Lexical Analysis Programming Languages

Sujit Kumar Chakrabarti

IIITB

Non-Deterministic FSA (NFA)

- \blacksquare Finite set of states -(S)
- \blacksquare Alphabet (\sum)
- Transition function $(T: S \times \sum \rightarrow 2^S)$
- Initial state (S_0)
- Final/accepting states $(F \subseteq S)$

Non-Deterministic FSA (NFA)

- \blacksquare Finite set of states -(S)
- Alphabet (\sum)
- Transition function $(T: S \times \sum \rightarrow 2^S)$
- Initial state (S_0)
- Final/accepting states $(F \subseteq S)$
- Acceptance of a string: When there exists a path corresponding to the input leading to an accepting state.

Salient Points

- Possibly more than one outgoing transitions with the same label.
- ϵ -transitions
- More than one paths can be traced during the same run.
- All the possible traces have to be tracked.
- Multiple states can be active at the same time.

Example 1

0

Example 1

Example 1

Example 1

Example 1

Example 1

Example 1

Example 1

Example 2.1

Input: 1...

 ϵ -closure

Example 2.1

Input: 1...

 ϵ -closure

Example 2.1

Input: 1...

 ϵ -closure

Example 2.2

Input: 0...

 ϵ -closure

Example 2.2

Input: 0...

 ϵ -closure

Example 2.2

Input: 0...

 ϵ -closure

- \bullet e-closure: computed on a set of states
- Transitive closure of all states reachable through ε-transitions
- From a source state set S_1 , on an input symbol a, the destination state set S_2 is computed as:

$$U = \bigcup_{s \in S_1} Trans[s, a]$$

$$S_1 = \epsilon - closure(U)$$

 \bullet -closure – a reflexive relation

```
procedure \epsilon-CLOSURE(s)
   stack.PUSH(s)
   ep.ADD(s)
   while stack is not empty do
       t \leftarrow stack.POP
       U \leftarrow \{u : u \in M.Trans[t, \epsilon]\}
       for u \in U do
           if u \notin ep then
               stack.PUSH(u)
               ep.ADD(u)
           end if
       end for
   end while
   return ep
end procedure
```


ep	stack

ep	stack
A, B	B, A
A, D	D, A

tack	staci	ep
β, A	B, A	A, B
3, D	B, L	A, B, D
3, .	B,	A, B, D

ep	stack
A, B	B, A
A, B, D	B, D
A, B, D	В

ep	stack
A, B	B, A
A, B, D	B, D
A, B, D	B
A, B, D, C	C

stack
B, A
B, D
В
C
E

ep	stack
A, B	B, A
A, B, D	B, D
A, B, D	B
A, B, D, C	C
A, B, D, C, E	E
A, B, D, C, E	

Simulating FSAs

Representating transition function using transition tables

Transition Table:

State	a	b
0		
1		
2		
3		

Simulating FSAs

Representating transition function using transition tables

Transition Table:

State	a	b
0	$\{0, 1\}$	{0}
1	{}	{2}
2	{}	{3}
3	{}	{}

 $\mathbf{procedure} \ \mathtt{SIMNFA}(N, \, inp)$

```
procedure SIMNFA(N, inp)
    S \leftarrow \epsilon-CLOSURE(\{N.s_0\})
    while there is input left do
        c \leftarrow \text{NEXTCHAR}
        T' \leftarrow \text{MOVE}(S, c)
        S \leftarrow \epsilon-CLOSURE(T')
    end while
    if S \cap N.F \neq \{\} then
        return true
    else
        return false
    end if
end procedure
```

```
procedure SIMNFA(N, inp)
    S \leftarrow \epsilon-CLOSURE(\{N.s_0\})
    while there is input left do
        c \leftarrow \text{NEXTCHAR}
        T' \leftarrow \text{MOVE}(S, c)
        S \leftarrow \epsilon-CLOSURE(T')
    end while
    if S \cap N.F \neq \{\} then
        return true
    else
        return false
    end if
end procedure
```

Next

Conversion of NFA to DFA