The group G is isomorphic to the group labelled by [48, 16] in the Small Groups library. Ordinary character table of $G \cong (C3 : Q8) : C2$:

_												
	1a	4a	2a	4b	2b	3a	8a	6a	12a	6b	8b	6c
	1	1	1	1	1	1	1	1	1	1	1	1
	1	-1	-1	1	1	1	1	-1	1	1	1	-1
	1	-1	1	1	1	1	-1	1	1	1	-1	1
	1	1	-1	1	1	1	-1	-1	1	1	-1	-1
	2	0	0	-2	2	2	0	0	-2	2	0	0
	2	0	-2	2	2	-1	0	1	-1	-1	0	1
	2	0	2	2	2	-1	0	-1	-1	-1	0	-1
	2	0	0	0	-2	2	$-E(8) - E(8)^3$	0	0	-2	$E(8) + E(8)^3$	0
	2	0	0	0	-2	2	$E(8) + E(8)^3$	0	0	-2	$-E(8) - E(8)^3$	0
,	2	0	0	-2	2			$-E(3) + E(3)^2$			0	$E(3) - E(3)^2$
.	2	0	0	-2	2	-1	0	$E(3) - E(3)^2$	1	-1	0	$E(3) - E(3)^2 - E(3) + E(3)^2$
,	4	0	0	0	-4	-2	0	0	0	2	0	0

Trivial source character table of $G \cong (C3 : Q8) : C2$ at p = 2:

Normalisers N_i	N	V_1	Λ	I_2		N_3		I	V_4		N_5		N_6	Λ	V_7	N_8	N_9	N_{10}
p-subgroups of G up to conjugacy in G	I	1	I	2		P_3		1	4		P_5		P_6	1	P ₇	P_8	P_9	P_{10}
Representatives $n_j \in N_i$	1 <i>a</i>	3a	1a	3a	1a	3b	3a	1a	3a	1a	3a	3b	1a	1a	3a	1a	1 <i>a</i>	1 <i>a</i>
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 2 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 2 \cdot \chi_8 + 2 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	16	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 2 \cdot \chi_{12}$	16	-8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 2 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$		8	8	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	8	-4	8	-4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	8	8	0	0	2	2	2	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12}$	8	-4	0	0	2	$2 * E(3)^2$	2 * E(3)	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	8	-4	0	0	2	2 * E(3)	$2 * E(3)^2$	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4	4	4	0	0	0	4	4	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	-2	4	-2	0	0	0	4	-2	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4	4	4	2	2	2	0	0	2	2	2	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	-2	4	-2	2	2 * E(3)	$2 * E(3)^2$	0	0	2	$2 * E(3)^2$	2 * E(3)	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	-2	4	-2	2	$2 * E(3)^2$	2 * E(3)	0	0	2	2 * E(3)	$2 * E(3)^2$	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4	4	4	0	0	0	0	0	0	0	0	2	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	2	2	2	2	2	2	2	2	2	0	2	2	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	-1	2	-1	2	-1	-1	2	-1	2	-1	-1	0	2	-1	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	2	0	0	0	2	2	0	0	0	2	0	0	2	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	2	0	0	0	2	2	0	0	0	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48)]) \cong \mathbb{C}_2$

 $P_3 = Group([(1,3)(2,7)(4,25)(5,12)(6,13)(8,32)(9,19)(10,20)(11,14)(15,39)(16,27)(17,28)(18,21)(22,43)(23,34)(24,35)(26,29)(30,47)(31,41)(33,36)(37,48)(38,45)(40,42)(44,46)]) \cong \mathbb{C}_2$

 $P_4 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(2,8,9,21)(3,11,12,25)(6,15,16,29)(7,18,19,32)(10,22,23,36)(13,26,27,39)(17,30,31,42)(20,33,34,43)(24,37,38,46)(28,40,41,47)(35,44,45,48)]) \\ \cong C4 - Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(28,37,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(28,37,38)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(28,37,38)(46,48)(4$

 $P_5 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(41,48),(1,3)(2,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(41,48),(1,3)(27,48)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(41,48),(1,3)(27,48)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(41,48),(1,3)(27,48)(28,41)(30,42)(38,42)(38,42)($

 $P_7 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(6,13)(8,32)(20,34)(22,33)(13,26,27,39)(17,30,34,43)(24,37,38,46)(28,40,41,47)(35,44,45,48), \\ (1,4,5,14)(2,3,34)(24,37,38,46)(28,40,41,47)(35,44,45,48)(1,3,27)(15,29)(17,30,34,43)(24,37,38,46)(28,40,41,47)(35,44,45,48), \\ (1,4,5,14)(2,3,34)(24,37,38,46)(28,40,41,47)(35,44,45,48)(17$

 $P_9 = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48), (1,4,5,14)(2,8,9,21)(3,14,12,25)(6,15,16,29)(7,18,19,32)(10,22,23,36)(13,24,39,46,27,38,46)(24,38,43)(24,37,38,46)(24,38,43)(24,37,38,46)(24,38,43)(24$

 $P_{10} = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(24,35)(26,39)(28,41)(30,42)(33,43)(24,37,38,46)(28,40,41,47)(35,44,45,48), \\ Q_{11} = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(6,15,16,29)(7,18,19,32)(10,22,23,36)(13,26,27,39)(17,30,31,42)(20,33,34,43)(24,37,38,46)(28,40,41,47)(35,44,45,48), \\ Q_{11} = Group([(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(24,35)(26,39)(28,41)(30,42)(23,34)(24,35)(26,39)(28,41)(30,42)(23,34)(24,35)(26,39)(28,41)(30,42)(24,35)(26,39)(28,41)(30,42)(24,35)(26,39)(28,41)(30,42)(24,35)(26,39)(28,41)(30,42)(24,35)(26,39)(28,41)(30,42)(24,35)(26,39)(28,41)(30,42)(28,36)(28,41)(30,42)(28,36)(28,41)(30,42)(28,36)(28,41)(30,42)(28,36)(28,41)(30,42)(28,36)(28,41)(30,42)(28,36)(28,41)(30,42)(28,36)(28,41)(30,42)(28,36)(28,41)(30,42)(28,36)(28,41)(30,42)(28,36)(28,41)(30,42)(28,36)(28,41)(30,42)(33,43)(36,42)(28,43)(36,42)(28,43)(36,42)(28,43)(36,42)(28,43)(36,42)(28,43)(36,42$

 $N_3 = Group([(1,3)(2,7)(4,25)(5,12)(6,13)(8,32)(9,19)(10,20)(11,14)(15,39)(16,27)(17,28)(18,21)(22,43)(23,34)(24,35)(26,29)(30,47)(31,41)(33,36)(37,48)(38,45)(40,42)(44,46),(1,5)(2,9)(3,12)(4,14)(6,16)(7,19)(8,21)(10,23)(11,25)(13,27)(15,29)(17,31)(18,32)(20,34)(22,36)(24,38)(26,39)(28,41)(30,42)(33,43)(35,45)(37,46)(40,47)(44,48),(1,17,6)(2,24,10)(3,24,12)(24,36)(25,47,39)(32,48,43)]) \\ = C6 \times C2$

 $N_7 = Group([(1,3)(2,7)(4,25)(5,12)(6,13)(2,7)(4,25)(5,12)(6,13)(2,34)(24,35)(24,35)(24,34)(24,35)$ $N_8 = Group([(1,2,5,9)(3,18,12,32)(4,21,14,8)(2,33,44)(24,35)(26,39)(28,41)(30,42)(23,34)(24,35)(26,39)(28,41)(30,42)(33,43)(24,35)(26,39)(28,41)(30,42)(23,34)(24,35)(26,39)(28,41)(30,42)(23,34)(24,35)(26,39)(28,41)(30,42)(33,43)(35,45)(37,48)(36,43)(35,45)(37,48)(38,45)(49,42)(44,48)(1,3)(24,35)(26,39)(28,41)(30,42)(23,34)(24,35)(26,39)(28,41)(30,42)(33,43)(35,45)(37,48)(38,45)(49,42)(44,48)(1,3)(24,35)(26,39)(28,41)(30,42)(33,43)(35,45)(37,48)(38,45)(49,42)(44,48)(1,3)(24,35)(26,39)(28,41)(30,42)(33,43)(35,45)(37,48)(38,45)(49,43)(36,45)(49,43)($

 $N_{10} = Group([(1,2,5,9)(3,18,12,32)(4,21,14,8)(6,24,16,38)(7,25,19,11)(10,31,23,17)(13,44,27,48)(15,46,29,37)(20,47,34,40)(22,30,34,42)(24,35)(26,39)(37,48)(38,45)(40,42)(43,43)(35,45)(47,48)(15,46,29,37)(20,47,34,40)(22,30,34,43)(24,37,38,46)(28,40,41,47)(35,44,45,48), \\ N_{10} = Group([(1,2,5,9)(3,14,12,25)(6,13,14,25)(6,13,14,25)(6,13,14,25)(6,13,14,25)(6,13,14,25)(6,13,14,25)(6,13,14,25)(13,27)(15,29)(17,31)(18,32)(20,34,14,25)(24,34)(24,35)(26,39)(28,41)(30,42)(33,43)(24,35)(26,39)(28,41)(30,42)(33,43)(24,35)(26,39)(28,41)(30,42)(33,43)(24,35)(26,39)(28,41)(30,42)(33,43)(24,35)(26,39)(28,41)(30,42)(33,43)(24,35)(26,39)(28,41)(30,42)(28,33,41,43)(24,35)(26,39)(28,41)(30,42)(33,43)(24,35)(26,39)(28,41)(30,42)(33,43)(24,35)(26,39)(33,43)(24,35)(26,39)(33,43)(24,35)(26,39)(33,43)(24,35)(26,39)(33,43)(24,35)(26,39)(33,43)(24,35)(26,39)(33,43)(24,35)(26,39)(33,43)(24,35)(26,39)(33,43)(24,35)(26,39)(33,43)(24,35)(26,39)(33,43)(24,35)(33,43)(24,35)(26,39)(33,43)(24,35)(33,43)(33,4$