Теория алгоритмов

Лекция №3

Конспект Вячеслава Копейцева, КН-301 Читает Юрий Окуловский

28.09.2015

На прошлой лекции было закончено обсуждение машины Тьюринга (далее МТ) и дано определение машины Минского (далее ММ)

1 Вычислительная мощность ММ

Докажем, что ММ по вычислительным возможностям равномощна МТ т.е.:

- 1. $MM \subseteq MT$
- 2. $MT \subset MM$

Доказательство:

- 1. Возьмём МТ с $\Sigma\{1,0\}$
- 2. Договоримся, что δ полностью определена

$$q_i, 0 \rightarrow q_{ni}, s_{ni}, p_i^2$$

 $q_i, 1 \rightarrow q_{yi}, s_{yi}, p_i^3$
Лента МТ:

$$1000$$
 1 10 R1 R2 R3 \leftarrow Регистры \uparrow

Число, записанное в обратном порядке

$$p_i: R_2 + +; p'_i$$

$$p_i:R_2++;p_i'$$
 $p_i':R_2--,p_i^2:p_i^3$ - в зависимости от сравнения с 0 Рассмотрим состояния p_i^2 :

Нужно напечатать что-то на ленте

$$p_i^2$$
: если $S_{ni}=0,$ то ничего; $S_{ni}=1,$ то $R_2++;$

В самой ММ условного перехода нет, т.к. всё уже определено

если $t_{ni} = \bullet$, то ничего;

если
$$t_{ni}=\leftarrow$$
, то: $R_3=2R_3+R_2$ $R_2=R_1\%2$ $R_1=R_1/2$

2 Тезис Чёрча-Тьюринга

- 1. Любое мыслимое на сегоднящний день определение алгоритма будет эквивалентно MT.
- 2. Всё, что мы можем вычислить, мы можем вычислить на МТ.

3 Теория вычислимости

3.1 Определения

Опр. L - язык вычислимый (decidable) или разрешимый, если ∃МТ A, которая его распознаёт т.е.:

 $A : \forall w \in L A(w) = 1$

$$\forall w \notin L A(w) = 0$$

R - счётное число

Опр. Язык L - рекурсивно-перечислимый (semidecidable), если ЭМТ А такая что:

 $\forall w \in L A(w) = 1$

 $\forall w \notin L A(w) = MT$ ничего не говорит.

Re - счётное число

 $R \subset Re$

Всего МТ - счётное число, т.к. текст имеет конечную длину т.е. |R| и |Re| - счётно.

 $\mathcal{L}\subseteq \Sigma^*$

 $|\Sigma^*| =$ континуум $\Rightarrow \exists \ L \not\in \mathrm{Re}$ т.е. не распознаваемый МТ.

Опр. Язык L - ко-рекурсивно-перечислимый (CoRe), если ∃МТ A такая что:

 $\forall w \notin L A(w) = 1$

 $\forall w \in L \ A(w) =$ машина зацикливается.

Утв. $R = Re \cap Core$.

Доказательство:

 \subseteq :

 $L \in R \Rightarrow \exists MT A$, которую можно разделить на две MT:

1. $A_1 : \forall w \in L A(w) = 1$

 $\forall \ w \not\in L \ A(w) =$ машина зацикливается.

 $L \in Re$

$$2.\ A_0: \forall\ \mathrm{w}\in \mathrm{L}\ \mathrm{A}(\mathrm{w})=$$
 машина зацикливается.
$$\forall\ \mathrm{w}
ot\in \mathrm{L}\ \mathrm{A}(\mathrm{w})=1$$
 $\mathrm{L}\in \mathrm{CoRe}$

⊇:

 $L \in Re \cap CoRe \Rightarrow L \in Re, L \in CoRe$

Запустим параллельно:

$$\left\{ \begin{array}{c} A_1 \\ A_0 \end{array} \right\}$$
 A

Утв. R замкнут относительно \cup , \cap , \neg т.е.:

$$\forall L_1, L_2 \in R : L_1 \cap L_2 \in R, L_1 \cup L_2 \in R, \Sigma^* \setminus L_1 \in R$$

Доказательство:

Запустить обе МТ и ждать результата их работы т.к. они обязательно должны остановиться.

Утв. Re замкнут относительно ∪, ∩ т.е.:

$$\forall L_1, L_2 \in Re : L_1 \cap L_2 \in Re, L_1 \cup L_2 \in Re$$

Доказательство: Параллельно запускаем две МТ. В случае пересечения мы гарантировано за конечное время дождёмся остановки двух МТ, в случае объединения одной.

3.2 Теорема "Проблема останова" (Halting problem)

Определить, останавливается ли МТ А на входных данных Х?

$$L_H = \{ ''(A,X)'' : A \text{ останавливается на X} \}$$
 $L_H \in Re$

 $w \in L_H$

w = (A, X)

Покажем, что $L_H \notin R$.

От противного:

 $\exists MTM(A,X) = \{ egin{array}{ll} 1,\ {
m eсл}\ {
m A}\ {
m octahab}\ {
m nubaetcs}\ {
m ha}\ {
m X} \\ 0,\ {
m ecл}\ {
m A}\ {
m he}\ {
m octahab}\ {
m nubaetcs}\ {
m ha}\ {
m X} \end{array}$

Машина $M_1: M_1(A) = M(A, A)$

$$M_2(A) = \{ egin{array}{ll}
m{3} &
m{3}
m{ ацикливается, если } M_1(A) = 1 \
m{1, если } M_1(A) = 0 \end{array}$$

Рассмотрим чему равно $M_2(M_2)$:

Пусть $M_2(M_2)$ останавливается $\Rightarrow M(M_2,M_2)=1 \Rightarrow M_1(M_2)=1 \Rightarrow M_2(M_2)$ зациклится.

Если $M_2(M_2)$ зациклится $\Rightarrow M(M_2,M_2)=0 \Rightarrow M_1(M_2)=0 \Rightarrow M_2(M_2)=1$ т.е. машина не зациклится.

Противоречие $\Rightarrow \not\exists M$.

Пример:

Рассмотрим код: for ${
m x}=2,3...$ ${
m y}=2,3...$ ${
m n}=3,4...$ ${
m z}=2,3...$ if $(x^n+y^n==z^n)$

С помощью такой МТ можно было бы доказать великую еорему Ферма, как и любую другую теорему из области конструктивной математики, но, к сожалению, очевидно, что такую МТ построить нельзя.