الفصل الثالث

التكاليف

(Costs)

أهداف الفصل الثالث:

- التعرف على أنواع التكاليف.
 - تحديد نقطة التعادل.
 - المقارنه بين آليتين.

3.1 أنواع التكاليف (Types of Costs):

- ✓ المواد المباشره Direct Material
- ✓ العمالة الباشرة Direct Labor : الإجور (تحويل المواد الخام الى منتجات)
- ✓ التكاليف الغير مباشره Over Head Cost: Indirect Cost: تأمين ضرائب ايجار

3.2 تصنيف التكاليف (Classification of Costs)

- √ تكاليف مباشره و غير مباشره Costs (Overhead) Costs كاليف مباشره و
- ✓ تكاليف ثابته ومتغيره Fixed & Variable Costs : متغيره عنير مع تغير حجم الأنتاج وثابته ومتغيره لا تعتمد على الأنتاج مثل الإيجارات والإهلاكات.

أيضا هنالك تكاليف أخرى:

- ✓ تكاليف تاريخية Historical Costs : مسجلة في الدفاتر القديمة .
 - √ التكاليف القياسيه Standard Costs : تقديرية للإنتاج .
- ✓ تكاليف الإحلال Replacement Costs : عند إحلال ماكينة محل ماكينة أخرى بغرض التجديد.

✓ تكاليف حديه Marginal Costs : تكاليف ناتجه من زبادة الإنتاج بوحده إضافية.

✓ تكاليف الفرص البديلة Opportunity Costs : تكلفة فقدان الفرصة البديلة بالقرار المتخذ

✓ تكاليف غارقة Sunk Costs : مثل الدعاية ، التدريب والتكاليف الصحية.

✓ تكاليف مؤجلة Deferred Costs : إهلاك أو معدات.

واجب: أختار مشروع في مجال تخصصك ثم حدد أنواع التكاليف الخاصه به.

3.3 نقطة التعادل (Break Even Point)

لمقارنة البدائل من ناحية التكاليف يتم استخدام نقطة التعادل .

تحدث نقطة التعادل عندما تتساوى التكاليف الكليه Total Cost TC مع العائدات الكلية

Total Revenue TR

أو متعادلة بين الريح والخساره

TC = FC + VC(x), TR = R(x)

عند نقطة التعادل:

TC(x) = TR(x)

R x = FC + VC (x)

(R - VC) x = FC

Q = x = (FC / (R - VC))

حيث :

FC: Fixed Cost

VC: Variable Cost

R: Price / Unit

Q: x: Quantity

الشكل (3.1) أدناه يوضح نقطة التعادل QB.

شكل (3.1) نقطة التعادل QB

الشكل (3.2) أدناه يوضح التكاليف المختلفة لعمليات التصنيع.

Direct, Indirect, and Overhead Costs

شكل (3.2) تكاليف مباشرة، غير مباشرة وفوقية

(Direct, Indirect and Overhead Costs)

3.4 أمثلة محلولة:

مثال (1):

التكاليف المطلوبه لتجهيز ماكينه لانتاج منتج معين هي 300 جنيه. التكاليف لانتاج الوحدة 2.5 جنيه للمواد و 1 جنيه للعماله لتشغيل الماكينة. اذا كان المنتج يتم بيعه بـ 5 جنيه. أحسب نقطة التعادل. ثم أحسب الربح أو الخسارة اذا تم انتاج 1000 وحدة.

عند نقطة التعادل:

TR = TC

$$Rx = FC + VC(X)$$
, $5x = 300 + (2.5)x$, $x = 300 / (5 - 2.5) = 200$ Units

At x = 1000 Units: Profit or Loss = TR - TC

$$= 5 \times 1000 - (300 + (3.5 \times 1000) = 5000 - 3800 = 1200$$

+Ve: Profit, -Ve: Loss

لتقليل نقطة التعادل يمكن إتباع الاتي:

- ✓ زیادة میل دالة TR أی زیادة سعر البیع (سیاسه فقیره).
 - ✓ تقليل قيمة التكاليف الثابته FC (صعوبه).

✓ تقلیل میل دالة تكالیف متغیره VC (تكالیف مواد و عماله).

مثال (2):

تكاليف المعدات والعمالة المطلوبة لتجهيز ماكينة لإنتاج قطعة غيار هي \$300 . التكاليف المتغيرة عند الإنتهاء من التجهيز تحتوي على \$2.5 للمواد و \$1 للعمالة لتشغيل الماكينة. إذا كان أي قطعة منتجة يتم بيعها بـ \$5 حدد نقطة التعادل؟ ثم أحسب الربح أو الخسارة إذا تم إنتاج 1000 قطعة غيار.

الحل:

$$T.R(x) = T.C(x) = f.c + v.c(x)$$

$$\$5.x = 300 + (2.5 + 1).x$$
from which $x = \frac{300}{(5 - 3.5)} = \frac{300}{1.5} = 200 \text{ unit}$

$$\text{profit or loss} = T.R(x) - T.C(x)$$

$$\text{profit or loss} = 5 \times 1000 - (300 + 3.5 \times 1000)$$

عامة يفضل أن تكون نقطة التعادل صغيرة المقدار وهذا لا يتم إلا بثلاث طرق:

1. زيادة ميل دالة العائدات الكلية T.R(x): وهذا يعني زيادة سعر البيع وهذه سياسة تسويقية فقيرة في جو سوق المنافسة.

=5000-3500=1500

- 2. تقليل قيمة التكاليف الثابتة: وفي معظم الأحيان من الصعوبة بمكان تقليلها.
- 3. تقليل ميل خط دالة التكاليف المتغيرة: وهذا يعطي فرصة كبيرة للمهندس في تقليل تكاليف المواد والعمالة لتحسين الربحية.

مثال (3):

تحليل نقطة التعادل لأكثر من عملية:

شكل (4.2)

مثال (4):

شغلة يمكن إنتاجها بواسطة ماكينة برجية (turret lathe) أو ماكينة آلية تستخدم الكامات. أحسب كمية التعادل Q_B معتمداً على المعلومات أدناه:

		البرجية	الآلية
-a	تكاليف المعدات	£ 3.00	£3.00
-b	تكاليف الكامات	-	15.00
-c	تكاليف المواد لكل جزء (cost/component)	0.025	0.025
-d	تكاليف العمالة	0.25 £/h	0.10£/h
-е	زمن دورة إنتاج وحدة (cycle time/component)	4 min	2min
-f	تكاليف تجهيز العمالة (setting up labor cost)	0.40 £/h	0.4£/h

تأليف: أسامة محمد المرضي سليمان خيال

مذكرة محاضرات اقتصاد هندسي

9 h 2 h

(setting up time) زمن التجهيز -g

1000% 300% of machine overheads (setting operating) تكاليف فوقية -h of (d) (d)

العملية (1) (الماكينة البرجية):

1. التكاليف الفوقية (overheads) = 300% من تكاليف التشغيل للعمالة

£/
$$h \frac{300}{100} \times 0.25/h = 0.75$$

2. التكاليف الثابتة = تكاليف المعدات + تكاليف التجهيز

fixed cost = tooling cost + setting up cost

$$= 3.00£ + 1 \times (0.4 + 0.75)$$

$$= 3.00 + 1.15 = 4.15£$$

(variable cost/ component) منتج على المتغيرة لكل منتج.

= labor cost + material cost + overheads

$$= \left(0.25 \times \frac{5}{60}\right) + 0.025 + \left(0.75 \times \frac{5}{60}\right)$$
$$= \frac{1}{12} + 0.025 = \frac{13}{120} £/component$$

variable cost for 1000 units $=\frac{13}{120} \times 1000 = 108\frac{1}{3}$ £

العملية (2) (الماكينة الآلية):

1. التكاليف الفوقية:

$$\frac{1000}{100} \times 0.1/h = 1.00 \,\text{E/h}$$

2. التكاليف الثابتة:

fixed cost = tooling cost + cam cost + setting up cost

$$= 3.00 + 15 + 8(0.40 + 1)$$

$$= 3 + 15 + 11.5 = 29.2 \,\text{£}$$

3. التكاليف المتغيرة لكل جزء منتج:

$$= \left(0.1 \times \frac{1}{60}\right) + 0.025 + \left(1.00 \times \frac{1}{60}\right) = \frac{13}{300} £/component$$
variable cost for 1000 units $= \frac{13}{300} \times 1000 = 43\frac{1}{3}£$

. Q_B يمكن بمقياس رسم مناسب رسم منحنى نقطة التعادل ومنه يمكن إيجاد

تحليلياً:

نقطة التعادل هي النقطة التي تتساوى فيها التكلفة الكلية للطريقة (1) والطريقة (2).
$$T.C(1) = T.C(2)$$

$$T.C(1) = fixed cost(1) + variable cost(1)$$

$$=4.15+\frac{13}{120}$$
. x

$$T.C(2) = fixed cost(2) + variable cost(2)$$

$$= 29.2 + \frac{13}{300}.x$$

$$\therefore 4.15 + \frac{13}{120}.x = 29.2 + \frac{13}{300}.x$$

$$\frac{13}{120}.x - \frac{13}{300}.x = 29.2 - 4.15$$

$$\left(\frac{13}{120} - \frac{13}{300}\right)x = 29.2 - 4.15$$

from which x = 387 unit at break even point

$$\therefore Q_B = 387 \, units$$

إذا كانت الكمية المراد إنتاجها 200 وحدة أي عملية نختار:

$$T.C_{(200)} = fixed\ cost + variable\ cost$$

$$T.C_{at\ 200}(1) = 4.15 + \frac{13}{120}.x$$

= $4.15 + \frac{13}{120} \times 200 = 4.258 \,\text{£}$
 $T.C_{at\ 200}(2) = 29.2 + \frac{13}{300}.x$
= $29.2 + \frac{13}{300} \times 200 = 37.867 \,\text{£}$

عليه نختار الطريقة (1)

إذا كانت الكمية المراد إنتاجها 700 وحدة أي طريقة نختار

$$T.C_{at\ 700}(1) = 4.15 + \frac{13}{120} \times 700 = 79.983 \text{ £}$$

$$T.C_{at\ 700}(2) = 29.2 + \frac{13}{300} \times 700 = 59.533 \,£$$

عليه نختار الطريقة (2).

مثال (5):

لدينا ماكينتان A, B ايهما تفضل اذا كان الأنتاج 1000 وحدة

ماكينه B	A ماکینه	
29.2	4.15	تكاليف فوقيه + معدات + تجهيز
0.044	0.11	تكاليف انتاج الوحده

Geometrically:

A:
$$4.15 + 0.11$$
 (x) = TCA,

B:
$$29.2 + 0.044$$
 (x) = TCB

Analytically

Breakeven Point:

$$TCA = TCB$$

$$4.15 + 0.11$$
 (x) = 29.2 +0.044 (x)

$$0.066(x) = 25.05$$
, $x = 379.5$ say 380 Units

A:
$$4.15 + 0.11 (380) = 45.95$$

B:
$$29.2 + 0.044 (380) = 45.05$$

If
$$x = 100$$
 Units

A:
$$4.15 + 0.11 (1000) = 114.15$$

B:
$$29.2 + 0.044 (1000) = 73.2$$

Choose B which has LESS COST

If
$$x = 200$$
 Units

تأليف: أسامة محمد المرضى سليمان خيال

A: 4.15 + 0.11(200) = 26.15

مذكرة محاضرات اقتصاد هندسي

B: 29.2 + 0.044(200) = 38

Choose A which has less cost

مثال (6):

اختار الماكينه الأكثر اقتصادا في عملية الأنتاج

В	A	
130	100 Parts / hr	معدل الأنتاج
6 hr / day	7 hr / day	الساعات المتوقره للإنتاج
10 %	3 %	نسبة التالف

تكلفة المواد 6 \$ للقطعه الواحدة ، القطع السليمه تباع 12 \$ ، تكلفة التشغيل لأي من الماكنتين

15 \$ في الساعه، التكاليف الفوقيه 5 \$ في الساعه.

1. أي الماكنتين تختار لتحقق أقصىي ربح في اليوم

2. ما هي نسبه التالف لتكون B مربحه كربح B. (Breakeven) .

Profit / day = = R / day - C / day

= (Production rate) (Production hours) (12 / parts) X [1 – (% rejected / 100)]

- (Production rate) (Production hours) (6 / Parts)
- (Production in hours) [(15 / hour) + (5 / hours)]

$$A = (100) (7) (12) (1 - 0.03) - (100) (7) (6) - (7) (15 - 5) = 3808 / day$$

$$B = (130) (6) (12) (1 - 0.10) - (130) (6) (6) - (6) (5 + 5) = 3624 / day$$

To maximize profit, choose A

$$3808 = (130) (6) (12) (1 - X) - (130) (6) (6) - (6) (15 + 5)$$

X = 0.08

تأليف: أسامة محمد المرضى سليمان خيال

مذكرة محاضرات اقتصاد هندسي

The % of parts rejected for machine B can be no higher than 8 % for it to be as profitable as A.

مثال (7):

Which of the following is fixed or variable cost?

- > Raw material
- Direct labor
- > Depreciation
- > Suppliers
- > Utilities
- ➤ Properly taxes
- > Interest on borrowed money
- > Administrative salaries
- ➤ Payroll taxes
- > Insurances
- > Clerical salaries
- > Rent