Problem Sheet 6

discussion: week of Monday, 5.12.2022

Note that this week there are only 3 examples, the remaining time of the exercise is used to discuss the correct solutions to the first exam.

6.1. Consider the three recursions

- $x_{n+1} = \frac{x_n}{3}$ with $x_0 = 1$,
- $y_{n+1} = \frac{4}{3}y_n \frac{1}{3}y_{n-1}$ with $y_0 = 1, y_1 = \frac{1}{3}$,
- $z_{n+1} = \frac{10}{3}z_n z_{n-1}$ with $z_0 = 1, z_1 = \frac{1}{3}$.

These recursions in explicit form lead to the sequence $(\frac{1}{3})^n$. Write a program (in matlab/python) that realizes each recursion and computes the absolute and relative errors between $(\frac{1}{3})^N$ and x_N, y_N, z_N for different values of N. Also try your program with slightly perturbed initial values, i.e., $x_0 = y_0 = z_0 = 1 + 10^{-14}$ and $y_1 = z_1 = \frac{1}{3} + 10^{-14}$. What do you observe?

Note: matlab has the possibility to compute results in higher precision (which you can use to compute $\left(\frac{1}{3}\right)^N$) using the vpa library (use help vpa for a documentation).

6.2. Consider the function

$$\varphi(x) = \sqrt{x+1} - \sqrt{x}$$

- a) Is the evaluation of φ well-conditioned for large x? Consider relative conditioning.
- b) Formulate a stable numerical realization of φ (*Hint:* You may use that a stable realization of $\sqrt{\cdot}$ is available.)

6.3. The sequence u_k , $k = 0, 1, \ldots$, given by

$$u_1 := 2, u_{k+1} = 2^k \sqrt{2\left(1 - \sqrt{1 - (2^{-k}u_k)^2}\right)}$$
 (1)

converges to the number $\pi = 3.1415...$

- a) Compute (in matlab/python) the first 30 members of the sequence and the absolute error $|\pi u_k|$. When is the error minimal?
- **b)** Explain why you should expect that the error grows for $k \ge k_0$ for some k_0 .

¹The u_k correspond to the circumference of regular polygons with 2^k edges; this method of approximating π is due to Archimedes