- 19.2 (b) Proof. Let $x, y \in [0,3]$ so $|x+y| = x+y \le 6$. Let $\varepsilon > 0$ and $|x-y| < \frac{\varepsilon}{6}$. So $|x^2 y^2| = |x-y| \cdot |x+y| < 6 \cdot \frac{\varepsilon}{6} = \varepsilon$. Since ε was arbitrary, f is uniformly continuous on [0,3].
- 19.8 (a) Proof. Let $x,y \in \mathbb{R}$. Without loss of generality, let $y \le x$. Then by the Mean Value Theorem, there is some $z \in [y,x]$ such that $\frac{d}{dz}\sin(z)=\cos(z)=\frac{\sin(x)-\sin(y)}{x-y}$ so $|\sin(x)-\sin(y)|=|x-y|\cdot|\cos(z)| \le |x-y|\cdot 1$ since $|\cos(z)| \le 1$. Since x and y were arbitrary, $|\sin(x)-\sin(y)| \le |x-y|$ for all $x,y \in \mathbb{R}$.
 - (b) Let $x, y \in \mathbb{R}$ and $\varepsilon > 0$. Then if $|x y| < \varepsilon$, $|\sin(x) \sin(y)| \le |x y| < \varepsilon$ by Part (a) above. Since ε was arbitrary, $\sin(x)$ is uniformly continuous on \mathbb{R} .
- 19.10 (a) Proof. Let $x_0 \in \mathbb{R}$. Let $\varepsilon > 0$ and $\delta = \min\{1, \sqrt{\varepsilon 2x_0^2 2x_0}\}$. Then $|x x_0| < \delta$ implies that $|x x_0| < \sqrt{\varepsilon 2x_0^2 2x_0}$ so $|x x_0|^2 + 2x_0^2 + 2x_0 < \varepsilon$. We can also see that $|x x_0| < 1$ so $x_0 < x < x_0 + 1$. Thus, $\varepsilon > x^2 + x_0^2 2x \cdot x_0 + 2x_0 \cdot (x_0 + 1) > x^2 + x_0^2 2x \cdot x_0 + 2x \cdot x_0 = x^2 + x_0^2 \ge |x^2 \sin(\frac{1}{x})| + |x_0^2 \sin(\frac{1}{x_0})| \ge |x^2 \sin(\frac{1}{x}) x_0^2 \sin(\frac{1}{x_0})|$ by the Triangle Inequality. Since ε was arbitrary, g is continuous at x_0 . Since x_0 was arbitrary, g is continuous on \mathbb{R} .
 - (b) *Proof.* Let [a,b] be a bounded subset on \mathbb{R} . By Part (a), g is continuous on \mathbb{R} so it must be continuous on $[a,b] \subset \mathbb{R}$. By Theorem (19.2), it follows that g is uniformly continuous on [a,b]. Since [a,b] was arbitrary, g is uniformly continuous on any bounded subset of \mathbb{R} .
 - (c) Proof. For all $x \in [-1, 1] \subset \mathbb{R}$, g is uniformly continuous by Part (b). For all $x \in (1, +\infty)$. g is differentiable on $(1, +\infty)$ and $g'(x) = 2x \sin(\frac{1}{x}) - \cos(\frac{1}{x})$ so g'(x) is bounded below by 1 and bounded above by 2. Therefore, by Theorem (19.6), g is uniformly continuous on $(1, +\infty)$.

For all $x \in (-\infty, -1)$. g is differentiable on $(-\infty, -1)$ and $g'(x) = 2x\sin(\frac{1}{x}) - \cos(\frac{1}{x})$ so g'(x) is bounded below by 1 and bounded above by 2. Therefore, by Theorem (19.6), g is uniformly continuous on $(-\infty, -1)$.

Therefore, g is uniformly continuous on $(-\infty, -1) \cup [-1, 1] \cup (1, +\infty) = \mathbb{R}$.

 $\lim_{x \to \infty} f(x) = 1 \text{ and } \lim_{x \to -\infty} f(x) = 1$ $\lim_{x \to 0^{-}} f(x) = 0, \lim_{x \to 0^{+}} f(x) = 0, \text{ and } \lim_{x \to 0} f(x) = 0$

20.8 $\lim_{x\to\infty} x \sin(\frac{1}{x}) = \lim_{x\to\infty} \frac{\sin(\frac{1}{x})}{\frac{1}{x}} = \lim_{\frac{1}{x}\to0^+} \frac{\sin(\frac{1}{x})}{\frac{1}{x}} = 1$ by Example (19.9). $\lim_{x\to-\infty} x \sin(\frac{1}{x}) = \lim_{x\to-\infty} \frac{\sin(\frac{1}{x})}{\frac{1}{x}} = \lim_{\frac{1}{x}\to0^-} \frac{\sin(\frac{1}{x})}{\frac{1}{x}} = 1$ by Example (19.9). For $x \in (0, +\infty)$, $-1 \le \sin(\frac{1}{x}) \le 1$ so $-x \le x \sin(\frac{1}{x}) \le x$. Thus, $0 = \lim_{x\to0^+} -x \le \lim_{x\to0^+} x \sin(\frac{1}{x}) \le \lim_{x\to0^+} x = 0$ so by the Squeeze Lemma, $\lim_{x\to0^+} x \sin(\frac{1}{x}) = 0$. For $x \in (-\infty, 0)$, $-1 \le \sin(\frac{1}{x}) \le 1$ so $-x \ge x \sin(\frac{1}{x}) \ge x$. Thus, $0 = \lim_{x\to0^-} -x \ge \lim_{x\to0^-} x \sin(\frac{1}{x}) \ge \lim_{x\to0^-} x = 0$ so by the Squeeze Lemma, $\lim_{x\to0^-} x \sin(\frac{1}{x}) = 0$.

From previous parts, $\lim_{x\to 0^-} x \sin(\frac{1}{x}) = \lim_{x\to 0^+} x \sin(\frac{1}{x}) = 0$ so by Thm. (20.10), $\lim_{x\to 0} x \sin(\frac{1}{x}) = 0$

17 March 2018 Page 1

20.12 (a)

$$\begin{array}{ll} \text{(b)} & \lim_{x\to 2^+} f(x) = +\infty \\ & \lim_{x\to 2^-} f(x) = +\infty \\ & \lim_{x\to 1^+} f(x) = +\infty \\ & \lim_{x\to 1^-} f(x) = -\infty \end{array}$$

(c) Neither limit exists.