Examen

Durée 2h00. Le barême est donné à titre indicatif.

Exercice 1: (5 points) Soit (X_1, \ldots, X_n) un échantillon de va iid de même loi que X, où X admet pour densité de probabilité $f(x, \theta)$ par rapport à la mesure Lebesgue, définie par :

$$f(x,\theta) = kx^{-(p+1)} \exp\left(-\frac{\theta}{x}\right) \mathbf{1}_{x>0},$$

avec $\theta \in]0, +\infty[$ un paramètre réel inconnu et p>0 un nombre connu.

- 1. On pose $U = \frac{1}{X}$. Montrer que $U \sim Gamma(p, \theta)$ et en déduire la constante k, $\mathbb{E}U$ et $\operatorname{Var} U$.
- 2. Déterminer une statistique exhaustive complète pour θ .
- 3. Déterminer $\widehat{\theta}_n$ l'estimateur du maximum de vraisemblance de θ .
- 4. A l'aide de la question 1, déterminer la loi de $Z = \sum_{i=1}^{n} \frac{1}{X_i}$ et montrer que :

$$\mathbb{E}\widehat{\theta}_n = \frac{np\theta}{np-1}, \quad \operatorname{Var}\widehat{\theta}_n = \frac{(np\theta)^2}{(np-1)^2(np-2)}.$$

5. L'estimateur $\widehat{\theta}_n$ est-il sans biais? convergeant? efficace?

Exercice 2 : (5 points) Soit (X_1, \dots, X_n) un échantillon de va iid de densité par rapport à la mesure de Lebesgue sur \mathbb{R}_+ :

$$f(x,\theta) = e^{-(x-\theta)} \, \mathbf{1}_{x \ge \theta},$$

où $\theta \in \mathbb{R}$ est inconnu.

- 1. Calculer l'EMV de θ noté $\widehat{\theta}_n$.
- 2. Déterminer la forme de la zone de rejet d'un test des hypothèses $H_0: \theta \leq \theta_0$ contre $H_1: \theta > \theta_0$ utilisant l'EMV $\widehat{\theta}_n$.
- 3. Déterminer la statistique \widehat{T} du test du rapport de vraisemblance pour les mêmes hypothèses H_0 et H_1 . Qu'en déduire pour le test de la question 2?
- 4. Déterminer la fonction de répartition de \widehat{T} .
- 5. Expliciter la zone de rejet du test du rapport de vraisemblance pour les mêmes hypothèses H_0 contre H_1 de niveau α fixé et déterminer sa fonction puissance. La suite de tests associée est-elle consistante?

Problème (10 points) Soit (X_1, \ldots, X_n) un échantillon de va iid de fonction de répartition F supposée continue et strictement croissante. On note F_n la fonction de répartition empirique

$$F_n(x) = \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{X_j \le x}$$

La statistique de Cramer & Von Mises est définie par $\widehat{T}_n = \int_{\mathbb{R}} (F_n(x) - F(x))^2 dF(x)$. La présence de l'intégrale dans le terme précédent rend son utilisation ardue. En pratique, on l'approche par la statistique

$$\widehat{T}_n^* = \int_{\mathbb{R}} (F_n(x) - F(x))^2 dF_n(x) = \frac{1}{n} \sum_{i=1}^n (F_n(X_i) - F(X_i))^2.$$

Le but de ce problème est de quantifier l'erreur d'approximation alors commise.

- 1. Montrez que $F(X_i)$ est une variable aléatoire uniforme et en déduire que $\mathbb{E}F(X_i) = \frac{1}{2}$ et $\operatorname{Var} F(X_i) = \frac{1}{12}$.
- 2. Montrez que $nF_n(x) \sim B(n, F(x))$ et en déduire l'espérance et la variance de $nF_n(x)$.
- 3. En déduire que $\mathbb{E}\widehat{T}_n = \frac{1}{6n}$.
- 4. Montrez que $\widehat{T}_n^{\star} = \frac{1}{n} \sum_{i=1}^n \left(\frac{i}{n} F(X_{(i)}) \right)^2$.
- 5. En admettant que

$$n\widehat{T}_n = \frac{1}{12n} + \sum_{k=1}^n \left(\frac{2k-1}{2n} - F(X_{(k)})\right)^2$$

montrer que

$$\widehat{T}_n - \widehat{T}_n^* = -\frac{1}{2n} - \frac{1}{6n^2} + \frac{1}{n^2} \sum_{i=1}^n F(X_i).$$

- 6. En déduire que $\lim_{n\to\infty} n^{3/2} \mathbb{E}(\widehat{T}_n^{\star} \widehat{T}_n) = 0$ et que $\operatorname{Var}(\widehat{T}_n^{\star} \widehat{T}_n) = \frac{1}{12n^3}$.
- 7. Montrer aussi que $n^{3/2}(\widehat{T}_n^{\star} \widehat{T}_n) \to \mathcal{N}\left(0, \frac{1}{12}\right)$. Conclure.
- 8. (Facultatif) Montrer que

$$n\widehat{T}_n = \frac{1}{12n} + \sum_{k=1}^n \left(\frac{2k-1}{2n} - F(X_{(k)})\right)^2.$$

Eléments de correction

Exercice 1: (5 points) Soit (X_1, \ldots, X_n) un échantillon de va iid de même loi que X, où X admet pour densité de probabilité $f(x, \theta)$ par rapport à la mesure Lebesgue, définie par :

$$f(x,\theta) = kx^{-(p+1)} \exp\left(-\frac{\theta}{x}\right) \mathbf{1}_{x>0},$$

avec $\theta \in]0, +\infty[$ un paramètre réel inconnu et p>0 un nombre connu.

1. On pose $U = \frac{1}{X}$. Montrer que $U \sim Gamma(p, \theta)$ et en déduire la constante k, $\mathbb{E}U$ et $\operatorname{Var} U$.

On applique la méthode du changement de variable. Soit g une fonction continue bornée alors par changement de variable y = 1/x, on a

$$\mathbb{E}(g(U)) = k \int_0^\infty g(1/x) x^{-(p+1)} \exp(-\theta/x) \, dx = k \int_0^\infty g(y) y^{p-1} \exp(-\theta y) \, dy.$$

On reconnaît la densité d'une $Gamma(p,\theta)$ à la constante $k=\theta^p/\Gamma(p)$ près. On en déduit $\mathbb{E}U=p/\theta$ et $\mathrm{Var}\,U=p/\theta^2$.

2. Déterminer une statistique exhaustive complète pour θ . On est dans le cadre du modèle exponentiel à un paramètre avec

$$c(\theta) = \frac{\theta^p}{\Gamma(p)},$$

$$h(x) = x^{-(p+1)} \mathbf{1}_{x>0},$$

$$\alpha_1(\theta) = \theta,$$

$$T_1(x) = -\frac{1}{x}.$$

Etant donné que $\alpha_1(\Theta) = \alpha_1(]0; +\infty[) =]0; +\infty[$, ouvert de dimension 1 et que T_1 est affinement indépendante, on en déduit que

$$-\frac{1}{n}\sum_{i=1}^{n}\frac{1}{X_i}$$

est une statistique exhaustive complète pour θ .

3. Déterminer $\widehat{\theta}_n$ l'estimateur du maximum de vraisemblance de θ . On est dans le cadre d'un modèle régulier exponentiel où $\beta(\theta) = p \ln(\theta)$ (notation de la page 79 du polycopié). Or β es deux fois continûment dérivable de dérivée seconde $-p/\theta^2 < 0$ donc l'EMV vérifie

$$\beta'(\widehat{\theta}_n) = \frac{1}{n} \sum_{i=1}^n \frac{1}{X_i} \Leftrightarrow \widehat{\theta}_n = \frac{np}{\sum_{i=1}^n \frac{1}{X_i}}$$

4. A l'aide de la question 1, déterminer la loi de $Z = \sum_{i=1}^{n} \frac{1}{X_i}$ et montrer que :

$$\mathbb{E}\widehat{\theta}_n = \frac{np\theta}{np-1}, \quad \operatorname{Var}\widehat{\theta}_n = \frac{(np\theta)^2}{(np-1)^2(np-2)}.$$

D'après la question 1, $1/X_i$ est une suite iid de va suivant la loi $Gamma(p, \theta)$ donc $Z \sim Gamma(np, \theta)$. On en déduit que

$$\mathbb{E}(\widehat{\theta}_n) = np\mathbb{E}\left(\frac{1}{Z}\right) = np \int_0^\infty \frac{1}{z} \frac{\theta^{np}}{\Gamma(np)} z^{np-1} \exp(-\theta z) dz = \frac{np\theta}{\Gamma(np)} \int_0^\infty u^{np-1-1} \exp(-u) du$$

en effectuant le changement de variable $u=\theta z$. On reconnaît la quantité $\Gamma(np-1)$ et la relation $\Gamma(np)=(np-1)\Gamma(np-1)$ permet de conclure pour le calcul de l'espérance. Reste à calculer $\mathbb{E}(1/Z^2)$. Avec le même changement de variable que précédemment, on obtient $\mathbb{E}(1/Z^2)=\theta^2\Gamma(np-2)/\Gamma(np)$ d'où

$$\operatorname{Var} \widehat{\theta}_n = (np)^2 \mathbb{E}(1/Z^2) - \frac{(np\theta)^2}{(np-1)^2} = (np\theta)^2 \left(\frac{1}{(np-1)(np-2)} - \frac{1}{(np-1)^2} \right)$$

et le résultat souhaité suit facilement.

5. L'estimateur $\widehat{\theta}_n$ est-il sans biais? convergeant? efficace? L'estimateur $\widehat{\theta}_n$ est biaisé d'après la question précédente. Il ne peut donc pas être efficace. Il est toutefois convergeant car asymptotiquement sans biais et de variance tendat vers 0.

Exercice 2: (5 points) Soit (X_1, \dots, X_n) un échantillon de va iid de densité par rapport à la mesure de Lebesgue sur \mathbb{R}_+ :

$$f(x,\theta) = e^{-(x-\theta)} \mathbf{1}_{x \ge \theta},$$

où $\theta \in \mathbb{R}$ est inconnu.

1. Calculer l'EMV de θ noté $\widehat{\theta}_n$. On écrit la vraisemblance

$$L_n(\theta) = e^{n\theta - \sum_{i=1}^n X_i} \mathbf{1}_{\min(X_1, \dots, X_n) \ge \theta}$$

qui est maximale lorsque $\widehat{\theta}_n = \min(X_1, \dots, X_n)$.

2. Déterminer la forme de la zone de rejet d'un test des hypothèses $H_0:\theta\leq\theta_0$ contre $H_1:\theta>\theta_0$ utilisant l'EMV $\widehat{\theta}_n$. La zone de rejet sera de la forme

$$W = \{\widehat{\theta}_n > k\}$$

où k est un seuil à calculer en fonction du seuil souhaité.

3. Déterminer la statistique \widehat{T} du test du rapport de vraisemblance pour les mêmes hypothèses H_0 et H_1 . Qu'en déduire pour le test de la question 2? La vraisemblance $L_n(\theta)$ vérifie le critère de factorisation pour l'EMV $\widehat{\theta}_n$ avec

$$h(\mathbf{x}) = e^{-\sum_{i=1}^{n} x_i} \text{ et } g(\theta, \widehat{\theta}_n) = e^{n\theta} \mathbf{1}_{\widehat{\theta}_n > \theta}.$$

Donc l'EMV est une statistique exhaustive. De plus, pour tout $\theta_0 < \theta_1$ on a

$$V_{\theta_0,\theta_1} = e^{\theta_0 - \theta_1} \mathbf{1}_{\widehat{\theta}_n > \theta_1}$$

qui est une fonction croissante en $\widehat{\theta}_n$. On est donc dans un modèle à RVM pour $\widehat{T} = \widehat{\theta}_n$ et le test de la question 2 est UPP parmi tous les tests de niveau $\leq \mathbb{P}_{\theta_0}(W)$ (Karlin-Rubin).

4. Déterminer la fonction de répartition de \widehat{T} . On a

$$\mathbb{P}_{\theta}(\widehat{T} \le x) = 1 - \mathbb{P}_{\theta}(\widehat{T}_n > x) = 1 - \prod_{i=1}^n \mathbb{P}_{\theta}(X_i > x),$$

par indépendance des X_i . Mais pour $x > \theta$ on a

$$\mathbb{P}_{\theta}(X_i > x) = \int_{x}^{\infty} e^{-(u-\theta)} du = \exp(-(x-\theta))$$

pour tout i donc

$$\mathbb{P}_{\theta}(\widehat{T} \le x) = 1 - (\exp(-(x - \theta)))^n = 1 - \exp(-n(x - \theta))$$

pour $x > \theta$ et $\mathbb{P}_{\theta}(\widehat{T} \leq x) = 0$ autrement.

5. Expliciter la zone de rejet du test du rapport de vraisemblance pour les mêmes hypothèses H_0 contre H_1 de niveau α fixé et déterminer sa fonction puissance. La suite de tests associée est-elle consistante?

Etant donné que $W = {\widehat{T} > k}$ on cherche $k > \theta_0$ tel que

$$\alpha = \mathbb{P}_{\theta_0}(\widehat{T} > k) = \exp(-n(k - \theta_0))$$

et on trouve

$$k = \theta_0 + \frac{1}{n} \ln \left(\frac{1}{\alpha} \right).$$

La fonction puissance vaut

$$\beta(\theta) = \mathbb{P}_{\theta}(W) = \mathbb{P}_{\theta}(\widehat{T} > k) = \left(\int_{\theta \vee k}^{\infty} e^{-(u-\theta)} du\right)^{n} = 1 \wedge \exp(n(\theta - k))$$
$$= 1 \wedge \alpha \exp(n(\theta - k))$$

en remplaçant k par sa valeur pour tout $\theta > \theta_0$.

Quand $n \to \infty$ et comme $\theta - \theta_0 > 0$ alors $\exp(n(\theta - \theta_0)) \to \infty$ donc $\beta(\theta) \to 1$. La suite de test est bien consistante.

Problème (10 points) Soit (X_1, \ldots, X_n) un échantillon de va iid de fonction de répartition F supposée continue et strictement croissante. On note F_n la fonction de répartition empirique

$$F_n(x) = \frac{1}{n} \sum_{j=1}^n \mathbf{1}_{X_j \le x}$$

La statistique de Cramer & Von Mises est définie par $\widehat{T}_n = \int_{\mathbb{R}} (F_n(x) - F(x))^2 dF(x)$. La présence de l'intégrale dans le terme précédent rend son utilisation ardue. En pratique, on l'approche par la statistique

$$\widehat{T}_n^* = \int_{\mathbb{R}} (F_n(x) - F(x))^2 dF_n(x) = \frac{1}{n} \sum_{i=1}^n (F_n(X_i) - F(X_i))^2.$$

Le but de ce problème est de quantifier l'erreur d'approximation alors commise.

1. Montrez que $F(X_i)$ est une variable aléatoire uniforme et en déduire que $\mathbb{E}F(X_i) = \frac{1}{2}$ et $\operatorname{Var} F(X_i) = \frac{1}{12}$.

Une fonction continue et strictement croissante est inversible. Soit F^{-1} son inverse allant de [0;1] dans \mathbb{R} . Pour tout $x \in [0,1]$ on a

$$P(F(X_i) \ge x) = \mathbb{P}(X_i \ge F^{-1}(x)) = F(F^{-1}(x)) = x.$$

Donc $F(X_i)$ suit une loi uniforme sur [0,1] et on en déduit la valeur de son espérance et de sa variance.

- 2. Montrez que $nF_n(x) \sim B(n,F(x))$ et en déduire l'espérance et la variance de $nF_n(x)$. On a $\mathbf{1}_{X_j \leq x}$ qui suit une loi de Bernoulli de paramètre $F(x) = \mathbb{P}(\mathbf{1}_{X_j \leq x} = 1)$ donc $nF_n(x) = \sum_{i=1}^n \mathbf{1}_{X_j \leq x} \sim B(n,F(x))$ par indépendance des X_i d'où $\mathbb{E}(nF_n(x)) = nF(x)$ et $\mathrm{Var}(nF_n(x)) = nF(x)(1-F(x))$.
- 3. En déduire que $\mathbb{E}\widehat{T}_n = \frac{1}{6n}$. En appliquant Fubini, on obtient

$$\mathbb{E}\widehat{T}_{n} = \int_{\mathbb{R}} \mathbb{E}(F_{n}(x) - F(x))^{2} dF(x) = \frac{1}{n} \int_{\mathbb{R}} F(x)(1 - F(x)) dF(x)$$
$$= \frac{1}{n} \int_{0}^{1} t(1 - t) dt = \frac{1}{6n}$$

4. Montrez que $\widehat{T}_n^* = \frac{1}{n} \sum_{i=1}^n \left(\frac{i}{n} - F(X_{(i)}) \right)^2$.

On remarque que l'expression de \widehat{T}_n^{\star} est indépendante de l'ordre dans lesquels les X_i sont sommés. Donc

$$\widehat{T}_n^* = \frac{1}{n} \sum_{i=1}^n (F_n(X_{(i)}) - F(X_{(i)}))^2 = \frac{1}{n} \sum_{i=1}^n \left(\frac{i}{n} - F(X_{(i)}) \right)^2.$$

5. En admettant que

$$n\widehat{T}_n = \frac{1}{12n} + \sum_{k=1}^n \left(\frac{2k-1}{2n} - F(X_{(k)})\right)^2$$

montrer que

$$\widehat{T}_n - \widehat{T}_n^* = -\frac{1}{2n} - \frac{1}{6n^2} + \frac{1}{n^2} \sum_{i=1}^n F(X_i).$$

On calcule

$$\widehat{T}_n - \widehat{T}_n^* = -\frac{1}{12n^2} + \frac{1}{n} \sum_{i=1}^n \left(\left(\frac{i}{n} - F(X_{(i)}) \right)^2 - \left(\frac{2i-1}{2n} - F(X_{(i)}) \right)^2 \right)$$

$$= -\frac{1}{12n^2} + \frac{1}{2n^2} \sum_{i=1}^n \left(\frac{4i-1}{2n} - 2F(X_{(i)}) \right)$$

$$= -\frac{1}{12n^2} + \frac{1}{2n^2} \sum_{i=1}^n \frac{4i-1}{2n} - \frac{1}{n^2} \sum_{i=1}^n F(X_{(i)})$$

$$= -\frac{1}{12n^2} + \frac{1}{2n^2} \sum_{i=1}^n \frac{4i-1}{2n} - \frac{1}{n^2} \sum_{i=1}^n F(X_i)$$

$$= \frac{1}{2n} + \frac{1}{6n^2} - \frac{1}{n^2} \sum_{i=1}^n F(X_i)$$

6. En déduire que $\lim_{n\to\infty} n^{3/2} \mathbb{E}(\widehat{T}_n^* - \widehat{T}_n) = 0$ et que $\operatorname{Var}(\widehat{T}_n^* - \widehat{T}_n) = \frac{1}{12n^3}$. Le fait qu'une variable uniforme comme $F(X_i)$ ait pour moyenne 1/2 et pour variance 1/12 implique que

$$\widehat{T}_n - \widehat{T}_n^* = \frac{1}{n^2} \sum_{i=1}^n (F(X_i) - \mathbb{E}F(X_i)) - \frac{1}{6n^2}$$

d'où

$$\mathbb{E}(\widehat{T}_n^{\star} - \widehat{T}_n) = \frac{1}{2n} + \frac{1}{6n^2} - \frac{1}{2n} = \frac{1}{6n^2} \text{ et Var}(\widehat{T}_n^{\star} - \widehat{T}_n) = \frac{1}{n^3} \text{Var} F(X_1) = \frac{1}{12n^3}$$

7. Montrer aussi que $n^{3/2}(\widehat{T}_n^* - \widehat{T}_n) \to \mathcal{N}\left(0, \frac{1}{12}\right)$. Conclure. L'identité précédente

$$\widehat{T}_n - \widehat{T}_n^* = \frac{1}{n^2} \sum_{i=1}^n (F(X_i) - \mathbb{E}F(X_i)) - \frac{1}{6n^2}$$

et le théorème de limite centrale implique le résultat. On en déduit que l'erreur d'approximation est de l'ordre de $n^{-3/2}$.

8. (Facultatif) Montrer que

$$n\widehat{T}_n = \frac{1}{12n} + \sum_{k=1}^n \left(\frac{2k-1}{2n} - F(X_{(k)}) \right)^2.$$