Estrutura de Dados

Augusto Guerra de Lima

Universidade Federal de Minas Gerais

Rascunho, março de 2024

Sumário

1	Con	nplexidade de algoritmos
	1.1	Crescimento assintótico de funções
		1.1.1 Notação O
		1.1.2 Notação Ω
		1.1.3 Notação Θ
		1.1.4 Notação $o \in \omega$
	1.2	Identidades de notação assintótica
	1.3	O básico das regras de cálculo de complexidade
		1.3.1 Constantes
		1.3.2 Laços de iteração
		1.3.3 Fases
		1.3.4 Várias variáveis
		1.3.5 Recursão
	1.4	Classes de complexidade
		1.4.1 Lista de classes de complexidade
	1.5	Pior caso, melhor caso e caso médio
2	Polo	ações de recerrência

Prefácio

Este texto tem como propósito primordial (1) atender à necessidade de um material que apresente os tópicos abordados na disciplina de *Estrutura de Dados* de forma organizada e (2) oferecer suporte a estudantes que não tenham cursado a disciplina de *Matemática Discreta*, promovendo um encontro mais suave com os tópicos em matemática do conteúdo.

O texto está sendo aprimorado, e ficarei grato por qualquer sugestão ou comentário que você (leitor) possa enviar para o e-mail: augustoguerradelima@proton.me.

Belo Horizonte, fevereiro de 2024 Augusto Guerra de Lima

1 Complexidade de algoritmos

Antes de tudo, uma pergunta simples: Quantas comparações o laço de iteração abaixo deve fazer até parar?

$$for(i:=0; i< n; i++)$$

O laço realiza n+1 comparações e repete n vezes. Esse tipo de contagem é importante para determinar a complexidade de um algoritmo, isso será feito junto de uma notação matemática chamada **notação** assintótica.

Tempo de execução, armazenamento e robustez são algumas características que determinam a qualidade de um algoritmo.

A **complexidade do tempo de execução** de um algoritmo é avaliada para estimar sua eficiência antes da implementação. A eficiência é representada por uma função que recebe o tamanho da entrada do algoritmo como parâmetro.

1.1 Crescimento assintótico de funções

A análise assintótica avalia o comportamento de uma função para valores de parâmetros significativamente grandes. Por exemplo, ao ver a expressão $n^2 + 10$ é comum pensar em valores pequenos de n, a análise assintótica se preocupa com valores enormes de n onde a constante 10 por exemplo, não faria diferença e o termo n^2 dominaria assintoticamente o crescimento da função.

As notações utilizadas para descrever complexidade são definidas em termos de funções cujos domínios são o conjunto dos números inteiros não negativos. Definiremos que $\mathbb{N}_0 = \{0,1,2...\}$ e \mathbb{R}^+ como o conjunto dos números reais não negativos.

Sejam f e g funções tais que a taxa de crescimento de f é maior que a de g, podemos denotar $g \prec f$. Antes de introduzir a notação assintótica, vamos avaliar um exemplo preliminar.

Exemplo 1 (Comparando funções)

Sejam f e g funções definidas no conjunto dos números inteiros não negativos, para comparar o comportamento assintótico de g e f, é preciso encontrar uma constante k tal que $g(n) \le kf(n)$ para todo n suficientemente grande (escreveremos $n \ge n_0$). Isto é, encontrar constantes k e n_0 .

Sabendo $g(n) = \lceil \frac{n}{2} \rceil + 10$ e f(n) = n, encontrar k e n_0 tais que $g(n) \le kf(n), \forall n \ge n_0$.

$$\left\lceil \frac{n}{2} \right\rceil \le kn; \quad \left\lceil \frac{n}{2} \right\rceil \le \frac{n}{2} + 11 \le \frac{n}{2} + \frac{n}{2} = n.$$

Se k=1 e $n_0=21$, por exemplo, então $f(n_0)=\lceil \frac{21}{2} \rceil+10=21$ e $g(n_0)=21$ e uma solução foi encontrada. Podem haver mais soluções.

Exemplo 2 (Caso sem solução)

Se $g(n) = n^3$ e $f(n) = n^2$, encontrar k e n_0 tais que $g(n) \le kf(n)$, $\forall n \ge n_0$.

$$n^3 \le kn^2 \Rightarrow n \le k, \ \forall n \ge n_0.$$

É impossível que uma função linear seja sempre menor ou igual a uma constante, portanto não há solução.

\triangle

 \triangle

1.1.1 Notação O

A notação O(f(n)) (O grande de f de n), é o **limite assintótico superior justo** é a mais utilizada para descrever a complexidade de um algoritmo. Para uma função f(n), O(f(n)) é o conjunto de funções

Figura 1: $g(n) \in O(f(n))$.

$$O(f(n)) = \{g : \mathbb{N}_0 \to \mathbb{R}^+ : \exists k, n_0 > 0; 0 \le g(n) \le kf(n), \forall n \ge n_0\}.$$

 $O(f(n)) = \{\text{``Todas as funções que têm taxa de crescimento menor ou igual a } f(n)\text{'`}\}.$

Dizer $g(n) \in O(f(n))$ é dar um limite superior para g(n), ou seja, intuitivamente para todos os valores $n \ge n_0$, encontrar uma família de funções com taxa de crescimento maior que g(n). A figura 1 mostra um exemplo gráfico.

Utilizando a notação O, muitas vezes é possível determinar o tempo de execução de um algoritmo apenas inspecionando sua estrutura global. Um laço de iteração que fizer n+1 comparações por exemplo, tem tempo de execução O(n).

Exemplo

Sejam $g(n) = 2n^2 + n$ e $f(n) = n^2$, é verdadeiro que $g(n) \in O(f(n))$ ou melhor, $2n^2 + n \in O(n^2)$. Substituindo na desigualdade e simplificando os termos

$$2n^2 + n \le kn^2 \Rightarrow 2 + \frac{1}{n} \le k \forall n \ge n_0$$

k=3 e $n_0=1$ satisfazem $g(n)\in O(f(n))$. Basta substituir os valores na desigualdade e verificar

$$2n^2 + n < 3n^2 \Rightarrow n < n^2$$

A desigualdade é verdadeira para todo $n \ge 1$, em outras palavras $n_0 = 1$.

 \triangle

1.1.2 Notação Ω

A notação $\Omega(f(n))$ (Ômega de f de n), é o **limite assintótico inferior justo**. Nesse caso, dizer $g(n) = \Omega(f(n))$, significa que existe uma constante k tal que $0 \le kf(n) \le g(n)$ para todo $n \ge n_0$. Para uma função f(n), $\Omega(f(n))$ é o conjunto de funções

$$\Omega(f(n)) = \{g : \mathbb{N}_0 \to \mathbb{R}^+ : \exists k, \ n_0 > 0; \ 0 \le kf(n) \le g(n), \ \forall n \ge n_0\}.$$

 $\Omega(f(n)) = \{\text{``Todas as funções que têm taxa de crescimento maior ou igual a } f(n)\).$

É importante notar que $g(n) \in O(f(n)) \Leftrightarrow f(n) \in \Omega(g(n))$. Essa propriedade é chamada de **simetria** de **transposição**.

Figura 2: $g(n) \in \Omega(f(n))$.

Dizer que a complexidade de tempo de execução de um algoritmo é $\Omega(f(n))$ significa que seu tempo de execução será no mínimo kf(n) para uma entrada de tamanho $n \ge n_0$.

Exemplo

Seja $f(n) = 2n^2$, verifique se $f(n) \in \Omega(n^2)$, $f(n) \in \Omega(n\log(n))$ e $f(n) \in \Omega(n)$, utilizando a definição de taxa de crescimento.

Como $n \prec n \log(n) \prec n^2 \approx 2n^2$, então é possível dizer que $2n^2 \in \Omega(n^2)$, $2n^2 \in \Omega(n \log(n))$ e $2n^2 \in \Omega(n)$.

\triangle

1.1.3 Notação Θ

 $g(n) \in \Theta(f(n))(g$ de n está em theta de f de n) significa que f(n) é o **limite assintótico restrito** de g(n), existem constantes k_0 e k_1 de forma que $0 \le k_0 f(n) \le g(n) \le k_1 f(n)$, $\forall n \ge n_0$. Ou seja, o conjunto de funções

$$\Theta(f(n)) = \{g : \mathbb{N}_0 \to \mathbb{R}^+ : \exists k_0, \ k_1, \ n_0 > 0; \ 0 \le k_0 f(n) \le g(n) \le k_1 f(n), \ \forall n \ge n_0\}.$$

Se $g(n) \in \Theta(f(n))$, então $g(n) \in O(f(n))$ e $f(n) \in \Omega(g(n))$, a recíproca também é válida. Além disso $g(n) \in \Theta(f(n)) \Leftrightarrow f(n) \in \Theta(g(n))$.

Exemplo

Mostre que $\frac{n^2}{2} - 3n \in \Theta(n^2)$.

O problema consiste em encontrar k_0 , k_1 , $n_0 > 0$ tais que $k_0 n^2 \le \frac{n^2}{2} - 3n \le k_1 n^2 \ \forall n \ge n_0$. Dividindo a expressão por n^2

$$k_0 \le \frac{1}{2} - \frac{3}{n} \le k_1 \ \forall n \ge n_0.$$

Para a inequação da direita $\frac{1}{2} - \frac{3}{n} \le k_1$, escolhendo $n_0 = 1$ e $k_1 = \frac{1}{2}$ encontra-se $\frac{1}{2} - 3 \le \frac{1}{2}$, satisfazendo a primeira desigualdade.

Na segunda inequação $\frac{1}{2} - \frac{3}{n} \ge k_0$, se escolhermos $k_0 = \frac{1}{14} < k_1$ e $n_0 = 7$ a desigualdade é satisfeita.

Dessa forma, para $n \le 7$ ou seja $n_0 = 7$, são escolhidas $k_0 = \frac{1}{14}$ e $k_1 = \frac{1}{2}$, e pela definição $\frac{n^2}{2} - 3n \in \Theta(n^2)$.

 \triangle

Figura 3: $g(n) \in \Theta(f(n))$.

1.1.4 Notação ο e ω

As duas últimas notações são usadas para **limites assintoticamente não justos**, o para superiores e ω para inferiores.

Por exemplo, seja λ uma constante maior que zero, $\lambda n^2 = O(n^2)$ mas $\lambda n^2 \neq o(n^2)$. Ademais, $\lambda n = o(n^2)$.

$$o(f(n)) = \{g : \mathbb{N}_0 \to \mathbb{R}^+ : \exists k, n_0 > 0; \ 0 < g(n) < kf(n), \ \forall n > n_0 \}.$$

Os limites abaixo revelam que à medida que $n \to \infty$, g(n) torna-se insignificante em relação à f(n).

$$lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty; \ lim_{n\to\infty} \frac{g(n)}{f(n)} = 0.$$

De forma análoga, $\lambda n^2 = \omega(n)$ mas $\lambda n^2 \neq \omega(n^2)$, contudo $\lambda n^2 = \Omega(n^2)$.

$$\omega(f(n)) = \{g : \mathbb{N}_0 \to \mathbb{R}^+ : \exists k, n_0 > 0; \ 0 \le kf(n) < g(n), \ \forall n \ge n_0\}.$$

Os limites abaixo revelam que à medida que $n \to \infty$, f(n) torna-se insignificante em relação à g(n).

$$lim_{n\to\infty} \frac{g(n)}{f(n)} = \infty; \ lim_{n\to\infty} \frac{f(n)}{g(n)} = 0.$$

É claro que as notações o e ω respeitam a identidade de simetria de transposição entre si.

Exemplo

Prove que $2n \in o(n^2)$ mas $2n^2 \notin o(n^2)$.

$$\lim_{n \to \infty} \frac{2n}{n^2} = 0; \quad \lim_{n \to \infty} \frac{2n^2}{n^2} = 2.$$

Assim, $2n \in o(n^2)$ é uma expressão válida para todos os valores de k > 0 e $n_0 = 1$ e como o limite no segundo caso não tende a zero, não existem valores k > 0 e n_0 que satisfaçam a definição da notação o, portanto $2n^2 \notin o(n^2)$.

Figura 4: Conjunto de funções nas notações.

1.2 Identidades de notação assintótica

As comparações assintóticas respeitam algumas identidades, considerando funções f e g assintoticamente positivas.

Reflexividade

$$f(n) \in \Theta(f(n))$$
.

Aplica-se também as notações $O \in \Omega$.

Transitividade

$$f(n) \in \Theta(f(n)), g(n) \in \Theta(h(n)) \Rightarrow f(n) \in \Theta(h(n)).$$

Aplica-se para todas as outras notações.

Simetria

$$f(n) \in \Theta(g(n)) \Leftrightarrow g(n) \in \Theta(f(n)).$$

Outras

$$O(n+m) = O(n) = O(m).$$

$$O(kn) = kO(n) = O(n).$$

Quando a notação assintótica é utilizada sozinha no lado direito de uma equação como em n = O(n), o sinal de = não representa igualdade e sim que a função $f(n) = n \in O(n)$, sendo unidirecional, assim nunca se deve escrever coisas do tipo O(n) = n.

Em equações como a apresentada abaixo = representa igualdade.

$$n^2 + n + 10 = n^2 + \Theta(n).$$

Na equação supracitada, a notação assintótica pode ser interpretada como uma função que não é importante definir precisamente.

$$n^2 + n + 10 = n^2 + f(n)$$
.

A função f(n) pertence ao conjunto $\Theta(n)$. Nesse caso, f(n) = n + 10 que de fato pertence a $\Theta(n)$.

1.3 O básico das regras de cálculo de complexidade

Como mencionado, a partir de uma inspeção do algoritmo, antes de sua implementação é possível estimar sua complexidade e colocá-la em termos de O(f(n)). Algumas estruturas no algoritmo podem ter suas complexidades estimadas rapidamente, outros algoritmos requerem técnicas mais avançadas. O cálculo do número de operações é um problema de contagem, abaixo alguns exemplos simples utilizando os princípios fundamentais da contagem.

Deve-se sempre procurar expressar o custo assintótico de algoritmos da forma mais precisa possível. No caso da notação O, essa precisão envolve (1) expressar o limite superior firme do custo assintótico do algoritmo e (2) indicar o caso do algoritmo para o qual esse custo se aplica.

Exemplo

O algoritmo para encontrar um elemento k em um vetor não ordenado de tamanho n tem custo O(n) no pior caso. É possível dizer que no pior caso o algoritmo é $O(n^2)$, no entanto, esse custo não define um limite superior firme, que é O(n) e a função f(n) = n que deve ser usada.

\triangle

1.3.1 Constantes

Exemplo

Operações aritméticas e atribuições levam um custo constante e distinto para serem realizadas. Por exemplo no pseudocódigo abaixo, cada linha tem um custo constante k_0 , k_1 e k_2 respectivamente. Frequentemente, consideramos todas com custo 1, mas na realidade isso é falso, elas possuem custos distintos.

```
int a:= 2
int b:= 7
int a:=a+b
```

A chamada **função de complexidade**, são os valores explícitos $f(n) = k_0 + k_1 + k_2 = k_3$ ou f(n) = 3, a **ordem de complexidade** é a ordem expressa em notação assintótica apenas com os termos dominantes, ignorando constantes e termos assintoticamente irrelevantes, f(n) = O(1).

Δ

1.3.2 Laços de iteração

Exemplo 1

O algoritmo representado por pseudocódigo abaixo está somando elementos de um vetor V utilizando um laço de iteração for.

```
int soma(V,n)
{
    int s:= 0
    for(i:=0; i<n; i++)
        s:=s+V[i]

    return s
}</pre>
```

Primeiramente vamos estimar a complexidade do tempo de execução do algoritmo.

(1) Atribuir o valor 0 para s tem custo 1;

- (2) No laço de iteração for i := 0 tem custo 1, i + + é feito n vezes e a comparação i < n, n + 1 vezes, é possível então dizer que o for tem custo 2n + 2, no entanto o importante é a operação mais realizada, a de *comparação* i < n, com custo n + 1;
- (3) A atribuição s := s + V[i], dentro do laço de repetição é no total realizada n vezes, portanto tem custo n.

Somando as complexidades em (1), (2) e (3) obtemos g(n) = 2n + 3. E podemos dizer g(n) = O(n).

A complexidade de espaço nesse algoritmo também pode ser estimada.

- (1) As variáveis n, s e i tem custo 1, somando temos 3;
- (2) V é um vetor que armazena n variáveis e tem custo n;

Somando as complexidades de (1) e (2), obtemos S(n) = n + 3 e S(n) = O(n).

\triangle

Exemplo 2 (Laços aninhados)

Um caso extremamente comum são os laços de iteração aninhados.

Note que a cada iteração do primeiro laço, o segundo executa n+1 comparações, mas como o primeiro laço repete n iterações, obtemos $g(n) = n(n+1) = n^2 + n$ e $g(n) = O(n^2)$.

Generalizando, sejam i_0 , i_1 ,..., i_{k-1} , k variáveis distribuídas entre k laços de iteração, onde $i_k < n$ e $i_k + +$ para todo laço de iteração, ignorando outros procedimentos, podemos estimar a complexidade como $g(n) = O(n^k)$.

\triangle

Exemplo 3

Nos laços de iteração aninhados abaixo, repare a comparação j < i.

```
for ( i := 0; i < n; i ++)
  for ( j := 0; j < i; j ++)
  // procedimento</pre>
```

- (1) O primeiro laço com o iterador i realiza n + 1 comparações;
- (2) No segundo laço j varia de 0 a k a cada vez que i:=k, sendo $0 \le k \le n$. Dessa forma, o procedimento é executado $0+1+2+3+\ldots+n=\frac{n(n+1)}{2}$ vezes.

Sendo assim, a complexidade do algoritmo é $O(n^2)$.

\triangle

Exemplo 4 (Passos diferentes)

Repare no passo do laço de repetição abaixo i := i + k. Onde k é alguma constante

```
for ( i := 0; i < n; i := i + k)
// procedimento</pre>
```

Se i é incrementado de k em k, o procedimento é executado $\frac{n}{k}$ vezes e o laço realiza $\frac{n}{k}+1$ comparações. A complexidade do algoritmo é O(n).

\triangle

Exemplo 5 (Condição de parada)

Há casos em que o laço de iteração não é tão evidente, podendo ser o caso de inspecionar a condição de parada, ou seja, a condição que deve ser satisfeita para o laço de iteração parar de executar as operações dentro dele. No exemplo abaixo a condição de parada é j > n.

```
int j:= 0
for(i:=0; j <= n; i++)</pre>
```

j := j + i

Primeiramente, qual o comportamento da variável j a medida que i é incrementada ? (1) O comportamento de j é descrito na tabela abaixo;

$$\begin{array}{c|cccc} \mathbf{i} & \mathbf{j} & \\ \hline 0 & 0 & \\ 1 & 0+1=1 \\ 2 & 0+1+2=3 \\ k & 0+1+\ldots+k=\frac{k(k+1)}{2} \\ \end{array}$$

(2) Vamos assumir que a condição de parada foi alcançada, ou seja j > n. Isso significa que para algum valor i = k, j > n e como $j = \frac{k(k+1)}{2} > n$;

$$\frac{k(k+1)}{2} = \frac{k^2 + k}{2} > n \Rightarrow k^2 + k > 2n \Rightarrow k^2 > n \Rightarrow k > \sqrt{n}.$$

A complexidade desse algoritmo é $O(\sqrt{n})$.

\triangle

Exemplo 6

- (1) A variável i cresce em potências de base 2 e assume um valor 2^k ;
- (2) Assumindo que a condição de parada $i \ge n$ foi atingida, então $2^k \ge n$ e quando $2^k = n$, obtemos $k = \log_2(n)$;
 - (3) O procedimento é executado $\lceil \log_2(n) \rceil$ vezes.

A complexidade do algoritmo é O(log(n)).

\triangle

Exemplo 7

```
for ( i := 0;  i * i < n;  i ++)
// procedimento</pre>
```

A condição de parada do laço de iteração é $i^2 \le n$, o algoritmo tem complexidade $O(\sqrt{n})$.

Δ

1.3.3 Fases

Se um algoritmo possui diversas fases, a complexidade do tempo de execução será a da fase com maior complexidade.

Exemplo 1

No pseudocódigo abaixo, o laço com maior complexidade é o segundo, $O(n^2)$. A complexidade do algoritmo é $O(n^2)$.

\triangle

Exemplo 2 (Dependência de fases)

No pseudocódigo abaixo, a variável *p* cria uma dependência entre os laços, e embora eles não estejam aninhados, a complexidade do procedimento executado no segundo laço depende da complexidade do primeiro.

```
int p:= 0
for(i:= 0; i<n; i=i*2)
    p++

for(i:= 0; i<p; i=i*2)
    //procedimento</pre>
```

- (1) A variável p é incrementada $\lceil \log_2(n) \rceil$ vezes no primeiro laço de iteração;
- (2) O procedimento do segundo laço de repetição é executado $\log_2(p) = \log_2(\log_2(n))$ vezes.

A complexidade nessa caso é $O(\log \log(n))$.

 \triangle

1.3.4 Várias variáveis

Em alguns casos a complexidade pode depender de mais de uma variável e sua ordem de magnitude estará em função dessas variáveis.

Exemplo

```
for ( i := 0; i < n; i ++)
for ( j := 0; m; j ++)
    // procedimento</pre>
```

Nesse caso a complexidade é O(nm).

 \triangle

1.3.5 Recursão

A complexidade do tempo de execução de funções recursivas depende do número de chamadas e da complexidade de cada chamada.

Exemplo 1

```
fatorial(n)
{
    if (n=0)
        return 1

    n*fatorial(n-1)
}
```

- (1) Cada chamada faz uma comparação e tem complexidade O(1) (constante);
- (2) Dada uma entrada n a função faz n-1 chamadas recursivas;

A complexidade total é o produto da complexidade de cada chamada e da complexidade da quantidade de chamadas, dessa forma a complexidade é O(n).

\triangle

Exemplo 2

```
void funcao(n)
{
    if (n=1)
        return
```


Figura 5: Esboço, algumas funções da hierarquia.

```
funcao (n-1)
funcao (n-1)
}
```

- (1) Cada função gera duas chamadas do mesmo tipo, as próximas duas fazem juntas quatro chamadas, as próximas quatro, oito e assim por diante;
 - (2) quando as chamadas chegam em funcao (1) foram feitas 2^{n-1} chamadas. A complexidade é $O(2^n)$.

 \triangle

1.4 Classes de complexidade

Na análise de algoritmos existem classes de complexidade muito comuns. Do ponto de vista assintótico a seguinte hierarquia de funções pode ser definida

$$1 \prec \log(\log(n)) \prec \log(n) \prec \sqrt[k]{n} \prec n \prec n\log(n) \prec n^k \prec n^{\log(n)} \prec k^n \prec n! \prec n^n.$$

Onde k é uma constante maior que zero.

A hierarquia de funções supracitadas indica que as funções mais a direita tem uma **ordem de crescimento** maior. Ou seja, quando $n \to \infty$, assumem valores mais significativos.

1.4.1 Lista de classes de complexidade

- O(1) Dizemos que a complexidade do tempo de execução é **constante**, geralmente quando é utilizada uma formula fechada, não dependendo do tamanho da entrada;
- O(log(n)) A complexidade é dita **logarítmica**, geralmente o tamanho da entrada é dividido por um fator, um exemplo de algoritmo é a **busca binária**;
- $O(\sqrt{n})$ É uma complexidade de **raiz quadrada** que fica aproximadamente no meio da entrada já que $\sqrt{n} = \frac{\sqrt{n}}{n}$;
- O(n) Executa em tempo **linear**, geralmente é o melhor caso de complexidade possível de alcançar, já que muitas vezes é preciso acessar n posições pelo menos uma vez;
- O(nlog(n)) A complexidade **nlog(n)** é um forte indício de que a entrada está sendo ordenada ou que há uma **estrutura de dados** com operações de complexidade em tempo de execução de O(log(n));

- $O(n^2)$ Um algoritmo com complexidade de tempo de execução **quadrática** geralmente aparece em laços de iteração aninhados;
 - $O(n^3)$ É dito um algoritmo **cúbico**;
- $O(2^n)$ Em geral os casos k^n são chamados **exponenciais**, no entanto 2^n é um caso particular, pois é o número de subconjuntos de um conjunto discreto finito, o que pode revelar que o algoritmo itera por todos os subconjuntos da entrada;
- O(n!) Uma complexidade **fatorial** geralmente indica que o algoritmo itera por todas as permutações da entrada.

1.5 Pior caso, melhor caso e caso médio

Um mesmo algoritmo pode desempenhar diferentes complexidades dependendo da entrada. O melhor caso de uma busca em um vetor por exemplo, ocorre quando o primeiro elemento é o elemento procurado, e o pior caso quando o elemento não se encontra no vetor.

O algoritmo de ordenação quicksort por exemplo, apresenta seu caso médio com complexidade $O(n\log(n))$ e seu pior caso com complexidade $O(n^2)$.

O cálculo de complexidade do caso médio é bem mais complicado, Ele requer a probabilidade P da ocorrência de uma entrada.

Felizmente, na maioria da vezes, o pior caso do algoritmo é o de interesse.

2 Relações de recorrência

No capítulo anterior, o pseudocódigo para o algoritmo fatorial recursivo foi apresentado. Através dele, é observável que a solução para $a_r = r!$ $(r \in \mathbb{N})$, tendo como **condição inicial** $a_0 = 1$, pode ser computada através do que é chamado de **relação de recorrência**, nesse caso ra_{r-1} . Em uma **função definida recursivamente**, dado uma condição inicial e uma descrição dos estágios subsequentes em função dos anteriores é possível avaliar estágios da função para um dado n. Se f for definida recursivamente, então f(n) é única para qualquer inteiro positivo n.

Exemplo

A sequência de Fibonacci pode ser representada por uma relação de recorrência, $f_n + f_{n+1} = f_{n+2}$ e $f_0 = f_1 = 1$. E a solução da recorrência, que não cabe ser demontrada nesse capítulo, é

$$\frac{\left(\frac{1+\sqrt(5)}{2}\right)^n-\left(\frac{1-\sqrt(5)}{2}\right)^n}{\sqrt{5}}.$$

 \triangle

É importante salientar que não existe um método geral para a solução de recorrências arbitrárias, o que pode ser feito é dividir as relações de recorrências em classes onde técnicas de soluções são conhecidas.

Anexo I - Revisitando a linguagem de programação C

Apontadores

Para acessar o endereço de memória virtual de uma variável em C é utilizado o operador de referência &, o endereço de memória é representado por 0x seguido de um número em base hexadecimal.

Um apontador é um tipo de variável cuja função é armazenar um endereço de memória virtual, se um apontador p armazena o endereço de uma variável x é possível então dizer que p aponta para o endereço de x.

O processo de definir um apontador para um endereço significa que uma **referência** para o endereço é feita, já armazenar o identificador do endereço em uma variável é um processo de **dereferência**.

```
int x = 35;
int* p = &x; //Referencia
int d = *p; //Dereferencia
```

Aritmética de endereços

A aritmética de endereços é importante para a alocação dinâmica. Na memória virtual, os endereços dos elementos de um vetor são armazenados de modo sequencial. Ao declarar um vetor V, sendo i uma constante i = 0, 1... tamanho do vetor -1, acessar V[i] é idêntico a acessar *(V + i).

```
int * V;
V = malloc (10* size of (int));
//V[i] = *(V+i)
```

Para o caso de matrizes M[i][j] = *(*(M+i)+j).

Alocação dinâmica

Diferentemente da alocação estática, a alocação dinâmica permite que a memória utilizada durante a execução do programa seja administrada através de funções.

A função malloc é utilizada para alocar um bloco de memória na *heap* onde o argumento é o número de *bytes* alocados, sizeof é um operador que indica quantos *bytes* tem o parâmetro.

```
void* malloc(size_t size)
```

A função calloc aloca o bloco de memória solicitado retornando um apontador para ele, a diferença entre as funções malloc e calloc é que na segunda a memória alocada é definida para zero.

```
void* calloc(size_t nitems, size_t size)
```

Para redimensionar a memória já alocada é utilizada a função realloc, essa função traz uma dinamicidade maior para a memória. Os argumentos necessários são um apontador para o bloco previamente alocado e o novo tamanho.

```
void* realloc(void* ptr, size_t size)
```

As variáveis armazenadas estaticamente são excluídas no final da função correspondente, no entanto, para a memória dinamicamente alocada é necessário o uso da função free é necessário. Essa função desaloca um bloco de memória previamente alocado.

```
void free(void* ptr)
```

Vetores e matrizes dinâmicos

É possível, através de apontadores alocar vetores e matrizes. Uma matriz basicamente pode ser interpretada como apontadores duplos, os códigos abaixo demonstram como fazer essa alocação de memória e como libera-la com free.

```
//alocando vetor dinamico
int* V;

V = malloc (n*sizeof(int));

for(int i = 0; i < n; i++)
{
    //...
}

//desalocando vetor dinamico
free (V);</pre>
```

```
//alocando matriz dinamica
int **M;
M = malloc (m*sizeof(int*));

for (int i = 0; i < linhas; i++)
{
    *(M+i) = malloc(colunas*sizeof(int));
}

//desalocando matriz dinamica
for (int i = 0; i < linhas; i++) {
    free(*(M+i));
}</pre>
```