L. Vandenberghe ECE133B (Spring 2020)

1. Matrix rank

- subspaces, dimension, rank
- QR factorization with pivoting
- properties of matrix rank
- low-rank matrices
- pseudo-inverse

Subspace

a nonempty subset V of \mathbf{R}^m is a *subspace* if

$$\alpha x + \beta y \in \mathcal{V}$$

for all vectors $x, y \in \mathcal{V}$ and scalars α, β

- ullet all linear combinations of elements of ${\mathcal V}$ are in ${\mathcal V}$
- ullet V is nonempty and closed under scalar multiplication and vector addition

Examples

- $\{0\}, \mathbf{R}^m$
- the *span* of a set $S \subseteq \mathbb{R}^m$: all linear combinations of elements of S

$$\operatorname{span}(S) = \{\beta_1 a_1 + \dots + \beta_k a_k \mid a_1, \dots, a_k \in S, \beta_1, \dots, \beta_k \in \mathbf{R}\}$$

if $S = \{a_1, \dots, a_n\}$ is a finite set, we write $\operatorname{span}(S) = \operatorname{span}(a_1, \dots, a_n)$ (the span of the empty set is defined as $\{0\}$)

Operations on subspaces

three common operations on subspaces ($\mathcal V$ and $\mathcal W$ are subspaces)

• intersection:

$$\mathcal{V} \cap \mathcal{W} = \{x \mid x \in \mathcal{V}, x \in \mathcal{W}\}$$

• sum:

$$\mathcal{V} + \mathcal{W} = \{ x + y \mid x \in \mathcal{V}, y \in \mathcal{W} \}$$

if $\mathcal{V} \cap \mathcal{W} = \{0\}$ this is called the *direct sum* and written as $\mathcal{V} \oplus \mathcal{W}$

• orthogonal complement:

$$\mathcal{V}^{\perp} = \{ x \mid y^T x = 0 \text{ for all } y \in \mathcal{V} \}$$

the result of each of the three operations is a subspace

Range of a matrix

suppose A is an $m \times n$ matrix with columns a_1, \ldots, a_n and rows b_1^T, \ldots, b_m^T :

$$A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} b_1^T \\ \vdots \\ b_m^T \end{bmatrix}$$

Range (column space): the span of the column vectors (a subspace of \mathbb{R}^m)

range(A) = span(
$$a_1, ..., a_n$$
)
= $\{x_1a_1 + \cdots + x_na_n \mid x \in \mathbf{R}^n\}$
= $\{Ax \mid x \in \mathbf{R}^n\}$

the range of A^T is called the *row space* of A (a subspace of \mathbf{R}^n):

range
$$(A^T)$$
 = span $(b_1, ..., b_m)$
= $\{y_1b_1 + \cdots + y_mb_m \mid y \in \mathbf{R}^m\}$
= $\{A^Ty \mid y \in \mathbf{R}^m\}$

Nullspace of a matrix

suppose A is an $m \times n$ matrix with columns a_1, \ldots, a_n and rows b_1^T, \ldots, b_m^T :

$$A = \left[\begin{array}{ccc} a_1 & \cdots & a_n \end{array} \right] = \left[\begin{array}{c} b_1^T \\ \vdots \\ b_m^T \end{array} \right]$$

Nullspace: the orthogonal complement of the row space (a subspace of \mathbb{R}^n)

null(A) = range(
$$A^T$$
) $^{\perp}$
= { $x \in \mathbf{R}^n \mid b_1^T x = \dots = b_m^T x = 0$ }
= { $x \in \mathbf{R}^n \mid Ax = 0$ }

the nullspace of A^T is the orthogonal complement of $\operatorname{range}(A)$ (a subspace of \mathbf{R}^m)

$$\operatorname{null}(A^{T}) = \operatorname{range}(A)^{\perp}$$

$$= \{ y \in \mathbf{R}^{m} \mid a_{1}^{T} y = \dots = a_{n}^{T} y = 0 \}$$

$$= \{ y \in \mathbf{R}^{m} \mid A^{T} y = 0 \}$$

Exercise

- directed graph with *m* vertices, *n* arcs (directed edges)
- node–arc incidence matrix is $m \times n$ matrix A with

$$A_{ij} = \begin{cases} 1 & \text{if arc } j \text{ enters node } i \\ -1 & \text{if arc } j \text{ leaves node } i \\ 0 & \text{otherwise} \end{cases}$$

$$A = \begin{bmatrix} -1 & -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

describe in words the subspaces null(A) and $range(A^T)$

Linearly independent vectors

vectors a_1, \ldots, a_n are linearly independent if

$$x_1a_1 + x_2a_2 + \cdots + x_na_n = 0 \implies x_1 = x_2 = \cdots = x_n = 0$$

- the zero vector cannot be written as a nontrivial linear combination of a_1, \ldots, a_n
- no vector a_i is a linear combination of the other vectors
- in matrix–vector notation: Ax = 0 holds only if x = 0, where

$$A = [a_1 \quad a_2 \quad \cdots \quad a_n]$$

• linear (in)dependence is a property of the set of vectors $\{a_1, \ldots, a_n\}$ (by convention, the empty set is linearly independent)

recall from 133A: if a_1, \ldots, a_n are linearly independent m-vectors, then $n \leq m$

Basis of a subspace

 $\{v_1,\ldots,v_k\}$ is a *basis* for the subspace V if two conditions are satisfied

1.
$$\mathcal{V} = \operatorname{span}(v_1, \dots, v_k)$$

2. v_1, \ldots, v_k are linearly independent

• condition 1 means that every $x \in \mathcal{V}$ can be expressed as

$$x = \beta_1 v_1 + \dots + \beta_k v_k$$

• condition 2 means that the coefficients β_1, \ldots, β_k are unique:

$$\begin{aligned}
x &= \beta_1 v_1 + \dots + \beta_k v_k \\
x &= \gamma_1 v_1 + \dots + \gamma_k v_k
\end{aligned} \implies (\beta_1 - \gamma_1) v_1 + \dots + (\beta_k - \gamma_k) v_k = 0 \\
\implies \beta_1 &= \gamma_1, \dots, \beta_k = \gamma_k$$

Dimension of a subspace

- ullet every basis of a subspace ${\mathcal V}$ contains the same number of vectors
- this number is called the *dimension* of $\mathcal V$ (notation: $\dim(\mathcal V)$)

Proof: let $\{v_1, \ldots, v_k\}$ be a basis of \mathcal{V} containing k vectors and define

$$B = [v_1 \quad \cdots \quad v_k]$$

- suppose a_1, \ldots, a_n are linearly independent vectors in $\mathcal V$
- each a_i can be expressed as a linear combination of the basis vectors:

$$a_1 = Bx_1,$$
 $a_2 = Bx_2,$ $\ldots,$ $a_n = Bx_n$

• the k-vectors x_1, \ldots, x_n are linearly independent:

$$\beta_1 x_1 + \dots + \beta_n x_n = 0 \implies B(\beta_1 x_1 + \dots + \beta_n x_n) = \beta_1 a_1 + \dots + \beta_n a_n = 0$$

$$\implies \beta_1 = \dots = \beta_n = 0$$

• therefore $n \le k$; this shows that no basis can contain more than k vectors

Completing a basis

- suppose $\{v_1, \dots, v_j\} \subset \mathcal{V}$ is a linearly independent set (possibly empty)
- then there exists a basis of V of the form $\{v_1, \ldots, v_j, v_{j+1}, \ldots, v_k\}$ we *complete* the basis by adding the vectors v_{j+1}, \ldots, v_k

Proof

- if $\{v_1, \ldots, v_j\}$ is not already a basis, its span is not $\mathcal V$
- then there exist vectors in $\mathcal V$ that are not linear combinations of v_1, \ldots, v_j
- choose one of those vectors, call it v_{j+1} , and add it to the set
- the set $\{v_1, \dots, v_{j+1}\}$ is a linearly independent subset of $\mathcal V$ with j+1 elements
- repeat this process until it terminates
- ullet it terminates because a linearly independent set in ${f R}^m$ has at most m elements

Consequence: every subspace of \mathbf{R}^m has a basis

Rank of a matrix

Rank: the *rank* of a matrix is the dimension of its range

$$rank(A) = dim(range(A))$$

this is also the maximal number of linearly independent columns

Example: a 4×4 matrix with rank 3

$$A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 3 & 1 \\ -1 & 2 & 0 & 0 \\ 1 & -1 & 3 & 0 \\ -1 & 2 & 0 & 1 \end{bmatrix}$$

- $\{a_1\}$ is linearly independent $(a_1$ is not zero)
- $\{a_1, a_2\}$ is linearly independent
- $\{a_1, a_2, a_3\}$ is linearly dependent: $a_3 = 6a_1 + 3a_2$
- $\{a_1, a_2, a_4\}$ is a basis for range(A): linearly independent and spans range(A)

Rank-r matrices in factored form

we will often encounter matrices in the product form A = BC, where

- B is $m \times r$ with linearly independent columns
- C is $r \times n$ with linearly independent rows

the matrix A has rank r

- $range(A) \subseteq range(B)$: each column of A is a linear combination of columns of B
- range(B) \subseteq range(A):

$$y = Bx$$
 \Longrightarrow $y = B(CD)x = A(Dx)$

where D is a right inverse of C (for example, $D = C^{\dagger}$)

- therefore range(A) = range(B) and rank(A) = rank(B)
- since the columns of B are linearly independent, rank(B) = r

Exercises

Exercise 1

 \mathcal{V} and \mathcal{W} are subspaces in \mathbb{R}^m ; show that

$$\dim(\mathcal{V} + \mathcal{W}) + \dim(\mathcal{V} \cap \mathcal{W}) = \dim(\mathcal{V}) + \dim(\mathcal{W})$$

Exercise 2

• A and B are matrices with the same number of rows; find a matrix C with

$$range(C) = range(A) + range(B)$$

• A and B are matrices with the same number of columns; find a matrix C with

$$\operatorname{null}(C) = \operatorname{null}(A) \cap \operatorname{null}(B)$$

Outline

- subspaces, dimension, rank
- QR factorization with pivoting
- properties of matrix rank
- low-rank matrices
- pseudo-inverse

QR factorization

A is an $m \times n$ matrix with linearly independent columns (hence, $m \ge n$)

QR factorization

$$A = QR$$

- R is $n \times n$, upper triangular, with positive diagonal elements
- Q is $m \times n$ with orthonormal columns ($Q^TQ = I$)
- several algorithms, including Gram-Schmidt algorithm

Full QR factorization (QR decomposition)

$$A = \left[\begin{array}{cc} Q & \tilde{Q} \end{array} \right] \left[\begin{array}{c} R \\ 0 \end{array} \right]$$

- R is $n \times n$, upper triangular, with positive diagonal elements
- several algorithms, including Householder triangularization

QR factorization with column pivoting

A is an $m \times n$ matrix (may be wide or have linearly dependent columns)

QR factorization with column pivoting (column reordering)

$$A = QRP$$

- Q is $m \times r$ with orthonormal columns
- R is $r \times n$, leading $r \times r$ submatrix is upper triangular with positive diagonal:

$$R = \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1r} & R_{1,r+1} & \cdots & R_{1n} \\ 0 & R_{22} & \cdots & R_{2r} & R_{2,r+1} & \cdots & R_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & R_{rr} & R_{r,r+1} & \cdots & R_{rn} \end{bmatrix}$$

- can be chosen to satisfy $R_{11} \geq R_{22} \geq \cdots \geq R_{rr} > 0$
- P is an $n \times n$ permutation matrix
- r is the rank of A: apply the result on page 1.27 with B = Q, C = RP

Interpretation

- columns of $AP^T = QR$ are the columns of A in a different order
- the columns are divided in two groups:

$$AP^{T} = \begin{bmatrix} \hat{A}_{1} & \hat{A}_{2} \end{bmatrix} = Q \begin{bmatrix} R_{1} & R_{2} \end{bmatrix}$$
 \hat{A}_{1} is $m \times r$, R_{1} is $r \times r$

• $\hat{A}_1 = QR_1$ is $m \times r$ with linearly independent columns:

$$\hat{A}_1 x = Q R_1 x = 0 \qquad \Longrightarrow \qquad R_1^{-1} Q^T \hat{A}_1 x = x = 0$$

• $\hat{A}_2 = QR_2$ is $m \times (n-r)$: columns are linear combinations of columns of \hat{A}_1

$$\hat{A}_2 = QR_2 = \hat{A}_1 R_1^{-1} R_2$$

the factorization provides two useful bases for range(A)

- columns of Q are an orthonormal basis
- ullet columns of \hat{A}_1 are a basis selected from the columns of A

Computing the pivoted QR factorization

we first describe the modified Gram-Schmidt algorithm

• a variation of the standard Gram-Schmidt algorithm for QR factorization

$$A = QR$$

of a matrix A with linearly independent columns

• has better numerical properties than the standard Gram-Schmidt algorithm

we then extend the modified GS method to the pivoted QR factorization

Modified Gram-Schmidt algorithm

computes QR factorization of an $m \times n$ matrix A with linearly independent columns

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1n} \\ 0 & R_{22} & \cdots & R_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & R_{nn} \end{bmatrix}$$

after k steps, the algorithm has computed a partial factorization

$$A = \begin{bmatrix} q_1 \cdots q_k & B_k \end{bmatrix} \begin{bmatrix} R_{11} \cdots R_{1k} & R_{1,k+1} \cdots R_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & R_{kk} & R_{k,k+1} \cdots & R_{kn} \\ 0 & & I \end{bmatrix}$$

where B_k has size $m \times (n - k)$ with columns orthogonal to q_1, \ldots, q_k

• we start the algorithm with $B_0 = A$

Modified Gram-Schmidt update

careful inspection of the update at step k shows that

$$B_{k-1} = \begin{bmatrix} q_k & B_k \end{bmatrix} \begin{bmatrix} R_{kk} & R_{k,(k+1):n} \\ 0 & I \end{bmatrix}$$

partition B_{k-1} as $B_{k-1} = \begin{bmatrix} b & \hat{B} \end{bmatrix}$ with b the first column and \hat{B} of size $m \times (n-k)$:

$$b = q_k R_{kk}, \qquad \hat{B} = q_k R_{k,(k+1):n} + B_k$$

• from the first equation, and the required properties $||q_k|| = 1$ and $R_{kk} > 0$:

$$R_{kk} = ||b||, \qquad q_k = \frac{1}{R_{kk}}b$$

• from the second equation, and the requirement that $q_k^T B_k = 0$:

$$R_{k,(k+1):n} = q_k^T \hat{B}, \qquad B_k = \hat{B} - q_k R_{k,(k+1):n}$$

Summary: modified Gram-Schmidt algorithm

Algorithm

define $B_0 = A$ and repeat for k = 1 to n:

- compute $R_{kk} = ||b||$ and $q_k = (1/R_{kk})b$ where b is the first column of B_{k-1}
- compute

$$[R_{k,k+1}\cdots R_{kn}] = q_k^T \hat{B}, \qquad B_k = \hat{B} - q_k [R_{k,k+1}\cdots R_{kn}]$$

where \hat{B} is B_{k-1} with first column removed

MATLAB code

```
 \begin{array}{l} Q = A; \quad R = zeros(n,n); \\ \text{for } k = 1:n \\ R(k,k) = norm(Q(:,k)); \\ Q(:,k) = Q(:,k) \ / \ R(k,k); \\ R(k,k+1:n) = Q(:,k) \ ' \ * \ Q(:,k+1:n); \\ Q(:,k+1:n) = Q(:,k+1:n) \ - \ Q(:,k) \ * \ R(k,k+1:n); \\ \text{end}; \end{array}
```

Modified Gram-Schmidt algorithm with pivoting

with minor changes the modified GS algorithm computes the pivoted factorization

$$AP^{T} = \begin{bmatrix} q_{1} & q_{2} & \cdots & q_{r} \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & \cdots & R_{1r} & R_{1,r+1} & \cdots & R_{1n} \\ 0 & R_{22} & \cdots & R_{1r} & R_{1,r+1} & \cdots & R_{1n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & R_{rr} & R_{r,r+1} & \cdots & R_{rn} \end{bmatrix}$$

• partial factorization after *k* steps

$$AP_k^T = \begin{bmatrix} q_1 \cdots q_k & B_k \end{bmatrix} \begin{bmatrix} R_{11} \cdots R_{1k} & R_{1,k+1} \cdots R_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & R_{kk} & R_{k,k+1} \cdots & R_{kn} \\ 0 & & I \end{bmatrix}$$

- if $B_k = 0$, the factorization is complete $(r = k, P = P_k)$
- before step k, we reorder columns of B_{k-1} to place the largest column first
- this requires reordering columns k, \ldots, n of R, and modifying P_{k-1}

$$A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & -1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$

Step 1

- a_2 and a_4 have the largest norms; we move a_2 to the first position
- find first column of Q, first row of R

$$\begin{bmatrix} a_2 & a_1 & a_3 & a_4 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 & 1 \\ 1/2 & -1/2 & 1 & -1 \\ 1/2 & 1/2 & 0 & 1 \\ 1/2 & -1/2 & -1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} q_1 & B_1 \end{bmatrix} \begin{bmatrix} R_{11} & R_{1,2:4} \\ 0 & I \end{bmatrix}$$

Step 2

move column 3 of B₁ to first position in B₁

$$\begin{bmatrix} a_2 & a_4 & a_1 & a_3 \end{bmatrix} = \begin{bmatrix} 1/2 & 1 & 1/2 & 0 \\ 1/2 & -1 & -1/2 & 1 \\ 1/2 & 1 & 1/2 & 0 \\ 1/2 & -1 & -1/2 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

find second column of Q, second row or R

$$\begin{bmatrix} a_2 & a_4 & a_1 & a_3 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & -1/2 & 0 & 1 \\ 1/2 & 1/2 & 0 & 0 \\ 1/2 & -1/2 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 2 & 1 & 0 \\ \hline 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} q_1 & q_2 & B_2 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{1,3:4} \\ 0 & R_{22} & R_{2,3:4} \\ \hline 0 & 0 & I \end{bmatrix}$$

Step 3

move column 2 of B₂ to first position in B₂

$$\begin{bmatrix} a_2 & a_4 & a_3 & a_1 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & -1/2 & 1 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ 1/2 & -1/2 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• find third column of Q, third row of R

$$\begin{bmatrix} a_2 & a_4 & a_3 & a_1 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & -1/2 & 1/\sqrt{2} & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & -1/2 & -1/\sqrt{2} & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & \sqrt{2} & 0 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} q_1 & q_2 & q_3 \mid B_3 \end{bmatrix} \begin{bmatrix} R_{11} & R_{12} & R_{13} \mid R_{14} \\ 0 & R_{22} & R_{23} \mid R_{24} \\ 0 & 0 & R_{33} \mid R_{34} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix}$$

Result: since B_3 is zero, the algorithm terminates with the factorization

$$\begin{bmatrix} a_2 & a_4 & a_3 & a_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & -1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & -1 & -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/2 & -1/2 & 1/\sqrt{2} \\ 1/2 & 1/2 & 0 \\ 1/2 & -1/2 & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & \sqrt{2} & 0 \end{bmatrix}$$

Exercise

the modified Gram-Schmidt update on page 1.20 is

$$R_{kk} = ||b||, \qquad q_k = \frac{1}{R_{kk}}b,$$

$$[R_{k,k+1}\cdots R_{kn}] = q_k^T \hat{B}, \qquad B_k = \hat{B} - q_k [R_{k,k+1}\cdots R_{kn}]$$

where $\begin{bmatrix} b & \hat{B} \end{bmatrix} = B_{k-1}$

1. denote column i of \hat{B} by \hat{b}_i and column i of B_k by b_i ; show that

$$||b_i||^2 = ||\hat{b}_i||^2 - R_{k,k+i}^2$$

2. in the pivoting algorithm, $||b|| \ge ||\hat{b}_i||$ for i = 1, ..., n - k; show that therefore

$$R_{kk} \geq R_{k+1,k+1}$$

Outline

- subspaces, dimension, rank
- QR factorization with pivoting
- properties of matrix rank
- low-rank matrices
- pseudo-inverse

Factorization theorem

an $m \times n$ matrix A has rank r if and only if it can be factored as

$$A = BC$$

- B is $m \times r$ with linearly independent columns
- C is $r \times n$ with linearly independent rows

this is called a *full-rank factorization* of *A*

- "if" statement was shown on page 1.12
- the pivoted QR factorization proves the "only if" statement
- other algorithms will be discussed later

Rank of transpose

an immediate and important consequence of the factorization theorem:

$$\operatorname{rank}(A^T) = \operatorname{rank}(A)$$

the column space (range) of a matrix has the same dimension as its row space:

$$\dim(\operatorname{range}(A^T)) = \dim(\operatorname{range}(A))$$

Full-rank matrices

for any $m \times n$ matrix

$$rank(A) \le min\{m, n\}$$

Full rank: A has *full rank* if $rank(A) = min\{m, n\}$

- rank(A) = n < m: tall and left-invertible (linearly independent columns)
- rank(A) = m < n: wide and right-invertible (linearly independent rows)
- rank(A) = m = n: square and invertible (nonsingular)

Full column rank: A has full column rank if rank(A) = n

- *A* has linearly independent columns (is left-invertible)
- must be tall or square

Full row rank: A has *full row rank* if rank(A) = m

- A has linearly independent rows (is right-invertible)
- must be wide or square

Dimension of nullspace

if A is $m \times n$ then

$$\dim(\operatorname{null}(A)) = n - \operatorname{rank}(A)$$

we show this by constructing a basis containing n - rank(A) vectors

Basis for nullspace: a basis for the nullspace of A is given by the columns of

$$P^T \left[\begin{array}{c} -R_1^{-1}R_2 \\ I \end{array} \right]$$

where P, R_1 , R_2 are the matrices in the pivoted QR factorization

$$AP^T = Q \begin{bmatrix} R_1 & R_2 \end{bmatrix}$$

- P is a $n \times n$ permutation matrix
- Q is $m \times r$ with orthonormal columns, where $r = \operatorname{rank}(A)$
- R_1 is $r \times r$ upper triangular and nonsingular, R_2 is $r \times (n-r)$

(proof on next page)

Proof:

$$AP^{T}x = 0 \iff Q \begin{bmatrix} R_{1} & R_{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = 0$$

$$\iff \begin{bmatrix} R_{1} & R_{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = 0$$

$$\iff \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} -R_{1}^{-1}R_{2} \\ I \end{bmatrix} x_{2}$$

therefore, x is in the nullspace of AP^T if and only if it is in the range of

$$\left[\begin{array}{c} -R_1^{-1}R_2 \\ I \end{array}\right]$$

the columns of this matrix are linearly independent, so they are a basis for

range(
$$\begin{bmatrix} -R_1^{-1}R_2 \\ I \end{bmatrix}$$
) = null(AP^T)

Outline

- subspaces, dimension, rank
- QR factorization with pivoting
- properties of matrix rank
- low-rank matrices
- pseudo-inverse

Low-rank matrix

an $m \times n$ matrix has low rank if

$$rank(A) \ll min\{m, n\}$$

if $r = \operatorname{rank}(A) \ll \min\{m, n\}$, a factorization

$$A = BC$$
 (with $B \in \mathbf{R}^{m \times r}$ and $C \in \mathbf{R}^{r \times n}$)

gives an efficient representation of A

- memory: B and C have r(m+n) entries, compared with mn for A
- fast matrix-vector product: 2r(m+n) flops if we compute y=Ax as

$$y = B(Cx)$$

compare with 2mn for general product y = Ax

Low-rank approximation

(approximate) low-rank representations

$$A \approx BC$$

are useful in many applications

Singular value decomposition (SVD)

finds the best approximation (in Frobenius norm or 2-norm) of a given rank

Heuristic algorithms

- less expensive than SVD but not guaranteed to find a good approximation
- e.g., in the pivoted QR factorization, terminate at step k when R_{kk} is small

Optimization algorithms

add additional constraints on B, C (for example, entries must be nonnegative)

Example: document analysis

a collection of documents is modeled by a *term-document* matrix *A*

- columns correspond to documents, rows to words in a dictionary
- column vectors represent word histograms

in a low-rank approximation $A \approx BC$,

$$A_{ij} \approx \sum_{k=1}^{r} B_{ik} C_{kj}$$

- *r* dimensions represent "concepts"
- ullet C_{kj} indicates strength of association between document j and concept k
- A_{ik} indicates strength of association between term i and concept k

a well-known SVD-based method of this type is called Latent Semantic Indexing

Example: multiview geometry

- n objects at positions $x_j \in \mathbf{R}^3$, $j = 1, \ldots, n$, are viewed by l cameras
- $y_{ij} \in \mathbb{R}^2$ is the location of object j in the image acquired by camera i
- each camera is modeled as an affine mapping:

$$y_{ij} = P_i x_j + q_i, \quad i = 1, \dots, l, \quad j = 1, \dots, n$$

define a $2l \times n$ matrix with the observations y_{ij} :

$$A = \begin{bmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \vdots & & \vdots \\ y_{l1} & y_{l2} & \cdots & y_{ln} \end{bmatrix} = \begin{bmatrix} P_1 & q_1 \\ P_2 & q_2 \\ \vdots & & \\ P_l & q_l \end{bmatrix} \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ 1 & 1 & \cdots & 1 \end{bmatrix}$$

- a matrix of rank 4 (or less)
- equality assumes noise-free observations and perfectly affine cameras
- a rank-4 approximation of A gives estimates of positions and camera models

Outline

- subspaces, dimension, rank
- QR factorization with pivoting
- properties of matrix rank
- low-rank matrices
- pseudo-inverse

Pseudo-inverse

suppose A is $m \times n$ with rank r and rank factorization

$$A = BC$$

• B is $m \times r$ with linearly independent columns; its pseudo-inverse is defined as

$$B^{\dagger} = (B^T B)^{-1} B^T$$

• C is $r \times n$ with linearly independent rows; its pseudo-inverse is defined as

$$C^{\dagger} = C^T (CC^T)^{-1}$$

we define the **pseudo-inverse** of A as

$$A^{\dagger} = C^{\dagger}B^{\dagger}$$

- this extends the definition of pseudo-inverse to matrices that are not full rank
- A^{\dagger} is also known as the *Moore–Penrose* (generalized) inverse

Uniqueness

 $A^{\dagger} = C^{\dagger}B^{\dagger}$ does not depend on the particular rank factorization A = BC used

- suppose $A = \tilde{B}\tilde{C}$ is another rank factorization
- the columns of B and \tilde{B} are two bases for $\operatorname{range}(A)$; therefore

$$\tilde{B} = BM$$
 for some nonsingular $r \times r$ matrix M

- hence $BC = \tilde{B}\tilde{C} = BM\tilde{C}$; multiplying with B^{\dagger} on the left shows that $C = M\tilde{C}$
- the pseudo-inverses of $\tilde{B}=BM$ and $\tilde{C}=M^{-1}C$ are

$$\tilde{B}^{\dagger} = (\tilde{B}^T \tilde{B})^{-1} \tilde{B}^T = M^{-1} (B^T B)^{-1} B^T = M^{-1} B^{\dagger}$$

and

$$\tilde{C}^{\dagger} = \tilde{C}^T (\tilde{C}\tilde{C}^T)^{-1} = C^T (CC^T)^{-1} M = C^{\dagger} M$$

• we conclude that $\tilde{C}^{\dagger}\tilde{B}^{\dagger}=C^{\dagger}MM^{-1}B^{\dagger}=C^{\dagger}B^{\dagger}$

Example: pseudo-inverse of diagonal matrix

- the rank of a diagonal matrix A is the number of nonzero diagonal elements
- pseudo-inverse A^{\dagger} is the diagonal matrix with

$$(A^{\dagger})_{ii} = \begin{cases} 1/A_{ii} & \text{if } A_{ii} \neq 0\\ 0 & \text{if } A_{ii} = 0 \end{cases}$$

Example

$$A = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}, \qquad A^{\dagger} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1/3 \end{bmatrix}$$

this follows, for example, from the factorization A = BC with

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}$$

Rank-deficient least squares

least squares problem with $m \times n$ matrix A and rank(A) = r (possibly r < n)

$$minimize ||Ax - b||^2 (1)$$

• substitute rank factorization A = BC:

minimize
$$||BCx - b||^2$$

• $\hat{y} = B^{\dagger}b = (B^TB)^{-1}B^Tb$ is the solution of the full-rank least squares problem

minimize
$$||By - b||^2$$

- every x that satisfies $Cx = \hat{y}$ is a solution of the least squares problem (1)
- $\hat{x} = C^{\dagger} \hat{y} = C^{T} (CC^{T})^{-1} \hat{y}$ is the least norm solution of the equation $Cx = \hat{y}$

therefore the solution of (1) with the smallest norm is

$$\hat{x} = A^{\dagger} b = C^{\dagger} B^{\dagger} b$$

other solutions of (1) are the vectors $\hat{x} + v$, for nonzero $v \in \text{null}(A)$

Meaning of AA^{\dagger} and $A^{\dagger}A$

if A does not have full rank, A^\dagger is not a left or a right inverse of A

Interpretation of AA^{\dagger}

$$AA^{\dagger} = BCC^{\dagger}B^{\dagger} = BB^{\dagger} = B(B^TB)^{-1}B^T$$

- $BB^{\dagger}x$ is the orthogonal projection of x on range(B) (see 133A, slide 6.12)
- hence, $AA^{\dagger}x$ is the orthogonal projection of x on range(A) = range(B)

Interpretation of $A^{\dagger}A$

$$A^{\dagger}A = C^{\dagger}B^{\dagger}BC = C^{\dagger}C = C^{T}(CC^{T})^{-1}C$$

- $C^{\dagger}Cx$ is the orthogonal projection of x on range(C^T)
- hence, $A^{\dagger}Ax$ is orthogonal projection on row space $\operatorname{range}(A^T) = \operatorname{range}(C^T)$

Exercise

show that A^{\dagger} satisfies the following properties

- $AA^{\dagger}A = A$
- $A^{\dagger}AA^{\dagger} = A^{\dagger}$
- AA^{\dagger} is a symmetric matrix
- $A^{\dagger}A$ is a symmetric matrix