Let's consider an example: we have data on car movements and conditional coordinates of the road centerline. First, let's make a line chart of the car movement path. At first glance at the car's movement path we notice that there are

outliers around points 275 and 320. Let's remove these outliers and fill in the missing values with the average value of the neighbouring coordinates (let's take 1 neighbor to the left and 1 neighbor to the right of the missing value). For example:

Point number	Before	After outliers removal and averaging
272	378	378
273	376	376
274	374	374
275	12718	372
276	370	370
278	367	367

Then let's make the line charts of all centerline coordinates and car movement path. The car movement path is shown by the purple line. All that is left now is

to count the number of intersections of each type of the centerline (broken line is denoted as Interrupt): Interrupt:3, Single: 3, Double: 2.