# Proyecto Final Lógica para ciencias de la computación

Juan Jose Caballero Juan David Martínez



Mayo de 2020





# El problema de Santiago

#### Formulación del problema

En la ciudad gallega de Santiago de Compostela se encuentra enterrado el Apostol Santiago. Gracias a esto es un destino muy famoso de peregrinación. Para esta a traves de la historia se han propuesto diversos caminos pasando por diversas ciudades desde Sevilla, para completar la peregrinacion. Nosotros quisimos tomar algunas de estas ciudades y encontrar el camino mas favorable con logica proposicional.



### Problema

¿como generar un camino utilizando lógica proposicional?





## Letras proposicionales

En este problema se utilizaron las letras del abecedario hasta la  $Y(\sin incluir la \ \tilde{N})$ .

Se usaron las mayúsculas para representar los caminos entre una ciudad y otra de sur a norte.

A: Sevilla a Merida

Se usaron las minúsculas para representar los caminos entre una ciudad y otra de norte a sur.

a: Merida a Sevilla



# Reglas

- ► Regla 1: Solo se puede ir de una ciudad a otra si existe camino entre ellas.
- ▶ Regla 2: Si 1 ciudad tiene camino a mas de 1 ciudad mas entonces no puede tomar 2 o mas caminos al tiempo.
- ▶ Regla 3: Tiene que llegar a Santiago de Compostela.



## Representación gráfica de soluciones

Considere por ejemplo la siguiente interpretación:

```
{'x': 0, 't': 0, 's': 1, 'n': 1, 'j': 1, 'y': 0, 'o': 0, 'v': 0, 'l': 0, 'q': 0, 'u': 0, 'c': 0, 'f': 0, 'i': 0, 'm': 0, 'r': 0, 'w': 0, 'b': 0, 'e': 0, 'h': 0, 'k': 0, 'p': 0, 'd': 1, 'a': 1, 'g': 1}
```

Usando esto, crearemos una lista en Python, en la que agregaremos lo siguiente, sin perdida de generalidad,

- ▶ Si I(x) = 0, no lo agregamos a la lista de letras para dibujar.
- ▶ Si I(x) = 1, lo agregamos a la lista de letras para dibujar.



# Representación gráfica del problema

Con el anterior procedimiento obtenemos la siguiente lista que sera usada para generar la solución de norte a sur:

# Representación gráfica del problema

Nótese que las 6 letras que se encuentran en la lista se ven dibujadas en el mapa como caminos.





# Resolución del problema

- Crearemos las reglas en lógica proposicional.
- DPLL
- ► Representación gráfica de la solución.



## Solución



Figure: Representación de la situación sin condiciones iniciales



#### Solución



Figure: Solución de la situación sin condiciones iniciales





#### Solución



Figure: Solución de la situación con condiciones iniciales



#### Conclusiones

- Se pueden generar las mejores opciones de caminos de una ciudad a otra colocando ciertos lugares para pasar con logica proposicional.
- ► El algoritmo DPLL es el mas optimo a la hora de querer hallar modelos a formulas en logica proposicional.
- PIL es una libreria muy optima para dibujar caminos sobre mapas.



#### Referencias

- http://www.fisem.org/www/union/revistas/2016/46/ 10\_21-401-1-ED.pdf
- https://e-aulas.urosario.edu.co/pluginfile.php/ 1819058/mod\_resource/content/1/Cuatro-Colores.pdf
- Ben-Ari, Mordechai (2012) Mathematical Logic for Computer Science. Springer. Third edition.

