

EE3510 TRUYỀN ĐỘNG ĐIỆN

Nhóm Truyền Động Điện

Viện Điện - Bộ Môn Tự Động Hóa Công Nghiệp

Đc: C9-104, Đại Học Bách Khoa Hà Nội

Nội dung bài giảng

- 1. Giới thiệu chung
- 2. Một số khái niệm
- 3. Các ứng dụng thực tế
- 4. Phân loại hệ truyền động điện
- 5. Đặc tính cơ, cơ điện.
- 6. Các chế độ làm việc
- 7. Vấn đề ổn định tĩnh của hệ truyền động

Giới thiệu môn học

• Mục đích:

- Cung cấp những kiến thức cơ bản về hệ truyền động điện công nghiệp
- Giúp người học có khả năng phân tích đánh giá và sử dụng các hệ truyền động điện cơ bản nhất

• Hình thức:

- Nghe giảng
- Tự học
- Bài tập
- Thí nghiệm

• Đánh giá

- Thi giữa kỳ (viết hoặc bài tập dài): 40%
- Thi cuối kỳ (viết): 60%
- Khuyến khích: cộng điểm khi thực hiện các bài tập mô phỏng

Giới thiệu môn học

• Tài liệu tham khảo:

Bài giảng

- [1] Bùi Quốc Khánh, Nguyễn Văn Liễn, "Cơ sở Truyền động điện"
- Tài liệu tiếng Anh:
 - [2] B. K. Bose, "Modern Power Electronics and AC Drives"
 - [3] Gobal K. Dubey, "Fundamentals of Electrical Drives"
 - [4] Ion Boldea & Syed Abu Nasar, "Electric Drives"
 - [5] Vedam Subrahmanyam, "Electric Drives. Concepts and Applications"
 - [6] Ned Mohan, "Electric Machines and Drives, a first course"
 - [7] Austin Hughes, "Electric Motors and Drives: Fundamentals, Types and Applications"
 - [8] Ned Mohan, "Power Electronics"
 - [9] P.C. Sen, "Principles of Electric Machines and Power Electronics", 3rd Edition
 - [10] Jrg-andreas Dittrich and Nguyen Phung Quang, "Vector Control of Three-Phase AC Machines"

Giới thiệu môn học

Nội dung môn học

- Chương 1. Những vấn đề chung và khái niệm
- Chương 2. Truyền động điện một chiều
- Chương 3. Truyền động điện xoay chiều không đồng bộ
- Chương 4. Truyền động điện xoay chiều đồng bộ
- Chương 5. Các loại động cơ khác
- Chương 6. Tính chọn mạch lực hệ truyền động điện

Lịch sử phát triển của máy điện

Cấu trúc hệ truyền động điện

DẢI CÔNG SUẤT

Phân loại

ĐẶC TÍNH CƠ CỦA MÁY ĐIỆN

• Đặc tính cơ là quan hệ giữa moment và tốc độ:

$$\omega = f(T)$$
 hoặc $T = f(\omega)$

- $(\omega_{rated}, T_{rated})$ điểm làm việc định mức
- *P*_{rated} công suất định mức
- ω_0 tốc độ làm việc không tải

Torque-speed characteristic

ĐẶC TÍNH CƠ CỦA MÁY ĐIỆN

• Đặc tính cơ tự nhiên tương ứng với

$$V = V_{rated}, f = f_{rated}$$

- $\Delta\omega$ độ sụt tốc độ (độ dốc)
- Độ cứng đặc tính cơ:

$$\beta = \frac{\Delta T}{\Delta \omega} = \frac{T_2 - T_1}{\omega_2 - \omega_1}$$

Đặc tính cơ nhân tạo: khi một trong các tham số đầu vào không phải là giá trị danh định

Torque-speed characteristic

ĐẶC TÍNH CƠ CỦA MÁY ĐIỆN

- Động cơ không đồng bộ:
 - T_{max} , ω_{max} moment tới hạn và tốc độ tới hạn
 - ω_s tốc độ từ trường quay
- Động cơ đồng bộ:
 - $\omega = \omega_s \ \forall T < T_m$, và $\Delta \omega = 0$

Đặc tính cơ của (a) Động cơ DC, (b) Động cơ KĐB, (c) Động cơ đồng bộ

CÁC CHẾ ĐỘ LÀM VIỆC

- Trạng thái động cơ (I và III) •
- Hãm tái sinh (góc II và IV):
 - $P_e < 0, P_m < 0$

Hãm động năng (góc II):

•
$$P_e = 0, P_m < 0$$

Hãm ngược (góc II và IV):

•
$$P_e > 0, P_m < 0$$

ĐẶC TÍNH CƠ PHỤ TẢI

$$T_L = constant$$
 [Nm]

$$T_L = T_{fs} \left(\frac{\omega}{\omega_{fs}}\right)^2$$

$$T_L = constant$$
 [Nm] $T_L = T_{fs} \left(\frac{\omega}{\omega_{fs}}\right)^2$ [Nm] $T_L = T_{rated} \times \left(\frac{\omega_{rated}}{\omega}\right)$ [Nm]

Đặc tính cơ tải ma sát khô

Đặc tính cơ tải Bơm/Quạt

Đặc tính cơ tải công suất không đổi

Chuyển động tịnh tiến

$$F_M - F_L = \frac{d}{dt}(Mv) = M\frac{dv}{dt} + v\frac{dM}{dt}$$

Chuyển động quay

$$T_M - T_L = \frac{d}{dt}(J\omega) = J\frac{d\omega}{dt} + \omega\frac{dJ}{dt}$$

❖ Với hệ truyền động quay sử dụng động cơ

$$T_{M} = (J_{M} + J_{L}) \frac{d\omega}{dt} + T_{F} + T_{L}$$
 với, $T_{F} = B\omega$

$$J = J_{M} + J_{L}$$

$$T_{M} = J \frac{d\omega}{dt} + B\omega + T_{L}$$

❖ Hệ truyền động hỗn hợp

$$F_{M} - F_{L} = M \frac{dv}{dt}$$

$$T_{M} = rF_{M}$$

$$T_{L} = rF_{L}$$

$$\omega = \frac{v}{r}$$

$$T_{M} - T_{L} = Mr^{2} \frac{d\omega}{dt} = J_{e} \frac{d\omega}{dt}$$
$$J_{e} = Mr^{2}$$

$$T_M - T_L = (J_e + J_M) \frac{d\omega}{dt}$$

Load

Hệ truyền động với hộp số hoặc pulley

Phương trình động lực học phía tải

$$T_L = J_L \frac{d\omega_L}{dt} + B\omega_L$$

• Bỏ qua tổn thất:

$$\omega_L = \frac{\omega_M}{i}$$

$$T_I = iT_M$$

$$iT_M = \frac{J_L}{i} \frac{d\omega_M}{dt} + \frac{B\omega_L}{i}$$

$$T_M = \frac{J_L}{i^2} \frac{d\omega_M}{dt} + \frac{B\omega_L}{i^2}$$

Phương trình động lực học của cả hệ truyền động

$$T_M = \left(\frac{J_L}{i^2} + J_M\right) \frac{d\omega_M}{dt} + \frac{B\omega_L}{i^2}$$

❖ Bài toán quy đổi về trục động cơ

https://www.servotak.eu/tools/engineering_calculator

y2mate.com - Un....mp4 ^

Cơ cấu tay quay c....mp4 ^

Cơ cấu tay quay c....mp4

へ 🕼 😘 🎉 🦟 ENG

Show all

TÍNH ỔN ĐỊNH TĨNH CỦA HỆ TĐĐ

- Khi $T_e = T_L$ thì hệ làm việc ổn định
- Điểm làm việc ổn định là giao điểm của hai đặc tính cơ của động cơ $\omega(T)$ và của máy sản xuất (tải) $\omega_L(T_L)$
- Giả sử moment của động cơ và tải có thay đổi nhỏ δT_e và δT_L
- Phương trình động lực học tại thời điểm trước khi có thay đổi moment:

$$J\frac{d\omega}{dt} = T_e - T_L \tag{1}$$

Sau khi có thay đổi:

$$J\frac{d}{dt}(\omega + \delta\omega) = (T_e + \delta T_e) - (T_L + \delta T_L)$$
 (2)

- Lấy (2)-(1) ta có: $J\frac{d}{dt}\delta\omega = \delta T_e \delta T_L$ (3)
- Viết lại (3) thành:

$$J\frac{d}{dt}\delta\omega = \left(\frac{\delta T_e}{\delta\omega}\right)\delta\omega - \left(\frac{\delta T_L}{\delta\omega}\right)\delta\omega \tag{4}$$

• Nghiệm của phương trình (4):

$$\delta\omega = (\delta\omega)_0 e^{-\frac{1}{J} \left[\frac{\delta T_L}{\delta\omega} - \frac{\delta T_e}{\delta\omega} \right] t}$$
 (5)

với $(\delta\omega)_0$ là biến thiên vận tốc ở thời điểm đầu

• Từ (5):
$$\delta\omega \to 0$$
 khi $t \to \infty \Leftrightarrow \left[\frac{\delta T_L}{\delta\omega} - \frac{\delta T_e}{\delta\omega}\right] > 0$, hay $\beta_e - \beta_L < 0$

- Ví dụ:
 - Tại điểm A, $\beta_e < 0$, $\beta_L > 0$: ổn định
 - Tại B, $\beta_e > 0$, $\beta_L = 0$: không ổn định
 - Tại C, $\beta_e < 0$, $\beta_L = 0$: ốn định
 - Tại D, $\beta_e < 0$, $\beta_L > 0$: ốn định

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

TO BE CONTINUED