Imperative Programmierung (IPR)

Kapitel 0: Motivation und Organisatorisches

Univ.-Prof. Dr.-Ing. habil. Gero Mühl

Lehrstuhl für Architektur von Anwendungssystemen (AVA) Fakultät für Informatik und Elektrotechnik (IEF) Universität Rostock

Inhalte

1. Motivation

2. Organisatorisches

Kapitel 0.1 Motivation

Motivation

- **Programmierung** ist das Erstellen eines Programms, mit dem Ziel dieses auf einem Computer auszuführen.
- Ein **imperatives Programm** ist eine Folge elementarer Befehle, die der Computer sequentiell abarbeitet.
- Alle Computer werden letztendlich in einer sehr einfachen imperativen Sprache der jeweiligen Maschinensprache programmiert.
- Die imperative Programmierung bildet daher die Basis für alle anderen Programmierparadigma, wie z. B. der funktionalen Programmierung.
- Programmieren ist wesentlich für den Berufsalltag eines Informatikers.
- "Informatiker", die nicht gut programmieren können, haben nicht verstanden, was den Beruf eines Informatikers ausmacht.

Was heißt "Programmieren lernen"?

Versuch einer Analogie

- Programmiersprache = Auto
- Programmieren = Auto fahren
- Programmieren lernen = Auto fahren lernen
- Ihre erste Programmiersprache = Fahrschulauto
- Fahrschule
 - Der theoretische Unterricht erklärt die Zusammenhänge.
 - Die Fahrstunden trainieren die Fähigkeit, tatsächlich Auto zu fahren.
- So wenig, wie man Autofahren aus einem Buch lernen kann, so wenig geht das beim Programmieren.
- Ziel der Fahrschule ist es nicht, Ihnen das Fahren eines bestimmten Auto beizubringen, sondern das Autofahren – mit dem Ziel, nachher verschiedene Autos fahren zu können.

Motivation

- Für die imperative Programmierung haben sich über die Jahrzehnte eine Reihe grundlegender **Datentypen** etabliert.
 - Listen, Keller, Warteschlangen, Tabellen, Bäume, Graphen etc.
- Für jeden Datentypen gibt es diverse Realisierungsmöglichkeiten in Form konkreter Datenstrukturen.
 - z.B. die Realisierung einer Liste als Array oder als verkettete Liste
- Die Realisierungen unterscheiden sich teils wesentlich in ihren Eigenschaften (z. B. Laufzeit der Operationen, Speicherverbrauch).
- Auch aufgrund der vielfachen Verwendung in der Praxis sollte jeder Informatiker diese Datentypen und ihre Realisierungen kennen.

Inhalt der Veranstaltung

- Diese Vorlesung
 - führt in die imperative Programmierung am Beispiel der Programmiersprache C ein und
 - gibt einen Überblick über die wichtigsten Datentypen der Informatik.
- Hierbei wird
 - die Spezifikation der Datentypen als abstrakter Datentyp und
 - die Implementierung ihrer Realisierungsvarianten in C besprochen.
- Die Vorlesung Algorithmen und Datenstrukturen behandelt darauf aufbauend nächstes Semester die wichtigsten Algorithmen der Informatik und ihre Eigenschaften
 - Sortieren, Suchen, . . .
 - Asymptotische Komplexitätsanalyse

Lernziele der Veranstaltung

- Prinzipien der imperativen Programmierung kennenlernen.
 - Anweisungen, Ausdrücke, Kontrollstrukturen, Prozeduren etc.
- Grundlegende Begriffe der Programmierungstechnik verstehen.
 - Algorithmus, Sprache, Semantik, Spezifikation, Verifikation etc.
- Spezifikationsverfahren erlernen und diese auf einfache Problemstellungen anwenden können.
- Die grundlegenden Datentypen der Informatik und ihre Realisierungsmöglichkeiten kennenlernen und implementieren können.

Inhalt der Vorlesung

- 1 Einführung
 - Was ist Informatik?
 - Was ist ein Algorithmus?
 - Was ist eine Programmiersprache?
 - Was ist ein Programm?
 -
- 2 Einführung in C
- 3 Abstrakte Datentypen

- 4 Fallbeispiel: Listen
- 5 Fallbeispiel: Keller
- 6 Fallbeispiel: Warteschlangen
- 7 Fallbeispiel: Tabellen
- 8 Fallbeispiel: Bäume

Kapitel 0.2

Organisatorisches

Verantwortlicher Dozent

```
Name:
```

Univ.-Prof. Dr.-Ing. habil. Gero Mühl

Email:

gero.muehl@uni-rostock.de

Telefon:

0381 / 498-7621 (Sekretariat)

Sprechstunde:

nach Vereinbarung

Lehrstuhl:

Architektur von Anwendungssystemen (AVA)

URL:

https://www.ava.uni-rostock.de

Adresse:

Albert-Einstein-Str. 22, Raum 267 (Sekretariat)

Das IPR-Team

■ Beteiligte Übungsleiter

Name	E-Mail
Willi Brekenfelder	willi.brekenfelder@uni-rostock.de
Andreas Ruscheinski	andreas.ruscheinski@uni-rostock.de
Justin Kreikemeyer	justin.kreikemeyer@uni-rostock.de

■ Bitte erfragen Sie die Sprechzeiten Ihres Übungsleiters in der ersten Übung oder schlagen Sie sie auf seiner persönlichen Webseite nach.

Kommunikationswege

- Vorlesung im Stud.IP
 - Folien
 - Übungsblätter
 - Ankündigungen
 - Diskussionsforum
- E-Mail
 - Terminabsprachen für Sprechzeiten
- Persönliche Kommunikation in der Übung
 - Verständnisprobleme und Fragen von allgemeinem Interesse
- Persönliche Kommunikation in der Sprechstunde
 - Individuelle Fragen und Probleme, die nicht für eine Erörterung in der Übung geeignet sind

Veranstaltungen

- Vorlesung (3 SWS)
 - Mittwochs, 13-15 Uhr
 - Donnerstags, 15-17 Uhr (in ungeraden Wochen)
 - Führt in das Gebiet ein und ermöglicht so weiteres Selbststudium und selbstständige Nutzung der Literatur.
 - Gibt Hinweise auf Gesamtzusammenhänge und etwaige Probleme.
 - Bereitstellung als Folienskriptum im Stud.IP.
 - Kleinere Abweichungen nachträglich möglich (z. B. Ergänzungen und Korrekturen).
- Übung (2 SWS) und Praktikum (1 SWS)
 - Ergänzung der Vorlesung durch umfangreichere Beispiele.
 - Dialog von Übungsleiter und Studierenden, z. B. zur Beseitigung von Unklarheiten.
 - Gemeinsames Programmieren im Praktikum (nicht für alle Studiengänge vorgesehen).
 - Eine aktive Mitarbeit ist zur erfolgreichen Auseinandersetzung mit dem Stoff unabdingbar.

Zu den Übungen

- Erfolg in der Übung korreliert mit Erfolg in der Klausur.
- Ohne aktive Teilnahme an den Übungen werden Sie die Prüfung höchstwahrscheinlich nicht bestehen.
- Bilden Sie Arbeitsgemeinschaften und bearbeiten Sie die Aufgaben nicht alleine, sondern zusammen im Team!
- Denken Sie aber auch daran: in der Klausur sind Sie allein!
- Plagiieren führt zum Nichtbestehen des Übungsblattes.
- Bei Mangel an Interesse/Vorbereitung spielt der Übungsleiter nicht den Alleinunterhalter, sondern beendet die Übung.
- Weitere Details zur Durchführung erfahren Sie von Ihrem Übungsleiter in der ersten Übung.

Prüfungsmodalitäten

- Zulassungsvoraussetzung für die Modulprüfung
 - Erreichen von 50% der Hausaufgabenpunkte
- Prüfung "Imperative Programmierung für Informatik", 9 CP, 120-minütige Klausur.
- Prüfung "Imperative Programmierung", 6 CP, 120-minütige Klausur.
- Prüfung "Imperative und Funktionale Programmierung", 9 CP
 - Zwei getrennte Prüfungsleistungen
 - 80-minütige Klausur "Imperative Programmierung"
 - Prüfung "Funktionale Programmierung"
- Melden Sie sich rechtzeitig für die richtige Prüfung an!
- Eine verpasste Anmeldung kann nicht nachgeholt werden!

Vielen Dank für Ihre Aufmerksamkeit!

Univ.-Prof. Dr.-Ing. Gero Mühl

gero.muehl@uni-rostock.de
https://www.ava.uni-rostock.de