Running Workout Statistics and Graphs

Aaron Palmer

2023-08-30

Table of contents

```
Average Heart Rate versus Average Speed (km/h)..........
 Running Stats.......
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import time
from datetime import datetime
import warnings
plt.style.use('ggplot')
warnings.filterwarnings('ignore')
start = time.perf_counter()
```

Only counting activities post Europe, export HeartWatch Workouts from Jul 17 - Today and add the csv to the wd

```
df = pd.read_csv('HeartWatch-Workouts-20230717-to-20230825.csv')
df = df.drop(['Date', 'from', 'to', 'rpe', 'Load', 'bpm-lo', 'bpm-90%+-%', '90%+-mins',
                                       \label{lower_solution} \begin{subarray}{ll} \begi
                                       '60-70\%-mins', 'bpm-50-60\%-\%', '50-60\%-mins'], axis=1
# Drop Run w/ Bear
df = df.drop(19)
# Fix Datetime Columns
df['ISO'] = pd.to_datetime(df['ISO'])
df['Duration'] = pd.to_timedelta(df['Duration'])
df['/km'] = pd.to_timedelta(df['/km'])
df['Date'] = df['ISO'].dt.date
df.set_index('ISO', inplace=True)
wklySUM = pd.DataFrame(df[df['Type'] == 'Running'].groupby(pd.Grouper(freq='W-SUN')).agg('
wklyAVG = pd.DataFrame(df[df['Type'] == 'Running'].groupby(pd.Grouper(freq='W-SUN')).agg('
# print(wklySUM.head())
# print(wklyAVG.head())
dfRun = df[df['Type'] == 'Running']
dfBike = df[df['Type'] == 'Cycling']
dfOther = df[~df['Type'].isin(['Running', 'Cycling'])]
# print(dfRun.info())
# print(dfBike.info())
# print(dfOther.head())
# Pace Calculation
# Calculate the total seconds of Duration column
total_seconds = dfRun['Duration'].dt.total_seconds()
# Average Pace from M/S
mps = dfRun['km'].sum()*1000 / total_seconds.sum()
kph = mps * 3.6
mpk = 60 / kph
```

```
integer_part = int(mpk)
decimal_part = mpk - integer_part

# Convert decimal part to minutes by dividing by 60
decimal_minutes = round(decimal_part * 60,0)

# Weighted HR
dfRunWght = dfRun

# Convert the time delta to decimal hours and create a new column
dfRunWght["Duration"] = dfRunWght["Duration"].apply(lambda x: x.total_seconds() / 3600)
dfRunWght['Weighted HR'] = dfRunWght['Duration'] * dfRunWght['bpm-Avg.']

# HR/Speed Decimal
dfRun['HR/Speed'] = (dfRun['bpm-Avg.'] / dfRun['km/h'])

# Cumulative Sum
dfRun['CumKM'] = dfRun['km'].cumsum()

# dfRun.head()
```

Graphs

Running Distance Frequency

```
plt.tight_layout()
plt.savefig('Graphs/Distance Frequency.png', dpi=300)
plt.show()
```


Average Heart Rate Frequency

```
hrf_bins = int((dfRun['bpm-Avg.'].max() - dfRun['bpm-Avg.'].min())/2.5)
plt.hist(dfRun['bpm-Avg.'], edgecolor='black', bins=hrf_bins)
# Average HR Text
avg_hr = dfRun['bpm-Avg.'].mean()
mid_hr = (dfRun['bpm-Avg.'].max() + dfRun['bpm-Avg.'].min()) / 2
plt.text(mid_hr, -.75, f'Mean Avg HR: {avg_hr:.2f} BPM',
```

```
ha='center', va='center', fontsize=10, color='black', transform=plt.gca().transDa

plt.title('Average HR Frequency')

plt.xlabel('Average BPM')

plt.ylabel('Frequency')

# plt.xticks(rotation=45)

plt.tight_layout()

plt.savefig('Graphs/HR Frequency.png', dpi=300)

plt.show()
```

Average HR Frequency 4.0 -3.5 -3.0 -2.5 -Frequency 2.0 -1.5 -1.0 -0.5 -0.0 140 145 150 155 160

Average BPM Mean Avg HR: 151.05 BPM

149.95

Average Heart Rate versus Average Speed (km/h)

```
# Line of Best Fit
# Fit a linear regression line to the data
coefficients = np.polyfit(dfRun['bpm-Avg.'], dfRun['km/h'], degree)
slope = coefficients[0]
intercept = coefficients[1]
# Calculate the predicted y-values using the line equation
predicted_y = slope * dfRun['bpm-Avg.'] + intercept
equation = f'y = {slope:.2f}x + {intercept:.2f}'
# Plot
plt.scatter('bpm-Avg.', 'km/h', data=dfRun)
plt.plot(dfRun['bpm-Avg.'], predicted_y, color='blue', label='Line of Best Fit')
plt.xlabel('Average BPM')
plt.ylabel('Average Speed (km/h)')
plt.title('Average HR versus Speed')
plt.text(0.01, 0.81, equation, fontsize=11, transform=plt.gca().transAxes)
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.savefig('Graphs/SpeedvsHR.png', dpi=300)
plt.show()
```

Average HR versus Speed

Heart Rate / Speed over Time

Lower is better

```
plt.scatter(dfRun.index, y= dfRun['HR/Speed'])
plt.xlabel('Date')
plt.xticks(rotation=45)
plt.ylabel('Avg HR/Speed')
plt.title('Avg HR/Speed over Time')
plt.grid(True)
plt.tight_layout()
plt.savefig('Graphs/HR-Speed over Time.png', dpi=300)
plt.show()
```


Distance vs Average Heart Rate

```
plt.scatter('km', 'bpm-Avg.', data=dfRun)
plt.xlabel('Distance')
plt.ylabel('Average Heart Rate')
plt.title('Distance vs Average HR')
plt.grid(True)
plt.tight_layout()
plt.savefig('Graphs/Distance vs Avg HR.png', dpi=300)
```


Duration vs Average Heart Rate

```
plt.scatter('Duration', 'bpm-Avg.', data=dfRun)
plt.xlabel('Duration (Hours)')
plt.ylabel('Average Heart Rate')
plt.title('Duration vs Average HR')
plt.grid(True)
plt.tight_layout()
plt.savefig('Graphs/Duration vs Avg HR.png', dpi=300)
```


Weekly Distance

Cumulative Distance

```
plt.plot(dfRun.index, dfRun['CumKM'])
plt.title('Cumulative Distance')
plt.xlabel('Date')
plt.ylabel('KM')
plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig('Graphs/Cumulative Distance.png', dpi=300)
plt.show()
```

Cumulative Distance 140 120 100 80 80 40 20 0 2120 100 1

```
# Average Duration, Distance, Average HR, Average Max HR Average Calories
avg_dist = round(dfRun['km'].mean(),2)
avg_hr = round(dfRun['bpm-Avg.'].mean(),2)
avg_wght_hr = round(dfRunWght['Weighted HR'].sum() / dfRunWght['Duration'].sum(),2)
```

```
avg_maxhr = round(dfRun['bpm-hi'].mean(),2)
avg_cals = round(dfRun['Cals'].mean(),2)
avg_dur = dfRun['Duration'].mean()
avg_ride = round(dfBike['km'].mean())
avg walk = round(df0ther[df0ther['Type'] == 'Walking']['km'].mean(),2)
avg hr ride = round(dfBike['bpm-Avg.'].mean(),2)
avg max hr ride = round(dfBike['bpm-hi'].mean(),2)
avg_hr_walk = round(df0ther[df0ther['Type'] == 'Walking']['bpm-Avg.'].mean(),2)
avg_max_hr_walk = round(df0ther[df0ther['Type'] == 'Walking']['bpm-hi'].mean(),2)
avg_cals_bike = round(dfBike['Cals'].mean(),)
avg_cals_walk = round(df0ther[df0ther['Type'] == 'Walking']['Cals'].mean(),)
avg_speed_bike = dfBike['km/h'].mean()
# Count Runs
num_runs = dfRun['km'].count()
num_rides = dfBike['km'].count()
num_walks = dfOther[dfOther['Type'] == 'Walking']['km'].count()
ovr_5k = dfRun[dfRun['km'] >=5].count()['km']
povr_5k = round(ovr_5k / num_runs *100,2)
ovr_10k = dfRun[dfRun['km'] >=10].count()['km']
povr_10k = round(ovr_10k / num_runs *100,2)
runs per day = round(num runs / dfRun['Date'].nunique(),3)
date_cts = dfRun['Date'].value_counts()
dbl_days = date_cts[date_cts > 1].count()
# Maximums
max dur = dfRun['Duration'].max()
max_dist = dfRun['km'].max()
max avghr = dfRun['bpm-Avg.'].max()
max_maxhr = dfRun['bpm-hi'].max()
max cals = dfRun['Cals'].max()
max_bike = dfBike['km'].max()
max_walk = dfOther[dfOther['Type'] == 'Walking']['km'].max()
max_bike_cals = round(dfBike['Cals'].max(),)
max_walk_cals = round(df0ther[df0ther['Type'] == 'Walking']['Cals'].max(),)
# Totals
tot_dist = round(dfRun['km'].sum(),2)
tot_dur = dfRun['Duration'].sum()
tot_cals = round(dfRun['Cals'].sum(),)
tot_cals = f'{tot_cals:,}'
```

```
tot_bike = dfBike['km'].sum()
tot_walk = dfOther[dfOther['Type'] == 'Walking']['km'].sum()
tot_bike_cals = round(dfBike['Cals'].sum(),)
tot_walk_cals = round(df0ther[df0ther['Type'] == 'Walking']['Cals'].sum(),)
# Medians
med dist = round(dfRun['km'].median(),2)
med_avg_hr = round(dfRun['bpm-Avg.'].median(),2)
med_max_hr = round(dfRun['bpm-hi'].median(),2)
med_cals = round(dfRun['Cals'].median(),)
med_ride = round(dfBike['km'].median(),2)
med_walk = round(df0ther[df0ther['Type'] == 'Walking']['km'].median(),2)
med_avg_hr_ride = round(dfBike['bpm-Avg.'].median(),2)
med_max_hr_ride = round(dfBike['bpm-hi'].median(),2)
med_avg_hr_walk = round(df0ther[df0ther['Type'] == 'Walking']['bpm-Avg.'].median(),2)
med max hr walk = round(df0ther[df0ther['Type'] == 'Walking']['bpm-hi'].median(),2)
med_cals_bike = round(dfBike['Cals'].median(),)
med_cals_walk = round(df0ther[df0ther['Type'] == 'Walking']['Cals'].median(),)
med_speed_bike = dfBike['km/h'].median()
# Durations to Time Format
avg dur h = int(avg dur)
max_dur_h = int(max_dur)
tot_dur_h = int(tot_dur)
avg_dur_m_dec = (avg_dur - avg_dur_h)*60
max_dur_m_dec = (max_dur - max_dur_h)*60
tot_dur_m_dec = (tot_dur - tot_dur_h)*60
avg_dur_m = int(avg_dur_m_dec)
max_dur_m = int(max_dur_m_dec)
tot_dur_m = int(tot_dur_m_dec)
avg_dur_s = int((avg_dur_m_dec - avg_dur_m)*60)
max_dur_s = int((max_dur_m_dec - max_dur_m)*60)
tot_dur_s = int((tot_dur_m_dec - tot_dur_m)*60)
avg_dur_f = str(avg_dur_h) + ':' + str(avg_dur_m) + ':' + str(avg_dur_s)
max_dur_f = str(max_dur_h) + ':' + str(max_dur_m) + ':' + str(max_dur_s)
tot_dur_f = str(tot_dur_h) + ':' + str(tot_dur_m) + ':' + str(tot_dur_s)
```

Running Stats

```
print('----')
print(f'Runs: {num_runs}')
print(f'Runs over 5k(%): {ovr_5k} ({povr_5k}%)')
print(f'Runs over 10k(%): {ovr_10k} ({povr_10k}%)')
print(f'Double Days: {dbl_days}')
print(f'Runs per Day: {runs_per_day}')
print('----')
print(f'Average Duration: {avg_dur_f}')
print(f'Average Distance: {avg_dist}')
print(f"Average Pace: {integer_part}:{decimal_minutes}")
print(f'Average Weighted HR: {avg_wght_hr}')
print(f'Average HR: {avg hr}')
print(f'Average Max HR: {avg_maxhr}')
print(f'Average Calories: {avg_cals}')
print('----')
print(f'Max Duration: {max_dur_f}')
print(f'Max Distance: {max_dist}')
print(f'Max Average HR: {max_avghr}')
print(f'Max Max HR: {max_maxhr}')
print(f'Max Calories: {max_cals}')
print('----')
print(f'Median Distance: {med_dist}')
print(f'Median Avg HR: {med_avg_hr}')
print(f'Median Max HR: {med_max_hr}')
print(f'Median Calories: {med cals}')
print('----')
print(f'Total Duration: {tot_dur_f}')
print(f'Total Distance: {tot_dist}')
print(f'Total Running Calories: {tot_cals}')
```

Runs: 21

Runs over 5k(%): 17 (80.95%) Runs over 10k(%): 2 (9.52%)

Double Days: 2

```
Runs per Day: 1.105
-----
Average Duration: 0:46:41
Average Distance: 6.46
Average Pace: 7:14.0
Average Weighted HR: 150.99
Average HR: 151.05
Average Max HR: 171.52
Average Calories: 530.05
.____
Max Duration: 1:21:26
Max Distance: 12.61
Max Average HR: 160.2
Max Max HR: 218.0
Max Calories: 1008.3
-----
Median Distance: 6.12
Median Avg HR: 151.3
Median Max HR: 168.0
Median Calories: 499
Total Duration: 16:20:37
```

Total Distance: 135.66

Total Running Calories: 11,131

Riding/Walking Stats

```
print(f'Rides: {num_rides}')
print(f'Average Distance: {avg_ride}')
print(f'Average HR: {avg_hr_ride}')
print(f'Average Max HR: {avg_max_hr_ride}')
print(f'Average Calories: {avg_cals_bike}')
print(f'Average Speed: {avg_speed_bike}')
print(f'Median Distance: {med_ride}')
print(f'Median Avg HR: {med_avg_hr_ride}')
print(f'Median Max HR: {med_max_hr_ride}')
print(f'Median Calories: {med_cals_bike}')
print(f'Median Speed: {med_speed_bike}')
print('----')
print(f'Walks: {num_walks}')
print(f'Average Distance: {avg_walk}')
```

```
print(f'Average HR: {avg_hr_walk}')
  print(f'Average Max HR: {avg_max_hr_walk}')
  print(f'Average Calories: {avg_cals_walk}')
  print(f'Median Distance: {med_walk}')
  print(f'Median Avg HR: {med_avg_hr_walk}')
  print(f'Median Max HR: {med_max_hr_walk}')
  print(f'Median Calories: {med cals walk}')
  print('----')
  print('Maximums')
  print(f'Max Bike Distance: {max_bike}')
  print(f'Max Bike Calories: {max_bike_cals}')
  print(f'Max Walk Distance: {max_walk}')
  print(f'Max Walk Calories: {max_walk_cals}')
  print('----')
  print("Totals")
  print(f'Total Bike Distance: {tot_bike}')
  print(f'Total Bike Calories: {tot_bike_cals}')
  print(f'Total Walk Distance: {tot_walk}')
  print(f'Total Walk Calories: {tot_walk_cals}')
  print('----')
  print(f'Runtime: {round(time.perf_counter() - start,2)}s')
Rides: 5
Average Distance: 29
Average HR: 140.42
Average Max HR: 179.0
Average Calories: 612
Average Speed: 17.82
Median Distance: 31.5
Median Avg HR: 140.9
Median Max HR: 182.0
Median Calories: 661
Median Speed: 19.0
Walks: 6
Average Distance: 3.66
Average HR: 112.1
Average Max HR: 131.5
Average Calories: 214
Median Distance: 3.3
Median Avg HR: 114.4
Median Max HR: 130.5
```

Median Calories: 202

Maximums

Max Bike Distance: 35.16
Max Bike Calories: 829
Max Walk Distance: 6.42
Max Walk Calories: 406

Totals

Total Bike Distance: 143.8
Total Bike Calories: 3061
Total Walk Distance: 21.93
Total Walk Calories: 1286

Runtime: 2.28s