Bases de Datos I

Teoría del diseño: Tercera Forma Normal

Lic. Andy Ledesma García Lic. Víctor M. Cardentey Fundora Dra. C. Lucina García Hernández

Departamento de Computación Facultad de Matemática y Computación Universidad de La Habana

11 de agosto de 2024

Si tenemos el conjunto de DFs del universo de atributos

¿Podemos garantizar la correctitud de la base de datos?

Objetivos

- 1. Poder extraer las dependencias funcionales existentes en un fenómeno a partir de su especificación y modelación conceptual.
- 2. Poder identificar anomalías en un diseño de base de datos relacional.
- 3. Poder obtener un diseño de base de datos relacional en tercera forma normal.

La situación

Se desea desarrollar una base de datos para registrar las notas de los estudiantes de la facultad en cada una de las asignaturas que cursan:

- ▶ De cada estudiante se conoce su identificador, su nombre, su grupo y su provincia de residencia.
- ▶ De cada asignatura se conoce su identificador y su nombre.
- Por cada asignatura se conoce la nota que obtuvo el estudiante en la evaluación final.

Además, se conoce que los estudiantes son organizados en los grupos de acuerdo a su provincia.

Primero lo primero

Metodología para obtener un esquema relacional correcto

- 1. Identificar el universo U de atributos del fenómeno.
- 2. Identificar el conjunto F de las dependencias funcionales que se establecen entre los atributos.
- 3. Definir el esquema relacional R(U, F).

Ejemplo

1. $U = {\#E, ENombre, Grupo, Provincia, \#A, ANombre, Nota}$

Ejemplo

1. $U = {\#E, ENombre, Grupo, Provincia, \#A, ANombre, Nota}$

¿Cómo podemos obtener F a partir del diseño conceptual?

1. Por cada conjunto de entidades con un conjunto de atributos $X \subseteq U$, se añade la dependencia funcional $K \to X$ donde K es la llave del conjunto de entidades.

- 1. Por cada conjunto de entidades con un conjunto de atributos $X \subseteq U$, se añade la dependencia funcional $K \to X$ donde K es la llave del conjunto de entidades.
- 2. Por cada conjunto de interrelaciones se toma su llave K y se añade la dependencia funcional $K \to K$. Además, por cada conjunto de entidades en un extremo de cardinalidad máxima 1 en la interrelación, se añade la dependencia funcional $K K_E \to K_E$ donde K_E es la llave del conjunto de entidades.

- 1. Por cada conjunto de entidades con un conjunto de atributos $X \subseteq U$, se añade la dependencia funcional $K \to X$ donde K es la llave del conjunto de entidades.
- 2. Por cada conjunto de interrelaciones se toma su llave K y se añade la dependencia funcional $K \to K$. Además, por cada conjunto de entidades en un extremo de cardinalidad máxima 1 en la interrelación, se añade la dependencia funcional $K K_E \to K_E$ donde K_E es la llave del conjunto de entidades.
- 3. Por cada agregación con un conjunto de atributos $X \subseteq U$ se añade la dependencia funcional $K \to X$ donde K es la llave del conjunto de interrelaciones que encierra la agregación.

- 1. Por cada conjunto de entidades con un conjunto de atributos $X \subseteq U$, se añade la dependencia funcional $K \to X$ donde K es la llave del conjunto de entidades.
- 2. Por cada conjunto de interrelaciones se toma su llave K y se añade la dependencia funcional $K \to K$. Además, por cada conjunto de entidades en un extremo de cardinalidad máxima 1 en la interrelación, se añade la dependencia funcional $K K_E \to K_E$ donde K_E es la llave del conjunto de entidades.
- 3. Por cada agregación con un conjunto de atributos $X \subseteq U$ se añade la dependencia funcional $K \to X$ donde K es la llave del conjunto de interrelaciones que encierra la agregación.
- 4. Añadir aquellas dependencias funcionales asociadas a otras restricciones del negocio especificadas en los requerimientos.

- 1. Se tienen los conjuntos de entidades ESTUDIANTE y ASIGNATURA:
 - ightharpoonup #E ightharpoonup ENombre, Grupo, Provincia
 - \blacktriangleright #A \rightarrow ANombre

- 1. Se tienen los conjuntos de entidades ESTUDIANTE y ASIGNATURA:
 - ightharpoonup #E ightharpoonup ENombre, Grupo, Provincia
 - \blacktriangleright #A \rightarrow ANombre
- 2. Se tiene el conjunto de interrelaciones EVALUAR:
 - \blacktriangleright #E,#A \rightarrow #E,#A

- 1. Se tienen los conjuntos de entidades ESTUDIANTE y ASIGNATURA:
 - ightharpoonup #E ightharpoonup ENombre, Grupo, Provincia
 - \blacktriangleright #A \rightarrow ANombre
- 2. Se tiene el conjunto de interrelaciones EVALUAR:
 - \blacktriangleright #E,#A \rightarrow #E,#A
- 3. Se tiene la agregación ASIGNATURA-EVALUADA
 - \blacktriangleright #E, #A \rightarrow Nota

- 1. Se tienen los conjuntos de entidades ESTUDIANTE y ASIGNATURA:
 - ightharpoonup #E ightharpoonup ENombre, Grupo, Provincia
 - \blacktriangleright #A \rightarrow ANombre
- 2. Se tiene el conjunto de interrelaciones EVALUAR:
 - \blacktriangleright #E,#A \rightarrow #E,#A
- 3. Se tiene la agregación ASIGNATURA-EVALUADA
 - \blacktriangleright #E, #A \rightarrow Nota
- 4. Añadimos las restricciones planteadas en la especificación:
 - ▶ Provincia → Grupo

Continuemos con el ejemplo

Continuemos con el ejemplo

```
    U = {#E, ENombre, Grupo, Provincia, #A, ANombre, Nota}
    F = {
        #E → ENombre, Grupo, Provincia
        #A → ANombre
        #E,#A → #E,#A
        #E, #A → Nota
        Provincia → Grupo
    }
    Definimos el esquema relacional Evaluaciones(U, F) con llave #E, #A
```

¿Es este un buen diseño?

#E	ENombre	Grupo	Provincia	#A	ANombre	Nota
e_1	Juan	111	La Habana	a_1	Análisis	3
e_1	Juan	111	La Habana	a_2	Lógica	2
e_1	Juan	111	La Habana	<i>a</i> ₃	Álgebra	4
e_1	Juan	111	La Habana	<i>a</i> ₄	Programación	5
e_3	Pedro	111	La Habana	a_3	Álgebra	4
e_2	María	112	Matanzas	a_1	Análisis	3
e_2	María	112	Matanzas	a_2	Lógica	3
<i>e</i> ₄	Rita	112	Mayabeque	a_2	Lógica	3
e_4	Rita	112	Mayabeque	<i>a</i> ₄	Programación	4
e_5	Carlos	113	Pinar del Río	a_3	Álgebra	3

¿Es este un buen diseño? (Redundacia)

#E	ENombre	Grupo	Provincia	#A	ANombre	Nota
e_1	Juan	111	La Habana	a_1	Análisis	3
e_1	Juan	111	La Habana	a_2	Lógica	2
e_1	Juan	111	La Habana	a_3	Álgebra	4
e_1	Juan	111	La Habana	<i>a</i> ₄	Programación	5
e_3	Pedro	111	La Habana	<i>a</i> ₃	Álgebra	4
e_2	María	112	Matanzas	a_1	Análisis	3
e_2	María	112	Matanzas	a_2	Lógica	3
e_4	Rita	112	Mayabeque	a_2	Lógica	3
e_4	Rita	112	Mayabeque	<i>a</i> ₄	Programación	4
<i>e</i> ₅	Carlos	113	Pinar del Río	a 3	Álgebra	3

¿Es necesaria esta redundancia?

¿Es este un buen diseño? (Anomalía de inserción)

#E	${\sf ENombre}$	Grupo	Provincia	#A	ANombre	Nota
e_1	Juan	111	La Habana	a_1	Análisis	3
e_1	Juan	111	La Habana	a_2	Lógica	2
e_1	Juan	111	La Habana	a_3	Álgebra	4
e_1	Juan	111	La Habana	<i>a</i> ₄	Programación	5
e_3	Pedro	111	La Habana	a_3	Álgebra	4
e_2	María	112	Matanzas	a_1	Análisis	3
e_2	María	112	Matanzas	a_2	Lógica	3
<i>e</i> ₄	Rita	112	Mayabeque	a_2	Lógica	3
<i>e</i> ₄	Rita	112	Mayabeque	<i>a</i> ₄	Programación	4
e_5	Carlos	113	Pinar del Río	a_3	Álgebra	3

¿Se pudiera insertar un alumno que todavía no ha recibido evaluaciones?

e₆ Marcos 111 La Habana NULL NULL NULL

¿Es este un buen diseño?

#E	ENombre	Grupo	Provincia	#A	ANombre	Nota
e_1	Juan	111	La Habana	a_1	Análisis	3
e_1	Juan	111	La Habana	a_2	Lógica	2
e_1	Juan	111	La Habana	a_3	Álgebra	4
e_1	Juan	111	La Habana	<i>a</i> ₄	Programación	5
e_3	Pedro	111	La Habana	a_3	Álgebra	4
e_2	María	112	Matanzas	a_1	Análisis	3
e_2	María	112	Matanzas	a_2	Lógica	3
<i>e</i> ₄	Rita	112	Mayabeque	a_2	Lógica	3
<i>e</i> ₄	Rita	112	Mayabeque	<i>a</i> ₄	Programación	4
e_5	Carlos	113	Pinar del Río	a_3	Álgebra	3

¿Se pudiera insertar un alumno que todavía no ha recibido evaluaciones?

e₆ Marcos 111 La Habana NULL NULL NULL

¿Es este un buen diseño? (Anomalía de eliminación)

<u>#E</u>	ENombre	Grupo	Provincia	#A	ANombre	Nota
e_1	Juan	111	La Habana	a_1	Análisis	3
e_1	Juan	111	La Habana	a_2	Lógica	2
e_1	Juan	111	La Habana	a_3	Álgebra	4
e_1	Juan	111	La Habana	<i>a</i> ₄	Programación	5
e_3	Pedro	111	La Habana	a_3	Álgebra	4
e_2	María	112	Matanzas	a_1	Análisis	3
e_2	María	112	Matanzas	a_2	Lógica	3
e_4	Rita	112	Mayabeque	a_2	Lógica	3
<i>e</i> ₄	Rita	112	Mayabeque	<i>a</i> ₄	Programación	4
e_5	Carlos	113	Pinar del Río	<i>a</i> ₃	Álgebra	3

¿Qué ocurre si se eliminan las notas del estudiante e_5 ?

¿Es este un buen diseño? (Anomalía de eliminación)

#E	ENombre	Grupo	Provincia	#A	ANombre	Nota
$\overline{e_1}$	Juan	111	La Habana	$\overline{a_1}$	Análisis	3
e_1	Juan	111	La Habana	a_2	Lógica	2
e_1	Juan	111	La Habana	a_3	Álgebra	4
e_1	Juan	111	La Habana	<i>a</i> ₄	Programación	5
e_3	Pedro	111	La Habana	<i>a</i> ₃	Álgebra	4
e_2	María	112	Matanzas	a_1	Análisis	3
e_2	María	112	Matanzas	a_2	Lógica	3
e_4	Rita	112	Mayabeque	a_2	Lógica	3
e_4	Rita	112	Mayabeque	<i>a</i> ₄	Programación	4

Se pierde la información relacionada con la provincia Pinar del Río y el grupo C113

¿Es este un buen diseño? (Anomalía de modificación)

<u>#</u> E	ENombre	Grupo	Provincia	#A	ANombre	Nota
e_1	Juan	111	La Habana	a_1	Análisis	3
e_1	Juan	111	La Habana	a_2	Lógica	2
e_1	Juan	111	La Habana	a_3	Álgebra	4
e_1	Juan	111	La Habana	<i>a</i> ₄	Programación	5
e_3	Pedro	111	La Habana	a_3	Álgebra	4
e_2	María	112	Matanzas	a_1	Análisis	3
e_2	María	112	Matanzas	a_2	Lógica	3
e_4	Rita	112	Mayabeque	a_2	Lógica	3
e_4	Rita	112	Mayabeque	<i>a</i> ₄	Programación	4
<i>e</i> ₅	Carlos	113	Pinar del Río	<i>a</i> ₃	Álgebra	3

¿Cuántas tuplas tendríamos que modificar si queremos cambiar la provincia de Juan?

¿Es este un buen diseño? (Anomalía de modificación)

<u>#E</u>	ENombre	Grupo	Provincia	#A	ANombre	Nota
e_1	Juan	111	La Habana	a_1	Análisis	3
e_1	Juan	111	La Habana	a_2	Lógica	2
e_1	Juan	111	La Habana	a_3	Álgebra	4
e_1	Juan	111	La Habana	a_4	Programación	5
e_3	Pedro	111	La Habana	<i>a</i> ₃	Álgebra	4
e_2	María	112	Matanzas	a_1	Análisis	3
e_2	María	112	Matanzas	a_2	Lógica	3
e_4	Rita	112	Mayabeque	a_2	Lógica	3
<i>e</i> ₄	Rita	112	Mayabeque	<i>a</i> ₄	Programación	4
<i>e</i> ₅	Carlos	113	Pinar del Río	a 3	Álgebra	3

Todas las tuplas deben ser modificadas en una misma transacción

Entonces...

¿Cómo solucionar estas anomalías?

Fácil...

	Estudi	ante		Provincia-G	rupo	
<u>#E</u>	ENombre	Prov	incia	<u>Provincia</u>	Grupo	
e_1	Juan	La Ha	abana	La Habana	111	. 3
e_2	María	Mata	anzas	Matanzas	112	_
e_3	Pedro	La Ha	abana	Mayabeque	112	
e_4	Rita	Maya	beque	Pinar del Río	113	
e_5	Carlos	Pinar o	del Río			
		ı	Asignatura			
		<u>#A</u>	ANombre			
		a_1	Análisis			
		a_2	Lógica			
		a_3	Álgebra			
		a_4	Programació	n		

Evaluar #A

 a_1

 a_2

a3

a4

a3

 a_1

 a_2

 a_2

*a*₄

*a*3

 e_1

 e_1

 e_1

 e_1

*e*₃

 e_2

 e_2

 e_4

*e*₄

*e*5

Nota 3

5

3

3

3

3

Formalizando el diseño

¿Cómo obtener esta solución?

Proyección de las dependencias funcionales

Dados un esquema relacional R(U,F) y un conjunto de atributos Z tal que $Z\subseteq U$, la proyección de un conjunto de dependencias funcionales F sobre un conjunto de atributos Z – denotada por $\Pi_Z(F)$ – consiste en el conjunto de dependencias funcionales $X\to Y$ de F^+ tales que $XY\subseteq Z$.

$$\Pi_{Z}(F) = \{X \to Y \mid F \models X \to Y \land XY \subseteq Z\}$$

Descomposición de un esquema relacional

La descomposición del esquema relacional R(U, F) se representa por

$$\rho = \{R_1(U_1, F_1), R_2(U_2, F_2), ..., R_n(U_n, F_n)\}$$

de manera tal que:

$$V = \bigcup_{i=1}^n U_i$$

Para todo i = 1, ..., n se cumple que $F_i = \Pi_{U_i}(F)$

Normalización de una base de datos relacional

```
Estudiante(U_1, F_1):

U_1 = \{ \#E, ENombre, Provincia \}

F_1 = \{ \#E \rightarrow Enombre, Provincia \}
```

Asignatura(U_3 , F_3): $U_3 = \{ \#A, ANombre \}$ $F_3 = \{ \#A \rightarrow ANombre \}$

Provincia-Grupo(U_2 , F_2): $U_2 = \{\text{Provincia, Grupo}\}$ $F_2 = \{\text{Provincia} \rightarrow \text{Grupo}\}$

Evaluar(
$$U_4$$
, F_4):
 $U_4 = \{ \#E, \#A, Nota \}$
 $F_4 = \{ \#E, \#A \rightarrow Nota \}$

Formas normales

Primera Forma Normal

Un esquema relacional R(U, F) está en primera forma normal (1FN) si todos los atributos simples toman un solo valor del dominio subyacente.

La trivial

<u>#</u> E	ENombre	Grupo	Provincia	<u>#A</u>	ANombre	Nota
e_1	Juan	111	La Habana	a_1	Análisis	3
e_1	Juan	111	La Habana	a_2	Lógica	2
e_1	Juan	111	La Habana	a_3	Álgebra	4
e_1	Juan	111	La Habana	a_4	Programación	5
e_3	Pedro	111	La Habana	<i>a</i> ₃	Álgebra	4
e_2	María	112	Matanzas	a_1	Análisis	3
e_2	María	112	Matanzas	a_2	Lógica	3
e_4	Rita	112	Mayabeque	a_2	Lógica	3
e_4	Rita	112	Mayabeque	a_4	Programación	4
<i>e</i> ₅	Carlos	113	Pinar del Río	<i>a</i> ₃	Álgebra	3

Toda relación se encuentra en primera forma normal

Dependencia funcional completa

Dado un esquema relacional R(U,F) y los atributos X, Y de R (posiblemente compuestos), se dice que Y depende funcional y completamente de X si y solo si Y depende funcionalmente de X y no depende de algún subconjunto propio de X.

¿Qué dependencias funcionales existen en esta relación?

#E	ENombre	Grupo	Provincia	#A	ANombre	Nota
$\overline{e_1}$	Juan	111	La Habana	a_1	Análisis	3
e_1	Juan	111	La Habana	a_2	Lógica	2
e_1	Juan	111	La Habana	a_3	Álgebra	4
e_1	Juan	111	La Habana	<i>a</i> ₄	Programación	5
e_3	Pedro	111	La Habana	a_3	Álgebra	4
e_2	María	112	Matanzas	a_1	Análisis	3
e_2	María	112	Matanzas	a_2	Lógica	3
e_4	Rita	112	Mayabeque	a_2	Lógica	3
e_4	Rita	112	Mayabeque	<i>a</i> ₄	Programación	4
e_5	Carlos	113	Pinar del Río	a_3	Álgebra	3

Clasificando dependencias

```
\#E, \#A \rightarrow ENombre
\#E, \#A \rightarrow Grupo
\#E, \#A \rightarrow Provincia
\#E. \#A \rightarrow ANombre
\#E, \#A \rightarrow Nota
\#E \rightarrow ENombre
\#E \rightarrow Grupo
\#E \rightarrow Provincia
\#A \rightarrow ANombre
Provincia \rightarrow Grupo
```

Clasificando dependencias

```
\#E, \#A \rightarrow ENombre
\#E, \#A \rightarrow Grupo
\#E, \#A \rightarrow Provincia
\#E. \#A \rightarrow ANombre
\#E, \#A \rightarrow Nota
\#E \rightarrow ENombre
\#E \rightarrow Grupo
\#E \rightarrow Provincia
\#A \rightarrow ANombre
Provincia \rightarrow Grupo
```

Incompletas

Completas

Atributo llave o primo

Si un atributo X es parte de alguna llave candidata de un esquema relacional R(U,F), entonces se dice que X es un atributo llave o primo. Ahora bien, si un atributo X no contiene ni forma parte de ninguna llave candidata, entonces se dice que X es un atributo no llave o no primo.

Atributo llave o primo

Si un atributo X es parte de alguna llave candidata de un esquema relacional R(U,F), entonces se dice que X es un atributo llave o primo. Ahora bien, si un atributo X no contiene ni forma parte de ninguna llave candidata, entonces se dice que X es un atributo no llave o no primo.

Ejemplo

Sean $U = \{A, B, C, D\}$ y $F = \{AB \rightarrow C, B \rightarrow D, BC \rightarrow A\}$. En este caso, AB y BC son las llaves candidatas. De esta manera, A, B, C, AB y BC son atributos primos, mientras que D, AD, BD, CD y ACD son atributos no primos. Nótese que ABC, ABD y BCD, entre otros, no son atributos primos ni tampoco atributos no primos, ya que contienen a una llave candidata.

Formas normales

Segunda Forma Normal

Un esquema relacional R(U, F) está en segunda forma normal (2FN) si está en 1FN y todos los atributos no primos dependen completamente de toda llave candidata.

Llegando hasta segunda

Estudiante

<u>#E</u>	ENombre	Provincia	Grupo
e_1	Juan	La Habana	111
e_2	María	Matanzas	112
e_3	Pedro	La Habana	111
e_4	Rita	Mayabeque	112
<i>e</i> ₅	Carlos	Pinar del Río	113

Asignatura

<u>#A</u>	ANombre	
a_1	Análisis	
a_2	Lógica	
a_3	Álgebra	
<i>a</i> ₄	Programación	

Evaluar

<u>#E</u>	<u>#A</u>	Nota
e_1	a_1	3
e_1	a_2	2
e_1	<i>a</i> ₃	4
e_1	<i>a</i> ₄	5
e_3	<i>a</i> ₃	4
e_2	a_1	3
e_2	a_2	3
e_4	a_2	3
e_4	<i>a</i> ₄	4
<i>e</i> ₅	<i>a</i> ₃	3

Llegando hasta segunda

Estudiante

<u>#E</u>	ENombre	Provincia	Grupo
e_1	Juan	La Habana	111
e_2	María	Matanzas	112
e_3	Pedro	La Habana	111
e_4	Rita	Mayabeque	112
<i>e</i> ₅	Carlos	Pinar del Río	113

Asignatura

<u>#A</u>	ANombre
a_1	Análisis
a_2	Lógica
a_3	Álgebra
<i>a</i> ₄	Programación

Evaluar

<u>#E</u>	<u>#A</u>	Nota
e_1	a_1	3
e_1	a_2	2
e_1	<i>a</i> ₃	4
e_1	<i>a</i> ₄	5
e_3	<i>a</i> ₃	4
e_2	a_1	3
e_2	a_2	3
<i>e</i> ₄	a_2	3
<i>e</i> ₄	<i>a</i> ₄	4
<i>e</i> ₅	<i>a</i> ₃	3

Llegando hasta segunda

Todavía existe redundancia innecesaria

Dado un esquema relacional R(U,F) y los atributos X, Y y Z de R (posiblemente compuestos), se dice que Z depende funcional y transitivamente de X si y solo si Y y Z dependen funcionalmente de X y, además, Z depende funcionalmente de Y. Si Z no dependiera funcionalmente de Y, entonces se dice que Y y Z son mutuamente independientes.

Estudiante

<u>#E</u>	ENombre	Provincia	Grupo
$\overline{e_1}$	Juan	La Habana	111
e_2	María	Matanzas	112
e_3	Pedro	La Habana	111
e_4	Rita	Mayabeque	112
<i>e</i> ₅	Carlos	Pinar del Río	113
-			

 $\begin{array}{l} \#\mathsf{E} \to \mathsf{ENombre} \\ \#\mathsf{E} \to \mathsf{Grupo} \\ \#\mathsf{E} \to \mathsf{Provincia} \\ \mathsf{Provincia} \to \mathsf{Grupo} \end{array}$

Estudiante

<u>#</u> E	${\sf ENombre}$	Provincia	Grupo	
e_1	Juan	La Habana	111	$\#E \rightarrow ENombre$
e_2	María	Matanzas	112	$\#E \to Grupo$
e_3	Pedro	La Habana	111	$\#E \to Provincia$
<i>e</i> ₄	Rita	Mayabeque	112	$Provincia \to Gru$
<i>e</i> ₅	Carlos	Pinar del Río	113	

 $\#\mathsf{E} \to \mathsf{Provincia}$, $\mathsf{Provincia} \to \mathsf{Grupo} \models \#\mathsf{E} \to \mathsf{Grupo}$

Estudiante

#E	${\sf ENombre}$	Provincia	Grupo	
e_1	Juan	La Habana	111	#E o ENombre
e_2	María	Matanzas	112	#E o Grupo
e_3	Pedro	La Habana	111	#E o Provincia
e_4	Rita	Mayabeque	112	Provincia $ o$ Grupo
<i>e</i> ₅	Carlos	Pinar del Río	113	

 $\#\mathsf{E} \to \mathsf{Provincia}, \, \mathsf{Provincia} \to \mathsf{Grupo} \models \#\mathsf{E} \to \mathsf{Grupo}$

Existe una dependencia funcional transitiva

Formas normales

Tercera Forma Normal

Un esquema relacional R(U, F) está en tercera forma normal (3FN), si está en 2FN y los atributos no primos son mutuamente independientes.

Al fin, la tercera

Estudiante				Pronvincia-C	Grupo
<u>#E</u>	ENombre	Provin	cia	<u>Provincia</u>	Grupo
e_1	Juan	La Hab	ana	La Habana	111
e_2	María	Matanzas		Matanzas	112
e_3	Pedro	La Habana		Mayabeque	112
e_4	Rita	Mayabeque		Pinar del Río	113
<i>e</i> ₅	Carlos	Pinar de	l Río		
Asignatura					
		<u>#A</u>	ANombre		

Análisis

Lógica

Álgebra

Programación

 a_1

 a_2

*a*₃

a4

<u>#E</u>	<u>#A</u>	Nota
e_1	a_1	3
e_1	a_2	2
e_1	<i>a</i> ₃	4
e_1	a_4	5
e_3	a_3	4
e_2	a_1	3
e_2	a_2	3
<i>e</i> ₄	a_2	3
<i>e</i> ₄	<i>a</i> ₄	4
e_5	a_3	3

Evaluar

Eliminando dependencias problemáticas

Cubrimiento minimal

Dado dos conjuntos de dependencias funcionales F y G, se dice que G es un cubrimiento minimal o cobertura irreducible de F si se cumple que:

- 1. $G \equiv F$
- 2. G no contiene atributos redundantes
- 3. *G* no contiene dependencias redundantes

Automatizando

Algoritmo para obtener un cubrimiento minimal

Entrada: Un conjunto de DFs F sobre un universo de atributos U.

Salida: Un conjunto de DFs G, $G \equiv F$, sin atributos ni dependencias redundantes.

Método:

- 1. A partir de F construir un conjunto de DFs, F', tal que cada DF sea de la forma $X \to A$.
- 2. A partir de F' construir un conjunto de DFs, F'', donde ningún determinante contiene atributos redundates; o sea, que para ninguna $X \to A$ en F' y $Z \subset X$ se cumpla que $F' \{X \to A\} \cup \{Z \to A\}$ sea equivalente a F'.
- 3. A partir de F'' construir un conjunto de DFs, F''', que no contenga dependencias redundantes; o sea, que para ninguna $X \to A$ en F'' el conjunto de dependencias funcionales $F'' \{X \to A\}$ sea equivalente a F''.

$$\begin{array}{l} AB \rightarrow C \\ C \rightarrow A \\ BC \rightarrow D \\ ACD \rightarrow B \\ D \rightarrow EG \\ BE \rightarrow C \\ CG \rightarrow BD \\ CE \rightarrow AG \end{array}$$

$$AB \rightarrow C$$

$$C \rightarrow A$$

$$BC \rightarrow D$$

$$ACD \rightarrow B$$

$$D \rightarrow EG$$

$$BE \rightarrow C$$

$$CG \rightarrow BD$$

$$CE \rightarrow AG$$

$AB \rightarrow C$	AB o C
$C \rightarrow A$	C o A
BC o D	BC o D
ACD o B	ACD ightarrow
$D o extit{EG}$	D o E
BE o C	D o G
CG o BD	BE o C
CE o AG	$ extit{CG} ightarrow extit{B}$
	$\mathit{CG} o \mathit{D}$
	CE o A
	$\mathit{CE} o \mathit{G}$

```
AB \rightarrow C
                                            AB \rightarrow C
C \rightarrow A
                                            C \rightarrow A
BC \rightarrow D
                                            BC \rightarrow D
ACD \rightarrow B
                                            ACD \rightarrow B
                                            D \rightarrow F
D \rightarrow FG
BE \rightarrow C
                                            D \rightarrow G
CG \rightarrow BD
                                            BE \rightarrow C
CE \rightarrow AG
                                            CG \rightarrow B
                                            CG \rightarrow D
                                            CE \rightarrow A
                                            CE \rightarrow G
                                                       D \rightarrow G \land CG \rightarrow B \models CD \rightarrow B
```

$$AB \rightarrow C$$

$$C \rightarrow A$$

$$BC \rightarrow D$$

$$ACD \rightarrow B$$

$$D \rightarrow EG$$

$$BE \rightarrow C$$

$$CG \rightarrow BD$$

$$CE \rightarrow AG$$

$$D \rightarrow G \land CG \rightarrow B \models CD \rightarrow B$$

$$D \rightarrow G \land CG \rightarrow B \Rightarrow CD$$

$AB \rightarrow C$ $C \rightarrow A$ $BC \rightarrow D$ $ACD \rightarrow B$ $D \rightarrow EG$ $BE \rightarrow C$ $CG \rightarrow BD$ $CE \rightarrow AG$	$AB \rightarrow C$ $C \rightarrow A$ $BC \rightarrow D$ $ACD \rightarrow B$ $D \rightarrow E$ $D \rightarrow G$ $BE \rightarrow C$ $CG \rightarrow B$ $CG \rightarrow D$ $CE \rightarrow A$	$AB \rightarrow C$ $C \rightarrow A$ $BC \rightarrow D$ $CD \rightarrow B$ $D \rightarrow E$ $D \rightarrow G$ $BE \rightarrow C$ $CG \rightarrow B$ $CG \rightarrow D$ $CE \rightarrow A$
	CE o G	$CE \rightarrow G$

AB o C	AB o C	AB o C
$C \rightarrow A$	$C \rightarrow A$	C o A
BC o D	BC o D	BC o D
ACD o B	ACD o B	CD o B
D o EG	D o E	$D o { extbf{ extit{E}}}$
$BE \rightarrow C$	D o G	D o G
$\mathit{CG} o \mathit{BD}$	BE o C	BE o C
CE o AG	$ extit{CG} ightarrow extit{B}$	CG o B
	CG o D	CG o D
	CE o A	CE o A
	CE o G	CE o G
	$\mathit{CG} ightarrow \mathit{D} \wedge \mathit{CD}$ –	$\rightarrow B \models CG \rightarrow B$
	$C \rightarrow A \models$	$CE \rightarrow A$

AB o C
$C \rightarrow A$
BC o D
ACD o B
D o EG
$BE \rightarrow C$
${\it CG} ightarrow {\it BD}$
CE o AG

$$AB \rightarrow C$$

$$C \rightarrow A$$

$$BC \rightarrow D$$

$$ACD \rightarrow B$$

$$D \rightarrow E$$

$$D \rightarrow G$$

$$BE \rightarrow C$$

$$CG \rightarrow B$$

$$CG \rightarrow D$$

$$CC \rightarrow A$$

$$C \rightarrow C$$

$$C \rightarrow$$

$$AB \rightarrow C$$

$$C \rightarrow A$$

$$BC \rightarrow D$$

$$CD \rightarrow B$$

$$D \rightarrow E$$

$$D \rightarrow G$$

$$BE \rightarrow C$$

$$CG \rightarrow D$$

$$CE \rightarrow G$$

Algoritmo para obtener una descomposición en 3FN

Entrada: Un esquema relacional R(U, F), F es un conjunto irreducible de dependencias funcionales.

Salida: Una descomposición $\rho = (R_1, R_2, ..., R_n)$, tal que los esquemas relacionales $R_i(U_i, F_i)$ están en 3FN con respecto a $\Pi_{U_i}(F)$, $\forall i = 1, ..., n$.

Método:

- 1. Por cada dependencia funcional $X \to A_i$ en F crear el esquema relacional $R_i(U_i, F_i)$ tal que $U_i = X \cup \{A_i\}$ y $F_i = \{X \to A_i\}$. Si en F se tiene $X \to A_1, X \to A_2, ..., X \to A_k$ se puede utilizar un esquema relacional de la forma $R_j(U_j, F_j)$ con $U_j = X \cup \{A_1, A_2, ..., A_k\}$ y $F_j = \prod_{U_j} (F)^{-1}$.
- 2. Si en U existe algún atributo que no está contenido en ninguna dependencia funcional de F, este atributo puede formar un esquema relacional por sí mismo.
- 3. Luego, $\rho = (R_1, R_2, ..., R_n)$

¹Nótese que $\Pi_{U_j}(F)$ no es igual necesariamente a $\{X \to A_1A_2...A_n\}$, ya que pueden existir dependencias $A_\alpha \to Y \subset X$, con 1 < α < n.

```
\#E \rightarrow ENombre

\#E \rightarrow Grupo

\#E \rightarrow Provincia

\#A \rightarrow ANombre

\#E, \#A \rightarrow \#E, \#A

\#E, \#A \rightarrow Nota

Provincia \rightarrow Grupo
```

```
\#E \rightarrow ENombre
\#E \rightarrow Grupo
\#E \rightarrow Provincia
\#A \rightarrow ANombre
\#E, \#A \rightarrow \#E, \#A
\#E, \#A \rightarrow Nota
Provincia \rightarrow Grupo
```

 $\#E \to \mathsf{Provincia} \land \mathsf{Provincia} \to \mathsf{Grupo} \models \#E \to \mathsf{Grupo}$

```
\#E \rightarrow ENombre

\#E \rightarrow Grupo

\#E \rightarrow Provincia

\#A \rightarrow ANombre

\#E, \#A \rightarrow \#E, \#A

\#E, \#A \rightarrow Nota

Provincia \rightarrow Grupo
```

```
\#E \rightarrow ENombre

\#E \rightarrow Provincia

\#A \rightarrow ANombre

\#E, \#A \rightarrow \#E, \#A

\#E, \#A \rightarrow Nota

Provincia \rightarrow Grupo
```

Estudiante		Pronvincia-Grupo							
<u>#E</u>	ENombre	Provincia		<u>Provincia</u>	Grupo		Evaluar		ar
e_1	Juan	La Habana		La Habana	111		#E	#A	Nota
e_2	María	Matanzas		Matanzas	112		$\overline{e_1}$	a_1	3
e_3	Pedro	La Habana Mayabeque		Mayabeque	112		e_1	a_2	2
e_4	Rita			Pinar del Río	113		e_1	a ₃	4
e_5	Carlos	Pinar del Río					e_1	a ₄	5
Asignatura						e_3	a_3	4	
· ·						e_2	a_1	3	
		_ <u>#A</u> _	ANombre				e_2	a_2	3
		a_1	Análisis				e_4	a_2	3
		a_2	Lógica				<i>e</i> ₄	<i>a</i> ₄	4
		a_3	Álgebra				<i>e</i> ₅	a 3	3
		aл	Programació	Ńη					

Entonces...

... alguna duda?

