Éric PARENT¹, Étienne RIVOT²

- ¹ Laboratoire de Gestion des Risques En Sciences de l'Environnement, École Nationale du Génie Rural des Eaux et des Forêts, Paris, France Eric.Parent@AgroParisTech.fr
- ² Laboratoire Écologie Halieutique, UMR 985 Écologie et Santé des Écosystèmes, Agrocampus Ouest, INRA, Rennes, France Etienne.Rivot@agrocampus-ouest.fr

Introduction to Hierarchical Bayesian Modeling for Ecological Data

Final draft, 18th of July 2012

Contents

Li	st of	Figures	3	xiii		
Li	st of	Tables		xvii		
Fo	orewo	\mathbf{rd}		xix		
Ι	Basic blocks of Bayesian modeling					
1	Bayesian hierarchical models in statistical ecology			3		
	1.1		nges for statistical ecology	4		
		1.1.1	The three steps of quantitative modeling	4		
		1.1.2	Complexity, uncertainty and observations	7		
			1.1.2.1 Increasing model realism	7		
			1.1.2.2 Different sources of uncertainty	8		
		1.1.3	Ecological models and statistics	9		
		1.1.4	Motivating examples	10		
	1.2		tional reasoning, graphs and hierarchical models	17		
		1.2.1	Think conditionally	17		
		1.2.2	Graphical models	18		
		1.2.3	Conditional reasoning and complexity	20		
		1.2.4	Observation processes	23		
		1.2.5	Hierarchical modeling	24		
	1.3		an inferences on hierarchical models	27		
		1.3.1	The intuition: What if a node is observed?	27		
		1.3.2	Getting the Bayesian posterior distribution	28		
	4.4	1.3.3	Capturing the posterior distribution in practice			
	1.4	What	can be found in this book?	34		
2	The	Beta-E	Binomial model	43		
	2.1	From a	a scientific question to a Bayesian analysis	44		
	2.2 What is modeling?					
		2.2.1	Model making	46		
		2.2.2	Discussing hypotheses	47		
		2.2.3	Likelihood	47		

	2.3	Think	conditionally and make a graphical representation	49		
	2.4		nce is the reverse way of thinking	50		
	2.5	Exper	tise matters	52		
	2.6	Encod	ing prior knowledge	53		
	2.7	The conjugate Beta pdf				
	2.8	Bayesian inference as statistical learning 50				
	2.9		an inference as a statistical tool for prediction .	57		
	2.10		ototic behavior of the Beta-Binomial model	59		
	2.11		eta-Binomial model with WinBUGS	60		
	2.12		er references	64		
3	The	basic I	Normal model	65		
	3.1	Salmo	n farm's pollutants and juvenile growth	65		
	3.2	A Nor	mal model for the fish length	66		
	3.3	Norma	al-Gamma as conjugate models to encode expertise	69		
		3.3.1	Encoding prior knowledge on μ	69		
		3.3.2	Encoding prior knowledge on σ	70		
		3.3.3	Bayesian updating of the mean	71		
		3.3.4	Joint prior for $(\mu^u, \mu^f, \mu^d, \sigma^{-2})$	74		
	3.4	Inferer	nce by recourse to conjugate property	75		
		3.4.1	Bayesian updating in a closed-form	75		
		3.4.2	Does the fish farm perturb salmons' growth? .	76		
	3.5	Bibliog	graphical notes	79		
	3.6	Furthe	er material	80		
4	Wor	king w	ith more than one Beta-Binomial element	83		
	4.1		re-mark-recapture analysis	84		
		4.1.1	Motivating example	84		
		4.1.2	Sampling distributions and likelihood	87		
		4.1.3	Prior distributions	89		
		4.1.4	Getting the posterior distribution	90		
	4.2	Succes	ssive removal analysis	91		
		4.2.1	Motivating example	91		
		4.2.2	Sampling distributions	92		
		4.2.3	Prior distributions	94		
		4.2.4	Full joint posterior	96		
	4.3	Testin	g a new tag for tuna	96		
		4.3.1	Motivating example	96		
		4.3.2	From the question to a Bayesian problem	97		
			4.3.2.1 Setting a prior pdf for π	97		
			4.3.2.2 Posterior for π	98		
		4.3.3	V 1	100		
			4.3.3.1 Bayes Factors	101		

Bayesian model averaging

143

6.4.4

7.2 Searching for a SR model 14 7.3 Which parameters? 15 7.3.1 Natural parameters 15 7.3.2 Working with management parameters 15 7.4 Changing the error term from logNormal to Gamma 15 7.5 From Ricker to Beverton-Holt 16 7.6 Model choice with informative prior 16 7.7 Conclusions and perspectives 16 8 Getting beyond regression models 16 8.1 Logistic and Probit regressions 16 8.1 Logistic and Probit regressions 16 8.1.1 Changes in salmon age at smoltification 16 8.1.2 Formalization: The Binomial-logit model 17 8.1.3 Bayesian inference 17 8.1.3.1 Noninformative Zellner priors 17 8.1.3.2 Posterior distributions 17 8.1.4 Model comparison 17 8.1.5 Discussion 18 8.1.5.1 Ecological implications of the results 18 8.2 Ordered Probit model 18	7	Non	linear n	nodels for stock-recruitment analysis	145
7.3 Which parameters? 15 7.3.1 Natural parameters 15 7.3.2 Working with management parameters 15 7.4 Changing the error term from logNormal to Gamma 15 7.5 From Ricker to Beverton-Holt 16 7.6 Model choice with informative prior 16 7.7 Conclusions and perspectives 16 8 Getting beyond regression models 16 8.1 Logistic and Probit regressions 16 8.1 Logistic and Probit regressions 16 8.1.1 Changes in salmon age at smoltification 16 8.1.2 Formalization: The Binomial-logit model 17 8.1.3 Bayesian inference 17 8.1.3.1 Noninformative Zellner priors 17 8.1.3.2 Posterior distributions 17 8.1.4 Model comparison 17 8.1.5 Discussion 18 8.2.0 Ordered Probit model 18 8.2.1 Skate species repartition 18 8.2.2 Formalization 18 8.2.3		7.1	Stock-r	recruitment motivating example	146
7.3.1 Natural parameters 15 7.3.2 Working with management parameters 15 7.4 Changing the error term from logNormal to Gamma 15 7.5 From Ricker to Beverton-Holt 16 7.6 Model choice with informative prior 16 7.7 Conclusions and perspectives 16 8 Getting beyond regression models 16 8.1 Logistic and Probit regressions 16 8.1 Logistic and Probit regressions 16 8.1.1 Changes in salmon age at smoltification 16 8.1.2 Formalization: The Binomial-logit model 17 8.1.3 Bayesian inference 17 8.1.3.1 Noninformative Zellner priors 17 8.1.3.2 Posterior distributions 17 8.1.4 Model comparison 17 8.1.5 Discussion 18 8.1.5.1 Ecological implications of the results 18 8.2.2 Ordered Probit model 18 8.2.1 Skate species repartition 18 8.2.2 Formalization 18		7.2	Searchi	ng for a SR model	148
7.3.1 Natural parameters 15 7.3.2 Working with management parameters 15 7.4 Changing the error term from logNormal to Gamma 15 7.5 From Ricker to Beverton-Holt 16 7.6 Model choice with informative prior 16 7.7 Conclusions and perspectives 16 8 Getting beyond regression models 16 8.1 Logistic and Probit regressions 16 8.1 Logistic and Probit regressions 16 8.1.1 Changes in salmon age at smoltification 16 8.1.2 Formalization: The Binomial-logit model 17 8.1.3 Bayesian inference 17 8.1.3.1 Noninformative Zellner priors 17 8.1.3.2 Posterior distributions 17 8.1.4 Model comparison 17 8.1.5 Discussion 18 8.1.5.1 Ecological implications of the results 18 8.2.2 Ordered Probit model 18 8.2.1 Skate species repartition 18 8.2.2 Formalization 18		7.3	Which	parameters?	151
7.4 Changing the error term from logNormal to Gamma 15 7.5 From Ricker to Beverton-Holt 16 7.6 Model choice with informative prior 16 7.7 Conclusions and perspectives 16 8 Getting beyond regression models 16 8.1 Logistic and Probit regressions 16 8.1.1 Changes in salmon age at smoltification 16 8.1.2 Formalization: The Binomial-logit model 17 8.1.3 Bayesian inference 17 8.1.3.1 Noninformative Zellner priors 17 8.1.3.2 Posterior distributions 17 8.1.4 Model comparison 17 8.1.5 Discussion 18 8.1.5.1 Ecological implications of the results 18 8.1.5.2 About GLM 18 8.2.1 Skate species repartition 18 8.2.2 Formalization 18 8.2.3 Inferring the ordered multinomial Probit model 19 8.3 Discussion 19 11 More elaborate hierarchical structures 19					151
7.4 Changing the error term from logNormal to Gamma 15 7.5 From Ricker to Beverton-Holt 16 7.6 Model choice with informative prior 16 7.7 Conclusions and perspectives 16 8 Getting beyond regression models 16 8.1 Logistic and Probit regressions 16 8.1.1 Changes in salmon age at smoltification 16 8.1.2 Formalization: The Binomial-logit model 17 8.1.3 Bayesian inference 17 8.1.3.1 Noninformative Zellner priors 17 8.1.3.2 Posterior distributions 17 8.1.4 Model comparison 17 8.1.5 Discussion 18 8.1.5.1 Ecological implications of the results 18 8.1.5.2 About GLM 18 8.2.1 Skate species repartition 18 8.2.2 Formalization 18 8.2.3 Inferring the ordered multinomial Probit model 19 8.3 Discussion 19 11 More elaborate hierarchical structures 19			7.3.2	Working with management parameters	153
7.5 From Ricker to Beverton-Holt 16 7.6 Model choice with informative prior 16 7.7 Conclusions and perspectives 16 8 Getting beyond regression models 16 8.1 Logistic and Probit regressions 16 8.1.1 Changes in salmon age at smoltification 16 8.1.2 Formalization: The Binomial-logit model 17 8.1.3 Bayesian inference 17 8.1.3.1 Noninformative Zellner priors 17 8.1.3.2 Posterior distributions 17 8.1.4 Model comparison 17 8.1.5 Discussion 18 8.1.5.1 Ecological implications of the results 18 8.1.5.2 About GLM 18 8.2 Ordered Probit model 18 8.2.1 Skate species repartition 18 8.2.2 Formalization 18 8.2.3 Inferring the ordered multinomial Probit model 19 8.3 Discussion 19 9 HBM I: Borrowing strength from similar units 19 9.1		7.4	Changi		157
7.6 Model choice with informative prior 16 7.7 Conclusions and perspectives 16 8 Getting beyond regression models 16 8.1 Logistic and Probit regressions 16 8.1.1 Changes in salmon age at smoltification 16 8.1.2 Formalization: The Binomial-logit model 17 8.1.3 Bayesian inference 17 8.1.3.1 Noninformative Zellner priors 17 8.1.3.2 Posterior distributions 17 8.1.4 Model comparison 17 8.1.5 Discussion 18 8.1.5.1 Ecological implications of the results 18 8.1.5.2 About GLM 18 8.2 Ordered Probit model 18 8.2.1 Skate species repartition 18 8.2.2 Formalization 18 8.2.3 Inferring the ordered multinomial Probit model 19 8.3 Discussion 19 9 HBM I: Borrowing strength from similar units 19 9.1 Introduction 19 9.2 HBM for cap		7.5			160
7.7 Conclusions and perspectives 16 8 Getting beyond regression models 16 8.1 Logistic and Probit regressions 16 8.1.1 Changes in salmon age at smoltification 16 8.1.2 Formalization: The Binomial-logit model 17 8.1.3 Bayesian inference 17 8.1.3.1 Noninformative Zellner priors 17 8.1.3.2 Posterior distributions 17 8.1.4 Model comparison 17 8.1.5 Discussion 18 8.1.5.1 Ecological implications of the results 18 8.1.5.2 About GLM 18 8.2 Ordered Probit model 18 8.2.1 Skate species repartition 18 8.2.2 Formalization 18 8.2.3 Inferring the ordered multinomial Probit model 19 8.3 Discussion 19 9 HBM I: Borrowing strength from similar units 19 9.1 Introduction 19 9.2 HBM for capture-mark-recapture data 19 9.2.1 Data		7.6			162
8.1 Logistic and Probit regressions 16 8.1.1 Changes in salmon age at smoltification 16 8.1.2 Formalization: The Binomial-logit model 17 8.1.3 Bayesian inference 17 8.1.3.1 Noninformative Zellner priors 17 8.1.3.2 Posterior distributions 17 8.1.4 Model comparison 17 8.1.5 Discussion 18 8.1.5.1 Ecological implications of the results 18 8.1.5.2 About GLM 18 8.2 Ordered Probit model 18 8.2.1 Skate species repartition 18 8.2.2 Formalization 18 8.2.3 Inferring the ordered multinomial Probit model 19 8.3 Discussion 19 9 HBM I: Borrowing strength from similar units 19 9.1 Introduction 19 9.2 HBM for capture-mark-recapture data 19 9.2.1 Data 19 9.2.2 First phase observation submodels 19		7.7			165
8.1.1 Changes in salmon age at smoltification 16 8.1.2 Formalization: The Binomial-logit model 17 8.1.3 Bayesian inference 17 8.1.3.1 Noninformative Zellner priors 17 8.1.3.2 Posterior distributions 17 8.1.4 Model comparison 17 8.1.5 Discussion 18 8.1.5.1 Ecological implications of the results 18 8.1.5.2 About GLM 18 8.2 Ordered Probit model 18 8.2.1 Skate species repartition 18 8.2.2 Formalization 18 8.2.3 Inferring the ordered multinomial Probit model 19 8.3 Discussion 19 11 More elaborate hierarchical structures 19 9 HBM I: Borrowing strength from similar units 19 9.1 Introduction 19 9.2 HBM for capture-mark-recapture data 19 9.2.1 Data 19 9.2.2 First phase observation submodels 19	8	Gett	ing bey	ond regression models	169
8.1.2 Formalization: The Binomial-logit model 17 8.1.3 Bayesian inference 17 8.1.3.1 Noninformative Zellner priors 17 8.1.3.2 Posterior distributions 17 8.1.4 Model comparison 17 8.1.5 Discussion 18 8.1.5.1 Ecological implications of the results 18 8.2 Ordered Probit model 18 8.2.1 Skate species repartition 18 8.2.2 Formalization 18 8.2.3 Inferring the ordered multinomial Probit model 19 8.3 Discussion 19 II More elaborate hierarchical structures 19 9 HBM I: Borrowing strength from similar units 19 9.1 Introduction 19 9.2 HBM for capture-mark-recapture data 19 9.2.1 Data 19 9.2.2 First phase observation submodels 19		8.1	Logistic	c and Probit regressions	169
8.1.3 Bayesian inference 17 8.1.3.1 Noninformative Zellner priors 17 8.1.3.2 Posterior distributions 17 8.1.4 Model comparison 17 8.1.5 Discussion 18 8.1.5.1 Ecological implications of the results 18 8.1.5.2 About GLM 18 8.2 Ordered Probit model 18 8.2.1 Skate species repartition 18 8.2.2 Formalization 18 8.2.3 Inferring the ordered multinomial Probit model 19 8.3 Discussion 19 II More elaborate hierarchical structures 19 9 HBM I: Borrowing strength from similar units 19 9.1 Introduction 19 9.2 HBM for capture-mark-recapture data 19 9.2.1 Data 19 9.2.2 First phase observation submodels 19			8.1.1	Changes in salmon age at smoltification	169
8.1.3.1 Noninformative Zellner priors 17 8.1.3.2 Posterior distributions 17 8.1.4 Model comparison 17 8.1.5 Discussion 18 8.1.5.1 Ecological implications of the results 18 8.1.5.2 About GLM 18 8.2 Ordered Probit model 18 8.2.1 Skate species repartition 18 8.2.2 Formalization 18 8.2.3 Inferring the ordered multinomial Probit model 19 8.3 Discussion 19 11 More elaborate hierarchical structures 19 9 HBM I: Borrowing strength from similar units 19 9.1 Introduction 19 9.2 HBM for capture-mark-recapture data 19 9.2.1 Data 19 9.2.2 First phase observation submodels 19			8.1.2	Formalization: The Binomial-logit model	172
8.1.3.2 Posterior distributions 17 8.1.4 Model comparison 17 8.1.5 Discussion 18 8.1.5.1 Ecological implications of the results 18 8.1.5.2 About GLM 18 8.2 Ordered Probit model 18 8.2.1 Skate species repartition 18 8.2.2 Formalization 18 8.2.3 Inferring the ordered multinomial Probit model 19 8.3 Discussion 19 II More elaborate hierarchical structures 19 9 HBM I: Borrowing strength from similar units 19 9.1 Introduction 19 9.2 HBM for capture-mark-recapture data 19 9.2.1 Data 19 9.2.2 First phase observation submodels 19			8.1.3	Bayesian inference	176
8.1.4 Model comparison 17 8.1.5 Discussion 18 8.1.5.1 Ecological implications of the results 18 8.1.5.2 About GLM 18 8.2 Ordered Probit model 18 8.2.1 Skate species repartition 18 8.2.2 Formalization 18 8.2.3 Inferring the ordered multinomial Probit model 19 8.3 Discussion 19 II More elaborate hierarchical structures 19 9 HBM I: Borrowing strength from similar units 19 9.1 Introduction 19 9.2 HBM for capture-mark-recapture data 19 9.2.1 Data 19 9.2.2 First phase observation submodels 19				8.1.3.1 Noninformative Zellner priors	176
8.1.5 Discussion 18 8.1.5.1 Ecological implications of the results 18 8.1.5.2 About GLM 18 8.2 Ordered Probit model 18 8.2.1 Skate species repartition 18 8.2.2 Formalization 18 8.2.3 Inferring the ordered multinomial Probit model 19 8.3 Discussion 19 II More elaborate hierarchical structures 19 9 HBM I: Borrowing strength from similar units 19 9.1 Introduction 19 9.2 HBM for capture-mark-recapture data 19 9.2.1 Data 19 9.2.2 First phase observation submodels 19				8.1.3.2 Posterior distributions	177
8.1.5.1 Ecological implications of the results 18 8.1.5.2 About GLM 18 8.2 Ordered Probit model 18 8.2.1 Skate species repartition 18 8.2.2 Formalization 18 8.2.3 Inferring the ordered multinomial Probit model 19 8.3 Discussion 19 II More elaborate hierarchical structures 19 9 HBM I: Borrowing strength from similar units 19 9.1 Introduction 19 9.2 HBM for capture-mark-recapture data 19 9.2.1 Data 19 9.2.2 First phase observation submodels 19			8.1.4	Model comparison	178
8.1.5.2 About GLM 18 8.2 Ordered Probit model 18 8.2.1 Skate species repartition 18 8.2.2 Formalization 18 8.2.3 Inferring the ordered multinomial Probit model 19 8.3 Discussion 19 II More elaborate hierarchical structures 19 9 HBM I: Borrowing strength from similar units 19 9.1 Introduction 19 9.2 HBM for capture-mark-recapture data 19 9.2.1 Data 19 9.2.2 First phase observation submodels 19			8.1.5	Discussion	180
8.2 Ordered Probit model 18 8.2.1 Skate species repartition 18 8.2.2 Formalization 18 8.2.3 Inferring the ordered multinomial Probit model 19 8.3 Discussion 19 II More elaborate hierarchical structures 19 9 HBM I: Borrowing strength from similar units 19 9.1 Introduction 19 9.2 HBM for capture-mark-recapture data 19 9.2.1 Data 19 9.2.2 First phase observation submodels 19				8.1.5.1 Ecological implications of the results	180
8.2.1 Skate species repartition 18 8.2.2 Formalization 18 8.2.3 Inferring the ordered multinomial Probit model 19 8.3 Discussion 19 II More elaborate hierarchical structures 19 9 HBM I: Borrowing strength from similar units 19 9.1 Introduction 19 9.2 HBM for capture-mark-recapture data 19 9.2.1 Data 19 9.2.2 First phase observation submodels 19				8.1.5.2 About GLM	182
8.2.2 Formalization 18 8.2.3 Inferring the ordered multinomial Probit model 19 8.3 Discussion 19 II More elaborate hierarchical structures 193 9 HBM I: Borrowing strength from similar units 19 9.1 Introduction 19 9.2 HBM for capture-mark-recapture data 19 9.2.1 Data 19 9.2.2 First phase observation submodels 19		8.2	Ordere	d Probit model	184
8.2.3 Inferring the ordered multinomial Probit model 19 8.3 Discussion 19 II More elaborate hierarchical structures 193 9 HBM I: Borrowing strength from similar units 19 9.1 Introduction 19 9.2 HBM for capture-mark-recapture data 19 9.2.1 Data 19 9.2.2 First phase observation submodels 19			8.2.1	Skate species repartition	184
8.3 Discussion 19 II More elaborate hierarchical structures 193 9 HBM I: Borrowing strength from similar units 19 9.1 Introduction 19 9.2 HBM for capture-mark-recapture data 19 9.2.1 Data 19 9.2.2 First phase observation submodels 19			8.2.2	Formalization	186
II More elaborate hierarchical structures 193 9 HBM I: Borrowing strength from similar units 19 9.1 Introduction			8.2.3	Inferring the ordered multinomial Probit model	190
9 HBM I: Borrowing strength from similar units 19 9.1 Introduction		8.3	Discuss	sion	191
9.1 Introduction 19 9.2 HBM for capture-mark-recapture data 19 9.2.1 Data 19 9.2.2 First phase observation submodels 19	II	\mathbf{M}	ore ela	aborate hierarchical structures	193
9.1 Introduction 19 9.2 HBM for capture-mark-recapture data 19 9.2.1 Data 19 9.2.2 First phase observation submodels 19	O	пви	/L Bo	rrowing strongth from similar units	105
9.2 HBM for capture-mark-recapture data 19 9.2.1 Data 19 9.2.2 First phase observation submodels 19	Э				
9.2.1 Data					198
9.2.2 First phase observation submodels 19		3.2			198
1					199
U 7 3 Second phase observation supmodels 711			9.2.3	Second phase observation submodels	200
ı				-	201
v				· · · · · · · · · · · · · · · · · · ·	$\frac{201}{204}$
		0.3			204
· · · · · · · · · · · · · · · · · · ·		<i>3.</i> 0			207
					207
O I			∂.⊍.⊿		209
					209

			9.3.2.3 Inference assuming independence	211
		9.3.3	Hierarchical model with partial exchangeability	212
		9.3.4	Results from the hierarchical approach	215
		9.3.5	Prediction of S^* and h^* given the latitude	216
	9.4	Further	Bayesian comments on exchangeability	218
10	HBM	I II: Pi	ling up simple layers	221
	10.1		or successive removal data with habitat and year	222
		10.1.1	Why sampling freshwater juveniles?	222
		10.1.2	Study site, sampling design and data	223
		10.1.3	General model formulation	225
			10.1.3.1 Observation model	225
			10.1.3.2 Role of the sampling area	226
			10.1.3.3 A Normal HBM	226
		10.1.4	Making ecological sense	227
			10.1.4.1 Correlation between δ and π	227
			10.1.4.2 Effects of year and habitat	227
			10.1.4.3 Model comparison	228
		10.1.5	DAG and prior specification	228
		10.1.6	Extrapolation to the whole river	230
		10.1.7	Linking the 0+ population size to the smolts run	ı 231
		10.1.8	Bayesian computations	233
			10.1.8.1 Missing data	233
			10.1.8.2 Controlling the flow of information .	234
			10.1.8.3 MCMC sampling	234
		10.1.9	Results of the model comparison	235
		10.1.10	Estimation with model $M_0 \ldots \ldots$	235
		10.1.11	Posterior checking	237
		10.1.12	Estimation of the total number of 0+ juveniles	239
		10.1.13	Linking 0+ juveniles to smolts run	240
		10.1.14	Discussion	242
			10.1.14.1 Changing prior assumptions?	242
			10.1.14.2 Possible improvements	244
	10.2	Electrof	ishing with successive removals	245
		10.2.1	HBM for electrofishing with successive removals	245
		10.2.2	A rapid sampling technique	249
		10.2.3	Predictive efficiency of the 5-mn protocol	254
11	HBM	I III: S	tate-space modeling	257
	11.1	Introdu	ction	258
	11.2	State-sp	pace modeling of a Biomass Production Model	259
		11.2.1	The Namibian hake fishery	259
		11.2.2	State-space modeling	261

			11.2.2.1 Process equation	262
			11.2.2.2 Observation equation 2	264
		11.2.3		264
		11.2.4	The Namibian hake stock dynamics 2	266
			11.2.4.1 Priors and computational details 2	266
				268
				272
	11.3	State-s		274
		11.3.1		275
		11.3.2		280
		11.3.3		281
				282
			1 0 0	285
			11 0	286
			1 0 0 1	286
			8	286
			0 1	287
		11.3.4	-	287
				287
				 287
				290
			00 0	292
				292
				294
		11.3.5	ě v	295
		11.0.0		295
			ı v	295
	11.4	A tool		297
	11.1	11.4.1	0	297
		11.4.2	011	298
		11.1.2	beautifuled for diagnosis and management 2	,,,,
12	Decis	sion and	d planning 3	01
	12.1			801
	12.2			305
	12.3	Salmon	life cycle dynamics	306
		12.3.1		807
		12.3.2		808
		12.3.3		3 09
		12.3.4		3 09
		12.3.5	0 0	310
	12.4	Long-te		311
	12.5			313
	12.6	_		316
	-		r	

	12.7	Economic model
		12.7.1 Cumulative discounted revenue
		12.7.2 Revenue per time period
		12.7.3 Uncertainties
		12.7.4 Other indicators of performance 323
	12.8	Results
		12.8.1 Extinction probabilities
		12.8.2 Indicators of performance
		12.8.3 Cumulated benefits
	12.9	Discussion
		12.9.1 Optimum solution?
		12.9.2 Expected utility
		12.9.2.1 Decisionmakers' behavior 328
		12.9.2.2 Robustness
		12.9.3 Viability theory
		12.9.4 More than one player in the field 330
		12.9.4.1 The tragedy of commons 330
		12.9.4.2 Cooperation
\mathbf{A}		Normal and Linear Normal model 333
	A.1	Student distributions
		A.1.1 Student distributions as a ratio
		A.1.2 Student distributions as a mixture 334
		A.1.3 Multivariate Student distributions
	A.2	The linear Normal regression model
		A.2.1 Likelihood
		A.2.2 Conjugate prior
		A.2.3 Zellner's G-prior
	A.3	The Zellner Student as a prior
_	C	
В		outing marginal likelihoods and DIC 343
	B.1	Computing predictive distribution
		B.1.1 Method of Marin and Robert
	D 0	B.1.2 Extension of the method of Raftery 34
	B.2	The Deviance Information Criterion
\mathbf{C}	More	on Ricker stock-recruitment 347
Ŭ	C.1	A closer look at the Ricker model
	U.1	C.1.1 Origin
		C.1.2 A deterministic controlled state equation 348
		C.1.3 Attractors and chaos
	C.2	Optimal harvesting with Ricker deterministic behavior 350
	0.4	C.2.1 Standard optimization of a dynamic system 350
		0.2.1 Standard optimization of a dynamic system 500

		C.2.2	Hamiltonian in the discrete case	351
		C.2.3	Searching for a stationary decision rule	352
		C.2.4	Special cases	352
	C.3	Stocha	stic Ricker model	353
		C.3.1	A stochastic controlled state equation	353
		C.3.2	Dynamic stochastic programming	353
		C.3.3	Optimal escapement level	354
		C.3.4	Stochastic case: Theory and practice	354
	C.4	Equilib	orium distribution	355
		C.4.1	Recalling the Normal characteristic function .	356
		C.4.2	SR transition	356
D	Som	e predi	ctive and conditional pdfs	359
	D.1		tive for the Logistic model	359
	D.2		tive for the LogPoisson model	360
	D.3		onditional for the categorial probit model	360
\mathbf{E}	The	baseba	ıll players' historical example	363
	E.1		aseball players' example	363
	E.2		ving strength from neighbors	364
		E.2.1	What about Williams' skill?	364
		E.2.2	Winning bets	366
	E.3	Fully e	exchangeable model	366
		E.3.1	Prior distributions	368
			E.3.1.1 Prior on population parameters	368
			E.3.1.2 Exchangeable prior latent structure	369
		E.3.2	Posterior distributions and borrowing strength	369
			E.3.2.1 Posterior distributions	369
			E.3.2.2 Borrowing strength	371
	E.4	Shrink	age effect in the exchangeable structure	372
Bi	bliog	raphy		375
т.	1			405
ın	\mathbf{dex}		•	403