b) O espaço de solução para o problema da mochila consiste em 2ⁿ maneiras distintas de escolher os itens de forma a maximizar a utilidade e minimizar o peso L. Outra maneira de verificar o custo exponencial é expressando o tamanho da entrada em termos do número de bits necessários para a representação binária dos inteiros que são parte da entrada. O peso p_i e a utilidade u_i podem ser expressos em termos de $x_i = \log p_i$ e $y_i = \log u_i$. Logo, $p_i = 2^x$ e $u_i = 2^y$, isto é, o peso e a utilidade são funções exponenciais do número de bits x e y utilizados para a entrada p_i e u_i . Logo, o algoritmo tem complexidade exponencial.

9.22.

- a) O algoritmo mais eficiente conhecido é aquele que obtém todos os (n-1)!caminhos e depois pega o maior deles.
- b) O(n!). São (n-1)! caminhos com n adições em cada caminho. O problema é \mathcal{NP} -completo. Como não existe prova de que $P \neq \mathcal{NP}$ ou $P = \mathcal{NP}$, a resposta sobre se o algoritmo é ótimo (ou não) ainda não pode ser obtida.
- c) O problema é \mathcal{NP} -completo. Um algoritmo não determinista polinomial é mostrado abaixo:

```
for i:= 2 to |v| do caminho[i] := escolhe(prox. vertice);
if | maior_caminho| >= k
then achou
else nao achou
```

Solução I: Transformar o problema em questão no problema do caixeiroviajante clássico multiplicando cada distância por (-1) e obtendo $G'=(V,A^-)$. Neste caso, G' tem rota $\langle = (-k)$ se e somente se G tem rota $\rangle = k$ que inclua todos os vértices. Logo, existe rota >= k que inclua todos os vértices.

Solução II: Transformar o ciclo de Hamilton de G=(V,A) para o problema do caixeiro-viajante máximo. (Ciclo de Hamilton é \mathcal{NP} -completo.) Como o grafo é completo, decidir se G tem um ciclo de Hamilton com comprimento >=k (testando todos os ciclos hamiltonianos) é equivalente a resolver o problema em pauta.

Caracteres ASCII

Dec	Car	Dec	Car	Dec	Car	Dec	Car	Dec	Car	Dec	Car	Dec	Car
000	NUL	037	%	074	J	111	0	148	CCH	185	1	222	þ
001	SOH	038	&	075	K	112	p	149	MW	186	Q	223	ß
002	STX	039	,	076	L	113	q	150	SPA	187	*	224	à
003	ETX	040	(077	M	114	г	151	EPA	188	1/4	225	á
004	EOT	041)	078	N	115	S	152	SOS	189	1/2	226	â
005	ENQ	042	*	079	0	116	t	153	SGCI	190	3/4	227	ã
006	ACK	043	+	080	P	117	u	154	SCI	191	7	228	ä
007	BEL	044	,	081	Q	118	v	155	CSI	192	A	229	å
008	BS	045	-	082	R	119	w	156	ST	193	Á	230	æ
009	TAB	046		083	S	120	х	157	OSC	194	Â	231	ç
010	LF	047	1	084	T	121	у	158	PM	195	Ã	232	è
011	VT	048	0	085	U	122	Z	159	APC	196	Ä	233	é
012	FF	049	1	086	V	123	{	160		197	Å	234	ê
013	CR	050	2	087	W	124		161	i	198	Æ	235	ë
014	SO	051	3	088	X	125	}	162	c	199	Ç	236	ì
015	SI	052	4	089	Y	126	~	163	£	200	È	237	í
016	DLE	053	5	090	Z	127	DEL	164	n	201	É	238	î
017	DC1	054	6	091		128	PAD	165	¥	202	Ê	239	ĩ
018	DC2	055	7	092	1	129	HOP	166	1	203	Ë	240	ð
019	DC3	056	8	093]	130	BPH	167	§	204	Ì	241	ñ
020	DC4	057	9	094	^	131	NBH	168		205	Í	242	9
021	NACK	058	:	095		132	IND	169	0	206	Î	243	6
022	SYN	059	;	096		133	NEL	170	a	207	Ϊ	244	ô
023	ETB	060	<	097	a	134	SSA	171	*	208	Đ	245	õ
024	CAN	061	=	098	b	135	ESA	172	7	209	Ñ	246	ö
025	EM	062	>	099	c	136	HTS	173	-	210	Ò	247	÷
026	SUB	063	?	100	d	137	HTJ	174	R	211	0	248	Ø
027	ESC	064	@	101	е	138	VTS	175		212	Ô	249	ù
028	FS	065	A	102	f	139	PLD	176		213	Õ	250	ú
029	GS	066	В	103	g	140	PLU	177	±	214	Ö	251	û
030	RS	067	C	104	h	141	R1	178	2	215	×	252	ü
031	US	068	D	105	i	142	SS2	179	3	216	Ø	253	ý
032	CD	069	E	106	j	143	SS3	180		217	Ù	254	þ
033	ĭ	070	F	107	k	144	DCS	181	μ	218	Ú	255	ÿ
034	,	071	G	108	1	145	PV1	182	1	219	Û		
035		072	Н	109	m	146	PV2	183	1000	220	Ü		
036	# \$	073	I	110	n	147	STS	184	,	221	Ý		

.