NOIP模拟赛

中文题目名称	糗大了	快哭了	色	发怒
题目类型	传统	传统	传统	传统
英文题目名称	qd	kk	se	fn
源程序文件名	qd.cpp	kk.cpp	se.cpp	fn.cpp
输入文件名	qd.in	kk.in	se.in	fn.in
输出文件名	qd.out	kk.out	se.out	fn.out
时间限制	1s	2.5s	1s	1s
内存限制	512MB	1024MB	512MB	512MB
子任务数目	3	4	4	5
结果比较方式	全文比较	全文比较	全文比较	全文比较

注意事项

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. 文件存储在根目录下即可,需要建立子文件夹。
- 3. C++ 中函数 main() 的返回值类型必须是 int, 返回值必须是 0。
- 4. 编译命令为 -1m -O2 -std=c++11 -W1
- 5. 评测环境为 noi Linux, LemonLime, 输入量大的题目请使用较快的读入方式。

T1 糗大了(qd)

问题描述

qd 有一张 n 个点 m 条边的简单无向图,每个点有一个正整数的权值。现在 qd 打算按一个顺序依次删除这 n 个点。

qd 定义一个连通块的权值为连通块内所有点的权值的和。他想要知道,每次删除了一个点之后,图中所有连通块权值的最大值。如果图中已经不存在连通块了,则输出 0。

输入格式

第一行两个正整数 n, m。

第二行 n 个正整数 a_1, \dots, a_n , 表示每个点的权值。

接下来 m 行,每行两个正整数 u,v,表示一条边。

下一行一个 $1 \sim n$ 的排列 p_1, \dots, p_n , 表示每次删除的点的编号。

输出格式

输出一行 n 个整数。第 i 个数为删除了点 p_1, \dots, p_i 后的答案。

样例1

输入样例

```
      1
      6
      7

      2
      1
      1
      4
      5
      1
      2

      3
      1
      2
      2
      4
      3
      4
      4
      5
      4
      5
      5
      6
      6
      5
      6
      6
      7
      3
      6
      8
      3
      5
      9
      4
      6
      10
      4
      5
      3
      6
      1
      2
      2
      4
      5
      1
      2
      4
      5
      3
      6
      1
      2
      4
      5
      3
      6
      1
      2
      1
      2
      4
      5
      3
      6
      1
      2
      1
      2
      4
      3
      4
      3
      1
      2
      1
      2
      4
      3
      4
      3
      4
      3
      4
      3
      4
      3
      4
      3
      4
      3
      4
      3
      4
      3
      4
      3
      4
      4
      5
      3
      6
      1
      2
      4
      4
      5
      3
      6
      1
      2
      4
      4
      5
      3
      6</t
```

输出样例

```
      1
      9

      2
      8

      3
      4

      4
      2

      5
      1

      6
      0
```

样例2

见下发文件 qd2.in 与 qd2.out。

此样例与子任务 1 满足同样的约束条件。

数据范围与约束

对于全部数据, $1 \le n, m, a_i \le 10^5$ 。

子任务编号	分值	$n,m\leq$	特殊限制	子任务依赖
1	30	1000		
2	20	10^5	$a_i=1$	
3	50	10^5		1,2

T2 快哭了 (kk)

问题描述

kk 有一个 $n \times m$ 的非负整数矩阵 A (行列下标都从 0 开始)。

定义 f 为一个函数,其输入为一个 $n\times m$ 的矩阵 A,输出为一个 $n\times m$ 的矩阵 B,满足 $B_{i,j}=A_{i,j}\bigoplus A_{i+1,j}\bigoplus A_{i,j+1}\bigoplus A_{i+1,j+1}$ (其中 \bigoplus 为按位异或) ,越界的位置的值为 0。

定义 $f^k(A)=f(f^{k-1}(A))$,特别地 $f^0(A)=A$ 。换句话说, $f^k(A)$ 表示对矩阵 A 进行 k 次 $A\leftarrow f(A)$ 操作后的结果。

youl 想要知道, $f^k(A)$ 的第 0 行第 0 列处的值是多少。他有 q 次这样的询问,每次都会指定一个非负整数 k 问这个问题的答案。

由于数据很多,请在下发的样例程序 $kk_sample.cpp$ 的基础上进行编程,其中输入输出和生成数据的部分已经实现好了,你只需要实现 init 和 query 函数, init 函数是在回答询问前进行的预处理,query 函数会传入 k,需要返回这个询问的答案。

输入格式

输入包含一行七个整数 $n, m, q, aw, kw, k_1, k_2$ 。其中 k_1, k_2 是随机数生成器的种子, aw, kw 的意义见后文。

输出格式

设第 i 次询问的答案是 ans_i ,则应输出 $\bigoplus_{i=1}^q i \times ans_i$ 。

样例1

输入样例

1 | 4 3 4 4 2 15109402569541188053 9005878083635208240

输出样例

1 42

样例1解释

矩阵 A 以及其进行三次 $A \leftarrow f(A)$ 操作后是这样的

$$\begin{bmatrix} 14 & 9 & 8 \\ 4 & 5 & 1 \\ 12 & 14 & 3 \\ 4 & 8 & 0 \end{bmatrix} \xrightarrow{f} \begin{bmatrix} 6 & 5 & 9 \\ 3 & 9 & 2 \\ 14 & 5 & 3 \\ 12 & 8 & 0 \end{bmatrix} \xrightarrow{f} \begin{bmatrix} 9 & 7 & 11 \\ 1 & 13 & 1 \\ 15 & 14 & 3 \\ 4 & 8 & 0 \end{bmatrix} \xrightarrow{f} \begin{bmatrix} 2 & 0 & 10 \\ 13 & 1 & 2 \\ 13 & 5 & 3 \\ 12 & 8 & 0 \end{bmatrix}$$

询问的 k 分别是 1, 2, 3, 0,答案分别是 6, 9, 2, 14。

样例2

见下发文件 kk2.in 与 kk2.out。

此样例与子任务 1 满足同样的约束条件。

数据范围与约束

对于全部数据,

 $1 \leq n \times m \leq 5 \times 10^6, 1 \leq q \leq 5 \times 10^7, 1 \leq aw, kw \leq 31, 0 \leq a_{i,j} < 2^{aw}, 0 \leq k < 2^{kw}, 0 \leq k_1, k_2 < 2^{64}$.

子任务编号	分值	$n imes m \leq$	$q \le$	$aw \leq$	$kw \le$	子任务依赖
1	30	1000	$5 imes 10^7$	31	10	
2	10	$5 imes10^6$	$5 imes 10^7$	1	20	
3	30	$5 imes10^6$	$5 imes 10^7$	31	20	1,2
4	30	$5 imes10^6$	$5 imes 10^7$	31	31	3

T3 色 (se)

问题描述

se 有一条数轴,上面有 n 条线段,第 i 条为 $[l_i,r_i]$ 。现在他想把这 n 条线段划分为不超过 k 个集合,每条线段必须恰好属于其中一个集合。定义一个集合的权值为集合里所有线段的交的长度,定义一种划分方案的权值为所有集

合的权值之和。求所有满足条件的划分方案中最大的权值。

输入格式

第一行两个正整数 n, k。

接下来 n 行, 每行两个正整数 l_i, r_i , 表示一条线段。

输出格式

输出一行一个整数表示最大的权值。

样例1

输入样例

- 1 4 3
- 2 1 7
- 3 9 20
- 4 5 15
- 5 4 10

输出样例

样例解释

分成 $\{[1,7],[4,10]\},\{[9,20]\},\{[5,15]\}$,权值为 3+11+10=24。

样例2

输入样例

```
1 | 5 3
2 | 15 16
3 | 9 14
4 | 14 20
5 | 4 9
6 | 8 14
```

输出样例

1 12

样例解释

分成 $\{[15,16],[9,14],[4,9]\},\{[14,20]\},\{[8,14]\}$, 权值为 0+6+6=12。

样例3

见下发文件 se3.in 与 se3.out。

此样例与子任务 2 满足同样的约束条件。

数据范围与约束

对于全部数据, $1 \le k \le n \le 5000, 1 \le l_i < r_i \le 10^6$ 。

子任务编号	分值	$n \le$	特殊限制	子任务依赖
1	20	12		
2	30	500		1
3	10	5000	k=2	
4	40	5000		2,3

T4 发怒 (fn)

问题描述

fn 有一棵 n 个点的树,树上每个点有一个正整数权值 a_i 。定义点集的一个子集 S 是连通的,当且仅当在树上仅保留 S 内的点以及它们之间的边后,这张图是连通的,定义 S 的权值为其包含的所有节点的权值之积。fn 想要知道,这棵树上有多少非空的连通的且权值 $\leq m$ 的子集 S,答案对 10^9+7 取模。

输入格式

第一行两个正整数 n, m。

第二行 n 个正整数 a_1, \dots, a_n , 表示每个点的权值。

接下来 n-1 行,每行两个正整数 u,v,表示树上的一条边。

输出格式

输出一行一个整数,表示答案。

样例1

输入样例

```
1 | 4 6
2 | 1 2 5 3
3 | 1 2
```

4 1 3 5 1 4

输出样例

1 8

样例解释

符合条件的点集有: {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {1,2,4}。

样例2

见下发文件 fn2.in 与 fn2.out。

此样例与子任务 2 满足同样的约束条件。

数据范围与约束

对于全部数据, $1 \le n \le 2000, 1 \le m \le 10^6, a_i \le m$ 。

子任务编号	分值	$n \le$	$m \leq$	特殊限制	子任务依赖
1	5	2000	10^{6}	$u_i=i, v_i=i+1$	
2	10	100	2000		
3	20	2000	2000		2
4	20	100	10^{6}		2
5	45	2000	10^{6}		1, 3, 4