September 1969 Brief 69-10448

NASA TECH BRIEF

NASA Tech Briefs are issued to summarize specific innovations derived from the U.S. space program, to encourage their commercial application. Copies are available to the public at 15 cents each from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151.

Air-Cushion Lift Pad

Fig. 1.

Fig. 2.

The problem:

To design an air-cushion supported device which remains stable over irregular surfaces.

The solution:

Formulate a mathematical model for an air pad capable of lifting a structure to a height of 0.125 inch.

How it's done:

Figure I illustrates how the lift pad operates. The air pads are connected to the platform by struts and the entire structure is moved in any desired direction by the connecting link. Each pad consists of a wall sloping upward from a base (fig. 2). If the pad tilts,

(continued overleaf)

This document was prepared under the sponsorship of the National Aeronautics and Space Administration. Neither the United States Government nor any person acting on behalf of the United States

Government assumes any liability resulting from the use of the information contained in this document, or warrants that such use will be free from privately owned rights.

the vertical lift force decreases on the high side and increases on the low causing torque which stabilizes the pad. This design is superior to conventional air cushion devices because it eliminates flutter, vibration, heaving, and pitching.

Notes:

- 1. A similar Tech Brief (B68-10442) concerning this item was previously published.
- 2. Documentation is available from:

Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 Price \$3.00

Reference: TSP69-10448

Patent status:

This invention is owned by NASA, and a patent application has been filed. Royalty-free, nonexclusive licenses for its commercial use will be granted by NASA. Inquiries concerning license rights should be made to NASA, Code GP, Washington, D.C. 20546.

Source: Dan H. Dane and Herman T. Blaise Marshall Space Flight Center (MFS-14685)