

Neural Machine Translation Training in a Multidomain Scenario

Hassan Sajjad, Nadir Durrani, Fahim Dalvi, Yonatan Belinkov¹, Stephan Vogel

QCRI, Doha, Qatar

¹MIT CSAIL, Cambridge, MA, USA

Introduction

In this work, we study domain adaptation for Neural Machine Translation (NMT) and target the following questions:

- What are different ways to combine multiple domains during a training process?
- How to build an optimal in-domain system?
- How to obtain a robust system that works best for several domains?
- What is the best strategy under time constraints?

Data and Experimental Setup

- Arabic-English corpora
 - TED (in-domain)
- \circ UN
- OPUS
- German-English corpora
- TED (in-domain)
- o EP
- \circ CC

- NMT settings
 - Nematus toolkit
 - 2-layered bidirectional LSTM with attention
 - Embedding size 512
 - Hidden layer size 1000
 - O BPE 50,000
 - Vocabulary of TED talks only

Methodology catenatio Neural MT Train a system by concatenating all the available in-domain and out-of-domain data Build NMT in an online fashion Stacking starting from the most distant domain, fine-tune on the closer domain and finish by fine-tuning $\bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \longrightarrow$ $\bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \longrightarrow$ the model on the in-domain data epochs 1..N epochs N+1..M epochs M+1..L Selection Select a certain percentage of the available out-of-domain corpora that is most closest to the in-domain data and use it for training the system Ensemble Neural MT ensemble Separately train models for each available domain and combine them during decoding using

Results

balanced or weighted averaging

Our Findings

- A concatenated system fine-tuned on the in-domain data achieves the most optimal in-domain system
- Model stacking works best when starting from the furthest domain, fine-tuning on closer domains and then finally fine-tuning on the in-domain data

	ALL	Arabic-Eng OD→TED	glish UN→OPUS→TED
tst13 tst14	36.1 30.2	37.9 32.1	36.8 31.2
avg.	33.2	35.0	34.0
	ALL	German-En OD→TED	glish EP→CC→TED
tst13 tst14	35.7 30.8	38.1 32.8	36.8 31.7

- A concatenated system on all available data results in the most robust system
- Data selection gives a decent trade-off between translation quality and training time

	Arabi	c-English	German-English		
	ALL	Selected	ALL	Selected	
tst13	36.1	32.7	35.7	34.1	
tst14	30.2	27.8	30.8	29.9	
avg.	33.2	30.3	33.3	32.0	

 Weighted ensemble is helpful when several individual models have been already trained and there is no time for retraining/fine-tuning

Arabic-English							
	OPUS	ALL	ENS_b	ENS_w			
tst13	32.2	36.1	31.9	34.3			
tst14	27.3	30.2	25.8	28.6			
avg.	29.7	33.2	28.9	31.5			

Arabic-English

Summary

- We explored several approaches to train NMT systems under multi-domain scenario: Best system is obtained by training system on the entire data and fine-tuning with the in-domain model
- Data selection is helpful under time constraint scenarios

Future Work

- We would like to explore domain adaptation under various vocabulary settings; in-domain vocabulary, out-of-domain vocabulary, large general vocabulary
- Another interesting direction to look at is to explore ways to dynamically adapt the vocabulary of an already trained model in favor of the in-domain data