Отчет по лабораторной работе

Низкочастотные процессы в многомодовом твердотельном лазере

Работу выполнили студенты Поляков Андрей, Козлов Александр

Содержание

1	Основные элементы теории	3
2	Схема установки	3
3	Протокол измерений	4
4	Результаты эксперимента с оценкой погрешности и их сравнение с теорией 4.1 Определение пороговой мощности	
5	Графики зависимости мощности излучения и релаксационной частоты от параметра накачки	6

Рис. 1: Схема установки.

1 Основные элементы теории

2 Схема установки

Схема экспериментальной установки представлена на Рис. 1. В качестве источника накачки используется полупроводниковый лазер (2) со следующими характеристиками

- 1. длина волны генерации 810 нм;
- 2. пороговый ток питания 200 мА;
- 3. максимальная мощность излучения 0.5 Вт;
- 4. поляризация излучения линейная, вектор электрического поля лежит в вертикальной плоскости.

Короткофокусная линза (3) используется для формирования параллельного пучка из сильно расходящегося у торца лазера излучения накачки. Линза (4) закреплена в поворотном устройстве, позволяющем перемещать луч накачки в горизонтальной и вертикальной плоскостях. Резонатор твердотельного лазера (5–7) установлен на платформе, передвигающейся в продольном и поперечном направлениях. В качестве активной среды лазера используется кристалл алюмоиттриевого граната YAG, легированный ионами Nd^{3+} с концентрацией 1%. Кристалл Nd:YAG (6) имеет форму цилиндра длинной 1 см и диаметром 0.6 см. Он закреплён в юстировочном устройстве, позволяющем плавно изменять положение оси кристалла относительно оси резонатора. Торцы кристалла имеют дихроичное покрытие. Один формирует входное зеркало резонатора (5), обеспечивая пропускание света $T \approx 1$ на длине волны $\lambda = 810\,\mathrm{Hm}$ и отражение $R_1 \approx 1$ на длине волны $\lambda = 1064\,\mathrm{Hm}$, другой просветлен на длине волны $\lambda = 1064\,\mathrm{mm}$. Выходное зеркало резонатора (7), имеющее коэффициент отражения $R_2 = 0.98 \dots 0.995$ на длине волны $\lambda = 1064$ нм, закреплено в юстировочном устройстве, позволяющем плавно поворачивать его относительно входного зеркала резонатора. Установка позволяет менять длину резонатора от 5 до 7.5 см. Для отсекания излучения накачки на выходе резонатора используется фильтр (8). Излучение

		$P_{\text{нак}}$, мВт	$P_{\text{изл}}$, м B т
$P_{\text{\tiny HAK}}, \text{\tiny MBT}$	$f_{ m peл},\ { m к} \Gamma$ ц	420	9
216	112	410	8.37
225	212	400	7.85
		391	7.6
235	276	381	7.3
245	336	371	6.8
255	392	361	6.1
265	432	350	5.5
270	448	340	4.6
275	458	330	4
280	476	320	3.76
285	491	290	3.3
296	508	280	2.9
304	532	270	2.5
345	551	260	2.1
385	600	$\frac{250}{250}$	1.7
390	616	239	1.2
395	627	$\frac{233}{230}$	0.9
405	639	$\frac{230}{220}$	$0.9 \\ 0.5$
420	672	210	0.3
		200	0.14

Таблица 1: Результаты измерений.

Nd:YAG лазера подается через поворотное зеркало (9) на фотодиод (10), выход которого подключен к микроамперметру (12) и анализатору спектра СК4-58 (11). Последний предназначен для наблюдения низкочастотных шумов лазера в диапазоне 0...600 кГц. Не-Ne лазер (15) используется для юстировки резонатора. Для визуального наблюдения генерации Nd:YAG лазера используется карточка-визуализатор инфракрасного диапазона.

3 Протокол измерений

Измерили зависимость релаксационной частоты $f_{\text{рел}}$ и мощности излучения $P_{\text{изл}}$ от мощности накачки $P_{\text{нак}}$. Результаты измерений приведены в Табл. 1.

4 Результаты эксперимента с оценкой погрешности и их сравнение с теорией

4.1 Определение пороговой мощности

Для дальнейшей работы важно определить пороговую мощность $P_{\text{пор}}$, ведь ниже будет часто использоваться параметр накачки A, который определяется как $P_{\text{нак}}/P_{\text{пор}}$ ($P_{\text{нак}}$ измеряется напрямую). Чтобы определить пороговую мощность $P_{\text{пор}}$, надо найти такую мощность накачки, что при мощностях накачки меньше данной мощность излучения равна нулю, а при больших мощностях накачки мощность излучения отлична от нуля.

На Рис. 2 показана снятая зависимость мощности излучения от мощности накачки с учётом фоновой засветки. Видно, что при $P_{\rm нак} < 210\,{\rm mBr}$ излучения нет. Снятые данные

Рис. 2: Зависимость мощности излучения от мощности накачки. Фоновая засветка учтена и вычтена из мощности излучения.

дискретны и поэтому точно определить порог нам не удастся, мы лишь знаем, что при $P_{\rm нак}=210\pm 5\,{\rm mBT}$ излучение есть, а при $P_{\rm нак}=205\pm 5\,{\rm mBT}$ излучения нет. Порог находится где-то между $200\,{\rm mBT}$ и $210\,{\rm mBT}$. Значит, $P_{\rm nop}=205\pm 5\,{\rm mBT}$.

4.2 Расчёт параметра G

Расчёт параметра G проводился для каждого из экспериментальных значений параметра накачки A. Связь параметра накачки A и параметра G с измеренными значениями мощности накачки $P_{\text{нак}}$ и релаксационной частоты $f_{\text{рел}}$ даётся выражениями

$$A = \frac{P_{\text{\tiny HAK}}}{P_{\text{\tiny Hop}}}, \quad \Omega = 2\pi f_{\text{\tiny pen}} T_1, \quad \Omega^2 = G \left(A - 1 \right), \tag{1}$$

где $T_1 = 0.23 \,\mathrm{mc}$ — время релаксации насыщения.

Конечная формула для G и погрешности ΔG

$$G = \frac{(2\pi f_{\text{pen}} T_1)^2}{A - 1}, \quad \Delta_{\text{изм}} G = \frac{2(2\pi T_1)^2 f_{\text{pen}} \Delta_{\text{изм}} f_{\text{pen}}}{A - 1} + \frac{(2\pi f_{\text{pen}} T_1)^2}{(A - 1)^2} \Delta_{\text{изм}} A,$$

$$\Delta_{\text{изм}} A = \frac{\Delta_{\text{изм}} P_{\text{нак}}}{P_{\text{пор}}} + P_{\text{нак}} \frac{\Delta_{\text{изм}} P_{\text{пор}}}{P_{\text{пор}}^2},$$
(2)

где $\Delta_{\text{изм}} f_{\text{рел}} = 10 \, \text{к} \Gamma \text{ц}$ — измерительная погрешность измерения релаксационной частоты. На Рис. 3 представлена зависимость параметра G от параметра накачки A. Среднее значение $\langle G \rangle = 1.07 \times 10^6$. Найдём погрешность для параметра G

$$\Delta G = \sqrt{\Delta_{\text{\tiny MSM}} G + \Delta_{\text{\tiny C,JI,YH}} G},\tag{3}$$

Рис. 3: Зависимость параметра G от параметра накачки.

где случайная погрешность считается как стандартная ошибка среднего. Тогда можно записать для среднего значения параметра ${\cal G}$

$$\langle G \rangle = (1.07 \pm 0.35) \times 10^6.$$
 (4)

5 Графики зависимости мощности излучения и релаксационной частоты от параметра накачки