Adam Optimizer Derivation

Abdul Samad Khan

May 2025

1 **Backpropagation Derivation**

Let a neural network have layers $l=1,\ldots,L$, with weights $W^{[l]}$, biases $b^{[l]}$, and activation $a^{[l]}=\sigma(z^{[l]})$, where $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$. For a loss function $\mathcal{L}(y,\hat{y})$, backpropagation computes gradients $\frac{\partial \mathcal{L}}{\partial W^{[l]}}$ and

For the output layer (l=L), let $\delta^{[L]} = \frac{\partial \mathcal{L}}{\partial z^{[L]}} = \frac{\partial \mathcal{L}}{\partial \hat{y}} \cdot \sigma'(z^{[L]})$. For regression with MSE loss, $\mathcal{L} =$ $\frac{1}{2}(y-\hat{y})^2,$ so $\frac{\partial \mathcal{L}}{\partial \hat{y}}=(\hat{y}-y).$ For hidden layers, recursively compute:

$$\delta^{[l]} = (W^{[l+1]})^T \delta^{[l+1]} \cdot \sigma'(z^{[l]}), \quad \frac{\partial \mathcal{L}}{\partial W^{[l]}} = \delta^{[l]} (a^{[l-1]})^T, \quad \frac{\partial \mathcal{L}}{\partial b^{[l]}} = \delta^{[l]}.$$

2 Adam Optimizer

Adam combines momentum and RMSProp. Let θ be parameters, $g_t = \nabla_{\theta} \mathcal{L}_t$ the gradient at step t, and hyperparameters α (step size), $\beta_1, \beta_2 \in [0, 1), \epsilon$ (small constant).

First moment (mean):

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t.$$

Second moment (uncentered variance):

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2.$$

Bias correction:

$$\hat{m}_t = \frac{m_t}{1-\beta_1^t}, \quad \hat{v}_t = \frac{v_t}{1-\beta_2^t}.$$

Update rule:

$$\theta_{t+1} = \theta_t - \alpha \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}.$$

3 Relevance to Finance

Adam's adaptive learning rate handles noisy financial data (e.g., futures prices) by stabilizing updates via momentum and variance normalization, crucial for training transformer-GNN models on volatile time series.