1. O' Connell - Yor semi-discrete directed polymer and

Whittaker processes.

N=6 example . ϕ is a semidiscrete directed polymer. $0 < S, < S, < \cdots < S_{N-1} < +$.

Bi are Brownian motions with drift ai.

Energy of a path:

$$E(\phi) = B_1(s_1) + (B_2(s_2) - B_2(s_1)) + \cdots + (B_N(t_1 - B_N(s_{N-1})))$$

Partition function:

 $e^{E(\phi)} d\phi$, where $d\phi = ds_1 ds_2 ... ds_{N-1}$.

Hierarchy of partition functions:

N=6, n=3 Example. 1. 1. 1. ... pn are nonintersecting semi-discrete directed polymers.

ZN(1): S en intersecting

 $e^{\frac{n}{2}E(\phi_i)}$ $d\phi_i - d\phi_n$

Hierarchy of free energies.

$$F_n^{N}(t) = \log \left(\frac{Z_n^{N}(t)}{Z_{n-1}^{N}(t)} \right)$$

The array of stocharin processes $F_{i}^{N}(1): [0, \infty) \rightarrow IR, F_{i}^{N}(0): 0$ $F_{i}^{N} = F_{i}^{N} - \cdots - F_{i}^{N}$ $F_{i}^{N} = F_{i}^{N} - \cdots - F_{i}^{N}$

Fi Fi

satisfy the recursive equations

 $dF'_{i} = dB_{i}$

dF! = dF! + eFi-Fide

 $dF_{2}^{k} = dF_{2}^{k+1} + (e^{F_{2}^{k} - F_{2}^{k+1}} - e^{F_{2}^{k} - F_{2}^{k+1}})dt$

d Fk = d Fk + (eFk - Fk - eFk - Fk - Fk) d+

 $dF_k^k = dB_k - e^{F_k^k - F_{k-1}^{k-1}} dt.$

Comparing these equations with those Satisfied by the Markov process of the evolution of the 2d-Whittaker growth model we have that for all \pm . the distribution of $\{F_n^n\}_{n=1}^n$ is the same as that of $\{T_{n,n}^n\}$ in the Whittaker process $W(a_n,...,a_n;\pm)$. Remark: So F_n^n corresponds to $T_{N,n}$. We have got formulas for

TN.N. We note that there is a symmetry of the stochastic equations satisfied by $\{T_{N,n}\}$, which implies that $\{T_{N,n}\}_{1\leq n\leq N}$ satisfies the equations with a; changed into -a; Therefore F_{1}^{N} also

corresponds to TN.N in W(-a: {).

2. Tracy-Widom distribution and the limit of free energies. Goal of this talk: Find the asymptotics of F^N as $N\to\infty$ in the special case that $a_1=\cdots=a_N=0$.

Theorem: Denote the digamme function $f(z) = \frac{d}{dz} \log \Gamma(z)$ $= \frac{\Gamma'(z)}{\Gamma(z)}. \text{ Define } \bar{f}_{K} = \inf\{(E+-f(t)), \text{ and let } \bar{f}_{K} \text{ obsorbe}$ the unique value of t at which the minimum is achieved.

Tinally, define the positive number, $\bar{g}_{K} = -f''(\bar{f}_{K})$. Then for all large enough K (a technical assumption), and f(x) = f(x). $\lim_{N\to\infty} |P(-f''(t)-N\bar{f}_{K})| \leq r = \lim_{N\to\infty} |P_{W(0;t)}(-f(x)-N\bar{f}_{K})| \leq r = F_{GUE}((\bar{g}_{K}/2)^{-\frac{1}{2}}r)$.

Here $F_{GUE}(x)$ is defined by the Fredholm determinant $F_{GUE}(x) = \text{det} \left(1 - K_{Ainy}(u,v) \right)_{L^{2}[X,\infty)}$ $= \text{det} \left(1 - K_{Ainy}(u+x,v+x) \right)_{L^{2}[0,\infty)}.$

and

where

The proof of the scheorem is based on an exact formula for the whitteker process that we mentioned briefly in the end of last talk.

For all $u \in C \setminus \mathbb{R}_{-}$, $\langle e^{-n}e^{-T_{N,N}} \rangle_{W(0;t)} = \det(L + K_N)$,

where det (I+ K_u) is the Fredholm determinant of $K_n: L^{\nu}(\Gamma_n) \rightarrow L^{\nu}(\Gamma_n)$, for Γ_N a small enough counterclockwise contour

enclosing o, and

 $K_{u}(v, v') = \frac{1}{2} \int_{\Sigma_{N}} \frac{1}{\sin(\pi s)} \left(\frac{\Gamma(v)}{\Gamma(s+v)} \right)^{N} \frac{u^{s} e^{v + s + + s^{2}/2}}{v + s - v'} ds$. (4) with Σ_{N} a contour from $-\infty$: π_{0} ∞ : π_{0} π_{0} : π_{0} π_{0} π_{0} π_{0} : π_{0} π_{0} : π_{0} π_{0} : π_{0} π_{0} : π_{0} :

Idea of the proof of the theorem:

Denote the function $f_N(x) = e^{-e^{N^{\prime} x}x}$ and $f_N(x) = f_N(x-r)$ $= (e^{-e^{N^{\prime} x}x}) e^{N^{\prime} x-r}$ Then

 $f_N(\frac{-T_{N,N}-Nf_K}{N^{V_S}}) = e^{-u}e^{-T_{N,N}}$, where $u: u(N,r,K) = e^{-Nf_K-rN^{V_S}}$.

a simple observation in what if we can prove $\lim_{N\to\infty} \left\langle f_N^* \left(\frac{-T_{N,N} - N f_N}{N^{1/3}} \right) \right\rangle_{W(0;t)} = \lim_{N\to\infty} \left\langle e^{-u} e^{-T_{N,N}} \right\rangle_{W(0;t)} = F_{GUE} \left(|\bar{\mathfrak{I}}_N/\mathfrak{L}|^{-1/3} t \right).$

*lace

lim $P_{W_{10:4}}$, $\left(\frac{-T_{N.N}-N\bar{f}_{K}}{N''^{3}}\right) \leq r$ = Faux $\left((\bar{g}_{K}/2)^{-1/3}r\right)$, since $f_{N}^{r}(x)$ is a good approximation of the indicator function of $(-\infty,r)$:

 $f_{N}(x) = f_{N}^{o}(x)$

To prove the convergence of $\langle e^{-u}e^{-\tau_{m,n}}\rangle_{w_{(0,1)}}$, we deform the contour τ_n such that the integral operator $K_u(v,v')$ is concentrated at $\bar{\tau}_K$.

also we deform the contour Σ_N so that the integrand of (*) is concentrated at \overline{t}_n .

Why \bar{t}_{K} is so important: It is the saddle point of the integrand of (*).

Now focus on the local parts of contours T_N and Σ_N around \overline{t}_n . After change of variables,

 $K_{u}(\tilde{v}, \tilde{v}') \approx \frac{1}{2\pi i} \int_{\tilde{S}} \frac{e^{-\frac{\tilde{v}^{2}}{3}} + (\tilde{g}_{\kappa/2})^{-1/3} r \tilde{v}^{**}}{e^{-\frac{\tilde{v}^{2}}{3}} + (\tilde{g}_{\kappa/2})^{-1/3} r \tilde{s}} \frac{d\tilde{s}}{\tilde{s} - \tilde{v}'}$

Note that Re
$$\tilde{S} > \text{Re}\tilde{V}'$$
, and then
$$\frac{1}{\tilde{S}-\tilde{V}'} = \int_{\tilde{S}} e^{-\chi} (\tilde{S}-\tilde{V}') d\chi.$$

So for any
$$f(\tilde{v}) \in L^2(\Gamma)$$
,

$$\int_{\Gamma} k(\tilde{v}, \tilde{v}') f(\tilde{v}') d\tilde{v}'$$
=
$$\int_{\Gamma} \frac{1}{\ln_{1}} \int_{\Sigma} \frac{e^{-\tilde{v}^{3}/3} + (\tilde{g}_{K}/L)^{-1/3} r \tilde{v}}{e^{-\tilde{v}^{3}/3} + (\tilde{g}_{K}/L)^{-1/3} r \tilde{v}} \int_{0}^{\infty} e^{-\chi \tilde{v}'} d\chi d\tilde{y} f(\tilde{v}) d\tilde{v}'$$
=
$$\frac{1}{\ln_{1}} \int_{\Sigma} \frac{1}{\tilde{v} - \tilde{y}} \frac{e^{-\tilde{v}^{3}/3} + (\tilde{g}_{K}/L)^{-1/3} r \tilde{v}}{e^{-\tilde{y}^{3}/3} + (\tilde{g}_{K}/L)^{-1/3} r \tilde{x}} \int_{0}^{\infty} e^{-\chi \tilde{y}} \int_{\Gamma} e^{\chi \tilde{v}'} f(\tilde{v}') d\tilde{v}' d\chi d\tilde{y}$$

$$C: L^{L}(\Sigma) \to L^{L}(\Gamma) \qquad \qquad G: L^{L}(R, L) \to L^{L}(\Gamma) \to L^{L}(R, L)$$

we decompose $k_u = CBA$.

Since old (I + CBA) = det (I + ACB). and ACB is an operator on $L^{\nu}(IR+)$, we show that $ACB(X,Y) = K_{Airy} (\pi + (\bar{g}_{K/L})^{-1/3}r, Y + (\bar{g}_{K/L})^{-1/3}r)$ and finish the proof.

For any $f(y) \in L^{1}(\mathbb{R}_{+})$, $\int_{0}^{\infty} ACB(x,y) f(y) dy$ $= \int_{0}^{\infty} e^{x\widetilde{V}} \frac{1}{2\pi i} \int_{0}^{\infty} \frac{e^{-v\widetilde{A}/3} + (\widetilde{9}_{\kappa}/2)^{-1/3} r \widetilde{V}}{e^{-\widetilde{Y}/3} + (\widetilde{9}_{\kappa}/2)^{-1/3} r \widetilde{V}} \int_{0}^{\infty} e^{-v\widetilde{Y}/3} f(y) dy d\widetilde{S} d\widetilde{V}$ $= \int_{0}^{\infty} \frac{1}{2\pi i} \int_{0}^{\infty} d\widetilde{V} \int_{0}^{\infty} d\widetilde{S} \frac{1}{\widetilde{V} - \widetilde{S}} \frac{e^{-v\widetilde{Y}/3} + (\widetilde{9}_{\kappa}/2)^{-1/3} r \widetilde{V} + y) \widetilde{S}}{e^{-\widetilde{Y}/3} + (\widetilde{9}_{\kappa}/2)^{-1/3} r + y) \widetilde{S}} f(y) dy$ $ACB(x,y) = -K Aivy(x + (\widetilde{9}_{\kappa}/2)^{-1/3} r, y + (\widetilde{9}_{\kappa}/2)^{-1/3} r)$