Graph Algorithms: Breadth First Search (BFS)

Instructor: Krishna Venkatasubramanian

CSC 212

Graphs

- Data structures that connect a set of objects to form a kind of a network
- Objects are called "Nodes" or "Vertices"
- Connections are called "Edges"
- Unlike trees graphs may have paths that form loops like "A->B->C-> A"

Some Graph Applications

Graph	Nodes Edges			
transportation	street intersections	highways		
communication	computers	fiber optic cables		
World Wide Web	web pages	hyperlinks		
social	people	relationships		
food web	species	predator-prey		
software systems	functions	function calls		
scheduling	tasks	precedence constraints		
circuits	gates	wires		

World Wide Web

Web graph.

• Node: web page.

• Edge: hyperlink from one page to another.

Protein Networks

Nodes are proteins

Edges are connections (interaction between proteins)

Types of Graphs

Directed (Edges have directions)

Weighted vs. unweighted

no cost/weight)

Weighted (Edges have associated cost/weight)

Types of Graphs (Cont'd)

- If the graph has n vertices (nodes) → Maximum # of edges is (n²-n)/2 = O(n²)
- In dense graphs number of edges is close to O(n²)
- In sparse graphs number of edges is close to O(n)

Undirected Graphs

Undirected graph. G = (V, E)

- V = set of nodes or vertices
- E = edges between pairs of nodes.
- Graph size parameters: n = |V|, m = |E|.


```
V = { 1, 2, 3, 4, 5, 6, 7, 8 }
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }
n = |V| = 8
m = |E| = 11
```

Graph Representation

Two main methods

	Α	В	С	D	Ε	F
Α	0	1	1	1	0	0
В	1	0	0	0	1	1
С	1	0	0	0	0	1
D	1	0	0	0	0	0
Ε	0	1	0	0	0	0
F	0	1	1	0	0	0

Adjacency Matrix

Adjacency List

Adjacency Matrix

Adjacency matrix. |V|-by-|V| matrix (A)

- A[i, j] = 1 if exists edge between node i and node j
- Space proportional to |V|²
- Checking if (u, v) is an edge takes O(1) time.
- Identifying all edges takes O(|V|²) time.

■ For undirected graph → matrix is symmetric across the diagonal

Adjacency List

Adjacency list. Node indexed array of lists.

- Two representations of each edge.
- Space proportional to O(E + V).

degree = number of neighbors of u

- Checking if (u, v) is an edge takes O(deg(u)) time.
- Identifying all edges takes O(E + V) time.

Degree of a Node

In-degree(v): Number of edges coming to (entering) node v

Out-degree(v): Number of edges getting out (leaving) node v

For Undirected graphs → In-degree = Out-degree

In-degree(E) = 2 Out-degree(E) = 3

Each vertex will have different In-Degree and Out-Degree

Graph Traversal

- ◆ Graph Traversal means visiting each node in the graph
- **♦** There is a starting node (s)
- ◆ Two main types of traversal
 - **♦** Breadth-First-Search (BFS)
 - ◆ Depth-First-Search (DFS)
- Both are applicable for directed and undirected graphs

Breadth First Traversal i.e., BFS

- Visit the nodes one-level at a time
- Requires a queue (First-come-first-served)

Undiscovered

Discovered

Top of queue

Finished

Queue: s

Undiscovered

Discovered

Top of queue

Finished

Queue: s 2

Undiscovered

Discovered

Top of queue

Finished

Queue: s 2 3

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Queue: 2 3 5

Undiscovered

Discovered

Top of queue

Finished

Queue: 2 3 5 4

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Queue: 3 5 4

Undiscovered

Discovered

Top of queue

Finished

Queue: 3 5 4

Undiscovered

Discovered

Top of queue

Finished

Queue: 3 5 4 6

Undiscovered

Discovered

Top of queue

Finished

Queue: 5 4 6

Undiscovered

Discovered

Top of queue

Finished

Queue: 5 4 6

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Queue: 4 6 8

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Queue: 6 8 7

Undiscovered

Discovered

Top of queue

Finished

Undiscovered

Discovered

Top of queue

Finished

Queue: 8 7 9

Undiscovered

Discovered

Top of queue

Finished

- Starting from s, we visited all (reachable) nodes
- BFS forms a tree rooted at s (<u>BFS Tree</u>) no loops hence a tree and not a graph
- For each node x reachable from s → we created a shortest path from s to x

Tree Example

Tree Example: Outcome

See why it is called Breadth First Search? It goes through the breadth of the graph first

Try at home Example

Another Example: Outcome

You may get slightly different output, but the distances from s will be the same!

Breadth First Search

Example problems in which we use BFS

- **♦** Find if node *x* is reachable from node *y*
 - ◆ Start from node y and do BFS
- ◆ Find the shortest path from node x to node y
 - ◆ Start from node x and perform BFS
- ◆ Search for a value v in the graph
 - ◆ Start from any node and perform BFS

Always keep in mind whether we talk about undirected graph or directed graph

Breadth First Search: Algorithm

```
Start at node v
   procedure BFS(G, v):
       create a queue Q
       enqueue v onto Q
       mark v
       while Q is not empty:
           t ← Q.dequeue()
                                                          Can do any processing on t
           if t is what we are looking for:
8
                return t
9
           for all edges e in G.adjacentEdges(t) do
12
                u \leftarrow G.adjacentVertex(t,e)
13
                if u is not marked:
                     mark u
14
15
                     enqueue u onto Q
16
       return none
                                                             5
                                                             | 3 | ● |
                                                     →| 5 🐼
                                                             8 👀
                                                     →|3|•|
```

Breadth First Search: Analysis

The above implementation of BFS runs in O(V + E) time if the graph is given by its adjacency list.

Proof

- Each node will be queued only once → O(V)
- For each node, we visit all its out edges → O(E)
 - In fact each edge (u,v) is visited twice once from u's side and once form v's side
- Total is O(V + E)

BFS & Shortest Path

- BFS can be used to compute the shortest path (minimum number of edges) from source s and any reachable nodes v
 - Maintain a counter for each node
 - When a node x is first visited from parent $y \rightarrow x$.counter = y.counter + 1

