A Gentle Introduction to Bilateral Filtering and its Applications

"Fixing the Gaussian Blur": the Bilateral Filter

Sylvain Paris – MIT CSAIL

Blur Comes from Averaging across Edges

Same Gaussian kernel everywhere.

Bilateral Filter [Aurich 95, Smith 97, Tomasi 98] No Averaging across Edges

The kernel shape depends on the image content.

Bilateral Filter Definition: an Additional Edge Term

Same idea: weighted average of pixels.

Illustration a 1D Image

1D image = line of pixels

Better visualized as a plot

Gaussian Blur and Bilateral Filter

Gaussian blur

Bilateral filter

[Aurich 95, Smith 97, Tomasi 98]

Bilateral Filter on a Height Field

Space and Range Parameters

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (||\mathbf{p} - \mathbf{q}||) G_{\sigma_{r}} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

• space σ_s : spatial extent of the kernel, size of the considered neighborhood.

ullet range $\sigma_{\!\scriptscriptstyle
m r}$: "minimum" amplitude of an edge

Influence of Pixels

Only pixels close in space and in range are considered.

input

Exploring the Parameter Space

$$\sigma_{\rm r} = 0.1$$

 $\sigma_{\rm r} = 0.25$

 $\overline{\sigma_{\rm r}} = \infty$ (Gaussian blur)

 $\sigma_{\rm s} = 2$

input

Varying the Range Parameter

$$\sigma_{\rm r} = 0.1$$

$$\sigma_{\rm r} = 0.25$$

$$\sigma_{\rm r} = \infty$$
 (Gaussian blur)

$$\sigma_{\rm s} = 6$$

 $\sigma_{\rm s} = 2$

$$\sigma_{\rm s} = 18$$

$$\sigma_{\rm r} = \infty$$
 (Gaussian blur)

input

Varying the Space Parameter

$$\sigma_{\rm r} = 0.1$$

$$\sigma_{\rm r}$$
 = 0.25

$$\sigma_{\rm r} = \infty$$
 (Gaussian blur)

 $\sigma_{\rm s} = 2$

 $\sigma_{\rm s} = 6$

How to Set the Parameters

Depends on the application. For instance:

- space parameter: proportional to image size
 - e.g., 2% of image diagonal
- range parameter: proportional to edge amplitude
 - e.g., mean or median of image gradients
- independent of resolution and exposure

A Few More Advanced Remarks

Bilateral Filter Crosses Thin Lines

- Bilateral filter averages across features thinner than $\sim 2\sigma_s$
- Desirable for smoothing: more pixels = more robust
- Different from diffusion that stops at thin lines

Iterating the Bilateral Filter

$$I_{(n+1)} = BF\left[I_{(n)}\right]$$

- Generate more piecewise-flat images
- Often not needed in computational photo.

Bilateral Filtering Color Images

For gray-level images

$$BF\left[I\right]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} \left(\| \mathbf{p} - \mathbf{q} \| \right) G_{\sigma_{r}} \left(\left[I_{\mathbf{p}} - I_{\mathbf{q}} \right] \right) I_{\mathbf{q}}$$

For color images
$$BF\left[I\right]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} \big(\| \, \mathbf{p} - \mathbf{q} \, \| \big) G_{\sigma_{r}} \big(\| \, \mathbf{C}_{\mathbf{p}} - \mathbf{C}_{\mathbf{q}} \, \| \big) \mathbf{C}_{\mathbf{q}}$$
 3D vector (RGB, Lab)

The bilateral filter is extremely easy to adapt to your need.

Hard to Compute

• Nonlinear
$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_s} (||\mathbf{p} - \mathbf{q}||) G_{\sigma_r} (|I_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

- Complex, spatially varying kernels
 - Cannot be precomputed, no FFT...

Brute-force implementation is slow > 10min

Questions?