1. Consider the following data set ratstime txt:

	time	poison	treat
1	0.31	I	Α
2	0.82	I	В
3	0.43	I	C
4	0.45	I	D
5	0.45	I	Α
6	1.10	I	В

Effect of toxic agents on rats

Description

An experiment was conducted as part of an investigation to combat the effects of certain toxic agents.

A data frame with 48 observations on the following 3 variables.

```
time survival time in tens of hours poison
```

the poison type - a factor with levels I II III $\,$

treat the treatment - a factor with levels A B C D $\,$

The response variable is $Y={\sf time}$ and the explanatory variables are $X_1={\sf poison}$ and $X_2={\sf treat}.$

(a) Model the data with the main effect model

$$\mu_{jh} = \beta_0 + \beta_j + \alpha_h,$$

with the assumption of $Y_{ijk} \sim N(\mu_{jh}, \sigma^2)$. Test all pairwise average differences

$$H_0: \left(\frac{\mu_{1h} + \mu_{2h} + \dots + \mu_{kh}}{k}\right) - \left(\frac{\mu_{1h_*} + \mu_{2h_*} + \dots + \mu_{kh_*}}{k}\right) = 0, \quad h \neq h_*,$$

i.e., test whether there is average differences on means in the levels of X_2 =treat variable. Particularly, report the Wald test statistic value obtained from the comparison of A and B treatments.

(2 points)

(b) Model the data with the main effect model

$$\mu_{jh} = \beta_0 + \beta_j + \alpha_h,$$

with the assumption of $Y_{ijk} \sim N(\mu_{jh}, \sigma^2)$. Test all pairwise predictive average differences

$$H_0: \left(\frac{Y_{i1h} + Y_{i2h} + \dots + Y_{ikh}}{k}\right) - \left(\frac{Y_{i1h_*} + Y_{i2h_*} + \dots + Y_{ikh_*}}{k}\right) = 0, \quad h \neq h_*,$$

i.e., test whether there is average differences on random variables in the levels of X_2 =treat variable. Particularly, report the so-called d-value obtained from the comparison of A and B treatments.

(2 points)

(c) Let us continue to assume $Y_i \sim N(\mu_{ih}, \sigma^2)$. Model the data with the models

$$\mu_{jh} = \beta_0 + \beta_j + \alpha_h,$$

$$\log(\mu_{jh}) = \beta_0 + \beta_j + \alpha_h,$$

$$\frac{1}{\mu_{jh}} = \beta_0 + \beta_j + \alpha_h.$$

Calculate the mean square error value $MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{\mu}_{jh})^2}{n}$ for all these models. Which link function fits best to the data?

(2 points)

2. Consider the data in file Alba txt.

```
> data<-read.table("Alba.txt", sep="\t", dec=".", header=TRUE)
> head(data)
  Dose Herbicide DryMatter
1    1 Glyphosate     4.7
2    1 Glyphosate     4.6
3    1 Glyphosate     4.1
4    1 Glyphosate     4.4
```

Data are from an experiment, comparing the potency of the two herbicides glyphosate and bentazone in white mustard Sinapis alba.

Dose - a numeric vector containing the dose in g/ha.

 $\label{thm:condition} \mbox{Herbicide - a factor with levels Bentazone Glyphosate (the two herbicides applied).}$

DryMatter - a numeric vector containing the response (dry matter in g/pot).

Christensen, M. G. and Teicher, H. B., and Streibig, J. C. (2003)

Linking fluorescence induction curve and biomass in herbicide screening, Pest Management Science, 59, 1303?1310.

Denote the variables as Y = DryMatter, $X_1 = Dose$, and $X_2 = Herbicide$.

(a) Let us assume $Y_i \sim Gamma(\mu_i, \phi)$. Consider modeling the expected value μ_i of the response variable Y = DryMatter by the following model

$$\mathcal{M}: \quad \frac{1}{\mu_i} = \beta_0 + \beta_1 x_{i1} + \alpha_j + \gamma_j x_{i1},$$

where index j is related to the categories of X_2 . Calculate the maximum likelihood estimate for the expected value μ_{i_*} when $X_1=50$ and $X_2=$ Glyphosate. (2 points)

(b) Let us continue to assume $Y_i \sim Gamma(\mu_i, \phi)$, and let us continue to model the expected value μ_i by the model

$$\mathcal{M}: \quad \frac{1}{\mu_i} = \beta_0 + \beta_1 x_{i1} + \alpha_j + \gamma_j x_{i1},$$

Create 80 % prediction interval for new observation y_f , when $X_1 = 50$ and $X_2 = \text{Glyphosate}$. Particularly, what is your estimate for lowerbound of the prediction interval? (2 points)

(c) Let us assume $Y_i \sim IG(\mu_i, \phi)$. Consider modeling the expected value μ_i of the response variable Y = DryMatter by the following model

$$\mathcal{M}: \quad \frac{1}{\mu_i^2} = \beta_0 + \beta_1 x_{i1} + \alpha_j + \gamma_j x_{i1},$$

where index j is related to the categories of X_2 . Calculate the 95% confidence interval estimate for the expected value μ_{i_*} when $X_1 = 50$ and $X_2 = \text{Glyphosate}$. Particularly, what is your estimate for lowerbound of the confidence interval? (2 points)

3. (a) Let us assume $Y_i \sim IG(\mu_i, \phi)$. Consider the model

$$\log(\mu_i) = \beta_0 + \beta_1 \log(x_i).$$

Let the estimates of the parameters β_0 , β_1 , ϕ be as $\hat{\beta}_0 = 1$, $\hat{\beta}_1 = 0.5$, $\tilde{\phi} = 0.05$.

- i. Calculate the maximum likelihood estimate for the expected value μ_i when $x_i = 5$.
- ii. Calculate the Pearson residual

$$o_i = \frac{y_i - \hat{\mu}_i}{\sqrt{\widehat{\operatorname{Var}}(Y_i)}},$$

when $x_{i_*} = 5$ and the observed value is $y_i = 12$.

(2 points)

(b) Let $Y_i \sim Poi(\mu_i)$. Then the probability density function of the random variable Y_i is

$$f(y_i|\mu_i) = \frac{e^{-\mu_i}\mu_i^{y_i}}{y_i!}.$$

Show first that Y_i belongs to the exponential family of distributions, and then show that

$$E(Y_i) = \mu_i,$$

$$Var(Y_i) = \mu_i.$$

Hint! There is no dispersion parameter ϕ in Poisson distribution and hence you may consider it as $\phi = 1$.

(2 points)

(c) In generalized linear models, the likelihood equations can written in form

$$\frac{\partial l(\boldsymbol{\beta}, \phi)}{\partial \beta_j} = \sum_{i=1}^n \frac{y_i - \mu_i}{\operatorname{Var}(Y_i)} x_{ij} \left(\frac{\partial \mu_i}{\partial \eta_i}\right) = 0, \qquad j = 0, 1, 2 \dots p.$$

Consider now the simple Gamma model with

$$Y_i \sim Gamma(\mu_i, \phi),$$

 $\mu_i = \eta_i = \beta_0.$

What kind of more simplified form the likelihood equations have in this case? That is, what form $\frac{\partial l(\beta_0)}{\partial \beta_0}$ has in the simple Gamma model? By using the likelihood equations, find the maximum likelihood estimator $\hat{\beta}_0$.

(2 points)