**01 –** Construa uma Máquina de Turing que recebe a codificação binária x de um número natural n e computa a codificação binária do dobro de n. Mostre a execução de M para n = 21 (binary = 10101), n = 8 (binary = 1000), n = 1 (binary = 1) e n = 0 (binary = 0). Dica: para calcular o dobro de um número binário basta adicionar o dígito 0 no final do número.

## I) Lógica utilizada para resolver o problema.

O Exercício solicita que seja impresso o dobro do número binário inserido (acrescentar 0 no final). A partir desse pressuposto, a Máquina de Turing deverá ler todos os valores da esquerda para a direita e acrescentar o dígito "0" na primeira célula com valor em branco ( ), exibindo um erro caso não exista nenhum valor entre o início e a célula em branco (caso o número não tenha sido informado).

### II) Indicação do alfabeto utilizado para construir a Máquina.

$$\Sigma = \{ \triangleright, 1, 0, \square \}$$
  
Q = \{q0, q1, qe, qf\}

#### III) Tabela de transição.

| Tabela de Transições |                  |
|----------------------|------------------|
| q0, ► = q0, ►, R     | q1, ► =          |
| q0, 1 = q1, 1, R     | q1, 1 = q1, 1, R |
| q0, 0 = q1, 0, R     | q1, 0 = q1, 0 ,R |
| q0,  = qe, , S       | q1, = qf, 0, S   |

## IV) Representação gráfica da Máquina de Turing.



# V) Execuções solicitadas.

n = 21 (binary = 10101)

| •           | 1          | 0          | 1          | 0          | 1   |            |
|-------------|------------|------------|------------|------------|-----|------------|
| <u>q0</u> ▶ | 1          | 0          | 1          | 0          | 1   |            |
| •           | <u>q01</u> | 0          | 1          | 0          | 1   |            |
| •           | 1          | <u>q10</u> | 1          | 0          | 1   |            |
| •           | 1          | 0          | <u>q11</u> | 0          | 1   |            |
| •           | 1          | 0          | 1          | <u>q10</u> | 1   |            |
| •           | 1          | 0          | 1          | 0          | q11 |            |
| •           | 1          | 0          | 1          | 0          | 1   | <u>q1</u>  |
| •           | 1          | 0          | 1          | 0          | 1   | <u>qf0</u> |
| •           | 1          | 0          | 1          | 0          | 1   | 0          |

n = 8 (binary = 1000)

| <b>•</b>    | 1          | 0          | 0          | 0          |            |
|-------------|------------|------------|------------|------------|------------|
| <u>q0</u> ▶ | 1          | 0          | 0          | 0          |            |
| •           | <u>q01</u> | 0          | 0          | 0          |            |
| •           | 1          | <u>q10</u> | 0          | 0          |            |
| •           | 1          | 0          | <u>q10</u> | 0          |            |
| •           | 1          | 0          | 0          | <u>q10</u> |            |
| •           | 1          | 0          | 0          | 0          | <u>q1</u>  |
| •           | 1          | 0          | 0          | 0          | <u>qf0</u> |
| •           | 1          | 0          | 0          | 0          | 0          |

n = 1 (binary = 1)

| •                  | 1          |            |
|--------------------|------------|------------|
| <u><b>40</b></u> ₽ | 1          |            |
| •                  | <u>q01</u> |            |
| •                  | 1          | <u>q1</u>  |
| •                  | 1          | <u>qf0</u> |
| •                  | 1          | 0          |

n = 0 (binary = 0)

| •           | 0          |            |
|-------------|------------|------------|
| <u>40</u> ₽ | 0          |            |
| •           | <u>q00</u> |            |
| •           | 0          | <u>q1</u>  |
| •           | 0          | <u>qf0</u> |
| •           | 0          | 0          |

**02 –** Construa uma Máquina de Turing que recebe uma cadeia binária x e verifique se x é um palíndromo (isto é, x se lido da esquerda para direita é igual a ele mesmo na ordem inversa). Demonstre a execução de M para x = 101; x = 1001 e x = 010010. Dica: percorra a cadeia com um estado de leitura e ao chegar sobre o espaço em branco, retorne com um estado de verificação. Reescreva os dígitos lidos e verificados com símbolos para controlar o que já foi lido e verificado.

#### I) Lógica utilizada para resolver o problema.

A atividade solicita a verificação de uma cadeia binária, informando se ela é um palíndromo. A partir disso, e do fato de não ser possível a conservação de múltiplas variáveis, a máquina de turing deverá ler a fita da esquerda para direita, guardando o primeiro dígito binário no estado e o substituindo pelo símbolo play ">", passar dígito por dígito mantendo o mesmo estado até encontrar uma célula em branco "", após isso, deverá retornar (direita para a esquerda) e ler o primeiro dígito binário, sobrescrevendo com uma casa em branco caso o valor seja o mesmo do valor salvo no estado e entrando em estado de erro caso o valor seja diferente. Caso o valor seja o mesmo salvo no estado, a máquina deverá retornar (ir para a esquerda) todas as casas diferente de > e ", usando de um estado de volta. Caso encontre o símbolo >, todo o processo será reiniciado, criando um loop que terminará sempre com o encontro de > e " nas casas centrais (êxito) ou com erro.

### II) Indicação do alfabeto utilizado para construir a Máquina.

$$\Sigma = \{ \blacktriangleright, 1, 0, \bigcirc \}$$
  
Q = \{q0, qL0, qL1, qE0, qE1, qV, qe, qf\}

#### III) Tabela de transição.

| Tabela de Transições |                    |  |  |  |  |  |
|----------------------|--------------------|--|--|--|--|--|
| q0, ► = q0, ►, R     | qL0, ► =           |  |  |  |  |  |
| q0, 0 = qL0, ▶, R    | qL0, 0 = qL0, 0, R |  |  |  |  |  |
| q0, 1 = qL1, ▶, R    | qL0, 1 = qL0, 1, R |  |  |  |  |  |
| q0,                  | qL0,               |  |  |  |  |  |
|                      |                    |  |  |  |  |  |
| qL1, ► =             | qE0, ▶ = qf, ▶, S  |  |  |  |  |  |
| qL1, 0 = qL1, 0, R   | qE0, 0 = qV,, L    |  |  |  |  |  |
| qL1, 1 = qL1, 1, R   | qE0, 1 = qe, 1, S  |  |  |  |  |  |
| qL1, = qE1, , L      | qE0, =             |  |  |  |  |  |
|                      |                    |  |  |  |  |  |
| qE1, ► = qf, ►, s    | qV, ► = q0, ►, R   |  |  |  |  |  |
| qE1, 0 = qe, 0, S    | qV, 0 = qV, 0, L   |  |  |  |  |  |
| qE1, 1 = qV,, L      | qV, 1 = qV, 1 L    |  |  |  |  |  |
| qE1, =               | qV,                |  |  |  |  |  |

## IV) Representação gráfica da Máquina de Turing.



## V) Execuções solicitadas.

x = 101

| •           | 1           | 0           | 1           |     |
|-------------|-------------|-------------|-------------|-----|
| <u>q0</u> ▶ | 1           | 0           | 1           |     |
| •           | <u>q01</u>  | 0           | 1           |     |
| •           | •           | <u>qL10</u> | 1           |     |
| •           | ٨           | 0           | <u>qL11</u> |     |
| •           | •           | 0           | 1           | qL1 |
| •           | ٨           | 0           | <u>qE11</u> |     |
| •           | •           | <u>qV0</u>  |             |     |
| •           | <u>qV</u> ▶ | 0           |             |     |
| •           | ٨           | <u>q00</u>  |             |     |
| •           | •           | •           | qL0         |     |
| •           | •           | qE0►        |             |     |
| •           | ٨           | qf▶         |             |     |
| •           | •           | •           |             |     |

| <b>•</b>    | 1          | 0           | 0           | 1           |     |
|-------------|------------|-------------|-------------|-------------|-----|
| <u>q0</u> ▶ | 1          | 0           | 0           | 1           |     |
| •           | <u>q01</u> | 0           | 0           | 1           |     |
| •           | ٨          | <u>qL10</u> | 0           | 1           |     |
| •           | •          | 0           | <u>qL10</u> | 1           |     |
| •           | ٨          | 0           | 0           | <u>qL11</u> |     |
| •           | •          | 0           | 0           | 1           | qL1 |
| •           | •          | 0           | 0           | qE11        |     |
| •           | •          | 0           | <u>qV0</u>  |             |     |
| •           | ٨          | <u>qV0</u>  | 0           |             |     |
| •           | gV►        | 0           | 0           |             |     |
| •           | •          | <u>q00</u>  | 0           |             |     |
| •           | •          | •           | <u>qL00</u> |             |     |
| •           | •          | •           | 0           | qL0         |     |
| •           | •          | •           | <u>qE00</u> |             |     |
| •           | •          | qV►         |             |             |     |
| •           | •          | •           | <u>q0</u>   |             |     |
| <b>•</b>    | •          | •           | qf          |             |     |
| <b>•</b>    | •          | •           |             |             |     |

x = 010010

| •           | 0          | 1           | 0           | 0           | 1           | 0           |     |
|-------------|------------|-------------|-------------|-------------|-------------|-------------|-----|
| <u>q0</u> ▶ | 0          | 1           | 0           | 0           | 1           | 0           |     |
| •           | <u>q00</u> | 1           | 0           | 0           | 1           | 0           |     |
| •           | •          | <u>qL01</u> | 0           | 0           | 1           | 0           |     |
| •           | •          | 1           | <u>qL00</u> | 0           | 1           | 0           |     |
| <b>•</b>    | •          | 1           | 0           | <u>qL00</u> | 1           | 0           |     |
| •           | •          | 1           | 0           | 0           | <u>qL01</u> | 0           |     |
| <b>•</b>    | •          | 1           | 0           | 0           | 1           | <u>qL00</u> |     |
| •           | •          | 1           | 0           | 0           | 1           | 0           | qL0 |
| •           | •          | 1           | 0           | 0           | 1           | <u>qE00</u> |     |
| •           | •          | 1           | 0           | 0           | <u>qV1</u>  |             |     |
| •           | ٨          | 1           | 0           | <u>qV0</u>  | 1           |             |     |
| •           | ٨          | 1           | <u>qV0</u>  | 0           | 1           |             |     |
| •           | ٨          | <u>qV1</u>  | 0           | 0           | 1           |             |     |
| •           | qV►        | 1           | 0           | 0           | 1           |             |     |
| •           | ٨          | <u>q01</u>  | 0           | 0           | 1           |             |     |

| •        | • | •           | <u>qL10</u> | 0           | 1           |     |  |
|----------|---|-------------|-------------|-------------|-------------|-----|--|
| •        | • | •           | 0           | <u>qL10</u> | 1           |     |  |
| •        | • | •           | 0           | 0           | <u>qL11</u> |     |  |
| •        | • | •           | 0           | 0           | 1           | qL1 |  |
| •        | • | •           | 0           | 0           | <u>qE11</u> |     |  |
| •        | • | •           | 0           | <u>qV0</u>  |             |     |  |
| •        | • | •           | <u>qV0</u>  | 0           |             |     |  |
| •        | • | <u>qV</u> ▶ | 0           | 0           |             |     |  |
| •        | • | •           | <u>q00</u>  | 0           |             |     |  |
| •        | • | •           | •           | <u>qL00</u> |             |     |  |
| •        | • | •           | •           | 0           | qL0         |     |  |
| •        | • | •           | •           | qE00        |             |     |  |
| •        | • | •           | qV►         |             |             |     |  |
| <b>•</b> | • | •           | <b>•</b>    | q0          |             |     |  |
| •        | • | •           | •           | qf          |             |     |  |
| •        | • | <b>•</b>    | •           |             |             |     |  |

**03 –** Construa uma Máquina de Turing que recebe duas cadeias binárias x e y de igual número de bits, separadas por um símbolo  $\cup$ , e verifica se cada bit de x e y são iguais (operação XNOR) indicando V caso todos os bits forem iguais e F caso houverem bits diferentes. A máquina deve retornar um estado indicando V ou F. Mostre a execução de M para (x, y) = (0, 0), (x, y) = (101, 010) e (x, y) = (111, 111). Dica: percorra a primeira cadeia com um estado de leitura e a segunda cadeia com um estado de verificação. Reescreva os dígitos lidos e verificados com símbolos para controlar o que já foi lido e verificado.

#### I) Lógica utilizada para resolver o problema.

A atividade solicita que a máquina verifique se cada bit dos dois valores binários inseridos são iguais. A partir dessa solicitação, a máquina deverá iniciar a partir do play ">" e ler o primeiro valor informado da esquerda para a direita, salvando seu valor no estado, substituindo sua célula por ">" e seguindo para a direita, mantendo seu estado até encontrar a primeira célula contendo "\(\pi\)", após encontrar com essa casa, deverá substituir o estado de leitura do primeiro bit para o estado de escrita do bit lido, mantendo as células "\(\pi\)" com o mesmo símbolo e passando para a próxima célula até encontrar o primeiro bit do segundo valor, caso o valor não seja o mesmo do estado de escrita, deverá ocorrer o erro e a máquina será pausada. Caso encontre o mesmo valor do estado, a célula terá seu valor alterado para "\(\pi\)" e seu

estado será mudado para um estado de retorno, andando células para esquerda, os valores das células e o estado de retorno não serão alterados até encontrar a primeira célula contendo "▶", assim reiniciando o looping da máquina, que será repetido até encontrar um erro ou até que a célula "▶" encontre a célula "□", finalizando com êxito.

## II) Indicação do alfabeto utilizado para construir a Máquina.

$$\Sigma = \{ \blacktriangleright, 1, 0, \sqcup, \blacksquare \}$$
  
Q = {q0, qV1, qE1, qR, qV0, qE0, qe, qf}

### III) Tabela de transição.

| Tabela de Transições |                    |  |  |  |  |
|----------------------|--------------------|--|--|--|--|
| q0, ► = q0, ►, R     | qV1, ► =           |  |  |  |  |
| q0, 1 = qV1, ►, R    | qV1, 1 = qV1, 1, R |  |  |  |  |
| q0, 0 = qV0, ▶, R    | qV1, 0 = qV1, 0, R |  |  |  |  |
| q0, ⊔ = qf, ⊔ , S    | qV1, ⊔ = qE1, ⊔, R |  |  |  |  |
| q0, =                | qV1, =             |  |  |  |  |
|                      |                    |  |  |  |  |
| qE1, ► =             | qR, ► = q0, ►, R   |  |  |  |  |
| qE1, 1 = qR, ⊔, L    | qR, 1 = qR, 1, L   |  |  |  |  |
| qE1, 0 = qe, 0, S    | qR, 0 = qR, 0, L   |  |  |  |  |
| qE1, ⊔ = qE1, ⊔, R   | qR, ⊔ = qR, ⊔, L   |  |  |  |  |
| qE1, =               | qR, =              |  |  |  |  |
|                      |                    |  |  |  |  |
| qV0, ► =             | qE0, ► =           |  |  |  |  |
| qV0, 1 = qV0, 1, R   | qE0, 1 = qe, 1, S  |  |  |  |  |
| qV0, 0 = qV0, 0, R   | qE0, 0 = qR, ⊔, L  |  |  |  |  |
| qV0, ⊔ = qE0, ⊔, R   | qE0, ⊔ = qE0, ⊔, R |  |  |  |  |
| qV1, =               | qE0, =             |  |  |  |  |

## IV) Representação gráfica da Máquina de Turing.



# V) Execuções solicitadas.

$$(x, y) = (0, 0)$$

| •           | 0   |      | 0    |  |
|-------------|-----|------|------|--|
| <b>40</b> Þ | 0   | Ш    | 0    |  |
| •           | q00 | Ш    | 0    |  |
| •           | •   | qV0⊔ | 0    |  |
| •           | •   | Ш    | qE00 |  |
| •           | •   | qR⊔  | Ш    |  |
| •           | qR▶ | q0⊔  | Ш    |  |
| •           | •   | qf⊔  | Ц    |  |
| •           | •   | Ш    | Ш    |  |

(x, y) = (101, 010)

| •           | 1   | 0    | 1    | Ц    | 0    | 1 | 0 |  |
|-------------|-----|------|------|------|------|---|---|--|
| <b>q0</b> ▶ | 1   | 0    | 1    | П    | 0    | 1 | 0 |  |
| •           | q01 | 0    | 1    | П    | 0    | 1 | 0 |  |
| •           | •   | qV10 | 1    |      | 0    | 1 | 0 |  |
| •           | •   | 0    | qV11 |      | 0    | 1 | 0 |  |
| •           | •   | 0    | 1    | qV1⊔ | 0    | 1 | 0 |  |
| •           | •   | 0    | 1    | Ш    | qE10 | 1 | 0 |  |
| •           | •   | 0    | 1    |      | qe0  | 1 | 0 |  |
| <b>•</b>    | •   | 0    | 1    | Ш    | 0    | 1 | 0 |  |

(x, y) = (111, 111)

| •           | 1           | 1    | 1    | Ш    | 1    | 1    | 1 |  |
|-------------|-------------|------|------|------|------|------|---|--|
| <b>40</b> Þ | 1           | 1    | 1    |      | 1    | 1    | 1 |  |
| •           | q01         | 1    | 1    |      | 1    | 1    | 1 |  |
| •           | •           | qV11 | 1    |      | 1    | 1    | 1 |  |
| •           | •           | 1    | qV11 | ⊔    | 1    | 1    | 1 |  |
| •           | •           | 1    | 1    | qV1⊔ | 1    | 1    | 1 |  |
| •           | •           | 1    | 1    | Ш    | qE11 | 1    | 1 |  |
| •           | •           | 1    | 1    | qR⊔  |      | 1    | 1 |  |
| •           | •           | 1    | qR1  |      |      | 1    | 1 |  |
| •           | •           | qR1  | 1    |      |      | 1    | 1 |  |
| •           | qR►         | 1    | 1    |      | Ц    | 1    | 1 |  |
| •           | •           | q01  | 1    |      | П    | 1    | 1 |  |
| •           | •           | •    | qV11 |      |      | 1    | 1 |  |
| •           | <b>&gt;</b> | •    | 1    | qV1⊔ | Ц    | 1    | 1 |  |
| •           | •           | •    | 1    |      | qE1⊔ | 1    | 1 |  |
| •           | •           | •    | 1    |      |      | qE11 | 1 |  |
| •           | •           | •    | 1    |      | qR⊔  |      | 1 |  |
| •           | •           | •    | 1    | qR⊔  |      |      | 1 |  |
| •           | •           | •    | qR1  | Ш    |      |      | 1 |  |
| •           | •           | qR▶  | 1    |      |      |      | 1 |  |
| •           | •           | •    | q01  | Ш    | Ш    | Ш    | 1 |  |
| •           | •           | •    | •    | qV1⊔ |      |      | 1 |  |
| •           | <b>•</b>    | •    | •    | Ш    | qE1⊔ | Ц    | 1 |  |
| •           | •           | •    | •    | П    | Ц    | qE1⊔ | 1 |  |

| • | • | • | <b>&gt;</b> | Ш   | Ш   | Ш   | qE11 |  |
|---|---|---|-------------|-----|-----|-----|------|--|
| • | ٨ | • | •           |     |     | qR⊔ |      |  |
| • | • | • | •           |     | qR⊔ | Ш   | Ш    |  |
| • | • | • | •           | qR⊔ |     |     |      |  |
| • | • | • | qR►         |     |     | П   | Ш    |  |
| • | • | • | •           | q0⊔ |     | Ш   | Ш    |  |
| • | • | • | •           | qf⊔ |     | П   | Ш    |  |
| • | • | • | •           | Ш   | Ш   | П   | П    |  |