O que é uma Função Real de Variável Real?

É uma função cujo domínio e o conjunto de chegada estão contidos em \mathbb{R} .

 $f(x) \to \acute{E}$ a expressão analítica que representa a função f com conjunto de chegada igual a \mathbb{R} e domínio constituído por todos os números reais x para os quais f(x) é um número real.

Domínio de uma Função Real de Variável Real

Casos Particulares:

- $f(x) = \frac{1}{x}$ $D_f = \{x \in R : x \neq 0\}$
- $g(x) = \sqrt{x}$ $D_g = \{x \in R : x \ge 0\}$

Exemplos:

1.
$$m(x) = \sqrt{2x+3}$$
, $D_m = \{x \in R : 2x+3 \ge 0\} = \{x \in R : 2x \ge -3\} = \{x \in R : x \ge -\frac{3}{2}\} = [-\frac{3}{2}, +\inf]$

2.
$$h(x) = \frac{2x}{x+1}$$

 $D_h = \{x \in R : x+1 \neq 0\} = \{x \in R : x \neq -1\} = \mathbb{R} \setminus \{-1\}$

3.
$$t(x) = 5x - 2$$
$$D_t = \mathbb{R}$$

Zeros de uma Função Real de Variável Real

Dada uma função real de variável real f de domínio D_f , os zeros de f são os elementos de D_f que têm imagem nula (y=0).

Ou seja, $x_0 \in D_f$ é zero de f se $f(x_0) = 0$

Exemplo: Consideremos a função $g(x)=-4(x^2-1)$ de domínio [0,10]. $g(x)=0 \Longleftrightarrow -4(x^2-1)=0 \Longleftrightarrow x^2-1=0 \Longleftrightarrow x^2=1 \Longleftrightarrow x=\pm\sqrt{1} \Longleftrightarrow x=1 \lor x=-1$ Tendo em conta o domínio da função (intervalo [0,10]) então g tem apenas um zero: x=1.

Vizinhança de um ponto da reta numérica

Dado um número real x_0 e um número real positivo r, designa-se por vizinhança r de x_0 o intervalo e representa-se por $V_r(x_0)$

$$\xrightarrow{\chi_0-r}$$
 $\xrightarrow{\chi_0}$ $\xrightarrow{\chi_0+r}$

Extremos Relativos e Absolutos

Mínimo

- Absoluto \to O valor f(a) do contradomínio de f tal que $\forall x \in D_f$, $f(a) \leq f(x)$
- Relativo \to O valor f(a) quando existe r > 0 tal que $\forall x \in D_f \cap V_r(a), f(a) \leq f(x)$ O valor a diz-se o minimizante de f.

Máximo

- Absoluto \to O valor f(a) do contradomínio de f tal que $\forall x \in D_f, f(a) \ge f(x)$
- Relativo \to O valor f(a) quando existe r > 0 tal que $\forall x \in D_f \cap V_r(a), f(a) \ge f(x)$ O valor a diz-se o maximizante de f.

Os extremos absolutos de f são os mínimos e máximos absolutos de f.

Exemplo:

- f(a) e f(e) são o máximo absoluto e o mínimo absoluto, respectivamente;
- f(c) é mínimo relativo e c diz-se o minimizante de f;
- \bullet f(d) e f(b)são os máximos relativos e as constantes d e b dizem-se maximizantes de f.