Algorithmics	Student information	Date	Number of session
	UO: 299874	17/03/2025	7
	Surname: Puebla	Escuela de Ingeniería Informática	
	Name: Álvaro		

Activity 1. TABLE FOR GRAPH COLOURING TIMES

n	t Colouring (ms)	
2^3	1.72210 e-05	
2^4	0.0001164	
2^5	0.0001575	
2^6	0.0001601	
2^7	0.0003204	
2^8	0.0006366	
2^9	0.0012312	
2^10	0.0026956	
2^11	0.0056018	
2^12	0.0127153	
2^13	0.0248535	
2^14	0.0603334	
2^15	0.1339454	
2^16	0.2954041	

If we double the size, the time doubles.

I would say that is O(n*log(n)) as I first of all add the nodes in a heap and it is O(log(n)), but I do it for the n elements, so it is O(n*log(n)). The rest of code does not increase the complexity. It may be $O(n^2)$, but it depends on the number of interconnectivity of the nodes in the graph.