

YouTube Trending Analytics Revo Berliana

Revo Berliana

Education

Information System - Gunadarma University

Working

IT Operation Engineer

Overview Project

1. Introduction

- Project Background
- Problem Statement
- Project Overview

2. Data Platform & Understanding

- Data Platform
- Sturcture Project

3. Transformation & Data Modelling

- Transformation Proses
- Visualization Dashoard

4. Conclusion

Project Background

Project Background

YouTube has become a major platform for content creators, brands, and marketers to reach a global audience. Understanding trends and video performance is a key challenge, especially on a large scale.

Manual data tracking is inefficient, which is why an automated system is needed to fetch, store, and analyze YouTube data

Problem Statement

Problem Statement

This project aims to automate and batch the process of collecting, storing, and transforming YouTube API data for analysis. The main challenges include:

- Automation & Consistency
- Structured Data Management

Project Goals

- Automate daily data extraction from YouTube API using Airflow (Docker).
- Store structured data in BigQuery for easy access.
- Transform data with dbt to ensure quality and usability.
- Enable visualization and analysis in Google Data Studio.

Data Platform Understanding


```
Final Project
⊢ 📂 dags/
       ► youtube-api-load-to-bigguery.py (DAG fetch data, load to bigguery)
► ► datal (Stores temporary and raw JSON files)
⊢ / logs/
F youtube trending/models/ (Contains dbt models for data transformation)
  ► staging/ (Cleans and structures raw YouTube data)
     ► 1 stg_youtube_data.sql (Processes trending video data)
   ► marts (Fact tables for analytics and reporting)
    | fact_video_performance.sql (Aggregated video performance)
     Figure 1 | fact_channel_performance.sql (Aggregated channel insights)
- scripts/
     profiles.yml (dbt connection config for BigQuery)
     docker-compose.yaml (Docker setup for running Airflow locally)
     requirements.txt (Python dependencies for the project)
     .env
     .gitignore
     youtube-api-key.json (API key for YouTube Data API access)
     gcp-key.json (Service account key for BigQuery authentication)
```


Data Understanding

Data Sources & Collection

- Source: YouTube API (Trending videos)
- Collected Data(endpoint): Video ID, title, views, likes, comments, channel info, category, duration, etc.
- Extraction Method: Airflow DAG (fetches data daily, saves as JSON)

Data Processing & Storage

Processing:

- Cleans and normalizes data (removes nulls, standardizes tags)
- Converts ISO 8601 duration to seconds using isodate library for duration

Storage:

BigQuery

Transformation Consideration & Data Modelling

Transformation Process

1. Fact Tables

- Fact Table (fact_channel_performance) > ratio of likes and comment and engagement rate
- Fact Table (fact_video_performance) > tren to days

2. Optimization

- Partitioning fact_video_performance by (publishedAt)
- SAFE_DIVIDE(ratio) to prevent errors
- Materialized views for reporting

channelTitle	total_views	total_likes	total_comments	avg_like_ratio	Engagement Rate
XODIAC Official	1,004,004	146,640	46,088	0.15	0.19
SEVENTEEN	3,535,893	563,694	34,002	0.16	0.17
BLACKPINK	9,858,060	1,390,238	130,488	0.14	0.15
Mikazuki Arion [AKA	2,913,651	330,363	31,641	0.11	0.12
VIVINOS	45,063,741	4,995,711	427,123	0.12	0.12
Aisar Khaledd	10,324,020	1,047,764	172,633	0.11	0.12
SMTOWN	6,842,403	673,168	37,687	0.1	0.1
JIS00	228,093,521	21,345,514	1,224,179	0.1	0.1
SBSKPOP X INKIGAYO	20,391,312	1,884,456	53,156	0.09	0.1

373,794

4,233,376

Aqeela Calista

0.09

0.09

22,422

Dashboard Trending Youtube Analysis

Conclusion

The platform efficiently processes and presents YouTube trending data using Airflow, BigQuery, and dbt. It enables structured storage, transformation, and visualization for engagement analysis.

© Final Takeaway: The system works well for batch analytics but can be improved with real-time processing with ksqlDB, clustering category, and improve dbt models(dbt snapshot-> historical changes, dbt test check missing & inconsistent.

Terima Kasih.