Pattern Recognition

Assignment - 1 Bayes Classifier

Hitesh Ramchandani (B15232) Sagar Gupta (B15233) Ankit Amrit Raj (B15107) Group - 8 November 12, 2017

Contents

1	Obj	ective
2	Pro	cedure 1
3	Obs	servations 2
	3.1	Case 1 - $\Sigma = \sigma^2 I$
		3.1.1 Linear Data
		3.1.2 NonLinear Data
		3.1.3 Real World Data
		3.1.4 Inferences
	3.2	Case 2 - $\Sigma_i = \Sigma$
		3.2.1 Linear Data
		3.2.2 NonLinear Data
		3.2.3 Real World Data
		3.2.4 Inferences
	3.3	Case 3 - Σ_i is a diagonal matrix
		3.3.1 Linear Data
		3.3.2 NonLinear Data
		3.3.3 RealWorld Data
		3.3.4 Inferences
	3.4	Case 4 - Σ_i is unique
		3.4.1 Linear Data
		3.4.2 NonLinear Data
		3.4.3 RealWorld Data
		3.4.4 Inferences
4	Con	aclusion 30

1 Objective

- 1. To build Bayes Classifier and classify the following datasets -
 - 2D Dataset 1 (Artificial)
 - Linearly Separable Dataset
 - Non Linearly Separable Dataset
 - 2D Dataset 2 (Real World)
- 2. Plot Decision Region for all pairs of classes.
- 3. Contour Region Plots for all pairs of classes.
- 4. Calculate Accuracy, Precision, mean recall, F-measure and Confusion Matrix.

2 Procedure

- 1. Data for each class is partitioned into 75% for training and 25% for testing.
- 2. The data set for each class is assumed to come from Gaussian distribution.
- 3. In case 1 ($\Sigma = \sigma^2 I$), mean of covariance matrix for each class was calculated and it's off diagonal terms were assumed to be 0 for further calculations.
- 4. In case 2 ($\Sigma_i = \Sigma$ for every class), mean of covariance matrix for each class was calculated for further calculations.
- 5. In case 3 (Σ_i is diagonal matrix), covariance matrix for each class was different and it's off diagonal terms were assumed to be 0 for further calculations.
- 6. In case 4 (Σ_i is unique), no assumptions were made for further calculations.
- 7. Based of assumptions, the discriminant function $(g_i(x))$ was calculated for each class and decision region and Contour was plotted.
- 8. The remaining 25% data was tested for each case and analysis was made.

3 Observations

3.1 Case 1 - $\Sigma = \sigma^2 I$

3.1.1 Linear Data

Accuracy = 99.6%

Confusion Matrix

	class1	class2
class1	125	0
class2	1	124

Analysis

	${ m class}1$	class2
Precision	1.000	0.992
Recall	0.992	1.000
F-measure	0.996	0.996

Accuracy = 99.2%

Confusion Matrix

	class1	class2
class1	125	0
class2	2	123

	class1	class2
Precision	1.000	0.984
Recall	0.984	1.000
F-measure	0.992	0.992

Accuracy = 99.2%

Confusion Matrix

	class1	class2
class1	125	0
class2	2	123

Analysis

	class1	class2
Precision	1.000	0.984
Recall	0.984	1.000
F-measure	0.992	0.992

 $\mathbf{Accuracy} = 98.7\%$

Confusion Matrix

	class1	class2	class3
class1	123	0	2
class2	1	124	0
class3	0	2	123

	class1	class2	class3
Precision	0.984	0.992	0.984
Recall	0.992	0.984	0.984
F-measure	0.988	0.988	0.984

3.1.2 NonLinear Data

 $\mathbf{Accuracy} = 85.6\%$

Confusion Matrix

	class1	class2
class1	110	15
class2	21	104

Analysis

	class1	class2
Precision	0.88	0.832
Recall	0.840	0.874
F-measure	0.859	0.852

$\mathbf{Accuracy} = 61.33\%$

Confusion Matrix

	class1	class2
class1	0	125
class2	20	230

Analysis

	class1	class2
Precision	0.00	0.92
Recall	0.00	0.647
F-measure	-	0.76

 $\mathbf{Accuracy} = 49.6\%$

Confusion Matrix

	class1	class2
class1	186	64
class2	125	0

Analysis

	class1	class2
Precision	0.744	0.00
Recall	0.598	0.00
F-measure	0.663	-

$\mathbf{Accuracy} = 22.8\%$

Confusion Matrix

	class1	class2	class3
class1	0	0	125
class2	0	0	125
class3	90	46	114

Analysis

	class1	class2	class3
Precision	0.00	0.00	0.456
Recall	0.00	0.00	0.313
F-measure	-	-	0.371

3.1.3 Real World Data

 $\mathbf{Accuracy} = 99.75\%$

Confusion Matrix

	class1	class2
class1	594	3
class2	0	622

Analysis

	class1	class2
Precision	0.995	1.000
Recall	1.000	0.995
F-measure	0.997	0.997

 $\mathbf{Accuracy} = 81.55\%$

Confusion Matrix

	class1	class2
class1	572	50
class2	178	436

Analysis

	class1	class2
Precision	0.920	0.710
Recall	0.762	0.897
F-measure	0.834	0.793

 $\mathbf{Accuracy} = 99.67\%$

Confusion Matrix

	class1	class2
class1	614	0
class2	4	593

Analysis

	class1	class2
Precision	1.000	0.993
Recall	0.993	1.000
F-measure	0.997	0.997

Accuracy = 87.34%

Confusion Matrix

	class1	class2	class3
class1	593	3	1
class2	0	572	50
class3	0	178	436

Analysis

	class1	class2	class3
Precision	0.993	0.920	0.710
Recall	1.000	0.760	0.895
F-measure	0.997	0.832	0.792

3.1.4 Inferences

- 1. It can be seen from the plots that the decision surface is linear in nature.
- 2. It works well for linearly separable data but gives poor results in case of non linearly separable data and real world data.
- 3. The nature of contour is circular as we have taken $\Sigma_i = \sigma^2 I$

3.2 Case 2 - $\Sigma_i = \Sigma$

3.2.1 Linear Data

 $\mathbf{Accuracy} = 100.00\%$

Confusion Matrix

	class1	class2
class1	125	0
class2	0	125

Analysis

	class1	class2
Precision	1.000	1.000
Recall	1.000	1.000
F-measure	1.000	1.000

It can be seen from the plot that the decision boundary is a straight line.

Accuracy = 100.00%

Confusion Matrix

	class1	class2
class1	125	0
class2	0	125

	class1	class2
Precision	1.000	1.000
Recall	1.000	1.000
F-measure	1.000	1.000

 $\mathbf{Accuracy} = 99.6\%$

Confusion Matrix

	class1	class2
class1	125	0
class2	1	124

Analysis

	class1	class2
Precision	1.000	0.992
Recall	0.992	1.000
F-measure	0.996	0.996

 $\mathbf{Accuracy} = 98.66\%$

Confusion Matrix

	class1	class2	class3
class1	123	0	2
class2	1	124	0
class3	0	2	123

Analysis

	class1	class2	class3
Precision	0.984	0.992	0.984
Recall	0.991	0.984	0.984
F-measure	0.988	0.988	0.984

3.2.2 NonLinear Data

 $\mathbf{Accuracy} = 95.6\%$

Confusion Matrix

	class1	class2
class1	121	4
class2	7	118

Analysis

	class1	class2
Precision	0.968	0.944
Recall	0.945	0.967
F-measure	0.955	0.955

Accuracy = 61.33%

Confusion Matrix

	class1	class2
class1	0	124
class2	20	230

Analysis

	class1	class2
Precision	0.000	0.920
Recall	0.000	0.647
F-measure	-	0.760

 $\mathbf{Accuracy} = 49.33\%$

Confusion Matrix

	class1	class2
class1	185	65
class2	125	0

Analysis

	class1	class2
Precision	0.740	0.000
Recall	0.596	0.000
F-measure	0.661	0.996

Accuracy = 22.40%

Confusion Matrix

	class1	class2	class3
class1	0	0	125
class2	0	0	125
class3	89	49	112

Analysis

	class1	class2	class3
Precision	0.000	0.000	0.448
Recall	0.000	0.000	0.309
F-measure	-	-	0.366

3.2.3 Real World Data

 $\mathbf{Accuracy} = 99.67\%$

Confusion Matrix

	class1	class2
class1	593	4
class2	0	622

	class1	class2
Precision	0.993	1.000
Recall	1.000	0.993
F-measure	0.996	0.996

Accuracy = 81.60%

Confusion Matrix

	class1	class2
class1	601	21
class2	206	408

Analysis

	class1	class2
Precision	0.966	0.664
Recall	0.744	0.951
F-measure	0.841	0.782

 $\mathbf{Accuracy} = 98.80\%$

Confusion Matrix

	class1	class2
class1	614	0
class2	14	583

Analysis

	class1	class2
Precision	1.000	0.976
Recall	0.977	1.000
F-measure	0.988	0.988

 $\mathbf{Accuracy} = 87.10\%$

Confusion Matrix

	class1	class2	class3
class1	581	3	13
class2	0	592	30
class3	0	191	423

Analysis

	class1	class2	class3
Precision	0.973	0.951	0.688
Recall	1.000	0.753	0.907
F-measure	0.986	0.841	0.783

3.2.4 Inferences

- 1. It can be seen from the plots that the decision surface is linear in nature.
- 2. It works well for linearly separable data but gives poor results in case of non linearly separable data and real world data.
- 3. The nature of contour is elliptical as we have taken $\Sigma_i = \Sigma$.
- 4. To find same Σ_i , we took mean of the $\Sigma_i's$ of the three classes.

3.3 Case 3 - Σ_i is a diagonal matrix

3.3.1 Linear Data

 $\mathbf{Accuracy} = 100.00\%$

Confusion Matrix

	class1	class2
class1	125	0
class2	0	125

Analysis

	class1	class2
Precision	1.000	1.000
Recall	1.000	1.000
F-measure	1.000	1.000

Accuracy = 100.00%

Confusion Matrix

	class1	class2
class1	125	0
class2	0	125

Analysis

	class1	class2
Precision	1.000	1.000
Recall	1.000	1.000
F-measure	1.000	1.000

 $\mathbf{Accuracy} = 99.2\%$

Confusion Matrix

	class1	class2
class1	125	0
class2	2	123

Analysis

	class1	class2
Precision	1.000	0.984
Recall	0.984	1.000
F-measure	0.992	0.992

$\mathbf{Accuracy} = 100.00\%$

Confusion Matrix

	class1	class2	class3
class1	125	0	0
class2	0	125	0
class3	0	0	125

Analysis

	class1	class2	class3
Precision	1.000	1.000	1.000
Recall	1.000	1.000	1.000
F-measure	1.000	1.000	1.000

3.3.2 NonLinear Data

 $\mathbf{Accuracy} = 96.4\%$

Confusion Matrix

	class1	class2
class1	120	5
class2	4	121

Analysis

	class1	class2
Precision	0.960	0.968
Recall	0.967	0.960
F-measure	0.963	0.964

 $\mathbf{Accuracy} = 66.66\%$

Confusion Matrix

	class1	class2
class1	0	125
class2	0	250

Analysis

	class1	class2
Precision	0.000	1.000
Recall	-	0.666
F-measure	-	0.800

Accuracy = 33.33%

Confusion Matrix

	class1	class2
class1	0	250
class2	0	125

Analysis

	class1	class2
Precision	0.000	1.000
Recall	-	0.333
F-measure	-	0.500

 $\mathbf{Accuracy} = 50.00\%$

Confusion Matrix

	class1	class2	class3
class1	0	0	125
class2	0	0	125
class3	0	0	250

Analysis

	class1	class2	class3
Precision	0.000	0.000	1
Recall	-	-	0.500
F-measure	-	-	0.666

3.3.3 RealWorld Data

 $\mathbf{Accuracy} = 99.75\%$

Confusion Matrix

	class1	class2
class1	594	3
class2	0	622

Analysis

	class1	class2
Precision	0.994	1.000
Recall	1.000	0.994
F-measure	0.997	0.997

 $\mathbf{Accuracy} = 87.70\%$

Confusion Matrix

	class1	class2
class1	500	122
class2	30	584

Analysis

	class1	class2
Precision	0.804	0.951
Recall	0.943	0.827
F-measure	0.868	0.884

$\mathbf{Accuracy} = 99.75\%$

Confusion Matrix

	class1	class2
class1	614	0
class2	3	594

Analysis

	class1	class2
Precision	1.000	0.995
Recall	0.995	1.000
F-measure	0.997	0.997

Accuracy = 90.80%

Confusion Matrix

	class1	class2	class3
class1	580	2	15
class2	0	500	122
class3	0	30	584

Analysis

	class1	class2	class3
Precision	0.971	0.804	0.951
Recall	1.000	0.939	0.809
F-measure	0.985	0.866	0.875

3.3.4 Inferences

- 1. It can be seen from the plots that the decision surface is non linear in nature.
- 2. It works well for linearly separable data as well as non-linearly separable data.
- 3. The nature of contour is elliptical and is different for each class but oriented horizontally.

3.4 Case 4 - Σ_i is unique

3.4.1 Linear Data

 $\mathbf{Accuracy} = 100.00\%$

Confusion Matrix

	class1	class2
class1	125	0
class2	0	125

Analysis

	class1	class2
Precision	1.000	1.000
Recall	1.000	1.000
F-measure	1.000	1.000

Accuracy = 100.00%

Confusion Matrix

	class1	class2
class1	125	0
class2	0	125

Analysis

	class1	class2
Precision	1.000	1.000
Recall	1.000	1.000
F-measure	1.000	1.000

Accuracy = 99.2%

Confusion Matrix

	class1	class2
class1	125	0
class2	2	123

Analysis

	class1	class2
Precision	1.000	0.984
Recall	0.984	1.000
F-measure	0.992	0.992

Accuracy = 100.00%

Confusion Matrix

	class1	class2	class3
class1	125	0	0
class2	0	125	0
class3	0	0	125

Analysis

	class1	class2	class3
Precision	1.000	1.000	1.000
Recall	1.000	1.000	1.000
F-measure	1.000	1.000	1.000

3.4.2 NonLinear Data

 $\mathbf{Accuracy} = 96.4\%$

Confusion Matrix

	class1	class2
class1	120	5
class2	4	121

Analysis

	class1	class2
Precision	0.960	0.968
Recall	0.967	0.960
F-measure	0.963	0.964

 $\mathbf{Accuracy} = 66.66\%$

Confusion Matrix

	class1	class2
class1	0	125
class2	0	250

Analysis

	class1	class2
Precision	0.000	1.000
Recall	-	0.666
F-measure	-	0.800

Accuracy = 33.33%

Confusion Matrix

	class1	class2
class1	0	250
class2	0	125

Analysis

	class1	class2
Precision	0.000	1.000
Recall	-	0.333
F-measure	-	0.500

 $\mathbf{Accuracy} = 50.00\%$

Confusion Matrix

	class1	class2	class3
class1	0	0	125
class2	0	0	125
class3	0	0	250

Analysis

	class1	class2	class3
Precision	0.000	0.000	1
Recall	-	-	0.500
F-measure	-	-	0.666

3.4.3 RealWorld Data

Accuracy = 99.75%

Confusion Matrix

	class1	class2
class1	594	3
class2	0	622

Analysis

	class1	class2
Precision	0.994	1.000
Recall	1.000	0.994
F-measure	0.997	0.997

 $\mathbf{Accuracy} = 77.10\%$

Confusion Matrix

	class1	class2
class1	350	272
class2	11	603

	class1	class2
Precision	0.562	0.982
Recall	0.969	0.689
F-measure	0.712	0.809

 $\mathbf{Accuracy} = 99.66\%$

Confusion Matrix

	class1	class2
class1	614	0
class2	4	593

Analysis

	class1	class2
Precision	1.000	0.993
Recall	0.993	1.000
F-measure	0.996	0.996

Accuracy = 83.68%

Confusion Matrix

	class1	class2	class3
class1	581	2	14
class2	0	350	272
class3	0	11	603

Analysis

	class1	class2	class3
Precision	0.973	0.562	0.982
Recall	1.000	0.964	0.678
F-measure	0.986	0.710	0.802

3.4.4 Inferences

- 1. It can be seen from the plots that the decision surface is non linear in nature.
- 2. It works well for linearly separable data and good (but not as good as linearly separable data) for non linearly separable data.
- 3. The nature of contour is elliptical and different for every class and also oriented independently in any directions.

4 Conclusion

- 1. Bayes Classifier works well for Linearly separable data in all cases with high accuracy but fails for Non linearly separable data with poor accuracy.
- 2. In case of Real World Data, the data is overlapping and thus results in lesser accuracy.
- 3. In first two cases, the decision boundary comes out to be straight line whereas in last two cases, the decision boundary is quadratic due to different covariance matrix chosen.