Chương 3. Lý thuyết chuỗi

Trường Đại học Công nghệ Thông tin

Ngày 16 tháng 9 năm 2024

- 3.1 Chuỗi số
- 3.2 Chuỗi số dương
- 3.3 Chuỗi số có dấu bất kỳ
- 3.4 Chuỗi lũy thừa
- 3.5 Chuỗi Taylor và chuỗi Maclaurin

3.1 Chuỗi số

Định nghĩa 3.1

1. Cho dãy số $\{a_n\}$, biểu thức

$$a_1 + a_2 + \cdots + a_n + \cdots$$

được gọi là một **chuỗi số** và kí hiệu $\sum_{n=1}^{\infty} a_n$.

2. Tổng

$$s_k = a_1 + a_2 + \dots + a_k$$

được gọi là **tổng riêng** thứ k của chuỗi.

3. Nếu $S=\lim_{k\to\infty}s_k$ là một số hữu hạn thì chuỗi $\sum_{n=1}^\infty a_n$ được gọi là hội

$$t \mu$$
. Ngược lại, ta nói chuỗi số $\sum_{n=1}^{\infty} a_n$ **phân kỳ**.

Ví dụ 3.2 Xét sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

Giải. Ta thấy

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

và tổng riêng

$$s_k = \sum_{n=1}^k \frac{1}{n(n+1)} = \left(\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{k\cdot (k+1)}\right)$$
$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{k} - \frac{1}{k+1}\right)$$
$$= \frac{1}{1} - \frac{1}{k+1}$$

Do đó
$$\lim_{k\to\infty}s_k=\lim_{k\to\infty}\left(\frac{1}{1}-\frac{1}{k+1}\right)=1,$$
 suy ra chuỗi số

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1.$$

Ví dụ 3.3 Xét chuỗi cấp số nhân

$$a + ar + ar^{2} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}$$

trong đó a,r là các số thực khác 0. Khi đó, với $r \neq 1$, ta có

$$s_k = \sum_{n=1}^k ar^{n-1} = a \frac{1 - r^k}{1 - r}.$$

Nếu
$$|r|<1$$
 thì chuỗi số $\sum_{n=1}^\infty ar^{n-1}$ hội tụ và $\left|\sum_{n=1}^\infty ar^{n-1}=\frac{a}{1-r}\right|$.

Ví dụ 3.4 Tính tổng

$$5 - \frac{10}{3} + \frac{20}{9} - \frac{40}{27} + \cdots$$

Giải. Chuỗi số có dạng chuỗi cấp số nhân với số hạng đầu tiên a=5 và $r=-\frac{2}{3}$. Vì |r|<1 nên chuỗi số đã cho hội tụ và tổng của chuỗi đã cho là

$$\frac{5}{1-r} = \frac{5}{1-\left(\frac{2}{3}\right)} = 3.$$

Ví dụ 3.5 Chuỗi số $\sum_{n=1}^{\infty} 2^{2n} 3^{1-n}$ hội tụ hay phân kỳ?

G	iiả	i.	(Η	ư	ớr.	ng	<i>C</i>	lâ	n.	<i>-</i>	B_{i}	iê	'n	ä	tô.	i	cł	'nι	ıô	j	đ	ã	C	h)	νέ	è (dą	n	g	C	hι	ıô	į	Câ	âp	S	ô	n	h	âı	n)			
•						•		•		•	• 1		•		•		•			•		•			= 1							•		•		•				• 1				•	 •	•
•						•		•		•	•		•		•		•			•		•		•	• 1			•				•				•				•	•	•		•	 •	•
•	1					•				•	•				•		•			•		•										•		•		•								•	 •	

Ví dụ 3.6 Một loại thuốc được dùng cho bệnh nhân vào cùng một thời điểm mỗi ngày. Giả sử nồng độ của thuốc là C_n (tính bằng mg/mL) sau khi tiêm vào ngày thứ n. Trước khi tiêm vào ngày hôm sau, chỉ còn lại 30% thuốc trong máu và liều hàng ngày làm tăng nồng độ lên 0.2 mg/mL.

- a. Tìm nồng độ thuốc sau khi tiêm lần thứ ba.
- b. Nồng độ thuốc sau lần tiêm thứ n bằng bao nhiêu?
- c. Nồng độ giới hạn bằng bao nhiêu?

Giải. a. Ngay trước khi tiêm thuốc mỗi ngày, nồng độ thuốc còn 30% nồng độ của ngày hôm trước, tức là $0,3C_n$. Với liều mới, nồng độ tăng thêm $0,2~{\rm mg/mL}$ và do đó

$$C_{n+1} = 0, 2+0, 3C_n$$

Đặt $C_0 = 0$ (chưa tiêm) và

$$C_1 = 0, 2 + 0, 3C_0 = 0, 2$$

 $C_2 = 0, 2 + 0, 3C_1 = 0, 26$
 $C_3 = 0, 2 + 0, 3C_2 = 0, 278$

Nồng độ thuốc sau khi tiêm lần thứ ba là $0,278~{\rm mg/mL}$.

b. Nồng độ thuốc sau lần tiêm thứ n là

$$C_n = 0, 2 + 0, 2.0, 3 + 0, 2.(0, 3)^2 + 0, 2.(0, 3)^3 + \dots + 0, 2.(0, 3)^{n-1}$$

Đây là một chuỗi cấp số nhân với số hạng đầu a=0,2 và r=0,3. Khi đó

$$C_n = 0, 2\frac{1 - (0,3)^n}{1 - 0,3}$$

c. Vì |r| < 1 nên giới hạn của nồng độ thuốc là

$$\lim_{n \to \infty} C_n = \lim_{n \to \infty} 0, 2 \frac{1 - (0, 3)^n}{1 - 0, 3} = \frac{2}{7} (\text{mg/mL}).$$

Ví dụ 3.7 Biểu diễn số thập phân vô hạn tuần hoàn $a=2,3(17)=2,317171717\dots$ dưới đây dưới dạng số hữu tỉ. Giải.

$$a = 2, 3 + \frac{17}{10^3} + \frac{17}{10^5} + \frac{17}{10^7} + \cdots$$

Sau số hạng đầu tiên, ta có một chuỗi cấp số nhân với $a=\frac{13}{10^3}$ và $r=\frac{1}{10^2}.$ Do đó

$$a = 2, 3 + \frac{17}{10^3} \frac{1}{1 - \frac{1}{10^2}} = \frac{23}{10} + \frac{17}{990} = \frac{1147}{495}$$

Định lý 3.8 Nếu chuỗi số $\sum_{n=1}^{\infty} a_n$ hội tụ thì $\lim_{n\to\infty} a_n = 0$.

Chú ý: Nếu $\lim_{n\to\infty}a_n\neq 0$ hoặc $\lim_{n\to\infty}a_n$ không tồn tại thì chuỗi số $\sum_{n=1}a_n$ phân kỳ.

Ví dụ 3.9

- a. Chuỗi số $\sum_{n=1}^{\infty} \frac{n+1}{n}$ không hội tụ vì $\lim_{n \to \infty} \frac{n+1}{n} = 1 \neq 0$.
- b. Chuỗi số $\sum_{n=1}^{\infty} n^2$ không hội tụ vì $\lim_{n \to \infty} n^2 = \infty$.
- c. Chuỗi số $\sum_{n=1}^{\infty} (-1)^n$ không hội tụ vì $\lim_{n\to\infty} (-1)^n$ không tồn tại.

Định lý 3.10 Nếu $\sum_{n=1}^\infty a_n = A$ và $\sum_{n=1}^\infty b_n = B$ là các chuỗi số hội tụ thì

1.
$$\sum_{n=1}^{\infty} (a_n \pm b_n) = A \pm B$$

$$2. \sum_{n=1}^{\infty} ca_n = cA$$

3. Chuỗi số $\sum_{n=1}^\infty a_n$ hội tụ khi và chỉ khi chuỗi $\sum_{n=k}^\infty a_n$ hội tụ với mọi $k\geq 1.$

Ví dụ 3.11 Tính
$$\sum_{n=1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}}$$

Giải.

$$\sum_{n=1}^{\infty} \frac{3^{n-1} - 1}{6^{n-1}} = \sum_{n=1}^{\infty} \left(\frac{1}{2^{n-1}} - \frac{1}{6^{n-1}} \right)$$
$$= \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} - \sum_{n=1}^{\infty} \frac{1}{6^{n-1}} = \frac{1}{1 - 1/2} - \frac{1}{1 - 1/6} = \frac{4}{5}$$

Ví dụ 3.12 Chuỗi $\sum_{n=1}^{\infty} \frac{1}{n}$ phân kì (chuỗi điều hòa).

Giải.

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}$$

$$+\underbrace{\frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \frac{1}{17} + \cdots}_{(a)}$$

Xét chuỗi:

$$1 + \frac{1}{2} + \underbrace{\frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}}_{}$$

$$+\underbrace{\frac{1}{16} + \frac{1}{16} + \frac{1}{32} + \dots + \frac{1}{32} + \dots}_{16 \text{ s\^{o}}}$$
(b)

Ta kí hiệu $S_n^{(1)}$ là tổng riêng của chuỗi (a), $S_n^{(2)}$ là tổng riêng của chuỗi (b). Ta có $S_n^{(1)} > S_n^{(2)}$

Ta tính tổng riêng của chuỗi (b)

$$S_{2^n}^{(2)} = 1 + n.\frac{1}{2}$$

Do đó với chuỗi $(b):\lim_{n \to \infty} S_n^{(2)} = \infty$

Như vậy $(b):\lim_{n\to\infty}S_n^{(1)}=\infty$ điều này chứng tỏ chuỗi điều hòa là phân kì.

Ví dụ 3.13 Tính tổng (nếu có) các chuỗi sau:

a.
$$\sum_{n=1}^{\infty} \frac{2+n}{1-3n}$$
 b. $\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^n}$

c. Cho
$$a_1 = 1, a_n = (5 - n)a_{n-1}$$
. Tính $\sum_{n=1}^{\infty} a_n$.

Giai.

3.2 Chuỗi số dương

Định nghĩa 3.14 Chuỗi số $\sum_{n=1}^{\infty} a_n$ được gọi là chuỗi số dương nếu tất cả

các số hạng $a_n > 0$.

Ví dụ 3.15 Chuỗi $\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n^3+2n+1}}$ là chuỗi số dương

Chuỗi $\sum_{n=1}^{\infty} \frac{\sin n}{n!+1}$ không là chuỗi số dương

Định lý 3.16 (Tiêu chuẩn tích phân) Cho $\{a_n\}$ là một dãy số với các số hạng dương. Giả sử $f(n)=a_n$ trong đó f là một hàm số **không âm**, **liên** tục và **giảm nghiêm ngặt** trên $[m,+\infty)$ (m là một số nguyên dương).

Khi đó chuỗi số $\sum_{n=m} f(n)$ hội tụ nếu và chỉ nếu tích phân suy rộng

$$\int_{m}^{\infty} f(x) dx$$
 hội tụ.

Ví dụ 3.17 Xét sự hội tụ của chuỗi số

a.
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$
 b.
$$\sum_{n=2}^{\infty} \frac{\ln n}{n}$$

Giải. a. Hàm số $f(x)=\frac{1}{x^2+1}$ liên tục, dương và giảm trên $[1,+\infty)$.

Ta dùng tiêu chuẩn tích phân suy rộng để kiểm tra sự hội tụ của chuỗi số. Ta có

$$\int_{1}^{\infty} \frac{1}{x^2 + 1} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^2 + 1} dx = \lim_{t \to \infty} \int_{1}^{t} (\arctan x) \Big|_{1}^{t}$$
$$= \lim_{t \to \infty} \left(\arctan t - \frac{\pi}{4} \right) = \frac{\pi}{4} - \frac{\pi}{2} = \frac{\pi}{4}$$

Do đó tích phân $\int_1^\infty \frac{1}{x^2+1} \mathrm{d}x$ hội tụ và như vậy chuỗi số đã cho hội tụ.

b. Đặt $f(x)=\frac{\ln x}{x}$ và f(x) là một hàm số dương, liên tục với mọi x>1 vì hàm số logarit là một hàm số liên tục. Để xác định f tăng hay giảm, ta tính đạo hàm của f như sau

$$f'(x) = \frac{x \cdot 1/x - x \ln x}{x^2} = \frac{1 - \ln x}{x^2}.$$

Khi x>e, ta có f'(x)<0 hay f(x) giảm khi x>e. Xét tính phân suy rộng

$$\int_{1}^{\infty} \frac{\ln x}{x} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{\ln x}{x} dx = \lim_{t \to \infty} \left(\frac{(\ln x)^{2}}{2} \right) \Big|_{1}^{t} = \lim_{t \to \infty} \frac{\ln t}{2} = \infty$$

Điều này cho thấy tích phân $\int_1^\infty \frac{\ln x}{x} \mathrm{d}x$ phân kỳ. Do đó chuỗi số đã cho phân kỳ.

 $\begin{array}{ll} \textbf{V\'i dụ 3.18} \text{ X\'et sự hội tụ của chuỗi s\'o} \\ \text{a.} \sum_{n=1}^{\infty} \frac{1}{n^p} \text{ v\'oi } p \text{ là hằng s\'o}. & \text{b.} \sum_{n=2}^{\infty} \frac{1}{n \ln n} & \text{c.} \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^4 + 3n}} \\ \text{d.} \sum_{n=1}^{\infty} n e^{-n^2} & \text{d.} \end{array}$ n=1

Dịnh lý 3.19 (Tiêu chuẩn so sánh) Cho hai chuỗi số dương $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$.

Giả sử, tồn tại N sao cho $a_n \leq b_n$ với mọi n > N. Khi đó

- Nếu $\sum_{n=1}^{\infty} b_n$ hội tụ thì $\sum_{n=1}^{\infty} a_n$ hội tụ.
- Nếu $\sum_{n=1}^{\infty} a_n$ phân kì thì $\sum_{n=1}^{\infty} b_n$ phân kì.

Ví dụ 3.20 Xét sự hội tụ của chuỗi số

a.
$$\sum_{n=1}^{\infty} \frac{1}{2^n + 1}$$
 b.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 c.
$$\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n}}$$

Giải. a. Ta thấy $\frac{1}{2^n+1}<\frac{1}{2^n}$ với mọi $n\geq 1$. Vì chuỗi số $\sum_{n=1}^\infty \frac{1}{2^n}$ hội tụ

nên chuỗi số đã cho hội tụ.

b. Ta có $\frac{1}{\sqrt{n}}>\frac{1}{n}$ với mọi n>2. Do chuỗi số $\sum_{n=1}^\infty\frac{1}{n}$ phân kì nên chuỗi đã cho phân kì.

c. Ta có $\frac{\ln n}{\sqrt{n}}>\frac{1}{\sqrt{n}}$ với mọi n>3. Do chuỗi số $\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}$ phân kì nên chuỗi đã cho phân kì.

Định lý 3.21 (Tiêu chuẩn tỉ lệ) Cho hai chuỗi số dương $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$.

$$\operatorname{Giả}\,\operatorname{sử}\,\lim_{n\to\infty}\frac{a_n}{b_n}=c.$$

- Nếu $0 < c < +\infty$ thì hai chuỗi trên cùng hội tụ hoặc cùng phân kì.
- Nếu $c=+\infty$ và $\sum_{n=1}^\infty b_n$ phân kì thì $\sum_{n=1}^\infty a_n$ phân kì.
- Nếu c=0 và $\displaystyle\sum_{n=1}^{\infty}b_n$ hội tụ thì $\displaystyle\sum_{n=1}^{\infty}a_n$ hội tụ.

Ví dụ 3.22 Xét sự hội tụ của chuỗi số
$$\sum_{n=1}^{\infty} \frac{1}{3.2^n+4}$$

Giải. Đặt
$$a_n=rac{1}{3.2^n+4}$$
 và $b_n=rac{1}{2^n},$ khi đó

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{2^n}{3 \cdot 2^n + 4} = \frac{1}{3}.$$

Chuỗi số $\sum_{n=0}^{\infty} \frac{1}{2^n}$ hội tụ do đó chuỗi số đã cho hội tụ.

Ví dụ 3.23 Xét sự hội tụ của chuỗi số

a.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + 3\sqrt[3]{2n} + 2}$$
 b. $\sum_{n=1}^{\infty} \frac{n^2 + 3n}{2n^4 - n}$ c. $\sum_{n=1}^{\infty} \frac{3 + 2n}{\sqrt{n^3 + 3}}$ d. $\sum_{n=1}^{\infty} \frac{\cos^2(2n)}{n^3}$

c.
$$\sum_{n=1}^{\infty} \frac{3+2n}{\sqrt{n^3+3}}$$
 d. $\sum_{n=1}^{\infty} \frac{\cos^2(2n)}{n^3}$

3.3 Chuỗi số có dấu bất kỳ

Định nghĩa 3.24 Chuỗi số $\sum a_n$ được gọi là hội tụ tuyệt đối nếu chuỗi

$$\sum_{n=1}^{\infty} |a_n|$$
 hội tụ.

Định lý 3.25 Nếu một chuỗi số hội tụ tuyệt đối thì nó hội tụ.

b.
$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$

Ví dụ 3.26 Xét sự hội tụ của chuỗi a.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$
 b.
$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$$
 Giải. a. Đặt $a_n = \frac{(-1)^n}{n^2}$ và xét chuỗi
$$\sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \frac{1}{n^2}$$
. Vì chuỗi
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

hội tụ nên chuỗi số đã cho hội tụ.

b. Xét chuỗi
$$\sum_{n=1}^\infty |a_n| = \sum_{n=1}^\infty \frac{|\sin n|}{n^2}$$
. Vì $\frac{|\sin n|}{n^2} \leq \frac{1}{n^2}$ và chuỗi $\sum_{n=1}^\infty \frac{1}{n^2}$ hội

tụ nên chuỗi số đã cho hôi tu.

Định lý 3.27 Cho chuỗi số
$$\sum_{n=1}^{\infty} a_n$$
 và $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = d$. Khi đó

- 1. Nếu d < 1 thì chuỗi số hội tụ tuyệt đối
- 2. Nếu d > 1 thì chuỗi số phân kì.

Ví dụ 3.28 Xét sự hội tụ của chuỗi số

a.
$$\sum_{n=1}^{+\infty} \frac{2^n + 5}{3^n}$$
 b. $\sum_{n=1}^{+\infty} \frac{(-1)^n + (-2)^{n+1}}{3^n}$ c. $\sum_{n=1}^{+\infty} \frac{(-1)^n n}{3^n}$ d. $\sum_{n=1}^{+\infty} \frac{(2n)!}{n!n!}$

c.
$$\sum_{n=1}^{+\infty} \frac{(-1)^n n}{3^n}$$

d.
$$\sum_{n=1}^{+\infty} \frac{(2n)!}{n!n!}$$

Định lý 3.29 (Tiêu chuẩn căn) Cho chuỗi số $\sum_{n=1}^{\infty} a_n$ và

$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = c.$$

Khi đó

- Nếu c < 1 thì chuỗi số hội tụ tuyệt đối.
- Nếu c>1 thì chuỗi số phân kì.
- Nếu c=1 thì chưa kết luận được.

Ví dụ 3.30 Xét sự hội tụ của chuỗi số

a.
$$\sum_{n=1}^{\infty} \left(\frac{2^n + 3}{3^n + 5}\right)^n$$
 b. $\sum_{n=1}^{\infty} \frac{(n+1)^{n^2}}{n^{n^2} 2^n}$ c. $\sum_{n=1}^{\infty} \frac{1}{3^n} \left(\frac{n+1}{n+2}\right)^{n^2}$

.....

.....

Định nghĩa 3.31 Chuỗi đan dấu là chuỗi số có dạng $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ hay

$$\sum_{n=1}^{\infty} (-1)^n a_n, \text{ v\'oi } a_n \ge 0.$$

Định lý 3.32 (Leibniz) Nếu dãy các số dương $\{a_n\}$ giảm nghiêm ngặt và

$$\lim_{n \to \infty} a_n = 0$$
 thì chuỗi đan dấu $\sum_{n=1}^{\infty} (-1)^n a_n$ hội tụ.

Ví dụ 3.33 Chuỗi số $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ là hội tụ vì $\{a_n=\frac{1}{n}\}$ là dãy giảm và

$$\lim_{n \to \infty} a_n = 0$$

Định nghĩa 3.34 Các chuỗi số thỏa mãn Định lý Leibniz được gọi là chuỗi Leibniz.

Định nghĩa 3.35 Nếu chuỗi $\sum_{n=1}^{\infty} a_n$ hội tụ nhưng không hội tụ tuyệt đối

thì ta nói nó là **bán hội tụ**.

Ví dụ 3.36 Chuỗi số $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ là bán hội tụ.

Định lý 3.37 Nếu chuỗi số hội tụ tuyệt đối thì khi thay đổi vị trí các số hạng một cách tùy ý ta vẫn được chuỗi mới hội tụ tuyệt đối và có cùng tổng.

Định lý 3.38 Cho một chuỗi số bán hội tụ. Khi đó, với mọi số B đều tồn tại một cách thay đổi vị trí các số hạng của chuỗi để được chuỗi mới có tổng là B.

3.4 Chuỗi lũy thừa

Định nghĩa 3.39 Cho x là một biến. Chuỗi lũy thừa là chuỗi mà số hạng tổng quát của nó có dạng $a_n x^n$, trong đó a_n là hằng số.

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$
 (1)

với a_n gọi là hệ số của chuỗi lũy thừa.

Tổng quát hơn, một chuỗi lũy thừa là chuỗi có dạng

$$\sum_{n=0}^{\infty} a_n (x-c)^n \tag{2}$$

trong đó a_n, c là các hằng số.

Ví dụ 3.40 a.
$$\sum_{n=1}^{\infty} \frac{x^n}{n!}$$
 b. $\sum_{n=1}^{\infty} \frac{(x-1)^n}{n}$

Dinh nghĩa 3.41

- 1. Cho chuỗi lũy thừa $\sum_{n=1}^\infty a_n x^n$. Nếu chuỗi số $\sum_{n=1}^\infty a_n u^n$ hội tụ thì điểm u được gọi là điểm hội tụ.
- 2. Tập hợp tất cả các điểm hội tụ được gọi là *miền hội tụ* của chuỗi lũy thừa.

Định lý 3.42 Nếu chuỗi (1) hội tụ tại $u \neq 0$ thì nó hội tụ tuyệt đối tại mọi x thỏa mãn |x| < |u|. Nếu chuỗi (1) phân kỳ tại x = b thì chuỗi phân kỳ với mọi x thỏa mãn |x| > |b|.

Định nghĩa 3.43 Số $r \geq 0$ được gọi là bán kính hội tụ của chuỗi (1) nếu chuỗi (1) hội tụ tuyệt đối trên (-r,r) và phân kì trong các khoảng $(-\infty,-r),(r,+\infty)$.

Tại -r, r chuỗi (1) có thể hội tụ hoặc phân kì.

Tìm miền hội tụ của chuỗi lũy thừa $\sum a_n x^n$ n=0

1. Tìm bán kính hội tụ:

$$r=\lim_{n o\infty}rac{1}{\sqrt[n]{|a_n|}}$$
 hoặc $r=\lim_{n o\infty}rac{|a_n|}{|a_{n+1}|}.$

- Nếu $r=+\infty$ thì chuỗi lũy thừa đã cho hội tụ với mọi x.
- Nếu r=0 thì chuỗi lũy thừa đã cho phân kì với mọi $x\neq 0$.
- 2. Xét sự hội tụ của các chuỗi số (tại x=r, x=-r)

$$\sum_{n=0}^{\infty} a_n r^n \text{ và } \sum_{n=0}^{\infty} (-1)^n a_n r^n.$$

Ví dụ 3.44 Tìm miền hội tụ của chuỗi hàm

a.
$$\sum_{n=1}^{\infty} \frac{n!}{a^{n^2}} x^n \ (a > 1)$$
 b. $\sum_{n=1}^{\infty} n^n x^n$ c. $\sum_{n=1}^{\infty} \frac{x^n}{n}$ d. $\sum_{n=1}^{\infty} \frac{(x-3)^n}{3^n}$ e. $\sum_{n=1}^{\infty} \frac{(x-1)^n}{3^n \sqrt{n^2+1}}$ f. $\sum_{n=1}^{\infty} \frac{3^n (x-4)^{2n}}{n^2}$

e.
$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{3^n \sqrt{n^2+1}}$$
 f. $\sum_{n=1}^{\infty} \frac{3^n (x-4)^{2n}}{n^2}$

Giải. a. Tìm bán kính hội tụ

$$r = \lim_{n \to \infty} \frac{(n)! a^{(n+1)^2}}{a^{n^2} (n+1)!} = \lim_{n \to \infty} \frac{a^{2n+1}}{n+1} = +\infty.$$

Vậy chuỗi hàm đã cho hội tụ với mọi $x \in \mathbb{R}$. b. Tìm bán kính hội tụ

$$r = \lim_{n \to \infty} \frac{1}{\sqrt[n]{n^n}} = 0$$

Vậy chuỗi hàm đã cho hội tụ tại x=0. c. Ta có bán kính hội tụ

$$r = \lim_{n \to \infty} \frac{n+1}{n} = 1.$$

Do đó chuỗi đã cho hội tụ trong -1 < x < 1. Tại x=1, chuỗi đã cho có dạng

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

Đây là chuỗi phân kì. Do đó chuỗi hàm phân kì tại x=1.

Tại x=-1, chuỗi hàm có dạng

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

Đó là chuỗi đan dấu hội tụ. Vậy chuỗi hàm đã cho hội tụ tại x=-1. Vậy miền hội tụ cần tìm là $\left[-1,1\right)$

d. Đặt y=x-3, xét chuỗi lũy thừa $\sum_{n=1}^{\infty} \frac{y^n}{3^n}$. Tìm bán kính hội tụ

$$r = \lim_{n \to \infty} \frac{1}{\sqrt[n]{a_n}} = 3.$$

Khi y=3 hay x=6, chuỗi $\sum_{n=1}^{\infty} \frac{3^n}{3^n}$ phân kỳ.

Khi
$$y=-3$$
 hay $x=0,$ chuỗi $\sum_{n=1}^{\infty} \frac{(-3)^n}{3^n}$ phân kỳ.

Vậy miền hội tụ của chuỗi hàm đã cho là (0,6).

3.5 Chuỗi Taylor và chuỗi Maclaurin

Định nghĩa 3.45 Cho f là một hàm số có đạo hàm mọi cấp trong một khoảng chứa số a. Khi đó chuỗi Taylor sinh bởi f tại x=a là

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots$$
$$+ \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$$

Chuỗi Maclaurin sinh bởi f(x) là

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} (x)^k = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + \dots$$

chuỗi Taylor sinh bởi f(x) tại x = 0.

Ví dụ 3.46 Tìm chuỗi Taylor sinh bởi $f(x) = \frac{1}{x}$ tại x = 2.

Giải. Tính các đạo hàm $f'(2), f''(2), f'''(2), \ldots, f^{(n)}(2), \ldots,$

$$f(x) = x^{-1}$$

$$f(2) = 2^{-1} = \frac{1}{2}$$

$$f'(x) = -x^{-2}$$

$$f'(2) = -2^{-2} = -\frac{1}{2^{2}}$$

$$f''(x) = 2!x^{-3}$$

$$\frac{f''(2)}{2!} = 2^{-3} = \frac{1}{2^{3}}$$

$$f^{(3)}(x) = -3!x^{-4} \qquad \frac{f^{(3)}(2)}{3!} = -2^{-4} = -\frac{1}{2^4}$$
$$f^{(n)}(x) = (-1)^n n! x^{-(n+1)} \qquad \frac{f^{(n)}(2)}{n!} = 2^{-(n+1)} = \frac{(-1)^n}{2^{(n+1)}}$$

Như vậy, chuỗi Taylor cần tìm là

$$f(2) + f'(2)(x-2) + \frac{f''(2)}{2!}(x-2)^2 + \dots + \frac{f^{(n)}(2)}{n!}(x-2)^n + \dots$$
$$= \frac{1}{2} - \frac{1}{2^2}(x-2) + \frac{1}{2^3}(x-2)^2 + \dots + \frac{(-1)^n}{2^{n+1}}(x-2)^n + \dots$$

Chuỗi Maclaurin một số hàm số

•
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$

•
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

•
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$

•
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3!} - \dots + (-1)^{n+1} \frac{x^n}{n!} + \dots$$

Ví dụ 3.47 Tìm chuỗi Maclaurin của các hàm số a. $f(x)=e^{2x}$ b. $f(x)=\frac{1}{1-x}$																															
a.	f(x)	x)	=	e^2	2x				b).	f	(x)	;)		= - -	1	1 _	\overline{x}	-												
						•						= 1	• •		•		•		•	 = 1	 	 	 	•	 	 	•	 	 •	 -	 •
						•				. =		•			•		-		•	 • !	 	 	 	•	 	 • •	•	 	 •	 =	 •
												• '			•		•		•	 • 1	 	 	 	•		 	•	 	 •	 =	 •
												• '			-				•	 •	 	 	 	•	 	 		 • •	 •	 •	 •
												• 1			•				•	 •	 	 	 	•	 	 		 • •	 •	 •	 •
										ı .											 	 	 		 	 			 •		 •