### (Reason)

The invention described in all of the claims of present application could have been easily invented by a person having ordinary knowledge in the technical field to which that invention belongs prior to this application based on the items indicated below, and therefore a patent cannot be granted pursuant to the stipulations of Article 29, Paragraph 2 of the Japan Patent Law.

The invention of the present application is related to a method wherein a film is formed by beginning the supply of reaction gas in a reaction chamber in which plasma is formed at a first flow rate, and afterwards a second film is formed on the aforementioned film at a second flow rate.

However, because a method to form a film by changing the flow rate is also described in the cited invention (Japanese Unexamined Patent Application Publication H12-100805), a person with ordinary knowledge of the technical field to which this invention belongs could easily invent the invention of the present application.





# 意見提出通知書

2003年 5月 27日審査4局 半導体1審査担当官室審査官 李 ソンテク

出 願 人:NECエレクトロニクス株式会社(出願人コード:520020416681) 日本国神奈川県川崎市中原区下沼部1753

代理人:特許法人 KOREANA

ソウル市江南区駅三洞824-19

出願番号:2001年特許出願第20190号

発明の名称:流速がスイッチされる膜形成方法

この出願に対する審査の結果、下記のとおりの拒絶理由があり、特許法第63条の規定によりこれを通知しますので、意見がある場合又は補正が必要な場合は、 2003年7月27日までに意見書[特許法施行規則の別紙第25号の2の書式]又は/及 び補正書[特許法施行規則の別紙第5号の書式]を提出して下さい(上記の期間は、 毎回1月ずつ延長申請することができ、別途の期間延長承認の通知はしません)。

### [理由]

この出願の特許請求の範囲全項に記載の発明は、その出願前に、その発明の属する技術の分野における通常の知識を有する者が、下記に指摘した発明に基づいて容易に発明をすることができたものと認められるので、特許法第29条第2項の規定により特許を受けることができません。



# 特許法人 KOREANA

本願発明は、反応ガスの供給が、第1の流速でプラズマが形成される反応室から始まって膜が形成された後、第2の流速で上記膜上に成膜される方法に関するものであるが、

引用発明(日本国特開平12-100805号)にも、流速を異ならせて膜を形成する方法が記載されているため、本願発明は、その発明の属する技術の分野における通常の知識を有する者が、引用発明に基づいて容易に発明をすることができたものであります。

[添付]

添付1 日本国特開平12-100805号(2000.04.07) 1部

以上

출력 일자: 2003/5/28

135-080

발송번호 : 9-5-2003-019310272 수시 : 서울특별시 강남구 역삼동 824-19

발송일자: 2003.05.27

특허법인코리아나 귀하 제출기일: 2003.07.27

# 특허청

# 의견제출통지서

意見提出通知會

명칭 엔이씨 일렉트로닉스 코포레이션 (출원인코드: 520020416681) 출원인

주소 일본 211-8668 가나가와껭 가와사끼시 나까하라꾸 시모누마베 1753

명칭 특허법인코리아나 대리인

주소 서울특별시 강남구 역삼동 824-19

출원번호

10-2001-0020190

발명의 명칭

유속이 스위치되는 필름 형성 방법

이 출원에 대한 심사결과 아래와 같은 거절이유가 있어 특허법 제63조의 규정에 의하여 이를 통지하오니 의견이 있거나 보정이 필요할 경우에는 상기 제출기일까지 의견서[특허법시행규칙 별지 제25호의2서식] 또는/및 보정서[특허법시행규칙 별지 제5호서식]를 제출하여 주시기 바랍니다.(상기 제출기일에 대하여 매회 1월 단위로 연장을 신청할 수 있으며, 이 신청에 대하여 별도의 기간연장승인통 지는 하지 않습니다.)

이 출원의 특허청구범위 전항에 기재된 발명은 그 출원전에 이 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 아래에 지적한 것에 의하여 용이하게 발명할 수 있는 것이므로 특허법 제29조제2 항의 규정에 의하여 특허를 받을 수 없습니다.

1. 본원 발명은 반응 가스의 공급이 제1유속으로 플라즈마가 형성되는 반응실로 시작되어 필름이 형성된 후 제2유속으로 상기 필름상에 필름이 형성되는 방법에 관한 것이나,

인용발명(일본공개특허공보 평12-100805호)에도 유속을 달리하여 필름을 형성하는 방법이 기재되어 있으므로 본원 발명은 본원 발명의 기술분야에 속하는 통상의 지식을 가진 자가 인용발명으로부터용이하게 발명할 수 있는 것입니다.

### [첨 부]

첨부1 일본공개특허공보 평12-100805호(2000.04.07) 1부 끝.

2003.05.27

특허청

심사4국

반도체1심사담당관실

심사관 이선택





출력 일자: 2003/5/28

### <<안내>>

문의사항이 있으시면 🗗 042-481-5980 로 문의하시기 바랍니다.

특허청 직원 모두는 깨끗한 특허행점의 구현을 위하여 최선을 다하고 있습니다. 만일 업무처리과정에서 직원의 부조리행위 가 있으면 신고하여 주시기 바랍니다. ▶ 홈페이지(www.kipo.go.kr)내 부조리신고센터

#### (19)日本国特許庁 (JP)

## (12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-100805 (P2000-100805A)

(43)公開日 平成12年4月7日(2000.4.7)

(51) Int.Cl.7

識別配号

テーマコート\*(参考)

HO1L 21/31 21/314

FΙ H01L 21/31

C 5F045

21/314

A 5F058

#### 審査請求 未請求 請求項の数3 FD (全 7 頁)

(21)出顧番号

特額平10-283471

(71) 出顧人 000219967

東京エレクトロン株式会社

(22)出顧日 平成10年9月18日(1998.9.18) 東京都港区赤坂5丁目3番6号

(72)発明者 遠藤 俊一

神奈川県津久井郡城山町町屋1丁目2番41 号 東京エレクトロン東北株式会社相模事

業所内 (72)発明者 平田 匡史

神奈川県津久井郡城山町町屋1丁目2番41

号 東京エレクトロン東北株式会社相模事

業所内

(74)代理人 100091513

弁理士 井上 俊夫

最終頁に続く

### (54) 【発明の名称】 ブラズマ成膜方法

#### (57)【要約】

【課題】 アスペクト比の高い凹部に対してのCF膜の 埋め込み特性を向上させること。

【解決手段】 成膜ガスであるC、F。ガス及びC、H , ガスと、プラズマガスであるArガスとを夫々100 sccm、20sccm、150sccmの流量で導入 し、マイクロ波電力2.4kW、バイアス電力1.5k Wの下で第1の工程を行い、次いでC、F。ガスの流量 を80sccm、バイアス電力を1.0kWに変えて第 2の工程を行う。第1の工程ではエッチング作用を有す るC。F。ガスの流量が多いと共に、Arイオンをウエ ハ10に引き込む力を左右するバイアス電力が大きいの で、配線間の凹部の間口を広げるようなエッチングが進 行する。このため平行して行われる成膜により凹部の底 部にCF膜が堆積しやすくなり、アスペクト比の高い凹 部に対しても良好な埋め込みを行うことができる。







#### 【特許請求の範囲】

【請求項1】 被処理体の載置台を備えた真空容器内で 炭素及びフッ素の化合物ガスを含む成膜ガスをプラズマ 化し、前記載置台にバイアス電力を印加してプラズマ中 のイオンを被処理体に引き込みながら前記プラズマによ り被処理体上にフッ素添加カーボン膜よりなる絶縁膜を 成膜する方法において、

1

前記載置台に第1の電力でバイアス電力を印加すると共 に、炭素及びフッ素の化合物ガスを第1の流量で導入し て、前記被処理体上にフッ素添加カーボン膜を成膜する 10 エッチング作用により前記間口を削りながら成膜を行う 第1の工程と、

次いで載置台に第1の電力よりも小さい第2の電力でバ イアス電力を印加すると共に、炭素及びフッ素の化合物 ガスを第1の流量よりも少ない第2の流量で導入して、 前記被処理体上にフッ素添加カーボン膜を成膜する第2 の工程と、を含むことを特徴とするプラズマ成膜方法。 【請求項2】 成膜ガスは炭化水素ガスを含むことを特 徴とする請求項1記載のプラズマ成膜方法。

【請求項3】 成膜ガスは、マイクロ波と磁界の電子サ イクロトロン共鳴によってプラズマ化されることを特徴 20 部13へのCF膜の埋め込みが行われる。こうして凹部 とする請求項1又は2記載のプラズマ成膜方法。

#### 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えば半導体デバ イスの層間絶縁膜として用いられるフッ素添加カーボン 膜を成膜する方法に関する。

#### [0002]

【従来の技術】半導体デバイスの高集積化を図るため に、バターンの微細化、回路の多層化といった工夫が進 技術がある。多層配線構造をとるためには、 n層目の配 線層と(n+1)番目の配線層の間を導電層で接続する と共に、導電層以外の領域は層間絶縁膜と呼ばれる薄膜 が形成される。

【0003】この層間絶縁膜の代表的なものとしてSi O、膜があるが、近年デバイスの動作についてより一層 の高速化を図るために層間絶縁膜の比誘電率を低くする ことが要求されており、層間絶縁膜の材質についての検 討がなされている。即ちSiO、膜は比誘電率がおよそ 4であり、これよりも小さい材質の発掘に力が注がれて 40 いる。そのうちの一つとして比誘電率が3.5であるS iOF膜の実現化が進められているが、本発明者は比誘 電率が更に小さいフッ素添加カーボン膜(以下「CF 膜」という)に注目している。

【0004】このCF膜を層間絶縁膜として用いる場 合、つまり例えば図3に示すように、例えばSiO,膜 11の上にアルミニウム配線12が形成された基板の配 線12、12間をCF膜で埋め込む場合には、例えば電 子サイクロトロン共鳴によりプラズマを発生させるプラ

マガス、炭素(C)及びフッ素(F)の化合物ガスと炭 化水素ガスとを含むガスを成膜ガスとして用いて、成膜 ガスをプラズマ化して前記SiO, 膜11の表面にCF 膜13を堆積させるようにしている。

【0005】との際図3に示すように埋め込み途中で配 線12,12の間の凹部13の両肩の部分14が膨らん できて凹部13の間口が塞がってしまうため、 載置台に バイアス電力を印加してプラズマイオン(Arイオン) をウエハに垂直に引き込み、このAr イオンのスパッタ ようにしている。

【0006】さらに上述の方法によってCF膜を配線1 2. 12間に埋め込む実際のプロセスでは、ボイドの発 生を抑えるためにCF膜の成膜を2段階に分けて行い、 バイアス電力を第1段階では1.5kW、第2段階では 1.0k Wと第1段階より小さくし、他の条件は同様に して処理を行うようにしている。この場合第1段階では バイアス電力が大きいので、Arイオンのエッチング作 用が大きく、凹部13の間口が十分に広げられて当該凹 13への埋め込みが完了した段階で第1段階を終了さ せ、次いで第2段階が行われるが、この段階ではバイア ス電力が小さいのでエッチング作用よりも成膜作用が大 きくなり、これにより配線12の上部側が大きな成膜速 度で成膜される。

#### [0007]

【発明が解決しようとする課題】しかしながら上述の方 法のようにバイアス電力によりエッチング作用と成膜作 用の大きさを調整して、第1段階ではエッチング作用を められており、そのうちの一つとして配線を多層化する 30 大きく、第2段階では成膜作用を大きくしてCF膜の堆 積を行っても、アスベクト比((配線の高さ)/(配線 間の間隔))が3以上の配線間にCF膜を埋め込む場合 にはボイドが発生してしまい、良好な埋め込みを行うと とができないという問題があった。

> 【0008】本発明はこのような事情の下になされたも のであり、その目的は、CF膜を絶縁膜として用いる場 合に、高アスペクト比の凹部に対して良好な埋め込みを 行うことのできるブラズマ成膜方法を提供することにあ る。

#### [0009]

【課題を解決するための手段】このため本発明は、被処 理体の載置台を備えた真空容器内で炭素及びフッ素の化 合物ガスを含む成膜ガスを、例えばマイクロ波と磁界の 電子サイクロトロン共鳴によってプラズマ化し、前記載 置台にバイアス電力を印加してブラズマ中のイオンを被 処理体に引き込みながら前記プラズマにより被処理体上 にフッ素添加カーボン膜よりなる絶縁膜を成膜する方法 において、前記載置台に第1の電力でバイアス電力を印 加すると共に、炭素及びフッ素の化合物ガスを第1の流 ズマ装置を用い、例えばアルゴン(Ar)ガスをプラズ 50 量で導入して、前記被処理体上にフッ素添加カーボン膜

2

を成膜する第1の工程と、次いで載置台に第1の電力よ りも小さい第2の電力でバイアス電力を印加すると共 に、炭素及びフッ素の化合物ガスを第1の流量よりも小 さい第2の流量で導入して、前記被処理体上にフッ素添 加カーボン膜を成膜する第2の工程と、を含むことを特 徴とする。

#### [0.01.01

【発明の実施の形態】先ず本発明の実施の形態に用いら れるプラズマ成膜装置の一例を図1に示す。この装置は 例えばアルミニウム等により形成された真空容器2を有 10 しており、この真空容器2は上方に位置してプラズマを 発生させる筒状の第1の真空室21と、この下方に連通 させて連結され、第1の真空室21よりは口径の大きい 筒状の第2の真空室22とからなる。なおこの真空容器 2は接地されてゼロ電位になっている。

【0011】 この真空容器2の上端は開口されて、この 部分にマイクロ波を透過する部材例えば石英等の材料で 形成された透過窓23が気密に設けられており、真空容 器2内の真空状態を維持するようになっている。この透 波を発生する高周波電源部24に接続された導波管25 が設けられており、高周波電源部24にて発生したマイ クロ波を例えばTEモードにより導波管25で案内し て、またはTEモードにより案内されたマイクロ波を導 波管25でTMモードに変換して、透過窓23から第1 の真空室21内へ導入し得るようになっている。

【0012】第1の真空室21を区画する側壁には例え ばその周方向に沿って均等に配置したガスノズル31が 設けられると共に、このガスノズル31には例えば図示 真空室21内の上部にプラズマ生成用ガス例えばArガ スをムラなく均等に供給し得るようになっている。

【0013】前記第2の真空室22内には、前記第1の 真空室21と対向するように被処理体をなす半導体ウエ ハ(以下「ウエハ」という)10の載置台4が設けられ ている。この載置台4は表面部に静電チャック41を備 えており、この静電チャック41の電極には、ウエハを 吸着する直流電源(図示せず)の他、ウエハにイオンを 引き込むためのバイアス電圧を印加するように高周波電 源部42が接続されている。

【0014】一方前記第2の真空室22の上部即ち第1 の真空室21と連通している部分にはリング状の成膜ガ ス供給部5が設けられており、この成膜ガス供給部5 は、ガス供給管51及びガス供給管52から成膜ガスで あるC及びFの化合物ガス(以下「CF系ガス」とい う)例えばC、F。ガスと炭化水素ガス例えばC、H。 ガスとが夫々供給され、これらのガスが内周面のガス穴 53から真空容器2内に供給されるように構成されてい

周には、これに接近させて磁場形成手段として例えばり ング状の主電磁コイル26が配置されると共に、第2の 真空室22の下方側にはリング状の補助電磁コイル27 が配置されている。また第2の真空室22の底部には例 えば真空室22の中心軸に対称な2個所の位置に各々排 気管28が接続されている。

【0016】次に上述の装置を用いてウエハ10上に形 成された例えば高さが6000オングストローム、配線 間の間隔が1500オングストロームのアスペクト比が 4の配線間にCF膜よりなる層間絶縁膜を埋め込む場合 の一連のプロセスについて図2を参照して説明するが、 本発明のプロセスはCF膜の成膜を2段階に分けて行 い、バイアス電力(髙周波電源部42)の大きさとCF 系ガスの流量を調整することにより、第1の工程ではエ ッチング作用を大きくし、第2の工程では成膜作用を大 きくして成膜を行うことに特徴がある。

【0017】先ず約10リットルの大きさの真空容器2 の側壁に設けた図示しないゲートバルブを開いて図示し ない搬送アームにより、例えば図2(a)に示すように 過窓23の外側には、例えば2.  $45\,\mathrm{GHz}$ のマイクロ 20  $\mathrm{SiO}_z$  膜31の表面にアルミニウム配線32が形成さ れたウエハ10を図示しないロードロック室から搬入し て載置台4上に載置し、静電チャック41により静電吸 着して、SiO、膜31の表面へのCF膜33の成膜の 第1の工程を行う(図2(b)参照)。

【0018】つまりゲートバルブを閉じて内部を密閉し た後、排気管28より内部雰囲気を排気して所定の真空 度まで真空引きし、真空容器2内を所定のプロセス圧例 えば0.5 Paに維持すると共に、プロセス温度を例え ば400℃に調整した状態で、先ずガスノズル31から しないプラズマ生成用ガス源が接続されており、第1の 30 第1の真空室21内へArガスを例えば150sccm の流量で導入し、成膜ガス供給部5からC。F。ガスを 第1の流量例えば100sccmで導入すると共に、C , H. ガスを例えば20sccmの流量で夫々第2の真 空室22内へ導入する。そして高周波電源部24から 2. 45 GHz, 2. 4 k Wの高周波 (マイクロ波)を 供給し、かつ髙周波電源部42により載置台4に13. 56MHz, 例えば1.5kW (第1の電力) のバイア ス電圧を印加する。

> 【0019】このようにすると高周波電源部24からの 40 マイクロ波は導波管25を通って真空容器2の天井部に 至り、ことの透過窓23を透過して第1の真空室21内 へ導入される。また真空容器2内には主電磁コイル26 及び補助電磁コイル27により第1の真空室21の上部 から第2の真空室22の下部に向かうミラー磁界が形成 され、例えば第1の真空室21の下部付近にて磁場の強 さが875ガウスとなる。

【0020】とうして磁場とマイクロ波との相互作用に より電子サイクロトロン共鳴が生じ、この共鳴によりA rガスがプラズマ化され、且つ髙密度化される。またこ 【0015】前記第1の真空室21を区画する側壁の外 50 のようにArガスのプラズマを生成させることにより、

プラズマが安定化する。こうして発生したプラズマ流 は、第1の真空室21より第2の真空室22内に流れ込 んで行き、ことに供給されているC。F。ガスやC。H ガスを活性化(プラズマ化)して活性種(プラズマ) を形成する。一方プラズマイオンであるArイオンはプ ラズマ引き込み用のバイアス電圧によりウエハ10に引 き込まれ、こうしてウエハ10表面のパターン(凹部) に堆積されたCF膜の角をAr イオンのスパッタエッチ ング作用により削り取って間口を広げながら、CF膜が 成膜されて凹部内に埋め込まれる。

5

【0021】とのようにして第1の工程を例えば20秒 行って、図2(b)に示すように配線32,32の間の 凹部34に十分にCF膜33を埋め込むように配線32 の上方側近傍までCF膜を成膜した後、図2(c)に示 すようにCF膜33の成膜の第2の工程を行う。つまり 高周波電力(高周波電源部24)、磁場形状、プロセス 温度、プロセス圧力、Arガス及びC、H、ガスの流量 を第1の工程と同じ条件にした状態で、バイアス電力を 第1の電力よりも小さい第2の電力例えば1.0kWに も少ない第2の流量例えば80gccmに設定して、所 定の膜厚が得られるまで所定時間第1の段階と同様に成 膜を行う。なお実際のデバイスを製造する場合には、そ の後このCF膜に対して所定のパターンでエッチングを 行い、溝部に例えばW膜を埋め込んでW配線が形成され る。

【0022】このような成膜方法では、エッチング作用 と成膜作用が平行して行われるが、第1の工程ではバイ アス電力を第2の電力よりも大きい第1の電力に設定し 大きくなり、これによりスパッタエッチング作用が大き くなる。

【0023】また第1の工程ではC、F。ガスの流量を 第2の流量よりも多い第1の流量に設定しているので、 さらにエッチング作用が大きくなる。つまりC、F。ガ スはプラズマ化されたFがCF膜のCと反応してCF系 のガスとなり、こうしてCF膜33を化学的にエッチン グすると推察される。このためCF膜の流量が多ければ それだけエッチング作用が大きくなると考えられる。

【0024】 このように第1の工程では、バイアス電力 40 が大きく、かつC。F。ガスの流量が多いのでエッチン グ作用が大きくなり、凹部34ではこのエッチングによ り間口が広く、奥の方が狭い状態となる。このため平行 して行われる成膜により凹部34の奥の方にCF膜が堆 積しやすく、これにより凹部34では底部側からCF膜 が埋め込まれて次第に底が浅くなっていき、こうして高 アスペクト比の凹部34に対してもボイドの形成を抑え て十分にCF膜が埋め込まれる。

【0025】次いで行われる第2の工程では、バイアス 電力を第1の電力よりも小さくすると共に、C.F.ガ 50 ベクト比の凹部にCF膜を埋め込む場合であっても、ボ

スの流量を第1の流量よりも少なくしているので、エッ チング作用が小さくなり、その分成膜作用が大きくなっ て、例えば第1の工程では成膜速度が2000オングス トローム/分程度であるのに対し、第2の工程では成膜 速度が4000オングストローム/分程度と第1の工程 の約2倍に大きくなる。このため配線32の上部側は大 きな成膜速度でCF膜を成膜するととができるので、当 該部分の成膜時間が短くなる。

【0026】ことで第2の工程でC、F。ガスを流量を 10 第1の流量のままにした場合には、C.F.ガスによる エッチング作用が大きいままなので、成膜速度が小さく なってしまい所望の膜厚を得るまでの成膜時間が長くな って、成膜処理のスループットが悪くなってしまう。 【0027】以上のように第1の工程ではC、F。ガス の流量を多くすることが望ましいが、C、F。ガスの流 量が多すぎるとエッチング作用が大きくなり過ぎ、配線 32の肩を削るおそれや成膜速度が小さくなってスルー ブットが悪くなるおそれがあるし、またCF膜のFの量 が多くなり過ぎてCF膜の熱安定性が悪くなってしまう 設定すると共に、C. F. ガスの流量を第1の流量より 20 おそれもあるのでそれ程多くすることはできない。こと でCF膜の熱安定性が悪いということは、CF膜を高温 に加熱したときにCF膜からFやCF、CF2等のF系 ガスが脱離するということであり、このようにF系ガス が脱離すると、金属配線の腐食やエレクトロマイグレー ションの発生等の不都合が起きる。

【0028】また第2の工程ではC.F.ガスの流量を 第1の流量よりも少ない第2の流量にすることが望まし いが、C、F。ガスの流量を少なくするといっても、C F膜中のFの量が少なくなり過ぎると、CF膜の絶縁性 ているので、Arイオンのウエハ10への引き込み力が 30 が悪くなったり、比誘電率が高くなってしまうので、F が適量に含まれるCF膜を得ることが必要であり、この ためC、F。ガスの流量をそれ程少なくすることはでき ない。

> 【0029】 ことでC、F。ガスの第1の流量や第2の 流量の最適流量は、CF系ガスの種類や真空容器2の大 きさ、プロセス圧力等によって決定されるが、上述の実 施の形態の場合には、C.F.ガスの第1の流量は10 0sccm~120sccm程度、また第2の流量は6 0sccm~80sccm程度とすることが望ましい。 【0030】このように本発明の方法では、CF系ガス の化学的エッチング作用に着目し、バイアス電力の制御 に加えてCF系ガスの流量を制御してエッチング作用と 成膜作用の大きさを調整しているので、従来のようにバ イアス電力の制御によるエッチング作用と成膜作用の大 きさの調整だけでは困難であった、例えばアスペクト比 が3以上の高アスペクト比の凹部34に対してもボイド の発生を抑えてCF膜を良好に埋め込むことができる。 また第2の工程では所定の膜厚まで高い成膜速度で成膜 を行っているので、成膜処理トータルで見れば、高アス

イドの発生を抑えながらスループットを向上させた成膜 処理を行うことができる。

【0031】続いて本発明の効果を確認するために行っ た実験例について説明する。図1に示す、真空容器の大 きさが63リットルのプラズマ成膜装置を用い、配線の 高さが6000オングストローム、配線間の間隔が15 00オングストロームのアスペクト比が4の配線が形成 されたウエハ10に対して、先ずC。F。ガスを100 sccm (第1の流量)、C, H, ガスを20scc m、Arガスを150sccmの流量で夫々導入してC 10 F膜の成膜の第1の工程を20秒間行った。このときマ イクロ波電力は2.4kW、バイアス電力は1.5kW (第1の電力) とし、磁場形状はミラー磁界、プロセス 温度は400℃、プロセス圧力は0.5Paとした。次 いでC。F。ガスを80sccm(第2の流量)、バイ アス電力を1.0kW(第2の電力)に変え、他の条件 は第1の工程と同様にしてCF膜の成膜の第2の工程を CF膜の膜厚が0.9μmになるまで125秒間行った (実施例1)。 ここで第1の工程の成膜速度は2000 4000オングストローム/分であった。

【0032】また比較例として図1に示すプラズマ成膜 装置を用い、C.F.ガスを80sccm、C.H.ガ スを20sccm、Arガスを150sccmの流量で 夫々導入し、マイクロ波電力及びバイアス電力を夫々 2. 4 k W, 1. 5 k W とし、磁場形状をミラー磁界、 プロセス温度を380℃、プロセス圧力を0.45Pa としてCF膜の成膜の第1の工程を20秒間行ない、次 いでバイアス電力を1.0kWに変え、他の条件は第1 の工程と同様にしてCF膜の成膜の第2の工程をCF膜 30 付けられなかった。 の膜厚が0.9μmになるまで120秒間行った(比較 例1)。

【0033】こうして形成された実施例1と比較例1の CF膜についてSEM (Scanning Electron Microscop e: 走査型電子顕微鏡) によりボイドの有無を確認した ところ、実施例1のCF膜では配線間の凹部には顕著な ボイドは見付けられなかった。一方比較例1のCF膜で は500オングストローム程度の大きさの大きなボイド が形成されることが認められた。

たウエハ10(実施例2)とアスペクト比が6の配線が 形成されたウエハ10 (実施例3) に対して同様にCF 膜を埋め込む実験を行ったところ、配線間の凹部には顕 **著なボイドが発生しないことが認められ、これらの結果** から本発明のプロセスでCF膜を成膜した場合には、ア スペクト比が高い凹部に対しても良好な埋め込みを行う ことができることが確認された。

【0035】さらにまたアスペクト比が4の配線が形成 されたウェハ10に対して、プロセス圧力と成膜ガスの 流量を変えた場合についても同様の実験を行った。つま 50 する場合、平行平板などと呼ばれている互いに対向する

りC.F.ガスを120sccm(第1の流量)、C. H. ガスを20sccm、Arガスを200sccmの 流量で夫々導入し、マイクロ波電力を2.4kW,バイ アス電力を1.5k♥(第1の電力)とし、磁場形状を ミラー磁界、プロセス温度を380℃、プロセス圧力を 0.7PaとしてCF膜の成膜の第1工程を30秒間行 ない、次いでC。F。ガスを80sccm(第2の流 量)、バイアス電力を1.0kW(第2の電力)に変 え、他の条件は第1工程と同様にしてCF膜の成膜の第 2の工程をCF膜の膜厚が0.9μmになるまで141 秒間行った場合(実施例4)についてもボイドの有無を 確認したところ、配線間の凹部には顕著なボイドは見付 けられないことが認められた。

8

【0036】さらにまたアスペクト比が4の配線が形成 されたウエハ10に対して、CF系ガスとしてC。F。 ガスを用いると共に、炭化水素ガスの代わりにH、ガス を用いた場合についても同様の実験を行った。つまりC F ガスを80sccm(第1の流量)、H、ガスを 60 sccm、Arガスを150 sccmの流量で夫々 オングストローム/分であり、第2の工程の成膜速度は 20 導入し、マイクロ波電力を2.7 k ♥ パイアス電力を 0.6k♥(第1の電力)とし、磁場形状をミラー磁 界、プロセス温度を300℃、プロセス圧力を0.18 PaとしてCF膜の成膜の第1の工程を20秒間行な い、次いでC、F。ガスを60sccm(第2の流 量)、バイアス電力を0.3k♥(第2の電力)に変 え、他の条件は第1の工程と同様にしてCF膜の成膜の 第2の工程をCF膜の膜厚が0.9μmになるまで12 5秒間行った場合(実施例5)についてもボイドの有無 を確認したところ、配線間の凹部には顕著なボイドは見

> 【0037】以上において、CF系ガスとしては、CF 。ガス、C、F。ガス、C、F。ガス、C、F。ガス、 C。F。ガス等のCとFとの化合物ガスや、CとFのみ ならずCとFとHとを含むガス例えばCHF、ガス等を 用いることもできる。また炭化水素ガスとしては、CH 、ガスやC、H、ガス、C、H。ガス、C,H。ガス、 等を用いることができるが、炭化水素ガスの代わりに水 素ガスを用いるようにしてもよい。

【0038】さらにまた本発明はECRによりプラズマ 【0034】さらにアスペクト比が5の配線が形成され 40 を生成することに限られず、例えばICP(Induc tive Coupled Plasuma)などと呼 ばれている、ドーム状の容器に巻かれたコイルから電界 及び磁界を処理ガスに与える方法などによりプラズマを 生成する場合にも適用できる。さらにヘリコン波プラズ マなどと呼ばれている例えば13.56MHzのヘリコ ン波と磁気コイルにより印加された磁場との相互作用に よりプラズマを生成する場合や、マグネトロンプラズマ などと呼ばれている2枚の平行なカソードにほぼ平行を なすように磁界を印加することによってプラズマを生成 10

電極間に髙周波電力を印加してブラズマを生成する場合 にも適用することができる。

#### [0039]

【発明の効果】以上のように本発明によれば、バイアス 電力の大きさとCとFとの化合物ガスの流量とを制御し て、成膜作用とエッチング作用の大きさを調整している ので、CF膜を絶縁膜として用いた場合に、アスペクト 比の高い凹部に対しても良好な埋め込みを行うことがで きる。

## 【図面の簡単な説明】

【図1】本発明方法を実施するためのプラズマ成膜装置 の一例を示す縦断側面図である。

【図2】CF膜の埋め込みの状態を説明するための工程 図である。

【図3】従来のCF膜の埋め込み状態を説明するための\*

## \*断面図である。

#### 【符号の説明】

| 10    | 半導体ウエハ |
|-------|--------|
| 2     | 真空容器   |
| 2 1   | 第1の真空室 |
| 22    | 第2の真空室 |
| 2 4   | 髙周波電源部 |
| 2 5   | 導波管    |
| 26,27 | 電磁コイル  |
| 2 8   | 排気管    |
| 3 1   | ガスノズル  |
| 4     | 載置台    |
| 42    | 髙周波電源部 |

成膜ガス供給部

【図1】



【図2】







【図3】



# フロントページの続き

F ターム(参考) 5F045 AA08 AA10 AB40 AC01 AC02 AC05 AC14 AD08 AE25 AF08 BB19 DP03 EE17 EF04 EH17 EH19 5F058 AA06 AB06 AC05 AD06 AD10 AF02 AH02