(57) 摘要

本发明公开了一种耐β - 内酰胺酶的头孢菌素酯化合物,其特征在于该化合物的结构式白舒巴坦卤甲酯的甲酯残基与半合成头孢菌素或其盐的羧基残基相连接构成,如结构式(I)所示:

本发明还提供了该化合物的药用盐,以及它们在制备口服抗生素中的应用。

PCT/CN2004/001318 **80/580561**

耐β-内酰胺酶的头孢菌素酯化合物及基盐PCT/产TO 2.6 MAY 2006

技术领域

本发明涉及一系列耐β-內酰胺酶的头孢菌素酯化合物及其盐,以及它们在制备抗 生素中的应用。

技术背景

具有下列通式(II)的化合物均为已知半合成头孢菌素,例如:

头孢他美 (cefetamet,CAS 登记号: 65052-63-3), 头孢呋辛 (cefuroxime,CAS 登记号: 55268-75-2); 头孢拉定 (cefradine,CAS 登记号: 38821-53-3); 头孢氨苄 (cefalexin,CAS 登记号: 15686-71-2); 头孢克罗 (cefaclor,CAS 登记号: 53994-73-3) 和头孢羟氨苄 (cefadroxil,登记号: 50370-12-2)。其中头孢他美的 (2, 2-二甲基-1-1氧代而氧) 甲酯 (cefetamet pivoxil,CAS 登记号 65243-33-6) 和头孢呋辛的 1- (乙酰氧) 乙酯 (cefuroxime axetil,CAS 登记号 64544-07-6) 和上述另四个头孢菌素都是已用于临床的口服抗生素。

具有下列通式 (III) 的化合物是:

舒巴坦 (sulbactam,CAS 登记号 68373—14—8) 卤甲酯,舒巴坦是一个 β —内酰胺酶抑制剂,对金葡菌和多种革兰氏阴性菌产生的 β —内酰胺酶有很强的不可逆的抑制作用。 $2\mu g/m l$ 浓度对 II 、III 、IV 、V型 β —内酰胺酶的抑制作用极强。青霉素和头孢菌素类抗生素与其合用能产生协同现象,目前临床中已使用氨苄西林,头孢哌酮、头孢噻肟,头孢曲松与其钠盐的混合注射剂,可防止这些抗生素被 β —内酰胺酶水解而失去抗菌活性,降低了这些抗生素对某些因产酶而引起的耐药细菌的最小抑制浓度。

众所周知,静脉用药繁琐,而且面临血源性传染病,如乙、丙肝炎,艾滋病等的威胁。且对于轻、中度炎症患者或者静脉抗炎后的序贯治疗,往往仅需口服用药,不仅使用方便、安全,且可节省许多人力、物力和财力。但β-内酰胺类口服抗生素中对产酶

菌的耐药现象很普遍,导致治疗效果欠佳。因此,制备耐β-内酰胺酶口服抗生素实为抗生素制药领域的研究热点。

目前已有化合物(Ⅲ)与氨苄西林经化学合成的双酯一舒他西林(Sultamicillin,CAS 登记号 76497—13—7),是一个已在临床中广泛使用的口服抗菌剂,口服后可被肠壁的酯酶水解成氨苄西林和舒巴坦,达到舒巴坦和氨苄西林混合注射剂相同的疗效。但目前尚未有将化合物(Ⅲ)与头孢菌素经化学合成,并制备可口服耐β一内酰胺酶抗生素的化合物。

发明内容

本发明的目的为解决上述课题,提供一种耐β-内酰胺酶的头孢菌素酯化合物及其 盐。

本发明的目的是通过以下技术方案来实现的:

一种耐 β 一内酰 胺酶的头孢菌素酯化合物,其特征在于该化合物的结构式由舒巴坦 卤甲酯的甲酯残基与 半合成头孢菌素或其盐的羧基残基相连接构成。

其中,该半合成头孢菌素的盐是指其无机盐或有机碱盐。

该无机盐可为钠盐、钾盐、镁盐或钙盐,该有机碱盐可为三乙胺盐、三丁胺盐、1.8-二氮杂环[5,4,0]十一烷-7-烯盐、二环已基胺盐或四丁铵盐。

该半合成头孢菌 素选自头孢他美、头孢呋辛、头孢拉定、头孢氨苄、头孢克罗或头孢羟氨苄。

而该舒巴坦卤甲酯可以是舒巴坦溴甲酯或舒巴坦碘甲酯。

本发明还提供上述化合物的药用盐。

其中, 该药用盐是指无机盐或有机酸盐。

所述的无机盐或有机酸盐可以是盐酸盐、硫酸盐、对甲苯磺酸盐、酒石酸盐、马来 酸盐和乳酸盐。

本发明的化合物或其药用盐,其特征在于该化合物具有下列通式(I):

RCONH
$$S$$
 R_1 (I) $C=0$ $C+1$

其中R、R1具体见下表所示:

化合物(I)	化合物(II)			
代号	序号	通用名	R	Ri
YR-1	П-1	头孢他美	H ₂ N S NOCH ₃	—сн₃
YR-2	II —2	头孢呋辛	C-NOCH ₃	O —OCNH₂
YR-3	II —3	头孢拉定	CH- NH ₂	—CH₃
YR-4	II —4	头孢氨苄	CH- NH ₂	—CH₃
YR-5	II 5	头孢羟氨苄	HO—CH—NH ₂	СН₃
YR-6	II6	头孢克罗	CH- NH ₂	—СІ

该系列化合物(I)的化学名称分别为:

YR-1: 5-硫杂-1-氮杂双环[4,2,0]辛烷-2-烯-2-羰酸,7-[[(2-氨基-4-噻唑基)(甲氧亚胺)乙酰基]氨基]-3-甲基-8-氧代-,[[3,3-二甲基-4,4-二氧-7-氧代-4-硫杂-1-氮杂双环[3,2,0]庚烷-2-基]羰酰]氧]甲酯及其盐。

YR-2: 5-硫杂-1-氮杂双环[4,2,0]辛烷-2-烯-2-羰酸,7-[[(2-呋喃(甲氧亚胺)乙酰基)氨基]-3-[[(氨基羰酰基)氧]甲基]-8-氧代-,[[3,3-二甲基-4,4-二氧-7-氧代-4-硫杂-1-氮杂双环[3,2,0]庚烷-2-基丁羰酰]氧]甲酯及其盐。

YR-4:5-硫杂-1-氮杂双环[4,2,0]辛烷-2-烯-2-羰酸,7-[[氨基苯乙酰]氨基],3-甲基-8-氧代-,[[3,3-二甲基-4,4-二氧-7-氧代-4-硫杂-1-氮杂双环[3,2,0]庚烷-2-基]羰酰]氧]甲酯及其盐。

YR-5: 5-硫杂-1-氮杂双环[4,2,0]辛烷-2-烯-2-羰酸,7-[[氨基(4-羟基苯基)-乙酰基]氨基]-8-氧代一,[[3,3-二甲基-4,4-二氧-7-氧代-4-硫杂-1-氮杂双环[3,2,0]庚烷-2-基]羰酰]氧]甲酯及其盐。

YR-6: 5-硫杂-1-氮杂双环[4,2,0]辛烷-2-烯-2-羰酸,7-[[氨基苯乙酰]氨基],3-氯-8-氧代-, [[3, 3-二甲基-4, 4-二氧-7-氧代-4-硫杂-1-氮杂双环[3, 2, 0]庚烷-2-基]羰酰]氧]甲酯及其盐。

本发明的化合物及其盐与舒他西林具有相同的体内代谢特征,口服后可被肠壁酯酶水解成头孢菌素和舒巴坦,在体内的协同作用可弥补这些头孢菌素被某些细菌产生的 β 一内酰胺酶水解的不足,使因产酶而对这些头孢菌素耐药的某些细菌的最低抑制浓度降到敏感范围之内。

其可用化合物(II)、(III) 经酯化反应合成。化合物(II)是已被广泛应用临床的头孢类抗生素,化合物(III) 可参考 Vytautas J.Jasys 等 1984 年<USP4,444,686>和姜乃才等<医药工业,1985,16(8),346—9>等报导的方法合成。

本发明的化合物,可用二种方法合成:

方法 1 (适用 YR1-6 的合成)

方法 2 (适用于 YR3-6 的合成)

$$R_{2}\text{CHCONH} \longrightarrow R_{1}$$

$$R_{1}\text{COOM}$$

$$R_{2}\text{CHCONH} \longrightarrow R_{2}$$

$$R_{1}\text{COOM}$$

$$R_{2}\text{CHCONH} \longrightarrow R_{2}$$

$$R_{1}\text{COOM} \longrightarrow R_{2}$$

$$R_{2}\text{CHCONH} \longrightarrow R_{2}$$

$$R_{3}\text{CHCONH} \longrightarrow R_{2}$$

$$R_{4}\text{CHCONH} \longrightarrow R_{2}$$

$$R_{4}\text{CHCONH} \longrightarrow R_{2}$$

$$R_{5}\text{CHCONH} \longrightarrow$$

方法 1:

使用方法 1 合成化合物(I)应使用化合物(II)的盐,如钠盐、钾盐、镁盐、钙盐或三乙胺盐、三丁胺盐、1.8-二氮杂环[5,4,0]十一烷-7-烯(DBU)盐、二环已基胺盐、四丁铵盐。实施例中介绍的是其钠盐、钾盐、三丁胺盐和 DBU 盐。

合成化合物(I),使用的化合物(II)和(III)的克分子比可从 $1:0.9\sim1:1.5$,其中 $1:0.98\sim1:1$ 为最佳。二者反应可在-15 $\mathbb{C}\sim30$ \mathbb{C} 中进行,反应时间一般在 30 分钟至 15 小时,反应过程中加入 18 冠醚-6、16 冠醚-4、12 冠醚-2、四丁基硫酸氢铵、四丁基溴 化铵等有利于反应进行。

反应溶剂可使用卤代烷,如二氯甲烷、三氯甲烷、二氯乙烷等或使用酮类,如丙酮、环丁酮、环乙酮、甲基异丁基酮等,也可使用极性非质子溶剂,如二甲基乙酰胺、二甲基甲酰胺、二甲基亚砜等,实施例介绍中是经二甲基乙酰胺和二甲基甲酰胺为溶剂的反应方法。本发明化合物及其盐均可制备口服的抗菌剂,本发明的化合物可制成多种无机盐和有机酸盐,如盐酸盐、硫酸盐、对甲苯磺酸盐、酒石酸盐、马来酸盐和乳酸盐。实施例中介绍了本发明化合物中的对甲苯磺酸盐和盐酸等盐的制备方法。

方法 2:

方法 2 适用于 YR3-6 的合成, 其特点是将化合物(II), 和苯甲醛在极性非质子溶剂如: 二甲基甲酰胺、二甲基乙酰胺等或低级醇如: 甲醇、乙醇等中反应, 保护侧链上的 a 一氨基, 形成薛夫碱, 再用方法 1 合成中间体——化合物(IV), 最后用吉拉德(Grimard)

试剂, 脱保护基制得化合物 I (YR3-6)及其盐。

具体实施方式·

实施例一:

将化合物(II - 1)钾盐 11.0 克(0.025 摩尔)悬浮在二甲基乙酰胺 100 毫升中,搅拌下均匀后加入 18 冠醚-6 0.5g 使其全溶,然后将溶液冷至 0℃,加入化合物(III)(X=I)9.4 克(0.025 摩尔),在 0℃搅拌 30 分钟,用薄层层析*控制反应。当原料斑点消失后在反应液中加入乙酸乙酯 200 毫升和水 200 毫升,充分搅拌后分层,分出水层,用乙酸乙酯 200 毫升萃取,合并乙酸乙酯层依次用 150 毫升水加 5 毫升碳酸氢钠饱和水溶液的混合液及饱和氯化钠水溶液洗后,再用活性碳和无水硫酸镁脱色、脱水。减压蒸去乙酸乙酯所得的油状物加入异丙醇 200 毫升,在室温搅拌 1 小时,析出白色沉淀过滤,滤饼用少量异丙醇顶洗,室温真空干燥,得 12.9 克白色的化合物 YR-1,收率 80%。高压液相测定纯度为 98.5%。

*硅胶板 HSGF254, 展开剂 异丙醇:醋酸乙酯(2:1)

化合物(YR-1) Rf=0.8

在化合物(I)经IR和 HNMR 确认:

IR (溴化钾压片)

吸收峰(cm ⁻¹)	强度	基因类型
3454.53	宽 s	-NH ₂
1784.53	宽 s	β一内酰胺
1734.4	宽 s	-COOR

1677.3	S	-CONH-
1623.31	S	-C=C-
1536.83	S	-C=N-
1320.76, 1120.38	S	-C-O-C-

¹H NMR(DMSO d₆)

H NIVIK(DIVISO d6)	
化学位移(υ)	归属
9.6004(d,1H, J=8.4 H _z)	-CONH
7.2335(宽 s,2H)	-NH ₂
6.7512(s,1H)	C ₁₅ -H
5.9545(Abq, 2H, J=6Hz)	C ₁₁ ·-H
5.7445(dd, 1H, J=5H _z , 8H _z)	C ₇ -H
5.1903(m, 1H)	C ₅ ·-H
5.1518(d,1H,J=5 H _z)	C ₆ -H
4.5297(s,1H)	C ₂ ·-H
3.8352(s,3H)	C ₁₃ -H
3.6755(m,2H)	C ₆ ,-H
3.6238,3.4619(ABq,2H,J=18.5Hz)	C ₄ -H
2.1007(s,3H)	C ₁₀ -H
1.4820(s,3H)	C ₈ ·或 C ₉ ·-H
1.3765(s,3H)	C ₈ ·或 C ₉ ·-H

实施例二:

DBU 4.6 克(0.03 摩尔)溶于二甲基甲酰胺 200 毫升,搅拌冷至 0℃,加入化合物(II -1)13.1 克(0.03 摩尔)和化合物(III)(II) (II) 11.2 克(0.03 摩尔),加毕在 0℃以下反应半小时,用薄层层析跟踪反应至原料斑点消失。反应结束后,用实施例一同样的方法处理反应液,得化合物 YR-1 15.4g,收率 80%。高压液相测定纯度为 98.2%。产物的 IR 和 1H NMR 分析结果与实施例一产物一致。

实施例三:

化合物(II-1)钾盐 11.0 克(0.025 摩尔) 悬浮于二甲基乙酰胺 150 毫升,搅拌控制 20℃~25℃,加入四丁基硫酸氢铵 2.1 g(0.006 摩尔)和化合物(III)(X=I) 9.4 克(0.025 摩尔),同温度反应 4~6 小时,用薄层层析跟踪反应至原料斑点消失。反应结束后,用实施例一同样的方法处理反应液,得化合物 YR-1 13.7g,收率 85%。高压液相测定纯度为 98.7%。产物的 IR 和 HNMR 分析结果与实施例一产物一致。

实施例四:

化合物 (YR-1) 6.45 克(0.01 摩尔)(由实施例二制得)室温条件下搅拌, 溶于乙酸乙酯 65 毫升, 然后加入对甲苯磺酸 2.1 克(0.012 摩尔)搅拌下慢慢析出固体,继续搅拌 3 小时,过滤,固体用少量乙酸乙酯洗涤,真空干燥得 7.2g 白色化合物 (YR-1)的对甲苯磺酸盐,收率 88%。高压液相测定纯度为 98.5%。

化合物 YR-1 对甲苯磺酸酸盐经 IR 和 ¹H NMR 确认

IR (溴化钾压片)

吸收率 cm ⁻¹	强度	基团类型
3456	宽 s	-NH ₂
1784.96	宽 s	β一内酰胺
1675.89	S	1675.89
1638.61	S	-C=C-
1541.32	S	-C=N-
1321.64, 1121.9	S	-c-o-c-

¹H NMR (DMSO d₆)

化学位移(v)	归属	
7.7107 (d,2H,J=8Hz)	C ₁₈ -H	C ₂₀ -H
7.2326 (d,2H,J=8Hz)	C ₁₇ -H	C ₁₉ —H
7.1304 (s,1H)	C ₁₅	—Н
5.9820 (s,1H)	C ₁₁	Н
5.7992 (d,1H,J=5Hz)	C ₇	—н
5.1806 (d,1H,J=5Hz)	C ₆	Н
4.9075 (m,1H)	C ₅ ,—H	
4.4946 (s,1H)	С2.—Н	

4.0783 (s,3H)	C ₁₃ —H
3.9187 (m, 1H)	C ^{6,} —H
3.5824 (m, 1H)	C6.—H
3.6568,3.4267 (ABq,2H,J=18Hz)	С4-Н
2.3703 (s,3H)	С ₂₁ —Н
2.1841 (s,3H)	C ₁₀ —H
1.5688 (s,3H)	C ₈ ·或 C ₉ ·一H
1.4591 (s,3H)	C ₈ ·或 C ₉ ·一H

实施例五:

将化合物(II-2)钠盐 9.1 克(0.025 摩尔) 悬浮在二甲基乙酰胺 100 毫升中,搅拌 加入 0.5 克 18 冠醚-6,将混合物冷却到-15℃,加入化合物(Ⅲ)(X=I)9.4 克 (0.025 摩尔), 搅拌3小时。反应结束后, 在反应液中加入乙酸乙酯 200毫升和水 200毫升, 充 分搅拌 1 分钟,静止分层,分出乙酸乙酯层,水层再用乙酸乙酯 200 毫升萃取,合并有 机相,依次用稀碳酸氢钠水溶液 150 毫升、水 150 毫升和饱和食盐水 100ml 洗涤,再用 活性炭脱色,无水硫酸镁脱水。减压蒸去乙酸乙酯得油状物,将油状物在异丙醇 200 毫 升中搅拌 30 分钟, 过滤, 用少量异丙醇洗涤, 干燥后得 YR-2 白色固体 12.5 克, 收率 85 %。高压液相测定纯度为 97.8%。

化合物 YR-2 经 IR 和 ^IH NMR 确认

IR (溴化钾压片)

吸收峰 cm-l	强度	基团类型
3485.34, 3376.65	宽 m	O C-NH ₂
1790.33		β一内酰胺
1737.4	S	-coor
1683.66	S	-CONH-
1599.48	m	-C=C-

WO 2005/30222		
1537.01 1324.65, 1120.67	m s	-C=N-

NMR (DMSO d ₆)	归属	
化学位移(v)	CONH	
9.8037 (d,1H,J=8Hz)		
7.8390(宽 s,1H)	C ₁₈ —H	
6.6938 (d,1H,J=3Hz)	C ₁₆ —H	
6.6364(宽 s,1H)	C ₁₇ —H	
6.5-6.8 (宽 s,2H)	O OC-NH ₂	
6.0299, 5.9129 (ABq,2H,J=6Hz)	C ^{11,} —H	
	C ₇ —H	
5.8576 (dd,1H,J=5Hz,8 Hz)	C ₆ -H	
5.2520 (1H,J=5Hz)		
5.1829 (m,1H)	C ₅ ,—H	
4.8770, 4.6316 (ABq,2H,J=13Hz)	C ₁₀ —H	
4.5329 (s,1H)	C ₂ ,—H	
3.8912 (s,3H)	C ₁₄ —H	
	C ₆ ,—H	
3.6821 (m,2H)	C_4 -H	
3.5571, 3.2685 (ABq,2H,J=18Hz)	C _{8'} 或 C _{9'} 甲基 H	
1.4874 (s,3H)		
1.3843 (s,3H)	C ₈ ·或 C ₉ · 甲基 H	

实施例六: 在二甲基乙酰胺 200 毫升中加入三丁胺 5.6 克 (0.03 摩尔), 搅拌均匀后加入化合物 (Ⅱ-2) 8.6 克 (0.025 摩尔), 控制 20℃搅拌至全溶, 然后冷至-15℃, 加入化合物 (Ⅲ) (X=I) 9.4 克 (0.025 摩尔),-15℃搅拌 2 小时。其后按实施例五操作,得 YR-2 12.1 克, 收率 82%。高压液相测定纯度为 98.2%。产品经 IR, H NMR 测定结果与实施例五产 物一致。

在二甲基乙酰胺 36.5 毫升中加入化合物(II-3)3.6 克(0.01 摩尔), 搅拌冷却到-10℃, 实施例七: 滴加 DBU 1.53 克 (0.01 摩尔), 成溶液, 加入化合物(Ⅲ) (X=Br) 3.25 (0.01 摩尔), 搅 拌反应 12 小时, 在反应液中加入乙酸乙酯 100 毫升, 3%碳酸氢钠溶液 30 毫升和 15%氯 化钠水溶液 50 毫升, 搅拌 10 分钟, 静止后, 分出有机层, 再用 15%氯化钠水溶液洗二 次,每次 50 毫升。有机层用活性炭脱色,无水硫酸镁干燥后,冷到 0 \mathbb{C} 通入干燥氯化氢气体至 pH 到 2.5,此时有大量固体析出,过滤,固体用乙酸乙酯洗 3 次,真空干燥后得 YR-3 盐酸盐 1.05 克,高压液相分析,纯度为 97%。

化合物 YR-3 盐酸盐经 IR 和 ¹H NMR 确认

IR (溴化钾压片)

吸收率 (cm ⁻¹)	强度	基因类型
3450, 3250, 2900	宽 m	-NH ₂ , -NH
1784.3	宽 s	β-内酰胺与酯交叠
1697.12	m	-CONH-
1321.81, 1156.16	S	-C-O-C-

¹H NMR (DMSOd6)

I NMR (DMSOd6)	
· 化学位移(v)	归属
9.4450 (d,1H,J=8Hz)	-CONH
8.4907(宽 s,3H)	-NH ₃ ⁺
6.0133,5.9093 (ABq,2H,J=6Hz)	C_{11} -H
5.9599(宽 s,1H)	C ₁₄ —H
5.7245 (dd,1H,J=8 Hz)	C ₇ —H
5.6799 (m,2H)	C ₁₆ -H, C ₁₇ -H
5.1979 (dd,1H,J=4.6 Hz,1.6 Hz)	C⁵.−H
5.1418 (d,1H,J=4.6Hz)	С6—Н
4.5294 (s,1H)	С2,-Н
4.3972(宽 s,1H)	C ₁₂ —H

3.7418,3.6256 (m,2H)	C ⁶ ,—H
3.4201,3.3014 (ABq,2H,J=16Hz)	C ₄ —H
2.7197,2.5033 (m,4H)	C ₁₅ —H ,C ₁₈ —H
2.0550 (s,3H)	C ₁₀ -H
1.4807 (s,3H)	C _{8'} -H 或 C _{9'} -H
1.3738 (s,3H)	C ₈ ·一H 或 C ₉ ·一H
1.3/38 (\$,311)	

实施例八:

在二甲基乙酰胺 36.5 毫升中加入化合物(II-3)3.6 克(0.01 摩尔)搅拌冷却到-10 ℃,滴加 DBU 1.53 克 (0.01 摩尔),成澄清溶液,加入化合物 (Ⅲ) (X=I) 3.36 克(0.009 摩尔), 搅拌反应 12 小时, 在反应液中加入乙酸乙酯 100 毫升和 pH 值为 1 的盐酸溶液 150毫升,搅拌,分层,在水层中加入乙酸乙酯 100毫升,然后用饱和碳酸氢钠溶液,调 pH 至 7.5,分层,有机层用 3%的碳酸氢钠和 15%的氯化钠混合液 50 毫升洗涤 3 次,有 机层用活性炭脱色,无水硫酸镁干燥后,过滤,冷到 0℃通入干燥的氯化氢气体至 pH 到 2.5,此时有大量固体析出,过滤,固体用乙酸乙酯洗3次,真空干燥后得YR-3盐酸盐 0.9 克, 高压液相分析纯度为 94.5%, 产品经 IR 和 ¹H NMR 测定与实施例七产物一致。

实施例九:

在二甲基乙酰胺 36.5 毫升中加入化合物(II-3)3.6 克(0.01 摩尔)搅拌冷却到-10 ℃滴加 DBU 1.53 克 (0.01 摩尔),成澄清液,加入化合物 (III) (X=I) 5.6 克 (0.015 摩 尔) 搅拌反应 12 小时,在反应液中加入乙酸乙酯 100 毫升和 pH 值为 1 的盐酸溶液 150 毫升,搅拌分层,在水层中加入乙酸乙酯 100 毫升,然后用饱和碳酸氢钠溶液调 pH 至 7.5,分层,有机层用3%的碳酸氢钠溶液和15%的氯化钠混合液50毫升洗涤3次,有机 层用活性炭脱色,无水硫酸镁干燥后,过滤,滤液冷却到0℃,通入干燥的氯化氢气体至 pH 到 2.5, 此时析出固体, 固体用乙酸乙酯洗 3 次, 真空干燥得 YR-3 盐酸盐 0.95 克, 高压液相分析纯度为 95.5%。产物经 IR 和 ¹H NMR 实施例七产物一致。

实施例十:

按实例七操作,以 0.01 摩尔二环已基胺代替 DBU,以 0.01 摩尔化合物(Ⅲ)(X=I) 代替溴甲酯, 反应时间为 1.5 小时, 得 YR-3 盐酸盐 1.15 克, 高压液相分析纯度为 96 %,产物经IR和 HNMR测定与实施例七相同。

实施例十一:

在二甲基乙酰胺 40 毫升中,加入化合物(II-3)钠盐 3.72 克 (0.01 摩尔),搅拌冷 却到 0℃,加入苯甲醛 1.062 克 (0.01 摩尔),0℃反应 10 小时。将反应液冷却到-20℃ 加入化合物(III)(X=I)3.73克(0.01摩尔),搅拌反应3小时。加入二氯甲烷110毫升,

3%碳酸氢钠溶液 50 毫升, 15%氯化钠水溶液 50 毫升, 搅拌 10 分钟, 静止分层, 分出 有机相,用 pH7.5 磷酸缓冲液 100 毫升洗二次,饱和氯化钠水溶液 100 毫升洗二次。分 出的有机相用活性炭和无水硫酸镁脱色,脱水,真空浓缩得油状物,加入 50ml 乙醚搅拌

对甲苯磺酸 2.1 克和吉拉德试剂 2.1 克溶于甲醇 10 毫升在室温下加入 4.78 克 (0.01 摩尔)上述产物,搅拌 30 分钟,减压蒸出甲醇,残留物加入二氯甲烷 30 毫升,pH 7.5 磷酸缓冲液 30 毫升, 搅拌 10 分钟, 静止分层, 分出水层, 用二氯甲烷 25 毫升×3 次蒸 取。合并有机层,用饱和氯化钠水溶液洗涤二次,分去水层,有机相用无水硫酸钠干燥, 冷却到0℃通入干燥氯化氢气体至 pH 到 2.0,过滤收集固体,用少量二氯甲烷洗 3 次, 真空干燥得 YR-3 盐酸盐 3.8 克。 高压液相分析纯度为 96.5%, 产物经 IR 和 ¹H NMR 测 定与实施例七相同。

实施例十二:

在二甲基乙酰胺 42ml 中加入化合物(II-4)3.65 克(0.01 摩尔),搅拌冷却到-15℃, 滴加 DBU1.53 克 (0.01 摩尔), 加毕搅拌半小时, 同温度加入化合物III (X=Br) 3.25 克(0.01摩尔), 搅拌反应 13小时,加入二氯甲烷 100毫升, pH7.5磷酸缓冲液 100毫升, 搅拌 10 分钟, 静止分层。有机相依次用 pH7.5 磷酸缓冲液 50 毫升×2 次, 饱和氯化钠水 溶液 50 毫升×2 次洗涤,再用活性炭脱色,无水硫酸镁干燥后,将处理后的有机相冷却 到0℃,通入干燥氯化氢气体至pH2.0,过滤,收集固体,用二氯甲烷洗3次,真空干燥, 得 YR-4 盐酸盐 1.8 克, 高压液相层析测定纯度为 97.2%。

化合物 YR-4 盐酸盐结构经 IR 和 IH NMR 测定确认

IR (溴化钾压片)

IR (溴化钾压斤)		
吸收率 (cm-1)	强度	基因类型
3450, 3250, 2930.55	宽 m	-NH ₂ , -NH

1784.63	宽 s	β - 内酰胺与酯交叠
1697.07	m	-CONH-
1321.36, 1156.95	S	-C-O-C-

¹H NMR (DMSOd6)

NMR (DMSOd6)						
化学位移(v)	归属					
9.5752 (d,1H,J=8Hz)	-CONH-					
8.8117 (s,3H)	NH ₃ ⁺					
7.5479-7.4162 (m,5H)	C ₁₄ . 15, 16, 17, 18—H					
6.0003, 5.8978 (ABq,2H,J=6Hz)	СпН					
5.7593 (dd,1H,J=8 Hz)	С1—Н					
5.1956 (dd,1H,J=4.5 Hz,1.5 Hz)	C _{5'} -H					
5.0472 (s,1H)	C ₁₂ -H					
5.0394 (d,1H,J=4.7Hz)	C ₆ —H					
4.5245 (s,1H)	C ₂ ·-H					
3.7049 (dd,1H,J=15 Hz,4.5Hz)	C ₆ ·-H					
3.3689 (dd,1H,J=15 Hz,1.5Hz)	C ₆ ,—H					
3.5419, 3.2743 (ABq,2H,J=18Hz)	C ₄ —H					
2.0154 (s,3H)	C ₁₀ —H					
1.4477 (s,3H)	C ₈ ·或 C ₉ ·一H					
1.3674 (s,3H)	C ₈ ,或 C ₉ ,一H					

实施例十三:

在二甲基甲酰胺 50 毫升中加入化合物(II-4)钾盐 4.03 克(0.01 摩尔), 搅拌冷却 到 0℃,加入苯甲醛 1.062 克 (0.01 摩尔),0℃-5℃反应 8 小时,将反应液冷却到-15 ℃,加入化合物(III)(X=I) 3.37克(0.01摩尔),搅拌反应2小时。其余的反应操作

接实施例九,得中间产物化合物(IV) $R_1=$ $R_2=-CH_3$) 白色结晶 6.05 克。最终 得 YR-4 盐酸盐 3.65 克。高压液相分析纯度 95.6%,产物经 IR 和 H NMR 测定与实施 例十相同。

实施例十四:

化合物(II-5)3.65 克(0.01 摩尔)悬浮在二甲基甲酰胺 37 毫升中,冷却到-20℃,加入DBU 1.51 克 (0.01 摩尔) 搅拌溶解后,加入化合物 (III) (X=I) 3.73 克 (0.01 摩尔) 搅拌 30 分钟。在反应液中加入醋酸乙酯 37 毫升和含 15%氯化钠和 5%碳酸氢钠

的水溶液 80 毫升, 搅拌 10 分钟, 分层, 分出有机层用上述盐的混合物水溶液洗涤二次后用无水硫酸镁干燥, 过滤, 滤液通入干燥氯化氢气体至 pH 2-3, 结晶析出后,继续搅拌 10 分钟, 过滤, 用少量醋酸乙酯洗涤, 真空干燥, 到得 3.7 克 YR-5 盐酸盐白色结晶, HPLC 测定纯度为 95.6%。

化合物 YR-5 盐酸盐经 IR 和 $^{\rm l}$ H NMR 确认

IR (溴化钾压片)

(terun tern)		
吸收率 (cm ⁻¹)	强度	基因类型
3400, 3200, 2900	宽 m	-NH ₂ , -NH, -OH
1779.61	宽 s	β-内酰胺与酯交叠
1693.71	m	-CONH-
1320.64, 1183.04	S	-C-O-C-

¹H NMR (DMSOd6)

II IVIN (DIVIDOGO)	-
化学位移(v)	归属
9.1868 (s,1H)	-OH
9.4460 (d,1H,J=8Hz)	-CONH-
8.6479 (s,3H)	NH ₃ ⁺
7.2958 (d,2H,J=8.5Hz)	C ₁₄ ,C ₁₈ —H
6.7917 (d,2H,J=8.5Hz)	C ₁₅ ,C ₁₇ —H
5.9990, 5.8974 (ABq,2H,J=6Hz)	C ₁₁ ,-H
5.7392 (dd,1H,J=8 Hz,4.5Hz)	C ₇ —H
5.1907 (d,1H,J=4.0Hz)	C ₅ .—H
5.0478 (d,1H,J=4.5Hz)	С6-Н
4.9200 (宽 s ,1H)	C ₁₂ —H
4.5206 (s,1H)	C ₂ ,-H

C ₆ ,—H
C6.—H
C ₄ -H
C ₁₀ —H
C ₈ ·或 C ₉ ·一H
C ₈ ·或 C ₉ ·一H

实施例十五:

化合物(Ⅱ-5)钾盐 4.01 克(0.01 摩尔)溶液 15 毫升二甲基甲酰胺,冷却到 0℃ 加入苯甲醛 1.27 克 (0.012 摩尔), 搅拌反应 8 小时, 然后加入化合物(Ⅲ)(X=I)

3.73 克(0.01 摩尔) 搅拌反应 30 分钟,加入醋酸乙酯 40 毫升和含 15%氯化钠,5% 碳酸氢钠混合水溶液 80 毫升, 搅拌 10 分钟, 分出有机层, 用饱和氯化钠水洗涤, 无水 硫酸镁干燥, 过滤, 减压蒸去有机溶剂, 加入异丙醚 50 毫升搅拌得带黄色的化合物(IV)

 \rightarrow R₂= $-CH_3$) 结晶 6.1 克,其余的反应操作按实施例九,得 YR-5 盐酸 盐 2.56 克。HPLH 测定纯度为 97.2%。产物的 IR 和 ¹H NMR 分析结果与实施例十二相同。

下面选取 YR-1, YR-2 的体外抗菌活性试验; 小鼠给药后半体内抗菌活性试验; 和小鼠最大耐受量试验(此些试验由上海医药工业研究院完成)来进一步说明本发明化 合物的抗菌效果及应用。

效果实施例一: 体外抗菌活性试验

1、试验材料: 受试样品 YR-1、YR-2 分别由实施例一和实施例五制得,其对照 试验样品为头孢他美钠(CTM)、头孢呋辛钠(CRX)、头孢他美钠+舒巴坦钠(CTM+ SBT) 1: 1 (摩尔比) 和头孢呋辛+舒巴坦钠 (CRX+SBT) 1: 1 (摩尔比)。上述样品 均由浙江永宁制药厂(已市售产品)提供。

2、试验菌种:

金黄色葡萄球菌 26003、肺炎双球菌 31002、大肠杆菌 44102、宋氏痢疾杆菌 51081、 鲍氏痢疾杆菌 51313、福氏痢疾杆菌 51573、奇异变形杆菌 49005、普通变形杆菌 49085、 摩尔根变形杆菌 49086、绿脓杆菌 10124、肺炎杆菌 46101、肠炎沙门氏菌 50041、伤寒 杆菌 50097、枸橼酸杆菌 48017、粘质沙雷氏杆菌 41002 由上海市卫生防疫站提供。

表皮葡萄球菌 26069、产气杆菌 45102 由北京药品生物制品鉴定所提供。 肺炎双球菌 0031 由上海第一人民医院提供。

- 3、培养基: Mueller-Hinton Agar(M.H)琼脂培养基,批号 20040528 (中国腹泻病控 制上海试剂供应研究中心)。
 - 4、试验方法: 采用琼脂双倍稀释法,用多点接种仪定量接种,每点接种 105CFU/ML。

37℃培养 24 小时,观察并记录试验结果,以抗菌药物抑制细菌生长的最低浓度为最低抑制菌浓度 (MIC)。

5、试验结果:

药物对细菌的 MIC (μg/ml)

头 抱 他 美 (CTM)	头 孢 呋 辛	头孢他美十 舒巴坦 (CTM+SBT)	头孢呋辛十 舒巴坦 (CRX+SBT)	YR-1	YR- 2
			3.13	100	6.25
			25	100	25
			6.25	1.56	12.5
			1.56	0.39	1.56
			1.56	0.39	1.56
			3.13	0.098	3.13
				0.195	0.78
				0.78	25
				100	100
				0.78	12.5
		<u> </u>		1.56	12.5
		<u> </u>		1.56	6.25
					3.13
					6.25
					50
					3.13
					0.78
			_		0.78
25	0.78	25	0.78		, , ,
	-	他美 呋辛 (CTM) (CRX) 100 1.56 >100 25 0.78 6.25 0.39 0.78 0.39 1.56 0.195 1.56 0.195 0.78 >100 100 100 100 0.78 25 0.78 6.25 0.78 3.13 1.56 1.56 0.195 3.13 0.78 25 0.78 25 0.78 25 0.78 3.13	他美 呋辛 舒巴坦 (CTM) (CRX) (CTM+SBT) 100 1.56 50 >100 25 50 0.78 6.25 0.78 0.39 0.78 0.195 0.39 1.56 0.195 0.195 1.56 0.39 >100 100 3.13 100 100 100 3.13 100 100 100 0.78 25 0.78 0.78 6.25 0.78 0.78 6.25 0.78 1.56 1.56 1.56 0.195 3.13 0.39 0.78 25 0.78 1.56 1.56 1.56 0.195 3.13 0.39 0.78 25 0.78 0.78 25 0.78 0.78 25 0.78 0.78 3.13 0.39 0.78 25 0.78 0.78 25 0.78	他美 快辛 (CTM) (CRX) (CTM+SBT) (CRX+SBT) 100 1.56 50 3.13 >100 25 50 25 0.78 6.25 0.78 6.25 0.39 0.78 0.195 1.56 0.39 1.56 0.195 1.56 0.195 1.56 0.39 3.13 0.195 0.78 0.39 1.56 >100 100 3.13 12.5 100 100 100 100 100 0.78 25 0.78 6.25 0.78 6.25 0.78 6.25 0.78 3.13 0.78 3.13 1.56 1.56 1.56 3.13 0.195 3.13 0.39 6.25 0.78 25 0.78 3.13 1.56 1.56 1.56 3.13 0.195 3.13 0.39 6.25 0.78 25 0.78 25 0.78 25 0.78 25 0.78 25 0.78 3.13 1.56 1.56 3.13 0.195 3.13 0.39 6.25 0.78 25 0.78 25 0.78 25 0.78 3.13	使美 味辛 舒巴坦 舒巴坦 (CRX) (CTM+SBT) (CRX+SBT) (CTM) (CRX) (CTM+SBT) (CRX+SBT) (C

6、结论:

YR-1和YR-2在体外均有抗菌活性。其抗菌活性分别与CTM+SBT和CRX+SBT大体一致。二者对产 β-内酰胺酶的革兰氏阴性菌均可比单用 CTM 和 CRX 大幅度的增强抗菌活性,如对摩尔根变形杆菌 49086,CTM、CRX 的 MIC 分别为>100mg/ml,100mg/ml,而 YR-1和 YR-2的 MIC 则为 0.78mg/ml,25mg/ml,二者抗菌活性分别增强了 100倍和 4倍。CTM 为第三代头孢菌素,对一些革兰氏阳性菌和绿脓杆菌无效,CRX 为第二代头孢菌素,对一些革兰氏阳性菌作用较弱,对绿脓杆菌无效,YR-1和 YR-2的抗菌活性显示了相同的结果。对一些不产酶的细菌 YR-1和 YR-2与 CTM、CRX 的抗菌活性一致。

效果实施例二:小鼠给药后半体内抗菌活性试验

1、试验材料: 受试样品 YR-1、YR-2, 其对照试验样品为 CTM、CRX、CTM+SBT 1: 1和 CRX+SBT 1: 1。上述样品来源同上。

2、试验菌种:

普通变形杆菌 49085, 摩尔根变形杆菌 49086。每只平皿菌液为 105CFU/ML。

3、培养基: Mueller-Hinton Agar(M.H.)琼脂培养基,批号 000707 (中国腹泻病控制

上海试剂供应研究中心)。

4、试验动物:

品系: 昆明种小鼠;来源: 上海医药工业研究院动物室供应;合格证号: 沪动合证字第 107 号;动物数: 120 只;性别:雌雄各半;体重: 18~21g;禁食时间: 16 小时。

5、试验方法:

第一组: CTM、CRX、CTM+SBT (等摩尔混合)、CRX+SBT (等摩尔混合)四种药物用药剂量为 500mg/kg, 给药方法为静脉注射。取血点为 10 分钟、30 分钟、1 小时、2 小时、4 小时、8 小时。

第二组: YR-1、YR-2 用药剂量为 1000mg/kg, 给药方法为灌胃。取血点为 10分钟、30分钟、1小时、2小时、4小时、8小时。

将实验动物按空腹体重、性别随机分组。每取血点为三只动物。肝素抗凝,取血后 离心分离血浆。定量点样,根据抑菌圈大小,半定量测试抗菌活性。

6、试验结果:

药物对普通变形杆菌 49085 半体内抗菌活性结果

	7 777.4 11.0		·	2 = 11 26 61	N 76-11-1-1		
		头孢他美钠	 头孢呋辛钠	头孢他美钠 十舒巴坦	头孢呋辛 十舒巴坦	YR-1	YR-2
†	羊品	(CTM)	(CRX)	(CTM+	(CRS+	IK-1	1K 2
	•			SBT)	SBT)		
4	扁号	1	2	3	4	6	5
	药途径	静脉注射	静脉注射	静脉注射	静脉注射	灌胃	灌胃
	药剂量	500mg/kg	500mg/kg	500mg/kg	500mg/kg	1000mg/kg	1000mg/kg
给药	10 分钟	+++	+++	++	+-+		
后采	30 分钟	+++	+++	++	++	+	+
血时	1 小时	+++	+++	+	+	+	+
间及	2 小时	++	+	+	+	+	+
抗菌	4 小时	土	+	+	+	+	+
活性	8 小时	_				+	<u> </u>

药物对摩尔根变形杆菌 49086 半体内抗菌活性结果

2 7	彻刈净小	イス・スノレイトロ	到 49U8O 十个个	Line Bull II	H //\		
		V 76 (1. 26	31 7/3 m+ 32 /ch	头孢他美钠	头孢呋辛 +舒巴坦		
样	品	头孢他美 钠(CTM)	头孢呋辛钠 (CRX)	+舒巴坦 (CTM+	(CRS+	YR-1	YR-2
		WICHIN	Cidi	SBT)	SBT)		
编	元号 1 2 3		4	6	5		
	奇途径 静脉注射 静脉注射 静脉注射		静脉注射	静脉注射	灌胃	灌胃	
	J.C.1-		500mg/kg	500mg/kg	1000mg/kg	1000mg/kg	
给药	-1/11/25		+	++	÷		
后采	30 分钟	+	+	++	+	+	+
血时	1小时	+	+	+	+	+	+
间及	2 小时	+	+	+	+	+	+
抗菌	4 小时	土	+	土	土	+	+
活性			_		+	+	

7、结论:

小鼠口服 YR-1 和 YR-2 后,在血中可以检出抗菌活性。YR-1 和 YR-2 动物灌胃后可达一个稳定持续的血药浓度。给药 8 小时血中仍能测出抗菌活性,而 CTM、CRX、CTM+SBT、CRX+SBT 因口服不吸收,均为静脉注射给药,易达血药峰浓度,在半体内抗菌活性试验中显示了较强的抗菌活性,但其代谢较快,给药后 8 小时血中已测不出抗菌活性。二者对比显示,YR-1 和 YR-2 口服后在体内有一个较长的半衰期,达到长效作用。

效果实施例三: 小鼠最大耐受量试验

- 1、试验材料: YR-1、YR-2 受试样品同上。
- 2、实验动物:

品系:昆明种小鼠;来源:上海医药工业研究院动物室供应;合格证号:沪动合证字第107号;动物数:20只;性别:雌雄各半;体重:18~21g;禁食时间:16小时

3、剂量:

样品配制: 5g/kg (用 5% CMC, 即羧甲基纤维素配制); 接受量: 0.6ml/20g 体重/次: 经药次数: 1次; 剂量: 5g/kg/24hr

- 4、给药途径:口服灌胃
- 5、试验方法:

试验时,取合格小鼠各 20 只,雌雄各半,采用灌胃针给小鼠喂 YR-1 或 YR-2, 给药后即刻观察动物中毒症状的各种表现和记录死亡动物数。

6、观察指标:

小鼠给予 YR-1、YR-2 后,即刻观察动物的各种表现和中毒症状,实验期间每天观察二次(上、下午)。

死亡:记录观察期内小鼠死亡数。死亡动物即刻尸解,肉眼观察小鼠主要脏器(心、肝、脾、肺、肾等)的变化,若肉眼可见异常则进行病理检查。

毒性反应:记录观察期内雌、雄小鼠的行为活动、皮肤、呼吸、大小便、食欲、鼻、眼、口腔有无异常分泌物等情况。

观察期:7天,观察期结束后处死全部存活小鼠,解剖和巨检试验动物内脏器官有无异常。

7、试验结果:

雌雄小鼠在给药前饥饿十六小时后给予 YR-1、YR-2,小鼠没有出现明显毒性反应的异常症状,小鼠活动没有明显的变化,处死后内脏器官无异常。

表.YR-1、YR-2对小鼠的急性毒性试验

		剂量	动物数		观到	察期	间	花亡	数	(只)	死亡率
样品	组别	(g/kg/24hr)	(只)	1	2	3	4	5	6	7 (天)	%
	雌性组	5	10	0	0	0	0	0	0	0	0
YR-1	雄性组	5	10	0	0	0	0	0	0	0	0
	雌性组	5	10	0	0	0	0	0	0	0	0
YR-2	雄性组	5	10	0	0	0	0	0	0	0	0

8、结论:

由于 YR-1 和 YR-2 毒性较低,无法测定 LD_{50} 值,故进行最大耐受量试验,从试验结果可得出其 $LD_{50}>5g/kg$ 。此结果显示 YR-1 和 YR-2 是个可口服,安全低毒的药物。

权利要求

1、一种耐 B 一内酰胺酶的头孢菌素酯化合物, 其特征在于该化合物的结构式由舒巴 坦卤甲酯的甲酯残基与半合成头孢菌素或其盐的羧基残基相连接构成。

- 2、如权利要求1所述的化合物,其特征在于该半合成头孢菌素的盐是指其无机盐或有机碱盐。
- 3、如权利要求 2 所述的化合物,其特征在于该无机盐为钠盐、钾盐、镁盐或钙盐;该有机碱盐为三乙胺盐、三丁胺盐、1.8-二氮杂环[5, 4, 0]十一烷一7一烯盐、二环已基胺盐或四丁铵盐。
- 4、如权利要求 1-3 任一权利要求所述的化合物, 其特征在于该半合成头孢菌素是指 头孢他美、头孢呋辛、头孢拉定、头孢氨苄、头孢克罗或头孢羟氨苄。
- 5、如权利要求1所述的化合物,其特征在于该舒巴坦卤甲酯为舒巴坦溴甲酯或舒巴坦碘甲酯。
 - 6、一种如权利要求1所述的化合物的药用盐。
- 7、如权利要求6所述的化合物的药用盐,其特征在于该药用盐是指无机盐或有机酸盐。
- 8、如权利要求 7 所述的化合物药用盐,其特征在于所述的无机盐或有机酸盐是指盐酸盐、硫酸盐、对甲苯磺酸盐、酒石酸盐、马来酸盐和乳酸盐。
 - 9、如权利要求1或6所述的化合物或其药用盐,其特征在于该化合物具有下列通式(I):

RCONH S
$$R_1$$
 $C=0$ $C=$

10、一种具有下列通式(IV)的化合物中间体:

11、如权利要求 1 或 6 所述的化合物或其药用盐在制备抗生素中的应用。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потикр.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.