PAAMS'13 Salamanca, 22th May 2013

How to Build the **Best Macroscopic Description** of your Multi-agent System?

Laboratoire d'Informatique de Grenoble

Robin Lamarche-Perrin Yves Demazeau Jean-Marc Vincent

Problem: Analysis of Large-scale MAS

Problem: Analysis of Large-scale MAS

Analysis of international relations

through print media observation

Agents: nations

Interactions: international relations

Organisation: geopolitical context

Counting Citations

150 Newspapers1,530,000 Articles

Counting Citations

Counting Citations

150 Newspapers 1,530,000 Articles

193 Countries720 Days

 \rightarrow 20,844,000 cells

Spatial Information

Temporal Information

Thematic Information

And so on...

Analysis of international relations

through print media observation

Outline:

1. Information Loss

Information Theory

- 2. Complexity Reduction
- 3. Macroscopic Semantics

MEASURING THE INFORMATION LOSS

Kullback-Leibler Divergence

$$loss(p \parallel q) = \sum_{} p(x) \times \log_2\left(\frac{p(x)}{q(x)}\right)$$
 in bits/citation

Microscopic Aggregated distribution

Quantity of information that one loses by using an aggregated description instead of the microscopic description

MEASURING THE COMPLEXITY REDUCTION

Shannon Entropy

$$H(p) = \sum p(x) \times \log_2 p(x)$$
 in bits/citation

Entropy Reduction:

$$gain(p \parallel q) = H(p) - H(q)$$

Microscopic Aggregated distribution distribution

Quantity of information that one saves by encoding the aggregated description instead of the microscopic description

Low Information Loss

Kullback-Leiber Divergence

High Information Loss

Parameterized Information Criterion

$$IC_0 = -\frac{loss}{p \in]0,1[} \qquad IC_1 = gain$$

MACROSCOPIC SEMANTICS

Hierarchical MAS

Hierarchical MAS

$$p=1$$

$$p = 0$$

Hierarchical MAS

$$p = 1$$

$$\downarrow$$

$$p = 0$$

Number of citations

The Times of India – "World" RSS Feed from 30th May 2011 to 30th Dec. 2012 8710 articles

TEMPORAL AGGREGATION

CONCLUSION AND PERSPECTIVES

Results

Multi-resolution descriptions of systems from data aggregation

needs the careful control of

Information Content

Macroscopic Semantics

Perspectives

Aggregation of Interactions

Perspectives

Emergent Computation

Sensor Networks

Multi-scale Agent-based Simulation

Grid Computing

DEMO SESSION TODAY 17:30-18:00

THANK YOU FOR YOUR ATTENTION

Email: Robin.Lamarche-Perrin@imag.fr

Page: magma.imag.fr/content/robin-lamarche-perrin

