I. Grundlagen der Differenzialrechnung

1. Ableitungen und Ableitungsregeln

Funktionsbegriff

Defintion Funktion:

Eine Funktion f ist eine Abbildung, bei der jedem Wert der Defintionsmenge $\mathbb D$ ein Wert aus der Wertemenge $\mathbb W$ zugeordnet wird. Man schreibt kurz: $f:\mathbb D o \mathbb W$.

Funktionen können mit Hilfe

- einer Wertetabelle (nur ausgewählte Werte)
- der Zuordnungsvorschrift $x \to f(x)$
- der Funktionsgleichung $f(x) = \dots$
- eines Funktionsgraphen beschrieben weden.

```
In [4]: import numpy as np
        import matplotlib.pyplot as plt
        from matplotlib.ticker import AutoMinorLocator, MultipleLocator, FuncFormatt
        # Defintionsmenge und Funktion
        a= -5.1 # untere x-Intervallgrenze
        b= 5.1 # obere x-Intervallgrenze
        c = -5.1# untere y-Intervallgrenze
        d = 5.1 # obere y-Intervallgrenze
        x = np.linspace(a, b, 1000)
        y1= np.sin(1/x**2)
        # Einstellung des Graphen
        fig=plt.figure(figsize=(8,8))
        ax = fig.add_subplot(1,1,1, aspect =1)
        # Definiton der Haupteinheiten, reele Zahlen ohne die 0
        def major tick(x, pos):
           if x==0:
                return ""
            return int(x)
        # Achsenskalierung
        ax.xaxis.set major locator(MultipleLocator(1))
        ax.xaxis.set minor locator(AutoMinorLocator(2))
        ax.yaxis.set_major_locator(MultipleLocator(1))
        ax.yaxis.set minor locator(AutoMinorLocator(2))
```

```
ax.xaxis.set_major_formatter(FuncFormatter(major_tick))
ax.yaxis.set_major_formatter(FuncFormatter(major_tick))
# Position der Achsen im Schaubild
ax.spines[['top','right']].set_visible(False)
ax.spines[['bottom','left']].set_position('zero')
# Pfeile für die Achsen
ax.plot((1),(0), ls="", marker= ">", ms=7, color="k", transform=ax.get_yaxis
ax.plot((0),(1), ls="", marker= "^", ms=7, color="k", transform=ax.get_xaxis
# Achsenlänge und Beschriftung
ax.set_xlim(a,b)
ax.set_ylim(c, d)
ax.set_xlabel("x", loc="right")
ax.set_ylabel("f(x)", loc="top", rotation=0)
# Kästchen
ax.grid(linestyle="-", which="major", linewidth=0.7, zorder=-10)
ax.grid(linestyle="-", which="minor", linewidth=0.5, zorder=-10)
# Plot der Funktion
ax.plot(x,y1, zorder=10)
#plt.show()
```

Out[4]: [<matplotlib.lines.Line2D at 0x11f710850>]

Defintion Intervalle:

$$[a;b]:=\{x\in\mathbb{R}|a\leq x\leq b\}$$

$$[a;b) = \ \]a;b[\ \ := \{x \in \mathbb{R} | a < x < b\}$$

$$[a;b] = \quad]a;b] \quad := \{x \in \mathbb{R} | a < x \leq b \}$$

$$[a;b) = [a;b[\ := \{x \in \mathbb{R} | a \leq x \geq b\}]$$

Ableitung einer Funktion

Geogebra Differenzenquotient

Defintion Ableitung einer Funktion (h-Methode):

Gegeben: Eine Funktion f mit Defintionsmenge \mathbb{D}_f . Der Quotient $\frac{f(a+h)-f(a)}{h}$ ist der Differenzenquotient. Dieser beschreibt das Änerungsverhalten in einem Bereich um die Stelle $a\in\mathbb{D}\mathrm{f}$

Gibt es einen Wert, wenn h gegen 0 strebt (h
eq 0), $\lim_{h o 0}rac{f(a+h)-f(a)}{h}$, so nennt man **f an**

der Stelle a differenzierbar und nennt den Grenzwert "Ableitung von f an der Stelle a". Man schreibt kurz:

$$f'(a) = \lim_{h o 0} rac{f(a+h) - f(a)}{h}$$

Der Graph der Funktion f hat an der Stelle a die Steigung f'(a). Ist die Funktion f an jeder Stelle \$a \in \matbb{D} differenzierbar, so nennt man f differenzierbar.

Defintion Ableitung einer Funktion (x-Methode):

Gegeben: Eine Funktion f auf dem Intervall I. Der Quotient $rac{f(x)-f(a)}{x-a}$ ist der Differenzenquotient. Dieser beschreibt das Änerungsverhalten in einem Bereich um die Stelle $a\in\mathbb{D}\mathrm{f}$

Gibt es einen Wert, wenn x gegen a strebt $(x \neq a)$, $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$, so nennt man **f an** der Stelle a differenzierbar und nennt den Grenzwert "Ableitung von f an der Stelle a". Man schreibt kurz:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Der Graph der Funktion f hat an der Stelle a die Steigung f'(a). Ist die Funktion f an jeder Stelle $a\in\mathbb{D}$ differenzierbar, so nennt man f differenzierbar.

Wichtige Ableitungen, die man kennen muss:

1.
$$f(x)=c, \quad c\in \mathbb{R}$$
 $f'(x)=0$ $f(x)=\sqrt{x}=x^{rac{1}{2}}, \quad x\in \mathbb{R}$ 2. $f(x)=rac{1}{2\sqrt{x}}=rac{1}{2}x^{-rac{1}{2}}, \quad x\in \mathbb{R}\setminus \{0\}$ 3. $f(x)=rac{1}{x}=x^{-1} \quad x\in \mathbb{R}\setminus \{0\}$

4.
$$f(x) = \sin(x) \quad x \in \mathbb{R}$$

$$f'(x) = \cos(x)$$

5.
$$f(x) = \cos(x) \quad x \in \mathbb{R}$$
 $f'(x) = -\sin(x)$

Ableitungsregeln:

Gegeben:

- ullet auf $I_f = ig[a_f; b_f ig]$ differenzierbare Funktion f
- ullet auf $I_g = ig[a_g; b_g ig]$ differenzierbare Funktion g
- ullet auf $I_h=[a_h;b_h]$ differenzierbare Funktion h
- $r\in \mathbb{R}\setminus\{0\}$
- c \$\in \mathbb{R}

Potenzregel:

$$f(x) = x^r$$

Es gilt: $f(x) = r \cdot x^{r-1}$

Faktorregel: $f(x) = c \cdot g(x)$

Es gitl: $f'(x) = c \cdot g'(x)$

Summenregel f(x)=g(x)+h(x)

Es gilt: f'(x) = g'(x) + h'(x)

Bemerkung: Überlegen Sie, wie sich die Potenzregel, Faktorregel und die Summenregel auf die Defintionsmenge der Ableitungsfunktion auswirken.

Tangente

Tangente berechnen:

Gegeben: Funktion f mit Graph G_f

Gesucht: Tangentengleichung $t: \quad y = mx + c$ der Tangente an G_f in Punkt P(a|f(a)

Lösung:

- Bestimme Steigung m der Tangenten durch $m=f^\prime(a)$
- Bestimme c durch Punktprobe mit P.

Steigungswinkel der Tangenten bei a

Winkel α , den die Tangente mit der Horizontalen einschließt.

Es gilt:
$$\tan(\alpha) = f'(a)$$

Beachte:

- Hat die Tangente eine negative Steigung, so hat die Tangente auch einen negativen Steigungswinkel α . Für den Steigungswinkel α gilt: $-90^\circ \le \alpha \le 90^\circ$
- Zwei Graphen G_f und G_h zweier Funktionen f und g berühren sich in eine Punkt P(a|f(a)), bedeutet:
 - f(a)=g(a)
 - f'(a)=g'(a)

Übungen im Buch

- Seite 12 Nr. 2 (3 Aufgaben)
- Seite 12 Nr. 3 ()
- Steite 13 Nr. 9 (3 Aufgaben), 10 und 13
- Für die Profis Nr 15 und 16