1. 可分离变量的 - 阶微分方程 形如 $\frac{dy}{dx} = f(x)g(y)$ 通解的 $\int \frac{1}{g(y)} dy = \int f(x) dx + C$

2. 一阶线性微分方程

形如 y' + P(x)y = Q(x) 通解为 $y = e^{-\int P(x)dx} \left(\int Q(x)e^{\int P(x)dx} dx + C \right)$ 3. 可用变量代换法水解的一阶微分方程

(1) 齐次微分方程 形如 $\frac{dy}{dx} = f(\frac{y}{x})$ 全 $u = \frac{y}{x}$, $y = \frac{dy}{dx} = u + x \frac{du}{dx}$ 代入賦得 $u + x \frac{du}{dx} = f(u)$ 即 $x \frac{du}{dx} = f(u) - u$ 可得 $\int_{f(u)-u} du = \int_{\frac{y}{x}} dx + C$ 求得通解后将 $u = \frac{y}{x}$ 代回即何 (2) 伯努利方程

形如 $\frac{dy}{dx} + P(x)y = Q(x)y^{\alpha}$ 用 y^{α} 同院方程两端得 $y^{-\alpha} \frac{dy}{dx} + P(x)y^{-\alpha} = Q(x)$ 全 $u = y^{-\alpha} \frac{dy}{dx} + P(x)y^{-\alpha} = Q(x)$ 全 $u = y^{-\alpha} \frac{dy}{dx} + (1-\alpha)P(x)u = (1-\alpha)Q(x)$ 该方程为一阶线性 微分方程 参照 2. 解出通解后将 $u = y^{-\alpha}$ 代入野河. 3: 其他可用变量代换法求解的一阶微分方程举例.

(1) 求 y' = cos(x+y) 的通解. /ky' = cos(x+y) = cos(u)代入 2u = x+y 刃 $\frac{du}{dx} = 1+y'$ 牙程序方程变为 $\frac{du}{dx} = 1+cos(u)$ $2cos^{\frac{2}{2}}$ $2cos^{\frac{2}{2}} \neq 0$ 时,新方程可用分离变量法求解. $\int \frac{1}{2cos^{\frac{2}{2}}} du = \int dx + c$ 解得 $tan^{\frac{2}{2}} = x+c$ 4. 可降阶的高阶微分方程

(1) y(n)=f(x)型 通过n次积分就能得到通新.

27 7 下页

- (3) y''=f(y,y') 做愛採 y'=p 则 y'=dy'=dy=dy=dy=dy=dy=dy=P-dy 厚方程化为 $P\cdot dy=f(y,P)$ 为一阶微分程. 可求出通解 $P=F(y,C_1)$,代入 $P=y'=dy=dy=dy=dy=dy=f(y,C_1)$ 为可定离变量的微分程. 可得通解 $\int_{F(y,C_1)} dy=\int_{G(y,C_1)} dy=\int_{G(y,C_1)} dy$
- 5. 常多数 二阶线性乔次方程 一般形式为 $X + a_1 X + a_2 X = 0$ 水通解步骤: (1) 求特征方程 $X^2 + a_1 X + a_2 = 0$ 的两个根 λ_1 , λ_2 (2) ① 芳 $\lambda_1 \neq \lambda_2$ 通解为 $X = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$ (C_1 , C_2 为常数不需要求) ②芳 $\lambda_1 = \lambda_2$ 通解为 $X = e^{\lambda_1 t}$ ($C_1 t + C_2$) ③芳为程的 $\Delta = a_1^2 + a_2 < 0 \Rightarrow p$ 有两个复数根 $\lambda_1, \lambda_2 = a_1 t \neq a_2$,通解为 $X = e^{a_1 t}$ ($C_1 \cos \beta t + C_2 \sin \beta t$)

6. 高阶常子数非齐次线性方程 一般形式为 x + a, x + a, = F(t) 有结论:线性非齐次方程(x+a, x+a,=F(t)) 的函解等于它的任意

齐处方程的通解 x(t) 可由其解法求得,则求X(t)的问题就帮化为求 x*(t)的问题。我们用待定不数法求特解 x*(t)

为方便读者使用,现就 F(t) 的常见类型,针对不同情况将用待定系数法应设置的特解的形式列表如下(其中 Z(t), $Z_1(t)$, $Z_2(t)$ 均为与 φ 同次数的多项式):

F(t)的类型	应设置特解 $x^*(t)$ 的形式	
m 次多项式 φ(t)	0 不是特征值	$x^* = Z(t)$
	0 是 k 重特征值	$x^* = t^k Z(t)$
$\varphi(t) e^{\mu}$	μ不是特征值	$x^* = Z(t) e^{\mu t}$
	μ 是 k 重特征值	$x^* = t^k Z(t) e^{\mu t}$
$ \varphi(t) e^{\mu} \cos \nu t$ 或 $ \varphi(t) e^{\mu} \sin \nu t $	μ+iv 不是特征值	$x^* = e^{\mu} [Z_1(t) \cos \nu t + Z_2(t) \sin \nu t]$
	μ + $i\nu$ 是 k 重特征值 $\left(1 \le k \le \left[\frac{n}{2}\right]\right)$	$x^* = t^k e^{\mu} [Z_1(t) \cos \nu t + Z_2(t) \sin \nu t]$

用待定系数法设出 X*(t)后, 把它当做 X, 分别样, 求二次等后代入 X4a, x+a2 = F(t) 解出系数即可.

分别求得 齐次方程通解 X(t) 与非齐次方程特解 X*(t)后相加即可得非齐次方程通解 X(t) = X(t) + x*(t)

7. 高阶变系数线性微分方程 只考虑一种情况,欧拉微分方程 一般形式为 $t^n \frac{d^n x}{dt^n} + a_i t^{n-1} \frac{d^n x}{dt^{n-1}} + \cdots + a_n x = f(t), 其中 <math>a_i, a_2 \cdots a_n$ 为帝数. 可通过变换 $t = e^n$ 或 $-t = e^n$ (too)

将其化为草多数线性微分方程。

代入序方程化简符 $\frac{d^2x}{d\tau} - 2\frac{dx}{d\tau} + x = 0$ 特征方程为 $\lambda^2 - 2\lambda + 1 = 0$ $\therefore \lambda_1 = \lambda_2 = 1$ 通解为 $x = e^{\tau}(C_1\tau + C_2)$ 将 $\tau = \ln t$ 代入得 $x = t(C_1 \ln t + C_2)$