

Introduction to Graphs

- Gaurish Baliga

Goal

- Introduction to Graphs
- Types of Graphs
- Common Terminologies
- Representation of Graphs
- Tradeoff Analysis and Common Results

What is a Graph?

Types of Graphs

Ē

- Directed vs Undirected
- Weighted vs Unweighted
- Cyclic vs Acyclic
- Connected vs Disconnected
- Complete Graph

Directed and Undirected Graphs

Undirected Graph

Directed Graph

Weighted and Unweighted Graphs

Unweighted Graph

Weighted Graph

4 Cyclic and Acyclic Graph

Acyclic Graph

Cyclic Graph

Cycle in undirected graph

Connected and Disconnected Graph

Disconnected Graph

Connected Graph

Complete Graph

Common Terms

- Neighbours and Degree
- Self Loop
- Path and Walk
- Cycle
- Simple Path
- Articulation Points and Bridges

Self Loop

Path, Walk, Cycle, Circuit and More

Example of Walk

Example of Trail

Example of Circuit

0 > 2 -> 4 -> 0 -> 5 -> 0

Example of Path

Example of Cycle

Articulation Point

If removing a node from the graph results in increase of connected components, then that node is called an articulation point.

Bridges

An edge in a graph when removed increases the number of connected components in the graph is said to be a bridge.

Some Common Results

- An undirected graph where each node has at degree at least 2 will contain a cycle
- A directed graph where each node has at least 1 in-degree and at least 1 out-degree will contain a cycle
- The sum of all degrees in an undirected graph is even

Proof: connected max edges in acyclic, graph: add 1 more = n edges = 1 cycle.

how, ≥ deg; > 2·n edges $\frac{2n}{2}$ if deg 2,2 for all is cycle emists

Made with Goodnotes

Representation of Graphs

- Adjacency Matrix
- Adjacency List with Vector
- Adjacency List with Set

Adjacency Matrix

	0	1	2	3	4
0	0	0	1	0	1
1	0	0	0	0	1
2	1	0	0	1	1
3	0	0	1	0	0
4	1	1	1	0	0

Implementation of Adjacency Matrix

```
int n, m; cin >> n >> m;
  vector<vector<int>>adj(n, vector<int>(n));
  for(int i = 0; i < m; i++) {
int u, v; cin >> u >> v;
  adj[u][v] = adj[v][u] = 1;
```

Adjacency List

0	2	4	
1	4		
2	0	3	4
3	2		
4	0	1	2

Implementation of Adjacency List (Vector)

```
int n, m; cin >> n >> m;
  vector<vector<int>>adj(n);
for(int i = 0; i < m; i++) {
int u, v; cin >> u >> v;
adj[u].push_back(v);
adj[v].push_back(u);
```

Implementation of Adjacency List (Set)

```
int n, m; cin >> n >> m;
vector<set<int>>adj(n);
for(int i = 0; i < m; i++) {
int u, v; cin >> u >> v;
adj[u].insert(v);
adj[v].insert(u);
```

Problem to Consider

You are given a graph with N vertices and M edges. Perform Q queries on it.

Queries are of type:

1 i j : Add edge i to j in the graph

2 i j : Remove edge i to j in the Graph

3 i j: Print if an edge from i to j exists

4 i : Print number of neighbours of the node i

Trade-Off Analysis

	Adjacency Matrix	Adj List w/ Vector	Adj List w/ Set
Space Complexity	O(n²)	O(edges)	O(edges)
Add an Edge	O(1)	O(1)	O(logn)
Remove an Edge	O(1)	O(n)	O(logn)
Search an Edge	O(1)	O(n)	O(logn)
No. of Neighbours	O(n)	O(1)	O(1)