Visualisation de Graphes Séries-Parallèles Présentation de PSTL

Morane Gruenpeter Tanguy Retail

24 mai 2016

Université Pierre et Marie Curie

Encadrants : Matthieu Dien et Antoine Genitrini

Plan de la présentation

- Introduction
- Visualisation des arbres Treedisplay
- 3 Les graphes séries-parallèles (GSP)
- 4 Algorithme de visualisation sur les GSP
 - Contraintes d'affichage
 - Déroulement de l'algorithme
- Implémentation
- 6 Conclusion

Introduction

Objectif du projet

Étendre l'algorithme de visualisation d'arbre à la classe des graphes séries-parallèles.

Déroulement du projet

- étudier l'algorithme de visualisation des arbres.
- étudier les points communs entre graphes séries-parallèles et arbres.
- créer un algorithme adapté aux graphes séries-parallèles.

Visualisation des arbres - Treedisplay

Visualisation des arbres - Treedisplay

Cet algorithme calcule les coordonnées des nœuds telles que :

- Les arêtes de l'arbre ne s'intersectent pas.
- Les nœuds de même profondeur : même axe horizontal.
- L'ordre des nœuds est respecté.
- Un nœud parent est centré vis à vis de ses enfants.
- Les nœuds sont espacés de manière homogène.

Visualisation des arbres - Treedisplay

Un algorithme linéaire en deux passes

- Une passe pour déterminer l'ordonnée d'un nœud et retenir le décalage.
- La deuxième passe pour centrer un nœud par rapport à ses enfants en appliquant le décalage.

Définition

Définition

Un graphe série-parallèle (GSP) est un graphe orienté défini récursivement.

Définition - l'ensemble vide

Définition - un nœud

 n_1

Définition - Composition en série

Définition - Composition en parallèle

Autres définitions - fork

Autres définitions - join

Autres définitions - diamant complet

Autres définitions - diamant incomplet

Contraintes d'affichage

Contraintes d'affichage

1ère contrainte

Dessiner les nœuds sur leur profondeur maximale.

Contraintes d'affichage

2ème contrainte

Éviter les croisements.

Contraintes d'affichage

3ème contrainte

Centrer les nœuds entre leur(s) enfant(s), et leur(s) parent(s).

Contraintes d'affichage

Déroulement de l'algorithme

Déroulement de l'algorithme

1ère & 2ème passes

Déterminer l'ordonnée des nœuds, essayer de les centrer vis-à-vis de leurs enfants, et retenir le décalage sinon.

Déroulement de l'algorithme

3ème passe

Appliquer le décalage et identifier les diamants.

Déroulement de l'algorithme

4ème passe

Aligner les diamants et leurs sous-arbres.

Implémentation en JAVA

- Un parseur DOT (Alexander Merz).
- Un générateur PNG, JPEG, BMP et TIKZ.
- Une interface graphique avec la bibliothèque SWING et MxGraph.

Conclusion

conclusion:

- Contraintes respectées.
- Complexité linéaire.
- Fonctionne aussi sur les arbres.

Conclusion

conclusion:

- Contraintes respectées.
- Complexité linéaire.
- Fonctionne aussi sur les arbres.

Pour la suite :

• Extension à une classe de graphes plus large.

Github: https://github.com/fyrthis/PSTL

