I. Variation d'une fonction affine

Définition 1

On appelle **fonction affine** toute fonction f définie pour tout $x \in \mathbb{R}$ par :

$$f(x) = ax + b$$

où a et b sont des nombres réels.

Propriété 1

Sur un repère orthonormé, la fonction $f: x \mapsto ax + b$ est représentée par la droite d'équation y = ax + b.

<u> Remarques</u>

- Si b = 0 (f(x) = ax), on obtient alors une **fonction linéaire**. Sa représentation graphique est une droite passant par l'origine. Les fonctions linéaires représentent des situations de proportionnalité.
- $Si \ \alpha = 0$ (f(x) = b), on obtient une fonction constante dont la représentation graphique est une droite parallèle à l'axe des abscisses.

Exemple • Sur un site internet, on peut acheter des blu-ray à $15 \in I'$ unité. Les frais de port sont de $5 \in$, quel que soit le nombre de blu-ray acheté.

- 1°) Combien doit-on payer pour 4 blu-ray achetés?
- 2°) Quelle est l'expression de la fonction P donnant le prix total en fonction du nombre $\mathfrak n$ de blu-ray acheté ?
- 3°) Le prix total est-il proportionnel au nombre de blu-ray acheté?
- 4°) La fonction P est-elle une fonction affine? Pourquoi?

On suppose pour la suite $a \neq 0$.

Théorème 1

Soit f la fonction affine définie pour tout $x \in \mathbb{R}$ par f(x) = ax + b.

- Si a > 0, alors la fonction f est strictement croissante sur \mathbb{R} .
- Si a < 0, alors la fonction f est strictement décroissante sur \mathbb{R} .

Démonstration

On considère une fonction affine $f: x \mapsto ax + b$ et soient x_1 et x_2 deux nombres réels.

1°) Soit a > 0:

$$x_1 < x_2 \Rightarrow \alpha x_1 < \alpha x_2 \Rightarrow \alpha x_1 + b < \alpha x_2 + b \Rightarrow f(x_1) < f(x_2).$$

Ainsi, lorsque a > 0, alors f est croissante sur \mathbb{R} .

2°) Soit a < 0:

$$x_1 < x_2 \Rightarrow ax_1 > ax_2 \Rightarrow ax_1 + b > ax_2 + b \Rightarrow f(x_1) > f(x_2)$$
.

Ainsi, lorsque a < 0, alors f est décroissante sur \mathbb{R} .

II. Signe d'une fonction affine

Théorème 2

On rappelle que $a \in \mathbb{R}^*$.

Soit f une fonction affine définie par f(x) = ax + b pour tout $x \in \mathbb{R}$. Alors :

$$f(x) = 0 \Leftrightarrow x = -\frac{b}{a}.$$

 $\left|\frac{b}{a}\right|$, f est de signe constant puis change de signe sur $\left|-\frac{b}{a}\right|$; $+\infty$.

Démonstration

En effet, $ax + b = 0 \Leftrightarrow ax = -b \Leftrightarrow x = -\frac{b}{a}$. Le changement de signe est lié au fait que f est soit strictement croissante, soit strictement décroissante.

III. Tableau de variation et tableau de signe

f(x) = ax + b avec a > 0:

x	$-\infty$	$-\frac{b}{a}$	$+\infty$
Signe de f	_	0	+
Variation de f	$-\infty$		+∞

f(x) = ax + b avec a < 0:

x	$-\infty$		$-\frac{b}{a}$		$+\infty$
Signe de f		+	0	_	
Variation de f	+∞ .			_	$-\infty$