Rensselaer Polytechnic Institute Department of Electrical, Computer, and Systems Engineering ECSE 2500: Engineering Probability, Spring 2023 Homework #7 Solutions

1. (a) Each value of X in [5,7] has a $\frac{1}{3}$ probability of occurring since the distribution is uniform. If we let E be the number of eggs available, the distribution of E given X is a binomial with probability of success $\frac{1}{2}$. The number of eggs is the carton Y will then be $\max(6, E)$. That is, once we have 6 eggs, we don't collect any more. So the joint PMF table looks like:

			X	
		5	6	7
	0	$\frac{1}{3} \cdot \left(\frac{1}{2}\right)^5$	$\frac{1}{3} \cdot \left(\frac{1}{2}\right)^6$	$\frac{1}{3} \cdot \left(\frac{1}{2}\right)^7$
	1	$\frac{1}{3} \cdot 5 \cdot \left(\frac{1}{2}\right)^5$	$\frac{1}{3} \cdot 6 \cdot \left(\frac{1}{2}\right)^6$	$\frac{1}{3} \cdot 7 \cdot \left(\frac{1}{2}\right)^7$
	2	$\frac{1}{3} \cdot {5 \choose 2} \cdot {\left(\frac{1}{2}\right)}^5$	$\frac{1}{3} \cdot {6 \choose 2} \cdot \left(\frac{1}{2}\right)^6$	$\frac{1}{3} \cdot {7 \choose 2} \cdot \left(\frac{1}{2}\right)^7$
Y	3	$\frac{1}{3} \cdot {5 \choose 3} \cdot \left(\frac{1}{2}\right)^5$	$\frac{1}{3} \cdot {6 \choose 3} \cdot \left(\frac{1}{2}\right)^6$	$\frac{1}{3} \cdot {7 \choose 3} \cdot \left(\frac{1}{2}\right)^7$
	4	$\frac{1}{3} \cdot {5 \choose 4} \cdot \left(\frac{1}{2}\right)^5$	$\frac{1}{3} \cdot {6 \choose 4} \cdot \left(\frac{1}{2}\right)^6$	$\frac{1}{3} \cdot {7 \choose 4} \cdot {1 \over 2}^7$
	5	$\frac{1}{3} \cdot {5 \choose 4} \cdot \left(\frac{1}{2}\right)^5$ $\frac{1}{3} \cdot \left(\frac{1}{2}\right)^5$	$\frac{1}{3} \cdot {6 \choose 5} \cdot \left(\frac{1}{2}\right)^6$ $\frac{1}{3} \cdot \left(\frac{1}{2}\right)^6$	$\frac{1}{3} \cdot {7 \choose 5} \cdot \left(\frac{1}{2}\right)^7$
	6	0	$\frac{1}{3} \cdot \left(\frac{1}{2}\right)^6$	$\frac{1}{3} \cdot {7 \choose 6} \cdot \left(\frac{1}{2}\right)^7 + \left(\frac{1}{2}\right)^7$

or getting everything into a common denominator,

			X	
		5	6	7
	0	$\frac{4}{384}$	$\frac{2}{384}$	$\frac{1}{384}$
	1	$\frac{20}{384}$	$\frac{12}{384}$	$\frac{7}{384}$
	2	$\frac{40}{384}$	$\frac{30}{384}$	$\frac{21}{384}$
Y	3	$\frac{40}{384}$	$\frac{40}{384}$	$\frac{35}{384}$
	4	$\frac{20}{384}$	$\frac{30}{384}$	$\frac{35}{384}$
	5	$\frac{4}{384}$	$\frac{12}{384}$	$\frac{21}{384}$
	6	0	$\frac{2}{384}$	$\frac{8}{384}$

(b) The joint CDF looks like a stairstep function that's easiest to represent as a grid. Remember that the joint CDF is the sum of all probability to the left and below a given point (indicated by small numbers at the dots); we accumulate probability every time we cross a line.

(c) From the joint PMF in part (a), it's easy to compute the marginal PMF of Y just by summing up the rows; we obtain

$$\begin{array}{c|c} p_{y}(Y) \\ \hline 0 & \frac{7}{384} \\ 1 & \frac{39}{384} \\ 2 & \frac{91}{384} \\ 3 & \frac{115}{384} \\ 4 & \frac{85}{384} \\ 5 & \frac{37}{384} \\ 6 & \frac{10}{384} \\ \end{array}$$

As expected these probabilities sum to 1, since the marginal is a valid PMF.

2. (a) Let's integrate this function and see what we get:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) \, dx \, dy = k \int_{0}^{1} \int_{0}^{1} x(1 - x) y \, dx \, dy$$

$$= k \left(\frac{1}{2} x^{2} - \frac{1}{3} x^{3} \right)_{x=0}^{x=1} \right) \left(\frac{1}{2} y^{2} \right)_{y=0}^{y=1}$$

$$= k \left(\frac{1}{6} \right) \left(\frac{1}{2} \right)$$

$$= \frac{k}{12}$$

Since for a valid PDF we need this integral to equal 1, this means that k = 12.

(b) The joint CDF in the "interesting" range $x \in [0,1]$, $y \in [0,1]$ is computed as

$$F_{XY}(x,y) dx dy = \int_0^x \int_0^y f_{XY}(x,y) dx dy$$
$$= 12 \left(\frac{1}{2} x^2 - \frac{1}{3} x^3 \right) \left(\frac{1}{2} y^2 \right)$$
$$= (3x^2 - 2x^3) y^2$$

(c) To compute the marginals, we integrate out the variable we don't care about. For $x \in [0,1]$ we have

$$f_X(x) = \int_0^1 12x(1-x)y \, dy$$

$$= (12x(1-x)) \left(\frac{1}{2}y^2\right]_{y=0}^{y=1}$$

$$= (12x(1-x))(\frac{1}{2})$$

$$= 6x(1-x) \quad x \in [0,1], 0 \text{ otherwise}$$

(d) Similarly for $y \in [0, 1]$ we have

$$f_Y(y) = \int_0^1 12x(1-x)y \, dx$$

$$= y \left(6x^2 - 4x^3 \right)_{x=0}^{x=1}$$

$$= y(2)$$

$$= 2y \quad y \in [0,1], 0 \text{ otherwise}$$

(e) Yes, *X* and *Y* are independent since we can see that

$$f_{XY}(x, y) = 12x(1-x)y$$

= $(6x(1-x))(2y)$
= $f_X(x) f_Y(y)$

$$P(Y < \sqrt{X}) = \int_0^1 \int_0^{\sqrt{x}} 12x(1-x)y \, dy \, dx$$

$$= \int_0^1 (12x(1-x)) \left(\frac{1}{2}y^2\right]_{y=0}^{y=\sqrt{x}} dx$$

$$= \int_0^1 (12x(1-x)) \left(\frac{1}{2}x\right) \, dx$$

$$= \int_0^1 6x^2(1-x) \, dx$$

$$= 2x^3 - \frac{6}{4}x^4\Big|_{x=0}^{x=1}$$

$$= \frac{1}{2}$$

3. (a) We're told that *X* and *Y* are jointly Gaussian with the PDF

$$f_{XY}(x, y) = c \exp\left(-\frac{3}{64}(12x^2 - 80x + 3y^2 + 24y - 4xy)\right)$$

where *c* is an unknown constant. We are also told that the correlation coefficient $\rho = \frac{1}{3}$. We need to pattern-match this against the 2D Gaussian PDF of the form

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \exp\left(\frac{-1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_x}{\sigma_x}\right)^2 - 2\rho\left(\frac{x-\mu_x}{\sigma_x}\right) \left(\frac{y-\mu_y}{\sigma_y}\right) + \left(\frac{y-\mu_y}{\sigma_y}\right)^2 \right] \right)$$

We don't care about the constant in front; let's just expand the exponent, plugging in $\rho = \frac{1}{3}$:

$$\frac{-1}{2(1-\rho^{2})\sigma_{x}^{2}}x^{2} - \frac{1}{2(1-\rho^{2})\sigma_{y}^{2}}y^{2} + \left(\frac{\mu_{x}}{(1-\rho^{2})\sigma_{x}^{2}} - \frac{\rho\mu_{y}}{(1-\rho^{2})\sigma_{x}\sigma_{y}}\right)x + \left(\frac{\mu_{y}}{(1-\rho^{2})\sigma_{y}^{2}} - \frac{\rho\mu_{x}}{(1-\rho^{2})\sigma_{x}\sigma_{y}}\right)y + \frac{\rho}{(1-\rho^{2})\sigma_{x}\sigma_{y}}xy + \text{constant}$$

$$= \frac{-9}{16\sigma_{x}^{2}}x^{2} - \frac{9}{16\sigma_{y}^{2}}y^{2} + \left(\frac{9\mu_{x}}{8\sigma_{x}^{2}} - \frac{3\mu_{y}}{8\sigma_{x}\sigma_{y}}\right)x + \left(\frac{9\mu_{y}}{8\sigma_{y}^{2}} - \frac{3\mu_{x}}{8\sigma_{x}\sigma_{y}}\right)y + \frac{3}{8\sigma_{x}\sigma_{y}}xy + \text{constant}$$

Matching up the coefficients on the x^2 and y^2 terms gives us

$$\frac{-9}{16\sigma_x^2} = \frac{-9}{16} \qquad \frac{-9}{16\sigma_y^2} = \frac{-9}{64}$$

which tells us that $\sigma_x = 1$ and $\sigma_y = 2$. As a sanity check we can see that the xy term also agrees.

(b) Now that we know σ_x and σ_y we can look at the x and y terms:

$$\frac{9\mu_x}{8} - \frac{3\mu_y}{16} = \frac{15}{4} \longrightarrow 18\mu_x - 3\mu_y = 60$$

$$\frac{9\mu_y}{32} - \frac{3\mu_x}{16} = \frac{-9}{8} \longrightarrow -6\mu_x + 9\mu_y = -36$$

Solving this linear system gives $\mu_x = 3$, $\mu_y = -2$.

4. (a) The correlation of X and Y is defined as E(XY).

$$E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{XY}(x, y) \, dx \, dy$$

$$= \frac{6}{19} \int_{0}^{2} \int_{0}^{1} xy (x^{2} + y^{3}) \, dy \, dx = \frac{6}{19} \int_{0}^{2} \frac{1}{2} x^{3} y^{2} + \frac{1}{5} x y^{5} \Big]_{y=0}^{y=1} \, dx$$

$$= \frac{6}{19} \int_{0}^{2} \frac{1}{2} x^{3} + \frac{1}{5} x \, dx$$

$$= \frac{6}{19} \left(\frac{1}{8} x^{4} + \frac{1}{10} x^{2} \right]_{x=0}^{x=2}$$

$$= \frac{6}{19} \cdot \frac{12}{5}$$

$$= \frac{72}{95}$$

(b) The covariance of X and Y is defined as E(XY) - E(X)E(Y), which means we first have to compute the marginal means E(X) and E(Y).

$$E(X) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f_{XY}(x, y) \, dx \, dy$$

$$= \frac{6}{19} \int_{0}^{2} \int_{0}^{1} x (x^{2} + y^{3}) \, dy \, dx \qquad = \frac{6}{19} \int_{0}^{2} x^{3} y + \frac{1}{4} x y^{4} \Big|_{y=0}^{y=1} \, dx$$

$$= \frac{6}{19} \int_{0}^{2} x^{3} + \frac{1}{4} x \, dx$$

$$= \frac{6}{19} \left(\frac{1}{4} x^{4} + \frac{1}{8} x^{2} \right)_{x=0}^{x=2}$$

$$= \frac{6}{19} \cdot \frac{9}{2}$$

$$= \frac{27}{19}$$

$$E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f_{XY}(x, y) \, dx \, dy$$

$$= \frac{6}{19} \int_{0}^{2} \int_{0}^{1} y (x^{2} + y^{3}) \, dy \, dx = \frac{6}{19} \int_{0}^{2} \frac{1}{2} x^{2} y^{2} + \frac{1}{5} y^{5} \Big|_{y=0}^{y=1} \, dx$$

$$= \frac{6}{19} \int_{0}^{2} \frac{1}{2} x^{2} + \frac{1}{5} \, dx$$

$$= \frac{6}{19} \left(\frac{1}{6} x^{3} + \frac{1}{5} x \right|_{x=0}^{x=2} \right)$$

$$= \frac{6}{19} \cdot \frac{26}{15}$$

$$= \frac{52}{95}$$

Thus

$$Cov(X, Y) = \frac{72}{95} - \frac{27}{19} \cdot \frac{52}{95} = \frac{-36}{1805}$$

(c) Now we use the properties of expected value and the numbers we already computed:

$$E(95(X(1+Y)+2Y(1-X))) = 95E(X+2Y-XY)$$

$$= 95(E(X)+2E(Y)-E(XY))$$

$$= 95\left(\frac{27}{19} + \frac{104}{95} - \frac{72}{95}\right)$$

$$= 167$$

(d) No, X and Y are not uncorrelated since $E(XY) \neq 0$.