SE Risk Management: Part I

CSULA – EE 4130 Prof. Joel K. Harris March 12, 2018

"Terminal Learning Objectives" For Today...

- Understand the definition of a risk vs. an issue, & the implications of both
- Know the <u>5 elements</u> of a standard risk management process
- Be able to differentiate between qualitative and quantitative risk management approaches
- Appreciate the difficulties associated with schedule risks and their mitigation

"Risk Management 101"

A Few Risk Definitions:

- Project risk is an uncertain event or condition that, <u>if it occurs</u>, has a positive or negative effect on at least one project objective, such as time, cost, scope or quality."
 - PMI Book of Knowledge (PMBOK) (2004)
- "Risk: a measure of the uncertainty of attaining a goal, objective, or requirement pertaining to technical performance, cost and schedule."

 INCOSE SE Handbook, Version 3
- "Risk is a measure of the potential inability to achieve overall program objectives within defined cost, schedule, and technical constraints, and has two components: (1) the probability/likelihood of failing to achieve a particular outcome, and (2) the consequences/impacts of failing to achieve that outcome"

- DoD Risk Management Guide, Version 3

Primary Risk Management Processes

 Risk Management as a process consists of 5 main elements:

A Risk Identification

Alsk Assessment/Analysis

A Risk Planning/Handling (acceptance, transfer, mitigation or avoidance)

Risk Control (tracking)

Communication

 2 fundamental methods of risk assessment are:

Qualitative

Quantitative

Qualitative Risk Management

- The most prevalent form of risk management in use within most industries
 - Why: it's <u>simple</u>, intuitive and easy to learn
 - Also, it leverages SME knowledge from experienced IPT members
- Uses two parameters to determine a risk threat: 1) risk consequence and 2) likelihood of occurrence
- Risk severity is determined by the formula:

Risk Exposure = Consequence X Lo [Likelihood of Occurrence]

	Risk Consequence				
Risk Likelihood	1 Insignificant ≤ \$1 M ≤ 2 week slip	2 Modest \$1.5 M 6 week slip	3 Moderate \$3 M 2 month slip	4 Significant \$5 M 4 month slip	5 Unacceptable ≥ \$10 M ≥ 6 month slip
E High (Almost Certain)					
D Medium High (Somewhat Likely)		2	• 3 • 7	17 ●	
C Medium (Even Chance)	4 ●	11 • 13 •1 •	10 o 12	9 • 5	
B Medium Low (Unlikely)	15 • 16 14	6			
A Low (Highly Unlikely)					
	Low	Medium		High	

Quantitative (PRA*) Risk Management

- Not used as extensively as qualitative risk management
 - Why: PRA is not meant to manage or determine the status of program risks
 - Instead, it is a tool of system safety and reliability engineering disciplines (a <u>predictive</u> tool vs. a <u>descriptive</u> tool)
 - Quantitative RM addresses randomness/probability, but not vagueness/impreciseness
 - It requires significant knowledge in statistics and/or probability theory
 - * Probabilistic Risk Assessment

Quantitative/PRA Risk Management Tools (1 of 2)

Decision Tree Analysis

Fault Tree Analysis

Quantitative/PRA Risk Management Tools (2 of 2)

- The primarily quantitative method used in program risk management is the Monte Carlo method (MCM) developed during the Manhattan Project by John von Neumann
- MCM predicts a range of outcomes/scenarios using a random number algorithm to produce a Gaussian/normal distribution/cumulative distribution function, indicating the probability of event outcomes

How Risks and Issues Differ

Risks have NOT occurred yet (they are in the future)

Issues have already taken place (they are in the past)

Source: S. Carman - NGST

Risk Management Steps - \varnothing One: Risk Identification

- Important points to keep in mind:
 - Anyone can identify, propose and contribute a new risk candidate within the risk process
 - Risks are not solely <u>technical</u> in character (process, schedule, resource, and capability are valid risk sources)
 - All risks progress through discrete stages within the risk process:
 - Candidate risk
 - In Process" risk
 - Baselined/Active risk (also inactive/watch list risk)
 - ▲ Closed/mitigated risk

Risk Management Steps - \emptyset Two: Risk Assessment (1 of 2)

- The intent of risk assessment is to answer the question: "How <u>significant</u> is this risk?"
- There are two parameters we assess each risk item upon:
 - Likelihoodor probability of the risk occurring
 - Impactor consequence(s) suffered, if the risk should be realized
- Examples of risk likelihood and impact criteria:
 - A typical risk Likelihood scale:
 - ▲ Frequent > 1 in 10; Continuously experienced
 - ▲ Probable 1 in 10 to 1 in 100; Occurs frequently
 - △ Occasional 1 in 100 to 1 in 1000; Occurs several times
 - ▲ Remote 1 in 1000 to 1 in 1000000; Unlikely, but could reasonably be expected to occur
 - ▲ Improbable < 1 in 1000000; Unlikely to occur, but possible

Source: Mil-Std-882

Risk Management Steps - \emptyset Two: Risk Assessment (2 of 2)

 Sample risk consequence scale:

Factor	Description Minimal or no impact			
1				
2	Team budget increases or unit cost increase <5%			
3	Team budget increases or unit cost increase 5-7%			
4	4 Team budget increases or unit cost increase >7-10			
5	Team budget increase or unit cost increase >10%			

Risk Threat Levels

- Red High Risk (capable of major project disruption)
- Yellow Moderate Risk (some disruption possible)
- Green Low Risk (minimum disruption)

Risk Probability Impact Diagram (PID)

Risk Management Steps - \emptyset Three: Risk Handling/Planning (1 of 2)

- There are four (4) fundamental risk handling approaches:
 - Acceptance accept the risk and its attendant consequences as part of "doing business"/the project
 - Avoidance change the requirement, alter the design, do something to cause the risk to essentially "go away"
 - Transfer move the risk item to either another discipline area, or another owner/team (**note**: this does NOT mean simply refusing to accept the risk or "throwing it over the fence")
 - <u>Mitigation</u> applying program resources (time, \$\$\$, heads) to lessen either/both the potential risk likelihood or impact