Nico Roos

Data Science and Knowledge Engineering, Maastricht University

Outline

Hoare Logic and PDL

Inference rules for Hoare Logic

Loop Invariants and Program Correctness

Practical use of Hoare Logic

Hoare Logic can be viewed as a predecessor of PDL specially aimed at proving program correctness.

Hoare Logic can be viewed as a predecessor of PDL specially aimed at proving program correctness.

Hoare Logic allows you to specify for each block of code α of a programming language a pre-condition φ and a post-condition ψ .

$$\{\varphi\} \alpha \{\psi\}$$

Hoare Logic can be viewed as a predecessor of PDL specially aimed at proving program correctness.

Hoare Logic allows you to specify for each block of code α of a programming language a pre-condition φ and a post-condition ψ .

$$\{\varphi\} \ \alpha \ \{\psi\}$$

If the pre-condition φ holds before executing α , then the post-condition ψ holds after executing α .

Hoare Logic and PDL

00000

Some examples:

$$\{x = 1\} x = x + 1 \{x = 2\}$$
 is a correct statement.

Some examples:

$$\{x = 1\}$$
 $x = x + 1$ $\{x = 2\}$ is a correct statement.

$$\{x = 1\}$$
 $x = x + 1$ $\{x = 3\}$ is an incorrect statement.

Hoare Logic and PDL

00000

Some examples:

$$\{x = 1\}$$
 $x = x + 1$ $\{x = 2\}$ is a correct statement.
 $\{x = 1\}$ $x = x + 1$ $\{x = 3\}$ is an incorrect statement.
 $\{x = 1, y = 5\}$ $x = x + 1$ $\{x = 2, y = 5\}$ is a correct statement.

Hoare Logic and PDL

A triple

Hoare Logic and PDL

00000

$$\{\varphi\} \alpha \{\psi\}$$

in Hoare Logic is equivalent to

$$\varphi \to [\alpha]\psi$$

in PDL

Hoare Logic and PDL

A triple

$$\{\varphi\} \ \alpha \ \{\psi\}$$

in Hoare Logic is equivalent to

$$\varphi \to [\alpha]\psi$$

in PDL

Standard Hoare Logic can only provide partial correctness proofs. We cannot say anything about the termination of a block of code α , while in PDL, we can:

$$\varphi \to \langle \alpha \rangle \top$$

Hoare Logic and PDL

A triple

$$\{\varphi\} \alpha \{\psi\}$$

in Hoare Logic is equivalent to

$$\varphi \to [\alpha]\psi$$

in PDI

Standard Hoare Logic can only provide partial correctness proofs. We cannot say anything about the termination of a block of code α , while in PDL, we can:

$$\varphi \to \langle \alpha \rangle \top$$

Note that PDL does not and cannot provide a solution for the halting problem. 4 □ → 4 □ → 4 □ →

Partial correctness example

The triple

$${x = 1}$$
 while (x > 0) { x = x + 1 } ${x = 0}$

is a correct statement.

Partial correctness example

The triple

$${x = 1}$$
 while (x > 0) { x = x + 1 } ${x = 0}$

is a correct statement.

The execution never terminates if the precondition $\mathbf{x}=1$ holds before the execution of the while-loop.

Auxiliary variables

We use auxiliary variables to remember the values of variables before the execution of a block of code.

$$\{x = u, y = v\} x = x + 1 \{x = u + 1, y = v\}$$

Auxiliary variables

We use auxiliary variables to remember the values of variables before the execution of a block of code.

$$\{x = u, y = v\} x = x + 1 \{x = u + 1, y = v\}$$

auxiliary variables never change their value!

$$\overline{\{\varphi[e/x]\}\ x\ =\ e\ \{\varphi\}}$$

Here e denotes an expression and $\varphi[e/x]$ denotes that the expression e is substituted for the variable x in φ .

The substitution in the pre-condition guarantees that the expression e is evaluated using the vules of the variables before executing the assignment x = e.

$$\overline{\{\varphi[e/x]\}\ x\ =\ e\ \{\varphi\}}$$

Here e denotes an expression and $\varphi[e/x]$ denotes that the expression e is substituted for the variable x in φ .

The substitution in the pre-condition guarantees that the expression e is evaluated using the vules of the variables before executing the assignment x = e.

For example:

$$\{(x+1)=2\}$$
 x = x + 1 $\{x=2\}$

$$\overline{\{\varphi[e/x]\}\ x\ =\ e\ \{\varphi\}}$$

Here e denotes an expression and $\varphi[e/x]$ denotes that the expression e is substituted for the variable x in φ .

The substitution in the pre-condition guarantees that the expression e is evaluated using the vules of the variables before executing the assignment x = e.

For example:

$$\{(x+1) = 2\} x = x + 1 \{x = 2\}$$

 $\Rightarrow \{x = 1\} x = x + 1 \{x = 2\}$

Another example:

$$\{(x + y) = y + 2\} x = x + y \{x = y + 2\}$$

Another example:

$$\{(x + y) = y + 2\} x = x + y \{x = y + 2\}$$

 $\Rightarrow \{x = 2\} x = x + y \{x = y + 2\}$

Another example:

$$\{(x + y) = y + 2\} x = x + y \{x = y + 2\}$$

 $\Rightarrow \{x = 2\} x = x + y \{x = y + 2\}$

Note that practically, we substitute x = 2 for x on the righthand side of the assignment x = x + y and next interpret the assignment symbol = as the mathematical equal symbol =.

The substitution on the pre-condition may seem odd.

The substitution on the pre-condition may seem odd.

Substitution in the post-condition does not work because we need the values before the execution of the assignment.

The substitution on the pre-condition may seem odd.

Substitution in the post-condition does not work because we need the values before the execution of the assignment.

The rule:

$$\overline{\{\varphi\} \times = e \{\varphi[e/x]\}}$$

can give the following incorrect result:

$$\{x = 0\} x = 1 \{1 = 0\}$$

Consequence rule

$$\frac{\varphi' \to \varphi, \{\varphi\} \ \alpha \ \{\psi\}, \psi \to \psi'}{\{\varphi'\} \ \alpha \ \{\psi'\}}$$

The rule states that we can strengthen the pre-condition and that we can weaken the post-condition.

Consequence rule

$$\frac{\varphi' \to \varphi, \{\varphi\} \ \alpha \ \{\psi\}, \psi \to \psi'}{\{\varphi'\} \ \alpha \ \{\psi'\}}$$

The rule states that we can strengthen the pre-condition and that we can weaken the post-condition.

For example, from:

$$\{x = 1\} x = x + 1 \{x = 2\}$$

we can derive:

$$\{x = 1, y = 5\} x = x + 1 \{x > 1\}$$

Sequence rule

Hoare Logic and PDL

$$\frac{\{\varphi\} \ \alpha \ \{\psi\}, \{\psi\} \ \beta \ \{\eta\}}{\{\varphi\} \ \alpha; \beta \ \{\eta\}}$$

$$\frac{\{\varphi\} \ \alpha \ \{\psi\}, \{\psi\} \ \beta \ \{\eta\}}{\{\varphi\} \ \alpha; \beta \ \{\eta\}}$$

For example, from:

$${x = 1} x = x + 1 {x = 2}$$

 ${x = 2} x = x + 1 {x = 3}$

we can derive:

$$\{x = 1\} x = x + 1; x = x + 1 \{x = 3\}$$

$$\frac{\{\varphi \land \theta\} \ \alpha \ \{\psi\}, \{\varphi \land \neg \theta\} \ \beta \ \{\psi\}}{\{\varphi\} \ \text{if} \ (\theta) \ \{ \ \alpha \ \} \ \text{else} \ \{ \ \beta \ \} \ \{\psi\}}$$

Conditional rule

$$\frac{\{\varphi \land \theta\} \ \alpha \ \{\psi\}, \{\varphi \land \neg \theta\} \ \beta \ \{\psi\}}{\{\varphi\} \ \text{if} \ (\theta) \ \{ \ \alpha \ \} \ \text{else} \ \{ \ \beta \ \} \ \{\psi\}}$$

For example, from:

$${x \ge y} z = x {z = max(x, y)} {x < y} z = y {z = max(x, y)}$$

we can derive:

$$\{\} if (x \ge y) \{ z = x \} else \{ z = y \} \{z = max(x,y)\}$$

While rule

Hoare Logic and PDL

$$\frac{\{\phi \wedge \psi\} \ \alpha \ \{\psi\}}{\{\psi\} \ \text{while} \ (\phi) \ \{ \ \alpha \ \} \ \{\neg \phi \wedge \psi\}}$$

While rule

$$\frac{\{\phi \wedge \psi\} \ \alpha \ \{\psi\}}{\{\psi\} \ \text{while} \ (\phi) \ \{ \ \alpha \ \} \ \{\neg \phi \wedge \psi\}}$$

For example, using the invariant:

$${r = x \times i} r = r + x; i = i + 1 {r = x \times i}$$

we can derive:

$$\left\{ r = x \times i \right\} \text{ while (i != y) } \left\{ \begin{array}{l} r = r + x; \text{ i = i + 1} \end{array} \right\} \left\{ r = x \times y \right\}$$

While rule

$$\frac{\{\phi \wedge \psi\} \ \alpha \ \{\psi\}}{\{\psi\} \ \text{while} \ (\phi) \ \{ \ \alpha \ \} \ \{\neg \phi \wedge \psi\}}$$

For example, using the invariant:

$${r = x \times i} r = r + x; i = i + 1 {r = x \times i}$$

we can derive:

$$\left\{ r = x \times i \right\} \text{ while (i != y) } \left\{ \begin{array}{l} r = r + x; \text{ i = i + 1} \end{array} \right\} \left\{ r = x \times y \right\}$$

We can guarantee the pre-condition with the assignments:

$$r = 0; i = 0$$

Conjunction and Disjunction rule

$$\frac{\{\varphi\} \alpha \{\psi\}, \{\varphi\} \alpha \{\psi'\}}{\{\varphi\} \alpha \{\psi \wedge \psi'\}}$$

Conjunction and Disjunction rule

$$\frac{\{\varphi\} \ \alpha \ \{\psi\}, \{\varphi\} \ \alpha \ \{\psi'\}}{\{\varphi\} \ \alpha \ \{\psi \land \psi'\}}$$

$$\frac{\{\varphi\} \ \alpha \ \{\psi\}, \{\varphi'\} \ \alpha \ \{\psi\}}{\{\varphi \lor \varphi'\} \ \alpha \ \{\psi\}}$$

Hoare Logic and PDL

Conjunction and Disjunction rule

$$\frac{\{\varphi\} \alpha \{\psi\}, \{\varphi\} \alpha \{\psi'\}}{\{\varphi\} \alpha \{\psi \land \psi'\}}$$

$$\frac{\{\varphi\} \alpha \{\psi\}, \{\varphi'\} \alpha \{\psi\}}{\{\varphi \lor \varphi'\} \alpha \{\psi\}}$$

These rules are redundant but convenient to have when proving the correctness of an algorithm.

Example

A vase contains 35 white pebbles and 35 black pebbles. Proceed as follows to draw pebbles from the vase, as long as this is possible.

- Every round, draw two pebbles from the vase.
- If they have the same colour, then put a black pebble into the vase (you may assume that there are enough additional black pebbles outside of the vase).
- ▶ If they have different colours, then put the white pebble back.

In every round one pebble is removed from the vase, so after 69 rounds there is a single pebble left. What is the colour of this pebble?

How to answer this? Do we even have enough information?

Example

The effect of drawing two pebbles:

Pebbles Drawn	White Pebbles	Black Pebbles
white white	-2	+1
white black	0	-1
black white	0	-1
black black	0	-1

Notice that the following properties hold:

- ▶ Initially, the number of white pebbles is odd.
- ▶ If the number of white pebbles is odd before drawing, then the number of white pebbles is odd after drawing.

Hence: if there is one pebble left, it must be white, for if it were black, there would have been an even number of white pebbles.

Practical use of Hoare Logic

Loop Invariants

The property ψ :

 $\psi =$ The number of white pebbles is odd

is called a *loop invariant* for this scenario.

Characteristics of ψ :

- $\blacktriangleright \psi$ holds initially (before executing the loop)
- \blacktriangleright if ψ holds before executing the loop body then ψ holds after executing the loop body
- \blacktriangleright ψ , together with the fact that the loop has ended, implies what we want to prove (i.e., the last pebble is white)

Example

Consider the following function that computes the square of n:

```
int square (int n) {
  int x = 0;
  int k = 0;
  while (k < n) {
    x = x + 2*k + 1;
    k = k + 1;
  }
  return x;
}</pre>
```

How do we prove that it indeed returns n^2 ?

We need to find the loop invariant ψ such that:

- $\blacktriangleright \psi$ is true before the while loop starts.
- The following Hoare triple is valid:

$$\{(k < n) \land \psi\} = x + 2*k + 1; k = k + 1; \{\psi\}$$
 (1)

 $\neg (k < n) \land \psi$ implies $x = n^2$, so that we can use (1) together with the rule

$$\frac{\{\phi \wedge \psi\} \ \alpha \ \{\psi\}}{\{\psi\} \ \text{while} \ (\phi) \ \{ \ \alpha \ \} \ \{\neg \phi \wedge \psi\}}$$

to derive

 $\{\psi\}$ while (k < n) do x = x + 2*k + 1; k = k + 1; $\{\neg(k < n) \land \psi\}$ which then implies that $x = n^2$ after executing the loop.

Invariant:
$$\psi = (x = k^2) \land (k \le n)$$

Justification:

- \blacktriangleright ψ is true after int x = 0; int k = 0;
- ► The following Hoare triple is true

$$\{k < n \land \psi\}$$
 x = x + 2*k + 1; k = k + 1; $\{\psi\}$

We can derive:

$$\{\psi\}$$
 while (k < n) do $\{$ x = x + 2*k + 1; k = k + 1; $\}$ $\{(k = n) \land \psi\}$

 $ightharpoonup \neg (k < n) \land \psi \text{ implies } x = n^2$

Consider the following function that computes the sum of the elements in an array:

```
int sum(int[] a) {
  int s = 0:
  int i = 0;
 while (i != a.length) {
    s = s + a[i];
    i = i + 1;
  return s;
```

Prove that the algorithm returns sum of the elements in the array.

Loop invariant:
$$\psi = (s = \sum_{n \in \{0,\dots,i-1\}} a[n]).$$

Justification:

 \blacktriangleright ψ is true after int s = 0; int i = 0;

Loop invariant: $\psi = (s = \sum_{n \in \{0,\dots,i-1\}} a[n]).$

Justification:

- \blacktriangleright ψ is true after int s = 0; int i = 0;
- ► The following Hoare triple is true

$$\{(\textit{i} < \textit{a.length}) \land \psi\} \text{ s = s + a[i]; i = i + 1; } \{\psi\}$$

Loop invariant: $\psi = (s = \sum_{n \in \{0,\dots,i-1\}} a[n]).$

Justification:

- \blacktriangleright ψ is true after int s = 0; int i = 0;
- ► The following Hoare triple is true

$$\{(i < a.length) \land \psi\}$$
 s = s + a[i]; i = i + 1; $\{\psi\}$

From this we can derive:

$$\{\psi\}$$
 while (i != a.length) $\{\ldots\}$ $\{\neg(i != a.length)\land\psi\}$

Loop invariant: $\psi = (s = \sum_{n \in \{0, \dots, i-1\}} a[n]).$

Justification:

- \blacktriangleright ψ is true after int s = 0; int i = 0;
- The following Hoare triple is true

$$\{ (\textit{i} < \textit{a.length}) \land \psi \} \text{ s = s + a[i]; i = i + 1; } \{ \psi \}$$

From this we can derive:

$$\{\psi\} \text{ while (i != a.length) } \{\ldots\} \ \{\neg (\text{i != a.length}) \land \psi\}$$

 $ightharpoonup \neg (i != a.length) \land \psi implies$

$$s = \sum_{n \in \{0, \dots, a.length-1\}} a[n].$$

Consider the following function that returns the factorial of *n*:

```
int Factorial (int n) {
  int f = 1;
  int i = 1;
  while (i < n) {
    i = i + 1;
    f = f * i:
  return f;
}
```

Prove that the algorithm returns n!.

Loop invariant:
$$\psi = (f = i!) \land i \le n$$

Justification:

 \blacktriangleright ψ is true after int f = 1; int i = 1;

Loop invariant: $\psi = (f = i!) \land i \le n$

Justification:

- \blacktriangleright ψ is true after int f = 1; int i = 1;
- The following Hoare triple is true

$$\{(i < n) \land \psi\}$$
 i = i + 1; f = f * i; $\{\psi\}$

Loop invariant: $\psi = (f = i!) \land i \le n$

Justification:

- \blacktriangleright ψ is true after int f = 1; int i = 1;
- ► The following Hoare triple is true

$$\{(i < n) \land \psi\}$$
 i = i + 1; f = f * i; $\{\psi\}$

From this we can derive:

$$\{\psi\} \text{ while (i < n) do } \{ \text{ i = i + 1; f = f * i; } \} \ \{\neg(\textit{i} < \textit{n}) \land \psi\}$$

Loop invariant: $\psi = (f = i!) \land i < n$

Justification:

- \blacktriangleright ψ is true after int f = 1; int i = 1;
- The following Hoare triple is true

$$\{ (\mathit{i} < \mathit{n}) \land \psi \} \ \mathit{i} = \mathit{i} + \mathit{1}; \ \mathit{f} = \mathit{f} * \mathit{i}; \ \{ \psi \}$$

From this we can derive:

$$\{\psi\} \text{ while (i < n) do } \{ \text{ i = i + 1; f = f * i; } \} \ \{\neg(\textit{i} < \textit{n}) \land \psi\}$$

 $\neg (i < n) \land \psi \text{ implies } f = n!.$

Loop invariant: $\psi = (f = i!) \land i < n$

Justification:

- \blacktriangleright ψ is true after int f = 1; int i = 1;
- The following Hoare triple is true

$$\{ (\mathit{i} < \mathit{n}) \land \psi \} \ \mathit{i} = \mathit{i} + \mathit{1}; \ \mathit{f} = \mathit{f} * \mathit{i}; \ \{ \psi \}$$

From this we can derive:

$$\{\psi\} \text{ while (i < n) do } \{ \text{ i = i + 1; f = f * i; } \} \ \{\neg(\textit{i} < \textit{n}) \land \psi\}$$

- $\neg (i < n) \land \psi \text{ implies } f = n!.$
- Note that here we need $i \le n$ as a conjunct of ψ , since $i \le n$ together with $\neg (i < n)$ implies i = n.

Program correctness

Hoare logic can be used to prove partial program correctness.

Program correctness

Hoare logic can be used to prove partial program correctness.

Note that full correctness requires addressing the termination of a program, which is not address in standard Hoare Logic.

Program correctness

Hoare logic can be used to prove partial program correctness.

Note that full correctness requires addressing the termination of a program, which is not address in standard Hoare Logic.

There are tools that support checking the correctness of a Java program. See for instance the Java Modeling Language (JML).

Design by contract is a more pragmatic way of using Hoare Logic.

Design by contract is a more pragmatic way of using Hoare Logic.

Design by contract consists of:

- specifying pre-conditions and post conditions for every method, function and procedure,
- specifying invariants for classes.

Design by contract is a more pragmatic way of using Hoare Logic.

Design by contract consists of:

- specifying pre-conditions and post conditions for every method, function and procedure,
- specifying invariants for classes.

Class invariants are properties of a class that must hold before and after the execution of a method.

Design by contract is a more pragmatic way of using Hoare Logic.

Design by contract consists of:

- specifying pre-conditions and post conditions for every method, function and procedure,
- specifying invariants for classes.

Class invariants are properties of a class that must hold before and after the execution of a method.

Programming language such as Eiffel support design by contract.

Design by contract is a more pragmatic way of using Hoare Logic.

Design by contract consists of:

- specifying pre-conditions and post conditions for every method, function and procedure,
- specifying invariants for classes.

Class invariants are properties of a class that must hold before and after the execution of a method.

Programming language such as Eiffel support design by contract.

The Java Modeling Language (JML) enable the use of design by contract in Java programming.

Loop invariants

Specifying loop invariants for (every) loop in your program is a pragmatic way to improve correctness of your program

Loop invariants

Specifying loop invariants for (every) loop in your program is a pragmatic way to improve correctness of your program

Example

```
\{n > 1\}
                           ← pre-condition
int Factorial (int n) {
  int f = 1;
  int i = 1;
  \{1 < i \land i \le n \land f = i!\} \leftarrow \text{loop invariant}
  while (i < n) {
    i = i + 1;
    f = f * i;
  return f;
\{f = n!\}
                             ← post-condidtion
Note that i! == (i-1)! * i.
```


Example

```
Formulated in JMI:
/*0 requires 1 <= n ;
ensures \result == (\product int i; 1<=i && i<=n; i);
0*/
int Factorial (int n) {  int f = 1;
  int i = 1:
  /*@ loop_invariant i<=n &&
  f==(\product int j; 1<=j && j<=i; j); @*/
  while (i < n) {
    i = i + 1;
    f = f * i:
    return f;
```

Sorting example

```
public class Sort {
 public int[] a:
  /*@ public normal_behavior
    @ requires a.length > 0 && 0<= start && start < a.length:
    @ ensures (\forall int i; start<=i && i<a.length;a[\result] >= a[i]);
    @ ensures start <= \result && \result < a.length;
    0*/
  int /*@ strictly pure @*/ max(int start) {
    int counter = start;
    int idx = start:
    /*@ loop_invariant start<=counter && counter<=a.length &&
      @ start<=idx && idx<a.length && start<a.length &&
      @ (\forall int x; x>=start && x<counter; a[idx]>=a[x]);
      @ assignable \strictly_nothing;
      @ decreases a.length - counter;
      @*/
    while (counter < a.length) {
      if (a[counter] > a[idx])
      idx = counter;
      counter = counter+1:
    return idx:
```


Sorting example

```
/*@ public normal_behavior
  @ requires a.length > 0;
  @ ensures (\forall int i: 0 <= i && i<a.length-1: a[i] >= a[i+1]):
  0*/
void sort() {
int pos = 0;
int idx = 0:
/*@ loop_invariant 0<=pos && pos<=a.length && 0<=idx && idx<a.length
  @ && (\forall int x; x>=0 && x<pos-1; a[x]>=a[x+1]) &&
  @ (pos>0 ==>(\forall int v: v>=pos && v<a.length: a[pos-1]>=a[v]));
  @ assignable a[*]:
  @ decreases a.length - pos;
  @*/
while (pos < a.length-1) {
  idx = max(pos);
  int tmp = a[idx];
  a[idx] = a[pos];
  a[pos] = tmp;
  pos = pos+1;
```


Tools

The loop invariants, as well as pre- and post conditions, and class invariants can be checked:

- during the execution of a program; i.e. runtime testing,
- before execution of a program; i.e., automated program verification.

Tools

The loop invariants, as well as pre- and post conditions, and class invariants can be checked:

- during the execution of a program; i.e. runtime testing,
- before execution of a program; i.e., automated program verification.

Loop invariants, pre- and post conditions, and class invariants can be specified for Java programs as special comments in JML.

Tools

A program with loop invariants, pre- and post conditions, and class invariants:

- can run as a normal Java program; i.e., the special comment are ignored,
- can run as a Java program that performs runtime testing, for instance: jmlrac,
- can be verified at compile time, for instance: ESC/Java2.

