	CR410 AA11	/2	(Crittografia	a chiave	pubblica
--	------------	----	---------------	----------	----------

Λ.	D.	D.	$\mathbf{E}\mathbf{I}$	· T	•	`	D

Roma, 26 Giugno, 2012.

da durante le prima ora		2	3	4	5	6	7	8	9		OT.	_				
	1	2	3	4	0	0	1	0	9	1	01.	1				
spondere alle seguenti d	lomande ch	ne for	nisco	no un	ıa giu	stifica	azion	e di 1	riga:	:						
a. E' vero che se E è un	ıa curva ell	ittica	defin	nita s	u F ₃ ,	allor	a si p	uò ag	gevolı	ment	te cal	cola	re $E($	$(\mathbf{F}_{3^{100}})$)?	
o. E' vero che se $p-1$ h	na soltanto	fatto	ri pic	coli a	allora	i loga	aritm	i disc	roti i	, F	a :	1			tomont	0?
· B vere ene se p II			r				~		10011	11 1 7	, si ca	исо	lano ϵ	emeiei	пешеш	e:
. I vere ene se p			P			1 108	2110111		10011	11 F p	, si ca	ясо	lano e	ешстег	пешеш	e:
. D vero eno se p 11			F			1108	~		.1001 1	11 F _F	, si ca	arco	lano e	emciei	пешеш	e:
											, SI Ca		lano e	emeiei		e:
											, si ca		lano e	·····		
											, si ca		lano €	·····		
											, SI Ca			·····		
											, SI Ca			······	·····	
											, SI Ca	····		·····		
											, SI Ca			·····	·····	
											, si ca			·····	······	
											, si ca			·····		
											, si ca			·····	·····	
														·····		
											, si ca			·····		
c. Quanti sono i polinor																
											, si ca					

5.	Dato un intero dispari e composto m si dimostri che l'insieme delle basi euleriane in $U(\mathbf{Z}/m\mathbf{Z})$ è un sottogruppo mentre quello delle basi forti non lo è.
6.	Spiegare il funzionamento del crittosistema Massey–Omura e lo si illustri mediante un esempio esplicito.
7.	Enunciare e dimostrare il teorema di classificazione dei sotto campi di $\mathbf{F}_{p^m}.$

8. Supponiamo ${\bf F}_8={\bf F}_2[\xi], \xi^3=1+\xi.$ Determinare il numero di punti di $E({\bf F}_8)$ dove

$$E: y^2 + \xi y = x^3 + \xi$$

9. Supponiamo che E sia un curva ellittica definita su \mathbf{F}_{25} , che $P \in E(\mathbf{F}_{25})$ sia un punto di ordine 7 e che E abbia almeno due punti di ordine 2. Calcolare $\#E(\mathbf{F}_{25})$.