CALCULUS

DEGREE IN SOFTWARE ENGINEERING WORKSHEET 5. DEFINITE INTEGRALS. AREAS AND VOLUMES

- 1. Calculate the area of the regions bounded by the circle $x^2 + y^2 = 1$ and the hyperbola $4x^2 2y^2 = 1$.
- 2. Calculate the area of an ellipse with semiaxes a and b.
- 3. Calculate the area of the region bounded by the curve $y^2 = (x-1)(x-2)^2$.
- 4. Find the area of the region of the first quadrant enclosed by the circle $x^2 + y^2 = 3$ and the parabolas $x^2 = 2y$, $y^2 = 2x$ with $x^2 + y^2 < 3$.
- 5. Obtain the value of the area enclosed by the curve $x^3 + x^2 y^2 = 0$.
- 6. Determine the volume of the circular cone of height h whose base has a radius R.
- 7. Find the volume of a sphere of radius R.
- 8. Find the volume of a paraboloid of revolution whose base has area S and whose height is equal to h.
- 9. Calculate the volume of the solid obtained by revolving the region bounded by the two branches of the curve $(y-x)^2 = x^3$ and the line x=1 about the x-axis.
- 10. Ω is the region enclosed by the curves $\sqrt{x} + \sqrt{y} = 1$ and x + y = 1. Calculate the volume of the solid generated by rotating Ω around the x-axis.
- 11. Calculate the volume of the solid generated by rotating the plane figure bounded by the curve $y = \sqrt{x}$, the x-axis and the vertical line x = 4 about the x-axis.
- 12. The semicircle $x^2 + y^2 = a^2$, $y \ge 0$ is revolved around the x-axis. Find the volume of the generated solid.
- 13. Consider the plane figure bounded by the curve $y = x^3$, the x-axis and the line x = 1. Find the volume of the solid generated by revolving this region about the y-axis.
- 14. Let D be a region enclosed by the x-axis, the circle $y = \sqrt{2 x^2}$ and the parabola $y = x^2$ in the first quadrant. We revolve this region about the y-axis. Calculate the volume of the generated solid.