Lycée: charif El Idrissi

Les suites numériques

Professeur: ZILLOU Mouad

Exercice 01

Soit (U_n) une suite numérique définie par :

$$\begin{cases}
 u_0 = 3 \\
 u_{n+1} = 3 - \frac{9}{4u_n}; (\forall n \in \mathbb{N})
\end{cases}$$

Devoir libre N°2

- 1) Montrer que $(\forall n \in \mathbb{N})$; $u_n > \frac{3}{2}$.
- 2) Soit (v_n) une suite définie par $(\forall n \in \mathbb{N}); v_n = \frac{2}{2u 3}$
- 3) **M**ontrer que (v_n) est arithmétique en précisant sa raison et son premier terme.
- 4) Déterminer v_n en fonction de n et $(\forall n \in \mathbb{N}); u_n = \frac{3}{2} \left(\frac{n+2}{n+1}\right).$
- 5) Calculer $S = v_0 + v_1 + v_2 + \dots + v_{83}$

Exercice 02

Soit (u_n) une suite numérique définie par :

$$u_0 = 2 \quad (\forall \boldsymbol{n} \in \mathbb{N}); \boldsymbol{u}_{n+1} = \frac{5\boldsymbol{u}_n}{2\boldsymbol{u}_n + 3}$$

- 1) Montrer que $(\forall n \in \mathbb{N}); u_n > 1$.
- 2) Montrer que $(\forall n \in \mathbb{N})$; $u_{n+1} u_n = \frac{2u_n(1 u_n)}{2u_n + 3}$
- 3) Etudier la monotonie de la suite (u_n)
- 4) Soit (v_n) la suite définie par $(\forall n \in \mathbb{N})$; $v_n = \frac{u_n 1}{u_n}$
 - a) Montrer que (v_n) est une suite géométrique de raison $q = \frac{3}{5}$ puis calculer son premier terme.
 - **b**) Exprimer v_n en fonction de n.
 - c) Déduire que : $(\forall n \in \mathbb{N}); u_n = \frac{2}{2 (\frac{3}{5})^n}$
- 5) a) Montrer que : $(\forall n \in \mathbb{N})$; $u_{n+1} \leq \frac{5}{3}u_n$
 - **b)** En déduire que $(\forall n \in \mathbb{N})$; $u_n \le 2 \left(\frac{5}{3}\right)^n$
- 4) On pose $S_n = v_0 + v_1 + \dots + v_{n-1}$

Montrer que $S_n = \frac{5}{4} \left(1 - \left(\frac{3}{5} \right)^n \right)$

 (v_n) une suite géométrique **positive** tq: $\begin{cases} v_1 \times v_3 = 144 \\ v_0 + v_2 = 15 \end{cases}$

- 1) Calculer v_2 puis déduire v_0 .
- 2) Calculer q la raison de (v_n) puis déduire le terme générale de (v_n) .

Exercice 01

Soit $(u_n)_{n\geq 1}$ une suite arithmétique telle que : $u_3 = 11$ et

- 1) Montrer que la raison de la suite $(u_n)_{n>1}$ est r=-2
- 2) Exprimer u_n en fonction de n.
- 3) Calculer $S = u_3 + u_6 + \dots + u_{20}$

Exercice 02

Soit (u_n) une suite numérique définie par :

$$u_0 = 0 \ (\forall n \in \mathbb{N}); u_{n+1} = \frac{2u_n + 3}{u_n + 4}$$
Devoir
surveillé 2019

- 1) a) Calculer u_1 et u_2 .
 - b) Montrer que $(\forall n \in \mathbb{N}^*)$; $0 < u_n < 1$.
- 2) a) M.q $(\forall n \in \mathbb{N})$; $u_{n+1} u_n = \frac{(1 u_n)(u_n + 3)}{u_n + 4}$
 - b) Montrer que la suite (u_n) est croissante.
- 3) $(\forall n \in \mathbb{N})$; on pose $v_n = \frac{u_n 1}{u + 3}$
- a- Montrer que (v_n) est une suite géométrique de raison $q = \frac{1}{5}$ et déterminer v_0 .
- b-Exprimer v_n en fonction de n.
- c- Déduire que : $(\forall n \in \mathbb{N}); u_n = \frac{1 \left(\frac{1}{5}\right)}{1 + \frac{1}{2}\left(\frac{1}{5}\right)^n}$
- 4) on pose $(\forall n \in \mathbb{N}^*)$; $S_n = v_0 + v_1 + \dots + v_{n-1}$
- Montrer que $(\forall n \in \mathbb{N}^*)$; $S_n = \frac{5}{12} \left(\left(\frac{1}{5} \right)^n 1 \right)$

Exercice 03

Soit (u_n) une suite numérique définie par :

$$u_0 = 1$$
 et $(\forall n \in \mathbb{N}); u_{n+1} = \sqrt{u_n^2 + 3}$

- 1) Calculer u_1 et u_2 .
- 2) On pose $(\forall n \in \mathbb{N})$; $w_n = u_n^2$
- a- Montrer que (w_n) est une suite arithmétique en précisant sa raison
 - b-Exprimer w_n puis u_n en fonction de n.

Exercice 04

- (u_n) une suite arithmétique telle que $\begin{cases} u_2 + u_4 = 26 \\ u_3 \times u_7 = 325 \end{cases}$
- 1) Calculer u_3 puis déduire u_7 .
- 2) Calculer r la raison de (u_n) puis déduire le terme générale de (u_n) .