1 Folgen

1.1 Konvergenz

Die Folge $(a_n)_{n\geq 1}$ konvergiert gegen a für $n\to\infty$, falls gilt:

$$\forall \epsilon > 0 \ \exists n_0 = n_0(\epsilon) \in \mathbf{N} \ \forall n \geq n_0 : |a_n - a| < \epsilon$$

Wir schreiben dann:

$$a = \lim_{n \to \infty} a_n \text{ oder } a_n \to a \ (n \to \infty)$$

und nennen a den **Grendwert/ Limes** der Folge $(a_n)_{n\geq 1}$. Existiert der Limes nicht, so heisst die Folge **divergent**. Zu bemerken ist:

$$(a_n)_{n\geq 1}$$
 konvergent $\Rightarrow (a_n)_{n\geq 1}$ beschränkt

1.2 Monotone Konvergenz

Sei die Folge $(a_n)_{n\geq 1}$ monoton wachsend und nach oben beschränkt. Dann konvergiert $(a_n)_{n\geq 1}$ mit Grenzwert:

$$\lim_{n \to \infty} a_n = \sup\{a_n : n \ge 1\}$$

Ist die Folge $(a_n)_{n\geq 1}$ monoton fallend und nach unten beschränkt so konvergiert $(a_n)_{n\geq 1}$ mit Grenzwert:

$$\lim_{n \to \infty} a_n = \inf\{a_n : n \ge 1\}$$

1.3 Cauchy Kriterium

Die Folge $(a_n)_{n>1}$ ist genau dann konvergent, falls:

$$\forall \epsilon > 0 \; \exists N > 1 \text{ so dass } |a_n - a_m| < \epsilon \; \forall n, m > N$$

1.4 Rechnen mit Limes

Seien die Folgen $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$ konvergent mit $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$. Dann gilt:

- (i) $\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$
- (ii) $\lim_{n\to\infty} (a_n * b_n) = \lim_{n\to\infty} a_n * \lim_{n\to\infty} b_n$
- (iii) Falls zusätzlich $b_n \neq 0 \ \forall n \geq 1 \ \text{und} \ b \neq 0 \ \text{gegeben ist, so gilt:} \lim_{n \to \infty} (a_n/b_n) = a/b.$
- (iv) Falls es ein $K \geq 1$ gibt mit $a_n \leq b_n \ \forall n \geq K$, dann folgt $a \leq b$.

1.5 Limes Superior/Inferior

Sei eine Folge $(a_n)_{n\geq 1}$ beschränkt. Wir können dann zwei monotone Folgen $(b_n)_{n\geq 1}$ und $(c_n)_{n\geq 1}$ definieren, welche dann einen Grenzwert besitzen. Sei für jedes n>1:

$$b_n = \inf\{a_k : k \ge n\} \text{ und } c_n = \sup\{a_k : k \ge n\}$$

$$b_n \le b_{n+1}$$

$$c_{n+1} \le c_n$$

Da also beide Folgen beschränkt sind und konvergieren, können wir aufgrund von Monotoner Konvergenz folgern:

$$\lim_{n \to \infty} \inf a_n := \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} \sup a_n := \lim_{n \to \infty} c_n$$

$$\lim_{n \to \infty} \inf a_n \le \lim_{n \to \infty} \sup a_n$$

Es gilt auch, dass $(a_n)_{n\geq 1}$ genau dann konvergiert, falls $(a_n)_{n\geq 1}$ beschränkt ist und $\liminf_{n\to\infty}a_n=\limsup_{n\to\infty}a_n$

1.6 Bolzano-Weierstrass

Jede beschränkte Folge besitzt eine konvergente Teilfolge. Wenn a_n monoton wachsend und nach oben beschränkt ist, dann konvergiert a_n mit Grenzwert $\lim_{n\to\infty}a_n=\sup\{a_n:\ n\geq 1\}$. Wenn a_n monoton fallend und nach unten beschränkt ist, dann konvergiert a_n mit Grenzwert $\lim_{n\to\infty}a_n=\inf\{a_n:\ n\geq 1\}$.

1.7 Sandwichsatz für Folgen

Seien $(a_n)_{n\geq 1}$ und $(b_n)_{n\geq 1}$ konvergente Folgen mit demselben Limes $\alpha\in\mathbf{R}$. Ist $K\in\mathbf{N}$ und $(c_n)_{n\geq 1}$ eine Folge mit der Eigenschaft:

$$a_n \le c_n \le b_n \quad \forall n \ge K$$

so konvergiert auch $(c_n)_{n>1}$ gegen α .

1.8 Limes Binom Trick

Gegeben die Summe zweier Wurzeln könnte man wie folgt vorgehen (Bsp.):

$$\lim_{x \to \infty} (\sqrt{x+5} - \sqrt{x-3}) = \lim_{x \to \infty} (\frac{(x+5) - (x-3)}{\sqrt{x+5} + \sqrt{x-3}})$$

1.9 Limes Substitution Trick

Hier ein Beispiel:

$$\lim_{x \to \infty} x^2 (1 - \cos(\frac{1}{x}))$$

Substitutiere nun $u = \frac{1}{x}$:

$$\lim_{u \to 0} \frac{1 - \cos(u)}{u^2} = \lim_{u \to 0} \frac{\sin(u)}{2u} = \lim_{u \to 0} \frac{\cos(u)}{2} = \frac{1}{2}$$

1.10 Limes Taylor Trick

Mithilfe der Reihenentwicklung von e^x und sin(x):

$$\lim_{n\to\infty}\frac{e^{1/n}-1-\frac{1}{n}}{1-n*sin(\frac{1}{n})}=\frac{\frac{1}{2}n^{-2}+\mathcal{O}(n^{-3})}{1-n(n^{-1}-\frac{1}{6}n^{-3}+\mathcal{O}(n^{-5}))}=3$$

1.11 Strategie - Konvergenz von Folgen

- 1. Bei Brüchen: Grösste Potenz von n kürzen. Alle Brüche der Form $\frac{a}{n^a}$ streichen, da diese nach 0 gehen.
- 2. Bei Wurzeln in Summe im Nenner: Multiplizieren des Nenners und Zählers mit der Differenz der Summe im Nenner. (z.B. (a+b) mit (a-b) multiplizieren)
- 3. Bei rekursiven Folgen: Anwendung von Weierstrass zur monotonen Konvergenz
- 4. Einschliessungskriterium (Sandwich-Theorem) anwenden.
- 5. Mit bekannter Folge vergleichen.
- 6. Grenzwert durch einfaches Umformen ermitteln.
- 7. Limit per Definition der Konvergenz zeigen.
- 8. Anwendung des Cauchy-Kriteriums.
- 9. Suchen eines konvergenten Majorant.
- Weinen und die Aufgabe überspringen.

1.12 Strategie - Divergenz von Folgen

- 1. Suchen einer divergenten Vergleichsfolge.
- 2. Alternierende Folgen: Zeige, dass Teilfolgen nicht gleich werden, also $\lim_{n\to\infty} a_{p_1(n)} \neq \lim_{n\to\infty} a_{p_2(n)}$ (mit z.B. gerade/ungerade als Teilfolgen).

1.13 Induktive Folgen (Induktionstrick)

- 1. Zeige monoton wachsend / fallend
- 2. Zeige beschränkt
- 3. Nutze Satz von Weierstrass, d.h. Folge muss gegen Grenzwert konvergieren
- 4. Verwende Induktionstrick:

Wenn die Folge konvergiert, hat jede Teilfolge den gleichen Grenzwert. Betrachte die Teilfolge l(n) = n + 1 für $d_{n+1} = \sqrt{3d_n - 2}$:

$$d = \lim_{n \to \infty} d_n = \lim_{n \to \infty} d_{n+1} = \sqrt{\lim_{n \to \infty} 3d_n - 2} = \sqrt{3d - 2}$$

Forme um zu $d^2=3d-2\to d\in 1,2.$ Nun können wir d=2 nehmen und die Beschränktheit mit d=2 per Induktion zeigen.

1.14 Punktweise Konvergenz

Die Funktionenfolge $(f_n)_{n\geq 0}$ konvergiert punktweise gegen eine Funktion $f: \mathbf{D} \to \mathbf{R}$ falls für alle $x \in \mathbf{D}$, $f(x) = \lim_{n \to \infty} f_n(x)$ gilt. Konkret:

$$\forall x \in \mathbf{D} \quad \forall \epsilon > 0 \quad \exists N_{x,\epsilon} \ge 1 \text{ so dass}$$

 $\forall n \ge N \quad |f_n(x) - f(x)| < \epsilon$

1.15 Gleichmässige Konvergenz

Die Funktionenfolge $(f_n)_{n\geq 0}$ konvergiert gleichmässig in **D** gegen eine Funktion $f: \mathbf{D} \to \mathbf{R}$ falls für alle $x \in \mathbf{D}$, $f(x) = \lim_{n\to\infty} f_n(x)$ gilt. Konkret:

$$\forall \epsilon > 0 \quad \exists N_{\epsilon} \ge 1 \text{ so dass}$$

 $\forall n \ge N \quad \forall x \in \mathbf{D} \quad |f_n(x) - f(x)| < \epsilon$

Weiter ist folgenes Kriterium äquivalent:

$$\forall \epsilon > 0 \quad \exists N \ge 1 \text{ so dass}$$

 $\forall n, m > N \quad \forall x \in \mathbf{D} \quad |f_n(x) - f_m(x)| < \epsilon$

Konvergiert eine Funktionenfolge $(f_n)_{n\geq 1}, f_n: \mathbf{D} \subset \mathbf{R} \to \mathbf{R}$ bestehend aus in \mathbf{D} stetigen Funktionen gleichmässig gegen die Funktion $f: \mathbf{D} \to \mathbf{R}$, so ist f in \mathbf{D} stetig.

Beispiel: $f_n: \mathbf{R} \to \mathbf{R}, f_n(x) = \sqrt{|x| + \frac{1}{n^3}}$ Wie lautet der punktweise Limes der Funktionsfolge f_n ? Konvergiert f_n gleichmässig auf \mathbf{R} ?

Punktweise Konvergenz: Wir fixieren $x \in R$ und bilden den Limes für $n \to \infty$

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \sqrt{|x| + \frac{1}{n^3}} = \sqrt{|x|} = f(x)$$

Die Funktionenfolge konvergiert somit punktweise gegen den punktweisen Grenzwert $f(x) = \sqrt{|x|}$

Gleichmässige Konvergenz: Wir müssen zeigen, dass $\lim_{n\to\infty} \sup_{x\in\mathbf{R}} |f_n(x)-f(x)|=0$ gilt. Wir berechnen also zuerst den Ausdruck $\sup_{x\in\mathbf{R}} |f_n(x)-f(x)|$

$$\begin{aligned} sup_{x \in \mathbf{R}} |f_n(x) - f(x)| &= sup_{x \in \mathbf{R}} \left| \sqrt{|x| + \frac{1}{n^3}} - \sqrt{|x|} \right| \\ &= sup_{x \in \mathbf{R}} \left| \left(\sqrt{|x| + \frac{1}{n^3}} - \sqrt{|x|} \right) \left(\frac{\sqrt{|x| + \frac{1}{n^3}} + \sqrt{|x|}}{\sqrt{|x| + \frac{1}{n^3}} + \sqrt{|x|}} \right) \right| \\ &= sup_{x \in \mathbf{R}} \left| \frac{\frac{1}{n^3}}{\sqrt{|x| + \frac{1}{n^3}} + \sqrt{|x|}} \right| \end{aligned}$$

Da |x| positiv ist, wird das Supremum von $\left|\frac{\frac{1}{n^3}}{\sqrt{|x|+\frac{1}{n^3}+\sqrt{|x|}}}\right|$ bei x=0 angenommen. Es gilt somit

$$sup_{x \in \mathbf{R}} |f_n(x) - f(x)| = sup_{x \in \mathbf{R}} \left| \frac{\frac{1}{n^3}}{\sqrt{|x| + \frac{1}{n^3} + \sqrt{|x|}}} \right|$$
$$= \frac{\frac{1}{n^3}}{\sqrt{\frac{1}{2}}} = \frac{1}{n^{\frac{3}{2}}}$$

Somit konvergiert die Funktionenfolge f_n auf ${\bf R}$ gleichmässig gegen f.

1.16 Grenzwerte von Funktionen

Sei $f: \mathbf{D} \to \mathbf{R}$, $x_0 \in \mathbf{R}$ ein Häufungspunkt von \mathbf{D} . Dann ist $A \in \mathbf{R}$ der Grenzwert von f(x) für $x \to x_0$, bezeichnet mit

$$\lim_{x \to x_0} f(x) = A$$

falls $\forall \epsilon > 0 \quad \exists \delta > 0 \text{ so dass}$

$$\forall x \in \mathbf{D} \cap (|x_0 - \delta, x_0 + \delta[\setminus \{x_0\}) : |f(x) - A| < \epsilon$$

1.17 Rechnen mit Limes Für Funktionen

Seien die Funktionen $f,g: \mathbf{D} \to \mathbf{R}$ konvergent mit $\lim_{x \to x_0} f(x) = A$ und $\lim_{x \to x_0} g(x) = B$. Sei weiter $x_0 \in \mathbf{R}$ ein Häufungspunkt von \mathbf{D} . Dann gilt:

(i)
$$\lim_{x \to x_0} (f+g)(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

(ii)
$$\lim_{x \to x_0} (f * g)(x) = \lim_{x \to x_0} f(x) * \lim_{x \to x_0} g(x)$$

(iii) Sei $f, q: \mathbf{D} \to \mathbf{R}$ mit f < q. Dann folgt:

$$\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$$

falls beide Grenzwerte existieren.

(iv) Seien $\mathbf{D}, \mathbf{E} \subset \mathbf{R}$ und $f: \mathbf{D} \to \mathbf{E}$ eine Funktion. Wir nehmen an, dass

$$y_0 := \lim_{x \to x_0} f(x)$$

existiert und $y_0 \in \mathbf{E}$. Falls $g : \mathbf{E} \to \mathbf{R}$ stetig in y_0 folgt:

$$\lim_{x \to x_0} g(f(x)) = g(y_0)$$

1.18 Sandwichsatz für Funktionen

Falls $g_1 \leq f \leq g_2$ und

$$\lim_{x \to x_0} g_1(x) = \lim_{x \to x_0} g_2(x)$$

dann existiert $\lim_{x\to x_0} f(x)$ und

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g_1(x)$$

1.19 Links- und Rechtsseitige Grenzwerte

Sei $f: \mathbf{D} \to \mathbf{R}$, $x_0 \in \mathbf{R}$. Wir nehmen an, dass x_0 ein Häufungspunkt von $\mathbf{D} \cap]x_0, +\infty[$ ist. Falls der Grenzwert der Eingeschränkten Funktionen f im Bereich $\mathbf{D} \cap [x_0, +\infty[$ für $x \to x_0$ existiert, wird er mit $\lim_{x \to x_0^+} f(x)$ bezeichnet und nennt sich **rechtsseitiger Grenzwert** von f bei x_0 .

Der linksseitige Grenzwert ist analog definiert für den Bereich $\mathbf{D} \cap]-\infty, x_0]$ für $x \to x_0$, falls er existiert. Es wird mit $\lim_{x\to x_0^-} f(x)$ bezeichnet.

Besitzt die Funktion f(x) an der Stelle x_0 den Grenzwert L, so gilt:

$$\lim_{x \to x_0 +} f(x) = \lim_{x \to x_0 -} f(x) = \lim_{x \to x_0} f(x) = L$$

2 Reihen

2.1 Konvergenz

Die Reihe $\sum_{k=1}^\infty a_k$ ist konvergent, falls die Folge der Partialsummen $(S_n)_{n\geq 1}=\sum_{k=1}^n a_k$ konvergiert. In diesem Fall definieren wir:

$$\sum_{k=1}^{\infty} a_k := \lim_{n \to \infty} S_n$$

2.2 Monotone Konvergenz

Sei $\sum_{k=1}^{\infty} a_k$ eine Reihe mit $a_k \geq 0 \quad \forall k \in \mathbb{N}$. Die Reihe konvergiert genau dann, wenn die Folge der Parialsummen $(S_n)_{n\geq 1}$ nach oben beschränkt ist.

2.3 Cauchy Kriterium

Die Reihe $\sum_{k=1}^{\infty} a_k$ ist geau dann konvergent, falls:

$$\forall \epsilon > 0 \; \exists N \geq 1 \; \text{mit} \; \left| \sum_{k=n}^{m} a_k \right| < \epsilon \quad \forall m \geq n \geq N$$

2.4 Rechnen mit Konvergenten Reihen

Seien $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ konvergent, sowie $\alpha \in \mathbb{C}$. Dann gilt:

(i)
$$\sum_{k=1}^{\infty}(a_k+b_k)$$
 ist konvergent und $\sum_{k=1}^{\infty}(a_k+b_k)=\sum_{k=1}^{\infty}a_k+\sum_{k=1}^{\infty}b_k$

(ii)
$$\sum_{k=1}^{\infty} \alpha * a_k$$
 ist konvergent und $\sum_{k=1}^{\infty} \alpha * a_k = \alpha * \sum_{k=1}^{\infty} a_k$

Konvergieren die Reihen $\sum_{i=0}^\infty a_i$ und $\sum_{j=0}^\infty b_j$ absolut, so gilt zusätzlich für das Cauchy Produkt:

(iii)
$$\sum_{n=0}^{\infty} (\sum_{j=0}^{n} a_{n-j} * b_j) = (\sum_{i=0}^{\infty} a_i) * (\sum_{j=0}^{\infty} b_j)$$

2.5 Absolute Konvergenz

Eine Reihe $\sum_{k=1}^{\infty} a_k$ heisst absolut konvergent, falls $\sum_{k=1}^{\infty} |a_k|$ konvergiert. Weiter sind absolut konvergente Reihen auch konvergent und es gilt:

$$\left| \sum_{k=1}^{\infty} a_k \right| \le \sum_{k=1}^{\infty} |a_k|$$

2.6 Reihen Umordnung

Konvergiert $\sum_{n=1}^{\infty}a_n$ absolut, dann konvergiert auch jede Umordnung der Reihe $a'_n=a_{\phi(n)}$ (wobei ϕ bijektiv) und hat denselben Grenzwert.

2.7 Potenzreihe

Die Potenzreihe $\sum_{k=0}^{\infty} c_k z^k$ konvergiert absolut für alle $z \in \mathbf{C}$ mit $|z| < \rho$ (divergiert bei $|z| > \rho$), wobei

$$\rho := \begin{cases} +\infty & \text{Falls } \limsup_{k \to \infty} \sqrt[k]{|c_k|} = 0 \\ \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|c_k|}} & \text{Falls } \limsup_{k \to \infty} \sqrt[k]{|c_k|} > 0 \end{cases}$$

Ränder Prüfen!

2.8 Nullfolgenkriterium

$$\lim_{n \to \infty} |a_n| \neq 0 \Rightarrow \sum_{n=0}^{\infty} a_n \text{ divergient}$$

2.9 Wurzelkriterium

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1 \Rightarrow \sum_{n=1}^{\infty} a_n \text{ konvergient absolut.}$$

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} > 1 \Rightarrow \sum_{n=1}^{\infty} a_n \text{ und } \sum_{n=1}^{\infty} |a_n| \text{ divergieren.}$$

2.10 Quotientenkriterium

Sei $(a_n)_{n>1}$ eine Folge mit $a_n \neq 0$

$$\limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} < 1 \Rightarrow \sum_{n=1}^{\infty} a_n \text{ konvergiert absolut.}$$

$$\liminf_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} > 1 \Rightarrow \sum_{n=1}^{\infty} a_n \text{ divergiert.}$$

2.11 Vergleichssatz

Seien $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ Reihen mit:

$$0 \le a_k \le b_k \quad \forall k \ge 1$$

$$\sum_{k=1}^{\infty} b_k \text{ konvergent} \Rightarrow \sum_{k=1}^{\infty} a_k \text{ konvergent}$$

$$\sum_{k=1}^{\infty} a_k \text{ divergent} \Rightarrow \sum_{k=1}^{\infty} b_k \text{ divergent}$$

2.12 Integraltest

Sei f(x) eine stetige, positive und monoton fallende Funktion auf $[k, \infty)$ und $f(n) = a_n$:

$$\int_{k}^{\infty} f(x)dx \text{ konvergient} \Rightarrow \sum_{n=k}^{\infty} a_{n} \text{ konvergient}$$

$$\int_k^\infty f(x) dx \text{ divergiert} \Rightarrow \sum_{n=k}^\infty a_n \text{ divergiert}$$

2.13 Leibniz Kriterium

Sei $(a_n)_{n\geq 1}$ monoton fallend mit $a_n\geq 0$ $\forall n\geq 1$ und $\lim_{n\to\infty}a_n=0$. Dann konvergiert

$$S := \sum_{k=1}^{\infty} (-1)^{k+1} a_k$$

und es gilt: $a_1 - a_2 \le S \le a_1$

2.14 Gleichmässige Konvergenz

Die Reihe $\sum_{k=0}^{\infty} f_k(x)$ konvergiert gleichmässig in **D** falls die durch

$$S_n(x) := \sum_{k=0}^n f_k(x)$$

definierte Funktionenfolge gleichmässig konvergiert.

Gilt weiter, dass $f_n: \mathbf{D} \subset \mathbf{R} \to \mathbf{R}$ eine Folge stetiger Funktionen ist und eine Folge C_n existiert, so dass

$$|f_n(x)| \le C_n \quad \forall x \in \mathbf{D}$$

und dass $\sum_{n=0}^{\infty}c_n$ konvergiert, dann konvergiert die Reihe $\sum_{n=0}^{\infty}f_n(k)$ gleichmässig in **D** und deren Grenzwert

$$f(x) := \sum_{n=0}^{\infty} f_n(k)$$

ist eine in **D** stetige Funktion.

2.15 Strategie - Konvergenz von Reihen

- 1. Ist Reihe ein bekannter Typ? (Teleskopieren, Geometrische/Harmonische Reihe, Zetafunktion, ...)
- 2. Ist $\lim_{n\to\infty} a_n = 0$? Wenn nein, divergent.
- 3. Quotientenkriterium & Wurzelkriterium anwenden
- 4. Vergleichssatz anwenden, Vergleichsreihen suchen
- 5. Leibnizkriterium anwenden
- 6. Integral-Test anwenden (Reihe zu Integral)

3 Stetigkeit

3.1 Stetigkeit einer Funktion in einem Punk

Sei $\mathbf{D} \subseteq \mathbf{R}$, $x_0 \in \mathbf{D}$. Die Funktion $f : \mathbf{D} \to \mathbf{R}$ ist in x_0 stetig, falls es für jedes $\epsilon > 0$ ein $\delta > 0$ gibt, so dass für alle $x \in \mathbf{D}$ gilt:

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$$

Hier noch eine äquivalente Definition: Falls für jede Folge $(a_n)_{n\geq 1}$ mit $\lim_{n\to\infty} a_n = x_0$ folgendes gilt:

$$f(\lim_{n \to \infty} a_n) = f(x_0) = \lim_{n \to \infty} f(a_n)$$

ist die Funktion f in x_0 stetig.

3.2 Stetigkeit einer Funktion

Die Funktion $f: \mathbf{D} \to \mathbf{R}$ ist **stetig**, falls sie in jedem Punkt $x \in \mathbf{D}$ stetig ist.

3.3 Gleichmässige Stetigkeit einer Funktion

Eine Funktion $f: \mathbf{D} \to \mathbf{R}$ ist in \mathbf{D} gleichmässig stetig falls

$$\forall \epsilon > 0 \ \exists \delta_{\epsilon} > 0 \ \forall x, y \in \mathbf{D} \ |x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon$$

wobei Funktionen $f:[a,b]\to \mathbf{R}$ welche in einem kompakten Invervall stetig sind im selben Intervall glm. stetig sind.

Beispiel: Ist die Funktion gleichmässig stetig?

$$f:[0,\infty)\to\mathbf{R},x\to\sqrt{x}$$

Wir fixieren ein $\epsilon>0$. Wir suchen $\delta>0$, sodass für alle $x,y\in\Omega$ mit $|x-y|<\delta$ Folgendes gilt:

$$|f(x) - f(y)| < \epsilon$$

Die Schwierigkeit bei den Aufgaben, wo nach der gleichmässigen Stetigkeit gefragt wird, ist es, ein δ zu finden, das unabhängig von x,y ist. Wie kann man in solchen Situationen vorgehen? Man vernucht, den Term f(x)-f(y) durch einen Ausdruck der Form C|x-y| abzuschätzen. In diesem spezifischen Fall, benutzen wir folgende Abschätzung:

$$|\sqrt{x} - \sqrt{y}| \le \sqrt{x - y} \stackrel{!}{\le} \epsilon \to |x - y| < \epsilon^2 =: \delta$$

3.4 Rechnen mit Stetigkeit

Sei $x_0 \in \mathbf{D} \subset \mathbf{R}$, $\lambda \in \mathbf{R}$ und $f : \mathbf{D} \to \mathbf{R}$, $g : \mathbf{D} \to \mathbf{R}$ beide in x_0 stetig:

- (i) Dann sind f + g, $\lambda * f$, f * g stetig in x_0
- (ii) Falls $q(x_0) \neq 0$ dann ist

$$\frac{f}{g}: \mathbf{D} \cap \{x \in \mathbf{D}: g(x_0) \neq 0\} \to \mathbf{R}$$
$$x \to \frac{f(x)}{g(x)}$$

stetig in x_0 .

- (iii) Polynomiale Funktionen sind auf ganz ${f R}$ stetig
- (iv) Die Trigonometrischen Funktionen $sin: \mathbf{R} \to \mathbf{R}$ und $cos: \mathbf{R} \to \mathbf{R}$ sind stetig
- (v) Die Exponentialfunktion e^x ist auf ganz **R** stetig.
- (vi) Seien P, Q polynomiale Funktionen auf \mathbf{R} mit $Q \neq 0$. Seien x_1, \dots, x_m die Nullstellen von Q. Dann ist

$$\frac{P}{Q}: \mathbf{R} \setminus \{x_1, \cdots, x_m\} \to \mathbf{R}$$
$$x \to \frac{P(x)}{Q(x)}$$

stetig.

- (vii) Seien $\mathbf{D}_1, \mathbf{D}_2 \subset \mathbf{R}$ zwei Teilmengen, $f: \mathbf{D}_1 \to \mathbf{D}_2$ und $g: \mathbf{D}_2 \to \mathbf{R}$ funktionen, sowie $x_0 \in \mathbf{D}_1$. Falls f in x_0 und g in $f(x_0)$ stetig sind, so ist $g(f(x)): \mathbf{D}_1 \to \mathbf{R}$ in x_0 stetig
- (viii) Sei $\mathbf{D} \subset \mathbf{R}$, $x_0 \in \mathbf{D}$ und $f, g : \mathbf{D} \to \mathbf{R}$ stetig in x_0 . Dann sind |f|, max(f, g) und min(f, g) stetig in x_0 .

3.5 Zwischenwertsatz

Sei $\mathbf{I} \subset \mathbf{R}$ ein Intervall, $f: \mathbf{I} \to \mathbf{R}$ eine stetige funktion und $a, b \in \mathbf{I}$. Für jedes y zwischen f(a) und f(b) gibt es (mindestens) ein c zwischen a und b mit f(c) = y.

Es gibt folgende typischen Anwendungsszenarien:

- (i) Sei $f: [a, b] \to \mathbf{R}$ stetig. Falls f(a) * f(b) < 0, dann $\exists c \in]a, b[$ mit f(c) = 0 (also eine Nullstelle)
- (ii) Sei $P(x) = a_n x^n + \cdots + a_0$ ein Polynom mit $a_n \neq 0$ und n ungerade. Dann besitzt P mindestens eine Nullstelle in \mathbb{R} .

3.6 Min-Max Satz

Sei $f: \mathbf{I} = [a, b] \to \mathbf{R}$ stetig auf einem kompakten Intervall. Dann gibt es $u \in [a, b]$ und $v \in [a, b]$ mit:

$$f(u) \le f(x) \le f(v) \quad \forall x \in [a, b]$$

Insbesondere ist f beschränkt.

3.7 Satz der Umkehrabbildung

Sei **I** ein Intervall. Sei $f: \mathbf{I} \to \mathbf{R}$ stetig, **streng** monoton wachsend. Dann ist das Bild von $f(\mathbf{I}) =: J$ ein Intervall und die Umkehrfunktion $f^{-1}: \mathbf{J} \to \mathbf{I}$ ist stetig, streng monoton wachsend.

(i) Sei $n \geq 1$. Dann ist $f : [0, \infty[\to [0, \infty[$ als $x \to x^n$ streng monoton wachsend, stetig und surjektiv. Nach dem Umkehrsatz existiert eine streng monoton wachsende stetige Umkehrabbildung $f^{-1} : [0, \infty[\to [0, \infty[$ als $x \to \sqrt[n]{x}$

3.8 Stetigkeit gesplitteter Funktionen

Sind alle abschnitte einer gesplitteten Funktion stetig, müssen wir nur die Übergangstellen prüfen. Gilt an diesen Stellen x_0

$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = f(x_0)$$

so ist die Funktion stetig.

4 Ableiten

4.1 Differenzierbarkeit

Sei $f: \mathbf{D} \to \mathbf{R}$ und $x_0 \in \mathbf{D}$ ein Häufungspunkt. Die Funktion f heisst in x_0 differenzierbar, falls der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

existiert. In diesem fall wird der Grenzwert mit $f'(x_0)$ oder $\frac{df}{dx}(x_0)$ bezeichnet und heisst die **Ableitung** (oder das Differential) von f an der Stelle x_0 .

4.2 Differenzierbarkeit & Stetigkeit

f differenzierbar in $x_0 \Rightarrow f$ stetig in x_0

4.3 Rechenregeln der Ableitung

- (i) $(f+g)'(x_0) = f'(x_0) + g'(x_0)$
- (ii) $(f * g)'(x_0) = f'(x_0) * g(x_0) + f(x_0) * g'(x_0)$
- (iii) $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) * g(x_0) f(x_0) * g'(x_0)}{(g(x_0))^2}$ für $g(x_0) \neq 0$
- (iv) $(g \circ f)'(x_0) = g'(f(x_0)) * f'(x_0)$

4.4 Aussagen der Ableitung

- 1. f besitzt ein lokales Minimum in x_0 , wenn $f'(x_0) = 0$ und $f''(x_0) > 0$ oder falls das Vorzeichen von f' um x_0 von zu + wechselt.
- 2. f besitzt ein lokales Maximum in x_0 , wenn $f'(x_0) = 0$ und $f''(x_0) < 0$ oder falls das Vorzeichen von f' um x_0 von + zu wechselt.
- 3. f besitzt ein lokales Extremum in x_0 , wenn $f'(x_0) = 0$ und $f''(x_0) \neq 0$.
- 4. f besitzt einen Sattelpunkt in x_0 , wenn $f'(x_0) = 0$ und $f''(x_0) = 0$.
- 5. f besitzt einen Wendepunkt in x_0 , wenn $f''(x_0) = 0$.
- 6. f ist in x_0 konvex, wenn $f''(x_0) > 0$.
- 7. f ist in x_0 konkay, wenn $f''(x_0) < 0$.

4.5 Umkehrsatz

Sei $f: \mathbf{D} \to \mathbf{E}$ eine bijektive Funktion, $x_0 \in \mathbf{D}$ ein Häufungspunkt. Wir nehmen an, dass f in x_0 differenzierbar ist und $f'(x_0) \neq 0$. Dann ist $y_0 := f(x_0)$ ein Häufungspunkt von \mathbf{E} und f^{-1} in y_0 differenzierbar. Es gilt:

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

4.6 Satz von Rolle

Sei $f:[a,b]\to \mathbf{R}$ stetig und in]a,b[differenzierbar. Falls f(a)=f(b), dann gibt es mindestens einen Punkt $\xi\in]a,b[$ mit $f'(\xi)=0.$

4.7 Mittelwertsatz

Sei $f: [a,b] \to \mathbf{R}$ stetig und in]a,b[differenzierbar. Dann gibt es $\xi \in]a,b[$ mit $f(b)-f(a)=f'(\xi)*(b-a)$

4.8 l'Hôpital

Seien $f, g:]a, b[\to \mathbf{R}$ differenzierbar mit $g'(x) \neq 0 \quad \forall x \in]a, b[$. Falls

$$\lim_{x \to b^-} f(x) = 0 \text{ und } \lim_{x \to b^-} g(x) = 0$$

sowie

$$\lim_{x \to b^{-}} \frac{f'(x)}{g'(x)} =: \lambda$$

existiert, dann folgt, dass

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = \lim_{x \to b^{-}} \frac{f'(x)}{g'(x)}$$

wobei der Satz auch gilt wenn

- (i) falls $b = +\infty$
- (ii) falls $x \to a^+$
- (iii) falls $\lambda = +\infty$
- (iv) falls $\lim f = \lim q = \infty$

4.9 Konvexität

- (i) Die Summe zweier konvexer Funktionen ist konvex
- (ii) f ist genau dann konvex, falls für alle $x_0 < x < x_1$ in **I**

$$\frac{f(x) - f(x_0)}{x - x_0} \le \frac{f(x_1) - f(x)}{x_1 - x_0}$$

4.10 Höhere Ableitungen

Sei $f: \mathbf{D} \to \mathbf{R}$ differenzierbar.

- (i) Für $n \geq 2$ ist f n-mal differenzierbar in \mathbf{D} falls $f^{(n-1)}$ in \mathbf{D} differenzierbar ist. Dann ist $f^{(n)} := (f^{(n-1)})'$ und nennt sich die n-te Ableitung von f. Wobei zu beachten ist, dass: n-mal differenzierbar $\Rightarrow (n-1)$ -mal stetig differenzierbar.
- (ii) Die Funktion f ist n-mal **stetig Differenzierbar**, falls sie n-mal differenzierbar ist und $f^{(n)}$ stetig ist. Wir definieren weiter die Menge

$$C^n(\mathbf{D}) = \{ f : \mathbf{D} \to \mathbf{R} \mid f \text{ n-mal stetig diff'bar} \}$$

(iii) Die Funktion f ist in ${\bf D}$ glatt falls sie $\forall n \geq 1$ n-mal differenzierbar ist.

$$C^{\infty}(\mathbf{D}) = \{ f : \mathbf{D} \to \mathbf{R} \mid f \text{ glatt} \}$$

4.11 Rechenregeln höherer Ableitungen

Seien $f, g : \mathbf{D} \to \mathbf{R}$ n-mal differenzierbar:

(i)
$$(f+g)^{(n)} = f^{(n)} + g^{(n)}$$

(ii)
$$(f * g)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} * g^{(n-k)}$$

- (iii) $\frac{f}{g}$ ist n-mal differenzierbar falls $g(x) \neq 0 \quad \forall x \in \mathbf{D}$
- (iv) $(q \circ f)$ ist n-mal differenzierbar
- (v) e^x , sin(x) und cos(x) sind glatte Funktionen
- (vi) Alle Polynome sind glatte Funktion

4.12 Taylor Approximation

Sei $f:[a,b]\to \mathbf{R}$ stetig und in] a,b [(n+1)-mal differenzierbar. Für jedes $a< x\leq b$ gibt es $\xi\in$] a,x [mit:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} * (x-a)^{k} + \frac{f^{(n+1)}(\xi)}{(n+1)!} * (x-a)^{n+1}$$

Man bemerke: der letzte Term $\frac{f^{(n+1)}(\xi)}{(n+1)!}*(x-a)^{n+1}$ wird meist zur Fehlerabschätzung innerhalb eines Bereichs von a verwendet. Als Beispiel betrachte man $p(x)=x^3+x+1$ an der Stelle a=1. Hier ist die Taylor Approximation

$$T_3 = 3 + 4(x - 1) + \frac{6}{2!}(x - 1)^2 + \frac{6}{3!}(x - 1)^3 = p(x)$$

und der Fehler für $\xi \in]0,2[$

$$|\text{Fehler}| \le \frac{f^{(4)}(\xi)}{(4)!} * (x-1)^4 \le \frac{0}{(4)!} * (1)^4 = 0$$

Ein weiteres Beispiel: Approximiere $\sqrt{9.2}$ mit einen Taylor Polynom zweiten Grades.

$$f(x) = \sqrt{x}$$

$$f'(x) = \frac{1}{2} * x^{-0.5}$$

$$f''(x) = -\frac{1}{4} * x^{-1.5}$$

$$f'''(x) = \frac{3}{8} * x^{-2.5}$$

$$T_2 f(x) = f(x_0) + f'(x_0) * (x - x_0) + f''(x_0) * (x - x_0)^2$$

$$R = \frac{f'''(\xi)}{3!} * (x - x_0)^3 \text{ für } \xi \in (9, 9.2)$$

$$\Rightarrow x_0 = 9, \xi = 9$$

4.13 Spezielle Punkte bestimmen

Sei $n \ge 0$, $a < x_0 < b$ und $f : [a, b] \to \mathbf{R}$ in]a, b [(n+1)-mal stetig differenzierbar. Annahme: $f'(x_0) = f''(x_0) = \cdots = f^{(n)}(x_0) = 0$

- (i) Falls n gerade ist und x_0 eine lokale Extremalstelle, folgt $f^{(n+1)}(x_0) = 0$
- (ii) Falls n ungerade ist und $f^{(n+1)}(x_0) > 0$ so ist x_0 eine strikte lokale Minimalstelle
- (iii) Falls n ungerade ist und $f^{(n+1)}(x_0) < 0$ so ist x_0 eine strikte lokale Maximalstelle

Ist x_0 jedoch keine Extremalstelle ((i) von oben nicht erfüllt) bleiben zwei Optionen:

- (i) $f'(x_0) = 0 \land x_0$ keine Extremalstelle $\Rightarrow x_0$ ist ein Sattelpunkt
- (ii) $f^{\prime\prime}(x_0)=0 \wedge x_0$ keine Extremalstelle $\Rightarrow x_0$ ist ein Wendepunkt

4.14 Integrale Ableiten

Hier ein Beispiel für die Ableitung eines Integrals:

$$f(x) = -\int_2^{x^2} e^{-t^2} dt$$
$$h(x) = e^{-t^2}$$
$$\Rightarrow f(x) = -H(x^2) + H(2)$$
$$\Rightarrow f'(x) = -h(x^2)2x = -e^{-x^4}2x$$

5 Integrieren

5.1 Partition

Eine Zerlegung eines Intervalls I = [a,b]. Ist eine endliche Teilmenge $P = \{a = x_0,\, x_1,\, \cdots,\, x_n = b\} \subset I$ wobei $x_0 < x_1 < \cdots < x_n$ und $\{a,b\} \subset P$

Man bemerke: eine Partition P' ist eine verfeinerung von P falls $P \subset P'$

5.2 Feinheit einer Partition

Die **Feinheit** der Partition ist definiert durch $\delta(P) := \max_{1 \le i \le n} \delta_i = \max_{1 \le i \le n} (x_i - x_{i-1})$

5.3 Riehmannsche Summe

Sei $\xi_i \in I_i$ zwischen Punkten. Jede Summe der Form

$$S(f, P, \xi) := \sum_{i=1}^{n} f(\xi_i) * (x_i - x_{i-1}) = \sum_{i=1}^{n} f(\xi_i) * \delta_i$$

nennt man eine **Riehmannsche Summe** der Partition P und den Zwischenpunkten $\xi = \{\xi_1, \dots, \xi_n\}$

5.4 Unter-/ Obersumme

Wir definieren die Untersumme

$$s(f, P) := \sum_{i=1}^{n} (\inf_{x \in I_i} f(x)) * \delta_i$$

und die Obersumme

$$S(f,P) := \sum_{i=1}^{n} (\sup_{x \in I_i} f(x)) * \delta_i$$

5.5 Eigenschaften der Unter-/ Obersumme

Sei $f:[a, b] \to \mathbf{R}$ eine beschränkte Funktion, sowie $P, Q \in P(I)$.

- (i) $P \subset Q \Rightarrow s(f, P) \le s(f, Q) \le S(f, Q) \le S(f, P)$
- (ii) $\sup_{P \in \mathcal{P}(I)} s(f, P) \le \inf_{Q \in \mathcal{P}(I)} S(f, Q)$

5.6 (Riehmann) Integrierbar

Sei $f:[a,b]\to \mathbf{R}$ beschränkt. Wir definieren zuerst $s(f):=\sup_{P\in\mathcal{P}(I)}s(f,P)$ sowie analog $S(f):=\inf_{P\in\mathcal{P}(I)}S(f,P)$. Gilt

$$s(f) = S(f)$$

so ist die fRiehmann-Integrierbar und wird mit $\int_a^b f(x) dx$ bezeichnet.

Weiter sind folgende Aussagen äquivalent:

- (i) $f:[a,b]\to \mathbf{R}$ ist integrierbar mit $A:=\int_a^b f(x)dx$
- (ii) $\forall \epsilon > 0 \quad \exists P \in \mathcal{P}(I) \text{ mit } S(f, P) s(f, P) < \epsilon$

- (iii) $\forall \epsilon > 0 \ \exists \delta > 0$ so dass für jede Partition $P \in \mathcal{P}(I)$ mit $\delta(P) < \delta$ und ξ_1, \dots, ξ_n Zwischenpunkten $x_{k-1} \leq \xi_k \leq x_k$: $|A S(f, P, \xi)| < \epsilon$
- (iv) Der Grenzwert $\lim_{\delta(P)\to 0} S(f,P,\xi) = \int_a^b f(x)dx$ existiert

5.7 Integrierbarkeit schnell zeigen

Es gilt weiter für $f, g: [a, b] \to \mathbf{R}$ beschränkt, integrierbar und $\lambda \in \mathbf{R}$:

- (i) f stetig $\Rightarrow f$ Integrierbar
- (ii) f ist monoton $\Rightarrow f$ ist integrierbar
- (iii) f + g, $\lambda * f$, f * g, |f|, max(f,g), min(f,g) sind integrierbar sowie auch $\frac{f}{g}$ falls $|g(x)| \ge \beta > 0 \quad \forall x \in [a, b]$
- (iv) Jedes Polynom auf [a, b] ist integrierbar, auch $\frac{P(x)}{Q(x)}$ falls Q(x) keine Nullstelle besitzt.

5.8 Majoranten Kriterium

- (i) Falls $|f(x)| \le g(x) \quad \forall x \ge a \text{ und } g(x) \text{ auf } [a, \infty[\text{ integrierbar ist, so ist } f \text{ auf } [a, \infty[\text{ integrierbar.}]$
- (ii) Falls $0 \le g(x) \le f(x)$ und $\int_a^\infty g(x) dx$ divergiert, so divergiert auch $\int_a^\infty f(x) dx$
- (iii) Sei $f: [1, \infty[\to [0, \infty[$ monoton fallend. Dann konvergiert $\sum_{k=1}^{\infty} f(k)$ genau dann, wenn $\int_{1}^{\infty} f(x) dx$ konvergent und in diesem Fall gilt: $0 \le \sum_{k=1}^{\infty} f(k) \int_{1}^{\infty} f(x) dx \le f(1)$

5.9 Rechenregeln für Integrale

Es gelten folgene Rechenregeln:

- (i) $\int_a^b f(x)dx + \int_b^c f(x)dx = \int_a^c f(x)dx$ für a < b < c mit $f: [a, c] \to \mathbf{R}$ und auf [a, b] sowie [b, c] integrierbar
- (ii) $\int_a^b (\alpha * f_1(x) + \beta * f_2(x)) dx = \alpha * \int_a^b f_1(x) dx + \beta * \int_a^b f_2(x) dx$ für $f_1, f_2 : I \subseteq \mathbf{R} \to \mathbf{R}$ beschränkt Integrierbar mit endpunkten a, b sowie $\alpha, \beta \in \mathbf{R}$

5.10 Abschätzungen von Integralen

Es gibt folgende Absätzungen:

- (i) Seien $f,g:[a,b]\to \mathbf{R}$ beschränkt und integrierbar und $f(x)\leq g(x) \ \forall x\in [a,b].$ Dann folgt $\int_a^b f(x)dx\leq \int_a^b g(x)dx$
- (ii) Falls $f:[a,b]\to \mathbf{R}$ beschränkt und integrierbar folgt $|\int_a^b f(x)dx| \leq \int_a^b |f(x)|dx$
- (iii) $\left| \int_{a}^{b} f(x)g(x)dx \right| \leq \sqrt{\int_{a}^{b} f^{2}(x)} * \sqrt{\int_{a}^{b} g^{2}(x)}$

5.11 Mittelwertsatz der Integralrechnung

Seien $f, g : [a, b] \to \mathbf{R}$ wobei f stetig und g beschränkt integrierbar mit $g(x) \ge 0 \quad \forall x \in [a, b]$ ist. Dann gibt es $c \in [a, b]$ mit

$$\int_{a}^{b} f(x) * g(x)dx = f(c) * \int_{a}^{b} g(x)dx$$

und falls $g \equiv 1$ erhalten wir

$$\int_{a}^{b} f(x)dx = f(c) * (b - a)$$

5.12 Stammfunktion

Sei $a < b, f : [a, b] \to \mathbf{R}$ stetig. Eine Funktion $F : [a, b] \to \mathbf{R}$ heisst **Stammfunktion** von f falls F stetig differenzierbar in [a, b] ist und F' = f in [a, b] gilt.

5.13 Fundamentalsatz der Analysis

Sei $f:[a,b]\to \mathbf{R}$ stetig. Dann gibt es eine Stammfunktion F von f, die bis auf eine additive Konstante eindeutig bestimmt ist und es gilt:

$$\int_{a}^{b} f(x)dx = F(b) - f(a)$$

5.14 Partielle Integration

Seien a < b reele Zahlen und $f, g: [a, b] \to \mathbf{R}$ stetig differenzierbar. Dann gilt:

$$\int_{a}^{b} f(x) * g'(x) dx = f(x) * g(x) \Big|_{a}^{b} - \int_{a}^{b} f'(x) * g(x) dx$$

beziehungsweise für unbestimmte Integrale

$$\int f(x) * g'(x) dx = f(x) * g(x) - \int f'(x) * g(x) dx$$

- Polynome ableiten, wiederholende Fuktionen $(sin(x), cos(x), e^x)$ integrieren
- manchmal mit 1 multiplizieren

5.15 Methode der Substitution

Die Methode der Substitution ist die Umkehrung der Kettenregel. Sei $a < b, \ \phi: [a,b] \to \mathbf{R}$ stetig differenzierbar und $I \subset \mathbf{R}$ ein Intervall mit $\phi([a,b]) \subset I$ und $f:I \to \mathbf{R}$ eine stetige Funktion. Dann ist

$$\int_{a}^{b} f(\phi(t)) * \phi'(t)dt = \int_{\phi(a)}^{\phi(b)} f(x)dx$$

wobei für unbestimmte Integrale gilt:

$$\int f(\phi(t)) * \phi'(t)dt + C = \int f(x)dx \Big|_{x=\phi(t)}$$

Hier ein Beispiel:

$$\int 2x * \cos(x^2) dx \Rightarrow u = x^2, \frac{du}{dx} = 2x, dx = \frac{du}{2x}$$
$$= \int 2x * \cos(u) * \frac{du}{2x} = \int \cos(u) du = \sin(x^2) + C$$

5.16 Integration konvergenter Reihen

Sei $f_n:[a,b]\to \mathbf{R}$ eine Folge von beschränkten integrierbaren Funktionen die gleichmässig gegen eine Funktion $f:[a,b]\to \mathbf{R}$ konvergiert. Dann ist f beschränkt, integrierbar und

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b \lim_{n \to \infty} f_n(x) dx = \int_a^b f(x) dx$$

Es gilt weiter: Sei $f_n:[a,b]\to \mathbf{R}$ eine Folge beschränkter und integrierbarer Funktionen so dass $\sum_{n=0}^{\infty} f_n$ auf [a,b] gleichmässig konvergiert. Dann gilt

$$\sum_{n=0}^{\infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \sum_{n=0}^{\infty} f_n(x) dx$$

Es gilt weiter: Sei $f(x) := \sum c_k x^k$ eine Potenzreihe mit positiven Konvergenzradius $\rho > 0$. Dann ist für jedes $0 \le r < \rho f$ auf [-r, r] integrierbar und es gilt $\forall x \in]-\rho, \rho[$

$$\int_{0}^{x} f(t)dt = \sum_{k=0}^{\infty} \frac{c_{k}}{k+1} x^{k+1}$$

5.17 Uneigentliche Integrale

Sei $f:[a,\infty[\to {\bf R}$ beschränkt und integrierbar auf [a,b] für alle b>a. Wir definieren

$$\lim_{b \to \infty} \int_{a}^{b} f(x)dx = \int_{a}^{\infty} f(x)dx$$

falls existent und sagen dass f auf $[a, \infty[$ integrierbar ist. Analog: Sei f eine Funktion auf jedem Intervall $[a+\epsilon,b] \quad \forall \epsilon>0$ beschränkt und integrierbar. $f:]a,b] \to \mathbf{R}$ ist integrierbar falls der Folgende Grenzwert existiert, welchen wir als

$$\lim_{\epsilon \to 0+} \int_{a+\epsilon}^b f(x) dx := \int_a^b f(x) dx$$

definieren. (Gilt auch symmetrisch für $[a,\,b-\epsilon]\quad \forall \epsilon>0)$ Wobei wir anmerken, dass

$$\int_{-\infty}^{\infty} f(x)dx := \int_{-\infty}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx$$

5.18 Partialbruchzerlegung

Seien P, Q Polynome mit grad(P) < grad(Q) und Q mit der Produktzerlegung $Q(x) = \prod_{j=1}^l \left((x - \alpha_j)^2 + \beta_j^2 \right)^{m_j} \prod_{i=1}^k (x - \gamma_i)^{n_i}$. Dann gibt es A_{ij}, B_{ij}, C_{ij} reelle Zahlen mit

$$\frac{P(x)}{Q(x)} = \sum_{i=1}^{l} \sum_{j=1}^{m_i} \frac{(A_{ij} + B_{ij}x)}{((x - \alpha_i)^2 + \beta_i^2)^j} + \sum_{i=1}^{k} \sum_{j=1}^{n_i} \frac{C_{ij}}{(x - \gamma_i)^j}$$

Bei einer Partialbruchzerlegung geht man folgendermassen vor:

- (i) Sei $R(x) = \frac{P(x)}{Q(x)}$. Falls $grad(P) \ge grad(Q)$ wenden wir Polynomdivision an.
- (ii) Q lässt sich nun als $Q(x) = \prod_{j=1}^{l} ((x \alpha_j)^2 + \beta_j^2)^{m_j} \prod_{i=1}^k (x \gamma_i)^{n_i}$ zerlegen. Das sind die Komplexen und reelen Nullstellen mit ihrer vielfachheit.
- (iii) Wir bilden nun die "hässliche" Summe von oben
- (iv) Wir bestimmen mithilfe von Koeffizientenvergleich (Nennerpolynom Multiplizieren) die unbekannten A_{ij} , B_{ij} , C_{ij} .

Hier ein einfaches Beispiel:

$$\frac{5x+1}{x^2+x-2} = \frac{5x+1}{(x-1)(x+2)} = \frac{A}{x-1} + \frac{B}{x+2}$$

$$\Rightarrow \text{Löse } 5x+1 = A(x+2) + B(x-1)$$

$$\Rightarrow \text{Setze } x = -2, 1$$

Mit mehreren Linearen Faktoren:

$$\frac{-2x^2 + x + 8}{x(x-2)^2} = \frac{A}{x} + \frac{B}{x-2} + \frac{C}{(x-2)^2}$$

$$\Rightarrow \text{L\"ose } -2x^2 + x + 8 = A(x-2)^2 + Bx(x-2) + Cx$$

Ohne reelle Nullstellen:

$$\frac{2x^2 - 3x + 3}{(x - 1)(x^2 + 1)} = \frac{A}{x - 1} + \frac{Bx + C}{x^2 + 1}$$

$$\Rightarrow \text{L\"ose } 2x^2 - 3x + 3 = A(x^2 + 1) + (Bx + C)(x - 1)$$

$$\Rightarrow \text{Setze } x = 0, 1, 2$$

5.19 Unbestimmte Integral

Das Unbestimmte Integral ist die Menge aller Stammfunktionen und sozusagen fast alles von oben gilt. +C ist **sehr** wichtig.

6 Sonstiges

6.1 Rewrite Function

$$h(x) = \max f(x), g(x) = \frac{1}{2}(f(x) + g(x)) + \frac{1}{2}|f(x) - g(x)|$$

6.2 Stirling Formula

$$n! \sim \sqrt{2\pi n} (\frac{n}{e})^n, n \to \infty$$

6.3 Proof of "Null-Reihe"

Eine Reihe konvergiert, wenn die Folge ihrer Partialsumme $(s_n)n \in \mathbb{N}$ mit: $s_n = \sum_{i=1}^n a_i$ konvergiert, das heisst, es existiert ein Granzwert s, sodass $\lim_{n \to \infty} s_n = s$ Durch Umstellung der Reihe und mit den Rechenregeln für Grenzwerte gild dann $\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1} = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = s - s = 0$

6.4 Injektiv/Surjektiv

Injektiv: $\forall a, b \in X, f(a) = f(b) \Rightarrow a = b$

f ist injektiv Beweis: wenn Ableitung > 0: dann streng monton

wachsend auf ganz R und somit injektiv

Surjektiv: $\forall y \in Y, \exists x \in X, f(x) = y \ f \ ist \ surjektiv \ Beweis:$ anhand von Zwischenwertsatz beweisen

6.5 Suprenum

Sei $A \subseteq \mathbf{R}$, $A \neq \emptyset$ und A nach oben beschränkt. Dann gibt es eine kleinste obere Schranke von A. Es gibt also ein $c \in \mathbf{R}$ so dass:

- 1. $\forall a \in A \ a \leq c$
- 2. Falls $\forall a \in A \ a \leq x \text{ ist } c \leq x$

Man bezeichnet $c := \sup A$

6.6 Infimum

Analog zum Suprenum die grösste untere Schranke.

6.7 Dreiecksungleichung

$$\forall x,y \in \mathbf{R}: ||x|-|y|| \leq |x\pm y| \leq |x|+|y|$$

6.8 Bernoulli Ungleichung

$$\forall x \in \mathbf{R} \ge -1 \text{ und } n \in \mathbf{N} : (1+x)^n \ge 1 + nx$$

6.9 Exponentialfunktion

$$exp(z) = \lim_{n \to \infty} (1 + \frac{z}{n})^n$$

Die reelle Exponentialfunktion $exp: \mathbf{R} \to]0, \infty[$ ist streng monoton wachsend, stetig und surjektiv.

Es gelten weiter folgende Rechenregeln:

(i)
$$exp(x+y) = exp(x) * exp(y)$$

(ii)
$$x^a := exp(a * ln(x))$$

(iii)
$$x^0 = 1 \quad \forall x \in \mathbf{R}$$

(iv)
$$exp(iz) = cos(z) + i * sin(z) \quad \forall z \in \mathbf{C}$$

(v)
$$exp(i*\frac{\pi}{2}) = i$$

- (vi) $exp(i\pi) = -1$ und $exp(2\pi i) = 1$
- (vii) Für a > 0 ist $]0, +\infty[\rightarrow]0, +\infty[$ als $x \to x^a$ eine streng monoton wachsende stetige Bijektion

Merke: e^x entspricht exp(x).

6.10 Natürliche Logaritmus

Der natürliche Logaritmus wir als $ln:]0,\infty[\to {\bf R}$ bezeichnet und ist eine streng monoton wachsende stetige funktion. Es gilt auch, dass

- (i) ln(1) = 0
- (ii) ln(e) = 1
- (iii) ln(a*b) = ln(a) + ln(b)
- (iv) ln(a/b) = ln(a) ln(b)
- (v) $ln(x^a) = a * ln(x)$
- (vi) $x^a * x^b = x^{a+b}$
- (vii) $(x^a)^b = x^{a*b}$

(viii)
$$ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n \quad (-1 < x \le 1)$$

6.11 Faktorisierungs Lemma

$$a^{n} - b^{n} = (a - b)(a^{n-1} + ba^{n-2} + \dots + b^{n-2}a + b^{n-1})$$

6.12 Sinus Abschätzung

Es gilt $|\sin(x)| < |x|$ mit folgendem Beweis:

$$f(x) = x - \sin(x), x \ge 0$$

$$f'(x) = 1 - \cos(x) > 0$$

Weil f(0) = 0, f(x) > 0 für x > 0. Dann $|\sin(x)| < |x|$ einfach.

6.13 Polynomiale Funktion

Eine Polynomiale Funktion $P: \mathbf{R} \to \mathbf{R}$ ist eine Funktion der Form $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ wobei $a_0, a_1, \cdots, a_n \in \mathbf{R}$. Falls $a_n \neq 0$, ist n der Grad von P.

6.14 Kompaktes Intervall

EIn Intervall $\subset \mathbf{R}$ ist kompakt, wenn es von der Form $\mathbf{I} = [a,b], a \leq b$ ist.

6.15 Funktionenfolge

Eine Funktionenfolge ist eine Abbildung:

$$f: \mathbf{N} \to \mathbf{R}^{\mathbf{D}} = \{f: \mathbf{D} \to \mathbf{R}\}$$

 $n \to f_n$

wobei $f_n: \mathbf{D} \to \mathbf{R}$ eine Funktion ist. Für jedes $x \in \mathbf{D}$ erhält man eine Folge $(f_n(x))_{n>1}$ reeller Zahlen.

6.16 Trigonometrische Funktionen

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 $r = \infty$

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \qquad r = \infty$$

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
 $r = \infty$

$$\ln(x+1) = \sum_{k=1}^{\infty} (-1)^{k+1} \frac{x^k}{k}$$
 $r = 1$

$$\begin{split} \mathbf{e}^x &= 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \frac{x^4}{4!} + \mathcal{O}(x^5) \\ \sin x &= x - \frac{x^3}{3!} + \frac{x^5}{5!} + \mathcal{O}(x^7) \\ \sinh(x) &= x + \frac{x^3}{3!} + \frac{x^5}{5!} + \mathcal{O}(x^7) \\ \cos(x) &= 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \mathcal{O}(x^8) \\ \cosh(x) &= 1 + \frac{x^2}{2} + \frac{x^4}{4!} + \frac{x^6}{6!} + \mathcal{O}(x^8) \\ \tan(x) &= x + \frac{x^3}{3} + \frac{2x^5}{15} + \mathcal{O}(x^7) \\ \tan(x) &= x - \frac{x^3}{3} + \frac{2x^5}{15} + \mathcal{O}(x^7) \\ \log(1 + x) &= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \mathcal{O}(x^5) \\ (1 + x)^\alpha &= 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} x^3 + \mathcal{O}(x^4) \\ \sqrt{1 + x} &= 1 + \frac{x}{2} - \frac{x^2}{2} + \frac{x^3}{4!} - \mathcal{O}(x^4) \end{split}$$

(i)
$$cos(z) = cos(-z)$$

(ii)
$$sin(-z) = -sin(z)$$

(iii)
$$cos^2(z) + sin^2(z) = 1 \quad \forall z \in \mathbf{C}$$

6.17 Häufungspunkt

 $x_0 \in \mathbf{R}$ ist ein **Häufungspunkt** der Menge \mathbf{D} , falls $\forall \delta > 0$ $(]x_0 - \delta, x_0 + \delta[\setminus \{x_0\}) \cap \mathbf{D} \neq \emptyset$

6.18 Lokales Extremum

Eine Funktion f besitzt ein lokales Extremum in x_0 falls es entweder ein lokales Minimum oder lokales Maximum von f ist.

6.19 Lokales Minimum

Die Funktion f besitzt ein lokales Minimum in x_0 falls es $\delta>0$ gibt mit:

$$f(x) \ge f(x_0) \quad \forall x \in]x_0 - \delta, x_0 + \delta[\cap \mathbf{D}]$$

6.20 Lokales Maximum

Die Funktion f besitzt ein lokales Maximum in x_0 falls es $\delta>0$ gibt mit:

$$f(x) \le f(x_0) \quad \forall x \in]x_0 - \delta, x_0 + \delta[\cap \mathbf{D}]$$

6.21 Kritische Stelle

Eine **kritische Stelle** einer Funktion ist ein x_0 an der $f'(x_0)$ null oder undefiniert ist. Kurze Notiz am Rande, ein stationärer Punkt ist:

$$x \in \mathbf{R} \text{ mit } f'(x) = 0$$

6.22 Hyperbol Funktionen

(i)
$$cosh(x) := \frac{e^x + e^{-x}}{2} : \mathbf{R} \to [1, \infty]$$

(ii)
$$sinh(x) := \frac{e^x - e^{-x}}{2} : \mathbf{R} \to \mathbf{R}$$

(iii)
$$tanh(x) := \frac{e^x - e^{-x}}{e^x + e^{-x}} : \mathbf{R} \to [-1, 1]$$

und es gilt
$$cosh^2(x) - sinh^2(x) = 1$$

6.23 Funktionen Verknüpfung

$$x \mapsto (g \circ f)(x) := g(f(x))$$

7 Trigonometrie

7.1 Regeln

7.1.1 Periodizität

•
$$\sin(\alpha + 2\pi) = \sin(\alpha)$$
 $\cos(\alpha + 2\pi) = \cos(\alpha)$

•
$$tan(\alpha + \pi) = tan(\alpha)$$
 $cot(\alpha + \pi) = cot(\alpha)$

7.1.2 Parität

•
$$\sin(-\alpha) = -\sin(\alpha)$$
 $\cos(-\alpha) = \cos(\alpha)$

•
$$tan(-\alpha) = -tan(\alpha)$$
 $cot(-\alpha) = -cot(\alpha)$

7.1.3 Ergänzung

•
$$\sin(\pi - \alpha) = \sin(\alpha)$$
 $\cos(\pi - \alpha) = -\cos(\alpha)$

•
$$tan(\pi - \alpha) = -tan(\alpha)$$
 $cot(\pi - \alpha) = -cot(\alpha)$

7.1.4 Komplemente

•
$$\sin(\pi/2 - \alpha) = \cos(\alpha)$$
 $\cos(\pi/2 - \alpha) = \sin(\alpha)$

•
$$\tan(\pi/2 - \alpha) = -\tan(\alpha)$$
 $\cot(\pi/2 - \alpha) = -\cot(\alpha)$

7.1.5 Doppelwinkel

•
$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$

•
$$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha) = 1 - 2\sin^2(\alpha)$$

•
$$\tan(2\alpha) = \frac{2\tan(\alpha)}{1-\tan^2(\alpha)}$$

7.1.6 Addition

•
$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$$

•
$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

•
$$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}$$

7.1.7 Subtraktion

•
$$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)$$

•
$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$$

•
$$\tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha) \tan(\beta)}$$

7.1.8 Multiplikation

•
$$\sin(\alpha)\sin(\beta) = -\frac{\cos(\alpha+\beta)-\cos(\alpha-\beta)}{2}$$

•
$$\cos(\alpha)\cos(\beta) = \frac{\cos(\alpha+\beta)+\cos(\alpha-\beta)}{2}$$

•
$$\sin(\alpha)\cos(\beta) = \frac{\sin(\alpha+\beta)+\sin(\alpha-\beta)}{2}$$

7.1.9 Potenzen

•
$$\sin^2(\alpha) = \frac{1}{2}(1 - \cos(2\alpha))$$

•
$$\cos^2(\alpha) = \frac{1}{2}(1 + \cos(2\alpha))$$

•
$$\tan^2(\alpha) = \frac{1-\cos(2\alpha)}{1+\cos(2\alpha)}$$

7.1.10 Diverse

•
$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

•
$$\cosh^2(\alpha) - \sinh^2(\alpha) = 1$$

•
$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2}$$
 und $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$

•
$$\tan(x) = \frac{\sin(x)}{\cos(x)} \quad \forall z \notin \{\frac{\pi}{2} + \pi k\}$$

•
$$\cot(x) = \frac{\cos(x)}{\sin(x)}$$

•
$$\arcsin(x) = \sin(x)\cos(x)$$

•
$$\cos(\arccos(x)) = x$$

•
$$\sin(\arccos(x)) = \frac{1}{\sqrt{1-x^2}}$$

•
$$\sin(\arctan(x)) = \frac{x}{\sqrt{x^2+1}}$$

•
$$\cos(\arctan(x)) = \frac{1}{\sqrt{x^2+1}}$$

•
$$\sin(x) = \frac{\tan(x)}{\sqrt{1+\tan(x)^2}}$$

•
$$\cos(x) = \frac{1}{\sqrt{1+\tan(x)^2}}$$

Exercises

8.1 Multiple Choice

- The composition of continuous functions is continuous
- Falls $q(x) = f(x)^2$ differenzierbar ist, dann ist f nicht unbedingt differenzierbar
- cos(x) gerade, sin(x) ungerade \rightarrow hilfreich wenn Integral von \int_{-y}^{y} . Bei ungeraden kürzt sich es weg, bei geraden kann man
- Stetigkeitspunkte: Zuerst Schnittpunkte finden, dann zeigen, dass Punkt x_0 stetig ist
- $f, q: [0,1] \to [0,1]$.
 - Falls f, g injektiv, dann $f \circ g$ injektiv
 - Falls f, g surjektiv, $f \circ q$ nicht unbedingt surjektiv
 - $-f \circ q \neq q \circ f$
- f, a Funktionen
 - $-f \circ q$ stetig f, q nicht unbedingt stetig
 - Nicht für jede Folge mit Grenzwert x gilt $\lim_{n\to\infty} f(x_n) = f(x)$
- $x^x = e^{x \log(x)}$
- falls $\sum_{n=1}^{\infty} a_n$ konvergiert, c_n) $(-1)^n a_n$ konvergiert gegen 0
- $f:[0,1] \rightarrow \mathbf{R}$ stetig, integrierbare Funktion, $a_n =$ $\int_0^1 f(x^2)dx$, Falls f monoton wachsend ist, so ist a_k nicht unbedingt monoton wachsend.
- f_k Folge von dfferenzierbaren Funktionen auf [0,1]. Sei f eine Funktion auf [0,1] definiert. f_k konvergiert gleichmässig zu f für $k \to \infty$. f ist beschränkt
 - $-f_k$ sind alle differenzierbar und daher stetig
 - -f ist auch stetig, weil f_k zu f gleichmässig konvergiert
 - beschränkt, weil es stetig auf kompakten Intervall definierte Funktion ist
 - Nicht stetige Funktionen, auch wenn sie nur auf [0, 1] definiert sind, können unbeschränkt sein
- $f: \mathbf{R} \to \mathbf{R}$ beliebig oft stetig differenzierbare Funktion
 - -f hat Taylorreihe bei $x_0=0$
 - Der Konvergenzradius der Taylorreihe ist ≥ 0 aber nicht notwendigerweise > 0
 - Wenn f durch eine Potenzreihe gegeben ist, so ist dieser gleich der Taylorreihe
 - dort, wo die Taylorreihe konvertiert, stellt sie nicht unbedingt die Funktion dar

- Sei $\sum_{k=1}^{\infty} a_k$ eine Reihe
 - Falls $\forall \epsilon > 0 \, \exists N \geq 1$ so dass $\sum_{k=n}^{n+100} |a_k| < \epsilon \forall n \geq N$ dann ist die Reihe $\sum_{k=1}^{\infty}$ nicht unbedingt konvergent (Gegenbeispiel: $\frac{1}{2}$)
 - Falls $\sum_{k=1}^{\infty}$ konvergiert, so folgt $\forall \epsilon > 0 \, \exists N \geq 1$ so dass $\sum_{k=n}^{n+100} |a_k| < \epsilon \, \forall n \geq N$
- Sei $f: \mathbf{R} \to [0, \infty[$ so dass $\lim_{x \to 0} f(x) \neq 0$
 - es exisitiert eine Folge (x_n) mit $\lim_{n\to\infty} x_n = 0$ und ein ϵ so dass $|f(x_n)| > \epsilon, n \exists \mathbf{N}$
 - For alle $x \exists \mathbf{R}$ gilt f(x) > 0
 - $-\forall \epsilon > 0, \exists \delta > 0 \text{ sodass } 0 < |x| < \delta \rightarrow f(x) > \epsilon \text{ STIMMT}$
 - Für jede Folge (x_n) mit $\lim_{n\to\infty} x_n = 0$ gilt $\lim_{n\to\infty} f(x_n) \neq 0$ STIMMT NICHT
- Seien $f: X \to Y, q: Y \to Z$ Funktionen, so dass $q \circ f: X \to Y$ Z eine Bijektion ist: f ist injektiv, g ist surjektiv
- differenzierbar \rightarrow stetig \rightarrow integrierbar
- Sei $a, b \in \mathbf{R}$ mit a < b und $f : [a, b] \to \mathbf{R}$ eine Funktion. Sei $f_n: [a,b] \to \mathbf{R}, n \geq 1$ So dass die Funktionenfolge $(f_n)_{n\geq 1}$ auf [a, b] gleichmässig gegen f konvergiert
 - Sei $x_0 \in]a, b[$ Falls f_n für alle $n \geq 1inx_0$ differenzierbar ist, so ist f nicht unbedingt diferenzierbar. (Im Allgemeinen braucht die Grenzfunktion nicht einmal differenzierbar zu sein, und wenn sie es ist, muss ihre Ableitung keineswegs geich dem Grenzwert der Ableitung der Folge sein.
- $f:[0,1] \to [0,1]$ stetig und nicht konstant
 - Das Bild $f([0,1]) \subset [0,1]$ ist ein abgeschossenes Intervall. D.h. es gibt $a, b \in [0, 1]$ mit a < b, so dass f([0,1]) = [a,b]
- $f: \mathbf{R} \to \mathbf{R}$ stetig bei $x_0 = 0$, mit $f(x_0) > 0$
 - Es existiert $\epsilon, \delta > 0$ so dass $f(x) > \epsilon$ für alle $x \in (-\delta, \delta)$
- $a < b, g : \mathbf{R} \to \mathbf{R}$ beschränkt und $f : [a, b] \to \mathbf{R}$ beschränkt mit f(a) < f(b)
 - Falls f stetig ist, gibt es $x_0 \in [a,b]$, so dass $\int_{a}^{b} x f(x) dx = \frac{f(x_0)}{2} (b^2 - a^2)$
- Sei f eine ungerade Funktion dann ist $f^{(i)}(0) = 0$ für i gerade
- Sei ϕ eine Abbildung einer Reihe $\sum_{k=1}^{\infty} a_k$ und $b_n = a_{\phi_{(n)}}$

- Wenn die Reihe absolut konvergiert und ϕ injektiv ist, dann ist die Reihe mit b_n auch konvergent (Wenn nicht absolut konvergent, dann kann man jeden möglichen Wert bekommen, Surjektiv funktioniert nicht, Annahme $a_n = \frac{1}{n^2}$

Ex. Sei $f:[0,\ln(2)] \to \mathbb{R}$ eine stetige Funktion. Zeigen Sie, dass es $\eta \in [0,\ln(2)], \ f(\eta) = \frac{1}{e^2-e} \int_0^{\ln(2)} e^{e^x} \, e^x f(x) dx$ gibt. Nach dem Min-Max Satz hat f ein Maximum b und ein Minimum a, so Nach dem Min-Max Satz nat f ein maximum o und ein minimum a, s dass $f[0, \ln(2)] \rightarrow [f(a), f(b)]$. Daher gilt: $f(a) \int_0^{\ln(2)} e^{a^x} e^x dx \leq \int_0^{\ln(2)} e^{a^x} f(x) dx \leq f(b) \int_0^{\ln(2)} e^{a^x} e^x dx$. Nun rechnen wir $\int_0^{\ln(2)} e^{a^x} e^x dx = e^2 - e$ aus. Wenn wir den Zwischenwertsatz anwenden, erhalten wir somit es existiert ein $\eta \in [0, \ln(2)]$, so dass $f(a) \leq f(\eta) = \frac{1}{e^2 - e} \int_0^{\ln(2)} e^{a^x} e^x f(x) dx \leq f(b)$.

Ex. Sei $f_n:[0,1]\to\mathbb{R}, x\to \frac{nx}{(n^2x^2+1)^2}$. Zeige, dass $f(x) = \lim_{n \to \infty} f_n(x)$. Konvergiert die Funktion gleichmässig? Gilt $\lim_{n\to\infty}\int_0^1 f_n(x)dx=\int_0^1 f(x)dx$? Es gilt $\lim_{n\to\infty}\int_0^1 f_n(x)dx=\int_0^1 f(x)dx$? Es gilt $\lim_{n\to\infty}\int_0^1 f_n(x)=0=f(x)$. Die Konvergenz ist nicht gleichmässig, da $\sup_{0\le x\le 1}|f_n(x)|\ge \frac14, \forall n\in\mathbb{N}$. Weiter gilt $\lim_{n\to\infty} \int_0^1 f_n(x) dx = \int_0^1 f(x) dx = 0, \text{ denn }$ $\int_0^1 f_n(x) dx = -\frac{1}{2n} \frac{1}{n^2 x^2 + 1} |_0^1 \to 0.$

Ex. Sei f differenzierbare mit $f(x_0) \neq 0$ für mindestens ein $x_0 \in \mathbb{R}$. Weiter gilt f(x+y) = f(x)f(y). Zeige f(0) = 1. Sei $b := f(x_0)$, so dass $b \neq 0$. Dann gilt $bf(0) = f(x_0)f(0) = f(x_0 + 0) = f(x_0) = b$, also ist $f(0) = \frac{bf(0)}{1} = \frac{b}{1} = 1.$

Ex. Sei $f(x) = x \sin(\frac{1}{x})$ mit f(0) = 0. Zeige, dass f in 0 nicht differenzierbar ist. Es reicht eine Folge (y_n) zu finden, die gegen 0 strebt sodass $\frac{f(y_n)-f(0)}{f(0)}$ nicht konvergiert. Dafür wählen wir $y_n = \frac{2}{\pi n}$. Es gilt $\frac{f(y_n) - f(0)}{y_n} = \pm 1$. Da $y_n \to 0$, haben wir gezeigt, dass f nicht differenzierbar ist.

Ex. Berechne für alle $m \in \mathbb{N}^*$ den Wert des Integrals $\int_0^{\pi/2} \cos^m(x) dx$. $\begin{array}{l} \int_{0}^{+} \cos^{-}(x) dx. \\ \mathrm{Für} \ m = 1 \ \mathrm{und} \ m = 2 \ \mathrm{haben} \ \mathrm{wir}. \\ \int_{0}^{\pi/2} \cos(x) dx = 1, \int_{0}^{\pi/2} \cos^{2}(x) dx = \frac{\pi}{4}. \ \mathrm{Für} \ m \geq 3 \ \mathrm{gilt}. \\ \int_{0}^{\pi/2} \cos^{m}(x) dx = (m+1) \int_{0}^{\pi/2} \cos^{(m-2)}(x) \sin^{2}(x) dx = (m+1) (\int_{0}^{\pi/2} \cos^{(m-2)}(x) dx - \int_{0}^{\pi/2} \cos^{(m-2)}(x) dx. \end{array}$

Ex. Zeige, dass für jedes $c \in R$ die Funktion $\exp(-t^2)$ auf $]-\infty,c]$ nach t integrierbar ist. Es genügt zu zeigen, dass $\exp(-t^2)$ auf $]-\infty,-1]$ integrierbar ist, da die Funktion auf]-1,c] für all c>-1 integrierbar ist. Um dies zu zeigen verwenden wir folgende obere Schranke der Funktion: $\exp(-t^2) < \exp(t)$.

 $\int_{-\infty}^{-1} \exp(t)dt = \lim_{a \to -\infty} \int_{a}^{-1} \exp(t)dt = \lim_{a \to -\infty} (e^{-1} - e^{a}) = e^{-1}.$

Ex. Zeige, dass $\lim_{n\to\infty} \prod_{k=1}^n (1+\frac{t}{k^2})$ für jedes t existiert.

Wir nehmen $N \in \mathbb{N}, \frac{|t|}{N^2} < 1$. Da $\prod_{k=1}^{n} (1 + \frac{t}{k^2}) = \prod_{k=1}^{N} (1 + \frac{t}{k^2}) \prod_{k=N+1}^{n} (1 + \frac{t}{k^2})$ gilt, reich es wenn wir

 $\lim_{n \to \infty} \prod_{k=N+1}^{n} (1 + \frac{t}{k^2}) = \lim_{n \to \infty} \prod_{k=1}^{n} (1 + \frac{t}{(k+N)^2}) = a_n$ existiert. Falls $t \geq 0$ ist die Folge (a_n) steigend, sonst ist sie fallend. Weiter ist sie monoton, deswegen existiert ein Grenzwert, wenn sie beschränkt ist. Es folgt $0 \le a_n \le \prod_{k=1}^n (e^{\frac{t}{k^2}}) \le e^{|t|(\sum_{k=1}^\infty \frac{1}{k^2})} < \infty$. Weshalb der Grenzwert existiert.

9 Tabellen

9.1 Grenzwerte

$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$	$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
$\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$	$\sum_{i=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$
$\sum_{i=1}^{\infty} \frac{1}{n(n+1)} = 1$	$\sum_{i=1}^{\infty} z^i = \frac{1-z^{i+1}}{1-z}$

Die Geometrische Reihe: $\sum_{k=0}^n q^k = \frac{1-q^{n+1}}{1-q}$ konvergiert wenn |q|<1. Dies gilt auch bei $n\to\infty$.

Die Harmonische Reihe: Die Harmonische Reihe $\sum_{n=1}^\infty \frac{1}{n}$ ist divergent. Die alternierende harmonische Reihe ist jedoch konvergent.

Die Zeta Funktion: Die Riemann-Zeta Funktion $\zeta(s)=\sum_{n=1}^\infty \frac{1}{n^s}$ konvergiert für s>1.

$\lim_{x \to \infty} \frac{1}{x} = 0$	$\lim_{x \to \infty} 1 + \frac{1}{x} = 1$
$\lim_{x \to \infty} e^x = \infty$	$\lim_{x \to -\infty} e^x = 0$
$\lim_{x \to \infty} e^{-x} = 0$	$\lim_{x\to -\infty}e^{-x}=\infty$
$\lim_{x \to \infty} \frac{e^x}{x^m} = \infty$	$\lim_{x \to -\infty} x e^x = 0$
$\lim_{x\to\infty}\ln(x)=\infty$	$\lim_{x\to 0} \ln(x) = -\infty$
$\lim_{x \to \infty} (1+x)^{\frac{1}{x}} = 1$	$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$
$\lim_{x \to \infty} (1 + \frac{1}{x})^b = 1$	$\lim_{x\to\infty} n^{\frac{1}{n}} = 1$
$\lim_{x \to \pm \infty} (1 + \frac{1}{x})^x = e$	$\lim_{x \to \infty} (1 - \frac{1}{x})^x = \frac{1}{e}$
$\lim_{x \to \pm \infty} (1 + \frac{k}{x})^{mx} = e^{km}$	$\lim_{x \to \infty} \left(\frac{x}{x+k}\right)^x = e^{-k}$
$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln(a),$ $\forall a > 0$	$\lim_{x \to \infty} x^a q^x = 0,$ $\forall 0 \le q < 1$
$\lim_{x \to 0} \frac{\sin x}{x} = 1$	$\lim_{x \to 0} \frac{\sin kx}{x} = k$
$\lim_{x \to 0} \frac{1}{\cos x} = 1$	$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0$
$\lim_{x \to 0} \frac{\log 1 - x}{x} = -1$	$\lim_{x \to 0} x \log x = 0$
$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$	$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$
$\lim_{x \to 0} \frac{x}{\arctan x} = 1$	$\lim_{x\to\infty}\arctan x=\tfrac{\pi}{2}$
$\lim_{x \to 0} \frac{e^{ax} - 1}{x} = a$	$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$
$\lim_{x \to 1} \frac{\ln(x)}{x - 1} = 1$	$\lim_{x \to \infty} \frac{\log(x)}{x^a} = 0$

 $\lim_{x \to \infty} \frac{2x}{2^x} = 0$

 $\lim_{x \to \infty} \sqrt[x]{x} = 1$

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$	$\mathbf{f'}(\mathbf{x})$
$(x-1)e^x$	xe^x	$(x+1)e^x$
$(x-1)e^{-a+1}$ $\frac{x^{-a+1}}{-a+1}$	$\frac{1}{x^a}$	$\frac{a}{x^{a+1}}$
$\frac{a+1}{a+1}$	$x^a \ (a \neq -1)$	x^{a+1} $a \cdot x^{a-1}$
	a^{kx}	
$\frac{1}{k\ln(a)}a^{kx}$		$ka^{kx}\ln(a)$
$\ln x $	$\frac{1}{x}$	$-\frac{1}{x^2}$
$\frac{2}{3}x^{3/2}$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
	$\frac{\sin(x)^2}{2}$	$\sin(x)\cos(x)$
$\sin(x)$	$\cos(x)$	$-\sin(x)$
$\frac{1}{2}(x - \frac{1}{2}\sin(2x))$	$\sin^2(x)$	$2\sin(x)\cos(x)$
$\tan(x) - x$	$\tan(x)^2$	$2\sec(x)^2\tan(x)$
$-\cot(x) - x$	$\cot(x)^2$	$-2\cot(x)\csc(x)^2$
$\frac{1}{2}(x+\frac{1}{2}\sin(2x))$	$\cos^2(x)$	$-2\sin(x)\cos(x)$
$-\ln \cos(x) $	$\tan(x)$	$\frac{1}{\cos^2(x)}$
(/	()	$1 + \tan^2(x)$
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$
$\log(\cosh(x))$	tanh(x)	$\frac{1}{\cosh^2(x)}$
$\ln \sin(x) $	$\cot(x)$	$-\frac{1}{\sin^2(x)}$
$\frac{1}{c} \cdot e^{cx}$	e^{cx}	$c \cdot e^{cx}$
$x(\ln x -1)$	$\ln x $	$\frac{1}{x}$
$\frac{1}{2}(\ln(x))^2$	$\frac{\ln(x)}{x}$	$\frac{1 - \ln(x)}{x^2}$
$\frac{x}{\ln(a)}(\ln x -1)$	$\log_a x $	$rac{1}{\ln(a)x}$

9.2 Ableitungen

$\mathbf{F}(\mathbf{x})$	$\mathbf{f}(\mathbf{x})$
$\arcsin(x)/\arccos(x)$	$\frac{1/-1}{\sqrt{1-x^2}}$
$\arctan(x)$	$\frac{1}{1+x^2}$
$x \arcsin(x) + \sqrt{1 - x^2}$	$\arcsin(x)$
$x \arccos(x) - \sqrt{1 - x^2}$	$\arccos(x)$
$x \arctan(x) - \frac{1}{2} \ln(1+x^2)$	$\arctan(x)$
$\ln(\cosh(x))$	$\tanh(x)$
$x^x (x > 0)$	$x^x \cdot (1 + \ln x)$
$f(x)^{g(x)}$	$e^{g(x)ln(f(x))}$
$f(x) = \cos(\alpha)$	$f(x)^n = \sin(x + n\frac{\pi}{2})$
$f(x) = \frac{1}{ax+b}$	$f(x)^n = (-1)^n * a^n * n! * (ax+b)^{-n+1}$
$-\ln(\cos(x))$	$\tan(x)$
$\ln(\sin(x))$	$\cot(x)$
$\ln(\tan(\frac{x}{2}))$	$rac{1}{\sin(x))}$
$\ln\left(\tan(\frac{x}{2} + \frac{\pi}{4})\right)$	$rac{1}{cos(x)}$
$\mathbf{f}(\mathbf{x})$	$\mathbf{F}(\mathbf{x})$
$\int f'(x)f(x) \mathrm{d}x$	$\frac{1}{2}(f(x))^2$
$\int \frac{f'(x)}{f(x)} \mathrm{d}x$	$\ln f(x) $
$\int_{-\infty}^{\infty} e^{-x^2} \mathrm{d}x$	$\sqrt{\pi}$
$\int (ax+b)^n dx$	$\frac{1}{a(n+1)}(ax+b)^{n+1}$
$\int x(ax+b)^n \mathrm{d}x$	$\frac{(ax+b)^{n+2}}{(n+2)a^2} - \frac{b(ax+b)^{n+1}}{(n+1)a^2}$
$\int (ax^p + b)^n x^{p-1} \mathrm{d}x$	$\frac{(ax^p+b)^{n+1}}{ap(n+1)}$
$\int (ax^p + b)^{-1} x^{p-1} \mathrm{d}x$	$\frac{1}{ap}\ln ax^p+b $
$\int \frac{ax+b}{cx+d} \mathrm{d}x$	$\frac{ax}{c} - \frac{ad - bc}{c^2} \ln cx + d $
$\int \frac{1}{x^2 + a^2} \mathrm{d}x$	$\frac{1}{a} \arctan \frac{x}{a}$
$\int \frac{1}{x^2 - a^2} \mathrm{d}x$	$\frac{1}{2a}\ln\left \frac{x-a}{x+a}\right $
$\int \sqrt{a^2 + x^2} \mathrm{d}x$	$\frac{x}{2}f(x) + \frac{a^2}{2}\ln(x + f(x))$