Electricity Consumption Forecasting and Pattern Recognition

AGENDA

- O Motivation
- O Background
- Continue Teleview
 Output
 Description
- Methodology
- Experiments and Results
- O Discussion
- Future Scope for Improvement

Motivation

- California targets 60 percent renewable energy by 2030 and commits to a 100 percent zerocarbon energy supply by 2045
- Foreseeing the electricity requirements will enable precedent accommodations of transition to a sustainable future
- PG&E open data program

Background

AIM: To be able to forecast electricity consumption for various zip codes in California

- Look for various exogenous factors influencing the consumption pattern like seasons, weekends, weekdays, electricity prices, etc.
- Among different sectors of electricity consumption like Residential, Commercial, and Agricultural, we target the Residential sector
- Apply clustering to bring together various zip codes of similar electricity consumption patterns
- Employ Time Series Analysis to forecast at a time-step of a month over univariate, bivariate, and exogenous variables

Literature Review

patterns of an educational

building through data mining

Deep Learning-Based Short-Term

Load Forecasting Approach in

Smart Grid With Clustering and

Consumption Pattern Recognition

Alam et al., (2021)

Syed et al., (2021)

Authors	Title	Data	Approach	Results/ Observation
González-Briones et al., (2019)	Machine learning models for electricity consumption forecasting: A Review	one-year data set of a shoe store	SVR, LR with Day of the week, Day of the year, Week, Weekend, Prev. day electricity consumption	85.7% accuracy
Alam at al (2021)	Analyzing energy consumption	Building Management System Data from 64	K magns Clustering	Energy consumption rate depends on the

submeters of the

building

Electric transformers-

based data

K-means Clustering

k-Medoid Clustering + DNN

climate and days of

the week (weekdays

or weekend).

RMSE, MAPE, training

time, and testing time

with an improved 44

% training time

Datasets and Analysis

 PG&E Electricity consumption for 812 zip codes from 2013 to 2022 for every month

	Zip Code	Month	Year	CustomerClass	TotalCustomers	TotalkWh
0	93201	1	2013	Elec- Residential	307	243356
1	93201	2	2013	Elec- Residential	307	181203
2	93201	3	2013	Elec- Residential	303	154701
3	93201	4	2013	Elec- Residential	305	148667

- Exogenous Factors:
 - Electricity price over every year
 - Number of weekdays in a month
 - Number of weekends in a month
 - Season ['Spring', 'Fall', 'Summer','Winter']

Methodology – Initial Data View

Cluster 1: High density zips:

Cluster 2:

659

Low dense zips: 12

Cluster 3:

Medium dense zips: 60

Silhouette Coefficient: 0.54 (Moderately good clustering)

Parameters considered:

Static: Past Electricity consumption, total

PG&E customers

(Method: Agglomerative Complete

Linkage)

Dynamic: Past Electricity consumption, total PG&E customers, electricity price, etc.

(Method: Dynamic Time Warping)

Methodology – Univariate Modeling

41.741512 -3037.263117 -6534.091821 25710.685957 -2987.045525 3248.074846 -4520.781636 -27040.277006 -12817.735340

Date

Methodology – Bivariate Modeling

tatetime

Methodology – Modeling with Exogenous factors

Experimental Results

		Lasso	SVR	MLP
Univariate	RMSE	0.938	1.004	1.25
Univariate	MAPE	127.6	145.77	371.00
Bivariate	RMSE	0.9393	0.983	1.017
bivariate	MAPE	127.1	134.18	329.42
Evacanous	RMSE	0.9759	0.97	1.2
Exogenous	MAPE	114.6	115.88	252.41

Having multiple zip codes gives rise to multiple time series instances.
 To try a model to generalize over all the zip codes, LSTM is implemented.

Parameters	Observation
Learning Rate	1x10^-6
Epochs	200
MSE	0.00059
RMSE	0.02445
MAE	0.01

Discussion

- Time Series is a complex task especially because there are a lot of exogenous variables
 which for a fact directly impact the electricity consumption. But a lack of common
 suitable variables to be able to bring both together current tasks don't establish full
 potential. Observed this with climate data as well as EV vehicle registration data
- Handling less sized data involves appropriate cross validation techniques to ensure the robustness or results obtained specifically for the data with high amount of volatility

Future Scope for Improvement

Dynamic Clustering

Adding
exogenous
factors which
change with
time, like
climate, can
better cluster zip
codes

Household level prediction

Can be
extended to
household-level
prediction if we
have IoT-based
data and enable
personalized
predictions

Smaller Time-Step Prediction

Moving from the current month's time-step prediction to a smaller time-step like day or hour level

Multi-step prediction

To Predict multiple time-steps into the future

Stacked-Prediction Model

It involves using the predictions of multiple models as inputs to a new model. Works better than ensemble in time series analysis

THANK YOU

Appendix-Clustering

