1 Немного истории.

2 Введение в лямбда-исчисление: определения и базовые результаты.

Рассмотрим мотивирующий пример. Когда мы пишем, что «функция отображает аргумент x в M», где M— это метапеременная, в которой лежит тело функции, то мы используем следующую нотацию $x\mapsto M$, тогда как запись $\lambda x.M$ следует читать точно также в содержательном смысле. Распирим наш мотивирующий и не совсем формальный пример, заменив метапеременную M на более понятное арифметическое выражение : $x\mapsto x^2+6x+9$ и $\lambda x.x^2+6x+9$.

Теперь же перейдем к формальным определениям. Базовое понятие в λ -исчислении — это npe dmep m. Предположим, у нас есть бесконечный алфавит:

$$\Lambda = v_0, v_1, v_2, v_3, \dots \tag{1}$$

Предтермами мы будем называть конечные строки над алфавитом Λ , порожденные следующей грамматикой:

$$\Lambda_{term} ::= \Lambda \mid (\Lambda_{term} \Lambda_{term}) \mid \lambda \Lambda . \Lambda_{term}$$
 (2)

Примеры конечных строк, порожденных заданной грамматикой:

- 1) $((v_3 v_5) v_8)$;
- 2) $\lambda v_6.v_5v_6$
- 3) $\lambda v_0.v_0$
- 4) $\lambda v_{05091995}.\lambda v_{38}.v_4$

Как мы видим из определения грамматики, предтермы бывают трех видов.

Зададим классификацию предтермов в соответсвии с грамматикой:

- 1) Предтерм первого вида (это просто элементы Λ) называется *переменной*, которые мы будем обозначать тремя предпоследними буквами латинского алфавита x, y, z, ... (возможно с индексами);
- 2) Предтерм второго вида (записанные два подряд предтерма) называется аппликацией (или применением), которую мы будем обозначать (MN), где M и N— это произвольные предтермы, которые впредь будут обозначаться метапеременными M, N, O, \dots (возможно с индексами);
- 3) Предтерм третьего вида (знак λ с переменной, точка и предтерм) называется λ -абстракцией, которая будет обозначаться как $\lambda x.M$, где x является связанной переменной. Если в предтерме встречается переменная x, которая связана λ -оператором, то такая переменная будет называться свободной переменной.

Поясним, что λ — это оператор связывания. Пусть у нас есть некоторый предтерм M, содержащий свободные вхождения x. Теперь мы λ -абстрагируемся по x и получим предтерм третьего вида $\lambda x.M$, предъявляя таким образом выражение, зависящее от значения параметра x.

Важное терминологическое соглашение: любой предтерм, удовлетворяющий тому или иному виду, мы будет называть λ -термами.

- 3 Комбинаторная логика и ее связь с лямбдаисчислением.
- 4 Простое типизированное лямбда-исчисление: типизация по Карри и по Черчу.
- 5 Типизированные комбинаторы.
- 6 Практическая реализация лямбда-исчисления, комбинаторной логики и теории типов.