

## Jain College of Engineering & Research

Udyambag, Belagavi.

(Approved by AICTE, New Delhi, Affiliated to VTU Belagavi & Recognized by Govt. of Karnataka)

NBA Accredited Programs- ECE & ME

Code: BCS401

Program: Computer Science and Engineering (AIML) CONTINUOUS
INTERNAL EVALUATION-LE

Semester: 4th A

Date: 26/05/2025

Course: Analysis and Design of Algorithms

Max. Marks: 50

Course Coordinator: Prof. Megha Varun Patil

Duration: 1 Hour 30 Min

Note: Answer any one full question choosing from each part.

|      |           | Note: Answer any one full question choosing from each part –A                                                                                                                   |         |        |         |                |    |
|------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|---------|----------------|----|
| - 1  | Q.<br>No. | Question                                                                                                                                                                        | Marks   | СО     | PO      | R.B.T<br>Level | 1  |
|      | la)       | What are Huffman Trees? Construct the Huffman tree for the following data.  Character A B C D E - Probability 0.5 0.35 0.5 0.1 0.4 0.2  Enc ode DAD-CBE using Huffman Encoding. | 10      | 4      | 1,2.3   | L1,L3          |    |
| 1 c) | D         | Construct minimum cost spanning tree using Kruskals algorithm for the following graph.  Oraw a decision tree and find the number of key comparisons in the worst and            | 5       | 5      | 1,2.3   | ý              | .3 |
|      | av        | verage cases for the three-element basic bubble sort.                                                                                                                           |         |        |         |                |    |
|      |           | OR                                                                                                                                                                              | 1       |        |         |                |    |
| 2 a) | Co        | onstruct bottom up heap for the list 2,9,7,6,5,8. Obtain its time complexity                                                                                                    | 10      | 3      | 1,2     | .3 L3          |    |
| 2 b) | to f      | sign Horspools algorithm for string matching. Apply Horspools algorithm and the pattern BARBER in the text:  [SAW_ME_IN_A_BARBERSHOP]                                           | 10      | 3      | 1,2     | 2.3 L3         |    |
| j    | i)        | ain the following with examples P problem NP Problem NP- Complete problem NP – Hard Problems                                                                                    | 5       | 5      | 5 1.    | 2.3 L          | 2  |
|      |           | Part-B                                                                                                                                                                          |         | adli f | A Total |                |    |
|      |           | nte N queen's problem using backtracking to solve 4-Queens problem                                                                                                              | 10      | No.    | 5       | 1,2.3          | L3 |
| De   | fine      | heap. Explain the properties of heap along with its representation.                                                                                                             | 10      |        | 3       | 1,2.3          | L, |
| Co.  | nstru     | ection the a 2-3 tree for the given list 9, 5, 8, 3, 2, 4, 7                                                                                                                    | 5       |        | 3       | 1,2.3          | L  |
|      |           | OR                                                                                                                                                                              | - 6), 1 |        |         |                | +  |

## Jain College of Engineering & Research

Udyambag, Belagavi.

(Approved by AICTE, New Delhi, Affiliated to VTU Belagavi & Recognized by Govt. of Karnataka) NBA Accredited Programs- ECE & ME

Program: Computer Science and Engineering (AIML)

| 4 a) | Using Bran |                                      |                        | 1,2.3                           |    |   |       |    |
|------|------------|--------------------------------------|------------------------|---------------------------------|----|---|-------|----|
|      | 1 2 3 4    | Weight 2 1 3 2 2                     | Value 12 10 20 5       |                                 | 10 | 5 |       | L3 |
| 4 b) | 1          | ektracking? Apply<br>em S={5,10,12,1 |                        | ve the below instance of sum of | 10 | 5 | 1,2.3 | L3 |
| 4 c) | Define AV  | L Trees. Explain                     | its four rotation type | es                              | 5  | 3 | 1,2.3 | L2 |

|                                                                                                  | COURSE OUTCOMES (COs)                                                                             |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Apply asymptotic notational method to analyze the performance of the algorithms in terms of time |                                                                                                   |  |  |  |  |  |  |
|                                                                                                  | Complexity.                                                                                       |  |  |  |  |  |  |
| 2                                                                                                | Demonstrate divide & conquer approaches and decrease & conquer approaches to solve computational  |  |  |  |  |  |  |
|                                                                                                  | Problems.                                                                                         |  |  |  |  |  |  |
| 3                                                                                                | Make use of transform & conquer and dynamic programming design approaches to solve the given real |  |  |  |  |  |  |
|                                                                                                  | World or complex computational problems.                                                          |  |  |  |  |  |  |
| 4                                                                                                | Apply greedy and input enhancement methods to solve graph & string based computational problems.  |  |  |  |  |  |  |
| 5                                                                                                | Analyze various classes (P,NP and NP Complete) of problems                                        |  |  |  |  |  |  |
| í                                                                                                | Illustrate backtracking, branch & bound and approximation methods                                 |  |  |  |  |  |  |

| REVISED BLOOMS TAXONOMY LEARNING LEVEL (RBT) |            |           |             |              |            |  |  |  |
|----------------------------------------------|------------|-----------|-------------|--------------|------------|--|--|--|
| L1:                                          | L2:        | L3: Apply | L4: Analyze | L5: Evaluate | L6: Create |  |  |  |
| Remember                                     | Understand |           |             | 29           | 5          |  |  |  |

|   | PROGRAM OUTCOMES (POs)                     |   |                      |    |                          |  |  |
|---|--------------------------------------------|---|----------------------|----|--------------------------|--|--|
| 1 | Engineering Knowledge                      | 5 | Modern tool usage    | 9  | Individual and Team-Work |  |  |
| 2 | Problem Analysis                           | 6 | Engineer and Society | 10 | Communication            |  |  |
| 3 | Design / Development Solutions             | 7 | Environment and      | 11 | Project Management and   |  |  |
|   |                                            |   | Sustainability       |    | Finance                  |  |  |
| 4 | Conduct Investigations of Complex problems | 8 | Ethics               | 12 | Life-long Learning       |  |  |