LATEX Math Cheat Sheet

Packages

amsmath Use math macros

amssymb Use more math symbols

cancel Cross out text

Use before \begin{document}. Usage: \usepackage{package name}

Math Mode

Inline Math

Don't use $\.\$ with LATEX. Use $\(\...\)$ instead.

Displayed Math

Don't use $\$ with IATEX. Use $\[... \]$ instead. If you use A_MS math, don't use $\[... \]$ either, use $\$ begin{equation*} ... \ unnumbered) and $\$ begin{equation} ... \end{equation} (numbered).

Plain Text in Math Mode

Use \text{...} or \textnormal{...} or \mathrm{...} for inline text.

Note the different outcomes depending on your font choice. \text{...} is usually the best choice. Examples: math text normaltext mathrm

Use \intertext{...} for a complete line, only in displayed mode.

Sets of Equations

- &= Typeset and aligns equations on =. Works with any relation.

 Use \mathrel{...} or \stackrel{ top}{ bot} for custom relations
- & Add another column \\ Add another line

align

Note that align must **not** be set in math mode!
Usage: \begin{align} aa &< A & b &\stackrel{!}{=} B \\
c &\mathrel{=_{42}} C & d &= D \end{align} Outcome:

$$aa < A$$
 $b \stackrel{!}{=} B$ $c = _{42} C$ $d = D$

aligned

Allows for further mathstuff left/right, must be set in math mode. Usage: \begin{aligned} aa &= A & b &= B...\end{aligned} Outcome:

$$aa = A$$
 $b = B$
 $c = C$ $d = D$

gather

Centered equations, one column. Must **not** be set in math mode! Usage: \begin{gather} aa = A \\ b = B \end{gather}
Outcome:

$$aa = A$$
$$b = B$$

Long Terms/Equations

A = 1 + 2 + 3 + 4 + 5

multline

Set long terms with multiple lines. Must **not** be set in math mode! Usage: \begin{multline} A = 1 + ... + 5 \\+ 6 + 7 + ... + 14 + 15 \end{multline}

Outcome:

$$+6+7+8+9+10+11+12+13+14+15$$
 (5)

split

Set long equations with multiple lines. Must be set in math mode. Usage:

$$\begin{split} A \&= 5+9+3 \ \&= 14+3 \ A \&= 17 \ end{split} Outcome:$$

$$A = 5 + 9 + 3$$

= 14 + 3
 $A = 17$

Cases

Set if-then-else cases. Must be set in math mode.
Usage: \begin{cases} 1 & \text{if A=...} \\
2 & \text{if B=...} \end{cases}
Outcome:

$$\begin{cases} 1 & \text{if A=...} \\ 2 & \text{if B=...} \end{cases}$$

Matrices

matrix

Set simple matrices. Must be set in math mode.

A smallmatrix for inline use only is available as well. $\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}$

(1) array

(2) Set flexible matrices. Allows for further mathstuff left/right, must be set in math mode.

Usage: \begin{array}{lc|r} a & b & c \\
\hline d & e & f \end{array}

1 for left aligned, c for centered, r for right aligned column. | for optional vertical line. \hline adds a horizontal line. Outcome:

$$\begin{array}{c|cc} a & b & c \\ \hline d & e & f \end{array}$$

Fractions

$_{3)}$ frac

(4) Usage: \(\frac{1}{2}\)
Outcome: \(\frac{1}{2}\)

cfrac

Set continued fractions, must be set in math mode. Usage: \cfrac{1}{1 + \cfrac{2}{33}}

Outcome:

$$\frac{1}{1+\frac{2}{33}}$$

Roots

Usage: \(\sqrt[3]{8} \\) Outcome: $\sqrt[3]{8}$ If the root looks like this $\sqrt[a]{b}$, use \leftroot{n} and \uproot{n} to correct positioning.

Usage: \(\sqrt[\uproot{3}\leftroot{1} a_3]{8} \\)

Miscellaneous

Numbering

Outcome: $\sqrt[a_3]{8}$

Use equation*, align*, gather*, multline* to supress numbering. Use \nonumber to supress numbering for current line in any math environment.

Brackets

Use \leftX paired with \rightY with X and Y being () [] \langle for \langle \rangle for \rangle \lbrace for $\{$ \rhorse for $\}$ \lfloor for [\lceil for [\vert for [\vert for [or . to supress one bracket. These brackets adapt in height to fit their inner object.

Usage: \(\left(\frac{1}{2} \right) \)
Outcome: $(\frac{1}{2})$ as opposed to $(\frac{1}{2})$

Multi-line limits, Custom Operators & Sidesets

cancel

Usage: \cancel {22} Outcome: 22 \cancel $\frac{(x+2)(x-1)}{(x-1)(x+1)}$ \bcancel $\frac{(x+2)(x-1)}{(x-1)(x+1)}$ \xcancel $\frac{(x+2)(x-1)}{(x-1)(x+1)}$

Sub-/Superscription

Use _{n} to subscript and ^{n} to superscript n. Usage: \(a_{1_{1}}^{2} \) Outcome: $a_{1_{1}}^{2}$

Symbols

- J			
$\sum_{i=1}^{n}$	$\sum_{i=1}^{n}$	$\prod_{i=1}^n$	\prod_{i=1}^{n}
\rightarrow	\rightarrow		\leftarrow
\Rightarrow	\Rightarrow	(←	\Leftarrow
↑	\uparrow	↓	\downarrow
\uparrow	\uparrow	↓	\downarrow
$ \begin{array}{c} 44 \\ 3 \\ \overrightarrow{abc} \end{array} $	\xrightarrow[3]{44}	\(\frac{44}{3}\) \(\frac{8}{3}\)	$\x (3){44}$
π_{\cdot}	\pi	×	\aleph
\overrightarrow{abc}	\overrightarrow{abc}	$\stackrel{\longleftarrow}{abc}$	\overleftarrow{abc}
\widehat{abc}	\widehat{abc}	\widetilde{abc}	\widetilde{abc}
\widehat{abc}	\overbrace{abc}	abc	\underbrace{abc}
uoc	(Overbrace tabe)	1 400	(under brace tabe)
*	\ast	. *	\cdot
X	\times	÷	\div
≤≰ ≮≯	\leq \nleq	÷ ≥ ≱ ≠	\geq \ngeq
≮≯	\nless \ngtr	≠	\neq
\pm	\pm	~	\sim
\in	\in	∉ ∃	\notin
\forall	\forall	∃	\exists
$\sin(x)$	$\sin(x)$	$\cos(x)$	\cos(x)
$\log n$	\log n	$\ln n$	\ln n
004#/05/45 IC IC 1 ID1: 1 1 1 1 1 1 1 1 1 1 1 1			

2017/05/15 K. Konrad. This work has been released into the public domain by the copyright holder. This applies worldwide. The Source Code is on github.com/kfkonrad/cheatsht