Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації» «Дослідження складних циклічних алгоритмів» Варіант 7

Виконав студент <u>ІП-15, Гуменюк Олександр Володимирович</u> (шифр, прізвище, ім'я, по батькові)

Перевірила Вєчерковська Анастасія Сергіївна

(прізвище, ім'я, по батькові)

Лабораторна робота 5

Дослідження складних циклічних алгоритмів

Мета – дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 7

 Натуральне число називається паліндромом, якщо його запис читається однаково з початку та з кінця (наприклад, 4884, 575, 9). Знайти всі числа-паліндроми, що не перевищують 1000.

Постановка задачі

Використовуємо складний циклічний алгоритм: зовнішній арифметичний цикл, внутрішній цикл з передумою і внутрішній арифметичний цикл (між собою останні два цикла — послідовні.) Використовуючи зовнішній арифметичний цикл, перебираємо всі натуральні числа, що не перевищують 1000. Використовуючи внутрішній цикл з передумою, знаходимо кількість цифр в числі, яке ми розглядаємо. Використовуючи внутрішній арифметичний цикл, «перевертаємо» число та записуємо його в змінній ор Num. Вкінці кожного повторення зовнішнього циклу порівнюємо початкове число з його «перевернутим» числом (використовуємо умовну форму оператора вибору). Якщо обидва числа однакові — виводимо наше початкове число.

Результатом розв'язку ϵ знаходження та виведення всіх чисел-паліндромів, що не перевищують 1000.

Побудова математичної моделі

Таблиця імен змінних

Змінна	Tun	Ім'я	Призначення
Верхня границя паліндромів, які потрібно знайти	Ціле	limit	Початкові дані
Лічильник в зовнішньому арифметичному циклі	Ціле	i	Проміжні дані
Лічильник в внутрішньому арифметичному циклі	Ціле	j	Проміжні дані
Число, яке ми наразі розглядаємо	Натуральне	curNum	Проміжні дані/ Результат
«Перевернуте» число	Ціле	opNum	Проміжні дані
Кількість цифр в числі	Ціле	digits	Проміжні дані

Перед початком циклів задаємо значення змінної limit = 1000 (верхня границя паліндромів, які потрібно знайти) Далі йде зовнішній арифметичний цикл з лічильником і, за допомогою якого ми будемо перебирати кожне

число від 1 до 1000 та перевіряти чи це число ϵ паліндромом. Усередині зовнішнього циклу задаємо значення змінної curNum = і (число, яке ми наразі перевіряємо). Далі ініціалізуємо змінні opNum = 0 (змінна «перевернутого числа») та digits = 0 (кількість цифр в числі). Використовуючи внутрішній цикл з передумою, знаходимо кількість цифр в числі: цілочисельно ділимо наше число на 10 та додаємо 1 до змінної digits. Для цілочисельного ділення використовуємо div (curNum = curNum div 10). Після закінчення ітераційного циклу повертаємо значення curNum = і та заходимо в внутрішній арифметичний цикл з лічильником і, який збудує «перевернуте» число до нашого. Починаючи з i = digits - 1 і до 0, програма буде додавати кожну цифру нашого числа помножену на 10 до ј-ого степеню до змінної ор Num; таким чином кожна цифра буде записуватися з кінця. Додаємо першу цифру з кінця таким чином: opNum = opNum + ((curNum mod 10)* (10 pow i)), де mod – функція для знаходження остачі від ділення, а pow – функція для обчислення степені (у нашому випадку степені 10). Після додавання цілочисельно ділимо curNum = curNum div 10, і повторюємо до кінця внутрішнього арифметичного циклу. Після цього порівнюємо орNum з curNum, і якщо вони однакові, виводимо curNum (паліндром знайдено).

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії.
- Крок 2. Ініціалізація змінної limit
- Крок 3. Визначення зовнішнього арифметичного циклу
- Крок 4. Ініціалізація змінних curNum, opNum i digits

- Крок 5. Визначення внутрішнього ітераційного циклу
- Крок 6. Задання значення змінної curNum
- Крок 7. Визначення внутрішнього арифметичного циклу
- Крок 8. Визначення оператору розгалуження та виведення паліндрому

Псевдокод

Крок 1 Крок 2

початок початок

<u>Ініціалізація змінної limit</u> limit := 1000

Визначення зовнішнього арифметичного циклу арифметичного циклу

кінець кінець

Крок 3

початок

limit := 1000

повторити

для і від 1 до limit

Ініціалізація змінних curNum, opNum i digits

Визначення внутрішнього ітераційного циклу

Задання значення змінної curNum

Визначення внутрішнього арифметичного циклу

Визначення оператору розгалуження та виведення паліндрому

все повторити

кінець

```
Крок 4
початок
      limit := 1000
      повторити
        для і від 1 до limit
            curNum := i
            opNum := 0
            digits := 0
            Визначення внутрішнього ітераційного циклу
            Задання значення змінної curNum
            Визначення внутрішнього арифметичного циклу
            Визначення оператору розгалуження та виведення паліндрому
      все повторити
кінець
Крок 5
початок
      limit := 1000
      повторити
        для і від 1 до limit
            curNum := i
            opNum := 0
            digits := 0
            повторити
            поки (curNum != 0)
                  digits := digits + 1
                  curNum := curNum div 10
            все повторити
            Задання значення змінної curNum
            Визначення внутрішнього арифметичного циклу
```

Визначення оператору розгалуження та виведення паліндрому

все повторити

повторити

кінець

```
Крок 6
початок
      limit := 1000
      повторити
        для і від 1 до limit
            curNum := i
            opNum := 0
            digits := 0
            повторити
            поки (curNum != 0)
                  digits := digits + 1
                  curNum : = curNum div 10
            все повторити
            curNum := i
            Визначення внутрішнього арифметичного циклу
            Визначення оператору розгалуження та виведення паліндрому
      все повторити
кінець
Крок 7
початок
     limit := 1000
      повторити
        для і від 1 до limit
            curNum := i
            opNum := 0
            digits := 0
```

```
поки (curNum != 0)
                  digits := digits + 1
                  curNum := curNum div 10
            все повторити
            curNum := i
            повторити
             для ј від (digits -1) до 0, з кроком -1
                  opNum = opNum + (curNum mod 10) * (10 pow j)
                  curNum := curNum div 10
            все повторити
            Визначення оператору розгалуження та виведення паліндрому
      все повторити
кінець
Крок 8
початок
      limit := 1000
      повторити
        для і від 1 до limit
            curNum := i
            opNum := 0
            digits := 0
            повторити
            поки (curNum != 0)
                  digits := digits + 1
                  curNum := curNum div 10
            все повторити
            curNum := i
            повторити
             для і від (digits -1) до 0, з кроком -1
                  opNum = opNum + (curNum mod 10) * (10 pow j)
```

curNum : = curNum div 10

все повторити

якщо (i == opNum)

T0

виведення і

все якщо

все повторити

кінець

Блок-схема

Крок 2.

Крок 3.

Крок 4.

Крок 5.

Крок 6.

Крок 7.

Тестування

Блок	Дія (зовнішній цикл)	Дія (внутрішні цикли)
	Початок	
1	limit = 1000	
2	$i = 1, 1 \le 1000 \rightarrow true$	
3	curNum = 1, opNum = 0, digits = 0	
4		$1 \stackrel{!}{=} 0 \rightarrow \text{true}$
5		digits = $0 + 1 = 1$
6		curNum = 1 div 10 = 0
7		$0 = 0 \rightarrow \text{false}$
8	curNum = 1	
9		$j = 0, 0 \ge 0 \rightarrow \text{true}$
10		opNum = $0 + 1*(10 \text{ pow } 0) = 1$
11		curNum = 1 div 10 = 0
12		$j = -1, -1 \ge 0 \rightarrow false$
13	$1 == 1 \rightarrow \text{true}$	
14	Виведення 1	
15	$i = 2, 1 \le 1000 \rightarrow true$	
16	$i = 1000, 1000 \le 1000 \rightarrow true$	
17	curNum = 1000, $opNum = 0$, $digits = 0$	
18		$1000 != 0 \rightarrow true$
19		digits = $0 + 1 = 1$

21		curNum = 1000 div 10 = 100
22		$100 != 0 \rightarrow \text{true}$
23		digits = $1 + 1 = 2$
24		curNum = 100 div 10 = 10
25		$10 != 0 \rightarrow true$
26		digits = $2 + 1 = 3$
27		curNum = 10 div 10 = 1
28		$1 \stackrel{!}{=} 0 \rightarrow \text{true}$
29		digits = $3 + 1 = 4$
30		curNum = 1 div 10 = 0
31		$0 = 0 \rightarrow \text{false}$
32	curNum = 1000	
33		$j = 3, 3 \ge 0 \rightarrow \text{true}$
34		opNum = $0 + 0*(10 \text{ pow } 3) = 0$
35		curNum = 1000 div 10 = 100
36		$j = 2, 2 \ge 0 \rightarrow \text{true}$
37		opNum = $0 + 0*(10 \text{ pow } 2) = 0$
38		curNum = 100 div 10 = 10
39		$j = 1, 1 \ge 0 \rightarrow \text{true}$
40		opNum = $0 + 0*(10 \text{ pow } 1) = 0$
41		curNum = 10 div 10 = 1
42		$j = 0, 0 >= 0 \rightarrow true$
43		opNum = $0 + 1*(10 \text{ pow } 0) = 1$
44		curNum = 1 div 10 = 0

45		$j = -1, -1 \ge 0 \rightarrow false$
46	$1000 == 1 \rightarrow \text{false}$	
	Кінець	

Висновки

Протягом п'ятогі лабораторної роботи я дослідив особливості роботи складних циклів та набув практичних навичок їх використання під час складання програмних специфікацій. В результат ми отримали алгоритм, що використовує складені циклі та знаходить числа-паліндроми, які не більше 1000.