

ALGORITHMEN UND DATENSTRUKTUREN

ÜBUNG 10: SUCHEN & KORRIGIEREN, AVL-BÄUME

Eric Kunze

eric.kunze@mailbox.tu-dresden.de

TU Dresden, 09.01.2020

ALGORITHMEN UND DATENSTRUKTUREN

Was bisher geschah ...

- Syntax von Programmiersprachen (Syntaxdiagramme, EBNF, Fixpunktsemantik)
- ▶ Programmieren in *C* Arrays, Pointer, Listen, Bäume
- grundlegende Algorithmen in der Informatik
 - Sortieren mit Quicksort und Heapsort
 - Suchen in Texten (KMP-Algorithmus)

ALGORITHMEN UND DATENSTRUKTUREN

Was bisher geschah ...

- Syntax von Programmiersprachen (Syntaxdiagramme, EBNF, Fixpunktsemantik)
- ▶ Programmieren in *C* Arrays, Pointer, Listen, Bäume
- grundlegende Algorithmen in der Informatik
 - Sortieren mit Quicksort und Heapsort
 - Suchen in Texten (KMP-Algorithmus)

Was heute geschieht ...

- Wiederholung: Suche mit dem KMP-Algorithmus
- Fehlerkorrektur mit der Levenshtein-Distanz
- ► Balancieren von Bäumen (AVL-Bäume)

KMP-Algorithmus

KMP-ALGORITHMUS — DIE ZWEI-FINGER-METHODE

Die Methode beruht auf der Gleichung

Tab[i]
$$= \max \{-1\} \cup \{m \mid 0 \le m \le i - 1 \land b_0 \dots b_{m-i} = b_{i-m} \land b_{i-1} \land b_m \neq b_j\}$$
 (*)

Daraus ergibt sich nach Initialisierung von Tab[0] = -1 für jeden folgenden Eintrag Tab[i] folgendes Verfahren:

- linker Finger: wähle m < i in absteigender Reihenfolge (also i − 1, i − 2, ...), sodass Pat[i] ≠ Pat[m]
- ▶ Parallelverschiebung beider Finger bis zum linken Rand: wenn Pat[0 ...m-1] = Pat[i-m ...i-1], dann fülle Tab[i] = m.
- wenn keine passende Position m gefunden werden kann, dann fülle Tab[i] = −1.

Teil (a)

Pattern: abbabbaa

Teil (a) Pattern: abbabbaa

Position	0	1	2	3	4	5	6	7
Pattern	a	b	b	a	b	b	а	а
Tabelle	-1	0	0	-1	0	0	-1	4

Teil (a)

Pattern: abbabbaa

Position	0	1	2	3	4	5	6	7
Pattern	а	b	b	а	b	b	а	а
Tabelle	-1	0	0	-1	0	0	-1	4

Teil (b)

Position	0	1	2	3	4	5
Pattern	b					С
Tabelle	-1	?	?	0	?	3

Teil (a) Pattern: abbabbaa

Position	0	1	2	3	4	5	6	7
Pattern	a	b	b	а	b	b	а	а
Tabelle	-1	0	0	-1	0	0	-1	4

Teil (b)

Position	0	1	2	3	4	5
Pattern	b	а	b	а	b	С
Tabelle	-1	?	?	0	?	3

- ▶ Pat[0 ... 2] = Pat[2 ... 4] wegen Tab[5] = 3 (Zyklenmethode), d.h. Pat[2] = Pat[0] = Pat[4] = b
- wegen Tab[3] = 0 ist Pat[3] ≠ Pat[0] = b und wegen Tab[5] = 3 ist Pat[3] ≠ Pat[5] = c (Zwei-Finger-Methode bzw. Gleichung (*)) ⇒ Pat[3] = Pat[1] = a

Levenshtein-Distanz

LEVENSHTEIN-DISTANZ

Kosten zur Überführung eines Wortes $w = w_1 \dots w_n$ in ein Wort $v = v_1 \dots v_k$; schreibe $d(w_1 \dots w_j, v_1 \dots v_i) = d(j, i)$.

LEVENSHTEIN-DISTANZ

Kosten zur Überführung eines Wortes $w = w_1 \dots w_n$ in ein Wort $v = v_1 \dots v_k$; schreibe $d(w_1 \dots w_j, v_1 \dots v_i) = d(j, i)$.

$$d(0,i) = i$$

$$d(j,0) = j$$

$$d(j,i) = \min \{d(j,i-1) + 1, d(j-1,i) + 1, d(j-1,i-1) + \delta_{j,i}\}$$

für alle $1 \le j \le n$ und alle $1 \le i \le k$ wobei

$$\delta_{j,i} = \begin{cases} 1 & \text{wenn } w_j \neq v_i \\ 0 & \text{sonst} \end{cases}$$

LEVENSHTEIN-DISTANZ

Kosten zur Überführung eines Wortes $w = w_1 \dots w_n$ in ein Wort $v = v_1 \dots v_k$; schreibe $d(w_1 \dots w_j, v_1 \dots v_i) = d(j, i)$.

$$\begin{split} d(0,i) &= i \\ d(j,0) &= j \\ d(j,i) &= \min \left\{ d(j,i-1) + 1, d(j-1,i) + 1, d(j-1,i-1) + \delta_{j,i} \right\} \end{split}$$

für alle $1 \le j \le n$ und alle $1 \le i \le k$ wobei

$$\delta_{j,i} = \begin{cases} 1 & \text{wenn } w_j \neq v_i \\ 0 & \text{sonst} \end{cases}$$

Anschaulich: Überlagerung durch Pattern → Pfeile zeigen "Ursprung" des Minimums an

$$w_j \neq v_i$$
: $\begin{vmatrix} +1 & +1 \\ +1 & ? \end{vmatrix}$ $w_j = v_i$: $\begin{vmatrix} +0 & +1 \\ +1 & ? \end{vmatrix}$

d(j,i)		D	i	S	t	а	n z
	0 →	1 →	2 →	3 →	4 →	. 5 →	6 → 7
D	1	0 →	1 →	2 →	3 →	4 →	5 → 6
i	2	1	0 →		2 →		
n	3	<u>}</u>	1				3 → 4
S	4	↓ 3	<u>†</u>	1 →		. 3 →	
t	5	4	↓ 3	↓ \ 2		2 →	3 → 4
а	6	↓ 5	4	↓ 3	Ż		2 -> 3
S	[→] 7	6	↓ \ 5	↓ 4	→ 3	↓ ↓ 2	2 → 3

d(j,i)		D	i	S	t	a	n z
	0 →	1 →	2 →	3 →	4 →	5 →	6 → 7
D	1	0 →	1 →	2 →	3 →	4 →	5 → 6
i	2	1	0 →	1 →	2 →	3 →	4 → 5
n	3	2	1	1 →		3	
S	4	3	2	100	2 →		· ·
t	5	4	3	2	1 → ↓ ¾	2 →	3 → 4
a	6	5	4 ↓ √	* 3 ↓	Ż	1 → ↓ ¼	2 → 3
S	7	ě	5 1	4	↓ 3	↓ ↓ 2	2 → 3

d(Dinstas, Distanz) = 3

d(j,i)		D	i	S	t	a	n z
	0 →	1 →	2 →	3 →	4 →	5 →	6 → 7
D	1	0 →	1 →	2 →	3 →	4 →	5 → 6
i	2	1	0 →		2 →		
n	3	2	1	1 →		- 3	
s	4	3	2	100		3 →	4 4
t	5	4	↓ 3	2	1 →	2 →	3 → 4
a	6	<u>\$</u>	4	↓ 3	2		2 → 3
S	† 7	6	↓ \ 5	↓ 4	↓ 3	↓ ↓ 2	2 -> 3

d(Dinstas, Distanz) = 3

d(j,i)		D	i	S	t	a	n z
	0 →	1 →	2 →	3 →	4 →	5 →	6 → 7
D	1	0 →	1 →	2 →	3 →	4 →	5 → 6
i	2	1	0 →	1 →	2 →	3 →	4 → 5
n	3	2	1			3	
S	4	3	2	100	2 →	3 <i>→</i>	
t	5	4	3	2	1 →	2 →	3 → 4
a	6	<u>\$</u>	4	3	2	1 →	2 -> 3
S	† 7	6	↓ \ 5	↓ 4	↓ 3	↓ <u>↓</u> <u>↓</u> <u>2</u>	2 -> 3

d(Dinstas, Distanz) = 3

Alignments mit minimaler Levenshtein-Distanz:

```
D i n s t a * s
| | | | | | | | |
D i * s t a n z
d i s
```

d(j,i)		S	С	h	ü	r	z e
	0 →	1 →	. 2 →	3 →	4 -	→ 5 →	6 → 7
b	1	1 →		3 →		5 →	
ü	2	↓ \ 2	2 →		3 -	4 →	5 → 6
r	3	3	3	3 <i>→</i>		3 →	4 → 5
S	↓ ↓ ↓ 4	3 →		↓ \ 4	4	↓	4 → 5
t	↓ 5	↓ ¾ 4	4 →	•	↓ \ 5	, ↓ \ 5	↓ ↓ 5 5
e	6	↓ ↓ 5	↓ ↓ 5	5 →		, ↓ <u>↓</u> 6	↓ \6 5

d(j,i)		S	С	h	ü	r	Z	е
	0 <i>→</i>	1 →	2 →	3 →	4 -	→ 5 →	6 →	7
_	1	7	7	7				_
b	1			3 →	4 -	→ 5 →	6 →	7
ü	2	2	2 →		3 -	4 →	5 →	6
r	3	3	3	3 <i>→</i>	↓ \ 4	3 →	4 →	5
S	↓ ¾ 4	3 <i>→</i>	↓ \ 4	↓ \ 4	4	↓ ↓ 4	4 →	5
t	↓ 5	↓ \ 4	4 →	↓ \ 5	5	5	5	5
е	↓ 6	↓ \ 5	↓	5 →	↓ ` 6	6 6	↓	5

 $d(b\ddot{u}rste, sch\ddot{u}rze) = 5$

d(j,i)		S	С	h	ü	r	Z	е
	0 →	1 →	2 →	3 →	4 -	→ 5 →	. 6 →	7
b	1 \	\(\frac{\frac{1}{1}}{1}\)	2 →	3 /		, \ → 5 →		_
D	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	↓ ¾	~ ∠ →	J →		<i>,</i> ⊃	0 →	,
ü	2	2	2 →	3	3 -		5 →	6
r	3	3 ×	33	3 <i>→</i>		3 →	4 →	5
S	4	3 →	4	↓ \ 4	4	4	4 →	5
t	5	4	4 →	↓ \ 5	5	5	5	5
е	↓ 6	↓ \ 5	↓	5 →		6 6	. ↓ <u>`</u> 6	5

 $d(b\ddot{u}rste, sch\ddot{u}rze) = 5$

d(j,i)		S	С	h	ü	r	z e	•
	0 →	1 →	2 →	3 →	4 →	• 5 →	6 → 7	7
b	1	1 →	2 →	3 →	4 <i>→</i>	5 →	6 → 7	,
ü	↓ \(\) 2	↓ \ 2		\searrow		• 4 →	5 → 6	
r	3	3		3 →	↓ \	ı	4 → 5	
s	↓ \ 4	3 →	↓ ∡	↓ \ 4	4	↓ \ 4		
t	↓ 5	↓ ¼ 4		<u>↓</u>			5 5	
e	6	↓ ↓ 5		_				
е	O	5	Э	$\supset \rightarrow$	О	О	0 5)

 $d(b\ddot{u}rste, sch\ddot{u}rze) = 5$

d(j,i)		S	С	h	ü	r	z e
	0 →	1 →	2 →	3 →	4 →	. 5 →	6 → 7
b	1	1 →	2 →	3 →	4 <i>→</i>	5 →	
ü	2	↓ ↓ 2		3	3 →	· 4 →	5 → 6
r	3	3	3	3 →		3 →	4 → 5
S	4	3 →			4	4	1 . 5
t	5	4	4 →	5	↓ \ 5	5	5 5
е	6	↓ ↓ 5	↓ \ 5	5 →	↓ \ 6	6 4	6 5

 $d(b\ddot{u}rste, sch\ddot{u}rze) = 5$ Anzahl der Backtraces = 3 * 2 = 6

AVL-Bäume

Wir betrachten einen Baum t und bezeichnen die *Schlüssel* an den Knoten n mit s(n).

Wir betrachten einen Baum t und bezeichnen die *Schlüssel* an den Knoten n mit s(n).

Suchbaum:

Wir betrachten einen Baum t und bezeichnen die *Schlüssel* an den Knoten n mit s(n).

Suchbaum:

Die *Höhe* des Baumes bezeichnen wir mit h(t). Wir ordnen jedem Knoten n einen *Balancefaktor* b(n) zu:

$$b(n) \coloneqq h(R) - h(L)$$

Wir betrachten einen Baum t und bezeichnen die *Schlüssel* an den Knoten n mit s(n).

Suchbaum:

Die *Höhe* des Baumes bezeichnen wir mit h(t). Wir ordnen jedem Knoten n einen *Balancefaktor* b(n) zu:

$$b(n) \coloneqq h(R) - h(L)$$

AVL-Baum: Suchbaum mit $b(n) \in \{-1, 0, 1\}$

BALANCIEREN

- ► Einfügen eines neuen Schlüssels s
- Berechne Balancefaktoren auf dem Pfad von s zur Wurzel bis zum ersten Auftreten von ±2
- Balancierungsalgorithmus:

Achtung: Die Blätter sind eigentlich links oder rechts des Elternknotens angeordnet, nicht exakt darunter.

