

Python - projekt - prezentacja

2018-07-01

Kurs Junior Data Scientist Zaoczne 1 (JDSZ1)

Raczki

Bartosz, Filip, Monika Kucal, Piotr

- 1. Dane
- 2. Machine Learning GridSearchCV
- 3. Machine Learning Personal Best Models

1. Dane - Eksploracja, normalizacja, skalowanie, selekcja cech i obserwacji

Dane

- Zbiór danych Kaggle: Rowery
- Cel: Prognoza liczby wypożyczonych rowerów
 - datetime hourly date + timestamp
 - season 1 = spring, 2 = summer, 3 = fall, 4 = winter
 - holiday whether the day is considered a holiday
 - workingday whether the day is neither a weekend nor holiday
 - weather 1: Clear, Few clouds, Partly cloudy, Partly cloudy; 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist; 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds; 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog
 - **temp** temperature in Celsius
 - atemp "feels like" temperature in Celsius
 - humidity relative humidity
 - windspeed wind speed
 - casual number of non-registered user rentals initiated
 - registered number of registered user rentals initiated
 - count number of total rentals

Wczytanie

Eksploracja

Normalizacja

Skalowanie

Selekcja

Train/Test

Inne

Dane

MK

rozkłady

v1: casual

y2: registered

80/20 (seed 789)

pandas.read csv

korelacje, wykresy,

+

eliminacja: atemp, day

FJ

pandas.read csv

korelacje, wykresy,

eliminacja: atemp, day

rozkłady

v1: casual

y2: registered

80/20 (seed 789)

BG

rozkłady

v1: casual

y2: registered

80/20 (seed 789)

pandas.read csv

korelacje, wykresy,

eliminacja: atemp, day

info Share

pandas.read csv

Gęstość, rozkłady,

Eliminacja: atemp,

Y: count, podział daty na więcej

cech, eliminacja zer w wilgotności,

season

one-hot encoding

80/20 (seed 789)

korelacje, skośność

PS

<academy/>

2. Machine Learning - GridSearchCV

Machine Learning - GridSearchCV

0.49

RMLSE - Kaggle

0.58

inas.	maeime zearining emaeearene t			\adauciny//	
<u>-</u>	MK	FJ	BG	PS	
Model	Decision Tree	RF - zmiana na KKN	SVR	XGBoost	
Hiperparametry	y1: casual criterion: mse max depth: 13 min samples split: 10 min samples leaf: 10 y2: registered criterion: mse max depth: 14 min samples split: 20 min samples leaf: 10	y1: casual leaf_size=100 n_neighbors=10 P: 2 metric='minkowski' y2: registered leaf_size=30 n_neighbors=5 P: 2 metric='minkowski'	y1: casual C=0.5 tol=0.1 dual=True epsilon=0.1 loss='squared_epsilon_insensitive' y2: registered C=1 tol=0.1 dual=True epsilon=0.01 loss='squared_epsilon_insensitive'	Y: count colsample_bylevel: 0.8 colsample_bytree: 0.8 max_depth: 8, min_child_weight: 3 n_estimators: 200	
RMLSE - Test	0.35	0.88	1. 45	0.35	

0.96

1.45

3. Machine Learning - Personal Best Models

Dziękujemy!

Pytania? Slack / email