

Entrega 0

$\begin{array}{c} {\rm Metodos\ Computacionales\ en\ OOCC,\ IOC} \\ {\rm 4201} \end{array}$

Profesor: Patricio Moreno

Ayudante: Maximiliano Biasi

Alumno: Bernardo Caprile Canala-Echevarría

15 de septiembre de 2024

$\acute{\mathbf{I}}\mathbf{ndice}$

I	Entrega 0	4
1.	Introducción	•
2.	Resultados	•
	2.1. Redes de flujo	,
	2.2. Caudales de infiltración	;

Entrega 0

1. Introducción

Para obras en las que se debe construir a nivel subacuático o con un nivel freático alto, es necesario el uso de ataguías. Estas estructuras temporales permiten construir de forma segura y eficiente en condiciones de humedad. Es importante, antes de instalar las ataguías, tener conocimiento de la profundidad a la que se van a hundir, la presión que se va a contener, tanto del agua como de otros factores, y la cantidad de agua que se va a bombear. De lo contrario, se pondría en riesgo la vida de los trabajadores y la maquinaria.

Por ello, en esta entrega se presentarán esquemas de redes de flujo, caudales de infiltración, presiones de poros y netas en ataguía, gradientes hidráulicos máximos, determinar si falla por licuefacción y calcular un factor de seguridad, de tres casos distintos de ataguías de tablaestaca. A continuación, se presenta una figura esquemática de la ataguía de tablaestaca que se analizará en esta entrega:

Figura 1: Esquema de la ataguía de tablaestaca

2. Resultados

2.1. Redes de flujo

A continuación, se muestran los esquemas de las redes de flujo de las 3 ataguías. Los esquemas a escala se pueden encontrar en el siguiente link: https://github.com/berckanala/Proyecto-1-MCOC/tree/main/redes_flujo

Figura 2: Ataguía con el caso 1 Figura 3: Ataguía con el caso 2 Figura 4: Ataguía con el caso 3

Como se puede apreciar en la figura ??, la tablaestaca no está enterrada, mientras que en la figura ?? la tablaestaca está enterrada a una profundidad de 2.4 metros. Por último, en la figura ??, la tablaestaca está enterrada a una profundidad de 5.8 metros.

En cada esquema se utilizaron 3 líneas de flujo y 6 líneas equipotenciales. Con respecto a las líneas equipotenciales, es importante mencionar que en el caso 1 hay 5 líneas equipotenciales, ya que se unen puntos de interés (E con D y F con G).

2.2. Caudales de infiltración