Counting Inversion

Counting Inversion

- Given 'n' numbers $a_1, a_2, \dots a_n$
- Two indices i < j form an inversion if $a_i > a_j$
- for example

Indices	1	2	3	4
Elements	10	7	9	12

- Inversion
 - 10-7 and 10-9
- Simple implementation takes (brute force) O(n²)

Counting Inversion: Divide & Conquer

• Count the number of inversion

Inversion = 3 +

Inversion = 3 + 1

Inversion = 3 + 1

Inversion = 3 + 1 + 0 + 0 + 6 + 3 + 0 + 0

Inversion = 3 + 1 + 0 + 0 + 6 + 3 + 0 + 0

Total Inversion = 13 + 7 + 2 = 22

Counting Inversion

- Merge-and-Count (A,B)
 - Maintain a *Current pointer into each list, initialized to* point to the front elements
 - Maintain a variable *Count for the number of inversions, initialized* to 0
 - While both lists are nonempty {
 - Let a_i and b_j be the elements pointed to by the Current pointer
 - Append the smaller of these two to the output list
 - If $b_i < a_i$ then
 - ◆ Increment Count by the number of elements remaining in A
 - Endif
 - Advance the *Current pointer in the list from which the*
 - smaller element was selected.}
 - once one list is empty, append the remainder of the other list to the output
 - Return Count and the merged list

Counting Inversion

- Sort-and-Count(L) {
 - if list L has one element return 0 and the list L
 - Divide the list into two halves A and B
 - $(\mathbf{r}_{\mathbf{A}}, \mathbf{A}) = \mathbf{Sort} \mathbf{and} \mathbf{Count}(\mathbf{A})$
 - $(r_B, B) = Sort-and-Count(B)$
 - (r, L) = Merge-and-Count(A, B)
 - return $r = r_A + r_B + r$ and the sorted list L

The Recurrence relation

$$T(n) \le T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) \Rightarrow T(n) = O(n \log n)$$

