или после проведения простейших преобразований

$$\begin{cases} \alpha_{11}a + \alpha_{12}b = \beta_1, & \alpha_{11} = \sum_{i=0}^{n-1} x_i^2, & \alpha_{12} = \sum_{i=0}^{n-1} x_i, & \beta_1 = \sum_{i=0}^{n-1} x_i y_i, \\ \alpha_{21}a + \alpha_{22}b = \beta_2, & \alpha_{21} = \sum_{i=0}^{n-1} x_i, & \alpha_{22} = n, & \beta_2 = \sum_{i=0}^{n-1} y_i. \end{cases}$$

Теперь значения a и b можно легко определить, выписав решение этой системы в явном виде.

Задача 2.3-7. Выпишите систему уравнений для определения коэффициентов многочлена наилучшего приближения $P_{n-1}^{(0)}(x)$ для функции f(x) в пространстве $L_2(0,1)$.

Решение. Наилучшее приближение ищется в виде $P_{n-1}^{(0)}(x) = \sum_{j=1}^{n} a_j x^{j-1}$ с неизвестными коэффициентами a_j , которые определяются из условия ми-

нимума функционала $\int\limits_0^1 \left(f(x)-\sum\limits_{j=1}^n a_j x^{j-1}\right)^2 dx$. Дифференцируя функционал по a_i и приравнивания производные к нулю, получим уравнения

$$\int_{0}^{1} \left(f(x) - \sum_{j=1}^{n} a_{j} x^{j-1} \right) x^{i-1} dx = 0, \quad i = 1, 2, \dots, n,$$

или

$$\sum_{j=1}^{n} \frac{a_j}{i+j-1} = \int_{0}^{1} f(x) x^{i-1} dx, \quad i = 1, 2, \dots, n.$$

Это приводит к системе уравнений с матрицей Гильберта: $H_{ij}=1/(i+j-1),\ 1\leq i,j\leq n,\ \|H^{-1}\|_{\infty}\sim \frac{1}{\sqrt{n}}(1+\sqrt{2})^{4n}.$ Это означает, что задача некорректна при больших значениях n.

Задача 2.3-8. С учетом задачи 2.3-7, численно найдите коэффициенты многочлена наилучшего приближения $P_{n-1}^{(0)}(x)$ для функции $f(x) = x^n$ в пространстве $L_2(0,1)$. Оценить качество приближения (например, графически) при n=5,10,100.

2.4 Численное интегрирование

Для приближенного вычисления определенных интегралов обычно применяется метод квадратурных формул:

$$I^{[a,b]}(f) = \int_{a}^{b} f(x)dx \approx S_{n}^{[a,b]}(f) = \sum_{i=1}^{n} c_{i}f(x_{i}).$$

При этом узлы $\{x_i\}$ и коэффициенты $\{c_i\}$ выбираются специальным образом так, что для погрешности $R_n(f)=|I^{[a,b]}(f)-S_n^{[a,b]}(f)|$ верна оценка

вида $R_n(f) \leq C(b-a)^k$. К наиболее известным квадратурам относятся

формула прямоугольников по левой точке (b-a)f(a) с погрешностью $\|f'\|\frac{(b-a)^2}{4}$, формула прямоугольников по центральной точке $(b-a)f(\frac{a+b}{2})$ с погрешностью $\|f''\|\frac{(b-a)^3}{24}$, формула трапеций

 $\frac{b-a}{2}(f(a)+f(b))$ с погрешностью $\|f''\|\frac{(b-a)^3}{12}$, формула Симпсона

 $\frac{b-a}{6}(f(a)+4f(\frac{a+b}{2})+f(b))$ с погрешностью $\|f^{(4)}\|\frac{(b-a)^5}{2880}$, формула Гаусса по трем узлам

 $\frac{b-a}{18}(5f(x_-)+8f(x_0)+5f(x_+)) \ \text{с погрешностью } \|f^{(6)}\|\frac{(b-a)^7}{737280},$ где $x_0=\frac{a+b}{2},\ x_\pm=\frac{a+b}{2}\pm\frac{b-a}{2}\sqrt{\frac{3}{5}}$.

В данном случае $||g|| = \max_{x \in [a,b]} |g(x)|$.

Задача 2.4-1. Реализуйте каждый из описанных выше методов интегрирования в виде функции с прототипом

double Integral (double a, double b, double (*f)(double));

где f — указатель на подинтегральную функцию. Проверьте выполнение указанных оценок погрешности для явно интегрируемых f. Например, f(x) = e^x , $\sin(x)$, x^n .

Если значение погрешности $R_n(f)$ для конкретной задачи получается недопустимо велико, то обычно используют следующий прием. Область интегрирования [a,b] разбивается на N подотрезков $[a,b] = \bigcup_{k=1}^{N} [a_k,b_k]$, и на каждом подотрезке $[a_k,b_k]$ значение интеграла $I^{[a_k,b_k]}(f)$ заменяется на значение квадратуры $S_n^{[a_k,b_k]}(f)$. В результате для вычисления интеграла

$$I^{[a,b]}(f) = \sum_{k=1}^{N} I^{[a_k,b_k]}(f)$$
 получается так называемая составная квадратур-

ная формула $S_{N,n}^{[a,b]}(f)=\sum_{k=1}^N S_n^{[a_k,b_k]}(f)$ с оценкой погрешности $R_{N,n}^{[a,b]}(f)\leq$

$$\sum_{k=1}^{N} R_n^{[a_k,b_k]}(f).$$

Задача 2.4-2. Для каждого из описанных выше методов интегрирования реализуйте составную квадратуру в виде функции

double Integral (double a, double b, double (*f)(double), int N);

где N — число разбиений отрезка интегрирования [a,b] на равные подотрезки. Возьмите несколько функций, интегрируемых в элементарных функциях, и сравните приближенные значения интегралов, полученные при разных N, с точными значениями. Например

$$\int_{0}^{100\pi} \cos 1000x \, dx = 0, \quad \int_{0}^{100} \exp^{-1000x} \, dx \sim 10^{-3}, \quad \int_{-1}^{1} \frac{dx}{\sqrt{1 - x^2}} = \pi;$$

Задача 2.4-3. Аналитически и численно проверьте, что $\int\limits_{-\pi}^{\pi}\sin mx\cos nx\,dx=0.$

$$\int_{-\pi}^{\pi} \sin mx \sin nx \, dx = \begin{cases} 0, \ m \neq n, \\ \pi, \ m = n \neq 0, \end{cases} \int_{-\pi}^{\pi} \cos mx \cos nx \, dx = \begin{cases} 0, \ m \neq n, \\ \pi, \ m = n \neq 0, \\ 2\pi, \ m = n = 0. \end{cases}.$$

Здесь m,n — неотрицательные целые числа. Отметим, что такие свойства тригонометрических функций по определению означают ортогональность семейства $\{1,\sin(mx),\cos(mx),m=1,2,\ldots\}$ на отрезке $[-\pi,\pi]$ относительно скалярного произведения $(u,v)=\int_{-\pi}^{\pi}u(x)v(x)dx$.

Задача 2.4-4. Для составной квадратурной формулы Гаусса по трем узлам численно найдите константы C и p в ценке погрешности $R(N) = |I^{[-\pi,\pi]}(f) - S_{N,3}^{[-\pi,\pi]}(f)| \sim C/N^p$ при $N \gg 1$ и $f(x) = \sin^2 mx$, $m = 1, 10^3$.

Указание. Для достаточно больших значений N исследуйте график $F(\ln N) = \ln R^{-1}(N) \sim \ln C^{-1} + p \ln N.$

Задача 2.4-5. Реализуйте функцию с прототипом

double Integral_e(double a, double b, double (*f)(double), double eps);

для вычисления значения интеграла по выбранной составной квадратурной формуле с перемнным шагом и локальным ε -контролем точности.

Идеи реализации. Пусть мы имеем некоторое значение шага h и уже вычисленное значение интеграла $I^{[a,\tilde{a}]}(f)$ на отрезке $[a,\tilde{a}], a \leq \tilde{a} < b$. Вычислим $I_1 = I^{[\tilde{a},\tilde{a}+h]}(f), I_2 = I^{[\tilde{a},\tilde{a}+h/2]}(f) + I_1^{[\tilde{a}+h/2,\tilde{a}+h]}(f)$. Если $|I_1-I_2| \leq \varepsilon h$, то считаем, что требуемая точность на шаге достигнута и полагаем $I^{[a,\tilde{a}+h]} = I_1 + I_2$. Если $|I_1-I_2| > \varepsilon h$, то уменьшим шаг h в два раза, т.е. положим h = h/2, и повторим вычисление I_1 и I_2 , начиная с точки \tilde{a} (при необходимости будем уменьшать шаг и далее, пока не добьемся выполнения неравенства $|I_1-I_2| \leq \varepsilon h$). Следующий шаг от точки $\tilde{a}+h$ будем выполнять с полученным значением h. Если же мы получим неравенство $|I_1-I_2| \leq \delta h$, где $\delta \ll \varepsilon$, то выбранный шаг h обеспечивает "слишком высокую" точность и с целью сокращения вычислительных затрат для вычисления интеграла по следующему частичному отрезку этот шаг можно увеличить в два раза, т.е. положить h = 2h. На практике величину δ нужно выбирать в пределах от 0.1ε до 0.01ε , а также установить минимальное и максимальное значение для величины шага.