Aula 1: Função injetiva e função sobrejetiva

Definição 2.1. Uma função $f:D_f\subseteq\mathbb{R}\to\mathbb{R}$ diz-se injetiva se

$$\forall x, x' \in D_f, x \neq x' \Rightarrow f(x) \neq f(x').$$

Pode provar-se a injetividade de uma função usando o facto de que a função f é injetiva se e só se

$$\forall x, x' \in D_f, f(x) = f(x') \Rightarrow x = x'.$$

Definição 2.2. Uma função $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ diz-se sobrejetiva se

$$\forall y \in \mathbb{R}, \ \exists x \in D_f : f(x) = y.$$

Pode mostrar-se que uma função real f é sobrejetiva mostrando que o seu contradomínio é $CD_f = \mathbb{R}$.

Uma função $f: D_f \subseteq \mathbb{R} \to \mathbb{R}$ diz-se **bijetiva** se é injetiva e sobrejetiva, ou seja,

$$\forall y \in \mathbb{R}, \ \exists^1 x \in D_f : y = f(x).$$

Exercício 2.3 Considere a família de funções $f_a : \mathbb{R} \to \mathbb{R}$ definidas por $f_a(x) = a^x$ com $a \in \mathbb{R}^+$. Existe alguma função desta família que não seja injetiva?

Aula 2: Função inversa

Seja $f: D_f \to \mathbb{R}$ uma função **injetiva**. Então, a **cada** $y \in CD_f$ está associado um **único** $x \in D_f$ tal que y = f(x). Por isso, conclui-se que existe uma função $g: CD_f \to \mathbb{R}$ tal que $y = f(x) \Rightarrow g(y) = x$.

Denota-se por f^{-1} a função (dita **inversa** de f) que satisfaz esta propriedade. Se existe, a inversa é **única**.

Uma função diz-se invertível se admite inversa.

f é invertível (com inversa g) se e só se existe $g: CD_f \to \mathbb{R}: \forall x \in D_f, (g \circ f)(x) = x$.

Observação 2.1. O gráfico de f^{-1} é obtido do gráfico de f por simetria em relação à reta y = x.

Figura 2.2: Função inversa

Exercício 2.7 Determine as inversas (com domínios!) de $f(x) = \frac{1}{1+x}$, de $g(x) = \sqrt{x}$ e de $f \circ g$.

Aula 2: Funções trigonométricas diretas

As funções trigonométricas seno, cosseno e tangente são definidas geometricamente no círculo trigonométrico, como estudado no Ensino Secundário.

$$tg \alpha = \frac{sen \alpha}{cos \alpha}$$

$$tg \alpha = \frac{\operatorname{sen} \alpha}{\cos \alpha} \qquad \cot \alpha = \frac{\cos \alpha}{\operatorname{sen} \alpha}$$

Outras funções trigonométricas: secante (sec) e cossecante (csc),

$$\sec \alpha = \frac{1}{\cos \alpha}$$

$$\sec \alpha = \frac{1}{\cos \alpha} \qquad \qquad \csc \alpha = \frac{1}{\sin \alpha}$$

$$\begin{array}{ccc} para & (f,g) = (sen\,,cos)\,, \\ & & (tg\,,cotg\,)\,, \\ & & & (sec,csc) \end{array}$$

Aula 2: Funções trigonométricas inversas

• Sejam f uma das funções trigonométricas analizadas e arcf a inversa de pf.

Compondo pf com arcf temos:

$$pf(arcf(x)) = x, \ \forall x \in D(arcf),$$

e
$$arcf(pf(x)) = x$$
, $\forall x \in D(pf)$.

No entanto, compondo f com arcf, temos:

$$f(arcf(x)) = x$$
, $\forall x \in D(arcf)$,

mas $arcf(f(x)) \neq x, \ \forall x \in D(f).$

Aula 2: Exercícios 1

- 1. Pag.43, Exercício 3.5, 2.
- **2.** Pag.43, Exercício 3.5, 3.
- **3.** Pag.44, Exercício 3.6, 2.
- 4. Pag.45, Exercício 3.8.