PROPOSED MARKING GUIDE KAMSSA 2022

NO	SOLUTION	MKS	COMMENT
1	$4\cos y = 3\tan y + 3\sec y$		
	$4\cos y = \frac{3\sin y}{\cos y} + \frac{3}{\cos y}$		
	$4\cos^2 y = 3\sin y + 3$		
	$4(1-\sin^2 y) = 3\sin y + 3$		
	$4 - 4\sin^2 y = 3\sin y + 3$		
	$4\sin^2 y + 3\sin y - 1 = 0$		
	$(4\sin y - 1)(\sin y + 1) = 0$		
	Either;		
	$4\sin y - 1 = 0$		
	$\sin y = 0.25$		
	$y = \sin^{-1}(0.25)$		
	$y = 14.5^{\circ}, 165.5^{\circ}$		
	Or;		
	$\sin y + 1 = 0$		
	$y = \sin^{-1}(1)$		
	$y = 270^{\circ}$		
	$\therefore y = \{14.5^{\circ}, 165.5^{\circ}, 270^{\circ}\}\$		
		05	
2	$\int_0^{\frac{\pi}{2}} x \sin 2x dx$		
	Let $u = x$, $\frac{dv}{dx} = \sin 2x$		
	$\frac{du}{dx} = 1, v = -\frac{1}{2}\cos 2x$		
	$\int_0^{\frac{\pi}{2}} x \sin 2x dx = \left[-\frac{1}{2} x \cos 2x \right]_0^{\frac{\pi}{2}} + \frac{1}{2} \int_0^{\frac{\pi}{2}} \cos 2x dx$		

	π π		
	$= \left[-\frac{1}{2}x\cos 2x \right]_0^{\frac{\pi}{2}} + \left[\frac{1}{4}\sin 2x \right]_0^{\frac{\pi}{2}}$		
	$= \left[\left(-\frac{\pi}{4} \times -1 \right) - (0) \right] + \left[(0) - (0) \right]$		
	$=\frac{\pi}{4}$		
		05	
3	$5^{2t} = 5^{t+1} - 6$	03	
	$(5^t)^2 = 5^t \cdot 5^1 - 6$		
	Let $m = 5^t$		
	$m^2 = 5m - 6$		
	$m^2 - 5m + 6 = 0$		
	(m-3)(m-2)=0		
	m = 3, m = 2		
	But $m = 5^t$		
	For $m = 3, 5^t = 3$		
	$t \log_{10} 5 = \log_{10} 3$, $t = \frac{\log_{10} 3}{\log_{10} 5} = 0.6826$		
	For $m = 2, 5^t = 2$		
	$t \log_{10} 5 = \log_{10} 2$, $t = \frac{\log_{10} 2}{\log_{10} 5} = 0.4307$		
		05	
4	\overline{AP} : $\overline{PB} = 1:2$		
	$\overline{PB} = 2\overline{AP}$		
	$\sqrt{(x-3)^2 + (y-4)^2} = 2\sqrt{(x-2)^2 + (y+3)^2}$		
	$(x-3)^2 + (y-4)^2 = 4[(x-2)^2 + (y+3)^2]$		
	$x^2 - 6x + 9 + y^2 - 8y + 16 = 4(x^2 - 4x + 4 + y^2 + 6y + 9)$		
	$x^2 + y^2 - 6x - 8y + 25 = 4x^2 + 4y^2 - 16x + 24y + 52$		
	$\therefore 3x^2 + 3y^2 - 10x + 32y + 27 = 0$		
	Hence,		
	$x^2 + y^2 - \frac{10}{3}x + \frac{32}{3}y + 9 = 0$		
	$\left(x - \frac{5}{3}\right)^2 + \left(y + \frac{16}{3}\right)^2 = -9 + \left(\frac{5}{3}\right)^2 + \left(\frac{16}{3}\right)^2$		

	$\left(x - \frac{5}{3}\right)^2 + \left(y + \frac{16}{3}\right)^2 = \frac{200}{9}$		
	Centre, $C(\frac{5}{3}, -\frac{16}{3})$ and radius, $r = \frac{10}{3}\sqrt{2}$ units		
		05	
5	$y = \sqrt{(4+3\sin x)}$		
	$\frac{dy}{dx} = \frac{1}{2}(4 + 3\sin x)^{-1/2} \cdot 3\cos x$		
	$\frac{dy}{dx} = \frac{3\cos x}{2\sqrt{(4+3\sin x)}}$		
	$\frac{dy}{dx} = \frac{3\cos x}{2y}$		
	$2y\frac{dy}{dx} = 3\cos x$		
	$2\left(y \cdot \frac{d^2y}{dx^2} + \frac{dy}{dx} \cdot \frac{dy}{dx}\right) = -3\sin x$		
	$2y\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 = -3\sin x$		
	$But -3\sin x = 4 - y^2$		
	$2y\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 = 4 - y^2$		
	$\therefore 2y\frac{d^2y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 + y^2 = 4$		
		05	
6	P(3,-1,2)		
	d		
	$\frac{1}{R(1+2\mu,1+4\mu,3-\mu)}$		
	Distance = $ PR $		
	$\mathbf{PR} = \begin{pmatrix} 1 + 2\mu \\ 1 + 4\mu \\ 3 - \mu \end{pmatrix} - \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 + 2\mu \\ 2 + 4\mu \\ 1 - \mu \end{pmatrix}$		
	$\mathbf{PR} \cdot \mathbf{d} = 0$		

		1	
	$\begin{pmatrix} -2 + 2\mu \\ 2 + 4\mu \\ 1 - \mu \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 4 \\ -1 \end{pmatrix} = 0$ $-4 + 4\mu + 8 + 16\mu - 1 + \mu = 0$ $21\mu = -3 \qquad \therefore \mu = -\frac{1}{7}$		
	$PR = \begin{pmatrix} -2 + 2\left(-\frac{1}{7}\right) \\ 2 + 4\left(-\frac{1}{7}\right) \\ 1 + \frac{1}{7} \end{pmatrix} = \begin{pmatrix} -\frac{16}{7} \\ \frac{10}{7} \\ \frac{8}{7} \end{pmatrix}$ Distance = $\sqrt{\left(-\frac{16}{7}\right)^2 + \left(\frac{10}{7}\right)^2 + \left(\frac{8}{7}\right)^2} = 2.9277$ units		
	Distance = $\sqrt{\left(-\frac{16}{7}\right)^2 + \left(\frac{10}{7}\right)^2 + \left(\frac{8}{7}\right)^2} = 2.9277$ units		
	(1)	05	
7	Let the common root be <i>t</i>		
	$t^2 + kt - 6k = 0$ (i)		
	$t^2 - 2t - k = 0$ (ii)		
	(i) - (ii); t(k+2) - 5k = 0		
	$t = \frac{5k}{k+2}$		
	Substituting for t into (i)		
	$\left(\frac{5k}{k+2}\right)^2 + k\left(\frac{5k}{k+2}\right) - 6k = 0$		
	$25k^2 + 5k^2(k+2) - 6k(k+2)^2 = 0$		
	Dividing through by <i>k</i>		
	$25k + 5k(k+2) - 6(k+2)^2 = 0$		
	$25k + 5k^2 + 10k - 6(k^2 + 4k + 4) = 0$		
	$25k + 5k^2 + 10k - 6k^2 - 24k - 24 = 0$		
	$k^2 - 11k + 24 = 0$		
	(k-3)(k-8) = 0		
	$\therefore k = 3, k = 8$		
		05	
8	$\frac{dv}{dt} = 200 \ cm^3 s^{-1}$		
	$v = \frac{4}{3}\pi r^3$		
	3		

	dv , 2		
	$\frac{dv}{dr} = 4\pi r^2$		
	$\frac{dv}{dt} = \frac{dv}{dr} \cdot \frac{dr}{dt}$		
	$200 = 4\pi r^2 \cdot \frac{dr}{dt}$		
	$\frac{dr}{dt} = \frac{50}{\pi r^2} \ cms^{-1}$		
	$A = 4\pi r^2$		
	$\frac{dA}{dr} = 8\pi r$		
	$\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt}$		
	$=8\pi r \times \frac{50}{\pi r^2} = \frac{400}{r}$		
	When $r = 80 mm = 8 cm$		
	$\therefore \frac{dA}{dt} = \frac{400}{8} = 50 \ cm^2 s^{-1}$		
		05	
9	$\int \frac{1}{e^{2x}-1} dx$		
	$Let e^{2x} - 1 = u$		
	$2e^{2x}dx = du$		
	$dx = \frac{du}{2e^{2x}} = \frac{du}{2(1+u)}$		
	$\int \frac{1}{e^{2x} - 1} dx = \int \frac{1}{u} \cdot \frac{du}{2(1+u)}$		
	$Let \frac{1}{u(1+u)} \equiv \frac{A}{u} + \frac{B}{1+u}$		
	$1 \equiv A(1+u) + Bu$		
	When $u = 0$; $1 = A$ $\therefore A = 1$		
	When $u = -1$; $1 = -B$: $B = -1$		
	$\int \frac{1}{e^{2x} - 1} dx = \frac{1}{2} \int \frac{1}{u} du - \frac{1}{2} \int \frac{1}{1 + u} du$		
	$=\frac{1}{2}\ln u - \frac{1}{2}\ln(1+u) + c$		
	$= \frac{1}{2} \ln \left(\frac{u}{1+u} \right) + c$		
	Σ (11α)		
	$= \frac{1}{2} \ln \left(\frac{e^{2x} - 1}{e^{2x}} \right) + c$		

	(b) Let $u = \tan^t \frac{t}{2}$		
	$du = \frac{1}{2} sec^2 t /_2 dt$		
	$2du = (1+u^2)dt$		
	$dt = \frac{2du}{1+u^2}$		
	$\int_0^{\frac{\pi}{2}} \frac{1}{1+\cos t} dt = \int_0^1 \frac{1}{1+\frac{1-u^2}{1+u^2}} \cdot \frac{2du}{1+u^2}$		
	$=\int_0^1 \frac{2}{2} du$		
	$=u]_0^1$		
	= 1 - 0 = 1		
		12	
10	(a) $u_{r+1} = {}^{\mathrm{n}}\mathrm{C}_{\mathrm{r}} \cdot a^{n-r} \cdot x^{r}$		
	$= {}^{18}\mathrm{C_r} \cdot \left(\frac{1}{x^2}\right)^{18-r} \cdot (-x)^r$		
	$= {}^{18}\mathrm{C_r} \cdot (x^{-2})^{18-r} \cdot (-1)^r \cdot x^r$		
	$\Rightarrow -36 + 2r + r = 3$		
	$3r = 39$ $\therefore r = 13$		
	$u_{14} = {}^{18}\text{C}_{13} \cdot x^{-10} \cdot (-1)^{13} \cdot x^3$		
	$=-8568 x^3$		
	\therefore the coefficient of x^3 in the expansion is -8568		
	(b) $\sqrt{\left(\frac{1+x}{1-x}\right)} = \sqrt{\frac{(1+x)(1+x)}{(1-x)(1+x)}}$		
	$=\sqrt{\frac{(1+x)^2}{1-x^2}}$		
	$=\frac{1+x}{\sqrt{1-x^2}}$		
	$= (1+x)(1-x^2)^{-1/2}$		
	$= (1+x)\left(1-\frac{1}{2}(-x^2)+\cdots\right)$		
	$= (1+x)\left(1+\frac{1}{2}x^2+\cdots\right)$		
	•		·

	$=1+\frac{1}{2}x^2+x+\cdots$		
	$\therefore \sqrt{\left(\frac{1+x}{1-x}\right)} = 1 + x + \frac{1}{2}x^2 + \cdots$		
	Hence putting $x = \frac{1}{7}$		
	$\sqrt{\left(\frac{1+\frac{1}{7}}{1-\frac{1}{7}}\right)} \approx 1 + \frac{1}{7} + \frac{1}{2}\left(\frac{1}{7}\right)^2$		
	$\sqrt{\frac{4}{3}} \approx \frac{113}{98}$		
	$\frac{2}{\sqrt{3}} \approx \frac{113}{98}$		
	$\therefore \sqrt{3} \approx \frac{196}{113}$		
		12	
11	(a) $2A + B = 45^{\circ}$		
	$B=45^0-2A$		
	Taking tan on both sides,		
	$\tan B = \tan(45^0 - 2A)$		
	$= \frac{\tan 45^{0} - \tan 2A}{1 + \tan 45^{0} \tan 2A}$		
	$= \frac{1 - \frac{2 \tan A}{1 - \tan^2 A}}{1 + \frac{2 \tan A}{1 - \tan^2 A}}$		
	$=\frac{1-2\tan A-\tan^2 A}{1+2\tan A-\tan^2 A}$		
	(b) Let $tan^{-1}(2x) = A$, $tan^{-1}(3x) = B$		
	$\tan A = 2x, \tan B = 3x$		
	$A+B=\frac{\pi}{4}$		
	$\tan(A+B) = \tan\frac{\pi}{4}$		
	$\frac{\tan A + \tan B}{1 - \tan A \tan B} = 1$		
	2x + 3x = 1 - (2x)(3x)		

	$5x = 1 - 6x^2$		
	$6x^2 + 5x - 1 = 0$		
	(6x - 1)(x + 1) = 0		
	$x = \frac{1}{6} \text{ or } x = -1$		
	$\therefore x = \frac{1}{6}$		
		12	
12	(a) Let $y = \tan x$ $y + \delta y = \tan(x + \delta x)$		
	$x = 60^{\circ}, \delta x = 1^{\circ} = \frac{\pi}{180}$		
	$\frac{dy}{dx} = sec^2x$		
	$\frac{\delta y}{\delta x} pprox \frac{dy}{dx}$		
	$\delta y \approx \frac{dy}{dx} \cdot \delta x$		
	$\delta y \approx sec^2(60^0) \cdot \frac{\pi}{180} \approx \frac{\pi}{45}$		
	$\tan 61^0 \approx y + \delta y$		
	$\approx \tan 60^0 + \frac{\pi}{45}$		
	$\approx \sqrt{3} + \frac{\pi}{45}$		
	$pprox rac{45\sqrt{3}+\pi}{45}$		
	(b) Let $y = cosecx = \frac{1}{\sin x}$		
	$y + \delta y = \frac{1}{\sin(x + \delta x)}$		
	$\delta y = \frac{1}{\sin(x + \delta x)} - \frac{1}{\sin x}$		
	$\delta y = \frac{\sin x - \sin(x + \delta x)}{\sin x \sin(x + \delta x)}$		
	$\delta y = \frac{2\cos\left(x + \frac{\delta x}{2}\right)\sin\left(-\frac{\delta x}{2}\right)}{\sin x \sin(x + \delta x)}$		

	$\frac{\delta y}{\delta x} = \frac{2\cos\left(x + \frac{\delta x}{2}\right) \frac{\sin\left(-\frac{\delta x}{2}\right)}{\delta x}}{\sin x \sin(x + \delta x)}$ $\text{As } \delta x \to 0, \frac{\sin\left(-\frac{\delta x}{2}\right)}{\delta x} \to -\frac{1}{2}, \frac{\delta y}{\delta x} \to \frac{dy}{dx}$ $\frac{dy}{dx} = -\frac{\cos x}{\sin x \cdot \sin x} = -\frac{\cos x}{\sin x} \cdot \frac{1}{\sin x} = -\cot x \cdot \csc x$		
	$\therefore \frac{d}{dx}(cosecx) = -cosecx \cot x$		
10		12	
13	(a) $x^2 + 4x - 8y - 4 = 0$		
	$x^2 + 4x = 8y + 4$		
	$x^2 + 4x + (2)^2 = 8y + 4 + (2)^2$		
	$(x+2)^2 = 8y + 8$		
	$(x+2)^2 = 8(y+1)$		
	Let $x + 2 = X$, $y + 1 = Y$		
	$X^2 = 8Y$		
	\therefore since $X^2 = 8Y$ is in the form $x^2 = 4ay$, it's a		
	parabola.		
	ii) compare with $(x - h)^2 = 4a(y - k)$		
	h = -2, k = -1		
	\therefore coordinates for the vertex = $(-2, -1)$		
	(b) From $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$		
	$b^2 x^2 + a^2 y^2 = a^2 b^2$		
	$b^2x^2 + a^2(mx+c)^2 = a^2b^2$		
	$b^2x^2 + a^2(m^2x^2 + 2mcx + c^2) = a^2b^2$		
	$b^2x^2 + a^2m^2x^2 + 2a^2mcx + a^2c^2 = a^2b^2$		
	$(b^2 + a^2m^2)x^2 + 2a^2mcx + a^2c^2 - a^2b^2 = 0$		
	For tangency; $b^2 = 4ac$		
	$(2a^2mc)^2 = 4(b^2 + a^2m^2)(a^2c^2 - a^2b^2)$		

	$2a^4m^2c^2 = 4[a^2b^2c^2 - a^2b^4 + a^4m^2c^2 - a^4b^2m^2]$		
	$0 = a^2b^2c^2 - a^2b^4 - a^4b^2m^2$		
	$a^2b^2c^2 = a^2b^4 + a^4b^2m^2$		
	Dividing through by a^2b^2		
	$c^2 = b^2 + a^2 m^2$		
	Comparing,		
	$a^2 = 9, b^2 = 4$		
	If they are parallel, then $m = 1$		
	$c^2 = 4 + 9 \times 1$		
	$c^2 = 13 \qquad \qquad \therefore c = \pm \sqrt{13}$		
	$\therefore y = x \pm \sqrt{13} \text{ are the tangents to the ellipse}$		
		12	
14	$\arg\left(\frac{z-3}{z-2i}\right) = \frac{\pi}{4}$		
	$\arg(z-3) - \arg(z-2i) = \frac{\pi}{4}$		
	$\arg(x-3+iy) - \arg(x+i(y-2)) = \frac{\pi}{4}$		
	$\tan^{-1}\left(\frac{y}{x-3}\right) - \tan^{-1}\left(\frac{y-2}{x}\right) = \frac{\pi}{4}$		
	Let $\tan^{-1}\left(\frac{y}{x-3}\right) = A$, $\tan^{-1}\left(\frac{y-2}{x}\right) = B$		
	$\tan A = \frac{y}{x-3}, \tan B = \frac{y-2}{x}$		
	$A - B = \frac{\pi}{4}$		
	$\tan(A - B) = \tan\frac{\pi}{4}$		
	$\frac{\tan A - \tan B}{1 + \tan A \tan B} = 1$		
	$\tan A - \tan B = 1 + \tan A \tan B$		
	$\frac{y}{x-3} - \frac{y-2}{x} = 1 + \frac{y}{x-3} \times \frac{y-2}{x}$		
	$\frac{xy - xy + 2x + 3y - 6}{x^2 - 3x} = 1 + \frac{y^2 - 2y}{x^2 - 3x}$		
	$2x + 3y - 6 = x^2 - 3x + y^2 - 2y$		

	$x^2 + y^2 - 5x - 5y + 6 = 0$		
	$\left(x - \frac{5}{2}\right)^2 + \left(y - \frac{5}{2}\right)^2 = -6 + \left(\frac{5}{2}\right)^2 + \left(\frac{5}{2}\right)^2$		
	$\left(x - \frac{5}{2}\right)^2 + \left(y - \frac{5}{2}\right)^2 = \frac{13}{2}$		
	Description:		
	The locus is half a circle with centre, $C(\frac{5}{2}, \frac{5}{2})$ and		
	radius, $r = \sqrt{\frac{13}{2}}$ units		
		12	
15	$\begin{vmatrix} \mathbf{a} & \mathbf{n} = \begin{vmatrix} \mathbf{i} & -\mathbf{j} & \mathbf{k} \\ 6 & -2 & 1 \\ -1 & 3 & -7 \end{vmatrix}$		
	$= i \begin{vmatrix} -2 & 1 \\ 3 & -7 \end{vmatrix} - j \begin{vmatrix} 6 & 1 \\ -1 & -7 \end{vmatrix} + k \begin{vmatrix} 6 & -2 \\ -1 & 3 \end{vmatrix}$		
	$=11\mathbf{i}+41\mathbf{j}+16\mathbf{k}$		
	$r \cdot n = a \cdot n$		
	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 11 \\ 41 \\ 16 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 11 \\ 41 \\ 16 \end{pmatrix} $		
	11x + 41y + 16z = 11 + 0 - 16		
	$\therefore 11x + 41y + 16z = -5$		
	(b) If the line is perpendicular to the plane, then the		
	normal to the plane it's the direction of the line		
	$r = a + \mu d$		
	$r = \begin{pmatrix} 4 \\ 4 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 11 \\ 41 \\ 16 \end{pmatrix}$		
	Let $r = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$		
	$ \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 11 \\ 41 \\ 16 \end{pmatrix} $		

	x-4 $y-4$ $z+1$		
	$\therefore \frac{x-4}{11} = \frac{y-4}{41} = \frac{z+1}{16}$		
		12	
16	Let T = temperature of the liquid		
	Difference = $(T - 15)$		
	$\left \frac{dT}{dt} \propto (T - 15) \right $		
	$\frac{dT}{dt} = -k(T - 15)$		
	$\left \frac{dT}{T - 15} = -kdt \right $		
	$\int \frac{dT}{T-15} = \int -kdt$		
	ln(T-15) = -kt + c		
	$T - 15 = e^{-kt+c}$		
	$T - 15 = e^{-kt} \cdot e^c$		
	$T - 15 = Ae^{-kt}$		
	When $t = 0, T = 50^{\circ}$ C		
	$50 - 15 = Ae^0 \qquad \therefore A = 35$		
	$T = 15 + 35e^{-kt}$		
	When $t = 20 \text{ mins}, T = 35^{\circ}\text{C}$		
	$35 - 15 = 35e^{-20k}$		
	$e^{-20k} = \frac{20}{35} = \frac{4}{7}$		
	$20k = \ln\left(\frac{7}{4}\right) \qquad \therefore k = \frac{1}{20}\ln\left(\frac{7}{4}\right)$		
	When $t = 26 \text{ mins}, T = ?$		
	$T = 15 + 35e^{-26 \times \frac{1}{20} \ln \left(\frac{7}{4}\right)}$		
	T = 31.90902558		
	$\therefore T = 31.9^{\circ} \text{C}$		
		12	