Linear Programming: The Simplex Method

Saurav Samantaray

Department of Mathematics

Indian Institute of Technology Madras

April 3, 2024

 Today, linear programming and the simplex method continue to hold sway as the most widely used of all optimisation tools.

- Today, linear programming and the simplex method continue to hold sway as the most widely used of all optimisation tools.
- The technique is to formulate linear models and solve them with simplex-based software.

- Today, linear programming and the simplex method continue to hold sway as the most widely used of all optimisation tools.
- The technique is to formulate linear models and solve them with simplex-based software.
- Often, the situations they model are actually non-linear.

- Today, linear programming and the simplex method continue to hold sway as the most widely used of all optimisation tools.
- The technique is to formulate linear models and solve them with simplex-based software.
- Often, the situations they model are actually non-linear.
- But linear programming is appealing,

- Today, linear programming and the simplex method continue to hold sway as the most widely used of all optimisation tools.
- The technique is to formulate linear models and solve them with simplex-based software.
- Often, the situations they model are actually non-linear.
- But linear programming is appealing,
 - advanced state of the software,

- Today, linear programming and the simplex method continue to hold sway as the most widely used of all optimisation tools.
- The technique is to formulate linear models and solve them with simplex-based software.
- Often, the situations they model are actually non-linear.
- But linear programming is appealing,
 - advanced state of the software,
 - guaranteed convergence to a global minimum,

- Today, linear programming and the simplex method continue to hold sway as the most widely used of all optimisation tools.
- The technique is to formulate linear models and solve them with simplex-based software.
- Often, the situations they model are actually non-linear.
- But linear programming is appealing,
 - advanced state of the software,
 - guaranteed convergence to a global minimum,
 - uncertainty in the model makes a linear model more appropriate than an overly complex non-linear model.

Non-linear Programming Might be the Future !!!

 Non-linear programming may replace linear programming as the method of choice in some applications as the non-linear software improves.

Non-linear Programming Might be the Future !!!

- Non-linear programming may replace linear programming as the method of choice in some applications as the non-linear software improves.
- A new class of methods known as interior-point methods has proved to be faster for some linear programming problems.

Non-linear Programming Might be the Future !!!

- Non-linear programming may replace linear programming as the method of choice in some applications as the non-linear software improves.
- A new class of methods known as interior-point methods has proved to be faster for some linear programming problems.
- But the continued importance of the simplex method is assured for the foreseeable future.

Linear programs have:

• linear objective function;

- linear objective function;
- linear constraints;

- linear objective function;
- linear constraints;
- which may include both equalities and inequalities.

- linear objective function;
- linear constraints:
- which may include both equalities and inequalities.
- The feasible set is a polytope, a convex, connected set with flat, polygonal faces.

- linear objective function;
- linear constraints;
- which may include both equalities and inequalities.
- The feasible set is a polytope, a convex, connected set with flat, polygonal faces.
- Owing to the linearity of the objective function its contours are planar.

- linear objective function;
- linear constraints;
- which may include both equalities and inequalities.
- The feasible set is a polytope, a convex, connected set with flat, polygonal faces.
- Owing to the linearity of the objective function its contours are planar.
- Figure below depicts a linear program in two-dimensional space, in which the contours of the objective function are indicated by dotted lines.

Figure: A linear program in two dimensions with solution at x^*

Figure: A linear program in two dimensions with solution at x^*

• The solution in this case is unique-a single vertex.

 The solution to a linear program could be non-unique as well.

- The solution to a linear program could be non-unique as well.
- It could be an entire edge instead of just one vertex.

- The solution to a linear program could be non-unique as well.
- It could be an entire edge instead of just one vertex.
- In higher dimensions, the set of optimal points can be a single vertex, an edge or face, or even the entire feasible set.

- The solution to a linear program could be non-unique as well.
- It could be an entire edge instead of just one vertex.
- In higher dimensions, the set of optimal points can be a single vertex, an edge or face, or even the entire feasible set.
- The problem has no solution if the feasible set is empty (infeasible case);

- The solution to a linear program could be non-unique as well.
- It could be an entire edge instead of just one vertex.
- In higher dimensions, the set of optimal points can be a single vertex, an edge or face, or even the entire feasible set.
- The problem has no solution if the feasible set is empty (infeasible case);
- or if the objective function is unbounded below on the feasible region (the unbounded case)

Standard Form of Linear Programs

Linear programs are usually stated and analysed in the following standard form:

Linear Program

min
$$c^T x$$
, subject to $Ax = b$, $x \ge 0$, (1)

where

Standard Form of Linear Programs

Linear programs are usually stated and analysed in the following standard form:

Linear Program

min
$$c^T x$$
, subject to $Ax = b$, $x \ge 0$, (1)

where

- c and x are vectors in \mathbb{R}^n ,
- b is a vector in \mathbb{R}^m and A is an $m \times n$ matrix

Consider the form:

min
$$c^T x$$
, subject to $Ax \le b$ (2)

without any bounds on x.

Consider the form:

min
$$c^T x$$
, subject to $Ax \le b$ (2)

without any bounds on x.

• By introducing a vector of <u>slack variables</u> z the inequality constraints can be converted to equalities.

Consider the form:

min
$$c^T x$$
, subject to $Ax \le b$ (2)

without any bounds on x.

 By introducing a vector of <u>slack variables</u> z the inequality constraints can be converted to equalities.

•

min
$$c^T x$$
, subject to $Ax + z = b$, $z \ge 0$, (3)

Consider the form:

min
$$c^T x$$
, subject to $Ax \le b$ (2)

without any bounds on x.

 By introducing a vector of <u>slack variables</u> z the inequality constraints can be converted to equalities.

min
$$c^T x$$
, subject to $Ax + z = b$, $z > 0$,

 Still not all variables (x) are constrained to be non-negative as in the standard form.

(3)

• It is dealt by splitting x into non-negative and non-positive parts.

$$x = x^{+} - x^{-}, x^{+} = \max(x, 0) \ge 0 \text{ and } x^{-} = \max(-x, 0)$$

• It is dealt by splitting x into non-negative and non-positive parts.

$$x = x^{+} - x^{-}, x^{+} = \max(x, 0) \ge 0 \text{ and } x^{-} = \max(-x, 0)$$

• Now the above considered problem can be written as:

$$\min \begin{bmatrix} c \\ -c \\ 0 \end{bmatrix} \begin{bmatrix} x^+ \\ x^- \\ z \end{bmatrix} \text{ s.t. } \begin{bmatrix} A & -A & I \end{bmatrix} \begin{bmatrix} x^+ \\ x^- \\ z \end{bmatrix} = b, \begin{bmatrix} x^+ \\ x^- \\ z \end{bmatrix} \ge 0,$$

• It is dealt by splitting x into non-negative and non-positive parts.

$$x = x^{+} - x^{-}, x^{+} = \max(x, 0) \ge 0 \text{ and } x^{-} = \max(-x, 0)$$

• Now the above considered problem can be written as:

$$\min \begin{bmatrix} c \\ -c \\ 0 \end{bmatrix} \begin{bmatrix} x^+ \\ x^- \\ z \end{bmatrix} \text{ s.t. } \begin{bmatrix} A & -A & I \end{bmatrix} \begin{bmatrix} x^+ \\ x^- \\ z \end{bmatrix} = b, \begin{bmatrix} x^+ \\ x^- \\ z \end{bmatrix} \ge 0,$$

• The above system is now in the standard form.

• Inequality constraints of the form $x \le u$ and $Ax \ge b$ can be converted to equality constraints by adding or subtracting slack variables.

• Inequality constraints of the form $x \le u$ and $Ax \ge b$ can be converted to equality constraints by adding or subtracting slack variables.

0

$$x \le u \Leftrightarrow x + w = u, \ w \ge 0,$$

 $Ax \ge b \Leftrightarrow Ax - y = b \ y \ge 0$

Transforming to Standard Form

• Inequality constraints of the form $x \le u$ and $Ax \ge b$ can be converted to equality constraints by adding or subtracting slack variables.

•

$$x \le u \Leftrightarrow x + w = u, w \ge 0,$$

 $Ax \ge b \Leftrightarrow Ax - y = b, y \ge 0$

• We subtract the variables from the left hand side, they are known as surplus variables.

Transforming to Standard Form

• Inequality constraints of the form $x \le u$ and $Ax \ge b$ can be converted to equality constraints by adding or subtracting slack variables.

0

$$x \le u \Leftrightarrow x + w = u, \ w \ge 0,$$

 $Ax \ge b \Leftrightarrow Ax - y = b, y \ge 0$

- We subtract the variables from the left hand side, they are known as surplus variables.
- We add the variables to the left hand side, they are known as deficit variables.

Transforming to Standard Form

• Inequality constraints of the form $x \le u$ and $Ax \ge b$ can be converted to equality constraints by adding or subtracting slack variables.

$$x \le u \Leftrightarrow x + w = u, w \ge 0,$$

 $Ax > b \Leftrightarrow Ax - y = b, y > 0$

- We subtract the variables from the left hand side, they are known as surplus variables.
- We add the variables to the left hand side, they are known as deficit variables.
- By simply negating c "maximise" objective max c^Tx can be converted to "minimise" form min $-c^Tx$

• The linear program is said to be infeasible if the feasible set is empty.

- The linear program is said to be infeasible if the feasible set is empty.
- The problem is considered to be unbounded if the objective function is unbounded below on the feasible region.

- The linear program is said to be infeasible if the feasible set is empty.
- The problem is considered to be unbounded if the objective function is unbounded below on the feasible region.
- That is, there is a sequence of points x_k in the feasible region such that $c^T x_K \downarrow -\infty$.

- The linear program is said to be infeasible if the feasible set is empty.
- The problem is considered to be unbounded if the objective function is unbounded below on the feasible region.
- That is, there is a sequence of points x_k in the feasible region such that $c^T x_K \downarrow -\infty$.
- Unbounded problems have no solution.

- The linear program is said to be infeasible if the feasible set is empty.
- The problem is considered to be unbounded if the objective function is unbounded below on the feasible region.
- That is, there is a sequence of points x_k in the feasible region such that $c^T x_K \downarrow -\infty$.
- Unbounded problems have no solution.
- For the standard formulation , we will assume throughout that m < n.

- The linear program is said to be infeasible if the feasible set is empty.
- The problem is considered to be unbounded if the objective function is unbounded below on the feasible region.
- That is, there is a sequence of points x_k in the feasible region such that $c^T x_K \downarrow -\infty$.
- Unbounded problems have no solution.
- For the standard formulation , we will assume throughout that m < n.
- Otherwise, the system Ax = b contains redundant rows, or is infeasible, or defines a unique point.

- The linear program is said to be infeasible if the feasible set is empty.
- The problem is considered to be unbounded if the objective function is unbounded below on the feasible region.
- That is, there is a sequence of points x_k in the feasible region such that $c^T x_K \downarrow -\infty$.
- Unbounded problems have no solution.
- For the standard formulation , we will assume throughout that m < n.
- Otherwise, the system Ax = b contains redundant rows, or is infeasible, or defines a unique point.
- When $m \ge n$, factorisations such as the QR or LU factorisation can be used to transform the system Ax = b to one with a coefficient matrix of full row rank.

 Optimality conditions can be derived from the first-order conditions, the Karush-Kuhn-Tucker (KKT) conditions.

- Optimality conditions can be derived from the first-order conditions, the Karush–Kuhn–Tucker (KKT) conditions.
- Convexity of the problem ensures that these conditions are sufficient for a global minimum.

- Optimality conditions can be derived from the first-order conditions, the Karush-Kuhn-Tucker (KKT) conditions.
- Convexity of the problem ensures that these conditions are sufficient for a global minimum.
- Do not need to refer to the second-order conditions, which are not informative because the Hessian of the Lagrangian is zero.

- Optimality conditions can be derived from the first-order conditions, the Karush–Kuhn–Tucker (KKT) conditions.
- Convexity of the problem ensures that these conditions are sufficient for a global minimum.
- Do not need to refer to the second-order conditions, which are not informative because the Hessian of the Lagrangian is zero.
- The LICQ condition is not required to be enforced here as the KKT results continue to hold for dependent constraints provided they are linear, as is the case here.

• The Lagrange multipliers for linear problems are partitioned into two vectors λ and s.

- The Lagrange multipliers for linear problems are partitioned into two vectors λ and s.
- Where $\lambda \in \mathbb{R}^m$ is the multiplier vector for the equality constraints Ax = b.

- The Lagrange multipliers for linear problems are partitioned into two vectors λ and s.
- Where $\lambda \in \mathbb{R}^m$ is the multiplier vector for the equality constraints Ax = b.
- While $s \in \mathbb{R}^n$ is the multiplier vector for the bound constraints x > 0.

- The Lagrange multipliers for linear problems are partitioned into two vectors λ and s.
- Where $\lambda \in \mathbb{R}^m$ is the multiplier vector for the equality constraints Ax = b.
- While $s \in \mathbb{R}^n$ is the multiplier vector for the bound constraints x > 0.
- Using the definition we can write the Lagrangian function:

$$\mathscr{L}(x,\lambda,s) = c^{T}x - \lambda^{T}(Ax - b) - s^{T}x. \tag{4}$$

• The first-order necessary conditions for x^* to be a solution of the linear programming problem (1) are, if there exists λ and s such that:

$$A^{T}\lambda + s = c, (5)$$

$$Ax = b, (6)$$

$$x \ge 0, \tag{7}$$

$$s\geq 0,$$
 (8)

$$x_i s_i = 0, \ i = 1, 2, \dots, n.$$
 (9)

$$x^Ts=0_{\text{dist}}$$

• The first-order necessary conditions for x^* to be a solution of the linear programming problem (1) are, if there exists λ and s such that:

$$A^{T}\lambda + s = c, (5)$$

$$x \ge 0, \tag{7}$$

$$s \ge 0,$$
 (8)

$$x_i s_i = 0, \ i = 1, 2, \dots, n.$$
 (9)

$$x^Ts=0_{\text{dist}}$$

• The first-order necessary conditions for x^* to be a solution of the linear programming problem (1) are, if there exists λ and s such that:

$$A^{T}\lambda + s = c, (5)$$

$$s \ge 0,$$
 (8)

$$x_i s_i = 0, \ i = 1, 2, \dots, n.$$
 (9)

$$x^Ts=0_{\text{dist}}$$

• The first-order necessary conditions for x^* to be a solution of the linear programming problem (1) are, if there exists λ and s such that:

$$A^T \lambda + s = c, \tag{5}$$

$$x_i s_i = 0, \ i = 1, 2, \dots, n.$$
 (9)

$$x^Ts=0_{\text{dist}}=0$$

• The first-order necessary conditions for x^* to be a solution of the linear programming problem (1) are, if there exists λ and s such that:

$$A^{T}\lambda + s = c, (5)$$

$$Ax = b, (6)$$

$$x\geq 0, \tag{7}$$

$$s \ge 0,$$
 (8)

$$x_i s_i = 0, \ i = 1, 2, \dots, n.$$
 (9)

• The first-order necessary conditions for x^* to be a solution of the linear programming problem (1) are, if there exists λ and s such that:

$$A^{T}\lambda + s = c, (5)$$

$$Ax = b, (6)$$

$$x\geq 0, \tag{7}$$

$$s \ge 0,$$
 (8)

$$x_i s_i = 0, \ i = 1, 2, \dots, n.$$
 (9)

$$x^Ts=0_{\text{dist}}$$

• Let (x^*, λ^*, s^*) denote a vector triple that satisfy the KKT conditions, then

$$c^T x^* = (A^T \lambda^* + s^*)^T x^* = (Ax^*)^T \lambda^* = b^T \lambda^*$$
 (10)

• Let (x^*, λ^*, s^*) denote a vector triple that satisfy the KKT conditions, then

$$c^T x^* = (A^T \lambda^* + s^*)^T x^* = (Ax^*)^T \lambda^* = b^T \lambda^*$$
 (10)

 The first order KKT conditions for optimality for LPP is indeed sufficient.

• Let (x^*, λ^*, s^*) denote a vector triple that satisfy the KKT conditions, then

$$c^T x^* = (A^T \lambda^* + s^*)^T x^* = (Ax^*)^T \lambda^* = b^T \lambda^*$$
 (10)

- The first order KKT conditions for optimality for LPP is indeed sufficient.
- Let \bar{x} be any other feasible point, so that $A\bar{x} = b$ and $\bar{x} \ge 0$.

$$c^{T}\bar{x} = (A^{T}\lambda^{*} + s^{*})^{T}\bar{x}$$
$$= b^{T}\lambda^{*} + \bar{x}^{T}s^{*}$$
$$> b^{T}\lambda^{*} = c^{T}x^{*}$$

• The above inequality tells that no other feasible point can have a lower objective value than c^Tx^* .

- The above inequality tells that no other feasible point can have a lower objective value than c^Tx^* .
- To say more the feasible point \bar{x} is optimal if and only if

$$\bar{x}^T s^* = 0$$

otherwise the inequality is strict.

- The above inequality tells that no other feasible point can have a lower objective value than c^Tx^* .
- ullet To say more the feasible point \bar{x} is optimal if and only if

$$\bar{x}^T s^* = 0$$

otherwise the inequality is strict.

• When $s_i^* > 0$ then we must have $\bar{x}_i = 0$ for all solutions \bar{x} of the LPP.