

	• B树			
	• B+树			
Na Park Mooc	J. J		A STANCOC	No C

- · 是B树的一种变形
- 在叶结点上存储信息的树
 - 所有的关键码均出现在叶结点上
 - 各层结点中的关键码均是下一层相应结点中最大关键码(或最小关键码)的复写

m阶B+树的结构定义如下:

- (1)每个结点至多有m个子结点;
- (2)每个结点(除根外)至少有 $\lceil m/2 \rceil$ 个子结点; (3)根结点至少有两个子结点;
- (4)有k个子结点的结点必有k个关键码。

B+树的查找

- 查找应该到叶结点层
 - 在上层已找到待查的关键码,并不停止
 - 而是继续沿指针向下一直查到叶结点层的这个关键码
- B+树的叶结点一般链接起来,形成一个双链表
 - 适合顺序检索(范围检索)
 - 实际应用更广

B+树的插入

- 插入——分裂
 - ·过程和B树类似
 - 注意保证上一层结点中有这两个结点的最大关键码(最小关键码)

插入15

插入15后

插入17

B+树的删除

- •当关键码不满时,与左右兄弟进行调整、合并的处理和B树 类似
- •关键码在叶结点层删除后,其在上层的复本可以保留,做为
- 一个"分界关键码"存在
- •也可以替换为新的最大关键码(或最小关键码)

B+树的删除

