

Chapter 9

Public Key Cryptography and RSA

IUDIC JIT

Terminology Related to Asymmetric Encryption

Asymmetric Keys

Two related keys, a public key and a private key that are used to perform complementary operations, such as encryption and decryption or signature generation and signature verification.

Public Key Certificate

A digital document issued and digitally signed by the private key of a Certification Authority that binds the name of a subscriber to a public key. The certificate indicates that the subscriber identified in the certificate has sole control and access to the corresponding private key.

Public Key (Asymmetric) Cryptographic Algorithm

A cryptographic algorithm that uses two related keys, a public key and a private key. The two keys have the property that deriving the private key from the public key is computationally infeasible.

Public Key Infrastructure (PKI)

A set of policies, processes, server platforms, software and workstations used for the purpose of administering certificates and public-private key pairs, including the ability to issue, maintain, and revoke public key certificates.

Source: Glossary of Key Information Security Terms, NIST IR 7298 [KISS06]

Misconceptions Concerning Public-Key Encryption

- Public-key encryption is more secure from cryptanalysis than symmetric encryption
- Public-key encryption is a general-purpose technique that has made symmetric encryption obsolete
- There is a feeling that key distribution is trivial when using public-key encryption, compared to the cumbersome handshaking involved with key distribution centers for symmetric encryption

Principles of Public-Key Cryptosystems

 The concept of public-key cryptography evolved from an attempt to attack two of the most difficult problems associated with symmetric encryption:

distribution

 How to have secure communications in general without having to trust a KDC with your key

Digital signatures

- How to verify that a message comes intact from the claimed sender
- Whitfield Diffie and Martin Hellman from Stanford University achieved a breakthrough in 1976 by coming up with a method that addressed both problems and was radically different from all previous approaches to cryptography

Public-Key Cryptosystems

A public-key encryption scheme has six ingredients:

Plaintext

The readab le messa ge or data that is fed into the algorit hm as input

Encryptio n algorithm

Performs
various
transfor
ma-tions
on the
plaintext

Public key

Used for encrypti on or decrypti on

Private key

Used for encrypti on or decrypti on Cipherte xt

The scrambl ed messag e produce d as output

Decrypti on algorith m

s the ciphert ext and the matching key and produces the origina leginte xt

Figure 9.1 Public-Key Cryptography

Conventional and Public-Key Conventional Encryption Encryption

Iabic 3.2

Needed to Work:

- 1. The same algorithm with the same key is used for encryption and decryption.
- 2. The sender and receiver must share the algorithm and the key.

Needed for Security:

- 1. The key must be kept secret.
- 2. It must be impossible or at least impractical to decipher a message if the key is kept secret.
- 3. Knowledge of the algorithm plus samples of ciphertext must be insufficient to determine the key.

Needed to Work:

- 1. One algorithm is used for encryption and a related algorithm for decryption with a pair of keys, one for encryption and one for decryption.
- 2. The sender and receiver must each have one of the matched pair of keys (not the same one).

Needed for Security:

- 1. One of the two keys must be kept secret.
- 2. It must be impossible or at least impractical to decipher a message if one of the keys is kept secret.
- 3. Knowledge of the algorithm plus one of the keys plus samples of ciphertext must be insufficient to determine the other key.

Public-Key Cryptosystem:

Figure 9.2 Public-Key Cryptosystem: Secrecy

Public-Key Cryptosystem:

Figure 9.3 Public-Key Cryptosystem: Authentication

Public-Key Cryptosystem: Authentication and Secrecy

Figure 9.4 Public-Key Cryptosystem: Authentication and Secrecy

Applications for Public-Key Cryptosystems

 Public-key cryptosystems can be classified into three categories:

 Some algorithms are suitable for all three applications, whereas others can be used only for one or two

lable 9.3

Applications for Public-Key Cryptosystems

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes
DSS	No	Yes	No

Table 9.3 Applications for Public-Key Cryptosystems

Public-Key Requirements

- Conditions that these algorithms must fulfill:
 - It is computationally easy for a party B to generate a pair (public-key PU_b , private key PR_b)
 - It is computationally easy for a sender A, knowing the public key and the message to be encrypted, to generate the corresponding ciphertext
 - It is computationally easy for the receiver B to decrypt the resulting ciphertext using the private key to recover the original message
 - It is computationally infeasible for an adversary, knowing the public key, to determine the private key
 - It is computationally infeasible for an adversary, knowing the public key and a ciphertext, to recover the original message
 - The two keys can be applied in either order

Public-Key Requirements

- Need a trap-door one-way function
 - A one-way function is one that maps a domain into a range such that every function value has a unique inverse, with the condition that the calculation of the function is easy, whereas the calculation of the inverse is infeasible
 - Y = f(X) easy
 - $X = f^{-1}(Y)$ infeasible
- A trap-door one-way function is a family of invertible functions f_k, such that
 - $Y = f_k(X)$ easy, if k and X are known
 - $X = f_{k^{-1}}(Y)$ easy, if k and Y are known
 - $X = f_{k-1}(Y)$ infeasible, if Y known but k not known
- A practical public-key scheme depends on a suitable trapdoor one-way function

Public-Key Cryptanalysis

- A public-key encryption scheme is vulnerable to a brute-force attack
 - Countermeasure: use large keys
 - Key size must be small enough for practical encryption and decryption
 - Key sizes that have been proposed result in encryption/decryption speeds that are too slow for general-purpose use
 - Public-key encryption is currently confined to key management and signature applications
- Another form of attack is to find some way to compute the private key given the public key
 - To date it has not been mathematically proven that this form of attack is infeasible for a particular public-key algorithm
- Finally, there is a probable-message attack
 - This attack can be thwarted by appending some random bits to simple messages

Adleman (RSA) Algorithm Developed in 1977 at MIT by Ron

- Developed in 1977 at MIT by Ron Rivest, Adi Shamir & Len Adleman
- Most widely used general-purpose approach to public-key encryption
- Is a cipher in which the plaintext and ciphertext are integers between 0 and n - 1 for some n
 - A typical size for n is 1024 bits, or 309 decimal digits

RSA Algorithm

- RSA makes use of an expression with exponentials
- Plaintext is encrypted in blocks with each block having a binary value less than some number n
- Encryption and decryption are of the following form, for some plaintext block M and ciphertext block C
 C = Me mod n

 $M = C^d \mod n = (M^e)^d \mod n = M^{ed} \mod n$

- Both sender and receiver must know the value of n
- The sender knows the value of e, and only the receiver knows the value of d
- This is a public-key encryption algorithm with a public key of $PU=\{e,n\}$ and a private key of $PR=\{d,n\}$

Algorithm Requirements

- For this algorithm to be satisfactory for public-key encryption, the following requirements must be met:
 - 1. It is possible to find values of e, d, n such that M^{ed} mod n = M for all M < n

2. It is relatively easy to calculate M^e mod n and C^d mod n for all values

of M < n

3. It is infeasible to determine *d* gively

Key Generation by Alice

Select p, q

p and q both prime, $p \neq q$

Calculate $n = p \times q$

Calculate $\phi(n) = (p-1)(q-1)$

Select integer *e*

 $gcd(\phi(n), e) = 1; 1 < e < \phi(n)$

Calculate *d*

 $d \equiv e^{1} \pmod{\phi(n)}$

Public key

 $PU = \{e, n\}$

Private key

 $PR = \{d, n\}$

Encryption by Bob with Alice's Public Key

Plaintext:

M < n

Ciphertext:

 $C = Me_{\text{mod } n}$

Decryption by Alice with Alice's Private Key

Ciphertext:

C

Plaintext:

 $M = Cd \mod n$

Figure 9.5 The RSA Algorithm

RSA

a

m

E 1. Select two prime numbers, p = 17 and q = 11.

2. Calculate $n = pq = 17 \times 11 = 187$.

x 3. Calculate $\Phi(n) = (p-1)(q-1) = 16 \times 10 = 160$

4. Select e such that e is relatively prime to $\Phi(n) = 160$ and less than $\Phi(n)$; we choose e = 7.

5. Determine d such that de = 1 (mod 160) and d < 160. The correct value is d = 23, because $23 \times 7 = 161 = (1 \times 160) + 1$; d can be calculated using the extended Euclid's algorithm.

The resulting keys are public PU = [7,187] and private key PR = [23,187].

e

RSA

The below example shows the use of these keys for plaintext input of M = 88. For encryption we need to calculate $C = 88^7 \mod 187$. Exploiting the properties

x of modular arithmetic we can do this as follows:

 $88^7 \mod 187 = [(88^4 \mod 187) \times (88^2 \mod 187) \times (88^1 \mod 187)] \mod 187$

881 mod 187 = 88

m 88² mod 187 = 7744 mod 187 = 77

p 88⁴ mod 187 = 59,969,536 mod 187 = 132

 $88^7 \mod 187 = (88 \times 77 \times 132) \mod 187 = 894,432 \mod 187 = 11$

e

RSA

e

```
For decryption we calculate M = 11^{23} \mod 187:
E
         11^{23} \mod 187 = [(11^1 \mod 187) \times (11^2 \mod 187) \times (11^4 \mod 187)]
X
                           x (118 mod 187) x (118 mod 187)] mod 187
         11^{1} \mod 187 = 11
a
         11^2 \mod 187 = 121
m
         11<sup>4</sup> mod 187 = 14,641 mod 187 = 55
p
         118 mod 187 = 214,358,881 mod 187 = 33
         11^{23} \mod 187 = (11 \times 121 \times 55 \times 33 \times 33) \mod 187
         = 79,720,245 mod 187 = 88
```

Example of RSA Algorithm

Figure 9.6 Example of RSA Algorithm

Figure 9.7 RSA Processing of Multiple Blocks

Exponentiation in Modular Arithmetic

- Both encryption and decryption in RSA involve raising an integer to an integer power, mod n
- Can make use of a property of modular arithmetic:

[($a \mod n$) x ($b \mod n$)] $\mod n = (a \times b)$ $\mod n$

 With RSA you are dealing with potentially large exponents so

Efficient Operation Using the Public Key

- To speed up the operation of the RSA algorithm using the public key, a specific choice of e is usually made
- The most common choice is 65537 (2¹⁶ + 1)
 - Two other popular choices are e=3 and e=17
 - Each of these choices has only two 1 bits, so the number of multiplications required to perform exponentiation is minimized

Efficient Operation Using the Private Key

- Decryption uses exponentiation to power d
 - A small value of d is vulnerable to a bruteforce attack and to other forms of cryptanalysis
- Can use the Chinese Remainder Theorem (CRT) to speed up computation
 - The quantities d mod (p 1) and d mod (q 1) can be precalculated
 - End result is that the calculation is approximately four times as fast as evaluating $M = C^d \mod n$ directly

Key Generation

- Before the application of the public-key cryptosystem each participant must generate a pair of keys:
 - Determine two prime numbers p and q
 - Select either e or d and calculate the other

- Because the value of n
 = pq will be known to
 any potential
 adversary, primes must
 be chosen from a
 sufficiently large set
 - The method used for finding large primes must be reasonably efficient

Procedure for Picking a Prime Number

- Pick an odd integer n at random
- Pick an integer a < n at random
- Perform the probabilistic primality test with a as a parameter. If n fails the test, reject the value n and go to step 1
- If *n* has passed a sufficient number of tests, accept *n*; otherwise, go to see 2

The Security of RSA

Chosen ciphertext attacks

 This type of attack exploits properties of the RSA algorithm

Hardware faultbased attack

 This involves inducing hardware faults in the processor that is generating digital signatures

Brute

 Involves trying all possible private keys

Five possible approac hes to attackin g RSA are:

Mathematical attacks

 There are several approaches, all equivalent in effort to factoring the product of two primes

Timing attacks

 These depend on the running time of the decryption algorithm

Factoring Problem

- We can identify three approaches to attacking RSA mathematically:
 - Factor n into its two prime factors. This enables calculation of $\emptyset(n) = (p-1) \times (q-1)$, which in turn enables determination of $d = e^{-1} \pmod{\emptyset(n)}$
 - Determine $\emptyset(n)$ directly without first determining p and q. Again this enables determination of $d = e^{-1} \pmod{\emptyset(n)}$
 - Determine d directly without first determining ø(n)

Number of Decimal Digits	Number of Bits	Date Achieved
100	332	April 1991
110	365	April 1992
120	398	June 1993
129	428	April 1994
130	431	April 1996
140	465	February 1999
155	512	August 1999
160	530	April 2003
174	576	December 2003
200	663	May 2005
193	640	November 2005
232	768	December 2009

Table 9.5 Progress in RSA Factorization

Figure 9.9 MIPS-years Needed to Factor

Timing Attacks

- Paul Kocher, a cryptographic consultant, demonstrated that a snooper can determine a private key by keeping track of how long a computer takes to decipher messages
- Are applicable not just to RSA but to other public-key cryptography systems
- Are alarming for two reasons:
 - It comes from a completely unexpected direction
 - It is a ciphertext-only attack

Countermeasures

Constant exponentiation time

 Ensure that all exponentiations take the same amount of time before returning a result; this is a simple fix but does degrade performance

Random delay

 Better performance could be achieved by adding a random delay to the exponentiation algorithm to confuse the timing attack

Blinding

 Multiply the ciphertext by a random number before performing exponentiation; this process prevents the attacker from knowing what ciphertext bits are being processed inside the computer and therefore prevents the bit-by-bit analysis essential to the timing attack

Fault-Based Attack

- An attack on a processor that is generating RSA digital signatures
 - Induces faults in the signature computation by reducing the power to the processor
 - The faults cause the software to produce invalid signatures which can then be analyzed by the attacker to recover the private key
- The attack algorithm involves inducing single-bit errors and observing the results
- While worthy of consideration, this attack does not appear to be a serious threat to RSA
 - It requires that the attacker have physical access to the target machine and is able to directly control the input power to the processor

Chosen Ciphertext Attack (CCA)

- The adversary chooses a number of ciphertexts and is then given the corresponding plaintexts, decrypted with the target's private key
 - Thus the adversary could select a plaintext, encrypt it with the target's public key, and then be able to get the plaintext back by having it decrypted with the private key
 - The adversary exploits properties of RSA and selects blocks of data that, when processed using the target's private key, yield information needed for cryptanalysis
- To counter such attacks, RSA Security Inc. recommends modifying the plaintext using a procedure known as optimal asymmetric encryption padding (OAEP)

Summary

- Public-key cryptosystems
- Applications for public-key cryptosystems
- Requirements for public-key cryptography
- Public-key cryptanalysis

- The RSA algorithm
 - Description of the algorithm
 - Computational aspects
 - Security of RSA