II. tétel - Logika

Az informatika logikai alapjai. Az elsőrendű matematikai logikai nyelv. A nyelv interpretációja, formulák igazságértéke az interpretációban adott változókiértékelés mellett. Logikai törvény, logikai következmény. Logikai ekvivalencia, normálformák. Kalkulusok (Gentzen-kalkulus).

A szerkesztői megjegyzéseket szürke, dőlt betűkkel közlöm.

Általános forrás: [Logika]

Tartalomjegyzék

1. Az informatika logikai alapjai	2
1.1. Az ítéletlogika szintaxisa	3
1.2. Az ítéletlogika szemantikája	
1.3. Ítéletlogikai törvények	
1.4. Formulák normálformái	e
1.5. Szemantikus következményfogalom	7
2. Az elsőrendű matematikai logikai nyelv	
2.1. Az elsőrendű logikai nyelvek szintaxisa	8
2.2. Az elsőrendű logikai nyelvek szemantikája	11
2.3. Elsőrendű logikai törvények	13
2.4. Prenex alak	14
2.5. Szemantikus következményfogalom	15
3 Szakwantkalkulus	16

Irodalomjegyzék

[Logika]: Várterész Magda, Az informatika logikai alapjai előadások, 2006/07-I,

http://www.inf.unideb.hu/~varteres/logikauj/Logikafo.pdf

[HuWiki:Ítéletkalk]: Ítéletkalkulus, http://hu.wikipedia.org/wiki/%C3%8Dt%C3%A9letlogika

[HuWiki:Elsőrendű]: Elsőrendű logika, http://hu.wikipedia.org/wiki/Els%C5%91rend

%C5%B1_logika

[EnWiki:SequentCalc]: Sequent calculus, http://en.wikipedia.org/wiki/Sequent_calculus

1. Az informatika logikai alapjai

A logika feladata: a *premisszák* (állítások) és a *konklúzió* (következtetés) közötti összefüggés tanulmányozása. Egy kijelentő mondat **állítás**, ha egyértelmű információt hordoz és igazságértékkel bír. Egy állítás igaz, ha az információtartalma a valóságnak megfelelő, egyébként hamis, függetlenül tudásunktól.

Arisztotelész alapelvei:

- Az ellentmondástalanság elve: egyetlen állítás sem lehet igaz is és hamis is.
- A kizárt harmadik elve: nincs olyan állítás, amely sem igaz, sem hamis.

A következtetési séma **helyessége**:

- Helyes a következtetési séma, ha igaz premisszák esetén a konklúzió csak igaz lehet.
- Helytelen a következtetési séma, ha igaz premisszák esetén is megtörténhet, hogy a konklúzió hamis.

Egy következtetés helyes, ha helyes következtetési séma alapján hajtjuk végre. Tehát a következtetés helyessége független a benne szereplő állítások természetes nyelvi jelentésétől, csupán az úgynevezett logikai szavak jelentésétől, és logikai szavak meghatározta szerkezettől függ.

Logikai szavak és jelentésük:

Jelentés	Szó	Jel
Negáció	nem	_
Konjunkció	és	٨
Diszjunkció	vagy	V
Implikáció	ha akkor	\supset
Univerzális kvantor	minden	A
Egzisztenciális kvantor	van	3

Tipp: A kon- azt jelenti, hogy együtt, a disz- pedig azt, hogy külön. Konjunkciónál A-nak és B-nek *együtt* kell teljesülnie, hogy igazat kapjunk, tehát mindkettőnek. Diszjunkciónál *külön* is teljesítik a feltételt (így könnyebb megjegyezni, hogy melyik az és és melyik a vagy, ha nehezen menne).

A	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \supset B$
i	i	h	i	i	i
i	h	h	h	i	h
h	i	i	h	i	i
h	h	i	h	h	i

Azért van szüksége a logikának saját nyelvre, mert így nem tartozik egyetlen természetes nyelvhez sem, valamint így egyértelmű nyelvtani rendszerrel rendelkezik.

Bár ezt nem írja a tárgy fóliája sehol, de az átláthatóság kedvéért: az ítéletlogika^[HuWiki:ftéletkalk] (vagy ítéletkalkulus) a logika egyik fajtája, amelynél csak igaz vagy hamis értékeket vehetnek fel a

változók. Ennek az egyik ága az elsőrendű logika^[HuWiki:Elsőrendű] (a magasabb rendű logikáknál a kvantálásnál bonyolultabb műveleteket is lehet használni). A tárgy végén röviden vett Gentzenkalkulus (a szekvent kalkulusok^[EnWiki:SequentCalc] egyik formája) pedig a levezetésekhez szükséges.

1.1. Az ítéletlogika szintaxisa

Az ítéletlogika nyelvének **ábécéje** az alábbi szimbólumokat tartalmazza:

- logikai összekötőjelek: \neg , \land , \lor , \supset
- elválasztójelek: a nyitó- és záró-zárójel,
- ítéletváltozók: X, Y, Z, ... betűk, esetleg indexelve.

Ítéletlogikai formula:

- 1. Minden ítéletváltozó ítéletlogikai formula, ezeket a formulákat atomi vagy prímformuláknak is nevezzük.
- 2. Ha A ítéletlogikai formula, akkor $\neg A$ (negált A) is az.
- 3. Ha *A* és *B* ítéletlogikai formulák, akkor
 - \circ $(A \wedge B)$ (A konjunkció B),
 - \circ $(A \lor B)$ (A diszjunkció B) és
 - \circ $(A \supset B)$ (A implikáció B)

is ítéletlogikai formulák.

4. Minden ítéletlogikai formula az 1–3. szabályok véges sokszori alkalmazásával áll elő.

Az ítéletlogikai formulák halmaza az ítéletlogika nyelve. Jelölése: \mathcal{L}_0 .

Szerkezeti indukció elve:

Minden ítéletlogikai formula \mathcal{T} tulajdonságú,

- (alaplépés:) ha minden atomi formula $\mathcal T$ tulajdonságú, továbbá
- (indukciós lépések:)
 - 1. ha az A ítéletlogikai formula \mathcal{T} tulajdonságú, akkor $\neg A$ is \mathcal{T} tulajdonságú és
 - 2. ha az A és a B ítéletlogikai formulák $\mathcal T$ tulajdonságúak, akkor $(A \wedge B)$, $(A \vee B)$ és $(A \supset B)$ is $\mathcal T$ tulajdonságúak.

Az egyértelmű elemzés tétele:

Minden ítéletlogikai formulára a következő állítások közül pontosan egy igaz:

- 1. A formula atomi formula.
- 2. A formula egy egyértelműen meghatározható ítéletlogikai formula negáltja.
- 3. A formula egyértelműen meghatározható ítéletlogikai formulák konjunkciója.
- 4. A formula egyértelműen meghatározható ítéletlogikai formulák diszjunkciója.
- 5. A formula egyértelműen meghatározható ítéletlogikai formulák implikációja.

Közvetlen részformula:

Az ítéletlogika nyelvében

- 1. egyetlen atomi formulának sincs közvetlen részformulája,
- 2. a $\neg A$ egyetlen közvetlen részformulája az A formula,
- 3. az $(A \circ B)$ formula (ahol $\circ \in \{\land, \lor, \supset\}$ *a továbbiakban is*) közvetlen részformulái az A és a B formulák. A az $(A \circ B)$ formula bal oldali, B a jobb oldali közvetlen részformulája.

Részformula:

Legyen A ítéletlogikai formula. Az A formula részformuláinak halmaza a legszűkebb olyan halmaz, melynek

- 1. eleme A, és
- 2. ha a *C* formula eleme, akkor *C* közvetlen részformulái is elemei.

A szerkezeti rekurzió elve:

Egy az ítéletlogikai nyelvén értelmezett \mathcal{F} függvényt egyértelműen adtunk meg, ha

- (alaplépés:) értékeit rögzítjük a nyelv atomi formuláin és megmondjuk, hogy ${\mathcal F}$
- (indukciós lépések:)
 - 1. $\neg A$ -n felvett értéke az A -n felvett értékéből, illetve
 - 2. $(A \circ B)$ -n felvett értéke az A -n és a B -n felvett értékekből hogyan származtatható.

Definiáljuk az $\ell: \mathcal{L}_0 \rightarrow N_0$ (írott kis L) függvényt a következőképpen:

- 1. ha *A* atomi formula, $\ell(A)$ legyen 0,
- 2. $\ell(\neg A)$ legyen $\ell(A) + 1$,
- 3. $\ell(A \circ B)$ pedig legyen $\ell(A) + \ell(B) + 1$.

Ekkor egy $A \in \mathcal{L}_0$ formulához rendelt $\ell(A)$ függvényértéket a formula **logikai összetettségének** nevezzük.

A logikai összetettség gyakorlatilag a logikai összekötőjelek számát határozza meg.

Egy formulában egy **logikai összekötőjel hatásköre** a formulának azon részformulái közül a legkisebb logikai összetettségű, amelyekben az adott logikai összekötőjel is előfordul.

Egy **formula fő logikai összekötőjele** az az összekötőjel, melynek hatásköre maga a formula.

A formulák leírásakor szokásos rövidítések:

- formula-kombinációk helyett speciális jelölések, (példa: $(A \equiv B) \leftrightharpoons ((A \supset B) \land (B \supset A))$)
- külső zárójelek elhagyása,
- logikai jelek prioritása csökkenő sorrendben:
 - 1. ¬.
 - $2. \lor, \land,$
 - $3. \supset .$

1.2. Az ítéletlogika szemantikája

Az $\{i, h\}$ halmazon értelmezett fontos **logikai műveletek**:

Α	В	$\dot{\neg} A$	$A \dot{\wedge} B$	$A \dot{\lor} B$	$A \stackrel{.}{\supset} B$
i	i	h	i	i	i
i	h	h	h	i	h
h	i	i	h	i	i
h	h	i	h	h	i

Jelöljük most az ítéletváltozók halmazát V_{ν} -vel.

Az \mathcal{L}_0 nyelv **interpretációján** egy $I: V_v \rightarrow \{i, h\}$ (írott nagy I) függvényt értünk.

Az ítéletlogikai formulák szemantikája:

Egy C ítéletlogikai formulához I-ben az alábbi $- |C|^{I}$ -vel jelölt - igazságértéket rendeljük:

- 1. $|A|^I \leftrightharpoons_{I(A)}$, ahol A atomi formula, azaz ítéletváltozó
- 2. $|\neg A|^I \leftrightharpoons \dot{\neg} |A|^I$,
- 3. $|A \wedge B|^I \leftrightharpoons |A|^I \dot{\wedge} |B|^I$,
- 4. $|A \vee B|^I = |A|^I \dot{\vee} |B|^I$,
- 5. $|A \supset B|^I \leftrightharpoons |A|^I \supset |B|^I$

Itt szerintem a pont nélküli műveletek jelölik a szintaktikai műveleteket, a pontozottak pedig a szemantikai párjukat. Ezt szerintem úgy kell felfogni, mint ha a szintaktikai formula egyetlen sztring lenne, a szemantikai műveletekkel összekötött formulák meg mintha egy egy vagy két sztring argumentummal ellátott igazságértéket visszaadó függvényt jelentenének.

Legyen *S* ítéletváltozók egy halmaza. Ha két különböző interpretáció ugyanazokat az igazságértékeket rendeli az *S* -beli ítéletváltozókhoz, akkor minden olyan formulának, amelyben csak *S* -beli ítéletváltozók fordulnak elő, mindkét interpretációban ugyanaz lesz az igazságértéke.

1.3. Ítéletlogikai törvények

Egy A ítéletlogikai formula **kielégíthető**, ha van a nyelvnek olyan I interpretációja, hogy $|A|^I = i$. Az ilyen interpretációkat A **modelljeinek** nevezzük. Ha nincs A-nak modellje, az A formula **kielégíthetetlen**.

Az A formula **ítéletlogikai törvény** vagy másképp **tautológia**, ha a nyelv minden I interpretációjára $|A|^I = i$. Jelölése: $|=_0 A$.

Azt mondjuk, hogy az A és B ítéletlogikai formulák **tautologikusan ekvivalensek**, és ezt a tényt úgy jelöljük, hogy $A \sim_0 B$, ha minden I interpretációban $|A|^I = |B|^I$.

Minden A, B, C ítéletlogikai formula esetén:

- reflexív: $A \sim_0 A$,
- szimmetrikus: ha $A \sim_0 B$, akkor $B \sim_1 A$,
- tranzitív: ha $A \sim_0 B$ és $B \sim_0 C$, akkor $A \sim_0 C$,

azaz az ítéletlogikai formulák közötti binér \sim_0 reláció **ekvivalenciareláció**.

1.4. Formulák normálformái

- Egy atomi formulát vagy negáltját **literálnak** fogjuk nevezni.
- Elemi konjunkció
 - 1. egy literál,
 - 2. vagy egy elemi konjunkció és egy literál konjunkciója.

Például:
$$((A \land \neg B) \land C) \land \neg D$$
, tehát: $A \land \neg B \land C \land \neg D$, azaz "sok és".

- Elemi diszjunkció
 - 1. egy literál,
 - 2. vagy egy elemi diszjunkció és egy literál diszjunkciója.

Például:
$$((A \lor B) \lor \neg C) \lor D$$
, tehát: $A \lor B \lor \neg C \lor D$, azaz "sok vagy".

- Konjunktív normálforma
 - 1. egy elemi diszjunkció,
 - 2. vagy egy konjunktív normálforma és egy elemi diszjunkció konjunkciója.

• <u>Diszjunktív normálforma</u>

- 1. egy elemi konjunkció,
- 2. vagy egy diszjunktív normálforma és egy elemi konjunkció diszjunkciója.

Minden ítéletlogikai formulához konstruálható vele logikailag ekvivalens konjunktív és diszjunktív normálforma.

- Jelek közötti összefüggések:
 - $\circ \neg (A \supset B) \sim A \land \neg B$
 - \circ $A \supset B \sim \neg A \lor B$
- Kétszeres tagadás:

$$\circ \neg \neg A \sim A$$

- De Morgan törvényei:
 - $\circ \neg (A \land B) \sim \neg A \lor \neg B$
 - $\circ \neg (A \lor B) \sim \neg A \land \neg B$
- Disztributivitás:
 - $\circ \quad A \wedge (B \vee C) \sim (A \wedge B) \vee (A \wedge C)$
 - $\circ \quad A \vee (B \wedge C) \sim (A \vee B) \wedge (A \vee C)$

A normálforma konstrukciójának lépései:

1. a logikai jelek közötti összefüggések alapján az implikációkat eltávolítjuk,

[&]quot;Sok vagy összeéselése".

[&]quot;Sok és összevagyolása".

- 2. De Morgan törvényeivel elérjük, hogy negáció csak atomokra vonatkozzon,
- 3. a disztributivitást felhasználva elérjük, hogy a konjunkciók és diszjunkciók megfelelő sorrendben kövessék egymást,
- 4. esetleg egyszerűsítünk.

1.5. Szemantikus következményfogalom

Legyen Γ (nagy gamma) ítéletlogikai formulák tetszőleges halmaza és B egy tetszőleges formula.

Azt mondjuk, hogy a B formula **tautologikus következménye** a Γ formulahalmaznak (vagy a Γ -beli formuláknak), ha minden olyan interpretációban, melyben a Γ -beli formulák mindegyike igaz, ezekben a B formula is igaz.

A Γ -beli formulák a **feltételformulák (premisszák)**, a B formula a **következményformula (konklúzió)**.

Jelölése: $\Gamma | =_{0} B$.

Legyenek A_1 , A_2 , ..., A_n , B ($n \ge 1$) tetszőleges ítéletlogikai formulák. $\{A_1, A_2, ..., A_n\} | =_0 B$ pontosan akkor,

- ha az $A_1 \wedge A_2 \wedge ... \wedge A_n \wedge \neg B$ formula kielégíthetetlen.
- ha $=_0 A_1 \wedge A_2 \wedge ... \wedge A_n \supset B$.

Az első azt mondja, hogy nincs olyan eset, hogy az igaz feltételek mellett a következmény hamis (indirekt bizonyítás), a második pedig azt, hogy ha a feltételek igazak, akkor a következménynek is igaznak kell lennie (direkt bizonyítás).

Legyen $\{A_1, A_2, ..., A_n\}$ tetszőleges formulahalmaz, és B egy formula. Az $(\{A_1, A_2, ..., A_n\}, B)$ párt **következtetésformának** nevezzük. Az $(\{A_1, A_2, ..., A_n\}, B)$ pár **helyes következtetésforma**, ha $\{A_1, A_2, ..., A_n\} | =_0 B$.

2. Az elsőrendű matematikai logikai nyelv

2.1. Az elsőrendű logikai nyelvek szintaxisa

Egy elsőrendű logikai nyelv **ábécéje** logikai és logikán kívüli szimbólumokat, továbbá elválasztójeleket tartalmaz.

A logikán kívüli szimbólumhalmaz megadható $\langle Srt, Pr, Fn, Cnst \rangle$ alakban, ahol

- 1. *Srt* nemüres halmaz, elemei **fajtákat** szimbolizálnak,
- 2. *Pr* nemüres halmaz, elemei **predikátumszimbólumok**,
- 3. az *Fn* halmaz elemei **függvényszimbólumok**,
- 4. *Cnst* pedig a **konstansszimbólumok** halmaza.

Az $\langle Srt, Pr, Fn, Cnst \rangle$ ábécé szignatúrája egy (v_1, v_2, v_3) (kis nű) hármas, ahol

- 1. minden $P \in Pr$ predikátumszimbólumhoz v_1 a **predikátumszimbólum alakját**, azaz a $(\pi_1, \pi_2, ..., \pi_k)$ fajtasorozatot,
- 2. minden $f \in Fn$ függvényszimbólumhoz v_2 a **függvényszimbólum alakját**, azaz a $(\pi_1, \pi_2, ..., \pi_k, \pi)$ fajtasorozatot és
- 3. minden $c \in Cnst$ konstansszimbólumhoz v_3 a **konstansszimbólum fajtáját**, azaz (π) -t rendel (k > 0 és $\pi_1, \pi_2, ..., \pi_k, \pi \in Srt$).

Az Srt, az gondolom Sort, tehát fajta, a Cnst meg egyértelműen Const. Az Fn az Function, a Pr viszont nem tudom, hogy Procedure-nek elmegy-e, de gyakorlatilag felfoghatjuk őket így. A függvényszimbólumok pí típusú elemekből csinálnak pí típusúakat (például az Ar nyelvben az összeadás), a predikátumszimbólumok ("eljárások") pedig pí típusú elemekből csinálnak igaz/hamis értéket (például a Geom nyelvben a "pont az egyenesen van" predikátum). Így gyakorlatilag a függvényeken keresztül össze-vissza dolgozhatunk Srt-beli fajtákkal, de logikai formulában csak predikátumokon keresztül használhatjuk őket (annak nincs értelme, hogy "A és B vagy 12+3", de annak van, hogy "A és B vagy Páros(12+3)").

Logikai jelek:

- a logikai összekötőjelek: ¬, ∧, ∨, ⊃
- a kvantorok: ∀, ∃
- a különböző fajtájú individuumváltozók.

Egy elsőrendű nyelv ábécéjében minden $\pi \in Srt$ fajtához szimbólumoknak megszámlálhatóan végtelen $v_1^{\pi}, v_2^{\pi}, \dots$ rendszere tartozik, ezek a szimbólumok a π **fajtájú változók**.

Elválasztójelek a zárójelek: () és a vessző: ,

Az elsőrendű nyelv termjei és formulái:

- 1. Minden $\pi \in Srt$ fajtájú változó és konstans π fajtájú term.
- 2. Ha az $f \in Fn$ függvényszimbólum $(\pi_1, \pi_2, ..., \pi_k, \pi)$ alakú és $t_1, t_2, ..., t_k$ rendre $\pi_1, \pi_2, ..., \pi_k$ fajtájú termek, akkor az $f(t_1, t_2, ..., t_k)$ szó egy π fajtájú term.
- 3. Minden term az 1–2. szabályok véges sokszori alkalmazásával áll elő.

- 4. Ha a $P \in Pr$ predikátumszimbólum $(\pi_1, \pi_2, ..., \pi_k)$ alakú és $t_1, t_2, ..., t_k$ rendre $\pi_1, \pi_2, ..., \pi_k$ fajtájú termek, akkor a $P(t_1, t_2, ..., t_k)$ szó egy elsőrendű formula. Az így nyert formulákat **atomi formuláknak** nevezzük.
- 5. Ha A elsőrendű formula, akkor $\neg A$ is az.
- 6. Ha A és B elsőrendű formulák, akkor az $(A \wedge B)$, $(A \vee B)$ és az $(A \supset B)$ is elsőrendű formulák.
- 7. Ha A elsőrendű formula és x tetszőleges változó, akkor $\forall x A$ és $\exists x A$ is elsőrendű formulák. Az így nyert formulákat **kvantált formuláknak** nevezzük.
- 8. Minden elsőrendű formula a 4–7. szabályok véges sokszori alkalmazásával áll elő.

Egy elsőrendű nyelv termjeinek halmazát \mathcal{L}_t -vel, formuláinak halmazát \mathcal{L}_f -fel jelölhetjük.

Magyarul term az, amíg Srt-beli típusokkal dolgozunk, ha igazságértékekkel, akkor pedig már formula.

A szerkezeti indukció elve:

Termekre:

Egy elsőrendű logikai nyelv minden termje \mathcal{T} tulajdonságú,

- (alaplépés:) ha minden változója és konstansa T tulajdonságú, továbbá
- \circ (indukciós lépés:) ha a t_1, t_2, \dots, t_k termek $\mathcal T$ tulajdonságúak, akkor az f függvényszimbólum felhasználásával előállított $f(t_1, t_2, \dots, t_k)$ term is $\mathcal T$ tulajdonságú.
- Formulákra:

Egy elsőrendű logikai nyelv minden formulája \mathcal{T} tulajdonságú,

- \circ (alaplépés:) ha minden atomi formulája \mathcal{I} tulajdonságú, és
- (indukciós lépések:)
 - 1. ha az A formula \mathcal{T} tulajdonságú, akkor $\neg A$ is \mathcal{T} tulajdonságú,
 - 2. ha az A és a B formulák $\mathcal T$ tulajdonságúak, akkor az $(A \wedge B)$, $(A \vee B)$ és az $(A \supset B)$ is $\mathcal T$ tulajdonságúak és
 - 3. ha az A formula \mathcal{T} tulajdonságú és x individuumváltozó, akkor $\forall x A$ és $\exists x A$ is \mathcal{T} tulajdonságúak.

Az egyértelmű elemzés tétele:

- Egy elsőrendű logikai nyelv minden termjére a következő állítások közül pontosan egy igaz:
 - 1. A term a nyelv egy változója.
 - 2. A term a nyelv egy konstansa.
 - 3. A term a nyelv egyértelműen meghatározható $t_1, t_2, ..., t_k$ termjei és az $f \in Fn$ függvényszimbólum felhasználásával előállított $f(t_1, t_2, ..., t_k)$ alakú term.
- Egy elsőrendű logikai nyelv minden formulájára a következő állítások közül pontosan egy igaz:
 - 1. A formula a nyelv egyértelműen meghatározható t_1, t_2, \dots, t_k termjei és $P \in Pr$ predikátumszimbóluma felhasználásával előállított $P(t_1, t_2, \dots, t_k)$ alakú atomi formula.

- 2. A formula egy a nyelv egyértelműen meghatározható formulájának negáltja.
- 3. A formula a nyelv egyértelműen meghatározható formuláinak konjunkciója.
- 4. A formula a nyelv egyértelműen meghatározható formuláinak diszjunkciója.
- 5. A formula a nyelv egyértelműen meghatározható formuláinak implikációja.
- 6. A formula a nyelv egy egyértelműen meghatározható A formulája és x változója felhasználásával előállított $\forall x A$ alakú formula.
- 7. A formula a nyelv egy egyértelműen meghatározható A formulája és x változója felhasználásával előállított $\exists x A$ alakú formula.

Egy elsőrendű logikai nyelvben egyetlen konstansnak és változónak sincs **közvetlen résztermje**, az $f(t_1, t_2, ..., t_k)$ term közvetlen résztermjei a $t_1, t_2, ..., t_k$ termek.

Egy atomi formulának nincs **közvetlen részformulája**, a $\neg A$ egyetlen közvetlen részformulája az A formula, az $(A \land B)$, $(A \lor B)$, illetve az $(A \supset B)$ formulák közvetlen részformulái az A és a B formulák, a $\forall x A$, illetve $\exists x A$ közvetlen részformulája az A formula.

Egy **term résztermjeinek halmaza** a legszűkebb olyan halmaz, melynek a term eleme és ha egy term eleme, akkor eleme a term összes közvetlen résztermje is.

Egy **formula részformuláinak halmaz**a a legszűkebb olyan halmaz, melynek a formula eleme és ha egy formula eleme, akkor eleme a formula összes közvetlen részformulája is.

A szerkezeti rekurzió elve:

Termekre:

Egy elsőrendű logikai nyelv esetén a nyelv termjein értelmezett $\mathcal F$ függvényt egyértelműen adjuk meg, ha

- o (alaplépés:) értékeit rögzítjük a nyelv változóin és konstansain, majd megmondjuk, hogy
- \circ (indukciós lépések:) \mathcal{F} értéke az $f(t_1, t_2, ..., t_k)$ termre az \mathcal{F} -nek a $t_1, t_2, ..., t_k$ termeken felvett értékeiből hogyan származtatható.

Formulákra:

Egy elsőrendű logikai nyelv esetén a nyelv formuláin értelmezett $\,\mathcal{F}\,$ függvényt egyértelműen adjuk meg, ha

- \circ (alaplépés:) értékeit rögzítjük a nyelv atomi formuláin és megmondjuk, hogy $\mathcal F$ értéke
- (indukciós lépések:)
 - 1. a $\neg A$ formulára az A-n felvett értékéből,
 - 2. az $(A \land B)$, $(A \lor B)$, illetve az $(A \supset B)$ formulára az A -n és a B -n felvett értékeiből, illetve
 - 3. a $\forall x A$, illetve az $\exists x A$ formulára az A-n felvett értékéből hogyan származtatható.

Definiáljuk a $\tilde{l}: \mathcal{L}_t \rightarrow N_0$ függvényt a következőképpen:

- 1. ha t változó vagy konstansszimbólum, $\tilde{\ell}(t)$ legyen 0,
- 2. $\tilde{\ell}(f(t_1, t_2, ..., t_k))$ legyen $\tilde{\ell}(t_1) + \tilde{\ell}(t_2) + ... + \tilde{\ell}(t_k) + 1$.

Ekkor a $t \in \mathcal{L}_t$ termhez rendelt $\tilde{\ell}(t)$ függvényértéket a t term **funkcionális összetettségének**

nevezzük.

Definiáljuk a $\ell: \mathcal{L}_f \rightarrow N_0$ függvényt a következőképpen:

- 1. ha *A* atomi formula, $\ell(A)$ legyen 0,
- 2. $\ell(\neg A)$ legyen $\ell(A)+1$,
- 3. $\ell(A \land B)$, $\ell(A \lor B)$, illetve az $\ell(A \supset B)$ legyen $\ell(A) + \ell(B) + 1$,
- 4. $\ell(\forall x A)$, illetve az $\ell(\exists x A)$ pedig legyen $\ell(A)+1$.

Ekkor az $A \in \mathcal{L}_f$ formulához rendelt $\ell(A)$ függvényértéket az A formula **logikai** összetettségének nevezzük.

A funkcionális összetettség a függvényszimbólumokat számolja meg egy termben, a logikai összetettség pedig a logikai műveleteket (tehát a predikátumokat és függvényeket **nem**) egy formulában.

Az ítéletlogikában definiáltuk a **logikai összekötőjel hatáskörének** és a **fő logikai összekötőjelnek** a fogalmát. A fogalmak változtatás nélkül kiterjeszthetők a kvantorokra is.

Egészítsük ki a logikai összekötőjelek közötti erősorrendet azzal, hogy a kvantorokat is besoroljuk. A prioritás csökkenő sorrendben: $\{\forall, \exists, \neg\}, \{\land, \lor\}, \supset$. Azokat a zárójeleket, melyek ezt a sorrendet jelölnék ki, elhagyhatjuk.

Egy változó előfordulása lehet **szabad**, vagy **kötött**. A szabad előfordulással rendelkező változó a kifejezés **paramétere**. Az A előtt szereplő kvantor által kötött x változó átnevezése: $\forall y [A_y^x]$, $\exists y [A_y^x]$.

Formulák kongruenciája:

- 1. Egy atomi formula csak önmagával kongruens.
- 2. $\neg A \approx \neg A'$, ha $A \approx A'$.
- 3. $(A \circ B) \approx (A' \circ B')$, ha $A \approx A'$ és $B \approx B'$.
- 4. $\forall x A \approx \forall y A'$, illetve $\exists x A \approx \exists y A'$, ha $[A_z^x] \approx [A'_z^y]$ minden olyan z változóra, amely különbözik a kérdéses formulákban előforduló összes változótól.

2.2. Az elsőrendű logikai nyelvek szemantikája

- \mathcal{L} **interpretációja** egy I-vel jelölt $\langle I_{Srt}, I_{Pr}, I_{Fn}, I_{Cnst} \rangle$ függvénynégyes, ahol
 - 1. az $I_{Srt}: \pi \to \mathcal{U}_{\pi}$ függvény megad minden egyes $\pi \in Srt$ fajtához egy \mathcal{U}_{π} nemüres halmazt, a π fajtájú individuumok halmazát (a különböző fajtájú individuumok halmazainak uniója az interpretáció **individuumtartománya** vagy **univerzuma**),
 - 2. az $I_{Pr}: P \rightarrow P^I$ függvény megad minden $(\pi_{1,}\pi_{2,}...,\pi_{k})$ alakú $P \in Pr$ predikátumszimbólumhoz egy $P^I: \mathcal{U}_{\pi_{1}} \times \mathcal{U}_{\pi_{2}} \times ... \times \mathcal{U}_{\pi_{k}} \rightarrow \{i,h\}$ logikai függvényt (relációt),
 - 3. az $I_{Fn}: f \rightarrow f^I$ függvény hozzárendel minden $(\pi_{1,}\pi_{2,}...,\pi_{k},\pi)$ alakú $f \in Fn$ függvényszimbólumhoz egy $f^I: \mathcal{U}_{\pi_1} \times \mathcal{U}_{\pi_2} \times ... \times \mathcal{U}_{\pi_k} \rightarrow \mathcal{U}_{\pi}$ matematikai függvényt (műveletet),
 - 4. az $I_{Cnst}: c \to c^I$ függvény pedig minden π fajtájú $c \in Cnst$ konstansszimbólumhoz az \mathcal{U}_{π}

individuumtartománynak egy individuumát rendeli, azaz $c^I \in \mathcal{U}_{\pi}$.

Példa: Az Ar nyelv természetes interpretációja:

$$\begin{split} I_{Srt}(szt) &= \mathbb{N}_0 \\ I_{Cnst}(nulla) &= 0 \\ I_{Fn}(f) &= f^I, \text{ ahol } f^I : \mathbb{N}_0 \rightarrow \mathbb{N}_0, \text{ \'es } f^I(n) = n+1, (\text{ha } n \in \mathbb{N}_0) \\ I_{Fn}(g) &= g^I, \text{ ahol } g^I : \mathbb{N}_0 \times \mathbb{N}_0 \rightarrow \mathbb{N}_0, \text{ \'es } g^I(n,m) = n+m, (\text{ha } n,m \in \mathbb{N}_0) \\ I_{Fn}(h) &= h^I, \text{ ahol } h^I : \mathbb{N}_0 \times \mathbb{N}_0 \rightarrow \mathbb{N}_0, \text{ \'es } h^I(n,m) = n \cdot m, (\text{ha } n,m \in \mathbb{N}_0) \\ I_{Pr}(P) &= P^I, \text{ ahol } P^I : \mathbb{N}_0 \times \mathbb{N}_0 \rightarrow \{i,h\}, \text{ \'es } (\text{ha } n,m \in \mathbb{N}_0) \\ P^I(n,m) &= i, ha(n=m); \ hegy\'ebk\'ent \end{split}$$

Legyen az \mathcal{L} elsőrendű logikai nyelvnek I egy interpretációja, az interpretáció univerzuma legyen \mathcal{U} . Jelölje V a nyelv változóinak a halmazát. Egy olyan $\kappa:V\to\mathcal{U}$ (kappa) leképezést, ahol ha κ fajtájú változó, akkor $\kappa(\kappa)$ \mathcal{U}_{π} -beli individuum, az I interpretáció egy változókiértékelésének nevezzük.

Legyen x egy változó. A κ^* változókiértékelés a κ **változókiértékelés** x **-variánsa**, ha $\kappa^*(y) = \kappa(y)$ minden x -től különböző y változó esetén.

Legyen az \mathcal{L} nyelvnek I egy interpretációja és κ egy I-beli változókiértékelés. Az \mathcal{L} nyelv egy π fajtájú t termjének értéke I-ben a κ változókiértékelés mellett az alábbi $-\left|t\right|^{I,\kappa}$ -val jelölt $-\mathcal{U}_{\pi}$ -beli individuum:

- 1. ha c \in Cnst π fajtájú konstansszimbólum, akkor $|c|^{I,\kappa}$ az \mathcal{U}_{π} -beli c I individuum,
- 2. ha x π fajtájú változó, akkor $|x|^{I,\kappa}$ az \mathcal{U}_{π} -beli $\kappa(x)$ individuum,
- 3. ha t_1, t_2, \ldots, t_k rendre $\pi_1, \pi_2, \ldots, \pi_k$ fajtájú termek és ezek értékei a κ változókiértékelés mellett I-ben rendre az \mathcal{U}_{π_1} -beli $|t_1|^{I,\kappa}$, az \mathcal{U}_{π_2} -beli $|t_2|^{I,\kappa}$, \ldots és az \mathcal{U}_{π_k} -beli $|t_k|^{I,\kappa}$ individuumok, akkor egy $(\pi_1, \pi_2, \ldots, \pi_k, \pi)$ alakú $f \in Fn$ függvényszimbólum esetén $|f(t_1, t_2, \ldots, t_k)|^{I,\kappa}$ az \mathcal{U}_{π} -beli $f^I(|t_1|^{I,\kappa}, |t_2|^{I,\kappa}, \ldots, |t_k|^{I,\kappa})$ individuum.

Példa:

Az Ar nyelv természetes interpretációjában

• bármely változókiértékelés mellett |nulla| = 0 $|f(nulla)| = f^{I}(|nulla|) = 1$

• a $\kappa(x) = 1, \kappa(y) = 3$ változókiértékelés mellett

$$|(f(x)+y)|^{\kappa} = q^{I}(|f(x)|^{\kappa},|y|^{\kappa}) = q^{I}(f^{I}(|x|^{\kappa}),3) = q^{I}(f^{I}(1),3) = q^{I}(2,3) = 5$$

Legyen az \mathcal{L} nyelvnek I egy interpretációja és κ egy I-beli változókiértékelés. Egy C formulához I-ben a κ változókiértékelés mellett az alábbi $- |C|^{I,\kappa}$ -val jelölt - igazságértéket rendeljük:

1.
$$|P(t_1, t_2, ..., t_k)|^{I,\kappa} = i, haP^{I}(|t_1|^{I,\kappa}, |t_2|^{I,\kappa}, ..., |t_k|^{I,\kappa}) = i; hegyébként$$

2.
$$|\neg A|^{I,\kappa} \Leftrightarrow \dot{\neg} |A|^{I,\kappa}$$

3.
$$|A \wedge B|^{I,\kappa} \leftrightharpoons |A|^{I,\kappa} \dot{\wedge} |B|^{I,\kappa}$$

4.
$$|A \vee B|^{I,\kappa} \leftrightharpoons |A|^{I,\kappa} \dot{\vee} |B|^{I,\kappa}$$

5.
$$|A \supset B|^{I,\kappa} \leftrightharpoons |A|^{I,\kappa} \stackrel{\cdot}{\supset} |B|^{I,\kappa}$$

6.
$$|\forall x A|^{I,\kappa} = i, ha|A|^{I,\kappa^*} = i \kappa \text{ minden } \kappa^* x \text{ variánsára}; \text{ hegyébként}$$

7.
$$|\exists x A|^{I,\kappa} = i, ha|A|^{I,\kappa^*} = i \kappa \text{ valamely } \kappa^* x \text{ variansara}; hegyébként}$$

2.3. Elsőrendű logikai törvények

Az elsőrendű logikai nyelv egy A formulája **kielégíthető**, ha van a nyelvnek olyan I interpretációja és I-ben van olyan κ változókiértékelés, amelyre $|A|^{I,\kappa}=i$ egyébként A **kielégíthetetlen**. Ha az I interpretáció és a κ változókiértékelés olyanok, hogy $|A|^{I,\kappa}=i$, azt

kielégíthetetlen. Ha az I interpretáció és a κ változókiértékelés olyanok, hogy $|A|^{I,\kappa} = i$, azt mondjuk, hogy I a κ változókiértékelés mellett **kielégíti** A-t.

Amennyiben az A formula zárt, igazságértékét egyedül az interpretáció határozza meg. Ha $|A|^I = i$, azt mondjuk, hogy az I interpretáció **kielégíti** A-t vagy másképp, az I interpretáció az A formula **modellje**.

Az elsőrendű logikai nyelv egy A formulája **logikai törvény**, ha a nyelv minden I interpretációjában és I minden κ változókiértékelése mellett $|A|^{I,\kappa} = i$. Jelölése: |=A.

Az ítéletlogikában használtuk a prímformula fogalmát. A prímformulákból a ¬, ∧, ∨, ⊃ logikai összekötőjelek segítségével minden ítéletlogikai formulát fel tudtunk építeni. Egy elsőrendű logikai nyelvben is vannak ilyen formulák: a nyelv atomi formulái és a kvantált formulák. Ezek a formulák az **elsőrendű logikai nyelv prímformulái**.

Egy formula azon részformuláit, amelyek prímformulák és amelyekből a formula csupán a ¬, ∧, ∨, ⊃ logikai összekötőjelek segítségével felépíthető, a formula **prímkomponenseinek** nevezzük.

Legyenek az A formula prímkomponensei A_1, A_2, \dots, A_n . Ha a különböző prímkomponenseket ítéletváltozóknak tekintenénk, az így kapott ítéletlogikai formulához megadhatnánk az igazságtáblát. Az elsőrendű formulához így megkonstruált táblázatot *Quine-féle táblázatnak* hívjuk.

- Ebben a táblázatban a sorokban szereplő igazságértékekről azonban nem tudhatjuk, hogy van-e egyáltalán olyan interpretáció és az interpretációban olyan változókiértékelés, ami mellett a prímkomponensek igazságértékei rendre ezek lennének.
- Az viszont nyilvánvaló, hogy minden interpretáció és minden változókiértékelés esetén a prímkomponensek igazságértékei a Quine-táblázat valamelyik sorában a prímkomponensekhez tartozó oszlopban rendre megtalálhatók.

Példa: A $\neg \exists x \neg \exists P(x) \supset \forall x P(x)$ formula prímkomponensei $\exists x \neg \exists P(x)$ és $\forall x P(x)$. A formula Quine-féle táblázata a következő:

$\exists x \neg \exists P(x)$	$\forall x P(x)$	$\neg \exists x \neg \exists P(x) \supset \forall x P(x)$
i	i	i
i	h	i
h	i	i
h	h	h

Az elsőrendű logikai nyelv egy A formulája **tautologikusan igaz** (tautológia), ha a formula Quinetáblázatában A oszlopában csupa i igazságérték található. Jelölése: $=_0 A$.

Ha az A elsőrendű formula tautologikusan igaz (tautológia), akkor elsőrendű logikai törvény, azaz ha $|=_0 A$, akkor |=A.

Legyenek A és B az \mathcal{L} nyelv tetszőleges formulái. Azt mondjuk, hogy az A és a B elsőrendű formulák **logikailag ekvivalensek**, és ezt a tényt úgy jelöljük, hogy $A \sim B$, ha minden I interpretációban és κ változókiértékelés mellett $|A|^{I,\kappa} = |B|^{I,\kappa}$.

Legyenek A és B elsőrendű formulák.

- $A \sim B$ pontosan akkor, ha $|=(A \supset B) \land (B \supset A)$.
- Ha $A \approx B$, akkor $A \sim B$.
- Ha A olyan formula, hogy $x \notin Par(A)$, akkor $\forall x A \sim A$ és $\exists x A \sim A$.
- $\forall x \forall y A \sim \forall y \forall x A \text{ és } \exists x \exists y A \sim \exists y \exists x A$.
- Kvantorok kétoldali kiemelése:
 - $\circ \quad \forall x A \land \forall x B \ \forall x (A \land B)$
 - \circ $\exists x A \lor \exists x B \ \exists x (A \lor B)$
- De Morgan kvantoros törvényei:
 - $\circ \neg \exists x A \sim \forall x \neg A$
 - $\circ \neg \forall x A \sim \exists x \neg A$
- Kvantorok egyoldali kiemelése:

Ha $x \notin Par(A)$, akkor

- \circ $A \circ \forall x B \sim \forall x (A \circ B)$
- $\circ A \circ \exists x B \sim \exists x (A \circ B)$
- $\circ \quad \forall x B \supset A \sim \exists x (B \supset A)$
- $\circ \exists x B \supset A \sim \forall x (B \supset A)$.

2.4. Prenex alak

Egy $Q_1x_1Q_2x_2...Q_nx_nA(n\geq 0)$ alakú formulát, ahol az A kvantormentes formula, **prenex alakú formulának** nevezünk.

Egy elsőrendű logikai nyelv tetszőleges formulájához konstruálható vele logikailag ekvivalens prenex alakú formula.

A konstrukció lépései:

- 1. változó-tiszta alakra hozzuk a formulát,
- 2. alkalmazzuk De Morgan kvantoros és az egyoldali kvantorkiemelésre vonatkozó logikai törvényeket.

2.5. Szemantikus következményfogalom

Legyen Γ egy elsőrendű nyelv formuláinak halmaza és B formula.

B <u>logikai következménye</u> a Γ formulahalmaznak (vagy a Γ -beli formuláknak), ha a nyelv minden olyan interpretációja és változókiértékelése, amely kielégít minden Γ -beli formulát, az kielégíti a B formulát is.

Jelölése: $\Gamma = B$.

Legyenek $A_1, A_2, ..., A_n, B$ ($n \ge 1$) az elsőrendű formulák. $\{A_1, A_2, ..., A_n\} \mid = B$ pontosan akkor, ha

- 1. az $A_1 \wedge A_2 \wedge ... \wedge A_n \wedge \neg B$ formula kielégíthetetlen.
- 2. az $A_1 \wedge A_2 \wedge ... \wedge A_n \supseteq B$ formula logikai törvény.

Legyen Γ egy elsőrendű nyelv formuláinak véges halmaza és B tetszőleges formulája. Azt mondjuk, hogy B **tautologikus következménye** Γ -nak, ha a Γ formulahalmaz és B közös Quine-táblázatában azon sorokban, ahol minden Γ -beli formula alatti igazságérték található, B oszlopában is csupa i igazságérték van.

Jelölése: $\Gamma | =_0 B$.

Ha
$$\{A_1, A_2, ..., A_n\} \mid =_0 B$$
, akkor $\{A_1, A_2, ..., A_n\} \mid = B$.

3. Szekventkalkulus

Legyenek $A_1, A_2, \dots, A_n, B_1, B_2, \dots, B_m(n, m \ge 0)$ egy elsőrendű nyelv formulái. Ekkor a $\top \land A_1 \land A_2 \land ... \land A_n \supseteq B_1 \lor B_2 \lor ... \lor B_m \lor \bot$ formulát **szekventnek** nevezzük.

Jelölése:

 $A_{1,}A_{2,}...,A_{n} \rightarrow B_{1,}B_{2,}...,B_{m}$ vagy rövidebben: $\Gamma \rightarrow \Delta$ (nagy gamma, nagy delta), ahol $\Gamma = \{A_1, A_2, \dots, A_n\} \text{ és } \Delta = \{B_1, B_2, \dots, B_m\}$

A kalkulus **axiómasémái** és levezetési szabályai:

- $A\Gamma \rightarrow \Delta A$
- $\perp \Gamma \rightarrow \Delta$
- $\Gamma \rightarrow \Delta T$

•
$$(\land \rightarrow) \frac{AB\Gamma \rightarrow \Delta}{(A \land B)\Gamma \rightarrow \Delta}$$
 • $(\rightarrow \land) \frac{\Gamma \rightarrow \Delta A; \Gamma \rightarrow \Delta B}{\Gamma \rightarrow \Delta (A \land B)}$

•
$$(\lor \to) \frac{A \Gamma \to \Delta ; B \Gamma \to \Delta}{(A \lor B) \Gamma \to \Delta}$$
 • $(\to \lor) \frac{\Gamma \to \Delta A B}{\Gamma \to \Delta (A \lor B)}$

•
$$(\lor \to) \frac{A \Gamma \to \Delta; B \Gamma \to \Delta}{(A \lor B) \Gamma \to \Delta}$$
 • $(\to \lor) \frac{\Gamma \to \Delta A B}{\Gamma \to \Delta (A \lor B)}$
• $(\to \lor) \frac{\Gamma \to \Delta A; B \Gamma \to \Delta}{(A \supset B) \Gamma \to \Delta}$ • $(\to \supset) \frac{A \Gamma \to \Delta B}{\Gamma \to \Delta (A \supset B)}$

$$\bullet \qquad (\neg \rightarrow) \frac{\Gamma \rightarrow \Delta A}{\neg A \Gamma \rightarrow \Delta} \qquad \qquad \bullet \qquad (\rightarrow \neg) \frac{A \Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta \neg A}$$

•
$$(\neg \rightarrow) \frac{\Gamma \rightarrow \Delta A}{\neg A \Gamma \rightarrow \Delta}$$
 • $(\rightarrow \neg) \frac{A \Gamma \rightarrow \Delta}{\Gamma \rightarrow \Delta \neg A}$
• $(\forall \rightarrow) \frac{A(x||t) \forall x A \Gamma \rightarrow \Delta}{\forall x A \Gamma \rightarrow \Delta}$ • $(\rightarrow \neg) \frac{\Gamma \rightarrow \Delta A(x||y)}{\Gamma \rightarrow \Delta \forall x A}$

•
$$(\exists \rightarrow) \frac{A(x||y)\Gamma \rightarrow \Delta}{\exists x \forall A\Gamma \rightarrow \Delta}$$
 • $(\rightarrow \exists) \frac{\Gamma \rightarrow \Delta A(x||t)\exists x A}{\Gamma \rightarrow \Delta \exists x A}$

Egy szekventet a kalkulusban **levezethetőnek** nevezünk, h

- vagy axióma,
- vagy van olyan levezetési szabály, melyben ez vonal alatti szekvent és a vonal feletti szekvent vagy szekventek pedig levezethetőek.

A kalkulus **helyes**, mert ha az

$$A_1, A_2, \dots, A_n \rightarrow B_1, B_2, \dots, B_m$$
 szekvent levezethető a kalkulusban, akkor a $\top \land A_1 \land A_2 \land \dots \land A_n \supset B_1 \lor B_2 \lor \dots \lor B_m \lor \bot$ formula logikai törvény.

A kalkulus **teljes**, mert ha az A formula logikai törvény, akkor a $\rightarrow A$ szekvent levezethető a kalkulusban.