Lab 2 INF-256: Packet Tracer

David Medel 201573548-4 Macarena Hidalgo 201473608-8

1. Asignación de IP's:

El rol correspondiente al primer miembro es 201573548-4 y el del segundo miembro 201473608-8. El calculo de las IP's presentadas a continuación se puede observar con detalle en el siguiente enlace.

1. **Red 0:**

■ El valor de X es 4 por lo tendremos 10 subredes necesitando 4 bits para la división. Obteniendo así las siguientes IP's para la red 0.

RED 0	10.144.0.0/12
Host 1	10.144.0.1
Host 2	10.144.0.2
Router	10.159.255.254
broadcast	10.159.255.255

2. **Red 1:**

■ El valor de X es 8. Por lo que tendremos 8 subredes, necesitando 3 bits para la división. Obteniendo así las IP's resultantes para la red 1.

RED 1	172.16.64.0/19
Host 1	172.16.64.1
Host 2	172.16.64.2
Router	172.16.95.254
broadcast	172.16.95.255

3. **Red 2:**

■ La tercera red más pequeña de la red 0 corresponde a 10.32.0.0/12. El valor de X es 8 por lo que tendremos 8 subredes, necesitando 3 bits. Resultando las siguiente IP's para la red 2.

RED 2	10.34.0.0/15
Server	10.34.0.1
Router	10.35.255.254
broadcast	10.35.255.255

4. **Red 3:**

■ El valor de X es 8. Por lo que se necesitarán 5 bits para dividir la red, resultando 32 subredes. Así las IP's resultantes para la red 3 son:

RED 3	192.168.0.240/29
Host 1	192.168.0.241
Host 2	192.168.0.242
Router	192.168.0.246
broadcast	192.168.0.247

Nota: Dentro del enlace se puede observar también los valores de la máscara de cada red, su nueva máscara y el procedimiento paso a paso de estos cálculos.

2. Preguntas y Análisis

1. Verifique que todos los host sean capaces de comunicarse entre si. Muestre en el informe el proceso que realizo para verificar esto y las rutas que uso cada mensaje. Hint: use mensajes PDU simples o use el comando ping.

Para verificar la comunicación entre todos los host hicimos pruebas con PDU simples, dado que esta nos aseguraba el envío de mensaje entre el host emisor y receptor y viceversa. Dicho procedimiento se realiza como una simulación.

Se puede observar la ejecución de este procedimiento en el siguiente video. Donde se muestra la comunicación mediante PDU entre las redes 0-1, 1-2, 2-3 y 3-0.

Además podemos observar dentro de la carpeta **Pregunta 1** ubicada en el archivo zip enviado todos los screenshot entre las posibles comunicaciones que se pueden generar entre los host.

2. Elija un host de la red 1, y revise las rutas que usa para enviar mensajes a ambos host de la red 0. ¿Que ruta usa? ¿Y por que se debe?

Tomando el host PC 5 podemos ver que la ruta que utiliza para enviar paquetes a los host de la red 0 corresponde en realidad a las rutas OSPF definidas en las tablas de ruteo de los routers 1 y 0, que son quienes permiten la interacción entre ambas subredes.

Para contextualizar la razón del porque se ocupan estas rutas y no otras empezaremos definiendo lo que es un sistema autónomo (AS). Un AS es un conjunto de redes IP administradas por uno o mas operadores de red, en al que se utiliza una misma política de enrutamiento. Dentro de un sistema autónomo los routers que pertenecen a este ejecutan un mismo algoritmo de ruteo (intra-AS routing protocol), es decir el ruteo que se genera entre los routers del AS1 debe realizarse bajo el mismo protocolo intra dominio el cual en este caso es el protocolo OSPF. OSPF aplica el algoritmo Link State el cual se basa en dijkstra para calcular las rutas menos costosas desde un router a otro (es por esto que la ruta utilizada es la 3.0.0.0 y no la que pasa por el router 4), es decir por cada router perteneciente al AS se tendrá una tabla de ruteo que indicara el camino menos costoso para llegar a cada router.

En síntesis la razón de que se utilicen las mismas rutas OSPF definidas, es porque ambas redes (0 y

1) pertenecen en realidad al mismo sistema autónomo (AS1) y como tal todo router perteneciente a este sistema autónomo debe ejecutar el mismo algoritmo de ruteo bajo el mismo protocolo intra dominio (OSPF), el cual define para ambos routers la ruta que pasa por 3.0.0.0 como la menos costosa para completar el envío de paquetes.

Lo anterior se puede comprobar al observar las tablas de ruteo del router 0 y router 1, que se encuentran disponible en la sección 3, figuras (6) y (7) respectivamente.

3. Elija una de las conexiones entre los routers que fue usada en una de las rutas vistas en el punto anterior y elimínela. ¿Los mensajes logran llegar a su destino? ¿A que se debe?

Al eliminar la red o ruta que conectaba el router 1 con el router 0 podemos notar que al enviar un paquete desde la red 0 a la 1 este logra llegar pasando por la ruta 1.0.0.0 - router 4 - 2.0.0.0, es decir el paquete logra llegar a destino completamente.

Esto se debe a que el router 4 también pertenece al sistema autónomo (AS1), por lo cual ejecuta el mismo algoritmo de ruteo bajo el protocolo OSPF.

Al eliminar la red 3.0.0.0, el router 1 y 0 recalcularon sus tablas de ruteo (utilizando siempre el mismo algoritmo OSPF (dijktra)), donde al no existir la conexion 3.0.0.0, se tomo como ruta menos costosa entre ambos como aquella que pasaba por el router 4 (usando los caminos 1.0.0.0 y 2.0.0.0).

Vis.	Time(sec)	Last Device	At Device	Туре
	0.000		PC5	ICMP
	0.001	PC5	Switch1	ICMP
	0.002	Switch1	Router1	ICMP
	0.003	Router1	Router4	ICMP
	0.004	Router4	Router0	ICMP
	0.005	Router0	Switch0	ICMP
	0.006	Switch0	PC1	ICMP
	0.007	PC1	Switch0	ICMP
	0.008	Switch0	Router0	ICMP
	0.009	Router0	Router4	ICMP
	0.010	Router4	Router1	ICMP
	0.011	Router1	Switch1	ICMP
	0.012	Switch1	PC5	ICMP

Figura 1: Ruta por la cual viajó el paquete

4. Repare la conexión eliminada. Configure el ancho de banda de la interfaz "Serial" del router 1 que lo conecta al router 0, junto a la interfaz que recibe dicha conexión a 100 kbps. ¿Espera que la ruta se mantenga o cambie? ¿Que ocurrió en realidad? ¿Y que ocurre si cambia el ancho de banda a 4000 kbps? Explique lo ocurrido en base al protocolo OSPF. Al terminar restaure el ancho de banda a 1544 kbps.

No se espera que la ruta se mantenga puesto que el costo de aquel link cambiara, debido a que este costo es inversamente proporcional a la capacidad del link.

Al ejecutar el experimento se observo que el paquete cambio la ruta que seguia normalmente entre el host 5 y host 1. (se mando el paquete por la ruta 1.0.0.0 - router 4 - 2.0.0.0).

Si se cambia nuevamente el ancho de banda, ahora a 4000 kbps, el paquete se mandara por el link 3.0.0.0, esto es nuevamente debido a que el costo del link es inversamente proporcional a la capacidad del link.

En sintesis en el primer experimente al cambiar la capacidad del link a 100kbps se obtuvo que el costo de enviar un paquete por ese link seria mayor a mandarlo por los otros dos links juntos (1.0.0.0 y 2.0.0.0), dado que a menor capacidad de link mayor sera el costo de envio por este. En contraste con el segundo experimento donde la capacidad de link aumenta, por lo cual el costo del link 3.0.0.0 disminuye.

Figura 2: Ruta del paquete con capacidad del link = 100 kbps.

Event List				
Vis.	Time(sec)	Last Device	At Device	Туре
	0.000		PC5	ICMP
	0.001	PC5	Switch1	ICMP
	0.002	Switch1	Router1	ICMP
	0.003	Router1	Router0	ICMP
	0.004	Router0	Switch0	ICMP
	0.005	Switch0	PC1	ICMP
	0.006	PC1	Switch0	ICMP
	0.007	Switch0	Router0	ICMP
	0.008	Router0	Router1	ICMP
	0.009	Router1	Switch1	ICMP
	0.010	Switch1	PC5	ICMP

Figura 3: Ruta del paquete con capacidad del link = 4000 kbps.

5. Realice el experimento previo, pero usando la conexión entre los routers 4 y 3. ¿Espera que la ruta se mantenga o cambie? ¿Que ocurrió en realidad? ¿Y que ocurre si cambia el ancho de banda a 4000 kbps? Explique lo ocurrido en base al protocolo BGP. Al terminar restaure el ancho de banda a 1544 kbps.

Se esperaría que la ruta cambie, dado que la conexión entre estos routers se basa en el protocolo BGP, el cual utiliza el algoritmo de enrutamiento Distance vector routing, el cual al igual que en el otro caso, busca la ruta mas óptima o menos costosa para el envío de paquetes, además es importante mencionar que BGP es el protocolo que se utiliza para la comunicación entre sistemas autónomos (Inter-AS routing).

Al aplicar el experimento 1 (con capacidad del enlace que une al router 4 y 3 igual a 100 kbps) se observa que evidentemente el paquete cambia la ruta para llegar desde el AS1 al AS3, pasando por 4.0.0.0 - router 2 - 6.0.0.0.

Al cambiar el ancho de banda a 4000kbps el enlace que une al router 4 con 3 vuelve a considerarse como el menos costoso (dado que el costo del enlace es inversamente proporcional a su capacidad), por lo que el paquete se envía a través del enlace 5.0.0.0.

Vis. Time(sec) Last Device At Device Type 0.000 PC5 ICMP 0.001 PC5 Switch1 ICMP 0.002 Switch1 Router1 ICMP 0.003 Router1 Router4 ICMP 0.004 Router4 Router2 ICMP 0.005 Router2 Router3 ICMP 0.006 Router3 Switch2 ICMP 0.007 Switch2 PC3 ICMP 0.008 PC3 Switch2 ICMP 0.009 Switch2 Router3 ICMP 0.010 Router3 Router4 ICMP 0.011 Router2 Router4 ICMP 0.012 Router4 Router1 ICMP 0.013 Router1 Switch1 ICMP	ent L	vent List				
0.001 PC5 Switch1 ICMP 0.002 Switch1 Router1 ICMP 0.003 Router1 Router4 ICMP 0.004 Router4 Router2 ICMP 0.005 Router2 Router3 ICMP 0.006 Router3 Switch2 ICMP 0.007 Switch2 PC3 ICMP 0.008 PC3 Switch2 ICMP 0.009 Switch2 Router3 ICMP 0.010 Router3 Router4 ICMP 0.011 Router2 Router4 ICMP 0.012 Router4 Router1 ICMP	Vis.	Time(sec)	Last Device	At Device	Туре	
0.002 Switch1 Router1 ICMP 0.003 Router1 Router4 ICMP 0.004 Router4 Router2 ICMP 0.005 Router2 Router3 ICMP 0.006 Router3 Switch2 ICMP 0.007 Switch2 PC3 ICMP 0.008 PC3 Switch2 ICMP 0.009 Switch2 Router3 ICMP 0.010 Router3 Router4 ICMP 0.011 Router2 Router4 ICMP 0.012 Router4 Router1 ICMP		0.000		PC5	ICMP	
0.003 Router1 Router4 ICMP 0.004 Router4 Router2 ICMP 0.005 Router2 Router3 ICMP 0.006 Router3 Switch2 ICMP 0.007 Switch2 PC3 ICMP 0.008 PC3 Switch2 ICMP 0.009 Switch2 Router3 ICMP 0.010 Router3 Router2 ICMP 0.011 Router2 Router4 ICMP 0.012 Router4 Router1 ICMP		0.001	PC5	Switch1	ICMP	
0.004 Router4 Router2 ICMP 0.005 Router2 Router3 ICMP 0.006 Router3 Switch2 ICMP 0.007 Switch2 PC3 ICMP 0.008 PC3 Switch2 ICMP 0.009 Switch2 Router3 ICMP 0.010 Router3 Router2 ICMP 0.011 Router2 Router4 ICMP 0.012 Router4 Router1 ICMP		0.002	Switch1	Router1	ICMP	
0.005 Router2 Router3 ICMP 0.006 Router3 Switch2 ICMP 0.007 Switch2 PC3 ICMP 0.008 PC3 Switch2 ICMP 0.009 Switch2 Router3 ICMP 0.010 Router3 Router2 ICMP 0.011 Router2 Router4 ICMP 0.012 Router4 Router1 ICMP		0.003	Router1	Router4	ICMP	
0.006 Router3 Switch2 ICMP 0.007 Switch2 PC3 ICMP 0.008 PC3 Switch2 ICMP 0.009 Switch2 Router3 ICMP 0.010 Router3 Router2 ICMP 0.011 Router2 Router4 ICMP 0.012 Router4 Router1 ICMP		0.004	Router4	Router2	ICMP	
0.007 Switch2 PC3 ICMP 0.008 PC3 Switch2 ICMP 0.009 Switch2 Router3 ICMP 0.010 Router3 Router2 ICMP 0.011 Router2 Router4 ICMP 0.012 Router4 Router1 ICMP		0.005	Router2	Router3	ICMP	
0.008 PC3 Switch2 ICMP 0.009 Switch2 Router3 ICMP 0.010 Router3 Router2 ICMP 0.011 Router2 Router4 ICMP 0.012 Router4 Router1 ICMP		0.006	Router3	Switch2	ICMP	
0.009 Switch2 Router3 ICMP 0.010 Router3 Router2 ICMP 0.011 Router2 Router4 ICMP 0.012 Router4 Router1 ICMP		0.007	Switch2	PC3	ICMP	
0.010 Router3 Router2 ICMP 0.011 Router2 Router4 ICMP 0.012 Router4 Router1 ICMP		0.008	PC3	Switch2	ICMP	
0.011 Router2 Router4 ICMP 0.012 Router4 Router1 ICMP		0.009	Switch2	Router3	ICMP	
0.012 Router4 Router1 ICMP		0.010	Router3	Router2	ICMP	
		0.011	Router2	Router4	ICMP	
0.013 Router1 Switch1 ICMP		0.012	Router4	Router1	ICMP	
		0.013	Router1	Switch1	ICMP	
0.014 Switch1 PC5 ICMP		0.014	Switch1	PC5	ICMP	

Figura 4: Ruta del paquete con capacidad del link = 100 kbps.

Figura 5: Ruta del paquete con capacidad del link = 4000 kbps.

3. Tablas de rutas

A continuación se presentan las tablas de ruta de cada router. Obtenidas con el comando show ip route.

```
Gateway of last resort is not set
     1.0.0.0/8 [110/128] via 3.0.0.1, 00:09:46, Serial0/1/1
               [110/128] via 2.0.0.2, 00:09:46, Serial0/1/0
     2.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
        2.0.0.0/8 is directly connected, Serial0/1/0
L
        2.0.0.1/32 is directly connected, Serial0/1/0
     3.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
С
        3.0.0.0/8 is directly connected, Serial0/1/1
        3.0.0.2/32 is directly connected, Serial0/1/1
     4.0.0.0/8 [110/128] via 2.0.0.2, 00:09:46, Serial0/1/0
0
     5.0.0.0/8 [110/128] via 2.0.0.2, 00:09:46, Serial0/1/0
     6.0.0.0/8 [110/192] via 2.0.0.2, 00:09:46, Serial0/1/0
     10.0.0.0/8 is variably subnetted, 3 subnets, 3 masks
        10.34.0.0/15 [110/129] via 2.0.0.2, 00:09:46, Serial0/1/0
0
        10.144.0.0/12 is directly connected, GigabitEthernet0/0
        10.159.255.254/32 is directly connected, GigabitEthernet0/0
     172.16.0.0/19 is subnetted, 1 subnets
        172.16.64.0/19 [110/65] via 3.0.0.1, 00:09:46, Serial0/1/1
0
     192.168.0.0/29 is subnetted, 1 subnets
        192.168.0.240/29 [110/129] via 2.0.0.2, 00:09:46, Serial0/1/0
```

Figura 6: Tabla de ruta router 0

Gateway of last resort is not set

```
1.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
С
        1.0.0.0/8 is directly connected, Serial0/1/1
        1.0.0.1/32 is directly connected, Serial0/1/1
_{\rm L}
0
     2.0.0.0/8 [110/128] via 3.0.0.2, 00:11:11, Serial0/1/0
     [110/128] via 1.0.0.2, 00:11:11, Serial0/1/1 3.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
С
        3.0.0.0/8 is directly connected, Serial0/1/0
        3.0.0.1/32 is directly connected, Serial0/1/0
\mathbf{L}
     4.0.0.0/8 [110/128] via 1.0.0.2, 00:11:11, Serial0/1/1
0
     5.0.0.0/8 [110/128] via 1.0.0.2, 00:11:11, Serial0/1/1
     6.0.0.0/8 [110/192] via 1.0.0.2, 00:10:51, Serial0/1/1
     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
```

Figura 7: Tabla de ruta router 1

```
Gateway of last resort is not set
```

```
1.0.0.0/8 [110/128] via 4.0.0.2, 00:11:20, Serial0/1/0
0
     2.0.0.0/8 [110/128] via 4.0.0.2, 00:11:20, Serial0/1/0
0
     3.0.0.0/8 [110/192] via 4.0.0.2, 00:11:20, Serial0/1/0
0
     4.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C
        4.0.0.0/8 is directly connected, Serial0/1/0
т.
        4.0.0.1/32 is directly connected, Serial0/1/0
     5.0.0.0/8 [110/128] via 6.0.0.2, 00:11:20, Serial0/1/1
               [110/128] via 4.0.0.2, 00:11:20, Serial0/1/0
     6.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C.
        6.0.0.0/8 is directly connected, Serial0/1/1
L
        6.0.0.1/32 is directly connected, Serial0/1/1
     10.0.0.0/8 is variably subnetted, 3 subnets, 3 masks
        10.34.0.0/15 is directly connected, GigabitEthernet0/0
C.
        10.35.255.254/32 is directly connected, GigabitEthernet0/0
        10.144.0.0/12 [110/129] via 4.0.0.2, 00:11:20, Serial0/1/0
0
     172.16.0.0/19 is subnetted, 1 subnets
0
        172.16.64.0/19 [110/129] via 4.0.0.2, 00:11:20, Serial0/1/0
     192.168.0.0/29 is subnetted, 1 subnets
        192.168.0.240/29 [110/65] via 6.0.0.2, 00:11:30, Serial0/1/1
```

Figura 8: Tabla de ruta router 2

Gateway of last resort is not set

```
1.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
        1.0.0.0/8 is directly connected, Serial0/1/1
C
L
        1.0.0.1/32 is directly connected, Serial0/1/1
    2.0.0.0/8 [110/128] via 3.0.0.2, 00:11:11, Serial0/1/0
               [110/128] via 1.0.0.2, 00:11:11, Serial0/1/1
    3.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C
        3.0.0.0/8 is directly connected, Serial0/1/0
        3.0.0.1/32 is directly connected, Serial0/1/0
     4.0.0.0/8 [110/128] via 1.0.0.2, 00:11:11, Serial0/1/1
    5.0.0.0/8 [110/128] via 1.0.0.2, 00:11:11, Serial0/1/1
    6.0.0.0/8 [110/192] via 1.0.0.2, 00:10:51, Serial0/1/1
    10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
```

Figura 9: Tabla de ruta router 1

```
Gateway of last resort is not set
```

```
1.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
       1.0.0.0/8 is directly connected, Serial0/0/1
        1.0.0.2/32 is directly connected, Serial0/0/1
     2.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
        2.0.0.0/8 is directly connected, Serial0/0/0
C
        2.0.0.2/32 is directly connected, Serial0/0/0
     3.0.0.0/8 [110/128] via 2.0.0.1, 00:12:17, Serial0/0/0 [110/128] via 1.0.0.1, 00:12:17, Serial0/0/1
0
     4.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
C
        4.0.0.0/8 is directly connected, Serial0/1/0
        4.0.0.2/32 is directly connected, Serial0/1/0
     5.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
С
        5.0.0.0/8 is directly connected, Serial0/1/1
        5.0.0.1/32 is directly connected, Serial0/1/1
T.
0
     6.0.0.0/8 [110/128] via 4.0.0.1, 00:12:17, Serial0/1/0
               [110/128] via 5.0.0.2, 00:12:17, Serial0/1/1
     10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks
        10.34.0.0/15 [110/65] via 4.0.0.1, 00:12:17, Serial0/1/0
        10.144.0.0/12 [110/65] via 2.0.0.1, 00:12:17, Serial0/0/0
0
     172.16.0.0/19 is subnetted, 1 subnets
0
        172.16.64.0/19 [110/65] via 1.0.0.1, 00:12:17, Serial0/0/1
     192.168.0.0/29 is subnetted, 1 subnets
        192.168.0.240/29 [110/65] via 5.0.0.2, 00:12:17, Serial0/1/1
```

Figura 10: Tabla de ruta router 4