Churn Case Study

Team Bar Charts for Days

(formerly team dropna)

The problem

Ride-sharing company X wants to predict rider retention.

What factors are the best predictors for retention??

Context

- sample dataset of a cohort of users who signed up for an account in January 2014
- data was pulled on July 1, 2014;

Logistic regression

- 1. Fit logistic regression to training data
- 2. Get cross-validated y predictions (cross_val_predict)
- 3. Score:
 - a. X_train vs. cross_val_pred_y's **0.722**
 - b. X_tst vs. y_test

Accuracy: 0.728

Recall: 0.499

Precision: 0.675

0.718

K-Nearest Neighbors Model

- 1. Fit KNeighborsClassifier to training data
- 2. Get cross-validated y predictions (cross_val_predict)
- 3. Score:
 - a. X_train vs. cross_val_pred_y's
 - b. X_tst vs. y_test

Take-aways:

- This model appears to be slightly overfit
- Out-of-set performance worse than in-set x-val performance

0.808

0.744

Random Forest Model

- Fit RandomForestClassifier to training data
- 2. Get cross-validated y predictions (cross_val_predict)
- 3. Score:
 - a. X_train vs. cross_val_pred_y's 0.772
 - b. X_test vs. y_test

0.749

Accuracy: 0.769

Recall: 0.626

Precision: 0.714

Take-aways:

- Not overfit (like KNN)
- Virtually identical out-of-set performance

SVM

- 1. Fit SVC to training data
- 2. Get cross-validated y predictions (cross_val_predict)

0.762

- 3. Score:
 - a. X_train vs. cross_val_pred_y's **0.806**
 - b. X_test vs. y_test

Accuracy: 0.745 Recall: 0.55904

precision: 0.689

Gradient Boosted Trees Classification Model

- 1. Split Training data into training and validation set
- 2. Fit GradientBoostingClassifier to training data
- 3. Got cross-validated y predictions (cross_val_predict) on training set
- 4. Score:
 - a. X_train vs. cross_val_pred_y's **0.788**
 - b. X_val vs. y_val **0.792**

Accuracy: 0.792

Recall: 0.665

Precision: 0.749

EDA

	feature name	feature description
0	last_trip_date	the last time this user completed a trip; in the form 'YYYYMMDD'
1	phone	primary device for this user
2	weekday_pct	the percent of the user's trips occurring during a weekday
3	avg_rating_by_driver	the rider's average rating over all of their trips
4	city	city this user signed up in
5	trips_in_first_30_days	the number of trips this user took in the first 30 days after signing up
6	signup_date	date of account registration; in the form `YYYYMMDD`
7	avg_rating_of_driver	the rider's average rating of their drivers over all of their trips
8	avg_surge	The average surge multiplier over all of this user's trips
9	surge_pct	the percent of trips taken with surge multiplier > 1
10	avg_dist	the average distance (in miles) per trip taken in the first 30 days after signup
11	luxury_car_user	TRUE if the user took a luxury car in their first 30 days; FALSE otherwise

Computing the Target

We computed retention, rather than churn

We consider a user retained if they were "active" (i.e. took a trip) in the preceding 30 days (from the day the data was pulled). In other words, a user is "active" if they have taken a trip since June 1, 2014

```
df.last_trip_date =
pd.to_datetime(df.last_trip_date)
```

df["active"] = df['last_trip_date'] > "2014-06-01"

Data Munging

Find missing values

Impute Missing values (used mean for user and driver ratings)

Drop remaining NAs (from phones)

Drop date columns

	NaNs as prop of total
avg_dist	0.000000
avg_rating_by_driver	0.004050
avg_rating_of_driver	0.163200
avg_surge	0.00000
city	0.000000
last_trip_date	0.000000
phone	0.007975
signup_date	0.00000
surge_pct	0.000000
trips_in_first_30_days	0.000000
luxury_car_user	0.000000
weekday_pct	0.000000
active	0.000000

Model Fitting

Recommendations