GE2262 Business Statistics

Topic 6 Hypothesis Testing

Reference

Levine, D.M., Krehbiel, T.C. and Berenson, M.L., *Business Statistics: A First Course*, Pearson Education Ltd, Chapter 9

Outline

- Hypothesis Testing Procedure
- Hypothesis Test for the Population Mean
 - Critical Value Approach
 - p-Value Approach
- Potential Pitfalls and Ethical Issues

Live Chicken Supply Suspended in HK

http://www.scmp.com/news/hong-kong/health-environment/article/1965394/live-chicken-supply-suspended-hong-kong-after

- SCMP, 05 June 2016: Sample taken from Yan Oi Market in Tuen
 Mun tests positive for bird flu virus. Live chicken supply suspended in Hong Kong
- During the year 2015, there were 1,442 poultry imported daily on average. No more than 30 poultry were tested daily for bird flu virus
- Decision on suspending live chicken supply is based on the test results of samples
 - If a sample is tested positive for the virus, then
 live poultry supply will be suspended for 21 days
 - If the tests for all samples are negative, no further action is required
- Do you think this checking process is reliable?
- What is the risk of making a wrong decision in either way?

What is a Hypothesis?

- The precursor to a hypothesis is a research or business problem, usually framed as a question
 - E.g., A teacher might want to know "Are the students performing well in academic?"
- The question is then converted to a testable hypothetical statement
 - A statistical hypothesis is a claim about the population parameter
 - E.g. population mean, population standard deviation, or population proportion, etc.

 I claim the proportion

I claim the mean GPA of this class is 3.5!

I claim the proportion of students passing the mid-term is 0.9!

Hypothesis Testing Procedure

- Step 1: Define hypotheses
- Step 2: Collect the data and identify the rejection region(s)
- Step 3: Compute test statistic
- Step 4: Make statistical decision

Hypothesis Testing Procedure

Cont'd

Define Null Hypothesis Assume the population mean GPA (μ) is 3.5

Draw the Conclusion When μ = 3.5, is the sample statistic (\bar{X}) likely to occur? Or Is \bar{X} very close to μ ? If not likely or not very close

Compute Sample **Statistic**

Take a Random <u>Sample</u>

→ REJECT Null Hypothesis

- The null hypothesis, H_0
 - □ Always about a population parameter (μ) , rather than a sample statistic (\bar{X})
 - Always contains the "=" sign
 - Always assumed to be true at start
 - Similar to the notion of innocent unless proved guilty
 - To be tested numerically
 - The final decision is either "to reject" or "not to reject" it

Cont'd

Example

- You are in charge of a cereal-filling operation
- You want to ensure that, on average, 368 g of cereals are in the boxes
- Your filling machine is working properly so far
- As a routine check, you take a random sample of 25 boxes and their average weight determined to see if it is close to 368 g
- You null hypothesis might be

$$H_0$$
: $\mu = 368$

- The alternative hypothesis, H_1
 - □ The opposite of the null hypothesis
 - Never contains the "=" sign
 - It is mutually exclusive and collectively exhaustive from the null hypothesis
- There are three different sets of hypotheses to be tested
 - □ Two-tail test: H_0 : $\mu = \mu_0$ against H_1 : $\mu \neq \mu_0$
 - □ Lower-tail test: H_0 : $\mu \ge \mu_0$ against H_1 : $\mu < \mu_0$
 - □ Upper-tail test: H_0 : $\mu \le \mu_0$ against H_1 : $\mu > \mu_0$

Cont'd

Example

- □ Recently, you receive complaints from customers concerning the amount of cereal being less than the specified 368 g
- Your null and alternative hypothesis would then be

$$H_0$$
: $\mu \ge 368$

$$H_1$$
: $\mu < 368$

We will assume that the given data set is a representative sample of the population concerned

- The rejection region is an area containing the unlikely values of test statistic if null hypothesis is true
- The size of the rejection region is selected by the researcher at the beginning of the hypothesis test
 - \square Also refers to as level of significance, α
 - Typical values are 0.01, 0.05 and 0.10 99 95 90
 - It provides the critical value(s) of the hypothesis test
 - It controls the probability of committing Type I error
 - The acceptable risk level for rejecting the null hypothesis wrongly

Cont'd

- The location of the rejection region depends on the hypotheses being tested
- For <u>two-tail</u> test: H_0 : $\mu = \mu_0$ against H_1 : $\mu \neq \mu_0$

 \overline{X} must be significantly different from μ_0 to reject H_0

Z must be significantly different from 0 to reject H_0

Cont'd

For **lower-tail** test: $H_0: \mu \ge \mu_0$ against $H_1: \mu < \mu_0$

 \overline{X} must be significantly smaller than μ_0 to reject H_0

Z must be significantly smaller than 0 to reject H_0

For <u>upper-tail</u> test: $H_0: \mu \leq \mu_0$ against $H_1: \mu > \mu_0$

 \overline{X} must be significantly larger than μ_0 to reject H_0

Z must be significantly larger than 0 to reject H_0

Step 3: Compute Test Statistic

- Convert sample statistic (\overline{X}) to test statistic (Z or t)
 - A scale free value for determining whether the sample mean is far enough from the hypothesized population mean
- Z test statistic
 - Conditions
 - Population standard deviation (σ) is known
 - Population is normally distributed $\rightarrow \bar{X} \sim N(\mu_{\bar{X}}, (\frac{\sigma}{\sqrt{n}})^2)$
 - If population is not normal, but with a large sample $(n \ge 30)$, by Central Limit Theorem $\Rightarrow \bar{X} \sim N(\mu_{\bar{X}}, (\frac{\sigma}{\sqrt{n}})^2)$

$$Z = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

Step 3: Compute Test Statistic

Cont'd

- t test statistic
 - Conditions
 - Population standard deviation (σ) is unknown
 - Population is normally distributed $\rightarrow \bar{X} \sim N(\mu_{\bar{X}}, (\frac{\sigma}{\sqrt{n}})^2)$
 - If population is not normal, but with a large sample $(n \ge 30)$, by Central Limit Theorem $\Rightarrow \bar{X} \sim N(\mu_{\bar{X}}, (\frac{\sigma}{\sqrt{n}})^2)$

$$t = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$$

with (n-1) degrees of freedom

Critical value approach

- ullet Based on the level of significance (lpha), obtain critical value(s) from the Z or t table
- Set up the decision rule to identify where is (are) the rejection region(s)
- \Box Check if the Z or t test statistic falls in the rejection region or not
 - If yes, then reject H_0
 - Otherwise, do not reject H_0

Cont'd

- p-value approach
 - Convert the Z or t test statistic to p-value
 - The p-value is the probability of obtaining a test statistic as extreme or more extreme (\leq or \geq) than the observed sample statistic given H_0 is true
 - \square Compare the p-value with the level of significance (α)
 - If p-value $< \alpha$, then reject H_0
 - Otherwise, do not reject H_0

Reject H_0 if Z test statistic < Critical value

Reject H_0 if p-value $< \alpha$

Cont'd

For two-tail test: H_0 : $\mu = \mu_0$ against H_1 : $\mu \neq \mu_0$

For lower-tail test: H_0 : $\mu \ge \mu_0$ against H_1 : $\mu < \mu_0$

For upper-tail test: H_0 : $\mu \le \mu_0$ against H_1 : $\mu > \mu_0$

- In statistical hypothesis testing, we make the decision based on only one sample, we do not have the information to claim that the null hypothesis is true or false with 100% certainty
- Whether the null hypothesis is rejected or not rejected, we always facing a risk of making a wrong decision
- We never prove any one of the two hypotheses is true or false, we simply reject or do not reject the null hypothesis with a risk

Decision	The Truth	
	H_0 True	H_0 False
Do not reject H_0	Level of Confidence $(1-\alpha)$	Type II Error (β)
Reject H_0	Type I Error (α)	Power of the Test $(1 - \beta)$

- Type I Error
 - Reject a true null hypothesis
 - \square Probability of Type I error is denoted α
 - $\alpha = P(Reject H_0 | H_0 true)$
 - Also called level of significance
 - Set by researcher
 - \square (1α) is called level of confidence
- Type II Error
 - □ Fails to reject a false null hypothesis
 - \square Probability of Type II error is denoted β
 - $\beta = P(Do \ not \ reject \ H_0 | H_0 \ false)$
 - \Box (1β) is called power of the test

- Naturally, we would like both type of errors to be as small as possible
- While the Type I error is often pre-specified before the test (e.g. α = 0.05), we cannot do much about the Type II error as the value of β depends on the true value of the parameter to be tested, which is often unknown to us if the null hypothesis is rejected
- Ways to reduce the probability of making a Type II error
 - By increasing α . This is preferred if the cost of committing Type II error is higher than that of Type I error
 - By increasing the sample size for the test. This is preferred if there are sufficient resources to do so

Z Test for the Population Mean (σ Known)

- Conditions
 - \Box Population standard deviation (σ) is known
 - □ Population is normally distributed $\Rightarrow \bar{X} \sim N(\mu_{\bar{X}}, (\frac{\sigma}{\sqrt{n}})^2)$
 - □ If population is not normal, but with a large sample $(n \ge 30)$, by Central Limit Theorem $\Rightarrow \bar{X} \sim N(\mu_{\bar{X}}, (\frac{\sigma}{\sqrt{n}})^2)$
- Obtain critical value(s) from the Z-table

$$\quad \text{Test statistic, } Z = \frac{\bar{X} - \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}}$$

Z Test for the Population Mean (σ Known) – Example

- A random sample of 25 boxes of cereals gave a mean
 364.5 g
- The company has specified the population distribution is
 Normal and the standard deviation to be 15 g
- Test at the 5% level of significance and see if the average weight is close to 368 g

Z Test for the Population Mean (σ Known) – Example

Cont'd

$$H_0$$
: $\mu = 368$

$$H_1: \mu \neq 368$$

At
$$\alpha = 0.05$$

$$n = 25$$

Critical Value = ± 1.96

Reject
$$H_0$$
 if $Z < -1.96$ or $Z > +1.96$

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{364.5 - 368}{15 / \sqrt{25}}$$
$$= -1.17$$

At $\alpha = 0.05$, do not reject H_0

There is no evidence that the true mean weight is not 368 g

Z Test for the Population Mean (σ Known) – Example

Cont'd

$$H_0$$
: $\mu = 368$

$$H_1: \mu \neq 368$$

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{364.5 - 368}{15 / \sqrt{25}} = -1.17$$

p-value

$$= P(Z \le -1.17) + P(Z \ge 1.17)$$

$$= 2 \times P(Z \le -1.17)$$

$$= 2 \times 0.1210$$

$$= 0.242$$

Rejection region, $\alpha/2 = 0.025$

As p-value > α , do not reject H_0

There is no evidence that the

true mean weight is not 368 g

Z Test for the Population Mean (σ Known) – Exercise

- How would you revise the analysis if you need to deal with the customers' concerning about the amount of cereal being less than the specified 368 g?
- Noted that
 - The company has specified the population distribution is Normal
 - □ The population standard deviation is 15 g
 - Test at the 5% level of significance

Z Test for the Population Mean (σ Known) – Exercise

Z Test for the Population Mean (σ Known) – Exercise

Z Test for the Population Mean

 $(\sigma \text{ Known})$ – Exercise

Cont'd

$$H_0$$
: $\mu \ge 368$ H_1 : $\mu < 368$

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{364.5 - 368}{15 / \sqrt{25}}$$
$$= -1.17$$

At
$$\alpha = 0.05$$
 $n = 25$

At
$$\alpha=0.05$$
, do not reject H_0

Reject
$$H_0$$
 if $Z < -1.645$

Critical Value = -1.645

There is no evidence that the true mean weight is less than 368 g

Z Test for the Population Mean $(\sigma \text{ Known}) - \text{Exercise}$

Cont'd

$$H_0$$
: $\mu \ge 368$
 H_1 : $\mu < 368$

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{364.5 - 368}{15 / \sqrt{25}} = -1.17$$

p-value
$$= P(Z \le -1.17)$$
 $= 0.1210$

p-value =0.1210 Rejection region, $\alpha = 0.05$ -1.17

As p-value > α , do not reject H_0 There is no evidence that the true mean weight is less than 368 g

t Test for the Population Mean $(\sigma \text{ Unknown})$ – Exercise

Cont'd

$$H_0: \mu \le 1$$

 $H_1: \mu > 1$

$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} = \frac{1.03 - 1}{0.08/\sqrt{40}}$$
$$= 2.37$$

At
$$\alpha = 0.10$$

$$n = 40$$
 $df = 39$

Critical Value =
$$+1.3036$$

Reject
$$H_0$$
 if $t > +1.3036$

At
$$\alpha = 0.10$$
, reject H_0

There is evidence that the true mean amount is more than 1 L

t Test for the Population Mean $(\sigma \text{ Unknown})$ – Exercise

Cont'd

$$H_0: \mu \le 1$$

 $H_1: \mu > 1$

$$t = \frac{\bar{X} - \mu_0}{S / \sqrt{n}} = \frac{1.03 - 1}{0.08 / \sqrt{40}} = 2.37$$

p-value $= P(t \ge 2.37)$ = (0.01, 0.025)

Using Excel "T.DIST" function, the p-value is found to be 0.0114

t Test for the Population Mean (σ Unknown)

- Conditions
 - \Box Population standard deviation (σ) is unknown
 - □ Population is normally distributed $extbf{→} ar{X} \sim N(\mu_{\bar{X}}, (\frac{\sigma}{\sqrt{n}})^2)$
 - □ If population is not normal, but with a large sample $(n \ge 30)$, by Central Limit Theorem $\Rightarrow \bar{X} \sim N(\mu_{\bar{X}}, (\frac{\sigma}{\sqrt{n}})^2)$
- Obtain critical value(s) from the t-table with (n-1) degrees of freedom
- Test statistic, $t = \frac{\bar{X} \mu_{\bar{X}}}{\sigma_{\bar{X}}} = \frac{\bar{X} \mu_0}{S/\sqrt{n}}$

t Test for the Population Mean (σ Unknown) – Example

- In addition to cereals, the company newly set up the filling machine for milk
- Each bottle should contain 1 L of milk
- A random sample of 40 bottles are selected, giving an average 1.03 L and standard deviation 0.08 L
- At 10% level of significance, test to see is the filling machine is working properly

t Test for the Population Mean $(\sigma \text{ Unknown})$ – Example

Cont'd

$$H_0: \mu = 1$$

$$H_1$$
: $\mu \neq 1$

At
$$\alpha = 0.10$$

$$n = 40$$

$$n = 40$$
 $df = 39$

Critical Value =
$$\pm 1.6849$$

Reject
$$H_0$$
 if $t < -1.6849$ or $t > +1.6849$

Rejection region,
$$\alpha/2 = 0.05$$
Rejection region, $\alpha/2 = 0.05$

$$t$$
-1.6849 +1.6849

$$t = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} = \frac{1.03 - 1}{0.08/\sqrt{40}}$$
$$= 2.37$$

At
$$\alpha = 0.10$$
, reject H_0

There is evidence that the true mean amount is not 1 L

t Test for the Population Mean (σ Unknown) – Example

Cont'd

$$H_0: \mu = 1$$

$$H_1$$
: $\mu \neq 1$

$$t = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} = \frac{1.03 - 1}{0.08/\sqrt{40}} = 2.37$$

p-value

$$= P(t \le -2.37) + P(t \ge 2.37)$$

$$= 2 \times P(t \ge 2.37)$$

$$= 2 \times (0.01, 0.025)$$

$$= (0.02, 0.05)$$

As p-value $< \alpha$, H_0 is rejected

There is evidence that the true mean amount is not 1 L

Using Excel "T.DIST" function, the p-value is found to be 0.0228

t Test for the Population Mean (σ Unknown) – Exercise

- In the last example, we found that the mean amount of milk is not 1 L
- Now, test to see if the mean amount is more than 1 L at 10% level of significance

t Test for the Population Mean (σ Unknown) – Exercise

t Test for the Population Mean (σ Unknown) – Exercise

Cont'd

Using Excel "T.DIST" function, the p-value is found to be 0.0114

Z Test for the Population Mean $(\sigma \text{ Known})$ – Exercise

Cont'd

$$H_0$$
: $\mu \ge 368$ H_1 : $\mu < 368$

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{364.5 - 368}{15 / \sqrt{25}}$$
$$= -1.17$$

At
$$\alpha = 0.05$$
 $n = 25$

At
$$\alpha=0.05$$
, do not reject H_0

Critical Value =
$$-1.645$$

Reject H_0 if $Z < -1.645$

There is no evidence that the true mean weight is less than 368 g

Z Test for the Population Mean $(\sigma \text{ Known})$ – Exercise

Cont'd

$$H_0$$
: $\mu \ge 368$
 H_1 : $\mu < 368$

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{364.5 - 368}{15 / \sqrt{25}} = -1.17$$

p-value =0.1210 Rejection region, $\alpha = 0.05$ -1.17

As p-value > α , do not reject H_0 There is no evidence that the true mean weight is less than 368 g

Cont'd

t Test for the Population Mean $(\sigma \text{ Unknown}) - \text{Exercise}$

Cont'd

$$H_0: \mu \le 1$$

 $H_1: \mu > 1$

$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} = \frac{1.03 - 1}{0.08/\sqrt{40}}$$
$$= 2.37$$

At
$$\alpha = 0.10$$

$$n = 40 df$$

$$df = 39$$

Critical Value =
$$+1.3036$$

Reject
$$H_0$$
 if $t > +1.3036$

At
$$\alpha = 0.10$$
, reject H_0

There is evidence that the true mean amount is more than 1 L

t Test for the Population Mean

 $(\sigma \text{ Unknown}) - \text{Exercise}$

$$t = \frac{\bar{X} - \mu_0}{S / \sqrt{n}} = \frac{1.03 - 1}{0.08 / \sqrt{40}} = 2.37$$

p-value

 $H_0: \mu \leq 1$

 $H_1: \mu > 1$

$$= P(t \ge 2.37)$$

= (0.01, 0.025)

As p-value $< \alpha$, H_0 is rejected There is evidence that the true mean amount is more than 1 L

Using Excel "T.DIST" function, the p-value is found to be 0.0114

- Besides direct selling to the consumers, the milk is used to make processed cheese
- It is known that excess water will change the freezing point of the milk
- The freezing point of natural milk is distributed with a mean of -0.545 °C
- 14 randomly selected bottles of milk shows a mean
 -0.550 °C and standard deviation 0.016 °C
- At 5% level of significance, is the milk containing excess water?

Cont'd

Step 1: Define hypotheses

- Step 2: Collect data and identify rejection region(s)
 - Population distribution:
 - Sample size:
 - Any assumption needed?
 - What is the assumption?
 - Why?
 - \Box σ :
 - Distribution to be used:

- Step 2: Collect data and identify rejection region(s)
 - Significance level:
 - Degrees of freedom:
 - Critical value(s):
 - Decision rule:

- Step 3: Compute test statistic
 - □ Test statistic =
 - p-value =
- Step 4: Make statistical decision
 - Decision:
 - Conclusion:

- What would happened if the sample size is 144 rather than 14?
 - Assumed the sample mean and standard deviation remain unchanged
- Step 1: Define hypotheses

- Step 2: Collect data and identify rejection region(s)
 - Population distribution:
 - Sample size:
 - Any assumption needed?
 - What is the assumption?
 - Why?
 - \Box σ :
 - Distribution to use:
 - Significance level:
 - Degrees of freedom:
 - Critical value(s):
 - Decision rule:

- Step 3: Compute test statistic
 - □ Test statistic =
 - p-value
- Step 4: Make statistical decision
 - Decision:
 - Conclusion:

Cont'd

Step 1: Define hypotheses

$$H_0$$
: $\mu = -0.545$
 H_1 : $\mu \neq -0.545$

- Step 2: Collect data and identify rejection region(s)
 - Population distribution: Unknown
 - □ Sample size: 14
 - Any assumption needed? Yes
 - What is the assumption? Assume Normal population
 - Why? The sample size is too small to apply Central Limit Theorem
 - σ : unknown
 - Distribution to be used: t

41

Hypothesis Test – More Exercise

Cont'd

- Step 2: Collect data and identify rejection region(s)
 - □ Significance level: 0.05
 - Degrees of freedom: 13
 - □ Critical value(s): ±2.1604
 - \Box Decision rule: Reject H_0 if t < -2.1604 or t > +2.1604

42

Hypothesis Test – More Exercise

Cont'd

- Step 3: Compute test statistic

 - \neg p-value = (0.20, 0.50)
- Step 4: Make statistical decision
 - □ Decision: At α = 0.05, do not reject H_0
 - Conclusion: There is insufficient evidence that the mean freezing point of the milk is not -0.545 °C

Hypothesis Test – More Exercise

- What would happened if the sample size is 144 rather than 14?
 - Assumed the sample mean and standard deviation remain unchanged
- Step 1: Define hypotheses

$$H_0$$
: $\mu = -0.545$

$$H_1: \mu \neq -0.545$$

Cont'd

- Step 2: Collect data and identify rejection region(s)
 - Population distribution: Unknown
 - □ Sample size: 144
 - Any assumption needed? No
 - What is the assumption? NA
 - Why? The sample size is large enough to apply Central Limit Theorem
 - σ : unknown
 - Distribution to use: t
 - □ Significance level: 0.05
 - □ Degrees of freedom: $143 \approx \infty$
 - □ Critical value(s): ±1.96
 - □ Decision rule: Reject H_0 if t < -1.96 or t > +1.96

Hypothesis Test – More Exercise

Cont'd

- Step 3: Compute test statistic
 - $\ \ \, \Box \ \ \, {\sf Test \ statistic} = t = \frac{\bar{X} \mu_0}{{\cal S}/\sqrt{n}} = \frac{-0.550 (-0.545)}{0.016/\sqrt{144}} = -3.75$
 - □ p-value < 0.01
- Step 4: Make statistical decision
 - \Box Decision: At α = 0.05, reject H_0
 - Conclusion: There is sufficient evidence that the mean freezing point of the milk is not -0.545 °C

46

Potential Pitfalls and Ethical Issues

- What is the goal of the study? How can you translate the goal into a null hypothesis and an alternative hypothesis?
- Is the hypothesis test a two-tail test or one-tail test?
- Can you select a random sample from the underlying population of interest?
- At what level of significance should you conduct the hypothesis test?
- What conclusions and interpretations can you reach from the results of the hypothesis test?

Potential Pitfalls and Ethical Issues

- Some of the areas where ethical issues can arise include
 - The use of human subjects in experiments
 - The data collection method
 - □ The type of test (two-tail or one-tail test)
 - The choice of level of significance
 - The cleansing and discarding of data
 - The failure to report pertinent findings