- 1) Zeigen Sie für alle $n \in \mathbb{N}$, dass $3^n 1$ ohne Rest durch 2 dividierbar ist.
- 2) Zeigen Sie für alle $n \in \mathbb{N}$, $n \ge 12$, dass n = 4a + 5b, wobei $a, b \in \mathbb{N}$.
- 3) Bestimmen Sie minimale, maximale, kleinste sowie größte Elemente der partiellen Ordnung $R = \{(a, a), (a, b), (a, c), (a, d), (b, b), (b, c), (b, d), (c, c), (d, d)\}$ über der Menge $M = \{a, b, c, d\}$.
- 4) Betrachten Sie die folgenden Relationen auf \mathbb{N} :
 - $R_1 := \{(0,0), (1,1), (2,2)\}$
 - $R_2 := \{(n,m) \mid n > m\}$
 - $R_3 := \{(n,m) \mid n = 3 \cdot m\}$
 - $R_4 := \{(n,m) \mid n = m\}$
 - $R_5 := \varnothing$

Welche Relation besitzt welche Eigenschaften? Welche Relationen sind Äquivalenzrelationen?

	reflexiv	irreflexiv	symmetrisch	antisymmetrisch	transitiv
R_1					
R_2					
R_3					
R_4					
R_5					

5) Zeigen Sie, dass die Verfeinerungsordnung (Definition 2.23) eine partielle Ordnung ist. Ist sie total?