Q.5: read an image and call it, I_garden. Find the Fourier Transform of I_garden; call it F_garden. Do the following 2 steps:

- (a) Create a new spectrum, F_50, where you choose to retain only 50% of the spectrum co-efficients in F_garden, centered around the origin. Zero out the remaining. Use F_50 to reconstruct image I_50.
- (b) Create a new spectrum, F_25, where you choose to retain only 25% of the spectrum co-efficients in F_garden, centered around the origin. Zero out the remaining. Use F_25 to reconstruct image I_25.

Compare images I_50 and I_25, with respect to I_garden. What do you observe?

In [1]:

```
# importing necessary packages
import numpy as np
import matplotlib.pyplot as plt
import cv2
%matplotlib inline
%matplotlib inline
```

Defining a function for fourier transform of an image

ht n_5-with

In [2]:

```
1
   def fft(img):
 2
        fft = np.fft.fft2(img)
3
        fft shift = np.fft.fftshift(fft)
 4
 5
        return fft shift
6
7
   def mag ph(fft img):
8
        fft shift = fft img
9
        magnitude spectrum = 20*np.log(0.00001+np.abs(fft shift))
        phase spectrum = np.angle(fft shift)
10
11
12
        return magnitude spectrum, phase spectrum
```

1. Reading an image into I_garden

In [3]:

```
I_garden = cv2.imread('./images/5.png',0)
plt.imshow(I_garden)
print(I_garden.shape)
```

(508, 660)

2. Taking Fourier transform of an image

n_5-wi

```
In [4]:
```

```
1 F_garden = fft(I_garden)
2 F_garden.shape
```

Out[4]:

(508, 660)

Flow of steps:

First I will create a mask / low pass filter for an image, which will allow low pass frequncies to pass out and zero out the higher frequency. In fftshift of an image low frequencies are around DC component of an image: which is at the middle. So we create a filter accordingly

3. creating a mask / low pass filter: L_50: which will allow 50% of spec coeff to pass around an origin

In [5]:

```
1
 2
 3
   # taking size of an image to create a mask
 4
 5
   ncols = int(660)
   nrows = int(508)
 6
 7
   #print(type(nrows))
 8
 9
10
   # 50% mask
11
   L 50 = np.zeros((nrows,ncols))
12
   L 50[int(nrows/2-nrows/4) : int(nrows/2+nrows/4) , int(ncols/2-nd
13
14
15
16
```

4. Applying low pass filter / 50% Mask / L_50 to fourier transformed image F_garden

n_5-with

```
In [6]:
```

```
1 F_50 = F_garden * L_50
```

5. recovering image frm fft by tkng inv fftshift first then tkng inv fft

In [7]:

```
1  x = np.fft.ifftshift(F_50)
2  y = np.fft.ifft2(x)
3  F_50_img = np.array(np.abs(y)) # np.abs removes imaginar
4
```

6. Plotting an original image + Mask representation + Image recovered after applying low pass filter

In [8]:

```
f, axarr = plt.subplots(1,3,figsize=(15,15))
axarr[0].imshow(I_garden); axarr[0].set_title('I_garden')
axarr[1].imshow(L_50); axarr[1].set_title('50% mask')
axarr[2].imshow(F_50_img); axarr[2].set_title('F_50_img')
```

Out[8]:

Text(0.5,1,'F 50 img')

7. Likewise, follwing similar steps for two more masks / low pass filters: 25% and 12%

ht in_5-with

In [9]:

```
# 25% mask
 1
   L 25 = np.zeros((nrows,ncols))
   L 25[int(nrows/2-nrows/8) : int(nrows/2+nrows/8) , int(ncols/2-nd
 3
 4
 5
   # 12.5% mask
   L 12 = np.zeros((nrows,ncols))
 7
   L 12[int(nrows/2-nrows/16) : int(nrows/2+nrows/16) , int(ncols/2-
 8
   # applying low pass filter to fourier transformed img
 9
   F 25 = F garden * L 25
10
   F = 12 = F \text{ garden } * L_12
11
12
13
   # recovering image frm fft by tkng inv fftshift first then tkng i
14
   x = np.fft.ifftshift(F 25)
   y = np.fft.ifft2(x)
15
   F 25 img = np.array(np.abs(y))
16
17
   x = np.fft.ifftshift(F 12)
18
   y = np.fft.ifft2(x)
19
   F 12 img = np.array(np.abs(y))
20
21
   # plotting all the results
   f, axarr = plt.subplots(3,3,figsize=(15,15))
22
23
   axarr[0,0].imshow(I garden); axarr[0,0].set title('Orig img : I d
   axarr[0,1].imshow(L 50) ; axarr[0,1].set title('50% mask')
24
25
   axarr[0,2].imshow(F 50 img); axarr[0,2].set title('Recovered img
26
   axarr[1,0].imshow(I garden) ; axarr[1,0].set title('Orig img : I
   axarr[1,1].imshow(L 25) ; axarr[1,1].set title('25% mask')
27
   axarr[1,2].imshow(F 25 img) ; axarr[1,2].set title('Recovered img
28
29
   axarr[2,0].imshow(I garden) ; axarr[2,0].set title('Orig img : I
30
   axarr[2,1].imshow(L 12) ; axarr[2,1].set title('12% mask')
   axarr[2,2].imshow(F 12 img); axarr[2,2].set title('Recovered imc
31
```

Out[9]:

```
Text(0.5,1,'Recovered img : F 12 img')
```

ht n_5-with

Observation:

- As we can see after applying a mask / low pass filter, it allows only low frequency components or spectrum - -coefficeints around an origin (DC component): This will in turn reduce an information or details of an image: Which results into a blur image with low amount of details
- As we are reducing the size of the mask / low pass filter: it is cutting off more
 frequencies that are high than given threshold or distant from center in this case: so it
 results into more blur image and less info

8. Looking at the effect of particular mask on an image (by removing recoverd fourier image from the original image)

n_5-with

In [15]:

```
1  a = I_garden - F_50_img
2  b =I_garden - F_25_img
3  c = I_garden - F_12_img
4  
5  f, axarr = plt.subplots(1,3,figsize=(20,20))
6  axarr[0].imshow(a); axarr[0].set_title('img_50_mask_effect')
7  axarr[1].imshow(b); axarr[1].set_title('img_25_mask_effect')
8  axarr[2].imshow(c); axarr[2].set_title('c_12_mask_effect')
```

Out[15]:

Text(0.5,1,'c 12 mask effect')

Observation:

ht

- Blurring (smoothing / removal of fine or sharp details (edg es)) is happening in the image except the sky region
- if the mask is too low such as 12% then sky is blurred a bit $\ensuremath{\text{t}}$
- Ringing effects are there in regions where we have sharp ed ges in the original image (Edges are the high frequency comp onents in fourier transformed image , because of their behavi our of sudden change , and as we are applying the low pass filter , it won't allow sharp edges to pass)
- The main cause of ringing effect is due to a signal being be and limited (specifically, not having high frequencies) or passed through a ideal low-pass filter; this is the frequency domain description.
- solution is Butterworth low pass filter that attenuates hig h frequencies smoothly

n_5-with

25/04/2018