CH7

Calculus of several Variables

7.1. Functions of several variables

• Function of Two variables

A function f of two variables is a rule such that to each ordered pair (x,y) in the domain of f there corresponds one and only one number f(x,y)

$$f(x,y) = \frac{\sqrt{x}}{v^2}$$

$$g(u,v) = e^{ur} - \ln u$$

• Relative maximum (minimum) value

A point (a,b,c) on a surface z=f(x,y) is a relative maximum point (relative minimum point) if f(a,b) >= f(x,y) (f(a,b) <= f(x,y)) for all (x,y) in some region surrounding (a,b)

• A <u>saddle point</u> is a point that is the highest point along one curve of the surface and the lowest point along another curve

Note: A saddle point is not a relative extreme point.

7.2 Partial derivatives

- Partial derivatives
- (a) partial derivative of f(x,y) with respect to x is written with

$$\frac{d}{dx}f(x,y) = fx(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

- = derivative of f with respect to x , with y held constant
- =Instantaneous rate of charge of f with respect to x, when y is held constant.
- (b) partial derivative of f(x,y) with respect to y is written with

$$\frac{d}{dy}f(x,y) = fy(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

- = derivative of f with respect to y , with x held constant
- = Instantaneous rate of charge of f with respect to y, when x is held constant.

Example 1.2.

$$\frac{d}{dx}x^3y^4 = 3x^2y^4$$

$$\frac{d}{dy}x^3y^4 = x^34y^3 = 4x^3y^3$$

Example 3

$$\frac{d}{dx}y^4 = 0$$
 (y⁴: constant)

$$\frac{d}{dy}x^2 = 0$$

Example 4

$$\frac{d}{dx}(2x^4 - 3x^3y^3 - y^2 + 4x + 1)$$

$$=8x^3 - 9x^2y^3 - 0 + 4 + 0$$

$$=8x^3 - 9x^2y^3 + 4$$

Example 5

$$f(x,y) = 5x^4 - 2x^2y^3 - 4y^2$$

$$=> fx(x,y) = 20x^3 - 4xy^3$$

$$fy(x,y) = -3^2 - 8y$$

example 6

$$f=\ e^x\ ln\ y$$

$$=> fx = e^x \ln y$$

$$fy = e^x \frac{1}{y}$$

example 7

$$f = (xy^2 + 1)^4$$

$$fy = 4(xy^2 + 1)^3(x \times 2y)$$

$$=8xy(xy^2+1)^3$$

Example 8

$$g = \frac{xy}{x^2 + y^2}$$

$$\frac{dg}{dx} \, = \, \frac{\big(x^2 \! + \! y^2\big) \! \times \! y \! - \! 2x \! \times \! xy}{(x^2 \! + \! y^2)^2} \, = \, \frac{y^3 \! - \! x^2y}{(x^2 \! + \! y^2)^2}$$

Example 9

$$f(x,y) = \ln(x^2 + y^2)$$

$$fx(x,y) = \frac{2x}{x^2 + y^2}$$

$$fy(x,y) = \frac{2y}{x^2 + y^2}$$

example 10

$$f(x,y) = e^{x^2+y^2}$$
, find $fy(1,3)$

$$fy(x,y) = e^{x^2+y^2} \times (2y)$$

$$fy(1,3) = e^{1^2+3^2}(2 \times 3) = 6e^{10}$$

example 11

$$\begin{split} f(x,y,z) &= e^{x^2+y^2+z^2} \\ fy(x,y,z) &= 2ze^{x^2+y^2+z^2} \\ fz(1,1,1) &= 2\times 1\times e^{1+1+1} = 2e^3 \end{split}$$

- Interpreting partials Geometrically.
- (a) $\frac{df}{dx}$ gives the slope of the surface in the x-direction
- (b) $\frac{df}{dy}$ gives the slope of the surface in the y-direction

Second-Order Partials

$$fxx \quad \frac{d^2}{dx^2}f$$

$$fyy \quad \frac{d^2}{dy^2}f$$

$$fxy \quad \frac{d^2}{dydx}f = \frac{d}{dy}(\frac{d}{dx}f)$$

$$fyx \quad \frac{d^2}{dxdy}f \ = \ \frac{d}{dx}(\frac{d}{dy}f)$$

ex15

$$f(x,y) = x^4 + 2x^2y^2 + x^3y + y^4$$

$$fx = 4x^3 + 4xy^2 + 3x^2y$$

$$fxx = 12x^2 + 4y^2 + 6xy$$

$$fxy = 8xy + 3x^2$$

$$fy = 4x^2y + x^3 + 4y^3$$

$$fyy = 4x^2 + 12y^2$$

$$fyx = 8xy + 3x^2$$

Note:

fxy = fyx is not true for all functions, but it is true for all the functions that we will encounter in this book.

7.3 Optimizing functions of several variables

Critical point

(a,b) is a critical point of f(x,y) if f(x,b)=0 and f(y,b)=0

Note: Relative maximum and minimum values can occur only at critical points.

• D-Test

If (a,b) is a critical point of the function f(x,y), and let

$$D(a,b) = fxx(a,b)fyy(a,b) - [fxy(a,b)]^2$$

1. If D(a,b) > 0, and fxx(a,b) > 0

Then f(x,y) has a relative min at(a,b).

2. If D(a,b) > 0, and fxx(a,b) < 0

Then f(x,y) has a relative max at(a,b).

3. If D(a,b) < 0, then f(x,y) has a saddle point at(a,b).

4. If D(a,b) = 0, then no conclusion can be drawn from this test.

Note: A saddle point is neither a relative max nor a relative min.

ex.1

$$f(x,y) = 3x^{2} + y^{2} + 3xy + 3x + y + 6$$

$$\begin{cases} fx = 6x + 3y + 3 \\ fy = 2y + 3x + 1 \end{cases}$$

$$x = -1$$
, $y = 1$

$$C.P:(-1,1)$$

ex.2

$$f(x,y) = 3x^2 + y^2 - 6x - 12y$$

Set
$$\begin{cases} fx = 6x + 3y + 3 = 0 \\ fy = 2y + 3x + 1 = 0 \end{cases}$$

$$x = -1$$
, $y = 1$

$$C.P.(-1,1)$$

$$fxx = 6$$

$$fyy = 2$$

$$fxy = 3$$

$$D(-1,1) = (6)(2) - 3^2 = 3 > 0$$

and
$$fxx(-1,1) = 6 > 0$$

f(x,y) has a relative min at (-1,1) and f(-1,1) = 5

ex.3

$$f(x,y) = e^{x^2 - y^2}$$

$$Set \begin{cases} fx = e^{x^2 - y^2} \times (2x) = 0 \\ fy = e^{x^2 - y^2} \times (-2y) = 0 \end{cases}$$

$$x=0, y=0$$

$$fxx = e^{x^2-y^2}(2x)(2x) + e^{x^2-y^2}(2)$$

$$fxy = e^{x^2-y^2}(-2y)(-2y) + e^{x^2-y^2}(-2)$$

$$fxy = e^{x^2 - y^2} (2x)(-2y)$$

$$D(0,0) = fxx(0,0)fyy(0,0) - [fxy(0,0)]^2 = 2(-2)-0 = -4 < 0$$

f(x,y) has a saddle point at (0,0)

7.4

Let d1, d2 and d3 stand for the vertical distances between the three points and the line

$$y = ax + b$$

The line that minimize the sum of the squares of these vertical derivations is called the least squares line or the regression line.

Derivative of the Formula for the Least Squares Line

For n points
$$(x1 y1) (x2,y2) \dots (xn,yn)$$

$$S = ax1 + b - y1^{2} + ax2 + b - y2^{2}$$

$$+ axn + b - yn^2$$

$$\frac{ds}{da} = 2(ax1 + b - y1)x1$$

$$+2(ax2 + b - y2)x2$$

$$+ 2(axn + b - yn)^2$$

$$=2a\sum xi^2 + 2b\sum xi + 2\sum xiyi$$

$$\frac{ds}{db} = 2(ax1 + b - y1)$$

$$+2(ax2 + b - y2)$$

$$+2(axn + b - yn)$$

$$= 2a\sum xi + 2bn + 2\sum yi$$

Set
$$\begin{cases} \frac{ds}{da} = 0\\ \frac{ds}{db} = 0 \end{cases}$$

$$\begin{cases} a \sum xi^2 + b \sum xi = \sum xiyi \\ a \sum xi + bn = \sum yi \end{cases}$$

$$a = \frac{\begin{vmatrix} \sum xiyi & \sum xi \\ \sum yi & n \end{vmatrix}}{\begin{vmatrix} \sum xi^2 & \sum xi \\ \sum xi & n \end{vmatrix}} = \frac{n \sum xiyi - (\sum xi)(\sum yi)}{n \sum xi^2 - (\sum xi)^2}$$

$$b = \frac{1}{n} (\sum yi - a \sum xi)$$

Least squares line y = ax + b

Ex1

X	у	xy	x ²
1	10	10	1
2	12	24	4
3	25	75	9
∑ xi	∑yi	∑xiyi	$\sum xi^2$

$$a = \frac{3 \times 109 - 6 \times 47}{3 \times 14 - 6^2} = \frac{30}{4}$$

$$b = \frac{1}{3}(47 - \frac{30}{4} \times 6) = \frac{2}{3}$$

7.5

• The method of lagrage multipliers

To optimize (find the relative extrema)

$$f(x,y)$$
 subject to $g(x,y) = 0$.

Let
$$F(x,y,\lambda) = f(x,y) + \lambda g(x,y)$$

solve the equations

$$\begin{cases} Fx = 0 \\ Fy = 0 \\ F\lambda = 0 \end{cases}$$

f(x,y): objection function

g(x,y) = 0: constrained equation

 $F(x,y,\lambda)$: Lagrange function

 λ : Langrange multiplier

ex1

Maximize A = xy

Subject to
$$zx + y = 400 (2x + 4y - 400 = 0)$$

Let F
$$(x,y,\lambda) = xy + \lambda(2x + y - 400)$$

$$Set \begin{cases} Fx = y + 2\lambda = 0 \\ Fy = x + \lambda = 0 \\ F\lambda = 2x + y - 400 = 0 \end{cases}$$

$$\begin{cases} \lambda = \frac{-y}{2} & \frac{-y}{2} = -x \\ \lambda = -x & \end{cases}$$

$$x = 100$$
, $y = 200$

<u>ex3</u>

Max P =
$$600L^{\frac{2}{3}}K^{\frac{1}{3}}$$

$$s.t \ 40L + 100K - 3000 = 0$$

Let $F(L,K,\lambda)$

$$=600L_{3}^{\frac{2}{3}}K_{3}^{\frac{1}{3}}+\lambda(40L+100K-3000)$$

$$Set \begin{cases} FL = 400L^{\frac{-1}{3}}K^{\frac{1}{3}} + 40\lambda = 0 \\ FK = 200L^{\frac{2}{3}}K^{\frac{-2}{3}} + 100\lambda = 0 \\ F\lambda = 40L + 100K - 3000 = 0 \end{cases}$$

$$K = 10$$
, $L = 50$

i.e Labor 50 units

Capital 10 units

Interpretation of λ

 $|\lambda|$ = Number of additional objection units for each additional constraint unit.

In ex3

$$\lambda = -10L^{\frac{-1}{3}}K^{\frac{1}{3}} \quad 5.8$$

meaning the production increases by about 5.8 units for each additional dollar in the budget.

To optimize (find the relative extrema) f(x,y,z) subject to g(x,y,z) = 0

Let $F(x,y,z,\lambda)$

 $F(x,y,z)+\lambda g(x,y,z)$

Solve equations

$$\begin{cases} Fx = 0 \\ Fy = 0 \\ Fz = 0 \\ F\lambda = 0 \end{cases}$$

Level curve

The graph of z = f(x,y) is a surface in 3-dim space.

The level curve f(x,y) = c is the projection onto the xy plane of the curve format by the intersection of the surface z = f(x,y) with the horizontal plane z = c.

Justification of Lagranges method

Suppose the constraint curve g(x,y) = 0 and the level curves f(x,y) = c are drawn in the xy plane.

To maximize f(x,y) subject to g(x,y) = 0, we must find the highest level curve of f that intersects the constraint curve (the point p) the two curves have the same slope.

- The slope of f = c is $\frac{-fx}{fy}$
- The slope of g = 0 is $\frac{-gx}{gy}$

$$\frac{-fx}{fy} = \frac{-gx}{gy}$$

$$\frac{-fx}{gx} = \frac{-fy}{gy} = \lambda$$

$$\begin{cases} fx + \lambda gx = 0 \\ fy + \lambda gy = 0 \end{cases}$$

$$\int fy + \lambda gy = 0$$

$$\begin{cases} Fx = fx + \lambda gx = 0 \\ Fy = fy + \lambda gy = 0 \end{cases}$$

7.6

\bullet Differential of f(x)

For a differentiable function f(x) , the differential df is $\label{eq:df} df = f'(x) dx$

• Total differential of f(x,y)

For a function f(x,y), the total differential df is

$$df = fxdx + fydy$$

ex1

$$f(x,y) = 5x^3 - 4xy^{-1} + 3y^4$$

$$df = fxdx + fydy$$

$$= (15x^2 - 4y^{-1})dx + (4xy^{-2} + 12y^3)dy$$

<u>e</u>x2

$$z = \ln(x^2 + y^3)$$

$$dz = zxdx + zydy$$

$$=\,\frac{2x}{x^2\!+\!y^3}\!dx+\,\frac{3y^2}{x^2\!+\!y^3}\!dy$$

Approximating changes by Total Differential

• Change in f(x,y)

$$\triangle f = f(x + \triangle x, y + \triangle y) - f(x,y)$$

Differential Approximation Formula

$$f(x+\Delta x, y+\Delta y - f(x,y))$$

$$fx \times \Delta x + fy \times \Delta y$$

Change in f

Total differential of f

Ex3

For

$$f(x,y) = x^2 + 4xy + y^3$$

and values
$$x=3$$
, $y=2$

$$\Delta x = 0.2$$
, $\Delta y = -0.1$

(a)

Δf

$$= f(x+\Delta x, y+\Delta y) - f(x,y)$$

$$=f(3+0.2, 2-0.1) - f(3,2)$$

$$F(3.2, 1.9) - f(3,2)$$

$$=0.419$$

(b) df
$$= fxdx + fydy$$

$$= (2x + 4y)dx + (4x+3y^2)dy$$

$$= 0.4$$
Total differential of $f(x,y,z)$
For a function $f(x,y,z)$, the total differential df is Df = $fxdx + fydy + fzdz$

$$fx\Delta x + fy\Delta y + fz\Delta z$$

$$\Delta f = f(x + \Delta x, y + \Delta y, z + \Delta z) - f(x,y,z)$$

$$= df$$
Ex.
Let $f(x,y,z) = \sqrt{z}e^{x-y^2}$
Approximate $f(4.1,1.9,9.1)$

$$X=4, y=2, z=9$$

$$\Delta x = 0.1, \Delta y = -0.1, \Delta z = 0.1$$

$$fx = \sqrt{z}e^{x-y^2}$$

$$fx(4,2,9) = \sqrt{9}e^{4-2^2} = 3$$

$$fy = \sqrt{z}e^{x-y^2}(-2y)$$

$$fy(4,2,9) = -12$$

$$fz = \frac{1}{2\sqrt{z}}e^{x-y^2}$$

$$fz(4,2,9)(0.1) + fy(4,2,9)(-0.1) + fz(4,2,9)(0.1)$$

$$f(4.1,1.9,9.1) - \sqrt{9}e^{4-2^2}$$

$$= 3(0.1) + (-12)(-0.1) + \left(\frac{1}{6}\right)(0.1)$$

$$f(4.1,1.9,9.1) - 3 = 1.157$$

$$f(4.1,1.9,9.1) = 4.157$$

7.7

Double Integral

The double integral of a continuous function f(x,y) on a rectangular region R is $\int \int f(x,y) \, dx \, dy$ = $\lim_{\Delta x, \Delta y \to 0} \sum f(xi,yj) \, \Delta x \, \Delta y$

Note: If f(x,y) is nonaegative on R , then the double integral gives the volume under f

ex 1

$$\int_0^1 \int_0^2 (3x^2 + 6xy^2) dxdy$$

$$= \int_0^1 (\int_0^2 (3x^2 + 6xy^2) dx) dy (*)$$

$$(\int_0^2 (3x^2 + 6xy^2) dx)$$

$$= x^3 + \frac{6}{2}x^2y^2 \mid_0^2$$

$$= 8 + 12y^2$$

$$(*) = \int_0^1 (8 + 12y^2) dy$$

$$=8y + 4y^3 \mid_0^1$$

$$= 12$$

$$\int_0^1 \int_0^2 (3x^2 + 6xy^2) dx dy = 12$$

Ex 2

$$\int_0^2 \int_0^1 (3x^2 + 6xy^2) dy dx$$

$$= \int_0^2 (\int_0^1 (3x^2 + 6xy^2) dy) dx$$

$$= 12$$

• For a continuous function f(x,y)

$$\int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$

$$= \int_a^b \int_c^d f(x, y) dy dx$$

• The double integral

$$\iint f(x,y) dxdy$$
 over the

Region R =
$$\{(x,y)|a \le x \le b, c \le y \le d\}$$

can be evaluated by

$$\int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$

or
$$\int_a^b \int_c^d f(x, y) dy dx$$

ev 3

1. Let R be the region in the xy-plane bounded by the graphs of y=g(x), y=h(x) and

$$\iint f(x,y) dx dy$$

$$= \int_a^b \left[\int_{g(x)}^{h(x)} f(x,y) dy \right] dx$$

Note: If f(x,y) >= 0 on R then the double integral gives the volume under the surface f(x,y) above R.

2.

$$\iint f(x, y) dxdy$$

$$= \int_a^b \left[\int_{g(x)}^{h(x)} f(x, y) dy \right] dx$$

Ex 6

Find the voiumn under the surface f(x,y) = 12xy, and above the region R

$$V = \int_0^1 \int_{x^2}^{\sqrt{x}} 12xy dy dx$$

Where

$$\int_{x^2}^{\sqrt{x}} 12xydydx$$

$$= 12x \times \frac{1}{2}y^2|_{x^2}^{\sqrt{x}}$$

$$= 6x^2 - 6x^5$$

$$V = \int_0^1 (6x^2 - 6x^5) dx$$

$$= 1$$

39.

$$\int_0^1 \int_x^{2x} e^y dy dx$$

$$=\int_0^1 [e^y]^{2x} dx$$

$$=\int_0^1 (e^{2x} - e^x) dx$$

$$= \frac{1}{2}e^{2x} - e^x|_{0}^{1}$$

$$=\frac{1}{2}e^{2}-e+\frac{1}{2}$$

$$\int_{0}^{1} \int_{\frac{y}{2}}^{y} e^{y} dx dy + \int_{1}^{2} \int_{\frac{y}{2}}^{1} e^{y} dx dy$$

$$= (I) + (II)$$

$$(I) = \frac{1}{2}$$

$$(II) = \frac{1}{2}e^2 - e$$

(I) + (II) =
$$\frac{1}{2}e^2 - e + \frac{1}{2}$$