Активация функции активации

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Владислав сильно увлёкся тематикой нейронных сетей и даже прочитал 33 главы из учебника по нейронным сетям, но так и не понял, как же они всё таки обучаются. Он решил подойти к проблеме логически и вспомнил, что в 31 главе было сказано, что любую логическую функцию можно интерполировать нейронной сетью.

Владислав приготовил логическую функцию f, которая заданна таблицей истинности. Помогите ему построить нейронную сеть, которая будет интерполировать её.

Формат входных данных

Первая строка содержит натуральное число K ($1 \le K \le 10$) — число входов (аргументов) f. Следующие 2^K строк содержат значения f из таблицы истинности (0 — ложь, 1 — истина). Для уменьшения размера ввода значения аргументов f были опущены, так как их можно восстановить. Для этого условимся, что строки в таблице заданы в возрастающем порядке, где приоритеты аргументов при сравнении также возрастают от первого к последнему.

Например, для K = 1, 2, 3 значения функции f будут заданы в следующем виде:

K=1	K=2	K = 3
f(0)	f(0,0)	f(0,0,0)
f(1)	f(1, 0)	f(1, 0, 0)
	f(0, 1)	f(0, 1, 0)
	f(1, 1)	f(1, 1, 0)
		f(0, 0, 1)
		f(1, 0, 1)
		f(0, 1, 1)
		f(1, 1, 1)

Формат выходных данных

В первой строке выведите целое положительное число D ($1 \le D \le 2$) — число слоёв (преобразований) в вашей сети.

На следующей строке выведите D целых положительных чисел n_i ($1 \leqslant n_i \leqslant 512$ и $n_D = 1$) — число искусственных нейронов на i-м слое. Предполагается, что $n_0 = M$.

Далее выведите описание D слоёв. i-й слой описывается n_i строками, описанием соответствующих искусственных нейронов на i-м слое. Каждый искусственный нейрон описывается строкой, состоящей из n_{i-1} вещественных чисел с плавающей точкой w_j и одного вещественного числа b — описание линейной зависимости текущего нейрона от выходов предыдущего i-го слоя. Линейная зависимость задается по формуле: $Y = \sum w_j \cdot x_j + b$. Предполагается, что после каждого вычисления линейной зависимости к её результату применяется функция ступенчатой активации $a(Y) = \begin{cases} 1 & Y > 0 \\ 0 & Y < 0 \end{cases}$. Обратите внимание, что в нуле данная функция не определена, и если в ходе вычисления вашей сети будет вызвана активация от нуля, вы получите ошибку.

Примеры

стандартный ввод	стандартный вывод	
2	2	
0	2 1	
1	1.0 -1.0 -0.5	
0	1.0 1.0 -1.5	
1	1 1 -0.5	
2	2	
0	2 1	
1	1.0 -1.0 -0.5	
1	-1.0 1.0 -0.5	
0	1 1 -0.5	

Замечание

Во втором примере в результате получается следующая сеть:

Категоричный профессор

Имя входного файла: **стандартный ввод** Имя выходного файла: **стандартный вывод**

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Однажды один профессор дал своему ученику задание, вычислить коэффициент корреляции Пирсона между двумя признаками a и b на множестве объектов. Ученик тут же вычислил результат и показал его профессору. «Неправильно, — возразил профессор. — Это задание с подвохом. Первый признак a на самом деле категориальный. Поэтому сперва требуется сделать one-hot преобразование, а затем уже вычислить среднее взвешенное корреляций между b и новыми признаками, которые были получены после преобразования a».

Вам необходимо выполнить задание профессора.

Формат входных данных

Первая строка содержит два натуральных числа N и K, разделённых пробелами: N ($1 \le N \le 10^5$) — число объектов, K ($1 \le K \le 10^5$) — число значений категории первого признака. Вторая строка содержит N натуральных чисел, разделённых пробелами: i-е из них a_i ($1 \le a_i \le K$) — значение первого признака i-го объекта. Третья строка содержит N целых чисел, разделённых пробелами: i-е из них b_i ($|b_i| \le 10^9$) — значение второго признака i-го объекта.

Формат выходных данных

Выведите одно вещественное число с плавающей точкой — коэффициент корреляции Пирсона между a и b. Абсолютная или относительная погрешность ответа не должна превышать 10^{-9}

Пример

стандартный ввод	стандартный вывод
6 3	0.19203297584037293
1 2 2 3 3 3	
1 2 3 4 5 6	

Замечание

В примере значение корреляции между первым новым признаком (1,0,0,0,0,0) и b равно -0.654653671, а его вес равен единице, так как соответствующие значение встретилось только один раз. Значение корреляции между вторым новым признаком (0,1,1,0,0,0) и b равно -0.414039336, а его вес равен двум. Значение корреляции между третьим новым признаком (0,0,0,1,1,1) и b равно 0.878310066, а его вес равен трём.