Simuler les feux de forêt

Comment utiliser l'informatique pour réduire l'impact des feux de forêts en transformant le moins possible ces dernières ?

N° SCEI 14423

Victor Sarrazin

Introduction

Contexte

Les feux de forêt sont de plus en plus fréquents. L'informatique peut se révéler être un atout de taille pour contrer ces derniers

Figure: Feu de forêt à Malibu¹

¹National Geographic Education

Sommaire

1. Un premier modèle de feux de forêt

2. Modèle d'Alexandridis pour les feux de forêt

3. Étude des transformations réalisables

Automate cellulaire (2D)

- Une grille Un état par case
- Un ensemble de règles de transitions entre les états

²Science Direct

Automate cellulaire (2D)

- Une grille
- Un état par case
- Un ensemble de règles de transitions entre les états

Figure: Voisinage de Moore ²

²Science Direct

Types de cases:

- Arbres
- Champs
- Feu
- Case brulée *
- Eau *
- * Ne peuvent pas/plus bruler

p_b	Voisin direct	Voisin diagonal
Arbres	1/8	<u>1</u> 16
Champs	<u>1</u> 8	1/16

Figure: Changement d'états

Figure: $\lambda t = 0$

Figure: À t = 200

Vers le modèle d'Alexandridis

Idée

Il serait intéressant de prendre en compte des données du milieu : vent, densité de végétation

Nouveau type de case : • Arbres denses

Règles de transition

Pour tout $(i, j, t) \in \mathbb{N}^3$, on a:

- Si etat(i, j, t) = feu, alors etat(i, j, t + 1) = brule
- Si etat(i, j, t) = feu, alors $etat(i \pm 1, j \pm 1, t + 1) = brule$ avec une probabilité p_b
 - Si etat(i, j, t) = brule, alors etat(i, j, t + 1) = brule

Probabilité d'inflammage p_b On a $p_b = p_h(1 + p_{veg})(1 + p_{den})p_{vent}$ avec $p_h = 0.27$ une constante

Probabilité liée au vent p_{vent}

On a $p_{vent} = exp(0.045 \times v) \times exp(v \times 0.131 \times (cos(\theta) - 1))$ avec θ l'angle entre la propagation du feu et la direction du vent et v la vitesse du vent (en m/s)

	p_{veg}	p_{den}
Arbres	0.3	0.3
Arbres denses	0.3	0
Champs	-0.1	0

Figure: Probabilités p_{veq} et p_{den} selon le type de végétation

// TODO : Résultats sans vent sur la même grille et comparaison

Figure: Modèle 1 (t = 200)

Figure: Modèle 2 (t = 200)

// TODO : Prise en compte du vent dans une grille dense, et dans une grille pas dense

// Vent: 15m/s

Figure: Vent à 15m/s vers l'est non dense (t = 200)

Figure: Vent à 15m/s vers l'est dense (t = 200)

Navigateur

