COIO3 COBRTCKHI Социалистических Республик

CCCPA

по делем изобретений

ОПИСАНИЕ (п) 989038 изобретения

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное и авт. свид-ву STATE OF

(22) Заявлено 311.08.81 (21) 3325060/22-03 🐯

с присоединением заявки

(23)Приоритет

Опубликовано 15.01.83.

Дата опубликования описания 15.01.83

E 21 B 29/10

(53) **УДК**: 622.248 .4 (088.8)

(72) Авторы изобретения А. Т. Ярыш, М. Л. Кисельман и С. Ф. Петров

(71) Заявитель

Всесоюзный научно-исследовательский институт по креплению скважин и буровым растворам.

(54) УСТРОЙСТВО ДЛЯ РЕМОНТА ОБСАДНЫХ КОЛОНН

Изобретение относится к устройствам, применяемым пря установке продольно-гофрированных пластырей из металлических труб в обсадных колоннах нефтяных, газовых в водяных скважин с целью восстановления герметичности стенок колони.

Известно устройство для установки металлических пластырей, содаржащее заполненный жидкостью эластичный сосуд, спускаемый к месту повреждения колонны на тросе. На поверхности баллона специальными зажимами крепится металлический гофрированный штастырь. Внутря эластичного сосуда в жидкость помещен вэрывной заряд с электродетонатором. Расширение пластыря в колонне осуществляется при вэрыве заряда [1].

Основным непостатком этого устройства является трудность достижения равномерного расширения пластыря по всей длине.

Наиболее близким по технической сущнос- 20 ти и доститаемому результату к предлагаемому является устройство для ремонта обсадных колоин, содержащее полую штангу с упором, формирующую упругую головку,

жесткий конус-пуансон и установленный на штанге между упором и конусом-пуансоном продольно гофрированный пластырь [2].

Недостатком известного устройства является то, что жесткий конус-пуансон предварительного расширения продольно-гофрированного пластыря выполнен с гладкой боковой поверхностью. Такой конус при расширении впадин пластыря создает обратный перегиб металла. В результате каждая из впадин образует двойные недожимы пластыря к колонне. Другим недостатком устройства является возможность заклинивания конуса-пуансона в обсадной колоние из-за незначительной раз ницы между их диаметрами.

Целью изобретення является улучшение качества ремонта и повышение надежности его путем исключения заклинивания в ремонтируемой колоние конуса-пуансона.

Цель достигается тем, что в устроистве для ремонта обсадных колонн содержащем полую штангу с упором, формирующую упругую головку, жесткий конус-пуансон и установленный на штанге между упором и

конусом-пуансоном продольно-гофрированный пластырь, конус-пуансон выполнен с продольными канавками, имеющими переменный раднус, увеличивающийся от меньшего основания к большему, при этом выступы пластыря совмещены с продольными канавками конуса-пуансона, а угол наклона образующей канавок у большого основания конуса-пуансона составляет 35-40°

На фиг. 1 изображено устройство в транспортном положении, общий вид; на фиг. 2 то же. в рабочем положении; на фит 3.4 и 5 1— этапы распрямления гофрированного пластыря; на фиг. 6 - конус-пуансон, в разрез. ..

Устройство для ремонта обсадных труб со- 15 держит формирующую упругую головку 1, жесткий конус-пуансон 2, и полую штангу 3. Спускается устройство в скважину к месту нарушения колонны на насосно-компрессорных или бурильных трубах 4 вместе с металлическим пластырем 5, который одним конном опирается на конус-пуансон 2, а от осевого перемещения вверх удерживается упором 6.

Жесткий конус-пуансон 2 представляет собой усеченный конус (фиг. 6), на боковой поверхности которого выполнены продольные радиусные канавки по числу впадин пластыря 5. Угол наклона образующей канавок 7, составляющий 9-12°, увеличивается до 35-40° у большего основания конуса. Радиус канавок переменный. У меньшего основания (фиг. 3), конфигурация которого повторяет внутренний контур пластыря, он равен градиусу впалин пластыря, а затем увеличивается. Например, пля конуса-пуансона, применяемого для ремонта. 146 мм обсадных колони, раднуе канавок у меньшего основания (фиг.3): составляет 11 мм, в среднем сечении (фиг.4) 16 мм, у большего основания конуса 10 W # 11 W 28 мм (фиг. 5).

Установка пластыря в колонне обсадных труб осуществляется путем протягивания через него жесткого конуса-пуансона 2 п формирующей головии 1 (фиг. 2).

В начале, в безопорном (фиг. 3) и частично в опорном (фиг. 4 и 5) режиме расширения, когда выступы пластыря 5 начинают опираться о стенку обсадной трубы 8, пропесс расширения пластыря конусом происходит при угле подъема образующей канавок в 9-12° (фиг. 6). Впадины пластыря 5 при этом плотно прилегают к канавкам косечении к ходу конуса-пуансона 2 в процес-за шими переменный радиус, увеличивающийся се деформации впадин благодаря переменному ралиусу 7 все время илет по дуге (фиг.3-5) без обратного перегиба метапла, что и предотвращает образование недожимов. Затем

в процесс расширения впадин включается участок конуса, на котором угол образующей канавок возрастает до 35-40°. Впадины пластыря: 5, управляемые этим участком, резко поворачиваются и под таким углом разрывают контакт с конусом-пуансоном 2 (фиг. 6) Пальненшее движение конуса-пуансона 2 приводит к возникновению внеконтактного расширения впадин пластыря 5 за счет угла 10 поворота образующей канавок на 35-40° и действия сил упругости сжатого участка плас тыря. Окончательное прижатие пластыря к стенкам обсапной трубы 8 осуществляется упругой формирующей головкой 1 Экспериментально установлено, что утол

подъема образующей канавок 7 конуса-пуансона 2 значительно влияет на качество расширения пластыря и осевое усилие прохождения конуса-пуансона. Угол подъема образующей менее 35° не дает или дает незначительное увеличение проходного диаметра пластыря, а угол подъема образующей более 40° ведет к значительному увеличению необходимых осевых усилий для прохождения конусапуансона и ухудшению качества расширения.

При величине угла подъема образующей канавок конуса равной 35-40 после 3 расши. рения пластыря конусом-пуансоном проходной диаметр увеличивается по отношению к диаметру конуса на 6-7 мм в 146 и до 8-9 мм обсадных грубах. Это позволяет соответственно уменьшить пиаметр устройств для расширения продольно-гофрированных пластырей, а значит повысить надежность их работы. При расширении пластыря гладким конусом с углом подъема образующей в 9-12°, как это принято в прототипе, проходной диаметр соответствует днаметру конуса-пуансона.

Формула изобретения

Устройство для ремонта обсадных колони... содержащее полую штангу с упором, формирующую упругую головку, жесткий конуспуансон и установленный на штанге между упором и конусом-пуансоном продольно-гофрированный пластырь, отличающее с я тем, что, с целью улучшения качества ремонта и повышения надежности его путем исключения заклинивания в ремонтируемой колонне конуса-пуансона, последний нуса-пуансона 2. Контакт их в нормальном выполнен с продольными канавками, имеюот меньшего основания конуса к большему, при этом выступы пластыря совмещены с - продольными канавками конуса-пуансона, в угол наклона образующей канавок у большо2. Авторское свичетельство СССР № 388650,1

инипи Заказ 11041/42. Тираж 601. Подписное

Филиал ППП "Патент", г.Ужгород, ул.Проектная А

与种体能力

Union of Soviet Socialist Republics	SPECIFICATION OF INVENTOR'S CERTIFICATE	(11) 989038
[State Seal]	(61) Inventor's certificate of addition —	
	(22) Applied August 11, 1981 (21) 3325060/22-03 with the attachment of application No	(51) Int. Cl. ³ E 21 B 29/10
USSR State Committee on Inventions and Discoveries	(23) Priority -	
	Published January 15, 1983, Bulletin	
	No. 2	(52) LIDC 622 248 4
	Publication date of specification	(53) UDC 622.248.4
	January 15, 1983	(088.8)
(72) Inventors A. T. Yarysh, M. L. Kisel'man, and S. F. Petrov		
(71) Applicant All-Union Scientific-Research Institute of Well Casing and Drilling Muds		

(54) DEVICE FOR CASING REPAIR

1

The invention relates to devices that can be used for placing longitudinally corrugated patches made of metal pipes in casings of oil, gas, and water wells, with the aim of restoring the leaktightness of the casing walls.

A device is known for placement of metal patches, containing a liquid-filled elastic receptacle lowered to the location of the damage to the casing on a cable. The corrugated metal patch is secured to the surface of an inflatable bag by special clamps. An explosive charge with an electric detonator is placed inside the elastic receptacle, into the liquid. Expansion of the patch in the casing is accomplished by explosion of the charge [1].

The major disadvantage of this device is the difficulty of achieving uniform expansion of the patch over the entire length.

The device closest in technical essence and achievable result to the proposed invention is a device for casing repair that contains a hollow rod with a stop, an elastic forming head,

a rigid conical ram, and a longitudinally corrugated patch mounted on the rod between the stop and the conical ram [2].

A disadvantage of the known device is that the rigid conical ram for preliminary expansion of the longitudinally corrugated patch is implemented with a smooth lateral surface. Such a cone creates a reverse bend in the metal upon expansion of the furrows of the patch. As a result, each furrow forms two areas of undercompression of the patch against the casing. Another disadvantage of the device is the possibility of the conical ram getting jammed in the casing due to a slight difference between their diameters.

The aim of the invention is to improve the quality of the repair and its reliability by eliminating jamming of the conical ram in the casing under repair.

The aim is achieved by the fact that, in the device for casing repair containing a rod with stop, an elastic forming head, a rigid conical ram, and a longitudinally corrugated patch mounted on the rod between the stop and

the conical ram, the conical ram is implemented with longitudinal grooves of variable radius, increasing from the smaller base to the larger base, where the ridges of the patch match the longitudinal grooves of the conical ram, and the tilt angle of the generatrix of the grooves on the larger base of the conical ram is 35°-40°.

Fig. 1 shows a general view of the device in the run-in position; Fig. 2 shows the same, in the working position; Figs. 3, 4, and 5 show the stages for straightening the corrugated patch; Fig. 6 shows a cutaway view of the conical ram.

The device for casing repair contains elastic forming head 1, rigid conical ram 2, and hollow rod 3. The device is lowered into the well to the location of damage to the casing, in tubing or drill pipes 4, together with metal patch 5, which at one end is supported on conical ram 2 and is restrained from axial movement upward by stop 6.

Rigid conical ram 2 is a truncated cone (Fig. 6), on the lateral surface of which are implemented longitudinal radial grooves according to the number of furrows in patch 5. The tilt angle of the generatrix of grooves 7, which is 9°-12°, increases up to 35°-40° on the larger base of the cone. The radius of the grooves is variable. On the smaller base (Fig. 3), the configuration of which duplicates the inner contour of the patch, it is equal to the radius of the furrows of the patch, and then it increases. For example, for a conical ram that can be used to repair 146 mm of casings, the radius of the grooves is 11 mm on the smaller base (Fig. 3), 16 mm in the middle cross section (Fig. 4), and 28 mm on the larger base of the conc (Fig. 5).

Placement of the patch in the casing is accomplished by pulling rigid conical ram 2 and forming head 1 through it (Fig. 2).

At first, under unsupported (Fig. 3) expansion conditions and partially under supported (Figs. 4 and 5) expansion conditions, when the ridges of patch 5 begin to push against the wall of casing 8, the process of expansion of the patch by the cone occurs at a slope of the generatrix of the grooves equal to 9°-12° (Fig. 6). The furrows of patch 5 in this case fit tightly against the grooves of conical ram 2. Their contact in the cross section normal to the path of conical ram 2 during deformation of the furrows, owing to the variable radius 7, always travels along an arc (Figs. 3-5) without reverse bend of the metal, which prevents formation of areas of undercompression. Then

during expansion of the furrows, the section of the cone is included in which the angle of the generatrix of the grooves increases up to 35°-40°. The furrows of patch 5, straightened out by this section, turn sharply and at such an angle break contact with conical ram 2 (Fig. 6). Further motion of conical ram 2 leads to the appearance of contactless expansion of the furrows of patch 5 as a result of the angle of rotation of the generatrix of the grooves by 35°-40° and the action of elasticity forces in the compressed section of the patch. Final squeezing of the patch against the walls of casing 8 is accomplished by elastic forming head 1.

It has been experimentally established that the slope of the generatrix of grooves 7 of conical cone 2 significantly affects the quality of the expansion of the patch and the axial force of penetration of the conical ram. A slope of the generatrix less than 35° does not result in an increase (or results in an insignificant increase) in the flow diameter of the patch, while a slope of the generatrix greater than 40° leads to a significant increase in the required axial forces for penetration of the conical ram and a deterioration in the quality of the expansion.

For a slope of the generatrix of the grooves of the cone equal to 35°-40°, after expansion of the patch by the conical ram the flow diameter increases relative to the cone diameter by 6-7 mm in 146 and up to 8-9 mm of casings [sic]. This makes it possible to accordingly decrease the diameter of devices for expanding longitudinally corrugated patches, and hence to increase the reliability of their operation. When expanding a patch by a smooth cone with a slope of the generatrix of 9°-12°, as assumed in the prototype, the flow diameter corresponds to the diameter of the conical ram.

Claim

A device for repair of casings, containing a hollow rod with a stop, an elastic forming head, a rigid conical ram, and a longitudinally corrugated patch mounted on the rod between the stop and the conical ram, distinguished by the fact that, with the aim of improving the quality and reliability of the repair by eliminating jamming of the conical ram in the casing under repair, said conical ram is implemented with longitudinal grooves of variable radius, increasing from the smaller base of the cone to the larger base of the cone, where the ridges of the patch match the longitudinal grooves of the conical ram, and the tilt angle of the generatrix of the grooves on the larger

base of the conical ram is 35°-40°.

Information sources considered in the examination

[see Russian original for figure]

Fig. 1

- 1. US Patent No. 3175618, cl. 166-63, published 1965.
- 2. USSR Inventor's Certificate No. 388650, cl. E 21 B 43/10 (1970) (prototype).

[see Russian original for figure]

Fig. 2

989038

[see Russian original for figure]

Fig. 3

[see Russian original for figure]

Fig. 4

[see Russian original for figure]

Fig. 5

[see Russian original for figure]

Fig. 6

VNIIPI* Order 11041/42 Run 601 Subscription edition

Affiliate of "Patent" Printing Production Plant, Uzhgorod, 4 ul. Proektnaya

^{*}Translator's Note: All-Union Scientific Research Institute of Patent Information and Technical and Economic Research of the USSR State Committee on Inventions and Discoveries

AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following Patents and Abstracts from Russian to English:

Patent 1786241 A1 ATLANTA Patent 989038 BOSTON BRUSSELS CHICAGO DALLAS DETROIT FRANKFURT HOUSTON LONDON LOS ANGELES MIAMI MINNEAPOLIS NEW YORK PARIS PHILADELPHIA SAN DIEGO SAN FRANCISCO SEATTLE WASHINGTON, DC

Abstract 976019 Patent 959878 Abstract 909114 Patent 907220 Patent 894169 Patent 1041671 A Patent 1804543 A3 Patent 1686123 A1 Patent 1677225 A1 Patent 1698413 A1 Patent 1432190 A1 Patent 1430498 A1 Patent 1250637 A1 Patent 1051222 A Patent 1086118 A Patent 1749267 A1 Patent 1730429 A1 Patent 1686125 A1 Patent 1677248 A1 Patent 1663180 A1 Patent 1663179 A2 Patent 1601330 A1 Patent SU 1295799 A1 Patent 1002514

PAGE 2 AFFIDAVIT CONTINUED

(Russian to English Patent/Abstract Translations)

Kim Stewart

TransPerfect Translations, Inc.

3600 One Houston Center

1221 McKinney

Houston, TX 77010

Sworn to before me this 9th day of October 2001.

Signature, Notary Public

OFFICIAL SEAL
MARIA A. SERNA
NOTARY PUBLIC
in and for the State of Texas
My countriscion expires 03-22-2008

Stamp, Notary Public

Harris County

Houston, TX