Inverse Probability Weighting Marginal Structural Models

Barbra Dickerman, Joy Shi, Miguel Hernán DEPARTMENTS OF EPIDEMIOLOGY AND BIOSTATISTICS

Learning objectives At the end of this lecture you will be able to

- Define marginal structural models
- Estimate the parameters of marginal structural models
- Estimate and use stabilized IP weights

□ Key concepts

- Marginal structural models
- Stabilized IP weights

Study	popul	lation

☐ 1629 cigarette smokers

□ Aged 25-74 years when interviewed in 1971-75 (baseline)

☐ Interviewed again in 1982

☐ Known sex, age, race, weight, height, education, alcohol use, and smoking intensity at both baseline and follow-up visits, and who answered the general medical history questionnaire at baseline

MSMs

Key variables

Treatment A	Quit smoking between baseline and 1982 1: yes, 0: no
Continuous outcome Y	Weight gain, kg Weight in 1982 minus baseline weight Available for 1566 individuals
Dichotomous outcome D	Death by 1992 1: yes, 0: no
Baseline (pre-treatment) covariates	Age, sex, race, alcohol use, intensity of smoking, weight

Causal questions of interest

- 1. What is the effect of smoking cessation on weight gain?
- 2. What is the effect of smoking cessation on risk of death?
- ☐ This is an informal statement of the questions

MSMs !

A more formal version of causal question #1 First define the counterfactual means

if everybody had quit smoking

- \blacksquare $E[Y^{a=1}]$
- $Y^{a=1}$ is an individual's outcome under a=1

if nobody had quit smoking

- \blacksquare E[$Y^{a=0}$]
- $Y^{a=0}$ is an individual's outcome under a=0

Then the formal question is:

 \square What is the average causal effect $E[Y^{a=1}] - E[Y^{a=0}]$?

Plan for today

- A. Marginal structural models
- B. Stabilized IP weights

MSMs

If this were an ideal randomized experiment...

- ☐ ... in which individuals had been randomly assigned to "smoking cessation"
- ☐ Then there would be no need for IP weights
 - The average outcome in the treated E[Y|A=1] is a consistent estimator of the mean outcome had everyone been treated $E[Y^{a=1}]$
 - Same for the untreated
- \square The difference $\mathrm{E}[Y^{a=1}] \mathrm{E}[Y^{a=0}]$ is consistently estimated by $\hat{\theta}_1$ from the regression model

$$E[Y|A] = \theta_0 + \theta_1 A$$

This model cannot $E[Y A] = heta_0 + heta_1$	possibly be misspecified ${\cal A}$	₩0
(A) True		
		0%
(B) False		
		0%
.	Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app	

If this were an observational study...

- ... in which the treated and the untreated are exchangeable conditional on measured confounders?
 - e.g., age, sex, race
- ☐ Then IP weighting would create a pseudo-population with unconditional exchangeability
 - If no model misspecification
- \Box The difference $\mathrm{E}[\mathit{Y}^{a=1}] \mathrm{E}[\mathit{Y}^{a=0}]$ is consistently estimated by $\hat{\theta}_1$ from regression model

$$E[Y|A] = \theta_0 + \theta_1 A$$

fit to the pseudo-population

MSMs 11

Models for both treatment and outcome

- ☐ So far we have used models to estimate the IP weights and weighted averages (no models) to estimate the mean outcome
- ☐ But we could also estimate the mean outcome via modeling
 - i.e., a linear regression model in which individuals are weighted by their W^A
- ☐ We can then compute a 95% confidence interval
 - By bootstrapping or computing analytic variance
 - By using robust variance (conservative 95% CI)

Weighted regression model

$$E[Y|A] = \theta_0 + \theta_1 A$$

Estimates of IP weighted average of the outcome

- 5.2 kg in the treated = $\hat{\theta}_0 + \hat{\theta}_1$
- 1.8 kg in the untreated = $\hat{\theta}_0$

See ipw_msm.R, lines 5-37

Difference $\hat{\theta}_1$: 3.4 kg, conservative 95% CI: 2.4, 4.5

- This difference would have a causal interpretation as $E[Y^{a=1}] E[Y^{a=0}]$ if
 - $\hfill \square$ all confounders had been included in the IP weighting procedure
 - ☐ the model for treatment is correctly specified

MSMs 13

A Marginal Structural Model (MSM)

$$E[Y^a] = \beta_0 + \beta_1 a$$

- ☐ Interpretation of parameters
 - Mean weight gain if everybody untreated $E[Y^{a=0}] = \beta_0$
 - Mean weight gain if everybody treated $E[Y^{a=1}] = \beta_0 + \beta_1$
 - Difference $E[Y^{a=1}] E[Y^{a=0}] = \beta_1$
- \Box The parameter β_1 is precisely what we have been trying to estimate all this time

Estimation of $E[Y^a] = \beta_0 + \beta_1 a$	parameters of MSMs (Robins 1	998)
☐ Fit a regressing population	ion model $\mathrm{E}[Y A] = \theta_0 + \theta_1 A$ to the p	seudo-
•	weighted regression model in which ontributes as many observations as the	
•	er estimates $\hat{ heta}_0$ and $\hat{ heta}_1$ from the sodel are consistent for the parameter MSM	
	MSMs	16

Saturated vs. Nonsaturated MSMs

Our outcome model is saturated

- 2 parameters, 2 estimated quantities
- guaranteed to be correctly specified when the treatment is dichotomous

Because we didn't make any parametric assumptions

■ The estimated effect of 3.4 kg was identical whether we used weighted sample averages or a weighted regression model

MSMs 17

What if treatment is a continuous variable?

- ☐ For example, 'change in smoking intensity' rather than 'smoking cessation'
 - where smoking intensity is measured as number of cigarettes per day
- ☐ If treatment can take 100 values, then there are 100 counterfactual means
 - One per level of treatment
- \square Consider the MSM $E[Y^a] = \beta_0 + \beta_1 a + \beta_2 a^2$
 - to estimate those 100 means

Nonsaturated MSMs

- ☐ The MSM may be misspecified when treatment has more than a few levels
 - e.g., a continuous variable, a dichotomous time-varying variable
- ☐ Estimating IP weights for treatments with more than two levels requires models other than the logistic model
 - For continuous treatments we need to estimate the density, which is hard
 - See Chapter 12

MSMs 21

Why MSMs are "structural"?

- ☐ The outcome variable of a model can be
 - observed
 - counterfactual
- ☐ Models for counterfactual outcomes are referred to as "structural" or "causal"
- ☐ Parameters for treatment in structural models
 - have direct causal interpretation
 - can be estimated by IP weighting or G-estimation

Why MSMs are "marginal"?

- ☐ MSMs are marginal because they are models for functionals of the marginal distribution of the counterfactual outcome
- ☐ MSMs do not impose any restrictions on the joint distribution of counterfactual outcomes under different treatment values
 - MSMs model the mean of $Y^{a=1}$ and the mean of $Y^{a=0}$, but MSMs are agnostic as to what the relation is (if any) between these two counterfactual outcomes

MSMs 23

Nonstabilized vs. Stabilized IP weights

$$W^{A} = \frac{1}{f(A|L)}$$

$$SW^{A} = \frac{f(A)}{f(A|L)}$$

- □ Nonstabilized weights are often unusable because they result in very unstable estimates; stabilized weights are preferable
- ☐ However, stabilized and nonstabilized weights yield the same estimates when using saturated outcome models
 - Check it out in our smoking cessation example

See ipw msm.R, lines 40-88

What is the me	an of the nonstabilized weights W^{A}	
1		
0		0%
		0%
Number of trea	atment levels	0%
Other		0%
	Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app	

MSMs offer the choice to estimate marginal or conditional effects

- ☐ MSMs can include covariates to evaluate effect modification by baseline variables
- \square For example, for V= age (in years), we can consider the nonsaturated MSM

$$E[Y^a|V] = \beta_0 + \beta_1 a + \beta_2 V + \beta_3 a V$$

where the parameter β_3 measures modification of the effect of smoking cessation by age

V-stabilized weights

$$SW^{A}(V) = \frac{f(A|V)}{f(A|L)}$$

Baseline variables ${\it V}$ included in the MSM also need to be included in

- \blacksquare the denominator of the weights (as part of L)
- the numerator of the weights
- \square In practice, we will estimate the probabilities in the numerator by fitting a logistic model for treatment with V as the only covariates
- \square *V*-stabilization results in IP weights that are more stabilized than the ones without V

IP weighted model (with *V*-stabilization)

$$E[Y|A,V] = \theta_0 + \theta_1 A + \theta_2 V + \theta_3 A V$$

- ☐ This model allows us to estimate the IP weighted means in the treated and the untreated for each value of age
- □ The estimate of effect modification is $\hat{\theta}_3 = -0.025$ (conservative 95% CI: -0.11, 0.61)

See ipw_msm.R, lines 92-122

☐ Little evidence of effect modification by age

MSMs 33

Some approaches to causal inference that rely on models

Outcome regression

- Conditional on all confounders or the propensity score
- Confounding adjustment via stratification/conditioning
- $\blacksquare \quad \mathbf{E}[Y|A,L] = \theta_0 + \theta_1 A + \theta_2 L$

Marginal structural models

- Unconditional or conditional on some effect modifiers
- Confounding adjustment via IP weighting
- $\blacksquare \quad \mathbb{E}[Y^a] = \beta_0 + \beta_1 a$
- \blacksquare $E[Y^a|V] = \beta_0 + \beta_1 a + \beta_2 V + \beta_3 a V$

Parametric g-formula (standardization)

 Uses outcome regression averaged over the confounders to estimate average causal effects

IP weighting of Marginal Structural Models or Parametric g-formula?

- ☐ Advantages of IP weighting
 - Less computationally intensive
 - Often easier to model treatment than outcome (and, in timevarying setting, confounders)
 - Parameter for null hypothesis (no g-null paradox)
 - Easier to identify positivity violations
- ☐ Disadvantages of IP weighting
 - More sensitive to violations (or quasi-violations) of positivity
- ☐ When possible, we can use doubly-robust estimators

MSMs 35

Key advantage of IP weighting and standardization over stratification-based methods

- ☐ In many studies, treatment is time-varying
 - Medical therapies, lifestyle, diet...
- □ and therefore the confounders are time-varying too
 - there may be treatment-confounder feedback
- ☐ If time-varying treatments and confounders, and confounders are affected by prior treatment
 - IP weighting and standardization/g-formula control confounding because they can handle treatment-confounder feedback
 - Outcome regression and propensity score methods introduce bias because they cannot handle treatment-confounder feedback

MSMs

Preview: time-varying confounding with treatment-confounder feedback

MSMs

38

37

Readings

☐ Causal Inference: What If. Chapter 12

MSMs 39

Progress report

- 1. Introduction to modeling
- 2. Stratified analysis:
 - outcome regression
 - propensity scores
- 3. Standardization
- 4. IP weighting
 - Marginal structural models (to be continued...)