Schema Refinement and Normalization

COMP 3380 - Databases: Concepts and Usage

Department of Computer Science The University of Manitoba Fall 2006

COMP 3380 (Fall 2006), Leung

Review: Database Design Process

- 1. Requirements collection & analysis
- Conceptual DB design (ER model)
- Logical design (data model mapping, e.g., map ER to tables)
- Schema refinement (e.g., normalization)
- Physical design
- System implementation & tuning (e.g., application & security design)

COMP 3380 (Fall 2006), Leung

The Evils of Redundancy

- * Redundancy is at the root of several problems associated with relational schemas:
 - Redundant storage
 - Some info is stored repeatedly
 - Insertion anomalies
 - May not be possible to store certain info unless some other (unrelated) info is stored as well
 - Deletion anomalies
 - May not be possible to delete certain info without losing some other (unrelated) info is stored as well
 - Update anomalies
 - If one copy of such repeated data is updated, an inconsistency is created unless all copies are similarly updated

Example: Redundancy

٠	eID	eName	rank	hrlyWages	hrsWorked
	123	Albert	8	10	40
	131	Bob	5	7	30
	231	Carl	8	10	30
	434	Don	5	7	32
	612	Ed	8	10	40

- * Suppose (i) eID is a candidate key & (ii) rank determines hrlyWages

- Redundant Storage
 "rank-8 corresponds to hrlyWages=10" is repeated 3 times
 Insertion anomalies
 Cannot insert an employee tuple unless we know his rank/hrlyWages (or we put NULL values)
 Cannot record hrlyWages for rank-8 unless there exists a rank-8 emp

COMP 3380 (Fall 2006), Leung

Example: Redundancy

eID	eName	rank	hrlyWages	hrsWorked
123	Albert	8	10	40
131	Bob	5	7	30
231	Carl	8	10	30
434	Don	5	7	32
612	Ed	8	10	40
	123 131 231 434	123 Albert 131 Bob 231 Carl 434 Don	123 Albert 8 131 Bob 5 231 Carl 8 434 Don 5	123 Albert 8 10 131 Bob 5 7 231 Carl 8 10 434 Don 5 7

- Suppose (i) eID is a candidate key & (ii) rank determines hrlyWages
- Deletion anomalies
 - If we delete all employee tuples with rank=5, we lose the information about hrlyWages for rank=5 $\,$
- Update anomalies
 - hrlyWages in the 1st tuple could be updated without making a similar change in the 3rd tuple → inconsistency

COMP 3380 (Fall 2006), Leung

The Evils of Redundancy

- * Functional dependencies (FDs): Integrity constraints that can be used to identify schemas with such problems and to suggest refinements.
- Main refinement technique: Decomposition
 - Splits a table into many tables, each with fewer attributes
 - E.g., replace R (A,B,C,D) with R1 (A,B) and R2 (B,C,D)
 - Should be used judiciously: Wrong decomposition may lose information!

COMP 3380 (Fall 2006), Leung

Functional Dependencies

- $Arr A, B, C \rightarrow D$
 - A,B,C together determine D; so, A,B,C is a determinant
 - D is said to depend on A,B,C
- Sometimes written as A,B,C → D or ABC → D
- * FDs are a special kind of integrity constraint
- * We are most interested in cases where there is a single attribute on the RHS
- * The most uninteresting cases are the *trivial cases*:
 - E.g., ABC → A

COMP 3380 (Fall 2006), Leung

Functional Dependencies

* A functional dependency (FD)

holds over relation R if, for every allowable instance r of R & every two tuples t1, t2 in r

if t1.X = t2.X, then t1.Y = t2.Y

- ❖ Given two tuples in *r*, if the X values agree, then the Y values must also agree. (X and Y are sets of attributes)
- * Informally, precisely one Y-value is associated with each X value

COMP 3380 (Fall 2006), Leung

Example

х	Y	Z
1	2	4
1	3	4

 $Y \rightarrow Z$

- . It is possible (but not necessary) that
 - $\bullet X \rightarrow Z$ $Y \rightarrow X$
- $Z \rightarrow X$
- * It is *not* the case that $X \rightarrow Y$
- * It is *not* the case that $Z \rightarrow Y$

Example

- $\star X \rightarrow Z$ holds for the above instance, but *not* necessarily hold for all instances
- ❖ Similar comments for $(Y \rightarrow X)$, $(Y \rightarrow Z)$, and $(Z \rightarrow X)$
- ⋆ X \rightarrow Y does *not* hold because (t1.X = t2.X) but $(t1.Y \neq t2.Y)$
- ❖ Similarly, $Z \rightarrow Y$ does *not* hold because (t1.Z = t2.Z) but $(t1.Y \neq t2.Y)$

Functional Dependencies

- ❖ An FD is a statement about *all* allowable instances
 - · Must be identified based on semantics of application
 - Given some allowable instance r1 of R:
 - we can check if it violates some FDs, but
 - · we cannot tell if the FD holds over R
- ❖ K is a **superkey** for R means that $K \rightarrow attrs(R)$
 - Note: K is not required to be minimal

COMP 3380 (Fall 2006), Leung

COMP 3380 (Fall 2006), Leung

Reasoning about FDs

- * Given some FDs, we can usually infer additional FDs
 - E.g., $(eID \rightarrow dID)$ & $(dID \rightarrow addr)$ implies $(eID \rightarrow addr)$
- ❖ An FD *f* is *implied by* a set of FDs *F* if *f* holds whenever all FDs in F hold.
 - F^+ = closure of F is the set of all FDs that are implied by F

Reasoning about FDs: Dependency Closure vs. Attribute Closure

- **Dependency closure** F^+ = the set of all FDs that are implied by a set of FDs F
 - E.g., $\{(eID \rightarrow dID), (dID \rightarrow addr)\}^+$ = { $(eID \rightarrow dID)$, $(dID \rightarrow addr)$, $(eID \rightarrow addr)$ }
- ❖ **Attribute closure** X^+ = the set of all attrs that are implied by a set of attrs X wrt F
 - E.g., { eID }+ = { eID, dID, addr }
 - E.g., $\{dID\}^+ = \{dID, addr\}$
 - E.g., $\{eID, dID\}^+ = \{eID, dID, addr\}$

COMP 3380 (Fall 2006), Leung

Reasoning about FDs: Armstrong's Axioms

- ❖ For X, Y, Z are sets of attributes:
 - **Reflexivity:** If $Y \subseteq X$, then $X \rightarrow Y$
 - **Augmentation:** If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for all Z
 - Transitivity: If $(X \rightarrow Y)$ and $(Y \rightarrow Z)$, then $X \rightarrow Z$
- These are sound and complete inference rules

COMP 3380 (Fall 2006), Leung

Reasoning about FDs: Additional Rules

- ❖ For X, Y, Z are sets of attributes:
 - Union: If $(X \rightarrow Y)$ and $(X \rightarrow Z)$, then $X \rightarrow YZ$
 - **Decomposition:** If $X \rightarrow YZ$, then $(X \rightarrow Y)$ and $(X \rightarrow Z)$
- * These additional rules can be derived from Armstrong's Axioms

Example 1

❖ Prove: If $(X \rightarrow Y)$ and $(WY \rightarrow Z)$, then $WX \rightarrow Z$

given (FD1) 1. $X \rightarrow Y$ 2. $WX \rightarrow WY$ 1, augmentation given (FD2) 3. WY \rightarrow Z 4. $WX \rightarrow Z$ 2, 3, transitivity

* This additional rule is called pseudotransitivity rule

Example 2

❖ Disprove: If $(X \rightarrow Z)$ and $(Y \rightarrow Z)$, then $X \rightarrow Y$

Counterexample:

Х	Y	Z
1	2	4
1	3	4

COMP 3380 (Fall 2006), Leung

Example 3

Given the following FDs

1. s# \rightarrow sName, city 2. city → status 3. p# → pName 4. s#, p# → qty

show (s#, p#) is a candidate key of SPJ (s#, p#, status, city, qty)

Proof: (s#, p#) is a superkey

 s# → city
 s# → status 3. $s\# \rightarrow s\#$ 4. $s\# \rightarrow s\#$, status, city FD1, decomposition 1, FD2, transitivity reflexivity 1, 2, 3, union

5. s#, p# \rightarrow s#, p#, status, city 6. s#, p# → s#, p#, status, city, qty

4, augmentation 5, FD4, union

COMP 3380 (Fall 2006), Leung

Example 3 (Cont'd)

* Given the following FDs

1. s# \rightarrow sName, city 2. city → status 3. p# → pName 4. s#, p# \rightarrow qty

show (s#, p#) is a candidate key of SPJ (s#, p#, status, city, qty)

Proof: (s#, p#) is a candidate key (i.e., minimal superkey)
 Can s# be a superkey? NO

E.g., s# → p# does not hold (because p# does not appear on the RHS of any FD)

2. Can p# be a superkey? NO

E.g., p# → s# does not hold (because s# does not appear on the RHS of any FD)

Note: (s#, p#) is the only candidate key → (s#, p#) is the primary key

COMP 3380 (Fall 2006), Leung

Example 4

* Consider R (A,B,C,D,E) which satisfies the following FDs: 1. AB \rightarrow C 2. B \rightarrow D 3. D **→** E Explain why A is not a candidate key of R.

 Show: A is not a candidate key of R Since B does not appear on the RHS of any FDs, A → B does not hold. So, A cannot be a superkey of R, and hence A is not a candidate key of R.

Note: It is also *not* the case that $(A \rightarrow C)$, $(A \rightarrow D)$, or $(A \rightarrow E)$.

COMP 3380 (Fall 2006), Leung

Example 5

- * Consider R (A,B,C,D,E) which satisfies the following FDs: 1. AB \rightarrow C 2. B \rightarrow D 3. D → E Explain why ABD is not a candidate key of R.
- Show: ABD is not a candidate key of R Since AB is a superkey of R (see the proof below), ABD is not a candidate key of R.

 AB → A
 AB → B reflexivity reflexivity 3. AB → D 2, FD2, transitivity 3, FD3, transitivity 4. AB → E 5. AB → ABCDE 1, 2, FD1, 3, 4, union

Normal Forms

- "Whether any schema refinement is needed?"
 - If a relation is in a certain **normal form** (e.g., 3NF, BCNF, etc.), it is known that certain kinds of problems are avoided/minimized. This can be used to help us decide whether decomposing the relation will help.
- * Role of FDs in detecting redundancy
 - E.g., consider a relation R with 3 attributes, ABC.

 - If no FDs hold, there is no redundancy here.
 If A → B, several tuples having the same A value will all have the same B value.
- * Normalization: The process of removing redundancy from data

1NF (First Normal Form)

- ❖ A relation is in **1NF** if every attribute contains only atomic values (i.e., no lists or sets)
 - Tables cannot have 2+ entries for the same cell
 - E.g., cannot enter "Elmasri & Navathe" in the same cell for "author"
 - E.g., Emp0 (empID, empName, childrenNames) is not in 1NF → normalize it into

Emp1 (empID, empName, childName) which is in 1NF

COMP 3380 (Fall 2006), Leung

Example: 1NF

- *❖ SPJ0* (<u>s#,</u> *p*#*list*, *status*, *city*, *totalQty*) is **not in 1NF** (because of the multiple values for *p#list*)
- → normalize into

SPJ1 (s#, p#, status, city, qty) 1NF

COMP 3380 (Fall 2006), Leung

2NF (Second Normal Form)

- * A relation R is in 2NF if:
 - 1. R is in 1NF, and
 - 2. every attribute A in R *either* appears in a candidate key *or* is not partially dependent on a candidate key (i.e., **no partial key dependency**)
- A functional dependency XY→Z is called a partial dependency if there is a proper subset Y ⊂ XY such that Y→Z (i.e., Z is partially dependent on XY)

COMP 3380 (Fall 2006), Leung

25

Example: 2NF

* SPJ1 (<u>s#, p#,</u> status, city, qty) with 3 FDs

1. $s# \rightarrow city$ 2. $city \rightarrow status$

3. $s\#, p\# \rightarrow qty$

is in 1NF, but **not in 2NF** (because *city* is partially dependent on {*s*#, *p*#})

→ normalize into

 Supplier2 (s#, status, city)
 2NF

 SP (s#, p#, qty)
 2NF

COMP 3380 (Fall 2006), Leung

26

Example: 2NF (Details)

- Supplier2 (<u>s#</u>, status, city)
 - Supplier2 is in 1NF, and
 - Attribute s# appears in a candidate key, status is not partially dependent on a candidate key, city is not partially dependent on a candidate key.
- SP (s#, p#, qty)

2NF

- SP is in 1NF, and
- Attribute s# appears in a candidate key,
 p# appears in a candidate key,
 qty is not partially dependent on a candidate key.

COMP 3380 (Fall 2006), Leung

3NF (Third Normal Form)

- A relation R is in 3NF if:
 - 1. R is in 2NF, and
 - 2. for every functional dependency X→A, one of the following conditions hold:
 - i. A is part of some candidate keys for R, or
 - ii. $A \in X$ (i.e., a trivial FD), or
 - iii. X is a superkey

(i.e., no partial dependency & no transitive dependency)

COMP 3380 (Fall 2006), Leun

28

3NF (Third Normal Form)

- ❖ A functional dependency X→Z is called a transitive dependency if there is an attribute set Y (which is not a subset of any candidate keys) such that
 - i. $(X \rightarrow Y)$ and $(Y \rightarrow Z)$ hold, but
 - ii. $Z \rightarrow X$ does not hold

(i.e., Z is transitively dependent on X, thro' the chain of $X \rightarrow Y \rightarrow Z$)

COMP 3380 (Fall 2006), Leung

Example: 3NF

Supplier2 (<u>s#</u>, status, city) with 2 FDs
 1. s# → city
 2. city → status
 is in 2NF, but **not in 3NF** (because status is transitively dependent on s#)

→ normalize into

 Supplier3 (s#, city)
 3NF

 CityInfo (city, status)
 3NF

❖ SP (*s*#, *p*#, *qty*) is in 2NF & **3NF**

COMP 3380 (Fall 2006), Leung

(Fall 2006), Leung 30

Example: 3NF (Details)

- Supplier3 (<u>s#</u>, city) 3NI
 - Supplier3 is in 2NF, and
 - for FD ($s# \rightarrow city$), s# is a superkey.
- CityInfo (city, status) 3NF
 - CityInfo is in 2NF, and
 - for FD (city → status), city is a superkey.
- SP (<u>s#, p#,</u> qty)

3NF

SP is in 2NF, and

• for FD (s#, $p\# \rightarrow qty$), (s#, p#) is a superkey.

COMP 3380 (Fall 2006), Leung

BCNF (Boyce-Codd Normal Form)

- ❖ A relation R is in BCNF if for every functional dependency X→A that holds over R, one of the following is true:
 - i. $A \in X$ (i.e., a trivial FD), or
 - ii. X is a superkey

(i.e., all determinants X must be superkeys)

COMP 3380 (Fall 2006), Leung

22

Example: BCNF

- ❖ With 3 FDs
 - 1. $s\# \rightarrow city$ 2. $city \rightarrow status$
 - 3. s#, p# → qty

 Supplier3 (<u>s#</u>, city) is in 3NF & **in BCNF**
 - CityInfo (city, status) is in 3NF & in BCNF
 - *SP* (<u>s#, p#,</u> qty) is in 3NF, & **in BCNF**

COMP 3380 (Fall 2006), Leung

Example: BCNF (Details)

- ❖ Supplier3 (<u>s#,</u> city) BCNF
 - for FD ($s# \rightarrow city$), s# is a superkey.
- * CityInfo (city, status) BCNF
 - for FD ($city \rightarrow status$), city is a superkey.
- SP (s#, p#, qty)

BCNF

• for FD (s#, $p\# \rightarrow qty$), (s#, p#) is a superkey.

COMP 3380 (Fall 2006), Leung

34

Summary of Normal Forms

- Non-key attribute (aka non-prime attribute)
 = An attribute that is not part of any candidate keys
- * 1NF: Every attribute contains only atomic values
- 2NF: 1NF + Every attribute A in R either appears in a candidate key or is not partially dependent on a candidate key
 - No non-key attribute is partially dependent on some candidate keys

(i.e., no partial key dependency)

COMP 3380 (Fall 2006), Leung

Summary of Normal Forms

- ❖ 3NF: 2NF + For every FD X→A, one of the following conditions hold: (i) A is part of some candidate keys, or (ii) A ∈ X, or (iii) X is a superkey
 - No non-key attribute is transitively dependent on some candidate keys

 $(i.e., no\ partial\ dependency\ \&\ no\ transitive\ dependency)$

- BCNF: For every FD X→ A that holds over R, one of the following is true: (i) A ∈ X, or (ii) X is a superkey
 - All determinants X must be superkeys

COMP 3380 (Fall 2006), Leung

36

Normalization & Design: Comments

- * There are too many anomalies (problems) with 1NF and 2NF → most organizations go to 3NF or better
 - E.g., With SPJ1 (s#, p#, status, city, qty) in 1NF,
 - cannot record facts about suppliers that do not currently
 - supply any parts
 cannot preserve facts about suppliers when deleting the last tuple related to the suppliers
 - E.g., With Supplier2 (s#, status, city) in 2NF,
 - cannot record status about cities where no supplier resides
 - cannot preserve status about cities when deleting the last supplier in the cities

COMP 3380 (Fall 2006), Leung

Normalization & Design: Comments

- If the primary key consists of only 1 attribute, the relation is automatically in 2NF

 E.g., Supplier2 (s#, status, city)
- 3NF is generally not satisfactory if the following are all true:
 - The relation has multiple candidate keys
 - The candidate keys are composite (i.e., consist of 2⁺ attributes)
 - The candidate keys overlap
- * If a relation has only 2 attributes, it is automatically in BCNF
 - E.g., Supplier3 (<u>s#</u>, city)

COMP 3380 (Fall 2006), Leung

Normalization & Design: Comments

- ❖ If R is in 3NF, some redundancy is possible
- Compromise: Used when BCNF not achievable (e.g., no "good" decomposition exists, or when there are performance considerations that warrant 3NF)
- Note: BCNF drops the condition "A is part of some keys for R for every FD X \rightarrow A' i.e., if R is in BCNF, then X is a superkey for every functional dependency $X \rightarrow A$

Normalization & Design: Comments

- If a relation is in BCNF, it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relations are in BCNF is a good heuristic.
- * If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.
 - Decompositions should be carried out and/or re-examined (while keeping performance requirements in mind)
- * Other NFs: 4NF, 5NF (aka PJNF), DKNF

Normalization & Design: Comments All relations 1NF (First Normal Form) 2NF (Second Normal Form) 3NF (Third Normal Form) BCNF (Boyce-Codd NF) COMP 3380 (Fall 2006), Leung