提纲

- 预备知识
- 腐蚀和膨胀
- 开操作和闭操作
- 击中或击不中变换
- 基本形态学算法
 - 边界提取、孔洞填充
 - 连通分量提取、凸包
 - 细化、粗化
 - 骨架、裁剪

开操作和闭操作

- 开操作(opening)
 - 平滑物体的轮廓
 - 断开窄的连接
 - 消除细的突出
- 闭操作 (closing)
 - 平滑部分轮廓
 - 熔合窄的间断和长沟壑
 - 消除小孔洞
 - 填补轮廓中的缝隙

开操作

● 结构元B对集合A的开操作

$$A \circ B = (A \ominus B) \oplus B$$

● 先用B腐蚀A , 然后再用B对结果进行膨胀

开操作

• 结构元B对集合A的开操作

$$A \circ B = (A \ominus B) \oplus B$$

$$A \circ B = \bigcup \{(B)_z | (B)_z \subseteq A\}$$

闭操作

• 结构元B对集合A的闭操作

$$A \bullet B = (A \oplus B) \ominus B$$

● 先用B膨胀A , 然后再用B对结果进行腐蚀

在A的边界外侧

滚动B , B的最

近点决定了轮廓

闭操作

• 结构元B对集合A的闭操作

$$A \bullet B = (A \oplus B) \ominus B$$

• 先用B膨胀A , 然后再用B对结果进行腐蚀 $A \cdot B = \{w | w \in (B)_Z \Rightarrow (B)_Z \cap A \neq \emptyset\}$

举例 $A \oplus B$ $A\boldsymbol{\cdot} B=(A\oplus B)\ominus B$

性质

• 对偶性

$$(A \bullet B)^c = (A^c \circ \hat{B}) \quad (A \circ B)^c = (A^c \bullet \hat{B})$$

• 开操作

- 1. A。B是A的子集
- 2. 如果C是D的子集,那么 $C \circ B$ 是 $D \circ B$ 的子集
- $(A \circ B) \circ B = A \circ B$

闭操作

- *1. A是A·B*的子集
- 2. 如果C是D的子集,那么 $C \cdot B$ 是 $D \cdot B$ 的子集
- $3. \quad (A \cdot B) \cdot B = A \cdot B$

• 去噪

结构元

1. 黑色背景中的白噪音被去除

2. 白色指纹中的 黑噪声被加强

 $A\ominus B$

腐蚀

• 去噪

- 1. 白色指纹中的 黑噪声被削弱
- 2. 指纹纹路产生 了断裂

- 1. 纹路中的大部 分断裂被修复
- 2. 纹路变得更粗

 $(A \ominus B) \oplus B = A \circ B$

开操作

 $(A \circ B) \oplus B$

开操作的膨胀

●去噪

- 纹路变细
- 2. 噪声被消除3. 存在部分断裂

 $[(A \circ B) \oplus B] \ominus B = (A \circ B) \cdot B$

开操作的闭操作

含噪声的指纹

提纲

- 预备知识
- 腐蚀和膨胀
- 开操作和闭操作
- 击中或击不中变换
- 基本形态学算法
 - 边界提取、孔洞填充
 - 连通分量提取、凸包
 - 细化、粗化
 - 骨架、裁剪

- 击中或击不中变换(hit-or-miss transform)
 - 用于检测图像中的形状
- 检测形状D

包含三个形状的集合A

D的局部背景

- 击中或击不中变换 (hit-or-miss transform)
 - 用于检测图像中的形状
- 检测形状D

包含三个形状的集合A

表示D的匹

配(击中)

D对A的腐蚀

- 击中或击不中变换
 - 用于检测图像中的形状
- 检测形状D

集合A的补集 A^c

W - D对 A^c 的腐蚀

- 击中或击不中变换(hit-or-miss transform)
 - 用于检测图像中的形状
- 检测形状D

D对A的腐蚀

W - D对 A^c 的腐蚀

- 击中或击不中变换(hit-or-miss transform)
 - 用于检测图像中的形状
- 检测形状D

包含三个形状的集合A

交集确定D的位置

- 击中或击不中变换 (hit-or-miss transform)
 - 用于检测图像中的形状
- 集合B在A中的匹配

$$A \circledast B = (A \ominus D) \cap [A^c \ominus (W - D)]$$

- B表示集合D及其背景^{・・}○・背景使物体独立出现

 - 无背景时变成腐蚀

- $\Rightarrow B = (B_1, B_2)$
 - $B_1 = D$ 表示物体, $B_2 = W D$ 表示背景 $A \circledast B = (A \ominus B_1) \cap (A^c \ominus B_2)$
 - B_1 在A中匹配, B_2 在 A^c 中匹配

- 击中或击不中变换 (hit-or-miss transform)
 - 用于检测图像中的形状
- 集合B在A中的匹配

$$A \circledast B = (A \ominus D) \cap [A^c \ominus (W - D)]$$

- B表示集合D及其背景
- $\Rightarrow B = (B_1, B_2)$ $A \circledast B = (A \ominus B_1) \cap (A^c \ominus B_2)$
- 等价形式

$$A \circledast B = (A \ominus B_1) - (A \oplus \hat{B}_2)$$

提纲

- 预备知识
- 腐蚀和膨胀
- 开操作和闭操作
- 击中或击不中变换
- 基本形态学算法
 - 边界提取、孔洞填充
 - 连通分量提取、凸包
 - 细化、粗化
 - 骨架、裁剪

基本的形态学算法

- 提取表示区域形状的图像成分
 - 边界
 - 连通分量
 - 凸包
 - 骨架
- 配合上述算法的预处理或后处理
 - 区域填充
 - 细化、粗化
 - 裁剪

提纲

- 预备知识
- 腐蚀和膨胀
- 开操作和闭操作
- 击中或击不中变换
- 基本形态学算法
 - 边界提取、孔洞填充
 - 连通分量提取、凸包
 - 细化、粗化
 - 骨架、裁剪

边界提取

• 集合A的边界

$$\beta(A) = A - (A \ominus B)$$

● B是一个合适的结构元

B

• 白色代表1

孔洞填充

- 孔洞 (hole)
 - 由前景像素连成的边界包围的背景区域
- 孔洞填充
 - 利用膨胀、求补、交集等操作

- A表示一个集合
 - 元素为8连通的边界
 - 每个边界包含一个孔洞(背景区域)
 - 给定每个孔洞内1个点

填充算法

- 1. 构造初始 X_0
 - 给定的孔洞内初始点设为1,其他为0
- 2. 按照下面的公式更新

$$X_k = (X_{k-1} \oplus B) \cap A^c$$
 $k = 1, 2, 3, ...$

• 其中B为结构元

- 3. 重复上述公式,直到 $X_k = X_{k-1}$
 - X_k 包含填充后的孔洞
 - $A \cup X_k$ 为填充后的图像

包含一个初 始点的原图

全部填充

提纲

- 预备知识
- 腐蚀和膨胀
- 开操作和闭操作
- 击中或击不中变换
- 基本形态学算法
 - 边界提取、孔洞填充
 - 连通分量提取、凸包
 - 细化、粗化
 - 骨架、裁剪

邻接性

- 令V是用于定义邻接性的灰度值集合
 - 对于二值图像 $, V = \{1\}$ 或 $V = \{0\}$
 - 对于非二值图像,V是灰度级任意一个子集, ,比如 $V = \{128,129,...,255\}$
- 1. 4邻接(4-adjacency)
 - p和q的灰度值均属于集合V
 - q属于p的4邻域,即 $q \in N_4(p)$

邻接性

- 2. 8邻接(8-adjacency)
 - *p*和*q*的灰度值均属于集合*V*
 - q属于p的8邻域,即 $q \in N_8(p)$
- 3. m邻接(m-adjacency)
 - p和q的灰度值均属于集合V
 - a) q属于p的4邻域,即 $q \in N_4(p)$
 - a') q属于p的4对角邻域,即 $q \in N_D(p)$,并且 $N_4(p) \cap N_4(q)$ 中没有元素的灰度属于V

消除歧义

连通分量提取

- 连通分量
 - 连接在一起的像素集合
 - 4邻接、8邻接、m邻接

- A表示一个集合
 - 元素为若干连通分量
 - 给定每个连通分量内1个点

连通分量提取算法

- 1. 构造初始 X_0
 - 给定的连通分量内初始点设为1,其他为0
- 2. 按照下面的公式更新

$$X_k = (X_{k-1} \oplus B) \cap A$$
 $k = 1, 2, 3, ...$

- 其中B为结构元
 - 考虑8连通

- 3. 重复上述公式,直到 $X_k = X_{k-1}$
 - X_k 包含提取的连通分量

包含碎骨头 的鸡胸肉

阈值化

Connected component	No. of pixels in connected comp
01	11
02	9
03	9
04	39
05	133
06	1
07	1
08	743
09	7
10	11
11	11
12	9
13	9
14	674
15	85

连通分量提取

