Biomasa

214. Na koje načine se može koristiti energija biomase?

Izravno izgaranje: još uvijek dominantan način korištenja

Gorivo: može biti: kruto (drvo), tekuće (biodizel i bioetanol) i plinovito (bioplin, vodik).

215. Navedite prednosti i nedostatke korištenja energije biomase?

<u>Prednosti</u>: decentraliziran izvor, dodatna društvena korist, lokalni okoliš (otpad), mala cijena goriva, stalniji obnovljivi izvor, značajan izvor energije (nerazvijene zemlje), energetska sigurnost i globalno zagrijavanje (razvijene zemlje).

<u>Nedostaci</u>: mala energetska vrijednost i gustoća (prikupljanje i korištenje), mali kapaciteti (ovisnost o izvoru mase), skupo korištenje (poticaji, poremećaj proizvodnje hrane), održivost

216. Što se od navedenoga ne može direktno proizvesti iz biomase?

- a) plin
- b) tekuće gorivo
- c) toplina
- d) električna energija

217. Koje je veliko ograničenje za korištenje energije biomase?

- a) nedovoljno predvidiv izvor energije
- b) pojačava učinak staklenika
- c) raspršen izvor energije
- d) ništa navedeno

218. Od svih energijskih tehnologija najveće zauzeće površine po proizvedenom MW

električne snage pripada:

a) nuklearnoj

energiji

- b) energiji biomase
- c) energiji vjetra
- d) fotonaponskoj tehnologiji

219. Prednosti korištenja biomase su:

- a) energetska samostalnost
- b) smanjenje utjecaja na okoliš
- c) faktor opterećenja
- d) sve navedeno

220. Poteškoće korištenja biomase su:

- a) poremećaji u proizvodnji hrane
- b) mala gustoća energije
- c) povećani utjecaj na okoliš kod nepažljivog korištenja
- d) sve navedeno

221. Najveću gustoću energije imaju:

- a) TE na prirodni plin
- b) TE na ugljen
- c) nuklearne elektrane
- d) obnovljivi izvori energije

222. Najmanju gustoću energije imaju:

- a) TE na prirodni plin
- b) TE na ugljen
- c) nuklearne elektrane
- d) obnovljivi izvori energije

Sunce

223. Koja su dva načina korištenja Sunčeve energije?

Grijanje: pasivno i aktivno

Električna energija: direktno i u elektranama

224. Kako se može koristiti Sunčeva energija za proizvodnju topline?

Pasivno solarno grijanje: svjetlo po danu, velika južna površina za prihvat sunčeva zračenja, dobra

izolacija za održavanje topline

Aktivno solarno grijanje: toplinski kolektori preuzimaju energiju i griju vodu

225. Kako se može koristiti Sunčeva energija za proizvodnju električne energije?

Solarna elektrana: parabolična protočna, solarni toranj, parabolični tanjur

Fotonaponske ćelije: direktna pretvorba solarnog zračenja u električnu energiju

226. Što je faktor punjenja fotonaponske ćelije?

Omjer maksimalne snage i produkta I_{KS} sa naponom U₀

$$F = \frac{Im * Um}{Iks * Uo}$$

227. Zašto je snaga Sunčeva zračenja manja na površini Zemlje u odnosu na vrh atmosfere i o čemu to smanjenje ovisi?

Zbog indeksa prozirnosti K_t G=K_t* G₀

228. Kojeg reda veličine je snaga sunčeva zračenja po m2 na ulazu u atmosferu (solarna konstanta)?

 $G_0=1970 \text{ W/m}^2$

229. U kojem rasponu se kreće snaga solarnog zračenja koju možemo očekivati na površini zemlje? G=200 W/m²

230. Navedite dvije vrste elektrana za proizvodnju električne energije na Sunčevu energiju i koji dio zračenja koriste.

Parabolična protočna, solarni toranj i parabolični tanjur. Koriste samo direktno zračenje.

231. Koje je najveće ograničenje većem korištenju Sunčeve energije za proizvodnju električne energije?

232. Koji dio Sunčeve svjetlosti je najmanji za vedra sunčana dana?

a) difuzni b) direktni c) infracrveni d) vidljivi

233. Koji dio Sunčeve svjetlosti dominantan za vedra sunčana dana?

a) difuzni <u>b) direktni</u> c) infracrveni d) vidljivi

234. Što znatno poraste nakon znatnog povećanja Sunčeva ozračenja na površinu opterećene fotonaponske ćelije?

a) napon b) struja c) stupanj djelovanja d) faktor punjenja

235. Kod fotonaponskih ćelija promjena temperature utječe primarno na promjenu?

- a) faktor punjenja
- b) struja
- c) napon i stupanj djelovanja
- d) ovisi o ćeliji

236. Koja komponenta Sunčeve svjetlosti se koristi za rad solarnih termoelektrana?

a) sve b) difuzna c) direktna d) vidljiva

237. Indeks prozračnosti Zemljine atmosfere iznosi oko:

a) 0,3 b) 0,5 c) 0,7 d) 0,8

238. Koje je najveće ograničenje za korištenje Sunčeve energije za proizvodnju električne energije?

- a) veliki investicijski trošak
- b) znatno pojačanje učinka staklenika
- c) zauzeće velikih površina
- d) ništa od navedenog

239. S povećanjem temperature učinkovitost fotonaponskih ćelija:

- a) raste
- b) prvo raste, pa opada
- c) opada
- d) ne mijenja se

240. Koji kružni proces se rabi kod solarne elektrane izvedene s tornjem ili kao parabolična protočna?

- a) Rankineov
- b) Jouleov
- c) Carnotov
- d) Braytonov

241. Prosječan iznos Sunčevog ozračenja na razini tla u Hrvatskoj iznosi oko:

- a) 1300 kW/m2
- b) 200 kW/m2
- c) 1300 W/m2
- d) 200 W/m2

Vjetar

242. Kako se može kontrolirati (mijenjati) snaga vjetroagregata?

Promjenom brzine vjetra i promjera vjetroturbine.

$$P = \frac{\rho * A}{2} * v^3 * c_p$$

243. Koliko se puta promjeni snaga vjetroagregata ako se promjer vjetroturbine udvostruči, uz sve ostale parametre iste?

Poveća se četiri puta.

$$P = \frac{\rho * A}{2} * v^3 * c_p$$
, $A = r^2 * \pi$

244. Koliko se puta promjeni snaga vjetroagregata ako se brzina vjetra udvostruči, uz sve ostale parametre iste?

Poveća se osam puta.

$$P = \frac{\rho * A}{2} * v^3 * c_p$$

245. Kako se mijenja brzina vjetra s visinom i o čemu to ovisi?

Brzina vjetra raste s visinom. To ovisi o konfiguraciji tla, temperaturi i tlaku.

246. Kako ovisi snaga vjetroelektrane o brzini vjetra?

Snaga vjetroelektrane se povećava sa povećanjem brzine vjetra.

247. Navedite prednosti vjetroelektrana u odnosu na elektrane na konvencionalne energente.

Ne zagađuju okolinu, pozitivan utjecaj na smanjenje vjetra

248. Navedite nedostatke vjetroelektrana u odnosu na elektrane na konvencionalne energente.

Nepredvidljivost, ne odgovaraju im jake promjene snage vjetra, estetsko zagađenje (farma vjetroelektrana)

249. O čemu ovisi iskoristivost snage vjetra pri proizvodnju električne energije u vjetroagregatu?

250. Koliko se idealno (teorijski) najviše snage vjetra može iskoristiti?

Maksimalna teorijska snaga se postiže kada je brzina vjetra iza vjetrenjače jednaka trečini brzine ispred i iznosi 59.3% snage vjetra. $P_{vjetr.teorij,maks} = c_{p.betz} * P_v = 0.593 * P_v$

251. Do koje snage se grade vjetroagregati?

Nekoliko MW.

252. Koji je veliki nedostatak korištenja energije vjetra?

- a) mala brzina vjetra
- b) velika brzina vjetra
- c) nepredvidivost
- d) nema nedostataka

253. Vjetroagregat A ima tri puta manji promjer lopatica, ali radi na tri puta većoj brzini vjetra od vjetroagregata B. Koliko se razlikuje snaga PA od snage PB uz sve ostale parametre jednake?

- a) iste su
- b) $PA = 3 \cdot PB$
- c) $PB = 3 \cdot PA$
- d) nema dovoljno podataka

$$P = \frac{\rho * A}{2} * v^3 * c_p$$
, $A = r^2 * \pi$

254. Kako se korigira upravljivost vjetroelektrana u elektroenergetskom sustavu:

- a) zakretanjem lopatica
- b) smanjenjem broja lopatica
- c) izradom masivnijih stupova VE
- d) sve navedeno

255. Veći udio (iznad 15%) energije iz vjetroelektrana u EES-u rezultirao bi:

- a) smanjenjem stabilnosti
- b) nepromijenjenom stabilnosti
- c) povećanjem stabilnosti
- d) smanjenom potrebom za zamjenskim izvorima

256. Na snagu vjetroagregata najmanje utječe:

- a) gustoća zraka
- b) brzina vjetra
- c) presjek lopatica
- d) vrsta generatora

257. Maksimalna iskoristiva energija vjetra ograničena je jer:

- a) je brzina vjetra neujednačena
- b) postoji termodinamičko ograničenje
- c) dio energije vjetra služi protjecanju zraka iza vjetroagregata
- d) to određuje realnost izvedbe vjetroagregata

258. Vjetroagregat ne radi na velikim brzinama jer:

- a) to je opasno za integritet vjetroagregata
- b) to je zanemariva energija
- c) to stvara preveliku buku
- d) to predstavlja opasnost za ptice

259. Betzov koeficijent određuje:

- a) maksimalni teorijski iznos iskoristive energije vjetra (0,593)
- b) maksimalni praktični iznos iskoristive energije vjetra
- c) teorijsko ograničenje efikasnosti vjetroagregata s tri lopatice
- d) praktično ograničenje efikasnosti vjetroagregata s tri lopatice

260. Vjetroagregat nakon nazivne brzine ima nazivnu snagu sve do maksimalne brzine jer:

- a) to je lakše izvesti
- b) to osigurava prihvatljivi faktor opterećenja
- c) to je lakše regulirati
- d) to smanjuje opasnost za ptice

Gorivne čelije i skladištenje energije

261. Gorivne ćelije služe za direktnu proizvodnju koje energije?

- a) toplinske
- b) kemijske
- c) električne
- d) mehaničke

262. U gorivnim ćelijama električna energije se proizvodi:

- a) izravnim procesom
- b) neizravnim procesom
- c) procesom fotosinteze
- d) ništa od navedenog

263. U gorivnim ćelijama odvijaju se kemijske reakcije između goriva i:

- a) kisika
- b) elektrolita
- c) katalizatora
- d) priključenog trošila

264. Kroz elektrolit gorivne ćelije ne difundiraju:

- a) Elektroni (idu kroz trošilo)
- b) Protoni
- c) Neutroni
- d) Niti jedna od navedenih čestica

265. Što je skladištenje energije (definicija)?

Transformacija prijelaznog u stalni oblik energije, pogodan za povratnu transformaciju.

266. Navedite dva razloga zašto je potrebno skladištiti energiju.

Istovremenost potrošnje i proizvodnje električne energije (Pouzdanost) i povremena nedostupnost pojedinih energenata (sunce, vjetar).

267. Navedite osnovne značajke spremnika energije.

<u>Gustoća energije</u>: masena $e = \frac{E_s}{m} \left[\frac{J}{kg} \right]$, volumna $e = \frac{E_s}{V} \left[\frac{J}{m^3} \right]$, E_s – energija sadržana u spremniku

Ukupni ciklus skladištenja: punjenje, skladištenje, pražnjenje

<u>Učinkovitost skladištenja</u>: omjer energije koja napusti spremnik za vrijeme pražnjena i energije koja uđe u spremnik za vrijeme punjenja $\eta = \frac{E_d}{E_c} = 1 - \frac{E_g}{E_{c'}}$, E_g- energija gubitaka

Brzina punjenja/pražnjenja: količina energije u jedinici vremena koja ulazi/izlazi iz spremnika

268. Navedite oblike energije korištene za skladištenje.

Elektromagnetska potencijalna energija (elektrokemijska, magnetska) Mehanička energija (kinetička i gravitacijska potencijalna) Unutrašnja kalorička energija (plin pod tlakom).

269. Koji način skladištenja energije trenutno ima najveći kapacitet?

Superkondezatori

270. Prednost reverzibilne hidroelektrane kao spremnika energije leži u:

- a) trošku izgradnje
- b) vremenu potrebnom za start
- c) prostornom zauzeću zemljišta
- d) cijeni proizvodnje električne energije

271. Nedostatak reverzibilne hidroelektrane kao spremnika energije leži u:

- a) nemogućnosti regulacije snage
- b) vremenu potrebnom za start
- c) prostornom zauzeću zemljišta
- d) troškovima održavanja

272. Što je od navedenoga nedostatak reverzibilne hidroelektrane kao spremnika energije:

- a) veliki gubici
- b) velika cijena
- c) mali kapacitet
- d) mala brzina
- promjene snage

273. Ukupna učinkovitost reverzibilne hidroelektrane iznosi oko:

- a) <40%
- b) 35-55%
- c) 55-85%
- d) >80%