Empirical Market Design - School Choice

Paulo Somaini

Stanford

DSE 2022

- Competitive Markets:
 - ▶ Price-taking behavior
 - ► Homogeneous goods & perfect information
 - Walrasian auctioneer

- Competitive Markets:
 - ▶ Price-taking behavior
 - ► Homogeneous goods & perfect information
 - Walrasian auctioneer
 - ✓ prices clear the market

- Competitive Markets:
 - Price-taking behavior
 - ► Homogeneous goods & perfect information
 - Walrasian auctioneer
 - ✓ prices clear the market
 - √ first and second welfare theorems

- Competitive Markets:
 - Price-taking behavior
 - Homogeneous goods & perfect information
 - Walrasian auctioneer
 - ✓ prices clear the market
 - √ first and second welfare theorems
- These conditions fail in real-world markets

- Competitive Markets:
 - Price-taking behavior
 - Homogeneous goods & perfect information
 - Walrasian auctioneer
 - ✓ prices clear the market
 - √ first and second welfare theorems
- These conditions fail in real-world markets
- Study of market failures central in many fields in economics
 - Industrial organization: monopoly, collusion
 - ► Contract Theory: principal-agent with hidden types and actions
 - Labor: monopsony
 - Macro: price rigidity, agency problems
 - ▶ Market Design: congestion, auctions, matching, allocation mechanisms

• Abandon mythical Walrasian auctioneer

- Abandon mythical Walrasian auctioneer
- Take market institutions seriously
 - congestion, coordination failures, other frictions
 - market failues: collusion, market power, inperfect information
 - rules, laws, political or institutional constraints

- Abandon mythical Walrasian auctioneer
- Take market institutions seriously
 - congestion, coordination failures, other frictions
 - market failues: collusion, market power, inperfect information
 - rules, laws, political or institutional constraints
- What are participant's incentives?

- Abandon mythical Walrasian auctioneer
- Take market institutions seriously
 - congestion, coordination failures, other frictions
 - market failues: collusion, market power, inperfect information
 - rules, laws, political or institutional constraints
- What are participant's incentives?
- How does the market clear?

- Abandon mythical Walrasian auctioneer
- Take market institutions seriously
 - congestion, coordination failures, other frictions
 - market failues: collusion, market power, inperfect information
 - rules, laws, political or institutional constraints
- What are participant's incentives?
- How does the market clear?
 - prices: price discovery in auctions [yesterday's lecture]
 - priority cutoffs: matching and school choice [today's lectures]
 - wait-time: queuing in organ allocation, public housing [tomorrow!]

Market Design: Objectives

- Efficiency
 - ▶ ideal of Pareto optimality, c.f. first welfare theorem

Market Design: Objectives

- Efficiency
 - ideal of Pareto optimality, c.f. first welfare theorem
- Fairness and distributional concerns
 - notions of fairness in the process or in the allocation
 - ▶ notions of equity achieved via redistribution, c.f. second welfare theorem

Market Design: Objectives

- Efficiency
 - ▶ ideal of Pareto optimality, c.f. first welfare theorem
- Fairness and distributional concerns
 - notions of fairness in the process or in the allocation
 - notions of equity achieved via redistribution, c.f. second welfare theorem
- Practicality and implementability
 - ideal of strategy-proofness
 - rules easy to codify and explain

Market Design: Tools

- Theory: Game theory, computer science
 - Relevant equilibrium notions: stability
 - ► Properties: efficiency, fairness, strategy-proofness
 - ▶ identify tradeoffs: e.g. efficiency vs. equity

Market Design: Tools

- Theory: Game theory, computer science
 - Relevant equilibrium notions: stability
 - Properties: efficiency, fairness, strategy-proofness
 - identify tradeoffs: e.g. efficiency vs. equity
- Empirical Analysis: statistics, econometrics
 - Test hypothesis
 - Estimate economic primitives
 - Evaluate alternative designs

Market Design: Tools

- Theory: Game theory, computer science
 - Relevant equilibrium notions: stability
 - Properties: efficiency, fairness, strategy-proofness
 - ▶ identify tradeoffs: e.g. efficiency vs. equity
- Empirical Analysis: statistics, econometrics
 - Test hypothesis
 - Estimate economic primitives
 - Evaluate alternative designs
- Practice: interpersonal skills, networking
 - learn market institutions
 - propose and implement new designs

Emprical Market Design

- Complementary to theory in evaluation of trade-offs
 - Testing theoretical predictions
 - Quantify tradeoffs
 - Analysis when theory is ambiguous
 - Document effect of designs, market failures
 - Evaluate alternative designs

Emprical Market Design

- Complementary to theory in evaluation of trade-offs
 - Testing theoretical predictions
 - Quantify tradeoffs
 - Analysis when theory is ambiguous
 - Document effect of designs, market failures
 - Evaluate alternative designs
- Organized marketplaces present a unique opportunity for analysis
 - Well-understood rules
 - ► Administrative data

Emprical Market Design

- Complementary to theory in evaluation of trade-offs
 - Testing theoretical predictions
 - Quantify tradeoffs
 - Analysis when theory is ambiguous
 - Document effect of designs, market failures
 - Evaluate alternative designs
- Organized marketplaces present a unique opportunity for analysis
 - Well-understood rules
 - Administrative data
- Empirical Approaches useful also in other areas of economics
 - Estimation of heterogeneous preferences and demand, e.g.,
 - ★ What do parents value in a school?
 - ★ What are the preferences of individuals for public housing?
 - Analysis of policy interventions, e.g.,
 - ★ Impact of financial aid reforms given admission mechanisms
 - ★ What are the effects of more generous public housing program?

• Education instrumental for economic progress and social mobility

- Education instrumental for economic progress and social mobility
- Public school systems aim for universal access

- Education instrumental for economic progress and social mobility
- Public school systems aim for universal access
- Ideal of equal opportunity
 - efficiency
 - equity, fairness

- Education instrumental for economic progress and social mobility
- Public school systems aim for universal access
- Ideal of equal opportunity
 - efficiency
 - equity, fairness
- Economic inequities tilt the playing field

- Education instrumental for economic progress and social mobility
- Public school systems aim for universal access
- Ideal of equal opportunity
 - efficiency
 - equity, fairness
- Economic inequities tilt the playing field
- Apply the market design tool-kit:
 - ▶ Theory: properties mechanisms for student allocation
 - Empirical analysis: preferences for school characteristics
 - Practice: implement new designs, inform students

- Education instrumental for economic progress and social mobility
- Public school systems aim for universal access
- Ideal of equal opportunity
 - efficiency
 - equity, fairness
- Economic inequities tilt the playing field
- Apply the market design tool-kit:
 - ▶ Theory: properties mechanisms for student allocation
 - Empirical analysis: preferences for school characteristics
 - Practice: implement new designs, inform students
- I will focus on the empirical tools

- School districts rely on algorithms for student allocation
- Algorithms use student reports to generate allocation

- School districts rely on algorithms for student allocation
- Algorithms use student reports to generate allocation
- Schools have coarse priorities

- School districts rely on algorithms for student allocation
- Algorithms use student reports to generate allocation
- Schools have coarse priorities
- Many different algorithms implemented/studied (example):
 - Deferred acceptance (a.k.a Gale and Shapley alg)
 - ► Immediate acceptance (a.k.a Boston Mechanism)
 - Top-Trading Cycles
 - Serial Dictator

- School districts rely on algorithms for student allocation
- Algorithms use student reports to generate allocation
- Schools have coarse priorities
- Many different algorithms implemented/studied (example):
 - Deferred acceptance (a.k.a Gale and Shapley alg)
 - ► Immediate acceptance (a.k.a Boston Mechanism)
 - Top-Trading Cycles
 - Serial Dictator
- Mechanisms have different properties

• Exploit properties of the mechanism to derive revealed preferences

- Exploit properties of the mechanism to derive revealed preferences
- Use data on allocation for stable mechanisms

- Exploit properties of the mechanism to derive revealed preferences
- Use data on allocation for stable mechanisms
- Use data on reports for strategy-proof mechanisms

- Exploit properties of the mechanism to derive revealed preferences
- Use data on allocation for stable mechanisms
- Use data on reports for strategy-proof mechanisms
- Use data on reports + behavior for non-strategy proof mechanisms

Challenges

- Demand estimation for schools, prestigious programs
 - ► Market does not clear on prices: *D* (*p*) is not the full picture

Challenges

- Demand estimation for schools, prestigious programs
 - ▶ Market does not clear on prices: *D* (*p*) is not the full picture
- Interpretation of data from mechanisms

Challenges

- Demand estimation for schools, prestigious programs
 - ▶ Market does not clear on prices: *D* (*p*) is not the full picture
- Interpretation of data from mechanisms
- Find tractable statistical-econometric tools

Preferences

ullet Students indexed by i, schools/programs indexed by j

$$v_{ij} = v\left(\mathbf{x}_{ij}, \xi_{j}, \varepsilon_{ij}\right) - d_{ij},$$

- x_{ii} observable characteristics
- $ightharpoonup \xi_j$ school quality, unobserved to the econometrician but observed to students
- $ightharpoonup arepsilon_{ii}$ i.i.d preference shock
- ▶ d_{ij} numeraire, e.g. distance, tuition

Preferences

• Students indexed by i, schools/programs indexed by j

$$v_{ij} = v\left(\mathbf{x}_{ij}, \xi_j, \varepsilon_{ij}\right) - d_{ij},$$

- x_{ii} observable characteristics
- $ightharpoonup \xi_j$ school quality, unobserved to the econometrician but observed to students
- \triangleright ε_{ii} i.i.d preference shock
- d_{ij} numeraire, e.g. distance, tuition
- Examples:
 - Simple linear model

$$v_{ij} = \overbrace{\mathbf{x}_{ij}\boldsymbol{\beta} + \boldsymbol{\xi}_j}^{\delta_{ij}} - d_{ij} + \varepsilon_{ij}$$

Preferences

• Students indexed by i, schools/programs indexed by j

$$v_{ij} = v\left(\mathbf{x}_{ij}, \xi_{j}, \varepsilon_{ij}\right) - d_{ij},$$

- x_{ii} observable characteristics
- $ightharpoonup arphi_j$ school quality, unobserved to the econometrician but observed to students
- \triangleright ε_{ii} i.i.d preference shock
- d_{ij} numeraire, e.g. distance, tuition
- Examples:
 - Simple linear model

$$v_{ij} = \overbrace{x_{ij}\beta + \xi_j}^{\delta_{ij}} - d_{ij} + \varepsilon_{ij}$$

Proof. Random coefficient models: multiple preference shocks $\varepsilon_{ij} = (\gamma_i, \omega_{ij})$

$$v_{ij} = \overbrace{\mathbf{x}_{ij}\beta + \xi_j + \mathbf{x}_{ij} \left(\bar{\gamma}\mathbf{z}_i + \gamma_i\right)}^{\delta_{ij}} - d_{ij} + \omega_{ij}$$

Outline

- Introduction
- 2 Discrete Choice Models
- Stability
- 4 Truthful Reports
- Strategic Reports
- 6 Conclusion

Discrete Choice Models

$$v_{ij} = v(\mathbf{x}_{ij}, \xi_j, \varepsilon_{ij}) - d_{ij},$$

- Consumer preferences for product
- Each consumer chooses the good with the maximum indirect utility
- The numeraire is usually price
- There are a variety of methods to estimate these models
- Rely on revealed preferences relations derived from observed choices

Revealed Preferences - Discrete Choice

Estimation Approaches - Discrete Choice

- Method of Moments (endogenous prices) [Berry 1994; Berry, Levinsohn and Pakes, 1995]
- Bayesian Monte Carlo Markov Chain [Rossi, McCulloch and Allenby, 1996]
- Maximum Score [Manski, 1985]
- Moment Inequality [Ciliberto and Tamer, 2009; Pakes, 2010; Chernohukov, Hong and Tamer, 2007]
- Maximum Likelihood [McFadden, 1974; Train, 2004]
 - In the simple linear model, with extreme value shocks: $rac{arepsilon_{ij}}{\sigma}\sim EV1$

$$v_{ij} = \overbrace{\mathbf{x}_{ij}\mathbf{\beta} + \mathbf{\xi}_{j}}^{\delta_{ij}} - d_{ij} + \varepsilon_{ij}$$

$$P\left(i \text{ chooses } j|x_{ij};\beta\right) = \frac{\exp\left(\frac{1}{\sigma}\left(\delta_{ij} - d_{ij}\right)\right)}{\sum_{k} \exp\left(\frac{1}{\sigma}\left(\delta_{ik} - d_{ik}\right)\right)}$$

Outline

- Introduction
- 2 Discrete Choice Models
- Stability
- 4 Truthful Reports
- Strategic Reports
- 6 Conclusion

• Students cannot just pick the school that they want the most

- Students cannot just pick the school that they want the most
- Prices do not clear the market

- Students cannot just pick the school that they want the most
- Prices do not clear the market
- An algorithm $\mu = \Phi(\mathbf{R}, \mathbf{t}, \nu)$ determines the allocation given:
 - students reports:
 - ★ $R_i \in \mathcal{R}$ student *i*'s submitted rank-order list
 - ★ R_{ik} is the school ranked in position k

- Students cannot just pick the school that they want the most
- Prices do not clear the market
- An algorithm $\mu = \Phi(\mathbf{R}, \mathbf{t}, \nu)$ determines the allocation given:
 - students reports:
 - ★ $R_i \in \mathcal{R}$ student *i*'s submitted rank-order list
 - \star R_{ik} is the school ranked in position k
 - students priorities:
 - \star $t_i = (t_{i1}, \ldots, t_{iJ})$ is student *i*'s priority, t_{ij} has finitely many values
 - ★ Tie-breaker: ν_{ij}

• Step 1: Students apply to the first school in their list

- Step 1: Students apply to the first school in their list
- Step 2: Schools consider applicants and rank them according to priority. Provisionally hold applicants until exhausting capacity and definitively reject the rest

- Step 1: Students apply to the first school in their list
- Step 2: Schools consider applicants and rank them according to priority. Provisionally hold applicants until exhausting capacity and definitively reject the rest
- Step 3: Students apply to the highest school that has not reject them

- Step 1: Students apply to the first school in their list
- Step 2: Schools consider applicants and rank them according to priority. Provisionally hold applicants until exhausting capacity and definitively reject the rest
- Step 3: Students apply to the highest school that has not reject them
- Step 4: Schools consider new and previously held applicants and rank them according to priority. Provisionally hold applicants until exhausting capacity and definitively reject the rest

- Step 1: Students apply to the first school in their list
- Step 2: Schools consider applicants and rank them according to priority. Provisionally hold applicants until exhausting capacity and definitively reject the rest
- Step 3: Students apply to the highest school that has not reject them
- Step 4: Schools consider new and previously held applicants and rank them according to priority. Provisionally hold applicants until exhausting capacity and definitively reject the rest
- Step 5 Repeat Steps 3-4 until each student (a) is tentatively held by some school; or (ii) has been rejected by all ranked schools

Properties of DA

- Report-Specific Priority + Cutoff representation:
 - Score: $e_{ij} = f_j(R_i, t_i, \nu_{ij})$
 - Cutoff p_j for school j
 - ▶ Each student is placed in the highest ranked school in

$$S\left(\mathbf{e_{i}},\mathbf{p}\right)=\left\{ j:e_{ij}>p_{j}\right\}$$

DA: score does not depend on R_i

Properties of DA

- Report-Specific Priority + Cutoff representation:
 - Score: $e_{ij} = f_j(R_i, t_i, v_{ij})$
 - Cutoff p_j for school j
 - Each student is placed in the highest ranked school in

$$S\left(\boldsymbol{e_{i}},\boldsymbol{p}\right)=\left\{ j:e_{ij}>p_{j}\right\}$$

- ▶ DA: score does not depend on R_i
- Deferred Acceptance has some desirable properties:
 - strategy-proofness: incentives to report ordinal preferences truthfully
 - **\triangleright** stable allocation: *i* allocated to preferred school in $S(e_i, p)$

Properties of DA

- Report-Specific Priority + Cutoff representation:
 - Score: $e_{ij} = f_j(R_i, t_i, \nu_{ij})$
 - ► Cutoff *p_j* for school *j*
 - Each student is placed in the highest ranked school in

$$S\left(\boldsymbol{e_{i}},\boldsymbol{p}\right)=\left\{ j:e_{ij}>p_{j}\right\}$$

- ▶ DA: score does not depend on R_i
- Deferred Acceptance has some desirable properties:
 - strategy-proofness: incentives to report ordinal preferences truthfully
 - stable allocation: i allocated to preferred school in $S(e_i, p)$
- Levels the playfield between sophisticates and naives

Revealed Preferences - Stability - Full Choice Set

Revealed Preferences - Stability - Restricted Choice Set

Stability - Estimation Methods

• Logit models: build likelihood for $\mathbb{P}(i \text{ is assigned to } j | \delta_i, d_i; \theta)$:

$$\frac{\exp\left(\frac{1}{\sigma}\left(\delta_{ij}-d_{ij}\right)\right)}{\sum 1\left\{k\in S\left(\boldsymbol{e}_{i},\boldsymbol{p}\right)\right\}\exp\left(\frac{1}{\sigma}\left(\delta_{ik}-d_{ik}\right)\right)}$$

Stability - Estimation Methods

• Logit models: build likelihood for $\mathbb{P}(i \text{ is assigned to } j | \delta_i, d_i; \theta)$:

$$\frac{\exp\left(\frac{1}{\sigma}\left(\delta_{ij}-d_{ij}\right)\right)}{\sum 1\left\{k\in S\left(\boldsymbol{e}_{i},\boldsymbol{p}\right)\right\}\exp\left(\frac{1}{\sigma}\left(\delta_{ik}-d_{ik}\right)\right)}$$

• Random coefficients γ_i , $\mathbb{P}(i \text{ is assigned to } j|\mathbf{x}_i, \mathbf{z}_i; \theta)$ is:

$$\int \mathbb{P}\left(i \text{ is assigned to } j | \delta_i, d_i; \theta, \gamma\right) \phi\left(\gamma; \Sigma_{\gamma}\right) d\gamma.$$

Stability - Estimation Methods

• Logit models: build likelihood for $\mathbb{P}(i \text{ is assigned to } j | \delta_i, d_i; \theta)$:

$$\frac{\exp\left(\frac{1}{\sigma}\left(\delta_{ij}-d_{ij}\right)\right)}{\sum 1\left\{k \in S\left(\boldsymbol{e}_{i}, \boldsymbol{p}\right)\right\} \exp\left(\frac{1}{\sigma}\left(\delta_{ik}-d_{ik}\right)\right)}$$

• Random coefficients γ_i , $\mathbb{P}(i \text{ is assigned to } j|\mathbf{x}_i, \mathbf{z}_i; \theta)$ is:

$$\int \mathbb{P}\left(i \text{ is assigned to } j | \delta_i, d_i; \theta, \gamma\right) \phi\left(\gamma; \Sigma_{\gamma}\right) d\gamma.$$

- Akyol and Krishna (2017) for high-schools in Turkey
- Bucarey (2018) for colleges in Chile

• In 2014 the Chilean government promised to make college free

- In 2014 the Chilean government promised to make college free
- Low-income students already received financial aid

- In 2014 the Chilean government promised to make college free
- Low-income students already received financial aid
- Thus, low-income students' tuition was lower

- In 2014 the Chilean government promised to make college free
- Low-income students already received financial aid
- Thus, low-income students' tuition was lower
- Hypothesis: If college is free for all students
 - high-income students will face same price as low-income students
 - ▶ Low-income students will be displaced from highly demanded majors

- In 2014 the Chilean government promised to make college free
- Low-income students already received financial aid
- Thus, low-income students' tuition was lower
- Hypothesis: If college is free for all students
 - high-income students will face same price as low-income students
 - ▶ Low-income students will be displaced from highly demanded majors
- Approach:
 - Data on student enrollment

- In 2014 the Chilean government promised to make college free
- Low-income students already received financial aid
- Thus, low-income students' tuition was lower
- Hypothesis: If college is free for all students
 - high-income students will face same price as low-income students
 - Low-income students will be displaced from highly demanded majors
- Approach:
 - Data on student enrollment
 - DA generates a stable assignment

- In 2014 the Chilean government promised to make college free
- Low-income students already received financial aid
- Thus, low-income students' tuition was lower
- Hypothesis: If college is free for all students
 - high-income students will face same price as low-income students
 - ▶ Low-income students will be displaced from highly demanded majors
- Approach:
 - Data on student enrollment
 - DA generates a stable assignment
 - Estimate preferences

- In 2014 the Chilean government promised to make college free
- Low-income students already received financial aid
- Thus, low-income students' tuition was lower
- Hypothesis: If college is free for all students
 - high-income students will face same price as low-income students
 - ► Low-income students will be displaced from highly demanded majors
- Approach:
 - Data on student enrollment
 - DA generates a stable assignment
 - Estimate preferences
 - ► Simulate allocation with free-tuition

- In 2014 the Chilean government promised to make college free
- Low-income students already received financial aid
- Thus, low-income students' tuition was lower
- Hypothesis: If college is free for all students
 - high-income students will face same price as low-income students
 - ▶ Low-income students will be displaced from highly demanded majors
- Approach:
 - Data on student enrollment
 - DA generates a stable assignment
 - Estimate preferences
 - Simulate allocation with free-tuition
 - Who pays for free college?

	Change in average:			
	Utility	Utility Net of Price	Sticker Tuition	Received Scholarship
A. Common Price Coefficier	nt Model			
Family Income				
Poorest Quintile	-\$3,396	-\$1,180	-\$567	\$1,137
Second Quintile	-\$4,586	-\$1,454	-\$243	\$1,458
Third Quintile	-\$2,994	-\$1,109	-\$524	\$1,274
Fourth Quintile	-\$1,247	-\$776	\$630	\$2,736
Richest Quintile	-\$96	-\$490	\$1,460	\$3,484
Test Scores				
Lowest Quartile	-\$8,533	-\$2,485	-\$2,184	\$24
Top Quartile	\$1,955	\$178	\$3,328	\$4,515
B. Income-heterogeneous F	Price Coefficie	nt Model		
Family Income				
Poorest Quintile	-\$6,530	-\$1,078	-\$506	\$1,271
Second Quintile	-\$3,684	-\$990	-\$323	\$1,379
Third Quintile	-\$1,461	-\$778	-\$25	\$1,629
Fourth Quintile	\$404	-\$572	\$675	\$3,070
Richest Quintile	\$1,486	-\$332	\$1,204	\$3,832
Test Scores				
Lowest Quartile	-\$10,980	-\$2,178	-\$2,160	\$34
Top Quartile	\$5,480	\$614	\$2,509	\$5,038

Notes: This table compares the average of the variable in each column for the free tuition case and the baseline. Utilities are expressed in dollar equivalent.

Outline

- Introduction
- 2 Discrete Choice Models
- Stability
- 4 Truthful Reports
- 5 Strategic Reports
- 6 Conclusion

Revealed Preferences - Truthtelling

Truthtelling – Estimation Methods

• In logit models, likelihood built on $\mathbb{P}(i \text{ submits } R_i | \delta_i, d_i; \theta)$:

$$\prod_{k=1}^{K_{i}} \frac{\exp\left(\frac{1}{\sigma}\left(\delta_{R_{ik}} - d_{iR_{ik}}\right)\right)}{\sum 1\left\{j \neq R_{ik'} \text{ for } k' < k\right\} \exp\left(\frac{1}{\sigma}\left(\delta_{j} - d_{ij}\right)\right)}$$

Truthtelling – Estimation Methods

• In logit models, likelihood built on $\mathbb{P}(i \text{ submits } R_i | \delta_i, d_i; \theta)$:

$$\prod_{k=1}^{K_{i}} \frac{\exp\left(\frac{1}{\sigma}\left(\delta_{R_{ik}} - d_{iR_{ik}}\right)\right)}{\sum 1\left\{j \neq R_{ik'} \text{ for } k' < k\right\} \exp\left(\frac{1}{\sigma}\left(\delta_{j} - d_{ij}\right)\right)}$$

• Random coefficients γ_i , $\mathbb{P}\left(i \text{ submits } R_i | \delta_i, d_i; \theta\right)$ is:

$$\int \mathbb{P}\left(i \text{ submits } R_i | \delta_i, d_i; \theta, \gamma\right) \phi\left(\gamma; \Sigma_{\gamma}\right) d\gamma.$$

Truthtelling – Estimation Methods

• In logit models, likelihood built on $\mathbb{P}(i \text{ submits } R_i | \delta_i, d_i; \theta)$:

$$\prod_{k=1}^{K_{i}} \frac{\exp\left(\frac{1}{\sigma}\left(\delta_{R_{ik}} - d_{iR_{ik}}\right)\right)}{\sum 1\left\{j \neq R_{ik'} \text{ for } k' < k\right\} \exp\left(\frac{1}{\sigma}\left(\delta_{j} - d_{ij}\right)\right)}$$

• Random coefficients γ_i , $\mathbb{P}\left(i \text{ submits } R_i | \delta_i, d_i; \theta\right)$ is:

$$\int \mathbb{P}\left(i \text{ submits } R_i | \delta_i, d_i; \theta, \gamma\right) \phi\left(\gamma; \Sigma_{\gamma}\right) d\gamma.$$

- Abdulkadiroglu, Agarwal and Pathak, 2017: NYC High School
- Ajayi and Sidibe, 2022: High Schools in Ghana

• Until 2003, students applied to 5 programs out of 600

- Until 2003, students applied to 5 programs out of 600
- Many students were rejected and administratively placed

- Until 2003, students applied to 5 programs out of 600
- Many students were rejected and administratively placed
- In 2003 the district adopts DA

- Until 2003, students applied to 5 programs out of 600
- Many students were rejected and administratively placed
- In 2003 the district adopts DA
- What are the welfare effects of coordinated assignment?

- Until 2003, students applied to 5 programs out of 600
- Many students were rejected and administratively placed
- In 2003 the district adopts DA
- What are the welfare effects of coordinated assignment?
- Approach:
 - Data on student reports to the DA mechanism

- Until 2003, students applied to 5 programs out of 600
- Many students were rejected and administratively placed
- In 2003 the district adopts DA
- What are the welfare effects of coordinated assignment?
- Approach:
 - Data on student reports to the DA mechanism
 - ▶ DA is strategy-proof: no gains from misreporting preferences

- Until 2003, students applied to 5 programs out of 600
- Many students were rejected and administratively placed
- In 2003 the district adopts DA
- What are the welfare effects of coordinated assignment?
- Approach:
 - Data on student reports to the DA mechanism
 - ▶ DA is strategy-proof: no gains from misreporting preferences
 - Estimate preferences assuming truthful reports

- Until 2003, students applied to 5 programs out of 600
- Many students were rejected and administratively placed
- In 2003 the district adopts DA
- What are the welfare effects of coordinated assignment?
- Approach:
 - Data on student reports to the DA mechanism
 - ▶ DA is strategy-proof: no gains from misreporting preferences
 - Estimate preferences assuming truthful reports
 - Simulate allocation under alternative allocation systems
 - ★ Neighborhood assignment
 - ★ Uncoordinated assignment
 - ★ Deferred Acceptance

- Until 2003, students applied to 5 programs out of 600
- Many students were rejected and administratively placed
- In 2003 the district adopts DA
- What are the welfare effects of coordinated assignment?
- Approach:
 - Data on student reports to the DA mechanism
 - ▶ DA is strategy-proof: no gains from misreporting preferences
 - Estimate preferences assuming truthful reports
 - Simulate allocation under alternative allocation systems
 - ★ Neighborhood assignment
 - ★ Uncoordinated assignment
 - ★ Deferred Acceptance
 - Calculate aggregate welfare and distributional consequences

Abdulkadiroglu et. al. 2017

Centralized (Coordinated) mechanisms perform better!

Outline

- Introduction
- 2 Discrete Choice Models
- Stability
- 4 Truthful Reports
- Strategic Reports
- 6 Conclusion

Manipulable Mechanisms

• Many school districts implemented manipulable centralized mechanisms

Manipulable Mechanisms

• Many school districts implemented manipulable centralized mechanisms

► DA with restricted list length

Manipulable Mechanisms

• Many school districts implemented manipulable centralized mechanisms

- DA with restricted list length
- Boston implemented the Immediate Acceptance mechanism (a.k.a Boston Mechanism)

- The mechanism is manipulable
 - Students should rank schools according to their ordinal preferences
 - ▶ They should skip schools that are unattainable [Haeringer and Klijn 2009]

- The mechanism is manipulable
 - Students should rank schools according to their ordinal preferences
 - ► They should skip schools that are unattainable [Haeringer and Klijn 2009]

Infer revealed preference relations from ranked schools

- The mechanism is manipulable
 - Students should rank schools according to their ordinal preferences
 - ► They should skip schools that are unattainable [Haeringer and Klijn 2009]
- Infer revealed preference relations from ranked schools
- How should we treat schools that are not ranked on the list?
 - Assume any ranked school is preferred to any non-ranked school?
 - Assume non-ranked schools are worse than the outside option?
 - Default back to using stability [Fack et al, 2019]?

- The mechanism is manipulable
 - Students should rank schools according to their ordinal preferences
 - ► They should skip schools that are unattainable [Haeringer and Klijn 2009]
- Infer revealed preference relations from ranked schools
- How should we treat schools that are not ranked on the list?
 - Assume any ranked school is preferred to any non-ranked school?
 - Assume non-ranked schools are worse than the outside option?
 - Default back to using stability [Fack et al, 2019]?
- Alternatively, take the skipping strategy more seriously
 - Require analysis attainability of each school
 - Popular schools are harder to get
 - Not ranking a unpopular school implies dislike [Hwang, 2014]

• Step 1: Students apply to the first school in their list

- Step 1: Students apply to the first school in their list
- Step 2: Schools consider applicants and rank them according to priority. Immediately admit applicants until exhausting capacity and reject the rest

- Step 1: Students apply to the first school in their list
- Step 2: Schools consider applicants and rank them according to priority. Immediately admit applicants until exhausting capacity and reject the rest
- Step 3: Students apply to the highest school that has not reject them

- Step 1: Students apply to the first school in their list
- Step 2: Schools consider applicants and rank them according to priority. Immediately admit applicants until exhausting capacity and reject the rest
- Step 3: Students apply to the highest school that has not reject them
- Step 4: Schools with spare capacity consider new applicants and rank them according to priority. Immediately admit applicants until exhausting capacity and reject the rest

- Step 1: Students apply to the first school in their list
- Step 2: Schools consider applicants and rank them according to priority. Immediately admit applicants until exhausting capacity and reject the rest
- Step 3: Students apply to the highest school that has not reject them
- Step 4: Schools with spare capacity consider new applicants and rank them according to priority. Immediately admit applicants until exhausting capacity and reject the rest
- Step 5 Repeat Steps 3-4 until each student (a) has been accepted by some school; or (ii) has been rejected by all ranked schools

Listening to parents

• ... if I understand the impact of Gale Shapley, and I've tried to study it and I've met with BPS staff... I understood that in fact the random number... [has] preference over your choices... [Recording from the BPS Public Hearing, 6-8-05]

Listening to parents

- ... if I understand the impact of Gale Shapley, and I've tried to study it
 and I've met with BPS staff... I understood that in fact the random
 number... [has] preference over your choices... [Recording from the BPS
 Public Hearing, 6-8-05]
- I'm troubled that you're considering a system that takes away the little power that parents have to prioritize... what you call this strategizing as if strategizing is a dirty word... [Recording from the BPS Public Hearing, 05-11-04].

- Abdulkadiroglu, Che, Yasuda (2011):
 - Students have identical ordinal preferences

- Abdulkadiroglu, Che, Yasuda (2011):
 - Students have identical ordinal preferences
 - Schools have no priorities

- Abdulkadiroglu, Che, Yasuda (2011):
 - Students have identical ordinal preferences
 - Schools have no priorities
 - ▶ IA Pareto dominates DA in ex ante welfare

- Abdulkadiroglu, Che, Yasuda (2011):
 - Students have identical ordinal preferences
 - Schools have no priorities
 - ▶ IA Pareto dominates DA in ex ante welfare
 - ▶ IA may not harm but rather benefit those who do not strategize

- Abdulkadiroglu, Che, Yasuda (2011):
 - Students have identical ordinal preferences
 - Schools have no priorities
 - IA Pareto dominates DA in ex ante welfare
 - ▶ IA may not harm but rather benefit those who do not strategize
 - ▶ IA facilitates access to good schools for students with no priority

- Abdulkadiroglu, Che, Yasuda (2011):
 - Students have identical ordinal preferences
 - Schools have no priorities
 - IA Pareto dominates DA in ex ante welfare
 - ▶ IA may not harm but rather benefit those who do not strategize
 - ▶ IA facilitates access to good schools for students with no priority
- Preferences are important!

• Report R_i is associated with lottery L_{R_i}

- Report R_i is associated with lottery L_{R_i}
- ullet Agents form beliefs about lotteries $\hat{\mathcal{L}}_{R_i}$ associated to each report

- Report R_i is associated with lottery L_{R_i}
- Agents form beliefs about lotteries \hat{L}_{R_i} associated to each report
 - ▶ Rational expectations: $\hat{L}_{R_i} = L_{R_i}$
 - ▶ Adaptive expectations $\hat{L}_{R_i,t} = L_{R_i,t-1}$
 - ► Elicit beliefs through survey [Kapor, Nielsen and Zimmerman, 2018]

- Report R_i is associated with lottery L_{R_i}
- ullet Agents form beliefs about lotteries \hat{L}_{R_i} associated to each report
 - ▶ Rational expectations: $\hat{L}_{R_i} = L_{R_i}$
 - Adaptive expectations $\hat{L}_{R_i,t} = L_{R_i,t-1}$
 - Elicit beliefs through survey [Kapor, Nielsen and Zimmerman, 2018]
- Revealed Preferences:

$$\mathbf{v}_i \cdot \mathbf{L}_{R_i} \geq \mathbf{v}_i \cdot \mathbf{L}_R$$

- Report R_i is associated with lottery L_{R_i}
- Agents form beliefs about lotteries \hat{L}_{R_i} associated to each report
 - Rational expectations: $\hat{L}_{R_i} = L_{R_i}$
 - Adaptive expectations $\hat{L}_{R_i,t} = L_{R_i,t-1}$
 - ▶ Elicit beliefs through survey [Kapor, Nielsen and Zimmerman, 2018]
- Revealed Preferences:

$$\mathbf{v}_i \cdot \mathbf{L}_{R_i} \geq \mathbf{v}_i \cdot \mathbf{L}_R$$

ullet Thus, $oldsymbol{v}_i \in \mathcal{C}_{R_i}$ where \mathcal{C}_{R_i} is a cone $ig\{oldsymbol{v}_i \in \mathbb{R}^J : oldsymbol{v}_i \cdot \Delta L_{R_i} \geq 0ig\}$

Revealed Preferences - Strategic Behavior

Strategic Behavior - Estimation Methods

- Arbitrary integration regions: Logit models lose their appeal
- Probit Models still do not provide close form solutions
- No easy way to compute the likelihood function

Strategic Behavior - Estimation Methods

- Arbitrary integration regions: Logit models lose their appeal
- Probit Models still do not provide close form solutions
- No easy way to compute the likelihood function
- Bayesian methods do not require computation of the likelihood function
 - ✓ Obtain the MLE without computing the likelihood function
 - Useful for discrete choice models [Rossi, McCulough, Allenby, 1995]
 - ► Can be adapted for choices over lotteries [Agarwal and Somaini, 2018]

Bayesian Methods

- Frequentist approach: $\log \mathcal{L}(\theta; data) := \log f(data; \theta)$
 - $ightharpoonup \theta$ is a parameter
 - $\theta_{MLE} = \arg\max_{\theta} \mathcal{L}(\theta; data)$
 - \blacktriangleright Consistence and asymptotic normality of θ_{MLE}

Bayesian Methods

- $\bullet \ \, \mathsf{Frequentist} \ \mathsf{approach:} \ \, \mathsf{log} \, \mathcal{L} \, (\theta; \mathit{data}) := \mathsf{log} \, f \, (\mathit{data}; \theta)$
 - ightharpoonup heta is a parameter
 - $\qquad \qquad \bullet_{\textit{MLE}} = \arg\max_{\theta} \mathcal{L}\left(\theta; \textit{data}\right)$
 - lacktriangle Consistence and asymptotic normality of $heta_{MLE}$
- Bayesian Approach: $f(\theta|data) = \frac{f(data|\theta)f(\theta)}{f(data)}$
 - $\triangleright \theta$ is random vector
 - $f(\theta)$ is the prior [knowledge about θ]
 - $f(\theta|data)$ is the posterior
 - $f(data) = \int f(data|\theta) f(\theta) d\theta$
 - The posterior contains all the information we want!
 - Asymptotically Gaussian posterior irrespective of prior [Bernstein von-Mises Theorem]

• Sampling from the posterior $f(\theta|data)$?

- Sampling from the posterior $f(\theta|data)$?
- Sampling from conditional posteriors:
 - Suppose that $\theta = (\theta_1, \theta_2)$
 - ▶ and $f(\theta_1|\theta_2, data)$ and $f(\theta_2|\theta_1, data)$ have closed-form solutions

- Sampling from the posterior $f(\theta|data)$?
- Sampling from conditional posteriors:
 - Suppose that $\theta = (\theta_1, \theta_2)$
 - ▶ and $f(\theta_1|\theta_2, data)$ and $f(\theta_2|\theta_1, data)$ have closed-form solutions
- How to construct a MCMC?
 - pick some θ_1^0
 - sample θ_2^k from $f(\theta_2|\theta_1^k, data)$
 - ▶ sample θ_1^{k+1} from $f(\theta_1|\theta_2^k, data)$

- Sampling from the posterior $f(\theta|data)$?
- Sampling from conditional posteriors:
 - Suppose that $\theta = (\theta_1, \theta_2)$
 - ▶ and $f(\theta_1|\theta_2, data)$ and $f(\theta_2|\theta_1, data)$ have closed-form solutions
- How to construct a MCMC?
 - pick some θ_1^0
 - ▶ sample θ_2^k from $f(\theta_2|\theta_1^k, data)$
 - ▶ sample θ_1^{k+1} from $f(\theta_1|\theta_2^k, data)$
- This algorithm is called Gibbs Sampler
 - √ There are other algorithms: e.g., Metropolis-Hastings, Hamiltonian Monte Carlo

- Sampling from the posterior $f(\theta|data)$?
- Sampling from conditional posteriors:
 - Suppose that $\theta = (\theta_1, \theta_2)$
 - ▶ and $f(\theta_1|\theta_2, data)$ and $f(\theta_2|\theta_1, data)$ have closed-form solutions
- How to construct a MCMC?
 - pick some θ_1^0
 - ▶ sample θ_2^k from $f(\theta_2|\theta_1^k, data)$
 - ▶ sample θ_1^{k+1} from $f(\theta_1|\theta_2^k, data)$
- This algorithm is called Gibbs Sampler
 - √ There are other algorithms: e.g., Metropolis-Hastings, Hamiltonian Monte Carlo
- For k large enough $\theta^k = (\theta_1^k, \theta_2^k) \sim f(\theta|data)$
 - ✓ Generalizes to $\theta = (\theta_1, \theta_2, ..., \theta_d)$

$$v_{ij} = x_{ij}\beta_j - d_{ij} + \varepsilon_{ij}$$
 where $\varepsilon_{ij} \sim N(0, \Sigma)$, $\beta \sim N(\overline{\beta}, \Sigma_{\beta})$ and $\Sigma \sim IW(u_0, S)$

$$v_{ij} = x_{ij}\beta_j - d_{ij} + \varepsilon_{ij}$$
 where $\varepsilon_{ij} \sim N(0, \Sigma)$, $\beta \sim N(\overline{\beta}, \Sigma_{\beta})$ and $\Sigma \sim IW(u_0, S)$

- Data augmentation: $v = \{v_{11}, v_{12}, ..., v_{1J}, ..., v_{ij}, ..., v_{NJ}\}$
- $\theta = (v, \Sigma, \beta)$

$$v_{ij} = x_{ij}\beta_j - d_{ij} + \varepsilon_{ij}$$
 where $\varepsilon_{ii} \sim N(0, \Sigma)$, $\beta \sim N(\overline{\beta}, \Sigma_{\beta})$ and $\Sigma \sim IW(u_0, S)$

- Data augmentation: $v = \{v_{11}, v_{12}, ... v_{1J}, ..., v_{ij}, ..., v_{NJ}\}$
- $\theta = (v, \Sigma, \beta)$
 - $\beta|\Sigma$, v has a Normal posterior

$$v_{ij} = x_{ij}\beta_j - d_{ij} + \varepsilon_{ij}$$
 where $\varepsilon_{ij} \sim N(0, \Sigma)$, $\beta \sim N(\overline{\beta}, \Sigma_{\beta})$ and $\Sigma \sim IW(u_0, S)$

- Data augmentation: $v = \{v_{11}, v_{12}, ..., v_{1J}, ..., v_{ij}, ..., v_{NJ}\}$
- $\theta = (v, \Sigma, \beta)$
 - $\triangleright \beta | \Sigma$, v has a Normal posterior
 - ullet $\Sigma|eta$, v has a Inverse Wishart posterior

$$v_{ij} = x_{ij}\beta_j - d_{ij} + \varepsilon_{ij}$$
 where $\varepsilon_{ii} \sim N(0, \Sigma)$, $\beta \sim N(\overline{\beta}, \Sigma_{\beta})$ and $\Sigma \sim IW(u_0, S)$

- Data augmentation: $v = \{v_{11}, v_{12}, ..., v_{1J}, ..., v_{ij}, ..., v_{NJ}\}$
- $\theta = (v, \Sigma, \beta)$
 - $\triangleright \beta | \Sigma$, v has a Normal posterior
 - $\triangleright \Sigma | \beta, v \text{ has a Inverse Wishart posterior}$
 - $\triangleright v_{ij} | v_{i-j}, \beta_j, \Sigma, C_i$ has a truncated normal posterior

$$v_{ij} = x_{ij}\beta_j - d_{ij} + \varepsilon_{ij}$$
 where $\varepsilon_{ij} \sim N(0, \Sigma)$, $\beta \sim N(\overline{\beta}, \Sigma_{\beta})$ and $\Sigma \sim IW(u_0, S)$

- Data augmentation: $v = \{v_{11}, v_{12}, ..., v_{1J}, ..., v_{ij}, ..., v_{NJ}\}$
- $\theta = (v, \Sigma, \beta)$
 - $\triangleright \beta | \Sigma, v \text{ has a Normal posterior}$
 - $\Sigma \mid \beta, v \text{ has a Inverse Wishart posterior}$
 - $\triangleright v_{ij} | v_{i-j}, \beta_j, \Sigma, C_i$ has a truncated normal posterior
- Initialize Σ^0 and v^0 so that $v_i^0 \in C_i$ for every student

$$v_{ij} = x_{ij}\beta_j - d_{ij} + \varepsilon_{ij}$$
 where $\varepsilon_{ii} \sim N(0, \Sigma)$, $\beta \sim N(\overline{\beta}, \Sigma_{\beta})$ and $\Sigma \sim IW(u_0, S)$

- Data augmentation: $v = \{v_{11}, v_{12}, ..., v_{1J}, ..., v_{ij}, ..., v_{NJ}\}$
- $\theta = (v, \Sigma, \beta)$
 - $\triangleright \beta | \Sigma$, v has a Normal posterior
 - $\Sigma \mid \beta, v \text{ has a Inverse Wishart posterior}$
 - $\triangleright v_{ij} | v_{i-j}, \beta_j, \Sigma, C_i$ has a truncated normal posterior
- Initialize Σ^0 and v^0 so that $v_i^0 \in C_i$ for every student
- For every *k*:
 - ▶ Draw $\beta^{k+1}|\Sigma^k$, v^k from its normal posterior

$$v_{ij} = x_{ij}\beta_j - d_{ij} + \varepsilon_{ij}$$
 where $\varepsilon_{ii} \sim N(0, \Sigma)$, $\beta \sim N(\overline{\beta}, \Sigma_{\beta})$ and $\Sigma \sim IW(u_0, S)$

- Data augmentation: $v = \{v_{11}, v_{12}, ..., v_{1J}, ..., v_{ij}, ..., v_{NJ}\}$
- $\theta = (v, \Sigma, \beta)$
 - $\triangleright \beta | \Sigma, v \text{ has a Normal posterior}$
 - $\Sigma \mid \beta, v \text{ has a Inverse Wishart posterior}$
 - $\triangleright v_{ij} | v_{i-j}, \beta_j, \Sigma, C_i$ has a truncated normal posterior
- Initialize Σ^0 and v^0 so that $v_i^0 \in C_i$ for every student
- For every *k*:
 - ▶ Draw $\beta^{k+1}|\Sigma^k$, ν^k from its normal posterior
 - ▶ Draw $\Sigma^{k+1}|\beta^{k+1}$, v^k from its normal posterior

$$v_{ij} = x_{ij}\beta_j - d_{ij} + \varepsilon_{ij}$$
 where $\varepsilon_{ii} \sim N(0, \Sigma)$, $\beta \sim N(\overline{\beta}, \Sigma_{\beta})$ and $\Sigma \sim IW(u_0, S)$

- Data augmentation: $v = \{v_{11}, v_{12}, ..., v_{1J}, ..., v_{ij}, ..., v_{NJ}\}$
- $\theta = (v, \Sigma, \beta)$
 - $\triangleright \beta | \Sigma$, v has a Normal posterior
 - $\Sigma \mid \beta, v \text{ has a Inverse Wishart posterior}$
 - $\triangleright v_{ij} | v_{i-j}, \beta_j, \Sigma, C_i$ has a truncated normal posterior
- Initialize Σ^0 and v^0 so that $v_i^0 \in C_i$ for every student
- For every *k*:
 - ▶ Draw $\beta^{k+1}|\Sigma^k$, ν^k from its normal posterior
 - ▶ Draw $\Sigma^{k+1}|\beta^{k+1}$, v^k from its normal posterior
 - ✓ "Bayesian regression" of $v_{ij} + d_{ij}$ on x_{ij}

$$v_{ij} = x_{ij}\beta_j - d_{ij} + \varepsilon_{ij}$$
 where $\varepsilon_{ii} \sim N(0, \Sigma)$, $\beta \sim N(\overline{\beta}, \Sigma_{\beta})$ and $\Sigma \sim IW(u_0, S)$

- Data augmentation: $v = \{v_{11}, v_{12}, ..., v_{1J}, ..., v_{ij}, ..., v_{NJ}\}$
- $\theta = (v, \Sigma, \beta)$
 - $\triangleright \beta | \Sigma, v \text{ has a Normal posterior}$
 - $\Sigma \mid \beta, v \text{ has a Inverse Wishart posterior}$
 - $\triangleright v_{ij} | v_{i-j}, \beta_j, \Sigma, C_i$ has a truncated normal posterior
- Initialize Σ^0 and v^0 so that $v_i^0 \in C_i$ for every student
- For every *k*:
 - ▶ Draw $\beta^{k+1}|\Sigma^k, v^k$ from its normal posterior
 - ▶ Draw $\Sigma^{k+1}|\beta^{k+1}$, v^k from its normal posterior
 - ✓ "Bayesian regression" of $v_{ij} + d_{ij}$ on x_{ij}
 - Update v^{k+1} given $\beta^{k+1}, \Sigma^{k+1}$

We start from the previous vector v^k

Draw v_2^{k+1} given v_1^k , β^{k+1} , Σ^{k+1} from a truncated normal

New draw of v_2^{k+1}

Now, draw v_1^{k+1} given v_2^{k+1} , β^{k+1} , Σ^{k+1} from a truncated normal

Now, draw of v_1^{k+1} . We have v^{k+1} !

• Use data from the Immediate Acceptance algorithm used in Cambridge

- Use data from the Immediate Acceptance algorithm used in Cambridge
- There are two sets of schools:
 - Competitive: they are very likely to clear in first round
 - ▶ Non-competitive: they are very likely to have spare capacity

- Use data from the Immediate Acceptance algorithm used in Cambridge
- There are two sets of schools:
 - Competitive: they are very likely to clear in first round
 - Non-competitive: they are very likely to have spare capacity
- Incentives to pick the top rank carefully

- Use data from the Immediate Acceptance algorithm used in Cambridge
- There are two sets of schools:
 - Competitive: they are very likely to clear in first round
 - Non-competitive: they are very likely to have spare capacity
- Incentives to pick the top rank carefully
- Provide evidence of strategic behavior

- Use data from the Immediate Acceptance algorithm used in Cambridge
- There are two sets of schools:
 - Competitive: they are very likely to clear in first round
 - Non-competitive: they are very likely to have spare capacity
- Incentives to pick the top rank carefully
- Provide evidence of strategic behavior
- Estimate preferences under alternative assumptions on beliefs

- Use data from the Immediate Acceptance algorithm used in Cambridge
- There are two sets of schools:
 - Competitive: they are very likely to clear in first round
 - Non-competitive: they are very likely to have spare capacity
- Incentives to pick the top rank carefully
- Provide evidence of strategic behavior
- Estimate preferences under alternative assumptions on beliefs
- Compare performance of DA vs IA

Elementary Schools and Students

		Licition	tary oci	10013 a1	ia Sta	aciits		
Year	2004	2005	2006	2007	2008	Average		
	Panel A: District Characteristics							
Schools	13	13	13	13	13	13		
Programs	24	25	25	27	27	25.6		
Seats	473	456	476	508	438	470		
Students	412	432	397	457	431	426		
Free/Reduced Lunch	32%	38%	37%	29%	32%	34%		
Paid Lunch	68%	62%	63%	71%	68%	66%		
	Panel B: Student's Ethnicity							
White	47%	47%	45%	49%	49%	47%		
Black	27%	22%	24%	22%	23%	24%		
Asian	17%	18%	15%	13%	18%	16%		
Hispanic	9%	11%	10%	9%	9%	10%		
	Panel C: Language spoken at home							
English	72%	73%	73%	78%	81%	76%		
Spanish	3%	4%	4%	4%	3%	3%		
Portuguese	0%	1%	1%	1%	1%	1%		
	Panel D: Distances(miles)							
Closest School	0.43	0.67	0.43	0.47	0.45	0.49		
Average School	1.91	1.93	1.93	1.93	1.89	1.92		

Strategic Behavior Top Rank: Proximity Boundary

Difficult to explain entire response with residential sorting

Strategic Behavior Placebo with Two Closest Schools

- Individual faces two sources of uncertainty:
 - lacktriangle Own lottery draw $u_i \sim U\left[\mathtt{0},\mathtt{1}\right]$

- Individual faces two sources of uncertainty:
 - ▶ Own lottery draw $v_i \sim U[0,1]$
 - lacktriangle Market clearing cutoff p^* depend on all agents' actions and lotteries

- Individual faces two sources of uncertainty:
 - Own lottery draw $\nu_i \sim U\left[0,1
 ight]$
 - ▶ Market clearing cutoff p^* depend on all agents' actions and lotteries
- Estimate assignment probabilities by resampling R_{-i} , t_{-i} , B times

$$\hat{L}_{R,t,j} = \frac{1}{B} \sum_{b=1}^{B} \int 1\{f_j(R,t,\nu) \ge p_j^b \text{ and } f_k(R,t,\nu) < p_k^b \text{ if } kRj\} d\nu$$

- Individual faces two sources of uncertainty:
 - Own lottery draw $v_i \sim U[0,1]$
 - \blacktriangleright Market clearing cutoff p^* depend on all agents' actions and lotteries
- Estimate assignment probabilities by resampling R_{-i} , t_{-i} , B times

$$\hat{L}_{R,t,j} = \frac{1}{B} \sum_{b=1}^{B} \int 1\{f_j(R,t,\nu) \ge p_j^b \text{ and } f_k(R,t,\nu) < p_k^b \text{ if } kRj\} d\nu$$

Idea: Resampling approximation to beliefs about assignment probabilities

- Individual faces two sources of uncertainty:
 - Own lottery draw $v_i \sim U[0,1]$
 - \blacktriangleright Market clearing cutoff p^* depend on all agents' actions and lotteries
- Estimate assignment probabilities by resampling R_{-i} , t_{-i} , B times

$$\hat{L}_{R,t,j} = \frac{1}{B} \sum_{h=1}^{B} \int 1\{f_j(R,t,\nu) \ge p_j^b \text{ and } f_k(R,t,\nu) < p_k^b \text{ if } kRj\} d\nu$$

- ▶ Idea: Resampling approximation to beliefs about assignment probabilities
- √ Paper establishes consistency and asymptotic normality in a large market
 - Large number of students, fixed schools with increasing capacity
 - Target: Equilibrium of a limit game

Deferred Acceptance vs. Cambridge Mechanism

	Truthful			Rational Expectations		
	All Students	Paid Lunch	Free Lunch	All Students	Paid Lunch	Free Lunch
	Panel A: Deferred Acceptance					
Assigned to First Choice	67.7	58.2	86.6	67.9	58.1	87.5
Assigned to Second Choice	12.1	14.2	8.1	15.5	18.6	9.4
Assigned to Third Choice	5.7	8.2	0.8	5.2	7.1	1.3
	Panel B: Cambridge Mechanism					
Assigned to First Choice	79.0	74.5	87.8	72.3	63.9	88.8
Assigned to Second Choice	6.5	6.8	6.0	14.7	18.1	7.9
Assigned to Third Choice	3.1	4.0	1.4	3.9	5.1	1.3
	Panel C: Deferred Acceptance vs Cambridge					
Mean Utility DA - Cambridge	-0.004	-0.010	0.008	-0.072	-0.109	0.003
	(0.017)	(0.025)	(0.006)	(0.011)	(0.015)	(0.013)
Std. Utility DA - Cambridge	0.230	0.280	0.047	0.171	0.142	0.197
Percent DA > Cambridge	26.8	26.0	28.3	16.5	14.2	21.1
Percent DA ≈ Cambridge	31.9	26.2	43.0	30.3	27.1	36.6
Percent DA < Cambridge	41.4	47.8	28.7	53.2	58.7	42.3
Percent with Justified Envy	9.93	12.69	4.46	5.6	5.1	6.4

 $\checkmark\,$ Approach evaluates assignments, ignoring potential costs of strategizing

DA vs. Cambridge w/ Biased Beliefs

	Coarse Beliefs			Adaptive Expectations		
	All Students	Paid Lunch	Free Lunch	All Students	Paid Lunch	Free Lunch
	Panel A: Deferred Acceptance					
Assigned to First Choice	69.7	61.0	87.1	68.4	56.9	89.1
Assigned to Second Choice	11.9	13.7	8.5	13.6	17.3	7.1
Assigned to Third Choice	4.9	6.7	1.2	5.1	7.3	1.1
	Panel B: Cambridge Mechanism					
Assigned to First Choice	73.9	67.3	86.9	72.3	63.0	88.9
Assigned to Second Choice	10.2	11.1	8.3	12.1	15.3	6.4
Assigned to Third Choice	3.5	4.6	1.5	3.7	4.9	1.4
	Panel C: Deferred Acceptance vs Cambridge					
Mean Utility DA - Cambridge	-0.045	-0.074	0.013	-0.049	-0.097	0.037
	(0.011)	(0.013)	(0.016)	(0.028)	(0.035)	(0.040)
Std. Utility DA - Cambridge	0.174	0.146	0.207	0.213	0.142	0.282
Percent DA > Cambridge	22.6	21.3	25.1	19.1	16.5	23.9
Percent DA ≈ Cambridge	30.6	26.5	38.7	31.6	26.2	41.4
Percent DA < Cambridge	46.9	52.2	36.2	49.3	57.4	34.7
Percent with Justified Envy	7.1	7.8	5.6	6.7	8.0	4.4

✓ Advantage of the Cambridge mechanism are sensitive to agent information

Outline

- Introduction
- Discrete Choice Models
- Stability
- 4 Truthful Reports
- Strategic Reports
- 6 Conclusion

• Estimating preferences in school choice context

- Estimating preferences in school choice context
- General model of student's preferences

- Estimating preferences in school choice context
- General model of student's preferences
- Approach depends on the mechanism and the available data:

- Estimating preferences in school choice context
- General model of student's preferences
- Approach depends on the mechanism and the available data:
 - Data on final stable allocation

- Estimating preferences in school choice context
- General model of student's preferences
- Approach depends on the mechanism and the available data:
 - Data on final stable allocation
 - Data on truthful rank ordered lists

- Estimating preferences in school choice context
- General model of student's preferences
- Approach depends on the mechanism and the available data:
 - Data on final stable allocation
 - Data on truthful rank ordered lists
 - Data on strategic rank ordered lists

• Free tuition may have regressive effects

- Free tuition may have regressive effects
- Big welfare effects of centralized mechanisms

- Free tuition may have regressive effects
- Big welfare effects of centralized mechanisms
- IA can increase our measure of welfare if students strategize correctly

- Free tuition may have regressive effects
- Big welfare effects of centralized mechanisms
- IA can increase our measure of welfare if students strategize correctly
- Difference between the mechanisms is smaller if beliefs are biased

- Free tuition may have regressive effects
- Big welfare effects of centralized mechanisms
- IA can increase our measure of welfare if students strategize correctly
- Difference between the mechanisms is smaller if beliefs are biased
- Similar results in Barcelona [Calsamiglia, Guell and Fu, 2018]

- Free tuition may have regressive effects
- Big welfare effects of centralized mechanisms
- IA can increase our measure of welfare if students strategize correctly
- Difference between the mechanisms is smaller if beliefs are biased
- Similar results in Barcelona [Calsamiglia, Guell and Fu, 2018]
- Manipulable mechanism do badly if beliefs are wrong like in New Haven [Kapor, Nielsen and Zimmerman, 2018]

• School choice and educational outcomes [Abdulkadiroglu, Angrist, Narita, Pathak 2017 & 2019, Abdulkadiroglu, Pathak, Schellenberg, and Walters, 2020]

- School choice and educational outcomes [Abdulkadiroglu, Angrist, Narita, Pathak 2017 & 2019, Abdulkadiroglu, Pathak, Schellenberg, and Walters, 2020]
- Effect of affirmative action policies [Otero, Barahona and Dobbin, 2022]

- School choice and educational outcomes [Abdulkadiroglu, Angrist, Narita, Pathak 2017 & 2019, Abdulkadiroglu, Pathak, Schellenberg, and Walters, 2020]
- Effect of affirmative action policies [Otero, Barahona and Dobbin, 2022]
- Informing students about schools and programs [Allende, Gallego and Neilson, 2019]

- School choice and educational outcomes [Abdulkadiroglu, Angrist, Narita, Pathak 2017 & 2019, Abdulkadiroglu, Pathak, Schellenberg, and Walters, 2020]
- Effect of affirmative action policies [Otero, Barahona and Dobbin, 2022]
- Informing students about schools and programs [Allende, Gallego and Neilson, 2019]
- Augment with supply models: school entry and investment decisions