Experiences in Teaching of Modeling and Simulation with Emphasize on Equation-based and Acausal Modeling Techniques.

Tomáš Kulhánek *,1,2, Filip Ježek 2,3, Marek Mateják 2, Jan Šilar and Jiří Kofránek 2

Models in biology and medicine = mathematical formalization of knowledge

Time need to design & implement model:

Veins and arteries in dead body Concept: Matlab:

$$q_{in} \cdot q = G \times (q_{in} \cdot p - q_{out} \cdot p)$$

$$p - p_0 = \begin{cases} 0 & \text{if } V < V_0 \\ \frac{V - V_0}{C} & \text{otherwise} \end{cases}$$

$$\frac{dV}{dt} = q$$

$$(6)$$

Modelica:

Spring/Mass System

(7)

Modelica:

Conclusion:

- acausal modeling reduce mainly time of derivation of causality (4)
- acausal model follows concept, simplified visual verification
- students are able to comprehend and implement much more complex systems.

^{*} corresponding author: tomas.kulhanek@matfyz.cz

¹Musical Acoustic Research Center, Music and Dance Faculty, Academy of Performing Arts in Prague, Czech Republic

² Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Czech Republic

³ Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague