CONTENTS

- Company Profile
- Tools exposed
- Task performed
- Reflection Notes
- Conclusion
- References
- Certificates

COMPANY PROFILE

ROOMAN TECHNOLOGIES

- Rooman Technologies was started by a group of techies in the year 1999 in Bangalore, India, as a training center.
- They work with the government to help people learn new skills or improve existing ones.
- They offer many training and vocational courses for students and graduates.
- Teaching with the help of technology is their main goal.
- Their classrooms are well-designed and modern to help students learn and work together easily.

WADHWANI FOUNADTION

- Wadhwani Foundation started in 2001. It is a non-profit organization that works to create more jobs and help society.
- Their main goal is to speed up job creation and support economic development.
- They have trained over 300,000 government workers in new and emerging technologies.
- The foundation has helped test 400+ new ideas, supported 15+ startup projects, and completed 150+ training batches.
- Their work is helping improve job opportunities and development around the world.

TOOLS EXPOSED

EDA Playground – Online HDL Simulation & Verification Platform

EDA Playground is a **cloud-based online platform** that allows users to write, simulate, and debug **Verilog**, **System Verilog**, **and VHDL** code without requiring any local installation of EDA tools. It integrates with industry-standard simulation tools to help engineers and students test their HDL designs quickly.

Introduction to Verilog HDL

Definition:

Verilog is a hardware description language (HDL) used to model, design, and simulate digital systems like processors, memory units, and control circuits. It allows precise description of how electronic circuits behave and interact.

Purpose of Verilog:

- To write human-readable code that represents logic circuits.
- To perform functional verification through simulation before physical implementation.
- To enable automated synthesis of digital designs into gate-level circuits.
- To support design reuse and modular development in complex projects

Tasks Performed

1. Design Implementation

Truth Table

A (Hex)	B (Hex)	Result (Hex)	Remark
3F800000	40000000	40400000	$1.0 \times 2.0 = 2.0$
7F800000	3F800000	7F800000	$\infty \times 1.0 = \infty$
00000000	3F800000	00000000	0 × 1.0 = 0
FF800000	3F800000	FF800000	-∞ × 1.0 = -∞
7FC00000	3F800000	7FC00000	$NaN \times 1.0 = NaN$

2. Functional Verification (UVM)

- Created a UVM testbench for verification of the comparator.
- Built key components: driver, monitor, sequencer, and scoreboard.
- Tested various input combinations including greater-than, less-than, and equal cases.

3. Generated GDS

- The 32-bit floating point multiplier was designed in Verilog using IEEE 754 standard for single-precision floating point. Performed floorplanning, placement, and global routing, followed by detailed routing.
- Applied Clock Tree Synthesis (CTS) to ensure proper clock signal distribution.
- Generated the final GDS-II layout, representing the physical implementation of the design.
- Extracted key metrics: design area, clock frequency, and total power consumption from the layout.

Reflection Notes

1. Learning and Growth:

Mastering UVM: Improved knowledge of UVM methodology, understanding how to build scalable and reusable testbenches. Learned the importance of coverage-driven verification and transaction-level modeling.

Physical Design Skills: Explored the complete ASIC flow using OpenROAD, from synthesis to GDS-II layout generation. Got hands-on experience with floorplanning, placement, clock tree synthesis, and routing.

2. Challenges Faced:

Timing Closure: Achieving a positive slack value while keeping the clock frequency high required several iterations of optimization.

Power Analysis: Balancing power consumption with performance and area constraints was a critical challenge

Conclusion

CONCLUSION

- Automation of the floating-point multiplier design enhances accuracy and reduces manual errors.
- The modular Verilog architecture ensures efficient implementation and easy debugging.
- Integration with OpenROAD provides a seamless path from RTL to GDS-II layout.

FUTURE SCOPE

- •Integration with high-performance computing (HPC) processors
- •Support for 64-bit double precision floating point operations
- •Low-power optimization for portable and embedded devices