CS-773 Project Checkpoint-1

Hybrid Cache Architecture for Comprehensive Security

Soumik Dutta, Arnab Bhakta, SM Arif Ali Team Gandiva

23m0826@iitb.ac.in,23m0835@iitb.ac.in,23m0822@iitb.ac.in

Problem statement

Modern processors are vulnerable to two major classes of attacks

Conflict based attacks

Transient execution attacks

To create an unified solution to defend against **both attack types** keeping performance-security tradeoff in mind

Prior Works

MIRAGE: Mitigating Conflict-Based Cache Attacks with a Practical Fully-Associative Design *USENIX Sec '21*

GhostMinion: A Strictness-Ordered Cache System for Spectre Mitigation

MICRO '21

Combining them could provide comprehensive security but requires careful integration

Goal of the Project

Design a **hybrid cache architecture** that:

Metrics of interest: IPC, MPKI

Challenges faced so far

- Version mismatch in gem5 version
 - Original Mirage in gem5 v19 is not replicable
 - Ported to latest gem5 v24
 - Original GhostMinion => gem5 v20
 - Ported to gem5 v24 but not compatible.
 - Sol: fallback to gem5 v20
 - Architecture mismatch
 - Original Mirage => **X86**; Original GhostMinion => **ARM**;
 - Ported GhostMinion to **X86** but not supported;
 - Finally, Ported Mirage to **ARM**.
- Running benchmark suite
 - Checkpointing is needed to reproduce results same as given in paper. 5

Work done so far

- ➤ Setup **MIRAGE** artifact in gem5**v24**.
- > Setup **GhostMinion** artifact in gem5**v20.1**.
- ➤ Evaluation of the techniques with 7 SPECspeed®2017Integer & 5 SPECspeed®2017Floating Point benchmarks.

Simulation Configuration

Architecture: ARM-64

Core: Single-Core, 8-Wide, Out-of-order, 2.0GHz

L1D: 32KiB, 2-cycle-latency, 8 way, 4 MSHRs

L1I: 32KiB, 2-cycle-latency, 8 way, 4 MSHRs

L2: 8MiB, 20-cycle-latency, 16 way, 20 MSHRs

DRAM: 8GiB DDR4 2400MT/s

Warmup-Instruction: 500M

Simulation-Instruction: 500M

MIRAGE Configuration

Level: L2

L2 clusivity: Inclusive

L2 Skews: 2

Tag to Data Ratio: 1.75 (75% extra tags)

Encryption Latency: 2 cycles

MIRAGE Results - Speedup

Why do we get a speedup in some cases?

MIRAGE Results - L1 MPKI

MIRAGE Results - L2 MPKI

MPKI doesn't explain the performance difference

MIRAGE Results - L1 Miss Latency

Significant differences in miss latency between baseline and MIRAGE

MIRAGE Results - Tradeoff

GhostMinion Configuration

Level: L1-D Cache, L1-I Cache

L2 clusivity: Exclusive

D/I GhostMinions: 2KiB, 2-way, accessed with D/I cache

L2 prefetcher: 8 degree, Stride Prefetcher (64-entry RPT)

GhostMinion Results - Speedup

Speculative data hiding and strict-ordering causes commit stall

GhostMinion Results - L1 MPKI

Increased MPKI in non-speculative L1 cache

GhostMinion Results - L2 MPKI

No noticeable differences in L2 MPKI for baseline and GhostMinion

GhostMinion Results: Tradeoff

GhostMinion Tradeoff:: GhostMinion Size vs Execution Time

Insignificant effect on performance on changing GhostMinion size

Plan for checkpoint-II

- Integrate MIRAGE & GhostMinion in gem5 v20.1
- Implement a proper checkpointing system
- Evaluate performance of the combined structure under same system configuration

Github link

 https://github.com/sammagnet7/cs773_CompArch-Perf-Security