Problem 1

- 1. Heapsort is not stable: Consider the array of key-value pairs [(0,a),(1,a),(1,b)]. This array already represents a min-heap. One call to **deleteMin** will return (0,a) and the heap will be updated to [(1,b),(1,a)]. Next calls to **deleteMin** return (1,b) and then (1,a). Therefore the output of Heapsort is [(0,a),(1,b),(1,a)] and Heapsort is not stable.
- 2. QuickSort1 is not stable: Consider the array of key-value pairs [(2, a), (1, a), (1, b)]. QuickSort1 chooses (2, a) as a pivot. The call to partition will only execute the final swap, leading to an array [(1, b), (1, a), (2, a)] after partitioning. This array is sorted but switched the order of elements of key 1.

Problem 2

Solution 1: Partition the array $A = [B_0|B_1|\cdots]$ in blocks of size $\ell := \lceil \log(n) \rceil$, *i.e.* first block is $B_0 = A[0, \dots, \ell-1]$, second block is $B_1 = A[\ell, \dots, 2\ell-1]$, . . . In general, *i*-th block B_i is $A[i\ell, \dots, (i+1)\ell-1]$ and there are $\Theta(n/\log n)$ such blocks. Note that the last block may have less than ℓ elements if n is not a multiple of ℓ

The hypothesis $A[i] \ge A[i-j]$ for all $j \ge \log n$ guarantees that the elements of a block B_i are all greater than or equal to any element of B_j as long as $i \ge j+2$. Our algorithms starts by sorting the array $[B_0|B_1]$ and cut the sorted array in two blocks $[B'_0|B'_1]$ of size ℓ .

We assert that smallest ℓ elements of A are to be found in B_0' in order. Indeed, these ℓ smallest elements can not be found in B_2, B_3, \ldots because all the ℓ elements of B_0 are smaller than any element of B_2, B_3, \ldots So the smallest ℓ elements are in $[B_0|B_1]$, and therefore in B_0' after sorting.

Then we recursively call our algorithm on the subarray $[B'_1|B_2|B_3|\cdots]$. The important thing is that this subarray still satisfies the property "the elements of a block B_i are all greater or equal to any element of B_j as long as $i \ge j+2$ ". Indeed, the elements of B'_1 are smaller than any element in B_3, B_4, \ldots because B'_1 is made of elements of B_0 and B_1 .

Let us look at the cost of our algorithm. Sorting two consecutive blocks of size ℓ takes $O(\log n \log \log n)$. The cost of our sorting algorithm on an array of r blocks is $T(r) = O(\log n \log \log n) + T(r-1)$. Since the number of blocks is $\Theta(n/\log n)$, the overall time complexity is $O(n \log \log n)$.

Solution 2: If we consider every $\ell = \lceil \log(n) \rceil$ -th element, that is $A[0], A[\ell], A[2\ell], \ldots$, the elements will be in sorted order. Similarly for $A[1], A[1+\ell], A[1+2\ell], \ldots$ or in general $A[i], A[i+\ell], A[i+2\ell], \ldots$ for $i < \ell$. Therefore, we can first obtain ℓ sorted sequences, each consisting of $\Theta(n/\log n)$ elements. Now we can do a ℓ -merge similar to Assignment 2 to get the sorted array. That is, insert the smallest element from each sequence into a min heap, extract the minimum say m, and insert the next smallest element of the sequence where m comes from into the heap.

Notice that heap size is always $O(\log n)$. Therefore heap operations takes only $O(\log \log n)$ time and the overall complexity is $O(n \log \log n)$.

Problem 3

- 1. a) i := 0
 - b) while (i < n) do
 - c) if (A[i] == i) then
 - d) i := i+1
 - e) else
 - f) Swap(A[A[i]],A[i])
- 2. At the beginning of each loop iteration $A[0], A[1], \ldots, A[i-1] = 0, 1, \ldots, i-1$. Each iteration of the loop either increment i or increases by at least one the number of array elements that are in correct position. Thus, the number of iterations is between n and 2n, giving a running time in $\Theta(n)$.

More details (not required for full marks): The only possible modifications made to A are to swap two elements. Thus, $A[0, \ldots, n-1]$ remains a permutation of $0, \ldots, n-1$ throughout the execution.

The first time the loop iterates, we have i = 0, so the loop invariant

$$A[0], A[1], \dots, A[i-1] = 0, 1, \dots, i-1$$
 (1)

holds trivially. Induction on the number of times the loop iterates shows that (1) holds throughout execution. One the one hand, if line d) is executed, then A[i] = i and upon incrementing i, invariant (1) still holds. On the other hand, after line f) is executed, we get A[j] = j for j = A[i]. Since $A[j] \neq j$ for $j \in \{i, A[i]\}$ beforehand, we have increased by at least one the number of array elements in correct position.

Problem 4

This algorithm was explained in class: it corresponds to solution 4, slide 18 of module 2. There are three steps:

i. Perform an in-place heapily so that $A[0, \ldots, n-1]$ is a min-heap.

Running time: O(n)

ii. Perform k deleteMin (or equivalently extractMin) operations to obtain the k smallest integers in the array. Using the implementation heapDeleteMax of slide 14 of module 2 for Algorithm deleteMin, we obtain the minimum in position A[n-1], the second minimum in position $A[n-2], \ldots$, and the k-th minimum in position A[n-k].

Running time: $O(k \log n)$ which is O(n) if $k \in O(n/\log n)$.

iii. Reverse the order of the elements in the array by interchanging A[i] and A[n-1-i] for $i=0,1,\ldots,\lfloor (n-1)/2 \rfloor$.

Running time: O(n).

Problem 5

- 1. Each player is weak or strong, but the two cases where all players are either all weak or all strong are excluded. The total number of possible outcomes is thus $2^n 2$. Each contest has exactly 3 possible outcomes, so if an algorithm performs at most k contests, the number of different answers the algorithm could return is at most 3^k . So we must have $3^k \ge 2^n 2$; solving for the integer k yields the lower bound of $\lceil \log_3(2^n 2) \rceil$ contests.
- 2. Using the algorithm of part 3, we need 3 contests when n=4. This matches the bound

$$\lceil \log_3(2^4 - 2) \rceil = 3.$$

3. Perform exactly n-1 contests between the pairs for players P_1 and P_i for $2 \le i \le n$. P_1 is weak if and only if all contest outcomes result in either a tie or loss for P_1 , with at least one loss because there is at least one strong player; the weak players are those that tied P_1 and the strong players are those that won against P_1 .

Similarly, P_1 is strong if and only if all contest outcomes result in either a tie or win for P_1 , with at least one win; the strong players are those that tied P_1 and the weak players are those that lost against P_1 .

The algorithm takes $(n-1) \in O(n)$ contests. Observe that for $n \ge 2$

$$\lceil \log_3(2^n - 2) \rceil \geqslant \lceil \log_3(2^{n-1}) \rceil = (n-1)\log_3(2)$$

so the lower bound from part 1 is $\Omega(n)$. Therefore this algorithm is asymptotically optimal in the number of contests.

Problem 6

Algorithm is based on Counting Sort and has three steps:

- i. Count the number of occurrences of each key through a linear scan of the array and store the result in an array C of size k (similar to the first step of counting sort). This takes O(n) time.
- ii. Next, update C to store the number of items smaller or equal to each key; this can be done by a linear scan of C (similar to the second step of counting sort.
- iii. The number of items in the range [a;b] is equal to C[b] (i.e. the number of items smaller or equal to b) minus C[a-1] (i.e. the number of items smaller than a).

This takes O(1) time.

This takes O(k) time.