Complexity	Efficiency
Envelope	Fully modulated Under modulated	Cheap Easy to build	Wasted power due to required bias
Synchronous	All types	Expensive Complex to build	• Very efficient (up to 100%!)