Dynamic and Social Network Analysis

Lecture-1

Miray Kas Bilkent University Computer Engineering Department

Welcome to Dynamic and Social Network Analysis!

A Little About Me

- Bilkent Alumni (BS and MS from CS Department)
 - During my masters, my advisors were Prof. Ibrahim Körpeoğlu and Prof. Ezhan Karasan
- PhD from Carnegie Mellon University
 - My research area was social network analysis
- Working at Google for ~8 years
- I joined a startup for about a year in between my Google experience
- I have been living in the USA for the past 13 years.

Tell me about yourself!

Brief personal intro, which year/department are you in?

• What are your career plans (academia? industry? abroad?)

What is your area of interest?

Class Logistics

Goals - What is this class about?

Gain a basic understanding of dynamic and social network analysis

- Learn the terminology and fundamental techniques of network analysis
- How and where it can be used
- Collection, representation, and conversion of social network data
- Learn how to interpret the results of an analysis
- Hands on practice

NOT about pure programming!

Topics

- Intro, Logistics & Basics
- Network Analysis Fundamentals
- Metrics & Centrality
- Structure: Groups and community
- Network Topology
- Dynamic Networks
- Network Evolution
- Applications
 - Authorship/Science/Citation Networks
 - Geospatial Networks
 - Social Media Networks and Analysis
 - Health and Disease Spread
 - Malicious Networks

Approach and Course Structure

- First half (until midterm): Theory and Methods
- Second half (after midterm): Applications
- 3 lectures a week
 - Completely remote, online.
 - Slide decks and lecture recordings will be shared.
 - Created a joint course for 429/529 on Moodle
- Hands on
 - Homeworks + midterm
 - Tools usage
 - Final Project (Write up + presentation)
 - No final exam!

Grading Criteria

Homeworks (25%):

- 5 homeworks equally weighted
- Only 1 or 2 of them will involve programming
- The rest will involve hands on problem sets, tool usage & analysis/interpretation

Midterm (25%):

- We will use one of our class sessions for ease of scheduling.
- Cameras turned on, will be proctored online. No other person in the room.
- Attendance in the exam without camera turned on will not be accepted

Final Project (50%)

More on the final project

Final Project (50%):

- Can be done individually or in pairs.
- 4 milestones to ensure progress. Each step is graded.

Project Milestones

- **P1: Project Short Proposal** (5%): A brief discussion of your proposed project: dataset, methods, and expected challenges. No less than 250 words, no more than 500 words.
- P2: Project Draft Intro, Background, and Methodology Sections (15%)
- **P3: Project Presentation:** 10-15 minute conference talk discussing your project's methods and key findings (10%)
- P4: Final Project Submission (20%) Due Last Day of Class; Publication style write up of your project in the format of an ACM paper (6 pages max, 4 pages min including references; this page limit is **strict**). You should share your data and analysis files for evaluation as well

More on the final project

Choose and propose a topic

 You are welcome and encouraged to choose your topic before Project Short Proposal is due

Requirements

- Must be strongly related to the subject of the course (lectures + reading material)
- Must strongly tie to the literature (No plagiarism, at least 10 references cited in final write up)
- Must involve real or simulated network data
- Must use network / node / link analysis techniques
- Must be in the format of an ACM paper (6 pages max, 4 pages min including references; this page limit is **strict**).
- Final submission should include the writeup, dataset, analysis files, and the presentation for the talk together.

Contact

- Email: <u>miraykas@cs.bilkent.edu.tr</u>, <u>miraykas@gmail.com</u>
- There will be 3 lectures in a regular week.
- Thursday 9:30 class is the spare hour.
 - I will use it as the office hour.

Introduction to Social Network Analysis

The fate of Saddam Hussain & Network Analysis

Adapted from Barabasi Network Science Lectures

The fate of Saddam Hussain & Network Analysis

- Networks show strong predictive power
- His capture was not based on fresh data!
 - Hierarchical government network did not show his whereabouts
 - Social Network constructed from family photo album revealed his locations
 - Construction of social networks (e.g. mapping information) is very complicated!
- Your choice of network and how you analyze is super important!

Rise of Social Media: Billions of Users!

- Social Networks (Facebook)
- Discussion Forums (Reddit)
- Media Sharing Networks (Instagram)
- Blogging & Publishing Networks (Medium)
- Consumer Review Networks (Yelp)

Clubhouse

Drop-in Audio

Social Network Analysis of Your Friends in Facebook

Fast-Growing Scientific Area

Social Network Analysis (SNA) is studied since 1960s.

Exponential growth in early 2000s

Government & Defense

- Saddam's case
- Trade tracking between countries

Social media and social network applications

Academia/Science

- Linguistics, health and disease spread
- Human genome and brain connectivity

Business Practitioners

- New organizational forms
- Management consultants

In 1960s, sociologists were studying a group of monks.

The techniques are enhanced to analyze networks with billions of nodes!

Network Perspective &

Fundamentals of Dynamic and Social Network Analysis

The Network Perspective

- Holistic view & System level thinking
- Look at the elements, but also how they relate to one another
- Can be analyzed at multiple layers
 - No reductions, holistic.
 - Reduced for zooming/focus reasons

Fundamental Difference btw. Network and Non-Network Perspective

Inclusion of information about relationships!

Mainstream Data vs Social Networks

Variables (Attributes)

Person	Age	Work Org	Alma Mater
p1	32	MS Research	MIT
p2	25	Google	СМИ
р3	47	MS Research	СМИ
p4	47	MS Research	Georgia Tech

Social Network

A social network is a snapshot!

- Description of relationships among a group of actors at a particular point in time
- Actors could be individuals, organizations, and with new applications, they can even be genes or scientific topics!
- The social networks key component is relationships - show how the actors are connected to one another

Fundamental Concepts - Elements of a Social Network

Actor

Actors are discrete individual, corporate, or collective social units (among others; also: node, vertex)

Individual: A Facebook friend, a romantic partner

Corporate: Companies, government agencies, universities

Collective social units: Groups that can be represented as a node on

a graph

Fundamental Concepts - Elements of a Social Network Relational Tie

A relational tie establishes a linkage between a pair of actors

- Evaluation of one person by another (for example expressed friendship, liking, or respect)
- Transfers of material resources (for example business transactions, lending or borrowing things)
- Association or affiliation (for example jointly attending a social event, or belonging to the same social club)
- Behavioral interaction (talking together, sending messages)
- Movement between places or statuses (migration, social or physical mobility)
- Physical connection (a road, river, or bridge connecting two points)
- Formal relations (for example authority)
- Biological relationship (kinship or descent)

Fundamental Concepts - Elements of a Social Network

Dyad

 Dyad = actor_1 + actor_2 + possible relationships between them

Dyadic analysis focuses on whether

- the relations are bidirectional (i.e. reciprocated)
- certain types of relationships occur together

Triad

 Triad = actor_1 + actor_2 + actor_3 + possible relationships between them

Triadic analysis is crucial for understanding transitivity & balance

Definitions based on Wasserman & Faust, 1994)

Fundamental Concepts - Elements of a Social Network

Subgroup

- A subset of actors and all ties among them
- Dyads and Triads are special cases of subgroups

Group

- Collection of all actors on which ties are to be measured
 - A finite set or sets of actors
 - Must be able to argue theoretical, empirical, or conceptual criteria that brings the group of actors together

Social Network

A social network is a snapshot!

- Description of relationships among a group of actors at a particular point in time
- Actors could be individuals, organizations, and with new applications, they can even be genes or scientific topics!
- The social networks key component is relationships show how the actors are connected to one another

Real World Networks???

Can pretty much model all real world interactions as networks

Main Groups:

- Social Networks (Longest history of study)
- Information Networks
- Technological Networks
- Biological Networks

Set-I: Social Networks

- Vertices: Individuals or groups of people
- Links: Interactions or contacts

EXAMPLES:

Friendship
Business Relations
Intermarriages btw. Families
Collaboration btw. Film actors
Co-authorship among academics

Set-I: Social Networks

- Where to find reliable data about social networks?
 - Surveys are biased
- Potential Sources:
 - Communication records
 - Who calls who?
 - Facebook
 - Who is a friend of who?
 - Google Scholar
 - Who writes papers with whom?
 - o IMDB
 - Who co-stars with whom?

Set-II: Information Networks

- Vertices: Information
- Links: Containment, reference, etc.

EXAMPLES:

Citation Networks

World Wide Web

Words in thesaurus

Set-III: Technological Networks

- Man made networks
- Distribution of commodity or resources

EXAMPLES:

Railways
Electric Power grid
Telephone network
Internet

Set-IV: Biological Networks

EXAMPLES:

Blood vessels

Genetic Regulatory

Metabolic pathways

Neural networks

Food Web (Who eats who?)

Networks are Everywhere!

- Social networks : online social networks, edges represent interactions between people
- Networks with ground-truth communities: ground-truth network communities in social and information networks
- Communication networks : email communication networks with edges representing communication
- Citation networks : nodes represent papers, edges represent citations
- Collaboration networks : nodes represent scientists, edges represent collaborations (co-authoring a paper)
- Web graphs: nodes represent webpages and edges are hyperlinks
- Amazon networks: nodes represent products and edges link commonly co-purchased products
- Internet networks: nodes represent computers and edges communication
- Road networks: nodes represent intersections and edges roads connecting the intersections
- Autonomous systems : graphs of the internet
- Signed networks : networks with positive and negative edges (friend/foe, trust/distrust)
- Location-based online social networks : social networks with geographic check-ins
- Wikipedia networks, articles, and metadata: talk, editing, voting, and article data from Wikipedia
- Temporal networks : networks where edges have timestamps
- Twitter and Memetracker: memetracker phrases, links and 467 million Tweets
- Online communities: data from online communities such as Reddit and Flickr
- Online reviews: data from online review systems such as BeerAdvocate and Amazon
- User actions: actions of users on social platforms.
- Face-to-face communication networks : networks of face-to-face (non-online) interactions
- Graph classification datasets : disjoint graphs from different classes

How do we understand what is going on with networks

- How do we understand what is going on?
- How do we analyze their properties?
- Shift of focus:
 - We want to analyze large-scale graphs
 - We will need sophisticated software tools (Next topic!)
- Three aims of research:
 - Find statistical properties
 - Create network models
 - Predict their behavior

Introduction to Social Network Analysis Software

Social Network Analysis Software

- Many tools are available online, mostly free for students (Links available in the <u>syllabus</u>)
 - You can choose/suggest another tool that is not in the syllabus.
- You are free to choose whichever tool works with your system.
- Make sure to try them out and choose one or two you like, you will need it starting Homework-1 all the way to your final project!

Social Network Analysis Software

- Some are totally visual, some are script based.
- Some work with Windows only, some need programming environment installed etc.
- Most tools have sample datasets available
 - They usually have their own file format.
 - Almost all of them accept csv format and convert from that.
- Some of them are open source and free, some are paid
 - Paid software usually gives long enough trial for students to complete a semester.

Social Network Analysis Software

- Wikipedia has a comprehensive list, but even that is not complete.
- https://en.wikipedia.org/wiki/Social network analysis software

ORA

- 180-day trial version (enough for a semester)
- From Carnegie Mellon University, CASOS Group
- Runs on Windows
- Has very detailed metrics and reports
 - Stronger than Gephi
- Many datasets available: <u>CASOS Tools: Network Analysis Data</u>
 <u>CASOS</u>

Gephi

- Open source and free
- Runs on Windows, Mac OS X and Linux (You can download from https://gephi.org/)
- Be careful with the Undo button!
- Many plugins available (<u>Gephi Plugins</u>)
 - They have well published APIs, you can write your own plugin (<u>Gephi developers</u>)
- So many ways of getting started with Gephi
 - http://literaturegeek.com/2013/09/09/dataintogephi
 - Gephi Tutorial Quick Start
 - https://www.youtube.com/watch?v=FpOIbhOmGUs&ab_channel=%7BYangSong%7

SocNetV

- Runs on Windows, Mac OS X and Linux (You can download from <u>Downloads - Social Network Analysis and Visualization</u> <u>Software</u>)
- Easy to create some of the simulated network models.

Specialization: SocioViz

- Very basic tool that allows queries on Twitter/Facebook
- Free access is limited
 - More sophisticated queries can be run in paid form.
- SocioViz

Specialization: VOSviewer

- Download VOSviewer
- Focused on scientific networks
- Works for Windows, Mac, Linux

Next Lecture:

Tool Demos Representing Social Network Data (Graphs and Matrices)

