

Cold-start Bundle Recommendation via Popularity-based Coalescence and Curriculum Heating

Hyunsik Jeon¹, Jong-eun Lee², Jeongin Yun², and U Kang²

¹ University of California, San Diego
 ² Seoul National University

TheWebConf 2024

Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion

Product Bundling

- Prevalent strategy in various platforms
 - One-stop convenience for customers
 - Increased exposure to lesser-known products
 - Cost-efficient offerings to customers

Examples of product bundling

Bundle Recommendation

- Aims to recommend <u>bundles</u> instead of individual items
 - Became an important technique in industries

Cold-start Bundle Recommendation

- Aims to recommend cold bundles that have not been consumed by any users
 - New bundles are constantly created every day

Problem Definition

Cold-start bundle recommendation

Given

- $_{\circ}$ \mathcal{U} , \mathcal{B} , \mathcal{I} : sets of users, bundles, and items, resp.
- $_{\circ}$ A user-bundle interaction matrix $\mathbf{X} \in \mathbb{R}^{|\mathcal{U}| \times |\mathcal{B}_{w}|}$
 - $\mathcal{B}_w \subset \mathcal{B}$ refers to warm bundles
- $_{\circ}$ A user-item interaction matrix $\mathbf{Y} \in \mathbb{R}^{|\mathcal{U}| \times |\mathcal{I}|}$
- $_{\circ}$ A bundle-item affiliation matrix $\mathbf{Z} \in \mathbb{R}^{|\mathcal{B}| \times |\mathcal{I}|}$

Recommend

 $_{\circ}$ k bundles from \mathcal{B} to each user $u \in \mathcal{U}$

Challenge

- $_{\circ}$ To estimate relationship between $u \in \mathcal{U}$ and $b \in \mathcal{B}_c$
 - $\mathcal{B}_c = \mathcal{B} \backslash \mathcal{B}_w$ refers to cold bundles Hyunsik Jeon (UCSD)

Our Contributions

- We propose CoHeat (Popularity-based Coalescence and Curriculum Heating)
 - Problem: tackling the cold-start problem in bundle recommendation, which has not been widely studied
 - Method: a novel learning framework
 - Accurate: outperforming ~17 competitors on realworld datasets

Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion

Graph-based Views

 Form two graph-based views to fully utilize the given matrices X, Y, and Z, as in CrossCBR

Popularity-based Coalescence (1/2)

- Real-world interactions are <u>extremely skewed</u>
 - Unpopular bundles are underrepresented in userbundle (U-B) view
- User-item (U-I) view is more informative for them

Popularity-based Coalescence (2/2)

 Weighted strategy based on <u>bundle popularity</u> to estimate the relevance scores

$$\hat{y}_{ub} = \gamma_b h_{ub} + (1 - \gamma_b) a_{ub}$$
 where $\gamma_b \in [0, 1]$ $\gamma_b > \gamma_{b'}$ if $n_b > n_{b'}$ n_b : number of user interactions of bundle b

- Mitigates the influence of U-B view for unpopular bundles
- Instead, amplifies the influence of U-I view

$$\frac{\partial \hat{y}_{ub}}{\partial h_{ub}} < \frac{\partial \hat{y}_{ub'}}{\partial h_{ub'}} \text{ if } n_b < n_{b'} \qquad \qquad \frac{\partial \hat{y}_{ub}}{\partial a_{ub}} > \frac{\partial \hat{y}_{ub'}}{\partial a_{ub'}} \text{ if } n_b < n_{b'}$$

Curriculum Heating

- Cold bundles require well-represented embeddings from U-I view
 - U-I view is more difficult to learn than U-B view, as it entails understanding all affiliated items of a bundle
- Adopt a <u>curriculum learning</u> strategy
 - Focus initially on learning <u>easier</u> (U-B) view and gradually shift the focus to learning <u>harder</u> (U-I) view

$$\hat{y}_{ub}^{(t)} = \gamma_b^{(t)} h_{ub} + (1 - \gamma_b^{(t)}) a_{ub} \qquad \gamma_b^{(t)} = \tanh\left(\frac{n_b}{\psi^{(t)}}\right)$$

$$\psi^{(t)} = \epsilon^{t/T}, t: 0 \to T \qquad \epsilon > 1 \qquad \frac{\partial \hat{y}_{ub}^{(t)}}{\partial h_{ub}} < \frac{\partial \hat{y}_{ub'}^{(t)}}{\partial h_{ub'}} \text{ if } n_b < n_{b'}$$

$$\frac{\partial \hat{y}_{ub}^{(t)}}{\partial a_{ub}} > \frac{\partial \hat{y}_{ub'}^{(t)}}{\partial a_{ub'}} \text{ if } n_b < n_{b'}$$
Hyunsik Jeon (UCSD)

Alignment and Uniformity

- Aligning two views is essential, especially for cold bundles
- Adopt an <u>alignment and uniformity</u> (a sort of contrastive learning)

$$l_2\text{-normalization} \qquad \tilde{\mathbf{h}}_u = \frac{\mathbf{h}_u}{\|\mathbf{h}_u\|_2}, \tilde{\mathbf{a}}_u = \frac{\mathbf{a}_u}{\|\mathbf{a}_u\|_2}, \tilde{\mathbf{h}}_b = \frac{\mathbf{h}_b}{\|\mathbf{h}_b\|_2}, \tilde{\mathbf{a}}_b = \frac{\mathbf{a}_b}{\|\mathbf{a}_b\|_2}$$
 Alignment
$$l_{align} = \underset{u \sim p_{user}}{\mathbb{E}} \|\tilde{\mathbf{h}}_u - \tilde{\mathbf{a}}_u\|_2^2 + \underset{b \sim p_{bundle}}{\mathbb{E}} \|\tilde{\mathbf{h}}_b - \tilde{\mathbf{a}}_b\|_2^2$$
 Uniformity
$$l_{uniform} = \log \underset{u,u' \sim p_{user}}{\mathbb{E}} e^{-2\|\tilde{\mathbf{h}}_u - \tilde{\mathbf{h}}_{u'}\|_2^2} + \log \underset{u,u' \sim p_{user}}{\mathbb{E}} e^{-2\|\tilde{\mathbf{a}}_u - \tilde{\mathbf{a}}_{u'}\|_2^2}$$
 Uniformity
$$+ \log \underset{b,b' \sim p_{bundle}}{\mathbb{E}} e^{-2\|\tilde{\mathbf{h}}_b - \tilde{\mathbf{h}}_{b'}\|_2^2} + \log \underset{b,b' \sim p_{bundle}}{\mathbb{E}} e^{-2\|\tilde{\mathbf{a}}_b - \tilde{\mathbf{a}}_{b'}\|_2^2}$$

Contrastive loss

$$\mathcal{L}_{AU} = l_{align} + l_{uniform}$$

Hyunsik Jeon (UCSD)

Objective and Dynamics

Objective function of CoHeat

$$\mathcal{L}_{BPR}^{(t)} = \underset{(u,b^{+},b^{-}) \sim p_{data}}{\mathbb{E}} - \ln \sigma (\hat{y}_{ub^{+}}^{(t)} - \hat{y}_{ub^{-}}^{(t)})$$

$$\mathcal{L}^{(t)} = \mathcal{L}_{BPR}^{(t)} + \lambda_{1} \mathcal{L}_{AU} + \lambda_{2} \|\Theta\|_{2}$$

Dynamic mechanism of CoHeat

Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion

Research Questions

Q1. Comparison w/ cold-start methods

Does CoHeat show higher performance than other cold-start methods?

Q2. Comparison w/o warm-start methods

Does CoHeat show comparable performance to other warm-start methods?

Q3. Comparison by cold bundle ratio

on the cold bundle ratio?

Datasets

We use three real-world datasets

Dataset	Users	Bundles	Items	User-bundle (dens.)	User-item (dens.)	Bundle-item (dens.)	Avg. size of bundle
Youshu ¹	8,039	4,771	32,770	51,377 (0.13%)	138,515 (0.05%)	176,667 (0.11%)	37.03
NetEase ¹	18,528	22,864	123,628	302,303 (0.07%)	1,128,065 (0.05%)	1,778,838 (0.06%)	77.80
iFashion ¹	53,897	27,694	42,563	1,679,708 (0.11%)	2,290,645 (0.10%)	106,916 (0.01%)	3.86

Youshu: book review platform

NetEase: cloud music platform

iFashion: outfit sales platform

Baselines

Cold-start methods

- DropoutNet: robustness-based method
- CB2CF / Heater: constraint-based method
- GAR-CF / GAR-GNN / CVAR: generative method
- CLCRec / CCFCRec: contrastive method

Warm-start methods

- MFBPR / LightGCN / SGL / SimGCL / LightGCL: item recommendation method
- DAM / BundleNet / BGCN / CrossCBR: bundle recommendation method

Evaluation

- Three scenarios
 - Cold-start: bundles are randomly split
 - Warm-start: interactions are randomly split
 - All-bundle: half-n-half of warm/cold-start
- Metrics
 - 。Recall@20
 - ∘ *nDCG*@20

Q1. Comparison w/ Cold-start Methods

- CoHeat <u>outperforms</u> the competitors
 - Cold-start / warm-start / all-bundle scenarios

	Youshu				NetEase					iFashion								
Model	Recall@20 nI			DCG@20		R	Recall@20		nDCG@20			Recall@20			nDCG@20			
	Cold	Warm	All	Cold	Warm	All	Cold	Warm	All	Cold	Warm	All	Cold	Warm	All	Cold	Warm	All
DropoutNet [51]	.0022	.0336	.0148	.0007	.0153	.0055	.0028	.0154	.0046	.0015	.0078	.0024	.0009	.0060	.0039	.0008	.0045	.0027
CB2CF [2]	.0012	.0258	.0028	.0007	.0208	.0021	.0016	.0049	.0027	.0006	.0027	.0014	.0009	.0057	.0066	.0006	.0043	.0048
Heater [73]	.0016	.1753	.0541	.0007	.0826	.0286	.0021	.0125	.0102	.0010	.0064	.0054	.0015	.0217	.0123	.0010	.0151	.0083
GAR-CF [11]	.0015	.1688	.0529	.0011	.0726	.0317	.0010	.0063	.0014	.0005	.0035	.0008	.0013	.0203	.0090	.0013	.0143	.0055
GAR-GNN [11]	.0013	.0835	.0358	.0006	.0569	.0178	.0009	.0056	.0027	.0003	.0030	.0012	.0065	.0172	.0126	.0030	.0107	.0087
CVAR [70]	.0008	.1958	.0829	.0002	.1112	.0533	.0002	.0308	.0156	.0001	.0154	.0084	.0007	.0220	.0125	.0004	.0152	.0084
CLCRec [58]	.0137	.0626	.0367	.0087	.0317	.0194	.0136	.0407	.0259	.0075	.0215	.0138	.0053	.0203	.0126	.0043	.0135	.0085
CCFCRec [72]	.0044	.1554	.0702	.0022	.0798	.0425	.0007	.0265	.0130	.0004	.0128	.0068	.0005	<u>.0439</u>	<u>.0252</u>	.0003	<u>.0304</u>	.0172
CoHeat (ours)	.0183	.2804	.1247	.0105	.1646	.0833	.0191	.0847	.0453	.0093	.0455	.0264	.0170	.1156	.0658	.0096	.0876	.0504

Q2. Comparison w/ Warm-start Methods

- CoHeat shows <u>comparable performance</u> to the baselines (even slightly higher perf.)
 - Warm-start scenario

	You	shu	Net	Ease	iFashion			
Model	Recall	nDCG	Recall	nDCG	Recall	nDCG		
	@20	@20	@20	@20	@20	@20		
MFBPR [42]	.1959	.1117	.0355	.0181	.0752	.0542		
LightGCN [23]	.2286	.1344	.0496	.0254	.0837	.0612		
SGL [59]	.2568	.1527	.0687	.0368	.0933	.0690		
SimGCL [62]	.2691	.1593	.0710	.0377	.0919	.0677		
LightGCL [5]	.2712	.1607	.0722	.0388	.0943	.0686		
DAM [12]	.2082	.1198	.0411	.0210	.0629	.0450		
BundleNet [17]	.1895	.1125	.0391	.0201	.0626	.0447		
BGCN [8, 9]	.2347	.1345	.0491	.0258	.0733	.0531		
CrossCBR [35]	<u>.2776</u>	.1641	<u>.0791</u>	.0433	.1133	.0875		
CoHEAT (ours)	.2804	.1646	.0847	.0455	.1156	.0876		

Q3. Comparison by Cold Bundle Ratio

Performance disparity widens as cold bundle ratios increase

Outline

- Introduction
- Proposed Method
- Experiments
- Conclusion

Conclusion

- Address the cold-start problem in bundle recommendation
- Propose a novel framework: <u>CoHeat</u>
 - Popularity-based coalescence
 - Curriculum heating
 - Representation alignment and uniformity
- Show the superiority of CoHeat through extensive experiments

Thank you!

Code: https://github.com/snudatalab/CoHeat

Personal website: https://jeon185.github.io

Appendix: Ablation Study

- All main components help improve the performance
 - CoHeat-PC: equal contribution of U-B and U-I views
 - CoHeat-CH-Ant: anti-curriculum learning
 - CoHeat-CH-Fix: temperature fixed as the maximum
 - CoHeat-AU: Omit contrastive loss

	You	shu	Net	Ease	iFashion		
Model	Recall	nDCG	Recall	nDCG	Recall	nDCG	
	@20	@20	@20	@20	@20	@20	
СоНеат-РС	.0000	.0000	.0000	.0000	.0000	.0000	
CoHeat-CH-Ant	.0177	.0087	.0176	.0087	.0164	.0093	
CoHeat- <i>CH-Fix</i>	.0180	.0092	.0182	.0090	.0164	.0092	
CoHeat- AU	.0069	.0031	.0029	.0013	.0013	.0005	
CoHEAT (ours)	.0183	.0105	.0191	.0093	.0170	.0096	