TFY4155/FY1003 Elektr. & magnetisme

Øving 4 Elektrisk potensial og Gauss' lov.

Veiledning: 6. og 7. feb. ifølge nettsider. Innlevering: Onsdag 8. feb. kl. 14:00

Oppgave 1. Flervalgsoppgaver.

(Eksamen har 30% flervalgsoppgaver. Der viser du ingen utregning/begrunnelse, men det kan du gjerne her.)

a) Figuren viser et uniformt elektrisk felt \vec{E} (heltrukne linjer). Langs hvilken stiplet linje endrer potensialet seg ikke?

B 2

C 3

D 4

E Endrer seg langs alle linjer 1,2,3 og 4

- b) En partikkel med negativ ladning plasseres med null starthastighet i et elektrostatisk felt \vec{E} . Partikkelens bevegelse blir
 - A i retning lavere potensial.
- B i retning lavere potensiell energi.
- C i samme retning som \vec{E} .
- D i retning normalt på \vec{E} .
- E i retning høyere potensiell energi.
- c) Den potensielle energien til to elektroner i innbyrdes avstand 0,10 nm har verdi nærmest (1 eV = $1,6 \cdot 10^{-19}$ J)
- A $2, 3 \cdot 10^{-18} \text{ eV}$
- B 1,4 neV
- C 14 meV
- D 14 eV
- E 29 eV
- d) En berylliumkjerne med ladning 4e og masse $9m_p$ og en α -partikkel (dvs. en heliumkjerne) med ladning 2e og masse $4m_p$ er i ro. De to partiklene kan gis like stor hastighet ved å
- A akselerere dem over en like stor potensialforskjell.
- B akselerere α -partikkelen over en potensialforskjell V og berylliumkjernen over V/2.
- C akselerere α -partikkelen over en potensialforskjell V og berylliumkjernen over 8V/9.
- D akselerere α -partikkelen over en potensialforskjell V og berylliumkjernen over 9V/8.
- E akselerere α -partikkelen over en potensialforskjell V og berylliumkjernen over 9V/4.

Oppgave 2. Potensial rundt elektrisk dipol.

En elektrisk dipol som består av to punktladninger $\pm q$, er plassert langs z-aksen med sentrum i origo, som vist i figuren. Det elektriske dipolmomentet er da $\vec{p}=q\vec{a}$, der $\vec{a}=a~\hat{z}$ er vektoren fra -q til q.

Siden vi her opplagt må ha symmetri med hensyn til rotasjon omkring z-aksen, er det tilstrekkelig å se på forholdene i et halvplan som inneholder z-aksen, f.eks. xz-planet, med x>0.

Vi kan videre velge mellom kartesiske koordinater (x, z) eller polarkoordinater (r, θ) for å angi en vilkårlig posisjon

i dette planet. Vi skal se på begge deler i denne oppgaven. Vinkelen θ kan vi selvsagt velge i forhold til hvilken kartesiske akse vi vil; her lar vi θ være vinkelen som \vec{r} danner i forhold til z-aksen (se figuren).

- a) Bestem først sammenhengen mellom de kartesiske koordinatene og polarkoordinatene, dvs. $x(r, \theta)$, $z(r, \theta)$ og r(x, z).
- b) Vis at potensialet fra en slik dipol i kartesiske koordinater blir

$$V(x,z) = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{\sqrt{x^2 + (z - a/2)^2}} - \frac{1}{\sqrt{x^2 + (z + a/2)^2}} \right).$$

- c) Hva blir potensialet på x-aksen, V(x,0)? Enn på z-aksen, V(0,z)? (På hele z-aksen; pass på fortegnene...!)
- d) Vis at i stor avstand fra dipolen (dvs $r\gg a$) er potensialet med god tilnærmelse gitt i polarkoordinater ved

$$V(r,\theta) = \frac{1}{4\pi\varepsilon_0} \frac{p\cos\theta}{r^2} = \frac{1}{4\pi\varepsilon_0} \frac{\vec{p} \cdot \vec{r}}{r^3}.$$

TIPS: Ta utgangspunkt i at

$$\frac{1}{r_1} - \frac{1}{r_2} = \frac{r_2 - r_1}{r_1 r_2},$$

og bruk figuren til å finne et tilnærmet uttrykk for dette når $r\gg a$

Mens potensialet fra en enkelt punktladning avtar som 1/r, avtar altså potensialet fra en dipol raskere, nemlig som $1/r^2$. Er dette rimelig?

Oppgave 3. To kuleskall.

To svært tynne, konsentriske, metalliske kuleskall har radier henholdsvis R og $\frac{3}{2}R$. Det indre skallet har ladningen q, og det ytre skallet har ladningen -3q.

- a) Finn uttrykk for det elektriske feltet $\vec{E}(r)$ i alle deler av rommet.
- b) Hva er potensialdifferansen mellom skallene?
- c) Hvordan vil ladningen fordele seg dersom de to skallene forbindes med en tynn ledende tråd?

Oppgave 4. Kule med gitt Q(r).

Ei kule med radius R har en ladningfordeling slik at ladningen Q(r) innenfor radius r er gitt ved

$$Q(r) = 4\pi\rho_0 \left(\frac{4}{3}r^3 - \frac{1}{R}r^4\right) \quad \text{for } r \le R$$

Den totale ladningen for kula er således

$$Q_0 = Q(R) = \frac{4\pi}{3}R^3\rho_0,$$

hvor vi ser at ρ_0 er gjennomsnittsverdien av $\rho(r)$ i kula. Utenfor kula er det ladningsfritt.

- a) Bestem det elektriske feltet utenfor kula (r > R) og inne i kula $(r \le R)$.
- b) Bestem det elektriske potensialet V(r) utenfor kula og inne i kula. Sett referansepunktet ved $r \to \infty$, dvs. $V(\infty) = 0$.
- c) Er potensialet kontinuerlig ved overflata av kula (r = R)?
- d) Finn uttrykk for romladningstettheten $\rho(r)$ for $r \leq R$.
- e) Bruk Matlab el.l. til å lage vise grafer av ρ , Q, E og V. Plot i et og samme koordinatsystem for 0 < r/R < 3/2.

Velg dimensjonsløse variable:
$$\frac{\rho(r/R)}{4\rho_0}$$
, $\frac{Q(r/R)}{\frac{4\pi\rho_0}{3}R^3}$, $\frac{E(r/R)}{\frac{\rho_0}{3\epsilon_0}R}$ og $\frac{V(r/R)}{\frac{\rho_0}{3\epsilon_0}R^2}$.

Utvalgte fasitsvar:

3b)
$$-q/(12\pi\epsilon_0 R)$$
,

4a)
$$E(r < R) = \frac{\rho_0 R}{3\epsilon_0} \left(4r/R - 3r^2/R^2 \right)$$
, 4b) $V(r < R) = \frac{\rho_0 R^2}{3\epsilon_0} \left[2 - 2r^2/R^2 + \frac{r^3}{R^3} \right]$, 4d) $4\rho_0 \left(1 - \frac{r}{R} \right)$.