NAME: SOLUTIONS

1	/8	2	/10	3	/10	4	/12	5	/10	T	/50

MATH 251 (Fall 2011) Exam III, Nov 22nd

No calculators, books or notes! Show all work and give **complete explanations**. This 65 min exam is worth 50 points.

(1) [8 pts] Let C be the straight line segment in the xy-plane from the point (1,2) to the point (5,3). Let **F** be the vector field in the plane defined by $\mathbf{F}(x,y) = \frac{1}{2}(x\mathbf{i} + y\mathbf{j})$.

(a) Make a sketch showing the vector $\mathbf{F}(x,y)$ at three points (x,y) on C. Using your sketch, determine whether $\int_C \mathbf{F} \cdot d\mathbf{r}$ is positive, negative, or zero. Explain!

The angle between \vec{F} and the target rector $\vec{\tau}$ to C is always a cutto. So $\frac{3}{2}$ $\vec{F} \cdot \vec{\tau} = |\vec{F}| |\vec{T}| \cos \theta > 0$ (as $-\pi r < \theta < \pi r$)

So $c\vec{F} \cdot d\vec{\tau} = \int_{e} (\vec{F} \cdot \vec{\tau}) d\theta > 0$.

So
$$CF.dr = 1e(F.T)ds > 0$$

 $r = 1e(F.T)ds > 0$
 $r = 1e(F.T)ds > 0$

(2) [10 pts]

(a) Let D be the half-disc in the xy-plane given by $x^2 + y^2 \le 9$ and $x \ge 0$. Calculate $\iint_D e^{-(x^2 + y^2)} dA$.

SS @- (x2+52) dA P O=TTZ J=1/2 / 2-2-rdrd0 0=-Th 1=0

(b) Let D be the region in the first quadrant (i.e., $x \geq 0$ and $y \geq 0$) of the xy-plane that is bounded by the y axis and the curves $y = \sin x$ and $y = \cos x$, and such that $x \le \pi/4$. Calculate $\iint_D y \, dA$.

JJy dA

$$= \frac{1}{2} \int_{\infty}^{\infty} [y^2]_{y=\sin x}^{y=\cos x} dx$$

2 / 11/4 coo2 x _ su2 x dx

u= r2 du= 2rdr

575

5 y 5 cm2

(3) [10 pts] Let $\mathbf{r}(t) = (2\cos t, 3\sin t)$, for $0 \le t \le 2\pi$, and let $(u, v) = F(x, y) = (3x + 2y, x^2 + 5y^2)$. The

(4) [12 pts] Let
$$z = f(x, y) = x^3 - 12xy + 8y^3$$
.

(a) Find a tangent vector to the level curve f(x,y) = 5 at the point (x,y) = (1,-1).

A target vector of to fry = 5 at (1-1)

must be \bot to $\nabla f(-1)$.

Now $\nabla f = (3x^2 - 12y, -12x + 24y^2)$ $\nabla f(-1) = (15(12))$

So chose $\vec{v} = (12, -15)$ Ber escomple

(b) Find all local maxima, local minima, and saddle points of f.

CPTS 0=3x2-12y
0=+12x4 24y2

0 = -12x4 24y

Soly D. 3

444 = 22 = 49

⇒ y (y³-1) =0

€ y =0 or y3=1

€ y=0 or y=+1.

Now y=0 => 2=0 by 3)
y=1 => x=2 by 3)

EPT (0,0), (2,1)

> > 2 2 2 E

71= 2y2 8

A+(1-1)

 $D = \begin{vmatrix} 600 & -12 \\ -12 & 489 \end{vmatrix}$

(6)

D = 0 -12 = -144<0

Saddle Point

 $\frac{|\langle 2, 1 \rangle|}{|\langle 2, 1 \rangle|} = \frac{|\langle 2, 1 \rangle|}{|\langle 2, 1 \rangle|} =$

= 12x48-12x12 >0

frex = 12 >0 LiseAz Mid. (5) [10 pts] Let z = f(x, y) be a function such that

(x,y)	(2,1)	(-2, -1)	$(0, \sqrt{3})$	$(\sqrt{3}, 0)$
$\frac{\partial f}{\partial x}$	-10	10	0	4
$\frac{\partial f}{\partial y}$	-2	4	0	-3

Which of the (x, y) values in this table are candidates for the absolute maximum and absolute minimum of f on the curve $2x^2 - 3xy + 4y^2 = 6$? Carefully justify your answers!

This is a constrained optimization problem. So condidates are solutions of Logrange multiplies agas: $Qf = \lambda \partial g$ where $g(ny) = 2\pi^2 - 3ny \tau G$ g = e

Now $\frac{39}{31} = 4x - 3y$ $\frac{39}{31} = -3x + 6y$ $\frac{39}{31} = -3x +$

Pledge: I have neither given nor received aid on this exam

Signature: