Sentiment Analysis of
Twitter Data for
Prediction of
Presidential Candidates

Dr. Deepti Srivastava Tilly



### Who is running for president?

- Due to the number of Democratic candidates running for election this year, the scope of this project will be limited to the top 3 polling candidates.
- Using Twitter's API, tweets referencing the following candidates were extracted:
  - Bernie Sanders
  - Elizabeth Warren
  - Joe Biden



## Data cleaning involved dropping duplicate tweets and unnecessary columns and cleaning tweets to only remove noise.

### **Dropping Duplicate Tweets** and Unnecessary Data

- ~5,000 duplicate tweets were found and removed, resulting in 81,633 tweets.
- Twitter's API returns a lot of extraneous data - only the tweet ID and text columns were retained.
- Each tweet was tagged as "sanders", "warren", or "biden" to easily identify which candidate's name was used to obtain the tweet.

#### **Cleaning Tweets**

- Removing HTML tags using BeautifulSoup (e.g. & Damp, & Quot etc.)
- Removing @mentions
- Removing URLs
- Expanding Contractions ( "don't" to "do not", "I'm" to "I am" etc. )
- Removing special characters (punctuation, numbers, #s)
- Removing extra white space and new line breaks
- Lemmatization
- Removal of stop words

### In order to use a supervised learning classifier, the data was labeled using lexicon-based (i.e. dictionary) methods.



By comparing the performance with ~2000 manually labeled tweets, using a majority label was found to yield the highest accuracy.



### EDA in the form of WordClouds revealed some interesting topics being discussed about the candidates.



### Warren:

 Warren's gaffe about calling herself a "native American" is being discussed.



#### Sanders:

 People are talking about his campaign and pledging support.



#### Biden:

People are talking about Biden's healthcare and foreign policy. He is also being referred to as a racist.

# Both regular BOW and TF-IDF models were used for feature extraction and 3 supervised learning models were tested. The Logistic Regression model was found to be the best performer.

|        | Naive Bayes<br>Accuracy | Random Forest<br>Accuracy | Logistic Regression Accuracy |
|--------|-------------------------|---------------------------|------------------------------|
| BOW    | 0.75                    | 0.81                      | 0.86                         |
| TF-IDF | 0.75                    | 0.78                      | 0.85                         |

|        | Naive Bayes<br>F1 Score | Random Forest F1<br>Score | Logistic Regression<br>F1 Score |
|--------|-------------------------|---------------------------|---------------------------------|
| BOW    | 0.75                    | 0.81                      | 0.86                            |
| TF-IDF | 0.74                    | 0.8                       | 0.85                            |