

Documento de Arquitetura

Core-MUSA

Universidade Estadual de Feira de Santana

Build 2.0a

Histórico de Revisões

Date	Descrição	Autor(s)		
20/10/2014	Concepção do Documento	fmbboaventura		
23/10/2014	Revisão Inicial	jadsonfirmo		
29/10/2014	Adcionada Breve Descrição dos Componentes	fmbboaventura		
29/10/2014	Stakeholders	jadsonfirmo		
30/10/2014	Ajustes estruturais	fmbboaventura e jad- sonfirmo		
30/10/2014	Detalhamento das Instruções	jadsonfirmo, KelCarmo e Odivio		

SUMÁRIO

 Stakehold Visão Ger Definiçõe 	do Documento	4 4 4
3 Visão Ger4 Definiçõe.	ral do Documento	4
4 Definiçõe	es	4
5 Acrônimo		
	os e Abreviações	5
2 Visão Geral da	a Arquitetura	6
1 Arquitetu	ıra geral MUSA	6
2 Descrição	o dos Componentes	6
3 Intruções		7
4 Detalham	nento das Intruções	8
3 Descrição da /	Arquitotura	
3 Descrição da 1	Aiquitetura	10
,		10 10
1 ULA	•	
1 ULA 1.1 D	·	10
1 ULA 1.1 D 1.2 De	riagrama de Classe	10 10
1 ULA 1.1 D 1.2 De 2 Busca de	riagrama de Classe	10 10 10
1 ULA 1.1 D 1.2 D 2 Busca de 2.1 D	riagrama de Classe	10 10 10 10
1 ULA	riagrama de Classe	10 10 10 10
1 ULA	Piagrama de Classe	10 10 10 10 10
1 ULA	Piagrama de Classe	10 10 10 10 10 10
1 ULA	Piagrama de Classe Definições de Entrada e Saída Instrução Diagrama de Classe Definições de Entrada e Saída Definições de Entrada e Saída	10 10 10 10 10 10 11 11

4.2	Definições de Entrada e Saída											1	11

1 Introdução

1. Propósito do Documento

Este documento descreve a arquitetura do projeto Core-MUSA, incluindo especificações dos circuitos internos e máquinas de estados de cada componente. Ele também apresenta diagramas de classe, definições de entrada e saída e diagramas de temporização. O principal objetivo deste documento é definir as especificações do projeto Core-MUSA e prover uma visão geral completa do mesmo.

2. Stakeholders

Nome	Papel/Responsabilidades
Diego Leite e Lucas Morais	Gerencia
Victor Figueiredo, Matheus Castro, Odivio Caio Santos e Kelvin Carmo	Desenvolvimento
Filipe Boaventura e Wagner Bitten- court	Implementação
Jadson Firmo	Análise e Refatoração

3. Visão Geral do Documento

O presente documento é apresentado como segue:

- Capítulo 2 Este capítulo apresenta uma visão geral da arquitetura, com foco em entrada e saída do sistema e arquitetura geral do mesmo.
- Capítulo 3 Este capítulo apresenta a descrição detalhada da arquitetura bem como seus módulos e componentes.

4. Definições

Termo	Descrição

5. Acrônimos e Abreviações

Sigla	Descrição			
PC	Contador de Programa (Program Counter)			
ULA	Unidade Lógica e Aritmética			
OPCODE Código da Operação				

2 | Visão Geral da Arquitetura

1. Arquitetura geral MUSA

2. Descrição dos Componentes

A unidade de processamento a ser desenvolvida é composta a partir dos seguintes componentes:

- PC Registrador que guarda o endereço da próxima instrução a ser executada.
- Memória de Dados A Memória de dados é endereçada com 33 bits, que comporta no máximo 2 elevado a 33 palavras de instrução no total, que guarda dados com tamanho de 32 bits que foram manipulados pelo programa ou processador.
- Memória de Instrução A Memória de instrução é endereçada com 18 bits, que comporta no máximo 2 elevado a 18 palavras de instrução no total, tem tamanho de 1048576 bytes, justamente pelo fato da palavra de instrução ter 32 bits. Por fim é a memória que guarda o programa codificado em linguagem assembly.
- ULA É responsável por todo o processamento realizado no processador, pois esta unidade executa as instruções lógicas e aritméticas.
- Unidade de Controle Esta unidade decodifica a instrução e define sinais de controle como, sinais de leitura, escrita de memória e de registradores de armazenamento temporário interno e sinais de liberação de barramentos para endereço e dados e unidades funcionais. As unidades funcionais internas do processador são controladas por esta unidade de temporização e controle. Os determinados sinais de controle são enviados para as demais unidades após a decodificação de uma determinada instrução que partem do registrador de instrução (IR).
- Banco de Registradores Contém os 32 registradores de propósito geral do processador.
- Pilha Memória destinada para armazenamento dos endereços de retorno de chamadas de funções. Possui 32 registradores de 18 bits e um contador responsável por apontar o topo da pilha.

3. Intruções

A unidade de processamento possui 21 intruções essenciais para o processamento das operações. Elas são desmembradas em quatro formatos: R-type, I-type, Load/Store e Jump.

- R-type Operações lógicas e aritméticas.
 - ADD: Soma de dois valores.
 - **SUB:** Subtração de dois valores.
 - MUL: Multiplicação de dois valores.
 - **DIV**: Divisão de dois valores.
 - AND: Operação lógica AND entre dois valores.
 - **OR**: Operação lógica OR entre dois valores.
 - NOT: Operação lógica NOT.
 - **CMP**: Comparação de dois valores.
- I-type Operações imediatas.
 - ADDi: Soma de dois valores, sendo um destes imediato.
 - **SUBi**: Subtração de dois valores, sendo um destes imediato.
 - ANDi: Operação lógica AND entre dois valores, sendo um destes imediato.
 - **ORi:** Operação lógica OR entre dois valores, sendo um destes imediato.
- Load/Store Operações de carregamento e armazenamento.
 - LW: Operação de leitura na memória de dados.
 - **SW**: Operação de armazenamento na memória de dados.
- Jump Operações de desvio.
 - JR: Desvia o programa para um endereço de destino.
 - JPC: Desvia o programa para um endereço relativo ao PC.
 - BRFL: Desvia o programa para um endereço de destino, atendendo uma condição de flag.
 - CALL: Desvia um programa em execução para uma sub-rotina.
 - **RET**: Retorna de uma sub-rotina.

- HALT: Para a execução de um programa.

- **NOP**: Não realiza operação.

4. Detalhamento das Intruções

• ADD, SUB, MUL, DIV, AND, OR, NOT, CMP, ADDi, SUBi, ANDi e ORi:

OPCODE	FUNCTION	RD	RS	RT	IM	
04	04	05	05	05	09	

Tabela 2.1: Layout das Operações Aritméticas, Lógicas e Imediatas

Esse conjunto de instruções utiliza dois registradores fontes (RS e RT) de dados e um registrador de destino (RD) para realizar as operações. O campo FUNCTION é utilizado como um segundo campo de código de operação, ampliando o leque de operações possíveis. O campo IM é reservado para as operações imediatas.

• LW e SW:

OPCODE	RD	RS	I	
04	04	05	16	02

Tabela 2.2: Layout das Operações de Leitura e Escrita

Esse conjunto de instruções utiliza, além do código de operação (OPCODE), um registrador fonte (RS), e um registrador destino (RD) para instruções de leitura (LW) e de escrita (SW). Utiliza também do campo I (de 16 bits) que representa o deslocamento do registrador base. Os dois bits restantes serão sempre ignorados.

• JR, BRFL, CALL, RET, HALT e NOP:

OPCODE	RF	CST	
04	05	05	18

Tabela 2.3: Layout das Operações de Salto

Instruções de salto, que especificam um registrador RF e uma CST (FLAG), para a instrução BRFL, que realiza um salto caso condição de comparação com a flag for verdadeira. Utilizará também 18 bits utilizará 18 bits na instrução que respresenta uma posição de endereço de memória, para as instruções JR, CALL e HALT. As instruções RET e NOP só utilizam o OPCODE da instrução.

• JPC:

OPCODE	I
04	28

Tabela 2.4: Layout da Operação JPC

Essa instrução que representa um desvio relativo ao PC contém além do código de operação (OPCODE) um valor de 28 bits que representa o deslocamento o qual pode ser tomado.

3 | Descrição da Arquitetura

1. ULA

1.1. Diagrama de Classe

1.2. Definições de Entrada e Saída

Nome	Tamanho	Direção	Descrição
clock	1	entrada	Sinal de clock da fase.
OP1	32	entrada	Valor do primeiro operando.
OP2	32	entrada	Valor do segundo operando.
Function	3	entrada	Identificador da operação.
Result	32	saída	Valor do resultado da operação realizada.
Overflow	1	saída	Sinal de overflow, para quando ocorrer overflow durante a operação.
Equal	1	entrada	Sinal de igualdade, para quando ocor- rer uma comparação entre dois valores iguais.

2. Busca de Instrução

2.1. Diagrama de Classe

2.2. Definições de Entrada e Saída

Nome	Tamanho	Direção	Descrição
clock_in	1	entrada	Sinal de clock da fase.
entradaPC	18	entrada	Endereço do PC atual.
saidaInstrucao	32	saída	Instrução que sai da memória de instrução .

3. Pilha

3.1. Diagrama de Classe

3.2. Definições de Entrada e Saída

Nome	Tamanho	Direção	Descrição
clock_in	1	entrada	Sinal de clock da fase.
entradaDeDados	18	entrada	Endereço do PC que será armazenado.
popRequest	1	entrada	Sinal para tirar o ultimo endereço arm- mazenado da pilha.
pushRequest	1	entrada	Sinal para salvar o endereço do PC da pi- lha.
saidaDeDados	32	saída	Ultimo endereço salvo na pilha para retorno do PC.

4. Acesso à memória

4.1. Diagrama de Classe

4.2. Definições de Entrada e Saída

Nome	Tamanho	Direção	Descrição
clock_in	1	entrada	Sinal de clock da fase.
entradaDeDados	32	entrada	Valor que será armazenado na memória de dados.
AtivaEscrita	1	entrada	Sinal para ativar a escrita na memória de dados.
AtivaLeitura	1	entrada	Sinal para ativar a leitura na memória de dados.
saidaDeDados	32	saída	Valor que irá sair da memória de dados.