

Análisis experimental

¿Cuál de los dos sistemas, el péndulo físico doble o el péndulo doble matemático, muestra mayor comportamiento caótico? ¿Y cómo se contrastan estos resultados con los datos experimentales?

Setup experimental

- Longitud de los brazos:

Primer brazo "exterior": 21,3 cm

Primer brazo "interior": 21,3 cm

Segundo brazo: 19 cm

- Masa de los brazos:

Primer brazo "exterior": 17 gramos

Primer brazo "interior": 16 gramos

Segundo brazo: 29 gramos

Análisis experimental

Se tomo los datos con la herramienta de tracker para el péndulo físico doble:

Se exportaron los datos tomados del tiempo y para cada uno de los angulos correspondientes a cada brazo del péndulo θ_1 y θ_2

José tomando los datos:

Pseudocódigo para la elaboración de las gráficas:

- 1. Leer los datos del archivo en un formato tabular y almacenarlos en un marco de datos (DataFrame).
- 2. Extraer las columnas relevantes del DataFrame:
- Asignar la columna de tiempo a 'tiempo'.
- Asignar la columna de ángulo teórico a `angulo_teorico`.
- Asignar la columna de ángulo experimental a `angulo_experimental`.
- 3. Crear una nueva figura para la gráfica con un tamaño específico.
- 4. Agregar la línea de datos experimentales a la gráfica:
- Usar `tiempo_experimental` como eje x y `angulo_experimental` como eje y.
 - Estilo de línea: continuo, color: azul, etiqueta: "Experimental".
- 5. Agregar la línea de datos teóricos a la gráfica:
- Usar `tiempo_teorico` como eje x y `angulo_teorico` como eje y.
- Estilo de línea: discontinua, color: rojo, etiqueta: "Teórico".
- 6. Personalizar la gráfica:
 - Agregar un título que describa el contenido de la gráfica.
- Etiquetar los ejes (tiempo en el eje x y ángulo en el eje y).
- Agregar una leyenda para identificar las líneas.
- Habilitar una cuadrícula para facilitar la lectura de los datos.
- 7. Mostrar la gráfica.

Módelo teorico y comparacion

Péndulo doble:

$$\mathcal{L} = \frac{1}{2}(m_1 + m_2)l_1^2\dot{\theta}_1^2 + \frac{1}{2}m_2l_2^2\dot{\theta}_2^2 + m_2l_1l_2\dot{\theta}_1\dot{\theta}_2\cos(\theta_1 - \theta_2) + (m_1 + m_2)l_1g\cos\theta_1 + m_2gl_2\cos\theta_2$$

Ecuaciones de movimiento:

$$(m_1 + m_2)l_1\ddot{\theta}_1 + m_2l_2\ddot{\theta}_2\cos(\theta_1 - \theta_2) + m_2l_2\dot{\theta}_2^2\sin(\theta_1 - \theta_2) + (m_1 + m_2)g\sin\theta_1 = 0$$

$$m_2l_2\ddot{\theta}_2 + m_2l_1\ddot{\theta}_1\cos(\theta_1 - \theta_2) - m_2l_1\dot{\theta}_1^2\sin(\theta_1 - \theta_2) + m_2g\sin\theta_2 = 0.$$

Péndulo físico doble:

Ecuaciones de movimiento:

Para θ_1 :

$$\frac{1}{3}m_1L_1^2\ddot{\theta}_1 + m_2L_1^2\ddot{\theta}_1 + \frac{1}{2}m_2L_1L_2\ddot{\theta}_2\cos(\theta_1 - \theta_2) - \dots$$
$$\dots - \frac{1}{2}m_2L_1L_2\dot{\theta}_1\dot{\theta}_2\sin(\theta_1 - \theta_2) + gL_1\left(\frac{m_1}{2} + m_2\right)\sin(\theta_1) = 0$$

Para θ_2 :

$$\frac{1}{3}m_2L_2^2\ddot{\theta}_2 + \frac{1}{2}m_2L_1L_2\ddot{\theta}_1\cos(\theta_1 - \theta_2) - \frac{1}{2}m_2L_1L_2\dot{\theta}_1\dot{\theta}_2\sin(\theta_1 - \theta_2) + \frac{1}{2}m_2gL_2\sin(\theta_2) = 0$$

Módelo teorico y comparacion

Análisis de errores

Ángulo (grados)	Brazo	Promedio del Error Absoluto	Desviación Estándar del Error Absoluto
10	1	0,2979	0,2362
10	2	0,4802	0,3489
15	1	0,5211	0,4277
15	2	0,969	0,6937
25	1	1,8691	1,0628
25	2	2,4767	1,6852
45	1	4,1204	2,5675
45	2	4,9567	2,7435
90	1	5,1371	3,7423
90	2	106,4482	65,8178

Caos

"Un sistema caótico es un sistema dinámico que evoluciona en el tiempo y es extremadamente sensible a las condiciones iniciales"

t=0

Caos

"Un sistema caótico es un sistema dinámico que evoluciona en el tiempo y es extremadamente sensible a las condiciones iniciales"

t>0

Analisis péndulo doble **matemático**

O1(0)=02(0)=10 w1(0)=w2(0)=0

O1(0)=02(0)=20 w1(0)=w2(0)=0

O1(0)=02(0)=25 w1(0)=w2(0)=0

O1(0)=02(0)=45 w1(0)=w2(0)=0

O1(0)=02(0) =45 .000001 w1(0)=w2(0)=0

O1(0)=02(0) =95 .000001 w1(0)=w2(0)=0

O1(0)=02(0)=95 w1(0)=w2(0)=0

Analisis péndulo doble Físico

O1(0)=02(0)=10 w1(0)=w2(0)=0

O1(0)=02(0)=20 w1(0)=w2(0)=0

O1(0)=02(0)=45 w1(0)=w2(0)=0

O1(0)=02(0) =45 .000001 w1(0)=w2(0)=0

O1(0)=02(0) =95 .000001 w1(0)=w2(0)=0

O1(0)=02(0)=95 w1(0)=w2(0)=0

Diagrama de bifurcación

Doble matemático

Doble Físico

Diagrama de bifurcación

$$O1(0)=02(0)=80 \text{ w}1(0)=\text{w}2(0)=0$$

O1(0)=02(0) =80.000001 w1(0)=w2(0)=0

O1(0)=02(0)=60 w1(0)=w2(0)=0

O1(0)=02(0) =60.000001 w1(0)=w2(0)=0

