SEGUNDO PARCIAL DE MATEMÁTICA DISCRETA II

Nombre	C.I	No. de prueba

Duración: 4 horas.

Ejercicio 1.

- **A.** Sea $G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z} \text{ y } ad bc = 1 \right\}$. Probar que G con la multiplicación de matrices es un grupo.
- **B.** Fijamos $n \in \mathbb{N}$ y $K = \left\{ \begin{pmatrix} \bar{a} & \bar{b} \\ \bar{c} & \bar{d} \end{pmatrix} : \bar{a}, \bar{b}, \bar{c}, \bar{d} \in \mathbb{Z}_n \text{ y } ad bc \equiv 1 \mod n \right\}$ con la multiplicación de matrices. Sea $\varphi : G \to K$ el homomorfismo dado por $\varphi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = \begin{pmatrix} \bar{a} & \bar{b} \\ \bar{c} & \bar{d} \end{pmatrix}$.

Hallar ker φ , el núcleo de φ . (NOTA: no es necesario probar que K es un grupo ni que φ es un homomorfismo)

C. Enuncie el Primer Teorema de isomorfismos para grupos.

Ejercicio 2. Sea G un grupo finito y H un subgrupo de G.

- **A.** Definimos en G la siguiente relación: si $x,y\in G,\,x\sim y\Leftrightarrow xy^{-1}\in H.$ Probar que \sim es una relación de equivalencia en G.
- **B.** Enunciar y probar el Teorema de Lagrange para grupos finitos.
- **C.** Sea K otro grupo finito y $\varphi: G \to K$ un homomorfismo. Probar que si $g \in G$ es tal que $\operatorname{mcd}(o(g), |K|) = 1$, entonces $g \in \ker(\varphi)$.

Ejercicio 3.

- **A.** Sea G un grupo y $g, h \in G$ tales que gh = hg y mcd(o(g), o(h)) = 1. Probar que o(gh) = o(g)o(h).
- **B.** Sea G = U(31). Calcular o(5) y o(29) y concluir que 21 es raíz primitiva módulo 31.
- C. Con Fulano fijamos el primo p=31 y g=21 para el intercambio de clave con el método de Diffie-Hellman. Nosotros elegimos m=14 y Fulano nos envía x=7. Calcular la clave común k.

Ejercicio 4. En este ejercicio se puede utilizar que si $\sigma \in S_n$ entonces $\sigma(a_1, \dots, a_k)\sigma^{-1} = (\sigma(a_1), \dots, \sigma(a_k))$ (fue probado en el práctico 6). Sea $n \geq 5$ y $a, b, c, d, e \in \{1, 2, 3, \dots, n\}$ cinco números distintos.

- **A.** (i) Hallar σ_1 y σ_2 en S_n tales que: σ_1 y σ_2 son 3-ciclos, $\sigma_1(a) = b$, $\sigma_2(d) = a$ y $\sigma_2\sigma_1 = (ab)(cd)$.
 - (ii) Probar que si N es un subgrupo de A_n que contiene a todos los 3-ciclos, entonces $N = A_n$.
- **B.** Sea N tal que $N \subset A_5$, $N \triangleleft S_5$ y $\sigma = (a b c) \in N$. Probar que $N = A_5$.
- **C.** (i) Hallar $\tau \in S_n$ tal que $(a b c d e)\tau = (a d b)$.
 - (ii) Hallar $\gamma \in S_n$ tal que $(ab)(cd)\gamma = (abe)$.
- **D.** Probar que si $\{e\} \neq N \subset A_5$ y $N \triangleleft S_5$, entonces $N = A_5$. (Sugerencia: Probar que necesariamente N contiene un 3-ciclo).