

Universidade Federal de Santa Catarina

Centro Tecnológico

Sistemas Digitais

INE 5406

Aula 3-T (adendo)

2. Processadores Dedicados (Blocos Aceleradores). Método de Projeto no Nível RT. Exemplo 2 de somadores sequenciais.

Profs. José Luís Güntzel e Cristina Meinhardt

{j.guntzel, cristina.meinhardt}@ufsc.br

Método de Projeto de Sistemas Digitais no Nível RT

Aula Passada: Exemplo 1

1. AC ← 0; T← ent; // A está estável em ent 2. AC ← AC + T; T← ent; // B está estável em ent 3. AC ← AC + T; T← ent; // C está estável em ent 4. AC ← AC + T; T← ent; // D está estável em ent 5. AC ← AC + T; // O resultado final S estará em AC

O 1º teste de overflow seria dispensável, uma vez que na primeira soma um dos operandos é zero. Porém, **iremos mantê-lo para permitir uma futura generalização do algoritmo.**

Exemplo 2: Enunciado

SD (bloco acelerador) para cálculo de um somatório de 4 números

Especificação das interfaces: Necessita-se de um sistema digital (SD) dedicado (i.e., um bloco acelerador) capaz de realizar o cálculo **A+B+C+D**, onde **A**, **B**, **C** e **D** são números* inteiros sem sinal, representados em binário com 8 bits. Este sistema digital, doravante denominado de "somatório2", possui uma entrada de relógio ("ck"), uma entrada de reset assíncrono ("Reset"), **uma** entrada de dados com 8 bits ("ent"), uma entrada de controle denominada "iniciar", **uma** saída de controle ("pronto") e uma saída de dados de 10 bits ("soma").

* Os números fornecidos como entrada do sistema são comumente chamados de "operandos (de entrada)"

O Enunciado do Exemplo 2 é quase igual ao enunciado do Exemplo 1. As diferenças estão grifadas em vermelho.

Exemplo 2: Enunciado

SD (bloco acelerador) para cálculo de um somatório de 4 números

Especificação do comportamento:

Há somente um estado inicial, S0. Enquanto um novo cálculo não inicia, "somatório2" permanece em S0;

O sinal externo "iniciar" dá o comando para iniciar um cálculo A+B+C+D.

À medida que o cálculo é realizado, os valores dos operandos **A**, **B**, **C** e **D** vão sendo fornecidos pela entrada "ent", em bordas de relógio consecutivas.

Uma vez iniciado, o cálculo é realizado de maneira sequencial e cumulativa (i.e., cada novo operando de entrada que chega é somado ao valor acumulado até então).

Em nenhuma das adições ocorre *overflow*. Para garantir isso, os registradores e o somador a serem utilizados devem ser dimensionados convenientemente.

Exemplo 2: Passo 1 (Captura do comportamento por meio de uma FSMD)

- 1. AC \leftarrow 0; T \leftarrow ent; // A está estável em ent
- 2. AC ← AC + T; T← ent; // B está estável em ent
- 3. $AC \leftarrow AC + T$; $T \leftarrow \text{ent}$; // C está estável em ent
- 4. AC ← AC + T; T← ent; // D está estável em ent
- 5. AC ← AC + T; // O resultado final S estará em AC

Criando um estado para cada passo do algoritmo

Igual ao Exemplo 1.

Exemplo 2: Passo 1 (Captura do comportamento por meio de uma FSMD)

- 1. AC \leftarrow 0; T \leftarrow ent; // A está estável em ent
- 2. AC ← AC + T; T← ent; // B está estável em ent
- 3. $AC \leftarrow AC + T$; $T \leftarrow \text{ent}$; // C está estável em ent
- 4. AC ← AC + T; T← ent; // D está estável em ent
- 5. AC ← AC + T; // O resultado final S estará em AC

Acrescentando o estado inicial "S0"

Exemplo 2: Passo 1 (Captura do comportamento por meio de uma FSMD)

- 1. AC \leftarrow 0; T \leftarrow ent; // A está estável em ent
- 2. AC ← AC + T; T← ent; // B está estável em ent
- 3. AC ← AC + T; T← ent; // C está estável em ent
- 4. AC ← AC + T; T← ent; // D está estável em ent
- 5. AC ← AC + T; // O resultado final S estará em AC

Como nunca vai ocorrer *overflow* quando chegar a S5, a FSM volta a S0 (e a execução termina com o resultado correto).

Exemplo 2: Passo 2 (Projeto do BO)

FSMD

1ª questão para guiar o projeto do BO: Quais são os sinais de interface do BO? •"ent" e "soma" ent Por que 10 bits??

Exemplo 2: Passo 2 (Projeto do BO)

Analisando o número mínimo de bits de todas as adições que o algoritmo realiza, a fim de evitar overflow ...

Distance Assessed No. of City

2ª adição		binário	decimal	Nro de bits
Z adiçao	AC	1111 1111 +	255	8
	Т	1111 1111	255	8
		11111 1110	510	9
3ª adição		binário	decimal	Nro de bits
	AC	+11111 1110	510	9
	Т	1111 1111	255	8
		10 1111 1101	765	10
4ª adição		binário	decimal	Nro de bits
•	AC	10 1111 1101	765	10
	Т	+ 1111 1111	255	8
		11 1111 1100	1020	10

Conclusão: na 4ª soma há um operando de entrada e a própria saída do somador com 10 bits

Exemplo 2: Passo 2 (Projeto do BO)

FSMD

2ª questão para guiar o projeto do BO:

Quais variáveis são usadas para armazenar dados? • "AC" e "T"

Logo, o BO precisa ter dois registradores. Chamemolos de "AC" e "T".

Exemplo 2: Passo 2 (Projeto do BO)

FSMD

3ª questão para guiar o projeto do BO:

- Quais operações são realizadas?
- Adição para números de 10 bits e o somador não precisa testar *overflow*

Exemplo 2: Passo 2 (Projeto do BO) 4ª questão para guiar o projeto do BO:

FSMD

Quais operações são realizadas sobre quais dados (incluindo-se as condições)?

• T \leftarrow ent, AC \leftarrow 0; AC \leftarrow AC+T

Logo, deve haver um mux2:1 na entrada de AC e conexões entre AC e + T e + e + e AC.

Exemplo 2: Passo 3 (Esboçando o Diagrama BO/BC)

Exemplo 2: Passo 3 (Esboçando o Diagrama BO/BC)

Exemplo 2: Passo 4 (Projeto do BC): Criando uma FSM a partir da FSMD e do BO

Profs. Güntzel & Meinhardt

Exemplo 2: Passo 4 (Projeto do BC): Definindo o número de flip-flops

FSM

Quantos flip-flops são necessários para implementar a FSM?

Resp.: como são **6** estados (=**6** combinações), o cálculo do número de flip-flops é log, **6** = 3

Exemplo 2: Passo 4 (Projeto do BC): Mapeando as interfaces do BC para o

modelo de FSM de Moore iniciar cAC BC (controle) cT -10 pronto soma iniciar Lógica de Lógica de Próximo Saída Estado (LS) (LPE) pronto

Exemplo 2: Passo 4 (Projeto do BC): Assinalamento de Estados

Corresponde a:

- •Escolher uma codificação binária para representar cada estado...
- •Se for para minimizar o número de bits, usar $\log_2 N$, onde N é o número de estados. Exemplo de assinalamento:

Estado	Código binário dos estados			
Estado	Q2	Q1	Q0	
S0	0	0	0	
S1	0	0	1	
S2	0	1	0	
S3	0	1	1	
S4	1	0	0	
S5	1	0	1	

 Estado inicial: este é o estado para o qual a FSM vai caso o Reset seja acionado!!

Exemplo 2: Passo 4 (Projeto do BC): projetando a LPE

Tabela de Transição de Estados (LPE)

Estado atual	iniciar	Próximo estado
S0	0	S0
S0	1	S1
S1	X	S2
S2	X	S3
S3	X	S4
S4	X	S5
S5	X	S0

Exemplo 2: Passo 4 (Projeto do BC): projetando a LPE

Estado	Código binário dos estados			
Estado	Q2	Q1	Q0	
S0	0	0	0	
S1	0	0	1	
S2	0	1	0	
S3	0	1	1	
S4	1	0	0	
S5	1	0	1	

Substituindo os nomes dos estados pelos respectivos códigos binários...

Tabela de Transição de Estados (LPE)

Estado atual	iniciar	Próximo estado
S0	0	S0
S0	1	S1
S1	X	S2
S2	X	S3
S3	X	S4
S4	X	S5
S5	X	S0

Tarefa: completar

Exemplo 2: Passo 4 (Projeto do BC): projetando a LS

Tabela-Verdade da LS

Estado atual	Sinais de comando			
Estado atual	sel	cAC	cТ	pronto
S0	X	0	0	1
S1	1	1	1	0
S2	0	1	1	0
S3	0	1	1	0
S4	0	1	0	0
S5	0	1	0	0

Exemplo 2: Passo 4 (Projeto do BC): projetando a LS

Estado	Código binário dos estados			
Estado	Q2	Q1	Q0	
S0	0	0	0	
S1	0	0	1	
S2	0	1	0	
S3	0	1	1	
S4	1	0	0	
S5	1	0	1	

Tabela-Verdade da LS

Estado	Sinais de comando			
atual	sel	cAC	cТ	pronto
S0	X	0	0	1
S1	1	1	1	0
S2	0	1	1	0
S3	0	1	1	0
S4	0	1	0	0
S5	0	1	0	0

Substituindo os nomes dos estados pelos respectivos códigos binários...

Tarefa: completar

Exemplo 2: Passo 4 (Projeto do BC): projetando a LS

Os passos faltantes são similares ao Exemplo 1

Tarefa:

- 1. Completar os passos faltantes do Exemplo 2
- 2. Comparar (de maneira qualitativa) esta FSM com a do Exemplo 1