Lecture Notes 1.15 ECS 154A

2018-08-06

Analog vs. digital, Boolean algebra, equivalence laws Summer Session II 2018

- 1. Analog vs. digital
 - a. Analog represent values by a continuously variable physical quantity
 - i. Here, voltage
 - ii. Key word is continuous
 - iii. Suited to amplification of real world phenomena (sound)
 - iv. Suited to calculating continuous function values (integrals)
 - v. Subject to noise, difficult to debug
 - b. Digital use discrete (discontinuous) values to represent data
 - i. Suited to discrete mathematics (like accounting)
 - ii. Needs to sample continuous data
 - 1. Will miss data that fluctuates faster than sampling rate
 - iii. Fixed 0 and 1, low and high, false and true
 - iv. Far more resistant to noise, easier to debug

2. Boolean algebra

- a. Algebra of truth values 0 and 1, along with conjunction (AND), disjunction (OR), and negation
 - i. George Boole, 1854
 - ii. Claude Shannon, 1938, uses it to solve circuit design problems
- b. * = AND, + = OR, ~ = negation, ⊕ = XOR, variables A, B...
- c. Duality principle swap all signs (+, *, 0, 1) and the underlying logic is still the same
- d. Operator precedence: NOT, AND, OR
- e. Logic types
 - i. Combinational output based solely on current input
 - ii. Sequential logic output based on input and previous stored values (memory)

Truth Tables for Digital Design Gates										
Operation:		Negation		AND	NAND	OR	NOR	XOR		
Gates:		a a	c c	a AND C	b NANDOC	b OR C	<u>a</u> <u>b</u> NOR OC	b xon c		
Α	В	~A	~B	A * B	~(A * B)	A + B	~(A + B)	$A \oplus B$		
0	0	1	1	0	1	0	1	0		
0	1	1	0	0	1	1	0	1		
1	0	0	1	0	1	1	0	1		
1	1	0	0	1	0	1	0	0		

3. Logical equivalence

Laws of Logical Equivalence						
Name	OR version	AND version				
Commutative	A + B = B + A	A * B = B * A				
Associative	(A + B) + C = A + (B + C)	(A * B) * C = A * (B * C)				
Distributive	A + (B * C) = (A + B) * (A + C)	A * (B + C) = (A * B) + (A * C)				
Idempotent	A + A = A	A * A = A				
Idontity	A + 0 = A	A * 1 = A				
Identity	A + 1 = 1	A * 0 = 0				
Complement	A +~A = 1	A * ~A = 0				
Complement	~1 = 0	~0 = 1				
Double Negative	~(~A) = A					
De Morgan's	~(A + B) = ~A * ~B	~(A * B) = ~A + ~B				
Absorption	A + (A * B) = A	A * (A + B) = A				

4. Examples

a. $A + ^A * B = A + B$. Why?

2018-08-06

Analog vs. digital, Boolean algebra, equivalence laws Summer Session II 2018

Assertion	Reason
A + ~A * B	Initial function
$= (A + ^{\sim}A) * (A + B)$	Distributive Law for OR
= 1 * (A + B)	Complement Law for OR
= (A + B) * 1	Commutative Law for AND (won't bother with this from now on)
= A + B	Identity Law for AND

b. Prove the OR version of the Absorption Law, A + A * B = A.

Assertion	Reason
A + A * B	Initial function
= (A * 1) + (A * B)	Identity Law for AND
= A * (1 + B)	Distributive Law for AND
= A * (1)	Identity Law for OR
= A	Identity Law for AND

c. Simplify the following digital logic circuit using propositional algebra.

Assertion	Reason	
F = ((A * ~B) + (A * B)) * B	Initial circuit logic	
= (A * (~B + B)) * B	Distributive Law for OR	
= (A * 1) * B	Complement Law for OR	
= A * B	Identity Law for AND	