Introduction à la dynamique - Printemps 2024 Indications de corrigé

Problème 1 (9 points environ): Statistique des fractions continues

(Q1) [3 pts] On remarque $0 < 1/a(x) \le 1$ donc $1/a \in L^1(\mu_G)$. Vu l'invariance et l'ergodicité de μ_G pour G, le théorème de Birkhoff donne :

$$\lim_{n \to \infty} \frac{1}{n} \left(\frac{1}{a_1(x)} + \dots + \frac{1}{a_n(x)} \right) = \lim_{n \to \infty} \frac{1}{n} S_n^G(1/a)(x) = \frac{1}{\log 2} \int_0^1 \frac{1}{a(x)} \frac{dx}{x+1}$$
$$= \frac{1}{\log 2} \sum_{n > 1} \frac{1}{n} \log \frac{(n+1)^2}{n(n+2)} = \frac{A_1}{\log 2} \in]0, \infty[\text{ vu } \log \frac{(n+1)^2}{n(n+2)} = \mathcal{O}(n^{-2}).$$

Par continuité de 1/x sur x > 0, on a μ_G -p.p. la convergence :

$$\lim_{n \to \infty} \frac{n}{\frac{1}{a_1(x)} + \dots + \frac{1}{a_n(x)}} = \frac{\log 2}{A_1}.$$

(Q2) [3 pts] On a $a(x) \ge (1/x) - 1$ donc $\int a \, d\mu_G \ge \frac{1}{\log 2} \int_0^1 \frac{1}{x} \frac{dx}{x+2} - 1 = \infty$. Le théorème de Birkhoff ne s'applique pas à a mais à chaque fonction bornée $a^N := \min(a, N)$. On a, pour tout $N \ge 1$:

$$\liminf_{n\to\infty} \frac{1}{n}(a_1+\cdots+a_n) \ge \lim_{n\to\infty} \frac{1}{n}(a_1^N+\cdots+a_n^N) = \mu_G(\min(a,N)).$$

Mais d'après le théorème de convergence monotone, $\mu_G(\min(a, N)) \stackrel{N \to \infty}{\longrightarrow} \mu_G(a) = \infty$. Donc μ_G -p.p. $\lim_{n \to \infty} \frac{1}{n} (a_1 + \cdots + a_n) = +\infty$.

(Q3) [3 pts] On a la formule : $\lambda(x) := \lim_{n \to \infty} \frac{1}{n} \log |(G^n)'(x)| = -2 \lim_{n \to \infty} \frac{1}{n} S_n^G \log(x)$. Mais $\log \in L^1(\mu_G)$ et le théorème de Birkhoff donne la convergence μ_G -p.p. $\lambda(x) = \frac{2}{\log 2} C_1 = \pi^2/(6 \log 2)$.

Problème 2 (10 points environ): Automorphismes du tore

(Q1) [1 pt] le volume m est l'unique mesure de probabilité invariante par les translations de \mathbb{T}^d . Posons $\mu := (T_A)_*(m)$. Pour tout $v \in \mathbb{R}^d$, $(\tau_v)_*(\mu) = (\tau_v \circ T_A)_*(m) = (T_A \circ \tau_{A^{-1}v})_*(m) = (T_A)_*[(\tau_{A^{-1}v})_*(m)] = (T_A)_*(m) = \mu$. Donc $\mu = m$ et $m \in \mathbb{P}(T_A)$.

(Q2) [4 pts] Soit $U: L^2(m) \to L^2(m)$, $\phi \mapsto \phi \circ T_A$ (bien défini car m est T_A -invariante). Soit $\phi \in L^2(m)$. La non-ergodicité affirme l'existence de $U(\phi) = \phi \in L^2(m)$, non constante modulo m. Montrons que (1) n'a pas lieu.

La théorie des séries de Fourier donne $\phi = \sum_{n \in \mathbb{Z}^d} a_n e_n$ où $e_n(x) := e^{2i\pi n \cdot x}$ et $(a_n)_{n \in \mathbb{Z}^d} \in \ell^2(\mathbb{Z}^d)$ (série dans L^2). On a donc : $U(\phi) = \sum_{n \in \mathbb{Z}^d} a_n U(e_n)$ et $U(e_n) = \exp(2i\pi n \cdot A.x) = \exp(2i\pi A^* n.x) = e_{A^*(n)}$ donc $U(\phi) = \sum_{n \in \mathbb{Z}^d} a_n e_{A^*n}$. $U(\phi) = \phi$ implique, pour tout $n \in \mathbb{Z}^d : \forall k \in \mathbb{Z}$ $a_{(A^*)^k(n)} = a_n$. La condition $\sum_{n \in \mathbb{Z}^d} |a_n|^2 < \infty$ implique : $a_n \neq 0$ seulement si $k \mapsto (A^*)^k n$ n'est pas injective, i.e., $\exists k < \ell \ (A^*)^k n = (A^*)^\ell n$. Mais A^* est inversible donc : $n = (A^*)^{k-\ell} n$ avec $n \neq 0$ donc $1 \in \operatorname{sp}((A^*)^{k-\ell})$ et $1 \in \operatorname{sp}(A^{k-\ell}) = \{\lambda^{k-\ell} : \lambda \in \operatorname{sp}(A)\}$. Ceci contredit (1).

(Q3) [2 pts] (1) implique que m est ergodique. Or m est une mesure de support égal à \mathbb{T}^d dont la topologie admet une base dénombrable. Le théorème de Birkhoff implique que m-p.t. $x \in \mathbb{T}^d$ a une orbite dense. T_A est topologiquement transitif.

(Q4) [3 pts] Supposons la négation de (1) : il existe $\lambda \in \operatorname{sp}(A)$ avec $\lambda^n = 1$: $\det(A^n - I) = \det((A^*)^n - I) = 0$. En se plaçant sur le corps \mathbb{Q} , on trouve $h \in \mathbb{Q}^d \setminus 0$ tel que $(A^*)^n \cdot h = h$. On peut supposer que $h \in \mathbb{Z}^d$.

On pose : $H: \mathbb{T}^d \to \mathbb{T}$, $x \mapsto h \cdot x$. H est bien définie et continue, car h à coefficients entiers. Pour $t \in \mathbb{R}$, $H(x+th) = H(x) + t\|h\|^2 + \mathbb{Z} \neq H(x)$ pour $0 < |t| \ll 1 : J^x := H^{-1}(H(x))$ est un fermé d'intérieur vide contenant x. Il est invariant par T_A^n car $H(T_A^n(x)) = h \cdot A^n x = (A^n)^* h \cdot x = H(x)$.

On pose $K^x := \bigcup_{k=0}^{n-1} T_A^k(J^x)$. C'est un fermé d'intérieur vide (Baire), invariant par T_A et contenant x. On a donc $\overline{\mathcal{O}(x)} \subset K^x \subsetneq \mathbb{T}^d$: aucune orbite n'est dense, ie, T_A n'est pas topologiquement transitif.

(Q5) [2 pts] On a vu dans (Q3) que l'ergodicité de (T_A, m) implique la transitivité topologique de T_A . Réciproquement, si (T_A, m) n'est pas ergodique, alors (1) est en défaut et (Q4) montre que T_A n'est pas topologiquement transitive.

Problème 3 (10 points environ) : Extensions de groupe itérées

(Q1) [2 pts] On montre l'invariance de la mesure par récurrence. C'est clair pour i=1. Supposons l'invariance $(f_i)_*(m_i)=m_i$ et démontrons-la pour i+1. Soit $\phi: \mathbb{T}^{i+1} \to [0,\infty)$ mesurable. Posons $\Phi(x):=\int_{\mathbb{T}} \phi(x,y)\,dy$ bien définie m_i -p.p. par le théorème de Fubini-Tonnelli. On calcule :

$$m_{i+1}(\phi \circ f_{i+1}) = {}^{(1)} \int_{\mathbb{T}^i} \left(\int_{\mathbb{T}} \phi(f_i(x), y + h_{i+1}(x)) \, dm_{\mathbb{T}} \right) \, dm_i$$
$$= {}^{(2)} \int_{\mathbb{T}^i} \Phi(f_i(x)) \, dm_i = {}^{(3)} \int_{\mathbb{T}^i} \Phi(x) \, dm_i = {}^{(4)} m_{i+1}(\phi).$$

où les égalités (1) et (4) résultent du théorème de Fubini-Tonnelli, l'égalité (2) de l'invariance de $m_{\mathbb{T}}$ par translation et l'égalité (3) de l'hypothèse de récurrence.

Enfin (f_i, m_i) est ergodique comme facteur de la dynamique ergodique (f_d, m_d) .

(Q2) [3 pts] Si h est une application continue, alors h_* est continue pour la topologie faible, linéaire, et vérifie $h_*(\delta_x) = \delta_{h(x)}$. En particulier, $h(B(\mu)) \subset B(h_*(\mu))$. Appliqué à l'homéomorphisme $\tau_{i,y}$ qui laisse invariant m_i , on obtient $\tau_{i,y}(B(m_i)) = B(m_i)$ pour tout $y \in \mathbb{T}$. On en déduit que $B(m_i) = B_{i-1} \times \mathbb{T}$ pour un certain $B_{i-1} \subset \mathbb{T}$.

Remarquons que $B_{i-1} = \pi_{i,i-1}(B(m_i) \cap (\mathbb{T}^{i-1} \times \{t\}))$ pour tout $t \in \mathbb{T}$. Le théorème de Fubini implique que $B(m_i) \cap (\mathbb{T}^{i-1} \times \{t\})$ est borélien pour Lebesgue-p.t. $t \in \mathbb{T}$. L'image d'un borélien par une application borélienne injective est borélienne. Donc B_{i-1} est bien mesurable.

Le théorème de Birkhoff donne : $m_i(B(m_i)) = 1$ et donc $m_{i-1}(B_{i-1}) = 1$.

(Q3) [3 pts] Supposons $\mu \in \mathbb{P}_{erg}(f_i)$ vérifie $(\pi_{i,i-1})_*(\mu) = m_{i-1}$. Supposons par l'absurde que $\mu \neq m_i$. En particulier $B(\mu) \subset \mathbb{T}^d \setminus B(m_i)$. Vu (Q2), $B(\mu) \subset (\mathbb{T}^{i-1} \setminus B_{i-1}) \times \mathbb{T}$. Mais ce dernier ensemble est de μ -mesure nulle vu $(\pi_{i,i-1})_*(\mu) = m_{i-1}$, contredisant $\mu(B(\mu)) = 1$.

(Q4) [2 pts] Soit $\mu \in \mathbb{P}(f_d)$. On pose $\mu_i := (\pi_{d,i})_*(\mu)$ pour $1 \le i \le d$. On note $\mu_i \in \mathbb{P}(f_i)$. Comme f_1 est uniquement ergodique, $\mu_1 = m_1$. On procède par récurrence : (Q3) montre que $\mu_i = m_i$ implique $\mu_{i+1} = m_{i+1}$ pour $1 \le i < d$. Donc $\mu = \mu_d = m_d$: f_d est uniquement ergodique.

(Q5) [4 pts] D'après les questions précédentes, il suffit de constater que $x \mapsto x + \alpha$ est uniquement ergodique (car $\alpha \notin \mathbb{Q}$) et de vérifier que (S, m_4) est ergodique.

Pour ce faire, il suffit de voir qu'une fonction $\phi \in L^2(m_4)$ telle que $\phi \circ S = \phi$ (bien définie par préservation de la mesure) est nécessairement une constante. On utilise la base hilbertienne $(e_n)_{n \in \mathbb{Z}^4}$, $e_n(x) = \exp(2i\pi n \cdot x)$. On calcule :

$$e_n \circ S(x) = \exp(2i\pi n \cdot (Ax + y)) = e^{2i\pi n \cdot y} \exp(2i\pi A^* n \cdot x)$$
$$= e^{2i\pi n_1 \cdot \alpha} e_{A^* n}(x)$$

On a : $\phi = \sum_{n \in \mathbb{Z}^4} a_n e_n$ dans $L^2(m_4)$ avec $\sum_n |a_n|^2 < \infty$. $\phi \circ S = \phi$ implique que, pour tout $n \in \mathbb{Z}^4$, $a_{A^*n} = e^{2i\pi n_1 \alpha} a_n$. En posant $(A^*)^k n = (x_k, y_k, z_k, w_k)^*$, on a :

$$\begin{aligned} x_{k+1} &= x_k + y_k \\ y_{k+1} &= y_k + z_k \\ z_{k+1} &= z_k + w_k \\ w_{k+1} &= w_k \end{aligned}$$

Cherchons les vecteurs $n \in \mathbb{Z}^d$ périodiques sous A^* et donc dont les coefficients x_k, y_k, z_k, w_k ne tendent pas vers l'infini.

On a : $w_k = w_0$ et donc $z_k = z_0 + kw_0$. Vu $|z_k| \not\to \infty$, $w_0 = 0$, $z_k = z_0$ et $y_k = y_0 + kz_0$. Vu $|y_k| \not\to \infty$, $z_0 = 0$, $y_k = y_0$ et $x_k = x_0 + ky_0$. Vu $|x_k| \not\to \infty$, $y_0 = 0$ et $x_k = x_0$. On a montré que les seuls vecteurs n périodiques sont les $n \in \mathbb{Z} \times \{0\}^3$. Réciproquement ces vecteurs sont périodiques et même fixés par A^* .

On doit donc avoir : $a_n = 0$ si $n \notin \mathbb{Z} \times \{0\}^3$ et, pour tout $n_1 \in \mathbb{Z}$,

$$a_{(n_1,0,0,0)} = e^{2i\pi n_1 \alpha} a_{(n_1,0,0,0)}$$

Comme $\alpha \notin \mathbb{Q}$, ceci n'est possible que si $n_1 = 0$ ou $a_{(n_1,0,0,0)} = 0$.

On a montré : si $\phi \in L^2(m_4)$ est S-invariante, alors ϕ est égale à une constante modulo μ . L'ergodicité de (S, m_4) est établie.

(Q6) [2 pts] On définit des polynômes P_0, P_1, P_2, P_3, P_4 en posant $P_4(x) := \beta x^4$ et $P_{i-1}(x) := P_i(x+1) - P_i(x)$. On remarque que P_i est de degré i ($\beta \neq 0$) et de coefficient dominant $\beta \frac{4!}{i!}$. En particulier $P_0(x) = 4! \cdot \beta$.

On pose $\alpha := 4! \cdot \beta$, $X_0 := (x_0, y_0, z_0, w_0) := (P_1(0), P_2(0), P_3(0), P_4(0))$. Pour tout $k \ge 1$, $(x_{k+1}, y_{k+1}, z_{k+1}, w_{k+1})^* := S(x_k, y_k, z_k, w_k)^*$. Donc, modulo \mathbb{Z} :

$$\begin{aligned} x_{k+1} &= x_k + \alpha = P_1(k) + P_0(k) = P_1(k+1) \\ y_{k+1} &= y_k + x_k = P_2(k) + P_1(k) = P_2(k+1) \\ z_{k+1} &= z_k + y_k = P_3(k) + P_2(k) = P_3(k+1) \\ w_{k+1} &= w_k + z_k = P_4(k) + P_3(k) = P_4(k+1) \end{aligned}$$

On a donc $\psi(S^n(X_0)) = \beta \cdot n^4$ modulo \mathbb{Z} en posant $\psi : \mathbb{T}^4 \to \mathbb{T}$, $x \mapsto x_4$ qui est bien continue.

(Q7) [2 pts] Le <u>théorème ergodique uniforme</u> implique que, pour tout $\phi \in C(\mathbb{T})$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi(S^k(x)) = 0$$

Il suffit d'appliquer cela à $\phi = e_m \circ \psi$.

Problème 4 (10 points environ) : Exposant de Lyapunov

(Q1) [2 pts] Soit $\mathbb{S}^{d-1} \subset \mathbb{R}^d$ la sphère de dimension d-1. $\mathbb{T}^d \times \mathbb{S}^{d-1}$ est compact et $(x,v) \mapsto \|D_x f.v\|$ est continue et ne s'annule pas, donc il existe $L \geq 1$ tel que $L^{-1} \cdot \|v\| \leq \|D_x f.v\| \leq L \cdot \|v\|$ pour tout $(x,v) \in M$.

Soient $x, y \in \mathbb{T}^d$, $X, Y \in \mathbb{R}^d$ des relèvements tels que d(x, y) = ||X - Y||. La définition de d et le théorème des accroissements finis donne :

$$d(f(x), f(y)) \le ||F(X) - F(Y)|| \le \sup_{t \in [0,1]} ||D_{X+t(Y-X)}F(Y-X)|| \le Ld(x, y).$$

Une récurrence évidente donne $f^n(B(x,r)) \subset B(f^n(x), L^n \cdot r)$.

(Q2) [4 pts] On pose $\phi_n(x) := \log \|D_x f^n\|$. C'est une fonction continue avec $|\phi_n(x)| \le n \log L$. Elle est donc mesurable et intégrable. On a : $\|D_x f^{m+n}\| \le \|D_x f^m\| \cdot \|D_{f^m(x)} f^n\|$ et donc $\phi_{m+n}(x) \le \phi_m(x) + \phi_n(f^m x)$.

 $(\phi_n)_{n\geq 1}$ est un processus sous-additif intégrable et de constante finie

$$\gamma := \inf_{n \ge 1} \frac{1}{n} \int \phi_n \, d\mu \in [-\log L, \log L].$$

En particulier $\gamma > -\infty$. Le théorème de Kingman donne la convergence μ -p.p. $\frac{1}{n}\phi_n(x) = \frac{1}{n}\log \|D_x f^n\| \to \gamma$. $\lambda^+(x)$ est donc bien défini et réel μ -p.p.

(Q3) [3 pts] La convergence presque partout donnée par le théorème de Kingman implique que, pour tout $\varepsilon > 0$, la fonction $M : \mathbb{T}^d \to \mathbb{N} \cup \{\infty\}$ définie par :

$$M(x) := \inf\{m \ge 1 : \forall n \ge m \ || D_x f^n || < e^{-(\chi/2)n} \}$$

est finie μ -p.p. C'est une fonction mesurable car chaque ensemble $\{x: \|D_x f^n\| < e^{-(\chi/2)n}\}$ est mesurable. Par σ -additivité de μ , il existe M_0 tel que $\mu(\{x: M(x) \leq M_0\}) > 1 - \varepsilon$. En posant $N := M_0$, on obtient la propriété demandée.

(Q4) [1 pt] La fonction $(\log ||D_x f^N||)/N$ est continue, donc il existe $\rho > 0$ tel que pour tout $y \in B(x, \rho)$ avec $x \in B$, $\log ||D_y f^N|| < e^{-\chi N/3}$. En notant que $B(x, \rho)$ est convexe et en appliquant le théorème des accroissements finis, on obtient la propriété demandée.

(Q5) [2 pts] On remarque l'inclusion pour tout $i \geq 1$,

$$b_i := \#\{0 \le k < a_i : f^k(x) \in B\} \subset i \cdot N = \# \bigcup_{j=1}^{i-1} [a_j, a_j + N[.]]$$

On en déduit la majoration

$$d_i = L^{a_1} c_1 \dots c_{i-1} = e^{-(\chi N/3) \cdot i} \cdot L^{a_i - i \cdot N} < e^{-(\chi/3)b_i} \cdot L^{a_i - b_i}$$

Le théorème de Birkhoff appliqué à (f,μ) et $1_{B^c} \in L^1(\mu)$ donne $\limsup_{n \to \infty} \frac{a_i - b_i}{a_i} \le \mu(B^c) < \varepsilon$ et, vu $a_i \ge iN \to \infty$,

$$\limsup_{i} \frac{1}{a_i} \log d_i \le -(1-\varepsilon)\frac{\chi}{3} - \varepsilon \log L < 0$$

pour $\varepsilon > 0$ assez petit. Ceci implique $d_i \stackrel{i \to \infty}{\longrightarrow} 0$ μ -p.p.

(Q6) [2 pts] On pose $\rho_1 := (\max\{d_i : i \ge 1\})^{-1}\rho$. On a : $d_1 = L^{a_1}$. (Q2) et une récurrence immédiate donnent, pour $0 \le k \le a_1$,

$$\operatorname{Lip}(f^k|B(x,\rho_1)) \leq L^k \text{ et donc } f^k(B(x,\rho_1)) \subset B(f^kx,L^k\rho_1)$$

en notant $L^k \rho_1 \leq d_1 \rho_1 \leq \rho$ ce qui justifie les applications successives de (Q2).

(Q4), (Q2) et une récurrence immédiate donnent, pour $0 \le k \le a_2 - a_1 - N$

$$\operatorname{Lip}(f^{a_1+N+k}|B(x,\rho_1)) \le L^{a_1+k} \cdot e^{-\chi N/3} \le d_2 \text{ et donc}$$

$$f^{a_1+N+k}(B(x,\rho_1)) \subset B(f^{a_1+N+k}x, L^{a_1+k} \cdot e^{-\chi N/3} \cdot \rho_1)$$

en notant $L^{a_1+k} \cdot e^{-\chi N/3} \cdot \rho_1 \leq d_2 \rho_1 \leq \rho$ pour appliquer (Q2).

En itérant l'argument précédent on trouve, pour tout $n \ge 0$, en notant i(n) l'unique entier tel que $a_{i(n)+N} \le n < a_{i(n)+N}$,

 $\operatorname{Lip}(f^n|B(x,\rho_1)) \leq L^N \cdot d_{i(n)} \to 0 \text{ et donc } f^n(B(x,\rho_1))) \subset B(f^n x, L^N \cdot d_{i(n)} \cdot \rho_1).$

Pour *n* grand, $L^N \cdot d_{i(n)} < 1/4$. L'application :

$$f^n: \overline{B(x,\rho_1)} \to \overline{B(f^n x,\rho_1/4)}$$

est donc bien définie et strictement contractante.

(Q7) [2 pts] Le théorème de récurrence de Poincaré implique que μ -p.t. x est récurrent : $f^n x \in B(x, \rho_1/2)$. On a donc :

$$f^n: \overline{B(x,\rho_1)} \to \overline{B(x,\rho_1)}$$

bien définie et strictement contractante. Le théorème de point fixe de Picard implique que toutes les orbites issues de $B(\underline{x}, \rho_1)$ tendent vers une même orbite périodique $\{y, f(y), \dots, f^{n-1}(y)\}$ avec $y \in \overline{B(x, \rho_1)}$. Mais μ -p.t. x appartient au support de μ , donc $\mu(B(x, \rho_1)) > 0$. Le théorème de Birkhoff montre que ceci implique $\mu = \frac{1}{p}(\delta_y + \dots + \delta_{f^{n-1}y})$.

(Q8) [4 pts] $f \in \text{Diff}_+(\mathbb{T})$ est de nombre de rotation irrationnel donc f est uniquement ergodique. Soit $\{\mu\} = \mathbb{P}(f)$. Or, $\lambda^+(x) := \lim_n \frac{1}{n} S_n^f \phi(x)$ où $\phi(x) = \log |f'(x)|$ est continue et bornée. Le théorème ergodique uniforme implique que, pour tout $x \in \mathbb{T}$, la limite $\lambda^+(x)$ existe. On note qu'elle vaut $\gamma := \mu(\phi)$, indépendante de x.

(Q9) [3 pts] La convergence de $\frac{1}{n}S_n^f\phi$ vers γ est /uluniforme : pour tout $\varepsilon>0$, il existe $N\geq 1$ tel que $e^{(\gamma-\varepsilon)N}\leq |(f^n)'(x)|\leq e^{(\gamma+\varepsilon)N}$. Si $\gamma>0$, on fixe $\varepsilon:=\gamma/2$ et on obtient une contradiction :

$$1 = \int_{\mathbb{T}} |(f^N)'(x)| \, dm_{\mathbb{T}} \ge e^{(\gamma/2)N} > 1.$$

Le cas $\gamma < 0$ est similaire.