Chapter 17: 随机变量收敛性

Latest Update: 2025 年 1 月 2 日

 $X_n \xrightarrow{P} X$ 并不意味着 $X_n \xrightarrow{a.s.} X$. 假设取 $\Omega = [0,1]$, \mathcal{A} 是 [0,1] 上的 Borel 集合族, P 是 [0,1] 上的 Lebesgue 测度.

设 A_n 是 [0,1] 上长度为 a_n 的任一区间, 并取 $X_n=\mathbb{I}_{A_n}$. 则有 $P(|X_n|>\varepsilon)=a_n$, 只要 $\lim_{n\to\infty}a_n=0$, 则 $X_n\stackrel{P}{\to}0$ (即 X_n 依概率收敛于常数 0).

进一步, 可以设 $X_{n,j}$ 表示区间 $\left[\frac{j-1}{n},\frac{j}{n}\right]$ 上的示性函数. 适当地将它们排成一列, 记之为 $\{Y_i\}_{i\geq 1}$.

$$X_{1,1}, X_{2,1}, X_{2,2}, X_{3,1}, X_{3,2}, X_{3,3}, X_{4,1}, \dots$$

 $\rightsquigarrow Y_1, Y_2, Y_3, Y_4, Y_5, Y_6, Y_7, \dots$

则按定义,有

$$\lim \sup_{m \to \infty} Y_m = 1 \quad a.s., \quad \lim \inf_{m \to \infty} Y_m = 0 \quad a.s.$$

从而 Y_n 不几乎处处收敛, 但是 Y_n 依概率收敛于 0.

Exercise #17. 1. 设 $X_{n,j}$ 的定义如例 2 中定义. 令 $Z_{n,j} = n^{\frac{1}{p}} X_{n,j}$. 令 Y_m 是一列排序后的 $Z_{n,j}$, 排序方法与例 2 相同. 证明: Y_m 依概率收敛于 0, 但是 Y_m 不 L^p 收敛于 0. 尽管 $Y_n \in L^p$.

证明. 对任给的 $\varepsilon > 0$, 当 $n > \varepsilon^p$ 使得 $\varepsilon n^{-\frac{1}{p}} < 1$, 有

$$P(|Z_{n,j}| > \varepsilon) = P(|X_{n,j}| > \varepsilon n^{-\frac{1}{p}}) = \frac{1}{n} \to 0 (n \to \infty).$$

因此 $Z_{n,j}$ 依概率收敛于 0, 即 Y_m 依概率收敛于 0.

由于

$$\mathbb{E}\{|Z_{n,j}|^p\} = n \cdot \frac{1}{n} = 1 < \infty.$$

从而 $Y_n \in L^p$. 但是 Y_n 不 L^p 收敛于 0, 因为

$$\lim_{n \to \infty} \mathbb{E}\left\{ \left| Y_n \right|^p \right\} = 1 \neq 0.$$

Exercise #17. 2. 证明: 依概率收敛的连续映射定理, 在去掉连续性条件之后是错的.

证明. 取 $\Omega = [0,1]$, \mathcal{A} 是 [0,1] 上的 Borel 集合族, P 是 [0,1] 上的 Lebesgue 测度.

取 $f(x) = \mathbb{I}_{\{0\}}(x), X_n = 1/n, 则 X_n$ 依概率收敛于 X = 0, 因为

$$\lim_{n\to\infty}\mathbb{E}\left\{\frac{|X_n-X|}{1+|X_n-X|}\right\}=\lim_{n\to\infty}\frac{1}{1+n}=0.$$

但是 $f(X_n) = 0$ 对任意 n 成立, 因此 $f(X_n)$ 不依概率收敛于 f(0) = 1.

Exercise #17. 3. 设 X_n 是独立同分布随机变量,满足 $P(X_n=1)=\frac{1}{2}, P(X_n=-1)=\frac{1}{2}.$ 证明:

$$\frac{1}{n} \sum_{j=1}^{n} X_j$$

依概率收敛于 0. 可以令 $S_n = \sum_{j=1}^n X_j$, 再用 chebyshev 不等式证明.

证明. 根据

$$\mathbb{E}\left\{\frac{1}{n}\sum_{j=1}^{n}X_{j}\right\} = \mathbb{E}\left\{X_{1}\right\} = 0, \quad \operatorname{Var}\left(\frac{1}{n}\sum_{j=1}^{n}X_{j}\right) = \frac{1}{n}\operatorname{Var}(X_{1}) = \frac{1}{n},$$

根据 Chebyshev 不等式, 对 $\forall \varepsilon > 0$,

$$P\left(\left|\frac{1}{n}\sum_{j=1}^{n}X_{j}\right|>\varepsilon\right)\leq\frac{1/n}{\varepsilon^{2}}\to0\quad(n\to\infty).$$

从而 $\frac{1}{n}\sum_{j=1}^{n}X_{j}$ 依概率收敛于 0.

Exercise #17. 4. 设 X_n, S_n 的定义如习题 17.3. 证明: $\frac{1}{n^2}S_{n^2}$ 几乎处处收敛于 0.

证明可以用 $\sum_{n=1}^{\infty} P\left\{\frac{1}{n^2}|S_{n^2}|>\varepsilon\right\}<\infty$,再用 Borel-Cantelli 引理.

证明.

$$\frac{1}{n^2}S_{n^2} = \frac{1}{n^2}\sum_{j=1}^{n^2} X_j.$$

此时,

$$Var\left(\frac{1}{n^2}S_{n^2}\right) = \frac{1}{n^4}n^2 Var(X_1) = \frac{1}{n^2}.$$

根据 Chebyshev 不等式, 对 $\forall \varepsilon > 0$,

$$P\left\{\left|\frac{1}{n^2}S_{n^2}\right|>\varepsilon\right\}\leq \frac{1/n^2}{\varepsilon^2}=\frac{1}{n^2\varepsilon^2}.$$

于是,

$$\sum_{n=1}^{\infty} P\left\{\frac{1}{n^2}|S_{n^2}| > \varepsilon\right\} = \sum_{n=1}^{\infty} \frac{1}{n^2 \varepsilon^2} = \frac{1}{\varepsilon^2} \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6\varepsilon^2} < \infty.$$

若

$$\sum_{n=1}^{\infty} P\left\{\frac{1}{n^2}|S_{n^2}|>\varepsilon\right\}<\infty, \forall \varepsilon>0,$$

则根据 Borel-Cantelli 引理, 有 $P\left\{\frac{1}{n^2}|S_{n^2}|>\varepsilon \text{ i.o.}\right\}=0$, 即

$$P\left(\limsup_{n\to\infty}\left\{\left|\frac{1}{n^2}S_{n^2}-0\right|>\varepsilon\right\}\right)=0, \forall \varepsilon>0.$$

从而 $\frac{1}{n^2}S_{n^2}$ 几乎处处收敛于 0.

Exercise #17. 5. 假设 $|X_n| \le Y$ a.s., n = 1, 2, 3, ... 证明: $\sup_n |X_n| \le Y$ a.s..

证明. 记 $N = \{w \in \Omega : \sup_{n} |X_n| > Y\}$. 于是

$$P(N) = P\left(\bigcup_{n=1}^{\infty} \{|X_n| > Y\}\right)$$

$$\leq \sum_{n=1}^{\infty} P\{|X_n| > Y\} = 0.$$

从而 $\sup_{n} |X_n| \leq Y$ a.s..

Exercise #17. 6. 设 $X_n \stackrel{p}{\to} X$. 证明: 特征函数 φ_{X_n} 逐点收敛于 φ_{X} .

证明. 由于

$$\varphi_{X_n}(t) = \mathbb{E}\{e^{itX_n}\} = \mathbb{E}\{\cos(tX_n)\} + i\mathbb{E}\{\sin(tX_n)\},\$$

由于 $X_n \xrightarrow{P} X$, 有 $\cos(tX_n) \xrightarrow{P} \cos(tX)$ 和 $\sin(tX_n) \xrightarrow{P} \sin(tX)$. 且 $|\cos(tX_n)|, |\sin(tX_n) \le 1 \in L^p$, 根据 L^p 版本的控制收敛定理, 有

$$\cos(tX_n) \xrightarrow{L^p} \cos(tX), \quad \sin(tX_n) \xrightarrow{L^p} \sin(tX).$$

从而 $\varphi_{X_n}(t) \to \varphi_X(t)$.

Exercise #17. 7. 设 $X_1,...,X_n$ 是独立同分布的 Cauchy 随机变量,参数 $\alpha=0,\beta=1$. 即它 们的密度是

$$f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty.$$

证明: $\frac{1}{n}\sum_{j=1}^{n}X_{j}$ 服从 Cauchy 分布.

证明. 由于 Cauchy 分布的特征函数为

$$\varphi(t) = e^{-|t|}.$$

于是 $\frac{1}{n}\sum_{i=1}^{n}X_{i}$ 的特征函数为

$$\varphi_{\frac{1}{n}\sum_{j=1}^{n}X_{j}}(t) = \left(\varphi_{X_{1}}\left(\frac{t}{n}\right)\right)^{n} = e^{-|t|}.$$

根据唯一性定理, $\frac{1}{n}\sum_{j=1}^{n}X_{j}$ 服从 Cauchy 分布.

Exercise #17. 8. 设 $X_1,...,X_n$ 是独立同分布的 Cauchy 随机变量,参数 $\alpha=0,\beta=1$. 证明: 不存在常数 γ 使得 $\frac{1}{n}\sum_{j=1}^n X_j$ 依概率收敛于 γ . 进一步说明了,不存在常数 γ 使得 $\frac{1}{n}\sum_{j=1}^n X_j$ 几乎处处收敛于 γ .

证明. 考察任取 $\varepsilon > 0$,

$$P\left(\left|\frac{1}{n}\sum_{j=1}^{n}X_{j}\right|>\varepsilon\right)=2\int_{\varepsilon}^{\infty}\frac{1}{\pi(1+x^{2})}dx=1-\frac{2}{\pi}\arctan(\varepsilon)\neq0(n\to\infty).$$

Exercise #17. 9. 令 $\{X_n\}_{n\geq 1}$ 零均值, 方差有限. 假设 $\lim_{n\to\infty}\sigma_{X_n}^2=0$. 证明: X_n 依概率收敛于 0. 以及 L^2 收敛于 0.

证明. 只需证 L^2 收敛性.

$$\mathbb{E}\{X_n^2\} = \operatorname{Var}(X_n) = \sigma_{X_n}^2 \to 0 \quad (n \to \infty).$$

从而 X_n 在 L^2 意义下收敛于 0. 于是 X_n 依概率收敛于 0.

Exercise #17. 10. 设 X_n 是独立同分布的随机变量,零均值,方差有限. 令 $S_n = \sum_{j=1}^n X_j$. 证明: $\frac{1}{n}S_n$ 依概率收敛于 0, 也 L^2 收敛于 0.

证明. 只需证 L^2 收敛性.

$$\mathbb{E}\left\{\left(\frac{1}{n}S_n\right)^2\right\} = \frac{1}{n^2} \operatorname{Var}(S_n) = \frac{1}{n^2} n \operatorname{Var}(X_1) = \frac{1}{n} \operatorname{Var}(X_1) \to 0 \quad (n \to \infty).$$

从而 $\frac{1}{n}S_n$ 在 L^2 意义下收敛于 0.

Exercise #17. 11. 假设 $\lim_{n\to\infty}X_n=X$ a.s. 以及 $|X|<\infty$ a.s. 令 $Y=\sup_n|X_n|$. 证明: $Y<\infty$ a.s.

证明. 只需证 $P(|X_n| = \infty) = 0$. 记 $N_1 = \{w \in \Omega : \lim_{n \to \infty} X_n \neq X\}, N_2 = \{w \in \Omega : |X| = \infty\}$. 则 $\forall w \in N_1^c \cap N_2^c$,

$$\lim_{n \to \infty} X_n(w) = X(w), \quad |X(w)| < \infty.$$

即 $\forall \varepsilon > 0, \exists N = N(\varepsilon), \forall n \geq N, |X_n(w) - X(w)| < \varepsilon$. 于是对 $n \geq N$,

$$|X_n(w)| \le |X(w)| + |X_n(w) - X(w)| < \infty.$$

对 n = 1, ..., N,有

$$|X_n(w)| \le \max\{|X_1(w)|, ..., |X_N(w)|\} < \infty.$$

于是

$$Y = \sup_{n} |X_n| \le \max\{|X_1|, ..., |X_N|, \varepsilon + |X|\} < \infty.$$

从而 $Y < \infty$ a.s..

Exercise #17. 12. 假设 $\lim_{n\to\infty}X_n=X$ a.s. 令 $Y=\sup_n|X_n-X|$. 证明 $Y<\infty$ a.s.,定义新测度 Q:

$$Q(A) = \frac{1}{c}E\left\{1_A\frac{1}{1+Y}\right\}, \not \sharp \, \dot \tau c = E\left\{\frac{1}{1+Y}\right\}.$$

证明: X_n 在测度 $Q \Gamma L^1$ 收敛于 X.

证明. 首先, 证明 $Y < \infty$ a.s. 记 $N = \{\lim_{n \to \infty} X_n \neq X\}$. 于是 $\forall w \in N^c, \forall \varepsilon > 0, \exists N = N(\varepsilon), \forall n \geq N,$ 有 $|X_n(w) - X(w)| < \varepsilon$. 此时,

$$Y = \sup_{n} |X_n - X| \le \max\{|X_1 - X|, ..., |X_N - X|, \varepsilon\} < \infty.$$

因此, $Y < \infty$ a.s..

接下来, 证明 X_n 在测度 Q 下 L^1 收敛于 X. 根据习题 9.7 积分变换公式,

$$\mathbb{E}_Q\{|X_n - X|\} = \frac{1}{c}\mathbb{E}\left\{\frac{1}{1+Y}|X_n - X|\right\} \to 0 \quad (n \to \infty).$$

Exercise #17. 13. 设 A 是例 1 中定义的事件. 证明: P(A) = 0.

可以令
$$A_n = \{ \Re \ n \ 次投掷为正面 \}$$
. 证明 $\sum_{n=1}^{\infty} P(A_n) = \infty$, 用 BC 引理.

证明. 应用例 1 中的记号, X_n 独立同 Bernoulli(p), 记

$$A_n = \{X_n = 1\}$$

则

$$A^c = A_n$$
 i.o..

则 A_n 相互独立且 $P(A_n) = p$, 于是

$$\sum_{n=1}^{\infty} P(A_n) = \infty.$$

根据独立场合的 BC 引理, 有

$$P(A^c) = P\left(\limsup_{n \to \infty} A_n\right) = 1.$$

从而 P(A) = 0.

Exercise #17. 14. 令 X_n 和 X 是 L^2 的实值的随机变量, 假设 X_nL^2 收敛于 X. 证明: $\mathbb{E}\{X^2\}$ 收敛于 $\mathbb{E}\{X^2\}$.

可以用不等式:

$$|x^2 - y^2| \le (x - y)^2 + 2|y||x - y|$$

和 Cauchy-Schwarz 不等式证明.

证明. 不等式的证明可以根据,

$$|x+y| \le |x-y| + 2|y| \implies |x^2 - y^2| = |x-y||x+y| \le |x-y|(|x-y| + 2|y|).$$

要证: $\mathbb{E}{X_n^2}$ 收敛于 $\mathbb{E}{X^2}$, 考察

$$\begin{split} \left| \mathbb{E}\{X_n^2\} - \mathbb{E}\{X^2\} \right| &\leq \mathbb{E}\left| X_n^2 - X^2 \right| \quad (积分的性质) \\ &\leq \mathbb{E}\left\{ |X_n - X|^2 + 2|X||X_n - X| \right\} \quad (上面的不等式) \\ &\leq \mathbb{E}\left\{ |X_n - X|^2 \right\} + 2\mathbb{E}\left\{ |X||X_n - X| \right\} \quad (线性) \\ &\leq \mathbb{E}\left\{ |X_n - X|^2 \right\} + 2\sqrt{\mathbb{E}\{X^2\}}\sqrt{\mathbb{E}\{(X_n - X)^2\}} \quad (\text{H\"older 不等式)} \\ &\to 0 \quad (n \to \infty). \end{split}$$

收敛性证毕.

Exercise #17. 15 (另一种控制收敛定理). 设 $\{X_n\}_{n\geq 1}$ 是随机变量,满足 $X_n\stackrel{P}{\to} X$. 假设存在常数 C>0 满足对任意的 w 满足 $|X_n(w)|\leq C$. 证明: $\lim_{n\to\infty}\mathbb{E}\{|X_n-X|\}=0$. 可以先证明: $P(|X|\leq C)=1$.

证明. 先考察 X 是否几乎处处有上界. 由于 $\forall \varepsilon > 0$,

$$\{|X| \le C + \varepsilon\} = \{|X - X_n + X_n| \le C + \varepsilon\}$$
$$\supset \{|X - X_n| + |X_n| \le C + \varepsilon\}$$
$$\supset \{|X_n| \le C\} \cap \{|X_n - X| \le \varepsilon\}.$$

于是,

$$P\{|X| \le C + \varepsilon\} \ge P\{|X_n| \le C\} - P\{|X_n - X| > \varepsilon\}$$
$$= 1 - P\{|X_n - X| > \varepsilon\}$$
$$\to 1 \quad (n \to \infty).$$

根据概率的连续性, $\{|X| \leq C\} = \bigcap_{m=1}^{\infty} \{|X| \leq C + 1/m\}$, 从而 $P\{|X| \leq C\} = 1$. 于是 $|X_n - X| \leq 2C$.

以下 $\forall \varepsilon>0,$ 由于 $X_n\stackrel{P}{\to}X,$ 有 $N=N(\varepsilon)$ 使得当 n>N 时, 有

$$P\left(|X_n - X| \ge \frac{\varepsilon}{2}\right) < \frac{\varepsilon}{4C}.$$

于是

$$\begin{split} \mathbb{E}\{|X_n - X|\} &= \int_{\{|X_n - X| \ge \varepsilon/2\}} |X_n - X| dP + \int_{\{|X_n - X| < \varepsilon/2\}} |X_n - X| dP \\ &\leq \int_{\{|X_n - X| \ge \varepsilon/2\}} 2C dP + \int_{\{|X_n - X| < \varepsilon/2\}} \varepsilon/2 dP \\ &\leq 2C \cdot \frac{\varepsilon}{4C} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

从而 $\lim_{n\to\infty} \mathbb{E}\{|X_n - X|\} = 0.$