1. Introduction to Machine Learning

KUBIG 학술부

Index

- 1. What is machine Learning
- 2. Basic Idea behind ML
- 3. What are the kinds of ML

Example) Which image contains the image of tree?

1. What is Machine Learning?

" Field of study that gives computers the ability to learn without being explicitly programmed " - Arthur Samuel (1959)

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."

- Tom. M. Mitchell (1997)

Explicit Programming

Line-by-line coding with specific rule

Data Based Programming

Converting the conditions to specific weights for the learning model

Example) Google "the Manhattan Project

Google

- 인공지능 맨해튼 프로젝트 (Al Manhattan Project)
 - 인공지능 기술 개발을 위한 구글의 세기적 프로젝트
 - 관련 IT 기업과 전문가들을 확보하기 위한 거대 인수합병을 진행
- 1000명 이상의 인력이 구글의 인공지능/머신러닝 연구 진행 중 (아주경제)
- □ 2014년 1월 Deep Mind 인수 (6억 5000만 달러)
- 2014년 1월 Nest Labs 인수 (32억 달러)
- 기타 50여 개의 인공지능 기업들이 맨해튼 프로젝트에 참여, 연구 진행

The Manhattan Project

- During the World War 2, the project was to make the world's first nuclear weapon ahead of Hitler's Nazi
- Many renowned scientists gathered officially funded by the US government

Data Revolution plan by Google

- The project to stay ahead of the advanced AI technology
- Deepmind AI reduces Google Data
 Center cooling bill by 40%

2. Basic Idea behind Machine Learning

[The training data set]

X	Y
{3,6,9}	3
{2,5,7}	2
{2,3,5}	1

training

[The ML model]

Q.
$$X = \{4,7,8\}$$

Example) Self-Driving Car

[google image) Self-Driving Car in Las Vegas provided by Lyft]

Knowledge-Driven Programming

- Consider every possibility with human knowledge
- 100% controlled by pre-coded algorithm
- Concluded Infeasible(Too many Rules)

Data-Driven Programming

- Use logic driven from the computer based on the given data
- Reinforcement Learning
- Commercialized in Las Vegas

3. What are the kinds of Machine Learning?

Supervised Learning Semi- Supervised Learning Regression Classification **Unsupervised Learning Reinforcement Learning** Clustering Visualization Dimensionality Reduction **Association Rule**

3-1. Supervised Learning

> The Label(pre-determined output value) is given: Data in a form of (X, y)

Regression

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

Regression

- Output variable is continuous
- Predict y(the target variable) with given X(the predictor variable)
- Ex) temperature, value, price etc.

Classification

- Output Variable is discrete
- Binary Classification [1 or 0]
- Multi-label Classification [a \ b \ c \ d]

Example of Supervised Learning

- KNN (Kth Nearest Neighbors)
- Linear Regression
- Logistic Regression
- SVM (Support Vector Machine)
- Decision Tree
- NN (Neural Net)

3-2. Unsupervised Learning

The Label(pre-determined output value) is not given: Data in a form of (X)

Supervised Learning

X	у
10	90
9	80
3	50
2	30

Both X(predictor variable) and y(targe variable) are given

Unsupervised Learning

X
10
9
3
2

NO LABEL; no y(target variable) given

Example of Unsupervised Learning

Clustering

- K-Means Clustering
- Hierarchical Clustering
- DBSCAN (Data-Based Spatial Clustering of Applications with Noise)

Visualization / Dimensionality Reduction

- t-SNE (t-distribution Stochastic Neighbor Embedding)
- PCA (Principal Component Anlaysis)
- Kernel PCA

The Association Rule

Rule	Support	Confidence	Lift
$A \Rightarrow D$	2/5	2/3	10/9
$C \Rightarrow A$	2/5	2/4	5/6
$A \Rightarrow C$	2/5	2/3	5/6
$B \& C \Rightarrow D$	1/5	1/3	5/9

지지도(support) : $Pr(A \cap B) = \frac{A^{\Omega} B}{\Delta^{(A)}}$ 등다 고른 사람 수 전체 분석하는 총 인원 수

신뢰도(confidence) : $Pr(A \mid B) = \frac{A \text{와 } B \text{ 둘다 } \text{고른 사람 } \triangle}{B}$ 고른 사람 수

향상도(lift)
$$\frac{Pr(A \mid B)}{Pr(B)} = \frac{Pr(A \cap B)}{Pr(B) \star Pr(B)}$$

3-3. Semi-Supervised Learning

Semi-supervised learning uses a combination of supervised labeled training data with unsupervised methods:

- 1 Load labeled input training data.
- 2 Model is trained on the data.
- 3 Present unlabeled raw data.
- 4 Algorithm infers classifiers for unlabeled data on its own.
- High-confidence data is added to labeled training data set.
- 6 Algorithm progressively adapts and learns.

The Label(pre-determined output value) is partially given

3-4. Reinforcement Learning

Each Agent updates the Policy the Action according to the observed Environment in a way that maximizes the Reward and minimizes the Penalty

Example) Google Deepmind Challenge [Alpha Go]

[google image) Sedol Lee the only person to defeat Alpha Go]

Reinforcement Learning

- Database of every professional players
- Use Reinforcement Learning method for the training
- Every decision made for the optimal outcome

New generation: AlphaGo [zero]

- No input of human data anymore
- Endless re-generation of the random training data
- Strategies that was never seen before

ML visualized map

