

Moray, Peru

HIGH SPEED ADDER

Carry-Ripple Adder (CRA)

WHAT WE KNOW ...

Si ... we derived

C	
R	
Δ	

Χİ	yi	Ci	Si	Ci+1
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Si = Ci ⊕ xi ⊕ yi

Carry out Ci+1 ?

C

R

A

xi yi Ci	Si	Ci+1
0 0 0	0	0
0 0 1	1	0
0 1 0	1	0
0 1 1	0	1
1 0 0	1	0
1 0 1	0	1
1 1 0	0	1
1 1 1	1	1

New carry out Ci+1

C

R

A

xi yi Ci	Si	Ci+1
0 0 0	0	0
0 0 1	1	0
0 1 0	1	0
0 1 1	0	1
1 0 0	1	0
1 0 1	0	1
1 1 0	0	1
1 1 1	1	1

CRA equations (new...)

 $Si = Ci \oplus xi \oplus yi$

Ci+1 = xi yi + xi Ci + yi Ci

6

R

CRA equations; for i = 0

 $Si = Ci \oplus xi \oplus yi$

Ci+1 = xi yi + xi Ci + yi Ci

7

R

CRA equations; i = 0 (1-bit)

$$Si = Ci \oplus xi \oplus yi$$

For
$$i = 0$$

$$S_0 = C_0 \oplus x_0 \oplus y_0$$

$$C_1 = x_0 y_0 + x_0 C_0 + y_0 C_0$$

= $x_0 y_0 + C_0(x_0 + y_0)$

1-bit C R

 $S_0 = C_0 \oplus x_0 \oplus y_0$

$$C1 = x_0y_0 + C_0(x_0 + y_0)$$

1-bit

CRA

$$S_1 = C_1 \oplus x_1 \oplus y_1$$

$$C_2 = x_1y_1 + C_1(x_1 + y_1)$$

$$S_0 = C_0 \oplus x_0 \oplus y_0$$

$$C1 = x_0y_0 + C_0(x_0 + y_0)$$

2-bit

CRA

Gate Delay (nsec)

	inputs				
Gate	2	3	4		
AND	2.4	2.8	3.2		
OR	2.4	2.8	3.2		
NAND	1.4	1.8	2.8		

Rate of addition

The rate of addition of binary numbers is usually measured by the carry propagation time of the Adder...

yo ... C2 -- the longest path ...

2-bit

CRA

$y_0 ... c_2 = 12 nsec$

2-bit

CRA

Look - Ahead Adder (LAA)

WE WILL LEARN ABOUT A HIGH SPEED ADDER

1-bit CRA Full adder equations

C

R

A

 $S_0 = C_0 \oplus x_0 \oplus y_0$

$$C_1 = x_0 y_0 + C_0(x_0 + y_0)$$

$$S_0 = C_0 \oplus x_0 \oplus y_0$$

$$C_1 = x_0 y_0 + C_0(x_0 + y_0)$$

if,

$$p_0 = x_0 + y_0$$

po = internal propagated carry go = internal generated carry

C

R

A

$$S_0 = C_0 \oplus x_0 \oplus y_0$$

$$C_1 = x_0y_0 + C_0(x_0 + y_0)$$

if,

$$po = xo + yo$$

then,

$$C_1 = g_0 + C_0 p_0$$

go - po ... an explanation

Full adder: Truth table

Xi	i yi	Ci	5	Ci+1
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Observations

xi yi	Ci	5	Ci+1	
0 0	0	0	0	
0 0	1	1	0	
0 1	0	1	0	
0 1	1	0	1	
1 0	0	1	0	
1 0	1	0	1	
1 1	0	0	1	
1 1	1	1	1	

Observations

	Ci+1	S	Ci	i yi	Хi
	0	0	0	0	0
	0	1	1	0	0
	0	1	0	1	0
Carry is Propagated for y	1	0	1	1	0
	0	1	0	0	1
Carry is Propagated for 🛪	1	0	1	0	1
	1	0	0	1	1
	1	1	1	1	1
					_

Observations

xi yi	Ci	S	Ci+1	
0 0	0	0	0	
0 0	1	1	0	
0 1	0	1	0	
0 1	1	0	1	Carry is Propagated for yi
1 0	0	1	0	
1 0		0	1	Carry is Propagated for xi
1 1	0	0	1	
1 1	1	1	1	Carry is Generated

Propagated Carry...

	хi	yi	Ci	S	Ci+1	
	0	0	0	0	0	
	0	0	1	1	0	
	0	1	0	1	0	
	0	1	1	0	1	P
١	1	0	0	1	0	
	1	0	1	0	1	P
	1	1	0	0	1	
	1	1	1	1	1	G

Generated Carry

хi	yi	Ci	5	Ci+1	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	P
1	0	0	1	0	
1	0	1	0	1	P
1	1	0	0	1	
1	1	1	1	1	G

$$Pi = \overline{xi} \cdot yi + xi \cdot \overline{yi}$$

The logical trick ... for Pi

xi yi Ci	S	Ci+1	
0 0 0	0	0	
0 0 1	1	0	
0 1 0	1	0	
0 1 1	0	1	P
1 0 0	1	0	
101	0	1	P
1 1 0	0	1	
1 1 1	1	1	G

xi	yi	yi 🕀 xi	
0	1	?	
1	0	?	

Therefore ...

xi yi	Ci	S	Ci+1	
0 0	0	0	0	
0 0	1	1	0	
0 1	0	1	0	
0 1	1	0	1	P
1 0	0	1	0	
1 0	1	0	1	P
1 1	0	0	1	
1 1	1	1	1	G

хi	yi	yi	<u>Ф</u>	xi	yi+xi
0	1		1		?
1	0		1		?

Therefore ...

хi	yi	Ci	5	Ci+1	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	P
1	0	0	1	0	
1	O	1	0	1	P
1	1	0	0	1	
1	1	1	1	1	G

хi	yi	yi 🛖 xi		yi+xi			
0	1		1			1	
1	0		1			1	

Pi and Gi ...

Derive and implement the LAA

Sum and Carry out equations

$$Si = Ci \oplus xi \oplus yi$$

$$C_{i+1} = C_i(x_i + y_i) + x_i y_i$$

... and the new internal Carries

$$Si = Ci \oplus xi \oplus yi$$

$$C_{i+1} = C_i(x_i + y_i) + x_i y_i$$

$$Pi = xi + yi$$

Then, $C_{i+1} = f(C_i, P_i, G_i)$ is

$$Si = Ci \oplus xi \oplus yi$$

$$Ci+1 = Ci(xi + yi) + xi yi$$

$$Pi = xi + yi$$

$$Gi = xi yi$$

$$C_{i+1} = C_i P_i + G_i$$

LAA Equations

L

A

Pi = xi + yi Gi = xi yi

$$C_{i+1} = C_i P_i + G_i$$

Next we will derive the LAA equations for two-bits or two-stages

$$C_{i+1}$$
 for $i = 0,1,2,3,... = C_1$

A

$$C_{i+1} = C_i P_i + G_i$$

$$C_{i+1}$$
 for $i = 0, 1, 2, 3, ... = $C_2$$

$$C_{i+1} = C_i P_i + G_i$$

$$i = 0, C1 = C0 P0 + G0$$

$$C_{i+1}$$
 for $i = 0, 1, 2, 3, ... = $C_2$$

A

$$i = 0, C1 = C0 P0 + G0$$

$$i = 1, C2 = C1 P1 + G1$$

$$= (C0P0 + G0)P1 + G1$$

$$C_{i+1}$$
 for $i = 0, 1, 2, 3, ... = $C_2$$

A

$$C_{i+1} = C_i P_i + G_i$$

$$i = 0$$
, $C1 = C0 P0 + G0$

$$i = 1, C2 = C1 P1 + G1$$

= $(C0P0 + G0)P1 + G1$
= $C0 P0 P1 + G0 P1 + G1$

Expanded LAA equations

L


```
C_{i+1} = C_i P_i + G_i
```

$$i = 0, C1 = C0 P0 + G0$$

$$i = 1, C2 = C1 P1 + G1$$

= $(C0P0 + G0)P1 + G1$
= $C0 P0 P1 + G0 P1 + G1$

 $Si = Ci \oplus xi \oplus yi$

$$C_{i+1} = C_i P_i + G_i$$

$$C_1 = C_0 P_0 + G_0$$

So =
$$C_0 \oplus x_0 \oplus y_0$$

$$C_{i+1} = C_i P_i + G_i$$

$$C_1 = C_0 P_0 + G_0$$

$$C_2 = C_0 P_0 P_1 + G_0 P_1 + G_1 \leftarrow i = 1$$

So =
$$C_0 \oplus x_0 \oplus y_0$$

$$S_1 = C_1 \oplus x_1 \oplus y_1$$

$$C_{i+1} = C_i P_i + G_i$$

$$C_1 = C_0 P_0 + G_0$$

$$C_2 = C_0 P_0 P_1 + G_0 P_1 + G_1$$

$$Si = Ci \oplus xi \oplus yi$$

So =
$$C_0 \oplus x_0 \oplus y_0$$

$$S_1 = C_1 \oplus x_1 \oplus y_1$$

$$Pi = xi + yi$$

$$\leftarrow$$
 i = 0 \rightarrow Po = $x_0 + y_0$

$$\leftarrow$$
 i = 0 \rightarrow $G_0 = x_0 y_0$

$$C_{i+1} = C_i P_i + G_i$$

$$C_1 = C_0 P_0 + G_0$$

$$C_2 = C_0 P_0 P_1 + G_0 P_1 + G_1 \leftarrow i = 1 \rightarrow P_1 = x_1 + y_1$$

$$Si = Ci \oplus xi \oplus yi$$

So =
$$C_0 \oplus x_0 \oplus y_0$$

$$S_1 = C_1 \oplus x_1 \oplus y_1$$

$$Pi = xi + yi$$

$$\leftarrow$$
 i = 0 \rightarrow Po = xo + yo

$$\leftarrow$$
 i = 1 \rightarrow P₁ = $\chi_1 + \gamma_1$

$$\leftarrow$$
 i=0 \rightarrow $G_0 = x_0 y_0$

$$\leftarrow$$
 i=1 \rightarrow G₁ = \times 1 y₁

2-bit LAA equations

$$C_1 = C_0 P_0 + G_0$$

$$C_1 = C_0 P_0 + G_0$$

 $C_2 = C_0 P_0 P_1 + G_0 P_1 + G_1$

So =
$$C_0 \oplus x_0 \oplus y_0$$

$$S_1 = C_1 \oplus x_1 \oplus y_1$$

$$P_0 = x_0 + y_0$$

$$P_1 = x_1 + y_1$$

$$G_1 = x_1 y_1$$

2-bit LAA equations; both stages

$$C_1 = C_0 P_0 + G_0$$

$$C_1 = C_0 P_0 + G_0$$

 $C_2 = C_0 P_0 P_1 + G_0 P_1 + G_1$

So =
$$C_0 \oplus x_0 \oplus y_0$$

$$S_1 = C_1 \oplus x_1 \oplus y_1$$

$$P_0 = x_0 + y_0$$

$$P_1 = x_1 + y_1$$

$$G_0 = x_0 y_0$$

$$G_1 = x_1 y_1$$

First stage

L

A

$$C_1 = C_0 P_0 + G_0$$

So =
$$C_0 \oplus x_0 \oplus y_0$$

$$P_0 = x_0 + y_0$$

$$G_0 = x_0 y_0$$

1-bit LAA @ CRA (same)

$$p_0 = x_0 + y_0$$

 $g_0 = x_0 y_0$

1-bit LAA @ CRA (same)

$$c_1 = c_0 p_0 + g_0$$

So =
$$c_0 \oplus x_0 \oplus y_0$$

$$p_0 = x_0 + y_0$$

 $g_0 = x_0 y_0$

Second stage

L

A

$$c_2 = c_0 p_0 p_1 + g_0 p_1 + g_1$$

$$S1 = C1 \oplus X1 \oplus Y1$$

$$q1 = X1 y1$$

2-bit

L A

g1 = x1 y1

 $p_1 = x_1 + y_1$

2-bit

 $S1 = C1 \oplus X1 \oplus Y1$

 $c_2 = c_0 p_0 p_1 + g_0 p_1 + g_1$

A

A

g1 = x1 y1

 $p_1 = x_1 + y_1$

yo ... C2 -the longest path ...

2-bit

CRA

$y_0 \dots c_2 = 8 \text{ nsec}$

2-bit

CRA

Comparison → 33.3%

```
2-bit Carry-Ripple Adder = 12 nsec
```

2-bit Look-Ahead Carry Adder = 8 nsec

LAA has an extra gate than CRA; but LAA is 33.3% faster than CRA

CRA

LAA

VHDL ... LAA

VHDL ... LAA

LAA limitation ...

LAA cannot go beyond 4 bits of look-ahead

16-bit LAA

For a 16bit LAA, 4x4 LAA's should be used

64-bit LAA

For a 64 bit LAA, 16x4 LAA's should be used

Adder part of the ALU

We will design ALU's

