Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Testul 8

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\frac{2}{3} \cdot 0, 3 + 3, 2 : 4 = \frac{2}{3} \cdot \frac{3}{10} + \frac{32}{10} \cdot \frac{1}{4} =$	3p
	$=\frac{1}{5}+\frac{4}{5}=1$	2p
2.	$f(a) = 2a \Leftrightarrow 6 - 4a = 2a$	3 p
	a=1	2p
3.	$x^2 - 2x + 16 = 16 \Rightarrow x^2 - 2x = 0$	2p
	x = 0 sau $x = 2$, care convin	3 p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	2p
	Numerele n din mulțimea A pentru care $(n-2)(n-6) \ge 0$ sunt 1, 2, 6, 7, 8 și 9, deci sunt	2p
	6 cazuri favorabile	-r
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{6}{9} = \frac{2}{3}$	1p
5.	M(-3,4)	2p
	OA = 5, $OM = 5$, deci triunghiul OAM este isoscel	3р
6.	Triunghiul ABC este dreptunghic în B, deci $\frac{AB \cdot BC}{2} = 2$, şi, cum $AB = BC$, obținem $AB = 2$	3p
	$P_{ABCD} = 4AB = 8$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} -3 & 2 \\ -6 & 4 \end{vmatrix} = -3 \cdot 4 - 2 \cdot (-6) =$	3p
	=-12+12=0	2p
b)	det(B(x)) = x + 1, penda offer hamar real x	2p
	Cum $\det(B(7) - A) = \begin{vmatrix} 10 & 0 \\ -1 & -1 \end{vmatrix} = -10$, obținem $x^2 - 4x + 4 = 0$, deci $x = 2$	3 p
c)	$xA = \begin{pmatrix} -3x & 2x \\ -6x & 4x \end{pmatrix}, A \cdot B(x) = \begin{pmatrix} -3x - 14 & 2x - 14 \\ -6x - 28 & 4x - 28 \end{pmatrix} \Rightarrow xA - A \cdot B(x) = \begin{pmatrix} 14 & 14 \\ 28 & 28 \end{pmatrix}, \text{ pentru orice}$	3p
	număr real x	
		2p
2.a)	1*3=6·1·3-6·1-6·3+7=	3p
	=18-6-18+7=1	2p

b)	$x * \frac{7}{6} = 6x \cdot \frac{7}{6} - 6x - 6 \cdot \frac{7}{6} + 7 = 7x - 6x - 7 + 7 = x$, pentru orice număr real x	2p
	$\frac{7}{6} * x = 6 \cdot \frac{7}{6} \cdot x - 6 \cdot \frac{7}{6} - 6x + 7 = 7x - 7 - 6x + 7 = x, \text{ pentru orice număr real } x, \text{ deci } e = \frac{7}{6} \text{ este elementul neutru al legii de compoziție ,,*"}$	3р
c)	$\frac{m}{2} * \left(-\frac{m}{3}\right) = -m^2 - m + 7, \text{ pentru orice număr întreg } m$	2p
	$-m^2 - m + 7 \ge 1 \Leftrightarrow m^2 + m - 6 \le 0$, de unde obținem $m \in [-3,2]$, deci suma numerelor întregi care verifică inegalitatea este egală cu $-3 + (-2) + (-1) + 0 + 1 + 2 = -3$	3 p

(30 de puncte) SUBIECTUL al III-lea

	` .	
1.a)	$f'(x) = 3x^2 - \frac{3}{x^2} + 0 =$	3р
	$= \frac{3(x^4 - 1)}{x^2} = \frac{3(x^2 - 1)(x^2 + 1)}{x^2}, \ x \in (0, +\infty)$	2p
b)	$f'(x) = 0 \Leftrightarrow x = 1$	2p
	$f'(x) \le 0$, pentru orice $x \in (0,1] \Rightarrow f$ este descrescătoare pe $(0,1]$, $f'(x) \ge 0$, pentru orice $x \in [1,+\infty) \Rightarrow f$ este crescătoare pe $x \in [1,+\infty)$	3p
c)	$f''(x) = 6x + \frac{6}{x^3}, x \in (0, +\infty)$	2p
	$f''(x) \ge 0$, pentru orice $x \in (0, +\infty)$, deci funcția f este convexă	3 p
2.a)	$\int_{0}^{2} (x+1) f(x) dx = \int_{0}^{2} 2x dx = x^{2} \Big _{0}^{2} =$	3р
	=4-0=4	2p
b)	$\int_{1}^{3} \frac{2}{x+1} dx = 2 \int_{1}^{3} \frac{(x+1)'}{x+1} dx = 2 \ln(x+1) \Big _{1}^{3} =$	3p
	$= 2 \ln 4 - 2 \ln 2 = 2 \ln 2$	2p
c)	$\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) \cdot f(-x) dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{4x^2}{x^2 - 1} dx = 4 \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{x^2 - 1 + 1}{x^2 - 1} dx = 4 \int_{-\frac{1}{2}}^{\frac{1}{2}} \left(1 + \frac{1}{x^2 - 1} \right) dx = 4 \left(x + \frac{1}{2} \ln \frac{1 - x}{1 + x} \right) \Big _{-\frac{1}{2}}^{\frac{1}{2}} = \frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{4x^2}{x^2 - 1} dx = 4 \int_{-\frac{1}{2}}^{\frac{1}{2}} \left(1 + \frac{1}{x^2 - 1} \right) dx = 4 \left(x + \frac{1}{2} \ln \frac{1 - x}{1 + x} \right) \Big _{-\frac{1}{2}}^{\frac{1}{2}}$	
	$=4\left(\frac{1}{2}+\frac{1}{2}\ln\frac{1}{3}+\frac{1}{2}-\frac{1}{2}\ln 3\right)=4\left(1-\ln 3\right)$	2p