

Evangelos Michelioudakis, Alexander Artikis and Georgios Paliouras

{vagmcs, a.artikis, paliourg}@iit.demokritos.gr National Center for Scientific Research "Demokritos", Athens, Greece

CFR

Introduction

Applied $OSL\alpha$ structure learner to **learning definitions** for traffic incidents using real sensor data collected in the context of the SPEEDD project.

- High volume dataset
 - Required an online learning strategy
- $OSL\alpha$ constructs and refines event definitions
- Definitions are used to forecast/detect traffic incidents

Data

Real data collected from sensors placed at 19 collection points along a 12km stretch on the southern part of the Grenoble ring road (Rocade Sud).

- Consists of one month of sensor readings ($\approx 3.3 \text{GiB}$)
- Annotated by human traffic controllers for congestion
- Sensor data are collected every 15 seconds
 - A sensor per lane at each collection point
 - Counting number of vehicles passing through a lane, average speed and sensor occupancy.

OSL α : An Online Structure Learner using Background Knowledge Axiomatization

Experimental Results

Learning Challenges

Figure 1: Location 353708, fast lane: speed (left), occupancy (right).

- Traffic congestion annotation is very incomplete
- Quality of information of each sensor differs
 - Sensors of queue lanes are largely uninformative.

Figure 2: Location 347549: fast lane (left) vs queue lane (right).

- Location- and lane-agnostic rules are insufficient
 - They capture the concept of traffic congestion in specific locations, and completely fail in others.

Supported by:

Grant Agreements No. FP7-619435