In [1]: import numpy as np
 import pandas as pd
 import seaborn as sns
 import matplotlib.pyplot as plt
 from sklearn import preprocessing,svm
 from sklearn.model\_selection import train\_test\_split
 from sklearn.linear\_model import LinearRegression

In [2]: df=pd.read\_csv(r"C:\Users\Sushma sree\Downloads\fiat500\_VehicleSelection\_Datas
 df

| Out[2]: |      | ID   | model  | engine_power | age_in_days | km     | previous_owners | lat       | lon       |
|---------|------|------|--------|--------------|-------------|--------|-----------------|-----------|-----------|
|         | 0    | 1    | lounge | 51           | 882         | 25000  | 1               | 44.907242 | 8.611560  |
|         | 1    | 2    | pop    | 51           | 1186        | 32500  | 1               | 45.666359 | 12.241890 |
|         | 2    | 3    | sport  | 74           | 4658        | 142228 | 1               | 45.503300 | 11.417840 |
|         | 3    | 4    | lounge | 51           | 2739        | 160000 | 1               | 40.633171 | 17.634609 |
|         | 4    | 5    | pop    | 73           | 3074        | 106880 | 1               | 41.903221 | 12.495650 |
|         |      |      |        |              |             |        |                 |           |           |
|         | 1533 | 1534 | sport  | 51           | 3712        | 115280 | 1               | 45.069679 | 7.704920  |
|         | 1534 | 1535 | lounge | 74           | 3835        | 112000 | 1               | 45.845692 | 8.666870  |
|         | 1535 | 1536 | pop    | 51           | 2223        | 60457  | 1               | 45.481541 | 9.413480  |
|         | 1536 | 1537 | lounge | 51           | 2557        | 80750  | 1               | 45.000702 | 7.682270  |
|         | 1537 | 1538 | pop    | 51           | 1766        | 54276  | 1               | 40.323410 | 17.568270 |

1538 rows × 9 columns

```
In [3]: df=df[['age_in_days','price']]
    df.columns=['age','price']
    df.head(10)
```

## Out[3]:

|   | age  | price |
|---|------|-------|
| 0 | 882  | 8900  |
| 1 | 1186 | 8800  |
| 2 | 4658 | 4200  |
| 3 | 2739 | 6000  |
| 4 | 3074 | 5700  |
| 5 | 3623 | 7900  |
| 6 | 731  | 10750 |
| 7 | 1521 | 9190  |
| 8 | 4049 | 5600  |
| 9 | 3653 | 6000  |
|   |      |       |

```
In [5]: sns.lmplot(x="age",y="price",data=df,order=2,ci=None)
```

Out[5]: <seaborn.axisgrid.FacetGrid at 0x23246cc1150>



```
In [6]: |df.describe()
 Out[6]:
                                  price
                       age
          count 1538.000000
                            1538.000000
                            8576.003901
           mean 1650.980494
            std 1289.522278
                            1939.958641
                 366.000000
                            2500.000000
            min
           25%
                 670.000000
                            7122.500000
           50% 1035.000000
                            9000.000000
           75% 2616.000000 10000.000000
           max 4658.000000 11100.000000
 In [7]: df.info()
          <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1538 entries, 0 to 1537
         Data columns (total 2 columns):
               Column Non-Null Count Dtype
           0
               age
                       1538 non-null
                                        int64
           1
               price
                       1538 non-null
                                        int64
         dtypes: int64(2)
         memory usage: 24.2 KB
 In [8]: | df.fillna(method='ffill',inplace=True)
         C:\Users\Sushma sree\AppData\Local\Temp\ipykernel_3600\4116506308.py:1: Setti
         ngWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
         table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://panda
         s.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-ver
         sus-a-copy)
           df.fillna(method='ffill',inplace=True)
In [10]: | x=np.array(df['age']).reshape(-1,1)
```

y=np.array(df['price']).reshape(-1,1)

```
In [11]: df.dropna(inplace=True)
```

C:\Users\Sushma sree\AppData\Local\Temp\ipykernel\_3600\1379821321.py:1: Setti
ngWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user\_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy)

df.dropna(inplace=True)

```
In [12]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print(regr.score(x_test,y_test))
```

0.7779786781044137

```
In [15]: y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```



```
In [21]: df500=df[:][:500]
sns.lmplot(x='age',y='price',data=df500,order=1,ci=None)
```

Out[21]: <seaborn.axisgrid.FacetGrid at 0x2324afc2cb0>



```
In [22]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
    regr=LinearRegression()
    regr.fit(x_train,y_train)
    print("Regression: ",regr.score(x_test,y_test))
    y_pred=regr.predict(x_test)
    plt.scatter(x_test,y_test,color='b')
    plt.plot(x_test,y_pred,color='k')
    plt.show()
```

Regression: 0.816526447996026



```
In [23]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model=LinearRegression()
    model.fit(x_train,y_train)
    y_pred=model.predict(x_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score:",r2)
```

R2 score: 0.816526447996026

```
In [ ]: # Conclusion this is best fit LinearRegression
```