# CVRP with CPLEX ONLY

Ahad Bashir, Eric Zhao



# THANK You!

ANY QUESTIONS?

### You cannot only use CPLEX

- Tried using CPLEX to produce an initial solution and then planned to use some local search method from there
  - Variables: 3D matrix of binary variables for if a vehicle traveled along a certain edge
    - Format of [vehicle, customer we're travelling from, customer we're travelling to]
  - Constraints:
    - 1. Vehicles leave each customer they visit
    - 2. Each customer is visited exactly once
    - 3. Every vehicles leaves and return to the depot
    - 4. Capacity
- Miller-Tucker-Zemlin formulation constraints to address sub-tours
- CPLEX did not terminate fast enough so, we moved

# Finding initial solutions

#### Random

Assign customers to routes randomly

#### k-nearest neighbor

- Greedily assign customers to route based on distance to previous customer
- Randomly choose one of k (1-5)

#### Polar sweep

- Order customers by polar angle
- Greedily assign customers to routes in order
- Tried first, but greedy can overassign vehicles

#### • Bin Packing <- Our final choice

- Assign customers based on demand to bins (vehicle routes) if it does not exceed capacity
- Can also search for "best" (lowest total distance increase) place to add customer



# Perturbing the solution

- 2-OPT between two routes
  - Choose two random routes
  - Swap two random customers between them
- 2-OPT within a single route
  - Swap positions of two random customers





## Simulated annealing

- Standard algorithm, initial 1000, factor 0.995
- Stagnation limit
  - Stop after 10,000 iterations with no improvement
- Randomized restarts
  - Restart after stagnation in a single annealing cycle
  - Slightly randomize bin packing by rotating the list of customers sorted by demand

# THANK YOU! ANY QUESTIONS?

~15 HOURS