Fast Coalgebraic Bisimilarity Minimization (POPL'23)

Jules Jacobs Radboud University Thorsten Wißmann

Radboud University

 \rightarrow

Friedrich-Alexander-Universität Erlangen-Nürnberg

The Automaton Zoo

Deterministic finite automata, tree automata, (labeled) transition systems, weighted and probabilistic automata, Markov decision processes, ...

The Automaton Zoo

Deterministic finite automata, tree automata, (labeled) transition systems, weighted and probabilistic automata, Markov decision processes, ...

Automaton Minimization

Find and merge behaviorally equivalent states

The Automaton Zoo

Deterministic finite automata, tree automata, (labeled) transition systems, weighted and probabilistic automata, Markov decision processes, ...

Automaton Minimization

Find and merge behaviorally equivalent states

Coalgebraic Bisimilarity Minimization

Algorithms that work for a general class of *F*-automata

Our contribution

a fast and general algorithm for minimizing automata

Our contribution

a fast and general algorithm for minimizing automata

- ► *General*: works for any computable coalgebra
- ▶ *Decent asymptotic complexity:* $O(\phi_F \cdot m \log n)$
- ► *Fast in practice*: no penalty for generality
- ► Low memory usage: important for large automata

Examples of Coalgebraic Automata

Automaton type	Equivalence	Functor $F(X)$		
DFA	Language Equivalence	$2 \times A^X$		
Transition Systems	Strong Bisimilarity	$\mathfrak{P}(\boldsymbol{X})$		
LTS	Strong Bisimilarity	$\mathfrak{P}(\boldsymbol{A} \times \boldsymbol{X})$		
Weighted Systems	Weighted Bisimilarity	$M^{(X)}$		
Markov Chain	Probabilistic Bisimilarity	$A \times \mathcal{D}(X)$		
MDP	Probabilistic Bisimilarity	$\mathfrak{P}(\mathfrak{D}(\boldsymbol{X}))$		
Weighted Tree Automata	Backwards Bisimilarity	$M^{(\Sigma X)}$		
Monotone Neigh. Frames	Monotone Bisimilarity	$\mathcal{N}(\boldsymbol{X})$		
:	:	:		

Automaton types compose: $F \circ G$, F + G, $F \times G$, . . .

DFA	Transition system	Markov chain
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3 5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$F(X) = \{F, T\} \times X \times X$	$F(X) = \mathcal{P}_{f}(X)$	$F(X) = \{F, T\} \times \mathcal{D}(X)$
$1 \mapsto (F, 2, 3) \\ 2 \mapsto (F, 4, 3) \\ 3 \mapsto (F, 5, 3) \\ 4 \mapsto (T, 5, 4) \\ 5 \mapsto (T, 4, 4)$	$1 \mapsto \{2, 3, 4\}$ $2 \mapsto \{1, 4\}$ $3 \mapsto \{3, 4, 5\}$ $4 \mapsto \{4, 5\}$ $5 \mapsto \{\ \}$	

DFA	Transition system	Markov chain
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3 7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$F(X) = \{F, T\} \times X \times X$	$F(X) = \mathcal{P}_{f}(X)$	$F(X) = \{F, T\} \times \mathcal{D}(X)$
$ \begin{array}{c} 1 \mapsto (F, 2, 3) \\ 2 \mapsto (F, 4, 3) \\ 3 \mapsto (F, 5, 3) \\ 4 \mapsto (T, 5, 4) \\ 5 \mapsto (T, 4, 4) \end{array} $	$ \begin{array}{c} 1 \mapsto \{2, 3, 4\} \\ 2 \mapsto \{1, 4\} \\ 3 \mapsto \{3, 4, 5\} \\ 4 \mapsto \{4, 5\} \\ 5 \mapsto \{\} \end{array} $	$ \begin{array}{l} \textbf{1} \mapsto (F, \{2 \colon \frac{1}{3}, 3 \colon \frac{2}{3}\}) \\ \textbf{2} \mapsto (F, \{2 \colon \frac{1}{2}, 4 \colon \frac{1}{2}\}) \\ \textbf{3} \mapsto (F, \{2 \colon \frac{1}{4}, 4 \colon \frac{1}{2}, 5 \colon \frac{1}{4}\}) \\ \textbf{4} \mapsto (T, \{4 \colon 1\}) \\ \textbf{5} \mapsto (F, \{3 \colon \frac{1}{2}, 4 \colon \frac{1}{2}\}) \end{array} $
2 ≡ 3, 4 ≡ 5	1 ≡ 2, 3 ≡ 4	2 ≡ 3 ≡ 5

What is coalgebraic bisimilarity minimization?

The input:

- ightharpoonup a functor F(X) describes automaton type
- ▶ a coalgebra $t : C \rightarrow F(C)$ the automaton

What is coalgebraic bisimilarity minimization?

The input:

- ightharpoonup a functor F(X) describes automaton type
- ▶ a coalgebra $t : C \rightarrow F(C)$ the automaton

The output:

- ▶ a partition $p: C \rightarrow C'$
 - the equivalence classes of bisimilar states
- ightharpoonup s.t. $p(x) = p(y) \implies Fp(t(x)) = Fp(t(y))$
- ightharpoonup |C'| as small as possible

Sketch of our algorithm

- 1. Assume all states are equivalent
- 2. Split equivalence classes by *signature* (*normalised* outgoing transitions)
- 3. Iterate until convergence

Key points

- Only recompute signatures of changed states
- ▶ Do not loop over *unchanged* states

Algorithm

Set all the state numbers to 1.

- 1. Pick equivalence class & compute missing signatures.
- 2. Assign new state numbers & remove invalid signatures.

Algorithm

Set all the state numbers to 1.

- Pick equivalence class & compute missing signatures.
- 2. Assign new state numbers & remove invalid signatures.

Algorithm

- 1. Pick equivalence class & compute missing signatures.
- 2. Assign new state numbers & remove invalid signatures.

Algorithm

- 1. Pick equivalence class & compute missing signatures.
- 2. Assign new state numbers & remove invalid signatures.

Algorithm

- Pick equivalence class & compute missing signatures.
- 2. Assign new state numbers & remove invalid signatures.

Algorithm

Set all the state numbers to 1.

- 1. Pick equivalence class & compute missing signatures.
- 2. Assign new state numbers & remove invalid signatures.

Algorithm

- Pick equivalence class & compute missing signatures.
- 2. Assign new state numbers & remove invalid signatures.

Algorithm

Set all the state numbers to 1.

- 1. Pick equivalence class & compute missing signatures.
- 2. Assign new state numbers & remove invalid signatures.

Algorithm

Set all the state numbers to 1.

- Pick equivalence class & compute missing signatures.
- 2. Assign new state numbers & remove invalid signatures.

Algorithm

Set all the state numbers to 1.

- 1. Pick equivalence class & compute missing signatures.
- 2. Assign new state numbers & remove invalid signatures.

Algorithm

Set all the state numbers to 1.

- 1. Pick equivalence class & compute missing signatures.
- 2. Assign new state numbers & remove invalid signatures.

Algorithm

- 1. Pick equivalence class & compute missing signatures.
- 2. Assign new state numbers & remove invalid signatures.

Algorithm

Set all the state numbers to 1.

- 1. Pick equivalence class & compute missing signatures.
- 2. Assign new state numbers & remove invalid signatures.

Algorithm

- 1. Pick equivalence class & compute missing signatures.
- 2. Assign new state numbers & remove invalid signatures.

Algorithm

- 1. Pick equivalence class & compute missing signatures.
- 2. Assign new state numbers & remove invalid signatures.

Algorithm

- 1. Pick equivalence class & compute missing signatures.
- 2. Assign new state numbers & remove invalid signatures.

The general picture

1. Pick equivalence class with missing signatures:

a a 1 1 1 1 1 1 1

2. Compute missing signatures:

3. Assign new state numbers:

a a b b b b c a 2 2 1 1 1 1 1 3 2

4. Remove invalid signatures from predecessors

What we need from the automaton

- ▶ Set of states *C*
- ▶ Predecessors of each state pred : $C \rightarrow P(C)$
- ▶ Procedure to (re)compute signatures sig : $(C \to \mathbb{N}) \to (C \to F(\mathbb{N}))$

What we need from the automaton

- ▶ Set of states *C*
- ▶ Predecessors of each state pred : $C \rightarrow P(C)$
- ▶ Procedure to (re)compute signatures sig : $(C \to \mathbb{N}) \to (C \to F(\mathbb{N}))$

Complexity: $O(n^2)$ signature computations

What we need from the automaton

- ► Set of states C
- ▶ Predecessors of each state pred : $C \rightarrow P(C)$
- ▶ Procedure to (re)compute signatures sig : $(C \to \mathbb{N}) \to (C \to F(\mathbb{N}))$

Complexity: $O(n^2)$ signature computations

Key: re-use old state number for largest new equivalence class

Invalidates fewer signatures

Complexity: $O(m \log n)$ signature computations

State	1	2	3	4	5	6	7	8	9
Iteration 1	1	1	1	1	1	1	1	1	1

State	1	2	3	4	5	6	7	8	9
Iteration 1	1	1	1	1	1	1	1	1	1
Iteration 2	2	3	3	3	1	1	1	1	1

State	1	2	3	4	5	6	7	8	9
Iteration 1	1	1	1	1	1	1	1	1	1
Iteration 2	2	3	3	3	1	1	1	1	1
Iteration 3	2	3	3	3	1	1	4	4	5

State	1	2	3	4	5	6	7	8	9
Iteration 1	1	1	1	1	1	1	1	1	1
Iteration 2	2	3	3	3	1	1	1	1	1
Iteration 3	2	3	3	3	1	1	4	4	5
Iteration 4	2	3	3	6	1	1	4	4	5

Hopcroft's trick

State	1	2	3	4	5	6	7	8	9
Iteration 1	1	1	1	1	1	1	1	1	1
Iteration 2	2	3	3	3	1	1	1	1	1
Iteration 3	2	3	3	3	1	1	4	4	5
Iteration 4	2	3	3	6	1	1	4	4	5
Iteration 5	2	3	3	6	1	7	4	4	5

Each state's number changes $O(\log n)$ times!

Why $O(m \log n)$ signature recomputations?

An edge $\mathbf{A} \to \mathbf{B}$ may cause a signature recomputation of \mathbf{A} when \mathbf{B} 's state number changes.

Time complexity: $O(\Phi_F \cdot m \log n)$

Key ingredient: *never touch unchanged states*

Time complexity: $O(\Phi_F \cdot m \log n)$

Key ingredient: never touch unchanged states

- ▶ *n*-way partition refinement data structure
- also tracks invalid signatures
- ▶ uses radix sort & bucket sort for *n*-way split

⇒ signature recomputations dominate

Comparison

	CoPaR	DCPR	mCRL2	Boa
Complexity	$O(m \log n)$	$O(\phi_F n^2)$	$O(m \log n)$	$O(\phi_F m \log n)$
Generality	Zippable	Coalg	LTS+	Coalg
Language	Haskell	Haskell	C++	Rust

beno	benchmark		time (s)	memory (MB)		
type	n	CoPaR	DCPR	Воа	DCPR	Boa
	1639440	232	84	1.12	514×32	196
fms	4459455	_	406	4.47	$1690^{\times 32}$	582
	607727	105	855	0.28	147×32	42
wlan	1632799	_	2960	0.79	379×32	93
wta(W)	152107	566	79	0.74	642×32	83
	944250	_	675	11.96	6786×32	1228
wta(Z)	156913	438	82	0.48	677×32	92
Wla(Z)	1007990	_	645	16.75	5644×32	1325
wta(2)	154863	449	160	0.81	621×32	79
	1300000	_	1377	23.35	$7092^{\times 32}$	1647
	<u> </u>				<u> </u>	

Comparison

	CoPaR	DCPR	mCRL2	Boa
Complexity	$O(m \log n)$	$O(\phi_F n^2)$	$O(m \log n)$	$O(\phi_F m \log n)$
Generality	Zippable	Coalg	LTS+	Coalg
Language	Haskell	Haskell	C++	Rust

What is the cost of generality?

benchmark		time	e (s)	memory (MB)		
type	n	mCRL2	Boa	mCRL2	Boa	
	2416632	13.9	1.4	1780	249	
cwi	7838608	214.2	15.8	5777	814	
	33949609	282.2	31.5	16615	2776	
	6020550	33.8	3.1	2124	520	
vasy	11026932	51.6	6.1	2768	619	
	12323703	56.9	7.0	3103	734	

For *mCRL2*, we pick its best algorithm and self-reported time. For *Boa*, we report wall-clock time.

Why is it fast?

Why is it fast?

▶ Read 1 byte from memory: \approx 200 cycles

Why is it fast?

- ▶ Read 1 byte from memory: \approx 200 cycles
- ▶ Read next 63 bytes from memory: \approx 1 cycle
- ► Computation (arithmetic, bit ops): \approx 1 cycle

Why is it fast?

- ▶ Read 1 byte from memory: \approx 200 cycles
- ▶ Read next 63 bytes from memory: \approx 1 cycle
- ► Computation (arithmetic, bit ops): \approx 1 cycle

ϕ_F is cheap!

Don't incrementalize, just recompute:

- Saves memory
- ► Saves random reads
- ► Saves iterations*

Conclusion

Minimization can be simple, generic, and fast

Conclusion

Minimization can be simple, generic, and fast

Future

- ▶ Other notions of equivalence (*e.g.*, branching)
- Specialization by monomorphisation
- ► Integration into Storm (with Sebastian Junges)
- Minimize your automata!