Context and Problem

- ❖ 7 million people die every year from exposure to air pollution yet 97% of cities in low and middle-income countries do not meet World Health Organization air quality guidelines (WHO'18).
- Cities from low income countries have very few air quality monitoring stations.
- There is need for analyzing and predicting future air quality to aid in decision making by the population and policy makers using the limited data from the few monitoring stations.

Methods

- ❖ Used Long Short Term Memory (LSTM) Neural Network to develop models for predicting air quality.
- Air Quality data, Meteorological data and Greenness data were obtained for 10 selected locations in Kampala.
- ❖ Data Sources : AirQo, US Embassy, Trans-African Hydro Meteorological Observatory (TAHMO), NASA.

Results

- ❖ Figure 4 shows the average of PM_{2.5} concentration for each hour & Figure 5 shows the 24-hour average for selected locations.
- ❖ Table 1 shows the performance scores after evaluating the models. Figures 2 and 3 show plots for predicted vs. actual PM_{2.5} at selected locations.
- ❖ Weak linear relationship between PM_{2.5} and Greenness was observed.

Key References

- ❖ World Health Organization. 2018. WHO | WHO Global Ambient Air Quality Database (update 2018). Retrieved from http://www.who.int/airpollution/data/cities/en/
- ❖ Bruce Kirenga et.al. 2015. The state of ambient air quality in two Ugandan cities: a pilot cross-sectional spatial assessment. International journal of environmental research and public health 12, 7 (2015), 8075–8091.

Using deep neural networks to predict air pollution(PM_{2.5}) over time and understanding its relationship to greenness in a city

Figure 1: Pipeline for deep neural network models

Figure 2: Plot showing predicted Vs. actual PM_{2.5} for Location 7

Figure 4: Plot showing average PM_{2.5} for each hour at selected locations

Table 1: Performance Score

LocationRMSEMAE17.584.5426.833.5138.486.5447.224.3558.986.1567.544.97711.348.27823.5314.51949.2933.331020.4513.65			
2 6.83 3.51 3 8.48 6.54 4 7.22 4.35 5 8.98 6.15 6 7.54 4.97 7 11.34 8.27 8 23.53 14.51 9 49.29 33.33	Location	RMSE	MAE
3 8.48 6.54 4 7.22 4.35 5 8.98 6.15 6 7.54 4.97 7 11.34 8.27 8 23.53 14.51 9 49.29 33.33	I	7.58	4.54
4 7.22 4.35 5 8.98 6.15 6 7.54 4.97 7 11.34 8.27 8 23.53 14.51 9 49.29 33.33	2	6.83	3.51
5 8.98 6.15 6 7.54 4.97 7 11.34 8.27 8 23.53 14.51 9 49.29 33.33	3	8.48	6.54
6 7.54 4.97 7 11.34 8.27 8 23.53 14.51 9 49.29 33.33	4	7.22	4.35
7 11.34 8.27 8 23.53 14.51 9 49.29 33.33	5	8.98	6.15
8 23.53 14.51 9 49.29 33.33	6	7.54	4.97
9 49.29 33.33	7	11.34	8.27
	8	23.53	14.51
10 20.45 13.65	9	49.29	33.33
	10	20.45	13.65

Figure 3: Plot showing predicted Vs. actual PM_{2.5} for Location 8

Figure 5: Calendar plot showing 24 -hour average for location 5

Deep Neural Networks for Air Quality Prediction and Analysis

Sserunjogi Richard rsserunjogi@cis.mak.ac.ug

Engineer Bainomugisha baino@cis.mak.ac.ug

Makerere University, Department of Computer Science Kampala, Uganda