Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2010/2011 AL210 - Algebra 2

Esercitazione 2 (13 Ottobre 2010)

Esercizio 1. Sia $G := GL_3(\mathbb{Z}_2)$ il gruppo delle matrici invertibili 3×3 a coefficienti in \mathbb{Z}_2 .

(a) Si scrivano esplicitamente i seguenti sottogruppi di G e si stabilisca se sono normali in G:

$$SL_3(\mathbb{Z}_2), \quad \Lambda_3(\mathbb{Z}_2), \quad D_3(\mathbb{Z}_2), \quad T_3^+(\mathbb{Z}_2), \quad O_3(\mathbb{Z}_2).$$

(b) Determinare se esistono in G un sottogruppo di ordine 3 e uno di ordine 7. In caso affermativo fornirne un esempio.

Esercizio 2. Sia G un gruppo, H un sottogruppo di G ed N un sottogruppo normale di G. Dimostrare che $H \cap N$ è un sottogruppo normale di H. Stabilire se $H \cap N$ è normale anche in N e/o in G.

Esercizio 3. Siano G un gruppo e H, K sottogruppi di G. Dimostrare che:

- (a) $HK := \{hk : h \in H, k \in K\}$ è un sottogruppo di G se e solo se HK = KH;
- (b) se H è normale in G, allora HK è un sottogruppo di G;
- (c) se H e K sono normali in G allora HK è normale in G.

Esercizio 4. Sia G un gruppo. Dati comunque due elementi $a, b \in G$ si definisca il *commutatore* di a e b come:

$$[a,b] := a^{-1}b^{-1}ab.$$

Si dimostri che il sottogruppo di G generato dall'insieme dei commutatori è un sottogruppo normale di G, detto derivato di G.

Esercizio 5. Si calcolino il centro di A_4 e del gruppo di Heisenberg $H_3(\mathbb{Z})$.

Esercizio 6. Siano N, M due sottogruppi normali di un gruppo G. Dimostrare che se $N \cap M = \{e_G\}$ allora per ogni $n \in N$ ed $m \in M$ si ha nm = mn.

Esercizio 7. Sia N un sottogruppo normale di G tale che |N|=2. Dimostrare che allora $N\subseteq Z(G)$.

Esercizio 8. Dato il gruppo $(\mathbb{Q}, +)$ si descriva il quoziente \mathbb{Q}/\mathbb{Z} . Stabilire inoltre se tale quoziente è un gruppo ciclico.

Esercizio 9. Si consideri il sottogruppo $D_4 := \langle (1234), (12)(34) \rangle$ di S_4 .

- (a) Stabilire quanti elementi ha D_4 .
- (b) Calcolare $Z(D_4)$.
- (c) Descrivere il quoziente $D_4/Z(D_4)$ e stabilire se è ciclico.