

SELECTIVO 2 OCCAFI-OIBF 2019

Código INT19 -

Problema 1: Una botella está flotando boca arriba en un cubo grande con agua como se muestra en la figura. En equilibrio está sumergida a una profundidad d_0 por debajo de la superficie del agua. Mostrar que si se empuja hacia abajo hasta una profundidad d y se deja libre, ejecutará un movimiento armónico, y encontrar la frecuencia de sus oscilaciones. Sí $d_0 = 20$ cm, ¿cuál es el periodo de las oscilaciones? *Nota:* la fuerza de flotación es igual al peso del volumen desplazado.

Problema 2: Sí un mol de gas ideal es calentado lentamente tal que pasa del estado (V_0, P_0) al estado $(2V_0, 2P_0)$. Determine:

- a) T en términos de V, osea la función T(V) de este proceso.
- b) El trabajo W hecho por el gas.

Nota: se conoce que durante este proceso la presión del gas es directamente proporcional al volumen.

28 Marzo 2019

Tiempo: 4.5 horas Cada problema vale: 7 puntos

1

Problema 3: Dos pistones A y B de masas m_1 y m_2 contienen n moles de un gas ideal entre ellos, estos pueden deslizar sin fricción dentro de un cilindro muy largo de sección transversal S. El cilindro y los pistones son conductores perfectos de calor; la masa del gas es despreciable, la presión fuera es P_0 y la temperatura T_0 . Sí fuerzas constantes F_1 y F_2 son aplicadas a los pistones a lo largo de todo el cilindro como se muestra en la figura. Determine la mínima distancia entre los pistones que se alcanza en el movimiento subsecuente.

Problema 4: Un tubo de longitud \boldsymbol{l} cerrado en su extremo inferior permanece verticalmente. Sí un tapón de aire es colocado en su extremo abierto, el tapón desliza hacia abajo sin fricción y se detiene cuando su cara superior está a $\boldsymbol{l}/4$ del extremo abierto. Sí la temperatura del aire dentro del tubo se reduce a la mitad y se invierte el tubo, el tapón se ubica justo en el extremo abierto del tubo como se muestra en la figura. Determine la altura(espesor) del tapón.

