МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа природных ресурсов Направление подготовки 18.04.01 «Химическая технология» Образовательная программа «Химическая технология подготовки нефти и газа»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 4

По дисциплине			
РҮТНО N ДЛЯ ЗАДАЧ ХИМИЧЕСКОЙ ТЕХНОЛОГИ И			

Студент

Группа	ФИО	Подпись	Дата
2ДМ22	Лукьянов Д.М.	Syl	21.12.2023

Руководитель

Должность	ФИО	Ученая степень, звание	Подпись	Дата
доцент ОХИ ИШПР	Чузлов В.А.	к.т.н.		22.12.2023

ЗАДАНИЕ 1

Найдите минимум следующих функций, используя методы минимизации, доступные в функции scipy.optimize.minimize(). Начальное приближение: $x_0 = [0,0]$.

1. Функция Экли:

$$f(x,y) = -20 \exp \left[-0.2\sqrt{0.5(x^2 + y^2)} \right] - \exp[0.5(\cos(2\pi x) + \cos(2\pi y))] + e + 20$$

2. Функция Била:

$$f(x,y) = (1.5 - x + xy)^2 + (2.25 - x + xy^2)^2 + (2.625 - x + xy^3)^2$$

3. Функция Гольдшейна-Прайса:

$$f(x,y) = [1 + (x + y + 1)^{2}(19 - 14x + 3x^{2} - 14y + 6xy + 3y^{2})] \cdot [30 + (2x - 3y)^{2}(18 - 32x + 12x^{2} + 48y - 36xy + 27y^{2})]$$

4. Функция Матьяса:

$$f(x,y) = 0.26(x^2 + y^2) - 0.48xy$$

Программная реализация (в Google Colab):

```
Cell 1
!pip install pygad

Cell 2

from scipy.optimize import minimize
from math import *
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from scipy.integrate import solve_ivp
import pygad as ga

Cell 3
```

```
def ecly(X):
    x, y = X
    x, y = np.array(x), np.array(y)
    res = -20 * np.exp(-0.2 * (0.5 * (x**2 + y**2))**0.5) - \
        np.exp(0.5 * (np.cos(2 * pi * x) + np.cos(2 * pi * y))) + np.e + 20
    return res

def Beel(X):
```

```
x, y = X
  x, y = np.array(x), np.array(y)
  res = (1.5 - x + x * y)**2 + (2.25 - x + x * y**2)**2 + (2.625 - \
    x + x*y**3)**2
  return res
def Gold_Price(X):
  x, y = X
  x, y = np.array(x), np.array(y)
  res = (1 + (x + y + 1)**2 * (19 - 14 * x + 3 * x**2 - 14 * y + 6 * x * y + )
    3 * y**2)) * (30 + (2 * x - 3 * y)**2 * (18 - 32 * x + 12 * x**2 + )
    48 * y - 36 * x * y + 27 * y**2))
  return res
def Mat(X):
 x, y = X
  x, y = np.array(x), np.array(y)
  res = 0.26 * (x**2 + y**2) - 0.48 * x * y
  return res
Cell 4
answ = minimize(ecly, (0, 0), method='BFGS')
answ
Cell 5
answ = minimize(ecly, (0, 0), method='Nelder-Mead')
answ
Cell 6
answ = minimize(ecly, (0, 0), method='CG')
answ
Cell 7
span = 1
x = np.linspace(-span, span, 100)
y = np.linspace(-span, span, 100)
cmap = matplotlib.cm.magma_r
fig = plt.figure(figsize=(8,6), dpi=450)
ax = fig.add_subplot(xlim=[x[0], x[-1]], ylim=[y[0], y[-1]])
X, Y = np.meshgrid(x, y)
Z = ecly((X, Y))
ax.contourf(X, Y, Z, cmap=cmap)
A = matplotlib.colors.Normalize(np.min(Z), np.max(Z))
cbar = fig.colorbar(matplotlib.cm.ScalarMappable(norm=A, cmap=cmap), ax=ax);
```

```
Cell 8
answ = minimize(Beel, (0, 0), method='BFGS')
Cell 9
answ = minimize(Beel, (0, 0), method='Nelder-Mead')
answ
Cell 10
answ = minimize(Beel, (0, 0), method='CG')
Cell 11
x = np.linspace(2.95, 3.05, 100)
y = np.linspace(0.45, 0.55, 100)
cmap = matplotlib.cm.magma_r
fig = plt.figure(figsize=(8,6), dpi=450)
ax = fig.add_subplot(xlim=[x[0], x[-1]], ylim=[y[0], y[-1]])
X, Y = np.meshgrid(x, y)
Z = Beel((X, Y))
ax.contourf(X, Y, Z, cmap=cmap)
A = matplotlib.colors.Normalize(np.min(Z), np.max(Z))
cbar = fig.colorbar(matplotlib.cm.ScalarMappable(norm=A, cmap=cmap), ax=ax);
Cell 12
answ = minimize(Gold Price, (0, 0), method='BFGS')
answ
Cell 13
answ = minimize(Gold_Price, (0, 0), method='Nelder-Mead')
answ
Cell 14
answ = minimize(Gold_Price, (0, 0), method='CG')
answ
Cell 15
span = 5
x = np.linspace(-0.7, -0.5, 100)
y = np.linspace(-0.5, -0.3, 100)
cmap = matplotlib.cm.magma_r
fig = plt.figure(figsize=(8,6), dpi=450)
ax = fig.add_subplot(xlim=[x[0], x[-1]], ylim=[y[0], y[-1]])
X, Y = np.meshgrid(x, y)
Z = Gold_Price((X, Y))
ax.contourf(X, Y, Z, cmap=cmap)
```

```
A = matplotlib.colors.Normalize(np.min(Z), np.max(Z))
cbar = fig.colorbar(matplotlib.cm.ScalarMappable(norm=A, cmap=cmap), ax=ax);
Cell 16
answ = minimize(Mat, (0, 0), method='BFGS')
answ
Cell 17
answ = minimize(Mat, (0, 0), method='Nelder-Mead')
Cell 18
answ = minimize(Mat, (0, 0), method='CG')
answ
Cell 19
span = 1
x = np.linspace(-span, span, 100)
y = np.linspace(-span, span, 100)
cmap = matplotlib.cm.magma_r
fig = plt.figure(figsize=(8,6), dpi=450)
ax = fig.add_subplot(xlim=[x[0], x[-1]], ylim=[y[0], y[-1]])
X, Y = np.meshgrid(x, y)
Z = Mat((X, Y))
ax.contourf(X, Y, Z, cmap=cmap)
A = matplotlib.colors.Normalize(np.min(Z), np.max(Z))
cbar = fig.colorbar(matplotlib.cm.ScalarMappable(norm=A, cmap=cmap), ax=ax);
```

Ответ:

Минимум функции Экли:

1. По методу BFGS:

$$f_{min} = f(0,0) = 0$$

2. По методу Нельдера-Мида

$$f_{min} = f(0,0) = 0$$

3. По методу СG:

$$f_{min} = f(0,0) = 0$$

Глобальный минимум для функции Экли найден

Рисунок 1 – Функция Экли

Минимум функции Била:

1. По методу BFGS

$$f_{min} = f(3.0, 0.5) = 0$$

2. По методу Нельдера-Мида

$$f_{min} = f(3.0, 0.5) = 0$$

3. По методу СG:

$$f_{min} = f(3.0, 0.5) = 0$$

Глобальный минимум для функции Била найден

Рисунок 2 – Функция Била

Минимум функции Гольдшейна-Прайса:

4. По методу BFGS

$$f_{min} = f(-0.6, -0.4) = 30$$

5. По методу Нельдера-Мида

$$f_{min} = f(-0.6, -0.4) = 30$$

6. По методу CG:

$$f_{min} = f(-0.6, -0.4) = 30$$

Глобальный минимум для функции Гольдштейна-Прайса не найден при начальном приближении $x_0 = [0,0]$

Рисунок 3 – Функция Гольдшейна-Прайса

Минимум функции Матьяса:

7. По методу BFGS

$$f_{min} = f(0,0) = 0$$

8. По методу Нельдера-Мида

$$f_{min} = f(0,0) = 0$$

9. По методу СG:

$$f_{min} = f(0,0) = 0$$

Глобальный минимум для функции Матьяса найден

Рисунок 4 – Функция Матьясаф

ЗАДАНИЕ 2

Пусть дана схема химических превращеий:

$$\begin{array}{c}
k_1 & k_2 \\
A \to 2B \rightleftharpoons C \\
k_2
\end{array}$$

Необходимо определить с помощью генетического алгоритма и метода Нелдера-Мида (можно воспользоваться функцией scipy.optimize.minimize(), указав соответсвующее значение опционального аргумента method) константы скоростей реакции: k_1, k_2 и k_3 , если известно, что к моменту времени t=1(c) концентрации компонентов равны: $C_A=0.1423, C_B=1.5243, C_C=0.5956$ моль/л.

Начальные условия: $C_A(0)=1.0$; $C_B=0.0$; $C_C=0.5$ моль/л

Програмная реализация реализация (в Google Colab):

```
Cell 20
t_{start}, t_{end}, h = 0, 1, 0.01
t = np.arange(t_start, t_end+h, h)
initial_composition = [1.0, 0.0, 0.5]
actual_values = [0.1423, 1.5243, 0.5956]
k = (1.0, 1.0, 1.0)
def equations(t, c, k):
  right_parts = [
  (-1) * k[0] * c[0],
  2 * k[0] * c[0] - 2 * k[1] * c[1]**2 + 2 * k[2] * c[2],
  k[1] * c[1]**2 - k[2] * c[2]
  1
  return right parts
def obj_func(ga_instance, k, sol_ind=0):
  # решение системы ОДУ численным методом
  sol = solve_ivp(equations, (t_start, t_end), initial_composition, args=(k,))
  c = sol.y
  return 1/sum((c[i][-1] - actual_values[i]) ** 2
    for i in range(len(actual_values)))
genes_spaces = [{'low': 0.001, 'high': 2},
                {'low': 0.001, 'high': 2},
                {'low': 0.001, 'high': 2},]
ga_instance = ga.GA(50, 20, obj_func, sol_per_pop=100, num_genes=3,
    mutation_num_genes=1, init_range_low=0, gene_space=genes_spaces)
ga_instance.run()
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(f"Parameters of the best solution : {solution}")
print(f"Fitness value of the best solution = {solution_fitness}")
Cell 21
t_{start}, t_{end}, h = 0, 2, 0.01
t = np.arange(t_start, t_end+h, h)
```

sol = solve_ivp(equations, (t_start, t_end), initial_composition, t_eval=t,

```
args=(solution, ))
c_a, c_b, c_c, t_x = sol.y[0], sol.y[1], sol.y[2], sol.t
t_{exp} = [1, 1, 1]
xlim = [t[0], t[-1]]
fig = plt.figure(figsize=(8,6), dpi=450)
ax = fig.add_subplot(xlim=xlim)
ax.plot(t x, c a, 'b', label='$C a$')
ax.plot(t_x, c_b, 'r', label='$C_b$')
ax.plot(t_x, c_c, 'g', label='$C_c$')
ax.scatter(t_exp[0], actual_values[0], c='b', label='$C_a$ эκсπ')
ax.scatter(t_exp[1], actual_values[1], c='r', label='$C_b$ эκсπ')
ax.scatter(t_exp[2], actual_values[2], c='g', label='$C_c$ эκcπ')
ax.legend()
ax.set_ylabel('Концентрация, моль/л')
ax.set xlabel('Время, c');
Cell 22
t_{start}, t_{end}, h = 0, 1, 0.01
t = np.arange(t_start, t_end+h, h)
k1bounds = (0, 2)
k2bounds = (0, 2)
k3bounds = (0, 2)
bounds = k1bounds, k2bounds, k3bounds
def obj_func2(k):
  # решение системы ОДУ численным методом
  sol = solve_ivp(equations, (t_start, t_end), initial_composition, args=(k,))
  c = sol.y
  return sum((c[i][-1] - actual_values[i]) ** 2
    for i in range(len(actual_values)))
solution2 = minimize(obj_func2, (1, 1, 1), method='Nelder-Mead', bounds=bounds)
print(solution2)
Cell 23
t_{start}, t_{end}, h = 0, 2, 0.01
t = np.arange(t start, t end+h, h)
sol = solve_ivp(equations, (t_start, t_end), initial_composition, t_eval=t,
                args=(solution2.x, ))
```

```
c_a, c_b, c_c, t_x = sol.y[0], sol.y[1], sol.y[2], sol.t

t_exp = [1, 1, 1]

xlim = [t[0], t[-1]]
fig = plt.figure(figsize=(8,6), dpi=450)
ax = fig.add_subplot(xlim=xlim)

ax.plot(t_x, c_a, 'b', label='$C_a$')
ax.plot(t_x, c_b, 'r', label='$C_b$')
ax.plot(t_x, c_c, 'g', label='$C_c$')
ax.scatter(t_exp[0], actual_values[0], c='b', label='$C_a$ эксп')
ax.scatter(t_exp[1], actual_values[1], c='r', label='$C_b$ эксп')
ax.scatter(t_exp[2], actual_values[2], c='g', label='$C_c$ эксп')

ax.legend()
ax.set_ylabel('Концентрация, моль/л')
ax.set_xlabel('Время, c');
```

```
print(f"Константы по методу ГА = {solution}")
print(f"Константы по методу Нелдера-Мида = {solution2.x}")
```

Ответ:

Cell 24

Константы по методу $\Gamma A = [1.95627708 \ 0.54764706 \ 1.69736111]$

Константы по методу Нелдера-Мида = $[1.95009038\ 0.33121762\ 0.82966647]$

Можно видеть, что подобранные значения не совпадают, что связано с недостаточным количеством экспериментальных значений. В действительности, оба метода решили задачу оптимизации корректно с математической точки зрения (рисунок 5-6).

Рисунок 5 — Профиль концентраций, полученный при использовании контант скоростей, подобранных по методу ΓA

Рисунок 6 – Профиль концентраций, полученный при использовании контант скоростей, подобранных по методу Нельдера-Мида