BCC202 - Estruturas de Dados I

Aula 17: Ordenação: HeapSort

Pedro Silva

Universidade Federal de Ouro Preto, UFOP Departamento de Computação, DECOM Email: silvap@ufop.edu.br

2021

Conteúdo

Introdução

Heap

Heap Mínimo e Heap Máximo

Operações do Heap

Inserção

Remoção

Implementação

Ordenação usando Heap

Heap Sort

Considerações Finais

Bibliografia

Conteúdo

Introdução Heap

Introdução

Heap

Heap Mínimo e Heap Máximo

Operações do Heap

Inserção

Remoção

mplementação

Ordenação usando Heap

Heap Sort

Considerações Finais

Bibliografia

Uma fila de prioridade é uma estrutura de dados para manter um conjunto S de elementos, cada qual com um valor associado denominado chave (Cormen et al., 2011).

Cada chave reflete a habilidade relativa de um item de abandonar o conjunto de itens rapidamente.

Aplicações

SOs usam filas de prioridades, nas quais as chaves representam o tempo em que eventos devem ocorrer.

Métodos numérico iterativos são baseados na seleção repetida de um item com menor (maior) valor.

Operações de uma Fila de Prioridade

- 1. Constrói uma fila de prioridades a partir de um conjunto com n itens.
- 2. Informa qual é o maior item do conjunto.
- 3. Retira o item com major chave.
- 4. Insere um novo item.
- 5. Aumenta o valor da chave do item i para um novo valor que é maior que o valor atual da chave.

Operações de uma Fila de Prioridade

- 6. Substitui o maior item por um novo item, a não ser que o novo item seja maior.
- 7. Altera a prioridade de um item.
- 8. Remove um item qualquer.
- 9. Agrupar duas filas de prioridades em uma única.

Lista linear ordenada:

- 1. Constrói é $O(n \log n)$ ou $O(n^2)$.
- 2. Insere é O(n).
- 3. Retira é O(1).
- **4.** Altera é O(n).

Lista linear NÃO ordenada:

- 1. Constrói é O(n).
- 2. Insere é O(1).
- 3. Retira é O(n).
- **4.** Altera é O(n).

Conteúdo

Introdução

Heap

Heap Mínimo e Heap Máximo

Operações do Heap

Inserção

Remoção

mplementação

Ordenação usando Heap

Heap Sort

Considerações Finais

Bibliografia

Heap

A melhor representação de uma fila de prioridade é por meio de uma estrutura de dados chamada **heap**:

Neste caso, Constrói é O(n).

Insere, Retira, Substitui e Altera são $O(\log n)$.

Ordenação por Heap

A *ordenação por heap* introduz outra técnica de projeto de algoritmos: a utilização de uma estrutura de dados, nesse caso uma estrutura que denominamos *heap* para gerenciar informações.

O que é heap afinal?

Um heap é um vetor que simula uma árvore binária quase completa.

Introdução Heap Heap Mínimo e Heap Máximo Operações do Heap Ordenação usando Heap Heap Sort Considerações Finais Bibliografia I

rvore Binária

Definição

Árvore binária é uma estrutura de dados caracterizada por: Ou não tem elemento algum (árvore vazia). Ou tem um elemento distinto, denominado raiz, com dois apontamentos para duas estruturas diferentes, denominadas sub-árvore esquerda e sub-árvore direita¹

¹ https://pt.wikibooks.org/wiki/Algoritmos_e_Estruturas_de_DadosÁrvores_Binárias

Heap e Árvore Binária

Um heap é idealizado como uma árvore binária quase completa: cada nó folha da árvore está no nível N-1 ou N-2 - considerando uma árvore de níveis 0..N-1.

- as folhas são identificadas da esquerda para a direita
- ▶ a prioridade associada ao nó pai é menor (ou maior) do que as associadas ao(s) seu(s) filho(s)
- quando dois filhos, não há uma ordenação entre eles

Introdução Heap Ménimo e Heap Máximo Operações do Heap Ordenação usando Heap Heap Sort Considerações Finais Bibliografia Expensivo Considerações Finais Finais Finais Finais Finais Finais Finais Fin

Representação de um Heap

Cada nó possui uma tupla (chave, elemento) Assim, cada nó do heap armazena todo o item

Um heap é um vetor que simula uma árvore binária.

Numeração

Numeramos os nós da árvore de cima para baixo e da esquerda para direita em cada nível.

A árvore está completamente preenchida em todos os níveis, exceto possivelmente no último nível, ou nível mais baixo (N-1), preenchido a partir da esquerda até um ponto.

Introdução Heap Meap Mínimo e Heap Máximo Operações do Heap Ordenação usando Heap Meap Sort Considerações Finais Bibliografia E occidente de composition de

Níveis

A raiz da árvore está no nível zero (NO).

Figura: Níveis de uma árvore.

Pai e Filho(s) de um Nó

- Cada posição do vetor corresponde a um nó do heap.
 - ▶ O pai de um nó i é $\lfloor (i-1)/2 \rfloor$ para 0 < i < n
 - O nó 0 não tem pai.
 - ▶ O(s) filho(s) de um nó i, para $0 \le i < \lfloor n/2 \rfloor$
 - ▶ Seu filho à esquerda está na posição 2 * i + 1
 - ▶ Seu filho à direita está na posição 2 * i + 2

Nós Folhas

Os nós folhas da árvore binária estão nas posições do vetor:

$$ightharpoonup \lfloor n/2 \rfloor < i \le n-1$$

Heaps

As chaves na árvore satisfazem a condição do heap.

A chave em cada nó é menor do que as chaves em seus filhos.

A chave no nó raiz é a menor chave do conjunto.

Como dito, uma árvore binária completa pode ser representada por um array.

Heaps II

A representação é extremamente compacta.

Permite caminhar pelos nós da árvore facilmente.

- Solution Os filhos de um nó i estão nas posições 2i + 1 e 2i + 2.
- ▶ O pai de um nó i está na posição (i-1)/2.

Na representação do heap em um vetor, a menor (ou maior) chave está sempre na posição 0 deste vetor.

Construção de um Heap

Um algoritmo elegante para construir o heap foi proposto por Floyd em 1964.

O algoritmo não necessita de nenhuma memória auxiliar.

Dado um vetor $A[0], A[1], \dots, A[n-1]$:

- Os itens $A[n/2], A[n/2+1], \dots, A[n-1]$ formam um heap válido pois são nós folhas (nós que não possuem filhos).
- Neste intervalo não existem dois índices i e j tais que j = 2i + 1 ou j = 2i + 2.

Introdução Heap Meap Mínimo e Heap Máximo Operações do Heap Ordenação usando Heap Meap Sort Considerações Finais Bibliografia Exception of the control of t

0	1	2	3	4	5	6
9	5	6	8	3	2	7

Considerações sobre o exemplo

- ▶ Os itens de A[3] a A[6] formam um heap.
- ▶ O heap é estendido para a esquerda, englobando o item A[2], pai dos itens A[5] e A[6].
- A condição de heap é violada:
 - ▶ O heap é refeito trocando os itens A[2] e A[5].
- ▶ O item 5 (A[1]) é incluindo no heap (Esq = 1).
- A condição de heap é violada:
 - ▶ O heap é refeito trocando os itens A[1] e A[4].

Considerações sobre o exemplo

- ▶ O item 9 (A[0]) é incluindo no heap (Esq = 0).
- ► A condição de heap é violada:
 - ▶ O heap é refeito trocando os itens A[0] e A[1].
- Como a condição ainda está sendo violada:
 - ► O heap é refeito trocando os itens A[1] e A[4].
- Como resultado, o heap foi construído:
 - 2 3 6 8 5 9 7

Conteúdo

Introdução

Heap

Heap Mínimo e Heap Máximo

Operações do Heap

Inserçao

Remoção

Implementação

Ordenação usando Heap

Heap Sort

Considerações Finais

Bibliografia

Uma *árvore binária* é **heap mínimo** ou **mini-heap** se:

Heap Mínimo ou Mini-Heap

Para todo nó *i* tal que $0 < i \le n-1$:

- $A[\lfloor (i-1)/2 \rfloor] \le A[i]$
- o menor elemento está na raiz.
- ▷ Os valores dos nós satisfazem a propriedade de heap mínimo.

Heap Máximo ou Max-Heap

Para todo nó i tal que $0 < i \le n-1$:

- $ightharpoonup A[\lfloor (i-1)/2 \rfloor] \ge A[i]$
- o maior elemento está na raiz.
- ▷ Os valores dos nós satisfazem a propriedade de heap máximo.

Conteúdo

Introdução

Heap

Heap Mínimo e Heap Máximo

Operações do Heap

Inserção

Remoção

Implementação

Ordenação usando Heap

Heap Sort

Considerações Finais

Bibliografia

Inserir um Nó no Heap

Inserir um Nó no Heap

Inserir um Nó no Heap

Inserir um Nó no Heap

Na pior das hipóteses o custo de uma inserção será O(log n), equivalente à altura da árvore

Remover um Nó do Heap

Remover um Nó do Heap

Trocar o nó raiz pelo último nó do heap e remover o último nó ttrodução Heap Heap Mínimo e Heap Máximo Operações do Heap Ordenação usando Heap Heap Sort Considerações Finais Bibliografia Exer

Remover um Nó do Heap

Refazer o heap!

Refazer o heap!

Na pior das hipóteses o custo de uma remoção será O(log n), equivalente à altura da árvore

```
Algorithm: HEAP_CONSTROI
Input: int* v, int n

begin

esq \leftarrow (n/2) - 1 \text{ // } esq = primeiro no antes do no folha do heap}

while esq \ge 0 do

HEAP\_REFAZ(v, esq, n-1)

end

end

end
```

```
1 Algorithm: HEAP_REFAZ
   Input: int* v, int esq, int dir
2 begin
         i \leftarrow esa
         i \leftarrow i * 2 + 1
         aux \leftarrow v[i]
         while j < dir do
               if i < dir  and v[j] < v[j+1]  then
                    i = i + 1 // i recebe o outro filho de i
               end
               if aux \ge v[j] then
10
                     break
11
               end
12
               v[i] \leftarrow v[j]
13
               i \leftarrow j
14
               i \leftarrow i * 2 + 1
15
16
         end
         v[i] \leftarrow aux
17
18 end
```

Conteúdo

Introdução

Hea

Heap Mínimo e Heap Máximo

Operações do Heap

Remoção

Remoção

Implementação

Ordenação usando Heap

Heap Sort

Considerações Finais

Bibliografia

Ordenação usando Heap

- As operações das filas de prioridades podem ser utilizadas para implementar algoritmos de ordenação.
- Basta utilizar repetidamente a operação Insere para construir a fila de prioridades.
- Em seguida, utilizar repetidamente a operação Retira para receber os itens na ordem correta.

- O uso de listas lineares não ordenadas corresponde ao método _______ .
- O uso de listas lineares ordenadas corresponde ao método ______ .
- O uso de heaps corresponde ao método ______ .

- ▶ O uso de listas lineares não ordenadas corresponde ao método Select Sort.
- O uso de listas lineares ordenadas corresponde ao método ______ .
- O uso de heaps corresponde ao método ______ .

- ▶ O uso de listas lineares não ordenadas corresponde ao método Select Sort.
- ▶ O uso de listas lineares ordenadas corresponde ao método Insert Sort.
- O uso de heaps corresponde ao método ______ .

- O uso de listas lineares não ordenadas corresponde ao método Select Sort.
- ▶ O uso de listas lineares ordenadas corresponde ao método Insert Sort.
- ▶ O uso de heaps corresponde ao método Heap Sort.

Conteúdo

Introdução

Hea

Heap Mínimo e Heap Máximo

Operações do Heap

Inserção

Remoção

mplementação

Ordenação usando Heap

Heap Sort

Considerações Finais

Bibliografia

Heap Sort

- Para reduzir o número de operações, será utilizado um Heap em que o menor valor é armazenado na raiz.
 - Teremos que o valor de um nó pai deverá ser sempre menor ou igual aos valores dos seus filhos.
- Utilizaremos repetidamente a operação Insere para construir a fila de prioridades.
- Em seguida, utilizaremos repetidamente a operação Retira para receber os itens na ordem **inversa**.

Heap Sort

Algoritmo:

- 1. Construir o heap.
- 2. Troque o item na posição 0 do vetor (raiz do heap) com o item da posição n-1.
- 3. Use o procedimento Refaz para reconstituir o heap para os itens A[0], A[1], ..., A[n 2].
- **4.** Repita os passos 2 e 3 com os n 1 itens restantes, depois com os n 2, até que reste apenas um item.

Exemplo de execução

Remover Raiz

Remover Raiz

Item removido: A

Colocar na raiz o último item

Refazer o Heap

Remover Raiz

Remover Raiz

Item removido: D

Colocar na raiz o último item

Refazer o Heap

Refazer o Heap

Remover Raiz

Remover Raiz

Item removido: E

Colocar na raiz o último item

Refazer o Heap

Colocar na raiz o último item

Refazer o Heap

Colocar na raiz o último item

Refazer o Heap

Remover Raiz

Item removido: R

Colocar na raiz o último item

Refazer o Heap

Remover Raiz

Item removido: S

Colocar na raiz o último item

Heap vazio!!!

Ordenação finalizada.

Vetor na ordem inversa!

Implementação

```
Algorithm: HEAP_SORT
   Input: int* v, int n
2 begin
       HEAP\_CONSTROI(v, n)
       while n > 1 do
            aux \leftarrow v[n-1]
            v[n-i] \leftarrow v[0]
 6
           v[0] \leftarrow aux
            n=n-1
 8
            HEAP REFAZ(v,0,n-1) // refaz o heap
 9
10
       end
11
  end
```

Análise do método

- ▶ O procedimento Refaz gasta cerca de log *n* operações, no pior caso.
- ► Constrói executa *O*(*n*) **x Refaz**.
- ▶ Loop interno executa O(n) x Refaz.
- ▶ Logo, **Heap Sort** gasta um tempo de execução $O(n \log n)$ no pior caso.
- A altura h da árvore de execução é $O(\log n)$.
- Refazer o heap, na pior das hipóteses, tem custo igual à altura da árvore. Construir o heap custa $O(n \log n)$.
- ▶ Logo: algoritmo é $O(n \log n)$.

Vantagens:

ightharpoonup O comportamento do *Heap Sort* é sempre $O(n \log n)$, qualquer que seja a entrada.

Desvantagens:

- ▶ O anel interno do algoritmo é bastante complexo se comparado com o do *Quick Sort*.
- ▶ O *Heap Sort* não é estável.

Conteúdo

Introdução

Hear

Heap Mínimo e Heap Máximo

Operações do Heap

Inserção

Remoção

nplementação

Ordenação usando Heap

Heap Sort

Considerações Finais

Bibliografia

Conclusão

O Heap Sort é recomendado:

- Para aplicações que não podem tolerar eventualmente um caso desfavorável.
- Não é recomendado para arquivos com poucos registros, por causa do tempo necessário para construir o heap.

trodução Heap Heap Mínimo e Heap Máximo Operações do Heap Ordenação usando Heap Heap Sort Considerações Finais Bibliografia Exer

Ordenação em Tempo Linear

Conteúdo

Introdução

Hea

Heap Mínimo e Heap Máximo

Operações do Heap

Inserção

Remoção

nplementação

Ordenação usando Heap

Heap Sort

Considerações Finais

Bibliografia

Bibliografia

Os conteúdos deste material, incluindo figuras, textos e códigos, foram extraídos ou adaptados de:

Cormen, Thomas H. and Leiserson, Charles E. and Rivest, Ronald L. and Stein, Clifford.

Introduction to Algorithms.

The MIT Press. 2011.

Exercício

- ▶ Dada a sequência de números: 3 4 0 2 5 1 3.
- Ordene em ordem crescente utilizando o algoritmo aprendido em sala (Heap Sort), apresentando a sequência dos números a cada passo (Teste de Mesa).