

## Bis(acetylacetonato- $\kappa^2 O,O'$ )bis(pyridine- $\kappa N$ )nickel(II) dihydrate

Mehdi Boutebdja, Adel Beghidja\* and Chahrazed Beghidja

Unité de Recherche de Chimie de l'Environnement et, Moléculaire Structurale (CHEMS), Faculté des Sciences Exactes, Département de Chimie, Université de Constantine 1, 25000 Constantine, Algeria  
Correspondence e-mail: a\_beghidja@yahoo.fr

Received 21 December 2012; accepted 27 January 2013

Key indicators: single-crystal X-ray study;  $T = 296\text{ K}$ ; mean  $\sigma(\text{C}-\text{C}) = 0.003\text{ \AA}$ ;  $R$  factor = 0.034;  $wR$  factor = 0.103; data-to-parameter ratio = 20.8.

The title compound,  $[\text{Ni}(\text{C}_5\text{H}_7\text{O}_2)_2(\text{C}_5\text{H}_5\text{N})_2] \cdot 2\text{H}_2\text{O}$ , crystallizes with two half-molecules in the asymmetric unit. The  $\text{Ni}^{II}$  ion of each unique complex molecule lies on an inversion centre and has an octahedral coordination geometry. The crystal structure features weak  $\text{O}-\text{H}\cdots\text{O}$  hydrogen bonds, which form chains running parallel to the  $a$  axis.

### Related literature

For the structures of octahedral complexes of the type  $[\text{M}(\text{acac})_2(\text{L})_2]_2$  ( $\text{M} = \text{Ni}$ ; acac = acetylacetone, 1,3-diphenyl-1,3-propanedianato;  $\text{L}$  = pyridine, 3-cyanopyridine, 4-cyano-pyridine, 3-methylpyridine, 2-methylpyridine, 4-pyridyltetra-thiafulvalene), see: Elder (1968); Zukerman-Schpector *et al.* (2000, 2007); Wang *et al.* (2006); Soldatov *et al.* (2001).



### Experimental

#### Crystal data

$[\text{Ni}(\text{C}_5\text{H}_7\text{O}_2)_2(\text{C}_5\text{H}_5\text{N})_2] \cdot 2\text{H}_2\text{O}$

$M_r = 451.13$

Monoclinic,  $P2_1/c$

$a = 16.362 (5)\text{ \AA}$

$b = 14.476 (5)\text{ \AA}$

$c = 9.543 (5)\text{ \AA}$

$\beta = 91.510 (5)^\circ$

$V = 2259.5 (16)\text{ \AA}^3$

$Z = 4$

Mo  $K\alpha$  radiation

$\mu = 0.89\text{ mm}^{-1}$   
 $T = 296\text{ K}$

$0.15 \times 0.12 \times 0.10\text{ mm}$

#### Data collection

Bruker APEXII CCD diffractometer  
55078 measured reflections

5587 independent reflections  
4298 reflections with  $I > 2\sigma(I)$   
 $R_{\text{int}} = 0.018$

#### Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$   
 $wR(F^2) = 0.103$   
 $S = 1.05$   
5587 reflections  
269 parameters

6 restraints  
H-atom parameters constrained  
 $\Delta\rho_{\text{max}} = 0.22\text{ e \AA}^{-3}$   
 $\Delta\rho_{\text{min}} = -0.25\text{ e \AA}^{-3}$

**Table 1**  
Selected bond lengths ( $\text{\AA}$ ).

|        |             |        |             |
|--------|-------------|--------|-------------|
| Ni1—O1 | 2.0427 (17) | Ni2—N2 | 2.126 (2)   |
| Ni1—O2 | 2.0407 (16) | Ni2—O3 | 2.0299 (16) |
| Ni1—N1 | 2.1039 (19) | Ni2—O4 | 2.0297 (17) |

**Table 2**

Hydrogen-bond geometry ( $\text{\AA}$ ,  $^\circ$ ).

| D—H $\cdots$ A                    | D—H  | H $\cdots$ A | D $\cdots$ A | D—H $\cdots$ A |
|-----------------------------------|------|--------------|--------------|----------------|
| O2W—H1W $\cdots$ O3               | 0.84 | 2.10         | 2.926 (3)    | 166            |
| O2W—H2W $\cdots$ O1W              | 0.86 | 2.46         | 3.092 (4)    | 131            |
| O1W—H11W $\cdots$ O2              | 0.83 | 2.45         | 2.908 (3)    | 116            |
| O1W—H22W $\cdots$ O1 <sup>i</sup> | 0.84 | 2.07         | 2.896 (3)    | 169            |

Symmetry code: (i)  $-x + 1, -y + 1, -z + 1$ .

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ATOMS* (Dowty, 1995); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

The authors thank the MESRS (Algeria) for financial support. MB thanks the DG-RSDT and ANDRU (Direction Générale de la Recherche Scientifique et du Développement Technologique et l'Agence Nationale pour le Développement de la Recherche Universitaire, Algeria) for support through the PNR project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2219).

### References

- Bruker (2006). *APEx2* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dowty, E. (1995). *ATOMS*. Shape Software, Kingsport, Tennessee, USA.
- Elder, R. C. (1968). *Inorg. Chem.* **7**, 2316–2322.
- Farrugia, L. J. (2012). *J. Appl. Cryst.* **45**, 849–854.
- Sheldrick, G. M. (2008). *Acta Cryst. A* **64**, 112–122.
- Soldatov, D. V., Enright, G. D., Ratcliffe, C. I., Henegouwen, A. T. & Ripmeester, J. A. (2001). *Chem. Mater.* **13**, 4322–4334.
- Wang, L., Zhang, B. & Zhang, J. (2006). *Inorg. Chem.* **45**, 6860–6863.
- Zukerman-Schpector, J., Caracelli, I., Trindade, A. C., Cussigh, O. & Dunstan, P. O. (2007). *Z. Kristallogr. New Cryst. Struct.* **222**, 47–49.
- Zukerman-Schpector, J., Trindade, A. C. & Dunstan, P. O. (2000). *Acta Cryst. C* **56**, 763–765.

# supplementary materials

*Acta Cryst.* (2013). E69, m131 [doi:10.1107/S1600536813002699]

## Bis(acetylacetonato- $\kappa^2O,O'$ )bis(pyridine- $\kappa N$ )nickel(II) dihydrate

Mehdi Boutebdja, Adel Beghidja and Chahrazed Beghidja

### Comment

The crystal structure of the title compound  $\text{Ni}(\text{acac})_2(\text{py})_2 \cdot 2\text{H}_2\text{O}$ , where acac = acetylacetonate and py = pyridine, is composed of two crystallographically independent Ni complexes with similar geometry and with the Ni(II) atoms located on inversion centres as well as two water molecules located on general positions (Fig. 1). Both Ni(II) atoms have octahedral coordination geometry with the basal plane defined by the four oxygen atoms of the chelating acac ( $\text{O}1, \text{O}1^i, \text{O}2, \text{O}2^i$ ) and ( $\text{O}3, \text{O}3^ii, \text{O}4, \text{O}4^ii$ ) for Ni1 and Ni2 respectively, the axial positions are occupied by pyridine N atoms. Related structures have been reported previously in literature: the structure published by Elder (1968) is the anhydrate of the title compound, Zukerman-Schpector *et al.* (2007) published a methyl pyridine derivative, and the 3 and 4-cyano-pyridine derivatives were also reported by Zukerman-Schpector and co-workers (2000). Other structures have been obtained with derivatives of acac: 1,3-diphenyl-1,3-propanedionato (Soldatov, *et al.*, (2001)) and 4-pyridyltetraethia-fulvalene (Wang, *et al.*, (2006)). All the bond lengths and angles are in the normal range (Elder *et al.*, 1968; Zukerman-Schpector *et al.*, 2000; Wang *et al.*, 2006). The two independent units are linked to each other by weak O—H···O hydrogen bonds (see Table 2 for geometric details) which form a one-dimensional chain, running parallel to  $a$  as shown in Fig. 2. Another feature in this crystal structure is the presence of C—H··· $\pi$  interactions, which further stabilize the crystal packing. These C—H··· $\pi$  interactions are present between the C—H group of acac and an adjacent pyridine rings with a H··· $\pi$  distance of 3.183 Å (Fig. 2).

### Experimental

An amount of 0.075 g (0.5 mmol) of mercapto succinic acid was dissolved in 2 ml of pyridine and 0.1374 g (0.5 mmol) of nickel(II) acetylacetonate was dissolved in 10 ml methanol. The two solutions were mixed and stirred for 15 min. The resulting solution was allowed to stand at room temperature. After several days X-ray quality blue crystals were obtained. A fragment cut from a larger crystal was used for data collection.

### Refinement

Water hydrogen atoms were tentatively found in the difference density Fourier map and were refined with an isotropic displacement parameter 1.5 that of the adjacent oxygen atom. The O—H distances were restrained to be 0.9 Å within a standard deviation of 0.01 with  $U_{\text{iso}}(\text{H}) = 1.5 U_{\text{eq}}(\text{O})$  and the H···H contacts were restraint to 1.40 Å with a standard deviation of 0.02. All other Hydrogen atoms were placed in calculated positions with C—H distances of 0.93–0.96 Å for aromatic H atoms with  $U_{\text{iso}}(\text{H}) = 1.2 U_{\text{eq}}(\text{C})$ .

### Computing details

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT* (Bruker, 2006); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ATOMS* (Dowty, 1995); software used to prepare material for publication: *WinGX*

(Farrugia, 2012).



**Figure 1**

View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. symmetry code: i = 1 - x, 1 - y, 1 - z; ii = -x, 1 - y, 1 - z.



**Figure 2**

View down c of the crystal packing of the title compound showing the hydrogen bonds and C—H··· $\pi$  interactions as dashed lines.

### Bis(acetylacetonato- $\kappa^2O,O'$ )bis(pyridine- $\kappa N$ )nickel(II) dihydrate

#### Crystal data



$$M_r = 451.13$$

Monoclinic, P2<sub>1</sub>/c

Hall symbol: -P 2ybc

$$a = 16.362 (5) \text{ \AA}$$

$$b = 14.476 (5) \text{ \AA}$$

$$c = 9.543 (5) \text{ \AA}$$

$$\beta = 91.510 (5)^\circ$$

$$V = 2259.5 (16) \text{ \AA}^3$$

$$Z = 4$$

$$F(000) = 952$$

$$D_x = 1.326 \text{ Mg m}^{-3}$$

Mo *K*<sub>α</sub> radiation,  $\lambda = 0.71073 \text{ \AA}$

Cell parameters from 9929 reflections

$\theta = 2.6\text{--}28.3^\circ$  $\mu = 0.89 \text{ mm}^{-1}$  $T = 296 \text{ K}$ 

Block, blue

 $0.15 \times 0.12 \times 0.10 \text{ mm}$ *Data collection*Bruker APEXII CCD  
diffractometer

Radiation source: sealed tube

Graphite monochromator

Detector resolution: 18.4 pixels mm<sup>-1</sup> $\varphi$  and  $\omega$  scans

55078 measured reflections

5587 independent reflections

4298 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.018$  $\theta_{\text{max}} = 28.3^\circ, \theta_{\text{min}} = 1.2^\circ$  $h = -21 \rightarrow 21$  $k = -18 \rightarrow 19$  $l = -12 \rightarrow 12$ *Refinement*Refinement on  $F^2$ 

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.034$  $wR(F^2) = 0.103$  $S = 1.05$ 

5587 reflections

269 parameters

6 restraints

Primary atom site location: structure-invariant

direct methods

Secondary atom site location: difference Fourier  
mapHydrogen site location: inferred from  
neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0451P)^2 + 0.9372P]$   
where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\text{max}} < 0.001$  $\Delta\rho_{\text{max}} = 0.22 \text{ e \AA}^{-3}$  $\Delta\rho_{\text{min}} = -0.25 \text{ e \AA}^{-3}$ *Special details*

**Geometry.** Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement.** Refinement on  $F^2$  for ALL reflections except those flagged by the user for potential systematic errors. Weighted  $R$ -factors  $wR$  and all goodnesses of fit  $S$  are based on  $F^2$ , conventional  $R$ -factors  $R$  are based on  $F$ , with  $F$  set to zero for negative  $F^2$ . The observed criterion of  $F^2 > \sigma(F^2)$  is used only for calculating  $-R$ -factor-obs etc. and is not relevant to the choice of reflections for refinement.  $R$ -factors based on  $F^2$  are statistically about twice as large as those based on  $F$ , and  $R$ -factors based on ALL data will be even larger.

*Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\text{\AA}^2$ )*

|     | $x$          | $y$          | $z$          | $U_{\text{iso}}^*/U_{\text{eq}}$ |
|-----|--------------|--------------|--------------|----------------------------------|
| Ni1 | 0.50000      | 0.50000      | 0.50000      | 0.0388 (1)                       |
| O1  | 0.59123 (8)  | 0.40479 (9)  | 0.52664 (13) | 0.0504 (4)                       |
| O2  | 0.47500 (7)  | 0.45218 (9)  | 0.30232 (12) | 0.0478 (4)                       |
| N1  | 0.41637 (9)  | 0.40607 (11) | 0.58429 (15) | 0.0458 (4)                       |
| C1  | 0.43286 (13) | 0.36179 (16) | 0.7042 (2)   | 0.0623 (7)                       |
| C2  | 0.38029 (16) | 0.29902 (19) | 0.7614 (3)   | 0.0771 (9)                       |
| C3  | 0.30771 (15) | 0.27972 (18) | 0.6921 (3)   | 0.0771 (9)                       |
| C4  | 0.29001 (13) | 0.32532 (18) | 0.5691 (2)   | 0.0703 (8)                       |
| C5  | 0.34512 (11) | 0.38751 (15) | 0.5184 (2)   | 0.0549 (6)                       |
| C6  | 0.68575 (14) | 0.28756 (18) | 0.4746 (3)   | 0.0733 (8)                       |
| C7  | 0.61380 (11) | 0.34840 (14) | 0.43447 (19) | 0.0502 (6)                       |
| C8  | 0.57898 (14) | 0.33964 (17) | 0.3012 (2)   | 0.0663 (8)                       |
| C9  | 0.51543 (12) | 0.39087 (14) | 0.24124 (18) | 0.0509 (6)                       |
| C10 | 0.49162 (19) | 0.3735 (2)   | 0.0893 (2)   | 0.0821 (9)                       |
| Ni2 | 0.00000      | 0.50000      | 0.50000      | 0.0454 (1)                       |

|      |               |              |              |             |
|------|---------------|--------------|--------------|-------------|
| O3   | 0.05752 (8)   | 0.38202 (8)  | 0.44348 (15) | 0.0548 (4)  |
| O4   | -0.07630 (8)  | 0.43023 (9)  | 0.62668 (15) | 0.0553 (4)  |
| N2   | 0.08437 (10)  | 0.51694 (10) | 0.67131 (18) | 0.0518 (5)  |
| C11  | 0.16473 (15)  | 0.51415 (17) | 0.6544 (3)   | 0.0696 (8)  |
| C12  | 0.22079 (17)  | 0.5225 (2)   | 0.7630 (3)   | 0.0834 (10) |
| C13  | 0.19364 (18)  | 0.53429 (18) | 0.8970 (3)   | 0.0774 (9)  |
| C14  | 0.11092 (17)  | 0.53708 (17) | 0.9161 (3)   | 0.0722 (9)  |
| C15  | 0.05890 (14)  | 0.52919 (14) | 0.8021 (2)   | 0.0602 (7)  |
| C16  | 0.08741 (14)  | 0.22314 (14) | 0.4275 (3)   | 0.0663 (8)  |
| C17  | 0.03892 (11)  | 0.30288 (11) | 0.48564 (19) | 0.0464 (5)  |
| C18  | -0.02264 (13) | 0.28323 (12) | 0.5796 (2)   | 0.0552 (6)  |
| C19  | -0.07502 (11) | 0.34409 (12) | 0.64369 (18) | 0.0449 (5)  |
| C20  | -0.13618 (13) | 0.30541 (16) | 0.7449 (2)   | 0.0629 (7)  |
| O1W  | 0.33029 (12)  | 0.55261 (16) | 0.2056 (2)   | 0.0998 (8)  |
| O2W  | 0.18999 (13)  | 0.41332 (17) | 0.2490 (2)   | 0.1108 (9)  |
| H1   | 0.48220       | 0.37390      | 0.75120      | 0.0750*     |
| H2   | 0.39370       | 0.27000      | 0.84590      | 0.0930*     |
| H3   | 0.27140       | 0.23680      | 0.72780      | 0.0930*     |
| H4   | 0.24100       | 0.31420      | 0.52040      | 0.0840*     |
| H5   | 0.33240       | 0.41800      | 0.43490      | 0.0660*     |
| H6A  | 0.68450       | 0.27370      | 0.57290      | 0.1100*     |
| H6B  | 0.73570       | 0.31920      | 0.45470      | 0.1100*     |
| H6C  | 0.68270       | 0.23120      | 0.42180      | 0.1100*     |
| H8   | 0.60090       | 0.29390      | 0.24500      | 0.0800*     |
| H10A | 0.43520       | 0.38940      | 0.07350      | 0.1230*     |
| H10B | 0.49960       | 0.30950      | 0.06770      | 0.1230*     |
| H10C | 0.52500       | 0.41070      | 0.03030      | 0.1230*     |
| H11  | 0.18390       | 0.50610      | 0.56430      | 0.0840*     |
| H12  | 0.27650       | 0.52020      | 0.74620      | 0.1000*     |
| H13  | 0.23040       | 0.54020      | 0.97250      | 0.0930*     |
| H14  | 0.09040       | 0.54420      | 1.00550      | 0.0870*     |
| H15  | 0.00300       | 0.53250      | 0.81620      | 0.0720*     |
| H16A | 0.12230       | 0.24540      | 0.35560      | 0.0990*     |
| H16B | 0.05050       | 0.17770      | 0.38880      | 0.0990*     |
| H16C | 0.12020       | 0.19580      | 0.50150      | 0.0990*     |
| H18  | -0.02930      | 0.22120      | 0.60200      | 0.0660*     |
| H20A | -0.18290      | 0.34540      | 0.74740      | 0.0940*     |
| H20B | -0.11120      | 0.30130      | 0.83690      | 0.0940*     |
| H20C | -0.15310      | 0.24500      | 0.71440      | 0.0940*     |
| H11W | 0.35400       | 0.50780      | 0.17200      | 0.1500*     |
| H22W | 0.35500       | 0.57180      | 0.27800      | 0.1500*     |
| H1W  | 0.15010       | 0.41390      | 0.30310      | 0.1660*     |
| H2W  | 0.20310       | 0.47070      | 0.25810      | 0.1660*     |

Atomic displacement parameters ( $\text{\AA}^2$ )

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$   | $U^{13}$    | $U^{23}$    |
|-----|------------|------------|------------|------------|-------------|-------------|
| Ni1 | 0.0400 (2) | 0.0425 (2) | 0.0336 (2) | 0.0005 (1) | -0.0026 (1) | -0.0044 (1) |
| O1  | 0.0492 (7) | 0.0560 (7) | 0.0456 (6) | 0.0076 (6) | -0.0067 (5) | -0.0061 (6) |
| O2  | 0.0511 (7) | 0.0537 (7) | 0.0383 (6) | 0.0006 (6) | -0.0061 (5) | -0.0068 (5) |

|     |             |             |             |              |              |              |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| N1  | 0.0468 (8)  | 0.0504 (8)  | 0.0402 (7)  | -0.0042 (6)  | -0.0011 (6)  | -0.0032 (6)  |
| C1  | 0.0618 (12) | 0.0696 (13) | 0.0550 (11) | -0.0134 (10) | -0.0092 (9)  | 0.0098 (10)  |
| C2  | 0.0854 (17) | 0.0819 (17) | 0.0640 (13) | -0.0222 (13) | 0.0003 (12)  | 0.0185 (12)  |
| C3  | 0.0743 (15) | 0.0784 (16) | 0.0795 (15) | -0.0278 (13) | 0.0189 (12)  | 0.0000 (13)  |
| C4  | 0.0523 (11) | 0.0885 (16) | 0.0700 (13) | -0.0208 (11) | 0.0018 (10)  | -0.0099 (12) |
| C5  | 0.0479 (10) | 0.0685 (12) | 0.0480 (9)  | -0.0059 (9)  | -0.0016 (8)  | -0.0052 (9)  |
| C6  | 0.0612 (13) | 0.0821 (16) | 0.0767 (14) | 0.0246 (12)  | 0.0031 (11)  | 0.0002 (12)  |
| C7  | 0.0452 (9)  | 0.0539 (10) | 0.0517 (10) | 0.0038 (8)   | 0.0076 (7)   | -0.0003 (8)  |
| C8  | 0.0707 (13) | 0.0781 (15) | 0.0503 (11) | 0.0186 (11)  | 0.0041 (9)   | -0.0187 (10) |
| C9  | 0.0597 (11) | 0.0565 (11) | 0.0366 (8)  | -0.0056 (9)  | 0.0031 (7)   | -0.0058 (8)  |
| C10 | 0.117 (2)   | 0.0896 (17) | 0.0392 (10) | 0.0126 (15)  | -0.0071 (11) | -0.0138 (11) |
| Ni2 | 0.0479 (2)  | 0.0291 (2)  | 0.0602 (2)  | 0.0021 (1)   | 0.0166 (2)   | 0.0029 (1)   |
| O3  | 0.0569 (8)  | 0.0353 (6)  | 0.0730 (9)  | 0.0058 (5)   | 0.0172 (6)   | -0.0004 (6)  |
| O4  | 0.0558 (7)  | 0.0408 (7)  | 0.0703 (8)  | -0.0018 (6)  | 0.0198 (6)   | 0.0068 (6)   |
| N2  | 0.0554 (9)  | 0.0389 (7)  | 0.0615 (9)  | 0.0026 (6)   | 0.0120 (7)   | 0.0016 (7)   |
| C11 | 0.0579 (13) | 0.0834 (16) | 0.0680 (14) | 0.0098 (11)  | 0.0090 (10)  | -0.0047 (11) |
| C12 | 0.0616 (14) | 0.102 (2)   | 0.0864 (18) | 0.0118 (14)  | -0.0030 (13) | -0.0064 (15) |
| C13 | 0.0899 (18) | 0.0682 (15) | 0.0734 (15) | 0.0006 (13)  | -0.0124 (13) | -0.0001 (12) |
| C14 | 0.0941 (18) | 0.0618 (13) | 0.0613 (13) | -0.0074 (13) | 0.0111 (12)  | -0.0023 (11) |
| C15 | 0.0655 (13) | 0.0493 (10) | 0.0667 (13) | -0.0038 (9)  | 0.0165 (10)  | -0.0018 (9)  |
| C16 | 0.0661 (13) | 0.0401 (10) | 0.0920 (16) | 0.0103 (9)   | -0.0103 (11) | -0.0159 (10) |
| C17 | 0.0490 (9)  | 0.0346 (8)  | 0.0549 (10) | 0.0015 (7)   | -0.0133 (7)  | -0.0053 (7)  |
| C18 | 0.0684 (12) | 0.0327 (8)  | 0.0644 (11) | -0.0072 (8)  | -0.0026 (9)  | 0.0044 (8)   |
| C19 | 0.0475 (9)  | 0.0425 (9)  | 0.0442 (9)  | -0.0102 (7)  | -0.0103 (7)  | 0.0058 (7)   |
| C20 | 0.0660 (12) | 0.0641 (13) | 0.0586 (11) | -0.0177 (10) | 0.0023 (9)   | 0.0164 (10)  |
| O1W | 0.0906 (13) | 0.1176 (17) | 0.0896 (13) | 0.0192 (12)  | -0.0296 (10) | -0.0028 (12) |
| O2W | 0.1004 (15) | 0.1241 (18) | 0.1093 (16) | 0.0189 (13)  | 0.0298 (12)  | -0.0021 (13) |

Geometric parameters ( $\text{\AA}$ ,  $^\circ$ )

|                      |             |          |           |
|----------------------|-------------|----------|-----------|
| Ni1—O1               | 2.0427 (17) | C1—H1    | 0.9300    |
| Ni1—O2               | 2.0407 (16) | C2—H2    | 0.9300    |
| Ni1—N1               | 2.1039 (19) | C3—H3    | 0.9300    |
| Ni1—O1 <sup>i</sup>  | 2.0427 (17) | C4—H4    | 0.9300    |
| Ni1—O2 <sup>i</sup>  | 2.0407 (16) | C5—H5    | 0.9300    |
| Ni1—N1 <sup>i</sup>  | 2.1039 (19) | C6—H6A   | 0.9600    |
| Ni2—N2 <sup>ii</sup> | 2.126 (2)   | C6—H6C   | 0.9600    |
| Ni2—N2               | 2.126 (2)   | C6—H6B   | 0.9600    |
| Ni2—O3               | 2.0299 (16) | C8—H8    | 0.9300    |
| Ni2—O4               | 2.0297 (17) | C10—H10B | 0.9600    |
| Ni2—O3 <sup>ii</sup> | 2.0298 (16) | C10—H10A | 0.9600    |
| Ni2—O4 <sup>ii</sup> | 2.0297 (17) | C10—H10C | 0.9600    |
| O1—C7                | 1.262 (2)   | C11—C12  | 1.371 (4) |
| O2—C9                | 1.259 (2)   | C12—C13  | 1.375 (4) |
| O3—C17               | 1.254 (2)   | C13—C14  | 1.371 (4) |
| O4—C19               | 1.258 (2)   | C14—C15  | 1.368 (4) |
| O1W—H22W             | 0.8400      | C16—C17  | 1.514 (3) |
| O1W—H11W             | 0.8300      | C17—C18  | 1.395 (3) |
| O2W—H2W              | 0.8600      | C18—C19  | 1.383 (3) |
| O2W—H1W              | 0.8400      | C19—C20  | 1.516 (3) |

|                         |           |                          |           |
|-------------------------|-----------|--------------------------|-----------|
| N1—C5                   | 1.337 (2) | C11—H11                  | 0.9300    |
| N1—C1                   | 1.333 (3) | C12—H12                  | 0.9300    |
| N2—C11                  | 1.330 (3) | C13—H13                  | 0.9300    |
| N2—C15                  | 1.338 (3) | C14—H14                  | 0.9300    |
| C1—C2                   | 1.374 (4) | C15—H15                  | 0.9300    |
| C2—C3                   | 1.373 (4) | C16—H16A                 | 0.9600    |
| C3—C4                   | 1.371 (4) | C16—H16B                 | 0.9600    |
| C4—C5                   | 1.371 (3) | C16—H16C                 | 0.9600    |
| C6—C7                   | 1.511 (3) | C18—H18                  | 0.9300    |
| C7—C8                   | 1.386 (3) | C20—H20B                 | 0.9600    |
| C8—C9                   | 1.388 (3) | C20—H20C                 | 0.9600    |
| C9—C10                  | 1.513 (3) | C20—H20A                 | 0.9600    |
| <br>                    |           |                          |           |
| Ni1···O1W               | 3.972 (3) | N2···O4 <sup>ii</sup>    | 2.944 (3) |
| Ni1···O1W <sup>i</sup>  | 3.972 (3) | N2···O3                  | 2.947 (3) |
| Ni1···H22W              | 3.3100    | N2···O3 <sup>ii</sup>    | 2.932 (3) |
| Ni1···H22W <sup>i</sup> | 3.3100    | C2···C10 <sup>vi</sup>   | 3.523 (4) |
| Ni2···H1W <sup>ii</sup> | 3.3700    | C2···C9 <sup>vi</sup>    | 3.536 (4) |
| Ni2···H1W               | 3.3700    | C4···C11                 | 3.525 (4) |
| O1···N1                 | 2.928 (2) | C9···C2 <sup>v</sup>     | 3.536 (4) |
| O1···O2                 | 2.908 (2) | C10···C2 <sup>v</sup>    | 3.523 (4) |
| O1···N1 <sup>i</sup>    | 2.937 (3) | C11···C4                 | 3.525 (4) |
| O1···O1W <sup>i</sup>   | 2.896 (3) | C1···H10B <sup>vi</sup>  | 3.0200    |
| O1···O2 <sup>i</sup>    | 2.867 (2) | C4···H2 <sup>v</sup>     | 3.0800    |
| O1···C9                 | 2.970 (3) | C5···H2 <sup>v</sup>     | 2.9300    |
| O1···C5 <sup>i</sup>    | 3.215 (3) | C7···H22W <sup>i</sup>   | 3.0100    |
| O1···C1                 | 3.195 (3) | C10···H11W               | 3.0900    |
| O1W···Ni1               | 3.972 (3) | C14···H18 <sup>vii</sup> | 2.9800    |
| O1W···O2                | 2.908 (3) | C15···H18 <sup>vii</sup> | 2.9700    |
| O1W···O2W               | 3.092 (4) | C16···H4                 | 2.9500    |
| O1W···Ni1               | 3.972 (3) | C17···H1W                | 3.0200    |
| O1W···O1 <sup>i</sup>   | 2.896 (3) | C18···H20B <sup>v</sup>  | 2.9600    |
| O2···O1W                | 2.908 (3) | C19···H16B <sup>vi</sup> | 3.0900    |
| O2···C7                 | 2.976 (3) | H1···O2 <sup>i</sup>     | 2.6700    |
| O2···O1                 | 2.908 (2) | H1···O1                  | 2.8600    |
| O2···C1 <sup>i</sup>    | 3.088 (3) | H1W···O3                 | 2.1000    |
| O2···N1                 | 2.957 (2) | H1W···C17                | 3.0200    |
| O2···C5                 | 3.143 (3) | H1W···Ni2                | 3.3700    |
| O2···O1 <sup>i</sup>    | 2.867 (2) | H1W···O4 <sup>ii</sup>   | 2.6500    |
| O2···N1 <sup>i</sup>    | 2.905 (2) | H1W···H16A               | 2.5300    |
| O2W···O1W               | 3.092 (4) | H1W···Ni2                | 3.3700    |
| O2W···O4 <sup>ii</sup>  | 3.180 (3) | H2···C4 <sup>vi</sup>    | 3.0800    |
| O2W···O3                | 2.926 (3) | H2···C5 <sup>vi</sup>    | 2.9300    |
| O3···N2 <sup>ii</sup>   | 2.932 (3) | H2W···O4 <sup>ii</sup>   | 2.7700    |
| O3···O4                 | 2.922 (2) | H2W···O1W                | 2.4600    |
| O3···C19                | 2.979 (3) | H3···O2W <sup>vi</sup>   | 2.5600    |
| O3···O2W                | 2.926 (3) | H4···C16                 | 2.9500    |
| O3···C11                | 3.256 (3) | H5···O2W                 | 2.8900    |
| O3···O4 <sup>ii</sup>   | 2.818 (2) | H5···O1 <sup>i</sup>     | 2.8700    |

|                                      |           |                           |        |
|--------------------------------------|-----------|---------------------------|--------|
| O3···N2                              | 2.947 (3) | H5···O2                   | 2.7300 |
| O3···C15 <sup>ii</sup>               | 3.246 (3) | H6A···H8 <sup>vi</sup>    | 2.3800 |
| O4···N2                              | 2.934 (3) | H6C···O1W <sup>viii</sup> | 2.8600 |
| O4···O3 <sup>ii</sup>                | 2.818 (2) | H6C···H8                  | 2.3100 |
| O4···C17                             | 2.983 (3) | H8···H10B                 | 2.3500 |
| O4···C15                             | 3.091 (3) | H8···H6A <sup>v</sup>     | 2.3800 |
| O4···O2W <sup>ii</sup>               | 3.180 (3) | H8···H6C                  | 2.3100 |
| O4···N2 <sup>ii</sup>                | 2.944 (3) | H10A···H11W               | 2.3800 |
| O4···O3                              | 2.922 (2) | H10B···C1 <sup>v</sup>    | 3.0200 |
| O4···C11 <sup>ii</sup>               | 3.120 (4) | H10B···H8                 | 2.3500 |
| O1···H22W <sup>i</sup>               | 2.0700    | H11···O4 <sup>ii</sup>    | 2.6600 |
| O1···H5 <sup>i</sup>                 | 2.8700    | H11W···O2                 | 2.4500 |
| O1···H1                              | 2.8600    | H11W···C10                | 3.0900 |
| O1W···H6C <sup>iii</sup>             | 2.8600    | H11W···H10A               | 2.3800 |
| O1W···H20A <sup>ii</sup>             | 2.8700    | H13···O1W <sup>ix</sup>   | 2.7300 |
| O1W···H13 <sup>iv</sup>              | 2.7300    | H14···H15 <sup>x</sup>    | 2.5700 |
| O1W···H2W                            | 2.4600    | H15···H14 <sup>x</sup>    | 2.5700 |
| O2···H1 <sup>i</sup>                 | 2.6700    | H15···O4                  | 2.6500 |
| O2···H22W                            | 2.6200    | H15···O3 <sup>ii</sup>    | 2.9200 |
| O2···H11W                            | 2.4500    | H16A···O2W                | 2.8700 |
| O2···H5                              | 2.7300    | H16A···H1W                | 2.5300 |
| O2W···H5                             | 2.8900    | H16B···C19 <sup>v</sup>   | 3.0900 |
| O2W···H3 <sup>v</sup>                | 2.5600    | H16B···H18                | 2.5300 |
| O2W···H16A                           | 2.8700    | H18···C15 <sup>xi</sup>   | 2.9700 |
| O3···H1W                             | 2.1000    | H18···C14 <sup>xi</sup>   | 2.9800 |
| O3···H15 <sup>ii</sup>               | 2.9200    | H18···H16B                | 2.5300 |
| O4···H15                             | 2.6500    | H18···H20C                | 2.3400 |
| O4···H1W <sup>ii</sup>               | 2.6500    | H20A···O1W <sup>ii</sup>  | 2.8700 |
| O4···H11 <sup>ii</sup>               | 2.6600    | H20B···C18 <sup>vi</sup>  | 2.9600 |
| O4···H2W <sup>ii</sup>               | 2.7700    | H20C···H18                | 2.3400 |
| N1···O1                              | 2.928 (2) | H22W···C7 <sup>i</sup>    | 3.0100 |
| N1···O2                              | 2.957 (2) | H22W···Ni1                | 3.3100 |
| N1···O1 <sup>i</sup>                 | 2.937 (3) | H22W···O2                 | 2.6200 |
| N1···O2 <sup>i</sup>                 | 2.905 (2) | H22W···Ni1                | 3.3100 |
| N2···O4                              | 2.934 (3) | H22W···O1 <sup>i</sup>    | 2.0700 |
| <br>                                 |           |                           |        |
| O1—Ni1—O2                            | 90.81 (5) | C3—C2—H2                  | 120.00 |
| O1—Ni1—N1                            | 89.82 (6) | C4—C3—H3                  | 121.00 |
| O1—Ni1—O1 <sup>1</sup>               | 180.00    | C2—C3—H3                  | 121.00 |
| O1—Ni1—O2 <sup>i</sup>               | 89.19 (5) | C3—C4—H4                  | 120.00 |
| O1—Ni1—N1 <sup>i</sup>               | 90.18 (6) | C5—C4—H4                  | 120.00 |
| O2—Ni1—N1                            | 91.01 (5) | C4—C5—H5                  | 119.00 |
| O1 <sup>i</sup> —Ni1—O2              | 89.19 (5) | N1—C5—H5                  | 119.00 |
| O2—Ni1—O2 <sup>i</sup>               | 180.00    | H6A—C6—H6B                | 109.00 |
| O2—Ni1—N1 <sup>i</sup>               | 88.99 (5) | H6A—C6—H6C                | 109.00 |
| O1 <sup>i</sup> —Ni1—N1              | 90.18 (6) | C7—C6—H6A                 | 109.00 |
| O2 <sup>i</sup> —Ni1—N1              | 88.99 (5) | C7—C6—H6B                 | 109.00 |
| N1—Ni1—N1 <sup>i</sup>               | 180.00    | H6B—C6—H6C                | 110.00 |
| O1 <sup>i</sup> —Ni1—O2 <sup>i</sup> | 90.81 (5) | C7—C6—H6C                 | 109.00 |

|                                        |              |               |              |
|----------------------------------------|--------------|---------------|--------------|
| O1 <sup>i</sup> —Ni1—N1 <sup>i</sup>   | 89.82 (6)    | C7—C8—H8      | 116.00       |
| O2 <sup>i</sup> —Ni1—N1 <sup>i</sup>   | 91.01 (5)    | C9—C8—H8      | 116.00       |
| O4—Ni2—N2                              | 89.80 (6)    | H10A—C10—H10C | 109.00       |
| O3 <sup>ii</sup> —Ni2—O4               | 87.92 (5)    | H10B—C10—H10C | 109.00       |
| O4—Ni2—O4 <sup>ii</sup>                | 180.00       | C9—C10—H10C   | 109.00       |
| O4—Ni2—N2 <sup>ii</sup>                | 90.20 (6)    | H10A—C10—H10B | 110.00       |
| O3 <sup>ii</sup> —Ni2—N2               | 89.70 (6)    | C9—C10—H10A   | 109.00       |
| O4 <sup>ii</sup> —Ni2—N2               | 90.20 (6)    | C9—C10—H10B   | 109.00       |
| N2—Ni2—N2 <sup>ii</sup>                | 180.00       | N2—C11—C12    | 123.3 (3)    |
| O3 <sup>ii</sup> —Ni2—O4 <sup>ii</sup> | 92.08 (5)    | C11—C12—C13   | 119.2 (3)    |
| O3 <sup>ii</sup> —Ni2—N2 <sup>ii</sup> | 90.30 (6)    | C12—C13—C14   | 118.1 (3)    |
| O4 <sup>ii</sup> —Ni2—N2 <sup>ii</sup> | 89.80 (6)    | C13—C14—C15   | 119.2 (3)    |
| O3—Ni2—O4                              | 92.08 (5)    | N2—C15—C14    | 123.4 (2)    |
| O3—Ni2—N2                              | 90.30 (6)    | C16—C17—C18   | 118.30 (16)  |
| O3—Ni2—O3 <sup>ii</sup>                | 180.00       | O3—C17—C18    | 125.29 (16)  |
| O3—Ni2—O4 <sup>ii</sup>                | 87.92 (5)    | O3—C17—C16    | 116.41 (17)  |
| O3—Ni2—N2 <sup>ii</sup>                | 89.70 (6)    | C17—C18—C19   | 128.36 (16)  |
| Ni1—O1—C7                              | 125.16 (12)  | O4—C19—C20    | 116.07 (16)  |
| Ni1—O2—C9                              | 124.90 (11)  | O4—C19—C18    | 125.66 (17)  |
| Ni2—O3—C17                             | 124.41 (12)  | C18—C19—C20   | 118.27 (17)  |
| Ni2—O4—C19                             | 124.19 (12)  | C12—C11—H11   | 118.00       |
| H11W—O1W—H22W                          | 111.00       | N2—C11—H11    | 118.00       |
| H1W—O2W—H2W                            | 97.00        | C13—C12—H12   | 120.00       |
| Ni1—N1—C1                              | 121.33 (13)  | C11—C12—H12   | 120.00       |
| Ni1—N1—C5                              | 121.19 (13)  | C14—C13—H13   | 121.00       |
| C1—N1—C5                               | 117.47 (17)  | C12—C13—H13   | 121.00       |
| Ni2—N2—C15                             | 121.38 (14)  | C13—C14—H14   | 120.00       |
| C11—N2—C15                             | 116.8 (2)    | C15—C14—H14   | 120.00       |
| Ni2—N2—C11                             | 121.83 (16)  | N2—C15—H15    | 118.00       |
| N1—C1—C2                               | 123.0 (2)    | C14—C15—H15   | 118.00       |
| C1—C2—C3                               | 119.1 (2)    | C17—C16—H16C  | 109.00       |
| C2—C3—C4                               | 118.4 (2)    | H16A—C16—H16B | 110.00       |
| C3—C4—C5                               | 119.5 (2)    | C17—C16—H16B  | 109.00       |
| N1—C5—C4                               | 122.63 (18)  | H16B—C16—H16C | 110.00       |
| C6—C7—C8                               | 118.55 (19)  | H16A—C16—H16C | 109.00       |
| O1—C7—C8                               | 125.31 (18)  | C17—C16—H16A  | 109.00       |
| O1—C7—C6                               | 116.13 (18)  | C17—C18—H18   | 116.00       |
| C7—C8—C9                               | 127.9 (2)    | C19—C18—H18   | 116.00       |
| O2—C9—C10                              | 115.84 (18)  | C19—C20—H20B  | 109.00       |
| O2—C9—C8                               | 125.64 (17)  | C19—C20—H20C  | 109.00       |
| C8—C9—C10                              | 118.52 (19)  | H20A—C20—H20C | 109.00       |
| N1—C1—H1                               | 118.00       | H20B—C20—H20C | 109.00       |
| C2—C1—H1                               | 119.00       | H20A—C20—H20B | 110.00       |
| C1—C2—H2                               | 120.00       | C19—C20—H20A  | 109.00       |
| <br>                                   |              |               |              |
| O2—Ni1—O1—C7                           | 2.88 (15)    | Ni1—O1—C7—C6  | 176.78 (14)  |
| N1—Ni1—O1—C7                           | 93.89 (15)   | Ni1—O1—C7—C8  | -2.0 (3)     |
| O2 <sup>i</sup> —Ni1—O1—C7             | -177.12 (15) | Ni1—O2—C9—C8  | 6.1 (3)      |
| N1 <sup>i</sup> —Ni1—O1—C7             | -86.11 (15)  | Ni1—O2—C9—C10 | -173.57 (15) |

|                              |              |                 |              |
|------------------------------|--------------|-----------------|--------------|
| O1—Ni1—O2—C9                 | −4.80 (15)   | Ni2—O3—C17—C18  | −1.4 (3)     |
| N1—Ni1—O2—C9                 | −94.64 (15)  | Ni2—O3—C17—C16  | 178.01 (14)  |
| O1 <sup>i</sup> —Ni1—O2—C9   | 175.20 (15)  | Ni2—O4—C19—C20  | 178.97 (12)  |
| N1 <sup>i</sup> —Ni1—O2—C9   | 85.37 (15)   | Ni2—O4—C19—C18  | −0.4 (3)     |
| O1—Ni1—N1—C1                 | 49.00 (15)   | C1—N1—C5—C4     | −0.3 (3)     |
| O2—Ni1—N1—C1                 | 139.81 (15)  | Ni1—N1—C1—C2    | −179.04 (18) |
| O1 <sup>i</sup> —Ni1—N1—C1   | −131.00 (15) | Ni1—N1—C5—C4    | 178.68 (16)  |
| O2 <sup>i</sup> —Ni1—N1—C1   | −40.19 (15)  | C5—N1—C1—C2     | 0.0 (3)      |
| O1—Ni1—N1—C5                 | −129.99 (15) | Ni2—N2—C11—C12  | −178.3 (2)   |
| O2—Ni1—N1—C5                 | −39.18 (15)  | C15—N2—C11—C12  | 0.4 (3)      |
| O1 <sup>i</sup> —Ni1—N1—C5   | 50.01 (15)   | C11—N2—C15—C14  | −1.2 (3)     |
| O2 <sup>i</sup> —Ni1—N1—C5   | 140.82 (15)  | Ni2—N2—C15—C14  | 177.59 (17)  |
| O4 <sup>ii</sup> —Ni2—N2—C15 | 145.01 (15)  | N1—C1—C2—C3     | 0.7 (4)      |
| O4—Ni2—O3—C17                | 1.15 (15)    | C1—C2—C3—C4     | −1.1 (4)     |
| N2—Ni2—O3—C17                | 90.97 (15)   | C2—C3—C4—C5     | 0.7 (4)      |
| O4 <sup>ii</sup> —Ni2—O3—C17 | −178.85 (15) | C3—C4—C5—N1     | 0.0 (3)      |
| N2 <sup>ii</sup> —Ni2—O3—C17 | −89.04 (15)  | O1—C7—C8—C9     | 1.8 (4)      |
| O3—Ni2—O4—C19                | −0.32 (15)   | C6—C7—C8—C9     | −177.0 (2)   |
| N2—Ni2—O4—C19                | −90.61 (15)  | C7—C8—C9—C10    | 175.5 (2)    |
| O3 <sup>ii</sup> —Ni2—O4—C19 | 179.68 (15)  | C7—C8—C9—O2     | −4.1 (4)     |
| N2 <sup>ii</sup> —Ni2—O4—C19 | 89.39 (15)   | N2—C11—C12—C13  | 0.1 (4)      |
| O3—Ni2—N2—C11                | 51.62 (16)   | C11—C12—C13—C14 | 0.1 (4)      |
| O4—Ni2—N2—C11                | 143.71 (16)  | C12—C13—C14—C15 | −0.8 (4)     |
| O3 <sup>ii</sup> —Ni2—N2—C11 | −128.38 (16) | C13—C14—C15—N2  | 1.4 (4)      |
| O4 <sup>ii</sup> —Ni2—N2—C11 | −36.29 (16)  | O3—C17—C18—C19  | 0.5 (3)      |
| O3—Ni2—N2—C15                | −127.07 (15) | C16—C17—C18—C19 | −178.9 (2)   |
| O4—Ni2—N2—C15                | −34.99 (15)  | C17—C18—C19—C20 | −178.79 (19) |
| O3 <sup>ii</sup> —Ni2—N2—C15 | 52.93 (15)   | C17—C18—C19—O4  | 0.5 (3)      |

Symmetry codes: (i)  $-x+1, -y+1, -z+1$ ; (ii)  $-x, -y+1, -z+1$ ; (iii)  $-x+1, y+1/2, -z+1/2$ ; (iv)  $x, y, z-1$ ; (v)  $x, -y+1/2, z-1/2$ ; (vi)  $x, -y+1/2, z+1/2$ ; (vii)  $-x, y+1/2, -z+3/2$ ; (viii)  $-x+1, y-1/2, -z+1/2$ ; (ix)  $x, y, z+1$ ; (x)  $-x, -y+1, -z+2$ ; (xi)  $-x, y-1/2, -z+3/2$ .

#### Hydrogen-bond geometry ( $\text{\AA}$ , °)

| $D\text{—H}\cdots A$                    | $D\text{—H}$ | $H\cdots A$ | $D\cdots A$ | $D\text{—H}\cdots A$ |
|-----------------------------------------|--------------|-------------|-------------|----------------------|
| O2W—H1W <sup>vi</sup> —O3               | 0.84         | 2.10        | 2.926 (3)   | 166                  |
| O2W—H2W <sup>vii</sup> —O1W             | 0.86         | 2.46        | 3.092 (4)   | 131                  |
| O1W—H11W <sup>viii</sup> —O2            | 0.83         | 2.45        | 2.908 (3)   | 116                  |
| O1W—H22W <sup>ix</sup> —O1 <sup>i</sup> | 0.84         | 2.07        | 2.896 (3)   | 169                  |
| C3—H3 <sup>x</sup> —O2W <sup>vi</sup>   | 0.93         | 2.56        | 3.445 (4)   | 159                  |

Symmetry codes: (i)  $-x+1, -y+1, -z+1$ ; (vi)  $x, -y+1/2, z+1/2$ .