1 介绍 1

1 介绍

- 1. 参考书: 近世代数引论 (冯克勤, 第三版); 代数学引论 (聂灵沼);
- 2. 成绩: 30% 平时成绩, 70% 期末考试;
- 3. 习题答案: 近世代数 300 题;
- 4. 集合等势: 两个集合之间存在一一映射;
- 5. 二元运算: 记 S 为非空集合, 从 $S \times S$ 到 S 的映射 $f: S \times S \to S$ 即 $(x,y) \mapsto f(x,y)$ 叫做集合 S 上的一个二元运算 (也称为运算的封闭性), 通常简记"·";
- 6. 代数研究的对象: 含有一个或多个二元运算的集合或结构的性质;

2 群

- 1. 结合律: 集合 S 上的二元运算 f 称为满足结合律, 是指 $f(f(x,y),z) = f(x,f(y,z)), x,y,z \in S$, 简记为 (xy)z = x(yz);
- 2. 半群: 具有二元运算"·"的集合 S, 若该运算满足结合律, 则 (S, \cdot) 被称为 半群;
- 3. 单位元 (幺元): 设 (S,·) 是半群, $e \in S$, 若对 $\forall x \in S$, 有 xe = ex = x, 则 称 e 为半群 S 的单位元;
 - (a) 单位元唯一: 若 $e, e' \in S$ 是单位元, e = ee' = e';
 - (b) 左右单位元:
 - i. 左单位元: 若 $e_L \in G$ 满足 $\forall a \in G, e_L a = a, 则 e_L$ 称为左单位元;
 - ii. 右单位元: 若 $e_R \in G$ 满足 $\forall a \in G, ae_R = a$, 则 e_R 称为右单位元;
- 4. 含幺半群: 含有单位元的半群;
- 5. 群: 设 G 是一个非空集合, (G, \cdot) 是群若 G 上的二元运算"·"(封闭性) 满 足:

3 子群 2

- (a) 结合律: $\forall a, b, c \in G, (ab)c = a(bc)$;
- (b) 单位元 (幺元): $\exists e \in G : \forall a \in G, ea = ae = a;$
- (c) 逆元: $\forall a \in G, \exists a^{-1} \in G, s.t. : a^{-1}a = aa^{-1} = e;$
- 6. 群的逆元唯一: 若 $a^{-1}, a'^{-1} \in G$ 都是 a 的逆元, 则 $e = a^{-1}a = a'^{-1}a = aa^{-1} = aa'^{-1}$;
 - (a) 含幺半群左右逆元相同: 设 (G, \cdot) 为一个含幺半群, 若元素 $a \in G$ 有左逆元 a_L^{-1} 和右逆元 a_R^{-1} , 则 $a_L^{-1} = a_R^{-1} = a^{-1}$ 为 a 的逆元;
- 7. 交换群 (阿贝尔群): 满足交换律的群;
- 8. 设 (M, \cdot) 是含幺半群, M^* 是半群 M 中的可逆元素全体, 则 (M^*, \cdot) 是 群;
- 9. 半群 (G,\cdot) 是群, 当且仅当 (右单位元和右逆元定义同样成立):
 - (a) G 有左单位元 e_L : 即 $\forall a \in G : e_L a = a$;
 - (b) $\forall a \in G$, 有左逆元 a^{-1} , 使得 $a^{-1}a = e_L$;
- 10. 半群 (G, \cdot) 是群, 当且仅当: $\forall a, b \in G$, 方程 ax = b 和 ya = b 在 G 中均有解;
- 11. 有限半群 (G, \cdot) 是群, 当且仅当左右消去率都成立: $ax = ay \Rightarrow x = y$ 且 $xa = ya \Rightarrow x = y$;

3 子群

- 1. 子群: 设 (G, \cdot) 为群, $S \neq G$ 的一个非空子集, 若 S 对 G 的运算"·"也构成群, 则称 S 为 G 的子群, 表示为 $S \leq G$;
 - (a) 真子群: 若 $S \neq G$, $S \leq G$, 则 $S \neq G$ 的真子群, 记为 S < G;
 - (b) 记号:
 - i. 设 G 是一个群, A, B 是 G 的非空子集, $g \in G$, 记: $gA = \{ga|a \in A\}$, $Ag = \{ag|a \in A\}$, $AB = \{ab|a \in A, b \in B\}$, $A^{-1} = \{a^{-1}|a \in A\}$;
 - (c) 平凡子群: 特殊的子群 e, G;

3 子群 3

- 2. 子群的性质:
 - (a) 若 $H \leq G$, 则 H 的单位元就是 G 的单位元;
 - (b) $H_1, H_2 \leq G \Rightarrow H_1 \cap H_2 \leq G$;
 - (c) $H_1, H_2 \leq G$, 则 $H_1 \cup H_2 \leq G \Leftrightarrow H_1 \subseteq H_2$ 或者 $H_2 \subseteq H_1$;
 - (d) $H_1, H_2 \leq G, \text{ III } H_1H_2 \leq G \Leftrightarrow H_1H_2 = H_2H_1;$
- 3. 子群的判定定理: 设 S 是群 G 的非空子集,则下面三个命题等价:
 - (a) S 是群 G 的子群;
 - (b) $\forall a, b \in S$, $\neq ab \in S$ $\Rightarrow a^{-1} \in S$;
 - (c) $\forall a, b \in S,$ $fab^{-1} \in S;$
- 4. 实数域上一般线性群的特殊子群:
 - (a) n 次特殊线性群: $SL(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) | |A| = 1\};$
 - (b) n 次正交线性群: $O_n(\mathbb{R}) = \{A \in GL(n, \mathbb{R}) | A^t A = I_n \};$
 - (c) n 次特殊正交群: $SO_n(\mathbb{R}) = \{A \in GL(n, \mathbb{R}) | A^t A = I_n, |A| = 1\};$
- 5. 元素的幂: 设 G 是群, $a \in G$, $n \in \mathbb{N}$, 定义 $a^n = a \cdots a(n \uparrow)$, $a^0 = e$;
 - (a) 注意: 一般 $a^n b^n \neq (ab)^n$, 只有 ab = ba 时等号成立;
- 6. 元素的阶: 设 G 是群, $a \in G$, 使 $a^n = e$ 成立的最小正整数 n 称为元素的阶, 记作 o(a); 若不存在正整数 n 满足上面的条件, 则称 a 的阶是无限的;
 - (a) 若 o(a) = n, 则 $a^m = e \Leftrightarrow n|m. n|m$ 表示 n 整除 m, 即 $\frac{m}{n}$ 是整数;
 - (b) 若 o(a) = n, 则对每个正整数 m, a^m 的阶是 $\frac{n}{(m,n)}$. (m,n) 表示 m 和 n 的最大公因数;
 - (c) $a, b \in G, o(a) = m, o(b) = n$, 若 (m, n) = 1 且 ab = ba, 则 o(ab) = mn;
 - i. 若 (m, n) = 1 不满足, 则 $o(ab) = \frac{mn}{(m,n)}$;
 - (d) 若除单位元外其他元素都是 2 阶元,则 G 是交换群;
- 7. 生成子群: 设 G 是群, $S \subseteq G$, 则 G 中包含 S 的最小子群 A 叫做由 S 生成的子群, 记作 A = < S >;

3 子群 4

(a) 等价定义: $A \not\in G$ 中包含 S 的所有子群之交, $< S >= \{a_1...a_m | m \ge 0, a_i \in S \cup S^{-1}\}$; 当 m = 0 时, $a_1...a_m = e$;

- (b) 生成元系: 若 G = < S >, 则称 $S \in G$ 的一个生成元系;
- (c) 有限生成群: 若 $G = \langle S \rangle$, 且 S 是有限集合, 则称 G 为有限生成群;
- (d) 循环群: 若 $G = \langle a \rangle$, 则称 S 为循环群;
- (e) n 阶有限群: 设 G = < a > 为循环群, 若 o(a) = n, 则 G 为 n 阶有限群;
- (f) 无限群: 设 $G = \langle a \rangle$ 为循环群, 若a的阶无限, 则G为无限群;
- 8. 关系: 若 A 是集合, 集合 $A \times A$ 的一个子集 R 叫做集合 A 上的一个关系;
 - (a) 如果 $(a,b) \in R$, 称 a 和 b 有关系 R, 写成 aRb;
- 9. 等价关系:
 - (a) 自反性: $\forall a \in A, a \sim a$;
 - (b) 对称性: 若 $a \sim b$, 则 $b \sim a$;
 - (c) 传递性: 若 $a \sim b, b \sim c$, 则 $a \sim c$;
- 10. 等价类: 具有等价关系的元素全体称为一个等价类, 记作 [a];
 - (a) $a \in [a]$;
 - (b) $\forall b, c \in [a] \Rightarrow b \sim c$;
 - (c) $\forall b \in [a] \Rightarrow [b] = [a];$
 - i. 代表元: [*a*] 中任取一个元素 *b*, 则可以称 *b* 为等价类 [*a*] 的代表元;
 - (d) 不同等价类不相交;
 - (e) 若 $A = \bigcup_{i \in I} [a_i], [a_i], i \in I$ 两两不相交, 从每个等价类 $[a_i]$ 中取一个元素 b_i , 则 $R = \{b_i\}$ 具有性质: A 中每个元素都等价于 b_i , 而不同的 b_i 彼此不等价, 我们把这样的 R 叫做 A 对于等价关系 \sim 的完全代表系. 于是 $A = \bigcup_{a \in R} [a]$ (不相交);

4 子群的陪集 5

11. 分拆: 若集合 $A = \bigcup_{i \in I} A_i, A_i, i \in I$ 两两不相交, 则称 $\{A_i | i \in I\}$ 是 A 的一个分拆;

(a) 结论: A 上的等价关系与 A 上的分拆一一对应;

4 子群的陪集

- 1. 整数模 n 加法群: 设 n 为正整数, 在 \mathbb{Z} 上定义关系 $a,b \in \mathbb{Z}, a \sim b \Leftrightarrow n | (a-b)(即 <math>a \equiv b \pmod{n})$, 定义 $\bar{i} = \{m \in \mathbb{Z} | m \equiv i \pmod{n}\}$, 则 $\mathbb{Z}_n = \{\bar{0}, \bar{1}, ..., \overline{n-1}\}$. 定义二元运算"+": $\bar{a} + \bar{b} = \overline{a+b}$, \mathbb{Z}_n 关于"+"形成交换群, 形成整数模 n 加法群;
- 2. 设 G 是群, $A \leq G$, 定义 G 上的关系为 $g,h \in G, g \sim h \Leftrightarrow gh^{-1} \in A$, 则 \sim 是 G 上的关系, 并且 $\forall g \in G, [g] = Ag$;
- 3. 右陪集: 由上面的引理知, 群 G 可以分拆称一些不同等价关系集合 Ag, 每个等价类 Ag 叫做 G 对于子群 A 的右陪集;
 - (a) 右陪集代表元系: 如果 $R = \{g_i | i \in I\}$ 是 G 对于上述等价关系的完全代表元系,则称它为 G 对 A 的右陪集代表元系;
 - (b) 右陪集分解: 有 $G = \bigcup_{g \in R} Ag$, 称之为 G 对子群 A 的右陪集分解;
 - (c) 指数: 不同右陪集的个数 |R|, 记为 [G:A], 称为子群 A 对群 G 的 指数 (指标);
- 4. 左陪集: 类似定义 gA 为 G 的左陪集, 左陪集代表元系, 左陪集分解等;
 - (a) 左陪集与右陪集——对应, 个数相等;
- 5. 集合的阶: 集合 G 中元素的个数, 记作 |G| 或 #(G);
- 6. 拉格朗日 (Lagrange) 定理: 设 G 是有限群, $A \leq G$, 则 $|G| = |A| \cdot [G:A]$. 特别地, 群 G 的每个子群的阶都是 G 的阶的因子;
 - (a) 素数阶群只有平凡子群;
 - (b) 设 G 是有限群,则 G 中每个元素 g 的阶均是 |G| 的因子;
 - (c) p(素数) 阶群 G 均是 Abel 群 (交换群);
 - i. 素数阶群一定是循环群;

4 子群的陪集 6

- (d) 非 Abel 群的最小阶数是 6;
- 7. 设 G 是有限群, $A, B \leq G$, 则:
 - (a) $|AB| = |A| \cdot |B|/|A \cap B|$;
 - (b) 若 $A \le B \le G$, 则 [G:A] = [G:B][B:A];
 - (c) $[G:A\cap B] \leq [G:A][G:B]$. 若 [G:A]和 [G:B] 互素,则 $[G:A\cap B] = [G:A][G:B]$, 且 AB = G;
- 8. 共轭: 设 G 是群, $a,b \in G$, 称 $b^{-1}ab$ 为 a 的共轭元素;
 - (a) 集合共轭: $A, B \subseteq G, \Xi \exists g \in G, s.t. : g^{-1}Ag = B 称 A 与 B 共轭;$
 - (b) 共轭类: 群 *G* 的子集之间的共轭关系是等价关系,每个等价类被称为共轭类;
 - i. 集合 $g^{-1}Ag$ 与 A 之间一一映射;
 - ii. 若 A 是有限集合, 则 $|g^{-1}Ag| = |A|$;
 - (c) 共轭子群: 若子群 $A \leq G$, 则 $g^{-1}Ag \leq G$ 称为 A 的共轭子群;
- 9. 正规化子: 设 G 是群, 子集 $M \subseteq G$, 则 $N_G(M) = \{g \in G | g^{-1}Mg = M\}$ 是 G 的子群, 称之为 M 的正规化子;
- 10. 中心化子: 设 G 是群, 子集 $M \subseteq G$, 则 $C_G(M) = \{g \in G | g^{-1}ag = a, \forall a \in M\}$ 是 G 的子群, 称之为 M 的中心化子;
 - (a) 中心: 记 $C(G) = C_G(G)$ 称为群 G 的中心;
 - (b) 中心元素: C(G) 中的元素;
 - (c) 一些结论:
 - i. G 是交换群,等价于 G = C(G);
 - ii. $C_G(M) \leq N_G(M)$;
 - iii. $\forall a \in G, C_G(a) = N_G(a);$
- 11. 若 G 是群, 子集 $M \subseteq G$, 则与 M 共轭的子集个数为 $[G:N_G(M)]$;
 - (a) 设 G 是群, $a \in G$, 则与 a 共轭的元素个数等于 $[G:C_G(a)]$;
- 12. 设 p 为素数, $n \ge 1$, G 为 p^n 阶群, 则 |C(G)| > 1, 即 G 有非单位元的中心元素;
 - (a) 设p为素数, p^2 阶群G为Abel群;

5 群的同态 7

5 群的同态

- 1. 群的同态: 设 (G, \cdot) 和 (G', \circ) 是两个群, 若映射 $f: G \to G'$ 满足 $\forall a, b \in G$, 有 $f(a \cdot b) = f(a) \circ f(b)$, 则称 f 是群 G 到 G' 的同态;
 - (a) 单同态: 若f是单射,则f为单同态;
 - (b) 满同态: 若 f 是满射,则 f 是满同态;
 - (c) 设 G, H 为群, $f: G \to H$ 是群的同态, 则 $f(e_G) = e_H$, 且 $\forall a \in G$, 有 $f(a^{-1}) = f(a)^{-1}$. 即群同态将单位元映射到单位元, 逆元映射到逆元;
- 2. 同构: 若同态映射 f 是双射, 则 f 是群 G 到 G' 的同构. 记为 f: G ounderrightarrow G' 或 $G \cong G'$. 同构的群被认为本质上是相同的;
 - (a) 群 G 到自身的同态 (同构) 叫做群 G 的自同态 (自同构);
 - (b) 记 Aut(G) 为群 G 的自同构全体,则它构成群;
- 3. 循环群的性质: 设 $G = \langle a \rangle$ 是由a生成的循环群,则:
 - (a) 若 $o(a) = \infty$, 则 $G \cong (\mathbb{Z}, +)$, 称 G 为无限循环群;
 - (b) 若 o(a) = n, 则 $G \cong (\mathbb{Z}_n, +)$, 称 G 为 n 阶循环群;
 - (c) 同阶循环群彼此同构;
 - (d) (\mathbb{Z} , +) 的生成元只有 1 或 -1; (\mathbb{Z}_n , +) 的生成元只能是 \bar{a} , 其中 (a,n)=1;
 - i. 即若 $o(a) = \infty$, 则 G 的生成元只有 a 和 a^{-1} ; 若 o(a) = n, 则 G 的生成元只有 $a^k (1 \le k < n, (k, n) = 1)$;
 - (e) 循环群的子群仍然是循环群, 且:
 - i. $(\mathbb{Z}, +)$ 的全部子群 $H_m = \langle m \rangle, m = 0, 1, 2, ...;$
 - ii. $(\mathbb{Z}_n, +)$ 的全部子群为 $<\bar{0}>$ 和 $<\bar{d}>$, d|n;
 - (f) 循环群的同构群:
 - i. $(\mathbb{Z}, +)$ 的自同构群 $Aut(\mathbb{Z})$ 是二元群;
 - ii. $(\mathbb{Z}_n, +)$ 的自同构群 $Aut(\mathbb{Z}_n)$ 是同构于 (\mathbb{Z}_n^*, \cdot) ;
- 4. 自共轭子群: 共轭子群只有自身的子群;

5 群的同态 8

5. 正规子群: 设 G 是群, $N \leq G$ 称为 G 的正规子群, 若对 $\forall g \in G$, 有 $g^{-1}Ng = N$, 记为 $N \triangleleft G$ (即 N 是 G 中的自共轭子群);

- (a) 等价条件:
 - i. $N \triangleleft G$;
 - ii. $\forall g \in G, gN = Ng;$
 - iii. $N_G(N) = G$;
 - iv. G 对于 N 的每个左陪集均是右陪集;
 - v. $\forall g \in G, h \in N,$ f $g^{-1}hg ∈ N;$
- 6. 商群: 设 G 是群, $N \triangleleft G$, 对 $\forall a \in G$, 记 $\bar{a} = Na = aN$. 在集合 $\bar{G} = \{\bar{a} | a \in G\}$ 上定义二元运算 $\bar{a} \cdot \bar{b} = \overline{ab}$. \bar{G} 对此运算形成群 (幺元 \bar{e} , 逆元 $\bar{a}^{-1} = \overline{a^{-1}}$), 称为 G 对正规子群 N 的商群, 记为 $\bar{G} = G/N$;
 - (a) 若 G 是有限群,则 |G/N| = [G:N] = [G]/|N|;
- 7. 同态定理: 设 $f: G \to G'$ 是群的同态,则:
 - (a) $Im f = f(G) \leq G'$;
 - (b) $Kerf = f^{-1}(e_{G'}) = \{g \in G | f(g) = e_{G'}\} \triangleleft G;$
 - (c) 映射 $\pi: G \to G/Kerf, \pi(g) = gKerf$ 是满同态;
 - (d) 存在唯一同态 $\bar{f}: G/Kerf \to G'$, 使得 $f = \bar{f} \circ \pi$, 且 \bar{f} 是单同态 (称 \bar{f} 是由 f 诱导的同态);
 - (e) $Im\bar{f} = Imf$, $\mathbb{H} \bar{f} : G/Kerf \tilde{\rightarrow} Imf$;
- 8. 同态基本定理: 设 $f: G \to G'$ 是群的同态, 则 Imf = f(G) 是 G' 的子 群, $Kerf = f^{-1}(e_{G'}) = \{g \in G | f(g) = e_{G'}\}$ 是 G 的正规子群, 并且有 群同构 $\bar{f}: G/Kerf \tilde{\to} Imf, (\bar{g} \mapsto f(g));$
 - (a) 推论: 设 $f:G\to G'$ 是群的同态,则
 - i. f 是单同态 $\Leftrightarrow Kerf = \{e_G\};$
 - ii. 若 f 是满同态,则有 (正则) 同构 $\bar{f}:G/Kerf \tilde{\rightarrow} G'$;
- 9. 设 G 是群, $N \triangleleft G$, 则 $\{M|N \leq M \leq G\} \leftrightarrow \{\text{subgroups of } G/N\}$, $\{M|N \leq M \leq G\} \leftrightarrow \{\text{invariant subgroups of } G/N\}$, 且对 $N \leq M \leq G$, 有 $M \triangleleft G \Leftrightarrow M/N \triangleleft G/N$;

6 置换群 9

10. 设G是群,N, $M \triangleleft G$,且 $N \leq M$,则 $N \triangleleft M$, $M/N \triangleleft G/N$,且 $(G/N)/(M/N) \cong G/M$;

11. 设 G 是群, $N \triangleleft G$, 且 $H \leq G$, 则 $(H \cap N) \triangleleft H$, $N \triangleleft NH \leq G$, 并且 $NH/N \cong H/(H \cap N)$;

6 置换群

- 1. 置换: 非空集合 X 到自身的一一映射, 叫做 X 上的一个置换;
 - (a) 若 $X = \{a_1, ..., a_n\}$ 是有限集合,则它上面的置换 σ 通常可表示为 $\sigma = \begin{pmatrix} a_1 & ... & a_n \\ \sigma(a_1) & ... & \sigma(a_n) \end{pmatrix};$
 - (b) 置换的乘积: 置换的乘积定义为映射的复合 $(\sigma\tau)(a_i) = \sigma(\tau(a_i)), a_i \in X$;
 - (c) 置换 σ 的逆: σ 作为X到X的映射的逆映射;
- 2. 对称群与置换群: 集合 X 上所有置换构成的集合记为 S_X , 称为集合 X 上对称群, 它的每个子群均称为集合 X 上的置换群, 它关于映射复合运算构成群;
 - (a) n 元集合上的对称群 S_n , 其阶为 $|S_n| = n!$;
- 3. 固定与移动: 设 $X = \{1, ..., n\}, i \in X$ 和 $\sigma \in S_n$. 若 $\sigma(i) = i$ 称为 σ 固定 i, 若 $\sigma(i) \neq i$ 称为 σ 移动 i;
- 4. 轮换: 设 σ 固定 X 中的 $X/\{i_1, i_2, ..., i_r\}$, 若 $\sigma(i_{r-1}) = i_r, \sigma(i_r) = i_1$, 则 称 σ 为一个长为 r 的轮换, 记为 $\sigma = (i_1 i_2 ... i_r)$;
 - (a) 对换: 长为 2 的轮换仅交换 X 中的一对元素, 通常称为对换;
 - (b) 不相交: 若 X 中的元素被一个置换 σ 移动, 必然被另一个 τ 固定, 则称两个置换不相交;
 - i. 当两个置换 σ , τ 不相交时, 必然有 $\sigma\tau = \tau\sigma$;
 - ii. 每个非恒等置换 $\sigma \in S_n$ 是长度大于 1 的不相交轮换的乘积;
 - (c) 每个置换 $\sigma \in S_n$ 都可以写成对换的乘积;

- i. 置换分解成对换乘积的方式不唯一, 但分解成对换乘积时, 对 换个数的奇偶性不变;
 - A. 奇 (偶) 置换: 如果置换 $\sigma \in S_n$ 可以写成奇 (偶) 数个对换的乘积;
 - B. n 次交错群: 有所有的偶置换构成的群 $A_n := Kerf =$ {偶置换} $\triangleleft S_n, f : S_n \rightarrow \{1, -1\}$ 被称为 n 次交错群, 有 $[S_n : A_n] = 2, |A_n| = \frac{n!}{2} (n \geq 2);$
- (d) 当 $n \ge 2$ 时, $\{(12), (13), ..., (1n)\}$ 是 S_n 的一个生成元系;
- (e) 当 $n \ge 3$ 时, 全体长为 3 的轮换形成 A_n 的一个生成元系;
- 5. 置换的型: 置换 $\sigma \in S_n$, 将 σ 表示成不相交的轮换之积, 如果其中长为 r 的轮换共有 λ_r 个 $(1 \le r \le n)$, 则称 σ 的型为 $1^{\lambda_1} 2^{\lambda_2} ... r^{\lambda_r}$;
 - (a) 对称群 S_n 中两个置换共轭的充要条件是它们有相同的型;
 - (b) 单群: 只有平凡正规子群的群, 称为单群;
 - i. 元素个数大于1的交换群是单群⇔它是素数阶(循环)群;
 - ii. $\exists n \geq 5$ 时, 交错群 A_n 是单群;

7 群在集合上的作用

- 1. 置换表示: 群 G 到 S_X 的同态 $f: G \to S_X$;
 - (a) 忠实表示: 若f为单射,则称其为忠实表示;
 - (b) 等价关系: 设 $\rho: G \to S_X$ 是置换表示, 定义 X 上的关系"~"为 $\forall a,b \in X, a \sim b \Leftrightarrow \exists g \in G, s.t. ga = b, 则 ~ 为等价关系;$
 - i. 等价类: 对任意 $a \in X$, a 所在的等价类 $[a] = Ga = \{ga|g \in G\}$;
 - (c) 轨道: 每个等价类叫做一个 G- 轨道, 或简称轨道;
 - i. 拆分: 集合 X 的拆分 $X = \bigcup_{a \in I} [a]$ (不交并)= $\bigcup_{a \in I} Ga$ (不交并);
 - ii. 传递: 若 G 在 X 上的作用只有一个轨道,则称 G 在 X 上是传递的;
 - (d) Cayley 定理:每个群均同构于某个置换群;

- 2. 固定子群: 设群 G 作用在集合 X 上, 对 $\forall a \in X$, 记 $G_a = \{g \in G | ga = a\} (\leq G)$ 称为元素 a 的固定子群;
 - (a) 轨道公式: 设 G 是有限群, G 作用于集合 X, $a \in X$, 则 $|G| = |G_a||[a]|$;
 - i. 设G = 2n阶群, $2 \nmid n$,则G必有指数为2的正规子群;
 - ii. 设 G 是有限群, $|G| \ge 6$ 且 $|G| = 2 \pmod{4}$, 则 G 不是单群;
 - iii. 设 G 是有限群, p 是 |G| 的最小素因子, 如果 $N \leq G$, [G:N] = p, 则 $N \triangleleft G$;
- 3. 线性表示: $f: G \to GL(V)$;
- 4. $H \leq G \Rightarrow |H||G|$. 反之不成立, 即 d||G|, 群 G 未必有 d 阶子群;
- 5. Sylow 定理: 设 $p^r||G|$, 其中 p 为素数, 以 N(n) 表示 G 中 n 阶子群的个数, 则 $N(p^r) = 1 \pmod{p}$. 特别地, 若 $p^r||G|$, 则 G 至少存在一个 p^r 阶子群;
 - (a) Sylow-p 子群: 设 G 为 $p^r n$ 阶群, 其中 p 为素数, $r \ge 1, p \nmid n$, 则 G 的每个 p^r 阶子群均叫做 G 的西罗 p- 子群;
 - (b) 设 G 为有限群, 则:
 - i. 对 |G| 的每个素因子 p, 均存在 G 的西罗 p- 子群;
 - ii. G 的西罗 p- 子群彼此共轭;
 - iii. G 的西罗 p— 子群的个数恒等于 $1 \pmod{p}$;
 - iv. 设 P 为 G 的一个西罗 p- 子群,则 G 的西罗 p- 子群的个数 为 $[G:N_G(P)]$;
 - (c) 设素数 p||G|, 则 G 的每个 p 方幂阶的子群 B 均包含在 G 的某个 西罗 p- 子群内;
 - (d) 设 P 是 G 的西罗 p— 子群, $A \leq G$, 且 $N_G(P) \leq A$, 则 $N_G(A) = A$;
 - (e) Fratini 定理: $M \triangleleft G, P \rightarrow M$ 的西罗 p- 子群, 则 $G = MN_G(P)$;
- 6. 一些结论:
 - (a) 设p和q是两个素数,则pq阶群G不是单群;
 - (b) 设p和q是两个素数,则 p^2q 阶群G不是单群;

8 环

- 1. 环: 集合 R 及 R 上的两个二元运算组成的代数结构 $(R, +, \cdot)$, 满足:
 - (a) 加法交换群及零元素: (R, +) 是 Abel 群, 单位元记为 0_R (或 0), 称 为环 R 的零元素;
 - (b) 乘法结合律: (R,·) 是半群;

(c) 分配律:
$$\forall a, b, c \in R$$
, 有
$$\begin{cases} a(b+c) = ab + ac \\ (b+c)a = ba + ca \end{cases}$$
;

- 2. 交换环: 满足 $\forall a, b \in R$, 有 ab = ba 的环;
- 3. 含幺环: R 是环, 且 $\exists 1_R \in R, s.t. \forall a \in R, 有 1_R \cdot a = a \cdot 1_R = a$. 其中 1_R 称为环 R 的幺元素, 简记为 1;
- 4. 环中的零元素唯一, 幺元素 (若有) 也唯一;
- 5. 记号: $n \uparrow a$ 相加记为 $na, n \uparrow a$ 相乘记为 a^n ;
- 6. 环的性质: 设 $(R, +, \cdot)$ 为环,则
 - (a) $\forall a \in R, 0a = a0 = 0;$
 - (b) $\forall a, b \in R, (-a)b = a(-b) = -(ab), (-a)(-b) = ab;$

(c)
$$a_i, b_j \in R, i = 1, ..., n, j = 1, ..., m, \left(\sum_{i=1}^n a_i\right) \left(\sum_{j=1}^m b_j\right) = \sum_{i=1}^n \sum_{j=1}^m a_i b_j;$$

- (d) $n \in \mathbb{Z}, a, b \in R, \mathbb{M}$ (na)b = a(nb) = n(ab);
- 7. 零因子: R 是环, 且 $0 \neq a \in R$,
 - (a) 左零因子: 若 $\exists 0 \neq b \in R, s.t.ab = 0$, 则称 a 为左零因子;
 - (b) 右零因子: 同理;
 - (c) 零因子: 若 a 同时是左零因子和右零因子, 则称 a 为零因子;
- 8. 逆元: R 为含幺环, $a \in R$,
 - (a) 左逆: 若 $\exists c \in R$, s.t.ca = 1, 则称 a 左可逆, 并称 c 为 a 的左逆;
 - (b) 右逆: 同理;
- 9. 可逆元: 若 a 左可逆且右可逆,则有唯一逆元 a^{-1} ,称 a 为可逆元;

8 环 13

- (a) 单位: 环 R 中的可逆元称为 R 中的单位;
- 10. 单位群: 含幺环中的全体单位形成乘法群, 称为R的单位群, 记作U(R);
- 11. 整环: 含幺交换环 R 中, $0 \neq 1$, 且 R 中没有零因子, 则称 R 为整环;
- 12. 体 (除环): 含幺环 $R + 0 \neq 1$, 且 $U(R) = R \setminus \{0\}$, 则称 R 为体;
 - (a) 含幺环 R 是体 \Leftrightarrow $(R\setminus\{0\},\cdot)$ 成群;
- 13. 域: R 是体, 且 R 为交换环, 则称 R 为域;
 - (a) 域是整环;
- 14. 整环,体,域中至少包含两个元素 0 和 1;
- 15. 子环: $(R, +, \cdot)$ 是环, $S \subseteq R$, 若 $(S, +, \cdot)$ 构成环, 则称 S 为 R 的子环;
 - (a) 子体(域): 若 $(S, +, \cdot)$ 是体(域), 则称 S 为 R 的子体(域);
 - (b) 若 $S \subseteq R$ 是子环, 则 $\forall a, b \in S$, 有 $a b, ab \in S$;
 - (c) 平凡子环: {0}, R;
- 16. 设 S 是环 R 的子环, 加法商群 R/S 对乘法 $\overline{a} \cdot \overline{b} = \overline{ab}$ 成环的充要条件: $\forall r \in R, a \in S, f$ $ra, ar \in S$;
- 17. 理想: 环 R 的子环 S 若满足: $\forall r \in R, a \in S, 有 ra, ar \in S$, 则称 S 为环 R 的理想;
 - (a) 理想的判定: $S \subseteq R$ 是理想, 当且仅当
 - i. $\forall a, b \in S, a b \in S$;
 - ii. $\forall r \in R, a \in S, ra, ar \in S$;
 - (b) 平凡理想: (0), R;
- 18. 商环: 设 A 是环 R 的理想,则 R/A 对自然定义的加法和乘法 $(\overline{a} \cdot \overline{b} = \overline{ab})$ 成环, 称之为 R 对于理想 A 的商环;
- 19. 单环: 只有平凡理想的环;
- 20. 一些结论:
 - (a) $I \subseteq R$ 为理想, 若 $1_R \in I$, 则 I = R. 即体和域为单环;

9 环的同态 14

- (b) 整数环 \mathbb{Z} 的全部子环: $m\mathbb{Z}$, $m \geq 0$. 它们也是 \mathbb{Z} 的全部理想;
- (c) $A_i, i \in I$ 为 R 的理想, 则 $\bigcap_{i \in I} A_i$ 也是 R 的理想;
- 21. 集合 X 生成的理想: 子集 $X \subseteq R$, R 中包含 X 的最小理想称为由集合 X 生成的理想, 记为 (X);
- 22. 主理想: 由一个元素 $x \in R$ 生成的理想 (x) 被称为环 R 的主理想;
 - (a) 主理想整环 (PID): 若 R 是整环, 且 R 的每个理想都是主理想 (x) = xR, 则 R 被称为主理想整环;

9 环的同态

- 1. 环的同态: R, S 为环, 映射 $f: R \to S$ 满足 $\forall a, b \in R, f(a+b) = f(a) + f(b), f(ab) = f(a)f(b)$, 则称 f 为 R 到 S 的同态;
 - (a) 环同态 f 亦为加法群同态, 故 $f(0_R) = 0_S$, f(-a) = -f(a);
 - (b) 单 (满) 同态: f 是同态, 且 f 为单 (满) 射, 则称 f 为单 (满) 同态;
 - i. 若 f 是满同态, 且 R,S 均有幺元, 则 $f(1_R) = 1_S$, 且 $a \in U(R) \Rightarrow f(a) \in U(S)$;
 - (c) 设 $f: R \to S$ 是环的同态:
 - i. 同态的像: 集合 $Imf = f(R) = \{f(r) | r \in R\}$, 同态的像是 S 的子环;
 - ii. 同态的核: 集合 $Kerf = f^{-1}(0_S) = \{r \in R | f(r) = 0_S\}$, 同态的核是 R 的理想;
- 2. 同构: 若f是环同态,且f是一一映射,则称f为环的同构;
 - (a) 若 f 是同构,则 f^{-1} 也是同构;
- 3. 自同态 (同构): 同态 (同构) $f: R \to R$ 被称为自同态 (同构);
 - (a) 环的所有自同构 (Aut(R)) 关于复合运算构成群;
- 4. 嵌入: 若 $f: R \to S$ 是环的单同态, 则称 f 为环 R 到 S 的嵌入;
- 5. 第一同构定理: 设 $f: R \to S$ 是环的同态,则 Kerf 是 R 的理想,并且 $\bar{f}: R/Kerf \to S(\bar{r} \to f(r))$ 是环的单同态 (嵌入);

9 环的同态 15

- (a) 特别的: $\bar{f}: R/Kerf \tilde{\rightarrow} Imf$;
- 6. 第二同构定理: 设 I, J 是环 R 的理想, 则 $I/(I \cap J) = (I + J)/J$;
- 7. 第三同构定理: 设 I,J 是环 R 的理想, 若 $I \subset J$, 则 $\frac{R/I}{I/J} = R/J$;
- 8. 若 I 是环 R 的理想,则 $f: \{I \subseteq J \subseteq R, J$ 是理想 $\} \rightarrow \{R/I$ 的所有理想 $\}(J \rightarrow J/I)$ 是一一映射;
- 9. 环的特征: 设 R 是环, 若存在 $m \in \mathbb{Z}_+$, 使得 $\forall r \in R$, 有 mr = 0, 则称满 足此条件的最小正整数 m 为 R 的特征, 记为 charR;
 - (a) 若不存在这样的正整数,则称 charR = 0;
- 10. 素子环: 含幺环 R 中同构于 \mathbb{Z} 或 \mathbb{Z}_m 的子环被称为 R 的素子环;
- 11. 设 R 是交换环, charR = p 是素数, 则对 $\forall x, y \in R$, 有 $(x+y)^p = x^p + y^p$;
- 12. 设 R 是交换环, charR = p 是素数, 则 $f: R \to R(r \to r^p)$ 是环的自同态;
- 13. 素理想: 若 R 的理想 P 满足下面的性质,则称 P 为 R 的素理想:
 - (a) $P \neq R$;
 - (b) $A, B \neq R$ 的任意两个理想, 若 $AB \subseteq P$, 则 $A \subseteq P$ 或 $B \subseteq P$;
- 14. 极大理想: \overline{A} 的理想 \overline{M} 满足下面的性质, 则称 \overline{M} 为 \overline{R} 的极大理想:
 - (a) $M \neq R$;
 - (b) $\forall N \subseteq R$ 是 R 的理想, 若 $M \subseteq N \subseteq R$, 则 N = M 或 N = R;
- 15. 设 R 是含幺交换环, P 是 R 的理想且 $P \neq R$, 则下面条件相互等价:
 - (a) $P \in R$ 的素理想;
 - (b) $\forall a, b \in R,$ $\rightleftarrows ab \in P,$ $\bowtie a \in P$ $\rightleftarrows b \in P;$
 - (c) R/P 为整环;
- 16. 设 R 是含幺交换环,则 R 是整环 ⇔(0) 为素理想;
- 17. 设 R 是含幺交换环, $M \subseteq R$ 是理想, 则 M 为 R 的极大理想 $\Leftrightarrow R/M$ 为 域;

- (a) 特别的: 含幺交换环 R 为域的充要条件是 (0) 为 R 的极大理想;
- 18. 含幺交换环的极大理想是素理想;

10 交换环中的因子分解

- 1. 基本概念: 设 R 是交换环, $a,b \in R$:
 - (a) 整除: $a \neq 0$, 若 $\exists x \in R$, 使得 ax = b, 则称 a 整除 b(或 b 被 a 整除), 记为 a|b;
 - i. 若 $\exists x \in R$, 使得 ax = b 则称 a 不能整除 b(或 b 不能被 a 整除), 记作 $a \nmid b$;
 - (b) 因子: 若 a|b, 则称 a 为 b 的因子;
 - (c) 倍元: 若 a|b, 则称 b 为 a 的倍元;
 - (d) 相伴: 若 $a,b \neq 0$, 且有 a|b 和 b|a, 则称元素 a 与 b 相伴, 记作 $a \sim b(R) \{0\}$ 上的等价关系);
- 2. 基本概念: 设 R 是含幺交换环, $a,b \in R$:
 - (a) 真因子: 若 a = bc, b, $c \neq 0$ 且 b, $c \notin U(R)$, 则称 b 和 c 为 a 的真因子:
 - (b) 不可约元: 若 $0 \neq a \in R, a \notin U(R)$, 且 a 没有真因子, 则称 a 为不可约元:
 - (c) 素元: 设 $0 \neq p \in R, p \notin U(R)$, 且 $\forall a, b \in R$, 若 p|(ab), 则 p|a 或 p|b; i. 在整数环 \mathbb{Z} 中, 不可约元与素元一致;
- 3. 设 R 是含幺交换环, $a, b, u \in R \setminus \{0\}$, U(R) 为 R 的单位群, 则:
 - (a) $a|b\Leftrightarrow(b)\subseteq(a); a\sim b\Leftrightarrow(a)=(b);$
 - (b) $u \in U(R) \Leftrightarrow u \sim 1 \Leftrightarrow (u) = R \Leftrightarrow u | r, \forall r \in R;$
 - (c) $a = bu, u \in U(R) \Rightarrow a \sim b;$
 - i. 若 R 是整环, 则逆命题也成立;
 - (d) R 是整环, a 为 b 的真因子 $\Leftrightarrow a \notin U(R)$, $(b) \subseteq (a)$ 但 $(b) \neq (a)$;
- 4. 设 R 是整环, $p, c \in R \setminus \{0\}$, $S = \{(a) | a \in R, a \neq 0, a \notin U(R)\}$, 则:

- (a) p 是素元 \Leftrightarrow (p) 是非零素理想;
- (b) c 是不可约元 ⇔(c) 为 S 中的极大元;
- (c) R 中的素元必是不可约元;
- (d) 若 R 是主理想整环,则不可约元必是素元;
- 5. 唯一因子分解整环 (UFD): 满足下面条件的整环 R 被称为唯一因子分解整环:
 - (a) 分解存在性: 每个非零非单位的元 $a \in R$ 均可写成 $a = c_1c_2...c_n$, 其中 c_i , i = 1, ..., n 为不可约元;
 - (b) 分解的唯一性: 若 $a = c_1 c_2 ... c_n = d_1 d_2 ... d_m$, 其中 c_i, d_j 均为 R 中的不可约元, 则 n = m, 并且存在集合 $\{1, 2, ..., n\}$ 的一个置换 σ , 使得 $c_i \sim d_{\sigma(i)}, i = 1, 2, ..., n$;
- 6. 设 R 是唯一分解整环,则 R 有如下等价性质:
 - (a) R 中不存在无限的元素序列 $a_1, a_2, ..., a_n, ...$,使得每个 a_{i+1} 都是 a_i 的真因子;
 - (b) 对于 R 中每个无限序列 $a_1, a_2, ..., a_n, ...$,如果 $a_{i+1} | a_i (i = 1, 2, ...)$ 均成立,则必有正整数 N,使得 $a_N \sim a_{N+1} \sim ...$;
- 7. 若 R 为唯一分解整环,则 R 中的不可约元必为素元;
- 8. 最大公因子: 设 R 是整环, $a,b \in R \setminus \{0\}$, d 若满足下面的条件, 则称其为 a 和 b 的最大公因子, 记作 (a,b):
 - (a) d|a, d|b;
 - (b) ∀d' 满足 d'|a, d'|b, 有 d'|d;
 - (c) 注意: 元素 a 和 b 的最大公因子不唯一, 因为与 (a,b) 相伴的元素 均是 a 和 b 的最大公因子, 且是全部最大公因子;
- 9. 互素: 若 $(a,b) \sim 1$, 则称 a 与 b 互素;
- 10. 设 R 为整环, $a, b, c \in R \setminus \{0\}$, 则:
 - (a) $c(a,b) \sim (ca,cb)$;
 - (b) $(a,b) \sim 1, (a,c) \sim 1, \text{ } \exists (a,bc) \sim 1;$

11 域扩张 18

11. 设 R 为唯一分解整环,则 R 中的任意两个非零元素 a,b 都有最大公因子;

- 12. 每个主理想整环 (PID) 都是唯一分解整环 (UFD);
- 13. 欧式整环 (ED): 设 N 是非负整数集合, 若整环 R 到 N 能定义一个映射 $\varphi: R \to \mathbb{N}$, 满足下面的性质, 则称该整环 R 为欧式整环:
 - (a) $\varphi(x) = 0 \Leftrightarrow x = 0;$
 - (b) $\forall a, b \in R, b \neq 0$, 均存在 $q, r \in R$, 使得 a = bq + r 且 $\varphi(r) < \varphi(b)$;
- 14. 每个欧式整环 (ED) 都是主理想整环 (PID), 从而也是唯一分解整环 (UFD);

11 域扩张

- 1. 域扩张: 设 \mathbb{F} 是域, 若 \mathbb{F} 是域 \mathbb{E} 的子域, 则称 \mathbb{E} 为 \mathbb{F} 的域扩张 (或简称扩张), 记为 \mathbb{E}/\mathbb{F} ;
 - (a) 此时, E 为 F 上的向量空间;
 - (b) 次数: $\dim_{\mathbb{F}} \mathbb{E}$ 称为 \mathbb{E} 关于 \mathbb{F} 的次数, 记为 $[\mathbb{E} : \mathbb{F}]$;
 - (c) 有限扩张: $[\mathbb{E}:\mathbb{F}]<\infty$. 反之为无限扩张;
- 2. 代数元: 设 \mathbb{E}/\mathbb{F} 是域的扩张, $\alpha \in \mathbb{E}$, 若存在不全为零的 $a_0, a_1, ..., a_n \in \mathbb{F}$, 使得 $a_0 + a_1\alpha + ... + a_n\alpha^n = 0$, 则称 α 为 \mathbb{F} 上的代数元;
 - (a) 超越元: 不是代数元的, 称其为超越元;
 - (b) 代数数: C/Q 上的代数元;
 - (c) 超越数: C/Q 上的超越元;
- 3. 代数扩张: 设 \mathbb{E}/\mathbb{F} 是域的扩张, 如 \mathbb{E} 中的元均为 \mathbb{F} 上的代数元, 则称 \mathbb{E} 为 \mathbb{F} 的代数扩张;
 - (a) 超越扩张: 不是代数扩张的, 称为超越扩张;
- 4. 最小多项式: 设 \mathbb{E}/\mathbb{F} 是域的扩张, $\alpha \in \mathbb{E}$ 是 \mathbb{F} 上的代数元, 则有环同态 $\varphi : \mathbb{F}[x] \to \mathbb{E}(f(x) \to f(\alpha))$. 存在 $p(x) \in \mathbb{F}[x]$, 使得 $Ker\varphi = (p(x))$. 若 p(x) 首项系数为 1, 则 p(x) 唯一确定, 这样的 p(x) 被称为 α 的极小多项式;

11 域扩张 19

- (a) $p(\alpha) = 0$;
- (b) p(x) 是 $\mathbb{F}[x]$ 中的不可约元, 和素元;
- (c) 若 $f(\alpha) = 0$, 则 p(x)|f(x);
- 5. 有限扩张是代数扩张;
- 6. 设 图/F, F/K 是域的扩张, 则:
 - (a) 望远镜公式: $[\mathbb{E} : \mathbb{K}] = [\mathbb{E} : \mathbb{F}][\mathbb{F} : \mathbb{K}];$
 - (b) \mathbb{E}/\mathbb{K} 为有限扩张 ⇔ \mathbb{E}/\mathbb{F} , \mathbb{F}/\mathbb{K} 均是有限扩张;
- 7. 单扩张: 设 \mathbb{E}/\mathbb{F} 是晕的扩张, $\alpha \in \mathbb{E}$, 用 $\mathbb{F}(\alpha)$ 表示 \mathbb{E} 中含 \mathbb{F} 及 α 的最小子域, 称其为单扩张. 有 $\mathbb{F}(\alpha) = \{f(\alpha)/g(\alpha)|f(x),g(x)\in\mathbb{F}[x],g(\alpha)\neq 0\};$
- 8. 设 \mathbb{E}/\mathbb{F} 是域的扩张, $\alpha \in \mathbb{E}$ 是 \mathbb{F} 上的代数元, 则 $\mathbb{F}(\alpha) = \mathbb{F}[\alpha]$, 且 $[\mathbb{F}(\alpha) : \mathbb{F}] = \alpha$ 的极小多项式的次数;
- 9. 有限生成扩张: 设 \mathbb{E}/\mathbb{F} 是域的扩张, 若存在有限个元 $\alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{E}$, 使得 $\mathbb{E} = \mathbb{F}(\alpha_1, \alpha_2, ..., \alpha_n)$, 则称 \mathbb{E} 是 \mathbb{F} 的有限生成扩张;
- 10. 若 $\mathbb{E} = \mathbb{F}(\alpha_1, ..., \alpha_n)$, 且 $\alpha_1, ..., \alpha_n$ 为 \mathbb{F} 上的代数元, 则 \mathbb{E}/\mathbb{F} 是有限扩张;
- 11. 若 \mathbb{E}/\mathbb{F} 是有限扩张,则 \mathbb{E}/\mathbb{F} 是有限生成扩张;
- 12. 设 \mathbb{F}/\mathbb{K} 是代数扩张, u 是 \mathbb{F} 上的代数元, 则 u 在 \mathbb{K} 上也是代数元;
- 13. 设 \mathbb{E}/\mathbb{F} , \mathbb{F}/\mathbb{K} 是域的扩张, 则 \mathbb{E}/\mathbb{K} 是代数扩张 ⇔ \mathbb{E}/\mathbb{F} , \mathbb{F}/\mathbb{K} 均是代数扩张;
- 14. 代数封闭域: 对域 \mathbb{K} , 若满足 $u \in \mathbb{K}$ 的某个扩域中的元素, 并且 $u \in \mathbb{K}$ 上的代数元, 则有 $u \in \mathbb{K}$, 那么称 \mathbb{K} 为代数封闭域;
 - (a) 代数闭包: 设 \mathbb{F}/\mathbb{K} 为域的扩张, 若 \mathbb{F} 为代数封闭域, 且 \mathbb{F}/\mathbb{K} 是代数扩张, 则称 \mathbb{F} 是 \mathbb{K} 的代数闭包;