

高等数学笔记

奇峰

之前

目录

第一章	函数	极限连续	1
I.	函数的	9性态	1
	i.	有界性的判定	1
	ii.	导函数、原函数的奇偶性与周期性	1
II.	极限的	り概念	1
III.	重点.	- 函数极限的计算	2
	i.	0/0 形	2
	ii.	∞/∞ 形	3
	iii.	∞ $ \infty$ 形	4
	iv.	0^0 与 ∞^0 形	4
	v.	1∞ 形	4
IV.	己知村	及限反求参数	4
V.	无穷な	N阶的比较	5
VI.	重点.	- 数列极限的计算	5
	i.	夹逼定理	5
	ii.	单调有界定理	5
	iii.	定积分	6
附表 衤	小充结的	۵	7

第一章

函数 极限 连续

I. 函数的性态

i. 有界性的判定

- $\ddot{\pi} \lim_{x \to x_0} f(x) = A$, 则存在 $\delta > 0$, $\ddot{\pi} 0 < |x x_0| < \delta$ 时, f(x) 有界;
- 若 f(x) 在 [a,b] 连续,则其在 [a,b] 有界;
- 若 f(x) 在 (a,b) 连续,且 $\lim_{x\to a^+} f(x)$, $\lim_{x\to b^-} f(x)$ 均存在,则其在 (a,b) 有界;
- f'(x) 在有限区间 有界 \Rightarrow f(x) 在该区间有界。

ii. 导函数、原函数的奇偶性与周期性

导函数的奇偶性与周期性

- 可导奇函数的导函数为偶函数;
- 可导偶函数的导函数为奇函数;
- 可导周期函数的导函数为周期函数;

原函数的奇偶性与周期性

- 连续奇函数的原函数均为偶函数;
- 连续偶函数的原函数仅有一个为奇函数,即 C=0 时;
- 周期函数的原函数为周期函数 $\Rightarrow \int_0^T f(t) dt = 0.$

II. 极限的概念

讨论数列最值,将其拆分为前 N 个与后无穷个,前者求最值,后者利用极限定义可知其接近极限值。

讨论同时包含 $\sin(x_n),\cos(x_n)$ 的抽象数列时,可以考虑令 $x_n=\begin{cases}\pi/2,&2i+1\\-\pi/2,&2i\end{cases}$,利用 \sin,\cos 奇偶性的不同。

III. 重点 - 函数极限的计算

i. 0/0 形

洛必达法则

若 f(x), g(x)

- $\lim f(x) = \lim g(x) = 0/\infty;$ 可以推广为 $\frac{\blacksquare}{\infty};$
- f(x), g(x) 在 x_0 某去心邻域内可导,且 $g'(x) \neq 0$; 此处注意, $\begin{cases} n \text{阶可导} & \Rightarrow \text{洛}n - 1 \text{次} + \text{导数定义} \\ n \text{阶连续导数} & \Rightarrow \text{洛}n \text{次} \end{cases}$

•
$$\frac{\lim f'(x)}{\lim g'(x)} = A(\vec{\boxtimes}\infty),$$

则
$$\frac{\lim f(x)}{\lim g(x)} = A($$
或 $\infty)$.

等价代换

当 $x \to 0$ 时,有

- $\sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim e^x 1 \sim \ln(1+x) \sim x$;
- $e^x 1 x \sim x \ln(1+x) \sim 1 \cos x \sim \frac{x^2}{2}$;
- $(1+x)^{\alpha}-1\sim \alpha x$;
- $x \sin x \sim \arcsin x x \sim \frac{x^3}{6}$;
- $\tan x x \sim x \arctan x \sim \frac{x^3}{3}$;
- $\tan x \sin x \sim \arcsin x \arctan x \sim \frac{x^3}{2}$; 对于以上等价无穷小,有
- i. 可变量代换,如 sin□~□,tan□~□,···
- ii. $x \to 0 \text{ ff}, \ a^x 1 = e^{x \ln a} 1 \sim x \ln a, \ \log_a(1+x) = \frac{\ln(x+1)}{\ln a} \sim \frac{x}{\ln a};$

iii. 若 $x \to a$,可以令 $t = x - a \to 0$.

iv. 不能在复合函数的自变量处做等价代换, 如 $x \to 0 \Rightarrow f(x) \sim f(\sin x)$.

泰勒公式

•
$$e^x = \sum_{i=0}^n \frac{x^n}{n!} + o(x^n);$$

•
$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + o(x^{2n})$$
;

•
$$\sin x = x - \frac{x^3}{6} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$$
;

•
$$\arcsin x = x + \frac{x^3}{6} + o(x^3)$$
;

•
$$\tan x = x + \frac{x^3}{3} + o(x^3)$$
;

•
$$\arctan x = x - \frac{x^3}{3} + o(x^3)$$
;

•
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{(-1)^{n-1}x^n}{n} + o(x^n);$$

•
$$\ln(1-x) = -(x + \frac{x^2}{2} + \frac{x^3}{3}) + o(x^3);$$

•
$$(1+x)^{\alpha} = 1 + \sum_{k=1}^{n} C_{\alpha}^{k} x^{k} + o(x^{n})$$
, 其中 $C_{\alpha}^{k} = \frac{\prod_{i=0}^{k-1} (\alpha - i)}{k!}$
 m , $\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^{2} + o(x^{2})$;

•
$$\frac{1}{1-x} = \sum_{i=0}^{n} x^i + o(x^n)$$
;

•
$$\frac{1}{1+x} = \sum_{i=0}^{n} (-1)^{i} x^{i} + o(x^{n});$$

泰勒公式求极限时,

- 分子阶数不小于分母阶数;
- 加减不抵消,"齐头并进";
- 可推广为 $\square \rightarrow 0$.

ii. ∞/∞ 形

主要方法有

- 洛必达;
- 抓大头,即每个因式保留高阶无穷大; $x \to 0 \Rightarrow \ln^{\alpha}(x) \ll x^{\beta} \ll a^{x} \ll x^{x}, 其中 \alpha, \beta > 0, a > 1.$

iii. $\infty - \infty$ 形

主要方法有

- 通分(有分式时);
- 有理化(有根号时);
- 倒代换, 即令 $t=\frac{1}{x}$.

iv. 0^0 与 ∞^0 形

若
$$\lim_{x \to x_0} u(x) = 0(\infty)$$
, $\lim_{x \to x_0} v(x) = 0$, 則 $\lim_{x \to x_0} u(x)^{v(x)} = \exp\left(\lim_{x \to x_0} v(x) \ln u(x)\right)$.

\mathbf{v} . 1^{∞} 形

• 若
$$\lim_{x \to x_0} u(x) = 0$$
, $\lim_{x \to x_0} v(x) = \infty$, 则 $\lim_{x \to x_0} [1 + u(x)]^{v(x)} = \exp\left(\lim_{x \to x_0} v(x)u(x)\right)$.

• 若
$$\lim_{x \to x_0} u(x) = 1$$
, $\lim_{x \to x_0} v(x) = \infty$, 则 $\lim_{x \to x_0} u(x)^{v(x)} = \exp\left(\lim_{x \to x_0} v(x)[u(x) - 1]\right)$. 事实上,有

$$\lim_{x \to 0} \left(\frac{\sum_{i=0}^{n} a_i^x}{n} \right)^{\frac{1}{x}} = \sqrt{\prod a_i}$$

IV. 已知极限反求参数

若
$$\lim_{x \to x_0} \frac{f(x)}{g(x)}$$
 存在且 $g \lim_{x \to x_0} g(x) = 0$, 则 $\lim_{x \to x_0} f(x) = 0$.

若
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = A \neq \mathbf{0}$$
 且 $g \lim_{x \to x_0} f(x) = 0$,则 $\lim_{x \to x_0} g(x) = 0$.

例

$$\lim_{x\to 0} \int_b^x \frac{\ln(1+t^3)}{t} \mathrm{d}t = 0 \Leftrightarrow b = 0.$$

• 证明

b=0 时原式显然成立。

$$\frac{\ln(1+t^3)}{t} > 0 (t \neq 0) \Rightarrow b \neq 0$$
 时原式不成立。

因此, b 只能为零。

V. 无穷小阶的比较

例

设函数 f(x) 在 x = 0 的某邻域内具有二阶连续导数,且 $f(0) \neq 0$, $f'(0) \neq 0$, $f''(0) \neq 0$, 则存在一组唯一的 λ_i , i = 1, 2, 3 使得 $h \to 0$ 时,有 $\sum \lambda_i f(ih) - f(0)$ 是 h^2 的高阶无穷小。

• 一般证明

 $\sum \lambda_i f(ih) - f(0)$ 是 h^2 的高阶无穷小 $\Rightarrow \sum \lambda_i f(ih) - f(0) = 0$;

对上式两边求导,有 $\sum \lambda_i i f'(ih) = 0$;

对上式两边求导,有 $\sum \lambda_i^2 i f''(ih) = 0$;

因此,有
$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
,由于系数矩阵满秩,其有唯一解,因而得证。

泰勒法

将 f(h), f(2h), f(3h) 展开至二阶,代入 $\lim_{h\to 0} \frac{\sum \lambda_i f(ih) - f(0)}{h^2}$, 然后和前述做法一致。

VI. 重点 - 数列极限的计算

i. 夹逼定理

左边缩, 右边放, 两边极限相等。

放缩时, 有不等式

- $0 < x < \pi/2$, 则 $\sin x < x < \tan x$; $\sin x < x < \pi/2 \sin x$; $2/\pi x < \sin x < x$; 利用 $f(x) = \frac{\sin x}{x}$ 的性质证明。
- $x > 0, x > \sin x; x < 0, x < \sin x;$
- $e^x > 1 + x, x \neq 0;$
- $\frac{x}{1+x} < \ln(x+1) < x, x > -1, x \neq 0.$

ii. 单调有界定理

对数列 $x_{n+1} = f(x_n)$ 求极限,方法如下。

- 适当放缩以证明有界性;
- 做差、做商或求导证明单调性;

- 若其单调,由单调有界知 $\lim x_n$ 存在;
- 令 $\lim x_n = a$, 对原式两端取极限, 有 a = f(a), 因此可以解得 a;
- 若其不单调,则设 $\lim x_n = a$, 再利用夹逼定理证明前者确实成立。

iii. 定积分

$$\int_a^b f(x)\mathrm{d}x = \lim_{d\to 0} \sum_{i=i}^n f(\xi_i) \frac{b-a}{n}$$
 其中, $\xi_i \in \left[a + \frac{i-1}{n}(b-a), a + \frac{i}{n}(b-a)\right]$.

附录 补充结论

一类无穷阶可导的抽象函数

若 f(x) 满足

- $f(x) = \int_0^x f(x) dx + \Delta;$
- $f'(x) = f(x) + \Delta;$
- $f''(x) = f'(x) + \Delta$,

其中 Δ 无穷阶可导,则 f(x) 无穷阶可导。