Cryptography 4/20

Reagan Shirk April 20, 2020

Updates

- Wednesday we're going to have an extra credit quiz

 - I think we have to have our cameras on
 - "As long as you write something you'll probably get the credit" Dr. Cheng
- We will have a sample final like we had a sample midterm
- Submit your evals
- Looks like the fall semester *might* be on Zoom too
- This was a good way to kill 12 minutes of class time

RSA

- Based on the difficulty of factoring
 - Factoring is a v hard problem
 - This is why RSA is a good choice
 - RSA won't be secure if you have a quantum computer

RSA Mathematics

- Generalized Fermat Little Theorem
 - Says that if p is a prime and p doesn't divide a, then $a^{p-1} = 1 \pmod{p}$

 - If gcd(a, n) = 1, then $a^{\phi(n)} = 1 \pmod{n}$ In particular, if n = pq then $a^{(p-1)(q-1)} = 1 \pmod{n}$

RSA Key Generation

- Two large, random, prime numbers p and q that will be your private keys
 - -n = pq
- e is the encryption key
 - $-\gcd(e, (p-1)(q-1)) = 1$
- d is the decryption key
 - $-d = e^{-1} (\text{mod}(p-1)(q-1))$
 - $-\phi(n) = (p-1)(q-1)$
- The public key is (n, e)
- The secret key is (n, d)

RSA Encryption (textbook version)

- ciphertext = $m^e \mod n$
- Usually $e = 2^{16} + 1 = 65537$

RSA Decryption (textbook version)

• $m = c^d \mod n$ - We want to prove this- correctness of RSA

Correctness of RSA

$$c^d \mod n$$

 $= ((m^e)^d) \mod n$
 $= m^{ed} \mod n$
 $= m^{1+a\phi(n)} \mod n \text{ (where } a \in \mathbb{Z})$
 $= m(m^{\phi(n)})^a (\mod n)$
 $= m, \text{ because } \gcd(m, n) = 1$

Efficiency of RSA

- For efficiency, $e = 65537 = 2^{16} + 1$
 - We need 17 modular multiplications for encryption which is fine
 - * Somehow we come to 17 because of 16 + 1 from $2^{16} + 1$
- Decryption still slow af though
- You can run into a problem when e is really small because m^e will have less bits than n and doing the mod n won't do anything
- Best place for RSA is signature because it isn't very efficient for encryption and decryption

Security of RSA

- Different levels of security
 - If $\phi(n)$ can be computed from n, then RSA is broken
 - If d can be computed from n and e, then RSA is broken
 - If p and q can be computed, then RSA is broken