Refined Enumerations of Totally Symmetric Self-Complementary Plane Partitions and Constant Term Identities

Masao Ishikawa[†]

†Department of Mathematics Tottori University

The 19th International Conference on Formal Power Series and Algebraic Combinatorics 2007,
Nankai University, Tianjin, China

Introduction

Abstract

In this talk we give Pfaffian or determinant expressions, and constant term identities for the conjectures in the paper "Self-complementary totally symmetric plane partitions" (*J. Combin. Theory Ser. A* **42**, (1986), 277–292) by W.H. Mills, D.P. Robbins and H. Rumsey. We also settle a weak version of Conjecture 6 in the paper, i.e., the number of shifted plane partitions invariant under a certain involution is equal to the number of alternating sign matrices invariant under the vertical flip.

- Conjecture 2 (The refined TSSCPP conjecture)
- Conjecture 3 (The doubly refined TSSCPP conjecture)
- Onjecture 7, 7' (Related to the monotone triangles)
- Conjecture 4 (Related to half-turn symmetric ASMs)
- Conjecture 6 (Related to vertical symmetric ASMs)

- Conjecture 2 (The refined TSSCPP conjecture)
- Conjecture 3 (The doubly refined TSSCPP conjecture)
- Onjecture 7, 7' (Related to the monotone triangles)
- Conjecture 4 (Related to half-turn symmetric ASMs)
- Conjecture 6 (Related to vertical symmetric ASMs)

- Conjecture 2 (The refined TSSCPP conjecture)
- Conjecture 3 (The doubly refined TSSCPP conjecture)
- 3 Conjecture 7, 7' (Related to the monotone triangles)
- Conjecture 4 (Related to half-turn symmetric ASMs)
- Conjecture 6 (Related to vertical symmetric ASMs)

- Conjecture 2 (The refined TSSCPP conjecture)
- Conjecture 3 (The doubly refined TSSCPP conjecture)
- Onjecture 7, 7' (Related to the monotone triangles)
- Conjecture 4 (Related to half-turn symmetric ASMs)
- Conjecture 6 (Related to vertical symmetric ASMs)

- Conjecture 2 (The refined TSSCPP conjecture)
- Conjecture 3 (The doubly refined TSSCPP conjecture)
- Onjecture 7, 7' (Related to the monotone triangles)
- Conjecture 4 (Related to half-turn symmetric ASMs)
- 6 Conjecture 6 (Related to vertical symmetric ASMs)

Plane partitions

Definition

A *plane partition* is an array $\pi = (\pi_{ij})_{i,j \ge 1}$ of nonnegative integers such that π has finite support (i.e., finitely many nonzero entries) and is weakly decreasing in rows and columns. If $\sum_{i,j \ge 1} \pi_{ij} = n$, then we write $|\pi| = n$ and say that π is a plane partition of n, or π has the *weight* n.

Plane partitions

Definition

A *plane partition* is an array $\pi = (\pi_{ij})_{i,j \ge 1}$ of nonnegative integers such that π has finite support (i.e., finitely many nonzero entries) and is weakly decreasing in rows and columns. If $\sum_{i,j \ge 1} \pi_{ij} = n$, then we write $|\pi| = n$ and say that π is a plane partition of n, or π has the *weight* n.

Plane partitions

Definition

A *plane partition* is an array $\pi = (\pi_{ij})_{i,j \ge 1}$ of nonnegative integers such that π has finite support (i.e., finitely many nonzero entries) and is weakly decreasing in rows and columns. If $\sum_{i,j \ge 1} \pi_{ij} = n$, then we write $|\pi| = n$ and say that π is a plane partition of n, or π has the *weight* n.

Example

A plane partition of 14

Definition

Let $\pi = (\pi_{ij})_{i,j \ge 1}$ be a plane partition.

- A *part* is a positive entry $\pi_{ij} > 0$.
- The *shape* of π is the ordinary partition λ for which π has λ_i nonzero parts in the *i*th row.
- We say that π has r rows if $r = \ell(\lambda)$. Similarly, π has s columns if $s = \ell(\lambda')$.

Example

A plane partition of shape (432) with 3 rows and 4 columns:

Definition

Let $\pi = (\pi_{ij})_{i,j \ge 1}$ be a plane partition.

- A *part* is a positive entry $\pi_{ij} > 0$.
- The *shape* of π is the ordinary partition λ for which π has λ nonzero parts in the *i*th row.
- We say that π has r rows if $r = \ell(\lambda)$. Similarly, π has s columns if $s = \ell(\lambda')$.

Example

A plane partition of shape (432) with 3 rows and 4 columns

Definition

Let $\pi = (\pi_{ij})_{i,j \ge 1}$ be a plane partition.

- A *part* is a positive entry $\pi_{ij} > 0$.
- The *shape* of π is the ordinary partition λ for which π has λ_i nonzero parts in the *i*th row.
- We say that π has r rows if $r = \ell(\lambda)$. Similarly, π has s columns if $s = \ell(\lambda')$.

Example

A plane partition of shape (432) with 3 rows and 4 columns:

Definition

Let $\pi = (\pi_{ij})_{i,j \ge 1}$ be a plane partition.

- A *part* is a positive entry $\pi_{ij} > 0$.
- The *shape* of π is the ordinary partition λ for which π has λ_i nonzero parts in the *i*th row.
- We say that π has r rows if $r = \ell(\lambda)$. Similarly, π has s columns if $s = \ell(\lambda')$.

Example

A plane partition of shape (432) with 3 rows and 4 columns

Definition

Let $\pi = (\pi_{ij})_{i,j \ge 1}$ be a plane partition.

- A *part* is a positive entry $\pi_{ii} > 0$.
- The *shape* of π is the ordinary partition λ for which π has λ_i nonzero parts in the *i*th row.
- We say that π has r rows if $r = \ell(\lambda)$. Similarly, π has s columns if $s = \ell(\lambda')$.

Example

A plane partition of shape (432) with 3 rows and 4 columns:

3	2	1	1
2	2	1	
1	1		

Example

- Plane partitions of 0: 0
- Plane partitions of 1: 1
- Plane partitions of 2:

Plane partitions of 3:

Example Plane partitions of 0: 0 Plane partitions of 1: 1

Example

- Plane partitions of 0: Ø
- Plane partitions of 1: 1
- Plane partitions of 2:

Plane partitions of 3

Example

- Plane partitions of 0: Ø
- Plane partitions of 1: 1
- Plane partitions of 2:

Plane partitions of 3:

Ferrers graph

Definition

The Ferrers graph $D(\pi)$ of π is the subset of \mathbb{P}^3 defined by

$$D(\pi) = \{(i,j,k) : k \leq \pi_{ij}\}$$

Ferrers graph

Definition

The *Ferrers graph* $D(\pi)$ of π is the subset of \mathbb{P}^3 defined by

$$D(\pi) = \{(i,j,k) : k \leq \pi_{ij}\}$$

Example

Ferrers graph

3	2	1	1
2	2	1	
1	1		

Definition

If $\pi = (\pi_{ij})$ is a plane partition, then the *transpose* π^* of π is defined by $\pi^* = (\pi_{ij})$.

- π is *symmetric* if $\pi = \pi^*$
- π is *cyclically symmetric* if whenever $(i, j, k) \in \pi$ then $(j, k, i) \in \pi$.
- π is called totally symmetric if it is cyclically symmetric and symmetric

Definition

If $\pi = (\pi_{ij})$ is a plane partition, then the *transpose* π^* of π is defined by $\pi^* = (\pi_{ij})$.

- π is *symmetric* if $\pi = \pi^*$.
- π is cyclically symmetric if whenever $(i, j, k) \in \pi$ then $(j, k, i) \in \pi$.
- π is called totally symmetric if it is cyclically symmetric and symmetric.

Example

A symmetric PP

Definition

If $\pi = (\pi_{ij})$ is a plane partition, then the *transpose* π^* of π is defined by $\pi^* = (\pi_{ij})$.

- π is symmetric if $\pi = \pi^*$.
- π is *cyclically symmetric* if whenever $(i, j, k) \in \pi$ then $(j, k, i) \in \pi$.
- π is called totally symmetric if it is cyclically symmetric and symmetric.

Example

A cyclicaly symmetric PP

Definition

If $\pi = (\pi_{ij})$ is a plane partition, then the *transpose* π^* of π is defined by $\pi^* = (\pi_{ij})$.

- π is symmetric if $\pi = \pi^*$.
- π is *cyclically symmetric* if whenever $(i, j, k) \in \pi$ then $(j, k, i) \in \pi$.
- π is called totally symmetric if it is cyclically symmetric and symmetric.

Example

A totally symmetric PP

Complement

Definition

Let $\pi = (\pi_{ij})$ be a plane partition contained in the box $B(r, s, t) = [r] \times [s] \times [t]$.

Define the *complement* π^c of π by

$$\pi^{c} = \{ (r+1-i, s+1-j, t+1-k) : (i, j, k) \notin \pi \}.$$

• π is said to be (r, s, t)-self-complementary if $\pi = \pi^c$. i.e.

$$(i,j,k) \in \pi \Leftrightarrow (r+1-i,s+1-j,t+1-k) \notin \pi.$$

Example

B(2,3,3)

Complement

Definition

Let $\pi = (\pi_{ij})$ be a plane partition contained in the box

$$B(r, s, t) = [r] \times [s] \times [t].$$

Define the *complement* π^c of π by

$$\pi^c = \{ (r+1-i, s+1-j, t+1-k) : (i, j, k) \notin \pi \}.$$

• π is said to be (r, s, t)-self-complementary if $\pi = \pi^c$. i.e.

$$(i,j,k) \in \pi \Leftrightarrow (r+1-i,s+1-j,t+1-k) \notin \pi.$$

Example

complement

Complement

Definition

Let $\pi = (\pi_{ij})$ be a plane partition contained in the box $B(r, s, t) = [r] \times [s] \times [t]$.

Define the *complement* π^c of π by

$$\pi^c = \{ (r+1-i, s+1-j, t+1-k) : (i, j, k) \notin \pi \}.$$

• π is said to be (r, s, t)-self-complementary if $\pi = \pi^c$. i.e.

$$(i,j,k) \in \pi \Leftrightarrow (r+1-i,s+1-j,t+1-k) \notin \pi.$$

Example

A (2, 3, 3)-self-complementary PP

Symmetry classes of plane partitions

Symmetry classes (Stanley)

The transformation c and the group S_3 generate a group T of order 12. The group T has ten conjugacy classes of subgroups, giving rise to ten enumeration problems.

Symmetric

Cyclically symmetric

Totally symmetric

Self-complementary

Complement = transpose

Symmetric and self-complementary

Cyclically symmetric and complement = transpose

Totally symmetric and self-complementary

Symmetry classes of plane partitions

Symmetry classes (Stanley)

The transformation c and the group S_3 generate a group T of order 12. The group T has ten conjugacy classes of subgroups, giving rise to ten enumeration problems.

Symmetric

Cyclically symmetric

Totally symmetric

Self-complementary

Complement = transpose

Symmetric and self-complementary

Cyclically symmetric and complement = transpose

Totally symmetric and self-complementary

Symmetry classes of plane partitions

Symmetry classes (Stanley)

The transformation c and the group S_3 generate a group T of order 12. The group T has ten conjugacy classes of subgroups, giving rise to ten enumeration problems.

Table (R. P. Stanley, "Symmetries of Plane Partitions", J. Combin. Theory Ser. A 43, 103-113 (1986))			
1	B(r,s,t)	Any	
2	B(r, r, t)	Symmetric	
3	B(r,r,r)	Cyclically symmetric	
4	B(r,r,r)	Totally symmetric	
5	B(r,s,t)	Self-complementary	
6	B(r,r,t)	Complement = transpose	
7	B(r,r,t)	Symmetric and self-complementary	
8	B(r,r,r)	Cyclically symmetric and complement = transpose	
9	B(r,r,r)	Cyclically symmetric and self-complementary	
10	B(r,r,r)	Totally symmetric and self-complementary	

Totally symmetric self-complementary plane partitions

Definition

A plane partition is said to be *totally symmetric* self-complementary plane parition of size 2n if it is totally symmetric and (2n, 2n, 2n)-self-complementary.

We denote the set of all self-complementary totally symmetric plane partitions of size 2n by \mathcal{S}_n .

Totally symmetric self-complementary plane partitions

Definition

A plane partition is said to be *totally symmetric* self-complementary plane parition of size 2n if it is totally symmetric and (2n, 2n, 2n)-self-complementary. We denote the set of all self-complementary totally symmetric plane partitions of size 2n by \mathcal{S}_n .

Totally symmetric self-complementary plane partitions

Definition

A plane partition is said to be *totally symmetric* self-complementary plane parition of size 2n if it is totally symmetric and (2n, 2n, 2n)-self-complementary. We denote the set of all self-complementary totally symmetric plane partitions of size 2n by \mathscr{S}_n .

Example

 \mathcal{S}_1 consists of the single partition

TSSCPPs of size 4

TSSCPPs of size 4

Example \$\mathcal{S}_2\$ consists of the following two partitions:

Example \mathcal{S}_3 consists of the following seven partitions: π_5 π_6

Example

 \mathcal{S}_3 consists of the following seven partitions:

Definition (Mills, Robbins and Rumsey)

Let \mathcal{B}_n denote the set of shifted plane partitions $b = (b_{ij})_{1 \le i \le j}$ subject to the constraints that

(B1) the shifted shape of b is $(n-1, n-2, \ldots, 1)$;

(B2)
$$n - i \le b_{ij} \le n$$
 for $1 \le i \le j \le n - 1$.

We call an element of \mathcal{B}_n a triangular shifted plane partition.

Definition (Mills, Robbins and Rumsey)

Let \mathcal{B}_n denote the set of shifted plane partitions $b = (b_{ij})_{1 \le i \le j}$ subject to the constraints that

(B1) the shifted shape of b is (n-1, n-2, ..., 1);

(B2) $n - i \le b_{ij} \le n$ for $1 \le i \le j \le n - 1$.

We call an element of \mathcal{B}_n a triangular shifted plane partition

Definition (Mills, Robbins and Rumsey)

Let \mathcal{B}_n denote the set of shifted plane partitions $b = (b_{ij})_{1 \le i \le j}$ subject to the constraints that

- (B1) the shifted shape of b is (n-1, n-2, ..., 1);
- (B2) $n i \le b_{ij} \le n$ for $1 \le i \le j \le n 1$.

We call an element of \mathcal{B}_n a triangular shifted plane partition.

Definition (Mills, Robbins and Rumsey)

Let \mathscr{B}_n denote the set of shifted plane partitions $b=(b_{ij})_{1\leq i\leq j}$ subject to the constraints that

- (B1) the shifted shape of b is (n-1, n-2, ..., 1);
- (B2) $n i \le b_{ij} \le n \text{ for } 1 \le i \le j \le n 1.$

We call an element of \mathcal{B}_n a triangular shifted plane partition.

Definition (Mills, Robbins and Rumsey)

Let \mathscr{B}_n denote the set of shifted plane partitions $b=(b_{ij})_{1\leq i\leq j}$ subject to the constraints that

- (B1) the shifted shape of b is (n-1, n-2, ..., 1);
- (B2) $n i \le b_{ij} \le n$ for $1 \le i \le j \le n 1$.

We call an element of \mathcal{B}_n a triangular shifted plane partition.

Example

 \mathcal{B}_1 consists of the single PP \emptyset .

Definition (Mills, Robbins and Rumsey)

Let \mathscr{B}_n denote the set of shifted plane partitions $b = (b_{ij})_{1 \le i \le j}$ subject to the constraints that

- (B1) the shifted shape of b is (n-1, n-2, ..., 1);
- (B2) $n i \le b_{ij} \le n \text{ for } 1 \le i \le j \le n 1.$

We call an element of \mathcal{B}_n a triangular shifted plane partition.

Example

 \mathcal{B}_2 consists of the following 2 PPs:

2

1

Definition (Mills, Robbins and Rumsey)

Let \mathscr{B}_n denote the set of shifted plane partitions $b=(b_{ij})_{1\leq i\leq j}$ subject to the constraints that

- (B1) the shifted shape of b is (n-1, n-2, ..., 1);
- (B2) $n i \le b_{ij} \le n \text{ for } 1 \le i \le j \le n 1.$

We call an element of \mathcal{B}_n a triangular shifted plane partition.

Example

 \mathcal{B}_3 consists of the followng 7 PPs

3 3	3 3	3 3	3 2	3 2	2 2	2 2
3	2	1	2	1	2	1

Theorem (Mills, Robbins and Rumsey)

Let *n* be a positive integer.

Then there is a bijection from \mathcal{S}_n to \mathcal{B}_n .

Theorem (Mills, Robbins and Rumsey)

Let *n* be a positive integer.

Theorem (Mills, Robbins and Rumsey)

Let *n* be a positive integer.

Theorem (Mills, Robbins and Rumsey)

Let *n* be a positive integer.

Theorem (Mills, Robbins and Rumsey)

Let *n* be a positive integer.

Then there is a bijection from \mathcal{S}_n to \mathcal{B}_n .

n = 3

3 2

Theorem (Mills, Robbins and Rumsey)

Let *n* be a positive integer.

Then there is a bijection from \mathcal{S}_n to \mathcal{B}_n .

n = 3

3 2

Theorem (Mills, Robbins and Rumsey)

Let *n* be a positive integer.

Theorem (Mills, Robbins and Rumsey)

Let *n* be a positive integer.

Then there is a bijection from \mathcal{S}_n to \mathcal{B}_n .

Example

n = 3

Definition (Mills, Robbins and Rumsey)

Let $b = (b_{ij})_{1 \le i \le j \le n-1}$ be in \mathscr{B}_n and $k = 1, \dots, n$,

Let

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}$$

Here We set $b_{tn} = n - t$ for all t = l, ..., n - 1 by convention, and $\chi \{...\}$ has value 1 when the statement "..." is true and 0 otherwise.

Definition (Mills, Robbins and Rumsey)

Let
$$b = (b_{ij})_{1 \le i \le j \le n-1}$$
 be in \mathcal{B}_n and $k = 1, \dots, n$,
Let

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

Here We set $b_{tn} = n - t$ for all t = l, ..., n - 1 by convention, and $\chi \{...\}$ has value 1 when the statement "..." is true and 0 otherwise

Definition (Mills, Robbins and Rumsey)

Let $b = (b_{ij})_{1 \le i \le j \le n-1}$ be in \mathcal{B}_n and k = 1, ..., n, Let

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

Here We set $b_{tn} = n - t$ for all t = l, ..., n - 1 by convention, and $\chi \{...\}$ has value 1 when the statement "..." is true and 0 otherwise.

Definition (Mills, Robbins and Rumsey)

Let $b = (b_{ij})_{1 \le i \le j \le n-1}$ be in \mathcal{B}_n and k = 1, ..., n, Let

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

Here We set $b_{tn} = n - t$ for all t = l, ..., n - 1 by convention, and $\chi \{...\}$ has value 1 when the statement "..." is true and 0 otherwise.

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

$$n = 7$$
, $k = 1$, $U_1(b) = 3$

7	7	7	7	7	7	6
	6	6	6	5	5	5
		5	4	4	4	4
	•		4	4	4	3
				3	2	2
			,		2	1

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

$$n = 7$$
, $k = 1$, $U_1(b) = 3$

7	7	7	7	7	7	6
	6	6	6	5	5	5
,		5	4	4	4	4
	,		4	4	4	3
				3	2	2
					2	1

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

$$n = 7$$
, $k = 2$, $U_2(b) = 1$

7	7	7	7	7	7	6
	6	6	6	5	5	5
		5	4	4	4	4
			4	4	4	3
				3	2	2
					2	1

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

$$n = 7$$
, $k = 3$, $U_3(b) = 3$

6	7	7	7	7	7	7
5	5	5	6	6	6	
4	4	4	4	5		
3	4	4	4		·	
2	2	3				
1	2					

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

$$n = 7$$
, $k = 4$, $U_4(b) = 2$

6	7	7	7	7	7	7
5	5	5	6	6	6	
4	4	4	4	5		
3	4	4	4			
2	2	3				
1	2		•			

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

$$n = 7$$
, $k = 5$, $U_5(b) = 2$

6	7	7	7	7	7	7
5	5	5	6	6	6	
4	4	4	4	5		
3	4	4	4			
2	2	3				
1	2					

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

$$n = 7$$
, $k = 6$, $U_6(b) = 3$

6	7	7	7	7	7	7
5	5	5	6	6	6	
4	4	4	4	5		
3	4	4	4			
2	2	3				
1	2					

$$U_k(b) = \sum_{t=1}^{n-k} (b_{t,t+k-1} - b_{t,t+k}) + \sum_{t=n-k+1}^{n-1} \chi \{b_{t,n-1} > n-t\}.$$

$$n = 7$$
, $k = 7$, $U_7(b) = 3$

6	7	7	7	7	7	7
5	5	5	6	6	6	
4	4	4	4	5		
3	4	4	4			
2	2	3				
1	2		,			

The refined TSSCPP conjecture

Conjecture (Conjecture 2 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

Let $0 \le r \le n-1$ and $1 \le k \le n$. Then the number of elements b of \mathcal{B}_n such that $U_k(b) = r$ is the same as the number of n by n alternating sign matrices $a = (a_{ij})$ such that $a_{1,r+1} = 1$.

The refined TSSCPP conjecture

Conjecture (Conjecture 2 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

Let $0 \le r \le n-1$ and $1 \le k \le n$. Then the number of elements b of \mathcal{B}_n such that $U_k(b) = r$ is the same as the number of n by n alternating sign matrices $a = (a_{ij})$ such that $a_{1,r+1} = 1$.

$$n=3, b\in \mathcal{B}_3$$

b	3 3	3 3 2	3 3	3 2 2	3 2	2 2	2 2
$U_1(b)$	2	1	0	2	1	1	0
$U_2(b)$	2	2	1	1	0	1	0
$U_3(b)$	2	2	1	1	0	1	0

The refined TSSCPP conjecture

Conjecture (Conjecture 2 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

Let $0 \le r \le n-1$ and $1 \le k \le n$. Then the number of elements b of \mathcal{B}_n such that $U_k(b) = r$ is the same as the number of n by n alternating sign matrices $a = (a_{ij})$ such that $a_{1,r+1} = 1$.

Example

For k = 1, 2, 3, we have

$$\sum_{b \in \mathscr{B}_3} t^{U_k(b)} = 2 + 3t + 2t^2.$$

The refined enumeration of ASM

Zeilberger (1996), Kuperberg (1996)

The number of n by n alternating sign matrices $a = (a_{ij})$ such that $a_{1,r+1} = 1$ is equal to

$$\frac{\binom{n+r-2}{n-1}\binom{2n-r-1}{n-1}}{\binom{2n-2}{n-1}}A_{n-1} = \frac{\binom{n+r-2}{n-1}\binom{2n-1-r}{n-1}}{\binom{3n-2}{n-1}}A_n.$$

Here A_n is

$$\prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}.$$

The doubly refined TSSCPP conjecture

Conjecture (Conjecture 3 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

Let $n \ge 2$ and r, s with $0 \le r$, $s \le n-1$ be integers. Then the number of partitions in \mathcal{B}_n with $U_1(b) = r$ and $U_2(b) = s$ is the same as the number of n by n alternating sign matrices $a = (a_{ij})$ with

$$a_{1,r+1} = a_{n,n-s} = 1.$$

The doubly refined TSSCPP conjecture

Conjecture (Conjecture 3 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

Let $n \ge 2$ and r, s with $0 \le r$, $s \le n-1$ be integers. Then the number of partitions in \mathcal{B}_n with $U_1(b) = r$ and $U_2(b) = s$ is the same as the number of n by n alternating sign matrices $a = (a_{ij})$ with

$$a_{1,r+1} = a_{n,n-s} = 1.$$

$b \in \mathscr{B}_3$	3 3	3 3 2	3 3	3 2 2	3 2	2 2 2	2 2
$U_1(b)$	2	1	0	2	1	1	0
$U_2(b)$	2	2	1	1	0	1	0
$U_3(b)$	2	2	1	1	0	1	0

The doubly refined TSSCPP conjecture

Conjecture (Conjecture 3 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

Let $n \ge 2$ and r, s with $0 \le r$, $s \le n-1$ be integers. Then the number of partitions in \mathcal{B}_n with $U_1(b) = r$ and $U_2(b) = s$ is the same as the number of n by n alternating sign matrices $a = (a_{ij})$ with

$$a_{1,r+1} = a_{n,n-s} = 1.$$

Example

Thus we have

$$\sum_{b \in \mathcal{B}_3} t^{U_1(b)} u^{U_2(b)} = 1 + t + u + tu + t^2 u + tu^2 + t^2 u^2.$$

The doubly refined enumeration of ASM

Di Francesco and Zinn-Justin (2004)

The doubly-refined ASM number generating function is given by

$$A_{n}(t,u) = \frac{\{\omega^{2}(\omega+t)(\omega+u)\}^{n-1}}{3^{n(n-1)/2}} \times s_{\delta(n-1,n-1)}^{(2n)} \left(\frac{1+\omega t}{\omega+t}, \frac{1+\omega u}{\omega+u}, 1, \dots, 1\right)$$

Here $s_{\lambda}^{(n)}(x_1,\ldots,x_n)$ stands for the Schur function in the n variables x_1,\ldots,x_n , corresponding to the partition λ , and $\delta(n-1,n-1)=(n-1,n-1,n-2,n-2,\ldots,1,1)$ and $\omega=e^{2i\pi/3}$. (The coefficient of $t^{j-1}s^{k-1}$ is the number of $n\times n$ ASM with a 1 in position r on the top row (counted from left to right) and k on the bottom row (counted from right to left).)

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

For $n \ge 2$ and k = 0, ..., n - 1, let \mathcal{B}_{nk} be the subset of those $b = (b_{ij})_{1 \le i \le j}$ in \mathcal{B}_n such that all b_{ij} in the first n - 1 - k columns are equal to their maximum values n. Then the cardinality of \mathcal{B}_{nk} is equal to the cardinality of the set of the monotone triangles with all entries m_{ij} in the first n - 1 - k columns equal to their minimum values j - i + 1.

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

For $n \ge 2$ and k = 0, ..., n - 1, let \mathcal{B}_{nk} be the subset of those $b = (b_{ij})_{1 \le i \le j}$ in \mathcal{B}_n such that all b_{ij} in the first n - 1 - k columns are equal to their maximum values n.

Example

n = 3, k = 0: The first 2 columns are equal to the maximum values 3.

$$\begin{array}{c|c} & \boxed{3} \ 3 \\ b \in \mathcal{B}_{3,0} & \boxed{3} \\ U_1(b) & 2 \\ U_2(b) & 2 \\ U_3(b) & 2 \end{array}$$

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

For $n \ge 2$ and k = 0, ..., n - 1, let \mathcal{B}_{nk} be the subset of those $b = (b_{ij})_{1 \le i \le j}$ in \mathcal{B}_n such that all b_{ij} in the first n - 1 - k columns are equal to their maximum values n.

Example

For k = 1, 2, 3, we have

$$\sum_{0\in\mathscr{B}_{2,0}}t^{U_k(b)}=t^2.$$

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

For $n \ge 2$ and k = 0, ..., n - 1, let \mathcal{B}_{nk} be the subset of those $b = (b_{ij})_{1 \le i \le j}$ in \mathcal{B}_n such that all b_{ij} in the first n - 1 - k columns are equal to their maximum values n.

Example

n = 3, k = 1: The first column equals the maximum values 3.

$b \in \mathscr{B}_{3,1}$	3 3	3 3	3 3	3 2	3 2
$U_1(b)$	2	1	0	2	1
$U_2(b)$	2	2	1	1	0
$U_3(b)$	2	2	1	1	0

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

For $n \ge 2$ and k = 0, ..., n - 1, let \mathcal{B}_{nk} be the subset of those $b = (b_{ij})_{1 \le i \le j}$ in \mathcal{B}_n such that all b_{ij} in the first n - 1 - k columns are equal to their maximum values n.

Example

For k = 1, 2, 3, we have

$$\sum_{b\in\mathscr{B}_{3,1}}t^{U_k(b)}=1+2t+2t^2.$$

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

For $n \ge 2$ and k = 0, ..., n - 1, let \mathcal{B}_{nk} be the subset of those $b = (b_{ij})_{1 \le i \le j}$ in \mathcal{B}_n such that all b_{ij} in the first n - 1 - k columns are equal to their maximum values n.

Example

n = 3, k = 2: No restriction.

$b \in \mathscr{B}_{3,2}$	3 3	3 3 2	3 3	3 2 2	3 2	2 2 2	2 2
$U_1(b)$	2	1	0	2	1	1	0
$U_2(b)$	2	2	1	1	0	1	0
$U_3(b)$	2	2	1	1	0	1	0

Conjecture (Conjecture 7 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

For $n \ge 2$ and k = 0, ..., n - 1, let \mathcal{B}_{nk} be the subset of those $b = (b_{ij})_{1 \le i \le j}$ in \mathcal{B}_n such that all b_{ij} in the first n - 1 - k columns are equal to their maximum values n.

Example

For k = 1, 2, 3, we have

$$\sum_{b\in\mathscr{R}_{2,2}}t^{U_k(b)}=2+3t+2t^2.$$

Definition (Mills, Robbins and Rumsey)

Let b be an element of \mathcal{B}_n .

If b_{ij} is a part of b off the main diagonal, then by the flip of b_{ij}
we mean the operation of replacing b_{ij} by b'_{ij} where b_{ij} and b'_{ij}
are related by

$$b'_{ij} + b_{ij} = \min(b_{i-1,j}, b_{i,j-1}) + \max(b_{i,j+1}, b_{i+1,j}).$$

• Similarly, the *flip* of a part b_{ii} is the operation of replacing b_{ii} by b'_{ii} where

$$b'_{ii} + b_{ii} = b_{i-1,i} + b_{i,i+1}.$$

In the above expression we take $b_{0,j} = n$ for all j and $b_{i,n} = n - i$ for all i

Definition (Mills, Robbins and Rumsey)

Let b be an element of \mathcal{B}_n .

If b_{ij} is a part of b off the main diagonal, then by the flip of b_{ij}
we mean the operation of replacing b_{ij} by b'_{ij} where b_{ij} and b'_{ij}
are related by

$$b'_{ij} + b_{ij} = \min(b_{i-1,j}, b_{i,j-1}) + \max(b_{i,j+1}, b_{i+1,j}).$$

• Similarly, the *flip* of a part b_{ii} is the operation of replacing b_{ii} by b'_{ii} where

$$b'_{ii} + b_{ii} = b_{i-1,i} + b_{i,i+1}.$$

In the above expression we take $b_{0,j} = n$ for all j and $b_{i,n} = n - i$ for all i

Definition (Mills, Robbins and Rumsey)

Let b be an element of \mathcal{B}_n .

• If b_{ij} is a part of b off the main diagonal, then by the flip of b_{ij} we mean the operation of replacing b_{ij} by b'_{ij} where b_{ij} and b'_{ij} are related by

$$b'_{ij} + b_{ij} = \min(b_{i-1,j}, b_{i,j-1}) + \max(b_{i,j+1}, b_{i+1,j}).$$

 Similarly, the flip of a part b_{ii} is the operation of replacing b_{ii} by b'_{ii} where

$$b'_{ii} + b_{ii} = b_{i-1,i} + b_{i,i+1}.$$

In the above expression we take $b_{O,j} = n$ for all j and $b_{i,n} = n - i$ for all i.

Definition (Mills, Robbins and Rumsey)

Let b be an element of \mathcal{B}_n .

• If b_{ij} is a part of b off the main diagonal, then by the flip of b_{ij} we mean the operation of replacing b_{ij} by b'_{ij} where b_{ij} and b'_{ij} are related by

$$b'_{ij} + b_{ij} = \min(b_{i-1,j}, b_{i,j-1}) + \max(b_{i,j+1}, b_{i+1,j}).$$

 Similarly, the flip of a part b_{ii} is the operation of replacing b_{ii} by b'_{ii} where

$$b'_{ii} + b_{ii} = b_{i-1,i} + b_{i,i+1}.$$

In the above expression we take $b_{O,j} = n$ for all j and $b_{i,n} = n - i$ for all i.

Example

n = 7, Flip on the off-diagonal part $b_{2,4} = 5$

	7	7	7	7	7	7
6	7	7	7	7	7	7
5	5	5	6	6	6	
4	4	4	4	5		
3	4	4	4			
2	2	3				
1	2					

$$n = 7$$
, $5 + b'_{2,4} = \min(7,6) + \max(5,4)$

	7	7	7	7	7	7
6	7	7	7	7	7	7
5	5	5	6	6	6	
4	4	4	4	5		
3	4	4	4			
2	2	3				
1	2					

$$n = 7$$
, $5 + b'_{2,4} = 6 + 5$

7	7	7	7	7	7	
7	7	7	7	7	7	6
	6	6	6	5	5	5
		5	4	4	4	4
	•		4	4	4	3
				3	2	2
			,		2	1

$$n = 7$$
, Change $b_{2,4} = 5$ to $b'_{2,4} = 6$.

7	7	7	7	7	7	
7	7	7	7	7	7	6
	6	6	6	6	5	5
		5	4	4	4	4
			4	4	4	3
		,		3	2	2
					2	1

Example

n = 7, Flip on the diagonal part $b_{2,1} = 6$

	7	7	7	7	7	7
6	7	7	7	7	7	7
5	5	5	6	6	6	
4	4	4	4	5		
3	4	4	4			
2	2	3		,		
1	2					

$$n = 7$$
, $6 + b'_{2,1} = 7 + 6$

	7	7	7	7	7	7
6	7	7	7	7	7	7
5	5	5	6	6	6	
4	4	4	4	5		
3	4	4	4			
2	2	3				
1	2		,			

$$n = 7$$
, Change $b_{2,1} = 6$ to $b'_{2,1} = 7$.

7	7	7	7	7	7	
7	7	7	7	7	7	6
	7	6	6	5	5	5
		5	4	4	4	4
			4	4	4	3
		,		3	2	2
					2	1

Definition

For each k = 1, ..., n-1, we define an operation π_k from \mathcal{B}_n to itself. Let b be an element of \mathcal{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n-k$.

Definition

For each k = 1, ..., n-1, we define an operation π_k from \mathcal{B}_n to itself. Let b be an element of \mathcal{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n-k$.

Example n = 7, k = 1, Apply π_1 to the following $b \in \mathcal{B}_3$.

7	7	7	7	7	7
	7	6	6	5	5
•		5	4	4	4
			4	4	4
		,		3	2
			,		2

Definition

For each k = 1, ..., n-1, we define an operation π_k from \mathcal{B}_n to itself. Let b be an element of \mathcal{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n-k$.

Example n = 7, k = 1, Then we obtain the following $\pi_1(b) \in \mathcal{B}_3$.

7	7	7	7	7	7
	6	6	6	5	5
·		5	4	4	4
	·		4	4	4
		,		3	2
					1

Definition

For each k = 1, ..., n-1, we define an operation π_k from \mathcal{B}_n to itself. Let b be an element of \mathcal{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n-k$.

Example n = 7, k = 2, Apply π_2 to the following $b \in \mathcal{B}_3$.

7	7	7	7	7	7
	7	6	6	5	5
·		5	4	4	4
			4	4	4
	2				
			,		2

Definition

For each k = 1, ..., n-1, we define an operation π_k from \mathcal{B}_n to itself. Let b be an element of \mathcal{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n-k$.

Example n = 7, k = 2, Then we obtain the following $\pi_2(b) \in \mathcal{B}_3$.

7	7	7	7	7	7
	7	7	6	5	5
·		5	5	4	4
	·		4	4	4
	3				
					2

Definition

For each k = 1, ..., n-1, we define an operation π_k from \mathcal{B}_n to itself. Let b be an element of \mathcal{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n-k$.

Example n = 7, k = 3, Apply π_3 to the following $b \in \mathcal{B}_3$.

7	7	7	7	7	7
	7	6	6	5	5
·		5	4	4	4
	·		4	4	4
	2				
					2

Definition

For each k = 1, ..., n-1, we define an operation π_k from \mathcal{B}_n to itself. Let b be an element of \mathcal{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n-k$.

Example n = 7, k = 3, Then we obtain the following $\pi_3(b) \in \mathcal{B}_3$.

7	7	7	7	7	7
	7	6	5	5	5
·		5	4	4	4
	·		4	4	3
	2				
	2				

Definition

For each k = 1, ..., n-1, we define an operation π_k from \mathcal{B}_n to itself. Let b be an element of \mathcal{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n-k$.

Example n = 7, k = 4, Apply π_4 to the following $b \in \mathcal{B}_3$.

7	7	7	7	7	7
	7	6	6	5	5
		5	4	4	4
	·		4	4	4
	2				
					2

Definition

For each k = 1, ..., n-1, we define an operation π_k from \mathcal{B}_n to itself. Let b be an element of \mathcal{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n-k$.

Example n = 7, k = 4, Then we obtain the following $\pi_4(b) \in \mathcal{B}_3$.

7	7	7	7	7	7
	7	6	6	6	5
·		5	4	4	4
	·		4	4	4
	2				
					2

Definition

For each k = 1, ..., n-1, we define an operation π_k from \mathcal{B}_n to itself. Let b be an element of \mathcal{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n-k$.

Example n = 7, k = 5, Apply π_5 to the following $b \in \mathcal{B}_3$.

7	7	7	7	7	7
	7	6	6	5	5
·		5	4	4	4
	·		4	4	4
	2				
					2

Definition

For each k = 1, ..., n-1, we define an operation π_k from \mathcal{B}_n to itself. Let b be an element of \mathcal{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n-k$.

Example n = 7, k = 5, Then we obtain the following $\pi_5(b) \in \mathcal{B}_3$.

7	7	7	7	7	7
	7	6	6	5	5
·		5	4	4	4
	·		4	4	4
	2				
					2

Definition

For each k = 1, ..., n-1, we define an operation π_k from \mathcal{B}_n to itself. Let b be an element of \mathcal{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n-k$.

Example n = 7, k = 6, Apply π_6 to the following $b \in \mathcal{B}_3$.

7	7	7	7	7	7
	7	6	6	5	5
·		5	4	4	4
	·		4	4	4
	2				
					2

Definition

For each k = 1, ..., n-1, we define an operation π_k from \mathcal{B}_n to itself. Let b be an element of \mathcal{B}_n . Then $\pi_k(b)$ is the result of flipping all the $b_{i,i+k-1}$, $1 \le i \le n-k$.

Example n = 7, k = 6, Then we obtain the following $\pi_6(b) \in \mathcal{B}_6$.

7	7	7	7	7	6
	7	6	6	5	5
·		5	4	4	4
			4	4	4
		,		3	2
			,		2

Conjecture 4

Definition

Define the involution $\rho: \mathcal{B}_n \to \mathcal{B}_n$ by

$$\rho = \pi_2 \pi_4 \pi_6 \cdots$$

Conjecture (Conjecture 4 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions"

J. Combin. Theory Ser. A 42, (1986).)

Let $n \ge 2$ and r, $0 \le r \le n$ be integers. Then the number of elements of \mathcal{B}_n with p(b) = b and $U_1(b) = r$ is the same as the number of n by n alternating sign matrices a invariant under the half turn in their own planes (that is $a_{ij} = a_{n+1-i,n+1-i}$ for 1 < i, j < n) and satisfying $a_{1,r} = 1$.

Conjecture 4

Definition

Define the involution $\rho: \mathscr{B}_n \to \mathscr{B}_n$ by

$$\rho = \pi_2 \pi_4 \pi_6 \cdots$$

Conjecture (Conjecture 4 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

Let $n \ge 2$ and r, $0 \le r \le n$ be integers. Then the number of elements of \mathcal{B}_n with p(b) = b and $U_1(b) = r$ is the same as the number of n by n alternating sign matrices a invariant under the half turn in their own planes (that is $a_{ij} = a_{n+1-i,n+1-i}$ for 1 < i, j < n) and satisfying $a_{1,r} = 1$.

Conjecture 6

Definition

Define the involution $\gamma: \mathcal{B}_n \to \mathcal{B}_n$ by

$$\gamma = \pi_1 \pi_3 \pi_5 \cdots$$
.

Conjecture (Conjecture 6 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).

Let $n \ge 3$ an odd integer and i, $0 \le i \le n-1$ be an integer. Then the number of b in \mathcal{B}_n with $\gamma(b) = b$ and $U_2(b) = i$ is the same as the number of n by n alternating sign matrices with $a_{i1} = 1$ and which are invariant under the vertical flip (that is $a_{ij} = a_{i,n+1-j}$ for $1 \le i, j \le n$).

Conjecture 6

Definition

Define the involution $\gamma: \mathcal{B}_n \to \mathcal{B}_n$ by

$$\gamma = \pi_1 \pi_3 \pi_5 \cdots$$
.

Conjecture (Conjecture 6 of Mills, Robbins and Rumsey, "Self-complementary totally symmetric plane partitions",

J. Combin. Theory Ser. A 42, (1986).)

Let $n \ge 3$ an odd integer and i, $0 \le i \le n-1$ be an integer. Then the number of b in \mathcal{B}_n with $\gamma(b) = b$ and $U_2(b) = i$ is the same as the number of n by n alternating sign matrices with $a_{i1} = 1$ and which are invariant under the vertical flip (that is $a_{ij} = a_{i,n+1-j}$ for $1 \le i, j \le n$).

Definition

Let \mathscr{P}_n denote the set of (ordinary) plane partitions $c=(c_{ij})_{1\leq i,j}$ subject to the constraints that

- (C1) c is column-strict;
- (C2) jth column is less than or equal to n j.

We call an element of \mathscr{P}_n a restricted column-strict plane partition A part c_{ii} of c is said to be saturated if $c_{ii} = n - j$.

Definition

Let \mathscr{P}_n denote the set of (ordinary) plane partitions $c=(c_{ij})_{1\leq i,j}$ subject to the constraints that

(C1) c is column-strict;

C2) jth column is less than or equal to n - j.

We call an element of \mathscr{P}_n a restricted column-strict plane partition. A part c_{ij} of c is said to be saturated if $c_{ij} = n - j$.

Definition

Let \mathscr{P}_n denote the set of (ordinary) plane partitions $c=(c_{ij})_{1\leq i,j}$ subject to the constraints that

- (C1) c is column-strict;
- (C2) jth column is less than or equal to n j.

We call an element of \mathscr{S}_n a *restricted column-strict plane partition* A part c_{ij} of c is said to be saturated if $c_{ij} = n - j$.

Definition

Let \mathscr{P}_n denote the set of (ordinary) plane partitions $c=(c_{ij})_{1\leq i,j}$ subject to the constraints that

- (C1) c is column-strict;
- (C2) jth column is less than or equal to n j.

We call an element of \mathcal{P}_n a restricted column-strict plane partition.

A part c_{ij} of c is said to be saturated if $c_{ij} = n - j$.

Definition

Let \mathscr{P}_n denote the set of (ordinary) plane partitions $c=(c_{ij})_{1\leq i,j}$ subject to the constraints that

- (C1) c is column-strict;
- (C2) jth column is less than or equal to n j.

We call an element of \mathscr{P}_n a restricted column-strict plane partition. A part c_{ij} of c is said to be saturated if $c_{ij} = n - j$.

Definition

Let \mathscr{P}_n denote the set of (ordinary) plane partitions $c=(c_{ij})_{1\leq i,j}$ subject to the constraints that

- (C1) c is column-strict;
- (C2) jth column is less than or equal to n j.

We call an element of \mathscr{P}_n a restricted column-strict plane partition. A part c_{ij} of c is said to be saturated if $c_{ij} = n - j$.

Example

 \mathscr{P}_1 consists of the single PP \emptyset .

Definition

Let \mathscr{P}_n denote the set of (ordinary) plane partitions $c=(c_{ij})_{1\leq i,j}$ subject to the constraints that

- (C1) c is column-strict;
- (C2) jth column is less than or equal to n j.

We call an element of \mathcal{P}_n a restricted column-strict plane partition. A part c_{ij} of c is said to be saturated if $c_{ij} = n - j$.

Example

 \mathcal{P}_2 consists of the following 2 PPs:

Ø

Definition

Let \mathscr{P}_n denote the set of (ordinary) plane partitions $c=(c_{ij})_{1\leq i,j}$ subject to the constraints that

- (C1) c is column-strict;
- (C2) jth column is less than or equal to n j.

We call an element of \mathscr{P}_n a restricted column-strict plane partition. A part c_{ij} of c is said to be saturated if $c_{ij} = n - j$.

Example

 \mathcal{P}_2 consists of the following 2 PPs:

Ø

Definition

Let \mathscr{P}_n denote the set of (ordinary) plane partitions $c=(c_{ij})_{1\leq i,j}$ subject to the constraints that

- (C1) c is column-strict;
- (C2) jth column is less than or equal to n j.

We call an element of \mathcal{P}_n a restricted column-strict plane partition. A part c_{ij} of c is said to be saturated if $c_{ij} = n - j$.

Example

 \mathcal{P}_3 consists of the followng 7 PPs

Ø

1 1

2 1

Definition

Let \mathscr{P}_n denote the set of (ordinary) plane partitions $c=(c_{ij})_{1\leq i,j}$ subject to the constraints that

- (C1) c is column-strict;
- (C2) jth column is less than or equal to n j.

We call an element of \mathcal{P}_n a restricted column-strict plane partition. A part c_{ii} of c is said to be saturated if $c_{ii} = n - j$.

Example

 \mathcal{P}_3 consists of the following 7 PPs

Ø

1 1

2 1

Theorem

Let *n* be a positive integer.

Then there is a bijection from \mathcal{S}_n to \mathcal{P}_n .

Theorem

Let *n* be a positive integer.

Then there is a bijection from \mathcal{S}_n to \mathcal{P}_n .

Example

n = 3

Theorem

Let *n* be a positive integer.

Theorem

Let *n* be a positive integer.

Then there is a bijection from \mathcal{S}_n to \mathcal{P}_n .

Theorem

Let *n* be a positive integer.

Then there is a bijection from \mathcal{S}_n to \mathcal{P}_n .

Composition of the bijectons

Corollary

Let *n* be a positive integer.

Then there is a bijection φ_n from \mathscr{B}_n to \mathscr{P}_n .

Composition of the bijectons

Corollary

Let *n* be a positive integer.

Then there is a bijection φ_n from \mathscr{B}_n to \mathscr{P}_n .

Example

 $b \in \mathscr{B}_3$

The case of n=3

$$c \in \mathscr{P}_3$$

Definition

Let
$$c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$$
 and $k = 1, ..., n$,

Let $U_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

Definition

Let $c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$ and k = 1, ..., n,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

Definition

Let $c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$ and k = 1, ..., n,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

Definition

Let $c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$ and k = 1, ..., n,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

Example

n = 7, $c \in \mathcal{P}_3$, Saturated parts

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

Definition

Let $c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$ and k = 1, ..., n,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

$$n = 7, c \in \mathcal{P}_3, k = 1, \overline{U}_1(c) = 3$$

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

Definition

Let $c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$ and k = 1, ..., n,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

$$n = 7, c \in \mathcal{P}_3, k = 2, \overline{U}_2(c) = 5$$

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

Definition

Let $c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$ and k = 1, ..., n,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

$$n = 7, c \in \mathscr{P}_3, k = 3, \overline{U}_3(c) = 3$$

5	5	4	2	2
4	4	3	1	
3	2	2		_
2	1			
1				

Definition

Let $c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$ and k = 1, ..., n,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

$$n = 7, c \in \mathscr{P}_3, k = 4, \overline{U}_4(c) = 4$$

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

Definition

Let $c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$ and k = 1, ..., n,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

$$n = 7, c \in \mathscr{P}_3, k = 5, \overline{U}_5(c) = 4$$

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

Definition

Let $c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$ and k = 1, ..., n,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

$$n = 7, c \in \mathscr{P}_3, k = 6, \overline{U}_6(c) = 3$$

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

Definition

Let $c = (c_{ij})_{1 \le i,j} \in \mathscr{P}_n$ and k = 1, ..., n,

Let $\overline{U}_k(c)$ denote the number parts equal to k plus the number of saturated parts less than k.

$$n = 7, c \in \mathcal{P}_3, k = 7, \overline{U}_7(c) = 3$$

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1			
1				

Relation between $U_k(b)$ and $\overline{U}_k(c)$

Theorem

For $n \ge 1$ and k = 1, ..., n, assume that the bijection φ_n maps $b \in \mathcal{B}_n$ to $c = \varphi(b) \in \mathcal{P}_n$. Then

$$\overline{U}_k(c)=n-1-U_k(b).$$

Relation between $U_k(b)$ and $\overline{U}_k(c)$

Theorem

For $n \ge 1$ and k = 1, ..., n, assume that the bijection φ_n maps $b \in \mathcal{B}_n$ to $c = \varphi(b) \in \mathcal{P}_n$. Then

$$\overline{U}_k(c) = n-1-U_k(b).$$

$$n=3, b\in \mathscr{B}_3$$

	3 3	3 3	3 3	3 2	3 2	22	2 2
b	3	2	1	2	1	2	1
$U_1(b)$	2	1	0	2	1	1	0
$U_2(b)$	2	2	1	1	0	1	0
$U_3(b)$	2	2	1	1	0	1	0

Relation between $U_k(b)$ and $\overline{U}_k(c)$

Theorem

For $n \ge 1$ and k = 1, ..., n, assume that the bijection φ_n maps $b \in \mathcal{B}_n$ to $c = \varphi(b) \in \mathcal{P}_n$. Then

$$\overline{U}_k(c) = n-1-U_k(b).$$

$$n=3, c\in \mathscr{P}_3$$

	Ø	1	1 1	2	2 1	2	2 1
С						1	1
$\overline{U}_1(c)$	0	1	2	0	1	1	2
$\overline{U}_2(c)$	0	0	1	1	2	1	2
$\overline{U}_3(c)$	0	0	1	1	2	1	2

Theorem

Let $V = \{(x, y) \in \mathbb{N}^2 : 0 \le y \le x\}$ be the vertex set, and direct an

Theorem

Let $V = \{(x, y) \in \mathbb{N}^2 : 0 \le y \le x\}$ be the vertex set, and direct an edge from u to v whenever v - u = (1, -1) or (0, -1).

Theorem

Let $V = \{(x,y) \in \mathbb{N}^2 : 0 \le y \le x\}$ be the vertex set, and direct an edge from u to v whenever v - u = (1,-1) or (0,-1). Let $u_j = (n-j,n-j)$ and $v_j = (\lambda_j + n-j,0)$ for $j = 1,\ldots,n$, and let $u = (u_1,\ldots,u_n)$ and $v = (v_1,\ldots,v_n)$. We claim that the $c \in \mathcal{P}_n$ of shape λ' can be identified with n-tuples of nonintersecting D-paths in $\mathcal{P}(u,v)$.

Theorem

Let $V = \{(x,y) \in \mathbb{N}^2 : 0 \le y \le x\}$ be the vertex set, and direct an edge from u to v whenever v - u = (1,-1) or (0,-1). Let $u_j = (n-j,n-j)$ and $v_j = (\lambda_j + n-j,0)$ for $j = 1,\ldots,n$, and let $u = (u_1,\ldots,u_n)$ and $v = (v_1,\ldots,v_n)$. We claim that the $c \in \mathcal{P}_n$ of shape λ' can be identified with n-tuples of nonintersecting D-paths in $\mathcal{P}(u,v)$.

Theorem

Let $V = \{(x,y) \in \mathbb{N}^2 : 0 \le y \le x\}$ be the vertex set, and direct an edge from u to v whenever v - u = (1,-1) or (0,-1). Let $u_j = (n-j,n-j)$ and $v_j = (\lambda_j + n-j,0)$ for $j = 1,\ldots,n$, and let $u = (u_1,\ldots,u_n)$ and $v = (v_1,\ldots,v_n)$. We claim that the $c \in \mathscr{P}_n$ of shape λ' can be identified with n-tuples of nonintersecting D-paths in $\mathscr{P}(u,v)$.

Example of lattice paths

Example $n = 7, c \in \mathcal{P}_7$: RCSPP

Example of lattice paths

Weight of each edge

Definition

Let $u \rightarrow v$ be an edge in from u to v.

Weight of each edge

Definition

Let $u \rightarrow v$ be an edge in from u to v.

We assign the weight

$$\begin{cases} \prod_{k=j}^{n} t_k \cdot x_j & \text{if } j = i, \\ t_j x_j & \text{if } j < i, \end{cases}$$

to the horizontal edge from u = (i, j) to v = (i + 1, j - 1).

② We assign the weight 1 to the vertical edge from u = (i, j) to v = (i, j - 1).

Weight of each edge

Definition

Let $u \rightarrow v$ be an edge in from u to v.

We assign the weight

$$\begin{cases} \prod_{k=j}^{n} t_k \cdot x_j & \text{if } j = i, \\ t_j x_j & \text{if } j < i, \end{cases}$$

to the horizontal edge from u = (i, j) to v = (i + 1, j - 1).

We assign the weight 1 to the vertical edge from u = (i, j) to v = (i, j - 1).

Theorem

Let *n* be a positive integer. Let λ be a partition such that $\ell(\lambda) \leq n$.

$$\sum_{c\in\mathscr{P}_n\atop \mathrm{sh}c=\lambda'}\boldsymbol{t}^{\overline{U}(c)}\boldsymbol{x}^c=\det\Bigl(e_{\lambda_j-j+i}^{(n-i)}\bigl(t_1x_1,\ldots,t_{n-i-1}x_{n-i-1},T_{n-i}x_{n-i}\bigr)\Bigr)_{1\leq i,j\leq n},$$

$$x_1 = t_1^2 t_2 t_3 x_4^2$$

$$t_3 X_1 X$$

$$t_1 t_2 t_3 x_1 x_2$$

$$t_2t_3x_1x_2$$

$$t_1^2 t_2^2 t_3^2 x_1^2 x_2^2$$

$$t_1 x_1 = t_1^2$$

$$t_1 t_2 t_3 x_1 x_2$$

$$t_2t_3x_1x_2$$

$$t_1^2 t_2^2 t_3^2 x_1^2 x$$

Theorem

Let *n* be a positive integer. Let λ be a partition such that $\ell(\lambda) \leq n$.

$$\sum_{c\in\mathscr{P}_n\atop \mathrm{sh}c=\lambda'}\boldsymbol{t}^{\overline{U}(c)}\boldsymbol{x}^c=\det\Bigl(e_{\lambda_j-j+i}^{(n-i)}\bigl(t_1x_1,\ldots,t_{n-i-1}x_{n-i-1},T_{n-i}x_{n-i}\bigr)\Bigr)_{1\leq i,j\leq n},$$

$$t_1 x_1 = t_1^2 t_2 t_3 x$$

$$t_1 t_2 t_3 X_1 X_2$$

$$t_2t_3x_1x_2$$

$$t_1^2 t_2^2 t_3^2 x_1^2 x_2^2$$

$$t_1 x_1 = t_1^2 t_1$$

$$t_2 t_3 x_1 x_1$$

$$t_1 t_2 t_3 x_1 x_2$$

$$t_2t_3x_1x_2$$

$$t_1^2 t_2^2 t_3^2 x_1^2 x$$

Theorem

Let *n* be a positive integer. Let λ be a partition such that $\ell(\lambda) \leq n$. Then the generating function of all plane partitions $c \in \mathcal{P}_n$ of shape λ' with the weight $\boldsymbol{t}^{\overline{U}(c)}\boldsymbol{x}^c$ is given by

$$\sum_{\substack{c \in \mathscr{P}_n \\ \operatorname{shc} = \lambda'}} \boldsymbol{t}^{\overline{U}(c)} \boldsymbol{x}^c = \det \left(\mathrm{e}_{\lambda_j - j + i}^{(n-i)} (t_1 x_1, \ldots, t_{n-i-1} x_{n-i-1}, T_{n-i} x_{n-i}) \right)_{1 \leq i, j \leq n},$$

where
$$T_i = \prod_{k=i}^n t_k$$
.

$$t_1 X_1 = t$$

$$t_2 t_3 x_1 x_2$$

$$t_1^2 t_2^2 t_3^2 x_1^2 x_2^2$$

$$t_1 x_1$$

4 D > 4 B > 4 E > 4 E > 900

Theorem

Let *n* be a positive integer. Let λ be a partition such that $\ell(\lambda) \leq n$. Then the generating function of all plane partitions $c \in \mathcal{P}_n$ of shape λ' with the weight $\boldsymbol{t}^{\overline{U}(c)}\boldsymbol{x}^c$ is given by

$$\sum_{\substack{c \in \mathscr{P}_n \\ \operatorname{shc} = \lambda'}} \boldsymbol{t}^{\overline{U}(c)} \boldsymbol{x}^c = \det \left(e_{\lambda_j - j + i}^{(n-i)} (t_1 x_1, \dots, t_{n-i-1} x_{n-i-1}, T_{n-i} x_{n-i}) \right)_{1 \leq i, j \leq n},$$

where $T_i = \prod_{k=1}^n t_k$.

1

1

 $t_1 x_1 t_1^2 t_2 t_3 x_1^2$

 $t_2 t_3 x_1 x_2$ $t_1 t_2 t_3 x_1 x_2$ $t_1 t_2 t_3 x_1 x_2$ $t_1^2 t_2^2 t_3^2 x_1^2 x_2$

Definition

For positive integers n and N, let $B_n^N(t) = (b_{ij}(t))_{0 \le i \le n-1, 0 \le j \le n+N-1}$ be the $n \times (n+N)$ matrix whose (i,j)th entry is

$$b_{ij}(t) = \begin{cases} \delta_{0,j} & \text{if } i = 0, \\ \binom{i-1}{j-i} + \binom{i-1}{j-i-1} t & \text{otherwise.} \end{cases}$$

Definition

For positive integers n and N, let $B_n^N(t) = (b_{ij}(t))_{0 \le i \le n-1, 0 \le j \le n+N-1}$ be the $n \times (n+N)$ matrix whose (i,j)th entry is

$$b_{ij}(t) = \begin{cases} \delta_{0,j} & \text{if } i = 0, \\ \binom{i-1}{j-i} + \binom{i-1}{j-i-1} t & \text{otherwise.} \end{cases}$$

Example

If n = 3 and N = 2, then

$$B_3^2(t) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & t & 0 & 0 \\ 0 & 0 & 1 & 1 + t & t \end{pmatrix}$$

Definition

For positive integers n, let $J_n = (\delta_{i,n+1-j})_{1 \le i,j \le n}$ be the $n \times n$ anti-diagonal matrix.

Definition

For positive integers n, let $J_n = (\delta_{i,n+1-j})_{1 \le i,j \le n}$ be the $n \times n$ anti-diagonal matrix.

Example

If n = 4, then

$$J_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Definition

For positive integers n, let $\overline{S}_n = (\overline{s}_{i,j})_{1 \le i,j \le n}$ be the $n \times n$ skew-symmetric matrix whose (i,j)th entry is

$$\overline{s}_{i,j} = \begin{cases} (-1)^{j-i-1} & \text{if } i < j, \\ 0 & \text{if } i = j, \\ (-1)^{j-i} & \text{if } i > j. \end{cases}$$

Definition

For positive integers n, let $\overline{S}_n = (\overline{s}_{i,j})_{1 \le i,j \le n}$ be the $n \times n$ skew-symmetric matrix whose (i,j)th entry is

$$\overline{s}_{i,j} = \begin{cases} (-1)^{j-i-1} & \text{if } i < j, \\ 0 & \text{if } i = j, \\ (-1)^{j-i} & \text{if } i > j. \end{cases}$$

Example

If n = 4, then

$$\overline{S}_4 = \begin{pmatrix} 0 & 1 & -1 & 1 \\ -1 & 0 & 1 & -1 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & -1 & 0 \end{pmatrix}$$

Theorem

Let n be a positive integer and let N be an even integer such that $N \ge n-1$. If k is an integer such that $1 \le k \le n$, then

$$\sum_{c \in \mathscr{P}_n} t^{\overline{U}_k(c)} = \operatorname{Pf} \begin{pmatrix} O_n & J_n B_n^N(t) \\ -{}^t B_n^N(t) J_n & \overline{S}_{n+N} \end{pmatrix}.$$

Example

If
$$n = 3$$
 and $N = 2$ then

A constant term identity for the refined TSSCPP conj.

Theorem

Let n be a positive integer. If k is an integer such that $1 \le k \le n$, then $\sum_{c \in \mathcal{P}_n} t^{\overline{U}_k(c)}$ is equal to

$$CT_{\mathbf{x}} \prod_{1 \leq i < j \leq n} \left(1 - \frac{x_i}{x_j} \right) \prod_{i=2}^{n} \left(1 + \frac{1}{x_i} \right)^{i-2} \left(1 + \frac{t}{x_i} \right) \prod_{i=1}^{n} \frac{1}{1 - x_i} \prod_{1 \leq i < j \leq n} \frac{1}{1 - x_i x_j}.$$

Example

If n = 3, then the constant term of

$$\left(1 - \frac{x_1}{x_2}\right)\left(1 - \frac{x_1}{x_3}\right)\left(1 - \frac{x_2}{x_3}\right)\left(1 + \frac{t}{x_2}\right)\left(1 + \frac{1}{x_3}\right)\left(1 + \frac{t}{x_3}\right)$$

$$\times \frac{1}{(1 - x_1)(1 - x_2)(1 - x_3)(1 - x_1x_2)(1 - x_1x_3)(1 - x_2x_3)}$$

is equal to $2 + 3t + 2t^2$.

A constant term identity for the refined TSSCPP conj.

Theorem

Let n be a positive integer. If k is an integer such that $1 \le k \le n$, then $\sum_{c \in \mathcal{P}_n} t^{\overline{U}_k(c)}$ is equal to

$$CT_{\mathbf{x}} \prod_{1 \leq i < j \leq n} \left(1 - \frac{x_i}{x_j} \right) \prod_{i=2}^{n} \left(1 + \frac{1}{x_i} \right)^{i-2} \left(1 + \frac{t}{x_i} \right) \prod_{i=1}^{n} \frac{1}{1 - x_i} \prod_{1 \leq i < j \leq n} \frac{1}{1 - x_i x_j}.$$

Example

If n = 3, then the constant term of

$$\left(1 - \frac{x_1}{x_2}\right)\left(1 - \frac{x_1}{x_3}\right)\left(1 - \frac{x_2}{x_3}\right)\left(1 + \frac{t}{x_2}\right)\left(1 + \frac{1}{x_3}\right)\left(1 + \frac{t}{x_3}\right) \\
\times \frac{1}{(1 - x_1)(1 - x_2)(1 - x_3)(1 - x_1x_2)(1 - x_1x_3)(1 - x_2x_3)}$$

is equal to $2 + 3t + 2t^2$.

Definition

For positive integers *n* and *N*, let

$$B_n^N(t,u)=(b_{ij}(t,u))_{0\leq i\leq n-1,\ 0\leq j\leq n+N-1}$$
 be the $n\times (n+N)$ matrix whose (i,j) th entry is

$$b_{ij}(t,u) = \begin{cases} \delta_{0,j} & \text{if } i = 0, \\ \delta_{0,j-i} + \delta_{0,j-i-1}tu & \text{if } i = 1, \\ \binom{i-2}{j-i} + \binom{i-2}{j-i-1}(t+u) + \binom{i-2}{j-i-2}tu & \text{otherwise.} \end{cases}$$

Example

If n = 3 and N = 2, then

$$B_3^2(t) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & tu & 0 & 0 \\ 0 & 0 & 1 & t+u & tu \end{pmatrix}$$

Theorem

Let n be a positive integer and let N be an even integer such that $N \ge n - 1$. If k is an integer such that $2 \le k \le n$, then

$$\sum_{c \in \mathscr{P}_n} t^{\overline{U}_1(c)} u^{\overline{U}_k(c)} = \operatorname{Pf} \begin{pmatrix} O_n & J_n B_n^N(t, u) \\ -{}^t B_n^N(t, u) J_n & \overline{S}_{n+N} \end{pmatrix}.$$

Example

If
$$n = 3$$
 and $N = 2$ then

A constant term identity for the doubly refined TSSCPP enumeration

Definition

Let $h_i(t, u; x)$ denote the function defined by

$$h_i(t, u; x) = \begin{cases} 1 & \text{if } i = 0, \\ 1 + tux & \text{if } i = 1, \\ (1 + x)^{i-2}(1 + tx)(1 + ux) & \text{if } i \ge 2. \end{cases}$$

Theorem

Let *n* be a positive integer. If *k* is an integer such that $2 \le k \le n$, then $\sum_{c \in \mathcal{D}_k} t^{\overline{U}_1(c)} u^{\overline{U}_k(c)}$ is equal to

$$\operatorname{CT}_{\mathbf{x}} \prod_{1 \leq i < j \leq n} \left(1 - \frac{x_i}{x_j} \right) \prod_{i=1}^n h_{i-1} \left(t, u; x_i^{-1} \right) \prod_{i=1}^n \frac{1}{1 - x_i} \prod_{1 \leq i < j \leq n} \frac{1}{1 - x_i x_j}.$$

A constant term identity for the doubly refined TSSCPP enumeration

Definition

Let $h_i(t, u; x)$ denote the function defined by

$$h_i(t, u; x) = \begin{cases} 1 & \text{if } i = 0, \\ 1 + tux & \text{if } i = 1, \\ (1 + x)^{i-2}(1 + tx)(1 + ux) & \text{if } i \ge 2. \end{cases}$$

Theorem

Let n be a positive integer. If k is an integer such that $2 \le k \le n$, then $\sum_{c \in \mathscr{P}_n} t^{\overline{U}_1(c)} u^{\overline{U}_k(c)}$ is equal to

$$\mathrm{CT}_{\boldsymbol{x}} \prod_{1 \leq i < j \leq n} \left(1 - \frac{x_i}{x_j} \right) \prod_{i=1}^n h_{i-1} \left(t, u; x_i^{-1} \right) \prod_{i=1}^n \frac{1}{1 - x_i} \prod_{1 \leq i < j \leq n} \frac{1}{1 - x_i x_j}.$$

A constant term identity for the doubly refined TSSCPP enumeration

Example

If n = 3, then the constant term of

$$\left(1 - \frac{x_1}{x_2}\right) \left(1 - \frac{x_1}{x_3}\right) \left(1 - \frac{x_2}{x_3}\right) \left(1 + \frac{tu}{x_2}\right) \left(1 + \frac{t}{x_3}\right) \left(1 + \frac{u}{x_3}\right)$$

$$\times \frac{1}{(1 - x_1)(1 - x_2)(1 - x_3)(1 - x_1x_2)(1 - x_1x_3)(1 - x_2x_3)}$$

is equal to $1 + t + tu + t^2u + tu^2 + ut^2u^2$.

Definition

Let \mathscr{P}_{nk} denote the set of RCSPPs $c \in \mathscr{P}_n$ such that

c has at most k rows.

Example

Definition

Let \mathscr{P}_{nk} denote the set of RCSPPs $c \in \mathscr{P}_n$ such that

• c has at most k rows.

Example

Definition

Let \mathscr{P}_{nk} denote the set of RCSPPs $c \in \mathscr{P}_n$ such that

• c has at most k rows.

Example

If n = 3 and k = 0, $\mathcal{P}_{3,0}$ consists of the single PP:

Ø.

Definition

Let \mathscr{P}_{nk} denote the set of RCSPPs $c \in \mathscr{P}_n$ such that

c has at most k rows.

Example

If n = 3 and k = 1, $\mathcal{P}_{3,1}$ consists of the following 5 PPs:

Ø

1

1 1

2

2 1

Definition

Let \mathscr{P}_{nk} denote the set of RCSPPs $c \in \mathscr{P}_n$ such that

c has at most k rows.

Example

If n = 3 and k = 2, $\mathcal{B}_{3,2}$ consists of the following 7 PPs

1 1 1 2 2 1

A constant term identity

Theorem

Let *n* be a positive integer. The restriction of φ_n to \mathcal{B}_{nk} gives a bijection from \mathcal{B}_{nk} to \mathcal{P}_{nk} .

Theorem

Let n be a positive integer. If $0 \le k \le n-1$ and $1 \le r \le n$, then $\sum_{c \in \mathscr{P}_{nk}} t^{\overline{U}_r(c)}$ is equal to

$$CT_{\mathbf{x}} \prod_{1 \le i < j \le n} \left(1 - \frac{x_i}{x_j} \right) \prod_{i=2}^{n} \left(1 + \frac{1}{x_i} \right)^{i-2} \left(1 + \frac{t}{x_i} \right)$$

$$\times \frac{\det(x_i^{j-1} - x_i^{k+2n-j})_{1 \le i, j \le n}}{\prod_{i=1}^{n} (1 - x_i) \prod_{1 \le i \le n} (x_i - x_i) (1 - x_i x_j)}$$

A constant term identity

Theorem

Let *n* be a positive integer. The restriction of φ_n to \mathcal{B}_{nk} gives a bijection from \mathcal{B}_{nk} to \mathcal{P}_{nk} .

Theorem

Let n be a positive integer. If $0 \le k \le n-1$ and $1 \le r \le n$, then $\sum_{c \in \mathscr{P}_{nk}} t^{\overline{U}_r(c)}$ is equal to

$$CT_{\mathbf{x}} \prod_{1 \le i < j \le n} \left(1 - \frac{x_i}{x_j} \right) \prod_{i=2}^{n} \left(1 + \frac{1}{x_i} \right)^{i-2} \left(1 + \frac{t}{x_i} \right) \\
\times \frac{\det(x_i^{j-1} - x_i^{k+2n-j})_{1 \le i, j \le n}}{\prod_{i=1}^{n} (1 - x_i) \prod_{1 \le i < j \le n} (x_j - x_i)(1 - x_i x_j)}.$$

Example of n = 3

Example

If n = 3 and k = 0, then the constant term of

$$\begin{split} &\left(1-\frac{x_{1}}{x_{2}}\right)\left(1-\frac{x_{1}}{x_{3}}\right)\left(1-\frac{x_{2}}{x_{3}}\right)\left(1+\frac{t}{x_{2}}\right)\left(1+\frac{1}{x_{3}}\right)\left(1+\frac{t}{x_{3}}\right)\\ &\times\frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)}\\ &\det\begin{pmatrix}1-x_{1}^{5} & x_{1}-x_{1}^{4} & x_{1}^{2}-x_{1}^{3}\\ 1-x_{2}^{5} & x_{2}-x_{1}^{4} & x_{2}^{2}-x_{2}^{3}\\ 1-x_{3}^{5} & x_{3}-x_{1}^{4} & x_{3}^{2}-x_{3}^{3}\end{pmatrix}\\ &\times\frac{1}{\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(1-x_{1}x_{2}\right)\left(1-x_{1}x_{3}\right)\left(1-x_{2}x_{3}\right)}{\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(1-x_{1}x_{2}\right)\left(1-x_{1}x_{3}\right)\left(1-x_{2}x_{3}\right)} \end{split}$$

is equal to 1.

Example of n = 3

Example

If n = 3 and k = 1, then the constant term of

$$\begin{split} &\left(1-\frac{x_{1}}{x_{2}}\right)\!\left(1-\frac{x_{1}}{x_{3}}\right)\!\left(1-\frac{x_{2}}{x_{3}}\right)\!\left(1+\frac{t}{x_{2}}\right)\!\left(1+\frac{1}{x_{3}}\right)\!\left(1+\frac{t}{x_{3}}\right) \\ &\times \frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)} \\ &\qquad \qquad \det \begin{pmatrix} 1-x_{1}^{6} & x_{1}-x_{1}^{5} & x_{1}^{2}-x_{1}^{5} \\ 1-x_{2}^{6} & x_{2}-x_{1}^{5} & x_{2}^{2}-x_{2}^{5} \\ 1-x_{3}^{6} & x_{3}-x_{1}^{5} & x_{3}^{2}-x_{3}^{5} \end{pmatrix} \\ &\times \frac{1}{\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(1-x_{1}x_{2}\right)\left(1-x_{1}x_{3}\right)\left(1-x_{2}x_{3}\right)} \end{split}$$

is equal to $2 + 2t + t^2$.

Example of n = 3

Example

If n = 3 and k = 2, then the constant term of

$$\begin{split} &\left(1-\frac{x_{1}}{x_{2}}\right)\left(1-\frac{x_{1}}{x_{3}}\right)\left(1-\frac{x_{2}}{x_{3}}\right)\left(1+\frac{t}{x_{2}}\right)\left(1+\frac{1}{x_{3}}\right)\left(1+\frac{t}{x_{3}}\right)\\ &\times\frac{1}{\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right)}\\ &\qquad \qquad \det\begin{pmatrix} 1-x_{1}^{7} & x_{1}-x_{1}^{6} & x_{1}^{2}-x_{1}^{5}\\ 1-x_{2}^{7} & x_{2}-x_{1}^{6} & x_{2}^{2}-x_{2}^{5}\\ 1-x_{3}^{7} & x_{3}-x_{1}^{6} & x_{3}^{2}-x_{3}^{5} \end{pmatrix}\\ &\times\frac{1}{\left(x_{2}-x_{1}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(1-x_{1}x_{2}\right)\left(1-x_{1}x_{3}\right)\left(1-x_{2}x_{3}\right)} \end{split}$$

is equal to $2 + 3t + 2t^2$.

The Bender-Knuth involution s_k on tableaux which swaps the number of k's and (k-1)'s, for each i.

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\widetilde{\pi}_k$ on \mathscr{P}_n which swaps the number of k's and (k-1)'s while we ignore saturated (k-1).

Example

$$n=7, c\in \mathscr{P}_3$$

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\widetilde{\pi}_k$ on \mathscr{P}_n which swaps the number of k's and (k-1)'s while we ignore saturated (k-1).

Example

n=7 Apply $\widetilde{\pi}_2$ to the following $c\in \mathscr{P}_3$.

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1		•	
1				

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\widetilde{\pi}_k$ on \mathscr{P}_n which swaps the number of k's and (k-1)'s while we ignore saturated (k-1).

Example

n=7 Apply $\widetilde{\pi}_2$ to the following $c\in \mathscr{P}_3$.

5	5	4	2	2
4	4	3	1	
3	2	2		-
2	1		•	
1				

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\widetilde{\pi}_k$ on \mathscr{P}_n which swaps the number of k's and (k-1)'s while we ignore saturated (k-1).

Example

n=7 Then we obtain the following $\widetilde{\pi}_2(c) \in \mathscr{P}_3$.

5	5	4	2	1
4	4	3	1	
3	2	1		
2	1		•	
1				

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\widetilde{\pi}_k$ on \mathscr{P}_n which swaps the number of k's and (k-1)'s while we ignore saturated (k-1).

Example

n = 7 Apply $\widetilde{\pi}_3$ to the following $c \in \mathscr{P}_3$.

5	5	4	2	2
4	4	3	1	
3	2	2		•
2	1			
1				

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\widetilde{\pi}_k$ on \mathscr{P}_n which swaps the number of k's and (k-1)'s while we ignore saturated (k-1).

Example

n=7 Then we obtain the following $\widetilde{\pi}_3(c) \in \mathscr{P}_3$.

5	5	4	3	2
4	4	3	1	
3	3	2		•
2	1			
1				

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\widetilde{\pi}_k$ on \mathscr{P}_n which swaps the number of k's and (k-1)'s while we ignore saturated (k-1).

Example

n = 7 Apply $\widetilde{\pi}_4$ to the following $c \in \mathscr{P}_3$.

			_	_
5	5	4	2	2
4	4	3	1	
3	2	2		•
2	1			
1				

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\widetilde{\pi}_k$ on \mathscr{P}_n which swaps the number of k's and (k-1)'s while we ignore saturated (k-1).

Example

n=7 Then we obtain the following $\widetilde{\pi}_4(c) \in \mathscr{P}_3$.

5	5	4	2	2
4	3	3	1	
3	2	2		•
2	1			
1				

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\widetilde{\pi}_k$ on \mathscr{P}_n which swaps the number of k's and (k-1)'s while we ignore saturated (k-1).

Example

n = 7 Apply $\widetilde{\pi}_5$ to the following $c \in \mathscr{P}_3$.

5	5	4	2	2
4	4	3	1	
3	2	2		•
2	1			
1				

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\widetilde{\pi}_k$ on \mathscr{P}_n which swaps the number of k's and (k-1)'s while we ignore saturated (k-1).

Example

n=7 Then we obtain the following $\widetilde{\pi}_5(c) \in \mathscr{P}_3$.

5	5	4	2	2
4	4	3	1	
3	2	2		•
2	1			
1				

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\widetilde{\pi}_k$ on \mathscr{P}_n which swaps the number of k's and (k-1)'s while we ignore saturated (k-1).

Example

n = 7 Apply $\widetilde{\pi}_6$ to the following $c \in \mathscr{P}_3$.

5	5	4	2	2
4	4	3	1	
3	2	2		•
2	1		_	
1				

Definition

If $k \ge 2$, we define a Bender-Knuth-type involution $\widetilde{\pi}_k$ on \mathscr{P}_n which swaps the number of k's and (k-1)'s while we ignore saturated (k-1).

Example

n=7 Then we obtain the following $\widetilde{\pi}_6(c) \in \mathscr{P}_3$.

6	5	4	2	2
4	4	3	1	
3	2	2		•
2	1			
1				

Definition

Let $c \in \mathscr{P}_n$. Set λ_i to be the number of parts ≥ 2 in the ith row of c. We set $\lambda_0 = n-1$ by convention. Let k_i denote the number of 1's in the ith row. Let $\widetilde{\pi}_1$ be the involution on \mathscr{P}_n that changes the number of 1's in the ith row from k_i to $\lambda_{i-1} - \lambda_i - k_i$.

Example

n = 7 Apply $\widetilde{\pi}_1$ to the following $c \in \mathcal{P}_3$.

Definition

Let $c \in \mathscr{P}_n$. Set λ_i to be the number of parts ≥ 2 in the ith row of c. We set $\lambda_0 = n-1$ by convention. Let k_i denote the number of 1's in the ith row. Let $\overline{\pi}_1$ be the involution on \mathscr{P}_n that changes the number of 1's in the ith row from k_i to $\lambda_{i-1} - \lambda_i - k_i$.

Example

n = 7 Apply $\widetilde{\pi}_1$ to the following $c \in \mathscr{P}_3$.

5	5	4	2	2
4	4	3	1	
3	2	2		
2	1		•	
1				

Definition

Let $c \in \mathscr{P}_n$. Set λ_i to be the number of parts ≥ 2 in the ith row of c. We set $\lambda_0 = n-1$ by convention. Let k_i denote the number of 1's in the ith row. Let $\widetilde{\pi}_1$ be the involution on \mathscr{P}_n that changes the number of 1's in the ith row from k_i to $\lambda_{i-1} - \lambda_i - k_i$.

Example

n=7 Then we obtain the following $\widetilde{\pi}_1(c) \in \mathscr{P}_3$.

5	5	4	2	2	1
4	4	3	1		
3	2	2			
2	1				

Flips in words of RCSPP

Theorem

Let *n* be a positive integer and let k = 1, ..., n - 1. If $b \in \mathcal{B}_n$, then we have

$$\widetilde{\pi}_{k}\left(\varphi_{n}\left(b\right)\right)=\varphi_{n}\left(\pi_{k}\left(b\right)\right).$$

Definition

We define involutions on \mathcal{P}_n

$$\widetilde{\rho} = \widetilde{\pi}_2 \widetilde{\pi}_4 \widetilde{\pi}_6 \cdots ,$$

$$\widetilde{\gamma} = \widetilde{\pi}_1 \widetilde{\pi}_3 \widetilde{\pi}_5 \cdots ,$$

and we put $\mathscr{P}_n^{\widetilde{\rho}}$ (resp. $\mathscr{P}_n^{\widetilde{\gamma}}$) the set of elements \mathscr{P}_n invariant under $\widetilde{\rho}$ (resp. $\widetilde{\gamma}$).

Flips in words of RCSPP

Theorem

Let n be a positive integer and let k = 1, ..., n - 1. If $b \in \mathcal{B}_n$, then we have

$$\widetilde{\pi}_{k}\left(\varphi_{n}\left(b\right)\right)=\varphi_{n}\left(\pi_{k}\left(b\right)\right).$$

Definition

We define involutions on \mathcal{P}_n

$$\widetilde{\rho} = \widetilde{\pi}_2 \widetilde{\pi}_4 \widetilde{\pi}_6 \cdots,$$
 $\widetilde{\sigma} = \widetilde{\sigma}_2 \widetilde{\sigma}_4 \widetilde{\sigma}_6 \cdots,$

 $\widetilde{\gamma} = \widetilde{\pi}_1 \widetilde{\pi}_3 \widetilde{\pi}_5 \cdots,$

and we put $\mathscr{P}_n^{\widetilde{\rho}}$ (resp. $\mathscr{P}_n^{\widetilde{\gamma}}$) the set of elements \mathscr{P}_n invariant under $\widetilde{\rho}$ (resp. $\widetilde{\gamma}$).

Example
$$\mathscr{P}_{1}^{\widetilde{\rho}} = \{\emptyset\}$$

Example

$$\mathscr{P}_{2}^{\widetilde{
ho}}=\left\{ \emptyset,\boxed{1}
ight\}$$

Example

 $\mathscr{P}_{3}^{\widetilde{\rho}}$ is composed of the following 3 RCSPPs:

Ø

2

2 1

Example

 $\mathscr{P}_{5}^{\widetilde{\rho}}$ has 25 elements, and $\mathscr{P}_{6}^{\widetilde{\rho}}$ has 140 elements.

Proposition

If $c \in \mathscr{P}_n$ is invariant under $\widetilde{\gamma}$, then n must be an odd integer.

Example

Thus we have $\mathscr{P}_{3}^{\widetilde{\gamma}} = \left\{ \boxed{1} \right\}$,

 $\mathscr{P}_{5}^{\widetilde{\gamma}}$ is composed of the following 3 RCSPPs:

and $\mathscr{P}_{5}^{\widetilde{\gamma}}$ has 26 elements.

Proposition

If $c \in \mathscr{P}_n$ is invariant under $\widetilde{\gamma}$, then n must be an odd integer.

Example

Thus we have $\mathscr{P}_{3}^{\widetilde{\gamma}}=\Big\{ \boxed{1} \Big\},$

 $\mathscr{P}_{5}^{\widetilde{\gamma}}$ is composed of the following 3 RCSPPs:

and $\mathscr{P}_{5}^{\widetilde{\gamma}}$ has 26 elements.

Theorem

If $c \in \mathscr{P}_{2n+1}$ is invariant under $\widetilde{\gamma}$, then c has no saturated parts.

Example

Theorem

If $c \in \mathscr{P}_{2n+1}$ is invariant under $\widetilde{\gamma}$, then c has no saturated parts.

Example

The following $c \in \mathscr{P}_{11}$ is invariant under $\widetilde{\gamma}$:

Theorem

If $c \in \mathscr{P}_{2n+1}$ is invariant under $\widetilde{\gamma}$, then c has no saturated parts.

Example

Remove all 1's from $c \in \mathscr{P}_{11}^{\widetilde{\gamma}}$.

Theorem

If $c \in \mathscr{P}_{2n+1}$ is invariant under $\widetilde{\gamma}$, then c has no saturated parts.

Example

Then we obtain a PP in which each row has even length.

Theorem

If $c \in \mathscr{P}_{2n+1}$ is invariant under $\widetilde{\gamma}$, then c has no saturated parts.

Example

Identify 3 and 2, 5 and 4, 7 and 6.

Theorem

If $c \in \mathscr{P}_{2n+1}$ is invariant under $\widetilde{\gamma}$, then c has no saturated parts.

Example

Repace 3 and 2 by dominos containing 1, 5 and 4 by dominos containing 2, 7 and 6 by dominos containing 3.

$$d = \begin{array}{|c|c|c|c|} \hline 3 & 3 & 1 \\ \hline 2 & 1 & 1 \\ \hline \end{array}$$

Definition

Let n be a positive integer. Let \mathcal{D}_n^R denote the set of column-strict domino plane partitions d such that

Definition

Let n be a positive integer. Let $\mathcal{D}_n^{\mathsf{R}}$ denote the set of column-strict domino plane partitions d such that

- The *j*th column does not exceed $\lceil (n-j)/2 \rceil$,
- 2 Each row of *d* has even length.

Let $\overline{U}_1(d)$ denote the number of 1's in $d \in \mathcal{D}_n^R$

Definition

Let n be a positive integer. Let \mathcal{D}_n^R denote the set of column-strict domino plane partitions d such that

- The *j*th column does not exceed $\lceil (n-j)/2 \rceil$,
- 2 Each row of *d* has even length.

Let $\overline{U}_1(d)$ denote the number of 1's in $d \in \mathcal{D}_n^R$

Definition

Let n be a positive integer. Let \mathcal{D}_n^R denote the set of column-strict domino plane partitions d such that

- The *j*th column does not exceed $\lceil (n-j)/2 \rceil$,
- 2 Each row of d has even length.

Let $\overline{U}_1(d)$ denote the number of 1's in $d \in \mathcal{D}_n^R$.

Definition

Let n be a positive integer. Let \mathcal{D}_n^R denote the set of column-strict domino plane partitions d such that

- The *j*th column does not exceed $\lceil (n-j)/2 \rceil$,
- 2 Each row of d has even length.

Let $\overline{U}_1(d)$ denote the number of 1's in $d \in \mathcal{D}_n^R$.

$$\mathscr{D}_1^{\mathsf{R}} = \mathscr{D}_2^{\mathsf{R}} = \{\emptyset\}.$$

Definition

Let n be a positive integer. Let \mathcal{D}_n^R denote the set of column-strict domino plane partitions d such that

- The *j*th column does not exceed $\lceil (n-j)/2 \rceil$,
- 2 Each row of d has even length.

Let $\overline{U}_1(d)$ denote the number of 1's in $d \in \mathcal{D}_n^R$.

Example

 $\mathcal{D}_3^{\mathsf{R}}$ is composed of the following 3 elements:

Ø,

Definition

Let n be a positive integer. Let \mathcal{D}_n^R denote the set of column-strict domino plane partitions d such that

- The *j*th column does not exceed $\lceil (n-j)/2 \rceil$,
- 2 Each row of d has even length.

Let $\overline{U}_1(d)$ denote the number of 1's in $d \in \mathcal{D}_n^R$.

Example

 $\mathcal{D}_4^{\mathsf{R}}$ is composed of the following 4 elements:

Ø,

1,

1 1

2 1

 \mathscr{D}_5^R has 26 elements, \mathscr{D}_6^R has 50 elements, and \mathscr{D}_7^R has 646 elements.

Theorem

Let *n* be a positive integer. Then there is a bijection τ_{2n+1} from

$$\mathscr{P}_{2n+1}^{\widetilde{\gamma}}$$
 to $\mathscr{D}_{2n-1}^{\mathsf{R}}$ such that $\overline{U}_1(\tau_{2n+1}(c)) = \overline{U}_2(c)$ for $c \in \mathscr{P}_{2n+1}^{\widetilde{\gamma}}$

Theorem

Theorem

Let *n* be a positive integer. Then there is a bijection τ_{2n+1} from

$$\mathscr{P}_{2n+1}^{\widetilde{\gamma}} \text{ to } \mathscr{D}_{2n-1}^{\mathsf{R}} \quad \text{such that } \overline{U}_1(\tau_{2n+1}(c)) = \overline{U}_2(c) \text{ for } c \in \mathscr{P}_{2n+1}^{\widetilde{\gamma}}.$$

Theorem

Let $n \ge 2$ be a positive integer.

Theorem

Let n be a positive integer. Then there is a bijection τ_{2n+1} from $\mathscr{P}_{2n+1}^{\widetilde{\gamma}}$ to $\mathscr{D}_{2n-1}^{\mathsf{R}}$ such that $\overline{U}_1(\tau_{2n+1}(c)) = \overline{U}_2(c)$ for $c \in \mathscr{P}_{2n+1}^{\widetilde{\gamma}}$.

Theorem

Theorem

Let n be a positive integer. Then there is a bijection τ_{2n+1} from $\mathscr{P}_{2n+1}^{\widetilde{\gamma}}$ to $\mathscr{D}_{2n-1}^{\mathsf{R}}$ such that $\overline{U}_1(\tau_{2n+1}(c)) = \overline{U}_2(c)$ for $c \in \mathscr{P}_{2n+1}^{\widetilde{\gamma}}$.

Theorem

Let $n \ge 2$ be a positive integer. Let $R_n^0(t) = (R_{i,j}^0)_{0 \le i,j \le n-1}$ be the

$$R_{i,j}^{0} = {i+j-1 \choose 2i-j} + \left\{ {i+j-1 \choose 2i-j-1} + {i+j-1 \choose 2i-j+1} \right\} t + {i+j-1 \choose 2i-j} t^{2}$$

with the convention that $R_{0.0}^{\circ}=R_{0.1}^{\circ}=$ 1. Then we obtain

$$\sum_{c \in \mathscr{P}_{2n+1}^{Y}} t^{\overline{U}_{2}(c)} = \det R_{n}^{o}(t)$$

Theorem

Let n be a positive integer. Then there is a bijection τ_{2n+1} from $\mathscr{P}_{2n+1}^{\widetilde{\gamma}}$ to $\mathscr{D}_{2n-1}^{\mathsf{R}}$ such that $\overline{U}_1(\tau_{2n+1}(c)) = \overline{U}_2(c)$ for $c \in \mathscr{P}_{2n+1}^{\widetilde{\gamma}}$.

Theorem

Let $n \ge 2$ be a positive integer. Let $R_n^0(t) = (R_{i,j}^0)_{0 \le i,j \le n-1}$ be the $n \times n$ matrix where

$$R_{i,j}^{0} = {i+j-1 \choose 2i-j} + \left\{ {i+j-1 \choose 2i-j-1} + {i+j-1 \choose 2i-j+1} \right\} t + {i+j-1 \choose 2i-j} t^{2}$$

with the convention that $R_{0.0}^{0} = R_{0.1}^{0} = 1$. Then we obtain

$$\sum_{c \in \mathscr{P}_{2n+1}^{Y}} t^{\overline{U}_{2}(c)} = \det R_{n}^{o}(t)$$

Theorem

Let n be a positive integer. Then there is a bijection τ_{2n+1} from $\mathscr{P}_{2n+1}^{\widetilde{\gamma}}$ to $\mathscr{D}_{2n-1}^{\mathsf{R}}$ such that $\overline{U}_1(\tau_{2n+1}(c)) = \overline{U}_2(c)$ for $c \in \mathscr{P}_{2n+1}^{\widetilde{\gamma}}$.

Theorem

Let $n \ge 2$ be a positive integer. Let $R_n^0(t) = (R_{i,j}^0)_{0 \le i,j \le n-1}$ be the $n \times n$ matrix where

$$R_{i,j}^{0} = {i+j-1 \choose 2i-j} + \left\{ {i+j-1 \choose 2i-j-1} + {i+j-1 \choose 2i-j+1} \right\} t + {i+j-1 \choose 2i-j} t^{2}$$

with the convention that $R_{0.0}^{0} = R_{0.1}^{0} = 1$. Then we obtain

$$\sum_{c \in \mathscr{P}_{2n+1}^{Y}} t^{\overline{U}_2(c)} = \det R_n^{\mathsf{o}}(t)$$

Theorem

Let n be a positive integer. Then there is a bijection τ_{2n+1} from $\mathscr{P}_{2n+1}^{\widetilde{\gamma}}$ to $\mathscr{D}_{2n-1}^{\mathsf{R}}$ such that $\overline{U}_1(\tau_{2n+1}(c)) = \overline{U}_2(c)$ for $c \in \mathscr{P}_{2n+1}^{\widetilde{\gamma}}$.

Theorem

Let $n \ge 2$ be a positive integer. Let $R_n^0(t) = (R_{i,j}^0)_{0 \le i,j \le n-1}$ be the $n \times n$ matrix where

$$R_{i,j}^{0} = {i+j-1 \choose 2i-j} + \left\{ {i+j-1 \choose 2i-j-1} + {i+j-1 \choose 2i-j+1} \right\} t + {i+j-1 \choose 2i-j} t^{2}$$

with the convention that $R_{0.0}^{\circ} = R_{0.1}^{\circ} = 1$. Then we obtain

$$\sum_{c \in \mathscr{P}_{2n+1}^{\gamma}} t^{\overline{U}_2(c)} = \det R_n^{\mathrm{o}}(t).$$

The determinants

Example

if n=2, then $\sum_{c\in\mathscr{P}_{5}^{\widetilde{\gamma}}}t^{\overline{U}_{2}(c)}$ is given by

$$\det\left(\begin{array}{cc}1&1\\0&1+t+t^2\end{array}\right)$$

which is equal to $1 + t + t^2$.

The determinants

Example

if n=3, then $\sum_{c\in \mathscr{P}_{7}^{\widetilde{\gamma}}} t^{\overline{U}_{2}(c)}$ is given by

$$\det \left(\begin{array}{cccc} 1 & 1 & 0 \\ 0 & 1+t+t^2 & 1+2t+t^2 \\ 0 & t & 3+4t+3t^2 \end{array} \right)$$

which is equal to $3 + 6t + 8t^2 + 6t^3 + 3t^4$.

The determinants

Example

if
$$n=4$$
, then $\sum_{c\in \mathscr{P}_{7}^{\widetilde{\gamma}}} t^{\overline{U}_{2}(c)}$ is given by

$$\det \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 0 & 1+t+t^2 & 1+2t+t^2 & t \\ 0 & t & 3+4t+3t^2 & 4+7t+4t^2 \\ 0 & 0 & 1+4t+t^2 & 10+15t+10t^2 \end{array} \right)$$

which is equal to $26 + 78t + 138t^2 + 162t^3 + 138t^4 + 78t^5 + 26t^6$.

Determinant evaluation

Theorem (Andrews-Burge)

Let

$$M_n(x,y) = \det\left(\binom{i+j+x}{2i-j} + \binom{i+j+y}{2i-j}\right)_{0 \le i,j \le n-1}.$$

Then

$$M_n(x,y) = \prod_{k=0}^{n-1} \Delta_{2k}(x+y),$$

where $\Delta_0(u) = 2$ and for j > 0

$$\Delta_{2j}(u) = \frac{(u+2j+2)_j(\frac{1}{2}u+2j+\frac{3}{2})_{j-1}}{(j)_j(\frac{1}{2}u+j+\frac{3}{2})_{j-1}}.$$

A weak version of Conjecture 6

Theorem

Let *n* be a positive integer. Then

$$\det R_n^0(1) = \frac{1}{2^n} \prod_{k=1}^n \frac{(6k-2)!(2k-1)!}{(4k-2)!(4k-1)!}.$$

This proves that he number of $b \in \mathcal{B}_{2n+1}$ invariant under γ is equal to the number of vertically symmetric alternating sign matrices of size 2n+1

A weak version of Conjecture 6

Theorem

Let *n* be a positive integer. Then

$$\det R_n^{\mathsf{o}}(1) = \frac{1}{2^n} \prod_{k=1}^n \frac{(6k-2)!(2k-1)!}{(4k-2)!(4k-1)!}.$$

This proves that he number of $b \in \mathcal{B}_{2n+1}$ invariant under γ is equal to the number of vertically symmetric alternating sign matrices of size 2n + 1.

A weak version of Conjecture 6

Theorem

Let *n* be a positive integer. Then

$$\det R_n^{\mathsf{o}}(1) = \frac{1}{2^n} \prod_{k=1}^n \frac{(6k-2)!(2k-1)!}{(4k-2)!(4k-1)!}.$$

This proves that he number of $b \in \mathcal{B}_{2n+1}$ invariant under γ is equal to the number of vertically symmetric alternating sign matrices of size 2n + 1.

The end

Thank you!