

Functional Analysis I

Homework Assignment 8

Martin Genzel, Mones Raslan

Summer Term 2019

Exercise 1: 5 Points

Prove the unproved claims of the lecture:

- (i) Lemma 6.20: The intersection of topologies on a set X is again a topology on X. If $\gamma \subset \mathcal{P}(X)$, then $\mathcal{T}(\gamma)$ is the smallest topology on X containing γ .
- (ii) Lemma 6.22: Let X be a set, (X_i, \mathcal{T}_i) , $i \in I$, topological spaces. Further, let γ_i be a subbasis of \mathcal{T}_i for every $i \in I$. Then the weak topology (see Definition 6.16) with respect to the functions $f_i: X \to X_i$, $i \in I$, is given by $\mathcal{T}(\gamma)$, where

$$\gamma = \{ f_i^{-1}(V) : V \in \gamma_i, i \in I \}.$$

Exercise 2: 5 Points

Let $(E, \|\cdot\|)$ be a finite-dimensional normed space. Show that $\sigma(E, E^*)$ coincides with the usual topology on E induced by $\|\cdot\|$.

Exercise 3: 4 Points

Let E be a normed space. Show, that a sequence $(x_n)_n \subset E$ is weakly convergent to $x \in E$ in the sense of Definition 6.1 if and only if $(x_n)_n$ converges to x with respect to $\sigma(E, E^*)$. Furthermore, show that a sequence $(f_n)_n \subset E^*$ is weak-*- convergent to $f \in E^*$ in the sense of Definition 6.3 if and only if $(f_n)_n$ converges to f with respect to $\sigma(E^*, E)$.

Exercise 4: 6 Points

Let E be a reflexive space and $A \subset E$ be bounded and $\sigma(E, E^*)$ -closed. Show that A is weakly sequentially compact, i.e. every sequence in A has a weakly convergent subsequence with limit in A. This statement is a special case of the Eberlein-Smulian Theorem, which you are not allowed to use in this task, since we did not prove it.

Since June, 10 is a public holiday, please submit your homework in a tutorial of your choice between June, 11 and June, 14.