Introducere in Retele Neurale Convolutionale

Studiu de caz pe dataset MNIST

- MNIST: dataset clasic; recunoasterea cifrelor scrise de mana [0, 1, 2 ... 9]
- Format imagine: 28 x 28 pixeli (784 flattened pixels)
- Cea mai simpla forma a unei retele neurale :
 - Un singur layer Fully Connected (FC)
 - o 10 neuroni

Functii de activare (1)

- Introduc o non-liniaritate, cu scopul de a putea modela complex features (caracteristici care nu se pot modela cu functii liniare, sau combinatii de functii liniare)
- Pentru clasificare, functia de activare cea mai des intalnita este Softmax :
 - "Softmax function, or normalized exponential function, is a generalization of the logistic function that "squashes" a K-dimensional vector z of arbitrary real values to a K-dimensional vector σ (z) of real values in the range [0, 1] that add up to 1"

$$egin{aligned} \sigma: \mathbb{R}^K &
ightarrow [0,1]^K \ \sigma(\mathbf{z})_j &= rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}} \end{aligned} ext{ for } j = 1,...,K.$$

Exemplu Python:

$$>> z_{exp} = [math.exp(i) for i in z]$$

[0.024, 0.064, 0.175, 0.475, 0.024, 0.064, 0.175]

Functii de activare (2)

- Procesul de normalizare se poate face cu diferite "norme":
 - L1 (folosit de obicei cu softmax : "Least Absolute Deviations")
 - o L2
 - o Norma Euclidiana

- Diferentele dintre L1 si L2:
 - http://www.chioka.in/differences-between-l1-and-l2-as-loss-function-and-regularization/

- Alte functii de activare :
 - Sigmoid
 - o Relu
 - o Elu
 - https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

Layer de baza pentru o Retea Neurala

$$Y = softmax(X.W+b)$$

MNIST:

- X = Input in retea (batch de 100 de imagini de cate 784 pixeli) => Structura [100,784]
- W = "Weights" / ponderi (variabilele care trebuiesc "invatate") [784,10]
- B = Biasuri (variabila care shifteaza datele in domeniul potrivit. Este aceeasi pentru toate ponderile) [10]
- Y = Predictii [100,10] (batch de 100 de predictii, 10 valori per predictie)

$$Y = tf.nn.softmax(tf.matmul(X, W) + b)$$

Distanta. Loss. Masura de Eroare (1)

Calitatea predictiilor (Y) este data de valorile din W si b. Pentru a obtine predictii bune, variabilele W si b trebuie antrenate cu pereci [imagine , ground-truth]. Aceasta antrenare corespunde masurarii unei "distante" intre predictii si rezultatul dorit.

- Initial, Y, W si b sunt random. (Tip: look up <u>Xavier</u> initialisation)
- Loss / Distanta / Masura de Eroare :
 - odiferenta intre ceea ce masoara sistemul la momentul "t" si ceea ce stim ca este adevarat (ground-truth)

• MNIST:

- Y va avea 10 valori softmaxed (suma lor = 1)
- Pentru fiecare imagine din X, construim ground truth tot ca 10 valori (toate elementele 0, mai putin cel pe care imaginea X il reprezinta. Acesta este 1)
- In acest fel, putem sa calculam in mod direct o distanta dintre elementele din Y si elementele din GT

Distanta. Loss. Masura de Eroare (2)

Exemple des intalnire de functie de calcul pentru distanta :

1. Cross-Entropy

$$\sum Y_i'$$
. $log(Y_i)$

2. L1

$$\sum_{i=1}^{n} |y_i - f(x_i)|.$$

3. L2

$$\sum_{i=1}^{n} (y_i - f(x_i))^2$$

Scopul in timpul antrenarii (invatarii): Minimizarea distantei

"Ce valori pentru W si b corespund distantei minime?"

Tips: http://ml-cheatsheet.readthedocs.io/en/latest/loss functions.html

Optimizatori (1)

- Algoritmi existenti care ne ajuta sa minimizam (sau maximizam) o functie E(x)
- E(x) este dependenta de parametrii care se pot antrena / "learnable" folositi in calculul valorilor target (Y) dintr-un set de predictori (X)

- First Order Optimization Algorithms: minimizeaza sau maximizeaza o functie de loss E(x) folosing valorile gradientilor sai, raportat la parametrii. (derivata de ordinul 1)
 - Cel mai popular : Gradient Descent
 - o Derivata de ordinul 1 ne ofera directia functiei (o linie tangentiala cu punctul in care o calculam)
 - \circ Un gradient este un vector (generalizare peste mai multe variabile a dY/dX), sau "rata instantanee de schimbare a lui Y, raportat la X"

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

• Tip: https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f

Optimizatori (2) Stocastic Gradient Descent

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
 Full sum expensive when N is large!
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$
 Approximate sum using a **minibatch** of examples

- R = termen de regularizare (constrange reteaua sa aleaga cea mai simpla solutie)
- Lambda = hyperparametru folosit pentru ponderea lui R

Minibatching:

- o Optimizare pentru intreaga capacitate a GPU'ului.
- Asigura ca gradientii sunt calculati peste mai multe exemple (generalizeaza peste dataset mai bine)

```
Regularizare (1) Yf = tf.nn.relu(tf.matmul(X, W) + B)
Y = tf.nn.dropout(Yf, pkeep)
```

Dropout:

- La fiecare iteratie, selecteaza random, cu probabilitatea "pkeep", neuronii care vor ramane in retea
- Pentru ceilalti neuroni ignora outputul (W si b) atat in forward cat si in backward propagation
- Gradientii nu vor avea termeni pentru acesti neuroni ignorati

- Forteaza reteaua sa construiasca "redundant pathways" pentru a reprezenta acelasi "feature-space". Aceste cai redundante vor face reteaua mai robusta, permitand o generalizare mai buna pe test (mai putin overfitting)
- Se aplica doar pe training! Pe test, toti neuronii sunt activi (pkeep=1.0)

Regularizare (2)

Regularizare L2 ("weight decay"):

- Cea mai comuna forma de regularizare.
- Penalizeaza vectorii W care sunt foarte puternic reprezentativi (peaks)
- Prefera vectori W care sunt difuzi.

$$L_{\lambda}(\mathbf{w}) = L(\mathbf{w}) + \lambda ||\mathbf{w}||_{2}^{2}.$$

Regularizare L1:

- Pentru fiecare W adaugam doar termenul $\lambda |w|$
- Efectul este folosirea unui subset din cele mai importante inputuri => invarianta la noise

Tip: https://arxiv.org/pdf/1706.05350.pdf

Retele Convolutionale (1)

Functioneaza pe acelasi principiu de multiplicare a W cu valori din input si adaugare de bias.

- Un filtru este conectat la un "patch" din imagine, nu la fiecare pixel (diferit de FC)
- Fiecare filtru este mutat (cu padding corespunzator) peste toata imaginea, pentru a produce un "feature map".
- Un feature map corespunde aceluiasi set de W folositi de un filtru.
- Filtrele au mereu acelasi depth cu volumul de input (3 in cazul primului layer Conv, daca imaginea este RGB)
- "Convolve": (terminologie provenita din procesarea de semnal)
 - "Slide over the image, spatially, computing dot products"
- Pentru grade de libertate aditionale, putem sa construim un layer convolutional cu multiple "feature maps", care corespund filtrelor asociate, si ale caror parametrii pot fi antrenati.

Retele Convolutionale (2)

Distilarea informatiei:

- Stride
- Max pool

Tips:

https://youtu.be/bNb2fEVKeEo

Retele Convolutionale (3)

- Fiecare filtru "evolueaza" intr-un "shape recognizer" / "feature recognizer"
- Pentru a distila informatia prin retea, pana la valorile de Y de la sfarsit, jonglam cu numarul de filtre, stride si padding, sau "downsampling" prin maxpooling.

Tricks. Terminologie.

Occam's Razor:

"Among competing hypotheses, the simplest is the best" William of Ockham, 1285 - 1347

Epoca:

- Numarul de iteratii necesare pentru ca reteaua sa vada intregul set de training o data.
- DatasetSize / (batchSize * NumIterations) :
 - o Trebuie sa fie suficient de mare incat Loss'ul sa se stabilizeze
 - Trebuie sa fie suficient de mic incat sa nu apara efectele "overfittingului"

Overfitting:

- Fenomen care apare in momentul in care reteaua incepe sa invete mot-a-mot anumite caracteristici ale datasetului (pierde capacitatea de generalizare pe seturi noi)
- Se intampla de obicei cand sunt prea multe grade de libertate (spatiul parametric al W si b) pentru un set suficient de mic / non-divers de training.
- Se poate observa prin plotarea curbelor de invatare pe seturi de "validare" si "test"
 - High accuracy on validation/train + Lower accuracy on test ⇒ Overfitting

Q & A :)