

Reg. No.: 23BEC1396

Final Assessment Test(FAT) - Nov/Dec 2024

Programme	B.Tech.	Semester	Fall Semester 2024-25	
Course Code	BECE205L	Faculty Name	Prof. Anith Nelleri	
Course Title	Engineering Electromagnetics	Slot	C1+TC1	
		Class Nbr	CH2024250100226	
Time	3 hours	Max. Marks	100	

General Instructions

• Write only Register Number in the Question Paper where space is provided (right-side at the top) & do not write any other details.

Course Outcomes

- 1. Evaluate and analyse Electric Fields & Electric Potential due to different Charge distributions.
- 2. Compute and analyze magnetic fields in different materials and media.
- 3. Analyze the EM wave propagation in conducting as well as in dielectric materials through time varying Maxwell's equations.
- 4. Illustrate the wave mechanism in different transmission lines at high frequencies using transmission line parameters.
- 5. Design Impedance matching circuits using Smith chart.
- 6. Analyze the field components of different waveguides based on various modes of E and H field.

	Answer all Questions (6 × 15 Marks)		*M - Marks		
Q.No	Question	*M	СО	BL	
01.	(a) A thin hollow cylindrical conductor of radius, $r = 5$ cm, infinite in length, carries a current I = 2 A. Determine the magnetic field inside and outside the cylinder as a function of radial distance from the axis of the cylinder. [8 Marks] (b) A charged particle with a uniform velocity $4\hat{a}_x$ (m/s) is in a region where the electric field is $E = 20\hat{a}_y$ V/m and magnetic field is $B = B_0\hat{a}_z$ T. Determine the magnetic field such that the velocity of the particle is constant. [7 Marks]	15		3	
02.	(a) What is the inconsistency in the Ampere's circuital law? Explain how it was rectified by Maxwell. Derive the expression for displacement current. [8 Marks] (b) A parallel-plate capacitor with plate area 5 mm² and plate separation 3 mm has a voltage V(t) = $50\sin 10^3$ t V applied to its plates. Calculate the displacement current assuming that the medium between the plates is air. [7 Marks]		3	4	

0	3. (a) Find the electric field at a distance 'z' above the midpoint between two equal charges 'q', a	15	1 3	
	distance 'd' apart as shown in the Fig.1. [7 Marks]			
	P			
	2			
	9 d12 d12 9 x	and the second		
	Fig. 1 (b) Find the potential function and the electric field intensity for the region between two			
	concentric right circular cylinders, where the inner cylinder with radius $r = 1$ mm is at voltage $V = 0$ V and the outer cylinder with $r = 20$ mm is at $V = 150$ V as shown in the Fig. 2. [8 Marks]			
	V= 150 V Fig. 2			
04.				
	(a) The electric field in an electromagnetic wave in free space is given by $E = 50\cos(10^8 t + kx)$ V/m	15	4	4
	(i) Find the direction of propagation and the magnetic field of the wave.			
	(ii) Calculate the wave number and the time it takes to travel a distance $\frac{\lambda}{2}$. [7 Marks]			
	(b) The parameters for the parrel-wire transmission line are as given below $L = 2.0 \mu H/m$, $C = 5.56 \text{ pF/m}$, $R = 2.59 \times 10^{-3} \Omega/m$, $G = 0 \text{ S/m}$.			
	Calculate the characteristic impedance, propagation constant, velocity of propagation and			
	wavelength for operation at 5 kHz. [8 Marks]			
05.	Use the Smith chart to find the input impedance of a section of a 50Ω lossless transmission line that is 0.1 wavelength long and is terminated in a short-circuit.	15	5	3
06.	A TE ₁₀ wave at 10 GHz propagates in a rectangular waveguide with inner dimensions $a = 1.5$	15	6	4
	cm and $b = 0.6$ cm, which is filled with polyethylene. The relative permittivity of polyethylene is 2.25. Determine (i) the phase constant, (ii) the cut-off frequency, (iii) the guide wavelength, (iv) the phase velocity, and (v) the wave impedance.			
	Section - II			
	Answer all Questions (1 × 10 Marks)		*M - Marks	
.No	Question	*M	CO	B
7.	(a) Transform the vector $\mathbf{B} = y\hat{\mathbf{a}}_x + x\hat{\mathbf{a}}_y + z\hat{\mathbf{a}}_z$ into cylindrical coordinates. [5 Marks] (b) Calculate the line integral of the function $\mathbf{B} = y^2\hat{\mathbf{a}}_x + 2x(y+1)\hat{\mathbf{a}}_y$ along the straight-line	10	1	3

BL-Bloom's Taxonomy Levels - (1.Remembering, 2.Understanding, 3.Applying, 4.Analysing, 5.Evaluating, 6.Creating)

path from point a = (1,1,0) to point b = (2,2,0). [5 Marks]