RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION EXAMEN DU BACCALAURÉAT SESSION 2020

Session principale

Épreuve : Mathématiques

Section: Mathématiques

Durée: 4h

Coefficient de l'épreuve : 4

BBBBBB

Le sujet comporte 5 pages numérotées de 1/5 à 5/5.

La page 5/5 est à rendre avec la copie.

Exercice 1: (5 points)

Le plan est orienté.

Dans la figure ci-contre, ABC est un triangle direct, non rectangle et non isocèle.

GAC et EBA sont des triangles directs, rectangles et isocèles respectivement en G et en E.

L, K, I et J sont les milieux respectifs des côtés [BC], [GE], [EL] et [GL]. F et H sont les symétriques respectifs de G et J par rapport à L. On note $\mathbf{r_1}$ et $\mathbf{r_2}$ les rotations de même angle $\frac{\pi}{2}$ et de centres respectifs G et E. S_L désigne la symétrie centrale de centre L.

- 1) a) Déterminer $r_2 \circ S_L \circ r_1(A)$. Caractériser $r_2 \circ S_L \circ r_1$.
 - b) En déduire que le triangle EFG est rectangle, isocèle.
 - c) Justifier que le quadrilatère LJKI est un carré.
- 2) Soit ϕ la symétrie glissante de vecteur $\overrightarrow{\mathsf{LK}}$ et d'axe Δ passant par I.

On pose $g = \phi \circ S_{(LE)}$, où $S_{(LE)}$ est la symétrie orthogonale d'axe (LE).

- a) Montrer que $\Delta = (IH)$.
- b) Montrer que g(J) = I et g(L)= E.
- c) Prouver que g est la rotation de centre K et d'angle $-\frac{\pi}{2}$.
- 3) Soit f l'antidéplacement qui envoie J en I et L en E.
 - a) Justifier que f est une symétrie glissante.
 - b) Donner les éléments caractéristiques de f.
- 4) Soit M un point du plan. Soient M'et M" les images de M respectivement par f et g. Montrer que M'et M"sont symétriques par rapport à une droite fixe que l'on précisera.

Exercice 2: (4 points)

On munit le plan complexe d'un repère orthonormé direct (O,u,v).

Dans la figure 1 de l'annexe, (Γ) est le cercle de centre O et de rayon $\sqrt{2}$, A, B et C sont les points d'affixes respectives 1, i $\sqrt{2}$ et -i $\sqrt{2}$.

Soit Q un point du cercle (Γ) d'affixe un nombre complexe a, distinct de i $\sqrt{2}$ et -i $\sqrt{2}$.

- 1) On désigne par R le point d'affixe a+a.
 - a) Vérifier que R∈ (O, u). Construire R.
 - b) Déterminer les nombres complexes a pour lesquels O, R et Q sont alignés.
- 2) Soit P le point du plan d'affixe ia et M un point d'affixe z non nul.
 - a) Justifier que P est l'image de Q par une rotation que l'on précisera. Construire P.
 - b) Montrer que A, P et M sont alignés $\Leftrightarrow (i\overline{a}+1)z+(ia-1)\overline{z}=i(a+\overline{a})$.
 - c) Montrer que $(AP) \perp (OM) \Leftrightarrow (i\bar{a} + 1)z (ia 1)\bar{z} = 0$.
 - d) Soit H le projeté orthogonal de O sur (AP). On désigne par Z_H l'affixe du point H.

Justifier que
$$Z_H = \frac{i(a + \overline{a})}{2(i\overline{a} + 1)}$$
.

- 3) Soit N le point d'affixe $Z_N = \frac{\left(a + \overline{a}\right)}{\left(i\overline{a} + 1\right)}$.
 - a) Vérifier que N est l'image de H par une similitude que l'on déterminera.
 - b) Construire le point N.
 - c) Déterminer l'ensemble sur lequel varie le point N lorsque Q varie sur le cercle (Γ) privé des points B et C.

Exercice 3: (4 points)

On considère la suite (a_n) définie sur \mathbb{N} par $a_n = 2 \times 5^n + 7$.

- 1) a) Justifier que pour tout entier naturel n, an est impair.
 - b) Déterminer suivant les valeurs de n, le reste modulo 8 de 5ⁿ.
 - c) En déduire que pour tout $n \in \mathbb{N}$, $a_n \equiv 1 \pmod{8}$.
- 2) a) Montrer que si $\begin{cases} x \equiv 1 \pmod{8} \\ x \equiv 7 \pmod{125} \end{cases}$ alors $x \equiv 257 \pmod{1000}$.
 - b) Montrer que pour tout $n \ge 3$, $a_n = 257 \pmod{1000}$.
 - c) Quels sont les trois derniers chiffres de $(2 \times 5^{2020} + 7)(2 \times 5^{2021} + 7)$?
- 3) a) Vérifier que pour tout $n \in \mathbb{N}$, $5a_{2n} a_{2n+1} = 28$.
 - b) Soit d le PGCD de a_{2n} et a_{2n+1}. Montrer que d est différent de 7.
 - c) Trouver alors d.

Exercice 4: (7 points)

I. Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{\sqrt{1 + e^{2x}}}$.

On désigne par (ζ) sa courbe représentative dans un repère orthonormé $(0,\vec{i},\vec{j})$ du plan P.

- 1) Montrer que f est dérivable sur \mathbb{R} et que pour tout réel x, $f'(x) = \frac{-e^{2x}}{(1+e^{2x})\sqrt{1+e^{2x}}}$.
- 2) a) Déterminer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to -\infty} f(x)$. Interpréter graphiquement les résultats obtenus.
 - b) Vérifier que pour tout réel x, 0 < f(x) < 1.
- 3) a) Dresser le tableau de variation de f.
 - b) Montrer que f réalise une bijection f⁻¹ de ℝ sur un intervalle J que l'on précisera.
 - c) Montrer que l'équation f(x) = x admet une unique solution α telle que $0,5 < \alpha < 0,6$.
 - d) Déterminer le signe de f(x) x pour tout réel x. Interpréter graphiquement le résultat.
- 4) Dans la figure 2 de l'annexe, on a construit la droite d'équation y = x et on a placé le réel α sur l'axe des abscisses et le réel $\frac{\sqrt{2}}{2}$ sur l'axe des ordonnées.
 - a) Tracer la courbe (ζ) .
 - b) Tracer la courbe (ζ') de f^{-1}
- 5) a) Montrer que la fonction h définie sur \mathbb{R} par h(x) = x ln(1+ $\sqrt{1+e^{2x}}$) est une primitive de f.
 - b) On désigne par A l'aire de la partie du plan délimitée par la courbe (ζ) , l'axe des abscisses et les droites d'équations respectives x = 0 et $x = \alpha$.

Montrer que
$$A = \alpha + \ln(\frac{\alpha(1+\sqrt{2})}{\alpha+1})$$
.

- II. Pour tout $k \in \mathbb{N}^*$, on considère la fonction F_k définie sur $\left[0, +\infty\right[$, par $F_k(x) = \int_0^x (f(t))^k dt$.
- 1) a) Montrer que la fonction F_k est croissante sur $[0,+\infty[$,
 - b) Montrer que pour tout réel $t \in [0, +\infty[$, $0 \le (f(t))^k \le e^{-kt}$.
 - c) En déduire que pour tout $x \in [0, +\infty[$, $0 \le F_k(x) \le \frac{1}{k}$
 - d) Montrer alors que la fonction F_k possède une limite finie I_k quand x tend vers $+\infty$.
 - e) Montrer que $\lim_{k\to +\infty} I_k = 0$.
- 2) a) En utilisant la question I.5.a) montrer que $I_1 = -h(0)$.
 - b) Montrer que pour tout réel $t \in [0, +\infty[$, $(f(t))^3 f(t) = f'(t)$.

- c) En déduire que pour tout $x \ge 0$, $F_3(x) = F_1(x) + f(x) f(0)$.
- d) Montrer que $I_3 = \ln(1+\sqrt{2}) \frac{\sqrt{2}}{2}$.
- 3) a) Montrer que pour tout $x \ge 0$ et pour tout $k \ge 2$,

$$F_{2k+1}(x) - F_{2k-1}(x) = \frac{1}{2k-1} \Big(\big(f(x)\big)^{2k-1} - \big(f(0)\big)^{2k-1} \Big).$$

- b) En déduire que $I_{2k+1} I_{2k-1} = \frac{-1}{(2k-1)(\sqrt{2})^{2k-1}}, \ k \ge 2.$
- c) Montrer que $I_{2k+1} = I_3 \sum_{m=2}^{k} \frac{1}{(2m-1)(\sqrt{2})^{2m-1}}, \ k \ge 2.$
- d) En déduire $\lim_{k\to +\infty} \sum_{m=2}^k \frac{1}{(2m-1)(\sqrt{2})^{2m-1}}$.

	Section :	Signatures des surveillants
	Nom et Prénom :	
	Date et lieu de naissance :	
×] 	

Épreuve: Mathématiques - Section : Mathématiques Session principale (2020) Annexe à rendre avec la copie

Figure 1

Figure 2

Page 5 sur 5