Sprawozdanie

Internet rzeczy: STEROWNIK LOGO 8 12/24RCE – TRANSMISJA DANYCH ZE STEROWNIKA LOGO DO PC

1. Cel ćwiczenia - Celem ćwiczenia było zapoznanie z transmisją danych ze sterownika do PC za pomocą języka Python.

2. Przebieg ćwiczenia.

2.1. Monitorowanie tabeli stanów wejść i wyjść sterownika w czasie symulacji.

Jeszcze przed przystąpieniem do ćwiczenia, posługując się zamieszczonym wstępem teoretycznym, zainstalowaliśmy wymagane biblioteki do obsługi sterownika Logo.

Postępując zgodnie z instrukcją stworzyliśmy program, w którym zaadresowaliśmy wejścia i wyjścia sieciowe tak, aby odnosiły się one do pamięci wirtualnej VM.

2.2. Python, odczyt stanu wejść i wyjść cyfrowych.

Kolejno usunęliśmy wejście I3 dodane w poprzednim zadaniu, a następnie uruchomiliśmy edytor języka Python. Wpisaliśmy program monitorujący i wyświetlający odczytane wartości z wejścia I1, I2 oraz wyjścia Q1.

Powyższy program wyświetlał co 3 sekundy stan rzeczywisty I1, I2 oraz Q1.

2.3. Odczyt, zapis i kasowanie stanów wejść sieciowych.

Rozbudowaliśmy poprzedni program o funkcję załączania stanu wysokiego na wejścia sieciowe NI1, NI2 oraz wyjścia sieciowego NQ1.

2.4. Odczyt i zapis wejść/wyjść sieciowych analogowych.

Rozbudowaliśmy układ wgrywany do sterownika dodając wejście i wyjście sieciowe analogowe oraz wzmacniacz analogowy.

Parametry nowo dodanych bloków ustawiliśmy według podanych wytycznych.

Następnie rozbudowaliśmy program w Pythonie w taki sposób, aby przy każdym kolejnym cyklu pętli "while" wartość na analogowym wejściu sieciowym była zwiększana o 5.

2.5. Odczyt parametrów z bloków programu wpisanego do pamięci sterownika.

W kolejnym punkcie dodaliśmy kod odczytujący wartość wzmocnienia ustawioną we wzmacniaczu. Dla parametru "Gain" przypisaliśmy adres bajtu nr 5.

W Pythonie dopisaliśmy kod służący do odczytu wartości wzmocnienia wzmacniacza z pamięci sterownika. Poniżej kod oraz zrzut z działającego programu.

2.6. Rejestracja danych ze sterownika w MS Excel – zadanie do samodzielnego wykonania.

W Pythonie napisaliśmy program według wytycznych, który odczytywał stany I1, I2, Q1, NI1, NI2, Q2, NAI1, NAQ1 oraz zapisywał je w arkuszu MS Excel w kolejnych wierszach. Udało się osiągnąć szukany rezultat, ale wystąpił problem z realizacją odczytu daty i czasu ze sterownika.

	Α		В	С	D			G	н		J	К	L	М	N
1 11		12		Q1	NI1	NI2	Q2	NAI1	NAQ1	ROK	MIESIĄC	DZIEŃ	GODZINY	MINUTY	SEKUNDY
2	0		0	0	0	0	0	35	53	0	0	0	0	0	0
3	0		0	0	0	0	0	35	53	0	0	0	0	0	1
4	0		0	0	0	0	0	35	53	0	0	0	0	0	0
5	0		0	0	0	0	0	35	53	0	0	0	0	0	1
6															

3. Wnioski

- Dzięki zastosowaniu bibliotek Snap7 oraz XlsxWriter, możliwe było nawiązanie komunikacji między sterownikiem Logo a komputerem, co pozwala na monitorowanie i kontrolowanie stanów wejść i wyjść sterownika oraz zapisywanie tych danych w arkuszu kalkulacyjnym.
- Ćwiczenie obejmowało przypisywanie adresów do różnych typów danych w pamięci sterownika (np. wejścia cyfrowe, wejścia i wyjścia sieciowe), co pozwala na bardziej precyzyjną kontrolę nad danymi.
- Zadania polegające na implementacji nowych funkcji, takich jak kasowanie stanów wejść czy obsługa wejść/wyjść analogowych, umożliwiają praktyczne zrozumienie, jak sterownik reaguje na zmienne wartości i jak można go dostosować do potrzeb konkretnej aplikacji.