

Ayudantía 2 - Decidibilidad y Reducciones

Pregunta 1

Argumente si los siguientes lenguajes/problemas son decidibles o indecidibles.

- $i)\ L=\mathbb{N}$ pares Decidible.
- ii) $L = \mathbb{Q}$ Decidible, se pueden codificar como fracciones.
- iii) $L = {\pi}$ Decidible, se puede codificar en el alfabeto.
- iv) $L = \mathbb{I}$ Indecidible, no se pueden codificar un número infinito de símbolos especiales ni aceptar inputs infinitos. El problema de los irracionales es que siempre será un problema codificarlos.
- $v)\ L=$ números primos Decidible, se puede aceptar un primo de 10^{100} dígitos y eventualmente el algoritmo terminará.
 - vi) L = cualquier conjunto finito Decidible, se puede "hardcodear".
 - vii) $L=2^{\mathbb{N}}$, todos los subconjuntos de los naturales Indecidible, no se aceptan inputs infinitos.
- viii) Ejecutar cualquier MT sobre cualquier Input de su Alfabeto Indecidible, como hay máquinas que no terminan, nuestra MT universal no terminaría al ejecutarlas.
- ix) Resolver el Ajedrez Decidible, el número de juegos es finito debido a las reglas del Ajedrez. Shannon lo estima en 10^{120} posibles juegos, pero eventualmente se pueden computar todos.
- x) Encontrar una solución a toda EDO Indecidible, queda propuesto investigar sobre las reducciones que existen. Es un problema parecido al de los irracionales ¿cómo codificar todas esas funciones especiales?

Más problemas indecidibles (link): Mortality, Correspondencia, si una CFG es ambigua, etc.

Pregunta 2

Argumente si las siguientes funciones/algotirmos son computables.

- i) $f(w_d) = w_b$, función que convierte una codificación decimal a binario Computable, se puede programar el algoritmo.
 - ii) $f(w) = \sqrt{w}$ No computable, para algunos inputs no termina.
- $iii)\ f(w)=w^{inv}$ (invertir el input) Computable, se puede programar con un poco de dedicación en una MT.
 - iv) f(w) = |w| Computable se puede generar un contador e ir sumándole 1 por cada carácter borrado.
- v) $f(w) = \pi_w$, función que convierte un entero en el dígito número w de π Computable, existen algoritmos para calcular π con la precisión que uno quiera y despues se puede buscar el dígito coorespondiente (no entra en un loop infinito de cálculos).
- $vi) f(w) = w_1 \# w_2 \# ... \# w_n$, donde cada w_i es un posible slice de w Computable, todo es finito así que se puede enumerar todo slicing de input.

Pregunta 3

Reducir L_2 a L_1 .

$$L_1 = \{ w \mid \exists M1, M2.w = C(M1)0000C(M2), M1 \ acepta \ C(M2) \lor M2 \ acepta \ C(M1) \}$$

$$L_2 = \{ w \mid \exists M.w = C(M), M \ acepta \ C(M) \}$$

f(w) = w0000w, esto nos permite argumentar que algunos casos indecidibles de L_2 están en L_1 , por lo que este lenguaje también es indecidible.

Nota: faltan algunas discusiones que se dieron durante la ayudantía. ¡Recomiendo fuertemente pedir apuntes, conversar sobre los problemas con los demás estudiantes y asistir al resto de las ayudantías!