Analog Electronic Circuits Lab (EC2.103, Spring 2024) Practise Problems (KCL/KVL) (Due: Monday 8thJAN, 6 pm)

(Instructor: Prof. Abhishek Srivastava, CVEST, IIIT Hyderabad)

Instructions:

- 1. Submit your practise set solutions as a single pdf (Name_RollNo.pdf) at moodle on or before the due date
- 2. Hand-written/typed (latex/word) submissions are allowed
- 3. Use moodle for discussion
- 1. Find the current through each resistor in the circuit below using KVL. (Ans: I_3 = 1.66A , I_6 = 1.16A , I_7 = 0.5A)

Figure 1

2. Identify the mesh and find the mesh current in the below circuit using mesh analysis. (Ans:(clockwise from left) $I_{mesh1} = 3A$, $I_{mesh2} = 2A$, $I_{mesh3} = 3A$)

Figure 2

3. Calculate I in the circuit below.(Ans: I = 2.8A)

Figure 3

4. Calculate I_s and V_s in the circuit below.(Ans: I_s = -13A , V_s = 20V)

Figure 4

5. Calculate V_x .(Ans: $V_x = -1.5$ V)

Figure 5

6. Calculate I and V in the circuit below.(Ans: I = 8A, V = 16V)

Figure 6

7. Find the value of V_0 by using the nodal analysis.(Ans: $V_0 = 1.11 \text{ V}$)

Figure 7

8. In the following circuit find out the value of V_x and the current passing through the 11ohm resistor.(Ans: V_x = -39/2V , I_{11} = 2.85A)

Figure 8

9. Calculate V_{out}/V_{in} in the circuit below.(Ans: $V_{out}/V_{in} = -g_m * R_D$)

Figure 9

10. Calculate V_{out}/V_{in} in the circuit below.(Ans: $V_{out}/V_{in} = -g_m * (R_D \mid\mid r_0)$)

Figure 10

11. Solve solved/unsolved examples of CH-3 (voltage and current laws) and CH-4 (basic nodal and mesh analysis) from Engineering Circuit Analysis by Hayt 7th edition; McGrawHill. (No need to submit this part).