

Chapter 4 Combinational Logic

FIGURE 4.1Block diagram of combinational circuit

Sequential Logic

Combinational Logic

aka. Combinational Circuit

Combination of logic gates on the present inputs \rightarrow the outputs *at any time*!

A combinational circuit performs an operation that can be specified logically by a set of Boolean functions.

Propagation Delay (Gate Delay) ≈ Δt

https://en.wikipedia.org/wiki/Propagation_delay#Electronics

Propagation Delay (Gate Delay) $\approx \Delta t \approx 0$

https://en.wikipedia.org/wiki/Propagation_delay#Electronics

What we've done so far

Combinational Logic aka. Combinational Circuit

Design a combinational logic circuit:

- 1. Truth Table
- 2. Boolean Function (Algebraic Expression)
- 3. Minimization
 - Boolean Algebra
 - Karnaugh Map (K-Map)
 - Quine-McCluskey Algorithm
- 4. Logic Diagram

Binary Adder, Binary Subtractor, Binary Multiplier

Binary Comparator (Magnitude Comparator)

Data Transmission Decoder, Encoder

Multiplexer (MUX, MPX), De-Multiplexer (Demux)

Coders

Binary Codes (BCD, Excess-3, Gray)

Arithmatic & ——
Logical Op

Binary Adder, Binary Subtractor, Binary Multiplier

Binary Comparator (Magnitude Comparator)

Binary Adder

Design a logic circuit that adds two binary digits (bit).

Range of inputs: 2 bits

Input binary variables: X and Y

Range of outputs?

	0	0	1	1
+	0	1	0	1
	0	1	1	C=1 0

Range of outputs? 2 bits

Output binary variables: Carry and Sum

Y	X	$F_2=C(Y,X)=YX$	$F_1=S(Y,X)=Y'X+YX'$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half Adder: Just 2 bits: X+Y

Design a logic circuit that adds two binary numbers!

Range of inputs: 2 binary numbers in range [00,11]₂

Input binary variables: $X=X_2X_1$ and $Y=Y_2Y_1$

Range of outputs?

00 00 00 ... 11 + 00 01 10 ... 11 C=0 00 C=0 01 C=0 10 C=1 10

$$X_{2}X_{1}$$
+ $Y_{2}Y_{1}$
C $S_{2}S_{1}$

Range of outputs? Carry, S₂, S₁

Y ₂	Y ₁	X_2	X ₁	$F_1 = C(Y_1, Y_2, X_2, X_1)$	$F_2 = S_1(Y_1, Y_2, X_2, X_1)$	$F_3 = S_2(Y_1, Y_2, X_2, X_1)$
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	0	1	1	0	1	1
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	0
1	0	0	1	0	1	1
1	0	1	0	1	0	0
1	0	1	1	1	0	1
1	1	0	0	0	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	1
1	1	1	1	1	1	0

$$X_{2}X_{1}$$
+ $Y_{2}Y_{1}$
C $S_{2}S_{1}$

Design a logic circuit that adds two binary digits (bit) and a carry bit.

C_{p}	Y	X	$C = \sum m(3,5,6,7)$	$S = \sum m(1,2,4,7)$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = \sum m(1,2,4,7)$$

			Y	Χ	
		00	01	11	10
C	0	O _{mo}	1 m₁	0 m ₃	1 m ₂
C _p	1	1 m₄	O _{m5}	1 m ₇	0 m ₆

		17		7 \
(—	Σm	$I \rightarrow I$	5 6	/
	/	しつ, ,	\mathcal{I}_{i}	, []
		, ,	, ,	

		Y	X	
	00	01	11	10
0	0	0	1	0
	m _o	m ₁	m ₃	m ₂
C _p 1	0	1	1	1
	m ₄	m ₅	m ₇	m ₆

$$S = \sum m(1,2,4,7)$$

		Y	X	
	00	01	11	10
0	0	1	0	1
	m _o	m₁	m ₃	m ₂
C _p 1	1	0	1	0
	m ₄	m ₅	m ₇	m ₆

$$S=C'_pY'X+C'_pYX'+C_pY'X'+C_pYX$$

$$S = \sum m(1,2,4,7)$$

			Y	X	
		00	01	11	10
	0	O mo	1 m₁	0 m ₃	1 m ₂
C _p	1	1 m ₄	0 m ₅	1 m ₇	0 m ₆

$$S = C'_{p}Y'X + C'_{p}YX' + C_{p}Y'X' + C_{p}YX$$

$$= C'_{p}(Y'X + YX') + C_{p}(Y'X' + YX)$$

$$S = \sum m(1,2,4,7)$$

		Y	Χ	
	00	01	11	10
0	0	1	0	1
	m _o	m₁	m ₃	m ₂
C _p 1	1	0	1	0
	m ₄	m ₅	m ₇	m ₆

$$S = C'_{p}Y'X + C'_{p}YX' + C_{p}Y'X' + C_{p}YX$$

$$= C'_{p}(Y'X + YX') + C_{p}(Y'X' + YX)$$

$$= C'_{p}(X \oplus Y) + C_{p}(Y'X' + YX)$$

$$S = \sum m(1,2,4,7)$$

$$S=C'_{p}Y'X+C'_{p}YX'+C_{p}Y'X'+C_{p}YX$$

$$=C'_{p}(Y'X+YX')+C_{p}(Y'X'+YX)$$

$$=C'_{p}(X \oplus Y)+C_{p}(Y'X'+YX)$$

$$=C'_{p}(X \oplus Y)+C_{p}(X \odot Y)$$

$$S = \sum m(1,2,4,7)$$

		Y	X	
	00	01	11	10
0	0	1	0	1
	m ₀	m₁	m ₃	m ₂
C _p 1	1	0	1	0
	m ₄	m ₅	m ₇	m ₆

$$S = C'_{p}Y'X + C'_{p}YX' + C_{p}Y'X' + C_{p}YX$$

$$= C'_{p}(Y'X + YX') + C_{p}(Y'X' + YX)$$

$$= C'_{p}(X \oplus Y) + C_{p}(Y'X' + YX)$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \odot Y)$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \oplus Y)'$$

$$(X \bigoplus Y)' = (Y'X+YX')'$$

$$= (Y'X)'(YX')'$$

$$= (Y+X')(Y'+X)$$

$$= YY'+YX+X'Y'+X'X'$$

$$= 0+YX+X'Y'+0$$

$$= YX+X'Y'$$

$$= Y \bigcirc X$$

$$S = \sum m(1,2,4,7)$$

$$S = C'_{p}Y'X + C'_{p}YX' + C_{p}Y'X' + C_{p}YX$$

$$= C'_{p}(Y'X + YX') + C_{p}(Y'X' + YX)$$

$$= C'_{p}(X \oplus Y) + C_{p}(Y'X' + YX)$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \odot Y)$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \oplus Y)'$$

$$= C'_{p}\alpha + C_{p}\alpha'$$

$$S = \sum m(1,2,4,7)$$

$$S = C'_{p}Y'X + C'_{p}YX' + C_{p}Y'X' + C_{p}YX$$

$$= C'_{p}(Y'X + YX') + C_{p}(Y'X' + YX)$$

$$= C'_{p}(X \oplus Y) + C_{p}(Y'X' + YX)$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \oplus Y)$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \oplus Y)'$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \oplus Y)'$$

$$= C'_{p}\alpha + C_{p}\alpha'$$

$$= C_{p} \oplus \alpha$$

$$S = \sum m(1,2,4,7)$$

$$S = C'_{p}Y'X + C'_{p}YX' + C_{p}Y'X' + C_{p}YX$$

$$= C'_{p}(Y'X + YX') + C_{p}(Y'X' + YX)$$

$$= C'_{p}(X \oplus Y) + C_{p}(Y'X' + YX)$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \oplus Y)$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \oplus Y)'$$

$$= C'_{p}(X \oplus Y) + C_{p}(X \oplus Y)'$$

$$= C'_{p}\alpha + C_{p}\alpha'$$

$$= C_{p} \oplus \alpha$$

$$= C_{p} \oplus \alpha$$

$$= C_{p} \oplus \alpha$$

$$S = \sum_{p} m(1,2,4,7)$$

$$S = C_{p} \oplus (X \oplus Y)$$

			Y	X	
		00	01	11	10
<u> </u>	0	Oeo	1 m₁	0 m ₃	1 m ₂
C _p	1	1 m₄	0 m ₅	1 m ₇	0 m ₆

⊕ is associative, we can drop (). But let's keep them!

$$C = \sum m(3,5,6,7)$$

$$C = YX + C_pX + C_pY$$

Full Adder = Half Adder + ...

Full Adder =? 2 Half Adder + ...

Full Adder ∝ 2 Half Adder

$$C_1 = XY$$

$$C_2 = C_pS = C_p(X \oplus Y)$$

$$C = XY + C_pX + C_pY$$

$$C = XY + C_pX + C_pY$$

$$C = \sum m(3,5,6,7)$$

$$C=YX+C_{p}Y'X+C_{p}YX'$$

$$C=YX+C_{p}Y'X+C_{p}YX'$$

$$C=YX+C_{p}(Y'X+YX')$$

$$C=YX+C_{p}(X \oplus Y)$$

$$C=C_{1}+C_{2}$$

Full Adder = ^S 2 Half Adder + OR

Design a logic circuit that adds two binary numbers!

74LS83 pinout

 $\begin{array}{lll} \text{Vcc} & 5.5 \text{V max, 5V Typical} \\ \text{A}_1 - \text{A}_4 & \text{Operand A Inputs} \\ \text{B}_1 - \text{B}_4 & \text{Operand B Inputs} \\ \text{C}_0 & \text{Carry Input} \\ \text{Sum Outputs (Note b)} \\ \text{C}_4 & \text{Carry Output (Note b)} \end{array}$

eBay > Business & Industrial > Electrical Equipment & Supplies > Other Electrical Equipment & Supplies

Share

74283 - 74F283N 4-Bit Binary Full Adder w/ Fast Carry, DIP-16

C \$6.55

+ C \$4.89 Shipping

Get it by **Tue**, **Nov 10 - Tue**, **Nov 17** from Havre-aux-Maisons, QC, Canada

- · New condition
- · 30 day returns Buyer pays return shipping |

Return policy

Read seller's description

See details

vedge23 (3476)
100.0% Positive feedback
Contact seller

Carry Propagation

 S_1 : 2 × Δt

 S_2 : 2 × Δt + C_1

 S_3 : 2 × Δt + C_2

 S_4 : 2 × Δt + C_3

 $S_1: 2 \times \Delta t$

 S_2 : 2 × Δt + C_1

 S_3 : 2 × Δt + C_2

 $S_4: 2 \times \Delta t_1 + C_3$

In parallel

$$S_1: 2 \times \Delta t$$

$$S_2$$
: 2 × Δt + C_1

$$S_3$$
: 2 × Δt + C_2

$$S_3$$
: 2 × Δt + C_2
 S_4 : 2 × Δt_1 + C_3

In parallel

If gate delay is Δt , how long does it take to see the C_4 ? $C_1 = Y_1X_1 + C_0(Y_1 \oplus X_1)$

If gate delay is Δt , how long does it take to see the C_4 ? $C_1 = Y_1 X_1 + C_0(Y_1 \oplus X_1) \rightarrow 1 \times \Delta t$

AND and XOR can be done in parallel.

If gate delay is Δt , how long does it take to see the C_4 ? $C_1 = Y_1 X_1 + C_0 (Y_1 \oplus X_1) \rightarrow 1 \times \Delta t + 1 \times \Delta t$

C₀ AND

If gate delay is Δt , how long does it take to see the C_4 ? $C_1 = Y_1 X_1 + C_0 (Y_1 \oplus X_1) \rightarrow 1 \times \Delta t + 1 \times \Delta t + 1 \times \Delta t$

If gate delay is Δt , how long does it take to see the C_4 ? $C_1 = Y_1 X_1 + C_0 (Y_1 \oplus X_1) \rightarrow 1 \times \Delta t + 1 \times \Delta t + 1 \times \Delta t = 3 \times \Delta t$

In the meantime, in parallel, we can do the Y_2X_2 and $Y_2 \oplus X_2$

If gate delay is Δt , how long does it take to see the C_4 ? $C_3 = Y_3X_3 + C_2 (Y_3 \oplus X_3) \rightarrow C_2 + 2 \times \Delta t = 7 \times \Delta t$

If gate delay is Δt , how long does it take to see the C_4 ? $C_4 = Y_4 X_4 + C_3 (Y_4 \oplus X_4) \rightarrow C_3 + 2 \times \Delta t = 9 \times \Delta t$

If gate delay is Δt , how long does it take to see the C_n ?

Carry Lookahead

C_{1:n} → Constant Delay Book Page 138-141

Binary Adder

Does it matter we have signed or unsigned binary numbers?

Justify your answer.

Binary Subtractor

Signed-2's-Complement

X - Y

 $X_n X_{n-1} ... X_2 X_1 - Y_n Y_{n-1} ... Y_2 Y_1$ Subtraction in Signed-2's-Complement X + 2's-comp(Y)

X + 1's-comp(Y) + 1

bitwise

$$X + Y' + 1$$

bitwise

$$X + Y'' + (C_0 = 1)$$

A ? 0 = AA ? 1 = A' $A \oplus 0 = A$ $A \oplus 1 = A'$

M=0 → Adder
M=1 → Subtractor

Binary Subtractor

Unsigned?

Overflow

Signed-2's-Complement