CUR Decomposition

Review ...

- Last time
 - ▶ Matrix Sketching
- ▶ Today
 - ► CUR Decompositions
- Next class
 - Social Networks Graph Algorithms

Matrix Approximations $(n \times m)$

- UV decomposition
 - Optimization problem
 - ▶ Dense *U*, *V* matrices of size $n \times d$ and $d \times n$
- ► SVD
 - Very powerful algorithm
 - ► Low-rank approximation using random projections
 - ▶ Dense *U,V* matrices of size $n \times d$ and $d \times n$
- Sketching
 - Streaming algorithm
 - \blacktriangleright Maintain the dense sketch of size $n \times d$

CUR Decomposition

- ▶ In most applications, the matrix A is sparse
- Although the previously covered approaches achieve dimensionality reduction, we are still left to deal with either a large n or large m
- ▶ In CUR decomposition, we decompose the matrix A as,

$$A = C U R$$

where, C, R are sparse matrices of size $n \times d$ and $d \times m$ and U is a dense matrix of size $d \times d$

 \blacktriangleright Is always an approximation irrespective of the choice of d

CUR Decomposition

- ightharpoonup Consider matrix A of size $n \times m$
- lacktriangle Choose the number of "concepts" r to be used for the decomposition
 - Remember the Utility matrix for recommendation systems
 - Similar to the idea of classes of users/items
- ► A CUR-decomposition of *A* is
 - \blacktriangleright a randomly chosen set of r columns of A, which form the $n \times r$ matrix C,
 - ightharpoonup a randomly chosen set of r rows of A , which form the $r \times m$ matrix R, and
 - ightharpoonup a specially constructed $r \times r$ matrix U

Constructing the *U* matrix

- Let W be the $r \times r$ matrix at the intersection of the chosen rows and columns (C,R) of A
- ▶ Compute the SVD of W; $W = X\Sigma Y^T$
- \blacktriangleright Compute Σ^+ , the pseudoinverse of Σ
- $U = Y(\Sigma^+)^2 X^T$

Choosing the right rows & columns

- Although we choose the rows & columns randomly, we maintain a bias towards the more important rows & columns
- The measure of importance is square of the Frobenius norm

$$f = \sum_{i,j} a_{ij}^2$$

- We choose rows with probability $p_i = \sum_j a_{ij}^2/f$, and
- ▶ We choose columns with probability $q_j = \sum_i a_{ij}^2 / f$.
- Scale each selected row/column by dividing its elements by the square root of the expected number of times this row/column would be picked i.e., divide elements by $\sqrt{rq_j}$ or $\sqrt{rp_i}$