

L1 – S2 Examen d'électronique numérique 2 Avril 2018 Durée : 2h

Sans document - Sans calculatrice

NOM: Prénom: Groupe de TD:

Exercice 1: Bascule JK

5 points

On considère la bascule JK représentée sur la figure 1.

1. Les entrées RAU et RAZ sont-elles synchrones ou asynchrones ?

Entrées asynchrones

2. Quelles valeurs faut-il donner à RAZ et RAU pour effectuer les actions suivantes :

Figure 1 - Bascule JK

- Remise à 1 de Q : RAZ = 1, RAU = 0
- Remise à 0 de Q : RAZ = 0, RAU = 1
- 3. Sur quel événement la bascule est-elle synchronisée ?

Front descendant

4. Rappeler la table de vérité d'une bascule JK (évolution des sorties Q et en fonction des entrées J et K).

J	K	Q_{N+1}	$\overline{Q_{N+1}}$
0	0	Q_N	$\overline{Q_N}$
0	1	0	1
1	0	1	0
1	1	$\overline{Q_N}$	Q_N

Compléter les chronogrammes ci-dessous.

Exercice 2 : Analyse de compteur

8 points

Nous considérons le circuit de la Figure 2 constitué de trois bascules D, deux portes ET et une poste OU EXCLUSIF.

- Ce circuit est-il synchrone ou asynchrone ? Justifier votre réponse.
 Le circuit est synchrone car toutes les bascules ont la même horloge.
- 2. Détermine les expressions de D_0 , D_1 et D_2 en fonction de Q_0 , Q_1 et Q_2 .

D₀ = 1
$$D_1 = Q_0 \cdot \overline{Q_1}$$

$$D_2 = Q_0 \cdot (Q_1 \oplus Q_2)$$

3. Compléter le tableau des états suivant en supposant l'état initial $Q_2=Q_1=Q_0=0$.

n° du front d'horloge	Q_2	Q_1	Q_0	D_2	D_1	D_0
(condition initiale)	0	0	0	0	0	1
1	0	0	1	0	1	1
2	0	1	1	1	0	1
3	1	0	1	1	1	1
4	1	1	1	0	0	1
5	0	0	1	0	1	1

4. Quel est le cycle de ce compteur, en supposant que Q_0 est le bit le moins significatif (LSB) et que Q_2 est le bit le plus significatif (MSB) ?

5. Quels sont les états hors du cycle principal?

0, 2, 4, 6

6. Déterminer le comportement de ce compteur pour deux initialisations possibles hors du cycle principal.

Premier cas: 2

n° du front d'horloge	Q_2	Q_1	Q_0	D_2	D_1	D_0
0 (condition initiale)	0	1	0	0	0	1
1	0	0	1			
2						
3						

Deuxième cas: 4

<u> </u>						
n° du front d'horloge	Q_2	Q_1	Q_0	D_2	D_1	D_0
0 (condition initiale)	1	0	0	0	0	1
1	0	0	1			
2						
3						

Deuxième cas: 6

n° du front d'horloge	Q_2	Q_1	Q_0	D_2	D_1	D_0
0 (condition initiale)	1	1	0	0	0	1
1	0	0	1			
2						
3						

7. Tracer le cycle de ce compteur comprenant l'ensemble des états considérés jusque maintenant.

Exercice 3 : Synthèse d'un compteur

7 points

On souhaite concevoir un compteur synchrone constitué de bascules JK décrivant le cycle de la figure 3.

1. Combien de bascules sont nécessaires pour réaliser ce compteur? Justifier votre réponse.

3 bascules car le plus grand nombre dans le cycle (7) nécessite 3 bits en binaire : 111

On notera $Q_0, ..., Q_{N-1}$ les sorties de ces bascules. La valeur du compteur est donnée par le nombre $Q_{N-1} ... Q_0$ écrit en binaire naturel, Q_{N-1} représentant le bit de poids fort et Q_0 le bit de poids faible.

2. Représenter la table de fonctionnement de ce compteur (succession des états de sortie et des entrées des bascules).

Q_2	Q_1	Q_0	Q_2^+	Q_1^+	Q_0^+	J_2	<i>K</i> ₂	J_1	K_1	J_0	K_0
1	0	1	0	1	1	X	1	1	X	X	0
0	1	1	1	1	1	1	X	X	0	X	0
1	1	1	0	1	0	X	1	X	0	X	1
0	1	0	1	0	1	1	X	X	1	1	X
0	0	0	X	X	X	X	X	X	X	X	X
0	0	1	X	X	X	X	X	X	X	X	X
1	0	0	X	X	X	X	X	X	X	X	X
1	1	0	X	X	X	X	X	X	X	X	X

3. Déterminer les expressions simplifiées minimales des entrées J et K pour chaque bascule.

vascuie.								
	$J_0 = 1$	$K_0 = Q_1. Q_2$						
			Q_1Q_0 Q_2	00	01	11	10	
			0	X	X	0	X	
			1	X	0	1	X	
					l			
	$J_1 = 1$			K_1	$= \overline{Q_0}$			
	$J_2 = 1$			<i>K</i> :	2 = 1			

4. Représenter le circuit permettant de réaliser ce compteur.

