Matrices stochastiques

Notations et définitions

n désigne un entier naturel supérieur ou égal à 2 et p un entier naturel.

Une matrice $A = (a_{i,j})$ de $M_n(\mathbb{C})$ est dite stochastique ssi

(1)
$$\forall i, j \in \{1, 2, ..., n\}$$
, $a_{i,j} \in \mathbb{R}^+$,

(2)
$$\forall i \in \{1, 2, ..., n\}$$
, $\sum_{i=1}^{n} a_{i,j} = 1$.

On note S_n l'ensemble de ces matrices.

Une suite $(A_p)_{p\in\mathbb{N}}$ de matrice de $\mathcal{M}_n(\mathbb{C})$ est dite converger vers B matrice de $M_n(\mathbb{C})$ ssi les n^2 suites complexes définies par les coefficients des matrices A_p convergent vers les coefficients respectifs de B. On montre aisément que si (A_p) et (A'_p) convergent vers B et B' alors les suites $(A_p + A'_p)$ et $(A_p A'_p)$ convergent respectivement vers B + B' et BB'.

Enfin étant donné $A \in M_n(\mathbb{C})$ et $P = a_p X^p + \dots + a_1 X + a_0 \in \mathbb{C}[X]$, on note P(A) la matrice définie par $P(A) = a_n A^n + \dots + a_1 A + a_0 I_n \in M_n(\mathbb{C})$.

Préliminaire

Soit $A = (a_{i,j}) \in M_n(\mathbb{C})$. On note $X \in M_{n,1}(\mathbb{C})$ la colonne dont tous les coefficients valent 1.

- 1. Montrer que AX = X ssi $\forall i \in \{1, 2, ..., n\}$, $\sum_{i=1}^{n} a_{i,j} = 1$.
- 2. En déduire que S_n est stable pour le produit matriciel.

Partie I: Puissance des matrices stochastique d'ordre 2

La forme générale d'une matrice stochastique d'ordre 2 est $A = \begin{pmatrix} a & 1-a \\ 1-b & b \end{pmatrix}$ avec $a,b \in [0,1]$.

- 1. Calculer A^p dans les cas a = b = 1 et a = b = 0.
- 2. On suppose maintenant $(a,b) \neq (1,1)$ et $(a,b) \neq (0,0)$.
- 2.a Calculer P(A) où P = (X-1)(X-(a+b-1))
- 2.b Exprimer le reste de la division euclidienne de X^p par P.
- 2.c En déduire l'expression de A^p en fonction de a,b et p.
- 2.d Montrer que la suite (A^p) converge vers une limite que l'on précisera.

Partie II: Exemple de calcul de puissances d'une matrice stochastique d'ordre 3

On considère E l'ensemble des matrices carrées d'ordre 3 de la forme $M(a,b) = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$ avec (U,V).

- 1. Montrer que E un sous-espace vectoriel de $M_3(\mathbb{C})$ dont on précisera une base et la dimension.
- 2. On note $U = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ et V = I U.

- 2.a Montrer que la famille (U,V) forme une base de E. Quelles sont les coordonnées de M(a,b) dans cette base ?
- 2.b Calculer U^2 , V^2 , UV et VU.
- 2.c Pour $\alpha, \beta \in \mathbb{C}$ et $p \ge 1$, exprimer $(\alpha U + \beta V)^p$ en fonction de α, β, U, V et p. En déduire l'expression de $M(a,b)^p$ en fonction de U et V.
- 3. A quelles conditions sur a et b, une matrice M(a,b) de E appartient-elle à S_3 ? On suppose ces conditions remplies.

 Montrer que la suite $(M(a,b)^p)$ converge vers une limite que l'on précisera.

Partie III: Matrice de permutation

On note \mathfrak{S}_n le groupe des permutations de $\left\{1,2,\ldots,n\right\}$. Pour $\sigma\in\mathfrak{S}_n$, on note $M_\sigma=(m_{i,j})\in M_n(\mathbb{C})$ la matrice définie par : $m_{i,j}=\delta_{\sigma(i),j}=\begin{cases} 1 & \text{si } j=\sigma(i) \\ 0 & \text{sinon} \end{cases}$. M_σ est appelée matrice de permutation associée à σ .

- 1. Justifier que les matrices de permutations sont stochastiques.
- 2. Soit $A=(a_{i,j})$ une matrice de $\mathcal{M}_n(\mathbb{C})$ et σ un permutation de \mathfrak{S}_n .

 Donner le terme général des matrices $B=M_\sigma A$ et $C=A^tM_\sigma$ en fonction du terme général $a_{i,j}$ de la matrice A. Comment interpréter les résultats obtenus en termes de permutation de lignes ou colonnes.
- 3. Soit $\sigma, \sigma' \in \mathfrak{S}_n$. Exprimer le produit $M_{\sigma}.M_{\sigma'}$ comme matrice associée à une permutation de \mathfrak{S}_n . En déduire que M_{σ} est inversible et exprimer son inverse.
- 4. Soit $\sigma \in \mathfrak{S}_n$. A quelle condition la suite (M_{σ}^p) converge-t-elle?

Partie IV : Etude générale

Soit $A=(a_{i,j})\in\mathcal{S}_n$. On s'intéresse ici à l'éventuelle convergence de la suite $(A^p)_{p\in\mathbb{N}}$. Pour tout $p\in\mathbb{N}$, on note $a_{i,j}^{(p)}$ le coefficient d'indice (i,j) de la matrice A^p .

- 1. Montrer que si la suite $(A^p)_{p\in\mathbb{N}}$ converge vers une matrice B alors $B\in\mathcal{S}_n$ et $B^2=B$.
- 2. On suppose ici que pour tous $i, j \in \{1, 2, ..., n\}$, $a_{i, j} > 0$. On pose $\varepsilon = \min \left\{a_{i, j} / i, j \in \{1, 2, ..., n\}\right\}$. Pour tout p dans $\mathbb N$ et tout j dans $\{1, 2, ..., n\}$, on note $\alpha_i^{(p)} = \min \left\{a_{i, j}^{(p)} / i \in \{1, 2, ..., n\}\right\}, \ \beta_j^{(p)} = \max \left\{a_{i, j}^{(p)} / i \in \{1, 2, ..., n\}\right\} \text{ et } \delta_j^{(p)} = \beta_j^{(p)} \alpha_j^{(p)}.$
- $\begin{array}{ll} \text{2.a} & \text{Montrer que pour tout } p \text{ dans } \mathbb{N} \text{ et tout } j \text{ dans } \left\{1,2,\ldots,n\right\}, \text{ on a}: \\ & \alpha_i^{(p)} \leq \alpha_i^{(p+1)} \leq \beta_j^{(p+1)} \leq \beta_j^{(p)} \text{ et } \delta_j^{(p+1)} \leq (1-2\varepsilon)\delta_j^{(p)}. \end{array}$
- 2.b En déduire que $(A^p)_{p \in \mathbb{N}}$ converge vers une certaine matrice B.
- 2.c Quelle particularité ont les lignes de B?

Les matrices stochastiques interviennent en calcul de probabilité de la manière suivante :

Considérons un système à n états numérotés de 1 à n et notons $a_{i,j}$ la probabilité pour ce système de passer de l'état i à l'état j au bout d'un laps de temps donné.

La matrice $A = (a_{i,j})$ est alors une matrice stochastique, la condition $\sum_{i=1}^{n} a_{i,j} = 1$ signifiant que le système doit

atteindre à partir de l'état i l'un des états $1,2,\ldots,n$ donnés. Pour $p\in\mathbb{N}$, les coefficients de la matrices A^p permettent de voir les probabilités qui permettent de passe d'un état à un autre au bout de p laps de temps. La limite de (A^p) , lorsqu'elle existe, donne une information sur le processus limite. Dans ce contexte, l'égalité des lignes de B signifie que l'état limite est indépendant de l'état initial.