Notas Curso Topología II

Cristo Daniel Alvarado

28 de agosto de 2024

Índice general

1.	Metriz	zabilidad	ĺ														2
	1.1. C	onceptos	Fundame	ntales			 			 					 		2

Capítulo 1

Metrizabilidad

1.1. Conceptos Fundamentales

¿Cuándo un espacio topológico es metrizable? Supongamos que tenemos un espacio topológico (X, τ) , queremos una métrica $d: X \times X \to \mathbb{R}$ tal que $\tau_d = \tau$.

La respuesta a esta pregunta es que no siempre será posible encontrar tal métrica. Por ejemplo, tome cualquier espacio topológico que no sea T_1 .

- Pável Urysohn 1898-1924. El Lema de Urysohn fue publicado en 1924 póstumo a la muerte de su autor.
- Primera guerra mundial 28 de julio de 1914 a 11 de noviembre de 1918, inició con el asesinato del Archiduque Franciso de Austria.
- Segunda guerra mundial 1939 a 1945, cuando Hitler invade Polonia.
- En 1950 Bing, Nagata y Morita resuelven el problema de metrizabilidad de espacios topológicos.

Lo que veremos a continuación tiene como base fundamental el siguiente lema:

Lema 1.1.1 (Lema de Urysohn)

Sea (X,τ) espacio topológico. Entonces, (X,τ) es T_4 si y sólo si dados $A,B\subseteq X$ cerrados disjuntos existe una función continua $f:X\to [0,1]$ tal que

$$f(A) = \{0\}$$
 y $f(B) = \{1\}$

Este lema se probó en el curso pasado.

Proposición 1.1.1

Sea (X, τ) un espacio topológico segundo numerable. Entonces

- 1. (X, τ) es primero numerable.
- 2. (X,τ) es de Lindelöf.
- 3. (X,τ) es separable.

Demostración:

Sea $\mathcal{B} = \{B_i\}_{i \in \mathbb{N}}$ una base numerable para τ .

De (1): Sea $x \in X$. Tomemos

$$\mathcal{B}_x = \left\{ B_n \in \mathcal{B} \middle| x \in B_n \right\}$$

este es un conjunto no vacío pues al ser \mathcal{B} base, existe $B \in \mathcal{B}$ tal que $x \in B$. Además es a lo sumo numerable por ser subcolección de \mathcal{B} .

Sea $U \subseteq X$ abierto tal que $x \in U$. Como \mathcal{B} es base de τ , existe $B \in \mathcal{B}$ tal que $x \in B \subseteq U$, luego $B \in \mathcal{B}_x$. Por tanto, \mathcal{B}_x es un sistema fundamental de vecindades de x. Al ser el x arbitrario, se sigue que (X, τ) es primero numerable.

De (2): Sea $\mathcal{A} = \{A_{\alpha}\}_{{\alpha} \in I}$ una cubierta abierta de (X, τ) . Dado $x \in X$ existe $A_{\alpha} \in \mathcal{A}$ tal que $x \in A_{\alpha}$, como $A_{\alpha} \in \tau$, existe $B_x \in \mathcal{B}$ tal que

$$x \in B_r \subset A_\alpha$$

Sea

$$\mathcal{K} = \left\{ n \in \mathbb{N} \middle| \exists A_{\alpha} \in \mathcal{A} \text{ tal que } B_n \subseteq A_{\alpha} \right\}$$

por la observación anterior, esta colección es no vacía. Dado $k \in \mathcal{K}$ escogemos un único A_{α_k} tal que

$$B_k \subseteq A_{\alpha_k}$$

Sea

$$\mathcal{A}' = \{A_{\alpha_k}\}_{k \in \mathcal{K}}$$

se tiene que $\mathcal{A}' \subseteq \mathcal{A}$ es numerable. Sea $x \in X$, Como \mathcal{A} es cubierta, existe $A' \in \mathcal{A}$ tal que

$$x \in A' \in \tau$$

luego, al ser \mathcal{B} base existe $B_n \in \mathcal{B}$ tal que

$$x \in B_n \subseteq A'$$

Se sigue pues que $x \in A_{\alpha_n}$. Por ende, $x \in \bigcup_{n \in \mathbb{N}} A_{\alpha_n}$. Así, \mathcal{A} posee una subcubierta a lo sumo numerable. Se sigue que al ser la cubierta abierta arbitraria que el espacio (X, τ) es Lindelöf.

Proposición 1.1.2

Si (X, τ) es metrizable, entonces los coneptos de espacio de Lindelöf, espacio separable y espacio segundo numerable son equivalentes.

Demostración:

Probaremos que Lindelöf implica separabilidad que implica segunda numerabilidad.

Suponga que (X, τ) es metrizable, entonces existe una métrica $d: X \times X \to \mathbb{R}$ tal que $\tau_d = \tau$.

• Suponga que (X,τ) es Lindelöf. Sea $n\in\mathbb{N}$ y tomemos

$$\mathcal{U}_n = \left\{ B_d\left(x, \frac{1}{n}\right) \middle| x \in X \right\}$$

 \mathcal{U}_n es una cubierta abierta de (X, τ) . Como el espacio de Lindelöf, existe \mathcal{V}_n a lo sumo numerable tal que

$$\mathcal{V}_n = \left\{ B_d\left(y, \frac{1}{n}\right) \middle| y \in Y_n \right\}$$

siendo $Y_n \subseteq X$ un conjunto a lo sumo numerable, de tal suerte que \mathcal{V}_n es subcubierta de \mathcal{U}_n . Sea

$$A = \bigcup_{n \in \mathbb{N}} Y_n$$

este es un conjunto a lo sumo numerable. Sea $U \in \tau$ con $U \neq \emptyset$. Como $U \neq \emptyset$, existe $x \in U$, así existe $\varepsilon > 0$ tal que $B_d(x, \varepsilon) \subseteq U$. Sea $m \in \mathbb{N}$ tal que $\frac{1}{m} < \varepsilon$. Tenemos que \mathcal{V}_m es una cubierta de X, luego existe $y \in Y_m$ tal que

$$x \in B_d\left(y, \frac{1}{m}\right)$$

Por tanto, $y \in B_d(x, \frac{1}{m}) \subseteq B(x, \varepsilon) \subseteq U$, así $y \in U$. Pero como $y \in Y_m$ se tiene que $y \in A$. Por ende

$$U \cap A \neq \emptyset$$

lo que prueba el resultado.

• Suponga que (X, τ) es separable, entonces existe $A \subseteq X$ subconjunto denso a lo sumo numerable. Sea

$$\mathcal{B} = \left\{ B_d \left(a, \frac{1}{n} \right) \middle| a \in A \text{ y } n \in \mathbb{N} \right\}$$

Si probamos que \mathcal{B} es base para τ , se probará el resultado (pues \mathcal{B} es a lo sumo numerable). Sea $x \in X$ y $\varepsilon > 0$. Tomemos $m \in \mathbb{N}$ tal que

$$\frac{2}{m} < \varepsilon$$

como $\overline{A} = X$, entonces existe $a \in A$ tal que $a \in B_d\left(x, \frac{1}{m}\right)$. Entonces

$$x \in B_d\left(a, \frac{1}{m}\right) \subseteq B_d\left(x, \frac{2}{m}\right) \subseteq B_d\left(x, \varepsilon\right)$$

por tanto, \mathcal{B} es una base para la topología τ , luego el espacio (X,τ) es segundo numerable.

Ejemplo 1.1.1

Considere el espacio topológico (\mathbb{R}, \leq). Entonces el conjunto

$$\mathcal{B}_{l} = \left\{ [a, b) \middle| a, b \in \mathbb{R} \right\}$$

es una base para una topología sobre \mathbb{R} . La topología generada por esta base la denotamos por τ_l y se dice la topología del límite inferior.

Ejemplo 1.1.2

El espacio (\mathbb{R}, τ_l) es T_2 . Dados $a, b \in \mathbb{R}$ se tiene que si a < x < b.

$$(a,b) = \bigcup \left\{ [x,b) \middle| a < x < b \right\}$$

por tanto, $\tau_u \subseteq \tau_l$, luego (\mathbb{R}, τ_l) es T_2 pues con la topología usual lo es.

Más aún, (\mathbb{R}, τ_l) es primero numerable.

Demostración:

En efecto, sea $x \in \mathbb{R}$. Afirmamos que la colección

$$\left\{ [x, x + 1/n) \middle| n \in \mathbb{N} \right\}$$

es un sistema fundamnetal de vecindades de x, por lo que este espacio es primero numerable.

Ejemplo 1.1.3

El espacio (\mathbb{R}, τ_l) no es segundo numerable.

Demostración:

Sea \mathcal{B} una base para τ_l . Para $x \in \mathbb{R}$ escogemos $B_x \in \mathcal{B}$ tal que

$$x \in B_x \subseteq [x, x+1)$$

Se tiene que $x = \inf B_x$. Para $x, y \in \mathbb{R}$ se tiene que $B_x \neq B_y$ (pues si fueran iguales, tendrían el mismo ínfimo). Por tanto la colección \mathcal{B} es no numerable.

Así, el espacio (\mathbb{R}, τ_l) no es segundo numerable.

Ejemplo 1.1.4

El espacio (\mathbb{R}, τ_l) es separable.

Demostración:

Tome $\mathbb{Q} \subseteq \mathbb{R}$.

Ejemplo 1.1.5

 (\mathbb{R}, τ_l) es normal.

Demostración:

Sean $A, B \subseteq \mathbb{R}$ cerrados tales que $A \cap B = \emptyset$. Sea $a \in A$, entonces $a \notin B = \overline{B}$. Existe pues $x_a \in \mathbb{R}$ tal que

$$[a, x_a) \subseteq \mathbb{R} - B$$

(por ser el conjunto de la derecha abierto). Entonces

$$A \subseteq \bigcup_{a \in A} [a, x_a) = U \in \tau_l$$

У

$$B \subseteq \bigcup_{b \in P} [b, x_b) = V \in \tau_l$$

Si $U \cap V \neq \emptyset$, entonces existe $a \in A$ y $b \in B$ tales que

$$[a, x_a) \cap [b, x_b) \neq \emptyset$$

Si a < b entonces $b \in [a, x_a)$, lo cual es una contradición. Por tanto, $U \cap V = \emptyset$. Así, el espacio (\mathbb{R}, τ_l) es normal.

Proposición 1.1.3

Si (X, τ) es metrizable, entonces (X, τ) es normal.

Demostración:

Sea d una métrica definida sobre X tal que $\tau_d = \tau$. Como (X, τ) es metrizable, entonces es \mathbb{T}_2 y por lo tanto es T_1 . Veamos que (X, τ) es T_4 .

Sean $A, B \subseteq X$ cerrados disjuntos con $A \cap B \neq \emptyset$. Sea $a \in A$, entonces $a \in X - B \in \tau$. Entonces existe $\varepsilon_a > 0$ tal que

$$B_d(a, \varepsilon_a) \subseteq X - B$$

Sea

$$U = \bigcup_{a \in A} B_d\left(a, \frac{\varepsilon_a}{2}\right) \in \tau$$

es claro que $A \subseteq U$. De forma análoga se construye V:

$$V = \bigcup_{b \in B} B_d\left(b, \frac{\varepsilon_b}{2}\right) \in \tau$$

es tal que $B \subseteq V$. Suponga que $U \cap V \neq \emptyset$. Entonces existe $a \in A$ y $b \in B$ tales que

$$B_d\left(a, \frac{\varepsilon_a}{2}\right) \cap B_d\left(b, \frac{\varepsilon_b}{2}\right) \neq \emptyset$$

se tiene que $d(a,b) < d(a,x) + d(x,b) < \frac{\varepsilon_a}{2} + \frac{\varepsilon_b}{2} < \max\{\varepsilon_a, \varepsilon_b\}$. Por tanto, $a \in B_d(b, \varepsilon_b)$ o $b \in B_d(a, \varepsilon_a)$, lo cual contradice la elección de estas bolas. Por tanto, $U \cap B = \emptyset$.

Así, el espacio
$$(X, \tau)$$
 es T_4 .

Corolario 1.1.1

Si (X, τ) es metrizable, entonces es regular.

Demostración:

Inmediato del hecho que normalidad implica regularidad.

Proposición 1.1.4

Si (X,τ) es metrizable, entonces (X,τ) es primero numerable.

Demostración:

Sea d una métrica definida sobre X tal que $\tau = \tau_d$. Sea $x \in X$, considere

$$\mathcal{V} = \left\{ B_d \left(x, \frac{1}{n} \right) \middle| n \in \mathbb{N} \right\}$$

entonces \mathcal{V} es una colección numerable de vecindades de X y es fundamental (por construcción). Por tanto, (X, τ) es primero numerable.

Proposición 1.1.5

Sea (X,τ) un espacio T_3 y de Lindelöf, entonces (X,τ) es T_4

Demostración:

Sean $A, B \subseteq X$ cerrados disjuntos. Sea $a \in A \subseteq X - B \in \tau$. Como (X, τ) es T_3 , existe $U_a \in \tau$ tal que

$$a \in U_a \subseteq \overline{U}_a \subseteq X - B$$

Por ser (X,τ) de Lindelöf y ser $A\subseteq X$ cerrado, tenemos que (A,τ_A) es de Lindelöf. Se tiene que

$$A \subseteq \bigcup_{a \in A} U_a$$

donde $U_a \in \tau$ y $\overline{U}_a \cap B \neq \emptyset$. Existe pues $\{U_{a_n}\}_{n \in \mathbb{N}}$ tales que

$$A \subseteq \bigcup_{n \in \mathbb{N}} U_{a_n} U_{a_n}$$

y cumplen que

$$\overline{U}_{a_n} \cap B = \emptyset, \quad \forall n \in \mathbb{N}$$

De forma análoga podemos encontrar una familia $\{V_{b_n}\}_{n\in\mathbb{N}}$ de abiertos tales que

$$V \subseteq \bigcup_{n \in \mathbb{N}} U_{b_n} V_{b_n}$$

y que cumplan:

$$\overline{V}_{b_n} \cap A = \emptyset, \quad \forall n \in \mathbb{N}$$

Sea $m \in \mathbb{N}$. Se define

$$U_m = U_{a_m} - \bigcup_{l=1}^m \overline{V}_{b_l} \in \tau$$

y V_m se define de forma similar:

Observación 1.1.1

Por el ejemplo de (\mathbb{R}, τ_l) , se sigue que el recíproco de esta proposición anterior no es cierta.

Observación 1.1.2

Del ejemplo anterior se deduce de forma inmediata que el recíproco del teorema anterior no es cierto.