

=Module:	EE6621 ASICs 1 (Digital ASICs)	
Date:	29/12/2019	
Lab Number:	4	
Author / Student Name:	Fionn Murray	
Student ID:	18223451	

1 References

- [1] 7 Series FPGAs Datasheet: Overview, DS180 (v2.6), Xilinx Inc., 2018
- [2] Artix-7 FPGAs Datasheet: DC and AC Switching Characteristics, DS181 (v1.25), Xilinx Inc., 2018
- [3] 7 Series FPGAs Clocking Resources User Guide, UG471 (v1.14), Xilinx Inc., 2018
- [4] 7 Series FPGAs Configuration User Guide, UG470 (v1.13.1), Xilinx Inc., 2018 [5] Vivado Design Suite User Guide Release Notes, Installation and Licensing, UG973 (v2020.1), Xilinx Inc., 2020
- [6] Vivado Design Suite User Guide Using the Vivado ISE, UG893 (v2019.2), Xilinx Inc., 2019
- [7] Vivado Design Suite User Guide System Level Design Entry, UG895 (v2019.2), Xilinx Inc., 2019
- [8] Vivado Design Suite User Guide Using TCL Scripting, UG894 (v2019.2), Xilinx Inc., 2019
- [9] Vivado Design Suite User Guide Logic Simulation, UG900 (v2019.2), Xilinx Inc., 2019
- [10] Vivado Design Suite User Guide Synthesis, UG901 (v2019.2), Xilinx Inc., 2019
- [11] Vivado Design Suite User Guide Implementation, UG904 (v2019.2), Xilinx Inc., 2019
- [12] Vivado Design Suite User Guide Using Constraints, UG903 (v2019.2), Xilinx Inc., 2019
- [13] Vivado Design Suite Overview [Online]. Available: https://www.xilinx.com/products/design-tools/vivado/vivado-ml.html
- [14] Revision control system git [Online]. Available: https://git-scm.com/
- [15] Digilent Inc. (2020, June, 27), Cmod A7 Reference Manual: https://reference.digilentinc.com/reference/programmablelogic/cmod-a7/reference-manual.Lab Challenges

Challenge 4.1:

© 2021 by University of Limerick.

Figure 1, clkgen_cmod_a7 Schematic

© 2021 by University of Limerick. 2 of 9

24 total ports being used out of 106=22% is correct.

Design Timing Summary

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	5.205 ns	Worst Hold Slack (WHS):	0.074 ns	Worst Pulse Width Slack (WPWS):	2.845 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	344	Total Number of Endpoints:	344	Total Number of Endpoints:	163
All user specified timing constra	ints are me	t.			
<u>9_1</u>					

Figure 2, Design Timing Summary

© 2021 by University of Limerick.

Figure 3, Synthesis timing report, Clock Networks

clk_100MHz shows to be driving 146 loads here as the rt2 design is only making use of 100MHz signal as its main clock routed to input port clk of the main module rt2, and from there passed on to all lower-level building blocks of the design.

Challenge 4.5

The Slice LUTS module has the most (239) registers consumed.

Figure 4, Utilization report

Figure 5, Design Implementation Timing Summary

Challenge 4.7

Figure 6, Design Implementation Utilization Report

Challenge 4.8

© 2021 by University of Limerick. 5 of 9

Figure 7, I/O relevant to the rt2 design

Figure 8, Generated Bitstream file properties

Figure 9, Test Bench Verification

Test	Pass/Fail
Display shows UL	Pass
Display shows UL ECE	Pass
Display shows EE6621	Pass
Display shows rt2	Pass
Display enters ready state on PB press at rt2 display	Pass
Display enters steady mode before entering measurement mode	Pass
Display enters cheat mode if PB is pressed before steady mode has ended	Pass
Display timer stops after a press of PB	Pass

Figure 10, Table Of Tests for rt2 based on functional descriptive specification

© 2021 by University of Limerick. 7 of 9

8 of 9

Challenge 4.11

Figure 11, Memory config MCS file properties

Challenge 4.12

Figure 12, Second Table Of Tests for rt2 based on functional descriptive specification after flashing fpga module

Test	Pass/Fail		
Display shows UL	Pass		
Display shows UL ECE	Pass		
Display shows EE6621	Pass		
Display shows rt2	Pass		
Display enters ready state on PB press at rt2 display	Pass		
Display enters steady mode before entering measurement mode	Pass		
Display enters cheat mode if PB is pressed before steady mode has ended	Pass		
Display timer stops after a press of PB	Pass		

Title: EE6621 Lab Template

3. Declaration of Authorship

I confirm that this lab report, submitted for assessment, is my own original work.