Limites de suites

Exercice 1 (Possible ou pas?)

(a) Oui :
$$\forall n \in \mathbb{N}, \ u_n = (-1)^n$$
.

(b) Oui :
$$\forall n \in \mathbb{N}, \ u_n = n(-1)^n$$
.

(d) Oui! Par exemple :
$$\forall n \in \mathbb{N}, u_n = n + (-1)^n$$
.

• On a pour tout
$$n \in \mathbb{N}$$
, $u_n \ge n-1$ donc $\lim_{n \to +\infty} u_n = +\infty$.

• Pour tout
$$n \in \mathbb{N}$$
, $u_{n+1} - u_n = n + 1 + (-1)^{n+1} - n - (-1)^n = 1 + 2(-1)^{n+1}$

c'est à dire
$$u_{n+1} - u_n = \begin{cases} -1 & \text{si } n \text{ est pair} \\ 3 & \text{si } n \text{ est impair} \end{cases}$$

c'est à dire $u_{n+1} - u_n = \begin{cases} -1 \text{ si } n \text{ est pair} \\ 3 \text{ si } n \text{ est impair} \end{cases}$ Ceci montre que $(u_n)_{n \in \mathbb{N}}$ n'est ni croissante, ni décroissante, même "à partir d'un certain rang"!

(e) Non : si
$$(u_n)_{n\in\mathbb{N}}$$
 converge, alors les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers cette même limite.

Exercice 2 (Des suites explicites)

(a)
$$\frac{e^n}{2n+1} = \frac{e^n}{n} \times \frac{1}{2+\frac{1}{n}} \xrightarrow[n \to +\infty]{} +\infty.$$

(b)
$$\frac{\ln(n+1)}{n} = \frac{\ln(n(1+\frac{1}{n}))}{n} = \frac{\ln(n)}{n} + \frac{\ln(1+\frac{1}{n})}{n} \xrightarrow[n \to +\infty]{} 0.$$

(c)
$$\frac{-3n^2 + 2n - 1}{1 + 2n} = \frac{n^2(-3 + \frac{2}{n} - \frac{1}{n^2})}{n(\frac{1}{n} + 2)} = n \times \frac{-3 + \frac{2}{n} - \frac{1}{n^2}}{\frac{1}{n} + 2} \xrightarrow[n \to +\infty]{} -\infty$$

(d)
$$\ln(n+1) - \ln(n) = \ln\left(\frac{n+1}{n}\right) = \ln\left(1 + \frac{1}{n}\right) \xrightarrow[n \to +\infty]{} 0.$$

(e)
$$\frac{\sqrt{2n}}{(n+1)!} = \frac{\sqrt{2}}{n+1} \times \frac{n^{1/2}}{n!} \xrightarrow[n \to +\infty]{} 0.$$

(f)
$$\frac{2^n - 3^n}{3^n - 5^n} = \frac{3^n((\frac{2}{3})^n - 1)}{5^n((\frac{2}{5})^n - 1)} = (\frac{3}{5})^n \times \frac{(\frac{2}{3})^n - 1}{(\frac{3}{5})^n - 1} \xrightarrow[n \to +\infty]{} 0.$$

(g)
$$e^n - 2^n + n! = n! \times \left(\frac{e^n}{n!} - \frac{2^n}{n!} + 1\right) \xrightarrow[n \to +\infty]{} + \infty.$$

(h)
$$n^{1/n} = e^{\frac{1}{n}\ln(n)} = \exp\left(\frac{\ln(n)}{n}\right) \xrightarrow[n \to +\infty]{} \exp(0) = 1$$
 par composition de limite.

(i)
$$\frac{100^n + n!}{n^{100} + (n+1)!} = \frac{n!(\frac{100^n}{n!} + 1)}{(n+1)!(\frac{n^{100}}{(n+1)!} + 1)} = \frac{1}{n+1} \times \frac{\frac{100^n}{n!} + 1}{\frac{n^{100}}{(n+1)!} + 1} \xrightarrow{n \to +\infty} 0.$$

Exercice 3 (Encadrement de suites explicites)

(a) Pour tout
$$n \in \mathbb{N}$$
, on a l'encadrement $-\frac{1}{\sqrt{n+1}} \leqslant \frac{(-1)^n}{\sqrt{n+1}} \leqslant \frac{1}{\sqrt{n+1}}$.

D'après le théorème des gendarmes, on obtient
$$\lim_{n\to+\infty}\frac{(-1)^n}{\sqrt{n+1}}=0$$
.

(b) Pour tout
$$n \in \mathbb{N}$$
, on a l'encadrement $1 - \frac{1}{n} \leqslant 1 - \frac{\cos(n)}{n} \leqslant 1 + \frac{1}{n}$. D'après le théorème des gendarmes, on obtient $\lim_{n \to +\infty} 1 - \frac{\cos(n)}{n} = 1$.

D'après le théorème des gendarmes, on obtient
$$\lim_{n\to+\infty} 1 - \frac{\cos(n)}{n} = 1$$

(c) Pour tout
$$n \in \mathbb{N}$$
, on a $e^n - 3\sin(2n) \geqslant e^n - 3$.

Puisque
$$\lim_{n\to+\infty} e^n - 3 = +\infty$$
, on en déduit que $\lim_{n\to+\infty} e^n - 3\sin(2n) = +\infty$.

Exercice 4 (Une suite récurrente)

Soit u une suite définie par :

$$u_0 > 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \frac{2u_n}{3 + u_n}$

- $u_0 > 0$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{2u_n}{3+u_n}$ 1. Posons $\mathcal{P}(n)$: " u_n est bien défini et $u_n > 0$ ". Montrons par récurrence que $\mathcal{P}(n)$ est vrai pour tout $n \in \mathbb{N}$.
 - Initialisation : On a $u_0 > 0$, d'où $\mathcal{P}(0)$.
 - <u>Hérédité</u>: Soit $n \in \mathbb{N}$. Supposons $\mathcal{P}(n)$ et montrons $\mathcal{P}(n+1)$.

On sait que $u_n > 0$. Il en résulte que $3 + u_n \neq 0$ donc $u_{n+1} = \frac{2u_n}{3 + u_n}$ est bien défini. De plus, $2u_n > 0$ et $3 + u_n > 0$, donc $u_{n+1} > 0$, ce qui achève la récurrence.

- 2. Pour tout $n \in \mathbb{N}$, $u_n \ge 0$ donc $u_n + 3 \ge 3$. Ainsi : $u_{n+1} = \frac{2u_n}{3 + u_n} \le \frac{2u_n}{3} = \frac{2}{3}u_n$.
- 3. On sait déjà que $\forall n \in \mathbb{N}, u_n \geqslant 0$.

De plus, de l'inégalité du 2., on déduit par récurrence immédiate que : $\forall n \in \mathbb{N}, u_n \leqslant \left(\frac{2}{3}\right)^n u_0$.

(C'est facile à prévoir : $u_1 \leqslant \frac{2}{3}u_0$, puis $u_2 \leqslant \frac{2}{3}u_1 \leqslant \left(\frac{2}{3}\right)^2 u_0$, puis $u_3 \leqslant \frac{2}{3}u_2 \leqslant \left(\frac{2}{3}\right)^3 u_0$, etc...)

Récurrence rigoureuse :

- Initialisation : $u_0 \leqslant \left(\frac{2}{3}\right)^0 u_0 : OK!$
- Hérédité : Soit $n \in \mathbb{N}$. Supposons $u_n \leqslant \left(\frac{2}{3}\right)^n u_0$. Alors : $u_{n+1} \leqslant \frac{2}{3} u_n \leqslant \frac{2}{3} \left(\frac{2}{3}\right)^n u_0 = \left(\frac{2}{3}\right)^{n+1} u_0$.

Ceci achève la récurrence.

Ainsi, pour tout $n \in \mathbb{N}$, on a ainsi l'encadrement : $0 \le u_n \le \left(\frac{2}{3}\right)^n u_0$.

Puisque $\frac{2}{3} \in]0,1[$, on a $\lim_{n \to +\infty} \left(\frac{2}{3}\right)^n = 0.$

D'après le théorème des gendarmes, on en déduit : $\lim_{n \to +\infty} u_n = 0$.

Exercice 5 (Encadrement de sommes)

(a) Soit $n \in \mathbb{N}^*$ fixé.

Pour tout $k \in [1, n]$, on a $1 \le \sqrt{k} \le \sqrt{n}$ et donc : $\frac{1}{n + \sqrt{n}} \le \frac{1}{n + \sqrt{k}} \le \frac{1}{n + 1}$.

En sommant ces inégalités : $\sum_{k=1}^{n} \frac{1}{n+\sqrt{n}} \leqslant u_n \leqslant \sum_{k=1}^{n} \frac{1}{n+1}$

c'est à dire : $\left\lceil \frac{n}{n+\sqrt{n}} \leqslant u_n \leqslant \frac{n}{n+1} \right\rceil$, valable pour tout $n \in \mathbb{N}^*$. On calcule les limites :

•
$$\frac{n}{n+\sqrt{n}} = \frac{n}{n(1+\frac{1}{\sqrt{n}})} = \frac{1}{1+\frac{1}{\sqrt{n}}} \xrightarrow[n \to +\infty]{} 1.$$

•
$$\frac{n}{n+1} = \frac{n}{n(1+\frac{1}{n})} = \frac{1}{1+\frac{1}{n}} \xrightarrow[n \to +\infty]{} 1.$$

Ainsi, d'après le théorème des gendarmes, on en déduit $\lim_{n\to+\infty}u_n=1$.

(b) Soit $n \in \mathbb{N}^*$ fixé.

Pour tout $k \in [1, n]$, on a $kx - 1 \leq \lfloor kx \rfloor \leq kx$.

En sommant ces inégalités : $\sum_{k=1}^n (kx-1) \leqslant \sum_{k=1}^n \lfloor kx \rfloor \leqslant \sum_{k=1}^n kx \text{ donc : } \frac{1}{n^2} \sum_{k=1}^n (kx-1) \leqslant u_n \leqslant \frac{1}{n^2} \sum_{k=1}^n kx.$

Calculons ces sommes : $\bullet \sum_{k=1}^{n} (kx-1) = x \sum_{k=1}^{n} k - \sum_{k=1}^{n} 1 = x \frac{n(n+1)}{2} - n.$ $\bullet \sum_{k=1}^{n} kx = x \sum_{k=1}^{n} k = x \frac{n(n+1)}{2}.$

Ainsi, on a l'encadrement $\left| x \frac{n(n+1)}{2n^2} - \frac{1}{n} \leqslant u_n \leqslant x \frac{n(n+1)}{2n^2} \right|$, valable pour tout $n \in \mathbb{N}^*$.

Déterminons les limites : $\frac{n(n+1)}{2n^2} = \frac{n+1}{2n} = \frac{n(1+\frac{1}{n})}{2n} = \frac{1}{2} \times \frac{1}{1+\frac{1}{n}} \xrightarrow[n \to +\infty]{} \frac{1}{2}.$

On en déduit facilement que $\lim_{n \to +\infty} x \frac{n(n+1)}{2} = \frac{x}{2} = \lim_{n \to +\infty} \left(x \frac{n(n+1)}{2n^2} - \frac{1}{n} \right)$.

D'après le théorème des gendarmes, on en déduit $\lim_{n\to+\infty}u_n=\frac{\omega}{2}$

Exercice 6 (Convergence vers un point fixe)

- 1. Pour tout $n \in \mathbb{N}$, on a : $|u_{n+1} \alpha| = |f(u_n) f(\alpha)| \le k|u_n \alpha|$ d'après l'hypothèse sur f;
- 2. Montrons par récurrence que $\forall n \in \mathbb{N}, |u_n \alpha| \leq k^n |u_0 \alpha|$.
 - Initialisation: On a bien $|u_0 \alpha| \leq k^0 |u_0 \alpha|$.
 - Hérédité : Soit $n \in \mathbb{N}$. Supposons que $|u_n \alpha| \leq k^n |u_0 \alpha|$. D'après l'inégalité du 1., on a :

$$|u_{n+1} - \alpha| \leqslant k|u_n - \alpha| \leqslant k \times k^n|u_0 - \alpha| = k^{n+1}|u_0 - \alpha|,$$

ce qui achève la récurrence.

3. On a vu que $\forall n \in \mathbb{N}, |u_n - \alpha| \leq k^n |u_0 - \alpha|$.

Puisque $k \in]0,1[$ par hypothèse, on a $\lim_{n \to +\infty} k^n |u_0 - \alpha| = 0.$

D'après le théorème des gendarmes ("version valeur absolue"), on en déduit que $\lim_{n\to+\infty} |u_n-\alpha|=0$, c'est à dire que $\lim_{n\to+\infty} u_n=\alpha$.

Exercice 7 (Étude n°1)

- 1. Pour tout $n \in \mathbb{N}$, $u_{n+1} u_n = u_n(1 u_n) u_n = -u_n^2 \leq 0$. La suite $(u_n)_{n \in \mathbb{N}}$ est donc décroissante.
- 2. Vérifions que la suite est minorée par 0. Pour cela, montrons par récurrence : $\forall n \in \mathbb{N}, \ 0 \leqslant u_n \leqslant 1$.
 - Initialisation: On a $u_0 \in]0,1[$, donc $0 \le u_0 \le 1$.
 - Hérédité : Soit $n \in \mathbb{N}$. Supposons $0 \le u_n \le 1$. On a alors aussi $0 \le 1 u_n \le 1$.

Il en résulte que $0 \le u_n(1-u_n) \le 1$, c'est à dire $0 \le u_{n+1} \le 1$, ce qui achève la récurrence.

Ainsi $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée, donc converge vers un $\ell\in\mathbb{R}$.

En passant à la limite dans $0 \le u_n \le 1$, on en déduit que $0 \le \ell \le 1$.

En passant à la limite dans $u_{n+1} = u_n(1 - u_n)$, on obtient :

$$\ell = \ell(1 - \ell) \iff \ell = \ell - \ell^2 \iff \ell^2 = 0 \iff \ell = 0.$$

Conclusion: $\lim_{n \to +\infty} u_n = 0.$

Exercice 8 (Étude n°2)

Introduisons la fonction $f: \begin{array}{ccc} \mathbb{R}_+ & \to & \mathbb{R} \\ x & \mapsto & \dfrac{x^2+2}{3} \end{array}$, de sorte que $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$.

Il est clair que $f(\mathbb{R}_+) \subset \mathbb{R}_+$ (en fait $f(\mathbb{R}_+) = [\frac{2}{3}, +\infty[$),

donc on montrerait très facilement par récurrence que $\forall n \in \mathbb{N}, u_n \geq 0$.

La fonction f est strictement croissante sur \mathbb{R}_+ . (attention, elle ne l'est pas sur \mathbb{R} !)

- 1. Montrons par récurrence que : $\forall n \in \mathbb{N}, u_n < u_{n+1}$.
 - <u>Initialisation</u>: $u_0 = 3$ et $u_1 = \frac{3^2 + 2}{3} = \frac{11}{3} > 3$ donc $u_1 > u_0$.
 - <u>Hérédité</u>: Soit $n \in \mathbb{N}$. Supposons que $u_n < u_{n+1}$.

Puisque $u_n, u_n \in \mathbb{R}_+$ et que f est strictement croissante sur \mathbb{R}_+ , on obtient $f(u_n) < f(u_{n+1})$, c'est à dire $u_{n+1} < u_{n+2}$, ce qui achève la récurrence.

On a donc montré que la suite $(u_n)_{n\in\mathbb{N}}$ est strictement croissante.

2. Supposons que $(u_n)_{n\in\mathbb{N}}$ converge vers un certain $\ell\in\mathbb{R}$.

En passant à la limite dans $u_{n+1} = f(u_n)$, on obtient

$$\ell = f(\ell) \iff \ell = \frac{\ell^2 + 2}{3} \iff 3\ell = \ell^2 + 2 \iff \ell^2 - 3\ell + 2 = 0.$$

En résolvant cette équation polynômiale de degré 2, on obtient $\ell = 1$ ou $\ell = 2$.

Dans les deux cas, c'est <u>absurde</u> puisque $(u_n)_{n\in\mathbb{N}}$ est croissante et $u_0=3$, donc $\forall n\in\mathbb{N},\ u_n\geqslant 3$.

On doit donc avoir $\ell \geqslant 3...$

3. Ainsi la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et ne peut pas converger.

D'après le théorème de la limite monotone, on a nécessairement $\lim_{n\to +\infty} u_n = +\infty$.

Exercice 9 (Le cas "f décroissant")

1. (b) La fonction f est continue et (strictement) décroissante sur [1,3].

On a donc $f([1,3]) = [f(3), f(1)] = [\frac{5}{3}, 3]$. En particulier, on a bien $f([1,3]) \subset [1,3]$.

Remarque : Ceci nous apprend que $\forall x \in [1,3], f(x) \in [1,3].$

On en déduit alors facilement par récurrence que $\forall n \in \mathbb{N}, u_n \in [1,3]$:

- Initialisation : $u_0 = 1 \in [1, 3]$.
- Hérédité : Soit $n \in \mathbb{N}$. Supposons $u_n \in [1,3]$. Alors $f(u_n) \in [1,3]$, c'est à dire $u_{n+1} \in [1,3]$.
- 2. (a) Pour tout $n \in \mathbb{N}$,

$$v_{n+1} = u_{2(n+1)} = u_{2n+2} = f(u_{2n+1}) = f(f(u_{2n})) = (f \circ f)(v_n).$$

$$w_{n+1} = u_{2(n+1)+1} = u_{2n+3} = f(u_{2n+2}) = f(f(u_{2n+1})) = (f \circ f)(w_n).$$

- (b) Puisque f est strictement décroissante sur \mathbb{R}_+^* , la fonction $(f \circ f)$ est strictement croissante sur \mathbb{R}_+^* . Montrons par récurrence que pour tout $n \in \mathbb{N}$: $v_n < v_{n+1}$ et $w_n > w_{n+1}$.
- ullet Initialisation : Calculons les premiers termes de la suite u :

$$u_0 = 1$$
, $u_1 = 3$, $u_2 = \frac{5}{3}$, $u_3 = \frac{11}{5}$.

Ainsi $u_0 < u_2$ et $u_1 > u_3$ c'est à dire $v_0 < v_1$ et $w_0 > w_1$, d'où l'initialisation.

• Hérédité : Soit $n \in \mathbb{N}$. Supposons $v_n < v_{n+1}$ et $w_n > w_{n+1}$.

Comme la fonction $f \circ f$ est strictement croissante sur \mathbb{R}_{+}^{*} , on obtient

 $(f \circ f)(v_n) < (f \circ f)(v_{n+1}) \text{ et } (f \circ f)(w_n) > (f \circ f)(w_{n+1}),$

c'est à dire (d'après 2.(a)), $v_{n+1} < v_{n+2}$ et $w_{n+1} > w_{n+2}$, ce qui achève la récurrence!

On a donc montré que $(v_n)_{n\in\mathbb{N}}$ est strictement croissante et $(w_n)_{n\in\mathbb{N}}$ est strictement décroissante.

(c) Puisque $\forall n \in \mathbb{N}, u_n \in [1,3]$, on a également $\forall n \in \mathbb{N}, v_n \in [1,3]$ et $w_n \in [1,3]$.

Ainsi, $(v_n)_{n\in\mathbb{N}}$ est croissante et majorée (par 3), donc converge vers un $\ell\in[1,3]$.

Ainsi, $(w_n)_{n\in\mathbb{N}}$ est décroissante et minorée (par 1) donc converge vers un $\ell'\in[1,3]$.

En passant à la limite dans $v_{n+1} = (f \circ f)(v_n)$ et $w_{n+1} = (f \circ f)(w_n)$, par continuité de $f \circ f$, on obtient :

$$\ell = (f \circ f)(\ell)$$
 et $\ell' = (f \circ f)(\ell')$.

Résolvons cette équation :

$$\ell = (f \circ f)(\ell) \Longleftrightarrow \ell = 1 + \frac{2}{1 + \frac{2}{\ell}} \Longleftrightarrow \ell = 1 + \frac{2\ell}{\ell + 2} \Longleftrightarrow \ell(\ell + 2) = \ell + 2 + 2\ell \Longleftrightarrow \ell^2 = \ell + 2 \Longleftrightarrow \ell^2 - \ell - 2 = 0.$$

En résolvant cette équation polynomiale, on obtient : $\ell = -1$ ou $\ell = 2$.

Puisque $\ell \in [1,3]$, on a nécessairement $\ell = 2$. Exactement de la même façon, on obtient $\ell' = 2$.

(d) On a montré que $\lim_{n \to +\infty} u_{2n} = \lim_{n \to +\infty} u_{2n+1} = 2$.

On en déduit (résultat de cours) que $\lim_{n \to +\infty} u_n = 2$.

Exercice 10 (Critère des séries alternées)

- 1. Pour tout $n \in \mathbb{N}^*$,
 - $u_{n+1} u_n = S_{2n+2} S_{2n} = (-1)^{2n+2} a_{2n+2} + (-1)^{2n+1} a_{2n+1} = a_{2n+2} a_{2n+1} \le 0$ (car la suite a est décroissante)
 - $v_{n+1} v_n = S_{2n+3} S_{2n+1} = (-1)^{2n+3} a_{2n+3} + (-1)^{2n+2} a_{2n+2} = -a_{2n+3} + a_{2n+2} \ge 0$ (car la suite a est décroissante)

Ceci montre que $(u_n)_{n\in\mathbb{N}^*}$ est décroissante et $(v_n)_{n\in\mathbb{N}^*}$ est croissante. Enfin :

• $v_n - u_n = S_{2n+1} - S_{2n} = (-1)^{2n+1} a_{2n+1} = -a_{2n+1} \xrightarrow[n \to +\infty]{} 0 \text{ (car } \lim_{n \to +\infty} a_n = 0).$

Ceci montre que $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes.

2. On en déduit que ces deux suites convergent vers une même limite $\ell \in \mathbb{R}$.

Autrement dit : $\lim_{n \to +\infty} S_{2n} = \lim_{n \to +\infty} S_{2n+1} = \ell$. On en déduit (résultat de cours) que $\lim_{n \to +\infty} S_n = \ell$.

Exercice 11 (Récurrence couplée)

- 1. Montrons par récurrence que pour tout $n \in \mathbb{N}$, $0 < u_n < v_n$.
 - Initialisation : on sait par hypothèse que $0 < u_0 < v_0$.
 - Hérédité : soit $n \in \mathbb{N}$ fixé. Supposons que $0 < u_n < v_n$.

Déjà $u_n > 0$ et $v_n > 0$, donc il est clair que $u_{n+1} = \frac{2u_n v_n}{u_n + v_n} > 0$.

Il nous reste à montrer que $u_{n+1} < v_{n+1}$, c'est à dire :

$$\frac{2u_nv_n}{u_n+v_n} < \frac{u_n+v_n}{2} \Longleftrightarrow 2u_nv_n < \frac{(u_n+v_n)^2}{2} \Longleftrightarrow 4u_nv_n < (u_n+v_n)^2 \Longleftrightarrow 4u_nv_n < u_n^2 + 2u_nv_n + v_n^2$$

$$\iff 0 < u_n^2 - 2u_nv_n + v_n^2 \Longleftrightarrow 0 < (u_n-v_n)^2 \text{ ce qui est vrai!}$$

On a donc bien $0 < u_{n+1} < v_{n+1}$, ce qui achève la récurrence.

- 2. Pour tout $n \in \mathbb{N}$, on a :
 - $\frac{u_{n+1}}{u_n} = \frac{2v_n}{u_n + v_n} > 1$ (puisque $2v_n > u_n + v_n$ car $v_n > u_n$). Ainsi $u_{n+1} > u_n$.

Ceci montre que $(u_n)_{n\in\mathbb{N}}$ est strictement croissante.

•
$$v_{n+1} - v_n = \frac{u_n + v_n}{2} - v_n = \frac{u_n - v_n}{2} < 0 \text{ (car } u_n < v_n).$$
 Ainsi $v_{n+1} < v_n$.

Ceci montre que $(v_n)_{n\in\mathbb{N}}$ est strictement décroissante.

3. (a) Soit $n \in \mathbb{N}$. On a les équivalences suivantes :

$$v_{n+1} - u_{n+1} \leqslant \frac{1}{2}(v_n - u_n) \iff \frac{u_n + v_n}{2} - \frac{2u_n v_n}{u_n + v_n} \leqslant \frac{1}{2}(v_n - u_n)$$

$$\iff (u_n + v_n)^2 - 4u_n v_n \leqslant (v_n - u_n)(v_n + u_n) \text{ (en multipliant par } 2(u_n + v_n))$$

$$\iff u_n^2 + 2u_n v_n + v_n^2 - 4u_n v_n \leqslant v_n^2 - u_n^2$$

$$\iff 2u_n^2 - 2u_n v_n \leqslant 0$$

$$\iff 2u_n(u_n - v_n) \leqslant 0 \iff u_n - v_n \leqslant 0 \iff u_n \leqslant v_n \text{ ce qui est vrai!}$$

- (b) Par récurrence immédiate, on obtient : $\forall n \in \mathbb{N}, \ v_n u_n \leqslant \frac{1}{2^n}(v_0 u_0)$. En effet :
- Initialisation : $v_0 u_0 \le \frac{1}{20}(v_0 u_0)$: OK!
- Hérédité : si $v_n u_n \leqslant \frac{1}{2^n} (v_0 u_0)$, alors $v_{n+1} u_{n+1} \leqslant \frac{1}{2} (u_n v_n) \leqslant \frac{1}{2} \frac{1}{2^n} (v_0 u_0) = \frac{1}{2^{n+1}} (v_0 u_0)$.
- (c) On a ainsi l'encadrement : $\forall n \in \mathbb{N}, \ 0 \leqslant v_n u_n \leqslant \frac{1}{2^n}(v_0 u_0).$

D'après le théorème des gendarmes, on en déduit que $\lim_{n\to+\infty} v_n - u_n = 0$.

Ainsi, u est croissante, v est décroissante, $\lim_{n\to+\infty}v_n-u_n=0$: les suites u et v sont adjacentes!

On en déduit que u et v convergent vers une même limite ℓ .

- 4. (a) Pour tout $n \in \mathbb{N}$, $u_{n+1}v_{n+1} = \frac{2u_nv_n}{u_n + v_n} \times \frac{u_n + v_n}{2} = u_nv_n$. Ceci montre que $(u_nv_n)_{n \in \mathbb{N}}$ est constante!
 - (b) Ainsi, on a $\forall n \in \mathbb{N}, u_n v_n = u_0 v_0$.

En passant à la limite dans cette égalité (puisque $\lim_{n\to+\infty}u_n=\lim_{n\to+\infty}v_n=\ell$), on obtient : $\ell^2=u_0v_0$.

Enfin, on sait que $\forall n \in \mathbb{N}, u_n > 0$, donc en passant à la limite on obtient $\ell \geqslant 0$.

On en déduit pour finir que la limite commune à ces deux suites est $\ell = \sqrt{u_0 v_0}$