

A Certified Proof Checker for Deep Neural Network Verification in Imandra

Remi Desmartin*, Omri Isac*, Grant Passmore, Ekaterina Komendantskaya, Kathrin Stark, Guy Katz

ITP, October 2025

Remi Desmartin, PhD student Heriot-Watt University

Deep Neural Networks (DNNs) accomplish groundbreaking results in many fields, including safety-critical.

Unlike traditional software, DNNs are opaque functions, trained over a large set of input and output examples.

This may lead to undesirable behavior of DNNs, which is hard to predict and potentially dangerous.

Understanding Adversarial Attacks on Deep Learning Based Medical Image Analysis Systems, Ma et al., 2019

This may lead to undesirable behavior of DNNs, which is hard to predict and potentially dangerous.

Can we rule out possibility of (some) errors? Or find hidden errors, if exist

Understanding Adversarial Attacks on Deep Learning Based Medical Image Analysis Systems, Ma et al., 2019

The verification community developed various DNN verifiers, based on SMT, abstract interpretation, MILP and more.

DNN verifiers are prone to bugs and may be numerically unstable, which can be exploited [Jia & Rinard, 2021].

They are complex software and performance-oriented, thus their verification is very difficult.

Produce certificates of the verifiers' results:

- · Checked using an independent, trusted and simple checker.
- Witness the correctness of the verifier or reveal errors.

A common practice in SAT and SMT communities.

Trusting this scheme requires implementing a reliable checker, e.g., formally verified in an ITP.

The Model of Trust

The Model of Trust

The Model of Trust

Integration in System Verification

Background

Deep Neural Networks

- Layered function:
 - Affine: $b_i = \sum_j w_{i,j} \cdot f_j + c_i$
 - Nonlinear activations: $f_i = a_i(b_i)$
- The ReLU activation:

Active phase $b \ge 0, f = b$

DNN Verification

- Given a DNN \mathcal{N} an input property $\varphi(x)$ and an output property $\psi(y)$, decide whether there exists an input vector x such that $\varphi(x) \to \psi(\mathcal{N}(x))$.
 - o If exists, the problem is satisfiable (SAT);
 - Otherwise unsatisfiable (UNSAT).

DNN Verification

- Assuming QF linear properties, and ReLU activations → linear + piecewise linear constraints:
- Find assignment for $V \in \mathbb{R}^n$
 - Linear:

$$A \cdot V = \overline{0} \ [A \in \mathbb{R}^{m \times n}]$$

 $l \leq V \leq u \ [l, u \in \mathbb{R}^n]$

Piecewise Linear:

$$f_i = ReLU(b_i) [f_i, b_i \in V]$$

Verification Query Example

ReLU $x_1 \qquad \begin{array}{c|c} 2 & v_1 & -1 & \text{id} \\ \hline x_1 & v_1 & & \\ \hline \end{array}$ $x_2 \qquad \begin{array}{c|c} 1 & v_2 & \\ \hline \end{array}$ $x_2 \qquad \begin{array}{c|c} 1 & v_2 & \\ \hline \end{array}$ ReLU

$$\varphi(x) \coloneqq x \in [0, 1]^2$$
$$\neg \psi(y) \coloneqq y \in [4, 5]$$

Verification Query Example

$$\varphi(x) \coloneqq x \in [0, 1]^2$$

 $\neg \psi(y) \coloneqq y \in [4, 5]$

Variables:

$$V = \begin{bmatrix} x_1 & x_2 & b_1 & b_2 & f_1 & f_2 & aux_1 & aux_2 & y \end{bmatrix}$$

Tableau:

$$A = \begin{bmatrix} 2 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}$$

Bounds:

$$u = [1 \quad 1 \quad 3 \quad 1 \quad 3 \quad 1 \quad 3 \quad 2 \quad 5]$$

 $l = [0 \quad 0 \quad 0 \quad -1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 4]$

$$f_1 = ReLU(b_1)$$

 $f_2 = ReLU(b_2)$

DNN Verification Algorithms

 Many verification algorithms search for a satisfying assignment with LP solvers + splitting approach.

$$A \cdot V = \overline{0}$$

$$l \le V \le u$$

$$f_i = ReLU(b_i)$$

Solver searches for LP assignment

Splitting creates a tree structure to the search.

The query is UNSAT if and only if all leaves are UNSAT.

Certificate Production

- Certifying SAT is straightforward; Certifying UNSAT is more complicated, due to NP-Hardness [Katz et. al, '17; Sälzer and Lange, '21].
- Marabou DNN verifier produces and checks UNSAT proofs (C++).

The Certificate Tree

In the certificate-tree, nodes represent case-splits; leaves contain proofs of contradictions, which are represented by a vector.

The Farkas Lemma (Variant)

Gyula Farkas

For any set of linear equations AV = 0 where $l \le V \le u$ exactly one holds:

- There exists a solution (row vector) $l \le V \le u$ s.t. AV = 0.
- There exists a refutation (column vector) y s.t. $\forall l \leq V \leq u$: $y^{\top}AV < 0$.

Refutation can be constructed during execution of DNN verifier.

The Certificate Tree

Certificate checking consists of traversing the tree, checking splits are covering and checking leaves using the Farkas lemma.

Certified Checking

Imandra

- An OCaml-based FPL and an ITP.
- Supports arbitrary precision real arithmetic.

```
theorem farkas_unsat (s : system)(x : var_vect) (c : certificate) =
    well_formed s x && check_cert s c
    ==>
    eval_system s x = false
[@@by [% use cert_is_neg s c x]
@> [% use solution_is_not_neg s c x]
@> auto] [@@fc]
```

Data Representation

Variables:

$$V = \begin{bmatrix} x_1 & x_2 & b_1 & b_2 & f_1 & f_2 & aux_1 & aux_2 & y \end{bmatrix}$$

Tableau:

$$A = \begin{bmatrix} 2 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}$$

Bounds:

$$u = \begin{bmatrix} 1 & 1 & 3 & 1 & 3 & 1 & 3 & 2 & 5 \end{bmatrix}$$

 $l = \begin{bmatrix} 0 & 0 & 0 & -1 & 0 & 0 & 0 & 4 \end{bmatrix}$

$$f_1 = ReLU(b_1)$$

 $f_2 = ReLU(b_2)$

Data Representation


```
type proofTree =
    | Leaf of real list
    | Node of Split * proofTree * proofTree
type Split = Relu of int * int * int
```

Variables:

$$V = \begin{bmatrix} x_1 & x_2 & b_1 & b_2 & f_1 & f_2 & aux_1 & aux_2 & y \end{bmatrix}$$

Tableau:

$$A = \begin{bmatrix} 2 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}$$

Bounds:

$$u = \begin{bmatrix} 1 & 1 & 3 & 1 & 3 & 1 & 3 & 2 & 5 \end{bmatrix}$$

 $l = \begin{bmatrix} 0 & 0 & 0 & -1 & 0 & 0 & 0 & 4 \end{bmatrix}$

$$f_1 = ReLU(b_1)$$
$$f_2 = ReLU(b_2)$$

Data Representation

Variables:

$$V = \begin{bmatrix} x_1 & x_2 & b_1 & b_2 & f_1 & f_2 & aux_1 & aux_2 & y \end{bmatrix}$$

Tableau:

$$A = \begin{bmatrix} 2 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 & 0 & -1 & 0 \end{bmatrix}$$

Bounds:

$$u = \begin{bmatrix} 1 & 1 & 3 & 1 & 3 & 1 & 3 & 2 & 5 \end{bmatrix}$$

 $l = \begin{bmatrix} 0 & 0 & 0 & -1 & 0 & 0 & 0 & 4 \end{bmatrix}$

$$f_1 = ReLU(b_1)$$
$$f_2 = ReLU(b_2)$$

The Checking Function

Proof Main Components

Farkas lemma (UNSAT direction)

Type reduction soundness

ReLU splits are covering

The Farkas Lemma (Generalized)

Gyula Farkas

Given a polynomial system $\bigwedge_{i=1}^{N} (p_i(x) = 0)$ $\bigwedge_{i=1}^{K} (q_i(x) \ge 0)$ exactly one holds:

- There exists a solution.
- There exists a refutation: $\mathbb{I} \in \mathbb{R}^N$, $\mathbb{C} \in \mathbb{R}_{\geq 0}^K$ with $\mathbb{I} \cdot p_i + \mathbb{C} \cdot q_i < 0$.

The Farkas Lemma (Generalized)

Given a polynomial system $\bigwedge_{i=1}^{N} (p_i(x) = 0)$ $\bigwedge_{i=1}^{K} (q_i(x) \ge 0)$ exactly one holds:

```
theorem farkas_unsat (s : system)(x : var_vect) (c : certificate) =
    well_formed s x && check_cert s c
    ==>
    eval_system s x = false
```


Gyula Farkas

Data Representation

Matrix and vectors

If the system is UNSAT, so is the LP using the matrix and vectors.

Data Representation

Matrix and vectors

System of polynomial Equations and

```
lemma soundness_check_cert_composition tableau upper_bounds lower_bounds x =
   let sys = mk_system (mk_eq_constraints tableau) upper_bounds lower_bounds in
   well_formed_tableau_bounds tableau upper_bounds lower_bounds &&
   List.length x = List.length (List.hd tableau) &&
   not (eval_system sys x)
   ==>
   not (is_in_kernel tableau x) || not (bounded x upper_bounds lower_bounds)
```

If the system is UNSAT, so is are the input matrix and vectors.

Soundness of Leaf Checking

If leaf checking returns true, then there is no solution to underlying linear query

Soundness of Leaf Checking

Soundness of ReLU Splits

If the split corresponds to a ReLU constraint in Q, and both Q_L and Q_R are UNSAT, so is Q.

Soundness of ReLU Splits

```
theorem soundness relu split matching tableau us ls constraints xs split =
   let (lb left, ub left), (lb right, ub right) = update bounds from split ls
      us split in
   List.length xs = List.length ls
    && List.length xs = List.length us
   ==>
   match split with
    | ReluSplit (b,f,aux) ->
        List.mem (Relu (b,f,aux)) constraints
        && sat tableau us 1s constraints xs
        ==>
        (sat tableau ub left lb left constraints xs
        || sat tableau ub right lb right constraints xs)
        -> true
```

If the split corresponds to a ReLU constraint in Q, and both Q_L and Q_R are UNSAT, so is Q.

Main Result

Main Result

let valid_children = ... in
valid_split && valid children

Performance Evaluation

Evaluation shows a $\times \sim 4.7$ checking-to-verification delay, suggesting a clear tradeoff between reliability and scalability.

L.o.C. Evaluation

Result	Module name	L.O.C		Library Dependencies (accumulating)
Poly Farkas lemma (Theorem 5)	farkas.iml	194	21	Imandra Standard Libraries: Real, List, Polynomials
Sound application of DNN polynomial Farkas lemma (Theorem 7)	well_formed_reduction.iml bound_reduction.iml tableau_reduction.iml	41 359 356	13	farkas.iml, certificate.iml, arithmetic.iml, util.iml, tightening.iml, constraint.iml, proof_tree.iml, checker.iml, bound_reduct_g.iml, mk_bound_poly.iml
Soundness of leaf checking (Lemma 10)	leaf_soundness.iml	145	40	sat.iml, split.iml bound_reduction.iml, well_formed_reduction.iml, tableau_reduction.iml
Single variable splits are covering (Lemma 12)	single_var_split_soundness.iml	81	10	
ReLU splits are covering (Lemma 14)	relu_split_soundness.iml relu_case_1_bounded.iml relu_case_2_bounded.iml	113 337 338	18	relu.iml
Soundness of node checking	node_soundness.iml	78	19	relu_split_soundness.iml, sin-gle_var_split_soundness.iml
Soundness (Theorem 15)	checker_soundness.iml	71	146	leaf_soundness.iml, node_soundness.iml
Total:		2113	267	

Table 2 Summary of the entire formalisation. The Table reads as follows: a result A is proven in module A_mod , which is N lines long, calls M auxiliary lemmas, and depends on libraries as listed.

Future Work

Integrate in a system verifier

Support certificate optimizations

Bridge gap between DNN and query

Conclusion

Feel free to contact: omri.isac@mail.huji.ac.il

paper + code available