POLITECHNIKA POZNAŃSKA

Modelowanie i sterowanie robotów

Raport

Projekt robota w konfiguracji RPR |--

Adam Nawrocki Maciej Mak

Grupa L10

Poznań 2022

Spis treści

1.	Wste	₽p							•											 				3
2.	Zada	nia .							•				 							 				4
	2.1.	Projekt	kt n	nani	pul	ator	a						 							 				4
		2.1.1.	В	udo	wa :	mar	nipu	ılat	tor	a.			 							 				4
		2.1.2.	P	rogr	am	w j	ęzy	ku	P	ytł	101	1	 							 				6
	2.2.	Kinema	aty	ka j	pros	sta							 							 				9
	2.3.	Kinema	aty	ka (odw	rot	na						 							 				10
	2.4.	Kinema	aty	ka j	prę	dkoś	ści						 							 				11
	2.5.	Równa	ania	dy	nan	niki														 				13
3.	Wnic	oski .														•				 				15
Bi	bliog	rafia .											 							 				16

1. Wstęp

Projekt obejmuje utworzenie robota w konfiguracji RPR $|--\rangle$. W raporcie zostały uwzględnione aspekty obliczeniowe takie jak kinematyka prosta, kinematyka odwrotna, kinematyka prędkości, równania Lagranga II rodzaju.

W raporcie operujemy na wartościach symbolicznych takich jak np. l_1 , jednak do obliczeń w języku Python[1] zostały użyte rzeczywiste wartości zgodnie z modelem w programie Inventor[2].

Dodatkowo zostały określone takie rzeczy jak przestrzeń robocza manipulatora, tabele notacji Denavita-Hartenberga[3], uproszczony model manipulatora na wykresie Robotics ToolBox[4].

Projekt jest dostępny jako repozytorium na serwisie GitHub[5] pod linkiem https://github.com/maciejm2517/Projekt-Robot-RPR

Ustawienia układu stron oraz bibliografii w języku LATEXzostały zainspirowane formatką Pana mgr inż. Bogdana Fabiańskiego[6], od którego otrzymaliśmy plik szablonowy na zajęciach Techniki Cyfrowej.

2. Zadania

2.1. Projekt manipulatora

2.1.1. Budowa manipulatora

Rysunek 2.1. Projekt manipulatora

Manipulator został zaprojektowany w programie Inventor. Jego konfiguracja to RPR – –.

Podczas konstrukcji robota uwzględniliśmy mechaniczne aspekty konstrukcji takie jak:

- ograniczenie stopni swobody
- zabezpieczenia mechaniczne

Rysunek 2.2. Konstrukcja mechaniczna manipulatora

Robot posiada ograniczenia w pierwszych dwóch przegubach

- Maksymalne wychylenie kąta θ_1 wynosi 195°
- Maksymalne wysunięcie długości d_1 wynosi 38cm

Ostatni przegub jest zaprojektowany na pełen obrót 360°.

Do pierwszego przegubu zostały dodane podkładki, mające na celu polepszenie stabilności obrotu ramienia robota.

Rysunek 2.3. Przestrzeń robocza manipulatora

W naszym modelu wybraliśmy ułożenie końcówki TCP równolegle z ostatnim przegubem przesuwnym. Oznacza to, że ten przegub nie odpowiada za pozycje końcówki, a za jej orientację. W związku z tym nasz manipulator może zostać zaprojektowany np. do przykręcania śrub.

Rysunek 2.4. Układy współrzędnych w przegubach manipulatora

2.1.2. Program w języku Python

Do zamodelowania robota skorzystaliśmy z biblioteki RoboticToolBox. Kod znajduje się w funkcji projekt() oraz składa się z trzech etapów:

- 1. inicjacji zmiennych, utworzeniu robota oraz pokazaniu go na interaktywnym wykresie
- 2. obliczeniu kinematyki prostej
- 3. obliczeniu kinematyki prędkości

```
import roboticstoolbox as rtb
from spatialmath.base.symbolic import *

from roboticstoolbox.tools.trajectory import *

def projekt():

#inicjacja

11=0.4925
12=0.5
alpha1=np.pi/2
offset1=np.pi/2
theta1_min=0
theta1_max=195/360*2*np.pi
d2_min=0
d2_max=0.38
```

```
13=0.221314
      theta3_min=0
      theta3_max= 2 * np.pi
21
      q_tmp = [symbol('theta1'), symbol('theta2'), symbol('theta3')]
23
      , , ,
      #obliczenia na symbolach
25
      robot=rtb.DHRobot(
27
      Ε
         rtb.RevoluteDH(d=symbol('11'), alpha=pi()/2
29
          , offset=pi()/2),
         rtb.PrismaticDH(offset=symbol('12')),
         rtb.RevoluteDH(d=symbol('13'))
      ], name="RPR")
      , , ,
35
      robot=rtb.DHRobot(
             rtb.RevoluteDH(d=11, alpha=alpha1, offset=offset1,
             qlim=[theta1_min, theta1_max]),
             rtb.PrismaticDH(offset=12, qlim=[d2_min,d2_max]),
             rtb.RevoluteDH(qlim=[theta3_min, theta3_max], d=13),
         ], name="RPR")
      print(robot)
      robot.teach(robot.q)
      #kinematyka prosta
49
      T=robot.fkine(q_tmp)
      print(T)
      #kinematyka predkosci
53
      J=simplify(robot.jacob0(q_tmp))
      print(J)
      #kinematyka odwrotna - na kartce
      #dynamika - na kartce
  if __name__ == '__main__':
      projekt()
```

DHRobot: RPR, 3 joints (RPR), dynamics, standard DH parameters

θj	dj	aj	0 _j	q-	q+		
q1 + 90°	0.4925	0	90.0°	0.0°	200.0°		
0.0°	q2 + 0.5	0	0.0°	0.0	0.38		
q3	0.2213	0	0.0°	0.0°	360.0°		

Rysunek 2.5. Tablica DH z konsoli programu w języku Python

Rysunek 2.6. Interaktywny układ robota dla programu w języku Python

2.2. Kinematyka prosta

Rysunek 2.7. Schemat robota

i	$ heta_i$	d_i	a_i	α_i
1	$\theta_1 + 90$	l_1	0	90
2	0	$l_2 + d_2$	0	0
3	θ_3	l_3	0	0

Rysunek 2.8. Tabela DH

$$A_1^0 = \begin{bmatrix} -s_1 & 0 & c_1 & 0 \\ c_1 & 0 & s_1 & 0 \\ 0 & 1 & 0 & l_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_2^1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & l_2 + d_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_3^2 = \begin{bmatrix} c_3 & -s_3 & 0 & 0 \\ s_3 & c_3 & 0 & 0 \\ 0 & 0 & 1 & l_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_3^0 = \begin{bmatrix} -c_3 s_1 & s_3 s_1 & c_1 & c_1 (l_2 + d_2 + l_3) \\ c_1 c_3 & -c_3 c_1 & s_1 & s_1 (l_2 + d_2 + l_3) \\ s_3 & c_3 & 0 & l_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rysunek 2.9. Macierz transformacji robota

2.3. Kinematyka odwrotna

Rysunek 2.10. Widok z góry i boku robota wykorzystane podczas obliczania kinematyki odwrotnej

$$q = \begin{bmatrix} \theta_1 \\ d_2 \\ \theta_3 \end{bmatrix} = \begin{bmatrix} atan2(cos(\sqrt{p_x^2 + p_y^2}, sin(\sqrt{p_x^2 + p_y^2}))) \\ \sqrt{p_x^2 + p_y^2} - l_2 - l_3 \\ \theta_3 \end{bmatrix}$$

Rysunek 2.11. Macierz transformacji robota

 θ_3 nie wpływa na zmianę położenia końcówki (jedynie na jej orientację względem układu bazowego).

2.4. Kinematyka prędkości

$$J_1 = \left[\overrightarrow{z_0} \times (0_n - 0_0) \right]$$

$$z_0 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$0_0 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$O_n = \begin{bmatrix} l_3 \times c_1 + c_1 \times (l_2 + d_2) \\ l_3 \times s_1 + s_1 \times (l_2 + d_2) \\ l_1 \end{bmatrix}$$

$$J_1 = \begin{bmatrix} -l_3 \times s_1 - s_1 \times (l_2 + d_2) \\ l_3 \times c_1 + c_1 \times (l_2 + d_2) \\ 0 \end{bmatrix}$$

$$J_2 = \begin{bmatrix} \overrightarrow{z_1} \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} c1 \\ s1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$J_3 = \begin{bmatrix} \overrightarrow{z_2} \times \overrightarrow{0_n - 0_2} \\ \overrightarrow{z_2} \end{bmatrix}$$

$$\overrightarrow{0_n - 0_2} = \begin{bmatrix} c_1 \times (l_2 + d_2) \\ s_1 \times (l_2 + d_2) \\ l_1 \end{bmatrix}$$

$$\overrightarrow{z_2} = \begin{bmatrix} c_1 \\ s_1 \\ 0 \end{bmatrix}$$

$$J_3 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ c1 \\ s1 \\ 0 \end{bmatrix}$$

$$J = \begin{bmatrix} -l_3 \times s_1 - s_1 \times (l_2 + d_2) & c_1 & 0 \\ l_3 \times c_1 + c_1 \times (l_2 + d_2) & s_1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & c1 \\ 0 & 0 & s1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} v \\ \omega \end{bmatrix} = \begin{bmatrix} -l_3 \times s_1 - s_1 \times (l_2 + d_2) & c_1 & 0 \\ l_3 \times c_1 + c_1 \times (l_2 + d_2) & s_1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & c1 \\ 0 & 0 & s1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{\theta_1} \\ \dot{d_2} \\ \dot{\theta_3} \end{bmatrix}$$

Rysunek 2.12. Wektory prędkości linowej i kątowej końcówki względem układu zerowego

2.5. Równania dynamiki

$$J_{OC1} = \begin{bmatrix} -\frac{1}{2}s_1l_2 \\ \frac{1}{2}c_1l_2 \\ 0 \\ 0 & \overrightarrow{0} & \overrightarrow{0} \\ 0 \\ 1 \end{bmatrix}$$

$$J_{OC2} = \begin{bmatrix} -\frac{1}{2}s_1l_2 & c_1 \\ \frac{1}{2}c_1l_2 & s_1 \\ 0 & 0 \\ 0 & 0 & \overrightarrow{0} \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$$

$$J_{OC3} = \begin{bmatrix} -\frac{1}{2}s_1l_2 & c_1 & 0\\ \frac{1}{2}c_1l_2 & s_1 & 0\\ 0 & 0 & 0\\ 0 & 0 & s1\\ 0 & 0 & c1\\ 1 & 0 & 0 \end{bmatrix}$$

$$D_1 = \begin{bmatrix} -\frac{1}{4}(l_2^2 m_2) + I_{1YY} & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} \frac{1}{4}(l_2^2 c_1^2 m_2 + l_2^2 s_1^2 m_2) + I_{2YY} & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$D_{3} = \begin{bmatrix} \frac{1}{4}(l_{2}^{2}c_{1}^{2}m_{3} + l_{2}^{2}s_{1}^{2}m_{3}) + s_{3}^{2}I_{3XX} + s_{3}^{2}I_{3YY} & 0 & c_{3}s_{3}I_{3XX}(c_{1}^{2} - s_{1}^{2}) + i_{3YY}(c_{3}s_{3}s_{1}^{2} - c_{3}^{2}c_{1}^{2}) \\ 0 & m_{3} & 0 \\ I_{3XX}(c_{3}s_{3}c_{1}^{2} - c_{3}s_{3}s_{1}^{2}) + I_{3YY}(c_{3}s_{3}s_{1}^{2} - c_{3}^{2}c_{1}^{2}) & 0 & I_{XX}c_{3}^{2}(c_{1}^{2} - s_{1}^{2})^{2} + I_{YY}(c_{3}c_{1}^{2} - s_{3}s_{1}^{2})^{2} + I_{3ZZ}(4s_{1}^{2}c_{1}^{2}) \end{bmatrix}$$

$$D = D_1 + D_2 + D_3$$

$$c_{111} = 1/2(-1/2l_2^2c_1s_1m_2 - 1/2l_2^2c_1s_1m_2 + 1/2l_2^2s_1c_1m_2) + 1/2(-1/2l_2^2c_1s_1m_3 - 1/2l_2^2c_1s_1m_3 + 1/2l_2^2s_1c_1m_3)$$

$$c_{113} = I_{3XX}(c_3s_3 - 2c_1s_1 - c_3s_32s_1c_1) + I_{3YY}(c_3s_32s_1c_1 + 2c_3^2c_1s_1) - s_3c_3I_{3XX} - s_3c_3I_{3YY}$$

$$c_{133} = 1/2(I_{3XX}8c_1s_1(s_1^2 - s_1^2) + I_{3YY}(4(c_3 + s_3)c_1s_1(s_3s_1^2 - c_3s_1^2)) + I_{3ZZ}(-8c_1s_1(s_1^2 - c_1^2)))$$

$$c_{333} = 1/2(I_{3XX}(-2)s_3c_3(c_1^2 - s_1^2)^2) + I_{3YY}(-s_3c_1^2 - c_3s_1^2)^2)$$

$$c_{313} = c_{133}$$

$$c_{311} = c_{131}$$

$$c_{131} = c_3s_3(I_{3XX} + I_{3YY})$$

$$c_{331} = I_{3XX}(s_3^2 - c_3^2)(c_1^2 - s_1^2) + I_{3YY}(-s_1^2(s_3^2 - c_3^2) - c_3s_3c_1^2) - c_{133}$$

$$C = \begin{bmatrix} c_{111}\dot{\theta}_1^2 + c_{131}\dot{\theta}_1\dot{\theta}_3 + c_{311}\dot{\theta}_1\dot{\theta}_3 \\ 0 \\ c_{113}\dot{\theta}_1^2 + c_{133}\dot{\theta}_1\dot{\theta}_3 + c_{333}\dot{\theta}_3^2 + c_{313}\dot{\theta}_1\dot{\theta}_3 \end{bmatrix}$$

$$E_p = E_{p1} + E_{p2} + E_{p3} = m_1 g l_1 + m_2 g l_1 + m_3 g l_1$$

$$G = rac{\delta E_p}{\delta q_k} = egin{bmatrix} 0 \ 0 \ 0 \end{bmatrix}$$

$$D(q)q + C(q, \dot{q}) + G(q) = \tau$$

3. Wnioski

Budowa robota w praktyce różni się znacząco od obliczeń prowadzonych na kartce. Trzeba uwzględnić różne opory, mechanizmy, przeszkody w wykonywaniu modelu. Mogliśmy tego również doświadczyć na laboratoriach z tego przedmiotu, gdzie pracowaliśmy z prawdziwymi maszynami **KUKA** czy **STÄUBLI**

Nasz projekt również wymagał od nas uwzględnienia takich przeciwności jak rzeczywista konstrukcja połączeń czy sposoby blokady mechanizmów, aby robot mógł zostać złożony w rzeczywistości.

Możemy również zauważyć, że parametry takie jak przestrzeń robocza różnią się od obliczeń prowadzonych na kartce - teoretycznie przy naszej konfiguracji robota, przestrzenią roboczą powinien być dysk, jednak w rzeczywistości jest nią spłaszczony walec (bez środka). Wynika to z faktu że końcówka manipulatora nie jest punktem w przestrzeni, a ma swój rozstaw końcówek.

Bibliografia

- [1] "Python." [Online]. Available: https://www.python.org/
- [2] "Inventor." [Online]. Available: https://www.autodesk.pl/products/inventor/overview
- [3] "Denavit-hartenberg." [Online]. Available: https://en.wikipedia.org/wiki/Denavit%E2% 80%93Hartenberg_parameters
- [4] "Robotics toolbox." [Online]. Available: https://petercorke.com/toolboxes/robotics-toolbox/
- [5] "Github." [Online]. Available: https://github.com/
- [6] "Bogdan fabiański." [Online]. Available: https://sin.put.poznan.pl/people/details/bogdan. fabianski