${\bf Table~2.1:}~{\rm Main~equations~of~the~muscle~model~from~H.Geyer.}$

Main equations

Name	Equation	Signification
F_{mtu}	$F_m = F_{se} = F_{ce} + F_{pe} - F_{be}$	Force of generated by the MTU
F_{se}	$F_{se} = \begin{cases} F_{max} \cdot \left(\frac{\varepsilon}{\varepsilon_{ref}}\right)^2, & \text{if } \varepsilon > 0 \\ 0, & \text{else} \end{cases}.$	Force generated by the tendon
F_{pe}	$F_{pe} = \begin{cases} F_{max} \left(\frac{l_{ce} - l_{opt}}{l_{opt}w}\right)^2 \cdot f_v(v_{ce}) & \text{if } l_{ce} > l_{opt} \\ 0 & \text{else.} \end{cases}$	Force of the parallel element preventing muscle overextension
F_{be}	$F_{be} = \begin{cases} F_{max} \left(\frac{l_{opt} - w - l_{ce}}{l_{opt} w/2}\right)^2 & \text{if } l_{mtu} - l_{ce} > l_{slack} \\ 0 & \text{else} \end{cases}.$	Force of the parallel element preventing muscle to collapse
F_{ce}	$F_{ce} = A \cdot F_{max} \cdot f_l(l_{ce}) \cdot f_v(v_{ce})$	Force generated by the muscle (ce)
A	$ aurac{dA}{dt}=-(S(t)-A)$	Muscle activation is equal to the integral of the input signal $I(t)$. Biologically, the input signal can be viewed as the normalized frequency of neuronal spike that reaches the muscle (i.e. restricted to the $[0;1]$. interval). The activation is thus also limited to this interval.
$f_l(l_{ce})$	$f_l(l_{ce}) = exp(c \left \frac{l_{ce} - l_{opt}}{l_{opt}w} \right ^3)$	Muscle force - muscle length relationship function (function of the muscle length (l_{ce})
$f_v(v_{ce})$	$f_v(v_{ce}) = \begin{cases} \frac{v_{max} - v_{ce}}{v_{max} + Kv_{ce}} & \text{if } v_{ce} \geqslant 0\\ N + (N-1)\frac{v_{max} + v_{ce}}{7.56Kv_{ce} - v_{max}} & \text{if } v_{ce} < 0 \end{cases}.$	Muscle force - muscle velocity relationship function (function of the muscle velocity (v_{ce})
$v_{ce}(f_v)$	$v_{ce}(f_v) = \begin{cases} v_{max} \cdot \frac{1 - f_v}{1 + K * f_v} & \text{if } f_v < 1.0\\ v_{max} \cdot \frac{f_v - 1}{7.56K(f_v - N) + 1 - N} & \text{else} \end{cases}.$	Inverse of the muscle force - velocity function. This function is used for the resolution of the muscles equations.
l_{ce}	$l_{ce} = rac{dv_{ce}}{dt}$	Muscle (ce) length
l_{se}	$l_{se} = l_{mtu} - l_{ce}$	Tendon (se) length
l_{mtu}	$l_{mtu} = l_{slack} + l_{opt} + \Delta l_{mtu}$	MTU length
Δl_{mtu}	$\Delta l_{mtu} = pennation \cdot r_0 \cdot \int_{\theta_{ref}}^{\theta} t_{\theta \to \tau}(\theta, \theta_{max})$	MTU length changes from MTU slack length