E-COMMERCE ANALYSIS WITH GOOGLE MARKETPLACE

JUSTINE PICAR, OCTOBER 2021

BUSINESSES AND E-COMMERCE: PROBLEM

- Businesses fail due to:
 - Lack of research
 - Not the right market
 - Not reaching the right people
- 21.5% fail within the 1st year
- 30% fail within the 2nd year
- 50% fail within the 5th year
- 70% fail within the 10th year
- For online businesses, 90% fail within 4 months

Identify what metrics will improve profits for online stores by exploring and

PROJECT OBJECTIVE:

analyzing user propensity to purchase and provide recommendations for maintaining customer loyalty and mitigating attribution issues

DATA: GOOGLE MERCHANDISE DATA FROM BIGQUERY REST API

- INCLUDES TRAFFIC SOURCE, CONTENT, TRANSACTIONAL DATA
- CONSTRAINTS: HIDDEN, REMOVED, AND/OR DEPRECATED FIELDS
- DATA CAN ONLY BE QUERIED OR USED TO GENERATE REPORTS

DATA WRANGLING

- Used Standard SQL to query the data
- Identified useful features:
 - fullVisitorId
 - o date
 - visits
 - o hits
 - pageviews
 - bounces
 - sessionQuality
 - timeOnSite (in seconds)
- Unnested totals column to aggregate the features by day over the course of two weeks and create new features
- Binary Target Variable (Transactions)

- Features broke out in the following format:
 - o Day 0
 - o Day 1
 - o Day 2
 - o Day 3
 - o Day 4-6
 - Week 2
- Total of ~20k values for train set, ~19k
 validation set with 38 total columns
- Training Set from 07/1/2017 07/31/2017
- Test Set from 03/1/2017 03/14/2017

PACKAGES

- For preprocessing, modeling the data, and calculating metrics
 - sklearn
- For data and metric visualization
 - matplotlib.pyplot
 - skplot
 - seaborn
 - shap
- For querying the data from API to jupyter notebook
 - o google.cloud

EXPLORATORY DATA ANALYSIS: DISTRIBUTIONS

EXPLORATORY DATA ANALYSIS: FEATURE IMPORTANCE AND IQR

PRE-PROCESSING: SCALING DISTRIBUTION OF DATA

MODELING: CATBOOST, ACCURACY: 99.91%

MODELING: CATBOOST, ACCURACY: 99.91%

	label_neg	ntile	count_neg	label_pos	count_pos	lift
0	0	1	1997	1	0	0.000000
1	0	2	1996	1	0	0.000000
2	0	3	1996	1	0	0.000000
3	0	4	1997	1	0	0.000000
4	0	5	1996	1	0	0.000000
5	0	6	1996	1	0	0.000000
6	0	7	1997	1	0	0.000000
7	0	8	1996	1	0	0.000000
8	0	9	1996	1	0	0.000000
9	0	10	1024	1	973	18.545898

MODELING: RANDOM FOREST, ACCURACY: 99.99%

MODELING: RANDOM FOREST, ACCURACY: 99.99%

	label_neg	ntile	count_neg	label_pos	count_pos	lift
0	0	1	1997	1	0	0.000000
1	0	2	1996	1	0	0.000000
2	0	3	1996	1	0	0.000000
3	0	4	1997	1	0	0.000000
4	0	5	1996	1	0	0.000000
5	0	6	1996	1	0	0.000000
6	0	7	1997	1	0	0.000000
7	0	8	1996	1	0	0.000000
8	0	9	1996	1	0	0.000000
9	0	10	1032	1	965	18.409884

MODELING: LOGISTIC REGRESSION, ACCURACY: 100%

MODELING: LOGISTIC REGRESSION, ACCURACY: 100%

	label_neg	ntile	count_neg	label_pos	count_pos	lift
0	0	1	1997	1	0	0.000000
1	0	2	1996	1	0	0.000000
2	0	3	1996	1	0	0.000000
3	0	4	1997	1	0	0.000000
4	0	5	1996	1	0	0.000000
5	0	6	1996	1	0	0.000000
6	0	7	1997	1	0	0.000000
7	0	8	1996	1	0	0.000000
8	0	9	1996	1	0	0.000000
9	0	10	1050	1	947	18.111429

RESULTS AND ANALYSIS

- BEST MODEL: CATBOOST
 - Highest lift score, successfully identified most users who purchase
 - True Positive Rating similar to Random Forest Model
 - Random Forest lift function is lower
- WORST MODEL: LOGISTIC REGRESSION
 - 100% accuracy, but lowest lift score and lowest true positive rating
 - Suggests there may be overfitting occuring
- Feature Importance:
 - Users engagement increases as they approach the purchase date (day0 features); transactions and activities are highly correlated to the day of purchase
 - Page views, session quality, and time on site have the highest positive correlations
 - Bounces have a negative correlation

APPLICATIONS

- Identify segments of users likely to organically convert
 - allocate budgets to market to this segment and mitigate attribution
 - Optimize email and marketing campaigns to specific users
- Provide discounts for other segments less likely to convert
 - encourage users to make purchases

CONCLUSION & LESSONS LEARNED

- 99.91% ACCURACY ON CATBOOST MODEL
- PRE-PROCESSING
 - Upsampling smaller labels
 - Imputing mean or median
 - Normalize using min-max scale or log transformation
- MODELING:
 - ADA BOOST
 - XG BOOST
- SELECT MORE FEATURES FROM BIGQUERY TO EXPLORE

THANK YOU!

Thank you Nik for being my mentor! It's been wonderful working with you.

SOURCES

- https://www.investopedia.com/articles/personal-finance/040915/how-many-s
 tartups-fail-and-why.asp
- https://www.lendingtree.com/business/small/failure-rate/
- https://www.huffpost.com/entry/10-reasons-why-your-new-online-business-wi
 II-fail_b_7053610
- https://console.cloud.google.com/marketplace/product/obfuscated-ga360-d ata/obfuscated-ga360-data?project=lexical-script-761
- https://support.google.com/analytics/answer/3437719?hl=en
- Stack Overflow
- https://www.analyticsvidhya.com/blog/2017/08/catboost-automated-categorical-data/