Recent data filtering method

Remove Gap-rich and variable sites (Gblocks/TrimAl)

Matrix reduction (MARE)

What's the difference

Gblocks

CTTCGGAATGGCGGGT-CGGATTT CG GGCTAGCTT
CTTCGGAA-GGCGG-TACGGATAT CG GGCTAGCTT
CTTCGGAATGGCGG-TTCGGATAT CG GGTTAGCTT
CTTCGGAATGGCGG-GACGGATAT CG CGCTAGCTT
CTTAGGATTGGCGGG-CAGGATTT CG CGCTAGCTT
CTTAGGATTGGCGGA-GAGGATTT CG GGCTAGCTT
CTTAGGATTGGCGGAT-AGGATTT CG GGCTAGCTT
CTTAGGATTGGCGGG-TAGGATTT CG GGCTAGCTT

Gblocks

Remove variable sites in columns

Definition

non-conserved positions: < IS identical residues or there is a gap

conserved positions: >= IS and < FS identical residues

highly conserved positions: >= FS identical residues

IS = 50% of the number of sequences + 1 10*0.5+1 = 6

FS = 85% of the number of sequences 10*0.85 = 8.5

Find long stretch of non-conserved blocks

CTT C GGA AT GGCGG GT-C GGATTTCGGGCTAGCTT
CTT C GGA A- GGCGG-TAC GGATTTCGGGCTAGCTT
CTT C GGA AT GGCGG-TTC GGATATCGGGTTAGCTT
CTT C GGA AT GGCGG-GAC GGATATCGCGCTAGCTT
CTT A GGA TT GGCGG G-CA GGATTTCGCGCTAGCTT
CTT A GGA TT GGCGG A-GA GGATTTCGGGCTAGCTT
CTT A GGA TT GGCGG AT-A GGATTTCGGGCTAGCTT
CTT A GGA TT GGCGG G-TA GGATTTCGGGCTAGCTT

CP = 4

maximum number of contiguous nonconserved positions

Find long stretch of non-conserved blocks

CTTCGGAATGGCGG GT-C GGATTTCGGGCTAGCTT
CTTCGGAA-GGCGG-TAC GGATTTCGGGCTAGCTT
CTTCGGAATGGCGG-TTC GGATATCGGGTTAGCTT
CTTCGGAATGGCGG-GAC GGATATCGCGCTAGCTT
CTTAGGATTGGCGG G-CA GGATTTCGCGCTAGCTT
CTTAGGATTGGCGGA-GA GGATTTCGGGCTAGCTT
CTTAGGATTGGCGG A-GA GGATTTCGGGCTAGCTT
CTTAGGATTGGCGG G-TA GGATTTCGGGCTAGCTT

Find long stretch of non-conserved blocks

ATTCGGAATGGCGG GGATTTCGGGCTAGCTT
ATTCGGAA-GGCGG GGATATCGGGCTAGCTT
CTTCGGAATGGCGG GGATATCGCGTTAGCTT
CTTCGGAATGGCGG GGATATCGCGCTAGCTT
CTTAGGATTGGCGG GGATTTCGCGCTAGCTT
CTTAGGATTGGCGG GGATTTCGGGCTAGCTT
CTTAGGATTGGCGG GGATTTCGGGCTAGCTT
CTTAGGATTGGCGG GGATTTCGGGCTAGCTT

Anchor blocks with highly conserved flanks

ATTCGGAATGGCGG GGATTTCGGGCTAGCTT
ATTCGGAA-GGCGG GGATATCGGGCTAGCTT
CTTCGGAATGGCGG GGATATCGCGCTAGCTT
CTTAGGATTGGCGG GGATATCGCGCTAGCTT
CTTAGGATTGGCGG GGATTTCGCGCTAGCTT
CTTAGGATTGGCGG GGATTTCGGGCTAGCTT
CTTAGGATTGGCGG GGATTTCGGGCTAGCTT
CTTAGGATTGGCGG GGATTTCGGGCTAGCTT
CTTAGGATTGGCGG GGATTTCGGGCTAGCTT

Anchor blocks with highly conserved flanks

Anchor blocks with highly conserved flanks

TTCGGAATGGCGG GGATTTCGGGCTAGCTT
TTCGGAA-GGCGG GGATATCGGGCTAGCTT
TTCGGAATGGCGG GGATATCGGGTTAGCTT
TTCGGAATGGCGG GGATATCGCGCTAGCTT
TTAGGATTGGCGG GGATTTCGCGCTAGCTT
TTAGGATTGGCGG GGATTTCGGGCTAGCTT
TTAGGATTGGCGG GGATTTCGGGCTAGCTT
TTAGGATTGGCGG GGATTTCGGGCTAGCTT

Remove short blocks

TTCGGAATGGCGG GGATTTCGGGCTAGCTT
TTCGGAA-GGCGG GGATATCGGGCTAGCTT
TTCGGAATGGCGG GGATATCGGGTTAGCTT
TTCGGAATGGCGG GGATATCGCGCTAGCTT
TTAGGATTGGCGG GGATTTCGCGCTAGCTT
TTAGGATTGGCGG GGATTTCGGGCTAGCTT
TTAGGATTGGCGG GGATTTCGGGCTAGCTT
TTAGGATTGGCGG GGATTTCGGGCTAGCTT
TTAGGATTGGCGG GGATTTCGGGCTAGCTT

BL1 = 10

minimum length of an initial block

Remove columns with gaps and adjacent non-conserved position

TTCGGA A T GGCGG GGATTTCGGGCTAGCTT
TTCGGA A T GGCGG GGATATCGGGCTAGCTT
TTCGGA A T GGCGG GGATATCGGGTTAGCTT
TTCGGA A T GGCGG GGATATCGCGCTAGCTT
TTAGGA T T GGCGG GGATTTCGCGCTAGCTT
TTAGGA T T GGCGG GGATTTCGGGCTAGCTT

Remove columns with gaps and adjacent non-conserved position

TTCGGAGGCGG GGATTTCGGGCTAGCTT
TTCGGAGGCGG GGATATCGGGCTAGCTT
TTCGGAGGCGG GGATATCGGGTTAGCTT
TTCGGAGGCGG GGATATCGCGCTAGCTT
TTAGGAGGCGG GGATTTCGCGCTAGCTT
TTAGGAGGCGG GGATTTCGGGCTAGCTT
TTAGGAGGCGG GGATTTCGGGCTAGCTT
TTAGGAGGCGG GGATTTCGGGCTAGCTT
TTAGGAGGCGG GGATTTCGGGCTAGCTT

Remove columns with gaps and adjacent non-conserved position

TTCGGAGGCGG GGATTTCGGGCTAGCTT
TTCGGAGGCGG GGATATCGGGCTAGCTT
TTCGGAGGCGG GGATATCGGGTTAGCTT
TTCGGAGGCGG GGATATCGCGCTAGCTT
TTAGGAGGCGG GGATTTCGCGCTAGCTT
TTAGGAGGCGG GGATTTCGGGCTAGCTT
TTAGGAGGCGG GGATTTCGGGCTAGCTT
TTAGGAGGCGG GGATTTCGGGCTAGCTT
TTAGGAGGCGG GGATTTCGGGCTAGCTT

BL2 = 7

Minimum length of a block after gap cleaning.

Trimmed alignment

TTCGGAGGCGGGGATTTCGGGCTAGCTT
TTCGGAGGCGGGGATATCGGGCTAGCTT
TTCGGAGGCGGGGATATCGGGTTAGCTT
TTCGGAGGCGGGGATATCGCGCTAGCTT
TTAGGAGGCGGGGATTTCGCGCTAGCTT
TTAGGAGGCGGGGATTTCGGGCTAGCTT
TTAGGAGGCGGGGATTTCGGGCTAGCTT
TTAGGAGGCGGGGATTTCGGGCTAGCTT

Pros and cons

Hard to distinguish random aligned positions from moderate-conserved positions

Excessively trimmed columns with gaps positions

Input too few sequence may not a good idea

TTCGGA A TGGCGG GGATTTCGGGCTAGCTT
TTCGGA A TGGCGG GGATATCGGGCTAGCTT
TTCGGA A TGGCGG GGATATCGGGTTAGCTT
TTCGGA A TGGCGG GGATATCGCGCTAGCTT
TTAGGA TTGGCGG GGATTTCGCGCTAGCTT
TTAGGA TTGGCGG GGATTTCGGGCTAGCTT
TTAGGA TTGGCGG GGATTTCGGGCTAGCTT
TTAGGA TTGGCGG GGATTTCGGGCTAGCTT
TTAGGA TTGGCGG GGATTTCGGGCTAGCTT

Pros and cons

Hard to distinguish random aligned positions from moderate-conserved positions

Excessively trimmed columns with gaps positions

Input too few sequence may not a good idea

TTCGGAATGGCGG GGATTTCGGGCTAGCTT
TTCGGAATGGCGG GGATATCGGGCTAGCTT
TTCGGAATGGCGG GGATATCGGGTTAGCTT
TTCGGAATGGCGG GGATATCGCGCTAGCTT
TTAGGATTGGCGG GGATTTCGCGCTAGCTT
TTAGGATTGGCGG GGATTTCGGGCTAGCTT
TTAGGATTGGCGG GGATTTCGGGCTAGCTT
TTAGGATTGGCGG GGATTTCGGGCTAGCTT
TTAGGATTGGCGG GGATTTCGGGCTAGCTT

Pros and cons

Hard to distinguish random aligned positions from moderate-conserved positions

Excessively trimmed columns with gaps positions

Input too few sequence may not a good idea

4 taxa

IS = 3

 $FS = 3.4 \sim 4$

Pros and cons

Hard to distinguish random aligned positions from moderate-conserved positions

Excessively trimmed columns with gaps positions

Input too few sequence may not a good idea

It is only suitable to trim bunch of conserved loci by Gblocks

Software accounts for uncertainty in alignments

Methodology Open Access

Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees

Patrick Kück ™, Karen Meusemann, Johannes Dambach, Birthe Thormann, Björn M von Reumont, Johann W Wägele and Bernhard Misof

Frontiers in Zoology 2010 7:10

https://doi.org/10.1186/1742-9994-7-10 © Kück et al; licensee BioMed Central Ltd. 2010

Received: 9 December 2009 | Accepted: 31 March 2010 | Published: 31 March 2010

ALISCORE

whether given alignment position is rejected by random sequences hypotheses

An Alignment Confidence Score Capturing Robustness to Guide Tree Uncertainty

Osnat Penn,†^{,1} Eyal Privman,†^{,1} Giddy Landan,² Dan Graur,² and Tal Pupko*^{,1}

¹Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel

†These authors contributed equally to this work.

*Corresponding author: E-mail: talp@post.tau.ac.il.

Associate editor: Jeffrey Thorne

GUIDUANCE

whether given alignment position is sensitive to guide trees generated by bootstrapping

²Department of Biology and Biochemistry, University of Houston

MARE

MARE (MAtrix REduction) was designed to find informative subsets of genes and taxa within a large phylogenetic dataset

Calculation of the potential information content of genes, taxa and matrix

Reduction to an optimized subset of taxa and genes

MARE

	Gene 1	Gene 2	Gene 3
Taxon 1	1	1	1
Taxon 2	1	0	1
Taxon 3	1	1	1
Taxon 4	0	1	1
	A partition		

Arrange sequences into a matrix, 1 as present and 0 as absent

$$P2 = 0$$

$$s=(1, 0, 0)$$

$$s=(0, 0, 1)$$

$$s=(1/3, 1/3, 1/3)$$

P3 = 0

Tree-likeness

Tree-likeness

0.94 0.46 0.06

	Gene 1	Gene 2	Gene 3
Taxon 1	0.94	0.05	0.46
Taxon 2	0.94	0	0.46
Taxon 3	0.94	0.05	0.46
Taxon 4	0	0.05	0.46

Information = content of taxon1 = 0.94+0.05+0.46

Information = content of gene1 = 0.94+0.94+0.94+0

Information = content of matrix

Information + Information + Information content of gene1 + content of gene2 + content of gene3

	Gene 1	Gene 2	Gene 3
Taxon 1	0.94	0.05	0.46
Taxon 2	0.94	0	0.46
Taxon 3	0.94	0.05	0.46
Taxon 4	0	0.05	0.46

Information = content of taxon1 = 0.94+0.05+0.46

Information = content of gene1

0.94+0.94+0.94+0

4

Information = content of matrix

Information Information Information Information Content of gene1 Content of gene2 Content of gene3

	Gene 1	Gene 3
Taxon 1	0.94	0.46
Taxon 2	0.94	0.46
Taxon 3	0.94	0.46
Taxon 4	0	0.46

Information content of updated taxon1

...

•••

. .

Information content of updated gene1

••

Information content of matrix

Reduction to an optimized subset of taxa and genes

Gblocks

CTTCGGAATGGCGGGT-CGGATTT CG GGCTAGCTT
CTTCGGAA-GGCGG-TACGGATAT CG GGCTAGCTT
CTTCGGAATGGCGG-TTCGGATAT CG GGTTAGCTT
CTTCGGAATGGCGG-GACGGATAT CG CGCTAGCTT
CTTAGGATTGGCGGG-CAGGATTT CG CGCTAGCTT
CTTAGGATTGGCGGA-GAGGATTT CG GGCTAGCTT
CTTAGGATTGGCGGAT-AGGATTT CG GGCTAGCTT
CTTAGGATTGGCGGG-TAGGATTT CG GGCTAGCTT