

Red Hat Deep Dive Sessions Linux on System z

Shawn Wells (swells@redhat.com)
W/W Lead Architect, Linux on System z
Team Lead, System z SMEs

Introduction

Shawn Wells (swells@redhat.com)

Lead Architect, Linux on System z Team Lead, System z SMEs

Phone: +1 443 534 0130

Agenda

- Scheduled questions to be answered in this session:
 - What's the Linux on System z development process?
 - What's in RHEL now? What's on the roadmap?
 - Provisioning & Patch Management in RHN
 - Security Update
 - SELinux, Audit, etc

Linux on System z Development Process

Linux on System z Development

Community

- Development with "upstream" communities
- Kernel, glibc, etc
- Collaboration with partners, IBM, open source contributors

COMMUNITY

Linux on System z Development

Fedora

- Bleeding Edge
- Sets direction for RHEL technologies
- Community Supported
- Released ~6mo cycles
- Fedora 8,9,10 = RHEL6

Fedora 8; http://fedoraproject.org/wiki/Releases/8/FeatureList

Fedora 9; http://fedoraproject.org/wiki/Releases/9/FeatureList

Fedora 10; http://fedoraproject.org/wiki/Releases/10/FeatureList

Linux on System z Development

Red Hat Enterprise Linux

- Stable, mature, commercial product
- Extensive Q&A, performance testing
- Hardware & Software Certifications
- 7yr maintenance
- Core ABI compatibility guarantee
- Major releases 2-3yr cycle

Support Cycle

Extended Product Lifecycle

	Years 1 - 4		Yr 5	Yr 6,7	
	Produc	tion 1	Produ	otion 2	inction 3
Security Patche		X		X	x
Bug Fixes		X		X	X
Hardware Enabl	ement	Full		Partial	None
Software Enhan	cements	X			8

Linux on System z Subscriptions

- No Upgrade Costs
- No Client Access Fee
- Unlimited Support Incidents

For System z:

- Priced Per IFL
- Unlimited VMs per IFL

Customers can consolidate subscriptions *to or from* other platforms

Linux on System z Support

Level 3: Special Engineering

Custom Patches, Code Re-writes, Interim Patches, Application Redesign

Level 2: Advanced Support

Reproduce Problems, Grouped via Skillsets

Level 1: Front Line Support

Known Issues, Initial Troubleshooting, Everyone is minimum RHCE

Support via Red Hat

E

Linux on System z Support

M G S

Level 3: Special Engineering

Custom Patches, Code Re-writes, Interim Patches, Application Redesign

Level 2: Advanced Support

Reproduce Problems, Grouped via Skillsets

Level 1: Front Line Support

Known Issues, Initial Troubleshooting, Everyone is minimum RHCE

Support via Red Hat

P A R N Ε R

A

M

Level 2: Advanced Support

Reproduce Problems, **Category Specialists**

Level 1: First Responders

Basic Support

Support via IBM

What's in RHEL now? What's on the road map?

IBM Changes to 2.6.x Kernel

- Support for z10
- Dynamic CHPID reconfiguration
- Improved "ssh -X" with VPN during installation process
- Better network performance with skb scatter-gather support
- Implementation of SCSI dump infrastructure

- Accelerated in-kernel Crypto
 - Support for crypto algorithms of z10
 - SHA-512, SHA-384, AES-192, AES-256
- Two OSA ports per CHPID; Four port exploitation
 - Exploit next OSA adapter generation which offers two ports within one CHPID. The additional port number 1 can be specified with the qeth sysfs-attribute "portno"
 - Support is available only for OSA-Express3 GbE SX and LX on z10, running in LPAR or z/VM guest (PFT for z/VM APAR VM64277 required!)

- Large Page Support
 - This adds hugetblfs support on System z, using both hardware large page support if available, and software large page emulation (with shared hugetblfs pagetables) on older hardware
- skb scatter-gather support for large incoming messages
 - This avoids allocating big chunks of consecutive memory and should increase networking throughput in some situations for large incoming packets

Full Release Notes At: redhat.com http://www.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/5.2/html/Release_Notes/s390x/index.html

- Lightweight userspace priority inheritance (PI) support for futexes, useful for realtime applications (2.6.18)
 - Assists priority inversion handling. Ref: http://lwn.net/Articles/178253/
- High resolution timers (2.6.16)
 - Provide fine resolution and accuracy depending on system configuration and capabilities - used for precise in-kernel timing
- New Pipe implementation (2.6.11)
 - 30-90% perf improvement in pipe bandwidth
 - Circular buffer allow more buffering rather than blocking writers
- "Big Kernel Semaphore": Turns the Big Kernel Lock into a semaphore
 - Latency reduction, by breaking up long lock hold times and adds voluntary preemption

- Process Events Connector (2.6.15)
 - Reports fork, exec, id change, and exit events for all processes to userspace
 - Useful for accounting/auditing (e.g. ELSA), system activity monitoring, security, and resource management
- kexec & kdump (2.6.13)
 - Provide new crash-dumping capability with reserved, memory-resident kernel
- Extended device mapper multipath support
- Address space randomization:
 - Address randomization of multiple entities including stack & mmap() region (used by shared libraries) (2.6.12; more complete implementation than in RHEL4)
 - Greatly complicates and slows down hacker attacks
- Audit subsytem
 - Support for process-context based filtering (2.6.17)
 - More filter rule comparators (2.6.17)

- Add nf_conntrack subsystem: (2.6.15)
 - Common IPv4/IPv6 generic connection tracking subsystem
 - Allows IPv6 to have a stateful firewall capability (not previously possible)
 - Increased security
 - Enables analysis of whole streams of packets, rather than only checking the headers of individual packets
- SELinux per-packet access controls
 - Replaces old packet controls
 - Add Secmark support to core networking
 - Allows security subsystems to place security markings on network packets (2.6.18)

RHEL Tomorrow: RHEL 5.3

- Currently in beta
 - Interested in being a beta tester?
- NSS
- CPU Affinity
- ETR Support
- Device-multipath support for xDR
 - RHT BugZilla: 184770
 - IBM LTC 18425-62140

RHEL Tomorrow: Fedora

Fedora is Red Hat's bleeding edge, an incubator for new technologies and features

Fedora sets our direction for Red Hat Enterprise Linux, and gives you a good idea of what will be in our next RHEL release (... and in other Linux distros, too)

Fedora 8; http://fedoraproject.org/wiki/Releases/8/FeatureList

Fedora 9; http://fedoraproject.org/wiki/Releases/9/FeatureList

Fedora 10; http://fedoraproject.org/wiki/Releases/10/FeatureList

Fedora 8,9,10 = RHEL6

Currently a beta feature in RHEL 5.3

"In Place" Upgrades: preupgrade

- Will download files needed to upgrade,
- Store them locally on disk
- Reboot you into the installer
- Not a true in-place upgrade (yet)!

Benefit

- The longest part of an install is when packages are downloaded to the local machine
- Pre-Upgrade downloads and stores packages locally, while the machine is running/in production
- Reboot directly into the installer

Select Target Version

Determines which packages need upgrading, and downloads them

Downloads new initrd & kernel images

User reboots, brought into installer

RHEL Tomorrow: gnome-control-center

- gnome-control-center
 - It is <u>not</u> YaST (yet)
 - It is a unified GUI for package management and system configuration
 - Benefit
 - Progress towards a YaST-like tool in RHEL (currently we have the system-config-* GUIs/TUIs)

RHEL Tomorrow: PackageKit

- PackageKit
 - Abstraction layer for YUM, apt, conary, etc
 - Provides a common set of abstractions that can be used by GUI/TUI package managers

RHEL Tomorrow: PackageKit

- PackageKit
 - Abstraction layer for YUM, apt, conary, etc
 - Provides a common set of abstractions that can be used by GUI/TUI package managers

RHEL Tomorrow: PackageKit

- PackageKit
 - Abstraction layer for YUM, apt, conary, etc
 - Provides a common set of abstractions that can be used by GUI/TUI package managers

Linux Virtualization on System z

Oracle **JBoss Custom App Red Hat Red Hat Red Hat Enterprise Linux Enterprise Linux Enterprise Linux** z/VM CONNECTIVITY **PROCESSING DATA**

Using RHN Satellite to Manage s390/s390x & distributed

Red Hat Network Satellite

Red Hat Network Satellite

RHN SATELLITE-PROXY

Satellite-Proxy System z Topology Example

RHN Installation Requirements

Software

- RHEL 4 (31-bit or 64-bit)
- @Base install

Hardware

- 1 to 2 (virtual) IFLs
- 2 to 4 GB storage (memory)
- 1 GB swap (combination VDISK, disk)
- 1 x mod3 for OS install
- Estimated 12 GB disk space for embedded database
- 6 GB per channel (disk)

Your RHN Systems Errata Channels Configuration Schedule Users Help NO SYSTEMS SELECTED MANAGE CLEAR Kickstart: rhel-5-i386-server_default_part_novirt Overview Systems Kickstart Details System Details Software Activation Keys Scripts Kickstart File **System Groups** System Set Manager Kickstart File Advanced Search The kickstart file generated by this kickstart profile is viewable below: **Stored Profiles** Download Kickstart File **Custom System Info** Kickstart # Kickstart config file generated by RHN Config Management **Profiles** # Profile Name : rhel-5-i386-server_default_part_novirt # Profile Label : rhel-5-i386-server_default_part_novirt Bare Metal # Date Created : 2008-06-03 20:40:03.0 GPG and SSL Kevs Distributions install File Preservation text network --bootproto dhcp url --url http://devel13.z900.redhat.com/ty/MwPJrTGI lang en_US langsupport --default en_US en_US keyboard us mouse none zerombr yes clearpart --all part /boot --fstype=ext3 --size=200 part pv.01 --size=1000 --grow part swap --size=1000 --maxsize=2000 volgroup myvg pv.01 logvol / --vgname=myvg --name=rootvol --size=1000 --grow bootloader --location mbr timezone America/New_York auth --enablemd5 --enableshadow rootpw --iscrypted \$1\$0KAzMj1I\$V05gL5mVVj9T09GidA/Y6/ selinux --permissive reboot firewall --disabled skipx repo --name=Cluster --baseurl=http://devel13.z900.redhat.com/kickstart/dist/ks-rhel-i386-server-5-u1/Cluster repo --name=ClusterStorage --baseurl=http://devel13.z900.redhat.com/kickstart/dist/ks-rhel-i386-server-5-u1/ClusterStorage repo --name=VT --baseurl=http://devel13.z900.redhat.com/kickstart/dist/ks-rhel-i386-server-5-u1/VT repo --name=Workstation --baseurl=http://devel13.z900.redhat.com/kickstart/dist/ks-rhel-i386-server-5-u1/Workstation

RHN Satellite Is Now Open Source

http://spacewalk.redhat.com

- Announced at Red Hat Summit 2008
 - remember the Fedora -> RHEL model?

Agenda

- Why do we need SELinux? What are the principal concepts?
- SELinux Details
 - Type Enforcement
 - What are the available policies?
 - What's a policy actually made of?
 - How do I {add, change} a policy?
 - What's the associated overhead?
- Usage
 - User Perspective
 - Admin Perspective
- Scenarios
 - Fixing the RHT Corporate VPN "update"

Why do we need SELinux?

Linux Access Control Problems

Access is based off users' access

Example: Firefox can read SSH keys

```
# ps -x | grep firefox
shawn 21375 1 35 11:38 ? 00:00:01 firefox-bin
```

Fundamental Problem: Security properties not specific enough. Kernel can't distinguish applications from users.

Linux Access Control Problems

2) Processes can change security properties

Example: Mail files are readable only by me..... but Thunderbird could make them world readable

Fundamental Problems:

- Standard access control is discretionary
- Includes concept of "resource ownership"
- Processes can escape security policy

Linux Access Control Problems

3) Only two privilege levels: User & root

Example: Apache gets hacked, allowing remote access to root. Entire system is compromised.

Fundamental Problems:

- Simplistic security policy
- No way to enforce least-privilege

SELinux: Building Security Openly

Customers, NSA, Community, and Red Hat continue evolution

Red Hat Security Certifications

NIAP/Common Criteria: The most evaluated operating system platform

- Red Hat Enterprise Linux 2.1 EAL 2 (Completed: February 2004)
- Red Hat Enterprise Linux 3 EAL 3+/CAPP (Completed: August 2004)
- Red Hat Enterprise Linux 4 EAL 4+/CAPP (Completed: February 2006)
- Red Hat Enterprise Linux 5 EAL4+/CAPP/LSPP/RBAC (Completed: June 2007)

DII-COE

- Red Hat Enterprise Linux 3 (Self-Certification Completed: October 2004)
- Red Hat Enterprise Linux: First Linux platform certified by DISA

DCID 6/3

- Currently PL3/PL4: ask about kickstarts.
- Often a component in PL5 systems

DISA SRRs / STIGs

Ask about kickstarts.

FIPS 140-2

Red Hat / NSS Cryptography Libraries certified Level 2

Security Standards Work

Extensible Configuration Checklist Description Format (XCCDF)

- Enumeration for configuration requirements
- DISA FSO committed to deploying STIG as XCCDF
- Others working with NIST
- Security policy becomes one file

Open Vulnerability & Assessment Language (OVAL)

Machine-readable versions of security advisories

Common Vulnerability and Exposures (CVE) Compatibility

Trace a vulnerability through multiple vendors

How's it work?

Linux Access Control Introduction

Linux access control involves the kernel controling

- Processes (running programs), which try to access...
 - Resources (files, directories, sockets, etc)

For example:

- Apache (process) can read web files
- But **not** the /etc/shadow file (resource)

Traditional methods do not clearly separate the privileges of users and applications acting on the users behalf, increasing the damage that can be caused by application exploits.

So, how should these decisions be made?

Security Architecture

Every subject (i.e process) and object (i.e. data files) are assigned collections of security attributes, called a **security context**

- 1) Security context of subject & object passed to SELinux
- 2) Kernel/SELinux check, verify access
- **2a)** Grant access. Record allowance in AVC (Access Vector Cache)
- **2b)** Deny access, log error

Security Architecture

Or in picture view...

SELinux Details

SELinux Contexts

root:object r:sysadm home t:s0:c0

- The above is an SELinux context
- user_t
- role t
- file t
- Sensitivity
- category

Role Based Access Control (RBAC)

```
"root" really isn't "root"
i.e:
    root_u:WebServerAdmin_r:SysAdmin_t
    root_u:OracleDBAdmin_r:SysAdmin_t
```


SELinux Contexts

SELinux Policy

- Policies are matrices of statements which tell SELinux if certain actions are allowed based on the context of the objects attempting those actions.
- There are three SELinux Policy Types

Targeted Policy

- Default policy in RHEL5. Supported by HelpDesk.
- Targets specific applications to lock down.
- Allows all other applications to run in the unconfined domain (unconfined_t)
- Applications running in the unconfined domain run as if SELinux were disabled

2) Strict Policy

- Denies access to everything by default
- Complete protection for all processes on the system
- Requires that policies be written for all applications, often requires customization
- Strict is type enforcement with added types for users (e.g. user_t and user_firefox_t).
- Not enabled by Red Hat as default

3) Multi-Level Security (MLS)

- Focuses on confidentiality (i.e. separation of multiple classifications of data)
- Ability to manage {processes, users} with varying levels of access. (i.e. "the need to know")
- Uses category & sensitivity levels

- 3) Multi-Level Security (MLS)
 - (a) Sensitivity Labels
 - Mostly used by the government Top Secret, Secret, Unclassified, etc

- 3) Multi-Level Security (MLS)
 - (b) Category Labels
 - Separation of data types, compartments, projects, etc

- 3) Multi-Level Security (MLS)
 - (b) Polyinstantiation & pam_namespace
 - The pam_namespace PAM module sets up a private namespace for a session with polyinstantiated directories
 - A polyinstantiated directory provides a different instance of itself based on user name, or when using SELinux, user name, security context or both

- 3) Multi-Level Security (MLS)
 - (b) Polyinstantiation & pam_namespace

```
\# id -7
staff_u:WebServer_Admin r:WebServer Admin t:S0:C0
# ls -l /data
secret-file-1
secret-file 2
# id -7
staff_u:WebServer Admin r:WebServer Admin t:S1:C0
# ls -l /data
secret-file-1
secret-file 2
top-secret-file-1
```


Multi-Level Security (MLS) & Common Criteria

- The Common Criteria (CC) is an international security standard against which systems are evaluated. Many government customers require CC evaluated systems.
- Red Hat Enterprise Linux 5 meets EAL4+ with RBAC/LSPP/CAPP endorcements

What's the Performance Overhead?

What's the Performance Overhead?

RHEL5 SELinux: MySQL 5.0.22

MySQL Benchmark suite: run-all-tests. Lower is better.

What's the Performance Overhead?

RHEL5 SELinux: Apache 2.2.3 (worker)

11 tests: 100000 requests with 1-255 concurrent connections. Lower is better.

What's the Performance Overhead?

- Not official statistics
- Laptop = 2GHz, 2x 1GB RAM
- Workstation = 2.13GHz, 4x 1GB RAM
- Apache = Lots of threads
- MySQL = Lots of disk I/O

SELinux Usage

(GUI & console)

End-User Perspective

sealert Notifications

End-User Perspective

sealert Browser

sealert + EMail Notifications

system-config-selinux

sediffx

apol

SELinux Usage

(Hints & Tips)

semanage

Configure elements of SELinux policy without modification/recompilation of policy sources aka on the fly

Example: Dynamically Allowing Apache to listen on port 1234

semanage port -a -t httpd_port_t -p tcp 1234

semanage (more examples)

Example: Allow shawn to join "webadmin_u" group # semanage login -a -s webadmin_u shawn

Example: Relabel files for access by Apache

```
# semanage fcontext -a -t \
  httpd sys content t "/data/webpages(/.*)?"
```


semanage (most important example)

You don't need to disable SELinux to fix a single error!

```
type=SYSCALL msg=audit(1204719775.306:738): arch=40000003 syscall=54
success=no exit=-19 a0=4 a1=8933 a2=bfcec1bc a3=bfcec1bc items=0
ppid=3900 pid=5003 auid=501 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0
sgid=0 fsgid=0 tty=(none) comm="ip" exe="/sbin/ip"
subj=user_u:system_r:ifconfig_t:s0 key=(null)
```

The Fix:

semanage permissive -a ifconfig_t

audit2allow

Allows generation of SELinux policy rules from logs of denied operations

Example: Fix all the errors on the system (completely not a good idea on a real system)

```
# cat /var/log/audit/audit.log | audit2allow -M FixAll
Generating type enforcment file: FixAll.te
Compiling policy: checkmodule -M -m -o FixAll.mod FixAll.te
Building package: semodule_package -o FixAll.pp -m FixAll.mod
```


Scenarios

- Red Hat has a Corporate Standard Build (CSB) for desktop environments
- Red Hat pushes updates to said CSB
- I "tweak" my configuration files
- When RHT pushed a CSB update, it broke my VPN settings

/var/log/messages:

```
type=SYSCALL msg=audit(1204719775.306:738): arch=40000003 syscall=54
success=no exit=-19 a0=4 a1=8933 a2=bfcec1bc a3=bfcec1bc items=0
ppid=3900 pid=5003 auid=501 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0
sgid=0 fsgid=0 tty=(none) comm="ip" exe="/sbin/ip"
subj=user_u:system_r:ifconfig_t:s0 key=(null)
```

Now what?


```
type=SYSCALL msg=audit(1204719775.306:738): arch=400000003 syscall=54

success=no exit=-19 a0=4 a1=8933 a2=bfcec1bc a3=bfcec1bc items=0

ppid=3900 pid=5003 auid=501 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0

sgid=0 fsgid=0 tty=(none) comm="ip" exe="/sbin/ip"

subj=user_u:system_r:ifconfig_t:s0 key=(null)
```

What I Know:

- 1) AVC Event ID 738
- 2) syscall=54 (I'd have to google this)
- 3) root (or an application on its behalf) was running /sbin/ip
- 4) context = user_u:system_r:ifconfig_t:s0


```
success=no exit=-19 a0=4 a1=8933 a2=bfcec1bc a3=bfcec1bc items=0
ppid=3900 pid=5003 auid=501 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0
sgid=0 fsgid=0 tty=(none) comm="ip" exe="/sbin/ip"
subj=user_u:system_r:ifconfig_t:s0 key=(null)

My Options:
1) Create a SELinux Policy Module
# ausearch -x "/sbin/ip" | audit2allow -M MyVPNFix
```

type=SYSCALL msg=audit(1204719775.306:738): arch=40000003 syscall=54


```
success=no exit=-19 a0=4 a1=8933 a2=bfcec1bc a3=bfcec1bc items=0
ppid=3900 pid=5003 auid=501 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0
sgid=0 fsgid=0 tty=(none) comm="ip" exe="/sbin/ip"
subj=user_u:system_r:ifconfig_t:s0 key=(null)

My Options:
1) Create a SELinux Policy Module
# ausearch -x "/sbin/ip" | audit2allow -M MyVPNFix
# semodule -i MyVPNFix.pp
```

type=SYSCALL msg=audit(1204719775.306:738): arch=40000003 syscall=54


```
type=SYSCALL msg=audit(1204719775.306:738): arch=40000003 syscall=54

Success=no exit=-19 a0=4 a1=8933 a2=bfcec1bc a3=bfcec1bc items=0

ppid=3900 pid=5003 auid=501 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0

sgid=0 fsgid=0 tty=(none) comm="ip" exe="/sbin/ip"

subj=user_u:system_r:ifconfig_t:s0 key=(null)
```

My Options:

2) Disable enforcement of ifconfig_t (there is no need to turn SELinux completely off!)

semanage permissive -a ifconfig_t

What'd I forget? Open Discussion