INTRODUCTION TO MACHINE LEARNING

INTRODUCTION
Andreu Arderiu

NORTHIN SUMMER SCHOOL Barcelona, July 2022

Supervised learning: overview

- **Supervised**: Models are trained with input/output pairs (X, y) which we relate via a function y = f(X). Model learns f to make predictions on new data inputs X.
 - \triangleright Classification: predictions/outputs y are discrete (class labels)
 - \triangleright Regression: y is continuous
- Tasks:
 - > Is this image a cat, dog, car?
 - ➤ Is this email spam?
 - ➤ What would be the price of this house?

Supervised learning: algorithms

Today!

- k-NN (k nearest neighbours)
- Naive Bayes
- Linear + logistic regression
- Support vector machines
- Random forests
- Supervised neural networks
- etc...

Bayes rule overview

- P(A|B): "Posterior", probability that A happens given that the evidence B already happened
- P(B|A): "Likelihood", probability that B happens given that A already happened
- P(A): "Prior", probability that A will happen
- P(B): probability that B happens

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Bayes rule quizz

$$\star P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

We are planning a picnic but the morning is cloudy. What is the chance of afternoon rain?

- From historical weather data we know that:
 - P(Clouds | Rain) = 0.5: 50% of the rainy days were cloudy in the morning
 - P(Rain) = 0.1 : 10% of the days it rained in the afternoon
 - P(Clouds) = 0.4: 40% of the days are cloudy

$$P(Rain|Clouds) \stackrel{\bigstar}{=} \bigcirc$$

Bayes rule quizz

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

We are planning a picnic but the morning is cloudy. What is the chance of afternoon rain?

- From historical weather data we know that:
 - P(Clouds | Rain) = 0.5: 50% of the rainy days were cloudy in the morning
 - P(Rain) = 0.1 : 10% of the days it rained in the afternoon
 - P(Clouds) = 0.4: 40% of the days are cloudy

$$P(Rain|Clouds) = \frac{0.1 \times 0.5}{0.4} = 0.125 \implies 12.5\% \text{ chance of rain!}$$

Naive Bayes: Golf example

- Naive Bayes: classification algorithm based on Bayes rule: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$
- Dataset (X, y) samples, where
 - $\triangleright y$: class variable (play golf yes/no)
 - $\succ X$: features or parameters
- Given a new sample X we want to predict class y

	OUTLOOK	TEMPERATURE	HUMIDITY	WINDY	PLAY GOLF
0	Rainy	Hot	High	False	No
1	Rainy	Hot	High	True	No
2	Overcast	Hot	High	False	Yes
3	Sunny	Mild	High	False	Yes
4	Sunny	Cool	Normal	False	Yes

Naive Bayes: Golf example

• $X = (x_1, x_2, x_3, x_4)$, where x_1 = outlook, x_2 = temperature, ...

•
$$P(y|x_1, x_2, x_3, x_4) = \frac{P(x_1|y)P(x_2|y)P(x_3|y)P(x_4|y)P(y)}{P(x_1)P(x_2)P(x_3)P(x_4)}$$

• $y = argmax_y P(y) \sum_{i=1}^4 \frac{P(x_1|y)}{P(x_1)}$

•
$$y = argmax_y P(y) \sum_{i=1}^4 \frac{P(x_1|y)}{P(x_1)}$$

		` =/				
	OUTLOOK	TEMPERATURE	HUMIDITY	WINDY	PLAY GOLF	
0	Rainy	Hot	High	False	No	
1	Rainy	Hot	High	True	No	
2	Overcast	Hot	High	False	Yes	
3	Sunny	Mild	High	False	Yes	
4	Sunny	Cool	Normal	False	Yes	

We asume x_1, x_2, x_3 , x_4 are independent. e.g. Temperature does not afect humidity

"Naive"

Naive Bayes: Pros and cons

- Pros
 - > Easy to use and computationally cheap
 - ➤ If assumption of independent features holds, performs well with few data

- Cons
 - > Features are rarely independent
 - ➤ **Zero-frequency**: If test set has a categorical variable or category not observed in the training test, the Naive Bayes model Will always (erronously) assign a 0 probability

K-nearest neighbours (k-nn)

- Supervised algorithm that can be used for classification or regression tasks.
- Classification: Given X, compute y =majority class of the k nearest neighbours.
- Regression: Given X, compute y = average value of the k nearest neighbours.

K-nearest neighbours: classification

1. Given a new x, find its **k** nearest neighbours according to some distance measure

2. Classify the point according to the majority of labels of its

nearest neighbours

Is it a bass or a salmon?

Some algorithms
$$\mathbf{x} = \left(\begin{array}{c} brightness \\ length \end{array} \right)$$

Credit: Bob West, EPFL

k-NN similarity/distance measures

- Euclidean distance: Simplest, fast to compute d(x,y) = ||x-y||
- Cosine distance: Good for documents, images $d(x,y) = 1 \frac{x \cdot y}{\|x\| \|y\|}$
- Manhattan distance: Coordinate-wise distance

$$d(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

• ...

Source: Omni calculator

Quizz: k-NN, choosing k

- We have a bias/variance tradeoff
- When k increases how does bias and variance change?

- Small k
- Large k

Quizz: k-NN, choosing k

- We have a bias/variance tradeoff
- When k increases how does bias and variance change?

- Small k low bias, high variance
- Large k high bias, low variance

k-NN: choosing k, bias-variance tradeoff

Classification error with k=1 (low bias, high variance)

K-NN: choosing k, bias-variance tradeoff

Classification error with optimal k=21.

K-NN: pros and cons

• Pros:

- > Intuitive and simple
- > Used for classification (binary and multi-class) and regression
- > Just one hyperparameter k, no need to train a model, the data is the model!

• Cons:

- > **Slow**: as dataset size grows, computational cost grows very fast
- Curse of dimensionality: as number of variables grows, performance declines
- > Sensitive to outliers

Decision trees: overview

- Supervised algorithm that can be used for classification or regression tasks.
- The model follows a flow-chart tree structure
 - ➤ Nodes are tests on a single attribute
 - > Branches are attribute values
 - ➤ Leaves are class labels (classification) or output values (regression)

Source: SQLshack

Decision tree induction

- 1. Examples are partitioned recursively based on "most discriminative" features
- 2. Partitioning **stops** if
 - > All simples belong to the same class (classification)
 - > Number of simples in the partition is below a given threshold
 - > There are no attributes left for splitting (categorical attributes)
 - Maximum depth is reached
- 3. Leaf predictions
 - Class majority vote (classifications)
 - ➤ Local average (regression)

Credit: Guillaume Dehaene, EPFL

 X_1

Credit: Guillaume Dehaene, EPFL

 X_1

Quizz: bias-variance

• As tree Depth increases, how do bias and variance change?

Quizz: bias-variance

• As tree Depth increases, how do bias and variance change?

Bias decreases with tree depth

Variance increases with tree depth

Decision trees: pruning

- Reduce the complexity of the tree by removing branches, reduce overfitting!
- Replace nodes with leaves and keep the change if accuracy in validation set does not decrease

Decision trees: pros and cons

- Pros
 - > Easy to explain and human-interpretable
 - > Handles both classification and regression
 - > Fast and makes no asssumptions about the shape of the data

- Cons
 - > Splits have high variance, they tend to overfit!
 - > Poor performance

Ensemble methods

- Combine results of weak learners to make a single better learner
- Popular methods:
 - > Random forests
 - Boosted trees

Source: "Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow", Chapter 7.

Random forests

- Grow K trees on datasets **sampled** from the original dataset (size N, p features) with replacement (Bootstrap simples)
 - Drak K Bootstrap simples of size N
 - 2. Grow each decision tree by selecting a random subset m of features at each node, and choosing the best feature to split on
 - **3.** Aggregate predictions of the trees (average, most popular vote,...)

