

Claims

We claim:

- 1 1. An electronic structure, comprising:
 - 2 a semiconductor substrate having a first electrically conductive pad thereon;
 - 3 an organic substrate having a second electrically conductive pad thereon, wherein a
 - 4 surface area of the first pad exceeds a surface area of the second pad; and
 - 5 a solder member electrically coupling the first pad to the second pad.
- 1 2. The electronic structure of claim 1, wherein a coefficient of thermal expansion (CTE) of the
- 2 organic substrate is between about 10 ppm/ $^{\circ}$ C and about 18 ppm/ $^{\circ}$ C.
- 1 3. The electronic structure of claim 1, wherein P is between about .15 and about .75, wherein P is
- 2 defined as $(C_{SOLDER} - C_{ORGANIC})/(C_{SOLDER} - C_{SEMI})$, wherein C_{SOLDER} is a CTE of the solder member,
- 3 wherein $C_{ORGANIC}$ is a CTE of the organic substrate, and wherein C_{SEMI} is a CTE of the
- 4 semiconductor substrate.
- 1 4. The electronic structure of claim 1, wherein the organic substrate includes an organic material
- 2 selected from the group consisting of an epoxy, a polyimide, a polytetrafluoroethylene, and
- 3 combinations thereof.

1 5. The electronic structure of claim 1, wherein the solder member includes a controlled collapse
2 chip connection (C4) solder ball.

1 6. The electronic structure of claim 1, wherein the solder member includes a lead-tin alloy.

1 7. An electronic structure, comprising:

2 a semiconductor substrate having a first electrically conductive pad thereon;

3 an organic substrate having a second electrically conductive pad thereon, wherein a

4 surface area of the first pad exceeds a surface area of the second pad;

5 a solder member electrically coupling the first pad to the second pad; and

6 an underfill material between the semiconductor substrate and the organic substrate,

7 wherein the underfill material encapsulates the solder member, and wherein the underfill material

8 has an elastic modulus of at least about 1 gigapascal.

1 8. An electronic structure, comprising:

2 a semiconductor chip having a first electrically conductive pad thereon;

3 an organic chip carrier having a second electrically conductive pad thereon, wherein a

4 surface area of the first pad exceeds a surface area of the second pad;

5 a solder member electrically coupling the first pad to the second pad; and

6 an underfill material between the semiconductor chip and the organic chip carrier,

7 wherein the underfill material encapsulates the solder member, and wherein the underfill material

8 has an elastic modulus of at least about 1 gigapascal.

1 9. An electronic structure, comprising:

2 a semiconductor substrate having a first electrically conductive pad thereon;

3 an organic substrate having a second electrically conductive pad thereon, wherein a

4 surface area of the first pad exceeds a surface area of the second pad by a factor of at least about

5 1.2; and

6 a solder member electrically coupling the first pad to the second pad.

7 8 9 10 11 12 13 14 15

1 10. An electronic structure, comprising:

2 a semiconductor substrate having a first electrically conductive pad thereon;

3 an organic substrate having a second electrically conductive pad thereon, wherein a

4 surface area of the first pad exceeds a surface area of the second pad by a factor between about

5 1.1 and about 1.3; and

6 a solder member electrically coupling the first pad to the second pad.

1 11. An electronic structure, comprising:

2 a semiconductor substrate having a first electrically conductive pad thereon;

3 an organic substrate having a second electrically conductive pad thereon, wherein a

4 surface area of the first pad exceeds a surface area of the second pad by a factor between about

5 1.3 and about 2.0; and

6 a solder member electrically coupling the first pad to the second pad.

1 12. An electronic structure, comprising:

2 a semiconductor substrate having a first electrically conductive pad thereon;

3 an organic substrate having a second electrically conductive pad thereon; and

4 a solder member electrically coupling the first pad to the second pad, wherein a

5 distance from a centerline of the solder member to a closest lateral edge of the semiconductor

6 substrate is at least about 0.25 mm.

1 13. The electronic structure of claim 12, wherein a coefficient of thermal expansion (CTE) of the

2 organic substrate is between about 10 ppm/ $^{\circ}$ C and about 18 ppm/ $^{\circ}$ C.

1 14. The electronic structure of claim 12, wherein P is between about .15 and about .75, wherein P

2 is defined as $(C_{SOLDER} - C_{ORGANIC})/(C_{SOLDER} - C_{SEMI})$, wherein C_{SOLDER} is a CTE of the solder

3 member, wherein $C_{ORGANIC}$ is a CTE of the organic substrate, and wherein C_{SEMI} is a CTE of the

4 semiconductor substrate.

1 15. The electronic structure of claim 12, wherein the organic substrate includes an organic

2 material selected from the group consisting of an epoxy, a polyimide, a polytetrafluoroethylene,

3 and combinations thereof.

1 16. The electronic structure of claim 12, wherein the solder member includes a controlled

2 collapse chip connection (C4) solder ball.

1 17. The electronic structure of claim 12, wherein the solder member includes a lead-tin alloy.

100 900 800 700 600 500 400 300 200 100 0

1 18. An electronic structure, comprising:

2 a semiconductor chip having a first electrically conductive pad thereon;

3 an organic chip carrier having a second electrically conductive pad thereon;

4 a solder member electrically coupling the first pad to the second pad, wherein a

5 distance from a centerline of the solder member to a closest lateral edge of the semiconductor

6 substrate is at least about 0.25 mm; and

7 an underfill material between the semiconductor chip and the organic chip carrier,

8 wherein the underfill material encapsulates the solder member, and wherein the underfill material

9 has an elastic modulus of at least about 1 gigapascal.

1 19. An electronic structure, comprising:
2 a semiconductor substrate having a first electrically conductive pad thereon;
3 an organic substrate having a second electrically conductive pad thereon;
4 a solder member electrically coupling the first pad to the second pad, wherein a
5 distance from a centerline of the solder member to a closest lateral edge of the semiconductor
6 substrate is at least about 0.25 mm; and
7 an underfill material between the semiconductor substrate and the organic substrate,
8 wherein the underfill material encapsulates the solder member, and wherein the underfill material
9 has an elastic modulus of at least about 1 gigapascal.

1 20. An electronic structure, comprising:

2 a semiconductor substrate having a first electrically conductive pad thereon;

3 an organic substrate having a second electrically conductive pad thereon; and

4 a solder member electrically coupling the first pad to the second pad, wherein a

5 distance from a centerline of the solder member to a closest lateral edge of the semiconductor

6 substrate is at least about 0.40 mm.

1 21. A method of forming an electronic structure, comprising:
2 forming a semiconductor substrate having a first electrically conductive pad thereon;
3 forming an organic substrate having a second electrically conductive pad thereon,
4 wherein a surface area of the first pad exceeds a surface area of the second pad; and
5 electrically coupling, by use of a solder member, the first pad to the second pad.

1 22. The method of claim 21, wherein a coefficient of thermal expansion (CTE) of the organic
2 substrate is between about 10 ppm/ $^{\circ}$ C and about 18 ppm/ $^{\circ}$ C.

1 23. The method of claim 21, wherein P is between about .15 and about .75, wherein P is defined
2 as $(C_{SOLDER} - C_{ORGANIC})/(C_{SOLDER} - C_{SEMI})$, wherein C_{SOLDER} is a CTE of the solder member,
3 wherein $C_{ORGANIC}$ is a CTE of the organic substrate, and wherein C_{SEMI} is a CTE of the
4 semiconductor substrate.

1 24. The method of claim 21, wherein the organic substrate includes an organic material selected
2 from the group consisting of an epoxy, a polyimide, a polytetrafluoroethylene, and combinations
3 thereof.

1 25. The method of claim 21, wherein the solder member includes a controlled collapse chip
2 connection (C4) solder ball.

1 26. The method of claim 21, wherein the solder member includes a lead-tin alloy.

U.S. GOVERNMENT USE

1 27. A method of forming an electronic structure, comprising:

2 forming a semiconductor chip having a first electrically conductive pad thereon;

3 forming an organic chip carrier having a second electrically conductive pad thereon,

4 wherein a surface area of the first pad exceeds a surface area of the second pad;

5 electrically coupling, by use of a solder member, the first pad to the second pad; and

6 placing an underfill material between the semiconductor chip and the organic chip carrier,

7 wherein the underfill material encapsulates the solder member, and wherein the underfill material

8 has an elastic modulus of at least about 1 gigapascal.

1 28. A method of forming an electronic structure, comprising:

2 forming a semiconductor substrate having a first electrically conductive pad thereon;

3 forming an organic substrate having a second electrically conductive pad thereon,

4 wherein a surface area of the first pad exceeds a surface area of the second pad;

5 electrically coupling, by use of a solder member, the first pad to the second pad; and

6 placing an underfill material between the semiconductor substrate and the organic

7 substrate, wherein the underfill material encapsulates the solder member, and wherein the
8 underfill material has an elastic modulus of at least about 1 gigapascal.

1 29. A method of forming an structure, comprising:

2 forming a semiconductor substrate having a first electrically conductive pad thereon;

3 forming an organic substrate having a second electrically conductive pad thereon,

4 wherein a surface area of the first pad exceeds a surface area of the second pad by a factor of at

5 least about 1.2; and

6 electrically coupling, by use of a solder member, the first pad to the second pad.

- 1 30. A method of forming an electronic structure, comprising:

2 forming a semiconductor substrate having a first electrically conductive pad thereon;

3 forming an organic substrate having a second electrically conductive pad thereon,

4 wherein a surface area of the first pad exceeds a surface area of the second pad by a factor

5 between about 1.1 and about 1.3; and

6 electrically coupling, by use of a solder member, the first pad to the second pad.

1 31. A method of forming an electronic structure, comprising:

2 forming a semiconductor substrate having a first electrically conductive pad thereon;

3 forming an organic substrate having a second electrically conductive pad thereon,

4 wherein a surface area of the first pad exceeds a surface area of the second pad by a factor

5 between about 1.3 and about 2.0; and

6 electrically coupling, by use of a solder member, the first pad to the second pad.

USPTO-2013-07-01

1 32. A method of forming an electronic structure, comprising:
2 forming a semiconductor substrate having a first electrically conductive pad thereon;
3 forming an organic substrate having a second electrically conductive pad thereon; and
4 electrically coupling, by use of a solder member, the first pad to the second pad, wherein
5 a distance from a centerline of the solder member to a closest lateral edge of the semiconductor
6 substrate is at least about 0.25 mm.

1 33. The method of claim 32, wherein a coefficient of thermal expansion (CTE) of the organic
2 substrate is between about 10 ppm/ $^{\circ}$ C and about 18 ppm/ $^{\circ}$ C.

1 34. The method of claim 32, wherein P is between about .15 and about .75, wherein P is defined
2 as $(C_{SOLDER} - C_{ORGANIC})/(C_{SOLDER} - C_{SEMI})$, wherein C_{SOLDER} is a CTE of the solder member,
3 wherein $C_{ORGANIC}$ is a CTE of the organic substrate, and wherein C_{SEMI} is a CTE of the
4 semiconductor substrate.

1 35. The method of claim 32, wherein the organic substrate includes an organic material selected
2 from the group consisting of an epoxy, a polyimide, a polytetrafluoroethylene, and combinations
3 thereof.

1 36. The method of claim 32, wherein the solder member includes a controlled collapse chip
2 connection (C4) solder ball.

1 37. The method of claim 32, wherein the solder member includes a lead-tin alloy.

U.S. GOVERNMENT USE

1 38. A method of forming an electronic structure, comprising:

2 forming a semiconductor chip having a first electrically conductive pad thereon;

3 forming an organic chip carrier having a second electrically conductive pad thereon;

4 electrically coupling, by use of a solder member, the first pad to the second pad, wherein

5 a distance from a centerline of the solder member to a closest lateral edge of the semiconductor

6 substrate is at least about 0.25 mm; and

7 placing an underfill material between the semiconductor chip and the organic chip carrier,

8 wherein the underfill material encapsulates the solder member, and wherein the underfill material

9 has an elastic modulus of at least about 1 gigapascal.

1 39. A method of forming an electronic structure, comprising:

2 forming a semiconductor substrate having a first electrically conductive pad thereon;

3 forming an organic substrate having a second electrically conductive pad thereon;

4 electrically coupling, by use of a solder member, the first pad to the second pad, wherein

5 a distance from a centerline of the solder member to a closest lateral edge of the semiconductor

6 substrate is at least about 0.25 mm; and

7 placing an underfill material between the semiconductor substrate and the organic

8 substrate, wherein the underfill material encapsulates the solder member, and wherein the

9 underfill material has an elastic modulus of at least about 1 gigapascal.

1 40. A method of forming an electronic structure, comprising:
2 forming a semiconductor substrate having a first electrically conductive pad thereon;
3 forming an organic substrate having a second electrically conductive pad thereon; and
4 electrically coupling, by use of a solder member, the first pad to the second pad, wherein
5 a distance from a centerline of the solder member to a closest lateral edge of the semiconductor
6 substrate is at least about 0.40 mm.

PRINTED IN U.S.A. ON RECYCLED PAPER