Déf ► 52 définitions;

Lemme \triangleright 10 lemmes;

Cor ▶ 13 corollaires:

TH ▶ 8 theorems;

Prop ▶ 31 propositions

§2. Dualité

2.1 Formes linéaires et espace dual

Déf 01 Napplication bilinéaire
$$\mathcal{L}(E, \mathbb{K}) = E^*$$

$$\mathcal{L}(E, F) \rightarrow \mathcal{M}_{m,n}(\mathbb{K})$$

$$\varphi \mapsto Mat_{\mathcal{E}, \mathcal{F}}(\varphi)$$

2.2 Hyperplans

Prop 02
$$\blacktriangleright Mat_{\mathcal{E}'}(\varphi) = Mat_{\mathcal{E}}(\varphi).T$$

$$Mat_{\mathcal{E}',\mathcal{F}'}(\varphi) = S^{-1}Mat_{\mathcal{E},\mathcal{F}}(\varphi)$$

Déf 03 \blacktriangleright Un hyperplan : $\forall x \in E, \varphi(l) = 0$.

Ker(l) est un hyperplan.

$$E^* = \mathcal{L}(E, K) \longrightarrow \varphi \in E^* \text{ signifie} \quad \begin{array}{c} \varphi : E \to \mathbb{K} \\ x \mapsto \varphi(x) \end{array} . \text{ (Ainsi } \forall \ x \in E)$$

Déf 04 \blacktriangleright Le delta de Kronecker $\mathcal{E}_i(e_j) = \delta_{ij}$.

2.3 Base duale et anté-duale

Déf 05 \triangleright $(\mathcal{E}_1, \dots, \mathcal{E}_n)$ de E^* base duale $/(e_1, \dots, e_n)$ base anté duale.

2.4 Le double dual

Prop 06
$$\triangleright$$
 $P_{\mathcal{E}^* \to \mathcal{E}'^*} = ({}^tP_{\mathcal{E} \to \mathcal{E}'})^{-1}$

Cor 07 \blacktriangleright AL, $\varphi: E \to E^{**}$ avec dim $E < \infty \longrightarrow \varphi$ isomorphisme canonique entre E et E^{**} .

2.5 Les annulateurs

- Déf 08 \blacktriangleright Annulateur de F dans E^* , avec F s-e.v. de E: noté $F^{\perp} = \{l \in E^* | \forall v \in F, l(v) = 0\}$
- Déf 09 \blacktriangleright Annulateur de G dans E, avec G un s-e.v. de $E^*: G^{\perp} = \{v \in E \mid \forall l \in G, l(v) = 0\}$
- Déf $10 \triangleright F^{\perp}$: ens équations linéaires de F

Prop 11
$$\blacktriangleright$$
 $F \subset G \longrightarrow G^{\perp} \subset F^{\perp}$
 $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$
 $F \subset F^{\perp \perp}$
 $F^{\perp} + G^{\perp} \subset (F \cap G)^{\perp}$)
 $\dim F + \dim F^{\perp} = \dim E$

2.6 La transposée

Déf 12
$$\triangleright$$
 On def la transposee : ${}^t\varphi \in \mathcal{L}(F^*, E^*)$: $\forall l \in F^*, {}^t\varphi(l) = l \circ \varphi$.

Prop 13
$$\blacktriangleright Mat_{\mathcal{F}^*,\mathcal{E}^*}({}^t\varphi) = {}^t(Mat_{\mathcal{E},\mathcal{F}}(\varphi))$$

Prop 14
$$\blacktriangleright$$
 $(\operatorname{Im}(\varphi))^{\perp} = (\operatorname{Ker}(t^{\varphi}))$
 $(\operatorname{Ker} \varphi)^{\perp} = \operatorname{Im}((t^{\varphi}))$

Prop 15
$$\triangleright$$
 rg φ = rg t^{φ} (si E identifie à E^{**} et veversa pr F)

Prop 16
$$\blacktriangleright$$
 $^t(\varphi \circ \psi) = {}^t\varphi \circ {}^t\psi$
 $^t\varphi^{-1} = ({}^t\varphi)^{-1}$

Prop 17
$$\triangleright \varphi_F \circ \varphi = {}^{t} {}^{t} \varphi \circ \varphi_E$$

2.7 Formes bilinéaires

Prop 18 > Forme bilinéaire

Prop 19
$$\triangleright$$
 $\forall x,y \in E$, f b. symétrique $\varphi(y,x) = \varphi(x,y)$ et f b. alt. $\varphi(y,x) = -\varphi(x,y)$

Déf 20
$$\blacktriangleright X = \sum x_i e_i$$
, $Y = \sum y_j e_j$ $\varphi(X,Y) = \varphi(\sum x_i e_i, \sum x_j e_j) = \sum_{1 \le i \le j \le n} x_i x_j \varphi(e_i, e_j)$

Déf 21
$$\blacktriangleright$$
 mat $(\varphi(e_i \ e_j))_{1 \leq i \leq j \leq n} := Mat_{\mathcal{E}(\varphi)}$

Déf 22
$$\triangleright$$
 $a_{ij} = \varphi(e_i, e_j), A = (a_{ij} = Mat_{\mathcal{E}}(\varphi))$

Déf 23
$$\triangleright \forall x, y \in E, \varphi(X, Y) = \sum a_{ij} x_i x_j = (x_1 \cdots x_n) A \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Prop 24
$$\blacktriangleright$$
 dim $\mathcal{B}(E) = n^2$, dim $\mathcal{S}(E) = \frac{n(n+1)}{2}$, dim $\mathcal{A}(E) = \frac{n(n-1)}{2}$

Prop 25
$$\triangleright$$
 $\mathcal{B}(E) = \mathcal{S}(E) \oplus \mathcal{A}(E)$

Prop 26
$$\triangleright$$
 $P = P_{\mathcal{E} \to \mathcal{E}'}, A = Mat_{\mathcal{E}(\varphi)} \longrightarrow A' = {}^tP.A.P$

2.8 Formes quadratiques

Déf 28
$$\triangleright$$
 b_Q :f 1 sym associé à Q ou forme polaire de Q .

Prop 29 \triangleright Formes quadratiques sur E : Q(E)

$$\mathcal{P}: Q(E) \rightarrow \mathcal{S}(E)$$

 $Q \mapsto b_Q$ est linéaire

Déf 30 \triangleright (\mathcal{P} : polarisation ou morphisme depolarisation)

Lemme 31 $\triangleright \mathcal{P}$ est un isomorphisme de Q(E) sur $\mathcal{S}(\mathcal{E})$ d'inverse

$$\mathcal{D}: \mathcal{S}(E) \to \mathcal{Q}(E)$$
$$\varphi \mapsto q_{\varphi}$$

Déf 32 \triangleright $q_{\phi} \in Q(E)$ forme quad associé à $\varphi(q_{\varphi=\mathcal{D}(\varphi)})$

Prop 33
$$\triangleright$$
 $Mat_{\mathcal{E}(Q):=Mat_{\mathcal{E}}(b_Q)}$

2.9 Ecriture d'une forme quadratique ds une base

Déf 34
$$\triangleright \mathcal{E} = (e_1, \dots, e_n), \ Mat_{\mathcal{E}}(Q) = (a_{ij})_{1 \leq i \leq j \leq n}, \ a_{ji} = a_{ij}$$
$$Q(X) = \sum a_{ij} x_i \ x_j = \sum a_{ij} \ x_i^2 + 2 \sum a_{ij} \ x_i \ x_j$$

TH 35 ▶ E dimension finie toute forme quad. diagonalisable.

2.10 Bases Orthogonales

Déf 36
$$\triangleright x \perp_{\varphi} y \text{ si } \varphi(x,y) = 0 \qquad | x \perp_{\varphi} y \iff y \perp_{\varphi} x$$

Déf 37 \triangleright Base \mathcal{E} orthogonal si $e_i \perp e_j \ \forall i \neq j, \ 1 \leq i, j \leq n$, mat forme \mathcal{E} est diagonale.

Cor 38 ▶ Toute forme quad. E, fini, admet des bases orthogonales.

2.11 Formes quadratiques positives

Déf 39 \triangleright Forme quad positive si $\forall x \in E, Q(x) \geq 0$

Déf 40 \triangleright Forme quad définie (positive) si $\forall x \in E, Q(x) = 0 \implies x = 0$

Prop 41 \triangleright Q positive \iff pour toute base Q-orthogonal, $Q(e_i) \ge 0$

Déf 42 \triangleright Un espace euclidien (E dim finie) avec forme quad. Q, ici b_Q est appelé produit scalaire

Déf 43 \triangleright Dans espace euclidien, base (e_1, \dots, e_n) orthonormée si orthogonale et $Q(e_1) = \dots = Q(e_n) = 1$

Cor 44 \(\rightarrow\) Un espace euclidien admet bases orthonormées.

2.12 Classification des formes quadratiques dans \mathbb{C} et \mathbb{R}

Déf 45
$$\blacktriangleright$$
 Ker $Q = \text{Ker } \varphi = x \in E | \forall y \in E, \varphi(x, y) = 0$

Lemme 46 \blacktriangleright Ker Q sev de E, dim Q = n - r; $r = \operatorname{rang} Mat_{\mathcal{E}}(Q) \forall$ base.

- Déf 47 \triangleright rang $Q = \operatorname{rang} Mat_{\epsilon}(Q)$ et rang $Q = \operatorname{rang} \varphi = n \dim \operatorname{Ker} \varphi$
- Déf 48 \triangleright Q est une forme non-dégénérée si rang(Q) = n ou si Ker $\varphi = \{0\}$
- Déf 49 \triangleright Q et Q' sont équivalents si \exists isomorphisme $h: E' = E, Q' = Q \circ h$ \exists bases $\mathcal{E}, \mathcal{E}', Mat_{\mathcal{E}}(Q) = Mat_{\mathcal{E}'}(Q)$ $\forall \text{ bases } Mat_{\mathcal{E}'}(Q') = {}^tT.Mat_{\mathcal{E}}(Q).T$

2.12.1 Classification sur \mathbb{C}

- TH 50 \triangleright Toute forme quad. sur \mathbb{C} s'écrit $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ (où $r = \operatorname{rang} Q$)
- Cor 51 \triangleright 2 formes quadratiques sont équivalentes ssi dim $E = \dim E'$ et rang $Q = \operatorname{rang} Q'$
- Prop 52 \triangleright Sur \mathbb{C} , $\exists n+1$ classes d'équivalences de forme quad. distinguées par rang

2.12.2 Classification sur \mathbb{R}

TH 53
$$\blacktriangleright$$
 Sur \mathbb{R} , \exists unique mat diagonale $\begin{pmatrix} \mathbb{1} & 0 & 0 \\ 0 & -\mathbb{1} & 0 \\ 0 & 0 & 0 \end{pmatrix}$ où $q=r-p, r=\mathrm{rang}\ Q$

- Prop 54 \triangleright $(p,q) = (p_Q, q_Q)$ signature de Q
- Cor 55 ▶ 2 formes quad. sont équivalentes ssi même signature.
- Déf 56 \triangleright $(p,q) = (p_Q,q_Q)$: signature de Q (invariant classifiant les formes quad sur ev réel
- Prop 57 > 2 formes quad. sont équivalentes ssi même signature

2.13 Orthogonalite

Déf 58
$$\blacktriangleright$$
 soit E sur \mathbb{K} ev, $\varphi \mathcal{S}(E), Q = q_{\varphi}, q_{\varphi} \in Q(E)$
pour $A \subset E, A^{\perp} = \{x \in E | \varphi(x, y) = 0, \forall y \in A \}$

TH 59
$$\blacktriangleright$$
 $(i)A^{\perp}$ sev, Ker $\varphi \subset A^{\perp}: \varnothing^{\perp} = \{\varnothing\}^{\perp} = E, \ E^{\perp} = \operatorname{Ker} \varphi, A \subset (A^{\perp})^{\perp}$
 $(ii)\ A \subset B \subset E \longrightarrow \operatorname{Ker} \varphi\ B^{\perp} \subset A^{\perp}$
 $(iii)\ A \subset E, A \neq \varnothing \longrightarrow A^{\perp} = \operatorname{Vect}(A)^{\perp},$
 $siA = \{v_1, \dots, v_k\}, F = \operatorname{Vect}\{v_1, \dots, v_k\} \longrightarrow F^{\perp} = A^{\perp} = \bigcap_{i=1}^k v_i^k$

TH 60
$$\triangleright$$
 Sur orthogonal, F sev de E, dim $F^{\perp} = n - \dim F + \dim(F \wedge \operatorname{Ker} \varphi)$

$$(ii)n \le \dim F + \dim F^{\perp} \le n + \dim \operatorname{Ker} \varphi$$

$$(iii)(F^{\perp})^{\perp} = F + \operatorname{Ker} \varphi, (F^{\perp})^{\perp} \iff \operatorname{Ker} \varphi \subset F$$

De plus si φ non-dégénéré ie Ker $\varphi = \{0\} \longrightarrow$

$$(i) \dim F^{\perp} = n - \dim F$$

$$(iii) (F^{\perp})^{\perp} = F$$

$$(iv)$$
 φ_F : restriction de φ à $F \times F$, φ_F : $\begin{picture}(0,0) \line(0,0) \put(0,0) \pu$

forme linéaire symétriq

$$\omega_F \in \mathcal{S}_F : \bullet \operatorname{Ker} \omega_F = F \wedge F^{\perp} = \operatorname{Ker} \omega^{\perp}$$

$$\varphi_F \in \mathcal{S}_F : \bullet \operatorname{Ker} \varphi_F = F \wedge F^{\perp} = \operatorname{Ker} \varphi^{\perp}$$
 $\bullet E = F \oplus F^{\perp} \iff F \wedge F^{\perp} \iff \{0\} \iff \varphi_F \text{ non dégénéré} \iff \varphi_F^{\perp} \text{ non-dégénéré}.$

2.13.1 Projections orthogonales

- Déf 61 $\blacktriangleright E = K \oplus L, \forall v \in E, \exists (x,y) \in E \ K \times L | s = x + y \text{ et } \mathbf{proj\text{-linéaire}} \ p_K^L \text{ ou } pr_K^L \text{ de } S$ par S sur K parallèlement à $L: p_K^L(v) = x$.
- Prop 62 $\triangleright p = p_K^L : E \longrightarrow E$ satisfait : $(i) \ p \in \mathcal{L}(E)$, $\operatorname{Ker} p = L$, $\operatorname{Im}(K)$, $p_K = id_K$ (restriction de $p \ \grave{a} \ K \ (ii) p^2 = p(p^2 = p \circ p)$) $(iii) \ q = id_E p \longrightarrow p + q = id_E, p^2 = p, q^2 = q, pq = qp = 0$ Réciproquement : $p \ \text{endormophisme linéaire} \ p \in \mathcal{L}(E) \ \text{tq} \ p^2 = p \longrightarrow p \ \text{est projection}$ $\operatorname{linéaire} \ p_K^L \ \grave{o} \grave{u} \ K = \operatorname{Im}(p) \ \text{et} \ L = \operatorname{Ker} p$
- Déf 63 \blacktriangleright Une projection linéaire p_K^L est orthogonale $\iff K \perp L$. De façon équivalente, un endomorphisme linéaire $p \in \mathcal{L}(E)$ est proj. orthogonale $\iff p^2 = p$ et $E = \operatorname{Ker} p \oplus^{\perp} \operatorname{Im}(p)$ (somme directe orthogonale)
- Déf 64 \blacktriangleright F sev de E est non dégénéré si $Q_F = Q_{|F}$ (ou $\varphi_F = \varphi_{|F \times F}$) est forme non dégénéré. F non dégénéré $\iff F \wedge F^{\perp} = \{0\} \iff E = F \oplus F^{\perp}$
- Prop 65 \blacktriangleright F sev de E, (i)siF non-deg $\longrightarrow \exists !$ proj. orhtogonale p d'image $F := p_F(\text{ou}p_F^R)$ (ii)si en plusQest forme non-deg \longrightarrow réciproque est vraie

2.13.2 Calcul projection orthogonale

Prop 66 \blacktriangleright F sev non-deg, (a_1, \dots, a_k) base orthogonale de F. Alors $Q(\omega_i) = \varphi(u_i, u_i) \neq 0 \quad \forall i = 1, \dots, k \text{ est } \forall x \in E, p_F^r(x) = \sum_{i=1}^k \frac{\varphi(u_i, x)}{\varphi(u_i, u_i)}$

2.14 Groupe orthogonal

- Déf 67 \blacktriangleright Un endomorphisme $f \in \mathcal{L}(E)$, est def **orthogonal** (ou Q-orthogonal ou ϕ orthogonal) s'il préserve Q ou (ϕ): $\forall x \in E, Q(f(x)) = Q(x)$ (ou $\forall x, y \in E, \phi(f(x), f(y)) = \phi(x, y)$. On note $\mathcal{O}(E)$ ou $\mathcal{O}(E, Q), \mathcal{O}(E, \phi), \mathcal{O}(\phi)$, l'ens des endom. orthogonaux de (E, Q)
- Prop 68 \triangleright (i) $f \in \mathcal{O}(E) \longrightarrow f$ inversible (ii) $\mathcal{O}(E)$ est un groupe.
 - Déf 69 \blacktriangleright soit F un ss-espace non-deg de E $\longrightarrow E = F \oplus F^{\perp}$ et les 2 projections orthogonales $p_F, p_{F^{\perp}}$ sont def, tq $p_F + p_{F^{\perp}} = id_E$. On def la **symétrie orthogonale** s_F par : $\forall v, \in E, \exists ! (x,y) \in F \times F^{\perp}, v = x + y$ et on pose $s_F(v) = x y$
 - 70 ▶ $s_F = p_F p_{F^{\perp}} = id_E 2p_{F^{\perp}} = 2p_F id_E$ Lorsque F est un **hyperplan**, s_F :réflexion orthogonale Toute symétrie orthogonale est un endom. orthogonal Quand $F \subsetneq E, p_F$ proj orthogonale n'est pas endom orthog.

2.15 Caractérisation de $f \in \mathcal{O}(E)$ par matrices

71 $\triangleright \mathcal{E}$, base $f \in \mathcal{L}(E)$, $G = Mat_{\mathcal{E}}(Q)$ alors $f \in \mathcal{O}(E) \iff {}^t AGA = G \iff \varphi(f(e_i), f(e_j)) = \varphi(e_i, e_j) \ \forall i, j = 1, \cdots, n, \mathcal{E} = (e_1, \cdots, e_n)$ Cas particulier: $\begin{pmatrix} 1 & . & O \\ . & \ddots & . \\ O & . & 1 \end{pmatrix}$, (E, Q) est un espace euclidien muni base orthornormée \mathcal{E} , on a $f \in \mathcal{O}(E) \iff {}^t AA = \mathbbm{1}_n \iff A^{-1} = {}^t A \iff A$ mat orthogonale

- TH 72 \blacktriangleright (Cartau-Dieudonné) Tout élément de $\mathcal{O}(Q)$ est produit d'au plus n réflexions orthogonales
- TH 73 \blacktriangleright (Orthogonalisation de Gram-Schmidt) (v_1, \dots, v_n) base de $E, \forall i = 1, \dots, n-1, E_i = \text{Vect}(v_1, \dots, v_i)$ est non-dégénéré alors

les n vecteurs : $u_1 = v_1, \ u_2 = v_1 - \frac{\varphi(u_1, v_2)}{\varphi(u_1, u_1)} u_1, \cdots, u_k = v_k - \sum_{i=1}^{k-1} \frac{\varphi(u_1, v_k)}{\varphi(u_i, u_i)} u_i$ sont bien def et

 $\mathcal{U} = (u_1, \dots, u_k)$ de E, dans cette base Q s'écrit :

$$Q(\sum_{i=1}^{n}) = \Delta_1 x_1^2 + \frac{\Delta_2}{\Delta_1} x_2^2 + \dots + \frac{\Delta_n}{\Delta_{n-1}} x_n^2, \text{ où } \Delta_k = \det A_k, \ A_k = Mat_{(v_1, \dots, v_k)}(Q|_{F_k}.$$

- $74 \triangleright \mathcal{U}$ s'apelle orthogonalisée G S
- 75 $\triangleright Q|_{F_{n-1}}$ non-dég \longrightarrow le rang de Q est au moins $n-1 \longrightarrow \operatorname{Rang} Q = n-1$ ou n, on ne suppose pas que $\Delta \neq 0$
- Cor 76 ▶ (Critère de Sylvester)

 $E, \mathbb{K} - ev, \dim E = n, \varphi \in \mathcal{L}(E), \varphi = b_Q, Q \in Q(E), (v_1, \dots, v_n)$ base de $E, a_{ij} = \varphi(v_i, v_j)$ pour $1 \leq i, j \leq n, F_k = \operatorname{Vect}(v_1, \dots, v_k), A_k = (a_{ij})_{1 \leq i, j \leq k}, A_k = \operatorname{Mat}_{(v_1, \dots, v_k)}(Q|_{F_k}), \Delta_k = \operatorname{det} A_k$ alors:

 $1)\varphi(ouQ)$ est def **positive** $\iff \Delta_1 > 0, \dots, \Delta_n > 0$

Supposons $\Delta_1 \neq 0, \dots, \Delta_{n-1} \neq 0, \Delta_0 = 1$ alors : l'indice négatif q de Q (c'est la 2° composante de la signature (p,q)deQ est le **nbr de changements de signe** dans la suite $\Delta_0, \dots, \Delta_n$ (on dit (Δ_i) possède un changement de signe au rang i si $\Delta_i.\Delta_{i-1} < 0$ 3) φ est def **négative** $\iff \forall i = 1, \dots, n, \Delta_i = (-1)^i | \Delta_i \neq 0$

$$A = egin{pmatrix} A_1 & A_2 & A_3 & & & A_n \ a_1 & a_{12} & a_{13} & & & \ a_{21} & a_{22} & a_{23} \ & & & & & \ & & & & & \ & & & & & \ & & & & & \ & & & & & \ & & & & & \ & & & & & \ & & & & & \ & & & & & \ & & & & \ & & & & & \ & & & & \ & & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & & \ & & & \ & & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & \ & & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & \ & & \ & & \ & \ & \ & & \ & & \ &$$

§3. Espaces euclidiens

3.1 Norme, distance, angles, volumes

- Déf 01 Un \mathbb{R} ev-E muni FB sym φ est appelé **espace euclidien** si dim $E < \infty$ et φ def positive. φ est appelé **produit scalaire.** $\langle x|y \rangle := \varphi(x,y) \ \forall x,y \in E$. Par def, $\forall x \in E, \langle x,x| \geq \rangle 0$ et $\langle x|x \rangle = 0 \iff x = 0$. On note $\sqrt{\langle x|x \rangle} = ||x||$. On a $\forall x \in E, ||x|| = 0 \iff x = 0$
- Prop 02 $\blacktriangleright \forall x, y \in E, \lambda \in \mathbb{R}$, on a: $(i) \|\lambda x\| = |\lambda| \|x\|$ $(ii) \|x + y\|^2 = \|x\|^2 + 2\langle x|y\rangle + \|y\|^2$ (si $x \perp y \longrightarrow \|x + y\|^2 = \|x\|^2 + \|y\|^2$ (TH de Pythagore) $(iii) \|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2)$ (inégalité du parallélogramme)

```
(v)||x+y|| \le ||x|| + ||y|| ( inégalité de Minkowski )
```

- Déf 03 \blacktriangleright Norme classique N(x)
- Déf 04 \blacktriangleright soit $X \neq$. On appelle distance (ou métrique) sur X toute fonction $d: X \times X \longrightarrow R \geq 0$ tq:
 - $(i)\forall x, y \in X, d(x, y) = d(y, x)$
 - $(ii)d(x,y) = 0 \iff x = y$

$$(iii)\forall (x,y,z) \in X^3, d(x,z) \le d(x,y) + d(y,z)$$

Un espace métrique est un ens. muni d'une métrique. La fonction $E \times E \longrightarrow \mathbb{R} \ge 0, (x,y) \longrightarrow ||x-y||$ est une distance.

- Déf 05 \blacktriangleright soit $(E, \langle .|.\rangle)$, un espace euclidien, la fonction $E \longrightarrow \mathbb{R}_{>0}, x \longrightarrow ||x||$ s'appelle norme euclidienne sur E et la fonction $d: E \times E \longrightarrow \mathbb{R}_{>0}, (x,y) \longrightarrow ||x-y||$ s'appelle distance euclidienne sur E.
 - 06 \triangleright Tout espace euclidien possède une base orthonormée et est donc isomorphe à \mathbb{R}^n muni de son porduit scalaire standard

3.2 Angles

- Cor 07 $\blacktriangleright \forall x, y \in E \setminus \{0\}$ par Cauchy-Schwarz, $\mid \frac{\langle x | y \rangle}{\|x\| \|y\|} \mid \leq 1$
- Déf 08 L'angle $(\widehat{x,y})$ entre deux vecteurs non nuls de E est def comme unique réel $\theta \in [0,\pi]$ tq $\cos \theta = \frac{\langle x|y\rangle}{\|x\|\|y\|}$. On peut écrire $(\widehat{x,y}) = \arccos \frac{\langle x|y\rangle}{\|x\|\|y\|}$ (arccos désigne la valeur principale de arccos comprise entre 0 et π).

 $\arccos t = \pm \arccos t + 2k\pi, k \in \mathbb{Z}$.

On def aussi les angles entre 2 sous-espaces vectoriels $F_1, F_2 \neq 0$ de E:

 $(\widehat{F_1,F_2}) = \inf\{(\widehat{v_1,v_2}|\ v_1 \in F_1 \setminus \{0\}, v_2 \in F_2 \setminus \{0\}\}\$ et l'angle entre un vecteur non nul est un sous-espace vectoriel de $F:(\widehat{v,F}) = \inf\{(\widehat{v,w})\ | w \in F \setminus 0\}$

09 \triangleright Par exemple, l'angle entre 2 droites F_1, F_2 de vecteurs directeurs v_1, v_2 : $(\widehat{F_1, F_2}) = \min\{(\widehat{v_1, v_2}), (\widehat{v_1, -v_2})\} = \min\{\theta, \pi - \theta\} \ o\theta = (\widehat{v_1, v_2})$

3.3 Volumes

Déf 10 \triangleright (i)Pour une famille $\mathcal{V} = (v_1, \dots, v_k)$ de vecteurs de E, le parallélépipède engendré par v est def par :

$$\Pi = \Pi(\mathcal{V}) = \{ \sum_{i=1}^k t_i v_i \mid (t_1, \dots, t_\alpha) \in [0, 1]^\alpha \}$$

- (ii)Le k-volume $v \circ l_k(\Pi(\mathcal{V}))$ est def par :
- 1) si \mathcal{V} est liée, $v \circ l_k(\Pi(\mathcal{V})) = 0$
- 2) si \mathcal{V} est libre, $v \circ l_k(\Pi(\mathcal{V})) = |\det P_{\mathcal{E}_F \longrightarrow v}|$ où \mathcal{E}_F est base orthonormée qq de $F = \operatorname{Vect}(v)$ et $P_{\mathcal{E}_F \longrightarrow v}$ désigne la mat de passage de \mathcal{E}_F à v.

$$P_{\mathcal{E}_{F \longrightarrow v}} = (p_{ij})_{1 \le i,j \le k} \forall j = 1, \cdots, k, \ v_j = \sum_{i=1}^k p_{ij} e_i$$

Lemme 11 \triangleright | det $P_{\mathcal{E}_F \longrightarrow v}$ | ne dépend pas choix de \mathcal{E}_F

Cor 12 > (de la démo du lemme) La mat de passage A entre 2 bases orthorn, est une mat orthogonale : A est inversible et $A^{-1} = {}^{t}A$. Le **déterminant d'une mat orthogonale** ne peut prendre que deux valeurs : 1 et -1.

Groupe orhtogonale d'un espace euclidien

- Déf 13 \triangleright soit E un ee dim E = n. On note $\mathcal{O}(E)$ l'ens des endomorphismes orthogonaux de E. $\mathcal{O}(E) = \mathcal{O}(E, \langle . | . \rangle) = \{x \in \mathcal{L}(E) \mid (x, y) \in E \times E, \langle u(x) | u(y) \rangle = \langle x | y \rangle \}$. C'est un groupe. L'ens des mat orhtogonales de taille n est def par : $\mathcal{O}(n) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid {}^tAA =$ $\mathbb{1}_n$ $\subset GL(n,\mathbb{R})$ un sous-groupe du groupe $GL(n,\mathbb{R})$ des mat inversibles de taille n.
- Déf 14 \triangleright E espace euclidien (ee) dim $n \ge 1, \mathcal{E} = (\mathcal{E}_1, \dots, \mathcal{E}_n)$ base orthonormée \Rightarrow $\mathcal{O}(E) \rightarrow \mathcal{O}(n)$ est un isom. de groupes. Pour chaque $n \geq 1$, on a un seul groupe orthor euclidien à isom près.
- Déf 15 \triangleright $\mathbb{O}(n)$ identifié à $\theta(\mathbb{R}^n, \langle . | . \rangle)$
- $SO(E) = \{u \in \mathcal{O}(E) | detu = 1\}$

$$SO(A) = \{A \in \mathcal{O}(n) | det A = 1\}$$

Déf 17 ▶ Pour
$$A \in \mathcal{O}(n), det = \pm 1$$

$$\mathcal{O}(E) = SO(E) \bigsqcup \mathcal{O}^{-}(E)$$

 $\mathcal{O}(n) = SO(n) \mid \mathcal{O}^{-}(n)$

où
$$\mathcal{O}^-(E) = \mathcal{O}(E) \setminus SO(E) = \{ u \in \mathcal{O}(E) | detu = -1 \}$$

$$\mathcal{O}^{-}(n) = \{ u \in \mathcal{O}(n) | detu = -1 \}$$

- 18 \triangleright $SO(E) \subset \mathcal{O}(E)$ est un ss-groupe (mais pas $\mathcal{O}^-(E)$ $\forall \tau \in \mathcal{O}^-(E), \mathcal{O}^-(E) = \tau.SO(E).\tau$
- 19 \blacktriangleright Le groupe quotient $\mathcal{O}(E)/SO(E)$ est isom au groupe d'ordre $2: \mu_2 = \{\pm 1, \mathcal{O}(E)/SO(E) \approx$ $\{\pm 1\}$, cela suit du TH d'isom pr groupe quotient : on considère morphisme du déterminant,

$$det: \mathcal{O}(E) \rightarrow \mathbb{R}^*$$
, son image est $\mu_2 = \{\pm 1\}$

Donc $\mathcal{O}(E) / \operatorname{Ker}(det) \approx \mu_2$ or $\operatorname{Ker}(det) = SO(E)$

- n = 1: dim $E = 1 \Rightarrow \mathcal{O}(E) \approx \mathcal{O}(l) = \{\lambda \in \mathbb{R}^* | \lambda^2 = 1\} = \{\pm 1\} = \mu_2$
- $SO(1)=\{1\}\;$ groupe trivial avec élément neutre , mat taille 1, $A(\lambda)tq\;\lambda^2=t\;AA=\mathbbm{1}_n$
- n=2: E plan eucli, $\mathcal{E}=(e_1,e_2)$ une base ornee de $E,u\in\mathcal{L}(E),A=\begin{pmatrix}a&b\\c&d\end{pmatrix},A=$

$$Mat_{\mathcal{E}}(u) \in \mathcal{M}_2(\mathbb{R}) \Rightarrow$$

1)
$$u \in SO(E) \iff \exists \theta \in \mathbb{R}, A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

1)
$$u \in SO(E) \iff \exists \theta \in \mathbb{R}, A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

2) $u \in \mathcal{O}^{-}(E) \iff \exists \theta \in \mathbb{R}, A = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$

- 20 \triangleright $\mathbb{R}^{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ mat de rotation d'angle θ ds plan eucl \mathbb{R}^2
- Prop 21 > soit E un plan eucl, un élt $u \in SO(u)$ donné par même matrice \mathbb{R}^{θ} ds 2 bases ornee liées par mat de passage ornee tq $det P_{\mathcal{E} \longrightarrow \mathcal{E}'} = -1$ et si $Mat_{\mathcal{E}}(u) = \mathbb{R}^{\theta}, Mat_{\mathcal{E}'}(u) = \mathbb{R}^{\theta'} \Rightarrow$ $\theta + \theta' \in 2\pi \mathbb{Z} \text{ et } \mathbb{R}^{\theta'} = (\mathbb{R}^{\theta})^{-1} = \mathbb{R}^{-\theta}$

3.5 Orientation

- Déf 22 \triangleright soit V ev, dim finie, on peut diviser l'ens $\mathbb{B}(v)$ de ttes les bases de V en 2 parties disjointes, classe d'équivalence pr relation d'équivalence suivante : $\operatorname{pr} \mathcal{E}, \mathcal{E}' \in \mathbb{B}(v), \mathcal{E} \sim \mathcal{E}' \iff \det P_{\mathcal{E} \longrightarrow \mathcal{E}'} > 0$
- Déf 23 \triangleright Muni V d'une orientation : c'est choisir laquelle de 2 classes, on appelle classe des bases directes, l'autre étant la classe des bases indirectes
 - 24 ▶ On peut donner une orientation en précisant une base directe.
- Cor 25 \blacktriangleright soit E plan eucl orienté. On a alors un isomorph, canonique $x:SO(E)\longrightarrow SO(z)$ qui associe à chaque élément $u\in SO(E)$ sa matrice \mathbb{R}^{θ} ds n'importe quelle base ornee, l'angle de rotation $\theta[2\pi]$ ne dépend pas choix base ornee directe.
 - 26 L'orientation standard du plan eucl standard (\mathbb{R}^2 , $\langle . | . \rangle$) peut ê décrit comme : une base (u, v) de \mathbb{R}^2 est directe si v s'obtient par la rotation de u d'angle 90° dans sens contraire des aiguilles d'une montre.

3.6 Sens géométriques des éléments de $\mathcal{O}^-(E)$: dim 2

- Lemme 27 \blacktriangleright Tt élément u de $\mathcal{O}^-(E)a\{1,-1\}$ pour spectre, donc s'écrit par $T=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ ds base convenable.
- Lemme 28 Les vecteurs propres unitaires (= de norme 1) de la mat $A = \mathbb{R}^{\theta}T = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$ sont $v_1 = \pm (\cos \frac{\theta}{2}, \sin \frac{\theta}{2})$ de vp 1 $v_2 = \pm (-\sin \frac{\theta}{2}, \cos \frac{\theta}{2})$ de vp -1.
 - Prop 29 > soit E un plan eucl, les élts de $\mathcal{O}^-(E)$ sont les **réflexions orthogonales** $\forall u \in \mathcal{O}^-(E)$, il y a exactement 4 bases ornee de E ds lsquels u s'écrit par la mat $T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Si E est orienté, deux de ces bases sont **directes**, 2 autres **indirectes**.

§4. Espaces euclidiens de $\dim = 3$

4.1 Produit Vectoriel

- $01 \triangleright \text{soit } E \text{ un ee de dim } 3 \text{ muni d'une orientation}$
- 02 \blacktriangleright $\mathbb{B}(E) \supset \mathbb{B}_{\mathcal{O}_n}(E) = \mathbb{B}_{\mathcal{O}_n}^+ \bigsqcup \mathbb{B}_{\mathcal{O}_n}^-$ toutes les bases , bases ornee, bases ornees directes, bases ornees indirectes $\mathbb{B}(E) = \mathbb{B}_{\mathcal{O}_n}^+ \bigsqcup \mathbb{B}_{\mathcal{O}_n}^-$
- Déf 03 \blacktriangleright soit $\mathcal{U} = (u, v, w)$ une famille de 3 facteurs de E. Le réel $\det_{\mathcal{E}}(\mathcal{U})$ ds une base $\mathcal{E} \in \mathbb{B}_{\mathcal{O}_n}^+(E)$, ne dépend pas \mathcal{E} et est appelé produit mixte de \mathcal{U} . $[\mathcal{U}] = [u, v, w]$
- Prop 04 ▶ (Pptés produit mixte)

Le produit mixte $\mathcal{P}: E^3 \longrightarrow \mathbb{R}, (u, v, w) \mapsto [u, v, w]$ est trilinéaaire et antisymétrique. Pr $\mathcal{U} \in E^3$, ona:

- $(i) \mathcal{P}(\mathcal{U}) = 0 \iff \mathcal{U} \text{ est li\'e.}$
- (ii) $\mathcal{P}(\sigma(\mathcal{U})) = \mathcal{E}(\sigma).\mathcal{P}(\mathcal{U})$

$$ep: \mathcal{P}(u, v, w) = -\mathcal{P}(v, u, w) = \mathcal{P}(w, v, u)$$

 $(iii) \ \mathcal{U} \in \mathbb{B}_{\mathcal{O}_n^+} \Rightarrow \mathcal{P}(\mathcal{U}) = \pm 1$

- $(iii) \ \mathcal{U} \in \mathbb{B}_{\mathcal{O}_n^+} \Rightarrow \mathcal{P}(\mathcal{U}) = \pm 1$ Lemme 05 \blacktriangleright soit V un ee $\Rightarrow \begin{array}{ccc} \Psi : V & \to & V^* \\ x & \mapsto \langle x|. \rangle \end{array}$ est isom canonique de V sur V^* .
 - Déf 06 \triangleright soit E ee orienté dim 3. Le produit vectoriel de 2 vecteurs $u, v \in E$ est l'unique vecteur de E, noté $u \wedge v$ tq $\forall w \in E, [u, v, w] = \langle u \wedge v | w \rangle$. En utilisant l'isom canonique $\Psi: E \longrightarrow \approx E^*$, ona: $u \wedge v = \Psi^{-1}([u, v, \bullet])$ $où [u, v, \bullet] \in E^* \text{ est la } \mathbf{fl} E \longrightarrow \mathbb{R}, w \mapsto [u, v, w]$
 - Prop 07 \triangleright (pptés produit vectoriel) soit E ee orienté dim 3
 - 1. L'appli $E \times E \to E, (u, v) \mapsto u \wedge v$ est bilinéaire et antisymétrique
 - 2) $\forall u, v \in E, u \land v = 0 \Leftrightarrow \mathbf{u}, \mathbf{v} \text{ st colinéaires}.$
 - 3) $\forall u, v \in E, u \wedge v \perp u, u \wedge v \perp v$
 - 4) si u, v ne st pas colinéaires $\Rightarrow (u, v, u \land v) \in \mathbb{B}^+(E)$
 - si de plus, $||u|| = ||v|| = 1, u \perp v \Rightarrow (u, v, u \wedge v) \in \mathbb{B}_{on}^+(E)$
 - 5) si $\geq = (e_1, e_2, e_3) \in \mathbb{B}_{on}^+(E)$ alors $\forall i, j \in \{1, 2, 3\}$

$$e_i \wedge e_j = 0 \text{ si } i = j$$

$$\geq_{ijk} \text{où } \{i, j, k\} = \{1, 2, 3\}$$

 $\geq_{ijk} \text{ où } \{i, j, k\} = \{1, 2, 3\}$ $\geq_{ijk} = \geq \begin{pmatrix} 1 & 2 & 3 \\ i & j & k \end{pmatrix} \text{ est la signature d'une permutation 6) } \text{ si } \geq = \mathbb{B}_{on}^+(E),$

$$\geq = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}, v_{\geq} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$$puis $u \wedge v_{\geq} = \begin{pmatrix} \begin{vmatrix} u_1 & v_2 \\ u_3 & v_3 \\ u_3 & v_3 \\ u_1 & v_1 \\ u_1 & v_1 \\ u_2 & v_2 \end{pmatrix} = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}$$$

- Endomorphismes orthogonaux ds ee E de dim 3
- Lemme $08 \triangleright \text{Un endomorphisme orthogonal d'un ee E de dim 3 a tjrs vp réelles } \pm 1 = \text{son}$
 - $09 \triangleright (vp complexes : vlrs abs 1)$
 - Prop 10 soit E ee orienté dim $3, u, \in \mathcal{O}(E), \lambda = det(u) = \{\pm 1\}$ alors $\exists \text{ base } \geq \in \mathbb{B}_{on}^+(E) \text{ et } \theta \in \mathbb{R}, \text{Mat}_{\geq}(u) = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & & \\ 0 & & R^{\theta} \end{pmatrix}$
 - Déf 11 \triangleright (i) Un axe de E est une droite vectorielle orientée de E. Tt axe est dirigé par un unique vecteur unitaire.
 - (ii) L'élément $u \in SO(E)$ de matrice $\begin{pmatrix} 1 & 0 & 0 \\ 0 & & \\ 0 & & R^{\theta} \end{pmatrix}$ dans une base o.n. directe $\geq =$

 (e_1, e_2, e_3) de E s'appelle rotation d'angle $\hat{\theta}$ autour de l'axe dirigé par e_1

- 12 \triangleright (Notation :) $u = R_v^{\theta}, \forall v \text{ dirigeant l'axe } (v = \alpha e, \alpha > 0)$
- Cor 13 \blacktriangleright soit $u \in SO(E), u \neq \mathrm{id}_E$ alors u possède 2 axes de rotation, ayant pr support la même droite vectorielle $\succeq E$, où $v \neq 0$, l'un est dirigé par v, l'autre par -v. L'axe et l'angle

 2π

 $stleslts caract. d'une rotation de {\bf E}.$

4.3 Détermination pratique des élts caractqs d'une rotation ds un ee orienté E :

- 14 ▶ (Méthodoligie :) soit $u \in SO(E), u \neq id_E$
 - 1) On trouve vecteur propre v de u de vp 1 = detu, solution de u(v) = v
 - 2) Déterminer $\cos \theta$ par $tr(u) = 1 + 2\cos \theta$
 - 3) Déterminer le signe de $\sin \theta$ qui coïncide avec signe

 $\forall x \in E \backslash \mathbb{R}v, \text{ grâce Relation}: x, u(x), v = ||v||(\beta^2 + \gamma^2) \sin \theta, \text{ où } x = \alpha e_1 + \beta e_2 + \gamma e_3, \geq = (e_1, e_2, e_3) \text{ la base o.n directe dans } E \text{ tq } e_1 = \frac{v}{||v||}, \text{ avec ce chemin } u = R_v^{\theta}$

4.4 Endormorphismes orthogonaux ds ee qq

TH 15 \blacktriangleright soit E un ee de dim $n \ge 1$ alors \exists une base o.n. de E ds lqlle u s'écrit par mat :

$$\begin{pmatrix} 1 & & & & \\ & \ddots & & & \emptyset & & \\ & 1 & & & \\ & & -1 & & \\ & & & \ddots & \\ & & & & -1 \\ & \emptyset & & & R^{\theta_1} & \\ & & & & \ddots & \\ & & & & & R^{\theta_r} \end{pmatrix}$$

- Cor 16 \triangleright Ttes les vp de $u \in \mathcal{O}(E)$ ds \mathbb{C} st de vlr abs. 1.
- Lemme 17 \blacktriangleright soit E ee de dim $n \ge 1, u \in \mathcal{O}(E), F \subset E$, un sev stable par $u(F) \subset F \Rightarrow u(F) = F$ et $u(F^{\perp}) = F^{\perp}$
- Lemme 18 \blacktriangleright soit V un \mathbb{R} ev de dim $n \ge 1, u \in \mathcal{L}(v)$ alors u a un sev de dim 1 ou 2.
- Lemme 19 \triangleright soit E un ee, $u \in \mathcal{O}(E)$ alors E est une somme directe orthogonale de sev stables par u de dim 1 ou 2.

4.5 Endomorphismes adjoints et symétriques

- Déf 20 \triangleright (Proposition) soit E ee et $u \in \mathcal{L}(E)$ alors :
 - 1) Il existe un uniuge $v \in \mathcal{L}(E)$ tq
 - $\bullet \ \forall \ x \in E, \forall y \in E, \langle u(x) | y \rangle = \langle x | v(y) \rangle$

L'endomorphisme v ainsi défini s'appelle adjoint de \mathbf{u} et noté u^*

2) $si \ge \text{est}$ une base ornée de $E \Rightarrow Mat_{>}(u^*) = t \ Mat_{>}(u)$

- Prop 21 \triangleright soit E ee et $f, g \in \mathcal{L}(E)$ alors on a :
 - 1) $(f^*)^* = f$
 - $2) \overline{(f+g)^*} = \overline{f^* + g^*}$
 - $3) (\lambda f)^* = \lambda f^*$
 - $4) (f \circ g)^* = g^* \circ f^*$
 - Déf 22 \blacktriangleright soit E ee, $u \in \mathcal{L}(E)$, on dit que u est symétrique ou auto-adjoint si $u = u^*$. De façon équivalente, u est symétrique $\iff \forall x \in E, \forall y \in E, \langle u(x) | y \rangle = \langle y | u(y) \rangle$
- Cor 23 \blacktriangleright (Proposition 1) soit E un ee, $u \in \mathcal{L}(E)$ alors u est symétrique \iff une des 2 pptés équivalents est vrai :
 - 1) $Mat_{>}(u)$ est sym \forall base o.n. \geq de E.
 - 2) \exists une base o.n. \geq de E tq $Mat_{\geq}(u)$ soit sym
 - 24 ► (Rappel) : Une mat A est dite **symétrique** si t A = A Exemples :
 - $; \bullet Une projection or though a leest symtrique$
 - $\bullet \ Tte symtrique orthogonale est symtrique$
- Cor 25 \blacktriangleright soit E ee, $u \in \mathcal{L}(E)$ alors $u \in \mathcal{O}(E)$ $\iff u \text{ est inversible et } u^* = u^{-1}$ $\iff u^*u = uu^* = id_E$
 - 26 Notation): $S_E = \{u \in \mathcal{L}(E) | u = u^*\}, S_n(K) = \{A \in M_n(K) | t \ A = A\}$ On a si \geq est une base o.n. de E alors $u \in \mathcal{S}(E) \iff Mat_{>}(u) \in \mathcal{S}_n(\mathbb{R})$
- Prop 27 \triangleright soit E ee et $u \in \mathcal{S}_E$. Si F est sev de E stable par u, alors F^{\perp} est aussi stable par u.

