ФОРМУЛЫ СООТВЕТСТВИЯ ИЗОБРАЖЕНИЙ И ОРИГИНАЛОВ ПО ЛАПЛАСУ

№ п/п	Операторное изображение	Оригинал
1	1	$\delta(t)$ - дельта-функция Дирака
2	1/p	1(t) - единичная функция Хевисайда
3	$U\!/p$ или $E\!/p$	<i>U</i> или <i>E</i>
4	$\frac{1}{p \pm a}$	e ^{µai}
5	$\frac{p}{p+a}$	$\delta(t) - ae^{-at} \cdot 1(t)$
6	$\frac{p}{p(p+a)}$	$\frac{1}{a}(1-e^{-at})$
7	$\frac{p}{(p+a)(p+b)}$ $\frac{1}{(p+a)(p+b)}$	$\frac{1}{b-a}(be^{-bt} - ae^{-at})$ $\frac{1}{b-a}(e^{-at} - e^{-bt})$
8	$\frac{1}{(p+a)(p+b)}$	$\frac{1}{b-a}(e^{-at}-e^{-bt})$
9	$\frac{1}{p(p+a)(p+b)}$	$\frac{1}{ab} + \frac{1}{b-a} \left(\frac{1}{b} e^{-bt} - \frac{1}{a} e^{-at} \right)$
10	$\frac{p}{(p+\alpha)^2 + \omega_c^2}$	$\frac{-\sqrt{\alpha^{2} + \omega_{c}^{2}}}{\omega_{c}} e^{-\alpha t} \sin\left(\omega_{c} t - \arctan\frac{\omega_{c}}{\alpha}\right)_{\text{или}}$ $e^{-\alpha t} \left(\cos\omega_{c} t - \frac{\alpha}{\omega_{c}} \sin\omega_{c} t\right)_{\text{, или}}$ $\frac{-\sqrt{\alpha^{2} + \omega_{c}^{2}}}{\omega_{c}} e^{-\alpha t} \cos\left(\omega_{c} t + \arctan\frac{\alpha}{\omega_{c}}\right)$
11	$\frac{1}{(p+\alpha)^2+\omega_c^2}$	$\frac{1}{\omega_c}e^{-ct}\cdot\sin\omega_c t$
12	$\frac{1}{p[(p+\alpha)^2+\omega_c^2]}$	$\frac{1}{\alpha^2 + \omega_c^2} \left[1 - e^{-\alpha t} \left(\cos \omega_c t + \frac{\alpha}{\omega_c} \sin \omega_c t \right) \right]_{\text{или}}$ $\frac{1}{\alpha^2 + \omega_c^2} - \frac{1}{\omega_c \sqrt{\alpha^2 + \omega_c^2}} e^{-ct} \sin(\omega_c t + \arctan \frac{\omega_c}{\alpha})$
13	$\frac{p\sin\Psi + \omega_c\cos\Psi}{p^2 + \omega_c^2}$	$\sin(\omega_c t + \Psi)$
14	$\frac{p + \omega_c}{\omega_c / (p^2 + \omega_c^2)}$	$\sin \omega_c t$
15	$\frac{p/(p^2+\omega_c^2)}{p^2+\omega_c^2}$	$\cos \omega_c t$
16	$\frac{p+\alpha}{(p+\alpha)^2+\omega_c^2}$	$e^{-\alpha t}\cos\omega_c t$