CISC260 Machine Organization and Assembly Language

Boolean logic, Gates, NAND universality

Any function can be implemented in Boolean logic.

 Function is a mapping from input variables I to output value O.

F:
$$I \rightarrow O$$
, where $I \in \{0,1\}^N$, $O \in \{0,1\}^M$.

Inputs	Output
ABC	XY
000	00
001	01
010	01
011	10
100	01
101	10
110	10
111	11

CISC260, Li Liao

Boolean logic

- Boolean variables
- Boolean operators AND (&), OR (|), NOT(~)

$$Y = AND (A, B) = A \& B$$
 $Y = OR (A, B) = A | B$

$$Y = OR(A, B) = A \mid B$$

$$Y = NOT(A) = \sim A$$

Boolean expressions: made of Boolean variables and Boolean operators much like arithmetic expressions.

Boolean variables: take values {0, 1} or {F, T}. Boolean operators:

- (&: .)
- (| : + module 2)
- (~:.(-1))

E.g., Y=A&B | C&~B

Precedence(high to low): ~, &, |

Meaning of a Boolean Expression

- Each such expression implies a truth table
 performs a particular function
- *E.g.* Y=A&B|C&~B

<u>A</u>	В	C	<u>Y</u>
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	4	4	4

Canonical representation

every Boolean function (defined in a truth can be expressed using at least one Boolean expression called the canonical representation.

Start with a truth table

Procedure:

- And together all literals (negate if 0) in each row (conjunct)
- Or together rows that have true output
- Repeat for each output bit of the function.

The Boolean expression thus obtained is called the "sum-of-product" canonical form.

权威的, 牧师的, 依教规的

Conclusion: Every Boolean function, no matter how complex, can be expressed using three Boolean operators: AND, OR and NOT.

conjuncts.
~A&~B&~C
~A&~B&C
~A&B&~C
~A&B&C
A&~B&~C
A&~B&C

A&B&~C

A&B&C

Conjuncts

Inputs	Output
<u>ABC</u>	XY
000	01
001	00
010	00
011	10
100	10
101	00
110	11
111	00

define x first: x could be—1. ~A&B&C I A&~B&~C I A&B&~C

define y: y could be — ~A&~B&~C I A&B&~C

	Inputs ₁	_ı <u>Ou</u> tput	
Conjuncts:	ABC	XY	
~A&~B&~C	000	01	
~A&~B&C	001	00	
~A&B&~C	010	00 X=-A&B&C	
~A&B&C	011	10 A&~B&~(S
A&~B&~C	100	10 A&B&~C	
A&~B&C	101	00	
A&B&~C	110	1 1 1	
A&B&C	111	00	
	ı	' ∐	

CISC260, Li Liao

		•	
•	ีเดท	IIII	cts:
	-	101	U U U .

~A	9.0	VD	Q.	~	
\mathcal{H}	N CX	D	Q	,	

~A&~B&C

~A&B&~C

~A&B&C

A&~B&~C

A&~B&C

A&B&~C

A&B&C

Inputs.	Output
-	

ABC	XY

000 01

001 0

010 0

011 | 10

100

101

110

111

X=~A&B&C |A&~B&~C |A&B&~C

Y=~A&~B&~C |A&B&~C

CISC260, Li Liao

Inputs	Output
ABC	XY
000	01
001	00 X=~A&B&C A&~B&~C A&B&~C
010	00
011	10 Y=~A&~B&~C A&B&~C
100	10
101	00
110	11
111	00

Alternative Procedure:

OR together all literals (negate if true) in each row AND together rows that have false output Repeat for each output bit of the function.

The semantic/syntax needs to be consistent

The Boolean expression thus obtained has the so-called the "product-of-sum" form.

This procedure works for the same reason that the canonical procedure works.

Just look at the truth tables for AND, OR. They are "identical" in the sense that AND to 1 is just like OR to 0, vice versa. Namely, AND has value 1 iff all input values are 1, and OR has value 0 iff all input values are 0.

Therefore, this alternative procedure is to define the output from the zero's perspective.

NB: equivalence of sum-of-product and product-of-sum can also be proved using DeMorgan's Law. (though the logic could be the other way around, or circular.)

The number of Boolean functions that can be defined over n Boolean variables is

2 variables, each variable could have 2 values-0 and 1

All Boolean functions of 2 variables

the function you can define grows exponentially

Function	x	0	0	1	1
Function	y	0	1	0	1
Constant 0	0	0	0	0	0
And	$x \cdot y$	0	0	0	1
x And Not y	$x \cdot \overline{y}$	0	0	1	0
x	x	0	0	1	1
Not x And y	$\overline{x} \cdot y$	0	1	0	0
y	y	0	1	0	1
Xor	$x \cdot \overline{y} + \overline{x} \cdot y$	0	1	1	0
Or	x + y	0	1	1	1
Nor	$\overline{x+y}$	1	0	0	0
Equivalence	$x \cdot y + \overline{x} \cdot \overline{y}$	1	0	0	1
Not y	\overline{y}	1	0	1	0
If y then x	$x + \overline{y}$	1	0	1	1
Not x	\bar{x}	1	1	0	0
If x then y	$\overline{x} + y$	1	1	0	1
Nand	$\overline{x \cdot y}$	1	1	1	0
Constant 1	1	1	1	1	1

Gates implement Boolean logic

- Physical, Boolean Operator
 - A physical entity that implements a small truth table
 - E.g. AND, OR, NOT

How to wire the gates according to a Boolean expression?

 Can implement any Boolean expression with a collection of gates

Lowest precedence logical operator

- 1. Find outer-most operator
- 2. Replace with gate
- 3. Work recursively on input functions

Example

Any Function in Gates

- Combining: we can
 - Express any function with Boolean expressions
 - Implement any Boolean expression with gates
- → Can implement any function with gates

NAND gate universality

NAND gate AND gate followed by a nagation

Universality: Any Boolean expression can be implemented using NAND gates only.

NOT gate

AND gate

OR gate

Α	В	~(A&B)	A B	~A	~B	~(~A & ~B)
0	0	 1	0	1	1	0
0	1	1	1	1	0	1
1	0	1	1	0	1	1
1	1	0	1	0	0	1

From the truth table, we see A|B = \sim (\sim A & \sim B), which means

If we let $\sim A = C$ and $\sim B = D$, then we have $\sim (C\&D) = (\sim C)|(\sim D)$, which is DeMorgan's Law.

DeMorgan's Law: ~(A&B)=~A|~B

"Not A and B means neither A nor B"

Start with the left hand side, it is a NAND gate with inputs A, B.

Negate the input twice is still equal to the input itself. That is, ~~A = A. Recognize the OR gate implemented by 3 NAND gates.

To simplify logic/circuit design

■ Identity law: A + 0 = A and $A \cdot 1 = A$.

■ Zero and One laws: A + 1 = 1 and $A \cdot 0 = 0$.

■ Inverse laws: $A + \overline{A} = 1$ and $A \cdot \overline{A} = 0$.

■ Commutative laws: A + B = B + A and $A \cdot B = B \cdot A$.

Associative laws: A + (B + C) = (A + B) + C and $A \cdot (B \cdot C) = (A \cdot B) \cdot C$.

Distributive laws: $A \cdot (B + C) = (A \cdot B) + (A \cdot C)$ and $A + (B \cdot C) = (A + B) \cdot (A + C)$.

$$\overline{x \cdot y} = \overline{x} + \overline{y} \qquad \overline{(x+y)} = \overline{x} \cdot \overline{y}$$

DeMorgan's Law

Simplifying logic

$$Y = A&B \mid A \mid C$$

$$= AB+A+C$$

В

$$= A(1) + C$$
 law of 1's

Y

K-map

- Logic optimization
 - Very difficulty: NP-complete
 - Commercial software

Summary

- Any function on binary input/output can be implemented in Boolean logic
- Boolean logic can be implemented by physical devices – gates.
- Logic gates, as an abstraction, hide the physical details of the devices.
- Only need a small number of primitive gates, actually, only a single gate type NAND2 is enough.