

GENERATOR

DOKUMENTACJA ANALITYCZNA

Wersja: 0.6

Data modyfikacji: 15 sierpnia 2007 Autorzy: A.Bąk and M.Kulbacki

Spis treści

1	Mo	del apli	ika	cji	\mathbf{Ge}	ne	rat	\mathbf{or}	'a																				1
	1.1	Powiąz	an	ia A	wat	ar'	ów	\mathbf{Z}	mc	odo	ela	an	ni	W	er	ıgi	ni	e (Ca	ıl3	d	•		•					2
2	Avatar'y 2.1 Powiązania Avatar'ów z modelami w enginie Cal3d															2													
	2.1	Powiąz	an	ia A	vat	ar'	ów	\mathbf{z}	mc	d	ela	an	ni	W	er	ıgi	ni	e (Ca	ıl3	d								3
	2.2	Tworze	enie	av	ata	rów	7 .																						3
	2.3	Przecho																											4
3	Mo	duł Coi	\mathbf{ntr}	olN	⁄Iar	aag	ger																						5
	3.1	Odświe	eża	nie	obi	ekt	ów																						6
	3.2	Rozsyła	ani	e w	iad	om	ośc	i .				•	•					•						•					6
4	Ste	rowanie	e r i	ach	em	. —	$\mathbf{T}\mathbf{i}$	m	eli:	ne	∍'յ	y																	6
	4.1 Struktura TimeLine'a oraz relacje pomiędzy jego składowymi elementami .														7														
	4.2	Struktu	ura	obi	iekt	ów	Ti	ime	eLi	ne	eN.	lo	tic	n												•			8
5	Org	anizacj	ja (bie	e kt o	ow	gı	raf	icz	zn	yo	ch																	10
	5.1	5.1 Motywacja														10													
	5.2	2 Wizualizacja														10													
		5.2.1	ft:	:Sce	ene(Эbj	ect	t.																					10
		5.2.2	ft:	:Me	nuI	lten	n																						10
		5.2.3	ft:	:Lin	ie.																								10
		5.2.4	ft:	:Tra	aceI	inو	е.																						11
		5.2.5	ft:	Ava	tar																								11
		5.2.6	ft:	:Tex	ctui	reV.	Ian	ag	er																				12
		5.2.7	ft:	:Me	nul	Mai	nag	ger																					12
				:Sce			_	-																					13
		5.2.9	ft:	:00	ЗLС	on'	$ ext{tex}$	t .															•						14
		5.2.10	ft:	:Ca	mer	ra .																							14

1 Model aplikacji Generator'a

Aplikacja Generator'a bazuje na dwóch głównych bibliotekach:

- GLUT używana do zarządzania aplikacją okienkową oraz podstawowych operacji graficznych
- Cal3d używana do reprezentacji modeli avatarów oraz zarządzanie animacjami dla nich

Do szybkiego ustawiania parametrów aplikacji oraz jej składowych modułów służy plik /data/application.cfg. Modele avatarów oraz animacje dla nich opisane są w standardowym formacie modeli Cal3d (pliki xsf/xaf/xmf/xrf lub csf/caf/cmf/crf opisane skryptami *.cfg).

Ogólna ilustracja struktury aplikacji Generator'a została przedstawiona na poniższym rysunku 1.

Rysunek 1: Struktura aplikacji Generator'a

1.1 Powiązania Avatar'ów z modelami w enginie Cal3d

Podstawowym bytem reprezentującym animowaną postać w API Cal3d jest obiekt CalModel. Obiekt CalModel może być utworzony na podstawie odpowiedniego typu. Definicją takiego typu w Cal3d jest obiekt CalCoreModel.

Różnica pomiędzy CalCoreModelem i CalModelem jest taka, ze CalCoreModel zawiera definicje mesh'y, animacji, materiałów oraz szkieletu postaci. CalModel jest natomiast specyficzna instancją CalCoreModelu i można go ustawiać na scenie oraz wykonywać na nim animacje. Dla każdego takiego typu może istnieć dowolna ilość obiektów klasy CalModel.

Dla każdego utworzonego obiektu klasy Avatar utworzony zostaje osobny obiekt klasy CalModel w enginie Cal3d. Ponadto obiekt Avatar zawiera referencję do odpowiedniego obiektu CalCoreModel, na którego podstawie został utworzony jego CalModel. Dzięki temu z poziomu Avatar'a można odwoływać się do definicji postaci.

Na rysunku 3 znajduje się ilustracja przykładowej struktury modeli.

2 Avatar'y

Podstawową klasą reprezentującą animowaną postać jest Avatar. Można go dodawać do sceny oraz wykonywać na nim animacje. Obiekty typu Avatar bazują na modelach postaci z API Cal3d i można je traktować jako odpowiedniki takich modeli z rozszerzona funkcjonalnością na potrzeby Generatora.

Rysunek 2: Ilustracja przykładowej struktury modeli opartych na Cal3D

2.1 Powiązania Avatar'ów z modelami w enginie Cal3d

Podstawowym bytem reprezentującym animowaną postać w API Cal3d jest obiekt CalModel. Obiekt CalModel może być utworzony na podstawie odpowiedniego typu. Definicją takiego typu w Cal3d jest obiekt CalCoreModel.

Różnica pomiędzy CalCoreModelem i CalModelem jest taka, ze CalCoreModel zawiera definicje mesh'y, animacji, materiałów oraz szkieletu postaci. CalModel jest natomiast specyficzna instancją CalCoreModelu i można go ustawiać na scenie oraz wykonywać na nim animacje. Dla każdego takiego typu może istnieć dowolna ilość obiektów klasy CalModel.

Dla każdego utworzonego obiektu klasy Avatar utworzony zostaje osobny obiekt klasy CalModel w enginie Cal3d. Ponadto obiekt Avatar zawiera referencję do odpowiedniego obiektu CalCoreModel, na którego podstawie został utworzony jego CalModel. Dzięki temu z poziomu Avatar'a można odwoływać się do definicji postaci.

Na rysunku 3 znajduje się ilustracja przykładowej struktury modeli.

2.2 Tworzenie avatarów

Aby utworzyć obiekt Avatar należy wcześniej utworzyć dla niego odpowiedni obiekt CalModel w Cal3d oraz użyć do tego odpowiedniego typu, czyli obiektu CalCoreModel. Obiekt CalCoreModel tworzony jest na podstawie pliku konfiguracyjnego w formacie

Rysunek 3: Ilustracja przykładowej struktury modeli opartych na Cal3D

Cal3d (.cfg). Nalezy przy tym pamiętać, że ten dany typ reprezentowany przez obiekt Cal-CoreModel wystarczy utworzyć (wczytać z pliku .cfg) tylko jeden raz. Następnie można go używać do tworzenia dowolnej ilości obiektów klasy CalModel.

Po utworzeniu danego obiektu CalCoreModel na podstawie pliku .cfg należy dla niego zainicjować materiały. Z kolei po utworzeniu obiektu CalModel należy odpowiednio zainicjować meshe na podstawie CalCoreModelu. Powyższe operacje należy wykonać w odpowiedniej kolejności.

Aby uprościć tworzenie obiektu Avatar oraz jego relacji z modelami Cal3d została utworzona klasa AvatarFactory. Wystarczy wywołać metodę AvatarFactory. CreateAvatar() oraz zadać nazwę dla CalCoreModel'u (która odpowiada nazwie pliku .cfg) oraz dowolną nazwę dla Avatar. Cała operacja tworzenia Avatara odbywa się wewnątrz tej metody.

Dodatkowo klasa AvatarFactory zapewnia zarządzanie CalCoreModel'ami, tak aby każdy osobny typ nie został utworzony więcej niż jeden raz, nawet gdy odwołamy się do niego wiele razy

2.3 Przechowywanie ruchów (animacji) dla Avatarów

Animacje dla avatarów są reprezentowane przez obiekty klasy *Motion*. Są one kolekcjonowane w klasie *MovableAvatar*, która jest pochodną klasy *Avatar*. Jeden obiekt klasy *Motion* powiązany jest z dokładnie jednym obiektem klasy *CalCoreAnimation* w enginie Cal3d. Animacja CalCoreAnimation jest w Cal3d składową CalCoreModel'u i jest

wykonywana przez odpowiednie CalModel'e.

Ilustracja struktury powiązań dotyczących animacji znajduje sie na rysunku 4.

Rysunek 4: Powiązania struktur dotyczących animacji w Cal3D i Generatorze

3 Moduł ControlManager

Moduł ControlManager jest jednym z bazowych modułów Generatora. Do jego głównych zadań należy odświeżanie obiektów w każdej klatce symulacji (frame) oraz rozsyłanie wiadomości do zainteresowanych obiektów.

Główną klasą modułu jest *ControlManager*, która posiada tylko jedną instancję (Singleton).

Aby obiekty mogły być odświeżanie przez *ControlManagera* lub odbierać wiadomości muszą być pochodnymi klasy *ControlObject* oraz być zarejestrowanie w ControlManager'ze.

3.1 Odświeżanie obiektów

Aby dany obiekt mógł reagować na odświeżenie w każdej klatce animacji powinien pokryć metodę OnUpdate (float elapsedTime) z klasy bazowej ControlObject. Parametr elapsed-Time określa ile czasu minęło od poprzedniego odświeżenia. ControlManager będzie wywoływał metodę elapsedTime na wszystkich zarejestrowanych obiektach zgodnie z parametrami określonymi dla aktualnej symulacji (klasa ft::Simulation).

3.2 Rozsyłanie wiadomości

ControlManager rozsyła wiadomości do zarejestrowanych obiektów za pomocą obiektów klasy ft::Message. Wywołuje w tym celu na obiektach funkcje OnMessage(Message* msg), która jest zdefiniowana w klasie ControlObject. Aby obiekt mógł zareagować na wiadomość powinien on pokryć metodę OnMessage i zaimplementować w niej rozpoznanie typu wiadomości oraz odpowiednie akcje.

Każdy obiekt w systemie może wysłać wiadomość przez ControlManager'a używając metody SendMessage(Message* msg, bool deleteAfterSent). Jako parametr msg należy podstawić właściwy obiekt typu Message, natomiast deleteAfterSend określa czy ControlManager ma zwolnić pamięć dla obiektu msg po rozesłaniu go do zarejestrowanych obiektów.

Ilustracja przepływu sterowania podczas rozsyłania wiadomości znajduje się na rysunku 5.

4 Sterowanie ruchem – Timeline'y

Idea sterowania ruchem bazuje na pojęciu TimeLine'ow. TimeLine można traktować jako ścieżkę animacji, którą avatar ma za zadanie wykonać. TimeLine reprezentowany jest przez obiekty typu ft::TimeLine.

Zadany do wykonania TimeLine jest wypełniony obiektami typu ft::TimeLineMotion. Obiekty typu TimeLineMotion mają wskazania na animacje, które są wykonywane przez avatar'a w trakcie wykonywania danego TimeLineMotion'a na ścieżce animacji.

Pomiędzy kolejnymi obiektami TimeLineMotion mogą być zdefiniowane reguły łączenia. Reguły łączenia są reprezentowane przez obiekty typu ft::TimeLineBlender.

Podczas wykonywania TimeLineMotion'a, ruch avatara może być modyfikowany w dowolny sposób przez jeden lub kilka modyfikatorów ruchu. Każdy modyfikator jest opisany w obiekcie typu ft::TimeLineModifier.

Rozpoczęcie wykonywania TimeLine'a rozpoczyna się w momencie wykonania na nim metody Start(). Wykonanie TimeLine'a polega na wykonaniu po kolei wszystkich jego składowych TimeLineMotion'ow.

Rysunek 5: Przesyłanie wiadomości między obiektami implementującymi interfejs wiadomości ControlManagera

Obiekty typu TimeLine są pochodnymi klasy TimeLineMotion, co oznacza ze całe TimeLine'y mogą być użyte jako składowe innych TimeLine'ów, co zapewnia dużą elastyczność w definiowaniu i sterowaniu ruchem.

4.1 Struktura TimeLine'a oraz relacje pomiędzy jego składowymi elementami

Schemat przykładowego TimeLine'a znajduje się na rysunku 6.

Schemat z rysunku 6 ilustruje przykład gdzie TimeLine składa się z trzech obiektów składowych: $TimeLineMotion_1$, $TimeLineMotion_2$ oraz $TimeLineMotion_3$. Pomiędzy wszystkimi składowymi obiektami zdefiniowane są reguły łączenia: $TimeLineBlender_1$ oraz $TimeLineBlender_2$. Poza tym zdefiniowane są dwa modyfikatory: $TimeLineMotdifier_1$ (który modyfikuje ruch postaci jedynie w czasie wykonywania $TimeLineMotion_1$) oraz $TimeLineModifier_2$ (który modyfikuje ruch podczas wykonywania całego TimeLine'a).

Wykonywanie TimeLine'a z przykładu polega na sekwencyjnym wykonaniu kolejno trzech zdefiniowanych TimeLineMotion'ów.

Reguły łączenia definiuje się dla konkretnego obiektu TimeLineMotion i zostaje on zastosowany pomiędzy tym obiektem a jego następnikiem (jeśli następnik występuje).

Modyfikatory również definiuje się dla obiektów typu TimeLineMotion. W powyższym przykładzie $TimeLineMotdifier_1$ jest zdefiniowany dla $TimeLineMotion_1$, natomiast $TimeLineMotdifier_2$ dla TimeLine (takie powiązanie jest możliwe, ponieważ TimeLine jest specyficzną odmianą TimeLineMotion'a).

Każdy TimeLineMotion może być zaznaczony jako obiekt cykliczny, co powoduje, że

Rysunek 6: Przepływ informacji w obrębie zdefiniowanego timeline-a

będzie on wykonywany w pętli, dopóki nie zostanie jawnie przerwany. Dopiero po jego przerwaniu zacznie być wykonywany jego następnik. Istnieje również możliwość zdefiniowania liczby cyklów, po których wykonaniu ruch cykliczny zostanie przerwany automatycznie.

4.2 Struktura obiektów TimeLineMotion

Elementy składowe obiektu TimeLineMotion przedstawione zostały na rysunku 7. W skład obiektu ft::TimeLineMotion wchodzą następujące elementy składowe:

- a) *Motion (animacja)* referencja do animacji, która ma być wykonana przez avatara w czasie wykonywania danego TimeLineMotion'a. Referencja do animacji może być pusta. W tym przypadku dany TimeLineMotion sam w sobie nie powoduje żadnego ruchu avatar'a, natomiast mogą go powodować jego elementy składowe z *tracks* i *submotions*.
- b) TimeLineBlender definicja łączenia danego TimeLineMotion'a z jego następnikiem. W najprostszym przypadku deiniuje on na ile przed końcem wykonyania animacji aktualnego TimeLineMotion'a ma być wystartowana animacja z następnego TimeLineMotion'a. Sama operacja blendowania realizowana jest automatycznie przez engine Cal3d.
- c) Tracks może zawierać dodatkowe ścieżki ruchów, które będą wykonywane równolegle do TimeLineMotion'a. Każda ścieżka ma postać obiektu TimeLineMotion. Ścieżki mogą być wykorzystane do realizacji ruchów dla poszczególnych partii ciała avatar'a. Zbiór ścieżek może być pusty wtedy nie ma żadnego wpływu na ruch avatar'a.
- d) Submotions może zawierać sekwencje obiektów typu TimeLineMotion, które są wykonywane podczas wykonywania danego TimeLineMotion'a (równocześnie z wykonywaniem jego animacji). Zbiór submotions jest wykorzystywany do podziału danego TimeLineMotion'a na "krótsze" obiekty typu TimeLineMotion. Zbiór ten może być pusty wtedy nie ma żadnego wpływu na ruch avatar'a.

Rysunek 7: Wzajemne relacje współpracy obiektów wizualizacji

e) *Modifiers* – zawiera zbiór modyfikatorów, które są wykonywane w czasie wykonywania danego TimeLineMotion'a (od początku jego wykonywania do zakończenia wykonywania). Każdy modyfikator może być podzielony dodatkowo na sekwencje "krótszych" mody-

fikatorów na tej samej zasadzie, zgodnie z którą można podzielić obiekt TimeLineMotion na zbiór submotions. Zbiór modifiers może być pusty – wtedy nie ma żadnego wpływu na ruch avatar'a.

5 Organizacja obiektow graficznych

5.1 Motywacja

Wizualizacja nie jest głównym celem całego systemu, i przez to nie jest wykonana w sposób kompleksowy i całkowicie uniwersalny. Jednakże mechanizmy do wizualizacji elementów systemu bazują na pewnych założeniach pozwalających zaimplementować je łatwo w innych systemach wizualizacji (np. OSG) lub przy pomocy dowolnego API (np. DirectX). Założono niezależność od standardów korporacyjnych (MS) i wybrano OpenGL API. Aby zminimalizować wpływ strumienia graficznego na całkowitą wydajność systemu, przerzucono część operacji graficznych na procesor akceleratora graficznego przez użycie sprzętowego wspomagania (vertex shader).

5.2 Wizualizacja

Wizualizacja obiektów stanowi niezależny mechanizm generatora i poprzez ściśle określone reguły i interfejsy działa w sposób niezależny od reszty implementacji. Generalną ideę relacji pomiędzy podstawowymi obiektami wizualizacji w systemie przedstawiono na rysunku 8.

Zasady renderowania obiektów graficznych w systemie 1.Każdy obiekt który ma być włączony do potoku renderującego musi implementować interfejs (pokrywa metodę Render) obiektu ft::SceneObject. 2. Każdy obiekt, który ma być włączony do potoku renderującego jest musi być zarejestrowany przez obiekt ft::SceneManager przy pomocy metody ft::SceneManager::AddObject 3.Obiekt ft::SceneManager wywołuje cyklicznie metodę ft::SceneManager::OnRender, zsynchronizowaną z mechanizmem GLUT, i przetwarza wszystkie zarejestrowane obiekty wywołując metodę Render każdego z nich.

5.2.1 ft::SceneObject

Podstawowy obiekt graficzny. Realizuje bazowy interfejs obiektu sceny (kolor, położenie, nazwa obiektu, aktywność) i udostępnia interfejs renderowania obiektu - metoda Render.

5.2.2 ft::MenuItem

Podstawowy element menu graficznego, korzysta z bazowych własności typu ft::SceneObject Jego kształt i właściwości mogą być dostosowane do specyficznych wymagań poprzez własną implementację metody Render. MenuItem implementuje najprostszą postać wzorca composite dzięki czemu może funkcjonować jako struktura drzewiasta co pokazano na rysunku 9.

5.2.3 ft::Line

Pozwala realizować różne warianty linii lub strzałkę w trzech wymiarach. Obiekt można definiować zadając mu początek, koniec, długość, orientację i kolor. Główną motywacją

Rysunek 8: Wzajemne relacje współpracy obiektów wizualizacji

było zastosowanie go w charakterze markera. W obszarze renderowania implementuje własną metodę Render.

5.2.4 ft::TraceLine

Pozwala realizować linię wielosegmentową połączoną markerami w trzech wymiarach poprzez zadawanie punktu w przestrzeni metodą ft::TraceLine::AddPoint. Obiekt może wyświetlać i ukrywać markery, ustawiać kolor każdego segmentu. Doskonale nadaje się do wizualizacji miejsc, w których trzeba śledzić położenie przesuwającego się obiektu. W obszarze renderowania implementuje własną metodę Render.

5.2.5 ft:Avatar

W kontekście wizualizacji jest to obiekt graficzny z najbardziej rozbudowaną strukturą renderowania. Obiekt ft::Avatar posiada trzy możliwości renderowania: renderowanie szkieletu, renderowanie ograniczeń każdej kości lub renderowanie siatki modelu (mesha). Dodatkowo ze względu na złożoność siatki modelu wprowadzono możliwość renderowania modelu przy użyciu vertex shadera. Po wyborze metody renderowania Avatara dochodzi jeszcze renderowanie cienia obiektu, które docelowo powinno być realizowane jako globalna metoda renderowania cienia (np. przez ft::SceneManager)

Rysunek 9: Przykładowa implementacja wielopoziomowego menu przy pomocy obiektu ft::MenuItem

5.2.6 ft::TextureManager

Ładuje, przechowuje i udostępnia innym obiektom tektury wczytywane z plików. Pozwala przetwarzać pliki graficzne w formatach PCX, BMP i TGA (wyłącznie 24 bitowe). Manager tekstur jest łatwo rozszerzalny i pozwala skorzystać z plików graficznych w innych formatach przez prostą modyfikację jednej metody ft::TextureManager::LoadTexture. Poprzez globalną mapę tekstur eliminuje potrzebę wielokrotnego wczytywania tych samych plików teksturami. Aby korzystać z właściwości tego obiektu musi być aktywny kontekst OpenGL do przetwarzania tekstur (glEnable(GL TEXTURE)).

5.2.7 ft::MenuManager

Zarządza kolekcją obiektów typu ft::MenuItem. Tworzy menu graficzne na podstawie definicji w pliku konfiguracyjnym. Obsługuje komunikaty z zewnątrz od obiektu ft::ControlManager i z lokalnych obiektów ft::MenuItem oraz generuje komunikat do sys-

Rysunek 10: Potok renderowania dla typu ft::Avatar

temu o wciśnięciu konkretnego przycisku w menu (MSG_MENU_ITEM_SELECTED) dla wszystkich zarejestrowanych obiektów nasłuchujących. Ze względu na interakcję przy pomocy klawiatury i myszy, korzysta z ft::InputManagera przy obsłudze komunikatów z tych urządzeń.

5.2.8 ft::SceneManager

Centralny element zarządzania elementami graficznymi sceny. Realizuje komunikację z pozostałymi niegraficznymi elementami systemu. Obiekt ft::SceneManager jest odpowiedzialny za renderowanie wszystkich obiektów graficznych typu ft:SceneObject, przy pomocy metody Render. Wszystkie obiekty, które mają być automatycznie renderowane muszą być uprzednio zarejestrowane do renderowania metodą ft::SceneManager::AddObject.

5.2.9 ft::OGLContext

Tworzy zawartość renderowania (prymitywy graficzne) przy pomocy API OpenGL. Buduje wizualne, trwałe elementy sceny (podłoga, logo), korzysta z tekstur obiektu ft::TextureManager.

5.2.10 ft::Camera

Obecnie realizuje bardzo prymitywne operacje widoku sceny (przesuwanie sceny, obracanie sceny). Ze względu na interakcję przy pomocy klawiatury i myszy, korzysta z ft::InputManagera przy obsłudze komunikatów z tych urządzeń.