

Cálculo I C

Teste 2 - modelo

2023/2024

Avaliação Discreta

T .	~	01.04	_
Dura	ıçao:	2h00	١

Nº mec. ______ Nome _____

Comece por escrever o seu número e nome nas quatro folhas do enunciado. Cada folha contém uma questão, a que deve responder na própria folha (frente e verso), justificando claramente a sua resposta. Pode consultar apenas o seu formulário e não pode utilizar qualquer equipamento eletrónico. Boa sorte!

 $N^{\underline{o}}$ de folhas de continuação desta questão (0 se não usou nenhuma): _____

1. [Aplicações do integral; cálculo de áreas.] Considere as regiões

a

$$ilde{\mathrm{Des}}$$

$$D_1 = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1 \land -x \le y \le 1 - x^2\} \text{ e} \quad \text{fine in}$$

$$D_2 = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le 1 \land y \ge x^2 - 1 \land x \ge 0\}.$$

(a) Esboce a região D_1 e determine a sua área.

1~m2 = y

(b) Esboce a região D_2 e determine a sua área.

9/1-0=

(c) Esboce a região $D=D_1\cup D_2$ e determine a sua área.

On y = 1

b) $D_2 = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le 1 \land y \ge x^2 - 1 \land x \ge 0\}.$

(c) Esboce a região $D = D_1 \cup D_2$ e determine a sua área.

No mec.	Nome:

$N^{\underline{o}}$ de folhas de continuação desta questão (0 se não usou nenhuma):

- 2. [Integrais impróprios e transformadas de Laplace.]
 Estude a natureza dos seguintes integrais impróprios, indicando, em caso de convergência, se a convergência é simples ou absoluta.
 - (a) $\int_0^{+\infty} \frac{1}{(x+2)^2 1} dx$.
 - (b) $\int_{-\infty}^{+\infty} \sin(x) dx$.
 - (c) $\int_0^{+\infty} t^n e^{-t} dt \mod n \in \mathbb{N}$.

a)
$$\int_{0}^{+\infty} \frac{1}{(m+2)^{2}-1} cn = \lim_{t \to +\infty} \int_{2}^{t} \frac{1}{y^{2}-1} dy$$

$$\frac{\text{M.V.}}{y = \text{M+2}}$$
 Suga $f(y) = \frac{1}{y^2 - 1}$, $f(y) 70$, $\forall y 7/2$
 $\exists y = \exists x \text{M}$ Suga $g(y) = \frac{1}{y^2}$, $g(y) 70$, $\forall y 7/2$

Agra, as aplicar o critério de limite sudo
$$L = \lim_{y \to +\infty} \frac{f(y)}{g(y)}$$

$$\lim_{y \to +\infty} \frac{y^2-1}{g^2} = \lim_{y \to +\infty} \frac{y^2}{y^2-1}$$

$$= \lim_{y \to +\infty} \frac{y^2}{y^2(1-\frac{1}{y^2})} = \frac{1}{1} = 1$$

OUTRA MANEIRA

$$\int_{2}^{+\infty} \frac{1}{y^{2}} dx = \int_{2}^{+\infty} \frac{1}{m^{2}+4m+3} dx$$
Como L EIRIHOY

$$\int_{2}^{+\infty} \frac{1}{y^{2}} dx = \int_{2}^{+\infty} \frac{1}{m^{2}+4m+3} dx$$

Seja
$$f(m) = \frac{1}{m^2 + 4m + 3}$$
 $\forall m 7/0$, $f(m)70$ $\lim_{n \to +\infty} \frac{1}{\frac{1}{m^2}} = \lim_{m \to +\infty} \frac{n^2}{m^2 + 4m + 3} = \lim_{m \to +\infty} \frac{n^2}{m^2 + 4m + 3} = 1$
Seja $g(m) = \frac{1}{m^2}$ $\forall m 7/0$, $g(m)7/0$ $g(m)7$

COMO, PONO NOO, 1 notzi2-1 >0, John & absolutormente convergente.

b)
$$\int_{0}^{t} \sin(n) = \int_{0}^{t} \sin(n) + \int_{0}^{0} \sin(n) = \lim_{t \to \infty} \int_{0}^{t} \sin(n) dn + \lim_{t \to \infty} \int_{0}^{t} \sin(n) dn$$

$$= \lim_{t \to \infty} \left[-\cos(n) \right]_{0}^{t} + \lim_{t \to \infty} \left[-\cos(n) \right]_{0}^{0}$$

$$= \lim_{t \to \infty} \left[-\cos(n) \right]_{0}^{t} + \lim_{t \to \infty} \left[-\cos(n) \right]_{0}^{0}$$
Não upie $-\cos(n) \rightarrow cayo o integral é divergente$

e)
$$\int_0^{+\infty} t^n e^{-t} dt = d \int_0^{+\infty} t^n \{ (s-1), s 7 - 1 \}$$

$$= \frac{n!}{(s-1)^{n+1}}, s 7 - 1 = n! 70$$
Anim $t^n e^{-t} 70 = 0$ integral e obsolute mente convergence

No mec.	Nome:

${\bf N^0}$ de folhas de continuação desta questão (0 se não usou nenhuma): _____

3. [Equações diferenciais de ordem 1: variáveis separáveis, lineares, de Bernoulli e homogéneas.]

Resolva os seguintes problemas:

- (a) Determine uma função derivável f que satisfaz f(x)f'(x) = -x e f(0) = 1, indicando o seu domínio.
- (b) Determine uma solução da equação $y' + \frac{2}{x}y = \frac{1}{x^2}$ que satisfaz a condição y(1) = 2.
- (c) Determine uma família de soluções da equação $y' \frac{x}{x^2 + y^2}y = 0$.

a)
$$f(m) f(m) = -m$$
, $f(0) = 1$

No mec.	Nome:

$N^{\underline{o}}$ de folhas de continuação desta questão (0 se não usou nenhuma):

4. [Equações lineares de ordem superior a 1: polinómio característico, método dos coeficientes indeterminados e princípio da sobreposição.]

$$y^{(iv)} - 2y''' + 5y'' - 8y' + 4y = 10e^x + 4$$

- (a) Sabendo que r=1 é raiz do polinómio característico de multiplicidade 2, determine a solução geral da equação homogénea associada.
- (b) Descreva o procedimento para obter uma solução particular da equação completa utilizando o método dos coeficientes indeterminados.
- (c) Sabendo que $y=x^2\mathrm{e}^x$ verifica $y^{(iv)}-2y'''+5y''-8y'+4y=10\mathrm{e}^x$, diga qual é a solução geral da equação completa.