Project2 report

Part1:

142 3 Differential Kinematics and Statics

 ${f Fig.~3.14.}$ Block scheme of the second-order inverse kinematics algorithm with Jacobian inverse

According to the scheme on textbook, I draw the same structure on matlab using Simulink.(run the init.m file)

For KD KP I set them both 300. Put scope on e, e_dot & q to observe

the scope of q:

the scope of error:

the scope of error_dot:

Analytic Jacobian:

-a1*sin(th1)-a2*sin(th1+th2)	-a2*sin(th1+th2)	0	0
a1*cos(th1)+a2*cos(th1+th2)	a2*cos(th1+th2)	0	0
0	0	-1	0
1	1	0	-1
Jacobian inverse:			
-a1*sin(th1)-a2*sin(th1+th2)	-a2*sin(th1+th2)	0	0
a1*cos(th1)+a2*cos(th1+th2)	a2*cos(th1+th2)	0	0
0	0	-1	0
1	1	0	-1
Jacobian dot:			
-a1*sin(th1)-a2*sin(th1+th2)	-a2*sin(th1+th2)	0	0
a1*cos(th1)+a2*cos(th1+th2)	a2*cos(th1+th2)	0	0
0	0	-1	0
1	1	0	-1

If you run the plot_output.m file you will get all the Joint value and Operational space Error.

Operational space Error:

Joint value:

Part2:

Fig. 4.12. Parametric representation of a circle in space

$$q(t) = \begin{cases} q_i + \frac{1}{2}\ddot{q}_c t^2 & 0 \le t \le t_c \\ q_i + \ddot{q}_c t_c (t - t_c/2) & t_c < t \le t_f - t_c \\ q_f - \frac{1}{2}\ddot{q}_c (t_f - t)^2 & t_f - t_c < t \le t_f \end{cases}$$

$$\dot{p_e} = R \begin{bmatrix} -\dot{s}\sin(s/\rho) \\ \dot{s}\sin(s/\rho) \\ 0 \end{bmatrix}$$
(4.44)

There should only have 3 rows in jacobian pseudo-inverse is given by: $J^{\dagger} = J^{T}(JJ^{T})^{-1}$

according to the equation I think the Simulink scheme should look like below, this time I write my code inside Simulink function:

From the scope we can get error:

and q:

To get the Joint variables and errors in the operational space(please run the plot_output.m file):

Figure1: for theta1 theta2 d3 theta4

Figure2: for the error

Figure3: for x y z

