Comparison Operators

INTERMEDIATE PYTHON

Hugo Bowne-AndersonData Scientist at DataCamp

NumPy recap

```
# Code from Intro to Python for Data Science, Chapter 4
import numpy as np
np_height = np.array([1.73, 1.68, 1.71, 1.89, 1.79])
np_{weight} = np.array([65.4, 59.2, 63.6, 88.4, 68.7])
bmi = np_weight / np_height ** 2
bmi
array([ 21.852, 20.975, 21.75 , 24.747, 21.441])
bmi > 23
array([False, False, False, True, False], dtype=bool)
bmi[bmi > 23]
array([ 24.747])
```

Comparison operators: how Python values relate

Numeric comparisons

True

False

True

$$x = 2$$

$$y = 3$$

True

Other comparisons

```
"carl" < "chris"
True
3 < "chris"</pre>
TypeError: unorderable types: int() < str()</pre>
3 < 4.1
True
```


Other comparisons

bmi

```
array([21.852, 20.975, 21.75 , 24.747, 21.441])
```

bmi > 23

array([False, False, False, True, False], dtype=bool)

Comparators

Comparator	Meaning
<	Strictly less than
<=	Less than or equal
>	Strictly greater than
>=	Greater than or equal
==	Equal
!=	Not equal

Let's practice!

INTERMEDIATE PYTHON

Boolean Operators

INTERMEDIATE PYTHON

Hugo Bowne-AndersonData Scientist at DataCamp

Boolean Operators

- and
- or
- not

and

True **and** True False **and** True False True True **and** False x = 12x > 5 and x < 15# True True False True False **and** False False

or

True or True

False or False

True

False

False or True

y = 5

y < 7 or y > 13

True

True

True **or** False

True

not

not True

False

not False

True

NumPy

calculation of bmi left out bmi array([21.852, 20.975, 21.75 , 24.747, 21.441]) bmi > 21 array([True, False, True, True, True], dtype=bool) bmi < 22 array([True, True, True, False, True], dtype=bool) bmi > 21 and bmi < 22 ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

NumPy

- logical_and()
- logical_or()
- logical_not()

```
np.logical_and(bmi > 21, bmi < 22)
```

```
array([True, False, True, False, True], dtype=bool)
```

```
bmi[np.logical_and(bmi > 21, bmi < 22)]</pre>
```

```
array([21.852, 21.75, 21.441])
```

Let's practice!

INTERMEDIATE PYTHON

if, elif, else INTERMEDIATE PYTHON

Hugo Bowne-AndersonData Scientist at DataCamp

Overview

Comparison Operators

- Boolean Operators
 - o and, or, not
- Conditional Statements
 - o if, else, elif

```
if condition :
    expression
```

control.py

```
z = 4
if z % 2 == 0 :  # True
    print("z is even")
```

z is even

```
if condition :
    expression
```

expression not part of if

control.py

```
z = 4
if z % 2 == 0 :  # True
    print("z is even")
```

z is even

```
if condition :
    expression
```

control.py

```
z = 4
if z % 2 == 0 :
    print("checking " + str(z))
    print("z is even")
```

```
checking 4
z is even
```

```
if condition :
    expression
control.py
z = 5
if z % 2 == 0 : # False
    print("checking " + str(z))
    print("z is even")
```

else

```
if condition :
    expression
else :
    expression
```

control.py

```
z = 5
if z % 2 == 0 :  # False
    print("z is even")
else :
    print("z is odd")
```

z is odd

elif

```
if condition :
    expression
elif condition :
    expression
else :
    expression
```

control.py

```
z = 3
if z % 2 == 0 :
    print("z is divisible by 2")  # False
elif z % 3 == 0 :
    print("z is divisible by 3")  # True
else :
    print("z is neither divisible by 2 nor by 3")
```

```
z is divisible by 3
```

elif

```
if condition :
    expression
elif condition :
    expression
else :
    expression
```

control.py

```
z = 6
if z % 2 == 0 :
    print("z is divisible by 2")  # True
elif z % 3 == 0 :
    print("z is divisible by 3")  # Never reached
else :
    print("z is neither divisible by 2 nor by 3")
```

```
z is divisible by 2
```


Let's practice!

INTERMEDIATE PYTHON

Filtering pandas DataFrames

INTERMEDIATE PYTHON

Hugo Bowne-AndersonData Scientist at DataCamp

brics

```
import pandas as pd
brics = pd.read_csv("path/to/brics.csv", index_col = 0)
brics
```

	country	capital	area	population
BR	Brazil	Brasilia	8.516	200.40
RU	Russia	Moscow	17.100	143.50
IN	India	New Delhi	3.286	1252.00
СН	China	Beijing	9.597	1357.00
SA	South Africa	Pretoria	1.221	52.98

Goal

```
capital
                                      population
         country
                                area
                   Brasilia
BR
          Brazil
                               8.516
                                          200.40
          Russia
                     Moscow
                              17.100
                                          143.50
RU
                  New Delhi
IN
           India
                               3.286
                                         1252.00
CH
           China
                    Beijing
                               9.597
                                         1357.00
   South Africa
                                            52.98
                   Pretoria
                               1.221
```

- Select countries with area over 8 million km2
- 3 steps
 - Select the area column
 - Do comparison on area column
 - Use result to select countries

Step 1: Get column

```
capital
                             area population
        country
BR
         Brazil
                  Brasilia
                            8.516
                                       200.40
                    Moscow 17.100
                                       143.50
RU
         Russia
          India New Delhi
                                      1252.00
ΙN
                           3.286
СН
                   Beijing
                                      1357.00
          China
                            9.597
                           1.221
SA South Africa
                 Pretoria
                                       52.98
```

```
brics["area"]
```

```
BR 8.516
RU 17.100
IN 3.286
CH 9.597
SA 1.221
Name: area, dtype: float64 # - Need Pandas Series
```

• Alternatives:

```
brics.loc[:,"area"]
brics.iloc[:,2]
```


Step 2: Compare

```
brics["area"]
      8.516
RU
      17.100
ΙN
      3.286
СН
      9.597
SA
      1.221
Name: area, dtype: float64
brics["area"] > 8
BR
       True
RU
      True
IN
      False
СН
      True
SA
      False
Name: area, dtype: bool
is_huge = brics["area"] > 8
```


Step 3: Subset DF

```
is_huge
```

```
BR True
RU True
IN False
CH True
SA False
Name: area, dtype: bool
```

brics[is_huge]

```
country capital area population
BR Brazil Brasilia 8.516 200.4
RU Russia Moscow 17.100 143.5
CH China Beijing 9.597 1357.0
```


Summary

```
capital
                            area population
        country
                 Brasilia
BR
         Brazil
                           8.516
                                      200.40
                                     143.50
RU
         Russia
                   Moscow 17.100
          India New Delhi 3.286
                                     1252.00
ΙN
          China
                  Beijing 9.597
                                     1357.00
СН
  South Africa
                 Pretoria 1.221
                                      52.988
```

```
is_huge = brics["area"] > 8
brics[is_huge]
```

```
country capital area population
BR Brazil Brasilia 8.516 200.4
RU Russia Moscow 17.100 143.5
CH China Beijing 9.597 1357.0
```

```
brics[brics["area"] > 8]
```

```
country capital area population
BR Brazil Brasilia 8.516 200.4
RU Russia Moscow 17.100 143.5
CH China Beijing 9.597 1357.0
```


Boolean operators

```
area population
                  capital
        country
                 Brasilia 8.516
                                     200.40
BR
         Brazil
                                     143.50
RU
                   Moscow 17.100
         Russia
                                    1252.00
         India New Delhi 3.286
IN
                  Beijing
                          9.597
                                     1357.00
CH
          China
   South Africa Pretoria 1.221
                                      52.98
```

```
import numpy as np
np.logical_and(brics["area"] > 8, brics["area"] < 10)</pre>
```

```
BR True
RU False
IN False
CH True
SA False
Name: area, dtype: bool
```

```
brics[np.logical_and(brics["area"] > 8, brics["area"] < 10)]</pre>
```

```
country capital area population
BR Brazil Brasilia 8.516 200.4
CH China Beijing 9.597 1357.0
```


Let's practice!

INTERMEDIATE PYTHON

