

# Deep into Blockchain Series

# Cryptography & Distributed Computing

Presenter(s): Founding Team

**Event Organizers** 



Connect | Collaborate | Create

**Venue Sponsor** 



#### Let us try to find answers!



- Is the data transmitted on Blockchain encrypted?
- Can data encrypted by public key decrypted by public key?
- is there a difference between Hashing & Cryptographic hashing?
- Which cryptographic algorithm is used by popular Blockchains?
- When to use different types of encryption?
- What is the significance of digital signatures?
- How does a transaction use cryptography?

#### THE BITCOIN TRANSACTION LIFE CYCLE





#### Importance of Cryptography in context of Blockchain





#### **Mechanism of Hashing**



☐ Hash functions are one way

#### Algorithms

- ☐MD5
- ☐SHA-1
- ☐SHA-256
- ☐SHA-512

#### **Mechanism of Hashing**





#### **Mechanism of Hashing**





#### **Cryptography tree**





#### Importance of Cryptography in context of Blockchain



# DES Triple DES AES RC5

#### **Symmetric Keys**



#### **Asymmetric Keys**



#### Cryptography & transmission of data via SSL





#### Cryptography & transmission of data via SSL





#### The need for mnemonics, BIP 32 and BIP 44 standards





#### The need for mnemonics, BIP 32 and BIP 44 standards





Child Key Derivation Function  $\sim CKD(x,n) = HMAC-SHA512(x_{Chain}, x_{PubKey} || n)$ 

# Transaction Cryptography Journey - Ethereum





**Ethereum User** 



**Private Key Generation** 



**Public Key Generation** 



**Ethereum Address Generation** 



Mining & Block Addition



**Transaction Propagation** 



**Sign Transaction** 



**Compute Transaction Data** 



### Private Key Generation



### Public Key Generation







- Elliptic Curve Multiplication is a one way function
- Ethereum uses secp256k1 standard of Elliptic Curve (y² = x³ + 7)



A visualization of an secp256k1 elliptic curve

K = f8f8a2f43c8376ccb0871305060d7b27b0554d2cc72bccf41b2705608452f315 \* G

K = (x,y)

x = 6e145ccef1033dea239875dd00dfb4fee6e3348b84985c92f103444683bae07b

y = 83b5c38e5e2b0c8529d7fa3f64d46daa1ece2d9ac14cab9477d042c84c32ccd0

04 + x-coordinate (32 bytes/64 hex) + y-coordinate (32 bytes/64 hex)  $\rightarrow$  130 Hex Characters (65 Bytes)



#### **Ethereum Address Generation**



- **Keccak256** hashing algorithm is used
- This is also a **one way function**

k = f8f8a2f43c8376ccb0871305060d7b27b0554d2cc72bccf41b2705608452f315

K = 6e145ccef1033dea239875dd00dfb4fee6e3348b84985c92f103444683bae07b83b5c38e5e2b0c8529d7

fa3f64d46daa1ece2d9ac14cab9477d042c84c32ccd0

Keccak256(K) = 2a5bc342ed616b5ba5732269001d3f1ef827552ae1114027bd3ecf1f086ba0f9

Address = Last 20 Bytes = 001d3f1ef827552ae1114027bd3ecf1f086ba0f9

#### **Ethereum Transaction Format**



- Nonce
- Gas Price
- Gas Limit
- Recipient Address
- Value
- Data
- v,r,s three components of an ECDSA digital signature of the originating EOA

Transaction message's structure is serialized using the Recursive Length Prefix (RLP) encoding scheme





- The digital signature algorithm used in Ethereum is the Elliptic Curve Digital Signature Algorithm
   (ECDSA)
- Purpose
  - Proves ownership
  - Guarantees Non-repudiation
  - Proves transaction data has not been and cannot be modified

Sig = 
$$F_{sig}$$
 (  $F_{keccak256}$  (m), k)

k = Private Key
m = RLP Encoded Transaction
F<sub>keccak256</sub> = Keccak256 Hash Function

$$F_{sig}$$
 = Signing Algorithm

$$Sig = (r, s)$$

## Verifying a Signature



Public Key Recovery (Using r and v)

F<sub>sigV</sub> (m, K, Sig): Boolean

K = Public Key
m = RLP Encoded Transaction
F<sub>sigV</sub> = Signing Algorithm
Sig = Signature



A visualization of an secp256k1 elliptic curve





- Ethereum uses proof of work consensus mechanism
- Ethereum uses Ethash POW algorithm

The general route that the algorithm takes is as follows:

- There exists a seed which can be computed for each block by scanning through the block headers up until that point
- From the seed, one can compute a **16 MB pseudorandom cache**. Light clients store the cache
- From the cache, we can generate a 1 GB dataset, with the property that each item in the dataset
  depends on only a small number of items from the cache. Full clients and miners store the dataset.
  The dataset grows linearly with time
- Mining involves grabbing random slices of the dataset and hashing them together. Verification can
  be done with low memory by using the cache to regenerate the specific pieces of the dataset that
  you need, so you only need to store the cache





| Blockchain            | Hashing Algorithm                  | Key Generation<br>Mechanism                       |
|-----------------------|------------------------------------|---------------------------------------------------|
| Ethereum              | SHA-256, Keccak-256                | Elliptic Curve Asymmetric Public Key Cryptography |
| Hyperledger<br>Fabric | SHA3 SHAKE256                      | Elliptic Curve Asymmetric Public Key Cryptography |
| IOTA                  | Troika (New Ternary Hash Function) | Winternitz Hashing Algorithm                      |

#### **Comparison of various Distributed Ledger Platforms**



| Cryptocurrency<br>Systems            | Bitcoin                                                                                                                                                                        | Ethereum                                                                                                    | IOTA                                                                                                            |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Ledger technology                    | Blockchain                                                                                                                                                                     | Blockchain                                                                                                  | DAG (called Tangle)                                                                                             |
| Address formation                    | Begin with a random<br>number as private key.<br>Public key and address<br>are derived from private<br>key.                                                                    | Begin with a random<br>number as private key.<br>Public key and address<br>are derived from private<br>key. | Begin with a random<br>number as seed.<br>Deterministic key and<br>address pair are derived<br>from a seed.     |
| Address format                       | Base58Check encoded, usually 33-34 bytes                                                                                                                                       | 160 bits                                                                                                    | 81 trytes (see detail in IOTA part about trytes)                                                                |
| Where is the privacy held            | Private key                                                                                                                                                                    | Private key protected by passphrase                                                                         | Secret                                                                                                          |
| How to get<br>balance from<br>ledger | For each address, locate all unspent transaction output (UTXO) from blockchain and compute the total amount. A wallet can have multiple addresses and shows the total balance. | Balance, as a state of an account, is calculated from the transactions found in the blockchain.             | From seed the list of addresses are generated, and summation of the balance of these addresses found in Tangle. |

#### Comparative analysis of cryptography on various platforms (





#### **DEMO:** Encryption & Decryption, P2P Networks



| □DEMO: Encryption & Decryption, P2P Networks |  |  |  |
|----------------------------------------------|--|--|--|
|                                              |  |  |  |
|                                              |  |  |  |
|                                              |  |  |  |
|                                              |  |  |  |
|                                              |  |  |  |
|                                              |  |  |  |





# Supported by

nagarro







