PROBABILITÉS SUR LES ENSEMBLES FINIS

I. VOCABULAIRE DES PROBABILITÉS

Il s'agit d'étudier une <u>expérience aléatoire</u> (= épreuve aléatoire) : c'est une expérience dont on connaît tous les résultats possibles, mais dont on ne peut prévoir l'issue avec certitude. Ex. : jet de dé.

<u>Un événement</u> est lié à une expérience aléatoire si, à la fin de cette expérience, il est possible de dire si cet événement est réalisé ou non.

On appelle <u>événement élémentaire</u> un événement qui ne fait intervenir qu'un seul résultat de l'expérience.

On appelle <u>univers</u> (= ensemble fondamental = espace des probabilités), et on note Ω , l'ensemble de tous les résultats possibles. Un élément ω de Ω est <u>un résultat = une issue</u>.

→ Opérations sur les événements :

• Inclusion A C B: A est inclus dans B si tous les éléments de A appartiennent à B

• Union A U B: Regroupe tous les éléments qui appartiennent à A ou à B.

• Intersection $A \cap B$: Regroupe tous les éléments qui appartiennent à A et à B.

• Événement <u>contraire de A = Complémentaire de A</u> : c'est l'événement, noté \bar{A} , qui se réalise si A ne se réalise pas (et inversement).

On a
$$A \cap \overline{A} = \emptyset$$
 et a $A \cup \overline{A} = \Omega$

• Deux événements sont dits <u>incompatibles = disjoints</u> si la réalisation de l'un exclut celle de l'autre, autrement dit si $A \cap B = \emptyset$

• <u>L'ensemble des parties (= sous-ensembles) de Ω , noté $\mathcal{P}(\Omega)$,</u> constitue l'ensemble des événements liés à une expérience aléatoire.

II. CALCUL DES PROBABILITÉS

A – Définition

Soit Ω un univers fini. Une distribution de <u>probabilité</u> associe à tout événement de Ω un nombre compris entre 0 et 1.

B – Propriétés

- $P(\Omega) = 1$ car Ω est l'événement certain
- ø est l'événement impossible, donc $P(\phi) = 0$
- $\bullet \quad P(\bar{A}) = 1 P(A)$
- $A \subset B => P(A) \leq P(B)$

Théorème:

$$\forall A \ et \ B \ alors$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Cas particulier:

$$\forall A \text{ et } B \text{ disjoints alors } P(A \cup B) = P(A) + P(B)$$

Si on peut décomposer Ω en n événements A_i mutuellement incompatibles, tels que $A_1 \cup A_2 \cup ... \cup A_n = \Omega$.

On définit les probabilités $p_i = P(A_i)$ telles que $0 \le p_i \le 1$ et $\sum_{i=1}^{n} p_i = 1$.

C – Equiprobabilité

Elle correspond au cas où tous les événements élémentaires ont la même probabilité. Ex. : lancer de dé équilibré (non pipé), ...

Si les n événements élémentaires sont équiprobables, chacun a la probabilité $\frac{1}{n}$.

Dans le cas où tous les événements élémentaires ont la même probabilité, la probabilité d'un événement A est

$$P(A) = \frac{nombres \ d' \'el\'ements \ de \ A}{nombre \ d'\'el\'ements \ de \ \Omega} = \frac{nombre \ de \ cas \ favorables}{nombre \ de \ cas \ possibles}.$$

III. PROBABILITÉ CONDITIONNELLE – ÉVÉNEMENTS INDEPENDANTS

A – Probabilité conditionnelle

→ Il s'agit de déterminer la probabilité d'un événement B sachant que l'événement A est réalisé.

On représente ce type de situation par un arbre de probabilité.

On a:

$$P_A(B) = \frac{P(A \cap B)}{P(A)}$$

<u>Remarque</u>: $P_A(B)$ se note aussi P(B/A).

Propriétés:

- $P_A(B \cup C) = P_A(B) + P_A(C)$ SI B et C sont incompatibles.
- $P_A(\Omega)=1$
- Pour tous événements A et B de probabilités non nulles, on a, d'après la formule:

$$P_A(B) = \frac{P(A \cap B)}{P(A)} = P(A \cap B) = P_A(B) * P(A) et,$$

$$P_B(A) = \frac{P(A \cap B)}{P(B)} = P(A \cap B) = P_B(A) * P(B) . Donc$$

$$P(A \cap B) = P_A(B) * P(A) = P_B(A) * P(B)$$

Cela veut dire que $P_A(B) = \frac{P_B(A) * P(B)}{P(A)}$ et que $P_B(A) = \frac{P_A(B) * P(A)}{P(B)}$ (s'aider de l'arbre).

B – Evénements indépendants

Définition : deux événements A et B sont dit **indépendants** ssi :

$$P(A \cap B) = P(A) * P(B)$$

Remarques:

- 1. Si P(A) et $P(B) \neq 0$, A et B sont indépendants ssi $P_A(B) = P(B)$ ou $P_B(A) = P(A)$.
- 2. Ne pas confondre évènements indépendants $(P(A \cap B) = P(A) * P(B))$ et événements incompatibles $(P(A \cap B) = 0)$.

IV. APPROCHE DE LA LOI FAIBLE DES GRANDS NOMBRES

Exemple:

La probabilité d'obtenir un nombre pair en lançant un dé est égale à ½.

Si on réalise l'expérience « en vrai », répétée n fois, on obtient statistiquement la fréquence de cet événement.

 \rightarrow Plus n est élevé, plus la fréquence se stabilise autour de p = $\frac{1}{2}$.

<u>Théorème</u>: On obtient, au cours de n expériences indépendantes, une fréquence d'apparition de l'événement A, aussi proche que l'on veut de p, lorsque n est suffisamment grand.