Flatiron Capstone Project: LANL Earthquake Detection

David Braslow May 17, 2019

Overview

https://www.kaggle.com/c/LANL-Earthquake-Prediction

Predicting "Time to Failure"

Data Processing

Extract and augment acoustic snippets from original acoustic file

Generate over 2000 features for each training and test sample

Select features that are useful for predicting "time to failure"

Modeling Approaches

Random Forest

Gradient-Boosting Machine

Results

Conclusion

I can predict the timing of aperiodic earthquakes moderately well using tree-based approaches

This can be useful for advancing seismology research and for improving public earthquake warning systems

Model improvement may be possible using continuous acoustic data, rather than relying on acoustic snippets

Additional computing resources could yield further improvements with more feature engineering and model testing