INFORMATION THEORY & CODING

Channel Coding - 1

Dr. Rui Wang

Department of Electrical and Electronic Engineering Southern Univ. of Science and Technology (SUSTech)

Email: wang.r@sustech.edu.cn

November 14, 2023

Outline

• Channel model: conditional distribution

 Channel capacity: defined in a pure way of information theory, not operational

Channel coding & data rate: operational indicator of channel

Communication System Model

- $X^n = [X_1, X_2, \dots, X_n]$
- $Y^n = [Y_1, Y_2, \dots, Y_n]$
- Channel $p(y^n|x^n)$: probability of observing y^n given input input sequence x^n

Discrete memoryless channel (DMC)

Definition

A discrete channel consists of an input alphabet $\mathcal X$ and output alphabet $\mathcal Y$ and a probability transition matrix $p(y^n|x^n)$ that expresses the probability of observing the output sequence y^n given that we send the sequence x^n .

Definition

The channel is called memoryless if $p(y^n|x^n) = \prod_{i=1}^n p(y_i|x_i)$.

Communication System Model

- $X^n = [X_1, X_2, \dots, X_n] \in \mathcal{X}^n$, $Y^n = [Y_1, Y_2, \dots, Y_n] \in \mathcal{Y}^n$ Channel $p(y^n|x^n)$: probability of observing y^n given input symbol x^n Memoryless: $p(y^n|x^n) = \prod_{i=1}^n p(y_i|x_i)$
- Messages are mapped into some sequence of the channel symbols. Output sequence is random but has a distribution that depends on the input sequences. Each possible input sequence may induce several possbile outputs, and hence inputs are confusable. Can we choose a non-confusable subset of input sequences?

Duality

 Data compression: we remove all the redundancy in the data to form the most compressed version possible.

 Data transmission: we add redundancy in a controlled manner to combat errors in the channel.

"Survivor"

- You were deserted on a small island. You met a native and asked about the weather.
- True weather is a random variable X

$$X = \begin{cases} \text{rain} & \text{w.p. } \alpha, \\ \text{sunny} & \text{w.p. } 1 - \alpha, \end{cases}$$

- Native knows tomorrow's weather perfectly, but only tells truth with probability 1-p.
- Native's answer is a random variable $Y \in \{\text{rain, sunny}\}.$

"Survivor"

• How informative is the native's answer?

What is I(X;Y)?

- I(X;Y) = H(X) H(X|Y)
- $H(X) = H(\alpha) = -\alpha \log \alpha (1 \alpha) \log(1 \alpha)$
- $\bullet \ H(X|Y) = H(X|Y = {\rm rain})p({\rm rain}) + H(X|Y = {\rm sunny})p({\rm sunny})$
- $H(X|Y={\rm rain})$ is equal to $-\sum_{i\in\{{\rm rain,sunny}\}} p(X=i|Y={\rm rain})\log p(X=i|Y={\rm rain}).$ Note that

$$p(X=\mathrm{rain}|Y=\mathrm{rain}) = \tfrac{p(X=\mathrm{rain}|Y=\mathrm{rain})p(X=\mathrm{rain})}{p(Y=\mathrm{rain})} = \tfrac{(1-p)\alpha}{(1-p)\alpha+p(1-\alpha)}$$

Thus,
$$H(X|Y) = \alpha H\left(\frac{(1-p)\alpha}{(1-p)\alpha+p(1-\alpha)}\right) + (1-\alpha)H\left(\frac{p\alpha}{p\alpha+(1-p)(1-\alpha)}\right)$$

•
$$I(X;Y) = H(\alpha) - \alpha H\left(\frac{(1-p)\alpha}{(1-p)\alpha+p(1-\alpha)}\right) - (1-\alpha)H\left(\frac{p\alpha}{p\alpha+(1-p)(1-\alpha)}\right)$$

November 14, 2023

Special Cases

•
$$I(X;Y) = H(\alpha) - \alpha H\left(\frac{(1-p)\alpha}{(1-p)\alpha+p(1-\alpha)}\right) - (1-\alpha)H\left(\frac{p\alpha}{p\alpha+(1-p)(1-\alpha)}\right)$$

$$I(X;Y)=H(\alpha)-\alpha H(1)-(1-\alpha)H(0)=H(\alpha)\leq 1$$
 bit

$$I(X;Y) = H(\alpha) - \alpha H(\alpha) - (1-\alpha)H(\alpha) = 0$$
 bit

$$\max_{\alpha} I(X;Y) = H(1/2) - \frac{1}{2}H(1-p) - \frac{1}{2}H(p) = 1 - H(P)$$

Special Cases

•
$$I(X;Y) = H(\alpha) - \alpha H\left(\frac{(1-p)\alpha}{(1-p)\alpha+p(1-\alpha)}\right) - (1-\alpha)H\left(\frac{p\alpha}{p\alpha+(1-p)(1-\alpha)}\right)$$

• Always telling the truth: p = 0

$$I(X;Y) = H(\alpha) - \alpha H(1) - (1-\alpha)H(0) = H(\alpha) \leq 1 \text{ bit}$$

• Telling truth half of the time: p = 1/2

$$I(X;Y) = H(\alpha) - \alpha H(\alpha) - (1 - \alpha)H(\alpha) = 0$$
 bit

 \bullet Fix p , maximize with respect to α , maximum achieved when $\alpha=1/2$

$$\max_{\alpha} I(X;Y) = H(1/2) - \frac{1}{2}H(1-p) - \frac{1}{2}H(p) = 1 - H(P)$$

"Information" Channel Capacity

Definition ("Information" Channel Capacity)

$$C = \max_{p(x)} I(X;Y)$$

Binary noiseless channel

$$C = \max I(X;Y) = \log 2 = 1 \text{ bits } \left(\text{with } p(x) = (\frac{1}{2}, \frac{1}{2})\right)$$

Noisy channel with nonoverlapping outputs

$$C = \max I(X;Y) = \log 2 = 1$$
 bits $\left(\text{with } p(x) = (\frac{1}{2},\frac{1}{2})\right)$

Noisy typewriter

$$C = \max I(X;Y) = \log \frac{26}{2} = \log 13 \text{ bits } \Big(\text{with } p(x) \text{ uniformly distributed} \Big)$$

Binary symmetric channel

CD-ROM read channel

$$\begin{split} I(X;Y) &= H(Y) - H(Y|X) = H(Y) - \sum_{x \in \{0,1\}} p(x)H(Y|X=x) \\ &= H(Y) - \sum_{x \in \{0,1\}} p(x)H(p) = H(Y) - H(p) \leq 1 - H(p) \\ C &= \max I(X;Y) = I - H(p) \text{ bits} \end{split}$$

Binary erasure channel

$$C = \max_{p(x)} I(X; Y)$$

$$= \max_{p(x)} \left(H(Y) - H(Y|X) \right)$$

$$= \max_{p(x)} H(Y) - H(\alpha)$$

Let
$$\Pr[X=1]=\pi$$
, then

$$H(Y) = H\left((1-\pi)(1-\alpha), \alpha, \pi(1-\alpha)\right) = H(\alpha) + (1-\alpha)H(\pi)$$

Thus,
$$C = \max_{\pi} (1 - \alpha) H(\pi) = 1 - \alpha$$
 (with $\pi = \frac{1}{2})$

Symmetric channel

$$p(y|x) = \left[\begin{array}{ccc} 0.3 & 0.2 & 0.5 \\ 0.5 & 0.3 & 0.2 \\ 0.2 & 0.5 & 0.3 \end{array} \right].$$

All the rows of the transition matrix are permutations of each other and so are the columns. Let \mathbf{r} be a row of the transition matrix.

$$I(X;Y) = H(Y) - H(Y|X) = H(Y) - H(\mathbf{r}) \le \log|\mathcal{Y}| - H(\mathbf{r})$$

$$p(y) = \sum_{x \in \mathcal{X}} p(y|x)p(x) = \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} p(y|x) = \frac{c}{|\mathcal{X}|} = \frac{1}{|\mathcal{Y}|}.$$

Symmetric channel

$$p(y|x) = \left[\begin{array}{ccc} 0.3 & 0.2 & 0.5 \\ 0.5 & 0.3 & 0.2 \\ 0.2 & 0.5 & 0.3 \end{array} \right].$$

All the rows of the transition matrix are permutations of each other and so are the columns. Let \mathbf{r} be a row of the transition matrix.

$$I(X;Y) = H(Y) - H(Y|X) = H(Y) - H(\mathbf{r}) \le \log |\mathcal{Y}| - H(\mathbf{r})$$

with equality if $\mathcal Y$ is uniformly distributed. If $p(x)=\frac{1}{|\mathcal X|}$, Y is also uniformly distributed:

$$p(y) = \sum_{x \in \mathcal{X}} p(y|x)p(x) = \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} p(y|x) = \frac{c}{|\mathcal{X}|} = \frac{1}{|\mathcal{Y}|},$$

where c is the sum of the entries in one column.

Fundamental question

- How fast can we transmit information over a channel?
- Suppose a source sends r messages per second, and the entropy of a message is H bits per message, information rate is R=rH bits/second.
- Intuition: as R increases, error will increase.
- Surprisingly, Shannon showed error can approach to zero, as long as

INFORMATION THEORY & CODING

Channel Code - 2

Dr. Rui Wang

Department of Electrical and Electronic Engineering Southern Univ. of Science and Technology (SUSTech)

Email: wang.r@sustech.edu.cn

November 21, 2023

Review

 Channel capacity. The logarithm of the number of distinguishable inputs is given by

$$C = \max_{p(x)} I(X;Y).$$

- Examples
 - Binary symmetric channel: C = 1 H(p)
 - Binary erasure channel: $C = 1 \alpha$
 - Symmetric channel: $C = \log |\mathcal{Y}| H$ (row of trans. matrix)

Channel Code

Definition

An (M,n) code for the channel $(\mathcal{X},p(y|x),\mathcal{Y})$ consists of :

- 1. An index set $\{1, 2, \dots, M\}$ representing messages.
- 2. An encoding function $X^n:\{1,2,\ldots,M\}\to\mathcal{X}^n$, yielding codewords $x^n(1),x^n(2),\ldots,x^n(M)$. The set of codewords is called codebook.
- 3. A decoding function $g: \mathcal{Y}^n \to \{1, 2, \dots, M\}$.

The rate R of an (M,n) code is

$$R = rac{\log M}{n}$$
 bit per transmission

On the other hand, we usually write

$$M = \left\lceil 2^{nR} \right\rceil$$

Channel Code

Definition

An (M, n) code for the channel $(\mathcal{X}, p(y|x), \mathcal{Y})$ consists of :

- 1. An index set $\{1, 2, \dots, M\}$ representing messages.
- 2. An encoding function $X^n:\{1,2,\ldots,M\}\to\mathcal{X}^n$, yielding codewords $x^n(1),x^n(2),\ldots,x^n(M)$. The set of codewords is called codebook.
- 3. A decoding function $g: \mathcal{Y}^n \to \{1, 2, \dots, M\}$.

The rate R of an (M, n) code is

$$R = \frac{\log M}{n}$$
 bit per transmission

On the other hand, we usually write

$$M = \left\lceil 2^{nR} \right\rceil$$

Performance Metric

Conditional probability of error:

$$\lambda_i = \Pr[g(Y_n) \neq i | X^n = x^n(i)] = \sum_{y^n} p(y^n | x^n(i)) I(g(y^n) \neq i)$$

- Maximal probability of error: $\lambda^{(n)} = \max_{i \in \{1,2,...,M\}} \lambda_i$
- \bullet Decoding error probability: $\Pr[W \neq g(Y^n)] = \sum_i \lambda_i \Pr[W = i]$
- Arithmetric average probability of error:

$$P_e^{(n)} = \frac{1}{M} \sum_{i=1}^{M} \lambda_i, \quad P_e^{(n)} \le \lambda^{(n)}$$

If *W* is uniformly distributed:

 $P_e^{(n)} = \Pr[W \neq g(Y^n)]$ Decoding error probability

Achievable Rate

A rate R is achievable,

if there exists a sequence of codes with rate R and codeword length n, denoted as $(\lceil 2^{nR} \rceil, n)$, such that the maximal probability of error $\lambda^{(n)} \to 0$ as $n \to \infty$.

Recall that

The rate R of an (M, n) code is

$$R = \frac{\log M}{n}$$
 bit per transmission.

Joint Typical Set

• Joint typicality. Given two i.i.d. random variable sequences X^n and Y^n , the set of jointly typical sequences is

$$\begin{split} A_{\epsilon}^{(n)} = & \left\{ (x^n, y^n) \in \mathcal{X}^n \times \mathcal{Y}^n : \\ & \left| -\frac{1}{n} \log p(x^n) - H(X) \right| < \epsilon \\ & \left| -\frac{1}{n} \log p(y^n) - H(Y) \right| < \epsilon \\ & \left| -\frac{1}{n} \log p(x^n, y^n) - H(X, Y) \right| < \epsilon \right\} \end{split}$$

where $p(x^n, y^n) = \prod_{i=1}^n p(x_i, y_i)$.

Joint AEP

• **Joint AEP** Let (X^n, Y^n) be the sequences of length n drawn i.i.d. according to $p(x^n, y^n) = \prod_{i=1}^n p(x_i, y_i)$, then:

$$1. \ \Pr\left[(\underline{X^n},Y^n)\in A_{\epsilon}^{(n)}\right] \to 1 \text{ as } n\to\infty.$$

- $2. |A_{\epsilon}^{(n)}| \leq 2^{n(H(X,Y)+\epsilon)}.$
- 3. If $(\tilde{X}^n, \tilde{Y}^n) \sim p(x^n)p(y^n)$, then

$$\Pr\left[\left(\tilde{X}^{n}, \tilde{Y}^{n}\right) \in A_{\epsilon}^{(n)}\right] \le 2^{-n(I(X;Y) - 3\epsilon)}.$$

Please refer to p196 for the proof (proof of Theorem 7.6.1)

Channel Coding Theorem

Theorem (Channel coding theorem)

For a discrete memoryless channel, all rates below capacity C are achievable. Specifically, for every rate R < C, there exists a sequence of $(2^{nR}, n)$ codes with maximum probability of error $\lambda^{(n)} \to 0$.

Conversely, any sequence of $(2^{nR},n)$ codes with $\lambda^{(n)} \to 0$ must have $R \le C$.

Achievability: when R < C, there exists zero-error code.

Converse: zero-error codes must have $R \leq C$.

Random Codebook

• Generate a $(2^{nR}, n)$ code at random according to p(x), where p(x) is the capacity achieving distribution. The 2^{nR} are the rows of a matrix:

$$C = \begin{bmatrix} x_1(1) & x_2(1) & \dots & x_n(1) \\ \vdots & \vdots & \ddots & \vdots \\ x_1(2^{nR}) & x_2(2^{nR}) & \dots & x_n(2^{nR}) \end{bmatrix}.$$

Each entry is generated i.i.d. according to p(x).

 \bullet Encoding: map the message $w=\{1,2,3,\ldots,2^{nR}\}$ to codeword $[x_1(w),x_2(w),\ldots,x_n(w)],$ i.e.

$$C \to [x_1(w), x_2(w), \dots, x_n(w)] = x_c^n(w), w = 1, 2, \dots, 2^{nR}$$

We shall prove the average detection error probability (over all codebooks) tends to zero as n increase, which implies that there must exists one good codebook whose detection error probability tends to zero

Jointly Typical Decoding

- Decoding: finds the only \hat{w} such that $(x_c^n(\hat{w}), Y_c^n)$ is jointly typical.
- Decoding error: Suppose message 1 is sent to via codeword $x_{\mathcal{C}}^n(1)$ and $Y_{\mathcal{C}}^n$ is the received signal, the possible decoding error events include:
 - $(x_{\mathcal{C}}^n(1), Y_{\mathcal{C}}^n)$ is not joint typical.
 - $(x_{\mathcal{C}}^n(i), Y_{\mathcal{C}}^n)$ is joint typical $(i = 2, 3, \dots, 2^{nR})$.
- Idea of proof: According to joint AEP, since $x_{\mathcal{C}}^n(1)$ and $Y_{\mathcal{C}}^n$ are generated according to joint distribution $p(x^n, y^n)$, the chance of the first event is small. Moreover, since $Y_{\mathcal{C}}^n$ is generated independently of $x_{\mathcal{C}}^{n}(i)$, the total chance of the second event is also small.

 \bullet A message W is chosen according to a uniform distribution

$$\Pr[W = w] = 2^{-nR},$$

for $w=1,2,\ldots,2^{nR}$. The w-th codeword $x_{\mathcal{C}}^n(w)$, corresponding to the w-th row of \mathcal{C} , is sent over the channel.

 \bullet The receiver receives a sequence $Y^n_{\mathcal{C}}$ according to the distribution according to the distribution

$$\Pr\left(y_{\mathcal{C}}^{n}|x_{\mathcal{C}}^{n}(w)\right) = \prod_{i=1}^{n} \Pr\left(y_{i,\mathcal{C}}|x_{i,\mathcal{C}}(w)\right),$$

and guesses which message was sent using jointly typical decoding.

• Let $\varepsilon = \{\hat{W}(Y^n) \neq W\}$ denote the error event, $\lambda_w(\mathcal{C})$ be the error probability of the w-th codeword of code C. The average probability of error, over all codewords and all codebooks, is:

$$\Pr(\varepsilon) = \sum_{\mathcal{C}} \Pr(\mathcal{C}) P_e^{(n)}(\mathcal{C}) = \sum_{\mathcal{C}} \Pr(\mathcal{C}) \frac{1}{2^{nR}} \sum_{w=1}^{2^{nR}} \lambda_w(\mathcal{C})$$
$$= \frac{1}{2^{nR}} \sum_{w=1}^{2^{nR}} \sum_{\mathcal{C}} \Pr(\mathcal{C}) \lambda_w(\mathcal{C}) = \sum_{\mathcal{C}} \Pr(\mathcal{C}) \lambda_1(\mathcal{C}),$$

where $\sum_{\mathcal{C}} \Pr(\mathcal{C}) \lambda_1(\mathcal{C}) = \sum_{\mathcal{C}} \Pr(\mathcal{C}) \lambda_w(\mathcal{C}), \forall w \neq 1.$

• Let $Y^n_{\mathcal{C}}$ be the received signal for $x^n_{\mathcal{C}}(1)$

$$e_i(\mathcal{C}) = \{(x_{\mathcal{C}}^n(i), Y_{\mathcal{C}}^n) \in A_{\epsilon}^{(n)}\}, i \in \{1, 2, \dots, 2^{nR}\},\$$

and $e_i^c(\mathcal{C}) = !e_i(\mathcal{C})$. Thus,

$$\Pr[\varepsilon] = \sum_{\mathcal{C}} \Pr(\mathcal{C}) \lambda_1(\mathcal{C}) = \sum_{\mathcal{C}} \Pr(\mathcal{C}) \Pr\left[e_1^c(\mathcal{C}) \cup (\bigcup_{i=2}^{2^{nR}} e_i(\mathcal{C})) \middle| W = 1 \right]$$

$$\leq \sum_{\mathcal{C}} \Pr(\mathcal{C}) \Pr[e_1^c(\mathcal{C})|W=1] + \sum_{\mathcal{C}} \Pr(\mathcal{C}) \sum_{i=2} \Pr[e_i(\mathcal{C})|W=1]$$

$$= \sum_{\mathcal{C}} \Pr(\mathcal{C}) \Pr[e_1^c(\mathcal{C})|W=1] + \sum_{i=2}^{2^{int}} \sum_{\mathcal{C}} \Pr(\mathcal{C}) \Pr[e_i(\mathcal{C})|W=1]$$

$$\begin{split} &\sum_{\mathcal{C}} \Pr(\mathcal{C}) \Pr[e_1^c(\mathcal{C})|W=1] \\ &= \sum_{\mathcal{C}} \left(\prod_{i=1}^{2^{nR}} \Pr(x_{\mathcal{C}}^n(i)) \right) \Pr[e_1^c(\mathcal{C})|W=1] \\ &= \sum_{x_1^n} \sum_{\mathcal{C}: x_{\mathcal{C}}^n(1) = x_1^n} \prod_{i=1}^{2^{nR}} \Pr(x_{\mathcal{C}}^n(i)) \Pr(x_1^n \text{ and } Y^n \text{ are not joint typical}|W=1) \\ &= \sum_{x_1^n} \Pr(x_1^n) \Pr(x_1^n \text{ and } Y^n \text{ are not joint typical}|W=1) \\ &\times \sum_{\mathcal{C}: x_{\mathcal{C}}^n(1) = x_1^n} \prod_{i=2}^{2^{nR}} \Pr(x_{\mathcal{C}}^n(i)) \\ &= \sum_{x_1^n} \Pr(x_1^n) \Pr(x_1^n \text{ and } Y^n \text{ are not joint typical}|W=1) \\ &= \Pr(X_1^n \text{ and } Y^n \text{ are not joint typical}|W=1) = \Pr(E_1^c|W=1) \end{split}$$

Similarly,

$$\sum_{\mathcal{C}} \Pr(\mathcal{C}) \Pr[e_1(\mathcal{C})|W=1] = \Pr(X_i^n \text{ and } Y^n \text{ are joint typical}|W=1)$$
$$= \Pr(E_i|W=1)$$

As a result,

$$\Pr[\varepsilon] \le \Pr[E_1^c|W=1] + \sum_{i=2}^{2^{nR}} \Pr[E_i|W=1]$$

• By the joint AEP, $\Pr[E_1^c|W=1] \leq \epsilon$ for n sufficiently large. By the code generation process, $X^n(1)$ and $X^n(i)$ are independent for $i \neq 1$, so are Y^n and $X^n(i)$. Hence the probability that $X^n(i)$ and Y^n are jointly typical is $\leq 2^{-n(I(X;Y)-3\epsilon)}$ by the joint AEP.

$$\begin{split} \Pr[\varepsilon] & \leq \epsilon + \sum_{i=2}^{2^{nR}} 2^{-n(I(X;Y) - 3\epsilon)} \\ & = \epsilon + (2^{nR} - 1)2^{-n(I(X;Y) - 3\epsilon)} \\ & \leq \epsilon + 2^{3n\epsilon}2^{-n(I(X;Y) - R)} \\ & \leq 2\epsilon \quad \text{for } R \leq I(X;Y) - 4\epsilon \text{ and sufficiently large n} \end{split}$$

Hence, if R < I(X;Y), we can choose ϵ and n so that the average probability of error, over codebooks and codewords, is less than 2ϵ .

• Since p(x) is the capacity achieving distribution, R < I(X;Y) beacomes R < C.

• Get rid of the average over codebooks. Since the average probability of error is $\leq 2\epsilon$, there exists at least one codebook \mathcal{C}^* with a small average probability of error $(\Pr(\varepsilon|\mathcal{C}^*) \leq 2\epsilon)$. Since we have chosen \hat{W} according to a uniform distribution, we have

$$\Pr(\varepsilon|\mathcal{C}^*) = \frac{1}{2^{nR}} \sum_{i=1}^{2^{nR}} \lambda_i(\mathcal{C}^*).$$

Throw away the worst half of the codewords in the best codebook \mathcal{C}^* . We have $\Pr(\varepsilon|\mathcal{C}^*) \leq \frac{1}{2^{nR}} \sum \lambda_i(\mathcal{C}^*) \leq 2\epsilon$. This implies that at least half the indices i and their associated codewords $X^n(I)$ must have conditional probability of error $\lambda_i \leq 4\epsilon$. If we reindex the codewords, we have 2^{nR-1} codewords. The rate now is $R' = R - \frac{1}{n}$ with maximal probability of error $\lambda^{(n)} \leq 4\epsilon$.

Proof for the converse

• The index W is uniformly distributed on the set $\mathcal{W}=\{1,2,\dots,2^{nR}\}$, and the sequence Y^n is related to W. From Y^n , we estimate the index W as $\hat{W}=g(Y^n)$. Thus, $W\to X^n(W)\to Y^n\to \hat{W}$ forms a Markov chain.

Data processing inequality: $I(W; \hat{W}) \leq I(X^n(W); Y^n)$

Lemma (Fano's inequality)

For a discrete memoryless channel with a codebook C and the input message W uniformly distributed over 2^{nR} , we have

$$H(W|\hat{W}) \le 1 + P_e^{(n)} nR.$$

Proof for the converse

• The index W is uniformly distributed on the set $\mathcal{W}=\{1,2,\dots,2^{nR}\}$, and the sequence Y^n is related to W. From Y^n , we estimate the index W as $\hat{W}=g(Y^n)$. Thus, $W\to X^n(W)\to Y^n\to \hat{W}$ forms a Markov chain.

Data processing inequality: $I(W; \hat{W}) \leq I(X^n(W); Y^n)$

Lemma (Fano's inequality)

For a discrete memoryless channel with a codebook $\mathcal C$ and the input message W uniformly distributed over 2^{nR} , we have

$$H(W|\hat{W}) \le 1 + P_e^{(n)} nR.$$

Lemma

Let Y^n be the result of passing X^n through a discrete memoryless channel of capacity C. Then

$$I(X^n;Y^n) \leq nC, \quad \textit{for all} \quad p(x^n).$$

Proof.

$$\begin{split} I(X^n;Y^n) &= H(Y^n) - H(Y^n|X^n) = H(Y^n) - \sum_{i=1}^n H(Y_i|Y_1,\dots\\ &= H(Y^n) - \sum_{i=1}^n H(Y_i|X_i) \quad \text{memoryless} \\ &\leq \sum_{i=1}^n H(Y_i) - \sum_{i=1}^n H(Y_i|X_i) \quad \text{independence bound} \\ &= \sum_{i=1}^n I(X_i|Y_i) \leq nC \end{split}$$

Lemma

Let Y^n be the result of passing X^n through a discrete memoryless channel of capacity C. Then

$$I(X^n; Y^n) \le nC$$
, for all $p(x^n)$.

Proof.

$$\begin{split} I(X^n;Y^n) &= H(Y^n) - H(Y^n|X^n) = H(Y^n) - \sum_{i=1}^n H(Y_i|Y_1,\dots,Y_{i-1},X^n) \\ &= H(Y^n) - \sum_{i=1}^n H(Y_i|X_i) \quad \text{memoryless} \\ &\leq \sum_{i=1}^n H(Y_i) - \sum_{i=1}^n H(Y_i|X_i) \quad \text{independence bound} \\ &= \sum_{i=1}^n I(X_i|Y_i) \leq nC \end{split}$$

Proof for the converse

Proof.

Converse to channel coding theorem: Since ${\cal W}$ has a uniform distribution, we have

$$\begin{split} nR &= H(W) = H(W|\hat{W}) + I(W;\hat{W}) \\ &\leq 1 + P_e^{(n)} nR + I(W;\hat{W}) \quad \text{Fano's inequality} \\ &\leq 1 + P_e^{(n)} nR + I(X^n;Y^n) \quad \text{data-processing inequality} \\ &\leq 1 + P_e^{(n)} nR + nC \quad \text{Lemma 7.9.2} \end{split}$$

We obtain $R \leq \frac{1}{n(1+P_e^{(n)})} + \frac{C}{1+P_e^{(n)}} \to \frac{1}{n} + C$. Letting $n \to \infty$, we have $R \leq C$.

Reading & Homework

- Reading: Chapter 7: 7.6-7.10
- Homework: Problems 7.15, 7.31.

