

UNIVERSITÀ DEGLI STUDI DI MILANO

APPUNTI DEL CORSO MECCANICA ANALITICA

Lorenzo Liuzzo

December 14, 2022

Contents

1. Equazioni di Lagrange	1
1.1 Problema ad un corpo	1
2. Equazioni di Hamilton	4
3. Principi variazionali	Ę

1 Equazioni di Lagrange

1.1 Problema ad un corpo

Theorem 1.1 (della forza viva). Sia T la forza viva (o energia cinetica) come $T = \frac{1}{2}m\dot{x}\cdot\dot{x}$. Allora lungo ogni soluzione x = x(t) dell'equazione di Newton $m\ddot{x} = F(x)$, si ha

$$\dot{T} = F(x) \cdot \dot{x}$$

 $o\ equivalente mente$

$$T(t_1) - T(t_0) = \int_{t_0}^{t_1} F(x) \cdot \dot{x} dt$$

dove $F(x) \cdot \dot{x}$ è la potenza della forza e $\int_{t_0}^{t_1} F(x) \cdot \dot{x}$ è il lavoro svolto dalla forza.

Proof. Moltiplicando l'equazione di Newton per \dot{x} e applicando la regola di Leibniz per la derivata di un prodotto, si ottiene

$$\dot{x} \cdot (m\ddot{x}) = \frac{d}{dt}(\frac{1}{2}m\dot{x} \cdot \dot{x}) = \dot{T}$$

Nel caso di un campo di forze posizionali F = F(x) l'integrale a secondo membro dipende dal movimento x(t) nell'intervallo (t_0, t_1) attraverso la corrispondente traiettoia γ . Si ha dunque un integrale curvilineo della forma differenziale:

$$T(t_1) - T(t_0) = \int_{\gamma} F(x) \cdot dx$$

Nel caso in cui la forza sia conservativa, cioè in cui la forza ammetta potenziale, ossia una funzione scalare V = V(x) tale che F = -grad(V), chiamiamo V energia potenziale (o funzione delle forze). Questa condizione può essere riscritta dicendo che la forma differenziale del lavoro è esatta, cioè è il differenziale di una funzione, in particolare: $F(x) \cdot dx = -dV(x)$.

Theorem 1.2 (dell'energia). Per un punto soggetto ad un campo di forze posizionali conservativo F = F(x), lungo ogni soluzione x = x(t) dell'equazione di Newton $m\ddot{x} = F$, si ha

$$E = T + V$$
 $\dot{E} = 0$

Proof.

$$F \cdot \dot{x} = -\frac{\partial V}{\partial x} \cdot \frac{dx}{dt} = -\frac{dV}{dt} = -\dot{V} \quad \Longrightarrow \quad \dot{T} = -\dot{V}$$

oppure, sfruttando la definizione integrale di lavoro (1.1) e il fatto che l'integrale curvilineo di una forma differenziale esatta lungo una curva orientata dipenda solo dai suoi estremi (cioè che $\oint F(x) \cdot dx = 0$), si ha

$$\int_{\gamma} F(x) \cdot dx = -\int_{\gamma} dV = V(A) - V(B)$$

Definition 1.1 (costante del moto). Una variabile dinamica che assume un medesimo valore per ogni punto del moto corrispondente ad una soluzione dell'equazione di Newton è detta costante del moto.

Dunque, la funzione $E(x, \dot{x}) = T(\dot{x}) + V(x)$ è una costante del moto. Pertanto, fissati i dati iniziali x_0 e \dot{x}_0 , e quindi anche E_0 , il teorema di conservazione dell'energia totale (1.2) va intesa nella forma

$$T - V = E_0 = E(x, \dot{x})$$

Introducendo la quantitità di moto $p = m\dot{x}$, è possibile riscrivere dell'equazione di Newton come

$$\dot{p} = F \iff p(t_1) - p(t_0) = \int_{t_0}^{t_1} F dt$$

dove l'integrale della forza nel tempo viene detto impulso della forza.

Theorem 1.3 (del momento angolare). Per un punto materiale soggetto ad una generica forza $F = F(x, \dot{x}, t)$, lungo ogni soluzione x = x(t) dell'equazione di Newton $m\ddot{x} = F$, si ha

$$\dot{L} = M$$

dove $L = x \times p$ è il momento angolare e $M = x \times F$ è il momento angolare della forza.

Proof. Moltiplicando vettorialmente l'equazione di Newton per x e applicando la regola di Leibniz per la derivata di un prodotto, si ottiene

$$F \times x = x \times m\ddot{x} = x \times \frac{d}{dt}(m\dot{x}) = \frac{d}{dt}(x \times p) - \frac{dx}{dt} \times p = \frac{d}{dt}(x \times p)$$

Corollary 1.3.1. (conservazione del momento angolare)

Per un punto materiale soggetto ad un campo di forze centrali F = F(x), lungo ogni soluzione x = x(t) dell'equazione di Newton $m\ddot{x} = F$, si ha

$$L = 0$$

ossia che il momento angolare L è una costante del moto.

Proof. Si applica il teorema del momento angolare (1.3). Poichè F è un campo di forze centrali, si ha che la forza è parallela al raggio vettore, perciò $M=x\times F=0\Longrightarrow \dot{L}=0.$

Corollary 1.3.2. (campi centrali e moti bidimensionali)

Per un punto materiale soggetto ad un campo di forze centrali F = F(x), per ogni soluzione x = x(t) dell'equazione di Newton $m\ddot{x} = F$, la traiettoia x = x(t) giace in un piano passante per il centro di forza e ortogonale al vettore L momento angolare, determinato dalle condizioni iniziali x_0 e \dot{x}_0 che definiscono $L_0 = x_0 \times m\dot{x}_0$.

Proof. Per le proprietà del prodotto vettoriale, si ha che $L = x \times p$ è ortogonale a x. Ma per la conservazione del momento angolare (1.3.1), si ha che L è una costante del moto. Dunque, per ogni tempo t, il vettore x(t), dovendo essere ortogonale ad un vettore costante, giace in un piano ortogonale a quel vettore.

Prendendo l'equazione della quantità di moto $\dot{p}=F$ e proiettandola su un asse qualsiasi, ad esempio x, si ottiene $\dot{p}_x=F_x$ e quindi se $F_x=0\Longrightarrow\dot{p}_x=0$ e quindi $p_x=cost$. Ma per forze posizionali conservative, $F_x=0$ corrisponde a dire che V è invariante per traslazione lungo l'asse x, ossia

 $\frac{\partial V}{\partial x} = 0 \quad \text{ovvero che} \quad V(x+h,\ldots) = V(x,\ldots) \quad \forall h$

Proposition 1.1. Se l'energia potenziale V è invariante per traslazioni lungo un asse, allora la componente della quantità di moto p lungo quell'asse è una costante del moto.

2 Equazioni di Hamilton

3 Principi variazionali