Algèbre 2

a. Groupes abéliens de type fini

Définition-proposition. Soient G un groupe abélien et S une partie de G. Alors il existe un unique sous-groupe H de G qui contient S minimal (pour l'inclusion). H est appelé le sous-groupe de G engendré par la partie S, et noté S > 0.

 $D\acute{e}monstration$. On note $\mathcal E$ l'ensemble des sous-groupes de G contenant S. $\mathcal E$ est non vide (car $G \in \mathcal E$). Alors $\bigcap_{H \in \mathcal E} H$ est un sous-groupe de G contenant S qui contenu dans tout autre élément de $\mathcal E$. \square

Remarque. Soit G un groupe abélien, soit S une partie de G. Alors < S > contient l'élément neutre, et stable par additivité et passage à l'inverse. Comme G est abélien, < S > contient donc toutes les combinaisons linéaires d'éléments de $S: < S >= \left\{\sum n_i s_i \mid (s_i)_{1 \leqslant i \leqslant r} \in S^r, (n_i)_{1 \leqslant i \leqslant r} \in \mathbb{Z}^r, r \in \mathbb{N}\right\}$ (un tel ensemble est bien un sous-groupe de G d'où l'égalité par unicité).

Définition. Soit G un groupe abélien, soit S une partie de G.

- On dit que S est une partie génératrice de G, ou encore que S engendre G, si G = < S >.
- On dit que le groupe abélien G est de type fini s'il admet une partie génératrice finie.

Pour tout $r \in \mathbb{N}^*$, on note $e = (e_i)_{1 \leq i \leq r} \in (\mathbb{Z}^r)^r$ la base canonique de \mathbb{Z}^r (chaque vecteur a pour ième coordonnée 1 et 0 ailleurs).

Soit $r \in \mathbb{N}^*$. Alors \mathbb{Z}^r est un groupe abélien fini est de type fini (engendré par la partie G finie).

Lemme. Soit G un groupe abélien, soit $r \in \mathbb{N}^*$, soit $(x_1, \ldots, x_r) \in G^r$. Alors il existe un unique morphisme de groupes f du groupe \mathbb{Z}^r dans le groupe G qui, pour tout $i \in [1, r]$, envoie e_i sur x_i (\star), donné par $f : \mathbb{Z}^r \longrightarrow G$

$$(a_i)_{1\leqslant i\leqslant r} \longmapsto \sum_{i=1}^r a_i x_i$$

De plus, Im $f = <\{x_1, ..., x_r\}>$.

 $D\acute{e}monstration$. Un morphisme de groupes de \mathbb{Z}^r dans G vérifiant (\star) est uniquement déterminé par l'image de la base canonique e par décomposition d'un vecteur de \mathbb{Z}^r dans cette base et linéarité du morphisme. \square

Corollaire. Un groupe abélien est de type fini si et seulement si il existe un morphisme de groupes *surjectif* du groupe \mathbb{Z}^r dans le groupe G (où $r \in \mathbb{N}$).

Démonstration. On conserve les notations de la proposition précédente.

Soit G un groupe abélien de type fini. Alors G possède une partie génératrice finie $S = \{x_1, \ldots, x_r\}$ (où $r \in \mathbb{N}$), d'où $\operatorname{Im} f = \langle S \rangle = G$, ie le morphisme de groupes f de \mathbb{Z}^r dans G est surjectif. Réciproquement, soit g un morphisme de groupes surjectif de \mathbb{Z}^r (où $r \in \mathbb{N}$) dans G, alors $S = \{f(e_1), \ldots, f(e_r)\}$

est une partie génératrice de G (car tout élément de G possède un antécédent dans \mathbb{Z}^r qui se décompose dans la base canonique e, donc son image, ie g, s'écrit comme combinaison linéaire d'éléments de S).

Proposition. Soient G et H deux groupes abéliens. Soit f un morphisme de groupes de G dans H. On suppose que le groupe abélien G est de type fini. Alors le groupe abélien Im f est de type fini.

Démonstration. Soit S une partie génératrice de G. Alors f(S) est une partie génératrice de Im f.

Corollaire.

Proposition. Soient G et H deux groupes abéliens. Soit f un morphisme de groupes de G dans H. On suppose que les groupes abéliens $\operatorname{Im} f$ et $\operatorname{Ker} f$ sont de $\operatorname{type} fini$. Alors G est un groupe abélien de $\operatorname{type} fini$.

Démonstration. Par hypothèse, il existe $(x_1, \ldots, x_r) \in G^r$ tel que la partie finie $\{f(x_1), \ldots, f(x_r)\}$ engendre Im f et il existe $(y_1, \ldots, y_r) \in (\text{Ker } f)^s$ tel que la partie finie $\{y_1, \ldots, y_s\}$ engendre Ker f. Soit $g \in G$. Alors

il existe
$$(n_1, \ldots, n_r) \in \mathbb{Z}^r$$
 tel que $f(g) = \sum_{i=1}^r n_i f(x_i) = f\left(\sum_{i=1}^r n_i x_i\right)$. On conclut en décomposant l'élément

$$g - \sum_{i=1}^{r} n_i x_i \in \text{Ker } f \text{ selon la famille } \{y_1, \dots, y_s\}.$$

Proposition. Soit G un groupe abélien de type fini. Soit H un sous-groupe de G. Alors le groupe abélien H est de type fini.

$D\'{e}monstration.$

- On suppose le groupe G monogène. Si G est cyclique, on sait alors que H est cyclique. Sinon, on se donne un générateur g de G (qui sont tous d'ordre infinis). On sait que l'application $\varphi: \mathbb{Z} \longrightarrow G$ est $n \longmapsto ng$ un isomorphisme de groupes. H est isomorphe au sous-groupe $\varphi^{-1}(H)$ de \mathbb{Z} qui s'écrit $\varphi^{-1}(H) = m\mathbb{Z}$ (où $m \in \mathbb{N}$), ie $H = \varphi(m\mathbb{Z}) = \{ng \mid n \in m\mathbb{Z}\} = \langle mg \rangle$ est monogène.
- Dans le cas contraire, on considère un morphisme de groupes f surjectif de \mathbb{Z}^r dans G, où $r \in \mathbb{N}^*$ désigne le cardinal de la partie génératrice de G (cf preuve du corollaire précédent). Montrons par récurrence sur $r \in \mathbb{N}^*$ que H est de type fini.

Le cas r=1, d'après la remarque précédente, a été traité dans le premier tiret.

On suppose le résultat vrai pour r-1 $(r \in \mathbb{N}^*)$. On considère groupe \mathbb{Z}^{r-1} comme sous-groupe de \mathbb{Z}^r (via l'injection de $\mathbb{Z}^{r-1} \times \{0\}$ dans \mathbb{Z}^r). Par hypothèse de récurrence, tout sous-groupe de $K=f(\mathbb{Z}^{r-1})$ est de type fini. Montrons que G/K est monogène : considérons le morphisme de groupes $\psi: \mathbb{Z} \longrightarrow G/K$. Soit $\overline{g} \in G/K$. Par surjectivité de f, il existe $(a_1, \ldots, a_r) \in \mathbb{K}^r$ tel que $a \longmapsto \overline{f(0, \ldots, 0, a)}$

$$g = f(a_1, \dots, a_r)$$
. Donc $g = \underbrace{f(a_1, \dots, a_{r-1}, 0)}_{\in K} + f(0, \dots, 0, a_r)$, ie $\overline{g} = \overline{f(0, \dots, 0, a_r)} = \psi(a_r)$. Ainsi, ψ

est surjectif.

On considère π_H le morphisme de groupes canonique (surjectif) de projection de H dans G/K. Im π_H est un sous-groupe de G/K monogène donc Im π_H est monogène.

 $\operatorname{Ker} \pi_H = \mathbb{K} \cap H \subset K$ est de type fini par hypothèse de récurrence. D'où, d'après la proposition précédente, H est de type fini.