

Programació de tasques eficients en centres de dades per a estalvi energètic

Carlota Fernández, Emma Juanico, Aránzazu Miguélez i Lucía Revaliente

Índex

0

• Repàs model matemàtic **03**

Generació de dades
 06

• Implementació **08**

• Resultats 10

• Conclusions 12

Repàs model matemàtic

Modelització matemàtica

Funció objectiu

$$ext{Minimitzar: Energy} = \sum_{i=1}^n \sum_{j=1}^m x_{ij} imes ext{power}(P_j) imes rac{ ext{MI}(T_i)}{ ext{speed}(P_j)}$$

- $\mathrm{MI}(T_i)$: Longitud de la tasca T_i en Milions d'Instruccions (MI).
- speed (P_j) : Velocitat del processador P_j , en MIPS (Million Instructions Per Second).
- ullet power (P_j) : Consum de potència del processador P_j , en kilowatts (kW).

Modelització matemàtica

Restriccions

Limitació del temps d'execució

$$\sum_{i=1}^n \sum_{j=1}^m x_{ij} imes rac{ ext{MI}(T_i)}{\operatorname{speed}(P_j)} \leq ext{deadline}$$

Capacitat del processador

$$\sum_{i=1}^n x_{ij} imes ext{MI}(T_i) \leq ext{Capacitat}(P_j), \quad orall j=1,2,\ldots,m$$

Assignació de tasques única

$$\sum_{j=1}^m x_{ij} = 1, \quad orall i = 1, 2, \ldots, n$$
 $x_{ij} \in \{0,1\}$

Generació de dades

Generació de dades: Pandas

Process_dataset

Task Id

Process Id

Processor Id

MI: Milions d'instruccions

velocitat: MiPS

Potència: Kw

Task_ID, Process_ID, Processor_ID, MI, Speed, Power T1, T1_P1, P7, 1402, 1457, 1.26 T1, T1_P2, P8, 2913, 1285, 0.54 T1, T1_P3, P5, 526, 1563, 0.54 T1, T1_P4, P3, 2231, 1051, 0.63 T1, T1_P5, P6, 1638, 1501, 0.83 T2, T2 P1, P4, 1878, 2518, 1.13

Task_deadlines

Task Id

Deadline: MI / velocitat

Task ID, Deadline

T1,2

T2,1

T3,2

T4,0

T5,1

T6,2

Processor_capacities

Processor Id

Capacitat: MI

Processor ID, Capacity

P1,46180

P2,24560

P3,21020

P4,50360

P5,31260

Implementació

Implementació: PuLP

1	Carrega datasets: Dades generades prèviament (MI, velocitats, potències). pd.read_csv()
2	Formulació de la funció objectiu: Modela la funció que calcula el consum energètic total, per minimitzar-lo. problem = LpProblem("Minimitzar_Energia", LpMinimize)
3	Definició variables de decisió: Dinàmiques, ja que són les que el model ha de canviar fins trobar la solució òptima. Declaració de xij> LpVariable(xij, cat="Binary")
4	Aplicació de les restriccions: Temps d'execució, capacitat dels processadors, assignació única. Per cada restricció: lpSum()
5	Resolució del problema: Solver PuLP troba la solució òptima. problem.solve() print("Estat de la solució:", problem.status)

Resultats i discrepàncies

Resultats

Prova 1

25 tasques9 processadors20.76 kWh

NO FACTIBLE

Prova 2

50 tasques 10 processadors 31.52 kWh

NO FACTIBLE

Prova 3

500 tasques 200 processadors 109.28 kWh

FACTIBLE

Conclusions

Conclusions

- El model minimitza el consum energètic en l'assignació de tasques.
- Resultats satisfactoris: robustesa i escalabilitat comprovades.

Treball futur:

- Ampliar el model: incloure latència de comunicació.
- Treballar amb dades reals en lloc de sintètiques.
- Explorar mètodes heurístics per escales majors.

Gràcies per la vostra atenció!

Alguna pregunta?