믑

11 Publication number:

0 366 478 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (3) Date of publication of patent specification: 26.01.94 (3) Int. Cl.5: A61M 29/02, A61M 25/10
- 21) Application number: 89311085.8
- ② Date of filing: 27.10.89

Divisional application 93301457.3 filed on 27/10/89.

- Balloon catheter.
- Priority: 28.10.88 JP 272366/88 28.10.88 JP 272367/88
- ② Date of publication of application: 02.05.90 Bulletin 90/18
- Publication of the grant of the patent: 26.01.94 Bulletin 94/04
- Designated Contracting States:
 CH DE FR GB LI SE
- 69 References cited: EP-A- 0 227 583 WO-A-80/01353 FR-A- 2 380 786 GB-A- 2 054 385

- Proprietor: Inoue, Kanji 13 Shimogamo-Miyazaki-cho 98 banchi Sakyo-ku Kyoto-shi Kyoto-fu(JP)
- Inventor: Inoue, Kanji 13 Shimogamo-Miyazaki-cho 98 banchi Sakyo-ku Kyoto-shi Kyoto-fu(JP)
- Representative: Jackson, Peter Arthur et al GILL JENNINGS & EVERY, Broadgate House, 7 Eldon Street London EC2M 7LH (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

35

Description

The present invention relates to an improved double lumen catheter.

1

Various catheter devices including a balloon catheter have been developed for dilating occuluded blood vessels, for example. The balloon catheter includes a balloon element which, during positioning, is kept in a non-inflated condition to permit easy emplacement relative to an occulusion. When the balloon element is disposed immediately adjacent the occulusion being treated, it is expanded or inflated by introducing pressurized fluid into the balloon element to dilate the occulusion. It is preferable that the balloon element in its non-inflated condition have a small outer diameter so as to enable easy insertion or movement within blood vessels. However, there is the conflicting requirement that the balloon element have a large outer diameter so as to have an increased cross section when inflated, so that dilatation can be achieved more effectively and efficiently. Japanese Laid-Open Patent Application No. 53-125386 offers an effective solution to this problem by providing a double lumen catheter which comprises an elongated flexible outer tube, an elongated flexible inner tube disposed in and extending through the outer tube for relative movement to each other and a balloon clement fixedly attached at its respective ends to the distal ends of the outer and inner tubes. In inserting the balloon catheter into a blood vessel, the outer and inner tubes are relatively displaced in opposite directions so as to stretch the balloon element longitudinally to have a reduced cross section.

However, the catheter of the aforementioned type has the disadvantage that due to the flexible nature of the outer and inner tubes which are generally made of an elastic material, it is not possible to stretch the balloon element sufficiently to obtain a reduced cross section as desired.

According to the present invention, a catheter assembly as described above with respect to JP-A-53-125386, is characterised by stopper means provided in the distal end of the inner flexible tube; and an elongate pusher means movably disposed in the inner flexible tube and having a distal end operatively associated with the stopper means, the pusher means being arranged to be moved relatively to the outer flexible tube for causing the balloon element to be stretched.

EP-A-0227583 also discloses a double lumen catheter assembly which utilises an elongate pusher means, but between the inner and outer tubes,instead of within the inner tube; and for direct engagement with the balloon element to unstuff the element from within the outer tube, rather than for engaging a stopper means on the distal end of the

inner tube to cause the inner tube to move axially out of the outer tube to stretch the balloon element.

The stopper means may by in the form of a rigid ring which is arranged to be abutted by the distal end of the pusher means when stretching of the balloon element is required.

Preferably, a cord member having a resistance to stretching greater than that of the catheter tubes is disposed between the outer and inner catheter tubes and extends over a distance substantially equal to the length of the outer tube. The cord member is fixedly attached at its respective ends to the distal and proximal ends of the outer catheter tube to prevent the outer catheter tube from being stretched during the stretching of the balloon element.

Preferably, a rigid connector ring is provided adjacent the open distal end of the outer catheter tube. The open distal end of the outer tube is fitted over the connecter ring for firm attachment therto by fastener means. This arrangement serves to prevent the outer catheter tube from collapsing by the tightening pressure applied thereto. The proximal end of the balloon element is connected to the rigid connector ring in the same manner as described above.

The invention will be better understood from the following detailed description of preferred embodiments of the invention, when taken in conjunction with the accompanying drawings, in which:

Figure 1 is a sectional view of a distal end portion of a balloon catheter assembly in accordance with a first embodiment of the present invention, with a puser member in abutting engagement with a stop ring attached to the distal end of the inner catheter tube.

Figure 2 is a sectional view of a proximal end portion of the balloon catheter assembly as shown in Figure 1.

Figure 3 is a enlarged fragmentary sectional view of a second embodiment of the invention, showing a modified connection ring disposed between the balloon element and the outer catheter tube.

Figures 1 and 2 illustrate, respectively, a forward or distal end portion and a rearward or proximal end portion of a balloon catheter assembly of double lumen type 10 constructed in accordance with the teaching of the present invention. As shown, the catheter assembly 10 essentially consists of elongate outer and inner tublar members 12 and 14, and an expandable or inflatable balloon element 16. As is well known in the art, the catheter is utilized to dilate occluded blood vessels, take pressure measurements or make radiopaque fluid injections while the catheter remains within the vessel being treated. The outer tube 12, as well as the inner tube 14, of the catheter is often made of

35

a flexible plastic material such as vinyl chloride, polyurethane, or the like. It is preferable to form the outer catheter tube 12 more flexible at its distal end portion than in the remaining portions so as to provide for ease of operation. The flexible nature of these tubes allows the double lumen catheter to conform to tortuous blood vessels. The inner catheter tube 14 is disposed within the outer catheter tube 12 in a generally coaxial relationalship to define an annular space 18 therebetween. Any suitable fluid can be fed into the annular space 18 as desired. The inner catheter tube 14 is longitudinally displaceable relative to the outer tube 12 in a known manner.

With particular reference to Figure 1, the open distal end of the catheter outer tube 12 is sealingly connected to a connector ring 20 using suitable fastener means 22 such as a fine thread which is tightly wound onto the outer tube distal end. It shoud be noted that the connector ring 20 is made of an inelastic material such as hard plastic or metal so as to prevent the open distal end of the outer catheter tube 12 from collapsing under the binding force applied from the fastener means thereto. Alternatively, the distal end portion of the outer tube may be bonded to the connector ring 20 by means of an adhesive material. Preferably, the cylindrical outer surface of the connector ring 20 may be rough so that it can firmly and frictionally engage the interior surface of the outer catheter tube 12 to prevent accidental slipping off of the outer tube 12 from the connection ring 20.

Another connector ring 24 is disposed in the open distal end of the inner catheter tube 14. As seen, it has a longitudinally extending section 26 of smaller inner diameter for the reason to be explained later. In the illustrated embodiment, the inner tube distal end is bonded to the ring 24 by means of an adhesive material. Alternatively, the connection of the inner tube 14 to the ring 24 may be achieved through use of suitable fastener means such as a fine thread in the same manner as described above. Since the ring 24 is hollow, a fluid such as physiologic saline, contrast injection or radiopaque material can be injected into the blood vessel through the inner catheter tube 14 and the ring 24, as the case may be. However, in place of the hollow connecter ring, the open distal end of the inner catheter tube may be plugged with a solid connecter piece (not shown). The balloon element 16 is fixedly and sealingly attached at its respective ends to the connecter rings 20 and 24 to which the outer and inner catheter tubes 12, 14 are fixedly attached, by suitable means 28 and 30. respectively.

Turning to Figure 2, the open proximal end of the outer catheter tube 12 is fastened at 32, by suitable fastener means, to a conventional syringe

fitting 34. The syringe fitting 34 has a fluid conduit 36 in fluid communication with the annular space 18 between the outer and inner catheter tubes 12 and 14 for injecting thereinto pressurized fluid from a fluid source (not shown) to expand or inflate the balloon element 16 for purposes of dilating the occlusion being treated. The syringe fitting 34 includes a cap 42 having a central opening 43 and adapted to be threadably received on a body portion of the fitting. The inner catheter tube 14 has a mettallic slide tube 38 bonded to the proximal open end thereof. The slide tube 38 extends through the central opening 43 of the cap 42 in a sealing manner. A resilient O-ring 40 surrounding the slide tube 38 within the syringe fitting 34 provides such sealing effects. The internally threaded cap 42 engages an externally threaded portion of the fitting body portion for permitting a precise control of a contract pressure between the O-ring 40 and the slide tube 38 of the inner catheter tube 14.

The catheter assembly 10 also includes an elongate, flexible but generally inelastic pusher member 44 which is placed in the inner catheter tube 14 to cause the balloon element 16 to be streched lengthwise in the manner to be described below. The pusher member 44 is utilized only when the longitudinal stretching of the balloon element 16 is required during inserting the catheter 10 into the blood vessel for emplacement of the balloon element 16 relative to occulusions or during removing the catheter from the vessel. To this end, the pusher member 44 is inserted into the inner catheter tube 16 and moved forward therealong until the leading end of the pusher member 44 comes into abutting engagement with the small inside diameter section 26 of the connector ring 24 to which the distal end of the inner catheter tube 14 is fixedly attached. As is understood, the smaller inside diameter section of the ring 24 serves as stop means for the pusher member 44. Thus, continued forward movement of the pusher member 44 relative to the outer catheter tube 12 will result in stretching of the balloon element 16 into a geometric shape that permits easy insertion into the blood vessel. The material from which the pusher member 44 is formed is selected to provide the member for sufficient strength to allow full stretching of the balloon element 16 against the reactive constractive force of the element. The pusher member 44 may be advantageously made of metal or other material having a hardness greater than the catheter tubular elements. In the illustrated embodiment, the pusher member 44 is in the form of a tube into which a guide wire (not shown) can be inserted. The guide wire is passed through the tublar pusher member and moved past the distal end portion of the inner catheter tube to guide the balloon element to an occulution to be treated. A

20

25

solid rod with a greater flexibility could be employed as pusher member.

The pusher member 44 can be operatively connected to the slide tube 38 and accordingly the inner catheter tube 14 means of an interlocking mechanism 46 which comprises an operating knob 48 fixedly attached to the proximal end of the slide tube 38 and handle member 50 fixedly attached to the proximal end of the pusher member 44, the operating knob 48 and the handle member 50 being adapted to be coupled to each other in a manner shown in Figure 2. More specifically, the operating knob 48 has a circumferential projection 52 thereon which, in the interlocking position, is engagingly received in a complementary recess 54 formed in the handle member 50 to allow the inner catheter tube 14 and the pusher member 44 to be moved together to stretch the balloon element 16. Alternatively, the interlocking mechanism 46 may be arranged such that the handle member 50 may be threadably received onto the operating knob 48. In the interlocking position, there is a spacing L between the retainer cap 42 and the interlocking mechanism 46. As the pusher member 44 and the inner catheter tube 14 are moved together in the lefthand direction as viewed in Figures 1 and 2, the reduction in the spacing L will result, indicating the extend to which the balloon element 16 has been longitudinally stretched.

A flexible but generally inelastic cord 56 is disposed within the annular space 18 between the outer and inner catheter tubes 12 and 14 and extends substantially over the entire length of the outer catheter 12. The respective ends of the cord 56 are tightly clamped between the outer catheter distal end and the connector ring 20 and between the outer catheter proximal end and the syringe fitting 34, respectively. In this manner, the cord 56 can function to avoid stretching of the outer catheter tube 12 which would otherwise prevent stretching of the ballon element 16 to the fullest extent. The cord 56 may be made of such a material as to give an excellent resistance to stretching. Suitable materials from which the cord 56 is formed include aramid, polyester, nylon, stainless steel fiber, carbon fiber or the like. The cord 56 enables the use of more flexible catheter tubes.

Figure 3 illustrates a modified connector ring 120 between the balloon element and the outer catheter tube 12. In that figure, like reference numerals are used to identify similar or corresponding parts of the first embodiment described above. The balloon element 16 has been replaced with a three-ply balloon element 160, and the inner catheter tube has been omitted for clarity. The balloon element 160 comprises outer and inner rubber plys 58, 60 and a fiber ply 62 disposed therebetween

for purposes of preventing excessive expansion of the balloon element or withstanding excessively high fluid pressures so as to prevent rupture of the balloon element. In the embodiment shown in Figure 3, fastener means 22 and 28 are embedded in adhesive layer 64 applied over the fastener means. The adhesive layer 64 provides a smooth outer cylindrical surface which will allow the ballon catheter to be easily inserted into or withdrawn from the blood vessel.

Advantageously, the connector ring 120 is flared outwardly at both ends therof so that the balloon 160 and the outer catheter tube 12 are hardly slipped away from the connector ring 120. Again, the connector ring may preferably have a rough outer surface.

Claims

- A catheter assembly comprising double lumen catheter including an elongate outer flexible tube (12) and an elongate inner flexible tube (14) movably disposed in the outer flexible tube, each of the outer and inner flexible tubes having an open distal end, and a balloon element (16,160) fixedly attached at its respective ends to the open distal ends of the outer and inner tubes; the inner and outer tubes being longitudinally displaceable relative to each other to stretch the balloon axially and reduce the cross section of the balloon for insertion of the catheter into a blood vessel; characterised by stopper means (24) provided in the distal end of the inner flexible tube; and an elongate pusher means (44) movably disposed in the inner flexible tube and having a distal end operatively associated with the stopper means, the pusher means being arranged to be moved relatively to the outer flexible tube for causing the balloon element to be stretched.
- A catheter assembly according to claim 1, wherein the hardness of the pusher means (44) is greater than that of the catheter tubes (12,14).
- 3. A catheter assembly according to claim 1 or claim 2, further comprising cord means (56) disposed between the outer and inner catheter tubes (12,14) and extending over a distance substantially equal to the length of the outer tube, the cord means being made of an inelastic material to resist stretching to an extent substantially greater than the catheter tubes, the cord means being fixedly attached at its respective ends to the distal and proximal ends of the outer catheter tube to prevent the outer flexible tube from being stretched during

45

50

55

10

15

20

25

30

35

40

45

50

55

the stretching of the balloon element.

- 4. A catheter assembly according to any one of the preceding claims, wherein the stopper means comprises a rigid ring (24) which is arranged to be abutted by the distal end of the pusher means (44).
- 5. A catheter assembly according to any one of the preceding claims, further comprising a rigid connector ring (20,120) disposed in the open distal end of the outer catheter tube (12), the open distal end of the outer tube and the proximal end of the balloon element (16,160) being fitted over the connector ring for firm attachment thereto by fastener means (22,28).
- 6. A catheter assembly as set forth in claim 5, further comprising a layer of adhesive material (64) disposed on the connector ring (20,120) for providing a smooth outer surface, the fastener means (22,28) being embedded in the layer of adhesive material.
- 7. A catheter assembly according to claim 5 or claim 6, wherein the connector ring (20,120) has a rough outer surface over which the open distal end of the outer catheter tube (12) and the proximal end of the balloon element (16,160) are fitted in frictionally engaging relationship.
- A catheter according to any one of claims 5 to 7, wherein the connector ring (12) is flared outwardly at both ends thereof.
- A catheter according to any one of the preceding claims, wherein the pusher member (44) comprises an elongate hollow tubular member into which a guide wire may be inserted.
- 10. A catheter assembly according to any one of the preceding claims, wherein the balloon element (160) comprises outer and inner rubber plys (58,60) and a fibre ply (62) disposed therebetween for preventing lateral expansion of the balloon element or withstanding higher fluid pressures so as to prevent rupture of the balloon element.

Patentansprüche

 Katheterbaugruppe, umfassend einen Doppellumenkatheter, welcher eine längliche flexible Außenröhre (12) und eine längliche flexible Innenröhre (14), die in der Außenröhre beweglich angeordnet ist, wobei sowohl die flexible Außen- als auch die Innenröhre ein offenes distales Ende hat, und ein Ballonelement (16, 160), welches an seinen jeweiligen Enden fest mit den offenen distalen Enden der Außenund Innenröhre verbunden ist, wobei die Au-Ben- und Innenröhren relativ zueinander longitudinal verschiebbar sind, um den Ballon axial zu dehnen und den Querschnitt des Ballons für das Einführen des Katheters in ein Blutgefäß zu verringern, aufweist; gekennzeichnet durch eine Stoppvorrichtung (24), die in dem distalen Ende der inneren flexiblen Röhre vorgesehen ist, und einer in der Innenröhre beweglich angeordeneten länglichen Schiebevorrichtung (44), die ein mit der Stoppvorrichtung wirksam verbundenes distales Ende hat, wobei die Schiebevorrichtung so angeordnet ist, daß sie relativ zur flexiblen Außenröhre bewegt werden kann, um eine Dehnung des Ballons zu bewir-

- Katheterbaugruppe gemäß Anspruch 1, wobei die Festigkeit der Schiebevorrichtung (44) größer ist als die der Katheterröhren (12,14) ist.
- Katheterbaugruppe gemäß Anspruch 1 oder Anspruch 2, weiterhin umfassend eine zwischen den äußeren und inneren Katheterröhren (12, 14) angebrachte und sich über eine Entfernung, die im wesentlichen gleich der Länge der Außenröhre ist, erstreckende Schnurvorrichtung (56), wobei die Schnurvorrichtung aus einem unelastischen Material hergestellt ist, damit es einer Streckung in einem wesentlich höherem Ausmaß als die Katheterröhren widersteht, wobei die Schnurvorrichtung an ihren jeweiligen Enden mit den distalen und proximalen Enden der äußeren Katheterröhre fest verbunden ist, um eine Streckung der äu-Beren flexiblen Röhre während der Streckung des Ballonelements zu verhindern.
- 4. Katheterbaugruppe gemäß mindestens einem der vorstehenden Ansprüche, wobei die Stoppvorrichtung einen starren Ring (24) aufweist, der so angeordnet ist, daß er von dem distalen Ende der Stoppvorrichtung (44) angestoßen wird.
- 5. Katheterbaugruppe gemäß mindestens einem der vorstehenden Ansprüche, ferner umfassend einen starren Verbindungsring (20, 120), der im offenen distalen Ende der äußeren Katheterröhre (12) angeordnet ist, wobei das offene distale Ende der Außenröhre und das proximale Ende des Ballonelements (16, 160) für eine feste Bindung über den Verbindungsring geschoben und mittels Halterungsmitteln (22, 28) befestigt sind.

10

15

20

25

30

35

40

45

50

55

- Katheterbaugruppe gemäß Anspruch 5, weiterhin umfassend eine zur Bereitstellung einer glatten Außenoberfläche auf dem Verbindungsring (20, 120) aufgebrachte Klebstoffschicht (64), wobei die Halterungsmiittel (22, 28) in die Klebstoffschicht eingebettet sind.
- 7. Katheterbaugruppe gemäß Anspruch 5 oder Anspruch 6, wobei der Verbindungsring (20, 120) eine rauhe Außenoberfläche hat, über welche das offene distale Ende der äußeren Katheterröhre (12) und das proximale Ende des Ballonelements (16, 160) zu einer Haftreibungsverbindung aufgeschoben sind.
- Katheter gemäß mindestens einem der Ansprüche 5 bis 7, wobei der Verbindungsring (12) an beiden Enden nach außen hin erweitert ist
- Katheter gemäß mindestens einem der vorstehenden Ansprüche, wobei das Schiebebauteil (44) ein längliches, hohles, röhrenförmiges Bauteil umfaßt, in das ein Führungsdraht eingeführt werden kann.
- 10. Katheterbaugruppe gemäß mindestens einem der vorstehenden Ansprüche, wobei das Ballonelement (160) eine äußere und innere Gummischicht (58, 60) sowie eine dazwischen angeordente Faserschicht umfaßt, um eine laterale Ausdehnung des Ballonelements zu verhindern oder höheren Flüssigkeitsdrücken zu widerstehen, so daß ein Zerplatzen des Ballonelements verhindert wird.

Revendications

1. Ensemble de cathéter, comprenant un cathéter à double passage comportant un tube extérieur souple allongé (12) et un tube intérieur souple allongé (14) disposé de manière mobile dans le tube extérieur, chacun des tubes souples extérieur et intérieur présentant une extrémité distale ouverte, et un élément ballon (16, 160) solidement fixé, à ses extrémités respectives, aux extrémités distales ouvertes des tubes extérieur et intérieur, les tubes extérieur et intérieur pouvant se déplacer longitudinalement l'un par rapport à l'autre pour étirer axialement le ballon et réduire la section transversale du ballon pour l'introduction du cathéter dans un vaisseau sanguin, caractérisé par un moven de butée (24) prévu dans l'extrémité distale du tube souple intérieur et un moyen poussoir allongé (44) disposé de manière mobile dans le tube souple intérieur et présentant une extrémité distale associée, en fonctionnement,

avec le moyen de butée, le moyen poussoir étant disposé de manière à se déplacer par rapport au tube souple extérieur pour provoquer l'étirage de l'élément ballon.

- Ensemble de cathéter suivant la revendication 1, dans lequel la dureté du moyen poussoir (44) est supérieure à celle des tubes de cathéter (12, 14).
- 3. Ensemble de cathéter suivant la revendication 1 ou la revendication 2, comprenant, en outre, une ficelle (56) disposée ------ entre les tubes de cathéter extérieur et intérieur (12, 14) et s'étendant sur une distance sensiblement égale à la longueur du tube extérieur, ------la ficelle étant réalisée en un matériau non-élastique afin de résister à l'étirage à une mesure sensiblement supérieure aux tubes de cathéter, la ficelle étant solidement fixée, ------ à ses extrémités respectives, aux extrémités distale et proximale du tube de cathéter extérieur, afin d'éviter que le tube souple extérieur ne s'étire lors de l'étirage de l'élément ballon.
- 4. Ensemble de cathéter suivant l'une quelconque des revendications précédentes, dans lequel le moyen de butée comprend une bague rigide (24) qui est disposée de manière à être en butée avec l'extrémité distale du moyen poussoir (44).
- 5. Ensemble de cathéter suivant l'une quelconque des revendications précédentes, comprenant, en outre, une bague de connexion rigide (20, 120) disposée dans l'extrémité distale ouverte du tube de cathéter extérieur (12), l'extrémité distale ouverte du tube ------extérieur et l'extrémité proximale de l'élément ballon (16, 160) étant enfilées sur la bague de connexion pour une fixation solide sur celle-ci par le moyen d'attache (22, 28).
- 6. Ensemble de cathéter comme indiqué dans la revendication 5, comprenant en outre une couche de matière adhésive (64) disposée sur la bague de connexion (20. 120), afin de créer une surface extérieure lisse, le moyen d'attache (22, 28) étant enrobé dans la couche de matière adhésive.
 - 7. Ensemble de cathéter suivant la revendication 5 ou la revendication 6, dans lequel la bague de connexion (20, 120) présente une surface extérieure rugueuse sur laquelle sont ajustées l'extrémité distale ouverte du tube de cathéter extérieur (12) et l'exrémité proximale de l'élément ballon (16, 160) selon un rapport de prise

6

10

15

à friction.

8. Cathéter suivant l'une quelconque des revendications 5 à 7, dans lequel, la bague de connexion (12) est évasée vers l'extérieur à ses deux extrémités.

9. Cathéter suivant l'une quelconque des revendications précédentes, dans lequel l'élément poussoir (44) comprend un élément tubulaire creux allongé dans lequel peut être introduit un fil métallique de guidage.

10. Ensemble de cathéter suivant l'une quelconque des revendications précédentes, dans lequel l'élément ballon (160) comprend des couches de caoutchouc extérieure et intérieure (58, 60) et une couche de fibres (62) disposée entre celles-ci, afin d'éviter une dilatation latérale de l'élément ballon ou de résister à des pressions de fluide très hautes, de manière à éviter la rupture de l'élément ballon.

25

20

30

35

40

45

50

55

