Dynamic Programming Parsing

Dynamic Programming Parsing

- To avoid extensive repeated work, must cache intermediate results, i.e.,completed phrases.
- Dynamic programming algorithms based on both top-down and bottom-up search can achieve O(n³) recognition time where n is the length of the input string.

Dynamic Programming Parsing Methods

- CKY (Cocke-Kasami-Younger)
 algorithm: bottom-up, requires
 normalizing the grammar
- 2. Chart Parsers retain completed phrases in a chart and can combine top-down and bottom-up searches.
- 3. Earley Parser top-down, does not require normalizing grammar, more complex

The CYK Algorithm

CYK Algorithm

- The Cocke-Younger-Kasami algorithm (alternatively called CYK, or CKY) is a parsing algorithm for context-free grammars, named after its inventors, John Cocke, Daniel Younger and Tadao Kasami.
- It employs bottom-up parsing and dynamic programming
- It determines if a sentence is in the language generated by grammar.

The CYK Algorithm

– Problem:

- Given a context-free grammar G and a string w
 - $-\mathbf{G} = (V, \Sigma, P, S)$ where
 - V finite set of variables
 - \triangleright \sum (the alphabet) finite set of terminal symbols
 - P finite set of rules
 - S start symbol (distinguished element of V)
 - Vand ∑are assumed to be disjoint
 - G is used to generate the string of a language
- Question:
 - Is w in L(G)?

The CYK Algorithm Basics

The Structure of the rules in a Chomsky
Normal Form grammar

 Uses a "dynamic programming" or "tablefilling algorithm"

Chomsky Normal Form

- Normal Form is described by a set of conditions that each rule in the grammar must satisfy
- Context-free grammar is in CNF if each rule has one of the following forms:

```
A \rightarrow BC at most 2 symbols on right
```

$$A \rightarrow a$$
, or side terminal symbol

$$S \rightarrow \epsilon$$
 null string

where B, C \in V – {S}

 Each row corresponds to some length of substrings

0	w_1	1	w ₂	2	w ₃	3	w_4	4	w ₅	5
	X _{0, 1}		X _{0, 2}		X _{0, 3}		X _{0, 4}		X _{0, 5}	
			X _{1, 2}		X _{1,3}		X _{1, 4}		X _{1,5}	
					X _{2,3}		X _{2, 4}		X _{2,5}	
							X _{3,4}		X _{3,5}	
									X _{4,5}	

Table for string 'w' that has length 5

Example CYK Algorithm

Show that the sentence s ∈ L(G) [where s= "a pilot likes flying planes", using CYK Algorithm with the following G:

Grammar G

 $S \rightarrow NP VP$ $VBZ \rightarrow likes$

VP → VBG NNS VBG → flying

 $VP \rightarrow VBZ VP DT \rightarrow a$

 $VP \rightarrow VBZ NP NN \rightarrow pilot$

 $NP \rightarrow DT NN \qquad JJ \rightarrow flying$

NP → JJ NNS NNS → planes

0	а	1	pilot	2	likes	3	flying	4	planes	5
	X _{0, 1}		X _{0, 2}		X _{0, 3}		X _{0, 4}		X _{0,5}	
			X _{1, 2}		X _{1,3}		X _{1, 4}		X _{1,5}	
					X _{2,3}		X _{2, 4}		X _{2,5}	
							X _{3, 4}		X _{3,5}	
									X _{4, 5}	

Table for sentence that has length 5

o a	₁ pilot ₂	likes	3 flying	4 planes 5	
DT					
X _{0,1}	X _{0, 2}	X _{0, 3}	X _{0, 4}	X _{0, 5}	
	NN				
	X _{1, 2}	X _{1,3}	X _{1,4}	X _{1,5}	
$X_{0,1} = DT$		VBZ		v	
X_{1, 2} = NN	√ -> pilot	X _{2,3}	X _{2, 4}	X _{2,5}	
X_{2, 3} = VB			VBG	V	
$X_{3,4} = \forall i$			X _{3, 4}	X _{3,5}	
				NNS	
4,5 = N	NS -> planes			X _{4,5}	

₀ a	₁ pilot	₂ likes	3 flying	4 planes
DT	NP	X _{0,3}	X _{0, 4}	X _{0,5}
X _{0, 1}	X _{0, 2}	- 0, 3	7-0, 4	- 0, 5
	NN		v	v
	X _{1, 2}	X _{1,3}	X _{1,4}	X _{1, 5}
$x_{0, 2} = x_{0, 1}$	X _{1, 2}	VBZ		
= DT N	IN = NP	X _{2,3}	X _{2,4}	X _{2,5}
$x_{1, 3} = x_{1, 2}$		VBG	VP, NP	
= NN \	/BZ = φ	X _{3, 4}	X _{3,5}	
			NNS	
				X _A 5

o a	pilot 2	likes	₃ flying	planes 5
DT	NP		X _{0, 4}	X _{0, 5}
X _{0, 1}	X _{0, 2}	X _{0,3}	770, 4	7-0, 5
	NN			v
	X _{1, 2}	X _{1,3}	X _{1, 4}	X _{1,5}
$x_{0, 3} = x_{0, 1}$ = DT-	VBZ		VP1=VBZ VP VP2=VBZ NP	
= φ	X _{2,3}	X _{2, 4}	X _{2,5}	
•	x _{2, 4} , x _{1, 3} x _{3,4} -, VBG	VBG x _{3,4}	VP, NP X _{3, 5}	
$x_{2, 5} = x_{2, 3}$ = VBZ = VP1,	NNS X _{4, 5}			

o a	₁ pilot ₂	likes	3 flying	planes 5
DT	NP			V
X _{0, 1}	X _{0, 2}	X _{0,3}	X _{0, 4}	X _{0, 5}
	NN			
	X _{1, 2}	X _{1,3}	X _{1, 4}	X _{1,5}
$X_{0.4} = X_{0.1}$	$X_{1,4}, X_{0,2}X_{2,4},$	VBZ		VP1=VBZ VP VP2=VBZ NP
,	DT, NP, = Φ	X _{2,3}	X _{2, 4}	X _{2,5}
,	$_{2}X_{2,5}$, $X_{1,3}$ $X_{3,5}$	•	VBG	VP, NP
^4, 5 = NN NP,NN	VP1,NN VP2, S= φ	, v <i>P</i> ,	X _{3, 4}	X _{3,5}
				NNS
				X _{4, 5}

o a	pilot 2	likes	flying	4planes	5
DT	dr.			S=NP VP1	
DT	NP			S=NP VP2	
X _{0, 1}	X _{0, 2}	X _{0, 3}	X _{0, 4}	X _{0, 5}	
	NN				
	X _{1.2}	X _{1,3}	X _{1,4}	X _{1,5}	
$x_{0, 5} = x_{0, 1}$	$X_{1,5}, X_{0,2}X_{2,5},$	-, -	_, .	VP1=VBZ VP	
$X_{0, 3} X_{3,5}, X$	$X_{0,4} X_{4,5}$	VBZ		VP2=VBZ NP	
=DT,NP VP1,NP VP2, VP/NP, NNS		X _{2,3}	X _{2, 4}	X _{2,5}	
= S		VBG	VP, NP		
			X _{3,4}	X _{3,5}	
				NNS X _{4, 5}	

Theorem

- The CYK Algorithm correctly computes X_{ij} for all i and j; thus sentence S is in L(G) if and only if S is in X_{0n}.
- The running time of the algorithm is O(n³).

Question

Analyze the following sentence using CYK algorithm. Does the sentence belongs to the L(G)?

Astronomers saw starts with telescope Grammar(G):

 $S \rightarrow NPVP$

 $VP \rightarrow VP PP$

VP →V NP

 $NP \rightarrow NP PP$

 $PP \rightarrow P NP$

NP →stars

NP →telescope

NP → saw

V →saw

 $P \rightarrow with$

NP -> astronomers

Question

- Show the CYK Algorithm with the following example:
 - CNF grammar G
 - $S \rightarrow AB \mid BC$
 - $A \rightarrow BA \mid a$
 - $B \rightarrow CC \mid b$
 - $C \rightarrow AB \mid a$
 - w is ababa
 - Question Is ababa in L(G)?
- Basics of CYK Algorithm
 - The Structure of the rules in a Chomsky Normal Form grammar
 - Uses a "dynamic programming" or "table-filling algorithm"
- Complexity O(n³)