Methods Of Optimal Control

Arash Fahim

FSU Fall 2025

September 2, 2025

Structure of the course

- Short lecture (10-15 minutes)
- Team work (50 minutes)
 - * Problem solving
 - * Programming (Python)
 - * Managerial skills
 - * Reporting skills
- Delivery (5 minutes)

Structure of the course

Python

Each student is expected to bring a computer to the classroom with a *Python 3.12, IPython*, and *Jupyter Notebook* installed.

- https://www.python.org/downloads
- https://www.anaconda.com/docs/main
- Virtual environment:

```
https://docs.python.org/3/library/venv.html
https://www.anaconda.com/docs/tools/
working-with-conda/environments
```

GitHub

Each student is required to have a GitHub account.

Rules of teamwork

- Be respectful.
- Allow all team members to engage and express their opinion. No interruption.
- Arrange chair to make sure everyone is involved.
- No one knows everything. Make sure that everyone learns what you know.
- Break down the tasks between group members based on ones abilities.
- Ask for feedback from me frequently.

Composition of teams

Each team requires one or two members to take the following roles:

- Problem solving
- Programming (Python)
- Managerial skills
- Reporting skills

Example1

 $\alpha:[0,T]\to\mathbb{R}$ is given.

$$\inf \left\{ \int_0^T \left(x_t^2 - \alpha_t x_t \right) dt \right\}$$

where the infimum is over all functions $x : [0, T] \to \mathbb{R}$.

Example1

 $\alpha:[0,T]\to\mathbb{R}$ is given.

$$\inf \left\{ \int_0^T \left(x_t^2 - \alpha_t x_t \right) \mathrm{d}t \right\}$$

where the infimum is over all functions $x : [0, T] \to \mathbb{R}$.

$$\inf_{x \in \mathbb{R}^d} \left\{ x^2 - \alpha_t x \right\}$$

Example1

 $\alpha:[0,T]\to\mathbb{R}$ is given.

$$\inf \left\{ \int_0^T \left(x_t^2 - \alpha_t x_t \right) dt \right\}$$

where the infimum is over all functions $x : [0, T] \to \mathbb{R}$.

$$\inf_{x \in \mathbb{R}^d} \left\{ x^2 - \alpha_t x \right\}$$

$$x_t^* = \frac{\alpha_t}{2} = \underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ x^2 - \alpha_t x \right\}$$

Dynamic x_t

$$\inf \left\{ \int_0^T \left(x_t^2 - \alpha_t x_t \right) dt \right\}$$

Infimum is over all functions $x : [0, T] \to \in \mathbb{R}$ such that for some function $u : [0, T] \to \mathbb{R}$

$$dx_t = (-\beta x_t + u_t)dt, \quad x_0 = x$$

Dynamic x_t

$$\inf \left\{ \int_0^T \left(x_t^2 - \alpha_t x_t \right) dt \right\}$$

Infimum is over all functions $x : [0, T] \rightarrow \in \mathbb{R}$ such that for some function $u : [0, T] \rightarrow \mathbb{R}$

$$dx_t = (-\beta x_t + u_t)dt$$
, $x_0 = x$

Can we find u_t such that $x_t = \frac{\alpha_t}{2}$? (For simplicity, take $\beta = 0$.)

Dynamic x_t

$$\inf\left\{\int_0^T \left(x_t^2 - \alpha_t x_t\right) \mathrm{d}t\right\}$$

Infimum is over all functions $x : [0, T] \to \in \mathbb{R}$ such that for some function $u : [0, T] \to \mathbb{R}$

$$dx_t = (-\beta x_t + u_t)dt$$
, $x_0 = x$

Can we find u_t such that $x_t = \frac{\alpha_t}{2}$? (For simplicity, take $\beta = 0$.) Check it for $\alpha_t = \mathbb{1}_{\{0 \le t \le \frac{T}{2}\}}$.

Dynamic x_t

$$\inf\left\{\int_0^T \left(x_t^2 - \alpha_t x_t\right) dt\right\}$$

Infimum is over all functions $x : [0, T] \to \in \mathbb{R}$ such that for some function $u : [0, T] \to \mathbb{R}$

$$dx_t = (-\beta x_t + u_t)dt$$
, $x_0 = x$

Can we find u_t such that $x_t = \frac{\alpha_t}{2}$? (For simplicity, take $\beta = 0$.)

Check it for $\alpha_t = \mathbb{1}_{\{0 \le t \le \frac{7}{2}\}}$.

For $\alpha_t = \mathbb{1}_{\{0 \le t \le \frac{T}{2}\}}$, what is the value of the infimum? Is it

$$\inf\left\{\int_0^T \left(x_t^2 - \alpha_t x_t\right) dt\right\} = -\frac{1}{4} \int_0^T \alpha_t^2 dt = -\frac{7}{8}?$$

A control problem without a myopic solution

$$\inf \int_0^T \left(x_t^2 - \alpha_t x_t + u_t^2 \right) \mathrm{d}t \tag{1}$$

Infimum is over all functions $u:[0,T] \to \mathbb{R}$

$$dx_t = (-\beta x_t + u_t)dt$$
, $x_0 = x$

Trade-off:

- Trying to send $x_t \to \frac{\alpha_t}{2}$ may cause $\int_0^T u_t^2 dt$ to grow.
- Trying to keep cost $\int_0^T u_t^2 dt$ near zero, does not bring x_t close to $\frac{\alpha_t}{2}$.

What is the sweet spot for u_t ?

A generic control problem

Definition

$$\inf_{u \in \mathcal{U}} \int_0^T C(t, x_t, u_t) dt + g(x_T), \quad dx_t = f(x_t, u_t) dt$$
 (2)

- $C: \mathbb{R}_+ \times \mathbb{R}^d \times \mathbb{R}^n \to \mathbb{R}$: running cost
- $g: \mathbb{R}^d \to \mathbb{R}$: terminal cost
- \mathcal{U} : an admissible set of functions $u:[0,T]\to\mathbb{R}^n$, control variable.

A generic control problem

Admissible controls

 $\ensuremath{\mathcal{U}}$ is chosen to fit the proper application and/or to make the control problem wellposed.

Admissibility for wellposedness

$$\inf_{u \in \mathcal{U}} \int_0^T (x_t - u_t^2) dt = -\infty, \quad dx_t = (x_t - u_t) dt$$
 (3)

 $\mathcal U$ to be the set of all functions $u:[0,T]\to\mathbb R$ If we restrict $\mathcal U$ to the set of functions $u:[0,T]\to[-1,\infty)$ (some lower bound on the value), then

$$\inf_{u \in \mathcal{U}} \int_0^T (x_t - u_t^2) dt > -\infty, \quad dx_t = (x_t - u_t) dt. \tag{4}$$

Infinite horizon

Infinite horizon

An infinite horizon control problem is accommodated by setting $T=\infty.$ For example,

$$\inf_{u \in \mathcal{U}} \int_0^\infty e^{-t} (x_t^2 + u_t^2) dt, \ C(t, x, u) = e^{-t} (x^2 + u^2)$$
 (5)

Exercise

Write the following problem as a generic control problems by associating the horizon T, the running cost C(t, x, u) and terminal cost g(x)

(Shortest time to exit a bounded domain) Given a bounded domain $D \subset \mathbb{R}^d$ find

$$\inf_{t}\{t\geq 0 : x_t \notin D\} \tag{6}$$

where $\mathrm{d}x_t = u_t \mathrm{d}t$ with control $|u_t| \leq 1$ and $u_t \in \mathbb{R}^d$ and initial position $x_0 = x \in D$.

Infinite horizon

Exercise

Write the following problem as a generic control problems by associating the horizon T, the running cost C(t, x, u) and terminal cost g(x)

(Shortest time to exit a bounded domain) Given a bounded domain $D \subset \mathbb{R}^d$, find

$$\inf_{U}\{t\geq 0 : x_t \notin D\} \tag{7}$$

where $dx_t = u_t dt$ with control $|u_t| \le 1$ and $u_t \in \mathbb{R}^d$ and initial position $x_0 = x \in D$.

Solution

$$\inf_{u} \int_{0}^{\infty} \mathbb{1}_{\{x_t \in D\}} dt, \ dx_t = u_t dt \text{ with } |u_t| \leq 1$$

An optimal control is described by existing D as fast as possible, |u| = 1, and stop as soon as we exit, |u| = 0.

Dynamic programming principle (DPP)

Value function

Fix $x_t = x$.

$$V(t,x) := \inf_{u \in \mathcal{U}_t} \int_t^t C(s,x_s,u_s) ds + g(x_T), \quad dx_s = f(x_s,u_s) ds$$

 \mathcal{U}_t : the set of admissible controls restricted to [t, T].

Dynamic programming principle (DPP)

$$V(t,x) = \inf_{u \in \mathcal{U}_{t,s}} \int_{t}^{s} C(r,x_r,u_r) dr + V(s,x_s), \quad dx_r = f(x_r,u_r) dr$$

 $\mathcal{U}_{t,s}$: the set of admissible controls restricted to [t,s].

DPP

Balance of cost in DPP

$$V(t,x) = \inf_{u \in \mathcal{U}_{t,s}} \int_t^s C(r,x_r,\mathbf{u_r}) dr + V(s,\mathbf{x_s}), \quad \mathbf{x_s} = x + \int_t^s f(x_r,\mathbf{u_r}) dr$$

Proof of DPP

$$V(t,x) = \inf_{u \in \mathcal{U}_t} \int_t^T C(r, x_r, u_r) dr + g(x_T)$$

$$= \inf_{u_1 \in \mathcal{U}_{t,s}} \inf_{u_2 \in \mathcal{U}_s} \int_t^s C(r, x_r, u_1(r)) dr + \int_s^T C(r, x_r, u_2(r)) dr + g(x_T)$$

$$= \inf_{u_1 \in \mathcal{U}_{t,s}} \int_t^s C(r, x_r, u_1(r)) dr + \inf_{u_2 \in \mathcal{U}_s} \int_s^T C(r, x_r, u_2(r)) dr + g(x_T)$$

Note that $\inf_{u_2 \in \mathcal{U}_s} \int_s^T C(r, x_r, u_2(r)) dr + g(x_T) = V(s, x_s)$. Therefore,

$$V(t,x) = \inf_{u_1 \in \mathcal{U}_{t,s}} \int_{t}^{s} C(r,x_r,u_1(r)) dr + V(s,x_s)$$

Numerical DPP

Discretization

Approximation

$$\begin{cases} \hat{V}(t_N, x) = g(x) \\ \hat{V}(t_i, x) := \inf_{u} C(t_i, x_{t_i}, u) \Delta t + \hat{V}(t_{i+1}, x_{t_{i+1}}), \ x_{t_{i+1}} = x + f(t_i, x, u) \Delta t \end{cases}$$

Numerical DPP

Approximation

$$\begin{cases} \hat{V}(t_N, x) = g(x) \\ \hat{V}(t_i, x) := \inf_{u} C(t_i, x_{t_i}, u) \Delta t + \hat{V}(t_{i+1}, x_{t_{i+1}}), \ x_{t_{i+1}} = x + f(t_i, x, u) \Delta t \end{cases}$$

Simplification of one-step approximate DPP

The approximation is not over the control $u:[t_i,t_{i+1}]\to\mathbb{R}^m$, but over values $u\in\mathbb{R}^m$. The optimal value \hat{u}^* is a constant approximately optimal control over $[t_i,t_{i+1}]$.

Algorithm

Algorithm 1: Numerical DPP

```
Parameter T, N, f(t, x, u), C(t, x, u), and g(x);
  Data: \hat{V}(t_N, x) = g(x);
  x_{i}^{J} for j = 1, ..., J and i = 0, ..., N - 1
1 for i \leftarrow N-1 to 0 do
    \hat{x}_{i+1}^j = x_i^j + f(t_i, x_i^j, u) \Delta t;
      \tilde{V}(t_i, x_i^j) \leftarrow \inf_{u} C(t_i, x_i^j, u) \Delta t + \hat{V}(t_{i+1}, \hat{x}_{i+1}^j);
      \hat{V}(t_i, x) obtained from interpolation on \tilde{V}(t_i, x_i^j) for i = 1, ..., J;
    \hat{u}^*(x_i^j) \in \operatorname{argmin} C(t_i, x_i^j, u) \Delta t + \hat{V}(t_{i+1}, \hat{x}_{i+1}^j);
```

6 return \hat{V} and \hat{u}^* .

DPP algorithm

Exercise

Why interpolation is required in Algorithm 1?

Can we perform the algorithm by only knowing $\hat{V}(t_{i+1}, x_{i+1}^j)$ for all i = 1, ..., J?

Note the difference between $\hat{V}(t_{i+1}, x_{i+1}^j)$ and $\hat{V}(t_{i+1}, \hat{x}_{i+1}^j)$ and the difference between x_{i+1}^j and $\hat{x}_{i+1}^j = x_i^j + f(t_i, x_i^j, u)\Delta t$.

$$\inf_{\boldsymbol{u}} C(t_i, x_i^j, \boldsymbol{u}) + \hat{V}(t_i, x_i^j + f(t_i, x_i^j, \boldsymbol{u}) \Delta t)$$

Quadratic example

Example

Value function:

$$V(t,x) := \inf_{u \in \mathcal{U}_t} \int_t^T (x_s^2 + u_s^2) \, \mathrm{d}s + \frac{1}{2} x_T^2 - x_T, \quad dx_s = (x_s - u_s) \, \mathrm{d}s. \tag{8}$$

We cannot find value functions using a myopic argument.

Exercise

- 1) In example above, write the approximate DPP from time t_i to t_{i+1} .
- 2) Assume that $\hat{V}(t_{i+1}, x) = a_{i+1}x^2 + b_{i+1}x + c_{i+1}$ for some known values a_{i+1} , b_{i+1} , and c_{i+1} .
- 3) Use optimization of a quadratic function to find $\hat{V}(t_i,x)$. Note that you need to use $\hat{x}_{t_{i+1}} = x + (x u)\Delta t$.
- 4) Does $\hat{V}(t_i, x)$ is of the form $a_i x^2 + b_i x + c_i$? What is the relation between (a_i, b_i, c_i) and $(a_{i+1}, b_{i+1}, c_{i+1})$?

Individual project

Due end October

In your area of study, find an optimal control problem. Then, write the cost functions and the control variable and determine a set of admissible controls.