Coursework 1 Deadline: Nov 14th

Exercise 1 (10 marks). (1) Let $\{a_n\}$ and $\{b_n\}$ be two bounded sequences. Prove that there exists a sequence of natural numbers $\{n_k\}$ as indices, such that both $\{a_{n_k}\}$ and $\{b_{n_k}\}$ are convergent.

(2) Prove that f(x) is uniformly continuous on a bounded interval I if and only if for all Cauchy sequences $\{a_n\}$, $\{f(a_n)\}$ is a Cauchy sequence.

Exercise 2 (5 marks). True or False: There exists a function f defined in a neighborhood of x_0 such that

- (1) f is continuous at the point x_0 ;
- (2) f is not continuous elsewhere.

If you think the proposition is true, give an example; if you think it is false, give a proof.

Exercise 3 (5 marks). Let A > 0, $0 < b_0 < \frac{1}{A}$, $b_{n+1} = b_n(2 - Ab_n)$ for $n \in \mathbb{N}$. Prove that $\lim_{n\to\infty} b_n$ exists and evaluate its value.