Taller Aritmética Digital y Lógica Digital 1

Luis Enrique Perez Señalin

<2024-06-05 mié>

Outline

Ejercicios

2 Respuestas

- A partir de la tabla de verdad de la compuerta OR exclusiva de dos entradas obtenga la función booleana como SOP (min-términos).
- Para el ejercicio anterior obtenga la representación en POS (max-términos).
- ¿Puede representar el circuito sólo con compuertas NAND?
- Simplificar $F = ACD + \bar{A}BCD$. Resp:CD(A + B)
- A partir de la Tabla 1 de verdad obtener la representación en SOP.
- Usando Mapas de Karnaugh obtenga la simplificación del circuito de la Tabla 1

Ejercicio 1

x1	x2	x1(+)x2
0	0	0
0	1	1
1	0	1
1	1	0

SOP

$$(\bar{x1}*x2) + (x1*\bar{x2})$$

Ejercicio2 POS

$$F(x1, x2) = (x1 + x2) * (\bar{x1} + \bar{x2})$$

$$F = ACD + \bar{A}BCD$$
$$= CD(A + \bar{A}B)$$
$$= CD(A + B)$$

$$F = ABC + A\bar{B}\bar{A}\bar{C}$$

$$= ABC + A\bar{B}(\overline{A+C})$$

$$= ABC + A\bar{B}(A+C)$$

$$= ABC + A\bar{B} + AC\bar{B}$$

$$= AC(B+\bar{B}) + A\bar{B}$$

$$= AC + A\bar{B}$$

$$= A(C+\bar{B})$$

$$F(x1,x2) = \bar{X1}X2 + X1\bar{X2}$$

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1 0	

Tabla

A\BC	00	01	11	10
0			1	1
1				1

$$F = \bar{A}B + B\bar{C} + A\bar{B}C$$