

Course Name: Mathematics-II (BSC-203)

Multivariate Calculus (Integration)

Dr. Sharmistha Ghosh Professor, IEM-Kolkata

Double Integrals

The **Double Integral** of the function f(x, y) over a region Ω is denoted as

and is given by the limit of the sum as

$$\lim_{N \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij} \Delta x_i \Delta y_j$$

$$\iint\limits_{\Omega} f(x,y) dx dy$$

Remember: (i) $\iint f(x,y)dxdy$ gives the **volume of the solid** bounded below by Ω

and bounded above by the surface z = f(x, y).

represents the rea of the region Ω .

Understanding Double Integrals

- ➤ Existence Condition for Double Integrals
- ➤ Properties of Double Integrals
- ➤ Evaluation of Double Integrals for a Rectangular Region

Condition for Existence of Double Integrals

Theorem: If f(x,y) is **continuous** or **sectionally continuous** on the region Ω , then it is **integrable** on Ω .

Note:

- (i) This is a **sufficient condition** for the existence of double integral.
- (ii) The double integral exists if finite number of discontinuities are there in Ω , but the function should be bounded.

Properties of the Double Integral

Let f and g be assumed to be continuous functions on Ω .

I. *Linearity*: The double integral of a linear combination is the linear combination of the double integrals:

$$\iint_{\Omega} \left[\alpha f(x, y) + \beta g(x, y) \right] dx dy = \alpha \iint_{\Omega} f(x, y) dx dy + \beta \iint_{\Omega} g(x, y) dx dy$$

where α and β are constants.

II. *Order*: The double integral preserves order:

if
$$f \ge 0$$
 on Ω , then
$$\iint_{\Omega} f(x, y) dx dy \ge 0$$
if $f \le g$ on Ω , then
$$\iint_{\Omega} f(x, y) dx dy \le \iint_{\Omega} g(x, y) dx dy$$

Properties of the Double Integral

III. *Additivity*: If Ω is broken up into a finite number of non-overlapping regions $\Omega_1, \ldots, \Omega_n$, then

$$\iint_{\Omega} f(x,y) dx dy = \iint_{\Omega_{1}} f(x,y) dx dy + \dots + \iint_{\Omega_{n}} f(x,y) dx dy$$

Evaluation of Double Integrals by Repeated Single Integrals

Rectangular Region: $R = \{(x, y) : a \le x \le b, c \le y \le d\}$

Fubini's Theorem

$$\iint\limits_R f(x,y)dxdy = \int\limits_c^d \left\{ \int\limits_a^b f(x,y)dx \right\} dy$$

or =
$$\int_{a}^{b} \left\{ \int_{c}^{d} f(x, y) dy \right\} dx$$

Evaluation of Double Integrals by Repeated Single Integrals

Calculate the double integral
$$\iint\limits_R xy^2 dxdy$$
 over the region $R=\{(x,y) \mid 1\leq x\leq 5, 0\leq y\leq 2\}$.

Solution.

$$\iint\limits_R xy^2 dx dy = \int\limits_1^5 x dx \cdot \int\limits_0^2 y^2 dy = \left. \left(\frac{x^2}{2} \right) \right|_1^5 \cdot \left. \left(\frac{y^3}{3} \right) \right|_0^2 = \left(\frac{25}{2} - \frac{1}{2} \right) \left(\frac{8}{3} - 0 \right) = 64.$$

Evaluation of Double Integrals by Repeated Single Integrals

Evaluate the integral $\iint\limits_R \cos(x+y) dx dy$ over the region $R = \left\{ (x,y) \, | \, 0 \leq x \leq rac{\pi}{4} \, ,
ight.$

$$0 \leq y \leq \frac{\pi}{4}$$
.

Solution.

$$\iint_{R} \cos(x+y) dx dy = \int_{0}^{\frac{\pi}{4}} \int_{0}^{\frac{\pi}{4}} \cos(x+y) dx dy = \int_{0}^{\frac{\pi}{4}} \left[\int_{0}^{\frac{\pi}{4}} \cos(x+y) dx \right] dy$$

$$= \int_{0}^{\frac{\pi}{4}} \left[\sin(x+y) \Big|_{x=0}^{\frac{\pi}{4}} \right] dy = \int_{0}^{\frac{\pi}{4}} \left[\sin\left(\frac{\pi}{4} + y\right) - \sin y \right] dy$$

$$= \left[-\cos\left(\frac{\pi}{4} + y\right) + \cos y \right] \Big|_{0}^{\frac{\pi}{4}} = \left[-\cos\left(\frac{\pi}{4} + \frac{\pi}{4}\right) + \cos\frac{\pi}{4} \right]$$

$$- \left[-\cos\left(\frac{\pi}{4} + 0\right) + \cos 0 \right] = -\cos\frac{\pi}{2} + \cos\frac{\pi}{4} + \cos\frac{\pi}{4} - \cos 0$$

$$= 0 + \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} - 1 = \sqrt{2} - 1.$$

Thank You

