

Chapter 18

Virtual-Circuit Networks: Frame Relay and ATM

18-1 FRAME RELAY

Frame Relay is a virtual-circuit wide-area network that was designed in response to demands for a new type of WAN in the late 1980s and early 1990s.

Topics discussed in this section:

Architecture
Frame Relay Layers
Extended Address
FRADs
VOFR
LMI

Figure 18.1 Frame Relay network

Note

VCIs in Frame Relay are called DLCIs.

Figure 18.2 Frame Relay layers

Note

Frame Relay operates only at the physical and data link layers.

Figure 18.3 Frame Relay frame

C/R: Command/response

EA: Extended address

FECN: Forward explicit congestion notification

BECN: Backward explicit congestion notification

DE: Discard eligibility

DLCI: Data link connection identifier

Note

Frame Relay does not provide flow or error control; they must be provided by the upper-layer protocols.

Figure 18.4 Three address formats

DLCI			C/R	EA = 0
DLCI	FECN	BECN	DE	EA = 1

a. Two-byte address (10-bit DLCI)

DLCI			C/R	EA = 0
DLCI	FECN	BECN	DE	EA = 0
DLCI			0	EA = 1

b. Three-byte address (16-bit DLCI)

DLCI			C/R	EA = 0
DLCI	FECN	BECN	DE	EA = 0
	EA = 0			
DLCI			0	EA = 1

c. Four-byte address (23-bit DLCI)

Figure 18.5 FRAD

18-2 **ATM**

Asynchronous Transfer Mode (ATM) is the cell relay protocol designed by the ATM Forum and adopted by the ITU-T.

Topics discussed in this section:

Design Goals

Problems

Architecture

Switching

ATM Layers

Figure 18.6 Multiplexing using different frame sizes

Note

A cell network uses the cell as the basic unit of data exchange.

A cell is defined as a small, fixed-size block of information.

Figure 18.7 Multiplexing using cells

Figure 18.8 ATM multiplexing

Figure 18.9 Architecture of an ATM network

Figure 18.10 TP, VPs, and VCs

Figure 18.11 Example of VPs and VCs

Note that a virtual connection is defined by a pair of numbers: the VPI and the VCI.

Figure 18.12 Connection identifiers

Figure 18.13 Virtual connection identifiers in UNIs and NNIs

a. VPI and VCI in a UNI

b. VPI and VCI in an NNI

Figure 18.14 An ATM cell

Figure 18.15 Routing with a switch

Figure 18.16 ATM layers

Figure 18.17 ATM layers in endpoint devices and switches

Figure 18.18 ATM layer

Figure 18.19 ATM headers

GFC: Generic flow control VPI: Virtual path identifier VCI: Virtual circuit identifier

GFC VPI VPI VCI VCI VCI PT CLP HEC **Payload** data **UNI cell**

PT: Payload type

CLP: Cell loss priority

HEC: Header error control

Figure 18.20 *AAL1*

Constant-bit-rate data from upper layer

SAR header SN SNP 4 bits 4 bits

SN: Sequence number

SNP: Sequence number protection

Figure 18.21 *AAL2*

Figure 18.22 *AAL3/4*

Figure 18.23 *AAL5*

18-3 ATM LANS

ATM is mainly a wide-area network (WAN ATM); however, the technology can be adapted to local-area networks (ATM LANs). The high data rate of the technology has attracted the attention of designers who are looking for greater and greater speeds in LANs.

Topics discussed in this section:

ATM LAN Architecture

LAN Emulation (LANE)

Client/Server Model

Mixed Architecture with Client/Server

Figure 18.24 ATM LANs

Figure 18.25 Pure ATM LAN

Figure 18.26 Legacy ATM LAN

Figure 18.27 Mixed architecture ATM LAN

Figure 18.28 Client and servers in a LANE

Figure 18.29 Client and servers in a LANE

