Fakultet elektrotehnike i računarstva Zavod za elektroniku, mikroelektroniku, računalne i inteligentne sustave

Elektronika 1

Ž. Butković, J. Divković Pukšec, A. Barić

Usporedba diode i otpornika

otpornik – 100Ω

silicijska pn-dioda

Specifičnost analize elektroničkih sklopova – zbog nelinearnih karakteristika elektroničkih elemenata

Statička analiza

Statičkom analizom proračunavaju se istosmjerne struje i naponi elektroničkih sklopova

Primjer sklopa

Iz strujnog kruga:

$$U_G = R I_D + U_D$$

Druga jednadžba:

$$I_D = f(U_D)$$

npr. za propusnu polarizaciju

$$I_D = I_S \exp(U_D/U_T)$$

Primjer 4.1

Izračunati struju I_D i napon U_D za sklop prema slici. Napon U_G = 3 V, otpor R = 500 Ω , struja zasićenja diode I_S = 10 fA i temperatura je sobna, U_T = 25 mV.

Grafička analiza

Statički radni pravac:

$$U_G = R I_D + U_D$$

nagib - - 1/R

Statička radna točka Q

Primjer:

$$U_G = 3 \text{ V}, R = 500 \Omega$$

 $U_{DQ} = 0,68 \text{ V}$
 $I_{DQ} = 4,6 \text{ mA}$

Model diode za statičku analizu

Analitički postupak – Primjer 4.2

$$U_D = U_{\gamma} = U_{DQ}$$

$$I_D = \frac{U_G - U_{\gamma}}{R} = I_{DQ}$$

Primjer 4.2 - Ponoviti proračun struje i napona diode sklopa iz primjera 4.1 korištenjem modela diode za statičku analizu. Napon koljena diode $U_v = 0.7 \text{ V}$.

Analiza uz priključak malog signala

Primjer sklopa

Ulazni napon: $u_G = U_G + u_g = U_G + U_{gm} \sin \omega t$

Iz strujnog kruga: $u_G = R i_D + u_D$

Grafička analiza (1)

Radni pravac:

 $u_G = R i_D + u_D$ pomiče se s primjenom u_G

Za mali signal

$$i_D = I_{DQ} + i_d = I_{DQ} + I_{dm} \sin \omega t$$

$$u_D = U_{DQ} + u_d = U_{DQ} + U_{dm} \sin \omega t$$

U statičkoj radnoj točki:

$$i_d = i_D - I_{DQ}$$
$$u_d = u_D - U_{DO}$$

Grafička analiza (2)

Nagib karakteristike:

$$\frac{\mathrm{d}i_D}{\mathrm{d}u_D}\bigg|_Q = \frac{\Delta i_D}{\Delta u_D}\bigg|_Q = \frac{I_{dm}}{U_{dm}} = \frac{i_d}{u_d} = g_d$$

 g_d – dinamička vodljivost $r_d = 1/g_d$ – dinamički otpor

Primjer:

$$U_{gm} = 0.5 \text{ V}$$

 $I_{dm} = 1 \text{ mA}, U_{dm} = 5.6 \text{ mV}$
 $g_d = 0.18 \text{ S}, r_d = 5.6 \Omega$

Uvjeti rada diode u režimu malog signala

Struja diode oko radne točke

$$i_D = i_D \Big|_{Q} + \frac{\mathrm{d}i_D}{\mathrm{d}u_D} \Big|_{Q} (u_D - U_{DQ}) + \frac{\mathrm{d}^2 i_D}{\mathrm{d}u_D^2} \Big|_{Q} \frac{(u_D - U_{DQ})^2}{2!} + \cdots$$

$$Uz i_D = I_S \exp(u_D/U_T)$$

$$\left. \frac{\mathrm{d}i_D}{\mathrm{d}u_D} \right|_Q = \frac{I_S}{U_T} \exp\left(\frac{u_D}{U_T}\right) \bigg|_Q = \frac{I_{DQ}}{U_T} \qquad \left. \frac{\mathrm{d}^2 i_D}{\mathrm{d}u_D^2} \right|_Q = \frac{I_S}{U_T^2} \exp\left(\frac{u_D}{U_T}\right) \bigg|_Q = \frac{I_{DQ}}{U_T^2}$$

$$\operatorname{uz} u_D - U_{DQ} = u_d \rightarrow i_D = I_{DQ} \left[1 + \frac{u_d}{U_T} + \frac{1}{2!} \left(\frac{u_d}{U_T} \right)^2 + \cdots \right]$$

Uvjet za režim malog signala: $u_d \ll U_T \ (U_{dm} \ll U_T)$

$$\frac{\mathrm{d}i_D}{\mathrm{d}u_D}\bigg|_Q = \frac{I_{DQ}}{U_T} = g_d = \frac{1}{r_d} \qquad \text{uz linearni rad} \rightarrow i_D = I_{DQ} + i_d = I_{DQ} + \frac{u_d}{r_d}$$

Analitički postupak

Metoda superpozicije

uz: $u_G = U_G + u_g$ - analiza posebno za statiku, a posebno za dinamiku

statička analiza

$$U_D = U_{\gamma} = U_{DQ}$$

$$I_D = \frac{U_G - U_{\gamma}}{R} = I_{DQ}$$

$$r_d = \frac{U_{DQ}}{I_{DQ}}$$

dinamička analiza

$$i_d = \frac{u_g}{R + r_d}$$
$$u_d = r_d i_d$$

Primjer 4.3

Za sklop sa slike analitički proračunati napon u_D i struju i_D diode. Napon $u_G=3+0.5 \sin \omega t$ V, otpor $R=500~\Omega$, napon koljena diode $U_\gamma=0.7$ V i temperatura je sobna, $U_T=25~\mathrm{mV}$.

Utjecaj reaktivnih elemenata

Reaktivne komponente se različito ponašaju u statičkim i dinamičkim uvjetima.

statička analiza

dinamička analiza

Grafička analiza

Statički radni pravac:

$$U_G = (R_1 + R_2) I_D + U_D$$

nagib: $-1/(R_1 + R_2)$

Dinamički radni pravac:

$$u_g = (R_1 + R_2||R_3) i_d + u_d$$

nagib: $-1/(R_1 + R_2||R_3)$

Primjer 4.4

Konstruirati statički radni pravac i dinamički radni pravac za napon u_g = 0 za primjer sa zadnjeg grafičkog prikaza. Zadano je: U_G = 3 V, R_1 = 100 Ω i R_2 = R_3 = 400 Ω .

Rješenje:

Analitički postupak

statička analiza

$$U_D = U_{DQ} = U_{\gamma}$$

$$I_D = I_{DQ} = \frac{U_G - U_{\gamma}}{R_1 + R_2}$$

dinamička analiza

$$i_d = \frac{u_g}{R_1 + r_d + R_2 \parallel R_3}$$
$$u_d = r_d i_d$$

Primjer 4.5

Za sklop sa slike analitički proračunati napon u_D i struju i_D diode. Napon $u_G=3+0.3~{\rm sin}\omega t~{\rm V},~{\rm otpori}~R_1=100~\Omega,~R_2=R_3=400~\Omega,~{\rm napon}~{\rm koljena}$ diode $U_{_{\it V}}=0.7~{\rm V}$ i temperatura je sobna, $U_T=25~{\rm mV}.$

Priključak velikog signala

Hod radne točke po nelinearnom dijelu karakteristike

Posljedica nelinearnog rada:

- □ izobličenje struje
- □ dodatna istosmjerna struja ΔI_D $I_D = I_{DO} + \Delta I_D$

19

Izvor napajanja

- ☐ Mrežni napon $-f = 50 \text{ Hz}, \ U_{pef} = 220 \text{ V}, \ U_{pm} = 310 \text{ V}$
- ☐ Transformator smanjuje ulazni napon, izolira izvor od napona u primaru
- Ispravljač ispravlja izmjenični napon, daje istosmjerni pulsirajući napon
- ☐ Filtar guši izmjenične komponente
- □ Stabilizator održava stalni istosmjerni napon
- Trošilo elektronički sklopovi i uređaji

Poluvalni ispravljač (1)

Mrežni napon – $u_p = U_{pm} \sin \omega t$

Napon sekundara – $u_s = U_{sm} \sin \omega t$

Omjer transformacije: $n = U_{pm}/U_{sm}$

$$\label{eq:local_equation} \begin{split} \text{Za } u_D &= u_s - u_{IZ} > U_\gamma \ \to \text{dioda vodi} \ \to u_D = U_\gamma, \ u_{IZ} = u_s - U_\gamma \\ \text{Za } u_D &< U_\gamma \ \to \text{dioda ne vodi} \ \to i_D = 0 \ , \ u_D = u_s, \ u_{IZ} = 0 \end{split}$$

Poluvalni ispravljač (2)

Uz idealnu diodu:

$$\text{za } u_D < 0 \rightarrow i_D = 0$$

$$\text{za } u_D > 0 \rightarrow u_D = 0$$

$$i_D = \begin{cases} u_s / R_T & \text{za } u_s > 0 \\ 0 & \text{za } u_s < 0 \end{cases}$$

$$u_{IZ} = i_D R_T$$

$$u_{IZ} = \begin{cases} u_s & \text{za } u_s > 0 \\ 0 & \text{za } u_s < 0 \end{cases}$$

Poluvalno ispravljeni napon (1)

Srednja vrijednost

$$U_{IZ} = \frac{1}{T} \int_{0}^{T} u_{IZ}(t) dt = \frac{1}{2\pi} \left[U_{sm} \int_{0}^{\pi} \sin \omega t d\omega t + \int_{\pi}^{2\pi} 0 d\omega t \right] = \frac{U_{sm}}{\pi} = 0.318 U_{sm}$$

Efektivna vrijednost

$$U_{izef} = \left[\frac{1}{T} \int_{0}^{T} u_{IZ}^{2}(t) dt\right]^{\frac{1}{2}} = \left[\frac{1}{2\pi} \left(U_{sm}^{2} \int_{0}^{\pi} \sin^{2} \omega t d\omega t + \int_{\pi}^{2\pi} 0 d\omega t\right)\right]^{\frac{1}{2}} = \frac{U_{sm}}{2}$$

Razvojem poluvalno ispravljenog napona u Fourierov red

$$u_{IZ} = U_{sm} \left[\frac{1}{\pi} + \frac{\sin \omega t}{2} - \frac{2}{\pi} \left(\frac{\cos 2\omega t}{1 \cdot 3} + \frac{\cos 4\omega t}{3 \cdot 5} + \dots \right) \right] = U_{IZ} + u_{izv}$$

23

Poluvalno ispravljeni napon (2)

$$Uz \qquad U_{izef} = \sqrt{U_{IZ}^2 + U_{izvef}^2}$$

Efektivna vrijednost napona valovitosti

$$U_{izvef} = \sqrt{U_{izef}^2 - U_{IZ}^2} = U_{sm} \sqrt{\frac{1}{4} - \frac{1}{\pi^2}} = 0,386 U_{sm}$$

Faktor valovitosti

$$r = \frac{U_{izvef}}{U_{IZ}} = \sqrt{\left(\frac{U_{izef}}{U_{IZ}}\right)^2 - 1} = \sqrt{\frac{\pi^2}{4} - 1} = 1,21$$

Maksimalna struja diode u vođenju – $U_{\rm sm}/R_{\rm T}$

Maksimalni zaporni napon diode — U_{sm}

Punovalni ispravljač

$$u_{IZ} = (i_{D1} + i_{D2}) R_T$$

Punovalno ispravljeni napon (1)

Srednja vrijednost

$$U_{IZ} = \frac{2}{T} \int_{0}^{T/2} u_{IZ}(t) dt = \frac{U_{sm}}{\pi} \int_{0}^{\pi} \sin \omega t d\omega t = \frac{2U_{sm}}{\pi} = 0,637 U_{sm}$$

Efektivna vrijednost

$$U_{izef} = \left[\frac{2}{T} \int_{0}^{T/2} u_{IZ}^{2}(t) dt\right]^{\frac{1}{2}} = \left(\frac{U_{sm}^{2}}{\pi} \int_{0}^{\pi} \sin^{2} \omega t d\omega t\right)^{\frac{1}{2}} = \frac{U_{sm}}{\sqrt{2}} = 0,707 U_{sm}$$

Razvojem punovalno ispravljenog napona u Fourierov red

$$u_{IZ} = U_{sm} \left[\frac{2}{\pi} - \frac{4}{\pi} \left(\frac{\cos 2\omega t}{1 \cdot 3} + \frac{\cos 4\omega t}{3 \cdot 5} + \dots \right) \right] = U_{IZ} + u_{izv}$$

Punovalno ispravljeni napon (2)

Efektivna vrijednost napona valovitosti

$$U_{izvef} = \sqrt{U_{izef}^2 - U_{IZ}^2} = U_{sm} \sqrt{\frac{1}{2} - \frac{4}{\pi^2}} = 0.308 U_{sm}$$

Faktor valovitosti

$$r = \frac{U_{izvef}}{U_{IZ}} = \sqrt{\left(\frac{U_{izef}}{U_{IZ}}\right)^2 - 1} = \sqrt{\frac{\pi^2}{8} - 1} = 0,483$$

Maksimalna struja dioda u vođenju – $U_{\rm sm}/R_T$ Maksimalni zaporni napon dioda – $2U_{\rm sm}$

Punovalni ispravljač – mosni ili Graetzov spoj

Valni oblici – isti kao i kod prethodnog punovalnog ispravljača

Maksimalna struja dioda u vođenju — U_{sm}/R_T

Maksimalni zaporni napon dioda — U_{sm}

Realizacija – sve 4 diode u istom kućištu

28

Ispravljač s kapacitivnim opterećenjem (1)

Smanjuje valovitost ispravljenog napona C i R_T – niskopropusni filtar koji guši izmjenične komponente ispravljenog napona

Ispravljač s kapacitivnim opterećenjem (2)

Kroz $T_1 - u_s < u_{IZ}$ dioda ne vodi, kondenzator se izbija

$$u_{IZ}(t) = U_{sm} \exp\left(-\frac{t - t_1}{\tau}\right) \quad \tau = R_T C$$

Za $t = t_2 - u_s = u_{IZ}$ dioda provede

$$U_{sm}\cos\omega(t_2-t_1)=U_{sm}\exp\left(-\frac{t_2-t_1}{\tau}\right)$$

Kroz $T_2 - u_s = u_{IZ}$ dioda vodi, kondenzator se nabija

$$u_{IZ}(t) = u_s(t) = U_{sm} \cos \omega (t - t_1)$$

Maksimalni zaporni napon diode – $2U_{sm}$

30

Pojednostavljeni valni oblik napona trošila

$$\begin{array}{c|c} & u_{iz}/U_{izvm} \\ & 0 \\ 0 \\ -1 \end{array}$$

Za
$$t = 0$$
 $u_{IZ}(0) = U_{izm} = U_{sm}$

Za
$$t = T_2 \approx T$$

$$u_{IZ}(T) = U_{izm} \exp\left(-\frac{T}{\tau}\right) \approx U_{izm}\left(1 - \frac{T}{\tau}\right)$$

$$u_{IZ}(0) - u_{IZ}(T) = 2U_{izvm}$$

$$U_{izvm} = U_{izm} \frac{T}{2\,\tau}$$

Srednja vrijednost
$$U_{IZ} = u_{IZ} - u_{izv} = U_{izm} - U_{izvm} = U_{izm} \left(1 - \frac{T}{2\tau}\right)$$
Izmjenični napon valovitosti $u_{izv} = U_{izvm} \left(1 - \frac{2t}{T}\right)$ $U_{izvef} = \left[\frac{1}{T}\int_{0}^{T}u_{izv}^{2}(t)\,\mathrm{d}t\right]^{1/2} = \frac{U_{izvm}}{\sqrt{3}}$

Faktor valovitosti
$$r = \frac{U_{izvef}}{U_{IZ}} = \frac{T/(2\tau)}{\sqrt{3}[1-T/(2\tau)]}$$

Primjer 4.6 (1)

Za punovalni ispravljač u Graetzovom spoju s kapacitivnim opterećenjem na slici izračunati srednju vrijednost napona trošila i faktor valovitosti uz:

- a) C = 0,
- b) $C = 1000 \,\mu\text{F}.$

Paralelni diodni ograničavači (1)

Paralelni diodni ograničavači (2)

Serijski diodni ograničavač

Primjer 4.7

Nacrtati spoj serijskog diodnog ograničavača koji će ulazni napon $u_{nl} = 10 \sin \omega t \text{ V}$ ograničiti ispod razine od -6 V.

Rješenje:

Dvostrani ograničavači

Dvostrani paralelni diodni ograničavač

Dvostrani ograničavač sa Zenerovim diodama