

Chapter 5 FIR Filters

DISCRETE-TIME SYSTEM

- OPERATE on x[n] to get y[n].
- WANT a GENERAL CLASS of SYSTEMS.
 - ANALYZE the SYSTEM.
 - TOOLS: TIME-DOMAIN & FREQUENCY-DOMAIN
 - SYNTHESIZE the SYSTEM.
- EXAMPLES:
 - POINTWISE OPERATORS
 - SQUARING: $y[n] = (x[n])^2$
 - RUNNING AVERAGE
 - RULE: "the output at time n is the average of three consecutive input values."

DISCRETE-TIME SIGNAL

- x[n] is a LIST of NUMBERS.
 - INDEXED by "n"

- Support of a sequence
 - The set of values over which the sequence is nonzero
 - x[n] is a finite-length signal. Its support is $0 \le n \le 4$.

3-PT AVERAGE SYSTEM

- ADD 3 CONSECUTIVE NUMBERS.
 - Do this for each "n".

Make a TABLE.

the following input-output equation

Difference equation

$$y[n] = \frac{1}{3}(x[n] + x[n+1] + x[n+2])$$

n	n < -2	-2	-1	0	1	2	3	4	5	<i>n</i> > 5
x[n]	0	0	0	2	4	6	4	2	0	0
y[n]	0	<u>2</u> 3	2	4	<u>14</u> 3	4	2	<u>2</u> 3	0	0

n=0
$$y[0] = \frac{1}{3}(x[0] + x[1] + x[2])$$

n=1
$$y[1] = \frac{1}{3}(x[1] + x[2] + x[3])$$

INPUT AND OUTPUT SIGNALS

OUTPUT SIGNAL

Figure 5.2 Finite-length input signal, x[n].

$$y[n] = \frac{1}{3}(x[n] + x[n+1] + x[n+2])$$

Eigure 5.3 Output of running average, y[n].

PAST, PRESENT, AND FUTURE

The Running Average Filter 123 Sec. 5.2

Figure 5.4 The running-average filter calculation at time index n uses values within a sliding window (shaded). Dark shading indicates the future $(\ell > n)$; light shading, the past $(\ell < n)$.

ANOTHER 3-PT AVERAGER

- Use "PAST" VALUES of x[n].
 - IMPORTANT IF "n" represents the PRESENT TIME.
 - WHEN x[n] & y[n] ARE STREAMS.
 - CAUSAL SYSTEM: Use PRESENT and PAST VALUES

$$y[n] = \frac{1}{3}(x[n] + x[n-1] + x[n-2])$$

n	n < -2				_				l			
x[n]	0	0	0	2	4	6	4	2	0	0	0	0
<i>y</i> [<i>n</i>]	0	0	0	$\frac{2}{3}$	2	4	14 3	4	2	$\frac{2}{3}$	0	0

Noncausal system: Use future values.

GENERAL FIR FILTER (1)

- FILTER COEFFICIENTS {b_k}
 - DEFINE THE FILTER. $y[n] = \sum_{k=0}^{M} b_k x[n-k]$
 - For example, $b_k = \{3, -1, 2, 1\}$

$$y[n] = \sum_{k=0}^{3} b_k x[n-k]$$

= $3x[n] - x[n-1] + 2x[n-2] + x[n-3]$

- FILTER ORDER is M.
- FILTER **LENGTH** is L = M+1.
 - The NUMBER of FILTER COEFFICIENTS is L.

GENERAL FIR FILTER (2)

SLIDE a WINDOW over x[n].

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

M-th Order FIR Filter Operation (Causal)

FILTERED STOCK SIGNAL

• $\delta[n]$ has only one NON-ZERO VALUE. $\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$ -2-1n $\delta[n]$ $\delta[n-3]$

Figure 5.7 Shifted impulse sequence, $\delta[n-3]$.

MATH FORMULA for x[n]

• Use SHIFTED IMPULSES to write x[n].

 $x[n] = 2\delta[n] + 4\delta[n-1] + 6\delta[n-2] + 4\delta[n-3] + 2\delta[n-4]$

SUM of SHIFTED IMPULSES

n		-2	-1	0	1	2	3	4	5	6	
$2\delta[n]$	0	0	0	2	0	0	0	0	0	0	0
$4\delta[n-1]$	0	0	0	0	4	0	0	0	0	0	0
$6\delta[n-2]$	0	0	0	0	0	6	0	0	0	0	0
$4\delta[n-3]$	0	0	0	0	0	0	4	0	0	0	0
$2\delta[n-4]$	0	0	0	0	0	0	0	2	0	0	0
x[n]	0	0	0	2	4	6	4	2	0	0	0

$$x[n] = \sum_{i} x[k]\delta[n-k]$$
 This formula ALWAYS works.

$$= \ldots + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + \ldots$$
 (5.3.6)

4-pt AVERAGER

CAUSAL SYSTEM: USE PRESENT and PAST VALUES.

$$y[n] = \frac{1}{4}(x[n] + x[n-1] + x[n-2] + x[n-3])$$

• INPUT = UNIT IMPULSE SIGNAL = $\delta[n]$ $x[n] = \delta[n]$ $y[n] = \frac{1}{4}\delta[n] + \frac{1}{4}\delta[n-1] + \frac{1}{4}\delta[n-2] + \frac{1}{4}\delta[n-3]$

OUTPUT is called "IMPULSE RESPONSE".

$$h[n] = \{..., 0, 0, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 0, 0, ...\}$$

- Finite impulse response (FIR) system
 - The length of the impulse response is finite.

HARDWARE STRUCTURES

- INTERNAL STRUCTURE of "FILTER"
 - WHAT COMPONENTS ARE NEEDED?
 - HOW DO WE "HOOK" THEM TOGETHER?
- SIGNAL FLOW GRAPH NOTATION

BUILDING BLOCKS

- BUILD UP COMPLICATED FILTERS
 - FROM SIMPLE MODULES
 - Ex: FILTER MODULE MIGHT BE A 3-PT FIR FILTER.

HARDWARE ATOMS

· Add, Multiply, & Store

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

FIR STRUCTURE

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

Direct Form

Transposed Form

SYSTEM PROPERTIES

- MATHEMATICAL DESCRIPTION
- TIME-INVARIANCE
- LINEARITY
- CAUSALITY
 - "No output prior to input"

TIME-INVARIANCE

• IDEA:

- "Time-shifting the input will cause the same time-shift in the output."
- EQUIVALENTLY, we can prove that the time origin (n=0) is picked arbitrarily.

LINEAR SYSTEM

- LINEARITY = Two Properties
- SCALING
 - "Doubling x[n] will double y[n]."
- SUPERPOSITION
 - "Adding two inputs gives an output that is the sum of the individual outputs."

LTI SYSTEMS

- LTI: Linear & Time- nvariant
- COMPLETELY CHARACTERIZED by:
 - IMPULSE RESPONSE h[n]
 - **CONVOLUTION**: y[n] = x[n]*h[n]
 - The "rule" defining the system can ALWAYS be written as convolution.
- Example (FIR filter): h[n] is the same as b_k .

FIR IMPULSE RESPONSE

Filter output

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

- Convolution = Filter Definition
 - Filter Coeffs = Impulse Response

n	n < 0	0	1	2	3		M	M+1	n > M + 1
$x[n] = \delta[n]$	0	1	0	0	0	0	0	0	0
y[n] = h[n]	0	b_0	b_1	b_2	b_3		b_M	0	0

$$y[n] = \sum_{k=0}^{M} h[k]x[n-k]$$
CONVOLUTION

MATH FORMULA for h[n]

$$b_k = \{1, -1, 2, -1, 1\}$$

Use SHIFTED IMPULSES to write h[n]

$$h[n] = \delta[n] - \delta[n-1] + 2\delta[n-2] - \delta[n-3] + \delta[n-4]$$

Convolution Sum

- Output = Convolution of x[n] & h[n]
 - NOTATION: y[n] = h[n] * x[n]
 - Here is the FIR case:

CONVOLUTION Example

$$h[n] = \delta[n] - \delta[n-1] + 2\delta[n-2] - \delta[n-3] + \delta[n-4]$$

$$x[n] = u[n]$$

n] -1	0	1	2	3	4	5	6	7
x[n]	0	1	1	1	1	1	1	1	•••
h[n]	0	1	-1	2	-1	1	0	0	0
h[0]x[n]	0	1	1	1	1	1	1	1	1
h[1]x[n-1]	0	0	- 1	-1	-1	-1	-1	-1	-1
h[2]x[n-2]	0	0	0	2	2	2	2	2	2
h[3]x[n-3]	0	0	0	0	-1	-1	-1	-1	- 1
h[4]x[n-4]	0	0	0	0	0	1	1	1	1
$\overline{y[n]}$	0	1	0	2	1	2	2	2	•••

MATLAB for FIR FILTER

- \cdot yy = conv(bb,xx)
 - VECTOR bb contains Filter Coefficients.

• FILTER COEFFICIENTS $\{b_k\}$

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

conv2()
for images

Example

- An FIR Filter is "FIRST DIFFERENCE".
 - y[n] = x[n] x[n-1]
- An INPUT is "UNIT STEP".

$$u[n] = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$
Step Input $u[n]$

$$-4 & -2 & 0 & 2 & 4 & 6 & 8 & 10 \end{cases}$$

• Find **y**[**n**].

$$y[n] = u[n] - u[n-1] = \delta[n]$$

Example

- An FIR Filter is "FIRST DIFFERENCE".
 - y[n] = x[n] x[n-1]
- Write output as a convolution.
 - Need impulse response.

$$h[n] = \delta[n] - \delta[n-1]$$

Then, another way to compute the output:

$$y[n] = (\delta[n] - \delta[n-1]) * x[n]$$

CASCADE SYSTEMS

- Does the order of $S_1 \& S_2$ matter?
 - NO, LTI SYSTEMS can be rearranged !!!
- Find "overall" h[n] for a cascade.

Figure 5.20 Switching the order of cascaded LTI systems.

Thank you

- Homework
 - P-5.2, 3, 5, 6, 7, 9(a,d), 11, 12, 14(a,b), 15(c), & 17
- Reading assignment
 - Section 6-1~5

