Contact-8827431647

# **SUNRISE EDUCATION CENTRE**

An institute for 9<sup>th</sup> -12<sup>th</sup> MATHEMATICS (Basic/Standard, Core/Applied) By Er. Mohit Nariyani.

### Worksheet - I Chapter-2

#### **Polynomials**

- 1. Find the zeroes of given polynomials and verify the relationship of zeroes with these co-efficients.
  - (i)  $2x^2 x 6$
  - (ii)  $x^2 3x 28$
  - (iii)  $9t^2 6t + 1$
  - (iv)  $3x^2 75$
  - (v)  $3x^2 2$
- 2. Find a quadratic polynomial, the sum and product of whose zeroes are  $\sqrt{3}$  and  $\frac{1}{\sqrt{3}}$  respectively.
- 3. Find the quadratic polynomial whose zeroes are -2 and -5. Verify the relationship between zeroes and coefficients of the polynomial.
- 4. Find a quadratic polynomial, the sum and product of whose zeroes are -8 and 12 respectively. Hence find the zeroes
- 5. If  $\alpha$  and  $\beta$  are the zeroes of a polynomial such that  $\alpha + \beta = -6$  and  $\alpha\beta = 5$ , then find the polynomial.
- 6. Find the value of "p" from the polynomial  $x^2 + 3x + p$ , if one of the zeroes of the polynomial is 2.
- 7. If the sum of the zeroes of the polynomial  $p(x) = (k^2 14)x^2 2x 12$  is 1, then find the value of k
- 8. Find the value of "x" in the polynomial  $2a^2 + 2xa + 5a + 10$  if (a + x) is one of its factors.
- 9. If the product of zeroes of the polynomial  $ax^2 6x 6$  is 4, find the value of a. Find the sum of zeroes of the polynomial.
- 10. If the sum of zeroes of the quadratic polynomial  $3x^2 kx + 6$  is 3, then find the value of k
- 11. If the sum of the zeroes of the polynomial  $p(x) = (k^2 14)x^2 2x 12$  is 1, then find the value of k.
- 12. Find a quadratic polynomial whose zeroes are  $3 + \sqrt{2}$  and  $3 \sqrt{2}$ .
- 13. If the zeroes of the polynomial  $x^2 + px + q$  are double in value to the zeroes of  $2x^2 5x 3$ , find the value of p and q.
- 14. If  $\alpha$  and  $\beta$  are zeros of  $3x^2 + 5x + 13$ , then find the value of  $\frac{1}{\alpha} + \frac{1}{\beta}$ .
- 15. If  $\alpha$  and  $\beta$  are zeros of quadratic polynomial  $p(s)=3s^2-6s+4$ , find the value of  $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+2\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)+3\alpha\beta$ .
- 16. If  $\alpha$  and  $\beta$  are zeros of  $x^2 + x 2$ , then find the value of  $\frac{1}{\alpha} \frac{1}{\beta}$ .
- 17. If  $\alpha$  and  $\beta$  are zeros of  $px^2-2x+3p$  and  $\alpha+\beta=\alpha\beta$  ,then find the value of p.
- 18. If  $\alpha$  and  $\beta$  are zeros of the quadratic polynomial such that  $\alpha + \beta = 24$  and  $\alpha \beta = 8$  find a quadratic polynomial having  $\alpha$  and  $\beta$  as its zeros.



Contact-8827431647

# **SUNRISE EDUCATION CENTRE**

An institute for 9<sup>th</sup> -12<sup>th</sup> MATHEMATICS (Basic/Standard, Core/Applied) By Er. Mohit Nariyani.

### Worksheet - II Chapter-2

#### **Polynomials**

- 1. If  $x = \frac{2}{3}$  and x = -3 are the roots of the quadratic equation,  $ax^2 + 7x + b = 0$  then find the values of a and b.
- 2. If -4 is a zero of the polynomial,  $x^2 x (2k + 2)$  then find the value of k.
- 3. If  $\alpha$  and  $\beta$  are the zeros of the polynomial  $2x^2 + 7x + 5$ , write the value of  $\alpha + \beta + \alpha\beta$ .
- 4. Write the zeros of the quadratic polynomial  $f(x) = 4\sqrt{3}x^2 + 5x 2\sqrt{3}$ .
- 5. If  $\alpha$  and  $\beta$  are zeros of quadratic polynomial  $p(s) = 3s^2 6s + 4$ , find the value of  $\left(\frac{1}{\alpha} \frac{1}{\beta}\right)$ .
- 6. If  $\alpha$ ,  $\beta$  be the zeros of the polynomial  $2x^2 + 5x + k$  such that  $\alpha^2 + \beta^2 + \alpha\beta = \frac{21}{4}$  then find k.
- 7. Find the zeros of the following quadratic polynomials and verify the relationship between the zeros and the coefficients:  $2\sqrt{3}x^2 5x + \sqrt{3}$
- 8. If one zero of the polynomial  $(a^2 9)x^2 + 13x + 6a$  is reciprocal of the other, then find the value of a.
- 9. If one zero of the quadratic polynomial,  $f(x) = 4x^2 8kx 9$  is negative of the other, then find the value of k.
- 10. If  $\alpha$  and  $\beta$  are zeros of quadratic polynomial  $p(x) = x^2 2x + 3$ , find the value of
  - (i)  $\alpha \beta$
  - (ii)  $\alpha^2\beta + \alpha\beta^2$
  - (iii)  $\alpha^4 + \beta^4$
  - (iv)  $\alpha^3 + \beta^3$

