- Espaços Vetoriais
  - Operações com vetores
  - Subespaços
  - Geradores
  - Independência linear
  - Base e dimensão
  - Caraterística de uma matriz e classificação de sistemas

Operações com vetores

# Reperesentação de vetores no plano



$$v = x i + y j = (x, y).$$

$$\mathbb{R}^2 = \{(x,y) \mid x,y \in \mathbb{R}\}$$

# Representação de vetores no espaço



$$v = x i + y j + z k = (x, y, z)$$
  
 $\mathbb{R}^3 = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}$ 

#### Operações com vetores

Operações fundamentais com vetores

a adição de vetores:

$$u, v \text{ vetores } \longmapsto u + v \text{ vetor },$$

2 a multiplicação por um escalar:

$$\alpha \in \mathbb{R}, \ \textit{u} \ \text{vetor} \ \longmapsto \alpha \ \textit{u} \ \text{vetor}$$

As operações vetoriais podem ser definidas usando a representação analítica dos vetores. Por exemplo em  $\mathbb{R}^3$ ,

$$u = x_1 i + y_1 j + z_1 k$$
 
$$u = (x_1, y_1, z_1)$$
 
$$v = x_2 i + y_2 j + z_2 k$$
 
$$v = (x_2, y_2, z_2)$$
 
$$u + v = (x_1 + x_2) i + (y_1 + y_2) j + (z_1 + z_2) k$$
 
$$u + v = (x_1 + x_2, y_1 + y_2, z_1 + z_2)$$
 
$$\alpha u = (\alpha x_1) i + (\alpha y_1) j + (\alpha z_1) k$$
 
$$\alpha u = (\alpha x_1, \alpha y_1, \alpha z_1)$$

Para qualquer  $n \in \mathbb{N}$ 

$$\mathbb{R}^n = \{(x_1, \ldots, x_n) \mid x_1, \ldots, x_n \in \mathbb{R}\}.$$

No conjunto  $\mathbb{R}^n$  as operações usuais de adição e de multiplicação por um escalar definem-se da seguinte forma: para quaisquer  $\alpha \in \mathbb{R}$ ,  $u = (x_1, \ldots, x_n)$  e  $v = (y_1, \ldots, y_n)$  elementos de  $\mathbb{R}^n$ ,

$$u + v = (x_1, ..., x_n) + (y_1, ..., y_n) = (x_1 + y_1, ..., x_n + y_n)$$
  
 $\alpha u = \alpha(x_1, ..., x_n) = (\alpha x_1, ..., \alpha x_n)$ 

O conjunto  $\mathbb{R}^n$  com as operações de adição e multiplicação por um escalar acima definidas é um espaço vetorial.

Os elementos de  $\mathbb{R}^n$  designam-se vetores e os números reais designam-se escalares. Num vetor  $u=(x_1,\ldots,x_n)$  o número  $x_i$  diz-se a i-ésima coordenada de u.

## Definição

Sejam u e v vetores. Um vetor w é combinação linear de u e v se existirem escalares  $\alpha$  e  $\beta$  tais que

$$\mathbf{W} = \alpha \mathbf{U} + \beta \mathbf{V}.$$

Podemos generalizar a definição anterior para um número qualquer k de vetores,  $v_1, \ldots, v_k$ . Se  $\alpha_1, \ldots, \alpha_k$  são escalares, então

$$\alpha_1 V_1 + \cdots + \alpha_k V_k$$

é uma combinação linear de  $v_1, \ldots, v_k$ .

O conjunto  $S = \{(a, b) \in \mathbb{R}^2 : a + b = 0\}$  com as operações

е

$$\begin{array}{cccc} \cdot : & \mathbb{R} \times S & \longrightarrow & S \\ & \left(\lambda, \, (x_1, x_2)\right) & \longmapsto & (\lambda x_1, \, \lambda x_2) \end{array}.$$

é um espaço vetorial, em que a soma de dois vetores e a multiplicação de um vetor por um escalar são as restrições a S das respetivas operações em  $\mathbb{R}^2$ . Em particular, o vetor nulo em  $\mathbb{R}^2$ , (0,0), pertence a S e o simétrico de um vetor  $(a,b) \in S$  é o vetor (-a,-b) que também pertence a S.

Dado um espaço vetorial  $\mathbb{R}^n$ , que propriedades deve satisfazer um seu subconjunto S para que sejam preservadas as propriedades de espaço vetorial?

## Definição

Sejam  $n \in \mathbb{N}$  e  $S \subseteq \mathbb{R}^n$ . Diz-se que S é um subespaço vetorial de  $\mathbb{R}^n$ , e escreve-se  $S \leq \mathbb{R}^n$ , se:

- 0  $S \neq \emptyset$ ;
- 2 se  $x, y \in S$ , então  $x + y \in S$  (i.e., S é fechado para a adição);
- 3 se  $x \in \mathcal{S}$  e  $\lambda$  é um escalar, então  $\lambda \cdot x \in \mathcal{S}$  (i.e.,  $\mathcal{S}$  é fechado para a multiplicação por um escalar).

Um subespaço vetorial  $\mathcal{S}$  é um subconjunto de  $\mathbb{R}^n$  em que as restrições das operações a  $\mathcal{S}$  tem todas as propriedades do espaço vetorial.

Os seguintes conjuntos são subespaços de  $\mathbb{R}^2$ :

$$S_1 = \{(x, y) \in \mathbb{R}^2 \mid 2x + 3y = 0\}$$
 e  $S_2 = \{(x, 3x) \mid x \in \mathbb{R}\}.$ 

Será  $\mathcal{S}_1 \cap \mathcal{S}_2$  um subespaço? E  $\mathcal{S}_1 \cup \mathcal{S}_2$  ?

### **EXEMPLOS 3**

Quais dos seguintes subconjuntos de  $\mathbb{R}^2$ , com a adição e multiplicação por escalar definida atrás, serão espaços vetoriais:

- ℝ<sup>2</sup>?
- $\mathbb{R}^2 \setminus \{(0,0)\}$ ?
- $\{(x,y) \in \mathbb{R}^2 \mid y = 3x\}$ ?
- $\{(x,y) \in \mathbb{R}^2 \mid y = 3x + 1\}$ ?
- $\{(x,y) \in \mathbb{R}^2 \mid x \geq 0, y \geq 0\}$ ?

Quais dos seguintes subconjuntos de  $\mathbb{R}^3$ , com a adição e multiplicação por escalar definida atrás, serão espacos vetoriais:

- ℝ<sup>3</sup>
- $\mathbb{R}^3 \setminus \{(0,0,0)\}$ ?
- $\{(x, y, z) \in \mathbb{R}^3 \mid y = x\}$ ?
- $\{(x, y, z \in \mathbb{R}^3 \mid y = x + 2\}$ ?
- $\{(x, y, z) \in \mathbb{R}^3 \mid x > 0, 2x + y + z = 0\}$ ?
- $\{(x, y, z) \in \mathbb{R}^3 \mid 2x + y = 0, x y + z = 0\}$ ?
- $\{(x, y, z) \in \mathbb{R}^3 \mid 2x + y = 0, x y + z = 1\}$ ?
- Que subconjuntos de R³ são espaços vetoriais?

# Proposição

Seja  $n \in \mathbb{N}$ . São subespaços vetoriais de  $\mathbb{R}^n$  o próprio  $\mathbb{R}^n$  e  $\{(0,\ldots,0)\}$ .

Mais ainda, qualquer subespaço S é tal que  $\{(0, ..., 0)\} \subseteq S \subseteq \mathbb{R}^n$ .

## Proposição

Sejam  $n \in \mathbb{N}$  e  $S_1, S_2 \leq \mathbb{R}^n$ . Então,  $S_1 \cap S_2 \leq \mathbb{R}^n$ .

## Proposição

Sejam  $n \in \mathbb{N}$  e  $S_1, S_2 \leq \mathbb{R}^n$ . Então,  $S_1 \cup S_2 \leq \mathbb{R}^n$  se e só se  $S_1 \subseteq S_2$  ou  $S_2 \subseteq S_1$ .

Considere o seguinte sistema homogéneo de equações lineares em 4 incógnitas:

$$\begin{bmatrix} 1 & 2 & 0 & -1 \\ 1 & 1 & 1 & -1 \\ 2 & 2 & 2 & -1 \\ 1 & 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

$$C_{\mathcal{S}} = \{(-2\alpha, \alpha, \alpha, 0) \mid \alpha \in \mathbb{R}\}$$

Notar que:

- (0,0,0,0) é solução do sistema;
- lacktriangle sendo  $(-2a,a,a,0),(-2b,b,b,0)\in \mathcal{C}_{\mathcal{S}}$  e  $\lambda\in\mathbb{R},$  então

$$\bullet (-2a, a, a, 0) + (-2b, b, b, 0) = (-2(a+b), a+b, a+b, 0) \in C_S;$$

Logo  $C_{\mathcal{S}} \leq \mathbb{R}^4$ .

#### Subespaços

Será que o exemplo anterior é um caso particular, ou será que as soluções de um qualquer sistema homogéneo AX = 0 de m equações em n incógnitas constituem um subespaço de  $\mathbb{R}^n$ ?

# Proposição

O conjunto das soluções de um sistema homogéneo de m equações em n incógnitas é um subespaço vetorial de  $\mathbb{R}^n$ .

Mais, veremos que todo o subespaço vetorial de  $\mathbb{R}^n$  é o conjunto das soluções de um sistema homogéneo de equações lineares em n incógnitas.

E relativamente ao conjunto das soluções de um sistema não homogéneo, será que é um subespaço vetorial?

O conjunto das soluções de um sistema de equações lineares não homogéneo não é um subespaço vetorial.

#### Geradores

# Proposição

Num espaço vetorial  $\mathbb{R}^n$ , com  $n \in \mathbb{N}$ , dado  $C \subseteq \mathbb{R}^n$ , o conjunto de todas as combinações lineares de vetores de C,

$$\{\alpha_1 \mathbf{v}_1 + \cdots + \alpha_k \mathbf{v}_k \mid \mathbf{k} \in \mathbb{N}, \mathbf{v}_1, \dots, \mathbf{v}_k \in \mathbf{C}, \alpha_1, \dots, \alpha_k \in \mathbb{R}\}$$

é o menor subespaço vetorial de  $\mathbb{R}^n$  que contém C.

O subespaço das combinações lineares de vetores de C representa-se por  $\langle C \rangle$ .

## Definição

Seja  $\mathcal S$  um subespaço vetorial de  $\mathbb R^n$  e  $C\subseteq \mathcal S$ . Se  $\mathcal S=\langle C\rangle$ , então diz-se que:

- C gera S ou que C é um conjunto gerador de S;
- S é o espaço gerado por C.

$$C_1 = \{(1,2,0,-1), (-1,0,0,2), (0,1,1,1)\} \subseteq \mathbb{R}^4$$

Os vetores de  $\mathbb{R}^4$  que pertencem a  $\langle C_1 \rangle$  são os vetores (x, y, z, w) tais que o sistema

$$\begin{bmatrix} 1 & -1 & 0 \\ 2 & 0 & 1 \\ 0 & 0 & 1 \\ -1 & 2 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

é possível.

O sistema só é possível se  $2x - \frac{1}{2}y - \frac{1}{2}z + w = 0$ . Logo,

$$\langle C_1 \rangle = \{(x, y, z, w) \in \mathbb{R}^4 \mid 2x - \frac{1}{2}y - \frac{1}{2}z + w = 0\},$$

ou seja,  $\langle C_1 \rangle$  é conjunto das soluções do sistema homogéneo formado pela equação

$$\left\{2x - \frac{1}{2}y - \frac{1}{2}z + w = 0.\right\}$$

$$C_2 = \{(1, -1, 2), (-1, 0, 1), (0, 0, 2)\} \subseteq \mathbb{R}^3$$

Será  $\mathbb{R}^3=\langle C_2\rangle$ ? Isto é, será que existem  $\alpha_1,\,\alpha_2,\,\alpha_3\in\mathbb{R}$  tais que, para quaisquer  $a,b,c\in\mathbb{R}$ ,

$$(a,b,c) = \alpha_1(1,-1,2) + \alpha_2(-1,0,1) + \alpha_3(0,0,2)$$
?

O sistema 
$$\begin{bmatrix} 1 & -1 & 0 \\ -1 & 0 & 0 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
 é possível e determinado.

Logo,  $\mathbb{R}^3 = \langle C_2 \rangle$ . Resolvendo o sistema conclui-se que a solução do sistema é

$$\left(-b, -a-b, \frac{a+3b+c}{2}\right)$$

pelo que

$$(a,b,c) = -b \cdot (1,-1,2) + (-a-b) \cdot (-1,0,1) + \frac{a+3b+c}{2} \cdot (0,0,2).$$

Como calcular um conjunto gerador de um espaço vetorial?

$$S = \{(a, b, c) \in \mathbb{R}^3 : c = a + b\}$$

$$= \{(a, b, a + b) : a, b \in \mathbb{R}\}$$

$$= \{(a, 0, a) + (0, b, b) : a, b \in \mathbb{R}\}$$

$$= \{a \cdot (1, 0, 1) + b \cdot (0, 1, 1) : a, b \in \mathbb{R}\}$$

$$= \langle (1, 0, 1), (0, 1, 1) \rangle,$$

ou seja,  $S = \langle (1, 0, 1), (0, 1, 1) \rangle$ .

Pode também verificar-se que

$$S = \langle (2,1,3), (0-1-1) \rangle,$$

o que permite concluir que um subespaço vetorial admite vários conjuntos geradores.

#### Independência linear

Em  $\mathbb{R}^n$ , se um vetor  $v_1$  se escreve como combinação linear dos vetores de um conjunto  $C = \{v_2, \ldots, v_k\}$ , então diremos que  $v_1$  é linearmente dependente dos vetores de C. Notar que

$$\mathbf{v}_1 = \beta_2 \mathbf{v}_2 + \cdots + \beta_k \mathbf{v}_k \quad \Leftrightarrow \quad \mathbf{v}_1 - \beta_2 \mathbf{v}_2 - \cdots - \beta_k \mathbf{v}_k = (0, \dots, 0).$$

Assim, existem  $\beta_2, \ldots, \beta_k \in \mathbb{R}$ , tais que  $v_1 = \beta_2 v_2 + \cdots + \beta_k v_k$  se e só se existem  $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R}$  não todos nulos, tais que  $\alpha_1 \cdot v_1 + \cdots + \alpha_k \cdot v_k = (0, \ldots, 0)$ 

## Definição

Sejam  $k, n \in \mathbb{N}$  e  $v_1, \ldots, v_k \in \mathbb{R}^n$ . Diz-se que  $v_1, \ldots, v_k$  são k vetores linearmente independentes se sendo  $\alpha_1, \ldots, \alpha_k$  escalares tais que

$$(0,\ldots,0)=\alpha_1\cdot v_1+\cdots+\alpha_k\cdot v_k,$$

então  $\alpha_1 = \ldots = \alpha_k = 0$ .

Se  $v_1, \ldots, v_k$  não são vetores linearmente independentes, então dizem-se linearmente dependentes.

• 
$$C_1 = \{(1,3,0,-1),(2,3,-4,1),(4,3,-12,5)\} \subseteq \mathbb{R}^4$$
  
•  $(0,0,0,0) = 2(1,3,0,-1) - 3(2,3,-4,1) + (4,3,-12,5)$   
•  $-(1,3,0,-1) + \frac{3}{2}(2,3,-4,1) - \frac{1}{2}(4,3,-12,5)$ 

Os vetores de  $C_1$  não são linearmente independentes.

$$C_2 = \{(1,2,1,3), (-2,0,1,-2), (0,-2,0,1)\}$$

Serão os vetores de  $C_2$  linearmente independentes?

$$\begin{bmatrix} 1 & -2 & 0 \\ 2 & 0 & -2 \\ 1 & 1 & 0 \\ 3 & -2 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

O sistema é possível e determinado. Assim, o vetor nulo, escreve-se de modo único como combinação linear dos vetores de  $C_2$ , ou seja, os vetores de  $C_2$  são linearmente independentes.

Será um vetor genérico de  $\mathbb{R}^4$ , v=(a,b,c,d), combinação linear dos vetores do conjunto  $C_2=\left\{(1,2,1,3),(-2,0,1,-2),(0,-2,0,1)\right\}$ ?

$$\begin{bmatrix} 1 & -2 & 0 \\ 2 & 0 & -2 \\ 1 & 1 & 0 \\ 3 & -2 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$

Já vimos que o sistema homógéneo asociado é possível e determinado, pelo que a característica da matriz simples é 3 e, consequentemente, o sistema é impossível ou possível e determinado.

Assim, se a coluna dos termos independentes for formada pelas coordenadas de vetores de  $\mathbb{R}^4$  que são combinação linear de vetores de  $C_2$ , a caracterítica da matriz ampliada é 3 e o sistema é possível e determinado. Neste caso, os coeficientes da combinação linear são únicos e verifica-se

$$-2a + \frac{b}{2} - 2c + d = 0.$$

Caso contrário, a caracterítica da matriz ampliada é 4 o sitema é impossível.

# Proposição

Sejam  $k, n \in \mathbb{N}$ ,  $1 \le i, j \le k$ ,  $v_1, \dots, v_k \in \mathbb{R}^n$  e  $\lambda \ne 0$  um escalar. Então, as seguintes condições são equivalentes:

- $v_1, \ldots, v_k$  são k vetores linearmente independentes;
- $v_1, \ldots, v_{i-1}, \lambda \cdot v_i, v_{i+1}, \ldots, v_k$  são k vetores linearmente independentes;
- 3  $v_1, \ldots, v_{i-1}, v_i + v_j, v_{i+1}, \ldots, v_k$  são k vetores linearmente independentes.

# Definição

Sejam  $k, n \in \mathbb{N}$ ,  $S \leq \mathbb{R}^n$  e  $v_1, \ldots, v_k \in S$ . A sequência  $(v_1, \ldots, v_k)$  diz-se uma base de S se:

- $v_1, \ldots, v_k$  são k vetores linearmente independentes.

Notar que, de acordo com esta definição, não existe uma base do subespaço trivial  $\{(0,\dots,0)\}$ .

- Base  $\rightleftharpoons$  Conjunto maximal de vetores linearmente independentes
  - Conjunto gerador minimal

#### Base e dimensão

#### **EXEMPLOS 11**

Será ((1,0,-2),(1,1,-1),(-1,-1,3)) uma base de  $\mathbb{R}^3$ ?

Para isso é necessário que o sistema

$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ -2 & -1 & 3 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

seja possível, para quaisquer  $(a,b,c) \in \mathbb{R}^3$ , e o sistema homogéneo associado

$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ -2 & -1 & 3 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

seja determinado. Equivalentemente, é necessário que o sistema

$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ -2 & -1 & 3 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

seja possível e determinado, para quaisquer  $(a, b, c) \in \mathbb{R}^3$ .

#### Base e dimensão

## **EXEMPLOS 12**

Será  $((0, \frac{1}{2}, 1, 1), (-1, 0, 1, 2))$  uma base do subespaço

$$S = \{(a, b, c, d) \in \mathbb{R}^4 \mid a - 2b + c = 0, -d + c = a\}$$
?

 $S = \{(c-d, c-\frac{1}{2}d, c, d) \mid d, c \in \mathbb{R}\}$ , pelo que a resposta é afirmativa se o sistema

$$\begin{bmatrix} 0 & -1 \\ \frac{1}{2} & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} c - d \\ c - \frac{1}{2}d \\ c \\ d \end{bmatrix}$$

for possível e determinado, para quaisquer  $c, d \in \mathbb{R}$ .

$$\begin{bmatrix} 0 & -1 & | & c-d \\ \frac{1}{2} & 0 & | & c-\frac{d}{2} \\ 1 & 1 & | & c \\ 1 & 2 & | & d \end{bmatrix} \xrightarrow{\begin{subarray}{c} \textbf{condensação} \\ \textbf{Gauss-Jordan} \end{subarray} } \begin{bmatrix} 1 & 0 & | & 2c-d \\ 0 & 1 & | & -c+d \\ 0 & 0 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

Confirma-se que o sistema é possível e determinado, pelo que qualquer vetor de  $\mathcal S$  escreve-se de forma única como combinação linear dos vetores  $(0,\frac12,1,1)$  e (-1,0,1,2).

## Proposição

Sejam  $k, n \in \mathbb{N}$ ,  $S \subseteq \mathbb{R}^n$  e  $v_1, \dots, v_k \in S$ . As seguintes condições são equivalentes:

- $(v_1, \ldots, v_k)$  é uma base de S;
- qualquer vetor de S escreve-se de forma única como combinação linear de  $v_1, \ldots, v_k$ .

Se  $(v_1, \ldots, v_k)$  é uma base de S, e  $v \in S$ , os coeficientes  $\alpha_1, \ldots, \alpha_k$  da combinação linear  $v = \alpha_1 v_1 + \cdots + \alpha_k v_k$  dizem-se as coordenadas de v na base  $(v_1, \ldots, v_k)$ .

Será 
$$((-1,1,2), (0,-1,-1), (0,-1,0), (2,2,1))$$
 uma base de  $\mathbb{R}^3$ ?

Para isso é necessário que o sistema

$$\begin{bmatrix} -1 & 0 & 0 & 2 \\ 1 & -1 & -1 & 2 \\ 2 & -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

seja possível e determinado, para qualquer  $(a, b, c) \in \mathbb{R}^3$ .

Como o número de incógnitas é superior ao número de linhas da matriz simples, o sistema não é possível e determinado.

- ightharpoonup Se o sistema for impossível, então os vetores dados não geram  $\mathbb{R}^3$ .
- $\rightharpoonup$  Se o sistema for posível, então não é determinado, pelo que os vetores não são linearmente independentes.

Para qualquer  $n \in \mathbb{N}$ , uma base de  $\mathbb{R}^n$  tem exatamente n vetores.

## Proposição

Seja S um subespaço vetorial de  $\mathbb{R}^n$ . Então, as bases de S têm todas o mesmo número de elementos.

## Definição

Sendo  $\mathcal S$  um subespaço vetorial de  $\mathbb R^n$ , chama-se dimensão de  $\mathcal S$  ao número de vetores de uma base de  $\mathcal S$ .

Se  $S = \{(0, ..., 0)\}$ , então a dimensão de S é 0.

A dimensão de S representa-se por  $\dim S$ 

Repare-se que em  $\mathbb{R}^n$ , com  $n \in \mathbb{N}$ , um vetor  $(x_1, \dots, x_n)$  pode-se escrever na forma

$$(x_1,\ldots,x_n)=x_1(1,0,\ldots,0)+\cdots+x_n(0,\ldots,0,1)$$

e os coeficientes  $x_1, x_2, \dots x_n$  são únicos.

A sequência de *n* vetores

$$((1,0,\ldots,0),\ldots,(0,\ldots,0,1))$$

é uma base de  $\mathbb{R}^n$ , usualmente designada por base canónica, e, consequentemente,  $\dim \mathbb{R}^n = n$ .

Os coeficientes  $x_1, x_2, \dots x_n$  são as coordenadas de  $(x_1, \dots, x_n)$  na base canónica.

Um subespaço de  $\mathbb{R}^n$  de dimensão 1 diz-se uma reta. Um subespaço de dimensão 2 diz-se um plano. Um subespaço de dimensão n-1 diz-se um hiperplano.

As colunas de uma matriz de tipo  $m \times n$  podem ser encaradas como sendo n vetores do espaço  $\mathbb{R}^m$ :

$$\begin{bmatrix} a_{1\,1} & a_{1\,2} & \dots & a_{1\,n} \\ a_{2\,1} & a_{2\,2} & \dots & a_{2\,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m\,1} & a_{m\,2} & \dots & a_{m\,n} \end{bmatrix} = [C_1 C_2 \cdots C_n]$$

onde

$$C_{1} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \qquad C_{2} = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \quad \dots \quad , C_{n} = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix},$$

Seja AX = B um sistema de m equações em n incógnitas. Então,

$$AX = B \Leftrightarrow [C_1 \cdots C_n] \begin{vmatrix} x_1 \\ \vdots \\ x_n \end{vmatrix} = B \Leftrightarrow x_1 C_1 + \cdots + x_n C_n = B$$

Transformações elementares numa matriz não alteram o número de colunas nem o número de linhas linearmente independentes.

O número de linhas linearmente independentes de uma matriz A é igual ao número de colunas linearmente independentes de A e igual a r(A).

# Proposição

Seja AX = B um sistema de m equações lineares em n incógnitas.

- AX = B é possível se e só se B é combinação linear das colunas de A, isto é, se e só se r(A) = r([A|B]).
- 2 AX = 0 é determinado se e só se as colunas de A são linearmente independentes, isto é, se e só se r(A) = n.