term_term_pr_distr_and_inference-multinomial-min_df-1-size-150-max

December 8, 2020

autoreload modules and utilities

[1]: %load_ext autoreload %autoreload 2

import all necessary libraries/packages

```
import joblib

import numpy as np
import pandas as pd

from tqdm.notebook import tqdm
import matplotlib.pyplot as plt

from scipy.stats import entropy as calculate_entropy

from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import StratifiedShuffleSplit

from sklearn.pipeline import Pipeline
from sklearn.pipeline import FeatureUnion
from sklearn.naive_bayes import MultinomialNB, GaussianNB
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

from sklearn.metrics import classification_report, accuracy_score
from sklearn.metrics import f1_score as calculate_f1_score
from sklearn.model_selection import train_test_split, StratifiedKFold
```

Utility functions

```
[44]: ## utilities
    # from utils import clean_text

import string
from sklearn.base import TransformerMixin
```

```
import nltk
from nltk import word_tokenize
from nltk.stem import WordNetLemmatizer
nltk.download('stopwords')
nltk.download('wordnet')
def clean_text(text: str, lemmatizer = lambda x: x) -> str:
    # removes upper cases
    text = text.lower().strip()
    # removes punctuation
    for char in string.punctuation:
        text = text.replace(char, " ")
    #lematize the words and join back into string text
    text = " ".join([lemmatizer(word) for word in word_tokenize(text)])
    return text
def data_isvalid(text, analyser, min_character_size, max_character_size):
    return min_character_size <= len(analyser(text)) <= max_character_size</pre>
def get_pipeline(vectorizer_type, classifier, use_t2pi, min_df=3,__
→stop_words=None, lemmatizer = lambda x: x):
    vectorizer = CountVectorizer if vectorizer_type == "count" else∟
\hookrightarrowTfidfVectorizer
    models = \Gamma
        ('clean_text', CleanTextTransformer(lemmatizer)),
        ("vectorizers", FeatureUnion([
            ('count_binary', CountVectorizer(stop_words=stop_words,_
 ⇒binary=True, min_df=min_df)),
            ("count", vectorizer(stop_words=stop_words, min_df=min_df))
        ])),
    ]
    if use_t2pi:
        models.append(('t2pi_transformer', T2PITransformer()))
    models.append(('classifier', classifier))
    return Pipeline(models)
```

```
class CleanTextTransformer(TransformerMixin):
   def __init__(self, lemmatizer):
        self._lemmatizer = lemmatizer
   def fit(self, X, y=None, **fit_params):
       return self
   def transform(self, X, y=None, **fit_params):
       return np.vectorize(lambda x: clean_text(x, self._lemmatizer))(X)
   def __str__(self):
       return "CleanTextTransformer()"
   def __repr__(self):
       return self.__str__()
class T2PITransformer(TransformerMixin):
   Ostaticmethod
   def _max_weight(x, pbar, word_word_pr):
       pbar.update(1)
       return (word_word_pr.T * x).max(0)
   Ostaticmethod
   def _sum_weight(x, pbar, word_word_pr):
       pbar.update(1)
       return (word_word_pr.T * x).sum(0)
   def fit(self, X, y=None, **fit_params):
       X = X[:, :int(X.shape[1]/2)].toarray()
       print("creating term-term co-occurence pr matrix")
        terms = np.arange(X.shape[1])
       X = pd.DataFrame(X, columns=terms)
        self.word_word_pr_distr = pd.DataFrame(data=0.0, columns=terms,_
 →index=terms)
       for term in tqdm(terms):
            self.word_word_pr_distr[term] = X[X[term] > 0].sum(0) / X.sum(0)
       return self
   def transform(self, X, y=None, **fit_params):
       X = X[:, int(X.shape[1]/2):].toarray()
        X = pd.DataFrame(X, columns=self.word_word_pr_distr.columns)
```

1 Load Data

```
[45]: # total number of samples needed
randomize = False

# retrieve dataset
categories = ['rec.autos', 'talk.politics.mideast', 'alt.atheism', 'sci.space']

all_docs = fetch_20newsgroups(subset='train', shuffle=randomize,
→remove=('headers', 'footers', 'quotes'), categories=categories)
categories = all_docs.target_names

[46]: print(all_docs.data[0])
```

I think that domestication will change behavior to a large degree.

Domesticated animals exhibit behaviors not found in the wild. I

don't think that they can be viewed as good representatives of the

wild animal kingdom, since they have been bred for thousands of years

to produce certain behaviors, etc.

1.0.1 Create Dataframe

```
[47]: text label

0 \n\nI think that domestication will change beh... 0

1 \nI don't like this comment about "Typical" th... 3

2 \n<apparently you're not a woman - my husband ... 1

3 While not exactly a service incident, I had a ... 1

4 \n\nI think I can. Largely as a result of effo... 2
```

1.0.2 Label Frequency

```
[48]: print(data["label"].value_counts())
    print()

    barlist = plt.bar(categories, data["label"].value_counts())

    plt.title("Frequency of documents")
    plt.xticks(categories, list(map(lambda x: x.split(".")[1], categories)))
    plt.ylabel('Number of documents')
    plt.xlabel('Sentiment expressed in Reviews')

    barlist[0].set_color('red')
    barlist[1].set_color('green')
    barlist[2].set_color('blue')
    barlist[3].set_color('grey')
    plt.show()
```

```
1 594
2 593
3 564
0 480
Name: label, dtype: int64
```


The Dataset labels needs to be balanced

1.0.3 Parameters

```
[49]: min_df = 1
    stop_words = "english"

def get_classifier():
    # return GaussianNB()
    return MultinomialNB()

def get_lemmatizer():
    # return lambda x: x
    return WordNetLemmatizer().lemmatize
```

2 Select Valid Data

```
# make classes balanced
class_indices = []

for index in range(4):
    class_indices.append(np.where((data["label"] == index))[0])

size_per_class = min(max_size_per_class, min(map(len, class_indices)))
indices = np.concatenate([class_ids[:size_per_class] for class_ids in_u class_indices])

data = data.iloc[indices]

data.head()
```

```
[50]: text label

0 \n\nI think that domestication will change beh... 0

19 \n\n\tI agree, we spend too much energy on the... 0

30 \n[rest deleted...]\n\nYou were a liberal arts... 0

36 \nWorse? Maybe not, but it is definately a vi... 0

50 \n\n Could you explain what any of the above p... 0

[51]: print(data.iloc[0]["text"])
```

I think that domestication will change behavior to a large degree. Domesticated animals exhibit behaviors not found in the wild. I don't think that they can be viewed as good representatives of the wild animal kingdom, since they have been bred for thousands of years to produce certain behaviors, etc.

```
[52]: print(data["label"].value_counts())
    print()

    barlist = plt.bar(categories, data["label"].value_counts())

    plt.title("Frequency of documents")
    plt.xticks(categories, list(map(lambda x: x.split(".")[1], categories)))
    plt.ylabel('Number of documents')
    plt.xlabel('Sentiment expressed in Reviews')

    barlist[0].set_color('red')
    barlist[1].set_color('green')
    barlist[2].set_color('blue')
    barlist[3].set_color('grey')
    plt.show()
```

3 150 2 150 1 150 0 150

Name: label, dtype: int64

2.0.1 initialize input and output

2.0.2 initialize recursive word infer model

```
[54]: Pipeline(steps=[('clean_text', CleanTextTransformer()),
                      ('vectorizers',
                       FeatureUnion(transformer_list=[('count_binary',
                                                       CountVectorizer(binary=True)),
                                                       ('count', CountVectorizer())])),
                      ('t2pi_transformer', T2PITransformer()),
                      ('classifier', MultinomialNB())])
[55]: # fit model
      t2pi_model.fit(X_train, y_train)
     creating term-term co-occurence pr matrix
     HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=4881.0),
      →HTML(value='')))
     transforming ...
     HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=450.0),
      →HTML(value='')))
[55]: Pipeline(steps=[('clean_text', CleanTextTransformer()),
                      ('vectorizers',
                       FeatureUnion(transformer_list=[('count_binary',
                                                       CountVectorizer(binary=True)),
                                                       ('count', CountVectorizer())])),
                      ('t2pi_transformer', T2PITransformer()),
                      ('classifier', MultinomialNB())])
[56]: y_pred = t2pi_model.predict(X_test) #predict testing data
      print(classification_report(y_test, y_pred))
     transforming ...
     HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=150.0),
      →HTML(value='')))
                   precision
                              recall f1-score
                                                    support
                0
                        0.73
                                  0.73
                                             0.73
                                                         45
                        0.74
                                  0.78
                                             0.76
                1
                                                         37
                2
                        0.84
                                  0.66
                                             0.74
                                                         32
                        0.71
                3
                                  0.81
                                             0.75
                                                         36
                                             0.75
                                                        150
         accuracy
```

```
macro avg 0.76 0.74 0.75 150 weighted avg 0.75 0.75 0.75 150
```

2.0.3 Initialize models

```
[57]: # normal model
     count_model = get_pipeline("count", get_classifier(), use_t2pi=False,_u
      min_df=min_df, stop_words=None, lemmatizer = get_lemmatizer())
     count_sw_model = get_pipeline("count", get_classifier(), use_t2pi=False,__
      min df=min df, stop words=stop words, lemmatizer = get lemmatizer())
     tfidf_model = get_pipeline("tfidf", get_classifier(), use_t2pi=False,_
      tfidf_sw_model = get_pipeline("tfidf", get_classifier(), use_t2pi=False,_u

_min_df=min_df, stop_words=stop_words, lemmatizer = get_lemmatizer())

     # model
     t2pi_count_model = get_pipeline("count", get_classifier(), use_t2pi=True,_
      →min_df=min_df, stop_words=None, lemmatizer = get_lemmatizer())
     t2pi count sw model = get pipeline("count", get classifier(), use t2pi=True,
      t2pi_tfidf model = get_pipeline("tfidf", get_classifier(), use t2pi=True,__
      →min_df=min_df, stop_words=None, lemmatizer = get_lemmatizer())
     t2pi_tfidf_sw_model = get_pipeline("tfidf", get_classifier(), use_t2pi=True,__
      →min_df=min_df, stop_words=stop_words, lemmatizer = get_lemmatizer())
     models = {
         "count_model": count_model,
         "count_sw_model": count_model,
         "tfidf_model": tfidf_model,
         "tfidf_sw_model": tfidf_sw_model,
         "t2pi_count_model": t2pi_count_model,
         "t2pi_count_sw_model": t2pi_count_sw_model,
         "t2pi_tfidf_model": t2pi_tfidf_model,
         "t2pi_tfidf_sw_model": t2pi_tfidf_sw_model
     }
```

2.0.4 Running Cross validation on all Models

```
[58]: split_size = 7
    skf = StratifiedKFold(n_splits=split_size, shuffle=True, random_state=100)
    index = 0
    macro_f1_scores, weighted_f1_scores, accuracies = [], [], []
```

```
for train_index, test_index in skf.split(X, y):
   index += 1
   x_train_fold, x_test_fold = X.iloc[train_index], X.iloc[test_index]
   y_train_fold, y_test_fold = y.iloc[train_index], y.iloc[test_index]
   accuracies.append([])
   macro_f1_scores.append([])
   weighted_f1_scores.append([])
   for model_name, model in models.items():
      print(f' \rightarrow \{index\}. \{model_name\} \n{"="*100}\n')
      model.fit(x_train_fold, y_train_fold)
      y_pred = model.predict(x_test_fold)
      accuracy = accuracy_score(y_test_fold, y_pred)
      weighted_f1_score = calculate_f1_score(y_test_fold, y_pred,_
 →average='weighted')
      macro_f1_score = calculate_f1_score(y_test_fold, y_pred,__
 →average='macro')
      weighted_f1_scores[-1].append(weighted_f1_score)
      macro_f1_scores[-1].append(macro_f1_score)
      accuracies[-1].append(accuracy)
-> 1. count_model
______
============
-> 1. count_sw_model
_____
-> 1. tfidf_model
______
=============
-> 1. tfidf sw model
______
==============
-> 1. t2pi_count_model
______
creating term-term co-occurence pr matrix
```

```
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5292.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 1. t2pi_count_sw_model
______
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5034.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 1. t2pi_tfidf_model
______
================
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5292.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
```

```
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 1. t2pi_tfidf_sw_model
_____
_____
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5034.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 2. count_model
______
-> 2. count_sw_model
______
______
-> 2. tfidf model
-> 2. tfidf_sw_model
______
_____
-> 2. t2pi_count_model
______
creating term-term co-occurence pr matrix
```

```
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5356.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 2. t2pi_count_sw_model
______
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5094.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 2. t2pi_tfidf_model
______
================
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5356.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
```

```
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 2. t2pi_tfidf_sw_model
_____
==============
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5094.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 3. count_model
______
-> 3. count_sw_model
______
______
-> 3. tfidf model
-> 3. tfidf_sw_model
______
_____
-> 3. t2pi_count_model
______
creating term-term co-occurence pr matrix
```

```
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5310.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 3. t2pi_count_sw_model
______
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5051.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 3. t2pi_tfidf_model
______
================
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5310.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
```

```
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 3. t2pi_tfidf_sw_model
_____
_____
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5051.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 4. count_model
______
-> 4. count_sw_model
______
______
-> 4. tfidf model
-> 4. tfidf_sw_model
______
_____
-> 4. t2pi_count_model
______
creating term-term co-occurence pr matrix
```

```
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5268.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 4. t2pi_count_sw_model
______
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5009.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 4. t2pi_tfidf_model
______
================
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5268.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
```

```
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 4. t2pi_tfidf_sw_model
_____
==============
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5009.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 5. count_model
______
-> 5. count_sw_model
______
______
-> 5. tfidf model
-> 5. tfidf_sw_model
______
_____
-> 5. t2pi_count_model
______
creating term-term co-occurence pr matrix
```

```
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5313.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 5. t2pi_count_sw_model
______
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5054.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 5. t2pi_tfidf_model
______
================
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5313.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
```

```
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 5. t2pi_tfidf_sw_model
_____
==============
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5054.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=514.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=86.0),
→HTML(value='')))
-> 6. count_model
______
-> 6. count_sw_model
______
______
-> 6. tfidf model
-> 6. tfidf_sw_model
______
_____
-> 6. t2pi_count_model
______
creating term-term co-occurence pr matrix
```

```
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5290.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=515.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=85.0),
→HTML(value='')))
-> 6. t2pi_count_sw_model
______
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5028.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=515.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=85.0),
→HTML(value='')))
-> 6. t2pi_tfidf_model
______
================
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5290.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=515.0),
→HTML(value='')))
```

```
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=85.0),
→HTML(value='')))
-> 6. t2pi_tfidf_sw_model
_____
==============
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5028.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=515.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=85.0),
→HTML(value='')))
-> 7. count_model
______
-> 7. count_sw_model
______
______
-> 7. tfidf model
-> 7. tfidf_sw_model
______
_____
-> 7. t2pi_count_model
______
creating term-term co-occurence pr matrix
```

```
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5315.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=515.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=85.0),
→HTML(value='')))
-> 7. t2pi_count_sw_model
______
______
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5054.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=515.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=85.0),
→HTML(value='')))
-> 7. t2pi_tfidf_model
______
================
creating term-term co-occurence pr matrix
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5315.0),
→HTML(value='')))
transforming ...
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=515.0),
→HTML(value='')))
```

```
HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=85.0),
      →HTML(value='')))
     -> 7. t2pi_tfidf_sw_model
     ______
     =============
     creating term-term co-occurence pr matrix
     HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=5054.0),
     →HTML(value='')))
     transforming ...
     HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=515.0),
     →HTML(value='')))
     transforming ...
     HBox(children=(HTML(value=''), FloatProgress(value=0.0, max=85.0),
     →HTML(value='')))
[59]: model_names = list(models.keys())
     accuracy = pd.DataFrame(data=np.array(accuracies), columns=model_names)
     weighted_f1_score = pd.DataFrame(data=np.array(weighted_f1_scores),__
      macro_f1_score = pd.DataFrame(data=np.array(macro_f1_scores),__

→columns=model_names)
     accuracy.loc["mean"] = accuracy.mean(0)
     weighted_f1_score.loc["mean"] = weighted_f1_score.mean(0)
     macro_f1_score.loc["mean"] = macro_f1_score.mean(0)
[60]: accuracy.head(split_size+1)
[60]:
           count_model count_sw_model tfidf_model tfidf_sw_model \
     0
             0.825581
                            0.825581
                                         0.813953
                                                        0.848837
     1
             0.895349
                            0.895349
                                         0.872093
                                                        0.837209
     2
             0.779070
                            0.779070
                                         0.779070
                                                        0.779070
     3
             0.767442
                            0.767442
                                         0.767442
                                                        0.779070
     4
             0.709302
                            0.709302
                                        0.744186
                                                        0.802326
             0.752941
                            0.752941
                                         0.752941
                                                        0.800000
```

transforming ...

```
0.705882
                                               0.741176
                0.776510
                                 0.776510
                                               0.781552
                                                                0.798241
      mean
            t2pi_count_model
                                t2pi_count_sw_model
                                                      t2pi_tfidf_model
      0
                     0.837209
                                            0.825581
                                                               0.813953
      1
                     0.883721
                                            0.860465
                                                               0.895349
      2
                     0.790698
                                            0.779070
                                                               0.767442
      3
                     0.755814
                                            0.767442
                                                               0.755814
      4
                                                               0.732558
                     0.720930
                                            0.802326
      5
                     0.776471
                                                               0.776471
                                            0.811765
      6
                                                               0.729412
                     0.705882
                                            0.741176
                     0.781532
                                            0.798261
                                                               0.781571
      mean
            t2pi_tfidf_sw_model
      0
                        0.837209
      1
                        0.848837
      2
                        0.779070
      3
                        0.755814
      4
                        0.802326
      5
                        0.858824
      6
                        0.752941
                        0.805003
      mean
     weighted_f1_score.head(split_size+1)
[61]:
[61]:
            count_model
                          count_sw_model
                                            tfidf model
                                                          tfidf_sw_model
      0
                0.829217
                                 0.829217
                                               0.816980
                                                                0.852813
      1
                0.895619
                                 0.895619
                                               0.872093
                                                                0.835883
      2
                0.773977
                                 0.773977
                                               0.771974
                                                                0.776706
      3
                0.768272
                                                                0.778344
                                 0.768272
                                               0.769793
      4
                0.702862
                                 0.702862
                                               0.737807
                                                                0.800336
      5
                0.753815
                                 0.753815
                                               0.753815
                                                                0.797988
      6
                0.702123
                                 0.702123
                                               0.736641
                                                                0.738003
                0.775126
                                 0.775126
                                               0.779872
                                                                0.797153
      mean
            t2pi_count_model
                                t2pi_count_sw_model
                                                      t2pi_tfidf_model
      0
                     0.840247
                                            0.828200
                                                               0.814432
      1
                     0.884741
                                            0.861251
                                                               0.896098
      2
                     0.786789
                                            0.774098
                                                               0.761177
      3
                     0.755761
                                            0.766674
                                                               0.758045
      4
                     0.716678
                                            0.802326
                                                               0.727169
      5
                     0.776150
                                            0.810528
                                                               0.776209
      6
                     0.702123
                                            0.738579
                                                               0.730390
      mean
                     0.780355
                                            0.797379
                                                               0.780503
            t2pi_tfidf_sw_model
      0
                        0.838563
```

0.705882

0.741176

6

```
1
                        0.849586
      2
                        0.774004
      3
                        0.754738
      4
                        0.798506
      5
                        0.858205
      6
                        0.749615
                        0.803317
      mean
[62]:
     macro_f1_score.head(split_size+1)
[62]:
            count_model
                          count_sw_model
                                            tfidf_model
                                                         tfidf_sw_model
      0
                0.829387
                                 0.829387
                                               0.817038
                                                                0.853040
      1
                0.895588
                                 0.895588
                                               0.872596
                                                                0.835450
      2
                0.773776
                                 0.773776
                                               0.771673
                                                                0.776965
      3
                0.767857
                                 0.767857
                                               0.769970
                                                                0.777284
      4
                0.702137
                                 0.702137
                                               0.736923
                                                                0.799901
      5
                0.753049
                                 0.753049
                                               0.753049
                                                                0.797747
      6
                0.701978
                                 0.701978
                                               0.736119
                                                                0.737151
                0.774825
                                 0.774825
                                               0.779624
                                                                0.796791
      mean
            t2pi_count_model
                                t2pi_count_sw_model
                                                      t2pi_tfidf_model
      0
                     0.840469
                                            0.828432
                                                               0.815041
      1
                     0.884679
                                            0.860704
                                                               0.896307
      2
                                                               0.760971
                     0.786707
                                            0.774478
      3
                     0.755357
                                            0.765336
                                                               0.757970
      4
                     0.715714
                                            0.801948
                                                               0.726300
      5
                     0.775649
                                                               0.775483
                                            0.810437
      6
                     0.701978
                                            0.737734
                                                               0.729928
                     0.780079
                                            0.797010
                                                               0.780286
      mean
            t2pi_tfidf_sw_model
      0
                        0.838372
      1
                        0.849076
      2
                        0.774167
      3
                        0.753651
      4
                        0.797857
      5
                        0.857901
      6
                        0.748902
                        0.802847
      mean
```