Copula inference for multivariate abundance data

Gordana Popovic, David Warton & Francis Hui

Eco-Stats Research Group, UNSW Sydney

December 2, 2015

Anthony's data

Site	Treatment	Acarina	Blattodea	Collembola	 Tricladida
1	0	21	3	1093	 0
2	1	70	0	580	 1
3	1	306	0	13541	 0
4	1	98	0	2809	 0
5	0	8	4	477	 4
6	1	112	1	7527	 0
10	1	320	0	5184	 1

Anthony's data

Site	Treatment	Acarina	Blattodea	Collembola	 Tricladida
1	0	21	3	1093	 0
2	1	70	0	580	 1
3	1	306	0	13541	 0
4	1	98	0	2809	 0
5	0	8	4	477	 4
6	1	112	1	7527	 0
10	1	320	0	5184	 1

Anthony's data

Site	Treatment	Acarina	Blattodea	Collembola	 Tricladida
1	0	21	3	1093	 0
2	1	70	0	580	 1
3	1	306	0	13541	 0
4	1	98	0	2809	 0
5	0	8	4	477	 4
6	1	112	1	7527	 0
10	1	320	0	5184	 1

Anthony's data

Site	Treatment	Acarina	Blattodea	Collembola	 Tricladida
1	0	21	3	1093	 0
2	1	70	0	580	 1
3	1	306	0	13541	 0
4	1	98	0	2809	 0
5	0	8	4	477	 4
6	1	112	1	7527	 0
10	1	320	0	5184	 1

Anthony's data

Site	Treatment	Acarina	Blattodea	Collembola	 Tricladida
1	0	21	3	1093	 0
2	1	70	0	580	 1
3	1	306	0	13541	 0
4	1	98	0	2809	 0
5	0	8	4	477	 4
6	1	112	1	7527	 0
10	1	320	0	5184	 1

Anthony's data

Site	Treatment	Acarina	Blattodea	Collembola	 Tricladida
1	0	21	3	1093	 0
2	1	70	0	580	 1
3	1	306	0	13541	 0
4	1	98	0	2809	 0
5	0	8	4	477	 4
6	1	112	1	7527	 0
10	1	320	0	5184	 1

Anthony's data

Site	Treatment	Acarina	Blattodea	Collembola	 Tricladida
1	0	21	3	1093	 0
2	1	70	0	580	 1
3	1	306	0	13541	 0
4	1	98	0	2809	 0
5	0	8	4	477	 4
6	1	112	1	7527	 0
10	1	320	0	5184	 1

Question: Is there an effect of treatment?

Outline

Inference for multivariate abundance data using copulas

- GEE inference for predictors, properties of Wald and Score
- Should we estimate dependence for inference?
- Building flexible multivariate models with copulas
- Simulations and ecological example

Outline

Inference for multivariate abundance data using copulas

- GEE inference for predictors, properties of Wald and Score
- Should we estimate dependence for inference?
- Building flexible multivariate models with copulas
- Simulations and ecological example

- Generalised estimating equations (GEEs) are a procedure that fits models using score equations (Liang & Zeger 1986)
- GEEs fit models to correlated variables (e.g. Species) without specifying a multivariate model (likelihood)
- They can incorporate information about correlation between variables into parameter estimation and estimate correlation between model parameters
- We can use GEEs to carry out multivariate hypothesis testing with Wald and Score statistics
- Extensions can deal with data with small numbers of replicates (N) relative to the number of variables (P)

	GEE	Data
Accommodate over-dispersion	✓	overdispersed
Accommodate large P small N	✓	P=24 N=10
Incorporate dependence	✓	species interact

	GEE	Data
Accommodate over-dispersion	✓	overdispersed
Accommodate large P small N	✓	P=24 N=10
Incorporate dependence	✓	species interact
Likelihood based	X	

	GEE	Data
Accommodate over-dispersion	✓	overdispersed
Accommodate large P small N	✓	P=24 N=10
Incorporate dependence	✓	species interact
Likelihood based	X	
Good power for small means	not Wald	rare species
Good power in unbalanced designs	not Score	unbalanced

Wald and Score stat for unbalanced designs / small means

Wald and Score stat for unbalanced designs / small means

	GEE	Data
Accommodate over-dispersion	✓	overdispersed
Accommodate large P small N	✓	P=24 N=10
Incorporate dependence	✓	species interact
Likelihood based	X	
Good power for small means	not Wald	rare species
Good power in unbalanced designs	not Score	unbalanced
Likelihood ratio tests	only IID	

So do we want a method that can incorporate dependence AND uses likelihoods for inference?

Do we need to estimate dependence?

Do we need to estimate dependence?

Want likelihood and dependence → Copulas

• Copulas stitch together marginal distributions and the dependence structure of a multivariate model. e.g

Negative binomial marginals for (overdispersed) counts

AND

The dependence structure of a multivariate Normal

$$u_j = F(y_j)$$

$$u_j = F(y_j)$$

$$u_j = F(y_j)$$

$$P(\mathbf{Y}_i = \mathbf{y}|\beta, \Sigma) = \int_A \cdots \int \phi(\mathbf{z}; \Sigma) d\mathbf{z}$$

Estimation with probability integral transform (PIT) resid

$$z_{ij} = \Phi^{-1} \big\{ F_{ij} \big(y_{ij} - 1 \big) + u_{ij} f_{ij} \big(y_{ij} \big) \big\}$$

Estimation with probability integral transform (PIT) redid

$$\log L(\mathbf{y}; \beta, \Sigma_{\theta}) \approx \left[\sum_{i} \sum_{j} \log(f_{ij}(y_{is}, \beta_{j})) \right] + \sum_{i} \log \left[\sum_{k} \frac{\phi(\mathbf{z}_{i}^{k}; \Sigma_{\theta})}{\prod_{j} \phi(z_{is}^{k})} \right]$$

Copula likelihood

Copula Likelihood

$$L(\mathbf{Y} = \mathbf{y}|\beta, \Sigma) = \prod_{i} \int_{A} \cdots \int \phi(\mathbf{z}_{i}; \Sigma) d\mathbf{z}_{i}$$

Approximation by importance sampling

$$\log L(\mathbf{y}; \beta, \Sigma_{\theta}) \approx \left[\sum_{i} \sum_{j} \log(f_{ij}(y_{is}, \beta_{j})) \right] + \sum_{i} \log \left[\sum_{k} \frac{\phi(\mathbf{z}_{i}^{k}; \Sigma_{\theta})}{\prod_{j} \phi(z_{is}^{k})} \right]$$

Estimate Σ using covariance modelling (Popovic et al., in Review)

- Unstructured
- Factor analysis
- Graphical model

	GEE	Data
Accommodate over-dispersion	✓	overdispersed
Accommodate large P small N	✓	P=24 N=10
Incorporate dependence	✓	species interact
Likelihood based	X	
Good power for small means	not Wald	rare species
Good power in unbalanced designs	not Score	unbalanced
Likelihood ratio tests	only IID	

Simulation study for bush regeneration data

Based on permutation of PIT residuals

15

Data Analysis - Test for effect of bush regeneration

Method	P - value*
GEE Wald independent	0.031
GEE Score independent	0.244
Likelihood ratio test Independent	0.035
GEE Wald with dependence	0.028
GEE Score with dependence	0.307
Copula Likelihood ratio test with dependence	0.026

^{*} Based on permutation of PIT residuals

Data Analysis - Graphical model (after accounting for trt)

Data Analysis - Biplot

eco-stats

UNSW Ecological Statistics Research

Contact: g.popovic@unsw.edu.au Data thanks to Anthony J. Pik at Macquarie University