

Self-Attention through Kernel-Eigen Pair Sparse Variational Gaussian Processes

Yingyi Chen*,1 Qinghua Tao*

Qinghua Tao*,1 Francesco Tonin²

Johan A.K. Suykens¹

erc

*Equal contribution ¹ESAT-STADIUS, KU Leuven, Belgium ²LIONS, EPFL, Switzerland (most work done at ESAT-STADIUS, KU Leuven)

Summary

Building uncertainty-aware self-attention in Transformers with efficiency:

- Large capacities of Transformers can lead to overconfident predictions, risking of safety-critical issues;
- Bayesian inference, a good uncertainty quantification tool, alleviates overconfidence by providing predictions with confidence scores;
- We propose a new Bayesian self-attention based on Sparse Variational Gaussian Processes (SVGP);
- The time-complexity of our Bayesian self-attention is further reduced to $\mathcal{O}(s)$, s < N with Kernel Singular Value Decomposition (KSVD).

Background I: SVGP

Gaussian Process (GP) represents real-valued function $f(\cdot): \mathcal{X} \to \mathbb{R}$ with Gaussian distributions based on $\kappa(\cdot,\cdot): \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, positive-definite kernel:

Prior:
$$f(\cdot) \sim \mathcal{GP}(0, \kappa(\cdot, \cdot)) \Rightarrow f \sim \mathcal{N}(\mathbf{0}, K_{XX}), K_{XX} \coloneqq \left[\kappa(\mathbf{x}_i, \mathbf{x}_j)\right] \in \mathbb{R}^{N \times N}$$

Posterior: $f^*|X^*, X, \mathbf{y} \sim \mathcal{N}(K_{X^*X}(K_{XX} + \sigma^2 I_N)^{-1}\mathbf{y},$

• Time complexity of computing posterior is $\mathcal{O}(N^3)$.

 $K_{X^*X^*} - K_{X^*X}(K_{XX} + \sigma^2 I_N)^{-1}K_{XX^*}$

Sparse Variational Gaussian Process (SVGP) variationally approximates GP posterior with s inducing variables $\{Z_1, ..., Z_s\} \in \mathcal{X}$, $u[i] = f(Z_i)$:

Prior:
$$\binom{\mathbf{f}}{\mathbf{u}} \sim \mathcal{N}\left(\mathbf{0}, \begin{bmatrix} K_{XX} & K_{XZ} \\ K_{ZX} & K_{ZZ} \end{bmatrix}\right)$$
Posterior: $q(\mathbf{f}) = \mathcal{N}\left(K_{XZ}K_{ZZ}^{-1}\mathbf{m}_{\mathbf{u}}, K_{XX} - K_{XZ}K_{ZZ}^{-1}(K_{ZZ} - S_{\mathbf{u}\mathbf{u}})K_{ZZ}^{-1}K_{ZX}\right)$

• Posterior is based on $q(f) = \int p(f|u)q(u)du$ with variational distribution

$$q(u) = \mathcal{N}(m_u, S_{uu}), m_u \in \mathbb{R}^s, S_{uu} \in \mathbb{R}^{s \times s}.$$

- Evidence lower-bound: $\mathcal{L}_{\text{ELBO}} = \mathbb{E}_{q(f)}[\log p(y|f)] \text{KL}(q(u) || p(u))$
- Time complexity of computing posterior is $\mathcal{O}(s^3)$, s < N.

SVGP with Kernel-Eigen Features reduces time complexity by choosing inducing variables as the eigenvectors of K_{XX} , i.e., $u[i] := v_i$:

Prior:
$$\binom{f}{u} \sim \mathcal{N}\left(\mathbf{0}, \begin{bmatrix} K_{XX} & H\Lambda \\ \Lambda H^{\top} & \Lambda \end{bmatrix}\right)$$

Posterior: $q(f) = \mathcal{N}\left((H\Lambda)\Lambda^{-1}\boldsymbol{m}_{u}, K_{XX} - (H\Lambda)\Lambda^{-1}(\Lambda - S_{uu})\Lambda^{-1}(\Lambda H^{\top})\right)$

- $H := [\nu_1, ..., \nu_s] \in \mathbb{R}^{N \times s}$ contains the eigenvectors to the top-s nonzero eigenvalues of K_{XX} , i.e., $\Lambda = \text{diag}\{\lambda_1, ..., \lambda_s\}$.
- Time complexity of computing posterior is $\mathcal{O}(s)$, s < N.

Background II: KSVD

Self-Attention corresponds to Asymmetric Kernel: let $\{x_i \in \mathbb{R}^d\}_{i=1}^N$ be the inputs, then the queries, keys and values are

$$q(\mathbf{x}_i) = W_q \mathbf{x}_i, \quad k(\mathbf{x}_i) = W_k \mathbf{x}_i, \quad v(\mathbf{x}_i) = W_v \mathbf{x}_i.$$

The canonical self-attention is with attention weights:

$$\kappa_{\text{att}}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \text{softmax}(\langle W_q \boldsymbol{x}_i, W_k \boldsymbol{x}_j \rangle / \sqrt{d_k}), i, j = 1, ..., N,$$

where $\kappa_{\text{att}}(\cdot,\cdot)$: $\mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ serves as kernel function. Notice that in general,

$$\langle W_q x_i, W_k x_j \rangle \neq \langle W_q x_j, W_k x_i \rangle \Rightarrow \kappa_{\rm att}(x_i, x_j) \neq \kappa_{\rm att}(x_j, x_i),$$

 $\kappa_{\rm att}$ is asymmetric kernel function^[1]. Output is $o(x) = \sum_{j=1}^{N} v(x_j) \kappa_{\rm att}(x, x_j)$.

Kernel-Eigen Pair Sparse Variational Process

Pair of Adjoint Eigenfunctions for Self-Attention: the self-attention corresponds to a shifted eigenvalue problem^[1,2] w.r.t. attention matrix

$$K_{\rm att}H_r = H_e\Lambda \\ K_{\rm att}^\top H_e = H_r\Lambda$$

$$K_{\rm att}^\top H_e = H_r\Lambda$$

$$K_{\rm att}^\top K_{\rm att} = H_r\Lambda^2$$

$$K_{\rm att}^\top K_{\rm att} = H_r\Lambda^2$$
 Eigendecompositions w.r.t. symmetric kernels
$$K_{\rm att}K_{\rm att}^\top K_{\rm att}^\top K_{\rm att}$$

$$K_{\rm att}K_{\rm att}^\top K_{\rm att}^\top K_{\rm att}$$
 Symmetric...two SVGPs

Two SVGPs with adjoint kernel-eigen features:

Prior:
$$\begin{pmatrix} f^e \\ u^e \end{pmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K_{\text{att}} K_{\text{att}}^{\mathsf{T}} & H_e \Lambda^2 \\ \Lambda^2 H_e^{\mathsf{T}} & \Lambda^2 \end{bmatrix} \right)$$
 SVGP w.r.t. right singular vectors

Posterior:
$$q(f^e) \approx \mathcal{N}(e(X)\Lambda^{-1}m_u, e(X)\Lambda^{-2}S_{uu}e(X)^{\top})$$

$$\mu^e \qquad \Sigma^e := L^e(L^e)^{\top}$$

Prior:
$$\begin{pmatrix} \boldsymbol{f}^r \\ \boldsymbol{u}^r \end{pmatrix} \sim \mathcal{N} \left(\boldsymbol{0}, \begin{bmatrix} K_{\text{att}}^\mathsf{T} K_{\text{att}} & H_r \Lambda^2 \\ \Lambda^2 H_r^\mathsf{T} & \Lambda^2 \end{bmatrix} \right)$$
 SVGP w.r.t. left singular vectors

Posterior:
$$q(f^r) \approx \mathcal{N}(r(X)\Lambda^{-1}m_u, r(X)\Lambda^{-2}S_{uu}r(X)^{\top})$$

$$\mu^r \qquad \Sigma^r \coloneqq L^r(L^r)^{\top}$$

Outputs of the two SVGPs are obtained by the Monte-Carlo sampling:

$$F^e = \mu^e + L^e \epsilon$$
, $\epsilon \sim \mathcal{N}(0, I_N)$; $F^r = \mu^r + L^r \epsilon$, $\epsilon \sim \mathcal{N}(0, I_N)$.

Merge two SVGP outputs either by addition or concatenation schemes: Addition: $F^{\text{add}} := F^e + F^r \in \mathbb{R}^N$; Concatenation: $F^{\text{cat}} := [F^e; F^r] \in \mathbb{R}^{2N}$.

(a) Canonical Transformer

(b) KEP-SVGP

Self-Attention with KSVD: let $\kappa_{\rm att}(x_i,x_j)=\langle\phi_q(x_i),\phi_k(x_j)\rangle$, then the primal-dual representations of self-attention with KSVD gives^[1]

Equiv. under reg.
$$\mathcal{L}_{\text{KSVD}}$$
 Primal:
$$\begin{cases} e(x) = W_e^{\mathsf{T}} \phi_q(x) \\ r(x) = W_r^{\mathsf{T}} \phi_k(x) \end{cases}$$
 Dual:
$$\begin{cases} e(x) = \sum_{j=1}^{N} \mathbf{h}_{r_j} \kappa_{\text{att}}(x, x_j) \\ r(x) = \sum_{i=1}^{N} \mathbf{h}_{e_i} \kappa_{\text{att}}(x_i, x_i) \end{cases}$$

where $H_e \coloneqq \left[\boldsymbol{h}_{e_1}, \dots, \boldsymbol{h}_{e_N} \right]^{\mathsf{T}}$, $H_r \coloneqq \left[\boldsymbol{h}_{r_1}, \dots, \boldsymbol{h}_{r_N} \right]^{\mathsf{T}} \in \mathbb{R}^{N \times s}$ are column-wisely the left and right singular vectors of the attention matrix K_{att} .

Experiments

- Good, robust and efficient performances on in-distribution, distributionshift and out-of-distribution benchmarks.
- Methods in comparison:
 - i) uncertainty estimation baselines implemented into transformers;
 - ii) deep kernel learning implemented into transformers;
 - iii) Bayesian transformers.
- Rationales behind KEP-SVGP's good performance in
 - i) Distribution-shift robustness: KSVD filters out noisy patterns;
 - ii) OOD detection: KSVD differentiates different eigen spaces.

In-distribution data:

Dataset	Method	ACC (1)	AURC (↓)	AUROC (1)	FPR95 (↓)
CIFAR-10	MSP [Hendrycks & Gimpel, 2017]	83.50 ± 0.43	42.60 ± 1.84	86.15 ± 0.35	66.51 ± 2.19
	Temp. Scaling [Guo et al., 2017]	83.50 ± 0.43	40.47 ± 1.63	86.55 ± 0.36	65.10 ± 2.23
	MC Dropout [Gal&Ghahramani, 2016]	83.69 ± 0.51	41.36 ± 1.45	86.18 ± 0.28	66.49 ± 1.96
[Krizhevsky et al., 2009]	KFLLLA [Kristiadi et al., 2020]	83.54 ± 0.45	40.12 ± 1.65	86.70 ± 0.50	63 . 13 \pm 1.75
2000]	SV-DKL [Wilson et al., 2016]	83.82 ± 0.58	39.78 ± 1.91	86.57 ± 0.38	65.02 ± 1.33
	KEP-SVGP (ours)	84 . 70 \pm 0.61	35 . 15 \pm 2.65	87.20 ± 0.65	64.93 ± 1.41
IMDB [Maas et al.,	MSP [Hendrycks & Gimpel, 2017]	88.17 ± 0.52	35.27 ± 3.04	82.29 ± 0.87	71.41 ± 1.57
	Temp. Scaling [Guo et al., 2017]	88.17 ± 0.52	35.27 ± 3.04	82.29 ± 0.87	71.08 ± 1.55
	MC Dropout [Gal&Ghahramani, 2016]	88.34 ± 0.65	34.62 ± 3.17	82.24 ± 0.83	71.65 ± 2.03
	KFLLLA [Kristiadi et al., 2020]	88.17 ± 0.52	35.20 ± 3.01	82.31 ± 0.86	71.07 ± 1.51
2011]	SV-DKL [Wilson et al., 2016]	88.86 ± 1.04	59.84 ± 18.90	73.20 ± 5.56	69.91 ± 3.68
	SGPA [Chen&Li, 2023]	88.36 ± 0.75	33.14 ± 3.46	82.78 ± 0.44	70.85 ± 2.46
	KEP-SVGP (ours)	89 . 01 \pm 0.14	30.69 ± 0.69	83 . 22 \pm 0.31	68 . 15 \pm 0.95

Distribution-shift data:

Out-of-distribution detection with AUROC (1):

ID	ID CIFAR-10			CIFAR-100		
OOD	SVHN	CIFAR-100	LSUN	SVHN	CIFAR-10	LSUN
MSP	86.56	81.50	87.48	75.83	67.14	74.97
MC Dropout	86.56	81.67	88.19	76.62	67.54	74.94
KFLLLA	75.95	75.67	80.00	72.81	65.37	71.25
SV-DKL	75.48	76.81	82.02	74.35	65.72	72.03
KEP-SVGP (ours)	84.75	82.32	91.50	79.98	67.51	78.22

References:

Paper: Co

Code:

[1] Chen et al. "Primal-Attention: self-attention through asymmetric kernel SVD in primal representation." NeurIPS, 2023.

[2] Suykens. "SVD revisited: A new variational principle, compatible feature maps and nonlinear extensions." *Applied and Computational Harmonic Analysis*, 2016.

Correspondence to: Yingyi Chen (yingyi.chen@esat.kuleuven.be)