Integracion Simpson 1/3

José Ramón Pérez Navarro

Noviembre, 2019

0.1. Programa

El método de integración de Simpson 1/3 se basa en la aproximación de un polinomio de orden 2, es decir, necesita dos intervalos para deducir la formulación. Por tanto el método como tal trabaja con tres puntos.

Codigo del programa

```
\% Programa para integrar una función numéricamente, utiliza la regla de Simpson un
% tercio. El programa inicia con dos intervalos y va aumentando el número de ellos
% hasta que llega a un resultado en el cual dos soluciones consecutivas no sean
% diferentes respecto a una tolerancia especificada.
% La función es x^4 + 2*x + 8 en el intervalo [0,30].
% La solución analítica a esta integral da como resultado 4 861 140 clear all clc
% Regla de Simpson 1/3. a = 0;
% Límite inferior. b = 30;
% Límite superior. N = 2;
% Número de intervalos. h = (b-a)/N;
% Tamaño de cada intervalo. x = (a:h:b);
% Vector de muestras. fx = x.^4 + 2.*x + 8;
% Valor de la función en los puntos elegidos. k = 1;
% Primer resultado de la integral con un solo
% intervalo.
% Reducir el paso de integración. tol = 1; while tol > 1e-1
                                                               N = 2*N;
% Duplicar el número de muestras.
                                     h = (b-a)/N;
% Determinar el paso de integración.
                                        x = (a:h:b);
                         fx = x.^4 + 2.*x + 8;
% Vector de muestras.
% Valor de la función en los puntos elegidos.
                                                Sp = length(fx);
% Aumenta el contador de iteraciones en 1.
% Integral numérica con N muestras.
                                       Is1(k) = (h/3)*(fx(1) + 4*sum(fx(2:2:Sp-1)))
% Evaluación de la tolerancia. end
% Muestra en la pantalla todas las aproximaciones. Is1
```