Midterm Examination

Notice: Please turn off any types of handheld devices, and leave them far from reach. Use only standalone calculators for calculation if it is needed. The examination takes 100 minutes.只需繳回答案紙,題目紙請同學保留。

- 1. (11%) For Fig. 1, the node voltages are $v_a = 7V$ and $v_b = 10V$. Determine the values of the current source i_s , and the resistance R. $\frac{20}{11} = 2.188$
- 2. (11%) Determine the values of node voltages v_1 , v_2 , and v_3 of the circuit shown in Fig. 2. 2.

- 3. (12%) The voltages v_1 , v_2 , v_3 , and v_4 in Fig. 3 are the node voltages corresponding to node \mathbb{O} , \mathbb{O} , \mathbb{O} , and \mathbb{O} . Determine the values of the gains of the dependent sources, A = -2.6667and B, and the resistance R_1 while $v_1 = 10V$; $v_2 = 75V$; $v_3 = 15V$; and $v_4 = 22.5V$. 1300 = 24,52/3 N
- 4. (11%) Find the current of i_1 of the circuit in Fig. 4.

- $\frac{65}{R} = \frac{2165}{1300}$ 5. (11%) Find the value of i_b of the circuit in Fig. 5.

 6. (11%) Determine the values of node voltages v_1 and v_2 for the circuit in Fig. 6 by much analysis. mesh analysis.

- 7. (11%) Find the value of i_x in the circuit in Fig. 7.
- 8. (11%) Determine the values of the mesh currents i_1 , i_2 , and i_3 presented in Fig. 8 by mesh method.

9. (11%) Find v_0 using source transformation if i = 0.5A in the circuit of Fig. 9.

