Connecting LANs, Backbone Networks, and Virtual LANs

Connecting Devices

- In computer network, we divide connecting devices into five different categories based on the layer in which they operate in a network.
- These are:
 - Hubs (active or passive)
 - Bridges
 - Two-Layer or Three layer Switches
 - Routers
 - Gateways

Five categories of connecting devices

Application

Transport

Network

Data link

Physical

Application

Transport

Network

Data link

Physical

Hubs

- This device operates only in the physical layer.
- Signals carry information can travel a fixed distance before attenuation endangers the integrity of the data
- Repeater: Receives a signal and, before it becomes too weak or corrupted, *regenerates and retimes* the original bit patterns.
 - The repeater the send the refreshed signal
- Nowadays, Ethernet LANs use star topology
 - Connecting device through which all the devices are connected is called hub.
 - This hub is a repeater and a multiport device

A repeater connecting two segments of a LAN

A repeater forwards every frame; it has no filtering capability.

A repeater is a regenerator, not an amplifier.

Function of a repeater

a. Right-to-left transmission.

b. Left-to-right transmission.

A hierarchy of hubs

Recap

Originally, Ethernet was a broadcast technology

Bridge

- A bridge operates at data link layer.
- A bridge is a repeater, with add on functionality of filtering content by reading the MAC addresses of source and destination.
- It is also used for *interconnecting two LANs* working on the same protocol.
- It has a single input and single output port, thus making it a 2 port device.

The Case for Bridging

- Need a device that can bridge different LANs
 - Only forward packets to intended recipients

A bridge connecting two LANs

Address	Port
71:2B:13:45:61:41	1
71:2B:13:45:61:42	1
64:2B:13:45:61:12	2
64:2B:13:45:61:13	2

Bridge Table

Bridging the LANs

- Question: could the whole Internet be one bridging domain?
- Tradeoff: bridges are more complex than hubs
 - Physical layer device vs. data link layer device
 - Need memory buffers, packet processing hardware, routing tables

Bridge Internals

- Bridge is intelligent, only forwards packets to the correct output
- Bridges are high performance, full N x line rate is possible

Bridges

Original form of Ethernet switch

Cannot multiple IEEE 200 I A No at large 2

- 1. Forwarding of frames
- 2. Learning of (MAC) Addresses
- 3. Spanning Tree Algorithm (to handle loops)
 - No hardware of software changes on hosts/hubs
- Should not impact existing LAN operations

 Hub

Frame Forwarding Tables

Each bridge maintains a *forwarding table*

Frame Forwarding in Action

- Assume a frame arrives on port 1
- If the destination MAC address is in the forwarding table, send the frame on the correct output port
- If the destination MAC isn't in the forwarding table, broadcast the frame on all ports except 1

Learning Addresses

- Manual configuration is possible, but...
 - Time consuming
 - Error Prone
 - Not adaptable (hosts may get adde
- Instead, learn addresses using a s

Delete old entries after a timeout

Look at the source of frames that arrive on each

	MAC Address	Port	Age
00:00:00:00:AA	00:00:00:00:00:AA	1	0 minutes
	00:00:00:00:00:BB	2	0 minutes

Port 1 Port 2

00:00:00:00:00:BB

Complicated Learning Example

- Src=AA, Dest=FF>
- Src=CC, Dest=AA>
- Src=EE, Dest=CC>

The Danger of Loops

- Src=AA, Dest=DD>
- This continues to infinity
 - How do we stop this?
- Remove loops from the topology
 - Without physically unplugging cables
- 802.1 uses an algorithm to build and maintain a spanning tree for routing

Spanning Tree Definition

- A subset of edges in a graph that:
 - Span all nodes

Definitions

- Bridge ID (BID) = <Random Number>
- Root Bridge: bridge with the lowest BID in the tree
- Root Path Cost: cost (in hops) from a port of a transmitting bridge to the root
- Port ID: Each port on a bridge has a unique Port ID
- Root Port: The port having the least root path cost is called root port. This port forwards to the root on each bridge
- Designated Bridge:
 - Among several bridges connected to LAN, one of the bridges is the designated bridge for forwarding the data from that LAN
 - The bridge on a LAN that provides the minimal cost path to the root is considered as a designated bridge.
 - The designated bridge on each LAN is unique
 - If more than one bridges have the same root path cost, the bridge with lower identifier is chosen as the designated bridge.
- Designated port: The port of the designate bridge that connects to the LAN

Bridge Protocol Data Unit (BPDU)

- A configuration BPDU generated by a bridge contains:
 - Bridge identifier (B-ID)
 - Root Identifier (R-ID)
 - Root Path cost(RPC)
 - Port Identifier(P-ID)
 - Other information

802.1 Spanning Tree Approach

- 1. Elect a bridge to be the root of the tree
- 2. Every bridge finds shortest path to the root
- 3. Union of these paths becomes the spanning tree
- Bridges exchange Configuration Bridge Protocol
 Data Units (BPDUs) to build the tree
 - Identification of the root bridge
 - Identification of the root ports
 - Selection of the designated bridges and ports for every LAN

Example: Construction of the spanning tree

Selection of the root bridge

- Each bridge asserts that it is the root bridge by sending a BPDU on all its ports.
- If a bridge receives a configuration BPDU with lower root bridge identity than its own identity
 - It stops sending its BPDUs and
 - Forwards the received BPDU on its other ports with the following changes:
 - Bridge puts its own B-ID
 - Bridge puts own port identity P-ID
 - The root path cost is incremented by the cost of the port through which the BPDU is received
 - The root bridge identity is retained as it is.
- Else
 - It continues to send its own BPDUs

Example

Identification of the root ports

- Every bridge other than the root bridge determines its root port.
 - This port is with the lowest root path cost

Steps to find:

- The BPDUs generated by the root bridge are forwarded by all other bridges on their port by necessary changes (*B-ID*, *P-Id*, *RPC*)
 - The root path cost is incremented by the cost of the port through which BPDU is received.
- Each bridge determines which of its port has the lowest root path cost and that port is selected as the root port.
 - If there is a tie, the port with with a lower port-ID is selected as root port.
- The root ports are put in the forwarding mode
- Other than root ports are put in blocked mode.

Example: Root Ports

Selection of the designated bridges and designated ports

- A bridge is designated for each LAN to carry its data frames to other LANs.
- If there are several bridges connected to a LAN,
 - the bridge that has lowest RPC is selected as a designated bridge.
 - If RPC is same then the lowest B-ID bridge is selected as a designated bridge
 - The port connected to the designated bridge is the designated port.

Example: Designated Bridge

Error situation

- Normally the root bridge send a configuration BPDU in every 1 to 10 seconds.
- If the BPDU is not received within specified time there are two possibilities.
 - The root bridge has failed
 - Whole spanning tree is rebuilt.
 - The designated bridge has failed
 - If an alternative bridge is available which can support the affected LAN, it will take over as designated bridge.
 - Here redundancy comes handy.

Bridges vs. Switches

- Bridges make it possible to increase LAN capacity
 - Reduces the amount of broadcast packets
 - No loops
- Switch is a special case of a bridge
 - Each port is connected to a *single* host
 - Either a client machine
 - Or another switch
 - Links are full duplex
 - Simplified hardware: no need for CSMA/CD!
 - Can have different speeds on each port

Switching the Internet

- Capabilities of switches:
 - Network-wide routing based on MAC addresses
 - Learn routes to new hosts automatically
 - Resolve loops
- Could the whole Internet be one switching domain?

NO

Backbone Networks

- A backbone network allows several LANs to be connected.
- In a backbone network, no station is directly connected to the backbone;
- the stations are part of a LAN, and the backbone connects the LANs.
- The backbone can be of types
 - **Bus Backbone**

 - Star Backbone Connecting Remote LANs

In a bus backbone, the topology of the backbone is a bus.

Bus backbone

Note

- In a star backbone, the topology of the backbone is a star
- The backbone is just one switch.

Star backbone

Connecting remote LANs with bridges

Note

A point-to-point link acts as a LAN in a remote backbone connected by remote bridges.

Virtual LANs

We can roughly define a virtual local area network (VLAN) as a local area network configured by software, not by physical wiring.

A switch connecting three LANs

A switch using VLAN software

Switch with VLAN software

Two switches in a backbone using VLAN software

Note

VLANs create broadcast domains.