Examen Parcial de Probabilidad Ingeniería Informática y Matemáticas 13 de enero de 2105

- 1.- Sea $\{A_n\}$ una sucesion de conjuntos. Defina lim sup A_n y lim inf A_n . Sea φ una función σ -aditiva ¿Es φ una funcion continua?
 - 2.- Teorema de extensión de Caratheodory.
- 3. Sea $\{X_n\}$ una sucesion de funciones medibles reales definida en el espacio probabilistico (Ω, \mathcal{A}, P) . ¿Qué significa que la sucesión tienda c.s. a la variable aleatoria X? ¿Cómo se formula esta convergencia? ¿Qué relación tiene con la convergencia en probabilidad de la sucesión a X?
- 4.- Enuncie el Teorema de la convergencia monótona. ¿Lo sabría demostrar?
- 5.- Sea el espacio probabilistico (Ω, \mathcal{A}, P) y la variable aleatoria real X. Defina la distribución inducida por X.

¿Es cierto que

$$\int_{\omega \in \Omega} X(\omega) \ dP(\omega) = \int_{-\infty}^{\infty} x \ dF(x)$$

en donde ${\cal F}(x)$ representa la función de distribución de X? Razone la respuesta.

Examen parcial de Probabilidad Ingeniería informática y Matemáticas 20 de enero de 2015

- 1.- Sea $A_1, ..., A_n$ una colección de σ -campos minimales construidos sobre las clases independientes $C_1, ..., C_n$. ¿Son los σ -campos independientes? Razone la respuesta.
 - 2.- Criterio 0-1 de Borel. ¿Lo sabría demostrar?
- 3.- Sean $\{X_n\}$ y $\{X_n'\}$ sucesiones tales que $\sum_{n=1}^{\infty} P[X_n \neq X_n'] < \infty$. ¿Qué vale $P\limsup[X_n \neq X_n']$? ¿Qué significado tiene el resultado obtenido?
- 4.- Sea el espacio probabilitíco (Ω, \mathcal{A}, P) y $\{X_n\}$ una sucesión de variables independientes e indicadoras del suceso medible A. Demostrar que

$$\frac{1}{n} \sum_{k=1}^{n} X_k$$

converge en probabilidad a PA. ¿Qué significa este resultado?

5.- Desigualdades de kolmogorov. Implicaciones.

Examen final de Probabilidad Ingeniería Informática y Matemáticas 26 de enero de 2105

Primera parte:

- 1.- Sea $\{X_n\}$ una sucesión de variables aleatorias reales definidas en el espacio probabilistico (Ω, \mathcal{A}, P) . ¿Son el sup X_n y el inf X_n variables aleatorias? Razone la respuesta.
 - 2.- Teorema de extensión de Caratheodory.
- 3. Sea X una variable aleatoria real definida en el espacio probabilistico (Ω, \mathcal{A}, P) . Defina la integral de X.

Segunda parte:

- 4.- Ley 0-1 de Kolmogorov.
- 5.- Sean $\{X_n\}$, $\{Y_n\}$ dos sucesiones de variables aleatorias reales definidas en el espacio probabilistico (Ω, \mathcal{A}, P) tales que

$$\sum_{n=1}^{\infty} P[X_n \neq Y_n] < \infty.$$

- ¿Cómo son las distribuciones límite de $\{X_n\}$ y $\{Y_n\}$? Razone la respuesta.
 - 6.- Enuncie y demuestre la ley débil de los grandes números.