

Introduction to Bioinformatics RNA-Seq analysis

Department of Bioinformatics, IBB, University of Tehran
Winter 2024

Presenter: Fereshteh Noroozi

RNA-Seq analysis

- Sample Preparation
- Library Preparation
- Sequencing
- Data Preprocessing
- Quantification of Gene Expression
- Differential Expression Analysis
- Functional Analysis
- Visualization

Accession number GSE104836

SRR Accession number	Tissue	Gender	Pair id	
SRR6159233	colon cancer tissue	female	94	
SRR6159234	non-tumor tissue	female	94	
SRR6191641	colon cancer tissue	female	29	
SRR6191642	non-tumor tissue	female	29	
SRR6191643	colon cancer tissue	male	34	
SRR6191644	non-tumor tissue	male	34	
SRR6191645	colon cancer tissue	female	48	
SRR6191646	non-tumor tissue	female	48	
SRR6191647	colon cancer tissue	male	55	
SRR6191648	non-tumor tissue	male	55	

Accession number GSE104836

• SRA Run Selector

Accession number GSE104836

Select		Runs	Bytes	Bases	Download						Cloud Data Delivery		Co	mputing
Total		20	146.15 Gb	364.34 G	G Metadata or Accession List									
Selected		0	0	0	Metada	ata or Acces	ssion List or J\	WT Cart			Deliver Data			Galaxy
Found 20 I														
☑ X	▲ Run		oSample 2	Bases 3	Bytes Bytes	♦ Experiment	GEO_Accession	pair_id	ReleaseDate ReleaseDate	<pre>create_date</pre>	◆ Sample Name	\$ sex	Stage 12	tissue
_ 1	SRR6159233	SAMI	N07775088	18.65 G	7.87 Gb	SRX3270870	GSM2808523	94	2017-10-16	2017-10-11 16:16:00Z	GSM2808523	female	T4N0M0	colon cancer tissue
_ 2	SRR6159234	SAMI	N07775087	17.15 G	6.88 Gb	SRX3270871	GSM2808524	94	2017-10-16	2017-10-11 16:08:00Z	GSM2808524	female	T4N0M0	nontumor colon tis
_ 3	SRR6191641	SAMI	N07775080	20.45 G	8.45 Gb	SRX3301668	GSM2808511	29	2018-12-26	2017-10-19 15:11:00Z	GSM2808511	female	T4N2M0	colon cancer tissue
4	SRR6191642	SAMI	N07775079	19.68 G	8.14 Gb	SRX3301669	GSM2808512	29	2018-12-26	2017-10-19 15:36:00Z	GSM2808512	female	T4N2M0	nontumor colon tis
_ 5	SRR6191643	SAMI	N07775078	14.85 G	6.06 Gb	SRX3301670	GSM2808513	34	2018-12-26	2017-10-19 15:06:00Z	GSM2808513	male	T4N0M0	colon cancer tissue
6	SRR6191644	SAMI	N07775077	20.72 G	8.51 Gb	SRX3301671	GSM2808514	34	2018-12-26	2017-10-19 15:27:00Z	GSM2808514	male	T4N0M0	nontumor colon tis
_ 7	SRR6191645	SAMI	N07775096	19.24 G	8.15 Gb	SRX3301672	GSM2808515	48	2018-12-26	2017-10-19 15:33:00Z	GSM2808515	female	T4N0M0	colon cancer tissue
8	SRR6191646	SAMI	N07775095	17.39 G	7.08 Gb	SRX3301673	GSM2808516	48	2018-12-26	2017-10-19 15:33:00Z	GSM2808516	female	T4N0M0	nontumor colon tis
9	SRR6191647	SAMI	N07775094	21.50 G	9.10 Gb	SRX3301674	GSM2808517	55	2018-12-26	2017-10-19 15:41:00Z	GSM2808517	male	T2N0M0	colon cancer tissue
10	SRR6191648	SAMI	N07775093	17.63 G	7.27 Gb	SRX3301675	GSM2808518	55	2018-12-26	2017-10-19 15:13:00Z	GSM2808518	male	T2N0M0	nontumor colon tis
11	SRR6191649	SAMI	N07775092	16.00 G	6.63 Gb	SRX3301676	GSM2808519	57	2018-12-26	2017-10-19 15:22:00Z	GSM2808519	male	T4N0M0	colon cancer tissue
12	SRR6191650	SAMI	N07775091	15.95 G	7.33 Gb	SRX3301677	GSM2808520	57	2018-12-26	2017-10-19 14:55:00Z	GSM2808520	male	T4N0M0	nontumor colon tis
13	SRR6191651	SAMI	N07775090	19.27 G	7.71 Gb	SRX3301678	GSM2808521	91	2018-12-26	2017-10-19 15:31:00Z	GSM2808521	female	T3N0M0	colon cancer tissue
14	SRR6191652	SAMI	N07775089	15.62 G	6.65 Gb	SRX3301679	GSM2808522	91	2018-12-26	2017-10-19 15:02:00Z	GSM2808522	female	T3N0M0	nontumor colon tis
15	SRR6191653	SAMI	N07775086	17.44 G	7.04 Gb	SRX3301680	GSM2808525	101	2018-12-26	2017-10-19 15:11:00Z	GSM2808525	female	T3N1M0	colon cancer tissue
16	SRR6191654	SAMI	N07775085	18.15 G	7.29 Gb	SRX3301681	GSM2808526	101	2018-12-26	2017-10-19 15:27:00Z	GSM2808526	female	T3N1M0	nontumor colon tis
17			N07775084	18 59 G	6.48 Gh	SDX3301682	GSM2808527	111	2018-12-26	2017-10-19 45-37-007	GSM2808527	famala	T4N1M0	colon cancer tissue

Data preparation

• For paired: SRA(Zip of fastq) files into two forward and reverse Fastq.gz files using the *fastq-dump* command from the SRA Toolkit. (Hint: use *fastq-dump* [options] file.sra)

Part a- Quality control and trimming

use fastqc and TrimmomaticPE

Part a- Quality control and trimming

- 1-What is the average number of reads across samples before and after the read trimming?
- 2-Compare the read length averages in different samples before and after the read trimming?
- 3-Compare the read quality distributions over all sequences before and after the read trimming.
- 4-What does the Adaptor Content warning indicate?
- 5-Why do we first remove the Adapter sequences for the reads and then the low-quality bases?
- 6-What does the quality of bases mean, and how is it obtained?

Basic Statistics

Measure	Value				
Filename	SRR17172481.fastq				
File type	Conventional base calls				
Encoding	Sanger / Illumina 1.9				
Total Sequences	7521289				
Sequences flagged as poor quality	0				
Sequence length	50				
%GC	50				

Part b- Read mapping

• Using the HISAT2 software to map reads to the reference

- 1. What is the difference between SAM and BAM files?
- 2. What is the purpose of indexing the genome?
- 3. Report mapping percentages of all samples in a table. Please explain why a low percentage of reads cannot be mapped.

Part c- Building gene expression matrix

- Run htseq-count then, to merge results files into a single matrix
- How many genes are not expressed in control and tumor samples? Explain the results.

 Compare the matrix obtained at this stage with the corresponding gene expression submatrix of the main study. Discuss the differences.

What are other software available to do this step?

Name two other software and discuss their advantages and disadvantages.

count_SRR17172481.txt 5s rRNA 0 5 8s rRNA 7SK 0 A1BG-AS1 A2MP1 A3GALT2 0 A4GALT A4GNT AA06 AAAS 121 AACS AACSP1 AADAC AADACL2 0 AADACL3 0

Part d- Differential gene expression analysis

- Use the expression matrix of the main study (all samples) to answer the following question
 Use edgeR
- How many genes are given to edgeR? How many of them are differentially expressed in tumor versus normal samples? How do you define statistical significance in this context?
- Determine the percentage of differentially expressed genes with |log2FoldChange| > 1.5.
- Explain the difference between P-value and FDR?

Part e- Gene Ontology enrichment analysis

- GOseq package in R
 To accomplish this step, select the genes with FDR < 0.1 and an absolute value of Log2FoldChange > 1.5.
- Display results related to Biological Process, Molecular Function, Cellular Component, and KEGG as separate plots using an R package of your choice.
- Do a brief study of each of the significant terms and discuss which terms you think may play an important role.
- Write a general biological conclusion about the final results of the project.