Solutions

- 1 The true parameter is estimated $\lambda = 10$ (i.e., 10 events per hour on average). The parameter, given the observation time t = 4, is $\lambda_t = \lambda t = 10 \cdot 4 = 40$.
 - a. $Pr(X \ge 45) = 1 Pr(X \le 45) = 1 poisscdf(45,40) = 0.1903$
 - b. $Pr(X \le 38) = poisscdf(38,40) = 0.4160$
 - c. Pr(X = 45) = poisspdf(45,40) = 0.0440
- 2 We have $X \sim poisson(\lambda)$, so $E[X] = \lambda$ and $Var(X) = \lambda$.
 - a. For $\lambda = 2$, E[X] = 2 and Var(X) = 2. For $\lambda = 5$, E[X] = 5 and Var(X) = 5. For $\lambda = 10$, E[X] = 10 and Var(X) = 10.
 - b. Matlab code

c. Matlab code generating 20 samples by histogram matching:

```
lambda = 2;
Fx = poisscdf(x,lambda);
y = rand(1,20);
for i = 1:20
    dist = abs(Fx-y(i));
    [minval,minix] = min(dist);
    sample(i) = x(minix);
end
```

- 3 Let *X* denote the number of cars passing the traffic light per hour.
 - *a.* Statistical model: We have $X \sim poisson(\lambda)$, with observation x = 45 and t = 4 hours. The parameter estimate is $\hat{\lambda} = x/t = 45/4 = 11.25$.
 - b. The management team's claim is that $\lambda = 10$. Hence, we have $H_0: \lambda = 10$ and $H_1: \lambda \neq \lambda$.
 - c. Standardizing the observation, x=45, we get

$$z = \frac{x - t \cdot \lambda}{\sqrt{t \cdot \lambda}} = \frac{45 - 4 \cdot 10}{\sqrt{4 \cdot 10}} = 0.7906$$

The approximate p-value is

$$2 \cdot (1 - \Phi(|z|)) = 2 \cdot (1 - \Phi(0.7906)) = 0.4292$$

And we fail to reject the null hypothesis.

- 4 Statistical model: We have $X \sim poisson(\lambda)$, with observation x = 25 and t = 2 hours.
 - a. The parameter estimate is $\hat{\lambda} = x/t = 25/2 = 12.50$.
 - b. The endpoints of the 95% confidence interval are

$$\lambda_{-} = \frac{1}{t} \left[x + \frac{1.96^{2}}{2} - 1.96 \sqrt{x + \frac{1.96^{2}}{4}} \right] = \frac{1}{2} \left[25 + \frac{1.96^{2}}{2} - 1.96 \sqrt{25 + \frac{1.96^{2}}{4}} \right] = 8.4672$$

$$\lambda_{+} = \frac{1}{t} \left[x + \frac{1.96^{2}}{2} + 1.96 \sqrt{x + \frac{1.96^{2}}{4}} \right] = \frac{1}{2} \left[25 + \frac{1.96^{2}}{2} + 1.96 \sqrt{25 + \frac{1.96^{2}}{4}} \right] = 18.4536$$

If our null hypothesis states that H_0 : $\lambda = 10$, we fail to reject the null hypothesis, because the hypothesized value λ lies within the confidence interval.