# **Domain Name System**

### Handed in April 25, 2013, by Team 2

Rasmus Bækgaard 10893@iha.dk Anders Kielsholm 10749@iha.dk Lasse Hansen 10063@iha.dk Mia Leth Sørensen 10959@iha.dk

### **Abstract**

About your reports and this template

- Use this template for your project work reports
- Substitute the template's place-holder dates and titles with appropriate ones
- Place-holders are marked with square brackets, i.e. [place-holder]
- For each report, you hand in both a tex and a pdf file
- The report should be 10-15 pages in total and it must be written in English

About the abstract, i.e. the current section

• An abstract is a brief summary of the report that helps the reader quickly ascertain the report's purpose. The abstract should be approximately half a page.

# **Contents**

| Al | Abstract                                                                             |    |  |  |  |
|----|--------------------------------------------------------------------------------------|----|--|--|--|
| 1  | Introduction                                                                         | 3  |  |  |  |
| 2  | Domain Name System2.1 DNS fundamentals2.2 Name resolution2.3 DNS security extentions | 7  |  |  |  |
| 3  | Prototype: School DNS 3.1 Solution                                                   |    |  |  |  |
| 4  | Conclusion 4.1 Conclusion                                                            | 12 |  |  |  |

# Introduction

Approximately 1 page introduction that addresses the following

- 1. What the report is about
- 2. Why the report is relevant
- 3. How the rest of the report is structured

These are test citations to example bibliography entries number one [?] and two [?]. You should have at least 3 references to books and/or papers, i.e. web pages excluded.

## **Domain Name System**

Domain Name System, DNS, is used to find IP-addresses from a logical name using the concept of the Host Lookup Table. The Host Lookup Table, HLT, was a file placed on every computer connected to the network which contained the IP-address and the logical name for each computer connected [1, History section].

When the HLT was updated, all computers needed to add the address which, due to the expansion of connecting computers to the network, became an obstacle and hindrance for the flow. To solve this the DNS system was invented in 1982 [2, History section].

DNS is like a big telephone book which everyone uses to lookup IP-addresses from logical names, through an address record (A record) [3, p. 210], rather than everyone keeping track of all connected addresses.

#### 2.1 DNS fundamentals

To find the computer's host name the command hostname will show the logical human readable name for the computer. The hostname will be shown on the list of connected computers on a network.

In Linux the command nm-tool will access the NetworkManager Tool and among others, show the IP-address, MAC-address, connection state and DNS-server for the computer. This is shown in Figure  $2.1^1$ .

You can run a similar command in Windows; ipconfig /all to access IP-address, DNS-server, MAC-Address ect. shown in Figure 2.2.

<sup>&</sup>lt;sup>1</sup>Note that this is on a virtual machine which do not show as much as a native Linux machine will

```
limro@ubuntu:~$ nm-tool
NetworkManager Tool
State: connected (global)
 Device: eth0 [Wired connection 1] ----
                     Wired
 Type:
 Driver:
                     vmxnet
 State:
                     connected
 Default:
                     yes
                     00:0C:29:D5:8E:55
 HW Address:
  Capabilities:
   Carrier Detect: yes
                     1000 Mb/s
   Speed:
 Wired Properties
   Carrier:
                     on
 IPv4 Settings:
   Address: 192.106.92.126
Peofix: 24 (255.255.255.0)
   Gateway:
                    192.168.92.2
   DNS:
                     192.168.92.2
```

Figure 2.1: Use of the command nm-tool

Figure 2.2: Use of the command ipconfig /all

To detect an IP-address and determine the latency to the server use the ping command. ping will target either a webserver name to get the IP-address or target the IP-address directly without asking the DNS-server. This is shown on figure 2.3

```
limro@ubuntu:~$ ping -c 3 www.google.com
PING www.google.com (173.194.65.105) 56(84) bytes of data.

64 bytes from ee-in-f105.1e100.net (173.194.65.105): icmp_req=1 ttl=128 time=24.7 ms

64 bytes from ee-in-f105.1e100.net (173.194.65.105): icmp_req=2 ttl=128 time=30.1 ms

64 bytes from ee-in-f105.1e100.net (173.194.65.105): icmp_req=3 ttl=128 time=36.3 ms

--- www.google.com ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2003ms

rtt min/avg/max/mdev = 24.746/30.437/36.375/4.754 ms

limro@ubuntu:~$ ping -c 3 173.194.65.105

PING 173.194.65.105 (173.194.65.105) 56(84) bytes of data.

64 bytes from 173.194.65.105: icmp_req=1 ttl=128 time=25.4 ms

64 bytes from 173.194.65.105: icmp_req=2 ttl=128 time=24.7 ms

64 bytes from 173.194.65.105: icmp_req=3 ttl=128 time=24.0 ms

--- 173.194.65.105 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2005ms

rtt min/avg/max/mdev = 24.080/24.764/25.468/0.566 ms
```

Figure 2.3: Use of the command ping -c 3 www.google.com

Before makeing a lookup at the DNS server the system will check local HLT file, located in /etc/hosts, to see if any redirects or A records are listed. Redirections are created by typing the static IP-address followed by the new logical name as shown in Code snippet 2.1

```
# Redirections
212.130.55.139 vejr #Resolve vejr to "www.dmi.dk"
159.20.6.38 nyhed #Resolve nyhed to "www.dr.dk"
157.55.46.241 mail #Resolve mail to "www.hotmail.com"
```

When requesting a webserver through a DNS, the root servers first redirect to the top-level domain server, TLD, which contains the '.com', '.net', '.dk' etc [3, p. 192]. From here the domain server can return the IP-address for the name server to which the client can connect. This will then (most likely) recursively or (less likely) iterative<sup>2</sup> return the specified IP-address to the client.

Each DNS server is responsible for looking up domains in nonoverlapping parts called 'zones'. A zone is implemented by a separate name server [3, p. 202-205].<sup>3</sup>

When looking for a host name there can be multiple units with the same logical name. However it is possible to specify a name for a unit to unambiguously unique with a '.' (dot) at the end of the logical address which is called a fully qualified domain name (FQDN) [4]. Multiple computers could have the name *myComputer* but if looking for a computer on a network called *work.net*. there can only be one computer with the name *myComputer.work.net*.

<sup>&</sup>lt;sup>2</sup>See section 2.2, Name resolution

<sup>&</sup>lt;sup>3</sup>FiXme Note: Find eksempel

#### 2.2 Name resolution

When looking up an IP-address it can be resolved in two different ways. In iterative name resolution the root DNS server return the IP-address for the a DNS server which contains information of the requested country code. Afterwards the client will ask this DNS server for the IP-address and so on until the client the requested IP-address. This DNS query/response transaction type of resolution requires the client involvement for each request to a DNS server which leads to lower performance cost for the DNS servers [3, p. 205-209].



Figure 2.4: Iterative request for an IP-address

In recursive name resolution the root DNS server will ask the country coded DNS server for the IP-address of the website. The country coded DNS server ask the another DNS server which contains specific information of the domain and so on, until the website is identified. The IP-address is returned recursively to the root DNS server and back to the client. Caching the returned IP-address can lower the performance cost drastically, since a lookup is unnecessary for the same request next time.

Therefore the client is only involved when asking for and obtaining the IP-address which reduce performance cost for the client [3, p. 205-209].



Figure 2.5: Iterative request for an IP-address

### 2.3 DNS security extentions

Due to security issues various governments, research organizations and others have developed a specification and associated protocol called DNS Security extensions (DNSSEC) which protects DNS querty/response transactions [?, p. 84].

Two main security threats exist for DNS in the context of query/ response transactions. Attackers can

- spoof authoritative name servers responding to DNS queries and alter DNS responses
- alter the DNS responses stored in caching name servers.

[?, p. 84]

DNSSEC was designed to protect the users from obtaining corrupted DNS data. It contains a set of extensions to DNS which provide origin authentication of DNS data, authenticated denial of existence, and data integrity.

A signed zone is a DNS server zone which includes a digital signature for all content it returns. It verifies that the underlying responses have a requested resource records, special resource records that carry the digital signatures associated with the requested resources and it contains a DNSKey which include a

include digital signatures for resource records in their zone files served by DNSSEC-aware authoritative name servers. In response to DNS queries, DNSSEC-aware authoritative name servers return signed DNS responses to DNSSECaware caching name servers. A signed DNS response contains three sets of records:

## **Prototype: School DNS**

A school want to use a DNS server to filter certain internet sites from students and also have the opportunity to get a faster response from the name server.

#### 3.1 Solution

To achieve the school's request, a BIND server could be set up. BIND is a open source implementation of the DNS protocols and is the most used DNS server software. One of the advantages with BIND, is that it supports both Windows, Mac and Linux. BIND acts like a caching server, where it stores answers to name queries and this results in reduced time of future queries to the same server.

ANDERS: LAV TEST MED DIG -X - Hvis vi kører uden forwarder, skriver den altid localhost (127.0.0.1) ud. Første er LANGSOM (500-1000ms), anden er hurtigere (0-1ms). - Hvis vi har forwarder (uanset hvilken) rammer den første gang ISP (84.238.0.130), hvilket er "hurtig" (25,3,3,13,3ms) og derefer på localhost (igen 0-1ms). - På forward rammer vi første cache, men teoretisk set kunne vi bruge anden cache hvis adressen ikke ligger i første. Men public DNS kan bruges til rettelse (og badsites?).

BIND can afterwards be configured in different ways to achieve a filter. One of the solutions is forwarding to a public DNS and another is local configuring.

#### 3.1.1 Forward to public DNS

One solution to the school case is to forward all their requests to a public DNS, e.g. OpenDNS. This would be a simple solution, that for some servers would give a faster response. Furthermore some servers are filtering sites that can harm your computer, and thereby make it safer to use the network.

There is a lot of public DNS servers, but not all will make the respond time faster. To find an optimal solution, Google's Test Bench (GTB) have been used. In this case GTB looked up around 4500 servers and tested them all to find the fastest server in average.



Figure 3.1: Output from Google Test Bench test

The test shows, that Cirque DK have the lowest mean response time with 18ms, and the systems localhost DNS have a mean response time on 36ms. One of the more popular public DNS is openDNS, which is a little faster than localhost with 29ms. To test if one of the public DNS is faster than localhost, a test have been made with 5 different internet sites and their given response time.

To test the given servers, the file located at /etc/bind/named have to be edited with the adress of the DNS server it shall forward to.

| No Forwarding |                 |                  |  |  |  |
|---------------|-----------------|------------------|--|--|--|
| Site          | First test (ms) | Second test (ms) |  |  |  |
| Ubuntu.com    | 600             | 826              |  |  |  |
| Bt.dk         | 218             | 352              |  |  |  |
| Iha.dk        | 288             | 179              |  |  |  |
| Facebook.com  | 348             | 240              |  |  |  |
| Wikipedia.org | 30              | 50               |  |  |  |

| Former | ırding - | Circu | 110 | DIZ |
|--------|----------|-------|-----|-----|
| roiwa  | u anne - | Cirai | лe. | DN. |

| Site          | First test (ms) | Second test (ms) |
|---------------|-----------------|------------------|
| Ubuntu.com    | 391             | 381              |
| Bt.dk         | 356             | 906              |
| Iha.dk        | 375             | 240              |
| Facebook.com  | 354             | 207              |
| Wikipedia.org | 375             | 442              |

Forwarding - OpenDNS

| 0 1           |                 |                  |  |  |  |
|---------------|-----------------|------------------|--|--|--|
| Site          | First test (ms) | Second test (ms) |  |  |  |
| Ubuntu.com    | 355             | 352              |  |  |  |
| Bt.dk         | 792             | 436              |  |  |  |
| Iha.dk        | 334             | 117              |  |  |  |
| Facebook.com  | 184             | 279              |  |  |  |
| Wikipedia.org | 153             | 115              |  |  |  |

The tabels show, that Cirquie.DK have a faster response time with 4 out of the 5 test sites than openDNS, which mean that the most optimal public DNS server from the test would be Cirquie.DK.

With this implementation and with BIND configured, the system can be shown in the following figure.



Figure 3.2: System overview

The figures shows that it first try to see in the local BIND server, if the adress is avaliable (cached). If the adress isn't cached, the BIND server will forward to the chosen public DNS (e.g. Cirquie.DK) and if that is not possible, it uses the ISP DNS server to look up the given adress.

(skal vi sammenligne med localhost også eller?) (fordele og ulemper eller skal der laves en konklusion?)

### 3.1.2 Local filtering

TODO - Skal skrives om hvordan man kan udbygge filtering ved localhost og spærre for decideret sider.

#### 3.2 Setup BIND Server

To install a BIND server on Linux type in "sudo apt-get install bind[9]". This will install version 9 of the BIND server software. To check if installation if successfull type "named -v" and if it

is successfull, it will show "BIND 9.8.1-P1". For testing purpose, "dnsutils" have been used - and this can be used to see Query time for the DNS lookup with the commannd "dig -x IP-Adress".

# Conclusion

Approximately 1-2 pages covering conclusion, discussion, and perspectives.

### 4.1 Conclusion

Conlude on your investigations.

### 4.2 Discussion

Discuss your project work.

### 4.3 Perspectives

What are the perspectives on the technology and your prototype?

# **Bibliography**

- [1] Wikipedia, "Hosts (file)," April 2013. Accessed 19-04-13, URL: http://en.wikipedia.org/wiki/Hosts\_(file).
- [2] Wikipedia, "Domain name system," April 2013. Accessed 19-04-13, URL: http://en.wikipedia.org/wiki/Domain\_Name\_System.
- [3] A. S. Tanenbaum and M. Van Steen, "Distributed systems principles and paradigms," *Network*, vol. 4, p. 20, 2004.
- [4] Wikipedia, "Fully qualified domain name," April 2013. Accessed 19-04-13, URL: http://en.wikipedia.org/wiki/Fully\_qualified\_domain\_name.