Approximation Algorithms for Weighted Vertex Cover

CS 511

Iowa State University

November 7, 2010

Weighted Vertex Cover: Problem Definition

Input: An undirected graph G = (V, E) with vertex weights $w_i \ge 0$.

Problem: Find a minimum-weight subset of nodes S such that every $e \in E$ is incident to at least one vertex in S.

Weighted Vertex Cover: Some Facts

- WVC is NP-hard.
- WVC can be 2-approximated.
 - Proved next.
- A 2-approximation algorithm for WVC does not provide any sort of approximation guarantee for maximum-weight independent set.

Weighted Vertex Cover: IP Formulation

minimize
$$\sum_{i \in V} w_i x_i$$

subject to $x_i + x_j \ge 1$ for every edge $(i, j) \in E$ (1)
 $x_i \in \{0, 1\}$ for every vertex $i \in V$

Observation

- Any feasible solution x to (1) yields a cover $S = \{i \in V : x_i = 1\}$.
- If x^* is optimal solution to (1), then $S^* = \{i \in V : x_i^* = 1\}$ is a minimum weight vertex cover.

Weighted Vertex Cover: LP Relaxation

minimize
$$\sum_{i \in V} w_i x_i$$

subject to $x_i + x_j \geq 1$ for every edge $(i, j) \in E$ (2)
 $x_i \geq 0$ for every vertex $i \in V$

Observation

The optimum value of LP relaxation (2) is at most equal to the optimum value of integer program (1), because the LP has fewer constraints.

The LP-Rounding Algorithm

- Compute the optimum solution x^* to LP relaxation (2).
- **2** Let $S = \{i \in V : x_i^* \ge 1/2\}$.
- Return S.

The LP-Rounding Algorithm is a 2-approximation algorithm for MWVC.

Proof.

- **1** S is a vertex cover. Consider an edge $(i,j) \in E$. Since $x_i^* + x_i^* \ge 1$, either $x_i^* \ge 1/2$ or $x_i^* \ge 1/2 \Rightarrow (i,j)$ is covered.
- ② If S^* is an optimum vertex cover, then $w(S) \leq 2w(S^*)$.

$$w(S^*) \geq \sum_{i=1}^n w_i x_i^*$$
 since LP is a relaxation of ILP $\geq \sum_{i \in S} w_i x_i^*$ since $S \subseteq \{1, \dots, n\}$ $\geq \frac{1}{2} \sum_{i \in S} w_i$ since $x_i^* \geq 1/2$ for all $i \in S$ $= \frac{1}{2} w(S)$

Weighted Vertex Cover: Dual LP

maximize
$$\sum_{e \in E} y_e$$
 subject to $\sum_{e=(i,j)\in E} y_e \le w_i$ for every node $i \in V$ (3) $y_e \ge 0$ for every edge $e \in E$

Intuition for Duality

- Edge e pays price $y_e \ge 0$ to be covered.
- Goal: Collect as much money as possible from the edges.
- Fair price condition: For every $i \in V$,

$$\sum_{e=(i,j)\in E}y_e\leq w_i.$$

The Dual Gives a Lower Bound

Lemma (Fairness Lemma)

Let $(y_1, y_2, \dots, y_{|E|})$ be any feasible solution to the dual LP and S^* be a minimum-weight vertex cover. Then,

$$\sum_{e \in E} y_e \le w(S^*).$$

Proof.

Let z_D^* , z_P^* , and z_D^* , be the optimal objective values of the dual LP, the primal LP, and the primal ILP for WVC. Then,

$$\sum_{e \in F} y_e \leq \sum_{\text{dual optimality}} z_D^* = \sum_{\text{strong duality}} z_P^* \leq \sum_{\text{integrality}} z_{IP}^* = w(S^*).$$

Using Duality

- Any dual solution y gives a lower bound on the optimal solution to WVC — don't need to solve dual to optimality.
- However, y should be easy to convert into a vertex cover S.
- Further, S should not be too far from optimum.
- We can find such a y by a simple and fast method, without using an LP solver.

The Pricing Method

Definition

Vertex *i* is tight if $\sum_{e=(i,j)\in E} y_e = w_i$.

Pricing-Method(G, w)

for each
$$e \in E$$
 $y_e = 0$

while there is an edge (i,j) such that neither i nor j are tight select such an edge e increase y_e as much as possible while preserving dual feasibility

$$S = \{i \in V : i \text{ is tight}\}$$
 return S

The Pricing Method: Example

Source: Kleinberg & Tardos, Algorithm Design (Fig. 11.8).

The Pricing Method is a 2-approximation algorithm for MWVC.

The Pricing Method is a 2-approximation algorithm for MWVC.

Proof.

- Running time is polynomial.
 - Reason: At least one new node becomes tight after each iteration of while loop.
- - Reason: At termination, for each edge e = (u, v), at least one of u and v is tight \implies at least one of u and v is in S.

The Pricing Method is a 2-approximation algorithm for MWVC.

Proof.

3 Let S^* be an optimum vertex cover. Then $w(S) \leq 2w(S^*)$. *Reason:*

$$w(S) = \sum_{i \in S} w_i$$

$$= \sum_{i \in S} \sum_{e = (i,j)} y_e \qquad \text{since the nodes in } S \text{ are tight}$$

$$\leq \sum_{i \in V} \sum_{e = (i,j)} y_e \qquad \text{since } S \subseteq V \text{ and } y_e \geq 0 \text{ for all } e$$

$$= 2 \sum_{e \in E} y_e \qquad \text{because each edge is counted twice}$$

$$\leq 2w(S^*) \qquad \text{by the Fairness Lemma}$$