

Analísis de Floyd-Warshall

Diseño y análisis de algoritmos

Carlos Troyano Carmona Miguel Bravo Arvelo

Teoria de grafos:

Caminos mínimos

El problema del camino mínimo

En teoría de grafos el problema del camino más corto consiste en encontrar un camino entre dos vértices (o nodos). Dirigidos, no dirigidos o mixtos pueden distinguirse en las siguientes variantes:

- Camino mínimo de un único origen
- Camino mínimo a una única destinación
- Camino mínimo de todos lo pares de nodos

Algoritmo de:

Floyd-Warshall

El algoritmo de Floyd - Warshall compara todos los posibles caminos entre cada par de vértices.

Teniendo este algoritmo el objetivo es encontrar el camino mínimo de cada nodo i hasta j.

Matriz de distancias

	А	В	С	Е	F
Α	0	4	8	∞	∞
В	4	0	1	2	∞
С	8	∞	0	4	2
D	∞	2	4	0	7
Е	∞	∞	2	7	0

Matriz de recorridos

	А	В	С	Е	F
Α	-	В	С	Е	F
В	Α	-	С	Е	F
С	Α	В	-	Е	F
D	А	В	С	-	F
Е	Α	В	С	Е	-

El algoritmo funciona de tal manera que computa(**i,j,k**) para todos los pares (**i,j**) para k=1, k=2, etc. Hasta k=N, y habiendo hallado el camino mínimo para todos los pares (**i,j**).

Matriz de distancias

	Α	В	С	Е	F
Α	0	4	8	∞	∞
В	4	0	1	2	∞
С	8	∞	0	4	2
D	∞	2	4	0	7
Е	∞	∞	2	7	0

Matriz de recorridos

	Α	В	С	Е	F
Α	-	В	С	Е	F
В	Α	-	С	Е	F
С	Α	В	-	Е	F
D	Α	В	С	-	F
Е	Α	В	С	Е	_

Pseudocodigo

Una vez el algoritmo ha dado la solución se puede reconstruir el camino usando la matriz de recorridos para cualquier par(i,j).

Matriz de distancias

	А	В	С	Е	F
Α	0	4	5	6	7
В	4	0	1	2	3
С	8	6	0	4	2
D	6	2	3	0	5
Е	10	8	2	6	0

Matriz de recorridos

	А	В	С	Е	F
Α	-	В	В	В	С
В	Α	-	С	D	С
С	А	D	-	D	Е
D	В	В	В	-	С
Е	С	В	С	С	_

Pseudocodigo

```
1 procedure Path(u, v)
2  if next[u][v] = null then
3    return []
4  path = [u]
5  while u ≠ v
6    u ← next[u][v]
7   path.append(u)
8  return path
```


Algoritmo de:

Dijkstra's

Planteamiento

- Un grafo de N Nodos y V vértices
- Problema de máximos / mínimos
- Camino más corto entre el nodo **v** y todos los nodos
- EL planteamiento básico
 - Si tenemos un tres nodos A, B y C el camino más corto entre A y B ¿Pasa el camino pasa por C?
 - Para saber el camino más corto de un nodo cualquiera v a otro w tenemos que saber si el camino más corto pasa por cualquier nodo N(sub k)

Complejidad

- Contar Operaciones
- Buscar nodos adyacentes al conjunto definitivo se ejecuta **n -1** veces
- Este proceso se ejecuta como máximo **n-1** veces
- Las demás operaciones la suma y al comparación no aumentan la complejidad
- \bullet O(N²)

Problema con los ciclos negativos y mejoras

- Nunca terminará
- Una pila de fibonacci o pila binaria mejora su eficacia
- O(|A| log |V|)

Pseudocodigo

```
function Dijkstra(Graph, source):
         create vertex set Q
         for each vertex v in Graph:
              dist[v] \leftarrow INFINITY
             prev[v] ← UNDEFINED
              add v to Q
         dist[source] \leftarrow 0
10
11
         while Q is not empty:
13
              u ← vertex in Q with min dist[u]
14
15
              remove u from Q
              for each neighbor v of u:
17
                  alt \leftarrow dist[u] + length(u, v)
18
                  if alt < dist[v]:</pre>
                       dist[v] \leftarrow alt
                       prev[v] \leftarrow u
21
         return dist[], prev[]
23
```


Analisis

Experimentales

Pruebas realizadas

Parámetros introducidos en las pruebas:

- Cada nodo tiene un número aleatorio de arcos.
- Todos los arcos tienen un valor positivo de valor máximo 20.
- El número de arcos corresponde al doble del número de nodos.
- En cada prueba se incrementa el número de nodos por el doble.

Pruebas realizadas

Arcos	Nodos	Tiempo(ms) Floyd-Warshall	Tiempo(ms) Dijkstra
10	5	0	0
20	10	0	0
40	20	0	1
80	40	2	6
160	80	2	9
320	160	11	33
640	320	23	143
1280	640	170	1062
2560	1280	1518	8214
5120	2560	12195	75948

Curva teórica

Curva Experimental

Conclusiones

- Ventaja de un algoritmo sobre el otro.
- Algoritmos más eficientes.
- El número de aristas influye en la mejora.

Referencias

Bibliográficas

Referencias bibliográficas

Shortest path problem, (s. f). En Wikipedia. Recuperado el 24 de Marzo de 2017 de https://en.wikipedia.org/wiki/Shortest_path_problem

Graph theory, (s. f). En Wikipedia. Recuperado el 22 de Marzo de 2017 de https://en.wikipedia.org/wiki/Graph_theory#Computer_science

Dijkstra's algorithm, (s. f). En Wikipedia. Recuperado el 22 de Marzo de 2017 de https://en.wikipedia.org/wiki/Dijkstra%27s algorithm

Floyd-Warshall algorithm, (s. f). En Wikipedia. Recuperado el 21 de Marzo de 2017 de https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm

MIT OpenCourseWare. (31 de diciembre de 2017). [Video de Youtube]. Recuperado de https://www.youtube.com/watch?v=NzqFUwOaolw

Por útimo:

¿Preguntas?

Carlos Troyano Carmona - alu0100822816@ull.edu.es Miguel Bravo Arvelo - alu0101031538@ull.edu.es