Linear Algebra

주재걸 고려대학교 컴퓨터학과

Lecture Overview

- Elements in linear algebra
- Linear system
- Linear combination, vector equation, Four views of matrix multiplication
- Linear independence, span, and subspace
- Linear transformation
- Least squares
- Eigendecomposition
- Singular value decomposition

Linear Equation

• A **linear equation** in the variables x_1, \dots, x_n is an equation that can be written in the form

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b,$$

where b and the coefficients a_1, \dots, a_n are real or complex numbers that are usually known in advance.

The above equation can be written as

$$\mathbf{a}^T \mathbf{x} = b$$

$$\begin{bmatrix} a_1 \\ a \end{bmatrix}$$

where
$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$.

Linear System: Set of Equations

• A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same variables - say, x_1, \dots, x_n .

Linear System Example

 Suppose we collected persons' weight, height, and life-span (e.g., how long s/he lived)

Person ID	Weight	Height	ls_smoking	Life-span
1	60kg	5.5ft	Yes (=1)	66
2	65kg	5.0ft	No (=0)	74
3	55kg	6.0ft	Yes (=1)	78

We want to set up the following linear system:

$$60x_1 + 5.5x_2 + 1 \cdot x_3 = 66$$

$$65x_1 + 5.0x_2 + 0 \cdot x_3 = 74$$

$$55x_1 + 6.0x_2 + 1 \cdot x_3 = 78$$

• Once we solve for x_1 , x_2 , and x_3 , given a new person with his/her weight, height, and is_smoking, we can predict his/her life-span.

Linear System Example

- The essential information of a linear system can be written compactly using a matrix.
- In the following set of equations,

$$60x_1 + 5.5x_2 + 1 \cdot x_3 = 66$$

$$65x_1 + 5.0x_2 + 0 \cdot x_3 = 74$$

$$55x_1 + 6.0x_2 + 1 \cdot x_3 = 78$$

Let's collect all the coefficients on the left and form a matrix

$$A = \begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \end{bmatrix}$$
 • Also, let's form two vectors: $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix}$

From Multiple Equations to Single Matrix Equation

Multiple equations can be converted into a single matrix equations

How can we solve for x?

Identity Matrix

• **Definition**: An identity matrix is a square matrix whose diagonal entries are all 1's, and all the other entries are zeros. Often, we denote it as $I_n \in \mathbb{R}^{n \times n}$.

• e.g.,
$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• An identity matrix I_n preserves any vector $\mathbf{x} \in \mathbb{R}^n$ after multiplying \mathbf{x} by I_n :

$$\forall \mathbf{x} \in \mathbb{R}^n$$
, $I_n \mathbf{x} = \mathbf{x}$

Inverse Matrix

• **Definition**: For a square matrix $A \in \mathbb{R}^{n \times n}$, its inverse matrix A^{-1} is defined such that

$$A^{-1}A = AA^{-1} = I_n$$
.

• For a 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, its inverse matrix A^{-1} is defined as

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Solving Linear System via Inverse Matrix

• We can now solve $A\mathbf{x} = \mathbf{b}$ as follows:

$$A\mathbf{x} = \mathbf{b}$$

$$A^{-1}A\mathbf{x} = A^{-1}\mathbf{b}$$

$$I_n\mathbf{x} = A^{-1}\mathbf{b}$$

$$\mathbf{x} = A^{-1}\mathbf{b}$$

Solving Linear System via Inverse Matrix

Example:

$$\begin{bmatrix} 60 & 5.5 & 1 \\ 65 & 5.0 & 0 \\ 55 & 6.0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix} \longrightarrow A^{-1} = \begin{bmatrix} 0.0870 & 0.0087 & -0.0870 \\ -1.1304 & 0.0870 & 1.1314 \\ 2.0000 & -1.0000 \end{bmatrix}$$

$$A \qquad \mathbf{x} = \mathbf{b}$$

One can verify

$$A^{-1}A = AA^{-1} = I_n$$
.

•
$$\mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} 0.0870 & 0.0087 & -0.0870 \\ -1.1304 & 0.0870 & 1.1314 \\ 2.0000 & -1.0000 & -1.0000 \end{bmatrix} \begin{bmatrix} 66 \\ 74 \\ 78 \end{bmatrix} = \begin{bmatrix} -0.4 \\ 20 \\ -20 \end{bmatrix}$$

Solving Linear System via Inverse Matrix

• Now, the life-span can be written as $(\text{life-span}) = -0.4 \times (\text{weight}) + 20 \times (\text{height}) \\ -20 \times (\text{is_smoking}).$

Non-Invertible Matrix A for Ax = b

- Note that if A is invertible, the solution is uniquely obtained as $\mathbf{x} = A^{-1}\mathbf{b}$.
- What if A is non-invertible, i.e., the inverse does not exist?
 - E.g., For $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$, in $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$, the denominator ad-bc = 0, so A is not invertible.
- For $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, ad bc is called the determinant of A, or $\det A$.

Does a Matrix Have an Inverse Matrix?

- $\det A$ determines whether A is invertible (when $\det A \neq 0$) or not (when $\det A = 0$).
- For more details on how to compute the determinant of a matrix $A \in \mathbb{R}^{n \times n}$ where $n \geq 3$, you can study the following:
 - https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-20 10/video-lectures/lecture-18-properties-of-determinants/
 - https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-20 10/video-lectures/lecture-19-determinant-formulas-and-cofactors/

Inverse Matrix Larger than 2×2

- If invertible, is there any formula for computing an inverse matrix of a matrix $A \in \mathbb{R}^{n \times n}$ where $n \geq 3$?
- No, but one can compute it.
- We skip details, but you can study Gaussian elimination in Lay Ch1.2 and then study Lay Ch2.2.

Non-Invertible Matrix A for Ax = b

• Back to the linear system, if A is non-invertible, $A\mathbf{x} = \mathbf{b}$ will have either no solution or infinitely many solutions.

Rectangular Matrix A in Ax = b

• What if A is a rectangular matrix, e.g., $A \in \mathbb{R}^{m \times n}$, where $m \neq n$?

Person ID	Weight	Height	ls_smeking	Life-span	F.C.O.		47	Γγ ٦		F (ſ
1	60kg	5.5ft	Yes (=1)	66	 60	5.5		$\begin{bmatrix} x_1 \end{bmatrix}$		66	
2	65kg	5.0ft	No (=0)	74	65	5.0	0	$ x_2 $	=	74	
3	55kg	6.0ft	Yes (=1)	78	L55	6.0	1	$[x_3]$		L78J	

- Recall m = # equations and n = # variables. $A = \mathbf{x} = \mathbf{b}$
- m < n: more variables than equations
 - Usually infinitely many solutions exist (under-determined system).
- m > n: more equations than variables
 - Usually no solution exists (over-determined system).
- To study how to compute the solution in these general cases, check out Lay Ch1.2 and Lay Ch1.5.