ФКН ВШЭ, 3 курс, 3 модуль

Задание 3. Статистические решения.

Последовательные тесты.

Обнаружение разладки.

Вероятностные модели и статистика случайных процессов, весна 2017

Время выдачи задания: 15 марта (среда).

Срок сдачи: 27 марта (понедельник), 23:59.

Среда для выполнения практического задания – PYTHON 2.x.

Правила сдачи

Инструкция по отправке:

- 1. Домашнее задание необходимо отправить до дедлайна на почту hse.cs.stochastics@gmail.com.
- 2. В письме укажите тему «[ФКН ССП17] Задание 3, Фамилия Имя».
- 3. Решения задач следует присылать единым файлом формата .pdf, набранным в LATEX. Допускается отправка отдельных практических задач в виде отдельных файлов (ipython-тетрадок или исходных файлов с кодом на языке python).

Оценивание и штрафы:

1. **Каждая из задач имеет стоимость 2 балла**, при этом за задачу можно получить 0, 1 или 2 балла. Максимально допустимая

оценка за работу — 10 баллов. Баллы, набранные сверх максимальной оценки, считаются бонусными и влияют на освобождение от задач на экзамене.

- 2. Дедлайн жесткий. Сдавать задание после указанного срока сдачи нельзя.
- 3. Задание выполняется самостоятельно. «Похожие» решения считаются плагиатом и все задействованные студенты (в том числе те, у кого списали) не могут получить за него больше 0 баллов (подробнее о плагиате см. на странице курса). Если вы нашли решение какого-то из заданий (или его часть) в открытом источнике, необходимо указать ссылку на этот источник в отдельном блоке в конце Вашей работы (скорее всего вы будете не единственным, кто это нашел, поэтому чтобы исключить подозрение в плагиате, необходима ссылка на источник).

Необходимые теоретические сведения

- **1.** Всюду в рассматриваемых задачах имеется две гипотезы \mathbb{H}_0 и \mathbb{H}_1 (иногда они обозначаются \mathbb{H}_{∞} и \mathbb{H}_0 , соответственно), причем каждая из гипотез делает явные предположения о распределении или его параметрах.
- 2. Критерий Неймана-Пирсона предписывает принимать гипотезу исходя из значения величины

$$L_n(X_1,\ldots,X_n) = \frac{f_1(X_1,\ldots,X_n)}{f_0(X_1,\ldots,X_n)},$$

называемой отношением правдоподобия. А именно, пусть $\varphi(X_1,\ldots,X_n)$ – рандомизированное решающее правило, значение которого равно вероятности принять гипотезу \mathbb{H}_1 . Тогда найдутся такие константы λ_a и h_a , что

$$\varphi(X_1, \dots, X_n) = \begin{cases} 1, & L_n(X_1, \dots, X_n) > h_a, \\ \lambda_a, & L_n(X_1, \dots, X_n) = h_a, \\ 0, & L_n(X_1, \dots, X_n) < h_a, \end{cases}$$

является наиболее мощным (т. е. с наименьшей вероятностью пропуска цели или ошибки 2 рода $\beta(\varphi)$) тестом среди тестов, вероятность ложной тревоги $\alpha(\varphi)$ (ошибки 1 рода) которых не выше a.

3. Последовательный тест отношения правдоподобия (sequential probability ratio test, SPRT) заключается в вычислении логарифма отношения правдоподобия $Z_n = \log L_n$ (см. выше; в случае независимых наблюдений формулы упрощаются) и сравнении этой величины в каждый момент времени с пороговыми значениями A < 0, B > 0, выбранными исходя из заданных вероятностей ошибок 1 и 2 рода. Наблюдения останавливаются в первый момент времени

выхода статистики Z_n за «коридор» (A, B):

$$\tau_{A,B} = \inf\{n \geqslant 1 : Z_n \notin (A,B)\}.$$

При этом в каждый момент времени принимается одно из трех решений:

$$\begin{cases} если \ Z_n \leqslant A & \Longrightarrow \text{ верна гипотеза } \mathbb{H}_0, \\ если \ Z_n \geqslant B & \Longrightarrow \text{ верна гипотеза } \mathbb{H}_1, \\ если \ Z_n \in (A,B) & \Longrightarrow \text{ продолжить наблюдения}. \end{cases}$$

Построить последовательный тест – значит указать момент остановки измерений τ и решающее правило $\varphi(\cdot)$.

4. Разладкой процесса $X=(X_n)_{n=1,2,...}$ называется ситуация, в которой траектория процесса генерируется двумя (или в общем случае несколькими) независимыми вероятностными мерами P_{∞} и P_0 , причем наблюдения имеют структуру

$$X_n = egin{cases} X_n^\infty, & ext{если } 1 \leqslant n < \theta, \ X_n^0, & ext{если } n \geqslant \theta, \end{cases}$$

где $X^{\infty}=(X_n^{\infty})_{n=1,2,\dots}$ — процесс, соответствующий мере P_{∞} , и $X^0=(X_n^0)_{n=1,2,\dots}$ — процесс, соответствующий мере P_0 . Момент $\theta\in[0,\infty]$ называется моментом разладки, причем ситуация $\theta=0$ соответствует тому, что с самого начала идут наблюдения от «разлаженного» процесса X^0 , а ситуация $\theta=\infty$ заключается в том, что разладка не появляется никогда. Таким образом, траектория процесса X выглядит следующим образом:

$$\underbrace{X_1^{\infty}, X_2^{\infty}, \dots, X_{\theta-1}^{\infty}}_{\text{Mepa P}^{\infty}}, \underbrace{X_{\theta}^{0}, X_{\theta+1}^{0}, \dots}_{\text{Mepa P}^{0}}$$

5. Статистика кумулятивных сумм.

• Вводятся статистики $\gamma=(\gamma_n)_{n=1,2,\dots}$ и $\gamma=(\gamma_n)_{n=1,2,\dots}$

$$\gamma_n = \sup_{\theta \geqslant 0} \frac{f_{\theta}(X_1, \dots, X_n)}{f_{\infty}(X_1, \dots, X_n)}$$
 и $T_n = \log \gamma_n$

ullet Если случайные величины X_1,\ldots,X_n независимы, то

$$\gamma_n = \max \left\{ 1, \max_{1 \le \theta \le n} \prod_{k=\theta}^n \frac{f_0(X_k)}{f_\infty(X_k)} \right\},$$

$$T_n = \max \left\{ 0, \max_{1 \le \theta \le n} \sum_{k=\theta}^n \log \frac{f_0(X_k)}{f_\infty(X_k)} \right\} = \max \left\{ 0, \max_{1 \le \theta \le n} \sum_{k=\theta}^n \zeta_k \right\}$$

- Статистика T_n обладает свойством $T_n = \max(0, T_{n-1} + \zeta_n)$ и называется статистикой кумулятивных сумм (CUmulative SUMs, CUSUM).
- Момент остановки

$$\tau_{\text{CUSUM}} = \inf\{n \geqslant 0 : T_n \geqslant B\},\$$

построенный по статистике кумулятивных сумм, оптимален (т. е. обладает наименьшей задержкой в обнаружении разладки) в классе

$$\mathcal{M}_T = \{ \tau : \mathbf{E}_{\infty} \tau \geqslant T \}$$

тех моментов остановки, для которых среднее время до ложной тревоги не меньше T.

6. Статистика Ширяева-Робертса.

• Вводится статистика

$$R_n = \sum_{\theta=1}^n \frac{f_{\theta}(X_1, \dots, X_n)}{f_{\infty}(X_1, \dots, X_n)}$$

• Если случайные величины X_1, \ldots, X_n независимы, то

$$R_n = \sum_{\theta=1}^n \prod_{k=\theta}^n \frac{f_0(X_k)}{f_{\infty}(X_k)} = \sum_{\theta=1}^n \prod_{k=\theta}^n l_k.$$

- Статистика R_n обладает свойством $R_n = (1 + R_{n-1})l_k$ и называется статистикой Ширяева-Робертса (Shiryaev-Roberts, SR).
- Момент остановки

$$\tau_{SR} = \inf\{n \geqslant 0 : R_n \geqslant B\},\,$$

построенный по статистике Ширяева-Робертса, оптимален (т. е. обладает наименьшей задержкой в обнаружении разладки) в классе

$$\mathcal{M}_T = \{ \tau : \mathbf{E}_{\infty} \tau \geqslant T \}$$

тех моментов остановки, для которых среднее время до ложной тревоги не меньше T.

Вариант 1

- 1. По выборке (X_1, \ldots, X_n) из биномиального распределения Bin(k, p) построить критерий Неймана-Пирсона для проверки гипотезы \mathbb{H}_0 : $p = p_0$ против альтернативы $\mathbb{H}_1 : p = p_1$, где $0 < p_0 < p_1 < 1$.
- 2. Дана выборка (X_1, \ldots, X_n) из нормального $\mathcal{N}(\mu, \sigma^2)$ распределения. Построить критерий проверки гипотезы $\mathbb{H}_0: \mu = 0$ против альтернативы $\mathbb{H}_1: \mu = 0.1$ и определить наименьший объем выборки, при котором вероятности ошибок 1 и 2 родов не превышают 0.01.
- 3. Необходимо произвести выбор между двумя гипотезами о возможных значениях p_0 и p_1 вероятности события A ($p_0 < p_1$). В этих целях осуществляется последовательность независимых опытов, в каждом из которых определяется, происходит или не происходит событие A. Построить последовательный критерий отношения вероятностей при заданных значениях α и β вероятностей ошибок первого и второго рода.
- 4. Провести моделирование для сравнения критерия Неймана-Пирсона и последовательного критерия отношения правдоподобия в задаче 3. В этом моделировании:
 - (а) Для заданных уровня значимости $\alpha_i = i\Delta, \Delta = 0.01, i = 1, \ldots, 99$, и вероятности ошибки второго рода $\beta_i = \alpha_i$ подсчитать объем наблюдений, требуемый в критерии Неймана-Пирсона для достижения этих характеристик.
 - (b) Проделать то же самое для последовательного критерия отношения правдоподобия.
 - (c) Привести графическое сравнение зависимости объема требуемых данных от требуемого уровня значимости $n(\alpha)$ для двух

критериев, сделать выводы.

- (d) Изменяется ли соотношение между требуемыми объемами выборок при изменении отношения $\gamma = p_0/p_1$ в рассматриваемых гипотезах? Построить зависимости $n(\gamma)$ для двух критериев при некотором фиксированном уровне значимости α .
- 5. Процесс $X = (X_n)_{n=1,2,...}$, наблюдаемый в режиме реального времени, задается нормально распределенным белым шумом (с нулевым средним и единичной дисперсией), т. е.

$$X_n = \varepsilon_n, \qquad n = 1, 2, \dots$$

В неизвестный момент времени $\theta \geqslant 1$ происходит разладка (изменение статистических свойств) процесса X_n , которая состоит в том, что для $n \geqslant \theta$ процесс X задается уравнением типа AR(1), то есть

$$X_n = \alpha_0 + \alpha_1 X_{n-1} + \varepsilon_n, \qquad n \geqslant \theta,$$

где $|\alpha_1| < 1$.

Построить процедуру обнаружения разладки, основанную на статистике кумулятивных сумм, для обнаружения момента θ . Параметры α_0 , α_1 процесса считать известными. Привести формулы для отношения правдоподобия, а также для одного шага итеративного алгоритма кумулятивных сумм. В какой момент следует поднимать тревогу об обнаружении разладки?

- 6. Провести моделирование для определения оперативных характеристик процедуры обнаружения разладки, разработанной в задаче 5. Считать заданными параметры $\alpha_0 = 0, \alpha_1 = 0.8$.
 - (а) При использовании статистики $\gamma = (\gamma_n)_{n=1,2,\dots}$ прежде всего необходимо подобрать значение порога $B = B_T$ в зависимости

от значения параметра T так, чтобы $\tau(B_T; \{\gamma_n\}) \in \mathcal{M}_T$. Требуется подсчитать (с помощью метода Монте-Карло) и дать в виде графика значения величины

$$\mathbb{T}_{\text{CUSUM}}(B) = \mathcal{E}_{\infty} \tau(B; \{\gamma_n\})$$

для разных значений B (и малых и больших).

(b) С помощью метода Монте-Карло подсчитать и дать в виде графика значения величины

$$\mathbb{R}_{\text{CUSUM}}(B) = \mathcal{E}_0 \tau(B; \{\gamma_n\}).$$

для разных значений B (и малых и больших). Графики нарисовать для достаточно частых значений B.

7. Вам выданы файлы sig1.train (обучающий) и sig1.test.public (валидационный) (третий файл sig1.test.private имеется у лектора). Обучающий файл содержит два столбца, причем первый столбец — это реализация X_1, \ldots, X_{1000} некоторого случайного процесса, полученная следующим образом:

$$X_n = egin{cases} X_n^\infty, & ext{если } n \notin [heta, heta + \Delta], \ X_n^0, & ext{если } n \in [heta, heta + \Delta], \end{cases}$$

а второй столбец — это индикатор действия процесса X_n^0 , т. .е. процесс

$$Y_n = \mathbb{1}_{[\theta, \theta + \Delta]}(n) = \begin{cases} 0, & \text{если } n \notin [\theta, \theta + \Delta], \\ 1, & \text{если } n \in [\theta, \theta + \Delta]. \end{cases}$$

Сечения процесса X могут быть как зависимы, так и независимы.

(a) Предложите какие-либо модели временных рядов X_n^0 и X_n^∞ , адекватно описывающие наблюдения обучающей выборки.

- (b) Используя предложенные модели и рассмотренные на лекциях и семинарах подходы (полезно также рассматривать и их композиции), предложите алгоритм обнаружения разладки процесса X. Этот алгоритм должен работать в режиме реального времени, т.е. для вынесения решения о разладке в момент n он не может использовать всю доступную траекторию процесса X, а может использовать лишь наблюдения до момента n включительно. (Тем не менее, для построения алгоритма можно использовать все доступные данные).
- (с) Реализуйте этот алгоритм в программном коде.
- (d) Проверьте его работу на обучающих данных, нарисуйте траекторию статистики этого алгоритма, сравните ее с индикатором разладки.
- (e) Нарисуйте траекторию статистики этого алгоритма на тестовых данных, вставьте в отчет рисунок. Сохраните эту траекторию в текстовый файл (по одному значению на строку) и пришлите вместе с исходным кодом, реализующим метод обнаружения разладки.

Вариант 2

- 1. По выборке (X_1, \ldots, X_n) из пуассоновского распределения $\Pi(\lambda)$ построить критерий Неймана-Пирсона для проверки гипотезы \mathbb{H}_0 : $\lambda = \lambda_0$ против альтернативы \mathbb{H}_1 : $\lambda = \lambda_1$, где $0 < \lambda_0 < \lambda_1$.
- 2. В последовательности ξ_1, \ldots, ξ_n независимых испытаний, выполненных согласно схеме Бернулли, $P(\xi_i = 1) = p, P(\xi_i = 0) = 1 p$. Построить критерий проверки гипотезы $\mathbb{H}_0: p = 0$ против альтернативы $\mathbb{H}_1: p = 0.01$ и определить наименьший объем выборки, при котором вероятности ошибок 1 и 2 родов не превышают 0.01.
- 3. Пусть гипотезы \mathbb{H}_0 и \mathbb{H}_1 имеют вид

$$\mathbb{H}_0: f(x) = \theta_0^{-1} \exp(-x/\theta_0), \quad x > 0;$$

 $\mathbb{H}_1: f(x) = \theta_1^{-1} \exp(-x/\theta_1), \quad x > 0, \quad \theta_1 = 2\theta_0;$

Построить процедуру последовательного критерия отношения правдоподобия различения гипотез \mathbb{H}_0 и \mathbb{H}_1 при заданных величинах вероятностей ошибок первого и второго рода $\alpha = \beta \leqslant 0.05$.

- 4. Провести моделирование для сравнения критерия Неймана-Пирсона и последовательного критерия отношения правдоподобия в задаче 3. В этом моделировании:
 - (а) Для заданных уровня значимости $\alpha_i = i\Delta, \Delta = 0.01, i = 1, \ldots, 99$, и вероятности ошибки второго рода $\beta_i = \alpha_i$ подсчитать объем наблюдений, требуемый в критерии Неймана-Пирсона для достижения этих характеристик.
 - (b) Проделать то же самое для последовательного критерия отношения правдоподобия.

- (c) Привести графическое сравнение зависимости объема требуемых данных от требуемого уровня значимости $n(\alpha)$ для двух критериев, сделать выводы.
- (d) Изменяется ли соотношение между требуемыми объемами выборок при изменении отношения $\gamma = \theta_0/\theta_1$ в рассматриваемых гипотезах? Построить зависимости $n(\gamma)$ для двух критериев при некотором фиксированном уровне значимости α .
- 5. Процесс $X = (X_n)_{n=1,2,...}$, наблюдаемый в режиме реального времени, задается нормально распределенным белым шумом (с нулевым средним и единичной дисперсией), т. е.

$$X_n = \varepsilon_n, \qquad n = 1, 2, \dots$$

В неизвестный момент времени $\theta \geqslant 1$ происходит разладка (изменение статистических свойств) процесса X_n , которая состоит в том, что для $n \geqslant \theta$ процесс X задается уравнением типа ARCH(1), то есть

$$X_n = \sigma_n \varepsilon_n, \qquad \sigma_n^2 = \alpha_0 + \alpha_1 X_{n-1}^2, \qquad n \geqslant \theta,$$

где $|\alpha_1| < 1$.

Построить процедуру обнаружения разладки, основанную на статистике Ширяева-Робертса, для обнаружения момента θ . Параметры α_0, α_1 процесса считать известными. Привести формулы для отношения правдоподобия, а также для одного шага итеративного алгоритма Ширяева-Робертса. В какой момент следует поднимать тревогу об обнаружении разладки?

6. Провести моделирование для определения оперативных характеристик процедуры обнаружения разладки, разработанной в задаче 5. Считать заданными параметры $\alpha_0 = 0.146, \alpha_1 = 0.107$.

(а) При использовании статистики $\gamma = (\gamma_n)_{n=1,2,...}$ прежде всего необходимо подобрать значение порога $B = B_T$ в зависимости от значения параметра T так, чтобы $\tau(B_T; \{\gamma_n\}) \in \mathcal{M}_T$. Требуется подсчитать (с помощью метода Монте-Карло) и дать в виде графика значения величины

$$\mathbb{T}_{SR}(B) = \mathcal{E}_{\infty} \tau(B; \{\gamma_n\})$$

для разных значений B (и малых и больших).

(b) С помощью метода Монте-Карло подсчитать и дать в виде графика значения величины

$$\mathbb{R}_{SR}(B) = \mathcal{E}_0 \tau(B; \{\gamma_n\}).$$

для разных значений B (и малых и больших). Графики нарисовать для достаточно частых значений B.

7. Вам выданы файлы sig2.train (обучающий) и sig2.test.public (валидационный) (третий файл sig2.test.private имеется у лектора). Обучающий файл содержит два столбца, причем первый столбец — это реализация X_1, \ldots, X_{1000} некоторого случайного процесса, полученная следующим образом:

$$X_n = egin{cases} X_n^\infty, & ext{ecли } n \notin [heta, heta + \Delta], \ X_n^0, & ext{ecли } n \in [heta, heta + \Delta], \end{cases}$$

а второй столбец — это индикатор действия процесса X_n^0 , т. .е. процесс

$$Y_n = \mathbb{1}_{[\theta, \theta + \Delta]}(n) = \begin{cases} 0, & \text{если } n \notin [\theta, \theta + \Delta], \\ 1, & \text{если } n \in [\theta, \theta + \Delta]. \end{cases}$$

Сечения процесса X могут быть как зависимы, так и независимы.

(a) Предложите какие-либо модели временных рядов X_n^0 и X_n^∞ , адекватно описывающие наблюдения обучающей выборки.

- (b) Используя предложенные модели и рассмотренные на лекциях и семинарах подходы (полезно также рассматривать и их композиции), предложите алгоритм обнаружения разладки процесса X. Этот алгоритм должен работать в режиме реального времени, т.е. для вынесения решения о разладке в момент n он не может использовать всю доступную траекторию процесса X, а может использовать лишь наблюдения до момента n включительно. (Тем не менее, для построения алгоритма можно использовать все доступные данные).
- (с) Реализуйте этот алгоритм в программном коде.
- (d) Проверьте его работу на обучающих данных, нарисуйте траекторию статистики этого алгоритма, сравните ее с индикатором разладки.
- (e) Нарисуйте траекторию статистики этого алгоритма на тестовых данных, вставьте в отчет рисунок. Сохраните эту траекторию в текстовый файл (по одному значению на строку) и пришлите вместе с исходным кодом, реализующим метод обнаружения разладки.