

Institut für Experimentalphysik der Technischen Universität Graz

&

Institut für Physik der Universität Graz

LABORÜBUNGEN 2: ELEKTRIZITÄT, MAGNETISMUS, OPTIK

Übungstitel:	Os	zillograph				
Betreuer:						
Gruppennun	nmer:	41		Vorbereitung Durchführt	ung Protokoll	Σ
Name:	Tanja Maier, Johannes Winkler					
Kennzahl:	033 678 Ma		rikelnummer:	11778750, 00760897		7
Datum:	16. Oktober 2020			WS	20	

1 Aufgabenstellung

2 Grundlagen und Versuchsaufbau

2.1 Oszilloskop

Ein Oszilloskop ist ein Gerät aus der Elektronik, mit dem man Spannungsschwankungen innerhalb zeitlicher Abläufe messen kann. Auf der x-Achse ist dabei die Zeit und auf der y-Achse die jeweilige Spannung abzulesen.

Das Prinzip dahinter ist auf die Bewegung von Teilchen in einem elektrischen Feld und somit auf die Braun'sche Röhre zurückzuführen.

Bei der Braun'schen Röhre (= Kathodenstrahlröhre) kann durch zwei parallel ausgerichtete Metallplatten Elektronenstrahl quer zu seiner Flugrichtung beeinflusst werden. Die Elektronen werden von der Kathode emittiert und durch eine angelegte Spannung zur Anode A hin beschleunigt.

Um den Strahl zu fokussieren werden zwei elektrische Linse F und die angelegte Fokussierspannung U_F genutzt.

Zur Ablenkung des Elektronenstrahls werden dann vier weitere Platten nach der Anode angebracht. Diese werden zu zweit platziert und mit einer horizontalen Kippspannung (U_x) bzw. einer vertikalen Messspannung (U_y) versehen. Damit werden die Elektronen abgelenkt und treffen auf den Leuchtschirm am Ende der Röhre.

Mithilfe der Spannung zwischen Kathode K und Wehnelt-Zylinder WZ kann dann noch die Helligkeit des am Schirm abgebildeten Leuchtpunktes variiert werden. [1] [6]

2.2 RLC-Stromkreis

Ein RLC-Stromkreis besteht aus einem Kondensator mit der Kapazität C, einer Spule mit Induktivität L und einem Widerstand mit der Größe R. Alle Bauteile sind hierfür in Reihe geschalten und somit gilt die Kirchhoff'sche Maschenregel

$$U_C + U_L + U_R = 0 \tag{1}$$

 U_C ist dabei die Spannung am Kondensator, u_L die Spannung an der Spule und u_R die Spannung am Widerstand. Durch Ersetzen von

$$U_L = L \cdot \frac{dI}{dt}$$
$$U_R = R_i \cdot I$$

sowie differenzieren der Formel (1) und ersetzen von

$$I = i_C = C \cdot \frac{dU}{dt}$$

erhält man die Differentialgleichung des Schwingkreises

$$\frac{d^2I}{dt^2} + \frac{R}{L} \cdot \frac{dI}{dt} + \frac{1}{L \cdot C} \cdot I = 0 \tag{2}$$

Durch Lösung dieser Differentialgleich
ng ergeben sich im wesentlichen 3 mögliche Fälle

- 1. $R^2 \cdot C 4 \cdot L > 0$: 2 Reelle Lösungen, Kriechfall
- 2. $R^2 \cdot C 4 \cdot L = 0$: 1 reelle Lösung, aperiodischer Grenzfall
- 3. $R^2 \cdot C 4 \cdot L < 0$: 2 konjugiert-komplexe Lösung, Schwingfall

3 Geräteliste

Tabelle 1: Liste der verwendeten Geräte

Bezeichnung	Hersteller	Gerätenummer	Unsicherheit
Frequenzgenerator	Wavetek	0161674	
Trafo			
Oszilloskop	RIGOL	DS1ET204711289	
Widerstand 1 k Ω	Rosenthal		$\pm 1\%$
Widerstand 200 Ω	Rosenthal		$\pm 1\%$
Spule $n = 500$		843/3	
Kondensator 1 μ F	Philips		

4 Durchführung und Messwerte

5 Auswertung

6 Zusammenfassung und Diskussion

7 Literaturverzeichnis

- [1] https://www.leifiphysik.de/elektrizitaetslehre/bewegte-ladungen-feldern/ausblick/braunsche-roehre
- [2] https://www.youtube.com/watch?v=TZQoyem7Jzo
- [3] https://www.rahner-edu.de/grundlagen/signale-richtig-verstehen/schwingkreise/
- [4] https://itp.tugraz.at/wiki/index.php/RLC-Serienschwingkreis
- [5] https://www.leifiphysik.de/elektrizitaetslehre/kondensator-kapazitaet/grundwissen/ein-und-ausschalten-von-rc-kreisen
- [6] Unterlagen zum Versuch aus dem TeachCenter der TU Graz