The Zwanzig Relation: Derivation

- From before, $\beta(A_1-A_0)=-\ln\left(\frac{\mathcal{Q}_0}{\mathcal{Q}_1}\right)$.
- Substituting in partition functions, $\beta(A_1-A_0)=-\ln\left(\frac{\int e^{-\beta U_1(r^n)}dr^N}{\int e^{-\beta U_0(r^N)}dr^N}\right)$.
- $\text{Multiplying by one, } \beta(A_1-A_0) = -\ln\left(\frac{\int e^{-\beta U_1(r^N)+\beta U_0(r^N)-\beta U_0(r^N)}dr^N}{\int e^{-\beta U_0(r^N)}dr^N}\right).$
- Defining the potential energy difference $\Delta U(r^N) = U_1(r^N) U_0(r^N)$, $\int \left\{ e^{-\beta \Delta U(r^N)} e^{-\beta U_0(r^N)} dr^N \right\}$

$$\beta(A_1 - A_0) = -\ln\left(\frac{\int e^{-\beta \Delta U(r^N)} e^{-\beta U_0(r^N)} dr^N}{\int e^{-\beta U_0(r^N)} dr^N}\right)$$

The Zwanzig Relation: In Practice

- . Using the definition of $\rho_{s}(r^{N})$, $\beta(A_{1}-A_{0})=-\ln\int\rho_{0}(r^{N})e^{-\beta\Delta U(r^{N})}dr^{N}$.
- The Zwanzig relation [2] is
 - $\beta(A_1 A_0) = -\ln\left\langle e^{-\beta\Delta U}\right\rangle_0$ in a simpler notation.
 - . $\beta(A_1-A_0)=-\ln\left\langle e^{\beta\Delta U}\right\rangle_1$ can be derived with similar steps
- This shows us that
 - The free energy difference can be computed based on an average over configurations taken from one of the states of interest
 - We can generate these configurations with MC or MD
 - The free energy comes from evaluating the energies of these configurations in both potentials U_0 and U_1 , and taking an appropriate average of the energy difference