Spartan-3 Libraries Guide for HDL Designs

ISE 10.1

Xilinx Trademarks and Copyright Information

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU "AS-IS" WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© Copyright 2002 – 2008 Xilinx, Inc. All Rights Reserved. XILINX, the Xilinx logo, the Brand Window and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.

Table of Contents

About this Guide	7
Functional Categories	9
About Design Elements	
BSCAN_SPARTAN3	
BUFCF	18
BUFG	20
BUFGCE	22
BUFGCE 1	
BUFGMŪX	
BUFGMUX 1	
CAPTURE SPARTAN3	
DCM	
FDCE	
FDCE_1	
FDCPE	
FDCPE_1FDRSE	
FDRSE_1	
IBUF	
IBUFDS	
IBUFG	
IBUFGDS	
IFDDRCPE	
IFDDRRSE	
IOBUF	
IOBUFDS	68
KEEPER	70
LDCPE	72
LUT1	
LUT1_D	
LUT1_L	
LUT2	
LUT2 D	
LUT2 L	
LUT3	
LUT3 D	
LUT3_L	
LUT4	
LUT4_D	
LUT4_L	
MULT_AND	
MULT18X18	
MULT18X18S	109
MUXCY	
MUXCY_D	
MUXCY L	115
MUXF5	117
MUXF5 D	119
MUXF5 L	
MUXF6	
MUXF6 D	
MUXF6 L	
MUXF7	
MUXF7_D	
MUXF7_L	
MUXF8	135

MUXF8_D	137
MUXF8_L	
OBUF	
OBUFDS	143
OBUFT	145
OBUFTDS	
OFDDRCPE	149
OFDDRRSE	151
OFDDRTCPE	
OFDDRTRSE	155
PULLDOWN	157
PULLUP	
RAM16X1D	161
RAM16X1D 1	164
RAM16X1S	
RAM16X1S 1	169
RAM16X2S	171
RAM16X4S	
RAM16X8S	177
RAM32X1S	181
RAM32X1S_1	
RAM32X2S	186
RAM32X4S	189
RAM32X8S	
RAM64X1S	
RAM64X1S 1	198
RAM64X2S	201
RAMB16 S1	
RAMB16_S1_S1	
RAMB16 S1 S18	221
RAMB16 S1 S2	232
RAMB16 S1 S36	
RAMB16_S1_S4	
RAMB16 S1 S9	265
RAMB16_S18	276
RAMB16_S18_S18	
RAMB16_S18_S36	293
RAMB16 S2	305
RAMB16 S2 S18	
RAMB16_S2_S2	319
RAMB16 S2 S36	330
RAMB16_S2_S4	342
RAMB16 S2 S9	
RAMB16_S36	
RAMB16 S36 S36	372
RAMB16 S4	
RAMB16_S4_S18	
RAMB16_S4_S36	401
RAMB16_S4_S4	
RAMB16_S4_S9	
RAMB16_S9	
RAMB16_S9_S18	441
RAMB16_S9_S36	
RAMB16_S9_S9	
ROM128X1	
ROM16X1	480
ROM256X1	
ROM32X1	
ROM64X1	489

SRL16	492
SRL16 1	
SRL16Ē	
SRL16E 1	
SRLC16	502
SRLC16 1	504
SRLC16E	506
SRLC16E_1	509
STARTUP SPARTAN3	512
XORCY	514
XORCY D	516
XORCY I	

About this Guide

This HDL guide is part of the ISE documentation collection. A separate version of this guide is available if you prefer to work with schematics.

This guide contains the following:

- Introduction.
- A list of design elements supported in this architecture, organized by functional categories.
- Individual descriptions of each available primitive.

About Design Elements

This version of the Libraries Guide describes the primitives that comprise the Xilinx Unified Libraries for this architecture, and includes examples of instantiation code for each element.

Primitives are Xilinx components that are native to the FPGA you are targeting. If you instantiate a primitive in your design, after the translation process you will end up with the exact same component in the back end. For example, if you instantiate the Virtex-5 element known as ISERDES_NODELAY as a user primitive, after you run translate (ngdbuild) you will end up with an ISERDES_NODELAY in the back end as well. If you were using ISERDES in a Virtex-5 device, then this will automatically retarget to an ISERDES_NODELAY for Virtex-5 in the back end. Hence, this concept of a "primitive" differs from other uses of that term in this technology.

Xilinx maintains software libraries with hundreds of functional design elements (unimacros and primitives) for different device architectures. New functional elements are assembled with each release of development system software. In addition to a comprehensive Unified Library containing all design elements, beginning in 2003, Xilinx developed a separate library for each architecture. This guide is one in a series of architecture-specific libraries.

Design Entry Methods

For each design element in this guide, Xilinx evaluates the four options and recommends what we believe is the best solution for you. The four options are:

- **Instantiation** This component can be instantiated directly into the design. This method is useful if you want to control the exact placement of the individual blocks.
- **Inference** This component can be inferred by most supported synthesis tools. You should use this method if you want to have complete flexibility and portability of the code to multiple architectures. Inference also gives the tools the ability to optimize for performance, area, or power, as specified by the user to the synthesis tool.
- Coregen & Wizards This component can be used through Coregen or Wizards. You should use this method if you want to build large blocks of any FPGA primitive that cannot be inferred. When using this flow, you will have to re-generate your cores for each architecture that you are targeting.
- **Macro Support** This component has a UniMacro that can be used. These components are in the UniMacro library in the Xilinx tool, and are used to instantiate primitives that are complex to instantiate by just using the primitives. The synthesis tools will automatically expand the unimacros to their underlying primitives.

Functional Categories

This section categorizes, by function, the circuit design elements described in detail later in this guide. The elements (*primitives* and *macros*) are listed in alphanumeric order under each functional category.

Arithmetic Functions I/O Components Shift Register LUT
Clock Components RAM/ROM Slice/CLB Primitives

Config/BSCAN Components Registers & Latches

Arithmetic Functions

Design Element	Description
MULT18X18	Primitive: 18 x 18 Signed Multiplier
MULT18X18S	Primitive: 18 x 18 Signed Multiplier Registered Version

Clock Components

Design Element	Description
BUFG	Primitive: Global Clock Buffer
BUFGCE	Primitive: Global Clock Buffer with Clock Enable
BUFGCE_1	Primitive: Global Clock Buffer with Clock Enable and Output State 1
BUFGMUX	Primitive: Global Clock MUX Buffer
BUFGMUX_1	Primitive: Global Clock MUX Buffer with Output State 1
DCM	Primitive: Digital Clock Manager
IBUFG	Primitive: Dedicated Input Clock Buffer
IBUFGDS	Primitive: Differential Signaling Dedicated Input Clock Buffer and Optional Delay

Config/BSCAN Components

Design Element	Description
BSCAN_SPARTAN3	Primitive: Spartan-3 Register State Capture for Bitstream Readback
CAPTURE_SPARTAN3	Primitive: Spartan-3 Register State Capture for Bitstream Readback
STARTUP_SPARTAN3	Primitive: Spartan-3 User Interface to Global Clock, Reset, and 3-State Controls

I/O Components

Design Element	Description
IBUF	Primitive: Input Buffer
IBUFDS	Primitive: Differential Signaling Input Buffer with Optional Delay

Design Element	Description
IBUFG	Primitive: Dedicated Input Clock Buffer
IBUFGDS	Primitive: Differential Signaling Dedicated Input Clock Buffer and Optional Delay
IOBUF	Primitive: Bi-Directional Buffer
IOBUFDS	Primitive: 3-State Differential Signaling I/O Buffer with Active Low Output Enable
KEEPER	Primitive: KEEPER Symbol
OBUF	Primitive: Output Buffer
OBUFDS	Primitive: Differential Signaling Output Buffer
OBUFT	Primitive: 3-State Output Buffer with Active Low Output Enable
OBUFTDS	Primitive: 3-State Output Buffer with Differential Signaling, Active-Low Output Enable
PULLDOWN	Primitive: Resistor to GND for Input Pads, Open-Drain, and 3-State Outputs
PULLUP	Primitive: Resistor to VCC for Input PADs, Open-Drain, and 3-State Outputs

RAM/ROM

Design Element	Description
RAM16X1D	Primitive: 16-Deep by 1-Wide Static Dual Port Synchronous RAM
RAM16X1D_1	Primitive: 16-Deep by 1-Wide Static Dual Port Synchronous RAM with Negative-Edge Clock
RAM16X1S	Primitive: 16-Deep by 1-Wide Static Synchronous RAM
RAM16X1S_1	Primitive: 16-Deep by 1-Wide Static Synchronous RAM with Negative-Edge Clock
RAM16X2S	Primitive: 16-Deep by 2-Wide Static Synchronous RAM
RAM16X4S	Primitive: 16-Deep by 4-Wide Static Synchronous RAM
RAM16X8S	Primitive: 16-Deep by 8-Wide Static Synchronous RAM
RAM32X1S	Primitive: 32-Deep by 1-Wide Static Synchronous RAM
RAM32X1S_1	Primitive: 32-Deep by 1-Wide Static Synchronous RAM with Negative-Edge Clock
RAM32X2S	Primitive: 32-Deep by 2-Wide Static Synchronous RAM
RAM32X4S	Primitive: 32-Deep by 4-Wide Static Synchronous RAM
RAM32X8S	Primitive: 32-Deep by 8-Wide Static Synchronous RAM
RAM64X1S	Primitive: 64-Deep by 1-Wide Static Synchronous RAM
RAM64X1S_1	Primitive: 64-Deep by 1-Wide Static Synchronous RAM with Negative-Edge Clock
RAM64X2S	Primitive: 64-Deep by 2-Wide Static Synchronous RAM
RAMB16_S1	Primitive: 16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 1-bit Port
RAMB16_S1_S1	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit Ports
RAMB16_S1_S18	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit and 18-bit Ports
RAMB16_S1_S2	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit and 2-bit Ports

Design Element	Description
RAMB16_S1_S36	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit and 36-bit Ports
RAMB16_S1_S4	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit and 4-bit Ports
RAMB16_S1_S9	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit and 9-bit Ports
RAMB16_S18	Primitive: 16K-bit Data + 2K-bit Parity Memory, Single-Port Synchronous Block RAM with 18-bit Port
RAMB16_S18_S18	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 18-bit Ports
RAMB16_S18_S36	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 18-bit and 36-bit Ports
RAMB16_S2	Primitive: 16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 2-bit Port
RAMB16_S2_S2	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit Ports
RAMB16_S2_S18	No: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit and 18-bit Ports
RAMB16_S2_S36	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit and 36-bit Ports
RAMB16_S2_S4	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit and 4-bit Ports
RAMB16_S2_S9	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit and 9-bit Ports
RAMB16_S36	Primitive: 16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 36-bit Port
RAMB16_S36_S36	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with Two 36-bit Ports
RAMB16_S4	Primitive: 16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 4-bit Port
RAMB16_S4_S18	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 4-bit and 18-bit Ports
RAMB16_S4_S36	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 4-bit and 36-bit Ports
RAMB16_S4_S4	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 4-bit Ports
RAMB16_S4_S9	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 4-bit and 9-bit Ports
RAMB16_S9	Primitive: 16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 9-bit Port
RAMB16_S9_S18	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 9-bit and 18-bit Ports
RAMB16_S9_S36	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 9-bit and 36-bit Ports
RAMB16_S9_S9	Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 9-bit Ports
ROM128X1	Primitive: 128-Deep by 1-Wide ROM

Design Element	Description
ROM16X1	Primitive: 16-Deep by 1-Wide ROM
ROM256X1	Primitive: 256-Deep by 1-Wide ROM
ROM32X1	Primitive: 32-Deep by 1-Wide ROM
ROM64X1	Primitive: 64-Deep by 1-Wide ROM

Registers & Latches

Design Element	Description
FDCE	Primitive: D Flip-Flop with Clock Enable and Asynchronous Clear
FDCE_1	Primitive: D Flip-Flop with Negative-Edge Clock, Clock Enable, and Asynchronous Clear
FDCPE	Primitive: D Flip-Flop with Clock Enable and Asynchronous Preset and Clear
FDCPE_1	Primitive: D Flip-Flop with Negative-Edge Clock, Clock Enable, and Asynchronous Preset and Clear
FDRSE	Primitive: D Flip-Flop with Synchronous Reset and Set and Clock Enable
FDRSE_1	Primitive: D Flip-Flop with Negative-Clock Edge, Synchronous Reset and Set, and Clock Enable
IFDDRCPE	Primitive: Dual Data Rate Input D Flip-Flop with Clock Enable and Asynchronous Preset and Clear
IFDDRRSE	Primitive: Dual Data Rate Input D Flip-Flop with Synchronous Reset and Set and Clock Enable
LDCPE	Primitive: Transparent Data Latch with Asynchronous Clear and Preset and Gate Enable
OFDDRCPE	Primitive: Dual Data Rate Output D Flip-Flop with Clock Enable and Asynchronous Preset and Clear
OFDDRRSE	Primitive: Dual Data Rate Output D Flip-Flop with Synchronous Reset and Set and Clock Enable
OFDDRTCPE	Primitive: Dual Data Rate D Flip-Flop with Active-Low 3State Output Buffer, Clock Enable, and Asynchro-nous Preset and Clear
OFDDRTRSE	Primitive: Dual Data Rate D Flip-Flop with Active -Low 3-State Output Buffer, Synchronous Reset and Set, and Clock Enable

Shift Register LUT

Design Element	Description	
SRL16	Primitive: 16-Bit Shift Register Look-Up-Table (LUT)	
SRL16_1	Primitive: 16-Bit Shift Register Look-Up-Table (LUT) with Negative-Edge Clock	
SRL16E	Primitive: 16-Bit Shift Register Look-Up-Table (LUT) with Clock Enable	
SRL16E_1	Primitive: 16-Bit Shift Register Look-Up-Table (LUT) with Negative-Edge Clock and Clock Enable	
SRLC16	Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry	

Design Element	Description
SRLC16_1	Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry and Negative-Edge Clock
SRLC16E	Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry and Clock Enable
SRLC16E_1	Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry, Negative-Edge Clock, and Clock Enable

Slice/CLB Primitives

Design Element	Description		
BUFCF	Primitive: Fast Connect Buffer		
LUT1	Primitive: 1-Bit Look-Up-Table with General Output		
LUT1_D	Primitive: 1-Bit Look-Up-Table with Dual Output		
LUT1_L	Primitive: 1-Bit Look-Up-Table with Local Output		
LUT2	Primitive: 2-Bit Look-Up-Table with General Output		
LUT2_D	Primitive: 2-Bit Look-Up-Table with Dual Output		
LUT2_L	Primitive: 2-Bit Look-Up-Table with Local Output		
LUT3	Primitive: 3-Bit Look-Up-Table with General Output		
LUT3_D	Primitive: 3-Bit Look-Up-Table with Dual Output		
LUT3_L	Primitive: 3-Bit Look-Up-Table with Local Output		
LUT4	Primitive: 4-Bit Look-Up-Table with General Output		
LUT4_D	Primitive: 4-Bit Look-Up-Table with Dual Output		
LUT4_L	Primitive: 4-Bit Look-Up-Table with Local Output		
MULT_AND	Primitive: Fast Multiplier AND		
MUXCY	Primitive: 2-to-1 Multiplexer for Carry Logic with General Output		
MUXCY_D	Primitive: 2-to-1 Multiplexer for Carry Logic with Dual Output		
MUXCY_L	Primitive: 2-to-1 Multiplexer for Carry Logic with Local Output		
MUXF5	Primitive: 2-to-1 Look-Up Table Multiplexer with General Output		
MUXF5_D	Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output		
MUXF5_L	Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output		
MUXF6	Primitive: 2-to-1 Look-Up Table Multiplexer with General Output		
MUXF6_D	Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output		
MUXF6_L	Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output		
MUXF7	Primitive: 2-to-1 Look-Up Table Multiplexer with General Output		
MUXF7_D	Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output		
MUXF7_L	Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output		
MUXF8	Primitive: 2-to-1 Look-Up Table Multiplexer with General Output		
MUXF8_D	Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output		
MUXF8_L	Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output		
XORCY	Primitive: XOR for Carry Logic with General Output		

Design Element	Description	
XORCY_D	Primitive: XOR for Carry Logic with Dual Output	
XORCY_L	Primitive: XOR for Carry Logic with Local Output	

About Design Elements

This section describes the design elements that can be used with this architecture. The design elements are organized alphabetically.

The following information is provided for each design element, where applicable:

- Name of element
- Brief description
- Schematic symbol (if any)
- Logic table (if any)
- Port descriptions
- Design Entry Method
- Available attributes (if any)
- Example instantiation code
- For more information

BSCAN_SPARTAN3

Primitive: Spartan-3 Register State Capture for Bitstream Readback

Introduction

This design element provides access to the BSCAN sites on a Spartan-3 device. It is used to create internal boundary scan chains. The 4-pin JTAG interface (TDI, TDO, TCK, and TMS) are dedicated pins in Spartan-3. To use normal JTAG for boundary scan purposes, just hook up the JTAG pins to the port and go. The pins on the BSCAN_SPARTAN3 symbol do not need to be connected, unless those special functions are needed to drive an internal scan chain.

A signal on the TDO1 input is passed to the external TDO output when the USER1 instruction is executed; the SEL1 output goes High to indicate that the USER1 instruction is active. The DRCK1 output provides USER1 access to the data register clock (generated by the TAP controller). The TDO2 and SEL2 pins perform a similar function for the USER2 instruction and the DRCK2 output provides USER2 access to the data register clock (generated by the TAP controller). The RESET, UPDATE, SHIFT, and CAPTURE pins represent the decoding of the corresponding state of the boundary scan internal state machine. The TDI pin provides access to the TDI signal of the JTAG port in order to shift data into an internal scan chain.

Note For specific information on boundary scan for an architecture, see The Programmable Logic Data Sheets

Design Entry Method

Instantiation	Recommended
Inference	No
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;

-- BSCAN_SPARTAN3: Boundary Scan primitive for connecting internal logic to
-- JTAG interface. Spartan-3
-- Xilinx HDL Libraries Guide, version 10.1.2

BSCAN_SPARTAN3_inst : BSCAN_SPARTAN3
port map (
CAPTURE => CAPTURE, -- CAPTURE output from TAP controller
DRCK1 => DRCK1, -- Data register output for USER1 functions
```



```
DRCK2 => DRCK2, -- Data register output for USER2 functions
RESET => RESET, -- Reset output from TAP controller
SEL1 => SEL1, -- USER1 active output
SEL2 => SEL2, -- USER2 active output
SHIFT => SHIFT, -- SHIFT output from TAP controller
TDI => TDI, -- TDI output from TAP controller
UPDATE => UPDATE, -- UPDATE output from TAP controller
TDO1 => TDO1, -- Data input for USER1 function
TDO2 => TDO2 -- Data input for USER2 function
);
-- End of BSCAN_SPARTAN3_inst instantiation
```

Verilog Instantiation Template

```
// BSCAN_SPARTAN3: Boundary Scan primitive for connecting internal logic to
// JTAG interface.
// Spartan-3/3E
// Xilinx HDL Libraries Guide, version 10.1.2

BSCAN_SPARTAN3 BSCAN_SPARTAN3_inst (
.CAPTURE(CAPTURE), // CAPTURE output from TAP controller
.DRCK1(DRCK1), // Data register output for USER1 functions
.DRCK2(DRCK2), // Data register output for USER2 functions
.RESET(RESET), // Reset output from TAP controller
.SEL1(SEL1), // USER1 active output
.SEL2(SEL2), // USER2 active output
.SHIFT(SHIFT), // SHIFT output from TAP controller
.TDI(TDI), // TDI output from TAP controller
.UPDATE(UPDATE), // UPDATE output from TAP controller
.TDO1(TDO1), // Data input for USER1 function
.TDO2(TDO2) // Data input for USER2 function
);

// End of BSCAN_SPARTAN3_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

BUFCF

Primitive: Fast Connect Buffer

```
BUFCF
```

Introduction

This design element is a single fast connect buffer used to connect the outputs of the LUTs and some dedicated logic directly to the input of another LUT. Using this buffer implies CLB packing. No more than four LUTs may be connected together as a group.

Design Entry Method

Instantiation	Recommended
Inference	No
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- BUFCF: Fast connect buffer used to connect the outputs of the LUTs
-- and some dedicated logic directly to the input of another LUT.
-- For use with all FPGAs.
-- Xilinx HDL Libraries Guide, version 10.1.2

BUFCF_inst: BUFCF (
port map (
0 => 0, -- Connect to the output of a LUT
I => I -- Connect to the input of a LUT
);
-- End of BUFCF_inst instantiation
```

Verilog Instantiation Template

```
// BUFCF: Fast connect buffer used to connect the outputs of the LUTS
// and some dedicated logic directly to the input of another LUT.
// For use with all FPGAs.
// Xilinx HDL Libraries Guide, version 10.1.2

BUFCF BUFCF_inst (
.0(0), // Connect to the output of a LUT
.I(I) // Connect to the input of a LUT
);

// End of BUFCF_inst instantiation
```


- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

BUFG

Primitive: Global Clock Buffer

```
BUFG
```

Introduction

This design element is a high-fanout buffer that connects signals to the global routing resources for low skew distribution of the signal. BUFGs are typically used on clock nets as well other high fanout nets like sets/resets and clock enables.

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

Verilog Instantiation Template

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

BUFGCE

Primitive: Global Clock Buffer with Clock Enable

Introduction

This design element is a global clock buffer with a single gated input. Its O output is "0" when clock enable (CE) is Low (inactive). When clock enable (CE) is High, the I input is transferred to the O output.

Logic Table

Inputs		Outputs
I	CE	0
X	0	0
I	1	I

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;

-- BUFGCE: Global Clock Buffer with Clock Enable (active high)
-- Virtex-II/II-Pro/4/5, Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2

BUFGCE_inst : BUFGCE
port map (
0 => 0,  -- Clock buffer ouptput
CE => CE, -- Clock enable input
I => I  -- Clock buffer input
);

-- End of BUFGCE_inst instantiation
```


Verilog Instantiation Template

```
// BUFGCE: Global Clock Buffer with Clock Enable (active high)
// Virtex-II/II-Pro/4/5, Spartan-3/3E/3A
// Xilinx HDL Libraries Guide, version 10.1.2

BUFGCE BUFGCE_inst (
.0(0), // Clock buffer output
.CE(CE), // Clock enable input
.I(I) // Clock buffer input
);

// End of BUFGCE_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

BUFGCE_1

Primitive: Global Clock Buffer with Clock Enable and Output State 1

Introduction

This design element is a multiplexed global clock buffer with a single gated input. Its O output is High (1) when clock enable (CE) is Low (inactive). When clock enable (CE) is High, the I input is transferred to the O output.

Logic Table

Inputs		Outputs
I	CE	0
X	0	1
I	1	I

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

Verilog Instantiation Template

```
// BUFGCE_1: Global Clock Buffer with Clock Enable (active low)
// Virtex-II/II-Pro, Spartan-3/3E/3A
// Xilinx HDL Libraries Guide, version 10.1.2

BUFGCE_1 BUFGCE_1_inst (
.0(0), // Clock buffer output
.CE(CE), // Clock enable input
.I(I) // Clock buffer input
);

// End of BUFGCE_1_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

BUFGMUX

Primitive: Global Clock MUX Buffer

Introduction

BUFGMUX is a multiplexed global clock buffer, based off of the BUFGCTRL, that can select between two input clocks: I0 and I1. When the select input (S) is Low, the signal on I0 is selected for output (O). When the select input (S) is High, the signal on I1 is selected for output.

BUFGMUX and BUFGMUX_1 are distinguished by the state the output assumes when that output switches between clocks in response to a change in its select input. BUGFMUX assumes output state 0 and BUFGMUX_1 assumes output state 1.

Note BUFGMUX guarantees that when S is toggled, the state of the output remains in the inactive state until the next active clock edge (either I0 or I1) occurs.

Logic Table

Inputs			Outputs
10	I1	S	0
10	X	0	I0
X	I1	1	I1
X	X	\uparrow	0
X	X	\downarrow	0

Design Entry Method

Instantiation	Yes	
Inference	Recommended	
Coregen and wizards	No	
Macro support	No	

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;


```
I0 => I0, -- Clock0 input
I1 => I1, -- Clock1 input
S => S -- Clock select input
);
-- End of BUFGMUX_inst instantiation
```

Verilog Instantiation Template

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

BUFGMUX_1

Primitive: Global Clock MUX Buffer with Output State 1

Introduction

This design element is a multiplexed global clock buffer that can select between two input clocks: I0 and I1. When the select input (S) is Low, the signal on I0 is selected for output (0). When the select input (S) is High, the signal on I1 is selected for output.

This design element is distinguished from BUFGMUX by the state the output assumes when that output switches between clocks in response to a change in its select input. BUFGMUX assumes output state 0 and BUFGMUX_1 assumes output state 1.

Logic Table

Inputs			Outputs
10	I1	S	0
10	X	0	10
X	I1	1	I1
X	X	\uparrow	1
X	X	\downarrow	1

Design Entry Method

Instantiation	Yes	
Inference	Recommended	
Coregen and wizards	No	
Macro support	No	

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;


```
);
-- End of BUFGMUX_1_inst instantiation
```

Verilog Instantiation Template

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

CAPTURE_SPARTAN3

Primitive: Spartan-3 Register State Capture for Bitstream Readback

Introduction

This element provides user control and synchronization over when and how the capture register (flip-flop and latch) information task is requested. The readback function is provided through dedicated configuration port instructions. However, without this element, the readback data is synchronized to the configuration clock. Only register (flip-flop and latch) states can be captured. Although LUT RAM, SRL, and block RAM states are readback, they cannot be captured.

An asserted high CAP signal indicates that the registers in the device are to be captured at the next Low-to-High clock transition. By default, data is captured after every trigger when transition on CLK while CAP is asserted. To limit the readback operation to a single data capture, add the ONESHOT=TRUE attribute to this element.

Port Descriptions

Port	Direction	Width	Function
CAP	Input	1	Readback capture trigger
CLK	Input	1	Readback capture clock

Design Entry Method

Instantiation	Recommended	
Inference	No	
Coregen and wizards	No	
Macro support	No	

Connect all inputs and outputs to the design in order to ensure proper operation.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
ONESHOT	Boolean	TRUE, FALSE	TRUE	Specifies the procedure for performing single readback per CAP trigger.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- CAPTURE_SPARTAN3: Register State Capture for Bitstream Readback
-- Spartan-3
-- Xilinx HDL Libraries Guide, version 10.1.2

CAPTURE_SPARTAN3_inst : CAPTURE_SPARTAN3
port map (
CAP => CAP, -- Capture input
CLK => CLK -- Clock input
);
-- End of CAPTURE_SPARTAN3_inst instantiation
```

Verilog Instantiation Template

```
// CAPTURE_SPARTAN3: Register State Capture for Bitstream Readback
// Spartan-3/3E
// Xilinx HDL Libraries Guide, version 10.1.2

CAPTURE_SPARTAN3 CAPTURE_SPARTAN3_inst (
.CAP(CAP), // Capture input
.CLK(CLK) // Clock input
);

// End of CAPTURE_SPARTAN3_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

DCM

Primitive: Digital Clock Manager

Introduction

This design element is a digital clock manager that provides multiple functions. It can implement a clock delay locked loop, a digital frequency synthesizer, digital phase shifter, and a digital spread spectrum.

Note All unused inputs must be driven Low. The program will automatically tie the inputs Low if they are unused.

Clock Delay Locked Loop (DLL)

DCM includes a clock delay locked loop used to minimize clock skew for Spartan-3, Virtex-II, Virtex-II Pro, and Virtex-II Pro X devices. DCM synchronizes the clock signal at the feedback clock input (CLKFB) to the clock signal at the input clock (CLKIN). The locked output (LOCKED) is high when the two signals are in phase. The signals are considered to be in phase when their rising edges are within a specified time (ps) of each other.

DCM supports two frequency modes for the DLL. By default, the DLL_FREQUENCY_MODE attribute is set to Low and the frequency of the clock signal at the CLKIN input must be in the Low (DLL_CLKIN_MIN_LF to DLL_CLKIN_MAX_LF) frequency range (MHz). In Low frequency mode, the CLK0, CLK90, CLK180, CLK270, CLK2X, CLKDV, and CLK2X180 outputs are available.

For up to and including Virtex-II Pro, you get only CLK0, CLK180, CLKDV, CLKFX and CLKFX180 in the HF mode. In Virtex-4, you get all outputs.

When the DLL_FREQUENCY_MODE attribute is set to High, the frequency of the clock signal at the CLKIN input must be in the High (DLL_CLKIN_MIN_HF to DLL_CLKIN_MAX_HF) frequency range (MHz). In High frequency mode, only the CLK0, CLK180, and CLKDV outputs are available.

On-chip synchronization is achieved by connecting the CLKFB input to a point on the global clock network driven by a BUFG, a global clock buffer. The BUFG connected to the CLKFB input of the DCM must be sourced from either the CLK0 or CLK2X outputs of the same DCM. The CLKIN input should be connected to the output of an IBUFG, with the IBUFG input connected to a pad driven by the system clock. Off-chip synchronization is achieved by connecting the CLKFB input to the output of an IBUFG, with the IBUFG input connected to a pad. Either the CLK0 or CLK2X output can be used but not both. The CLK0 or CLK2X must be connected to the input of OBUF, an output buffer. The CLK_FEEDBACK attribute controls whether the CLK0 output, the default, or the CLK2X output is the source of the CLKFB input.

The duty cycle of the CLK0 output is 50-50 unless the DUTY_CYCLE_CORRECTION attribute is set to FALSE, in which case the duty cycle is the same as that of the CLKIN input. The duty cycle of the phase shifted outputs (CLK90, CLK180, and CLK270) is the same as that of the CLK0 output. The duty cycle of the CLK2X, CLK2X180, and CLKDV outputs is 50-50 unless CLKDV_DIVIDE is a non-integer and the DLL_FREQUENCY_MODE is High (see CLKDV_DIVIDE, in the Constraints Guide for details). The frequency of the CLKDV output is determined by the value assigned to the CLKDV_DIVIDE attribute

DCM Clock Delay Lock Loop Outputs

Output	Description		
CLK0	Clock at 1x CLKIN frequency		
CLK180	Clock at 1x CLK0 frequency, shifted 1800 with regards to CLK0		
CLK270*	Clock at 1x CLK0 frequency, shifted 2700 with regards to CLK0		
CLK2X*	Clock at 2x CLK0 frequency, in phase with CLK0		
CLK2X180*	Clock at 2x CLK0 frequency shifted 1800 with regards to CLK2X		
CLK90*	Clock at 1x CLK0 frequency, shifted 90o with regards to CLK0		
CLKDV	Clock at (1/n) x CLK0 frequency, where n=CLKDV_DIVIDE value. CLKDV is in phase with CLK0.		
LOCKED	All enabled DCM features locked.		
* The CLK90, CLK270, CLK2X, and CLK2X180 outputs are not available if the DLL_FREQUENCY_MODE is set to High.			

Digital Frequency Synthesizer (DFS)

The CLKFX and CLKFX180 outputs in conjunction with the CLKFX_MULTIPLY and CLKFX_DIVIDE attributes provide a frequency synthesizer that can be any multiple or division of CLKIN. CLKFX and CLKIN are in phase every CLKFX_MULTIPLY cycles of CLKFX and every CLKFX_DIVIDE cycles of CLKIN when a feedback is provided to the CLKFB input of the DLL. The frequency of CLKFX is defined by the following equation. FrequencyCLKFX=(CLKFX_MULTIPLY_value/CLKFX_DIVIDE_value) * FrequencyCLKIN

Both the CLKFX or CLKFX180 output can be used simultaneously. CLKFX180 is 1x the CLKFX frequency, shifted 1800 with regards to CLKFX. CLKFX and CLKFX180 always have a 50/50 duty cycle. The DFS_FREQUENCY_MODE attribute specifies the allowable input clock and output clock frequency ranges. The CLK_FEEDBACK attribute set to NONE will cause the DCM to be in the Digital Frequency Synthesizer mode. The CLKFX and CLKFX180 will be generated without phase correction with respect to CLKIN. The DSSEN input pin for the DCM is no longer recommended for use and should remain unconnected in the design.

Digital Phase Shifter (DPS)

The phase shift (skew) between the rising edges of CLKIN and CLKFB may be configured as a fraction of the CLKIN period with the PHASE_SHIFT attribute. This allows the phase shift to remain constant as ambient conditions change. The CLKOUT_PHASE_SHIFT attribute controls the use of the PHASE_SHIFT value. By default, the CLKOUT_PHASE_SHIFT attribute is set to NONE and the PHASE_SHIFT attribute has no effect.

By creating skew between CLKIN and CLKFB, all DCM output clocks are phase shifted by the amount of the skew. When the CLKOUT_PHASE_SHIFT attribute is set to FIXED, the skew set by the PHASE_SHIFT attribute is used at configuration for the rising edges of CLKIN and CLKFB. The skew remains constant. When the CLKOUT_PHASE_SHIFT attribute is set to VARIABLE, the skew set at configuration is used as a starting point and the skew value can be changed dynamically during operation using the PS* signals. This digital phase shifter feature is controlled by a synchronous interface. The inputs PSEN (phase shift enable) and PSINCDEC (phase shift increment/decrement) are set up to the rising edge of PSCLK (phase shift clock). The PSDONE (phase shift done) output is clocked with the rising edge of PSCLK (the phase shift clock). PSDONE must be connected to implement the complete synchronous interface. The rising-edge skew between CLKIN and CLKFB may be dynamically adjusted after the LOCKED output goes High. The PHASE_SHIFT attribute value specifies the initial phase shift amount when the device is configured. Then the PHASE_SHIFT value is changed one unit when PSEN is activated for one period of PSCLK. The PHASE_SHIFT value is incremented when PSINCDEC is High and decremented when PSINCDEC is Low during the period that PSEN is High.

When the DCM completes an increment or decrement operation, the PSDONE output goes High for a single PSCLK cycle to indicate the operation is complete. At this point the next change may be made. When RST (reset) is High, the PHASE_SHIFT attribute value is reset to the skew value set at configuration. If CLKOUT_PHASE_SHIFT is FIXED or NONE, the PSEN, PSINCDEC, and PSCLK inputs must be tied to GND. The program will automatically tie the inputs to GND if they are not connected by the user.

Additional Status Bits

The STATUS output bits return the following information:

Bit	Description	
0	Phase Shift Overflow*	
1 = PHASE_SHIFT > 255		
1	DLL CLKIN stopped**	
1 = CLKIN stopped toggling		
2 DLL CLKFX stopped		
1 = CLKFX stopped toggling		
3	No	
4	No	
5 No		
6	No	
7	No	
* Phase Shift Overflow will also go high if the end of the phase shift delay line is reached (see the product data sheet for		

the most current value of the maximum shifting delay).

LOCKED

When LOCKED is high, all enabled signals are locked.

RST

The master reset input (RST) resets DCM to its initial (power-on) state. The signal at the RST input is asynchronous and must be held High for 2ns.

Design Entry Method

Instantiation	Yes	
Inference	No	
Coregen and wizards	Recommended	
Macro support	No	

Available Attributes

Attribute	Type	Allowed Values	Default	Description
SIM_MODE	String	"SAFE" or "FAST"	"SAFE"	This is a simulation only attribute. It will direct the simulation model to run in performance-oriented mode when set to "FAST." Please see the <i>Synthesis and Simulation Design Guide</i> for more information.

^{**} If only the DFS outputs are used (CLKFX & CLKFX180), this status bit will not go high if CLKIN stops.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- DCM: Digital Clock Manager Circuit
-- Virtex-II/II-Pro and Spartan-3
-- Xilinx HDL Libraries Guide, version 10.1.2
DCM inst : DCM
generic map (
CLKDV_DIVIDE => 2.0, -- Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5
        7.0, 7.5, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0 or 16.0
CLKFX_DIVIDE => 1, -- Can be any interger from 1 to 32 CLKFX_MULTIPLY => 4, -- Can be any integer from 1 to 32
CLKIN_DIVIDE_BY_2 => FALSE, -- TRUE/FALSE to enable CLKIN divide by two feature
CLKIN_PERIOD => 0.0,
                                 -- Specify period of input clock
CLKOUT_PHASE_SHIFT => "NONE", -- Specify phase shift of NONE, FIXED or VARIABLE CLK_FEEDBACK => "1X", -- Specify clock feedback of NONE, 1X or 2X
DESKEW_ADJUST => "SYSTEM_SYNCHRONOUS", -- SOURCE_SYNCHRONOUS, SYSTEM_SYNCHRONOUS or
       an integer from 0 to 15
DFS_FREQUENCY_MODE => "LOW",
                                    -- HIGH or LOW frequency mode for frequency synthesis
-- HIGH or LOW frequency mode for DLL
DLL_FREQUENCY_MODE => "LOW",
DUTY_CYCLE_CORRECTION => TRUE, -- Duty cycle correction, TRUE or FALSE
FACTORY_JF => X"C080", -- FACTORY JF Values

-- FACTORY JF values

-- Amount of fixed phase shift from -255 to 255
SIM_MODE => "SAFE", -- Simulation: "SAFE" vs "FAST", see "Synthesis and Simulation
-- Design Guide" for details
STARTUP_WAIT => FALSE) -- Delay configuration DONE until DCM LOCK, TRUE/FALSE
port map (
CLK0 => CLK0,
                    -- 0 degree DCM CLK ouptput
CLK180 => CLK180, -- 180 degree DCM CLK output
CLK270 => CLK270, -- 270 degree DCM CLK output
CLK2X => CLK2X,
                    -- 2X DCM CLK output
CLK2X180 => CLK2X180, -- 2X, 180 degree DCM CLK out
CLK90 => CLK90, -- 90 degree DCM CLK output
                   -- Divided DCM CLK out (CLKDV_DIVIDE)
-- DCM CLK synthesis out (M/D)
CLKDV => CLKDV,
CLKFX => CLKFX,
CLKFX180 => CLKFX180, -- 180 degree CLK synthesis out
LOCKED => LOCKED, -- DCM LOCK status output
PSDONE => PSDONE, -- Dynamic phase adjust done output
STATUS => STATUS, -- 8-bit DCM status bits output
CLKFB => CLKFB, -- DCM clock feedback
CLKIN => CLKIN, -- Clock input (from IBUFG, BUFG or DCM)
PSCLK => PSCLK, -- Dynamic phase adjust clock input PSEN => PSEN, -- Dynamic phase adjust enable input
PSINCDEC => PSINCDEC, -- Dynamic phase adjust increment/decrement
                   -- DCM asynchronous reset input
RST => RST
-- End of DCM_inst instantiation
```

Verilog Instantiation Template

```
// DCM: Digital Clock Manager Circuit
// Virtex-II/II-Pro and Spartan-3
// Xilinx HDL Libraries Guide, version 10.1.2

DCM #(
.SIM_MODE("SAFE"), // Simulation: "SAFE" vs. "FAST", see "Synthesis and Simulation Design Guide" for details
.CLKDV_DIVIDE(2.0), // Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5
// 7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0
.CLKFX_DIVIDE(1), // Can be any integer from 1 to 32
.CLKFX_MULTIPLY(4), // Can be any integer from 2 to 32
```



```
.CLKIN_DIVIDE_BY_2("FALSE"), // TRUE/FALSE to enable CLKIN divide by two feature
.CLKIN_PERIOD(0.0), // Specify period of input clock
.CLKOUT_PHASE_SHIFT("NONE"), // Specify phase shift of NONE, FIXED or VARIABLE
.CLK_FEEDBACK("1X"), // Specify clock feedback of NONE, 1X or 2X
.DESKEW_ADJUST("SYSTEM_SYNCHRONOUS"), // SOURCE_SYNCHRONOUS, SYSTEM_SYNCHRONOUS or
   an integer from 0 to 15
.DFS_FREQUENCY_MODE("LOW"), // HIGH or LOW frequency mode for frequency synthesis .DLL_FREQUENCY_MODE("LOW"), // HIGH or LOW frequency mode for DLL
.DUTY_CYCLE_CORRECTION("TRUE"), // Duty cycle correction, TRUE or FALSE
.DUII_CICED_COLUMN
FACTORY_JF(16'hC080), // FACTORY JF values
PHASE SHIFT(0), // Amount of fixed phase shift from -255 to 255
.STARTUP_WAIT("FALSE") // Delay configuration DONE until DCM LOCK, TRUE/FALSE
) DCM_inst (
.CLK0(CLK0),
                  // 0 degree DCM CLK output
.CLK180(CLK180), // 180 degree DCM CLK output
.CLK270(CLK270), // 270 degree DCM CLK output .CLK2X(CLK2X), // 2X DCM CLK output
.CLK2X180(CLK2X180), // 2X, 180 degree DCM CLK out
.CLK90(CLK90), // 90 degree DCM CLK output
.CLKDV(CLKDV), // Divided DCM CLK out (CLKDV_DIVIDE)
.CLKFX(CLKFX),
                  // DCM CLK synthesis out (M/D)
.CLKFX180(CLKFX180), // 180 degree CLK synthesis out
.LOCKED(LOCKED), // DCM LOCK status output
.PSDONE(PSDONE), // Dynamic phase adjust done output
.STATUS(STATUS), // 8-bit DCM status bits output
// Clock input (from IBUFG, BUFG or DCM)
.CLKIN(CLKIN),
.PSCLK(PSCLK), // Dynamic phase adjust clock input
.PSEN(PSEN),
                  // Dynamic phase adjust enable input
.PSINCDEC(PSINCDEC), // Dynamic phase adjust increment/decrement
                  // DCM asynchronous reset input
.RST(RST)
// End of DCM_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

FDCE

Primitive: D Flip-Flop with Clock Enable and Asynchronous Clear

Introduction

This design element is a single D-type flip-flop with clock enable and asynchronous clear. When clock enable (CE) is High and asynchronous clear (CLR) is Low, the data on the data input (D) of this design element is transferred to the corresponding data output (Q) during the Low-to-High clock (C) transition. When CLR is High, it overrides all other inputs and resets the data output (Q) Low. When CE is Low, clock transitions are ignored.

For XC9500XL and XC9500XV devices, logic connected to the clock enable (CE) input may be implemented using the clock enable product term (p-term) in the macrocell, provided the logic can be completely implemented using the single p-term available for clock enable without requiring feedback from another macrocell. Only FDCE and FDPE flip-flops may take advantage of the clock-enable p-term.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
CLR	CE	D	С	Q
1	Χ	X	Χ	0
0	0	X	Χ	No Change
0	1	D	<u></u>	D

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary	0,1	0	Sets the initial value of Q output after configuration.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- FDCE: Single Data Rate D Flip-Flop with Asynchronous Clear and
        Clock Enable (posedge clk). All families.
-- Xilinx HDL Libraries Guide, version 10.1.2
FDCE_inst : FDCE
generic map (
INIT => '0') -- Initial value of register ('0' or '1')
port map (
Q => Q,
            -- Data output
C => C,
            -- Clock input
CE => CE, -- Clock enable input
CLR => CLR, -- Asynchronous clear input
D => D
            -- Data input
);
-- End of FDCE_inst instantiation
```

Verilog Instantiation Template

```
// FDCE: Single Data Rate D Flip-Flop with Asynchronous Clear and
        Clock Enable (posedge clk).
//
        All families.
// Xilinx HDL Libraries Guide, version 10.1.2
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDCE_inst (
           // Data output
.Q(Q),
           // Clock input
.C(C),
.CE(CE),
           // Clock enable input
.CLR(CLR), // Asynchronous clear input
           // Data input
.D(D)
);
// End of FDCE_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

FDCE_1

Primitive: D Flip-Flop with Negative-Edge Clock, Clock Enable, and Asynchronous Clear

Introduction

This design element is a single D-type flip-flop with data (D), clock enable (CE), asynchronous clear (CLR) inputs, and data output (Q). The asynchronous CLR input, when High, overrides all other inputs and sets the Q output Low. The data on the (D) input is loaded into the flip-flop when CLR is Low and CE is High on the High-to-Low clock (C) transition. When CE is Low, the clock transitions are ignored.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs			
CLR	CE	D	С	Q
1	X	X	X	0
0	0	X	?	No Change
0	1	1	?	1
0	1	0	?	0

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary	0,1	0	Sets the initial value of Q output after configuration.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- FDCE_1: Single Data Rate D Flip-Flop with Asynchronous Clear and
          Clock Enable (negedge clock). All families.
-- Xilinx HDL Libraries Guide, version 10.1.2
FDCE_1_inst : FDCE_1
generic map (
INIT => '0') -- Initial value of register ('0' or '1')
port map (
Q => Q,
            -- Data output
C => C,
            -- Clock input
CE => CE, -- Clock enable input
CLR => CLR, -- Asynchronous clear input
D => D
            -- Data input
);
-- End of FDCE_1_inst instantiation
```

Verilog Instantiation Template

```
// FDCE_1: Single Data Rate D Flip-Flop with Asynchronous Clear and
          Clock Enable (negedge clock).
//
          All families.
// Xilinx HDL Libraries Guide, version 10.1.2
FDCE 1 #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDCE_1_inst (
         // Data output
.Q(Q),
           // Clock input
.C(C),
.CE(CE),
           // Clock enable input
.CLR(CLR), // Asynchronous clear input
           // Data input
.D(D)
);
// End of FDCE_1_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

FDCPE

Primitive: D Flip-Flop with Clock Enable and Asynchronous Preset and Clear

Introduction

This design element is a single D-type flip-flop with data (D), clock enable (CE), asynchronous preset (PRE), and asynchronous clear (CLR) inputs. The asynchronous active high PRE sets the Q output High; that active high CLR resets the output Low and has precedence over the PRE input. Data on the D input is loaded into the flip-flop when PRE and CLR are Low and CE is High on the Low-to-High clock (C) transition. When CE is Low, the clock transitions are ignored and the previous value is retained. The FDCPE is generally implemented as a slice or IOB register within the device.

For FPGA devices, upon power-up, the initial value of this component is specified by the INIT attribute. If a subsequent GSR (Global Set/Reset) is asserted, the flop is asynchronously set to the INIT value.

Note While this device supports the use of asynchronous set and reset, it is not generally recommended to be used for in most cases. Use of asynchronous signals pose timing issues within the design that are difficult to detect and control and also have an adverse affect on logic optimization causing a larger design that can consume more power than if a synchronous set or reset is used.

Logic Table

Inputs					Outputs
CLR	PRE	CE	D	С	Q
1	X	Χ	X	Χ	0
0	1	Χ	X	Χ	1
0	0	0	X	X	No Change
0	0	1	D	\uparrow	D

Port Descriptions

Port	Direction	Width	Function
Q	Output	1	Data output
С	Input	1	Clock input
CE	Input	1	Clock enable input
CLR	Input	1	Asynchronous clear input

Port	Direction	Width	Function
D	Input	1	Data input
PRE	Input	1	Asynchronous set input

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary	0,1	0	Sets the initial value of Q output after configuration and on GSR.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

Verilog Instantiation Template

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

FDCPE_1

Primitive: D Flip-Flop with Negative-Edge Clock, Clock Enable, and Asynchronous Preset and Clear

Introduction

FDCPE_1 is a single D-type flip-flop with data (D), clock enable (CE), asynchronous preset (PRE), and asynchronous clear (CLR) inputs and data output (Q). The asynchronous PRE, when High, sets the (Q) output High; CLR, when High, resets the output Low. Data on the (D) input is loaded into the flip-flop when PRE and CLR are Low and CE is High on the High-to-Low clock (C) transition. When CE is Low, the clock transitions are ignored.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs				
CLR	PRE	CE	D	С	Q
1	X	Χ	Χ	Χ	0
0	1	Χ	Χ	Χ	1
0	0	0	X	X	No Change
0	0	1	D	\downarrow	D

Port Descriptions

Port	Direction	Width	Function
Q	Output	1	Data output
С	Input	1	Clock input
CE	Input	1	Clock enable input
CLR	Input	1	Asynchronous clear input
D	Input	1	Data input
PRE	Input	1	Asynchronous set input

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary	0,1	0	Sets the initial value of Q output after configuration.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- FDCPE_1: Single Data Rate D Flip-Flop with Asynchronous Clear, Set and
            Clock Enable (negedge clock). All families.
-- Xilinx HDL Libraries Guide, version 10.1.2
FDCPE_1_inst : FDCPE_1
generic map (
INIT => '0') -- Initial value of register ('0' or '1')
port map (
Q => Q,
C => C,
             -- Data output
C => C, -- Clock input
CE => CE, -- Clock enable input
CLR => CLR, -- Asynchronous clear input
D \Rightarrow D,
             -- Data input
PRE => PRE -- Asynchronous set input
-- End of FDCPE_1_inst instantiation
```

Verilog Instantiation Template

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

FDRSE

Primitive: D Flip-Flop with Synchronous Reset and Set and Clock Enable

Introduction

FDRSE is a single D-type flip-flop with synchronous reset (R), synchronous set (S), clock enable (CE) inputs. The reset (R) input, when High, overrides all other inputs and resets the Q output Low during the Low-to-High clock transition. (Reset has precedence over Set.) When the set (S) input is High and R is Low, the flip-flop is set, output High, during the Low-to-High clock (C) transition. Data on the D input is loaded into the flip-flop when R and S are Low and CE is High during the Low-to-High clock transition.

Upon power-up, the initial value of this component is specified by the INIT attribute. If a subsequent GSR (Global Set/Reset) is asserted, the flop is asynchronously set to the INIT value.

Logic Table

Inputs	Outputs				
R	S	CE	D	С	Q
1	Х	X	X	\uparrow	0
0	1	X	X	\uparrow	1
0	0	0	Χ	Χ	No Change
0	0	1	1	\uparrow	1
0	0	1	0	\uparrow	0

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary	0 or 1	0	Sets the initial value of Q output after configuration and on GSR.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- FDRSE: Single Data Rate D Flip-Flop with Synchronous Clear, Set and
          Clock Enable (posedge clk). All families.
-- Xilinx HDL Libraries Guide, version 10.1.2
FDRSE_inst : FDRSE
generic map (
INIT => '0') -- Initial value of register ('0' or '1')
port map (
Q => Q,
             -- Data output
C => C,
            -- Clock input
CE => CE,
            -- Clock enable input
D \Rightarrow D,
            -- Data input
R => R,
            -- Synchronous reset input
             -- Synchronous set input
S => S
);
-- End of FDRSE_inst instantiation
```

Verilog Instantiation Template

```
// FDRSE: Single Data Rate D Flip-Flop with Synchronous Clear, Set and
          Clock Enable (posedge clk).
//
         All families.
// Xilinx HDL Libraries Guide, version 10.1.2
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRSE_inst (
           // Data output
.Q(Q),
.C(C),
           // Clock input
.CE(CE),
           // Clock enable input
           // Data input
.D(D),
.R(R),
           // Synchronous reset input
.S(S)
           // Synchronous set input
// End of FDRSE_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

FDRSE_1

Primitive: D Flip-Flop with Negative-Clock Edge, Synchronous Reset and Set, and Clock Enable

Introduction

FDRSE_1 is a single D-type flip-flop with synchronous reset (R), synchronous set (S), and clock enable (CE) inputs and data output (Q). The reset (R) input, when High, overrides all other inputs and resets the (Q) output Low during the High-to-Low clock transition. (Reset has precedence over Set.) When the set (S) input is High and R is Low, the flip-flop is set, output High, during the High-to-Low clock (C) transition. Data on the (D) input is loaded into the flip-flop when (R) and (S) are Low and (CE) is High during the High-to-Low clock transition.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs	Outputs				
R	S	CE	D	С	Q
1	X	X	X	\downarrow	0
0	1	X	X	\	1
0	0	0	X	X	No Change
0	0	1	D	\downarrow	D

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	Binary	0 or 1	0	Sets the initial value of Q output after configuration and on GSR.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- FDRSE_1: Single Data Rate D Flip-Flop with Synchronous Clear, Set and
            Clock Enable (negedge clock). All families.
-- Xilinx HDL Libraries Guide, version 10.1.2
FDRSE_1_inst : FDRSE_1
generic map (
INIT => '0') -- Initial value of register ('0' or '1')
port map (
Q => Q,
             -- Data output
C => C,
             -- Clock input
            -- Clock enable input
CE => CE,
D \Rightarrow D,
            -- Data input
R \Rightarrow R,
             -- Synchronous reset input
S => S
             -- Synchronous set input
);
-- End of FDRSE_1_inst instantiation
```

Verilog Instantiation Template

```
// FDRSE_1: Single Data Rate D Flip-Flop with Synchronous Clear, Set and
           Clock Enable (negedge clock).
            All families.
// Xilinx HDL Libraries Guide, version 10.1.2
FDRSE 1 #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDRSE_1_inst (
        // Data output
// Clock input
.Q(Q),
.C(C),
.CE(CE),
         // Clock enable input
.D(D),
           // Data input
           // Synchronous reset input
.R(R),
.S(S)
           // Synchronous set input
// End of FDRSE_1_inst instantiation
```

For More Information

- See the *Spartan-3 User Guide*.
- See the Spartan-3 Data Sheets.

Libraries Guide

IBUF

Primitive: Input Buffer

IBUF O

Introduction

This design element is automatically inserted (inferred) by the synthesis tool to any signal directly connected to a top-level input or in-out port of the design. You should generally let the synthesis tool infer this buffer. However, it can be instantiated into the design if required. In order to do so, connect the input port (I) directly to the associated top-level input or in-out port, and connect the output port (O) to the logic sourced by that port. Modify any necessary generic maps (VHDL) or named parameter value assignment (Verilog) in order to change the default behavior of the component.

Port Descriptions

Port	Direction	Width	Function
О	Output	1	Buffer input
I	Input	1	Buffer output

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

In general, this element is inferred by the synthesis tool for any specified top-level input port to the design. It is generally not necessary to specify them in the source code however if desired, they be manually instantiated by either copying the instantiation code from the ISE Libraries Guide HDL Template and paste it into the top-level entity/module of your code. It is recommended to always put all I/O components on the top-level of the design to help facilitate hierarchical design methods. Connect the I port directly to the top-level input port of the design and the O port to the logic in which this input is to source. Specify the desired generic/defparam values in order to configure the proper behavior of the buffer.

Available Attributes

Attribute	Type	Allowed Values	Default	Description
IOSTANDARD	String	See Data Sheet	"DEFAULT"	Assigns an I/O standard to the element.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- IBUF: Single-ended Input Buffer
        All devices
-- Xilinx HDL Libraries Guide, version 10.1.2
IBUF_inst : IBUF
generic map (
IBUF_DELAY_VALUE => "0", -- Specify the amount of added input delay for buffer, "0"-"16" (Spartan-3E/3A only)
IFD_DELAY_VALUE => "AUTO", -- Specify the amount of added delay for input register, "AUTO", "0"-"8" (Spartan-3E/3A only)
IOSTANDARD => "DEFAULT")
port map (
            -- Buffer output
0 => 0,
I => I
            -- Buffer input (connect directly to top-level port)
);
-- End of IBUF_inst instantiation
```

Verilog Instantiation Template

```
// IBUF: Single-ended Input Buffer
        All devices
// Xilinx HDL Libraries Guide, version 10.1.2
IBUF #(
.IBUF_DELAY_VALUE("0"),
                         // Specify the amount of added input delay for
// the buffer, "0"-"16" (Spartan-3E/3A only)
.IFD_DELAY_VALUE("AUTO"), // Specify the amount of added delay for input
// register, "AUTO", "0"-"8" (Spartan-3E/3A only)
.IOSTANDARD("DEFAULT") // Specify the input I/O standard
)IBUF_inst (
.0(0),
          // Buffer output
.I(I)
          // Buffer input (connect directly to top-level port)
);
// End of IBUF_inst instantiation
```

Libraries Guide

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

IBUFDS

Primitive: Differential Signaling Input Buffer with Optional Delay

IBUFDS

Introduction

This design element is an input buffer that supports low-voltage, differential signaling. In IBUFDS, a design level interface signal is represented as two distinct ports (I and IB), one deemed the "master" and the other the "slave." The master and the slave are opposite phases of the same logical signal (for example, MYNET_P and MYNET_N). Optionally, a programmable differential termination feature is available to help improve signal integrity and reduce external components. Also available is a programmable delay to assist in the capturing of incoming data to the device.

Logic Table

Inputs		Outputs	
I	IB	0	
0	0	No Change	
0	1	0	
1	0	1	
1	1	No Change	

Port Descriptions

Port	Direction	Width	Function
0	Output	1	Diff_p Buffer Input
IB	Input	1	Diff_n Buffer Input
I	Input	1	Buffer Output

Design Entry Method

Instantiation	Recommended	
Inference	No	
Coregen and wizards	No	
Macro support	No	

Put all I/O components on the top-level of the design to help facilitate hierarchical design methods. Connect the I port directly to the top-level "master" input port of the design, the IB port to the top-level "slave" input port, and the O port to the logic in which this input is to source. Specify the desired generic/defparam values in order to configure the proper behavior of the buffer.

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
IOSTANDARD	String	See Data Sheet	"DEFAULT"	Assigns an I/O standard to the element.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- IBUFDS: Differential Input Buffer
           Virtex-II/II-Pro, Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2
IBUFDS_inst : IBUFDS
generic map (
CAPACITANCE => "DONT_CARE", -- "LOW", "NORMAL", "DONT_CARE" (Virtex-4 only)
DIFF_TERM => FALSE, -- Differential Termination (Virtex-4/5, Spartan-3E/3A)
IBUF_DELAY_VALUE => "0", -- Specify the amount of added input delay for buffer, "0"-"16" (Spartan-3E/3A only)
IFD_DELAY_VALUE => "AUTO", -- Specify the amount of added delay for input register, "AUTO", "0"-"8" (Spartan-3E/3A only)
IOSTANDARD => "DEFAULT")
port map (
0 => 0, -- Clock buffer output
I => I, -- Diff_p clock buffer input (connect directly to top-level port)
IB => IB -- Diff_n clock buffer input (connect directly to top-level port)
);
-- End of IBUFDS_inst instantiation
```

Verilog Instantiation Template

```
// IBUFDS: Differential Input Buffer
          Virtex-II/II-Pro/4/5, Spartan-3/3E/3A
// Xilinx HDL Libraries Guide, version 10.1.2
IBUFDS #(
.CAPACITANCE("DONT_CARE"), // "LOW", "NORMAL", "DONT_CARE" (Virtex-4 only)
                         // Differential Termination (Virtex-4/5, Spartan-3E/3A)
.DIFF TERM("FALSE"),
.IBUF_DELAY_VALUE("0"),
                          // Specify the amount of added input delay for
     the buffer, "0"-"16" (Spartan-3E only)
.IFD_DELAY_VALUE("AUTO"), // Specify the amount of added delay for input
     register, "AUTO", "0"-"8" (Spartan-3E/3A only)
.IOSTANDARD("DEFAULT")
                          // Specify the input I/O standard
) IBUFDS_inst (
.0(0), \ \ // Buffer output
        // Diff_p buffer input (connect directly to top-level port)
.IB(IB) // Diff_n buffer input (connect directly to top-level port)
// End of IBUFDS_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the Spartan-3 Data Sheets.

IBUFG

Primitive: Dedicated Input Clock Buffer

Introduction

The IBUFG is a dedicated input to the device which should be used to connect incoming clocks to the FPGA to the global clock routing resources. The IBUFG provides dedicated connections to the DCM_SP and BUFG providing the minimum amount of clock delay and jitter to the device. The IBUFG input can only be driven by the global clock pins. The IBUFG output can drive CLKIN of a DCM_SP, BUFG, or your choice of logic. The IBUFG can be routed to your choice of logic to allow the use of the dedicated clock pins for general logic.

Port Descriptions

Port	Direction	Width	Function	
0	Output	1	Clock Buffer input	
Ι	Input	1	Clock Buffer output	

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
IOSTANDARD	String	See Data Sheet	"DEFAULT"	Assigns an I/O standard to the element.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- IBUFG: Global Clock Buffer (sourced by an external pin)
-- Xilinx HDL Libraries Guide, version 10.1.2

IBUFG_inst : IBUFG
generic map (
IOSTANDARD => "DEFAULT")
port map (
0 => 0, -- Clock buffer output
I => I -- Clock buffer input (connect directly to top-level port)
```



```
);
-- End of IBUFG_inst instantiation
```

Verilog Instantiation Template

```
// IBUFG: Global Clock Buffer (sourced by an external pin)
// All FPGAs
// Xilinx HDL Libraries Guide, version 10.1.2

IBUFG #(
.IOSTANDARD("DEFAULT")
) IBUFG_inst (
.O(O), // Clock buffer output
.I(I) // Clock buffer input (connect directly to top-level port)
);

// End of IBUFG_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

IBUFGDS

Primitive: Differential Signaling Dedicated Input Clock Buffer and Optional Delay

Introduction

This design element is a dedicated differential signaling input buffer for connection to the clock buffer (BUFG) or DCM. In IBUFGDS, a design-level interface signal is represented as two distinct ports (I and IB), one deemed the "master" and the other the "slave." The master and the slave are opposite phases of the same logical signal (for example, MYNET_P and MYNET_N). Optionally, a programmable differential termination feature is available to help improve signal integrity and reduce external components. Also available is a programmable delay is to assist in the capturing of incoming data to the device.

Logic Table

Inputs		Outputs	
I	IB	0	
0	0	No Change	
0	1	0	
1	0	1	
1	1	No Change	

Port Descriptions

Port	Direction	Width	Function	
0	Output	1	Diff_p Clock Buffer Input	
IB	Input	1	Diff_n Clock Buffer Input	
Ι	Input	1	Clock Buffer output	

Design Entry Method

Instantiation	Recommended
Inference	No
Coregen and wizards	No
Macro support	No

Put all I/O components on the top-level of the design to help facilitate hierarchical design methods. Connect the I port directly to the top-level "master" input port of the design, the IB port to the top-level "slave" input port and the O port to a DCM, BUFG or logic in which this input is to source. Some synthesis tools infer the BUFG automatically if necessary, when connecting an IBUFG to the clock resources of the FPGA. Specify the desired generic/defparam values in order to configure the proper behavior of the buffer.

Available Attributes

Attribute	Type	Allowed Values Default		Description
IOSTANDARD	String	See Data Sheet	"DEFAULT"	Assigns an I/O standard to the element.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- IBUFGDS: Differential Global Clock Buffer (sourced by an external pin)
-- Virtex-II/II-Pro/4/5, Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2

IBUFGDS_inst : IBUFGDS
generic map (
IOSTANDARD => "DEFAULT")
port map (
0 => 0, -- Clock buffer output
I => I, -- Diff_p clock buffer input
IB => IB -- Diff_n clock buffer input
);
-- End of IBUFGDS_inst instantiation
```

Verilog Instantiation Template

```
// IBUFGDS: Differential Global Clock Buffer (sourced by an external pin)
// Virtex-II/II-Pro/4/5, Spartan-3/3E/3A
// Xilinx HDL Libraries Guide, version 10.1.2

IBUFGDS #(
   DIFF_TERM("FALSE"), // Differential Termination (Virtex-4/5, Spartan-3E/3A)
   IOSTANDARD("DEFAULT") // Specifies the I/O standard for this buffer
) IBUFGDS_inst (
   O(0), // Clock buffer output
   I(I), // Diff_p clock buffer input
   IB(IB) // Diff_n clock buffer input
);
// End of IBUFGDS_inst instantiation
```


- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

IFDDRCPE

Primitive: Dual Data Rate Input D Flip-Flop with Clock Enable and Asynchronous Preset and Clear

Introduction

This design element is a dual data rate (DDR) input D flip-flop with clock enable (CE) and asynchronous preset (PRE) and clear (CLR). It consists of one input buffer and two identical flip-flops (FDCPE).

When the asynchronous PRE is High and CLR is Low, both the Q0 and Q1 outputs are set High. When CLR is High, both outputs are reset Low. When PRE and CLR are Low and CE is High, data on the D input is loaded into the Q0 output on the Low-to High C0 clock transition, and into the Q1 output on the Low-to-High C1 clock transition.

The INIT attribute does not apply to this design elements components.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP *architecture* symbol.

Logic Table

Inputs						Outputs	
C0	C1	CE	D	CLR	PRE	Q0	Q1
Χ	X	Χ	Χ	1	0	0	0
X	X	X	Χ	0	1	1	1
Χ	X	X	Χ	1	1	0	0
X	X	0	Χ	0	0	No Change	No Change
↑	X	1	D	0	0	D	No Change
Χ	1	1	D	0	0	No Change	D

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- IFDDRCPE: Double Data Rate Input Register with Async. Clear, Async. Preset
             and Clock Enable. Virtex-II/II-Pro, Spartan-3
-- Xilinx HDL Libraries Guide, version 10.1.2
IFDDRCPE_inst : IFDDRCPE
port map (
Q0 \Rightarrow Q0,
             -- Posedge data output
Q1 \Rightarrow Q1,
            -- Negedge data output
C0 \Rightarrow C0,
            -- 0 degree clock input
C1 => C1,
            -- 180 degree clock input
CE => CE,
            -- Clock enable input
CLR => CLR, -- Asynchronous reset input
D => D,
             -- Data input (connect directly to top-level port)
PRE => PRE -- Asynchronous preset input
);
-- End of IFDDRCPE_inst instantiation
```

Verilog Instantiation Template

```
// IFDDRCPE: Double Data Rate Input Register with Async. Clear, Async. Preset
              and Clock Enable.
//
              Virtex-II/II-Pro, Spartan-3
// Xilinx HDL Libraries Guide, version 10.1.2
IFDDRCPE_inst (
.Q0(Q0), \hspace{0.1cm} // \hspace{0.1cm} \texttt{Posedge} \hspace{0.1cm} \texttt{data} \hspace{0.1cm} \texttt{output}
             // Negedge data output
.Q1(Q1),
           // 0 degree clock input
.C0(C0),
            // 180 degree clock input
.C1(C1),
             // Clock enable input
.CE(CE),
.CLR(CLR), // Asynchronous reset input
.D(D),
             // Data input (connect directly to top-level port)
.PRE(PRE)
            // Asynchronous preset input
);
// End of IFDDRCPE_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

IFDDRRSE

Primitive: Dual Data Rate Input D Flip-Flop with Synchronous Reset and Set and Clock Enable

Introduction

This design element is a dual data rate (DDR) input D flip-flop with synchronous reset (R), synchronous set (S), and clock enable (CE). It consists of one input buffer and two identical flip-flops (FDRSE).

For the C0 input and Q0 output, reset (R) has precedence. The R input, when High, resets the Q0 output Low during the Low-to-High C0 clock transition. When S is High and R is Low, the Q0 output is set High during the Low-to-High C0 clock transition. For the C1 input and Q1 output, set (S) has precedence. The R input, when High, resets the Q1 output Low during the Low-to-High C1 clock transition. When S is High and R is Low, the Q0 output is set to High during the Low-to-High C1 clock transition.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

The INIT attribute does not apply to this element.

Logic Table

Inputs	Inputs						
C0	C1	CE	D	R	S	Q0	Q1
↑	X	X	X	1	0	0	No Change
1	X	X	X	0	1	1	No Change
1	X	X	X	1	1	0	No Change
Χ	1	X	X	1	0	No Change	0
Χ	1	X	X	0	1	No Change	1
Χ	1	X	X	1	1	No Change	0
Х	Х	0	Х	0	0	No Change	No Change
\uparrow	X	1	D	0	0	D	No Change
Х	1	1	D	0	0	No Change	D

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration.

```
Library UNISIM;
use UNISIM.vcomponents.all;
-- IFDDRRSE: Double Data Rate Input Register with Sync. Clear, Sync. Preset
             and Clock Enable. Virtex-II/II-Pro, Spartan-3
-- Xilinx HDL Libraries Guide, version 10.1.2
IFDDRRSE inst : IFDDRRSE
port map (
Q0 \Rightarrow Q0,
             -- Posedge data output
Q1 => Q1,
            -- Negedge data output
C0 => C0,
            -- 0 degree clock input
C1 => C1,
            -- 180 degree clock input
CE => CE,
            -- Clock enable input
D => D,
            -- Data input (connect directly to top-level port)
R \Rightarrow R,
             -- Synchronous reset input
            -- Synchronous preset input
S => S
);
-- End of IFDDRRSE inst instantiation
```

Verilog Instantiation Template

```
// IFDDRRSE: Double Data Rate Input Register with Sync. Clear, Sync. Preset
            and Clock Enable.
            Virtex-II/II-Pro, Spartan-3
// Xilinx HDL Libraries Guide, version 10.1.2
IFDDRRSE IFDDRRSE_inst (
.Q0(Q0), // Posedge data output
.Q1(Q1),
           // Negedge data output
          // 0 degree clock input
.C0(C0),
.C1(C1),
           // 180 degree clock input
           // Clock enable input
.CE(CE),
.D(D),
           // Data input (connect directly to top-level port)
.R(R),
           // Synchronous reset input
.S(S)
           // Synchronous preset input
// End of IFDDRRSE_inst instantiation
```

For More Information

- See the *Spartan-3 User Guide*.
- See the Spartan-3 Data Sheets.

64 www.xilinx.com 10.1

IOBUF

Primitive: Bi-Directional Buffer

Introduction

The design element is a bidirectional single-ended I/O Buffer used to connect internal logic to an external bidirectional pin.

Logic Table

Inputs		Bidirectional	Outputs
T	I	IO	0
1	X	Z	X
0	1	1	1
0	0	0	0

Port Descriptions

Port	Direction	Width	Function
О	Output	1	Buffer output
IO	Inout	1	Buffer inout
I	Input	1	Buffer input
Т	Input	1	3-State enable input

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
DRIVE	Integer	2, 4, 6, 8, 12, 16, 24	12	Selects output drive strength (mA) for the SelectIO buffers that use the LVTTL, LVCMOS12, LVCMOS15, LVCMOS18, LVCMOS25, or LVCMOS33 interface I/O standard.
IOSTANDARD	String	See Data Sheet	"DEFAULT"	Assigns an I/O standard to the element.
SLEW	String	"SLOW", "FAST"	"SLOW"	Sets the output rise and fall time. See the Data Sheet for recommendations of the best setting for this attribute.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration.

```
Library UNISIM;
use UNISIM.vcomponents.all;
-- IOBUF: Single-ended Bi-directional Buffer
         All devices
-- Xilinx HDL Libraries Guide, version 10.1.2
IOBUF_inst : IOBUF
generic map (
DRIVE => 12,
IBUF_DELAY_VALUE => "0", -- Specify the amount of added input delay for buffer, "0"-"16" (Spartan-3E/3A only)
IFD_DELAY_VALUE => "AUTO", -- Specify the amount of added delay for input register, "AUTO", "0"-"8" (Spartan-3E/3A only)
IOSTANDARD => "DEFAULT",
SLEW => "SLOW")
port map (
0 => 0,
            -- Buffer output
IO => IO,
           -- Buffer inout port (connect directly to top-level port)
I => I,
           -- Buffer input
T => T
           -- 3-state enable input
);
-- End of IOBUF_inst instantiation
```

Verilog Instantiation Template

```
// IOBUF: Single-ended Bi-directional Buffer
          All devices
// Xilinx HDL Libraries Guide, version 10.1.2
IOBUF #(
.DRIVE(12), // Specify the output drive strength
.IBUF_DELAY_VALUE("0"), // Specify the amount of added input delay for the buffer, "0"-"16" (Spartan-3E only)
.IFD_DELAY_VALUE("AUTO"), // Specify the amount of added delay for input register, "AUTO", "0"-"8" (Spartan-3E only)
.IOSTANDARD("DEFAULT"), // Specify the I/O standard
.SLEW("SLOW") // Specify the output slew rate
) IOBUF_inst (
.0(0),
         // Buffer output
          // Buffer inout port (connect directly to top-level port)
.IO(IO),
.I(I),
           // Buffer input
.T(T)
           // 3-state enable input
// End of IOBUF_inst instantiation
```

Libraries Guide

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

IOBUFDS

Primitive: 3-State Differential Signaling I/O Buffer with Active Low Output Enable

Introduction

The design element is a bidirectional buffer that supports low-voltage, differential signaling. For the IOBUFDS, a design level interface signal is represented as two distinct ports (IO and IOB), one deemed the "master" and the other the "slave." The master and the slave are opposite phases of the same logical signal (for example, MYNET_P and MYNET_N). Optionally, a programmable differential termination feature is available to help improve signal integrity and reduce external components. Also available is a programmable delay is to assist in the capturing of incoming data to the device.

Logic Table

Inputs Bidirectional			Outputs	
I	T	IO	IOB	0
X	1	Z	Z	No Change
0	0	0	1	0
I	0	1	0	1

Port Descriptions

Port	Direction	Width	Function
О	Output	1	Buffer output
IO	Inout	1	Diff_p inout
IOB	Inout	1	Diff_n inout
Ι	Input	1	Buffer input
T	Input	1	3-state enable input

Design Entry Method

Instantiation	Recommended
Inference	No
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
IOSTANDARD	String	See Data Sheet	"DEFAULT"	Assigns an I/O standard to the element.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration.

```
Library UNISIM;
use UNISIM.vcomponents.all;
-- IOBUFDS: Differential Bi-directional Buffer
           Virtex-II/II-Pro, Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2
IOBUFDS_inst : IOBUFDS
IBUF_DELAY_VALUE => "0", -- Specify the amount of added input delay for buffer, "0"-"16" (Spartan-3E/3A only)
IFD_DELAY_VALUE => "AUTO", -- Specify the amount of added delay for input register, "AUTO", "0"-"8" (Spartan-3E/3A only)
IOSTANDARD => "DEFAULT")
port map (
           -- Buffer output
0 => 0.
IO => IO, -- Diff_p inout (connect directly to top-level port)
IOB => IOB, -- Diff_n inout (connect directly to top-level port)
I => I,
           -- Buffer input
            -- 3-state enable input
T => T
);
-- End of IOBUFDS_inst instantiation
```

Verilog Instantiation Template

```
// IOBUFDS: Differential Bi-directional Buffer
// Virtex-II/II-Pro/4/5, Spartan-3/3E/3A
// Xilinx HDL Libraries Guide, version 10.1.2
TOBUFDS #(
.IBUF_DELAY_VALUE("0"), // Specify the amount of added input delay for the buffer, "0"-"16" (Spartan-3E only)
.IFD_DELAY_VALUE("AUTO"), // Specify the amount of added delay for input register, "AUTO", "0"-"8" (Spartan-3E only)
.IOSTANDARD("DEFAULT") // Specify the I/O standard
) IOBUFDS_inst (
.O(O), // Buffer output
          // Diff_p inout (connect directly to top-level port)
.IO(IO),
.IOB(IOB), // Diff_n inout (connect directly to top-level port)
.I(I), // Buffer input
          // 3-state enable input
.T(T)
);
// End of IOBUFDS_inst instantiation
```

- See the Spartan-3 User Guide.
- See the Spartan-3 Data Sheets.

KEEPER

Primitive: KEEPER Symbol

Introduction

The design element is a weak keeper element that retains the value of the net connected to its bidirectional O pin. For example, if a logic 1 is being driven onto the net, KEEPER drives a weak/resistive 1 onto the net. If the net driver is then 3-stated, KEEPER continues to drive a weak/resistive 1 onto the net.

Port Descriptions

Name	Direction	Width	Function
О	Output	1-Bit	Keeper output

Design Entry Method

Instantiation	Yes	
Inference	Recommended	
Coregen and wizards	No	
Macro support	No	

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

use UNISIM.vcomponents.all;


```
-- KEEPER: I/O Buffer Weak Keeper
-- All FPGA, CoolRunner-II
-- Xilinx HDL Libraries Guide, version 10.1.2

KEEPER_inst : KEEPER
port map (
0 => 0 -- Keeper output (connect directly to top-level port)
);

-- End of KEEPER_inst instantiation
```

Verilog Instantiation Template

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

LDCPE

Primitive: Transparent Data Latch with Asynchronous Clear and Preset and Gate Enable

Introduction

This design element is a transparent data latch with data (D), asynchronous clear (CLR), asynchronous preset (PRE), and gate enable (GE). When (CLR) is High, it overrides the other inputs and resets the data (Q) output Low. When (PRE) is High and (CLR) is Low, it presets the data (Q) output High. Q reflects the data (D) input while the gate (G) input and gate enable (GE) are High and (CLR) and PRE are Low. The data on the (D) input during the High-to-Low gate transition is stored in the latch. The data on the Q output remains unchanged as long as (G) or (GE) remains Low.

This latch is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs					Outputs
CLR	PRE	GE	G	D	Q
1	X	X	X	X	0
0	1	X	X	X	1
0	0	0	Х	X	No Change
0	0	1	1	0	0
0	0	1	1	1	1
0	0	1	0	X	No Change
0	0	1	\downarrow	D	D

Port Descriptions

Port	Direction	Width	Function	
Q	Output	1	Data Output	
CLR	Input	1	Asynchronous clear/reset input	
D	Input	1	Data Input	
G	Input	1	Gate Input	
GE	Input	1	Gate Enable Input	
PRE	Input	1	Asynchronous preset/set input	

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Integer	0 or 1	0	Sets the initial value of Q output after configuration.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- LDCPE: Transparent latch with Asynchronous Reset, Preset and
          Gate Enable.
          All families.
-- Xilinx HDL Libraries Guide, version 10.1.2
LDCPE_inst : LDCPE
generic map (
INIT => '0') -- Initial value of latch ('0' or '1')
port map (
Q => Q,
            -- Data output
CLR => CLR, -- Asynchronous clear/reset input
D => D, -- Data input
G => G, -- Gate input
            -- Gate enable input
GE => GE,
PRE => PRE -- Asynchronous preset/set input
-- End of LDCPE_inst instantiation
```

Verilog Instantiation Template

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

LUT1

Primitive: 1-Bit Look-Up-Table with General Output

Introduction

This design element is a 1-bit look-up-tables (LUT) with general output (O).

An INIT attribute with an appropriate number of hexadecimal digits for the number of inputs must be attached to the LUT to specify its function. This element provides a look-up-table version of a buffer or inverter. These elements are the basic building blocks. Two LUTs are available in each CLB slice; four LUTs are available in each CLB. Multiple variants of LUTs accommodate additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs	Outputs
10	0
0	INIT[0]
1	INIT[1]
INIT = Binary number assigned to the INIT attribute	

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 2-Bit Value	All zeros	Initializes look-up tables.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration.

Verilog Instantiation Template

```
// LUT1: 1-input Look-Up Table with general output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide, version 10.1.2

LUT1 #(
.INIT(2'b00) // Specify LUT Contents
) LUT1_inst (
.0(0), // LUT general output
.IO(IO) // LUT input
);

// End of LUT1_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

LUT1_D

Primitive: 1-Bit Look-Up-Table with Dual Output

Introduction

This design element is a 1-bit look-up-table (LUT) with two functionally identical outputs, O and LO. It provides a look-up-table version of a buffer or inverter.

The O output is a general interconnect. The LO output is used to connect to another output within the same CLB slice and to the fast connect buffer. A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs	Outputs	
10	0	LO
0	INIT[0]	INIT[0]
1	INIT[1]	INIT[1]
INIT = Binary number assigned to the INIT attribute		

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 2-Bit Value	All zeros	Initializes look-up tables.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- LUT1_D: 1-input Look-Up Table with general and local outputs
-- Xilinx HDL Libraries Guide, version 10.1.2

LUT1_D_inst : LUT1_D
generic map (
INIT => "00")
port map (
LO => LO, -- LUT local output
0 => 0, -- LUT general output
10 => 10 -- LUT input
);
-- End of LUT1_D_inst instantiation
```

Verilog Instantiation Template

78

```
// LUT1_D: 1-input Look-Up Table with general and local outputs
// For use with all FPGAs.
// Xilinx HDL Libraries Guide, version 10.1.2

LUT1_D #(
.INIT(2'b00) // Specify LUT Contents
) LUT1_D_inst (
.LO(LO), // LUT local output
.O(O), // LUT general output
.IO(IO) // LUT input
);

// End of LUT1_D_inst instantiation
```

Libraries Guide

www.xilinx.com 10.1

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

LUT1_L

Primitive: 1-Bit Look-Up-Table with Local Output

Introduction

This design element is a 1- bit look-up-tables (LUTs) with a local output (LO) that is used to connect to another output within the same CLB slice and to the fast connect buffer. It provides a look-up-table version of a buffer or inverter.

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs	Outputs
10	LO
0	INIT[0]
1	INIT[1]
INIT = Binary number assigned to the INIT attribute	

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal Any 2-Bit Value		All zeros	Initializes look-up tables.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;

-- LUT1_L: 1-input Look-Up Table with local output

-- Xilinx HDL Libraries Guide, version 10.1.2

LUT1_L_inst : LUT1_L
generic map (
INIT => "00")
port map (
LO => LO, -- LUT local output
I0 => I0 -- LUT input
);

-- End of LUT1_L_inst instantiation
```

Verilog Instantiation Template

```
// LUT1_L: 1-input Look-Up Table with local output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide, version 10.1.2

LUT1_L #(
.INIT(2'b00) // Specify LUT Contents
) LUT1_L_inst (
.LO(LO), // LUT local output
.IO(IO) // LUT input
);

// End of LUT1_L_inst instantiation
```


For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

10.1

LUT2

Primitive: 2-Bit Look-Up-Table with General Output

Introduction

This design element is a 2-bit look-up-table (LUT) with general output (O).

An INIT attribute with an appropriate number of hexadecimal digits for the number of inputs must be attached to the LUT to specify its function. This element provides a look-up-table version of a buffer or inverter. These elements are the basic building blocks. Two LUTs are available in each CLB slice; four LUTs are available in each CLB. Multiple variants of LUTs accommodate additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs		Outputs
I1	10	0
0	0	INIT[0]
0	1	INIT[1]
1	0	INIT[2]
1	1	INIT[3]
INIT = Binary equivalent of the hexadecimal number assigned to the INIT attribute		

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 4-Bit Value	All zeros	Initializes look-up tables.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration.

Verilog Instantiation Template

```
// LUT2: 2-input Look-Up Table with general output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide, version 10.1.2

LUT2 #(
.INIT(4'h0) // Specify LUT Contents
) LUT2_inst (
.O(O), // LUT general output
.IO(IO), // LUT input
.II(II) // LUT input
);

// End of LUT2_inst instantiation
```

For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

Libraries Guide

LUT2_D

Primitive: 2-Bit Look-Up-Table with Dual Output

Introduction

This design element is a 2-bit look-up-tables (LUTs) with two functionally identical outputs, O and LO.

The O output is a general interconnect. The LO output is used to connect to another output within the same CLB slice and to the fast connect buffer. A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs		Outputs	
I1	10	0	LO
0	0	INIT[0]	INIT[0]
0	1	INIT[1]	INIT[1]
1	0	INIT[2]	INIT[2]
1 1		INIT[3]	INIT[3]
INIT = Binary equivalent of the hexadecimal number assigned to the INIT attribute			

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 4-Bit Value	All zeros	Initializes look-up tables.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- LUT2_D: 2-input Look-Up Table with general and local outputs
-- Xilinx HDL Libraries Guide, version 10.1.2

LUT2_D_inst : LUT2_D
generic map (
INIT => X"0")
port map (
LO => LO, -- LUT local output
O => O, -- LUT general output
I0 => I0, -- LUT input
I1 => I1 -- LUT input
);
-- End of LUT2_D_inst instantiation
```

Verilog Instantiation Template

86

```
// LUT2_D: 2-input Look-Up Table with general and local outputs
// For use with all FPGAs.
// Xilinx HDL Libraries Guide, version 10.1.2

LUT2_D #(
.INIT(4'h0) // Specify LUT Contents
) LUT2_D_inst (
.LO(LO), // LUT local output
.O(O), // LUT general output
.IO(IO), // LUT input
.II(II) // LUT input
);

// End of LUT2_L_inst instantiation
```

www.xilinx.com 10.1

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

LUT2_L

Primitive: 2-Bit Look-Up-Table with Local Output

Introduction

This design element is a 2- bit look-up-tables (LUTs) with a local output (LO) that is used to connect to another output within the same CLB slice and to the fast connect buffer. It provides a look-up-table version of a buffer or inverter.

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs		Outputs	
I1	10	LO	
0	0	INIT[0]	
0	1	INIT[1]	
1	0	INIT[2]	
1	1	INIT[3]	
INIT = Binary equivalent of the hexadecimal number assigned to the INIT attribute			

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 4-Bit Value	All zeros	Initializes look-up tables.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- LUT2_L: 2-input Look-Up Table with local output
-- Xilinx HDL Libraries Guide, version 10.1.2

LUT2_L_inst : LUT2_L
generic map (
INIT => X"0")
port map (
LO => LO, -- LUT local output
I0 => I0, -- LUT input
I1 => I1 -- LUT input
);
-- End of LUT2_L_inst instantiation
```

Verilog Instantiation Template

```
// LUT2_L: 2-input Look-Up Table with local output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide, version 10.1.2

LUT2_L #(
.INIT(4'h0) // Specify LUT Contents
) LUT2_L_inst (
.LO(LO), // LUT local output
.IO(10), // LUT input
.I1(I1) // LUT input
);

// End of LUT2_L_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

LUT3

Primitive: 3-Bit Look-Up-Table with General Output

Introduction

This design element is a 3-bit look-up-table (LUT) with general output (O). A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

An INIT attribute with an appropriate number of hexadecimal digits for the number of inputs must be attached to the LUT to specify its function. This element provides a look-up-table version of a buffer or inverter. These elements are the basic building blocks. Two LUTs are available in each CLB slice; four LUTs are available in each CLB. Multiple variants of LUTs accommodate additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

Logic Table

Inputs			Outputs	
I2	I1	10	0	
0	0	0	INIT[0]	
0	0	1	INIT[1]	
0	1	0	INIT[2]	
0	1	1	INIT[3]	
1	0	0	INIT[4]	
1	0	1	INIT[5]	
1	1	0	INIT[6]	
1	1	1	INIT[7]	
INIT = Binary equivalent of the hexadecimal number assigned to the INIT attribute				

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 8-Bit Value	All zeros	Initializes look-up tables.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration.

Verilog Instantiation Template

```
// LUT3: 3-input Look-Up Table with general output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide, version 10.1.2

LUT3 #(
.INIT(8'h00) // Specify LUT Contents)
   LUT3_inst (
.O(O), // LUT general output
.IO(IO), // LUT input
.I1(I1), // LUT input
.I2(I2) // LUT input
);

// End of LUT3_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

LUT3_D

Primitive: 3-Bit Look-Up-Table with Dual Output

Introduction

This design element is a 3-bit look-up-tables (LUTs) with two functionally identical outputs, O and LO.

The O output is a general interconnect. The LO output is used to connect to another output within the same CLB slice and to the fast connect buffer. A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Logic Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary logic table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs		Outputs	Outputs	
I2	I1	10	0	LO
0	0	0	INIT[0]	INIT[0]
0	0	1	INIT[1]	INIT[1]
0	1	0	INIT[2]	INIT[2]
0	1	1	INIT[3]	INIT[3]
1	0	0	INIT[4]	INIT[4]
1	0	1	INIT[5]	INIT[5]
1	1	0	INIT[6]	INIT[6]
1	1	1	INIT[7]	INIT[7]
INIT = Binary equivalent of the hexadecimal number assigned to the INIT attribute				

Instantiation	Yes
Inference	Recommended

Coregen and wizards	No
Macro support	No

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 8-Bit Value	All zeros	Initializes look-up tables.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;

-- LUT3_D: 3-input Look-Up Table with general and local outputs
-- Xilinx HDL Libraries Guide, version 10.1.2

LUT3_D_inst : LUT3_D
generic map (
INIT => X"00")
port map (
LO => LO, -- LUT local output
O => O, -- LUT general output
I0 => I0, -- LUT input
I1 => I1, -- LUT input
I2 => I2 -- LUT input
);

-- End of LUT3_D_inst instantiation
```

Verilog Instantiation Template

```
// LUT3_D: 3-input Look-Up Table with general and local outputs
// For use with all FPGAs.
// Xilinx HDL Libraries Guide, version 10.1.2

LUT3_D #(
.INIT(8'h00) // Specify LUT Contents
) LUT3_D_inst (
.LO(LO), // LUT local output
.0(0), // LUT general output
.10(10), // LUT input
.I1(11), // LUT input
.I2(12) // LUT input
);

// End of LUT3_D_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

LUT3_L

Primitive: 3-Bit Look-Up-Table with Local Output

Introduction

This design element is a 3- bit look-up-tables (LUTs) with a local output (LO) that is used to connect to another output within the same CLB slice and to the fast connect buffer. It provides a look-up-table version of a buffer or inverter.

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs	Inputs				
12	I1	10	LO		
0	0	0	INIT[0]		
0	0	1	INIT[1]		
0	1	0	INIT[2]		
0	1	1	INIT[3]		
1	0	0	INIT[4]		
1	0	1	INIT[5]		
1	1	0	INIT[6]		
1	1	1	INIT[7]		
INIT = Binary equivalent of the hexadecimal number assigned to the INIT attribute					

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 8-Bit Value	All zeros	Initializes look-up tables.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration.

Verilog Instantiation Template

```
// LUT3_L: 3-input Look-Up Table with local output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide, version 10.1.2

LUT3_L #(
.INIT(8'h00) // Specify LUT Contents
) LUT3_L_inst (
.LO(LO), // LUT local output
.IO(IO), // LUT input
.I1(I1), // LUT input
.I2(I2) // LUT input
);

// End of LUT3_L inst instantiation
```

- See the Spartan-3 User Guide.
- See the *Spartan-3 Data Sheets*.

LUT4

Primitive: 4-Bit Look-Up-Table with General Output

Introduction

This design element is a 4-bit look-up-tables (LUT) with general output (O).

An INIT attribute with an appropriate number of hexadecimal digits for the number of inputs must be attached to the LUT to specify its function. This element provides a look-up-table version of a buffer or inverter. These elements are the basic building blocks. Two LUTs are available in each CLB slice; four LUTs are available in each CLB. Multiple variants of LUTs accommodate additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs	Inputs				
13	I2	I1	10	0	
0	0	0	0	INIT[0]	
0	0	0	1	INIT[1]	
0	0	1	0	INIT[2]	
0	0	1	1	INIT[3]	
0	1	0	0	INIT[4]	
0	1	0	1	INIT[5]	
0	1	1	0	INIT[6]	
0	1	1	1	INIT[7]	
1	0	0	0	INIT[8]	
1	0	0	1	INIT[9]	
1	0	1	0	INIT[10]	

Inputs	Outputs				
I3	I2	I1	10	0	
1	0	1	1	INIT[11]	
1	1	0	0	INIT[12]	
1	1	0	1	INIT[13]	
1	1	1	0	INIT14]	
1	1	1	1	INIT[15]	
INIT = Binary equivalent of the hexadecimal number assigned to the INIT attribute					

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Initializes look-up tables.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

Verilog Instantiation Template

```
// LUT4: 4-input Look-Up Table with general output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide, version 10.1.2
LUT4 #(
```



```
.INIT(16'h0000) // Specify LUT Contents
) LUT4_inst (
.0(0), // LUT general output
.10(10), // LUT input
.11(11), // LUT input
.12(12), // LUT input
.13(13) // LUT input
);

// End of LUT4_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

LUT4_D

Primitive: 4-Bit Look-Up-Table with Dual Output

Introduction

This design element is a 4-bit look-up-tables (LUTs) with two functionally identical outputs, O and LO

The O output is a general interconnect. The LO output is used to connect to another output within the same CLB slice and to the fast connect buffer. A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs	Inputs			Outputs	
13	I2	I1	10	0	LO
0	0	0	0	INIT[0]	INIT[0]
0	0	0	1	INIT[1]	INIT[1]
0	0	1	0	INIT[2]	INIT[2]
0	0	1	1	INIT[3]	INIT[3]
0	1	0	0	INIT[4]	INIT[4]
0	1	0	1	INIT[5]	INIT[5]
0	1	1	0	INIT[6]	INIT[6]
0	1	1	1	INIT[7]	INIT[7]
1	0	0	0	INIT[8]	INIT[8]
1	0	0	1	INIT[9]	INIT[9]
1	0	1	0	INIT[10]	INIT[10]
1	0	1	1	INIT[11]	INIT[11]
1	1	0	0	INIT[12]	INIT[12]

Inputs				Outputs	
I3	I2	I1	10	0	LO
1	1	0	1	INIT[13]	INIT[13]
1	1	1	0	INIT14]	INIT14]
1	1	1	1	INIT[15]	INIT[15]
INIT = Bi	inary equivalent	of the hexadecim	nal number assign	ned to the INIT attribute	•

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Initializes look-up tables.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- LUT4_D: 4-input Look-Up Table with general and local outputs
-- Xilinx HDL Libraries Guide, version 10.1.2

LUT4_D_inst : LUT4_D
generic map (
INIT => X"0000")
port map (
LO => LO, -- LUT local output
0 => 0, -- LUT general output
10 => 10, -- LUT input
11 => 11, -- LUT input
12 => 12, -- LUT input
13 => 13 -- LUT input
);
-- End of LUT4_D_inst instantiation
```

Verilog Instantiation Template

```
// LUT4_D: 4-input Look-Up Table with general and local outputs
// For use with all FPGAs.
// Xilinx HDL Libraries Guide, version 10.1.2
LUT4_D #(
.INIT(16'h0000) // Specify LUT Contents
) LUT4_D_inst (
```



```
.LO(LO), // LUT local output
.O(O), // LUT general output
.IO(IO), // LUT input
.I1(I1), // LUT input
.I2(I2), // LUT input
.I3(I3) // LUT input
);

// End of LUT4_D_inst instantiation
```

- See the Spartan-3 User Guide.
- See the *Spartan-3 Data Sheets*.

LUT4_L

Primitive: 4-Bit Look-Up-Table with Local Output

Introduction

This design element is a 4- bit look-up-tables (LUTs) with a local output (LO) that is used to connect to another output within the same CLB slice and to the fast connect buffer. It provides a look-up-table version of a buffer or inverter.

A mandatory INIT attribute, with an appropriate number of hexadecimal digits for the number of inputs, must be attached to the LUT to specify its function.

The INIT parameter for the FPGA LUT primitive is what gives the LUT its logical value. By default, this value is zero, thus driving the output to a zero regardless of the input values (acting as a ground). However, in most cases a new INIT value must be determined in order to specify the logic function for the LUT primitive. There are at least two methods by which the LUT value can be determined:

The Truth Table Method -A common method to determine the desired INIT value for a LUT is using a truth table. To do so, simply create a binary truth table of all possible inputs, specify the desired logic value of the output and then create the INIT string from those output values.

The Equation Method -Another method to determine the LUT value is to define parameters for each input to the LUT that correspond to their listed truth value and use those to build the logic equation you are after. This method is easier to understand once you have grasped the concept and more self-documenting that the above method however does require the code to first specify the appropriate parameters.

Logic Table

Inputs				Outputs
I3	I2	I1	10	LO
0	0	0	0	INIT[0]
0	0	0	1	INIT[1]
0	0	1	0	INIT[2]
0	0	1	1	INIT[3]
0	1	0	0	INIT[4]
0	1	0	1	INIT[5]
0	1	1	0	INIT[6]
0	1	1	1	INIT[7]
1	0	0	0	INIT[8]
1	0	0	1	INIT[9]
1	0	1	0	INIT[10]
1	0	1	1	INIT[11]
1	1	0	0	INIT[12]

Inputs		Outputs		
I3	I2	I1	10	LO
1	1	0	1	INIT[13]
1	1	1	0	INIT14]
1	1	1	1	INIT[15]
INIT = Binary equivalent of the hexadecimal number assigned to the INIT attribute				

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Initializes look-up tables.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration.

```
Library UNISIM;
use UNISIM.vcomponents.all;
-- LUT4_L: 4-input Look-Up Table with local output
-- Xilinx HDL Libraries Guide, version 10.1.2

LUT4_L_inst: LUT4_L
generic map (
INIT => X"0000")
port map (
LO => LO, -- LUT local output
I0 => I0, -- LUT input
I1 => I1, -- LUT input
I2 => I2, -- LUT input
I3 => I3 -- LUT input
);
-- End of LUT4_L_inst instantiation
```

Verilog Instantiation Template

```
// LUT4_L: 4-input Look-Up Table with local output
// For use with all FPGAs.
// Xilinx HDL Libraries Guide, version 10.1.2

LUT4_L #(
.INIT(16'h0000) // Specify LUT Contents
) LUT4_L_inst (
.LO(LO), // LUT local output
```


104

```
.IO(IO), // LUT input
.II(II), // LUT input
.I2(I2), // LUT input
.I3(I3) // LUT input
);
// End of LUT4_L_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

MULT_AND

Primitive: Fast Multiplier AND

```
MULT_AND
```

Introduction

The design element is an AND component located within the slice where the two inputs are shared with the 4-input LUT and the output drives into the carry logic. This added logic is especially useful for building fast and smaller multipliers however be used for other purposes as well. The I1 and I0 inputs must be connected to the I1 and I0 inputs of the associated LUT. The LO output must be connected to the DI input of the associated MUXCY, MUXCY_D, or MUXCY_L.

Logic Table

Inputs		Outputs
I1	10	LO
0	0	0
0	1	0
1	0	0
1	1	1

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

Verilog Instantiation Template

```
// MULT_AND: 2-input AND gate connected to Carry chain
// For use with all FPGAs except Virtex-5
// Xilinx HDL Libraries Guide, version 10.1.2

MULT_AND MULT_AND_inst (
.LO(LO), // MULT_AND output (connect to MUXCY DI)
.IO(IO), // MULT_AND data[0] input
.I1(I1) // MULT_AND data[1] input
);

// End of MULT_AND_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

MULT18X18

Primitive: 18 x 18 Signed Multiplier

Introduction

MULT18X18 is a combinational signed 18-bit by 18-bit multiplier. The value represented in the 18-bit input A is multiplied by the value represented in the 18-bit input B. Output P is the 36-bit product of A and B.

Logic Table

Inputs		Output
A	В	P
A	В	AxB
A, B, and P are two's complement.		

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

Verilog Instantiation Template

// MULT18X18: 18 x 18 signed asynchronous multiplier

For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

Libraries Guide

MULT18X18S

Primitive: 18 x 18 Signed Multiplier – Registered Version

Introduction

MULT18X18S is the registered version of the 18 x 18 signed multiplier with output P and inputs A, B, C, CE, and R. The registers are initialized to 0 after the GSR pulse.

The value represented in the 18-bit input A is multiplied by the value represented in the 18-bit input B. Output P is the 36-bit product of A and B.

Logic Table

Inputs				Output	
С	CE	Am	Bn	R	P
1	X	X	X	1	0
\uparrow	1	Am	Bn	0	АхВ
Х	0	X	Х	0	No Change
A, B, and P are two's complement.					

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

```
use UNISIM.vcomponents.all;

-- MULT18X18S: 18 x 18 signed synchronous multiplier

-- Virtex-II/II-Pro, Spartan-3

-- Xilinx HDL Libraries Guide, version 10.1.2

MULT18X18S_inst : MULT18X18S
port map (
```


- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

MUXCY

Primitive: 2-to-1 Multiplexer for Carry Logic with General Output

Introduction

The direct input (DI) of a slice is connected to the (DI) input of the MUXCY. The carry in (CI) input of an LC is connected to the CI input of the MUXCY. The select input (S) of the MUXCY is driven by the output of the Look-Up Table (LUT) and configured as a MUX function. The carry out (O) of the MUXCY reflects the state of the selected input and implements the carry out function of each LC. When Low, S selects DI; when High, S selects CI.

The variants "MUXCY_D" and "MUXCY_L" provide additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

Logic Table

Inputs			Outputs
S	DI	CI	0
0	1	X	1
0	0	X	0
1	X	1	1
1	X	0	0

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template


```
);
-- End of MUXCY_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

MUXCY_D

Primitive: 2-to-1 Multiplexer for Carry Logic with Dual Output

Introduction

This design element implements a 1-bit, high-speed carry propagate function. One such function can be implemented per logic cell (LC), for a total of 4-bits per configurable logic block (CLB). The direct input (DI) of an LC is connected to the DI input of the MUXCY_D. The carry in (CI) input of an LC is connected to the CI input of the MUXCY_D. The select input (S) of the MUX is driven by the output of the Look-Up Table (LUT) and configured as an XOR function. The carry out (O and LO) of the MUXCY_D reflects the state of the selected input and implements the carry out function of each LC. When Low, S selects DI; when High, S selects CI.

Outputs O and LO are functionally identical. The O output is a general interconnect. See also "MUXCY" and "MUXCY_L".

Logic Table

Inputs			Outputs	
S	DI	CI	0	LO
0	1	Χ	1	1
0	0	Χ	0	0
1	Χ	1	1	1
1	X	0	0	0

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

```
use UNISIM.vcomponents.all;
-- MUXCY_D: Carry-Chain MUX with general and local outputs
-- Xilinx HDL Libraries Guide, version 10.1.2

MUXCY_D_inst : MUXCY_D
port map (
LO => LO, -- Carry local output signal
```



```
0 => 0, -- Carry general output signal
CI => CI, -- Carry input signal
DI => DI, -- Data input signal
S => S -- MUX select, tie to '1' or LUT4 out
);
-- End of MUXCY_D_inst instantiation
```

```
// MUXCY_D: Carry-Chain MUX with general and local outputs
// For use with All FPGAs
// Xilinx HDL Libraries Guide, version 10.1.2

MUXCY_D MUXCY_D_inst (
    LO(LO), // Carry local output signal
    .O(O), // Carry general output signal
    .CI(CI), // Carry input signal
    .DI(DI), // Data input signal
    .S(S) // MUX select, tie to '1' or LUT4 out
);

// End of MUXCY_D_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

MUXCY_L

Primitive: 2-to-1 Multiplexer for Carry Logic with Local Output

Introduction

This design element implements a 1-bit high-speed carry propagate function. One such function is implemented per logic cell (LC), for a total of 4-bits per configurable logic block (CLB). The direct input (DI) of an LC is connected to the DI input of the MUXCY_L. The carry in (CI) input of an LC is connected to the CI input of the MUXCY_L. The select input (S) of the MUXCY_L is driven by the output of the Look-Up Table (LUT) and configured as an XOR function. The carry out (LO) of the MUXCY_L reflects the state of the selected input and implements the carry out function of each (LC). When Low, (S) selects DI; when High, (S) selects (CI).

See also "MUXCY" and "MUXCY_D."

Logic Table

Inputs			Outputs
S	DI	CI	LO
0	1	X	1
0	0	Χ	0
1	X	1	1
1	X	0	0

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

```
use UNISIM.vcomponents.all;
-- MUXCY_L: Carry-Chain MUX with local output
-- Xilinx HDL Libraries Guide, version 10.1.2
MUXCY_L_inst : MUXCY_L
port map (
LO => LO, -- Carry local output signal
CI => CI, -- Carry input signal
DI => DI, -- Data input signal
```



```
S => S -- MUX select, tie to '1' or LUT4 out
);
-- End of MUXCY_L_inst instantiation
```

```
// MUXCY_L: Carry-Chain MUX with local output
// For use with All FPGAs
// Xilinx HDL Libraries Guide, version 10.1.2

MUXCY_L MUXCY_L_inst (
    .LO(LO), // Carry local output signal
    .CI(CI), // Carry input signal
    .DI(DI), // Data input signal
    .S(s) // MUX select, tie to '1' or LUT4 out
);

// End of MUXCY_L_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

MUXF5

Primitive: 2-to-1 Look-Up Table Multiplexer with General Output

Introduction

This design element provides a multiplexer function in a CLB slice for creating a function-of-5 lookup table or a 4-to-1 multiplexer in combination with the associated lookup tables. The local outputs (LO) from the two lookup tables are connected to the I0 and I1 inputs of the MUXF5. The (S) input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

The variants, "MUXF5_D" and "MUXF5_L", provide additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

Logic Table

Inputs			Outputs
S	10	I1	0
0	1	X	1
0	0	X	0
1	Χ	1	1
1	X	0	0

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template


```
);
-- End of MUXF5_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

MUXF5_D

Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output

Introduction

This design element provides a multiplexer function in a CLB slice for creating a function-of-5 lookup table or a 4-to-1 multiplexer in combination with the associated lookup tables. The local outputs (LO) from the two lookup tables are connected to the I0 and I1 inputs of the MUXF5. The S input is driven from any internal net. When Low, S selects I0. When High, S selects I1.

Outputs O and LO are functionally identical. The O output is a general interconnect. The LO output connects to other inputs in the same CLB slice. See also "MUXF5" and "MUXF5_L"

Logic Table

Inputs			Outputs	
S	10	I1	0	LO
0	1	X	1	1
0	0	Χ	0	0
1	Χ	1	1	1
1	Х	0	0	0

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

```
use UNISIM.vcomponents.all;
-- MUXF5_D: Slice MUX to tie two LUT4's together with general and local outputs
-- All FPGA Devices except Virtex-5
-- Xilinx HDL Libraries Guide, version 10.1.2

MUXF5_D_inst: MUXF5_D
port map (
LO => LO, -- Output of MUX to local routing
O => O, -- Output of MUX to general routing
IO => IO, -- Input (tie directly to the output of LUT4)
```



```
I1 => I1, -- Input (tie directoy to the output of LUT4)
S => S -- Input select to MUX
);
-- End of MUXF5_D_inst instantiation
```

- See the Spartan-3 User Guide.
- See the *Spartan-3 Data Sheets*.

MUXF5_L

Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output

Introduction

This design element provides a multiplexer function in a CLB slice for creating a function-of-5 lookup table or a 4-to-1 multiplexer in combination with the associated lookup tables. The local outputs (LO) from the two lookup tables are connected to the I0 and I1 inputs of the MUXF5. The S input is driven from any internal net. When Low, S selects I0. When High, S selects I1.

The LO output connects to other inputs in the same CLB slice.

See also "MUXF5" and "MUXF5_D"

Logic Table

Inputs			Output
S	10	I1	LO
0	1	X	1
0	0	X	0
1	X	1	1
1	X	0	0

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- MUXF5_L: Slice MUX to tie two LUT4's together with local output
-- All FPGA Devices except Virtex-5
-- Xilinx HDL Libraries Guide, version 10.1.2

MUXF5_L_inst : MUXF5_L
port map (
LO => LO, -- Output of MUX to local routing
IO => IO, -- Input (tie directly to the output of LUT4)
```

I1 => I1, -- Input (tie directoy to the output of LUT4)


```
S => S -- Input select to MUX
);
-- End of MUXF5_L_inst instantiation
```

- See the Spartan-3 User Guide.
- See the *Spartan-3 Data Sheets*.

MUXF6

Primitive: 2-to-1 Look-Up Table Multiplexer with General Output

Introduction

This design element provides a multiplexer function in two slices for creating a function-of-6 lookup table or an 8-to-1 multiplexer in combination with the associated four lookup tables and two MUXF5s. The local outputs (LO) from the two MUXF5s in the CLB are connected to the I0 and I1 inputs of the MUXF6. The S input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

The variants, "MUXF6_D" and "MUXF6_L", provide additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

Logic Table

Inputs			Outputs
S	10	I1	0
0	1	X	1
0	0	X	0
1	Х	1	1
1	Х	0	0

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template


```
I1 => I1, -- Input (tie to MUXF5 LO out)
S => S -- Input select to MUX
);
-- End of MUXF6_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

MUXF6_D

Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output

Introduction

This design element provides a multiplexer function in a two slices for creating a function-of-6 lookup table or an 8-to-1 multiplexer in combination with the associated four lookup tables and two MUXF5s. The local outputs (LO) from the two MUXF5s in the CLB are connected to the I0 and I1 inputs of the MUXF6. The (S) input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

Outputs (O) and (LO) are functionally identical. The (O) output is a general interconnect. The (LO) output connects to other inputs in the same CLB slice.

Logic Table

Inputs		Outputs		
S	10	I1	0	LO
0	1	Χ	1	1
0	0	Χ	0	0
1	X	1	1	1
1	Х	0	0	0

Design Entry Method

Instantiation	Yes	
Inference	Recommended	
Coregen and wizards	No	
Macro support	No	

VHDL Instantiation Template

```
use UNISIM.vcomponents.all;
-- MUXF6_D: CLB MUX to tie two MUXF5's together with general and local outputs
-- All FPGA Devices except Virtex-5
-- Xilinx HDL Libraries Guide, version 10.1.2

MUXF6_D_inst: MUXF6_D
port map (
LO => LO, -- Output of MUX to local routing
O => O, -- Output of MUX to general routing
```



```
IO => IO, -- Input (tie to MUXF5 LO out)
I1 => I1, -- Input (tie to MUXF5 LO out)
S => S -- Input select to MUX
);
-- End of MUXF6_D_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

MUXF6_L

Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output

Introduction

This design element provides a multiplexer function for use in creating a function-of-6 lookup table or an 8-to-1 multiplexer in combination with the associated four lookup tables and two MUXF5s. The local outputs (LO) from the two MUXF5s in the (CLB) are connected to the I0 and I1 inputs of the MUXF6. The (S) input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

The LO output connects to other inputs in the same CLB slice.

Logic Table

Inputs			Output
S	10	I1	LO
0	1	X	1
0	0	X	0
1	X	1	1
1	X	0	0

Design Entry Method

Instantiation	Yes	
Inference	Recommended	
Coregen and wizards	No	
Macro support	No	

VHDL Instantiation Template

```
use UNISIM.vcomponents.all;

-- MUXF6_L: CLB MUX to tie two MUXF5's together with local output
-- All FPGA Devices except Virtex-5
-- Xilinx HDL Libraries Guide, version 10.1.2

MUXF6_L_inst: MUXF6_L
port map (
LO => LO, -- Output of MUX to local routing
10 => 10, -- Input (tie to MUXF5 LO out)
11 => I1, -- Input (tie to MUXF5 LO out)
S => S -- Input select to MUX
```



```
);
-- End of MUXF6_L_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

MUXF7

Primitive: 2-to-1 Look-Up Table Multiplexer with General Output

Introduction

This design element provides a multiplexer function for use in creating a function-of-7 Look-Up Table or a 16-to-1 multiplexer in combination with the associated Look-Up Tables. Local outputs (LO) of MUXF6 are connected to the I0 and I1 inputs of the MUXF7. The (S) input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

The variants, "MUXF7_D" and "MUXF7_L", provide additional types of outputs that can be used by different timing models for more accurate pre-layout timing estimation.

Logic Table

Inputs			Outputs
S	10	I1	0
0	10	X	10
1	X	I1	I1
X	0	0	0
X	1	1	1

Port Descriptions

Port	Direction	Width	Function
О	Output	1	Output of MUX to general routing
10	Input	1	Input (tie to MUXF6 LO out)
I1	Input	1	Input (tie to MUXF6 LO out)
S	Input	1	Input select to MUX

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

Verilog Instantiation Template

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

MUXF7_D

Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output

Introduction

This design element provides a multiplexer function for use in creating a function-of-7 Look-Up Table or a 16-to-1 multiplexer in combination with the associated Look-Up Tables. Local outputs (LO) of MUXF6 are connected to the I0 and I1 inputs of the MUXF7. The S input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

Outputs O and LO are functionally identical. The O output is a general interconnect. The LO output connects to other inputs in the same CLB slice.

Logic Table

Inputs		Outputs		
S	10	I1	0	LO
0	10	Χ	10	10
1	X	I1	I1	I1
X	0	0	0	0
X	1	1	1	1

Port Descriptions

Port	Direction	Width	Function
О	Output	1	Output of MUX to general routing
LO	Output	1	Output of MUX to local routing
10	Input	1	Input (tie to MUXF6 LO out)
I1	Input	1	Input (tie to MUXF6 LO out)
S	Input	1	Input select to MUX

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- MUXF7_D: CLB MUX to tie two MUXF6's together with general and local outputs
-- Virtex-II/II-Pro/4/5 and Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2

MUXF7_D_inst: MUXF7_D
port map (
LO => LO, -- Output of MUX to local routing
O => O, -- Output of MUX to general routing
IO => IO, -- Input (tie to MUXF6 LO out)
I1 => I1, -- Input (tie to MUXF6 LO out)
S => S -- Input select to MUX
);
-- End of MUXF7_D_inst instantiation
```

Verilog Instantiation Template

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

MUXF7_L

Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output

Introduction

This design element provides a multiplexer function for use in creating a function-of-7 Look-Up Table or a 16-to-1 multiplexer in combination with the associated Look-Up Tables. Local outputs (LO) of MUXF6 are connected to the I0 and I1 inputs of the MUXF7. The S input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

The LO output connects to other inputs in the same CLB slice.

Logic Table

Inputs			Output
S	10	I1	LO
0	I0	X	I0
1	X	I1	I1
Χ	0	0	0
X	1	1	1

Port Descriptions

Port	Direction	Width	Function
LO	Output	1	Output of MUX to local routing
10	Input	1	Input (tie to MUXF6 LO out)
I1	Input	1	Input (tie to MUXF6 LO out)
S	Input	1	Input select to MUX

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- MUXF7_L: CLB MUX to tie two MUXF6's together with local output
-- Virtex-II/II-Pro/4/5 and Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2

MUXF7_L_inst: MUXF7_L
port map (
LO => LO, -- Output of MUX to local routing
I0 => I0, -- Input (tie to MUXF6 LO out)
I1 => I1, -- Input (tie to MUXF6 LO out)
S => S -- Input select to MUX
);
-- End of MUXF7_L_inst instantiation
```

Verilog Instantiation Template

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

MUXF8

Primitive: 2-to-1 Look-Up Table Multiplexer with General Output

Introduction

This design element provides a multiplexer function in eight slices for creating a function-of-8 Look-Up Table or a 32-to-1 multiplexer in combination with the associated Look-Up Tables, MUXF5s, MUXF6s, and MUXF7s. Local outputs (LO) of MUXF7 are connected to the I0 and I1 inputs of the MUXF8. The S input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

Logic Table

Inputs			Outputs
S	10	I1	0
0	10	X	IO
1	X	I1	I1
X	0	0	0
X	1	1	1

Port Descriptions

Port	Direction	Width	Function
0	Output	1	Output of MUX to general routing
10	Input	1	Input (tie to MUXF7 LO out)
I1	Input	1	Input (tie to MUXF7 LO out)
S	Input	1	Input select to MUX

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

Verilog Instantiation Template

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

MUXF8_D

Primitive: 2-to-1 Look-Up Table Multiplexer with Dual Output

Introduction

This design element provides a multiplexer function in eight slices for creating a function-of-8 Look-Up Table or a 32-to-1 multiplexer in combination with the associated four Look-Up Tables and two MUXF8s. Local outputs (LO) of MUXF7 are connected to the I0 and I1 inputs of the MUXF8. The S input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

Outputs O and LO are functionally identical. The O output is a general interconnect. The LO output connects to other inputs in the same CLB slice.

Logic Table

Inputs			Outputs	
S	10	I1	0	LO
0	10	Χ	10	10
1	Χ	I1	I1	I1
X	0	0	0	0
X	1	1	1	1

Port Descriptions

Port	Direction	Width	Function
0	Output	1	Output of MUX to general routing
LO	Output	1	Output of MUX to local routing
10	Input	1	Input (tie to MUXF7 LO out)
I1	Input	1	Input (tie to MUXF7 LO out)
S	Input	1	Input select to MUX

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- MUXF8_D: CLB MUX to tie two MUXF7's together with general and local outputs
-- Virtex-II/II-Pro/4/5 and Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2

MUXF8_D_inst: MUXF8_D
port map (
LO => LO, -- Output of MUX to local routing
O => O, -- Output of MUX to general routing
IO => IO, -- Input (tie to MUXF7 LO out)
I1 => I1, -- Input (tie to MUXF7 LO out)
S => S -- Input select to MUX
);
-- End of MUXF8_D_inst instantiation
```

Verilog Instantiation Template

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

MUXF8_L

Primitive: 2-to-1 Look-Up Table Multiplexer with Local Output

Introduction

This design element provides a multiplexer function in eight slices for creating a function-of-8 Look-Up Table or a 32-to-1 multiplexer in combination with the associated four Look-Up Tables and two MUXF8s. Local outputs (LO) of MUXF7 are connected to the I0 and I1 inputs of the MUXF8. The S input is driven from any internal net. When Low, (S) selects I0. When High, (S) selects I1.

The LO output connects to other inputs in the same CLB slice.

Logic Table

Inputs			Output
S	10	I1	LO
0	I0	X	I0
1	X	I1	I1
X	0	0	0
X	1	1	1

Port Descriptions

Port	Direction	Width	Function
LO	Output	1	Output of MUX to local routing
10	Input	1	Input (tie to MUXF7 LO out)
I1	Input	1	Input (tie to MUXF7 LO out)
S	Input	1	Input select to MUX

Design Entry Method

Instantiation	Yes	
Inference	Recommended	
Coregen and wizards	No	
Macro support	No	

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- MUXF8_L: CLB MUX to tie two MUXF7's together with local output
-- Virtex-II/II-Pro/4/5 and Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2

MUXF8_L_inst : MUXF8_L
port map (
LO => LO, -- Output of MUX to local routing
IO => IO, -- Input (tie to MUXF7 LO out)
I1 => I1, -- Input (tie to MUXF7 LO out)
S => S -- Input select to MUX
);
-- End of MUXF8_L_inst instantiation
```

Verilog Instantiation Template

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

OBUF

Primitive: Output Buffer

OBUF O X3445

Introduction

This design element is a simple output buffer used to drive output signals to the FPGA device pins that do not need to be 3-stated (constantly driven). Either an OBUF, OBUFT, OBUFDS, or OBUFTDS must be connected to every output port in the design.

This element isolates the internal circuit and provides drive current for signals leaving a chip. It exists in input/output blocks (IOB). Its output (O) is connected to an OPAD or an IOPAD. The interface standard used by this element is LVTTL. Also, this element has selectable drive and slew rates using the DRIVE and SLOW or FAST constraints. The defaults are DRIVE=12 mA and SLOW slew.

Port Descriptions

Port	Direction	Width	Function
О	Output	1	Output of OBUF to be connected directly to top-level output port.
Ι	Input	1	Input of OBUF. Connect to the logic driving the output port.

Design Entry Method

Instantiation	Yes	
Inference	Recommended	
Coregen and wizards	No	
Macro support	No	

Available Attributes

Attribute	Type	Allowed Values	Default	Description
IOSTANDARD	String	See Data Sheet	"DEFAULT"	Assigns an I/O standard to the element.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

use UNISIM.vcomponents.all;

```
-- OBUF: Single-ended Output Buffer
-- All devices
-- Xilinx HDL Libraries Guide, version 10.1.2
```

OBUF_inst : OBUF

- See the Spartan-3 User Guide.
- See the *Spartan-3 Data Sheets*.

OBUFDS

Primitive: Differential Signaling Output Buffer

Introduction

This design element is a single output buffer that supports low-voltage, differential signaling (1.8 v CMOS). OBUFDS isolates the internal circuit and provides drive current for signals leaving the chip. Its output is represented as two distinct ports (O and OB), one deemed the "master" and the other the "slave." The master and the slave are opposite phases of the same logical signal (for example, MYNET and MYNETB).

Logic Table

Inputs		Outputs
I	О	ОВ
0	0	1
1	1	0

Port Descriptions

Port	Direction	Width	Function
О	Output	1	Diff_p output (connect directly to top level port)
ОВ	Input	1	Diff_n output (connect directly to top level port)
I	Input	1	Buffer input

Design Entry Method

Instantiation	Recommended	
Inference	No	
Coregen and wizards	No	
Macro support	No	

Available Attributes

Attribute	Type	Allowed Values	Default	Description
IOSTANDARD	String	See Data Sheet	"DEFAULT"	Assigns an I/O standard to the element.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

Verilog Instantiation Template

- See the Spartan-3 User Guide.
- See the *Spartan-3 Data Sheets*.

OBUFT

Primitive: 3-State Output Buffer with Active Low Output Enable

OBUFT

Introduction

This design element is a single, 3-state output buffer with input I, output O, and active-Low output enables (T). This element uses the LVTTL standard and has selectable drive and slew rates using the DRIVE and SLOW or FAST constraints. The defaults are DRIVE=12 mA and SLOW slew.

When T is Low, data on the inputs of the buffers is transferred to the corresponding outputs. When T is High, the output is high impedance (off or Z state). OBUFTs are generally used when a single-ended output is needed with a 3-state capability, such as the case when building bidirectional I/O.

Logic Table

Inputs	Outputs	
T	I	0
1	Х	Z
0	I	F

Port Descriptions

Port	Direction	Width	Function
0	Output	1	Buffer output (connect directly to top-level port)
I	Input	1	Buffer input
T	Input	1	3-state enable input

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
IOSTANDARD	String	See Data Sheet	"DEFAULT"	Assigns an I/O standard to the element.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- OBUFT: Single-ended 3-state Output Buffer
         All devices
-- Xilinx HDL Libraries Guide, version 10.1.2
OBUFT_inst : OBUFT
generic map (
DRIVE => 12,
IOSTANDARD => "DEFAULT",
SLEW => "SLOW")
port map (
0 => 0,
           -- Buffer output (connect directly to top-level port)
I => I,
          -- Buffer input
T => T
           -- 3-state enable input
);
-- End of OBUFT_inst instantiation
```

Verilog Instantiation Template

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

OBUFTDS

Primitive: 3-State Output Buffer with Differential Signaling, Active-Low Output Enable

Introduction

This design element is an output buffer that supports low-voltage, differential signaling. For the OBUFTDS, a design level interface signal is represented as two distinct ports (O and OB), one deemed the "master" and the other the "slave." The master and the slave are opposite phases of the same logical signal (for example, MYNET_P and MYNET_N).

Logic Table

Inputs		Outputs		
I	T	0	OB	
X	1	Z	Z	
0	0	0	1	
1	0	1	0	

Port Descriptions

Port	Direction	Width	Function
0	Output	1	Diff_p output (connect directly to top level port)
ОВ	Output	1	Diff_n output (connect directly to top level port)
I	Input	1	Buffer input
Т	Input	1	3-state enable input

Design Entry Method

Instantiation	Recommended
Inference	No
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
IOSTANDARD	String	See Data Sheet	"DEFAULT"	Assigns an I/O standard to the element.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- OBUFTDS: Differential 3-state Output Buffer
           Virtex-II/II-Pro, Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2
OBUFTDS_inst : OBUFTDS
generic map (
IOSTANDARD => "DEFAULT")
port map (
            -- Diff_p output (connect directly to top-level port)
OB => OB,
           -- Diff_n output (connect directly to top-level port)
Ub -.
I => Ι,
           -- Buffer input
T => T
           -- 3-state enable input
);
-- End of OBUFTDS_inst instantiation
```

Verilog Instantiation Template

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

OFDDRCPE

Primitive: Dual Data Rate Output D Flip-Flop with Clock Enable and Asynchronous Preset and Clear

Introduction

This design element is a dual data rate (DDR) output D flip-flop with clock enable (CE) and asynchronous preset (PRE) and clear (CLR). It consists of one output buffer and one dual data rate flip-flop (FDDRCPE). When the asynchronous PRE is High and CLR is Low, the Q output is preset High.

When CLR is High, Q is set Low. Data on the D0 input is loaded into the flip-flop when PRE and CLR are Low and CE is High on the Low-to-High C0 clock transition. Data on the D1 input is loaded into the flip-flop when PRE and CLR are Low and CE is High on the Low-to-High C1 clock transition. The INIT attribute does not apply to OFDDRCPE components.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

Logic Table

Inputs					Outputs		
C0	C1	CE	D0	D1	CLR	PRE	Q
Χ	X	X	Χ	Χ	1	0	0
Χ	X	X	Χ	Χ	0	1	1
Χ	X	Χ	Χ	Χ	1	1	0
Χ	X	0	Χ	Χ	0	0	No Change
\uparrow	X	1	D0	Χ	0	0	D0
X	1	1	X	D1	0	0	D1

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- OFDDRCPE: Double Data Rate Output Register with Async. Clear, Async. Preset
             and Clock Enable. Virtex-II/II-Pro, Spartan-3
-- Xilinx HDL Libraries Guide, version 10.1.2
OFDDRCPE_inst : OFDDRCPE
port map (
Q => Q,
             -- Data output (connect directly to top-level port)
             -- 0 degree clock input
C0 \Rightarrow C0,
C1 => C1, -- 180 degree clock input
CE => CE, -- Clock enable input
CLR => CLR, -- Asynchronous reset input
D0 => D0, -- Posedge data input
D1 => D1,
             -- Negedge data input
PRE => PRE -- Asynchronous preset input
);
-- End of OFDDRCPE_inst instantiation
```

Verilog Instantiation Template

```
// OFDDRCPE: Double Data Rate Output Register with Async. Clear, Async. Preset
            and Clock Enable.
//
            Virtex-II/II-Pro, Spartan-3
// Xilinx HDL Libraries Guide, version 10.1.2
OFDDRCPE OFDDRCPE_inst (
         // Data output (connect directly to top-level port)
.CO(CO),
           // 0 degree clock input
.C1(C1),
          // 180 degree clock input
.CE(CE),
           // Clock enable input
.CLR(CLR), // Asynchronous reset input
.DO(DO), // Posedge data input
.D1(D1),
           // Negedge data input
.PRE(PRE) // Asynchronous preset input
);
// End of OFDDRCPE_inst instantiation
```

- See the Spartan-3 User Guide.
- See the *Spartan-3 Data Sheets*.

OFDDRRSE

Primitive: Dual Data Rate Output D Flip-Flop with Synchronous Reset and Set and Clock Enable

Introduction

This design element is a dual data rate (DDR) output D flip-flop with synchronous reset (R) and set (S) and clock enable (CE). It consists of one output buffer and one dual data rate flip-flop (FDDRRSE).

On a Low-to-High clock transition (C0 or C1), a High R input resets the Q output Low; a Low R input with a High S input sets Q High. When both R and S are Low and clock enable is High, data on the D0 input is loaded into the flip-flop on a Low-to-High C0 clock transition and data on the D1 input is loaded into the flip-flop on a Low-to-High C1 clock transition.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

The INIT attribute does not apply to this design element.

Logic Table

Inputs							Outputs
C0	C1	CE	D0	D1	R	S	Q
1	X	X	Χ	X	1	0	0
\uparrow	X	X	Х	X	0	1	1
\uparrow	Х	X	Х	X	1	1	0
X	1	X	Х	X	1	0	0
X	1	X	Х	X	0	1	1
X	1	X	Х	X	1	1	0
Х	Х	0	Χ	Х	0	0	No Change
\uparrow	X	1	D0	X	0	0	D0
X	1	1	Х	D1	0	0	D1

Design Entry Method

Instantiation	Yes
Inference	Recommended

Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- OFDDRRSE: Double Data Rate Input Register with Sync. Clear, Sync. Preset
            and Clock Enable. Virtex-II/II-Pro, Spartan-3
-- Xilinx HDL Libraries Guide, version 10.1.2
OFDDRRSE_inst : OFDDRRSE
port map (
Q => Q,
            -- Data output (connect directly to top-level port)
C0 => C0,
            -- 0 degree clock input
C1 => C1,
           -- 180 degree clock input
CE => CE,
           -- Clock enable input
D0 => D0,
            -- Posedge data input
D1 => D1,
            -- Negedge data input
            -- Synchronous reset input
R => R,
S => S
            -- Synchronous preset input
);
-- End of OFDDRRSE_inst instantiation
```

Verilog Instantiation Template

```
// OFDDRRSE: Double Data Rate Input Register with Sync. Clear, Sync. Preset
            and Clock Enable.
             Virtex-II/II-Pro, Spartan-3
// Xilinx HDL Libraries Guide, version 10.1.2
OFDDRRSE OFDDRRSE_inst (
.Q(Q), \hspace{1cm} // Data output (connect directly to top-level port)
.C0(C0),
           // 0 degree clock input
.C1(C1),
          // 180 degree clock input
          // Clock enable input
.CE(CE),
           // Posedge data input
.D0(D0),
.D1(D1),
          // Negedge data input
.R(R),
           // Synchronous reset input
           // Synchronous preset input
.S(S)
);
// End of OFDDRRSE_inst instantiation
```

For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

152 www.xilinx.com 10.1

OFDDRTCPE

Primitive: Dual Data Rate D Flip-Flop with Active-Low 3-State Output Buffer, Clock Enable, and Asynchro-nous Preset and Clear

Introduction

This design element is a dual data rate (DDR) D flip-flop with clock enable (CE) and asynchronous preset and clear whose output is enabled by a 3-state buffer. It consists of a dual data rate flip-flop (FDDRCPE) and a 3-state output buffer (OBUFT). The data output (O) of the flip-flop is connected to the input of the output buffer (OBUFT). The output of the OBUFT is connected to an OPAD or IOPAD.

When the active-Low enable input (T) is Low, output is enabled and the data on the flip-flop's Q output appears on the OBUFT's O output. When the asynchronous PRE is High and CLR is Low, the O output is preset High. When CLR is High, O is set Low. Data on the D0 input is loaded into the flip-flop when PRE and CLR are Low and CE is High on the Low-to-High C0 clock transition. Data on the D1 input is loaded into the flip-flop when PRE and CLR are Low and CE is High on the Low-to-High C1 clock transition.

When T is High, outputs are high impedance (Off). When CE is Low and T is Low, the outputs do not change.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

The INIT attribute does not apply to this design element.

Logic Table

Inputs	Inputs					Outputs		
C0	C1	CE	D0	D1	CLR	PRE	T	0
Χ	Χ	Χ	X	Χ	X	X	1	Z
Χ	Χ	Χ	X	Χ	1	0	0	0
Χ	Χ	Χ	Χ	Χ	0	1	0	1
Χ	Χ	Χ	X	X	1	1	0	0
X	Χ	0	X	Χ	0	0	0	No Change
\uparrow	Х	1	D0	X	0	0	0	D0
Х	\uparrow	1	X	D1	0	0	0	D1

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- OFDDRTCPE: Double Data Rate Output Register with Async. Clear, Async. Preset
              and Clock Enable with 3-state. Virtex-II/II-Pro, Spartan-3
-- Xilinx HDL Libraries Guide, version 10.1.2
OFDDRTCPE_inst : OFDDRTCPE
port map (
             -- Data output (connect directly to top-level port)
0 => 0,
C0 => C0,
           -- 0 degree clock input
C1 => C1,
             -- 180 degree clock input
CE => CE,
             -- Clock enable input
CLR => CLR, -- Asynchronous reset input
D0 => D0, -- Posedge data input
D1 => D1, -- Negedge data input
PRE => PRE, -- Asynchronous preset input
T => T
             -- 3-state enable input
);
-- End of OFDDRTCPE_inst instantiation
```

Verilog Instantiation Template

```
// OFDDRTCPE: Double Data Rate Output Register with Async. Clear, Async. Preset
             and Clock Enable with 3-state.
              Virtex-II/II-Pro, Spartan-3
// Xilinx HDL Libraries Guide, version 10.1.2
OFDDRTCPE OFDDRTCPE_inst (
          // Data output (connect directly to top-level port)
.0(0),
.C0(C0),
           // 0 degree clock input
         // 180 degree clock input
.C1(C1),
           // Clock enable input
.CE(CE),
.CLR(CLR), // Asynchronous reset input
.DO(DO), // Posedge data input
           // Negedge data input
.D1(D1),
.PRE(PRE), // Asynchronous preset input
.T(T)
           // 3-state enable input
);
// End of OFDDRTCPE_inst instantiation
```

For More Information

- See the *Spartan-3 User Guide*.
- See the Spartan-3 Data Sheets.

154 www.xilinx.com 10.1

OFDDRTRSE

Primitive: Dual Data Rate D Flip-Flop with Active -Low 3-State Output Buffer, Synchronous Reset and Set, and Clock Enable

Introduction

This design element is a dual data rate (DDR) D flip-flop with clock enable (CE) and synchronous reset and set whose output is enabled by a 3-state buffer. It consists of a dual data rate flip-flop (FDDRRSE) and a 3-state output buffer (OBUFT). The data output (O) of the flip-flop is connected to the input of the output buffer (OBUFT). The output of the OBUFT is connected to an OPAD or IOPAD.

When the active-Low enable input (T) is Low, output is enabled and the data on the flip-flop's Q output appears on the OBUFT's O output. On a Low-to-High clock transition (C0 or C1), a High R input resets the Q output Low; a Low R input with a High S input sets O High. When both R and S are Low and clock enable is High, data on the D0 input is loaded into the flip-flop on a Low-to-High C0 clock transition and data on the D1 input is loaded into the flip-flop on a Low-to-High C1 clock transition.

When T is High, outputs are high impedance (Off). When CE is Low and T is Low, the outputs do not change.

This flip-flop is asynchronously cleared, outputs Low, when power is applied. For FPGA devices, power-on conditions are simulated when global set/reset (GSR) is active. GSR defaults to active-High but can be inverted by adding an inverter in front of the GSR input of the appropriate STARTUP_architecture symbol.

The INIT attribute does not apply to this design elements components

Logic Table

Inputs	Inputs					Outputs		
C0	C1	CE	D0	D1	R	S	T	О
Χ	X	X	Х	Χ	X	Х	1	Z
1	Х	Χ	Х	X	1	0	0	0
\uparrow	Х	X	Х	Х	0	1	0	1
1	Х	X	Х	Х	1	1	0	0
Х	1	Х	Х	Х	1	0	0	0
X	1	Χ	X	Χ	0	1	0	1
Х	1	Х	Х	Х	1	1	0	0
Х	Х	0	Х	Х	0	0	0	No Change
1	X	1	D0	X	0	0	0	D0
Х	1	1	Х	D1	0	0	0	D1

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- OFDDRTRSE: Double Data Rate Input Register with Sync. Clear, Sync. Preset
             and Clock Enable with 3-state. Virtex-II/II-Pro, Spartan-3
-- Xilinx HDL Libraries Guide, version 10.1.2
OFDDRTRSE_inst : OFDDRTRSE
port map (
             -- Data output (connect directly to top-level port)
0 => 0,
C0 => C0,
           -- 0 degree clock input
C1 => C1,
            -- 180 degree clock input
CE => CE,
            -- Clock enable input
D0 => D0,
            -- Posedge data input
D1 \Rightarrow D1,
            -- Negedge data input
R => R,
            -- Synchronous reset input
S => S,
            -- Synchronous preset input
T => T
            -- 3-state enable input
);
-- End of OFDDRTRSE_inst instantiation
```

Verilog Instantiation Template

```
// OFDDRTRSE: Double Data Rate Input Register with Sync. Clear, Sync. Preset
             and Clock Enable with 3-state.
             Virtex-II/II-Pro, Spartan-3
// Xilinx HDL Libraries Guide, version 10.1.2
OFDDRTRSE OFDDRTRSE_inst (
.Q(Q),
          // Data output (connect directly to top-level port)
.C0(C0),
           // 0 degree clock input
.C1(C1),
          // 180 degree clock input
           // Clock enable input
.CE(CE),
.D0(D0),
           // Posedge data input
.D1(D1),
           // Negedge data input
           // Synchronous reset input
.R(R),
.S(S),
           // Synchronous preset input
.T(T)
           // 3-state enable input
);
// End of OFDDRTRSE_inst instantiation
```

For More Information

- See the Spartan-3 User Guide.
- See the Spartan-3 Data Sheets.

156 www.xilinx.com 10.1

PULLDOWN

Primitive: Resistor to GND for Input Pads, Open-Drain, and 3-State Outputs

PULLDOWN

Introduction

This resistor element is connected to input, output, or bidirectional pads to guarantee a logic Low level for nodes that might float.

Port Descriptions

Port	Direction	Width	Function
0	Output	1	Pulldown output (connect directly to top level port)

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;

-- PULLDOWN: I/O Buffer Weak Pull-down
-- All FPGA
-- Xilinx HDL Libraries Guide, version 10.1.2

PULLDOWN_inst : PULLDOWN
port map (
0 => 0 -- Pulldown output (connect directly to top-level port));

-- End of PULLDOWN_inst instantiation
```

Verilog Instantiation Template

```
// PULLDOWN: I/O Buffer Weak Pull-down
// All FPGA
// Xilinx HDL Libraries Guide, version 10.1.2
```


- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

PULLUP

Primitive: Resistor to VCC for Input PADs, Open-Drain, and 3-State Outputs

Introduction

This design element allows for an input, 3-state output or bi-directional port to be driven to a weak high value when not being driven by an internal or external source. This element establishes a High logic level for open-drain elements and macros when all the drivers are off.

Port Descriptions

Port	Direction	Width	Function
О	Output	1	Pullup output (connect directly to top level port)

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration.

Verilog Instantiation Template

```
// PULLUP: I/O Buffer Weak Pull-up
// All FPGA, CoolRunner-II
// Xilinx HDL Libraries Guide, version 10.1.2
```

Library UNISIM;

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAM16X1D

Primitive: 16-Deep by 1-Wide Static Dual Port Synchronous RAM

Introduction

This element is a 16-word by 1-bit static dual port random access memory with synchronous write capability. The device has two address ports: the read address (DPRA3–DPRA0) and the write address (A3–A0). These two address ports are asynchronous. The read address controls the location of the data driven out of the output pin (DPO), and the write address controls the destination of a valid write transaction. When the write enable (WE) is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected.

When WE is High, any positive transition on (WCLK) loads the data on the data input (D) into the word selected by the 4-bit write address. For predictable performance, write address and data inputs must be stable before a Low-to-High (WCLK) transition. This RAM block assumes an active-High (WCLK). (WCLK) can be active-High or active-Low. Any inverter placed on the (WCLK) input net is absorbed into the block.

The SPO output reflects the data in the memory cell addressed by A3 – A0. The DPO output reflects the data in the memory cell addressed by DPRA3–DPRA0.

Note The write process is not affected by the address on the read address port.

You can use the INIT attribute to directly specify an initial value. The value must be a hexadecimal number, for example, INIT=ABAC. If the INIT attribute is not specified, the RAM is initialized with all zeros.

Logic Table

Mode selection is shown in the following logic table:

Inputs			Outputs	
WE (mode)	WCLK	D	SPO	DPO
0 (read)	X	X	data_a	data_d
1 (read)	0	Χ	data_a	data_d
1 (read)	1	X	data_a	data_d
1 (write)	\uparrow	D	D	data_d

Inputs			Outputs		
WE (mode)	WCLK	D	SPO	DPO	
1 (read)	\downarrow	X	data_a	data_d	
data_a = word addressed by bits A3-A0					
data_d = word addressed by b	its DPRA3-DPRA0				

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros.	Initializes RAMs, registers, and look-up tables.

VHDL Instantiation Template

-- End of RAM16X1D_inst instantiation

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

Libraries Guide

Verilog Instantiation Template

```
// RAM16X1D: 16 x 1 positive edge write, asynchronous read dual-port distributed RAM
               All FPGAs
// Xilinx HDL Libraries Guide, version 10.1.2
RAM16X1D #(
.INIT(16'h0000) // Initial contents of RAM
) RAM16X1D_inst (
.DPO(DPO), // Read-only 1-bit data output for DPRA .SPO(SPO), // R/W 1-bit data output for AO-A3
              // R/W address[0] input bit
// R/W address[1] input bit
// R/W address[2] input bit
.A0(A0),
.A1(A1),
                 // R/W address[2] input bit
.A2(A2),
.A3(A3),
                // R/W address[3] input bit
.D(D), // Write 1-bit data input
.DPRAO(DPRAO), // Read address[0] input bit
.DPRA1(DPRA1), // Read address[1] input bit
.DPRA2(DPRA2), // Read address[2] input bit
.DPRA3(DPRA3), // Read address[3] input bit
.WCLK(WCLK), // Write clock input
.WE(WE)
                 // Write enable input
);
// End of RAM16X1D_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAM16X1D_1

Primitive: 16-Deep by 1-Wide Static Dual Port Synchronous RAM with Negative-Edge Clock

Introduction

This is a 16-word by 1-bit static dual port random access memory with synchronous write capability and negative-edge clock. The device has two separate address ports: the read address (DPRA3–DPRA0) and the write address (A3–A0). These two address ports are asynchronous. The read address controls the location of the data driven out of the output pin (DPO), and the write address controls the destination of a valid write transaction.

When the write enable (WE) is set to Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When (WE) is High, any negative transition on (WCLK) loads the data on the data input (D) into the word selected by the 4-bit write address. For predictable performance, write address and data inputs must be stable before a High-to-Low WCLK transition. This RAM block assumes an active-High (WCLK). (WCLK) can be active-High or active-Low. Any inverter placed on the (WCLK) input net is absorbed into the block.

You can initialize RAM16X1D_1 during configuration using the INIT attribute.

The SPO output reflects the data in the memory cell addressed by A3–A0. The DPO output reflects the data in the memory cell addressed by DPRA3–DPRA0.

Note The write process is not affected by the address on the read address port.

Logic Table

Mode selection is shown in the following logic table:

Inputs			Outputs	Outputs	
WE (mode)	WCLK	D	SPO	DPO	
0 (read)	X	X	data_a	data_d	
1 (read)	0	X	data_a	data_d	
1 (read)	1	X	data_a	data_d	
1 (write)	\downarrow	D	D	data_d	
1 (read)	↑	X	data_a	data_d	

data_a = word addressed by bits A3 – A0

data_d = word addressed by bits DPRA3-DPRA0

Port Descriptions

Port	Direction	Width	Function
DPO	Output	1	Read-only 1-Bit data output
SPO	Output	1	R/W 1-Bit data output
A0	Input	1	R/W address[0] input
A1	Input	1	R/W address[1] input
A2	Input	1	R/W address[2] input
A3	Input	1	R/W address[3] input
D	Input	1	Write 1-Bit data input
DPRA0	Input	1	Read-only address[0] input
DPRA1	Input	1	Read-only address[1] input
DPRA2	Input	1	Read-only address[2] input
DPRA3	Input	1	Read-only address[3] input
WCLK	Input	1	Write clock input
WE	Input	1	Write enable input

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Initializes RAMs, registers, and look-up tables.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

Verilog Instantiation Template

```
// RAM16X1D_1: 16 x 1 negative edge write, asynchronous read dual-port distributed RAM
                 Virtex/E/-II/-II-Pro, Spartan-II/IIE/3/3E/3A
// Xilinx HDL Libraries Guide, version 10.1.2
RAM16X1D_1 #(
.INIT(16'h0000) // Initial contents of RAM
) RAM16X1D_1_inst (
             // Read-only 1-bit data output
.DPO(DPO),
                // R/W 1-bit data output
.SPO(SPO),
              // R/W address[0] input bit
// R/W address[1] input bit
.A0(A0),
.A1(A1),
.A2(A2),
                // R/W address[2] input bit
.A3(A3),
               // R/W address[3] input bit
.D(D), // Write 1-bit data input
.DPRAO(DPRAO), // Read-only address[0] input bit
.DPRA1(DPRA1), // Read-only address[1] input bit
.DPRA2(DPRA2), // Read-only address[2] input bit .DPRA3(DPRA3), // Read-only address[3] input bit
.WCLK(WCLK), // Write clock input
.WE(WE)
                // Write enable input
// End of RAM16X1D_1_inst instantiation
```

For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

166

RAM16X1S

Primitive: 16-Deep by 1-Wide Static Synchronous RAM

Introduction

This element is a 16-word by 1-bit static random access memory with synchronous write capability. When the write enable (WE) is set Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When WE is set High, any positive transition on WCLK loads the data on the data input (D) into the word selected by the 4-bit address (A3 – A0). This RAM block assumes an active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at the location defined by the values on the address pins. You can initialize RAM16X1S during configuration using the INIT attribute.

Logic Table

Inputs	Outputs				
WE(mode)	WCLK	D	О		
0 (read)	X	X	Data		
1 (read)	0	X	Data		
1 (read)	1	X	Data		
1 (write)	↑	D	D		
1 (read)	↓	X	Data		
Data = word address	Data = word addressed by bits A3 – A0				

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Specifies initial contents of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAM16X1S: 16 x 1 posedge write distributed => LUT RAM
            All FPGA
-- Xilinx HDL Libraries Guide, version 10.1.2
RAM16X1S_inst : RAM16X1S
generic map (
INIT => X"0000")
port map (
             -- RAM output
0 => 0,
-- RAM address[3] input
-- RAM data input
A3 => A3,
D \Rightarrow D,
WCLK => WCLK, -- Write clock input
WE => WE
             -- Write enable input
-- End of RAM16X1S_inst instantiation
```

Verilog Instantiation Template

```
// RAM16X1S: 16 x 1 posedge write distributed (LUT) RAM
              All FPGA
// Xilinx HDL Libraries Guide, version 10.1.2
RAM16X1S #(
.INIT(16'h0000) // Initial contents of RAM
) RAM16X1S_inst (
            // RAM output
           // RAM address[0] input
// RAM address[1] input
// RAM address[2] input
.A0(A0),
.A1(A1),
.A2(A2),
            // RAM address[3] input
// RAM data input
.A3(A3),
.D(D).
.WCLK(WCLK), // Write clock input
.WE(WE)
              // Write enable input
// End of RAM16X1S_inst instantiation
```

For More Information

- See the *Spartan-3 User Guide*.
- See the Spartan-3 Data Sheets.

168 www.xilinx.com 10.1

RAM16X1S_1

Primitive: 16-Deep by 1-Wide Static Synchronous RAM with Negative-Edge Clock

Introduction

This element is a 16-word by 1-bit static random access memory with synchronous write capability and negative-edge clock. When the write enable (WE) is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When (WE) is High, any negative transition on (WCLK) loads the data on the data input (D) into the word selected by the 4-bit address (A3 – A0). For predictable performance, address and data inputs must be stable before a High-to-Low WCLK transition. This RAM block assumes an active-Low (WCLK). However, (WCLK) can be active-High or active-Low. Any inverter placed on the (WCLK) input net is absorbed into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at the location defined by the values on the address pins.

You can initialize this element during configuration using the INIT attribute.

Logic Table

Inputs	Outputs			
WE(mode)	WCLK	D	О	
0 (read)	X	Х	Data	
1 (read)	0	Х	Data	
1 (read)	1	X	Data	
1 (write)	\	D	D	
1 (read)	1	X	Data	
Data = word addressed by bits A3 – A0				

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Specifies initial contents of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAM16X1S_1: 16 x 1 negedge write distributed => LUT RAM
                All FPGA
-- Xilinx HDL Libraries Guide, version 10.1.2
RAM16X1S_1_inst : RAM16X1S_1
generic map (
INIT => X"0000")
port map (
              -- RAM output
0 => 0,
A0 => A0, -- RAM address[0] input
              -- RAM address[1] input
-- RAM address[2] input
A1 => A1,
A2 => A2,
             -- RAM address[3] input
-- RAM data input
A3 => A3,
D \Rightarrow D,
WCLK => WCLK, -- Write clock input
WE => WE
              -- Write enable input
-- End of RAM16X1S_1_inst instantiation
```

Verilog Instantiation Template

```
// RAM16X1S_1: 16 x 1 negedge write distributed (LUT) RAM
                 All FPGA
// Xilinx HDL Libraries Guide, version 10.1.2
RAM16X1S_1 #(
.INIT(16'h0000) // Initial contents of RAM
) RAM16X1S_1_inst (
          // RAM output
           // RAM address[0] input
// RAM address[1] input
// RAM address[2] input
.A0(A0),
.A1(A1),
.A2(A2),
            // RAM address[3] input
// RAM data input
.A3(A3),
.D(D).
.WCLK(WCLK), // Write clock input
.WE(WE)
              // Write enable input
// End of RAM16X1S_1_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the Spartan-3 Data Sheets.

RAM16X2S

Primitive: 16-Deep by 2-Wide Static Synchronous RAM

Introduction

This element is a 16-word by 2-bit static random access memory with synchronous write capability. When the write enable (WE) is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When WE is High, any positive transition on WCLK loads the data on the data input (D1–D0) into the word selected by the 4-bit address (A3–A0). For predictable performance, address and data inputs must be stable before a Low-to-High WCLK transition. This RAM block assumes an active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pins (O1–O0) is the data that is stored in the RAM at the location defined by the values on the address pins.

You can use the INIT_xx properties to specify the initial contents of a Virtex-4 wide RAM. INIT_00 initializes the RAM cells corresponding to the O0 output, INIT_01 initializes the cells corresponding to the O1 output, etc. For example, a RAM16X2S instance is initialized by INIT_00 and INIT_01 containing 4 hex characters each. A RAM16X8S instance is initialized by eight properties INIT_00 through INIT_07 containing 4 hex characters each. A RAM64x2S instance is completely initialized by two properties INIT_00 and INIT_01 containing 16 hex characters each.

Except for Virtex-4 devices, the initial contents of this element cannot be specified directly.

Logic Table

Inputs	Outputs			
WE (mode)	WCLK	D1-D0	O1-O0	
0 (read)	X	X	Data	
1(read)	0	Χ	Data	
1(read)	1	Χ	Data	
1(write)	\uparrow	D1-D0	D1-D0	
1 (read)	\downarrow	X	Data	
Data = word addressed by bits A3 – A0				

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT_00 to INIT_01	Hexadecimal	Any 16-Bit Value		Initializes RAMs, registers, and look-up tables.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAM16X2S: 16 x 2 posedge write distributed => LUT RAM
              Virtex-II/II-Pro, Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2
RAM16X2S_inst : RAM16X2S
generic map (
INIT_00 => X"0000", -- INIT for bit 0 of RAM
INIT_01 => X"0000") -- INIT for bit 1 of RAM
port map (
00 => 00,
               -- RAM data[0] output
            -- RAM data[1] output
01 => 01,
A0 => A0,
             -- RAM address[0] input
             -- RAM address[1] input
-- RAM address[2] input
A1 => A1,
A2 => A2,
A3 => A3,
              -- RAM address[3] input
             -- RAM data[0] input
-- RAM data[1] input
D0 => D0,
D1 => D1,
WCLK => WCLK, -- Write clock input
WE => WE
               -- Write enable input
);
-- End of RAM16X2S_inst instantiation
```

Verilog Instantiation Template

```
// RAM16X2S: 16 x 2 posedge write distributed (LUT) RAM
// Virtex-II/II-Pro, Spartan-3/3E/3A
// Xilinx HDL Libraries Guide, version 10.1.2

RAM16X2S #(
   INIT_00(16'h0000), // Initial contents of bit 0 of RAM
   INIT_01(16'h0000) // Initial contents of bit 1 of RAM
) RAM16X2S_inst (
   .00(00), // RAM data[0] output
   .01(01), // RAM data[1] output
   .A0(A0), // RAM address[0] input
   .A1(A1), // RAM address[1] input
   .A2(A2), // RAM address[2] input
   .A3(A3), // RAM address[3] input
```



```
.D0(D0), // RAM data[0] input
.D1(D1), // RAM data[1] input
.WCLK(WCLK), // Write clock input
.WE(WE) // Write enable input
);
// End of RAM16X2S_inst instantiation
```

- See the Spartan-3 User Guide.
- See the *Spartan-3 Data Sheets*.

RAM16X4S

Primitive: 16-Deep by 4-Wide Static Synchronous RAM

Introduction

This element is a 16-word by 4-bit static random access memory with synchronous write capability. When the write enable (WE) is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When WE is High, any positive transition on WCLK loads the data on the data input (D3 – D0) into the word selected by the 4-bit address (A3 – A0). For predictable performance, address and data inputs must be stable before a Low-to-High WCLK transition. This RAM block assumes an active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pins (O3 - O0) is the data that is stored in the RAM at the location defined by the values on the address pins.

Logic Table

Inputs			Outputs
WE (mode)	WCLK	D3 – D0	O3 – O0
0 (read)	X	X	Data
1 (read)	0	X	Data
1 (read)	1	X	Data
1 (write)	↑	D3-D0	D3-D0
1 (read)	\	X	Data
Data = word addressed by bits A3 – A0.			

Design Entry Method

Instantiation	Yes
Inference	Recommended

Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT_00 to INIT_03	Hexadecimal	Any 16-Bit Value	All zeros	INIT for bit 0 of RAM

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAM16X4S: 16 x 4 posedge write distributed => LUT RAM
               Virtex-II/II-Pro, Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2
RAM16X4S_inst : RAM16X4S
generic map (
INIT_00 => X"0000", -- INIT for bit 0 of RAM
INIT_01 => X"0000", -- INIT for bit 1 of RAM
INIT_02 => X"0000", -- INIT for bit 2 of RAM
INIT_03 => X"0000") -- INIT for bit 3 of RAM
port map (
00 => 00,
                -- RAM data[0] output
01 => 01,
             -- RAM data[1] output
-- RAM data[2] output
-- RAM data[3] output
02 => 02,
03 => 03,
A0 => A0, -- RAM address[0] input
A1 => A1, -- RAM address[1] input
A2 \Rightarrow A2,
                -- RAM address[2] input
              -- RAM address[3] input
-- RAM data[0] input
A3 => A3,
D0 => D0,
D1 => D1,
               -- RAM data[1] input
              -- RAM data[2] input
-- RAM data[3] input
D2 => D2,
D3 => D3,
WCLK => WCLK, -- Write clock input
WE => WE
                -- Write enable input
);
-- End of RAM16X4S_inst instantiation
```

Verilog Instantiation Template

```
// RAM16X4S: 16 x 4 posedge write distributed (LUT) RAM
// Virtex-II/II-Pro, Spartan-3/3E/3A
// Xilinx HDL Libraries Guide, version 10.1.2

RAM16X4S #(
    INIT_00(16'h0000), // INIT for bit 0 of RAM
    INIT_01(16'h0000), // INIT for bit 1 of RAM
    INIT_02(16'h0000), // INIT for bit 2 of RAM
    INIT_03(16'h0000) // INIT for bit 3 of RAM
) RAM16X4S_inst (
    O0(00), // RAM data[0] output
    O1(01), // RAM data[1] output
    O2(02), // RAM data[2] output
    O3(03), // RAM data[3] output
    A0(A0), // RAM address[0] input
```

Libraries Guide


```
.Al(Al), // RAM address[1] input
.A2(A2), // RAM address[2] input
.A3(A3), // RAM address[3] input
.D0(D0), // RAM data[0] input
.D1(D1), // RAM data[1] input
.D2(D2), // RAM data[2] input
.D3(D3), // RAM data[3] input
.WCLK(WCLK), // Write clock input
.WE(WE) // Write enable input
);

// End of RAM16X4S_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAM16X8S

Primitive: 16-Deep by 8-Wide Static Synchronous RAM

Introduction

This element is a 16-word by 8-bit static random access memory with synchronous write capability. When the write enable (WE) is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When WE is High, any positive transition on WCLK loads the data on data inputs (D7–D0) into the word selected by the 4-bit address (A3–A0). For predictable performance, address and data inputs must be stable before a Low-to-High WCLK transition. This RAM block assumes an active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pins (O7–O0) is the data that is stored in the RAM at the location defined by the values on the address pins.

Logic Table

Inputs			Outputs
WE (mode)	WCLK	D7-D0	O7-O0
0 (read)	Х	Х	Data
1 (read)	0	X	Data
1 (read)	1	X	Data
1 (write)	1	D7-D0	D7-D0
1 (read)	\downarrow	X	Data
Data = word addressed	d by bits A3–A0	•	•

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_07	Hexadecimal	Any 16-Bit Value	All zeros	Initializes RAMs, registers, and look-up tables.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration.

```
Library UNISIM;
use UNISIM.vcomponents.all;
-- RAM16X8S: 16 x 8 posedge write distributed => LUT RAM
              Virtex-II/II-Pro
-- Xilinx HDL Libraries Guide, version 10.1.2
RAM16X8S_inst : RAM16X8S
generic map (
INIT_00 => X"0000", -- INIT for bit 0 of RAM
INIT_01 \Rightarrow X"0000", -- INIT for bit 1 of RAM
INIT_02 => X"0000", -- INIT for bit 2 of RAM
INIT_03 => X"0000", -- INIT for bit 3 of RAM
INIT_04 => X"0000", -- INIT for bit 4 of RAM
INIT_05 => X"0000", -- INIT for bit 5 of RAM
INIT_06 => X"0000", -- INIT for bit 6 of RAM
INIT_07 => X"0000") -- INIT for bit 7 of RAM
port map (
               -- 8-bit RAM data output
0 => 0.
A0 => A0,
             -- RAM address[0] input
A1 => A1, -- RAM address[2] input
             -- RAM address[3] input
A3 => A3,
D => D,
               -- 8-bit RAM data input
WCLK => WCLK, -- Write clock input
               -- Write enable input
WE => WE
-- End of RAM16X8S_inst instantiation
```

Verilog Instantiation Template

```
// RAM16X8S: 16 x 8 posedge write distributed (LUT) RAM
                Virtex-II/II-Pro
// Xilinx HDL Libraries Guide, version 10.1.2
RAM16X8S #(
.INIT_00(16'h0000), // INIT for bit 0 of RAM \,
.INIT_01(16'h0000), // INIT for bit 1 of RAM .INIT_02(16'h0000), // INIT for bit 2 of RAM
.INIT_03(16'h0000), // INIT for bit 3 of RAM .INIT_04(16'h0000), // INIT for bit 4 of RAM .INIT_05(16'h0000), // INIT for bit 5 of RAM
.INIT_06(16'h0000), // INIT for bit 6 of RAM
.INIT_07(16'h0000) // INIT for bit 7 of RAM
) RAM16X8S_inst (
            // 8-bit RAM data output
.0(0),
              // RAM address[0] input
// RAM address[1] input
.A0(A0),
.A1(A1),
.A2(A2),
              // RAM address[2] input
.A3(A3),
               // RAM address[3] input
               // 8-bit RAM data input
.D(D),
.WCLK(WCLK), // Write clock input
.WE(WE)
               // Write enable input
```


);
// End of RAM16X8S_inst instantiation

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAM32X1S

Primitive: 32-Deep by 1-Wide Static Synchronous RAM

Introduction

The design element is a 32-word by 1-bit static random access memory with synchronous write capability. When the write enable is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When (WE) is High, any positive transition on (WCLK) loads the data on the data input (D) into the word selected by the 5-bit address (A4-A0). For predictable performance, address and data inputs must be stable before a Low-to-High (WCLK) transition. This RAM block assumes an active-High (WCLK). However, (WCLK) can be active-High or active-Low. Any inverter placed on the (WCLK) input net is absorbed into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at the location defined by the values on the address pins. You can initialize RAM32X1S during configuration using the INIT attribute.

Logic Table

Inputs			Outputs
WE (Mode)	WCLK	D	О
0 (read)	X	X	Data
1 (read)	0	X	Data
1 (read)	1	X	Data
1 (write)	\downarrow	D	D
1 (read)	↑	X	Data

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Attribute	Туре	Allowed Values	Default	Descriptions
INIT	Hexadecimal	Any 32-Bit Value	All zeros	Specifies initial contents of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAM32X1S: 32 x 1 posedge write distributed => LUT RAM
             All FPGA
-- Xilinx HDL Libraries Guide, version 10.1.2
RAM32X1S_inst : RAM32X1S
generic map (
INIT => X"00000000")
port map (
0 => 0,
               -- RAM output
            -- RAM address[0] input
-- RAM address[1] input
A0 => A0,
A1 => A1,
A2 => A2,
             -- RAM address[2] input
A3 => A3,
              -- RAM address[3] input
             -- RAM address[4] input
-- RAM data input
A4 => A4,
D => D,
WCLK => WCLK, -- Write clock input
              -- Write enable input
WE => WE
);
-- End of RAM32X1S inst instantiation
```

Verilog Instantiation Template

```
// RAM32X1S: 32 x 1 posedge write distributed (LUT) RAM
               All FPGA
// Xilinx HDL Libraries Guide, version 10.1.2
RAM32X1S #(
.INIT(32'h00000000) // Initial contents of RAM
) RAM32X1S_inst (
        // RAM output
, // RAM address[0] input
, // RAM address[1] input
, // RAM address[2] input
, // RAM address[3] input
.A0(A0),
.A1(A1),
.A2(A2),
.A3(A3),
             // RAM address[4] input
.A4(A4),
               // RAM data input
.D(D),
.WCLK(WCLK), // Write clock input
              // Write enable input
.WE(WE)
);
// End of RAM32X1S_inst instantiation
```

For More Information

- See the *Spartan-3 User Guide*.
- See the Spartan-3 Data Sheets.

Libraries Guide

RAM32X1S_1

Primitive: 32-Deep by 1-Wide Static Synchronous RAM with Negative-Edge Clock

Introduction

The design element is a 32-word by 1-bit static random access memory with synchronous write capability. When the write enable is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When (WE) is High, any negative transition on (WCLK) loads the data on the data input (D) into the word selected by the 5-bit address (A4-A0). For predictable performance, address and data inputs must be stable before a High-to-Low (WCLK) transition. This RAM block assumes an active-Low (WCLK). However, (WCLK) can be active-High or active-Low. Any inverter placed on the (WCLK) input net is absorbed into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at the location defined by the values on the address pins. You can initialize RAM32X1S_1 during configuration using the INIT attribute.

Logic Table

Inputs			Outputs		
WE (Mode)	WCLK	D	О		
0 (read)	X	X	Data		
1 (read)	0	X	Data		
1 (read)	1	X	Data		
1 (write)	\downarrow	D	D		
1 (read) ↑ X Data					
Data = word addressed by	y bits A4 – A0				

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Attribute	Type	Allowed Values	Default	Descriptions
INIT	Hexadecimal	Any 32-Bit Value	0	Initializes RAMs, registers, and look-up tables.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAM32X1S_1: 32 x 1 negedge write distributed => LUT RAM
                    All FPGA
-- Xilinx HDL Libraries Guide, version 10.1.2
RAM32X1S_1_inst : RAM32X1S_1
generic map (
INIT => X"0000000")
port map (
                  -- RAM output
0 => 0,
A0 => A0, -- RAM address[0] input
A0 => A0, -- RAM address[0] input
A1 => A1, -- RAM address[1] input
A2 => A2, -- RAM address[2] input
A3 => A3, -- RAM address[3] input
A4 => A4, -- RAM address[4] input
D => D, -- RAM data input
WCLK => WCLK, -- Write clock input
WE => WE
             -- Write enable input
-- End of RAM32X1S_1_inst instantiation
```

Verilog Instantiation Template

184

```
// RAM32X1S_1: 32 x 1 negedge write distributed (LUT) RAM
                 Virtex/E/-II/-II-Pro, Spartan-II/IIE/3/3A
// Xilinx HDL Libraries Guide, version 10.1.2
RAM32X1S_1 #(
.INIT(32'h00000000) // Initial contents of RAM
)RAM32X1S_1_inst (
        // RAM output
, // RAM address[0] input
, // RAM address[1] input
, // RAM address[2] input
, // RAM address[3] input
.A0(A0),
.A1(A1),
.A2(A2),
.A3(A3),
           // RAM address[4] input
.A4(A4),
              // RAM data input
.D(D),
.WCLK(WCLK), // Write clock input
.WE(WE)
              // Write enable input
// End of RAM32X1S_1_inst instantiation
```

www.xilinx.com

10.1

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAM32X2S

Primitive: 32-Deep by 2-Wide Static Synchronous RAM

Introduction

The design element is a 32-word by 2-bit static random access memory with synchronous write capability. When the write enable (WE) is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When (WE) is High, any positive transition on (WCLK) loads the data on the data input (D1-D0) into the word selected by the 5-bit address (A4-A0). For predictable performance, address and data inputs must be stable before a Low-to-High (WCLK) transition. This RAM block assumes an active-High (WCLK). However, (WCLK) can be active-High or active-Low. Any inverter placed on the (WCLK) input net is absorbed into the block. The signal output on the data output pins (O1-O0) is the data that is stored in the RAM at the location defined by the values on the address pins.

You can use the INIT_00 and INIT_01 properties to specify the initial contents of RAM32X2S.

Logic Table

Inputs			Outputs		
WE (Mode)	WCLK	D	O0-O1		
0 (read)	X	X	Data		
1 (read)	0	X	Data		
1 (read)	1	X	Data		
1 (write)	\uparrow	D1-D0	D1-D0		
1 (read) ↓ X Data					
Data = word addresse	ed by bits A4 A0		•		

Instantiation	Yes
Inference	Recommended

Coregen and wizards	No
Macro support	No

Attribute	Type	Allowed Values	Default	Descriptions
INIT_00	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 0 of RAM.
INIT_01	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 1 of RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAM32X2S: 32 x 2 posedge write distributed => LUT RAM
             Virtex-II/II-Pro, Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2
RAM32X2S inst : RAM32X2S
generic map (
INIT_00 => X"00000000", -- INIT for bit 0 of RAM
INIT 01 => X"00000000") -- INIT for bit 1 of RAM
port map (
00 => 00,
              -- RAM data[0] output
01 => 01, -- RAM data[1] output
A0 => A0, -- RAM address[0] input
            -- RAM address[1] input
A1 => A1,
A2 => A2,
              -- RAM address[2] input
A3 => A3,
              -- RAM address[3] input
A4 => A4,
             -- RAM address[4] input
            -- RAM data[0] input
-- RAM data[1] input
D0 \Rightarrow D0,
D1 => D1,
WCLK => WCLK, -- Write clock input
              -- Write enable input
WE => WE
);
-- End of RAM32X2S_inst instantiation
```

Verilog Instantiation Template

```
// RAM32X2S: 32 x 2 posedge write distributed (LUT) RAM
              Virtex-II/II-Pro, Spartan-3/3E/3A
// Xilinx HDL Libraries Guide, version 10.1.2
RAM32X2S #(
.INIT_00(32'h00000000), // INIT for bit 0 of RAM
.INIT_01(32'h00000000) // INIT for bit 1 of RAM
) RAM32X2S_inst (
// RAM address[0] input
// RAM address[1] input
// RAM address[2] input
.A0(A0),
.A1(A1),
.A2(A2),
            // RAM address[3] input
.A3(A3),
            // RAM address[4] input
// RAM data[0] input
.A4(A4),
.D0(D0),
.D1(D1), // RAM data[1] input .WCLK(WCLK), // Write clock input
```



```
.WE(WE) // Write enable input
);

// End of RAM32X2S_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAM32X4S

Primitive: 32-Deep by 4-Wide Static Synchronous RAM

Introduction

This design element is a 32-word by 4-bit static random access memory with synchronous write capability. When the write enable (WE) is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When WE is High, any positive transition on WCLK loads the data on the data inputs (D3-D0) into the word selected by the 5-bit address (A4-A0). For predictable performance, address and data inputs must be stable before a Low-to-High WCLK transition. This RAM block assumes an active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pins (O3-O0) is the data that is stored in the RAM at the location defined by the values on the address pins.

Logic Table

Inputs			Outputs
WE	WCLK	D3-D0	O3-O0
0 (read)	X	X	Data
1 (read)	0	X	Data
1 (read)	1	X	Data
1 (write)	↑	D3-D0	D3-D0
1 (read)	↓	X	Data
Data = word addressed by bits	A4-A0	•	

Instantiation	Yes
Inference	Recommended

Libraries Guide

Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 0 of RAM.
INIT_01	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 1 of RAM.
INIT_02	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 2 of RAM.
INIT_03	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 3 of RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAM32X4S: 32 x 4 posedge write distributed => LUT RAM
               Virtex-II/II-Pro
-- Xilinx HDL Libraries Guide, version 10.1.2
RAM32X4S_inst : RAM32X4S
generic map (
INIT_00 => X"00000000", -- INIT for bit 0 of RAM
INIT_01 => X"00000000", -- INIT for bit 1 of RAM
INIT_02 => X"00000000", -- INIT for bit 2 of RAM
INIT_03 => X"00000000") -- INIT for bit 3 of RAM
port map (
00 => 00, -- RAM data[0] 0....
01 -> 01. -- RAM data[1] output
                -- RAM data[0] output
              -- RAM data[2] output
02 => 02,
03 => 03,
              -- RAM data[3] output
-- RAM address[0] input
A0 => A0,
A1 => A1,
              -- RAM address[1] input
A2 => A2
                -- RAM address[2] input
A3 => A3,
                -- RAM address[3] input
A4 \Rightarrow A4
               -- RAM address[4] input
D0 \Rightarrow D0,
                -- RAM data[0] input
D1 => D1,
               -- RAM data[1] input
D2 \Rightarrow D2
              -- RAM data[2] input
D3 => D3,
                -- RAM data[3] input
WCLK => WCLK, -- Write clock input
                -- Write enable input
WE => WE
);
```

Verilog Instantiation Template

-- End of RAM32X4S_inst instantiation

```
// RAM32X4S: 32 x 4 posedge write distributed (LUT) RAM
// Virtex-II/II-Pro
// Xilinx HDL Libraries Guide, version 10.1.2

RAM32X4S #(
.INIT_00(32'h00000000), // INIT for bit 0 of RAM
.INIT_01(32'h00000000), // INIT for bit 1 of RAM
.INIT_02(32'h00000000), // INIT for bit 2 of RAM
.INIT_03(32'h00000000), // INIT for bit 3 of RAM
```


- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAM32X8S

Primitive: 32-Deep by 8-Wide Static Synchronous RAM

Introduction

This design element is a 32-word by 8-bit static random access memory with synchronous write capability. When the write enable (WE) is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When WE is High, any positive transition on WCLK loads the data on the data inputs (D7 – D0) into the word selected by the 5-bit address (A4 – A0). For predictable performance, address and data inputs must be stable before a Low-to-High WCLK transition. This RAM block assumes an active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pins (O7 - O0) is the data that is stored in the RAM at the location defined by the values on the address pins.

Logic Table

Inputs	Outputs			
WE (mode)	WCLK	D7-D0	O7-O0	
0 (read)	X	X	Data	
1 (read)	0	X	Data	
1 (read)	1	X	Data	
1 (write)	\uparrow	D7-D0	D7-D0	
1 (read)	Data			
Data = word addressed by bits A4 – A0				

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Attribute	Туре	Allowed Values	Default	Description
INIT_00	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 0 of RAM.
INIT_01	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 1 of RAM.
INIT_02	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 2 of RAM.
INIT_03	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 3 of RAM.
INIT_04	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 4 of RAM.
INIT_05	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 5 of RAM.
INIT_06	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 6 of RAM.
INIT_07	Hexadecimal	Any 32-Bit Value	All zeros	INIT for bit 7 of RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAM32X8S: 32 x 8 posedge write distributed => LUT RAM
              Virtex-II/II-Pro
-- Xilinx HDL Libraries Guide, version 10.1.2
RAM32X8S_inst : RAM32X8S
generic map (
INIT_00 => X"00000000", -- INIT for bit 0 of RAM
INIT_01 => X"00000000", -- INIT for bit 1 of RAM
INIT_02 => X"00000000", -- INIT for bit 2 of RAM
INIT_03 => X"00000000", -- INIT for bit 3 of RAM
INIT_04 => X"00000000", -- INIT for bit 4 of RAM
INIT_05 => X"00000000", -- INIT for bit 5 of RAM
INIT_06 => X"00000000", -- INIT for bit 6 of RAM
INIT_07 => X"00000000") -- INIT for bit 7 of RAM
port map (
               -- 8-bit RAM data output
0 => 0,
A0 => A0, -- RAM address[0] input
A1 => A1, -- RAM address[1] input
A2 => A2, -- RAM address[2] input
              -- RAM address[3] input
-- RAM address[4] input
A3 => A3,
A4 => A4,
               -- 8-bit RAM data input
D => D,
WCLK => WCLK, -- Write clock input
WE => WE
                -- Write enable input
);
-- End of RAM32X8S_inst instantiation
```

Verilog Instantiation Template

```
// RAM32X8S: 32 x 8 posedge write distributed (LUT) RAM
// Virtex-II/II-Pro
// Xilinx HDL Libraries Guide, version 10.1.2

RAM32X8S #(
.INIT_00(32'h00000000), // INIT for bit 0 of RAM
.INIT_01(32'h00000000), // INIT for bit 1 of RAM
.INIT_02(32'h00000000), // INIT for bit 2 of RAM
.INIT_03(32'h00000000), // INIT for bit 3 of RAM
```



```
.INIT_04(32'h00000000), // INIT for bit 4 of RAM
.INIT_05(32'h00000000), // INIT for bit 5 of RAM
.INIT_06(32'h00000000), // INIT for bit 6 of RAM
.INIT_07(32'h00000000) // INIT for bit 7 of RAM
) RAM32X8S_inst (
.0(0), // 8-bit RAM data output
.A0(A0), // RAM address[0] input
.A1(A1), // RAM address[1] input
.A2(A2), // RAM address[2] input
.A3(A3), // RAM address[3] input
.A4(A4), // RAM address[4] input
.D(D), // 8-bit RAM data input
.WCLK(WCLK), // Write clock input
.WE(WE) // Write enable input
);
// End of RAM32X8S_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAM64X1S

Primitive: 64-Deep by 1-Wide Static Synchronous RAM

Introduction

This design element is a 64-word by 1-bit static random access memory (RAM) with synchronous write capability. When the write enable is set Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When WE is set High, any positive transition on WCLK loads the data on the data input (D) into the word selected by the 6-bit address (A5 - A0). This RAM block assumes an active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at the location defined by the values on the address pins.

You can initialize this element during configuration using the INIT attribute.

Logic Table

Mode selection is shown in the following logic table

Inputs			Outputs
WE (mode)	WCLK	D	0
0 (read)	X	X	Data
1 (read)	0	X	Data
1 (read)	1	X	Data
1 (write)	\uparrow	D	D
1 (read)	\	X	Data
Data = word addressed by bits A5 – A0			

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Attri	ibute	Type	Allowed Values	Default	Description
INIT		Hexadecimal	Any 64-Bit Value	All zeros	Initializes ROMs, RAMs, registers, and look-up tables.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAM64X1S: 64 x 1 positive edge write, asynchronous read single-port distributed RAM
               Virtex-II/II-Pro/4/5, Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2
RAM64X1S inst : RAM64X1S
generic map (
INIT => X"0000000000000000")
port map (
                 -- 1-bit data output
0 => 0,
              -- Address[0] input bit

-- Address[1] input bit

-- Address[2] input bit

-- Address[3] input bit
A0 => A0,
A1 => A1,
A2 => A2,
A3 => A3,
               -- Address[4] input bit
-- Address[5] input bit
A4 \Rightarrow A4
A5 => A5,
D => D,
                 -- 1-bit data input
WCLK => WCLK, -- Write clock input
                 -- Write enable input
WE => WE
);
-- End of RAM64X1S_inst instantiation
```

Verilog Instantiation Template

```
// RAM64X1S: 64 x 1 positive edge write, asynchronous read single-port distributed RAM
             Virtex-II/II-Pro/4/5, Spartan-3/3E/3A
// Xilinx HDL Libraries Guide, version 10.1.2
.INIT(64'h0000000000000000) // Initial contents of RAM
) RAM64X1S_inst (
.0(0), // 1-bit data output
             // Address[0] input bit
.A0(A0),
.A1(A1),
             // Address[1] input bit
             // Address[2] input bit
.A2(A2),
.A3(A3),
             // Address[3] input bit
              // Address[4] input bit
.A4(A4),
             // Address[5] input bit
.A5(A5),
.D(D), // 1-bit data input .WCLK(WCLK), // Write clock input
              // Write enable input
.WE(WE)
);
// End of RAM64X1S_inst instantiation
```


- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAM64X1S_1

Primitive: 64-Deep by 1-Wide Static Synchronous RAM with Negative-Edge Clock

Introduction

This design element is a 64-word by 1-bit static random access memory with synchronous write capability. When the write enable is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When (WE) is High, any negative transition on (WCLK) loads the data on the data input (D) into the word selected by the 6-bit address (A5 – A0). For predictable performance, address and data inputs must be stable before a High-to-Low (WCLK) transition. This RAM block assumes an active-Low (WCLK). However, (WCLK) can be active-High or active-Low. Any inverter placed on the (WCLK) input net is absorbed into the block.

The signal output on the data output pin (O) is the data that is stored in the RAM at the location defined by the values on the address pins.

You can initialize this element during configuration using the INIT attribute.

Logic Table

Inputs			Outputs
WE (mode)	WCLK	D	0
0 (read)	X	Χ	Data
1 (read)	0	X	Data
1 (read)	1	X	Data
1 (write)	1	D	D
1 (read)	\uparrow	X	Data
Data = word addressed by bits A5 – A0			

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 64-Bit Value	All zeros	Initializes ROMs, RAMs, registers, and look-up tables.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAM64X1S_1: 64 x 1 negative edge write, asynchronous read single-port distributed RAM
                Virtex-II/II-Pro, Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2
RAM64X1S_1_inst : RAM64X1S_1
generic map (
INIT => X"000000000000000")
port map (
0 => 0,
                -- 1-bit data output
              -- Address[0] input bit
-- Address[1] input bit
-- Address[2] input bit
A0 => A0,
A1 => A1,
A2 => A2,
               -- Address[3] input bit
A3 => A3
A4 \Rightarrow A4,
               -- Address[4] input bit
A5 => A5,
               -- Address[5] input bit
D => D,
               -- 1-bit data input
WCLK => WCLK, -- Write clock input
WE => WE
                -- Write enable input
-- End of RAM64X1S_1_inst instantiation
```

Verilog Instantiation Template

```
// RAM64X1S_1: 64 x 1 negative edge write, asynchronous read single-port distributed RAM
               Virtex-II/II-Pro, Spartan-3/3E/3A
// Xilinx HDL Libraries Guide, version 10.1.2
RAM64X1S_1 #(
.INIT(64'h0000000000000000) // Initial contents of RAM
) RAM64X1S_1_inst (
       // 1-bit data output
.0(0),
             // Address[0] input bit
// Address[1] input bit
.A0(A0),
.A1(A1),
.A2(A2),
             // Address[2] input bit
             // Address[3] input bit
.A3(A3),
             // Address[4] input bit
.A4(A4),
             // Address[5] input bit
.A5(A5),
             // 1-bit data input
.D(D),
.WCLK(WCLK), // Write clock input
.WE(WE)
             // Write enable input
// End of RAM64X1S_1_inst instantiation
```

For More Information

• See the *Spartan-3 User Guide*.

• See the *Spartan-3 Data Sheets*.

RAM64X2S

Primitive: 64-Deep by 2-Wide Static Synchronous RAM

Introduction

This design element is a 64-word by 2-bit static random access memory with synchronous write capability. When the write enable (WE) is Low, transitions on the write clock (WCLK) are ignored and data stored in the RAM is not affected. When WE is High, any positive transition on WCLK loads the data on the data input (D1–D0) into the word selected by the 6-bit address (A5–A0). For predictable performance, address and data inputs must be stable before a Low-to-High WCLK transition. This RAM block assumes an active-High WCLK. However, WCLK can be active-High or active-Low. Any inverter placed on the WCLK input net is absorbed into the block.

The signal output on the data output pins (O1–O0) is the data that is stored in the RAM at the location defined by the values on the address pins. You can use the INIT_00 and INIT_01 properties to specify the initial contents of this design element.

Logic Table

Inputs			Outputs
WE (mode)	WCLK	D0-D1	O0-O1
0 (read)	X	X	Data
1 (read)	0	X	Data
1 (read)	1	Χ	Data
1 (write)	↑	D1-D0	D1-D0
1 (read)	\downarrow	Х	Data
Data = word addressed by bits A5-A0			

Instantiation	Yes
Inference	Recommended

Coregen and wizards	No
Macro support	No

Attribute	Type	Allowed Values	Default	Description
INIT_00	Hexadecimal	Any 64-Bit Value	All zeros	Initializes RAMs, registers, and look-up tables.
INIT_01	Hexadecimal	Any 64-Bit Value	All zeros	Initializes RAMs, registers, and look-up tables.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAM64X2S: 64 x 2 positive edge write, asynchronous read single-port distributed RAM
             Virtex-II/II-Pro/4/5
-- Xilinx HDL Libraries Guide, version 10.1.2
RAM64X2S inst : RAM64X2S
generic map (
INIT_00 => X"0000000000000000", -- INIT for bit 0 of RAM
INIT 01 => X"000000000000000000000") -- INIT for bit 1 of RAM
port map (
00 => 00,
              -- Data[0] output
01 => 01,
            -- Data[1] output bit
-- Address[0] input bit
A0 => A0,
A1 => A1,
             -- Address[1] input bit
A2 \Rightarrow A2
              -- Address[2] input bit
             -- Address[3] input bit
A3 => A3,
A4 => A4,
             -- Address[4] input bit
A5 => A5,
              -- Address[5] input bit
D0 => D0,
             -- Data[0] input
D1 => D1,
              -- Data[1] input
WCLK => WCLK, -- Write clock input
              -- Write enable input
WE => WE
);
-- End of RAM64X2S_inst instantiation
```

Verilog Instantiation Template

```
// RAM64X2S: 64 x 2 positive edge write, asynchronous read single-port distributed RAM
             Virtex-II/II-Pro
// Xilinx HDL Libraries Guide, version 10.1.2
RAM64X2S #(
.INIT_00(64'h0000000000000000), // INIT for RAM bit 0 \,
.INIT_01(64'h000000000000000) // INIT for RAM bit 1
) RAM64X2S_inst (
.00(00),
            // Data[0] output
.01(01),
            // Data[1] output bit
            // Address[0] input bit
// Address[1] input bit
.A0(A0),
.A1(A1),
.A2(A2),
            // Address[2] input bit
            // Address[3] input bit
.A3(A3),
            // Address[4] input bit
.A4(A4),
.A5(A5),
            // Address[5] input bit
.D0(D0),
            // Data[0] input
```


- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAMB16_S1

Primitive: 16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 1-bit Port

Introduction

This design element is a dedicated random access memory blocks with synchronous write capability. The block RAM port has 16384 bits of data memory. The cell configuration for this element is listed in the following table.

Data Cells		Parity Cells							
Depth	Width	Depth	Width	Address Bus	Data Bus	Parity Bus			
16384	1	-	-	(13:0)	(0:0)	-			

The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The above description assumes an active High EN, WE, SSR, and CLK. However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Logic Table

Inputs								Outputs				
GSR	EN	SSR	WE	CLK	ADDR	DI	DIP	DO	DOP	RAM Contents		
										Data RAM	Parity RAM	
1	Χ	Χ	Χ	X	Χ	X	Χ	INIT	INIT	No Change	No Change	
0	0	X	Χ	X	X	X	X	No Change	No Change	No Change	No Change	
0	1	1	0	↑	Χ	Χ	Χ	SRVAL	SRVAL	No Change	No Change	
0	1	1	1	\uparrow	addr	data	pdata	SRVAL	SRVAL	RAM(addr) =>data	RAM(addr) =>pdata	
0	1	0	0	↑	addr	Χ	Х	RAM(addr)	RAM(addr)	No Change	No Change	

Input	Inputs								Outputs				
GSR	GSR EN SSR WE CLK ADDR DI DIP							DO	DOP	RAM Contents			
										Data RAM	Parity RAM		
0	1	0	1	↑	addr	data	pdata	No Change(a) RAM (addr)(b) data(c)	No Change(a) RAM (addr)(b) pdata(c)	RAM (addr)=>data	RAM (addr)=>pdata		

GSR=Global Set Reset signal

INIT=Value specified by the INIT attribute for data memory. Default is all zeros.

SRVAL=Value after assertion of SSR as specified by the SRVAL attribute.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

- (a) WRITE_MODE=NO_CHANGE
- (b) WRITE_MODE=READ_FIRST
- (c) WRITE MODE=WRITE FIRST

Initialization

Initializing Memory Contents

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16 is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

Any INIT_xx or INITP_xx attribute that is not specified is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register

In Spartan-3A, each bit in the output register can be initialized at power on to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Two types of properties control initialization of the output register for a single-port RAMB16: INIT and SRVAL. The INIT attribute specifies the output register value at power on. You can use the SRVAL attribute to define the state resulting from assertion of the SSR (set/reset) input.

The INIT and SRVAL attributes specify the initialization value as a hexadecimal String containing one bit for each bit in the output port. For example, for a RAMB16_S1 with port width equal to 1, the output register contains 1 bit. Therefore, the INIT or SRVAL value can only be specified as a 1 or 0. For RAMB16_S4 with port width equal to 4, the output register contains 4 bits. In this case, you can specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT or SRVAL value.

Selecting Write Mode

The WRITE_MODE attribute controls RAMB16 memory and output contents. By default, the WRITE_MODE is set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the WRITE_MODE to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the WRITE_MODE to NO_CHANGE to have the input written to memory without changing the output.

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary/ Hexadecimal	Any Hex Value	All zeros	Identifies the initial value of the DO output port after completing configuration. The bit width is dependent on the width of the A or B port of the RAM.
INIT_00 - INIT_3F	Binary/ Hexadecimal	Any Hex Value	All zeros	Specifies the initial contents of the data portion of the RAM array.
INITP_00 - INITP_07	Binary/ Hexadecimal	Any Hex Value	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SRVAL	Binary/ Hexadecimal	Any Hex Value	All zeros	Allows the individual selection of whether the DO output port sets (go to a one) or reset (go to a zero) upon the assertion of the SSR pin. The bit width is dependent on the width of the A or B port of the RAM.
WRITE_MODE	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_FIRST"	Specifies the behavior of the DO port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM; use UNISIM.vcomponents.all;


```
-- RAMB16_S1: Virtex-II/II-Pro, Spartan-3/3E 16kx1 Single-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S1_inst : RAMB16_S1
generic map (
INIT => X"0", -- Value of output RAM registers at startup
SRVAL => X"0", -- Ouput value upon SSR assertion
WRITE_MODE => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
-- The following INIT_xx declarations specify the intial contents of the RAM
-- Address 0 to 4095
-- Address 4096 to 8191
-- Address 8192 to 12287
-- Address 12288 to 16383
```



```
port map (
DO => DO,
      -- 1-bit Data Output
ADDR => ADDR, -- 14-bit Address Input
      -- Clock
CLK => CLK,
DI => DI,
      -- 1-bit Data Input
EN => EN,
      -- RAM Enable Input
SSR => SSR,
      -- Synchronous Set/Reset Input
WE => WE
      -- Write Enable Input
-- End of RAMB16_S1_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S1: Spartan-3/3E/3A/3AN/3AD 16kx1 Single-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S1 #(
.INIT(1'b0), // Value of output RAM registers at startup
.SRVAL(1'b0), // Output value upon SSR assertion
.WRITE_MODE("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
// The following INIT_xx declarations specify the initial contents of the RAM
// Address 0 to 4095
// Address 4096 to 8191
// Address 8192 to 12287
```



```
// Address 12288 to 16383
) RAMB16_S1_inst (
.DO(DO),
 // 1-bit Data Output
.ADDR(ADDR), // 14-bit Address Input
.CLK(CLK), // Clock
.DI(DI),
 // 1-bit Data Input
.EN(EN),
 // RAM Enable Input
 // Synchronous Set/Reset Input
.SSR(SSR),
.WE(WE)
 // Write Enable Input
// End of RAMB16_S1_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAMB16_S1_S1

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	Inputs							Outputs				
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Contents		
										Data RAM Parity RAM		
1	Χ	Χ	Χ	Χ	Χ	X	Χ	INIT_A	INIT_A	No Change	No Change	
0	0	Χ	Χ	Χ	Χ	Χ	Χ	No Change	No Change	No Change	No Change	
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_A	SRVAL_A	No Change	No Change	
0	1	1	1	↑	addr	data	pdata	SRVAL_A	SRVAL_A	RAM(addr) =>data	RAM(addr) =>pdata	
0	1	0	0	\uparrow	addr	Χ	Χ	RAM(addr)	RAM(addr)	No Change	No Change	

Inputs							Outputs					
GSR ENA SSRA WEA CLKA ADDRA DIA DIPA						DIA	DIPA	DOA	DOPA	RAM Contents		
					Data R		Data RAM	Parity RAM				
0	1	0	1	\uparrow	addr	data	pdata	No Change1, RAM(addr)2, data3		RAM(addr) =>data	RAM(addr) =>pdata	

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	6							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	RAM Conte	nts
										Data RAM	Parity RAM
1	X	Χ	Χ	Χ	Χ	Χ	Χ	INIT_B	INIT_B	No Change	No Change
0	0	Χ	Χ	Χ	Χ	Χ	Χ	No Change	No Change	No Change	No Change
0	1	1	0	↑	Χ	Χ	Χ	SRVAL_B	SRVAL_B	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	↑	addr	Χ	Χ	RAM(addr)	RAM(addr)	No Change	No Change
0	1	0	1	1	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A				Port B						
Component Data Parity Address Data Parity Bus Bus Bus							Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S1_S1	16384 x 1	-	(13:0)	(0:0)	-	16384 x 1	-	(13:0)	(0:0)	-
(a) Depth x Widt	th									

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

Data Width	Port E	Oata A	ddr	ess	es																											
1	16384	<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5 4	3	2 1	0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4		3		2	1	(
4	4096	<	7				6				5				4				3				2				1			0		
8	2048	<	3								2								1								0					
16	1024	<	1																0													
32	512	<	0																													

Port Address Mapping for Parity

Parity Width	Port F	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		
4	512	<	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_A, INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE MODE A=NO	CHANGE and WRITE	MODE B=NO	CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0		↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	↑	↑	DIA	DIB	DIPA	DIPB	Χ	No Change	X	No Change	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	X	Χ

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Х

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	↑	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Х	DIB	X	DIPB	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	Х	Χ	Χ	Χ	X	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0		\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	↑	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	DIA	DIPA
0	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	X	Χ

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISION_ CHECK	String	"ALL", "NONE", "WARNING", or "GENERATE_ X_ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary /Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.

Attribute	Туре	Allowed Values	Default	Description
SRVAL_B	Binary/ Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.
WRITE_MODE_A	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_B	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAMB16_S1_S1: Virtex-II/II-Pro, Spartan-3/3E 16k x 1 Dual-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S1_S1_inst : RAMB16_S1_S1
generic map (
INIT_A => "0", -- Value of output RAM registers on Port A at startup
INIT_B => "0", -- Value of output RAM registers on Port B at startup
SRVAL_A => "0", -- Port A ouput value upon SSR assertion
SRVAL_B => "0", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL"
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Address 0 to 4095
```



```
-- Address 4096 to 8191
-- Address 8192 to 12287
-- Address 12288 to 16383
port map (
 -- Port A 1-bit Data Output
DOA => DOA,
DOB => DOB,
 -- Port B 1-bit Data Output
ADDRA => ADDRA, -- Port A 14-bit Address Input
ADDRB => ADDRB, -- Port B 14-bit Address Input
CLKA => CLKA,
 -- Port A Clock
CLKB => CLKB,
 -- Port B Clock
DIA => DIA,
 -- Port A 1-bit Data Input
DIB => DIB,
 -- Port B 1-bit Data Input
 -- Port A RAM Enable Input
ENA => ENA,
 -- PortB RAM Enable Input
ENB => ENB.
```



```
SSRA => SSRA, -- Port A Synchronous Set/Reset Input
SSRB => SSRB, -- Port B Synchronous Set/Reset Input
WEA => WEA, -- Port A Write Enable Input
WEB => WEB -- Port B Write Enable Input
);

-- End of RAMB16 S1_S1_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S1_S1: Spartan-3/3E/3A/3AN/3AD 16k x 1 Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S1_S1 #(
.INIT_A(1'b0), \ \ //\  Value of output RAM registers on Port A at startup
.INIT_B(1'b0), // Value of output RAM registers on Port B at startup
.SRVAL_A(1'b0), // Port A output value upon SSR assertion
.SRVAL_B(1'b0), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// The following INIT_xx declarations specify the initial contents of the RAM
// Address 0 to 4095
// Address 4096 to 8191
// Address 8192 to 12287
```



```
// Address 12288 to 16383
) RAMB16_S1_S1_inst (
    // Port A 1-bit Data Output
.DOA(DOA),
    // Port B 1-bit Data Output
.DOB(DOB),
.ADDRA(ADDRA), // Port A 14-bit Address Input
.ADDRB(ADDRB), // Port B 14-bit Address Input
    // Port A Clock
.CLKA(CLKA),
    // Port B Clock
.CLKB(CLKB),
    // Port A 1-bit Data Input
.DIA(DIA),
    // Port B 1-bit Data Input
.DIB(DIB),
.ENA(ENA),
    // Port A RAM Enable Input
.ENB(ENB),
    // Port B RAM Enable Input
.SSRA(SSRA),
    // Port A Synchronous Set/Reset Input
.SSRB(SSRB),
    // Port B Synchronous Set/Reset Input
.WEA(WEA),
    // Port A Write Enable Input
.WEB(WEB)
    // Port B Write Enable Input
);
// End of RAMB16_S1_S1_inst instantiation
```

For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAMB16_S1_S18

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit and 18-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	s							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts
										Data RAM	Parity RAM
1	X	Χ	X	X	X	Χ	X	INIT_A	INIT_A	No Change	No Change
0	0	Χ	Χ	Χ	X	Χ	Χ	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_A	SRVAL_A	No Change	No Change
0	1	1	1	1	addr	data	pdata	SRVAL_A	SRVAL_A	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	Χ	Χ	RAM(addr)	RAM(addr)	No Change	No Change

Inputs	5							Outputs			
GSR ENA SSRA WEA CLKA ADDRA DIA DI							DIPA	DOA	DOPA	RAM Conter	nts
									_	Data RAM	Parity RAM
0	1	0	1	\uparrow	addr	data	pdata	No Change1, RAM(addr)2, data3	No Change1, RAM(addr)2, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	5							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	RAM Conte	nts
										Data RAM	Parity RAM
1	Χ	Χ	Χ	Χ	Χ	X	Χ	INIT_B	INIT_B	No Change	No Change
0	0	Χ	Χ	Χ	X	X	Χ	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_B	SRVAL_B	No Change	No Change
0	1	1	1	\uparrow	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	↑	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A						Port B				
Component	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S1_S18	16384 x 1	-	(13:0)	(0:0)	-	1024 x 16	1024 x 2	(9:0)	(15:0)	(1:0)
(a) Depth x Width	-					-				

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

Data Wid	hPort I	Data 1	Add	res	ses																											
1	16384	<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6 5	4	3	2 1	0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4		3	2		1	0	
4	4096	<	7				6				5				4				3				2				1			0		
8	2048	<	3								2								1								0					
16	1024	<	1																0													
32	512	<	0																													

Port Address Mapping for Parity

Parity Width	Port F	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		
4	512	<	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	\leftarrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	↑	↑	DIA	DIB	DIPA	DIPB	Х	No Change	X	No Change	DIB	DIPB
1	1	1	↑	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	Χ	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	↑	\uparrow	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	↑	\uparrow	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	\uparrow	1	DIA	DIB	DIPA	DIPB	Х	DIB	X	DIPB	DIB	DIPB
1	1	↑	1	DIA	DIB	DIPA	DIPB	Х	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexidecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexidecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexidecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexidecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISION_CHECK	String	"ALL", "NONE", "WARNING", or "GENERATE_X_ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/ Hexidecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/ Hexidecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE_A	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_B	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAMB16_S1_S18: Virtex-II/II-Pro, Spartan-3/3E 16k/1k x 1/16 + 0/2 Parity bits Dual-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S1_S18_inst : RAMB16_S1_S18
generic map (
INIT_A => "0", -- Value of output RAM registers on Port A at startup
INIT_B => X"00000", -- Value of output RAM registers on Port B at startup
SRVAL_A => "0", -- Port A ouput value upon SSR assertion
SRVAL B => X"00000", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL"
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Port A Address 0 to 4095, Port B Address 0 to 255
-- Port A Address 4096 to 8191, Port B Address 256 to 511
```



```
-- Port A Address 8192 to 12287, Port B Address 512 to 767
-- Port A Address 12288 to 16383, Port B Address 768 to 1023
-- The next set of INITP_xx are for the parity bits
-- Port B Address 0 to 255
-- Port B Address 256 to 511
-- Port B Address 512 to 767
-- Port B Address 768 to 1023
port map (
DOA => DOA,
  -- Port A 1-bit Data Output
DOB => DOB,
  -- Port B 16-bit Data Output
DOPB => DOPB,
  -- Port B 2-bit Parity Output
ADDRA => ADDRA,
  -- Port A 14-bit Address Input
  -- Port B 10-bit Address Input
ADDRB => ADDRB,
CLKA => CLKA,
  -- Port A Clock
CLKB => CLKB,
  -- Port B Clock
DIA => DIA,
  -- Port A 1-bit Data Input
DIB => DIB,
  -- Port B 16-bit Data Input
  -- Port-B 2-bit parity Input
DIPB => DIPB,
ENA => ENA,
  -- Port A RAM Enable Input
```


Verilog Instantiation Template

```
// RAMB16_S1_S18: Spartan-3/3E/3A/3AN/3AD 16k/1k x 1/16 + 0/2 Parity bits Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S1_S18 #(
.INIT_A(1'b0),
    \ensuremath{//} Value of output RAM registers on Port A at startup
.INIT_B(18'h00000),
    // Value of output RAM registers on Port B at startup
.SRVAL_A(1'b0),
    // Port A output value upon SSR assertion
.SRVAL_B(18'h00000), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// The following INIT_xx declarations specify the initial contents of the RAM
// Port A Address 0 to 4095, Port B Address 0 to 255
// Port A Address 4096 to 8191, Port B Address 256 to 511 \,
// Port A Address 8192 to 12287, Port B Address 512 to 767
```



```
// Port A Address 12288 to 16383, Port B Address 768 to 1023
// The next set of INITP_xx are for the parity bits
// Port B Address 0 to 255
// Port B Address 256 to 511
// Port B Address 512 to 767
// Port B Address 768 to 1023
) RAMB16_S1_S18_inst (
.DOA(DOA),
    // Port A 1-bit Data Output
.DOB(DOB),
    // Port B 16-bit Data Output
    // Port B 2-bit Parity Output
.DOPB(DOPB),
    // Port A 14-bit Address Input
.ADDRA(ADDRA),
    // Port B 10-bit Address Input
.ADDRB(ADDRB),
.CLKA(CLKA),
    // Port A Clock
    // Port B Clock
.CLKB(CLKB),
    // Port A 1-bit Data Input
.DIA(DIA),
.DIB(DIB),
    // Port B 16-bit Data Input
.DIPB(DIPB),
    // Port-B 2-bit parity Input
    // Port A RAM Enable Input
.ENA(ENA),
.ENB(ENB).
    // Port B RAM Enable Input
.SSRA(SSRA),
    // Port A Synchronous Set/Reset Input
.SSRB(SSRB),
    // Port B Synchronous Set/Reset Input
    // Port A Write Enable Input
.WEA(WEA),
.WEB(WEB)
    // Port B Write Enable Input
);
// End of RAMB16_S1_S18_inst instantiation
```

For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAMB16_S1_S2

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit and 2-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	6							Outputs					
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts		
										Data RAM	Parity RAM		
1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	INIT_A	INIT_A	No Change No Change			
0	0	Χ	Χ	Χ	Χ	Χ	Χ	No Change	No Change	No Change No Change			
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_A	SRVAL_A	No Change	No Change		
0	1	1	1	\uparrow	addr	data	pdata	SRVAL_A	SRVAL_A	RAM(addr) =>data RAM(addr)			
0	1	0	0	\uparrow	addr	Х	Χ	RAM(addr)	RAM(addr)	No Change No Change			

Inputs	s							Outputs			
GSR ENA SSRA WEA CLKA ADDRA DIA DIPA DOA							DOPA	RAM Conter	nts		
							_			Data RAM	Parity RAM
0	1	0	1	\uparrow	addr	data	pdata	No Change1, RAM(addr)2, data3		RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs				
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	RAM Conte	nts	
										Data RAM	Parity RAM	
1	Χ	Χ	Χ	Χ	Χ	X	Χ	INIT_B	INIT_B	No Change	No Change	
0	0	Χ	Χ	Χ	X	X	Χ	No Change	No Change	No Change	No Change	
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_B	SRVAL_B	No Change	No Change	
0	1	1	1	↑	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata	
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change	
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	I(addr) =>data =>pdata ta,		

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S1_S2	16384 x 1	-	(13:0)	(0:0)	-	8192 x 2	-	(12:0)	(1:0)	-
(a)Depth x Width										

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables show address mapping for each port width.

Port Address Mapping for Data

Data Width	Port D	ata .	Add	lres	ses																											
1	16384	<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5 4	3	2 1	0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4		3		2	1	0	
4	4096	<	7				6				5				4				3				2				1			0		
8	2048	<	3								2								1								0					
16	1024	<	1																0													
32	512	<	0																													

Port Address Mapping for Parity

Parity Width	Port P	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		
4	512	<	0					_		

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_A, INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE MODE A=NO	CHANGE and WRITE	MODE B=NO	CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	↑	↑	DIA	DIB	DIPA	DIPB	X	No Change	X	No Change	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	X	X

WRITE MODE A=READ FIRST and WRITE MODE B=READ FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	\uparrow	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	X	DIB	Х	DIPB	DIB	DIPB
1	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Х	Х	X

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	↑	\uparrow	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑		DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	\uparrow	↑	DIA	DIB	DIPA	DIPB	Х	DIB	Χ	DIPB	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	X	DIB	Χ	DIPB	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	X	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISION_ CHECK	String	"ALL", "NONE", "WARNING", or "GENERATE_ X_ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary /Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.

Attribute	Type	Allowed Values	Default	Description
SRVAL_B	Binary/ Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.
WRITE_MODE_A	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_B	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM; use UNISIM.vcomponents.all;


```
-- Port A Address 4096 to 8191, Port B Address 2048 to 4095
--Port A Address 8192 to 12287, Port B Address 4095 to 6143
-- Port A Address 12288 to 16383, Port B Address 6144 to 8091
port map (
 -- Port A 1-bit Data Output
DOA => DOA,
DOB => DOB,
 -- Port B 2-bit Data Output
ADDRA => ADDRA,
 -- Port A 14-bit Address Input
ADDRB => ADDRB, -- Port B 13-bit Address Input
CLKA => CLKA,
 -- Port A Clock
CLKB => CLKB,
 -- Port B Clock
DIA => DIA,
 -- Port A 1-bit Data Input
DIB => DIB,
 -- Port B 2-bit Data Input
 -- Port A RAM Enable Input
ENA => ENA,
 -- PortB RAM Enable Input
ENB => ENB.
```


Verilog Instantiation Template

```
// RAMB16_S1_S2: Spartan-3/3E/3A/3AN/3AD 16k/8k x 1/2 Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S1_S2 #(
   \ensuremath{//} Value of output RAM registers on Port A at startup
.INIT_A(1'b0),
.INIT_B(2'b00), // Value of output RAM registers on Port B at startup
.SRVAL_A(1'b0), // Port A output value upon SSR assertion
.SRVAL_B(2'b00), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// The following INIT_xx declarations specify the initial contents of the RAM
// Port A Address 0 to 4095, Port B Address 0 to 2047
// Port A Address 4096 to 8191, Port B Address 2048 to 4095
// Port A Address 8192 to 12287, Port B Address 4095 to 6143
```



```
// Port A Address 12288 to 16383, Port B Address 6144 to 8091
) RAMB16_S1_S2_inst (
    // Port A 1-bit Data Output
.DOA(DOA),
    // Port B 2-bit Data Output
.DOB(DOB),
.ADDRA(ADDRA), // Port A 14-bit Address Input
.ADDRB(ADDRB), // Port B 13-bit Address Input
    // Port A Clock
.CLKA(CLKA),
    // Port B Clock
.CLKB(CLKB),
    // Port A 1-bit Data Input
.DIA(DIA),
    // Port B 2-bit Data Input
.DIB(DIB),
.ENA(ENA),
    // Port A RAM Enable Input
.ENB(ENB),
    // Port B RAM Enable Input
.SSRA(SSRA),
    // Port A Synchronous Set/Reset Input
.SSRB(SSRB),
    // Port B Synchronous Set/Reset Input
.WEA(WEA),
    // Port A Write Enable Input
.WEB(WEB)
    // Port B Write Enable Input
);
// End of RAMB16_S1_S2_inst instantiation
```

For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAMB16_S1_S36

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit and 36-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	s							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts
										Data RAM	Parity RAM
1	X	Χ	X	X	X	Χ	X	INIT_A	INIT_A	No Change	No Change
0	0	Χ	Χ	Χ	X	Χ	Χ	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_A	SRVAL_A	No Change	No Change
0	1	1	1	1	addr	data	pdata	SRVAL_A	SRVAL_A	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	Χ	Χ	RAM(addr)	RAM(addr)	No Change	No Change

Inputs	6							Outputs			
GSR ENA SSRA WEA CLKA ADDRA DIA DIP							DIPA	DOA	DOPA	RAM Conter	nts
				-			_	_	_	Data RAM	Parity RAM
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr)2, data3		RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	RAM Conte	nts
										Data RAM	Parity RAM
1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	INIT_B	INIT_B	No Change	No Change
0	0	Χ	Χ	Χ	X	X	Χ	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_B	SRVAL_B	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A						Port B				
Component	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S1_S36	16384 x 1	-	(13:0)	(0:0)	-	512 x 32	512 x 4	(8:0)	(31:0)	(3:0)
(a) Depth x Width										

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables show address mapping for each port width.

Port Address Mapping for Data

Data Width	Port D	ata A	ddr	ess	es																											
1	16384	<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5 4	3	2 1	0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4		3		2	1	0	
4	4096	<	7				6				5				4				3				2				1			0	\prod	
8	2048	<	3								2								1								0				\prod	
16	1024	<	1																0												\prod	
32	512	<	0																												П	

Port Address Mapping for Parity

Parity Width	Port P	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		
4	512	<	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	↑	↑	DIA	DIB	DIPA	DIPB	X	No Change	X	No Change	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	X	X

WRITE MODE A=READ FIRST and WRITE MODE B=READ FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	1	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	↑	DIA	DIB	DIPA	DIPB	DIA	X	DIPA	Χ	DIA	DIPA
0	1	1	↑	DIA	DIB	DIPA	DIPB	X	DIB	Χ	DIPB	DIB	DIPB
1	1	\uparrow	1	DIA	DIB	DIPA	DIPB	X	X	X	X	X	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	\uparrow	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	\uparrow	↑	DIA	DIB	DIPA	DIPB	X	DIB	Χ	DIPB	DIB	DIPB
1	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	X	DIB	Χ	DIPB	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	X	DIB	Х	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISION_ CHECK	String	"ALL", "NONE", "WARNING", or "GENERATE_ X_ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary /Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/ Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE_A	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_B	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
```

```
-- RAMB16_S1_S36: Virtex-II/II-Pro, Spartan-3/3E 16k/512 x 1/32 + 0/4 Parity bits Dual-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S1_S36_inst : RAMB16_S1_S36
generic map (
INIT_A => "0", -- Value of output RAM registers on Port A at startup
INIT_B => X"000000000", -- Value of output RAM registers on Port B at startup
SRVAL_A => "0", -- Port A ouput value upon SSR assertion
SRVAL_B => X"000000000", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL"
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Port A Address 0 to 4095, Port B Address 0 to 127
```



```
-- Port A Address 4096 to 8191, Port B Address 128 to 255
-- Port A Address 8192 to 12287, Port B Address 256 to 383
-- Port A Address 12288 to 16383, Port B Address 384 to 512
-- The next set of INITP_xx are for the parity bits
--Port B Address 0 to 127
-- Port B Address 128 to 255
-- Port B Address 256 to 383
- Port B Address 384 to 512
port map (
DOA => DOA,
 -- Port A 1-bit Data Output
 -- Port B 32-bit Data Output
DOB => DOB,
 -- Port B 4-bit Parity Output
DOPB => DOPB.
ADDRA => ADDRA, -- Port A 14-bit Address Input
```



```
ADDRB => ADDRB, -- Port B 9-bit Address Input
CLKA => CLKA,
                -- Port A Clock
              -- Port B Clock
CLKB => CLKB,
DIA => DIA,
                -- Port A 1-bit Data Input
                -- Port B 32-bit Data Input
DIB => DIB.
DIPB => DIPB,
                -- Port-B 4-bit parity Input
ENA => ENA,
                -- Port A RAM Enable Input
                -- PortB RAM Enable Input
FNB => ENB,
SSRA => SSRA,
                -- Port A Synchronous Set/Reset Input
SSRB => SSRB,
                -- Port B Synchronous Set/Reset Input
WEA => WEA,
                -- Port A Write Enable Input
WEB => WEB
                -- Port B Write Enable Input
-- End of RAMB16_S1_S36_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S1_S36: Spartan-3/3E/3A/3AN/3AD 16k/512 \times 1/32 + 0/4 Parity bits Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S1_S36 #(
.INIT_A(1'b0),
      // Value of output RAM registers on Port A at startup
.INIT_B(36'h000000000),
     // Value of output RAM registers on Port B at startup
.SRVAL_A(1'b0),
      // Port A output value upon SSR assertion
.SRVAL_B(36'h000000000), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// The following INIT_xx declarations specify the initial contents of the RAM
// Port A Address 0 to 4095, Port B Address 0 to 127
// Port A Address 4096 to 8191, Port B Address 128 to 255
// Port A Address 8192 to 12287, Port B Address 256 to 383
```



```
// Port A Address 12288 to 16383, Port B Address 384 to 512
// The next set of INITP_xx are for the parity bits
// Port B Address 0 to 127
// Port B Address 128 to 255
// Port B Address 256 to 383
// Port B Address 384 to 512
) RAMB16_S1_S36_inst (
.DOA(DOA),
   // Port A 1-bit Data Output
.DOB(DOB).
   // Port B 32-bit Data Output
.DOPB(DOPB), // Port B 4-bit Parity Output
.ADDRA(ADDRA), // Port A 14-bit Address Input
.ADDRB(ADDRB), // Port B 9-bit Address Input
.CLKA(CLKA),
   // Port A Clock
   // Port B Clock
.CLKB(CLKB),
.DIA(DIA),
   // Port A 1-bit Data Input
   // Port B 32-bit Data Input
.DIB(DIB),
   // Port-B 4-bit parity Input
.DIPB(DIPB),
   // Port A RAM Enable Input
.ENA(ENA),
.ENB(ENB),
   // Port B RAM Enable Input
   // Port A Synchronous Set/Reset Input
.SSRA(SSRA),
.SSRB(SSRB),
   // Port B Synchronous Set/Reset Input
.WEA(WEA),
   // Port A Write Enable Input
   // Port B Write Enable Input
.WEB(WEB)
);
// End of RAMB16_S1_S36_inst instantiation
```

For More Information

- See the Spartan-3 User Guide.
- See the Spartan-3 Data Sheets.

RAMB16_S1_S4

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit and 4-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	5							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts
										Data RAM	Parity RAM
1	Χ	Χ	Χ	Χ	X	Χ	Χ	INIT_A	INIT_A	No Change	No Change
0	0	Χ	Χ	Χ	X	Χ	Χ	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_A	SRVAL_A	No Change	No Change
0	1	1	1	\uparrow	addr	data	pdata	SRVAL_A	SRVAL_A	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	↑	addr	Χ	Χ	RAM(addr)	RAM(addr)	No Change	No Change

Inputs	6							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts
				-			_	_	_	Data RAM	Parity RAM
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr)2, data3		RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	5							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	RAM Conte	nts
										Data RAM	Parity RAM
1	Χ	Χ	Χ	Χ	Χ	X	Χ	INIT_B	INIT_B	No Change	No Change
0	0	Χ	Χ	Χ	Χ	X	Χ	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_B	SRVAL_B	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

256

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S1_S4	16384 x 1	-	(13:0)	(0:0)	-	4096 x 4	-	(11:0)	(3:0)	-
(a)Depth x Width										

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

Data Widt	hPort	Data	ı Ac	ldre	esse	s																									
1	1638	1<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 :	7 (6 5	4	3 2	2 1 (
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4	,	3	2		1	0
4	4096	<	7				6				5				4				3				2				1			0	
8	2048	<	3								2								1							(О				
16	1024	<	1																0												
32	512	<	0																												

Port Address Mapping for Parity

Parity Width	Port P	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		
4	512	<	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_A, INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE MODE A=NO CHANGE and WRITE MODE B=NO CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	↑	↑	DIA	DIB	DIPA	DIPB	X	No Change	Χ	No Change	DIB	DIPB
1	1	↑	\uparrow	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	Χ	X

WRITE MODE A=READ FIRST and WRITE MODE B=READ FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	1	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	Х	Х	Χ	X	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	↑	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	\uparrow	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	Χ	No Change	Χ	DIA	DIPA
0	1	↑	1	DIA	DIB	DIPA	DIPB	Χ	DIB	X	DIPB	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	\uparrow	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISION _CHECK	String	"ALL", "NONE", "WARNING", or "GENERATE_ X_ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/ Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/ Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE	AString	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_I	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAMB16_S1_S4: Virtex-II/II-Pro, Spartan-3/3E 16k/4k x 1/4 Dual-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S1_S4_inst : RAMB16_S1_S4
generic map (
INIT_A => "0", -- Value of output RAM registers on Port A at startup
INIT_B => X"0", -- Value of output RAM registers on Port B at startup
SRVAL_A => "0", -- Port A ouput value upon SSR assertion
SRVAL_B => X"0", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL"
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Port A Address 0 to 4095, Port B Address 0 to 1023
-- Port A Address 4096 to 8191, Port B Address 1024 to 2047
```

Libraries Guide


```
-- Port A Address 8192 to 12287, Port B Address 2048 to 3071
-- Port A Address 12288 to 16383, Port B Address 3072 to 4095
port map (
DOA => DOA.
  -- Port A 1-bit Data Output
DOB => DOB,
  -- Port B 4-bit Data Output
ADDRA => ADDRA,
  -- Port A 14-bit Address Input
ADDRB => ADDRB, -- Port B 12-bit Address Input
CLKA => CLKA,
  -- Port A Clock
CLKB => CLKB,
  -- Port B Clock
DIA => DIA,
  -- Port A 1-bit Data Input
DIB => DIB,
  -- Port B 4-bit Data Input
ENA => ENA,
  -- Port A RAM Enable Input
ENB => ENB,
  -- PortB RAM Enable Input
SSRA => SSRA,
  -- Port A Synchronous Set/Reset Input
SSRB => SSRB,
  -- Port B Synchronous Set/Reset Input
WEA => WEA,
  -- Port A Write Enable Input
WEB => WEB
  -- Port B Write Enable Input
);
-- End of RAMB16_S1_S4_inst instantiation
```


Verilog Instantiation Template

```
// RAMB16_S1_S4: Spartan-3/3E/3A/3AN/3AD 16k/4k x 1/4 Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16 S1 S4 #(
.INIT_A(1'b0), \ //\ Value of output RAM registers on Port A at startup
  // Value of output RAM registers on Port B at startup
.INIT B(4'h0).
.SRVAL_A(1'b0), // Port A output value upon SSR assertion
.SRVAL_B(4'h0), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST Or NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// The following INIT_xx declarations specify the initial contents of the RAM
// Port A Address 0 to 4095, Port B Address 0 to 1023
// Port A Address 4096 to 8191, Port B Address 1024 to 2047
// Port A Address 8192 to 12287, Port B Address 2048 to 3071
// Port A Address 12288 to 16383, Port B Address 3072 to 4095
```



```
) RAMB16_S1_S4_inst (
.DOA(DOA),
      // Port A 1-bit Data Output
.DOB(DOB),
       // Port B 4-bit Data Output
.ADDRA(ADDRA), // Port A 14-bit Address Input
.ADDRB(ADDRB), // Port B 12-bit Address Input
.CLKA(CLKA),
       // Port A Clock
      // Port B Clock
.CLKB(CLKB),
.DIA(DIA),
      // Port A 1-bit Data Input
.DIB(DIB),
       // Port B 4-bit Data Input
       // Port A RAM Enable Input
.ENA(ENA),
.ENB(ENB),
       // Port B RAM Enable Input
.SSRA(SSRA),
       // Port A Synchronous Set/Reset Input
.SSRB(SSRB),
       // Port B Synchronous Set/Reset Input
.WEA(WEA),
       // Port A Write Enable Input
.WEB(WEB)
       // Port B Write Enable Input
);
// End of RAMB16_S1_S4_inst instantiation
```

For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

264

RAMB16_S1_S9

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 1-bit and 9-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	S							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts
										Data RAM	Parity RAM
1	Χ	Χ	Χ	Χ	X	Χ	Χ	INIT_A	INIT_A	No Change	No Change
0	0	Χ	Χ	X	X	Χ	Χ	No Change	No Change	No Change No Change	
0	1	1	0	\uparrow	X	X	Χ	SRVAL_A	SRVAL_A	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL_A	SRVAL_A	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change

Inputs	s							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts
				-			_	_	_	Data RAM	Parity RAM
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr)2, data3		RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	6							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	RAM Conte	nts
										Data RAM	Parity RAM
1	X	Χ	Χ	Χ	X	X	Χ	INIT_B	INIT_B	No Change	No Change
0	0	Χ	Χ	Χ	Χ	X	X	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_B	SRVAL_B	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE MODE B=WRITE FIRST.

Port Descriptions

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

Data Width	Port D	ata 1	Add	lres	ses																												
1	16384	<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	3 17	16	15	14	13	12	11	. 10	9	8	7	6	5	4	3	2 1	0
2	8192	<	15		14		13	3	12		11		10		9		8		7		6		5		4		3		2		1	0	
4	4096	<	7				6				5				4				3				2				1				0		
8	2048	<	3								2								1								0						
16	1024	<	1																0														
32	512	<	0																														

Port Address Mapping for Parity

268

Parity Width	Port P	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		
4	512	<	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	\uparrow	↑	DIA	DIB	DIPA	DIPB	X	No Change	X	No Change	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	↑	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	\uparrow	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes			
Inference	Recommended			
Coregen and wizards	Yes			
Macro support	No			

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISION_ CHECK	String	"ALL", "NONE", "WARNING", or "GENERATE_ X_ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary /Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/ Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE_A	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_B	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAMB16_S1_S9: Virtex-II/II-Pro, Spartan-3/3E 16k/2k x 1/8 + 0/1 Parity bit Dual-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S1_S9_inst : RAMB16_S1_S9
generic map (
INIT_A => "0", -- Value of output RAM registers on Port A at startup
INIT_B => X"000", -- Value of output RAM registers on Port B at startup
SRVAL_A => "0", -- Port A ouput value upon SSR assertion
SRVAL_B => X"000", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL"
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Port A Address 0 to 4095, Port B Address 0 to 511
```



```
-- Port A Address 4096 to 8191, Port B Address 512 to 1023
- Port A Address 8192 to 12287, Port B Address 1024 to 1535
-- Port A Address 12288 to 16383, Port B Address 1535 to 2047
-- The next set of INITP_xx are for the parity bits
-- Port B Address 0 to 511
-- Port B Address 512 to 1023
Port B Address 1024 to 1535
- Port B Address 1535 to 2047
port map (
DOA => DOA,
 -- Port A 1-bit Data Output
 -- Port B 8-bit Data Output
DOB => DOB,
 -- Port B 1-bit Parity Output
DOPB => DOPB.
ADDRA => ADDRA, -- Port A 14-bit Address Input
```



```
ADDRB => ADDRB, -- Port B 11-bit Address Input
CLKA => CLKA,
                -- Port A Clock
              -- Port B Clock
CLKB => CLKB,
DIA => DIA,
                -- Port A 1-bit Data Input
                -- Port B 8-bit Data Input
DIB => DIB.
DIPB => DIPB,
                -- Port-B 1-bit parity Input
ENA => ENA,
                -- Port A RAM Enable Input
                -- PortB RAM Enable Input
FNB => ENB,
SSRA => SSRA,
                -- Port A Synchronous Set/Reset Input
SSRB => SSRB,
                -- Port B Synchronous Set/Reset Input
WEA => WEA,
                -- Port A Write Enable Input
WEB => WEB
                -- Port B Write Enable Input
-- End of RAMB16_S1_S9_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S1_S9: Spartan-3/3E/3A/3AN/3AD 16k/2k \times 1/8 + 0/1 Parity bit Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S1_S9 #(
.INIT_A(1'b0),
    // Value of output RAM registers on Port A at startup
.INIT_B(9'h000),
    // Value of output RAM registers on Port B at startup
.SRVAL_A(1'b0), // Port A output value upon SSR assertion .SRVAL_B(9'h000), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE .WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// The following INIT_xx declarations specify the initial contents of the RAM
// Port A Address 0 to 4095, Port B Address 0 to 511
// Port A Address 4096 to 8191, Port B Address 512 to 1023
// Port A Address 8192 to 12287, Port B Address 1024 to 1535
```



```
// Port A Address 12288 to 16383, Port B Address 1535 to 2047
// The next set of INITP_xx are for the parity bits
// Port B Address 0 to 511
// Port B Address 512 to 1023
// Port B Address 1024 to 1535
// Port B Address 1535 to 2047
) RAMB16_S1_S9_inst (
.DOA(DOA),
   // Port A 1-bit Data Output
.DOB(DOB).
   // Port B 8-bit Data Output
.DOPB(DOPB), // Port B 1-bit Parity Output .ADDRA(ADDRA), // Port A 14-bit Address Input
.ADDRB(ADDRB), // Port B 11-bit Address Input
.CLKA(CLKA),
   // Port A Clock
   // Port B Clock
.CLKB(CLKB),
.DIA(DIA),
   // Port A 1-bit Data Input
   // Port B 8-bit Data Input
.DIB(DIB),
   // Port-B 1-bit parity Input
.DIPB(DIPB),
   // Port A RAM Enable Input
.ENA(ENA),
.ENB(ENB),
   // Port B RAM Enable Input
   // Port A Synchronous Set/Reset Input
.SSRA(SSRA),
.SSRB(SSRB),
   // Port B Synchronous Set/Reset Input
.WEA(WEA),
   // Port A Write Enable Input
   // Port B Write Enable Input
.WEB(WEB)
);
// End of RAMB16_S1_S9_inst instantiation
```

For More Information

- See the Spartan-3 User Guide.
- See the Spartan-3 Data Sheets.

RAMB16_S18

Primitive: 16K-bit Data + 2K-bit Parity Memory, Single-Port Synchronous Block RAM with 18-bit Port

Introduction

This design element is a dedicated random access memory blocks with synchronous write capability. The block RAM port has 16384 bits of data memory. The cell configuration for this element is listed in the following table.

Data Cells		Parity Cells							
Depth	Width	Depth	Width	Address Bus	Data Bus	Parity Bus			
1024	16	1024	2	(9:0)	(15:0)	(1:0)			

The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The above description assumes an active High EN, WE, SSR, and CLK. However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Logic Table

Input	s							Outputs				
GSR	EN	SSR	WE	CLK	ADDR	DI	DIP	DO	DOP	RAM Contents		
										Data RAM	Parity RAM	
1	Χ	Χ	X	Χ	X	X	Χ	INIT	INIT	No Change	No Change	
0	0	Χ	X	X	X	X	X	No Change	No Change	No Change	No Change	
0	1	1	0	1	X	Χ	X	SRVAL	SRVAL	No Change	No Change	
0	1	1	1	↑	addr	data	pdata	SRVAL	SRVAL	RAM(addr) =>data	RAM(addr) =>pdata	
0	1	0	0	\uparrow	addr	Χ	Χ	RAM(addr)	RAM(addr)	No Change	No Change	

Input	Inputs							Outputs				
GSR EN SSR WE CLK ADDR DI DIP					DO	DOP	RAM Contents					
										Data RAM	Parity RAM	
0	1	0	1	↑	addr	data	pdata	No Change(a) RAM (addr)(b) data(c)	No Change(a) RAM (addr)(b) pdata(c)	RAM (addr)=>data	RAM (addr)=>pdata	

GSR=Global Set Reset signal

INIT=Value specified by the INIT attribute for data memory. Default is all zeros.

SRVAL=Value after assertion of SSR as specified by the SRVAL attribute.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

- (a) WRITE_MODE=NO_CHANGE
- (b) WRITE_MODE=READ_FIRST
- (c) WRITE MODE=WRITE FIRST

Initialization

Initializing Memory Contents

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16 is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

Any INIT_xx or INITP_xx attribute that is not specified is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register

In Spartan-3A, each bit in the output register can be initialized at power on to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Two types of properties control initialization of the output register for a single-port RAMB16: INIT and SRVAL. The INIT attribute specifies the output register value at power on. You can use the SRVAL attribute to define the state resulting from assertion of the SSR (set/reset) input.

The INIT and SRVAL attributes specify the initialization value as a hexadecimal String containing one bit for each bit in the output port. For example, for a RAMB16_S1 with port width equal to 1, the output register contains 1 bit. Therefore, the INIT or SRVAL value can only be specified as a 1 or 0. For RAMB16_S4 with port width equal to 4, the output register contains 4 bits. In this case, you can specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT or SRVAL value.

Selecting Write Mode

The WRITE_MODE attribute controls RAMB16 memory and output contents. By default, the WRITE_MODE is set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the WRITE_MODE to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the WRITE_MODE to NO_CHANGE to have the input written to memory without changing the output.

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary/ Hexadecimal	Any Hex Value	All zeros	Identifies the initial value of the DO output port after completing configuration. The bit width is dependent on the width of the A or B port of the RAM.
INIT_00 - INIT_3F	Binary/ Hexadecimal	Any Hex Value	All zeros	Specifies the initial contents of the data portion of the RAM array.
INITP_00 - INITP_07	Binary/ Hexadecimal	Any Hex Value	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SRVAL	Binary/ Hexadecimal	Any Hex Value	All zeros	Allows the individual selection of whether the DO output port sets (go to a one) or reset (go to a zero) upon the assertion of the SSR pin. The bit width is dependent on the width of the A or B port of the RAM.
WRITE_MODE	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_FIRST"	Specifies the behavior of the DO port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM; use UNISIM.vcomponents.all;


```
-- RAMB16 S18: Virtex-II/II-Pro, Spartan-3/3E 1k x 16 + 2 Parity bits Single-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16 S18 inst : RAMB16 S18
generic map (
INIT => X"00000", -- Value of output RAM registers at startup
SRVAL => X"00000", -- Ouput value upon SSR assertion
WRITE_MODE => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
-- The following INIT_xx declarations specify the intial contents of the RAM
-- Address 0 to 255
-- Address 256 to 511
-- Address 512 to 767
-- Address 768 to 1023
```



```
-- The next set of INITP_xx are for the parity bits
-- Address 0 to 255
-- Address 256 to 511
-- Address 512 to 767
-- Address 768 to 1023
port map (
     -- 16-bit Data Output
DO => DO,
DOP => DOP,
    -- 2-bit parity Output
ADDR => ADDR, -- 10-bit Address Input
CLK => CLK,
     -- Clock
DT => DT.
    -- 16-bit Data Input
DIP => DIP,
    -- 2-bit parity Input
    -- RAM Enable Input
EN => EN,
SSR => SSR,
    -- Synchronous Set/Reset Input
WE => WE
    -- Write Enable Input
-- End of RAMB16_S18_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S18: Virtex-II/II-Pro, Spartan-3/3E 1k x 16 + 2 Parity bits Single-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S18 #(
   // Value of output RAM registers at startup
.INIT(18'h00000),
.SRVAL(18\,{}^{\prime}h000000)\,, // Output value upon SSR assertion
.WRITE_MODE("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
// The following INIT_xx declarations specify the initial contents of the RAM
// Address 0 to 255
// Address 256 to 511
```



```
// Address 512 to 767
. \\ \\ \text{INIT} \\ \\ \\ \\ \text{INIT} \\ \\ \\ \\ \text{INIT} \\ \\ \\ \text{IN
// Address 768 to 1023
// The next set of INITP_xx are for the parity bits
// Address 0 to 255
// Address 256 to 511
// Address 512 to 767
// Address 768 to 1023
) RAMB16_S18_inst (
          // 16-bit Data Output
// 2-bit parity Output
.DO(DO).
.DOP(DOP).
.ADDR(ADDR), // 10-bit Address Input
.CLK(CLK),
          // Clock
          // 16-bit Data Input
.DI(DI),
.DIP(DIP),
          // 2-bit parity Input
.EN(EN),
          // RAM Enable Input
          // Synchronous Set/Reset Input
.SSR(SSR),
.WE(WE)
          // Write Enable Input
// End of RAMB16_S18_inst instantiation
```


For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAMB16_S18_S18

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 18-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Port Descriptions

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S18_S18	1024 x 16	1024 x 2	(9:0)	(15:0)	(1:0)	1024 x 16	1024 x 2	(9:0)	(15:0)	(1:0)
(a)Depth x Width										

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables show address mapping for each port width.

Port Address Mapping for Data

Data Width	Port D	ata .	Ada	ires	ses																													
1	16384	<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	. 11	1 10	9	8	7	6	5	4	3	2	1	0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4		3		2		1		0	
4	4096	<	7				6				5				4				3				2				1				0			
8	2048	<	3								2								1								0							
16	1024	<	1																0															
32	512	<	0																															

Port Address Mapping for Parity

Parity Width	Port P	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		
4	512	<	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_A, INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Х	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Х	No Change	X	No Change	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	X	Х

WRITE MODE A=READ FIRST and WRITE MODE B=READ FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1	↑	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	X	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	Χ	X	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	No Change	Х	No Change	X	DIA	DIPA
0	1	\uparrow	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	Х	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	No Change	Х	No Change	Х	DIA	DIPA
0	1	↑	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	↑	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISION_ CHECK	String	"ALL", "NONE", "WARNING", or "GENERATE_ X_ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary /Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/ Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE_A	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_B	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
```

```
-- RAMB16_S18_S18: Virtex-II/II-Pro, Spartan-3/3E 1k x 16 + 2 Parity bits Dual-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S18_S18_inst : RAMB16_S18_S18
generic map (
INIT_A => X"00000", -- Value of output RAM registers on Port A at startup
INIT_B => X"00000", -- Value of output RAM registers on Port B at startup
SRVAL_A => X"00000", -- Port A ouput value upon SSR assertion SRVAL_B => X"00000", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL"
-- The follosing INIT_xx declarations specify the intiial contents of the RAM
-- Address 0 to 255
```



```
-- Address 256 to 511
- Address 512 to 767
-- Address 768 to 1023
-- The next set of INITP_xx are for the parity bits
-- Address 0 to 255
-- Address 256 to 511
-- Address 512 to 767
- Address 768 to 1023
port map (
DOA => DOA,
 -- Port A 16-bit Data Output
DOB => DOB,
 -- Port B 16-bit Data Output
DOPA => DOPA,
 -- Port A 2-bit Parity Output
DOPB => DOPB.
 -- Port B 2-bit Parity Output
```



```
ADDRA => ADDRA, -- Port A 10-bit Address Input ADDRB => ADDRB, -- Port B 10-bit Address Input
CLKA => CLKA, -- Port A Clock
CLKB => CLKB,
                  -- Port B Clock
                -- Port A 16-bit Data Input
DIA => DIA,
DIB => DIB,
                 -- Port B 16-bit Data Input
DIPA => DIPA,
                -- Port A 2-bit parity Input
-- Port-B 2-bit parity Input
DIPB => DIPB,
ENA => ENA,
                 -- Port A RAM Enable Input
ENB => ENB,
                  -- PortB RAM Enable Input
SSRA => SSRA,
                 -- Port A Synchronous Set/Reset Input
SSRB => SSRB,
                 -- Port B Synchronous Set/Reset Input
WEA => WEA,
                  -- Port A Write Enable Input
                 -- Port B Write Enable Input
WEB => WEB
);
-- End of RAMB16_S18_S18_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S18_S18: Virtex-II/II-Pro, Spartan-3/3E 1k x 16 + 2 Parity bits Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S18_S18 #(
.INIT_A(18'h00000), // Value of output RAM registers on Port A at startup
.INIT_B(18'h00000), // Value of output RAM registers on Port B at startup
.SRVAL_A(18'h00000), // Port A output value upon SSR assertion .SRVAL_B(18'h00000), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST OR NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// The following INIT_xx declarations specify the initial contents of the RAM
// Address 0 to 255
// Address 256 to 511
// Address 512 to 767
```



```
. \\ \\ \text{INIT} \\ \\ \\ \\ \text{INIT} \\ \\ \\ \\ \text{INIT} \\ \\ \\ \text{IN
// Address 768 to 1023
// The next set of INITP_xx are for the parity bits
// Address 0 to 255
// Address 256 to 511
// Address 512 to 767
// Address 768 to 1023
) RAMB16_S18_S18_inst (
.DOA(DOA),
              // Port A 16-bit Data Output
// Port B 16-bit Data Output
.DOB(DOB),
.DOPA(DOPA),
            // Port A 2-bit Parity Output
.DOPB(DOPB), // Port B 2-bit Parity Output
.ADDRA(ADDRA), // Port A 10-bit Address Input
.ADDRB(ADDRB), // Port B 10-bit Address Input
.CLKA(CLKA),
              // Port A Clock
              // Port B Clock
.CLKB(CLKB),
              // Port A 16-bit Data Input
.DIA(DIA),
              // Port B 16-bit Data Input
// Port A 2-bit parity Input
.DIB(DIB).
.DIPA(DIPA),
.DIPB(DIPB),
              // Port-B 2-bit parity Input
.ENA(ENA),
              // Port A RAM Enable Input
              // Port B RAM Enable Input
.ENB(ENB).
.SSRA(SSRA),
              // Port A Synchronous Set/Reset Input
.SSRB(SSRB),
              // Port B Synchronous Set/Reset Input
              // Port A Write Enable Input
.WEA(WEA),
.WEB(WEB)
              // Port B Write Enable Input
// End of RAMB16_S18_S18_inst instantiation
```


For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAMB16_S18_S36

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 18-bit and 36-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	s							Outputs				
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts	
										Data RAM	Parity RAM	
1	Χ	Χ	Χ	Χ	X	Χ	Χ	INIT_A	INIT_A	No Change	No Change	
0	0	Χ	Χ	Χ	X	Χ	Χ	No Change	No Change	No Change No Change		
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_A	SRVAL_A	No Change	No Change	
0	1	1	1	↑	addr	data	pdata	SRVAL_A	SRVAL_A	RAM(addr) =>data	RAM(addr) =>pdata	
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change	

Inputs	5							Outputs			
GSR	GSR ENA SSRA WEA CLKA ADDRA DIA 1						DIPA	DOA	DOPA	RAM Conter	nts
									_	Data RAM	Parity RAM
0	1	0	1	\uparrow	addr	data	pdata	No Change1, RAM(addr)2, data3	No Change1, RAM(addr)2, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	RAM Conte	nts
										Data RAM	Parity RAM
1	Χ	Χ	Χ	Χ	Χ	X	Χ	INIT_B	INIT_B	No Change	No Change
0	0	Χ	Χ	Χ	X	X	Χ	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_B	SRVAL_B	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S18_S36	1024 x 16	1024 x 2	(9:0)	(15:0)	(1:0)	512 x 32	512 x 4	(8:0)	(31:0)	(3:0)
(a)Depth x Width										

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

Libraries Guide

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

Data Width	Port Da	ata Ac	ldre	esse	es.																													
1	16384	<	31	30	29	28	27	26	2	5 24	2	3 22	21	20	019	18	3 17	1	61	51	11	312	2 1	1 10	9	8	7	6	5	4	3	2	1	0
2	8192	<	15		14		13		12	2	1	1	10		9		8		7		6		5		4		3		2		1		0	
4	4096	<	7				6				5				4				3				2				1				0			
8	2048	<	3								2								1								0							
16	1024	<	1																0															
32	512	<	0																															

Port Address Mapping for Parity

296

Parity Width	Port P	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		
4	512	<	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑		DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	↑	↑	DIA	DIB	DIPA	DIPB	Χ	No Change	X	No Change	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	Χ	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	\uparrow	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow		DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	1	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	Х	No Change	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	X	DIB	X	DIPB	DIB	DIPB
1	1	1	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	X	DIPB	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	Х	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISION_ CHECK	String	"ALL", "NONE", "WARNING", or "GENERATE_ X_ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary /Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/ Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE_A	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_B	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
```

```
-- RAMB16_S18_S36: Virtex-II/II-Pro, Spartan-3/3E 1k/512 x 16/32 + 2/4 Parity bits Dual-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S18_S36_inst : RAMB16_S18_S36
generic map (
INIT_A => X"00000", -- Value of output RAM registers on Port A at startup
INIT_B => X"000000000", -- Value of output RAM registers on Port B at startup
SRVAL_A => X"000000", -- Port A ouput value upon SSR assertion
SRVAL_B => X"000000000", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL"
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Port A Address 0 to 255, Port B Address 0 to 127
```



```
-- Port A Address 256 to 511, Port B Address 128 to 255
-- Port A Address 512 to 767, Port B Address 256 to 383
-- Port A Address 768 to 1023, Port B Address 384 to 511
-- The next set of INITP_xx are for the parity bits
-- Port A Address 0 to 255. Port B Address 0 to 127
-- Port A Address 256 to 511, Port B Address 128 to 255
-- Port A Address 512 to 767, Port B Address 256 to 383
- Port A Address 768 to 1023, Port B Address 384 to 511
port map (
DOA => DOA,
  -- Port A 16-bit Data Output
DOB => DOB,
  -- Port B 32-bit Data Output
  -- Port A 2-bit Parity Output
DOPA => DOPA.
DOPB => DOPB.
  -- Port B 4-bit Parity Output
```

Libraries Guide

302

```
-- Port A 10-bit Address Input
ADDRA => ADDRA,
ADDRB => ADDRB,
                 -- Port B 9-bit Address Input
CLKA => CLKA,
                 -- Port A Clock
CLKB => CLKB,
                 -- Port B Clock
DIA => DIA,
                 -- Port A 16-bit Data Input
DIB => DIB,
                 -- Port B 32-bit Data Input
DIPA => DIPA,
                 -- Port A 2-bit parity Input
               -- Port-B 4-bit parity Input
DIPB => DIPB,
ENA => ENA,
                -- Port A RAM Enable Input
ENB => ENB,
                 -- PortB RAM Enable Input
SSRA => SSRA,
                 -- Port A Synchronous Set/Reset Input
SSRB => SSRB,
                 -- Port B Synchronous Set/Reset Input
WEA => WEA,
                 -- Port A Write Enable Input
WEB => WEB
                 -- Port B Write Enable Input
);
-- End of RAMB16_S18_S36_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S18_S36: Virtex-II/II-Pro, Spartan-3/3E 1k/512 x 16/32 + 2/4 Parity bits Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S18_S36 #(
.INIT_A(18'h00000),
      // Value of output RAM registers on Port A at startup
.INIT_B(36'h000000000), \ //\ Value of output RAM registers on Port B at startup
.SRVAL_A(18'h00000), // Port A output value upon SSR assertion .SRVAL_B(36'h000000000), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST OR NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// The following INIT_xx declarations specify the initial contents of the RAM
// Port A Address 0 to 255, Port B Address 0 to 127
// Port A Address 256 to 511, Port B Address 128 to 255
// Port A Address 512 to 767, Port B Address 256 to 383
```



```
// Port A Address 768 to 1023, Port B Address 384 to 511
// The next set of INITP_xx are for the parity bits
// Port A Address 0 to 255, Port B Address 0 to 127
// Port A Address 256 to 511, Port B Address 128 to 255
// Port A Address 512 to 767, Port B Address 256 to 383
// Port A Address 768 to 1023, Port B Address 384 to 511
) RAMB16_S18_S36_inst (
    // Port A 16-bit Data Output
// Port B 32-bit Data Output
.DOA(DOA),
.DOB(DOB),
.DOPA(DOPA),
    // Port A 2-bit Parity Output
    // Port B 4-bit Parity Output
.DOPB(DOPB),
.ADDRA(ADDRA),
    // Port A 10-bit Address Input
.ADDRB(ADDRB),
    // Port B 9-bit Address Input
.CLKA(CLKA),
    // Port A Clock
    // Port B Clock
.CLKB(CLKB),
    // Port A 16-bit Data Input
.DIA(DIA),
    // Port B 32-bit Data Input
.DIB(DIB).
.DIPA(DIPA),
    // Port A 2-bit parity Input
.DIPB(DIPB),
    // Port-B 4-bit parity Input
.ENA(ENA),
    // Port A RAM Enable Input
    // Port B RAM Enable Input
.ENB(ENB),
.SSRA(SSRA),
    // Port A Synchronous Set/Reset Input
.SSRB(SSRB),
    // Port B Synchronous Set/Reset Input
.WEA(WEA),
    // Port A Write Enable Input
.WEB(WEB)
    // Port B Write Enable Input
// End of RAMB16_S18_S36_inst instantiation
```


For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAMB16_S2

Primitive: 16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 2-bit Port

Introduction

This design element is a dedicated random access memory blocks with synchronous write capability. The block RAM port has 16384 bits of data memory. The cell configuration for this element is listed in the following table.

Data Cells		Parity Cells	Parity Cells							
Depth	Width	Depth	Width	Address Bus	Data Bus	Parity Bus				
8192	2	-	-	(12:0)	(1:0)	-				

The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The above description assumes an active High EN, WE, SSR, and CLK. However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Logic Table

Input	Inputs								Outputs				
GSR	EN	SSR	WE	CLK	ADDR	DI	DIP	DO	DOP	RAM Content	s		
										Data RAM	Parity RAM		
1	Χ	Χ	Χ	Χ	Χ	X	X	INIT	INIT	No Change	No Change		
0	0	Χ	Χ	X	Х	Х	Х	No Change	No Change	No Change	No Change		
0	1	1	0	1	Χ	Χ	Х	SRVAL	SRVAL	No Change	No Change		
0	1	1	1	1	addr	data	pdata	SRVAL	SRVAL	RAM(addr) =>data	RAM(addr) =>pdata		
0	1	0	0	1	addr	Χ	Χ	RAM(addr)	RAM(addr)	No Change	No Change		

Input	Inputs								Outputs				
GSR EN SSR WE CLK ADDR DI DIP							DO	DOP	RAM Contents				
										Data RAM	Parity RAM		
0	1	0	1	1	addr	data	pdata	No Change(a) RAM (addr)(b) data(c)	No Change(a) RAM (addr)(b) pdata(c)	RAM (addr)=>data	RAM (addr)=>pdata		

GSR=Global Set Reset signal

INIT=Value specified by the INIT attribute for data memory. Default is all zeros.

SRVAL=Value after assertion of SSR as specified by the SRVAL attribute.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

- (a) WRITE_MODE=NO_CHANGE
- (b) WRITE_MODE=READ_FIRST
- (c) WRITE MODE=WRITE FIRST

Initialization

Initializing Memory Contents

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16 is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

Any INIT_xx or INITP_xx attribute that is not specified is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register

In Spartan-3A, each bit in the output register can be initialized at power on to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Two types of properties control initialization of the output register for a single-port RAMB16: INIT and SRVAL. The INIT attribute specifies the output register value at power on. You can use the SRVAL attribute to define the state resulting from assertion of the SSR (set/reset) input.

The INIT and SRVAL attributes specify the initialization value as a hexadecimal String containing one bit for each bit in the output port. For example, for a RAMB16_S1 with port width equal to 1, the output register contains 1 bit. Therefore, the INIT or SRVAL value can only be specified as a 1 or 0. For RAMB16_S4 with port width equal to 4, the output register contains 4 bits. In this case, you can specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT or SRVAL value.

Selecting Write Mode

The WRITE_MODE attribute controls RAMB16 memory and output contents. By default, the WRITE_MODE is set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the WRITE_MODE to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the WRITE_MODE to NO_CHANGE to have the input written to memory without changing the output.

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	Binary/ Hexadecimal	Any Hex Value	All zeros	Identifies the initial value of the DO output port after completing configuration. The bit width is dependent on the width of the A or B port of the RAM.
INIT_00 - INIT_3F	Binary/ Hexadecimal	Any Hex Value	All zeros	Specifies the initial contents of the data portion of the RAM array.
INITP_00 - INITP_07	Binary/ Hexadecimal	Any Hex Value	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SRVAL	Binary/ Hexadecimal	Any Hex Value	All zeros	Allows the individual selection of whether the DO output port sets (go to a one) or reset (go to a zero) upon the assertion of the SSR pin. The bit width is dependent on the width of the A or B port of the RAM.
WRITE_MODE	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_FIRST"	Specifies the behavior of the DO port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

use UNISIM.vcomponents.all;

-- RAMB16_S2: Virtex-II/II-Pro, Spartan-3/3E 8k x 2 Single-Port RAM


```
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S2_inst : RAMB16_S2
generic map (
INIT => X"0", -- Value of output RAM registers at startup
SRVAL => X"0", -- Ouput value upon SSR assertion
WRITE_MODE => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Address 0 to 2047
-- Address 2048 to 4095
-- Address 4096 to 6143
-- Address 6143 to 8191
```



```
port map (
DO => DO.
        -- 2-bit Data Output
ADDR => ADDR, -- 13-bit Address Input
CLK => CLK,
        -- Clock
       -- 2-bit Data Input
DI => DI,
EN => EN,
       -- RAM Enable Input
SSR => SSR,
        -- Synchronous Set/Reset Input
       -- Write Enable Input
WE => WE
);
-- End of RAMB16_S2_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S2: Spartan-3/3E/3A/3AN/3AD 8k x 2 Single-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S2 #(
.INIT(2'b00), // Value of output RAM registers at startup
.SRVAL(2'b00), // Output value upon SSR assertion
.WRITE_MODE("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
// The following INIT_xx declarations specify the initial contents of the RAM
// Address 2048 to 4095
// Address 4096 to 6143
```



```
// Address 6143 to 8191
) RAMB16_S2_inst
.DO(DO),
 // 2-bit Data Output
.ADDR(ADDR), // 13-bit Address Input
.CLK(CLK),
 // Clock
 // 2-bit Data Input
.DI(DI),
 // RAM Enable Input
.EN(EN),
 // Synchronous Set/Reset Input
.SSR(SSR),
.WE(WE)
 // Write Enable Input
// End of RAMB16_S2_inst instantiation
```

For More Information

- See the Spartan-3 User Guide.
- See the Spartan-3 Data Sheets.

RAMB16_S2_S18

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit and 18-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	Inputs								Outputs				
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Contents			
											Parity RAM		
1	Χ	Χ	X	Χ	Χ	Χ	Χ	INIT_A	INIT_A	No Change	No Change		
0	0	Χ	Χ	Χ	Χ	Χ	Χ	No Change	No Change	No Change	No Change		
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_A	SRVAL_A	No Change	No Change		
0	1	1	1	↑	addr	data	pdata	SRVAL_A	SRVAL_A	RAM(addr) =>data	RAM(addr) =>pdata		
0	1	0	0	↑	addr	Χ	Χ	RAM(addr)	RAM(addr)	No Change	No Change		

Inputs	Inputs								Outputs				
GSR ENA SSRA WEA CLKA ADDRA DIA DIPA							DIPA	DOA	DOPA	RAM Contents			
									_	Data RAM Parity RAM			
0	1	0	1	\uparrow	addr	data	pdata	No Change1, RAM(addr)2, data3	No Change1, RAM(addr)2, pdata3	RAM(addr) =>data	RAM(addr) =>pdata		

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs					
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	OOPB RAM Contents			
										Data RAM	Parity RAM		
1	Χ	Χ	X	Χ	X	Χ	X	INIT_B	INIT_B	No Change	No Change		
0	0	Χ	X	X	X	Χ	X	No Change	No Change	No Change	No Change		
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_B	SRVAL_B	No Change	No Change		
0	1	1	1	↑	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata		
0	1	0	0	↑	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change		
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	RAM(addr) =>data	RAM(addr) =>pdata		

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S2_S18	8192 x 2	-	(12:0)	(1:0)	-	1024 x 16	1024 x 2	(9:0)	(15:0)	(1:0)
(a)Depth x Width					-					-

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

Data Width	Port D	ata A	ddr	ess	es																												
1	16384	<	31	30	29	28	27	26	2524	23	22	21	20	19	18	17	16	13	5 14	13	12	1	1 10	9	8	7	6	5	4	3	2	1	0
2	8192	<	15		14		13		12	11		10		9		8		7		6		5		4		3		2		1		0	
4	4096	<	7				6			5				4				3				2				1				0			
8	2048	<	3							2								1								0							
16	1024	<	1															0															
32	512	<	0																														

Port Address Mapping for Parity

Parity Width	Port P	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1		_			0		
4	512	<	0		_					

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

Libraries Guide

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	DIA	DIPA
0	1	\uparrow	↑	DIA	DIB	DIPA	DIPB	X	No Change	Χ	No Change	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1	\uparrow	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	Χ	No Change	X	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	X	DIPB	DIB	DIPB
1	1	↑	\uparrow	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	Χ	Χ

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	\uparrow	1	DIA	DIB	DIPA	DIPB	X	DIB	X	DIPB	DIB	DIPB
1	1	\uparrow	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISION_ CHECK	String	"ALL", "NONE", "WARNING", or "GENERATE_ X_ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary /Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/ Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE_A	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_B	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAMB16_S2_S2

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	s							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts
										Data RAM	Parity RAM
1	Χ	Χ	Χ	Χ	X	Χ	Χ	INIT_A	INIT_A	No Change	No Change
0	0	Χ	Χ	Χ	X	Χ	Χ	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	Χ	Χ	SRVAL_A	SRVAL_A	No Change	No Change
0	1	1	1	\uparrow	addr	data	pdata	SRVAL_A	SRVAL_A	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	Χ	X	RAM(addr)	RAM(addr)	No Change	No Change

Inputs	6							Outputs			
GSR ENA SSRA WEA CLKA ADDRA DIA DI						DIA	DIPA	DOA	DOPA	RAM Conter	nts
				-			_	_	_	Data RAM	Parity RAM
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr)2, data3		RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	6							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	RAM Conte	nts
										Data RAM	Parity RAM
1	X	Χ	Χ	Χ	X	X	Χ	INIT_B	INIT_B	No Change	No Change
0	0	Χ	Χ	Χ	Χ	Χ	Χ	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_B	SRVAL_B	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE MODE B=WRITE FIRST.

Port Descriptions

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	
RAMB16_S2_S2	8192 x 2	-	(12:0)	(1:0)	-	8192 x 2	-	(12:0)	(1:0)	-
(a)Depth x Width	-	-			-	-		-	-	-

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

Data Width	Port D	Oata A	ddr	ess	es																											
1	16384	<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6 5	4	3	2 1	0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4		3	2	2	1	0	
4	4096	<	7				6				5				4				3				2				1			0		
8	2048	<	3								2								1								0					
16	1024	<	1																0													
32	512	<	0																													

Port Address Mapping for Parity

Parity Width	Port P	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		
4	512	<	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_A, INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	1	↑	DIA	DIB	DIPA	DIPB	Х	No Change	X	No Change	DIB	DIPB
1	1	\uparrow	1	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	Х	Х

WRITE MODE A=READ FIRST and WRITE MODE B=READ FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	1	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	1	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	1	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1	\uparrow	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	\uparrow	1	DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	\uparrow	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	X	Χ

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Х	DIB	X	DIPB	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	Х	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexidecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexidecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexidecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexidecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISION CHECK	_String	"ALL", "NONE", "WARNING", or "GENERATE_X_ ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/ Hexidecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/ Hexidecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE_	AString	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_I	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAMB16_S2_S2: Virtex-II/II-Pro, Spartan-3/3E 8k x 2 Dual-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S2_S2_inst : RAMB16_S2_S2
generic map (
INIT_A => X"0", -- Value of output RAM registers on Port A at startup
INIT_B => X"0", -- Value of output RAM registers on Port B at startup
SRVAL_A => X"0", -- Port A ouput value upon SSR assertion
SRVAL_B => X"0", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL"
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Address 0 to 2047
-- Address 2048 to 4095
```



```
-- Address 4096 to 6143
-- Address 6143 to 8191
port map (
DOA => DOA.
  -- Port A 2-bit Data Output
DOB => DOB,
  -- Port B 2-bit Data Output
ADDRA => ADDRA, -- Port A 13-bit Address Input
ADDRB => ADDRB, -- Port B 13-bit Address Input
CLKA => CLKA,
  -- Port A Clock
CLKB => CLKB,
  -- Port B Clock
DIA => DIA,
  -- Port A 2-bit Data Input
DIB => DIB,
  -- Port B 2-bit Data Input
ENA => ENA,
  -- Port A RAM Enable Input
ENB => ENB,
  -- Port B RAM Enable Input
SSRA => SSRA,
  -- Port A Synchronous Set/Reset Input
SSRB => SSRB,
  -- Port B Synchronous Set/Reset Input
WEA => WEA,
  -- Port A Write Enable Input
WEB => WEB
  -- Port B Write Enable Input
);
-- End of RAMB16_S2_S2_inst instantiation
```


Verilog Instantiation Template

```
// RAMB16_S2_S2: Spartan-3/3E/3A/3AN/3AD 8k x 2 Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S2_S2 #(
  // Value of output RAM registers on Port A at startup
.INIT_A(2'b00),
.INIT_B(2'b00), // Value of output RAM registers on Port B at startup
.SRVAL_A(2'b00), // Port A output value upon SSR assertion
.SRVAL_B(2'b00), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// Address 0 to 2047
// Address 2048 to 4095
// Address 4096 to 6143
// Address 6143 to 8191
```



```
) RAMB16_S2_S2_inst (
      // Port A 2-bit Data Output
.DOA(DOA),
       // Port B 2-bit Data Output
.DOB(DOB),
.ADDRA(ADDRA), // Port A 13-bit Address Input
.ADDRB(ADDRB), // Port B 13-bit Address Input
.CLKB(CLKB), // Port B Clock
.DIA(DIA), // Port A 2-bit Data Input
.DIA(DIA),
.DIB(DIB),
       // Port B 2-bit Data Input
       // Port A RAM Enable Input
.ENA(ENA),
       // Port B RAM Enable Input
.ENB(ENB),
.SSRA(SSRA),
       // Port A Synchronous Set/Reset Input
.SSRB(SSRB),
       // Port B Synchronous Set/Reset Input
.WEA(WEA),
       // Port A Write Enable Input
       // Port B Write Enable Input
.WEB(WEB)
// End of RAMB16_S2_S2_inst instantiation
```

For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAMB16_S2_S36

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit and 36-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	6							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts
										Data RAM	Parity RAM
1	Χ	Χ	Χ	Χ	Χ	X	Χ	INIT_A	INIT_A	No Change	No Change
0	0	Χ	Χ	Χ	Χ	Χ	Χ	No Change	No Change	No Change No Change	
0	1	1	0	\uparrow	Χ	Χ	Χ	SRVAL_A	SRVAL_A	No Change	No Change
0	1	1	1	\uparrow	addr	data	pdata	SRVAL_A	SRVAL_A	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	↑	addr	X	Χ	RAM(addr)	RAM(addr)	No Change No Change	

Inputs	6							Outputs			
GSR	GSR ENA SSRA WEA CLKA ADDRA DIA DI							DOA	DOPA	RAM Conter	nts
				-			_	_	_	Data RAM	Parity RAM
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr)2, data3		RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	6							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	RAM Conte	nts
										Data RAM	Parity RAM
1	X	Χ	Χ	Χ	X	X	Χ	INIT_B	INIT_B	No Change	No Change
0	0	Χ	Χ	Χ	Χ	X	X	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_B	SRVAL_B	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE MODE B=WRITE FIRST.

Port Descriptions

Port A						Port B				
Design Element Data Cells(a) Parity Address Bus Parity Bus						Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S2_S36	8192 x 2	-	(12:0)	(1:0)	-	512 x 32	512 x 4	(8:0)	(31:0)	(3:0)
(a)Depth x Width	•	-			•	<u>-</u>		-		<u>-</u>

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

Data Width	Port D	ata Ac	ldre	esse	es.																											
1	16384	<	31	30	29	28	27	26	2	524	23	22	21	20	19	18	17	16	15	5 14	13	12	11	10	9	8 :	7	6 5	4	3	2 1	0
2	8192	<	15		14		13		1	2	11		10		9		8		7		6		5		4	,	3	2		1	C	
4	4096	<	7				6				5				4				3				2				1			0		
8	2048	<	3								2								1							•	0					
16	1024	<	1																0													
32	512	<	0																													

Port Address Mapping for Parity

Parity Width	Port P	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		
4	512	<	0					_		

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

334 www.xilinx.com 10.1

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	↑	1	DIA	DIB	DIPA	DIPB	X	No Change	Χ	No Change	DIB	DIPB
1	1	↑	1	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	\uparrow	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	X	Х

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Х	DIB	Χ	DIPB	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	\leftarrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	No X Change		No Change	Х	DIA	DIPA
0	1	1	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	\uparrow	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA DOB		DOPA	DOPB	Data RAM	Parity Ram
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	↑	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	X	Х

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Х	DIB	Χ	DIPB	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	Х	DIB	X	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.

Attribute	Type	Allowed Values	Default	Description
SIM_COLLISION_ CHECK	String	"ALL", "NONE", "WARNING", or "GENERATE_ X_ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary /Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/ Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.
WRITE_MODE_A	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_B	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAMB16_S2_S36: Virtex-II/II-Pro, Spartan-3/3E 8k/512 x 2/32 + 0/4 Parity bits Dual-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S2_S36_inst : RAMB16_S2_S36
generic map (
INIT_A => X"0",
   -- Value of output RAM registers on Port A at startup
INIT_B => X"000000000", -- Value of output RAM registers on Port B at startup
SRVAL_A => X"0", -- Port A ouput value upon SSR assertion
SRVAL_B => X"000000000", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL"
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Port A Address 0 to 2047, Port B Address 0 to 127
- Port A Address 2048 to 4095, Port B Address 128 to 255
-- Port A Address 4096 to 6143, Port B Address 256 to 383
-- Port A Address 6144 to 8191, Port B Address 384 to 511
```



```
-- The next set of INITP_xx are for the parity bits
-- Port B Address 0 to 127
- Port B Address 128 to 255
-- Port B Address 256 to 383
-- Port B Address 384 to 511
port map (
DOA => DOA,
     -- Port A 2-bit Data Output
DOB => DOB, -- Port B 32-bit Data Output
DOPB => DOPB, -- Port B 4-bit Parity Output
ADDRA => ADDRA, -- Port A 13-bit Address Input
ADDRB => ADDRB, -- Port B 9-bit Address Input
CLKA => CLKA,
     -- Port A Clock
     -- Port B Clock
CLKB => CLKB,
DIA => DIA,
     -- Port A 2-bit Data Input
-- Port B 32-bit Data Input
DIB => DIB,
DIPB => DIPB, -- Port-B 4-bit parity Input
ENA => ENA,
     -- Port A RAM Enable Input
ENB => ENB,
     -- PortB RAM Enable Input
SSRA => SSRA,
     -- Port A Synchronous Set/Reset Input
SSRB => SSRB,
     -- Port B Synchronous Set/Reset Input
WEA => WEA,
     -- Port A Write Enable Input
WEB => WEB
     -- Port B Write Enable Input
);
-- End of RAMB16_S2_S36_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S2_S36: Spartan-3/3E/3A/3AN/3AD 8k/512 x 2/32 + 0/4 Parity bits Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S2_S36 #(
.INIT A(2'b00).
                 \ensuremath{//} Value of output RAM registers on Port A at startup
.INIT_B(36'h000000000), // Value of output RAM registers on Port B at startup
                 // Port A output value upon SSR assertion
.SRVAL_A(2'b00),
.SRVAL_B(36'h000000000), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST OR NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// The following INIT_xx declarations specify the initial contents of the RAM
// Port A Address 0 to 2047, Port B Address 0 to 127
```



```
// Port A Address 2048 to 4095, Port B Address 128 to 255
// Port A Address 4096 to 6143, Port B Address 256 to 383
// Port A Address 6144 to 8191, Port B Address 384 to 511
// The next set of INITP_xx are for the parity bits
// Port B Address 0 to 127
// Port B Address 128 to 255
// Port B Address 256 to 383
```



```
// Port B Address 384 to 511
) RAMB16_S2_S36_inst (
             // Port A 2-bit Data Output
.DOA(DOA),
.DOB(DOB), // Port B 32-bit Data Output
.DOPB(DOPB), // Port B 4-bit Parity Output
.ADDRA(ADDRA), // Port A 13-bit Address Input
.ADDRB(ADDRB), // Port B 9-bit Address Input
.CLKA(CLKA), // Port A Clock
.CLKB(CLKB), // Port B Clock
.DIA(DIA), // Port A 2-bit Data Input
.DIR(DIB). // Port B 32-bit Data Input
.DIB(DIB), // Port B 32-bit Data Input
.DIPB(DIPB), // Port-B 4-bit parity Input
.ENA(ENA), // Port A RAM Enable Input
                // Port B RAM Enable Input
.ENB(ENB),
                // Port A Synchronous Set/Reset Input
.SSRA(SSRA),
.SSRB(SSRB), // Port B Synchronous Set/Reset Input
.WEA(WEA),
                // Port A Write Enable Input
                // Port B Write Enable Input
.WEB(WEB)
);
// End of RAMB16_S2_S36_inst instantiation
```

For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAMB16_S2_S4

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit and 4-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	6							Outputs				
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts	
					Data RAM	Parity RAM						
1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	INIT_A	INIT_A	No Change	No Change	
0	0	Χ	Χ	Χ	Χ	Χ	Χ	No Change	No Change	No Change No Change		
0	1	1	0	\uparrow	Χ	Χ	Χ	SRVAL_A	SRVAL_A	No Change No Change		
0	1	1	1	\uparrow	addr	data	pdata	SRVAL_A	SRVAL_A	RAM(addr) =>data	RAM(addr) =>pdata	
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change	

Inputs	6							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts
				-			_	_	_	Data RAM	Parity RAM
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr)2, data3		RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	5							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	RAM Conte	nts
										Data RAM	Parity RAM
1	Χ	Χ	Χ	X	Χ	Χ	Χ	INIT_B	INIT_B	No Change	No Change
0	0	Χ	Χ	Χ	X	X	Χ	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_B	SRVAL_B	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A			Port B							
Design Element	Data Cells (a)	Parity Cells (a)	Address Bus	Data Bus	Parity Bus	Data Cells (a)	Parity Cells (a)	Address Bus	Data Bus	Parity Bus
RAMB16_S2_S4	8192 x 2	-	(12:0)	(1:0)	-	4096 x 4	-	(11:0)	(3:0)	-
(a) Depth x Width										

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

Data Width	Port Data Addresses																																
1	16384	<	31	30	29	28	27	26	2524	23	3 22	21	20	19	18	17	16	15	5 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
2	8192	<	15		14		13		12	1	Ĺ	10		9		8		7		6		5		4		3		2		1		0	
4	4096	<	7				6			5				4				3				2				1				0			
8	2048	<	3							2								1								0							
16	1024	<	1															0															
32	512	<	0																														

Port Address Mapping for Parity

Parity Width	Port P	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		
4	512	<	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

346 www.xilinx.com 10.1

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	1	↑	DIA	DIB	DIPA	DIPB	Χ	No Change	X	No Change	DIB	DIPB
1	1	1	↑	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	X	Х

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	\uparrow	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	X	Х

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Х	DIB	Χ	DIPB	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	\leftarrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	No Change	Х	No Change	Х	DIA	DIPA
0	1	1	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	\uparrow	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM		No Change

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	X	Χ

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	1	\uparrow	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexidecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexidecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexidecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexidecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.

Attribute	Type	Allowed Values	Default	Description
SIM_COLLISION_ CHECK	String	"ALL", "NONE", "WARNING", or "GENERATE_ X_ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/ Hexidecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/ Hexidecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.
WRITE_MODE_A	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_B	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

use UNISIM.vcomponents.all;

- -- RAMB16_S2_S4: Virtex-II/II-Pro, Spartan-3/3E $8k/4k \times 2/4$ Dual-Port RAM
- -- Xilinx HDL Libraries Guide, version 10.1.2

RAMB16_S2_S4_inst : RAMB16_S2_S4


```
generic map (
INIT_A => X"0", -- Value of output RAM registers on Port A at startup
INIT_B => X"0", -- Value of output RAM registers on Port B at startup
SRVAL_A => X"0", -- Port A ouput value upon SSR assertion
SRVAL_B => X"0", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL"
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Port A Address 0 to 2047, Port B Address 0 to 1023
-- Port A Address 2048 to 4095, Port B Address 1024 to 2047
-- Port A Address 4096 to 6143, Port B Address 2048 to 3071
-- Port A Address 6144 to 8191, Port B Address 3072 to 4095
```



```
port map (
DOA => DOA,
           -- Port A 2-bit Data Output
DOB => DOB,
           -- Port B 4-bit Data Output
ADDRA => ADDRA, -- Port A 13-bit Address Input
ADDRB => ADDRB, -- Port B 12-bit Address Input
CLKA => CLKA,
          -- Port A Clock
          -- Port B Clock
CLKB => CLKB,
DIA => DIA,
          -- Port A 2-bit Data Input
DIB => DIB,
          -- Port B 4-bit Data Input
         -- Port A RAM Enable Input
ENA => ENA,
ENB => ENB,
          -- Port B RAM Enable Input
SSRA => SSRA,
          -- Port A Synchronous Set/Reset Input
SSRB => SSRB,
          -- Port B Synchronous Set/Reset Input
WEA => WEA,
          -- Port A Write Enable Input
WEB => WEB
          -- Port B Write Enable Input
);
-- End of RAMB16_S2_S4_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S2_S4: Spartan-3/3E/3A/3AN/3AD 8k/4k \times 2/4 Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S2_S4 #(
.INIT_A(2'b00), \ //\  Value of output RAM registers on Port A at startup
.INIT B(4'h0),
    // Value of output RAM registers on Port B at startup
.SRVAL_A(2'b00), // Port A output value upon SSR assertion
.SRVAL_B(4'h0), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// The following INIT_xx declarations specify the initial contents of the RAM
// Port A Address 0 to 2047, Port B Address 0 to 1023
// Port A Address 2048 to 4095, Port B Address 1024 to 2047
```



```
// Port A Address 4096 to 6143, Port B Address 2048 to 3071
// Port A Address 6144 to 8191, Port B Address 3072 to 4095
) RAMB16_S2_S4_inst (
   // Port A 2-bit Data Output
.DOA(DOA),
.DOB(DOB),
   // Port B 4-bit Data Output
.ADDRA(ADDRA), // Port A 13-bit Address Input
.ADDRB(ADDRB), // Port B 12-bit Address Input .CLKA(CLKA), // Port A Clock
.CLKB(CLKB),
   // Port B Clock
.DIA(DIA),
   // Port A 2-bit Data Input
   // Port B 4-bit Data Input
.DIB(DIB),
.ENA(ENA),
   // Port A RAM Enable Input
   // Port B RAM Enable Input
.ENB(ENB),
   // Port A Synchronous Set/Reset Input
.SSRA(SSRA),
.SSRB(SSRB),
   // Port B Synchronous Set/Reset Input
.WEA(WEA),
   // Port A Write Enable Input
   // Port B Write Enable Input
.WEB(WEB)
// End of RAMB16_S2_S4_inst instantiation
```

For More Information

- See the Spartan-3 User Guide.
- See the *Spartan-3 Data Sheets*.

352 www.xilinx.com 10.1

RAMB16_S2_S9

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 2-bit and 9-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	s							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts
										Data RAM	Parity RAM
1	Χ	Χ	Χ	Χ	X	Χ	Χ	INIT_A	INIT_A	No Change	No Change
0	0	Χ	Χ	Χ	X	Χ	Χ	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	X	X	Χ	SRVAL_A	SRVAL_A	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL_A	SRVAL_A	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	Χ	Χ	RAM(addr)	RAM(addr)	No Change	No Change

Inputs	6							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts
				-			_	_	_	Data RAM	Parity RAM
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr)2, data3		RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	RAM Conte	nts
										Data RAM	Parity RAM
1	X	Χ	Χ	Χ	X	X	X	INIT_B	INIT_B	No Change	No Change
0	0	Χ	Χ	Χ	Χ	X	X	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_B	SRVAL_B	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE MODE B=WRITE FIRST.

Port Descriptions

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S2_S9	8192 x 2	-	(12:0)	(1:0)	-	2048 x 8	2048 x 1	(10:0)	(7:0)	(0:0)
(a)Depth x Width	-	-	-		<u>-</u>	-		-		

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

Data Width	Port Da	ıta Ado	lres	ses																												
1	16384	<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5 4	3	2 1	0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4		3		2	1	C	П
4	4096	<	7				6				5				4				3				2				1			0		П
8	2048	<	3								2								1								0					П
16	1024	<	1																0													П
32	512	<	0																												П	Π

Port Address Mapping for Parity

Parity Width	Port P	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		
4	512	<	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	DIA	DIPA
0	1	↑	\uparrow	DIA	DIB	DIPA	DIPB	Χ	No Change	Χ	No Change	DIB	DIPB
1	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	Х	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	1	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	X	DIA	DIPA
0	1	\uparrow	1	DIA	DIB	DIPA	DIPB	Х	DIB	Χ	DIPB	DIB	DIPB
1	1	\uparrow	1	DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	\leftarrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	No Change	Х	No Change	Х	DIA	DIPA
0	1	1	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	\uparrow	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	X	Х

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Х	DIB	Χ	DIPB	DIB	DIPB
1	1	1	↑	DIA	DIB	DIPA	DIPB	Х	DIB	X	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes	
Inference	Recommended	
Coregen and wizards	Yes	
Macro support	No	

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexidecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexidecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexidecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexidecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.

Attribute	Type	Allowed Values	Default	Description
SIM_COLLISION CHECK	_String	"ALL", "NONE", "WARNING", or "GENERATE_X_ONI	"ALL" LY"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary/ Hexidecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/ Hexidecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.
WRITE_MODE_A	AString	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_I	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

use UNISIM.vcomponents.all;

```
-- RAMB16_S2_S9: Virtex-II/II-Pro, Spartan-3/3E 8k/2k \times 2/8 + 0/1 Parity bit Dual-Port RAM
```

RAMB16_S2_S9_inst : RAMB16_S2_S9
generic map (

⁻⁻ Xilinx HDL Libraries Guide, version 10.1.2


```
INIT_A => X"0", -- Value of output RAM registers on Port A at startup
INIT_B => X"000", -- Value of output RAM registers on Port B at startup
SRVAL_A => X"0", -- Port A ouput value upon SSR assertion
SRVAL_B => X"000", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL"
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Port A Address 0 to 2047, Port B Address 0 to 511
-- Port A Address 2048 to 4095, Port B Address 512 to 1023
-- Port A Address 4096 to 6143, Port B Address 1024 to 1535
-- Port A Address 6144 to 8191, Port B Address 1536 to 2047
```



```
-- The next set of INITP_xx are for the parity bits
-- Port B Address 0 to 511
-- Port B Address 512 to 1023
-- Port B Address 1024 to 1535
-- Port A Address 6144 to 8191, Port B Address 1536 to 2047
port map (
DOA => DOA,
        -- Port A 2-bit Data Output
        -- Port B 8-bit Data Output
DOB => DOB,
       -- Port B 1-bit Parity Output
DOPB => DOPB,
ADDRA => ADDRA, -- Port A 13-bit Address Input
ADDRB => ADDRB, -- Port B 11-bit Address Input
CLKA => CLKA,
        -- Port A Clock
CLKB => CLKB,
        -- Port B Clock
DIA => DIA,
        -- Port A 2-bit Data Input
       -- Port B 8-bit Data Input
DIB => DIB,
       -- Port-B 1-bit parity Input
DIPB => DIPB,
ENA => ENA,
        -- Port A RAM Enable Input
ENB => ENB,
        -- Port B RAM Enable Input
SSRA => SSRA,
        -- Port A Synchronous Set/Reset Input
SSRB => SSRB,
        -- Port B Synchronous Set/Reset Input
WEA => WEA,
        -- Port A Write Enable Input
WEB => WEB
        -- Port B Write Enable Input
-- End of RAMB16_S2_S9_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S2_S9: Spartan-3/3E/3A/3AN/3AD 8k/2k x 2/8 + 0/1 Parity bit Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16 S2 S9 #(
.INIT A(2'b00),
     // Value of output RAM registers on Port A at startup
.SRVAL_B(9'h000), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE .WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// The following INIT_xx declarations specify the initial contents of the RAM
// Port A Address 0 to 2047, Port B Address 0 to 511
```



```
// Port A Address 2048 to 4095, Port B Address 512 to 1023
// Port A Address 4096 to 6143, Port B Address 1024 to 1535
// Port A Address 6144 to 8191, Port B Address 1536 to 2047
// The next set of INITP_xx are for the parity bits
// Port B Address 0 to 511
// Port B Address 512 to 1023
// Port B Address 1024 to 1535
// Port A Address 6144 to 8191, Port B Address 1536 to 2047
) RAMB16_S2_S9_inst (
  // Port A 2-bit Data Output
.DOA(DOA),
.DOB(DOB),
  // Port B 8-bit Data Output
.DOPB(DOPB),
  // Port B 1-bit Parity Output
 // Port A 13-bit Address Input
.ADDRA(ADDRA),
.ADDRB(ADDRB), // Port B 11-bit Address Input
.CLKA(CLKA),
  // Port A Clock
  // Port B Clock
.CLKB(CLKB),
```



```
.DIA(DIA), // Port A 2-bit Data Input
.DIB(DIB), // Port B 8-bit Data Input
.DIPB(DIPB), // Port-B 1-bit parity Input
.ENA(ENA), // Port A RAM Enable Input
.ENB(ENB), // Port B RAM Enable Input
.SSRA(SSRA), // Port A Synchronous Set/Reset Input
.SSRB(SSRB), // Port B Synchronous Set/Reset Input
.WEA(WEA), // Port A Write Enable Input
.WEB(WEB) // Port B Write Enable Input
);

// End of RAMB16_S2_S9_inst instantiation
```

For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

364

RAMB16_S36

Primitive: 16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 36-bit Port

Introduction

This design element is a dedicated random access memory blocks with synchronous write capability. The block RAM port has 16384 bits of data memory. The cell configuration for this element is listed in the following table.

Data Cells		Parity Cells				
Depth	Width	Depth	Width	Address Bus	Data Bus	Parity Bus
512	32	512	4	(8:0)	(31:0)	(3:0)

The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The above description assumes an active High EN, WE, SSR, and CLK. However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Logic Table

Input	s							Outputs			
GSR	EN	SSR	WE	CLK	ADDR	DI	DIP	DO	DOP	RAM Contents	s
										Data RAM	Parity RAM
1	Χ	Χ	X	Χ	Χ	X	Χ	INIT	INIT	No Change	No Change
0	0	Χ	Χ	X	X	X	X	No Change	No Change	No Change	No Change
0	1	1	0	1	X	Χ	X	SRVAL	SRVAL	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL	SRVAL	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	Χ	Χ	RAM(addr)	RAM(addr)	No Change No Change	

Input	s							Outputs			
GSR	SSR EN SSR WE CLK ADDR DI DIP						DIP	DO	DOP	RAM Contents	s
										Data RAM	Parity RAM
0	1	0	1	↑	addr	data	pdata	No Change(a) RAM (addr)(b) data(c)	No Change(a) RAM (addr)(b) pdata(c)	RAM (addr)=>data	RAM (addr)=>pdata

GSR=Global Set Reset signal

INIT=Value specified by the INIT attribute for data memory. Default is all zeros.

SRVAL=Value after assertion of SSR as specified by the SRVAL attribute.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

- (a) WRITE_MODE=NO_CHANGE
- (b) WRITE_MODE=READ_FIRST
- (c) WRITE MODE=WRITE FIRST

Initialization

Initializing Memory Contents

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16 is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

Any INIT_xx or INITP_xx attribute that is not specified is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register

In Spartan-3A, each bit in the output register can be initialized at power on to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Two types of properties control initialization of the output register for a single-port RAMB16: INIT and SRVAL. The INIT attribute specifies the output register value at power on. You can use the SRVAL attribute to define the state resulting from assertion of the SSR (set/reset) input.

The INIT and SRVAL attributes specify the initialization value as a hexadecimal String containing one bit for each bit in the output port. For example, for a RAMB16_S1 with port width equal to 1, the output register contains 1 bit. Therefore, the INIT or SRVAL value can only be specified as a 1 or 0. For RAMB16_S4 with port width equal to 4, the output register contains 4 bits. In this case, you can specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT or SRVAL value.

Selecting Write Mode

The WRITE_MODE attribute controls RAMB16 memory and output contents. By default, the WRITE_MODE is set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the WRITE_MODE to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the WRITE_MODE to NO_CHANGE to have the input written to memory without changing the output.

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	Binary/ Hexadecimal	Any Hex Value	All zeros	Identifies the initial value of the DO output port after completing configuration. The bit width is dependent on the width of the A or B port of the RAM.
INIT_00 - INIT_3F	Binary/ Hexadecimal	Any Hex Value	All zeros	Specifies the initial contents of the data portion of the RAM array.
INITP_00 - INITP_07	Binary/ Hexadecimal	Any Hex Value	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SRVAL	Binary/ Hexadecimal	Any Hex Value	All zeros	Allows the individual selection of whether the DO output port sets (go to a one) or reset (go to a zero) upon the assertion of the SSR pin. The bit width is dependent on the width of the A or B port of the RAM.
WRITE_MODE	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_FIRST"	Specifies the behavior of the DO port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

use UNISIM.vcomponents.all;

-- RAMB16_S36: Virtex-II/II-Pro, Spartan-3/3E 512 x 32 + 4 Parity bits Single-Port RAM

Libraries Guide


```
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S36_inst : RAMB16_S36
generic map (
INIT => X"000000000", -- Value of output RAM registers at startup
SRVAL => X"000000000", -- Ouput value upon SSR assertion
WRITE_MODE => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Address 0 to 127
-- Address 128 to 255
-- Address 256 to 383
-- Address 384 to 511
```



```
-- The next set of INITP_xx are for the parity bits
-- Address 0 to 127
-- Address 128 to 255
-- Address 256 to 383
-- Address 384 to 511
port map (
DO => DO.
     -- 32-bit Data Output
DOP => DOP,
     -- 4-bit parity Output
ADDR => ADDR, -- 9-bit Address Input
CLK => CLK,
     -- Clock
     -- 32-bit Data Input
DI => DI,
     -- 4-bit parity Input
DIP => DIP,
EN => EN,
     -- RAM Enable Input
SSR => SSR,
     -- Synchronous Set/Reset Input
WE => WE
     -- Write Enable Input
);
-- End of RAMB16_S36_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S36: Virtex-II/II-Pro, Spartan-3/3E 512 x 32 + 4 Parity bits Single-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16 S36 #(
.INIT(36'h000000000), \ //\ Value of output RAM registers at startup
.SRVAL(36'h000000000), // Output value upon SSR assertion
.WRITE_MODE("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
// The following INIT_xx declarations specify the initial contents of the RAM
// Address 0 to 127
// Address 128 to 255
```

Libraries Guide


```
// Address 256 to 383
// Address 384 to 511
// The next set of INITP_xx are for the parity bits
// Address 0 to 127
// Address 128 to 255
// Address 256 to 383
// Address 384 to 511
) RAMB16_S36_inst (
 // 32-bit Data Output
.DO(DO),
 // 4-bit parity Output
.DOP(DOP),
.ADDR(ADDR), // 9-bit Address Input
.CLK(CLK),
 // Clock
 // 32-bit Data Input
.DI(DI),
.DIP(DIP),
 // 4-bit parity Input
.EN(EN).
 // RAM Enable Input
.SSR(SSR),
 // Synchronous Set/Reset Input
.WE(WE)
 // Write Enable Input
// End of RAMB16_S36_inst instantiation
```

For More Information

See the Spartan-3 User Guide.

• See the *Spartan-3 Data Sheets*.

www.xilinx.com

RAMB16_S36_S36

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with Two 36-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	3							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts
										Data RAM	Parity RAM
1	Χ	Χ	Χ	X	Χ	X	Χ	INIT_A	INIT_A	No Change	No Change
0	0	Χ	Χ	Χ	Χ	Χ	Χ	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	X	X	SRVAL_A	SRVAL_A	No Change	No Change
0	1	1	1	1	addr	data	pdata	SRVAL_A	SRVAL_A	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change No Change	

Inputs	6							Outputs			
GSR	GSR ENA SSRA WEA CLKA ADDRA DIA DIPA						DIPA	DOA	DOPA	RAM Conter	nts
				-			_	_	_	Data RAM	Parity RAM
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr)2, data3		RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	6							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	RAM Conte	nts
										Data RAM	Parity RAM
1	X	Χ	Χ	Χ	X	X	Χ	INIT_B	INIT_B	No Change	No Change
0	0	Χ	Χ	Χ	Χ	X	X	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_B	SRVAL_B	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE MODE B=WRITE FIRST.

Port Descriptions

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S36_S36	512 x 32	512 x 4	(8:0)	(31:0)	(3:0)	512 x 32	512 x 4	(8:0)	(31:0)	(3:0)
(a)Depth x Width	-	<u>-</u>			<u>-</u>	<u>-</u>		-		•

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

Port Address Mapping for Data

Data Width	Port Da	ata Ac	ldre	sse	s																											
1	16384	<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6 3	5 4	3	2 1	0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4		3	2	2	1	0	
4	4096	<	7				6				5				4				3				2				1			0		
8	2048	<	3								2								1								0					
16	1024	<	1																0													
32	512	<	0																													

Port Address Mapping for Parity

Parity Width	Port P	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		
4	512	<	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_A, INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE MODE A=NO CHANGE and WRITE MODE B=NO CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	↑	↑	DIA	DIB	DIPA	DIPB	X	No Change	X	No Change	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	X	X

WRITE MODE A=READ FIRST and WRITE MODE B=READ FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	1	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	X	X

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1	\uparrow	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	Х	No Change	X	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	X	DIPB	DIB	DIPB
1	1	↑	\uparrow	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	Χ	Χ

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISION_ CHECK	String	"ALL", "NONE", "WARNING", or "GENERATE_ X_ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary /Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/ Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE_A	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_B	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAMB16_S36_S36: Virtex-II/II-Pro, Spartan-3/3E 512 x 32 + 4 Parity bits Dual-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S36_S36_inst : RAMB16_S36_S36
generic map (
INIT_A => X"000000000", -- Value of output RAM registers on Port A at startup
INIT_B => X"000000000", -- Value of output RAM registers on Port B at startup SRVAL_A => X"000000000", -- Port A ouput value upon SSR assertion
SRVAL_B => X"000000000", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL"
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Address 0 to 127
```



```
-- Address 128 to 255
-- Address 256 to 383
-- Address 384 to 511
-- The next set of INITP_xx are for the parity bits
-- Address 0 to 127
-- Address 128 to 255
-- Address 256 to 383
- Address 384 to 511
port map (
 -- Port A 32-bit Data Output
DOA => DOA,
DOB => DOB,
 -- Port B 32-bit Data Output
 -- Port A 4-bit Parity Output
DOPA => DOPA,
DOPB => DOPB.
 -- Port B 4-bit Parity Output
```



```
ADDRA => ADDRA, -- Port A 9-bit Address Input ADDRB => ADDRB, -- Port B 9-bit Address Input
CLKA => CLKA, -- Port A Clock
CLKB => CLKB,
                  -- Port B Clock
                -- Port A 32-bit Data Input
DIA => DIA,
DIB => DIB,
                 -- Port B 32-bit Data Input
DIPA => DIPA,
                -- Port A 4-bit parity Input
-- Port-B 4-bit parity Input
DIPB => DIPB,
ENA => ENA,
                 -- Port A RAM Enable Input
ENB => ENB,
                  -- PortB RAM Enable Input
SSRA => SSRA,
                 -- Port A Synchronous Set/Reset Input
SSRB => SSRB,
                 -- Port B Synchronous Set/Reset Input
WEA => WEA,
                  -- Port A Write Enable Input
                 -- Port B Write Enable Input
WEB => WEB
);
-- End of RAMB16_S36_S36_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S36_S36: Virtex-II/II-Pro, Spartan-3/3E 512 x 32 + 4 Parity bits Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S36_S36 #(
.INIT_A(36'h000000000), // Value of output RAM registers on Port A at startup
.INIT_B(36'h000000000), // Value of output RAM registers on Port B at startup
.SRVAL_A(36'h000000000), // Port A output value upon SSR assertion .SRVAL_B(36'h000000000), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// The following INIT_xx declarations specify the initial contents of the RAM
// Address 0 to 127
// Address 128 to 255
// Address 256 to 383
```



```
// Address 384 to 511
// The next set of INITP_xx are for the parity bits
// Address 0 to 127
// Address 128 to 255
// Address 256 to 383
// Address 384 to 511
) RAMB16_S36_S36_inst (
.DOA(DOA),
   // Port A 32-bit Data Output
// Port B 32-bit Data Output
.DOB(DOB),
.DOPA(DOPA),
   // Port A 4-bit Parity Output
   // Port B 4-bit Parity Output
.DOPB(DOPB),
   // Port A 9-bit Address Input
.ADDRA(ADDRA),
.ADDRB(ADDRB), // Port B 9-bit Address Input
.CLKA(CLKA),
   // Port A Clock
   // Port B Clock
.CLKB(CLKB),
   // Port A 32-bit Data Input
.DIA(DIA),
   // Port B 32-bit Data Input
.DIB(DIB).
   // Port A 4-bit parity Input
.DIPA(DIPA),
.DIPB(DIPB),
   // Port-B 4-bit parity Input
.ENA(ENA),
   // Port A RAM Enable Input
   // Port B RAM Enable Input
.ENB(ENB),
.SSRA(SSRA),
   // Port A Synchronous Set/Reset Input
.SSRB(SSRB),
   // Port B Synchronous Set/Reset Input
   // Port A Write Enable Input
.WEA(WEA),
.WEB(WEB)
   // Port B Write Enable Input
// End of RAMB16_S36_S36_inst instantiation
```


For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAMB16_S4

Primitive: 16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 4-bit Port

Introduction

This design element is a dedicated random access memory blocks with synchronous write capability. The block RAM port has 16384 bits of data memory. The cell configuration for this element is listed in the following table.

Data Cells		Parity Cells								
Depth	Width	Depth	Width	Address Bus	Data Bus	Parity Bus				
4096	4	-	-	(11:0)	(3:0)	-				

The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The above description assumes an active High EN, WE, SSR, and CLK. However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Logic Table

Input	s							Outputs					
GSR	EN	SSR	WE	CLK	ADDR	DI	DIP	DO	DOP	RAM Contents			
										Data RAM	Parity RAM		
1	Χ	Χ	X	Χ	Χ	X	X	INIT	INIT	No Change	No Change		
0	0	X	Χ	X	X	X	X	No Change	No Change	No Change	No Change		
0	1	1	0	1	X	Χ	Х	SRVAL	SRVAL	No Change	No Change		
0	1	1	1	1	addr	data	pdata	SRVAL	SRVAL	RAM(addr) =>data	RAM(addr) =>pdata		
0	1	0	0	1	addr	Χ	Χ	RAM(addr)	RAM(addr)	No Change	No Change		

Input	:s							Outputs					
GSR EN SSR WE CLK ADDR DI DIP						DI	DIP	DO	DOP	RAM Contents			
										Data RAM	Parity RAM		
0	1	0	1	1	addr	data	pdata	No Change(a) RAM (addr)(b) data(c)	No Change(a) RAM (addr)(b) pdata(c)	RAM (addr)=>data	RAM (addr)=>pdata		

GSR=Global Set Reset signal

INIT=Value specified by the INIT attribute for data memory. Default is all zeros.

SRVAL=Value after assertion of SSR as specified by the SRVAL attribute.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

- (a) WRITE_MODE=NO_CHANGE
- (b) WRITE_MODE=READ_FIRST
- (c) WRITE MODE=WRITE FIRST

Initialization

Initializing Memory Contents

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16 is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

Any INIT_xx or INITP_xx attribute that is not specified is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register

In Spartan-3A, each bit in the output register can be initialized at power on to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Two types of properties control initialization of the output register for a single-port RAMB16: INIT and SRVAL. The INIT attribute specifies the output register value at power on. You can use the SRVAL attribute to define the state resulting from assertion of the SSR (set/reset) input.

The INIT and SRVAL attributes specify the initialization value as a hexadecimal String containing one bit for each bit in the output port. For example, for a RAMB16_S1 with port width equal to 1, the output register contains 1 bit. Therefore, the INIT or SRVAL value can only be specified as a 1 or 0. For RAMB16_S4 with port width equal to 4, the output register contains 4 bits. In this case, you can specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT or SRVAL value.

Selecting Write Mode

The WRITE_MODE attribute controls RAMB16 memory and output contents. By default, the WRITE_MODE is set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the WRITE_MODE to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the WRITE_MODE to NO_CHANGE to have the input written to memory without changing the output.

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	Binary/ Hexadecimal	Any Hex Value	All zeros	Identifies the initial value of the DO output port after completing configuration. The bit width is dependent on the width of the A or B port of the RAM.
INIT_00 - INIT_3F	Binary/ Hexadecimal	Any Hex Value	All zeros	Specifies the initial contents of the data portion of the RAM array.
INITP_00 - INITP_07	Binary/ Hexadecimal	Any Hex Value	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SRVAL	Binary/ Hexadecimal	Any Hex Value	All zeros	Allows the individual selection of whether the DO output port sets (go to a one) or reset (go to a zero) upon the assertion of the SSR pin. The bit width is dependent on the width of the A or B port of the RAM.
WRITE_MODE	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_FIRST"	Specifies the behavior of the DO port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

use UNISIM.vcomponents.all;

-- RAMB16_S4: Virtex-II/II-Pro, Spartan-3/3E 4k x 4 Single-Port RAM


```
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S4_inst : RAMB16_S4
generic map (
INIT => X"0", -- Value of output RAM registers at startup
SRVAL => X"0", -- Ouput value upon SSR assertion
WRITE_MODE => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Address 0 to 1023
-- Address 1024 to 2047
-- Address 2048 to 3071
-- Address 3072 to 4095
```


388

```
port map (
DO => DO.
        -- 4-bit Data Output
ADDR => ADDR, -- 12-bit Address Input
CLK => CLK,
        -- Clock
       -- 4-bit Data Input
DI => DI,
EN => EN,
       -- RAM Enable Input
SSR => SSR,
        -- Synchronous Set/Reset Input
       -- Write Enable Input
WE => WE
);
-- End of RAMB16_S4_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S4: Spartan-3/3E/3A/3AN/3AD 4k x 4 Single-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S4 #(
.INIT(4'h0), // Value of output RAM registers at startup
.SRVAL(4'h0), // Output value upon SSR assertion
.WRITE_MODE("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
// The following INIT_xx declarations specify the initial contents of the RAM
// Address 0 to 1023
// Address 1024 to 2047
// Address 2048 to 3071
```



```
// Address 3072 to 4095
) RAMB16_S4_inst
.DO(DO),
 // 4-bit Data Output
.ADDR(ADDR), // 12-bit Address Input
.CLK(CLK),
 // Clock
 // 4-bit Data Input
.DI(DI),
.EN(EN),
 // RAM Enable Input
 // Synchronous Set/Reset Input
.SSR(SSR),
.WE(WE)
 // Write Enable Input
// End of RAMB16_S4_inst instantiation
```

For More Information

- See the Spartan-3 User Guide.
- See the Spartan-3 Data Sheets.

RAMB16_S4_S18

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 4-bit and 18-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	s							Outputs				
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts	
										Data RAM	Parity RAM	
1	Χ	Χ	Χ	Χ	X	Χ	Χ	INIT_A	INIT_A	No Change	No Change	
0	0	Χ	Χ	Χ	X	Χ	Χ	No Change	No Change	No Change No Change		
0	1	1	0	\uparrow	X	X	X	SRVAL_A	SRVAL_A	No Change	No Change	
0	1	1	1	↑	addr	data	pdata	SRVAL_A	SRVAL_A	RAM(addr) =>data	RAM(addr) =>pdata	
0	1	0	0	\uparrow	addr	Χ	Χ	RAM(addr)	RAM(addr)	No Change	No Change	

Inputs	6							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts
				-			_	_	_	Data RAM	Parity RAM
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr)2, data3		RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	RAM Conte	nts
										Data RAM	Parity RAM
1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	INIT_B	INIT_B	No Change	No Change
0	0	Χ	Χ	Χ	X	Χ	Χ	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	Χ	Χ	SRVAL_B	SRVAL_B	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A					Port B					
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S4_S18	4096 x 4	-	(11:0)	(3:0)	-	1024 x 16	1024 x 2	(9:0)	(15:0)	(1:0)
(a)Depth x Width	•	•			•	•	•			

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

Port Address Mapping for Data

Data Width	Port D	ata Ac	ldre	esse	es																											
1	16384	<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6 5	4	3	2 1	0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4		3	2	2	1	C	
4	4096	<	7				6				5				4				3				2				1			0	\prod	
8	2048	<	3								2								1								0				\prod	
16	1024	<	1																0													
32	512	<	0																												\prod	

Port Address Mapping for Parity

Parity Width	Port P	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		
4	512	<	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_A, INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE MODE A=NO CHANGE and WRITE MODE B=NO CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	↑	↑	DIA	DIB	DIPA	DIPB	X	No Change	Χ	No Change	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	Χ	X

WRITE MODE A=READ FIRST and WRITE MODE B=READ FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	1	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	X	X

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	\uparrow	1	DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	X	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	\leftarrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	Х	No Change	Х	DIA	DIPA
0	1	1	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	\uparrow	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	↑	\uparrow	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	Χ	Χ

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	↑	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	↑	1	DIA	DIB	DIPA	DIPB	Х	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISION_ CHECK	String	"ALL", "NONE", "WARNING", or "GENERATE_ X_ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary /Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/ Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE_A	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_B	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAMB16_S4_S18: Virtex-II/II-Pro, Spartan-3/3E 4k/1k x 4/16 + 0/2 Parity bits Dual-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S4_S18_inst : RAMB16_S4_S18
generic map (
INIT_A => X"0", -- Value of output RAM registers on Port A at startup
INIT_B => X"00000", -- Value of output RAM registers on Port B at startup
SRVAL_A => X"0", -- Port A ouput value upon SSR assertion
SRVAL_B => X"00000", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL"
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Port A Address 0 to 1023, Port B Address 0 to 255
```



```
-- Port A Address 1024 to 2047, Port B Address 256 to 511
- Port A Address 2048 to 3071, Port B Address 512 to 767
-- Port A Address 3072 to 4095, Port B Address 768 to 1023
-- The next set of INITP_xx are for the parity bits
-- Port A Address 0 to 1023, Port B Address 0 to 255
-- Port A Address 1024 to 2047, Port B Address 256 to 511
-- Port A Address 2048 to 3071, Port B Address 512 to 767
- Port A Address 3072 to 4095, Port B Address 768 to 1023
port map (
DOA => DOA,
 -- Port A 4-bit Data Output
 -- Port B 16-bit Data Output
-- Port B 2-bit Parity Output
DOB => DOB,
DOPB => DOPB.
ADDRA => ADDRA, -- Port A 12-bit Address Input
```



```
ADDRB => ADDRB, -- Port B 10-bit Address Input
CLKA => CLKA,
                -- Port A Clock
              -- Port B Clock
CLKB => CLKB,
DIA => DIA,
                -- Port A 4-bit Data Input
DIB => DIB,
                -- Port B 16-bit Data Input
                -- Port-B 2-bit parity Input
DIPB => DIPB,
ENA => ENA,
                -- Port A RAM Enable Input
                -- PortB RAM Enable Input
FNB => ENB,
SSRA => SSRA,
                -- Port A Synchronous Set/Reset Input
SSRB => SSRB,
                -- Port B Synchronous Set/Reset Input
WEA => WEA,
               -- Port A Write Enable Input
WEB => WEB
                -- Port B Write Enable Input
-- End of RAMB16_S4_S18_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S4_S18: Spartan-3/3E/3A/3AN/3AD 4k/1k \times 4/16 + 0/2 Parity bits Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S4_S18 #(
.INIT_A(4'h0),
     // Value of output RAM registers on Port A at startup
.INIT_B(18'h00000),
    // Value of output RAM registers on Port B at startup
.SRVAL_A(4'h0),
     // Port A output value upon SSR assertion
.SRVAL_B(18'h00000), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// The following INIT_xx declarations specify the initial contents of the RAM
// Port A Address 0 to 1023, Port B Address 0 to 255
// Port A Address 1024 to 2047, Port B Address 256 to 511
// Port A Address 2048 to 3071, Port B Address 512 to 767
```

Libraries Guide


```
// Port A Address 3072 to 4095, Port B Address 768 to 1023
// The next set of INITP_xx are for the parity bits
// Port A Address 0 to 1023, Port B Address 0 to 255 \,
// Port A Address 1024 to 2047, Port B Address 256 to 511
^- // Port A Address 2048 to 3071, Port B Address 512 to 767
// Port A Address 3072 to 4095, Port B Address 768 to 1023
) RAMB16_S4_S18_inst (
.DOA(DOA),
    // Port A 4-bit Data Output
.DOB(DOB).
    // Port B 16-bit Data Output
.DOPB(DOPB), // Port B 2-bit Parity Output
.ADDRA(ADDRA), // Port A 12-bit Address Input
.ADDRB(ADDRB), // Port B 10-bit Address Input
    // Port A Clock
.CLKA(CLKA),
    // Port B Clock
.CLKB(CLKB),
.DIA(DIA),
    // Port A 4-bit Data Input
    // Port B 16-bit Data Input
.DIB(DIB),
    // Port-B 2-bit parity Input
.DIPB(DIPB),
    // Port A RAM Enable Input
.ENA(ENA),
.ENB(ENB),
    // Port B RAM Enable Input
    // Port A Synchronous Set/Reset Input
.SSRA(SSRA),
.SSRB(SSRB),
    // Port B Synchronous Set/Reset Input
.WEA(WEA),
    // Port A Write Enable Input
    // Port B Write Enable Input
.WEB(WEB)
);
// End of RAMB16_S4_S18_inst instantiation
```

For More Information

- See the Spartan-3 User Guide.
- See the *Spartan-3 Data Sheets*.

400

RAMB16_S4_S36

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 4-bit and 36-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	S							Outputs				
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts	
										Data RAM	Parity RAM	
1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	INIT_A	INIT_A	No Change	No Change	
0	0	Χ	Χ	Χ	Χ	Χ	Χ	No Change	No Change	No Change No Change		
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_A	SRVAL_A	No Change	No Change	
0	1	1	1	\uparrow	addr	data	pdata	SRVAL_A	SRVAL_A	RAM(addr) =>data	RAM(addr) =>pdata	
0	1	0	0	\uparrow	addr	Χ	Χ	RAM(addr)	RAM(addr)	No Change	No Change	

Inputs	s							Outputs			
GSR ENA SSRA WEA CLKA ADDRA DIA DI								DOA	DOPA	RAM Conter	nts
				-			_	_	_	Data RAM	Parity RAM
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr)2, data3		RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	6							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	RAM Conte	nts
										Data RAM	Parity RAM
1	X	Χ	Χ	Χ	X	X	Χ	INIT_B	INIT_B	No Change	No Change
0	0	Χ	Χ	Χ	Χ	X	X	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_B	SRVAL_B	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE MODE B=WRITE FIRST.

Port Descriptions

Port A					Port B					
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	
RAMB16_S4_S36	4096 x 4	-	(11:0)	(3:0)	-	512 x 32	512 x 4	(8:0)	(31:0)	(3:0)
(a)Depth x Width	•	-	-		<u>-</u>	<u>-</u>		-		•

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

Libraries Guide

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

Data Width	Port D	ata Ac	ldre	esse	es.																											
1	16384	<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5 4	3	2 1	0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4		3		2	1	(
4	4096	<	7				6				5				4				3				2				1			0		
8	2048	<	3								2								1								0					
16	1024	<	1																0													
32	512	<	0																													

Port Address Mapping for Parity

404

Parity Width	Port P	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		
4	512	<	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	1	↑	DIA	DIB	DIPA	DIPB	Х	No Change	X	No Change	DIB	DIPB
1	1	\uparrow	1	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	Х	X

WRITE MODE A=READ FIRST and WRITE MODE B=READ FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

W	ΈA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0		0	\uparrow	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1		0	1	1	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0		1	1	\uparrow	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1		1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow		DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	Х	No Change	X	DIA	DIPA
0	1	1	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	\uparrow	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	X	DIPB	DIB	DIPB
1	1	↑	\uparrow	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	Χ	Χ

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	\uparrow	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	↑	1	DIA	DIB	DIPA	DIPB	Х	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISION_ CHECK	String	"ALL", "NONE", "WARNING", or "GENERATE_ X_ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary /Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/ Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE_A	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_B	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
```

```
-- RAMB16_S4_S36: Virtex-II/II-Pro, Spartan-3/3E 4k/512 x 4/32 + 0/4 Parity bits Dual-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S4_S36_inst : RAMB16_S4_S36
generic map (
INIT_A => X"0", -- Value of output RAM registers on Port A at startup
INIT_B => X"000000000", -- Value of output RAM registers on Port B at startup
SRVAL_A => X"0", -- Port A ouput value upon SSR assertion
SRVAL_B \Rightarrow X"000000000", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL"
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Port A Address 0 to 1023, Port B Address 0 to 127
```



```
-- Port A Address 1024 to 2047, Port B Address 128 to 255
- Port A Address 2048 to 3071, Port B Address 256 to 383
-- Port A Address 3072 to 4095, Port B Address 384 to 511
-- The next set of INITP_xx are for the parity bits
-- Port A Address 0 to 1023. Port B Address 0 to 127
-- Port A Address 1024 to 2047, Port B Address 128 to 255
-- Port A Address 2048 to 3071, Port B Address 256 to 383
- Port A Address 3072 to 4095, Port B Address 384 to 511
port map (
DOA => DOA,
 -- Port A 4-bit Data Output
 -- Port B 32-bit Data Output
DOB => DOB,
 -- Port B 4-bit Parity Output
DOPB => DOPB.
ADDRA => ADDRA, -- Port A 12-bit Address Input
```

Libraries Guide


```
ADDRB => ADDRB, -- Port B 9-bit Address Input
CLKA => CLKA,
                -- Port A Clock
              -- Port B Clock
CLKB => CLKB,
DIA => DIA,
                -- Port A 4-bit Data Input
                -- Port B 32-bit Data Input
DIB => DIB.
DIPB => DIPB,
                -- Port-B 4-bit parity Input
ENA => ENA,
                -- Port A RAM Enable Input
                -- PortB RAM Enable Input
FNB => ENB,
SSRA => SSRA,
                -- Port A Synchronous Set/Reset Input
SSRB => SSRB,
                -- Port B Synchronous Set/Reset Input
WEA => WEA,
                -- Port A Write Enable Input
WEB => WEB
                -- Port B Write Enable Input
-- End of RAMB16_S4_S36_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S4_S36: Spartan-3/3E/3A/3AN/3AD 4k/512 \times 4/32 + 0/4 Parity bits Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S4_S36 #(
.INIT_A(4'h0),
      // Value of output RAM registers on Port A at startup
.INIT_B(36'h000000000),
     // Value of output RAM registers on Port B at startup
.SRVAL_A(4'h0),
      // Port A output value upon SSR assertion
.SRVAL_B(36'h000000000), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// The following INIT_xx declarations specify the initial contents of the RAM
// Port A Address 0 to 1023, Port B Address 0 to 127
// Port A Address 1024 to 2047, Port B Address 128 to 255
// Port A Address 2048 to 3071, Port B Address 256 to 383
```



```
// Port A Address 3072 to 4095, Port B Address 384 to 511
// The next set of INITP_xx are for the parity bits
// Port A Address 0 to 1023, Port B Address 0 to 127
// Port A Address 1024 to 2047, Port B Address 128 to 255
// Port A Address 2048 to 3071, Port B Address 256 to 383 \,
// Port A Address 3072 to 4095, Port B Address 384 to 511
) RAMB16_S4_S36_inst (
.DOA(DOA),
    // Port A 4-bit Data Output
.DOB(DOB).
    // Port B 32-bit Data Output
.DOPB(DOPB), // Port B 4-bit Parity Output
.ADDRA(ADDRA), // Port A 12-bit Address Input
.ADDRB(ADDRB), // Port B 9-bit Address Input
    // Port A Clock
.CLKA(CLKA),
    // Port B Clock
.CLKB(CLKB),
.DIA(DIA),
    // Port A 4-bit Data Input
    // Port B 32-bit Data Input
.DIB(DIB),
    // Port-B 4-bit parity Input
.DIPB(DIPB),
    // Port A RAM Enable Input
.ENA(ENA),
.ENB(ENB),
    // Port B RAM Enable Input
    // Port A Synchronous Set/Reset Input
.SSRA(SSRA),
.SSRB(SSRB),
    // Port B Synchronous Set/Reset Input
.WEA(WEA),
    // Port A Write Enable Input
    // Port B Write Enable Input
.WEB(WEB)
);
// End of RAMB16_S4_S36_inst instantiation
```

For More Information

- See the Spartan-3 User Guide.
- See the *Spartan-3 Data Sheets*.

RAMB16_S4_S4

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 4-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	5							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts
										Data RAM	Parity RAM
1	Χ	Χ	Χ	Χ	Χ	X	Χ	INIT_A	INIT_A	No Change	No Change
0	0	Χ	Χ	Χ	Χ	Χ	Χ	No Change	No Change	No Change	No Change
0	1	1	0	↑	Χ	X	Χ	SRVAL_A	SRVAL_A	No Change	No Change
0	1	1	1	↑	addr	data	pdata	ata SRVAL_A SRVAL_A		RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	Χ	Χ	RAM(addr)	RAM(addr)	No Change	No Change

Inputs	6							Outputs			
GSR ENA SSRA WEA CLKA ADDRA DIA DIPA							DOA	DOPA	RAM Conter	nts	
							_	_	Data RAM	Parity RAM	
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr)2, data3		RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	6							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	RAM Conte	nts
										Data RAM	Parity RAM
1	X	Χ	Χ	Χ	X	X	Χ	INIT_B INIT_B		No Change	No Change
0	0	Χ	Χ	Χ	Χ	X	X	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_B	SRVAL_B	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE MODE B=WRITE FIRST.

Port Descriptions

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S4_S4	4096 x 4	-	(11:0)	(3:0)	-	4096 x 4	-	(11:0)	(3:0)	-
(a)Depth x Width					-					-

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

Data Width	Port D	Oata Ao	ddre	esse	es																											
1	16384	<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8 7	7 (6 5	5 4	3	2 1	0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4	3	3	7	2	1	C	
4	4096	<	7				6				5				4				3				2				1			0		
8	2048	<	3								2								1							()					
16	1024	<	1																0													
32	512	<	0																													

Port Address Mapping for Parity

Parity Width	Port P	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		_
4	512	<	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_A, INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	DIA	DIPA
0	1	\uparrow	↑	DIA	DIB	DIPA	DIPB	X	No Change	Χ	No Change	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	1	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	X	Х

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

W	ΈA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0		0	\uparrow	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1		0	1	1	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	X	DIA	DIPA
0		1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1		1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	X	DIPB	DIB	DIPB
1	1	↑	\uparrow	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	Χ	Χ

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	↑	1	DIA	DIB	DIPA	DIPB	Χ	DIB	X	DIPB	DIB	DIPB
1	1	↑	1	DIA	DIB	DIPA	DIPB	Х	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISION_ CHECK	String	"ALL", "NONE", "WARNING", or "GENERATE_ X_ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary /Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/ Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE_A	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_B	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAMB16_S4_S4: Virtex-II/II-Pro, Spartan-3/3E 4k x 4 Dual-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S4_S4_inst : RAMB16_S4_S4
generic map (
INIT_A => X"0", -- Value of output RAM registers on Port A at startup
INIT_B => X"0", -- Value of output RAM registers on Port B at startup
SRVAL_A => X"0", -- Port A ouput value upon SSR assertion SRVAL_B => X"0", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST Or NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL"
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Address 0 to 1023
```



```
-- Address 1024 to 2047
-- Address 2048 to 3071
-- Address 3072 to 4095
port map (
DOA => DOA.
  -- Port A 4-bit Data Output
DOB => DOB,
  -- Port B 4-bit Data Output
ADDRA => ADDRA, -- Port A 12-bit Address Input
ADDRB => ADDRB, -- Port B 12-bit Address Input
CLKA => CLKA,
  -- Port A Clock
CLKB => CLKB,
  -- Port B Clock
DIA => DIA,
  -- Port A 4-bit Data Input
  -- Port B 4-bit Data Input
DIB => DIB,
ENA => ENA,
  -- Port A RAM Enable Input
ENB => ENB,
  -- Port B RAM Enable Input
  -- Port A Synchronous Set/Reset Input
SSRA => SSRA,
SSRB => SSRB,
  -- Port B Synchronous Set/Reset Input
WEA => WEA,
  -- Port A Write Enable Input
  -- Port B Write Enable Input
WEB => WEB
);
-- End of RAMB16 S4 S4 inst instantiation
```


Verilog Instantiation Template

```
// RAMB16_S4_S4: Spartan-3/3E/3A/3AN/3AD 4k x 4 Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S4_S4 #(
.INIT_A(4'h0), // Value of output RAM registers on Port A at startup
.INIT_B(4'h0), // Value of output RAM registers on Port B at startup
.SRVAL_A(4'h0), // Port A output value upon SSR assertion
.SRVAL_B(4'h0), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// The following INIT_xx declarations specify the initial contents of the RAM
// Address 0 to 1023
// Address 1024 to 2047
// Address 2048 to 3071
// Address 3072 to 4095
```



```
) RAMB16_S4_S4_inst (
     // Port A 4-bit Data Output
.DOA(DOA),
.DOB(DOB),
     // Port B 4-bit Data Output
.ADDRA(ADDRA), // Port A 12-bit Address Input
.ADDRB(ADDRB), // Port B 12-bit Address Input
.CLKA(CLKA),
     // Port A Clock
     // Port B Clock
.CLKB(CLKB),
     // Port A 4-bit Data Input
.DIA(DIA),
.DIB(DIB),
     // Port B 4-bit Data Input
.ENA(ENA),
     // Port A RAM Enable Input
.ENB(ENB).
     // Port B RAM Enable Input
.SSRA(SSRA),
     // Port A Synchronous Set/Reset Input
.SSRB(SSRB),
     // Port B Synchronous Set/Reset Input
.WEA(WEA),
     // Port A Write Enable Input
.WEB(WEB)
     // Port B Write Enable Input
// End of RAMB16_S4_S4_inst instantiation
```

For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAMB16_S4_S9

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 4-bit and 9-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	6							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts
										Data RAM	Parity RAM
1	Χ	Χ	Χ	Χ	X	Χ	X	INIT_A	INIT_A	No Change	No Change
0	0	Χ	Χ	Χ	X	Χ	Χ	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	Χ	Χ	SRVAL_A	SRVAL_A	No Change	No Change
0	1	1	1	\uparrow	addr	data	pdata	SRVAL_A	SRVAL_A	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	Χ	Χ	RAM(addr)	RAM(addr)	No Change	No Change

Inputs	6							Outputs			
GSR ENA SSRA WEA CLKA ADDRA DIA DIP							DIPA	DOA	DOPA	RAM Conter	nts
				-			_	_	_	Data RAM	Parity RAM
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr)2, data3		RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	6							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	RAM Conte	nts
										Data RAM	Parity RAM
1	X	Χ	Χ	Χ	X	X	Χ	INIT_B	INIT_B	No Change	No Change
0	0	Χ	Χ	Χ	Χ	X	X	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_B	SRVAL_B	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE MODE B=WRITE FIRST.

Port Descriptions

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S4_S9	4096 x 4	-	(11:0)	(3:0)	-	2048 x 8	2048 x 1	(10:0)	(7:0)	(0:0)
(a)Depth x Width	-	-	-		•	-		-	-	-

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

Data Width	Port Da	ata Ad	dres	sses	5																										
1	16384	<	31	30	29	28	27	26	25	5 24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6 5	4	3 :	2 1 0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4		3	2		1	C
4	4096	<	7				6				5				4				3				2				1			0	
8	2048	<	3								2								1								0				
16	1024	<	1																0												
32	512	<	0																												

Port Address Mapping for Parity

Parity Width	Port P	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		_
4	512	<	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE MODE A=NO CHANGE and WRITE MODE B=NO CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	↑	↑	DIA	DIB	DIPA	DIPB	X	No Change	X	No Change	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	Χ	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1	\uparrow	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	Χ	Χ	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	Х	No Change	X	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	X	DIPB	DIB	DIPB
1	1	↑	\uparrow	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	Χ	Χ

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	\uparrow	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	↑	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISION_ CHECK	String	"ALL", "NONE", "WARNING", or "GENERATE_ X_ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary /Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/ Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE_A	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_B	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAMB16_S4_S9: Virtex-II/II-Pro, Spartan-3/3E 4k/2k x 4/8 + 0/1 Parity bit Dual-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S4_S9_inst : RAMB16_S4_S9
generic map (
INIT_A => X"0", -- Value of output RAM registers on Port A at startup
INIT_B \Rightarrow X"000", -- Value of output RAM registers on Port B at startup
SRVAL_A => X"0", -- Port A ouput value upon SSR assertion
SRVAL_B => X"000", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL"
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Port A Address 0 to 1023, Port B Address 0 to 511
```



```
-- Port A Address 1024 to 2047, Port B Address 512 to 1023
- Port A Address 2048 to 3071, Port B Address 1024 to 1535
-- Port A Address 3072 to 4095, Port B Address 1536 to 2047
-- The next set of INITP_xx are for the parity bits
-- Port B Address 0 to 511
-- Port B Address 512 to 1023
-- Port B Address 1024 to 1535
- Port B Address 1536 to 2047
port map (
DOA => DOA,
 -- Port A 4-bit Data Output
DOB => DOB,
 -- Port B 8-bit Data Output
DOPB => DOPB, -- Port B 1-bit Parity Output
ADDRA => ADDRA, -- Port A 12-bit Address Input
```


432

```
ADDRB => ADDRB, -- Port B 11-bit Address Input
CLKA => CLKA,
                -- Port A Clock
              -- Port B Clock
CLKB => CLKB,
DIA => DIA,
                -- Port A 4-bit Data Input
                -- Port B 8-bit Data Input
DIB => DIB.
DIPB => DIPB,
                -- Port-B 1-bit parity Input
ENA => ENA,
                -- Port A RAM Enable Input
                -- PortB RAM Enable Input
FNB => ENB,
SSRA => SSRA,
                -- Port A Synchronous Set/Reset Input
SSRB => SSRB,
                -- Port B Synchronous Set/Reset Input
WEA => WEA,
                -- Port A Write Enable Input
WEB => WEB
                -- Port B Write Enable Input
-- End of RAMB16_S4_S9_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S4_S9: Spartan-3/3E/3A/3AN/3AD 4k/2k \times 4/8 + 0/1 Parity bit Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S4_S9 #(
.INIT_A(4'h0),
    // Value of output RAM registers on Port A at startup
.INIT_B(9'h000),
    // Value of output RAM registers on Port B at startup
.SRVAL_A(4'h0), // Port A output value upon SSR assertion .SRVAL_B(9'h000), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// The following INIT_xx declarations specify the initial contents of the RAM
// Port A Address 0 to 1023, Port B Address 0 to 511
// Port A Address 1024 to 2047, Port B Address 512 to 1023
// Port A Address 2048 to 3071, Port B Address 1024 to 1535
```



```
// Port A Address 3072 to 4095, Port B Address 1536 to 2047
// The next set of INITP_xx are for the parity bits
// Port B Address 0 to 511
// Port B Address 512 to 1023
// Port B Address 1024 to 1535
// Port B Address 1536 to 2047
) RAMB16_S4_S9_inst (
.DOA(DOA),
  // Port A 4-bit Data Output
  // Port B 8-bit Data Output
.DOPB(DOPB), // Port B 1-bit Parity Output
.ADDRA(ADDRA), // Port A 12-bit Address Input
.ADDRB(ADDRB), // Port B 11-bit Address Input
.CLKA(CLKA),
   // Port A Clock
   // Port B Clock
.CLKB(CLKB),
.DIA(DIA),
   // Port A 4-bit Data Input
   // Port B 8-bit Data Input
.DIB(DIB),
   // Port-B 1-bit parity Input
.DIPB(DIPB),
   // Port A RAM Enable Input
.ENA(ENA),
.ENB(ENB),
   // Port B RAM Enable Input
   // Port A Synchronous Set/Reset Input
.SSRA(SSRA),
.SSRB(SSRB),
   // Port B Synchronous Set/Reset Input
.WEA(WEA),
   // Port A Write Enable Input
   // Port B Write Enable Input
.WEB(WEB)
);
// End of RAMB16_S4_S9_inst instantiation
```

For More Information

- See the *Spartan-3 User Guide*.
- See the Spartan-3 Data Sheets.

RAMB16_S9

Primitive: 16K-bit Data and 2K-bit Parity Single-Port Synchronous Block RAM with 9-bit Port

Introduction

This design element is a dedicated random access memory blocks with synchronous write capability. The block RAM port has 16384 bits of data memory. The cell configuration for this element is listed in the following table.

Data Cells		Parity Cells				
Depth	Width	Depth	Width	Address Bus	Data Bus	Parity Bus
2048	8	2048	1	(10:0)	(7:0)	(0:0)

The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The above description assumes an active High EN, WE, SSR, and CLK. However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Logic Table

Input	s							Outputs			
GSR	EN	SSR	WE	CLK	ADDR	DI	DIP	DO	DOP	RAM Contents	s
										Data RAM	Parity RAM
1	Χ	Χ	X	Χ	X	X	Χ	INIT	INIT	No Change	No Change
0	0	X	Χ	X	X	X	X	No Change	No Change	No Change	No Change
0	1	1	0	1	X	Χ	X	SRVAL	SRVAL	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL	SRVAL	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	1	addr	Χ	X	RAM(addr) RAM(addr) No Change		No Change	

Input	s							Outputs			
GSR	GSR EN SSR WE CLK ADDR DI DIP						DIP	DO	DOP	RAM Contents	s
										Data RAM	Parity RAM
0	1	0	1	↑	addr	data	pdata	No Change(a) RAM (addr)(b) data(c)	No Change(a) RAM (addr)(b) pdata(c)	RAM (addr)=>data	RAM (addr)=>pdata

GSR=Global Set Reset signal

INIT=Value specified by the INIT attribute for data memory. Default is all zeros.

SRVAL=Value after assertion of SSR as specified by the SRVAL attribute.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

- (a) WRITE_MODE=NO_CHANGE
- (b) WRITE_MODE=READ_FIRST
- (c) WRITE MODE=WRITE FIRST

Initialization

Initializing Memory Contents

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16 is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

Any INIT_xx or INITP_xx attribute that is not specified is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register

In Spartan-3A, each bit in the output register can be initialized at power on to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Two types of properties control initialization of the output register for a single-port RAMB16: INIT and SRVAL. The INIT attribute specifies the output register value at power on. You can use the SRVAL attribute to define the state resulting from assertion of the SSR (set/reset) input.

The INIT and SRVAL attributes specify the initialization value as a hexadecimal String containing one bit for each bit in the output port. For example, for a RAMB16_S1 with port width equal to 1, the output register contains 1 bit. Therefore, the INIT or SRVAL value can only be specified as a 1 or 0. For RAMB16_S4 with port width equal to 4, the output register contains 4 bits. In this case, you can specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT or SRVAL value.

Selecting Write Mode

The WRITE_MODE attribute controls RAMB16 memory and output contents. By default, the WRITE_MODE is set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the WRITE_MODE to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the WRITE_MODE to NO_CHANGE to have the input written to memory without changing the output.

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Binary/ Hexadecimal	Any Hex Value	All zeros	Identifies the initial value of the DO output port after completing configuration. The bit width is dependent on the width of the A or B port of the RAM.
INIT_00 - INIT_3F	Binary/ Hexadecimal	Any Hex Value	All zeros	Specifies the initial contents of the data portion of the RAM array.
INITP_00 - INITP_07	Binary/ Hexadecimal	Any Hex Value	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SRVAL	Binary/ Hexadecimal	Any Hex Value	All zeros	Allows the individual selection of whether the DO output port sets (go to a one) or reset (go to a zero) upon the assertion of the SSR pin. The bit width is dependent on the width of the A or B port of the RAM.
WRITE_MODE	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_FIRST"	Specifies the behavior of the DO port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM; use UNISIM.vcomponents.all;

Libraries Guide


```
-- RAMB16_S9: Virtex-II/II-Pro, Spartan-3/3E 2k x 8 + 1 Parity bit Single-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S9_inst : RAMB16_S9
generic map (
INIT => X"000", -- Value of output RAM registers at startup
SRVAL => X"000", -- Ouput value upon SSR assertion
WRITE_MODE => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST or NO_CHANGE
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Address 0 to 511
-- Address 512 to 1023
-- Address 1024 to 1535
-- Address 1536 to 2047
```



```
-- The next set of INITP_xx are for the parity bits
-- Address 0 to 511
-- Address 512 to 1023
-- Address 1024 to 1535
-- Address 1536 to 2047
port map (
DO => DO,
     -- 8-bit Data Output
DOP => DOP,
    -- 1-bit parity Output
ADDR => ADDR, -- 11-bit Address Input
     -- Clock
CLK => CLK,
    -- 8-bit Data Input
DT => DT.
DIP => DIP,
    -- 1-bit parity Input
    -- RAM Enable Input
EN => EN,
SSR => SSR,
    -- Synchronous Set/Reset Input
WE => WE
     -- Write Enable Input
-- End of RAMB16_S9_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S9: Spartan-3/3E/3A/3AN/3AD 2k x 8 + 1 Parity bit Single-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S9 #(
.INIT(9'h000), // Value of output RAM registers at startup
.SRVAL(9'h000), // Output value upon SSR assertion
.WRITE_MODE("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
// The following INIT_xx declarations specify the initial contents of the RAM
// Address 0 to 511
. \\ \text{INIT\_02} (256' + 000_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{
. \\ \text{INIT\_OA} (256' + 000_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{
// Address 512 to 1023
```



```
// Address 1024 to 1535
// Address 1536 to 2047
// The next set of INITP_xx are for the parity bits
// Address 0 to 511
// Address 512 to 1023
// Address 1024 to 1535
// Address 1536 to 2047
) RAMB16_S9_inst (
.DO(DO).
 // 8-bit Data Output
.DOP(DOP).
 // 1-bit parity Output
.ADDR(ADDR), // 11-bit Address Input
.CLK(CLK),
 // Clock
.DI(DI).
 // 8-bit Data Input
.DIP(DIP),
 // 1-bit parity Input
.EN(EN),
 // RAM Enable Input
.SSR(SSR),
 // Synchronous Set/Reset Input
.WE(WE)
 // Write Enable Input
// End of RAMB16_S9_inst instantiation
```


For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAMB16_S9_S18

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 9-bit and 18-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	8							Outputs				
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts	
										Data RAM	Parity RAM	
1	Χ	Χ	Χ	Χ	Χ	X	Χ	INIT_A	INIT_A	No Change No Change		
0	0	Χ	Χ	X	Χ	X	Χ	No Change	No Change	No Change No Change		
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_A	SRVAL_A	No Change	No Change	
0	1	1	1	↑	addr	data	pdata	SRVAL_A	SRVAL_A	RAM(addr) =>data	RAM(addr) =>pdata	
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change No Change		

Inputs	5							Outputs			
GSR	GSR ENA SSRA WEA CLKA ADDRA DIA DIPA						DOA	DOPA	RAM Conter	nts	
								_	Data RAM	Parity RAM	
0	1	0	1	\uparrow	addr	data	pdata	No Change1, RAM(addr)2, data3	No Change1, RAM(addr)2, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	RAM Conte	nts
										Data RAM	Parity RAM
1	Χ	Χ	Χ	Χ	Χ	X	Χ	INIT_B	INIT_B	No Change	No Change
0	0	Χ	Χ	Χ	X	X	Χ	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	Χ	Χ	SRVAL_B SRVAL_B		No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE_MODE_B=WRITE_FIRST.

Port Descriptions

Port A						Port B				
Component	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S9_S18	2048 x 8	2048 x 1	(10:0)	(7:0)	(0:0)	1024 x 16	1024 x 2	(9:0)	(15:0)	(1:0)
(a) Depth x Width		-				-				-

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables show address mapping for each port width.

Port Address Mapping for Data

Data Width	Port D	Data Ad	ldre	sse	s																											
1	16384	<	31	30	29	28	27	26	25	24	23	22	2 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7 (5 5	4	3	2 1	0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4		3	2	2	1	C	
4	4096	<	7				6				5				4				3				2				1			0	П	
8	2048	<	3								2								1								0				П	
16	1024	<	1																0													
32	512	<	0																												П	

Port Address Mapping for Parity

Parity Width	Port F	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		
4	512	<	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_A, INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	↑	↑	DIA	DIB	DIPA	DIPB	X	No Change	X	No Change	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB		Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1	\uparrow	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	X	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	↑	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1	1	↑	DIA	DIB	DIPA	DIPB	X	DIB	Χ	DIPB	DIB	DIPB
1	1	\uparrow	1	DIA	DIB	DIPA	DIPB	Х	X	X	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	\uparrow	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	\uparrow	↑	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	X	DIB	Χ	DIPB	DIB	DIPB
1	1	1	1	DIA	DIB	DIPA	DIPB	X	DIB	Х	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISION_ CHECK	String	"ALL", "NONE", "WARNING", or "GENERATE_ X_ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary /Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/ Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE_A	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_B	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
```

```
-- RAMB16_S9_S18: Virtex-II/II-Pro, Spartan-3/3E 2k/lk x 8/16 + 1/2 Parity bits Parity bits Dual-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S9_S18_inst : RAMB16_S9_S18
generic map (
INIT_A => X"000", -- Value of output RAM registers on Port A at startup
INIT_B => X"00000", -- Value of output RAM registers on Port B at startup
SRVAL_A => X"0000", -- Port A ouput value upon SSR assertion SRVAL_B => X"00000", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL"
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Port A Address 0 to 511, Port B Address 0 to 255
```



```
-- Port A Address 512 to 1023, Port B Address 256 to 511
- Port A Address 1024 to 1535, Port B Address 512 to 767
-- Port A Address 1536 to 2047, Port B Address 768 to 1024
-- The next set of INITP_xx are for the parity bits
-- Port A Address 0 to 511. Port B Address 0 to 255
-- Port A Address 512 to 1023, Port B Address 256 to 511
-- Port A Address 1024 to 1535, Port B Address 512 to 767
- Port A Address 1536 to 2047, Port B Address 768 to 1024
port map (
DOA => DOA,
 -- Port A 8-bit Data Output
DOB => DOB,
 -- Port B 16-bit Data Output
DOPA => DOPA.
 -- Port A 1-bit Parity Output
DOPB => DOPB.
 -- Port B 2-bit Parity Output
```

Libraries Guide


```
ADDRA => ADDRA, -- Port A 11-bit Address Input ADDRB => ADDRB, -- Port B 10-bit Address Input
CLKA => CLKA,
                  -- Port A Clock
CLKB => CLKB,
                  -- Port B Clock
DIA => DIA,
                  -- Port A 8-bit Data Input
DIB => DIB,
                  -- Port B 16-bit Data Input
DIPA => DIPA,
                  -- Port A 1-bit parity Input
                -- Port A 1-DIC PALL.

-- Port-B 2-bit parity Input
DIPB => DIPB,
ENA => ENA,
                  -- Port A RAM Enable Input
ENB => ENB,
                  -- PortB RAM Enable Input
SSRA => SSRA,
                  -- Port A Synchronous Set/Reset Input
SSRB => SSRB,
                  -- Port B Synchronous Set/Reset Input
WEA => WEA,
                  -- Port A Write Enable Input
WEB => WEB
                  -- Port B Write Enable Input
);
-- End of RAMB16_S9_S18_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S9_S18: Virtex-II/II-Pro, Spartan-3/3E 2k/1k x 8/16 + 1/2 Parity bits Parity bits Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S9_S18 #(
     // Value of output RAM registers on Port A at startup
.INIT_A(9'h000),
.INIT_B(18'h00000), // Value of output RAM registers on Port B at startup
.SRVAL A(9'h000).
     // Port A output value upon SSR assertion
.SRVAL_B(18'h00000), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST OR NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// The following INIT_xx declarations specify the initial contents of the RAM
// Port A Address 0 to 511, Port B Address 0 to 255
// Port A Address 512 to 1023, Port B Address 256 to 511
// Port A Address 1024 to 1535, Port B Address 512 to 767
```



```
// Port A Address 1536 to 2047, Port B Address 768 to 1024
// The next set of INITP_xx are for the parity bits
// Port A Address 0 to 511, Port B Address 0 to 255
// Port A Address 512 to 1023, Port B Address 256 to 511
// Port A Address 1024 to 1535, Port B Address 512 to 767
// Port A Address 1536 to 2047, Port B Address 768 to 1024
) RAMB16_S9_S18_inst (
   // Port A 8-bit Data Output
// Port B 16-bit Data Output
.DOA(DOA),
.DOB(DOB),
.DOPA(DOPA), // Port A 1-bit Parity Output
.DOPB(DOPB), // Port B 2-bit Parity Output
.ADDRA(ADDRA), // Port A 11-bit Address Input
.ADDRB(ADDRB), // Port B 10-bit Address Input
.CLKA(CLKA),
    // Port A Clock
    // Port B Clock
.CLKB(CLKB),
    // Port A 8-bit Data Input
.DIA(DIA),
.DIB(DIB).
    // Port B 16-bit Data Input
    // Port A 1-bit parity Input
.DIPA(DIPA),
.DIPB(DIPB),
    // Port-B 2-bit parity Input
.ENA(ENA),
    // Port A RAM Enable Input
    // Port B RAM Enable Input
.ENB(ENB),
.SSRA(SSRA),
    // Port A Synchronous Set/Reset Input
.SSRB(SSRB),
    // Port B Synchronous Set/Reset Input
    // Port A Write Enable Input
.WEA(WEA),
.WEB(WEB)
    // Port B Write Enable Input
// End of RAMB16_S9_S18_inst instantiation
```


For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAMB16_S9_S36

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 9-bit and 36-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	s							Outputs			
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts
										Data RAM	Parity RAM
1	Χ	Χ	Χ	Χ	X	Χ	Χ	INIT_A	INIT_A	No Change	No Change
0	0	Χ	Χ	X	X	Χ	Χ	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_A	SRVAL_A	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL_A	SRVAL_A	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change

Inputs								Outputs				
GSR ENA SSRA WEA CLKA ADDRA DIA DIPA								DOA	DOPA	RAM Conter	nts	
				-			_	_	_	Data RAM	Parity RAM	
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr)2, data3		RAM(addr) =>data	RAM(addr) =>pdata	

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs			
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	RAM Conte	nts
										Data RAM	Parity RAM
1	X	Χ	Χ	Χ	X	X	X	INIT_B	INIT_B	No Change	No Change
0	0	Χ	Χ	Χ	Χ	X	Χ	No Change	No Change	No Change	No Change
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_B	SRVAL_B	No Change	No Change
0	1	1	1	↑	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	RAM(addr) =>data	RAM(addr) =>pdata

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE MODE B=WRITE FIRST.

Port Descriptions

Port A						Port B				
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus
RAMB16_S9_S36	2048 x 8	2048 x 1	(10:0)	(7:0)	(0:0)	512 x 32	512 x 4	(8:0)	(31:0)	(3:0)
(a)Depth x Width	•	<u>-</u>			•	<u>-</u>		-		•

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

Libraries Guide

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

The following tables shows address mapping for each port width.

Port Address Mapping for Data

Data Width	Port D	ata A	ddr	ess	es																											
1	16384	<	31	30	29	28	27	26	25	24	23	22	2 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5 4	3	2 1	0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4		3		2	1	(
4	4096	<	7				6				5				4				3				2				1			0		
8	2048	<	3								2								1								0					
16	1024	<	1																0													
32	512	<	0																													

Port Address Mapping for Parity

456

Parity Width	Port P	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		
4	512	<	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE MODE A=NO CHANGE and WRITE MODE B=NO CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	DIA	DIPA
0	1	\uparrow	↑	DIA	DIB	DIPA	DIPB	X	No Change	Χ	No Change	DIB	DIPB
1	1	\uparrow	↑	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	X	X

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑		DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	\uparrow	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	Χ	X	Χ	Χ	Χ	Χ

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow		DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	Х	No Change	X	DIA	DIPA
0	1	1	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	\uparrow	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	X	DIPB	DIB	DIPB
1	1	↑	\uparrow	DIA	DIB	DIPA	DIPB	No Change	X	No Change	Χ	Χ	Χ

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	\uparrow	1	DIA	DIB	DIPA	DIPB	X	DIB	X	DIPB	DIB	DIPB
1	1	\uparrow	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISION_ CHECK	String	"ALL", "NONE", "WARNING", or "GENERATE_ X_ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary /Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/ Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE_A	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_B	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
```

```
-- RAMB16_S9_S36: Virtex-II/II-Pro, Spartan-3/3E 2k/512 x 8/32 + 1/4 Parity bits Parity bits Dual-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S9_S36_inst : RAMB16_S9_S36
generic map (
INIT_A => X"000", -- Value of output RAM registers on Port A at startup
INIT_B => X"000000000", -- Value of output RAM registers on Port B at startup SRVAL_A => X"000", -- Port A ouput value upon SSR assertion
SRVAL_B => X"000000000", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL"
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Port A Address 0 to 511, Port B Address 0 to 127
```



```
-- Port A Address 512 to 1023, Port B Address 128 to 255
- Port A Address 1024 to 1535, Port B Address 255 to 383
-- Port A Address 1536 to 2047, Port B Address 384 to 511
-- The next set of INITP_xx are for the parity bits
-- Port A Address 0 to 511. Port B Address 0 to 127
-- Port A Address 512 to 1023, Port B Address 128 to 255
-- Port A Address 1024 to 1535, Port B Address 256 to 383
- Port A Address 1536 to 2047, Port B Address 384 to 511
port map (
DOA => DOA,
 -- Port A 8-bit Data Output
DOB => DOB,
 -- Port B 32-bit Data Output
DOPA => DOPA.
 -- Port A 1-bit Parity Output
DOPB => DOPB.
 -- Port B 4-bit Parity Output
```

Libraries Guide


```
ADDRA => ADDRA, -- Port A 11-bit Address Input ADDRB => ADDRB, -- Port B 9-bit Address Input
CLKA => CLKA,
                 -- Port A Clock
CLKB => CLKB,
                 -- Port B Clock
DIA => DIA,
                 -- Port A 8-bit Data Input
DIB => DIB,
                 -- Port B 32-bit Data Input
                 -- Port A 1-bit parity Input
DIPA => DIPA,
                -- Port A 1-bit parity Input
DIPB => DIPB,
ENA => ENA,
                 -- Port A RAM Enable Input
ENB => ENB,
                  -- PortB RAM Enable Input
SSRA => SSRA,
                 -- Port A Synchronous Set/Reset Input
SSRB => SSRB,
                 -- Port B Synchronous Set/Reset Input
WEA => WEA,
                  -- Port A Write Enable Input
WEB => WEB
                 -- Port B Write Enable Input
);
-- End of RAMB16_S9_S36_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S9_S36: Virtex-II/II-Pro, Spartan-3/3E 2k/512 x 8/32 + 1/4 Parity bits Parity bits Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S9_S36 #(
.INIT_A(9'h000),
      // Value of output RAM registers on Port A at startup
.INIT_B(36'h000000000), // Value of output RAM registers on Port B at startup
.SRVAL_A(9'h000),
      // Port A output value upon SSR assertion
.SRVAL_B(36'h000000000), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST OR NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// The following INIT_xx declarations specify the initial contents of the RAM
// Port A Address 0 to 511, Port B Address 0 to 127
// Port A Address 512 to 1023, Port B Address 128 to 255
// Port A Address 1024 to 1535, Port B Address 255 to 383
```



```
// Port A Address 1536 to 2047, Port B Address 384 to 511
// The next set of INITP_xx are for the parity bits
// Port A Address 0 to 511, Port B Address 0 to 127
// Port A Address 512 to 1023, Port B Address 128 to 255
// Port A Address 1024 to 1535, Port B Address 256 to 383
// Port A Address 1536 to 2047, Port B Address 384 to 511
) RAMB16_S9_S36_inst (
   // Port A 8-bit Data Output
// Port B 32-bit Data Output
.DOA(DOA),
.DOB(DOB),
.DOPA(DOPA), // Port A 1-bit Parity Output
.DOPB(DOPB), // Port B 4-bit Parity Output
.ADDRA(ADDRA), // Port A 11-bit Address Input
.ADDRB(ADDRB), // Port B 9-bit Address Input
.CLKA(CLKA),
    // Port A Clock
    // Port B Clock
.CLKB(CLKB),
    // Port A 8-bit Data Input
.DIA(DIA),
.DIB(DIB).
    // Port B 32-bit Data Input
    // Port A 1-bit parity Input
.DIPA(DIPA),
.DIPB(DIPB),
    // Port-B 4-bit parity Input
.ENA(ENA),
    // Port A RAM Enable Input
    // Port B RAM Enable Input
.ENB(ENB),
.SSRA(SSRA),
    // Port A Synchronous Set/Reset Input
.SSRB(SSRB),
    // Port B Synchronous Set/Reset Input
    // Port A Write Enable Input
.WEA(WEA),
.WEB(WEB)
    // Port B Write Enable Input
// End of RAMB16_S9_S36_inst instantiation
```


For More Information

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

RAMB16_S9_S9

Primitive: 16K-bit Data and 2K-bit Parity Dual-Port Synchronous Block RAM with 9-bit Ports

Introduction

This design element is a dual-ported dedicated random access memory block with synchronous write capability. Each block RAM port has 16384 bits of data memory. Ports configured as 9, 18, or 36-bits wide have an additional 2048 bits of parity memory. Each port is independent of the other while accessing the same set of 16384 data memory cells. Each port is independently configured to a specific data width. The possible port and cell configurations for this element are listed under "Port Descriptions."

Logic Table

Truth Table A

Inputs	S						Outputs							
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Contents				
										Data RAM	Parity RAM			
1	Χ	Χ	Χ	X	X	Χ	Χ	INIT_A	INIT_A	No Change	No Change			
0	0	Χ	Χ	Χ	X	Χ	Χ	No Change	No Change	No Change	No Change			
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_A	SRVAL_A	No Change	No Change			
0	1	1	1	\uparrow	addr	data	pdata	SRVAL_A	SRVAL_A	RAM(addr) =>data	RAM(addr) =>pdata			
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change No Change				

Inputs	s						Outputs							
GSR	ENA	SSRA	WEA	CLKA	ADDRA	DIA	DIPA	DOA	DOPA	RAM Conter	nts			
						_	_	_	Data RAM	Parity RAM				
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr)2, data3		RAM(addr) =>data	RAM(addr) =>pdata			

GSR=Global Set Reset

INIT_A=Value specified by the INIT_A attribute for output register. Default is all zeros.

SRVAL_A=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_A=NO_CHANGE.

2WRITE_MODE_A=READ_FIRST.

3WRITE_MODE_A=WRITE_FIRST.

Truth Table B

Inputs	3							Outputs	Outputs								
GSR	ENB	SSRB	WEB	CLKB	ADDRE	DIB	DIPB	DOB	DOPB	RAM Conte	nts						
										Data RAM	Parity RAM						
1	X	Χ	Χ	Χ	X	X	X	INIT_B	INIT_B	No Change	No Change						
0	0	Χ	Χ	Χ	Χ	X	Χ	No Change	No Change	No Change	No Change						
0	1	1	0	\uparrow	Χ	X	Χ	SRVAL_B	SRVAL_B	No Change	No Change						
0	1	1	1	↑	addr	data	pdata	SRVAL_B	SRVAL_B	RAM(addr) =>data	RAM(addr) =>pdata						
0	1	0	0	\uparrow	addr	X	Χ	RAM(addr)	RAM(addr)	No Change	No Change						
0	1	0	1	↑	addr	data	pdata	No Change1, RAM(addr) =>data, data3	No Change1, RAM(addr) =>data, pdata3	RAM(addr) =>data	RAM(addr) =>pdata						

GSR=Global Set Reset.

INIT_B=Value specified by the INIT_B attribute for output registers. Default is all zeros.

SRVAL_B=register value.

addr=RAM address.

RAM(addr)=RAM contents at address ADDR.

data=RAM input data.

pdata=RAM parity data.

1WRITE_MODE_B=NO_CHANGE.

2WRITE_MODE_B=READ_FIRST.

3WRITE MODE B=WRITE FIRST.

Port Descriptions

Port A			Port B	Port B								
Design Element	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus	Data Cells(a)	Parity Cells(a)	Address Bus	Data Bus	Parity Bus		
RAMB16_S9_S9	2048 x 8	2048 x 1	(10:0)	(7:0)	(0:0)	2048 x 8	2048 x 1	(10:0)	(7:0)	(0:0)		
(a)Depth x Width	<u>-</u>	<u>-</u>			•	<u>-</u>		-		<u>-</u>		

Each port is fully synchronous with independent clock pins. All Port A input pins have setup time referenced to the CLKA pin and its data output bus DOA has a clock-to-out time referenced to the CLKA. All Port B input pins have setup time referenced to the CLKB pin and its data output bus DOB has a clock-to-out time referenced to the CLKB. The enable ENA pin controls read, write, and reset for Port A. When ENA is Low, no data is written and the outputs (DOA and DOPA) retain the last state. When ENA is High and reset (SSRA) is High, DOA and DOPA are set to SRVAL_A during the Low-to-High clock (CLKA) transition; if write enable (WEA) is High, the memory contents reflect the data at DIA and DIPA. When ENA is High and WEA is Low, the data stored in the RAM address (ADDRA) is read during the Low-to-High clock transition. By default, WRITE_MODE_A=WRITE_FIRST, when ENA and WEA are High, the data on the data inputs (DIA and DIPA) is loaded into the word selected by the write address (ADDRA) during the Low-to-High clock transition and the data outputs (DOA and DOPA) reflect the selected (addressed) word.

The enable ENB pin controls read, write, and reset for Port B. When ENB is Low, no data is written and the outputs (DOB and DOPB) retain the last state. When ENB is High and reset (SSRB) is High, DOB and DOPB are set to SRVAL_B during the Low-to-High clock (CLKB) transition; if write enable (WEB) is High, the memory contents reflect the data at DIB and DIPB. When ENB is High and WEB is Low, the data stored in the RAM address (ADDRB) is read during the Low-to-High clock transition. By default, WRITE_MODE_B=WRITE_FIRST, when ENB and WEB are High, the data on the data inputs (DIB and PB) are loaded into the word selected by the write address (ADDRB) during the Low-to-High clock transition and the data outputs (DOB and DOPB) reflect the selected (addressed) word. The above descriptions assume active High control pins (ENA, WEA, SSRA, CLKA, ENB, WEB, SSRB, and CLKB). However, the active level can be changed by placing an inverter on the port. Any inverter placed on a RAMB16 port is absorbed into the block and does not use a CLB resource.

Address Mapping

Each port accesses the same set of 18432 memory cells using an addressing scheme that is dependent on the width of the port. For all port widths, 16384 memory cells are available for data as shown in the "Port Address Mapping for Data" table below. For 9-, 18-, and 36-bit wide ports, 2408 parity memory cells are also available as shown in "Port Address Mapping for Parity" table below. The physical RAM location that is addressed for a particular width is determined from the following formula.

Start=((ADDR port+1)*(Widthport)) -1

End=(ADDRport)*(Widthport)

Port Address Mapping for Data

Data Width	Port Da	ıta Ac	ldre	esse	:S																											
1	16384	<	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5 4	3	2 1	0
2	8192	<	15		14		13		12		11		10		9		8		7		6		5		4		3		2	1	0	
4	4096	<	7				6				5				4				3				2				1			0		
8	2048	<	3								2								1								0					
16	1024	<	1																0													
32	512	<	0																													

Port Address Mapping for Parity

Parity Width	Port P	arity A	ddresse	es						
1	2048	<	3			2		1		0
2	1024	<	1					0		
4	512	<	0							

Initializing Memory Contents of a Dual-Port RAMB16

You can use the INIT_xx attributes to specify an initialization value for the memory contents of a RAMB16 during device configuration. The initialization of each RAMB16_Sm_Sn is set by 64 initialization attributes (INIT_00 through INIT_3F) of 64 hex values for a total of 16384 bits.

You can use the INITP_xx attributes to specify an initial value for the parity memory during device configuration or assertion. The initialization of the parity memory for ports configured for 9, 18, or 36 bits is set by 8 initialization attributes (INITP_00 through INITP_07) of 64 hex values for a total of 2048 bits.

If any INIT_xx or INITP_xx attribute is not specified, it is configured as zeros. Partial Strings are padded with zeros to the left.

Initializing the Output Register of a Dual-Port RAMB16

In Spartan-3A, each bit in an output register can be initialized at power on (when GSR is high) to either a 0 or 1. In addition, the initial state specified for power on can be different than the state that results from assertion of a set/reset. Four properties control initialization of the output register for a dual-port RAMB16: INIT_A, INIT_B, SRVAL_A, and SRVAL_B. The INIT_A attribute specifies the output register value at power on for Port A and the INIT_B attribute specifies the value for Port B. You can use the SRVAL_A attribute to define the state resulting from assertion of the SSR (set/reset) input on Port A. You can use the SRVAL_B attribute to define the state resulting from assertion of the SSR input on Port B.

The INIT_B, SRVAL_A, and SRVAL_B attributes specify the initialization value as a hexadecimal String. The value is dependent upon the port width. For example, for a RAMB16_S1_S4 with Port A width equal to 1 and Port B width equal to 4, the Port A output register contains 1 bit and the Port B output register contains 4 bits. Therefore, the INIT_A or SRVAL_A value can only be specified as a 1 or 0. For Port B, the output register contains 4 bits. In this case, you can use INIT_B or SRVAL_B to specify a hexadecimal value from 0 through F to initialize the 4 bits of the output register.

For those ports that include parity bits, the parity portion of the output register is specified in the high order bit position of the INIT_A, INIT_B, SRVAL_A, or SRVAL_B value.

The INIT and SRVAL attributes default to zero if they are not set by you.

Write Mode Selection

The WRITE_MODE_A attribute controls the memory and output contents of Port A for a dual-port RAMB16. The WRITE_MODE_B attribute does the same for Port B. By default, both WRITE_MODE_A and WRITE_MODE_B are set to WRITE_FIRST. This means that input is read, written to memory, and then passed to output. You can set the write mode for Port A and Port B to READ_FIRST to read the memory contents, pass the memory contents to the outputs, and then write the input to memory. Or, you can set the write mode to NO_CHANGE to have the input written to memory without changing the output. The "Port A and Port B Conflict Resolution" section describes how read/write conflicts are resolved when both Port A and Port B are attempting to read/write to the same memory cells.

Port A and Port B Conflict Resolution

Spartan-3A block SelectRAM is True Dual-Port RAM that allows both ports to simultaneously access the same memory cell. When one port writes to a given memory cell, the other port must not address that memory cell (for a write or a read) within the clock-to-clock setup window.

The following tables summarize the collision detection behavior of the dual-port RAMB16 based on the WRITE_MODE_A and WRITE_MODE_B settings.

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=NO_CHANGE

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	↑	DIA	DIB	DIPA	DIPB	No Change	Χ	No Change	X	DIA	DIPA
0	1	↑	↑	DIA	DIB	DIPA	DIPB	X	No Change	Х	No Change	DIB	DIPB
1	1	1	↑	DIA	DIB	DIPA	DIPB	No Change	No Change	No Change	No Change	Х	Х

WRITE MODE A=READ FIRST and WRITE MODE B=READ FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	1	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	1	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	Χ	Χ

WRITE_MODE_A= WRITE_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑		DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	DIA	Χ	DIPA	Χ	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	Χ	X	Χ	Χ	Χ	X

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=READ_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	Χ	No Change	X	DIA	DIPA
0	1	1	1	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIB	DIPB

WRITE_MODE_A=NO_CHANGE and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	↑	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	1	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	DIA	DIPA
0	1	\uparrow	\uparrow	DIA	DIB	DIPA	DIPB	Χ	DIB	Χ	DIPB	DIB	DIPB
1	1	↑	↑	DIA	DIB	DIPA	DIPB	No Change	X	No Change	X	X	Χ

WRITE_MODE_A=READ_FIRST and WRITE_MODE_B=WRITE_FIRST

WEA	WEB	CLKA	CLKB	DIA	DIB	DIPA	DIPB	DOA	DOB	DOPA	DOPB	Data RAM	Parity Ram
0	0	↑	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	No Change	No Change
1	0	↑	\uparrow	DIA	DIB	DIPA	DIPB	RAM	RAM	RAM	RAM	DIA	DIPA
0	1	1	\uparrow	DIA	DIB	DIPA	DIPB	Χ	DIB	X	DIPB	DIB	DIPB
1	1	1	↑	DIA	DIB	DIPA	DIPB	X	DIB	Χ	DIPB	DIA	DIPA

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	Yes
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT_00 To INIT_3F	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the data portion of the RAM array.
INIT_A	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INIT_B	Binary/ Hexadecimal	Any	All zeros	Identifies the initial value of the DOA/DOB output port after completing configuration. For Type, the bit width is dependent on the width of the A or B port of the RAM.
INITP_00 To INITP_07	Binary/ Hexadecimal	Any	All zeros	Specifies the initial contents of the parity portion of the RAM array.
SIM_COLLISION_ CHECK	String	"ALL", "NONE", "WARNING", or "GENERATE_ X_ONLY"	"ALL"	Specifies the behavior during simulation in the event of a data collision (data being read or written to the same address from both ports of the Ram simultaneously. "ALL" issues a warning to simulator console and generate an X or all unknown data due to the collision. This is the recommended setting. "WARNING" generates a warning only and "GENERATE_X_ONLY" generates an X for unknown data but won't output the occurrence to the simulation console. "NONE" completely ignores the error. It is suggested to only change this attribute if you can ensure the data generated during a collision is discarded.
SRVAL_A	Binary /Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTA pin. For Type, the bit width is dependent on the width of the A port of the RAM.
SRVAL_B	Binary/ Hexadecimal	Any	All zeros	Allows the individual selection of whether the DOA/DOB output port sets (go to a one) or reset (go to a zero) upon the assertion of the RSTB pin. For Type, the bit width is dependent on the width of the B port of the RAM.

Attribute	Type	Allowed Values	Default	Description
WRITE_MODE_A	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM
WRITE_MODE_B	String	"WRITE_FIRST", "READ_FIRST" or "NO_CHANGE"	"WRITE_ FIRST"	Specifies the behavior of the DOA/DOB port upon a write command to the respected port. If set to "WRITE_FIRST", the same port that is written to displays the contents of the written data to the outputs upon completion of the operation. "READ_FIRST" displays the prior contents of the RAM to the output port prior to writing the new data. "NO_CHANGE" keeps the previous value on the output port and won't update the output port upon a write command. This is the suggested mode if not using the read data from a particular port of the RAM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- RAMB16_S9_S9: Virtex-II/II-Pro, Spartan-3/3E 2k x 8 + 1 Parity bit Dual-Port RAM
-- Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S9_S9_inst : RAMB16_S9_S9
generic map (
INIT_A => X"000", -- Value of output RAM registers on Port A at startup
INIT_B => X"000", -- Value of output RAM registers on Port B at startup SRVAL_A => X"000", -- Port A ouput value upon SSR assertion SRVAL_B => X"000", -- Port B ouput value upon SSR assertion
WRITE_MODE_A => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
WRITE_MODE_B => "WRITE_FIRST", -- WRITE_FIRST, READ_FIRST OR NO_CHANGE
SIM_COLLISION_CHECK => "ALL", -- "NONE", "WARNING", "GENERATE_X_ONLY", "ALL"
-- The following INIT_xx declarations specify the initial contents of the RAM
-- Address 0 to 511
```



```
-- Address 512 to 1023
- Address 1024 to 1535
-- Address 1536 to 2047
-- The next set of INITP_xx are for the parity bits
-- Address 0 to 511
-- Address 512 to 1023
-- Address 1024 to 1535
- Address 1536 to 2047
port map (
DOA => DOA,
 -- Port A 8-bit Data Output
DOB => DOB,
 -- Port B 8-bit Data Output
DOPA => DOPA,
 -- Port A 1-bit Parity Output
DOPB => DOPB.
 -- Port B 1-bit Parity Output
```

Libraries Guide

474

```
ADDRA => ADDRA, -- Port A 11-bit Address Input
ADDRB => ADDRB, -- Port B 11-bit Address Input
CLKA => CLKA,
                -- Port A Clock
CLKB => CLKB,
                -- Port B Clock
DIA => DIA,
                -- Port A 8-bit Data Input
DIB => DIB,
                -- Port B 8-bit Data Input
                -- Port A 1-bit parity Input
DIPA => DIPA,
                -- Port-B 1-bit parity Input
DIPB => DIPB,
ENA => ENA,
                -- Port A RAM Enable Input
ENB => ENB,
                 -- PortB RAM Enable Input
SSRA => SSRA,
                -- Port A Synchronous Set/Reset Input
SSRB => SSRB,
                -- Port B Synchronous Set/Reset Input
WEA => WEA,
                -- Port A Write Enable Input
WEB => WEB
                -- Port B Write Enable Input
);
-- End of RAMB16_S9_S9_inst instantiation
```

Verilog Instantiation Template

```
// RAMB16_S9_S9: Spartan-3/3E/3A/3AN/3AD 2k \times 8 + 1 Parity bit Dual-Port RAM
// Xilinx HDL Libraries Guide, version 10.1.2
RAMB16_S9_S9 #(
.INIT_A(9'h000), // Value of output RAM registers on Port A at startup
.INIT_B(9'h000), // Value of output RAM registers on Port B at startup
.SRVAL_A(9'h000), // Port A output value upon SSR assertion
.SRVAL_B(9'h000), // Port B output value upon SSR assertion
.WRITE_MODE_A("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.WRITE_MODE_B("WRITE_FIRST"), // WRITE_FIRST, READ_FIRST or NO_CHANGE
.SIM_COLLISION_CHECK("ALL"), // "NONE", "WARNING_ONLY", "GENERATE_X_ONLY", "ALL"
// The following INIT_xx declarations specify the initial contents of the RAM
// Address 0 to 511
// Address 512 to 1023
. \\ \text{INIT\_17} (256' + 000_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{-}00_{
// Address 1024 to 1535
```



```
// Address 1536 to 2047
// The next set of INITP_xx are for the parity bits
// Address 0 to 511
// Address 512 to 1023
// Address 1024 to 1535
// Address 1536 to 2047
) RAMB16_S9_S9_inst (
   // Port A 8-bit Data Output
.DOA(DOA),
   // Port B 8-bit Data Output
.DOB(DOB),
.DOPA(DOPA),
   // Port A 1-bit Parity Output
.DOPB(DOPB),
   // Port B 1-bit Parity Output
   // Port A 11-bit Address Input
.ADDRA(ADDRA),
.ADDRB(ADDRB), // Port B 11-bit Address Input
.CLKA(CLKA),
   // Port A Clock
   // Port B Clock
.CLKB(CLKB),
.DIA(DIA),
   // Port A 8-bit Data Input
.DIB(DIB).
   // Port B 8-bit Data Input
   // Port A 1-bit parity Input
.DIPA(DIPA),
.DIPB(DIPB),
   // Port-B 1-bit parity Input
.ENA(ENA),
   // Port A RAM Enable Input
   // Port B RAM Enable Input
.ENB(ENB),
   // Port A Synchronous Set/Reset Input
.SSRA(SSRA),
.SSRB(SSRB),
   // Port B Synchronous Set/Reset Input
.WEA(WEA),
   // Port A Write Enable Input
.WEB(WEB)
   // Port B Write Enable Input
// End of RAMB16_S9_S9_inst instantiation
```


- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

ROM128X1

Primitive: 128-Deep by 1-Wide ROM

Introduction

This design element is a 128-word by 1-bit read-only memory. The data output (O) reflects the word selected by the 7-bit address (A6 – A0). The ROM is initialized to a known value during configuration with the INIT=value parameter. The value consists of 32 hexadecimal digits that are written into the ROM from the most-significant digit A=FH to the least-significant digit A=0H. An error occurs if the INIT=value is not specified.

Logic Table

Input				Output
10	I1	I2	I3	0
0	0	0	0	INIT(0)
0	0	0	1	INIT(1)
0	0	1	0	INIT(2)
0	0	1	1	INIT(3)
0	1	0	0	INIT(4)
0	1	0	1	INIT(5)
0	1	1	0	INIT(6)
0	1	1	1	INIT(7)
1	0	0	0	INIT(8)
1	0	0	1	INIT(9)
1	0	1	0	INIT(10)
1	0	1	1	INIT(11)
1	1	0	0	INIT(12)
1	1	0	1	INIT(13)
1	1	1	0	INIT(14)
1	1	1	1	INIT(15)

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 128-Bit Value	All zeros	Specifies the contents of the ROM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- ROM128X1: 128 x 1 Asynchronous Distributed => LUT ROM
            Virtex-II/II-Pro/4/5, Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2
ROM128X1_inst : ROM128X1
generic map (
port map (
O => O, -- ROM output
A0 => A0, -- ROM address[0]
A1 => A1, -- ROM address[1]
A2 => A2, -- ROM address[2]
A3 => A3, -- ROM address[3]
A4 => A4, -- ROM address[4]
A5 => A5, -- ROM address[5]
A6 => A6 -- ROM address[6]
-- End of ROM128X1_inst instantiation
```

Verilog Instantiation Template

```
// ROM128X1: 128 x 1 Asynchronous Distributed (LUT) ROM
// Virtex-II/II-Pro/4/5, Spartan-3/3E/3A
// Xilinx HDL Libraries Guide, version 10.1.2

ROM128X1 #(
.INIT(128'h000000000000000000000000000000) // Contents of ROM
) ROM128X1_inst (
.O(O), // ROM output
.AO(AO), // ROM address[0]
.A1(A1), // ROM address[1]
.A2(A2), // ROM address[2]
.A3(A3), // ROM address[3]
.A4(A4), // ROM address[4]
.A5(A5), // ROM address[5]
.A6(A6) // ROM address[6]
);

// End of ROM128X1_inst instantiation
```


- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

ROM16X1

Primitive: 16-Deep by 1-Wide ROM

Introduction

This design element is a 16-word by 1-bit read-only memory. The data output (O) reflects the word selected by the 4-bit address (A3 – A0). The ROM is initialized to a known value during configuration with the INIT=value parameter. The value consists of four hexadecimal digits that are written into the ROM from the most-significant digit A=FH to the least-significant digit A=0H. For example, the INIT=10A7 parameter produces the data stream: 0001 0000 1010 0111 An error occurs if the INIT=value is not specified.

Logic Table

Input		Output		
I0	I1	I2	I3	О
0	0	0	0	INIT(0)
0	0	0	1	INIT(1)
0	0	1	0	INIT(2)
0	0	1	1	INIT(3)
0	1	0	0	INIT(4)
0	1	0	1	INIT(5)
0	1	1	0	INIT(6)
0	1	1	1	INIT(7)
1	0	0	0	INIT(8)
1	0	0	1	INIT(9)
1	0	1	0	INIT(10)
1	0	1	1	INIT(11)
1	1	0	0	INIT(12)
1	1	0	1	INIT(13)
1	1	1	0	INIT(14)
1	1	1	1	INIT(15)

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Specifies the contents of the ROM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration.

Verilog Instantiation Template

```
// ROM16X1: 16 x 1 Asynchronous Distributed (LUT) ROM
// All FPGAs
// Xilinx HDL Libraries Guide, version 10.1.2

ROM16X1 #(
.INIT(16'h0000) // Contents of ROM
) ROM16X1_inst (
.O(0), // ROM output
.AO(AO), // ROM address[0]
.A1(A1), // ROM address[1]
.A2(A2), // ROM address[2]
.A3(A3) // ROM address[3]
);

// End of ROM16X1_inst instantiation
```


- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

ROM256X1

Primitive: 256-Deep by 1-Wide ROM

Introduction

This design element is a 256-word by 1-bit read-only memory. The data output (O) reflects the word selected by the 8-bit address (A7– A0). The ROM is initialized to a known value during configuration with the INIT=value parameter. The value consists of 64 hexadecimal digits that are written into the ROM from the most-significant digit A=FH to the least-significant digit A=0H.

An error occurs if the INIT=value is not specified.

Logic Table

Input		Output		
10	I1	I2	I3	О
0	0	0	0	INIT(0)
0	0	0	1	INIT(1)
0	0	1	0	INIT(2)
0	0	1	1	INIT(3)
0	1	0	0	INIT(4)
0	1	0	1	INIT(5)
0	1	1	0	INIT(6)
0	1	1	1	INIT(7)
1	0	0	0	INIT(8)
1	0	0	1	INIT(9)
1	0	1	0	INIT(10)
1	0	1	1	INIT(11)
1	1	0	0	INIT(12)
1	1	0	1	INIT(13)
1	1	1	0	INIT(14)
1	1	1	1	INIT(15)

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 256-Bit Value	All zeros	Specifies the contents of the ROM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- ROM256X1: 256 x 1 Asynchronous Distributed => LUT ROM
            Virtex-II/II-Pro/4/5, Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2
ROM256X1_inst : ROM256X1
generic map (
port map (
O => O, -- ROM output
A0 => A0, -- ROM address[0]
A1 => A1, -- ROM address[1]
A2 => A2, -- ROM address[2]
A3 => A3, -- ROM address[3]
A4 => A4, -- ROM address[4]
A5 => A5, -- ROM address[5]
A6 => A6, -- ROM address[6]
A7 => A7 -- ROM address[7]
-- End of ROM256X1_inst instantiation
```

Verilog Instantiation Template

// End of ROM256X1_inst instantiation

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

ROM32X1

Primitive: 32-Deep by 1-Wide ROM

Introduction

This design element is a 32-word by 1-bit read-only memory. The data output (O) reflects the word selected by the 5-bit address (A4 – A0). The ROM is initialized to a known value during configuration with the INIT=value parameter. The value consists of eight hexadecimal digits that are written into the ROM from the most-significant digit A=1FH to the least-significant digit A=00H.

For example, the INIT=10A78F39 parameter produces the data stream: 0001 0000 1010 0111 1000 1111 0011 1001 An error occurs if the INIT=value is not specified.

Logic Table

		Output		
10	I1	I2	I3	0
0	0	0	0	INIT(0)
0	0	0	1	INIT(1)
0	0	1	0	INIT(2)
0	0	1	1	INIT(3)
0	1	0	0	INIT(4)
0	1	0	1	INIT(5)
0	1	1	0	INIT(6)
0	1	1	1	INIT(7)
1	0	0	0	INIT(8)
1	0	0	1	INIT(9)
1	0	1	0	INIT(10)
1	0	1	1	INIT(11)
1	1	0	0	INIT(12)
1	1	0	1	INIT(13)
1	1	1	0	INIT(14)
1	1	1	1	INIT(15)

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	Hexadecimal	Any 32-Bit Value	All zeros	Specifies the contents of the ROM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration.

Verilog Instantiation Template

```
// ROM32X1: 32 x 1 Asynchronous Distributed (LUT) ROM
// All FPGAs
// Xilinx HDL Libraries Guide, version 10.1.2

ROM32X1 #(
.INIT(32'h00000000) // Contents of ROM
) ROM32X1_inst (
.O(O), // ROM output
.A0(A0), // ROM address[0]
.A1(A1), // ROM address[1]
.A2(A2), // ROM address[2]
.A3(A3), // ROM address[3]
.A4(A4) // ROM address[4]
);

// End of ROM32X1_inst instantiation
```


- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

ROM64X1

Primitive: 64-Deep by 1-Wide ROM

Introduction

This design element is a 64-word by 1-bit read-only memory. The data output (O) reflects the word selected by the 6-bit address (A5 – A0). The ROM is initialized to a known value during configuration with the INIT=value parameter. The value consists of 16 hexadecimal digits that are written into the ROM from the most-significant digit A=FH to the least-significant digit A=0H. An error occurs if the INIT=value is not specified.

Logic Table

Input		Output		
10	I1	I2	13	0
0	0	0	0	INIT(0)
0	0	0	1	INIT(1)
0	0	1	0	INIT(2)
0	0	1	1	INIT(3)
0	1	0	0	INIT(4)
0	1	0	1	INIT(5)
0	1	1	0	INIT(6)
0	1	1	1	INIT(7)
1	0	0	0	INIT(8)
1	0	0	1	INIT(9)
1	0	1	0	INIT(10)
1	0	1	1	INIT(11)
1	1	0	0	INIT(12)
1	1	0	1	INIT(13)
1	1	1	0	INIT(14)
1	1	1	1	INIT(15)

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	Hexadecimal	Any 64-Bit Value	All zeros	Specifies the contents of the ROM.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- ROM64X1: 64 x 1 Asynchronous Distributed => LUT ROM
            Virtex-II/II-Pro/4/5, Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2
ROM64X1_inst : ROM64X1
generic map (
INIT => X"0000000000000000")
port map (
0 => 0,
          -- ROM output
A0 => A0, -- ROM address[0]
A1 => A1, -- ROM address[1]
A2 \Rightarrow A2, -- ROM address[2]
A3 => A3, -- ROM address[3]
A4 => A4, -- ROM address[4]
A5 => A5 -- ROM address[5]
-- End of ROM64X1_inst instantiation
```

Verilog Instantiation Template

```
// ROM64X1: 64 x 1 Asynchronous Distributed (LUT) ROM
// Virtex-II/II-Pro/4/5, Spartan-3/3E/3A
// Xilinx HDL Libraries Guide, version 10.1.2

ROM64X1 #(
.INIT(64'h00000000000000000) // Contents of ROM
) ROM64X1_inst (
.O(O), // ROM output
.AO(AO), // ROM address[0]
.A1(A1), // ROM address[1]
.A2(A2), // ROM address[2]
.A3(A3), // ROM address[3]
.A4(A4), // ROM address[4]
.A5(A5) // ROM address[5]
);

// End of ROM64X1_inst instantiation
```


- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

SRL16

Primitive: 16-Bit Shift Register Look-Up-Table (LUT)

Introduction

This design element is a shift register look-up table (LUT). The inputs A3, A2, A1, and A0 select the output length of the shift register.

The shift register can be of a fixed, static length or it can be dynamically adjusted.

- To create a fixed-length shift register Drive the A3 through A0 inputs with static values. The length of the shift register can vary from 1 bit to 16 bits, as determined by the following formula: Length = $(8 \times A3) + (4 \times A2) + (2 \times A1) + A0 + 1$ If A3, A2, A1, and A0 are all zeros (0000), the shift register is one bit long. If they are all ones (1111), it is 16 bits long.
- To change the length of the shift register dynamically Change the values driving the A3 through A0 inputs. For example, if A2, A1, and A0 are all ones (111) and A3 toggles between a one (1) and a zero (0), the length of the shift register changes from 16 bits to 8 bits. Internally, the length of the shift register is always 16 bits and the input lines A3 through A0 select which of the 16 bits reach the output.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most significant bit. If an INIT value is not specified, it defaults to a value of four zeros (0000) so that the shift register LUT is cleared during configuration.

The data (D) is loaded into the first bit of the shift register during the Low-to-High clock (CLK) transition. During subsequent Low-to-High clock transitions data shifts to the next highest bit position while new data is loaded. The data appears on the Q output when the shift register length determined by the address inputs is reached.

Logic Table

Inputs			Output		
Am	CLK	D	Q		
Am	Χ	X	Q(Am)		
Am	\uparrow	D	Q(Am - 1)		
m= 0, 1, 2, 3					

Design Entry Method

Instantiation	Yes	
Inference	Recommended	
Coregen and wizards	No	
Macro support	No	

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Sets the initial value of Q output after configuration.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- SRL16: 16-bit shift register LUT operating on posedge of clock
          All FPGAs
-- Xilinx HDL Libraries Guide, version 10.1.2
SRL16_inst : SRL16
generic map (
INIT => X"0000")
port map (
              -- SRL data output
Q \Rightarrow Q,
A0 => A0, -- Select[0] input
A1 => A1, -- Select[1] input
A2 => A2, -- Select[2] input
A3 => A3,
              -- Select[3] input
CLK => CLK, -- Clock input
              -- SRL data input
D => D
-- End of SRL16_inst instantiation
```

Verilog Instantiation Template

```
// SRL16: 16-bit shift register LUT operating on posedge of clock
          All FPGAs
// Xilinx HDL Libraries Guide, version 10.1.2
.INIT(16'h0000) // Initial Value of Shift Register
) SRL16_inst (
        // SRL data output
.Q(Q),
         // Select[0] input
// Select[1] input
// Select[2] input
.A0(A0),
.A1(A1),
.A2(A2),
            // Select[3] input
.A3(A3),
            // Clock input
.CLK(CLK),
             // SRL data input
.D(D)
);
// End of SRL16_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

SRL16_1

Primitive: 16-Bit Shift Register Look-Up-Table (LUT) with Negative-Edge Clock

Introduction

This design element is a shift register look-up table (LUT). The inputs A3, A2, A1, and A0 select the output length of the shift register.

The shift register can be of a fixed, static length or it can be dynamically adjusted.

- To create a fixed-length shift register Drive the A3 through A0 inputs with static values. The length of the shift register can vary from 1 bit to 16 bits, as determined by the following formula: Length = $(8 \times A3) + (4 \times A2) + (2 \times A1) + A0 + 1$ If A3, A2, A1, and A0 are all zeros (0000), the shift register is one bit long. If they are all ones (1111), it is 16 bits long.
- To change the length of the shift register dynamically Change the values driving the A3 through A0 inputs. For example, if A2, A1, and A0 are all ones (111) and A3 toggles between a one (1) and a zero (0), the length of the shift register changes from 16 bits to 8 bits. Internally, the length of the shift register is always 16 bits and the input lines A3 through A0 select which of the 16 bits reach the output.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most significant bit. If an INIT value is not specified, it defaults to a value of four zeros (0000) so that the shift register LUT is cleared during configuration.

The data (D) is loaded into the first bit of the shift register during the High-to-Low clock (CLK) transition. During subsequent High-to-Low clock transitions data shifts to the next highest bit position as new data is loaded. The data appears on the Q output when the shift register length determined by the address inputs is reached.

Logic Table

Inputs	Output				
Am	CLK	D	Q		
Am	X	X	Q(Am)		
Am	\downarrow	D	Q(Am - 1)		
m= 0, 1, 2, 3					

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Sets the initial value of Q output after configuration

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- SRL16_1: 16-bit shift register LUT operating on negedge of clock
              All FPGAs
-- Xilinx HDL Libraries Guide, version 10.1.2
SRL16_1_inst : SRL16_1
generic map (
INIT => X"0000")
port map (
Q => Q, -- SKL data output
A0 => A0, -- Select[0] input
A1 => A1, -- Select[1] input
A2 => A2, -- Select[2] input
                -- SRL data output
A3 => A3,
               -- Select[3] input
CLK => CLK, -- Clock input
                -- SRL data input
D => D
-- End of SRL16_1_inst instantiation
```

Verilog Instantiation Template

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

SRL16E

Primitive: 16-Bit Shift Register Look-Up-Table (LUT) with Clock Enable

Introduction

This design element is a shift register look-up table (LUT). The inputs A3, A2, A1, and A0 select the output length of the shift register.

The shift register can be of a fixed, static length or it can be dynamically adjusted.

- To create a fixed-length shift register Drive the A3 through A0 inputs with static values. The length of the shift register can vary from 1 bit to 16 bits, as determined by the following formula: Length = $(8 \times A3) + (4 \times A2) + (2 \times A1) + A0 + 1$ If A3, A2, A1, and A0 are all zeros (0000), the shift register is one bit long. If they are all ones (1111), it is 16 bits long.
- To change the length of the shift register dynamically Change the values driving the A3 through A0 inputs. For example, if A2, A1, and A0 are all ones (111) and A3 toggles between a one (1) and a zero (0), the length of the shift register changes from 16 bits to 8 bits. Internally, the length of the shift register is always 16 bits and the input lines A3 through A0 select which of the 16 bits reach the output.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most significant bit. If an INIT value is not specified, it defaults to a value of four zeros (0000) so that the shift register LUT is cleared during configuration.

When CE is High, the data (D) is loaded into the first bit of the shift register during the Low-to-High clock (CLK) transition. During subsequent Low-to-High clock transitions, when CE is High, data shifts to the next highest bit position as new data is loaded. The data appears on the Q output when the shift register length determined by the address inputs is reached. When CE is Low, the register ignores clock transitions.

Logic Table

Inputs	Output					
Am	CE	CLK	D	Q		
Am	0	X	X	Q(Am)		
Am	1	\uparrow	D	Q(Am - 1)		
m= 0, 1, 2, 3	m= 0, 1, 2, 3					

Design Entry Method

Instantiation	Yes
Inference	Recommended

About Design Elements

497

Coregen and wizards	No	
Macro support	No	

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Sets the initial value of content and output of shift register after configuration.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- SRL16E: 16-bit shift register LUT with clock enable operating on posedge of clock
          All FPGAs
-- Xilinx HDL Libraries Guide, version 10.1.2
SRL16E_inst : SRL16E
generic map (
INIT => X"0000")
port map (
              -- SRL data output
Q => Q,
           -- Select[0] input
A0 \Rightarrow A0,
A1 => A1,
             -- Select[1] input
A2 \Rightarrow A2
             -- Select[2] input
A3 => A3,
             -- Select[3] input
              -- Clock enable input
CE => CE,
CLK => CLK, -- Clock input
D => D
              -- SRL data input
);
-- End of SRL16E_inst instantiation
```

Verilog Instantiation Template

```
// SRL16E: 16-bit shift register LUT with clock enable operating on posedge of clock
         All FPGAs
// Xilinx HDL Libraries Guide, version 10.1.2
.INIT(16'h0000) // Initial Value of Shift Register
) SRL16E_inst (
          // SRL data output
           // Select[0] input
// Select[1] input
// Select[2] input
.A0(A0),
.A1(A1),
.A2(A2),
             // Select[3] input
.A3(A3),
             // Clock enable input
.CE(CE),
.CLK(CLK),
            // Clock input
.D(D)
             // SRL data input
// End of SRL16E_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

SRL16E_1

Primitive: 16-Bit Shift Register Look-Up-Table (LUT) with Negative-Edge Clock and Clock Enable

Introduction

This design element is a shift register look up table (LUT) with clock enable (CE). The inputs A3, A2, A1, and A0 select the output length of the shift register.

The shift register can be of a fixed, static length or it can be dynamically adjusted.

- To create a fixed-length shift register Drive the A3 through A0 inputs with static values. The length of the shift register can vary from 1 bit to 16 bits, as determined by the following formula: Length = $(8 \times A3) + (4 \times A2) + (2 \times A1) + A0 + 1$ If A3, A2, A1, and A0 are all zeros (0000), the shift register is one bit long. If they are all ones (1111), it is 16 bits long.
- To change the length of the shift register dynamically Change the values driving the A3 through A0 inputs. For example, if A2, A1, and A0 are all ones (111) and A3 toggles between a one (1) and a zero (0), the length of the shift register changes from 16 bits to 8 bits. Internally, the length of the shift register is always 16 bits and the input lines A3 through A0 select which of the 16 bits reach the output.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most significant bit. If an INIT value is not specified, it defaults to a value of four zeros (0000) so that the shift register LUT is cleared during configuration.

When CE is High, the data (D) is loaded into the first bit of the shift register during the High-to-Low clock (CLK) transition. During subsequent High-to-Low clock transitions, when CE is High, data is shifted to the next highest bit position as new data is loaded. The data appears on the Q output when the shift register length determined by the address inputs is reached. When CE is Low, the register ignores clock transitions.

Logic Table

	Output			
Am	CE	CLK	D	Q
Am	0	Χ	X	Q(Am)
Am	1	\downarrow	D	Q(Am - 1)
m= 0, 1, 2, 3				

Design Entry Method

Instantiation	Yes
Inference	Recommended

Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Туре	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Sets the initial value of content and output of shift register after configuration.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration.

```
Library UNISIM;
use UNISIM.vcomponents.all;
-- SRL16E_1: 16-bit shift register LUT with clock enable operating on negedge of clock
             All FPGAs
-- Xilinx HDL Libraries Guide, version 10.1.2
SRL16E_1_inst : SRL16E_1
generic map (
INIT => X"0000")
port map (
Q => Q,
              -- SRL data output
            -- Select[0] input
-- Select[1] input
A0 => A0,
A1 => A1,
            -- Select[2] input
A2 => A2,
A3 => A3,
             -- Select[3] input
CE => CE,
             -- Clock enable input
CLK => CLK, -- Clock input
D => D
              -- SRL data input
);
-- End of SRL16E_1_inst instantiation
```

Verilog Instantiation Template

```
// SRL16E_1: 16-bit shift register LUT with clock enable operating on negedge of clock
              All FPGAs
// Xilinx HDL Libraries Guide, version 10.1.2
SRL16E_1 #(
.INIT(16'h0000) // Initial Value of Shift Register
) SRL16E_1_inst (
          // SRL data output
// Select[0] input
// Select[1] input
// Select[2] input
.Q(Q),
.A0(A0),
.A1(A1),
.A2(A2),
.A3(A3),
             // Select[3] input
.CE(CE),
              // Clock enable input
             // Clock input
.CLK(CLK),
              // SRL data input
.D(D)
// End of SRL16E_1_inst instantiation
```

500 www.xilinx.com 10.1

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

SRLC16

Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry

Introduction

This design element is a shift register look-up table (LUT) with Carry. The inputs A3, A2, A1, and A0 select the output length of the shift register.

The shift register can be of a fixed, static length or it can be dynamically adjusted.

- To create a fixed-length shift register Drive the A3 through A0 inputs with static values. The length of the shift register can vary from 1 bit to 16 bits, as determined by the following formula: Length = $(8 \times A3) + (4 \times A2) + (2 \times A1) + A0 + 1$ If A3, A2, A1, and A0 are all zeros (0000), the shift register is one bit long. If they are all ones (1111), it is 16 bits long.
- To change the length of the shift register dynamically Change the values driving the A3 through A0 inputs. For example, if A2, A1, and A0 are all ones (111) and A3 toggles between a one (1) and a zero (0), the length of the shift register changes from 16 bits to 8 bits. Internally, the length of the shift register is always 16 bits and the input lines A3 through A0 select which of the 16 bits reach the output.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most significant bit. If an INIT value is not specified, it defaults to a value of four zeros (0000) so that the shift register LUT is cleared during configuration.

The data (D) is loaded into the first bit of the shift register during the Low-to-High clock (CLK) transition. During subsequent Low-to-High clock transitions data shifts to the next highest bit position as new data is loaded. The data appears on the Q output when the shift register length determined by the address inputs is reached. The Q15 output is available for you in cascading to multiple shift register LUTs to create larger shift registers.

Logic Table

Inputs			Output
Am	CLK	D	Q
Am	X	Χ	Q(Am)
Am	\uparrow	D	Q(Am - 1)
m= 0, 1, 2, 3			

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Sets the initial value of content and output of shift register after configuration.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- SRLC16: 16-bit cascadable shift register LUT operating on posedge of clock
          Virtex-II/II-Pro, Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2
SRLC16_inst : SRLC16
generic map (
INIT => X"0000")
port map (
             -- SRL data output
Q => Q,
Q15 => Q15, -- Carry output (connect to next SRL)
A0 \Rightarrow A0
             -- Select[0] input
A1 => A1,
             -- Select[1] input
A2 => A2,
             -- Select[2] input
             -- Select[3] input
A3 => A3,
CLK => CLK, -- Clock input
D => D
             -- SRL data input
);
-- End of SRLC16_inst instantiation
```

Verilog Instantiation Template

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

SRLC16_1

Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry and Negative-Edge Clock

Introduction

This design element is a shift register look-up table (LUT) with carry and a negative-edge clock. The inputs A3, A2, A1, and A0 select the output length of the shift register.

The shift register can be of a fixed, static length or it can be dynamically adjusted.

- To create a fixed-length shift register Drive the A3 through A0 inputs with static values. The length of the shift register can vary from 1 bit to 16 bits, as determined by the following formula: Length = $(8 \times A3) + (4 \times A2) + (2 \times A1) + A0 + 1$ If A3, A2, A1, and A0 are all zeros (0000), the shift register is one bit long. If they are all ones (1111), it is 16 bits long.
- To change the length of the shift register dynamically Change the values driving the A3 through A0 inputs. For example, if A2, A1, and A0 are all ones (111) and A3 toggles between a one (1) and a zero (0), the length of the shift register changes from 16 bits to 8 bits. Internally, the length of the shift register is always 16 bits and the input lines A3 through A0 select which of the 16 bits reach the output.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most significant bit. If an INIT value is not specified, it defaults to a value of four zeros (0000) so that the shift register LUT is cleared during configuration.

The Q15 output is available for your use in cascading multiple shift register LUTs to create larger shift registers.

Logic Table

Inputs		Output		
Am	CLK	D	Q	Q15
Am	X	X	Q(Am)	No Change
Am	\downarrow	D	Q(Am - 1)	Q14
m= 0, 1, 2, 3				

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Sets the initial value of content and output of shift register after configuration.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- SRLC16_1: 16-bit cascadable shift register LUT operating on negedge of clock
             Virtex-II/II-Pro, Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2
SRLC16_1_inst : SRLC16_1
generic map (
INIT => X"0000")
port map (
              -- SRL data output
Q => Q,
Q15 => Q15, -- Carry output (connect to next SRL)
A0 \Rightarrow A0
             -- Select[0] input
A1 => A1,
             -- Select[1] input
A2 \Rightarrow A2,
             -- Select[2] input
             -- Select[3] input
A3 => A3,
CLK => CLK, -- Clock input
D => D
              -- SRL data input
);
-- End of SRLC16_1_inst instantiation
```

Verilog Instantiation Template

```
// SRLC16_1: 16-bit cascadable shift register LUT operating on negedge of clock
               Virtex-II/II-Pro/4, Spartan-3/3E/3A
// Xilinx HDL Libraries Guide, version 10.1.2
SRLC16_1 #(
.INIT(16'h0000) // Initial Value of Shift Register
) SRLC16_1_inst (
             // SRL data output
Q15(Q15), // Carry output (connect to next SRL)
.AO(AO), // Select[0] input
.Al(Al), // Select[1] input
             // Select[2] input
// Select[3] input
.A2(A2),
.A3(A3),
             // Clock input
.CLK(CLK),
.D(D)
              // SRL data input
// End of SRLC16_1_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

SRLC16E

Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry and Clock Enable

Introduction

This design element is a shift register look-up table (LUT) with carry and clock enable. The inputs A3, A2, A1, and A0 select the output length of the shift register.

The shift register can be of a fixed, static length or it can be dynamically adjusted.

- To create a fixed-length shift register Drive the A3 through A0 inputs with static values. The length of the shift register can vary from 1 bit to 16 bits, as determined by the following formula: Length = $(8 \times A3) + (4 \times A2) + (2 \times A1) + A0 + 1$ If A3, A2, A1, and A0 are all zeros (0000), the shift register is one bit long. If they are all ones (1111), it is 16 bits long.
- To change the length of the shift register dynamically Change the values driving the A3 through A0 inputs. For example, if A2, A1, and A0 are all ones (111) and A3 toggles between a one (1) and a zero (0), the length of the shift register changes from 16 bits to 8 bits. Internally, the length of the shift register is always 16 bits and the input lines A3 through A0 select which of the 16 bits reach the output.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most significant bit. If an INIT value is not specified, it defaults to a value of four zeros (0000) so that the shift register LUT is cleared during configuration.

The data (D) is loaded into the first bit of the shift register during the Low-to-High clock (CLK) transition. When CE is High, during subsequent Low-to-High clock transitions, data shifts to the next highest bit position as new data is loaded. The data appears on the Q output when the shift register length determined by the address inputs is reached.

The Q15 output is available for you in cascading to multiple shift register LUTs to create larger shift registers.

Logic Table

Inputs			Output		
Am	CLK	CE	D	Q	Q15
Am	X	0	Х	Q(Am)	Q(15)
Am	Х	1	Х	Q(Am)	Q(15)
Am	1	1	D	Q(Am - 1)	Q15
m= 0, 1, 2, 3					

Design Entry Method

Instantiation	Yes
Inference	Recommended

About Design Elements

Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Sets the initial value of content and output of shift register after configuration.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration.

```
Library UNISIM;
use UNISIM.vcomponents.all;
-- SRLC16E: 16-bit cascable shift register LUT with clock enable operating on posedge of clock
            Virtex-II/II-Pro, Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2
SRLC16E_inst : SRLC16E
generic map (
INIT => X"0000")
port map (
Q => Q,
              -- SRL data output
Q15 => Q15,
            -- Carry output (connect to next SRL)
A0 => A0, -- Select[0] input
A1 => A1, -- Select[1] input
A1 => A1,
A2 => A2,
             -- Select[2] input
A3 => A3,
             -- Select[3] input
CE => CE,
             -- Clock enable input
CLK => CLK, -- Clock input
D => D
              -- SRL data input
);
-- End of SRLC16E_inst instantiation
```

Verilog Instantiation Template

```
// SRLC16E: 16-bit cascadable shift register LUT with clock enable operating on posedge of clock
             Virtex-II/II-Pro/4, Spartan-3/3E/3A
// Xilinx HDL Libraries Guide, version 10.1.2
SRLC16E #(
.INIT(16'h0000) // Initial Value of Shift Register
) SRLC16E_inst (
           // SRL data output
.Q(Q),
.Q15(Q15), // Carry output (connect to next SRL)
.A0(A0), // Select[0] input
.A1(A1), // Select[1] input
.A2(A2),
             // Select[2] input
            // Select[3] input
.A3(A3),
.CE(CE),
             // Clock enable input
.CLK(CLK),
             // Clock input
.D(D)
              // SRL data input
// End of SRLC16E inst instantiation
```

For More Information

- See the Spartan-3 User Guide.
- See the Spartan-3 Data Sheets.

Libraries Guide

SRLC16E_1

Primitive: 16-Bit Shift Register Look-Up Table (LUT) with Carry, Negative-Edge Clock, and Clock Enable

Introduction

This design element is a shift register look-up table (LUT) with carry, clock enable, and negative-edge clock. The inputs A3, A2, A1, and A0 select the output length of the shift register.

The shift register can be of a fixed, static length or it can be dynamically adjusted.

- To create a fixed-length shift register Drive the A3 through A0 inputs with static values. The length of the shift register can vary from 1 bit to 16 bits, as determined by the following formula: Length = $(8 \times A3) + (4 \times A2) + (2 \times A1) + A0 + 1$ If A3, A2, A1, and A0 are all zeros (0000), the shift register is one bit long. If they are all ones (1111), it is 16 bits long.
- To change the length of the shift register dynamically Change the values driving the A3 through A0 inputs. For example, if A2, A1, and A0 are all ones (111) and A3 toggles between a one (1) and a zero (0), the length of the shift register changes from 16 bits to 8 bits. Internally, the length of the shift register is always 16 bits and the input lines A3 through A0 select which of the 16 bits reach the output.

The shift register LUT contents are initialized by assigning a four-digit hexadecimal number to an INIT attribute. The first, or the left-most, hexadecimal digit is the most significant bit. If an INIT value is not specified, it defaults to a value of four zeros (0000) so that the shift register LUT is cleared during configuration.

When CE is High, the data (D) is loaded into the first bit of the shift register during the High-to-Low clock (CLK) transition. During subsequent High-to-Low clock transitions data shifts to the next highest bit position as new data is loaded when CE is High. The data appears on the Q output when the shift register length determined by the address inputs is reached.

The Q15 output is available for your use in cascading multiple shift register LUTs to create larger shift registers.

Logic Table

Inputs			Output		
Am	CE	CLK	D	Q	Q15
Am	0	Χ	X	Q(Am)	No Change
Am	1	X	X	Q(Am)	No Change
Am	1	\downarrow	D	Q(Am -1)	Q14
m= 0, 1, 2, 3					

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

Available Attributes

Attribute	Type	Allowed Values	Default	Description
INIT	Hexadecimal	Any 16-Bit Value	All zeros	Sets the initial value of content and output of shift register after configuration.

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- SRLC16E_1: 16-bit shift register LUT with clock enable operating on negedge of clock
              Virtex-II/II-Pro, Spartan-3/3E/3A
-- Xilinx HDL Libraries Guide, version 10.1.2
SRLC16E_1_inst : SRLC16E_1
generic map (
INIT => X"0000")
port map (
              -- SRL data output
Q => Q,
Q15 => Q15, -- Carry output (connect to next SRL)
A0 => A0, -- Select[0] input
A1 => A1,
              -- Select[1] input
             -- Select[2] input
A2 => A2,
A3 => A3,
              -- Select[3] input
CE => CE,
              -- Clock enable input
             -- Clock input
CLK => CLK,
D => D
              -- SRL data input
);
-- End of SRLC16E_1_inst instantiation
```

Verilog Instantiation Template

```
// SRLC16E_1: 16-bit shift register LUT with clock enable operating on negedge of clock
               Virtex-II/II-Pro/4, Spartan-3/3E/3A
// Xilinx HDL Libraries Guide, version 10.1.2
SRLC16E_1 #(
.INIT(16'h0000) // Initial Value of Shift Register
) SRLC16E_1_inst (
          // SRL data output
.Q15(Q15), // Carry output (connect to next SRL)
.A0(A0), // Select[0] input
            // Select[1] input
.A1(A1),
            // Select[2] input
// Select[3] input
.A2(A2),
.A3(A3),
             // Clock enable input
.CE(CE),
.CLK(CLK),
            // Clock input
```



```
.D(D) // SRL data input
);

// End of SRLC16E_1_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

STARTUP_SPARTAN3

Primitive: Spartan-3 User Interface to Global Clock, Reset, and 3-State Controls

Introduction

This design element is used for Global Set/Reset, global 3-state control, and the user configuration clock. The Global Set/Reset (GSR) input, when High, sets or resets all flip-flops, all latches, and every block RAMB16 output register in the device, depending on the initialization state (INIT=1 or 0) of the component.

Note Block RAM content, LUT RAMs, the Digital Clock Manager (DCM), and shift register LUTs (SRL16, SRL16 1, SRL16E, SRL16E 1, SRLC16, SRLC16E 1, SRLC16E, and SRLC16E 1) are not set/reset.

Following configuration, the global 3-state control (GTS), when High—and BSCAN is not enabled and executing an EXTEST instruction—forces all the IOB outputs into high impedance mode, which isolates the device outputs from the circuit but leaves the inputs active.

Note GTS= Global 3-State

Including the STARTUP_SPARTAN3 symbol in a design is optional. You must include the symbol under the following conditions.

- To exert external control over global set/reset, connect the GSR pin to a top level port and an IBUF.
- To exert external control over global 3-state, connect the GTS pin to a top level port and IBUF.
- To synchronize startup to a user clock, connect the user clock signal to the CLK input. Furthermore, "user clock" must be selected in the BitGen program.

You can use location constraints to specify the pin from which GSR or GTS (or both) is accessed.

Design Entry Method

Instantiation	Recommended
Inference	No
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

use UNISIM.vcomponents.all;

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
-- STARTUP_SPARTAN3: Startup primitive for GSR, GTS or startup sequence
-- control. Spartan-3
-- Xilinx HDL Libraries Guide, version 10.1.2

STARTUP_SPARTAN3_inst : STARTUP_SPARTAN3
port map (
CLK => CLK, -- Clock input for start-up sequence
GSR => GSR_PORT, -- Global Set/Reset input (GSR cannot be used for the port name)
```

GTS => GTS_PORT -- Global 3-state input (GTS cannot be used for the port name)


```
);
-- End of STARTUP_SPARTAN3_inst instantiation
```

```
// STARTUP_SPARTAN3: Startup primitive for GSR, GTS or startup sequence
// control. Spartan-3
// Xilinx HDL Libraries Guide, version 10.1.2

STARTUP_SPARTAN3 STARTUP_SPARTAN3_inst (
.CLK(CLK), // Clock input for start-up sequence
.GSR(GSR_PORT), // Global Set/Reset input (GSR can not be used as a port name)
.GTS(GTS_PORT) // Global 3-state input (GTS can not be used as a port name)
);

// End of STARTUP_SPARTAN3_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

XORCY

Primitive: XOR for Carry Logic with General Output

Introduction

This design element is a special XOR with general O output that generates faster and smaller arithmetic functions. The XORCY primitive is a dedicated XOR function within the carry-chain logic of the slice. It allows for fast and efficient creation of arithmetic (add/subtract) or wide logic functions (large AND/OR gate).

Logic Table

Input		Output
LI	CI	0
0	0	0
0	1	1
1	0	1
1	1	0

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;


```
// XORCY: Carry-Chain XOR-gate with general output
// For use with All FPGAs
// Xilinx HDL Libraries Guide, version 10.1.2

XORCY XORCY_inst (
.0(0), // XOR output signal
.CI(CI), // Carry input signal
.LI(LI) // LUT4 input signal
);

// End of XORCY_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

XORCY_D

Primitive: XOR for Carry Logic with Dual Output

Introduction

This design element is a special XOR that generates faster and smaller arithmetic functions.

Logic Table

Input		Output
LI	CI	O and LO
0	0	0
0	1	1
1	0	1
1	1	0

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- XORCY_D: Carry-Chain XOR-gate with local and general outputs
-- Xilinx HDL Libraries Guide, version 10.1.2

XORCY_D_inst : XORCY_D
port map (
LO => LO, -- XOR local output signal
O => O, -- XOR general output signal
CI => CI, -- Carry input signal
LI => LI -- LUT4 input signal
);
-- End of XORCY_D_inst instantiation
```



```
// XORCY_D: Carry-Chain XOR-gate with local and general outputs
// For use with All FPGAs
// Xilinx HDL Libraries Guide, version 10.1.2

XORCY_D XORCY_D_inst (
    LO(LO), // XOR local output signal
    O(O), // XOR general output signal
    CI(CI), // Carry input signal
    LI(LI) // LUT4 input signal
);

// End of XORCY_D_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.

XORCY_L

Primitive: XOR for Carry Logic with Local Output

Introduction

This design element is a special XOR with local LO output that generates faster and smaller arithmetic functions.

Logic Table

Input		Output
LI	CI	LO
0	0	0
0	1	1
1	0	1
1	1	0

Design Entry Method

Instantiation	Yes
Inference	Recommended
Coregen and wizards	No
Macro support	No

VHDL Instantiation Template

Unless they already exist, copy the following two statements and paste them before the entity declaration. Library UNISIM;

```
use UNISIM.vcomponents.all;
-- XORCY_L: Carry-Chain XOR-gate with local => direct-connect ouput
-- Xilinx HDL Libraries Guide, version 10.1.2

XORCY_L_inst : XORCY_L
port map (
LO => LO, -- XOR local output signal
CI => CI, -- Carry input signal
LI => LI -- LUT4 input signal
);
-- End of XORCY_L_inst instantiation
```



```
// XORCY_L: Carry-Chain XOR-gate with local (direct-connect) ouput
// For use with All FPGAs
// Xilinx HDL Libraries Guide, version 10.1.2

XORCY_L XORCY_L_inst (
    LO(LO), // XOR local output signal
    .CI(CI), // Carry input signal
    .LI(LI) // LUT4 input signal
);

// End of XORCY_L_inst instantiation
```

- See the *Spartan-3 User Guide*.
- See the *Spartan-3 Data Sheets*.