GPCO 453: Quantitative Methods I Sec 08: Hypothesis Testing

Shane Xinyang Xuan¹ Shane Xuan.com

November 14, 2017

¹Department of Political Science, UC San Diego, 9500 Gilman Drive #0521.

Contact Information

Shane Xinyang Xuan xxuan@ucsd.edu

The teaching staff is a team!

Professor Garg	Tu	1300-1500 (RBC 1303)
•		1300-1300 (NDC 1303)
Shane Xuan	M	1100-1200 (SSB 332)
	M	1530-1630 (SSB 332)
Joanna Valle-luna	Tu	
	Th	1300-1400 (RBC 3131)
Daniel Rust	F	1100-1230 (RBC 3213)

In this section, we cover the basics for hypothesis testing:

▶ Step 1: State H_0 and H_A

In this section, we cover the basics for hypothesis testing:

- ▶ Step 1: State H_0 and H_A
- ▶ Step 2: State 1α (level of significance)

In this section, we cover the basics for hypothesis testing:

- ▶ Step 1: State H_0 and H_A
- ▶ Step 2: State 1α (level of significance)
- ► Step 3: Compute *z* score (or *t* score)

$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$
 mean (1)

$$= \frac{\hat{p} - p}{\sqrt{p(1-p)/n}}$$
 proportion (2)

In this section, we cover the basics for hypothesis testing:

- ▶ Step 1: State H_0 and H_A
- ▶ Step 2: State 1α (level of significance)
- ► Step 3: Compute *z* score (or *t* score)

$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$
 mean (1)

$$= \frac{\hat{p} - p}{\sqrt{p(1-p)/n}}$$
 proportion (2)

► Step 4: Compute *p* value (or find the rejection area)

In this section, we cover the basics for hypothesis testing:

- ▶ Step 1: State H_0 and H_A
- ▶ Step 2: State 1α (level of significance)
- ► Step 3: Compute *z* score (or *t* score)

$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$
 mean (1)

$$= \frac{\hat{p} - p}{\sqrt{p(1-p)/n}}$$
 proportion (2)

- ► Step 4: Compute p value (or find the rejection area)
- ► Step 5: Perform the test

In this section, we cover the basics for hypothesis testing:

- ▶ Step 1: State H_0 and H_A
- ▶ Step 2: State 1α (level of significance)
- ▶ Step 3: Compute z score (or t score)

$$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$
 mean (1)

$$= \frac{\hat{p} - p}{\sqrt{p(1-p)/n}} \qquad \text{proportion} \tag{2}$$

- ► Step 4: Compute p value (or find the rejection area)
- ► Step 5: Perform the test
- ▶ Step 6: Conclusion: Either reject the null, or fail to reject null

► The null hypothesis is that the mean weight for men is 191 pounds in 2006. The alternative hypothesis is that the mean weight for men in 2006 is more than 191 pounds.

- ► The null hypothesis is that the mean weight for men is 191 pounds in 2006. The alternative hypothesis is that the mean weight for men in 2006 is more than 191 pounds.
- ▶ Suppose you have the following information: n = 100, $\overline{x} = 197.1$, and $\sigma = 25.6$.

- ► The null hypothesis is that the mean weight for men is 191 pounds in 2006. The alternative hypothesis is that the mean weight for men in 2006 is more than 191 pounds.
- ▶ Suppose you have the following information: n = 100, $\overline{x} = 197.1$, and $\sigma = 25.6$.
- (Step 1) $H_0: \mu = 191, H_A: \mu > 191$

- ► The null hypothesis is that the mean weight for men is 191 pounds in 2006. The alternative hypothesis is that the mean weight for men in 2006 is more than 191 pounds.
- ► Suppose you have the following information: n = 100, $\overline{x} = 197.1$, and $\sigma = 25.6$.
- (Step 1) $H_0: \mu = 191, H_A: \mu > 191$
- ▶ (Step 2) We pick 95% confidence level ($\alpha = 0.05$)

- ► The null hypothesis is that the mean weight for men is 191 pounds in 2006. The alternative hypothesis is that the mean weight for men in 2006 is more than 191 pounds.
- ▶ Suppose you have the following information: n = 100, $\overline{x} = 197.1$, and $\sigma = 25.6$.
- (Step 1) $H_0: \mu = 191, H_A: \mu > 191$
- ▶ (Step 2) We pick 95% confidence level ($\alpha = 0.05$)
- ► (Step 3) Compute $z = \frac{197.1 191}{25.6 / \sqrt{100}} = 2.38$

- ► The null hypothesis is that the mean weight for men is 191 pounds in 2006. The alternative hypothesis is that the mean weight for men in 2006 is more than 191 pounds.
- ▶ Suppose you have the following information: n = 100, $\overline{x} = 197.1$, and $\sigma = 25.6$.
- (Step 1) $H_0: \mu = 191, H_A: \mu > 191$
- ▶ (Step 2) We pick 95% confidence level ($\alpha = 0.05$)
- ► (Step 3) Compute $z = \frac{197.1 191}{25.6 / \sqrt{100}} = 2.38$
- ► (Step 4) Compute Pr(X > 197.1) = Pr(z > 2.38) = 0.0087

- ► The null hypothesis is that the mean weight for men is 191 pounds in 2006. The alternative hypothesis is that the mean weight for men in 2006 is more than 191 pounds.
- ▶ Suppose you have the following information: n = 100, $\overline{x} = 197.1$, and $\sigma = 25.6$.
- (Step 1) $H_0: \mu = 191, H_A: \mu > 191$
- ▶ (Step 2) We pick 95% confidence level ($\alpha = 0.05$)
- ► (Step 3) Compute $z = \frac{197.1 191}{25.6 / \sqrt{100}} = 2.38$
- ► (Step 4) Compute Pr(X > 197.1) = Pr(z > 2.38) = 0.0087
- ▶ (Step 5) Compare p-value to $\alpha = 0.05$, we find that given the null hypothesis, the sample findings are unlikely

- ► The null hypothesis is that the mean weight for men is 191 pounds in 2006. The alternative hypothesis is that the mean weight for men in 2006 is more than 191 pounds.
- ▶ Suppose you have the following information: n=100, $\overline{x}=197.1$, and $\sigma=25.6$.
- (Step 1) $H_0: \mu = 191, H_A: \mu > 191$
- ▶ (Step 2) We pick 95% confidence level ($\alpha = 0.05$)
- ► (Step 3) Compute $z = \frac{197.1 191}{25.6 / \sqrt{100}} = 2.38$
- ► (Step 4) Compute Pr(X > 197.1) = Pr(z > 2.38) = 0.0087
- ▶ (Step 5) Compare p-value to $\alpha = 0.05$, we find that given the null hypothesis, the sample findings are unlikely
- ► (Step 6) We conclude that we can reject the null hypothesis

What If It's a Tw-Tailed Test?

▶ In Step 4, simply double the result and treat it as your p-value

▶ Suppose that n = 100, p = .8, and $\hat{p} = .73$

- ▶ Suppose that n = 100, p = .8, and $\hat{p} = .73$
- ► (Step 1) $H_0: p = .8, H_A: p \neq .8$

- ▶ Suppose that n = 100, p = .8, and $\hat{p} = .73$
- ► (Step 1) $H_0: p = .8$, $H_A: p \neq .8$
- ▶ (Step 2) We pick 95% confidence level ($\alpha = 0.05$)

- ▶ Suppose that n = 100, p = .8, and $\hat{p} = .73$
- ► (Step 1) $H_0: p = .8, H_A: p \neq .8$
- ▶ (Step 2) We pick 95% confidence level ($\alpha = 0.05$)
- ► (Step 3) Compute *z*-score

$$z = \frac{\hat{p} - p}{\sqrt{p(1-p)/n}} = \frac{.73 - .8}{\sqrt{(.8)(.2)/100}} = -1.75 \tag{3}$$

- ▶ Suppose that n = 100, p = .8, and $\hat{p} = .73$
- ► (Step 1) $H_0: p = .8, H_A: p \neq .8$
- ▶ (Step 2) We pick 95% confidence level ($\alpha = 0.05$)
- ► (Step 3) Compute *z*-score

$$z = \frac{\hat{p} - p}{\sqrt{p(1-p)/n}} = \frac{.73 - .8}{\sqrt{(.8)(.2)/100}} = -1.75$$
 (3)

► (Step 4) Compute *p*-value

$$Pr(z < -1.75) + Pr(z > 1.75) = 0.08$$
 (4)

- ▶ Suppose that n = 100, p = .8, and $\hat{p} = .73$
- (Step 1) $H_0: p = .8, H_A: p \neq .8$
- ▶ (Step 2) We pick 95% confidence level ($\alpha = 0.05$)
- ► (Step 3) Compute *z*-score

$$z = \frac{\ddot{p} - p}{\sqrt{p(1-p)/n}} = \frac{.73 - .8}{\sqrt{(.8)(.2)/100}} = -1.75$$
 (3)

► (Step 4) Compute *p*-value

$$Pr(z < -1.75) + Pr(z > 1.75) = 0.08$$
 (4)

▶ (Step 5) We find that p-value is larger than $\alpha = 0.05$

- ▶ Suppose that n = 100, p = .8, and $\hat{p} = .73$
- ► (Step 1) $H_0: p = .8$, $H_A: p \neq .8$
- ▶ (Step 2) We pick 95% confidence level ($\alpha = 0.05$)
- ► (Step 3) Compute *z*-score

$$z = \frac{\ddot{p} - p}{\sqrt{p(1-p)/n}} = \frac{.73 - .8}{\sqrt{(.8)(.2)/100}} = -1.75$$
 (3)

► (Step 4) Compute *p*-value

$$Pr(z < -1.75) + Pr(z > 1.75) = 0.08$$
 (4)

- ▶ (Step 5) We find that p-value is larger than $\alpha = 0.05$
- ▶ (Step 6) We conclude that we fail to reject the null hypothesis

▶ Use a *t*-test!

- ▶ Use a *t*-test!
- lacktriangle Remember from last time that $t=rac{\overline{x}-\mu}{s/\sqrt{n}}$

- ▶ Use a *t*-test!
- ▶ Remember from last time that $t = \frac{\overline{x} \mu}{s / \sqrt{n}}$
- ▶ Suppose that $n = 100, \overline{x} = 315.4$, and s = 43.2

- ▶ Use a *t*-test!
- ▶ Remember from last time that $t = \frac{\overline{x} \mu}{s / \sqrt{n}}$
- ▶ Suppose that $n = 100, \overline{x} = 315.4$, and s = 43.2
- (Step 1) $H_0: \mu = 300, H_A: \mu \neq 300$

- ▶ Use a *t*-test!
- lacktriangle Remember from last time that $t=rac{\overline{x}-\mu}{s/\sqrt{n}}$
- ▶ Suppose that $n = 100, \overline{x} = 315.4$, and s = 43.2
- (Step 1) $H_0: \mu = 300, H_A: \mu \neq 300$
- ▶ (Step 2) We pick 95% confidence level ($\alpha = 0.05$)

- ▶ Use a t-test!
- lacktriangle Remember from last time that $t=rac{\overline{x}-\mu}{s/\sqrt{n}}$
- ▶ Suppose that $n = 100, \overline{x} = 315.4$, and s = 43.2
- (Step 1) $H_0: \mu = 300, H_A: \mu \neq 300$
- ▶ (Step 2) We pick 95% confidence level ($\alpha = 0.05$)
- ► (Step 3) Compute *t*-statistic

$$t = \frac{315.4 - 300}{43.2/\sqrt{100}} = 3.5648 \tag{5}$$

- ▶ Use a t-test!
- lacktriangle Remember from last time that $t=rac{\overline{x}-\mu}{s/\sqrt{n}}$
- ▶ Suppose that $n = 100, \overline{x} = 315.4$, and s = 43.2
- (Step 1) $H_0: \mu = 300, H_A: \mu \neq 300$
- ▶ (Step 2) We pick 95% confidence level ($\alpha = 0.05$)
- ► (Step 3) Compute *t*-statistic

$$t = \frac{315.4 - 300}{43.2/\sqrt{100}} = 3.5648 \tag{5}$$

lacktriangle (Step 4) Find the rejection region $\to t_{lpha/2}^{n-1}=1.984$ (L-table)

- ▶ Use a t-test!
- lacktriangle Remember from last time that $t=rac{\overline{x}-\mu}{s/\sqrt{n}}$
- ▶ Suppose that $n = 100, \overline{x} = 315.4$, and s = 43.2
- (Step 1) $H_0: \mu = 300, H_A: \mu \neq 300$
- ▶ (Step 2) We pick 95% confidence level ($\alpha = 0.05$)
- ► (Step 3) Compute *t*-statistic

$$t = \frac{315.4 - 300}{43.2/\sqrt{100}} = 3.5648 \tag{5}$$

- lacksquare (Step 4) Find the rejection region $o t_{lpha/2}^{n-1}=1.984$ (F-table
- ▶ (Step 5) We find that the test statistic (t) is larger than $t_{\alpha/2}^{n-1}$

- ▶ Use a t-test!
- lacktriangle Remember from last time that $t=rac{\overline{x}-\mu}{s/\sqrt{n}}$
- ▶ Suppose that $n = 100, \overline{x} = 315.4,$ and s = 43.2
- (Step 1) $H_0: \mu = 300, H_A: \mu \neq 300$
- ▶ (Step 2) We pick 95% confidence level ($\alpha = 0.05$)
- ► (Step 3) Compute *t*-statistic

$$t = \frac{315.4 - 300}{43.2/\sqrt{100}} = 3.5648 \tag{5}$$

- lacksquare (Step 4) Find the rejection region $o t_{lpha/2}^{n-1}=1.984$ (F-table
- ▶ (Step 5) We find that the test statistic (t) is larger than $t_{\alpha/2}^{n-1}$
- ► (Step 6) We conclude that we can reject the null hypothesis

One-tailed and Two-tailed *t*-tests

Table: For one-tailed tests, look at α ; for two-tailed tests, look at $\alpha/2$ (*table)

Test	$1-\alpha$	α	$\alpha/2$	Area in the Upper Tail
One-tailed, 95% CI	95%	5%	2.5%	0.050
Two-tailed, 95% CI	95%	5%	2.5%	0.025
One-tailed, 99% CI	99%	1%	.5%	0.010
Two-tailed, 99% CI	99%	1%	.5%	0.005

Conclusion

 \blacktriangleright Are we dealing with mean or proportion?

Conclusion

- ► Are we dealing with mean or proportion?
- ► Should we use *z*-score or *t*-score?

Conclusion

- ► Are we dealing with mean or proportion?
- ► Should we use *z*-score or *t*-score?
- ► Should the test be one-tailed or two-tailed?

Appendix: t—table

Degrees	Area in Upper Tail									
of Freedom	.20	.10	.05	.025	.01	.005				
1	1.376	3.078	6.314	12.706	31.821	63.656				
2	1.061	1.886	2.920	4.303	6.965	9.925				
3	.978	1.638	2.353	3.182	4.541	5.841				
4	.941	1.533	2.132	2.776	3.747	4.604				
5	.920	1.476	2.015	2.571	3.365	4.032				
6	.906	1.440	1.943	2.447	3.143	3.707				
7	.896	1.415	1.895	2.365	2.998	3.499				
8	.889	1.397	1.860	2.306	2.896	3.355				
9	.883	1.383	1.833	2.262	2.821	3.250				
				1						
60	.848	1.296	1.671	2.000	2.390	2.660				
61	.848	1.296	1.670	2.000	2.389	2.659				
62	.847	1.295	1.670	1.999	2.388	2.657				
63	.847	1.295	1.669	1.998	2.387	2.656				
64	.847	1.295	1.669	1.998	2.386	2.655				
65	.847	1.295	1.669	1.997	2.385	2.654				
66	.847	1.295	1.668	1.997	2.384	2.652				
67	.847	1.294	1.668	1.996	2.383	2.651				
68	.847	1.294	1.668	1.995	2.382	2.650				
69	.847	1.294	1.667	1.995	2.382	2.649				
90	.846	1.291	1.662	1.987	2.368	2.632				
91	.846	1.291	1.662	1.986	2.368	2.631				
92	.846	1.291	1.662	1.986	2.368	2.630				
93	.846	1.291	1.661	1.986	2.367	2.630				
94	.845	1.291	1.661	1.986	2.367	2.629				
95	.845	1.291	1.661	1.985	2.366	2.629				
96	.845	1.290	1.661	1.985	2.366	2.628				
97	.845	1.290	1.661	1.985	2.365	2.627				
98	.845	1.290	1.661	1.984	2.365	2.627				
99	.845	1.290	1.660	1.984	2.364	2.626				
100	.845	1.290	1.660	1.984	2.364	2.626				
∞	.842	1.282	1.645	1.960	2.326	2.576				