Algorytmy i struktury danych. Wykład 4

Krzysztof M. Ocetkiewicz

Krzysztof.Ocetkiewicz@eti.pg.gda.pl

Katedra Algorytmów i Modelowania Systemów, WETI, PG

- ullet mamy plecak o określonej pojemności W oraz zestaw n przedmiotów, ktore możemy do tego plecaka włożyć
- każdy z przedmiotów ma określoną:
 - wagę w_i ,
 - cenę c_i
- chcemy do plecaka zapakować przedmioty o jak największej łącznej wartości

- gdy przedmioty są podzielne (np. są płynami) problem plecakowy można rozwiązać optymalnie metodą zachłanną
- wybieramy przedmioty o nawiększym stosunku ceny do wagi $(\frac{c_i}{w_i})$ i wkładamy do plecaka
- w przypadku przedmiotów niepodzielnych algorytm zachłanny już się nie sprawdzi (np. $W=4, w_1=3, c_1=5, w_2=w_3=2, c_2=c_3=3$)
- zastosujemy tu programowanie dynamiczne

Programowanie dynamiczne

- rozwiązujemy problem poprzez złożenie rozwiązań odpowiednich podproblemów
- każdy podproblem rozwiązujemy tylko raz, rozwiązanie zapamiętując w tabeli
- zazwyczaj stosowane do rozwiązywania problemów optymalizacyjnych: przy danych ograniczeniach mamy zmaksymalizować lub zminimalizować pewien koszt

Programowanie dynamiczne

- podczas rozwiązywania możemy wyszczególnić cztery etapy:
- scharakteryzowanie struktury optymalnego rozwiązania
- rekurencyjne rozwiązanie kosztu optymalnego rozwiązania
- obliczenie optymalnego kosztu metodą wstępującą rozpoczynając od najmniejszych podproblemów, rozwiązujemy coraz większe, wykorzystując zapamiętane rozwiązania
- konstruowanie optymalnego rozwiązania na podstawie wyników wcześniejszych obliczeń

Programowanie dynamiczne

- jeżeli interesuje nas sam koszt rozwiązania optymalnego, krok czwarty można pominąć
- w przeciwnym przypadku, często opłaca się zapamiętywać dodatkowe informacje podczas wykonywania kroku trzeciego

elem naszym jest maksymalizacja $\sum_{i=1}^{n} d_i c_i$ przy zachowaniu ograniczenia $\sum_{i=1}^{n} d_i w_i \leq W$, gdzie d_i to zmienna decydująca, czy przedmiot i wkładamy ($d_i = 1$) bądź nie ($d_i = 0$) do plecaka

- załóżmy, że znamy optymalne rozwiązanie dla danej instancji problemu
- weźmy jeden z przedmiotów, który trafił do plecaka (niech będzie to przedmiot k)
- pozostała zawartość plecaka jest optymalnym rozwiązaniem problemu plecakowego dla pojemności plecaka $W-w_k$ i zestawu przedmiotów $\{1,2,\ldots,k-1,k+1,k+2,\ldots n\}$
- gdyby było inaczej (nie byłoby to optymalne rozwiązanie), to zastępując przedmioty w pozostałej części plecaka tymi z optymalnego rozwiązania podproblemu, otrzymalibyśmy rozwiązanie lepsze niż optymalne

- zdefiniujmy rekurencyjnie koszt optymalnego rozwiązania:
- koszt rozwiązania poblemu dla wagi W i zestawu przedmiotów $\{1, 2, \dots, j\}$ to:

$$K(j,W) = \begin{cases} 0 \text{ dla } j = 0 \\ 0 \text{ dla } W = 0 \\ max(K(j-1,W-w_j) + c_j, K(j-1,W)) \end{cases}$$

Obliczanie kosztu metodą wstępującą

- ightharpoonup znamy koszty rozwiązań dla przypadków brzegowych (W=0 lub pusty zbiór przedmiotów)
- dzięki przedstawionemu wzorowi możemy kolejno wyznaczać rozwiązania większych podproblemów, aż dojdziemy do rozwiązania całego problemu (wyznaczymy K(n,W))

```
K - tablica o wymiarach n+1\times W+1 for i=0,\ldots,n do K[i,0]=0 for i=0,\ldots,W do K[0,W]=0 for i=1,\ldots n do for j=1,\ldots W do K[i,j]=max(K[i-1,j-w_i]+c_i,K[i-1,j]) end for end for return K[n,W]
```

- rozmiar plecaka W = 10
- przedmioty: $w_1 = 5, c_1 = 1, w_2 = 3, c_2 = 2, w_3 = 3, c_3 = 1, w_4 = 4, c_4 = 4, w_5 = 1, c_5 = 1$

		W										
		0	1	2	3	4			7	8	9	10
i	0	0	0	0	0	0	0	0	0	0	0	0
	1	0										
	2	0										
	3	0										
	4	0										
	5	0										

		W										
		0	1	2	3	4	5	6	7	8	9	10
i	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	1	1	1	1	1	1
	2	0										
	3	0										
	4	0										
	5	0										

		W										
		0	1	2	3	4	5	6	7	8	9	10
i	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	1	1	1	1	1	1
	2	0	0	0	2	2	2	2	2	3	3	3
	3	0										
	4	0										
	5	0										

		W										
		0	1	2	3	4	5	6	7	8	9	10
i	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	1	1	1	1	1	1
	2	0	0	0	2	2	2	2	2	3	3	3
	3	0	0	0	2	2	2	3	3	3	3	3
	4	0										
	5	0										

		W										
		0	1	2	3	4	5	6	7	8	9	10
i	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	1	1	1	1	1	1
	2	0	0	0	2	2	2	2	2	3	3	3
	3	0	0	0	2	2	2	3	3	3	3	3
	4	0	0	0	2	4	4	4	6	6	6	7
	5	0										

		W										
		0	1	2	3	4	5	6	7	8	9	10
i	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	1	1	1	1	1	1
	2	0	0	0	2	2	2	2	2	3	3	3
	3	0	0	0	2	2	2	3	3	3	3	3
	4	0	0	0	2	4	4	4	6	6	6	7
	5	0	1	1	2	4	5	5	5	7	7	7

- ullet złożoność algorytmu wynosi O(nW) (nie jest wielomianowa!)
- wyznaczyliśmy wartość plecaka, jak poznać jego zawartość?

- ullet zaczynamy od K[n,W]
- porównujemy K[n,W] z K[n-1,W] oraz $K[n-1,W-w_n]+c_n$
- jeżeli K[n,W]=K[n-1,W] to nie włożyliśmy przedmiotu n do plecaka, przechodzimy do K[n-1,W] i potwarzamy operację
- jeżeli $K[n,W]=K[n-1,W-w_n]+c_n$ to włożyliśmy przedmiot n do plecaka, przechodzimy do $K[n-1,W-w_n]$ i potwarzamy operację

		W										
		0	1	2	3	4	5	6	7	8	9	10
i	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	1	1	1	1	1	1
	2	0	0	0	2	2	2	2	2	3	3	3
	3	0	0	0	2	2	2	3	3	3	3	3
	4	0	0	0	2	4	4	4	6	6	6	7
	5	0	1	1	2	4	5	5	5	7	7	7

		W										
		0	1	2	3	4	5	6	7	8	9	10
i	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	1	1	1	1	1	1
	2	0	0	0	2	2	2	2	2	3	3	3
	3	0	0	0	2	2	2	3	3	3	3	3
	4	0	0	0	2	4	4	4	6	6	6	7
	5	0	1	1	2	4	5	5	5	7	7	7

		W										
		0	1	2	3	4	5	6	7	8	9	10
i	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	1	1	1	1	1	1
	2	0	0	0	2	2	2	2	2	3	3	3
	3	0	0	0	2	2	2	3	3	3	3	3
	4	0	0	0	2	4	4	4	6	6	6	7
	5	0	1	1	2	4	5	5	5	7	7	7

		W										
		0	1	2	3	4	5	6	7	8	9	10
i	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	1	1	1	1	1	1
	2	0	0	0	2	2	2	2	2	3	3	3
	3	0	0	0	2	2	2	3	3	3	3	3
	4	0	0	0	2	4	4	4	6	6	6	7
	5	0	1	1	2	4	5	5	5	7	7	7

		W										
		0	1	2	3	4	5	6	7	8	9	10
i	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	1	1	1	1	1	1
	2	0	0	0	2	2	2	2	2	3	3	3
	3	0	0	0	2	2	2	3	3	3	3	3
	4	0	0	0	2	4	4	4	6	6	6	7
	5	0	1	1	2	4	5	5	5	7	7	7

		W										
		0	1	2	3	4	5	6	7	8	9	10
i	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	1	1	1	1	1	1
	2	0	0	0	2	2	2	2	2	3	3	3
	3	0	0	0	2	2	2	3	3	3	3	3
	4	0	0	0	2	4	4	4	6	6	6	7
	5	0	1	1	2	4	5	5	5	7	7	7

		W										
		0	1	2	3	4	5	6	7	8	9	10
i	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	0	0	0	1	1	1	1	1	1
	2	0	0	0	2	2	2	2	2	3	3	3
	3	0	0	0	2	2	2	3	3	3	3	3
	4	0	0	0	2	4	4	4	6	6	6	7
	5	0	1	1	2	4	5	5	5	7	7	7

- jeżeli interesuje nas sama wartość rozwiązania, zamiast tablicy o wymiarach $n+1\times W+1$ wystarczy nam tablica o wymiarach $2\times W+1$
- w i-tym kroku wystarczy pamiętać tylko poprzedni wiersz tablicy

```
K - tablica o wymiarach 2\times W+1 for i=0,\dots,W do K[0,W]=0 for i=1,\dots n do for j=1,\dots W do K[i\%2,j]=\\ max(K[1-(i\%2),j-w_i]+c_i,K[1-(i\%2),j]) end for end for return K[n\%2,W]
```

- dlaczego nie wystarczy tablica jednowierszowa?
- musimy znać wartość $K[i-1, j-w_i]$
- mając tylko jeden wiersz tablicy, obliczając K[i,j] w $K[i,j-w_i]$ będzie optymalne rozwiązanie dla podproblemu o rozmiarze plecaka $j-w_i$ i przedmiotów $\{1,2,\ldots,i\}$ (a nie $\{1,2,\ldots,i-1\}$)
- jeżeli optymalne rozwiązanie podproblemu będzie wymagało włożenia przedmiotu i do plecaka, może się zdarzyć, że przedmiot ten włożymy do plecaka wielokrotnie
- chyba, że będziemy wypełniać tablicę w przeciwnym kierunku...

Koniec

Dziękuję za uwagę.