

Pseudorandom numbers

John von Neumann:

Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.

For, as has been pointed out several times, there is no such thing as a random number — there are only methods to produce random numbers, and a strict arithmetic procedure of course is not such a method.

"Various Techniques Used in Connection with Random Digits,", in *Monte Carlo Method (A. S. Householder, G. E. Forsythe, and H. H. Germond, eds.)*, National Bureau of Standards Applied Mathematics Series, 12, Washington, D.C.: U.S. Government Printing Office, 1951, pp. 36–38.

Pseudorandom number generator

Random vs. pseudorandom behaviour

Random behavior -- Typically, its outcome is unpredictable and the parameters of the generating process cannot be determined by any known method.

Examples:

Parity of number of passengers in a coach in rush hour.

Weight of a book on a shelf in grams modulo 10.

Direction of movement of a particular N_2 molecule in the air in a quiet room.

Pseudo-random -- Deterministic formula,

- -- Local unpredictability, "output looks like random",
- -- Statistical tests might reveal more or less "random behaviour"

Pseudorandom integer generator

A pseudo-random integer generator is an algorithm which produces a sequence

$$\{x_n\} = x_0, x_1, x_2, \dots$$

of non-negative integers, which manifest pseudo-random behaviour.

Pseudorandom number generator

Pseudorandom integer generator

Two important statistical properties:

- Uniformity
- Independence

Random number in a interval [a, b] must be independently drawn from a uniform distribution with probability density function:

$$f(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{elsewhere} \end{cases}$$

Good generator

- Uniform distribution over large range of values: Interval [a, b] is long, period = b - a, generates all integers in [a, b].
- Speed
 Simple generation formula.
 Modulus (if possible) equal to a power of two fast bit operations.

Pseudorandom number generator

Random floating point number generator

```
Task 1: Generate (pseudo) random integer values from an interval [a, b].
```

Task 2: Generate (pseudo) random floating point values from interval [0,1[.

Use the solution of Task 1 to produce the solution of Task 2.

Let $\{x_n\}$ be the sequence of values generated in Task 1.

Consider a sequence $\{y_n\} = \{(x_n - a) / (b - a - 1)\}$.

Each value of $\{y_n\}$ belongs to [0,1[.

"Random" real numbers are thus approximated by "random" fractions.

Large length of [a, b] guarantees sufficiently dense division of [0,1[.

Example 1

```
[a,b] = [0,1024].

\{x_n\} = \{712, 84, 233, 269, 810, 944, ...\}

\{y_n\} = \{712/1023, 84/1023, 233/1023, 269/1023, 810/1023, 944/1023, ...\}

= \{0.696, 0.082, 0.228, 0.263, 0.792, 0.923, ...\}
```


Linear Congruential generator

Linear Congruential generator produces sequence $\{x_n\}$ defined by relations

$$0 \le x_0 < M,$$

$$x_{n+1} = (Ax_n + C) \mod M, \quad n \ge 0.$$

Modulus M, seed x_0 , multiplier and increment A, C.

Example 2

$$M = 18, A = 7, C = 5.$$

$$x_0 = 4,$$

$$x_{n+1} = (7x_n + 5) \mod 18, \quad n \ge 0.$$

$$\{x_n\} = \underbrace{4, 15, 2, 1, 12, 17, 16, 9, 14, 13, 6, 11, 10, 3, 8, 7, 0, 5, 4, 15, 2, 1, 12, 17, 16, ...}$$

sequence period, length = 18

Example 3

$$M = 15, A = 11, C = 6.$$

$$x_0 = 8,$$

$$x_{n+1} = (11x_n + 6) \mod 15, \quad n \ge 0.$$

$$\{x_n\} = 8, 14, 5, 11, 2, 8, 14, 5, 11, 2, 8, 14, \dots$$
sequence period, length = 5

Example 4

$$M = 13, A = 5, C = 11.$$

$$x_0 = 7,$$

$$x_{n+1} = (5x_n + 11) \mod 13, \quad n \ge 0.$$

$$\{x_n\} = 7, 7, 7, 7, 7, \dots$$
 sequence period, length = 1

Misconception

Prime numbers are "more random" than composite numbers, therefore using prime numbers in a generator improves randomness.

Counterexample: Example 4, all parameters are primes:

$$x_0 = 7$$
, $x_{n+1} = (5x_n + 11) \mod 13$.

Maximum period length

Hull-Dobell Theorem:

The length of period is maximum, i.e. equal to M, iff conditions 1. - 3. hold:

- 1. C and M are coprimes.
- 2. A-1 is divisible by each prime factor of M.
- 3. If 4 divides M then also 4 divides A-1.

Example 5

1.
$$M = 18$$
, $A = 7$, $C = 6$. Condition 1. violated

2.
$$M = 20$$
, $A = 17$, $C = 7$. Condition 2. violated

3.
$$M = 17$$
, $A = 7$, $C = 6$. Condition 2. violated

4.
$$M = 20$$
, $A = 11$, $C = 7$. Condition 3. violated

5.
$$M = 18$$
, $A = 7$, $C = 5$. All three conditions hold

Randomnes issues

Example 6
$$x_0 = 4$$
, $x_{n+1} = (7x_n + 5) \mod 18$, $n \ge 0$. $\{x_n\} = \{4, 15, 2, 1, 12, 17, 16, 9, 14, 13, 6, 11, 10, 3, 8, 7, 0, 5, 4, 15, 2, 1, 12, 17, 16, \dots \}$ sequence period, length = 18 $\{x_n \mod 2\} = \{0, 1, 0, 1,$

Trouble

Low order bits of values generated by LCG exhibit significant lack of randomness.

Remedy

Disregard the lower bits in the output (not in the generation process!). Output the sequence $\{y_n\} = \{x_n \text{ div } 2^H\}$, where $H \ge \frac{1}{4} \log_2(M)$.

Sequence period

Many generators produce a sequence $\{x_n\}$ defined by the general recurrence rule

$$x_{n+1} = f(x_n) \qquad n \ge 0.$$

Therefore, if $x_n = x_{n+k}$ for some k > 0, then also

$$x_{n+1} = x_{n+k+1}, \ x_{n+2} = x_{n+k+2}, \ x_{n+3} = x_{n+k+3}, \dots$$

Sequence period

Subsequence of minimum possible length p > 0, $\{x_n, x_{n+1}, x_{n+2}, \dots x_{n+p-1}\}$ such that for any $n \ge 0$: $x_n = x_{n+p}$.

Random repetitions

Values x_n , x_{n+1} , x_{n+2} , ..., x_{n+p-1} are unique in some (simple) generators.

To increase the random-like behavior of the sequence additional operations may be applied.

Typically, it is computing $x_n \mod W$ for some $W < \max_{n \ge 0} \{x_n\}$,

often W is a power of 2 and mod is just bitwise right shift.

Combined Linear Congruential Generator

Definition

Let there be *r* linear congruential generators defined by relations

$$0 \le y_{k,0} < M_k$$

$$y_{k,n+1} = (A_k y_{k,n} + C_k) \mod M_k, \quad n \ge 0,$$

$$1 \le k \le r.$$

The combined linear congruential generator is a sequence $\{x_n\}$ defined by

$$x_n = (y_{1,n} - y_{2,n} + y_{3,n} - y_{4,n} + \dots (-1)^{r-1} \cdot y_{r,n}) \mod (M_1 - 1), \quad n \ge 0.$$

Fact Maximum possible period length (not always attained!) is $(M_1 - 1)(M_2 - 1) \dots (M_r - 1) / 2^{r-1}$.

Example 7
$$r = 2$$
, $1 \le y_{1,0} \le 2147483562$, $1 \le y_{2,0} \le 2147483398$ $y_{1,n+1} = (40014y_{1,n} + 0) \mod 2147483563$, $n \ge 0$, $y_{2,n+1} = (40692y_{2,n} + 0) \mod 2147483399$, $n \ge 0$, $x_n = (y_{1,n} - y_{2,n}) \mod 2147483562$, $n \ge 0$.

Period length is $\frac{(M_1-1)(M_2-1)}{2} = 2305842648436451838$.

Combined Linear Congruential Generator

```
Example 8  r = 3, y_{1,0} = y_{2,0} = y_{3,0} = 1, y_{1,n+1} = (9y_{1,n} + 11) \mod 16, n \ge 0, y_{2,n+1} = (7y_{2,n} + 5) \mod 18, n \ge 0, y_{3,n+1} = (4y_{3,n} + 8) \mod 27, n \ge 0, x_n = (y_{1,n} - y_{2,n} + y_{3,n}) \mod 15, n \ge 0.
```

 $\{x_n\}=1,4,0,2,7,12,2,2,6,6,7,7,5,2,0,9,1,1,9,11,7,9,2,8,9,12,1,1,14,2,12,9,7,4,9,8,1,6,14,5,9,0,1,4,8,8,6,9,4,4,3,11,4,3,11,14,9,12,1,7,11,11,0,0,1,1,0,11,10,3,11,11,3,6,1,4,11,2,3,6,10,10,9,11,7,3,2,14,3,3,10,1,8,14,3,9,10,13,3,2,1,3,14,14,12,6,13,13,5,8,3,6,10,1,6,5,10,9,11,11,9,6,4,13,5,5,12,0,10,13,6,11,13,0,5,5,3,6,1,13,11,8,12,12,4,10,3,8,13,3,5,8,12,12,10,13,8,8,6,0,7,7,0,2,13,0,5,11,0,0,4,4,5,5,3,0,13,7,0,14,7,9,5,8,0,6,7,10,14,14,12,0,10,7,6,2,7,6,14,5,12,3,7,13,14,2,6,6,4,7,3,2,1,9,2,9,12,7,10,14,5,9,9,13,13,0,14,13,9,8,2,9,9,1,4,14,2,9,0,1,4,9,8,7,9,5,2,0,12,1,1,8,14,6,12,1,7,9,11,1,0,14,2,12,12,10,4,11,11,3,6,1,4,9,14,4,3,8,8,9,9,7,4,2,11,3,3,10,13,9,11,4,9,11,14,3,3,1,4,14,11,9,6,10,10,3,8,1,6,11,2,3,6,10,10,8,11,6,6,4,13,6,5,13,0,11,14,3,9,13,13,2,2,3,3,1,13,12,5,13,12,5,8,3,6,13,4,5,8,12,12,10,13,9,5,4,0,5,5,12,3,10,1,5,11,12,0,4,4,3,5,1,0,14,8,0,0,7,10,5,8,12,3,7,7,12,11,13,12,11,8,6,0,7,7,14,2,12,0,7,13,0,2,7,6,5,8,3,0,13,10,14,14,6,12,4,10,0,5,7,9,14,14,12,0,10,10,8,2,9,9, (sequence restarts:) 1,4,0,2,7,12,2,2,7,7,5, ...$

Period length is $432 < 15 \cdot 17 \cdot 26 / 4$.

Lehmer Generator

Lehmer generator produces sequence $\{x_n\}$ defined by relations

$$0 < x_0 < M$$
, x_0 coprime to M .

$$x_{n+1} = Ax_n \mod M$$
, $n \ge 0$.

Modulus M, seed x_0 , multiplier A.

Example 9

$$x_0 = 1$$
,

$$x_{n+1} = 6x_n \mod 13.$$

$$\{x_n\} = 1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, 6, 10, 8, 9, 2, 12, \dots$$

sequence period, length = 12

Example 10

$$x_0 = 2$$
,

$$x_{n+1} = 5x_n \mod 13$$
.

$${x_n} = 2, 10, 11, 3, 2, 10, 11, 3, 2, 10, 11, 3, ...$$

sequence period, length = 4

Lehmer Generator

$$0 < x_0 < M$$
, x_0 coprime to M .
 $x_{n+1} = Ax_n \mod M$, $n \ge 0$.

Fact

The sequence period length produced by a Lehmer generator is maximal and equal to M-1 if

M is prime and

A is a primitive root of $(\mathbb{Z}/M\mathbb{Z})^*$.

Notation Multiplicative group of integers modulo prime $p: (\mathbb{Z}/p\mathbb{Z})^*$

Primitive root G is a primitive root of $(\mathbb{Z}/p\mathbb{Z})^*$ if

 $\{G, G^2, G^3, ..., G^{p-1}\} = \{1, 2, 3, ..., p-1\}$ (powers are taken modulo p).

Example 11

```
p=13, G=2 is a primitive root of (\mathbb{Z}/13\mathbb{Z})^*. \{G, G^2, ..., G^{12}\} = \{2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}. p=13, G=6 is a primitive root of (\mathbb{Z}/13\mathbb{Z})^*. \{G, G^2, ..., G^{12}\} = \{6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}. p=13, G=5 is not a primitive root of (\mathbb{Z}/13\mathbb{Z})^*. \{G, G^2, ..., G^{12}\} = \{5, 12, 8, 1, 5, 12, 8, 1, 5, 12, 8, 1\} = \{1, 5, 8, 12\}.
```


Lehmer Generator

Finding group primitive roots

No elementary and effective method is known. Some cases has been studied in detail.

8th Mersenne prime
$$M_{31} = 2^{31} - 1 = 2 \cdot 147 \cdot 483 \cdot 647$$

Fact *G* is a primitive root of
$$(\mathbb{Z}/M_{31}\mathbb{Z})^*$$
 iff $G \equiv 7^b \pmod{M_{31}}$, where *b* is coprime to $M_{31}-1$.

$$M_{31}$$
-1= 2 147 483 646 = 2 · 3² · 7 · 11 · 31 · 151 · 331

Example 12

 $G = 7^5 = 16807$ is a primitive root of $(\mathbb{Z}/M_{31}\mathbb{Z})^*$ because 5 is coprime to $M_{31}-1$.

G = $7^{1116395447} \equiv 48271 \pmod{M_{31}}$ is a primitive root of $(\mathbb{Z}/M_{31}\mathbb{Z})^*$ because 1116395447 is a prime and therefore coprime to $M_{31}-1$.

 $G = 7^{1058580763} \equiv 69621 \pmod{M_{31}}$ is a primitive root of $(\mathbb{Z}/M_{31}\mathbb{Z})^*$ because 1058580763 = 19.41.61.22277 and therefore coprime to $M_{31}-1$.

Blum Blum Shub Generator

Blum Blum Shub generator produces sequence $\{x_n\}$ defined by relations

$$2 \le x_0 < M$$
, x_0 coprime to M .
 $x_{n+1} = x_n^2 \mod M$

Modulus M, seed x_0 .

Seed x_0 coprime to M.

Modulus M is a product of two big primes P and Q.

 $P \mod 4 = Q \mod 4 = 3$,

gcd(P-1, Q-1) should be small, (cannot be 1).

Example 13
$$x_0 = 4$$
, $M = 11 \cdot 47$, $gcd(10, 46) = 2$, $x_{n+1} = x_n^2 \mod 517$.

 $\{x_n\} = \underline{4}, 16, 256, 394, 136, 401, 14, 196, 158, 148, 190, 427, 345, 115, 300, 42, 213, 390, 102, 64, 477, 49, 333, 251, 444, 159, 465, 119, 202, 478, 487, 383, 378, 192, 157, 350, 488, 324, 25, 108, 290, 346, 289, 284, <math>\underline{4}, 16, 256, 394, 136, \dots$

sequence period, length = 44

Primes related notions

Prime counting function $\pi(n)$

Counts the number of prime numbers less than or equal to n.

Example 14

 $\pi(10) = 4$. Primes less than or equal to 10: 2, 3, 5, 7.

 $\pi(37) = 12$. Primes less than or equal to 37: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37.

 $\pi(100) = 25$. Primes less than or equal to 100: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,

43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

Estimate

$$\frac{n}{\ln n} < \pi(n) < 1.25506 \frac{n}{\ln n}$$
 for $n > 16$.

Example 15

$$\frac{100}{\ln 100} < \pi(100) < 1.25506 \frac{100}{\ln 100} \qquad \frac{10^6}{\ln 10^6} < \pi(10^6) < 1.25506 \frac{10^6}{\ln 10^6}$$

$$21.715 < \pi(100) = 25 < 27.253$$
 $72382.4 < \pi(10^6) = 78498 < 90844.3$

Limit behaviour

$$\lim_{n\to\infty} \frac{\pi(n)}{\frac{n}{\ln n}} = 1$$

Primes related notions

Euler's totient function $\varphi(n)$

Counts the positive integers less than or equal to n that are coprimes to n.

Example 16

```
n = 21, \varphi(21) = 12.
Coprimes to 21, smaller than 21: 1, 2, 4, 5, 8, 10, 11 13, 16, 17, 19, 20.
n = 24, \varphi(24) = 8.
Coprimes to 24, smaller than 24: 1, 5, 7, 11, 13, 17, 19, 23.
```

Mersenne prime M_n

Mersenne prime M_n is a prime in the form 2^n-1 , for some n>1.

Example 17 n = 3, $M_3 = 2^3 - 1 = 7$, n = 7, $M_7 = 2^7 - 1 = 127$, n = 31, $M_{31} = 2^{31} - 1 = 2$ 147 483 647.

Mersenne prime M_n is a prime for n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, ... (Sequences A000668 and A000043 in the OEIS.) It is not known if the sequence is infinite.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Algorithm

```
EratosthenesSieve (n)
Let A be an array of Boolean values, indexed by integers 2 to n, initially all set to true for i = 2 to \sqrt{n}
if A[i] = true then
for j = i^2, i^2 + i, i^2 + 2i, i^2 + 3i, ..., not exceeding n
A[j] := false
end
output all i such that A[i] is true
end
Time complexity: O(n \log \log n).
```


Randomized primality tests

Composite (definitely) n **Test** General scheme Prime (most likely) Fermat (little) theorem If p is prime and 0 < a < p, then $a^{p-1} \equiv 1 \pmod{p}$. Fermat primality test FermatTest (n, k) for i = 1 to k a = random integer in [2, n-2]if $a^{n-1} \not\equiv 1 \pmod{n}$ then return Composite end return Prime end

```
Flaw There are infinitely many composite numbers for which the test always fails: Carmichael numbers: 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, .... (sequence A002997 in the OEIS )

Note OEIS = The On-Line Encyclopedia of Integer Sequences, (https://oeis.org)
```


Randomized primality tests

Miller-Rabin primality test

```
Lemma: If p is prime and x^2 \equiv 1 \pmod{p} then x \equiv 1 \pmod{p} or x \equiv -1 \pmod{p}.

Let n > 2 be prime, n-1 \equiv 2^r \cdot d where d is odd, 1 < a < n-1.

Then either a^d \equiv 1 \pmod{n} or a^{2^s \cdot d} \equiv -1 \pmod{n} for some 0 \le s \le r-1.
```

```
MillerRabinTest (n, k)
   compute r, d such that d is odd and 2^r \cdot d = n-1
   for i = 1 to k // WitnessLoop
       a = \text{random integer in } [2, n-2]
      x = a^d \mod n
      if x = 1 or x = n-1 then goto EndOfLoop
      for j = 1 to r - 1
          x = x^2 \mod n
          if x = 1 then return Composite
          if x = n-1 then goto EndOfLoop
       end
       return Composite
       EndOfLoop:
   end
   return Prime
end
```

Examples:

```
n = 1105 = 2^4 \cdot 69 + 1
a = 389
x_0 = 1039
x_1 = 1041
x_2 = 781
x_3 = 1 \rightarrow Composite
n = 1105 = 2^4 \cdot 69 + 1
a = 390
                 n = 13 = 2^2 \cdot 3 + 1
x_0 = 539
                  a = 7
|x_1| = 1011
                  x_0 = 5
x_2 = 1101
                  x_1 = 12 \equiv -1 \pmod{13}
x_3 = 16
                  WitnessLoop passes
-> Composite
```


Randomized primality tests

Miller-Rabin primality test

- Time complexity: $O(k \log^3 n)$.
- If n is composite then the test declares n prime with a probability at most 4^{-k} .
- A deterministic variant exists, however it relies on unproven generalized Riemann hypothesis.

AKS primality test

- First known deterministic polynomial-time primality test.
- Agrawal, Kayal, Saxena, 2002 Gödel Prize in 2006.
- Time complexity: $O(\log^6 n)$.
- The algorithm is of immense theoretical importance, but not used in practice.

Integer factorization

Difficulty of the problem

- No efficient algorithm is known.
- The presumed difficulty is at the heart of widely used algorithms in cryptography (RSA).

Pollard's rho algorithm

• Effective for a composite number having a small prime factor.

```
PollardRho (n) x = y = 2; d = 1 g(x) ... a suitable polynomial function x = g(x) \mod n For example, g(x) = x^2 - 1 y = g(g(y)) \mod n d = \gcd(|x-y|, n) \gcd ... the greatest common divisor end if d = n return Failure else return d
```


Integer factorization

Pollard's rho algorithm – analysis

- Assume n = pq.
- Values of x and y form two sequences $\{x_k\}$ and $\{y_k\}$, respectively, where $y_k = x_{2k}$ for each k. Both sequences enter a cycle. This implies there is t such that $y_t = x_t$.
- Sequences $\{x_k \bmod p\}$ and $\{y_k \bmod p\}$ typically enter a cycle of shorter length. If, for some s < t, $x_s \equiv y_s \pmod p$, then p divides $|x_s - y_s|$ and the algorithm halts.
- The expected number of iterations is $O(\sqrt{p})=O(n^{1/4})$.

References

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms, 3rd ed., MIT Press, 2009, Chapter 31 Number-Theoretic Algorithms

OEIS, The On-Line Encyclopedia of Integer Sequences (https://oeis.org)

Stephen K. Park, Keith W. MIller: Random number generators: good ones are hard to find, Communications of the ACM, Volume 31 Issue 10, Oct. 1988

Pierre L'Ecuyer: Efficient and portable combined random number generators, Communications of the ACM, Volume 31 Issue 6, June 1988