BARGAZZII	Maria Mi	ilagro	S
Note: 18/20	(score to	ntaľ · 2	4/26)

	-				
\Box					

+1/1/60+

IPS - S7A - Jean-Matthieu Bourgeot

QCM2

IPS Quizz du 15/11/2017 Nom et prénom:
Bargazzi Hilapros

Durée: 10 minutes.

Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. Téléphone interdit.

Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses.

Ne pas faire de RATURES, cocher les cases à l'encre.

Question 1 •

On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) = \frac{A_0}{1 + \tau_C p}$, avec U_s la sortie de l'AOP et $\epsilon = u_+ - u_-$. Pour le montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre E et U_s , Que dire de la stabilité du système bouclé ?

8/8

1/1

1/1

Question 2 •

Qu'est ce que la fidélité d'un capteur ?

Convertir une grandeur physique en grandeur électrique

Aucune de ces propositions

La faculté de délivrer toujours la même valeur en sortie pour la même valeur d'entrée
Un capteur dont la variation de température se traduit en variation de résistance électrique

Question 3 •

En quelle unité se mesure la résistivité d'un matériau?

 $R = p \cdot \frac{1}{5}$

1/1 en

en ohm en ohm par mètre en mètre par ohm

en ohm mètre en mètre p= R.S= 12-M2

Question 4 •

Une jauge de contrainte a comme caractéristiques $R_0 = 50\Omega$, $L_0 = 8$ mm et K = 0.4. Combien vaut R si L = 10mm?

 \square 54.0 Ω \square 50.8 Ω \square 45.7 Ω 1 54.3 Ω

Question 5 · Ve - R.I - Vs =0

Soit le filtre RC suivant :

Quelles valeurs donner au produit RC pour qu'une perturbation d'une fréquence de 100kHz soit réduite à 2% de sa valeur ? (en Ω .F).

0/2 $\boxed{}$ 7,956.10⁻⁷ $\boxed{}$ 7,956.10⁻⁵ $\boxed{}$ 318,3 $\boxed{}$ 7,956.10⁻⁶

$$R \left[1 - \frac{1}{1 - \frac{$$

	Question 6 • On considère une résistance thermométrique Pt100 de résistance $R_C(T) = R_0(1 + \alpha T)$ où T représente la température en °C, $R_0 = 1k\Omega$ la résistance à 0°C et $\alpha = 3,85.10^{-3}$ °C $^{-1}$ le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant de température. L'étendu de mesure est $[-25^{\circ}\text{C}; 60^{\circ}\text{C}]$. $R_C(0) = 1k\Omega$. Pour quelles valeurs de V_G le courant dans le capteur est toujours inférieur à 5mA. $R_C(-25) = 903.75 \Omega$. $R_C(60) = 1231 \Omega$.
3/3	
	Question 7 • VG - RII - RCI = 0
	$V_{G} = I(R_1 + R_2) = (5 \times 10^3)(4,4 \times 10^3 + 903)^{75}$
	$V_{G} \subseteq SV$ R_4 R_3 Q_0
3/3	□ 3 □ 5 □ 4 □ 1.25
9/3	Question 8 • Quelle est le type de conversion de ce convertisseur flash ? — quantification logarithmique Quantification linéaire centrée — Quantification linéaire par valeur supérieure Quantification linéaire par défaut
	Question 9 • Sachant que $R_2=10\mathrm{k}\Omega$, calculer les valeurs de R_1 , R_3 et R_4 ?
3/3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Question $10 \bullet$ Soit F_{max} la plus haute fréquence contenue dans un signal. D'aprés le théorème de Shannon, pour échantillonner sans pertes il faut que la fréquence d'échantillonnage F_e vérifie quelle condition ?
/1	
	$R_{I} = \frac{R}{2} = 5k\Omega$
	Rz=R = loka
	R3 = R = 10KSL
	Ry = 3 R = 15KR
_	