CLAIMS

We claim:

1. A compound of Formula I:

- where R₁ is -CH₂CH₂CN, -CH₂CH₃, -CH₃, -phenyl optionally substituted by one or more
- 6 halogens, or $-[A]_n$ -OR₄;
- 7 R₂ is -CH₂CH₂CN, -CH₂CH₃, -CH₃, -phenyl optionally substituted by one or more halogens,

47

8 or $-[B]_n-OR_4$;

1

16

- 9 R_3 is -CH₃, -CH₂CH₃, or -CH(CH₃)₂;
- 10 R₄ is -CH₃, -alkyl, -phenyl, or -CONH₂;

11

12 A is (CH₂CH₂O), (CH₂CH₂CH₂O),
$$\left[OCH_{2}CH_{2}\right]_{i} - O - P - \left[OCH_{2}CH_{2}\right]_{j}$$
, or

13 $\left[OCH_{2}CH_{2}\right]_{i} - O - P - \left[OCH_{2}CH_{2}\right]_{j}$;

18
$$\begin{bmatrix}
OCH_{2}CH_{2} \\
-O-P \\
-CH_{2}CH_{2}
\end{bmatrix}, OCH_{2}CH_{2}
\end{bmatrix}, CH_{2}CH_{2}CH_{2}$$
;

$$\left[OCH_{2}CH_{2}\right]_{i}$$
 $-O$ P $\left[OCH_{2}CH_{2}\right]_{j}$, or

20

21

22 i, j, k, n are 1-20; and

where at least R_1 is $[A]_n$ -OR₄ or R_2 is $[B]_n$ -OR₄ or R_1 is $[A]_n$ -OR₄ and R_2 is $[B]_n$ -OR₄.

1 2. A compound of Formula II:

$$\begin{matrix}2\\\\3\\\\4\end{matrix} \qquad \begin{matrix}(R_3)_2N\\\\P\\\\X_2R_2\end{matrix}$$

- 5 where X_1 is O, NH, or S;
- 6 X₂ is O, NH, or S;
- 7 Where at least X_1 is NH or S, or X_2 is NH or S;
- R₁ is -CH₂CH₂CN, -CH₂CH₃, -CH₃, -phenyl optionally substituted by one or more halogens, 8
- 9 or $-[A]_n$ -OR₄;
- R₂ is -CH₂CH₂CN, -CH₂CH₃, -CH₃, -phenyl optionally substituted by one or more halogens, 10
- 11 or $-[B]_n$ -OR₄;
- 12 R_3 is -CH₃, -CH₂CH₃, or -CH(CH₃)₂;
- 13 R₄ is -CH₃, -alkyl, -phenyl, or -CONH₂;

14

15 A is (CH₂CH₂O), (CH₂CH₂CH₂O),
$$\left[OCH_{2}CH_{2}\right]_{i} - O - P - \left[OCH_{2}CH_{2}\right]_{j}$$
, or

16 $\left[OCH_{2}CH_{2}\right]_{i} - O - P - \left[OCH_{2}CH_{2}\right]_{j}$;

17 CH_{2}

18 CH_{2}

19 CH_{2}

10 CH_{2}

11 CH_{2}

12 CH_{2}

13 CH_{2}

14 CH_{2}

15 CH_{2}

16 CH_{2}

17 CH_{2}

18 CH_{2}

19 CH_{2}

19
20 B is (CH₂CH₂O), (CH₂CH₂CH₂O),
$$\left[OCH_{2}CH_{2}\right]_{i}$$
— O — $\left[OCH_{2}CH_{2}\right]_{j}$, or
21 $\left[OCH_{2}CH_{2}\right] - O$ — $\left[OCH_{2}CH_{2}\right]_{j}$.

23

24

25 i, j, k, n are 1-20; and

where at least R_1 is $[A]_n$ -OR₄ or R_2 is $-[B]_n$ -OR₄ or R_1 is $[A]_n$ -OR₄ and R_2 is $[B]_n$ -OR₄.

1 3. A process for preparing a compound of Formula I:

2

4 6

10

8 comprising the step of reacting HO-R₂ with

11 wherein Y is a halogen;

- 12 R₁ is -CH₂CH₂CN, -CH₂CH₃, -CH₃, -phenyl optionally substituted by one or more halogens,
- 13 or $-[A]_n$ -OR₄;
- 14 R₂ is -CH₂CH₂CN, -CH₂CH₃, -CH₃, -phenyl optionally substituted by one or more halogens,
- 15 or $-[B]_n$ -OR₄;
- 16 R₃ is -CH₃, -CH₂CH₃, or -CH(CH₃)₂;
- 17 R₄ is -CH₃, -alkyl, -phenyl, or -CONH₂;

18

19 A is (CH₂CH₂O), (CH₂CH₂CH₂O),
$$\left[OCH_2CH_2\right]_i - O - P - \left[OCH_2CH_2\right]_j$$
, or

20

21

22

WO 2005/000859

PCT/US2004/011489

23
24 B is (CH₂CH₂O), (CH₂CH₂CH₂O),
$$\begin{bmatrix}
OCH_{2}CH_{2}
\end{bmatrix}_{i} - O - P - \begin{bmatrix}
OCH_{2}CH_{2}
\end{bmatrix}_{j}, \text{ or}$$
25
$$\begin{bmatrix}
OCH_{2}CH_{2}
\end{bmatrix}_{i} - O - P - \begin{bmatrix}
OCH_{2}CH_{2}
\end{bmatrix}_{j}, \text{ or}$$
26
$$CH_{2} CH_{2}
\end{bmatrix}_{i} - O - P - \begin{bmatrix}
OCH_{2}CH_{2}
\end{bmatrix}_{j}, \text{ or}$$
27

29 i, j, k, n are 1-20; and

28

where at least R_1 is $[A]_n$ -OR₄ or R_2 is $[B]_n$ -OR₄ or R_1 is $[A]_n$ -OR₄ and R_2 is $[B]_n$ -OR₄.

4. A process for preparing a compound of Formula II comprising the step of

2 reacting R₂-X₂H with:

$$Y - P < X_1R_1$$

- 6 where X_2 is O, NH, or S;
- 7 X_1 is O, NH or S;
- 8 Y is a halogen;
- 9 R₁ is -CH₂CH₂CN, -CH₂CH₃, -CH₃, -phenyl optionally substituted by one or more halogens,
- 10 or $-[A]_n$ -OR₄;
- 11 R₂ is -CH₂CH₂CN, -CH₂CH₃, -CH₃, -phenyl optionally substituted by one or more halogens,
- 12 or $-[B]_n-OR_4$;
- 13 R_3 is -CH₃, -CH₂CH₃, or -CH(CH₃)₂;
- 14 R₄ is -CH₃, -alkyl, -phenyl, or -CONH₂;

15
16 A is (CH₂CH₂O), (CH₂CH₂CH₂O),
$$\left[OCH_{2}CH_{2}\right]_{i}$$
 $O-P$ $\left[OCH_{2}CH_{2}\right]_{j}$, or
17 $\left[OCH_{2}CH_{2}\right]_{i}$ $O-P$ $\left[OCH_{2}CH_{2}\right]_{i}$;

WO 2005/000859

20
21 B is (CH₂CH₂O), (CH₂CH₂CH₂O),
$$\left[OCH_{2}CH_{2}\right]_{j} - O - P - \left[OCH_{2}CH_{2}\right]_{j}$$
, or

22 $\left[OCH_{2}CH_{2}\right]_{i} - O - P - \left[OCH_{2}CH_{2}\right]_{j}$;

23 $\left[OCH_{2}CH_{2}\right]_{i} - O - P - \left[OCH_{2}CH_{2}\right]_{j}$;

24 $\left[OCH_{2}CH_{2}\right]_{i} - O - P - \left[OCH_{2}CH_{2}\right]_{j}$;

25

- 26 i, j, k, n are 1-20; and
- where at least R_1 is $[A]_n$ -OR₄ or R_2 is $-[B]_n$ -OR₄ or R_1 is $[A]_n$ -OR₄ and R_2 is $[B]_n$ -OR₄.

1 A method of using the compound of Formula I comprising the steps of 14. providing a nucleoside and covalently bonding the compound to the nucleoside to form a 2 3 chemically stable molecule. 1 15. A method of using the compound of Formula I comprising the steps of providing an oligonucleotide and covalently bonding the compound to the oligonucleotide to 2 3 form a chemically stable molecule. 1 16. A method of terminating the elongation of failure sequences during synthesis 2 of an oligomer comprising the steps of: 3 providing a compound of Formula I; and a) 4 b) reacting the compound with the failure sequences. 1 17. A method of modifying the properties of a molecule comprising the steps of: 2 providing a compound of Formula I; and a) 3 reacting the compound with said molecule to modify the properties of b) the molecule. 4

1 18. A method of modifying the surface properties of a support comprising the 2 steps of: 3 a) providing a compound of Formula I; and reacting the compound with the support to modify the surface 4 b) 5 properties of the support. A method of preventing non-specific bonding of a molecule to reactive groups 1 19. on a support comprising reacting the compound of Formula I with the reactive groups on the 2 3 support. A method of controlling the density of reactive groups on a support 1 20. 2 comprising: 3 providing a pre-determined amount of the compound of Formula I; and a) 4 reacting the compound with the reactive groups to obtain a desired b) 5 density. 1 A method of oligonucleotide synthesis comprising contacting the growing 21. 2 oligonucleotide chain with the compound of Formula I.

1	22. A method of synthesizing an oligonucleotide comprising the steps of:
2	a) attaching a first nucleoside to a support;
3	b) coupling a second nucleoside to the first nucleoside;
4	c) reacting any of the first nucleoside which remain uncoupled with a
5	compound of the Formula I; and
6	d) repeating steps b and c iteratively until the oligonucleotide is formed.
1	23. The method of claim 22 wherein the compound of Formula I links to a
2	reactive group selected from the group consisting of OH, NH2 and carboxylate ester.
1	24. The method of claim 22 wherein the support is a solid support.
1	25. The method of claim 22 wherein the nucleoside is a phosphoramidite
2	nucleoside.
1	26. A method of synthesizing an oligonucleotide comprising the steps of:
2	a) providing a reagent comprising the compound of Formula I; and
3	b) using the reagent to covalently bond to reactive groups on the growing
4	oligonucleotide chain.
1	27. The method of claim 26 wherein the method of synthesizing the
2	oligonucleotide is solid-phase synthesis.

1	28.	The method of claim 26 wherein the method of synthesizing the
2	oligonucleo	tide is solution-phase synthesis.
1	29.	A product made by the method of claim 26.
1	30.	A biological chip comprising the product of claim 29.
1	31.	A microarray comprising the product of claim 29.
1	32.	An assay comprising the product of claim 29.
1	33.	An oligomeric compound linked to the compound of Formula II.
1 2	34. of Formula II	A chimeric oligonucleotide comprising a nucleoside linked to the compound
-	or ronnula n	•
1 2	35. Formula II.	A chimeric oligonucleotide comprising a nucleotide linked to the compound of
-	,	*
1 2	36.	A chimeric oligonucleotide comprising an oligonucleotide linked to the Formula II.
1	37.	A compound comprising a peptide linked to the compound of Formula II.

1 A compound comprising an amino acid linked to the compound of Formula II. 38. 1 39. A compound comprising an oligosaccharide linked to the compound of 2 Formula II. A compound comprising a sugar moiety linked to the compound of Formula 1 40. 2 Π. A growing oligomeric chain coupled to the compound of Formula II. 1 41. A method of using the compound of Formula II comprising the steps of 1 42. providing a nucleoside and covalently bonding the compound to the nucleoside to form a 2 3 chemically stable molecule. A method of using the compound of Formula II comprising the steps of 1 43. providing an oligonucleotide and covalently bonding the compound to the oligonucleotide to 2 3 form a chemically stable molecule. A method of terminating the elongation of failure sequences during synthesis 1 44. 2 of an oligomer comprising the steps of: 3 a) providing a compound of Formula II: and 4 b) reacting the compound with the failure sequences.

1	45.	A method of modifying the properties of a molecule comprising the steps of:
2		a) providing a compound of Formula II; and
3		b) reacting the compound with said molecule to modify the properties of
4	the m	rolecule.
1	46.	A method of modifying the surface properties of a support comprising the
2	steps of:	
3		a) providing a compound of Formula II; and
4		b) reacting the compound with the support to modify the surface
5	prope	rties of the support.
1	47.	A method of preventing non-specific bonding of a molecule to reactive groups
2	on a support	comprising reacting the compound of Formula II with the reactive groups on the
3	support.	
1	48.	A method of controlling the density of reactive groups on a support
2	comprising:	
3		a) providing a pre-determined amount of the compound of Formula II;
4	and	
5		b) reacting the compound with the reactive groups to obtain a desired
5	density	<i>,</i> y.

1 49. A method of oligonucleotide synthesis comprising contacting the growing 2 oligonucleotide chain with the compound of Formula II. 1 50. A method of synthesizing an oligonucleotide comprising the steps of: 2 a) attaching a first nucleoside to a support; 3 **b**) coupling a second nucleoside to the first nucleoside; reacting any of the first nucleoside which remain uncoupled with a 4 c) 5 compound of the Formula II; and 6 d) repeating steps b and c iteratively until the oligonucleotide is formed. 1 51. The method of claim 50 wherein the compound of Formula II links to a reactive group selected from the group consisting of OH, NH2 and carboxylate ester. 2 52. 1 The method of claim 50 wherein the support is a solid support. The method of claim 50 wherein the nucleoside is a phosphoramidite 53. 1 2 nucleoside. 54. 1 A method of synthesizing an oligonucleotide comprising the steps of: 2 a) providing a reagent comprising the compound of Formula II; and 3 b) using the reagent to covalently bond to reactive groups on the growing oligonucleotide chain. 4

1 55. The method of claim 54 wherein the method of synthesizing the 2 oligonucleotide is solid-phase synthesis.

- 1 56. The method of claim 54 wherein the method of synthesizing the 2 oligonucleotide is solution-phase synthesis.
- 1 57. A product made by the method of claim 54.
- 1 58. A biological chip comprising the product of claim 57.
- 1 59. A microarray comprising the product of claim 57.
- 1 60. An assay comprising the product of claim 57.

1 61. A compound according to Claim 1 having the following formula:

2

4

3

- 5 where R₁ is -CH₂CH₂CN or -CH₃;
- 6 R₂ is -CH₃, -alkyl, -phenyl, or -CONH₂;
- 7 I-Pr is isopropyl; and
- 8 n is 1 to 20.
- 1 62. A compound according to Claim 1 having the following formula:

2

- 5 where R₁ is -CH₂CH₂CN or -CH₃;
- 6 R₂ is -CH₃, -alkyl, -phenyl, or -CONH₂;
- 7 I-Pr is isopropyl; and
- 8 n is 1 to 20.

- 1 63. A compound according to Claim 1 having the following formula:
- 4 where R₁ is -CH₂CH₂CN or -CH₃;
- 5 R₂ is -CH₃, -alkyl, -phenyl, or -CONH₂;
- 6 I-Pr is isopropyl; and
- 7 i and j are 1 to 20.

2

- 1 64. A compound according to Claim 1 having the following formula:
- 6 where R₁ is -CH₂CH₂CN or -CH₃;
- 7 R₂ is -CH₃, -alkyl, -phenyl, or -CONH₂;
- 8 I-Pr is isopropyl; and
- 9 i, j, and k are 1 to 20.

1 65. A compound according to Claim 1 having the following formula:

- 5 where R₂ and R₃ are -CH₃, -alkyl, or -phenyl;
- 6 I-Pr is isopropyl; and
- 7 i and j are 1 to 20.

1 66. A compound according to Claim 2 having the following formula:

- 4 where R₁ is -CH₂CH₂CN or -CH₃;
- 5 R₂ is -CH₃, -alkyl, -phenyl, or -CONH₂;
- 6 I-Pr is isopropyl;
- 7 n is 1 to 20; and
- 8 X is NH or S.

1 67. A chimeric oligonucleotide of the formula:

- 10 R₁ is O, S, or NH;
- 11 R₂ is OMe, OEt, Ak, Cy, Cb, Hy, or A;
- 12 R₃ is OH, Ak, Cy, Cb, or Hy;
- 13 A is any atom except H;
- 14 Ak is any alkyl chain;
- 15 Cy is any cyclic compound;
- 16 Cb is any carbocyclic compound; and
- 17 Hy is any heterocyclic compound.

WO 2005/000859

1 68. A chimeric oligonucleotide of the formula:

- 10 R_1 is O, S, or NH;
- 11 R₂ is OMe, OEt, Ak, Cy, Cb, Hy, or A;
- 12 R₃ is OH, Ak, CY, Cb, or Hy;
- 13 A is any atom except H;
- 14 Ak is any alkyl chain;
- 15 Cy is any cyclic compound;
- 16 Cb is any carbocyclic compound; and
- 17 Hy is any heterocyclic compound.

1 69. A chimeric oligonucleotide of the formula:

$$R_2$$
— CH_2 — C

- 2 R_1 is O, S, or NH;
- 3 R₂ is OMe, OEt, Ak, Cy, Cb, Hy, or A;
- 4 R₃ is OH, Ak, Cy, Cb, or Hy;
- 5 A is any atom except H;
- 6 Ak is any alkyl chain;
- 7 Cy is any cyclic compound;
- 8 Cb is any carbocyclic compound; and
- 9 Hy is any heterocyclic compound.