Sri Sapthagiri PU College

M1

Mathematics

Time: 23m:00s Total Questions: 23 Marks: 92

- 1. If U is the universal set with 100 element; A and B are two set such that n(A) = 50, n(B) = 60, $n(A \cap B) = 20$ then $n(A' \cap B) = 20$
 - \cap B') =
 - (A) 90
 - (B) 40
 - (C) 10
 - (D) 20

Answer: C

$$n(U) = 100$$

$$n(A) = 50$$

$$n(B) = 60$$

$$n\left(A\cap B
ight)=20$$

$$n\left(A\cup B
ight)=n\left(A
ight)+n\left(B
ight)-n\left(A\cap B
ight)$$

$$=50+60-20$$

$$=110-20$$

$$= 90$$

$$n\left(A'\cap B'
ight)=n\left(\left(A\cup B
ight)'
ight)$$

$$=n\left(U
ight) -n\left(A\cup B
ight)$$

$$= 100 - 90$$

- =10
- 2. The domain of the function $f: R \to R$ defined by $f(x) = \sqrt{x^2 7x + 12}$ is

(A)
$$(-\infty,3)\cap(4,\infty)$$

(B)
$$(-\infty,3)\cup(4,\infty)$$

- (C)(3,4)
- (D) $(\infty,3)\cap(4,\infty)$

Answer: B

$$f\left(x\right) = \sqrt{x^2 - 7x + 12}$$

$$x^2 - 7x + 12 \ge 0$$

$$(x-4)(x-3) \geq 0$$

$$\Rightarrow x \in (-\infty, 3] \cup [4, \infty)$$

- 3. The set $A = \{x : |2x + 3| < 7\}$ is equal to the set
 - (A) $B = \{x : -3 < x < 7\}$
 - (B) $C = \{x : -13 < 2x < 4\}$
 - (C) $D = \{x : 0 < x + 5 < 7\}$
 - (D) $E = \{x : -7 < x < 7\}$

Answer: C

Given, set $A = \{x : |2x + 3| < 7\}$

Now,
$$|2x + 3| < 7$$

- $\Rightarrow -7 < 2x + 3 < 7$
- $\Rightarrow -7 3 < 2x < 7 3$
- $\Rightarrow -10 < 2x < 4$
- $\Rightarrow -5 < x < 2$
- $\Rightarrow 0 < (x+5) < 7$
- 4. If A and B are finite sets and, $A \subset B$ then
 - (A) $n(A \cup B) = n(A)$
 - (B) $n(A \cap B) = n(B)$
 - (C) $n(A \cup B) = n(B)$
 - (D) $n(A \cap B) = \phi$

Answer: C

We have, $A \subset B$

$$\therefore A \cap B = A \Rightarrow n(A \cap B) = n(A) \dots (i)$$

Again, we know that

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

$$\Rightarrow n(A \cup B) = n(A) + n(B) - n(A)$$
 [from Eq. (i)]

$$\Rightarrow n(A \cup B) = n(B)$$

- 5. Write the set builder form A = -1, 1
 - (A) $A = \{x : x \text{ is a real number}\}$
 - (B) A = (x : x is an integer)
 - (C) $A = \{x : x \text{ is a root of the equation } x^2 = 1\}$
 - (D) $A = \{x : x \text{ is a root of the equation } x^2 + 1 = 0\}$

Answer: C

-1, 1 are the roots of the equation $x^2 - 1 = 0$ Hence, set builder form of A can be written as $A = \{x : x \text{ is a root of the equation } x^2 = 1\}$

6. The domain of the function $f(x) = \sqrt{\cos x}$ is

(A)
$$\left[0, \frac{\pi}{2}\right]$$

(B)
$$\left[0, \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2}, 2\pi\right]$$

(C)
$$\left[\frac{3\pi}{2}, 2\pi\right]$$

(D) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$

(D)
$$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

Answer: B,D,C

Given, $f(x) = \sqrt{\cos x}$

i.e., $\cos x \ge 0$

But $-1 \le \cos x \le 1$

 $\therefore 0 \le \cos x \le 1$

i.e., x lies in 1st or IVth quadrant

$$\Rightarrow 0 \leq x \leq rac{\pi}{2} ext{ or } rac{3\pi}{2} \leq x \leq 2\pi$$

$$\therefore x \in \left[0,rac{\pi}{2}
ight] \cup \left[rac{3\pi}{2},2\pi
ight]$$

Also,
$$\cos(-x) = \cos x$$

Hence, $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is also the domain of the function.

7. In a class of 60 students, 25 students play cricket and 20 students play tennis, and 10 students play both the games. Then, the number of students who play neither is

- (A) 0
- (B) 25
- (C) 35
- (D) 45

Answer: B

Let student play cricket = C

Student play tennis = T

and total number of students = S

$$\therefore n(S) = 60, n(C) = 25, n(T) = 20$$

and
$$n(C \cap T) = 10$$

Now,
$$n(C \cup T) = n(C) + n(T) - n(C \cap T)$$

$$=25+20-10=35$$

... The number of students who play neither game

$$= n(C \cap T)' = n(S) - n(C \cup T)$$

$$=60-35=25$$

- 8. If $X = \{4^n 3n 1 : n \in N\}$ and $Y = \{9(n-1) : n \in N\}$,where N is the set of natural numbers, then $X \cup Y$ is equal to
 - (A) N
 - (B) Y-X
 - (C) X
 - (D) Y

Answer: D

$$X = \{(1+3)^n - 3n - 1, n \in N\}$$
 $= 3^2(^nC_2 + ^nC_3 \cdot 3 + \ldots + 3^{n-2}), n \in N\}$
 $= \{ \text{ Divisible by } 9 \}$
 $Y = \{9(n-1), n \in N\}$
 $= (\text{ All multiples of } 9 \}$
So, $X \subseteq Y$
i.e., $X \cup Y = Y$

- 9. If $X=\{4^n-3n-1:n\in N\}$ and $Y=\{9\,(n-1):n\in N\}$, then $X\cup Y$ is equal to
 - (A) X
 - (B) Y
 - (C) N
 - (D) none of these

Answer: B

Here
$$X \subseteq Y : X \cup Y = Y$$

- 10. Let Z be the set of integers. If $A = \{x \in Z : 2^{(x+2)(x^2-5x+6)}\} = 1$ and $B = \{x \in Z : -3 < 2x 1 < 9\}$, then the number of subsets of the set $A \times B$, is:
 - (A) 2^{18}
 - (B) 2^{10}
 - (C) 2^{15}
 - (D) 2^{12}

Answer: C

$$egin{array}{ll} A &= \{\, x \in z : 2^{(x+2)(x^2-5x+6)} \, = \, 1 \} \ 2^{(x+2)(x^2-5x+6)} \, = \, 2^0 \, \Rightarrow \, x \, = -2,2,3 \ A &= \, \{-2,2,3\} \end{array}$$

$$B = x \in Z : -3 < 2x - 1 < 9$$

A imes B has is 15 elements so number of subsets of A imes B is 2^{15}

- 11. Let $X = \{1, 2, 3, 4, 5\}$ The number of different ordered pairs (Y, Z) that can formed such that $Y \subseteq X, Z \subseteq X$ and $Y \cap Z$ is empty, is :
 - (A) 5^2
 - (B) 3^5
 - (C) 2^5
 - (D) 5^3

Answer: B

Every element has 3 options. Either set Y or set Z or none so number of ordered pairs $=3^5$

- 12. Let $\bigcup_{i=1}^{50} X_i = \bigcup_{i=1}^n Y_i = T$ where each X_i contains 10 elements and each Y_i contains 5 elements. If each element of the set T is an element of exactly 20 of sets X_i 's and exactly 6 of sets Y_i 's, then n is equal to:
 - (A) 45
 - (B) 15
 - (C) 50
 - (D) 30

Answer: D

$$n(X_i) = 10. \mathop{U}\limits_{i=1}^{50} = T \; , \ \Rightarrow n(T) = 500$$

each element of T belongs to exactly 20

elements of $X_i \Rightarrow \frac{500}{20} = 25$ distinct elements

so
$$\frac{5n}{6} = 25$$

- $\Rightarrow n = 30$
- 13. In a certain town, 25% of the families own a phone and 15% own a car 65% families own neither a phone nor a car and 2,000 families own both a car and a phone. Consider the following three statements:
 - (a) 5% families own both a car and a phone.
 - (b) 35% families own either a car or a phone.
 - (c) 40,000 families live in the town.

Then,

- (A) Only (a) and (b) are correct
- (B) Only (a) and (c) are correct
- (C) Only (b) and (c) are correct
- (D) All (a), (b) and (c) are correct

Answer: D

$$n(P) = 25$$

 $n(C) = 15$
 $n(P' \cup C') = 65\%$
 $\Rightarrow n(P \cup C)' = 65\%$
 $n(P \cup C) = 35\%$
 $n(P \cap C) = n(P) + n(C) - n(P \cup C)$
 $25 + 15 - 35 = 5\%$
 $x \times 5\% = 2000$
 $x = 40,000$

- 14. Let $S=\{x\in R: x\geq 0 \text{ and } 2|\sqrt{x}-3|+\sqrt{x}(\sqrt{x}-6)+6=0\}$. Then S :
 - (A) is an empty set
 - (B) contains exactly one element
 - (C) contains exactly two elements
 - (D) contains exactly four elements

Answer: C

$$2|\sqrt{x} - 3| + \sqrt{x}(\sqrt{x} - 6) + 6 = 0$$

$$2|\sqrt{x} - 3| + (\sqrt{x} - 3 + 3)(\sqrt{x} - 3 - 3) + 6 = 0$$

$$2|\sqrt{x} - 3| + (\sqrt{x} - 3)^2 - 3 = 0$$

$$(\sqrt{x} - 3)^2 + 2|\sqrt{x} - 3| - 3 = 0$$

$$(|\sqrt{x} - 3| + 3)(|\sqrt{x} - 3| - 1) = 0$$

$$\Rightarrow |\sqrt{x} - 3| = 1, |\sqrt{x} - 3| + 3 \neq 0$$

$$\Rightarrow \sqrt{x} - 3 = \pm 1$$

$$\Rightarrow \sqrt{x} = 4, 2$$

- 15. Let $S = \{1, 2, 3, ..., 100\}$. The number of non- empty subsets A of S such that the product of elements in A is even is:
 - (A) $2^{50}(2^{50}-1)$
 - (B) $2^{100} 1$

x = 16, 4

- (C) $2^{50} 1$
- (D) $2^{50} + 1$

Answer: A

$$S = \{1,2,3----100\}$$

= Total non empty subsets-subsets with product of element is odd

$$=2^{100}-1-1[(2^{50}-1)]$$

$$=2^{100}-2^{50}$$

$$=2^{50}(2^{50}-1)$$

- 16. In a class of 140 students numbered 1 to 140, all even numbered students opted mathematics course, those whose number is divisible by 3 opted Physics course and those whose number is divisible by 5 opted Chemistry course. Then the number of students who did not opt for any of the three courses is:
 - (A) 102
 - (B) 42
 - (C) 1
 - (D) 38

Answer: D

Let n(A) = number of students opted Mathematics = 70,

- n(B) = number of students opted Physics = 46,
- n(C) = number of students opted Chemistry = 28,

$$n(A \cap B) = 23$$
,

$$n(B \cap C) = 9$$
,

$$n(A \cap C) = 14$$
,

$$n(A \cap B \cap C) = 4,$$

Now
$$n(A \cup B \cup C)$$

$$= n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C)$$

$$-n(A\cap C)+n(A\cap B\cap C)$$

$$=70+46+28-23-9-14+4=102$$

So number of students not opted for any course

= Total -
$$n(A \cup B \cup C)$$

$$= 140 - 102 = 38$$

- 17. Two newspapers A and B are published in a city. It is known that 25% of the city populations reads A and 20% reads B while 8% reads both A and B. Further, 30% of those who read A but not B look into advertisements and 40% of those who read B but not A also look into advertisements, while 50% of those who read both A and B look into advertisements. Then the percentage of the population who look into advertisement is:
 - (A) 12.8
 - (B) 13.5
 - (C) 13.9
 - (D) 13

Answer: C

Let population = 100

$$n(A) = 25$$

$$n(B) = 20$$

$$n(A \cap B) = 8$$

$$n(A\cap ar{B})=17$$

$$n(A \cap B) = 12$$

$$n(ar{A}\cap B)=12 \ rac{30}{100} imes17+rac{40}{100} imes12+rac{50}{100} imes8$$

$$5.1 + 4.8 + 4 = 13.9$$

- 18. If $f(x)+2f\left(\frac{1}{x}\right)=3x, x\neq 0$, and $S=\{x\in R: f(x)=f(-x)\}$; then S:
 - (A) is an empty set.
 - (B) contains exactly one element.
 - (C) contains exactly two elements.
 - (D) contains more than two elements.

Answer: C

$$f(x) + 2f\left(\frac{1}{x}\right) = 3x$$
Replace x by $\frac{1}{x}$, $f\left(\frac{1}{x}\right) + 2f(x) = \frac{3}{x}$

$$\Rightarrow \frac{3x - f(x)}{2} = \frac{\frac{3}{x} - 2f(x)}{1}$$

$$\Rightarrow 3x - f(x) = \frac{6}{x} - 4f(x)$$

$$\Rightarrow f(x) = \frac{2}{x} - x$$

$$f(x) = f(-x)$$

$$\Rightarrow \frac{2}{x} - x = -\frac{2}{x} + x$$

$$\Rightarrow \frac{4}{x} = 2x$$

$$\Rightarrow x = \pm \sqrt{2}$$

19. Let x_1, x_2, \ldots, x_n be n observations, and let \bar{x} be their arithmetic mean and σ^2 be the variance.

Statement-1: Variance of $2x_1, 2x_2, \ldots, 2x_n$ is $4\sigma^2$.

Statement-2: Arithmetic mean $2x_1, 2x_2, \ldots, 2x_n$ is $4\bar{x}$.

- (A) Statement-1 is false, Statement-2 is true
- (B) Statement-1 is true, statement-2 is true; statement-2 is a correct explanation for Statement-1
- (C) Statement-1 is true, statement-2 is true; statement-2 is not a correct explanation for Statement-1
- (D) Statement-1 is true, statement-2 is false

Answer: D

If each observation is multiplied by k, mean gets multiplied by k and variance gets multiplied by k^2 . Hence the new mean should be $2\bar{x}$ and new variance should be $k^2\sigma^2$. So statement-1 is true and statement-2 is false.

20. Let A, B and C be sets such that $\Phi \neq A \cap B \subseteq C$. Then which of the following statements is not true?

(A) If
$$(A - C) \subseteq B$$
, then $A \subseteq B$

(B)
$$(C \cup A) \cap (C \cup B) = C$$

(C) If
$$(A - B) \subseteq C$$
, then $A \subseteq C$

(D)
$$B \cap C \neq \Phi$$

Answer: A

For
$$A = C, A - C = \Phi$$

$$\Rightarrow \Phi \subseteq B$$

But $A \nsubseteq B$

 \Rightarrow option 1 is NOT true

Let
$$x \in (Cx \in (C \cup A) \cap (C \cup B))$$

$$\Rightarrow x \in (C \cup A)$$
and $x \in (C \cup B)$

$$\Rightarrow$$
 $(x \in C \text{ or } x \in A) \text{ and } (x \in C \text{ or } x \in B)$

$$\Rightarrow x \in C \text{ or } x \in (A \cap B)$$

$$\Rightarrow x \in C \ or \ x \in C \ (as \ A \cup B)$$

subseteqC

$$\Rightarrow x \in C$$

$$\Rightarrow$$
 $(C \cup A) \cap (C \cup B) \subseteq C$ (1)

 $Now \ x \in C \ \Rightarrow \ x \in (C \cup A) and \ x \ \in (C \cup B)$

$$\Rightarrow x \in (C \cup A) \cap (C \cup B)$$

$$\Rightarrow C \subseteq (C \cup A) \cap (C \cup B) \tag{2}$$

$$\Rightarrow from(1)and(2)$$

$$C = (C \cup A) \cap (C \cup B)$$

 \Rightarrow option 2 is true

Let $x \in A$ and $x \notin B$

$$\Rightarrow x \in (A-B)$$

$$\Rightarrow x \in C \quad (as A - B \subseteq C)$$

Let $x \in A$ and $x \in B$

$$\Rightarrow x \in (A \cap B)$$

$$\Rightarrow x \in C$$
 $(asA \cap B \subseteq C)$

Hence $x \in A \Rightarrow x \in C$

$$\Rightarrow A \subseteq C$$

 \Rightarrow Option 3 is true

as
$$C \supseteq (A \cap B)$$

$$\Rightarrow B \cap C \supseteq (A \cap B)$$

as
$$A \cap B \leq \Phi$$

$$\Rightarrow B \cap C \leq \Phi$$

 \Rightarrow Option 4 is true

- 21. A relation on the set $A = \{x : |x| < 3, x \in Z\}$ where Z is the set of integers is defined by $R = \{(x,y) : y = |x|, x \neq -1\}$. Then the number of elements in the power set of R is:
 - (A) 32
 - (B) 16
 - (C) 8
 - (D) 64

Answer: B

$$A = \{x: |x| < 3, x \, \in \, Z\}$$

$$A = \{-2, -1, 0, 1, 2\}$$

$$R=\left\{ \left(x,y
ight) :y=\leftert x
ightert ,x
eq1
ight\}$$

$$R = \{(-2, 2), (0, 0), (1, 1), (2, 2)\}$$

R has four elements

Number of elements in the power set of R

$$=2^4=16$$

- 22. A survey shows that 73% of the persons working in an office like coffee, whereas 65% like tea. If x denotes the percentage of them. who like both coffee and tea, then x cannot be:
 - (A) 63
 - (B) 38
 - (C) 54
 - (D) 36

Answer: D

C o person like coffee

 $T o {\sf person}$ like Tea

$$n(C) = 73$$

$$n(T) = 65$$

$$n(C \cup T) \leq 100$$

$$n(C) + n(T) - n(C \cap T) \le 100$$

$$73 + 65 - x \le 100$$

$$x \ge 38$$

$$73 - x \ge 0 \Rightarrow x \le 73$$

$$65 - x \ge 0 \Rightarrow x \le 65$$

$$38 \le x \le 65$$

- 23. A survey shows that 63% of the people in a city read newspaper A whereas 76% read newspaper B. If x% of the people read both the newspapers, then a possible value of x can be:
 - (A) 65
 - (B) 37
 - (C) 29
 - (D) 55

Answer: D

Finding the value of x: Let the people read news A is n(A) = 63% the people read news B is n(B) = 76% the people read both the newspapers $n(A \cap B) = x$ We know that $\max(n(A) \& n(B)) \le n(A \cup B) \le 100$

$$\Rightarrow 76 \leq 63 + 76 - x \leq 100$$

$$\Rightarrow -63 \leq -x \leq -39$$

$$\Rightarrow 63 \geq x \geq 39$$