Санкт-Петербургский Политехнический Университет Петра Великого

Институт прикладной математики и механики Кафедра "Прикладная математика"

> ОТЧЁТ ЛАБОРАТОРНАЯ РАБОТА №7 ПО ДИСЦИПЛИНЕ "МАТЕМАТИЧЕСКАЯ СТАТИСТИКА"

Выполнил студент: Салихов С.Р. группа: 3630102/70401

Проверил: к.ф-м.н., доцент Баженов Александр Николавич

Содержание

		Стр.
1.	Постановка задачи	5
2.	Теория	5
	2.1. Доверительные интервалы для параметров нормального распредееления	5
	2.2. Доверительные интервалы для математического ожидания m и среднего квадратического отклонения σ произвольного распределения при большом объёме выборки. Асимптотический подход	
	шом объёме выборки. Асимптотический подход	5
3.	Реализация	6
4.	Результаты	6
5.	Обсуждение	6
6.	Литература	6
7.	Приложения	7

Список иллюстраций

Список таблиц

1	Доверительные интервалы для параметров нормального распределения.	6
2	Доверительные интервалы для параметров произвольного распределе-	
	ния. Асимптотический подход	6

1 Постановка задачи

Для двух выборок размерами 20 и 100 элементов, сгенерированных согласно нормальному закону N(x, 0, 1), для параметров положения и масштаба построить асимптотически нормальные интервальные оценки на основе точечных оценок метода максимального правдоподобия и классические интервальные оценки на основе статистик χ^2 и Стьюдента. В качестве параметра надёжности взять $\gamma=0.95$.

2 Теория

2.1 Доверительные интервалы для параметров нормального распредееления

Оценкой максимального правдоподобия для математического ожидания является среднее арифметическое: $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$.

Оценка максимального правдоподобия для дисперсии вычисляется по формуле: $\sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2.$

Доверительным интервалом или интервальной оценкой числовой характеристики или параметра распределения θ с доверительной вероятностью γ называется интервал со случайными границами (θ_1, θ_2), содержащий параметр θ с вероятностью γ .

Функция распределения Стьюдента:

$$T = \sqrt{n-1} \frac{\overline{x} - \mu}{\delta}$$

Функция плотности распределения χ^2 :

$$f(x) = \begin{cases} 0, & x \le 0\\ \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} x^{\frac{n}{2}-1} e^{-\frac{x}{2}}, & x > 0 \end{cases}$$

Интервальная оценка математического ожидания:

$$P = \left(\overline{x} - \frac{\sigma t_{1-\frac{a}{2}}(n-1)}{\sqrt{n-1}} < \mu < \overline{x} + \frac{\sigma t_{1-\frac{a}{2}}(n-1)}{\sqrt{n-1}}\right) = \gamma,$$

где $t_{1-\frac{a}{2}}$ – квантиль распределения Стьюдента порядка $1-\frac{a}{2}$. Интервальная оценка дисперсии:

$$P = \left(\frac{\sigma\sqrt{n}}{\sqrt{\chi_{1-\frac{\alpha}{2}}^2(n-1)}} < \sigma < \frac{\sigma\sqrt{n}}{\sqrt{\chi_{\frac{\alpha}{2}}^2(n-1)}}\right) = \gamma,$$

где $\chi^2_{1-\frac{a}{2}},~\chi^2_{\frac{a}{2}}$ — квантили распределения Стьюдента порядков $1-\frac{a}{2}$ и $\frac{a}{2}$ соответственно.

2.2 Доверительные интервалы для математического ожидания т и среднего квадратического отклонения σ произвольного распределения при большом объёме выборки. Асимптотический подход

Асимптотическая интервальная оценка математического ожидания:

$$P = \left(\overline{x} - \frac{\sigma u_{1-\frac{a}{2}}}{\sqrt{n}} < m < \overline{x} + \frac{\sigma u_{1-\frac{a}{2}}}{\sqrt{n}}\right) = \gamma,$$

где $u_{1-\frac{a}{2}}$ – квантиль нормального распределения N(x,0,1) порядка $1-\frac{a}{2}$.

$$\sigma(1-0.5t_{1-\alpha/2}\sqrt{e+2}/\sqrt{n}) < \sigma < \sigma(1+0.5t_{1-\alpha/2}\sqrt{e+2}/\sqrt{n})$$

3 Реализация

Для генерации выборки был использован Python~3.7 и модуль numpy. Для отрисовки графиков использовался модуль matplotlib. scipy.stats для обработки функций распределений.

4 Результаты

Таблица 1: Доверительные интервалы для параметров нормального распределения

n = 20	m	σ
	-0.5 < m < 0.42	$0.75 < \sigma < 1.44$
n = 100	m	σ
	-0.25 < m < 0.12	$0.81 < \sigma < 1.07$

 Таблица 2: Доверительные интервалы для параметров произвольного распределения.

 Асимптотический подход

n = 20	m	σ
	-0.46 < m < 0.38	$0.82 < \sigma < 1.2$
n = 100	m	σ
	-0.24 < m < 0.12	$0.86 < \sigma < 0.99$

5 Обсуждение

6 Литература

Модуль питру

Модуль matplotlib

Модуль scipy

7 Приложения

Код лаборатрной Код отчёта