

NLP Basics Corpus-Based Representation

國立臺灣大學資訊工程學系 陳縕儂助理教授 http://vivianchen.idv.tw

Meaning Representations in Computers

Knowledge-Based Representation

Corpus-Based Representation

Corpus-Based Representation

Atomic symbols: one-hot representation

Issues: difficult to compute the similarity (i.e. comparing "car" and "motorcycle")

Idea: words with similar meanings often have similar neighbors

Corpus-Based Representation

- Neighbor-based representation
 - Co-occurrence matrix constructed via neighbors
 - Neighbor definition: full document v.s. windows

full document

word-document co-occurrence matrix gives general topics -> "Latent Semantic Analysis"

windows

context window for each word \rightarrow capture syntactic (e.g. POS) and sematic information

Window-Based Co-occurrence Matrix

Example

- Window length=1
- Left or right context
- O Corpus:

I love AI.I love deep learning.I enjoy learning.

similarity > 0

Counts	I	love	enjoy	Al	deep	learning
	0	2	1	0	0	0
love	2	0	0	1	1	0
enjoy	1	0	0	0	0	1
Al	0	1	0	0	0	0
deep	0	1	0	0	0	1
learning	0	0	1	0	1	0

Issues:

- matrix size increases with vocabulary
- high dimensional
- sparsity → poor robustness

Idea: low dimensional word vector

Low-Dimensional Dense Word Vector

- Method 1: dimension reduction on the matrix
- Singular Value Decomposition (SVD) of co-occurrence matrix X

Low-Dimensional Dense Word Vector

- Method 1: dimension reduction on the matrix
- Singular Value Decomposition (SVD) of co-occurrence matrix X

semantic relations

syntactic relations

Issues:

■ STOLEN

- computationally expensive:
 O(mn²) when n<m for nxm matrix
- difficult to add new words

Idea: directly learn lowdimensional word vectors

Low-Dimensional Dense Word Vector

- Method 2: directly learn low-dimensional word vectors
 - Learning representations by back-propagation. (Rumelhart et al., 1986)
 - A neural probabilistic language model (Bengio et al., 2003)
 - NLP (almost) from Scratch (Collobert & Weston, 2008)
 - Recent and most popular models: word2vec (Mikolov et al. 2013) and Glove (Pennington et al., 2014)
 - As known as "Word Embeddings"

Summary

- Knowledge-based representation
- Corpus-based representation
 - ✓ Atomic symbol
 - ✓ Neighbors
 - O High-dimensional sparse word vector
 - Low-dimensional dense word vector
 - Method 1 dimension reduction
 - Method 2 direct learning

