Replication: An Alternative Softmax Operator for Reinforcement Learning

組員: 彭沛鈞 0710022

黃柏維 0716084

詹凱傑 0716049

廖唯辰 0716092

Outline

- Introduction
 - Ideal softmax operator
- Boltzmann softmax
- Mellowmax softmax
 - Mellowmax's Properties
 - Mellowmax Policy
- Experiment
 - Handcrafted Simple MDP
 - o Random MDPs
 - Taxi Domain
 - Lunar Lander Domain
- Conclusion

Introduction

- The issue is about decision making between the action that has highest expected reward and avoiding starving the other actions.
- In Reinforcement Learning, we often use the softmax operators for value-function optimization and softmax poicies for action selection.

Ideal softmax operator:

- 1. approximate maximization
- 2. non-expansion, convergence to a unique fixed point
- 3. differentiable
- 4. avoids starvation

Common operator:

Let $X=x_1,x_2,...,x_n$,then we define

1.
$$max(X) = max_{i \in \{1, 2, ..., n\}} x_i$$

2.
$$mean(X) = \frac{1}{n} \sum_{i=1}^{n} x_i$$

3.
$$eps_{\epsilon}(X) = \epsilon \ mean(X) + (1 - \epsilon)max(X)$$

4.
$$boltz_{\beta}(X) = \frac{\sum_{i=1}^{n} x_i e^{\beta x_i}}{\sum_{i=1}^{n} e^{\beta x_i}}$$

Boltzmann softmax

•
$$boltz_{\beta}(X) = \frac{\sum_{i=1}^{n} x_i e^{\beta x_i}}{\sum_{i=1}^{n} e^{\beta x_i}}$$

- approximates max as $\beta \to \infty$, mean as $\beta \to 0$
- differentiable
- not a non-expansion operator

Mellowmax softmax

$$mm_{\omega}(X) = \frac{\log(\frac{1}{n}\sum_{i=1}^{n}e^{\omega x_i})}{\omega}$$

Mellowmax's Properties

Non-Expansion

$$|mm_{\omega}(X) - mm_{\omega}(Y)| \le max_i |x_i - y_i|$$

Maximization

$$\lim_{\omega \to \infty} m m_{\omega}(X) = max(X)$$

Derivatives

$$\frac{\partial mm_{\omega}(X)}{\partial x_i} = \frac{e^{\omega x_i}}{\sum_{i=1}^n e^{\omega x_i}}$$

Averaging

$$\lim_{\omega \to 0} m m_{\omega}(X) = mean(X)$$

Mellowmax Policy

Define the maximum entropy mellowmax policy of a state s as:

$$\pi_{mm}(s) = argmin_{\pi} \sum_{a \in A} \pi(a|s) \log(\pi(a|s))$$
 subject to
$$\begin{cases} \sum_{a \in A} \pi(a|s) Q(s,a)) = mm_{\omega}(Q(s,.)) \\ \pi(a|s) \geq 0 \\ \sum_{a \in A} \pi(a|s) = 1 \end{cases}$$

The probability of taking an action under the maximum entropy mellowmax policy has the form:

$$\pi_{mm}(a|s)=rac{e^{eta Q(s,a)}}{\sum_{a\in A}e^{eta Q(s,a)}}$$
 ,where $m{eta}$ is a value for which:
$$\sum_{a\in A}e^{eta(Q(s,a)-mm_{\omega}Q(s,.))}(Q(s,a)-mm_{\omega}Q(s,.))=0$$

Experiment

Handcrafted Simple MDP

Figure 1. A simple MDP with two states, two actions, and $\gamma=0.98$. The use of a Boltzmann softmax policy is not sound in this simple domain.

Handcrafted Simple MDP - SARSA

Replication

Figure 2. Values estimated by SARSA with Boltzmann softmax. The algorithm never achieves stable values.

Handcrafted Simple MDP - SARSA

Replication

Replication

Handcrafted Simple MDP - Generalized Value Iteration (GVI)

$$\mathbb{E}_{\pi} \left[r + \gamma \hat{Q}(s', a') \middle| s, a \right] = \\ \mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(\underline{s}, a, s') \underbrace{\sum_{a' \in \mathcal{A}} \pi(a' | s') \hat{Q}(s', a')}_{\text{boltz}_{\beta} \left(\hat{Q}(s', \cdot) \right)}.$$

This matches the GVI update (1) when $\bigotimes = \text{boltz}_{\beta}$.

Handcrafted Simple MDP - Generalized Value Iteration (GVI)

0.7 $\hat{Q}(s_1,a)$ 0.4 0.3 L 0.3

0.6

8.0

0.5

0.4

Boltzmann Softmax (paper)

Boltzmann Softmax (Replication)

Mellowmax (Replication)

Handcrafted Simple MDP - Generalized Value Iteration (GVI) - Vector Fields

Figure 4. Fixed points of GVI under boltz $_{\beta}$ for varying β . Two distinct fixed points (red and blue) co-exist for a range of β .

Boltzmann Softmax(Replication)

Mellowmax (Replication)

- The previous experiments are applied to a specifically handcrafted MDP.
- To be more naturally, in the following slides, more randomly constructed MDPs will be tested by GVI.

Figure 1. A simple P with two stars, two actions, and $\gamma=0.98$. The use of a Boltzmann softmax policy is not sound in this simple domain.

Get rid of handcrafted one.

	MDPs, no	MDPs, > 1	average
	terminate	fixed points	iterations
boltz_{β}	8 of 200	3 of 200	231.65
mm_{ω}	0	0	201.32

Paper's settings:

- Number of **states** sample from {2,3,...,10} uniformly at random.
- Number of **actions** sample from {2,3,...,5} uniformly at random.
- Construction of P & R:
 - o For each entry, we do:
 - i. Sample from [0,0.01] unifromly at random
 - ii. With prob 0.5: + a value sampled from N(1,0.1)
 - iii. With prob 0.1: + a value sampled from N(100,1)
 - iv. For P's entries, normalize it. For R's entries, divide values by max value and then *0.5
- Sample 200 MDPs
- Max iteration: 1000 (force to terminate if > this value)

Our settings:

- Number of **states** sample from {2,3,4,5} uniformly at random.
- Number of **actions** sample from {2,3,4} uniformly at random.
- Construction of P & R:
 - o For each entry, we do:
 - i. Sample from [0,0.01] unifromly at random
 - ii. With prob 0.5: + a value sampled from N(1,0.1)
 - iii. With prob 0.1: + a value sampled from N(100,1)
 - iv. For P's entries, normalize it. For R's entries, divide values by max value and then *0.5

	Avg of all MDP's all trials		
	Avg # no terminate	Avg # > 1 fixed points	Avg iterations
Boltzmann Softmax	0.00675	0.03	1085.0973
Mellowmax	0	0	1048.794

Our settings:

- How we decide one GVI has > 1 fixed points:
 - Do 100 trials for each MDP.
 - For each trial, each Q value is sampled from [0,30).
 - Find #unique convergece points of all 100 trials.
 - o #unique>1 means >1 fixed points
- Sample 200 MDPs
 - Max iteration: 2000

Comparison

	Boltzmann Softmax	Mellowmax
> 1 fixed point	Sometimes	No
Number of iterations needed	More	Less

Taxi Domain

Reward +1 for delivering one passenger

Reward +3 for delivering two passenger

Reward +15 for delivering three passenger

Lunar Lander Domain

paper expiriment settings:

- Boltzmann: beta: 1, 2, 3, 5, 10
- Mellowmax: omega: 3, 5, 7, 8, 11
- learning rate: 0.005
- network: a hidden layer comprised of 16 units with RELU activation functions + a second layer with 16 units and softmax activation functions
- batch episode size: 10
- training: 40000 episodes x 400-run averages

our different settings:

• training: 15000 episodes x 3-run averages

Mellowmax (Paper)

Boltzmann Softmax (Replication)

Mellowmax (Replication)

Mellowmax (Replication)

Conclusion

- Advantages of Mellowmax :
 - Non-expansion: GVI convergence guarrantee
 - More stable
- Disadvantages:
 - Needs more time to solve beta, but may get better updates
- Mellowmax operator can be an alternative to Boltzmann softmax operator