Computer Architecture and Compilers

Greg Steffan

ECE Department University of Toronto

Trend1: Range of a Wire in One Clock Cycle

having one big processor soon infeasible

** this motivates distributed processing on a chip

Some Current Chip Multiprocessors

IBM Cell

IBM Power4

AMD Opteron

Intel Yonah

Improved throughput is straightforward

How can these run one program faster?

The Dream: Automatic Parallelization

User writes a sequential program

Compiler and Runtime System *Parallelize* it Multiple CPUs
Execute the Program

easily exploit chip multiprocessors

My Research (Part1)

- Making parallelization easier
 - For desktop apps, scientific simulations, databases...
- New chip multiprocessor architectures
- New compiler technologies

**towards automatic parallelization

6

The Dream: Doing More with Less Power

Ultra-Efficient Systems: Chameleon Computing

- Hardware that can be reconfigured
 - To exactly match application requirements
- Design custom systems automatically
 - To enable really fast time-to-market

My Research (Part2)

- Understanding "soft processor" architecture
 - A processor built out of an FPGA's reconfigurable logic
 - Revisit processor architecture in this new context
- "Soft Systems" that target FPGAs
 - New processors, compilers, OSs, platforms, applications

Our Soft Processors vs Altera Nios II Variants

Competitive and can dominate (9% smaller, 11% faster)

The PaCRaT Team

Parallelization and Customization Research at U of Toronto

