# Lifelong Learning

CS 330

## Plan for Today

The lifelong learning problem statement

Basic approaches to lifelong learning

Can we do **better** than the basics?

Revisiting the problem statement from the meta-learning perspective

### A brief review of problem statements.

### Multi-Task Learning

Learn to solve a set of tasks.



#### Meta-Learning

Given i.i.d. task distribution, learn a new task efficiently

learn to learn tasks



#### Multi-Task Learning



#### Meta-Learning

quickly learn new task

#### In contrast, many real world settings look like:



time

Our agents may not be given a large batch of data/tasks right off the bat!

#### Some examples:

- a student learning concepts in school
- a deployed image classification system learning from a stream of images from users
- a **robot** acquiring an increasingly large set of skills in different environments
- a **virtual assistant** learning to help different users with different tasks at different points in time
- a doctor's assistant aiding in medical decision-making

### Some Terminology

#### Sequential learning settings

online learning, lifelong learning, continual learning, incremental learning, streaming data

distinct from sequence data and sequential decision-making

## What is the lifelong learning problem statement?

#### Exercise:

- 1. Pick an example setting.
- 2. Discuss problem statement in your break-out room:
  - (a) how would you set-up an experiment to develop & test your algorithm?
  - (b) what are desirable/required properties of the algorithm?
  - (c) how do you evaluate such a system?
    - A. a student learning concepts in school
    - B. a deployed **image classification system** learning from a stream of images from users

#### Example settings:

- C. a **robot** acquiring an increasingly large set of skills in different environments
- D. a virtual assistant learning to help different users with different tasks at different points in time
- E. a doctor's assistant aiding in medical decision-making

## What is the lifelong learning problem statement?

#### Problem variations:

- task/data order: i.i.d. vs. predictable vs. curriculum vs. adversarial
- discrete task boundaries vs. continuous shifts (vs. both)
- known task boundaries/shifts vs. unknown

#### Some considerations:

- model performance
- data efficiency
- computational resources
- memory
- others: privacy, interpretability, fairness, test time compute & memory

Substantial variety in problem statement!

## What is the lifelong learning problem statement?

General [supervised] online learning problem:

i.i.d. setting: 
$$x_t \sim p(x), y_t \sim p(y|x)$$

$$p \text{ not a function of } t$$

otherwise: 
$$x_t \sim p_t(x)$$
,  $y_t \sim p_t(y|x)$ 

streaming setting: cannot store  $(x_t, y_t)$ 

- lack of memory
- lack of computational resources
- privacy considerations
- want to study neural memory mechanisms

true in some cases, but not in many cases!

e recall: replay buffers

## What do you want from your lifelong learning algorithm?

#### minimal regret (that grows slowly with t)

regret: cumulative loss of learner — cumulative loss of best learner in hindsight

$$Regret_T := \sum_{1}^{T} \mathcal{L}_t(\theta_t) - \min_{\theta} \sum_{1}^{T} \mathcal{L}_t(\theta)$$

(cannot be evaluated in practice, useful for analysis)

Regret that grows linearly in t is trivial. Why?

## What do you want from your lifelong learning algorithm?

#### positive & negative transfer

positive forward transfer: previous tasks cause you to do better on future tasks compared to learning future tasks from scratch

positive backward transfer: current tasks cause you to do better on previous tasks compared to learning past tasks from scratch

positive -> negative : better -> worse

# Plan for Today

The lifelong learning problem statement

Basic approaches to lifelong learning

Can we do better than the basics?

Revisiting the problem statement from the meta-learning perspective

### Approaches

Store all the data you've seen so far, and train on it. -> follow the leader algorithm

- + will achieve very strong performance
- computation intensive —> Continuous fine-tuning can help.
- can be memory intensive [depends on the application]

Take a gradient step on the datapoint you observe. -> stochastic gradient descent

- + computationally cheap
- + requires 0 memory
- subject to negative backward transfer "forgetting"

- slow learning

sometimes referred to as catastrophic forgetting

## Very simple continual RL algorithm



Julian, Swanson, Sukhatme, Levine, Finn, Hausman, Never Stop Learning, 2020

## Very simple continual RL algorithm





Julian, Swanson, Sukhatme, Levine, Finn, Hausman, Never Stop Learning, 2020

## Very simple continual RL algorithm



#### Can we do better?

Julian, Swanson, Sukhatme, Levine, Finn, Hausman, Never Stop Learning, 2020

## Plan for Today

The lifelong learning problem statement

Basic approaches to lifelong learning

Can we do **better** than the basics?

Revisiting the problem statement from the meta-learning perspective



(1) store small amount of data per task in memory

Idea:

(2) when making updates for new tasks, ensure that they don't unlearn previous tasks

## How do we accomplish (2)?

learning predictor  $y_t = f_{\theta}(x_t, z_t)$  memory:  $\mathcal{M}_k$  for task  $z_k$ 

For 
$$t = 0, \ldots, T$$

minimize  $\mathcal{L}(f_{\theta}(\cdot, z_t), (x_t, y_t))$ 

subject to  $\mathcal{L}(f_{\theta}, \mathcal{M}_k) \leq \mathcal{L}(f_{\theta}^{t-1}, \mathcal{M}_k)$  for all  $z_k < z_t$ 

(i.e. s.t. loss on previous tasks doesn't get worse)

Assume local linearity:

$$\langle g_t, g_k \rangle := \langle \frac{\partial \mathcal{L}(f_\theta, (x_t, y_t))}{\partial \theta}, \frac{\mathcal{L}(f_\theta, \mathcal{M}_k)}{\partial \theta} \rangle \geq 0$$

for all  $z_k < z_t$ 

Can formulate & solve as a QP.

Lopez-Paz & Ranzato. Gradient Episodic Memory for Continual Learning. NeurIPS '17

## Experiments

#### Problems:

- MNIST permutations
- MNIST rotations
- CIFAR-100 (5 new classes/task)

BWT: backward transfer,

FWT: forward transfer

Total memory size: 5012 examples



If we take a step back... do these experimental domains make sense?

Lopez-Paz & Ranzato. Gradient Episodic Memory for Continual Learning. NeurIPS '17

Can we meta-learn how to avoid negative backward transfer?

Javed & White. *Meta-Learning Representations for Continual Learning*. NeurIPS '19 Beaulieu et al. *Learning to Continually Learn*. '20

# Plan for Today

The lifelong learning problem statement

Basic approaches to lifelong learning

Can we do better than the basics?

Revisiting the problem statement from the meta-learning perspective

## What might be wrong with the online learning formulation?

### Online Learning

(Hannan '57, Zinkevich '03)

Perform sequence of tasks while minimizing static regret.



More realistically:



## What might be wrong with the online learning formulation?

#### Online Learning

(Hannan '57, Zinkevich '03)

Perform sequence of tasks while minimizing static regret.



### **Online Meta-Learning**

Efficiently learn a sequence of tasks from a non-stationary distribution.



time

evaluate performance after seeing a small amount of data

Primarily a difference in evaluation, rather than the data stream.

### The Online Meta-Learning Setting

```
for task t = 1, ..., n
      observe \mathcal{D}_t^{tr}
       use update procedure \Phi(\theta_t, \mathcal{D}_t^{\textit{tr}}) to produce parameters \phi_t
       observe x_t
      predict y_t = f_{\phi_t}(x_t) observe label y_t
                                              Standard online learning setting
```

in hindsight Goal: Learning algorithm with sub-linear  $\operatorname{Regret}_T := \sum_{t=1}^{\infty} \ell_t(\Phi_t(\theta_t)) - \min_{\theta \in \Theta} \sum_{t=1}^{\infty} \ell_t(\Phi_t(\theta))$ 

Loss of algorithm

Loss of best algorithm

## Can we apply meta-learning in lifelong learning settings?

Recall the follow the leader (FTL) algorithm:

Store all the data you've seen so far, and train on it.

Deploy model on current task.

Follow the meta-leader (FTML) algorithm:

Store all the data you've seen so far, and meta-train on it.

Run update procedure on the current task.

What meta-learning algorithms are well-suited for FTML?

What if  $p_t(\mathcal{T})$  is non-stationary?



# Experiments

### Experiment with sequences of tasks:

- Colored, rotated, scaled MNIST
- 3D object pose prediction
- CIFAR-100 classification

#### Example pose prediction tasks



# Experiments

- Comparisons:
- TOE (train on everything): train on all data so far
- FTL (follow the leader): train on all data so far, fine-tune on current task
- From Scratch: train from scratch on each task



Follow The Meta-Leader

learns each new task faster & with greater proficiency, approaches few-shot learning regime

# Takeaways

Many flavors of lifelong learning, all under the same name.

Defining the problem statement is often the hardest part

Meta-learning can be viewed as a slice of the lifelong learning problem.

A very open area of research.