- Препроцессинг
- Акустическая модель
- Языковая модель
- Пунктуационная модель

- Препроцессинг
- Акустическая модель
- Языковая модель
- Пунктуационная модель

vocab

time

1950-1960 сейсмограммы

Lexicon w ah n one t uw th r iy two three four faor f ay v s ih k s Phone HMM five six s eh v ax n seven eight nine ey t n ay n zero oh z iy r ow ow M M p("one" p("two") Start End p("zero") p("oh")

1970-1990

DOWNLOAD **TUTORIAL DEVELOP** RESEARCH **ABOUT**

Pocketsphinx

С 2009 года в задаче распознавания речи применяются нейронные сети

Метрики качества

word accuracy

какого дьявола ты здесь шумишь

какого дявола ты здесь шумишь

word accuracy

какого дьявола ты здесь шумишь какого дявола ты здесь шумишь

problems?

WER, CER, SER

какого дьявола ты здесь шумишь какого дявола ты здесь шумишь

$$C = S + D + I$$

$$WER = \frac{}{N}$$

where...

S = number of substitutions

D = number of deletions

I = number of insertions

N = number of words in the reference chars sentences

ASR pipeline

(Hybrid ASR)

Conventional ASR

Pipeline

Акустическая модель

frame-level prediction?

Figure 1. Here, we have aligned audio data, where the audio is chopped up into time slices and each is labeled with a letter. But it's very difficult to go from those labels to the correct transcript, especially considering words with repeated letters (such as "book").

log (Pr (output: "BOOK" | audio)) = log (Pr (BOO-OOO - KK | audio)) + log (Pr (BBO - OO-KKK | audio)) + ...).
На практике мы можем использовать подход динамического программирования, чтобы рассчитать это, накапливая наши логарифмические вероятности по разным «путям» через выходы softmax на каждом шаге.

кккллласс сс

класс

$$P(\mathbf{y}|\mathbf{x}) = \sum_{\hat{\mathbf{y}} \in \mathcal{B}(\mathbf{y}, \mathbf{x})} \prod_{t=1}^{T} P(\hat{y}_t | \mathbf{x})$$

CTC loss

Node (s,t) in the diagram represents $\alpha_{s,t}$ – the CTC score of the subsequence $Z_{1:s}$ after t input steps.

Handwriting recognition: The input can be (x, y) coordinates of a pen stroke or pixels in an image.

Speech recognition: The input can be a spectrogram or some other frequency based feature extractor.

- Препроцессинг
- Акустическая модель
- Языковая модель
- Пунктуационная модель

привет соня пойдем сегодня в кинчик

time

time

time

time

time

time

time

time

greedy decoder

time

greedy decoder

проблемы?

greedy decoder

проблемы?

- CTC loss возвращает frame-by-frame prediction
- Несколько
 интерпретаций:
 "привет": '-пприии- вет', 'прииве-т', 'пр- ивет'...

Beam search decoding итеративно создает кандидатов (beams) и присваивает им скоры

]]		
	0	0.1	0	0	0	0	
	0.8	0	0	0	0.9	0.2	
	0	0	0	0	0	0	
	0	0.2	0	0.2	0	0	
Q	0	0	0.5	0	0	0	
लु	0	0	0	0	0	0	
vocab	0.1	0.1	0.1	0.6	0	0.5	
>	0	0.5	0	0	0	0	
	0	0	0	0	0	0	
	0	0	0	0	0	0	
	0	0	0	0	0	0	
	0	0	0.2	0	0	0	
	0.1	0.1	0	0.1	0.1	0	

Time (T)

```
Data: NN output matrix mat, BW
   Result: decoded text
1 beams = \{\emptyset\};
2 scores(\emptyset, 0) = 1;
3 for t = 1...T do
      bestBeams = bestBeams(beams, BW);
      beams={};
      for b \in bestBeams do
          beams = beams \cup b;
          scores(b, t) = calcScore(mat, b, t);
          for c \in alphabet do
             b' = b + c;
10
             scores(b', t) = calcScore(mat, b', t);
11
             beams = beams \cup b';
12
          end
13
      end
14
15 end
16 return bestBeams(beams, 1);
```



```
Data: NN output matrix mat, BW
  Result: decoded text
1 beams = \{\emptyset\};
2 scores(\emptyset, 0) = 1;
3 for t = 1...T do
      bestBeams = bestBeams(beams, BW);
      beams=\{\};
      for b \in bestBeams do
6
          beams = beams \cup b;
          scores(b, t) = calcScore(mat, b, t);
8
          for c \in alphabet do
              b' = b + c;
10
              scores(b', t) = calcScore(mat, b', t);
11
              beams = beams \cup b';
12
13
          end
      end
14
15 end
16 return bestBeams(beams, 1);
```

```
\log P_{AM}(\hat{\mathbf{y}}|\mathbf{x}) + \alpha \log P_{LM}(\hat{\mathbf{y}})
```

```
Data: NN output matrix mat, BW
   Result: decoded text
1 beams = \{\emptyset\};
2 scores(\emptyset, 0) = 1;
3 for t = 1...T do
      bestBeams = bestBeams(beams, BW);
      beams=\{\};
      for b \in bestBeams do
          beams = beams \cup b;
          scores(b, t) = calcScore(mat, b, t);
          for c \in alphabet do
              b' = b + c;
              scores(b', t) = calcScore(mat, b', t);
11
             beams = beams \cup b';
12
          end
13
      end
14
15 end
16 return bestBeams(beams, 1);
```

```
\log P_{AM}(\hat{\mathbf{y}}|\mathbf{x}) + \alpha \log P_{LM}(\hat{\mathbf{y}})
```

```
Data: NN output matrix mat, BW
   Result: decoded text
1 beams = \{\emptyset\};
2 scores(\emptyset, 0) = 1;
3 for t = 1...T do
      bestBeams = bestBeams(beams, BW);
      beams=\{\};
      for b \in bestBeams do
          beams = beams \cup b;
          scores(b, t) = calcScore(mat, b, t);
          for c \in alphabet do
              b' = b + c;
              scores(b', t) = calcScore(mat, b', t);
11
             beams = beams \cup b';
12
          end
13
      end
14
15 end
16 return bestBeams(beams, 1);
```

ground truth

привет сонь пойдем сегодня в кинчик

greedy

при вет сня пойдемсегодня в кичик

beam search LM decoder

привет соня пойдем сегодня в кинчик

Ground truth: "the fake friend of the family, like the"
Best path decoding: "the fak friend of the fomly hae tC"
Beam search: "the fak friend of the fomcly hae tC"
Beam search with LM: "the fake friend of the family, lie th"

the fore friend of the family, love the

Fig. 8: Sample from IAM dataset.

Neural Language Models

Model	dev		test	
Model	clean	other	clean	other
baseline (100-best)	7.17	19.79	7.26	20.37
GPT-2 (117M, cased) BERT (base, cased) RoBERTa (base, cased)	5.39 5.17 5.03	16.81 16.44 16.16	5.64 5.41 5.25	17.60 17.41 17.18
GPT-2 (345M, cased) BERT (large, cased) RoBERTa (large, cased)	5.15 4.96 4.75	16.48 16.26 15.81	5.30 5.25 5.05	17.26 16.97 16.79
oracle (100-best)	2.85	12.21	2.81	12.85

Table 1: WERs on LibriSpeech after reranking. Baseline lists and oracle numbers are from Shin et al. (2019).

Bigrams:

"какого дьявола ты здесь шумишь"

```
Р = Р(какого) * Р(дьявола|какого) * Р(ты|дьявола) * Р(здесь|ты) * Р(шумишь|здесь)
```

- 1. Р(дьявола) = #"дьявола"/#слов
- 2. Р(дьявола|какого)=#"дьявола-какого"/#"какого"

проблемы?

проблемы?

- Десятки of GB!
- Denormalized corpus (24 сентября 2020, и тд, в 90 годы, в 3 из 4 случаев, etc)

проблемы?

- binarize!
- normalize!

в первый раз в девяностых она купила один литр молока и так далее за двадцать рублей

в 1 раз в 90 она купила 1 л молока и т д за 20 руб

в 1 раз в 90 она купила 1 л молока и т д за 20 руб

youtokentome

pre-trained embeddings

https://www.researchgate.net/publication/338223294_Neural_Machine_Translation_

for_the_Bangla-English_Language_Pair/figures?lo=1

Output Probabilities

в первый раз в девяностых она купила один литр молока и так далее за двадцать рублей

youtokentome

pre-trained embeddings

https://www.researchgate.net/publication/338223294_Neural_Machine_Translation_

for_the_Bangla-English_Language_Pair/figures?lo=1

Надя 09:19

эх лихие 90

act_normal 09:19

эх лихие девяностые

Надя 09:21

У нас было 2 пакетика травы 75 ампул мескалина 5 пакетиков диэтиламида лизергиновой кислоты или лсд солонка наполовину наполненная кокаином и целое море разноцветных амфетаминов барбитуратов и транквилизаторов а так же литр текилы литр рома ящик бадвайзера пинта чистого эфира и 12 пузырьков амилнитрита не то чтобы все это было категорически необходимо в поездке но если уж начал собирать коллекцию то к делу надо подходить серьезно

act_normal 09:21

у нас было два пакетика травы семьдесят пять ампул мескалина пять пакетиков диэтиламида лизергиновой кислоты или лсд солонка наполовину наполненная кокаином и целое море разноцветных амфетаминов барбитуратов и транквилизаторов а так же литр текилы литр рома ящик бадвайзера пинта чистого эфира и двенадцать пузырьков амилнитрита не то чтобы все это было категорически необходимо в поездке но если уж начал собирать коллекцию то к делу надо подходить серьезно

Архитектуры

LAS (2015)

- RNN
- Autoregressive
- No need beam search & LM
- Cross-Entropy

input sequence of filter bank spectra features

Deep Speech 2 (2015)

- RNN & Conv
- Non-Autoregressive
- Need LM beam search & LM
- CTC

Beam Search & LM

BEAM SEARCH

Only beam search

$$\boldsymbol{y^*} = \underset{\boldsymbol{y}}{\operatorname{arg \, max}} \log p(\boldsymbol{y}|\boldsymbol{x})$$

Beam search & LM (shallow fusion)

$$oldsymbol{y^*} = rg \max_{oldsymbol{y}} \ \log p(oldsymbol{y} | oldsymbol{x}) + \lambda \log p_{LM}(oldsymbol{y})$$

Wav2Letter (2016)

- Conv
- Non-Autoregressive
- Need beam-search & LM
- CTC

Jasper (2019)

- Conv
- Non-Autoregressive
- Need beam-search & LM
- CTC

QuartzNet (2019)

- Conv
- Non-Autoregressive
- Need beam-search & LM
- CTC

ContextNet (2020)

- RNN & Conv
- Autoregressive
- Better with beam-search & LM, but can work without it
- RNN-T loss

RNN-Transducer

Conformer (2020)

- RNN, Conv & Transformer
- Autoregressive
- Better with beam-search & LM, but can work without it
- RNN-T loss

Method	#Params (M)	WER Without LM		WER With LM	
		testclean	testother	testclean	testother
Hybrid					
Transformer [33]	: <u>-</u>	: <u>-</u> -	-	2.26	4.85
CTC					
QuartzNet [9]	19	3.90	11.28	2.69	7.25
LAS					
Transformer [34]	270	2.89	6.98	2.33	5.17
Transformer [19]	12	2.2	5.6	2.6	5.7
LSTM	360	2.6	6.0	2.2	5.2
Transducer					
Transformer [7]	139	2.4	5.6	2.0	4.6
ContextNet(S) [10]	10.8	2.9	7.0	2.3	5.5
ContextNet(M) [10]	31.4	2.4	5.4	2.0	4.5
ContextNet(L) [10]	112.7	2.1	4.6	1.9	4.1
Conformer (Ours)					
Conformer(S)	10.3	2.7	6.3	2.1	5.0
Conformer(M)	30.7	2.3	5.0	2.0	4.3
Conformer(L)	118.8	2.1	4.3	1.9	3.9

- Препроцессинг
- Акустическая модель
- Языковая модель
- Пунктуационная модель

привет соня пойдем сегодня в кинчик

Привет, Соня. Пойдем сегодня в кинчик?

This paper describes a punctuation restoration system for automatically transcribed Estonian broadcast speech that uses long short-term memory (LSTM)[7]. LSTM, a type of recurrent neural network (RNN), has been used for a variety of supervised sequence labelling tasks, including phoneme classification [8]

This paper describes a punctuation of system for automatically transcribed For a variety of supervised sequence labe not a constant of the con

data

привет соня пойдем сегодня в кинчик

data

Привет, Соня! Пойдем сегодня в кинчик?

data

_привет	1,	_Привет,
_co	1	_Co
_НЯ	0!	_ня!
_пойдем	1	_Пойдем
_сегодня	0	_сегодня
_B	0	_B
_кин	0	_кин
_чик	0?	_чик?

punctuation& capitalization

привет соня пойдем сегодня в кинчик

youtokentome

pre-trained embeddings

https://www.researchgate.net/publication/338223294_Neural_Machine_Translation_

for the Bangla-English Language Pair/figures?lo=1

punctuation& capitalization

1,10!10000? ch2idx

self.out = nn.Sequential(nn.Linear(self.encod er.h s, Add & Norm self.encoder.h_s), Feed Forward GELU(), Nx Add & Norm **Multi-Head Attention** nn.Linear(self.encod er. Positional/ Encoding h_s, n_classes), Input Embedding Source Sentence

https://www.researchgate.net/publication/338223294_Neural_Machine_Translation_

