Transformer

Attention is all you need. (2017.)

(Masked) Self-Attention

ELMo (2018.) Bi-LSTM

GPT(2018.)
Self-Attention (AR)

BERT(2018.)

Self-Attention (Masked token)

XLNet(2019.)

PLM (AR+AE)

Attention is all you need

Author: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., ... & Polosukhin, I...

Publish: Advances in Neural Information Processing Systems

Pp: 5998 - 6008.

Introduction

Neural Machine Translation(NMT):

- Statistical based: Phrase-based + large LM (Moses)
- NN based: Encoder Decoder (Seq2seq, ConvS2S, ensemble ...)

Related work

Related work

Value

Transformer

Inner Product

Output Mechanism **Probabilities** Softmax **Decoder** Linear Linear MatMul Add & Norm Feed Concat **Encoder** SoftMax Forward Mask (opt.) Add & Norm Scaled Dot-Product Add & Norm Attention Multi-Head Scale Feed Attention N× Forward Linear Linear Linear MatMul Add & Norm N× Add & Norm Masked Κ Multi-Head Multi-Head Κ Attention Attention **Residual connection** Positional Positional **Encoding Encoding** Output Input Embedding Embedding Inputs Outputs (shifted right)

Positional Encoding

$$PE = \{p_0, p_1, p_2, \dots, p_{n-1}\}\$$

$$\begin{cases} PE_{(pos,2i)} = \sin(pos/10000^{\frac{2i}{d_{model}}}) \\ PE_{(pos,2i+1)} = \cos(pos/10000^{\frac{2i}{d_{model}}}) \end{cases}$$

Word Embedding

$$W = \{w_1, w_2, \dots, w_n\}, w_i \in d_{model}$$

Feed Forward (Dense > Conv1d)

Mechanism Softmax Add & Norm Feed Forward Divided by $\sqrt{d_k}$ Scale Add & Norm Multi-Head Attention $N \times$ We need to prevent leftward information flow in the decoder $M_{1,1}$: The similarity between Q_1 and K_1 Add & Norm Masked $M_{1,1}$ Multi-Head Attention $M_{2,1} M_{2,2}$ $M_{3,2}$ *Self-attention* Positional (Masked) **Encoding** Output Embedding $M_{n,n}$ $M_{n,1} M_{n,2}$ Outputs (shifted right) **Decoder** $\{Q_1\}$ $\{K_1\}$ One-head K_1 \mathbf{Q}_1

Evaluation

• Attention mechanism:

https://reurl.cc/NzNne

• Attention is all you need:

https://reurl.cc/nWlX1

• BERT:

https://reurl.cc/76bld

• XLNet:

https://reurl.cc/50baV