Regression Discontinuity Designs and Difference-in-Differences

Jake Bowers, Ben Hansen & Tom Leavitt

August 12, 2018

Contents

1 Regression Discontinuity Design

1.1 General Setup

Today we are going to use the data on close US House of Representatives races 1942–2008 used in ?.¹? engage in a debate whose participants seek to identify the causal effect of the so-called "incumbency advantage." That is, what effect does a candidate's status as an incumbent have on whether or not that candidate wins an election? Obviously, whether or not a candidate is an incumbent is *not* randomly assigned.

Let's first load the data:

```
rm(list = ls())

rdd_data <- read_dta("http://jakebowers.org/Matching/RDReplication.dta") %>% filter(Use == 1) ## Use is indicator for
```

The Running Variable

The "running variable" is called DifDPct, which is defined as the Democratic margin of victory or defeat in the election; in other words, DifDPct is the difference between the percentage of all votes that were cast for the leading Democrat in the race and the percentage cast for the leading non-Democrat. Races in which no Democrat ran or in which the top two vote-getters were both Democrats are coded as missing.

¹The full replication data is available for download here. But we read it directly below.

```
running_var <- matrix(c("DifDPct", "Democrat Margin of Victory"), ncol = 2, byrow = TRUE)
dimnames(running_var) <- list(1, c("Running Variable", "Description"))
kable(running_var)</pre>
```

Running Variable	Description
DifDPct	Democrat Margin of Victory

The Treatment Variable

The treatment variable is whether or not the Democratic candidate wins the election or not. If the candidate wins the election, then that candidate is assigned to "treatment." If the candidate loses the election, then he or she is assigned to "control."

```
treatment <- matrix(c("DemWin", "Democrat Wins Election"), ncol = 2, byrow = TRUE)
dimnames(treatment) <- list(1, c("Treatment", "Description"))
kable(treatment)</pre>
```

Treatment	Description
DemWin	Democrat Wins Election

Now let's quickly look at the empirical distribution of the treatment variable:

```
table(rdd_data$DemWin)
```

	Democrat Wins Election
0	4507
1	5677

Table 1: The Treatment Variable

Outcome Variables

In ?, the primary outcome variables of interest are as follows: whether a democrat wins the next election, the proportion voting for a democrat in the next election, and the democratic vote margin in the next election.

Outcome	Description
DWinNxt	Dem Win t + 1
DPctNxt	Dem % t + 1
DifDPNxt	Dem % Margin t + 1

Baseline Covariates

The relevant baseline (i.e., pre-treatment) covariates about the races are:

Covariate	Description
DWinPrv	Dem Win t - 1
DPctPrv	Dem % t - 1
DifDPPrv	Dem % Margin t - 1
IncDWNOM1	Inc's D1 NOMINATE
DemInc	Dem Inc in Race
NonDInc	Rep Inc in Race
PrvTrmsD	Dem's # Prev Terms
PrvTrmsO	Rep's # Prev Terms
RExpAdv	Rep Experience Adv
DExpAdv	Dem Experience Adv
ElcSwing	Partisan Swing
CQRating3	CQ Rating {-1, 0, 1}
DSpndPct	Dem Spending %
DDonaPct	Dem Donation %
SoSDem	Dem Sec of State
GovDem	Dem Governor
DifPVDec	Dem Pres % Margin
DemOpen	Dem-held Open Seat
NonDOpen	Rep-held Open Seat
OpenSeat	Open Seat
VtTotPct	Voter Turnout %
GovWkPct	Pct Gov't Worker
UrbanPct	Pct Urban
BlackPct	Pct Black
ForgnPct	Pct Foreign Born
	·

1.2 Core RDD Assumptions

Let the index $i \in \{1, ..., n\}$ run over the n experimental units. In the context of a regression discontinuity design, let R_i denote the random "score variable" (also known as "running variable"). The random assignment variable, $Z_i \in \{0, 1\}$, which indicates whether subject i is assigned to treatment, $Z_i = 1$, or to control, $Z_i = 0$, is a deterministic function of R_i . In the context of the incumbency advantage study, we can define Z_i as follows:

$$Z_i \equiv \mathbf{I} \left[R_i > 0 \right],$$