

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ»

ФАКУЛЬТЕТ ІНФОРМАТИКИ ТА ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ КАФЕДРА ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ

ЛАБОРАТОРНА РОБОТА №2

з дисципліни «Паралельні та розподілені обчислення Паралельне програмування-2»

Тема: «WinAPI. Семафори, мютекси, події, критичні секції»

Виконав:

студент 3-го курсу

групи ІП-42

з номер заліковки 4206

Дзюба Влад

Завдання

Мета роботи: розробка програми для ПКС зі СП

Мова програмування: С++

Засоби організації взаємодії процесів: семафори, мютекси, події, критичні секції

бібліотеки Win32

 $A = (B \cdot MO)(MZ \cdot MT + e \cdot MU)$

Математичний паралельний алгоритм:

1. $D_h = B \cdot MO_h$

2. $A_h = D \cdot (MZ \cdot MT_h + e \cdot MU_h)$

CP: B, MZ, e, D.

Алгоритм для кожного процесу:

<u>Алгоритм</u>	<u>для ко</u>	эжного процесу:	
T_1 :		T_2 :	
1. Ввести МТ, е. 2. Чекати сигнал про завершення	$W_{2,1}$	 Ввести МU. Сигнал про завершення вводу до 	S _{1,1}
вводу з T_2 .	$W_{3,1}$	T ₁ .	$W_{_{1,1}}$
3 . Чекати сигнал про завершення вводу з T_3 .	3,1	3. Чекати сигнал про початок обрахунку D від T_1 .	1,1
4. Чекати сигнал про завершення	$W_{_{4,1}}$	4. Копіювати $B_2 = B$.	КУ1
вводу з T_4 .		5. Обрахувати $D_h = B_2 \cdot MO_h$.	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$S_{2,1}$	6. Сигнал про завершення	$S_{1,2}$
6. Сигнал про початок обрахунку	S _{3,1}	обрахунку $D_{\scriptscriptstyle h}$ до $T_{\scriptscriptstyle 1}$. 7. Чекати сигнал про початок	
D до T_3 .		обрахунку A від T_1 .	$W_{1,2}$
7. Сигнал про початок обрахунку	$S_{4,1}$	8. Копіювати	КУ2
D до T_4 . 8. Копіювати $B_1{=}B$.	КУ1	$D_2 = D, MZ_2 = MZ, e_2 = e .$	102
9. Обрахувати $D_h = B_1 \cdot MO_h$.		9. Обрахувати $A_h = D_2 \cdot (MZ_2 \cdot MT_h + e_2 \cdot MU_h) .$	
10. Чекати сигнал про завершення обрахунку D_h з T_2 .	$W_{2,2}$	10. Сигнал про завершення обрахунку A_h до T_1 .	S _{1,3}
11. Чекати сигнал про завершення обрахунку D_h з T_3 .	$W_{3,2}$		
12. Чекати сигнал про завершення обрахунку D_{h} з T_{4} .	$W_{4,2}$		
13. Сигнал про початок обрахунку A до $T_{\scriptscriptstyle 2}$.	S _{2,2}		
14. Сигнал про початок обрахунку A до $T_{\rm 3}$.	S _{3,2}		
15. Сигнал про початок обрахунку A до $T_{\scriptscriptstyle 4}$.	S _{4,2}		
16. Копіювати $D_1 \! = \! D , M Z_1 \! = \! M Z , e_1 \! = \! e .$	КУ2		
17. Обрахувати $A_h = D_1 \cdot (MZ_1 \cdot MT_h + e_1 \cdot MU_h)$			
18. Чекати сигнал про завершення обрахунку A_h з T_2 .	$W_{2,3}$		
19. Чекати сигнал про завершення обрахунку з $\ A_h \ T_3$.	$W_{3,3}$		
20. Чекати сигнал про завершення обрахунку з $A_{\scriptscriptstyle h}$	$W_{4,3}$		
21. Вивести A .			

T_3 :		T_4 :	
1. Ввести MU.		1. Ввести MU.	
2. Сигнал про завершення вводу до T_{1} .	S _{1,1}	2. Сигнал про завершення вводу до $T_1 \ \ .$	$S_{1,1}$
3. Чекати сигнал про початок обрахунку D від T_{1} .	$W_{1,1}$	3. Чекати сигнал про початок обрахунку D від T_1 .	$W_{1,1}$
4. Копіювати $B_3 {=} B$.	КУ1	4. Копіювати $B_4 = B$.	КУ1
5. Обрахувати $D_h = B_3 \cdot MO_h$.		5. Обрахувати $D_h = B_4 \cdot MO_h$.	
6. Сигнал про завершення		6. Сигнал про завершення	C
обрахунку $D_{\scriptscriptstyle h}$ до $T_{\scriptscriptstyle 1}$.	$S_{1,2}$	обрахунку $D_{\scriptscriptstyle h}$ до $T_{\scriptscriptstyle 1}$.	$S_{1,2}$
7. Чекати сигнал про початок обрахунку A від T_1 .	$W_{1,2}$	7. Чекати сигнал про початок обрахунку $\ A$ від $\ T_1$.	$W_{1,2}$
8. Копіювати $D_3 = D$, $MZ_3 = MZ$, $e_3 = e$.	КУ2	8. Копіювати $D_4 = D$, $MZ_4 = MZ$, $e_4 = e$.	КУ2
9. Обрахувати		9. Обрахувати	
$A_h = D_3 \cdot (MZ_3 \cdot MT_h + e_3 \cdot MU_h)$		$A_h = D_4 \cdot (MZ_4 \cdot MT_h + e_4 \cdot MU_h) .$	
10. Сигнал про завершення обрахунку $A_{\scriptscriptstyle h}$ до $T_{\scriptscriptstyle 1}$.	S _{1,3}	10. Сигнал про завершення обрахунку $A_{\scriptscriptstyle h}$ до $T_{\scriptscriptstyle 1}$.	S _{1,3}

Структурна схема взаємодії процесів

Лістінг програми:

```
main.cpp
/*
// main
// Author:
      Dzyuba Vlad, IP-42
//
#include <windows.h>
#include <iostream>
#define THREADCOUNT 4
#define N 4000
#define H N/4
void T1Read();
void T2Read();
void T3Read();
void T4Read();
void T1DCalc();
void T2DCalc();
void T3DCalc();
void T4DCalc();
void T1Calc();
void T2Calc();
void T3Calc();
void T4Calc();
DWORD WINAPI T1Proc( LPV0ID lpParam );
DWORD WINAPI T2Proc( LPV0ID lpParam );
DWORD WINAPI T3Proc( LPV0ID lpParam );
DWORD WINAPI T4Proc( LPV0ID lpParam );
// input
int *MT[N], e, *MU[N], *MO[N], *MZ[N], B[N];
//output
int A[N];
//intermidiate
int D[N];
HANDLE events[THREADCOUNT-1];
HANDLE semaphores[THREADCOUNT-1];
CRITICAL SECTION CriticalSection;
HANDLE ghMutex;
HANDLE DCalc, Calc;
using namespace std;
int main()
     InitializeCriticalSectionAndSpinCount(&CriticalSection,
0 \times 00000400);
     for (int i = 0; i < N; i++)
     {
          MT[i] = new int[N];
```

```
MU[i] = new int[N];
         MO[i] = new int[N];
         MZ[i] = new int[N];
    HANDLE threads[THREADCOUNT-1];
    DWORD ThreadId;
    DCalc = CreateEvent(NULL, TRUE, FALSE, NULL);
    Calc = CreateEvent(NULL, TRUE, FALSE, NULL);
    ghMutex = CreateMutex(NULL, FALSE, NULL);
     for (int i = 0; i < THREADCOUNT-1; i++)
     {
         events[i] = CreateEvent(NULL, TRUE, FALSE, NULL);
         semaphores[i] = CreateSemaphore(NULL, 0, 1, NULL);
    threads[0] = CreateThread(NULL, 0, (LPTHREAD START ROUTINE)
T2Proc, NULL, 0, &ThreadId);
     threads[1] = CreateThread(NULL, 0, (LPTHREAD START ROUTINE)
T3Proc, NULL, 0, &ThreadId);
    threads[2] = CreateThread(NULL, 0, (LPTHREAD START ROUTINE)
T4Proc, NULL, 0, &ThreadId);
    T1Read();
    WaitForMultipleObjects(THREADCOUNT - 1, events,
                                                             TRUE,
INFINITE);
    SetEvent(DCalc);
    T1DCalc();
    WaitForMultipleObjects(THREADCOUNT-1, semaphores, TRUE,
INFINITE):
    SetEvent(Calc);
    T1Calc();
    WaitForMultipleObjects(THREADCOUNT-1, threads, TRUE,
INFINITE);
    if (N \le 20)
     {
         for (int i = 0; i < N; i++)
              cout << A[i] << " ";
         cout << endl;</pre>
     }
    DeleteCriticalSection(&CriticalSection);
     for (int i = 0; i < THREADCOUNT-1; i++)
     {
         CloseHandle(threads[i]);
         CloseHandle(events[i]);
         CloseHandle(semaphores[i]);
     }
}
```

```
void T1Calc()
{
     int **MZ1, *D1, e1;
     WaitForSingleObject(ghMutex, INFINITE);
     MZ1 = MZ;
     D1 = D;
     e1 = e;
     ReleaseMutex(ghMutex);
     for (int i = 0; i < H; i++)
     {
          A[i] = 0;
          for (int j = 0; j < N; j++)
               int zt = e1 * MU[j][i];
               for (int k = 0; k < N; k++)
                    zt += MZ1[j][k] * MT[k][i];
               A[i] += zt * D1[j];
          }
     }
}
void T2Calc()
{
     int **MZ2, *D2, e2;
     WaitForSingleObject(ghMutex, INFINITE);
     MZ2 = MZ;
     D2 = D;
     e2 = e;
     ReleaseMutex(ghMutex);
     for (int i = H; i < 2 * H; i++)
     {
          A[i] = 0;
          for (int j = 0; j < N; j++)
          {
               int zt = e2 * MU[j][i];
               for (int k = 0; k < N; k++)
               {
                    zt += MZ2[j][k] * MT[k][i];
               A[i] += zt * D2[j];
          }
     }
}
void T3Calc()
{
     int **MZ3, *D3, e3;
     WaitForSingleObject(ghMutex, INFINITE);
     MZ3 = MZ;
     D3 = D;
```

```
e3 = e;
     ReleaseMutex(ghMutex);
     for (int i = 2 * H; i < 3 * H; i++)
          A[i] = 0;
          for (int j = 0; j < N; j++)
               int zt = e3 * MU[j][i];
               for (int k = 0; k < N; k++)
                    zt += MZ3[j][k] * MT[k][i];
               A[i] += zt * D3[j];
          }
     }
}
void T4Calc()
{
     int **MZ4, *D4, e4;
     EnterCriticalSection(&CriticalSection);
     MZ4 = MZ;
     D4 = D;
     e4 = e;
     LeaveCriticalSection(&CriticalSection);
     for (int i = 3 * H; i < 4 * H; i++)
          A[i] = 0;
          for (int j = 0; j < N; j++)
               int zt = e4 * MU[i][i];
               for (int k = 0; k < N; k++)
                    zt += MZ4[j][k] * MT[k][i];
               A[i] += zt * D4[j];
          }
     }
}
void T1DCalc()
{
     EnterCriticalSection(&CriticalSection);
     B1 = B;
     LeaveCriticalSection(&CriticalSection);
     for (int i = 0; i < H; i++)
     {
          D[i] = 0;
          for (int j = 0; j < N; j++)
          {
               D[i] += B1[j] * MO[j][i];
```

```
}
    }
}
void T2DCalc()
{
     int *B2;
     EnterCriticalSection(&CriticalSection);
     B2 = B;
     LeaveCriticalSection(&CriticalSection);
     for (int i = H; i < 2 * H; i++)
     {
          D[i] = 0;
          for (int j = 0; j < N; j++)
               D[i] += B2[i] * M0[i][i];
     ReleaseSemaphore(semaphores[0], 1, NULL);
}
void T3DCalc()
     int *B3;
     EnterCriticalSection(&CriticalSection);
     B3 = B;
     LeaveCriticalSection(&CriticalSection);
     for (int i = 2 * H; i < 3 * H; i++)
          D[i] = 0;
          for (int j = 0; j < N; j++)
               D[i] += B3[j] * M0[j][i];
     ReleaseSemaphore(semaphores[1], 1, NULL);
}
void T4DCalc()
     int *B4;
     EnterCriticalSection(&CriticalSection);
     LeaveCriticalSection(&CriticalSection);
     for (int i = 3 * H; i < 4 * H; i++)
     {
          D[i] = 0;
          for (int j = 0; j < N; j++)
               D[i] += B4[j] * MO[j][i];
          }
     ReleaseSemaphore(semaphores[2], 1, NULL);
}
```

```
void T1Read()
     for (int i = 0; i < N; i++) {
          for (int j = 0; j < N; j++) {
               MT[i][j] = 1;
          }
     }
     e = 1;
}
void T2Read()
     for (int i = 0; i < N; i++) {
          for (int j = 0; j < N; j++) {
               MU[i][j] = 1;
          }
     SetEvent(events[0]);
}
void T3Read()
     for (int i = 0; i < N; i++) {
          for (int j = 0; j < N; j++) {
               MO[i][j] = 1;
          }
     for (int i = 0; i < N; i++) {
          for (int j = 0; j < N; j++) {
               MZ[i][j] = 1;
          }
     SetEvent(events[1]);
}
void T4Read()
{
     for (int i = 0; i < N; i++) {
          B[i] = 1;
     SetEvent(events[2]);
}
DWORD WINAPI T2Proc( LPV0ID lpParam )
{
     T2Read();
     WaitForSingleObject(DCalc, INFINITE);
     T2DCalc();
     WaitForSingleObject(Calc, INFINITE);
     T2Calc();
}
```

```
DWORD WINAPI T3Proc( LPV0ID lpParam )
{
     T3Read();
     WaitForSingleObject(DCalc, INFINITE);
     T3DCalc();
     WaitForSingleObject(Calc, INFINITE);
     T3Calc();
}
DWORD WINAPI T4Proc( LPVOID lpParam )
{
     T4Read();
     WaitForSingleObject(DCalc, INFINITE);
     T4DCalc();
     WaitForSingleObject(Calc, INFINITE);
     T4Calc();
}
```