Question-01:

Use modular exponentiation to find:

- i) $7^{644} \mod 645$.
- ii) 3²⁰⁰³ **mod** 99.
- iii) 242³²⁹ mod 243.

Question-02:

- i) What is the octal and hexadecimal expansion of (1 1000 0110 0011)₂.
- ii) What is the hexadecimal expansion of (177130)_{10.}
- iii) What is the decimal expansion of (7016)₈
- iv) What is the binary expansion of (BADFACED)_{16.}
- v) What is the octal expansion of $(12345)_{10}$.

Question-03:

Let a, b,c, and d be integers, where $a \neq 0$ such that $a \mid c$ and $b \mid d$, then prove that $ab \mid cd$.

Question-04:

Prove that if n is an odd positive integer, then $n^2 \equiv 1 \pmod{8}$.

Question-05:

Find the integer a such that:

- i) $a \equiv -11 \pmod{21}$ and $90 \le a \le 110$.
- ii) $a \equiv 99 \pmod{41}$ and $100 \le a \le 140$.

iii)
$$a \equiv 17 \pmod{29}$$
 and $-14 \le a \le 14$.

Question-06:

Find the **quotient** and **remainder** when:

- i) 1,234,567 is divided by 1001?
- ii) -123 is divided by 19?
- iii) 0 is divided by 17?
- iv) -2002 is divided by 87?
- v) 1001 is divided by 13?

Question-07:

Find the **prime factorization** of the following numbers:

- i)909,090.
- ii)10!
- iii)7007.

Question-08:

Show that if a and b are positive integers, then $ab = gcd(a, b) \cdot lcm(a, b)$.

Question-09:

Determine whether the integers in each of these sets are **pairwise relatively prime**:

- i)14,17,85.
- ii)21,34,55.
- iii) 25, 41, 49, 64.
- iv) 17, 18, 19, 23.

Question-10:

Express the **greatest common divisor** of each of these pairs of integers as a **linear combination** of these integers.

- i) 252,198.
- ii) 35,78.
- iii) 33,44.

Question-11:

Find the **greatest common divisors** and the **least common multiples** of the following pairs:

i)
$$3^{13} \cdot 5^{17}$$
, $2^{12} \cdot 7^{21}$

ii)
$$2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13$$
, $2^{11} \cdot 3^9 \cdot 11 \cdot 17^{14}$

Question-12:

Show that if a, b, and m are integers such that $m \ge 2$ and $a \equiv b \pmod{m}$, then gcd(a,m) = gcd(b,m).

Question-13:

If the product of two integers is $2^73^85^27^{11}$ and their greatest common divisor is 2^33^45 , what is their **least common multiple**?

Question-14:

Find the greatest common divisor of the following pair of numbers using the Euclidean Algorithm:

- i) 11111, 111111.
- ii) 1529, 14038.
- iii) 750,900.
- iv) 414,662.

Question-15:

How many divisions are required to find gcd(21, 34) using the Euclidean algorithm?