ShanghaiTech University

EE 115B: Digital Circuits

Fall 2022

Final Exam, December 27, 2022

My signature below indicates that I understand and have complied with the Academic Integrity Policy of ShanghaiTech University. I have neither received nor given any unauthorized aid.

Student ID:	Name in Chinese:	

- 1. Short questions. (16 points. 2 points each.)
 - (1) Convert $(25.625)_{10}$ to binary.
 - (2) Convert (45)₁₆ to BCD.
 - (3) Determine the odd parity bit for 10111010.
 - (4) (True or False) The XNOR gate is also called the equivalence gate.
 - (5) (True or False) For any combination of inputs, the sum of all minterms is 0.
 - (6) What does "VHDL" stand for?
 - (7) What does "FPGA" stand for?
 - (8) (True or False) CASE statements can only appear in PROCESS blocks.
- 2. Develop the minimum SOP and POS expressions with the don't cares using Karnaugh map. (20 points. 10 points each.)

$$Y(A, B, C, D) = \sum m(1, 6, 7, 9, 10) + D(2, 3, 11, 13)$$

- 3. (20 points.) Consider a circuit with three inputs and one output. The output is 1 if the number of the inputs taking the value of 1 is odd.
 - (1) Define the logic variables and build the truth table (8 points).
 - (2) Determine four equivalent expressions for the output: AND-OR, NAND, AND-OR-Invert (AOI), and NOR. (12 points. 3 points each.)
- 4. (15 points.) Consider the counter shown in Fig. 1. Note that the flip-flops are D flip-flops.

Fig. 1: A counter.

(1) (True or False) This counter is asynchronous. **You need to justify your answer.** (3 points.)

- (2) Sketch the timing diagram of Q_2 , Q_1 , and Q_0 . Analyze the binary sequence of this counter. Assume that the initial states are $Q_0=Q_1=Q_2=0$. The count is represented by " $Q_2Q_1Q_0$ " with Q_2 as the MSB and Q_0 as the LSB. (10 points.)
- (3) Determine the modulus of this counter. (2 points.)
- 5. (29 points.) Consider the state diagram shown in Fig. 2. The input is "w" and the output is "z".

Fig. 2: A state diagram.

- (1) (True or False) This is a Mealy-type finite state machine. You need to justify your answer. (3 points.)
- (2) Convert the state diagram to a state table. (5 points.)
- (3) Convert the state table developed in step (2) to a state-assigned table using the following configurations. The present state variables are "y₂y₁". The next state variables are "Y₂Y₁". The state assignment is "00" for A, "11" for B, "01" for C, and "10" for D. (5 points.)
- (4) Based on the state-assigned table developed in step (3), determine the minimum SOP expressions for the output "z" and the next state variables "Y₁" and "Y₂". (12 points. 4 points each.)
- (5) Design a state assignment using the one-hot encoding scheme. You only need to assign a code to each of the four states. (4 points.)

State	A	В	С	D
One-hot code				