

Instituto Tecnológico de Culiacán

Inteligencia Artificial

Equipo:

Uriarte Lopez Brandon Gael Ramos Matunaga Raúl Alejandro

Carrera:

Ingeniería en Sistemas Computacionales

Docente:

Mora Felix Zuriel Dathan

Paradigma Simbólico

El enfoque simbólico, también conocido como **IA clásica**, se basa en la representación explícita del conocimiento mediante símbolos y reglas lógicas. Este paradigma asume que la inteligencia puede replicarse mediante la manipulación estructurada de símbolos abstractos.

Características Principales

- Representación del conocimiento mediante reglas lógicas
- Uso de estructuras formales como árboles de decisión y grafos conceptuales
- Énfasis en el razonamiento deductivo y la planificación
- Requiere knowledge engineering para codificar conocimiento experto

Ejemplos Prácticos

1. Sistemas Expertos Médicos

MYCIN (1976)

Sistema diagnóstico para enfermedades infecciosas que utilizaba 600 reglas clínicas. Analizaba síntomas mediante inferencia lógica para sugerir tratamientos con antibióticos.

2. Motores de Reglas Comerciales

IBM Operational Decision Manager

Plataforma empresarial que automatiza decisiones complejas usando reglas de negocio estructuradas (ej. aprobación de créditos basada en políticas financieras).

3. Procesamiento de Lenguaje Natural Simbólico

Gramáticas Formales en Traducción Automática

Sistemas como SYSTRAN (usado inicialmente por Google Translate) que aplicaban reglas gramaticales y diccionarios estructurados para traducción entre idiomas.

4. Planeamiento Automático

STRIPS (Stanford Research Institute Problem Solver)

Sistema pionero para control de robots que utilizaba lógica de primer orden para generar secuencias de acciones alcanzando objetivos específicos.

5. Grafos de Conocimiento

Knowledge Graph de Google

Base de conocimiento estructurado que relaciona entidades (personas, lugares, conceptos) mediante propiedades y relaciones semánticas formalizadas.

Ventajas y Limitaciones

Ventajas:

- Transparencia en la toma de decisiones
- Facilidad para verificar el comportamiento
- Eficaz en dominios bien definidos

Limitaciones:

- Requiere conocimiento experto previo
- Escalabilidad limitada
- Dificultad con datos ambiguos

Paradigma Conexionista

El enfoque conexionista, también llamado **aprendizaje profundo** o **basado en redes neuronales**, se centra en el aprendizaje automático mediante modelos inspirados en el cerebro biológico. Utiliza redes de nodos interconectados que ajustan sus pesos para detectar patrones en datos.

Características Principales

- Aprendizaje basado en datos en lugar de reglas explícitas
- Representación distribuida del conocimiento en pesos sinápticos
- Procesamiento no lineal y paralelo
- Capacidad de **generalización** a partir de ejemplos
- Arquitecturas jerárquicas con múltiples capas ocultas

Ejemplos Prácticos

1. Reconocimiento de Imágenes

ResNet (Microsoft, 2015)

Red neuronal convolucional (CNN) que superó a humanos en clasificación de ImageNet. Usada en diagnósticos médicos por imágenes y sistemas de seguridad facial.

2. Procesamiento de Lenguaje Natural (PLN)

BERT (Google, 2018)

Modelo de transformadores que entiende contexto bidireccional. Base de ChatGPT y sistemas de búsqueda semántica.

3. Reinforcement Learning

AlphaGo (DeepMind, 2016)

Red neuronal que derrotó al campeón mundial de Go mediante aprendizaje por refuerzo profundo (DQN).

4. Vehículos Autónomos

Tesla Autopilot

Sistema de percepción basado en redes neuronales para detección de peatones, señales de tráfico y toma de decisiones en tiempo real.

5. Recomendadores Inteligentes

Sistema de recomendación de Netflix

Modelos híbridos (redes neuronales + filtrado colaborativo) que predicen preferencias de usuarios con $\rlap/\,25\,\%$ de precisión.

Ventajas y Limitaciones

Ventajas:

- Manejo eficiente de datos no estructurados (imágenes, texto)
- Escalabilidad en problemas de alta dimensionalidad
- Adaptabilidad a nuevos patrones mediante entrenamiento
- Extracción automática de características relevantes

Limitaciones:

- Comportamiento de "caja negra"
- Requiere grandes volúmenes de datos etiquetados
- Coste computacional elevado para entrenamiento
- Riesgo de sobreajuste en datos sesgados

Aplicación Actual: Dominio en visión por computadora, traducción automática, generación de contenido y sistemas de predicción complejos.

Paradigma Bioinspirado

Los sistemas bioinspirados imitan mecanismos de la naturaleza (evolución biológica, comportamientos colectivos o procesos fisiológicos) para resolver problemas complejos. Combina principios de biología, física y computación.

Características Principales

- Modelado de procesos naturales: evolución, enjambres, sistemas inmunológicos
- Auto-organización y emergencia de patrones globales desde reglas locales simples
- Adaptación dinámica mediante retroalimentación continua
- Tolerancia a fallos y **robustez** en entornos cambiantes
- Optimización colectiva sin control centralizado

Ejemplos Prácticos

1. Algoritmos Genéticos

Diseño de antenas para NASA

Evolución de estructuras mediante selección artificial (ST5-3-10: antena satelital con 70% más eficiencia que diseños humanos).

2. Optimización por Colonias de Hormigas

Enrutamiento en redes de telecomunicaciones

Sistemas como AntNet ajustan rutas basándose en feromonas virtuales, reduciendo congestión en tiempo real.

3. Enjambres de Robots

Kilobots (Harvard)

1,024 robots simples que coordinan movimientos imitando cardúmenes, usados en agricultura de precisión.

4. Sistemas Inmunológicos Artificiales

Detección de intrusiones en ciberseguridad

AISEC emplea linfocitos virtuales para identificar patrones anómalos en redes corporativas.

5. Redes Neuronales Evolutivas

NEAT (NeuroEvolution of Augmenting Topologies)

Algoritmo que evoluciona estructura y pesos de redes neuronales simultáneamente, usado en control de drones.

Ventajas y Limitaciones

Ventajas:

- Resuelve problemas NP-duros donde métodos clásicos fallan
- Escalabilidad en sistemas distribuidos
- Tolerancia a fallos parciales
- No requiere modelo matemático previo del problema

Limitaciones:

- Alto costo computacional en iteraciones
- Dificultad para garantizar convergencia óptima
- Sensibilidad a parámetros de configuración iniciales
- Complejidad en la validación teórica

Aplicación Actual: Optimización logística, robótica colaborativa, diseño de materiales, y gestión de recursos energéticos.

Ejemplos Adicionales

- 1. Optimización de Parques Eólicos usando Enjambre de Partículas (PSO)
 - **Problema**: Disposición óptima de turbinas eólicas para minimizar interferencias aerodinámicas.
 - Aplicación del paradigma:
 - Inspiración en el comportamiento colectivo de bandadas de pájaros: cada partícula (solución candidata) ajusta su trayectoria combinando conocimiento individual y grupal.
 - Mecanismo bioinspirado: Actualización de velocidades mediante ecuaciones que replican la coordinación descentralizada en la naturaleza.
 - Beneficios del paradigma:
 - Capacidad para explorar espacios de solución no convexos sin requerir gradientes matemáticos.
 - Adaptabilidad a cambios en las condiciones del viento mediante dinámica de enjambre autoorganizada.

2. Detección de Melanoma con Redes de Hongos

- **Problema**: Segmentación de lesiones cutáneas en imágenes con ruido e irregularidades.
- Aplicación del paradigma:

- Modelado del crecimiento adaptativo de micelios fúngicos (Physarum polycephalum): las "hifas" virtuales exploran la imagen priorizando regiones de alto contraste.
- Mecanismo bioinspirado: Tácticas de exploración basadas en retroalimentación química simulada (atracción/repulsión a píxeles).

Beneficios del paradigma:

- Robustez ante artefactos en imágenes (sombras, vellos) gracias a la naturaleza probabilística de la exploración biológica.
- Detección de patrones morfológicos no lineales sin requerir dataset etiquetado extensivo.

3. Logística Urbana con Comportamiento de Bacterias

■ **Problema**: Planificación de rutas de entrega con restricciones dinámicas (tráfico, zonas de bajas emisiones).

Aplicación del paradigma:

- Implementación del algoritmo de Forrajeo Bacteriano (BFO): las rutas se optimizan replicando la quimiotaxis de E. coli hacia nutrientes.
- Mecanismo bioinspirado: Eliminación de soluciones ineficientes mediante un proceso análogo a la muerte celular bacteriana.

• Beneficios del paradigma:

- Adaptación en tiempo real mediante mecanismos de atracción/repulsión equivalentes a señales químicas.
- Manejo de múltiples objetivos contrapuestos (tiempo vs. emisiones) mediante estrategias de diversidad genética preservada.

Paradigma Computacional

Este paradigma se fundamenta en modelos matemáticos y métodos algorítmicos para procesar información, enfatizando la eficiencia computacional y la resolución numérica de problemas. Integra teoría de la computación, estadística avanzada y optimización matemática.

Características Principales

- Basado en modelos matemáticos formales (ecuaciones, matrices, grafos)
- Énfasis en la eficiencia algorítmica (complejidad temporal/espacial)
- Uso intensivo de métodos estadísticos y análisis cuantitativo
- Integración con arquitecturas de **alto rendimiento** (HPC, GPUs)
- Enfoque determinista o probabilístico según el modelo

Ejemplos Prácticos

1. Algoritmos de Aprendizaje Automático

Máquinas de Soporte Vectorial (SVM)

Clasificador lineal/no lineal usado en diagnóstico genético (ej. identificación de marcadores cancerígenos con 92 % precisión).

2. Computación en la Nube para IA

AWS SageMaker

Plataforma que optimiza distribuciones paralelas de entrenamiento de modelos usando MapReduce y contenedores Docker.

3. Criptografía Cuántica

Algoritmo RSA mejorado

Implementaciones poscuánticas que resisten ataques basados en la factorización de enteros grandes (usado en blockchain).

4. Minería de Datos a Gran Escala

Algoritmo Apriori para Market Basket Analysis

Walmart lo utiliza para descubrir asociaciones entre productos (ej. "los que compran pañales tienen 65 % de probabilidad de comprar cerveza").

5. Simulaciones Computacionales

Modelado de Pandemias con SEIR

COVID-19 Forecast Hub combinó modelos diferenciales y Monte Carlo para predecir propagación con $\pm 8\,\%$ error.

Ventajas y Limitaciones

Ventajas:

- Precisión cuantificable mediante métricas matemáticas
- Escalabilidad en infraestructuras distribuidas
- Capacidad para manejar problemas de optimización pura
- Resultados reproducibles y verificables

Limitaciones:

- Dependencia crítica de la calidad de datos de entrada
- Costos energéticos elevados en cálculos masivos
- Rigidez ante problemas con restricciones dinámicas
- Riesgo de sesgos algorítmicos en modelos estadísticos

Aplicación Actual: Finanzas cuantitativas, predicción climática, diseño de fármacos mediante docking molecular, y optimización de cadenas de suministro globales.

Ejemplos Adicionales

- 1. Predicción de Fallos en Infraestructuras con Modelos de Monte Carlo
 - **Problema**: Estimación probabilística de la vida útil de puentes bajo cargas dinámicas y corrosión.
 - Aplicación del paradigma:
 - Simulación de 10,000 escenarios mediante cadenas de Markov Monte Carlo (MCMC), integrando variables físicas (tensión, humedad) y ecuaciones diferenciales estocásticas.
 - Uso de métodos numéricos para resolver integrales multidimensionales no analíticas.
 - Beneficios del paradigma:

- Capacidad para cuantificar riesgos con intervalos de confianza (ej. "Probabilidad del 95 % de fallo antes de 2035 ± 1.2 años").
- Optimización de recursos mediante algoritmos de muestreo adaptativo (reducción del 70% en tiempo de simulación vs. métodos deterministas).

2. Personalización de Terapias Oncológicas mediante Optimización Convexa

■ **Problema**: Diseñar dosis de radiación que maximicen daño a tumores minimizando toxicidad en tejidos sanos.

Aplicación del paradigma:

- Modelado matemático como problema de optimización restringida: función objetivo no lineal con 500+ variables (voxeles tumorales).
- Resolución mediante algoritmos de punto interior (IPM) con aceleración GPU para matrices dispersas.

• Beneficios del paradigma:

- Precisión submilimétrica garantizada por convergencia matemática (error ¡0.01 % en dosis objetivo).
- Escalabilidad a geometrías complejas (tumores irregulares) mediante descomposición de dominio.

3. Gestión de Tráfico Aéreo mediante Teoría de Juegos Algorítmica

■ Problema: Coordinar rutas de aviones comerciales para evitar colisiones y retrasos en espacio aéreo congestionado.

Aplicación del paradigma:

- Formalización como juego cooperativo de n-jugadores con restricciones temporales y espaciales.
- Solución mediante algoritmos de equilibrio de Nash computacional, usando programación cuadrática secuencial (SQP).

• Beneficios del paradigma:

- Garantías formales de seguridad mediante demostraciones matemáticas (ej. distancia mínima entre aviones siempre 5 km).
- \bullet Eficiencia computacional demostrable: complejidad $O(n\log n)$ vs $O(n^3)$ de métodos heurísticos.