WHAT IS CLAIMED IS:

5

5

1. A method of manufacturing a semiconductor device, the method comprising: forming an opening in a dielectric layer

laser thermal annealing exposed surfaces of the dielectric layer in ammonia (NH₃) and nitrogen (N₂); and

forming a composite barrier layer comprising tantalum (Ta) lining the opening.

- 2. The method according to claim 1, wherein the dielectric layer comprises fluorine (F) containing silicon oxide derived from F-doped tetraethyl orthosilicate (F-TEOS).
- 3. The method according to claim 2, comprising laser thermal annealing the exposed surfaces to form a surface region depleted in F and enriched in N₂.
- 4. The method according to claim 3, comprising forming the composite barrier layer by depositing Ta, the composite barrier layer comprising:
- a graded layer of tantalum nitride on the N_2 -enriched surface region, the graded tantalum nitride layer containing N_2 in an amount decreasing in a direction away from the N_2 -enriched surface region; and
 - a layer of α -Ta on the graded tantalum nitride layer.
- 5. The method according to claim 4, further comprising filling the opening with copper (Cu) or a Cu alloy.
- 6. The method according to claim 5, wherein the opening comprises a dual damascene opening having a lower via hole in communication with an upper trench, the method comprising filling the opening with Cu or Cu alloy to form a lower via in communication with an upper line.
- 7. The method according to claim 6, comprising laser thermal annealing by impinging a laser light beam on the exposed surfaces at a radiant fluence of about 0.09 to about 0.11 joules/cm².
- 8. The method according to claim 7, comprising laser thermal annealing to elevate the temperature of about 370°C to about 430°C.

- 9. The method according to claim 2, comprising laser thermal annealing employing an N_2 flow rate of about 200 to about 2,000 sccm and an NH₃ flow rate of about 200 to about 2,000 sccm to form a region on the exposed surfaces depleted in F and enriched in N_2 .
- 10. The method according to claim 9, comprising forming the composite barrier layer by depositing Ta, the composite barrier layer comprising:

a graded layer of tantalum nitride on the N_2 -enriched surface region, the graded tantalum nitride layer containing nitrogen in an amount decreasing in a direction away from the N_2 -enriched surface region; and

a layer of α -Ta on the graded tantalum nitride layer.

11. A semiconductor device comprising: an opening in a dielectric layer; and

a composite barrier layer formed on a surface of the dielectric layer lining the opening; wherein:

the surface of the dielectric layer comprises a nitrogen (N₂)-enriched surface region; and

the composite barrier layer comprises:

an initial graded layer of tantalum nitride containing N_2 in an amount decreasing in the direction away from the N_2 -enriched surface region; and a layer of alpha-tantalum (α -Ta) on the graded tantalum nitride layer.

- 12. The semiconductor device according to claim 11, wherein the dielectric layer comprises fluorine (F)-containing silicon oxide derived from F-doped tetraethyl orthosilicate (F-TEOS).
- 13. The semiconductor device according to claim 12, wherein the nitrogenenriched surface region contains F in an amount less than the remainder of the dielectric layer.
 - 14. The semiconductor device according to claim 13, wherein: the N₂-enriched region has a thickness of about 10Å to about 20Å; the graded tantalum nitride layer has a thickness of about 20Å to about 50Å; and the α-Ta layer has a thickness of about 200Å to about 300Å.

5

5

.

10

- 15. The semiconductor device according to claim 13, wherein: the nitrogen-enriched region contains about 10 to about 40 at.% N₂; and the graded tantalum nitride region contains N₂ in an amount of about 5 to about 15 at.% proximate the N₂-enriched region decreasing toward the α-Ta layer.
- 16. The semiconductor device according to claim 12, wherein the opening is filled with copper (Cu) or a Cu alloy.
 - 17. The semiconductor device according to claim 16, wherein:

5

the opening is a dual damascene opening comprising a lower via hole in communication with an upper trench; and

the filled opening comprises a Cu or Cu alloy via in communication with an upper Cu or Cu alloy line.

- 18. The semiconductor device according to claim 11, wherein the dielectric layer comprises a dielectric material having a dielectric constant (k) less than about 3.9.
- 19. The semiconductor device according to claim 18, wherein the dielectric material is a halogen-containing material.
- 20. The semiconductor device according to claim 18, wherein the dielectric material is a fluorine (F)-containing oxide.