Prima prova di laboratorio

Misura della caratteristica di 2 diodi a giunzione p-n

STRUMENTI - DISPOSITIVI DA UTILIZZARE

- 1) Alimentatore di bassa tensione
- 2) Multimetro digitale
- 3) Oscilloscopio
- 4) Potenzionetri da $1k\Omega$
- 5) Diodo p-n: AAZ15/OA47 Germanio, 1N914A/1N4446/1N4148 Silicio

OBIETTIVI

Misura delle caratteristiche I-V di due diodi a semiconduttore (Si, Ge) con "best-fit" delle caratteristiche per il calcolo della corrente inversa e del prodotto ("fattore di idealità") x (equivalente in Volt della temperatura della giunzione).

INDICAZIONI GENERALI

- tenere il selezionatore AC/DC del Multimetro digitale e dell'Oscilloscopio <u>SEMPRE</u> su DC;
- scegliere sempre per tutti gli strumenti di misura la scala più sensibile che permette di effettuare la misura.

CIRCUITO DA REALIZZARE

Realizzare il seguente circuito

DESCRIZIONE DELLE VARIE FASI DELLA PROVA

1) Fare la calibrazione della tensione misurata con l'oscilloscopio in funzione di quella misurata con il multimetro, collegando l'oscilloscopio al punto "C" e cortocircuitando i punto A-B.

Fare 8-10 misure per tensioni comprese tra 0.05V e 0.8V variando il potenziometro fino ad ottenenre il valore di tensione desiderato misurandolo con l'oscilloscopio ("riferimento" iniziale) e riportando tale valore insieme a quello misurato con il multimetro (più preciso) in una tabella.

Per la relazione: fare un grafico in cui riportare sull'asse delle y la tensione misurata con l'oscilloscopio e sull'asse delle x quella misurata con il multimetro. Eseguire un fit lineare pesato e ricavare i parametri del fit con relativi errori che devono essere riportati nella relazione. 2) Fissare il valore della resistenza a 500Ω (fuori dal circuito) e inserire, una volta fatto ciò, il diodo tra i punti A - B. Collegare l'oscilloscopio nel punto D e misurare la caratteristica I-V del diodo in 10-15 punti (valori di V e di conseguenza di I) agendo sul potenziometro per variare V (misurata con l'oscilloscopio) e quindi I (misurata con il multimetro), facendo attenzione a

NON APPLICARE ai capi di entrambi i diodo (Si e Ge) una tensione di polarizzazione diretta maggiore di 0.8V. In particolare

- per il diodo al GERMANIO → NON SUPERARE valori di corrente di circa 5mA
- per il diodo al SILICIO → NON SUPERARE valori di corrente di circa 10mA.
- \rightarrow Fare la maggior parte delle misure per correnti che variano da circa $10\mu A$ a quanche (1-2) mA (zona di fit).

3) Riportare in una tabella e poi in un grafico in **SCALA** semilogaritmica di I versus V, i valori misurati di V ai capi del diodo (misurata con l'oscilloscopio) e del corrispondente valore di I (misurata con il multimetro), scrivendo anche gli errori di misura su V e I e la scala/fondo scala (V/diV, mA) usata per ciascuna misura.

NOTA per la FASE DI ANALISI dei dati: <u>SE</u> il risultato della calibrazione (ossia i parametri del fit lineare pesato, da riportare nella relazione) non è compatibile entro gli errori (sui parametri del fit) con una retta a 45° e con intercetta nulla, bisogna correggere i valori di V misurati con l'oscilloscopio e riportarli in tabella e sul grafico (con la dovuta propagazione degli errori su V corretta).

FIT DELLA CALIBRAZIONE

Per il fit della calibrazione usare la relazione

$$V(oscilloscopio) = a + b \cdot V(multimetro)$$

perché si trascurano gli errori su V(multimetro) rispetto a quelli su V(oscilloscopio)

FIT DELLA CARATTERISTICA I-V

Per il fit della caratteristica usare la relazione

$$V = -\eta V_T \ln I_0 + \eta V_T \ln I$$

perché si trascurano gli errori su I(multimetro) rispetto a quelli su V(oscilloscopio). Per il fit lineare pesato questa formula equivale a

$$Y = a + bX$$

con

$$Y=V$$
, $X=InI$, $a=-\eta V_TInI_0$, $b=\eta V_T$

FIT LINEARE PESATO

Per le n misure da inserire nel fit (con σ i errore sulla V con

oscilloscopio)

$$S1 = \sum_{i=1}^{n} \frac{1}{\sigma_i^2}$$

$$Sx = \sum_{i=1}^{n} \frac{x_i}{\sigma_i^2}$$

$$Sy = \sum_{i=1}^{n} \frac{y_i}{\sigma_i^2}$$

$$S_{xx} = \sum_{i=1}^{n} \frac{x_i^2}{\sigma_i^2}$$

$$S_{xy} = \sum_{i=1}^{n} \frac{x_i y_i}{\sigma_i^2}$$

$$D = S_1 \cdot S_{xx} - S_x \cdot S_x$$

matrice di covarianza dei parametri del fit

$$\begin{pmatrix} V_{aa} & V_{ab} \\ V_{ba} & V_{bb} \end{pmatrix} = \frac{1}{D} \begin{pmatrix} S_{xx} & -S_x \\ -S_x & S_1 \end{pmatrix}$$

Calcolo dei parametri del fit e dei loro errori:

$$a = \frac{\left(S_y S_{xx} - S_x S_{xy}\right)}{D} \qquad b = \frac{\left(S_1 S_{xy} - S_x S_y\right)}{D}$$

$$\sigma(a) = \sqrt{V_{aa}} = \sqrt{\frac{S_{xx}}{D}}$$

$$\sigma(b) = \sqrt{V_{bb}} = \sqrt{\frac{S_1}{D}}$$

NOTA: nel caso del fit della caratteristica I-V dei diodi i parametri fisici sono " I_0 " e " ηV_T ", che quindi devono essere ricavati dai parametri "a" e "b" del fit. Inoltre per l'errore su " I_0 " bisogna usare il termine di covarianza dato che I_0 = $e^{-a/b}$, quindi :

$$\sigma(I_0) = \sqrt{\left(\frac{\partial I_0}{\partial a} \delta a\right)^2 + \left(\frac{\partial I_0}{\partial b} \delta b\right)^2 + 2\frac{\partial I_0}{\partial a} \frac{\partial I_0}{\partial b} \delta ab}$$

$$\frac{\partial I_0}{\partial a} = \frac{I_0}{b} ; (\delta a)^2 = V_{aa}; \frac{\partial I_0}{\partial b} = \frac{a}{b^2} I_0 ; (\delta b)^2 = V_{bb};$$

$$\delta ab = V_{ab} = V_{ba}$$

NOTA sulle <u>UNITA' di MISURA</u> dei valori di "V" ed "I" <u>INSERITI nel programma di fit della CARATTERISTICA del diodo:</u>

i parametri "a" e "b" del fit hanno <u>le dimensioni di una tensione</u> e quindi i valori numerici ottenuti saranno nella <u>STESSA</u>
<u>UNITA' di MISURA</u> usata per inserire i valori di "V" misurati (V o mV).

Il valore numerico di "a" (rappresenta l'intercetta della retta, ossia a = V per X = 0 ma X = 0 significa che ln I = 0 quindi I = 1 MA in quale unita' di misura per I???) dipende drasticamente dalle unita' di misura usate nel fit per i valori di I (MA o μA).

Il valore numerico di " I_0 " sara' nella <u>STESSA UNITA' di MISURA</u> usata per inserire i valori di "I" misurati (mA o μ A).

QUINDI: SCRIVERE NELLA RELAZIONE

- 1) <u>LE UNITA' DI MISURA</u> dei valori di "V" e "I" <u>INSERITI NEL PROGRAMMA DI FIT</u>,
- 2) i valori di "a" e "b" con i loro errori,
- 3) i valori di " I_0 " e " ηV_T " con i loro errori e le rispettive unita' di misura.

Scrivere anche l'intervallo di misure di "V" (<u>Vmin, Vmax</u>) usato per "fittare" la caratteristica (zona rettilinea).