

Feuille n°1: Variable Complexe

Exercice 1 : On a

$$\cos z = 3 \Leftrightarrow Z^2 - 6Z + 1 = 0 \text{ avec } Z = e^{iz}$$

dont les deux racines sont $Z_1 = e^{iz_1} = 3 + \sqrt{8}$ et $Z_2 = e^{iz_2} = 3 - \sqrt{8}$, ce qui donne

$$z = -iLn\left(3 \pm \sqrt{8}\right) + k2\pi, \qquad k \in \mathbb{Z}$$

Exercice 2:

1) En posant $z = \rho e^{i(\theta + 2k\pi)}$, on obtient

$$f_k(z) = \frac{1}{2i} \left[Ln\rho + i\theta + 2ik\pi \right]$$

Sur la demi-droite $]0,+\infty[$, on $\theta=0$ d'où $f_k(z)=\frac{-i}{2}[Ln\rho+2ik\pi]$. Pour avoir une valeur imaginaire pure, il suffit de prendre k=0 (c'est la détermination principale). On montre que

$$g(u) = \frac{i - u_1 - iu_2}{i + u_1 + iu_2} \in]-\infty, 0] \Leftrightarrow \frac{-u_1^2 + 1 - u_2^2 + 2iu_1}{u_1^2 + (1 + u_2)^2} \in]-\infty, 0]$$

c'est-à-dire

$$g(u) \in]-\infty, 0] \Leftrightarrow u_1 = 0 \text{ et } 1 \le u_2^2$$

Pour définir les déterminations de $h(z)=\sqrt{1-z},$ on pose $z-1=\rho'e^{i(\theta'+2k'\pi)}$ avec $\theta'\in[0,2\pi[,$ d'où :

$$h_k(z) = \sqrt{\rho'} e^{i\frac{\theta'}{2} + ik'\pi + i\frac{\pi}{2}}$$

En z=0, on a $\theta'=\pi$ et $\rho'=1$. Donc, pour avoir $h_k(0)=1$, il suffit de choisir k'=1, soit

$$h(z) = \sqrt{\rho'} e^{i\frac{\theta'}{2} + i\pi + i\frac{\pi}{2}}$$

La condition $u_1 = 0$ donne alors $\sin\left(\frac{\theta'}{2}\right) = 0$ soit $\theta' = 0$. La condition $u_2 \ge 1$ donne alors $\sqrt{\rho'} \ge 1$. Les deux conditions $u_1 = 0$ et $1 \le u_2^2$ correspondent donc à l'axe $[2, +\infty[$.

2) En $z_A = 1 + i$, on $\theta' = \frac{\pi}{2}$ et $\rho' = 1$, d'où $h(z_A) = \frac{\sqrt{2}}{2}(1 - i)$. Un calcul élémentaire permet d'obtenir

$$g\left[h\left(z_A\right)\right] = \left(\sqrt{2} + 1\right)i$$

Au point $\left(\sqrt{2}+1\right)i,$ on a $\theta=\frac{\pi}{2}$ et $\rho=\sqrt{2}+1$ d'où

$$f(z_A) = \varphi(z_A) = \frac{\pi}{4} - \frac{i}{2} \ln\left(1 + \sqrt{2}\right)$$

Exercice 3 : les deux applications partielles obtenues en fixant x = 0 et y = 0 sont identiquement nulles. Donc, les conditions de Cauchy sont vérifiées au point (0,0). Par contre

$$\frac{f(z) - f(0)}{z - 0} = \begin{cases} \frac{1}{1+i} & \text{si } y = x > 0\\ \frac{-1}{1+i} & \text{si } y = x < 0 \end{cases}$$

Donc, f n'est pas holomorphe en z=0.