FACTORS IMPACTING CEMENT INTEGRITY

By Ricardo Aboud.

ouronova wellnova

Clinker Composition

Major mineral components of Portland cement clinker.

Compound	Abbreviation	Chemical Formula	%	Contribution on performance
Tricalcium Silicate (Alite)	C₃S	3 CaO. SiO₂	45 - 60%	Durability and total resistance
Dicalcium Silicate (Belite)	C ₂ S	2 CaO. SiO₂	15 - 30%	Long term durability
Tricalcium aluminate	СзА	3 CaO. Al₂O₃	5 - 12%	Durability and early setting
Tetracalcium aluminoferrite	C ₄ AF	4 CaO. Al ₂ O ₃ Fe ₂ O ₃	6 - 12%	No effect on durability
Gypsum (added during grinding)	CSH ₂	CaSO ₄ 2H ₂ O	2 - 10%	Prevents early setting

Types of Cement

Various types of cement are used in oil wells, the most common being Class G Portland cement.

ADICION	De	pth	Temperature		Common Man	
API Class	ft	m	°F	℃	Composition	
A-C	60000	1830	80 - 170	27 - 77	Low C3A No retarder	
F	10000 - 16000	3048 - 4877	230 - 320	110 - 160	Low C3A Retarder present	
G, H	-	-	80 - 200	27 - 93	Coarse - grained Type II & Type V portland cement No retarder	
J	> 20000	>6100	> 350	> 177	Essentially beta dicalcium silicate & pulverized sand	

Potential Leakage Pathways

Several potential leakage pathways can occur along cased holes and/or abandoned wells.

Gasda et al., 2004 and 2005

Factors Impacting Cement Integrity

The gas flow model is used for evaluating and testing cement slurries for use in oil and gas well applications.

Page 01 / Reference material ouronova wellnova

CO2 Injection (EOR)

 CO_2 injection is a proven EOR technique (\pm 45 years). The most of the technologies developed through the last 44 years of CO2 EOR experience have been successfully applied in GS (geologic sequestration) for CCS (carbon capture and storage) in saline aquifers (Sweatman et al., 2009).

What is set cement?

C-S-H (Calcium Silicate Hydrate) is the main phase which keeps the cement particles binded together, providing cohesion and resistance. It does not have a defined chemical formula and is amorphous.

Related Chemical Reactions (H2S)

Chemical formulas.

 $H_2S + Ca(OH)_2 \rightarrow CaS + 2H_2O$

 $CaS + 2H_2O + CO_2 \rightarrow CaCO_3 + H_2S\uparrow$

Page 02 / Reference material ouronova wellnova

Specially formulated cement slurry

Composition of high-density cement slurries. Unit wt. %.

Material which replaces Mn Mesh Density (kg/m³) Wanter Fluid Loss Reducer Retarder Dispersant Slica Fume **Weighting Agent** 2.0 100 41 2.5 2 35 20 8 2.1 100 42 7 2.5 3 35 32 18 8 2.2 100 44 6 2.2 4 35 52 18 8 2 45 6 4.5 35 79 2.3 100 16 10 100 mesh: 150 μ m ; 300 mesh: 48 μ m Added material which in high protects cement matrix, mitigating temperatures, reacts with cement hydrated silicates to generate tobermorite and xonotlite, reducing the ratio of C/S from 2 corrosion to 3:1 to approximately 1:1

Specially formulated cement slurry

By evaluating the compressive strength of cement paste cured at high temperatures for different times and analyzing the changes in compressive strength, it is possible to study the stability of the mechanical properties of cement paste at high temperatures.

Efeito do Ataque Químico

To evaluate the resistance of different high-density cement slurries to carbon dioxide and hydrogen sulfide, the corrosion performance of cement samples subjected to different lengths of time at high temperature was evaluated.

Page 03 / Reference material ouronova wellnova

Preserving the Integrity of Cement

As more manganese ore powder is added to the cement slurry, the cement slurry becomes reddish brown. When the cement slurry encounters phenolphthalein after being corroded, the color of the cement slurry becomes deeper. The corrosion depth of the cement sample can be measured from the corrosion morphology.

 $\textbf{Figure 13.} \ \ Morphology \ of \ 2.0 \ kg/m^3 \ cement \ sample: \textbf{(a)} \ non-corroded; \textbf{(b)} \ corroded.$

Figure 14. Morphology of 2.3 kg/m 3 cement sample: (a) non-corroded; (b) corroded.

The importance of centralizers

Centralizers are essential elements in oil wells to ensure proper cementing of the casing, which is crucial for the stability and safety of the well.

	Transition Joint	Fish # 11	Challes a bath (lase
Well depth (m)	119.2-131-5	251.7-263.8	Shallow depth (low temperature)
Final length (m)	9.36	10.56	
Min. Sand off (m)	0.01057	0.01250	
Max. Eccentricity %	70	64	

Fig. 3. Core plugs obtained from Fish 11 (Bottom). (a) Drilling of core plugs, (b) FB 64 top view, (c) FB 64 lateral view, (d) FB 132 top view and (e) FB 132 lateral view.

Page 04 / Reference material ouronova wellnova