UVOD V GEOMETRIJSKO TOPOLOGIJO: 1. TEST 28. 3. 2014

1. NALOGA (5 točk)

- a. Naj bo $f: [0,1] \to \mathbb{R}$ zvezna funkcija in naj bo $\varepsilon > 0$. Dokaži, da obstaja tak polinom p, za katerega je f(0) = p(0) in $|f(x) p(x)| < \varepsilon$ za vsa števila $x \in [0,1]$.
- **b.** (*) Naj bo $f: [0,1] \to \mathbb{R}$ zvezna funkcija in naj bo $\varepsilon > 0$. Dokaži, da obstaja tak polinom p, za katerega je f(0) = p(0) in f(1) = p(1) in $|f(x) p(x)| < \varepsilon$ za vsa števila $x \in [0,1]$.
- c. Naj bo U odprta množica v \mathbb{R}^n . Dokaži, da je U povezana s potmi natanko tedaj, ko je povezana s polinomskimi potmi: pot $\gamma = (\gamma_1, \dots, \gamma_n) \colon [0,1] \to U$ je polinomska, če so vse komponente γ_i polinomi.

Komentar: Naloga **b.** je za bonus in se je loti na koncu. V vsakem primeru vsebino lahko uporabiš pri **c.**

Namig: Morda si pri c. lahko pomagaš z različnimi karakterizacijami kompaktno odprte topologije.

2. NALOGA (5 točk)

Na ravnini \mathbb{R}^2 je podana naslednja ekvivalenčna relacija:

$$(x,y) \sim (u,v) \iff x = u.$$

- a. Naj bo $X = ((-\infty, 0] \times (-\infty, 0]) \cup ([0, \infty) \times [0, \infty))$. Poišči primeren podprostor kakega evklidskega prostora \mathbb{R}^n , ki je homeomorfen kvocientnemu prostoru prostora X po zožitvi relacije (\star) .
- **b**. Naj bo $f: \mathbb{R} \to \mathbb{R}$ zvezna funkcija in

$$(\star \star) X_f = \{(x, y) \mid x \leq 0 \text{ in } y \leq f(x)\} \cup \{(x, y) \mid x \geq 0 \text{ in } y \geq f(x)\}.$$

Poišči primeren podprostor kakega evklidskega prostora \mathbb{R}^n , ki je homeomorfen kvocientnemu prostoru prostora X_f po zožitvi relacije (\star) .

c. Naj bo $f: \mathbb{R} \to \mathbb{R}$ omejena funkcija, ki je zvezna v 0. Poišči primeren podprostor kakega evklidskega prostora \mathbb{R}^n , ki je homeomorfen kvocientnemu prostoru prostora X_f iz definicije $(\star\star)$ po zožitvi relacije (\star) .

Rešitve oziroma odgovore utemelji. Možne so različne utemeljitve.

je kvocientni prostor $X/\!\!\sim$ homeomorfen prostoruY.

TEORETIČNA NALOGA (5 točk)

Za vsako od spodnjih trditev v pripadajoči kvadratek čitljivo označi, če je trditev pravilna (\mathbf{P}) oziroma napačna (\mathbf{N}) . Če ne veš, pusti kvadratek prazen, ker se nepravilni odgovor šteje negativno!

apačna (N) . Ce ne veš, pusti kvadratek prazen, ker se nepravilni odgovor šteje negativno!	
	Naj bo $f: \mathbb{R} \to \mathbb{R}$ zvezna funkcija in $\varepsilon > 0$. Tedaj obstaja tak polinom p , da velja $ f(x) - p(x) < \varepsilon$ za vsa realna števila x .
	Množice $G(K,V)=\{f\in C(X,Y) f(K)\subset V\}$, kjer je K kompaktna podmnožica v X in V odprta podmnožica v Y , tvorijo bazo kompaktno odprte topologije na $C(X,Y)$.
	Če je X kompakten topološki prostor, Y pa metrični prostor, je prostor zveznih preslikav $C(X,Y)$ s kompaktno odprto topologijo metrizabilen.
	Kvocientni prostor $[-5,5]/[-1,1]$ je homeomorfen intervalu $[-1,1]$.
	Naj bo \sim ekvivalenčna relacija na prostoru $X.$ Kvocientni prostor X/\sim je T_1 natanko tedaj, ko so ekvivalenčni razredi zaprti v $X.$
	Vsaka zvezna surjekcija iz kompaktnega v metrični prostor je kvocientna.
	Kvocientni prostor nepovezanega prostora je nepovezan.
	Naj topološka grupa G deluje na prostoru X . Kvocientna projekcija $X \to X/G$ je vedno zaprta.
	Kvocientni prostor separabilnega prostora je separabilen.
	Naj bo $f: X \to Y$ kvocientna preslikava. Na X vpeljemo relacijo: $x \sim x' \iff f(x) = f(x')$. Tedaj