Bridging Pre- and Post-silicon Debugging with BiPeD

Andrew DeOrio

Jialin Li and Valeria Bertacco

University of Michigan

Verification Opportunities

Pre-Silicon

Post-Silicon

- Low speed
- + High observability
- + Reproducible bugs

- + High speed
- Poor observability
- Intermittent bugs

Verification Opportunities

High observability → learn correct behavior

High speed →
enforce
correct behavior

Shared correctness model

Contributions

High speed

High observability, detailed debugging info

No need for bug reproduction

Shared correctness model

BiPeD Overview

Pre-silicon

Post-silicon

Protocol extraction

- Run correct tests
- Monitor interfaces
- Learn correct protocols

- Run many unknown tests
- HW detects protocols
- Detect errors in protocols

Protocol detection Transaction extraction

- Transfer debug data off-chip
- Extract debugging information

BiPeD Overview

- 1. Pre-silicon protocol extraction
- 2. Post-silicon protocol detection
- 3. Offline transaction extraction

Pre-silicon Protocol Extraction

[&]quot;INFERNO: Streamlining Verification with Inferred Semantics", DeOrio, et. al, 2009

Pre-silicon Protocol Extraction

TLU Protocol Example

bit 0: protect

bit 1: thread sync

bit 2: TLB bypass

bit 3: ASI reload

bit 4: flush

Outline

- 1. Pre-silicon protocol extraction
- 2. Post-silicon protocol detection
- 3. Offline transaction extraction

Post-silicon Protocol Detection

Post-silicon protocol detection

Protocol detector hardware

- Programmable
- Circular history buffer

Area overhead

- 0.7% of OpenSPARC T2 for 10 detectors
 - 15.3KB storage each, for biggest OST2 protocol

TLU Protocol Example

- Injected bug in OpenSPARC TLU/LSU interface
 Cycle 10,000
- Programmed TLU/LSU protocol into detector
- Ran test
- BiPeD HW detected bug at cycle 10,017

Outline

- 1. Pre-silicon protocol extraction
- 2. Post-silicon protocol detection
- 3. Offline transaction extraction

Off-line transaction extraction

Transaction extraction

- Leverage transaction extraction similar to Inferno [DeOrio, et. al, 2009]
- Input: circular event buffer
- Output: intuitive, high-level transactions

burst TLB bypass w/ thread sync

TLU Protocol Example

bit 0: protect

bit 1: thread sync

bit 2: TLB bypass

bit 3: ASI reload

bit 4: flush

Transaction extraction example

Extracted transaction history

Transaction extraction example

- Time: cycle 10,017
- Interface: TLU
- Signals: protect, thread sync, TLB bypass, ASI reload, flush
- Preceding activity: thread sync, burst TLB bypass w/thread sync, TLB bypass, TLB bypass
- Event: 10100 Transition: 00100 -> 10100
- Transaction:

Limitations

- False negatives
 - May miss bugs that only affect data signals
 - Interface signal selection important
 - Control signals work well in practice
- False positives
 - High pre-silicon coverage → fewer false positives
 - If f.p. is encountered, update the database

Experimental setup

Signal Localization

)			
	Bugs									
	branch	EX valid inst.	cache-proc	MEM rd ack	FPU execept.	fetch thread	LSU access	table walk	PCX stall	CCX/PCX req
CPX	1,719		16							
branch	242									
CCX	16k	39	16							742
memory				223						
execute		16								
FPU		f.p.	22k	48k	739	48k		f.n.	22k	
fetch						47				
perf.										
TLU							16			
PCX									767	764

first interface to find bug

Interfaces

f.p. false positive

f.n. false negative

Protocol Extraction

Transaction Extraction

Leave-one-out Cross Validation

Related Work

Invariant detection

[Ammons 2002, Ernst 2008]

- Detect invariants
- Check tests against invariants

Pre-silicon verification

- Inferno: verification with transactions [DeOrio 2009]
- Data mining high-level specifications [Li 2010]

Post-silicon validation

- Manual debugging [Abramovici 2006]
- Automated debugging of specific components [Park 2011]
- Manual, hardcoded txn checkers [Singerman 2011]

Conclusions and Future Work

- BiPeD bridges pre-silicon protocol extraction with post-silicon detection
- Automatically detects bugs
- Provides intuitive debugging information

- Future applications for flexible hardware
 - Coverage metrics
 - Runtime verification