Équations de l'hydrodynamique

L'objectif de ce document est de rappeler les hypothèses nécessaires à l'utilisation des principales équations de l'hydrodynamique.

I. Principe fondamental de la dynamique et divergence du tenseur des contraintes

L'équation la plus générale que l'on peut utiliser pour des :

- fluides compressible ou incompressible,
- fluides visqueux ou non tant qu'ils conservent la masse est :

$$\rho \frac{D\vec{v}}{Dt} = \rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v}.\overrightarrow{\nabla})\vec{v} \right) = -\overrightarrow{\nabla}p + \rho \vec{g} + \overrightarrow{div}([\sigma'])$$
 (I . 01)

On peut montrer que dans le cas où il existe un écoulement (hors équilibre) alors le tenseur des contraintes $[\sigma]$ peut se mettre sous la forme :

$$[\sigma] = -p[I] + [\sigma']$$

Dans ce cas, $[\sigma']$ est appelé tenseur des contraintes visqueuses.

II. L'équation de Navier-Stokes

On appelle *fluides newtoniens* les fluides pour lesquels le tenseur des contraintes visqueuses dépend uniquement et linéairement des valeurs instantanées des déformations.

On peut montrer dans ce cadre que :

$$\overrightarrow{div}[\overrightarrow{\sigma'}] = \eta \overrightarrow{\nabla}^2(\overrightarrow{v}) + \left(\zeta + \frac{1}{3}\eta\right) \overrightarrow{\nabla}[\overrightarrow{\nabla}.\overrightarrow{v'}]$$

On obtient alors l'équation de Navier-Stokes pour un fluide newtonien et compressible :

$$\rho\left(\frac{\partial \vec{v}}{\partial t} + (\vec{v}.\overrightarrow{\nabla})\vec{v}\right) = -\overrightarrow{\nabla}p + \rho\vec{g} + \eta\overrightarrow{\nabla}^2\overrightarrow{v} + \left(\zeta + \frac{1}{3}\eta\right)\overrightarrow{\nabla}[\overrightarrow{\nabla}.\overrightarrow{v}]$$

 η est appelée viscosité de cisaillement ou viscosité dynamique et s'exprime en Pa.s. ζ est appelée viscosité de volume ou seconde viscosité.

Pour un fluide incompressible $(\overrightarrow{div}(\overrightarrow{v}) = 0)$ et newtonien, on obtient l'équation de Navier-Stokes qu'on utilise souvent :

Version cinématique :
$$\frac{\partial \vec{v}}{\partial t} + (\vec{v}.\overrightarrow{\nabla})\vec{v} = -\frac{1}{\rho}\overrightarrow{\nabla}P + \vec{g} + \nu\overrightarrow{\nabla}^2\vec{v}$$
 Version dynamique :
$$\rho\left(\frac{\partial \vec{v}}{\partial t} + (\vec{v}.\overrightarrow{\nabla})\vec{v}\right) = -\overrightarrow{\nabla}p + \rho\vec{g} + \eta\overrightarrow{\nabla}^2\vec{v}$$

Remarque: Il faut également une hypothèse d'équilibre thermodynamique local pour pouvoir définir la pression.

 ν est la viscosité cinématique définie telle que $\nu=\frac{\eta}{\rho}$ en m².s⁻¹. Pour l'eau à 20 ° C, on retient $\eta\approx 10^{-3}$ Pa.s et $\nu\approx 10^{-6}$ m².s⁻¹. Pour l'air à 20 ° C, on retient $\eta\approx 18,2.10^{-6}$ Pa.s et $\nu\approx 15,1.10^{-6}$ m².s⁻¹.

1) Nombre de Reynolds

Ce nombre est le rapport entre le terme inertiel $((\vec{v}.\overrightarrow{\nabla})\vec{v})$ et le terme visqueux $(\eta \overrightarrow{\nabla}^2 \vec{c})$. Ainsi, on retient : $Re = \frac{\rho V_0 L}{\eta}$ où V_0 est l'ordre de grandeur typique de la vitesse de l'écoulement et L la dimension caractéristique du système.

2) D'autres nombres adimensionnés

Il existe par exemple:

- le nombre de Strouhal : $St = \frac{L}{V_0T}$ défini comme le rapport entre la fréquence imposée et la fréquence naturelle,
- le nombre de Froude : $Fr = \frac{V_0}{\sqrt{gL}}$ défini comme la racine carrée du rapport entre les forces d'inerties et les forces de gravité,
- le nombre d'Euler : $Eu = \frac{P_0}{\rho V_0^2}$ défini comme le rapport entre les forces de pression et les forces inertielles.

Ces nombres adimensionnés permettent d'écrire l'équation de Navier-Stokes sous sa la forme :

$$St\frac{\partial \vec{v}}{\partial t} + \left(\vec{v}.\overrightarrow{\nabla}\right)\vec{v} = -Eu\overrightarrow{\nabla}p + \frac{1}{Fr^2}\vec{g} + \frac{1}{Re}\overrightarrow{\nabla}^2\vec{v}$$

Un autre nombre adimensionné qui n'apparait dans cette équation est le nombre de Mach $M=\frac{V}{a}$ où pour un gaz parfait $a=\sqrt{\frac{\gamma P}{\rho}},~\gamma$ étant le coefficient de compressibilité défini comme le rapport entre la vitesse locale d'un fluide et la vitesse du son dans ce fluide.

III. L'équation d'Euler

L'équation d'Euler est établie en 1755 en négligeant la divergence du tenseur des contraintes visqueuses dans l'équation (I . 01). De façon générale, on dit que l'on peut négliger la viscosité du fluide.

On obtient alors l'équation d'Euler pour un écoulement dit "parfait":

$$\rho \frac{D\vec{v}}{Dt} = \rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v}.\overrightarrow{\nabla})\vec{v} \right) = -\overrightarrow{\nabla} p + \rho \vec{g}$$

Sachant que $(\vec{v}.\overrightarrow{\nabla})\vec{v} = \overrightarrow{\nabla}\left(\frac{\vec{v}^2}{2}\right) + (\overrightarrow{\nabla}\times\vec{v})\times\vec{v}$, on peut réécrire l'équation d'Euler sous la forme :

$$\rho \left(\frac{\partial \vec{v}}{\partial t} + \overrightarrow{\nabla} \left(\frac{\vec{v}^2}{2} \right) + (\overrightarrow{\nabla} \times \vec{v}) \times \vec{v} \right) = -\overrightarrow{\nabla} p + \rho \vec{g}$$
 (III . 01)

Démonstration :

Pour ne pas avoir à parler de tenseur, on peut utiliser la démonstration suivante.

On considère une particule de fluide de masse $dm = \rho d\tau$ centré sur le point M.

Cette particule de fluide n'est soumise qu'aux actions de contact dues à la pression qui s'exprime comme $-\overrightarrow{\nabla}pd\tau$.

Ainsi, par application du principe fondamental de la dynamique,

$$dm \overrightarrow{d}(M,t) = -\overrightarrow{\nabla}pd\tau + dm\overrightarrow{g}$$

$$\Leftrightarrow \rho d\tau \frac{D\overrightarrow{v}(M,t)}{Dt} = -\overrightarrow{\nabla}pd\tau + \rho d\tau \overrightarrow{g}$$

Qed

Une propriété importante de cette équation est sa réversibilité car $t \mapsto -t$ entraine $\vec{v} \mapsto -\vec{v}$ et donc il n'y a pas de dissipation d'énergie.

IV. Équation de Bernoulli

Pour établir cette équation, on considère un écoulement parfait, stationnaire et incompressible.

L'hypothèse de l'écoulement parfait permet d'utiliser l'équation d'Euler (III . 01).

L'hypothèse de stationnarité permet d'écrire $\frac{\partial \vec{v}}{\partial t} = \vec{0}$ et $\frac{\partial \rho}{\partial t} = 0$.

L'incompressibilité entraine : $\frac{D\rho}{Dt} = \frac{\partial\rho}{\partial t} + (\vec{v}.\overrightarrow{\nabla})\rho = 0 \Rightarrow (\vec{v}.\overrightarrow{\nabla})\rho = 0$. Ainsi, ρ est constante le long d'une ligne de courant.

L'équation d'Euler (III . 01) peut donc se réécrire avec toutes ces hypothèses sous la forme :

$$\overrightarrow{\nabla} \left(\frac{\overrightarrow{v}^2}{2} + gz + \frac{P}{\rho} \right) + (\overrightarrow{\nabla} \times \overrightarrow{v}) \times \overrightarrow{v} = \overrightarrow{0}$$
 (IV . 01)

1) Équation pour un écoulement irrotationnel

Pour un écoulement irrotationnel $(\overrightarrow{\nabla} \times \overrightarrow{v} = \overrightarrow{0})$, on a donc le théorème de Bernoulli valable dans tout le fluide (à condition de considérer le fluide comme homogène):

$$\frac{v^2}{2} + gz + \frac{P}{\rho} = c^{te}$$

Remarque: Si on ne considère pas le fluide homogène, alors l'équation est vraie uniquement sur une ligne de courant sur laquelle ρ est constante.

2) Équation pour un écoulement rotationnel

Pour un écoulement rotationnel, on a par définition du gradient,

$$\overrightarrow{\nabla} \left(\frac{\overrightarrow{v}^2}{2} + gz + \frac{P}{\rho} \right) . \overrightarrow{dl} = d \left(\frac{\overrightarrow{v}^2}{2} + gz + \frac{P}{\rho} \right)$$

Or, le long d'une ligne de courant \vec{v} et \overrightarrow{dl} sont colinéaires, donc le terme $(\overrightarrow{\nabla} \times \vec{v}) \times \vec{v}.\overrightarrow{dl} = 0$. Ainsi à partir du produit scalaire de l'équation (IV . 01) par un élément de longueur \overrightarrow{dl} le long d'une ligne de courant, on obtient :

$$d\left(\frac{\vec{v}^2}{2} + gz + \frac{P}{\rho}\right) = 0$$

Donc pour deux points A et B sur une même ligne de courant,

$$\frac{v_A^2}{2} + gz_A + \frac{P_A}{\rho} = \frac{v_B^2}{2} + gz_B + \frac{P_B}{\rho}$$

3) Équation de Bernoulli sur une ligne de vorticité

Sur une ligne de vorticité, $\overrightarrow{\omega} = \overrightarrow{\nabla} \times \overrightarrow{v}$ et \overrightarrow{dl} sont colinéaires donc l'équation obtenue précédemment est également valable le long d'une ligne de vorticité.

4) Remarque

Un écoulement homogène et stationnaire est forcément incompressible. Démonstration :

Écoulement stationnaire donc
$$\frac{\partial \rho}{\partial t} = 0$$
 et homogène donc $\overrightarrow{\nabla} \rho = 0$.
Ainsi,
$$\frac{D\rho}{Dt} = \frac{\partial \rho}{\partial t} + (\vec{v}. \overrightarrow{\nabla}) \rho = 0$$

Qed

V. Rappel mathématique

Le terme $(\vec{v}.\overrightarrow{\nabla})\vec{v}$ s'exprime en coordonnées cartésiennes comme :

$$(\vec{v}.\vec{\nabla})\vec{c} = \left(v_x \frac{\partial}{\partial x} + v_y \frac{\partial}{\partial y} + v_z \frac{\partial}{\partial z}\right) \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} = \begin{pmatrix} v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} \\ v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} \\ v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} \end{pmatrix}$$