S11L1

Data: 09/12/24

INFORMAZIONI PRINCIPALI

Esercizio di oggi: Remediation e Mitigazione di Minacce di Phishing e Attacchi DoS

- I. Identificazione della Minaccia:
 Ricerca e documenta così el phishing e come funziona.
 Siege come un attacco di phishing può compromettere la sicurezza dell'azienda.
 Analisi del Rischio:
 Description

Description passage practice of managementers per mapper as immunicate of practice, Questo police implementazione del dipendenti su come inconocere e segulate internativi di philahing. Formazione del dipendenti su come inconocere e segulate tentativi di philahing. Meligazione del Risch Besiduati Meligazione del Risch Besiduati Internativa del managemento del managemento del proteometro per riflame il fiscrito insiduo, come: Internativa del managemento del managemento del proteometro per riflame il fiscrito insiduo, come: Rischi del managemento del managemento del proteometro per riflame il riscrito insiduo, come: Rischi del managemento del managemento del proteometro per riflame il riscrito insiduo. Come: Rischi del managemento del proteometro per riflame il riscrito insiduo. Come: Esercizio di oggi: Remediation e Mitigazione di Minacce di Phishing e Attacchi DoS

Parte 2: Attacco DoS (Denial of Service)

- 1. Identificazione della Minaccia:

 Ricorae de documenta corè un attacco DoS e come funziona.

 Sipiega come un attacco DoS può comprometere la disponibilità dei servizi aziendali.

 2. Analisi del Rischele:

 Valuta l'impara ponziale di questa minaccia sull'azienda.

 I identifica i servizi critici che potrebebre essere compromessi (ad es. server web, applicazioni aziendali).

 2. Plannificazione della Rimendalioni.

 Silvega della della

Esercizio di oggi: Remediation e Mitigazione di Minacce di Phishing e Attacchi DoS

Parte 2: Attacco DoS (Denial of Service)

- Compila un report che includa:
 Descrizione delle minacce di phishing e DoS.
 Analisi del rischio per entrambe le minacce.
 Piano di remediation detagliato per entrambe le minacce.
 Misure di mitigazione adottate per entrambe le minacce.

Wireshark che cattura un attacco Dos: 1 2024-07-19 06:51:17.946205 192.168.1.1 10.0.0.1 TCP 60 DoS attack packet 2 2024-07-19 06:51:18.946205 192.168.1.2 10.0.0.1 TCP 60 DoS attack packet 3 2024-07-19 06:51:19.946205 192.168.1.1 10.0.0.1 TCP 60 DoS attack packet 4 2024-07-19 06:51:20.946205 192.168.1.2 10.0.0.1 TCP 60 DoS attack packet 5 2024-07-19 06:51:21.946205 192.168.1.1 10.0.0.1 TCP 60 DoS attack packet 6 2024-07-19 06:51:22.946205 192.168.1.2 10.0.0.1 TCP 60 DoS attack packet 8 2024-07-19 06:51:24.946205 192.168.1.2 10.0.0.1 TCP 60 DoS attack packet 9 2024-07-19 06:51:25.946205 192.168.1.1 10.0.0.1 TCP 60 DoS attack packet 10 2024-07-19 06:51:26.946205 192.168.1.2 10.0.0.1 TCP 60 DoS attack packet

INDICE

1.	INTRODUZIONE E TRAC	CIAPAG.1
2.	INDICE	PAG.2
3.	Phishing and the "path"	TakenPAG.3
4.	DoS (TCP FLOOD)	PAG.
5.	Report	PAG.

IDENTIFICAZIONE DELLA MINACCIA

Iniziamo con il dire che il Phishing èun attacco in cui l'aggressore invia e-mail "fraudolente", mascherandosi da entità (o vendors) affidabili, per ingannare le vittime e rubare dati sensibili come credenziali o informazioni personali e può compromettere la sicurezza aziendale, portando al furto di dati critici, perdita economica e danni reputazionali.

ANALISI DI RISCHIO

Per valutare "l'impatto" possiamo dire che gli attacchi (Phishing) possono influire negativamente sulla produttività aziendale e sul rapporto di fiducia con i clienti (Ri-formazione del personale on-demand ma il danno reputazionale ormai è andato.)
Gli asset invece vulnerabili dell'azienda sono vari, tra cui Le credenziali dei dipendenti, i dati finanziari e le informazioni sensibili relative a clienti o progetti. (variando di criticità, for example se ci rubano la lista di quando viene il ragazzo a rimettere la roba nella macchinetta, non sarà critico quanto le informazioni personali dei clienti).

PIANIFICAZIONE DELLA REMEDIATION

Uno degli obbiettivi principali della remediation è prevenire i tentativi di phishing educando i dipendenti e implementando strumenti di protezione.

Come azioni possiamo fare Simulazioni di phishing per testare la "consapevolezza" dei dipendenti e la configurazione di filtri per bloccare e-mail sospette.

IMPLEMENTAZIONE DELLA REMEDIATION

Come interventi possiamo usare (ed aggiornare) dei sistemi di posta elettronica con dei filtri anti-phishing avanzati. Questi, utilizzano tecnologie come il machine learning e l'analisi comportamentale per identificare e bloccare e-mail sospette. Analizzano contenuti, allegati, URL e metadati per rilevare tentativi di phishing in tempo reale.

Inoltre, introdurre i dipendenti all'autenticazione multi-fattore (MFA) per ridurre i rischi di compromissione non è mai una brutta idea.

Lastly but not least, organizzare "workshop" per insegnare a riconoscere e segnalare le email sospette.

MITIGAZIONE RISCHIO RESIDUO

Per la mitigazione del rischio residuo possiamo monitorare in modo continuo le attività sospette (sui sistemi di posta elettronica) e utilizare strumenti di analisi dei link per prevenire i click su URL dannosi. (anche virustotal per gli URL as an example o plugin sul browser, come addon)

E per finire i "Fornitori" possono fornire soluzioni come sistemi SIEM (Security Information and Event Management) o EDR (Endpoint Detection and Response) per identificare rapidamente attività sospette e attacchi di phishing, inoltre garantiscono che gli strumenti siano sempre aggiornati con le ultime "definitions" delle minacce, aiutando a rilevare anche i nuovi attacchi o varianti di phishing ancora non conosciute.

ESERCIZIO 2: REMEDIATION E MITIGAZIONE DI ATTACCHI DOS (TCP FLOOD)

L'esercizio 2 evidenzia un attacco DOS (TCP Flood) e parte con l'aggressore che invia una grande quantità di richieste TCP SYN al server. L'obiettivo è esaurire le risorse del server e renderlo inaccessibile. Durante l'attacco, l'aggressore non completa mai l'handshake TCP (cioè non invia mai il pacchetto finale ACK). In alcuni casi, l'aggressore può inviare un pacchetto RST/ACK dopo il SYN/SYN-ACK, interrompendo il processo di handshake, per poi ripetere il ciclo sulla stessa porta e con il protocollo TCP.

Può causare il blocco dei servizi essenziali alla business continuity, anche critici. L'azienda potrebbe perdere parecchio fatturato se il server non funziona, ergo i clienti non comprano sul sito (in caso di banca o di servizi più "specifici" ci può essere anche un danno reputazioale in quanto il cliente non potrà ritirare i soldi magari, o effettuare un bonifico.)

ANALISI DEL RISCHIO

I target dell'attacco di solito sono i server "critici" come web server, applicazioni aziendali o sistemi di "gestione" (AS400) necessari alla business continuity e per la valutazione dell'impatto, guardiamo i servizi interrotti e la difficoltà per i clienti (come detto prima) ma anche per i dipendenti a completare determinate "azioni".

PIANIFICAZIONE DELLA REMEDATION

Gli obbiettivi principali sono ridurre l'impatto dell'attacco proteggendo l'infrastruttura e migliorando la "resilienza" della nostra rete. Possiamo iniziare con il configurare il Firewall per limitare l'accesso (Blocco di indirizzo ip/porta attaccata se non necessaria alla business continuity example, perchè telnet è aperta se non la stiamo usando?) Inoltre un sistema di mitigazione DOS come load balancer o strumenti anti-DDOS come CloudFare che offre non solo load balancing, ma anche tecniche di filtraggio per separare le richieste legittime da quelle "malevole".

IMPLEMENTAZIONE DELLA REMEDIATION

Possiamo appunto Identificare gli IP responsabili e bloccarli tramite firewall e Filtrare le porte non necessarie o usate per l'attacco (like we said before) e possiamo configurare un rate limit per limitare il numero di connessioni da ogni IP (max 1) o usare tecnologie come cloudfare che funzionano da scrubbing center. (filtrano i pacchetti e ri-mandano solamente quelli validi)

MITIGAZIONE DEL RISCHIO RESIDUO

Implementare sistemi di monitoraggio continui come IDS E IPS aiutano molto per rilevare attività sospette in tempo reale. La differenza è che uno avverte e basta, mentre l'altro può anche "agire". Un integrazione con SIEM (Security Information and Event Management) per aggregare i dati provenienti da più fonti in un sistema centralizzato (per una visione d'insieme) per facilitare l'analisi e la risposta immediata. Sia di revisione su LOG o in "live".

Per finire possiamo lavorare con il nostro fornitore del servizio internet (ISP) per mitigare gli attacchi a monte (Ogni ISP offre soluzioni diverse,Implementazione di soluzioni DDoS Blocco degli IP sospetti e Filtraggio a monte prima che arrivano al nostro server)

Report

Phishing:

- **Descrizione:** L'attacco mirava a compromettere le credenziali aziendali.
- Azioni: Implementati filtri avanzati, MFA e programmi di formazione per il personale.

Le misure adottate hanno ridotto il rischio di phishing, migliorando la consapevolezza e la resilienza.

DoS (TCP Flood):

- **Descrizione:** Attacco TCP flood identificato dai log (di rete)
- **Azioni:** Regole firewall configurate, load balancing, rate limiting e collaborazione con l'ISP per bloccare l'origine dell'attacco (e possibile integrazione con un SIEM per una continua analisi.

La combinazione di soluzioni tecniche e collaborazione con partner esterni ha ridotto l'impatto e migliorato la protezione per eventi futuri.