Automi e Linguaggi Formali – 17/6/2021 Prima parte – Linguaggi Regolari e Context Free

1. Dimostra che se L ed M sono linguaggi regolari sull'alfabeto $\{0,1\}$, allora anche il seguente linguaggio è regolare:

$$L \sqcap M = \{ x \sqcap y \mid x \in L, y \in M \ e \ |x| = |y| \},\$$

dove $x \sqcap y$ rappresenta l'and bit a bit di $x \in y$. Per esempio, $0011 \sqcap 0101 = 0001$.

Poiché L e M sono regolari, sappiamo che esiste un DFA $A_L = (Q_L, \Sigma, \delta_L, q_L, F_L)$ che riconosce L e un DFA $A_M = (Q_M, \Sigma, \delta_M, q_M, F_M)$ che riconosce M.

Costruiamo un NFA A che riconosce il linguaggio $L \sqcap M$:

- L'insieme degli stati è $Q = Q_L \times Q_M$, che contiene tutte le coppie composte da uno stato di A_L e uno stato di A_M .
- L'alfabeto è lo stesso di A_L e di A_M , $\Sigma = \{0, 1\}$.
- La funzione di transizione δ è definita come segue:

$$\begin{split} \delta((r_L, r_M), 0) &= \{ (\delta_L(r_L, 0), \delta_M(r_M, 0)), (\delta_L(r_L, 1), \delta_M(r_M, 0)), (\delta_L(r_L, 0), \delta_M(r_M, 1)) \} \\ \delta((r_L, r_M), 1) &= \{ (\delta_L(r_L, 1), \delta_M(r_M, 1)) \} \end{split}$$

La funzione di transizione implementa le regole dell'and tra due bit: l'and di due 1 è 1, mentre è 0 se entrambi i bit sono 0 o se un bit è 0 e l'altro è 1.

- Lo stato iniziale è (q_L, q_M) .
- Gli stati finali sono $F = F_L \times F_M$, ossia tutte le coppie di stati finali dei due automi.
- 2. Considera il linguaggio

$$L_2 = \{w \in \{0,1\}^* \mid w \text{ continuous on stesso numero di } 00 \text{ e di } 11\}.$$

Dimostra che L_2 non è regolare.

Usiamo il Pumping Lemma per dimostrare che il linguaggio non è regolare.

Supponiamo per assurdo che L_2 sia regolare:

- \bullet sia k la lunghezza data dal Pumping Lemma;
- consideriamo la parola $w = 0^k 1^k$, che appartiene ad L_2 ed è di lunghezza maggiore di k;
- sia w = xyz una suddivisione di w tale che $y \neq \varepsilon$ e $|xy| \leq k$;
- poiché $|xy| \le k$, allora $x \in y$ sono entrambe contenute nella sequenza di 0. Inoltre, siccome $y \ne \emptyset$, abbiamo che $x = 0^q$ e $y = 0^p$ per qualche $q \ge 0$ e p > 0. z contiene la parte rimanente della stringa: $z = 0^{k-q-p}1^k$. Consideriamo l'esponente i = 0: la parola xy^0z ha la forma

$$xy^0z = xz = 0^q 0^{k-q-p} 1^k = 0^{k-p} 1^k$$

e contiene un numero di occorrenze di 00 minore delle occorrenze di 11. Di conseguenza, la parola non appartiene al linguaggio L_2 , in contraddizione con l'enunciato del Pumping Lemma.

3. Dimostra che se L è un linguaggio context-free, allora anche L^R è un linguaggio context-free.

Se L è un linguaggio context free allora esiste una grammatica G che lo genera. Possiamo assumere che G sia in forma normale di Chomksy. Di conseguenza le regole di G sono solamente di due tipi: $A \to BC$, con A, B, C simboli non terminali, oppure $A \to b$ con b simbolo nonterminale.

Costruiamo la grammatica G^R che genera L^R in questo modo:

- ogni regola $A \to BC$ viene sostituita dalla regola $A \to CB$;
- le regole $A \to b$ rimangono invariate.