

Simulation-based network capacity allocation optimization for traffic resilience via enhanced mixed stochastic approximation

Conference in Emerging Technologies in Transportation Systems (TRC-30)

Qinglong Lu, Yunping Huang, Wenzhe Sun, Jan-Dirk Schmöcker, Constantinos Antoniou

September 3, 2024

Outline

- 1. Introduction
- 2. Traffic resilience definition
- 3. Network capacity allocation
- 4. Case study
- 5. Conclusions

Introduction

Higher capacity means less congestion?

- Increase network capacity:
 - Widening existing roads
 - Building new corridors
- Increased capacity > additional travel
 - Mode shifts, route shifts
 - Redistribution of trips, new trips
 - Improve network capacity allocation

Ewing, R., Tian, G., & Lyons, T. (2018). Does compact development increase or reduce traffic congestion?. *Cities*, 72, 94-101.

Noland, R. B. (2001). Relationships between highway capacity and induced vehicle travel. *Transportation Research Part A: Policy and Practice*, 35(1), 47-72.

Urban transportation disruptions

- Triggers: natural disasters, special events, etc.
- Impacts of disruptions
 - Reducing traffic efficiency
 - Increasing travel risk
 - Cascading to other urban subsystems

Significant social and economic losses!

Research question

How to optimize network capacity allocation plan to improve traffic resilience?

Strategic network design

Farahani, R. Z., Miandoabchi, E., Szeto, W. Y., & Rashidi, H. (2013). A review of urban transportation network design problems. *European Journal of Operational Research*, 229(2), 281–302.

Reuter

Traffic resilience definition

What is system resilience?

"Resilience represents the ability to <u>prepare</u> for changing conditions and <u>withstand</u>, <u>respond</u> to, and <u>recover</u> rapidly from disruptions."

— Federal Highway Administration (FHWA) of the US

- Different aspects compared to other concepts (e.g., vulnerability, robustness)
 - New equilibrium state
 - Recovery speed

"Resilience Triangle"

$$R = \int_{t_0}^{t_1} (100 - Q(t)) dt$$

Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O'Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., & Von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. *Earthquake Spectra*, 19(4), 733–752.

MFD-based resilience indicators

- Macroscopic fundamental diagram (MFD)
 - x-axis: Weighted average density (or Accumulation)
 - y-axis: Trip completion rate
 (or weighted space-mean flow)
- Transportation systems:
 - Service rate Trip completion rate
 - MFD-based traffic resilience indicators

(a) Trip completion rate deviation

Qinglong Lu | Chair of Transportation Systems Engineering

(b) System functionality

Network capacity allocation

Network capacity allocation problem

- Calculation example:
 - Effective capacity of a lane i: $q_i^{\text{eff}} = \frac{q_i^{\text{cap}} t_i^g}{T}$
 - Effective capacity of a link $l: q_l = \sum_{i=1}^{n_l} q_i^{eff}$
- Network capacity allocation:
 - Lane allocation (discrete)
 - Traffic signal timing (continuous)
 - Mixed network design problem

Resilient network capacity allocation

- Multi-objective optimization
 - Disruption scenarios
 - Disruption distribution
- Objective function:

$$y(\mathbf{z}, \mathbf{x}, \boldsymbol{\xi}) = -w^n D_c - w^d R^d(\mathbf{z}, \mathbf{x}, \boldsymbol{\xi}) - \sum_{\phi \in \mathbb{S}} w_\phi^s R^s(\mathbf{z}, \mathbf{x}, \boldsymbol{\xi}, \phi)$$

- Disruption probability
- Economic losses

- Risk assessment
- Simulation-based optimization

Solution algorithm

- Problem characteristics:
 - High-dimensional
 - Stochastic
 - Expensive-to-evaluate objective
 - Mixed network design
 - Enhanced mixed simultaneous perturbation stochastic approximation (SPSA)

$$(SOCA) \min_{\boldsymbol{z}, \boldsymbol{x}} \quad \mathbb{E}_{\boldsymbol{\xi}} = [y(\boldsymbol{z}, \boldsymbol{x}, \boldsymbol{\xi})]$$

s.t.
$$\mathbb{E}_{\boldsymbol{\xi}} = [g(\boldsymbol{z}, \boldsymbol{x}, \boldsymbol{\xi})] \leq 0$$

 $\boldsymbol{z} + \boldsymbol{z}^{\text{opp}} = \boldsymbol{n}$

$$Bx = T$$

$$z_l \leq z \leq z_u$$

$$x_l \leq x \leq x_u$$

$$oldsymbol{z} \in \mathbb{Z}^d, oldsymbol{x} \in \mathbb{R}^{p-d}$$

$$\hat{\boldsymbol{\theta}}_{k+1} = \hat{\boldsymbol{\theta}}_k - a_k \bar{\bar{\boldsymbol{H}}}_k^{-1}(\hat{\boldsymbol{\theta}}_k) \boldsymbol{G}_k(\hat{\boldsymbol{\theta}}_k)$$

Spall, J. C. (2009). Feedback and Weighting Mechanisms for Improving Jacobian Estimates in the Adaptive Simultaneous Perturbation Algorithm. IEEE Transactions on Automatic Control, 54(6), 1216-1229.

Wang, L., Zhu, J., & Spall, J. C. (2018). Mixed Simultaneous Perturbation Stochastic Approximation for Gradient-Free Optimization with Noisy Measurements. 2018 Annual American Control Conference (ACC), 3774–3779.

2MSPSA algorithm

Case study

Introduction Traffic Resilience Capacity Allocation Case Study Conclusion

Case studies: Study areas and disruptions

- Munich city center, Germany: 100 km², 2605 links
- Simulator: SUMO
- Disruption scenarios
 - Daily operation (wⁿ)
 - Hyper-congestion (w^d)
 - Flooding (w_1^s)

$$y(\mathbf{z}, \mathbf{x}, \boldsymbol{\xi}) = -w^n D_c - w^d R^d(\mathbf{z}, \mathbf{x}, \boldsymbol{\xi}) - \sum_{\phi \in \mathbb{S}} w_\phi^s R^s(\mathbf{z}, \mathbf{x}, \boldsymbol{\xi}, \phi)$$

Algorithm evaluation

Rastrigin function:

$$L(\boldsymbol{\theta}) = 10p + \sum_{i=1}^{p} [\theta_i - 10\cos(2\pi\theta_i)]$$
$$y(\boldsymbol{\theta}) = L(\boldsymbol{\theta}) + \varepsilon$$

Where p is the number of parameters, among which d variables are discrete, $\varepsilon \sim N(0, \sigma)$.

$$\hat{\boldsymbol{\theta}}_{k+1} = \hat{\boldsymbol{\theta}}_k - a_k \bar{\bar{\boldsymbol{H}}}_k^{-1}(\hat{\boldsymbol{\theta}}_k) \boldsymbol{G}_k(\hat{\boldsymbol{\theta}}_k)$$

Traffic dynamics and resilience comparisons

Conclusions

Conclusions

- Formulated the simulation-based network capacity allocation optimization problem
- Developed the second-order mixed SPSA (2MSPSA) algorithm
- Evaluated the 2MSPSA algorithm
- Evaluated the resilient network capacity allocation plan
- Future research:
 - Other disruption scenarios, e.g., cyberattacks
 - Dynamic resilient capacity allocation control

References (a short list)

- Bao, J., Zheng, Y., & Mokbel, M. F. (2012). Location-based and preference-aware recommendation using sparse geosocial networking data. In *Proceedings of the 20th international conference on advances in geographic information* systems (pp. 199-208).
- Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O'Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., & Von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. *Earthquake Spectra*, 19(4), 733–752.
- Ewing, R., Tian, G., & Lyons, T. (2018). Does compact development increase or reduce traffic congestion?. Cities, 72, 94-101.
- Farahani, R. Z., Miandoabchi, E., Szeto, W. Y., & Rashidi, H. (2013). A review of urban transportation network design problems. European Journal of Operational Research, 229(2), 281–302.
- Geroliminis, N., & Daganzo, C. F. (2008). Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. Transportation Research Part B: Methodological, 42(9), 759–770.
- Ji, Y., & Geroliminis, N. (2012). On the spatial partitioning of urban transportation networks. Transportation Research Part B: Methodological, 46(10), 1639-1656.
- Lu, Q. L., Sun, W., Dai, J., Schmöcker, J. D., & Antoniou, C. (2024). Traffic resilience quantification based on macroscopic fundamental diagrams and analysis using topological attributes. Reliability Engineering & System Safety, 247, 110095.
- Noland, R. B. (2001). Relationships between highway capacity and induced vehicle travel. Transportation Research Part A: Policy and Practice, 35(1), 47-72.
- Spall, J. C. (2009). Feedback and Weighting Mechanisms for Improving Jacobian Estimates in the Adaptive Simultaneous Perturbation Algorithm. *IEEE Transactions on Automatic Control*, 54(6), 1216–1229.
- Wang, L., Zhu, J., & Spall, J. C. (2018). Mixed Simultaneous Perturbation Stochastic Approximation for Gradient-Free Optimization with Noisy Measurements. 2018 Annual American Control Conference (ACC), 3774–3779.

Questions?

Contact: Qinglong Lu

Email: qinglong.lu@tum.de

The Technical University of Munich is excited to welcome two prestigious conferences in the coming years!

