DAFTAR HALAMAN

MATER	II	
01.	Statistika Deskriptif, Inferensial dalam Statistika Non Parametrik	1
02.	Uji Binomial dan Confidence Interval	6
03.	Uji Kuantil dan <i>Confidence Interval</i>	7
04.	Uji Chi-Square	10
05.	Uji Kolmogorov Smirnov 1 Sampel	11
06.	Uji Cox Stuart	12
07.	Uji Mc Nemar	13
08.	Sign Test	14
09.	Wilcoxon Test	15
10.	Randomization	16
11.	Uji Mann Whitney dan Confidence Interval	18
12.	Uji Kolmogorov Smirnov 2 Sampel	21
13.	Squared Rank Test	22
14.	Uji Klozt	25
15.	Uji Cramer von Mises	26
16.	Uji Kruskal Wallis	27
17.	Tabel Kontingensi $r \times s$	28
18.	Uji Koefisien Korelasi Kendall Tau	29
19.	Uji Friedman	31
20.	Uji Quade	33
21.	Uji Van der Waerden	35
22.	Regresi Non Parametrik	36
23.	Regresi Monotonik	37
LATIHA	N SOAL	40

Sumber: Conover, W. J. 1999. Practical Nonparametric Statistics. 3rd ed. New York: John Wiley & Sons, Inc.

STATISTIKA DESKRIPTIF, INFERENSIAL DALAM STATISTIKA NON PARAMETRIK

BAB 2.1. POPULASI, SAMPEL, DAN STATISTIK

- Eksperimen adalah adalah suatu proses pelaksanaan prosedur yang baik, di mana hasil dari pelaksanaan prosedur tersebut belum diketahui sebelum ekspserimen dilakukan.
- 2. Populasi adalah suatu kumpulan elemen yang akan diteliti atau diinvestigasi. Kumpulan elemen tersebut dapat berupa orang, hewan, atau benda mati. Berdasarkan besarnya, ada populasi kecil, populasi besar, dan populasi berhingga.
- Sampel adalah sekumpulan dari beberapa elemen populasi.
 Sampel dibagi menjadi beberapa kategori berdasarkan bagaimana cara sampel tersebut diambil.
- a. Convenience Sample, cara ini adalah cara yang paling mudah yaitu mengambil sampel dengan cara bertemu dengan sembarang orang di halte atau dijalan untuk dijadikan sampel.
- b. *Probability Sample*, cara ini dilakukan dengan mengambil sampel dengan pengundian. Cara ini memungkinkan untuk mendapatkan hasil yang akurat. Salah satu contoh *probability sample* adalah sampel acak.
- 4. Target Populasi adalah populasi dengan informasi yang diinginkan oleh peneliti. Sampel Populasi adalah populasi yang dijadikan sampel.dan sampel populasi.
- 5. Sampel Acak memiliki dua definisi berbeda, yaitu:
- a. **Definisi 1**. Jika setiap sampel berukuran n memiliki kemungkinan yang sama akan diperoleh, maka sampel berukuran n dari populasi berhingga (terbatas) tersebut merupakan suatu sampel acak.
- b. **Definisi 2**. Jika populasi (N) sangat besar, maka sampel acak berukuran n adalah suatu barisan dari n peubah acak

- X_1,X_2,\ldots,X_n yang saling bebas dan berdistribusi identik (i.i.d.)
- **6. Peubah Acak Multivariat** adalah kumpulan peubah acak X_1 , X_2 , ..., X_n yang nilainya belum diketahui sebelum eksperimen dilakukan. Secara khusus, jika hanya terdapat X_1 dan X_2 maka disebut peubah acak bivariat.
- Skala Pengukuran dari yang paling lemah ke paling kuat, yaitu:

7

- a. Skala Pengukuran Nominal digunakan untuk data bertipe kategorik yang tidak memiliki urutan/tingkatan seperti warna mata, gender, warna kulit, dan sebagainya.
- b. Skala Pengukuran Ordinal digunakan untuk data bertipe kategorik yang memiliki urutan/tingkatan seperti tingkat pendidikan, jabatan, tingkat kepuasan (sangat setuju, setuju, tidak setuju), dan sebagainya.
- c. **Skala Pengukuran Interval** digunakan untuk data bertipe numerik yang tidak memiliki nilai nol mutlak seperti suhu. Pada suhu, $0^{\circ}F$ bukan berarti tidak ada suhu, namun $0^{\circ}F$ berarti sama dengan $-17,78^{\circ}C$.
- d. **Skala Pengukuran Rasio** digunakan untuk data bertipe numerik yang memiliki nilai nol mutlak seperti tinggi badan. Pada tinggi badan, tidak ada tinggi badan yang berada di bawah 0. Jika tinggi badannya adalah 0 berarti tidak ada
- Statistik adalah fungsi dari beberapa peubah acak.

∞i

9. Statistik Terurut ke-k adalah statistik yang nilainya merupakan elemen pengamatan terkecil ke-k di antara $x_1, x_2, ..., x_n$ dari peubah acak $X_1, X_2, ..., X_n$. Secara khusus, statistik terurut digunakan pada pengukuran data bertipe ordinal.

BAB 2.2. PENDUGAAN

- sampel acak. Fungsi distribusi empiris etau ditulis S(x) adalah sampel acak. Fungsi distribusi empiris atau ditulis S(x) adalah suatu fungsi dari x yang sama dengan pecahan dari X_{is} yang kurang dari atau sama dengan untuk setiap $x, -\infty < x < \infty$. Fungsi distribusi empiris ini digunakan sebagai estimator dari fungsi distribusi populasi. Mean sampel, variansi sampel, dan kuantil sampel dapat digunakan sebagai estimator dari populasi seperti pada fungsi distribusi empiris yang menjadi estimator dari fungsi distribusi populasi.
- **2. Estimator**. Misalkan $X_1, X_2, ..., X_n$ adalah sampel acak. Kuantil sampel ke-p adalah Q_p yang memenuhi 2 kondisi berikut, yaitu:
 - a. Pecahan dari X_{is} yang kurang dari Q_p adalah $\leq p$
- b. Pecahan dari X_{ls} yang lebih dari Q_p adalah $\leq 1-p$
- **3. Definisi 3.** Misalkan X_1, X_2, \dots, X_n adalah sampel acak. Berikut adalah beberapa definisi.

$$\text{Mean Sampel} \qquad \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$$
 Variansi Sampel
$$S^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \bar{X}^2$$
 Sampel
$$S = \sqrt{S^2}$$

- **4. Definisi 4.** Kriteria dari suatu estimator yang baik adalah tidak bias. Dalam hal ini θ merepresentasikan sebuah statistik yang digunakan sebagai estimator θ . Estimator θ adalah estimator tidak bias dari suatu populasi parameter θ jika $E(\theta) = \theta$.
 - 5. Teorema 1. Misalkan X_1,X_2,\ldots,X_n peubah acak yang saling bebas dari populasi dengan mean μ dan variansi σ^2 . Maka

 $E(ar{X}) = \mu \operatorname{dan} Var(ar{X}) = \frac{\sigma^2}{a}$

6. Standar Error dari
$$ar{X}$$
 adalah $rac{\sigma}{\sqrt{n}}$

7. Estimator Tidak Bias (s^2) adalah estimator dari σ^2 , yaitu

$$S^2 = \frac{1}{1} \sum_{i=1}^{\infty} \left(X_i - \bar{X} \right)$$

8. Aproksimasi Interval Kepercayaan untuk μ

$$\Pr\left(\bar{X} - z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right) \cong 1 - \alpha$$

- 9. **Metode Bootstrap**. Dalam beberapa kasus, estimator dari parameter populasi sulit digunakan sehingga ada metode lain untuk mengestimasi mean dan variansi, seperti metode bootstrap. Metode bootstrap ini menguji n nilai dengan pengembalian dari observasi dalam sampel acak asli berukuran n. Beberapa observasi asli tersebut dapat muncul dalam "sampel bootstrap" satu kali, lebih dari satu kali, atau tidak sama sekali. Jumlah dari sampel bootstrap sama dengan jumlah observasi dalam sampel acak asli. Estimator $\hat{\theta}$ dihitung untuk setiap sampel bootstrap. Faktanya, seluruh fungsi distribusi empiris dari nilainilai $\hat{\theta}$ tersebut digunakan dalam metode bootstrap sebagai estimator dari fungsi distribusi populasi $\hat{\theta}$. Seluruh prosedur dalam metode ini bergantung pada nilai sampel asli.
- 10. Jumlah Replikasi Bootstrap untuk mengestimasi mean dan standard error dari estimator menurut Efron dan Tibshirane (1986) minimal sebanyak 250 replikasi bootstrap. Sebagai alternatif, metode yang lebih akurat untuk mendapatkan interval kepercayaan sampel bootstrap membutuhkan replikasi yang lebih banyak, direkomendasikan minimal 1000. Untuk mencari estimasi bootstrap dibutuhkan bantuan komputer atau program tertentu, seperti S-Plus, SYSTAT, Resampling Stats, dan STATA.
- **11. Estimasi Parameter.** Secara umum, teori untuk estimasi mengatakan bahwa semakin besar n, maka S(x) mendekati F(x) dalam probabilitas.
- 12. Empirical Survival Function adalah estimator asli dari P(x), yaitu $\hat{P}(x)=1-S(x)$ yang merupakan frekuensi relatif dari sampel X_1,X_2,\dots,X_n yang melampaui nilai x.

13. Kaplan-Meier Estimator adalah statistika nonparametrik yang digunakan untuk mengestimasi data kelangsungan hidup. Berikut adalah Kaplan-Meier Estimator dari P(x).

$$\hat{p}(x) = \left\{ \prod_{u_i \le x} 1, \quad x < 0 \\ u_i \le x \right\}$$

Metode ini dapat dibantu beberapa program seperti Minitab, S-Plus, dan SYSTAT

BAB 2.3. PENGUJIAN HIPOTESIS

- Pengujian Hipotesis adalah suatu proses mengambil keputusan dari sebuah sampel, menerima atau tidak menerima pernyataan (hipotesis) yang diberikan tentang populasi. ⇌
- Tahap-tahap dalam pengujian hipotesis, yaitu: 7
- hypothesis. Alternative hypothesis adalah hipotesis yang a. Menyatakan hipotesis terhadap suatu populasi. Dalam hal ini ada *alternative hypothesis* dan *null hypothesis* atau *test* menyatakan bahwa pernyataan dalam *null hypothesis* tidak benar. Null hypothesis adalah hipotesis yang akan diuji atau hipotesis yang menjadi landasan penentuan statistik pembanding.
- Memilih uji statistik. <u>.</u>
- Membuat aturan keputusan. ن
- Mengevaluasi uji statistik dan membuat kesimpulan apakah hipotesis nol (null hypothesis) ditolak atau tidak ditolak. 6
- Definisi 1. Hipotesis dapat diklasifikasikan menjadi sederhana dan komposit. Hipotesis termasuk sederhana jika asumsi hipotesis majemuk jika asumsi hipotesis benar membawa ke 2 atau lebih benar membawa ke hanya 1 fungsi probabilitas yang terdefinisi pada ruang sampel. Sedangkan hipotesis termasuk komposit atau fungsi probabilitas yang terdefinisi pada ruang sampel. 'n
 - Uji Statistik adalah statistika yang membantu dalam menentukan keputusan dalam pengujian hipotesis. 4

- Daerah Kritis adalah titik-titik dalam ruang sampel yang menghasilkan sebuah keputusan untuk menolak hipotesis nol (H_0) . Terdapat two-tailed tests dan one-tailed tests, di mana twoailed tests menguji pada nilai terbesar dan nilai terkecil dalam uji statistik, sedangkan one-tailed tests hanya menguji salah satu nilai, nilai terbesar (upper-tailed test) atau nilai terkecil (lowertailed test). 'n
- Fipe Kesalahan, yaitu: 6
- Kesalahan Tipe 1. Kesalahan tipe ini adalah kesalahan dalam menolak hipotesis nol ketika hipotesis nol tersebut benar.
- Kesalahan Tipe 2. Kesalahan tipe ini adalah kesalahan dalam menerima hipotesis nol ketika hipotesis nol tersebut salah.
- Null Distribution (Distribusi nol) adalah distribusi dari probabilitasnya ketika hipotesis nol $\left(H_{0}
 ight)$ diasumsikan benar 7
- **Power** $(1-oldsymbol{eta})$ adalah probabilitas dalam menolak suatu nipotesis nol (H_0) yang salah ∞

		Kepu	Keputusan
		Terima H_0	Tolak H_0
The True	H_0 benar	$1 - \alpha$	$\boldsymbol{\wp}$
Situation	$oldsymbol{H}_0$ salah	θ	$1-\beta$

Nilai p (p-value) adalah tingkat signifikanti terkecil di mana nipotesis nol akan ditolak untuk penelitian atau observasi yang 6

BAB 2.4. SIFAT-SIFAT PENGUJIAN HIPOTESIS

ferdapat beberapa pengujian hipotesis yang tersedia untuk menguji nipotesis nol (H_0) . Untuk memilih pengujian tersebut, kita harus mempertimbangkan beberapa sifat pada masing-masing pengujian. Sifatsifat tersebut melibatkan beberapa istilah sebagai berikut:

- Pengujian harus tidak bias
- Pengujian harus konsisten ъ. Б

- c. Pengujian harus lebih efisien dari pengujian yang lain
- 1. Power Function memberikan probabilitas dalam menolak H_0 ketika H_0 benar atau tidak benar. Power function dapat direpresentasikan dalam bentuk aljabar atau grafik.
- 2. Pengujian Tidak bBas (Unbiased Test) adalah suatu pengujian di mana probabilitas menolak H_0 ketika H_0 salah lebih besar daripada probabilitas menolak H_0 ketika H_0 benar. Dengan demikian, pengujian tidak bias ini adalah saat di mana $the\ power$ minimal sebesar tingkat signifikan. Jika pengujian tersebut tidak bias, maka disebut dengan pengujian bias ($biased\ test$).
- 3. Pengujian Konsisten. Pengujian yang konsisten berlaku pada urutan pengujian. Urutan pengujian dikatakan konsisten terhadap semua alternatif pada H_1 jika $the\ power\ of$ $the\ tests$ mendekati 1,0 dengan ukuran sampel mendekati tak hingga untuk setiap alternatif tetap H_1 . Tingkat signifikansi pada setiap pengujian dalam urutan tersebut diasumsikan sedekat mungkin tetapi tidak melebihi tingkat signifikansi konstan $\alpha>0$.
- **4. Efisiensi Relatif.** Efisiensi adalah suatu istilah relatif dan digunakan untuk membandingkan ukuran sampel dalam satu pengujian dengan pengujian yang lain dengan kondisi yang sama. Pengujian dengan ukuran sampel yang lebih kecil dikatakan lebih efisien daripada pengujian lainnya, dan efisiensi relatifnya lebih besar dari 1. Misalkan T_1 dan T_2 merupakan dua pengujian yang menguji H_0 terhadap H_1 yang sama, dengan daerah kritis α dan β yang sama. Maka, **efisiensi relatif dari T_1 terhadap** T_2 (**atau efisiensi** T_1 **yang relatif terhadap** T_2) adalah rasio $\frac{n_2}{n_1}$, di mana n_1 dan n_2 adalah ukuran sampel dari pengujian T_1 dan T_2 .
- 5. Asymptotic Relative Efficiency/A.R.E. Misalkan n_1 dan n_2 adalah ukuran sampel yang dibutuhkan dalam pengujian T_1 dan T_2 untuk memiliki power yang sama pada tingkat signifikansi yang sama. Jika α dan β tetap konstan, limit dari $\frac{n_2}{n_1}$ di mana n_1 mendekati tak hingga, serta limit saling bebas pada α dan β , maka

- disebut Efisiensi Relatif Asimtotik dari pengujian pertama terhadap pengujian kedua.
- 6. Pengujian Konservatif. Suatu pengujian dikatakan konservatif jika tingkat signifikansi yang sesungguhnya lebih kecil daripada tingkat signifikansi yang ditetapkan. Dalam aplikasinya, terkadang sulit untuk menghitung tingkat signifikansi yang tepat dari suatu pengujian, maka ada beberapa metode yang dapat digunakan untuk aproksimasi α. Nilai aproksimasi tersebut yang menjadi tingkat signifikansi. Jika aproksimasi tingkat signifikansi tersebut lebih besar dari pada tingkat signifikansi yang benar (dalam hal ini belum diketahui), maka pengujian tersebut dikatakan konservatif dan risiko dalam melakukan kesalahan tipe 1 tidak sebesar yang dinyatakan.

BAB 2.5. STATISTIKA NON PARAMETRIK

- L. Metode yang Baik untuk Digunakan. Dalam pembahasan pada bab ini, dikatakan bahwa pengujian hipotesis bergantung pada uji statistik yang baik. Interval kepercayaan merupakan intervansi atau keterbalikan dari pengujian hipotesis bahwa interval kepercayaan adalah kumpulan hipotesis nol (H_0) yang tidak ditolak oleh data. Jadi, pengujian hipotesis yang baik bergantung pada interval kepercayaan yang baik (pendek). Contoh:
- . Mean sampel \bar{X} adalah uji statistik yang baik untuk pengujian hipotesis tentang mean populasi μ karena sensitif terhadap perbedaan dalam mean populasi.
- b. S dan s juga merupakan statistik yang baik untuk menjadi inferensi (kesimpulan) tentang standar deviasi populasi (σ) .
 - 2. Metode Parametrik adalah metode yang validasinya bergantung pada fungsi distribusi populasi yang diketahui. Metode ini merupakan pengujian hipotesis atau interval kepercayaan apa pun berdasarkan asumsi bahwa fungsi distribusi populasi diketahui, atau diketahui kecuali untuk beberapa parameter yang tidak diketahui. Kebanyakan metode parametrik didasarkan pada

- asumsi normal karena teori di balik pengujian ini dapat dilakukan dengan distribusi populasi normal.
- 3. Metode Robust. Jika data berasal dari distribusi nonnormal, atau data tidak dapat menggunakan metode parametrik, maka metode nonparametrik harus dipertimbangkan. Suatu metode analisis yang valid walaupun salah satu asumsi dari metode tersebut tidak benar, tetap dianggap kuat (robust) terhadap asumsi. Secara umum, istilah kuat (robust) mengarah pada metode berdasarkan asumsi normal yang memiliki uji statistik distribusi nol yang sama bahkan ketika populasinya nonnormal. Beberapa pengujian parametrik seperti one-sample t test dan two-sample t test disebut kuat terhadap asumsi normal, terutama jika ukuran sampelnya cukup besar.
- 4. Metode Nonparametrik didasarkan pada beberapa asumsi yang sama dengan metode parametrik seperti asumsi bahwa sampelnya adalah sampel acak. Namun, metode nonparametrik tidak mengasumsikan distribusi probabilitas populasi tertentu sehingga metode ini valid untuk data dari populasi dengan distribusi probabilitas apa pun.

Jika fungsi distribusi populasi memiliki tails yang lebih ringan daripada distribusi normal (contohnya distribusi uniform), maka metode parametrik yang berdasar pada asumsi normal memiliki power yang baik, bisa lebih baik atau sama dengan power pada metode nonparametrik berdasarkan rank. Contoh data yang memiliki tails lebih ringan adalah data survey opini, di mana responden diminta untuk memilih dari skala 1 sampai 5 atau 1 sampai 7.

Di samping itu, jika fungsi distribusi memiliki *tails* yang lebih berat daripada distribusi normal (contohnya distribusi eksponensial, distribusi lognormal, dan distribusi gamma), maka metode parametrik yang berdasar pada asumsi normal memiliki power yang lemah jika dibandingkan dengan metode nonparametrik berdasarkan rank, sehingga penting untuk mempertimbangkan

- menggunakan metode nonparametrik. Contoh data yang berdistribusi *heavy-tailed* adalah data yang mengandung *outliers*.
- 5. Distribusi Bebas (Distribution-Free) Asimtotik. Dasar untuk menunjukkan metode parametrik berdasarkan mean sampel menjadi berdistribusi bebas asimtotik adalah (Central Limit Theorem. Dalam hal ini, metode-metode yang dipertimbangkan konsisten, artinya semakin besar ukuran sampel maka power semakin mutlak. Hal yang perlu dipertimbangkan oleh seorang peneliti dalam memilih metode statistik untuk menganalisis data adalah ukuran sampel dan interval kepercayaan.
- Metode untuk Menganalisis Data Nominal dan Ordinal. Metode nonparametrik dapat digunakan untuk data kualitatis yang memiliki skala pengukuran nominal atau ordinal.
- 7. **Definisi Nonparametrik**. Metode statistik disebut nonparametrik jika memenuhi minimal 1 dari kriteria berikut.
- a. Metode ini dapat digunakan pada data dengan skala pengukuran nominal.
- Metode ini dapat digunakan pada data dengan skala pengukuran ordinal.
- c. Metode ini dapat digunakan pada data dengan skala pengukuran interval atau rasio, di mana fungsi distribusi dari peubah acak yang menghasilkan data diketahui atau tidak diketahui kecuali untuk tak hingga banyaknya parameter yang tidak diketahui.

Data:

- Sampel terdiri dari n percobaan yang independen, dimana setiap keluaran berada pada kelas 1 dan kelas 2, namun tidak keduanya
 - : Total observasi di kelas 1 $0 \frac{0}{2}$
- : Total observasi di kelas 2, dimana $\theta_2=n-\theta_1$
 - : Ukuran sampel

Asumsi:

- Sebanyak n percobaan adalah mutually independent
- Setiab percobaan memiliki probabilitas p vang merupakan keluaran **kelas 1**

z. Settab percobaan memiliki probabilitas p yang merupakan keluaran kelas t	ig inerupakan keluaran kelas 1	
Two Tailed Test	Lower Tailed Test	Upper Tailed Test
Hipotesis:		
$H_0: p=p^*$	$H_0: p \geq p^*$	$H_0: p \leq p^*$
$H_1:p eq p^*$	$H_1: p < p^*$	$H_1: p > p^*$
$\dim \operatorname{ana} 0 \leq p^* \leq 1$	dimana $0 \le p^* \le 1$	dimana $0 \le p^* \le 1$
Statistik Uji:		
Untuk $n \leq 20$ (menggunakan Tabel A3)	Untuk $n \leq 20$ (menggunakan Tabel A3)	Untuk $n \leq 20$ (menggunakan Tabel A3)
$Pr(Y < t_{\star}) = \frac{\alpha}{-}$	$\Pr(Y \le t_1) = \alpha$	$\Pr(Y \le t_1) = 1 - \alpha$
	$p_{value} = \Pr(Y \le T)$	$p_{value} = \Pr(Y \ge T)$
$\Pr(Y \le t_2) = 1 - \frac{u}{2}$		
$p_{value} = 2 \times \min(\Pr(Y \le T \ atau \ Y \ge T))$	Untuk $n>20$ (menggunakan Tabel A1)	Untuk $n>20$ (menggunakan Tabel A1)
	$t = np^* + z_\alpha \sqrt{np^*(1-p^*)}$	$t = np^* + z_{1-\alpha} \sqrt{np^*(1-p^*)}$
Untuk $n>20$ (menggunakan Tabel A1)	$p_{value} = \Pr(Y \le T)$	$p_{value} = \Pr(Y \ge T)$
$t_1 = np^* + z_{\overline{2}} \sqrt{np^*(1-p^*)}$	$\Pr(Y \le t_{obs}) \cong \Pr\left(Z \le \frac{t_{obs} - np^* + 0.5}{1}\right)$	$\Pr(Y \geq t_{obs}) \cong 1 - \Pr\left(Z \leq \frac{t_{obs} - np^* + 0.5}{-1000000000000000000000000000000000000$
***************************************	$\langle v_*(1-p^*) \rangle$	$\langle np^*(1-p^*) \rangle$
	$\operatorname{dimana} T = O_1$	dimana $T={\it O}_1$
$p_{value} = 2 \times \min(Pr(Y \le t_{obs} \ atau \ Y \ge t_{obs}))$		
$\Pr(Y \le t_{obs}) \cong \Pr\left(Z \le \frac{t_{obs} - np^* + 0.5}{m}\right)$		
$\sqrt{np^*(1-p^*)}$		

Confidence Interval:

Tujuan: Untuk mengetahui interval kepercayaan untuk proporsi probabilitas atau populasi

Data: Sampel terdiri dari atas observasi dari n percobaan yang independen yang diuji dan Y waktu terjadinya kejadian yang terjadi

Asumsi:

- Probabilitas p dari kejadian spesifik terjadi secara konstan dari 1 percobaan ke percobaan berikutnya 1. Sebanyak n perrcobaan adalah $\mathit{mutually}$ independent 2. Probabilitas n dari kaizatara m

Metode:

Metode A

Untuk $n \le 30$ dan $\alpha = 0.90, 0.95$, atau 0.99 menggunakan **Tabel A4**

Metode B ۲, Untuk n>30 atau lpha yang tidak terdapat pada Tabel A4, maka akan digunakan **pendekatan normal**, yaitu:

Batas Atas:

Batas Bawah:

Y(n-Y) $Lower = \frac{n - z_{1 - \frac{\alpha}{2}}}{n}$

Y(n-Y) $Upper = \frac{1}{n} + z_{1-\frac{\alpha}{2}}$

UJI KUANTIL DAN CONFIDENCE INTERVAL

Tujuan: Untuk menguji kuantil ke-p

Data: Misalkan X_1,X_2,\dots,X_n adalah sampel acak (diurutkan), dimana data terdiri atas observasi pada X_l

1. $X_i s$ merupakan sampel acak (independent identic distribution)

Two Tailed Test	Lower Tailed Test	Upper Tailed Test
Hipotesis:		
$H_0:\Pr(X\leq x^*)=p^*$	$H_0:\Pr(X\leq x^*)\geq p^*$	$H_0:\Pr(X\leq x^*)\leq p^*$
$H_1:\Pr(X\leq x^*)\neq p^*$	$H_1:\Pr(X\leq x^*)< p^*$	$H_1:\Pr(X\leq x^*)>p^*$
data diasumsikan kontinu	data diasumsikan tidak kontinu	data diasumsikan tidak kontinu
Statistik Uji:		
Untuk $n \leq 20$ (menggunakan Tabel A3)	Untuk $n \leq 20$ (menggunakan Tabel A3)	Untuk $n \leq 20$ (menggunakan Tabel A3)
$Pr(V \le t_i) = \frac{\alpha}{-}$	$\Pr(Y \le t_1) = \alpha$	$\Pr(Y \le t_1) = 1 - \alpha$
α	$p_{value} = \Pr(Y \le T_1)$	$p_{value} = \Pr(Y \ge T_2)$
$\Pr(Y \le t_2) = 1 - \frac{1}{2}$		
$p_{value} = 2 \times \min(\Pr(Y \le T_1 atau \ Y \ge T_2))$	Untuk $n>20$ (menggunakan Tabel A1)	Untuk $n>20$ (menggunakan Tabel A1)
	$t_1 = np^* + z_\alpha \sqrt{np^*(1-p^*)}$	$t_2 = np^* + z_{1-\alpha} \sqrt{np^*(1-p^*)}$
Untuk $n>20$ (menggunakan Tabel A1)	$p_{value} = \Pr(Y \le T_1)$	$p_{value} = \Pr(Y \ge T_2)$
$t_1 = np^* + Z_{\overline{\gamma}} \sqrt{np^*(1-p^*)}$	$\Pr(Y \le T_1) \cong \Pr\left(Z \le \frac{T_1 - np^* + 0.5}{}\right)$	$\Pr(Y \ge T_2) \cong 1 - \Pr\left(Z \le \frac{T_2 - np^* + 0.5}{2}\right)$
$t_2 = np^* + z_{1-\frac{\alpha}{\alpha}} \sqrt{np^*(1-p^*)}$	$\langle np^*(1-p^*) \rangle$	$\langle np^*(1-p^*) \rangle$
$p_{value} = 2 \times \min(\Pr(Y \le T_1 \ atau \ Y \ge T_2))$		
$\Pr(Y \le T_1) \cong \Pr\left(Z \le \frac{T_1 - np^* + 0.5}{1 - np^* + 0.5}\right)$		
$\left\langle -\frac{1}{2} \left\langle -\frac{1}{2} \left\langle np^*(1-p^*) \right\rangle \right\rangle$		
$\Pr(Y \ge T_2) \cong \Pr\left(Z \le \frac{T_2 - np^* - 0.5}{\sqrt{np^*(1 - p^*)}}\right)$		
dimana:		
T_1 : total observasi yang $\leq p^*$		
T_2 : total observasi yang $< p^st$		
Jika tidak terdapat satupun total data yang tepat sama dengan x^{st} , maka $T_1=T_2$		
Jika lainnya, maka $T_1 > T_2$		

Confidence Interval:

Tujuan: Untuk mengetahui interval kepercayaan dari kuantil ke- p^* (tidak diketahui), dimana $0 \le p^* \le 1$

Data: Data terdiri dari observasi $X_1, X_2, \dots X_n$ yang merupakan peubah acak (i.i.d.). $X^{(1)} \le X^{(2)} \le \dots \le X^{(r)} \le \dots \le X^{(s)} \le \dots \le X^{(n)}$ mempresentasikan statistik terurut, dimana $1 \le r < s \le n$

Asumsi:

- 1. Sebanyak n percobaan adalah mutually independent
- Probabilitas p dari kejadian spesifik terjadi secara konstan dari 1 percobaan ke percobaan berikutnya

Metode:

Metode A:

Untuk $n \leq 20$, menggunakan **Tabel A3** untuk mencari r dan s

Cara mencari r

Pada kolom $p=p^*$, cari nilai yang paling dekat dan $<rac{lpha}{2}$ (disebut sebagai $lpha_1$)

- Lalu, lihat nilai tersebut pada y berapa
- Maka, r = y + 1
 - Cara mencari s

Pada kolom $p=p^*$, cari nilai yang paling dekat dan $< 1-rac{lpha}{2}$ (disebut sebagai $1-lpha_1$)

- Lalu, lihat nilai tersebut pada y berapa
- Maka, s = y + 1

Maka, diperoleh $\Pr(X^{(r)} \le X_{p^*} \le X^{(s)} = 1 - \alpha_1 - \alpha_2$, dimana $X^{(t)}$ sudah diurutkan

۷.

Untuk n>20, untuk mendapatkan r^st dan s^st digunakan **Teorema Limit Pusat**, yaitu:

$$r^*=np^*+zrac{lpha}{2}\sqrt{np^*(1-p^*)}$$
dimana: hasil perhitungan selalu **dibulatkan ke atas**

 $s^* = np^* - z_{\frac{\alpha}{2}} \sqrt{np^*(1 - p^*)}$

Data:

Sampel acak dari n_1 observasi berasal dari suatu populasi sebelum diberikan perlakuan dan setiap observasi diklasifikasikan ke dalam kelas 1 atau 2. Sedangkan sampel acak dari n_2 observasi berasal dari populasi setelah diberikan perlakuan

uiiiaila. O iiimlah mada kalac 1 di nanulaci nartama	O ₁₁ . Julillali pada kelas i di populasi pel talila	O ₁₂ · juimlah pada kelas 2 di populasi pertama O- · · iumlah pada kelas 1 di populasi kedua	O_{23} : iumlah pada kelas 2 di populasi kedua
Total	n_1	n_2	$N = n_1 + n_2$
Kelas 2	O_{12}	O_{22}	C_2
Kelas 1	O_{11}	O_{21}	C_1
	Populasi 1	Populasi 2	Total

 $_{12}$: jumlah pada kelas $2\,\mathrm{di}$ populasi kedua

Asumsi:

Setiap sampel adalah sampel acak 3 7 1

Kedua sampel adalah mutually independent

Setiap observasi dapat dikategorikan ke dalam kelas 1 maupun 2

Two Tailed Test	Lower Tailed Test	Upper Tailed Test
Hipotesis:		
$H_0 \colon \! p_1 = p_2$	H_0 : $p_1 \ge p_2$	H_0 : $p_1 \le p_2$
H_1 : $p_1 \neq p_2$	H_1 : $p_1 < p_2$	H_1 : $p_1 > p_2$
dimana:		
p_1 : probabilitas populasi 1		
p_2 : probabilitas populasi 2		
Statistik Uji:		
Jika total kolom adalah 0, maka:	Jika total kolom adalah 0, maka:	Jika total kolom adalah 0, maka:
$T_1 = 0$	$T_1 = 0$	$T_1 = 0$
Jika lainnya, maka:	Jika lainnya, maka:	Jika lainnya, maka:
$_{T}=\sqrt{N}(O_{11}O_{22}-O_{12}O_{21})$	$_{T}$ $_{-}$ $\sqrt{N}(O_{11}O_{22}-O_{12}O_{21})$	$_{T}$ $_{-}$ $\sqrt{N}(O_{11}O_{22}-O_{12}O_{21})$
$\sqrt{1-\sqrt{n_1n_2C_1C_2}}$	$\sqrt{11-\sqrt{n_1n_2C_1C_2}}$	$\sqrt{n_1 n_2 C_1 C_2}$
$p_{value} = 2 \times \min(Pr(Z < T_1 \ atau \ Z > T_1))$	$p_{value} = Pr(Z < T_1)$	$p_{value} = Pr(Z > T_1)$

dimana:		
Untuk hipotesis ini T_1^2 sering digunakan daripada		
$T_{ m 1}$ sebagai statistik uji dan daerah kritisnya adalah		
upper tailed dari distribusi Chi-Square dengan		
df=1 menggunakan Tabel A2		
Aturan Penolakan:		
H_0 ditolak jika $T_1 < Z_{\widetilde{lpha}}$ atau $T_1 > Z_{1-\widetilde{lpha}}$	H_0 ditolak jika $T_1 < Z_lpha$	H_0 ditolak jika $T_1 > Z_{1-lpha}$
H_0 ditolak jika $p-value < lpha$	H_0 ditolak jika $p-value$	H_0 ditolak jika $p-value < lpha$
dimana: $Z_{rac{lpha}{2}}$ dari Tabel A1		

UJI KOLMOGOROV SMIRNOV 1 SAMPEL (GOODNESS OF FIT TEST)

Tujuan: Untuk menguji distribusi dari suatu fungsi

Data: Data terdiri dari sampel acak berukuran n, yaitu $X_1, X_2, ..., X_n$ terkait dengan beberapa fungsi distribusi yang tidak diketahui F(x)

Asumsi: Sampel adalah sampel acak

Two Tailed Test	Lower Tailed Test	Upper Tailed Test
Hipotesis:		
$H_0: F(x) = F^*(x)$	$H_0: F(x) \ge F^*(x)$	$H_0:F(x) \le F^*(x)$
$H_0: F(x) \neq F^*(x)$	$H_0: F(x) < F^*(x)$	$H_0:F(x)>F^*(x)$
Statistik Uji:		
$T = \sup F^*(x) - S(x) $		$T^- = \sup[S(x) - F^*(x)]$
$p_{value} = 2t \sum_{j=0}^{n(1-t)} {n \choose j} \left(1 - t - \frac{j}{n}\right)^{n-j} \left(t + \frac{j}{n}\right)^{j-1}$	$p_{value} = t \sum_{j=0}^{n(1-t)} {n \choose j} (1-t-rac{j}{n})^{n-j} (t+rac{j}{n})^{j-1}$	$p_{value} = t \sum_{j=0}^{n(1-t)} {n \choose j} (1-t-rac{j}{n})^{n-j} (t+rac{j}{n})^{j-1}$
dimana:		
S(x) : fungsi empiris dari x		
$F^*(x)$: fungsi distribusi hipotesis		
t : nilai observasi dari uji statistik		
n : jumlah data		

$n(1-t)$: bilangan bulat terbesar yang $\leq n(1-t)$		
Aturan Penolakan:		
H_0 ditolak jika $T>1-lpha$ (menggunakan Tabel A13 untuk two sided test)	H_0 ditolak jika $T^+>1-lpha$ (menggunakan Tabel H_0 ditolak jika $T^->1-lpha$ (menggunakan Tabel A13 untuk one sided test)	H_0 ditolak jika $T^->1-lpha$ (menggunakan Tabel
H_0 ditolak jika $p-value$	H_0 ditolak jika $p-value < lpha$	H_0 ditolak jika $p-value < lpha$

1. Jika F(x) kontinu dan H_0 tidak ditolak (benar bahwa fungsi distribusi dari T^+ dan T^- yang diperoleh dari

$$G(x) = 1 - x \sum_{j=0}^{n(1-x)} {n \choose j} \left(1 - x - \frac{j}{n}\right)^{n-j} \left(x + \frac{j}{n}\right)^{j-1}$$

Maka, distribusi ini sama untuk T^{+} dan T^{-}

- Ketikan $n \to \infty$, fungsi distribusi dari $\sqrt{n}T^+$ dan $\sqrt{n}T^-$ yang diperoleh dari $H(x) = \lim_{n \to \infty} G\left(\frac{x}{\sqrt{n}}\right) = 1 e^{-2x^2}$ Fungsi distribusi **(aproksimasi)** dari T yaitu $\Pr(T \le x) = [G(x)]^2$, karena T < x ketika T^+ dan $T^- < x$

UJI COX STUART

Tujuan: Untuk menguji ada (meningkat atau menurun) atau tidaknya kecenderungan

Data: Terdiri dari pengamatan $X_1, X_2, ..., X_n$ yang disusun dalam urutan tertentu seperti urutan dimana variabel acak diamati. Kelompok variabel acak dipasangkan, seperti: $(X_1, X_{1+c}), (X_2, X_{2+c}), ..., (X_{n-c}, X_n)$

- 1. $c=rac{n}{2}$, jika n bilangan genap 2. $c=rac{n+1}{2}$, jika n bilangan ganjil, dimana variabel acak yang berada di tengah di hilangkan

Menggantikan setiap pasangan (X_i,X_{i+c}) dengan:

- 1. Tanda (+) jika $X_i < X_{i+c}$ 2. Tanda (-) jika $X_i > X_{i+c}$ 3. Pasangan dihilangkan jika $X_i = X_{i+c}$

1. Variabel random X_1, X_2, \dots, X_n saling independen

- Skala pengukuran minimal adalah skala ordinal
- Salah satu dari X_i terdistribusi secara identik, yaitu variabel random yang terakhir cenderung lebih besar dari variabel acak sebelumnya atau sebaliknya 3 .

Two Tailed Test	Lower Tailed Test	Two Tailed Test Lower Tailed Test Upper Tailed Test
Hipotesis:		
H_0 : tidak terdapat kecenderungan	H_0 : tidak terdapat kecenderungan	H_0 : tidak terdapat kecenderungan
H_1 : terdapat kecenderungan	H_1 : terdapat kecenderungan menurun	H_1 : terdapat kecenderungan meningkat
Statistik Uji:		
	$T = T^+$	
dimana:		
T^{+} : penjumlahan dari pasangan variabel acak yang bertanda $(+)$	ertanda (+)	
Aturan Penolakan:		
Tolak H_0 jika $T \geq n - t_{tabel}$ atau $T \leq t_{tabel}$	Tolak H_0 jika $T \leq t_{tabel}$	Tolak H_0 jika $T \geq n - t_{tabel}$
Tolak H_0 jika $p_{value} < rac{lpha}{2}$	Tolak H_0 jika $p_{value} < lpha$	Tolak H_0 jika $p_{value} < lpha$
dimana:		
menggunakan Tabel A3 untuk mencari t dengan $p=0.5$ dan n adalah iumlah pasangan tidak		
terikat		

UJI MCNEMAR

Tujuan: Menguji perbedaan rata-rata dua kelompok sampel berpasangan dimana data adalah data nominal dua kategori yang ditandai dengan "0" dan "1" Data:

		Klasifi	Klasifikasi Y_i
		$Y_i = 0$	$Y_i=1$
		a (banyaknya	b (banyaknya
	$X_i = 0$	pasangan	pasangan
Klacifikaci V.		$(X_i, Y_i) = (0,0)$	$(X_i, Y_i) = (0,1)$
Nidoli Indol Λ_i		c (banyaknya	d (banyaknya
	$X_i = 1$	pasangan	pasangan
		$(X_i, Y_i) = (1,0)$	$(X_i, Y_i) = (1,1)$

Data terdiri atas observasi dari variabel random bivariat independen berukuran $n',\,(X_i,Y_i),i=1,2,...,n'.$ Skala pengukuran untuk X_i dan Y_i adalah skala nominal dengan dua kategori, dimana dapat direpresentasikan dengan "0" dan "1" sehingga kemungkinan-kemungkinan nilai dari (X_i,Y_i) adalah (0,0),(0,1),(1,0), atau (1,1). Dalam uji McNemaar, data biasanya dibuat dalam tabel kontingensi berukuran 2×2

Asumsi

- Pasangan (X_i, Y_i) saling independen
- Skala pengukuran adalah skala nominnal dengan dua kategorik untuk semua X_i dan Y_i 7
- Selisih $\mathrm{P}(X_i=0,Y_i=1)-\mathrm{P}(X_i=1,Y_i=0)$ adalah negatif untuk semua i atau bernilai 0 untuk semua i atau positif untuk semua i

	Two Tailed Test	
Hipotesis:	Statistik Uji:	Aturan Penolakan:
H_0 : $P(X_i = 0) = P(Y_i = 0)$	Jika $b+c>20$, maka:	Jika $b+c>20$, maka:
$H_1: P(X_i = 0) \neq P(Y_i = 0)$	$T_1 = \frac{(b-c)^2}{b+c}$	Tolak H_0 jika $T_1>\chi_{1-lpha;1}^2$ (menggunakan Tabel A2)
H_0 : $P(X_i = 1) = P(Y_i = 1)$	Jika $b+c \le 20$	Jika $b+c \le 20$
$H_1: P(X_i = 1) \neq P(Y_i = 1)$	$T_2 = b$	Tolak H_0 jika $T_2 \le t$ atau $T_2 \ge n-t$
		(menggunakan Tabel A3 untuk mencari t dengan
		$p=0.5 \operatorname{dan} n = b + c$

SIGN TEST

Tujuan: Menguji perbedaan rata-rata dua kelompok sampel berpasangan

Data: Data terdiri atas observasi dari sampel acak bivariat $(X_i, Y_i), i = 1, 2, ..., n'$. Dalam setiap pasangan sampel acak (X_i, Y_i) dilakukan perbandingan dan pasangan yang dikategorikan sebagai (+) jika $X_i < Y_i$ dan sebagai (-) jika $X_i > Y_i$ atau sebagai (0) jika $X_i = Y_i$. Dimana skala pengukurannya adaklah skala

Asumsi:

ordinal

- Variabel acak bivariat $(X_i,Y_i), i=1,2,...,n'$ saling independen
- Skala pengukuran minmal adalah skala ordinal untuk setiap pasangan (X_i,Y_i) yang dapat dikategorikan sebagai (+),(-), atau (0)
- Pasangan data (X_i,Y_i) bersifat konsisten secara internal, yaitu jika P(+) > P(-), P(+) < P(-), atau P(+) = P(-), maka hal yang sama berlaku untuk keseluruhan data 3 .

Two Tailed Test	Lower Tailed Test	Upper Tailed Test
Hipotesis:		
$H_0: P(+) = P(-)$	$H_0: P(+) \ge P(-)$	$H_0: P(+) \le P(-)$
H_1 : $P(+) \neq P(-)$	$H_1: P(+) < P(-)$	$H_1: P(+) > P(-)$

Statistik Uji: Jika $n \le 20$, menggunakan Tabel A3 untuk mencari	≤ 20, menggunakan Tabel A3 untuk mencari	
nilai <i>t</i> lika n > 20 mengampakan anroksimasi norma l	nilai t lika $n>20$ mengamakan anroksimasi norma l	nilai t lika $n>20$ mengamakan anroksimasi norma l
$t = \frac{1}{2} \left(n + \frac{Z\alpha}{2} \sqrt{n} \right)$	$t = \frac{1}{2}(n + Z_{\alpha} \sqrt{n})$	$t = \frac{1}{2}(n + Z_{\alpha} \sqrt{n})$
dimana:		
T: banyaknya pasangan data sebagai kategori $(+)$		
n: jumlah data yang dikategori $(+)$ atau $(-)$		
Aturan Keputusan:		
Tolak H_0 jika $T \leq t_{tabel}$ atau $T \geq n - t_{tabel}$	Tolak H_0 jika $T < t_{tabel}$	Tolak H_0 jika $T>t_{tabel}$
Tolak H_0 jika $p_{value} < rac{a}{2}$	Tolak H_0 jika $p_{value} < lpha$	Tolak H_0 jika $p_{value} < lpha$
$p_{value} = 2 \times \min(P(Y \le t_{obs}) \ atau \ P(Y \ge t_{obs}))$	$p_{value} = P(Y \le t_{obs})$	$p_{value} = \mathrm{P}(Y \geq t_{obs})$
dimana:		
$P(Y \le t_{obs}) = P\left(Z \le \frac{2 \times t_{obs} - n + 1}{\sqrt{n}}\right)$		
$P(Y \ge t_{obs}) = 1 - P\left(Z \le \frac{2 \times t_{obs} - n + 1}{\sqrt{n}}\right)$		

WILCOXON TEST

Tujuan: Untuk mengukur signifikansi perbedaan antara dua kelompok data berpasangan berskala interval atau ordinal dan tidak berdistribusi Normal. Merupakan uji alternatif dari uji t-test apabila tidak memenuhi asumsi normalitas

Data: Data terdiri dari dua kelompok, yaitu X_i dan Y_i yang berpasangan

Asumsi:

- Distribusi setiap D_i simetris
- D_i saling bebas D_i memiliki mean yang sama
- Skala pengukuran D_{l} minimal skala interval

Hipotesis: $ H_0: E(D) = 0 \ \left(E(X_i) = E(Y_i) \right) \\ H_1: E(D) \neq 0 $ $ H_1: E(D) \neq 0 $ $ H_1: E(D) > 0 \ \left(E(X_i) \leq E(Y_i) \right) $ $ H_2: E(D) > 0 $ $ H_1: E(D) > 0 $	Two Tailed Test	Lower Tailed Test	Upper Tailed Test	
$H_0: E(D) \ge 0 (E(X_i) \le E(Y_i))$ $H_1: E(D) < 0$	Hipotesis:			
$H_1: E(D) < 0$	$H_0: E(D) = 0 \left(E(X_i) = E(Y_i) \right)$	$H_0: E(D) \ge 0 \left(E(X_i) \le E(Y_i) \right)$	$H_0: E(D) \le 0 \left(E(X_i) \ge E(Y_i) \right)$	
	H_1 : $E(D) \neq 0$	H_1 : $E(D) < 0$	$H_1: E(D) > 0$	

Statistik Uji:

Misalkan R_i adalah peringkat tanda (signed rank), mendefinisikan setiap pasangan (X_i,Y_i)

 R_i : rank positif untuk (X_i,Y_i) , jika $D_i=Y_i-X_i$ positif $(X_i< Y_i)$

 R_l : rank negatif untuk (X_l,Y_l) , jika $D_l=Y_l-X_l$ negatif $(X_l>Y_l)$

Tidak terdapat ties:

Untuk n > 50:

 $T^+ = \sum_i R_i$ Untuk $n \le 50$:

dimana D_i positif

n(n+1)(2n+1) $\sum_{i=1}^{n} R_i$

Terdapat ties:

 $\frac{\sum_{i=1}^{n} R_i}{\sqrt{\sum_{i=1}^{n} R_i^2}}$

Aturan Penolakan:

Tolak H_0 jika $T^+ <$ kuantil $rac{lpha}{2}$ atau $T^+ >$ kuantil 1-

Kuantil bawah menggunakan Tabel A12

Kuantil atas:

 $\omega_p = \frac{n(n+1)}{2} - \omega_{1-p}$

dimana kuantil untuk p terdapat pada **Tabel A1**

Tolak H_0 jika $T^+ <$ kuantil lpha (menggunakan **Tabel** | Tolak H_0 jika $T^+ >$ kuantil lpha (menggunakan **Tabel A1**)

 $P\left(Z \le \frac{\sum_{i=1}^{n} R_i + 1}{\sqrt{\sum_{i=1}^{n} R_i^2}}\right)$ Lower tailed p-value:

Menolak H_0 jika p-value $< \alpha$

 $P\left(Z \ge \frac{\sum_{i=1}^n R_i - 1}{\sqrt{\sum_{i=1}^n R_i^2}}\right)$ Menolak H_0 jika p-value $< \alpha$

Lower tailed p-value:

THE RANDOMIZATION TEST FOR INDEPENDENT SAMPLES

Tujuan: Untuk mengetahui perbandingan antara data yang satu dengan data yang lain (tipe data bebas)

Data: Data terdiri dari 2 sampel acak yaitu $X_1, X_2, ..., X_n$ dan $Y_1, Y_2, ..., Y_m$ dengan ukuran data n dan m

- Kedua sampel adalah sampel acak dari masing-masing populasi
- Sebagai tambahan dari sifat saling bebas di antara setiap sampel, terdapat juga sifat mutually independent
- Sebagai tambahan dari sifat saling beba
 Jenis data minimal adalah data interval

		Two Tailed Test
Hipotesis:	Statistik Uji:	Aturan Keputusan:
$H_0: E(X) = E(Y)$ $H_0: E(Y) \neq E(Y)$	$T_1 = \sum_{i=1}^{n} X_i$	Aturan penolakan ditemukan dengan mempertimbangkan semua cara yang mungkin untuk memilih sebanyak n kombinasi dari X dan Y yang mungkin untuk binotesis nul. Tidak ada tabel yang danat digunakan dan yaliditas
$u_1 \cdot E(\Lambda) \neq E(I)$; !=1	aproksimasi mustahil untuk ditemukan
		Penolakan statistik uji:
		H_0 ditolak jika $T_1>w_{1-rac{lpha}{2}}$ atau $T_1< w_{rac{lpha}{2}}$
		Untuk mencari nilai dari p dari kuantil w_p , buatlah $inom{n+m}{n}(p)$ kombinasi letak X dan Y dan jumlahkan nilai X
		dari $\sum X$ terkecil hingga terbesar, yang disebut dengan T_1 , nilai terbesar dari T_1 adalah w_p . Jika $inom{n+m}{n}(p)$ bukan
		bilangan bulat, maka bulatkan ke bilangan bulat berikutnya, jika $inom{n+m}{n}(p)$ bilangan bulat, maka nilai T_1 dapat
		didapatkan dari $inom{n+m}{n}(p)+1$ kombinasi
		Penolakan <i>p-value</i> :
		p -value didapatkan dari membagi T_1 yang didapatkan dari data kombinasi (bukan statistik uji) dengan $inom{n+m}{n}$,
		dikarenakan uji dua arah, maka <i>p-value</i> dikali 2

THE RANDOMIZATION TEST FOR MATCHED PAIRS

Fujuan: untuk mengetahui perbedaan rata-rata nilai numerik 2 populasi berdasarkan rata-rata nilai dari dua sampel berpasangan

Data: Data terdiri dari pengamatan n' variabel acak bivariat $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$. Hilangkan semua pasangan (X_i, Y_i) yang memiliki selisih 0 dan untuk pasangan sisanya dilambangkan dengan n dan selisih yang tidak 0 dilambangkan dengan $Y_i-X_1=D_i$; i=1,2,...,n

Asumsi:

- 1. Distibusi setiap D_i simetris
- 2. D_{is} mutually independent

- 3. Semua D_{is} mempunyai mean yang sama
- 4. Skala pengukuran D_{is} minimal adalah skala interval

		Two Tailed Test
Hipotesis:	Statistik Uji:	Aturan Keputusan:
H_0 : $E(D) = 0$	u [Aturan penolakan ditemukan dengan mempertimbangkan semua cara yang mungkin untuk memilih sebanyak n
E(X) = E(Y)	$T_2 = \sum_i D_i$	kombinasi dari $X_{ m s}$ dan $Y_{ m s}$ yang mungkin untuk hipotesis nul. Tidak ada tabel yang dapat digunakan dan validitas
$H_1:E(D)\neq 0$	i=1	aproksimasi mustahil untuk ditemukan
$E(X) \neq E(Y)$		Penolakan statistik uji:
		H_0 ditolak jika $T_2>w_{1-rac{lpha}{2}}$ atau $T_2< w_{rac{lpha}{2}}$
		Nilai D_{ls} yang diambil adalah nilai $ D_{ls} $. Ada 2^n cara untuk memasukan tanda $+$ atau $-$, bisa dimulai dengan
		memasukan tanda $+$ ke semua n dari $ D_i $ atau bisa memasukan tanda $+$ ke $ D_1 $, lalu tanda $-$ ke semua $ D_2 $
		sampai $ D_n $ dan seterusnya
		Untuk mencari nilai p dari kuandtil $w_p, 0 \le p \le 1$, pertama-tama cari $(2^n)(p)$ tanda yang menyebabkan nilai dari
		T_2 adalah sumasi terkecil (positif) dari $ D_i $. Jika nilai dari $(2^n)(p)$ bukan bilangan bulat, maka bulatkan ke bilangan
		bulat berikutnya. Nilai dari T_2 yang paling besar akan menjadi nilai dari w_p . Nilai dari $w_{1-ar{a}}=\sum_{i=1}^n D_i -w_{ar{a}}$
		7
		Penolakan <i>p-value</i> :
		p -value $$ didapatkan dari menghitung nilai T_2 (perhitungan kuantil, bukan statistik uji) yang bernilai lebih kecil
		(atau lebih besar jika $T_2>rac{1}{2}L_{i=1}^n D_i $) nilai dari T_2 (statistik uji) atau nilai yang sama seperti T_2 (statistik uji), lalu
		dikali 2 dan dibagi oleh 2^n $\tilde{}$

UJI MANN-WHITNEY DAN CONFIDENCE INTERVAL

Tujuan: Untuk mengetahui apakah ada perbedaan kecenderungan antara 2 populasi data

Data: Data terdiri dari 2 sampel acak. Misalkan $X_1, X_2, ..., X_n$ adalah sampel acak berukuran n dari populasi 1 dan misalkan $Y_1, Y_2, ..., Y_n$ adalah sampel acak berukuran m dari populasi 2. Urutan rank dari 1 ke N=n+m dari observasi terkceil hingga terbesar. Maka, $R(X_i)$ dan $R(Y_j)$ adalah rank dari X_i dan Y_j untuk semua i dan j. Jika beberapa nilai sampel ada yang sama satu sama lain, maka rank adalah rata-rata dari rank tersebut

Asumsi:

- 1. Kedua sampel adalah sampel acak dari masing-masing populasi
- Sebagai tambahan dari sifat saling bebas di antara setiap sampel, terdapat juga sifat mutually independent

	Iwo lailed lest	Lower lailed lest	Upper Iailed lest
Hipotesis:			
	$H_0:F(x)=G(x), \forall x$	H_0 : $F(x) = G(x)$, $\forall x$	H_0 : $F(x) = G(x)$, $\forall x$
	$H_1:F(x) \neq G(x), \exists x$	$H_1:F(x)>G(x),\exists x$	H_1 : $F(x) < G(x)$, $\exists x$
atau		atau	atau
	$H_1 = E(X) \neq E(Y)$	$H_1 = E(X) < E(Y)$	$H_1 = E(X) > E(Y)$

Statistik Uji:

Tidak terdapat *ties*:
$$T = \sum_{i=1}^n R(X_i)$$

Terdapat banyak ties:

$$T_1 = \frac{T - \frac{n(N+1)}{2}}{\sqrt{\frac{nm}{N(N-1)}\sum_{i=1}^{N}R_i^2 - \frac{nm(N+1)}{4(N-1)}}}$$

Daerah Kritis:

Untuk **kuantil bawah** (tidak ada $ties,\,n\leq 20,m\leq 20$) menggunakan **Tabel A7** 1.

Untuk **kuantil atas** (tidak ada $ties \le 20, m \le 20$)

$$w_p = n(n+m+1) - w_{1-p}$$

dimana w_{1-p} dapat dilihat pada **Tabel A7**

$$T' = n(N+1) - T$$

$$w_p \cong \frac{n(N+1)}{2} + z_p \sqrt{\frac{nm(N+1)}{12}}$$

Untuk **kuantil** (tidak ada *ties,* n > 20, m > 20) ω.

Jika terdapat banyak ties, gunakan T_1 dimana dapat langsung dilihat pada **Tabel A1**

dimana nilai dari z_p didapat dari **Tabel A1**

Aturan Penolakan:

menggunakan T_1 dapat langsung dilihat pada **Tabel**

tolak H_0 jika $T_1 < z_{1-\alpha}$ (menggunakan **Tabel A1**) H_0 jika $T_1 < z_{\alpha}$ (menggunakan **Tabel A1**)

Diktat Statistika NonParametrik 2022-Materi UTS | 19

$$p_{value} \cong P\left(Z \le rac{T + rac{1}{2} - rac{n(N+1)}{2}}{\sqrt{rac{nm(N+1)}{12}}}
ight)$$

didapat dari **Tabel A1**

Jika menggunakan T_1 , p-value adalah dua kali nilai \mid

terkecil dari $P(Z \le T_1)$ atau $P(Z \ge T_1)$

Jika menggunakan T_1 , p-value adalah dua kali nilai terkecil dari $P(Z \le T_1)$

 $p_{value} \cong P\left(Z \le \frac{\frac{L}{\sqrt{nm(N+1)}}}{\sqrt{\frac{nm(N+1)}{12}}}\right)$ atau $p_{value} \cong P\left(Z \le \frac{T' + \frac{1}{2} - \frac{n(N+1)}{2}}{\sqrt{\frac{nm(N+1)}{12}}}\right)$

didapat dari Tabel A1

lika menggunakan T_1 , p-value adalah dua kali nilai terkecil dari $P(Z \ge T_1)$

Confidence Interval for The Difference Between Two Means

Tujuan: Untuk mengetahui interval kepercayaan antara 2 nilai rata-rata

Data: Data berasal dari sampel acak $X_1, X_2, ..., X_n$ berukuran n dan $Y_1, Y_2, ..., Y_m$ berukuran m. Misalkan X dan Y adalah variabel acak dengan distribusi yang sama sebagai X_i dan Y_j

Asumsi:

- . Kedua sampel adalah sampel acak dari masing-masing populasi
- Sebagai tambahan dari sifat saling bebas di antara setiap sampel, terdapat juga sifat *mutually independent*
- Kedua populasi memiliki fungsi distribusi yang sama, kecuali untuk kemungkinan perbedaan lokasi parameter. Maka, ada sebuah bilangan konstan dsehingga X memiliki fungsi distribusi yang sama seperti Y+d

Metode (untuk $1-\alpha$ menjadi koefisien kepercayaan)

Carilah nilai dari $w_{\frac{\alpha}{2}}$ untuk n dan m yang didapat dari **Tabel A7** atau persamaan untuk kuantil (tidak ada *ties,* n>20, m>20). Berikutnya, hitung nilai k= $w_{a}rac{n(n+1)}{2}$. Lalu urutkan semua nilai X_i dan Y_i dari nilai terkecil hingga terbesar, lalu buat tabel (misalkan X_i adalah baris dan Y_i adalah kolom) dan cari semua kemungkinan selisih yang mungkin. Lalu, akan ditentukan nilai L dan U dengan cara:

 $L={\sf data}$ ke-k urutan dengan selisih terkecil

 ${\it U}={\it data}$ ke-k urutan dengan selisih terbesar

Interval kepercayaannya adalah $P(L \le E(X) - E(Y) \le U) = 1 - \alpha$

Tujuan: Untuk mengetahui apakah 2 fungsi distribusi yang berhubungnan dengan 2 populasi saling identik atau tidak

Data: Data terdiri dari 2 sampel acak yang saling bebas, dengan $X_1, X_2, ..., X_n$ berukuran n dan $Y_1, Y_2, ..., Y_m$ berukuran m. Misalkan F(x) dan G(x)merepresetasikan masing-masing fungsi distribusi yang tidak diketahui

Asumsi:

- Sampel adalah variabel acak
- Kedua sampel adalah mutually independent 7
- Skala pengukuran paling tidak berupa skala ordinal
- Variabel acak diasumsikan kontinu 3.

4. Vallabel acak diasullisikali kolitiliu		
Two Tailed Test	Lower Tailed Test	Upper Tailed Test
Hipotesis:		
H_0 : $F(x) = G(x)$, $\forall x, -\infty < x < \infty$	$H_0: F(x) \le G(x), \forall x, -\infty < x < \infty$	$H_0: F(x) \ge G(x), \forall x, -\infty < x < \infty$
$H_1:F(x) \neq G(x), \exists x$	$H_1:F(x)>G(x),\exists x$	$H_1:F(x) < G(x), \exists x$
Statistik Uji:		
Misalkan T_1 adalah jarak vertikal terbesar antara 2	Misalkan T_1^+ adalah jarak vertikal terbesar antara 2	Misalkan T_1^- adalah jarak vertikal terbesar antara 2
fungsi empiris:	fungsi empiris:	fungsi empiris:
$T_1 = \sup S_1(x) - S_2(x) $	$T_1^+ = sup\{S_1(x) - S_2(x)\}$	$T_1^- = \sup\{S_2(x) - S_1(x)\}$
x	×	x
dimana $S_1(x)$ adalah fungsi distribusi empiris dari		
sampel acak $X_1,X_2,,X_n$ dan $S_2(x)$ adalah fungsi		
distribusi dari sampel acak $Y_1,Y_2,,Y_m$		

Daerah Kritis:

7.

- Nilai kuantil dari null distribution dapat dilihat pada **Tabel A19** untuk m=n dan **Tabel A20** untuk m
 eq n
 - Untuk m=n, nilai eksak distribusi dari T_1^+ dan T_1^- didapatkan dengan rumus:

dimana c adalah bilangan bulat terbesar $< x \times n$

9	
1	ā
1	<u> </u>
7	ō
	़
9	a)
2	7
9	_
1	g
1	3
4	5
<	Į

Menolak H_0 , jika $T_1>w_{1-\alpha}$

Menolak
$$H_0$$
, jika $T_1^+>w_{1-lpha}$

Menolak
$$H_0$$
, jika $T_1^+>w_{1-lpha}$

Penolakan dengan p-value dapat ditemukan P dengan menggunakan inrterpolasi pada tabel. Jika m=n, maka nilai eksak p-value dappat dilihat dari n2 kali nilai p-value uji satu arah

Penolakan dengan p-value dapat ditemukan dengan menggunakan inrterpolasi pada tabel. Jika m=n, maka nilai eksak p-value:

$$p_{value} = rac{2n}{inom{n+nt}{2n}}$$

Penolakan dengan p-value dapat ditemukan dengan menggunakan inrterpolasi pada tabel. Jika m=n, maka nilai eksak p-value:

$$p_{value} = \frac{\binom{n+nt}{2n}}{\binom{2n}{n}}$$

SQUARED RANK TEST

rujuan: Untuk mengetahui apakah terdapat perbedaan variansi antara populasi 1 dan populasi 2

berukuran m dari populasi 2. Maka, didapatkan $U_i=|X_i-\mu_1|, i=1,2,...,n$ dan $V_j=|Y_j-\mu_2|, j=1,2,...,m$. Jika μ_1 dan μ_2 tidak diketahui, maka dapat dicari **Data:** Data terdiri dari 2 sampel acak, misalkan $X_1, X_2, ..., X_n$ adalah sampel acak berukuran n dari populasi 1 dan misalkan $Y_1, Y_2, ..., Y_n$ adalah sampel acak dengan menggunakan $ar{X}$ dan $ar{Y}$. Masukan rank dari 1 sampai n+m kepada kombinasi sampel dari U_s dan V_s , jika terdapat beberapa nilai U dan V sama, rank menjadi rata-ratanya. Dimisalkan $R(U_i)$ dan $Rig(V_jig)$ adalah rank.

Asumsi:

- Kedua sampel adalah sampel acak yang mewakili populasi masing-masing
- Sebagai tambahan dari sifat saling bebas di antara setiap sampel, terdapat juga sifat *mutually independent*
- Skala pengukuran minimal adalah skala interval

Two Tailed Test	Lower Tailed Test	Upper Tailed Test
Hipotesis:		
H_0 : X dan Y berdistribusi identik, kecuali untuk	$H_0\colon\! X$ dan Y berdistribusi identik, kecuali untuk	$H_0\colon\! X$ dan Y berdistribusi identik, kecuali untuk
perbedaan nilai mean	perbedaan nilai mean	perbedaan nilai mean
$H_1 = Var(X) \neq Var(Y)$	$H_1 = Var(X) < Var(Y)$	$H_1 = Var(X) > Var(Y)$

Statistik Uji:

Jika tidak ada nilai ${\cal U}={\cal V}$ (tidak terdapat ties)

$$T = \sum_{i=1}^{n} [R(U_i)]^2$$

$$\bar{R}^2 = \frac{1}{N} \left\{ \sum_{i=1}^n [R(U_i)]^2 + \sum_{j=1}^m [R(V_j)]^2 \right\}$$

dimana: N = n + m

Jika ada nilai
$$U=V$$
 (terdapat $ties$)
$$T-nar{R}^2$$

$$T_1=\frac{T-m}{\left[\frac{nm}{N(N-1)}\sum_{i=1}^NR_i^4-\frac{nm}{N-1}(ar{R}^2)^2\right]^{\frac{1}{2}}}$$

$$\sum_{i=1}^{N} R_i^4 = \sum_{j=1}^{n} \left[R(U_j) \right]^4 + \sum_{j=1}^{m} \left[R(V_j) \right]^4$$

Daerah Kritis:

- Untuk kasus T dengan $n \le 10$, $m \le 10$ dan tidak terdapat ties dapat menggunakan **Tabel A9** 7 7
 - Untuk kasus T dengan n>10, m>10 dan tidak terdapat ties dapat menggunakan

$$w_p = \frac{n(N+1)(2N+1)}{6} + z_p \sqrt{\frac{mn(N+1)(2N+1)(8N+11)}{180}}$$

dimana z_p dapat dilihat pada **Tabel A1** dan N=n+m

Untuk kasus T_1 dapat menggunakan **Tabel A1**

Aturan Keputusan:

Menolak H_0 jika T (atau T_1) $> w_{1-rac{lpha}{2}}$ atau T (atau $T_1) < w_{ar{lpha}}$ menggunakan **Tabel A9** atau persamaan

dari aturan sebelumnya

Nilai p-value:

- Jika menggunakan T, maka aproksimasi dengan nilai *p-value* dapat dicari menggunakan Tabel A9
- adalah dua kali nilai terkecil dari $P(Z \le$ Jika menggunakan $T_{\rm 1}$, maka nilai p-value T_1) atau $\,P(Z \geq T_1\,)\,$ berdasarkan **Tabel** $p_{value} = 2 \times \min(p_{value})$ ۲;

Menolak H_0 jika T (atau T_1) $< w_lpha$ menggunakan Tabel A9 atau persamaan dari aturan sebelumnya

Nilai p-value:

- Jika menggunakan T, maka aproksimasi mn(N+1)(2N+1)(8N+11) $T - \frac{n(N+1)(2N+1)}{2}$ nilai *p-value* > Z
- Jika menggunakan T_1 , maka nilai p-value adalah $P(Z \le T_1$) berdasarkan **Tabel A1** ۲,

Menolak H_0 jika T (atau T_1) $< w_{1-\alpha}$ menggunakan Tabel A9 atau persamaan dari aturan sebelumnya

1. Jika menggunakan T, maka aproksimasi

Nilai p-value:

Jika menggunakan T_1 , maka nilai p-value adalah $P(Z \ge T_1)$ berdasarkan **Tabel A1** ۲,

A Test for More than Two Samples			
Hipotesis:	Statistik Uji:	Daerah Kritis:	Aturan Keputusan:
H_0 : Semua k populasi adalah identik, kecuali kemungkinan berbeda nilai	$T_2=rac{1}{\mathrm{n}^2}\left[\sum_{i=1}^k rac{S_j^2}{z_i^2}-N(ar{S})^2 ight]$	Daerah kritis dihitung menggunakan distribusi $\it Chi ext{-}Square dengan }df$	Menolak H_0 , jika $T_2 > quantile_{1-\alpha}$ pada daerah kritis
mean	$D^{2}\left[\int_{j=1}^{\infty} n_{j} \right]$	k-1 dan untuk kuantil atas	
H_1 : Beberapa populasi memiliki	dimana:	diberikan pada Tabel A2	Nilai <i>p-value</i> :
variansi yang tidak sama	n_j : banyaknya observasi pada sampel		Aproksimasi dari probabilitas
	j		distribusi <i>chi-square</i> dari variabel
	$N = n_1 + n_2 + \dots + n_k$		acak menggunakan $df=k-1$
	\mathcal{S}_j : sumasi dari rank kuadrat pada		
	sampel j		
	$=$ 1 $\frac{k}{1}$		
	$S = \frac{N}{N} \sum_{i} S_{j}$		
)=1 r N r		
	$D^2 = \frac{1}{2} \left \sum_{i=1}^{n} R_i^4 - N(\bar{S})^2 \right $		
	$N-1$ $\begin{bmatrix} 1 \\ i=1 \end{bmatrix}$		
	Jika tidak terdapat <i>ties</i>, maka:		
	$\bar{S} = \frac{(N+1)(2N+1)}{6}$		
	N(N+1)(2N+1)(8N+11)		
	$D^{2} = \frac{80}{}$		

Tujuan: Untuk mengetahui apakah terdapat perbedaan variansi di antara kedua sampel acak dengan menggunakan normal scores.

Data yang digunakan terdiri dari 2 sampel acak. Misalkan $X_1,X_2,...,X_n$ merupakan sampel acak berukuran n dari populasi 1 dan $Y_1,Y_2,...,Y_m$ merupakan sampel acak berukuran m dari populasi 2, dimana dapat berlaku jika $m \neq n$.

Asumsi

- Kedua sampel adalah sampel acak yang mewakili populasi masing-masing
- Saling independen di antara sampel dan saling *mutually independent* di antara sampel acak 3 .
 - Minimal skala pengukuran adalah skala interval

Two Tailed Test	Lower Tailed Test	Upper Tailed Test
Hipotesis:		
$H_0:$ Kedua populasi memiliki variabilitas yang sama	H_0 : Kedua populasi memiliki variabilitas yang sama $ig H_0$: Kedua populasi memiliki variabilitas yang sama	$H_0:$ Kedua populasi memiliki variabilitas yang sama
$H_1: Var(X) \neq Var(Y)$	$H_1: Var(X) < Var(Y)$	$H_1: Var(X) > Var(Y)$

Statistik Uji:

$$T_3 = \frac{\sum_{i=1}^n A_i^2 - \frac{n}{N} \sum_{i=1}^N A_i^2}{\binom{nm}{N(N-1)} \left[\sum_{i=1}^N A_i^4 - \frac{1}{N} \left(\sum_{i=1}^N A_i^2 \right)^2 \right] \right)^{\frac{1}{2}}}$$

dimana
$$N=n+m$$
 dan
$$A_i=z_{R(X_l)}\over \frac{N+1}{N+1}}$$
 atau dapat diartikan sebagai nilai kuantil ke $\frac{R(X_l)}{N+1}$ dari **Tabel A1**, dimana A_l adalah *normal score*

Aturan Penolakan:

$$H_0$$
 ditolak jika $T_3>\Phi^{-1}_{\overline{a}}$ atau $T_3<-\Phi^{-1}_{\overline{a}}$ dimana Φ fungsi distribusi normal standar

Dapat dilihat pada
$$T_3$$
 pada **Tabel A1**
$$p_{value} = 2 \times \min \left(P(Z \le T_3) \ atau \ P(Z \ge T_3) \right)$$

$$H_0$$
 ditolak jika $T_3 < \Phi_{1-lpha}^{-1}$ Dapat dilihat pada T_3 pada **Tabel A1**
$$p_{value} = P(Z \le T_3)$$

Dapat dilihat pada
$$T_3$$
 pada **Tabel A1** $p_{value} = P(Z \ge T_3)$

 H_0 ditolak jika $T_3 > \Phi_lpha^{-1}$

UJI CRAMER VON MISES

Tujuan: Untuk mengerahui apakah distribusi dari 2 populasi sama atau tidak

Data: Data yang digunakan terdiri dari dua sampel acak, misalkan sampel 1 berjumlah n yaitu X_1, X_2, X_3 ..., X_n dan sampel 2 berjumlah m yaitu $Y_1, Y_2, Y_3,$..., Y_m dengan fungsi distribusi yang tidak diketahui dimisalkan F(x) dan G(x) dari masing-masing sampel acak tersebut.

Asumsi:

- Kedua sampel merupakan sampel acak dan antara dua sampel saling mutually independent
- Skala pengukuran minimal adalah ordinal
- Sampel random kontinu

Hipotesis:

 H_0 : F(x) = G(x) untuk semua x dari $-\infty$ hingga ∞

 H_1 : $F(x) \neq G(x)$ untuk setidaknya satu nilai x

Statistik Uj

Misalkan $S_1(x)$ dan $S_2(x)$ adalah fungsi distribusi empiris dari 2 sampel

$$T_2 = \frac{mn}{(m+n)^2} \sum_{\substack{x=\overline{X}_i \\ x=Y_j}} [S_1(x) - S_2(x)]^2$$

$$T_2 = \frac{mn}{(m+n)^2} \left\{ \sum_{i=1}^n \left[S_1(X_i) - S_2(X_i) \right]^2 + \sum_{j=1}^m \left[S_1(Y_j) - S_2(Y_j) \right]^2 \right\}$$

Null Distribution:

Null distribution dapat ditemukan dengan mempertimbangkan kombinasi sampel yang telah diurutkan adalah *equally likely* dan menghitung T_2 untuk setiap urutan. Akan digunakan distribusi asimtotik di mana $n o\infty$ dan $m o\infty$, sebagai distribusi aproksimasi untuk semua ukuran sampel

Daerah Kritis:

 w_{1-lpha} (Tabel Anderson dan Darling atau Tabel Burr ketika $n+m \leq 17$)

Aturan Penolakan:

Tolak H_0 apabila pada lpha yang ditentukan T_2 melebihi 1-lpha kuantil w_{1-lpha}

$$w_{0.10} = 0.046$$
 $w_{0.50} = 0.119$ $w_{0.90} = 0.347$

$$w_{0.30} = 0.079$$
 $w_{0.70} = 0.184$ $w_{0.99} = 0.743$

 $W_{0.95} = 0.461$

 $W_{0.60} = 0.147$

 $w_{0.20} = 0.062$

$$W_{0.40} = 0.097$$
 $W_{0.80} = 0.241$ $W_{0.999} = 1.168$

Kuantil ini didapat berdasarkan *asymptotic distribution*, valid untuk nilai
$$m$$
 dan n yang besar, tetapi tetap akurat apabila sampelnya kecil. Aproksimasi untuk p -value didapat dari interpolasi antara kuantil.

KRUSKAL-WALLIS TEST

Tujuan: Untuk menguji hipotesis apakah beberapa sampel berasal dari distribusi yang sama (identik) atau tidak.

Data: Data terdiri dari k sampel acak yang dapat memiliki ukuran sampel yang sama atau berbeda untuk masing-masing sampel. Dinotasikan untuk sampel acak ke-i dengan ukuran sampel n, yaitu X_{i1} , X_{i2} , ..., X_{in} .

Sampel 1
 Sampel 2
 ...
 Sampel k

$$X_{11}$$
 X_{21}
 X_{k1}
 X_{12}
 X_{22}
 X_{k2}
 \vdots
 \vdots
 \vdots
 X_{1n}
 X_{2n}
 X_{kn}

$$N = \sum_{i=1}^{n} n_i$$
 dan $R_i = \sum_{j=1}^{n_i} R(X_{ij})$ $i = 1, 2, ..., k$

dimana R_i adalah jumlah rank pada sampel ke-i dan $Rig(X_{ij}ig)$ adalah rank untuk X_{ij} . Untuk beberapa data yang sama ($\it ties$), maka $R(X_{ij})$ adalah nilai dari rata-rata rank jika tidak terdapat $\it ties$

- Seluruh sampel adalah sampel acak yang berasal dari populasi masing-masing
- Saling independen setiap sampel dan saling mutually independent di antara sampel acak
- Skala pengukuran minimal adalah skala ordinal
- Diantara k populasi memiliki fungsi distribusi yang identik, kecuali beberapa populasi cenderung memiliki nilai yang lebih besar dibandingkan dengan populasi lainnya

 $H_0:$ Seluruh k populasi memiliki distribusi yang identik

 H_1 : Minimal terdapat 1 populasi yang memiliki nilai observasi yang lebih besar dibandingkan dengan minimal 1 dari populasi lainnya

Terdapat ties:

Statistik Uji

$$T = \frac{1}{S^2} \left(\sum_{i=1}^k \frac{R_i^2}{n_i} - \frac{N(N+1)^2}{4} \right)$$

nana:
$$S^2 = \frac{1}{N-1} \left(\sum_{\substack{a,l \\ ranks}} R(X_{ij})^2 - \frac{N(N+1)^2}{4} \right) \quad \text{Jika ties dali}$$

$T = \frac{12}{N(N+1)} \sum_{i=1}^{K} \frac{R_i^2}{n_i} - 3(N+1)$ Fidak terdapat ties:

Jika ties dalam data berjumlah sedikit, statistik uji $\it T$ dengan keadaan tidak terdapat $\it ties$ dapat digunakan

Null Distribution:

Distribusi eksak dari T terdapat pada **Tabel A8** untuk k=3 dan $n_i \le 5$ dimana i=1,2,3.

Namun, null distribution dari T dapat diaproksimasi dengan distribusi Chi-Square dengan derajat bebas k-1 (χ_{k-1}^2)

Aturan Keputusan:

Menolak H_0 , jika $T>quantile_{1-\alpha}$ dari null distribution

- 1. Jika k=3 dan $n_i \le 5$ dimana i=1,2,3 serta tidak terdapat ties, maka nilai quantile terdapat pada **Tabel A8** 2. Jika terdapat ties atau tidak anda tabal about motion with a serial pada ties atau tidak anda tabal about motion with a serial pada ties atau tidak atau t
- Jika terdapat ties atau tidak ada tabel eksak, maka nilai quantile dapat diaproksimasi dengan distribusi Chi extcirc duara derajat bebas k-1 yang terdapat pada Tabel A2

Nilai p-value Dapat diaproksimasi dengan nilai probabilitas dari distribusi Chi-Square dengan derajat bebas k-1

Multiple Comparisons

Jika dan hanya jika hipotesis nolnya ditolak, maka dapat ditentukan pasangan populasi yang cenderung berbeda. Misalkan populasi i dan j dikatakan berbeda, jika memenuhi ketaksamaan berikut:

$$\left| \frac{R_i}{n_i} - \frac{R_j}{n_j} \right| > t_{1 - \frac{\alpha}{2}} \left(\frac{S^2(N - 1 - T)}{N - k} \right)^{\frac{1}{2}} \left(\frac{1}{n_i} + \frac{1}{n_j} \right)^{\frac{1}{2}}$$

dimana:

 R_i dan R_i adalah jumlah rank dari kedua sampel

 $t_{1-rac{lpha}{2}}$ adalah quantile $\left(1-rac{lpha}{2}
ight)$ dari distribusi t yang terdapat pada Tabel A21 dengan derajat bebas N-k

TABEL KONTINGENSI r imes c

Fujuan: Untuk menyajikan tabulasi data dengan baris r dan kolom c yang terdapat dalam beberapa sampel di mana data tersebut setidaknya skala pengukurannya adalah skala nominal dan untuk menguji hipotesis bahwa probabilitas tidak berbeda dari satu sampel ke sampel lainnya **Data:** Populasi ada sebanyak r, kemudian satu random sampel diacak dari tiap populasi. n_i adalah jumlah observasi di sampel ke-i dimana $1 \le i \le r$. Tiap observasi pada tiap sampel diklasifikasikan kedalam salah satu dari c untuk kategori berbeda. Misal O_{ij} jumlah observasi pada sampel ke-i pada kategori ke-j

Asumsi:

- 1. Setiap sampel adalah sampel acak
- Hasil dari berbagai sampel semuanya saling independen (terutama antara sampel, karena independensi dalam sampel ada pada asumsi pertama) 7
 - 3. Setiap observasi dapat dikategorikan menjadi salah satu dari c kategori atau kelas

Hipotesis:	
H_0 : Semua probabilitas dalam kolom yang sama, sama satu sama lain $\left(p_{1j}=\cdots= ight.$	dimana:
$p_{rj}, \forall j)$	p_{ij} adalah probabilitas nilai terpilih acak dari populasi ke $-i$ diklasifikasi
H_1 : Setidaknya terdapat dua dari probabilitas pada kolom yang sama, tidak sama	kedalam kelas ke $-j$, untuk $i=1,2,,r$ dan $j=1,2,c$
satu sama lain $(p_{ij} eq p_{kj}$,untuk beberapa j,dan untuk beberapa pasangan i dan k)	
	dimana:
$T = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{1}{E_{ij}}$ $T = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \frac{1}{E_{ij}} - N$	$E_{ij} = \frac{n_i C_j}{N}$
	${\it O}_{ij}$ adalah jumlah yang diobservasi pada sel (i,j) dan E_{ij} adalah jumlah
	ekspektasi dari observasi pada sel (i,j)

Aturan Keputusan:

 H_0 ditolak jika $T>\chi_{1-lpha,(r-1)(c-1)}$ (menggunakan **Tabel A2**)

KENDALL TAU TEST

Tujuan: Untuk mengukur hubungan dua variabel, data yang digunakan minimal berskala ordinal dan tidak harus berdistribusi normal

Data: Data terdiri dari sampel random bivariat yang berjumlah $n_i(X_i, Y_i)$ untuk i=1,2,...,n. Misal terdapat dua observasi (1.3,2.2) dan (1.6,2.7) maka dikatakan concordant apabila kedua data dari satu observasi lebih besar dari kedua data dari observasi lainnya. Dimisalkan N_c adalah jumlah dari pasangan concordant dari

Measure of Correlation

$$\tau = \frac{N_c - N_d}{\frac{n(n-1)}{2}}$$

Apabila semua pasangan concordant, maka Kendall's au=1.0. Apabila semua pasangannya discordant maka Kendall's au=-1.0

In more precise terms, pasangan $\frac{Y_2-Y_1}{X_2-X_1}$ dikatakan concordant apabila bernilai lebih besar dari 0 dan discordant apabila lebih kecil dari 0. Apabila $X_1=X_2$, maka penyebut bernilai 0, maka tidak bisa dilakukan perbandingan. Namun, apabila $Y_1 = Y_2$ dan $X_1 \neq X_2$ rasio dari $\frac{Y_2 - Y_1}{X_2 - X_1}$ bernilai 0. Pada kasus ini, pasangan dihitung sebagai $\frac{1}{2}$ *concordant* dan $\frac{1}{2}$ *discordant*. Maka au menjadi

di mana semua pasangan (X_i,Y_l) dan (X_j,Y_j) dengan $X_i
eq X_j$ dibandingkan. Sehingga dapat disimpulkan

1. Jika
$$\frac{Y_j - Y_i}{X_j - X_i} > 0$$
, maka N_c bertambah 1 (concordant) 2. Jika $\frac{Y_j - Y_i}{X_j - X_i} < 0$, maka N_d bertambah 1 (discordant)

. Jika
$$rac{I_j-I_i}{X_i-X_i} < 0$$
, maka N_d bertambah 1 (**discordant**)

 $\tau = \frac{N_c - N_d}{N_c + N_d}$

3. Jika
$$\frac{Y_j-Y_l}{X_j-X_l}=0$$
, maka N_c bertambah $\frac{1}{2}$ dan N_d bertambah $\frac{1}{2}$

4. Jika
$$\dot{X_i} = X_j$$
 tidak dapat dilakukan perbandingan

Two Tailed Test	Lower Tailed Test	Upper Tailed Test
Hipotesis:		
$H_0\colon\! X$ dan Y independen	H_0 : X dan Y independen	$H_0\colon X$ dan Y independen
${\cal H}_1$: Pasangan observasi cenderung ${\it concordant}$ atau ${\it discordant}$	H_1 : Pasangan observasi cenderung $\emph{discordant}$	H_1 : Pasangan observasi cenderung $\emph{concordant}$

	•	•
	1	
	-	٦
		•
		,
•	_	•
		-
	٠	-
	Ċ	n
		-
	٠	_
	c	C
	٠	
(U	7

Tidak terdapat atau terdapat sedikit <i>ties</i>	$T = N_c - N_d$

Kuantil atas untuk τ dan T ketika X dan Y independen dapat dilihat pada | Di mana z_p adalah kuantil ke-p dari variabel random berdistribusi normal negatif dari kuantil atas. Untuk n yang besar atau terdapat banyak ties **Tabel A11** di mana $n \leq 60$ dan tidak terdapat *tie*s. Kuantil bawah adalah nilai \mid aproksimasi dari kuantil ke-p dari au adalah

$$w_p = z_p \frac{\sqrt{2(2n+5)}}{3\sqrt{n(n-1)}}$$

pada Tabel A1.

Aproksimasi kuantil ke-p dari T adalah

$$w_p = Z_p \sqrt{\frac{n(n-1)(2n+5)}{18}}$$

Aturan Keputusan:

Menolak H_0 , jika T (atau au) $< w_{\underline{\alpha}}$ atau T (atau au) > | Menolak H_0 , jika T (atau au) $< w_{\alpha}$ (menggunakan | Menolak H_0 , jika T (atau au) $> w_{1-lpha}$ (menggunakan $w_{1-rac{lpha}{r}}$ pada *null distribution* (menggunakan **Tabel**

 $p_{value} = 2 \times \min(p_{one-tailed})$ Nilai *p-value*

 $p_{lower-tailed} = P\left(Z \le \frac{1}{\sqrt{n(n-1)(2n+5)}}\right)$ $\sqrt{n(n-1)(2n+5)}$ $(T+1)\sqrt{18}$ $(T-1)\sqrt{18}$ $p_{upper-tailed} = P(Z \ge 1)$

Tabel A11)

 $p_{lower-tailed} = P\left(Z \le \frac{1}{\sqrt{n(n-1)(2n+5)}}\right)$ $(T+1)\sqrt{18}$ Nilai p-value

Tabel A11)

Nilai *p-value*

 $p_{upper-tailed} = P\left(Z \ge \frac{\zeta}{\sqrt{n(n-1)(2n+5)}}\right)$

UJI FRIEDMAN

Tujuan: Untuk menentukan distribusi setiap treatment berbeda atau tidak

Data: Data memuat b yang mutually independent dan k-variate berisi random variabel $(X_{i1}, X_{i2}, ..., X_{ik})$ yang disebut b blocks untuk i = 1, 2, ..., b. Misalkan variabel acak X_{ij} di block i dan berhubungan dengan perlakuan j

		Treatment			Ξ
Block	1	2	:	k	۸a
П	X_{11}	X_{12}	:	X_{1k}	te
2	X_{21}	X_{22}	:	X_{2k}	-
3	X_{31}	X_{32}		X_{3k}	Ē
:	•••		:	:	
q	X_{b1}	X_{b2}		X_{bk}	

isalkan $Rig(X_{ij}ig)$ adalah rank dari 1 sampai k. Dengan demikian untuk block iariabel acak $X_{i1},X_{i2},\ldots,X_{ik}$ dibandingkan satu sama lain. Dimana rank ersebut ditunjukan untuk semua block . Hitung rata-ratanya jika terdapat ties

ımlah rank untuk setiap treatment:

R
$$_j = \sum_{i=1}^b R(X_{ij})$$
 ; $j=1,2,...,k$

Asumsi:

Sebanyak b k-variate random variables saling independen

Antar blok, observasinya di rank berdasarkan kriteria

Hipotesis:	Statistik Uji:	Null Distribution:	Aturan Keputusan:
H_0 : Setiap rangking antar block sama	Tidak terdapat <i>ties</i> :	Aproksimasi distribusi $T_{ m 1}$	Tolak H_0 jika $T_2>F_{1-}$
H_1 : Minimal ada 1 yang lebih besar	$12 \stackrel{k}{\sim} / b(k+1))^2$	$T_1\!\sim\!\chi_{k-1}^2$	dimana:
dari <i>treatment</i> lainnya	$T_1 = \frac{1}{bk(k+1)} \sum \left(R_j - \frac{1}{2} \right)$		$k_1 = k - 1$
	$\frac{1}{j=1}$	Aproksimasi distribusi T_2	$k_2 = (b-1)(k-1)$
	Terdapat <i>ties</i> :	$T_2 \sim F_{t_2-t_2}$	menggunakan Tabel ⁄
	$_{T}=(k-1)ig[\sum_{j=1}^{k}R_{j}^{2}-bC_{1}ig]$	dimana:	000
	$A_1 - C_1$	$k_1 = k - 1$	
	$(k-1) \sum_{k=1}^{k} \left(R_k - \frac{b(k+1)}{2}\right)^2$	$k_2 = (b-1)(k-1)$	
	$=\frac{\langle x + x \rangle L_{j=1}(x)}{\sqrt{2}}$	berdasarkan Tabel A22	
	$A_1 - C_1$		
	dengan:	Ketika $H_{ m o}$ benar	
		•	
	$A_1 = \sum_i \sum_j [K(X_{ij})]$		
	t=1 j=1		
	$C_1 = \frac{bk(k+1)^2}{-1}$		
	1 4		
	$T_{z} = \frac{(b-1)T_{1}}{}$		
	$b(k-1) - T_1$		

Multiple Comparison

$$\left|R_{j}-R_{i}\right|>t_{1-rac{lpha}{2}}\left[rac{2\left(bA_{1}-\sum R_{j}^{2}
ight)}{(b-1)(k-1)}
ight]^{rac{1}{2}}$$

dimana $t_{1-rac{lpha}{2}}$ adalah kuantil (1-lpha) dari distribusi t (menggunakan **Tabel A21**)

Jika tidak terdapat *ties*, maka:

$$A_1 = \frac{bk(k+1)(2k+1)}{6}$$

Alternatif (menggunakan T_1)

$$|R_j - R_i| > t_{1-\frac{\alpha}{2}} \left[\frac{(A_1 - C_1)2b}{(b-1)(k-1)} \left(1 - \frac{T_1}{b(k-1)} \right) \right]^{\frac{\alpha}{2}}$$

Jika tidak terdapat *ties*, maka:

$$A_1 - C_1 = \frac{bk(k+1)(k-1)}{12}$$

UJI QUADE

Tujuan: Untuk melihat apakah ada perbedaan yang signifikan diantara setiap block

Data: Mencari rank dalam block $Rig(X_{ij}ig)$ seperti uji Friedman.

Range di block i
$$(Q_i) = maks\{X_{ij}\} - min\{X_{ij}\}$$

Terdapat sebanyak b range sampel. Masukkan rank 1 ke block dengan range terkecil dan seterusnya, dimana jika terdapat ties maka gunakan rata-rankaya

Misalkan $Q_1,Q_2,...,Q_b$ adalah rank-rank yang dimasukan ke block 1,2,...,b

The average rank within block $= rac{k+1}{2}$

Relative size of each observation within the block

$$S_{ij} = Q_i \left[R(X_{ij}) - \frac{k+1}{2} \right]$$

Sumasi untuk masing-masing treatment

$$S_j = \sum_{i=1}^b S_{ij}$$
; $j = 1, 2, ..., k$

Asumsi:

- Sebanyak $b \ k$ -variate random variables saling independen
- .. Antar blok, observasinya di rank berdasarkan kriteria
- Range sampel dapat ditentukan antar masing-masing block sehingga block dapat di rank

Hipotesis: H_0 : Setiap rangking antar block sama T_0 : Mainimal ada 1 yang lebih besar T_0 : dari $treatment$ lainnya T_0 : T_0	Statistik Uji: Total sum of square Terdapat ties $A_2 = \sum_{i=1}^b \sum_{j=1}^k S_{ij}^2$ Tidak terdapat ties $A_2 = \frac{b(b+1)(2b+1)k(k+1)(k-1)}{72}$ Treatment sum of square $B = \frac{1}{b} \sum_{j=1}^k S_j^2$ Nilai statistik uji: $(b-1)B$	Aproksimasi distribusi T_2 Aproksimasi distribusi T_2 dimana: $k_1 = k - 1$ $k_2 = (b - 1)(k - 1)$ berdasarkan Tabel A22	Aturan Keputusan: Tolak H_0 jika $T_2 > F_{1-lpha,k_1,k_2}$ dimana: $k_1 = k - 1$ $k_2 = (b-1)(k-1)$ menggunakan Tabel A22
	$T_3=rac{1}{A_2-B}$ dimana jika $B=A_2$, maka $p_{value}=\left(rac{1}{k!} ight)^{b-1}$		

Multiple Comparison:

Dapat dilakukan jika H_0 ditolak

$$|R_j - R_i| > t_{1-\frac{\alpha}{2}} \left[\frac{2(bA_2 - B)}{(b-1)(k-1)} \right]^{\frac{1}{2}}$$

dimana $t_{1-rac{a}{2}}$ adalah kuantil (1-lpha) dari distribusi t (menggunakan **Tabel A21**)

UJI VAN DER WAERDEN (*NORMAL SCORES*)

Tujuan: Untuk mengetahui distribusi populasi identik atau tidak

Data: Terdiri dari k sampel acak (ukuran untuk masing-masing sampel dapat berbeda). Dimisalkan N adalah total observasi dan $R(X_{i\,i})$ adalah rank dari $X_{i\,i}$

 $\bar{A_i} = \frac{1}{n_i} \sum_{j=1} A_{ij} \; ; i = 1, 2, ..., k$

Mengkonversi setiap nilai rank ke Normal Standar | Rata-rata dari Normal Scores

 $A_{ij} = Z_{R(X_{ij})}$ $\overline{N+1}$ menggunakan **Tabel A1**

Variansi untuk $oldsymbol{k}$ sampel

 $S^2 = \frac{1}{N-1} \sum_{all\ scores} A_{ij}^2$

Asumsi

Seluruh sampel adalah sampel acak yang berasal dari populasi masing-masing 1 2 % 4

Saling independen setiap sampel dan saling mutually independent di antara sampel acak

Skala pengukuran minimal adalah skala ordinal

Diantara k populasi memiliki fungsi distribusi yang identik, kecuali beberapa populasi cenderung memiliki nilai yang lebih besar dibandingkan dengan

Statistik Uji

populasi lainnya

 $H_0:$ Seluruh k populasi memiliki distribusi yang identik

 $H_1: \mathsf{Minimal}$ terdapat 1 populasi yang memiliki nilai observasi yang lebih besar dibandingkan dengan minimal 1 dari populasi lainnya

Aproksimasi distribusi T_1 $T_1 \sim \chi_{k-1}^2$ Null Distribution:

 $T_1 = \frac{1}{S^2} \sum_{i=1}^{\kappa} n_i (\bar{A}_i)^2$

Tolak H_0 , jika $\chi^2_{(1-lpha);(k-1)}$ menggunakan Tabel A2

Aturan Keputusan:

Multiple Comparison:

Jika H_0 ditolak, dapat dikatakan populasi i dan j cenderung berbeda jika memenuhi ketaksamaan berikut

$$\left|\bar{A}_{i} - \bar{A}_{j}\right| > t_{1 - \frac{\alpha}{2}} \left(\frac{S^{2} \left(N - 1 - T_{1}\right)\right)^{\frac{1}{2}} \left(1}{N - k}\right)^{\frac{1}{2}} \left(\frac{1}{n_{i}} + \frac{1}{n_{j}}\right)^{\frac{1}{2}}$$

dimana $t_{1-rac{lpha}{2}}$ adalah kuantil (1-lpha) dari distribusi t dengan derajat bebas N-k (menggunakan **Tabel A21**)

REGRESI NON PARAMETRIK

Tujuan: Untuk mengetahui hubungan antara variabel respons dengan variabel prediktor yang tidak diketahui bentuk fungsinya dan hanya diasumsikan fungsi smooth.

Data: Terdiri dari sampel acak $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ yang berasal dari distribusi bivariat

Asumsi:

- Sampelnya merupakan sampel acak. Metode ini valid jika nilai X adalah nonrandom quantiles sepanjang Ys indepen dengan distribusi bersyarat yang identik
- Regresi Y terhadap X adalah linear. Ini mengimplikasikan skala pengukuran interval pada X dan Y7

Metode Least Squares Estimates

Metode ini digunakan untuk mengestimasi garis regresi $y=\alpha+eta x$, dimana:

$$b = \frac{n\sum_{i=1}^{n} X_{i}Y_{i} - (\sum_{i=1}^{n} X_{i})(\sum_{i=1}^{n} Y_{i})}{n\sum_{i=1}^{n} X_{i}^{2} - (\sum_{i=1}^{n} X_{i})^{2}}$$

$$y = a + bx$$

Model:

dimana $ar{X}$ dan $ar{Y}$ adalah rata-rata sampel

 $a=\bar{Y}-b\bar{X}$

Testing The Slope

Asumsi:

- Sampelnya merupakan sampel acak. Metode ini valid jika nilai X adalah $nonrandom \ quantiles$ sepanjang Ys indepen dengan distribusi bersyarat yang
- Regresi Y terhadap X adalah linear. Ini mengimplikasikan skala pengukuran interval pada X dan Y7
- 3. Nilai residual Y E(Y|X) independen terhadap X

Two Tailed Test	Lower Tailed Test	Upper Tailed Test
Hipotesis:		
H_0 : $eta=eta_0$	H_0 : $eta=eta_0$	H_0 : $eta=eta_0$
$H_0: \beta \neq \beta_0$	H_0 : $eta < eta_0$	$H_0: \beta > \beta_0$

Statistik Uji:

Menggunakan **korelasi Spearman's ρ**.

Menggunakan **Tabel A10** untuk mendapatkan nilai kuantil ho, ketika H_0 benar dan tidak terdapat ties

Aturan Keputusan:	
 Tolak H_0 jika $ ho>\omega_{1-rac{lpha}{2}}$ atau $ ho<\omega_{rac{lpha}{2}}$	70
Mengerinakan Tabel A10	

olak H_0 jika $ho < \omega_lpha$

Tolak
$$H_0$$
 jika $ho>\omega_{1-lpha}$

Confidence Interval for The Slope

- Sampelnya merupakan sampel acak. Metode ini valid jika nilai X adalah nonrandom quantiles sepanjang Ys indepen dengan distribusi bersyarat yang
- Regresi Y terhadap X adalah linear. Ini mengimplikasikan skala pengukuran interval pada X dan Y. **.**
 - Nilai residual Y-E(Y|X) independen terhadap X

Untuk masing-masing pasangan (X_i,Y_i) dan (X_j,Y_j) dimana i < j $dan X_i \neq X_i$

Two point slope:

$$S_{ij} = \frac{Y_j - Y_i}{X_i - X_i}$$

Misalkan N adalah nilai slope yang dihitung dan urutan slopesdinotasikan dengan

 $S^{(1)} \leq S^{(2)} \leq \cdots \leq S^{(N)}$

Interval kepercayaan sebesar 1-lpha

Mencari $\omega_{1-\frac{\alpha}{2}}$ yang merupakan kuantil $1-\frac{\alpha}{2}$ dari $T=N_c-N_d$ (menggunakan **Tabel A11**)

Misalkan r dan s adalah

$$r = \frac{1}{2} \left(N - \omega_{1 - \frac{\alpha}{2}} \right)$$
 $S = \frac{1}{2} \left(N - \omega_{1 - \frac{\alpha}{2}} \right) + 1 = N + 1 - r$

 ${\it Catatan:} \ r$ dibulatkan kebawah dan s dibulatkan ke atas

Maka, interval kepercayaan untuk eta adalah $\left(S^{(r)},S^{(s)}
ight)$

REGRESI MONOTONIK

Tujuan: Untuk mengetahui hubungan antara variabel respons dengan variabel prediktor (seperti pada regresi nonparametrik), namun dengan asumsi fungsi egresinya adalah monoton naik atau turun

Data: Terdiri dari sampel acak $(X_1,Y_1),(X_2,Y_2),...,(X_n,Y_n)$ yang berasal dari distribusi bivariat

1. Sampelnya merupakan sampel acak

Estimasi dari E(Y|X) di Suatu Titik, bertujuan untuk mengestimasi nilai regresi Y terhadap X di suatu titik $X=x_0$ tertentu. Berikut langkah-langkahnya:

Menentukan ranks $R(X_i)$ dan $R(Y_i)$ dari X dan Y, dimana jika terdapat ties gunakan rata-rata ranksnya

2. Menentukan *least squares regression line* $y = a_2 + b_2 x$, dimana:

hentukan ledst squares regression line
$$y=p_2=\sum_{i=1}^n R(X_i)R(Y_i)-\frac{n(n+1)^2}{4} = \frac{\sum_{i=1}^n [R(X_i)]^2-\frac{n(n+1)^2}{4}}{\sum_{i=1}^n [R(X_i)]^2-\frac{n(n+1)^2}{4}}$$

$$a_2 = \frac{(1 - b_2)(n+1)}{2}$$

3. Menentukan rank dari $x_0(R(x_0))$, dimana:

Kondisi

Jika $x_0 = X_i$, maka:

$$R(x_0) = R(X_i)$$

Kondisi 2

Jika $X_i < x_0 < X_j$, maka: $R(x_0) = R(X_i) + \frac{x_0 - X_i}{X_j - X_i} \left[R(X_j) - R(X_i) \right]$ dimana ranknya belum tentu bilangan bulat

Jika $x_o < X_i$ atau $x_0 > X_i$, $\forall X_i$, maka tidak

dapat ditentukan

Kondisi 3

4. Menentukan rank dari $y_0\left(R(y_0)\right)$, dimana $R(y_0)=a_2+b_2R(x_0)$

5. Mengkonversi $R(y_0)$ ke $\hat{E}(Y|X=x_0)$ untuk mengestimasi $E(Y|X=x_0)$ Kondisi 1 Kondisi 2

Jika
$$R(y_0)=R(Y_i)$$
, maka: $\hat{E}(Y|X=x_0)=Y_i$

Kondisi 2

Jika $R(Y_i) < R(y_0) < R(Y_j)$, dimana $Y_i < Y_j$, Jika $R(y_0) > R(Y_i)$, $\forall R(Y_i)$, maka: $\hat{E}(Y|X = x_0) = Y_i + \frac{R(y_0) - R(Y_i)}{R(Y_j) - R(Y_i)} (Y_j - Y_i)$ Jika $R(y_0) < R(Y_i)$, $\forall R(Y_i)$, maka: $\hat{E}(Y|X = x_0) = \min(Y_i)$

Estimasi dari Regresi Y terhadap X

Untuk masing-masing X_i dari $X^{(1)}$ sampai dengan $X^{(n)}$ menggunakan prosedur Estimasi dari E(Y|X) di Suatu Titik untuk mengestimasi E(Y|X)

2. Menetukan estimasi rank dari $X_i\left(\widehat{R}(X_i)\right)$ untuk setiap rank dari $Y_i\left(R(Y_i)\right)$

$$\hat{R}(X_i) = \frac{[R(Y_i) - a_2]}{b_2}, i = 1, 2, \dots, n$$

Mengkonversi $\hat{R}(X_i)$ untuk mengestimasi \hat{X}_i Kondisi 1 Jika $\hat{R}(X_i) = R(X_j)$, maka: $\hat{X}_i = X_j$ ω.

$$X_i = X_j$$

Kondisi 2

Jika $R(X_j) < \hat{R}(X_i) < R(X_k)$, dimana $X_j < X_k$, Jika $\hat{R}(X_i) < \min\left(R\big(X_j\big)\right)$ atau $\hat{R}(X_i) > \max$ maka:

a
$$R\left(X_{j}\right) < \hat{R}(X_{i}) < R(X_{k})$$
, dimana $X_{j} < X_{k}$ ka:
$$\hat{X}_{i} = X_{j} + \frac{\hat{R}\left(X_{i}\right) - R\left(X_{j}\right)}{R(X_{k}) - R\left(X_{j}\right)} \left(X_{k} - X_{j}\right)$$

 $\max\left(Rig(X_{j}ig)ig), \forall Rig(X_{j}ig)$, maka \hat{X}_{l} tidak dapat

diestimasi

UJI BINOMIAL

It's known that 20% of a certain species of insect exhibit a particular characteristic A. Eighteen insect
of that species are obtained from an unusual environment, and none of these have characteristic A.
Is it reasonable to assume that insects from that environment have the same probability of 0.20 that
the species in general has? Use a two-tailed test

Tujuan: Untuk menguji apakah masuk akal atau tidak untuk menganggap bahwa serangga dari lingkungan tersebut memiliki probabilitas 0.20 yang sama dengan spesies pada umumnya **Hipotesis:**

$$H_0: p = 0.20$$
 $H_1: p \neq 0.20$

Statistik Uji:

Karena n=18<20, maka dapat menggunakan **Tabel A3**. Diketahui T=0 (jumlah serangga yang memiliki karakteristik A). Maka:

$$\Pr(Y \leq t_1) = \alpha_1 \qquad \qquad \Pr(Y \leq t_2) = \alpha_2$$

$$\Pr(Y \leq t_1) = \frac{0,05}{2} \qquad \qquad \Pr(Y \leq t_2) = 1 - \frac{0,05}{2}$$

$$t_1 \text{ yang memiliki nilai mendekati} \qquad \qquad t_2 \text{ yang memiliki nilai mendekati}$$

$$\alpha_1 = 0,025 \text{ adalah } \alpha = 0,0180 \qquad \qquad 1 - \alpha_2 = 0,975 \text{ adalah } \alpha = 0,9837 \text{ saat } t_2 = 7$$

Dengan menggunakan software RStudio, didapatkan:

```
> binom.test(x = 0, n = 18, p = 0.2, alternative = "two.sided")

Exact binomial test

data: 0 and 18
number of successes = 0, number of trials = 18, p-value = 0.03429
alternative hypothesis: true probability of success is not equal to 0.2
95 percent confidence interval:
    0.000000 0.185302
sample estimates:
probability of success
```

Confidence Interval:

$$Lower = 0$$
; $Upper = 0.185302$

Aturan Keputusan:

 H_0 ditolak jika $T \leq t_1$ atau $T > t_2$

Didapatkan T = 0 dan p - value = 0.03429, maka H_0 ditolak

Kesimpulan:

Dengan $\alpha=0.05$ dapat disimpulkan cukup alasan untuk mengatakan bahwa tidak masuk akan untuk menganggap bahwa serangga dari lingkungan tersebut memiliki probabilitas 0.20 yang sama dengan spesies pada umumnya

UJI KUANTIL

1. A random sample of tenth-grade boys resulted in the following 20 observed weight 142, 134, 98, 119, 131, 103, 154, 122, 93, 137, 86, 119, 161, 144, 158, 165, 81, 117, 128, 103 Test the hyphotesis that the median weight is 103

Tujuan: Untuk mengetahui apakah median dari berat badan siswa kelas 10 adalah 103 **Hipotesis:**

$$H_0: Q_2 = 103$$
 $H_1: Q_2 \neq 103$

Statistik Uji:

Target awal nilai $\alpha = 0.05$

Berdasarkan tabel binomial dengan nilai n=20 dan p=0.5 didapatkan:

$$P(Y \le t_1) = P(Y \le 5) = 0.0207$$
, maka $t_1 = 5$
 $P(Y \le t_2) = P(Y \le 14) = 1 - 0.0207 = 0.9793$, maka $t_2 = 14$

 α yang digunakan adalah:

$$\alpha = \alpha_1 + \alpha_2 = 0.0207 + 0.0207 = 0.0414 < 0.05$$

Maka, dapat ditentukan nilai T_1 (jumlah pengamatan yang lebih kecil atau sama dengan 103) dan T_2 (jumlah pengamatan yang lebih kecil dari 103), yaitu: $T_1 = 6$ dan $T_2 = 4$

Dengan menggunakan software RStudio, didapatkan:

```
> quantile.test <- function(x, xstar = 0, quantile =5, alternative = "two.sided"){</pre>
  n <- length(x)
  p <- quantile
   T1 <- sum(x <= xstar)
  T2 <- sum(x < xstar)
  if (alternative == "quantile.less") {
     p.value <- 1-pbinom(T2-1, n, p)</pre>
  if (alternative == "quantile.greater") {
     p.value <- pbinom(T1, n, p)</pre>
   if (alternative == "two.sided") {
      p.value \leftarrow 2 \times \min(1-\text{pbinom}(T2-1, n, p), \text{pbinom}(T1, n, p))
   list(xstar = xstar, alternative = alternative, T1 = T1, T2 = T2, p.value = p.v
alue)
+ }
> weight <- c(142,134,98,119,131,103,154,122,93,137,86,119,161,144,158,165,81,117,
> quantile.test(weight, xstar = 103, quantile = 0.5, alternative = "two.sided")
$xstar
[1] 103
$alternative
[1] "two.sided"
$T1
[1] 6
$T2
[1] 4
$p.value
[1] 0.1153183
```

Aturan Keputusan:

 H_0 ditolak jika $T_1 \le t_1$ atau $T_2 > t_2$

Didapatkan $T_1 = 6$, $T_2 = 4$ dan p - value = 0.1153183, maka H_0 tidak ditolak

Kesimpulan:

Dengan $\alpha=0.05$ dapat disimpulkan cukup alasan untuk mengatakan bahwa median dari berat badan siswa kelas 10 adalah 103

CHI-SQUARE TEST FOR INDEPENDENCE

(W.J. Cornover Halaman 195) Sixty students were divided into two classes of 30 each and taught how to write a program for a computer. One class ued the conventional method of learning, and the other class used a new, experimental method. At the end of the couses, each student was given a test that consisted of writing a computer program. The program was either correct or incorrect and the results were tabulated as follows

	Correct Program	Incorrect Program
Conventional Class	23	7
Experimental Class	27	3

Is there reason to believe the experimental method is superior? Or could the precending differences be due to chance fluctuations

Tujuan: Untuk mengetahui apakah metode experimen lebih superior atau tidak **Hipotesis:**

$$H_0: p_1 \ge p_2$$
 $H_1: p_1 < p_2$

Statistik Uji:

$$T_1 = \frac{\sqrt{N}(O_{11}O_{22} - O_{12}O_{21})}{\sqrt{n_1n_2C_1C_2}}$$
$$= \frac{\sqrt{60}(23 \times 3 - 7 \times 27)}{\sqrt{30 \times 30 \times 50 \times 10}}$$
$$= -1,386$$

Aturan Keputusan:

Tolak H_0 jika $T_1 < Z_{0.05}$

Didapatkan $T_1 = -1,386 > -1,645$, maka H_0 tidak ditolak

Dengan lpha=0.05 dapat disimpulkan cukup alasan untuk mengatakan bahwa metode experimen lebih superior

UJI KOLMOGOROV SMIRNOV 1 SAMPEL

Five fourth-grade children were selected at random from the entire class and timed in a short race. The times in seconds were 6.3, 4.2, 4.7, 6.0, and 5.7. Test the hypothesis that the distribution of times is uniform on the interval from 4 to 8 seconds. Note that such a distribution is given by

$$F^*(x) = 0$$
 for $x < 4$
= $\frac{x-4}{4}$ for $4 \le x \le 8$
= 1 if $8 \le x$

Tujuan: Untuk menguji H_0 bahwa F(x) pada kenyataannya merupakan fungsi distribusi yang spesifik dengan $F^*(x)$

Hipotesis:

$$H_0: F(x) = F^*(x)$$
 untuk $-\infty < x < \infty$
 $H_1: F(x) \neq F^*(x)$ untuk x lainnya

Statistik Uji:

x_i	Frekuensi	Frekuensi Kumulatif	$S(x_i) = \frac{f.k.}{5}$	$F^*(x_i)$	T
4,2	1	1	0,2	0,05	0,15
4,7	1	2	0,4	0,175	0,225
5,7	1	3	0,6	0,425	0,175
6	1	4	0,8	0,5	0,3
6,3	1	5	1	0,575	0,425

Keterangan: f. k. Adalah frekuensi kumulatif

Dari hasil perhitungan nilai T, didapatkan sup(T) = 0.425 pada saat x = 6.3. Dengan kata lain:

$$T = \sup |F^*(6.3) - S(6.3)|$$

= 0.425

Aturan Keputusan:

 H_0 ditolak jika $T > w_{0.95}$

Didapatkan $T = 0.425 < 0.563 = w_{0.95}$, maka H_0 tidak ditolak

Kesimpulan:

Dengan $\alpha = 0.05$ dapat disimpulkan cukup alasan untuk mengatakan bahwa F(x) pada kenyataannya merupakan fungsi distribusi yang spesifik dengan $F^*(x)$

UJI COX STUART

(W.J. Cornover Halaman 171) Total annual precipitation is recorded yearly for 19 years. This record is examined to see if the amount of precipitation is tending to increase or decrease. The precipitation in inches was 45.25, 45.83, 41.77, 36.26, 45.37, 52.25, 35.37, 57.16, 35.37, 58.32, 41.05, 33.72, 45.73, 37.90, 41.72, 36.07, 49.83, 36.24, and 39.90

Tujuan: Untuk menyelidiki apakah terdapat trend atau tidak

Hipotesis:

 H_0 : Tidak terdapat kecenderungan (*trend*)

 H_1 : Terdapat kecenderungan (*trend*)

Statistik Uii:

X_i	X_{i+c}	$X_{i+c} - X_i$
45,25	41,05	_
45,83	33,72	
41,77	45,73	+
36,26	37,90	+
45,37	41,42	
52,25	36,07	
35,37	49,83	+
57,16	36,24	_
35,37	39,90	+

Didapatkan $T = T^+ = 4$

Berdasarkan **Tabel A3** dengan n = 9 dan p =0,5. Didapatkan nilai t yang perluangnya kurang dari $\frac{\alpha}{2}$

Didapatkan $\alpha_1=\alpha_2=0.0195$, maka $t_1=1$ $dan t_2 = 8$

Dengan menggunakan software RStudio, didapatkan:

```
> install.packages("randtests")
> library(randtests)
> precipitation <- c(45.25, 45.83, 41.77, 36.26, 45.37, 52.25, 35.37, 57.16,
                     35.37, 58.32, 41.05, 33.72, 45.73, 37.90, 41.72, 36.07,
                     49.83, 36.24, 39.90)
> cox.stuart.test(precipitation)
         Cox Stuart test
data: precipitation
statistic = 4, n = 9, p-value = 1
alternative hypothesis: non randomness
```

Didapatkan T=4

Aturan Keputusan:

 H_0 ditolak jika $T \leq t_1$ atau $T \geq t_2$

Didapatkan T = 4 dimana $t_1 < 4 < t_2$, maka H_0 tidak ditolak

Kesimpulan:

Dengan $\alpha = 0.05$ dapat disimpulkan cukup alasan untuk mengatakan bahwa tidak terdapat kecenderungan (trend)

UJI MC NEMAR

One hundred thirty-five citizens were selected at a random and were asked to state their opinion regarding U.S. foreign policy. Forty-three were opposed to the U.S. foreign policy. After several weeks, during which they received an informative newsletter, they were again asked their opinion; 37 were opposed, and 30 of the 37 were persons who originally were not opposed to the U.S. foreign policy. Is the changed in numbers of people opposed to the U.S. foreign policy significant

Tujuan: Untuk mengetahui apakah perubahan jumlah orang yang menentang U.S. foreign policy cukup signifikan

Hipotesis:

$$H_0: P(X_i = 0) = P(Y_i = 0), \forall i$$

 $H_1: P(X_i = 0) \neq P(Y_i = 0)$

Statistik Uii:

	Sesudah (Y_i)							
Sebelum (X_i)	Menerima $(Y_i = 0)$	Menentang $(Y_i = 1)$						
Menerima $(X_i = 0)$	62	30						
Menentang $(X_i = 1)$	36	7						

$$T_1 = \frac{(30 - 36)^2}{30 + 36} = 0,54545$$

Dengan menggunakan software RStudio, didapatkan:

```
> data <- matrix(c(62, 36, 30, 7), ncol = 2)
> mcnemar.test(data, correct = FALSE)
         McNemar's Chi-squared test
data: data
McNemar's chi-squared = 0.54545, df = 1, p-value = 0.4602
```

Aturan Keputusan:

 H_0 ditolak jika $T_1 > \chi_1^2$

Didapatkan $T_1 = 0.54545 < 3.841 = \chi_1^2$, maka H_0 tidak ditolak

Kesimpulan:

Dengan $\alpha = 0.05$ dapat disimpulkan cukup alasan untuk mengatakan bahwa perubahan jumlah orang yang menentang U.S. foreign policy tidak signifikan

SIGN TEST

1. Six students went on a diet in an attempt to lose weight, with the following results:

Name	Abdul	Ed	Jim	Max	Phil	Ray
Weight Before	174	191	188	182	201	188
Weight After	165	186	183	178	203	181

Is the diet am effective means of losing weight

Tujuan: Untuk mengetahui apakah rata-rata diet tersebut efektif **Hipotesis:**

$$H_0: P(+) \ge P(-)$$
 $H_1: P(+) < P(-)$

Statistik Uji:

Diketahui: $n_{(+)} = 1$; $n_{(-)} = 5$, ties = 1 dan n = 6

Karena $n \leq 20$, maka dapat menggunakan **Tabel A3**. Didapatkan $t_{tabel} = 0$

Dengan menggunakan software RStudio, didapatkan:

```
> sign.test <- function(x = 0, y = NULL, alternative = "two.sided"){</pre>
  n < - sum((x-y) != 0)
  T < - sum(x < y)
  if (alternative == "less") {
    p.value <- pbinom(T, n, 0.5)</pre>
   if (alternative == "greater") {
    p.value <- 1-pbinom(T-1, n, 0.5)
  if (alternative == "two.sided") {
    p.value <- 2*min(1-pbinom(T-1, n, 0.5), pbinom(T, n, 0.5))
   list(n = n, alternative = alternative, T = T, p.value = p.value)
```

```
> before <- c(174, 191, 188, 182, 201, 188)
> after <- c(165, 186, 183, 178, 203, 181)
> sign.test(x = before, y = after, alternative = "less")
[1] 6
$alternative
[1] "less"
$Т
[1] 1
$p.value
[1] 0.109375
```

Aturan Keputusan:

 H_0 ditolak jika $T < t_{tabel}$

Didapatkan $T=1>0=t_{tabel}$, maka H_0 tidak ditolak

Dengan $\alpha = 0.05$ dapat disimpulkan cukup alasan untuk mengatakan bahwa rata-rata diet tersebut efektif

WILCOXON TEST

Each member of a girl's basketball tasm was given a brief warm-up period and then told to shoot 25 free throws. The number X of goals was recorded. Then the team was given an extensive workout and after a brief rest period, was told to shoot another 25 free throws each. The number Y of successful attempts was again recorded. Do the data indicate that the percentages tend to drop when the players are tored?

Player												
	1	2	3	4	5	6	7	8	9	10	11	12
Xi	18	12	7	21	19	14	8	11	19	16	8	11
Yi	16	10	8	23	13	10	8	13	9	8	8	5

Tujuan: Untuk menguji apakah persentase pelemparan cenderung turun pada saat pemain kelelahan **Hipotesis:**

$$H_0: E(X_i) \le E(Y_i) = E(Y_i) - E(X_i) \ge 0 = E(D) \ge 0$$

 $H_1: E(X_i) \le E(Y_i) = E(Y_i) - E(X_i) \ge 0 = E(D) \ge 0$

Statistik Uii:

Pemain	1	2	3	4	5	6	7	8	9	10	11	12
X_i	18	12	7	21	19	14	8	11	19	16	8	11
Y_i	16	10	8	23	13	10	8	13	9	8	8	5
D_i	-2	-2	1	2	-6	-4	0	2	-10	-8	0	-6
$ D_i $	2	2	1	2	6	4	0	2	10	8	0	6
$Rank_{ D_i }$	3,5	3,5	1	3,5	7,5	6	-	3,5	10	9	-	7,5
R_i	-3,5	-3,5	1	3,5	-7,5	-6	-	3,5	-10	-9	-	-7,5

Dikarenakan terdapat nilai dari $Y_i = X_i$, maka digunakan aproksimasi normal

$$T = \frac{\sum R_i}{\sqrt{\sum R_i^2}} = -2,001975309$$

Dengan menggunakan software RStudio, didapatkan:

```
> install.packages("coin")
> library(coin)
> x <- c(18, 12, 7, 21, 19, 14, 8, 11, 19, 16, 8, 11)
> y <- c(16, 10, 8, 23, 13, 10, 8, 13, 9, 8, 8, 5)
> wilcoxsign test(y~x, zero.method = "Wilcoxon")
         Asymptotic Wilcoxon Signed-Rank Test
data: y by x (pos, neg)
          stratified by block
Z = -2.002, p-value = 0.04529
alternative hypothesis: true mu is not equal to 0
```

Aturan Keputusan:

 H_0 ditolak jika $T < quantile_{0.05}$

Didapatkan $T = -2,001975309 < -1,645 = quantile_{0.05}$, maka H_0 ditolak

Kesimpulan:

Dengan $\alpha=0.05$ dapat disimpulkan cukup alasan untuk mengatakan bahwa persentase pelemparan cenderung turun pada saat pemain kelelahan

RANDOMIZATION

(W.J. Cornover Halaman 416) A tire company did a follow-up study on ten customers, randomly selected from those who had purchased new tires from them three years earlier, and asked them how many times they had encountered tire failure from any cause, such as nails, valve, leakage, etc. They study was restticted to two lined of long-life tires, called Brand A dan Bran B. These wew their results

Customer	Brand A	Brand B
1	0	3
2	2	5
3	0	1
4	1	4
5	2	3

Use Fisher's randomization method to get the exat p-value for testing the null hypothesis of equal likelihood for tire failure, against the one sided alternative that Brand A tends to have fewer tire failures

Tujuan: Untuk mengetahui apakah brand A dan brand B memiliki kemungkinan yang sama untuk adanya kegagalan ban

Hipotesis:

$$H_0: \mu_A \geq \mu_B \quad H_1: \mu_A < \mu_B$$

Statistik Uji:

Diketahui n = 5 dan m = 5, maka: Terdapat $\binom{10}{5} = 252$ kombinasi Jumlah grup $(252)(0.05) \approx 13$ grup

Kombinasi grup:

Grup	0	0	1	1	2	2	3	3	4	5	T_1
1	Х	Х	Х	Х	Х	Υ	Υ	Υ	Υ	Υ	4
2	Х	Х	Х	Х	Υ	Х	Υ	Υ	Υ	Υ	4
3	Х	Х	Х	Υ	Х	Х	Υ	Υ	Υ	Υ	5
4	Х	Х	Υ	Х	Х	Х	Υ	Υ	Υ	Υ	5
5	Х	Х	Χ	Х	Υ	Υ	Х	Υ	Υ	Υ	5
6	Х	Х	Χ	Х	Υ	Υ	Υ	Х	Υ	Υ	5
7	Х	Υ	Х	Х	Х	Х	Υ	Υ	Υ	Υ	6
8	Υ	Х	Х	Х	Х	Х	Υ	Υ	Υ	Υ	6
9	Х	Х	Χ	Х	Υ	Υ	Υ	Υ	Х	Υ	6
10	Х	Х	Х	Υ	Х	Υ	Х	Υ	Υ	Υ	6
11	Х	Х	Х	Υ	Υ	Х	Х	Υ	Υ	Υ	6
12	Χ	Χ	Χ	Υ	Υ	Х	Υ	Х	Υ	Υ	6
13	Х	Х	Υ	Х	Υ	Х	Υ	Х	Υ	Υ	6

Aturan Keputusan:

Tolak H_0 jika $T_1 < \omega_{\alpha}$

Didapatkan $T_1 5 < 6 = \omega_{0.05}$, maka H_0 ditolak

Kesimpulan:

Dengan $\alpha = 0.05$ dapat disimpulkan cukup alasan untuk mengatakan bahwa Brand A cenderung memiliki lebih sedikit kegagalan ban dibanding Brand B

UJI MANN WHITNEY

1. (W.J. Cornover Halaman 276) The senior class in a particular high school had 48 boys. Twelve boys lived on farms and the other 36 lived in town. A test was devised to see if farm boys in general were more physically fit that town boys. Each boy in the class was given a pyhsical fitness test in which a low score indicates poor physical condition. The scores of the farm boys (X_i) and the town boys (Y_i) are as follows

Farm Bo	$cys\left(X_{i}\right)$		Town Boys (Y_i)						
14,8	10,6	12,7	16,9	7,6	2,4	6,2	9,9		
7,3	12,5	14,2	7,9	11,3	6,4	6,1	10,6		
5,6	12,9	12,6	16,0	8,3	9,1	15,3	14,8		
6,3	16,1	2,1	10,6	6,7	6,7	10,6	5,0		
9,0	11,4	17,7	5,6	3,6	18,4	1,8	2,6		
4,2	2,7	11,8	5,6	1,0	3,2	5,9	4,0		

Tujuan: Untuk melihat apakah farm boys memiliki fisik yang lebih kuat atau tidak dibandingkan dengan town boys

Hipotesis:

 H_0 : Farm boys tidak memiliki fisik yang lebih kuat dibandingkan dengan town boys

 H_1 : Farm boys memiliki fisik yang lebih kuat dibandingkan dengan town boys

Statistik Uji:

Xi	Yi	Rank	X_i	Yi	Rank	Xi	Y_i	Rank
	1,0	1		6,2	17		11,3	33
	1,8	2	6,3		18	11,4		34
	2,1	3		6,4	19		11,8	35
	2,4	4		6,7	20,5	12,5		36
	2,6	5		6,7	20,5		12,6	37
2,7		6	7,3		22		12,7	38
	3,2	7		7,6	23	12,9		39
	3,6	8		7,9	24		14,2	40
	4,0	9		8,3	25		14,8	41,5
4,2		10	9,0		26	14,8		41,5
	5,0	11		9,1	27		15,3	43
	5,6	13		9,9	28		16,0	44
	5,6	13		10,6	30,5	16,1		45
5,6		13		10,6	30,5		16,9	46
	5,9	15	10,6		30,5		17,7	47
	6,1	16		10,6	30,5		18,6	48

Diketahui n=12 dan m=36, maka N=48Karena didapatkan banyak ties, maka:

$$T = \sum_{i=1}^{n} R(X_i)$$
= 6 + 10 + 13 + 18 + \cdots + 45
= 32.1
$$\sum_{i=1}^{N} R_i^2 = 1^2 + 2^2 + \cdots + 48^2$$
= 38.016

Maka:

$$T_1 = \frac{T - \frac{n(N+1)}{2}}{\sqrt{\frac{nm}{N(N-1)}\sum_{i=1}^{N} R_i^2 - \frac{nm(N+1)^2}{4(N-1)}}}$$

= 0,6431

Aturan Keputusan:

Tolak H_0 jika $T_1 < z_{\alpha}$

Didapatkan $T_1=0.6431>-1.6445=z_{lpha}$, maka H_0 tidak ditolak

Kesimpulan:

Dengan $\alpha = 0.05$ dapat disimpulkan cukup alasan untuk mengatakan bahwa farm boys tidak memiliki fisik yang lebih kuat dibandingkan dengan town boys

UJI KOLMOGOROV SMIRNOV 2 SAMPEL

(W.J. Cornover Halaman 466) Twenty home owners participated in a study of methods to reduce energy consumption. They were randomly asssigned to Program A, an education program designed to instill energy-saving habits in their lifestyle, or Program B, where sic inches of additional insulation was installed in their attic. Their energy savings for the following 12 months are given as follows

Home Owner	Program	Savings	Home Owner	Program	Savings
1	A	143	11	В	175

2	Α	106	12	В	142
3	В	182	13	В	111
4	В	158	14	Α	82
5	В	161	15	Α	12
6	A	108	16	Α	58
7	В	131	17	Α	42
8	Α	138	18	В	96
9	А	101	19	В	90
10	Α	83	20	В	144

Is there a difference in the effectiveness of the two programs

Tujuan: Untuk mengetahui apakah terdapat perbedaan keefektifan atau tidak dari program A dan program B

Hipotesis:

$$H_0$$
: $F(x) = G(x)$ H_1 : $F(x) \neq G(x)$

Statistik Uii:

Dengan menggunakan software RStudio, didapatkan:

```
> A <- c(143, 106, 108, 138, 101, 83, 82, 12, 58, 42)
> B <- c(182, 158, 161, 131, 175, 142, 111, 96, 90, 144)
> ks.test(A, B, alternative = "two.sided")
         Two-sample Kolmogorov-Smirnov test
data: A and B
D = 0.6, p-value = 0.05245
alternative hypothesis: two-sided
```

Didapatkan $T_1 = 0.6$

Aturan Penolakan:

 H_0 ditolak jika $T_1 > \omega_{0.95}$

Didapatkan $T_1=0.6$ dan p-value =0.05245, maka H_0 tidak ditolak

Kesimpulan:

Dengan $\alpha = 0.05$ dapat disimpulkan cukup alasan untuk mengatakan bahwa tidak terdapat perbedaan keefektifan dari program A dan program B

SQUARED RANK TEST

(W.J. Cornover Halaman 304) Suatu perusahaan pengemasan makanan ingin mengetahui apakah kotak sereal yang diproduksi benar-benar mengandung setidaknya sesuai dengan sejumlah ons sereal yang tertera di kemasan. Dalam hal ini, harus ditentukan jumlah rata-rata per kotak sedikit lebih banyak dari jumlah yang tertera karena variasi yang disebabkan oleh mesin pengemas yang terkadang memasukkan sereal dengan jumlah yang lebih sedikit atau lebih banyak. Mesin dengan variasi yang lebih kecil akan lebih menguntungkan perusahaan karena jumlah sereal yang dimasukkan bisa lebih mendekati jumlah yang ditentukan. Sebuah mesin baru diuji untuk dilihat apakah memiliki variansi yang lebih kecil dari mesin yang lama. Beberapa kotak diisi sereal dengan mesin yang lama kemudian jumlah sereal pada setiap kotak diukur. Hal yang sama dilakukan pada mesin yang baru. Didapat data sebagai berikut

Present (X)	10,8	11,1	10,4	10,1	11,3		
New (Y)	10,8	10,5	11	10,9	10,8	10,7	10,8

Tujuan:

Untuk melihat apakah Mesin Baru (Y) memiliki variansi yang lebih kecil dibandingkan dengan Mesin

Hipotesis:

 H_0 : Kedua mesin memiliki variansi yang sama

 H_1 : Mesin Baru (Y) memiliki variansi yang lebih kecil

Statistik Uii:

Orig Measur		Absolute	Absolute Deviation Rank Squared I		Rank		d Rank
Present (X_i)	New (<i>Y_i</i>)	Present (U_i)	New (V_i)	Present $(R(U_i))$	New $(R(V_i))$	Present $(R(U_i)^2)$	New $(R(V_i)^2)$
10,8	10,8	0,06	0,01	4	2	16	4
11,1	10,5	0,36	0,29	10	8	100	64
10,4	11	0,34	0,21	9	7	81	49
10,1	10,9	0,64	0,11	12	6	144	36
11,3	10,8	0,56	0,01	11	2	121	4
	10,7		0,09		5		25
	10,8		0,01		2		4

Didapatkan $\bar{X}=10,74$ dan $\bar{Y}=10,79$, dan T=462Maka:

$$\bar{R}^2 = \frac{1}{12}(16 + 100 + \dots + 4) = 55$$
$$\sum_{i=1}^{N} R_i^4 = (16)^2 + (100)^2 + \dots + (4)^2 = 60.660$$

dikarenakan terdapat ties, maka:

$$T_{1} = \frac{T - n\overline{R^{2}}}{\left[\frac{nm}{N(N-1)}\sum_{i=1}^{N}R_{i}^{4} - \frac{nm}{N-1}(\overline{R^{2}})^{2}\right]^{\frac{1}{2}}}$$

$$= \frac{462 - 5(54)}{\left[\frac{(5)(7)}{(12)(11)}(60.660) - \frac{(5)(7)}{11}(54)^{2}\right]^{\frac{1}{2}}}$$

$$= 2.3273$$

Aturan Keputusan:

 H_0 ditolak jika $T_1>quantil_{(1-lpha)}$ untuk *upper-tailed test* Didapatkan $T_1=2,3273>1,6449=quantil_{(0,95)}$, maka H_0 ditolak

Kesimpulan:

Dengan $\alpha = 0.05$ dapat disimpulkan cukup alasan untuk mengatakan bahwa mesin baru (Y) memiliki variansi yang lebih kecil

UJI KLOTZ

(W.J. Cornover Halaman 310) A blood bank kept a record of the rate of heartbeats for several blood donors

Men	Woman
58	66
76	74
82	69
74	76
79	72
65	73
74	75
86	67
	68

Is the variation among the men significantly greater than the variation among the woman?

Tujuan: Ingin mengetahui apakah variansi dari men lebih besar secara signifikan dibandingkan dengan woman

Hipotesis:

 H_0 : Kedua detak jantung (laki-laki dan perempuan) memiliki variabilitas yang sama

 H_1 : Detak jantung laki-laki memiliki variansi yang lebih besar dibandingkan dengan detak jantung perempuan

Statistik Uji:

Men						
X	$X-\overline{X}$	R_{x_i}	$\frac{R_{x_i}}{N+1}$	A_i	A_i^2	A_i^4
58	-16,25	1	0,056	-1,59321882	2,538346202	6,443201442
76	1,75	10	0,556	0,139710299	0,019518968	0,00038099
82	7,75	16	0,889	1,220640349	1,489962861	2,219989328
74	-0,25	7,5	0,417	-0,21042839	0,044280109	0,001960728
79	4,75	14	0,778	0,764709674	0,584780885	0,341968684
65	-9,25	2	0,111	-1,22064035	1,489962861	2,219989328
74	-0,25	7,5	0,417	-0,21042839	0,044280109	0,001960728
86	11,75	17	0,944	1,593218818	2,538346202	6,443201442

Women						
X	$X - \overline{X}$	R_{x_i}	$\frac{R_{x_i}}{N+1}$	A_i	A_i^2	A_i^4
66	-5,11111111	3	0,167	-0,96742157	0,935904487	0,875917208
74	2,88888889	12	0,667	0,430727299	0,185526006	0,034419899
69	-2,11111111	6	0,333	-0,43072729	0,185526006	0,034419899
76	4,88888889	15	0,833	0,967421566	0,935904487	0,875917208
72	0,88888889	9	0,500	0	0	0
73	1,88888889	11	0,611	0,282216147	0,079645954	0,006343478
75	3,888888889	13	0,722	0,589455798	0,347458138	0,120727157
67	-4,11111111	4	0,222	-0,76470967	0,584780885	0,341968684
68	-3,11111111	5	0,278	-0,58945579	0,347458138	0,120727157

$$T_{3} = \frac{\sum_{i=1}^{n} A_{i}^{2} - \frac{n}{N} \sum_{i=1}^{N} A_{i}^{2}}{\left(\frac{nm}{N(N-1)} \left[\sum_{i=1}^{N} A_{i}^{4} - \frac{1}{N} (\sum_{i=1}^{N} A_{i}^{2})^{2} \right] \right)}$$

$$= 1.71269$$

Aturan Keputusan:

Tolak H_0 jika $T_3 > Z_{0,05}$

Didapatkan $T_3 = 1,71269 > 1,645$, maka, H_0 ditolak

Kesimpulan:

Dengan $\alpha = 0.05$ dapat disimpulkan cukup alasan untuk mengatakan bahwa detak jantung laki-laki memiliki variansi yang lebih besar dibandingkan dengan detak jantung perempuan

UJI CRAMER VON MISES

(W.J. Cornover Halaman 466) Twenty home owners participated in a study of methods to reduce energy consumption. They were randomly asssigned to Program A, an education program designed to instill energy-saving habits in their lifestyle, or Program B, where sic inches of additional insulation was installed in their attic. Their energy savings for the following 12 months are given as follows

Home Owner	Program	Savings	Home Owner	Program	Savings
1	А	143	11	В	175
2	А	106	12	В	142
3	В	182	13	В	111
4	В	158	14	Α	82
5	В	161	15	Α	12
6	А	108	16	Α	58
7	В	131	17	Α	42
8	А	138	18	В	96
9	Α	101	19	В	90
10	Α	83	20	В	144

Is there a difference in the effectiveness of the two programs

Tujuan: Ingin mengetahui apakah terdapat perbedaan efektivitas dari Program A dan Program B **Hipotesis:**

 H_0 : F(x) = G(x) untuk setiap x dari $-\infty$ hingga ∞

 H_1 : $F(x) \neq G(x)$ untuk setidaknya satu nilai x

Statistik Uji:

Xi	Yi	$S_1(x) - S_2(x)$	$[S_1(x) - S_2(x)]^2$
12		$\frac{1}{10} - 0 = \frac{1}{10}$	$\frac{1}{100}$
42		$\frac{2}{10} - 0 = \frac{2}{10}$	$\frac{4}{100}$
58		$\frac{3}{10} - 0 = \frac{3}{10}$	$\frac{9}{100}$
82		$\frac{4}{10} - 0 = \frac{4}{10}$	$\frac{16}{100}$
83		$\frac{5}{10} - 0 = \frac{5}{10}$	$\frac{25}{100}$
	90	$\frac{5}{10} - \frac{1}{10} = \frac{4}{10}$	$\frac{16}{100}$

	96	$\frac{5}{10} - \frac{2}{10} = \frac{3}{10}$	$\frac{9}{100}$
101		$\frac{6}{10} - \frac{2}{10} = \frac{4}{10}$	$\frac{16}{100}$
106		$\frac{7}{10} - \frac{2}{10} = \frac{5}{10}$	$\frac{25}{100}$
108		$\frac{8}{10} - \frac{2}{10} = \frac{6}{10}$	$\frac{36}{100}$
	111	$\frac{8}{10} - \frac{3}{10} = \frac{5}{10}$	$\frac{25}{100}$
	131	$\frac{8}{10} - \frac{4}{10} = \frac{4}{10}$	$\frac{16}{100}$
138		$\frac{9}{10} - \frac{4}{10} = \frac{5}{10}$	$\frac{25}{100}$
	142	$\frac{9}{10} - \frac{5}{10} = \frac{4}{10}$	$\frac{16}{100}$
143		$\frac{10}{10} - \frac{5}{10} = \frac{5}{10}$	$\frac{25}{100}$
	144	$\frac{10}{10} - \frac{6}{10} = \frac{4}{10}$	$\frac{16}{100}$
	158	$\frac{10}{10} - \frac{7}{10} = \frac{3}{10}$	$\frac{9}{100}$
	161	$\frac{10}{10} - \frac{8}{10} = \frac{2}{10}$	$\frac{4}{100}$
	175	$\frac{10}{10} - \frac{9}{10} = \frac{1}{10}$	$\frac{1}{100}$
	182	$\frac{10}{10} - \frac{10}{10} = 0$	0

$$T_2 = \frac{mn}{(m+n)^2} \sum_{\substack{x=X_i \\ x=Y_j}} [S_1(x) - S_2(x)]^2 = \frac{(10)(10)}{(10+10)^2} \times \frac{294}{100} = (0.25)(2.94) = 0.735$$

Aturan Keputusan:

 H_0 ditolak jika $T_2 > \omega_{0,95}$

Berdasarkan Tabel Anderson dan Darling

Didapatkan $T_2=0.735>0.461=\omega_{0.95}$, maka H_0 ditolak

Kesimpulan:

Dengan lpha=0.05 dapat disimpulkan cukup alasan untuk mengatakan bahwa terdapat perbedaan efektivitas antara Program A dan Program B

UJI KRUSKAL WALLIS

Random samples from each of three different types of light bulbs were tested to see how long the light bulbs lasted, with the following results

Brand						
Α	В	С				
73	84	82				
64	80	79				
67	81	71				
62	77	75				
70						

Do these results indicate a significant difference between brands? If so, which brands appear to differ?

Tujuan: Untuk mengetahui apakah terdapat perbedaan di antara ketiga jenis brand lampu **Hipotesis:**

 H_0 : ketiga populasi dari brand lampu memiliki fungsi distribusi yang identik

 H_1 : Minimal terdapat satu populasi cenderung memiliki pengamatan yang lebih besar dari minimal satu populasi lainnya

Statistik Uji:

Dengan menggunakan software RStudio, didapatkan:

$$T = \frac{1}{S^2} \left(\sum_{i=1}^k \frac{R_i^2}{n_i} - \frac{N(N+1)^2}{4} \right)$$

= 8.4033

Aturan Keputusan:

Didapatkan T = 8,4033 dan p - value = 0,001497

Diketahui berdasarkan **Tabel A8** $\omega_{0.95} = 5,6176 < 8,4033 = T$, maka H_0 ditolak

Kesimpulan:

Dengan $\alpha=0.05$ dapat disimpulkan cukup alasan untuk mengatakan bahwa minimal terdapat satu brand lampu cenderung menghasilkan pengamatan yang lebih besar dari minimal satu brand lampu lainnya (brand lampu A berbeda dengan B, brand lampu A berbeda dengan C)

TABEL KONTINGENSI $r \times c$

 (W.J. Cornover Halaman 202) A sample of students randomly selected from private high schools and a sample of students randomly selected from public high schools were given standardized achievement tests with the following results

Test Scores

	0 - 275	276 - 350	351 - 425	426 - 500	Totals
Private School	6	14	17	9	46
Public School	30	32	17	3	82
Totals	36	46	34	12	128

Test the null hypothesis that the distribution of test scores is the same for private and public high school students

Tujuan: Untuk menguji null distribution bahwa distribusi dari nilai ujian untuk siswa sekolah menengah swasta dan negeri sama

Hipotesis:

 H_0 : Semua probabilitas dalam kolom yang sama, sama satu sama lain $(p_{1i} = \cdots = p_{ri}, \forall j)$, maka distribusi nilai ujian untuk siswa sekolah menengah swasta dan negeri sama

 H_1 : Setidaknya terdapat dua dari probabilitas pada kolom yang sama, tidak sama satu sama lain ($p_{ii} \neq$ p_{ki} , untuk beberapa j, dan untuk beberapa pasangan i dan k), maka distribusi nilai ujian untuk siswa sekolah menengah swasta dan negeri berbeda

Statistik Uji:

Dengan menggunakan formula $E_{ij}=rac{n_i C_j}{\kappa_I}$

	Kolom 1	Kolom 2	Kolom 3	Kolom 4
Baris 1	$E_{11} = 12,9$	$E_{12} = 16,5$	$E_{13} = 12,2$	$E_{14} = 4.3$
Baris 2	$E_{21} = 23,1$	$E_{22} = 29,5$	$E_{23} = 21.8$	$E_{24} = 7,7$

Dengan menggunakan formula $T = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(o_{ij} - E_{ij}\right)^2}{E_{ii}}$

Didapatkan T = 17.3

Dengan menggunakan software RStudio, didapatkan:

```
> data <- matrix(c(6, 14, 17, 9,
                       30,32,17,3),
                   nrow = 2, byrow = TRUE,
                   dimnames = list(Grup = c("Private School", "Public School"),
                                         column = c("0-275", "276-350", "351-425", "426-5]
00")))
> data
                  column
Grup
           0-275 276-350 351-425 426-500

        Private School
        6
        14
        17
        9

        Public School
        30
        32
        17
        3

> chisq.test(data)
            Pearson's Chi-squared test
data: data
X-squared = 17.286, df = 3, p-value = 0.0006172
```

$$T = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} = 17,286$$

Aturan Keputusan:

 H_0 ditolak jika $T>\chi^2_{1-lpha,(r-1)(c-1)}$

Didapatkan $T = 17,286 > 7,815 = \chi_{0.95,3}^2$, maka H_0 ditolak

Kesimpulan:

Dengan $\alpha=0.05$ dapat disimpulkan cukup alasan untuk mengatakan bahwa distribusi nilai ujian untuk siswa sekolah menengah swasta dan negeri berbeda

UJI KENDALL TAU

1. A husband and wife who go bowling together kept their scores for 10 lines to see if there was a correlation between their scores. The scores were:

Line	Husband's Score	Wife's Scpre	Line	Husband's Score	Wife's Scpre
1	147	122	6	151	120
2	158	128	7	196	108
3	131	125	8	129	143
4	142	123	9	155	124
5	183	115	10	158	123

Tujuan: Untuk mengetahui apakah antar populasi saling independen atau tidak

Hipotesis:

 $H_0: X_i$ dan Y_i saling independen

 H_1 : tidak demikian

Statistik Uji:

Didapatkan hasil:

$$\tau = \frac{N_c - N_d}{N_c + N_d} = -0.5227273$$

Dengan menggunakan software RStudio, didapatkan:

```
> install.packages("Kendall")
> library(Kendall)
> husband <- c(147, 158, 131, 142, 183, 151, 196, 129, 155, 158)
> wife <- c(122, 128, 125, 123, 115, 120, 108, 143, 124, 123)
> Kendall(husband, wife)
tau = -0.523, 2-sided pvalue = 0.047312
```

Aturan Keputusan:

Akan dicari nilai ω_n

$$\omega_p = z_p \frac{\sqrt{2(2n+5)}}{3\sqrt{n(n-1)}}$$

= -0,48696

 H_0 ditolak jika $\tau < \omega_p$

Didapatkan $\tau=-0.5227273<-0.48696=\omega_p$, maka, H_0 ditolak

Kesimpulan:

Dengan $\alpha = 0.05$ dapat disimpulkan cukup alasan untuk mengatakan bahwa skor antara suami dengan istri tidak saling independen

UJI QUADE DAN FRIEDMAN

(W.J. Cornover Halaman 385) a survey was taken of all seven hospitals in a particular city to obtain the number of babies born over a 12-month period. This time period was divided into the four seasons to test the hypothesis that the birth rate is constant over all four seasons. The results of the survey are as follows:

	Number of Births					
Hospital	Winter	Spring	Summer	Fall		
Α	92	112	94	77		
В	9	11	10	12		
С	98	109	92	81		
D	19	26	19	18		
E	21	22	23	24		
F	58	71	51	62		
G	42	49	44	41		

Tujuan: Untuk mengetahui apakah rata-rata kelahiran dari kasus tersebut konstan atau tidak **Hipotesis:**

 H_0 : Tidak terdapat perbedaan rata-rata peningkatan kelahiran di rumah sakit pada keempat interval waktu

 H_1 : Terdapat perbedaan rata-rata peningkatan kelahiran di rumah sakit pada keempat interval waktu Statistik Uji:

1. Uji Friedman

Dengan menggunakan software RStudio, didapatkan:

```
> data <- matrix(c(92,112,94,77,</pre>
                9,11,10,12,
                98,109,92,81,
               19,26,19,18,
               21,22,23,24,
               58,71,51,62,
               42,49,44,41),
              nrow = 7, byrow = T,
              dimnames = list(Hospital = LETTERS[1:7],
                            Musim = c("Winter", "Spring", "Summer",
                            "Fall")))
> data
      Musim
Hospital Winter Spring Summer Fall
      A 92 112 94 77
          9 11 10 12
      В
         98 109
      С
                      92 81
      D
          19 26 19 18
      E
          21
                22
                      23 24
          58
                71
                      51 62
                      44 41
                49
          42
      G
> friedman.test(data)
        Friedman rank sum test
data: data
Friedman chi-squared = 6.913, df = 3, p-value = 0.07472
```

Didapatkan $T_1 = 6,913$ dan p-value = 0,07472

2. Uji Quade

Dengan menggunakan software RStudio, didapatkan:

Quade F = 4.4309, num df = 3, denom df = 18, p-value = 0.01685

Didapatkan $T_3 = 4,4309 \text{ dan } p\text{-value} = 0,01685$

Aturan Keputusan:

1. Uji Friedman

Tolak H_0 jika p-value $< \alpha$

Didapatkan p-value = 0,07472 > 0,05, maka H_0 tidak ditolak

Kesimpulan : Tidak terdapat perbedaan rata-rata peningkatan kelahiran di rumah sakit pada keempat interval waktu

2. Uji Quade

Tolak H_0 jika p-value $< \alpha$

Didapatkan p-value = 0,01685 < 0,05, maka H_0 ditolak

Kesimpulan: Terdapat perbedaan rata-rata peningkatan kelahiran di rumah sakit pada keempat interval waktu

UJI VAN DER WAERDEN

1. Random samples from each of three different types of light bulbs were tested to see how long the light bulbs lasted, with the following results

Brand					
Α	В	С			
73	84	82			
64	80	79			
67	81	71			
62	77	75			
70					

Do these results indicate a significant difference between brands? If so, which brands appear to differ?

Tujuan: Ingin mengetahui apakah terdapat perbedaan di antara ketiga jenis brand lampu **Hipotesis:**

 H_0 : ketiga populasi dari brand lampu memiliki fungsi distribusi yang identik

 H_1 : Minimal terdapat satu populasi cenderung memiliki pengamatan yang lebih besar dari minimal satu populasi lainnya

Statistik Uii:

R_{ij}	$\frac{R_{ij}}{N+1}$	A_{ij}	A_{ij}^2				
Brand A							
6	0,429	-0,1800	0,03240445				
2	0,143	-1,0676	1,13970682				
3	0,214	-0,7916	0,62669169				
1	0,071	-1,4652	2,14691007				
4	0,286	-0,5659	0,32029807				
	6 2 3	$ \begin{array}{c c} \mathbf{A}_{ij} & \hline N+1 \\ \hline \mathbf{A} \\ \hline 6 & 0,429 \\ 2 & 0,143 \\ \hline 3 & 0,214 \\ \hline 1 & 0,071 \\ \hline \end{array} $	A_{ij} A_{ij} A60,429-0,180020,143-1,067630,214-0,791610,071-1,4652				

Didanatkan:

$$S^{2} = \frac{1}{N-1} \sum_{all \ scores} A_{ij}^{2}$$

$$= 0.733341$$

$$T_{1} = \frac{1}{S^{2}} \sum_{i=1}^{N} n_{i} (\bar{A}_{i})^{2}$$

$$= 7.981033$$

Branc	Brand B						
84	13	0,929	1,4652	2,14691007			
80	10	0,714	0,5659	0,32029807			
81	11	0,786	0,7916	0,62669169			
77	8	0,571	0,1800	0,03240445			
Branc	Brand C						
82	12	0,857	1,0676	1,13970682			
79	9	0,643	0,3661	0,13403386			
71	5	0,357	-0,3661	0,13403386			
75	7	0,500	0,0000	0,00000000			

Aturan Keputusan:

 H_0 dtolak jika $T_1 > \chi_2^2$

Diketahui berdasarkan **Tabel A2** $\chi_2^2 = 5{,}991 < 7{,}973246 = T_1$, maka, H_0 ditolak

Kesimpulan:

Dengan $\alpha=0.05$ dapat disimpulkan cukup alasan untuk mengatakan bahwa minimal terdapat satu brand lampu cenderung menghasilkan pengamatan yang lebih besar dari minimal satu brand lampu lainnya (brand lampu A berbeda dengan B, brand lampu A berbeda dengan C)

REGRESI NON PARAMETRIK

(W.J. Cornover Halaman 336) The GMAT score of each MBA graduate is denote by X_i and that graduate's GPA is denote by Y_i . The twelve observations (X_i, Y_i) are (710,4.0), (610,4.0), (640,3.9), (580,3.8), (545,3.7), (560,3.6), (610,3.5), (530,3.5), (560,3.5),(540,3.3), (570,3.2), dan (560,3.2)

Tujuan: Untuk mengetahui apakah terdapat hubungan atau tidak antara MBA graduate dengan graduate's GPA

Dapat Dicari:

$$\sum_{i=1}^{12} X_i = 7.015 \quad \bar{X} = 584,58 \quad \sum_{i=1}^{12} X_i^2 = 4.129.525$$

$$\sum_{i=1}^{12} Y_i = 43,2 \quad \bar{Y} = 3,6 \quad \sum_{i=1}^{12} X_i Y_i = 25.360,5$$

Maka:

$$b = \frac{n\sum_{i=1}^{n} X_{i}Y_{i} - (\sum_{i=1}^{n} X_{i})(\sum_{i=1}^{n} Y_{i})}{n\sum_{i=1}^{n} X_{i}^{2} - (\sum_{i=1}^{n} X_{i})^{2}} = 0,0003714$$

$$a = \bar{Y} - h\bar{X} = 1.4287$$

Sehingga:

$$y = 1.4287 + 0.0003714x$$

2. Suppose that the a national study reports that a 40 point increase in GMAT scores results in at least 0,4 increase in GPAs

Tujuan: Untuk menguji null hypothesis:

Hipotesis:

Diestimasikan kenaikan IPK sebesar 0,4 setiap kenaikan skor GMAT sebesar 40, maka:

0.4	0.4
$H_0: \beta \ge \frac{0.4}{40} = 0.01$	$H_1: \beta < \frac{3}{40} = 0.01$

Statistik Uii:

	•	MBA Gr	aduate i	•		
	1	2	3	4	5	6
X_i	710	610	640	580	545	560
$U_i = Y - 0.01X_i$	-3,1	-2,1	-2,5	-2,0	-1,75	-2,0
$R(X_i)$	12	9,5	11	8	3	5
$R(U_i)$	1	7	3,5	9,5	12	9,5
	7	8	9	10	11	12
X_i	610	530	560	540	570	560
$U_i = Y - 0.01X_i$	-2,6	-1,8	-2,1	-2,1	-2,5	-2,4
$R(X_i)$	9,5	1	5	2	7	5
$R(U_i)$	2	11	7	7	3,5	5

$$\rho = \frac{\sum_{i=1}^{n} R(X_i) R(Y_i) - n \left(\frac{n+1}{2}\right)^2}{\left(\sum_{i=1}^{n} R(X_i)^2 - n \left(\frac{n+1}{2}\right)^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} R(Y_i)^2 - n \left(\frac{n+1}{2}\right)^2\right)^{\frac{1}{2}}} = -0.7272739$$

Dengan menggunakan software RStudio, didapatkan:

```
> x < -c(12, 9.5, 11, 8, 3, 5, 9.5, 1, 5, 2, 7, 5)
> u <- c(1, 7, 3.5, 9.5, 12, 9.5, 2, 11, 7, 7, 3.5, 5)
> cor(x, u, method = "spearman")
[1] -0.7272739
```

Aturan Keputusan:

 H_0 ditolak jika $\rho < \omega_{\alpha}$

Didapatkan $\rho = -0.7272739 < \omega_{0.05}$ (berdasarkan **Tabel A10**), maka H_0 ditolak

Kesimpulan:

Dengan lpha=0.05 dapat disimpulkan cukup alasan untuk mengatakan bahwa lulusan MBA tidak konsisten dengan hasil national survey

UTS GENAP 2021

Seorang peneliti sosial mewawancarai 25 orang pasangan yang baru menikah. Setiap pasangan suami dan istri diwawancara secara independen dalam mengajukan pertanyaan: "Berapa banyak anak-anak yang ingin kamu miliki?" Diperoleh data berikut:

Pasangan	Suami	Istri
1	3	2
2	1	1
3	2	1
4	2	3
5	5	1

Pasangan	Suami	Istri
14	2	1
15	3	2
16	2	2
17	0	0
18	1	2

6	0	1
7	0	2
8	1	3
9	2	2
10	3	1
11	4	2
12	1	2
13	3	3

19	2	1
20	3	2
21	4	3
22	3	1
23	0	0
24	1	2
25	1	1

1. Sebutkan apa yang berlaku sebagai variabel independen, dan apa yang berlaku sebagai variabel dependen dalam penelitian ini

Variabel independen adalah pasangan suami ke-i dan istri ke-i

Variabel dependen adalah banyak anak yang ingin dimiliki oleh pasangan suami dan istri ke-i

- 2. Dengan menggunakan $\alpha = 0.05$ analisis data dalam penelitian tersebut menggunakan salah satu metode nonpametrik yang sesuai
 - a. Dengan menggunakan dasar fungsi distribusi, beserta confidence intervalnya. Apakah asumsi yang digunakan.

Untuk menggunakan dasar fungsi distribusi digunakan uji Smirnov Two Samples

- Tujuan: Untuk mengetahui apakah terdapat perbedaan fungsi distribusi diantara kedua populasi tersebut
- Asumsi:
 - 1. Sampel adalah variabel acak
 - Kedua sampel adalah mutually independen
 - 3. Skala pengukuran minimal skala ordinal
 - 4. Variabel acak diasumsikan kontinu
- **Hipotesis:**

$$H_0: F(x) = G(x)$$

$$H_1: F(x) \neq G(x)$$

Statistik Uji:

Dengan menggunakan software RStudio, didapatkan:

Two-sample Kolmogorov-Smirnov test

data: datauji\$Suami and datauji\$Istri D = 0.2, p-value = 0.6994 alternative hypothesis: two-sided

$$T_1 = |S(x_i) - S(y_i)| = 0.2$$

Aturan Keputusan:

Didapatkan nilai $T_1 = 0.2 \text{ dan } p - value = 0.6994$ Maka, p - value > 0.05

Sehingga, H₀ tidak ditolak

Kesimpulan:

Maka, dengan $\alpha = 0.05$ tidak terdapat cukup bukti untuk menolak H_0 . Maka, dapat disimpulkan bahwa fungsi distribusi di antara kedua populasi (banyak anak yang diinginkan di antara pasangan suami ke-i dengan istri ke-i) tidak terdapat perbedaan berbeda

Untuk menggunakan confidence interval

Dengan menggunakan software SPSS, didapatkan:

Test Statistics^a

			Data	
Most Extreme Differences	Absolute	.200		
	Positive	.080		
	Negative	200		
Kolmogorov-Smirnov Z				
Asymp. Sig. (2-tailed)			.699	
Monte Carlo Sig. (2-	Sig.		.378 ^b	
tailed)	95% Confidence Interval	Lower Bound	.376	
		Upper Bound	.380	

Dengan tingkat kepercayaan 95% dapat dipercaya bahwa F(x) dan G(x) terdapat diantara (0,376;0,380)

b. Tanpa menggunakan dasar fungsi distribusi, beserta confidence intervalnya. Apakah asumsi yang digunakan dalam menyelesaikan data tersebut tanpa menggunakan fungsi distribusi.

Untuk tanpa menggunakan dasar fungsi distribusi digunakan uji Mann Whitney

- Tujuan: Untuk mengetahui apakah ada perbedaan kecenderungan antara 2 populasi data Asumsi:
 - 1. Kedua sampel adalah sampel acak dari masing-masing populasi
 - 2. Setiap sampel independen dan diantara 2 sampel acak saling mutually independen
 - Skala pengukuran minimal ordinal
- **Hipotesis:**

$$H_0$$
: $F(x) = G(x)$ untuk semua x
 H_1 : $F(x) \neq G(x)$ untuk beberapa x

Statistik Uji:

Dengan menggunakan software SPSS, didapatkan:

Test Statistics

			Data
Mann-Whitney U			273.000
Wilcoxon W			598.000
Z			794
Asymp. Sig. (2-tailed)			
Monte Carlo Sig. (2- tailed)	Sig.	.430 ^b	
	95% Confidence Interval	Lower Bound	.428
		Upper Bound	.433
Monte Carlo Sig. (1-	Sig.		.216 ^b
tailed)	95% Confidence Interval	Lower Bound	.215
		Upper Bound	.218

Aturan Keputusan:

Didapatkan p - value = 0,427

Maka, p - value > 0.05

Sehingga, H_0 tidak ditolak

Kesimpulan:

Maka, dengan $\alpha = 0.05$ tidak terdapat cukup bukti untuk menolak H_0 . Maka, dapat disimpulkan bahwa tidak ada perbedaan kecenderungan antara 2 populasi data (banyak anak yang diinginkan di antara pasangan suami ke-i dengan istri ke-i)

Untuk menggunakan confidence interval

Dengan menggunakan software SPSS, didapatkan:

Test Statistics^a

			Data
Mann-Whitney U			273.000
Wilcoxon W			598.000
Z			794
Asymp. Sig. (2-tailed)			.427
Monte Carlo Sig. (2- tailed)	Sig.	.430 ^b	
	95% Confidence Interval	Lower Bound	.428
		Upper Bound	.433
Monte Carlo Sig. (1-	Sig.		.216 ^b
tailed)	95% Confidence Interval	Lower Bound	.215
		Upper Bound	.218

Dengan tingkat kepercayaan 95% dapat dipercaya bahwa F(x) dan G(x) terdapat diantara (0,428;0,433)

- Dengan menggunakan $\alpha = 0.05$ analisis data penelitian tersebut menggunakan salah satu metode parametrik yang sesuai beserta confidence intervalnya. Apakah asumsi yang digunakan dalam hal ini Untuk metode parametrik adalah digunakan uji t-Student
 - **Tujuan:** Untuk mengetahui apakah rata-rata dari jumlah anak yang diinginkan suami ke-idan istri ke-i sama atau perbedaan
 - Asumsi:
 - 1. Jumlah n_1 dan n_2 relatif kecil
 - 2. Data tidak harus berdistribusi normal
 - 3. Data saling independen
 - **Hipotesis:**

 $H_0: \mu_{suami} = \mu_{istri}$

 $H_1: \mu_{suami} \neq \mu_{istri}$

Statistik Uji:

$$T = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{Sp\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$$

$$Sp^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

Dengan menggunakan software Ms. Excel, didapatkan:

t-Test: Two-Sample Assuming Unequal Variances		
	Variable 1	Variable 2
Mean	1,96	1,64
Variance	1,873333333	0,74
Observations	25	25
Hypothesized Mean Difference	0	
df	40	
t Stat	0,989743319	
P(T<=t) one-tail	0,164124593	
t Critical one-tail	1,683851013	
P(T<=t) two-tail	0,328249185	
t Critical two-tail	2,02107539	

Aturan Keputusan:

Didapatkan p-value 0,328249185176384

Maka, p - value > 0.025

Sehingga, H_0 tidak ditolak

Kesimpulan:

Maka, dengan $\alpha=0.05$ tidak terdapat cukup bukti untuk menolak H_0 . Maka, dapat disimpulkan bahwa rata-rata dari jumlah anak yang diinginkan suami ke-i dan istri ke-i tidak terdapat perbedaan

Interval kepercayaan 95% untuk selisih populasi di antara 2 sampel Berdasarkan formula:

$$\left((\bar{x}_1 - \bar{x}_2) - t_{\frac{\alpha}{2}}Sp\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}; (\bar{x}_1 - \bar{x}_2) + t_{\frac{\alpha}{2}}Sp\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right)$$

Didapatkan $Sp^2 = 2,124688889$

Didapapatkan interval kepercayaan $\mu_1 - \mu_2$ akan berada pada interval (-0,26615289 ; 0,906152886)

Kesimpulan:

Dengan tingkat kepercayaan 95% dapat dipercaya bahwa selisih antara μ_1 dengan μ_2 teradapat diantara (-0,26615289; 0,906152886)

Bandingkan hasil yang diperoleh dalam b dan c. Beri komentar

Dari hasil jawaban b dan c didapatkan baik menggunakan metode statistik non parametrik (melalui fungsi distribusi ataupun tanpa melalui fungsi distribusi) maupun parametrik didapatkan kesimpulan bahwa tidak terdapat perbedaan jumlah anak yang dinginkan antara pasangan suami ke-i dengan istri ke-i

UTS GANJIL 2021

Misalkan terdapat suatu ujian dengan 20 soal tipe pilihan ganda. Setiap soal memilki tepat 1 jawaban benar dan 3 pilihan jawaban lain yang salah. Jika seorang siswa mendapat 5 jawaban benar dari ujian tersebut, bagaimana anda menguji indikasi bahwa siswa tersebut murni hanya menebak jawaban? Lakukanlah uji hipotesis lengkap pada kasus tersebut! Bangunlah juga interval kepercayaan 90% mengenai peluang siswa tersebut menjawab soal dengan benar!

Akan digunakan uji binomial

Tujuan: Untuk menguji apakah masuk akal atau tidak untuk menganggap bahwa siswa tersebut memiliki probabilitas 0.25 (peluang menjawab benar dari 4 pilihan jawaban) dalam menjawab benar dengan murni hanya menebak jawaban

Hipotesis:

$$H_0: p = 0.25$$
 $H_1: p \neq 0.25$

Statistik Uji:

Karena $n=20 \le 20$, maka dapat menggunakan **Tabel A3**. Diketahui T=5 (jumlah soal yang dijawab benar). Maka:

$$\Pr(Y \leq t_1) = \alpha_1 \qquad \qquad \Pr(Y \leq t_2) = \alpha_2$$

$$\Pr(Y \leq t_1) = \frac{0,05}{2} \qquad \qquad \Pr(Y \leq t_2) = 1 - \frac{0,05}{2}$$

$$t_1 \text{ yang memiliki nilai mendekati} \qquad \qquad t_2 \text{ yang memiliki nilai mendekati}$$

$$\alpha_1 = 0,025 \text{ adalah } \alpha = 0.0243 \qquad \qquad 1 - \alpha_2 = 0,975 \text{ adalah } \alpha = 0.9561 \text{ saat } t_1 = 1$$

$$0,9561 \text{ saat } t_2 = 8$$

Dengan menggunakan software RStudio, didapatkan:

```
> binom.test(x = 5, n = 20, p = 0.25, alternative = "two.sided")
       Exact binomial test
data: 5 and 20
number of successes = 5, number of trials = 20, p-value = 1
alternative hypothesis: true probability of success is not equal to 0.25
95 percent confidence interval:
 0.08657147 0.49104587
sample estimates:
probability of success
                  0.25
```

Confidence Interval:

Lower = 0.08657147; Upper = 0.49104587

Aturan Keputusan:

Kesimpulan:

 H_0 ditolak jika $T \leq t_1$ atau $T > t_2$ Didapatkan $T = 5 \operatorname{dan} p - value = 1$, maka H_0 tidak ditolak

Dengan $\alpha=0.05$ dapat disimpulkan bahwa terdapat cukup alasan untuk mengatakan bahwa masuk akal untuk menganggap bahwa siswa tersebut memliki probabilitas 0,25 dalam menjawab benar dengan murni hanya menebak jawaban

Dalam suatu percobaan sosial, diperkenalkan suatu sesi diskusi interaktif yang diharapkan mampu mempengaruhi opini seseorang menjadi berseberangan dari opini awalnya. 150 orang diujicobakan, dimana 114 orang mendukung adanya pengendalian pembukaan lahan dan sisanya lebih terbuka terhadap pembukaan lahan. Setelah pendataan awal tersebut, sesi diskusi interaktif diaplikasikan ke peserta uji coba ini. Hasilnya, 37 orang yang sebelumnya mendukung pengendalian pembukaan lahan berubah opini menjadi terbuka terhadap pembukaan lahan, sisanya tetap pada opini awal mereka. Uji apakah yang akan anda gunakan untuk melihat ada tidaknya cukup bukti bahwa sesi diskusi tersebut mampu membalikkan opini seseorang? Lakukanlah uji tersebut dari definisi pengujian hipotesis hingga kesimpulan yang sesuai! Gunakan taraf signifikansi 0.05

Akan digunakan uji Mc Nemar

Tujuan: Untuk melihat ada tidaknya cukup bukti bahwa sesi diskusi tersebut mampu membalikkan opini seseorang

Asumsi:

- 1. Pasangan (X_i, Y_i) saling independen
- 2. Skala pengukuran adalah skala nominal dengan dua kategorik untuk semua X_i dan Y_i
- 3. Selisih $P(X_i = 0, Y_i = 1) P(X_i = 1, Y_i = 0)$ adalah negatif untuk semua i atau bernilai 0 untuk semua i atau positif untuk semua i

Hipotesis:

```
H_0: P(X_i = 0) = P(Y_i = 0), \forall i
                                     (hasil diskusi tidak mampu membalikkan)
H_1: P(X_i = 0) \neq P(Y_i = 0)
                                     (tidak demikian)
Statistik Uji:
```

	Sesudah (Y_i)				
$Sebelum\:(X_i)$	$Y_i = 0$ (mendukung pengendalian pembukaan lahan)	$Y_i = 1$ (terbuka terhadap pembukaan lahan)			
$X_i = 0$ (mendukung pengendalian pembukaan lahan)	77	37			
$X_i = 1$ (terbuka terhadap pembukaan lahan)	0	36			

karena b + c > 20, maka:

$$T_1 = \frac{(b-c)^2}{b+c} = \frac{(37-0)^2}{37+0} = 37$$

Dengan menggunakan software RStudio, didapatkan:

Aturan Keputusan:

Didapatkan p-value 1.181e-09 Maka, p-value<0.025 Sehingga, H_0 ditolak

Kesimpulan:

Maka, dengan $\alpha=0.05~H_0~{
m ditolak}$. Maka, dapat disimpulkan bahwa sesi diskusi tersebut mampu membalikkan opini seseorang

3. Seorang ahli lingkungan melakukan penelitian terkait populasi kumbang jenis tertentu di suatu daerah. Ahli tersebut membuat suatu perangkap kemudian menghitung jumlah kumbang yang terperangkap. Hasil yang diperoleh akan dijadikan acuan dalam penentuan populasi kumbang di daerah tersebut. Penelitian ini dilakukan dari tahun 1990 sampai dengan tahun 2010 dan diperoleh hasil sebagai berikut:

Tahun	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Banyaknya kumbang	120	35	48	188	356	310	291	400	310	485	396
Tahun	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	
Banyaknya kumbang	215	69	55	136	320	369	273	519	460	399	

Lakukan pengujian untuk melihat apakah ada kecenderungan naik terkait banyaknya kumbang yang terperangkap yang menandakan naiknya ukuran populasi kumbang di daerah tersebut? Lakukan pengujian secara lengkap dari definisi pengujian hipotesis sampai kesimpulan yang sesuai! Gunakan $\alpha=0.05$

Akan digunakan uji Cox Stuart

Tujuan: Untuk mengetahui apakah terdapat trend atau tidak

Asumsi:

- 1. Variabel random $X_1, X_2, ..., X_n$ saling independen
- 2. Skala pengukuran minimal adalah skala ordinal
- 3. Salah satu dari X_i terdistribusi secara identik, yaitu variabel random yang terakhir cenderung lebih besar dari variabel acak sebelumnya atau sebaliknya

Hipotesis:

 H_0 : tidak terdapat kecenderungan H_1 : terdapat kecenderungan

Statistik Uii:

tatistik Oji.						
X_i	X_{i+c}	$X_{i+c} - X_i$				
120	215	+				
35	69	+				
48	55	+				
188	136	-				
356	320	-				
310	369	+				
291	273	ı				
400	519	+				
310	460	+				
485	399	-				

$$c=rac{11+1}{2}=6$$
, sehingga data ke -7 dihilangkan Didapatkan $T=T^+=6$

Berdasarkan **Tabel A3** dengan n = 10 dan p =0,5. Didapatkan nilai t yang perluangnya kurang dari $\frac{\alpha}{2}$

Didapatkan $\alpha_1=0,0123$, maka $t_1=2$ dan $t_2 = 8$

Dengan menggunakan software RStudio, didapatkan:

```
> install.packages("randtests")
> library(randtests)
> kumbang <- c(120, 35, 48, 188, 356, 310, 291, 400, 310, 485, 396,</pre>
                     215, 69, 55, 136, 320, 369, 273, 519, 460, 399)
> cox.stuart.test(kumbang)
         Cox Stuart test
data: kumbang
statistic = 6, n = 10, p-value = 0.7539
alternative hypothesis: non randomness
```

Didapatkan T=6

Aturan Keputusan:

 H_0 ditolak jika $T \leq t_1$ atau $T \geq t_2$

Didapatkan T = 4 dimana $t_1 < 6 < t_2$, maka H_0 tidak ditolak

Kesimpulan:

Dengan $\alpha = 0.05$ dapat disimpulkan cukup alasan untuk mengatakan bahwa tidak terdapat kecenderungan (trend)

4. Catatan waktu (dalam detik) seorang pelari jarak 100m pada 8 kali percobaan adalah sebagai berikut:

14.5, 13.4, 12.1, 14.3, 13.6, 11.9, 14.2, 10.7, 10.9, 11.6

Ujilah apakah catatan waktu pelari tersebut bersesuaian dengan distribusi berikut:

F*(x) = 0 ; x < 10
=
$$\frac{x^2 - 100}{125}$$
 ; $10 \le x < 15$
= 1 ; $15 \le x$

Gunakan taraf signifikan 0.1

Akan digunakan uji Kolmogorov Smirnov 1 Sampel

Tujuan: Untuk menguji H_0 bahwa F(x) pada kenyataannya merupakan fungsi distribusi yang spesifik dengan $F^*(x)$

Hipotesis:

$H_0: F(x) = F^*(x)$	$untuk - \infty < x < \infty$
$H_1: F(x) \neq F^*(x)$	untuk x lainnya

Statistik Uji:

x_i	Frekuensi	Frekuensi Kumulatif	$S(x_i)$	$F^*(x)$	T
10,7	1	1	0,1	0,12	0,02
10,9	1	2	0,2	0,15	0,05
11,6	1	3	0,3	0,28	0,02
11,9	1	4	0,4	0,33	0,07
12,1	1	5	0,5	0,37	0,13
13,4	1	6	0,6	0,64	0,04
13,6	1	7	0,7	0,68	0,02
14,2	1	8	0,8	0,81	0,01
14,3	1	9	0,9	0,84	0,06
14,5	1	10	1	0,88	0,12

Dari hasil perhitungan nilai T, didapatkan sup(T) = 0.13 pada saat x = 12,1. Dengan kata lain:

$$T = \sup |F^*(12,1) - S(12,1)|$$

= 0.13

Aturan Keputusan:

 H_0 ditolak jika $T > w_{0.9}$

Didapatkan $T = 0.13 < 0.369 = w_{0.9}$, maka H_0 tidak ditolak

Kesimpulan:

Dengan $\alpha = 0.1$ dapat disimpulkan cukup alasan untuk mengatakan bahwa F(x) pada kenyataannya merupakan fungsi distribusi yang spesifik dengan $F^*(x)$

UAS GANJIL 2021

Pada produksi alat medis untuk prosedur cangkok pembuluh, dilakukan penelitian mengenai efek tekanan ekstrusi (PSI) pada mesin produksi terhadap tingkat kecacatan produk. Untuk menyelidiki ini, dibuat desain dengan 6 blok untuk mengurangi error pada perbedaan pemasok bahan baku produksi. Data yang didapatkan adalah data 1.

Lakukan pendefinisian uji hipotesis untuk kasus tersebut!

Ajukan metode nonparametrik yang sesuai ketika pengujian parametrik tidak dapat digunakan! Lakukan pengujian tersebut dan berikan kesimpulan berdasarkan hasil uji tersebut!

Akan digunakan uji Friedman

Tujuan: Untuk mengetahui apakah level tekanan ekstruksi (PSI) memiliki efek yang sama atau tidak pada tingkat kecacatan produk

Hipotesis:

 H_0 : seluruh level tekanan tekanan ekstruksi (PSI) memiliki efek yang sama pada tingkat kecacatan

 H_1 : minimal terdapat satu level tekanan ekstruksi (PSI) memiliki efek yang berbeda pada tingkat kecacatan produk

- Sebanyak b k —variate random variables saling independen
- Antar blok, observasinya di rank berdasarkan kriteria

Statistik Uji:

Blok	PSI_8500	Rank	PSI_8700	Rank	PSI_8900	Rank	PSI_9100	Rank
1	90.3	3	92.5	4	85.5	2	82.5	1

2	89.2	1	89.5	2.5	90.8	4	89.5	2.5
3	98.2	4	90.6	3	89.6	2	85.6	1
4	93.9	3	94.7	4	86.2	1	87.4	2
5	87.4	3	87	2	88	4	78.9	1
6	97.9	4	95.8	3	93.4	2	90.7	1
	R _{j total}	18		18.5		15		8.5

Karena terdapat ties, maka:

$$A_{1} = \sum_{i=1}^{b} \sum_{j=1}^{k} \left[R(X_{ij}) \right]^{2}$$

$$= 179.5$$

$$C_{1} = \frac{bk(k+1)^{2}}{4}$$

$$= 150$$

$$T_{1} = \frac{(k-1)\sum_{j=1}^{k} \left(R_{j} - \frac{b(k+1)}{2} \right)^{2}}{A_{1} - C_{1}}$$

$$= 6.457627$$

$$T_{2} = \frac{(b-1)T_{1}}{b(k-1) - T_{1}} = 3.779762$$

Dengan menggunakan software RStudio, didapatkan:

Didapatkan $T_3 = 6.4576 \text{ dan } p\text{-value} = 0.09135$

Aturan Keputusan:

Tolak H_0 jika p-value $< \alpha$

Didapatkan p-value = 0,09135 > 0,05, maka H_0 tidak ditolak

Kesimpulan:

Dengan $\alpha=0.05$ dapat disimpulkan bahwa minimal terdapat satu level tekanan ekstruksi (PSI) memiliki efek yang berbeda pada tingkat kecacatan produk

2. Penelitian mengenai kemampuan matematika dengan bahasa dilakukan dengan mengamati 15 siswa hingga didapatkan data 2. Dihipotesiskan bahwa kedua kemampuan ini memiliki korelasi. Lakukan uji signifikansi korelasi menggunakan 2 metode yang sesuai untuk menguji klaim dari hipotesis tersebut!

Apa kesimpulan yang didapatkan?

No	Math	Ling	No	Math	Ling	No	Math	Ling
1	97.2	7.5	6	87.5	8.4	11	91.7	8
2	80.1	8.1	7	68.4	7.5	12	93.6	8.5
3	76.2	8.2	8	71	8	13	85.3	6.7
4	69.8	6.1	9	78.6	5.8	14	76.8	6.6
5	72.3	5.8	10	84.9	7.5	15	95.9	8.7

Akan digunakan Uji Kendall-Tau

Tujuan: Untuk mengetahui apakah antar populasi saling independen atau tidak

 $H_0: X_i(Math)$ dan $Y_i(Ling)$ saling independen

 H_1 : tidak demikian

Statistik Uji:

Didapatkan hasil:

```
\tau = \frac{N_c - N_d}{N_c + N_d}
```

Dengan menggunakan software RStudio, didapatkan:

```
> install.packages("Kendall")
> library(Kendall)
> math <- c(97.2, 80.1, 76.2, 69.8, 72.3, 87.5, 68.4, 71, 78.6, 84.9, 91.7, 93.6,
85.3, 76.8, 95.9)
> ling <- c(7.5, 8.1, 8.2, 6.1, 5.8, 8.4, 7.5, 8, 5.8, 7.5, 8, 8.5, 6.7, 6.6, 8.7
> Kendall(math, ling)
tau = 0.371, 2-sided pvalue = 0.065203
```

Aturan Keputusan:

Akan dicari nilai ω_n

$$\omega_p = z_p \frac{\sqrt{2(2n+5)}}{3\sqrt{n(n-1)}}$$

= -0,48696

 H_0 ditolak jika $\tau < \omega_n$

Didapatkan $\tau = 0.371 > -0.48696 = \omega_p$, maka, H_0 tidak ditolak

Kesimpulan:

Dengan $\alpha=0.05$ dapat disimpulkan cukup alasan untuk mengatakan bahwa kemampuan matematika dan bahasa saling independen

3. Misalkan terdapat klaim bahwa kemampuan matematika seseorang merupakan prediktor yang baik untuk memprediksi kemampuan bahasanya. Untuk membuktikan hal ini, bangunlah persamaan regresi linear dari data 2.

Lakukan uji signifikansi parameter β dengan hipotesis nol $\beta \geq 0.4!$

Akan digunakan Metode Regresi Non Parametrik

Tujuan: Untuk mengetahui bentuk dari persamaan regresi liniar dan menguji apakah parameter $\beta \geq$ 0.4 benar atau tidak

Asumsi:

- Sampelnya merupakan sampel acak. Metode ini valid jika nilai X adalah nonrandom quantiles sepanjang Ys indepen dengan distribusi bersyarat yang identik
- 2. Regresi Y terhadap X adalah linear. Ini mengimplikasikan skala pengukuran interval pada X dan
- 3. Nilai residual Y E(Y|X) independen terhadap X

Membangun model:

Dengan menggunakan software RStudio, didapatkan:

```
> model <- lm(ling~math)</pre>
> summary(model)
```

```
Call:
lm(formula = ling ~ math)
Residuals:
    Min 1Q Median 3Q Max
-1.45303 -0.70675 0.06866 0.72772 1.14048
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.18322 2.00094 1.591 0.1357
       0.05178 0.02426 2.135 0.0524 .
math
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.8837 on 13 degrees of freedom
Multiple R-squared: 0.2595, Adjusted R-squared: 0.2026
F-statistic: 4.557 on 1 and 13 DF, p-value: 0.0524
```

Maka, didapatkan persamaan regresi:

$$\hat{y} = 3.18322 + 0.05178x_{math}$$

Hipotesis:

 $H_0: \beta \ge 0.4$ $H_1: \beta < 0.4$

Statistik Uji:

Dengan menggunakan software RStudio, didapatkan:

```
> cor(math, ling, method = "spearman")
[1] 0.4919281
```

Aturan Keputusan:

 H_0 ditolak jika $\rho < \omega_{\alpha}$

Didapatkan $ho = -0.4919281 > \omega_{0.05}$ (berdasarkan **Tabel A10**), maka H_0 tidak ditolak

Kesimpulan:

Dengan $\alpha=0.05$ dapat disimpulkan terdapat cukup alasan untuk mengatakan bahwa kemampuan matematika konsisten dengan kemampuan bahasa

Misalkan diketahui data observasi tingkat kerusakan hasil produksi oleh seorang pekerja baru dalam 14 hari berturut-turut sebagai berikut:

11.0 9.6 9.5 9.7 9.2 8.9 8.7 8.3 8.0 7.0 8.4 6.1 6.7 Lakukan pengujian lengkap untuk melihat ada tidaknya tren terkait dengan tingkat kerusakan hasil produksi yang dihasilkan oleh pekerja tersebut

Akan digunakan uji Cox Stuart

Tujuan: Untuk mengetahui apakah terdapat trend atau tidak

Asumsi:

- 1. Variabel random $X_1, X_2, ..., X_n$ saling independen
- 2. Skala pengukuran minimal adalah skala ordinal
- 3. Salah satu dari X_i terdistribusi secara identik, yaitu variabel random yang terakhir cenderung lebih besar dari variabel acak sebelumnya atau sebaliknya

Hipotesis:

 H_0 : tidak terdapat kecenderungan

 H_1 : terdapat kecenderungan

Statistik Uji:

Dengan menggunakan software RStudio, didapatkan:

```
> install.packages("randtests")
> library(randtests)
hasil <- c(10.2, 11.0, 9.6, 9.5, 9.7, 9.2, 8.9, 8.7, 8.3, 8.0, 7.0, 8.4, 6.1, 6.7
> cox.stuart.test(hasil)
         Cox Stuart test
data: hasil
statistic = 0, n = 7, p-value = 0.01563
alternative hypothesis: non randomness
```

Aturan Keputusan:

 H_0 ditolak jika $T \leq t_1$ atau $T \geq t_2$ atau $p - value < \alpha$ Didapatkan p-value=0.01563, maka H_0 ditolak

Kesimpulan:

Dengan lpha=0.05 dapat disimpulkan cukup alasan untuk mengatakan bahwa terdapat kecenderungan (trend) hasil produksi oleh seorang pekerja baru