1D Finite Element Analysis

Shortcoming of the classical (variational) Ritz method

- Difficult to construct approximation functions
 - Especially in > 1 dimension
 - No systematic way of choosing them

$$u \approx u_h = \sum_{j=1}^m c_j \phi_j \quad ???$$

Finite Element Method overcomes this shortcoming

• By...

Finite Element Method overcomes this shortcoming

• By...

Return to day 1

- The domain of the problem is represented by a collection of simple subdomains, called *finite elements*.
 - The collection of finite elements is called the finite element mesh.

- The domain of the problem is represented by a collection of simple subdomains, called *finite elements*.
 - The collection of finite elements is called the finite element mesh.

- The domain of the problem is represented by a collection of simple subdomains, called *finite elements*.
 - The collection of finite elements is called the finite element mesh.
- Over each finite element, the physical process is approximated by functions (polynomials or otherwise) and algebraic equations relating physical quantities at selective points, called *nodes*, are developed.

$$u \approx u_h = \sum_{j=1}^n u_j \psi_j$$

- The domain of the problem is represented by a collection of simple subdomains, called *finite elements*.
 - The collection of finite elements is called the finite element mesh.
- Over each finite element, the physical process is approximated by functions (polynomials or otherwise) and algebraic equations relating physical quantities at selective points, called *nodes*, are developed.
- The element equations are *assembled* using continuity and/or "balance" of physical quantities and solved.

Determining the interpolation (shape) functions

- The approximate solution should be:
 - Continuous over the element and differentiable (required by weak form).
 - Complete.
 - Should be an interpolant of the nodal variables of interest.

Determining the interpolation (shape) functions (cont.)

 The interpolation (shape) functions are denoted by:

 ψ_j or N_j

 For weak form derivation of element equations the interpolation functions must satisfy the essential boundary conditions (for admissibility).