Fast Methods for PDE! IE

Github.com/mitmeth/18336 -	find everything here!
Gradescope - submit assign	muents here
Piarza - ask question	ns here (amonicinals)
=5 Links in 1st Amoun	
Why solve PDE.	! IEs?
Why solve PDEs temps showed wohnest Du = x Din + f(x) u(0)=0, u(1)=1	source Heat flow in a rod
u(o)=0, u(1)=1	0 1
Modeling (=)	Simulation
Detection/ Inference	
	Destyn
(invorse problems)	(ophinization)

Modern applications often involve very large
simulations, that require solving complete
PDEs many times in an "inner hosp."
=) Wenther / Climate shunlations
=> Electronic Structure (meterial destry)
=> Photonic design
=> Fluids/multiphysics
=> Many more!
Numerical Methods for PDE
d'u zf(x) (*) Stationery PDE (laplace) Equilibrium kemp
dx2 Equilibrium temp
u(o):u(1):0
0
Shea 1: Obcretize
3
"Solution vector"
3
"Solution vector"

Step 2: Solve mmerteel ment algebra Solve (m1)x(m1) with NLA routines. A un f Step 3: Approximate / Analyze u 2(u,,..., um) Idon close is to the truth ut= [u(x), ..., u(x)]? Ilu-uil? What is Usually want L understand how

llu-vill scules as n-> x.

This depends on how we "dicretize" the problem in step I.

How should we think about "cost" of solving this stationery PDE (laplace Eq.)?

- 1) How much three to compute to a destred 11 u - u 11 : E ? toherence 2) How may FLOPS, required to compute un 11 un - un 11 5 E ? so that (2) is traditional and often useful, but does not always correlate with (1)! = \ memory = S Communication => Distributed, asynch, cote. Finite Difference Approximetions du z lim ((x+h)-U(x)
 h >0 $\frac{d^2u}{dx^2} = \lim_{h\to 0} \frac{u(x+h)-2u(x)+u(x-h)}{h^2}$
 - => Pick fruik h>0 for "FD" approx

$$u(x_{i+1}) - 2u(x_i) + u(x_{i-1}) = f_i$$
 for $j \ge 1,...,n-1$

Genesken

Elim

$$\begin{bmatrix}
-21 \\
1-21
\end{bmatrix} = \begin{bmatrix}
1-1 \\
1-1
\end{bmatrix} \begin{bmatrix}
-11 \\
-11
\end{bmatrix}$$

Spurse/bunded LU factorization!

Which is the accuracy of un?

from Taylor series

$$\frac{d^2u}{dx^2} = \frac{u(x+h)-2u(x)+u(x-h)}{h^2} + O(h^2)$$

as h->0 (us n-> so)

for suff small his.

Com we improve the scaling with n?

2) trade off smoothness!

Higher Order FD

 $\frac{d^{2}}{dx^{2}} = \frac{-u(x+2h) + u(x+h) + u(x+h) + u(x+h) - u(x+2h)}{12h^{2}}$

+ 0 (h4)

Error devenues foster night h!

But bund width merceses

=3 Trade-off between with of linear solve and size of linear system required to achieve error to become exp?