LAGUARDIA COMMUNITY COLLEGE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF MATHEMATICS, ENGINEERING, and COMPUTER SCIENCE

MAC101 Introduction to Computer Science (Modified 6/20/2016 by Andi Toce)

4 hours (3 lecture, 1 lab), 3 credits

Prerequisites: CSE099 and MAT200

Pre/Corequisites: ENG/ESA099/ENC101, ENA099

CATALOG DESCRIPTION:

In this first course in the computer science program, emphasis will be placed on algorithmic design. Basic concepts such as selection statements, loops, character strings, arrays, pointers and file processing will be taught. Students will be required to write several programs in an appropriate language.

Instructional Objectives:

- 1. Introduce students to the technical vocabulary of computer science.
- 2. Enable students to design programs to solve computer science problems.
- 3. Familiarize students with number systems and the representation of data in computer memory.
- 4. Familiarize students with basic control structures such as iteration, sequence and selection.
- 5. Introduce the concept of recursion.
- 6. Familiarize students with basic sorting algorithms.
- 7. Introduce students to arrays and strings.

Performance Objectives:

- 1. Use appropriate technical vocabulary in writing assignments and projects.
- 2. Design programs (algorithms) to solve problems.
- 3. Convert numbers from one base to another and describe computer memory structures.
- 4. Write programs using the basic control structures of iteration, sequence and selection.
- 5. Utilize recursive methods in solving problems.
- 6. Code basic sorting algorithms in an appropriate higher-level language.
- 7. Use data structures such as arrays and strings.

TEXTBOOK: Brian Overland, C++ without fear: A Beginner's Guide that Makes You Feel

Smart, 3rd edition, Prentice Hall, 2016, ISBN: 978-0-13-431430-3

Note: Other book and online resources can also be used in this class.

GRADING STANDARDS:

 Quizzes and Lab Work
 10%

 HW
 10%

 Midterm Exams (2@20%)
 40%

 Final Exam
 40%

 Total
 100%

Note: Your labs will be graded following the following rubric:

1	2	3	4	5
The student has	The program has	The structure of	The program	The program
entered a code	a sense of the	the program is	solves the	solves the
that does not	solution but is	good but there is	problem but it is	problem
solve the	lacking some key	one small logic	not documented	correctly, is
problem and may	logic.	or syntax error.	and written	documented, and
or may not run.			concisely and	tested for all
The code has no			lacks good	cases.
relation at all to			programming	Experiments
the solution of			style.	
the problem.				

ACADEMIC INTEGRITY: This class will be conducted in compliance with LaGuardia Community College's academic integrity policy.

Sanctions for Academic Integrity Violations: Sanctions or penalties for violations of academic integrity are imposed by the faculty member teaching the course upon discovery of a violation. All cases of academic dishonesty are filed with the College Adjudicator, who maintains a record of academic integrity violations.

The occurrence of a second or third offense of academic dishonesty may involve the imposition of a disciplinary sanction in addition to the academic sanction imposed by the instructor. Sanctions for violations of academic integrity include, but are not limited to, the following:

- failure of an exam
- a grade of F on an essay or research paper
- failure of a course project
- failure of the course
- suspension from the College
- dismissal from the College

ATTENDANCE: The maximum number of unexcused absences allowed is 15% of the total class meetings (about 7 hours). Unexcused absences beyond this maximum will result in a grade of WU or F.

COURSE OUTLINE

Weeks	Торіс	
Week 1	Computer use. Introduction to C++	
	and visual C++. Inputs and Outputs	
Week 2	Numbers at Different Bases	
Week 3	Data types, Variables, and	
	Assignments	
Week 4	Selection Statements <i>if-else</i>	
Week 5	Repetition, while and for loops	
	Midterm 1	
Week 6	Functions and parameters	
Week 7	Scope of a variable, Passing	
	parameters by value vs. by reference	
Week 8	Arrays	
Week 9	Introduction to pointers, Pointers vs.	
	references	
	Midterm 2	
Week 10	Strings and other data structures	
Week 11	File processing	
	Elementary sorting algorithms	
Week 12	Sorting algorithms	
	Final Exam Review	
Week 13	Final Exam	