Discrete Mathematics

Daniel Gonzalez Cedre

University of Notre Dame Spring of 2023

Chapter 1

Propositional Logic

1.1 Propositions & Connectives

Definition 1.1 (Proposition). A proposition is a statement that has one and only one consistent truth value.

Definition 1.2 (Satisfiability). A propositional expression φ consisting the propositional variables $p_1, \dots p_n$ is $satisfiable :\Leftrightarrow$ there exists an assignment of truth values to $p_1, \dots p_n$ that results in φ being equivalent to \top .

Definition 1.3 (Negation).

Given a proposition p, the *negation* of p is denoted $\neg p$ and can be defined by the following truth table:

p	$\neg p$
Т	
	Т

Definition 1.4 (Conjunction).

Given two propositions p and q, the *conjunction* of p with q is denoted $p \wedge q$ and can be defined by the following truth table:

p	q	$p \wedge q$
Т	Т	Т
Т	\perp	
1	Т	
Τ	\perp	Τ

Definition 1.5 (Disjunction).

Given two propositions p and q, the disjunction of p with q is denoted $p \lor q$ and can be defined by the following truth table:

p	q	$p \lor q$
Т	Т	Т
Т	Τ	Т
1	Т	Т
	Τ	1

Some possible readings of $\neg p$:

- · Not p.
- \cdot p does not hold.
- · It is not the case that p.
- · We do not have that p.

Some possible readings of $p \wedge q$:

- $\cdot p$, and q.
- $\cdot p$, but q.
- $\cdot p$; also, q.
- $\cdot p$; further, q.
- · In addition to p, we also have q.

Some possible readings of $p \vee q$:

- $\cdot p$, or q.
- · Either p, or q.

Definition 1.6 (Material Implication).

Given two propositions p and q, the *conditional* formed by assuming p and concluding q is denoted $p \to q$ and can be defined by the following truth table:

p	q	p o q
Т	Т	Т
Т	_	1
Τ	Т	Т
Τ	\perp	Т

Definition 1.7 (Material Equivalence).

Given two propositions p and q, the *biconditional* formed by p and q is denoted $p \leftrightarrow q$ and can be defined by the following truth table:

p	q	$p \leftrightarrow q$
Т	Т	Т
Т	_	Τ
上	Т	Τ
	\perp	Т

Some possible readings of $p \to q$:

- · If p, then q.
- $\cdot p \text{ implies } q.$
- · q is conditioned on p.
- \cdot q only if p.
- · p is sufficient for q.
- \cdot q is necessary for p.
- · q unless not p.
- · q or not p.

Some possible readings of $p \leftrightarrow q$:

- · p if and only if q.
- p is necessary and sufficient for q.
- \cdots q is necessary and sufficient for p.

Definition 1.8 (Equivalence). If we have two expressions φ and ψ in our formal language, consisting of some number of (possibly shared) propositional variables, connected together by logical connectives, then with the notation $\varphi \Leftrightarrow \psi$ we say that φ is equivalent to $\psi :\Leftrightarrow$ every assignment of truth values to the propositional variables of φ and ψ results in the same truth value for the two expressions.

Example 1.1. Consider the two expressions $\varphi := p \to q$ and $\psi := \neg p \lor q$. We can see that φ has two propositional variables: p and q. ψ also has two propositional variables: the same p and the same q. If we construct the truth table for these two expressions, we will see that every assignment of truth values to p and q will result in $p \to q$ and $\neg p \lor q$ having the same truth value.

p	q	$p \rightarrow q$	$\neg p \vee q$
Т	Т	Т	\dashv
Т	_	Τ	Τ
上	Т	Т	Т
上	Τ	Т	Т

1.2 Boolean Algebras

Definition 1.9 (Boolean Algebra). A *Boolean algebra* is a collection of *terms* B with two distinguished (and distinct) terms called \top and \bot , along with a unary operation called \neg and two binary operations called \wedge and \vee , such that the following statements are true for any terms p, q, r in B:

Axioms of a Boolean Algebra	
Identity	$\begin{array}{ccc} p \wedge \top & \Leftrightarrow & p \\ p \vee \bot & \Leftrightarrow & p \end{array}$
Complement (a.k.a. Negation)	$\begin{array}{ccc} p \wedge \neg p & \Leftrightarrow & \bot \\ p \vee \neg p & \Leftrightarrow & \top \end{array}$
Commutativity	$\begin{array}{ccc} p \wedge q & \Leftrightarrow & q \wedge p \\ p \vee q & \Leftrightarrow & q \vee p \end{array}$
Associativity	$\begin{array}{ccc} p \wedge (q \wedge r) & \Leftrightarrow & (p \wedge q) \wedge r \\ p \vee (q \vee r) & \Leftrightarrow & (p \vee q) \vee r \end{array}$
Distributive Laws	$\begin{array}{ccc} p \wedge (q \vee r) & \Leftrightarrow & (p \wedge q) \vee (p \wedge r) \\ p \vee (q \wedge r) & \Leftrightarrow & (p \vee q) \wedge (p \vee r) \end{array}$

This kind of structure is also referred to as a *complemented*, distributive lattice. Since we are establishing the algebra of propositions, our terms consist only of \top and \bot .

However, since none of these axioms tell us how to use the (very useful) symbols \rightarrow and \leftrightarrow , we need two additional axioms that will turn our Boolean algebra into an example of a *Heyting algebra*:

Heyting Axioms	
Conditional Disintegration $p \to q \Leftrightarrow \neg p \lor q$	
Biconditional Disintegration	$p \leftrightarrow q \iff (p \to q) \land (q \to p)$

By referring to the truth tables, it should be easy to see that these axioms are *truth preserving* transformations, meaning that taking an expression like $p \land (q \to r)$ and applying an axiom like Identity to it does not change the truth value of the resulting expression $(p \land \top) \land (q \to r)$. For this reason, these are sometimes referred to as *equivalence laws* and many treatments of this subject *prove* these laws by referring to the truth tables.

For our purposes, we don't need to refer to the truth tables at all. The truth tables were a nice, intuitive, and compact way of defining the logical connectives, but we could just as easily have defined them by assuming that all of the axioms are true, without ever writing down a truth table. This provides a more *algebraic* approach to the study of logic, which is more in-line with the way logic is used to actually prove theorems in mathematics.

As such, while the while the truth tables provided a nice way of defining the logical connectives, we will be taking the algebraic approach by assuming the axioms of a Boolean algebra are true about our propositional logic and using them to prove theorems about our logical system.

Definition 1.10 (Tautology). We say a proposition φ is a tautology: \Leftrightarrow we have that $\varphi \Leftrightarrow \top$.

Definition 1.11 (Contradiction). We say a proposition φ is a *contradiction* : \Leftrightarrow we have that $\varphi \Leftrightarrow \bot$.

Example 1.2. $p \vee \neg p$ is a tautology, and $p \wedge \neg p$ is a contradiction.

Theorem 1.1 (Uniqueness of Complements). Let p be a term in a Boolean algebra (B, \neg, \wedge, \vee) . Suppose there were two terms x and y in the Boolean algebra such that

$$\begin{array}{lll} p \wedge x & \Leftrightarrow & \bot, & & p \wedge y & \Leftrightarrow & \bot, \\ p \vee x & \Leftrightarrow & \top, & & p \vee y & \Leftrightarrow & \top, \end{array}$$

meaning that x and y act like negations for p. Then, we have $x \Leftrightarrow y$.

Proof. Let (B, \neg, \land, \lor) be a Boolean algebra and consider an arbitrary term p in the algebra. Suppose we have x and y satisfying the conditions given in the statement of the theorem above. Then, we can observe

$$\begin{array}{lll} x \; \Leftrightarrow \; \top \wedge x & \text{by Identity} \\ \Leftrightarrow \; (p \vee y) \wedge x & \text{by the assumption } p \vee y \; \Leftrightarrow \; \top \\ \Leftrightarrow \; (p \wedge x) \vee (y \wedge x) & \text{by Distributivity} \\ \Leftrightarrow \; \bot \vee (y \wedge x) & \text{by the assumption } p \wedge x \; \Leftrightarrow \; \bot \\ \Leftrightarrow \; y \wedge x & \text{by Identity.} \end{array}$$

Similarly, we can see that

$$\begin{array}{lll} y \;\Leftrightarrow\; \top \wedge y & \text{by Identity} \\ \Leftrightarrow\; (p \vee x) \wedge y & \text{by the assumption } p \vee x \;\Leftrightarrow\; \top \\ \Leftrightarrow\; (p \wedge y) \vee (x \wedge y) & \text{by Distributivity} \\ \Leftrightarrow\; \bot \vee (x \wedge y) & \text{by the assumption } p \wedge y \;\Leftrightarrow\; \bot \\ \Leftrightarrow\; x \wedge y & \text{by Identity.} \end{array}$$

So, from Commutativity, we can conclude that $x \Leftrightarrow (y \land x) \Leftrightarrow (x \land y) \Leftrightarrow y$.

Q.E.D.

Lemma 1.1. For every Boolean algebra (B, \neg, \wedge, \vee) , we have

$$\neg \top \Leftrightarrow \bot$$
$$\neg \bot \Leftrightarrow \top.$$

Proof. Let (B, \neg, \wedge, \vee) be a Boolean algebra with the distinguished terms \top and \bot . We will show that $\neg \top \Leftrightarrow \bot$ by showing that $\neg \top$ and \bot both act like negations for \top .

First, observe $\neg \top \land \top \Leftrightarrow \bot$ by the Complement rule. Similarly, we have $\neg \top \lor \top \Leftrightarrow \top$ by the Complement rule. Now, $\bot \land \top \Leftrightarrow \bot$ by the Identity rule. Similarly, $\bot \lor \top \Leftrightarrow \top \lor \bot \Leftrightarrow \bot$ by the Identity rule (and Commutativity). This shows us that $\neg \top$ and \bot are both negations for \top . Therefore, recalling that complements are unique by Theorem 1.1, we can conclude $\neg \top \Leftrightarrow \bot$. Showing $\neg \bot \Leftrightarrow \top$ is left as an exercise to the reader.

Q.E.D.

Theorem 1.2 (Double Negation). For any Boolean algebra (B, \neg, \wedge, \vee) and any term p in B, we have $\neg \neg p \Leftrightarrow p$.

Proof. Let (B, \neg, \wedge, \vee) be a Boolean algebra and consider an arbitrary term p in the algebra. We want to show that $\neg \neg p \Leftrightarrow p$, which we can do by establishing that p and $\neg \neg p$ are both complements of $\neg p$. By the Complement rule, we know $p \wedge \neg p \Leftrightarrow \bot$ and $p \vee \neg p \Leftrightarrow \top$, meaning that p is the complement of $\neg p$. Similarly, we can see that $\neg p \wedge \neg (\neg p) \Leftrightarrow \bot$ and $\neg p \vee \neg (\neg p) \Leftrightarrow \top$, showing us that $\neg \neg p$ is the complement of $\neg p$. Since complements are unique, as seen in Theorem 1.1, and both p and $\neg \neg p$ are complements of $\neg p$, we can conclude that $p \Leftrightarrow \neg \neg p$.

Q.E.D.

Theorem 1.3 (Idempotency). For every Boolean algebra (B, \neg, \wedge, \vee) and every term p in the algebra, we have

$$p \wedge p \Leftrightarrow p$$
$$p \vee p \Leftrightarrow p.$$

Proof. Let p be a term in an arbitrary Boolean algebra (B, \neg, \wedge, \vee) . Observe

$$\begin{array}{llll} p \wedge p & \Leftrightarrow & (p \wedge p) \vee \bot & \text{by Identity} & p \vee p & \Leftrightarrow & (p \vee p) \wedge \top & \text{by Identity} \\ & \Leftrightarrow & (p \wedge p) \vee (p \wedge \neg p) & \text{by Complement} & \Leftrightarrow & (p \vee p) \wedge (p \vee \neg p) & \text{by Complement} \\ & \Leftrightarrow & p \wedge (p \vee \neg p) & \text{by Complement} & \Leftrightarrow & p \vee (p \wedge \neg p) & \text{by Distributivity} \\ & \Leftrightarrow & p & \text{by Identity}, & \Leftrightarrow & p & \text{by Identity}. \end{array}$$

Therefore, $p \land p \Leftrightarrow p$ and $p \lor p \Leftrightarrow p$, as desired.

Q.E.D.

Theorem 1.4 (Domination). For every Boolean algebra (B, \neg, \wedge, \vee) and every term p in the algebra, we have

$$\begin{array}{ccc} p \wedge \bot & \Leftrightarrow & \bot \\ p \vee \top & \Leftrightarrow & \top. \end{array}$$

Proof. Let p be a term in an arbitrary Boolean algebra (B, \neg, \wedge, \vee) . Observe

Therefore, $p \wedge \bot \Leftrightarrow \bot$ and $p \vee \top \Leftrightarrow \top$.

Q.E.D.

Theorem 1.5 (Absorption). For every Boolean algebra (B, \neg, \wedge, \vee) and any two terms p and q in the algebra, we have

$$p \wedge (p \vee q) \Leftrightarrow p$$
$$p \vee (p \wedge q) \Leftrightarrow q.$$

Proof. Let p and q be terms in an arbitrary Boolean algebra (B, \neg, \wedge, \vee) . Observe

Therefore, $p \land (p \lor q) \Leftrightarrow p \text{ and } p \lor (p \land q) \Leftrightarrow q$.

Q.E.D.

Theorem 1.6 (De Morgan's Laws). For every Boolean algebra (B, \neg, \wedge, \vee) and any two terms p and q in the algebra, we have

$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$
$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q.$$

Proof. Let p and q be terms in an arbitrary Boolean algebra (B, \neg, \wedge, \vee) . Observe that

$$\begin{array}{lll} (p \wedge q) \wedge (\neg p \vee \neg q) & \Leftrightarrow & (q \wedge p) \wedge (\neg p \vee \neg q) & \text{by Commutativity} \\ & \Leftrightarrow & q \wedge (p \wedge (\neg p \vee \neg q)) & \text{by Associativity} \\ & \Leftrightarrow & q \wedge \left((p \wedge \neg p) \vee (p \wedge \neg q) \right) & \text{by Distributivity} \\ & \Leftrightarrow & q \wedge (\bot \vee (p \wedge \neg q)) & \text{by Complement} \\ & \Leftrightarrow & q \wedge (p \wedge \neg q) & \text{by Identity} \\ & \Leftrightarrow & q \wedge (\neg q \wedge p) & \text{by Commutativity} \\ & \Leftrightarrow & (q \wedge \neg q) \wedge p & \text{by Associativity} \\ & \Leftrightarrow & \bot \wedge p & \text{by Complement} \\ & \Leftrightarrow & \bot & \text{by Domination.} \end{array}$$

Further, we have

$$\begin{array}{lll} (p \wedge q) \vee (\neg p \vee \neg q) & \Leftrightarrow & (p \wedge q) \wedge (\neg q \vee \neg p) & \text{by Commutativity} \\ & \Leftrightarrow & \left((p \wedge q) \vee \neg q\right) \vee \neg p & \text{by Associativity} \\ & \Leftrightarrow & \left((p \vee \neg q) \wedge (q \vee \neg q)\right) \vee \neg p & \text{by Distributivity} \\ & \Leftrightarrow & \left((p \vee \neg q) \wedge \top\right) \vee \neg p & \text{by Complement} \\ & \Leftrightarrow & (p \vee \neg q) \vee \neg p & \text{by Identity} \\ & \Leftrightarrow & (\neg q \vee p) \vee \neg p & \text{by Commutativity} \\ & \Leftrightarrow & \neg q \vee (p \vee \neg p) & \text{by Associativity} \\ & \Leftrightarrow & \neg q \vee \top & \text{by Complement} \\ & \Leftrightarrow & \top & \text{by Domination.} \end{array}$$

So, we can see that $\neg p \lor \neg q$ is a complement for $p \land q$. Since complements are unique by Theorem 1.1, we can conclude that $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$.

Showing $\neg(p \lor q) \Leftrightarrow \neg p \land \neg q$ is left as an exercise to the reader.

Q.E.D.